M-GW1302(透传版)

硬件设计手册

V1.0

◆ 版权声明

本文档包含的所有内容均受版权法的保护,未经南京仁珏智能科技有限公司 (以下简称为"仁珏智能")的书面授权,任何组织和个人不得以任何形式或手段 对整个文档和(或)部分内容进行复制和转载,且不得以任何形式传播。

◆ 文档声明

由于产品版本升级或其它原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

M-GW1302(透传版)硬件设计手册

目 录

1	概述		3
	1.1.	简介	3
	1.2.	主要特性	3
	1.3.	模块方框图	3
2	接口描	述	4
	2.1.	接口定义	4
	2.2.	电源接口	7
	2.3.	UART 接口	7
	2.4.	USB 接口	8
	2.5.	控制信号	9
3	天线接	П	10
4	接口电	气以及射频性能	11
	4.1.	电源特性	11
	4.2.	IO 接口特性	11
	4.3.	工作电流	11
	4.4.	射频性能	11
5	外形尺	寸	12
6	参考设	计	13

1 概述

1.1. 简介

M-GW1302 模组是基于 SX1302 芯片方案设计的 LoRa 网关透传模组,采用标准 Mini PCI-e 形态封装,UART 和 USB 接口,模组内置 PA 和 LNA,全双工设计,方便用户快速开发 LoRa 网关设备。

SX1302 是 Semtech 推出的新一代 LoRa 网关基带芯片,搭载前端 SX1250,可以支持扩频因子 SF5~SF12。相比上一代 SX1301 网关方案,可支持更高速率的数据通信,同时功耗大幅降低,简化了网关的热设计,性能显著提高。

1.2. 主要特性

- 采用 PCI Express Mini Card 1.2 标准接口
- 发送电流 360mA,接收电流 60mA
- 支持全双工,收发通道独立
- 支持 USB/UART 接口
- 支持数据透传
- 支持私有 AT 指令集对模组进行参数配置
- 支持 8 路接收, SF5~SF12 全解, 接收灵敏度低至-141dBm
- 支持 1 路发送,发射功率最高 26 dBm
- 支持免授权频段: EU433、CN470、EU868、US915;

1.3. 模块方框图

图 1: M-GW1302 网关模块功能框图

2 接口描述

2.1. 接口定义

M-GW1302 的信号接口是标准的 Mini PCI Express 接口,下表给出了模块对应的 52pin 金手指管脚的功能定义以及说明。

表 1: I0 参数定义

属性	描述
DI	数字输入
DO	数字输出
10	双向输入输出
PI	电源输入

表 2: 主要功能管脚定义

名称	管脚号
GND	4, 9, 15, 18, 21, 26, 27, 29, 34, 35, 37, 40, 43, 50
3. 3V	2, 24, 39, 41, 52
SYS_CLK	1
UART1_RX	11
UART1_TX	13
PPS	19
NRESET	22
UART2_RX	23
UART2_TX	31
USB_DM	36
USB_DP	38
RX_ON	42
TX_ON	44
CFG_ON	46

M-GW1302(透传版)硬件设计手册

表 3: 管脚详细定义

管脚 号	Mini PCIe 管脚定义	M-GW1302 管脚定义	I/0 属性	功能描述	备注
1	WAKE#	SYS_CLK	DO	系统脉冲输出	输出 1Hz 脉冲
2	3.3Vaux	VCC_3V3	PI	3.3V 电源输入	
3	COEX1	NC	_	内部使用,保持悬空	
4	GND	GND	_	地	
5	COEX2	NC	_	内部使用,保持悬空	
6	1.5V	NC	_	未使用	
7	CLKREQ#	NC	_	内部使用,保持悬空	
8	UIM_PWR	NC	_	未使用	
9	GND	GND	_	地	
10	UIM_DATA	SWD_DIO	10	模块升级调试口	可悬空
11	REFCLK-	UART1_RX	DI	模块串口接收端	TTL 电平
12	UIM_CLK	SWD_CLK	10	模块升级调试口	可悬空
13	REFCLK+	UART1_TX	DO	模块串口发送端	TTL 电平
14	UIM_RESET	NC	_	未使用	
15	GND	GND	_	地	
16	UIM_VPP	NC	_	内部使用,保持悬空	
17	RESERVED	NC	_	内部使用,保持悬空	
18	GND	GND	_	地	
19	RESERVED	PPS	DI	GPS 授时输入	不用,可悬空
20	W_DISABLE#	NC	_	内部使用,保持悬空	
21	GND	GND	_	地	
22	PERST#	NRESET	DI	复位控制管脚	低脉冲复位
23	PERn0	UART2_RX	DI	模块串口接收端	TTL 电平
24	3.3Vaux	VCC_3V3	PI	3.3V DC 主电源输入	
25	PERp0	NC	_	未使用	
26	GND	GND	_	地	

M-GW1302(透传版)硬件设计手册

27	GND	GND	_	地	
28	1.5V	NC	_	未使用	
29	GND	GND	_	地	
30	SMB_CLK	NC	_	内部使用,保持悬空	
31	PETn0	UART2_TX	DO	模块串口发送端	TTL电平
32	SMB_DATA	NC	_	内部使用,保持悬空	
33	РЕТр0	NC	_	未使用	
34	GND	GND	_	地	
35	GND	GND	_	地	
36	USB_D-	USB_DM	10	USB 差分信号(-)	
37	GND	GND	_	地	
38	USB_D+	USB_DP	10	USB 差分信号(+)	
39	3.3Vaux	VCC_3V3	PI	3.3V DC 主电源输入	
40	GND	GND	_	地	
41	3.3Vaux	VCC_3V3	PI	3.3V DC 主电源输入	
42	LED_WWAN#	RX_ON	DO	RX 指示,接板载 LED	
43	GND	GND	_	地	
44	LED_WLAN#	TX_ON	DO	TX 指示,接板载 LED	
45	RESERVED	NC	_	内部使用,保持悬空	
46	LED_WPAN#	CFG_ON	DO	CFG 指示,接板载 LED	
47	RESERVED	NC	_	内部使用,保持悬空	
48	1.5V	NC	_	未使用	
49	RESERVED	NC	_	内部使用,保持悬空	
50	GND	GND	_	地	
51	RESERVED	NC	_	内部使用,保持悬空	
52	3.3Vaux	VCC_3V3	PI	3.3V DC 主电源输入	

6 / 15

2.2. 电源接口

表 4: 电源接口定义

名称	管脚号	I0 属性	功能描述
GND	4, 9, 15, 18, 21, 26, 27, 29, 34, 35, 37, 40, 43, 50		
3. 3V	2, 24, 39, 41, 52	PI	3.3 电源

GW1302 模块使用 3.3V 供电,在 TX 模式下,瞬间峰值电流最大可能达到 400mA,为防止电压跌落,使用的开关电源或 LDO 需要能够提供足够的电流,而且在模块供电端口处需加一个电容值较大的钽电容或电解电容。若使用开关电源给模块供电,电路走线应尽量避开天线部分,以防止 EMC 干扰。

图 2: DC-DC 参考电路

2.3. UART 接口

M-GW1302 模块的 UART 接口信号定义如下表所示。

表 5: UART 接口信号定义

名称	管脚号	I/0 属性	功能描述	电压域
UART1_RX	11	DI	模块串口接收端	3.3V
UART1_TX	13	DO	模块串口发送端	3.3V
UART2_RX	23	DI	模块串口接收端	3.3V
UART2_TX	31	DO	模块串口发送端	3. 3V

该串口默认波特率 115200bps。可通过 AT+BRATE 指令进行修改。

图 3. 串口连接

2.4. USB 接口

表 6: USB 接口信号定义

名称	管脚号	I/0 属性	功能描述	备注
USB_DM	36	DI	USB 差分信号(-)	90ohm 差分特性阻抗
USB_DP	38	DO	USB 差分信号(+)	90ohm 差分特性阻抗

模块 USB 接口使用 CP2102 芯片进行串口和 USB 口之间转换。该 USB 口可用于数据传输、AT 命令,功能与 UART 接口一致。

图 4: USB 接口电路参考设计

在 USB 接口电路设计中,需要遵循以下几点:

- 1. USB 差分走线需控制为 90ohm 的差分特性阻抗。
- 2. USB 信号差分走线不要走在晶振、振荡器、磁性器件以及射频信号的下方,远离这些信号走线,走内层,并进行包地处理。
- 3. 如果模块 USB 接口与 USB 插座连接,需要在靠近 USB 插座的位置放置 ESD 防护器件,并且 ESD 防护器件的寄生电容要求小于 2pF。

2.5. 控制信号

表 7: 控制信号接口定义

名称	管脚号	I/0 属性	功能描述	电压域
SYS_CLK	1	DO	模块脉冲输出	3. 3V
NRESET	13	DI	复位控制管脚	3. 3V
RX_ON	42	DO	RX 信号指示	3. 3V
TX_ON	44	DO	TX 信号指示	3. 3V
CFG_ON	46	DO	CFG 信号指示	3. 3V

2.5.1. SYS_CLK

模块脉冲输出,最大输出和吸收电流为 20mA,当外接 LED 灯时,需要串接一个限流电阻,电阻值可以根据 LED 灯的亮度做相应调节。

2.5.2. NRESET 信号

外接控制电路,可实现模块的复位。将 NRESET 接口电平拉低 0.05~0.2s 后释放,可复位模块。 NRESET 信号对干扰比较敏感,在模块接口板上的走线应尽量的短,且有包地处理。

2.5.3. RX ON 信号

当模组开启接收状态时,该引脚输出高电平,同时板载 LED 点亮。

2.5.4. TX ON 信号

当模组处于发送数据时,该引脚输出高电平,同时板载 LED 点亮。

2.5.5. CFG ON 信号

当模组成功配置参数,该引脚输出高电平,同时板载 LED 点亮。

3 天线接口

模块的天线采用 I-PEX 一代连接器。射频连接座的尺寸如图 5 所示,尺寸单位为 mm。

图 5: 射频连接座的尺寸

4 接口电气以及射频性能

4.1. 电源特性

M-GW1302 模块采用 3.3V 的电压供电,输入电压为 3.3V±9%,供电输入至 少要满足 500mA 的供流能力。模块输入电流要求如下表所示:

表 8: 电源输入范围

参数	描述	最小值	典型值	最大值	单位
VCC	模块供电电压	3.0	3.3	3.6	V

4.2. IO 接口特性

M-GW1302 模块的数字 IO 电气特性如下表所示。

表 9: I0 接口电气特性

参数	描述	最小值	最大值	单位
VIH	输入高电平电压	0.7*VCC	VCC+0.3	V
VIL	输入低电平电压	-0.3	0. 3*VCC	V
VOH	输出高电平电压	VCC-0. 5	VCC	V
VOL	输出低电平电压	0	0.4	V

4.3. 工作电流

表 10: 工作电流

参数	工作条件	典型值	单位
RX	开启接收,禁用 TX	60	mA
TX/RX	开启接收,开启 TX@25dBm	380	mA
IDLE	空闲不工作模式	40	mA

4.4. 射频性能

表 11: 射频发射功率

505. 5MHz 26 TBI	小功率值
	D
868. 5MHz TBD TBI	D
915. 5MHz TBD TBI	D

表 12: 射频接收灵敏度

工作频段	扩频因子(BW=125KHZ)	接收灵敏度(典型值)
475.5MHz	SF=5	-121
	SF=7	-127
	SF=12	-141
868.5MHz	SF=5	TBD
	SF=7	TBD
	SF=12	TBD
915.5MHz	SF=05	TBD
	SF=07	TBD
	SF=12	TBD

5 外形尺寸

图 6: M-GW1302 模组外形尺寸

符合标准的 PCI Express Mini Card 连接器均可以与本模块配套使用,如下图给出的 Molex 公司的 679100002 连接器。

图 7: Mini PCI Express 连接器

6 参考设计

1参考设计支持 USB/UART 接口,可根据需要进行修改。

图 8: M-GW1302 模组参考设计

8 销售与服务

南京仁珏智能科技有限公司

地址:南京市浦口高新区星火路 20号

电话: 156 5102 8736 (微信同号)

网址: www.njrjzn.com

淘宝店铺

网址: https://njrjzn.taobao.com

技术支持

冯工

电话: 152 9837 9623 (微信同号)

微信二维码

淘宝二维码