

Campaign Finance

Data Science Immersive Remote Andrea Pascale

Overview

Data collection and storage

Defining a data science experiment

Data wrangling

Creating predictive models

Web App

Further exploration

Original Dataset

- 30+ million records
- From 1990-2016

Database Configuration

Aggregating by Cycle

- From 2000-2014
- Greater number of records in presidential election years

Individual and PAC contributions to all Federal Campaigns

Final Schema

14 million records

occupation

employer

text

text

68,000 records

float

raised_total

raised_unitemized

Data Science Experiment

- Linear Regression
 - To predict the amount of money that needs to be raised to win a congressional or senate race
- Logistic Regression
 - To predict the probability of winning based on target fundraising goals

Linear Regression

Logistic Regression

Data Wrangling

Delete	Separate	Reassign	Extract
U.S. territories & D.C. Guam Virgin Islands American Samoa Puerto Rico	Congressional and Senate races Calculate ranking per state/district	Third-party candidates Bernie Sanders Angus King Lisa Murkowski	Recip Codes . W = win . L = lost . I = incumbent . C = challenge . O = open seat
Any districts matching '00'			

Total Raised by Senate Campaigns (in millions)

Total Raised by Congressional Campaigns (in millions)

Residual error of Fundraising Models

Linear Regression Model

• Features

- cycle, party affiliation, senate/congressional campaign, and competitive ranking
- Accuracy
 - 56% on training data
 - 64% on test data

Probability of Campaign Winning per Fundraising Totals

Logistic Regression Model

Features

- cycle, party affiliation, senate/congressional campaign, competitive ranking, and total raised
- Accuracy
 - 82% on training data
 - 81% on test data

In order to win, Andrea needs to raise the following:

\$1,857,813.41

How many millions do you think you can raise?

If you can raise \$1,500,000 dollars

You have a 84.3% chance of winning.

Next Steps

Clustering of candidate data (candidate profiles)

 Generic senate candidate in the Midwest region should earn X dollars and target Y donors

PAC and individual donor recommender system

• Correlate based on issue set or political affiliation

Seasonality in corporate and individual giving

• Develop separate models for midterm and presidential years