纵向通道的运动方程组为(在计算时,应注意单位的统一,尤其是角度与弧度的转化、牛顿与千克力的转化,特别注意关于角度的一些系数都是以度为单位给出的,运算时应按照国际标准单位进行):

$$\begin{vmatrix}
\dot{V} = \frac{P\cos\alpha - X}{m} - g\sin\theta \\
\dot{\theta} = \frac{1}{mV} (P\sin\alpha + Y - G\cos\theta) \\
J_z \dot{\omega}_z = M_z \\
\dot{\theta} = \omega_z \\
\dot{x} = V\cos\theta \\
\dot{y} = V\sin\theta \\
\dot{m} = -m_c \\
\alpha = \theta - \theta \\
\delta_z = f(\cdot)
\end{vmatrix}$$

其中:

推力 P 为 5884N(600kg)。

阻力 $X = C_x q S$,这里 C_x 为阻力系数,它是攻角 α (注意是角度,下同)的函数,如下表所示(对于中间的攻角 α 值,进行插值运算):

$lpha(\mathring{\ })$	C_x
-2	0.02181
0	0.01961
2	0.02181
4	0.02903
8	0.06310

 $q=rac{1}{2}
ho V^2$ 为动压头,ho为空气密度,取为 $1.225\,kg/m^3$,V 为导弹速度,S 为参考面积,取为 $4.72\,m^2$ 。

升力 $Y=C_yqS$,这里 C_y 为升力系数, $C_y=C_y(\alpha)+C_y^{\delta_z}\cdot\delta_z$, $C_y(\alpha)$ 是攻角 α 的函数,如下表所示:

$lpha(^{\circ})$	$C_{y}(\alpha)$
-2	-0.0666
0	0
2	0.0670
4	0.1479
8	0.3540

 $C_{y}^{\delta_{z}}$ 是舵面效率,表示每度舵偏引起的升力系数变化,取为 0.00455。

俯仰力矩 $M_z=m_zqSL$,这里 m_z 为俯仰力矩系数, $m_z=m_z(\alpha)+m_z^{\delta_z}\cdot\delta_z$, $m_z(\alpha)$ 是攻角 α 的函数,如下表所示:

$lpha(^{\circ})$	$m_z(\alpha)$
-2	0.00524
0	0.00027
2	-0.00622

4	-0.02044
8	-0.07159

 $m_z^{\delta_z}$ 是舵面效率,表示每度舵偏引起的俯仰力矩系数变化,取为-0.00680。L是参考长度,取为 2.33m。

 J_z 是转动惯量,取为固定值 $4200 \, kg \cdot m^2$ 。

 m_c 是发动机秒耗量,为 $m_c = P/I_{sp}$,其中 I_{sp} 为比冲,取为 $I_{sp} = 2097N \cdot s/kg$ 。

几个常量: $g = 9.8m/s^2$, 声速 a = 340m/s.

各个状态变量的初始值: V=0.9a , $\theta=0^\circ$, $\omega_z=0 rad$ / s , $\theta=3^\circ$, x=0 m , y=20 m , m=2000 kg (质量的最小值为 1300kg), $\alpha=3^\circ$, $\delta_z=-1.96^\circ$ 。

作业内容:

- (1) 采用 Matlab 或者 C++语言编写弹道计算程序,采样周期为 0.001s,针对 $\delta_z=0^{\circ}$, $\pm 1^{\circ}$, $\pm 3^{\circ}$,分别 计算 10s 的轨迹,输出主要状态:俯仰角、俯仰角速度、攻角、弹道倾角和高度;
- (2) 根据(1)所得的结果,大致估计当把 δ_z 作为控制量输入u时,分别把俯仰角、俯仰角速度和攻角作为输出y时,响应特性符合怎样的典型环节组合?(一阶惯性、二阶惯性和积分)
- (3) 对于(2)中的结果,试图利用最小二乘法估计出环节对象的特征参数,并进行拟合对比。