PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-359068

(43) Date of publication of application: 26.12.2001

(51)Int.Cl.

H04N 7/16

(21)Application number: 2001-105351

(71)Applicant: THOMSON LICENSING SA

(22)Date of filing:

04.04.2001

(72)Inventor: FLICKNER ANDREW KENT

MCREYNOLDS KEVIN PAUL

RHODES ROBERT ANDREW

(30)Priority

Priority number : 2000 195227

Priority date: 06.04.2000

Priority country: US

(54) SIGNAL INTERFACE FOR TWO-DIRECTIONAL COMMUNICATION UNIT

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a signal interface that supports two-way communication in a signal transmission system.

SOLUTION: The signal interface is used in a set-top box of a CATV/ communication system. A diplexer (76) of this interface is placed between an input/output (78) of the set-top box and a signal splitter (66). By placing the diplexer (76) in front of the signal splitter (66). attenuation of a return data channel(RDC) signal can be avoided. Thus, the set-top box can use a return data channel amplifier with a comparatively low gain. Furthermore, since the signal splitter (66) has only to be operated for a frequency bandwidth of a video signal without the need for the operation at a synthesis frequency bandwidth between the video signal and the return data channel signal, the signal splitter (66) can be operated within a comparatively narrow frequency range.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-359068 (P2001-359068A)

(43)公開日 平成13年12月26日(2001.12.26)

(51) Int.Cl.7

H04N 7/16

識別記号

FΙ H04N 7/16 テーマコート*(参考)

A 5C064

審査請求 未請求 請求項の数18 OL (全 12 頁)

(21)出願番号 特願2001-105351(P2001-105351)

(22)出願日

平成13年4月4日(2001.4.4)

(31)優先権主張番号 60/195227

(32)優先日

平成12年4月6日(2000,4,6)

(33)優先権主張国

米国(US)

(71) 出顧人 300000708

トムソン ライセンシング ソシエテ ア

ノニム

THOMSON LICENSING

S. A.

フランス国 92648 プローニュ セデッ

クス ケ・アルフォンス・ル・ガロ 46

(72)発明者 アンドリユー ケント フリツクナー

アメリカ合衆国 インデイアナ州 カーメ

ル タマー・ドライブ 10243

(74)代理人 100087321

弁理士 渡辺 勝徳

最終頁に続く

(54) 【発明の名称】 2方向性通信装置用の信号インタフェース

(57) 【要約】

【課題】 信号伝達システムにおいて2方向の通信をサ ポートする信号インタフェースを提供する。

【解決手段】 信号インタフェースは、CATV/通信 システムのセットトップ・ボックス内で利用される。こ のインタフェースでは、セットトップ・ボックスの入力 /出力(78)と信号スプリッタ(66)との間にダイ プレクサ(76)が配置される。ダイプレクサ(76) を信号スプリッタ(66)の前に配置することにより、 戻りデータ・チャンネル (RDC) 信号の減衰が生じな い。従って、比較的低い利得の戻りデータ・チャンネル 増幅器が使用できる。その上、信号スプリッタ(66) はビデオ信号と戻りデータ・チャンネル信号の合成周波 数帯域幅で動作せずにビデオ信号の周波数帯域幅だけで 動作すればよいので、信号スプリッタ (66) は比較的 狭い周波数の範囲で動作できる。

20

【特許請求の範囲】

【請求項1】 第1のソースから受信されたビデオ信号 を復号化し、前記第1のソースとの連続的な2方向性通 信をサポートするシステムにおいて、該システムと前記 第1のソースとの間で伝達される信号を制御するための 信号インタフェースを提供する装置であって、

前記第1のソースから信号を受信し、戻り信号を前記第 1のソースに出力する端子と、

前記端子に結合され、前記受信された信号と前記戻り信 号の周波数帯域の差に基づいて、受信された信号と戻り 10 信号を分離するダイプレクサと、

前記ダイプレクサに結合され、前記受信され分離された 信号をスプリットし、前記受信され分離された信号を実 質的に複製する第1と第2の信号を発生する信号スプリ ット装置と、

前記複製された第1と第2の信号を前記スプリット装置 から受信し、前記複製された第1と第2の信号でそれぞ れ運ばれているデータを受信するように同調する第1と 第2のチューナと、から成る前記信号インタフェースを 提供する装置。

【請求項2】 前記ダイプレクサに結合され前記戻り信 号を発生するプロセッサを更に含み、

前記スプリット装置をバイパスする通路を経由して前記 戻り信号が前記ダイプレクサに供給される、請求項1記 載の装置。

【請求項3】 前記第1のチューナがDOCSISと互 換性のある信号を含み、且つ前記複製された第1の信号 を受信するように同調し;且つ前記第2のチューナが、 (a) NTSCと互換性のあるアナログ信号と(b) M PEGと互換性のある信号のうち少なくとも1つを含

み、前記複製された第2の信号を受信するように同調す る、請求項1記載の装置。

【請求項4】 前記第1の複製された信号を復号化す る、DOCSISと互換性のあるデコーダと、(a)ア ナログNTSC信号と互換性のあるデコーダと(b)M PEGと互換性のあるデコーダのうち少なくとも1つ と、から成る請求項1記載の装置。

【請求項5】 前記システムは、第1と第2のソースか ら受信されたビデオ信号を復号化し、前記第1のソース との連続的な2方向性通信をサポートし、前記システム 40 は、前記システムと前記第1のソースとの間に伝達され る信号を制御し且つ前記第2のソースから受信された信 号を制御する信号インタフェースを提供する装置を含 み、

前記スプリット装置と前記第2のチューナに結合される スイッチであって、第1の位置で、前記第2の複製され た信号を前記第2のチューナに結合させ、第2の位置 で、前記第2の複製された信号を前記第2のチューナか ら隔離させ、前記第2のソースから受信された前記ビデ オ信号を前記第2のチューナに結合させる前記スイッチ 50 を含む、請求項1記載の装置。

【請求項6】 前記スイッチの第1および第2の位置 で、前記第1のソースから受信された前記ビデオ信号が 前記第1のチューナに結合された状態にある、請求項5 記載の装置。

【請求項7】 前記第1のチューナがDOCSISと互 換性のあるケーブル・モデム用のチューナを含み、CA TVヘッドエンドによる、前記ケーブル・モデムの状態 の連続的な状態ポーリングをサポートする、請求項6記 載の装置。

【請求項8】 第1と第2のソースから受信されたビデ オ信号を復号化し、前記第1のソースとの連続的な2方 向性通信をサポートするシステムにおいて、前記第2の ソースから受信され且つ前記システムと前記第1のソー ス間で伝達される信号を制御するための信号インタフェ ースを提供する装置であって、

前記第1と第2のソースからそれぞれ信号を受信する第 1と第2の端子と、

前記第1の端子で受信された信号から得られた信号をス プリットし、前記第1の端子で受信された前記信号から 得られた前記信号を実質的に複製する第1および第2の 信号を発生する、信号スプリット装置と、

前記スプリット装置からの前記第1および第2の複製さ れた信号を受信するよう結合され、前記第1および第2 の複製された信号でそれぞれ運ばれているデータを受信 するよう同調する第1および第2のチューナと、

前記スプリット装置と前記第2のチューナに結合される スイッチであって、第1の位置で前記第2の複製された 信号を前記第2のチューナに結合させ、第2の位置で前 記第2の複製された信号を前記第2のチューナから隔離 させ、前記第2のソースから受信された前記ビデオ信号 を前記第2のチューナに結合させる前記スイッチと、か ら成る前記信号インタフェースを提供する装置。

【請求項9】 前記第1の端子と前記スプリット装置に 結合され、受信された信号と戻り信号を分離し、前記第 1の端子で受信された前記信号から得られた前記信号を 供給するダイプレクサを含み、前記分離が前記受信され た信号と前記戻り信号の周波数帯域の差に基づいて行わ れる、請求項8記載の装置。

【請求項10】 前記スイッチの前記第1および第2の 位置で、前記ソースから受信された前記ビデオ信号が前 記チューナに結合された状態にある、請求項8記載の装

【請求項11】 前記第1のチューナが、CATVヘッ ドエンドによる、前記ケーブル・モデムの状態の連続的 状態ポーリングをサポートするDOCSISと互換性の あるケーブル・モデムを含む、請求項8記載の装置。

【請求項12】 前記第2のチューナが OpenCa ble (登録商標)と互換性のあるチューナを含む、請 求項8記載の装置。

【請求項13】 セットトップ・ボックスが、第1のソ ースから第1の信号を受信して、戻り信号を前記第1の ソースに出力できる第1の端子と、

前記第1の端子に結合され、受信された第1の信号と出 て行く戻り信号の周波数帯域の差に基づき、前記第1の 信号と前記出て行く戻り信号を分離するダイプレクサ

前記ダイプレクサに結合され、受信された第1の信号 を、該受信された第1の信号を各々が実質的に複製する 第1と第2の信号に分離する信号スプリッタと、

前記第1のスプリット信号を受信するよう結合され、該 第1のスプリット信号で運ばれるデータに同調する第1 のチューナと、

前記第2のスプリット信号を受信するよう結合され、該 第2のスプリット信号で運ばれるデータに同調する第2 のチューナと、から成るセットトップ・ボックス。

【請求項14】 第2の信号を第2のソースから受信す る第2の端子と、

前記第2の端子に結合され、且つ前記スプリッタと前記 チューナ間に結合されるスイッチであって、第1の位置 20 で前記第2のチューナに前記第2の信号のみを供給し、 第2の位置で前記第2のチューナに前記第2の分離され た信号のみを供給する前記スイッチと、を更に含む請求 項13記載のセットトップ・ボックス。

【請求項15】 前記第2の信号がアナログ・テレビジ ョン信号であり、前記第2のチューナがアナログ・テレ ビジョン信号に同調する、請求項14記載のセットトッ プ・ボックス。

【請求項16】 前記第2のチューナがNTSCアナロ グ・テレビジョン信号に同調する、請求項15記載のセ 30 ットトップ・ボックス。

【請求項17】 前記第1のチューナがDOCSISと 互換性のあるチューナを含む、請求項13記載のセット トップ・ボックス。

【請求項18】 セットトップ・ボックスにおけるイン タフェースおよび信号処理の方法であって、

信号を受信するステップと、

前記信号を、第1の信号帯域と第2の信号帯域の中にダ イプレクスするステップと、

その後、前記第1の信号帯域と前記第2の信号帯域をス 40 プリットして、第1と第2のチューナにそれぞれ運ぶた めに第1と第2の複製された信号を発生するステップ と、から成る前記方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、2方向性の通信機 器に関し、特に、テレビジョン信号とデータ信号を供給 するケーブル・システム用の2方向性通信機器に関す る。

[0002]

【従来の技術】ケーブル・テレビジョン (Cable Television: CATV) システムは、消費者 にテレビジョン信号とデータ信号を供給する。テレビジ ョン信号とデータ信号は、アナログまたはディジタル信 号であり、またはコンテンツ(content:情報の 内容)に依りアナログ信号とディジタル信号が組み合わ せられる。CATVシステムは、典型的には、CATV システムのヘッドエンド(head end)と個々の 消費者との間の2方向性の通信をサポートする。このよ うな2方向性通信により、CATVシステムは、CAT Vシステムを通して消費者が注文するコンテンツ、例え ば、ペイパービュー(pay-per-view: 有料 視聴制)番組(信号)、およびケーブル・モデムを介す る消費者へのインターネット接続を提供する。CATV システムにより提供される種々の信号および/またはサ ービスを受信し利用するためには、消費者のテレビ受像 機に関連する通信装置を備える必要がある。この通信装 置はセットトップ・ボックス (Set Top Bo

【0003】セットトップ・ボックスは、現在典型的に は、アナログ、ディジタル、またはアナログおよびディ ジタル信号の受信機(オーディオおよびビデオ)、およ びケーブル・モデムを含む。アナログ/ディジタル信号 受信機は、ディジタルおよび/またはアナログ・テレビ ジョン信号を受信し、一方、ケーブル・モデムにより、 使用者はインターネットのようなネットワークに接続す ることができる。セットトップ・ボックスは、CATV システムのヘッドエンドとセットトップ・ボックスとの 間の2方向性通信をサポート(support)する。

x) として知られている。

【0004】テレビジョン信号とデータ信号は多数の形 式すなわちフォーマット(信号の符号化と変調)を含む ので、セットトップ・ボックスの製造者およびCATV システムのプロバイダが、相互に適合するシステムを製 作し操作できるようにするために、CATV信号標準が 開発されている。公的標準を採用し使用することによ り、私的なシステムの使用に対抗してCATVシステム /セットトップ・ボックスの市場で競争が始まるであろ

【0005】ディジタルビデオ信号用に開発されたこの ような公的標準の1つは OpenCable (登録商 標)として知られている。ケーブル・テレビジョン・ラ ボラトリズ社 (Cable Television L aboratories, Inc. (CableLab s (登録商標)) により作成されたOpenCable (登録商標) は1セットのインタフェース仕様書であっ て、北米のケーブル・オペレータによって展開されるデ ィジタルCATVのセットトップ・ボックスおよび他の ディジタル装置を規定するものである。OpenCab 1 e (登録商標) は、セットトップ・ボックスの設計と

50 使用に融通性を与える。

【0006】ケーブル・モデム用に開発された別の標準は DOCSIS (登録商標、ドクシス) (Data Over Cable Service Interface Specification) として知られている。CableLabs (登録商標)が作成した DOCSIS (登録商標)はCATVシステム・ネットワークによる高速のデータ配送に係わるケーブル・モデム用のインタフェース要件を規定する。

【0007】一般に、上述したディジタルCATVセッ トトップ・ボックスは、無線周波(RF)フロントエン 10 ド (front end)、ディジタル/アナログ復調 器、およびディジタル信号プロセッサから成る。同じセ ットトップ・ボックス内でのケーブル・モデムとディジ タルビデオ受像機の機能の組み合わせにより、RF信号 処理は複雑になる。同様に、セットトップ・ボックスは 種々のインタフェース要件、例えば、OpenCabl e (登録商標) およびDOCSIS (登録商標) の物理 層 (physical layer) の仕様書を満たす 必要がある。典型的には、2方向性の通信またはCAT Vシステムにおいて、通信は3つのチャンネルで行われ 20 る。第1のチャンネルは、54MHz~860MHzの 周波数帯域内にあるアナログまたはディジタル・チャン ネルである。第2のチャンネルは、70MHz~130 MHzの周波数帯域内にあるフォワード・データチャン ネル (Forward Data Channel:F DC) である。これらのチャンネルで、信号/データは CATVシステムのヘッドエンド (head end) から消費者の機器に流れる。第3のチャンネルは戻りデ ータ・チャンネル (Return Data Chan nel:RDC) であって、5MHz~42MHzの周 30 波数帯域内にある。このチャンネルでは、セットトップ ・ボックスからCATVシステムのヘッドエンド機器へ 伝送されるデータが運ばれる。

[0008]

【発明が解決しようとする課題】現在のディジタルセットトップ・ボックスに要求される種々の機能を提供し且 つ種々のインタフェース仕様を満たすにあたり、セットトップ・ボックスは特定のハードウェアと数個の入力と 出力を必要とする。しかしながら、現在のセットトップ・ボックスはこれらの目的を達成するための機能が十分でない。

【0009】本発明は、信号伝達システムにおいて2方向性通信をサポートする信号インタフェースである。この信号インタフェースは、CATV/通信システムのセットトップ・ボックスの内部にあることが好ましい。

[0010]

【課題を解決するための手段】この信号インタフェースは、セットトップ・ボックスの入力/出力と信号スプリッタ (splitter:分配器)との間に配置されるダイプレクサ (diplexer)を含む。ダイプレク 50

サを信号スプリッタの前に配置することにより、戻りデータ・チャンネル (RDC) 信号の減衰は生じない。従って、比較的低い利得のRDC増幅器を使用することができる。さらに、信号スプリッタはビデオ信号の周波数帯域幅で動作するだけでよく、戻りデータ・チャンネル信号とビデオ信号の合成周波数の帯域幅で動作する必要はないので、信号スプリッタは、比較的狭い周波数範囲で動作できる。

6

【0011】1つの形態で、本発明は、第1のソース (source:源)から受信されたビデオ信号を復号 化し第1のソースとの連続的な2方向性通信をサポート するシステムのための装置である。本装置は、前記シス テムと第1のソースとの間で伝達される信号を制御する ための信号インタフェースを提供する。本装置は、ソー スから伝達される信号を受信し且つ戻り信号を第1のソ ースに出力するための端子を含む。ダイプレクサはこの 端子に結合され、受信された信号と戻り信号の周波数帯 域の差に基づいて、受信された信号と戻り信号を分離す る。信号スプリット装置はダイプレクサに結合され、受 信され分離された信号をスプリットし、受信され分離さ れた信号を実質的に複製する第1と第2の信号を発生す る。第1と第2のチューナは、複製された第1と第2の 信号をスプリット装置から受信するよう結合され、複製 された第1と第2の信号でそれぞれ運ばれているデータ を受信するように同調する。

【0012】別の形態で、本発明は、第1と第2のソー スから受信されるビデオ信号を復号化し、第1のソース との連続的な2方向性通信をサポートするシステムのた めの装置である。本装置は、第2のソースから受信さ れ、前記システムと第1のソース間で伝達される信号を 制御するための信号インタフェースを提供する。本装置 は、第1と第2のソースからそれぞれ信号を受信する第 1と第2の端子を含む。信号スプリット装置は、第1の 端子で受信される信号から得られる信号をスプリット し、前記第1の端子で受信された信号から得られた信号 を実質的に複製する第1と第2の信号を発生する。第1 と第2のチューナは、複製された第1と第2の信号をス プリット装置から受信するよう結合され、それぞれ複製 された第1と第2の信号で運ばれているデータを受信す るように同調する。スプリット装置と第2のチューナに スイッチが結合される。スイッチは第1の位置におい て、複製された第2の信号を第2のチューナに結合さ せ、第2の位置で、複製された第2の信号を第2のチュ ーナから隔離し、第2のソースから受信されたビデオ信 号を第2のチューナに結合させる。

【0013】更に別の形態で、本発明はセットトップ・ボックスである。このセットトップ・ボックスは、第1のソースから第1の信号を受信し且つ戻り信号を第1のソースに出力する第1の端子を含む。ダイプレクサは第1の端子に結合され、第1の信号と出て行く戻り信号の

7

周波数帯域の差に基づいて、受信された第1の信号と出て行く戻り信号を分離する。信号スプリッタ(スプリット装置)がダイプレクサに結合され、受信された第1の信号を、該受信された第1の信号を各々が実質的に複製する第1と第2の信号に分離する。第1のチューナが前記第1のスプリット(split:分離された)信号を受信するよう結合され、該第1のスプリット信号で運ばれるデータに同調する。第2のチューナは第2のスプリット信号を受信するよう結合され、該第2のスプリット信号で運ばれるデータに同調する。

[0014]

【発明の実施の形態】図1に、ケーブル・テレビジョン(CATV)システム(全体として10で表す)のブロック図を示す。CATVシステム10は2方向性のテレビジョン信号/データ通信システムである。最初に了解されるべきこととして、CATVシステム10は、本発明が利用される2方向性通信システムの環境/アプリケーションを例示するものにすぎない。

【0015】CATVシステム10は、ケーブル・ヘッドエンド設備14を含み、ここにCATVシステム10のヘッドエンド16が配置される。(同軸ケーブルまたはメディアの)同軸ケーブル・ネットワーク18は、典型的には、ヘッドエンド16からCATVシステム10のサービス・エリア全域に伸長する。加入者20は同軸ケーブル・ネットワーク18に、その経路に沿って多数の箇所で接続される。当該技術分野で知られているような種々のCATV要素/装置、例えば、増幅器22(これはCATVシステムの一部である)が同軸ケーブル・ネットワーク18の経路全体に点在されている。勿論、当該技術分野で知られているような種々のコネクタあるいはカプラー(coupler)がCATVシステム10全体にわたり使用されているが、ここには図示されていない。

【0016】CATVシステム10は、同軸ケーブル・ネットワーク18に加えて、あるいは同軸ケーブル・ネットワーク18に加えて、あるいは同軸ケーブル・ネットワーク18の代りに、光ファイバ・ケーブル、同軸ケーブル、またはハイブリッド・ファイバ/同軸ケーブルを含むこともある。典型的には、光ファイバ・ケーブルはへッドエンド16から伸長して分配点またはファイバ・ノード(図示せず)に達する。次に、同軸ケーブルは加入者20を分配点またはファイバ・ノードに接続させる。従って、CATVシステム10は、加入者20とヘッドエンド16との間で、テレビジョン信号/データ信号(信号/チャンネル/情報の帯域または帯域幅)の1方向通信(送信)および/または2方向通信(送信および受信)を行うことができる。CATVシステム10は、ここに図示し説明するもの以外に、ヘッドエンド16と加入者20との間で通信/信号路を利用する。

【0017】従来のように、ヘッドエンド16は、例え・デバイスに関する Cable Televisioば、すべてがヘッドエンド設備14内に配置される衛星 50 n Labs社(CableLabs(登録商標))の

放送用の衛星受信機および地上放送用の種々のアンテナ (図示せず)から、複数のテレビジョン信号を受信する。ヘッドエンド設備14は、種々のソースからのこれら複数のテレビジョン信号を適正な周波数に変換し、同軸ケーブル・ネットワーク18を介して加入者20に送信する。一例として、CATVシステム10は、40の番組チャンネルを有し、各チャンネルはオーディオ/ビデオ情報を搬送する特定の周波数帯域内で特定の周波数または周波数範囲を有する。周波数は互いに隣接し、且10 つ一定の量(典型的には6MHz)だけ互いに間隔を置かれている。

8

【0018】一般に、ヘッドエンド16から送信される テレビジョン信号は、アナログ、ディジタル、またはア ナログとディジタルを組み合せた、オーディオ/ビデオ 信号から成る。アナログ信号の場合、オーディオ/ビデ オ信号は、典型的には、NTSC方式であるが、当該技 術分野で知られている任意の方式のものでよい。ディジ タルのテレビジョン信号の場合、ディジタルのオーディ オ/ビデオ・ビットストリームは、同軸ケーブル・ネッ トワーク18で送信するためにアップコンバートされる 搬送信号(搬送波)を変調する。これを行うには、オー ディオ/ビデオ・ビットストリームを表す変調スキーム を無線周波(RF)搬送波に適用する。オーディオ/ビ デオ・テレビジョン・ビットストリームは、例えば、M PEGのような、ディジタル・コーデック (code c:coder/decoder) を利用して組み立て られまたは符号化される。変調スキームは、当該技術分 野で知られているようなもの、例えば、直交振幅変調 (QAM)、直交/4元位相シフトキーイング(QPS K)、あるいは残留側波帯(VSB)変調である。上述 したディジタル変調スキームの変形(例えば、16-Q AM, 32 - QAM, 64 - QAM, 256 - QAM, 4 - VSB、8 - VSB) のほかに、他のタイプのディ ジタル変調スキームも使用できる。また、送信されてい るデータのタイプに依り、CATVシステム10の異な るチャンネルについて異なるディジタル変調スキームも 使用できる。

【0019】さらに、ヘッドエンド16は、特に、インターネットにアクセスするため、ケーブル・モデムとして知られているものを介して、加入者20との2方向性データ通信を提供しまたはサポートできる。

【0020】図2に、ここに提示する原理によるシステム(全体として12で表す)を示す。システム12は、ヘッドエンド16と加入者(サービスを受ける者)20を含む。ヘッドエンド16には OpenCable(登録商標)ヘッドエンド24は、ディジタルCATVセットトップ・ボックスおよび他のディジタル・デバイスに関する Cable Television Labs社(Cable Labs (登録商標))の

(6)

20

アドバンスト・プラットフォーム・アンド・サービス (AdvancedPlatform and Ser vice) グループのインタフェース仕様書セットに従 う。OpenCable (登録商標) ヘッドエンド24 は、ビデオ・コンテンツ(情報の内容)の送信を考慮 し、同軸ケーブル・ネットワーク18を介して加入者2 0のためにコンディショナル・アクセスシステム (co nditional access system) & インターネットの機能を提供する。ヘッドエンド16は さらに、DOCSIS (Data Over Cabl e Service Interface Speci fication) のヘッドエンド26を含む。DOC SIS(現在、CableLabs(登録商標)の公認 されたケーブル・モデム・プロジェトとして知られてい る)のヘッドエンド26は、CATVシステム・ネット ワークを介する高速データ配送に係わるケーブル・モデ ムについての CableLabs (登録商標)のイン タフェース要件に従う。DOCSISのヘッドエンド2 6は同軸ケーブル・ネットワーク18を介する加入者2 0のためのインターネット機能を考慮する。

【0021】加入者20は同軸ケーブル・ネットワーク18と接続しているセットトップ・ボックス30を有する。OpenCable(登録商標)トランシーバとDOCSISトランシーバを備えるためにセットトップ・ボックス30は適正な論理回路を含む。以下に述べる他の機能をサポートするために他の論理回路も備えられる。セットトップ・ボックス30は、種々の消費者用機器、例えば、テレビ受像機、VCR、DVD、IPフォンなどと接続している。セットトップ・ボックス30はヘッドエンド16(すなわち、OpenCble(登録 30商標)ヘッドエンド24およびDOCSISヘッドエンド26)と2方向性の通信ができる。これには、3つのチャンネル、ラインまたは通信経路(チャンネル)または周波数帯域を使用することが好ましい。

【0022】第1のチャンネルは、周波数帯域54MH z~860MHz間に存在するアナログ(例えば、NT SC) またはディジタル (例えば、Forward A pplication Transport (フォワー ド アプリケーション トランスポート): FAT)の ビデオ・チャンネル (集合的に"ビデオ・チャンネル" と称す)である。このビデオ・チャンネルにはオーディ オおよび補助/拡張情報データも含まれる。さらに、こ の"ビデオ・チャンネル"には、受信機で同調可能な複 数のチャンネルに分割できる複数のビデオ信号が含まれ る。第2のチャンネルは、70MHz~130MHzの 周波数帯域で生じるフォワードデータ・チャンネル(F orward Data Channel:FDC) で ある。ビデオ・チャンネルとフォワードデータ・チャン ネルに関して、データ/信号はヘッドエンド16からセ ットトップ・ボックス30に送信される(流れる)。第 50 3のチャンネルは、5MH z \sim 4 2MH z 間に存在する RDC (Return Data Channel: 戻 りデータ・チャンネル) である。フォワードデータ・チャンネルに含まれるデータ/信号はセットトップ・ボックス 3 0 からヘッドエンド 1 6 に送信される。

10

【0023】図3に、単一のRFケーブル・プラント、メディアまたは帯域(無線周波数)に結合される2方向性信号/データ通信装置における DOCSISとOpenCable(登録商標)の機能を統合する従来技術の方法のブロック図を示す。単一のRF帯域はRFコネクタ/インタフェース58を介して同軸ケーブル・ネットワーク18から受信される。単一のRF帯域は、ヘッドエンド16(図2参照)からのDOCSIS信号とビデオ信号を含み、戻りデータ・チャンネルを経由して通信装置から戻りデータを伝播できるものと仮定される。

【0024】信号/電力スプリッタ50はRFコネクタ / インタフェース58に結合され、ヘッドエンド16から入来する送信/信号を2つの通路にスプリット(分割)する。スプリッタ50は出力ポート56を備え、出力ポート56にラインまたは通路54を介してアナログ / ディジタル・ビデオチューナ52が結合される。アナログ/ディジタル・ビデオチューナ52は、アナログおよび/またはディジタルのビデオ信号を受信しそれに同調する。同調されたアナログおよび/またはディジタルのビデオ信号についての他の処理も行われる。

【0025】スプリッタ50はさらに入力/出力ポート48を含み、入力/出力ポート48にラインまたは通路46を介してDOCSISチューナ40が結合される。DOCSISチューナ40は一体のダイプレクサ42を含む。一般に、ダイプレクサは周波数選択性の信号スプリッタであり、1つの周波数帯域内の信号を1つの出力に向け、別の周波数帯域の信号を別の出力に向ける。ダイプレクサ42は、DOCSIS信号をスプリッタ50からDOCSISチューナ40に向け、戻りデータ・チャンネル(RDC)の信号を戻りデータ・チャンネル増幅器44からスプリッタ50に伝える。

【0026】図3の従来技術の構成では、スプリッタ50はそれを通る戻りデータ・チャンネル信号を減衰させる。従って、戻りデータ・チャンネル増幅器44は、この変化を補償するために、戻りデータ・チャンネル信号に対して数dBだけ多く出力信号を生じる機能を必要とする。

【0027】図4に、単一のRF帯域に結合される2方向性信号/データ通信装置におけるDOCSISとOpenCable(登録商標)の機能を統合する本発明の一形態のシステム(全体として36で表す)のブロック図を、ここで述べる原理に従って示す。単一のRF帯域はRFコネクタ/インタフェース78を介して同軸ケーブル・ネットワーク18から受信される。この単一のRF帯域はヘッドエンド16(図2参照)からのDOCS

IS信号とビデオ信号を含み、且つ戻りデータ・チャンネルを介して通信装置から戻りデータを伝播できると仮定される。

【0028】本発明の一態様に従い、ダイプレクサ76 は、リードまたは端子79を介してRFコネクタ/イン タフェース78に結合される。ダイプレクサ76はDO CSISおよびアナログ/ディジタル・ビデオ信号を信 号/電力スプリッタ66に通すと共に、戻りデータ・チ ャンネル増幅器44から戻りデータ・チャンネル信号を 受け取り、ヘッドエンド16に送り返す。信号/電力ス 10 プリッタ66はダイプレクサ76の出力に結合される。 スプリッタ66は第1の出力ポート64を備え、出力ポ ート64に、ライン/通路62を介してDOCSISチ ューナが結合される。DOCSISチューナはDOCS ISI仕様書に従って適正な論理回路を含み、DOCS IS信号を受信しそれに同調する。スプリッタ66はさ らに第2の出力72を含み、出力72に、ライン/通路 70を介してアナログ/ディジタル・ビデオチューナ6 8が結合される。アナログ/ディジタル・ビデオチュー ナ68は適正な論理回路を含み、当該技術分野で知られ 20 ているように、アナログ/ディジタル・ビデオ信号を受 信しそれに同調する。

【0029】本発明の原理に従い、ダイプレクサ76はスプリッタ66の前にあるので、戻りデータ・チャンネル信号はスプリッタによって減衰されない。従って、本発明の戻りデータ・チャンネル増幅器44の出力は従来技術の戻りデータ・チャンネル増幅器44の出力よりも低い。その上、スプリッタ66はビデオ信号と戻り信号の帯域幅(5~860MHzまたは7.4オクターブ)で動作する必要はなく、ビデオ信号の帯域幅(54-860MHzまたは3.99オクターブ)のみで動作すればよい。

【0030】図5に、2個のRF(無線周波数)帯域に結合される2方向性の信号/データ通信装置におけるDOCSISとOpenCable(登録商標)の機能を統合する従来技術の方法をブロック図で示す。2個のケーブル・ドロップ(cable drop)がCATVのプロバイダによって備えられる場合もある。これは帯域幅を増加するために行われる。1つの帯域は、RFコネクタ/インタフェース80を介してRF Aで与えられる。RF Aは2方向性の帯域であって、"In/Out"で示す。第2の帯域はRFコネクタ/インタフェース82を介してRF Bで与えられる。RF Bは2方向性の帯域("In/Out"で示す)または入来する帯域("In/Out"で示す)または入来する帯域("In"のみで示す)である。

【0031】A/Bスイッチ84は、RF AとRF Bに接続され、RF AまたはRFBを選択して残りの回路に結合させる。A/Bスイッチ84の出力は電力スプリッタ86に入力される。スプリッタ86の1つのポート88は、ラインまたは通路90を介して、DOCS

ISチューナ92に関連するダイプレクサ94に結合される。戻りデータ・チャンネル増幅器100はダイプレクサ94に結合される。ポート88は2方向性通信をサポートする。スプリッタ86の別のポートも2方向性通信をサポートし、ラインまたは通路98を介してアナログ/ディジタル・ビデオチューナ102に結合される。【0032】RF Bが入来する帯域/チャンネルのみの場合、A/Bスイッチ84が"B"位置にあるとき、戻りデータ・チャンネルはヘッドエンド16と接続しておらず、従って、DOCSISシステムは動作不能とな

12

戻りデータ・チャンネルはヘッドエンド16と接続しておらず、従って、DOCSISシステムは動作不能となる。これは好ましくないので、RF Bは典型的には2方向性通信(すなわち、"In/Out")をサポートする。両帯域またはチャンネル(RF AとRF B)が2方向性通信をサポートする場合、両帯域は戻りチャンネルの機器を必要とする。これはコストの点で効果的でない。

【0033】図6に、本発明の態様に従う実施例のシステム(全体として106で表す)のブロック図を示す。この実施例では、2つの帯域(RF AとRF B)が与えられる。帯域RF AはRFコネクタ/インタフェース110により与えられる。帯域RF Aは2方向の通信をサポートするので、表示"In/Out"を含む。帯域RF BはRFコネクタ/インタフェース112により与えられる。帯域RF Bは1方向(ヘッドエンド16から)のみの通信をサポートするので、表示"In"を含む。

【0034】帯域RF Aはリードまたは端子111を介してダイプレクサ114に接続される。ダイプレクサ114に接続される。ダイプレクサ114は戻りデータ・チャンネル増幅器116に結合され、戻りデータを受信し、それをヘッドエンド16に送信する。ダイプレクサ114は電力スプリッタ118に結合され、RF Aから入来する信号はスプリット(分割)される。スプリッタ118の1つのポート120は、ラインまたは通路122を介して、DOCSISチューナ124に結合される。スプリッタ118の別のポート126はA/Bスイッチ130の1つの入力に結合される。A/Bスイッチ130の別の入力は、リードまたは端子113を介して、RF Bコネクタ/インタフェース112に結合される。A/Bスイッチ130の出力はアナログ/ディジタル・ビデオチューナ132に結合される。

【0035】図6の実施例で、帯域RF Bはアナログ・ビデオのみを有し、帯域RF Aはアナログ、ディジタル、およびDOCSISチャンネルを有する。従って、ビデオ入力に対するA/Bスイッチ130の位置に係わりなく、DOCSISチューナと戻りデータ・チャンネルは常にRF Aに結合される。

【0036】図7に、上述した本発明の原理を組み込んでいるセットトップ・ボックス30のRFフロントエンドの実施例を示す。一般に、セットトップ・ボックス3

0は、RFフロントエンド、ディジタルおよびアナログ 復調器、およびディジタル信号プロセッサを含む。同じ セットトップ・ボックス内でのケーブル・モデムとディ ジタル・ビデオ受信機の機能の組み合わせのために、R F信号処理は複雑となる。従って、RFフロントエンド を図7に示し、全体として138で表す。

13

【0037】セットトップ・ボックス30(2方向性通 信装置)のRFフロントエンド138は2つの帯域また はチャンネル (RF AとRF B) に結合される。図 6に示すように、帯域RF Aは2方向性通信をサポー 10 トするので、表示"In/Out"を含み、アナログ、 ディジタルおよびDOCSISチャンネルを有すると仮 定される。さらに図6のように、帯域RF Bはアナロ グ・ビデオのみをRFフロントエンド138に供給する と仮定される。RFフロントエンド138はRFコネク タ/インタフェース/ポート140を介して帯域RF Aに結合される。RFポート140はダイプレクサ14 4に結合され、ダイプレクサ144は戻りデータ・チャ ンネル増幅器146から戻りデータを受け入れる。戻り データ・チャンネル増幅器146は戻りデータ・チャン ネルデータ (RDC) を受け入れ、戻りデータ・チャン ネル利得コントロール(制御装置)により制御される。

【0038】ダイプレクサ144は、アウトオブバンド (Out Of Band:OOB) カプラー148に 結合される。〇〇B(帯域外)カプラー148は、セッ トトップ・ボックス30のためにOOB信号情報を得 て、その〇〇B信号を〇〇Bコンバータ150に入力す る。OOBコンバータ150はフォワードデータ・チャ ンネル (Forward Data Channel: FDC) の局部発振器 (Local Oscillat or:LO) の制御下にあって、FDC IF信号を得 る。フォワードデータ・チャンネルは周波数分割多重さ れる。OOBカプラー148はDOCSIS信号とビデ オ信号をスプリッタ152に送る。DOCSIS信号は DOCSISチューナ154に入力され、DOCSIS チューナ154は、DOCSISチューナ制御ラインを 介して、DOCSIS制御信号を受け取る。DOCSI Sチューナ154は、同調されたDOCSIS信号をD OCSIS IFモジュール156に入力し、モジュー ル156はDOCSIS IF信号を出力する。

【0039】スプリッタ152の別の出力は、A/Bスイッチ158の1つの入力(任意に"A"と称す)に結合される。A/Bスイッチ158の別の入力(任意に"B")はRF Bの同軸入力のRFコネクタ/インタフェース142に結合される。このようにして、A/Bスイッチ158はRF B入力のアナログビデオ信号か、またはRF A入力のビデオ信号(アナログおよび/またはディジタル)を選択する。A/Bスイッチ158の出力はスプリッタ160に入力される。スプリッタ160の1つの出力はバイパス・スイッチ168に結合50

される。バイパス・スイッチ168の出力はRFアウト (out) ポート170に結合される。テレビ受像機または装置(テレビジョン信号を使用する装置)172は RFアウト・ポート170に結合される。

【0040】スプリッタ160の別の出力はビデオ・チ ューナ162に結合される。ビデオチューナ162は、 ビデオ・チューナ信号(ビデオチューナ・コントロー ル)の制御下にあり、セットトップ・ボックス30をビ デオ・チャンネルに同調させる。ビデオ・チューナ16 2はアナログまたはディジタルのビデオ信号に同調する ために適正な論理回路を有する。ビデオ・チューナ16 2からの中間周波数 (IF) のアナログ信号(典型的に はNTSC信号であるが、PAL、SECAM、または 他の方式でもよい) は NTSC IF/デコーダ16 4に入力される。NTSC IF/デコーダ164はN TSCオーディオ/ビデオ信号を、セットトップ・ボッ クス30の他の部分に供給する。 I Fディジタル信号は FAT (Forward Application T ransport) IFモジュール166に入力され、 モジュール166はFAT IF信号を出力する。

【0041】バイパス・スイッチ168の別の入力は、 VCRポート180を介して、VCR178からの信号を受け入れる。VCR178は、VCR178が結合されているVCR出力ポート176を介して、セットトップ・ボックス30のRFフロントエンド138からテレビジョン信号を受ける。VCR178は、セットトップ・ボックス30からベースバンド(BB)のビデオ信号を受信する変調器(ここでは任意の3/4変調器)からテレビジョン信号を受ける。変調器174は、3/4変調コントロールを介して、セットトップ・ボックス30から制御信号を受ける。

【0042】バイパス・スイッチ168は、バイパス・コントロールから制御信号を受ける自動スイッチであることが好ましい。バイパス・スイッチ168が、図7に示すように、アップすなわち "A"位置にあるとき、A/Bスイッチ158の位置に依り、テレビ受像機172はテレビジョン信号をRF AかまたはRF Bから直接受ける。バイパス・スイッチ168がダウンすなわち "B"位置にあるとき(図示せず)、テレビ受像機172は、VCR178を介して、セットトップ・ボックスから信号を受ける。

【0043】本発明は、好ましい設計または構成を有するものとして説明されたが、本発明は、本開示の趣旨と範囲の内で更に変更することができる。従って、本出願は、本発明の一般的な原理を使用する発明の変更、使用、あるいは改造をカバーする。更に本出願は、本発明に関係があり且つ本クレームの限度内に入る当該技術分野における既知の慣行に含まれような本開示からの離脱をカバーする。

【図面の簡単な説明】

【図1】本発明を利用できる典型的なCATVシステム のブロック図である。

【図2】加入者の機器と接続している、図1のCATV システムのヘッドエンド・システムのブロック図であ る。

【図3】通信システムの単一の通信帯域あるいは同軸メ ディアに結合される2方向性通信装置における DOC SISとOpenCable (登録商標)の機能を合成 する従来技術の方法のブロック図である。

【図4】本発明の原理に従い通信システムの単一の通信 10 帯域あるいは同軸メディアに結合される2方向性通信装 置における DOCSISとOpenCable (登録 商標)の機能を合成する方法の実施例のブロック図であ る。

【図5】通信システムの2つの通信帯域または同軸メデ ィアに結合される2方向性の装置において DOCSI SとOpenCable(登録商標)の機能を合成する 従来技術の方法のブロック図である。

【図6】本発明の原理に従い通信システムの2つの通信 帯域または同軸メディアに結合される2方向性の通信装 20 96 スプリッタ86の別のポート 置における DOCSISとOpenCable(登録 商標)の機能を合成する方法の実施例のブロック図であ

【図7】図2の通信装置の実施例のRFフロントエン ド、特に、通信システムの2つの通信帯域または同軸メ ディアに結合されるセットトップ・ボックスのブロック 図である。

【符号の説明】

- 10 CATVシステム
- 12 CATVシステム
- 14 ケーブル・ヘッドエンド設備
- 16 ヘッドエンド
- 18 同軸ケーブル・ネットワーク
- 20 加入者(サービスを受ける者)
- 22 増幅器
- 24 OpenCable (登録商標) ヘッドエンド
- 26 DOCSIS (登録商標) ヘッドエンド
- 30 セットトップ・ボックス
- 32 消費者用機器
- 36 本発明のシステム
- 40 DOCSISチューナ
- 42 (一体の) ダイプレクサ
- 44 戻りデータ・チャンネル (Return Dat
- a Channel) 増幅器
- 46 ラインまたは通路
- 48 入力/出力ポート
- 50 信号/電力スプリッタ
- 52 アナログ/ディジタル・ビデオチューナ
- 54 ライン (通路)
- 56 出力ポート

- 58 RFコネクタ/インタフェース
- 60 DOCSISチューナ
- 62 ライン (通路)
- 64 第1の出力ポート
- 66 電力スプリッタ
- 68 アナログ/ディジタル・ビデオチューナ
- 70 ライン(通路)
- 72 第2の出力
- 76 ダイプレクサ
- 78 RFコネクタ/インタフェース
- 79 端子
- 80 RFコネクタ/インタフェース
- 82 RFコネクタ/インタフェース
- 84 A/Bスイッチ
- 86 電力スプリッタ
- 88 スプリッタ86の1つのポート
- 90 ライン(通路)
- 92 DOCSISチューナ
- 94 ダイプレクサ
- - 98 ラインまたはパス
 - 100 戻りデータ・チャンネル増幅器
 - 102 アナログ/ディジタル・ビデオチューナ
 - 106 本発明の実施例のシステム
 - 110 RFコネクタ/インタフェース
 - 111 リードまたはターミナル
 - 112 RFコネクタ/インタフェース
 - 113 リードまたはターミナル
 - 114 ダイプレクサ
- 30 116 戻りデータ・チャンネル増幅器
 - 118 電力スプリッタ
 - 120 スプリッタ118の1つのポート
 - 122 ライン(通路)
 - 124 DOCSISFューナ
 - 126 スプリッタ118の別のポート
 - 130 A/Bスイッチ
 - 132 アナログ/ディジタル・ビデオチューナ
 - 138 RFフロントエンド
 - 140 RFコネクタ/インタフェース/ポート
- 40 142 RFコネクタ/インタフェース
 - 144 ダイプレクサ
 - 146 戻りデータ・チャンネル増幅器
 - 148 OOB (out of band) カプラー
 - 150 ООВコンバータ
 - 152 スプリッタ
 - 154 DOCSISチューナ
 - 156 DOC SIS IFモジュール
 - 158 A/Bスイッチ
 - 160 スプリッタ
- 50 162 ビデオチューナ

18

17 164 NTSC IF/デコータ

166 FAT (Forward Applicati

on Transport) IFモジュール

168 バイパス (A/B) スイッチ

170 RFアウト・ポート

*172 テレビ受像機

174 変調器

176 VCR出力ポート

178 VCR

* 180 VCRポート

【図3】

【図4】

【図5】

【図6】

【図7】

フロントページの続き

(71)出願人 300000708

46, Quai A, Le Gallo F-92648 Boulogne Cede x France (72)発明者 ケビン ポール マクレイノルズ アメリカ合衆国 インデイアナ州 ノーブ ルズビル バークシヤー・レーン 206

(72)発明者 ロバート アンドリユー ローデス アメリカ合衆国 インデイアナ州 カーメ ル アーデン・コート 13261

Fターム(参考) 5C064 BA01 BB05 BC14