Sumário

1	1 Introdução e Objetivos		3				
2	Introdução Teórica						
	2.1 Aplicação da Lei de Fourier para o cálc	ulo da condutividade térmica	4				
	2.2 Equações utilizadas para dos dados exp	perimentais	5				
3	3 Experimento Realizado		6				
	3.1 Introdução e Objetivo		6				
	3.2 Equipamentos		6				
	3.3 Experimento		6				
4	4 Metodologia de Cálculo		8				
	4.1 Modelagem Matemática		8				
	4.2 Fluxograma		11				
	4.3 Aplicação da modelagem no experimen	to	12				
5	5 Resultados		13				
6	6 Comentários e Conclusões - Gustavo		15				
\mathbf{A}	A Registro de Dados		17				

Lista de Figuras

1	Representação do eixo axial (z) do cilindro	8	
2	Fluxograma da modelagem matemática	11	
3	Gráfico da temperatura em função da posição	12	
Lista	Gráfico da temperatura em função da posição		
1		13	
1 2	Propriedades térmicas para uma variedade de materiais		

1 Introdução e Objetivos

O seguinte relatório do laboratório da disciplina de Fenômenos do Transporte do curso de Engenharia da Computação do Instituto Mauá de Tecnologia, tem como princípio a coleta, análise de dados e obtenção da condutividade térmica de um material, com base no experimento laboratorial realizado.

O experimento consistiu em determinar o valor da condutividade térmica do material através da análise das diferentes taxas de calor fornecidas e da medição de diversas temperaturas dadas pelos sensores posicionados ao longo do corpo do tubo cilíndrico.

O tubo cilíndrico possui medidas de 80mm de diâmetro e comprimento de 25mm, é constituído de latão e envolto por plástico, onde possivelmente pode ocorrer a passagem de água, e consequentemente a dissipação do calor.

Vale ressaltar que um gerador de potência estava ligado ao experimento, bem como o fato de que foram consideradas pequenas distorções nos valores utilizados.

O objetivo deste projeto consiste em determinar a condutividade térmica do cilindro metálico, e por meio desta descobrir o tipo de material usado na sua construção.

2 Introdução Teórica

2.1 Aplicação da Lei de Fourier para o cálculo da condutividade térmica

No Experimento realizado, estuda-se o fenômeno da condução de calor, através de um Cilindro, a fim de obter a condutividade térmica do material (k), que nos é desconhecido, através da Lei de Fourier, ou Lei da Condução Térmica.

A condução é uma das formas em que se pode ocorrer transferência de calor, nela observa-se que em um corpo estático, a energia é transferida por meio de vibrações da rede cristalina e por meio do transporte de elétrons livres devido ao gradiente de temperatura, sem que ocorra um movimento macroscópico relativo entre as partículas constituintes.

Nos gases e líquidos a transferência de calor ocorrem de maneira diferente em relação aos sólidos; nesses meios ocorrem-se choques moleculares que permite a troca de energia cinética das moléculas mais energéticas para as menos energéticas. Entretanto, a situação é consideravelmente mais complexa nos líquidos devido à menor mobilidade das moléculas.

No fenômeno estudado, é gerada uma taxa de transferência de calor \dot{Q} em Watts por meio de um aparelho de condução de calor, enquanto uma bomba é ligada na outra extremidade fazendo com que ocorra uma convecção, processo em que ocorre transferência de calor entre um líquido e uma superfície (neste caso entre o tubo cilíndrico e água), a fim de equilibrar a transferência de calor e formar assim um perfil linear.

A transferência de calor por condução unidimensional em regime estacionário é regida pela Lei de Fourier:

$$\dot{Q}_{cond} = -k \cdot A \cdot \frac{\partial T}{\partial z} \tag{1}$$

O Aparelho de Condução de Calor utiliza da Corrente Elétrica e da Resistência Elétrica para gerar o calor, que será conduzido pelo corpo, através do efeito Joule. Podendo-se medir por meio dos termopares que foram instalados no corpo de provas com 10mm de distância entre si.

Dessa maneira podemos verificar o perfil Linear da função e pode-se concluir a partir do gráfico da temperatura em função da posição no eixo Z que o coeficiente angular equivale a $\frac{\partial T}{\partial z}$. Uma vez que a seção Transversal A é conhecida e é dada por:

$$A = \frac{\pi}{4} \cdot D^2 \tag{2}$$

Onde temos que o Diâmetro (D) é 25mm, pode se obter o valor da Condutividade Térmica do Material (k) ao manipularmos a equação da seguinte forma:

$$k = -\frac{\dot{Q}_{cond}}{A \cdot \frac{\partial T}{\partial z}}$$

2.2 Equações utilizadas para dos dados experimentais

$$\dot{Q}_{cond} = -k \cdot A \cdot \frac{\partial T}{\partial z}$$

$$A = \frac{\pi}{4} \cdot D^2$$

$$(3) \quad \frac{1}{r} \cdot \frac{\partial}{\partial r} \left(k \cdot r \cdot \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \cdot \frac{\partial}{\partial \theta} \left(k \cdot \frac{\partial T}{\partial \theta} \right) + \frac{\partial}{\partial z} \left(k \cdot \frac{\partial T}{\partial z} \right) + \dot{Q}^{""} = \rho \cdot C_p \cdot \frac{\partial T}{\partial t}$$

$$\dot{Q}''' = 0$$

(5)
$$\rho \cdot C_p \cdot \frac{\partial T}{\partial t} = 0$$

$$(6) T(z) = C_1 \cdot z + C_2$$

(7)
$$k = -\frac{\dot{Q}_{cond}}{A \cdot \frac{\Delta T}{\Delta z}}$$

3 Experimento Realizado

3.1 Introdução e Objetivo

Para entender o comportamento da variação da temperatura em toda a extensão de um sólido, bem como verificar outras constantes envolvidas nesse fenômeno, foi elaborado um experimento de condução de calor através de um cilindro. A análise do experimento servirá para possibilitar o cálculo e o resultado aproximado do valor para a condutividade do material do cilindro.

O cilindro utilizado para a experiência possuía 80mm de comprimento e 25mm de diâmetro e revestido por um material isolante em toda sua extensão.

Houve também a instalação de termopares (dispositivos constituídos por dois fios metálicos diferentes, soldados nas extremidades que, quando submetidos a temperaturas distintas, estabelecem uma força eletromotriz, tornando possível a medição de temperatura em certo ponto) a cada 10mm do cilindro, particionando-o em nove seções.

3.2 Equipamentos

Para a realização do experimento, foi necessária a utilização de equipamentos para a geração de calor no início do cilindro e para a dissipação do calor no sólido em questão.

A taxa de calor é gerada e regulada em Watts [W] em sua extremidade (primeira seção) por um equipamento denominado Heat Conduction Apparatus (Aparelho de condução de calor).

Esse aparelho é responsável pela realização da medição de temperatura em cada um dos termopares de suas respectivas seções do cilindro.

Na outra extremidade do cilindro há uma bomba que tem a função de bombear água e equilibrar a transferência de calor, pelo fenômeno da convecção.

3.3 Experimento

Inicialmente, os equipamentos foram ligados e regulados. A taxa de geração de calor utilizada foi de 4W, e a transferência de calor no lado oposto foi equilibrada pelo bombeamento de água.

Esse processo serviu para criar um perfil linear no experimento. Para estudar apenas o regime estacionário do fenômeno, foi necessário esperar aproximadamente 20 minutos a partir do início do experimento até a a transição entre os regimes transiente e estacionário.

Após o determinado tempo, foram realizadas as medições de temperatura em cada uma das seções do cilindro. Ocorrem pequenas variações nos valores encontrados durante a medição, mas que foram desprezadas para o estudo do fenômeno, pois estavam em uma ordem inferior à 1% de erro.

Os valores de temperatura e o comprimento onde cada uma das medições ocorreu foram anotados, possibilitando traçar um gráfico da temperatura em função da posição axial do cilindro.

Por possuir um perfil linear, foi possível utilizar o coeficiente angular da reta encontrada como $\frac{dT}{dz}$ na Lei de Fourier.

Juntando com os valores de \dot{Q} , definido no início do experimento e a geometria conhecida do cilindro, foi possível calcular uma aproximação para a condutividade do material do cilindro.

4 Metodologia de Cálculo

4.1 Modelagem Matemática

Dado o problema em questão, utiliza-se a Lei de Fourier, ou Lei da Condução Térmica, para a transferência de calor na direção unidirecional.

$$\dot{Q}_{cond} = -k \cdot A \cdot \frac{\partial T}{\partial z} \tag{3}$$

Sendo:

- \bullet \dot{Q} o calor transferido dado em Watt [W],
- k a condutividade térmica do material, dado em $\left[\frac{W}{mK}\right]$,
- A a área através da qual o calor flui, dada em metro [m] e
- \bullet $\frac{\partial T}{\partial z}$ a variação da temperatura na direção Z, dada em $\left\lceil \frac{k}{m} \right\rceil.$

Observação:

Utiliza-se $\frac{\partial T}{\partial z}$ pois o experimento será realizado na direção axial do cilindro.

Figura 1: Representação do eixo axial (z) do cilindro

O valor de \dot{Q} é obtido no experimento e a área é obtida pelas geometria do material. No entanto, para encontrar o valor da derivada da temperatura na direção Z utiliza-se a Equação Geral de Calor em Coordenadas Cilíndricas:

$$\frac{1}{r} \cdot \frac{\partial}{\partial r} \left(k \cdot r \cdot \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \cdot \frac{\partial}{\partial \theta} \left(k \cdot \frac{\partial T}{\partial \theta} \right) + \frac{\partial}{\partial z} \left(k \cdot \frac{\partial T}{\partial z} \right) + \dot{Q}''' = \rho \cdot C_p \cdot \frac{\partial T}{\partial t}$$
(4)

Sendo:

- \bullet $\frac{1}{r}\cdot\frac{\partial}{\partial r}\Big(k\cdot r\cdot\frac{\partial T}{\partial r}\Big)$ a componente na direção r,
- $\frac{1}{r^2} \cdot \frac{\partial}{\partial \theta} \left(k \cdot \frac{\partial T}{\partial \theta} \right)$ a componente na direção θ ,
- $\bullet \ \frac{\partial}{\partial z} \Big(k \cdot \frac{\partial T}{\partial z} \Big)$ a componente na direção z,
- \bullet $\dot{Q}^{\prime\prime\prime}$ o termo de geração e
- $\rho \cdot C_p \cdot \frac{\partial T}{\partial t}$ o termo derivada no tempo.

Porém, como não há geração de calor proveniente por uma fonte externa e considera-se uma situação de Regime Estacionário, temos que:

$$\dot{Q}''' = 0 \quad e \quad \rho \cdot C_p \cdot \frac{\partial T}{\partial t} = 0$$
 (5)

Portanto, substituindo (3) em (2):

$$\frac{1}{r} \cdot \frac{\partial}{\partial r} \left(k \cdot r \cdot \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \cdot \frac{\partial}{\partial \theta} \left(k \cdot \frac{\partial T}{\partial \theta} \right) + \frac{\partial}{\partial z} \left(k \cdot \frac{\partial T}{\partial z} \right) = 0 \tag{6}$$

Estudando a equação na direção z, onde as componentes em r e θ são nulas, obtemos:

$$\frac{\partial}{\partial z} \left(k \cdot \frac{\partial T}{\partial z} \right) = 0 \tag{7}$$

e como adota-se a condutividade térmica constante, a Equação Geral do Calor na direção axial do cilindro resulta em:

$$\frac{\partial^2 T}{\partial z^2} = 0 \tag{8}$$

Nota-se que essa Equação Diferencial resulta em um comportamento linear, assim como a transferência unidirecional em placa plana, dessa forma, a distribuição de temperatura será linear e dada por:

$$T(z) = C_1 \cdot z + C_2 \tag{9}$$

Como a distribuição é linear, aproxima-se a derivada da temperatura através de uma variação:

$$\frac{\partial T}{\partial z} = \frac{\Delta T}{\Delta z} \tag{10}$$

Dessa forma, substituindo a equação (8) e isolando a condutividade térmica k na Lei de Fourier (1), a condutividade térmica pode ser muito bem aproximada por:

$$k = -\frac{\dot{Q}_{cond}}{A \cdot \frac{\Delta T}{\Delta z}} \tag{11}$$

4.2 Fluxograma

Equação Geral de Calor em Coordenadas Cilíndricas Não há calor proveniente Direção z (componente r Condutividade térmica Regime Estacionário e θ são nulas) por fonte externa constante $T(z) = C_1 \cdot z + C_2$ $\frac{\partial T}{\partial z} = \frac{\Delta T}{\Delta z}$ Lei de Fourier $\frac{\dot{Q}_{cond}}{A \cdot \frac{\Delta T}{\Delta z}}$

Figura 2: Fluxograma da modelagem matemática

4.3 Aplicação da modelagem no experimento

Com os dados obtidos pelo experimento, monta-se um gráfico que mostra a variação da Temperatura do corpo na direção Z e toma-se a interpolação e dessa retira-se a equação que molda essa variação:

Figura 3: Gráfico da temperatura em função da posição

A partir da equação y=-0,0703x+302,03, apresentada pela Figura 3, temos o $\frac{\Delta T}{\Delta z}$, visto que esse será o coeficiente angular da reta. O valor da área A é fornecido pela geometria do corpo e o \dot{Q}_{cond} é propiciado pelo experimento.

Ou seja,

5 Resultados

Realizando a análise dos resultados obtidos através do experimento realizado, obtémse uma função linear que decresce a temperatura em função da posição. Isso ocorre pois há perca de calor no cilindro devido a condutividade térmica do material em prova.

Para definir o valor da condutividade térmica no objetivo de descobrir qual o material que foi colocado em análise, é necessário encontrar a relação entre a condutividade térmica e a perca de calor do cilindro em função da variação da posição de medição e o ponto de aplicação da carga potencial que gera o calor para o sistema. Essa relação se da pela Lei de Fourier, ou Lei da Condução Térmica.

Após a realização do experimento e a análise das temperaturas coletadas, é possível calcular o valor da condutividade térmica do material. Sabe-se que o material em questão é metálico, então, através de uma comparação com valores da Tabela 1 para a condução térmica de metais, conclui-se que o material analisado é composto de Latão (aproximadamente 65Cu-35Zn).

Tabela 1: Propriedades térmicas para uma variedade de materiais.

rabela 1. I rophicuades termicas para uma variedade de materiais.						
Material	$ $ C_p	α	k	$\mathbf L$		
Material	$(J/kg - K)^a$	$[(^{\circ}C)^{-1}\cdot(10)^{-6})]^b$	$(W/m-K)^c$	$\Omega = [\Omega - W/(K)^2 \cdot (10)^{-8}]$		
Metais						
Alumínio	900	23,6	247	2,20		
Cobre	386	17,0	398	2,25		
Ouro	128	14,2	315	2,50		
Ferro	448	11,8	80	2,71		
Níquel	443	13,3	90	2,08		
Prata	235	19,7	428	2,13		
Tungstênio	138	4,5	178	3,20		
Aço 1025	486	12,0	51,9	-		
Aço inoxidável	502	16,0	15,9	-		
Latão (70Cu-30Zn)	375	20,0	120	-		
Kovar (54Fe-29Ni-17Co)	460	5,1	17	2,80		
Invar (64Fe-36Ni)	500	1,6	10	2,75		
Super Invar (63Fe-32Ni-5Co)	500	0,72	10	2,68		

Para comprovar a precisão das medições e dos valores encontrados, compara-se o erro experimental de cada medição:

Tabela 2: Estudo do Erro

Posição (mm)	Temp. Gráfico (K)	Temp. Medida (K)	$\operatorname{Erro}(\%)$
0	302,030	302,150	-0,0397
10	301,327	301,250	$0,\!0256$
20	300,624	300,650	-0,0086
30	299,921	299,750	0,0570
40	299,218	299,350	-0,0441
50	298,515	298,450	0,0218
60	297,812	297,750	0,0208
70	297,109	297,150	-0,0138
80	296,406	$296,\!450$	-0,0148
Média	299,21800	299,21667	0,0004

Como pode-se concluir, o erro é desprezível, devido ao valor porcentual baixo calculado entre o valor medido e o valor descrito pela aproximação linear do gráfico (Figura 1). Portanto, podemos considerar os valores encontrados como precisos, e então a análise do material correta.

6 Comentários e Conclusões - Gustavo

Referências

[1] João Carlos Martins Coelho. *Energia e fluidos: Transferência de Calor*, volume 3. Editora Blucher, 2015.

Anexos

A Registro de Dados

Experimento Laboratorial - Condução de Calor

Disciplina: ETE802 – Fenômenos de Transporte

Turno: Diurno Data: 07/10/2020

Nome: Guilherme Samuel de Souza Barbosa RA.: 19.00012-0
Nome: Guilherme Cury Galli RA.: 19.00374-9
Nome: Gustavo Consoleti RA.: 19.00715-9
Nome: Murilo Amorim Rahal RA.: 19.01157-0
Nome: Guilherme Patti Borges RA.: 19.01279-9
Nome: Igor Eiki Ferreira Kubota RA.: 19.02466-5

Tabela 3: Distribuição de Temperaturas

	Teste	Q (W)	T_1 (°C)	T_2 (°C)	T_3 °(C)	T_4 (°C)	T_5 (°C)	T_6 (°C)	T_7 (°C)	T_8 (°C)	T_9 (°C)
ſ	2	4	29	28, 1	27, 5	26, 6	26, 2	25, 3	24,6	24	23, 3