南京宇微电子科技有限公司 STM32F103C8T6 拇指板 V1.0

2025年8月30日修订

FU KUN

目录

版本修订		2
客户须知		2
一、概览		3
二、供电		3
2.1 USB 电源供电		3
2.2 引脚外接供电		4
2.2.1 5V		4
2.2.2 3.3V		4
2.2.2 BAT		4
2.2.3 GND		5
2.3 外接 GPIO 引脚		5
2.4 SWD 调试引脚		6
三、板载外设	<u> </u>	6
3.1 主控		6
3.2 晶振		
3.3 按键		7
3.4 USB		7
3.5 LED		8
三、固件下载和启动		8
3.1 固件下载		8
3.1.1 ICP(SWD)下载		8
3.1.2 ISP(串口)下载		9
3.1.3 IAP 下载		9
3.2 固件运行		9
四、原理图		10
五、联系我们		10

版本修订

时间	版本号	修订内容
2025年8月30日	V1.0	初版

客户须知

本文档为产品使用参考所编写,文档版本可能随时更新,恕不另行通知。本文中提供的所有使用方法、说明及建议仅供参考,不构成任何承诺或保证。使用本产品及本文档内容所产生的结果,由用户自行承担风险。本公司对因使用本文档或产品而导致的任何直接或间接损失,不承担任何责任。

一、概览

STM32F103C8T6 开发板是一款基于 STMicroelectronics STM32F103C8T6 微控制器的低成本、高性能开发平台,是入门学习嵌入式系统较为经济和高效的平台。该微控制器采用 32 位 ARM Cortex-M3内核,运行频率高达 72 MHz,配备 64 KB 闪存和 20 KB SRAM。它支持多种通信接口,包括 USB、CAN、I2C、SPI 和 USART,适用于物联网、机器人和工业控制等应用。板载 Micro USB 接口可用于供电和通信,支持 Arduino IDE 编程,并提供 SWD 调试接口和丰富的 GPIO 引脚(30 个),适合初学者和专业开发者。

参数			
MCU 芯片	STM32F103C8T6		
供电	USB 5V 供电		
	通过 GPIO 5V 引脚供电		
可用引脚数量	33Pins		
尺寸	约 23mm×53.5mm×1.6mm(具体以实物为准)		
重量	约 150g		
配件	• Type-C 数据线缆 x1 (可选)		
	● 用户手册 x1 (电子版)		

二、供电

2.1 USB 电源供电

电源输入接口有两个,第一个是 Type-C 母座接口,通过标准 Type-C 线缆连接至 5V 供电器。

2.2 引脚外接供电

2.2.1 5V

在 5V 外接引脚接入 5V 电源,可替代 USB 供电。由于 5V 外接引脚与 USB 供电接口物理直连,为了防止电流倒灌损坏供电器,因此仅能使用一个引脚供电,另一个引脚仅可作为输出 5V 电源口使用。

2.2.2 3.3V

若 3.3V 外接引脚输出 3.3V 时,使用的时 USB 或者外接 5V 供电,通过一个线性稳压器稳压至 3.3V。若 3.3V 外接引脚输入 3.3V 时,USB 或者外接 5V 不允许供电且不能作为输出电压引脚使用,因为 MCU 等使用 3.3V 供电,所以能正常运行。

2.2.2 BAT

这是备用电池接入的正极引脚,电压典型值为1.2V,最小值是1.16V,最大值是1.24V。

2.2.3 GND

这个引脚是公共地,是 USB 供电、外接 5V/3.3V/BAT 供电引脚的公共地,也是 MCU 的对地引脚。

2.3 外接 GPIO 引脚

名称	功能	名称	功能	名称	功能
PA0	GPIO	PB0	GPIO	PC13	GPIO
PA1	GPIO	PB1	GPIO		
PA2	GPIO	PB3	GPIO		
PA3	GPIO	PB4	GPIO		
PA4	GPIO	PB5	GPIO		
PA5	GPIO	PB6	GPIO		
PA6	GPIO	PB7	GPIO		
PA7	GPIO	PB8	GPIO		
PA8	GPIO	PB9	GPIO		
PA9	GPIO	PB10	GPIO		
PA10	GPIO	PB11	GPIO		
PA11	GPIO	PB12	GPIO		
PA12	GPIO	PB13	GPIO		
PA15	GPIO	PB14	GPIO		
		PB15	GPIO		

2.4 SWD 调试引脚

三、板载外设

3.1 主控

STM32F103C8T6 是意法半导体基于 ARM Cortex-M3 内核的 32 位微控制器,主频最高 72 MHz,性能强劲且低功耗。具备 64 KB 闪存和 20 KB SRAM,支持多种外设,包括 2 个 SPI、3 个 USART、2 个 I²C、1 个 CAN 和 12 位 ADC(10 通道)。工作电压 2.0V-3.6V,适合工业控制、消费电子等领域。封装为 LQFP48,引脚数 48,提供丰富 GPIO。支持 JTAG/SWD 调试,开发灵活。性价比高,广泛应用于嵌入式系统,是 STM32F1 系列中容量产品的典型代表。

3.2 晶振

STM32F103C8T6 支持使用內部振荡器,內部高速 RC 振荡器 HIS,频率 8 MHz,精度较低 $(\pm 1\%)$;内部低速 RC 振荡器 LSI,频率 40 kHz,用于低速时钟(如 RTC 或看门狗)。

3.3 按键

RESET	BOOT0	BOOT1
GNO GNO 3/3 851 811 810 81 80 A7 A6 A5 A4 A3 A2 A1 A0 C15 C14 C13 V9 O O O O O O O O O O O O O O O O O O O	CAD GRO 3V3 RST 811 810 81 80 A7 A6 A5 A4 A3 A2 A1 A0 C15 C14 C13 V8 O O O O O O O O O O O O O O O O O O B12 813 814 815 81 A9 A10 A11 A12 A15 83 84 85 96 87 98 89 5V GNO 3V3	CNO GNO 3/J3 RST B11 B10 B1 B0 A7 A6 A5 A4 A3 A2 A1 A0 C15 C14 C13 V8 O O O O O O O O O O O O O O O O O O O
MCU 的硬件复位按键,松开高 电平,按下低电平复位。	MCU的 BOOT0 启动按键,松 开高电平,按下低电平。	MCU的 BOOT1 启动按键,松 开高电平,按下低电平。

以下是 STM32F103C8T6 的 RESET、BOOT0 和 BOOT1 引脚配合的启动方式的清晰表格,详细说明了各模式的功能和使用场景。

BOOT0	BOOT1	启动模式	映射起始地	映射至地址	说明
			址	V _A	
0	X	主闪存(Main	0x00000000	0x08000000	从用户 Flash 存储器启动,运
		Flash Memory)	<		行用户程序,适用于正常应用
			7.	-X 2'	运行。
1	0	系统存储器	0x00000000	0x1FFFF000	从内部 ROM 启动,运行 ST 预
		(System	17		置的 Bootloader,支持通过
		Memory)			UART/USB 等接口烧录程序。
1	1	嵌入式 SRAM	0x00000000	0x20000000	从内部 SRAM 启动,适合调
		(Embedded	\rightarrow		试、临时代码运行或特殊应用
		SRAM)			场景。

两个 BOOT 之电平通过按键按下或松开控制,电平在上电前或在复位前建立稳定均可实现对应的启动模式。举个系统存储器启动模式的例子:

- 上电前:按下BOOT1,系统上电,松开所有按键;
- 复位前: 上电,按下BOOT1,按下复位键,系统上电,松开所有按键。

固件下载可能需要按键配合,详细按键时序可在固件下载章节查阅。

3.4 USB

STM32F103C8T6 的 USB 接口基于全速 USB 2.0(12 Mbps),支持设备模式(Device Mode),不具备主机(Host)或 OTG 功能。内置 USB 外设控制器,通过专用引脚(PA11: USB_DM,PA12: USB_DP)连接外部 USB 接口,需外接上拉电阻(1.5 k Ω ,连接到 3.3V)。支持多种 USB 设备类,如 CDC(虚拟串口)、HID(键盘/鼠标)和 MSC(存储设备)。内部提供 512 字节缓冲区用于数据传输,支持中断、批量和控制传输模式。开发中可通过 ST 官方 USB 库或第三方库(如 libopencm3)实现功能,适合嵌入式设备与 PC 通信。需注意固件配置和外部电路设计以确保稳定通信。

3.5 LED

三、固件下载和启动

Block	细分
0: 512M 启动区	用户 Flash 64K: 0x08000000~0x0800FFFF
地址: 0x0000 0000-0x1FFF FFFF	系统存储器(ROM) 2K: 0x1FFFF000~0x1FFFF7FF
	选项字节(Option Bytes) 16B: 0x1FFFF800~0x1FFFF80F
1: 512M SRAM ⊠	20K: 0x20000000~0x20004FFF
地址: 0x2000 0000-0x3FFF FFFF	

根据意法半导体提供的 STM32F103C8T6 文档, 其存储被划分为 7 个 Block, 第 1、2 个 Block 与启动有关。

3.1 固件下载

3.1.1 ICP (SWD) 下载

通过专用调试接口(如 JTAG 或 SWD)将固件直接烧录到芯片 Flash 的过程,通信设备双方为 STM32F103C8T6 与 STlink,下面是接线图。

STM32F103C8T6 引脚	STlink 引脚
CLK	CLK
SWD	SWD
RESET	RESET

3.3V	3.3V
GND	GND

3.1.2 ISP (串口) 下载

启用系统存储器(System Memory)启动模式,进行串口/USB下载。

3.1.3 IAP 下载

在用户 Flash(0x08000000)运行一个自定义程序(通常称为自定义 Bootloader),该程序通过任意通信接口(如 UART、USB、I2C、SPI、CAN 或无线模块)接收新固件并写入 Flash 的指定区域(通常高地址,如 0x08001000)。下载完成后,使用主闪存(Main Flash Memory)启动,从 0x080000000运行。

3.2 固件运行

BOOT0	BOOT1	启动模式	映射起始地	映射至地址	说明
			址		
0	X	主闪存(Main	0x00000000	0x08000000	从用户 Flash 存储器启动,运
		Flash Memory)		X	行用户程序,适用于正常应用
			4		运行。
1	0	系统存储器	0x00000000	0x1FFFF000	从内部 ROM 启动,运行 ST 预
		(System	7 1		置的 Bootloader,支持通过
		Memory)	17		UART/USB 等接口烧录程序。
1	1	嵌入式 SRAM	0x00000000	0x20000000	从内部 SRAM 启动,适合调
		(Embedded			试、临时代码运行或特殊应用
		SRAM)	>		场景。

以上三种不同的起始模式对应不同起始地址,虽然逻辑起始地址是 0x00000000, 但在不同启动模式下被映射到不同的地址。

- 主闪存存储器(Main Flash)启动: 从 STM32 内置的 Flash 启动(0x0800 0000-0x0807 FFFF),可读写和断电保存一般我们使用 JTAG 或者 SWD 模式下载程序时,就是下载到这个里面,重启后也直接从这启动程序。以 0x08000000 对应的内存为例,则该块内存既可以通过 0x000000000 (逻辑地址)操作也可以通过 0x08000000 操作,且都是操作的同一块内存。
- 系统存储器(System Memory)启动:从系统存储器启动(0x1FFFF000 0x1FFF F7FF),这种模式启动的程序功能是由厂家设置的,存储在只读存储区域,仅读不能写,断电保存。一般来说,我们选用这种启动模式时,是为了从串口/USB下载程序,因为在厂家提供的 ISP 程序中,提供了串口/USB下载程序的固件,可以通过这个 ISP 程序将用户程序下载到系统的 Flash 中。以0x1FFFF000对应的内存为例,则该块内存既可以通过 0x000000000 操作也可以通过 0x1FFFF000操作,且都是操作的同一块内存。
- 片上 SRAM 启动: 从内置 SRAM 启动(0x2000 0000-0x3FFFFFF), 既然是 SRAM, 能读能写, 但断电不能保存, 这个模式一般用于程序调试。SRAM 只能通过 0x20000000 进行操作, 与上

述两者不同。从 SRAM 启动时,需要在应用程序初始化代码中重新设置向量表的位置。

四、原理图

五、联系我们

若需任何帮助,请邮件联系我们: info@fukunlab.com