TABELA DE DERIVADAS E INTEGRAIS

	DERIVADAS	INTEGRAIS
01)	Se $f(x) = x$, então $f'(x) = 1$	$\int 1 dx = 1 \int dx = \int dx = x + c$
02)	Se $f(x) = ax$, então $f'(x) = a$	$\int adx = a \int dx = ax + c$
03)	Se $f(x) = x^n$, então $f'(x) = n \cdot x^{n-1}$	$\int x^n dx = \frac{x^{n+1}}{n+1} + c, \ n \neq -1$
04)	Se $f(x) = \log_a x$, então $f'(x) = \frac{1}{x \cdot \ln a}$	$\int \frac{1}{x \cdot \ln a} dx = \log_a x + c$
05)	Se $f(x) = \ln x$, então $f'(x) = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + c$
06)	Se $f(x) = a^x$, então $f'(x) = a^x \cdot \ln a$	$\int a^x dx = \frac{a^x}{\ln a} + c$
07)	Se $f(x) = e^x$, então $f'(x) = e^x$	$\int e^x dx = e^x + c$
08)	Se $f(x) = sen x$, então $f'(x) = cos x$	$\int \cos x dx = \sin x + c$
09)	Se $f(x) = \cos x$, então $f'(x) = -\sin x$	$\int sen \ x \ dx = -\cos x + c$
10)	Se $f(x) = tg x$, então $f'(x) = \sec^2 x$	$\int \sec^2 x dx = tg \ x + c$
11)	Se $f(x) = ctg x$, então $f'(x) = -\csc^2 x$	$\int \csc^2 x dx = -ctg \ x + c$
12)	Se $f(x) = \sec x$, então $f'(x) = tg \ x \cdot \sec x$	$\int \sec x \cdot tg \ x dx = \sec x + c$
13)	Se $f(x) = \csc x$, então $f'(x) = -ctg \ x \cdot \csc x$	$\int \csc x \cdot \cot x dx = -\csc x + c$
14)	Se $f(x) = arc tg x$, então $f'(x) = \frac{1}{1+x^2}$	$\int \frac{1}{1+x^2} dx = arc \ tg \ x + c$
15)	Se $f(x) = arc \ sen \ x$, então $f'(x) = \frac{1}{\sqrt{1 - x^2}}$	$\int \frac{1}{\sqrt{1-x^2}} dx = arc sen x + c$
16)	Se $f(x) = arc \cos x$, então $f'(x) = -\frac{1}{\sqrt{1-x^2}}$	$\int -\frac{1}{\sqrt{1-x^2}} dx = arc \cos x + c$
17)	Se $f(x) = \ln(x + \sqrt{x^2 + 1})$, então $f'(x) = \frac{1}{\sqrt{1 + x^2}}$	$\int \frac{1}{\sqrt{1+x^2}} dx = \ln\left x + \sqrt{x^2 + 1}\right + c$
18)	Se $f(x) = \left(\frac{1}{2} \cdot \ln \left \frac{1+x}{1-x} \right \right)$, então $f'(x) = \frac{1}{1-x^2}$	$\int \frac{1}{1-x^2} dx = \frac{1}{2} \cdot \ln \left \frac{1+x}{1-x} \right + c$

Regra do produto:

Se
$$f(x) = u \cdot v$$
, então $f'(x) = u'v + uv'$

Regra do quociente:

Se
$$f(x) = \frac{u}{v}$$
, então: $f'(x) = \frac{u' \cdot v - u \cdot v'}{v^2}$.

Regra da cadeia:

$$f(x) = g[h(x)] \Rightarrow f'(x) = g'[h(x)] \cdot h'(x)$$

Regra de L'Hospital

Seja
$$\lim_{x \to a} f(x) = 0$$
 e $\lim_{x \to a} g(x) = 0$ e se existe $\lim_{x \to a} \frac{f'(x)}{g'(x)}$, então existe $\lim_{x \to a} \frac{f(x)}{g(x)}$ e daí temos: $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

INTEGRAÇÃO POR PARTE: $\int f(x) \cdot g'(x) dx = f(x) \cdot g(x) - \int f'(x) \cdot g(x) dx$

PRODUTOS NOTÁVEIS

1.
$$(A+B)^2 = A^2 + 2AB + B^2$$

2.
$$(A-B)^2 = A^2 - 2AB + B^2$$

3.
$$A^2 - B^2 = (A + B)(A - B)$$

4.
$$(A+B)^3 = A^3 + 3A^2B + 3AB^2 + B^3$$

5.
$$(A-B)^3 = A^3 - 3A^2B + 3AB^2 - B^3$$

6.
$$A^3 - B^3 = (A - B)(A^2 + AB + B^2)$$

7.
$$A^3 + B^3 = (A+B)(A^2 - AB + B^2)$$

EXPOENTES INTEIROS

$$1. \quad a^m \cdot a^n = a^{m+n}$$

2.
$$\frac{a^m}{a^n} = a^{m-n} \ (a \neq 0 \ e \ m \geq n)$$

3.
$$(a^m)^n = a^{m \cdot n}$$

$$4. \quad (a \cdot b)^n = a^n \cdot b^n$$

$$5. \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} \ (b \neq 0)$$

EXPOENTES FRACIONÁRIOS

1.
$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$$

$$2. \quad \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}} \quad (b \neq 0)$$

$$3. \quad \sqrt[n]{a^m} = a^{\frac{m}{n}}$$

FÓRMULA DA EQUAÇÃO DE 2º GRAU

Dado $Ax^2 + Bx + C = 0$, então

$$x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

LOGARITMOS

1.
$$LOG_KA + LOG_KB = LOG_K(AB)$$

2.
$$LOG_KA - LOG_KB = LOG_K\left(\frac{A}{B}\right)$$

3.
$$LOG_K A^n = n \cdot LOG_K A$$

MUDANÇA DE BASE

$$LOG_B A = \frac{LOG_K A}{LOG_K B}$$

PRINCIPAIS BASES DOS LOGARITMOS

1.
$$LOG\ A = LOG_{10}A$$

2.
$$LN A = LOG_{e}A$$
, onde $e = 2,71$

COLOGARITMO: $COLOG_RA = -LOG_RA$

ARCOS NOTÁVEIS

COB				
	30°	45°	60°	
sen	1	$\sqrt{2}$	$\sqrt{3}$	
	$\overline{2}$	2	2	
cos	$\sqrt{3}$	$\sqrt{2}$	1	
	2	2	$\overline{2}$	
tg	$\sqrt{3}$			
	3		$\sqrt{3}$	

CICLO TRIGONOMÉTRICO

	$0_{\rm o}$	90°	180°	270°	360°
sen	0	1	0	-1	0
cos	1	0	-1	0	1

Vale lembrar que $\pi rad \rightarrow 180^{\circ}$

IDENTIDADES FUNDAMENTAIS

$$1. \quad sen^2x + \cos^2 x = 1$$

$$2. \quad tg \ \ x = \frac{sen \ x}{\cos x}$$

3.
$$\cot g \ x = \frac{\cos x}{\sin x}$$

4.
$$\sec x = \frac{1}{\cos x}$$

5.
$$\cos \sec x = \frac{1}{\sin x}$$

FÓRMULAS PARA O ARCO DOBRO

1.
$$sen 2a = 2 sen a \cdot cos a$$

$$\int \cos 2a = \cos^2 a - \sin^2 a$$

2.
$$\begin{cases} \cos 2a = 1 - 2 \sin^2 a \\ \cos 2a = 2 \cos^2 a - 1 \end{cases}$$