Computational Finance and Data Analysis for Financial Engineering

Zhipeng Liao

UCLA

Version 1.0

Introduction

- ▶ Instructor: Zhipeng Liao
 - ▶ Bunche Hall, 8379
 - ► E-mail: zhipeng.liao at econ.ucla.edu
- ► Time and Location: MW 12:30pm 1:45pm, HUMANTS A65
- ▶ **Office Hours:** W 2:00 pm − 3:00 pm
 - or by appointment

Textbooks

- ▶ Main: An Introduction to Computational Finance and Financial Econometrics, by Eric Zivot
 - manuscript in preparation. Pdf files will be provided through course webpage
 - Class slides and notes

Supplementary

- Statistics and Data Analysis for Financial Engineering, by David Ruppert, Springer-Verlag
- ► The Elements of Financial Econometrics, by Jianqing Fan and Qiwei Yao, Cambridge University Press

Evaluation

- ► Homework (approximately bi-weekly), 20%.
- ▶ Mid-term Exam (May 7th, 2018 in class), 30%
- ► Final Exam (June 11th, 2018), 50%
- ► Please double check the final exam date and location before the exam

Homework Problem Sets

- Problem sets will be assigned between Mon Wed (bi-weekly, approximately)
- Due by next Monday 12:30 pm before class
- Drop your homework in an assigned box before class
 - Any late submission will not be accepted.
 - Make a report, using word processor (e.g., MS word), for the statistical output.
- Use our discussion page for your questions
 - discuss problem sets with classmates
 - submit your own answers
- Around 60% of midterm and final questions will be based on the homework problems. Numbers will be changed.

Mid-term Exam

- ▶ The mid-term exam is scheduled on Monday, May 7, 2018
- ► The mid-term will cover everything discussed during the April 2, 2018 – May 2, 2018 window
- A practice mid-term exam will be provided
- ► The mid-term exam will be the same style as the practice midterm exam

Final Exam

- ► The final exam is scheduled on Monday, June 11, 2018
- ▶ Please **double check** the date and the location of the final before the exam
- ► The final exam will cover everything discussed this quarter, including the material covered in the midterm exam
- A practice final exam will be provided
- ▶ The final exam will be the same style as the practice final exam.

Grading

Final grading based on the followings

Assignments	20%
Mid-term Exam	30%
Final Exam	50%

- Your score of the assignments will be divided by the maximum possible score, and then multiplied by 100. Call it H.
- ➤ Your midterm score will be divided by the maximum possible midterm score, and then multiplied by 100. Call it **M**.
- ➤ Your final score will be divided by the maximum possible final score, and then multiplied by 100. Call it **U**.
- ▶ Your weighted average **W** is calculated by the formula **W** = $\mathbf{H} \times 0.2 + \mathbf{M} \times 0.3 + \mathbf{U} \times 0.5$.

Grading Algorithm 1

- ▶ If $95 \le W$, you will get A+. If $85 \le W < 95$, you will get A. If $80 \le W < 85$, you will get A-;
- ▶ If $75 \le \mathbf{W} < 80$, you will get B+. If $70 \le \mathbf{W} < 75$, you will get B. If $65 \le \mathbf{W} < 70$, you will get B-;
- ▶ If $60 \le \mathbf{W} < 65$, you will get C+. If $55 \le \mathbf{W} < 60$, you will get C. If $50 \le \mathbf{W} < 55$, you will get C-;
- ▶ If **W** < 50, you will get F.

Grading Algorithm 2

- Your W will determine your rank R in the class (see the course syllabus for how your rank is determined);
- Let n1, n2, n3, n4, n5, n6, n7, n8 and n9 denote the smallest integers larger than or equal to $0.05\times n$, $0.20\times n$, $0.30\times n$, $0.40\times n$, $0.60\times n$, $0.70\times n$, $0.80\times n$, $0.85\times n$ and $0.90\times n$ respectively.
- ▶ If $\mathbf{R} \le n1$, you will get A+. If $n1 < \mathbf{R} \le n2$, you will get A. If $n2 < \mathbf{R} \le n3$, you will get A-.
- ▶ If n3 < $\mathbf{R} \le$ n4, you will get B+. If n4 < $\mathbf{R} \le$ n5, you will get B. If n5 < $\mathbf{R} \le$ n6, you will get B-.
- ▶ If n6 < $\mathbf{R} \le$ n7, you will get C+. If n7 < $\mathbf{R} \le$ n8, you will get C. If n8 < $\mathbf{R} \le$ n9, you will get C-.
- ▶ If n9 < **R**, you will get F.

Grading

- ➤ Your **final grade** will be the maximum of the two grades determined in algorithms 1 and 2 above
- ▶ The secrete of getting a decent grade in this course
 - you should really understand the homework problems
 - you get $\mathbf{H} \times 0.2 \approx 20$ if you finish and submit all the homework assignments
 - you get $\mathbf{M} \times 0.3 \approx 18$ and $\mathbf{U} \times 0.5 \approx 30$ if you understand the homework problems and solve similar problems correctly in the exams
 - > you get $\mathbf{W} \approx 68$ and hence a grade at least (around) B- based on grading algorithm 1
 - $lackbox{"} {f a} pprox {f b}$ " means number ${f a}$ approximately equals to number ${f b}$
- The secrete of getting a good grade in this course
 - ▶ you should also really understand all the material discussed in class

Course Description

- ► The price of risky asset usually fluctuates over time
- This gives us opportunities of making money by buying or selling these assets
- If we make an investment, the most important thing is how much money we will make
- ► The first topic in this course is on calculation of the financial returns.

- ▶ Buy 1 share at price P_t and sell it at price P_{t+1}
- ► Cost: P_t
- ightharpoonup Revenue: P_{t+1}
- ▶ Profit: $P_{t+1} P_t$
- ► The simple return

$$R_t = \frac{P_{t+1} - P_t}{P_t} = \frac{P_{t+1}}{P_t} - 1$$

Daily Returns of Apple Shares (01/01/1985 - 12/26/2017)

Course Description

- ► The financial return is a random variable, e.g., it may be positive or negative
- ► The randomness of the financial return leads to the risk of an investment
- Since risk depends upon the probability distribution of a return,
 probability and statistics are fundamental tools for finance
- Probability is needed for risk calculations (which assume we know the probability distribution of a return)
- ▶ **Statistics** is needed to estimate parameters of the probability distribution of a return, such as its mean and variance, and to test various financial theories
- The second topic in this course is on review of concepts in probability and statistics

Course Description

- ▶ The simple return at any period t, say R_t , is a random variable
- ▶ The collection of financial returns at different periods, i.e., $\{..., R_t, R_{t+1}, R_{t+2}, ...\}$, is a set of random variables
- Such a set of random variables is called a time series
- ▶ The financial data we observe in reality is a snapshot of the time series $\{..., R_t, R_{t+1}, R_{t+2}, ...\}$ at a given window
- ► The **time series analysis** is on the probability and statistics of a set of random variables such as financial returns
- The third topic in this course is on the time series econometrics

Daily Prices of Apple Shares (01/01/1985 - 12/26/2017)

Daily Returns of Apple Shares (01/01/1985 - 12/26/2017)

- ▶ Covariance between two random variables X and Y: Cov(X, Y)
- ▶ The correlation between X and Y:

$$\rho_{X,Y} = \frac{\mathit{Cov}(X,Y)}{\sqrt{\mathit{Var}(X) \cdot \mathit{Var}(Y)}}$$

▶ The correlation of time t's return and time (t+j)'s return:

$$\rho_{R,j} = \frac{\textit{Cov}(R_t, R_{t+j})}{\sqrt{\textit{Var}(R_t) \cdot \textit{Var}(R_{t+j})}}$$

▶ The Auto-Correlation Function of return: $\rho_{R,j}$ as a function of $j=0,1,2,\ldots$

Auto-Correlation Function of Apple Returns

- ▶ There is no strong evidence showing that the simple return R_t of the Apple shares is serially correlated
- ▶ That is R_t and R_{t+j} $(j \neq 0)$ are uncorrelated
- Such a property is sometimes called linear independence
- ▶ But this property does not imply that R_t and R_{t+j} $(j \neq 0)$ are independent

- ▶ Covariance between two random variables X and Y: Cov(X, Y)
- ▶ The correlation between X and Y:

$$\rho_{X,Y} = \frac{\textit{Cov}(X,Y)}{\sqrt{\textit{Var}(X) \cdot \textit{Var}(Y)}}$$

The correlation of the squared returns at time t and time (t + j):

$$\rho_{R^2,j} = \frac{\textit{cov}(\textit{R}_t^2,\textit{R}_{t+j}^2)}{\sqrt{\textit{Var}(\textit{R}_t^2) \cdot \textit{Var}(\textit{R}_{t+j}^2)}}$$

▶ The Auto-Correlation Function of return: $\rho_{R^2,j}$ as a function of $j=0,1,2,\ldots$

Auto-Correlation Function of Squared Apple Returns (R_t^2)

- ightharpoonup Covariance between two random variables X and Y: Cov(X, Y)
- ▶ The correlation between X and Y:

$$\rho_{X,Y} = \frac{\mathit{Cov}(X,Y)}{\sqrt{\mathit{Var}(X) \cdot \mathit{Var}(Y)}}$$

The correlation of the absolute returns at time t and time (t + j):

$$\rho_{R^2,j} = \frac{\textit{cov}(|R_t|,|R_{t+j}|)}{\sqrt{\textit{Var}(|R_t|) \cdot \textit{Var}(|R_{t+j}|)}}$$

▶ The Auto-Correlation Function of return: $\rho_{|R|,j}$ as a function of j = 0, 1, 2, ...

Auto-Correlation Function of Absolute Apple Returns ($|R_t|$)

- ▶ There are strong evidence showing that the simple return R_t of the Apple shares is not independent
- ▶ That is R_t and R_{t+j} $(j \neq 0)$ are dependent
- ▶ Because nonlinear function(s) of R_t and R_{t+j} are correlated
- ► Such a property is sometimes called non-linear dependence

Introduction

- ► The financial returns usually have heavier tails than the normal random variable
- ► The main reason is because the "outliers" show up in the financial data more frequently than the normal distribution predicts
- Moreover, asymmetry often shows up in the density of the financial returns
- That is another difference between the financial returns and the normal random variable
- ► Therefore, the simple normal/Gaussian distribution is inappropriate to model the financial returns

- ▶ Random variable X has CDF $F_X(\cdot)$
- ▶ Random variable Y has CDF $F_Y(\cdot)$
- ▶ If X and Y have the same distribution, then $F_X(x) = F_Y(x)$ for any $x \in R$
- If X and Y have the same distribution, then $F_X^{-1}(u) = F_Y^{-1}(u)$ for any $u \in (0,1)$
- ▶ Let $X = R_t$ and Y be a normal random variable
- Comparing $F_X^{-1}(u)$ with $F_Y^{-1}(u)$ for different values of $u \in (0,1)$ gives us information whether R_t is normally distributed

Introduction

The S&P500

- We next investigate the prices of the S&P500
- ► The S&P500 is a value-weighted index of the prices of the 500 large-cap common stocks actively traded in the United States
- Its present form has been published since 1957, but its history dates back to 1923 when it was a value-weighted index based on 90 stocks
- ▶ It is regarded as a bellwether for the American economy
- Many mutual funds, exchange-traded funds, pension funds etc. are designed to track the performance of S&P500

Introduction

Auto-Correlation Function of S&P500 Returns

Auto-Correlation Function of Squared S&P500 Returns (R_t^2)

Auto-Correlation Function of Absolute S&P500 Returns ($|R_t|$)

Introduction

Stylized Facts

- ► Trend in prices
- Stationarity
- ► (Non-linear) Dependence
- ► Heavy tails
- Asymmetry
- Volatility clustering

Course Description

- ▶ It is almost impossible to draw any useful conclusion on the joint distribution of a time series without further assumption on the underlying data generating process
- ► Stationarity is a useful assumption when we are interested in the mean and auto-covariance of the time series
- Another approach is to assume that the financial data is generated from some statistical models
- ► Financial risk analysis can be conveniently conducted using these models
- ► The statistical models in finance are motivated to capture the key features of the data

Course Description

- ► The fourth topic is the **Heteroscedastic Volatility Models**
- ► The fifth topic is the **Portfolio Theory**
- ► The sixth topic is the Factor Pricing Model

Course Description - prerequisite

- Required prerequisite probability and statistics
- This is not the right course if you have never learned any of prob./stat. concepts such as, for example,
 - random variable,
 - probability density function (pdf) and distribution function (CDF),
 - expectation,
 - statistical independence.
- ► Course materials are uploaded in the course webpage
 - maybe updated

Course Motivation

- Why financial econometrics?
 - to confirm economics/financial theory
 - ▶ to develop a new theory
 - to manage risk
 - to make money?
- What do we need?
 - financial market data (and statistical software)
 - probability and statistics
 - time series concepts
 - econometric models and methods
 - financial theory

Statistical software - R program

- ► This course does not make (and require) you to be an R programmer
 - The main idea of modern statistical computing is "sharing" codes and "building upon" existing codes.
 - ► For each R exercises, a benchmark R coding will be provided. You will be able to "replicate" all the results in most cases.
 - ► It will help you to visualize and more clearly understand course materials "replication" exercises.
 - ► Some guidance will be provided oftentimes, but currently there is no plan for independent R sessions.
- Available Resources from UCLA
 - https://stats.idre.ucla.edu/r/

Tentative Course Schedule

- Course Introduction, Understanding Financial Returns
- Review of Concepts in Probability and Statistics
- ► Time Series Concepts, Descriptive Statistics
- Mid-term Exam
- Conditional Volatility Models
- Portfolio Theory
- Factor Pricing Model and CAPM
- Some Additional Topics and Review