ALGORITMOS

Wesley Spalenza

IFES - Campus Cariacica, ES, Brasil

Índice do Curso

- 1. Introdução e Definições Iniciais
- 2. Rotinas e Condicionais
- 3. Arrays Vetores, Matrizes e Tensores
- 4. Entrada e saída I/O Files
- 5. Subprogramas Funções

Introdução

- O que são algoritmos?
- Por que estudar algoritmos e porque vale a pena estuda-los?
- Qual é a função dos algoritmos no dia-a-dia?
- Como eles são inseridos em computadores?

Informalmente, um algoritmo é qualquer procedimento lógico-computacional bem definido, a partir de um problema proposto, que toma um conjunto de valores como entrada (INPUT) e produz um conjunto de valores como saída (OUTPUT).

Portanto, um algoritmo é uma sequência de passos lógicocomputacionais que transforma a entrada em saída, resolvendo problemas de forma bem definida.

***** Falamos a mesma coisa de forma diferente, percebeu? ****

Que tipos de problemas podem ser resolvidos por algoritmos? Vejamos alguns exemplos.

- 1. O projeto genoma humano.
- 2. Interface computacional e automação, por exemplo: A.I (Artificial Inteligence).
- 3. O comércio eletrônico e comércio em geral.
- 4. Na indústria e outras instalações comerciais.

5. Em Física

5.1 Mecânica - Cinemática de corpos pontuais e extensos, na dinâmica de partículas e corpos extensos, movimentos em dinâmica linear e não-linear usando equações diferenciais simples, matriciais e tensoriais. Estudo de perfuração de petróleo, análise e fabricação de carros e sistemas mecânicos em geral, otimização de fluxo de carros em uma cidade e controle semafórico, meteorologia e a mecânica de fluidos e fenômenos atmosféricos, estudos de poluição atmosférica, etc.

5. Em Física

5.2 Termodinâmica – Problemas de temperatura, dilatação de corpos, trocas de calor e processos termodinâmicos em geral como máquinas térmicas e motores em geral. Processos de Mecânica Estatística de muitos corpos e suas aplicações – a dinâmica não-linear e sistemas complexos, como crescimento de superfícies em materiais.

5.3 Eletromagnetismo – Circuitos elétricos e eletrônicos, organização de estruturas, design e otimização, problemas de potências de materiais elétricos, campos eletromagnéticos como geração de energia e outros, antenas para transmissão de ondas e sinais, internet, codificação de dados e etc.

5.4 Relatividade Restrita, Geral e Gravitação – Simulação de movimentos relativísticos de partículas com velocidades próximas a da luz, simulação de sistemas cosmológicos, buracos negros, evoluções de galáxias e estudo de matéria escura e energia escura, etc. de superfícies em materiais.

5. Em Física

5.5 Mecânica Quântica e Matéria condensada – Estudos de novos materiais em física de matéria condensada e da física de estado sólido, teoria de entrelaçamento quântico, computação quântica, nanociência e nanotecnologia, supercondutividade, teoria de Plasma, etc.

5.6 Teoria Quântica de Campos e Partículas elementares -Simulações computacionais em estudo de sinais quânticos em eletrodinâmica quântica, Teoria eletrofraca, QCD -Cromodinâmica Quântica (quarks e gluons), formando assim o modelo padrão de física de partículas elementares - A física do LHC, Campos a Temperatura finita, Entrelaçamento quântico, Ondas Gravitacionais, Gravitação Quântica, GUTs (Great Unification Theories), Teoria de Cordas e Supercordas, etc.

Os computadores, vem evoluindo constantemente junto com a evolução das linguagens de programação e os algoritmos

A sua finalidade é receber, manipular e armazenar dados, logo sua finalidade é processar dados, isto é, receber dados através de dispositivos de entrada: teclado, mouse, scaner, entre outros, realizar operações com estes dados e gerar uma resposta como saída: monitor, impressora, internet, entre outros.

Um computador é composto de Hardware: partes físicas e Software: programas.

Quando queremos desenvolver um software para um processamento de dados, vamos escrever um programa ou vários interligados, para que o computador consiga compreender e executar, sendo estes escritos em uma determinada linguagem de programação, como:

- Cobol e Algol,
- Fortran,
- Pascal e Delfi,
- C, C++, C#
- CUDA,
- *Python, Matlab,* entre outros.

Etapas para desenvolvimento computacional de um algoritmo:

- 1. Análise Onde o enunciado é estudado para encontrar-se a definição dos dados de entrada, do processamento e dos dados de saída;
- 2. Algoritmos Em que as ferramentas do tipo, fluxograma ou lógica sequencial, são utilizados para descrever o problema com suas soluções, isto é, é uma sequência de passos que deve ser seguida para a realização de tarefas;
- 3. Codificação Onde o algoritmo é transformado em códigos da linguagem de programação escolhida para se trabalhar.

Definições Iniciais

O programa é a codificação de um algoritmo em uma linguagem lógica e de programação. A confecção de um algoritmo <u>pode ser</u> representado por um diagrama de fluxo ou fluxograma, onde os símbolos universais são

Um algoritmo pode ser sempre aperfeiçoado de acordo com o objetivo do programador...

Um algoritmo é diferente do outro, para mesmos objetivos, de acordo com a prática e habilidade do programador...

Só podemos dizer que um algoritmo está errado se o objetivo não foi alcançado...

EXEMPLOS DE ALGORITMOS NO DIA A DIA

Exemplo 1. Descreva os passos para se fritar um ovo.

- 1. Pegue o ovo, a frigideira, o óleo o e sal.
- 2. Coloque o óleo na frigideira.
- 3. Ligue o fogo.
- 4. Coloque a frigideira no fogo.
- 5. Espere o óleo esquentar.
- 6. Coloque o ovo.
- 7. Retire-o quando pronto.

Obs. Se você não sabe fazer ovo, se mate! Vai morrer de fome

mesmo...

Exemplo 2. Descreva os passos para se mascar um chiclete.

- 1. Pegue o chiclete.
- 2. Retire o papel.
- 3. Mastigar.
- 4. Jogar o papel no lixo.

Obs. Se você não colocar o último tópico é porque você é porco pra caral#@\$%()*&!

Exemplo 3. Descreva os passos para se trocar uma lâmpada.

- 1. Pegue a lâmpada nova e deixe-a próxima.
- 2. Se (a lâmpada queimada estiver fora de alcance)
- 3. Pegue a escada
- 4. Se (a lâmpada estiver quente)

Pegue um pano

Senão

Pegue com a mão mesmo

- 5. Tirar a lâmpada queimada.
- 6. Colocar a lâmpada nova.

Obs. Todo físico tem que saber trocar essa merda e também resistência de chuveiro.

Exemplo 4. Descreva o seu fim de semana.

- 1. Vejo a previsão do tempo
- 2. Se (fizer sol)

Vou a praia

Senão

Vou estudar algoritmos

- 3. Almoçar
- 4. Ver série ou outras coisas...
- 5 Estudar só se necessário.
- 6. Dormir mais que a cama.

Obs. Tem coisas nesse algoritmo que não podemos colocar! :p

Exemplo 5. Descreva um algoritmo para fazer uma prova.

- 1. Receber a prova,
- 2. Ler a prova
- 3. Pegar a caneta
- 4. Enquanto (houver questões em branco) e (tempo não terminou) faça

Se (souber a questão)

Resolvê-la

Senão

Pular para outra

5. Entregar a prova.

Obs. Se você não estudou, entregue pra Deus...

Exemplo 6. Descreva um algoritmo para jogar jogo da forca.

- 1. Escolher a palavra,
- 2. Montar o diagrama da palavra com as lacunas, a forca e a corda
- 3. Enquanto (houver lacunas vazias) e (corpo incompleto)

Se (acertar uma letra)

Escrever na lacuna correspondente

Senão

Desenhar uma parte do corpo

4. Finalizar.

Exemplo 7. Descreva um algoritmo para descrever um corpo passando por uma região com atrito.

- 1. Preparar as equações de força e energia, a partir das leis de Newton.
- 2. Se (corpo passar)

A velocidade após a passagem será

Senão

O corpo para e a distância que ele percorreu é dada.

3. Fim do programa.