Ecuaciones diferenciales parciales de segundo orden

Manuel Carlevaro

Departamento de Ingeniería Mecánica

Grupo de Materiales Granulares - UTN FRLP

manuel.carlevaro@gmail.com

Cálculo Avanzado • 2023

♠ · X∃IAIEX · ♠
♠
♠

$$A\frac{\partial^2 \phi}{\partial x^2} + B\frac{\partial^2 \phi}{\partial x \partial y} + C\frac{\partial^2 \phi}{\partial y^2} + D\frac{\partial \phi}{\partial x} + E\frac{\partial \phi}{\partial y} + F\phi = S$$

donde A,B,C,D,E,F y S son funciones de x y y en $D \in \mathbf{R}^2$.

$$A\frac{\partial^2 \phi}{\partial x^2} + B\frac{\partial^2 \phi}{\partial x \partial y} + C\frac{\partial^2 \phi}{\partial y^2} + D\frac{\partial \phi}{\partial x} + E\frac{\partial \phi}{\partial y} + F\phi = S$$

donde A, B, C, D, E, F y S son funciones de x y y en $D \in \mathbf{R}^2$.

Tipos:

- Parabólica: $B^2 4AC = 0$
- ▶ Elíptica: $B^2 4AC < 0$
- ightharpoonup Hiperbólica: $B^2 4AC > 0$

para todo $(x,y) \in D$.

Casos:

- ▶ Conducción de calor en sólidos, flujo de fluidos
- ▶ Ejemplos:
 - > Conducción de calor:

$$\rho c \frac{\partial T}{\partial t} = k \frac{\partial^2 T(x,t)}{\partial x^2} + Q(x)$$

> Transporte convectivo:

$$\frac{\partial \phi}{\partial t} = -\frac{\partial}{\partial x}u(x)\phi + D\frac{\partial^2 \phi}{\partial x^2}$$

$$A\frac{\partial^2 \phi}{\partial x^2} + B\frac{\partial^2 \phi}{\partial x \partial y} + C\frac{\partial^2 \phi}{\partial y^2} + D\frac{\partial \phi}{\partial x} + E\frac{\partial \phi}{\partial y} + F\phi = S$$

donde A, B, C, D, E, F y S son funciones de x y y en $D \in \mathbf{R}^2$.

Tipos:

- Parabólica: $B^2 4AC = 0$
- ▶ Elíptica: $B^2 4AC < 0$
- Hiperbólica: $B^2 4AC > 0$

para todo $(x,y) \in D$.

Casos:

- ▶ Problemas estacionarios de 2 y 3 dimensiones
- Conducción de calor en sólidos, vibración de membranas
- ► Ejemplos:
 - > Ecuación de Poisson:

$$-\nabla^2 \phi(x,y) = S(x,y)$$

> Ecuación de Laplace:

$$-\nabla^2 \phi(x, y) = 0$$

$$A\frac{\partial^2 \phi}{\partial x^2} + B\frac{\partial^2 \phi}{\partial x \partial y} + C\frac{\partial^2 \phi}{\partial y^2} + D\frac{\partial \phi}{\partial x} + E\frac{\partial \phi}{\partial y} + F\phi = S$$

donde $A, B, C, D, E, F \neq S$ son funciones de $x \neq y$ en $D \in \mathbf{R}^2$.

Tipos:

- Parabólica: $B^2 4AC = 0$
- ▶ Elíptica: $B^2 4AC < 0$
- ightharpoonup Hiperbólica: $B^2 4AC > 0$

para todo $(x,y) \in D$.

Casos:

- Problemas oscilatorios, propagación de ondas, fluidos
- ▶ Ejemplos:
 - > Ecuación de onda:

$$\frac{\partial^2 u(x, y, z, t)}{\partial t^2} = c^2 \nabla^2 u(x, y, z, t)$$

> Navier-Stokes (incompresible):

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} - \nu \nabla^2 \boldsymbol{u} = -\nabla \left(\frac{p}{p_0}\right) + \boldsymbol{g}$$

Ecuación de Poisson (elíptica):

$$\nabla^2 u(x,y) = \frac{\partial^2 u}{\partial x^2}(x,y) + \frac{\partial^2 u}{\partial y^2}(x,y) = f(x,y)$$

en $R = \{(x,y) | a < x < b, c < y < d\}$, con u(x,y) = g(x,y) para $(x,y) \in S$, siendo S la frontera de R.

Malla:

- lackbox División [a,b] y [c,d] en n y m partes iguales
- ▶ h = (b-a)/n, k = (d-c)/m
- $x_i = a + ih, i = 0, 1, \dots, n$
- $y_j = c + jk, \ j = 0, 1, \dots, m$

Aproximación en diferencias finitas (serie de Taylor):

$$\frac{\partial^2 u}{\partial x^2} = \frac{u(x_{i+1}, y_j) - 2u(x_i, y_j) + u(x_{i-1}, y_j)}{h^2} + \mathcal{O}(h^2)$$

$$\frac{\partial^2 u}{\partial y^2} = \frac{u(x_i, y_{j+1}) - 2u(x_i, y_j) + u(x_i, y_{j-1})}{k^2} + \mathcal{O}(k^2)$$

Con $u(x_i, y_i) \mapsto u_{i,i}$:

$$\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} + \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{k^2} = f_{i,j} + \frac{h^2}{12} \frac{\partial^4 u}{\partial x^4} (\xi_i, y_j) + \frac{k^2}{12} \frac{\partial^4 u}{\partial y^4} (x_i, \eta_j)$$

para $i=1,2,\ldots,n-1$, $j=1,2,\ldots,m-1$ y condiciones de contorno:

$$u_{0,j} = g_{0,j}$$
 y $u_{n,j} = g_{n,j},$ $j = 0,1,\ldots m;$ $u_{i,0} = g_{i,0}$ y $u_{i,m} = g_{i,m},$ $i = 0,1,\ldots n$

Resulta:

$$2\left|\left(\frac{h}{k}\right)^{2}+1\right|u_{i,j}-(u_{i+1,j}+u_{i-1,j})-\left(\frac{h}{k}\right)^{2}(u_{i,j+1}+u_{i,j-1})=-h^{2}f_{i,j},\ i\in[1,n-1],\ j\in[1,m-1]$$

Con $u(x_i, y_i) \mapsto u_{i,j}$:

$$\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} + \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{k^2} = f_{i,j} + \frac{h^2}{12} \frac{\partial^4 u}{\partial x^4} (\xi_i, y_j) + \frac{k^2}{12} \frac{\partial^4 u}{\partial y^4} (x_i, \eta_j)$$

para $i=1,2,\ldots,n-1$, $j=1,2,\ldots,m-1$ y condiciones de contorno:

$$u_{0,j} = g_{0,j} \quad \text{y} \quad u_{n,j} = g_{n,j}, \quad j = 0,1,\dots m;$$

$$u_{i,0} = g_{i,0} \quad \text{y} \quad u_{i,m} = g_{i,m}, \quad i = 0,1,\dots n$$

Resulta:

$$2\left|\left(\frac{h}{k}\right)^{2}+1\right|u_{i,j}-(u_{i+1,j}+u_{i-1,j})-\left(\frac{h}{k}\right)^{2}(u_{i,j+1}+u_{i,j-1})=-h^{2}f_{i,j},\ i\in[1,n-1],\ j\in[1,m-1]$$

Ejemplo: Determinar la distribución estacionaria de temperaturas en una placa de 0.5×0.5 m usando n=m=4. Dos bordes adyacentes se mantienen a $0~^{\circ}\mathrm{C}$ y la temperatura se incrementa linealmente en los otros bordes hasta llegar a $100~^{\circ}\mathrm{C}$ en la esquina de unión.

$$u_{i,j} \mapsto u_l, \ l = i + m(j-1)$$

$$u_{1,1} = u_1, \ u_{2,1} = u_2, \ u_{3,1} = u_3$$

$$u_{1,2} = u_4, \ u_{2,2} = u_5, \ u_{3,2} = u_6$$

$$u_{1,3} = u_7, \ u_{2,3} = u_8, \ u_{3,3} = u_9$$

$$\frac{\partial^2 u}{\partial x^2}(x,y) + \frac{\partial^2 u}{\partial y^2}(x,y) = 0; (x,y) \in [0,0.5]^2$$
$$h = k = 1/8$$

$$u_{i,j} \mapsto u_l, \ l = i + m(j - 1)$$

$$u_{1,1} = u_1, \ u_{2,1} = u_2, \ u_{3,1} = u_3$$

$$u_{1,2} = u_4, \ u_{2,2} = u_5, \ u_{3,2} = u_6$$

$$u_{1,3} = u_7, \ u_{2,3} = u_8, \ u_{3,3} = u_9$$

$$\frac{\partial^2 u}{\partial x^2}(x,y) + \frac{\partial^2 u}{\partial y^2}(x,y) = 0; (x,y) \in [0,0.5]^2$$
$$h = k = 1/8$$

Ecuaciones:

$$4u_{i,j}-u_{i+1,j}-u_{i-1,j}-u_{i,j-1}-u_{i,j+1}=0$$
para $i=1,2,3;\ j=1,2,3.$

$$u_{i,j} \mapsto u_l, \ l = i + m(j - 1)$$

$$u_{1,1} = u_1, \ u_{2,1} = u_2, \ u_{3,1} = u_3$$

$$u_{1,2} = u_4, \ u_{2,2} = u_5, \ u_{3,2} = u_6$$

$$u_{1,3} = u_7, \ u_{2,3} = u_8, \ u_{3,3} = u_9$$

$$\frac{\partial^2 u}{\partial x^2}(x,y) + \frac{\partial^2 u}{\partial y^2}(x,y) = 0; \ (x,y) \in [0,0.5]^2$$
$$h = k = 1/8$$

Ecuaciones:

$$4u_{i,j}-u_{i+1,j}-u_{i-1,j}-u_{i,j-1}-u_{i,j+1}=0$$
 para $i=1,2,3;\ j=1,2,3.$

Condiciones de borde:

$$\begin{aligned} u_{0,0} &= u_{0,1} = u_{0,2} = u_{0,3} = u_{0,4} = 0 \\ u_{1,0} &= u_{2,0} = u_{3,0} = u_{4,0} = 0 \\ u_{1,4} &= u_{4,1} = 25; u_{2,4} = u_{4,2} = 50 \\ u_{3,4} &= u_{4,3} = 75; u_{4,4} = 100 \end{aligned}$$

Γ	4	_1	Ο	_1	0	0	Ο	0	0		$\lceil u_1 \rceil$		$\begin{bmatrix} y_0 & 1 & \perp & y_1 & 0 \end{bmatrix}$		$\lceil u_1 \rceil$		6.25
	1		1		1		0				-		$u_{0,1} + u_{1,0}$				
	-1	4	-1	0	-1	0	U	0	0		$ u_2 $		$u_{0,2}$		u_2		12.5
	0	-1	4	0	0	-1	0	0	0		u_3		$u_{0,3} + u_{4,1}$		u_3		18.75
	-1	0	0	4	-1	0	-1	0	0		u_4		$u_{0,2}$		u_4		12.5
	0	-1	0	-1	4	-1	0	-1	0		u_5	=	0	\rightarrow	u_5	=	25
İ	0	0	-1	0	-1	4	0	0	-1		u_6		$u_{4,2}$		u_6		37.5
	0	0	0	-1	0	0	4	-1	0		u_7		$u_{0,3} + u_{1,4}$		u_7		18.75
	0	0	0	0	-1	0	-1	4	-1		u_8		$u_{2,4}$		u_8		37.5
	0	0	0	0	0	-1	0	-1	4		$\lfloor u_9 \rfloor$		$u_{3,4} + u_{3,4}$		u_9		$\lfloor 56.25 \rfloor$

$$\begin{bmatrix} 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 4 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 4 & -1 & 0 & -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & 4 & -1 & 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & -1 & 4 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & 0 & 4 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \\ u_8 \\ u_9 \end{bmatrix} = \begin{bmatrix} u_{0,1} + u_{1,0} \\ u_{0,2} \\ u_{0,3} + u_{4,1} \\ u_{0,2} \\ u_{0,3} + u_{4,1} \\ u_{4} \\ u_{3,4} + u_{3,4} \end{bmatrix} \rightarrow \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_{3} \\ u_{4} \\ u_{5} \\ u_{7} \\ u_{8} \\ u_{9} \end{bmatrix} = \begin{bmatrix} 6.25 \\ 12.5 \\ 18.75 \\ 12.5 \\ 37.5 \\ 18.75 \\ 37.5 \\ 37.5 \\ 56.25 \end{bmatrix}$$

Solución exacta: u(x,y) = 400xy por lo que la aproximación en diferencias finitas no tiene error:

$$\frac{\partial^4 u}{\partial x^4} = \frac{\partial^4 u}{\partial y^4} = 0$$

$$\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

$$\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

Grilla:

$$x_i = i\Delta x, \ y_j = j\Delta y, \ t_k = k\Delta t, \ u(x, y, t) = u_{i,j}^k$$

$$\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

Grilla:

$$x_i = i\Delta x, \ y_j = j\Delta y, \ t_k = k\Delta t, \ u(x, y, t) = u_{i,j}^k$$

Diferencias finitas (hacia adelante - explícito):

$$\begin{split} \frac{u_{i,j}^{k+1} - u_{i,j}^k}{\Delta t} &= \alpha \left(\frac{u_{i+1,j}^k - 2u_{i,j}^k + u_{i-1,j}^k}{\Delta x^2} \right) \\ &+ \left(\frac{u_{i,j+1}^k - 2u_{i,j}^k + u_{i,j-1}^k}{\Delta y^2} \right) \end{split}$$

$$\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

Grilla:

$$x_i = i\Delta x, \ y_j = j\Delta y, \ t_k = k\Delta t, \ u(x, y, t) = u_{i,j}^k$$

Diferencias finitas (hacia adelante - explícito):

$$\frac{u_{i,j}^{k+1} - u_{i,j}^k}{\Delta t} = \alpha \left(\frac{u_{i+1,j}^k - 2u_{i,j}^k + u_{i-1,j}^k}{\Delta x^2} \right) + \left(\frac{u_{i,j+1}^k - 2u_{i,j}^k + u_{i,j-1}^k}{\Delta y^2} \right)$$

Hacemos $\Delta x = \Delta y$, $\gamma = \alpha \frac{\Delta t}{\Delta x^2}$:

$$u_{i,j}^{k+1} = \gamma \left(u_{i+1,j}^k + u_{i-1,j}^k + u_{i,j+1}^k + u_{i,j-1}^k - 4u_{i,j}^k \right) + u_{i,j}^k$$

Método explícito: $\Delta t \leq \frac{\Delta x^2}{4\alpha} \leftarrow$ estabilidad numérica.

Stencil:

$$u_{i,j}^{k+1} = \gamma \left(u_{i+1,j}^k + u_{i-1,j}^k + u_{i,j+1}^k + u_{i,j-1}^k - 4u_{i,j}^k \right) + u_{i,j}^k$$

$$\frac{\partial u}{\partial t} - \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = 0$$
$$0 \le x \le L_x, \ 0 \le y \le L_y$$

Condiciones de borde:

$$u(x,0) = 50 + \frac{x(100 - 50)}{L_x}$$
$$u(0,y) = 50 - y\frac{50}{L_y}$$
$$u(x, L_y) = 50\frac{x}{L_x}$$
$$u(L_x, y) = 100 - y\frac{50}{L_y}$$

Condición inicial:

$$u(x,y)_{t=0} = 50$$

```
2
 3 import numpy as np
 4
 5 \text{ Lx, Ly} = 50, 50
 6 \text{ max iter tiempo} = 750
 7 \text{ alpha} = 5
 8 \text{ delta } x = 1
 9 delta t = (delta \times ** 2)/(4 * alpha)
10 gamma = (alpha * delta t) / (delta x ** 2)
11
12 # Condiciones de borde
13 \text{ u } S0 = 0.0
14 \text{ u NO, u SE} = 50.0, 50.0
15 \text{ u NE} = 100.0
16
17 # Condición inicial interior
18 \text{ u inicial} = 50
```

1 #!/usr/bin/env pvthon3

```
20 def inicializar u(max iter tiempo, ni=Lx, ni=Lv):
       # Inicializar la solución: u(k. i. i)
21
       u = np.full((max iter tiempo, ni, nj), u inicial)
22
       # Establecer condiciones de borde
23
       u[:, 0, :] = u NO + np.arange(ni) * delta x
24
                   * (u NE - u NO) / Lx
25
26
       u[:, :, 0] = u NO - np.arange(nj) * delta x
                   * u N0 / Lv
27
28
       u[:, -1, :] = np.arange(ni) * delta x * u SE / Lx
       u[:,:,-1] = u NE - np.arange(nj) * delta x
29
30
                   * u SE / Lv
31
       return u
32
33 u = inicializar u(max iter tiempo)
```



```
import matplotlib
import matplotlib.pyplot as plt
matplotlib.rcParams.update({"text.usetex": True})
import matplotlib.rcParams.update({"text.usetex": True})
import matplotlib.rcParams.update({"text.usetex": True})
import matplotlib.rcParams.update({"text.usetex": True})
import matplotlib.rcParams.update({"5,0)
import matplotlib.rcParams.update({"0,0)
import matplotlib.rcParams.update({"0,0)
import matplotlib.rcParams.update({"0,0)
import matplotlib.rcParams.update({"1,0)
import matplotlib.rcParams.update({"1,0)
import matplotlib.pyplotlib.rcParams.update({"1,0)
import matplotlib.rcParams.update({"1,0)
import matplotlib.rcParams.updat
```

```
49 # Código que aplica el stencil en la grilla (i, j) y en cada t
50 def calcular(u):
       nk, ni, ni = u.shape
51
       for k in range(0, nk-1):
52
           for i in range(1, ni-1):
53
54
               for j in range(1, nj-1):
                   u[k + 1, i, j] = gamma * (u[k][i+1][j] + u[k][
55
56
                                              + u[k][i][j+1] + u[k]
                                              - 4*u[k][i][i]) + u[
57
58
       return u
59
60 u = calcular(u)
```



```
49 # Código que aplica el stencil en la grilla (i, i) v en cada tiempo k
50 def calcular(u):
       nk. ni. ni = u.shape
51
       for k in range(0, nk-1):
52
           for i in range(1, ni-1):
53
               for i in range(1, ni-1):
54
                   u[k + 1, i, j] = gamma * (u[k][i+1][j] + u[k][i-1][j]
55
56
                                              + u[k][i][j+1] + u[k][i][j-1]
                                              -4*u[k][i][j]) + u[k][i][j]
57
58
       return u
59
60 \text{ u} = \text{calcular(u)}
61 fig, ax = plt.subplots(figsize=(8,6))
62 mappable = ax.imshow(u[-1], interpolation=None.
                         cmap=plt.cm.iet)
63
64 fig.colorbar(mappable, label="Temperatura (°C)", ax=ax)
65 ax.set xlabel(r"$x$", fontsize=20)
66 ax.set vlabel(r"$v$", fontsize=20)
67 fig.suptitle("Temperatura final")
68 fig.tight_layout()
69 fig.savefig("temp-final.pdf")
70 plt.close()
```



```
72 def plotheatmap(u k, k):
       # Limpiamos la figura
73
       plt.clf()
74
75
       plt.title(f"Temperatura en t = {k*delta t:.2f} u.t.")
76
       plt.xlabel(r"$x$", fontsize=20)
77
78
       plt.ylabel(r"$y$", fontsize=20)
79
80
       # Ploteamos u k (u {i,j} en `paso de tiempo k)
       plt.imshow(u_k, cmap=plt.cm.jet,
81
                  interpolation="bicubic", vmin=0, vmax=100)
82
83
       plt.colorbar()
84
       return plt
85
86
   import matplotlib.animation as animation
  from matplotlib.animation import FuncAnimation
89
  def animate(k):
       plotheatmap(u[k], k)
91
92
93 anim = animation.FuncAnimation(plt.figure(),
94
       animate, interval=50, frames=max iter tiempo,
       repeat=False)
95
96 anim.save("solucion ecuacion calor t.mp4")
```



```
72 def plotheatmap(u k, k):
       # Limpiamos la figura
73
       plt.clf()
74
75
       plt.title(f"Temperatura en t = {k*delta t:.2f} u.t.")
76
       plt.xlabel(r"$x$", fontsize=20)
77
78
       plt.ylabel(r"$y$", fontsize=20)
79
80
       # Ploteamos u k (u {i,j} en `paso de tiempo k)
       plt.imshow(u_k, cmap=plt.cm.jet,
81
                  interpolation="bicubic", vmin=0, vmax=100)
82
83
       plt.colorbar()
84
       return plt
85
86
   import matplotlib.animation as animation
  from matplotlib.animation import FuncAnimation
89
  def animate(k):
       plotheatmap(u[k], k)
91
92
93 anim = animation.FuncAnimation(plt.figure(),
94
       animate, interval=50, frames=max iter tiempo,
       repeat=False)
95
96 anim.save("solucion ecuacion calor t.mp4")
```


Análisis de estabilidad:

$$\frac{\partial u}{\partial t}(x,t) = \alpha^2 \frac{\partial^2 u}{\partial x^2}(x,t), \ 0 < x < l, \ 0 < t$$

Condiciones de frontera:

$$u(0,t) = u(l,t) = 0, t > 0;$$

 $u(x,0) = f(x), 0 \le x \le l$

Diferencia hacia adelante (o progresiva):

$$\frac{\partial u}{\partial t}(x_i, t_j) = \frac{u(x_i, t_j + k) - u(x_i, t_j)}{k} - \frac{k}{2} \frac{\partial^2 u}{\partial t^2}(x_i, \mu_j)$$

$$\frac{\partial^2 u}{\partial x^2}(x_i, t_j) = \frac{u(x_i + h, t_j) - 2u(x_i, t_j) + u(x_i - h, t_j)}{h^2}$$

$$- \frac{h^2}{12} \frac{\partial^4 u}{\partial x^4}(\xi_i, t_j)$$

$$con t_i \in (t_i, t_{i+1}) \in (x_i, t_{i+1})$$

con $t_i \in (t_i, t_{i+1}), \xi_i \in (x_i, x_{i+1})$

Resulta:

$$\frac{u_{i,j+1} - u_{i,j}}{k} - \alpha^2 \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} = 0$$

con un error local de truncación:

$$\epsilon_{i,j} = \frac{k}{2} \frac{\partial^2 u}{\partial t^2} (x_i, \mu_j) - \alpha^2 \frac{h^2}{12} \frac{\partial^4 u}{\partial x^4} (\xi_i, t_j)$$

Solución explícita:

$$u_{i,j+1} = \left(1 - \frac{2\alpha k}{h^2}\right) u_{i,j} + \alpha^2 \frac{k}{h^2} (u_{i+1,j} + u_{i-1,j})$$

$$t$$

$$t_{j+1}$$

$$t_j$$

Matriz $(n-1)\times(n-1)$:

$$\mathbf{A} = \begin{bmatrix} (1-2\lambda) & \lambda & 0 & \cdots & 0 \\ \lambda & (1-2\lambda) & \lambda & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & \ddots & \lambda \\ 0 & \cdots & 0 & \lambda & (1-2\lambda) \end{bmatrix}$$

con $\lambda = \alpha^2 k/h^2$ Si $\boldsymbol{u^{(0)}} = (f(x_1), f(x_2), \cdots, f(x_{n-1}))^T$, la solución aproximada es:

$$\boldsymbol{u}^{(j)} = \boldsymbol{A}\boldsymbol{u}^{(j-1)}$$

Supongamos un error $e^{(0)} = (e^{(0)}_1, e^{(0)}_2, \cdots, e^{(0)}_{n-1})^T$:

$$u^{(1)} = A(u^{(0)} + e^{(0)}) = Au^{(0)} + Ae^{(0)}$$

Para el paso k, el error en $\boldsymbol{u}^{(k)} = \boldsymbol{A}^k \boldsymbol{e}^{(0)}$. El método es estable si $\|\boldsymbol{A}^k \boldsymbol{e}^{(0)}\| \leq \|\boldsymbol{e}^{(0)}\|$

$$\|\mathbf{A}^k\| \le 1 \implies \rho(\mathbf{A}^k) = (\rho(\mathbf{A}))^k \le 1$$

Matriz $(n-1)\times(n-1)$:

$$\mathbf{A} = \begin{bmatrix} (1-2\lambda) & \lambda & 0 & \cdots & 0 \\ \lambda & (1-2\lambda) & \lambda & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & \ddots & \lambda \\ 0 & \cdots & 0 & \lambda & (1-2\lambda) \end{bmatrix}$$

con $\lambda = \alpha^2 k/h^2$ Si $\boldsymbol{u^{(0)}} = (f(x_1), f(x_2), \cdots, f(x_{n-1}))^T$, la solución aproximada es:

Supongamos un error $e^{(0)} = (e_1^{(0)}, e_2^{(0)}, \cdots, e_{n-1}^{(0)})^T$:

$$\boldsymbol{u}^{(j)} = \boldsymbol{A}\boldsymbol{u}^{(j-1)}$$

(1) (0) (0) (0)

$$u^{(1)} = A(u^{(0)} + e^{(0)}) = Au^{(0)} + Ae^{(0)}$$

Para el paso k, el error en $\boldsymbol{u}^{(k)} = \boldsymbol{A}^k \boldsymbol{e}^{(0)}$. El método es estable si $\|\boldsymbol{A}^k \boldsymbol{e}^{(0)}\| < \|\boldsymbol{e}^{(0)}\|$

$$\|\boldsymbol{A}^k\| \le 1 \implies \rho(\boldsymbol{A}^k) = (\rho(\boldsymbol{A}))^k \le 1$$

Autovalores de A:

$$\mu_i = 1 - 4\lambda \left(\operatorname{sen}\left(\frac{i\pi}{2n}\right) \right)^2$$

Norma L_{∞} :

$$\rho(\mathbf{A}) = \max_{1 \le i \le n} \left| 1 - 4\lambda \left(\operatorname{sen} \left(\frac{i\pi}{2n} \right) \right)^2 \right|$$

que se simplifica a

$$0 \le \lambda \left(\operatorname{sen}\left(\frac{i\pi}{2n}\right)\right)^2 \le \frac{1}{2}, \ i = 1, 2, \dots, n-1$$

Esta desigualdad debe valer cuando $h \to 0, n \to \infty$:

$$\lim_{n \to \infty} \left[\operatorname{sen} \left(\frac{(n-1)\pi}{2n} \right)^2 \right] = 1$$

Por lo tanto habrá estabilidad si $0 \le \lambda \le 1/2$:

$$\alpha^2 \frac{k}{h^2} \le \frac{1}{2}$$
 \leftarrow condicionalmente estable.

$$\begin{split} \frac{\partial u}{\partial t}(x,t) &= \alpha \frac{\partial^2 u}{\partial x^2}(x,t), \ 0 < x < l, \ 0 < t \\ u(0,t) &= u(l,t) = 0, t > 0; \\ u(x,0) &= \operatorname{sen}(\pi x), 0 \le x \le 1 \end{split}$$

- con h = 0.1 y k = 0.0005. (1000 pasos)
- con h = 0.1 y k = 0.01. (50 pasos)

Solución exacta:

$$u(x,t) = e^{-\pi^2 t} \operatorname{sen}(\pi x)$$

Solución: parabolica-progresiva.py

i	x_i	$u_{i,50}$	$u(x_i, 50)$	$ u_{i,50} - u(x_i, 50) $
0	0.0	0.00000	0.00000	0.000e + 00
1	0.1	0.00229	0.00222	6.411e-05
2	0.2	0.00435	0.00423	1.219e-04
3	0.3	0.00599	0.00582	1.678e-04
4	0.4	0.00704	0.00684	1.973e-04
5	0.5	0.00740	0.00719	2.075e-04
6	0.6	0.00704	0.00684	1.973e-04
7	0.7	0.00599	0.00582	1.678e-04
8	8.0	0.00435	0.00423	1.219e-04
9	0.9	0.00229	0.00222	6.411e-05
10	1.0	0.00000	0.00000	8.808e-19

$$\begin{split} \frac{\partial u}{\partial t}(x,t) &= \alpha \frac{\partial^2 u}{\partial x^2}(x,t), \ 0 < x < l, \ 0 < t \\ u(0,t) &= u(l,t) = 0, t > 0; \\ u(x,0) &= \operatorname{sen}(\pi x), 0 \le x \le 1 \end{split}$$

- con h = 0.1 y k = 0.0005. (1000 pasos)
- con h = 0.1 y k = 0.01. (50 pasos)

Solución exacta:

$$u(x,t) = e^{-\pi^2 t} \operatorname{sen}(\pi x)$$

Solución: parabolica-progresiva.py

i	x_i	$u_{i,50}$	$u(x_i, 50)$	$ u_{i,50} - u(x_i, 50) $
0	0.0	0.000e + 00	0.00000	0.000e + 00
1	0.1	2.637e + 05	0.00222	2.637e + 05
2	0.2	-5.026e+05	0.00423	5.026e + 05
3	0.3	6.938e + 05	0.00582	6.938e + 05
4	0.4	-8.186e + 05	0.00684	8.186e + 05
5	0.5	8.643e + 05	0.00719	8.643e + 05
6	0.6	-8.254e+05	0.00684	8.254e + 05
7	0.7	7.047e + 05	0.00582	7.047e + 05
8	8.0	-5.135e+05	0.00423	5.135e + 05
9	0.9	2.704e + 05	0.00222	2.704e + 05
10	1.0	0.000e + 00	0.00000	8.808e-19

Incondicionalmente estable: diferencias regresivas (implícito).

$$\frac{\partial u}{\partial t}(x_i, t_j) = \frac{u(x_i, t_j) - u(x_i, t_{j-1})}{k} - \frac{k}{2} \frac{\partial^2 u}{\partial t^2}(x_i, \mu_j)$$

 $\operatorname{con}\,\mu_j\in(t_{j-1},t_j).$

Reemplazando en la ecuación en derivadas parciales:

$$\frac{u_{i,j} - u_{i,j-1}}{k} - \alpha^2 \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} = 0$$

para $i=1,2,\ldots,n-1$ y $j=1,2,\ldots$

Incondicionalmente estable: diferencias regresivas (implícito).

$$\frac{\partial u}{\partial t}(x_i, t_j) = \frac{u(x_i, t_j) - u(x_i, t_{j-1})}{k} - \frac{k}{2} \frac{\partial^2 u}{\partial t^2}(x_i, \mu_j)$$

 $\operatorname{con}\,\mu_j\in(t_{j-1},t_j).$

Reemplazando en la ecuación en derivadas parciales:

$$\frac{u_{i,j} - u_{i,j-1}}{k} - \alpha^2 \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} = 0$$

para i = 1, 2, ..., n - 1 y j = 1, 2, ...

Hacemos $\lambda = \alpha^2 k/h^2$:

$$(1+2\lambda)u_{i,j} - \lambda u_{i+1,j} - \lambda u_{i-1,j} = u_{i,j-1}$$

Con las condiciones de frontera:

$$u_{i,0} = f(x_i), i = 1, 2, \dots, n-1$$

 $u_{0,j} = u_{n,j} = 0, j = 1, 2, \dots$

Matriz $(n-1)\times(n-1)$:

$$\mathbf{A} = \begin{bmatrix} (1+2\lambda) & -\lambda & 0 & \cdots & 0 \\ -\lambda & (1+2\lambda) & -\lambda & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & -\lambda \\ 0 & \cdots & 0 & -\lambda & (1+2\lambda) \end{bmatrix}$$

$$\mathbf{u}^{(j)} = (u_{1,j}, u_{2,j}, \cdots, u_{n-1,j})^{T},$$

$$\mathbf{u}^{(j-1)} = (u_{1,j-1}, u_{2,j-1}, \cdots, u_{n-1,j-1})^{T}$$

$$\mapsto \mathbf{A}\mathbf{u}^{(j)} = \mathbf{u}^{(j-1)}, j = 1, 2, \dots$$

$$\begin{split} \frac{\partial u}{\partial t}(x,t) &= \alpha \frac{\partial^2 u}{\partial x^2}(x,t), \ 0 < x < 1, \ 0 < t \\ u(0,t) &= u(1,t) = 0, t > 0; \\ u(x,0) &= \operatorname{sen}(\pi x), 0 \le x \le 1 \end{split}$$

con h = 0.1 y k = 0.01.

Solución exacta:

$$u(x,t) = e^{-\pi^2 t} \operatorname{sen}(\pi x)$$

Solución: parabolica-regresiva.py

i	x_i $u_{i,50}$		$u(x_i, 50)$	$ u_{i,50} - u(x_i, 50) $	
0	0.0	0.00000	0.00000	0.000e + 00	
1	0.1	0.00780	0.00222	5.576e-03	
2	0.2	0.01236	0.00423	8.133e-03	
3	0.3	0.01591	0.00582	1.010e-02	
4	0.4	0.01817	0.00684	1.133e-02	
5	0.5	0.01894	0.00719	1.175e-02	
6	0.6	0.01817	0.00684	1.133e-02	
7	0.7	0.01591	0.00582	1.010e-02	
8	8.0	0.01236	0.00423	8.133e-03	
9	0.9	0.00780	0.00222	5.576e-03	
10	1.0	0.00000	0.00000	8.808e-19	

$$\begin{split} \frac{\partial u}{\partial t}(x,t) &= \alpha \frac{\partial^2 u}{\partial x^2}(x,t), \ 0 < x < 1, \ 0 < t \\ u(0,t) &= u(1,t) = 0, t > 0; \\ u(x,0) &= \operatorname{sen}(\pi x), 0 \le x \le 1 \end{split}$$

con h = 0.1 y k = 0.01.

Solución exacta:

$$u(x,t) = e^{-\pi^2 t} \operatorname{sen}(\pi x)$$

Solución: parabolica-regresiva.py

Autovalores de A:

$$\mu_i = 1 + 4\lambda \left[\operatorname{sen}\left(\frac{i\pi}{2n}\right) \right]^2$$

para $i=1,2,\cdots,n-1$. Como $\lambda>0$, $\mu_i>0$.

i	x_i	$u_{i,50}$	$u(x_i, 50)$	$ u_{i,50} - u(x_i, 50) $
0	0.0	0.00000	0.00000	0.000e+00
1	0.1	0.00780	0.00222	5.576e-03
2	0.2	0.01236	0.00423	8.133e-03
3	0.3	0.01591	0.00582	1.010e-02
4	0.4	0.01817	0.00684	1.133e-02
5	0.5	0.01894	0.00719	1.175e-02
6	0.6	0.01817	0.00684	1.133e-02
7	0.7	0.01591	0.00582	1.010e-02
8	8.0	0.01236	0.00423	8.133e-03
9	0.9	0.00780	0.00222	5.576e-03
10	1.0	0.00000	0.00000	8.808e-19

Entonces $\rho(A^{-1}) < 1 \mapsto A$ es una matriz convergente:

$$\lim_{i \to \infty} (\boldsymbol{A}^{-1})^{i} \boldsymbol{e}^{(0)} = \mathbf{0} \quad \leftarrow \text{incondicional mente estable}.$$

$$\begin{split} \frac{\partial u}{\partial t}(x,t) &= \alpha \frac{\partial^2 u}{\partial x^2}(x,t), \ 0 < x < 1, \ 0 < t \\ u(0,t) &= u(1,t) = 0, t > 0; \\ u(x,0) &= \operatorname{sen}(\pi x), 0 \le x \le 1 \end{split}$$

con h = 0.1 y k = 0.01.

Solución exacta:

$$u(x,t) = e^{-\pi^2 t} \operatorname{sen}(\pi x)$$

Solución: parabolica-regresiva.py

Autovalores de $m{A}$:

$$\mu_i = 1 + 4\lambda \left[\operatorname{sen}\left(\frac{i\pi}{2n}\right) \right]^2$$

para $i=1,2,\cdots,n-1$. Como $\lambda>0$, $\mu_i>0$.

i	x_i	$u_{i,50}$	$u(x_i, 50)$	$ u_{i,50} - u(x_i, 50) $
0	0.0	0.00000	0.00000	0.000e + 00
1	0.1	0.00780	0.00222	5.576e-03
2	0.2	0.01236	0.00423	8.133e-03
3	0.3	0.01591	0.00582	1.010e-02
4	0.4	0.01817	0.00684	1.133e-02
5	0.5	0.01894	0.00719	1.175e-02
6	0.6	0.01817	0.00684	1.133e-02
7	0.7	0.01591	0.00582	1.010e-02
8	8.0	0.01236	0.00423	8.133e-03
9	0.9	0.00780	0.00222	5.576e-03
10	1.0	0.00000	0.00000	8.808e-19

Entonces $\rho(\boldsymbol{A}^{-1}) < 1 \mapsto \boldsymbol{A}$ es una matriz convergente:

$$\lim_{j o \infty} ({m A}^{-1})^j {m e}^{(0)} = {m 0} \quad \leftarrow {\sf incondicional mente estable}.$$

Precisión:
$$\mathcal{O}(k+h^2) \leftarrow \mathbf{\nabla}$$

Método de Crank-Nicolson:

Diferencias progresivas:

$$\frac{u_{i,j+1} - u_{i,j}}{k} - \alpha^2 \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} = 0$$

con error de truncamiento:

$$\epsilon_p = \frac{k}{2} \frac{\partial^2 u}{\partial t^2}(x_i, \mu_j) + \mathcal{O}(h^2)$$

Diferencias regresivas:

$$\frac{u_{i,j+1} - u_{i,j}}{k} - \alpha^2 \frac{u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1}}{h^2} = 0$$

con error de truncamiento:

$$\epsilon_r = -\frac{k}{2} \frac{\partial^2 u}{\partial t^2} (x_i, \hat{\mu}_j) + \mathcal{O}(h^2)$$

Suponiendo que:

$$\frac{k}{2} \frac{\partial^2 u}{\partial t^2}(x_i, \mu_j) \approx \frac{k}{2} \frac{\partial^2 u}{\partial t^2}(x_i, \hat{\mu}_j)$$

el método de la diferencia promediado:

$$\frac{u_{i,j+1} - u_{i,j}}{k} - \frac{\alpha^2}{2} \left[\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} + \frac{u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1}}{h^2} \right] = 0$$

tiene un error de truncamiento $\mathcal{O}(k^2 + h^2) \leftarrow \mathbf{\mathring{O}}$

En forma matricial:

$$m{A}m{u}^{(j+1)} = m{B}m{u}^{(j)}, \quad ext{para cada} \quad j = 0, 1, \dots, \quad ext{donde} \quad \lambda = lpha^2 rac{k}{h^2}, \; m{u}^{(j)} = (u_{1,j}, u_{2,j}, \cdots, u_{n-1,j})^T$$

$$\boldsymbol{A} = \begin{bmatrix} (1+\lambda) & -\lambda/2 & 0 & \cdots & 0 \\ -\lambda/2 & (1+\lambda) & -\lambda/2 & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & -\lambda/2 \\ 0 & \cdots & 0 & -\lambda/2 & (1+\lambda) \end{bmatrix} \quad \text{y} \quad \boldsymbol{B} = \begin{bmatrix} (1-\lambda) & \lambda/2 & 0 & \cdots & 0 \\ \lambda/2 & (1-\lambda) & \lambda/2 & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & \lambda/2 \\ 0 & \cdots & 0 & \lambda/2 & (1-\lambda) \end{bmatrix}$$

$$\frac{\partial u}{\partial t}(x,t) = \alpha^2 \frac{\partial^2 u}{\partial x^2}(x,t), \ 0 < x < 1, \ 0 < t$$

$$u(0,t) = u(1,t) = 0, t > 0;$$

$$u(x,0) = \operatorname{sen}(\pi x), 0 \le x \le 1$$

con h = 0.1 y k = 0.01.

Solución exacta:

$$u(x,t) = e^{-\pi^2 t} \operatorname{sen}(\pi x)$$

Solución: crank-nicolson.py

i	x_i	$u_{i,50}$	$u(x_i, 50)$	$ u_{i,50} - u(x_i, 50) $
0	0.0	0.00000	0.00000	0.000e + 00
1	0.1	0.00488	0.00222	2.660e-03
2	0.2	0.00812	0.00423	3.895e-03
3	0.3	0.01066	0.00582	4.842e-03
4	0.4	0.01228	0.00684	5.436e-03
5	0.5	0.01283	0.00719	5.639e-03
6	0.6	0.01228	0.00684	5.436e-03
7	0.7	0.01066	0.00582	4.842e-03
8	8.0	0.00812	0.00423	3.895e-03
9	0.9	0.00488	0.00222	2.660e-03
10	1.0	0.00000	0.00000	8.808e-19

Ecuación de onda (hiperbólica)

 $\frac{\partial^2 u}{\partial u^2}(x,t) - \alpha^2 \frac{\partial^2 u}{\partial u^2}(x,t) = 0, \ 0 < x < l, \ 0 < t$

Con las ecuaciones de frontera:

$$u(0,t) = u(l,t) = 0, t > 0;$$

$$u(x,0) = f(x), \ \frac{\partial u}{\partial t}(x,0) = g(x); \ 0 \le x \le l$$
 Malla:

Malla:

ta:
$$r_i=ih$$
 $t_i=ik$

 $x_i = ih$, $t_i = ik$

para i = 0, 1, ..., n y j = 0, 1, ...

En todos los puntos de la malla interior:

$$\frac{\partial^2 u}{\partial t}(x;t;t) - \alpha^2 \frac{\partial^2 u}{\partial t}(x;t;t) = 0$$

$$\frac{\partial^2 u}{\partial t^2}(x_i, t_j) - \alpha^2 \frac{\partial^2 u}{\partial x^2}(x_i, t_j) = 0$$

Diferencias centrales para las derivadas segundas:

$$\frac{\partial^2 u}{\partial x^2}(x_i, t_j) - \alpha^2 \frac{\partial^2 u}{\partial x^2}(x_i, t_j) = 0$$

$$\frac{\partial^2 u}{\partial t}(x_i, t_i) - \alpha^2 \frac{\partial^2 u}{\partial t}(x_i, t_i) = 0$$

$$(t_i) = 0$$

$$\frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{k^2} - \alpha^2 \frac{u_{i+1}}{k^2}$$

$$-\alpha^2 \frac{u_{i+1}}{u_{i+1}}$$

 $-\alpha^2 \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{12} = \epsilon_{i,j}$

 $-\frac{k^2}{12}\frac{\partial^4 u}{\partial t^4}(x_i,\mu_j)$

 $-\frac{h^2}{12}\frac{\partial^4 u}{\partial x^4}(\xi_i,t_j)$

$$h^2$$
 on

donde $\xi_i \in (x_{i-1}, x_{i+1}), \mu_i \in (t_{i-1}, t_{i+1})$. Resulta:

 $\frac{\partial^2 u}{\partial t^2}(x_i, t_j) = \frac{u(x_i, t_{j+1}) - 2u(x_i, t_j) + u(x_i, t_{j-1})}{u^2}$

 $\frac{\partial^2 u}{\partial x^2}(x_i, t_j) = \frac{u(x_{i+1}, t_j) - 2u(x_i, t_j) + u(x_{i-1}, t_j)}{h^2}$

con
$$\epsilon_{i,j} = \frac{1}{12} \left[k^2 \frac{\partial^4 u}{\partial t^4}(x_i,t_j) - \alpha^2 h^2 \frac{\partial^4 u}{\partial x^4}(x_i,t_j) \right]$$

Ignorando $\epsilon_{i,j}$ y haciendo $\lambda = \alpha k/h$ (número de Courant):

$$u_{i,j+1} - 2u_{i,j} + u_{i,j-1} - \lambda^2 u_{i+1,j} + 2\lambda^2 u_{i,j} - \lambda^2 u_{i-1,j} = 0$$

Resolviendo para el paso temporal:

$$u_{i,j+1} = 2(1 - \lambda^2)u_{i,j} + \lambda^2(u_{i+1,j} + u_{i-1,j}) - u_{i,j-1}$$

para $i=1,2,\ldots,n-1$ y $j=1,2,\ldots$

Las condiciones de frontera resultan:

$$u_{0,j} = u_{n,j} = 0, j = 1, 2, \dots$$

y la condición inicial:

$$u_{i,0} = f(x_i), i = 1, 2, \dots, n-1$$

Enfoque matricial:

$$u^{(j+1)} = Au^{(j)} - u^{(j-1)}$$

$$\begin{bmatrix} u_{1,j+1} \\ u_{2,j+1} \\ u_{3,j+1} \\ \vdots \\ u_{n-1,j+1} \end{bmatrix} = \begin{bmatrix} 2(1-\lambda^2) & \lambda^2 & 0 & \cdots & 0 \\ \lambda^2 & 2(1-\lambda^2) & \lambda^2 & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & \lambda^2 \\ 0 & \cdots & 0 & \lambda^2 & 2(1+\lambda^2) \end{bmatrix} \begin{bmatrix} u_{1,j} \\ u_{2,j} \\ u_{3,j} \\ \vdots \\ u_{n-1,j} \end{bmatrix} - \begin{bmatrix} u_{1,j-1} \\ u_{2,j-1} \\ u_{3,j-1} \\ \vdots \\ u_{n-1,j-1} \end{bmatrix}$$

$$\begin{bmatrix} u_{1,j+1} \\ u_{2,j+1} \\ u_{3,j+1} \\ \vdots \\ u_{n-1,j+1} \end{bmatrix} = \begin{bmatrix} 2(1-\lambda^2) & \lambda^2 & 0 & \cdots & 0 \\ \lambda^2 & 2(1-\lambda^2) & \lambda^2 & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & \lambda^2 \\ 0 & \cdots & 0 & \lambda^2 & 2(1+\lambda^2) \end{bmatrix} \begin{bmatrix} u_{1,j} \\ u_{2,j} \\ u_{3,j} \\ \vdots \\ u_{n-1,j} \end{bmatrix} - \begin{bmatrix} u_{1,j-1} \\ u_{2,j-1} \\ u_{3,j-1} \\ \vdots \\ u_{n-1,j-1} \end{bmatrix}$$

Problema: $\lambda u_{i,1}$?

Condición de velocidad inicial:

$$\frac{\partial u}{\partial t}(x,0) = g(x), \ 0 \le x \le l$$

Aproximación por diferencias progresivas:

$$\frac{\partial u}{\partial t}(x,0) = \frac{u(x_i,t_1) - u(x_i,0)}{k} - \frac{k}{2} \frac{\partial^2 u}{\partial t^2}(x_i,\mu_i)$$

Resolviendo:

$$u(x_i, t_1) = u(x_i, 0) + kg(x_i) + \frac{k}{2} \frac{\partial^2 u}{\partial t^2}(x_i, \mu_i)$$

Error de truncamiento: $\mathcal{O}(k) \leftarrow \mathbb{Q}$

$$\begin{bmatrix} u_{1,j+1} \\ u_{2,j+1} \\ u_{3,j+1} \\ \vdots \\ u_{n-1,j+1} \end{bmatrix} = \begin{bmatrix} 2(1-\lambda^2) & \lambda^2 & 0 & \cdots & 0 \\ \lambda^2 & 2(1-\lambda^2) & \lambda^2 & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & \lambda^2 \\ 0 & \cdots & 0 & \lambda^2 & 2(1+\lambda^2) \end{bmatrix} \begin{bmatrix} u_{1,j} \\ u_{2,j} \\ u_{3,j} \\ \vdots \\ u_{n-1,j} \end{bmatrix} - \begin{bmatrix} u_{1,j-1} \\ u_{2,j-1} \\ u_{3,j-1} \\ \vdots \\ u_{n-1,j-1} \end{bmatrix}$$

Problema: $\lambda u_{i,1}$?

Mejora: expansión de McLaurin (~ Taylor):

Condición de velocidad inicial:

$$\frac{\partial u}{\partial t}(x,0) = g(x), \ 0 \le x \le l$$

$$u(x_i, t_1) = u(x_i, 0) + k \frac{\partial u}{\partial t}(x_i, 0) + \frac{k^2}{2} \frac{\partial^2 u}{\partial t^2}(x_i, 0) + \frac{k^3}{6} \frac{\partial^3 u}{\partial t^3}(x_i, \hat{\mu}_i)$$

Si f'' existe:

Aproximación por diferencias progresivas:

$$\frac{\partial u}{\partial t}(x,0) = \frac{u(x_i,t_1) - u(x_i,0)}{k} - \frac{k}{2} \frac{\partial^2 u}{\partial t^2}(x_i,\mu_i)$$

$$\frac{\partial^2 u}{\partial t^2}(x_i, 0) = \alpha^2 \frac{\partial^2 u}{\partial x^2}(x_i, 0) = \alpha^2 f''(x_i)$$

Resolviendo:

$$u(x_i, t_1) = u(x_i, 0) + kg(x_i) + \frac{k}{2} \frac{\partial^2 u}{\partial t^2}(x_i, \mu_i)$$

$$u(x_i, t_1) = u(x_i, 0) + kg(x_i) + \frac{\alpha^2 k^2}{2} f''(x_i)$$

Error de truncamiento: $\mathcal{O}(k) \leftarrow \mathbb{Q}$

con error
$$\mathcal{O}(k^3) \leftarrow \mathcal{O}$$
.

$$\begin{bmatrix} u_{1,j+1} \\ u_{2,j+1} \\ u_{3,j+1} \\ \vdots \\ u_{n-1,j+1} \end{bmatrix} = \begin{bmatrix} 2(1-\lambda^2) & \lambda^2 & 0 & \cdots & 0 \\ \lambda^2 & 2(1-\lambda^2) & \lambda^2 & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & \lambda^2 \\ 0 & \cdots & 0 & \lambda^2 & 2(1+\lambda^2) \end{bmatrix} \begin{bmatrix} u_{1,j} \\ u_{2,j} \\ u_{3,j} \\ \vdots \\ u_{n-1,j} \end{bmatrix} - \begin{bmatrix} u_{1,j-1} \\ u_{2,j-1} \\ u_{3,j-1} \\ \vdots \\ u_{n-1,j-1} \end{bmatrix}$$

Problema: $\lambda u_{i,1}$?

Mejora: expansión de McLaurin (~ Taylor):

Condición de velocidad inicial:

$$\frac{\partial u}{\partial t}(x,0) = g(x), \ 0 \le x \le l$$

Si
$$f''$$
 existe:

Aproximación por diferencias progresivas:

$$\frac{\partial u}{\partial t}(x,0) = \frac{u(x_i,t_1) - u(x_i,0)}{k} - \frac{k}{2} \frac{\partial^2 u}{\partial t^2}(x_i,\mu_i)$$

$$\frac{\partial^2 u}{\partial t^2}(x_i, 0) = \alpha^2 \frac{\partial^2 u}{\partial x^2}(x_i, 0) = \alpha^2 f''(x_i)$$

 $u(x_i, t_1) = u(x_i, 0) + k \frac{\partial u}{\partial t}(x_i, 0) + \frac{k^2}{2} \frac{\partial^2 u}{\partial t^2}(x_i, 0) + \frac{k^3}{6} \frac{\partial^3 u}{\partial t^3}(x_i, \hat{\mu}_i)$

Resolviendo:

$$u(x_i, t_1) = u(x_i, 0) + kg(x_i) + \frac{k}{2} \frac{\partial^2 u}{\partial t^2}(x_i, \mu_i)$$

$$u(x_i, t_1) = u(x_i, 0) + kg(x_i) + \frac{\alpha^2 k^2}{2} f''(x_i)$$

con error $\mathcal{O}(k^3) \leftarrow \mathcal{O}$. ¿Y si no tenemos $f''(x_i)$?

Error de truncamiento: $\mathcal{O}(k) \leftarrow \mathbb{Q}$

Ecuación en diferencias:

$$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2} - \frac{h^2}{12}f^{(4)}(\xi_i)$$

Usando $\lambda = \alpha k/h$:

$$u(x_i, 1) = (1 - \lambda^2)f(x_i) + \frac{\lambda^2}{2}f(x_{i+1}) + \frac{\lambda^2}{2}f(x_{i-1}) + kg(x_i) + \mathcal{O}(k^3 + h^2k^2)$$

Entonces, para $i = 1, 2, \dots, n-1$ usamos:

$$u_{i,1} = (1 - \lambda^2)f(x_i) + \frac{\lambda^2}{2}f(x_{i+1}) + \frac{\lambda^2}{2}f(x_{i-1}) + kg(x_i)$$

y la ecuación matricial para $j=2,3,\dots$

hiperbolica.py

```
6 # Parámetros
 7 L. T = 1.0. 1.0 # Dominio
 8 Nx. Nt = 100, 1000 # Grilla
9 c = 1.0
                   # Velocidad
10 # Discretización
11 h, k = L / (Nx - 1), T / (Nt - 1)
12 l2 = (c * k / h)**2 # lambda**2
13 x = np.linspace(0, L, Nx)
14 t = np.linspace(0, T, Nt)
15
16 # Inicialización
17 u = np.zeros((Nt, Nx))
18 u[0, :] = np.sin(np.pi * x) # Condición inicial
19 u[1. 1:Nx-1] = u[0. 1:Nx-1] + 0.5 * 12 * (u[0. 2:Nx] \
20
      -2 * u[0, 1:Nx-1] + u[0, 0:Nx-2])
21
22 # Iteración en el tiempo
23 for n in range(1, Nt - 1):
      for i in range(1. Nx - 1):
24
          u[n + 1, i] = 2 * (1 - 12) * u[n, i] 
25
             - u[n - 1, i] + l2 * (u[n, i + 1] 
26
             + u[n, i - 1])
27
```

hiperbolica.py

```
6 # Parámetros
 7 L. T = 1.0. 1.0 # Dominio
 8 Nx. Nt = 100, 1000 # Grilla
9 c = 1.0
                   # Velocidad
10 # Discretización
11 h, k = L / (Nx - 1), T / (Nt - 1)
12 l2 = (c * k / h)**2 # lambda**2
13 x = np.linspace(0, L, Nx)
14 t = np.linspace(0, T, Nt)
15
16 # Inicialización
17 u = np.zeros((Nt, Nx))
18 u[0, :] = np.sin(np.pi * x) # Condición inicial
19 u[1. 1:Nx-1] = u[0. 1:Nx-1] + 0.5 * 12 * (u[0. 2:Nx] \
20
      -2 * u[0, 1:Nx-1] + u[0, 0:Nx-2])
21
22 # Iteración en el tiempo
23 for n in range(1, Nt - 1):
      for i in range(1. Nx - 1):
24
           u[n + 1, i] = 2 * (1 - 12) * u[n, i] 
25
             - u[n - 1, i] + l2 * (u[n, i + 1] 
26
             + u[n, i - 1])
27
```


- ▶ R.L. Burden, D.J. Faires y A.M. Burden. *Análisis numérico*. 10.ª ed. Mexico: Cengage Learning, 2017. Capítulo 12.
- ▶ E. Kreyszig, H. Kreyszig y E.J. Norminton. *Advanced Engineering Mathematics*. Hoboken, USA: John Wiley & Sons, Inc, 2011. Capítulo 21.
- ▶ H.P. Langtangen y S. Linge. *Finite Difference Computing with PDEs A Modern Software Approach*. https://hplgit.github.io/fdm-book/doc/web/index.html. 2016. Capítulo 3.