

VALORES LÓGICOS NA LÓGICA BOOLEANA

Notação Lógica	Notação Eletrônica		
Valor lógico	Estado		
Verdadeiro ou Verdade	"1" ou "ligado" ou "chave fechada" ou "lâmpada acesa"		
Falso ou Falsidade	"0" ou "desligado" ou "chave aberta" ou "lâmpada apagada"		
Operação Lógica	Função Lógica		

Função E (And)

• Executa a operação lógica E (∧) na qual só circulará corrente (estado "1") caso todas as chaves do circuito estejam fechadas. É a representação do circuito em série. A notação é **A.B** que se lê "A e B"

Função E (And)

• Executa a operação lógica E (∧) na qual só circulará corrente (estado "1") caso todas as chaves do circuito estejam fechadas. É a representação do circuito em série. A notação é **A.B** que se lê "A e B"

A	В	S=A.B	
0	0	0	Α — \
0	1	0) S=A.B
1	0	0	В — /
1	1	1	

Função Ou (Or)

• Executa a operação lógica OU (∨) na qual circulará corrente (estado "1") quando pelo menos uma das chaves do circuito estiver fechada. Para isso, o circuito é apresentado em paralelo. A notação é **A** + **B** que se lê "A ou B"

Função Ou (Or)

• Executa a operação lógica OU (v) na qual circulará corrente (estado "1") quando pelo menos uma das chaves do circuito estiver fechada. Para isso, o circuito é apresentado em paralelo. A notação é **A** + **B** que se lê "A ou B"

A	В	S=A+B
0	0	0
0	1	1
1	0	1
1	1	1

Função Não (Not)

• A operação lógica NÃO (~) que é aquela que inverte ou complementa o estado da variável. A notação é que se lê "não A" ou "A barrado".

A	S≕Ā
0	1
1	0

INVERSOR

• O inversor (representado ao lado) pode executar a função NOT em qualquer bloco lógico, podendo vir antes ou depois deste dependendo da operação que se deseje obter.

FUNÇÃO NÃO E (NE, NAND)

• Executa a composição das operações de negação (~) e a operação lógica E (∧). É a inversão da função E, representada logicamente por ~(A ∧ B). Nela, só não circulará corrente (estado "0") caso todas as chaves do circuito estejam fechadas. A notação é que se lê "A e B barrados" ou "não é verdade que A e B"

A	В	S⇒(A.B)
0	0	1
0	1	1
1	0	1
1	1	0

FUNÇÃO NÃO E (NE, NAND)

• Executa a composição das operações de negação (~) e a operação lógica E (^). É a inversão da função E, representada logicamente por ~(A ^ B). Nela, só não circulará corrente (estado "0") caso todas as chaves do circuito estejam fechadas. A notação é que se lê "A e B barrados" ou "não é verdade que A e B"

Função Não Ou (Nou, Nor)

• Executa a composição das operações de negação (~) e a operação lógica OU (v). É a inversão da função OU, representada logicamente por ~(A v B). Nela, só circulará corrente (estado "1") caso todas as chaves do circuito estejam abertas. A notação é que se lê "A ou B barrados" ou "não é verdade que A ou B"

A	В	S=:(A+B)
0	0	1
0	1	0
1	0	0
1	1	0

Função Não Ou (Nou, Nor)

• Executa a composição das operações de negação (~) e a operação lógica OU (v). É a inversão da função OU, representada logicamente por ~(A v B). Nela, só circulará corrente (estado "1") caso todas as chaves do circuito estejam abertas. A notação é que se lê "A ou B barrados" ou "não é verdade que A ou B"

FUNÇÃO OU EXCLUSIVO (EXCLUSIVE OR, XOR)

• Executa a operação lógica OU EXCLUSIVO (∨). É representada logicamente por A ∨ B. Nela, só circulará corrente (estado "1") caso as entradas tenham valores diferentes. A notação é A⊕ B que se lê "ou A ou B"

A	В	S=A⊕ B
0	0	0
0	1	1
1	0	1
1	1	0

FUNÇÃO OU EXCLUSIVO (EXCLUSIVE OR, XOR)

• A porta XOR também pode ser obtida pela combinação de \overline{A} . $B + \overline{B}$. A, expressão que pode ser extraída a partir da tabela verdade da operação

A	В	S=A⊕ B
0	0	0
0	1	1
1	0	1
1	1	0

FUNÇÃO COINCIDÊNCIA (EXCLUSIVE NOR, XNOR)

Executa a operação lógica BICONDICIONAL
(↔). Nela, só circulará corrente (estado "1") caso as entradas tenham valores igual. É a inversão da porta XOR. A notação é A ⊙ B que se lê "A coincidência B" ou "A se, e somente se, B".

A	В	S=A O B
0	0	1
0	1	0
1	0	0
1	1	1

FUNÇÃO COINCIDÊNCIA (EXCLUSIVE NOR, XNOR)

• A porta XNOR <u>tam</u>bém pode ser obtida pela combinação de \overline{A} . \overline{B} + A. B, expressão que pode ser extraída a partir da tabela verdade da operação

A	В	S=A O B
0	0	1
0	1	0
1	0	0
1	1	1

EXPRESSÕES BOOLEANAS OBTIDAS A PARTIR DE CIRCUITOS LÓGICOS

• Todo circuito lógico executa uma expressão booleana (uma proposição lógica) simples ou composta, sendo sempre formado pela combinação e interligação das portas lógicas básicas. Ex. 1:

CIRCUITOS LÓGICOS OBTIDOS A PARTIR DE EXPRESSÕES BOOLEANAS

- É possível desenhar o circuito lógico que executa uma expressão booleana qualquer verificando as prioridades e hierarquias estabelecidas na expressão.
- Ex: Obter os circuitos que executam cada uma das expressões abaixo

$$S = (A + B). C. (B + D)$$

$$S = A.B.C + (A + B).C$$

$$S = \left[\overline{\left(\overline{A} + B \right)} + \overline{\left(\overline{C}.D \right)} \right]. \overline{D}$$

$$S = \overline{\left[\overline{\left(\overline{A}.B\right)} + \overline{\left(C.\overline{D}\right)}\right]}.E + \overline{A}.\left(A.\overline{D}.\overline{E} + C.D.E\right)$$

TABELAS-VERDADE OBTIDAS A PARTIR DE EXPRESSÕES BOOLEANAS

- Extrair a tabela-verdade de uma expressão booleana segue o mesmo princípio da construção da tabela verdade de proposições lógicas.
- o Dica: pode-se abstrair as colunas das inversões
- ${\color{red} \circ}$ Lembrar que: a prioridade entre o AND e o OR é do AND
- Ex.: $A.\overline{B}.C + A.\overline{D} + \overline{A}.B.D$

TABELAS-VERDADE OBTIDAS A PARTIR DE EXPRESSÕES BOOLEANAS $A.\overline{B}.C + A.\overline{D} + \overline{A}.B.D$								
A	В	C	D	A.D.C -	S2	S3	S	
0	0	0	0					
0	0	0	1					
0	0	1	0					
0	0	1	1					
0	1	0	0					
0	1	0	1					
0	1	1	0					
0	1	1	1					
1	0	0	0					
1	0	0	1					
1	0	1	0					
1	0	1	1					
1	1	0	0					
1	1	0	1					
1	1	1	0					
1	1	1	1					

TABELAS-VERDADE OBTIDAS A PARTIR DE EXPRESSÕES BOOLEANAS

• É possível, com alguma análise das propriedades da Álgebra Booleana (Álgebra das Proposições).

• Ex.: $\overline{A} + B + A$. \overline{B} . \overline{C}

A	В	C	S
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Notação: Tautologia representa-se por 1 e Contradição por θ

TABELAS-VERDADE OBTIDAS A PARTIR DE EXPRESSÕES BOOLEANAS

• Ex. $2(A+B).\overline{(B.C)}$

A	В	C	S
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

EXPRESSÕES BOOLEANAS (OU CIRCUITOS) OBTIDOS A PARTIR DE TABELAS VERDADE

- Procedimento:
 - Identificar na tabela os casos em que S=1
 - Montar os termos de cada caso usando AND
 - Unir todos os sub-termos montados usando OR
- Este procedimento permite obter uma expressão padrão a partir de qualquer tabela verdade formada pela **soma de produtos**

• Ex:

A	В	\mathbf{S}
0	0	1
0	1	0
1	0	1
1	1	1

EXPRESSÕES BOOLEANAS (OU CIRCUITOS) OBTIDOS A PARTIR DE TABELAS VERDADE

• Ex. 2 (obtenha a expressão e o circuito):

A	В	C	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

EXPRESSÕES BOOLEANAS (OU CIRCUITOS)
OBTIDOS A PARTIR DE TABELAS VERDADE

• Ex. 3 (obtenha a expressão):

A	В	C	D	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

EXEMPLO:

• Obtenha a tabela-verdade do circuito abaixo:

EXEMPLO:

o A partir dos sinais aplicados às entradas da porta XOR abaixo, desenhe a forma de onda na saída S:

S: