CSC 211: Computer Programming

Number Systems, Further look into DataTypes

Michael Conti

Department of Computer Science and Statistics University of Rhode Island

Spring 2025

Administrative Notes

Administrative notes

- MC01 due 02/06
- A01 Due 02/16

Number Systems

Number systems

- A way to represent numbers
 - ✓ numbers are expressed in a certain base
- Why study number systems in CS?
 - √ to understand data representation
- Examples of number systems
 - √ binary
 - √ decimal
 - √ octal
 - √ hexadecimal

Positional number systems

assuming base **b**:

$$\dots d_2b^2 + d_1b^1 + d_0b^0 + d_{-1}b^{-1} + d_{-2}b^{-2}\dots$$

$$43.23 = 4 \cdot 10^{1} + 3 \cdot 10^{0} + 2 \cdot 10^{-1} + 3 \cdot 10^{-2}$$

Decimal number system

- Base 10
- · Symbols

0123456789

$$456 = 4 \cdot 10^2 + 5 \cdot 10^1 + 6 \cdot 10^0$$

Binary number system

- Base 2
- Symbols

0 1

Most Significant Bit Least Significant Bit

$$1010 = (1 \cdot 2^3) + (0 \cdot 2^2) + (1 \cdot 2^1) + (0 \cdot 2^0)$$

6

Binary to Decimal?

100101000

2 ⁰	21	22	23	24	2 ⁵	2 ⁶	27	28
1	2	4	8	16	32	64	128	256

Try these ..

What is a **bit**? What is a **byte**?

10

Bits and computers

- A bit can only have two values (states)
 - ✓ easy to embed into physical devices
- Transistor
 - ✓ processors have billions of transistors
 - √ transistors can be switched **on** and **off**

Moore's Law – The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – a linked to Moore's law.

Decimal to other bases

- Repeatedly divide by **base**
 - √ collect remainders
 - ✓ output in reverse order

57₁₀

```
    ✓28 / 2 = 14 R 0
    ✓14 / 2 = 7 R 0
    ✓7 / 2 = 3 R 1
    ✓3 / 2 = 1 R 1
    ✓1 / 2 = 0 R 1
```

 $\sqrt{57} / 2 = 28 R 1$

111001₂

Decimal to other bases

$$\begin{array}{c} 57 - 32 = 25 \\ 57 - 10 \\ \hline \\ 9 - 8 = 1 \\ 1 - 1 = 0 \end{array} \qquad \begin{array}{c} 111001_2 \\ \end{array}$$

1	1	1	0	0	1
$\overline{2^5}$	2 ⁵	$\overline{2^3}$	${2^{2}}$	21	20

20	21	22	2 ³	24	2 ⁵	2 ⁶	2 ⁷	28
1	2	4	8	16	32	64	128	256

13

Hexadecimal number system

- Base 16
- · Symbols

0123456789ABCDEF

$$4A1C = (4 \cdot 16^3) + (10 \cdot 16^2) + (1 \cdot 16^1) + (12 \cdot 16^0)$$

Hexadecimal to decimal

1 D Bx16

A 0 1 0 F

16

Binary to hexadecimal

Hex	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
Bin	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Dec	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0ct	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17

10011101 11010011 1111111

Humans think in base 10. Computers think in base 2. Humans use base 16 to easily manipulate data in base 2.

Color codes

Shades of yellow color chart

Color	HTML / CSS Color Name	Hex Code #RRGGBB	Decimal Code (R,G,B)
	lightyellow	#FFFFE0	rgb(255,255,224)
	lemonchiffon	#FFFACD	rgb(255,250,205)
	lightgoldenrodyellow	#FAFAD2	rgb(250,250,210)
	papayawhip	#FFEFD5	rgb(255,239,213)
	moccasin	#FFE4B5	rgb(255,228,181)
	peachpuff	#FFDAB9	rgb(255,218,185)
	palegoldenrod	#EEE8AA	rgb(238,232,170)
	khaki	#F0E68C	rgb(240,230,140)
	darkkhaki	#BDB76B	rgb(189,183,107)
	yellow	#FFFF00	rgb(255,255,0)
	olive	#808000	rgb(128,128,0)
	greenyellow	#ADFF2F	rgb(173,255,47)
	vellowgreen	#9ACD32	rab(154.205.50)

What is the color code of 'greenyellow' in **binary**?

https://www.rapidtables.com/web/color/Yellow_Color.html

Forensic Analysis

31 oct = 25 dec?

20

Going back to C++ ...

Туре	Size in bits	Format	Value range					
		rormat	Approximate	Exact				
	8	signed		-128 to 127				
character	8	unsigned		0 to 255				
cnaracter	16	unsigned		0 to 65535				
	32	unsigned		0 to 1114111 (0x10ffff)				
	16	signed	± 3.27 · 10 ⁴	-32768 to 32767				
	16	unsigned	0 to 6.55 · 10 ⁴	0 to 65535				
	32	signed	± 2.14 · 10 ⁹	-2,147,483,648 to 2,147,483,647				
integer		unsigned	0 to 4.29 · 10 ⁹	0 to 4,294,967,295				
	64	signed	± 9.22 · 10 ¹⁸	-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807				
		unsigned	0 to 1.84 · 10 ¹⁹	0 to 18,446,744,073,709,551,61				
floating point	32	IEEE- 754 &	 min subnormal: ± 1.401,298,4 · 10⁻⁴⁵ min normal: ± 1.175,494,3 · 10⁻³⁸ max: ± 3.402,823,4 · 10³⁸ 	• min subnormal: ±0x1p-149 • min normal: ±0x1p-126 • max: ±0x1.fffffep+127				
	64	IEEE- 754 ₽	 min subnormal: ± 4.940,656,458,412 · 10⁻³²⁴ min normal: ± 2.225,073,858,507,201,4 · 10⁻³⁰⁸ max: ± 1.797,693,134,862,315,7 · 10³⁰⁸ 	 min subnormal: ±0x1p-1074 min normal: ±0x1p-1022 max: ±0x1.ffffffffffffffp+1023 				

https://en.cppreference.com/w/cpp/language/types

Integer literals in C++

```
int d = 42;
int o = 052;
int x = 0x2a;
int X = 0X2A;
int b = 0b101010; // C++14
```

- decimal-literal is a non-zero decimal digit (1, 2, 3, 4, 5, 6, 7, 8, 9), followed by zero or more decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
- octal-literal is the digit zero (0) followed by zero or more octal digits (0, 1, 2, 3, 4, 5, 6, 7)
- hex-literal is the character sequence 0x or the character sequence 0X followed by one or more hexadecimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, A, b, B, c, C, d, D, e, E, f, F)
- binary-literal is the character sequence 0b or the character sequence 0B followed by one or more binary digits (0, 1)

https://en.cppreference.com/w/cpp/language/integer_literal

