Evaluation of the demand driven system in higher education

Evidence from ATO Longitudinal tax file data

Gabriela D'Souza

Monash University dgab5@student.monash.edu

October 12, 2018

Table of Contents

- Research Question
- 2 Background
- 3 Data: ATO Longitudinal Tax File
- Research Methodology
- 6 Results

Research Question

Did the expansion of subsidised domestic undergraduate places through the demand driven system have an effect on the higher education wage premium?

Figure: Is there a bubble?

Background

- Higher Education funding in Australia
 - mix of private and public spending
 - explicit subsidy through Commonwealth supported place and income contingent loan
- 2010 –introduction of the demand driven system
- Commonwealth Grants scheme costs the government up to \$ 7 billion per year
- Total HECS debt \$ 54 billion
- MYEFO cuts

Undergraduate subsidised places

Figure: Increase in undergraduate CSP places

Department of Education (2017) Student Contribution Bands

Data: ATO Longitudinal tax File

- Combines data from successive individual tax file returns from a 10 per cent sample, over 2010-16
- Advocated for by Dynarski (2014) to better answer questions relating to the returns to education
- Less measurement error in wages
- Allows merging of data with other variables like HELP modules and superannuation balances
- Geographical variables at the SA4 level
- Highly detailed occupation code (4 digit values)

Rules for dealing with administrative data

- Advantage: lots of data
- Disadvantage: cannot always get what you want

Solution: creating deriv	ved varia	bles	based	on what	you (do have
pmax_h_loan	gives	а	max	value	for	the
	h_loan	_yea	ar varia	bles		
${ t highest_loan}$	the yea	r for	which	the loar	n was	high-
	est, thereby indicating possible com-				com-	
	pletion (has to be over 15k- weed					
	out non completers, but under 45k-to					
	weed o	ut P	G)			
$studying_3$	identifi	es if	person	was sti	udying	over
	the time period of the sample by loo				look-	
	ing at t	he c	outstan	ding hel	p amo	ount
${\tt cohort_code}$	assigns	а	cohort	code	base	d on
	highes	st_lo	oan			

Summary Stats

Figure: Increase in undergraduate CSP places

Research Methodology

Base model

$$\begin{split} &\textit{In}(Y_{it}) = \alpha_i + \beta_1 \textit{gender} + \beta_2 \textit{primaryearner} + \beta_3 \textit{dependents} + \\ &\beta_4 \textit{partnered} + \beta_5 \textit{Cohortdummy} + \beta_6 \textit{State} + \beta_7 \textit{Gender} : \textit{Occupation} + \\ &\beta_8 \textit{Cohort} : \textit{Occupation} + \beta_9 \textit{studying} + \beta_{10} \textit{Male} : \textit{Primary} + \epsilon_i \end{split}$$

For each occupation (Accounting, Nursing, Engineering and teaching)

$$In(Y_{it}) = \alpha_i + \beta_1 gender + \beta_2 primary earner + \beta_3 dependents + \beta_4 partnered + \beta_5 Cohort dummy + \beta_6 State + \beta_7 Gender : Occupation + \beta_8 Cohort : Occupation + \beta_9 studying + \beta_{10} Male : Primary + \epsilon_i$$
(2)

	log Wage		
	(With Other)	(Without Other)	
Male	-0.861***	-0.480**	
Prim. Earner	0.518***	0.381***	
Dependants	-0.372***	-0.418***	
Cohort 2016	-0.442***	-0.506***	
Age	-0.024***	-0.017	
Eng.	0.167	0.099	
Nursing	-0.198	-0.196	
Other	-0.958***	-0.625^{***}	
Teachers	-0.253*	-0.140	
Male:Primary	1.031***	0.558***	
Male:Engineer	-0.040	0.046	
Male:Nurse	0.282	0.311	
Male:Teachers	0.182	0.204	
Constant	11.812***	11.956***	
Observations	48,783	11,627	
R^2	0.073	0.070	
Adjusted R ²	0.073	0.069	
Residual Std. Error	2.733 (df = 48754)	2.022 (df = 11602)	

Table: By Occupation: With other cohorts

	log Wage			
	(eng)	(acct)	(nurse)	(teaching)
Male	0.044	-0.031	0.133	0.086
Primary Earner	0.325***	0.320***	0.464***	0.326***
Dependants	-0.113***	-0.187^{***}	-0.262^{***}	-0.285^{***}
studying_3	-0.577	-0.417	0.063	-2.500***
Cohort 2016	-0.297***	-0.122	-0.103	-0.222***
Cohort other	-0.098*	-0.207***	-0.219^{***}	-0.300***
Age	0.060***	0.053***	0.016	0.020**
Male:Prim earner	0.030	0.119	0.091	0.106
Constant	9.277***	9.504***	10.490***	10.493***
Observations	856	1,055	1,266	1,815
R^2	0.138	0.115	0.171	0.182
Adjusted R ²	0.120	0.100	0.159	0.174
Residual Std. Error	0.699	0.790	0.870	0.748
	(df=838)	(df=1036)	(df=1247)	(df=1795)

Table: By occupation: Without other

	Log wage				
	(eng)	(acct)	(nurse)	(teaching)	
Male	0.110	-0.148	0.063	0.161*	
Prim earner	0.283	0.337***	0.415***	0.294***	
Dependants	-0.112**	-0.230***	-0.237***	-0.252***	
Cohort 2016	-0.333**	-0.155	-0.137	-0.234***	
Age	0.055**	0.034	-0.015	0.012	
Male:Prime Earner	-0.034	0.177	0.214	-0.001	
Constant	9.345***	10.192***	11.412***	10.691***	
Observations	502	530	717	1,388	
R^2	0.096	0.101	0.175	0.144	
Adjusted R ²	0.068	0.075	0.158	0.134	
Residual Std. Error	0.814	0.847	0.779	0.688	
	(df=486)	(df=514)	(df=701)	(df=1371)	

References

- Australian Tax Office (2018). The Australian Longitudinal Individuals File.
- Daly, A., Lewis, P., Corliss, M., and Heaslip, T. (2015). The private rate of return to a university degree in australia. *Australian Journal of Education*, 59(1):97–112.
- Department of Education (2017). Student contribution amounts.
- Dynarski, S. (2014). Building better longitudinal surveys (on the cheap) through links to administrative data. In *National Academy of Education Workshop to Examine Current and Potential Uses of NCES Longitudinal Surveys by the Education Research Community. Washington, DC.*
- Hospido, L. and Moral-Benito, E. (2016). The public sector wage premium in spain: evidence from longitudinal administrative data. *Labour Economics*, 42:101–122.
- Hyslop, D. and Townsend, W. (2016). Earnings dynamics and measurement error in matched survey and administrative data.
- Leigh, A. (2008). Returns to education in australia. *Economic Papers: A journal of applied economics and policy*, 27(3):233–249.