First Name	Last Name	Section Number

CPSC 221 Priority Queue and Heap

1. Represent the following input 12, 3, 51, 8, 10, 55, 16 in order to get a maximum binary heap. Illustrate each step of the algorithm. What is the Big-O running time of the algorithm?

2. Illustrate a state of the heap below after the sequence of two operations: removeMax(), insert(50). What is the Big-O running time of these operations?

3. Consider three different implementations of Maximum Priority Queue based on an unsorted list, sorted list and heap. What is the running time (use Big-O notation) for the following operations in the table below?

	Unsorted List	Sorted List	Heap
Insert			
Remove Max			

4.	What is the running time of the heap sort a	algorithm?	What is the	advantage	of the	heap s	sort o	over 1	the
	merge sort algorithm?								

5. Find the Huffman codes for the characters in the table below. Assume that your minimum priority queue is represented as a sorted array.

	· ·			
character	b	С	a	Z
frequency	2	5	7	10