Московский физико-технический институт

Лабораторная работа

Компьютерная сцинтилляционная γ -спектрометрия

выполнили студены 653 группы ФФКЭ Карпова Татьяна Агафонов Владислав

1 Цель работы

Снять и исследовать спектры излучения различных источников, характеризовать различные пики в спектрах радиоактивных веществ.

2 В работе используются:

- сцинтиллятор
- ФЭУ
- предусилитель импульсов
- высоковольтный блок питания для ФЭУ
- АЦП
- компьютер.

3 Теоретические положения

Фотоэффект - это процесс взаимодействия гамма-кванта с электроном, связанным с атомом, при котором электрону передается вся энергия гамма-кванта. При этом электрону сообщается кинетическая энергия $T_e = E_{\gamma} - I_i$, где E_{γ} – энергия гамма-кванта, I_i – потенциал ионизации i-той оболочки атома. Фотоэффект особенно существенен для тяжелых веществ, где он идет с заметной вероятностью даже при высоких энергиях гамма-квантов. В легких веществах фотоэффект становится заметен лишь при относительно небольших энергиях гамма-квантов.

Эффект Комптона - это упругое рассеяние фотона на свободном электроне, сопровождающееся изменением длины волны фотона. Максимальная энергия образующихся комптоновских электронов соответствует рассеянию гамма-квантов на 180° и равна

$$E_{\text{max}} = \frac{\eta \omega}{1 + \frac{mc^2}{2\eta \omega}}.$$
 (1)

Процесс образования электрон-позитронных пар. При достаточно высокой энергии гамма-кванта наряду с фотоэффектом и эффектом Комптона может происходить третий вид взаимодействия гамма-квантов с веществом – образование электрон-позитронных пар. Процесс образования пар не может происходить в пустоте, так как в этом случае не выполняются законы сохранения энергии и импульса. В присутствии ядра или электрона процесс образования пары гамма-квантов возможен, так как можно распределить энергию и импульс гамма-кванта между тремя частицами без противоречия с законами сохранения. При этом если процесс образования пары идет в кулоновском поле ядра или протона, то энергия образующегося ядра отдачи оказывается весьма малой, так что пороговая энергия гамма-кванта E_0 , необходимая для образования пары, практически совпадает с удвоенной энергией покоя электрона $E_0 \cong 2mc^2 = 1.022$ МэВ.

Появившийся в результате процесса образования пар электрон свою энергию на ионизацию среды. Таким образом, вся энергия электрона остается в детекторе. Позитрон будет двигаться до тех пор, пока практически не остановится, а затем аннигилирует с электроном среды, в результате чего появятся два гамма-кванта. Т.е., кинетическая энергия позитрона также останется в детекторе. Далее возможны три варианта развития событий:

- 1. оба родившихся гамма-кванта не вылетают из детектора, и тогда вся энергия первичного гамма-кванта останется в детекторе, а в спектре появится пик с $E=E_{\gamma}$;
- 2. один из родившихся гамма-квантов покидает детектор, и в спектре появляется пик, соответствующий энергии $E=E_{\gamma}-E_{0}$, где $E_{0}=mc^{2}=511$ кэB;
- 3. оба родившихся гамма-кванта покидают детектор, и в спектре появляется пик, соотвествующий энергии $E=E_{\gamma}-2E_0$, где $2E_0=2mc^2=1022$ кэВ.

Таким образом, любой спектр, получаемый с помощью гамма-спектрометра, описывается несколькими компонентами, каждая из которых связана с определенным физическим процессом. Как описано выше, основными физическими процессами взаимодействия гамма-квантов с веществом является фотоэффект, эффект Комптона и образование электрон-позитронных пар, и каждый из них вносит свой вклад в образование спектра. Помимо этих процессов, добавляется экспонента, связанная с наличием фона, $nu\kappa$

характеристического излучения, возникающий при взаимодействии гамма-квантов с окружающим веществом, а также $nu\kappa$ обратного рассеяния, образующийся при энергии квантов $E_{\gamma}\gg mc^2/2$ в результате рассеяния гамма-квантов на большие углы на материалах конструктивных элементов детектора и защиты. Положение пика обратного рассеяния определяется по формуле:

$$E_{\rm o6p} = \frac{E}{1 + 2E/mc^2},\tag{2}$$

где E – энергия фотопика.

Энергетическое разрешение спектрометра. Даже при поглощении частиц с одинаковой энергией амплитуда импульса на выходе фотоприёмника сцинтилляционного детектора меняется от события к событию. Это связано:

- 1. со статистическим характером процессов сбора фотонов на фотоприёмнике и последующего усиления,
- 2. с различной вероятностью доставки фотона к фотоприемнику из разных точек сцинтиллятора,
- 3. с разбросом высвечиваемого числа фотонов

В результате в набранном спектре линия (которая для идеального детектора представляла бы дельтафункцию) оказывается размытой, её часто описывают гауссианом.

Энергетическим разрешением спектрометра называется величина

$$R_i = \frac{\Delta E_i}{E_i},\tag{3}$$

где ΔE_i — ширина пика полного поглощения, измеренная на половине высоты, E_i — энергия регистрируемого γ -излучения. Значение E_i пропорционально среднему числу фотонов $\overline{n_i}$ на выходе $\Phi \ni V$, т.е.:

$$E_i = \alpha \overline{n_i}. \tag{4}$$

Полуширина пика полного поглощения ΔE_i пропорциональна среднеквадратичной флуктуации $\overline{\Delta n_i}$. Т.к. n_i является дискретной случайной величиной, которая распределена по закону Пуассона, то $\overline{\Delta n_i} = \sqrt{\overline{n_i}}$ и поэтому

$$\Delta E_i = \alpha \overline{\Delta n_i} = \alpha \sqrt{\overline{n_i}}.$$
 (5)

Из (4), (5) получаем, что

$$R_i = \frac{\Delta E_i}{E_i} = \frac{\text{const}}{\sqrt{E_i}}.$$
 (6)

Поскольку энергетическое разрешение зависит от энергии, его следует указывать для конкретной энергии. Чаще всего разрешение указывают для энергии гамма-линии 137 Cs (661.7 кэВ).

4 Выполнение работы

- 1. Подготовим к работе установку. Исследуем спектры следующих образцов:
 - ²²Na
 - ⁶⁰Co
 - ¹³⁷Cs
 - \bullet ²⁴¹Am
 - ¹⁵²Eu
 - неизвестный образец

Накопление спектра производим в течение 600 секунд. Спектры представим на рис. 1-6. Между измерениями первых двух образцов проведём измерение фона (см. рис. 7) и убедимся, что его интенсивность его спектра много меньше интенсивности спектра исследуемых образцов; также в спектре фона нет пиков.

Рис. 1: Спектр $^{22}\mathrm{Na}$

Рис. 2: Спектр ⁶⁰Со

Рис. 3: Спектр $^{137}\mathrm{Cs}$

Рис. 4: Спектр $^{241}\mathrm{Am}$

Рис. 5: Спектр $^{152}\mathrm{Eu}$

Рис. 6: Спектр неизвестного образца

Рис. 7: Спектр фона

2. Используя известные значения пиков в спектрах натрия и цезия, построим калибровочный график соответствия номера канала определённому значению энергии (рис. 8).

Пики натрия: 511 кэВ - канал 766; 661,7 кэВ - канал 971; Пик цезия: 1275 кэВ - канал 1811

Рис. 8: Калибровочный график для перехода от номера канала к значению энергии

Получаем уравнение для перехода от номера канала к значению энергии в кэВ:

$$E = 0.73N_i - 48,41$$

3. Используя калибровочный график, определим для всех остальных источников значения энергии пиков полного поглощения E_i , их ширины на половине высоты $\triangle E_i$ и энергетическое разрешение R_i . Результаты занесём в таблицу 1. В последний столбец занесём справочные значения для соответствующих энергий пиков полного поглощения (знаком (к) отмечены значения, по которым проводилась калибровка значений прибора)

Таблица 1: І	Лики полного	поглощения	различных	образцов
--------------	--------------	------------	-----------	----------

Элемент	N_i	$\triangle N_i$	E_i , MeV	$\triangle E_i$, MeV	R_i	E, MeV
²² Na	1811	83	1.274	0.030	0.023	1.274 (к)
⁶⁰ Co	1670	37	1.171	0.027	0.023	1.173
⁶⁰ Co	1892	45	1.333	0.033	0.024	1.332
$^{137}\mathrm{Cs}$	967	62	0.662	0.022	0.032	0.662 (к)
$^{241}\mathrm{Am}$	149	13	0.060	0.004	0.067	0.595
$^{152}\mathrm{Eu}$	235	17	0.123	0.006	0.045	0.122
¹⁵² Eu	399	31	0.243	0.010	0.040	0.245
$^{152}\mathrm{Eu}$	534	41	0.341	0.015	0.041	0.344

4. Исследуем спектр неизвестного образца (рис. 9). Для этого вынем сцинтиллятор из установки и снимем спектр непосредственно в трубке с образцом. Построим на одном графике спектры цезия и неизвестного образца - можно легко убедиться, что пик полного поглощения у них практически совпадает. Делаем вывод, что исследуемый образец - это ¹³⁷Cs.

Рис. 9: Спектры ¹³⁷Cs и неизвестного образца

- 5. По графикам определим энергию характеристического излучения свинца, служащего защитой спектрометра от внешнего излучения. На всех спектрах, кроме спектра неизвестного образца, снятого вне установки, в той или иной степени выражена спектральная линия, соответствующая энергии 75 keV. Эта энергия и есть энергия характеристического излучения свинца.
- 6. Проверим зависимость (6). Для этого построим график зависимости $R^2 = f(1/E)$ (рис. 10). Наблюдается линейная зависимость. Из-за неточностей в определении полуширины пиков точки не лежат на одной прямой.

Рис. 10: График зависимости \mathbb{R}^2 от $1/\mathbb{E}$

7. Определим энергии края комптоновского поглощения для образцов 22 Na, 137 Cs, 60 Co, сравним их с соответствующими справочными значениями.

$$^{60}\mathrm{Co}$$
 $E_{Cexp}=0,922~\mathrm{MeV}$ $E_{Cth}=0.963~\mathrm{MeV}$

$$\begin{array}{lll} ^{137}{\rm Cs} & E_{Cexp} = 0,448 \ {\rm MeV} & E_{Cth} = 0.477 \ {\rm MeV} \\ ^{22}{\rm Na} & E_{Cexp} = 0,999 \ {\rm MeV} & E_{Cth} = 1.062 \ {\rm MeV} \end{array}$$

8. В спектрах, где наблюдаются пики обратного рассеяния, определим энергии этих пиков и сравним измеренные значения с определёнными по формуле (2)

$$E_{bs} = \frac{E_{\gamma}}{1 + \frac{2E_{\gamma}}{m_e c^2}}$$

$$\begin{array}{lll} {}^{60}{\rm Co}\;(E=1.171\;{\rm MeV}) & E_{Cexp}=0,228\;{\rm MeV} & E_{Cth}=0.209\;{\rm MeV} \\ {}^{60}{\rm Co}\;(E=1.333\;{\rm MeV}) & E_{Cexp}=0,228\;{\rm MeV} & E_{Cth}=0.214\;{\rm MeV} \\ {}^{137}{\rm Cs}\;(E=0.662\;{\rm MeV}) & E_{Cexp}=0,198\;{\rm MeV} & E_{Cth}=0.184\;{\rm MeV} \end{array}$$

Эти значения практически совпадают. Пики обратного рассеяния в спектре кобальта, отвечающие разным пикам полного поглощения, на графике неразрешимы (виден один широкий пик).

5 Вывод

В ходе работы после калибровки прибора были сняты спектры образцов 22 Na, 60 Co, 137 Cs, 241 Am, 152 Eu, а также исследован спектр неизвестного образца и определен его состав (137 Cs). В спектрах были исследованы пики, соответствующие следующим взаимодействиям гамма-квантов с веществом:

- фотоэффект (пики полного поглощения)
- эффект Комптона (характерное распределение энергий в спектре, оканчивающееся комптоновским краем)
- обратное рассеяние (пики обратного рассеяния)
- аннигиляция позитронов (пик 511 keV в спектре натрия, по которому проводилась калибровка)

Все значения энергии, опеределённые по спектрам, практически совпадали с табличными и расчётными.

Также была проверена линейная зависимость квадрата спектрального разрешения прибора от величины, обратной энергии полного поглощения.