ТИПИ КЛІТИН ТА ЇХНЯ ПОРІВНЯЛЬНА ХАРАКТЕРИСТИКА: ПРОКАРІОТИЧНА ТА ЕУКАРІОТИЧНА КЛІТИНА, РОСЛИННА ТА ТВАРИННА КЛІТИНА.

А. КЛІТИНА ПРОКАРІОТІВ: 1 – НУКЛЕОЇД; 2 – КЛІТИННА МЕМБРАНА; 3 – ЦИТОПЛАЗМА

Б. КЛІТИНА ЕУКАРІОТІВ: 1 – ЯДРО; 2 – КЛІТИННА МЕМБРАНА; 3 – ЦИТОПЛАЗМА; 4 – ОРГАНЕЛИ ТА ВКЛЮЧЕННЯ

СТРУКТУРА КЛІТИН

МЕТА: : РОЗГЛЯНУТИ ОСОБЛИВОСТІ БУДОВИ КЛІТИН ПРОКАРІОТИЧНИХ ТА ЕУКАРІОТИЧНИХ ОРГАНІЗМІВ; ПРОАНАЛІЗУВАТИ ЗВ'ЯЗОК ОСОБЛИВОСТЕЙ БУДОВИ З ФУНКЦІЯМИ.

ОБЛАДНАННЯ: ПІДРУЧНИК, ЗОШИТИ, МУЛЬТИМЕДІЙНА ПРЕЗЕНТАЦІЯ

ТИП УРОКУ: УЗАГАЛЬНЕННЯ ЗНАНЬ

БУДОВА ТА ФУНКЦІЇ СТРУКТУРНИХ КОМПОНЕНТІВ КЛІТИНИ

Структури і їхнє зображення	Особливості будови	Функції
Клітинна мемб- рана	Частина поверхневого апарату з ліпідів, біл- ків й вуглеводів. Ліпіди визначають власти- вості мембрани, білки й вуглеводи – функції	Транспортна, метаболіч- на, захисна, рецепторна, контактна, опорна
Ядро	Поверхневий апарат (ядерна оболонка з двох ядерних мембран, ядерні пори, ядерна пластинка) Внутрішнє середовище (ядерний сік, ядерце, хроматин)	Зберігає спадкову інформацію; керує процесами життєдіяльності; утворює рибосоми
Пластиди	Двомембранні напівавтономні рослинні органели клітини. Три види: хлоропласти, хромопласти, лейкопласти	Фотосинтезуюча, забарвлювальна, запаслива
Мітохондрії	Двомембранні напівавтономні еукаріотичні енергетичні органели клітини	Клітинне дихання. Окиснення органічних сполук. Синтез АТФ
ENC	Складна тривимірна мембранна система, що пронизує усю гіалоплазму; розрізняють гладку і шорстку ЕПС	Синтез білків (шорстка ЕПС). Синтез ліпідів, вуглеводів (гладка ЕПС). Транспортування речо- вин. Утворення вакуолей
Апарат Гольджі	Групи цистерн, які розгалужуються на трубочки і систему дрібних міхурців	Накопичення та секреція речовин. Утворення лізосом
Лізо-	Одномембранні міхурці, що містять гідролітичні ферменти (протеази, ліпази, амілази)	Внутрішньоклітинне травлення
Вакуолі	Відмежовані мембраною ділянки клітини, заповнені рідиною. Типи вакуолей: травні, скоротливі, запасливі, осморегуляторні	Тургорна, запаслива, видільна, забарвлю- вальна, травна, осморегуляторна
Клітинний центр	Дві центріолі, стінки яких побудовані з 9 триплетів мікротробучок. Розташовані в центросфері	Участь у поділі клітин. Організація цитоске- лета
Рибо-	Сферичні тільця з великої та малої субоди- ниць. Розташовані в цитоплазмі, на грану- лярній ЕПС, у мітохондріях і хлоропластах	Синтез білків
Органели руху (псевдоподії, джгутики й війки)	Вирости цитоплазми, вкриті плазматичною мембраною	Рухова, чутлива, захисна

ТИПИ ОРГАНІЗАЦІЇ КЛІТИН

- УСІ ЖИВІ ОРГАНІЗМИ, ЯКІ МАЮТЬ КЛІТИННУ БУДОВУ, МОЖНА ПОДІЛИТИ НА <u>ПРОКАРІОТИЧНІ</u> (ПРОКАРІОТИ) ТА ЕУКАРІОТИЧНІ (ЕУКАРІОТИ).
- ДО ПРОКАРІОТІВ НАЛЕЖАТЬ БАКТЕРІЇ, ДО ЕУКАРІОТІВ РОСЛИНИ, ТВАРИНИ Й ГРИБИ.
- ЇХНІ КЛІТИНИ МАЮТЬ РІЗНУ ОРГАНІЗАЦІЮ. РОЗРІЗНЯЮТЬ, ВІДПОВІДНО, ДВА ТИПИ КЛІТИННОЇ ОРГАНІЗАЦІЇ: <u>ПРОКАРІОТИЧНИЙ ТА ЕУКАРІОТИЧНИЙ.</u>
- ХАРАКТЕРНОЮ ОЗНАКОЮ, ЩО ВІДРІЗНЯЄ КЛІТИНИ ПРОКАРІОТИЧНОГО ТИПУ ВІД ЕУКАРІОТИЧНИХ, Є ВІДСУТНІСТЬ У ЇХНІХ КЛІТИНАХ ЯДРА.

ПРОКАРІОТИ – Π (ПРОПАЛО), ЕУКАРІОТИ – E (E B HAЯВНОСТІ)

• КРІМ ТОГО КЛІТИНИ ПРОКАРІОТІВ ТА ЕУКАРІОТІВ ВІДРІЗНЯЮТЬСЯ НАЯВНІСТЮ ЧИ ВІДСУТНІСТЮ В ЇХНІЙ БУДОВІ ПЕВНИХ ОРГАНЕЛ. А ЦЕ, У СВОЮ ЧЕРГУ, ВИЗНАЧАЄ ОСОБЛИВОСТІ ЇХ ФУНКЦІОНУВАННЯ ТА РОЗМНОЖЕННЯ.

БУДОВА КЛІТИН: 1 — ТВАРИННОЇ; 2- РОСЛИННОЇ; 3 - БАКТЕРІАЛЬНОЇ

ПОРІВНЯЛЬНА ХАРАКТЕРИСТИКА КЛІТИН БАКТЕРІЇ, РОСЛИНИ, ТВАРИНИ ТА ГРИБА

ПРИБЛИЗНІ ПОРІВНЯЛЬНІ РОЗМІРИ КЛІТИН ЕУКАРІОТІВ (А) ТА ПРОКАРІОТІВ (Б): 1—ЯЙЦЕКЛІТИНА; 2— КЛІТИНА ПЕЧІНКИ; 3— АМЕБА; 4— ЕРИТРОЦИТ;

5 — ДІАТОМОВА ВОДОРІСТЬ; Б — СТРЕПТОКОК; 7 — БАЦИЛА; 8 — ДРІЖДЖІ

РОЗМІРИ КЛІТИН

Клітини	Розміри	Клітини	Розміри
Мікоплазми	0,2-0,25 мкм	Клітини м'якуша цитрусових	4 см
Більшість бактерій, тромбоцити людини	1-5 мкм	Волоски насіння бавовнику	5 см
Дріжджі, еритроцити людини	8-10 мкм	Одноклітинна водорість ацетабулярія	7 см
Лейкоцити людини	7-20 мкм	Яйцеклітини страуса	До 10 см
Сперматозоони людини	50-70 мкм	Клітини посмугованої м'язової тканини людини	До 12 см
Клітини кавуна, яйцеклітини людини	100-220 мкм	М'язові волокна кравецького м'яза людини	До 35 см
Клітини гладенької м'язової тканини	50-500 мкм	Клітини стебел рамі	До 50 см
Трахеїди хвойних	1 мм	Нервові клітини людини	До 1,2 м
Одноклітинні грегарини	До 16 мм	Нервові клітини жирафа	До 2 м

	0
	П.
	К.
	Er
	К
4	Лі
	Ba
В	Pi
	K.
	Ц
	Ге
	Я,
	X
	Ге

	Ознака чи структура	Бактерії	Рослини	Тварини
	Плазматична мембрана	€	€	€
	Клітинна оболонка	3 особливих білків	3 целюлози	Немає
	Ендоплазматична сітка	Немає	€	ϵ
	Комплекс Гольджі	Немає	€	€
A	Лізосоми	Немає	€	€
	Вакуолі	Немає	€	Немає
В	Рибосоми	€ дрібні	€ звичайного розміру	€ звичайного розміру
	Клітинний центр	Нема€	Нема€	€
	Цитоскелет	Нема€	Нема€	€
	Генетичний апарат	€	€	€
	Ядро	Немає	ϵ	€
	Хромосоми	Немає	€	€
	Генетична речовина	ДНК	ДНК	ДНК

Гриби

3 хітину

 ϵ

 ϵ

Нема€

Є звичайного

розміру

Нема€

Нема€

€

ДНК

П
ОСНОВНІ ВІДМІННОС МІЖ КЛІТИНАМІ ТВАРИН, РОСЛИН І ГРИБІВ

Структури клітин	Тварини	Рослини	Справжні гриби
Клітинна оболонка	Відсутня, є глікокалікс	Є, до її складу входить полісахарид целюлоза	Є, до її складу входить, крім целюлози, поліса- харид хітин
Плазматична мембрана	€	€	€
Ядро	ε	E	E
Вакуолі з клітинним соком	Відсутні	Трапляються	Трапляються
Мітохондрії	€	€	ε
Хлоропласти	Відсутні, трапляються в окремих одноклітинних видів	ε	Відсутні
Органели руху	Є в певних типів клітин багатоклітинних і де- яких одноклітинних	Є у клітинах деяких водоростей і спермато- зоїдів вищих спорових рослин	Відсутні

PI3HOMAHITHIC ЕУКАРІОТИЧНИ КЛІТИН

н к п м л
В К Л

	Органели і структури
	Надмембранний комплекс
	Ядро
D	Вакуолі
	Клітинний центр
	Пластиди
	Мітохондрії
	Лізосоми
	Ендоплазматична сітка
	Комплекс Гольджі

ше) або багато ядер Наявні

Наявний

або скоротливими чи виконувати транспортні функції
Наявний
Немає
Наявні
Наявні
Наявна

Гриби

Представлений

клітинною стінкою

(містить хітин або

інші полісахариди)

Одне, два (найчасті-

Рослини

Представле-

целюлозу)

ний клітинною

Зазвичай одне

Часто добре

розвинені й до-

сягають великих

розмірів, містять

клітинний сік

У більшості ви-

падків відсутній

У більшості ви-

падків немає

Наявні

Наявні

Наявна

Наявний

стінкою (містить

Тварини

Представлений гліко-

каліксом (містить по-

лісахариди та білки)

Великі вакуолі від-

сутні, дрібні можуть

Зазвичай одне

бути травними

Наявний

СХЕМАТИЧНА БУДОВА КЛІТИН - А. РОСЛИН, Б. ГРИБІВ, В. ТВАРИН:

1 – КЛІТИННА ОБОЛОНКА; 2 – ПЛАЗМАТИЧНА МЕМБРАНА; 3 – ЦИТОПЛАЗМА; 4 – МІТОХОНДРІЯ; 5 – ХЛОРОПЛАСТ; 6 – ЯДРО; 7 – ЕНДОПЛАЗМАТИЧНА СІТКА; 8 – КОМПЛЕКС ГОЛЬДЖІ; 9 - ЛІЗОСОМА

ОЗНАКИ РОСЛИННОЇ КЛІТИНИ:

- 1 ПЛАСТИДИ;
- 2 ВЕЛИКА ВАКУОЛЯ;
- 3 ЗЕРНА КРОХМАЛЮ;
- 4 ПЛАЗМОДЕСМИ;
- 5 КЛІТИННА СТІНКА З ЦЕЛЮЛОЗИ

ХАРАКТЕРНІ ОСОБЛИВОСТІ КЛІТИН РОСЛИН:

ОСОБЛИВОСТЯМИ РОСЛИННИХ КЛІТИН Є НАЯВНІСТЬ КЛІТИННОЇ СТІНКИ ТА ПЛАСТИД. ДЕЯКІ ГРУПИ ВОДОРОСТЕЙ МАЮТЬ СПЕЦИФІЧНУ БУДОВУ ПЛАСТИД ТА ДЕЯКИХ ІНШИХ КОМПОНЕНТІВ КЛІТИНИ. АЛЕ ВСІ ВИЩІ НАЗЕМНІ РОСЛИНИ Й ЗЕЛЕНІ ВОДОРОСТІ ЗА БУДОВОЮ СВОЇХ КЛІТИН ВІДРІЗНЯЮТЬСЯ НЕСУТТЄВО.

ОСОБЛИВОСТІ ТВАРИННОЇ КЛІТИНИ:

- 1 ГЛІКОКАЛІКС;
- 2 ДРІБНІ ВАКУОЛІ;
- **3 ЛІЗОСОМИ**;
- 4 ЗЕРНА ГЛІКОГЕНУ

ХАРАКТЕРНІ ОСОБЛИВОСТІ КЛІТИН ТВАРИН

КЛІТИНИ ТВАРИН НЕ МАЮТЬ КЛІТИННОЇ СТІНКИ

І ПЛАСТИД.

ВАКУОЛІ В НИХ ДРІБНІ Й ЗАЗВИЧАЙ ВЕЛИКИХ РОЗМІРІВ НЕ ДОСЯГАЮТЬ. АЛЕ МОЖУТЬ РОЗВИВАТИСЯ СПЕЦІАЛІЗОВАНІ ВАКУОЛІ, НАПРИКЛАД СКОРОТЛИВІ.

ДЕЯКІ КЛІТИНИ ТВАРИН МОЖУТЬ ЛЕГКО ЗМІНЮВАТИ СВОЮ ФОРМУ Й РУХАТИСЯ ЗА ДОПОМОГОЮ ПСЕВДОПОДІЙ, ЯК АМЕБИ. ПРИКЛАДОМ ТАКИХ КЛІТИН Є ЛЕЙКОЦИТИ ЛЮДИНИ.

ОЗНАКИ ГРИБНОЇ КЛІТИНИ:

- 1 КЛІТИННА СТІНКА З ХІТИНУ;
- 2 ЧИСЛЕННІ ЛІЗОСОМИ;
- 3 РЕЗЕРВНІ ВАКУОЛІ;
- 4 ЗЕРНА ГЛІКОГЕНУ

ОСОБЛИВОСТІ КЛІТИН ГРИБІВ:

КЛІТИНИ ГРИБІВ, ЯК І РОСЛИН, МАЮТЬ КЛІТИННУ СТІНКУ.

У БІЛЬШОСТІ ВИПАДКІВ ОСНОВУ СТІНКИ СТАНОВИТЬ ХІТИН. ХОЧА МОЖУТЬ ТРАПЛЯТИСЯ Й ІНШІ ПОЛІСАХАРИДИ.

ЕНДОПЛАЗМАТИЧНА СІТКА В КЛІТИНАХ ГРИБІВ ЧАСТО РОЗВИНЕНА МЕНШЕ, НІЖ У ТВАРИН.

Клітинна стінка Плазмолема

Ломосома Ядерна мембрана Пора Жирові включення

Ендоплазматичний ретикулюм Мітохондрії

БУДОВА ТВАРИННОЇ (А) ТА РОСЛИННОЇ (Б) КЛІТИН

СПІЛЬНІ ОРГАНЕЛИ: 1. ЯДРО. 2. ЕПР. 3. АПАРАТ ГОЛЬДЖІ. 4. МІТОХОНДРІЇ. 5. РИБОСОМИ.

ВІДМІННІ ОРГАНЕЛИ: 6. КЛІТИННА СТІНКА. 7. ВАКУОЛЯ З КЛІТИННИМ СОКОМ. 8. ХЛОРОПЛАСТ.

Ознака	Прояв у тваринній клітині	Прояв у рослинній клітині
Клітинна стінка	Немає	Є міцна клітинна стінка, основу якої утворює целюлоза
Цитоскелет	 Є. Крім мікротрубочок та актинових ниток, наявні й інші структури 	Складається тільки мікротрубочок та актинових ниток
Рибосоми	€	ε
Ендоплазматична сітка	ε	ε
Вакуолі	Є, у вигляді травних вакуоль	Є одна чи кілька великих вакуоль, заповнених клітинним соком. Часто вакуолі займають більшу частину об'єму клітини
Органели руху	Джгутики та війки. Є як у сперматозоїдів, так і у клітин тіла	Тільки сперматозоїди мають джгутики. У квіткових рослин джгутиків немає взагалі
Ядро	€	€
Мітохондрії	E	E
Пластиди	Немає	Є в більшості клітин. Крім зелених хлоропластів, є хромопласти й безбарвні амілопласти

ТЕОРІЯ КЛІТИННОЇ БУДОВИ ОРГАНІЗМІВ

- ОДНИМ 3 ГОЛОВНИХ ТЕОРЕТИЧНИХ ПОЛОЖЕНЬ СУЧАСНОЇ БІОЛОГІЇ Є КЛІТИННА ТЕОРІЯ.
- ЦЕ БІОЛОГІЧНЕ УЗАГАЛЬНЕННЯ БЕРЕ СВІЙ ПОЧАТОК ЩЕ З XIX СТ.
- ВОНО ДОВОДИТЬ ІСНУВАННЯ ЄДИНОГО ПРИНЦИПУ БУДОВИ Й ЖИТТЄДІЯЛЬНОСТІ ВСІХ ЖИВИХ ОРГАНІЗМІВ.
- КЛЮЧОВИМ ПОЛОЖЕННЯМ Є УЯВЛЕННЯ ПРО КЛІТИНУ ЯК ОДИНИЦЮ БУДОВИ ЖИВИХ ОРГАНІЗМІВ.
- ГОЛОВНИМИ СЛІД ВВАЖАТИ ЧОТИРИ ПОЛОЖЕННЯ:

1. ПРИНЦИП «КЛІТИННОЇ ОРГАНІЗАЦІЇ ЖИВОГО»

- КЛІТИНА Є НАЙМЕНШОЮ ЕЛЕМЕНТАРНОЮ ОДИНИЦЕЮ ЖИВОГО; ПОЗА КЛІТИНОЮ ЖИТТЯ НЕМАЄ.
- БЛИЗЬКО 200 РОКІВ ТОМУ ЦЕ ПОЛОЖЕННЯ СФОРМУЛЮВАВ НІМЕЦЬКИЙ ДОСЛІДНИК ТЕОДОР ШВАНН.
- ВОНО Й ДОСІ ЗАЛИШАЄТЬСЯ КЛЮЧОВИМ У КЛІТИННІЙ ТЕОРІЇ ТА ОДНИМ З ОСНОВОПОЛОЖНИХ ПРИНЦИПІВ НАУКИ ПРО ЖИВЕ.
- ВИХОДЯЧИ З ТЕОРІЇ КЛІТИННОЇ БУДОВИ ОРГАНІЗМІВ, МОЖНА СТВЕРДЖУВАТИ, ЩО ЖИТТЯ ТА ЙОГО ВІДТВОРЕННЯ ПОЗА КЛІТИНОЮ НЕМОЖЛИВІ, А ВСІ ОРГАНІЗМИ, ЯКІ ЖИВУТЬ НА ЗЕМЛІ, СКЛАДАЮТЬСЯ З КЛІТИН.
- ЦЕ СТОСУЄТЬСЯ ЯК МІКРОСКОПІЧНИХ ОДНОКЛІТИННИХ ОРГАНІЗМІВ, ТАК І ГІГАНТІВ СВІТУ ТВАРИН І РОСЛИН.

Теодор Шванн (1810–1882)

2. ПРИНЦИП СПАДКОВОСТІ КЛІТИН, АБО ЗАКОН ВІРХОВА

- НОВА КЛІТИНА ВИНИКАЄ ЛИШЕ ВНАСЛІДОК ПОДІЛУ МАТЕРИНСЬКОЇ КЛІТИНИ.
- ЦЕЙ ПРИНЦИП СФОРМУЛЮВАВ ВИДАТНИЙ НІМЕЦЬКИЙ БІОЛОГ РУДОЛЬФ ВІРХОВ.
- ІЗ ПРИНЦИПУ СПАДКОВОСТІ КЛІТИН ВИПЛИВАЮТЬ ВАЖЛИВІ ВИСНОВКИ, ЯКІ ВВАЖАЮТЬ УНІВЕРСАЛЬНИМИ ПОЛОЖЕННЯМИ СУЧАСНОЇ БІОЛОГІЇ:
 - ОСНОВОЮ ПРОЦЕСУ РОСТУ Й РОЗВИТКУ БАГАТОКЛІТИННОГО ОРГАНІЗМУ Є ПОДІЛ КЛІТИН. ЦЕЙ ПОДІЛ СПРИЧИНЯЄ ЗБІЛЬШЕННЯ КІЛЬКОСТІ КЛІТИН У ГЕОМЕТРИЧНІЙ ПРОГРЕСІЇ ТА, У СВОЮ ЧЕРГУ, ЗБІЛЬШЕННЯ ОРГАНІЗМУ В РОЗМІРАХ І ЙОГО РОЗВИТКУ.
 - РОЗМНОЖЕННЯ ОРГАНІЗМІВ ПОВ'ЯЗАНЕ ЛИШЕ З ПОДІЛОМ КЛІТИН.
- ТАК, ОДНОКЛІТИННІ ОРГАНІЗМИ РОЗМНОЖУЮТЬСЯ ЛИШЕ ПОДІЛОМ НАВПІЛ МАТЕРИНСЬКОЇ КЛІТИНИ, А БАГАТОКЛІТИННІ— СПЕЦІАЛЬНИМИ СТАТЕВИМИ КЛІТИНАМИ, ЯКІ УТВОРЮЮТЬСЯ ВНАСЛІДОК МЕЙОЗУ.
- УСІ ОРГАНІЗМИ, ЩО СКЛАДАЮТЬСЯ ЗІ ЗНАЧНОЇ КІЛЬКОСТІ КЛІТИН, БЕРУТЬ ПОЧАТОК ВІД ОДНІЄЇ ЗАПЛІДНЕНОЇ ЯЙЦЕКЛІТИНИ.

Рудольф Вірхов (1821–1902)

3. ПРИНЦИП СПІЛЬНОСТІ В БУДОВІ ТА ПОХОДЖЕННІ КЛІТИН

- УСІ КЛІТИНИ ПОДІБНІ ЗА СВОЇМИ ОСНОВНИМИ ВЛАСТИВОСТЯМИ Й ОРГАНІЗАЦІЄЮ, МАЮТЬ СПІЛЬНЕ ПОХОДЖЕННЯ, ОДНАКОВИЙ ПЛАН БУДОВИ, СКЛАДАЮТЬСЯ З ОДНАКОВИХ ХІМІЧНИХ ЕЛЕМЕНТІВ І РЕЧОВИН.
- ТАК, НАЙПОШИРЕНІШОЮ РЕЧОВИНОЮ КЛІТИН Є ВОДА;
- БУДІВЕЛЬНИМ МАТЕРІАЛОМ УСІХ КЛІТИН <mark>КЛІТИННА МЕМБРАНА</mark>, ЩО ПОБУДОВАНА З ФОСФОЛІПІДІВ;
- ОСНОВНОЮ ФУНКЦІОНАЛЬНОЮ РЕЧОВИНОЮ КЛІТИНИ Є БІЛОК;
- ДЖЕРЕЛОМ ЕНЕРГІЇ СЛУГУЮТЬ ЖИРИ ТА ВУГЛЕВОДИ,
- · А НОСІЄМ СПАДКОВОЇ ІНФОРМАЦІЇ ДНК

4. АКТИВНІСТЬ БАГАТОКЛІТИННОГО ОРГАНІЗМУ ЯК СУМА АКТИВНОСТЕЙ ЙОГО КЛІТИН

- БУДЬ-ЯКИЙ ЖИТТЄВИЙ ПРОЯВ БАГАТОКЛІТИННОГО ОРГАНІЗМУ ЦЕ СУКУПНІСТЬ АКТИВНИХ ДІЙ КЛІТИН.
- НАПРИКЛАД, РУХИ ЛЮДИНИ ЦЕ СКОРОЧЕННЯ ВОЛОКОН М'ЯЗОВИХ КЛІТИН, РОБОТУ ЯКИХ КООРДИНУЮТЬ НЕРВОВІ КЛІТИНИ, А ЗАБЕЗПЕЧУЮТЬ ЕРИТРОЦИТИ, ЩО ЗДІЙСНЮЮТЬ ГАЗООБМІН.
- НАВІТЬ ДУМКА, ЯКА ПРОМАЙНУЛА В ГОЛОВІ, € РЕЗУЛЬТАТОМ СКООРДИНОВАНОЇ РОБОТИ ОКРЕМИХ КЛІТИН КОРИ ВЕЛИКИХ ПІВКУЛЬ ГОЛОВНОГО МОЗКУ.
- КРІМ ТОГО, ЩО КЛІТИНИ МАЮТЬ СПІЛЬНИЙ ПЛАН БУДОВИ, ПРЕДСТАВНИКИ РІЗНИХ ЦАРСТВ ЖИВОГО МАЮТЬ СВОЇ ОСОБЛИВОСТІ, ЯКІ ВИЗНАЧАЮТЬ ЇХ СПОСІБ ЖИТТЯ Й ТИП ЖИВЛЕННЯ.
- ОСОБЛИВО ВІДРІЗНЯЮТЬСЯ КЛІТИНИ ПРОКАРІОТІВ ТА ЕУКАРІОТІВ, У БУДОВІ ЯКИХ СПІЛЬНИМИ ЗАЛИШАЮТЬСЯ ЛИШЕ НАЙБІЛЬШ ЗАГАЛЬНІ РИСИ.

домаш

домашне завдання:

Опрацювати параграф 14 Повторити: Обмін речовин

ТЕСТ-КОНТРОЛЬ

завдания на викир правильное відповіді Назвіть сполуки, що утворюють клітичні менбрани. А білки, нуклеїнові кислоти Б білки, фосфоліпіди В ліпіди, білки, вуплеводи Г фосфолітіди, вуттеводи Назвіть вид транспорту, за допомогою якого амеби захоляюють часточки імі. Вфагоцитов Назвіть зображену на ілюстрації органелу і групу, до якої вона належить. А лізосома: одноменбранні В клітинний центр; немембранні В мітокондрік; двомембранні. Гіпсевдоподія; органели руху 4. Яку функцію виконує органела клітини, позначени на ілюстрації? А разшепления речовии \$ клітиние дикання В осморегуляцію Г організацію ціптоскелета Який із прикладів ілюструє перетворення лейкопластів на кло А дозрівання томатів на сонці Б поковтіння лимонів В утворения білої м'якоті в получиць Г правлежіння бульб картоплі на сонці Уякого з організмів немає ядра в клітинах? А кишкова паличка В амеба Вмужор Гевглена 7. Які органели руку мають лейноципи людини? А порадоніжки **В**-джгутики Buildest Гиупатиці Розсможтувания хвоста у путоповків жаби озерної відбувається за участі.... В пізосом А рибосом 6 knoponnacrie Гисеваополій 9. Синдром кронічної впони розвивається у людини через порушення клітинного динамия, за що відповідають ABDC Б пластиди 8 мітоконцірії Г комплекс Гольджі Завдания на встановления відповідності. 10. Розлізнайте клітини та установіть відповідність між назвою та зображенням клітини. А китича бактерії В клітина ціанобактерії В клітина рослини Г клітина приба Д клітина тварини 11. Установіть відповідність між біологічними процесами та структурами жліть A CANTES ATO В здійснення фотосинтезу В накопичения та розподіл Garragian Г утворения веретена поділу Д эбережения спадкової інформації Завдания на вибір правильної конбінації відповідей: 12. Виберіть санаки, що карактеризують клітину. А належність 6 anno В клітиння стика 1 бактеріальна 1 наприе одне 1 HENESE 2 роспинна 2 напри декілька 2 a simmery 3 с аналог - муклеоід 3 з целютози 3 гранбена 4 тваринна 4 наявне після поділу 4 з нуреіну