Machine Learning Foundations

CAPSTONE-PROJECT

TEACHING-ASSISTANT-PERFORMANCE-EVALUATION

K M L Karunanayake DSA_0308

2022-07-31

CONTENT

- Use Case
- Data
- Solution
- Model
- Results
- Implementation

USE CASE

Teaching Assistant Evaluation

CAPSTONE-PROJECT - TEACHING-ASSISTANT-PERFORMANCE-EVALUATION - K M L KARUNANAYAKE

DATA

Teaching Assistant Evaluation Data Set

Data Source - UCI Machine Learning Repository

Data Format-CSV file format

Number of Attributes - 5

Number of Instances - 151

SOLUTION

CAPSTONE-PROJECT - TEACHING-ASSISTANT-PERFORMANCE-EVALUATION – K M L KARUNANAYAKE

MODEL BUILDING

Pre-process Data for Training

Data Pre-processing

Score Function

Train Test Split

Post-processing

Inference Pipeline

Saving Best Model

Get Prediction

SELECTING BEST MODEL

Models parameters

```
[ ] models = []
  models.append(model_train(LogisticRegression(n_jobs=3, verbose=1), 'lgr1', X_train, y_train, X_test, y_test))
  models.append(model_train(RandomForestClassifier(n_estimators=100, max_depth=None, n_jobs=3, verbose=1), 'rf1', X_train, y_train, X_test, y_test))
  models.append(model_train(RandomForestClassifier(n_estimators=500, max_depth=None, n_jobs=3, verbose=1), 'rf2', X_train, y_train, X_test, y_test))
  models.append(model_train(RandomForestClassifier(n_estimators=500, max_depth=10, n_jobs=3, verbose=1), 'rf3', X_train, y_train, X_test, y_test))
  models = pd.DataFrame(models)
  models
```

Models

	model_name	model	accuracy	precision	f1_score
(lgr1	LogisticRegression(n_jobs=3, verbose=1)	0.543478	0.625000	0.529956
1	I rf1	(DecisionTreeClassifier(max_features='auto', r	0.717391	0.746283	0.713043
2	2 rf2	(DecisionTreeClassifier(max_features='auto', r	0.717391	0.746283	0.713043
;	3 rf3	(DecisionTreeClassifier(max_depth=10, max_feat	0.717391	0.746283	0.713043
4	f rf4	(DecisionTreeClassifier(max_depth=20, max_feat	0.717391	0.746283	0.713043

Best model

```
print(gs_model.best_params_)
{'max_depth': None, 'n_estimators': 500}
```

RESULTS

Sample Data

-	English Speaking	Course instructor	Course	Semester	Class size
91	2	9	5	2	24
69	2	11	1	2	51
10	2	10	22	2	9
137	2	22	1	2	42
35	2	16	8	2	36
5	2	23	3	1	20
92	2	18	25	2	25
135	2	12	8	2	24
58	2	7	25	2	42
100	1	6	17	2	35

Predictions

MODEL SERVER API AND TEST

Model Server API

```
Chusers\lahir\pascktop\MLFoundations\Cibeses\lahir\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasconda3\pasco
```

Test 1 and Result

Test 2 and Result