Universitatea Tehnică a Moldovei Facultatea Calculatoare Informatică și Microelectronică Departamentul Ingineria Software și Automatică

RAPORT

Nr.1
Metode și modele de calcul

Tema : Rezolvarea numerică a ecuațiilor algebrice și transcendente

Varianta 3

A efectuat : st.gr.TI-214 Buza Cătălin A verificat : asistent univ. Vadim Struna

> Scopul lucrării:

- ➤ Să se separe toate rădăcinile reale ale ecuației f(x)=0 unde y=f(x)este o funcție reală de variabilă reală.
- ➤ Să se determine o rădăcină reală a ecuației date cu ajutorul metodei înjumătățirii intervalului cu o eroare mai mică decît =10⁻².
- ➤ Să se aprecieze rădăcina obținută cu exactitatea =10⁻⁶, utilizînd :
 - > Metoda aproximării succesive;
 - Metoda tangentelor(Newton);
 - ➤ Metoda secantelor;
- ➤ Să se compare rezultatele luînd în considerație numărul de iterații , evaluările pentru funcții și derivată.

Sarcina problemei:

3 a) e^x+3x b) x³-23x-42

1

1) Separarea rădăcinilor

Să se găsească rădăcinile ecuației :

Pentru prima ecuație este convenabilă folosirea metodei grafice de separare a rădăcinilor.

Scriem ecuația $e^x + 3 * x = 0$ sub forma $\varphi(x) = g(x)$ și obținem: $-3x = e^x$.

a) Pentru determinarea punctelor de intersecție a funcțiilor construim graficele :

b)Pentru a doua ecuație folosim *metoda șirului lui Rolle*. Derivata
$$f'(x) = 3 * x^2 - 23$$
 se anuleaza pentru $x = \pm \frac{\sqrt{23}}{3} = \pm 2.77$

Х	-2.9	-2.77	2.77	2.9
у	0.31	0.45	-84.45	-84.311

Avem o alternanță de semn și respectiv o singură rădăcină reală ξ

$$\epsilon(-2.77; 2.77)$$

Pentru a determina celelalte rădăcini folosim metoda grafică.

Astfel mai avem 2 rădăcini $\xi \in (-3.5, -2.8)(5,6)$

2)Calculul rădăcinii reale prin metoda înjumătățirii intervalului;

```
#include<math.h>
using namespace std;
double f(double x){ //prima functie din varianta 3
return \exp(x)+3*x;
double f1(double x){ // a doua functie din varianta3
return pow(x,3)-23*x-42;
}
/*
voi folosi o functie pentru a calcula solutiile ambelor ecuatii cu metoda injumatatirii intervalelor
functia primeste ca parametrii valorile intervalului unde se afla solutia si un pointer la o functie care contine ecuatia ce trebuie rezolvata
void injumatatirea intervalului(double a,double b,double(*func)(double))
  int k=0; //variabila ce va stoca nr de iteratii ce sau efectuat pina la gasirea solutiei
  double c = 0,eps = 0.0001;// c- solutia ,eps-eroare admisibila
   while((b-a)>eps) //atita timp cit se satsfice conditiia
     k++;
     c = a+(b-a)/2;//aflam mijlocu intervalului
     if (func(c)==0)//daca valoare functiei in mijlocul intervalului ii egala solutia inseamna ca am gasit solutie
        break;// programu se opreste
     if (func(a)*func(c)<0) b = c;//daca nu se verifica conditia daca e adevarata inseamna ca solutia se afla in intervalul (a,c) si repetam
procedura cu b=c
     else a = c;//daca nu se respecta conditia inseamna ca solutia se afla in intervalul (c,b) si repetam algoritmul cu a=c
  cout <<"\nRadacina x=" << c<<endl;//afisam radacina gasita
  cout<<"Numarul de iteratii: "<<k<<endl;//afisam nr de iterati efectuate pina la gasirea solutiei
int main()
{
injumatatirea_intervalului(-0.4,-0.2,&f);//dam valorile intervalului a si b si adresa functiei unde se afla ecuatia spre rezolvare
cout<<"\nEcuatia 2:";
injumatatirea_intervalului(-2.77,2.77,&f1);
injumatatirea_intervalului(-3.5,-2.8,&f1);
injumatatirea_intervalului(5,6,&f1);
return 0;
}
```

3) Calculul rădăcinii reale prin metoda aproximațiilor succesive a) Pentru aplicarea metodei aproximațiilor succesive verificăm condiția de convergență. Scriind ecuația în forma $x=\varphi(x)$ obținem : $x=\frac{-e^x}{3}$

$$\varphi'(x) = \frac{-1}{3} \times e^x$$

$$\varphi'(x) < 1$$

Prin urmare șirul converge.

```
double f(double x){ //prima functie din varianta 3
return \exp(x)+3*x;
double f1(double x){ // a doua functie din varianta3
return pow(x,3)-23*x-42;
double fderiv(double x){ //derivata functiei f de mai sus
  return 3+\exp(x);
double f1deriv(double x){ //derivata functiei f1 de mia sus
  return 3*pow(x,2)-23;
/*x0=valoarea initiala a functiei alesa de noi arbitrar din intervalul unde se afla solutia cautata
func,func2 pointeri la functii prima e la la functia unde se afla ecuatia careia trebuie sai gasim solutie func2- derivata func
void metoda_tangentelor(double x0,double (*func) (double),double(*func2)(double))
  int k=0;//variabila care ne va arata de cite ori am folosit algorimul pina la gasirea solutie
```

```
double x1,eps=0.000001;//x1-punctul de pe axa ox obtinut la intersectarea tangentei prin x0 eps-exactitatea cu care sa obtinut solutia
  while(1)//incepem algortmul
     x1=x0-func(x0)/func2(x0);//formula prin care aflam punctul x1 ce se apropie rapid de solutia cautata
     k++;//incrementam valoarea lui k
     if(abs(x1-x0)<eps)// daca se respecta conditia data inseamna ca am gasit solutia
       cout<<"Radacina x= "<<x0<<endl;//daca am gasit solutia o afisam si mai afisam nr de iteratii a algoritmului pina la gasirea solutiei
       cout<<"Numarul de iteratii:"<<endl;
       break;//iesim din bucla while dupa ce am gasit solutia
     x0=x1;//daca nu sa gasit solutia repetam algoritmul cu x0=x1;
int main()
cout<<"\nMetoda tangentelor (Newton):"<<endl;</pre>
cout << "Ecuatia 1:" << endl;
metoda_tangentelor(-0.4,&f,&fderiv);
cout << "Ecuatia 2:" << endl;
metoda_tangentelor(-0.5,&f1,&f1deriv);
return 0;
}
```

Rezultatul(toate cele 3 metode intr-un program):

6) Compararea rezultatelor și concluzia

Metoda	Rădacina		Numărul de iterații		Eroarea
	f(x)	$f_1(x)$	f(x)	$f_1(x)$	
Înjumătățirii	-0.257627	-2.53113	18	23	0.0001
intervalului					
Aproximării succesive	-0.257627	-2.53112	10	62	0.000001
Tangentei	-0.257627	-2.53113	3	7	0.000001

Concluzii:

În urma efectuării lucrării de laborator am realizat în practică rezolvarea numerică a ecuațiilor algebrice și transcendente. Putem concluziona că cea mai eficientă metoda este metoda tangentelor, calculatorul efectuând un număr minim de iterații , însă numărul acestor iterații este dependent de aproximația inițială aleasă. Acest număr este cu atât mai mic cu cât aproxima ia inițială este mai aproape de rădăcina căutată. O vulnerabilitate a acestei metode este necesitatea calculului derivatei, ceea ce în unele cazuri poate fi dificil sau practic imposibil.