Η αρχική εξίσωση γράφεται ισοδύναμα στη μορφή

$$e^x + x - 2 = 0$$

και έτσι ορίζουμε τη συνάρτηση $f: \mathbb{R} \to \mathbb{R}$ με $f(x) = e^x + x - 2$. Για τη συνάρτηση αυτή θα έχουμε ότι

ί. είναι συνεχής στο διάστημα [0, 1] και επιπλέον

ii.
$$\bullet$$
 $f(0) = e^0 + 0 - 2 = -1 < 0$

•
$$f(1) = e^1 + 1 - 2 = e - 1 > 0$$

άρα θα ισχύει $f(0) \cdot f(1) = 1 - e < 0$.

Έτσι η εξίσωση θα έχει τουλάχιστον μια λύση $x_0 \in (0,1)$. Για να αποδείξουμε τη μοναδικότητα αυτής της λύσης εξετάζουμε τη συνάρτηση ως προς τη μονοτονία της. Έχουμε λοιπόν για κάθε $x_1, x_2 \in \mathbb{R}$ με $x_1 < x_2$ ότι:

$$x_1 < x_2 \Rightarrow e^{x_1} < e^{x_2} \Rightarrow$$
 $e^{x_1} + x_1 < e^{x_2} + x_2 \Rightarrow$
 $e^{x_1} + x_1 - 2 < e^{x_2} + x_2 - 2 \Rightarrow$
 $f(x_1) < f(x_2)$

Επομένως η συνάρτηση f είναι γνησίως αύξουσα στο $\mathbb R$ άρα η λύση $x_0 \in (0,1)$ είναι μοναδική.