Introductory Statistics for Economics ECON1013: TUTORIAL 3

Duong Trinh

University of Glasgow

Spring 2024

Intro

- Duong Trinh
 - PhD Student in Economics (Bayesian Microeconometrics)
 - Email: Duong.Trinh@glasgow.ac.uk
- ♦ ECON1013-TU04
 - Monday 12-1 pm
 - 4 sessions (22-Jan, 5-Feb, 19-Feb, 4-March)
- ♦ ECON1013-TU05
 - ♦ Tuesday 12-1 pm
 - 4 sessions (23-Jan, 6-Feb, 20-Feb, 5-March)
- ♦ ECON1013-TU07
 - Tuesday 2-3 pm
 - 4 sessions (23-Jan, 6-Feb, 20-Feb, 5-March)

Record Attendance

BRIEF REVIEW

Exercise 1

Redfield & Wilton Strategies

- Population Sampled: Eligible Voters in Scotland.
- ♦ Sample Size: 1,054
- ♦ 51% of survey respondents now say they would vote "No".
- (a) Compute the margin of error (ME) of the proportion saying "No" at the 95% confidence level.
- (b) Compute the confidence interval at the 95% level.
- (c) Suppose I read from somewhere that the ME of that same survey is 2.5%. Is this ME at a higher or at a lower confidence level?

Exercise 1

Ipsos

- Population Sampled: Eligible Voters in Scotland.
- ♦ Sample Size: 1,004
- \diamond 54% of voters back "Yes" \rightarrow The fraction for "No" in the Ipsos poll is 0.46.
- (d) Compute the margin of error (ME) of the proportion saying "No" at the 95% confidence level.
- (e) What is your view on the differences between the two polls?

Where are we in?

(a) Compute the margin of error (ME) of the proportion saying "No" at the 95% confidence level.

The formula for the margin of error for a population proportion \hat{p} is given by

$$ME = z_{rac{lpha}{2}} \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

- \diamond $z_{\frac{\alpha}{2}}$: the value which cuts off $(\frac{\alpha}{2}) \cdot 100\%$ of the probability mass in the right tail for a variable following a standard normal distribution.
 - \diamond Because the confidence level is $1-\alpha=$ 0.95, we have that $\alpha=$ 0.05 and $\frac{\alpha}{2}=$ 0.025.
- \diamond Compute $z_{0.025}$
 - \diamond Looking at a statistical table: $z_{0.025} = 1.96$, OR
 - ♦ Using Excel function: = NORM.INV(0.975, 0, 1)

(a) Compute the margin of error (ME) of the proportion saying "No" at the 95% confidence level.

Plugging in $z_{0.025}=1.96$, the sample size n=1054 and the sample proportion $\hat{p}=0.51$, we find

$$ME = 1.96\sqrt{\frac{0.51(1-0.51)}{1054}} = 1.96 \cdot 0.0153 \approx 0.03$$

 \Rightarrow The margin of error is approximately 3% at the 95% confidence level.

(b) Compute the confidence interval at the 95% level.

The confidence interval is given by

$$\hat{p} \pm ME$$

 0.51 ± 0.03 gives the interval [0.48, 0.54].

(c) Suppose I read from somewhere that the ME of that same survey is 2.5%. Is this ME at a higher or at a lower confidence level?

 \diamond Confidence level = $1 - \alpha$

 α is smaller \Leftrightarrow Confidence level is higher.

$$\phi ME = z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

 α is smaller $\Leftrightarrow z_{\frac{\alpha}{2}}$ is $\ldots \Leftrightarrow \mathsf{ME}$ is \ldots

If we compare $z_{\frac{\alpha}{2}}$ for different values of α , we see the following:

 $z_{rac{0.10}{2}}=1.64,$

 $z_{\frac{0.10}{2}} = 1.04,$ $z_{\frac{0.05}{2}} = 1.96,$

 $z_{\frac{0.01}{2}}=2.58,$ We see that when α is smaller, $z_{\frac{\alpha}{2}}$ is bigger.

(c) Is this ME = 2.5% at a higher or at a lower confidence level?

 \diamond Confidence level $= 1 - \alpha$

$$\alpha$$
 is smaller \Leftrightarrow Confidence level is higher. (1)

$$\phi ME = z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

 α is smaller $\Leftrightarrow z_{\frac{\alpha}{2}}$ is bigger \Leftrightarrow ME is larger. (2)

(c) Is this ME = 2.5% at a higher or at a lower confidence level?

 \diamond Confidence level = $1-\alpha$ $\alpha \mbox{ is smaller} \Leftrightarrow \mbox{Confidence level is higher.} \tag{1}$

⋄ From (1) and (2)

ME is larger ⇔ Confidence level is higher.

(c) Is this ME = 2.5% at a higher or at a lower confidence level?

 \diamond Confidence level = $1 - \alpha$

$$\alpha$$
 is smaller \Leftrightarrow Confidence level is higher. (1)

♦ From (1) and (2)

ME is larger ⇔ Confidence level is higher.

Since we found ME = 3% at the 95% confidence level, when ME is 2.5% (lower), the confidence level has to be **lower**.

(d) Compute the margin of error (ME) of the proportion saying "No" at the 95% confidence level.

(d) Compute the margin of error (ME) of the proportion saying "No" at the 95% confidence level.

♦ The margin of error

$$ME = z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$\Rightarrow ME = 1.96\sqrt{\frac{0.46(1 - 0.46)}{1004}} \approx 0.031$$

♦ The 95% confidence level is approximately [0.429, 0.491].

(e) What is your view on the differences between the two polls?

(e) What is your view on the differences between the two polls?

- ♦ The confidence intervals are clearly different: [0.429, 0.491] is different from [0.48, 0.54], and in this sense, the estimates do differ.
- However, at the same time, the intervals overlap (for example, 49% is contained in both), so they are not necessarily making different statements about the population parameter.
- Remark: There exist statistical tests to determine whether two sample averages are different from each other in a statistically significant way. We will learn about statistical testing procedures in Unit 5.

Exercise 2

The government introduces a housing benefit of 100 pounds per month for low-income households.

After the introduction of the policy, we collect a sample of rents paid by 31 low-income households: $(r_1, r_2, \ldots, r_{31})$. In this sample, the sample average rent is $\bar{r} = 709$ pounds. In this sample, the standard deviation is $s_r = 34$.

- (a) Construct the margin of error for \bar{r} .
- (b) Construct the 95% confidence interval for \bar{r} .
- (c) We know that the average rent paid by low-income households, prior to the reform, was 700 pounds. Is this value, 700, still a likely population rent after the reform, based on the sample?

Where are we in?

(a) Construct the margin of error for \bar{r} .

The margin of error of the sample mean for a sample of size n, when the population standard deviation is not known, is given by

$$ME = t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

- \diamond $t_{n-1,\frac{\alpha}{2}}$: the value which cuts off $(\frac{\alpha}{2}) \cdot 100\%$ of the probability mass in the right tail for a variable following a t-distribution with n-1 degrees of freedom.
 - \diamond We use the Student's t distribution with n-1 degrees of freedom.
 - $\diamond~$ Because $1-\alpha=$ 0.95, we have that $\alpha=$ 0.05 and $\frac{\alpha}{2}=$ 0.025.
- ♦ Calculate *t*_{30,0.025}:
 - \diamond Looking at a statistical table: $t_{30,0.025} = 2.042$, OR
 - ♦ Using Excel function: = T.INV(0.975, 30)

(a) Construct the margin of error for \bar{r} .

Plugging in $t_{30,0.025} = 2.042$, the sample size n = 31 and the sample standard deviation s = 34, we find

$$ME = 2.042 \times \frac{34}{\sqrt{31}} \approx 12.47$$

(b) Construct the 95% confidence interval for \bar{r} .

(b) Construct the 95% confidence interval for \bar{r} .

 $\bar{r}=709 \Rightarrow \bar{r}\pm 12.47$ give the confidence interval [696.5, 721.5].

(c) We know that the average rent paid by low-income households, prior to the reform, was 700 pounds. Is this value, 700, still a likely population rent after the reform, based on the sample?

(c) We know that the average rent paid by low-income households, prior to the reform, was 700 pounds. Is this value, 700, still a likely population rent after the reform, based on the sample?

700 is contained in the 95% confidence interval. Therefore we don't have very strong evidence suggesting that 700 is not a possible value for the population mean after the reform, at the 95% confidence level.

Relevant functions (I)

Launch the Excel online

https://www.office.com/launch/excel?auth=2

NORM.INV() To return the inverse of the normal cumulative distribution for the specified mean and standard deviation (*real number*).

= NORM.INV(probability, mean, standard_dev)

T.INV() To return the t-value of the Student's t-distribution as a function of the probability and the degrees of freedom (*real number*).

= T.INV(probability,degrees_freedom)

Relevant functions (II)

Launch the Excel online

https://www.office.com/launch/excel?auth=2

NORMSDIST() To return the standard normal cumulative distribution (*probability*).

= NORMSDIST(z)