ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Факультет информационных технологий и анализа больших данных Департамент анализа данных и машинного обучения

Дисциплина: «Теория вероятностей и математическая статистика» Направление подготовки: 01.03.02 «Прикладная математика и информатика» Π рофиль: «Анализ данных и принятие решений в экономике и финанcax» Φ орма обучения очная, учебный 2020/2021 год, 4 семестр

Билет 108

1. Сформулируйте определение случайной выборки из конечной генеральной совокупности. Какие виды выборок вам известны? Перечислите (с указанием формул) основные характеристики выборочной и генеральной совокупностей

Здесь очень много исчерпывающей информации о выборках из генеральной совокупности и про различные виды выборок

- 2. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;7] и [0;3] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0,006 \leqslant Z \leqslant 0,519)$.
 - 1) Функция распределения $F_Z(x)$ имеет вид: $F_Z(x) = \begin{cases} 0, x \leqslant 0; \\ \frac{7x}{6}, 0 \leqslant x \leqslant \frac{3}{7} \approx 0,429; \\ 1 \frac{3}{14x}, x \geqslant \frac{3}{7}; \end{cases}$ 2) Плотность распределения $f_Z(x)$ имеет вид: $f_Z(x) = \begin{cases} 0, x \leqslant 0; \\ 1 \frac{3}{14x}, x \geqslant \frac{3}{7}; \\ \frac{7}{6}, 0 \leqslant x \leqslant \frac{3}{7} \approx 0,429; \\ \frac{3}{14x^2}, x \geqslant \frac{3}{7}; \end{cases}$

3) вероятность равна: $\P(0,006 \le Z \le 0.519) = 0.57962$.

3. Случайная величина Y принимает только значения из множества $\{10,7\}$, при этом P(Y=10)=0.24. Распределение случайной величины X определено следующим образом:

$$X|Y = \begin{cases} 4*y, \text{свероятностью } 0.53 \\ 9*y, \text{свероятностью } 1 - 0.53 \end{cases}$$

Юный аналитик Дарья нашла матожидание и дисперсию X.

Помогите Дарье найти матожидание и дисперсию величины X

Первым этапом надо найти характеристики случайной величины Y

$$E(Y) = 10 * 0.24 + 7 * (1 - 0.24)$$

$$Var(Y) = E(Y^2) - [E(Y)]^2 = 10^2 * 0.24 + 7^2 * (1 - 0.24) - [E(Y)]^2$$

Перейдем к рассмотрению характеристик условной случайно величины Х

$$E(X) = E(E(X|Y)) = E[E(4*Y)*0.53 + E(9*Y)*(1-0.53)] = E(Y)*(4*0.53 + 9*(1-0.53)) = 49.022$$

$$E(Var(X|Y)) = E[b * Var(c3 * Y) + (1 - b) * Var(c4 * Y)] = Var(Y) * (c3^2 * b + c4^2 * (1 - b))$$

$$Var(E(X|Y)) = E(X^{2}|Y) - [E(X)]^{2} = [E(Y)]^{2} * (b * c3^{2} + (1 - b) * c4^{2}) - E(X)]^{2}$$
$$Var(X) = E(Var(X|Y)) + Var(E(X|Y)) = 447.56552$$

4. Создайте эмперические совокупности сов и log вида сов(1), сов(2), ..., сов(98) и log(1), log(Найдите эмпирическое среднее и эмпирическое стандартное отклонение совокупности сов, её четвёртый эмпирический центральный момент и эмпирический эксцесс.

Кроме того, найдите эмпирический коэффициент корреляции признаков cos и log на совокупности натуральных чисел от 1 до 98.

Используя

$$E(X) = sum(X)/n$$

$$Var(X) = E(X^2) - [E(X)]^2$$

$$\mu_4(X) = E((X - E(X))^4)$$

$$Ex = \frac{\mu_4(X)}{[\sigma(X)]^4} - 3$$

$$r_{xy} = \frac{E(XY) - E(X) * E(Y)}{\sigma(X) * \sigma(Y)}$$

рассчитаем искомые значения.

Ответы: $-0.01464, 0.70686, 0.37349, -1.50394, 1.0 \cdot 10^{-5}$.

5. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y=2	Y=4	Y = 5
X = 200	28	23	3
X = 300	2	12	32

Из Ω случайным образом без возвращения извлекаются 5 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X},\bar{Y})$

- 1) математическое ожидание $\mathbb{E}(\bar{Y})$: 3.75 2) стандартное отклонение $\sigma(\bar{X})$: 244.6913
- 3) ковариацию $Cov(\bar{X}, \bar{Y})$: 3.7904
- 6. (10) Пусть X_1, X_2, X_3, X_4 выборка из $N(\theta, \sigma^2)$. Рассмотрим две оценки параметра θ :

$$\hat{\theta}_1 = \frac{X_1 + 4X_2 + X_3 + 4X_4}{10}, \hat{\theta}_1 = \frac{2X_1 + 3X_2 + 3X_3 + 2X_4}{10}$$

а) Покажите, что обе оценки несмещенные. б) Какая из оценок оптимальная?

Обе они несмещенные, потому что в числителе выходит в сумме 10. Какая-то точно должна быть, а может и нет....

Подготовил

Рубов П.Е. Рябов

Утверждаю: Первый заместитель руководителя департамента

Дата 01.06.2021

Фекши Феклин В.Г.