Solution

GIK Institute of Engineering Sciences and Technology

Midterm Examination

ES-341 Numerical Analysis (Fall 2022)

Maximum marks: 30		Time allowed: 60 minutes					
Registration no.	Name						
Section			Instructor				
Q. 1 (CLO-1):							
(a) Use quadratic formu	la to fi	nd the exa	ct root of	the following	ng equation:	(2	points)
		$1.042x^2$	-12.01x +	- 0.01265 =	= 0,		
(b) Use four-digit round imation to the root of the					as to find th	ne most accurate (6	approx- points)
Q. 2 (CLO-1): From the following data,	constr	uct highes	t degree No	ewton's div	rided differen	nce polynomials(forward
and backward) to approx	ximate	f(0.501).				(8)	points)
	x	0.1	0.3	0.4	0.6		
	f(x)	0.904837	0.740818	0.670320	0.548811		
Q. 3 (CLO-2): Use Steffensen's method	to fine	$p_0^{(2)}$ for the	ne following	g function:		(4)	points)
		g(x) = 1 +	$-(\sin x)^2,$	with $p_0^{(0)}$	= 1	F 1. F 1.	
Q. 4 (CLO-2):					•		
Find all the intervals con	ntainin	g solution	of the follo	wing equat	ion. Use Ne	ewton's method	to com-
pute the smallest negative	ve solu	tion(if any), accurate	to within	10^{-5} .		(6
points)	_	$-4.62e^{3x} - 1$	$3.11e^{2x} + 1$	$2.2e^x - 1.9$	9 = 0		
Q . 5 (CLO-4): Write Al	gorithi	m/MATLA	AB code for	Newton's	method in	Q 4 , (4 I	points)

 $Q1 = 1.042 x^2 - 12.01 x + 0.01265 = 0$

Exact values ase [4, = 11.52485832]

$$|x_1 = 11.52485832$$
 , $|x_2 = 0.0010533852$

Here $b = -12.01 \ \angle 0.$

So formula for x, is

 $7_1 = \frac{12.01 + 12.00}{2.084} \Rightarrow$

0

Since b is negative to we use alternate formula for χ_2 . i.e

$$\chi_{2} = \frac{-2C}{b - \sqrt{b^{2} - 4aC}} = \frac{-2(0.01265)}{-12.01 - \sqrt{12.01^{2} - 4(1.042)(0.01265)}} \\
= \frac{-0.0253}{-12.01 - 12.00} = \frac{-0.0253}{-24.01} \xrightarrow{\text{this part}}$$

$$=$$
 $[\chi_2 = 0.001054]$

Using the table, Newton's forward divided difference polynomial & 9 degree three is

(*)
$$P_3(x) = f(x_0) + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)$$

$$(x - x_2)$$

 $= \frac{1}{2} P_3(x) = 0.904837 - 0.820095(x - 0.1)$

+ 0.383717 (x-0.1)(x-0.3)-0.117868(x-0.1)(x-0.3)(x-0.4)
Simplification gives

$$\Rightarrow \left[P_{3}(a) = -0.117867 \chi^{3} + 0.478011 \chi^{2} - 0.9959777 + 0.999772 \right]$$

Backward DD polynomial is

$$P_{3}(x) = f(x_{n}) + b_{1}(x - x_{n}) + b_{2}(x - x_{n})(x - x_{n-1}) + b_{3}(x - x_{n})(x - x_{n-1})(x - x_{n-1})$$

$$P_{3}(n) = 0.548811 - 0.607545 (x-0.6) + 0.324783 (x-0.6)(x-0.4)$$
$$- 0.117868 (x-0.6)(x-0.4) (x-0.3)$$

Simply i Rying:

Newton's

$$\frac{Q_{3}}{p_{0}^{(2)}} = g(x) = 1+(\sin x)^{2}, \quad p_{0}^{(6)} = 1$$

$$\frac{p_{0}^{(2)}}{p_{0}^{(k)}} = p_{0}^{(k-1)} - \frac{p_{0}^{(k-1)} - p_{0}^{(k-1)}}{p_{0}^{(k-1)} - \theta p_{0}^{(k-1)}} + \frac{p_{0}^{(k-1)}}{p_{0}^{(k)}} + \frac{p_{0}^{(k)}}{p_{0}^{(k)}} = g(p_{0}^{(k)})$$

$$\frac{p_{0}^{(k)}}{p_{0}^{(k)}} = \frac{p_{0}^{(k)}}{p_{0}^{(k)}} + \frac{p_{0}^{(k)}}{p_{0}^{(k)}} = g(p_{0}^{(k)})$$

$$\frac{p_{0}^{(k)}}{p_{0}^{(k)}} = \frac{p_{0}^{(k$$

Thus $\int_{0}^{(2)} = 1.873464043$

Intervals of solution:

$$f(-1) > 0$$
 | Solution exists $b \mid w \mid [-2,-1]$

$$f(1)$$
 <0] solution exists b/w [0,1]

Newton's Method :

$$p_{new} = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}, \quad f'(x) = -13.86e^{3x} - 6.22e^{x} + 12.2e^{x}$$

QS: Algorithm

To find a solution to -4.62e3x -3.11e2x +12.2ex-1.99=0.

Input: intial approximation po, tol (TOL) max, no. of iterations N

Output: Approximate solution p & message failuse.

Step 1: Set i=1.

Step 2: while i = No do steps 3-6.

Step 3: Set $p = p_0 - \frac{f(p_0)}{f'(p_0)}$ (compute p_i) Step 4: If $|p-p_0| < ToL$ then OUTPUT: p (proceduse successful). STOP

Steps: Set i= i+1 (update to) step 6: Set po=p

21 1 0 1 1 1 2 1 1

Step 7: OUTPUT (Method failed often N iterations) unsuccesiful. Proceduse was STOP.

```
% newton raphsaon method
clear all
close all
format long
clc
syms x; %to treat x as variable in MATLAB
otherwise values of x will be required
f(x) = -4.62 \times exp(3 \times x) - 3.11 \times exp(2 \times x) + 12.2 \times exp(x) -
1.99;
f1(x) = diff(f(x), x); % derivative of f(x)
p0=input('Enter Initial Guess:');
tol=input('Enter tolerance :');
p=p0-(f(p0)/f1(p0));
i=1;
fprintf('\n n
                           pn');
                         %f',0,p0);
fprintf('\n%d
fprintf('\n%d
                         %f',i,p);
while (abs (p-p0) >tol)
    p0=p;
    p=p0-(f(p0)/f1(p0));
    i=i+1;
                     %f',i,p);
    fprintf('\n%d
end
fprintf('\nThe required aproximation is %f',p);
```