

Aprendizagem 2021

Lab 1: Univariate Statistics and Evaluation

Practical exercises

Consider the following dataset:

	У1	У2	Уз
x_1	0.2	0.5	Α
x_2	0.1	-0.4	Α
x_3	0.2	-0.1	Α
χ_4	0.9	0.8	В
χ_5	-0.3	0.3	В
χ_6	-0.1	-0.2	В
χ_7	-0.9	-0.1	C
X 8	0.2	0.5	C
X 9	0.7	-0.7	С
x_{10}	-0.3	0.4	С

I. Univariate statistics

- **1.** Approximate y1 distribution using a histogram using 4 bins in [-1,1]. Using the histogram, approximate the probability density function.
- 2. Compute the boxplot of y1 variable. Are there any outliers?
- 3. Are y1 and y2 variables correlated? Compare Pearson and Spearman coefficients.
- **4.** Identify the probability mass function of y3.
- **5.** Assume y3 class-conditional distributions of y2 follow a Gaussian distribution.
 - a) Identify their parameters and plot by hand the distributions.
 - b) Visually annotate the discriminant rules for the classification of y3 using y2 values.

II. Lazy learning

- **6.** Assuming a k-nearest neighbor with k=3 applied within a leave-one-out schema:
 - a) Let y_3 be the output variable (categoric). Considering an Euclidean (l2) distance, provide the classification estimates for x_1 and x_7 .
 - b) Let y_2 be the output variable. Considering equally weighted numeric-categoric variables with Manhattan (l1) and Hamming distances, provide the mean estimates for x_4 and x_9 .
- **7.** Consider a weighted-distance k-nearest neighbor with k=5 and the input data as training, compare the classification estimates for < -0.2, 0.5, **?** > assuming:
 - a) Chebyshev ($l\infty$) distance
 - b) cosine dissimilarity

III. Evaluation

- **8.** Consider the following y_3 paired estimates, $\hat{y}_3 = [B B A C B A C A B C].$
 - a) Draw the confusion matrix
 - b) Compute the kNN accuracy and sensitivity/recall per class
 - c) Considering class C, identify its precision and F-measure
 - d) Identify the accuracy, sensitivity, and precision of the random classifier
- **9.** Consider the following y_2 paired estimates, $\hat{y}_2 = [0.3 -0.5 \ 0.5 \ 0.5 \ 0.4 \ -0.2 \ 0.1 \ 0.5 \ -0.9 \ 0.4].$
 - a) Compute the mean absolute error and root mean squared error
 - b) Perform a residue analysis to assess the presence of systemic biases against y1

Programming quests

- **10.** Using **sklearn**, replicate the following code for learning and assessing the kNN classifier. Replace the iris dataset by the provided dataset for this lab.

 *Resource: https://medium.com/@jebaseelanravi96/machine-learning-iris-classification-33aa18a4a983
- **11.** Using **plotly**, plot the class-conditional distributions of each input variable of the iris dataset. By visual analysis, identify which variable appears to be a better predictor of the class. *Resource*: https://plotly.com/python/histograms/ (overlaid histograms)