Topics in Analysis and Linear Algebra

Le Chen

le.chen@emory.edu

Emory University Atlanta GA

Last updated on July 22, 2021

 $\begin{array}{c} {\rm Summer~Bootcamp~for}\\ {\rm Emory~Biostatistics~and~Bioinformatics}\\ {\rm PhD~Program} \end{array}$

July 22 - 28, 2021

Chapter 1. Mathematical Logics

Chapter 2. Set Theory

Chapter 3. Real Number System and Calculus

Chapter 4. Topics in Linear Algebra

1

Chapter 4. Topics in linear algebra

2

Chapter 4. Topics in linear algebra

§ 4.1 Abstract vector spaces

§ 4.2 Geometric Interpretation of Eigenvalues and Eigenvectors

§ 4.3 Determinant

Chapter 4. Topics in linear algebra

§ 4.1 Abstract vector spaces

§ 4.2 Geometric Interpretation of Eigenvalues and Eigenvectors

§ 4.3 Determinan

1. \mathbb{R}^n

2. Polynomials of order at most n

$$\{a_0+a_1x+\cdots+a_nx^n|a_i\in\mathbb{R},\ i=1,\cdots,n\}$$

- 3. The set of $m \times n$ matrices
- 4. The set of continuous functions on [0, 1], i.e., C([0, 1])
- 5. The set of functions on [0,1] having nth continuous derivatives, i.e. $C^n([0,1])$.
 - : :

- 1. \mathbb{R}^n
- 2. Polynomials of order at most n:

$$\{a_0 + a_1 x + \cdots + a_n x^n | a_i \in \mathbb{R}, i = 1, \cdots, n\}$$

- 3. The set of $m \times n$ matrices.
- 4. The set of continuous functions on [0,1], i.e., C([0,1]).
- 5. The set of functions on [0,1] having nth continuous derivatives, i.e. $C^n([0,1])$.

: :

- 1. \mathbb{R}^n
- 2. Polynomials of order at most n:

$$\{a_0 + a_1 x + \cdots + a_n x^n | a_i \in \mathbb{R}, i = 1, \cdots, n\}$$

- 3. The set of $m \times n$ matrices.
- 4. The set of continuous functions on [0,1], i.e., C([0,1])
- 5. The set of functions on [0,1] having nth continuous derivatives, i.e. $C^n([0,1])$.

: :

- 1. \mathbb{R}^n
- 2. Polynomials of order at most n:

$$\{a_0 + a_1 x + \cdots + a_n x^n | a_i \in \mathbb{R}, i = 1, \cdots, n\}$$

- 3. The set of $m \times n$ matrices.
- 4. The set of continuous functions on [0, 1], i.e., C([0, 1]).
- 5. The set of functions on [0,1] having nth continuous derivatives, i.e. $C^n([0,1])$.

- 1. \mathbb{R}^n
- 2. Polynomials of order at most n:

$$\{a_0+a_1x+\cdots+a_nx^n|a_i\in\mathbb{R},\ i=1,\cdots,n\}$$

- 3. The set of $m \times n$ matrices.
- 4. The set of continuous functions on [0, 1], i.e., C([0, 1]).
- 5. The set of functions on [0,1] having nth continuous derivatives, i.e., $C^n([0,1])$.

5

- 1. \mathbb{R}^n
- **2.** Polynomials of order at most n:

$$\{a_0 + a_1x + \cdots + a_nx^n | a_i \in \mathbb{R}, i = 1, \cdots, n\}$$

- 3. The set of $m \times n$ matrices.
- 4. The set of continuous functions on [0, 1], i.e., C([0, 1]).
- 5. The set of functions on [0,1] having nth continuous derivatives, i.e., $C^n([0,1])$.
 - :

Def. Let V be a nonempty set of objects with two operations: vector addition and scalar multiplication.

Then V is called a **vector space** if it satisfies the following:

Axioms of Addition and Axioms of Scalar Multiplication.

The elements of V are called **vectors**

Def. Let V be a nonempty set of objects with two operations: vector addition and scalar multiplication.

Then V is called a *vector space* if it satisfies the following:

 $\begin{array}{c} {\rm Axioms~of~Addition} \\ {\rm and} \\ {\rm Axioms~of~Scalar~Multiplication.} \end{array}$

The elements of V are called **vectors**

Def. Let V be a nonempty set of objects with two operations: vector addition and scalar multiplication.

Then V is called a *vector space* if it satisfies the following:

The elements of V are called *vectors*.

A1. V is closed under addition.

$$\vec{v}, \vec{w} \in V \implies \vec{u} + \vec{v} \in V$$

A2. Addition is commutative.

$$\vec{u} + \vec{v} = \vec{v} + \vec{u} \text{ for all } \vec{u}, \vec{v} \in V.$$

A3. Addition is associative

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w}) \text{ for all } \vec{u}, \vec{v}, \vec{w} \in V.$$

A4. Existence of an additive identity.

There exists an element 0 in V so that $\dot{u} + 0 = \dot{u}$ for all $\dot{u} \in V$.

A5. Existence of an additive inverse.

For each $\vec{u} \in V$ there exists an element $-\vec{u} \in V$ so that $\vec{u} + (-\vec{u}) = 0$.

7

A1. V is closed under addition.

$$\vec{v}, \vec{w} \in V \implies \vec{u} + \vec{v} \in V$$

A2. Addition is commutative.

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$
 for all $\vec{u}, \vec{v} \in V$.

A3. Addition is associative

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w}) \text{ for all } \vec{u}, \vec{v}, \vec{w} \in V.$$

A4. Existence of an additive identity.

There exists an element 0 in V so that $\vec{u} + 0 = \vec{u}$ for all $\vec{u} \in V$

A5. Existence of an additive inverse.

A1. V is closed under addition.

$$\vec{v}, \vec{w} \in V \implies \vec{u} + \vec{v} \in V$$

A2. Addition is commutative.

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$
 for all $\vec{u}, \vec{v} \in V$.

A3. Addition is associative.

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$
 for all $\vec{u}, \vec{v}, \vec{w} \in V$.

A4. Existence of an additive identity.

There exists an element $\vec{0}$ in V so that $\vec{u} + \vec{0} = \vec{u}$ for all $\vec{u} \in V$

A5. Existence of an additive inverse.

A1. V is closed under addition.

$$\vec{v}, \vec{w} \in V \implies \vec{u} + \vec{v} \in V$$

A2. Addition is commutative.

$$\vec{u} + \vec{v} = \vec{v} + \vec{u} \text{ for all } \vec{u}, \vec{v} \in V.$$

A3. Addition is associative.

$$(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w}) \text{ for all } \vec{u},\vec{v},\vec{w}\in V.$$

A4. Existence of an additive identity.

There exists an element $\vec{0}$ in V so that $\vec{u} + \vec{0} = \vec{u}$ for all $\vec{u} \in V$.

A5. Existence of an additive inverse.

A1. V is closed under addition.

$$\vec{v}, \vec{w} \in V \implies \vec{u} + \vec{v} \in V$$

A2. Addition is commutative.

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$
 for all $\vec{u}, \vec{v} \in V$.

A3. Addition is associative.

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$
 for all $\vec{u}, \vec{v}, \vec{w} \in V$.

A4. Existence of an additive identity.

There exists an element $\vec{0}$ in V so that $\vec{u} + \vec{0} = \vec{u}$ for all $\vec{u} \in V$.

A5. Existence of an additive inverse.

- S1. V is closed under scalar multiplication. $\vec{v} \in V$ and $k \in \mathbb{R}, \implies k\vec{v} \in V$.
- S2. Scalar multiplication distributes over vector addition $a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$ for all $a \in \mathbb{R}$ and $\vec{u}, \vec{v} \in V$.
- S3. Scalar multiplication distributes over scalar addition. $(a+b)\vec{u}=a\vec{u}+b\vec{u}$ for all $a,b\in\mathbb{R}$ and $\vec{u}\in V$.
- S4. Scalar multiplication is associative. $a(b\vec{u}) = (ab)\vec{u}$ for all $a, b \in \mathbb{R}$ and $\vec{u} \in V$.
- S5. Existence of a multiplicative identity for scalar multiplication. $1\vec{u} = \vec{u}$ for all $\vec{u} \in V$.

R

- S1. V is closed under scalar multiplication. $\vec{v} \in V$ and $k \in \mathbb{R}, \implies k\vec{v} \in V$.
- S2. Scalar multiplication distributes over vector addition. $a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$ for all $a \in \mathbb{R}$ and $\vec{u}, \vec{v} \in V$.
- S3. Scalar multiplication distributes over scalar addition $(a+b)\vec{u}=a\vec{u}+b\vec{u}$ for all $a,b\in\mathbb{R}$ and $\vec{u}\in V$.
- S4. Scalar multiplication is associative. $a(b\vec{u}) = (ab)\vec{u}$ for all $a, b \in \mathbb{R}$ and $\vec{u} \in V$.
- S5. Existence of a multiplicative identity for scalar multiplication $1\vec{u} = \vec{u}$ for all $\vec{u} \in V$.

- **S1.** V is closed under scalar multiplication. $\vec{v} \in V$ and $k \in \mathbb{R}, \implies k\vec{v} \in V$.
- S2. Scalar multiplication distributes over vector addition. $a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$ for all $a \in \mathbb{R}$ and $\vec{u}, \vec{v} \in V$.
- S3. Scalar multiplication distributes over scalar addition. $(a+b)\vec{u}=a\vec{u}+b\vec{u}$ for all $a,b\in\mathbb{R}$ and $\vec{u}\in V$.
- S4. Scalar multiplication is associative. $a(b\vec{u}) = (ab)\vec{u}$ for all $a, b \in \mathbb{R}$ and $\vec{u} \in V$.
- S5. Existence of a multiplicative identity for scalar multiplication. $1\vec{u} = \vec{u}$ for all $\vec{u} \in V$.

- S1. V is closed under scalar multiplication. $\vec{v} \in V$ and $k \in \mathbb{R}, \implies k\vec{v} \in V$.
- S2. Scalar multiplication distributes over vector addition. $a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$ for all $a \in \mathbb{R}$ and $\vec{u}, \vec{v} \in V$.
- S3. Scalar multiplication distributes over scalar addition. $(a+b)\vec{u}=a\vec{u}+b\vec{u}$ for all $a,b\in\mathbb{R}$ and $\vec{u}\in V$.
- S4. Scalar multiplication is associative. $a(b\vec{u}) = (ab)\vec{u}$ for all $a, b \in \mathbb{R}$ and $\vec{u} \in V$.
- S5. Existence of a multiplicative identity for scalar multiplication. $1\vec{u} = \vec{u}$ for all $\vec{u} \in V$.

- S1. V is closed under scalar multiplication. $\vec{v} \in V$ and $k \in \mathbb{R}, \implies k\vec{v} \in V$.
- S2. Scalar multiplication distributes over vector addition. $a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$ for all $a \in \mathbb{R}$ and $\vec{u}, \vec{v} \in V$.
- S3. Scalar multiplication distributes over scalar addition. $(a+b)\vec{u}=a\vec{u}+b\vec{u}$ for all $a,b\in\mathbb{R}$ and $\vec{u}\in V$.
- S4. Scalar multiplication is associative. $a(b\vec{u}) = (ab)\vec{u}$ for all $a, b \in \mathbb{R}$ and $\vec{u} \in V$.
- S5. Existence of a multiplicative identity for scalar multiplication. $1\vec{u}=\vec{u} \text{ for all } \vec{u} \in V.$

$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$$

(where $-\vec{v}$ is the additive inverse of \vec{v}).

- 1. If $\vec{u} + \vec{v} = \vec{u} + \vec{w}$, then $\vec{v} = \vec{w}$.
- 2. The equation $\vec{x} + \vec{v} = \vec{u}$, has a unique solution $\vec{x} \in V$ given by $\vec{x} = \vec{u} \vec{v}$.
- 3. $a\vec{v} = \vec{0}$ if and only if a = 0 or $\vec{v} = \vec{0}$
- 4. $(-1)\vec{v} = -\vec{v}$
- 5. $(-a)\vec{v} = -(a\vec{v}) = a(-\vec{v})$

$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$$

(where $-\vec{v}$ is the additive inverse of \vec{v}).

- 1. If $\vec{u} + \vec{v} = \vec{u} + \vec{w}$, then $\vec{v} = \vec{w}$.
- 2. The equation $\vec{x} + \vec{v} = \vec{u}$, has a unique solution $\vec{x} \in V$ given by $\vec{x} = \vec{u} \vec{v}$.
- 3. $a\vec{v} = \vec{0}$ if and only if a = 0 or $\vec{v} = \vec{0}$
- 4. $(-1)\vec{v} = -\vec{v}$
- 5. $(-a)\vec{v} = -(a\vec{v}) = a(-\vec{v})$

$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$$

(where $-\vec{v}$ is the additive inverse of \vec{v}).

- 1. If $\vec{u} + \vec{v} = \vec{u} + \vec{w}$, then $\vec{v} = \vec{w}$.
- 2. The equation $\vec{x} + \vec{v} = \vec{u}$, has a unique solution $\vec{x} \in V$ given by $\vec{x} = \vec{u} \vec{v}$.
- 3. $a\vec{v} = \vec{0}$ if and only if a = 0 or $\vec{v} = \vec{0}$
- 4. $(-1)\vec{v} = -\vec{v}$
- 5. $(-a)\vec{v} = -(a\vec{v}) = a(-\vec{v})$

$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$$

(where $-\vec{v}$ is the additive inverse of \vec{v}).

- 1. If $\vec{u} + \vec{v} = \vec{u} + \vec{w}$, then $\vec{v} = \vec{w}$.
- 2. The equation $\vec{x} + \vec{v} = \vec{u}$, has a unique solution $\vec{x} \in V$ given by $\vec{x} = \vec{u} \vec{v}$.
- 3. $a\vec{v} = \vec{0}$ if and only if a = 0 or $\vec{v} = \vec{0}$
- 4. $(-1)\vec{v} = -\vec{v}$
- 5. $(-a)\vec{v} = -(a\vec{v}) = a(-\vec{v})$

$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$$

(where $-\vec{v}$ is the additive inverse of \vec{v}).

- 1. If $\vec{u} + \vec{v} = \vec{u} + \vec{w}$, then $\vec{v} = \vec{w}$.
- 2. The equation $\vec{x} + \vec{v} = \vec{u}$, has a unique solution $\vec{x} \in V$ given by $\vec{x} = \vec{u} \vec{v}$.
- 3. $a\vec{v} = \vec{0}$ if and only if a = 0 or $\vec{v} = \vec{0}$.
- 4. $(-1)\vec{v} = -\vec{v}$
- 5. $(-a)\vec{v} = -(a\vec{v}) = a(-\vec{v})$

$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$$

(where $-\vec{v}$ is the additive inverse of \vec{v}).

- 1. If $\vec{u} + \vec{v} = \vec{u} + \vec{w}$, then $\vec{v} = \vec{w}$.
- 2. The equation $\vec{x} + \vec{v} = \vec{u}$, has a unique solution $\vec{x} \in V$ given by $\vec{x} = \vec{u} \vec{v}$.
- 3. $a\vec{v} = \vec{0}$ if and only if a = 0 or $\vec{v} = \vec{0}$.
- 4. $(-1)\vec{v} = -\vec{v}$.
- 5. $(-a)\vec{v} = -(a\vec{v}) = a(-\vec{v})$

$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$$

(where $-\vec{v}$ is the additive inverse of \vec{v}).

- 1. If $\vec{u} + \vec{v} = \vec{u} + \vec{w}$, then $\vec{v} = \vec{w}$.
- 2. The equation $\vec{x} + \vec{v} = \vec{u}$, has a unique solution $\vec{x} \in V$ given by $\vec{x} = \vec{u} \vec{v}$.
- 3. $a\vec{v} = \vec{0}$ if and only if a = 0 or $\vec{v} = \vec{0}$.
- 4. $(-1)\vec{v} = -\vec{v}$.
- 5. $(-a)\vec{v} = -(a\vec{v}) = a(-\vec{v}).$

E.g.1 Let $V = \{(x, y) \mid x, y \in \mathbb{R}\}$, with addition \oplus and scalar multiplication \odot defined as follows:

For
$$(x_1, y_1), (x_2, y_2) \in V$$
, and $a, b \in \mathbb{R}$:

Addition:
$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + 1).$$

Scalar multiplication:
$$\mathbf{a} \odot (\mathbf{x}_1, \mathbf{y}_1) = (\mathbf{a}\mathbf{x}_1, \mathbf{a}\mathbf{y}_1 + \mathbf{a} - 1)$$
.

E.g.1 Let $V = \{(x,y) \mid x,y \in \mathbb{R}\}$, with addition \oplus and scalar multiplication \odot defined as follows:

For $(x_1, y_1), (x_2, y_2) \in V$, and $a, b \in \mathbb{R}$:

Addition:
$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + 1).$$

Scalar multiplication:
$$\mathbf{a} \odot (\mathbf{x}_1, \mathbf{y}_1) = (\mathbf{a}\mathbf{x}_1, \mathbf{a}\mathbf{y}_1 + \mathbf{a} - 1)$$
.

E.g.1 Let $V = \{(x,y) \mid x,y \in \mathbb{R}\}$, with addition \oplus and scalar multiplication \odot defined as follows:

For
$$(x_1, y_1), (x_2, y_2) \in V$$
, and $a, b \in \mathbb{R}$:

Addition:
$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + 1).$$

Scalar multiplication:
$$a \odot (x_1, y_1) = (ax_1, ay_1 + a - 1)$$
.

E.g.1 Let $V = \{(x,y) \mid x,y \in \mathbb{R}\}$, with addition \oplus and scalar multiplication \odot defined as follows:

For
$$(x_1, y_1), (x_2, y_2) \in V$$
, and $a, b \in \mathbb{R}$:

Addition:
$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + 1).$$

Scalar multiplication:
$$a \odot (x_1, y_1) = (ax_1, ay_1 + a - 1)$$
.

E.g.1 Let $V = \{(x,y) \mid x,y \in \mathbb{R}\}$, with addition \oplus and scalar multiplication \odot defined as follows:

For $(x_1, y_1), (x_2, y_2) \in V$, and $a, b \in \mathbb{R}$:

Addition:
$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + 1).$$

Scalar multiplication:
$$a \odot (x_1, y_1) = (ax_1, ay_1 + a - 1)$$
.

Sol. It is clear that V is closed under \oplus and \odot , since both operations produce ordered pairs of real numbers.

- 1. It is routine to verify that \oplus is commutative and associative
- 2. What is the additive identity?
- 3. What is the additive inverse of $(x, y) \in V$?
- 4. Verify that $(a + b) \odot (x_1, y_1) = (a \odot (x_1, y_1)) \oplus (b \odot (x_1, y_1))$
- 5. Verify that $a \odot ((x_1, y_1) \oplus (x_2, y_2)) = (a \odot (x_1, y_1)) \oplus (a \odot (x_2, y_2))$.
- 6. Verify that $a \odot (b \odot (x_1, y_1)) = (ab) \odot (x_1, y_1)$
- 7. Verify that $1 \odot (x, y) = (x, y)$

- Sol. It is clear that V is closed under \oplus and \odot , since both operations produce ordered pairs of real numbers.
 - 1. It is routine to verify that \oplus is commutative and associative.
 - 2. What is the additive identity?
 - 3. What is the additive inverse of $(x, y) \in V$?
 - 4. Verify that $(a + b) \odot (x_1, y_1) = (a \odot (x_1, y_1)) \oplus (b \odot (x_1, y_1))$
 - 5. Verify that $a \odot ((x_1, y_1) \oplus (x_2, y_2)) = (a \odot (x_1, y_1)) \oplus (a \odot (x_2, y_2))$.
 - 6. Verify that $a \odot (b \odot (x_1, y_1)) = (ab) \odot (x_1, y_1)$.
 - 7. Verify that $1 \odot (x, y) = (x, y)$

- Sol. It is clear that V is closed under \oplus and \odot , since both operations produce ordered pairs of real numbers.
 - 1. It is routine to verify that \oplus is commutative and associative.
 - 2. What is the additive identity?
 - 3. What is the additive inverse of $(x, y) \in V$?
 - 4. Verify that $(a + b) \odot (x_1, y_1) = (a \odot (x_1, y_1)) \oplus (b \odot (x_1, y_1))$
 - 5. Verify that $a \odot ((x_1, y_1) \oplus (x_2, y_2)) = (a \odot (x_1, y_1)) \oplus (a \odot (x_2, y_2))$.
 - 6. Verify that $a \odot (b \odot (x_1, y_1)) = (ab) \odot (x_1, y_1)$.
 - 7. Verify that $1 \odot (x, y) = (x, y)$

- Sol. It is clear that V is closed under \oplus and \odot , since both operations produce ordered pairs of real numbers.
 - 1. It is routine to verify that \oplus is commutative and associative.
 - 2. What is the additive identity?
 - **3.** What is the additive inverse of $(x, y) \in V$?
 - 4. Verify that $(a+b) \odot (x_1, y_1) = (a \odot (x_1, y_1)) \oplus (b \odot (x_1, y_1))$
 - 5. Verify that $a \odot ((x_1, y_1) \oplus (x_2, y_2)) = (a \odot (x_1, y_1)) \oplus (a \odot (x_2, y_2))$.
 - 6. Verify that $a \odot (b \odot (x_1, y_1)) = (ab) \odot (x_1, y_1)$
 - 7. Verify that $1 \odot (x, y) = (x, y)$

- Sol. It is clear that V is closed under \oplus and \odot , since both operations produce ordered pairs of real numbers.
 - 1. It is routine to verify that \oplus is commutative and associative.
 - 2. What is the additive identity?
 - 3. What is the additive inverse of $(x, y) \in V$?
 - 4. Verify that $(a + b) \odot (x_1, y_1) = (a \odot (x_1, y_1)) \oplus (b \odot (x_1, y_1))$.
 - 5. Verify that $a \odot ((x_1, y_1) \oplus (x_2, y_2)) = (a \odot (x_1, y_1)) \oplus (a \odot (x_2, y_2))$.
 - 6. Verify that $a \odot (b \odot (x_1, y_1)) = (ab) \odot (x_1, y_1)$
 - 7. Verify that $1 \odot (x, y) = (x, y)$

- Sol. It is clear that V is closed under \oplus and \odot , since both operations produce ordered pairs of real numbers.
 - 1. It is routine to verify that \oplus is commutative and associative.
 - 2. What is the additive identity?
 - 3. What is the additive inverse of $(x, y) \in V$?
 - **4.** Verify that $(a + b) \odot (x_1, y_1) = (a \odot (x_1, y_1)) \oplus (b \odot (x_1, y_1))$.
 - 5. Verify that $a \odot ((x_1, y_1) \oplus (x_2, y_2)) = (a \odot (x_1, y_1)) \oplus (a \odot (x_2, y_2)).$
 - 6. Verify that $a \odot (b \odot (x_1, y_1)) = (ab) \odot (x_1, y_1)$.
 - 7. Verify that $1 \odot (x, y) = (x, y)$.

- Sol. It is clear that V is closed under \oplus and \odot , since both operations produce ordered pairs of real numbers.
 - 1. It is routine to verify that \oplus is commutative and associative.
 - 2. What is the additive identity?
 - 3. What is the additive inverse of $(x, y) \in V$?
 - 4. Verify that $(a + b) \odot (x_1, y_1) = (a \odot (x_1, y_1)) \oplus (b \odot (x_1, y_1))$.
 - 5. Verify that $a \odot ((x_1, y_1) \oplus (x_2, y_2)) = (a \odot (x_1, y_1)) \oplus (a \odot (x_2, y_2)).$
 - 6. Verify that $a \odot (b \odot (x_1, y_1)) = (ab) \odot (x_1, y_1)$.
 - 7. Verify that $1 \odot (x, y) = (x, y)$

Sol. It is clear that V is closed under \oplus and \odot , since both operations produce ordered pairs of real numbers.

- 1. It is routine to verify that \oplus is commutative and associative.
- 2. What is the additive identity?
- 3. What is the additive inverse of $(x, y) \in V$?
- 4. Verify that $(a + b) \odot (x_1, y_1) = (a \odot (x_1, y_1)) \oplus (b \odot (x_1, y_1))$.
- 5. Verify that $a \odot ((x_1, y_1) \oplus (x_2, y_2)) = (a \odot (x_1, y_1)) \oplus (a \odot (x_2, y_2)).$
- 6. Verify that $\mathbf{a} \odot (\mathbf{b} \odot (\mathbf{x}_1, \mathbf{y}_1)) = (\mathbf{a}\mathbf{b}) \odot (\mathbf{x}_1, \mathbf{y}_1)$.
- 7. Verify that $1 \odot (x, y) = (x, y)$.

Let the addition \oplus and the scalar multiplication \odot defined as follows:

For $x, y \in \mathbb{R}_+$, and $a \in \mathbb{R}$:

Addition: $x \oplus y = xy$.

Scalar multiplication: $a \odot x = x^a$.

Let the addition \oplus and the scalar multiplication \odot defined as follows:

For $x, y \in \mathbb{R}_+$, and $a \in \mathbb{R}$:

Addition: $x \oplus y = xy$.

Scalar multiplication: $a \odot x = x^a$.

Let the addition \oplus and the scalar multiplication \odot defined as follows:

For $x, y \in \mathbb{R}_+$, and $a \in \mathbb{R}$:

Addition: $x \oplus y = xy$.

Scalar multiplication: $a \odot x = x^a$.

Let the addition \oplus and the scalar multiplication \odot defined as follows:

For $x, y \in \mathbb{R}_+$, and $a \in \mathbb{R}$:

Addition: $x \oplus y = xy$.

Scalar multiplication: $a \odot x = x^a$.

Let the addition \oplus and the scalar multiplication \odot defined as follows:

For $x, y \in \mathbb{R}_+$, and $a \in \mathbb{R}$:

Addition: $x \oplus y = xy$.

Scalar multiplication: $a \odot x = x^a$.

Let the addition \oplus and the scalar multiplication \odot defined as follows:

For $x, y \in \mathbb{R}_+$, and $a \in \mathbb{R}$:

Addition: $x \oplus y = xy$.

Scalar multiplication: $a \odot x = x^a$.

- E.g.3 Let C([0,1]) be the set of continuous functions defined on [0,1] equipped with usual addition and scalar multiplication. Prove that C([0,1]) is a vector space.
- E.g.4 Let $C^n([0,1])$ be the set of functions that have continuous nth derivatives $(n \ge 0)$ defined on [0,1], equipped with usual addition and scalar multiplication. Prove that $C^n([0,1])$ is a vector space.
- E.g.5 The set of $m \times n$ matrices M_{mn}
- E.g.6 Polynomials of degree n.

- E.g.3 Let C([0,1]) be the set of continuous functions defined on [0,1] equipped with usual addition and scalar multiplication. Prove that C([0,1]) is a vector space.
- E.g.4 Let $C^n([0,1])$ be the set of functions that have continuous nth derivatives $(n \ge 0)$ defined on [0,1], equipped with usual addition and scalar multiplication. Prove that $C^n([0,1])$ is a vector space.
- E.g.5 The set of $m \times n$ matrices M_{mn}
- E.g.6 Polynomials of degree n.

- E.g.3 Let C([0,1]) be the set of continuous functions defined on [0,1] equipped with usual addition and scalar multiplication. Prove that C([0,1]) is a vector space.
- E.g.4 Let $C^n([0,1])$ be the set of functions that have continuous nth derivatives $(n \ge 0)$ defined on [0,1], equipped with usual addition and scalar multiplication. Prove that $C^n([0,1])$ is a vector space.
- E.g.5 The set of $m \times n$ matrices M_{mn} .
- E.g.6 Polynomials of degree n.

- E.g.3 Let C([0,1]) be the set of continuous functions defined on [0,1] equipped with usual addition and scalar multiplication. Prove that C([0,1]) is a vector space.
- E.g.4 Let $C^n([0,1])$ be the set of functions that have continuous nth derivatives $(n \ge 0)$ defined on [0,1], equipped with usual addition and scalar multiplication. Prove that $C^n([0,1])$ is a vector space.
- E.g.5 The set of $m \times n$ matrices M_{mn} .
- E.g.6 Polynomials of degree n.

Chapter 4. Topics in linear algebra

§ 4.1 Abstract vector spaces

§ 4.2 Geometric Interpretation of Eigenvalues and Eigenvectors

§ 4.3 Determinan

E.g. $A = \begin{pmatrix} 4 & -2 \\ -1 & 3 \end{pmatrix}$ has two eigenvalues: $\lambda_1 = 2$ and $\lambda_2 = 5$ with corresponding eigenvectors

$$ec{\pmb{v}}_1 = egin{pmatrix} 1 \ 1 \end{pmatrix} \quad ext{and} \quad ec{\pmb{v}}_2 = egin{pmatrix} -1 \ 1/2 \end{pmatrix}$$

Def. Let A be a 2×2 matrix and L a line in \mathbb{R}^2 through the origin. Then L is said to be A-invariant if the vector $A\vec{x}$ lies in L whenever \vec{x} lies in L,

i.e., $A\vec{x}$ is a scalar multiple of \vec{x} , i.e., $A\vec{x} = \lambda \vec{x}$ for some scalar $\lambda \in \mathbb{R}$, i.e., \vec{x} is an eigenvector of A.

Def. Let $\vec{v} = \begin{bmatrix} a \\ b \end{bmatrix}$ be a nonzero vector in \mathbb{R}^2 . Then $L_{\vec{v}}$ is the set of all scalar multiples of \vec{v} , i.e.,

$$L_{\vec{v}} = \mathbb{R}\vec{v} = \left\{t\vec{v} \mid t \in \mathbb{R}\right\}.$$

Thm Let A be a 2×2 matrix and let $\vec{v} \neq 0$ be a vector in \mathbb{R}^2 . Then $L_{\vec{v}}$ is A-invariant if and only if \vec{v} is an eigenvector of A.

Def. Let A be a 2×2 matrix and L a line in \mathbb{R}^2 through the origin. Then L is said to be A-invariant if the vector $A\vec{x}$ lies in L whenever \vec{x} lies in L,

i.e., $A\vec{x}$ is a scalar multiple of \vec{x} , i.e., $A\vec{x} = \lambda \vec{x}$ for some scalar $\lambda \in \mathbb{R}$, i.e., \vec{x} is an eigenvector of A.

Def. Let $\vec{v} = \begin{bmatrix} a \\ b \end{bmatrix}$ be a nonzero vector in \mathbb{R}^2 . Then $L_{\vec{v}}$ is the set of all scalar multiples of \vec{v} , i.e.,

$$L_{\vec{v}} = \mathbb{R}\vec{v} = \left\{t\vec{v} \mid t \in \mathbb{R}\right\}.$$

Thm Let A be a 2×2 matrix and let $\vec{v} \neq 0$ be a vector in \mathbb{R}^2 . Then $L_{\vec{v}}$ is A-invariant if and only if \vec{v} is an eigenvector of A.

Def. Let A be a 2×2 matrix and L a line in \mathbb{R}^2 through the origin. Then L is said to be A-invariant if the vector $A\vec{x}$ lies in L whenever \vec{x} lies in L,

i.e., $A\vec{x}$ is a scalar multiple of \vec{x} , i.e., $A\vec{x} = \lambda \vec{x}$ for some scalar $\lambda \in \mathbb{R}$, i.e., \vec{x} is an eigenvector of A.

Def. Let $\vec{v} = \begin{bmatrix} a \\ b \end{bmatrix}$ be a nonzero vector in \mathbb{R}^2 . Then $L_{\vec{v}}$ is the set of all scalar multiples of \vec{v} , i.e.,

$$L_{\vec{v}} = \mathbb{R}\vec{v} = \left\{t\vec{v} \mid t \in \mathbb{R}\right\}.$$

Thm Let A be a 2×2 matrix and let $\vec{v} \neq 0$ be a vector in \mathbb{R}^2 . Then $L_{\vec{v}}$ is A-invariant if and only if \vec{v} is an eigenvector of A.

E.g. Let $m \in \mathbb{R}$ and consider the linear transformation $Q_m : \mathbb{R}^2 \to \mathbb{R}^2$, i.e., reflection in the line y = mx.

Recall that this is a matrix transformation induced by

$$A = \frac{1}{1+m^2} \begin{bmatrix} 1-m^2 & 2m \\ 2m & m^2-1 \end{bmatrix}.$$

Find the lines that pass through origin and are A-invariant. Determine corresponding eigenvalues.

Let $\vec{x}_1 = \begin{bmatrix} 1 \\ m \end{bmatrix}$. Then $L_{\vec{x}_1}$ is A-invariant, that is, \vec{x}_1 is an eigenvector. Since the vector won't change, its eigenvalue should be 1. Indeed, one can verify that

 $A\vec{x}_1 = rac{1}{1+m^2} \left[egin{array}{cc} 1-m^2 & 2m & \ 2m & m^2-1 \end{array}
ight] \left(egin{array}{c} 1 \ m \end{array}
ight) = ... = \left(egin{array}{c} 1 \ m \end{array}
ight) = \vec{x}_1.$

Let $\vec{x}_1 = \begin{bmatrix} 1 \\ m \end{bmatrix}$. Then $L_{\vec{x}_1}$ is A-invariant, that is, \vec{x}_1 is an eigenvector. Since the vector won't change, its eigenvalue should be 1. Indeed, one can verify that

 $A\vec{x}_1 = rac{1}{1+m^2} \left[egin{array}{cc} 1-m^2 & 2m & \ 2m & m^2-1 \end{array}
ight] \left(egin{array}{c} 1 \ m \end{array}
ight) = ... = \left(egin{array}{c} 1 \ m \end{array}
ight) = \vec{x}_1.$

Let $\vec{x}_1 = \begin{bmatrix} 1 \\ m \end{bmatrix}$. Then $L_{\vec{x}_1}$ is A-invariant, that is, \vec{x}_1 is an eigenvector.

Since the vector won't change, its eigenvalue should be 1. Indeed, one can verify that

$$A\vec{x}_1 = \frac{1}{1+m^2} \begin{bmatrix} 1-m^2 & 2m \\ 2m & m^2-1 \end{bmatrix} \begin{pmatrix} 1 \\ m \end{pmatrix} = \dots = \begin{pmatrix} 1 \\ m \end{pmatrix} = \vec{x}_1.$$

Let $\vec{x}_1 = \begin{bmatrix} 1 \\ m \end{bmatrix}$. Then $L_{\vec{x}_1}$ is A-invariant, that is, \vec{x}_1 is an eigenvector.

Since the vector won't change, its eigenvalue should be 1. Indeed, one can verify that

$$A\vec{x}_1 = rac{1}{1+m^2} \left[egin{array}{cc} 1-m^2 & 2m \ 2m & m^2-1 \end{array}
ight] \left(egin{array}{c} 1 \ m \end{array}
ight) = ... = \left(egin{array}{c} 1 \ m \end{array}
ight) = ec{x}_1.$$

20

Let $\vec{x}_2 = \begin{bmatrix} -m \\ 1 \end{bmatrix}$. Then $L_{\vec{x}_2}$ is A-invariant, that is, \vec{x}_2 is an eigenvector.

Since the vector won't change the size, only flip the direction, its eigenvalue should be -1. Indeed, one can verify that

$$A\vec{x}_2 = \frac{1}{1+m^2} \begin{bmatrix} 1-m^2 & 2m \\ 2m & m^2-1 \end{bmatrix} \begin{pmatrix} -m \\ 1 \end{pmatrix} = \cdots = \begin{pmatrix} m \\ -1 \end{pmatrix} = -\vec{x}_2.$$

21

Let $\vec{x}_2 = \begin{bmatrix} -m \\ 1 \end{bmatrix}$. Then $L_{\vec{x}_2}$ is A-invariant, that is, \vec{x}_2 is an eigenvector.

Since the vector won't change the size, only flip the direction, its eigenvalue should be -1. Indeed, one can verify that

$$A\vec{x}_2 = rac{1}{1+m^2} \left[egin{array}{ccc} 1-m^2 & 2m & \\ 2m & m^2-1 \end{array}
ight] \left(egin{array}{c} -m \\ 1 \end{array}
ight) = \cdots = \left(egin{array}{c} m \\ -1 \end{array}
ight) = -\vec{x}_2.$$

E.g. Let θ be a real number, and $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ rotation through an angle of θ , induced by the matrix

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Claim A has no real eigenvalues unless θ is an integer multiple of π , i.e. $\pm \pi, \pm 2\pi, \pm 3\pi,$ etc.

Sol. a line L in \mathbb{R}^2 is A invariant if and only if θ is an integer multiple of π .

E.g. Let θ be a real number, and $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ rotation through an angle of θ , induced by the matrix

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Claim A has no real eigenvalues unless θ is an integer multiple of π , i.e., $\pm \pi, \pm 2\pi, \pm 3\pi$, etc.

Sol. a line L in \mathbb{R}^2 is A invariant if and only if θ is an integer multiple of π

E.g. Let θ be a real number, and $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ rotation through an angle of θ , induced by the matrix

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Claim A has no real eigenvalues unless θ is an integer multiple of π , i.e., $\pm \pi, \pm 2\pi, \pm 3\pi$, etc.

Sol. a line L in \mathbb{R}^2 is A invariant if and only if θ is an integer multiple of π .

Chapter 4. Topics in linear algebra

§ 4.1 Abstract vector spaces

§ 4.2 Geometric Interpretation of Eigenvalues and Eigenvectors

§ 4.3 Determinant

$$\det\begin{pmatrix} a & c \\ b & d \end{pmatrix} = \text{signed area of parallelogram}$$

 $\det \begin{pmatrix} \vec{r}_1 & \vec{r}_2 & \vec{r}_3 \end{pmatrix} = \text{signed volume of the parallelepipe}$

Cofactor and cofactor expansion

Def. Let $A = [a_{ij}]$ be an $n \times n$ matrix.

- The sign of the (i,j) position is $(-1)^{i+j}$.

Cofactor and cofactor expansion

Def. Let $A = [a_{ij}]$ be an $n \times n$ matrix.

- The sign of the (i,j) position is $(-1)^{i+j}$.

$$\left[\begin{array}{cccc} a_{11} & a_{12} & a_{13} & \cdots \\ a_{21} & a_{22} & a_{23} & \cdots \\ a_{31} & a_{32} & a_{33} & \cdots \\ \vdots & \vdots & \vdots & \end{array} \right] \quad \Rightarrow \quad \left[\begin{array}{cccc} + & - & + & \cdots \\ - & + & - & \cdots \\ + & - & + & \cdots \\ \vdots & \vdots & \vdots & \end{array} \right]$$

- Let A_{ij} denote the $(n-1) \times (n-1)$ matrix obtained from A by deleting row i and column j. The (i,j)-cofactor of A is

$$c_{ij}(A) = (-1)^{i+j} \det(A_{ij}).$$

- The determinant of A is defined as

$$\det A = a_{11}c_{11}(A) + a_{12}c_{12}(A) + a_{13}c_{13}(A) + \cdots + a_{1n}c_{1n}(A)$$

and is called the cofactor expansion of det A along row 1

- Let A_{ij} denote the $(n-1) \times (n-1)$ matrix obtained from A by deleting row i and column j. The (i,j)-cofactor of A is

$$c_{ij}(A) = (-1)^{i+j} \det(A_{ij}).$$

- The determinant of A is defined as

$$\det A = a_{11}c_{11}(A) + a_{12}c_{12}(A) + a_{13}c_{13}(A) + \cdots + a_{1n}c_{1n}(A)$$

and is called the cofactor expansion of det A along row 1.

Problem Given data points (0,1), (1,2), (2,5) and (3,10), find an interpolating polynomial p(x) of degree at most three, and then estimate the value of y corresponding to x = 3/2.

Problem Given data points (0,1), (1,2), (2,5) and (3,10), find an interpolating polynomial p(x) of degree at most three, and then estimate the value of y corresponding to x = 3/2.

Problem Given data points (0,1), (1,2), (2,5) and (3,10), find an interpolating polynomial p(x) of degree at most three, and then estimate the value of y corresponding to x = 3/2.

Sol. We want to find the coefficients r_0 , r_1 , r_2 and r_3 of

$$p(x) = r_0 + r_1 x + r_2 x^2 + r_3 x^3$$

so that
$$p(0) = 1$$
, $p(1) = 2$, $p(2) = 5$, and $p(3) = 10$.

$$p(0) = r_0 = 1$$

$$p(1) = r_0 + r_1 + r_2 + r_3 = 2$$

$$\rho(2) = r_0 + 2r_1 + 4r_2 + 8r_3 = 5$$

$$p(3) = r_0 + 3r_1 + 9r_2 + 27r_3 = 10$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 2 \\ 1 & 2 & 4 & 8 & 5 \\ 1 & 3 & 9 & 27 & 10 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Therefore, $r_0 = 1$, $r_1 = 0$, $r_2 = 1$, $r_3 = 0$, and so

$$p(x) = 1 + x^2.$$

Finally, the estimate is

$$y = p\left(\frac{3}{2}\right) = 1 + \left(\frac{3}{2}\right)^2 = \frac{13}{4}.$$

. .

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 2 \\ 1 & 2 & 4 & 8 & 5 \\ 1 & 3 & 9 & 27 & 10 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Therefore, $r_0 = 1$, $r_1 = 0$, $r_2 = 1$, $r_3 = 0$, and so

$$p(x) = 1 + x^2.$$

Finally, the estimate is

$$y = \rho\left(\frac{3}{2}\right) = 1 + \left(\frac{3}{2}\right)^2 = \frac{13}{4}$$

20

$$\begin{bmatrix} 1 & 0 & 0 & 0 & | & 1 \\ 1 & 1 & 1 & 1 & | & 2 \\ 1 & 2 & 4 & 8 & | & 5 \\ 1 & 3 & 9 & 27 & | & 10 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & | & 1 \\ 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

Therefore, $r_0 = 1$, $r_1 = 0$, $r_2 = 1$, $r_3 = 0$, and so

$$p(x) = 1 + x^2.$$

Finally, the estimate is

$$y = p\left(\frac{3}{2}\right) = 1 + \left(\frac{3}{2}\right)^2 = \frac{13}{4}$$

20

$$\begin{bmatrix} 1 & 0 & 0 & 0 & | & 1 \\ 1 & 1 & 1 & 1 & | & 2 \\ 1 & 2 & 4 & 8 & | & 5 \\ 1 & 3 & 9 & 27 & | & 10 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & | & 1 \\ 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

Therefore, $r_0 = 1$, $r_1 = 0$, $r_2 = 1$, $r_3 = 0$, and so

$$p(x) = 1 + x^2.$$

Finally, the estimate is

$$y = p\left(\frac{3}{2}\right) = 1 + \left(\frac{3}{2}\right)^2 = \frac{13}{4}.$$

Thm (Polynomial Interpolation)

Given n data points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ with the x_i distinct, there is a unique polynomial

$$p(x) = r_0 + r_1 x + r_2 x^2 + \dots + r_{n-1} x^{n-1}$$

such that $p(x_i) = y_i$ for i = 1, 2, ..., n.

The polynomial p(x) is called the *interpolating polynomial* for the data.

Thm (Polynomial Interpolation)

Given n data points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ with the x_i distinct, there is a unique polynomial

$$p(x) = r_0 + r_1 x + r_2 x^2 + \dots + r_{n-1} x^{n-1}$$

such that $p(x_i) = y_i$ for i = 1, 2, ..., n.

The polynomial p(x) is called the *interpolating polynomial* for the data

Thm (Polynomial Interpolation)

Given n data points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ with the x_i distinct, there is a unique polynomial

$$p(x) = r_0 + r_1 x + r_2 x^2 + \cdots + r_{n-1} x^{n-1}$$

such that $p(x_i) = y_i$ for i = 1, 2, ..., n.

The polynomial p(x) is called the *interpolating polynomial* for the data.

$$r_0 + r_1 x_1 + r_2 x_1^2 + \dots + r_{n-1} x_1^{n-1} = y_1$$

$$r_0 + r_1 x_2 + r_2 x_2^2 + \dots + r_{n-1} x_2^{n-1} = y_2$$

$$r_0 + r_1 x_3 + r_2 x_3^2 + \dots + r_{n-1} x_3^{n-1} = y_3$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$r_0 + r_1 x_n + r_2 x_n^2 + \dots + r_{n-1} x_n^{n-1} = y_n$$

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{bmatrix}$$

- ► Such matrix is called Vandermonde matrix
- ▶ Its determinant is called Vandermonde determinant.

$$r_0 + r_1 x_1 + r_2 x_1^2 + \dots + r_{n-1} x_1^{n-1} = y_1$$

$$r_0 + r_1 x_2 + r_2 x_2^2 + \dots + r_{n-1} x_2^{n-1} = y_2$$

$$r_0 + r_1 x_3 + r_2 x_3^2 + \dots + r_{n-1} x_3^{n-1} = y_3$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$r_0 + r_1 x_n + r_2 x_n^2 + \dots + r_{n-1} x_n^{n-1} = y_n$$

$$\begin{bmatrix} 1 & X_1 & X_1^2 & \cdots & X_1^{n-1} \\ 1 & X_2 & X_2^2 & \cdots & X_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & X_n & X_n^2 & \cdots & X_n^{n-1} \end{bmatrix}$$

- ► Such matrix is called Vandermonde matrix
- ▶ Its determinant is called Vandermonde determinant.

$$r_{0} + r_{1}x_{1} + r_{2}x_{1}^{2} + \dots + r_{n-1}x_{1}^{n-1} = y_{1}$$

$$r_{0} + r_{1}x_{2} + r_{2}x_{2}^{2} + \dots + r_{n-1}x_{2}^{n-1} = y_{2}$$

$$r_{0} + r_{1}x_{3} + r_{2}x_{3}^{2} + \dots + r_{n-1}x_{3}^{n-1} = y_{3}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$r_{0} + r_{1}x_{n} + r_{2}x_{n}^{2} + \dots + r_{n-1}x_{n}^{n-1} = y_{n}$$

$$\left[\begin{array}{ccccc} 1 & \textit{x}_1 & \textit{x}_1^2 & \cdots & \textit{x}_1^{n-1} \\ 1 & \textit{x}_2 & \textit{x}_2^2 & \cdots & \textit{x}_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \textit{x}_n & \textit{x}_n^2 & \cdots & \textit{x}_n^{n-1} \end{array} \right]$$

- ► Such matrix is called Vandermonde matrix.
- ► Its determinant is called Vandermonde determinant.

$$r_0 + r_1 x_1 + r_2 x_1^2 + \dots + r_{n-1} x_1^{n-1} = y_1$$

$$r_0 + r_1 x_2 + r_2 x_2^2 + \dots + r_{n-1} x_2^{n-1} = y_2$$

$$r_0 + r_1 x_3 + r_2 x_3^2 + \dots + r_{n-1} x_3^{n-1} = y_3$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$r_0 + r_1 x_n + r_2 x_n^2 + \dots + r_{n-1} x_n^{n-1} = y_n$$

$$\begin{bmatrix} 1 & X_1 & X_1^2 & \cdots & X_1^{n-1} \\ 1 & X_2 & X_2^2 & \cdots & X_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & X_n & X_n^2 & \cdots & X_n^{n-1} \end{bmatrix}$$

- ► Such matrix is called Vandermonde matrix.
- ► Its determinant is called Vandermonde determinant.

Thm (Vandermonde Determinant)

Let a_1, a_2, \ldots, a_n be real numbers, $n \geq 2$. The corresponding Vandermonde determinant is

$$\det \begin{bmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_n & a_n^2 & \cdots & a_n^{n-1} \end{bmatrix} = \prod_{1 \le j < i \le n} (a_i - a_j)$$

Thm (Vandermonde Determinant)

Let a_1, a_2, \ldots, a_n be real numbers, $n \geq 2$. The corresponding Vandermonde determinant is

$$\det \left[\begin{array}{cccc} 1 & \textbf{\textit{a}}_1 & \textbf{\textit{a}}_1^2 & \cdots & \textbf{\textit{a}}_1^{n-1} \\ 1 & \textbf{\textit{a}}_2 & \textbf{\textit{a}}_2^2 & \cdots & \textbf{\textit{a}}_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \textbf{\textit{a}}_n & \textbf{\textit{a}}_n^2 & \cdots & \textbf{\textit{a}}_n^{n-1} \end{array} \right] = \prod_{1 \leq j < j \leq n} (\textbf{\textit{a}}_j - \textbf{\textit{a}}_j).$$

$$\det egin{pmatrix} 1 & \pmb{a}_1 \ 1 & \pmb{a}_2 \end{pmatrix} = \pmb{a}_2 - \pmb{a}_1 = \prod_{1 \leq j < i \leq 2} (\pmb{a}_i - \pmb{a}_j).$$

Assume that it is true for n-1. Now let's consider the case n. Denot

$$\rho(\mathbf{x}) := \det \begin{bmatrix}
1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\
1 & a_2 & a_2^2 & \cdots & a_2^{n-1}
\end{bmatrix}$$

$$\begin{vmatrix}
1 & a_{n-1} & a_{n-1}^2 & \cdots & a_{n-1}^{n-1} \\
1 & \mathbf{x} & \mathbf{x}^2 & \cdots & \mathbf{x}^{n-1}
\end{bmatrix}$$

$$\detegin{pmatrix} 1 & \pmb{a}_1 \ 1 & \pmb{a}_2 \end{pmatrix} = \pmb{a}_2 - \pmb{a}_1 = \prod_{1 \leq j < i \leq 2} (\pmb{a}_i - \pmb{a}_j).$$

Assume that it is true for n-1. Now let's consider the case n. Denote

$$p(\mathbf{x}) := \det \begin{bmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{n-1} & a_{n-1}^2 & \cdots & a_{n-1}^{n-1} \\ 1 & \mathbf{x} & \mathbf{x}^2 & \cdots & \mathbf{x}^{n-1} \end{bmatrix}$$

$$\detegin{pmatrix} 1 & \pmb{a}_1 \ 1 & \pmb{a}_2 \end{pmatrix} = \pmb{a}_2 - \pmb{a}_1 = \prod_{1 \leq j < i \leq 2} (\pmb{a}_i - \pmb{a}_j).$$

Assume that it is true for n-1. Now let's consider the case n. Denote

$$p(\mathbf{x}) := \det \begin{bmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{n-1} & a_{n-1}^2 & \cdots & a_{n-1}^{n-1} \\ 1 & \mathbf{x} & \mathbf{x}^2 & \cdots & \mathbf{x}^{n-1} \end{bmatrix}$$

$$\det\begin{pmatrix}1&a_1\\1&a_2\end{pmatrix}=a_2-a_1=\prod_{1\leq j< i\leq 2}(a_i-a_j).$$

Assume that it is true for n-1. Now let's consider the case n. Denote

$$ho(x) := \det \left[egin{array}{ccccc} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \ dots & dots & dots & dots \ 1 & a_{n-1} & a_{n-1}^2 & \cdots & a_{n-1}^{n-1} \ 1 & x & x^2 & \cdots & x^{n-1} \end{array}
ight].$$

Because $p(a_1) = \cdots = p(a_{n-1}) = 0$ (why?), p(x) has to take the following form:

$$p(x) = c(x - a_1)(x - a_2) \cdots (x - a_{n-1}).$$

To identify the constant c, notice that c is the coefficient for x^{n-1} . By cofactor expansion of the determinant along the last row,

$$c = (-1)^{n+n} \det \left[egin{array}{cccc} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \ dots & dots & dots & dots & dots \ 1 & a_{n-1} & a_{n-1}^2 & \cdots & a_{n-1}^{n-1} \end{array}
ight] \ = \prod_{1 \leq j < i \leq n-1} (a_i - a_j).$$

Because $p(a_1) = \cdots = p(a_{n-1}) = 0$ (why?), p(x) has to take the following form:

$$p(x) = c(x - a_1)(x - a_2) \cdots (x - a_{n-1}).$$

To identify the constant c, notice that c is the coefficient for x^{n-1} . By cofactor expansion of the determinant along the last row,

$$c = (-1)^{n+n} \det \begin{bmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{n-1} & a_{n-1}^2 & \cdots & a_{n-1}^{n-1} \end{bmatrix}$$
$$= \prod_{1 \le j < i \le n-1} (a_i - a_j).$$

Hence,

$$p(a_n) = \left(\prod_{1 \le j < i \le n-1} (a_i - a_j)\right) \times (a_n - a_1)(a_n - a_2) \cdots (a_n - a_{n-1})$$

$$p(a_n) = \prod_{1 \le j < i \le n} (a_i - a_j).$$

_

E.g. In our earlier example with the data points (0,1), (1,2), (2,5) and (3,10), we have

$$a_1 = 0$$
, $a_2 = 1$, $a_3 = 2$, $a_4 = 3$

giving us the *Vandermonde* determinant

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \end{vmatrix}$$

According to the previous theorem, this determinant is equal to

$$(a_2 - a_1)(a_3 - a_1)(a_3 - a_2)(a_4 - a_1)(a_4 - a_2)(a_4 - a_3)$$

$$= (1 - 0)(2 - 0)(2 - 1)(3 - 0)(3 - 1)(3 - 2)$$

$$= 2 \times 3 \times 2$$

$$= 12.$$

E.g. In our earlier example with the data points (0,1), (1,2), (2,5) and (3,10), we have

$$a_1 = 0$$
, $a_2 = 1$, $a_3 = 2$, $a_4 = 3$

giving us the *Vandermonde* determinant

$$\begin{vmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27
\end{vmatrix}$$

According to the previous theorem, this determinant is equal to

$$(a_2 - a_1)(a_3 - a_1)(a_3 - a_2)(a_4 - a_1)(a_4 - a_2)(a_4 - a_3)$$

$$= (1 - 0)(2 - 0)(2 - 1)(3 - 0)(3 - 1)(3 - 2)$$

$$= 2 \times 3 \times 2$$

$$= 12.$$

Corr. The Vandermonde determinant is nonzero if a_1, a_2, \ldots, a_n are distinct.

This means that given n data points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ with distinct x_i , then there is a unique interpolating polynomial

$$p(x) = r_0 + r_1 x + r_2 x^2 + \dots + r_{n-1} x^{n-1}$$

Corr. The Vandermonde determinant is nonzero if a_1, a_2, \ldots, a_n are distinct.

This means that given n data points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ with distinct x_i , then there is a unique interpolating polynomial

$$p(x) = r_0 + r_1 x + r_2 x^2 + \cdots + r_{n-1} x^{n-1}.$$