PISMENI ISPIT IZ ELEKTRIČNIH KRUGOVA 2010-2011

1. Za električni krug prikazan slikom se u trenutku t=0 prebaci sklopka S iz položaja 1 u 2. Zadane su normalizirane vrijednosti elemenata: R=1, L=1, C=2, $u_{g1}(t)=2\sin(t)$; $-\infty < t < \infty$ (sinusno stacionarno stanje) i napon baterije $u_{g2}(t)=1$ V (istosmjerni izvor). Odrediti za t < 0: a) fazore napona na kapacitetu C i struje kroz induktivitet L; b) valne oblike napona na kapacitetu $u_C(t)$ i struje kroz induktivitet $i_L(t)$; c) početne

uvjete $u_C(0)$ i $i_L(0)$. Odrediti za $t \ge 0$: d) napon na izlazu $U_{iz}(s)$; e) valni oblik napona $u_{iz}(t)$.

2. Za električni krug prikazan slikom i pridružene orijentacije grana i čvorove napisati: a) matricu incidencija \mathbf{A}_a ; b) temeljnu spojnu matricu \mathbf{S} , temeljnu rastavnu matricu \mathbf{Q} ; c) matricu impedancija grana \mathbf{Z}_b i vektor početnih uvjeta i neovisnih izvora grana \mathbf{U}_{0b} ; d) matricu admitancija grana \mathbf{Y}_b i vektor početnih uvjeta i neovisnih strujnih izvora grana \mathbf{I}_{0b} ; e) pomoću navedenih matrica odrediti sustav jednadžbi čvorova (matrice \mathbf{Y}_v i \mathbf{I}_{0v}).

3. Za mrežu prikazanu slikom odrediti nadomjesne parametre mreže po Nortonu $I_N(s)$ i $Y_N(s)$ s obzirom na polove 1–1'. Koristiti metodu napona čvorova u proračunu. Zadane su normalizirane vrijednosti elemenata: L=1, C=1, R=1, g=2, n=2, $i_L(0)=1$, $u_C(0)=0$ te izvor $u_g(t)=S(t)$. Napisati: a) Jednadžbe čvorova za izračun struje $I_N(s)$; b) Jednadžbe čvorova za izračun $Y_N(s)$. Uz uvrštene vrijednosti elemenata: c) Nortonovu struju $I_N(s)$; d) Nortonovu admitanciju $Y_N(s)$; e) Nortonovu struju $i_N(t)$ ako je pobuda stacionarni sinusni signal $u_g(t)=\sin(t)$ i početni uvjeti jednaki nula.

4. Za električni krug prikazan slikom: a) Odrediti prijenosnu funkciju napona $H(s)=U_{iz}(s)/U_{ul}(s)$; b) Izračunati polove i nule prijenosne funkcije; c) Izračunati amplitudno-frekvencijsku karakteristiku $|H(j\omega)|$; d) Izračunati logaritamsku mjeru pojačanja $\alpha(\omega)$; e) Izračunati fazno-frekvencijsku karakteristiku $\varphi(\omega) = \arg H(j\omega)$. Zadano je: $R_1=2$, $R_2=1$, $R_3=2$, $C_1=1/2$, $C_2=1$, $A\to\infty$ (A je pojačanje operacijskog pojačala).

5. Zadana je linija s primarnim parametrima $R=5\Omega/\mathrm{km}$, $L=0.25\mathrm{mH/km}$, $G=2\mathrm{mS/km}$, $C=100\mathrm{nF/km}$, duljine $l=5\mathrm{km}$. Na liniju je spojen naponski izvor $u_g(t)=S(t)$ i serijski otpor jednak valnoj impedanciji linije Z_0 . Linija je zaključena s $2Z_0$. Odrediti: a) valnu impedanciju Z_0 i koeficijent prijenosa γ ; b) brzinu i vrijeme propagacije signala na liniji; c) faktor refleksije signala na ulazu Γ_1 i na izlazu Γ_2 linije; d) izraz za polazni val na mjestu x linije; e) valni oblik napona na izlazu linije u(l,t).

PISMENI ISPIT IZ ELEKTRIČNIH KRUGOVA - Ponuđeni odgovori

(svako pitanje je 1 bod, netočno zaokruženo je –0.25 bodova)

Pitanja: (npr. pitanju 1 odgovara potpitanje je u tekstu označeno sa (1.a)) Zaokružiti samo jedan odgovor (A-E)!

1 (1.a) A)
$$U_{C}(j\omega) = -1 - j$$
; B) $U_{C}(j\omega) = 1 + j$; C) $U_{C}(j\omega) = 1 - j$; C) $U_{C}(j\omega) = -1 - j$; D) $U_{C}(j\omega) = 3 + 3j$; E) $U_{C}(j\omega) = 1 + 3j$. $U_{C}(j\omega) = 1 + j$.

3 (1.c) A)
$$i_L(0) = -1[A]$$
, $u_C(0) = 2[V]$; B) $i_L(0) = 5[A]$, $u_C(0) = -3[V]$; C) $i_L(0) = 1[A]$, $u_C(0) = 1[V]$; D) $i_L(0) = -3[A]$, $u_C(0) = -1[V]$
E) $i_L(0) = 4[A]$, $u_C(0) = 2[V]$.

4 (1.d) A)
$$U_{iz}(s) = \frac{1/s - 3 - 2s}{1 + s + 2s^2}$$
; B) $U_{iz}(s) = \frac{1/s - 1 + 2s}{1 + 2s + 2s^2}$; C) $U_{iz}(s) = \frac{-3 - 2s}{2 + s + 2s^2}$; D) $U_{iz}(s) = \frac{1/s - 3}{1 + s + s^2}$; E) $U_{iz}(s) = \frac{1/s - 3 + s}{1 + s + s^2}$.

5 (1.e) A)
$$u_{iz}(t) = S(t) - e^{-\frac{t}{2}} \left[\cos \left(\frac{\sqrt{3}}{2} \right) + \frac{1}{\sqrt{3}} \sin \left(\frac{\sqrt{3}}{2} \right) \right] \cdot S(t)$$
; B) $u_{iz}(t) = 2e^{-t} \cos \left(\frac{\sqrt{7}}{4} \right) \cdot S(t)$; C) $u_{iz}(t) = 2e^{-t} \sin \left(\frac{\sqrt{7}}{4} \right) \cdot S(t)$;

D)
$$u_{iz}(t) = 2e^{-\frac{t}{4}} \left[1 + \cos\left(\frac{\sqrt{5}}{4}\right) + \frac{3}{\sqrt{5}}\sin\left(\frac{\sqrt{5}}{4}\right) \right] \cdot S(t)$$
; E) $u_{iz}(t) = S(t) - 2e^{-\frac{t}{4}} \left[\cos\left(\frac{\sqrt{7}}{4}\right) + \frac{3}{\sqrt{7}}\sin\left(\frac{\sqrt{7}}{4}\right) \right] \cdot S(t)$

$$\mathbf{6} \text{ (2.a) A) } \mathbf{A}_{a} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 1 & 1 & 0 & -1 \end{bmatrix}; \mathbf{B}) \mathbf{A}_{a} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \\ -1 & -1 & 0 & -1 \end{bmatrix}; \mathbf{C}) \mathbf{A}_{a} = \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 1 & -1 \end{bmatrix}; \mathbf{D}) \mathbf{A}_{a} = \begin{bmatrix} -1 & -1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & -1 & -1 \end{bmatrix}; \mathbf{E}) \mathbf{A}_{a} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 1 & 1 \end{bmatrix}$$

$$D) \ u_{ii}(t) = 2e^{-\frac{t}{4}} \left[1 + \cos\left(\frac{\sqrt{5}}{4}\right) + \frac{3}{\sqrt{5}} \sin\left(\frac{\sqrt{5}}{4}\right) \right] \cdot S(t); E) \ u_{ii}(t) = S(t) - 2e^{-\frac{t}{4}} \left[\cos\left(\frac{\sqrt{7}}{4}\right) + \frac{3}{\sqrt{7}} \sin\left(\frac{\sqrt{7}}{4}\right) \right] \cdot S(t).$$

$$\frac{6(2.a) A) \ A_{a} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 1 & 1 & 0 & -1 \end{bmatrix}; B) \ A_{a} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \\ -1 & -1 & 0 & -1 \end{bmatrix}; C) \ A_{a} = \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 1 & -1 \end{bmatrix}; D) \ A_{a} = \begin{bmatrix} -1 & -1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & -1 & -1 \end{bmatrix}; E) \ A_{a} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 1 & 1 \end{bmatrix}.$$

$$\frac{S}{(2.b) A)} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}; B) \ S = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}; C) \ S = \begin{bmatrix} -1 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}; D) \ S = \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}; E) \ A_{a} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 1 & 1 \end{bmatrix}.$$

$$Q = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; C) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & -1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}; D) \ Q = \begin{bmatrix} 1 & 0 & -1 & 0$$

$$C) \ \mathbf{Z}_{b} = \begin{bmatrix} sL_{1} & 0 & 0 & 0 \\ 0 & R_{2} & 0 & 0 \\ 0 & 0 & R_{3} & 0 \\ 0 & 0 & 0 & \alpha s C_{4} \end{bmatrix}, \ \mathbf{U}_{0b} = \begin{bmatrix} U_{g1} \\ 0 \\ u_{C4}(0) \\ 0 \end{bmatrix}; \ \mathbf{D}) \ \mathbf{Z}_{b} = \begin{bmatrix} sL_{1} & 0 & 0 & 0 \\ \alpha & R_{2} & 0 & 0 \\ 0 & 0 & 0 & s C_{4} \end{bmatrix}, \ \mathbf{U}_{0b} = \begin{bmatrix} U_{g1} \\ u_{C4}(0) \\ 0 \\ 0 \end{bmatrix}; \ \mathbf{E}) \ \mathbf{Z}_{b} = \begin{bmatrix} 1/(sL_{1}) & 0 & 0 & 0 \\ 0 & R_{2} & 0 & 0 \\ 0 & 0 & 0 & s C_{4} \end{bmatrix}, \ \mathbf{U}_{0b} = \begin{bmatrix} U_{g1} \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}; \ \mathbf{E}) \ \mathbf{Z}_{b} = \begin{bmatrix} 1/(sL_{1}) & 0 & 0 & 0 \\ 0 & 0 & 0 & s C_{4} \end{bmatrix}, \ \mathbf{U}_{0b} = \begin{bmatrix} U_{g1} \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}; \ \mathbf{E}) \ \mathbf{Z}_{b} = \begin{bmatrix} 1/(sL_{1}) & 0 & 0 & 0 \\ 0 & 0 & 0 & s C_{4} \end{bmatrix}, \ \mathbf{U}_{0b} = \begin{bmatrix} U_{g1} \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}; \ \mathbf{E}) \ \mathbf{Z}_{b} = \begin{bmatrix} 1/(sL_{1}) & 0 & 0 & 0 \\ 0 & 0 & 0 & s C_{4} \end{bmatrix}, \ \mathbf{U}_{0b} = \begin{bmatrix} U_{g1} \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}; \ \mathbf{E}) \ \mathbf{Z}_{b} = \begin{bmatrix} 1/(sL_{1}) & 0 & 0 & 0 \\ 0 & 1/R_{2} & 0 & 0 \\ 0 & -\alpha/R_{2} & 1/R_{3} & 0 \\ 0 & 0 & 0 & s C_{4} \end{bmatrix}, \ \mathbf{I}_{0b} = \begin{bmatrix} -U_{g1}/(sL_{1}) \\ 0 \\ 0 \\ 0 \\ -C.u_{0}(0) \end{bmatrix}; \ \mathbf{E}$$

$$\mathbf{9} \text{ (2.d) A) } \mathbf{Y}_{b} = \begin{bmatrix} sL_{1} & 0 & 0 & 0 \\ 0 & R_{2} & 0 & 0 \\ 0 & -\frac{\alpha}{sL_{1}} & \frac{1}{R_{3}} & 0 \\ 0 & 0 & 0 & sC_{4} \end{bmatrix}, \ \mathbf{I}_{0b} = \begin{bmatrix} -U_{g1}/(sL_{1}) \\ 0 \\ 0 \\ u_{C4}(0) \end{bmatrix}; \ \mathbf{B}) \ \mathbf{Y}_{b} = \begin{bmatrix} 1/(sL_{1}) & 0 & 0 & 0 \\ 0 & 1/R_{2} & 0 & 0 \\ 0 & -\alpha/R_{2} & 1/R_{3} & 0 \\ 0 & 0 & 0 & sC_{4} \end{bmatrix}, \ \mathbf{I}_{0b} = \begin{bmatrix} -U_{g1}/(sL_{1}) \\ 0 \\ 0 \\ -C_{4}u_{C4}(0) \end{bmatrix};$$

C)
$$\mathbf{Y}_{b} = \begin{bmatrix} 1/(sL_{1}) & 0 & 0 \\ 0 & 1/R_{2} & 1/R_{3} \\ 0 & -\alpha/(sL_{1}) & sC_{4} \end{bmatrix}$$
, $\mathbf{I}_{0b} = \begin{bmatrix} U_{g1}/(sL_{1}) \\ 0 \\ 0 \\ C_{4}u_{C4}(0) \end{bmatrix}$; D) $\mathbf{Y}_{b} = \begin{bmatrix} 1/(sL_{1}) & 0 & 0 & 0 \\ 0 & 1/R_{2} & 0 & 0 \\ 0 & 0 & 1/R_{3} & 0 \\ 0 & 0 & 0 & sC_{4} \end{bmatrix}$, $\mathbf{I}_{0b} = \begin{bmatrix} -U_{g1}/(sL_{1}) \\ 0 \\ 0 \\ u_{C4}(0)/s \end{bmatrix}$; E) $\mathbf{Y}_{b} = [0]$,

$$\mathbf{I0} \text{ (2.e) A) } \mathbf{Y}_{v} = \begin{bmatrix} \frac{1}{sL_{1}} + \frac{1}{R_{3}} & -\frac{1}{R_{3}} \\ -\frac{1}{R_{3}} & \frac{1}{R_{2}} + \frac{1}{R_{3}} + sC_{4} \end{bmatrix}, \mathbf{I}_{0v} = \begin{bmatrix} \frac{U_{g1}(s)}{sL_{1}} \\ u_{C4}(0) \end{bmatrix}; \mathbf{B}) \mathbf{Y}_{v} = \begin{bmatrix} \frac{1}{sL_{1}} + \frac{1}{R_{3}} & \frac{\alpha}{R_{2}} - \frac{1}{R_{3}} \\ -\frac{1}{R_{3}} & \frac{1}{R_{2}} + \frac{1}{R_{3}} + sC_{4} \end{bmatrix}, \mathbf{I}_{0v} = \begin{bmatrix} \frac{U_{g1}(s)}{sL_{1}} \\ u_{C4}(0)/s \end{bmatrix};$$

C)
$$\mathbf{Y}_{v} = \begin{bmatrix} \frac{1}{sL_{1}} + \frac{1}{R_{3}} & \frac{\alpha}{R_{2}} - \frac{1}{R_{3}} \\ -\frac{1}{R_{3}} & \frac{1}{R_{2}} - \frac{\alpha}{R_{2}} + \frac{1}{R_{3}} + sC_{4} \end{bmatrix}$$
, $\mathbf{I}_{0v} = \begin{bmatrix} \frac{U_{g1}(s)}{sL_{1}} \\ C_{4}u_{C4}(0) \end{bmatrix}$; D) $\mathbf{Y}_{v} = \begin{bmatrix} \frac{1}{sL_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} & -\frac{1}{R_{3}} \\ -\frac{1}{R_{3}} & \frac{\alpha}{R_{2}} + \frac{1}{R_{3}} + sC_{4} \end{bmatrix}$; $\mathbf{I}_{0v} = \begin{bmatrix} \frac{U_{g1}(s)}{sL_{1}} \\ 0 \end{bmatrix}$; E) $\mathbf{Y}_{v} = \begin{bmatrix} 0 \end{bmatrix}$.

$$I_{s} = nI_{p} = n\frac{U_{g}}{R}; B) \qquad I_{s} = nI_{p} = n\frac{U_{g}}{R}; C) \qquad I_{s} = \frac{U_{g}}{R}; C) \qquad I_{p} = \frac{U_{g}}{R}; C$$

12 (3.b) A)
$$I_N(s) = 1 + s$$
; B) $I_N(s) = \frac{1+s}{s}$; C) $I_N(s) = \frac{3}{s}$; D) $I_N(s) = \frac{1}{s}$; E) $I_N(s) = \frac{1}{s} + s$.

13 (3.c) A)
$$U_{1}\left(\frac{1}{R}+sC\right)-U_{2}sC = gU_{1}-I_{p} \\ -U_{1}sC+U_{2}sC = -gU_{1}+I_{s}+I \\ \hline U_{1}sC-U_{2}sC = gU_{1}+I_{p} \\ D) \\ -U_{1}sC+U_{2}\left(sC+\frac{1}{R}\right)=gU_{1}+I_{s}+I \\ \vdots \\ U_{1}sC-U_{2}sC = gU_{1}+I_{s}+I \\ \vdots \\ U_{1}\left(\frac{1}{R}+sC\right)+U_{2}sC = -gU_{1}-I_{p} \\ \vdots \\ -U_{1}sC+U_{2}sC = gU_{1}-I_{p} \\ \vdots \\ -U_{1}sC+U_{2}sC = gU_{1}+I_{s}-I \\ \vdots \\ -U_{1}sC+U_{2$$

14 (3.d) A)
$$Y_N(s) = s + 1$$
 B) $Y_N(s) = s^2 + s + 1$; C) $Y_N(s) = \frac{2}{s}$; D) $Y_N(s) = \frac{1}{s}$; E) $Y_N(s) = s + \frac{1}{s}$.

15 (3.e) A)
$$i_N(t) = 2\sin(t - 45^\circ)$$
 B) $i_N(t) = \sin(t + 45^\circ)$; C) $i_N(t) = 2\cos(t + 45^\circ)$; D) $i_N(t) = 2\sin(t)$; E) $i_N(t) = 2\cos(t)$.

$$\overline{\mathbf{16} (4.a) \text{ A) } H(s) = -\frac{1}{(1+s)^2} \text{ B) } H(s) = \frac{s^2 - s + 1}{s^2 + s + 1}; \text{ C) } H(s) = -\frac{s}{1 + 2s + s^2}; \text{ D) } H(s) = -\frac{s^2 + s + 1}{s^2 + 3s + 2}; \text{ E) } H(s) = \frac{1}{(1+s)^2}.$$

17 (4.b) A)
$$s_{p1,2} = -1$$
, $s_{o1} = 0$, $s_{o2} = \infty$; B) $s_{p1,2} = -1$, $s_{o1,2} = \infty$; C) $s_{p1} = -1$, $s_{p2} = -2$, $s_{o1,2} = 0$; D) $s_{p1} = -1$, $s_{p2} = -2$, $s_{o1,2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}$; E) $s_{p1,2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}$, $s_{o1} = 0$, $s_{o2} = \infty$.

18 (4.c) A)
$$|H(j\omega)| = \frac{1}{\sqrt{1+\omega^2}}$$
; B) $|H(j\omega)| = \frac{\omega^2}{\sqrt{1-\omega^2}}$; C) $|H(j\omega)| = \frac{1}{(1-\omega^2)^2 + \omega^2}$; D) $|H(j\omega)| = \frac{\sqrt{(1-\omega^2)^2 - \omega^2}}{\sqrt{(1-\omega^2)^2 + \omega^2}}$; E) $|H(j\omega)| = \frac{1}{1+\omega^2}$.

19 (4.d) A)
$$\alpha(\omega) = 20\log(\omega^2) - 10\log(\omega^2 - 1)$$
; B) $\alpha(\dot{\omega}) = 40\log(\omega) - 10\log(\omega^2 - 1)$; C) $\alpha(\omega) = -10\log(\omega + 1)$;

D)
$$\alpha(\omega) = -20 \log(\omega^2 + 1)$$
; E) $\alpha(\omega) = -20 \log((1 - \omega^2)^2 + \omega^2)$

20 (4.e) A)
$$\varphi(\omega) = -\arctan\left(\frac{\omega}{1-\omega^2}\right)$$
; B) $\varphi(\omega) = \arctan\left(\frac{\omega^2}{1-\omega^2}\right)$; C) $\varphi(\omega) = \pi - 2\arctan(\omega)$; D) $\varphi(\omega) = \arctan\left(\frac{1+\omega^2}{1-\omega^2}\right)$;

E) $\varphi(\omega) = \pi - \arctan(2\omega)$.

D)
$$Z_0 = 75\Omega$$
, $\gamma = 1 + s \cdot 50 \cdot 10^{-6}$; E) $Z_0 = 100\Omega$, $\gamma = 1 + s \cdot 100 \cdot 10^{-6}$.

22 (5.b) A)
$$v = 10 \cdot 10^3 \, km/s$$
, $T = 1 \mu s$; B) $v = 200 \cdot 10^3 \, km/s$, $T = 25 \, \mu s$; C) $v = 100 \cdot 10^3 \, km/s$, $T = 20 \, \mu s$;

D) $v = 50 \cdot 10^3 \, km/s$, $T = 10 \, \mu s$; E) $v = 150 \cdot 10^3 \, km/s$, $T = 50 \, \mu s$.

23 (5.c) A)
$$\Gamma_1 = 0$$
, $\Gamma_2 = \frac{1}{3}$; B) $\Gamma_1 = -1$, $\Gamma_2 = 1$; C) $\Gamma_1 = 0$, $\Gamma_2 = \frac{1}{6}$; D) $\Gamma_1 = -1$, $\Gamma_2 = \frac{2}{3}$; E) $\Gamma_1 = 0$, $\Gamma_2 = \frac{2}{3}$.

24 (5.d) A)
$$u_p(x,t) = e^{-2x} \cdot \frac{u_g(t-50\cdot 10^{-6}\cdot x)}{2}$$
; B) $u_p(x,t) = e^{-4x} \cdot \frac{u_g(t-100\cdot 10^{-6}\cdot x)}{2}$; C) $u_p(x,t) = e^{-0.4x} \cdot \frac{u_g(t-10\cdot 10^{-6}\cdot x)}{2}$;

D)
$$u_p(x,t) = e^{-0.1 \cdot x} \cdot \frac{u_g(t-5 \cdot 10^{-6} \cdot x)}{2}$$
; E) $u_p(x,t) = e^{-0.2 \cdot x} \cdot \frac{u_g(t-25 \cdot 10^{-6} \cdot x)}{2}$.

25 (5.e)
$$u(l,t) = K \cdot u_{\sigma}(t-T)$$

A)
$$K = \frac{2}{3e}$$
; B) $K = \frac{4}{3\sqrt{e}}$; C) $K = \frac{4}{3e}$; D) $K = \frac{4}{3}$; E) $K = \frac{2}{3\sqrt{e}}$.

- OVAJ OBRAZAC SE **MORA** PREDATI ZAJEDNO S OBRASCEM ZA ZACRNJIVANJE -