14.17 2-in NOR.

i) todr

i'i) t pdf (worst U) R () Hot on 가정)

 $\frac{2R \cdot n}{kp} = \frac{R}{kn}, kp = 2n, kn = 1.$ $\frac{R}{kp} = \frac{R}{kn}, kp = 2n, kp = 1.$ $\frac{R}{kp} = \frac{R}{kn}, kp = 2n, kp = 1.$ $\frac{R}{kp} = \frac{R}{kn}, kp = 2n, kp = 1.$ $\frac{R}{kp} = \frac{R}{kn}, kp = 2n, kp = 1.$ $\frac{R}{kp} = \frac{R}{kn}, kp = 2n, kp = 1.$ $\frac{R}{kp} = \frac{R}{kn}, kp = 2n, kp = 1.$ $\frac{R}{kp} = \frac{R}{kn}, kp = 2n, kp = 1.$ $\frac{R}{kp} = \frac{R}{kn}, kp = 2n, kp = 1.$ $\frac{R}{kp} = \frac{R}{kn}, kp = 2n, kp = 1.$ $\frac{R}{kp} = \frac{R}{kn}, kp = 2n, kp = 1.$ $\frac{R}{kp} = \frac{R}{kn}, kp = 2n, kp = 1.$ $\frac{R}{kp} = \frac{R}{kn}, kp = 2n, kp = 1.$ $\frac{R}{kp} = \frac{R}{kn}, kp = 1.$ $\frac{R}{kp} = \frac{R}{kn}$

(4,10) D= Dp+1= 2 ti + 2pi

Ench inputs will experience a inverter, so we have to compare the NAND(a), NORLD) stages. Their parastic cap is some to 2, hut the logical effort of NORLD is bigger than NAND(4).

: (a) will be faster than (b)

(a)
$$G = \pi G = \frac{4}{3}, |B|, |A| = \frac{6C}{C} = 6$$
.

: (puth effort) = 6. H. 13 = 8

: fi=g2h2, 60 = f, x= 60 = 2,140/

(b)
$$G = \pi g = 1 - \frac{1}{3} = \frac{3}{3}$$
, $B = 1$, $H = 6$.

$$F = \frac{3}{3} \times 6 = 10$$

$$D = (3.2 \times 2 + 3) = 9.4$$

$$C = \frac{1}{3} \times 6 = \frac{10}{3} \times 6 =$$

41)	H=1	H=\$	H=20
(a) $G = \frac{1}{3}(1 = \frac{1}{3}), p = 6+1=7,$ $p = 2\sqrt{\frac{2}{3}H} + 7$	10,3	14.3	21-6
$(f) \beta = \frac{3}{2} \times \frac{3}{2} = \frac{5}{6}, \ b = 2$	83	125	19,9
$(c) \ \beta = \frac{3}{4} x \frac{3}{4} \ b = 2$	25	12.9	70'J
(d) $b = \frac{3}{3} \times 1 \times \frac{4}{3}$, $p = 3 + 1 + 2 + 1 = 7$	11.2	14.3	17.3

$$|S_{1}| = |S_{1}| + |S_{2}| + |S_{$$

$$\alpha := (portlor if transition) \times P = \frac{4}{10} \times \frac{1}{2} = 0.2$$

$$2.0 = 1.\frac{x}{1} + 1.\frac{64}{x} + 2 = 20$$

$$x(^{2} - 18x + 64 = 0) \times 12 = 4.88$$

1) 2 stages.
$$\frac{x}{1} + \frac{500}{2} + 2 = 30, x^2 - 21x + 500 = 0$$

$$b^{2} - ac = (96 - 5w < 0)$$

$$\frac{1}{1} + \frac{y}{x} + \frac{500}{y} = 30, \quad \min(1+x+y)$$

$$(3)$$
 (3) (4)