LISTING OF CLAIMS

- (Previously Presented) A composition comprising:
- (a) particles of glipizide or a salt thereof, wherein the glipizide particles have an
 effective average particle size of less than about 2000 nm; and
 - at least one surface stabilizer adsorbed on the surface of the glipizide particles;
 wherein the surface stabilizer is free of intermolecular cross-linkages;

wherein the glipizide or a salt thereof is present in an amount of from about 99.5% to about 0.001%, by weight, based on the total combined weight of the glipizide or a salt thereof and at least one surface stabilizer, not including other excipients; and

wherein the at least one surface stabilizer is present in an amount of from about 0.5% to about 99.999% by weight, based on the total combined dry weight of the glipizide or a salt thereof and at least one surface stabilizer, not including other excipients.

- (Previously Presented) The composition of claim 1, wherein the glipizide is selected from the group consisting of a crystalline phase, an amorphous phase, and a semicrystalline phase.
- 3. (Original) The composition of claim 1, wherein the effective average particle size of the glipizide particles is selected from the group consisting of less than about 1900 nm, less than about 1800 nm, less than about 1700 nm, less than about 1600 nm, less than about 1400 nm, less than about 1400 nm, less than about 1200 nm, less than about 1100 nm, less than about 1000 nm, less than about 800 nm, less than about 700 nm, less than about 500 nm, less than about 400 nm, less than about 300 nm, less than about 250 nm, less than about 100 nm, less than about 50 nm.
- (Previously Presented) The composition of claim 1, wherein the composition is formulated for administration selected from the group consisting of oral, pulmonary, rectal,

ophthalmic, colonic, parenteral, intracisternal, intravaginal, intraperitoneal, local, buccal, nasal, and topical administration.

- 5. (Original) The composition of claim 1 formulated into a dosage form selected from the group consisting of liquid dispersions, oral suspensions, gels, aerosols, ointments, creams, controlled release formulations, fast melt formulations, lyophilized formulations, tablets, capsules, delayed release formulations, extended release formulations, pulsatile release formulations, and mixed immediate release and controlled release formulations.
- (Original) The composition of claim 1, wherein the composition further comprises one or more pharmaceutically acceptable excipients, carriers, or a combination thereof
- 7. (Previously Presented) The composition of claim 1, wherein the glipizide or a salt thereof is present in an amount selected from the group consisting of from about 95% to about 0.1%, and from about 90% to about 0.5%, by weight, based on the total combined weight of the glipizide or a salt thereof and at least one surface stabilizer, not including other excipients.
- 8. (Previously Presented) The composition of claim 1, wherein the at least one surface stabilizer is present in an amount selected from the group consisting of from about 5.0% to about 99.9% by weight, and from about 10% to about 99.5% by weight, based on the total combined dry weight of the glipizide or a salt thereof and at least one surface stabilizer, not including other excipients.
 - 9. (Original) The composition of claim 1, comprising at least two surface stabilizers.
- (Original) The composition of claim 1, wherein the surface stabilizer is selected from the group consisting of an anionic surface stabilizer, a cationic surface stabilizer, a zwitterionic surface stabilizer, and an ionic surface stabilizer.

- (Original) The composition of claim 10, wherein the at least one surface stabilizer 11. is selected from the group consisting of cetyl pyridinium chloride, gelatin, casein, phosphatides, dextran, glycerol, gum acacia, cholesterol, tragacanth, stearic acid, benzalkonium chloride, calcium stearate, glycerol monostearate, cetostearyl alcohol, cetomacrogol emulsifying wax, sorbitan esters, polyoxyethylene alkyl ethers, polyoxyethylene castor oil derivatives. polyoxyethylene sorbitan fatty acid esters, polyethylene glycols, dodecyl trimethyl ammonium bromide, polyoxyethylene stearates, colloidal silicon dioxide, phosphates, sodium dodecylsulfate, carboxymethylcellulose calcium, hydroxypropyl celluloses, hypromellose, carboxymethylcellulose sodium, methylcellulose, hydroxyethylcellulose, hypromellose phthalate, noncrystalline cellulose, magnesium aluminum silicate, triethanolamine, polyvinyl alcohol, polyvinylpyrrolidone, 4-(1,1,3,3-tetramethylbutyl)-phenol polymer with ethylene oxide and formaldehyde, poloxamers; poloxamines, a charged phospholipid, dioctylsulfosuccinate, dialkylesters of sodium sulfosuccinic acid, sodium lauryl sulfate, alkyl aryl polyether sulfonates, mixtures of sucrose stearate and sucrose distearate, p-isononylphenoxypoly-(glycidol), decanoyl-N-methylglucamide; n-decyl -D-glucopyranoside; n-decyl -D-maltopyranoside; n-dodecyl -Dglucopyranoside; n-dodecyl -D-maltoside; heptanoyl-N-methylglucamide; n-heptyl--Dglucopyranoside; n-heptyl -D-thioglucoside; n-hexyl -D-glucopyranoside; nonanoyl-Nmethylglucamide; n-noyl -D-glucopyranoside; octanoyl-N-methylglucamide; n-octyl--Dglucopyranoside; octyl -D-thioglucopyranoside; lysozyme, PEG-phospholipid, PEG-cholesterol, PEG-cholesterol derivative, PEG-vitamin A, and random copolymers of vinyl acetate and vinyl pyrrolidone.
- 12. (Original) The composition of claim 10, wherein the at least one cationic surface stabilizer is selected from the group consisting of a polymer, a biopolymer, a polysaccharide, a cellulosic, an alginate, a nonpolymeric compound, and a phospholipid.
- (Previously Presented) The composition of claim 10, wherein the surface stabilizer is selected from the group consisting of cationic lipids, polymethylmethacrylate

trimethylammonium bromide, sulfonium compounds, polyvinylpyrrolidone-2dimethylaminoethyl methacrylate dimethyl sulfate, hexadecyltrimethyl ammonium bromide, phosphonium compounds, quarternary ammonium compounds, benzyl-di(2chloroethyl)ethylammonium bromide, coconut trimethyl ammonium chloride, coconut trimethyl ammonium bromide, coconut methyl dihydroxyethyl ammonium chloride, coconut methyl dihydroxyethyl ammonium bromide, decyl triethyl ammonium chloride, decyl dimethyl hydroxyethyl ammonium chloride, decyl dimethyl hydroxyethyl ammonium chloride bromide, C12.15 dimethyl hydroxyethyl ammonium chloride, C12.15 dimethyl hydroxyethyl ammonium chloride bromide, coconut dimethyl hydroxyethyl ammonium chloride, coconut dimethyl hydroxyethyl ammonium bromide, myristyl trimethyl ammonium methyl sulphate, lauryl dimethyl benzyl ammonium chloride, lauryl dimethyl benzyl ammonium bromide, lauryl dimethyl (ethenoxy)₄ ammonium chloride, lauryl dimethyl (ethenoxy)₄ ammonium bromide, Nalkyl (C12-18)dimethylbenzyl ammonium chloride, N-alkyl (C14-18)dimethyl-benzyl ammonium chloride, N-tetradecylidmethylbenzyl ammonium chloride monohydrate, dimethyl didecyl ammonium chloride, N-alkyl and (C 12-14) dimethyl 1-napthylmethyl ammonium chloride, trimethylammonium halide, alkyl-trimethylammonium salts, dialkyl-dimethylammonium salts, lauryl trimethyl ammonium chloride, ethoxylated alkyamidoalkyldialkylammonium salt, an ethoxylated trialkyl ammonium salt, dialkylbenzene dialkylammonium chloride, Ndidecyldimethyl ammonium chloride, N-tetradecyldimethylbenzyl ammonium, chloride monohydrate, N-alkyl(C12-14) dimethyl 1-naphthylmethyl ammonium chloride, dodecyldimethylbenzyl ammonium chloride, dialkyl benzenealkyl ammonium chloride, lauryl trimethyl ammonium chloride, alkylbenzyl methyl ammonium chloride, alkyl benzyl dimethyl ammonium bromide, C12 trimethyl ammonium bromides, C15 trimethyl ammonium bromides, C17 trimethyl ammonium bromides, dodecylbenzyl triethyl ammonium chloride, polydiallyldimethylammonium chloride dimethyl ammonium chlorides, alkyldimethylammonium halogenides, tricetyl methyl ammonium chloride, decyltrimethylammonium bromide,

dodecyltriethylammonium bromide, tetradecyltrimethylammonium bromide, methyl trioctylammonium chloride, tetrabutylammonium bromide, benzyl trimethylammonium bromide, choline esters, benzalkonium chloride, stearalkonium chloride compounds, cetyl pyridinium bromide, cetyl pyridinium chloride, halide salts of quaternized polyoxyethylalkylamines, alkyl pyridinium salts; amines, amine salts, amine oxides, imide azolinium salts, protonated quaternary acrylamides, methylated quaternary polymers, and cationic guar.

- (Original) The composition of any of claims 10, 12, or 13, wherein the composition is bioadhesive.
- (Original) The composition of claim 1, comprising as a surface stabilizer hydroxypropyl cellulose.
 - 16. (Previously Presented) A composition comprising:
- (a) particles of glipizide or a salt thereof, wherein the glipizide particles have an effective average particle size of less than about 2000 nm;
- (b) at least one surface stabilizer adsorbed on the surface of the glipizide particles, and
- (c) at least one additional glipizide composition having an effective average particle size which is different from the effective average particle size of the glipizide particles of (a), wherein the surface stabilizer is free of intermolecular cross-linkages.
- (Original) The composition of claim 1, additionally comprising one or more nonglipizide active agents.
- 18. (Original) The composition of claim 17, wherein said additionally one or more non-glipizide active agents are selected from the group consisting of nutraccuticals, amino acids, proteins, peptides, nucleotides, anti-obesity drugs, central nervous system stimulants, carotenoids, corticosteroids, elastase inhibitors, anti-fungals, oncology therapies, anti-emetics, analgesics, cardiovascular agents, anti-inflammatory agents, anthelmintics, anti-arrhythmic

agents, antibiotics, anticoagulants, antidepressants, antidiabetic agents, antiepileptics, antihistamines, antihypertensive agents, antimuscarinic agents, antimycobacterial agents, antineoplastic agents, immunosuppressants, antithyroid agents, antiviral agents, anxiolytics, sedatives, astringents, alpha-adrenergic receptor blocking agents, beta-adrenoceptor blocking agents, blood products, blood substitutes, cardiac inotropic agents, contrast media, corticosteroids, cough suppressants, diagnostic agents, diagnostic imaging agents, diuretics, dopaminergics, haemostatics, immunological agents, lipid regulating agents, muscle relaxants, parasympathomimetics, parathyroid calcitonin, parathyroid biphosphonates, prostaglandins, radio-pharmaceuticals, sex hormones, anti-allergic agents, stimulants, anoretics, sympathomimetics, thyroid agents, vasodilators, and xanthines.

19. (Original) The composition of claim 17, wherein said additionally one or more non-glipizide active agents are selected from the group consisting of acyclovir, alprazolam, altretamine, amiloride, amiodarone, benztropine mesylate, bupropion, cabergoline, candesartan, cerivastatin, chlorpromazine, ciprofloxacin, cisapride, clarithromycin, clonidine, clopidogrel, cyclobenzaprine, cyproheptadine, delavirdine, desmopressin, diltiazem, dipyridamole, dolasetron, enalapril maleate, enalaprilat, famotidine, felodipine, furazolidone, glipizide, irbesartan, ketoconazole, lansoprazole, loratadine, loxapine, mebendazole, mercaptopurine, milrinone lactate, minocycline, mitoxantrone, nelfinavir mesylate, nimodipine, norfloxacin, olanzapine, omeprazole, penciclovir, pimozide, tacolimus, quazepam, raloxifene, rifabutin, rifampin, risperidone, rizatriptan, saquinavir, sertraline, sildenafil, acetyl-sulfisoxazole, temazepam, thiabendazole, thioguanine, trandolapril, triamterene, trimetrexate, troglitazone, trovafloxacin, verapamil, vinblastine sulfate, mycophenolate, atovaquone, atovaquone, proguanil, ceftazidime, cefuroxime, etoposide, terbinafine, thalidomide, fluconazole, amsacrine, dacarbazine, teniposide, and acetylsalicylate.

- 20. (Original) The composition of claim 1, wherein upon administration to a mammal the glipizide particles redisperse such that the particles have an effective average particle size of less than about 2 microns.
- 21. (Original) The composition of claim 20, wherein upon administration the composition redisperses such that the glipizide particles have an effective average particle size selected from the group consisting of less than about 1900 nm, less than about 1800 nm, less than about 1700 nm, less than about 1600 nm, less than about 1500 nm, less than about 1400 nm, less than about 1300 nm, less than about 1200 nm, less than about 1000 nm, less than about 900 nm, less than about 800 nm, less than about 700 nm, less than about 600 nm, less than about 500 nm, less than about 500 nm, less than about 250 nm, less than about 200 nm, less than about 500 nm, less than about 500 nm, less than about 500 nm, less than about 50 nm.
- 22. (Original) The composition of claim 1, wherein the composition redisperses in a biorelevant media such that the glipizide particles have an effective average particle size of less than about 2 microns.
- 23. (Original) The composition of claim 22, wherein the biorelevant media is selected from the group consisting of water, aqueous electrolyte solutions, aqueous solutions of a salt, aqueous solutions of an acid, aqueous solutions of a base, and combinations thereof.
- 24. (Original) The composition of claim 22, wherein the composition redisperses in a biorclevant media such that the glipizide particles have an effective average particle size selected from the group consisting of less than about 1900 nm, less than about 1800 nm, less than about 1700 nm, less than about 1600 nm, less than about 1500 nm, less than about 1400 nm, less than about 1300 nm, less than about 1000 nm, less than about 1000 nm, less than about 1000 nm, less than about 500 nm, less than about 500 nm, less than about 500 nm, less than about 400 nm, less than about 250 n

than about 200 nm, less than about 150 nm, less than about 100 nm, less than about 75 nm, and less than about 50 nm.

25.-35. (Cancelled)

- 36. (Original) The composition of claim 1 formulated into a liquid dosage form, wherein the dosage form has a viscosity of less than about 2000 mPa·s, measured at 20C, at a shear rate of 0.1 (1/s).
- 37. (Original) The composition of claim 36, having a viscosity at a shear rate of 0.1 (1/s), measured at 20C, selected from the group consisting of from about 2000 mPa·s to about 1 mPa·s, from about 1900 mPa·s to about 1 mPa·s, from about 1800 mPa·s to about 1 mPa·s, from about 1700 mPa·s to about 1 mPa·s, from about 1600 mPa·s to about 1 mPa·s, from about 1500 mPa·s to about 1 mPa·s, from about 1400 mPa·s to about 1 mPa·s, from about 1300 mPa·s to about 1 mPars, from about 1200 mPars to about 1 mPars, from about 1100 mPars to about 1 mPa·s, from about 1000 mPa·s to about 1 mPa·s, from about 900 mPa·s to about 1 mPa·s, from about 800 mPa·s to about 1 mPa·s, from about 700 mPa·s to about 1 mPa·s, from about 600 mPa·s to about 1 mPa·s, from about 500 mPa·s to about 1 mPa·s, from about 400 mPa·s to about 1 mPa·s, from about 300 mPa·s to about 1 mPa·s, from about 200 mPa·s to about 1 mPa·s, from about 175 mPa·s to about 1 mPa·s, from about 150 mPa·s to about 1 mPa·s, from about 125 mPa·s to about 1 mPa·s, from about 100 mPa·s to about 1 mPa·s, from about 75 mPa·s to about 1 mPa·s, from about 50 mPa·s to about 1 mPa·s, from about 25 mPa·s to about 1 mPa·s, from about 15 mPa·s to about 1 mPa·s, from about 10 mPa·s to about 1 mPa·s, and from about 5 mPa·s to about 1 mPa·s.
- 38. (Original) The composition of claim 36, wherein the viscosity of the dosage form is selected from the group consisting of less than about 1/200, less than about 1/100, less than about 1/50, less than about 1/25, and less than about 1/10 of the viscosity of a liquid dosage form

of a non-nanoparticulate composition of glipizide, at about the same concentration per ml of elipizide.

- 39. (Original) The composition of claim 36, wherein the viscosity of the dosage form is selected from the group consisting of less than about 5%, less than about 10%, less than about 15%, less than about 20%, less than about 25%, less than about 30%, less than about 35%, less than about 40%, less than about 45%, less than about 50%, less than about 55%, less than about 60%, less than about 65%, less than about 70%, less than about 75%, less than about 80%, less than about 80%, less than about 85%, and less than about 90% of the viscosity of a liquid dosage form of a non-nanoparticulate composition of the glipizide, at about the same concentration per ml of glipizide.
- 40. (Previously Presented) A method of making a glipizide composition comprising contacting particles of glipizide or a salt thereof with at least one surface stabilizer for a time and under conditions sufficient to provide a glipizide composition having an effective average particle size of less than about 2000 nm, and having the surface stabilizer adsorbed on the surface of the glipizide particles;

wherein the surface stabilizer is free of intermolecular cross-linkages;

wherein the glipizide or a salt thereof is present in an amount of from about 99.5% to about 0.001%, by weight, based on the total combined weight of the glipizide or a salt thereof and at least one surface stabilizer, not including other excipients; and

wherein the at least one surface stabilizer is present in an amount of from about 0.5% to about 99.999% by weight, based on the total combined dry weight of the glipizide or a salt thereof and at least one surface stabilizer, not including other excipients.

- 41. (Original) The method of claim 40, wherein said contacting comprises grinding.
- (Original) The method of claim 41, wherein said grinding comprises wet grinding.

- (Original) The method of claim 40, wherein said contacting comprises homogenizing.
- 44. (Previously Presented) The method of claim 40, wherein said contacting comprises:
 - (a) dissolving the particles of a glipizide or a salt thereof in a solvent;
- (b) adding the resulting glipizide solution to a solution comprising at least one surface stabilizer; and
- (c) precipitating the solubilized glipizide having at least one surface stabilizer adsorbed on the surface thereof by the addition thereto of a non-solvent.
- 45. (Previously Presented) The method of claim 40, wherein the glipizide or a salt thereof is selected from the group consisting of a crystalline phase, an amorphous phase, and a semi-crystalline phase.
- 46. (Original) The method of claim 40, wherein the effective average particle size of the glipizide particles is selected from the group consisting of less than about 1900 nm, less than about 1800 nm, less than about 1700 nm, less than about 1600 nm, less than about 1500 nm, less than about 1000 nm, less than about 1400 nm, less than about 1300 nm, less than about 1200 nm, less than about 1100 nm, less than about 900 nm, less than about 800 nm, less than about 700 nm, less than about 600 nm, less than about 500 nm, less than about 400 nm, less than about 75 nm, less than about 50 nm.
- 47. (Previously Presented) The method of claim 40, wherein the composition is formulated for administration selected from the group consisting of oral, pulmonary, rectal, ophthalmic, colonic, parenteral, intracisternal, intravaginal, intraperitoneal, local, buccal, nasal, and topical administration.

- 48. (Original) The method of claim 40, wherein the composition further comprises one or more pharmaceutically acceptable excipients, carriers, or a combination thereof.
- 49. (Previously Presented) The method of claim 40, wherein the glipizide or a salt thereof is present in an amount selected from the group consisting of from about 95% to about 0.1%, and from about 90% to about 0.5%, by weight, based on the total combined weight of the glipizide or a salt thereof and at least one surface stabilizer, not including other excipients.
- 50. (Previously Presented) The method of claim 40, wherein the at least one surface stabilizer is present in an amount selected from the group consisting of from about 5.0% to about 99.9%; and from about 10% to about 99.5% by weight, based on the total combined dry weight of the glipizide or a salt thereof and at least one surface stabilizer, not including other excipients.
 - 51. (Original) The method of claim 40, utilizing at least two surface stabilizers.
- 52. (Original) The method of claim 40, wherein the surface stabilizer is selected from the group consisting of an anionic surface stabilizer, a cationic surface stabilizer, a zwitterionic surface stabilizer, and an ionic surface stabilizer.
- 53. (Original) The method of claim 52, wherein the at least one surface stabilizer is selected from the group consisting of cetyl pyridinium chloride, gelatin, casein, phosphatides, dextran, glycerol, gum acacia, cholesterol, tragacanth, stearic acid, benzalkonium chloride, calcium stearate, glycerol monostearate, cetostearyl alcohol, cetomacrogol emulsifying wax, sorbitan esters, polyoxyethylene alkyl ethers, polyoxyethylene castor oil derivatives, polyoxyethylene sorbitan fatty acid esters, polyethylene glycols, dodecyl trimethyl ammonium bromide, polyoxyethylene stearates, colloidal silicon dioxide, phosphates, sodium dodecylsulfate, carboxymethylcellulose calcium, hydroxypropyl celluloses, hypromellose, carboxymethylcellulose sodium, methylcellulose, hydroxyethylcellulose, hypromellose phthalate, noncrystalline cellulose, magnesium aluminum silicate, triethanolamine, polyvinyl alcohol,

polyvinylpytrolidone, 4-(1,1,3,3-tetramethylbutyl)-phenol polymer with ethylene oxide and formaldehyde, poloxamers; poloxamines, a charged phospholipid, dioctylsulfosuccinate, dialkylesters of sodium sulfosuccinie acid, sodium lauryl sulfate, alkyl aryl polyether sulfonates, mixtures of sucrose stearate and sucrose distearate, p-isononylphenoxypoly-(glycidol), decanoyl-N-methylglucamide; n-decyl -D-glucopyranoside; n-decyl -D-maltopyranoside; n-dodecyl -D-glucopyranoside; n-heptyl--D-glucopyranoside; n-heptyl--D-thioglucoside; n-hexyl -D-glucopyranoside; nonanoyl-N-methylglucamide; n-noyl -D-glucopyranoside; oetanoyl-N-methylglucamide; n-oetyl--D-glucopyranoside; oetyl -D-thioglucopyranoside; lysozyme, PEG-phospholipid, PEG-cholesterol, PEG-cholesterol derivative, PEG-vitamin A, PEG-vitamin E, and random copolymers of vinyl acetate and vinyl pyrrolidone.

- 54. (Original) The method of claim 52, wherein the at least one cationic surface stabilizer is selected from the group consisting of a polymer, a biopolymer, a polysaccharide, a cellulosic, an alginate, a nonpolymeric compound, and a phospholipid.
- 55. (Previously Presented) The method of elaim 52, wherein the surface stabilizer is selected from the group consisting of eationic lipids, polymethylmethaerylate trimethylammonium bromide, sulfonium compounds, polyvinylpytrolidone-2-dimethylaminoethyl methaerylate dimethyl sulfate, hexadecyltrimethyl ammonium bromide, phosphonium compounds, quarternary ammonium compounds, benzyl-di(2-ehloroethyl)ethylammonium bromide, coconut trimethyl ammonium chloride, coconut trimethyl ammonium bromide, coconut methyl dihydroxyethyl ammonium bromide, decyl triethyl ammonium chloride, coconut methyl hydroxyethyl ammonium ehloride, decyl dimethyl hydroxyethyl ammonium chloride bromide, C₁₂₋₁₃dimethyl hydroxyethyl ammonium chloride, decyl dimethyl hydroxyethyl ammonium chloride, coconut dimethyl hydroxyethyl ammonium chloride, coconut dimethyl hydroxyethyl ammonium chloride, coconut dimethyl hydroxyethyl ammonium bromide, myristyl trimethyl ammonium methyl sulphate, lauryl

dimethyl benzyl ammonium chloride, lauryl dimethyl benzyl ammonium bromide, lauryl dimethyl (ethenoxy)4 ammonium chloride, lauryl dimethyl (ethenoxy)4 ammonium bromide, Nalkyl (C12.18)dimethylbenzyl ammonium chloride, N-alkyl (C14.18)dimethyl-benzyl ammonium chloride, N-tetradecylidmethylbenzyl ammonium chloride monohydrate, dimethyl didecyl ammonium chloride, N-alkyl and (C12-14) dimethyl 1-napthylmethyl ammonium chloride, trimethylammonium halide, alkyl-trimethylammonium salts, dialkyl-dimethylammonium salts, lauryl trimethyl ammonium chloride, ethoxylated alkyamidoalkyldialkylammonium salt, an ethoxylated trialkyl ammonium salt, dialkylbenzene dialkylammonium chloride, Ndidecyldimethyl ammonium chloride, N-tetradecyldimethylbenzyl ammonium, chloride monohydrate, N-alkyl(C12.14) dimethyl 1-naphthylmethyl ammonium chloride, dodecyldimethylbenzyl ammonium chloride, dialkyl benzenealkyl ammonium chloride, lauryl trimethyl ammonium chloride, alkylbenzyl methyl ammonium chloride, alkyl benzyl dimethyl ammonium bromide, C12 trimethyl ammonium bromides, C15 trimethyl ammonium bromides, C17 trimethyl ammonium bromides, dodecylbenzyl triethyl ammonium chloride, polydiallyldimethylammonium chloride dimethyl ammonium chlorides, alkyldimethylammonium halogenides, tricetyl methyl ammonium chloride, decyltrimethylammonium bromide, dodecyltriethylammonium bromide, tetradecyltrimethylammonium bromide, methyl trioctylammonium chloride, tetrabutylammonium bromide, benzyl trimethylammonium bromide, choline esters, benzalkonium chloride, stearalkonium chloride compounds, cetyl pyridinium bromide, cetyl pyridinium chloride, halide salts of quaternized polyoxyethylalkylamines, alkyl pyridinium salts; amines, amine salts, amine oxides, imide azolinium salts, protonated quaternary acrylamides, methylated quaternary polymers, and cationic guar.

- (Original) The method of any of claims 52, 54, or 55, wherein the composition is bioadhesive.
- (Original) The method of claim 40, utilizing hydroxypropylcellulose as a surface stabilizer.

- 58. (Previously Presented) A method of treating diabetes in a subject in need thereof comprising administering to the subject an effective amount of a composition comprising:
- (a) particles of a glipizide or a salt thereof, wherein the glipizide particles have an
 effective average particle size of less than about 2000 nm; and
 - at least one surface stabilizer adsorbed on the surface of the glipizide particles, wherein the surface stabilizer is free of intermolecular cross-linkages;

wherein the glipizide or a salt thereof is present in an amount of from about 99.5% to about 0.001%, by weight, based on the total combined weight of the glipizide or a salt thereof and at least one surface stabilizer, not including other excipients;

wherein the at least one surface stabilizer is present in an amount of from about 0.5% to about 99.999% by weight, based on the total combined dry weight of the glipizide or a salt thereof and at least one surface stabilizer, not including other excipients.

- 59. (Previously Presented) The method of claim 58, wherein the glipizide or a salt thereof is selected from the group consisting of a crystalline phase, an amorphous phase, and a semi-crystalline phase.
- 60. (Original) The method of claim 58, wherein the effective average particle size of the glipizide particles is selected from the group consisting of less than about 1900 nm, less than about 1800 nm, less than about 1800 nm, less than about 1800 nm, less than about 1400 nm, less than about 1400 nm, less than about 1400 nm, less than about 1000 nm, less than about 1000 nm, less than about 1000 nm, less than about 500 nm, less than about 400 nm, less than about 700 nm, less than about 500 nm, less than about 400 nm, less than about 500 nm, less than about 500 nm, less than about 500 nm, less than about 50 nm.
- (Previously Presented) The method of claim 58, wherein the composition is formulated for administration selected from the group consisting of oral, pulmonary, rectal,

ophthalmic, colonic, parenteral, intracisternal, intravaginal, intraperitoneal, local, buccal, nasal, and topical administration.

- 62. (Original) The method of claim 58, wherein the composition is a dosage form selected from the group consisting of liquid dispersions, oral suspensions, gels, acrosols, ointments, creams, controlled release formulations, fast melt formulations, lyophilized formulations, tablets, capsules, delayed release formulations, extended release formulations, pulsatile release formulations, and mixed immediate release and controlled release formulations.
- (Original) The method of claim 58, wherein the composition further comprises one or more pharmaceutically acceptable excipients, carriers, or a combination thereof.
- 64. (Previously Presented) The method of claim 58, wherein the glipizide or a salt thereof is present in an amount selected from the group consisting of from about 95% to about 0.1% and from about 90% to about 0.5%, by weight, based on the total combined weight of the glipizide or a salt thereof and at least one surface stabilizer, not including other excipients.
- 65. (Previously Presented) The method of claim 58, wherein the at least one surface stabilizer is present in an amount selected from the group consisting of from about 5.0% to about 99.9%; and from about 10% to about 99.5% by weight, based on the total combined dry weight of the glipizide or a salt thereof and at least one surface stabilizer, not including other excipients.
 - 66. (Original) The method of claim 58, utilizing at least two surface stabilizers.
- 67. (Original) The method of claim 58, wherein the surface stabilizer is selected from the group consisting of an anionic surface stabilizer, a cationic surface stabilizer, a zwitterionic surface stabilizer, and an ionic surface stabilizer.
- 68. (Original) The method of claim 67, wherein the at least one surface stabilizer is selected from the group consisting of cetyl pyridinium chloride, gelatin, casein, phosphatides,

dextran, glycerol, gum acacia, cholesterol, tragacanth, stearic acid, benzalkonium chloride, calcium stearate, glycerol monostearate, cetostearyl alcohol, cetomacrogol emulsifying wax, sorbitan esters, polyoxyethylene alkyl ethers, polyoxyethylene castor oil derivatives, polyoxyethylene sorbitan fatty acid esters, polyethylene glycols, dodecyl trimethyl ammonium bromide, polyoxyethylene stearates, colloidal silicon dioxide, phosphates, sodium dodecylsulfate, carboxymethylcellulose calcium, hydroxypropyl celluloses, hypromellose, carboxymethylcellulose sodium, methylcellulose, hydroxyethylcellulose, hypromellose phthalate, noncrystalline cellulose, magnesium aluminum silicate, triethanolamine, polyvinyl alcohol, polyvinylpyrrolidone, 4-(1,1,3,3-tetramethylbutyl)-phenol polymer with ethylene oxide and formaldehyde, poloxamers; poloxamines, a charged phospholipid, dioctylsulfosuccinate, dialkylesters of sodium sulfosuccinic acid, sodium lauryl sulfate, alkyl aryl polyether sulfonates, mixtures of sucrose stearate and sucrose distearate, p-isononylphenoxypoly-(glycidol), decanoyl-N-methylglucamide; n-decyl -D-glucopyranoside; n-decyl -D-maltopyranoside; n-dodecyl -Dglucopyranoside; n-dodecyl -D-maltoside; heptanoyl-N-methylglucamide; n-heptyl--Dglucopyranoside; n-heptyl -D-thioglucoside; n-hexyl -D-glucopyranoside; nonanoyl-Nmethylglucamide; n-noyl -D-glucopyranoside; octanoyl-N-methylglucamide; n-octyl--Dglucopyranoside; octyl -D-thioglucopyranoside; lysozyme, PEG-phospholipid, PEG-cholesterol, PEG-cholesterol derivative, PEG-vitamin A, PEG-vitamin E, and random copolymers of vinyl acetate and vinyl pyrrolidone.

- 69. (Original) The method of claim 67, wherein the at least one cationic surface stabilizer is selected from the group consisting of a polymer, a biopolymer, a polysaccharide, a cellulosic, an alginate, a nonpolymeric compound, and a phospholipid.
- 70. (Previously Presented) The method of claim 67, wherein the surface stabilizer is selected from the group consisting of benzalkonium chloride, polymethylmethacrylate trimethylammonium bromide, polyvinylpyrrolidone-2-dimethylaminoethyl methacrylate dimethyl sulfate, hexadecyltrimethyl ammonium bromide, cationic lipids, sulfonium compounds,

phosphonium compounds, quarternary ammonium compounds, benzyl-di(2chloroethyl)ethylammonium bromide, coconut trimethyl ammonium chloride, coconut trimethyl ammonium bromide, coconut methyl dihydroxyethyl ammonium chloride, coconut methyl dihydroxyethyl ammonium bromide, decyl triethyl ammonium chloride, decyl dimethyl hydroxyethyl ammonium chloride, decyl dimethyl hydroxyethyl ammonium chloride bromide, C 12-15 dimethyl hydroxyethyl ammonium chloride, C₁₂₋₁₅ dimethyl hydroxyethyl ammonium chloride bromide, coconut dimethyl hydroxyethyl ammonium chloride, coconut dimethyl hydroxyethyl ammonium bromide, myristyl trimethyl ammonium methyl sulphate, lauryl dimethyl benzyl ammonium chloride, lauryl dimethyl benzyl ammonium bromide, lauryl dimethyl (ethenoxy), ammonium chloride, lauryl dimethyl (ethenoxy), ammonium bromide, Nalkyl (C_{12-18})dimethylbenzyl ammonium chloride, N-alkyl (C_{14-18})dimethyl-benzyl ammonium chloride, N-tetradecylidmethylbenzyl ammonium chloride monohydrate, dimethyl didecyl ammonium chloride, N-alkyl and (C12.14) dimethyl 1-napthylmethyl ammonium chloride, trimethylammonium halide, alkyl-trimethylammonium salts, dialkyl-dimethylammonium salts, lauryl trimethyl ammonium chloride, ethoxylated alkyamidoalkyldialkylammonium salt, an ethoxylated trialkyl ammonium salt, dialkylbenzene dialkylammonium chloride, Ndidecyldimethyl ammonium chloride, N-tetradecyldimethylbenzyl ammonium, chloride monohydrate, N-alkyl(C12-14) dimethyl 1-naphthylmethyl ammonium chloride, dodecyldimethylbenzyl ammonium chloride, dialkyl benzenealkyl ammonium chloride, lauryl trimethyl ammonium chloride, alkylbenzyl methyl ammonium chloride, alkyl benzyl dimethyl ammonium bromide, C12 trimethyl ammonium bromides, C15 trimethyl ammonium bromides, C17 trimethyl ammonium bromides, dodecylbenzyl triethyl ammonium chloride, polydiallyldimethylammonium chloride dimethyl ammonium chlorides, alkyldimethylammonium halogenides, tricetyl methyl ammonium chloride, decyltrimethylammonium bromide, dodecyltriethylammonium bromide, tetradecyltrimethylammonium bromide, methyl trioctylammonium chloride, tetrabutylammonium bromide, benzyl trimethylammonium bromide,

choline esters, benzalkonium chloride, stearalkonium chloride compounds, cetyl pyridinium bromide, cetyl pyridinium chloride, halide salts of quaternized polyoxyethylalkylamines, alkyl pyridinium salts; amines, amine salts, amine oxides, imide azolinium salts, protonated quaternary acrylamides, methylated quaternary polymers, and cationic guar.

- (Original) The method of any of claims 67, 69, or 70, wherein the composition is bioadhesive.
- (Original) The method of claim 58, utilizing hydroxypropylcellulose as a surface stabilizer.
- (Original) The method of claim 58, additionally comprising administering one or more non-glipizide active agents.
- 74. (Original) The method of claim 73, wherein said additionally one or more nonglipizide active agents are selected from the group consisting of nutraceuticals, amino acids,
 proteins, peptides, nucleotides, anti-obesity drugs, central nervous system stimulants,
 carotenoids, corticosteroids, elastase inhibitors, anti-fungals, oncology therapies, anti-emetics,
 analgesics, cardiovascular agents, anti-inflammatory agents, antihelmintics, anti-arrhythmic
 agents, antibiotics, anticoagulants, antidepressants, antidiabetic agents, antiepileptics,
 antihistamines, antihypertensive agents, antimuscarinic agents, antimycobacterial agents,
 antineoplastic agents, immunosuppressants, antithyroid agents, antiviral agents, anxiolytics,
 sedatives, astringents, alpha-adrenergic receptor blocking agents, beta-adrenoceptor blocking
 agents, blood products, blood substitutes, cardiac inotropic agents, contrast media,
 corticosteroids, cough suppressants, diagnostic agents, diagnostic imaging agents, diuretics,
 dopaminergics, haemostatics, immunological agents, lipid regulating agents, muscle relaxants,
 parasympathomimetics, parathyroid calcitonin, parathyroid biphosphonates, prostaglandins,
 radio-pharmaceuticals, sex hormones, anti-allergic agents, stimulants, anoretics,
 sympathomimetics, thyroid agents, vasodilators, and xanthines.

75. (Original) The method of claim 73, wherein said additionally one or more nonglipizide active agents are selected from the group consisting of acyclovir, alprazolam,
altretamine, amiloride, amiodarone, benztropine mesylate, bupropion, cabergoline, candesartan,
cerivastatin, chlorpromazine, ciprofloxacin, cisapride, clarithromycin, clonidine, clopidogrel,
cyclobenzaprine, cyproheptadine, delavirdine, desmopressin, diltiazem, dipyridamole, dolasetron,
enalapril maleate, enalaprilat, famotidine, felodipine, furazolidone, glipizide, irbesartan,
ketoconazole, lansoprazole, loratadine, loxapine, mebendazole, mercaptopurine, milrinone
lactate, minocycline, mitoxantrone, nelfinavir mesylate, nimodipine, norfloxacin, olanzapine,
omeprazole, penciclovir, pimozide, tacolimus, quazepam, raloxifene, rifabutin, rifampin,
risperidone, rizatriptan, saquinavir, sertraline, sildenafil, acetyl-sulfisoxazole, temazepam,
thiabendazole, thioguanine, trandolapril, triamterene, trimetrexate, troglitazone, trovafloxacin,
verapamil, vinblastine sulfate, mycophenolate, atovaquone, atovaquone, proguanil, ceftazidime,
cefuroxime, etoposide, terbinafine, thalidomide, fluconazole, amsacrine, dacarbazine, teniposide,
and acetylsalicylate.

76.-86. (Cancelled)

- 87. (Original) The method of claim 58, wherein the subject is a human.
- (Original) The method of claim 58, wherein the method is used to treat indications where blood-glucose lowering drugs are typically used.
 - 89. (Original) The method of claim 58, wherein the method is used to treat diabetes.
- (Previously Presented) The method of claim 89, wherein the diabetes is noninsulin dependent diabetes mellitus.
 - 91. (Previously Presented) The composition of claim 1, wherein:
 - the surface stabilizer is hydroxypropyl cellulose; and

- (ii) the composition is formulated into a fast melt formulation, which disintegrates in less than 1 minute upon contact with water.
 - (Previously Presented) The composition of claim 1, wherein:
 - the surface stabilizer is hydroxypropyl cellulose; and
 - (ii) the composition is formulated into a controlled release formulation.
- (Previously Presented) The composition of claim 92, wherein the controlled release formulation of the composition has a steady release over a time period of about 16 hours.
- 94. (Previously Presented) The composition of claim 92, wherein the controlled release formulation of the composition is uncoated and has a steady release over a time period of about 22 hours.
- (Previously Presented) The method of claim 40, wherein the surface stabilizer is hydroxypropyl cellulose.
- 96. (Previously Presented) The method of claim 94, wherein the composition is formulated into a fast melt formulation by spray drying the composition in the presence of one or more excipients.
- (Previously Presented) The method of claim 95, wherein the one or more excipients comprise mannitol.
- 98. (Previously Presented) The method of claim 94, wherein the composition is formulated into a controlled release formulation by spray drying the composition in the presence of one or more excipients.
- (Previously Presented) The method of claim 97, wherein the one or more excipients comprise mannitol.