Package 'GENEMABR'

May 23, 2019

Title Gene module/list annotation

Version 0.99.13

Author Tao Fang and Jitao David Zhang, with inputs from Daniel Marbach

Maintainer Tao Fang <talonvonfang@gmail.com>

Description

Gene-set module annotation or gene-set enrichment within a regression based framework.

Imports glmnet, igraph, Matrix

Depends R (ξ = 3.5.0)

biocViews GeneSetEnrichment,Regression,Pathways,GO, Reactome

License Artistic-2.0

BugReports https://github.com/TaoDFang/GENEMABR/issues

LazyData false

Encoding UTF-8

VignetteBuilder knitr

Suggests BiocStyle, knitr, rmarkdown, testthat ($\xi = 2.1.0$)

RoxygenNote 6.1.1

RemoteType github

RemoteHost api.github.com

RemoteRepo GENEMABR

RemoteUsername TaoDFang

 ${\bf RemoteRef}$ master

RemoteSha b974751ab7f56f8095b0d2455dd65f0cd299567b

GithubRepo GENEMABR

 ${\bf Github Username} \ \, {\bf TaoDFang}$

GithubRef master

GithubSHA1 b974751ab7f56f8095b0d2455dd65f0cd299567b

NeedsCompilation no

find_root_ids

R topics documented:

find_root_ids	2
fisher_exact_test	3
from_id2name	4
gene_pathway_matrix	4
get_steps	5
human_go_ontology	5
human_go_roots	6
human_go_sub_roots	6
human_reactome_ontology	7
human_reactome_roots	7
mydata	8
regression_selected_pathways	8
10	J

 $find_root_ids$

Description

 $find_root_ids$

Index

If you use the default pathway databases (GO Ontologyand REACTOME), this function allows you to extract GO sub-roots or REACTOME roots for certain pathways from GO or REACTOME to help you better understanding thier the biological meanings

Usage

find_root_ids(selected_pathways)

Arguments

 ${\tt selected_pathways}$

A vecor of GO and/or REACTOME pathways IDs.

Value

A list of GO sub-root or REACTOME root ids for provided pathways. If a certain pathway has morn than one GO sub-roots or REACTOME roots, they will be seperated by "#".

Examples

find_root_ids(selected_pathways=c("GO:0005834","R-HSA-111469"))

fisher_exact_test 3

fisher_exact_test

 $fisher_exact_test$

Description

This function allows you to compute two sided fish exact pvalue of gene list for selected pathways To know more about this method. I recommend you to read the paper (Enrichment or depletion of a GO category within a class of genes: which test?) for more details

Usage

```
fisher_exact_test(selected_pathways, gene_input,
  gene_pathway_matrix = NULL)
```

Arguments

selected_pathways

A vecor of pathways to be used for enrichment analysis for genes in $gene_input$.It should have same ID types(E.g. pathway ID, pathway names) as the pathways in $gene_pathway_matrix$.

gene_input

A vecor of genes to be annotated. It should have same ID types (E.g. Ensembl ID, HUGO gene symbol) as the genes in <code>gene_pathway_matrix</code>.

gene_pathway_matrix

A binary background matrix whose columns are the pathways/gene sets and whose rows are all the genes from pathways/gene sets . It could be in sparse matrix format ((inherit from class "sparseMatrix" as in package Matrix) to save memory. For gene i and pathway j, the value of matrix(i,j) is 1 is gene i belonging to pathway j otherwise 0. Users could leave it as default value then it will use pre-collected gene_pathway_matrix from GO Ontology and REACTOME databaase. Otherwise, they could use their own customized gene_pathway_matrix

Value

A list of two elements:

- selected_pathways_fisher_pvalue Fisher exact pvalue for selected pathways
- selected_pathways_num_genes The number of genes for selected pathways in background

Examples

from_id2name

 $from_id2name$

Description

If you use the default pathway databases (GO Ontologyand REACTOME), this function can help you to get pathways names from pathways IDs.

Usage

```
from_id2name(selected_pathways)
```

Arguments

selected_pathways

A list of GO and/or REACTOME pathways IDs. Each eliment is this list can be a single id or multi-ids seperated "#"

Value

A list of GO sub-root or REACTOME root names for provided pathways.

Examples

```
from\_id2name((selected\_pathways=list(c("G0:0032991\#G0:0044425\#G0:0044464"),"R-HSA-5357801"))))
```

gene_pathway_matrix

 $Homo\ sapiens\ GO\ ontology\ and\ REACTOME\ ontology\ genepathway\ realtionship$

Description

A rds R object contains GO ontology and REACTOME ontology gene-pathway realtionship

Usage

```
gene_pathway_matrix
```

Format

Formal class 'dgCMatrix' [package "Matrix"]

Source

http://geneontology.org/docs/download-ontology/, https://reactome.org/download-data A binary matrix whose columns are the pathways/gene sets from GO ontology and REATOME database and whose rows are all the genes(represented by gene HUGO gene symbols) from GO ontology and REATOME database. For gene i and pathway j, the value of matrix(i,j) is 1 is gene i belonging to pathway j otherwise 0

get_steps 5

get_steps

 get_steps

Description

If you use the default pathway databases (GO Ontologyand REACTOME), this function allows you to extract the distances from ceatain pathways to GO roots or REACTOME roots nodes.

Usage

```
get_steps(selected_pathways)
```

Arguments

selected_pathways

A vecor of GO and/or REACTOME pathways IDs.

Value

A list contains distances from pathways to GO root or REACTOME root nodes

Examples

```
get_steps(selected_pathways=c("GO:0005834","R-HSA-111469"))
```

human_go_ontology

Homo sapiens GO ontology tree

Description

A rds R object contains GO ontology relationships (tree structure)

Usage

human_go_ontology

Format

Directed igraph format

Details

The igraph format tree was constructed by using data from http://geneontology.org/docs/download-ontology/ (May 2108) It has three root notes representing Molecular Function, Cellular Component and Biological Process (http://geneontology.org/docs/ontology-documentation/)

Source

http://geneontology.org/docs/download-ontology/

6 human_go_sub_roots

human_go_roots

 $human_go_roots$

Description

A rds R object contains GO ontology tree root nodes

Usage

human_go_roots

Format

A vector of GO ontology root notes (ID)

Details

You can view tree stuctor of GO ontology at https://www.ebi.ac.uk/QuickGO/ Thre are three roots notes in GO ontology tree: GO:0008150 (biological_process), GO:0003674(molecular_function), GO:0005575(cellular_component)

Source

http://geneontology.org/docs/download-ontology/

human_go_sub_roots

 $human_go_sub_roots$

Description

A rds R object contains GO ontology tree sub-root nodes (The children of root nodes).

Usage

human_go_sub_roots

Format

A list of three elements contains GO ontology sub-root notes (ID)/the children of three root notes

Details

You can view tree stuctor of GO ontology at https://www.ebi.ac.uk/QuickGO/

Source

http://geneontology.org/docs/download-ontology/

human_reactome_ontology

Homo sapiens REACTOME ontology tree

Description

A rds R object contains Reactome ontology relationships (tree structure)

Usage

human_reactome_ontology

Format

Directed igraph format

Details

The igraph format tree was constructed by using data from https://reactome.org/download-data (May 2108) It has several root nodes representing REACTOME pathway categories (https://reactome.org/PathwayBrowser/)

Source

https://reactome.org/download-data

human_reactome_roots

 $human_reactome_roots$

Description

A rds R object contains REACTOME tree root nodes

Usage

human_reactome_roots

Format

A vector of REACTOME root notes (ID)

Details

You can view tree stuctor of REACTOME at https://reactome.org/PathwayBrowser/

Source

https://reactome.org/download-data

mydata

Helper function to load file

Description

Helper function to load file

Usage

```
mydata(objName, package)
```

Arguments

objName Object name to be loaded

package Package name to be loaded

Value

The object This function is temporarily set up to help the transition from .rds to .RData file

regression_selected_pathways

 $regression_selected_pathways$

Description

This function allows you to extracte enriched pathways for gene module/list via regressioin (elastic net) based method

Usage

```
regression_selected_pathways(gene_input, gene_pathway_matrix = NULL,
lambda = 0.007956622, alpha = 0.5, ...)
```

Arguments

gene_input

A vecor of genes to be annotated. It should have same ID types(Ensembl ID, HUGO gene symbol) as the genes in *gene_pathway_matrix*.

gene_pathway_matrix

A binary background matrix whose columns are the pathways/gene sets and whose rows are all the genes from pathways/gene sets. It could be in sparse matrix format ((inherit from class "sparseMatrix" as in package Matrix) to save memory. For gene i and pathway j, the value of matrix(i,j) is 1 is gene i belonging to pathway j otherwise 0. Users could leave it as default value then it will use pre-collected gene_pathway_matrix from GO Ontology and REACTOME databaase. Otherwise, they could use their own customized gene_pathway_matrix

lambda	We use glmnet function to do regression. $lambda$ is an argument in glmnet. See glmnet function for more details Here we use default value 0.007956622 after preliminary study. It can be overridden by giving $nlambda$ and $lambda.min.ratio$ arguments.
alpha	The elastic net mixing parameter, with $0 \le \alpha \le 1$. The penalty is defined as $(1-\alpha)/2 \beta _2^2 + \alpha \beta _1$. alpha=1 is the lasso penalty, and alpha=0 the ridge penalty. Default value: 0.5.
	Other paramaters for glmnet function.

Value

A list of four elements:

- selected_pathways_names Pathways names for selected pathways
- $\bullet\,$ selected_pathways_coef Regression coefficients value for selected pathways
- selected_pathways_fisher_pvalue Fisher exact pvalue for selected pathways
- \bullet selected_pathways_num_genes The number of genes for selected pathways in background

Examples

```
rspResults <- regression_selected_pathways(gene_input=c("TRPC4AP","CDC37",
   "TNIP1","IKBKB","NKIRAS2", "NFKBIA","TIMM50","RELB","TNFAIP3","NFKBIB",
   "HSPA1A","NFKBIE","SPAG9","NFKB2","ERLIN1","REL","TNIP2",
   "TUBB6","MAP3K8"),
   gene_pathway_matrix=Null,lambda=0.007956622,alpha=0.5)</pre>
```

Index

```
*Topic datasets
     {\tt gene\_pathway\_matrix},\, 4
     human_go_ontology, 5
     human_go_roots, 6
     human_go_sub_roots, 6
     human_reactome\_ontology, 7
     human_reactome_roots, 7
\texttt{find\_root\_ids},\, 2
fisher_exact_test, 3
\texttt{from\_id2name},\, 4
{\tt gene\_pathway\_matrix},\, 4
\texttt{get\_steps},\, 5
\verb|human_go_ontology|, 5
human_go_roots, 6
human\_go\_sub\_roots, 6
human_reactome_ontology, 7
human_reactome_roots, 7
mydata, 8
{\tt regression\_selected\_pathways}, \, 8
```