Max Wisniewski

Tutorin: Jan (Do 12-14)

4. Hausdorff-Maß und äußeres Maß

Seien, wie in der Vorlesung definiert, \mathcal{H}^m_{δ} das approximative m-dimensionale Hausdorff-Maß (für ein $\delta > 0$) und \mathcal{H}^m das m-dimensionale Hausdroff-Maß auf einem metrischen Raum S.

(i)

Zeigen Sie, dass \mathcal{H}_{δ}^{m} ein äußeres Maß ist.

Beweis:

Wir nehmen an, dass wir über einer Grundmenge S messen.

a) z.z. $\mathcal{H}_{\delta}^{m}(\emptyset) = 0$. Sei $(B_{n})_{n \in \mathbb{N}}$ eine Familie von Mengen, mit $B_{i} = \emptyset \forall i \in \mathbb{N}$. Nun ist

$$\sum_{i=1}^{\infty} \omega_m \left(\frac{\operatorname{diam}(B_i)}{2} \right)^m = 0.$$

Das Hausdorff-Maß ist als infimum der Überdeckungen definiert, deren Mengen maximal Duchmesser δ haben. Kleiner als 0 kann es nicht werden und $\emptyset = \bigcup_{i \in \mathbb{N}} B_i$ es ist eine Überdeckung.

b) Sei $A \in S$ und $A \subset \bigcup_{i \in \mathbb{N}} A_i$ eine Familie von Menge, die A überdeckt.

z.z.
$$\mathcal{H}_{\delta}^{m}(A) \leq \sum_{i=1}^{\infty} \mathcal{H}_{\delta}^{m} A_{i}$$
.

Sei $(B_j^i)_{j\in\mathbb{N}}$ eine Familie von Mengen, so dass $A_i\subset\bigcup_{j\in\mathbb{N}}B_j^i,\,\forall j\in\mathbb{N}\,$: diam $(B_j^i)<\delta$

und
$$\sum_{j=1}^{\infty} \omega_m \left(\frac{\operatorname{diam} B_j^i}{2} \right)^m \leq \mathcal{H}_{\delta}^m(A_i) + \frac{\varepsilon}{2^i}$$
(*).

Nun ist für A die doppelte Vereinigung $\bigcup_{i\in\mathbb{N}}\bigcup_{j\in\mathbb{N}}B^i_j$ auch eine eine Überdeckung (da jede

der Überdeckenden Mengen überdeckt wurde). Diese Mengen haben nun alle einen Durchmesser kleiner δ . Daher können wir diese in der Definition des approximativen Hausdorff-Maßes benutzten.

$$\mathcal{A}_{\delta}^{m} \stackrel{inf}{\leq} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \omega_{m} \left(\frac{\operatorname{diam} B_{i}}{2} \right)^{m} \\
\stackrel{(*)}{\leq} \sum_{i=1}^{\infty} \left(\mathcal{H}_{\delta}^{m}(A_{i}) + \frac{\varepsilon}{2^{i}} \right) \\
= \left(\sum_{i=1}^{\infty} \mathcal{H}_{\delta}^{m}(A_{i}) \right) + \varepsilon$$

Lassen wir nun unser ε gegen 0 laufen, so erhalten wir

$$(A)^m_{\delta}(A) \le \sum_{i=1}^{\infty} \mathcal{H}^m_{\delta}(A_i).$$

(ii)

Zeigen Sie, dass \mathcal{H}^m ein äußeres Maß ist.

Beweis:

- a) z.z. $\mathcal{H}^m(\emptyset) = 0$. Wie gezeigt, ist $\mathcal{H}^m_{\delta}(\emptyset) = 0 \quad \forall \delta > 0$. Daher ist auch $\mathcal{H}^m(\emptyset) = \lim_{\delta \to 0} \mathcal{H}^m_{\delta}(\emptyset) = 0$.
- b) Sei $A \subset \bigcup_{i \in \mathbb{N}} A_i$ eine überdeckung von A. z.z. $\mathcal{H}^m(A) \leq \sum_{i=1}^{\infty} \mathcal{H}^m(A_i)$.

Da wir schon in a) gezeigt haben, dass es sich beim approximativen Hausdorff-Maß um ein Maß handelt, können wir unsere A_i für alle $\delta > 0$ so überdecken mit $(B_j^i)_{j \in \mathbb{N}}$, dass $\mathcal{H}_{\delta}^m(A) \leq \sum_{i=1}^{\infty} \mathcal{H}_{\delta}^m(A_i)$.

Aus Analysis I wissen, wir, dass sich im Grenzwert die Relation nicht umkehren kann (nur abschwächen).

Daher gilt
$$\mathcal{H}^m(A) = \lim_{\delta \to 0} \mathcal{H}^m_{\delta}(A) \le \lim_{\delta \to 0} \sum_{i=1}^{\infty} \mathcal{H}^m_{\delta}(A_i) = \sum_{i=1}^{\infty} \mathcal{H}_{\delta}(A_i).$$

Wir können den Grenzwert in die Summe ziehen, da die einzelnen Summanden unabhängig von einander bezüglich δ sind.

Beweis:

5. Hausdorff-Maß und Lebesque-Maß

Seien \mathcal{L} das Lebesque-Maß und \mathcal{H}^1_{δ} das approximative Hausdorff-Maß auf \mathbb{R} . Zeigen Sie, dass für alle $A \subset \mathbb{R}$ gilt

$$\mathcal{L}^1(A) = H^1_{\delta}(A)$$
 für alle $\delta > 0$

Beweis:

Um dies zu zeigen, beweise ich zunächst das folgende.

Behauptung 1. Im \mathbb{R}^1 ist für einen Würfel $I \in \mathcal{K} = (a,b)$, sein Volumen I = b - a, das Lebesgue-Maß $\mathcal{L}^1(I) = b - a$ und das approximierte Hausdorff-Maß $\mathcal{H}^1_{\delta}(I) = b - a$ für alle $\delta > 0$.

Behauptung 2. Sei (a,b] ein Intervall. Dann ist ist $\mathcal{L}^1((a,b]) = \mathcal{L}^1((a,b))$. D.h. es ist egal, ob die Intervall geschlossen oder offen sind. (Ebenso [a,b], [a,b)).

Schlussfolgerung: Für das Lebesgue-Maß ist es egal, welche Intervalle wir benutzten.

Beweis 1.

Das Volumen eines Würfels gerade als $|(a_1,b_1)\times...\times(a_n,b_n)|=(b_1-a_1)\cdot...\cdot(b_n-a_n)$ definiert. Nun muss für das Lebesque-Maß die Menge mit Würfeln übderdeckt werden. Sei also $(I_i)_{i\in\mathbb{N}}$ die Überdeckung, mit $I_1=I$, sonst \emptyset . Damit ist $\mathcal{L}^1(I)=\sum_{i=1}^\infty |I_i|=|I_1|=b-a$.

Für das Hausdorff - Maß underscheiden wir zunächst. Ist $b-a < \delta$ können wir es direkt mit dem Würfel überdecken. Ist δ zu klein wählen wir als die Überdeckung $B_i = (a, a + \frac{\delta}{b-a}], (a + \frac{\delta}{b-a}, a + 2\frac{\delta}{b-a}], ...(b - \frac{\delta}{b-a}, b), \emptyset, ...$ und die restlichen Mengen sind \emptyset . Wie man erkennt, ist nun $\mathcal{H}^m_{\delta}(I) = \sum_{i=1}^{\infty} \omega_1\left(\frac{B_i}{2}\right) = b-a$, da $\omega_1 = 2$ ist.

Beweis 2

Sei (a, b] das Intervall. Dann wird es durch (a, b) und $(b - \varepsilon, b + \varepsilon)$ für jedes $\varepsilon > 0$ übderdeckt. Seien $(B_i)_{i \in \mathbb{N}}$ offene Würfel, so dass $B_1 = (a, b)$, $B_2 = (b - \varepsilon, b - \varepsilon)$, $B_i = \emptyset$ $\forall i > 2$.

Nun ist $\sum_{i=1}^{\infty} B_i = b - a + 2\varepsilon$. Lässt man nun ε gegen 0 laufen, erhält man nur noch b - a. Es kann auch nicht weniger werden, da man sonst einen Wert nicht mehr erreicht.

Nun zeigen wir den Satz: $\mathcal{L}^1(A) \geq \mathcal{H}^1_{\delta}(A)$.

Dies gilt trivialerweise. Sei $(I_i)_{i\in\mathbb{N}}$ eine überdeckung mit Würfeln sodass $\sum_{i=1}^{\infty}|I_i|\leq \mathcal{L}^1(A)+$ ε , mit Seitenlängen, maximal δ . Dann ergibt sich, dass $\sum_{i=1}^{\infty}\omega_1\frac{\mathrm{diam}I_i}{2}\leq \mathcal{L}^1(a)+\varepsilon$. Lässt man ε nun gegen 0 laufen, drehen sich die relationen nicht um. Da nun das approximative Hausdorff-Maß als das Infimum aller Überdeckungen definiert ist, muss es kleiner gleich diesem sein.

$$\mathcal{L}^1(A) \le \mathcal{H}^1_{\delta}(A).$$

Sei $(B_i)_{i\in\mathbb{N}}$ eine Überdeckung für A, mit diam $B_i < \delta$ für alle $i \in \mathbb{N}$.

Wir können davon ausgehen, dass B_i nur aus Intervallen besteht. Nehmen wir an B_j für ein $j \in \mathbb{N}$ wäre kein Intervall, dann gäbe es eine Menge von Intervallen $(I_k)_{k \in \mathbb{N}}$, so dass $B_j = \bigcup I_k$. Nehmen wir ferner an, sie sind sortiert. $I_1 = (a_1, b_1), ..., I^{\infty} = (a_{\infty}, b_{\infty})$. Dann ist

 $\sum_{i=1}^{\infty} \omega_1 \frac{b_i - a_i}{2} \leq b_{\infty} - a_{\infty}.$ Damit ist die Überdeckung für das Hausdorff-Maß aus Intervallen gebildet, da diese kleiner sind.

Da wir nun nur noch Intervalle betrachten müssen für unsere Überdeckung von A, können wir die selbe Überdeckung für das Lebesgue-Maß wählen (Dies ist nach 2 Möglich, da wir uns nicht um offene oder abgeschlossene Mengen kümmern müssen). Wie schon öfters gesehen, ist die Berechnugsformel der beiden im ein-dimensionalen gleich, falls die Überdeckung aus Würfeln mit Durchmesser kleiner als δ gebildet wird.

6. Nicht-messbare Mengen

Man betrachte das Maß \mathcal{H}^1_{δ} auf \mathbb{R}^2 . Sei

$$A := \{ x \in \mathbb{R}^2 : x_2 > 0 \}.$$

Zeigen Sie:

A ist nicht \mathcal{H}^1_{δ} -messbar für beliebiges $\delta > 0$.

Beweis:

Die Menge, an der wir zeigen, dass es nicht messbar ist, soll

$$T = B_{\frac{\delta}{2}}(0,0)$$

sein. Nun muss nach Definition der Messbarkeit gelten

$$\mathcal{H}^1_{\delta}(T) = \mathcal{H}^1_{\delta}(T \cap A) + \mathcal{H}^1_{\delta}(T \setminus A).$$

Zunächst sollten wir der Aufgabe entsprechend zeigen, dass in jeder der Mengen $T, T \cap A, T \setminus A$ ein Geradenstück g ist, mit der Länge $\mathcal{H}^1_{\delta}(g) = \delta - \varepsilon$ für alle $\varepsilon > 0$.

Wir wissen, dass T eine offene Kugel ist, um den Mittelpunkt (0,0). Da diese den Radius $\frac{\delta}{2}$ hat, ist ihr Durchmesser δ . Nehmen wir nun eine Gerade durch den Mittelpunkt, so ist dies ein Intervall, der Länge δ . Nehmen wir nun ein Teilintervall davon, so können wir eine gerade der Länge $\delta - \varepsilon$ erzeugen.

Für $T \setminus A$, können wir ebenso eine Gerade nehmen, wobei es nur eine der Länge δ gibt und das ist die Gerade auf der Achse y = 0. Nun können wir wieder eine Teilgerade nehmen, die die Länge $\delta - \varepsilon$ hat.

Im Fall von $T\cap A$ ist es etwas schwieriger. Es gibt keine Gerade der Länge δ , da die y=0 Achso nicht zu der Menge gehört. Wir können allerdings die Geraden annähren. Nehmen wir Geraden, die parrallel zu y=0 Achse liegen. So liegt bei $x=\sqrt{\frac{\delta^2}{4}-\frac{(\delta-\varepsilon)^2}{4}}$ die Gerade, die Länge $\delta-\varepsilon$ hat.

Als nächstes soll gezeigt werden, dass

$$\mathcal{H}^1_\delta(T)=\mathcal{H}^1_\delta(T\cap A)=\mathcal{H}^1_\delta(T\setminus A)=\delta$$

gilt.

Ist dies der Fall so ist es nicht messbar, da $\mathcal{H}^1_{\delta}(T \cap A) = \mathcal{H}^1_{\delta}(T \setminus A) = 2\delta \neq \delta = \mathcal{H}^1_{\delta}(T)$.

Dies war mir aber nicht möglich zu zeigen, da ich nicht weiß, wie ich eine abzählbare Überdeckung einer (Halb-) Kugel durch Geraden bewerkstelligen soll.