21 de junho de 2016

Nome:

FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros! Use $g = 9.8 \text{ m/s}^2$.

1. (4 valores) Um bloco de massa $2\,m$ está pendurado por um fio vertical que está ligado no outro extremo a um carrinho de massa $4\,m$, passando por uma roldana de massa m, onde $m=100\,\mathrm{g}$. O carrinho encontra-se na superfície de um plano inclinado 33° em relação à horizontal e a roldana é um disco homogéneo de raio R (momento de inércia $I_{\rm cm}=m\,R^2/2$). A massa do fio e das rodas do carrinho são desprezáveis. O fio faz rodar a roldana, sem deslizar sobre ela. Determine o valor da aceleração do carrinho, ignorando as forças não conservativas (resistência do ar e atrito nos eixos das rodas e da roldana) e o sentido dessa aceleração (para cima ou para baixo do plano inclinado?).

2. (4 valores) Determine a posição dos pontos de equilíbrio e o tipo de cada um desses pontos, no sistema dinâmico com as seguintes equações de evolução:

 $\dot{x} = y^3 - 4x$ $\dot{y} = y^3 - y - 3x$

Diga se o sistema corresponde ou não às seguintes categorias de sistemas: (a) autónomo, (b) linear, (c) conservativo, (d) pedador presa (todas as suas respostas devem ser argumentadas corretamente).

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

- **3.** O sistema de Lotka-Volterra consegue explicar muito bem a evolução de um sistema predador presa mas tem uma grande desvantagem que outros sistemas tentam corrigir. Qual é essa desvantagem?
 - (\mathbf{A}) Cada uma das populações pode aumentar indefinidamente.
 - (B) Nenhuma das duas populações atinge nunca um valor constante.
 - (\mathbf{C}) Nenhuma das duas populações pode chegar a extinguir-se totalmente.
 - (D) Cada uma das populações oscila indefinidamente.
 - (E) Cada uma das populações pode oscilar entre um valor muito baixo e um valor muito elevado.

Resposta:

- **4.** Determine o valor da componente normal da aceleração dum ponto, no instante em que o seu vetor velocidade é $3\hat{i} + 6\hat{j}$ e o vetor aceleração é $-5\hat{i} + 6\hat{j}$ (unidades SI).
 - (A) 7.6 m/s^2
- (C) 21.0 m/s^2
- **(E)** 48.0 m/s^2

- **(B)** 3.13 m/s^2
- (**D**) 7.16 m/s^2

Resposta:

- 5. As equações dum sistema dinâmico com variáveis de estado (x, y) foram transformadas para coordenadas polares (r, θ) , obtendo-se as equações: $\dot{\theta} = -2$ $\dot{r} = 3 \, r r^2$ Como tal, conclui-se que o sistema tem um ciclo limite:
 - (A) atrativo com r=2
- (**D**) atrativo com r=3
- **(B)** repulsivo com r=2
- (E) repulsivo com r=3
- (C) atrativo com r = 0

Resposta:

- **6.** Um corpo de 18 kg desloca-se ao longo do eixo dos x. A força resultante sobre o corpo é conservativa, com energia potencial dada pela expressão $3 + 5 x^2$ (SI). Se o corpo passa pela origem com velocidade $9 \hat{\imath}$, com que energia cinética chegará ao ponto x = 7 m?
 - (**A**) 2420.0 J
- (C) 145.2 J
- **(E)** 4114.0 J

- (**B**) 1210.0 J
- (**D**) 484.0 J

Resposta:

- 7. Aplica-se uma força $5 \hat{i} + 4 \hat{j}$ num ponto com vetor posição $4 \hat{i} 1 \hat{j}$ (unidades SI). Determine o módulo do momento dessa força, em relação à origem.
 - (A) 33 N·m
- (C) 16 N·m
- (**E**) 11 N⋅m

- (**B**) 21 N⋅m
- (**D**) 24 N·m

Resposta:

8. A matriz dum sistema dinâmico linear é (unidades SI):

 $\begin{bmatrix} 2 & 4 \\ -5 & -2 \end{bmatrix}$

Como é a evolução das variáveis de estado em função do tempo?

- (A) Oscilam com período π e amplitude decrescente.
- (B) Oscilam com período igual a π e amplitude constante.
- (C) Oscilam com período $\pi/2$ e amplitude constante.
- (**D**) Oscilam com período $\pi/2$ e amplitude decrescente.
- (E) Oscilam com período $\pi/2$ e amplitude crescente.

Resposta:

	Uma partícula desloca-se numa trajetória circular sob a 14. ação duma força tangencial resultante $F_{\rm t}=3\cos(\theta)$, onde θ é o ângulo medido ao longo do círculo. Qual dos valores de θ na lista seguinte corresponde a um ponto de equilíbrio instável?			O vetor velocidade duma partícula, em função do tempo, é: $2t^2\hat{\imath}+2t^3\hat{\jmath}$ (unidades SI). Encontre a expressão para o módulo da aceleração.	
				(A) $6t^2$	(D) $\sqrt{36t^4+16t^2}$
	(A) $\pi/2$	(C) 0	(E) $3\pi/2$	(B) $4t$	(E) $6t^2 + 4t$
	(B) 2π	(D) π	(L) 0 N/2	(C) $\sqrt{6t^2+4t}$	
	Resposta:			Resposta:	
10.	A projeção x da aceleração duma partícula aumenta em função do tempo, de acordo com a expressão $a_x=3t$ (unidades SI). No instante $t=0$ a projeção x da velocidade é nula e a componente da posição é $x=4$ m. Determine a projeção x da posição em $t=6$ s.			A força \vec{F} , com módulo de 54 N, faz acelerar os dois blocos na figura, sobre uma mesa horizontal, sem que o bloco de cima deslize em relação ao outro bloco. As forças de atrito nas rodas podem ser desprezadas. Calcule o módulo da força de atrito entre os dois blocos.	

(E) 336.0 m

(**A**) 112.0 m

(**B**) 694.4 m

Resposta:

(A) $m \ddot{x} (1 + x^2) + 2 m x \dot{x}$

(B) $\frac{m \ddot{x}}{2} (1 + x^2) + 1 m x \dot{x}^2$

(C) $\frac{m \ddot{x}}{2} (1 + x^2) - 2 m x^3 \dot{x}^2$

(**D**) $\frac{m \ddot{x}}{2} (1 + x^2) - 2 m x \dot{x}$

(E) $m \ddot{x} (1+x^2) + 1 m x \dot{x}^2$

Resposta:

objeto 2. (A) $3\hat{i} + 3\hat{j}$

(B) $9\hat{\imath} - 3\hat{\jmath}$

Resposta:

Resposta:

(C) $-9\hat{i} + 13\hat{j}$

(C) 56.0 m

(**D**) 280.0 m

11. Uma partícula de massa m desloca-se ao longo da curva $y = x^2/2$, no plano horizontal xy. Assim sendo, basta uma

12. O vetor velocidade do objeto 1, em função do tempo, é: $\vec{v}_1 = (1 - 6t)\hat{i} + 8t\hat{j}$ (unidades SI) e o vetor velocidade do objeto 2, no mesmo referencial, é: $\vec{v}_2 = 3t \hat{i} + (1-5t) \hat{j}$. Determine o vetor aceleração do objeto 1 em relação ao

13. Se $x \ge 0$ e $y \ge 0$, qual dos seguintes sistemas é um sistema

de duas espécies com competição? (A) $\dot{x} = x^2 + xy$ $\dot{y} = y^2 + xy$

(B) $\dot{x} = y^2 - xy$ $\dot{y} = x^2 - xy$

(C) $\dot{x} = x^2 - xy$ $\dot{y} = y^2 - xy$

(D) $\dot{x} = xy - x^2$ $\dot{y} = y^2 - x^2$

(E) $\dot{x} = y^2 - xy$ $\dot{y} = x^2 + xy$

(D) $9\hat{i} + 3\hat{j}$

(E) $-3\hat{i} + 13\hat{j}$

única variável generalizada para descrever o movimento;

escolhendo a variável x, a expressão da energia cinética é $E_{\rm c}=\frac{m\,\dot{x}^2}{2}\left(1+x^2\right)$. Encontre a expressão para a força

- (A) 8 N
- (C) 9 N
- (E) 7 N

- (B) 5 N
- (**D**) 6 N

Resposta:

generalizada Q_x responsável pelo movimento da partícula. 16. Na figura, a roldana fixa tem raio de 6 cm, a roldana móvel tem raio de 3 cm e o fio faz rodar as roldanas sem deslizar sobre elas. No instante em que o bloco A desce, com velocidade de valor 18 cm/s, qual o valor da velocidade angular da roldana móvel?

- (A) 12 rad/s
- (C) 6 rad/s
- **(E)** 3 rad/s

- (**B**) 18 rad/s
- (**D**) 9 rad/s

Resposta:

17. A equação diferencial:

$$\ddot{x} - x^2 + x + 6 = 0$$

é equivalente a um sistema dinâmico com espaço de fase (x, \dot{x}) . Qual dos pontos na lista é ponto de equilíbrio desse sistema?

- (A) (-3, 0)
- **(C)** (1, 0)
- $(\mathbf{E}) (0, 0)$

- **(B)** (-1, 0)
- (\mathbf{D}) (3,0)

Resposta:

Resolução do exame de 21 de junho de 2016

Regente: Jaime Villate

Problema 1. Para descrever o movimento do sistema são necessárias três variáveis. Duas variáveis s e h, para determinar as posições do carrinho e do bloco, que podem ser definidas como mostra a figura seguinte, e um ângulo θ que determina a rotação da roldana.

Como o fio faz rodar a roldana sem deslizar nela, o ângulo que a roldana roda (no sentido dos ponteiros do relógio) está relacionado com a posição do carrinho: $\theta = s/R + \text{constante}$ e, como tal, a velocidade angular da roldana é:

$$\omega = \frac{v}{R}$$

onde $v = \dot{s}$ é a velocidade do carrinho. O comprimento do fio é igual a

$$L = \text{constante} - s - h$$

e, como permanece constante, a velocidade do bloco é igual a menos a velocidade do carrinho:

$$\dot{h} = -v$$

Assim sendo, o sistema tem um único grau de liberdade, s, e uma única velocidade generalizada, v.

Resolução por mecânica de Lagrange. A expressão da energia cinética total dos três objetos é:

$$E_{\rm c} = \frac{1}{2} (4m) \dot{s}^2 + \frac{1}{2} (2m) \dot{h}^2 + \frac{1}{2} \left(\frac{mR^2}{2} \right) \omega^2 = 2mv^2 + mv^2 + \frac{1}{4} mv^2 = \frac{13}{4} mv^2$$

E a expressão da energia potencial gravítica (ignorando a da roldana que permanece constante) é:

$$U = 4 mg s \sin(33^{\circ}) + 2 mg h = 4 mg s \sin(33^{\circ}) - 2 mg s + \text{constante}$$

A equação de movimento obtém-se a partir da equação de Lagrange:

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial E_{\mathrm{c}}}{\partial v}\right) - \frac{\partial E_{\mathrm{c}}}{\partial s} + \frac{\partial U}{\partial s} = \frac{13}{2}ma + 4mg\sin(33^{\circ}) - 2mg = 0$$

E a aceleração do carrinho é então,

$$a = \frac{4g}{13}(1 - 2\sin(33^\circ)) = -0.2692 \frac{\text{m}}{\text{s}^2}$$

O sinal negativo indica que a aceleração é para baixo do plano inclinado (a velocidade do carrinho, v, é uma variável de estado que pode ser positiva ou negativa, ou seja, para cima ou para baixo).

Resolução por mecânica vetorial. A figura ao lado mostra o diagrama de corpo livre do carrinho. A soma das componentes das forças normais ao plano deve ser nula e a soma das componentes das forças tangentes ao plano é igual a:

$$T_1 - 4mg \sin(33^\circ) = 4ma \implies T_1 = 4m(a+g \sin(33^\circ))$$
 (1)

A figura ao lado mostra o diagrama de corpo livre do bloco. Como na equação do carrinho admitiu-se que a aceleração *a* era para cima do plano, então a aceleração do bloco é *a*, para baixo, e a equação de movimento é:

$$2mg - T_2 = 2ma \implies T_2 = 2m(g - a)$$
 (2)

Na roldana atuam as tensões nos dois lados do fio, o seu peso e uma força de contato no eixo (diagrama ao lado). A soma dessas forças deve ser nula e a soma dos momentos, em relação ao eixo, é:

$$T_2R - T_1R = \left(\frac{mR^2}{2}\right)\alpha \implies T_2 - T_1 = \frac{m}{2}a$$

Substituindo nesta expressão as equações (??) e (??), obtém-se a mesma expressão da aceleração obtida pelo método de mecânica de Lagrange.

Problema 2. Os pontos de equilíbrio são as soluções das duas equações:

$$y^3 - 4x = 0 y^3 - y - 3x = 0$$

Subtraindo as duas equações obtém-se y = x, ou seja,

$$x^3 - 4x = x(x^2 - 4) = x(x+2)(x-2) = 0$$

Como tal, há três pontos de equilíbrio (x, y):

$$P_1 = (0,0)$$
 $P_2 = (2,2)$ $P_3 = (-2,-2)$

Derivando as duas expressões das equações de evolução, obtém-se a matriz jacobiana:

$$\mathbf{J} = \begin{bmatrix} -4 & 3y^2 \\ -3 & 3y^2 - 1 \end{bmatrix}$$

No ponto P₁, a matriz da aproximação linear é então,

$$\mathbf{A}_1 = \begin{bmatrix} -4 & 0 \\ -3 & -1 \end{bmatrix}$$

que tem valores próprios -4 e -1 e, como tal, P_1 é um nó atrativo.

Nos pontos P₂ e P₃ obtém-se a mesma matriz para a aproximação linear,

$$\mathbf{A}_2 = \mathbf{A}_3 = \begin{bmatrix} -4 & 12 \\ -3 & 11 \end{bmatrix}$$

Que tem determinante igual a -8. Conclui-se então que P_2 e P_3 são ambos pontos de sela.

(a) O sistema é autónomo, porque as expressões das equações de evolução não dependem explicitamente do tempo. (b) Não é um sistema linear, porque a matriz jacobiana não é constante. (c) Não é sistema conservativo, porque o traço da matriz jacobiana, igual a $3y^2 - 5$, não é nulo. (d) Não pode ser sistema predador presa, porque não é um sistema de duas espécias, já que $y^3 - 4x$ não se aproxima de zero quando x se aproxima de zero e $y^3 - y - 3x$ não se aproxima de zero quando y se aproxima de zero.

Perguntas

 3. E
 6. D
 9. E
 12. C
 15. C

 4. D
 7. B
 10. A
 13. C
 16. E

 5. D
 8. C
 11. E
 14. D
 17. D

Critérios de avaliação

Problema 1

Mecânica de Lagrange.

Determinação do grau de liberdade e relações entre as velocidades e acelerações	0.8
Expressão para a energia cinética do sistema	0.8
Expressão para a energia potencial do sistema	0.8
Aplicação da equação de Lagrange para obter a equação de movimento	0.8
Valor da aceleração do carrinho, com unidades corretas	0.4
Indicação do sentido da aceleração do carrinho	0.4
Mecânica vetorial.	
Determinação do grau de liberdade e relações entre as velocidades e acelerações	0.8
Diagrama de corpo libre e equação de movimento do carrinho	0.8
Diagrama de corpo libre e equação de movimento do bloco	0.8
Diagrama de corpo libre e equação de movimento da roldana	0.8
Valor da aceleração do carrinho, com unidades corretas	0.4
Indicação do sentido da aceleração do carrinho	0.4
Problema 2	
Determinação dos 3 pontos de equilíbrio	0.4
Obtenção da matriz jacobiana	0.4
Caraterização do ponto de equilíbrio na origem	0.4
Caraterização dos dois pontos de equilíbrio fora da origem	0.4
• Alínea a	0.6
Alínea b	0.6
• Alínea c	0.6
• Alínea d	0.6