Fonctions exponential

Propriété. Fonction exponentielle de base a.

Soit a un réel > 0. Il existe une <u>unique</u> fonction f définie et dérivable sur \mathbb{R} telle que f(x+y) = f(x)f(y)et telle que f(1) = a.

Cette fonction est appelée fonction exponentielle de base a.

Définition. Pour tout $x \in \mathbb{R}$, on note $a^x = f(x)$

Propriétés.

- $a^x > 0$.
- $a^{x+y} = a^x \times a^y$

•
$$a^0 = 1$$
 • $a^1 = a$ • $a^{-1} = \frac{1}{a}$
Exemples. $e^3 \times e^4 = e^{3+4} = e^7$ $e^{-2} = \frac{1}{e^2}$

- La fonction $x \mapsto a^x$ est strictement croissante.
- $a^x = a^y \Leftrightarrow x = y$

$$e^2$$

$$(e^x)^4 = e^{4x}$$

Propriété. Variations d'une fonction exponentielle paramétrée : $f: x \mapsto a^{kx}$ où $k \in \mathbb{R}$.

Si k < 0, $f: x \mapsto a^{kx}$ est strictement décroissante sur \mathbb{R} . Si k > 0, $f: x \mapsto a^{kx}$ est strictement croissante sur

Propriété. La suite (u_n) définie pour $n \in \mathbb{N}$ par $u_n = a^{kn}$ où $k \in \mathbb{R}$, est une suite géométrique de raison a^k . **Exemple.** La suite (u_n) définie par $u_n = a^{2n}$ est géométrique de raison a^2 .