# Brief Introduction to Deep Learning and TensorFlow

Deep Learning in Earth Science Lecture 1 By Xiao Zhuowei



For researchers interested in studying Earth science with deep learning.

All resources in lectures are available at

https://github.com/MrXiaoXiao/DLiES





**TensorFlow Basics** 



Classifying Stability of Mantle with Neural Networks: An Example



**Discussions** 

Deep Learning is about automatically obtaining representation of input and mapping (from representation) to output with deep neural network architectures.





#### Obtain the *representation* of input.



What We See



What Computers See

(https://adeshpande3.github.io)



(Deep Learning, MIT Press, 2016)

Obtain *mapping* from representation to output.



(Deep Learning, MIT Press, 2016)

Complicated representations are built out of simpler ones.

The graph of deep learning architecture is deep, with many layers.



### Brief Introdu

#### **Brief Introduction to Deep Learning**

Considering deep learning as algorithm for non-linear function approximation

 $Ideal\ Output = Ideal\ Function(Input + Noise)$ 

Approximation of Ideal Output = DL Model(Input + Noise)



What can deep learning do in Earth science?

Classification

Denoising

Forward Modeling

Inversion

• • •

#### What can deep learning do in Earth science?

Classification

Predicting aftershocks following large earthquakes



(DeVries et al., 2018)

#### What can deep learning do in Earth science?

Classification

Processing remote sensing data



(Zhang et al., 2016)

#### What can deep learning do in Earth science? Denoising Trace number Trace number Noisy input DL output

(Beckouche and Ma, 2014)



#### What can deep learning do in Earth science?

#### **Forward Modeling**

Fast approximate simulation of seismic waves with deep learning



(Moseley et al., 2018)

#### What can deep learning do in Earth science?

#### Inversion



(Araya-Polo et al., 2018)



Model Observation



Inversion by DL

(Adler and Öktem, 2017)





**TensorFlow Basics** 



Classifying Stability of Mantle with Neural Networks: An Example



**Discussions** 

TensorFlow™ is an open source software library for high performance numerical computation.

https://www.tensorflow.org/

or

https://tensorflow.google.cn/



#### **Install TensorFlow via Anaconda**

Anaconda Distribution is a free, easy-to-install package manager, environment manager and Python distribution with a collection of 1,000+ open source packages with free community support.



Anaconda Download (<a href="https://www.anaconda.com/download/">https://www.anaconda.com/download/</a>)

Tensorflow-in-Anaconda

(https://www.anaconda.com/blog/developer-blog/tensorflow-in-anaconda/)

**Python** is an interpreted high-level programming language for general-purpose programming.



(https://www.python.org/)

#### How The Python Interpreter Works



(http://opensourceforgeeks.blogspot.com/2015/10/how-python-works.html)

The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text.

https://jupyter.org/



#### Image Manipulation with skimage

This example builds a simple UI for performing basic image manipulation with scikit-image.

- In [21]: from ipywidgets import interact, interactive, fixed from IPython.display import display
- In [22]: import skimage
  from skimage import data, filter, io
- In [23]: i = data.coffee()
- In [24]: io.Image(i)

Out[24]:



```
In [25]: def edit_image(image, sigma=0.1, r=1.0, g=1.0, b=1.0):
    new_image = filter.gaussian_filter(image, sigma=sigma, multichannel=True)
    new_image[;;;,0] = r*new_image[;;,0]
    new_image[;;;,1] = g*new_image[;;,1]
    new_image[;;;,2] = b*new_image[;;,2]
    new_image = io.Image(new_image)
    display(new_image)
    return new_image
```

In [26]: lims = (0.0,1.0,0.01)
w = interactive(edit\_image, image=fixed(i), sigma=(0.0,10.0,0.1), r=lims, g=lims, b=lims)
display(w)



# TensorFlow Hello World

#### # TensorFlow Hello World

Modified from https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1\_Introduction/helloworld.py

```
In [1]: import tensorflow as tf
In [2]: # Simple hello world using TensorFlow
         # Create a Constant op
         # The op is added as a node to the default graph.
         # The value returned by the constructor represents the output
         # of the Constant op.
         hello = tf.constant('Hello, TensorFlow!')
In [3]: print(hello)
         Tensor("Const:0", shape=(), dtype=string)
In [4]: # Start tf session
         sess = tf. Session()
In [5]: # Run the op
         print(sess.run(hello))
         b'Hello, TensorFlow!'
```

# TensorFlow Multiply Matrices

#### # TensorFlow Multiply Matrices Example

```
Modified from https://github.com/vahidk/EffectiveTensorflow

In [1]: import tensorflow as tf

In [2]: x = tf.random_normal([3,3])
    y = tf.random_normal([3,3])
    z = tf.matmul(x,y)

In [3]: print('{}\n{}\n{}\n{}\)'.format(x,y,z))

    Tensor("random_normal:0", shape=(3, 3), dtype=float32)
    Tensor("random_normal_1:0", shape=(3, 3), dtype=float32)
    Tensor("MatMul:0", shape=(3, 3), dtype=float32)

In [4]: sess = tf.Session()
    z_val = sess.run(z)

In [5]: print(z_val)
```

```
In [5]: print(z_val)

[[-1.8857789    0.02845232    2.23009  ]
    [ 0.20160252    0.49441913    0.37605742]
    [ 3.5984905    1.7590961    -0.84973013]]
```

# Approximate Quadratic Function With TensorFlow



#### **Recommended TensorFlow tutorials**

#### **Effective TensorFlow**

https://github.com/vahidk/EffectiveTensorflow

#### **TensorFlow Official Tutorial**

https://www.tensorflow.org/tutorials/

#### Simple and ready-to-use tutorials for TensorFlow

https://github.com/astorfi/TensorFlow-World





**TensorFlow Basics** 



Classifying Stability of Mantle with Neural Networks: An Example



**Discussions** 



# Classifying Stability of Mantle with Neural Networks: An Example

#### **Plane Layer Heated from Below**



(Schuber et al., 2001)



#### **Full Connection and Back Propagation**



```
#Define a function to generate data set
def generate_data_set(instance_num = 10000, split_rate = 0.6):
    #instance[0] Gravitational acceleration
    #instance[1] Volume expansion coefficient
    #instance[2] Kinematic viscosity coefficient
    #instance[3] Thermal diffusivity
    #instance[4] Depth
    #instance[5] b
    #instance[6] \(\lambda\)
    #instance[7] (TO - T1)/1000
    #instance[8] stability 0 is unstable and 1 is stable
    data_set = np. zeros([instance_num, 9])
    #simulate gravitational accelerations
    data set[:, 0] = np. random. uniform (8, 10, size=instance num)
    #simulate Volume expansion coefficient
    data_set[:, 1] = np. random. uniform(1e-4, 1e-2, size=instance_num)
    #simulate Kinematic viscosity coefficient
    data set[:, 2] = np. random. uniform(1e-6, 1e-2, size=instance num)
    #simulate Thermal diffusivity
    data_set[:, 3] = np.random.uniform(1.0, 10.0, size=instance_num)
    #simulate Depth 1000km
   data set[:, 4] = np. random. uniform(0, 3.5, size=instance_num)
    for idx in range (instance num):
        #simulate b 1000km
        data set[idx, 5] = np. random. uniform(max([2.5, data set[idx, 4]]), 3.5)
    #simulate \lambda
    data_set[:, 6] = np. random. uniform(0.0, 6.0, size=instance_num)
    #simulate TO - T1
   data_set[:, 7] = np.random.uniform(0.0, 5.0, size=instance_num)
    #simulate stability
    for idx in range(instance_num):
        Ra = (data_set[idx, 0]*data_set[idx, 1]* data_set[idx, 7]*1000
              *(data_set[idx, 4]) **3) / (data_set[idx, 2] *data_set[idx, 3])
        Racr = (((np. pi**4)*((4.0+(data set[idx, 6]/data set[idx, 5])**2)**3))
                /(4*((data_set[idx, 6]/data_set[idx, 5])**4)))
        if Ra > Racr:
            data_set[idx, 8] = 0
        else:
            data_set[idx, 8] = 1
    split_index = int(instance_num*split_rate)
    train set = data set[0:split index,:]
    test set = data set[1:split index,:]
    return train_set, test_set
```



```
In [4]: data_set_size = 1000000
           split_rate = 0.5
          train_set, test_set = generate_data_set(instance_num = data_set_size, split_rate = split_rate)
          Stable:574480 UnStable:425520
 In [5]: #define full connection laver
           def full_connection_layer(input_tensor, n_out,
                                     w_init=tf.truncated_normal_initializer(stddev=0.1),
                                     b_init=tf.constant_initializer(0.1),
                                     activation=tf.nn.sigmoid, name=None):
               n_in = input_tensor.get_shape().as_list()[1]
               with tf.variable_scope(name):
                   weight = tf.get_variable('weight', [n_in, n_out], initializer=w_init)
                  bias = tf.get_variable('bias', [n_out], initializer=b_init)
               output_tensor = activation(tf.matmul(input_tensor, weight)+bias, name=name+'_output')
              return output_tensor
 In [6]: def inference(input_tensor):
              hidden_layer_1 = full_connection_layer(input_tensor=input_tensor, n_out=4, name='fc_layer_1')
              hidden_layer_2 = full_connection_layer(input_tensor=hidden_layer_1, n_out=4, name='fc_layer_2')
              hidden_layer_3 = full_connection_layer(input_tensor=hidden_layer_2, n_out=4, name='fc_layer_3')
              pred = full_connection_layer(input_tensor=hidden_layer_3, n_out=2, name='pred')
 In [7]: #set param for training
           step num = 20001
          batch_size = 1000
          data_length = 8
          learning_rate = 0.01
          #setup training
          input_tensor = tf.placeholder(tf.float32, [None, data_length], name='input')
          label = tf.placeholder(tf.float32, [None, 2], name='label')
          pred = inference(input_tensor=input_tensor)
          loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=label))
          train_op = tf. train. AdamOptimizer(learning_rate = learning_rate). minimize(loss)
 In [8]: def get_traning_batch(train_set, batch_size, data_length):
              batch_ids = np. random. choice(len(train_set['input']), batch_size)
               input_batch = np. zeros([batch_size, data_length])
               label_batch = np. zeros([batch_size, 2])
              for idx in range(batch_size):
                  input_batch[idx][:] = train_set['input'][batch_ids[idx]][:]
label_batch[idx][:] = train_set['label'][batch_ids[idx]][:]
              return input_batch, label_batch
 In [9]: sess = tf. Session()
          sess.run(tf.global_variables_initializer())
In [10]: #start traning
          for idx in range(step_num):
              input_batch, label_batch = get_traning_batch(train_set, batch_size, data_length)
               _, loss_val = sess.run([train_op, loss], {input_tensor: input_batch, label: label_batch})
              if idx%2000 == 0:
                  print(loss_val)
          0.6934938
          0.39525732
          0.3629702
          0.3573489
          0.35604522
          0.34598345
          0.34709588
          0.34188947
          0.354488
          0.3468753
          0.3486143
In [11]: correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(label, 1))
           accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
          print('Accuracy: {}'.format(sess.run(accuracy, {input_tensor: test_set['input'], label: test_set['label']})))
          Accuracy: 0.9649959802627563
```

### Classifying Stability of Mantle with Neural Networks: An Example

$$Ra = Ra_{cr} = \frac{\left(\pi^2 + 4\pi^2/\lambda^{*2}\right)^3}{4\pi^2/\lambda^{*2}} = \frac{\pi^4}{4\lambda^{*4}} \left(4 + \lambda^{*2}\right)^3$$

$$Ra = \frac{\alpha g (T_1 - T_0) b^3}{\nu \kappa}$$

$$\lambda^* = \lambda/b$$



(Schuber et al., 2001)





- **TensorFlow Basics**
- Classifying Stability of Mantle with Neural Networks: An Example
- 4 Discussions



#### **TensorFlow Installation via Anaconda**

Step 1. Install Anaconda from (https://www.anaconda.com/download/)



Anaconda

Prompt

Step 2. Create a new conda environment containing TensorFlow.

**Open Anaconda Prompt and run** 

'conda create -n tensorflow\_env tensorflow python=3.6'

or

'conda create -n tensorflow\_gpuenv tensorflow-gpu python=3.6'

for GPU version

Congratulations...



