Lineare Algebra I - Formelsammlung

von Julian Merkert, Wintersemester 2004/05, Dr. Drumm

 $f:A\to B$ injektiv

- $\Leftrightarrow \forall x_1, x_2 \in A \text{ gilt: } x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$
- $\Leftrightarrow \forall x_1, x_2 \in A \text{ gilt: } f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
- \Leftrightarrow Kern $f = \{0\}$

 $f: A \rightarrow B$ surjektiv

- $\bullet \Leftrightarrow B = f(A)$
- $\Leftrightarrow \forall y \in B \text{ gilt: } \exists x \in A : f(x) = y$

 $f: A \to B$ bijektiv: f ist injektiv und surjektiv, f^{-1} existiert

Die **Komposition** zweier Abbildungen ist assoziativ: $h \circ (g \circ f) = (h \circ g) \circ f$

Eine Menge A mit Verknüpfung o heißt...

- Magma: A ist abgeschlossen bzgl. \circ , d.h. $\forall x, y \in A : x \circ y \in A$
- Halbgruppe: zusätzlich ist o assoziativ, d.h. $\forall x, y, z \in A : (x \circ y) \circ z = x \circ (y \circ z)$
- Monoid: zusätzlich gibt es ein neutrales Element $e \in A$: $\forall x \in A : x \circ e = x$ und $e \circ x = x$
- Gruppe: zusätzlich gibt es für jedes Element $x \in A$ ein inverses Element $x^{-1} \in A$: $x \circ x^{-1} = e$ und $x^{-1} \circ x = e$
- kommutativ bzw. abelsch: zusätzlich gilt $\forall x, y \in A : x \circ y = y \circ x$

Eine Relation \sim auf A heißt Äquivalenzrelation, falls gilt:

- 1. Reflexivität: $\forall x \in A : x \sim x$
- 2. Symmetrie: $\forall x, y \in A : x \sim y \Rightarrow y \sim x$
- 3. Transitivität: $\forall x, y, z \in A : x \sim y \text{ und } y \sim z \Rightarrow x \sim z$

Äquivalenzklasse: $[x]_{\sim} := \{y \in A | y \sim x\}$

• Die Menge aller Äquivalenzklassen von Elementen aus A heißt Faktormenge oder Quotientenmenge A/\sim

Symmetrische Gruppe S_B : Gruppe der bijektiven Abbildungen $f: B \to B$

- Ist B endlich, |B| = m heißen die Elemente von S_B Permutationen. Notation: $\pi = \begin{pmatrix} 1 & 2 & \dots & m \\ \pi(1) & \pi(2) & \dots & \pi(m) \end{pmatrix}$
- Permutation, die zwei Elemten $i, j \ (i < j)$ vertauscht und die anderen Elemente festhält: Transposition $\tau^{(i,j)}$

Untergruppenkriterium: Eine Teilmenge B einer Gruppe (A, \circ) ist genau dann eine Untergruppe, wenn gilt:

- 1. $B \neq \emptyset$
- $a, b \in B : a \circ b^{-1} \in B$

Gruppenhomomorphismus: Es seien (A, \circ) und (A', *) Gruppen. $f: A \to A'$ heißt Gruppenhomomorphismus, wenn für alle $x, y \in A$ gilt: $f(x \circ y) = f(x) * f(y)$

Ring / Ring mit 1 / Körper heißt eine Menge A mit zwei Verknüpfungen + und ·, falls gilt:

- 1. (A, +) ist eine abelsche Gruppe
- 2. (Ring) (A, \cdot) ist eine Halbgruppe (Ring mit 1) (A, \cdot) ist ein Monoid (Körper) $(A \setminus \{0\}, \cdot)$ ist eine abelsche Gruppe
- 3. Für alle $x, y, z \in A$ gelten die Distributivgesetze: $x \cdot (y + z) = x \cdot y + x \cdot z$, $(x + y) \cdot z = x \cdot z + y \cdot z$

1

Nullteiler: $a \neq 0$ eines Rings, wenn es ein $b \neq 0$ gibt: $a \cdot b = 0$.

Charakteristik eines Körpers: kleinste Zahl $p \in \mathbb{N} : \underbrace{1+1+\ldots+1}_{p-mel} = 0$

• Existiert ein solches p nicht, ordnet man dem Körper die Charakteristik 0 zu.

Körperhomomorphismus: Es seien $(A, +, \cdot)$ und (A', \oplus, \odot) Körper. Eine Abbildung $f : A \to A'$ heißt Körperhomomorphismus, wenn für alle $x, y \in A$ gilt:

1.
$$f(x+y) = f(x) \oplus f(y)$$

2.
$$f(x \cdot y) = f(x) \odot f(y)$$

Restklassen: $a \sim b \Leftrightarrow m$ teilt b-a

- Schreibweise: $a \equiv b \mod m$
- a und b sind genau dann äquivalent, wenn sie bei Division durch m denselben Rest besitzen.
- \bullet \mathbb{Z}_m ist ein kommutativer Ring mit 1 und genau dann ein Körper, wenn m eine Primzahl ist.
- $[x]_{\sim} + [y]_{\sim} := [x + y]_{\sim} \text{ und } [x]_{\sim} \cdot [y]_{\sim} := [x \cdot y]_{\sim}$

Teilerfremdheit: Die Zahlen $a, b \in \mathbb{Z}$ sind genau dann teilerfremd, wenn es Zahlen $x, y \in \mathbb{Z}$ gibt mit ax + by = 1.

Euklidischer Algorithmus, um den ggT(a,b), $a,b \in \mathbb{Z}$ zu bestimmen.

- 1. Teile a durch b: $a = k \cdot b + r$
- 2. Teile b durch r: $b = k_1 \cdot r + r_1$
- 3. Teile r durch r_1 : $r = k_2 \cdot r_1 + r_2$

usw. bis Teile r_{j-1} durch r_j : $r_{j-1} = k_{j+1} \cdot r_j$. $ggT(a,b) = r_j$.

Kronecker-Symbol: $\delta_{ij} := \left\{ egin{array}{ll} 0 & i
eq j \\ 1 & i = j \end{array}
ight\}$

Matrizen

- Addition, Multiplikation mit einem Element $c \in \mathbb{K}$: klar
- Matrizenmultiplikation einer Matrix $A \in K^{m \times n}$ mit einer Matrix $B \in K^{n \times k}$: $AB = C \in K^{m \times k}$ mit $c_{ij} = \sum_{l=1}^{n} a_{il} b_{lj}$

•
$$(A + B) + C = A + (B + C)$$
, $A(BC) = (AB)C$, $(ab)A = a(bA)$, $c(AB) = (cA)B = A(cB)$

- A(B+C) = AB + AC, (A+B)C = AC + BC, (a+b)A = aA + bA, c(A+B) = cA + cB
- A regulär \Leftrightarrow Inverses A^{-1} bzgl. der Multiplikation existiert.
- $(A^T)^T = A$, $(A+B)^T = A^T + B^T$, $(AB)^T = B^T A^T$, $(A^T)^{-1} = (A^{-1})^T$
- $A, \tilde{A} \text{ ähnlich} \Leftrightarrow \exists S : \tilde{A} = S^{-1}AS$
- A, \tilde{A} äquivalent $\Leftrightarrow \exists S, T : \tilde{A} = T^{-1}AS$

Polynom: $p = \sum_{i=0}^{n} a_i X^i$

Vektorraum über dem Körper K heißt eine Menge V mit einer inneren Verknüpfung $+: V \times V \to V$ und einer äußeren Verknüpfung $\cdot: K \times V \to V$ mit:

- 1. (V, +) ist eine abelsche Grupppe
- 2. $a(x+y) = ax + ay \ \forall \ a \in K, \ x, y \in V$
- 3. $(a+b)x = ax + bx \ \forall \ a,b \in K, \ x \in V$
- 4. $a(bx) = (ab)x \ \forall \ a, b \in K, \ x \in V$
- 5. $1 \cdot x = x \ \forall \ x \in V$

Untervektorraum-Kriterium: $U \subseteq V$ Untervektorraum : \Leftrightarrow

- 1. $U \neq \emptyset$
- 2. $\forall a \in \mathbb{K}, x, y \in U : a \cdot x \in U \text{ und } x + y \in U$

Lineare Hülle von $A \subseteq V$: Menge aller Vektoren eines Vektorraums V, die sich als Linearkombination von Vektoren aus A darstellen lässt. Schreibweise: [A]

$$x_1,...,x_k$$
 linear unabhängig: $\sum_{i=1}^k a_i x_i = 0 \Rightarrow a_1 = a_2 = ... = a_k = 0$

Erzeugendensystem: Menge $A \subset U$ mit [A] = U wobei U Untervektorraum eines Vektorraums V

Basis: linear unabhängiges Erzeugendensystem

Rang einer Matrix:

- Eine Matrix $A \in K^{m \times n}$ ist genau dann regulär, wenn $Rg \ A = n$ gilt.
- \bullet Das LGS Ax=bmit $b\in K^m$ ist genau dann lösbar, wenn gilt: $Rg\ A=Rg\ (A|b)$
- \bullet Der Lösungsraum des homogenen LGS Ax=0 besitzt die Dimension n-Rg A

Direkte Summe: Der Schnitt jeweils zweier Untervektorräume besteht nur aus dem Nullvektor

• die Summe von Untervektorräumen $U=U_1+\ldots+U_k$ ist genau dann direkt, wenn jeder Vektor $x\in U$ eine eindeutige Darstellung $x=u_1+\ldots+u_k$ mit $u_i\in U_i$ für i=1..k besitzt.

Dimensionssatz für Untervektorräume: $\dim U + \dim W = \dim(U + W) + \dim(U \cap W)$

• Für direkte Summen gilt: $\dim U + \dim W = \dim(U \oplus W)$, da $\dim(U \cap W)$ i.d. Fall 0 ist.

W Komplementärraum zu U (U,W Untervektorräume von V): $V = U \oplus W$

Faktorräume:

- Es seien V ein K-Vektorraum und U ein Untervektorraum von V. Dann ist durch $x \sim y :\Leftrightarrow x-y \in U$ eine Äquivalenzrelation auf V definiert.
- Für die Faktormenge schreibt man V/U. Sie besteht aus den Äquivalenzklassen $[x]_{\sim} = x + U = \{x + u | u \in U\}$
- $[x]_{\sim} + [y]_{\sim} := [x+y]_{\sim}$ bzw. (x+U) + (y+U) = (x+y) + U $a \cdot [x]_{\sim} := [ax]_{\sim}$ bzw. $a \cdot (x+U) = ax + U$
- $\dim V = \dim U + \dim(V/U)$
- Sei U ein Untervektorraum von V mit Basis B. Ist $B \cup B'$ eine Basis von V und $B \cap B' = \emptyset$, dann ist $\{x + U | x \in B'\}$ eine Basis von V/U.

Affiner Unterraum: L = x + U mit U Untervektorraum von V, $x \in V$

- $\dim L := \dim U$
- Die affinen Unterräume L_1 und L_2 heißen parallel, falls gilt: $U_1 \subseteq U_2$ oder $U_2 \subseteq U_1$.

Lineare Abbildung:

- eine Abbildung $\Phi: V \to W$ heißt linear, wenn gilt: $\Phi(ax+by) = a \cdot \Phi(x) + b \cdot \Phi(y) \ \forall \ x,y \in V, a,b \in K$
- Bild $\Phi := \{\Phi(x) | x \in V\}$ und $\operatorname{Kern} \Phi := \{x \in V | \Phi(x) = 0\}$
- $\dim V = \dim \operatorname{Kern} \Phi + \dim \operatorname{Bild} \Phi$
- Hom $(V, W) := \{ \Phi : V \to W | \Phi \ linear \}$ ist ein K-Vektorraum.
- $\dim \operatorname{Hom}(V, W) = \dim V \cdot \dim W$
- Abbildungsmatrix: Koordinaten von $\Phi(b_i)$ in die j-te Spalte schreiben
- Für lineare Abbildungen und deren Abbildungsmatrizen gilt: $A_{\tilde{\Phi} \circ \Phi} = A_{\tilde{\Phi}} \cdot A_{\Phi}, A_{\Phi^{-1}} = A_{\Phi}^{-1}$

Abbildungsmatrizen bei verschiedenen Basen:

- \bullet B, \tilde{B} seien Basen eines Vektorraums V
- \bullet C, \tilde{C} seien Basen eines Vektorraums W
- ullet S sei die Übergangsmatrix für den Basiswechsel $\tilde{B} \leftarrow B$ und T die Übergangsmatrix für den Basiswechsel $\tilde{C} \leftarrow C$
- A_{Φ} sei die Abbildungsmatrix von $\Phi: V \to W$ bzgl. der Basen B und C.
- $\Rightarrow \tilde{A}_{\Phi} = T^{-1}A_{\Phi}S$ ist die Abbildungsmatrix von Φ bezüglich \tilde{B} und $\tilde{C}.$

Äquivalenz von Matrizen: Zwei Matrizen sind genau dann äquivalent, wenn sie den gleichen Rang haben.

Determinante:

- $\bullet \ \det A \neq 0 \Leftrightarrow \mathbf{A} \ \mathrm{regul\ddot{a}r} \Leftrightarrow Rg \ A = n \Leftrightarrow Ax = 0$ unlösbar
- \bullet det $A = 0 \Leftrightarrow$ Zeilen und Spalten von A sind linear abhängig
- $\det \Phi := \det A_{\Phi}, \det A^T = \det A, \det(AB) = (\det A)(\det B)$