05_Switched Control

1. Introduction & Motivation for Hybrid Control

Motivation of Switched Controller

Structure of Switching Control

Problem in Switching Control: Chattering

2. Stabilization of Switched Linear Systems

Quadratic Stabilization via single Lyapunov Function

Stabilization via multiple Lyapunov functions

S-procedure

Stabilization of switched linear systems with continuous inputs

3. Time-Controlled Switching & pulse width modulation

Time-Controlled Switching

Pulse-Width Modulation

4. Sliding Mode Control

Method

Properties

5. Stabilization By Switching Control: An Example

Summary

1. Introduction & Motivation for Hybrid Control

Motivation of Switched Controller

Theorem: Brockett's Necessary Condition

Consider system

$$\dot{x} = f(x,u) \quad ext{with } x \in \mathbb{R}^n, u \in \mathbb{R}^m, f(0,0) = 0$$

where f is smooth function

If system is asymptotically stabilizable (around x=0) using continuous feedback law $u=\alpha(x)$, then image of every open neighborhood of (x,u)=(0,0) under f contains open neighborhood of x=0

Example:

Here is an example (non-holonomic integrator) that the system cannot be stabilized by the continuous feedback law

05_Switched Control 1

ullet For non-holonomic integrator: $\dot{x} = u$

$$\dot{y} = v$$

$$\dot{z} = xv - yu$$

- Is asymptotically stabilizable (see later)
- Satisfies Brockett's necessary condition?
 - if $f_1 = f_2 = 0$ then $f_3 = 0$
 - hence, $(0,0,\varepsilon)$ cannot belong to image of f for any $\varepsilon \neq 0$ \rightarrow image of open neighborhood of (x,y,z;u,v)=(0,0,0;0,0)under f does *not* contain open neighborhood of (x,y,z)=(0,0,0)
 - so non-holonomic integrator cannot be stabilized by continuous feedback
- → hybrid control schemes necessary to stabilize it!
 hs_switched_ctrl.4

Structure of Switching Control

→ shared controller state variables

Problem in Switching Control: Chattering

Main problem may appear in switching control controller is **chattering,** i.e. very fast switching. There are mainly two solutions:

• Hysteresis Switching Logic

05_Switched Control 2

- let h > 0, let π_{σ} be a performance criterion (to be minimized)
- if supervisor changes value of σ to q, then σ is held *fixed* at q until $\pi_p + h < \pi_q$ for some p
 - $ightarrow \sigma$ is set equal to p
 - \Rightarrow threshold parameter h > 0 prevents infinitely fast switching
- Dwell-Time Switching Logic once symbol σ is chosen by supervisor it remains constant for at least $\tau>0$ time units (au: "dwell time")

2. Stabilization of Switched Linear Systems

This part is mainly used to solve the **Problem C** in the last chapter: Find switching rule σ as function of **time/state** such that closed-loop system is AS

Quadratic Stabilization via single Lyapunov Function

Select $\sigma(x):\mathbb{R}^n o I:=\{1,2,\ldots,N\}$ such that closed-loop system has single quadratic Lyapunov function x^TPx

Solution 1:

If some convex combination of A_i is stable:

$$A:=\sum lpha_i A_i \quad \left(lpha_i\geqslant 0, \sum lpha_i=1
ight) ext{ is stable}$$

Select Q>0 and let P>0 be solution of $A^TP+PA=-Q$

Then the switching rule should be:

$$i(x) := rg \min x^T \left(A_i^T P + P A_i
ight) x$$

Illustration:

• From $x^T(A^TP + PA)x = -x^TQx < 0$ it follows that

$$\sum_{i} \alpha_{i}[x^{T}(A_{i}^{T}P + PA_{i})x] < 0$$

ullet For each x there is at least one mode with $x^T(A_i^TP+PA_i)x<0$ or stronger

$$\bigcup_{i \in I} \{ x \mid x^T (A_i^T P + P A_i) x \leqslant -\frac{1}{N} x^T Q x \} = \mathbb{R}^n$$

Modified Switching Rule:(based on hysteresis switching logic)

- stay in mode i as long as $x^T \left(A_i^T P + P A_i
 ight) x \leqslant rac{1}{2N} x^T Q x$
- ullet when bound reached, switch to a new mode j that satisfies

$$x^T \left(A_j^T P + P A_j
ight) x \leqslant -rac{1}{N} x^T Q x$$

Property:

No conservatism for 2 modes

Stabilization via multiple Lyapunov functions

Main Idea

Main idea: Find function $V_i(x) = x^T P_i x$ that decreases for $\dot{x} = A_i x$ in some region

Define
$$\mathscr{X}_i := \{x \mid x^T [A_i^T P_i + P_i A_i] x < 0\}$$

If $\bigcup_i \mathscr{X}_i = \mathbb{R}^n$, try to switch to satisfy multiple Lyapunov criterion to guarantee asymptotic stability.

Solution:

Find P_1 and P_2 such that they satisfy the coupled conditions:

$$x^{T}\left(P_{1}A_{1}+A_{1}^{T}P_{1}
ight)x<0 ext{ when }x^{T}\left(P_{1}-P_{2}
ight)x\geqslant0,x
eq0$$

and

$$x^{T}\left(P_{2}A_{2}+A_{2}^{T}P_{2}
ight)x<0 ext{ when }x^{T}\left(P_{2}-P_{1}
ight)x\geqslant0,x
eq0$$

Then $\sigma(t) = \arg\max\{V_i(x(t)) \mid i=1,2\}$ is stabilizing (V_σ) will be **continuous decrease** (the reason to choose larger V))

S-procedure

The above question is hard to solve: it is **not an LMIs problem**. We can use S-procedure to solve it If there exist $\beta_1, \beta_2 \geqslant 0$ such that

$$egin{aligned} &-P_1A_1-A_1^TP_1+eta_1\left(P_2-P_1
ight)>0 \ &-P_2A_2-A_2^TP_2+eta_2\left(P_1-P_2
ight)>0 \end{aligned}$$

then
$$\sigma(t) = rg \max i \left\{ V_i(x(t)) \mid i = 1, 2 \right\}$$

Stabilization of switched linear systems with continuous inputs

Note:

Previous methods only finds the switching sequence, not the continuous input \boldsymbol{u} Switched linear system with inputs:

$$\dot{x}=A_ix+B_iu, i\in I=\{1,\ldots,N\}$$

Now both $\sigma:[0,\infty) o I$ and feedback controllers $u=K_ix$ are to be determined There are three levels of design:

- Case 1: Determine K_i such that closed loop is stable under arbitrary switching (assuming we know mode)!
- Case 2: Determine both $\sigma:[0,\infty) o I$ and K_i
- Case 3: (for PWL Systems): Given σ as function of state, determine K_i

Case 1: Stabilization of switched linear system under arbitrary switching

$$\dot{x} = A_i x + B_i u, \ i \in I = \{1, \dots, N\}$$

Sufficient condition: find common *quadratic* Lyapunov function $V(x) = x^T P x$ for some positive definite matrix P and K_1, \ldots, K_N

$$(A_i + B_i K_i)^T P + P(A_i + B_i K_i) < 0$$
 for all $i = 1, ..., N$ and $P > 0$

- \rightarrow LMIs (also for Cases 2 and 3)
- → state-based switching in this section, ... next ...

3. Time-Controlled Switching & pulse width modulation

If dynamical system **switches between several subsystems** \rightarrow stability properties of total system may be **quite different from those of subsystems**

Time-Controlled Switching

05 Switched Control 5

For arepsilon o 0 solution of switched system tends to solution of $\dot x=\left(rac12A_1+rac12A_2
ight)x$ ("averaged" system)

•
$$x(t_0+\frac{1}{2}\varepsilon)=\exp(\frac{1}{2}\varepsilon A_1)x_0=x_0+\frac{\varepsilon}{2}A_1x_0+\frac{\varepsilon^2}{8}A_1^2x_0+\cdots$$

$$x(t_0+\varepsilon)=\exp(\frac{1}{2}\varepsilon A_2)\exp(\frac{1}{2}\varepsilon A_1)x_0$$

$$=(I+\frac{\varepsilon}{2}A_2+\frac{\varepsilon^2}{8}A_2^2+\cdots)(I+\frac{\varepsilon}{2}A_1+\frac{\varepsilon^2}{8}A_1^2+\cdots)x_0$$

$$=(I+\varepsilon[\frac{1}{2}A_1+\frac{1}{2}A_2]+\frac{\varepsilon^2}{8}[A_1^2+A_2^2+2A_2A_1]+\cdots)x_0.$$
• Compare with

• Compare with $\exp[\varepsilon(\frac{1}{2}A_1+\frac{1}{2}A_2)] = I + \varepsilon[\frac{1}{2}A_1+\frac{1}{2}A_2] + \frac{\varepsilon^2}{8}[A_1^2+A_2^2+A_1A_2+A_2A_1] + \cdots$ \rightarrow same for $\varepsilon \approx 0$

- ullet Possible that A_1,A_2 stable, whereas $1/2A_1+1/2A_2$ unstable, or vice versa
- And we can always compute a upper bound of ϵ
 - Minimal switching frequency found by computing eigenvalues of the mapping $\exp\left(\frac{1}{2}\varepsilon A_2\right)\exp\left(\frac{1}{2}\varepsilon A_1\right)$

Pulse-Width Modulation

Assume mode 1 followed during $h\epsilon$, and mode 2 during $(1-h)\epsilon$, then behavior of system is well approximated by system

$$\dot{x} = (hA_1 + (1-h)A_2)x$$

Parameter h might be considered as control input

- If *h* varies, should be on time scale that is **much slower** than the time scale of switching
- If mode 1 is "power on" and mode 2 is "power off", then *h* is known as **duty ratio**

Formulation:

• System: $\dot{x} = f(x, u), \quad u \in \{0, 1\}$

Duty cycle: Δ (fixed)

u is switched exactly one time from 1 to 0 in each cycle

• Duty ratio α : fraction of duty cycle for which u=1

$$u(\tau) = 1$$
 for $t \le \tau < t + \alpha \Delta$
 $u(\tau) = 0$ for $t + \alpha \Delta \le \tau < t + \Delta$

• Hence,
$$x(t+\Delta) = x(t) + \int_t^{t+\alpha\Delta} f(x(\tau), 1) d\tau + \int_{t+\alpha\Delta}^{t+\Delta} f(x(\tau), 0) d\tau$$

• Ideal averaged model ($\Delta \rightarrow 0$):

$$\dot{x}(t) = \lim_{\Delta \to 0} \frac{x(t+\Delta) - x(t)}{\Delta} = \alpha f(x(t), 1) + (1-\alpha)f(x(t), 0)$$

4. Sliding Mode Control

Method

Model

- Consider $\dot{x}(t) = f(x(t), u(t))$ with u scalar
- Suppose switching feedback control scheme:

$$u(t) = egin{cases} \phi_+(x(t)) & ext{ if } h(x(t)) > 0 \ \phi_-(x(t)) & ext{ if } h(x(t)) < 0 \end{cases}$$

• Surface $\{x \mid h(x) = 0\}$ is called <u>switching surface</u>

• Let $f_+(x)=f\left(x,\phi_+(x)
ight)$ and $f_-(x)=f\left(x,\phi_-(x)
ight)$, then

$$\dot{x} = rac{1}{2}(1+v)f_{+}(x) + rac{1}{2}(1-v)f_{-}(x), \quad v = ext{sgn}(h(x))$$

• Use solutions in Filippov's sense if "chattering"

Controller Design

Assume "desired behavior" whenever constraint s(x)=0 is satisfied.

- Set $\{x \mid s(x) = 0\}$ is called sliding surface
- ullet Find control law u such that

$$\frac{1}{2}\frac{d}{dt}s^2 \leqslant -\alpha |s| \quad S(x) \neq 0 \Rightarrow \text{ decreode}$$

where $\alpha > 0$

 \rightarrow squared "distance" to sliding surface decreases along all system trajectories

$$\circ S(x) = 0 \Rightarrow 0$$

$$\circ \;\; S(x)
eq 0 \Rightarrow$$
 decrease quadratic

Properties

- Quick succession of switches may occur
 - embed sliding surface in thin boundary layer
 - \circ smoothen discontinuity by **replacing** sgn by steep sigmoid function
 - Note: modifications may deteriorate performance of closed-loop system
- Main advantages:
 - conceptually simple
 - o robustness w.r.t. uncertainty in system data
- · excitation of unmodeled high-frequency modes

5. Stabilization By Switching Control: An Example

Here, we will use the **non-holonomic integrator** example to show how to design a stabilization controller by switching control

05_Switched Control

8

- System: $\dot{x} = u$, $\dot{y} = v$, $\dot{z} = xv yu$
- Sliding mode control: $u = -x + y \operatorname{sgn}(z)$ $\dot{\nabla} = \frac{\partial \nabla}{\partial x} \cdot \dot{x} + \frac{\partial \nabla}{\partial y} \dot{y}$ $v = -y - x \operatorname{sgn}(z)$
- Switching surface: z = 0
- Lyapunov function for (x,y) subspace: $V(x,y) = \frac{1}{2}(x^2 + y^2)$

$$\Rightarrow \dot{V} = -x^2 + xy \operatorname{sgn}(z) - y^2 - xy \operatorname{sgn}(z) = -(x^2 + y^2) = -2V$$

$$\Rightarrow x, y \to 0$$

• $\dot{z} = xv - yu = -(x^2 + y^2) \operatorname{sgn}(z) = -2V \operatorname{sgn}(z)$ So |z| will decrease and reach 0 provided that $\frac{d(12)1}{at} = sgh(2) \cdot \frac{dz}{dt}$

$$2\int_{0}^{\infty}V(\tau)d\tau > |z(0)| \qquad \qquad = -2 \text{ U}.$$

7 . $\rightarrow z$ will reach 0 in finite time hs_switched_ctrl.26 $|z(\omega)|^2 - 2 \int_0^{\infty} V(z) dz = |z(-1)|^2 + 2 \int_0^{\infty} + |z(\omega)|^2$

• Since $V(t) = V(0)e^{-2t} = \frac{1}{2}(x^2(0) + y^2(0))e^{-2t}$ condition for system to be asymptotically stable is

integral:
$$\frac{1}{2}(x^2(0) + y^2(0)) \geqslant |z(0)|$$

- \rightarrow defines parabolic region $\mathscr{P} = \{(x,y,z) \mid 0.5(x^2+y^2) \leqslant |z|\}$
- If initial conditions do not belong to P then sliding mode control asymptotically stabilizes system
- If initial state is inside \(\mathcal{P} \):
 - first use control law (e.g., nonzero constant control) to steer system outside P
 - then use sliding mode control
 - → hybrid control scheme

hs_switched_ctrl.27

Summary

- Introduction & Motivation:
 - Motivation: Continuous Control Law may not always be successful

- Structure: **Supervisor part**
- Problem: Chattering:
 - Setting a **threshold** in benefit or time
- Stabilization of Switched Linear Systems
 - o Quadratic Stabilization via single Lyapunov Function
 - Convex-Hull → choose minimize
 - Stabilization via multiple Lyapunov Function
 - $\bullet \ \ \sigma(t) = \argmax \left\{ V_i(x(t)) \mid i=1,2 \right\}$
 - S-procedure: turn to LMIs
- Stabilization of Switched Linear Systems with continuous input:
 - \circ take K into consideration
- Time-Controlled Switching and pulse width modulation
 - \circ Time-Controlled Switching: **average system** when ϵ is small
 - $\circ\;\;$ pulse width modulation: h and 1-h
- Sliding Model Control:
 - Switching feedback control scheme + switching surface + sliding surface (target)

05_Switched Control 10