Legislative Decision Making

- Distributive bargaining
- Logrolling

Logrolling

 The term 'logrolling' refers to the exchange of votes in legislative decision making.

Example (Stratman 1997)

Suppose that the payoffs from two projects A and B are summarized in the following table:

		Vote	
Project	1	2	3
Α	5	-1	-1
В	-1	5	-1

- If the group uses majority rule and all voters vote sincerely, neither project will pass.
- Voters 1 and 2 could trade votes:
 - 1 votes for B and 2 votes for A.
 - Then both projects pass.
- This "deal" benefits voters 1 and 2, but voter 3 is harmed.

Is logrolling good or bad?

- Historically, logrolling has been regarded with suspicion.
- Some commentators find the trading of votes intrinsically repugnant, perhaps because it involves "insincere" voting.
- From an economic perspective, the relevant issue is that logrolling is associated with externalities.
 - ⇒ Logrolling may produce *inefficient* outcomes.

Example (Riker and Brams 1973)

		Voter	
Project	1	2	3
Α	3	2	-4
В	3	-4	2
С	2	-4	3
D	-4	2	3
Ε	-4	3	2
F	2	3	-4

Majority rule

- With sincere voting, all projects pass and each voter's total payoff is 2.
- With logrolling, voters 2 and 3 might agree to block projects A and B, and indeed all projects could be blocked by such deals.
- Thus, logrolling might lead to all projects failing, which is Pareto dominated by the sincere outcome.

A **common critereon** to evaluate the effects of logrolling is to look at "aggregate" benefits. (Alternatively, *expected* benefits from behind a veil of uncertainty.)

Example 2 (Stratman 1997)

		Voter	•
Project	1	2	3
Α	5	-1	-c
В	-1	5	-C

- If voters 1 and 2 trade votes, the effect on aggregate / expected benefits depends on the size of the externality *c*.
- If c < 2, 'aggregate benefits' *increase* as a result of logrolling.
- If c > 2, the fall.

Logrolling and 'bundling'

- Many logrolling deals could also be organized by bundling two projects and then voting sincerely on the bundle.
- A 'constructive' logroll is a bundle of two or more projects that are not majority preferred in isolation but are majority preferred as a bundle.
- A 'destructive' logroll is a bundle of two or more majority preferred projects which is not majority preferred as a bundle.

Example (Charroin and Vanberg 2019)

Project	1	2	3	Net benefits
Α	-2	3	2	3
В	3	-1	2	4
C	1	1	-3	-1

- Projects A and C are majority preferred in isolation.
- The bundle A&C is not majority preferred.
 - Voters 1 and 3 could agree to vote N on both. (A destructive logroll.)

'Mixed' logrolls

 Logrolling can also be used to simulataneously pass some projects and block others.

Example (Charroin and Vanberg 2019)

		Vote	r	
Project	1	2	3	Net benefits
Α	3	-1	-1	1
B	1	-3	1	-1

- Under sincere voting, only project B would pass.
- Voters 1 and 2 could agree as follows:
 - 2 votes for project A
 - 1 votes against project B
- Note that this 'mixed' logroll cannot be organized by bundling the projects.

Logrolling and instability

Example (previous)

		Vote	r	
Project	1	2	3	Net benefits
Α	3	-1	-1	1
B	1	-3	1	-1

- We saw that voters 1 and 2 can agree: 2 votes for A and 1 votes against B.
- Then only project A passes. Look at the payoffs that result!
- But then voters 2 and 3 could make a new deal:
 - 'Let's both vote against both A and B'
 - Then nothing would pass.
- But then voters 1 and 3 could make yet another deal:
 - Let's both vote for project B
- etc. ad infinitum...
- Bernholz (1973) shows: Whenever preferences are such that logrolling could occur, there will be cycles.

Charroin and Vanberg (2019): Logrolling and q-majortiy rules

The issue

- A group of N voters is faced with multiple binary choices of whether or not to undertake 'projects'
- Each project yields a vector of payoffs $(v_1, ..., v_N)$
- Question: What voting rule should the group use when voting on these projects?
- Guttman (1998) argues that (simple) majority rule maximizes the expected payoff in this context (we will see how).
- We argue:
 - Guttman's argument is valid only if voters cannot (or do not) engage in log-rolling agreements.
 - If this is permitted (and actually done), higher majority requirements become relatively more attractive.

Our methods

- Theory and simulations
 - Develop algorithms to predict log-rolling agreements and outcomes for a given set of binary choices using different q-majority rules.
 - Apply these algorithms to a large number of randomly generated 'situations' (sets of potential projects) and compare outcomes under alternative q-majority rules (simple majority vs. unanimity).
- Laboratory Experiments
 - Identify 'interesting' situations i.e. those in which logrolling should occur and have different effects depending on the decision rule.
 - Implement selected situations, allowing subjects to form log-rolling agreements via unstructured (public) communication.
 - Test predictions regarding the relative performance of decision rules and log-rolling agreements reached.

Example

	,	Voter		
Project	1	2	3	Net benefits
1	1	-1	1	1
2	-3	1	1	-1

- Assume: Behind a veil of uncertainty, our goal is to maximize aggregate net benefits. (Equivalent: expected utility)
- Project 1 produces net benefits. We'd like it to pass
 - Under majority rule, it will pass (good)
 - Under unanimity rule, it won't (bad)
- Project 2 produces net losses. We'd like this to fail.
 - Under majority rule, it will pass (bad)
 - Under unanimity rule, it won't (good)
- In this example, both rules produce a net benefit of zero
 - But notice that costs and benefits are not symmetric.

Guttman's (1998) argument

Example

Project	1	2	3	Net benefits
1	-2	3	2	3
2	3	-1	2	4
3	1	1	-3	-1

Symmetric intensities

- Suppose that on average, the individual preference intensities in favor are similar to those opposed.
- Then whenever a majority benefits, I should expect (statistically) aggregate net benefits to be positive.
- With sincere voting, majority rule maximizes expected aggregate benefits.

Note: This result is actually a variation on Condorcet's Jury Theorem: In Guttman's analysis, the 'correct' decision on any given project is to pass it if and only if aggregate payoffs are positive. Since payoffs are drawn from a symmetric distribution, the probability that any individual has a positive payoff, *conditional* on aggregate payoffs being positive, is greater than 1/2 (and vice versa if aggregate payoffs are negative). Thus, the individual valuations are analogous to the signals received in Condorcet's analysis.

Guttman's (1998) argument

Example

Project	1	2	3	Net benefits
1	-2	3	2	3
2	3	-1	2	4
3	1	1	-3	-1

Objection: Guttman excludes log-rolling

- Guttman assumes that voters vote sincerely on each separate issue.
- In reality, voters may form log-rolling agreements.
- This is likely to alter the relative merits of alternative decision rules.

Possible effects of logrolling

Example

Project	1	2	3	Net benefits
1	-2	3	2	3
2	3	-1	2	4
3	1	1	-3	-1

Unanimity rule with log-rolling

- Mr. 1 to Mr. 2: 'I'll vote for project 1 if you vote for project 2'
- Outcome: projects 1 and 2 pass, 3 fails (maximum aggregate benefit)
- This is a 'constructive' logroll (projects that fail in isolation pass as a bundle)

Majority rule with log-rolling

- Mr. 1 to Mr. 3: 'I'll vote against project 3 if you vote against project 1'
- Outcome: Only project 2 passes (worse than sincere voting)
- This is a 'destructive' logroll (projects that pass in isolation fail as a bundle)

General point

Log-rolling and unanimity rule

- A possible constitutional argument for majority rule is that the set of projects which pass is preferred by all voters to the set that would be passed under alternative rules.
- If so, then it should be possible in principle to construct log-rolling agreements such that the set passes even under unanimity rule.
- Whether this works in practice will depend on the number of projects available, and on the ability of voters to form the necessary agreements.

Our main conjecture

 As the number of potential projects increases, and as the ability of voters to construct log-rolls increases, so does the relative performance of rules that require larger majorities.

Theory

Framework

- N voters, L projects
- Z = a matrix of payoffs z_{li}
- q = number of votes required to pass a project

Random payoff matrices

- z_{li} are independently drawn from a distributionthat is symmetric around zero.
- Without loss of generality, we normalize expected positive and negative payoffs to +1 and -1, respectively.

Theory

Sincere voting benchmark

Under any q-majority rule, a project passes under sincere voting if there are $s \geq q$ voters in favor. For each such s, the probability of exactly that many supporters is $(1/2)^N$ times N choose s. In each such case, the expected payoffs to individual supporters and opponents are +1 and -1, respectively. Thus the expected total payoff is s - (N - s) = 2s - N, and so the ex ante expected utility of an individual voter is

$$EU_q(N,L) \equiv L \cdot (1/2)^N \sum_{s=q}^N \binom{N}{s} \cdot \left(\frac{2s}{N} - 1\right)$$

Theory

Theorem: Under any q-majority rule, the ex ante expected utility of an individual voter under sincere voting is given by

$$EU_q(N,L) = L \cdot (1/2)^N \frac{q}{N} \binom{N}{q}$$

Relative to unanimity rule, payoffs under q-majority rule are $\frac{q}{N}\binom{N}{q}$ times as high. This expression is maximized for $q=\frac{N+1}{2}$ (N odd) or q=N/2 (N even).

Figure: Expected payoffs relative to unanimity rule (N = 9)

Log-rolling algorithm

• Beginning with sincere voting, voters sequentially propose binding agreements to change their votes on any subset of projects containing at most K ≤ L elements. (If a proposer could engage in multiple deals, he myopically chooses the one that generates the largest immediate gain relative to sincere voting.) Following such an agreement, a vote on those issues is immediately conducted. Proposal rights follow a predefined order of 'turns'. All possible orders are equally likely. The process continues until noone wishes to make a further deal, at which point voters vote sincerely on any remaining issues.

Example

Project	1	2	3	Net benefits
1	-2	3	2	3
2	3	-1	2	4
3	1	1	-3	-1

Majority rule logrolling

- When it's voter 1 or voter 3's turn, they agree to block projects 1 and 3.
- The vote is conducted and no further deals are possible.
- Result: only project 2 passes, utilities= (3, -1, 2), average 1.33.

Unanimity rule logrolling

- When it's voter 1 or voter 2's turn, they agree to pass projects 1 and 2
- The vote is conducted and no further deals are possible.
- Result: projects 1 and 2 pass, utilities= (1,2,4), average 2.33

(1) 'Situations' are randomly constructed

- We construct NxL payoff matrices Z for different N and L.
- I will focus on results for N=3 voters and $L=\{3,5,9,12,15,18\}$. projects.
- Individual payoffs are independently drawn from U[-2, +2].
- We draw 10000 matrices for each combination of N and L.

Note:

- Since the distribution of payoffs is symmetric around zero, the argument above applies.
- For N = 3, expected payoffs under majority rule are twice as large as under unanimity rule if voting is sincere.

(2) Log-rolling algorithms are applied to all payoff matrices

- Computerized (Mathematica)
- (Main) output: Payoffs achieved for each matrix
 - Vector of individual payoffs (total over all projects passed)
 - Average / expected payoff (over projects and individuals)

(3) Inspect distributions of individual and average payoffs achieved under different rules

- Main Hypothesis: The relative performance of unanimity rule improves as L and K get larger.
 - Average / expected payoff increases and eventually becomes larger than under majority rule

Simulation Results: Comparative statics with respect to L

Figure: Average payoffs from simulations with N=3 voters

The blue distribution is for majority rule, the orange for unanimity rule. Payoffs are normalized such the EU is 1 under sincere voting with unanimity.

Simulation Results: Comparative statics with respect to L

Figure: Average payoffs from simulations with N=3 voters

The blue distribution is for majority rule, the orange for unanimity rule. Payoffs are normalized such the EU is 1 under sincere voting with unanimity.

Simulation Results: Comparative statics with respect to L

Figure: Average payoffs from simulations with N=3 voters

The blue distribution is for majority rule, the orange for unanimity rule. Payoffs are normalized such the EU is 1 under sincere voting with unanimity.

Simulation Results: Comparative statics with respect to K

Figure: Average payoffs from simulations with N=3 voters

The blue curve is for majority rule, the orange for unanimity rule. Payoffs are normalized such the EU is 1 under sincere voting with unanimity.

Simulation Results: Comparative statics with respect to K

Figure: Average payoffs from simulations with N=3 voters

The blue curve is for majority rule, the orange for unanimity rule. Payoffs are normalized such the EU is 1 under sincere voting with unanimity.

Simulation Results: Comparative statics with respect to K

Figure: Average payoffs from simulations with N=3 voters

The blue curve is for majority rule, the orange for unanimity rule. Payoffs are normalized such the EU is 1 under sincere voting with unanimity.

Main takeaways from simulation exercise

- Logrolling always improves the distribution of payoffs under unanimity rule. This is, of course, trivially true.
- Logrolling consistently worsens the distribution of payoffs under majority rule. This was not obvious ex ante.
- When the number of potential projects is large (> 9), unanimity rule outperforms majority rule once logrolling is allowed.

Substantive Implication: The larger is the number of decisions that a group (e.g. parliament) is making, and the greater their ability to make 'deals' as to how they will vote on various issues, the larger should be the majority requirement.

Experiments

- Games involving 3 student subjects deciding on 3 projects.
 - 18 different payoff matrices.
 - Opportunities for different types of logrolls (contructive, destructive, 'efficient', 'inefficient).
 - Largely unstructured, with opportunity to "chat" and to visibly lock in votes project by project.

Questions

- Do subjects engage in all types of logrolls?
- Is the relative performance of unanimity rule better than under sincere voting?

Results

- Logrolls are less likely to occur if they impose significant negative externalities and reduce the aggregate payoff.
- 'Complex' logrolls (involving all three projects or voters) are also less likely.

Conclusion: Our student subjects do engage in logrolling. However, the theoretically predicted reversal of performance appears to be mitigated by efficiency concerns and cognitive constraints.

Concluding remarks on legislative decision making

- The literature on legislative decision making deals with decisions made in (relatively) small groups.
- For purely distributional issues (divide-a-dollar), simple majority rule by itself does not yield a stable outcome (cycling). This highlights the importance of procedural rules in addition to voting rules ('structure induced equilibrium').
- When comparing alternative voting rules, there is a tradeoff between efficiency (e.g. speed) and fairness (size of winning coalition, distribution within coalition).
- In a world with zero transactions costs (i.e. where decision-making process is efficient), all Pareto improvements are achievable using unanimity rule, perhaps with logrolling.
- Therefore, constitutional arguments in favor of less-than-unanimity rules must necessarily (but perhaps implicitly) assume some source of transactions costs (limited ability to logroll, strategic posturing,...).

Literature

STRATMAN, THOMAS (1997). Logrolling. In: Mueller, D. *Perspectives on Public Choice* GUTTMAN, J. M. (1998). Unanimity and majority rule: the calculus of consent reconsidered. *European Journal of Political Economy* 14(2), 189-207.

BERNHOLZ, P. (1978). On the stability of logrolling outcomes in stochastic games. *Public Choice* 33(3), 65-82.

CHARROIN, L. AND C. VANBERG (2024) Logrolling affects the relative performance of alternative q-majority rules. *AWI Working paper*. click here for the paper.