

Big Data Analytics

« Pilotage de la performance pour une bonne gouvernance des entreprises »

CHAPITRE 4 - Spark Streaming

Spark Stack

Spark SQL

Spark Streaming MLlib (machine learning)

GraphX (graph)

Apache Spark

- **Spark SQL**: pour le traitement de données (SQL et non structuré)
- Spark Streaming: traitement de flux de données en direct (live streaming)
- *MLlib*: Algorithmes Machine Learning
- **GraphX**: Traitement de graphes

Qu'est-ce que Spark Streaming?

- Framework pour le traitement de flux à grande échelle
 - Échelles à des centaines de nœuds
 - Peut atteindre des latences à échelle de seconde
 - S'intègre au traitement par lots et interactif de Spark
 - Fournit une API simple pour la mise en œuvre d'un algorithme complexe
 - Peut absorber les flux de données en streaming de Kafka, Flume, ZeroMQ, ...

Motivation

• De nombreuses applications importantes doivent traiter de gros flux de données en temps réel et fournir des résultats en temps quasi réel.

Tendances des réseaux sociaux

- Statistiques du site
- Systèmes de détection d'intrusion

•

 Nécessite de grands clusters pour gérer les charges de travail

• Exiger des latences de quelques secondes

Besoin d'un framework...

... Pour construire de telles applications complexes de traitement de flux

Mais quelles sont les exigences d'un tel framework?

Exigences

Evolutif aux grands groupes

• Latences de deuxième échelle

• Modèle de programmation simple

• Intégré au traitement par lots et interactif

Traitement de flux avec état

- Les systèmes de streaming traditionnels ont un modèle de traitement enregistrement par enregistrement basé input sur les événements
 - Chaque nœud a l'état mutable
 - Pour chaque enregistrement, mise à jour et envoi de nouveaux enregistrements
- L'état est perdu si le nœud meurt!
- Faire du traitement de flux avec état tolérant aux pannes est un défi

Systèmes de streaming existants

• Storm

- Enregistrement en boucle si non traité par un nœud
- Traite chaque enregistrement au moins une fois
- Peut mettre à jour l'état mutable deux fois!
- L'état mutable peut être perdu en cas d'échec!
- Trident Utiliser les transactions pour mettre à jour l'état
 - Traite chaque enregistrement exactement une fois
 - Mise à jour lente des transactions par État

Exigences

Evolutif aux grands groupes

• Latences de deuxième échelle

• Modèle de programmation simple

• Tolérance aux pannes efficace dans les traitements avec état

Traitement de flux discretisé

Exécuter un calcul en continu sous forme d'une série de très petits travaux par lots déterministes

- Couper le flux de streaming en lots de X secondes
- Spark traite chaque lot de données comme des RDD à l'aide d'opérations de RDD.
- Enfin, les résultats traités des opérations RDD sont renvoyés par lots.

Traitement de flux discretisé

Exécuter un calcul en continu sous forme d'une série de très petits travaux par lots déterministes

- Taille des lots aussi basse que ½ seconde, latence ~ 1 seconde
- Possibilité de combiner le traitement par lots et le traitement en continu dans le même système

Exemple 1 - Récupérer les hashtags de Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>) **DStream**: a sequence of RDD representing a stream of data Twitter Streaming API batch @ t+2 batch @ t+1 batch @ t tweets DStream stored in memory as an RDD (immutable, distributed)

Exemple 1 - Récupérer les hashtags de Twitter

```
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
                  transformation: modify data in one Dstream to create another DStream
new DStream
                                     batch @ t+1
                                                  batch @ t+2
                          batch @ t
       tweets DStream
                                                       flatMap
                             flatMap
                                          flatMap
       hashTags Dstream
                                                              new RDDs created for
        [#cat, #dog, ...]
                        every batch
```


Exemple 1 - Récupérer les hashtags de Twitter

```
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")
```

output operation: to push data to external storage

tweets DStream

hashTags DStream

Exemple Java

Scala

```
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")
```

Java

```
JavaDStream<Status> tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

JavaDstream<String> hashTags = tweets.flatMap(new Function<...> { })

hashTags.saveAsHadoopFiles("hdfs://...")

Function object to define the transformation
```


Tolérance aux fautes

Les RDD mémorisent la séquence tweets d'opérations créée à partir des données d'entrée tolérantes aux pannes

 Les lots de données d'entrée sont répliqués dans la mémoire de plusieurs nœuds « Worker », donc tolérants aux pannes

Les données perdues en raison d'une défaillance de l'opérateur, peuvent être recalculées à partir des données d'entrée

RDD

Concepts clés

- DStream séquence de RDD représentant un flux de données
 - Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP sockets
- Transformations modifier les données d'un DStream à un autre
 - Opérations standard RDD map, countByValue, reduce, join, ...
 - Opérations avec état window, countByValueAndWindow, ...
- Output Operations envoyer des données à une entité externe
 - saveAsHadoopFiles enregistre dans HDFS
 - foreach tout faire avec chaque lot de résultats

Exemple 2 - Compter les hashtags

```
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
val tagCounts = hashTags.countByValue()
```


Exemple 3 - Comptez les hashtags sur les 10 dernières minutes

```
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

sliding window
    operation
    window length
    sliding interval
```

Exemple 3 - Comptez les hashtags sur les 10 dernières minutes

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

CountByValue basé sur Smart window

val tagCounts = hashtags.countByValueAndWindow(Minutes(10), Seconds(1))

Reduce base sur Smart window

- Technique permettant de calculer progressivement le nombre généralisé à de nombreuses opérations de Reduce
 - Besoin d'une fonction pour "inverse reduce" ("subtract" pour calculer)
- Implémenter le calcul :

```
hashTags.reduceByKeyAndWindow(_ + _, _ - _, Minutes(1), ...)
```


Traitement avec état à tolérance de pannes

Toutes les données intermédiaires sont des RDD, donc peuvent être recalculées en cas de perte

Traitement avec état à tolérance de pannes

- Les données à état ne sont pas perdues même si un nœud « Worker » meurt
 - Ne change pas la valeur de votre résultat
- Exactement une seule sémantique pour toutes les transformation
 - Pas de double calcul!

Autres opérations

- Maintenir un état arbitraire, tracer les sessions
 - Maintenir le sentiment par utilisateur en tant qu'état et le mettre à jour avec ses tweets

```
tweets.updateStateByKey(tweet => updateMood(tweet))
```

- Effectuer des calculs Spark RDD arbitraires dans DStream
 - Joindre les tweets entrants avec un fichier spam pour filtrer les mauvais tweets

```
tweets.transform(tweetsRDD => {
    tweetsRDD.join(spamHDFSFile).filter(...)
```


Performances

Peut traiter 6 Go / seconde (60M d'enregistrements / seconde) de données sur 100 nœuds à une latence inférieure à 1 seconde

- Testé avec 100 flux de données sur 100 instances EC2 avec 4 cœurs chacun

Récupération Rapide des erreurs

Récupère des défauts / retards en 1 seconde

Applications réelles: Conviva

- Surveillance en temps réel des métadonnées vidéo
 - Atteint 1-2 secondes de latence
 - Des millions de sessions vidéo traitées
 - Échelle linéaire avec la taille du cluster

Applications réelles : Mobile Millennium Project

- Estimation du temps de transit du trafic en utilisant l'apprentissage automatique en ligne sur des observations GPS
 - Simulations par chaînes de Markov sur les observations GPS,
 - Très gourmand en ressources processeur, nécessite des dizaines de machines pour un calcul utile,
 - Échelle linéaire avec la taille du cluster.

