

SRM Institute of Science and Technology

Kattankulathur

DEPARTMENT OF MEATHEMATICS

18MAB102T ADVANCED CALCULUS & COMPLEX ANALYSIS

SRINIVASA RAMANUJAN THE MAN WHO KNEW INFINITY

TOWNSTOOT REVENUE CHECCEUS & COM EEN MINETSIS

UNIT -V Taylor's & Laurent' series, Singularity, Poles and Residue

Tuto	rial	Sh	eet	_2
1 uw	I IAI	OII	cci	-4

		1 utoriai Sneet -2	
Sl.N	0.	Questions	Answer
		Part – A	
1	State Taylor's and Laurent's Theorem.		
2	Obtain Taylor		
3	Obtain Laurer	nt's series of $f(z) = \frac{1}{z(z-1)}$ in $ z < 1$ and $ z > 1$.	
4	Find the residu	$e ext{ of } \frac{e^z}{z^8}$.	$\frac{1}{7!}$
5	Find the residu	$e of \frac{1 - \cos z}{z^3}.$	1
		Part – B	
6		$= \frac{z^2 - 1}{(z + 2)(z + 3)} \text{ in the region: (i) } z < 2 \text{ (ii) } 2 < z < 3 \text{ (iii)}$	
	z > 3.		
7	Expand $f(z)$	$= \frac{7z-2}{(z+1)z(z-2)}$ in the region $1 < z+1 < 3$.	
8	Expand $f(z)$	$= \frac{1}{(z-1)(z-2)} \text{ in the region: (i) } z < 1 \text{ (ii) } 1 < z < 2 \text{ (iii)}$	
	z > 2.		
9	Find the residu	e at each pole of $f(z) = \frac{z^2}{(z-1)^2(z+2)}$.	$\frac{4}{9}, \frac{5}{9}$
10	Find the residu		-1

Coordinators: Dr.Sundarammal Kesavan, Dr.V.Srinivasan, Dr.N.Parvathi and Dr.N.Balaji