D*. Please solve the following problem; display the computation and upload the resulting pdf document on the appropriate Canvas assignment link:

For an experiment x is randomly drawn from \mathbb{R} . Given A is the event that $x = 0 \land B$ is the event that $x \in (-0.0001, 0.0001)$, compute $p(A \mid B)$.

Sample response:

Since $|\mathbb{R}| = \mathcal{C}$, the random variable of this experiment is continuous and, thus, p(A) = 0. Note that p(B) > 0 since it is probability of x being contained by an interval that contains 0 rather than x being the number 0.

So a question to be addressed is whether or not $p(A \mid B) > 0$. I think not since that conditional probability depends on the answer to the following question: Is the probability of x = 0 increased by imposing the condition that x belongs to a real-numbered interval that contains 0? But just for amusement let's check to see if our definition of conditional probability can inform us:

036B. Definition for *conditional probability*: Given $A \subseteq \Omega \land B \subseteq \Omega \ni p(B) \neq 0$, $(p(A|B) = \frac{p(A \cap B)}{p(B)})$

 $A \cap B = A$ and we know that p(A) = 0. Therefore, $\frac{p(A \cap B)}{p(B)} = 0/y$ for some positive real number y. So we have demonstrated that p(A|B) = 0.