Физика, теоретический тур

Задача 1 (10 баллов)

Один из концов однородного массивного стержня длины L шарнирно прикреплен к вертикальной оси. Шарнир устроен так, что в системе отсчета, связанной с осью, стержень может совершать колебания в одной вертикальной плоскости. Трение в шарнире отсутствует. Ось вращается с угловой скоростью ω , ускорение свободного падения - g (Рис.1.1)

- а) Вычислите значения угла α , при которых этот угол не меняется со временем;
- b) Проанализируйте устойчивость системы для каждого равновесного состояния.

Пусть в некоторый момент времени стержень получает небольшое отклонение от устойчивого положения равновесия в разрешенной плоскости.

с) Вычислите период этих колебаний.

Задача 2 (8 баллов)

Для отопления комнаты используется горелка, при этом в комнате устанавливается температура t_1 = 17°C, в то время как на улице температура t_0 = 7°C. Для отопления комнаты предлагается использовать идеальный тепловой насос, работающий по обратному циклу Карно. КПД двигателя, совершающего работу в цикле, равен η = 60%. Считая, что теплообмен между комнатой и улицей пропорционален разности температуру и двигатель потребляет то же количество топлива, что и горелка, вычислить установившуюся температуру в комнате, если:

- а) двигатель расположен вне комнаты;
- b) двигатель расположен внутри комнаты.

Задача З (12 баллов)

Имеется кольцо радиуса R, по которому течет ток I.

а) Вычислите магнитное поле в точке O_1 на оси кольца. Кольцо видно из точки O_1 под углом 2α . (См.Рис.3.1)

Соленоид с радиусом R состоит из N витков, равномерно намотанных на длине ℓ . По соленоиду течет ток I.

b) Найдите индукцию магнитного поля на оси соленоида в точке, из которой диаметры торцов видны под углами 2α и 2β . (см. Рис.3.2)

В дальнейшем полагаем, что $\ell >> R$.

- с) Вычислите поле B_0 внутри соленоида на его оси вдали от торцов;
- d) Найдите расстояние x, при котором $B=0.1 \cdot B_0$ (см. Рис.3.3);
- е) Вычислите индуктивность катушки L, считая поле внутри катушки вдали от торцов однородным по всему сечению.

Намагниченная пуля пролетает вдоль оси соленоида, подключенного к конденсатору C. Магнитный момент пули M параллелен оси соленоида. Будем пренебрегать изменением скорости пули в процессе пролета.

2-ая МЕЖДУНАРОДНАЯ ЖАУТЫКОВСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО МАТЕМАТИКЕ И ФИЗИКЕ, КАЗАХСТАН, АЛМАТЫ 2006

- f) Напишите условие того, что время пролета пулей области неоднородности магнитного поля значительно меньше периода колебаний в LC контуре. Считайте в дальнейшем, что это условие всегда выполнено;
- g) При какой скорости v пули амплитуда колебаний тока в контуре после пролета пули максимальна?
- h) Чему при этом равна амплитуда тока $I_{\text{маx}}$? Нарисуйте график зависимости I(t) для этого случая.
- і) Докажите, что сила, действующая на пулю со стороны магнитного поля, равна $M \frac{\partial B}{\partial x}$ и направлена вдоль оси.

Примечание:

Пулю можно рассматривать как кольцо малой площади S_0 , по которому течет ток I_0 , причем $M = S_0 I_0$. В теории магнетизма доказывается следующая теорема взаимности: Eсли поток магнитного поля первого контура через второй обозначить $L_{12}I_1$, а поток поля второго контура через первый обозначить $L_{21}I_2$, то $L_{12} = L_{21}$. При этом предполагается, что знаки потоков согласованы с положительными направлениями обхода контуров.