Estimation of Coupled Exponential Distribution

Plot of equations of GeoMean, mean of pairs, second moment of triplets.

From notes by Amaneh Al-Najafi

Correction: the equation for G (geometric mean), the sign of κ needs to be reversed. This changes the equation to reference from the paper by Vogel to:

$$G = \frac{\sigma \mu}{\kappa} Exp[PolyGamma[1] - PolyGamma[1 + \frac{1}{\kappa}] + \kappa]$$

$$G = \frac{\sigma\mu}{\kappa} \exp(\psi(1) - \psi(1 + \frac{1}{\kappa}))$$

$$\mu_1 = \mu + \frac{\sigma}{2}$$

$$\mu_1^{(2)} = \mu^2 + \frac{2\mu\sigma}{3 + \kappa} + \frac{2\sigma^2}{3(3 + \kappa)}$$

$$\mu = \mu_1 - \frac{\sigma}{2}$$

$$\kappa = \left[2\sigma(\mu_1 - \frac{\sigma}{2}) + \frac{2\sigma^2}{3} - 3\left(\mu_2 - (\mu_1 - \frac{\sigma}{2})^2\right) \right] \left(\mu_2 - (\mu_1 - \frac{\sigma}{2})^2\right)^{-1}$$

$$\sigma = \mu_1 - \sqrt{\mu_1^2 - 2G\frac{\left[2\sigma(\mu_1 - \frac{\sigma}{2}) + \frac{2\sigma^2}{3} - 3\left(\mu_2 - (\mu_1 - \frac{\sigma}{2})^2\right)\right]}{(\mu_2 - (\mu_1 - \frac{\sigma}{2})^2) - 1}} \left[\exp\left(\psi\left(1 + \frac{\mu_2 - (\mu_1 - \frac{\sigma}{2})^2}{2\sigma(\mu_1 - \frac{\sigma}{2}) + \frac{2\sigma^2}{3} - 3\left(\mu_2 - (\mu_1 - \frac{\sigma}{2})^2\right)}\right) + \gamma\right)\right]$$

Where $\gamma = 0.5772$

My estimates of the GM, the 1st moment of the pairs, and the 2nd moment of the triplets for several examples of the GPD:

$\$	GM	1st moment	2nd moment
0.5	2.716987	2.2497471	0.424
1	3.17177	2.249486	4.105583
2	4.9799	2.25	5589.1

The results below are based on Amenah's derivation; however, the Mathematica derivation showed a difference, so this section will eventually be modified.

ln[*]:= \$Assumptions == $\{\mu, \sigma, \kappa\} \in \text{Reals \&\& 0 < } \sigma < \infty \&\& 0 < \kappa < \infty \&\& 0 \le p \le 1$

 $Out[\bullet]=$ True == $\{\mu, \sigma, \kappa\} \in \mathbb{R} \&\& 0 < \sigma < \infty \&\& 0 < \kappa < \infty \&\& 0 \le p \le 1$

```
CoupledExponentialEstimators[GeoMean_, MeanPairs_, SecondMomentTriplets_] :=
       GeoMean = \frac{\sigma \mu}{\kappa} Exp[PolyGamma[1] - PolyGamma[1 + \frac{1}{\kappa}] + \kappa],
       MeanPairs = \mu + \frac{\sigma}{2},
       SecondMomentTriplets = \mu^2 + \frac{2 \mu \sigma}{3 + \kappa} + \frac{2 \sigma^2}{3 (3 + \kappa)}
```

In[*]:= ContourPlot3D[Evaluate@CoupledExponentialEstimators[2.72, 2.25, 0.424], $\{\mu, 0, 4\}, \{\sigma, 0, 2\}, \{\kappa, 0, 3\},$ AxesLabel $\rightarrow \{\mu, \sigma, \kappa\}$, PlotLegends → {"GeoMean", "MeanPairs", "SecondMomentTriplets"}]

<code>In[⊕]:= ContourPlot3D[Evaluate@CoupledExponentialEstimators[3.17, 2.25, 4.15],</code> $\{\mu, 0, 4\}, \{\sigma, 0, 2\}, \{\kappa, 0, 3\},$ AxesLabel $\rightarrow \{\mu, \sigma, \kappa\}$, PlotLegends → {"GeoMean", "MeanPairs", "SecondMomentTriplets"}]


```
m[*]:= ContourPlot3D[Evaluate@CoupledExponentialEstimators[4.98, 2.25, 5589], \{\mu, 0, 4\}, \{\sigma, 0, 2\}, \{\kappa, 0, 3\}, AxesLabel \rightarrow \{\mu, \sigma, \kappa\}, PlotLegends \rightarrow \{\text{"GeoMean", "MeanPairs", "SecondMomentTriplets"}\}]
```


Derivation of the GeoMean of the Coupled Exponential Distribution

Assuming $\mu = 0$

```
The Quantile function of the Coupled Exponential Distribution If \left[\kappa \neq 0, \frac{-\sigma}{\kappa} \left(1 - (1 - p)^{-\kappa}\right), -\sigma \log\left[1 - p\right]\right] simplifies to \sigma CoupledLogarithm \left[(1 - p)^{-1}, \kappa\right] ClearAll \left[p, \kappa\right]; ClearAll \left[\text{CoupledExponentialQuantileFunction}\right]; CoupledExponentialQuantileFunction \left[p_{-}, \mu_{-} : 0, \sigma_{-}, \kappa_{-}\right] := \text{CoupledExponentialQuantileFunction}\left[p_{+}, \mu_{+}, \sigma_{+}, \kappa\right] = \sigma \text{CoupledLogarithm}\left[(1 - p)^{-1}, \kappa, 0\right] Test Quantile Function \left[n_{\kappa}\right] := \text{CoupledExponentialQuantileFunction}\left[0.999, 0, 1, -0.5\right] \left[\text{CoupledExponentialQuantileFunction}\left[0.999, 0, 1, -0.5\right]\right] \left[\text{CoupledExponentialQuantileFunction}\left[0.999, 0, 1, -0.5\right]\right]
```

In[
$$\circ$$
]:= If $\left[\kappa \neq 0, \frac{-\sigma}{\kappa} (1 - (1 - p)^{-\kappa}), -\sigma \log[1 - p]\right]$
 $\left[-\sigma \log[1 - p]\right]$

Out[]= 1.93675

Integration of Quantile Function to form Geometric Mean

$$\mathsf{Exp}\Big[\int_0^1 \mathsf{FullSimplify@Log@CoupledExponentialQuantileFunction[p, 0, \sigma, \kappa]}\,\,\mathtt{dp}\Big]$$

$$\text{Out}[*] = \hspace{-0.5em} \hspace{-0.5em} \mathbb{C} \begin{bmatrix} \log \left[\frac{\left(-\mathbf{1} + (\mathbf{1} - \mathbf{p})^{-\kappa}\right) \hspace{0.1em} \sigma}{\kappa} \right] & \kappa \neq \mathbf{0} & \text{if} \hspace{0.1em} \hspace{0.1em} \mathbf{p} < \mathbf{1} \\ \log \left[-\sigma \hspace{0.1em} \text{Log} \left[\mathbf{1} - \mathbf{p} \right] \right] & \text{True} \end{bmatrix} d\mathbf{p}$$

$$\ln[e] := \text{Assuming} \left[0 < \kappa < \infty, \text{FullSimplify@Exp} \left[\int_{0}^{1} \text{FullSimplify@Log} \left[\frac{(-1 + (1 - p)^{-\kappa}) \sigma}{\kappa} \right] dp \right] \right]$$

$$\textit{Out[*]=} \quad \frac{e^{-\mathsf{HarmonicNumber}\left[-1+\frac{1}{\kappa}\right]} \; \sigma}{\mathcal{K}}$$

$$\log \left[-1 < \kappa < 0, \text{ FullSimplify@Exp} \left[\int_{0}^{1} \text{FullSimplify@Log} \left[\frac{(-1 + (1 - p)^{-\kappa}) \sigma}{\kappa} \right] dp \right] \right]$$

$$Out[\cdot] = -\frac{e^{\kappa-\mathsf{HarmonicNumber}\left[-\frac{1+\kappa}{\kappa}\right]}}{\sigma}$$

$$\textit{In[a]} := \ \, \textbf{FullSimplify@Exp} \Big[\int_0^1 \textbf{Log[-} \ \sigma \ \, \textbf{Log[1-p]]} \ \, \text{dlp} \Big]$$

The Harmonic number and the Digamma functions have the following relationship.

 $H_z = \psi(z+1) - \gamma$ where γ is the Euler gamma constant 0.5172216...

See this Wolfram Research article on the history.

https://functions.wolfram.com/GammaBetaErf/HarmonicNumber2/introductions/DifferentiatedGamm as/ShowAll.html

Summarizing Result

GeometricMean of Coupled Exponential =

$$\begin{cases} \frac{e^{-\text{HarmonicNumber}\left[-1+\frac{1}{\kappa}\right]}\sigma}{\kappa} & \kappa > 0 \\ -\frac{e^{\kappa-\text{HarmonicNumber}\left[-\frac{1-\kappa}{\kappa}\right]}\sigma}{\kappa} & -1 < \kappa < 0 \\ e^{-\text{EulerGamma}}\sigma & \kappa = 0 \end{cases}$$

Assuming $\mu \neq 0$

$$m[\cdot]:=$$
 ClearAll[CoupledExponentialQuantileFunction]; CoupledExponentialQuantileFunction[p_, μ _, σ _, κ _] := CoupledExponentialQuantileFunction[p, μ , σ , κ] = $\mu + \sigma$ CoupledLogarithm[$(1-p)^{-1}$, κ , 0]

$$\ln[\circ]:= \mathsf{Assuming} \Big[0 < \kappa < \infty \&\& \, \mu \in \mathsf{Reals} \,,$$

$$\text{FullSimplify@Exp} \Big[\int_0^1 \text{FullSimplify@Log} \Big[\mu + \frac{ \left(-1 + \left(1 - p \right)^{-\kappa} \right) \ \sigma}{\kappa} \, \Big] \ \mathrm{d}p \Big] \Big]$$

$$\textit{Out[*]} = \left[e^{\kappa \, \mathsf{Hypergeometric2F1}\left[1,\frac{1}{\kappa},1^{\frac{1}{\kappa}},1^{-\frac{\kappa}{\kappa}}\right]} \, \mu \;\; \mathsf{if} \;\; \mu \, \geq \, 0 \right]$$

$$ln[\circ]:= Assuming \left[-1 < \kappa < 0 \&\& \mu \in Reals,\right]$$

$$\text{FullSimplify@Exp} \Big[\int_{\theta}^{1} \text{FullSimplify@Log} \Big[\mu + \frac{ \left(-1 + \left(1 - p \right)^{-\kappa} \right) \; \sigma}{\kappa} \, \Big] \; \mathrm{d}p \Big] \Big]$$

$$\textit{Out[*]} = \left[e^{-\pi \left(-1 + \frac{\kappa \mu}{\sigma}\right)^{-1/\kappa} \mathsf{Csc}\left[\frac{\pi}{\kappa}\right] + \kappa \, \mathsf{Hypergeometric2F1}\left[1, \frac{1}{\kappa}, 1 + \frac{1}{\kappa}, 1 - \frac{\kappa \mu}{\sigma}\right] \, \mu \, \text{ if } \, \mu \geq \mathbf{0} \right]$$

$$\ln[*] := \mathsf{Assuming} \Big[\mu \in \mathsf{Reals}, \mathsf{FullSimplify@Exp} \Big[\int_0^1 \mathsf{Log} [\mu - \sigma \, \mathsf{Log} [1 - p]] \, dp \Big] \Big]$$

Check relationship with equation solved by Amenah

$$In[\circ] := \text{FullSimplify} \left[\frac{\mu \, \sigma}{\kappa} \, \text{Exp} \left[\text{PolyGamma} \left[1 \right] - \text{PolyGamma} \left[1 + \frac{1}{\kappa} \right] \right], \, 0 < \kappa < \infty \&\& \, 0 \le \mu < \infty \&\& \, 0 < \sigma < \infty \right]$$

$$Out[\circ] := \frac{e^{-\text{HarmonicNumber} \left[\frac{1}{\kappa} \right]} \, \mu \, \sigma}{\kappa}$$

$$\textit{In[*]} := \text{FullSimplify} \left[e^{\kappa \, \text{Hypergeometric2F1} \left[1, \frac{1}{\kappa}, 1 + \frac{1}{\kappa}, 1 - \frac{\kappa \, \mu}{\sigma} \right]}, \, 0 < \kappa < \infty \right]$$

$$\textit{Out[} \bullet \textit{]} = \quad \text{\mathbb{C}}^{\kappa$ Hypergeometric2F1} \left[\mathbf{1}, \frac{1}{\kappa}, \mathbf{1} + \frac{1}{\kappa}, \mathbf{1} - \frac{\kappa \mu}{\sigma} \right]$$

$$\begin{aligned} & \textit{In[o]} := & & \text{FullSimplify} \Big[\text{Limit} \Big[e^{\kappa \, \text{Hypergeometric2F1} \Big[1, \frac{1}{\kappa}, 1 + \frac{1}{\kappa}, 1 - \frac{\kappa \, \mu}{\sigma} \Big] } \, \mu \,, \, \mu \to 0 \, \Big] \,, \, 0 < \kappa < \infty \Big] \\ & & \underbrace{ e^{-\text{HarmonicNumber} \Big[-1 + \frac{1}{\kappa} \Big] } \, \sigma}_{\mathcal{K}} \end{aligned}$$

$$\begin{aligned} & \textit{In[a]} := & \text{FullSimplify} \Big[\text{Limit} \Big[e^{\kappa \, \text{Hypergeometric2F1} \Big[1, \frac{1}{\kappa}, 1 + \frac{1}{\kappa}, 1 - \frac{\kappa \, \mu}{\sigma} \Big]} \, \mu, \, \kappa \to 0 \Big], \, \mu \geq 0 \Big] \\ & \textit{Out[a]} := & \lim_{\kappa \to 0} \, e^{\kappa \, \text{Hypergeometric2F1} \Big[1, \frac{1}{\kappa}, 1 + \frac{1}{\kappa}, 1 - \frac{\kappa \, \mu}{\sigma} \Big]} \, \mu \end{aligned}$$

Summarizing Result

GeometricMean of Coupled Exponential =

$$\begin{cases} \mathbb{Q}^{\kappa} \, \mathsf{Hypergeometric2F1} \Big[\mathbf{1}, \frac{1}{\kappa}, \mathbf{1} + \frac{1}{\kappa}, \mathbf{1} - \frac{\kappa \, \mu}{\sigma} \Big] \, \, \mu \, \text{ if } \, \, \mu \geq \mathbf{0} \\ \\ \mathbb{Q}^{-\pi} \, \left(-\mathbf{1} + \frac{\kappa \, \mu}{\sigma} \right)^{-1/\kappa} \, \mathsf{Csc} \Big[\frac{\pi}{\kappa} \Big] + \kappa \, \mathsf{Hypergeometric2F1} \Big[\mathbf{1}, \frac{1}{\kappa}, \mathbf{1} + \frac{1}{\kappa}, \mathbf{1} - \frac{\kappa \, \mu}{\sigma} \Big] \, \, \mu \, \text{ if } \, \, \mu \geq \mathbf{0} \\ \mathbf{?} \\ \end{cases} \qquad \qquad \kappa > \mathbf{0}$$

Reduction of Equations

$$\label{eq:local_$$

... Solve: This system cannot be solved with the methods available to Solve.

$$\begin{aligned} &\text{Out[69]= Solve} \left[\left\{ \text{GeoMean} = e^{\kappa \, \text{Hypergeometric2F1} \left[1, \frac{1}{\kappa}, 1 + \frac{1}{\kappa}, 1 - \frac{\kappa \mu}{\sigma} \right] } \, \mu \,, \, \, \text{MeanPairs} = \mu + \frac{\sigma}{2} \,, \\ &\text{SecondMomentTriplets} = \mu^2 + \frac{2 \, \mu \, \sigma}{3 + \kappa} + \frac{2 \, \sigma^2}{3 \, (3 + \kappa)} \, \right\}, \, \left\{ \mu \,, \, \sigma \,, \, \kappa \right\}, \, \mathbb{R} \, \right] \end{aligned}$$

Fix mistake in next equation

$$\mu = MeanPairs - \frac{\sigma}{2}$$

In[153]:= Solve
$$\left\{ \\ \text{GeoMean} = e^{\kappa \, \text{Hypergeometric} 2F1\left[1,\frac{1}{\kappa},1+\frac{1}{\kappa},1-\frac{\kappa \, \left(\text{MeanPairs}-\frac{\sigma}{2}\right)}{\sigma}\right]} \left(\text{MeanPairs}-\frac{\sigma}{2}\right), \\ \text{SecondMomentTriplets} = \left(\text{MeanPairs}-\frac{\sigma}{2}\right)^2 + \frac{2 \, \left(\text{MeanPairs}-\frac{\sigma}{2}\right) \, \sigma}{3+\kappa} + \frac{2 \, \sigma^2}{3 \, (3+\kappa)} \right)$$

 $\}$, $\{\sigma, \kappa\}$, Reals

Solve: This system cannot be solved with the methods available to Solve.

$$\begin{aligned} &\text{Out} \text{[153]= Solve} \left[\left\{ \text{GeoMean} == e^{\kappa \, \text{Hypergeometric2F1} \left[1, \frac{1}{\kappa}, 1 + \frac{1}{\kappa}, 1 - \frac{\kappa \, \left(\text{MeanPairs} - \frac{\sigma}{2} \right)}{\sigma} \right] \, \left(\text{MeanPairs} - \frac{\sigma}{2} \right) \, , \\ &\text{SecondMomentTriplets} == \left(\text{MeanPairs} - \frac{\sigma}{2} \right)^2 + \frac{2 \, \left(\text{MeanPairs} - \frac{\sigma}{2} \right) \, \sigma}{3 + \kappa} + \frac{2 \, \sigma^2}{3 \, \left(3 + \kappa \right)} \, \right\} , \, \left\{ \sigma, \, \kappa \right\} , \, \mathbb{R} \right]$$

GeoMean ==
$$e^{\kappa \text{ Hypergeometric} 2F1\left[1,\frac{1}{\kappa},1+\frac{1}{\kappa},1-\frac{\kappa\left(\text{MeanPairs}-\frac{\sigma}{2}\right)}{\sigma}\right]}\left(\text{MeanPairs}-\frac{\sigma}{2}\right),$$

$$\text{SecondMomentTriplets} == \left(\text{MeanPairs}-\frac{\sigma}{2}\right)^2 + \frac{2\left(\text{MeanPairs}-\frac{\sigma}{2}\right)\sigma}{3+\kappa} + \frac{2\sigma^2}{3(3+\kappa)}$$

$$\left\{,\left\{\sigma,\kappa\right\},\text{Reals}\right]$$

SolveValues : This system cannot be solved with the methods available to SolveValues

$$\begin{aligned} & \text{Out} \text{[154]= SolveValues} \left[\left\{ \text{GeoMean} = e^{\kappa \, \text{Hypergeometric2FI} \left[1, \frac{1}{\kappa}, 1 + \frac{1}{\kappa}, 1 - \frac{\kappa \, \left(\text{MeanPairs} - \frac{\sigma}{2} \right)}{\sigma} \, \right] \, \left(\text{MeanPairs} - \frac{\sigma}{2} \right), \\ & \text{SecondMomentTriplets} = \left(\text{MeanPairs} - \frac{\sigma}{2} \right)^2 + \frac{2 \, \left(\text{MeanPairs} - \frac{\sigma}{2} \right) \, \sigma}{3 + \kappa} + \frac{2 \, \sigma^2}{3 \, (3 + \kappa)} \, \right\}, \, \left\{ \sigma, \, \kappa \right\}, \, \mathbb{R} \, \right]$$

In[155]:= SolveValues

GeoMean ==
$$e^{\kappa \text{ Hypergeometric}_{2F1}\left[1,\frac{1}{\kappa},1+\frac{1}{\kappa},1-\frac{\kappa \left(\text{MeanPairs},\frac{\sigma}{2}\right)}{\sigma}\right]}\left(\text{MeanPairs}-\frac{\sigma}{2}\right)$$
, σ , Reals

. SolveValues : This system cannot be solved with the methods available to SolveValues.

$$\text{Out} [\text{155}] = \text{SolveValues} \left[\text{GeoMean} = e^{\kappa \, \text{Hypergeometric2F1} \left[1, \frac{1}{\kappa}, 1 + \frac{1}{\kappa}, 1 - \frac{\kappa \, \left(\text{MeanPairs} - \frac{\sigma}{2} \right)}{\sigma} \right]} \, \left(\text{MeanPairs} - \frac{\sigma}{2} \right), \, \sigma, \, \mathbb{R} \, \right]$$

SecondMomentTriplets =
$$\left(\text{MeanPairs} - \frac{\sigma}{2}\right)^2 + \frac{2\left(\text{MeanPairs} - \frac{\sigma}{2}\right)\sigma}{3+\kappa} + \frac{2\sigma^2}{3(3+\kappa)}$$
, σ , Reals

$$\left\{\left\{\sigma \rightarrow \cfrac{6 \; (\mathsf{MeanPairs} + \mathsf{MeanPairs} \, \kappa)}{5 + 3 \; \kappa} - \cfrac{1}{5 + 3 \; \kappa} - \cfrac{1}{2 \; \sqrt{3} \; \sqrt{\left(\cfrac{1}{(5 + 3 \; \kappa)^2} \left(-12 \; \mathsf{MeanPairs}^2 + 15 \; \mathsf{SecondMomentTriplets} \, - 8 \; \mathsf{MeanPairs}^2 \, \kappa + 14 \; \mathsf{SecondMomentTriplets} \, \kappa + 3 \; \mathsf{SecondMomentTriplets} \, \kappa^2\right)\right)} \right\}$$

$$\text{if} \quad \left\{ \mathsf{SecondMomentTriplets} > \cfrac{12 \; \mathsf{MeanPairs}^2 + 8 \; \mathsf{MeanPairs}^2 \, \kappa}{15 + 14 \; \kappa + 3 \; \kappa^2} \; & \& \; \kappa > -\cfrac{5}{3} \; \right\} \mid | \left\{ -3 < \kappa < -\cfrac{5}{3} \; \& \& \; \mathsf{SecondMomentTriplets} < \cfrac{12 \; \mathsf{MeanPairs}^2 + 8 \; \mathsf{MeanPairs}^2 \, \kappa}{15 + 14 \; \kappa + 3 \; \kappa^2} \; \right\} \mid | \left\{ \kappa < -3 \; \& \& \; \mathsf{SecondMomentTriplets} > \cfrac{12 \; \mathsf{MeanPairs}^2 + 8 \; \mathsf{MeanPairs}^2 \, \kappa}{15 + 14 \; \kappa + 3 \; \kappa^2} \; \right\}$$

$$\left\{\sigma \rightarrow \frac{6 \; (\text{MeanPairs} + \text{MeanPairs} \, \kappa)}{5 + 3 \, \kappa} + \frac{1}{5 + 3 \, \kappa} + \frac{1}{5 + 3 \, \kappa} \left(-12 \; \text{MeanPairs}^2 + 15 \; \text{SecondMomentTriplets} \, -\frac{1}{(5 + 3 \, \kappa)^2} \left(-12 \; \text{MeanPairs}^2 + 15 \; \text{SecondMomentTriplets} \, \kappa + \frac{1}{3} \; \text{SecondMomentTriplets} \, \kappa^2\right)\right)$$

if
$$\left(\text{SecondMomentTriplets} > \frac{12 \; \text{MeanPairs}^2 + 8 \; \text{MeanPairs}^2 \, \kappa}{15 + 14 \, \kappa + 3 \, \kappa^2} \; & \& \kappa > -\frac{5}{3} \; \right) \mid \mid \left(-3 < \kappa < -\frac{5}{3} \; \& \& \; \text{SecondMomentTriplets} < \frac{12 \; \text{MeanPairs}^2 + 8 \; \text{MeanPairs}^2 \, \kappa}{15 + 14 \, \kappa + 3 \, \kappa^2}\right) \mid \mid \left(\kappa < -3 \; \& \& \; \text{SecondMomentTriplets} > \frac{12 \; \text{MeanPairs}^2 + 8 \; \text{MeanPairs}^2 \, \kappa}{15 + 14 \, \kappa + 3 \, \kappa^2}\right)$$

Simplify expression in terms of κ

$$x \text{ Hypergeometric2F1} \left[1,\frac{1}{\kappa},1+\frac{1}{\kappa},1-\frac{\left(\frac{6\left(\text{MeanPairs}+\text{MeanPairs}x\right)}{5+3\,\kappa}-2\right.\sqrt{3}\sqrt{\left(\frac{1}{\left(5+3\,\kappa\right)^2}\left(-12\,\text{MeanPairs}^2+15\,\text{SecondMomentTriplets}-8\,\text{MeanPairs}^2\,\kappa+14\,\text{SecondMomentTriplets}\,\kappa+3\,\text{SecondMomentTriplets}\,\kappa+3\,\text{SecondMomentTriplets}}\right.}{\left(\frac{6\left(\text{MeanPairs}+\text{MeanPairs}\right)}{5+3\,\kappa}-2\right.\sqrt{3}\sqrt{\left(\frac{1}{\left(5+3\,\kappa\right)^2}\left(-12\,\text{MeanPairs}^2+15\,\text{SecondMomentTriplets}-8\,\text{MeanPairs}^2\,\kappa+14\,\text{SecondMomentTriplets}\,\kappa+3\,\text{SecondMomentTriplets}\,\kappa+3\,\text{SecondMomentTriplets}\,\kappa+3\,\text{SecondMomentTriplets}}\right)}} \right]$$

$$\left(\text{MeanPairs} - \frac{1}{2} \left(\frac{6 \text{ (MeanPairs + MeanPairs } \kappa)}{5 + 3 \kappa} - \frac{1}{2 \sqrt{3}} \sqrt{\left(\frac{1}{(5 + 3 \kappa)^2} \left(-12 \text{ MeanPairs}^2 + 15 \text{ SecondMomentTriplets} - 8 \text{ MeanPairs}^2 \kappa + 1 \right) \right) \right) } \right)$$

14 SecondMomentTriplets
$$\kappa$$
 + 3 SecondMomentTriplets κ^2)

$$\text{Out} [157] = \begin{array}{c} \text{\times Hypergeometric 2F1 $\left[1,\frac{1}{\kappa},1+\frac{1}{\kappa},\frac{1+\frac{1}{\kappa},\frac{1+\frac{1}{\kappa}}{\kappa},\frac{1+\frac{1+\frac{1}{\kappa},\frac{1+\frac{1+\kappa,\frac$$

2 MeanPairs + (5 + 3
$$\kappa$$
)

$$\sqrt{\text{SecondMomentTriplets} + \frac{4 \, \text{MeanPairs}^2}{\left(5 + 3 \, \kappa\right)^2} + \frac{4 \, \left(-2 \, \text{MeanPairs}^2 + \text{SecondMomentTriplets}\right)}{5 + 3 \, \kappa}}\right)}$$

GeoMean

Contour Plots

$$\begin{array}{c} \text{κ Hypergeometric 2F1} \Big[1,\frac{1}{\kappa},1+\frac{1}{\kappa},\frac{1}{\kappa$$


```
In[97]:= Manipulate
         ContourPlot3D
          Evaluate[{
              \mathsf{GeoMean} = \mathbf{e}^{\kappa \, \mathsf{Hypergeometric2F1}\left[1,\frac{1}{\kappa},1+\frac{1}{\kappa},1-\frac{\kappa\mu}{\sigma}\right]} \, \mu \,,
              MeanPairs = \mu + \frac{\sigma}{2},
              SecondMomentTriplets = \mu^2 + \frac{2 \mu \sigma}{3 + \kappa} + \frac{2 \sigma^2}{3 (3 + \kappa)}
           {GeoMean, 0, 5}, {MeanPairs, 0, 5}, {SecondMomentTriplets, 0, 5},
           AxesLabel → {"GeoMean", "MeanPairs", "SecondMomentTriplets"},
          PlotLegends → {"GeoMean", "MeanPairs", "SecondMomentTriplets"}],
         \{\{\mu, 0.1\}, 0, 2\}, \{\{\sigma, 1\}, 0, 10\}, \{\{\kappa, 0.5\}, 0, 2\}
```


Contour Plots for distribution parameters given moment estimations

Attempts to use the Manipulate control result in aborted computation

```
In[132]:= Manipulate
             ContourPlot3D
               Evaluate[{
                    \mathbf{e}^{\kappa \mathsf{S}\,\mathsf{Hypergeometric2F1}\left[1,\frac{1}{\kappa \mathsf{S}},1+\frac{1}{\kappa \mathsf{S}},1-\frac{\kappa \mathsf{S}\,\mu \mathsf{S}}{\sigma \mathsf{S}}\right]}\,\mu \mathsf{S} \,=\, \mathbf{e}^{\kappa\,\mathsf{Hypergeometric2F1}\left[1,\frac{1}{\kappa},1+\frac{1}{\kappa},1-\frac{\kappa\mu}{\sigma}\right]}\,\mu\,\mathsf{,}
                   \mu S + \frac{\sigma S}{2} = \mu + \frac{\sigma}{2}
                   \mu S^2 + \frac{2 \mu S \sigma S}{3 + \kappa S} + \frac{2 \sigma S^2}{3 (3 + \kappa S)} = \mu^2 + \frac{2 \mu \sigma}{3 + \kappa} + \frac{2 \sigma^2}{3 (3 + \kappa)}
                 }],
               \{\mu, 0, 4\}, \{\sigma, 0, 1.1\}, \{\kappa, 0, 2\},
                AxesLabel \rightarrow \{ \mu'', \sigma'', \kappa'' \}
               {\tt PlotLegends} \rightarrow \{{\tt "GeoMean", "MeanPairs", "SecondMomentTriplets"}\} \Big],
              \{\{\mu S, 0.1\}, 0, 5\}, \{\{\sigma S, 1\}, 0, 10\}, \{\{\kappa S, 0.5\}, 0, 2\}
Out[132]=
                 SAborted
            ... General: 0.1375 6999999 is too small to represent as a normalized machine number; precision may be lost.
                                                       — is too small to represent as a normalized machine number; precision may be lost.
                                                       — is too small to represent as a normalized machine number; precision may be lost.
            General: Further output of General::munfl will be suppressed during this calculation.
            ... General: 0.1375 6999999 is too small to represent as a normalized machine number; precision may be lost.
           General: \frac{-4.94477 \times 10^{-301}}{-335997648} is too small to represent as a normalized machine number; precision may be lost.

    is too small to represent as a normalized machine number; precision may be lost.

            ••• General: Further output of General::munfl will be suppressed during this calculation.
```

First compute a set of moments

```
In[•]:= Manipulate
                  Evaluate [{
                         e^{\kappa S \text{ Hypergeometric} 2F1\left[1,\frac{1}{\kappa S},1+\frac{1}{\kappa S},1-\frac{\kappa S \mu S}{\sigma S}\right]} \mu S = e^{\kappa \text{ Hypergeometric} 2F1\left[1,\frac{1}{\kappa},1+\frac{1}{\kappa},1-\frac{\kappa \mu}{\sigma}\right]} \mu,
                        \mu S + \frac{\sigma S}{2} = \mu + \frac{\sigma}{2}
                        \mu S^2 + \frac{2 \,\mu S \,\sigma S}{3 + \kappa S} + \frac{2 \,\sigma S^2}{3 \,\left(3 + \kappa S\right)} \, = \, \mu^2 + \frac{2 \,\mu \,\sigma}{3 + \kappa} + \frac{2 \,\sigma^2}{3 \,\left(3 + \kappa\right)}
                     }],
                  \{\{\mu S, 0.1\}, 0, 5\}, \{\{\sigma S, 1\}, 0, 10\}, \{\{\kappa S, 0.5\}, 0, 2\}
                         \left\{\frac{27}{4} = e^{\kappa \, \text{Hypergeometric2F1}\left[1,\frac{1}{\kappa},1+\frac{1}{\kappa},1-\frac{\kappa\mu}{\sigma}\right]} \, \mu, \, \frac{7}{2} = \mu + \frac{\sigma}{2}, \, \frac{17}{2} = \mu^2 + \frac{2\,\mu\,\sigma}{3+\kappa} + \frac{2\,\sigma^2}{3(3+\kappa)} \, \right]
```

Try Contour Maps from simplest to hardest curve individually

```
In[141]:= CEEstimationPlot[Equation_, EquationLabel_] := ContourPlot3D[
          Evaluate[Equation],
          \{\mu, 0, 4\}, \{\sigma, 0, 1.1\}, \{\kappa, 0, 2\},
          AxesLabel \rightarrow \{ "\mu", "\sigma", "\kappa" \},
          PlotLegends → {EquationLabel},
          PlotLabel \rightarrow "\mu=2, \sigma=3, \kappa=1"]
```

In[142]:= CEEstimationPlot
$$\left[\frac{7}{2} = \mu + \frac{\sigma}{2}, \text{"MeanPairs"}\right]$$

μ=2, σ=3, κ=1

In[143]:= CEEstimationPlot
$$\left[\frac{17}{2} = \mu^2 + \frac{2 \mu \sigma}{3 + \kappa} + \frac{2 \sigma^2}{3 (3 + \kappa)}\right]$$
, "SecondMomentTriplets" $\mu=2, \sigma=3, \kappa=1$

$$\ln[144] = \mathsf{CEEstimationPlot} \left[\frac{27}{4} = e^{\kappa \, \mathsf{Hypergeometric2F1} \left[1, \frac{1}{\kappa}, 1 + \frac{1}{\kappa}, 1 - \frac{\kappa \, \mu}{\sigma} \right]} \, \mu, \, \mathsf{"GeoMean"} \right]$$

General: 0.1375 6999999 is too small to represent as a normalized machine number; precision may be lost.

- is too small to represent as a normalized machine number; precision may be lost.

is too small to represent as a normalized machine number; precision may be lost.

General: Further output of General::munfl will be suppressed during this calculation.

Out[144]= \$Aborted

Not sure why the 3D contour plot for the MeanPair and SecondMomentTriplets does not show an intersection but presumably it has something to do with the internal contour parameter settings

In[146]:= ContourPlot3D Evaluate $\left[\begin{cases} \frac{7}{2} = \mu + \frac{\sigma}{2}, \end{cases}\right]$ $\frac{17}{2} = \mu^2 + \frac{2 \mu \sigma}{3 + \kappa} + \frac{2 \sigma^2}{3 (3 + \kappa)}$ $\{\mu, 0, 4\}, \{\sigma, 0, 1.1\}, \{\kappa, 0, 2\},$ AxesLabel $\rightarrow \{ "\mu", "\sigma", "\kappa" \}$, PlotLegends → {"MeanPairs", "SecondMomentTriplets"}, PlotLabel \rightarrow " μ =2, σ =3, κ =1"]

 μ =2, σ =3, κ =1

2D Plots do show clear intersections

In[131]:= ContourPlot

$$\left\{\frac{27}{4} = e^{\kappa \, \text{Hypergeometric} \, 2F1\left[1,\frac{1}{\kappa},1+\frac{1}{\kappa},1-\frac{\kappa\left[\frac{7}{2}-\frac{\sigma}{2}\right]}{\sigma}\right]} \left(\frac{7}{2}-\frac{\sigma}{2}\right), \frac{17}{2} = \left(\frac{7}{2}-\frac{\sigma}{2}\right)^2 + \frac{2\left(\frac{7}{2}-\frac{\sigma}{2}\right)\sigma}{3+\kappa} + \frac{2\sigma^2}{3(3+\kappa)}\right\},$$

 $\{\sigma, 0, 10\}, \{\kappa, 0, 2\},\$

FrameLabel $\rightarrow \{ "\sigma", "\kappa" \}$,

PlotLegends → {"GeoMean", "SecondMomentTriplets"},

PlotLabel \rightarrow " μ =2, σ =3, κ =1"

Saved Plots

Find Minimum of SecondMomentTriples with respect to κ

In[159]:= Solve
$$\left[\frac{17}{2} = \left(\frac{7}{2} - \frac{\sigma}{2}\right)^2 + \frac{2\left(\frac{7}{2} - \frac{\sigma}{2}\right)\sigma}{3 + \kappa} + \frac{2\sigma^2}{3(3 + \kappa)}, \kappa\right]$$

$$\text{Out[159]= } \left\{ \left\{ \kappa \rightarrow \frac{-135 + 42 \ \sigma - 5 \ \sigma^2}{3 \ \left(15 - 14 \ \sigma + \sigma^2\right)} \right\} \right\}$$

In[161]:= FindMinimum
$$\left[\frac{-135 + 42 \sigma - 5 \sigma^2}{3 (15 - 14 \sigma + \sigma^2)}, \{\sigma, 1\} \right]$$

. Line search unable to find a sufficient decrease in the function value with MachinePrecision digit

Out[161]=
$$\left\{-4.3368 \times 10^{14}, \ \left\{\sigma \to 1.16905\right\}\right\}$$

In[165]:= Plot
$$\left[\frac{-135 + 42 \sigma - 5 \sigma^2}{3 \left(15 - 14 \sigma + \sigma^2\right)}, \{\sigma, 0, 10\}, \text{ PlotRange} \rightarrow \text{Automatic}\right]$$

In[164]:= Plot
$$\left[\frac{-135 + 42 \sigma - 5 \sigma^2}{3 (15 - 14 \sigma + \sigma^2)}, \{\sigma, 0, 10\}, \text{ PlotRange} \rightarrow \text{Full} \right]$$

$$\label{eq:ln[163]} \mbox{FindMinimum} \left[\frac{-135 + 42 \ \sigma - 5 \ \sigma^2}{3 \ \left(15 - 14 \ \sigma + \sigma^2 \right)} \ , \ \left\{ \sigma \ , \ 2 \right\} \right]$$
 Out[163]= $\left\{ 0.554805 \ , \ \left\{ \sigma \rightarrow 4.89929 \right\} \right\}$

So there are some challenges with the search for σ and κ if the search does not seed a value close to the solution. In particular the zero of $(15 - 14 \sigma + \sigma^2)$ causes κ to go to infinity. It's important to be the side that produces a positive kappa