Redes Neurais Artificiais Aplicadas ao Jogo da Velha 3D em Pinos TCC - Jan/09

Daniel Tré - ISTCCP

O que são Redes Neurais Artificiais

Rede

Malha composta por neurônios que são interligados por sinapses, a malha recebe uma informação, processa e responde com um resultado. Processa a informação paralelamente, maciçamente e distribuidamente. Tem a capacidade de aprender e efetuar operações não lógicas.

■ Neurônio (Perceptron)

É a menor unidade de processamento de uma rede neural, seu nível de processamento é simples. Ele recebe informações de outros neurônios processa e envia a outros neurônios.

Ligação Sináptica

liga um neurônio a outro e informa o grau de afinidade entre eles.

Rede Neural Artificial - Representação

Uma rede pode ser representada como a seguir.

Computador Convencional x Cérebro

Tabela 1: Computador Convencional x Cérebro

Parâmetro	Cérebro	Computador Convencional
Material	Orgânico	Metal e plástico
Velocidade	Milisegundos	Nanosegundos
Processamento	Paralelo	Seqüencial
Armazenamento	Adaptativo	Estático
Controle de Processos	Distribuído	Centralizado
Elementos processados	10^{11} à 10^{14}	10^5 à 10^6
Ligações entre elementos	10.000	< 10
Eficiência energética	$10^{-16}J/s$	$10^{-6}J/s$

Computador x Neurocomputador

Tabela 2: Computador Convencional x Neurocomputador

Computador Convencional	Neurocomputador
Executa programas	Aprende
Executa operações lógicas	Executa operações não lógicas, trans- formações, comparações
Depende do modelo ou do programador	Descobre as relações ou regras dos da- dos e exemplos
Testa uma hipótese por vez	Testa todas as possibilidades em par- alelo

Jogo da Velha

o Jogo da Velha é um jogo para dois jogadores simples e de fácil aprendizagem, ele é composto de tabuleiro dividido como uma matriz 3x3, onde os jogadores utilizam símbolos, normalmente X(xis) e O(bola), para preencher as células da matriz, ao completar três figuras em linha reta, o jogador daquela figura vence o jogo.

Jogo da Velha

(a) Casas

(b) Pontos

(c) Combinações

(d) Influências

Jogo da Velha 3D em Pinos

É uma modificação do jogo da velha tradicional para deixá-lo mais desafiador, o jogo passa a ter 3 dimensões ao invés de 2, contudo diferente do anterior onde pode-se jogar em qualquer casa, é preciso ter atenção ao jogar, pois neste, é escolhido um pino e joga-se na casa vaga mais próxima do tabuleiro.

Jogo da Velha 3D - Tabuleiro

O tabuleiro é composto de 9 pinos, e em cada pino podem ser encaixadas 3 peças. Cada jogador tem 12 peças.

Jogo da Velha 3D - Pinos

Como pode-se colocar até 3 peças em cada pino, ele será representado por primeiro, segundo e terceiro andares, e a posição de cada pino será numerada de 1 a 9.

Jogo da Velha 3D - Casas

Unindo-se andar do pino com a posição do pino no tabuleiro temos as numerações das casas.

Jogo da Velha 3D - Combinações

Os jogadores pontuam fazendo combinações e, quem fizer mais combinações vence. 3 peças em linha reta formam uma combinação. Cada casa tem um número máximo de combinações.

Jogo da Velha 3D - Influências

Cada casa é influenciada por outras casas no momento da jogada quando o jogador quer fazer combinações, bloquear um jogo adversário ou preparar uma jogada.

Jogo da Velha 3D - Situação

A situação do jogo se dá analisando as casas de cada jogador e as casas vagas.

Jogo da Velha 3D - Visão da rede

A visão de cada rede se dá considerando o valor 1 nas casas com próprias peças, -1 nas casas com peças do adversário e 0 nas casas sem peças.

Redes

As redes foram criadas para que fossem capazes de jogar o Jogo da Velha 3D em Pinos.

Característica	R2D2 / C3PO	Wall-e	Número 5
Func. Ativação	Hiperbólica	Hiperbólica	Hiperbólica
Camadas	27x49x9	27x129x9	27x129x9x9
Tipo Conexão	Forward	Forward	Forward
Grau Conectiv.	Plena	Plena	Plena
Dinâmica	Acíclica	Acíclica	Acíclica
Metod. Aprend.	Supervisionada	Supervisionada	Supervisionada
Alg. Aprend.	correção do erro	correção do erro	correção do erro
Implementação	Software	Software	Software

Redes - MatLab

Foi utilizada a linguagem MatLab em conjunto com uma biblioteca chamada Neural Network Toolbox. Os comandos para criar as redes foram:

- r2d2 = newff(entrada, saida, [49], 'tansig', 'tansig');
- c3po = newff(entrada, saida, [49], 'tansig', 'tansig');
- \blacksquare walle = newff(entrada, saida, [129], 'tansig', 'tansig');

Onde entrada e saida são vetores de 27 e 9 posições respectivamente, ambos os vetores podem possuir os valores entre -1 e 1.

Treinamento

Para agilizar o treinamento, as redes jogaram uma contra as outras e foi criado um programa chamado juiz para supervisioná-las. O juiz leva em consideração pinos, casas, combinações, influências e situação do jogo. Conforme os confrontos ocorriam o juiz dizia onde cada rede devia jogar.

Treinamento - MatLab

Foi utilizado o comando sim para saber onde cada rede joga e o adapt para tentar modificar a resposta.

- \blacksquare sim(r2d2, situacao);
- \blacksquare adapt(r2d2, situacao, juizResposta);

Onde r2d2 é uma rede, situacao é a situação do tabuleiro e juizResposta é a resposta desejada.

Treinamento - Resultados

Foram efetuados 7 treinos em um total de 35 horas e 10 minutos e um total de 9500 confrontos, ao final do treinamento todas aprenderam as regras do jogo. Contudo como elas foram treinadas pelo programa juiz, elas aprenderam a jogar como o juiz joga, e o juiz não é preparado para jogar considerando armadilhas, que um humano possa fazer.

Treinamento - Resultados

O último treinamento apresenta resultados mostrando que as redes aprenderam.

	Pontos	Não-entendeu	Vitórias	Empates	Derrotas
R2D2	350	0	39	16	45
C3PO	362	1	41	16	43
Wall-e	393	0	46	13	41
Número 5	365	0	45	13	42

Conclusão

- É preciso mapear os passos para alcançar o objetivo para que se possa construir uma rede que seja compatível com este fim.
- O treinamento da rede dará sua finalidade, se ela for mal treinada ela reagirá de forma inadequada para as situações.

Dúvidas e Perguntas

- Alguma Dúvida?
- Críticas ou Sugestões?

E-mail para contato daniel.tre@gmail.com