Exercice 1

Soit E un \mathbb{R} -espace vectoriel de dimension finie et soit $p \in \mathcal{L}(E)$.

- 1) Montrer que $q = id_E p$ est un projecteur si et seulement si p est un projecteur. Exprimer dans ce cas Ker(q) et Im(q) en fonction de Ker(p) et Im(p).
- 2) Montrer que $s = id_E 2p$ est une symétrie si et seulement si p est un projecteur. Exprimer dans ce cas $Ker(s - id_E)$ et $Ker(s + id_E)$ en fonction de Ker(p) et Im(p).

Exercice 2

Soit $E = \mathcal{C}^0([0,\pi],\mathbb{R})$, l'ensemble des fonctions continues de $[0;\pi]$ dans \mathbb{R} . Soient $F = \text{Vect}\left(\cos_{[0,\pi]},\sin_{[0,\pi]}\right)$ et $G = \{f \in \mathcal{C}^0([0,\pi],\mathbb{R}) \mid f(0) = f(\pi/2) = f(\pi)\}$.

- 1) Montrer que $E = F \oplus G$
- 2) Soit p la projection sur F parallèlement à G. Déterminer p(f) pour $f \in E$.

Exercice 3 -

Soit $E = \mathbb{R}^3$ et soient F = Vect((1, -1, 1)) et $G = \{(x, y, z) \in \mathbb{R}^3 \mid 2x - y - z = 0\}$.

- 1) Montrer que $E = F \oplus G$
- 2) Soit s la symétrie de E par rapport à F dans la direction de G. Déterminer la matrice représentative de s dans la base canonique de \mathbb{R}^3 .

Exercice 4

Soient E et F deux espaces vectoriels de dimension finie, et soit $f \in \mathcal{L}(E, F)$. Soient E_1, E_2, \dots, E_n des sous espaces vectoriels de E et F_1, F_2, \dots, F_p des sous espaces vectoriels de F.

- 1) Montrer que $f(E_1 + E_2 + \dots + E_n) = f(E_1) + f(E_2) + \dots + f(E_n)$
- 2) Montrer que si f est injective et que la somme des E_i est directe, alors la somme des $f(E_i)$ est directe.
- 3) Montrer que $f^{-1}(F_1) + f^{-1}(F_2) + \cdots + f^{-1}(F_p) \subset f^{-1}(F_1 + F_2 + \cdots + F_p)$
- 4) Donner un exemple dans lequel l'inclusion précédente est stricte.

Exercice 5

Soit n un entier non nul. On note tr l'application trace définie par $\operatorname{tr}:\mathcal{M}_n(\mathbb{R})\to\mathbb{R},\ (m_{i,j})_{1\leq i,j\leq n}\mapsto\sum_{i=1}^n m_{i,i}.$

- 1) Montrer que $\mathcal{M}_n(\mathbb{R}) = \text{Vect}(I_n) \oplus \text{Ker}(\text{tr}).$
- 2) On considère $p \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}))$ le projecteur sur Vect (I_n) parallèlement à Ker(tr). Que vaut p(M) pour une matrice $M \in \mathcal{M}_n(\mathbb{R})$?

* * Exercice 6 -

Soit n un entier non nul et soit $E = \mathbb{R}_n[X]$. On considère l'application $u: E \longrightarrow \mathbb{R}_1[X], P \longmapsto P(0)X + P(1)$

- 1) Montrer que $u \in \mathcal{L}(E, \mathbb{R}_1[X])$
- 2) Montrer que $E = \mathbb{R}_1[X] \oplus \operatorname{Ker}(u)$

Exercice 7

Soit E un un \mathbb{R} -espace vectoriel de dimension finie, soit $s \in \mathcal{L}(E)$ une symétrie de E et soit $u \in \mathcal{L}(E)$ quelconque. Montrer que u et s commutent si et seulement si $\mathrm{Ker}(s-\mathrm{id})$ et $\mathrm{Ker}(s+\mathrm{id})$ sont stables par u.

Exercice 8

E un \mathbb{R} -e.v. de dimension $n \geq 1$ et soit $s \in \mathcal{L}(E)$ une symétrie. Montrer que $n - \operatorname{tr}(s)$ est un entier pair.

* * Exercice 9

Soit E un espace vectoriel de dimension finie et soient $p, q \in \mathcal{L}(E)$ deux projecteurs tels que $\mathrm{Im}(p) \subset \mathrm{Ker}(q)$. On pose $r = p + q - p \circ q$.

- 1) Montrer que r est un projecteur.
- 2) Montrer que $\operatorname{Ker}(r) = \operatorname{Ker}(p) \cap \operatorname{Ker}(q)$ et que $\operatorname{Im}(r) = \operatorname{Im}(p) \oplus \operatorname{Im}(q)$.

Exercice 10 -

Soient $p, n \ge 1$ deux entiers, $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ et $g \in \mathcal{L}(\mathbb{R}^p, \mathbb{R}^n)$ tels que $g \circ f$ est un projecteur de rang p.

- 1) Montrer que $rg(g) \leq p$
- 2) En déduire que $\operatorname{Im}(g \circ f) = \operatorname{Im} g$ et que $\operatorname{Ker} g = \{0\}$
- 3) Montrer que pour tout $x \in \mathbb{R}^p$, g(f(g(x))) = g(x)
- 4) Montrer que $f \circ g = \mathrm{id}_{\mathbb{R}^p}$.

Le coin des Khûbes

* * * Exercice 11

Soit E un espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et soient a et b deux symétries de E.

- 1) Développer et simplifier $(a+b) \circ (a-b)$ et $(a-b) \circ (a+b)$.
- 2) Montrer que $\operatorname{Im}(a \circ b b \circ a) \subset \operatorname{Im}(a + b) \cap \operatorname{Im}(a b)$
- 3) Montrer enfin que $\operatorname{Im}(a \circ b b \circ a) = \operatorname{Im}(a + b) \cap \operatorname{Im}(a b)$.

 \star \star \star Exercice 12

Soit n > 1 un entier.

- 1) Montrer que $s: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X], P(X) \longmapsto P(1-X)$ est une symétrie.
- 2) Soit $P \in \mathbb{R}_n[X]$. Montrer l'équivalence suivante :

 $P(1-X) = P(X) \iff$ la courbe représentative de P est symétrique par rapport à la droite $x = \frac{1}{2}$

- 3) Montrer que $P \in \text{Ker}(s \text{Id}_{\mathbb{R}_n[X]})$ si et seulement si le polynôme $Q(X) = P(X + \frac{1}{2})$ définit une fonction paire.
- 4) Montrer qu'une fonction polynôme est paire si et seulement si tous ses termes de degré impair sont nuls.
- 5) Vérifier que $\varphi: \mathbb{R}_n[X] \to \mathbb{R}_n[X], P(X) \mapsto P(X + \frac{1}{2})$ est un automorphisme et en déduire une base de $\operatorname{Ker}(s \operatorname{Id}_{\mathbb{R}_n[X]})$
- 6) En raisonnant de façon analogue, déterminer une base de $\operatorname{Ker}(s+\operatorname{Id}_{\mathbb{R}_n[X]})$

 $\star \star \star$ Exercice 13

Soit n un entier supérieur ou égal à 2. Soit E un \mathbb{R} -espace vectoriel de dimension n. Soit s un endomorphisme de E vérifiant les propriétés suivantes :

- (i) $s \circ s = \operatorname{Id}_E$
- (ii) $s \neq \operatorname{Id}_E$
- (iii) $s \neq -\mathrm{Id}_E$

On considère l'application φ définie par $\varphi: \mathcal{L}(E) \to \mathcal{L}(E), f \mapsto \frac{1}{2}(s \circ f + f \circ s)$.

- 1) Montrer que φ est un endomorphisme de $\mathcal{L}(E)$.
- 2) Montrer que s est diagonalisable et que son spectre est égal à $\{-1,1\}$.

On notera dans la suite E_1 (resp. E_{-1}) le sous-espace propre de s associé à la valeur propre 1 (resp. -1).

3) Soit $f \in \mathcal{L}(E)$. Montrer l'équivalence suivante :

 $f \in \operatorname{Ker}(\varphi) \iff f(E_1) \subset E_{-1} \quad \text{et} \quad f(E_{-1}) \subset E_1$

- 4) Soit λ une valeur propre de φ . Soit $f \in \mathcal{L}(E)$ un vecteur propre associé. Soit $x \in E_1$. Déterminer une relation entre f(x) et s(f(x)). Même question pour $x \in E_{-1}$.
- 5) Montrer que le spectre de φ est inclus dans $\{-1,0,1\}$.
- 6) Déterminer un polynôme $P \in \mathbb{R}[X]$ de coefficient dominant égal à 1 et de degré 3 tel que $P(\varphi) = 0$.

