

GLIEDERUNG

Datum	Vorlesung	Übungsblatt	Abgabe
19.04.2024	Einführung	HamsterLib	06.05.2024
26.04.2024	Netzwerkprogrammierung	Theorie	
03.05.2024	World Wide Web	HamsterRPC 1	20.05.2024
10.05.2024	Remote Procedure Calls	Theorie	
17.05.2024	Webservices	HamsterRPC 2	03.06.2024
24.05.2024	Fehlertolerante Systeme	Theorie	
31.05.2024	Transportsicherheit	HamsterREST	17.06.2024
07.06.2024	Architekturen für Verteilte Systeme	Theorie	
14.06.2024	Internet der Dinge	HamsterloT	01.07.2024
21.06.2024	Namen- und Verzeichnisdienste	Theorie	
28.06.2024	Authentifikation im Web	HamsterAuth	15.07.2024
05.07.2024	Infrastruktur für Verteilte Systeme	Theorie	
12.07.2024	Wrap-Up	HamsterCluster (Bonus)	16.08.2024

AGENDA UND LERNZIELE

Agenda

- Grundbegriffe IoT
- Netzwerke im IoT
- Protokolle f
 ür die Datenerfassung
- Datenauswertung

Lernziele

- Anwendungsgebiete von IoT erklären können
- Datenraten und Reichweiten von IoT-Netzwerken einordnen können
- MQTT und CoAP erklären können

INTERNET DER DINGE (IOT)

Einführung

- Bisher: Klassische Geschäftsanwendungen
 - Daten werden (meist) manuell erfasst, dann elektronisch verarbeitet
- Ziel: relevante Informationen aus der physischen Welt erfassen, auswerten, verfügbar machen
 - Welche Informationen?
 - Wie erfassen?
 - Wie verfügbar machen?
 - Wie auswerten?

UBIQUITOUS NETWORKS

- 1968 Richard ("Dick") Morley entwickelt Programmable Logic Controller (PLC) für Industriefertigungsanlagen
- 1982 An der Carnegie Mellon University wird ein Getränkeautomat mit dem Internet verbunden
- 1994 Gründung der OPC Foundation → verteilte Systeme für Automatisierungstechnik
- 1995 Veröffentlichung der ersten IPv6 Spezifikation
- 1996 Hewlett-Packard und Nokia veröffentlichen mit dem OmniGo 700LX und dem 9000 Communicator erste Smartphone-Vorläufer
- 1997 Kristofer S. J. Pister, Joe Kahn und Bernhard Boser präsentieren Forschungsantrag zu Smart Dust
- 1999 Kevin Ashton prägt den Begriff des Internet of Things (IoT)
- 2003 Walmart setzt RFID Chips für die Inventarisierung ein
- 2006 Veröffentlichung von OPC UA
- 2012 General Electric bringt den Begriff Industrial Internet of Things (IIoT) in Umlauf
- 2015 Börsengang von FitBit

INTERNET DER DINGE (IOT)

Anwendungsgebiete

INTERNET DER DINGE (IOT)

Anwendungsgebiete

Tagging

- Idee: Waren haben elektronische Identität
 - Erleichtert Logistik
 - Berührungslose Kassen
- E.g. Einzelhandel
- Billige Sensoren, die Identifikation ermöglichen
 - Beispiel: RFID

IoT-enabled

- Idee: Datenerfassung von Produkten im Feld
 - Erleichtert Wartung
 - Erleichtert Service
- E.g. Landwirtschaft
- Netzzugang
 - Firewalls
 - Konnektivität
 - Hardware oft nicht problematisch

Automatisierung

- Idee: Erfasse und verarbeite Daten aus der Umgebung
 - Temperatur
 - Sonneneinstrahlung
 - Kollabierter Senior
- E.g. Smart Home
- Netzwerke mit niedrigem
 Stromverbrauch
- EinfacheKonfiguration

Industrial IoT (IIoT)

- Idee: Erfasse & steuereProduktionsprozess
 - Verbessert Planung
 - Losgröße 1
- E.g. Industrie 4.0
- Verwaltung von Tausenden Sensoren
- Big Data

BEISPIEL: JOHN DEERE

Landmaschinen remote deaktiviert

Ukraine: Russen klauen Landtechnik für Millionen - Deere sperrt sie

© landpixel In der Ukraine haben russische Truppen die Landmaschinen eines John Deere Händlers gestohlen. Diese wurden daraufhin jedoch aus der Ferne deaktiviert. (SYMBOLBILD)

[https://www.agrarheute.com/technik/ukraine-russen-klauen-landtechnik-fuer-millionen-deere-sperrt-593173]

WIE ERFASSEN?

Netzwerke des IoT

SENSOREN

Überblick

- Sensor = technisches Bauteil, das physikalische oder chemische Eigenschaften qualitativ oder quantitativ messen kann
 - Kein Konsens über genaue Definition
 - Umwandlung des Messwerts in elektrisches Signal für Weiterverarbeitung

[Bilder: Wikipedia]

- Unterschiedliche Wirkprinzipe
 - Mechanisch: Manometer, Federwaage, Thermometer
 - Thermoelektrisch: Thermoelement
 - Resistiv: Dehnungsstreifen, Hitzdraht
 - Piezoelektrisch: Beschleunigungssensor
 - Kapazitiv: Drucksensor, Regensensor, Feuchtigkeitssensor
 - Induktiv: Kraftsensor, Neigungssensor
 - Optisch: CCD-Sensor, CMOS-Sensor
 - Akustisch: Füllstandssensor, Durchflussmesser
 - Magnetisch: Hall-Sensor
 - Virtuell: Software-Metriken

• ...

SENSOREN

Energieverbrauch

- Aktive Sensoren: Messprinzip erzeugt ausreichend Energie
 - Keine externe Stromversorgung notwendig
 - Thermoelektrischer Effekt
 - Piezoelektrischer Effekt
 - Photoelektrischer Effekt
 - Häufig ereignisbasiert
- Passive Sensoren: Sensor selbst verändert sich nicht
 - Externe Stromversorgung notwendig, um Wert auszulesen
 - Kapazität für Stromversorgung oft sehr begrenzt (Knopfzelle)
 - Häufig Sekundärelektronik, die Konnektivität liefert

NETZWERKE FÜR DAS IOT

Vergleich

[Chilamkurthy, Naga Srinivasarao, et al. "Low-Power Wide-Area Networks: A Broad Overview of its Different Aspects." IEEE Access (2022).]

NETZWERKE FÜR DAS INTERNET DER DINGE

Probleme

- Sensoren sind häufig sehr ressourcenlimitiert (insb. aktive Sensoren)
 - Energieverbrauch wichtig
 - Sicherheit in Anbetracht eingeschränkter Hardware
- Firewalls
 - Blockieren üblicherweise eingehende Verbindungen
 - Daher Sensor als Server eher ungebräuchlich
- Niedrige Datenmengen
 - Typischerweise nur Upload von Sensorwerten

NETZWERKE FÜR DAS INTERNET DER DINGE ZigBee

- Basiert auf IEEE 802.15.4
- Verbreitet in Heimautomatisierung, Sensornetzwerken
- 2,4 Ghz Frequenzband oder Sub-1Ghz-Band
 - Kollisionen bei gleichzeitiger Verwendung WLAN
- Vollvermaschtes Netzwerk

Reichweite	Bis 100m
Datenrate	Bis 250 kbit/s
Energieverbrauch	360nJ/Bit
Frequenzband	2,4Ghz oder Sub-1Ghz
Sicherheit	128bit AES

NETZWERKE FÜR DAS INTERNET DER DINGE

Bluetooth LE

- Weit verbreiteter Funkstandard
 - Standard in allen PCs
 - Häufige Verwendung zur drahtlosen Verbindung von Peripheriegeräten
 - Einfache Programmierung durch existierende Betriebssystem-APIs

	I		.4		4:1	
• ()	na	rak	αе	rıs	TIŁ	ken

- Lesen
- Schreiben
- Notifications
- Positionsortung (bis zu 3m genau)
 - Genutzt bspw. in der Corona-Warnapp

Reichweite	Bis 50m (innen 10m)
Datenrate	Bis 2Mbit/s
Energieverbrauch	~75nJ/bit Teils 158pJ/bit
Frequenzband	2,4Ghz
Sicherheit	128bit AES

J. Rosenthal and M. S. Reynolds, "A 158 pJ/bit 1.0 Mbps Bluetooth Low Energy (BLE) Compatible Backscatter Communication System for Wireless Sensing," 2019 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), Orlando, FL, USA, 2019, pp. 1-3, doi: 10.1109/WISNET.2019.8711794.

NETZWERKE FÜR DAS INTERNET DER DINGE

IEEE 802.11ah

- WLAN-Standard f
 ür Niedrigenergie
 - Wi-Fi HaLow, 2016
 - Frequenzband um 900 Mhz anstatt der sonst üblichen 2,4 Ghz
 - Geräte können oft auch andere 802.11 Standards in 2,4Ghz → Kompatibilität
 - Smart Home und Maschine-zu-Maschine
- Unterstützt TCP/IP

Reichweite	Bis 1km
Datenrate	150kbit/s bis 347Mbit/s
Energieverbrauch	200mW-1000mW
Frequenzband	900 Mhz
Sicherheit	WPA3

[Bild: WiFi Alliance HaLow White-paper]

NETZWERKE FÜR DAS INTERNET DER DINGE Lora WAN

- Proprietär Technologie
 - LoRa-Alliance, 2015
- Maximaler Payload länderabhängig
 - EU: 51 Byte
 - USA: 11 Byte
- LoRa-Netz betrieben von Telekommunikationsgesellschaften
 - E.g. Swisscom
 - Pakete werden an zentralen Server geschickt
 - Können da abgeholt werden (gegen Geld)

Reichweite	2km (urban) bis 15km
Datenrate	0,3-50kbit/s
Energieverbrauch	ähnlich HaLow
Frequenzband	868Mhz
Sicherheit	128bit AES

NETZWERKE FÜR DAS INTERNET DER DINGE

NB-IoT (LTE-Cat-NB1)

- Funktechnologie basierend auf LTE
 - 3GPP, 2016
- Fokus auf niedrigen Energieverbrauch
 - In vielen Anwendungen jahrelanger Betrieb mit Knopfzelle
- Hohe Netzabdeckung
 - Deutlich höher als LTE da schwächeres Signal ausreichend (20dB Unterschied)

Reichweite	2km (urban) bis 15km
Datenrate	0,3-4000kbit/s Typisch: 200kbit/s
Energieverbrauch	Etwas höher als LoRa, HaLow
Frequenzband	868Mhz
Sicherheit	3GPP Security

WIE VERFÜGBAR MACHEN?

Topologien, MQTT, CoAP, OPC UA

GATEWAYS

- Problem: Sensoren normalerweise limitiert
 - Limitierte Energieversorgung
 - Limitierte Rechenleistung
 - Oft keine Unterstützung von TCP/IP
 - Freier Internetzugang limitiert (Firewall)
- Daher: Verwendung von Gateways
 - Kommerziell verfügbar (LoRa, NB-IoT)
 - Anwendungsspezifisch

NETZWERKTOPOLOGIEN

Stern

Beispiele: LoRa, NB-IoT

Vermascht

Beispiele: HaLow, ZigBee

PROTOKOLLE ZUR DATENÜBERTRAGUNG

- Probleme
 - Firewalls, insb. bei Kommandos an IoT-Geräte
 - Staukontrolle in TCP (insb. Industrie 4.0) → Protokolle häufig auf UDP basierend
 - Over-the-Air-Updates
- Lösungen
 - Industriestandards
 - Industrial IoT / Industrie 4.0: OPC UA, ThingWorx Connection
 - Offene Standards
 - Publish/Subscribe: MQTT, AMQP, DDS, NDN
 - Client/Server: CoAP, QUIC

MQTT

Ursprünglich Message Queue Telemetry Transport

- Entstanden 1999, seit 2013 OASIS Standard
 - Aktuell MQTT 5.0 (2019)
- Spezifiziert einfaches Publish-Subscribe Verfahren für untypisierte Nachrichten in Topics
 - Seit MQTT 5.0: Content-type als MIME, Header
- Broker ist zentraler Vermittler
- Standardmäßig über TCP (Port 1863)
 - Optional mit TLS (Port 8883)
 - Optional über UDP oder Bluetooth (MQTT-SN)
- Authentifizierung mit Passwort oder Zertifikat

MQTT

Service-Qualitäten

- MQTT definiert mehrere Arten von Service-Qualitäten (QoS)
 - QoS-Level 0: "at-most-once"
 - Paket wird exakt einmal gesendet
 - QoS-Level 1: "at-least-once"
 - Nach Absenden Warten auf Bestätigung
 - Falls Bestätigung ausbleibt wird Paket erneut gesendet mit DUP-Flag
 - QoS-Level 2: "exactly-once"
 - Nach Absenden Warten auf Bestätigung
 - · Bestätigung der Bestätigung
- Client kann bei Subscription anderen QoS-Level angeben

WAS PASSIERT, WENN DER SUBSCRIBER EINEN HÖHEREN QOS-LEVEL ALS DER PUBLISHER VERWENDET?

MQTT Last Will

- Problem: Andere Clients können Verbindungsabbruch nicht erkennen
- Lösung: Clients können schon bei der Verbindung einen "letzten Willen" angeben
 - Broker publiziert letzten Willen bei Verbindungsabbruch
- Vorteil: Clients sehen Verbindungsabbruch in Subscription und können reagieren

MQTT

Beispiele

- Cloud-Broker
 - AWS IoT
 - Azure IoT
 - Google Cloud IoT Core
 - HiveMQ Cloud
- On-Premise Broker
 - HiveMQ
 - Mosquitto
 - RabbitMQ
 - ...
- OPC UA PubSub

CONSTRAINED APPLICATION PROTOCOL (COAP)

Hochschule RheinMain

- Überblick
- IETF-Standard, 2014
- "REST für eingebettete Systeme"
 - Idee: Übernehme Grundgedanken von HTTP
 - Binäres Nachrichtenformat
 - UDP als Transportschicht
 - Header (Optionen), binär codiert
 - Eigenes URI-Format
 - Sicherheit optional über DTLS (=,,TLS für UDP"), shared key oder X.509 Zertifikate
- Request
 - Methoden wie HTTP (GET, POST, PUT, PATCH u.a.)
 - Token, ähnlich Stream ID in HTTP/2.0 → Parallelitätstransparenz
- Response
 - Statuscodes wie HTTP (200 OK, 404 Not Found, etc.), aber fixiert

Später auch mit TCP wegen besserer Unterstützung in Routern Außerdem SMS

CONSTRAINED APPLICATION PROTOCOL (COAP)

Nachrichtenaufbau

1								2	3	4
0	1	2	3	4	5	6	7	07	07	07
Vers	sion	Тур)	Toke	n-Län	ge		Methode/Response	Message-ID	
Tok	Token (optional, Länge durch Header-Feld definiert), Verwendung um Requests und Responses zuzuordnen									
Opt	Optionen (optional, ähnlich wie Header in HTTP aber Header binär kodiert)									
1	1	1	1	1	1	1	1	Payload (optional, Länge impliziert durch Länge des UDP-Pakets)		

- Leichtgewichtige Umsetzung von verlässlicher Kommunikation durch 2bit Typ-Feld
 - CON: confirmable, Server muss Empfang bestätigen
 - NON: Non-confirmable, keine Bestätigung notwendig
 - ACK: Acknowledgement, Empfangsbestätigung
 - RST: Verbindung beenden
- Methoden und Responses aufgeteilt in Klasse (3 bit) und Code (5 bit), Klasse 0 reserviert für Methoden

CONSTRAINED APPLICATION PROTOCOL (COAP)

Ablaufbeispiel

CONSTRAINED APPLICATION PROTOCOL (COAP) Discovery

- Problem: Web-Services haben kaum standardisierte Selbstbeschreibungen
 - WSDL, OpenAPI existieren, aber Sie können sich nicht darauf verlassen
- Lösung: Standardisierter Endpunkt für Selbstbeschreibung
 - /.well-known/core

WIE AUSWERTEN?

Monitoring, Aggregierung, Zeitreihen-Auswertungen

VERARBEITUNG DER SENSORDATEN

- Verarbeitungskapazitäten an den Endgeräten oft eingeschränkt
 - Limitierte Hardware
 - Limitiertes Wissen (nur ein Sensor)
- Analyse der Sensorwerte daher meist zentralisiert
 - Aber: muss vom Sensor erreichbar sein (Firewall!)
 - → Häufige Verwendung von Cloud-Diensten

MONITORING

- Ziel: Überwachung eines Sensorwertes auf bestimmten Wertebereich
- Reaktion, falls Wertebereich verlassen wird
 - Emails
 - Push-Notifications
 - Web-Hooks
 - ...

[Bild: Bosch EasyControl]

- Reaktion, falls Sensor ausfällt
 - Abhängig vom gewählten Transport zwischen Sensor und Verarbeitung
- Beispiele
 - Einhaltung von Temperaturen
 - Einhaltung von Füllständen
 - ...

AGGREGATION

- Ziel: Darstellung von Sensorwerten über längeren Zeitraum
 - Zeitpunkt einer Messung wichtig, erzeugt Kontext
- <Durchschnitt/Summe> der letzten <Tage/Monate/Jahre>
 - Pro Sensor
 - Gruppiert, bspw. nach Kunde
- Beispiele
 - Reporting

ZEITREIHEN-AUSWERTUNG

- Ziel: Betrachte Sensorwerte über längeren Zeitraum
- Beobachtung: Sensorwerte sind nicht stochastisch unabhängig
 - von Werten desselben Sensors zu früherem Zeitpunkt
- Algorithmische Lösungen um Abhängigkeiten zu charakterisieren
 - Maschine Learning, Autokorrelationen
 - Spezifische Unterstützung für Zeitreihen in modernen Datenbanken
- Beispiele
 - Trends ableiten
 - Sensorwerte vorhersagen

DATA MINING

Auch: Knowledge Discovery

- Ziel: Erkenne Zusammenhänge zwischen verschiedenen Sensorwerten
- Beobachtung: Sensorwerte sind nicht stochastisch unabhängig
 - von Werten anderer Sensoren in der Umgebung zu gleichem Zeitpunkt
 - von Werten anderer Sensoren in der Umgebung zu ähnlichem Zeitpunkt
- Algorithmische Lösungen
 - Clustering, e.g. k-Means, projektives Clustering
 - Frequent Itemset Mining / Association Mining
 - Outlier Mining
- Beispiele
 - Erkennung von Ausnahmezuständen
 - Erkennung von Zusammenhängen
 - "Als die Klimaanlage in der Fabrik eingeschaltet war, ging die Fehlerrate nach oben"

BIG DATA

- Beobachtung: Bei vielen Sensoren, deren Werte man häufig misst, kommen viele Daten zusammen
 - Eventuell zu viele, um sie auf einer Maschine verarbeiten zu können
- Idee: Verteilte Datenhaltung und -aggregation
 - Map-Reduce, e.g. Apache Hadoop
 - NoSQL, e.g. MongoDB
 - Cloud Warehouse Lösungen, e.g. Amazon RedShift, Google BigQuery
- Kritik ("Big Data is dead")
 - Mittlerweile günstige Cloud-Infrastruktur mit >200GB RAM pro Server
 - Wenige Unternehmen haben Datenbanken >100GB

IOT PLATTFORMEN

- IoT Funktionalitäten heutzutage häufig in Plattformen gebündelt
 - Konnektivität zu Sensoren
 - Organisation der Devices
 - Speicherung von Sensordaten
 - Analyse
- Beispielprodukte
 - Microsoft Azure IoT
 - AWS IoT Core
 - PTC ThingWorx
 - Ayla Agile IoT Platform
 - (Google IoT eingestellt)
- Versuch der Standardisier

ZUSAMMENFASSUNG

Informationen

- Hardware-Sensoren, die Werte aus der physischen Welt messen
 - Temperatur, Druck, Feuchtigkeit, ...
- Software-Sensoren, die Zugriff auf Steuerungen aufzeichnen

...Erfassen

- Spezielle Netzwerke, um Anforderungen gerecht zu werden
- Hohe Reichweite, niedriger Energieverbrauch, dafür niedrigere Bandbreite
- E.g. ZigBee, Bluetooth LE, WiFi HaLow, LoRa WAN, NB-IoT

..Übertragen

- Publish-Subscribe Protokolle: e.g., MQTT
- Client/Server Protokolle: e.g., CoAP
- Weitere Protokolle um Zugriff auf Massen von Sensoren zu vereinfachen, e.g. OPC UA

..Analysieren

- Monitoring, Aggregation, Zeitreihen, Mining
- Big Data

MÖGLICHE PRÜFUNGSFRAGEN

- Was ist der Grundgedanke hinter IoT?
- Nennen Sie Anwendungsgebiete für das IoT!
- Was ist ein Sensor?
- Warum ist Energieverbrauch bei Netzwerkstandards im IoT wichtig?
- Was sind wesentliche Leistungsindikatoren für Netzwerkstandards im IoT?
- Nennen Sie Beispiele für Netzwerkstandards, die im IoT oft verwendet werden!
- Wozu braucht man Gateways?
- Erläutern Sie MQTT!
- Was ist der "letzte Wille" eines Clients in MQTT und wofür wird er verwendet?