Διερεύνηση Θεμάτων - Συμπληρωματικές Προτάσεις Μαθηματικών Προσανατολισμού Γ΄ λυκείου

Μ. Ελευθεριάδης 1 Κ. Λόλας 2 Α. Ευαγγελόπουλος 3

132ο ΓΕΛ ΘΕΣ/ΝΙΚΗΣ (ΠΕ03)

²10ο ΓΕΛ ΘΕΣ/ΝΙΚΗΣ (ΠΕ03)

³Σχ. Σύμβουλος Μαθηματικών

Θεσσαλονίκη, Απρίλιος 2018

• Δεν απαιτούνται

- Δεν απαιτούνται
- Εμβαθύνουν στη θεωρία

- Δεν απαιτούνται
- Εμβαθύνουν στη θεωρία
- Βοηθούν στη κατανόηση

- Δεν απαιτούνται
- Εμβαθύνουν στη θεωρία
- Βοηθούν στη κατανόηση
- Μας δίνεται η ευκαιρία να αποδείξουμε πόσο έξυπνοι είμαστε...

Πρόταση

Aν η συνάρτηση $f:\Delta\to R$ είναι γνησίως αύξουσα στο διάστημα Δ , τότε η εξίσωση $f(x)=f^{-1}(x)$ είναι ισοδύναμη με την εξίσωση $f(x)=x, x\in \Delta.$

Πρόταση

Αν f είναι συνεχής και «1-1» στο διάστημα Δ , τότε η f είναι γνησίως μονότονη στο Δ .

Πρόταση

Δεν υπάρχει το όριο της $\varphi\left(x\right)=\eta\mu x$ στο $+\infty$.

Πρόταση

Δεν υπάρχει το όριο της συνάρτησης $\phi(x) = \eta \mu x$ στο $\pm \infty$.

Πρόταση

Αν το
$$\lim_{x \to x_0} f(x) = 0$$
 και $m \le g(x) \le M$ κοντά στο x0, τότε
$$\lim_{x \to x_0} \left[f(x)g(x) \right] = 0$$

Πρόταση

An h είναι περιττή συνάρτηση $f:R\to R$ και ισχύει $\lim_{x\to 0^+}f(x)=+\infty$, τότε δεν υπάρχει το όριο της f στο 0.

Πρόταση

Αν η f είναι (γνησίως) μονότονη στο Δ και υπάρχει το $\lim_{x\to x_0} f(x)$ στο

 \mathbb{R} , για κάθε $x_0 \in \Delta$, τότε η f είναι συνεχής στο Δ .

Πρόταση

Αν η f είναι συνεχής στο (α, β), $\lim_{x \to \alpha} f(x) = -\infty$ και

$$\lim_{x o eta} f(x) = +\infty,$$
 tote $f\left((lpha,eta)
ight) = \mathbb{R}$

Πρόταση

Αν φ είναι συνεχής και μη σταθερή στο $[\alpha, \beta]$ και $\phi(\alpha) = \phi(\beta)$, τότε η φ παρουσιάζει ακρότατο στο (α, β) .

Πρόταση

Αν μία συνάρτηση f είναι συνεχής στο διάστημα (α, β) και (1-1), τότε η αντίστροφη της f είναι συνεχής.

Πρόταση

Aν f είναι συνάρτηση «1-1», παραγωγίσιμη στο $x_0, x_0 \in \Delta$ -διάστημα και $f'(x_0) \neq 0$, τότε η f^{-1} είναι παραγωγίσιμη στο $y_0 = f(x_0)$.

Πρόταση

Αν η συνάρτηση f είναι παραγωγίσιμη σε περιοχή του x_0 , στο x_0 και υπάρχει το $\lim_{x\to x_0}f'(x)$, τότε η $f^{'}$ είναι συνεχής στο x_0

Πρόταση

Αν η fείναι συνεχής στο $x_0, f(x_0) \neq 0$ και η f^2 είναι παραγωγίσιμη στο x_0 τότε η f είναι παραγωγίσιμη στο x_0 .

Πρόταση

Αν η συνάρτηση f είναι παραγωγίσιμη στο $[-\alpha,\alpha]$, τότε ισχύουν οι προτάσεις: Α. η f είναι άρτια στο $[-\alpha,\alpha]\Leftrightarrow η$ f είναι περιττή στο $[-\alpha,\alpha]\Leftrightarrow η$ f είναι άρτια στο $[-\alpha,\alpha]\Leftrightarrow η$ f είναι άρτια στο $[-\alpha,\alpha]$

Πρόταση

Αν η συνάρτηση f είναι παραγωγίσιμη στο διάστημα Δ και εξίσωση f (x)=0 έχει (v) διαφορετικές ρίζες στο Δ , τότε η εξίσωση f'(x)=0 έχει τουλάχιστον (v-1) ρίζες στο Δ .

Πρόταση

Aν η συνάρτηση $f: \Delta \to R$ (Δ: διάστημα) είναι παραγωγίσιμη και ισχύει $f'(x) \neq 0$ για κάθε $x \in \Delta$, τότε η f είναι συνάρτηση «1-1».

Πρόταση

Aν η συνάρτηση f είναι παραγωγίσιμη στο [α, β] και $f^{'}(\alpha) < 0 < f^{'}(\beta)$, τότε υπάρχει $\xi \in (\alpha, \beta)$ με $f^{'}(\xi) = 0$.

Πρόταση

Αν f συνεχής στο $[\alpha, \beta]$ και $f'(x) \neq 0$ για κάθε $x \in (\alpha, \beta)$, τότε η f παρουσιάζει ακρότατα μόνο στα α και β .

Πρόταση

Αν η f είναι συνεχής στο Δ και, τότε το $x_0 \in \Delta$ δεν μπορεί να είναι συγχρόνως θέση τοπικού ακρότατου και θέση σημείου καμπής.

Πρόταση

Αν η συνάρτηση f είναι κυρτή και έχει ασύμπτωτη την ευθεία ε: y = $\alpha x+\beta$, τότε η C_f βρίσκεται πάνω από την ε.

Πρόταση

Εστω η f είναι συνεχής στο [α, β] , παραγωγίσιμη στο (α, β) A. Αν η f είναι γνησίως αύξουσα στο (α, β), τότε $f\left(\frac{\alpha+\beta}{2}\right)<\frac{f(\alpha)+f(\beta)}{2}$ B. Αν η f είναι γνησίως φθίνουσα στο (α, β), τότε $f\left(\frac{\alpha+\beta}{2}\right)\frac{f(\alpha)+f(\beta)}{2}$

Πρόταση

Έστω η συνάρτηση $f:[-\alpha,\alpha]\to R$ είναι συνεχής και A. αν η f είναι άρτια, τότε $\int_{-\alpha}^{\alpha}f(x)dx=2\int_{0}^{\alpha}f(x)dx+B$. αν η f είναι περιττή, τότε $\int_{-\alpha}^{\alpha}f(x)dx=0$

Πρόταση

Aν η συνάρτηση f συνεχής στο $[\alpha,\beta]$, $f(x)\geq 0$ για κάθε $x\in [\alpha,\beta]$ και $\int_{\alpha}^{\beta}f(x)dx=0$, τότε είναι $f(\mathbf{x})=0$ για κάθε $x\in [\alpha,\beta]$.

Πρόταση

Aν η συνάρτηση f : $\Delta \to R$, όπου Δ διάστημα, είναι συνεχής στο Δ και ισχύει $f(x) \neq 0$ για κάθε $x \in \Delta$, $\int_{\alpha}^{\beta} f(x) dx = 0$ με $\alpha, \beta \in \Delta$, τότε είναι $\alpha = \beta$.

Πρόταση

Aν η συνάρτηση $f:\Delta\to R$, όπου Δ διάστημα, είναι συνεχής στο Δ και ισχύει $\alpha,\beta\in\Delta$, τότε $\int_{\alpha}^{\beta}f(x)dx=\int_{\alpha}^{\beta}f(\alpha+\beta-x)dx.$

Σας Ευχαριστούμε...