Lecture 3 - Statistics Review and Item Statistics

Tony Tan *University of Oslo*

Friday, 21 October 2022

Today's session

- Review of concepts: expectation, variance, covariance and correlation
- Illustrate statistical principles
- Define some useful notation
- Discuss different types of statistics and their interpretation for various types of item and test data

Table of Contents

- 1 Statistics review
- 2 Item statistics
- 3 Test score statistics
- 4 Exercises

Sums, products, and sets

Let a_1, a_2, \ldots, a_K be a set of constants. The sum of these constants is written

$$\sum_{k=1}^{K} a_k = a_1 + a_2 + \cdots + a_K.$$

The product of these constants is written

$$\prod_{k=1}^K a_k = a_1 \times a_2 \times \cdots \times a_K.$$

In this notation, k is an index variable which takes integer values from 1 to the number K.

A set is denoted as $\mathcal{A} = \{1, 2, \dots, K\}$. We say that "3 belongs to set \mathcal{A} ", and write $3 \in \mathcal{A}$.

Expected value

Let X be a discrete random variable (R.V.) taking k different values with probabilities p_1, \ldots, p_k . The expected value of X is

$$\mathbb{E}(X) = \sum_{i=1}^k x_i \, p_i.$$

Let Y be a continuous R.V. with support (a, b) and density $f(\cdot)$. The expected value of Y is

$$\mathbb{E}(Y) = \int_a^b y f(y) \, \mathrm{d}y.$$

The expected value is a parameter often denoted by μ . We can interpret it as the long-run average value of the random variable under repeated sampling. Expected values can be infinite or undefined.

Expected value: Example

Let X be a discrete R.V. which can take values $x_1=0$ or $x_2=1$ with corresponding probabilities $p_1=0.4$ and $p_2=0.6$. The expected value of X is

$$\mathbb{E}(X) = \sum_{i=1}^{2} x_i p_i$$
$$= 0 \times 0.4 + 1 \times 0.6$$
$$= 0.6.$$

Linearity of the expected value

For a number of R.V.s X_1, \ldots, X_k , the expectation of their sum is the sum of their expectations

$$\mathbb{E}(X_1 + \cdots + X_k) = \mathbb{E}(X_1) + \cdots + \mathbb{E}(X_k),$$

and for constants a_1, \ldots, a_k

$$\mathbb{E}\left(a_1X_1+\cdots+a_kX_k\right)=a_1\mathbb{E}\left(X_1\right)+\cdots+a_k\mathbb{E}\left(X_k\right).$$

That it, expectation is transparent to linear operations.

Linearity of the expected value: Example

Let X_1 and X_2 be two random variables, where $\mathbb{E}(X_1)=0.6$ and $\mathbb{E}(X_2)=0.4$. The expected value of their sum

$$\mathbb{E}(X_1 + X_2) = \mathbb{E}(X_1) + \mathbb{E}(X_2)$$
= 0.6 + 0.4
= 1.

Consider constants $a_1 = 1$ and $a_2 = 2$. The expected value of the linear combination

$$\mathbb{E}(a_1X_1 + a_2X_2) = a_1\mathbb{E}(X_1) + a_2\mathbb{E}(X_2)$$

= 1 \times 0.6 + 2 \times 0.4
= 1.4.

The *k*-th moment

Let X be a discrete R.V. that can take I different values with probabilities p_1, \ldots, p_I . The k-th moment of X is

$$\mathbb{E}\left(X^{k}\right) = \sum_{i=1}^{l} x_{i}^{k} p_{i}.$$

Let Y be a continuous R.V. with support (a, b) and density $f(\cdot)$. The k-th moment of Y is

$$\mathbb{E}\left(Y^{k}\right) = \int_{a}^{b} y^{k} f(y) \, \mathrm{d}y.$$

The k-th moment: Example

Let X be a discrete R.V. that can take values

$$x_1 = 0$$
, $x_2 = 1$, or $x_3 = 2$

with corresponding probabilities

$$p_1 = 0.2$$
, $p_2 = 0.3$, and $p_3 = 0.5$.

The 4th moment of X is

$$\mathbb{E}(X^4) = 0^4 \times 0.2 + 1^4 \times 0.3 + 2^4 \times 0.5$$
$$= 0 + 0.3 + 8$$
$$= 8.3.$$

The sample mean

Let x_1, \ldots, x_n denote the sample. The sample mean \overline{x} is computed as

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

The sample mean is often used as an estimator of the parameter μ .

Variance and standard deviation

Variances measure the dispersion of the data. For a R.V. X with expected value μ ,

$$\operatorname{Var}(X) = \mathbb{E}\left[(X - \mu)^2 \right] = \mathbb{E}\left(X^2 \right) - \mu^2.$$

The variance is a parameter often denoted by σ^2 . The standard deviation σ is the positive square root of the variance.

Properties of variance

Let X and Y be two R.V.s. The variances of their sum and difference are

$$\operatorname{Var}(X \pm Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) \pm 2 \operatorname{Cov}(X, Y).$$

For constants a and b,

$$\operatorname{Var}(aX \pm bY) = a^{2}\operatorname{Var}(X) + b^{2}\operatorname{Var}(Y) \pm 2 ab \operatorname{Cov}(X, Y).$$

Sample variance

For a sample x_1, \ldots, x_n , we can estimate their sample variance s^2

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2.$$

Dividing by n-1 is required in order to obtain the unbiased sample variance.

Example: We observe

The sample mean is

$$(5+6+9+3+20)/5=8.6.$$

The unbiased sample variance is

$$[(5-8.6)^2 + (6-8.6)^2 + (9-8.6)^2 + (3-8.6)^2 + (20-8.6)^2]/(5-1) = 45.3.$$

Covariance

Consider two R.V.s X and Y. The covariance is a measure of the degree to which X and Y are interrelated

$$Cov(X, Y) = \mathbb{E}\left\{ \left[X - \mathbb{E}(X) \right] \left[Y - \mathbb{E}(Y) \right] \right\}.$$

Covariance is a parameter that can be estimated by the sample covariance. For matching-pair samples $(\mathbf{x}, \mathbf{y}) = (x_i, y_i)$, their sample covariance is

$$\widehat{\mathrm{Cov}}(\mathbf{x}, \mathbf{y}) = \frac{1}{n-1} \sum_{i=1}^{n} [x_i - \overline{x}] [y_i - \overline{y}].$$

Properties of covariance

From the definition of covariance, we have

$$Cov(X, Y) = \mathbb{E} [(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))]$$

$$= \mathbb{E} [XY - X\mathbb{E}(Y) - \mathbb{E}(X)Y + \mathbb{E}(X)\mathbb{E}(Y)]$$

$$= \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) - \mathbb{E}(X)\mathbb{E}(Y) + \mathbb{E}(X)\mathbb{E}(Y)$$

$$= \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

Covariance and independence

Since

$$Cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y),$$

if X and Y are independent,

$$\operatorname{Cov}(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = 0.$$

However, Cov(X, Y) = 0 does not necessarily imply that X and Y are independent .

Correlation

- The magnitude of the covariance is difficult to interpret on its own because its value depends on the scale of the R.V.s X and Y.
- A standardised measure, the correlation, can be used as a measure of the magnitude of the linear relationship between two R.V.s.

The Pearson correlation is

$$\rho_{X,Y} = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y},$$

where σ_X and σ_Y are the standard deviations of X and Y respectively.

Note that $-1 \leqslant \rho_{X,Y} \leqslant 1$.

Pearson correlation measures a linear relationship

Pearson correlation measures a linear relationship

```
cor(y, z)

## [1] 0.8218025

cor(u, v)

## [1] 0.02514863
```

Statistics

- Statistics can be viewed as the methods by which we draw conclusions from incomplete information
- We design the data collection by considering statistical principles
- We utilize statistical methods when analysing the data
- We use statistical inference to accept or reject hypotheses or add knowledge to a body of scientific results
- All empirical research utilises statistical methods and principles

Parameters, estimators, and estimates

- The "truth": The parameter (e.g. μ)
- How we learn about the truth: The estimator (e.g. $\widehat{\mu}$)
- What we learn from the truth: The estimate (e.g. $\widehat{\mu}_{obs}$)

Standard deviation and standard error

Note the difference in these two concepts

- Standard deviation: The square root of the variance of a random variable $\sqrt{\mathrm{Var}\left(Y\right)}$ or of a population parameter $\sqrt{\mathrm{Var}\left(\theta\right)}$
- Standard error: The square root of the variance of an estimator $\sqrt{\operatorname{Var}\left(\widehat{\theta}\right)}$

Confidence intervals

- A 95% confidence interval (a, b) for a parameter θ means that the parameter θ is covered by such an interval 95% of the time if the sampling would be repeated infinitely.
- The confidence interval does not mean that the parameter has probability 0.95 of being in the interval. (cf. credible interval)
- In practice, we estimate a confidence interval and that interval either covers or does not cover the true parameter.

Exercise

- We observed the heights of 50 randomly selected UiO students.
- The sample mean was 173.4 cm and the sample standard deviation 15.5 cm.
- The standard error of the mean can be calculated by $se(\overline{x}) = \sqrt{s^2/n}$, where s^2 is the sample variance and n is the sample size.

Estimate a 95% confidence interval for the population mean height and interpret the results.

Solution

- We observe $\overline{x}=173.4$ cm and $\operatorname{se}(\overline{x})=15.5$ cm/ $\sqrt{50}\approx 2.2$ cm.
- We note that the statistic $(\overline{x} \mu)/\text{se}(\overline{x})$ follows the *t*-distribution with 49 degree of freedom.
- We calculate $t(49)_{(0.025)} \approx -2.0$ and construct the confidence interval for μ as

$$(\overline{x} - 2.0 \times 2.2, \ \overline{x} + 2.0 \times 2.2) = (169.0, 177.8).$$

That is, if we were to repeat the sampling infinitely many times, the true value μ would be covered by such an estimated interval 95% of the time.

Notation

- μ expected value
- $\mathbb{E}(X)$ expected value of X
- σ^2 variance
- Var(X) variance of X
- $lue{}$ Cov (X, Y) covariance of X and Y
- ho correlation

Bias, variance and mean squared error of an estimator

For an estimator $\widehat{\theta}$ of a parameter θ , the bias is defined as

$$\mathsf{Bias}\left(\widehat{\theta}\right) = \mathbb{E}\left(\widehat{\theta} - \theta\right).$$

If Bias $(\widehat{\theta}) = 0$, we say that the estimator $\widehat{\theta}$ is an unbiased estimator of θ .

The estimator also has a variance

$$\operatorname{Var}\left(\widehat{\theta}\right) = \mathbb{E}\left\{\left[\widehat{\theta} - \mathbb{E}\left(\widehat{\theta}\right)\right]^{2}\right\}.$$

We often consider the mean squared error (MSE) of an estimator

$$\mathsf{MSE}\left(\widehat{\theta}\right) = \mathbb{E}\left[\left(\widehat{\theta} - \theta\right)^2\right].$$

It can be shown that
$$\mathsf{MSE}\left(\widehat{\theta}\right) = \mathsf{Var}\left(\widehat{\theta}\right) + \left[\mathsf{Bias}\left(\widehat{\theta}\right)\right]_{\mathbb{R}}^2$$
.

Distributions

- $X \sim \mathcal{N}(\mu, \sigma^2)$ X follows a normal distribution with mean μ and variance σ^2
- $X \sim t(\nu)$ X follows a t-distribution with ν degrees of freedom
- $X \sim \chi^2(\nu)$ X follows a χ^2 -distribution with ν degrees of freedom

R.V.s and their observations

- The textbook defines upper-case letters as random variables and lower-case letters as observations from a sample.
- X_j denotes the j-th item score on a test and is a random variable
- \mathbf{x}_{ji} denotes the score obtained on item j for an individual i and is an observation rather than a random variable

Mean vectors and covariance matrices

We can have vector-value random variables. We can consider the joint distribution of two variables X, Y.

$$\boldsymbol{\mu} = egin{bmatrix} \mathbb{E}\left(X
ight) \\ \mathbb{E}\left(Y
ight) \end{bmatrix}, \; \boldsymbol{\Sigma} = egin{bmatrix} \operatorname{Var}\left(X
ight) & \operatorname{Cov}\left(X,Y
ight) \\ \operatorname{Cov}\left(Y,X
ight) & \operatorname{Var}\left(Y
ight) \end{bmatrix}.$$

Table of Contents

- 1 Statistics review
- 2 Item statistics
- 3 Test score statistics
- 4 Exercises

Expected value of binary scores

- If the item score X_i can take values 0 or 1, it is a binary item
- The sample mean $\frac{1}{n}\sum_{i=1}^{n}x_{ji}$ can be used to compute an estimate of $\mu_j = \mathbb{E}(X_j)$
- Since this is a binary item, the parameter $\mu_j = \mathbb{E}(X_j)$ can be interpreted as defining the probability π_j of a randomly selected individual answering the item correctly

Variance of binary scores

For a random variable X_i defined such that

$$\mathbb{P}(X_i = 1) = \pi_i$$
, and $\mathbb{P}(X_i = 0) = 1 - \pi_i$,

we have

$$\mathbb{E}\left(X_{j}\right)=\pi_{j},$$

and

$$\mathbb{E}(X_j^2) = 0^2 \times (1 - \pi_j) + 1^2 \times \pi_j = \pi_j.$$

Since $\operatorname{Var}(X_j) = \mathbb{E}(X_j^2) - [\mathbb{E}(X_j)]^2$,

$$\operatorname{Var}(X_j) = \pi_j - \pi_j^2 = \pi_j(1 - \pi_j).$$

To estimate the variance of a binary variable we can simply calculate the sample mean \hat{p}_i and obtain

$$\widehat{\operatorname{Var}}(X_j) = \widehat{p}_j(1-\widehat{p}_j).$$

Note that this is a biased estimator of the variance, since it is divided by n instead of n-1.

Covariances of binary scores

The sample covariance between two sets of observations $\{x_i\}$ and $\{y_i\}$ is

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}).$$

For binary variables X_i and X_k , this expression reduces to

$$s_{jk}=p_{jk}-p_{j}p_{k},$$

where p_{jk} denotes the relative frequency of the event $\{X_j=1,X_k=1\}$, which can be estimated from the sample.

Exercise: Variance and covariance of binary scores

We observe the following frequencies from a sample $\{x_i\}$, $\{y_i\}$:

	$x_i = 0$	$x_i = 1$
$y_i = 0$	4	2
$y_i = 1$	1	3

What is s_x^2 , s_y^2 and s_{xy} ?

Solution: Variance and covariance of binary scores

We have

$$p_{x} = 0.5$$
,

$$p_{\rm V} = 0.4$$

and

$$p_{xy} = 0.3.$$

We thus obtain

$$s_x^2 = 0.5 \times (1 - 0.5) = 0.25,$$

$$s_y^2 = 0.4 \times (1 - 0.4) = 0.24,$$

and

$$s_{xy} = 0.3 - 0.5 \times 0.4 = 0.1.$$

Covariance matrix

We can consider a number of item scores and calculate all their covariances. If we organise these results into a matrix, we obtain a covariance matrix.

With a two-item test

$$\mathbf{\Sigma}_{X,Y} = \begin{bmatrix} 0.25 & 0.10 \\ 0.10 & 0.24 \end{bmatrix},$$

the diagonal elements of the matrix are the variances of X and Y, and the off diagonals contain the covariances.

The matrix $\Sigma_{X,Y}$ is symmetric since the upper- and lower-diagonals contain identical entries.

Table of Contents

- 1 Statistics review
- 2 Item statistics
- 3 Test score statistics
- 4 Exercises

Test scores

- A test score is typically the <u>summation</u> or a <u>transformation</u> of the individual item scores
- We may be interested in a single test score or multiple subscores
- We are interested in the same statistics as in item statistics: expected values, variances, covariances, and correlations

Total test score

If we consider m number of items for an individual i, the total test score y_i is simply the sum of the individual item scores x_{ii} :

$$y_i = \sum_{j=1}^m x_{ji}.$$

The mean test score is the average of the item scores

$$m_i = \frac{1}{m} \sum_{j=1}^m x_{ji}.$$

Sample variance of the total test score

We can calculate the sample variance of the total test score s_y^2 either from

$$s_y^2 = \frac{1}{n} \sum_{i=1}^n y_i^2 - \left(\frac{1}{n} \sum_{i=1}^n y_i\right)^2,$$

or from the sum of the sample variances and covariances

$$s_y^2 = \sum_{j=1}^m \sum_{k=1}^m s_{jk}.$$

Example: Sample variance of the total test score

We can estimate the variance of the sum X+Y from the previous exercise either by

$$s_{x+y}^2 = (4 \times 0^2 + 3 \times 1^2 + 3 \times 2^2)/10 - [(4 \times 0 + 3 \times 1 + 3 \times 2)/10]^2$$

= 1.5 - 0.81
= 0.69,

or by

$$s_{x+y}^2 = 0.25 + 0.24 + 0.10 + 0.10$$

= 0.69.

Review

- Discrete and continuous R.V.s.
- Properties of expectation, variance and covariance
- Parameters, estimators and estimates
- Statistical inference
- How to estimate expectations, variances and covariances for item scores and test scores

Table of Contents

- 1 Statistics review
- 2 Item statistics
- 3 Test score statistics
- 4 Exercises

Consider a R.V. X that takes values 1, 2, 3 and 4 with corresponding probabilities 0.1, 0.2, 0.4 and 0.3.

- a What is $\mathbb{E}(X)$?
- b What is $\mathbb{E}(X^2)$?
- c What is Var(X)?

Hint: Recall that $Var(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2$.

X and Y are two R.V.s such that $\mathbb{E}(X) = 10$, $\mathbb{E}(X^2) = 150$, $\mathbb{E}(Y) = 5$, $\mathbb{E}(Y^2) = 75$ and $\mathbb{E}(XY) = 20$.

- a What is Cov(X, Y)?
- b What is Cov(5X, 10Y)?
- c What is Var(5X + 10Y)?

The following frequency table was observed from a two-item test where each item was scored 0 or 1.

	Item $1 = 0$	$Item\ 1 = 1$
Item 2 = 0	42	20
Item $2 = 1$	22	16

- a Estimate the difficulty of each item.
- **b** Estimate the variance of the total score.

The following covariance matrix was observed from a three-item test.

$$\mathbf{\Sigma}_{X_1,X_2,X_3} = \begin{bmatrix} 1.19 & 0.28 & 0.22 \\ 0.28 & 1.26 & 0.40 \\ 0.22 & 0.40 & 1.47 \end{bmatrix}.$$

- a Calculate the sample variance of $X_1 + X_2 + X_3$.
- b Calculate the estimated correlation between X_1 and X_3 .

Show that the sample mean is an unbiased estimator of the expected value of a random variable X — that is, derive the expected value of

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Assume that observations x_i are independent realisations of a random variable with finite first and second moments. Derive the variance of

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Show that

$$\mathsf{MSE}\left(\widehat{\theta}\right) = \mathrm{Var}\left(\widehat{\theta}\right) + \left[\mathsf{Bias}\left(\widehat{\theta}\right)\right]^2.$$

Derive the expected value of

$$s_{xy}^* = \frac{\sum_{i=1}^n x_i y_i - n \overline{x} \overline{y}}{n-1},$$

where observations k and l ($k \neq l$) are independent.