

LICENCE 3E ANNÉE PARCOURS MATHÉMATIQUES

2018-2019 M67, GÉOMÉTRIE ÉLÉMENTAIRE

Interrogation

1 avril 2019

[durée : 1 heure]

!\ Documents autorisés : Une feuille A4 recto-verso écrite à la main.

Exercice 1 (Puissance d'un point par rapport à un cercle)

Soit \mathcal{C} un cercle de centre O et de rayon R. Soient M un point quelconque à distance d = OMdu centre, et \mathcal{D} une droite passant par M et coupant le cercle en deux points A et B non nécessairement distincts.

- a) Donner le signe du produit $\overline{AM} \cdot \overline{BM}$ des longueurs algébriques \overline{AM} et \overline{BM} en fonction de M.
- b) On suppose M intérieur au cercle \mathcal{C} . Montrer que le produit $\overline{AM} \cdot \overline{BM}$ est indépendant de la droite $\mathcal{D} = (AB)$.
- c) Exprimer ce produit en fonction du rayon R et de la distance d = OM.
- d) Montrer que les résultats des deux questions précédentes sont encore vrais pour tout point M du plan ¹ et toute droite \mathcal{D} intersectant le cercle.

On appelle puissance de M par rapport au cercle \mathcal{C} le scalaire ainsi défini, noté $\pi_{\mathcal{C}}(M)$.

Exercice 2 (Kangourou 2016)

Sur la figure ci-contre la droite (XP) est tangente en P au cercle de centre O et de diamètre [MN]. Si les longueurs des arcs \widehat{MP} et \widehat{NP} sont respectivement 20 et 16, combien vaut l'angle \widehat{OXP} ?

^{1.} Non nécessairement intérieur au cercle \mathcal{C} .