Report on FEM Programming Homework 4

Yuejie Liu PB18010470

November 3, 2021

Problem 1

$$\begin{cases} -\epsilon u''(x) + u'(x) = x, & x \in (0,1) \\ u(0) = u(1) = 0 \end{cases}$$

$$V_h = \{ v \in H_0^1([0,1]), v|_{I_j} \in P^1(I_j) \}$$
(1)

Test your code with $\epsilon = 10^{-1}$, $\epsilon = 10^{-7}$ and the following two grids.

- 1. Grid1:uniform $\operatorname{mesh}(N \text{ cells in } [0,1])$
- 2. Grid2:Shinshkin mesh with $\tau = 1 2\epsilon \ln(N)$ (N cells in $[0, \tau]$, and N cells in $[\tau, 1]$)

$\mathbf{2}$ Algorithm

Variations of PDE and FEM

The exact solution of the problem is

$$u(x) = -\frac{-e^{\frac{1}{\epsilon}}x^2 + e^{\frac{x}{\epsilon}} + 2\epsilon(-e^{\frac{1}{\epsilon}}x + e^{\frac{x}{\epsilon}} + x - 1) + x^2 - 1}{2(e^{\frac{1}{\epsilon}} - 1)}$$

We note that when ϵ is very small, u(x) is not computable, so we change the solution to

$$u(x) = \frac{x^2}{2} + \epsilon x + \frac{(1+2\epsilon)(e^{x/\epsilon+b} - e^b)}{2(e^{1/\epsilon+b} - e^b)}$$

where $b = -\frac{1}{\epsilon}$. The solution space is

$$V = H^1_0([0,1])$$

and the weak form is

$$\begin{cases} Find \ u \in Vs.t. \\ a(u,v) = F(v), \forall v \in V \end{cases}$$
 (2)

where $a(u,v)=\int_0^1 \epsilon u^{'}(x)v^{'}(x)+u^{'}(x)v(x)dx, F(v)=\int_0^1 xv(x)dx$ The finite element variation problem is

$$\begin{cases}
Find \ u_h \in V_h(\subset V) \ s.t. \\
a(u,v) = F(v), \forall v \in V_h
\end{cases}$$
(3)

2.2 The basis of V_h

The basis of P^1 space is

$$\phi_{j}(x) = \begin{cases} \frac{x - x_{j-1}}{x_{j} - x_{j-1}}, & [x_{j-1}, x_{j}] \\ \frac{x_{j+1} - x}{x_{j+1} - x_{j}}, & [x_{j}, x_{j+1}] & j = 1, ..., N - 1 \\ 0, & elsewhere \end{cases}$$

.

2.3 Stiffness Matrix

The stiffness matrix is $K = (k_{ij})_{(N-1)*(N-1)}$, where $k_{ij} = a(\phi_j', \phi_i') = \int_0^1 \epsilon \phi_j'(x) \phi_i'(x) + \phi_j'(x) \phi_i(x) dx$. To calculate k_{ij} , we need to know derivatives of the basis function.

$$\phi_{j}^{'}(x) = \begin{cases} \frac{1}{x_{j-x_{j-1}}}, & [x_{j-1}, x_{j}] \\ \frac{-1}{x_{j+1}-x_{j}}, & [x_{j}, x_{j+1}] & j = 1, ..., N-1 \\ 0, & elsewhere \end{cases}$$

.

2.4 Numerical Integration Method and Linear Equations Solution Method

We use Gauss integration method to compute all the integrations that we need.

$$\int_{a}^{b} f(x) dx = \int_{-1}^{1} f(\frac{(b-a)t+a+b}{2}) \frac{b-a}{2} dt = \frac{b-a}{2} \sum_{1}^{n} A_{k} f(\frac{(b-a)x_{k}+a+b}{2})$$

In this program, we take n=3, thus $x_1=-\sqrt{\frac{3}{5}}, x_2=0, x_3=\sqrt{\frac{3}{5}}$ and $A_1=A_3=\frac{5}{9}, A_2=\frac{8}{9}$ To solve linear equations, we just use $A\backslash b$.

2.5 Error Calculation of Different Norms

For each unit of uniform mesh, we take its Gauss node as sampling points. For $||u - u_h||_{L^1}$

$$\int_0^1 |u - u_h| dx = \sum_{j=1}^N \int_{-1}^1 |u - u_h| \left(\frac{ht + jh + (j-1)h}{2}\right) \frac{h}{2} dt = \frac{h}{2} \sum_{j=1}^N \sum_{1}^n A_k |u - u_h| \left(\frac{hx_k + jh + (j-1)h}{2}\right)$$

where n, x_k, A_k are the same as above. For $||u - u_h||_{L_\infty}$, we take the maximum of the function value of all the sampling points. As for Shinshkin mesh, we just separate the integration into two parts with different h and sum them up after integration calculation when computing L^1 norm.

2.6 The Structure of Our Code

pg4_1 is a program of uniform mesh and pg4_2 is a program of Shinshkin mesh. Gauss3 is a function for computation of Gauss integration. ComputeUh_1 is a function for computation of the function value of FEM solution on uniform mesh and ComputeUh_Shinshkin the same function on Shinshkin mesh.

2.7 Improvement and Suggestions

3 Results

3.1 Uniform mesh $\epsilon = 10^{-1}$

Table 1: Accuracy test for function error in P^1 space,uniform mesh, $\epsilon = 10^{-1}$

N	$ u-u_h _{L^1}$ error	order	$ u-u_h _{L^{\infty}}$ error	order
N=20	1.181971619503e-03	_	1.240866833753e-02	_
N=40	2.919203095731e-04	2.017548904080	3.757395943819e-03	1.723543241658
N=80	7.286918309486e-05	2.002193863509	1.038582231160e-03	1.855117703091
N=160	1.820367452490e-05	2.001079120566	2.733736370442e-04	1.925669420470
N=320	4.550484002071e-06	2.000137789163	7.015144412327e-05	1.962329414175
N = 640	1.137564817871e-06	2.000071250818	1.776994094014e-05	1.981033916717

3.2 Uniform mesh $\epsilon = 10^{-7}$

Table 2: Accuracy test for function error in P^1 space,uniform mesh, $\epsilon = 10^{-7}$

N	$ u-u_h _{L^1}$ error	order	$ u-u_h _{L^{\infty}}$ error	order
N=20	3.124750839902e+03	_	5.545542937834e + 03	_
N=40	7.810002348926e+02	2.000346269954	1.386339376548e + 03	2.000048241586
N=80	1.950626586392e+02	2.001385356820	3.465406854229e+02	2.000183826898
N=160	4.857856457119e+01	2.005545859360	8.659257457502e + 01	2.000709518734
N=320	1.195874100790e+01	2.022254347468	2.160818401402e+01	2.002665486377
N=640	2.808582125459e+00	2.090151619168	5.370838171199e+00	2.008358673521

3.3 Shinshkin mesh $\epsilon = 10^{-7}$

Table 3: Accuracy test for function error in P^1 space, Shinshkin mesh, $\epsilon=10^{-7}$

N	$ u-u_h _{L^1}$ error	order	$ u-u_h _{L^{\infty}}$ error	order
N=10	4.639296088719e-03	_	8.386228834696e-03	_
N=20	1.197195767135e-03	1.954246841580	4.261507328685e-03	0.976658384173
N=40	3.060237043336e-04	1.967943770814	1.805210401082e-03	1.239196817248
N=80	7.728927487654e-05	1.985303271034	6.816756726444e-04	1.405009593285
N=160	1.930045173885e-05	2.001633615974	2.381147755147e-04	1.517428352066
N=320	4.713707366070e-06	2.033700513209	7.875919711751e-05	1.596136836212
N=640	1.066522338885e-06	2.143948012705	2.504767516724e-05	1.652771700270
N=1280	1.856037670493e-07	2.522616286932	7.737266597965e-06	1.694780814183
N=2560	2.156629925750e-08	3.105375453290	2.337274631050e-06	1.726996723171
N=5120	3.541126177174e-09	2.606498477801	6.931914377659e-07	1.753501521848
N=10240	8.136989525150e-10	2.121641212047	2.025022952354e-07	1.775315574452

4 Conclusions

The orders of uniform mesh are both 2 w.r.t different ϵ , but we can see from the pictures and the errors that when $\epsilon = 10^{-7}$ the FEM solution does not appoximate precise solution.

However, the FEM solution is a good approximation of the original function on Shinshkin mesh when $\epsilon = 10^{-7}$, and the order is around 2.

The reason for the better behavior of Shinshkin mesh is that Shinshkin mesh can be seen as a adaptive mesh in this case, which inspires us to adjust the length of units according to the properties of the original function.