Statistical Inference Project, Part 1

Hoang Tam Vo

In this part of the project, I study the exponential distribution in R and compare it with the Central Limit Theorem. Specifically, in R, the exponential distribution can be simulated with rexp(n, lambda) where lambda is the rate parameter. I illustrates via simulation and associated explanatory text the properties of the distribution of the mean of 40 exponential(0.2)s.

Simulation

In this study, lambda is set to 0.2 for all of simulations. A thousand of simulations are done and the distribution of averages of 40 exponentials are investigated.

Questions 1: Sample Mean versus Theoretical Mean

The average sample mean of 1000 simulations of 40 randomly sampled exponential distributions:

```
mean(means$x)
## [1] 5.002
```

The expected mean of an exponential distribution of rate lambda is:

```
expectedMean <- 1/lambda
expectedMean</pre>
```

```
## [1] 5
```

As can be seen, the expected mean and the avarage sample mean are very close.

Questions 2: Sample Variance versus Theoretical Variance

The standard deviation of the average sample mean of 1000 simulations of 40 randomly sampled exponential distribution:

```
sd(means$x)
```

```
## [1] 0.781
```

The variance of the average sample mean of 1000 simulations of 40 randomly sampled exponential distribution:

```
var(means$x)
```

```
## [1] 0.61
```

The expected standard deviation of an exponential distribution of rate lambda is:

```
(1/lambda)/sqrt(n)
```

```
## [1] 0.7906
```

The expected variance of an exponential distribution of rate lambda is:

```
((1/lambda)/sqrt(n))^2
```

```
## [1] 0.625
```

As can be seen, the standard deviations are very close, while variances are also pretty close as variance is the square of the standard deviation.

Question 3: Show that the distribution is approximately normal

A histogram plot of the means of the 1000 simulations of rexp(n, lambda) is shown in the below figure. In addition, it is overlaid with a normal distribution with mean 5 and standard deviation 0.781.

As can be seen, the distribution of our simulations is approximately normal.