pyNoxtli

Luis M. de la Cruz

27 de octubre de 2020

$\acute{\mathbf{I}}\mathbf{ndice}$

1.	Mod	Modelo matemático: Transferencia de calor			
	1.1.	Conducción de calor: estacionaria	•		
	1.2.	Conducción de calor: NO estacionaria	4		
	1.3.	Convección de calor: estacionaria	ļ		
	1.4.	Convección de calor: NO estacionaria	(

Modelo matemático: Transferencia de calor 1.

Ecuación general de transferencia de calor:

$$c_{p}\rho\frac{\partial T}{\partial t}+c_{p}\rho\frac{\partial}{\partial x_{j}}\left(u_{j}T\right)-\frac{\partial}{\partial x_{j}}\left(\kappa\frac{\partial T}{\partial x_{j}}\right)=S$$

donde se usa la convención de Einstein (índices repetidos se suman) y se define lo siguiente:

Símbolo		Unidades		
Parámetros físicos				
c_p	Capacidad calorífica específica.	$[\mathrm{J}\ /\ \mathrm{Kg}\ ^{\mathrm{o}}\mathrm{K}]$		
ho	Densidad.	$[{\rm Kg}\ /\ {\rm m}^3]$		
κ	Conductividad térmica.	$[\mathrm{W}\ /\ \mathrm{m}\ ^{\mathrm{o}}\mathrm{K}]$		
S	Ganancia (fuente) o pérdida (sumidero) de calor	$[\mathrm{J/m^3\ s}]$		
$\alpha = \frac{\kappa}{c_p \rho}$	Difusividad térmica.	$[\mathrm{m}^2/\mathrm{s}]$		
Símbolo		Unidades		
Variables independientes				
x_{j}	Coordenadas cartesianas de la posición: $(x_1, x_2, x_3) \equiv (x, y, z)$.	[m]		
t	Tiempo.	[s]		
Variables dependientes				
T	Temperatura.	$[^{\mathrm{o}}\mathrm{K}]$		
u_{j}	Componentes de la velocidad: $(u_1, u_2, u_3) \equiv (u_x, u_y, u_z)$.	[m/s]		

1.1. Conducción de calor: estacionaria

1. Conducción de calor estacionaria:

$$-\frac{\partial}{\partial x_j}\left(\kappa\frac{\partial T}{\partial x_j}\right) = S$$

2. Conducción de calor estacionaria sin fuentes ni sumideros $\left(S=0\right)$:

$$-\frac{\partial}{\partial x_j} \left(\kappa \frac{\partial T}{\partial x_j} \right) = 0$$

3. Conducción de calor estacionaria con $\kappa = \text{constante}$:

$$-\kappa \frac{\partial^2 T}{\partial x_j \partial x_j} = S$$

4. Conducción de calor estacionaria sin fuentes ni sumideros (S=0), con $\kappa=$ constante:

$$-\frac{\partial^2 T}{\partial x_j \partial x_j} = 0$$

1.2. Conducción de calor: NO estacionaria

1. Conducción de calor no estacionaria:

$$\frac{\partial T}{\partial t} - \frac{\alpha}{\kappa} \frac{\partial}{\partial x_j} \left(\kappa \frac{\partial T}{\partial x_j} \right) = \frac{\alpha}{\kappa} S$$

2. Conducción de calor no estacionaria sin fuentes ni sumideros (S=0) :

$$\frac{\partial T}{\partial t} - \frac{\alpha}{\kappa} \frac{\partial}{\partial x_j} \left(\kappa \frac{\partial T}{\partial x_j} \right) = 0$$

3. Conducción de calor no estacionaria con $\kappa = \text{constante}$:

$$\frac{\partial T}{\partial t} - \alpha \frac{\partial^2 T}{\partial x_j \partial x_j} = \frac{\alpha}{\kappa} S$$

4. Conducción de calor no estacionaria sin fuentes ni sumideros (S=0), con $\kappa=$ constante:

$$\frac{\partial T}{\partial t} - \alpha \frac{\partial^2 T}{\partial x_i \partial x_j} = 0$$

1.3. Convección de calor: estacionaria

1. Convección de calor estacionaria:

$$\frac{\partial}{\partial x_j} \left(u_j T \right) - \frac{\alpha}{\kappa} \frac{\partial}{\partial x_j} \left(\kappa \frac{\partial T}{\partial x_j} \right) = \frac{\alpha}{\kappa} S$$

2. Convección de calor estacionaria sin fuentes ni sumideros (S=0):

$$\frac{\partial}{\partial x_j} \left(u_j T \right) - \frac{\alpha}{\kappa} \frac{\partial}{\partial x_j} \left(\kappa \frac{\partial T}{\partial x_j} \right) = 0$$

3. Convección de calor estacionaria con $\kappa = \text{constante}$:

$$\frac{\partial}{\partial x_j} (u_j T) - \alpha \frac{\partial^2 T}{\partial x_j \partial x_j} = \frac{\alpha}{\kappa} S$$

4. Convección de calor estacionaria sin fuentes ni sumideros (S=0), con $\kappa=$ constante:

$$\frac{\partial}{\partial x_j} (u_j T) - \alpha \frac{\partial^2 T}{\partial x_j \partial x_j} = 0$$

1.4. Convección de calor: NO estacionaria

1. Convección de calor no estacionaria:

$$\frac{\partial T}{\partial t} + \frac{\partial}{\partial x_j} \left(u_j T \right) - \frac{\alpha}{\kappa} \frac{\partial}{\partial x_j} \left(\kappa \frac{\partial T}{\partial x_j} \right) = \frac{\alpha}{\kappa} S$$

2. Convección de calor estacionaria sin fuentes ni sumideros (S=0):

$$\frac{\partial T}{\partial t} + \frac{\partial}{\partial x_j} \left(u_j T \right) - \frac{\alpha}{\kappa} \frac{\partial}{\partial x_j} \left(\kappa \frac{\partial T}{\partial x_j} \right) = 0$$

3. Convección de calor estacionaria con $\kappa = {\rm constante} :$

$$\frac{\partial T}{\partial t} + \frac{\partial}{\partial x_j} (u_j T) - \alpha \frac{\partial^2 T}{\partial x_j \partial x_j} = \frac{\alpha}{\kappa} S$$

4. Convección de calor estacionaria sin fuentes ni sumideros (S=0), con $\kappa=$ constante:

$$\frac{\partial T}{\partial t} + \frac{\partial}{\partial x_j} (u_j T) - \alpha \frac{\partial^2 T}{\partial x_j \partial x_j} = 0$$