Zhengdong Zhang

Email: zhengz@uoregon.edu

Course: MATH 649 - Abstract Algebra Instructor: Professor Sasha Polishchuk Homework - Week 9

ID: 952091294

Term: Spring 2025 Due Date: 4^{th} June, 2025

Problem 21.2.2

Let I_1, \ldots, I_m be ideals in $\mathbb{F}[T_1, \ldots, T_n]$. Then $\mathcal{V}(I_1 \cdots I_m) = \mathcal{V}(I_1 \cap \cdots \cap I_m)$.

Solution: We only need to prove the case m=2, the rest can be obtained from induction. To prove $\mathcal{V}(I_1I_2)=\mathcal{V}(I_1\cap I_2)$, by Corollary 21.1.10, it is the same as proving

$$\sqrt{I_1I_2} = \sqrt{I_1 \cap I_2}.$$

Suppose $a \in \sqrt{I_1I_2}$, then there exists $n \geq 1$ such that $a^n \in I_1I_2 \subseteq I_1 \cap I_2$. This implies that $p \in \sqrt{I_1 \cap I_2}$. On the other hand, suppose $b \in \sqrt{I_1 \cap I_2} = \sqrt{I_1} \cap \sqrt{I_2}$, then there exists $k, l \geq 1$ such that $b^k \in I_1$ and $b^l \in I_2$. This implies $b^{k+l} = b^k \cdot b^l \in I_1I_2$, so $b \in \sqrt{I_1I_2}$. This proves $\sqrt{I_1I_2} = \sqrt{I_1 \cap I_2}$.

Problem 21.2.3

Let $f \in \mathbb{F}[T_1, \dots, T_n]$. The corresponding principal open set is

$$\mathbb{A}^n \setminus \mathcal{V}(f) = \{ x \in \mathbb{A}^n \mid f(x) \neq 0 \}.$$

Show that each open set in \mathbb{A}^n is finite union of principal open sets, so principal open sets form a base of Zariski topology.

Solution: We know that the Zariski closed sets of \mathbb{A}^n have the form \mathcal{G} for some ideal $I \subseteq \mathbb{F}[T_1,\ldots,T_n]$. So for any open set $U\subseteq \mathbb{A}^n$, U can be written as $U=\mathbb{A}^n-\mathcal{V}(I)$ for some ideal I. Since $\mathbb{F}[T_1,\ldots,T_n]$ is noetherian, I is finitely generated by $f_1,\ldots,f_k\in\mathbb{F}[T_1,\ldots,T_n]$. This implies

$$V(I) = V(f_1, \dots, f_k) = V(f_1) \cap \dots \cap V(f_k).$$

Thus, we can write U as

$$U = \mathbb{A}^n - \mathcal{V}(I)$$

$$= \mathbb{A}^n - \mathcal{V}(f_1) \cap \dots \cap \mathcal{V}(f_k)$$

$$= (\mathbb{A}^n - \mathcal{V}(f_1)) \cup \dots \cup (\mathbb{A}^n - \mathcal{V}(f_k)).$$

This proves that any Zariski open set can be written as a finite union of principal open sets.

Problem 21.2.13

Let $X = \mathcal{V}(x^2 + y^2 + z^2.xyz) \subseteq \mathbb{A}^3$. Decompose X into irreducible components.

Solution: We need to find all the points $(x, y, z) \in \mathbb{A}^3$ satisfying $x^2 + y^2 + z^2 = 0$ and xyz = 0. Since \mathbb{A}^3 has no nilpotents, xyz = 0 implies at least one of the coordinates is 0. Suppose x = 0. The y and z satisfy the equation $y^2 + z^2 = 0$. Note that \mathbb{F} is algebraically closed, if char $\mathbb{F} = 2$, then y + z = 0. X has three irreducible components

$$X = \mathcal{V}(x+y+z, xyz) = \mathcal{V}(x, y+z) \cup \mathcal{V}(y, x+z) \cup \mathcal{V}(z, x+y).$$

Each of them is isomorphic to \mathbb{A}^1 because the coordinate ring

$$\mathbb{F}[x, y, z]/(x, y + z) \cong \mathbb{F}[y, -y] \cong \mathbb{F}[y].$$

Next, assume char $\mathbb{F} \neq 2$, then $y^2 + z^2 = (y + iz)(y - iz) = 0$. This is the union of two algebraic sets $\mathcal{V}(y + iz)$ and $\mathcal{V}(y - iz)$. Thus, X has six irreducible components

$$X = \mathcal{V}(x, y + iz) \cup \mathcal{V}(x, y - iz) \cup \mathcal{V}(y, x + iz) \cup \mathcal{V}(y, x - iz) \cup \mathcal{V}(z, x + iy) \cup \mathcal{V}(z, x - iy).$$

Each of them is isomorphic to \mathbb{A}^1 because the coordinate ring

$$\mathbb{F}[x, y, z]/(x, y - iz) \cong \mathbb{F}[z, iz] \cong \mathbb{F}[z].$$

Problem 21.2.14

Let char $\mathbb{F} \neq 2$. Decompose $\mathcal{V}(x^2+y^2+z^2,x^2-y^2-z^2+1)$ into irreducible components.

Solution: We need to find all the pointd $(x, y, z) \in \mathbb{A}^3$ satisfying $x^2 + y^2 + z^2 = 0$ and $x^2 - y^2 - z^2 + 1 = 0$. From these two equations, we obtain

$$0 = 2x^2 + 1$$
.

We know char $\mathbb{F} \neq 2$. So this equation has two different solutions: $x = \frac{i}{\sqrt{2}}$ and $x = \frac{-i}{\sqrt{2}}$. When $x = \frac{i}{\sqrt{2}}$, y and z satisfy the equation $y^2 + z^2 = \frac{1}{2}$. This is a hyperbola and $(y^2 + z^2 - \frac{1}{2})$ is a prime ideal in $\mathbb{F}[x,y]$ since we proved in Exercise 21.4.14 that

$$\mathbb{F}[y,z]/(y^2+z^2-1)\cong \mathbb{F}[u,v]/(uv-1)\cong \mathbb{F}[u,u^{-1}].$$

Thus, X has two irreducible components

$$X = \mathcal{V}(x - \frac{i}{\sqrt{2}}, y^2 + z^2 - \frac{1}{2}) \cup \mathcal{V}(x + \frac{i}{\sqrt{2}}, y^2 + z^2 - \frac{1}{2}).$$

Problem 21.3.4

If $f: A \to B$ is a homomorphism of affine algebras and M is a maximal ideal of B, then $f^{-1}(M)$ is a maximal ideal of A.

Solution: A, B are finitely generated \mathbb{F} -algebras, so B/M is also a finitely generated \mathbb{F} -algebra. We have a map

$$\phi: A/f^{-1}(M) \to B/M,$$

$$a + f^{-1}(M) \mapsto f(a) + M.$$

This is a well-defined \mathbb{F} -algebra homomorphism. Indeed, suppose $a, b \in A$ and $a - b \in f^{-1}(M)$. This means $f(a - b) = f(a) - f(b) \in M$, so f(a) + M = f(b) + M is the same element in B/M. Moreover, ϕ is injective. Let $a + f^{-1}(M) \in \ker \phi$ and assume f(a) + M = M, namely, $f(a) \in M$. Then $a \in f^{-1}(M)$ and $a + f^{-1}(M) = f^{-1}(M)$ is trivial in $A/f^{-1}(M)$.

M is a maximal ideal, so B/M is a field and is a finitely generator \mathbb{F} -algebra. By the first version of Nullstellensatz we proved in class, $\mathbb{F} \subseteq B/M$ is an algebraic and finite extension. We know that $A/f^{-1}(M)$ is a domain as $f^{-1}(M)$ is a prime ideal in A, so we have

$$\mathbb{F} \subset A/f^{-1}(M) \subset B/M$$

and $A/f^{-1}(M)$ is a subring of B/M. By Exercise 10.1.11, $A/f^{-1}(M)$ is a field, thus $f^{-1}(M)$ is a maximal ideal in A.

Problem 21.4.6

The hyperbola xy = 1 and \mathbb{A}^1 are not isomorphic.

Solution: The coordinate ring of the hyperbola xy = 1 is

$$\mathbb{F}[x,y]/(xy-1) \cong \mathbb{F}[x,x^{-1}] \cong \mathbb{F}[x]_x.$$

Namely, $\mathbb{F}[x]$ localized with respect to the multiplicative set $\{1, x, x^2, \ldots\}$. On the other hand, the coordinate ring of \mathbb{A}^1 is $\mathbb{F}[x]$. The two rings $\mathbb{F}[x]_x$ and $\mathbb{F}[x]$ are not isomorphic as $\mathbb{F}[x]_x$ is local ring with the unique maximal ideal generated by the image of (x), while $\mathbb{F}[x]$ has at least two different maximal ideals (x) and (x-1). This implies that xy=1 and \mathbb{A}^1 are not isomorphic as they have different coordinate rings.

Problem 21.4.14

The circle $x^2 + y^2 = 1$ and \mathbb{A}^1 are isomorphic if and only if char $\mathbb{F} = 1$.

Solution: Suppose char $\mathbb{F}=2$. The radical ideal of (x^2+y^2-1) is (x+y-1). The coordinate ring

$$\mathbb{F}[x,y]/(x^2+y^2-1)\cong \mathbb{F}[x,y]/(x+y-1)\cong \mathbb{F}[t]$$

if we consider the isomorphism

$$\begin{split} \mathbb{F}[x,y]/(x+y-1) &\to \mathbb{F}[t], \\ x &\mapsto t, \\ y &\mapsto t+1. \end{split}$$

This proves the circle $x^2 + y^2 = 1$ is isomorphic to \mathbb{A}^1 if char $\mathbb{F} = 2$. Suppose char $\mathbb{F} \neq 2$. Then consider the following map

$$\phi: \mathbb{F}[u, v]/(uv - 1) \to \mathbb{F}[x, y]/(x^2 + y^2 - 1),$$
$$u \mapsto x + iy,$$
$$v \mapsto x - iy.$$

This map is a regular map since it is given by a polynomial in y and x. It is an isomorphism because it has an inverse

$$\phi^{-1} : \mathbb{F}[x, y]/(x^2 + y^2 - 1) \to \mathbb{F}[u, v]/(uv - 1),$$

$$x \mapsto \frac{1}{2}u + \frac{1}{2}v,$$

$$y \mapsto \frac{-i}{2}u + \frac{i}{2}v.$$

This implies that the circle $x^2 + y^2 = 1$ is isomorphic to the hyperbola uv = 1, and we have proved in Exercise 21.4.6 that the hyperbola uv = 1 is not isomorphic to \mathbb{A}^1 . So the circle $x^2 + y^2 = 1$ is not isomorphic to \mathbb{A}^1 when char $\mathbb{F} \neq 2$.