Метод наименьших квадратов

Јована Арсеновић, Николина Живановић, Анастасија Голић, Вељко Радојичић, Стефан Топалов 20. ноябрь 2023.

Элементы теории ошибок

Все больше реальных проблем во всех областях жизни сегодня решается математическим моделированием и их симуляцией, благодаря интенсивному развитию компьютеров. Если бы мы хотели моделировать процесс, измерения которого представлены на рисунке 1, самым простым способом было бы использование процедуры линейной регрессии, и тогда связь между характеристиками можно было бы представить в линейной форме:

$$y = a_1 x + a_0, \tag{1}$$

где a_1 и a_0 - неизвестные параметры, которые мы хотим определить в процедуре оптимизации, при этом параметр a_1 представляет угол наклона кривой, а параметр a_0 - точку пересечения с ординатой.

Фигура 1: Иллюстрация линейной регрессии - аппроксимация данных полиномом первого порядка.

В течение процесса оптимизации необходимо найти те значения параметров a_1 и a_0 , которые позволят прямой наилучшим образом описать данный процесс, то есть чтобы разница между реальным и аппроксимированным значением была минимальной:

$$E_i = |y - y_i|. (2)$$

Этот тип ошибки называется абсолютной ошибкой и может быть представлен следующим образом:

1. Максимальная абсолютная ошибка:

$$E_{\infty}(f) = \max |y(x_k) - y_k|, \quad 1 < k < n$$

2. Средняя абсолютная ошибка:

$$E_1(f)=rac{1}{n}\sum_{k=1}^n\left|y(x_k)-y_k
ight|^2$$

3. Среднеквадратичная абсолютная ошибка:

$$E_2(f) = \sqrt{rac{1}{n}\sum_{k=1}^n \left|f(x_k) - y_k
ight|^2}$$

Метод наименьших квадратов

Начнем с процедуры линейной регрессии, опираясь на метод наименьших квадратов (поскольку эти процедуры являются основой машинного обучения) и представим их как задачу оптимизации. С самого начала необходимо определить критерий оптимальности и представить его в квадратичной форме, где цель - минимизировать ошибку:

$$F = \sum_{k=1}^{n} (y(x_k) - y_k)^2 \tag{3}$$

Поскольку мы решаем проблему линейной регрессии, критерий оптимальности теперь принимает форму:

$$F = \sum_{k=1}^{n} (a_1 x_k + a_0 - y_k)^2 \tag{4}$$

Как мы ранее отметили, наша цель - определить оптимальные значения параметров a_0 и a_1 , чтобы критерий оптимальности (2) был минимален. На основе необходимых условий экстремума получаем следующую систему уравнений:

$$\begin{cases} \frac{\partial F}{\partial a_0} = \sum_{k=1}^n 2(a_1 x_k + a_0 - y_k) = 0\\ \frac{\partial F}{\partial a_1} = \sum_{k=1}^n 2(a_1 x_k + a_0 - y_k) x_k = 0 \end{cases}$$
(5)

Линейная система уравнений (5) также может быть записана в матричной форме:

$$\begin{bmatrix} n & \sum_{k=1}^{n} x_k \\ \sum_{k=1}^{n} x_k & \sum_{k=1}^{n} x_k^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^{n} y_k \\ \sum_{k=1}^{n} x_k y_k \end{bmatrix}$$
(6)

Решим ее методом Краммера:

Метод Краммера представляет собой теорему в линейной алгебре, которая предоставляет решения системы линейных уравнений с использованием детерминант. Если систему уравнений представить в виде умножения матриц: Ax=c, где A - квадратная матрица, x - вектор-столбец переменных, и матрица A является регулярной (невырожденной), то решение можно выразить следующим образом:

$$x_i = rac{\det(A_i)}{\det(A)}$$

где A_i - матрица, полученная заменой i-го столбца в матрице A векторомстолбцом c.

В дальнейшем мы рассмотрим решение матричного уравнения (8) и его дальнейшее применение в изучении проблемы регрессии. Решение системы (6) получается с использованием правила Крамера. После решения системы уравнений и получения оптимальных значений параметров a_0 и a_1 формально завершается процесс линейной регрессии.

$$a_1 = \frac{n\sum_{k=1}^n x_k y_k - \sum_{k=1}^n x_k \sum_{k=1}^n y_k}{n\sum_{k=1}^n x_k^2 - (\sum_{k=1}^n x_k)^2}$$
(7a)

$$a_0 = \frac{\sum_{k=1}^n y_k - a_1 \sum_{k=1}^n x_k}{n} \tag{7b}$$

Где a_0^* и a_1^* обозначают оптимальные значения параметров a_0 и a_1 в соответствии с предполагаемым критерием оптимальности (2). Оптимальное значение критерия обозначим как F_{LSE} и вычислим его следующим образом:

$$F_{LSE} = \sum_{i=1}^{n} (a_1^* x_i + a_0^* - y_i)^2$$
 (8)

Линеаризация нелинейных моделей.

Логично предположить, что связь между входом x_i и выходом y_i не всегда линейна. Однако существует широкий класс нелинейных проблем, где с подходящими изменениями начальная проблема нелинейной регрессии может быть приведена к линейной.

Если мы хотим аппроксимировать начальную проблему полиномом второй степени:

$$y = a_2 x^2 + a_1 x + a_0 (9)$$

Тогда критерий оптимальности будет иметь следующую форму:

$$F = \sum_{k=1}^{n} (a_2 x_k^2 + a_1 x_k + a_0 - y_k)^2 \tag{10}$$

Простой математикой мы получаем условия экстремума, приравнивая частные производные к нулю. Оптимальные значения параметров a_2,a_1 и a_0 также получаются с использованием правила Крамера. Оставим читателя с упражнением:

$$\frac{\partial F}{\partial a_0} = \sum_{k=1}^n 2(a_2 x_k^2 + a_1 x_k + a_0 - y_k) = 0$$
 (11a)

$$\frac{\partial F}{\partial a_1} = \sum_{k=1}^n 2(a_2 x_k^2 + a_1 x_k + a_0 - y_k) x_k = 0$$
 (11b)

$$\frac{\partial F}{\partial a_2} = \sum_{k=1}^n 2(a_1 x_k + a_0 - y_k) x_k^2 = 0$$
 (11c)

Экспоненциальную модель можно представить следующим образом:

$$y(x) = Ce^{Ax}$$

Если мы вставим эту модель в критерий оптимальности (3):

$$F = \sum_{k=1}^{n} (Ce^{Ax_k} - y_k)^2 \tag{12}$$

Необходимые условия экстремума получаются дифференцированием критерия по всем переменным:

$$\frac{\partial F}{\partial A} = \sum_{k=1}^{n} 2(Ce^{Ax_k} - y_k)Cx_k e^{Ax_k} = 0$$
 (13a)

$$\frac{\partial F}{\partial C} = \sum_{k=1}^{n} 2(Ce^{Ax_k} - y_k)e^{Ax_k} = 0$$
 (13b)

Очевидно, что это нельзя записать в матричной форме, поэтому мы прибегаем к процессу аппроксимации - линеаризации.

Линеаризация этой модели естественна и довольно проста. Если мы возьмем натуральный логарифм предыдущего выражения, мы получим:

$$\ln y = \ln C + Ax$$

Теперь очевидно, что новое $Y=\ln y$, а коэффициенты из уравнений (7) - это $a_0=\ln C$ и $a_1=A$, то есть:

$$Y = a_0 + a_1 x$$

Применяя уравнения (7), мы легко определяем оптимальные значения параметров линеаризованной модели, то есть вычисляем a_0 и a_1 , что в

конечном итоге дает экспоненциальную регрессионную модель:

$$y(x)=Ce^{Ax}=e^{a_0}e^{a_1x}$$

Пример

Во время экзамена были собраны данные о студентах, сколько времени они потратили на подготовку к экзамену и сколько баллов они получили, и эти данные представлены в таблице.

SATI	BODOVI
6	82
10	88
2	56
4	64
0	23

(а) Линейная аппроксимация:

Поскольку требуется представить данные линейно, необходимо определить параметры прямой. Для линейной аппроксимации данных необходимо найти оптимальные значения a_0 и a_1 , используя выражения (7):

$$a_1 = \frac{5(6 \cdot 82 + 10 \cdot 88 + 2 \cdot 56 + 4 \cdot 64) - (6 + 10 + 2 + 4)(82 + 88 + 56 + 64 + 4)}{5(36 + 100 + 4 + 16) - (6 + 10 + 2 + 4)^2}$$
$$a_0 = \frac{82 + 88 + 56 + 64 + 23 - a_1(6 + 10 + 4 + 2)}{5}$$

Решив эти уравнения, получаем $a_1 \approx 6.1284$ и $a_0 \approx 35.6351$. Таким образом, уравнение прямой имеет вид y=6.1284x+35.6351. На основе этого можно сделать вывод, что для сдачи экзамена необходимо потратить 2.5 часа на подготовку.

(b) Экспоненциальная аппроксимация:

Сначала необходимо определить Y как $\ln(y)$:

$$Y = \ln(y) = [4.4067, 4.4773, 4.0254, 4.1589, 3.1355]$$

Это подставляется в выражение (7), и получаем оптимальные значения параметров $a_1^*=0.1183$ и $a_0^*=3.5202$. На основе этого можно вычислить $C=e^{a_0^*}=33.7927$, и получить экспоненциальную кривую $y=33.7927e^{0.1183x}$