Lecture 5 Parts/design Choices (Part 1)

IR Sensor

- Consists of IR LED(transmitter/emitter) and IR receiver(transistor type most likely)
- Wavelengths much match between emitter and receiver
- Pulsing high current to raise Signal/Noise ratio
- Use voltage divider for receiver converting current signal to voltage signal

Specs for IR Emitter

- Specs need to know when choosing an IR Emitter:
- 1. Wavelength
- 2. Voltage drop
- 3. DC Forward current
- 4. Pulsing current/timing
- 5. Viewing angle(full angle)
- 6. Radiant Intensity

Wavelength

- 950nm and 850nm are the 2 most popular choices for IR emitter
- You need to find IR receive that matches the wavelength of emitter in order to max power efficiency

Relative Spectral Emission $I_{rel} = f(\lambda)$

Voltage Drop

- IR Emitter is essentially an LED that emits infrared
- And LED is essentially an diode, and diode drops voltage
- Voltage drop varies depends of the expected current
- Examples:
 - SFH4550 drops 1.5V @100mah
 - SFH4545 drops 1.5V @100mah
 - SFH4511 drops 1.3V @ 100mah(discontinued)

Forward Current $I_F = f(V_F)$ Single pulse, $t_p = 100 \mu s$

DC Forward Current

- Means the max constant current that the IR emitter can safely handle(max limit)
- Usually 100mah for typical 5mm diameter IR LED, 50mah for 3mm diameter IR LED. Some metal shield package version has even higher DC forward current
- DC forward current somehow indicates the capability of IR Emitter when pulsing at high current

Pulsing Current

- LED allows pulsing current higher than DC forward current during a short time period
- Max Capability are different at different turn on time
- Exceeding max cap will damage the IR LED
- Should always check table to ensure your time/current choice for your design

Permissible Pulse Handling Capability $I_F = f(\tau)$, $T_A = 25$ °C, duty cycle D = parameter

Viewing angle

 Smaller angle is preferred for higher power intensity and more accurate distance detect, usually under 10 degree

Chip position indicates where the IR light starts to emit

Radiant Intensity

- Indicates the power intensity per unit area
- Varies between different models
- The higher the better
- 850nm type has higher Intensity than 950nm in general
- Example:
 - SFH4550(850nm)6^{degree} 630mW/sr @ 100mA
 - SFH4545(950nm)10^{degree} 550mW/sr @ 100mA
 - SFH4511(940nm)8^{degree} 63mW/sr @ 100mA(discontinued)

Some other important facts

- Package:
 - T 1 ¾ is about 5mm diameter package
 - T1 is about 3mm diameter package
- Through hole preferred for the availability and efforts on mounting it on the mouse
- Choices are pretty obvious when you use the filter on vendor's site(ie. Mouser, digikey, etc) when you apply the preferred specs

IR Receiver

- Viewing angles are always wider than emitter
- Angles are between 30-60 degree
- Receiver has sensitive wavelength range, as long as it covers the wavelength for IR emitter
- The resistance of the resistor that serial with is based on your own test and preference.
 Resistance value will affect the max reading value and receiver charge/discharge time
- Faster charging time saves pulsing time but could be too sensitive, slower charging time takes more time but less sensitive(less sensitive for ambient noise)

Matching wavelength

Emitter(SFH4545)

Relative Spectral Emission $I_{rel} = f(\lambda)$

Receiver(TEFT4300)

Fig. 7 - Relative Spectral Sensitivity vs. Wavelength

Circuit example

Power Supply

- Use 2 lipo Batteries serial at 7.4V at V_bat
- Use 2mm pitch JST male plug mount on PCB
- 2.54mm or 2mm pitch slide switches are usually used, pay attention with power rating
- Large value tantalum capacitors are used to stabilized the power supply, pay attention of the max voltage and ESR(equivalent serial resistance) of tantalum capacitor

Power Supply(cont.)

- 3 different voltage usage in system
 - v_bat for motor driver and voltage meter
 - 5V for IR emitter and encoder power supply
 - 3.3V for rest of the sytem
- Current consumption level
 - Motor(V_bat)>5V(emitter)>3.3V
- Choice on Futura Kit Mouse
 - 5V LVO regulator with 1A max output
 - 3.3V LVO regulator with 400mah max output
- Sufficient current with the regulator chosen above
- The voltage drop for LVO regulator is as low as possible(especially for 5V regulator)

Power Supply(digital)

- Add by pass cap before and after to stabilize supply
- Add low pass cap before and after to filter out high freq. noise

Power Supply(analog)

- Separate ground is preferred to reduce the noise to analog device
- Usually serial a inductor between supply and analog supply to stabilized the analog power supply

Power Supply(motor)

- Tantalum cap to supply motor power(place very close to motor driver)
- Low pass filtering cap very close to motor driver
- Separate ground for motor

RCL selection

- Smaller package leaves you more space on mouse, harder to solder, and higher ESR
- Package on Futura Kit Mouse:
 - 0603 resistor for IR Emitter(250mw rating, because of high current)
 - 0402 resistor for rest of the system
 - 1220(in) tantalum cap for 100uF 2917(in) tantalum cap for 220uF(motor supply)
- 0603 caps for rest of the system
- 1007 10uF Inductor
- RCL availability in lab
 - 0402 resistor stocked for all value you need for micromouse
 - 0603 capacitor stocked for all value you need for micromouse

Pay attention of the max voltage of the cap and power rating for