

PCT/JP 03/13519

101533231 JAPAN PATENT OFFICE

23.10.03

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年10月30日

Application Number:

特願2002-316615

[ST. 10/C]:

[JP2002-3.16615]

WIPO

PCT

RECEIVED 1 2 DEC 2003

出 人. Applicant(s):

松下電器産業株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年11月28日

【書類名】

特許願

【整理番号】

2036740114

【提出日】

平成14年10月30日

【あて先】

特許庁長官

【国際特許分類】

G03G 9/08

【発明者】

【住所又は居所】

大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

湯浅 安仁

【発明者】

【住所又は居所】

大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

梅田 公規

【特許出願人】

【識別番号】 000005821

【氏名又は名称】 松下電器産業株式会社

【代理人】

【識別番号】

110000040

【氏名又は名称】

特許業務法人 池内・佐藤アンドパートナーズ

【代表者】

池内 寛幸

【電話番号】

06-6135-6051

【手数料の表示】

【予納台帳番号】

139757

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

0108331

【プルーフの要否】

更

【発明の名称】 二成分現像剤及び画像形成装置

【特許請求の範囲】

【請求項1】 少なくとも結着樹脂、着色剤及びワックスを含むトナーと、コア材の表面が樹脂で被覆されたキャリアとから構成される二成分現像剤であって

示差走査熱量計 (DSC) 法による吸熱ピーク温度が50~120℃であるエステル系ワックスを結着樹脂100重量部に対して5~20重量部含み、

平均粒子径が6 nm~120 nmである無機微粉末をトナー母体粒子100重量部に対し1.5~5.5重量部含み、

前記コア材の表面を被覆する樹脂が、アミノシランカップリング剤とフッ素変性シリコーン樹脂を含むことを特徴とする二成分現像剤。

【請求項2】 少なくとも結着樹脂、着色剤及びワックスを含むトナーと、コア材の表面が樹脂で被覆されたキャリアとから構成される二成分現像剤であって、

示差走査熱量計 (DSC) 法による吸熱ピーク温度が50~120℃であるエステル系ワックスを結着樹脂100重量部に対して5~20重量部含み、

平均粒子径が6 nm~20 nmである無機微粉末をトナー母体粒子100重量部に対し0.5~2重量部と、

平均粒子径が30nm~120nmである無機微粉末をトナー母体粒子100 重量部に対し1.0~3.5重量部とを少なくとも外添処理し、

前記コア材の表面を被覆する樹脂が、アミノシランカップリング剤とフッ素変性シリコーン樹脂を含むことを特徴とする二成分現像剤。

【請求項3】 前記エステル系ワックスのヨウ素価が25以下、けん化価が30~300である請求項1または2に記載の二成分現像剤。

【請求項4】 前記エステル系ワックスの220℃における加熱減量は8重量%以下である請求項1または2に記載の二成分現像剤。

【請求項5】 前記エステル系ワックスは、ゲル浸透クロマトグラフィー (GPC) における分子量分布において、数平均分子量が100~5000、重量平

均分子量が200~10000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.01~8、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.02~10、分子量5×10²~1×10⁴の領域に少なくとも一つの分子量極大ピークを有する請求項1または2に記載の二成分現像剤。

【請求項6】 少なくとも結着樹脂、着色剤及びワックスを含むトナーと、コア材の表面が樹脂で被覆されたキャリアとから構成される二成分現像剤であって

少なくとも炭素数5~100の長鎖アルキルアルコール、不飽和多価カルボン酸又はその無水物、及び不飽和炭化水素系ワックスとの反応により得られるワックスを結着樹脂100重量部に対して5~20重量部含み、

平均粒子径が6 n m~1 2 0 n m である無機微粉末をトナー母体粒子100重量部に対し1.5~5.5重量部含み、

前記コア材の表面を被覆する樹脂が、アミノシランカップリング剤とフッ素変性シリコーン樹脂を含むことを特徴とする二成分現像剤。

【請求項7】 少なくとも結着樹脂、着色剤及びワックスを含むトナーと、コア材の表面が樹脂で被覆されたキャリアとから構成される二成分現像剤であって

少なくとも炭素数5~100の長鎖アルキルアルコール、不飽和多価カルボン酸又はその無水物、及び不飽和炭化水素系ワックスとの反応により得られるワックスを結着樹脂100重量部に対して5~20重量部含み、

平均粒子径が6 nm~20 nmである無機微粉末をトナー母体粒子100重量 部に対し0.5~2重量部と、

平均粒子径が30nm~120nmである無機微粉末をトナー母体粒子100 重量部に対し1.0~3.5重量部とを少なくとも外添処理し、

前記コア材の表面を被覆する樹脂が、アミノシランカップリング剤とフッ素変性シリコーン樹脂を含むことを特徴とする二成分現像剤。

【請求項8】 前記ワックスは、ゲル浸透クロマトグラフィー(GPC)における分子量分布において、重量平均分子量が1000~6000、Z平均分子量

【請求項9】 少なくとも結着樹脂、着色剤及びワックスを含むトナーと、コア材の表面が樹脂で被覆されたキャリアとから構成される二成分現像剤であって、

炭素数 $16\sim24$ を有する脂肪族アミド系のワックス又は、飽和または $1\sim2$ 価の不飽和脂肪酸のアルキレンビス脂肪酸アミド系のワックスを結着樹脂100 重量部に対して $5\sim20$ 重量部含み、

平均粒子径が6 n m ~ 1 2 0 n m である無機微粉末をトナー母体粒子 1 0 0 重量部に対し1.5~5.5 重量部含み、

前記コア材の表面を被覆する樹脂が、アミノシランカップリング剤とフッ素変性シリコーン樹脂を含むことを特徴とする二成分現像剤。

【請求項10】 少なくとも結着樹脂、着色剤及びワックスを含むトナーと、コア材の表面が樹脂で被覆されたキャリアとから構成される二成分現像剤であって、

炭素数16~24を有する脂肪族アミド系のワックス、又は、飽和または1~2価の不飽和脂肪酸のアルキレンビス脂肪酸アミド系のワックスを結着樹脂100重量部に対して5~20重量部含み、

平均粒子径が6 nm~2 0 nmである無機微粉末をトナー母体粒子100重量部に対し1.5~2重量部と、

平均粒子径が30nm~120nmである無機微粉末をトナー母体粒子100 重量部に対し1.0~3.5重量部とを少なくとも外添処理し、

前記コア材の表面を被覆する樹脂が、アミノシランカップリング剤とフッ素変性シリコーン樹脂を含むことを特徴とする二成分現像剤。

【請求項11】 少なくとも結着樹脂、着色剤及びワックスを含むトナーと、

コア材の表面が樹脂で被覆されたキャリアとから構成される二成分現像剤であって、

ヒドロキシステアリン酸の誘導体、グリセリン脂肪酸エステル、グリコール脂肪酸エステル、ソルビタン脂肪酸エステルから選択される多価アルコール脂肪酸エステルを結着樹脂100重量部に対して5~20重量部含み、

平均粒子径が6 nm~1 2 0 nmである無機微粉末をトナー母体粒子100重量部に対し1.5~5.5重量部含み、

前記コア材の表面を被覆する樹脂が、アミノシランカップリング剤とフッ素変性シリコーン樹脂を含むことを特徴とする二成分現像剤。

【請求項12】 少なくとも結着樹脂、着色剤及びワックスを含むトナーと、コア材の表面が樹脂で被覆されたキャリアとから構成される二成分現像剤であって、

ヒドロキシステアリン酸の誘導体、グリセリン脂肪酸エステル、グリコール脂肪酸エステル、ソルビタン脂肪酸エステルから選択される多価アルコール脂肪酸エステルを結着樹脂100重量部に対して5~20重量部含み、

平均粒子径が6 nm~20 nmである無機微粉末をトナー母体粒子100重量部に対し0.5~2重量部と、平均粒子径が30 nm~120 nmである無機微粉末をトナー母体粒子100重量部に対し1.0~3.5重量部とを少なくとも外添処理し、

前記コア材の表面を被覆する樹脂が、アミノシランカップリング剤とフッ素変性シリコーン樹脂を含むことを特徴とする二成分現像剤。

【請求項13】 キャリアの被覆樹脂に、アミノシランカップリング剤が被覆 樹脂100重量部中5~40重量部含有されている請求項1~12のいずれかに 記載の二成分現像剤。

【請求項14】 無機微粉末が、脂肪酸エステル、脂肪酸アミド、及び脂肪酸金属塩から選ばれる少なくとも1種を表面処理したシリカ又は酸化チタン微粉末を含む請求項1~12のいずれかに記載の二成分現像剤。

【請求項15】 無機微粉末が、シリコーンオイルを表面処理したシリカ又は酸化チタン微粉末を含む請求項1~12のいずれかに記載の二成分現像剤。

請求項1~15のいずれかに記載の二成分現像剤を供給することを特徴とする 画像形成装置。

【請求項17】 少なくとも像担持体と前記像担持体に静電潜像を形成する帯電手段とトナー担持体を含むトナー像形成ステーションを複数個有し、前記像担持体上に形成した静電潜像を請求項1~15のいずれかに記載の二成分現像剤により顕像化し、静電潜像を顕像化した前記トナー像を、前記像担持体に無端状の転写体を当接させて前記転写体に転写させる一次転写プロセスが順次連続して実行して、前記転写体に多層の転写トナー画像を形成し、その後前記転写体に形成した多層のトナー像を、一括して転写媒体に転写させる二次転写プロセスが実行されるよう構成された転写システムを具備し、前記転写プロセスが、第1の一次転写位置から第2の一次転写位置までの距離、又は第2の一次転写位置から第3の一次転写位置までの距離、又は第3の一次転写位置までの距離をd1(mm)、感光体の周速度をv(mm/s)とした場合、d1/v≤0.65(sec)の条件を満足することを特徴とする画像形成装置。

【請求項18】 少なくとも像担持体と前記像担持体に静電潜像を形成する帯電手段とトナー担持体を含むトナー像形成ステーションを複数個有し、前記像担持体上に形成した静電潜像を請求項1~15のいずれかに記載の二成分現像剤により顕像化し、静電潜像を顕像化した前記トナー像を、順次連続して転写媒体に転写させる転写プロセスが実行されるよう構成された転写システムを具備し、前記転写プロセスが、第1の転写位置から第2の転写位置までの距離、又は第2の転写位置から第3の転写位置までの距離、又は第3の転写位置から第4の転写位置までの距離をd1(mm)、感光体の周速度をv(mm/s)とした場合、d1/v≤0.65(sec)の条件を満足することを特徴とする画像形成装置。

【発明の詳細な説明】

[0001]

本発明は複写機、レーザプリンタ、普通紙FAX、カラーPPC、カラーレーザプリンタやカラーFAX及びこれらの複合機に用いられる二成分現像剤及び画像形成装置に関するものである。

[0002]

【従来の技術】

近年、電子写真装置はオフィスユースの目的からパーソナルユースへと移行しつつあり、小型化、高速化、高画質化、メンテフリーなどを実現する技術が求められている。そのため転写残の廃トナーをクリーニングせずに現像において廃トナーを回収するクリーナーレスプロセスや、カラー画像の高速出力を可能とするタンデムカラープロセス、また定着時にオフセット防止のための定着オイルを使用せずとも高光沢性、高透光性を有する鮮明なカラー画像と非オフセット性を両立させるオイルレス定着が良メンテナンス性、低オゾン排気などの条件とともに要求されている。そしてこれらの機能は同時に両立させる必要があり、プロセスのみならずトナーの特性向上が重要なファクターである。

[0003]

カラープリンタでは、像担持体(以下感光体と称す)を、帯電チャージャーによるコロナ放電で帯電させ、その後各色の潜像を光信号として感光体に照射し、静電潜像を形成し、第1色、例えばイエロートナーで現像し、潜像を顕像化する。その後感光体に、イエロートナーの帯電と逆極性に帯電された転写体を当接し、感光体上に形成されたイエロートナー像を転写する。感光体は転写時に残留したトナーをクリーニングしたのち除電され、第1のカラートナーの現像、転写を終える。その後マゼンタ、シアンなどのトナーに対してもイエロートナーと同様な操作を繰り返し、各色のトナー像を転写体上で重ね合わせてカラー像を形成する方法が取られている。そしてこれらの重畳したトナー像はトナーと逆極性に帯電した紙に転写される4パス方式のカラープロセスが実用化されている。

[0004]

また、帯電器、感光体、現像部等を有する像形成ステーションを複数並べて配置し、感光体に無端状の転写体を当接させて転写体に順次各色のトナーを連続し

[0005]

定着プロセスにおいては、カラー画像ではカラートナーを溶融混色させ透光性 を上げる必要がある。トナーの溶融不良が起こるとトナー画像表面又は内部に於 いて光の散乱が生じて、トナー色素本来の色調が損なわれると共に重なった部分 では下層まで光が入射せず、色再現性が低下する。従って、トナーには完全溶融 特性を有し、色調を妨げないような透光性を有することが必要条件である。OH P用紙での光透過性がカラーでのプレゼンテーション機会の増加で、その必要は より大きくなっている。

[0006]

カラー画像を得る際に、定着ローラ表面にトナーが付着してオフセットが生じ るため定着ローラに多量のオイル等を塗布しなければならず、取扱や、機器の構 成が複雑になる。そのため機器の小型化、メンテフリー化、低コスト化のために 、後述する定着時にオイルを使用しないオイルレス定着の実現が要求される。こ れを可能とするため、シャープメルト特性を有する結着樹脂中にワックス等の離 型剤を添加する構成が実用化されつつある。

[0007]

しかしこのようなトナーの構成での課題は、トナーの凝集性が強い特質を有す るため、転写時のトナー像乱れ、転写不良の傾向がより顕著に生じ、転写と定着 の両立が困難となる。また二成分現像として使用する際に、粒子間の衝突、摩擦 、または粒子と現像器との衝突、摩擦等の機械的な衝突、摩擦による発熱により 、キャリア表面にトナーの低融点成分が付着するスペントが生じ易く、キャリア の帯電能力を低下させ現像剤の長寿命化を妨げとなる。

[0008]

[0009]

しかし、キャリアとの接着界面での樹脂接着強度が弱く、また樹脂の強度が不足するため、十分な対衝撃性が得られていない。またフッ素の帯電性からトナーを負帯電にすることが困難で、トナーに十分な帯電を与えることができず、画像のカブリや濃度ムラを生ずるなどの問題があった。

[0010]

また、下記特許文献 2 等においては、高湿度雰囲気でのトナーの帯電量の低下を防止し、現像剤の耐久性の改良を目的とし、成分を限定したトナーとの組み合わせにおいて、アミノシランカップリング剤を含有したシリコーン樹脂で被覆されたキャリアが提案されているが、トナーのスペント化防止に対しては、充分なものではなかった。

[0011]

下記特許文献3には、正帯電型トナーに対し、被覆層のシリコーン樹脂にフッ素置換アルキル基を導入したキャリアが提案されている。さらには、特開2002-23429号公報(特許文献4)では、高速プロセスにおいて、現像能力が高く、それが長期において劣化しないものとして、導電性カーボンと架橋型フッ素変性シリコーン樹脂を含有するコーティングキャリアが提案されている。シリコーン樹脂の優れた帯電特性を生かすとともにフッ素置換アルキル基によって、滑り性・剥離性・撥水性等の特徴を付与し、摩耗・はがれ・クラック等が発生しにくい上、スペント化も防止できるとしているが、摩耗・はがれ・クラック等についても満足の行くものではない上に、正帯電性を有するトナーにおいては適正な帯電量が得られるものの、負帯電性を有するトナーを用いた場合、帯電量が低

過ぎ、逆帯電性トナー(正帯電性を有するトナー)が多量に発生し、カブリやトナー飛散等の悪化が生じ、使用に耐えるものではなかった。

[0012]

またトナーにおいて、種々の構成が提案されている。周知のように電子写真方法に使用される静電荷現像用のトナーは一般的に結着樹脂である樹脂成分、顔料もしくは染料からなる着色成分および可塑剤、電荷制御剤、更に必要に応じて離型剤などの添加成分によって構成されている。樹脂成分として天然または合成樹脂が単独あるいは適時混合して使用される。

[0013]

そして、上記添加剤を適当な割合で予備混合し、熱溶融によって加熱混練し、 気流式衝突板方式により微粉砕し、微粉分級されてトナー母体が完成する。また 化学重合的な方法によりトナー母体が作成される方法もある。その後このトナー 母体に例えば疎水性シリカなどの外添剤を外添処理してトナーが完成する。一成 分現像では、トナーのみで構成されるが、トナーと磁性粒子からなるキャリアと 混合することによって二成分現像剤が得られる。

[0014]

下記特許文献5では、外添剤を高速ガス流中に投入する外添剤投入手段と、粉砕原料および外添剤をのせた高速ガス流の流路に設けた衝突板とからなり、粉砕原料を衝突板に衝突させ粉砕させると共に、衝突板の付近で外添剤を粉砕原料に衝突させ混合する構成により、粉砕体と添加成分との均質な混合が容易に行うことができる効果が開示されている。しかしこの構成は添加成分との均質な混合を目的とするものであり、本発明の目的の小粒径化、粗粉サイドのシャープカット性、さらにはワックスを添加したオイルレス定着トナーの構成における粉砕生産性の改善に関する示唆はなされていない。特にワックスを高濃度で添加したトナーを衝突板方式での粉砕機ではワックスのトナー表面への露出が過多となりキャリアへのスペント、感光体へのフィルミングの要因となる。

[0015]

また下記特許文献 6 には、トナー用粗粒子を中間粉砕処理し、得られる平均粒径が 1 0 ~ 5 0 μ mのトナー用中間粒子と平均粒径が 1 μ m以下の改質用微粒子

との混合体粉末を機械式粉砕機によって摩擦粉砕処理し、トナー粒子に改質用微粒子が固着されてなるトナーを得る構成により、改質用微粒子が良好にトナー粒子に固着されてなり、高い流動性と優れた耐久性を有するトナーを高い効率で製造できる効果が開示されている。しかし本発明の目的の小粒径化、粗粉サイドのシャープカット性、さらにはワックスを添加したオイルレス定着トナーの構成における粉砕生産性の改善に関する示唆はなされていない。

[0016]

また、トナーの粒度分布を特定するトナーにより画質向上を可能とする構成が開示されているが、その粒度分布構成を具現化する手段として、たとえばエルボージェット分級機により粗粉と微粉を同時にカットする手段が示されている。しかし、粉砕工程で所定の粒度分布にする手段の内容の開示はなく、粗粉分級を介することにより小粒径化する構成では、生産収率が低下する課題がある。またオイルレス定着を実現するトナーでは高温オフセット防止のため、樹脂を高粘度する構成となり、一層の粉砕性効率が望まれる。

[0017]

添加される離型剤、ワックスとしては、下記特許文献 7 では脱遊離脂肪酸型カルナウバワックス及び/又はモンタン系エステルワックス、酸価 $10 \sim 30$ の酸化ライスワックスの使用、また下記特許文献 8 では、融点 $85 \sim 100$ ℃、天然ガス系フィッシャートロプッシュワックスの存在下で重合されたビニル系共重合体、下記特許文献 9 では、多価アルコール成分とジカルボン酸及び 3 価以上の多価カルボン酸化合物とを縮重合し、離型剤の平均分散粒子径が $0.1 \sim 3 \mu$ m、外添剤の粒子径が $4 \sim 200$ n m で $1 \sim 5$ 重量部添加する旨が開示されている。下記特許文献 10 では、パーフルオロオクチルメタクリレートなどの有機フッ素化合物で変性されたポリプロピレンなどのフッ素変性ポリオレフイン系樹脂を含有する構成により定着性が向上する内容が開示されている。下記特許文献 11 では、軟化点が 11 では、ウンスを含有する低分子量ポリオレフィン、低分子量オレフィンとポリテトラフルオロエチレンとの溶融混合物を配合することにより定着時の非オフセット性が向上する内容が開示されており、定着性向上に効果がある内容が記載されている。

またトナーに帯電性を付与する電荷制御剤としては、下記特許文献12等にベンジル酸誘導体の金属塩を用いたトナーが開示されている。また下記特許文献13等にはサリチル酸誘導体の金属塩を用いたトナーが開示されている。

[0019]

しかし、高分子量成分と低分子量成分をブレンドした、あるいは共重合させた 樹脂構成に対して、低融点の離型剤、例えばポリエチレン、ポリプロピレンワッ クス等は、定着時ヒートローラからの離型性を良くして耐オフセット性を高める 目的で添加される。しかしこれらの離型剤は結着樹脂中での分散性を向上させる のが困難で、逆極性トナーが発生し易く、非画像部へのカブリが発生する。キャ リアへのスペントが発生しやすく、感光体フィルミングを生じ易い課題がある。

[0020]

また転写不良の要因となる。さらには先に記載したタンデム方式で、像形成ステーション間の距離がより短くなる転写構成では、トナーの電荷作用により反発され、トナー像の飛び散りによる画像乱れ、転写効率の低下、転写時の文字の中抜けが生じ易くなる。

[0021]

【特許文献1】

特開昭61-80161号公報

[0022]

【特許文献2】

特許第2744790号公報

[0023]

【特許文献3】

特許第2801507号公報

[0024]

【特許文献4】

特開2002-23429号公報

[0025]

【特許文献5】

特開平2-271364号公報

[0026]

【特許文献6】

特開平6-89045号公報

[0027]

【特許文献7】

特開平2-266372号公報

[0028]

【特許文献8】

特開平9-281748号公報

[0029]

【特許文献9】

特開平10-327196号公報

[0030]

【特許文献10】

特開平5-333584号公報

[0031]

【特許文献11】

特開平5-188632号公報

[0032]

【特許文献12】

特開平7-84409号公報

[0033]

【特許文献13】

特開平7-2171097号公報

[0034]

【発明が解決しようとする課題】

本発明は、前記従来の問題を解決するため、定着ローラにオイルを使用しない

[0035]

またトナーを小粒径化して画質向上させる二成分現像剤を提供することにある

[0036]

また、二成分現像剤において、ベタ画像の連続使用時にトナー消費が多くなったときのトナーの急速補給に対しての帯電立ち上がり性を良くし、帯電不良に伴うカブリ等の画像劣化を防止することを目的とする。

[0037]

また、複数の感光体及び現像部を有する像形成ステーションを並べて配置し、 転写媒体に順次各色のトナーを連続して転写プロセスを実行するタンデムカラー プロセスにおいて、転写時の中抜けや飛び散りを防止し、高転写効率が得られる 二成分現像剤及び画像形成装置を提供することを目的とする。

[0038]

【課題を解決するための手段】

前記目的を達成するため、本発明の第1番目の二成分現像剤は、少なくとも結着樹脂、着色剤及びワックスを含むトナーと、コア材の表面が樹脂で被覆されたキャリアとから構成される二成分現像剤であって、示差走査熱量計(DSC)法による吸熱ピーク温度が50~120℃であるエステル系ワックスを結着樹脂100重量部に対して5~20重量部含み、平均粒子径が6nm~120nmである無機微粉末をトナー母体粒子100重量部に対し0.5~5.5重量部含み、前記コア材の表面を被覆する樹脂がアミノシランカップリング剤を含むフッ素変性シリコーン樹脂を少なくとも有する。

[0039]

また、本発明の第2番目の二成分現像剤は、少なくとも結着樹脂、着色剤及び ワックスを含むトナーと、コア材の表面が樹脂で被覆されたキャリアとから構成

[0040]

また、本発明の第3番目の二成分現像剤は、少なくとも結着樹脂、着色剤及びワックスを含むトナーと、コア材の表面が樹脂で被覆されたキャリアとから構成される二成分現像剤であって、少なくとも炭素数5~100の長鎖アルキルアルコール、不飽和多価カルボン酸又はその無水物、及び不飽和炭化水素系ワックスとの反応により得られるワックスを結着樹脂100重量部に対して5~20重量部含み、平均粒子径が6nm~120nmである無機微粉末をトナー母体粒子100重量部に対し0.5~5.5重量部含み、前記コア材の表面を被覆する樹脂がアミノシランカップリング剤を含むフッ素変性シリコーン樹脂を少なくとも有する。

[0041]

また、本発明の第4番目の二成分現像剤は、少なくとも結着樹脂、着色剤及びワックスを含むトナーと、コア材の表面が樹脂で被覆されたキャリアとから構成される二成分現像剤であって、少なくとも炭素数5~100の長鎖アルキルアルコール、不飽和多価カルボン酸又はその無水物、及び不飽和炭化水素系ワックスとの反応により得られるワックスを結着樹脂100重量部に対して5~20重量部含み、平均粒子径が6nm~20nmである無機微粉末をトナー母体粒子100重量部に対し0.5~2重量部と、平均粒子径が30nm~120nmである無機微粉末をトナー母体粒子100重量部に対し1.0~3.5重量部とを少なくとも外添処理し、前記コア材の表面を被覆する樹脂がアミノシランカップリング剤を含むフッ素変性シリコーン樹脂を少なくとも有する。

[0042]

また、本発明の第5番目の二成分現像剤は、少なくとも結着樹脂、着色剤及びワックスを含むトナーと、コア材の表面が樹脂で被覆されたキャリアとから構成される二成分現像剤であって、炭素数16~24を有する脂肪族アミド系のワックス、又は、飽和または1~2価の不飽和の脂肪酸のアルキレンビス脂肪酸アミド系のワックスを結着樹脂100重量部に対して5~20重量部含み、平均粒子径が6nm~120nmである無機微粉末をトナー母体粒子100重量部に対し0.5~5.5重量部含み、前記コア材の表面を被覆する樹脂がアミノシランカップリング剤を含むフッ素変性シリコーン樹脂を少なくとも有する。

[0043]

また、本発明の第6番目の二成分現像剤は、少なくとも結着樹脂、着色剤及びワックスを含むトナーと、コア材の表面が樹脂で被覆されたキャリアとから構成される二成分現像剤であって、炭素数16~24を有する脂肪族アミド系のワックス、又は、飽和または1~2価の不飽和の脂肪酸のアルキレンビス脂肪酸アミド系のワックスを結着樹脂100重量部に対して5~20重量部含み、平均粒子径が6nm~20nmである無機微粉末をトナー母体粒子100重量部に対し0.5~2重量部と、平均粒子径が30nm~120nmである無機微粉末をトナー母体粒子100重量部に対し1.0~3.5重量部とを少なくとも外添処理し、前記コア材の表面を被覆する樹脂がアミノシランカップリング剤を含むフッ素変性シリコーン樹脂を少なくとも有する。

[0044]

また、本発明の第7番目の二成分現像剤は、少なくとも結着樹脂、着色剤及びワックスを含むトナーと、コア材の表面が樹脂で被覆されたキャリアとから構成される二成分現像剤であって、ヒドロキシステアリン酸の誘導体、グリセリン脂肪酸エステル、グリコール脂肪酸エステル、ソルビタン脂肪酸エステルから選択される多価アルコール脂肪酸エステルを結着樹脂100重量部に対して5~20重量部含み、前記コア材の表面を被覆する樹脂がアミノシランカップリング剤を含むフッ素変性シリコーン樹脂を少なくとも有する。

[0045]

また、本発明の第8番目の二成分現像剤は、少なくとも結着樹脂、着色剤及び

[0046]

次に本発明の第1番目の画像形成装置は、感光体と現像ローラ間に直流バイアスと共に、周波数が $1\sim10$ k H z、バイアスが $1.0\sim2.5$ k V (p-p) である交流バイアスを印可し、かつ感光体と現像ローラ間の周速度比が $1:1.2\sim1:2$ である現像手段を具備し、請求項 $1\sim15$ のいずれかに記載の二成分現像剤を供給することを特徴とする。

[0047]

次に本発明の第2番目の画像形成装置は、少なくとも像担持体と前記像担持体に静電潜像を形成する帯電手段とトナー担持体を含むトナー像形成ステーションを複数個有し、前記像担持体上に形成した静電潜像を請求項1~15のいずれかに記載の二成分現像剤により顕像化し、静電潜像を顕像化した前記トナー像を、前記像担持体に無端状の転写体を当接させて前記転写体に転写させる一次転写プロセスが順次連続して実行して、前記転写体に多層の転写トナー画像を形成し、その後前記転写体に形成した多層のトナー像を、一括して転写媒体に転写させる二次転写プロセスが実行されるよう構成された転写システムを具備し、前記転写プロセスが、第1の一次転写位置から第2の一次転写位置までの距離、又は第2の一次転写位置から第3の一次転写位置までの距離、又は第3の一次転写位置から第4の一次転写位置までの距離をd1(mm)、感光体の周速度をv(mm/s)とした場合、d1/v≤0.65(sec)の条件を満足することを特徴とする。

次に本発明の第3番目の画像形成装置は、少なくとも像担持体と前記像担持体に静電潜像を形成する帯電手段とトナー担持体を含むトナー像形成ステーションを複数個有し、前記像担持体上に形成した静電潜像を請求項 $1\sim15$ のいずれかに記載の二成分現像剤により顕像化し、静電潜像を顕像化した前記トナー像を、順次連続して転写媒体に転写させる転写プロセスが実行されるよう構成された転写システムを具備し、前記転写プロセスが、第1の転写位置から第2の転写位置までの距離、又は第2の転写位置から第3の転写位置までの距離、又は第3の転写位置から第4の転写位置までの距離をd1(mm)、感光体の周速度をv(mm/s)とした場合、d $1/v\leq0$.65(sec)の条件を満足することを特徴とする。

[0049]

【発明の実施の形態】

本発明の二成分現像剤及びこれを用いた画像形成装置は、デジタル高画質化、 高精細色再現性カラー化、及び定着ローラにオフセット防止用のオイルを使用し ないで高透光性と耐オフセット性の両立を図ることができ、さらには二成分現像 におけるキャリアのトナー成分によるスペントを防止して長寿命化を実現するも のである。

(1) キャリア

本実施形態の樹脂被覆キャリアは、キャリア芯材に、アミノシランカップリング剤を含有したフッ素変性シリコーン系樹脂からなる被覆樹脂層を有するキャリアが好適に使用される。

[0050]

キャリア芯材には、鉄粉系キャリア芯材、フェライト系キャリア芯材、マグネタイト系キャリア芯材、また磁性体を樹脂中に分散した樹脂分散型キャリア芯材等がある。

[0051]

ここでフェライト系キャリア芯材の例としては、一般的に下記式で表される。

[0052]

式中、Mは、Cu, Zn, Fe, Mg, Mn, Ca, Li, Ti, Ni, Sn, Sr, Al, Ba, Co, Mo等から選ばれる少なくとも1種を含有する。またX, Yは重量mol比を示し、かつ条件X+Y=100を満たす。

[0053]

フェライト系キャリア芯材は、Fe₂O₃を主原料に、Mは、Cu, Zn, Fe, Mg, Mn, Ca, Li, Ti, Ni, Sn, Sr, Al, Ba, Co, Mo 等から選ばれる少なくとも1種の酸化物を混合して原料に用いる。

[0054]

フェライト系キャリア芯材の製造方法の例としては、まず上記各酸化物等の原料を適量配合し、湿式ボールミルで10時間粉砕、混合し、乾燥させた後、950で4時間保持する。これを湿式ボールミルで24時間粉砕し、さらに結着剤としてポリビニルアルコール、消泡剤、分散剤等を加え、原料粒子径が 5μ m以下のスラリーとする。このスラリーを造粒乾燥し、造粒物を得て、酸素濃度をコントロールしながら1300で6時間保持した後、粉砕し、さらに所望の粒度分布に分級して得る。

[0055]

本発明の樹脂被覆層に用いる樹脂としては、フッ素変性シリコーン系樹脂が必須である。そのフッ素変性シリコーン系樹脂としては、パーフロロアルキル基含有の有機ケイ素化合物を必須とし、下記(化1)及び/または(化2)を加水分解させて得られる硬化性架橋型フッ素変性シリコーン樹脂が好ましい。

[0056]

【化1】

$$\begin{pmatrix}
R_1 \\
| \\
O - Si \\
| \\
R_2
\end{pmatrix}$$

(式中、 R_1 、 R_2 、 R_3 は水素原子、ハロゲン原子、ヒドロキシ基、 メトキシ基、炭素数 1 ~ 4のアルキル基、フェニル基を示す。)

[0057]

【化2】

$$\begin{array}{c|c}
 & R_1 \\
 & | \\
 & O - Si - O - I
\end{array}$$

$$\begin{array}{c|c}
 & R_3 \\
 & R_3
\end{array}$$

(式中、 R_1 、 R_2 、 R_3 は水素原子、ハロゲン原子、ヒドロキシ基、メトキシ基、炭素数 1 \sim 4 のアルキル基、フェニル基を示す。)

[0058]

(式中、 R_1 、 R_2 、 R_3 は水素原子、ハロゲン原子、ヒドロキシ基、メトキシ基、炭素数 $1\sim4$ のアルキル基、フェニル基を示す。)

パーフロロアルキル基含有の有機ケイ素化合物の例としては、 $CF_3CH_2CH_2Si$ (OCH3) $_3$ 、 $C_4F_9CH_2CH_2Si$ (CH3) (OCH3) $_2$ 、 $C_8F_{17}CH_2CH_2Si$ (OCH3) $_3$ 、 $C_8F_{17}CH_2CH_2Si$ (OC₂H₅) $_3$ 、(CF3) $_2CF$ (CF2) $_3CH_2CH_2Si$ (OCH3) $_3$ 等が挙げられるが、特にトリフロロプロピル基を有するものが好ましい。

[0059]

また、本実施形態においては、アミノシランカップリング剤を被覆樹脂層に含 有させる。このアミノシランカップリング剤としては公知のものでよく、例えば γ - (2-rミノエチル) アミノプロピルトリメトキシシラン、 γ - (2-rミ ノエチル)アミノプロピルメチルジメトキシシラン、オクタデシルメチル〔3 -(トリメトキシシリル) プロピル] アンモニウムクロライド (上からSH602 0、SZ6023、AY43-021:共に東レダウコーニングシリコーン社製 商品名)、KBM602、KBM603、KBE903、KBM573(信越シ リコーン社製商品名)等が挙げられるが、特には、1級アミンのものが好ましい 。メチル基、エチル基、フェニル基等で置換された2級または3級のアミンでは 極性が弱く、トナーとの帯電立ち上がり特性に対して効果が少ない。また、アミ ノ基の部分が、アミノメチル基、アミノエチル基、アミノフェニル基になると、 シランカップリング剤の最先端は、1級アミンであるが、シランから伸びる直鎖 の有機基中のアミノ基は、トナーとの帯電立ち上がり特性に寄与せず、逆に高湿 時に水分の影響を受けるため、最先端のアミノ基により初期のトナーとの帯電付 与能力は有するものの、耐刷時に帯電付与能力が下がり、最終的には寿命が短い ものとなる。

[0060]

これらのようなアミノシランカップリング剤を用いることにより、トナーに対して正極性の帯電性を有するフッ素変性シリコーン樹脂層に、シャープな帯電量分布を確保したまま、負帯電性を付与でき、かつ補給されたトナーに対し、早い帯電立ち上がり性を有し、トナー消費量を低減させることができる。さらに、アミノシランカップリング剤が架橋剤の如き効果を発現し、ベース樹脂であるフッ素変性シリコーン樹脂層の架橋度を向上させ、被膜樹脂硬度をさらに向上させ、長期使用での摩耗・剥離等が低減でき、耐スペント性を向上させ、帯電の安定化が図られ、耐久性が向上する。さらに後述する特定の低融点のワックスを一定量以上添加したトナーと組合わせて使用することにより、現像器内でのハンドリング性が向上し、画像上において現像の奥側と手前側での濃度の均一性が向上する。またベタ画像採取後に履歴が残るいわゆる現像メモリーも低減できる。

[0061]

アミノシランカップリング剤の使用割合としては、樹脂に対して、5~40重量%、好ましくは10~30重量%である。5重量%未満であるとアミノシランカップリング剤の効果がなく、40重量%を越えると樹脂被覆層の架橋度が高くなり過ぎ、チャージアップ現象を引き起こし易くなり、現像性不足等の画像欠陥の発生原因となることがある。

[0062]

また、帯電安定化のため、チャージアップを防止するため、樹脂被覆層には導電性微粒子を含有することも可能である。導電性微粒子としては、オイルファーネスカーボンやアセチレンブラックのカーボンブラック、酸化チタン、酸化亜鉛などの半導電性酸化物、酸化チタン、酸化亜鉛、硫酸バリウム、ホウ酸アルミニウム、チタン酸カリウム等の粉末表面を酸化スズやカーボンブラック、金属で被覆したもの等が挙げられ、その固有抵抗が $1010\Omega \cdot c$ m以下のものが好ましい。導電性微粒子を用いる場合の含有量は $1\sim15$ 重量%が好ましい。導電性微粒子は、樹脂被覆層に対し、ある程度の含有量であれば、フィラー効果により樹脂被覆層の硬度の向上をもたらすが、15 重量%を越えると、逆に樹脂被覆層の形成を阻害し、密着性・硬度の低下の原因となる。さらには、フルカラー現像剤における導電性微粒子の過剰の含有量は、紙面上に転写・定着されたトナーの色汚れの原因となる。

[0063]

本実施形態のキャリアの平均粒径は $20\sim70\mu$ mが好ましい。キャリアの平均粒径が 20μ m未満では、キャリア粒子の分布において微粒子の存在率が高くなり、それらのキャリア粒子はキャリア1粒子当たりの磁化が低くなるため、キャリアが感光体に現像されやすくなる。また、キャリアの平均粒子が 70μ mを超えると、キャリア粒子の比表面積が小さくなり、トナー保持力が弱くなるため、トナー飛散が発生する。また、ベタ部分の多いフルカラーでは、特にベタ部の再現が悪く好ましくない。

[0064]

キャリア芯材上に被覆層を形成する方法には、特に制限はなく、公知の被覆方法、例えば、キャリア芯材である粉末を、被膜層形成用溶液中に浸漬する浸漬法

[0065]

被膜層形成用塗布液に使用する溶剤は、前記コート樹脂を溶解するものであれば特に限定されるものではなく、用いられるコート樹脂に適合するように選択することができる。一般的には、例えば、トルエン、キシレン等の芳香族炭化水素類、アセトン、メチルエチルケトン等のケトン類、テトラヒドロフラン、ジオキサンなどのエーテル類が使用できる。

[0066]

樹脂被覆量はキャリア芯材に対し、0.2~6.0重量%が好ましく、より好ましくは0.5~5.0重量%、さらに好ましくは0.6~4.0重量%、0.7~3重量%である。樹脂の被覆量が0.2重量%未満になると、キャリア表面に均一な被覆を形成することができずキャリア芯材の特性の影響を大きく受けてしまい、本発明のフッ素変性シリコーン樹脂とアミノシランカップリング剤の効果を充分に発揮できない。6.0重量%を超えると被覆層が厚くなり過ぎ、キャリア粒子同士の造粒が発生し、均一なキャリア粒子が得られない傾向にある。樹脂を被覆した後は、硬化処理の条件としては、120~280℃、0.5~2.5時間が適当である。処理温度が低いと被膜樹脂自体の硬度が低下する。処理温度が高すぎると帯電低下が生じる。

(2) ワックス

本実施形態のトナーに添加するワックスとしては、ヨウ素価が25以下、けん 化価が30~300からなる構成のワックスを、結着樹脂100重量部に対して 5~20重量部添加することにより、トナー多層転写時にトナーの電荷作用によ る反発が緩和され、転写効率の低下、転写時の文字の中抜け、逆転写を抑えるこ

[0067]

この結着樹脂は酸価が1~40mgKOH/gであればより好ましい。

[0068]

好ましくは添加量としては結着樹脂100重量部に対して7~20重量部添加することが好ましい。5重量部以下であると、定着性向上の効果が得られず、20重量部以上では貯蔵安定性に難点がある。

[0069]

ヨウ素価が25より大きいと、一次転写でのトナー多層転写時にトナーの電荷作用による反発が緩和されにくくなる。環境依存性が大きく、また長期連続使用時に材料の帯電性の変化が大きくなり画像の安定性を阻害する。また現像メモリーも発生しやすくなる。けん化価が30より小さくなると、不けん化物、炭化水素の存在が増加し、感光体フィルミング、帯電性の悪化を生じる。また電荷制御剤との分散性が不良となり、フィルミングや連続使用時の帯電性の低下を招く。300より大きくなると樹脂中でのワックスの分散性が悪化し、トナーの電荷作用による反発が緩和されにくくなる。またカブリやトナー飛散の増大を招く。樹脂酸価が1mgKOH/gより小さくなると、トナー多層転写時にトナーの電荷作用による反発が緩和されにくくなる。樹脂酸価が40mgKOH/gより大きくなると、耐環境性が悪化し、かぶり増大を招く。

[0070]

DSC法による融点が $50\sim120$ $\mathbb C$ のものが好ましい。より好ましくはヨウ素価が15 以下、けん化価が $50\sim250$ 、DSC法による融点が $55\sim90$ $\mathbb C$ 、さらに好ましくは、ヨウ素価が5 以下、けん化価が $70\sim200$ 、DSC法による融点が $60\sim85$ $\mathbb C$ のものである。

さらに融点以上の温度での10℃変化時の容積増加率が2~30%の材料が好ましい。固体から液体に変わるとき急激に膨張することで定着時の熱で溶融したとき、トナー相互の接着性がより強化され、より定着性が向上し、また定着ローラとの離型性も良くなり耐オフセット性も向上する。2より小さくなると効果が少なく、30より大きくなると混練時の分散性が低下する傾向となる。

[0072]

またワックスの220℃における加熱減量は8重量%以下であることが好まし い。加熱減量が8重量%より大きくなると、加熱混練時に結着樹脂中に結着樹脂 中に残留し、結着樹脂のガラス転移点を大きく低下させトナーの貯蔵安定性を損 なう。現像特性に悪影響を与え、カブリや感光体フィルミングを生じさせる。 ヨウ素価が25以下、けん化価が30~300からなる構成のワックスは、ゲル 浸透クロマトグラフィー(GPC)における分子量分布において、数平均分子量 が100~5000、重量平均分子量が200~10000、重量平均分子量と 数平均分子量の比(重量平均分子量/数平均分子量)が1.01~8、Z平均分 子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.02~10、分 子量 $5 \times 10^2 \sim 1 \times 10^4$ の領域に少なくとも一つの分子量極大ピークを有して いることが好ましい。より好ましくは数平均分子量が500~4500、重量平 均分子量が600~9000、重量平均分子量と数平均分子量の比(重量平均分 子量/数平均分子量)が1.01~7、2平均分子量と数平均分子量の比(2平 均分子量/数平均分子量)が1.02~9、さらに好ましくは数平均分子量が7 00~4000、重量平均分子量が800~8000、重量平均分子量と数平均 分子量の比(重量平均分子量/数平均分子量)が1.01~6、Z平均分子量と 数平均分子量の比(2平均分子量/数平均分子量)が1.02~8である。

[0073]

数平均分子量が100より小さく、重量平均分子量が200より小さくなると保存安定性が悪化する。分子量極大ピークが5×10²よりも小さい範囲に位置していると、ワックスとともに電荷制御剤の分散性が悪化する。また現像器内でのハンドリング性が低下し、トナー濃度の均一性保持を阻害する。トナーの保存

[0074]

数平均分子量が5000より大きく、重量平均分子量が10000より大きく、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が8より大きく、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が10より大きく、分子量極大ピークが1×104の領域よりも大きい範囲に位置していると、離型作用が弱くなり定着性、耐オフセット性等の定着性機能が低下する。

[0075]

またワックスとしては、メドウフォーム油誘導体、カルナウバワックス、ホホバ油誘導体、木口ウ、ミツロウ、オゾケライト、カルナウバワックス、キャンデリアワックス、モンタンワックス、セレシンワックス、ライスワックス等の材料も好ましく、一種類又は二種類以上組み合わせての使用も可能である。特にDSC法による融点が76~90℃であるカルナウバワックス、66~80℃であるキャンデリラワックス、64~78℃である水添ホホバ油、64~78℃である水添メドウフォーム油又は74~90℃であるライスワックスからなる群より選ばれた少なくとも1種又は2種以上のワックスもより好ましい。

[0076]

ケン化価は、試料の1gをけん化するのに要する水酸化カリウムKOHのミリグラム数をいう。酸価とエステル価の和にあたる。ケン化価値を測定するには約0.5Nの水酸化カリウムのアルコール溶液中で試料をケン化した後、0.5Nの塩酸で過剰の水酸化カリウムを滴定する。

[0077]

ヨウ素価は試料にハロゲンを作用させたときに、吸収されるハロゲンの量をヨウ素に換算し、試料100gに対するg数で表したものをいう。脂肪100gに吸収されるヨウ素のグラム数であり、この値が大きいほど試料中の脂肪酸の不飽和度が高いことを示す。試料のクロロホルムまたは四塩化炭素溶液にヨウ素と塩化水銀(II)のアルコール溶液又は塩化ヨウ素の氷酢酸溶液を加えて、放置後反応しないで残ったヨウ素をチオ硫酸ナトリウム標準液で滴定して吸収ヨウ素量を

[0078]

加熱減量の測定は試料セルの重量を0.1 mgまで精秤 $(W_1 mg)$ し、これに試料 $10\sim15 mg$ を入れ、0.1 mgまで精秤する $(W_2 mg)$ 。試料セルを示差熱天秤にセットし、秤量感度を5 mgにして測定開始する。温度制御は下記プログラムにて行う。測定後、チャートにより試料温度が $220 \mathbb{C}$ になった時点での重量減を0.1 mgまで読み取る $(W_3 mg)$ 。装置は、真空理工製TGD-3000、昇温速度は $10 \mathbb{C}/min$ 、最高温度は $220 \mathbb{C}$ 、保持時間は1 minで、加熱減量 $(%)=W_3/(W_2-W_1)\times100$ 、で求められる。

[0079]

メドウフォーム油誘導体としては、メドウフォーム油脂肪酸、メドウフォーム油脂肪酸の金属塩、メドウフォーム油脂肪酸エステル、水素添加メドウフォーム油、メドウフォーム油アミド、ホモメドウフォーム油アミド、メドウフォーム油トリエステル、エポキシ化メドウフォーム油のマレイン酸誘導体、メドウフォーム油脂肪酸多価アルコールエステルのイソシアネート重合物、ハロゲン化変性メドウフォーム油がオイルレス定着と現像剤の長寿命化、転写性改良に効果が得られる好ましい材料である。これらは1種又は2種以上組み合せての使用が可能である。

[0080]

メドウフォーム油をけん化分解して得られるメドウフォーム油脂肪酸は18~22個の炭素原子を有する脂肪酸からなる。その金属塩はナトリウム、カリウム、カルシウム、マグネシウム、バリウム、亜鉛、鉛、マンガン、鉄、ニッケル、コバルト、アルミニウムなどの金属塩が使用することが出来る。高温での耐オフセット性が良好である。

[0081]

メドウフォーム油脂肪酸エステルとしては例えば、メチル、エチル、ブチルやグリセリン、ペンタエリスリトール、ポリプロピレングリコール、トリメチロールプロパンなどのエステルであり、特に、メドウフォーム油脂肪酸ペンタエリスリトールトリエスリトールモノエステル、メドウフォーム油脂肪酸ペンタエリスリトールトリエス

[0082]

さらには、メドウフォーム油脂肪酸とグリセリン、ペンタエリスリトール、トリメチロールプロパン等の多価アルコールとのエステル化反応物を、トリレンジイソシアネート(TDI)、ジフェニルメタンー4,4'ージイソシアネート(MDI)、等のイソシアネートで架橋して得られるメドウフォーム油脂肪酸多価アルコールエステルのイソシアネート重合物も好ましく使用できる。キャリアへのスペント性が少なく、二成分現像剤のより長寿命化が可能となる。

[0083]

水素添加メドウフォーム油はメドウフォーム油に水素添加して不飽和結合を飽和結合としたものである。耐オフセット性とともに、光沢性、透光性を向上できる。

[0084]

メドウフォーム油アミドはメドウフォーム油を加水分解した後、エステル化することにより脂肪酸メチルエステルとし、その後、濃アンモニア水と塩化アンモニウムとの混合物と反応して得られる。さらにこれに水素添加することにより融点を調節することが可能となる。また加水分解する前に水素添加することも可能である。融点が $75\sim120$ の物が得られる。ホモメドウフォーム油アミドは、メドウフォーム油を加水分解後還元してアルコールとした後、二トリルを経て得られる。耐オフセット性とともに、光沢性、透光性を向上できる。

[0085]

ホホバ油誘導体としては、ホホバ油脂肪酸、ホホバ油脂肪酸の金属塩、ホホバ油脂肪酸エステル、水素添加ホホバ油、ホホバ油アミド、ホモホホバ油アミド、ホホバ油トリエステル、エポキシ化ホホバ油のマレイン酸誘導体、ホホバ油脂肪酸多価アルコールエステルのイソシアネート重合物、ハロゲン化変性ホホバ油がオイルレス定着と現像剤の長寿命化、転写性改良に効果が得られる好ましい材料である。これらは1種又は2種以上組み合せての使用が可能である。

[0086]

ホホバ油をけん化分解して得られるホホバ油脂肪酸は18~22個の炭素原子 を有する脂肪酸からなる。その金属塩はナトリウム、カリウム、カルシウム、マ グネシウム、バリウム、亜鉛、鉛、マンガン、鉄、ニッケル、コバルト、アルミ ニウムなどの金属塩が使用することが出来る。高温での耐オフセット性が良好で ある。

[0087]

ホホバ油脂肪酸エステルとしては例えば、メチル、エチル、ブチルやグリセリ ン、ペンタエリスリトール、ポリプロピレングリコール、トリメチロールプロパ ンなどのエステルであり、特に、ホホバ油脂肪酸ペンタエリスリトールモノエス テル、ホホバ油脂肪酸ペンタエリスリトールトリエステル、ホホバ油脂肪酸トリ メチロールプロパンエステルなどが好ましい。高温での耐オフセット性とともに 耐コールドオフセット性が良好である。

[0088]

さらには、ホホバ油脂肪酸とグリセリン、ペンタエリスリトール、トリメチロ ールプロパン等の多価アルコールとのエステル化反応物を、トリレンジイソシア ネート (TDI)、ジフェニルメタンー4、4'ージシソシアネート (MDI) 、等のイソシアネートで架橋して得られるホホバ油脂肪酸多価アルコールエステ ルのイソシアネート重合物も好ましく使用できる。キャリアへのスペント性が少 なく、二成分現像剤のより長寿命化が可能となる。

[0089]

水素添加ホホバ油はホホバ油に水素添加して不飽和結合を飽和結合としたもの である。耐オフセット性とともに、光沢性、透光性を向上できる。

[0090]

ホホバ油アミドはホホバ油を加水分解した後、エステル化することにより脂肪 酸メチルエステルとし、その後、濃アンモニア水と塩化アンモニウムとの混合物 と反応して得られる。さらにこれに水素添加することにより融点を調節すること が可能となる。また加水分解する前に水素添加することも可能である。融点が7 5~120℃の物が得られる。ホモホホバ油アミドは、ホホバ油を加水分解後還

[0091]

ヒドロキシステアリン酸の誘導体、グリセリン脂肪酸エステル、グリコール脂肪酸エステル、ソルビタン脂肪酸エステル等の多価アルコール脂肪酸エステル等の材料が好ましく、一種類又は二種類以上組み合わせての使用も可能である。前記したキャリアと組合わせた使用により、オイルレス定着と共に現像剤の長寿命かが図られ、また現像器内での均一性が保持でき、現像メモリーの発生も抑制できる。

[0092]

ヒドロキシステアリン酸の誘導体としては、12ーヒドロキシステアリン酸メチル、12ーヒドロキシステアリン酸ブチル、プロピレングリコール=モノ12ーヒドロキシステアラート、グリセリン=モノ12ーヒドロキシステアラート、エチレングリコール=モノ12ーヒドロキシステアラート等が好適な材料である。オイルレス定着における紙の巻付き防止効果と、フィルミング防止効果がある。

[0.093]

グリセリン脂肪酸エステルとしてはグリセリン=モノトリステアラート、グリセリン=ドコサノアート等が好適な材料である。オイルレス定着における低温時のコールドオフセット性緩和と、転写性低下防止効果がある。

[0094]

グリコール脂肪酸エステルとしては、プロピレングリコール=モノパルミタート、プロピレングリコール=モノステアラート等のプロピレングリコール脂肪酸エステル、エチレングリコール=モノステアラート等のエチレングリコール脂肪酸エステルが好適な材料である。オイルレス定着性とともに、現像での滑りを良くしキャリアスペント防止の効果がある。

[0095]

ソルビタン脂肪酸エステルとしては、ソルビタン=モノパルミタート、ソルビタン=モノステアラート、ソルビタン=モノトリステアラートが好適な材料であ

る。さらには、ペンタエリスリトールのステアリン酸エステル、アジピン酸とステアリン酸又はオレイン酸の混合エステル類等の材料が好ましく、一種類又は二種類以上組み合わせての使用も可能である。オイルレス定着における紙の巻付き防止効果と、フィルミング防止効果がある。

[0096]

また、本実施形態ではポリエステル樹脂中に脂肪族アミド系のワックスが添加される。これによりカラー画像における透光性を大きく向上できる。特に定着画像表面の平滑性を促進させ高画質のカラー像を得ることが可能となる。さらには定着時の複写用紙の定着ローラへの巻き付きを防止することができ、透光性と耐オフセット性の両立、転写時の中抜けを防止することが可能となる。前記したキャリアと組合わせた使用により、オイルレス定着と共にスペントの発生を抑制でき現像剤の長寿命化が図られ、また現像器内での均一性が保持でき、現像メモリーの発生も抑制できる。

[0097]

脂肪族アミド系のワックスとしては、パルミチン酸アミド、パルミトレイン酸アミド、ステアリン酸アミド、オレイン酸アミド、アラキジン酸アミド、エイコセン酸アミド、ベヘニン酸アミド、エルカ酸アミド、リグリノセリン酸アミド等の炭素数16~24を有する飽和または1価の不飽和の脂肪族アミドで、融点が70~110℃が好ましい。より好ましくは70~100℃、さらに好ましくは75~95℃である。添加量は結着樹脂100重量部に対し5~20重量部が好ましい。融点が70℃より小さくとなると樹脂中での分散性が低下し、感光体へのフィルミングが発生しやすくなる。融点が110℃より大きくなると定着画像表面の平滑性が低下し、透光性を悪化させる。また添加量が20重量部より多くなると保存安定性が悪化する。添加量が5重量部より少なくなると機能が発揮し得ない。

[0098]

さらにはメチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド 、プロピレンビスステアリン酸アミド、ブチレンビスステアリン酸アミド、メチ レンビスオレイン酸アミド、エチレンビスオレイン酸アミド、プロピレンビスオ

レイン酸アミド、ブチレンビスオレイン酸アミド、メチレンビスラウリン酸アミ ド、エチレンビスラウリン酸アミド、プロピレンビスラウリン酸アミド、ブチレ ンビスラウリン酸アミド、メチレンビスミリスチン酸アミド、エチレンビスミリ スチン酸アミド、プロピレンビスミリスチン酸アミド、ブチレンビスミリスチン 酸アミド、メチレンビスパルミチン酸アミド、エチレンビスパルミチン酸アミド 、プロピレンビスパルミチン酸アミド、ブチレンビスパルミチン酸アミド、メチ レンビスパルミトレイン酸アミド、エチレンビスパルミトレイン酸アミド、プロ ピレンビスパルミトレイン酸アミド、ブチレンビスパルミトレイン酸アミド、メ チレンビスアラキジン酸アミド、エチレンビスアラキジン酸アミド、プロピレン ビスアラキジン酸アミド、ブチレンビスアラキジン酸アミド、メチレンビスエイ コセン酸アミド、エチレンビスエイコセン酸アミド、プロピレンビスエイコセン 酸アミド、ブチレンビスエイコセン酸アミド、メチレンビスベヘニン酸アミド、 エチレンビスベヘニン酸アミド、プロピレンビスベヘニン酸アミド、ブチレンビ スベヘニン酸アミド、メチレンビスエルカ酸アミド、エチレンビスエルカ酸アミ ド、プロピレンビスエルカ酸アミド、ブチレンビスエルカ酸アミド等の飽和また は1~2価の不飽和の脂肪酸のアルキレンビス脂肪酸アミド系のワックスが好ま しい。

[0099]

これによりカラー画像における透光性を改善すると共にローラへの耐オフセット性を向上させることが可能となる。またキャリアへのスペントの発生を抑制でき現像剤の長寿命化を可能とできる。

[0100]

添加量は結着樹脂100重量部に対し5~20重量部が好ましい。融点が10 0℃より小さくとなると耐オフセットの効果が低下する。融点が145℃より高 くなると樹脂中の分散性が悪化し、カブリが増大する。添加量が5重量部より少 ないと機能が発揮し得ず、20重量部より多くなるとカブリが増大する。

[0101]

さらには、脂肪族アミド系とアルキレンビス脂肪酸アミド系を3:7~7:3 の割合でワックスを構成することにより、定着画像の表面平滑性を改善できると ともにさらにはカラー画像の高透光性と耐オフセット性の両立をより優れたものとすることができる。そのときの融点は脂肪族アミド系よりもアルキレンビス脂肪酸アミド系の方が高いことが必要である。アルキレンビス脂肪酸アミド系の融点が低くなると耐オフセット性が低下するのみでなく樹脂自体が低軟化の状態となり粉砕時の過粉砕が進み、微粉が増大し生産性の低下につながる。

[0102]

特に脂肪族アミド系は低融点材料であるため、樹脂への相溶化が進むと樹脂自体が可塑化され、耐オフセット性、保存安定性が低下し、さらには長期使用中に転写の中抜けが悪化する。そのため脂肪族アミド系よりも高融点材料のアルキレンビス脂肪酸アミド系とを組み合わせて使用することで、樹脂自体の可塑化が抑えられ、脂肪族アミド系の高透光性と表面平滑性の効果を失うことなく長期使用時の転写の中抜けを防止でき、耐オフセット性、保存安定性を維持することができる。またキャリアへのスペントの発生を抑制でき現像剤の長寿命化を可能とできる。

[0103]

また、GPCにおける分子量分布において、重量平均分子量が1000~6000、Z平均分子量が1500~9000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.1~3.8、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.5~6.5、1×103~3×104の領域に少なくとも一つの分子量極大ピークを有し、酸価5~80mgKOH/g、融点80~120℃、25℃における針入度が4以下である炭素数5~100の長鎖アルキルアルコールと不飽和多価カルボン酸又はその無水物、及び不飽和炭化水素系ワックスとの反応により得られるワックス、又は長鎖アルキルアミンと不飽和多価カルボン酸又はその無水物、及び不飽和炭化水素系ワックスとの反応により得られるワックス、又は長鎖フルキロアルキルアルコールと不飽和多価カルボン酸又はその無水物、及び不飽和炭化水素系ワックスとの反応により得られるワックス、東銀に3層のカラートナーが形成された画像において、定着ローラやベルトとの紙の分離性向上に特に効果がある。高温オフセット性を低下させること無く、OHPの透過性向上に効果がある。また、ワックスの添加

により定着特性、特にはオイルレス定着における非オフセット性と高光沢性、高 透光性を発現でき、高温保存性を低下させることがない。また定着ローラにフッ 素系やシリコン系部材を使用しても、ハーフトーン画像のオフセットを防止でき る。前記したキャリアと組合わせた使用により、オイルレス定着と共にスペント の発生を抑制でき現像剤の長寿命化が図られ、また現像器内での均一性が保持で き、現像メモリーの発生も抑制できる。

さらには連続使用時の帯電安定性が得られ、定着性と現像帯電安定性との両立が 可能となる。

さらにはこれを結着樹脂中に添加する際の分散の状態向上により、離型性、透光性等の定着性、帯電安定化等の現像性をより向上することができる。離型剤の添加により他の内添加剤の分散性を低下させる場合が考えられるが、本実施形態の添加剤の構成により双方の分散性を低下させること無く、定着性と現像性の両立を図ることができる。

[0104]

ここで、ワックスの長鎖アルキルの炭素数が5より小さいと離型作用が弱くなり分離性、高温非オフセット性が低下する。長鎖アルキルの炭素数が100より大きいと結着樹脂中での分散性が悪化する。酸価が5mgKOH/gより小さいとトナーの長期使用時の帯電量低下を招く。酸価が80mgKOH/gより大きいと耐湿性が低下し、高湿下でのかぶりが増大する。融点が80℃より小さいとトナーの保存性が低下する。融点が120℃より大きいと離型作用が弱くなり非オフセット温度幅が狭くなる。25℃における針入度が4より大きいと強靭性が低下し、長期使用中に感光体フィルミングを生じる。

[0105]

重量平均分子量が1000よりも小さく、2平均分子量が1500より小さく、重量平均分子量/数平均分子量が1.1よりも小さく、2平均分子量/数平均分子量が1.5よりも小さく、分子量極大ピークが1×10³よりも小さい範囲に位置していると、トナーの保存性が低下、感光体や中間転写体にフィルミングを発生する。また現像器内でのハンドリング性が低下し、トナー濃度の均一性を低下させる。また現像メモリーを生じ易くなる。

[0106]

重量平均分子量が6000よりも大きく、2平均分子量が9000よりも大きく、重量平均分子量/数平均分子量が3.8よりも大きく、2平均分子量/数平均分子量が6.5よりも大きく、分子量極大ピークが3×104の領域よりも大きい範囲に位置していると、離型作用が弱くなり定着オフセット性が低下する。

[0107]

より好ましくは重量平均分子量が $1000\sim5000$ 、2平均分子量が $1700\sim8000$ 、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が $1.1\sim2.8$ 、2平均分子量と数平均分子量の比(2平均分子量/数平均分子量)が $1.5\sim4.5$ 、 $1\times10^3\sim1\times10^4$ の領域に少なくとも一つの分子量極大ピークを有することが好ましく、さらに好ましくは重量平均分子量が $1000\sim2500$ 、2平均分子量が $1900\sim3000$ 、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が $1.2\sim1.8$ 、2平均分子量と数平均分子量の比(2平均分子量/数平均分子量)が $1.7\sim2.5$ 、分子量と数平均分子量の比(2平均分子量/数平均分子量)が $1.7\sim2.5$ 、分子量 $1\times10^3\sim3\times10^3$ の領域に少なくとも一つの分子量極大ピークを有することである。

[0108]

アルコールとしてはオクタノール、ドデカノール、ステアリルアルコール、ノナコサノール、ペンタデカノール等の長鎖のアルキル鎖を持つものが使用できる。またアミン類としてN-メチルヘキシルアミン、ノニルアミン、ステアリルアミン、ノナデシルアミン等が好適に使用できる。フルオロアルキルアルコールとしては、1-メトキシー(パーフルオロー2-メチルー1-プロペン)、ヘキサフルオロアセトン、3-パーフルオロオクチルー1, 2-エポキシプロパン等が好適に使用できる。不飽和多価カルボン酸又はその無水物としては、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸等が一種または二種以上使用できる。なかでもマレイン酸、無水マレイン酸がより好ましい。不飽和炭化水素系ワックスとしては、エチレン、プロピレン、 α -オレフィン等が好適に使用できる。

[0109]

不飽和多価カルボン酸またはその無水物をアルコールまたはアミンを用いて重合させ、次にこれをジグルミパーオキサイドやターシャリーブチルパーオキシイソプロピルモノカルボネート等の存在下で炭化水素系ワックスに付加重合させることにより得ることができる。

[0110]

添加量は結着樹脂100重量部に対し、5~20重量部が好ましい。5より少ないと離型効果が出にくい。20よりも多いとトナーの流動性が低下するばかりでなくそれ以上添加しても飽和して効果が向上しない。

[0111]

また、ワックスの結着樹脂中の分散平均粒子径が $0.1\sim1.5\,\mu\,\mathrm{m}$ で、分散粒子径分布が $0.1\,\mu\,\mathrm{m}$ 未満の粒子が35個数%以下、 $0.1\sim2.0\,\mu\,\mathrm{m}$ の粒子が65個数%以上、 $2.0\,\mu\,\mathrm{m}$ を越える粒子が5個数%以下であることが好ましい。TEMによるトナーの断面写真から粒径とその個数を求めた。

[0112]

分散平均粒子径が 0.1μ mより小さく、 0.1μ m未満の粒子が3.5 個数% より多いとき、離型剤としての離型効果が小さく、定着能力が発揮できない。分散平均粒子径が 1.5μ mより大きく、 2.0μ mを越える粒子が5 個数%よりも多いとき、樹脂中でのワックスの分散性が悪化し、トナーの電荷作用による反発が緩和されにくくなる。またカブリやトナー飛散の増大を招く。

[0113]

また樹脂中でワックスは線状または楕円状構造の場合、長軸径が平均で0.5~3 μ m、0.5 μ m未満の粒子が3.5 個数%以下、0.5~3.5 μ mの粒子が6.5 個数%以上、3.5 μ mを越える粒子が5 個数%以下であることが好ましい。平均径が0.5 μ mより小さく、0.5 μ m未満の粒子が3.5 個数%より多いとき、離型剤としての離型効果が小さく、定着能力が発揮できない。平均径が3 μ mより大きく、3.5 μ mを越える粒子が5 個数%よりも多いとき、樹脂中でのワックスの分散性が悪化し、トナーの電荷作用による反発が緩和されにくくなる。またカブリやトナー飛散の増大を招く。現像器内でのハンドリング性が低下し、また現像メモリーが発生し易くなる。

(3) 結着樹脂

本実施形態の結着樹脂としてGPCにおける分子量分布で、2×10³~3×10⁴の領域に少なくとも一つの分子量極大ピークを有し、かつ、高分子量領域に存在する成分として3×10⁴以上の分子量成分を結着樹脂全体に対し5%以上有し、重量平均分子量が1万~30万、Z平均分子量が2万~50万、重量重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が3~100、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が10~2000、定荷重押出し形細管式レオメータフローテスタによる1/2法による溶融温度(以下軟化点)が80~150℃、流出開始温度は80~120℃、樹脂のガラス転移点が45~68℃の範囲であるポリエステル樹脂を成分とすることが好ましい。

[0114]

好ましくは重量平均分子量が1万~12万、2平均分子量が2万~30万、重量平均分子量/数平均分子量が3~50、2平均分子量/数平均分子量が10~1000、軟化点が90~140℃、流出開始温度は85~115℃、ガラス転移点が52~68℃の範囲であるポリエステル樹脂を成分とすることが好ましい

[0115]

より好ましくは重量平均分子量が1万~4万、Z平均分子量が2万~10万、 重量平均分子量/数平均分子量が3~20、Z平均分子量/数平均分子量が10 ~100、軟化点が105~135℃、流出開始温度は90~120℃、ガラス 転移点が58~66℃の範囲であるポリエステル樹脂を成分とすることが好ましい。

[0116]

また高分子量領域に存在する成分として、好ましくは 1×10^5 以上の分子量成分を結着樹脂全体に対し3%以上有することが好ましい。さらには高分子量領域に存在する成分として、 3×10^5 以上の分子量成分を結着樹脂全体に対し0. 5%以上有することが好ましい。

[0117]

好ましくは高分子量領域に存在する成分として、 $8\times10^4\sim1\times10^7$ の分子量成分を結着樹脂全体に対し3%以上有し、かつ 1×10^7 以上の成分は含有しない構成が好ましい。

[0118]

さらに好ましくは、高分子量領域に存在する成分として、 $3\times10^5\sim9\times10^6$ の高分子量成分を結着樹脂全体に対し1%以上有し、かつ 9×10^6 以上の成分は含有しない構成である。

[0119]

さらに好ましくは、高分子量領域に存在する成分として、 $7 \times 10^5 \sim 6 \times 10^6$ の高分子量成分を結着樹脂全体に対し1%以上有し、かつ 6×10^6 以上の成分は含有しない構成である。

[0120]

高分子量成分が多すぎると、あるいは巨大すぎると混練時に巨大分子量成分が 残留し、透光性を阻害する。また樹脂自体の製造効率が低下する。現像ローラ供 給ローラに不要な傷を付け画像に縦筋を生じさせる。またワックスの分散性が低 下する。

[0121]

結着樹脂の重量平均分子量が1万より小さく、2平均分子量が2万より小さく、重量平均分子量/数平均分子量が3より小さく、2平均分子量/数平均分子量が10より小さく、軟化点が80℃より小さく、流出開始温度が80℃より小さく、ガラス転移点が45℃より小さくとなると、混練時の分散性が低下し、カブリの増加や耐久性の悪化を招く。また混練時の混練ストレスが充分にかからず、分子量を適正値に維持できなくなる。樹脂中でのワックスや電荷制御剤の分散性が悪化し、トナーの電荷作用による反発が緩和されにくくなる。またカブリやトナー飛散の増大を招く。また耐オフセット性、高温保存性の悪化、さらには転写体でのクリーニング不良、感光体へのフィルミングが発生する。

[0122]

結着樹脂の重量平均分子量が30万より大きく、Z平均分子量が50万より大きく、重量平均分子量/数平均分子量が100より大きく、Z平均分子量/数平

均分子量が2000より大きく、軟化点が150℃より大きく、流出開始温度が120℃より大きく、ガラス転移点が68℃より大きくとなると、機械の処理中の負荷が過大となり生産性の極端な低下や、カラー画像での透光性の低下や定着強度の低下につながる。

[0123]

また、溶融混練処理された後のトナーのGPCにおける分子量分布が、 2×1 $0^3\sim3\times1$ 0^4 の領域に少なくとも一つの分子量極大ピークを有し、 5×1 0^4 $\sim1\times1$ 0^6 の領域に少なくとも一つの分子量極大ピーク又はショルダーを有する構成とするでより定着性が向上する。

[0124]

トナーの低分子量側に存在する分子量極大ピークが、好ましくは $3 \times 10^3 \sim 2 \times 10^4$ の領域に少なくとも一つ有し、さらに好ましくは $4 \times 10^3 \sim 2 \times 10^4$ の領域に少なくとも一つ有する構成である。

[0125]

トナーの高分子量側に存在する分子量極大ピーク又はショルダーの位置が、好ましくは、 $6\times10^4\sim7\times10^5$ の領域に少なくとも一つ有し、さらに好ましくは $8\times10^4\sim5\times10^5$ の領域に分子量極大ピーク又はショルダーを少なくとも一つ有する構成である。

[0126]

低分子量側に存在するトナーの分子量分布の分子量極大ピーク位置が、 2×1 0^3 より小さくなると耐久性が悪化し、 3×1 0^4 より大きくなると定着性が悪化し、透光性が低下する。

[0127]

また、高分子量側に存在するトナーの分子量分布の分子量極大ピーク又はショルダーの位置が、 5×10^4 より小さくなると、耐オフセット性が低下し、保存安定性が悪化する。現像性が悪化しカブリが増大する。 1×10^6 より大きくなると粉砕性が低下し、生産効率の低下を招く。

[0128]

さらに、トナーの高分子量領域に存在する成分として、5×105以上の高分

子量成分の含有量が結着樹脂全体に対し10wt%以下であることが好ましい。 5×105以上の高分子量領域に存在する成分が多くなり、あるいは巨大の状態は、混練時にトナー構成材料に均一な混練ストレスが加わらず、混練状態が不具合となった結果である。これにより透光性が著しく阻害される。また分散不良によるカブリの増大、転写効率の低下、トナーの粉砕性が悪化し製造効率が低下する。

[0129]

より好ましくは、5×10⁵以上の高分子量成分の含有量が結着樹脂全体に対し5%以下であり、さらに好ましくは、1×10⁶以上の高分子量成分の含有量が結着樹脂全体に対し1%以下、若しくは含有しない構成である。

[0130]

また、トナーのGPCクロマトグラムにおける分子量分布で、 $2\times10^3\sim3$ $\times10^4$ の領域に存在する分子量極大ピークの分子量分布の高さをHa、 5×1 $0^4\sim1\times10^6$ の領域に存在する分子量極大ピーク又はショルダーの高さをHb とすると、 $Hb/Haを0.15\sim0.9$ とすることである。

[0131]

Hb/Haが、0.15より小さくなると耐オフセット性が悪化し、保存安定性も低下し、現像ローラや感光体へのフィルミングを助長する結果となる。0.9より大きくなると、粉砕性が悪化し、生産性が低下しコストアップにつながる。より好ましくは、 $Hb/Haが0.15\sim0.7$ 、さらに好ましくは、 $Hb/Haが0.2\sim0.6$ である。

[0132]

また、トナーのGPCにおける分子量分布で、 $2\times10^3\sim3\times10^4$ の領域に少なくとも一つの分子量極大ピーク、 $5\times10^4\sim1\times10^6$ の領域に少なくとも一つの分子量極大ピーク又はショルダーを有する構成で、分子量 $5\times10^4\sim1\times10^6$ の領域に存在する分子量分布の極大ピーク又はショルダーに相当する分子量値よりも大きい領域にある分子量曲線に着目し、その分子量分布の極大ピーク又はショルダーの高さを基準100%として、その分子量極大ピーク又はショルダーの高さに対して90%の高さに相当する分子量をM90、分子量極大ピーク

ク又はショルダーの高さの10%の高さに相当する分子量をM10とした場合、M10/M90が $0.5\sim8$ とすること、さらには、 (M10-M90)/M90が $0.1\sim7$ とすることで高透光性を確保できかつ定着オイルを必要とせずとも、オフセット防止できるオイルレス定着を実現できる。またキャリアへのスペントの発生を抑制でき現像剤の長寿命化を可能とできる。

[0133]

上記M10/M90、さらには、(M10-M90)/M90の値(分子量分布曲線の傾き)を規定することは超高分子量成分の分子切断の状態を定量化できるものであり、この値が上記記載した範囲内(分子量分布曲線の傾きが急峻であることを示唆する)である場合には、透光性を阻害している超高分子量成分が混練時の切断により無くなり、高透光性を有するようになる。さらには、この高分子側に現れるピーク又はショルダーを形成する高分子量成分が耐オフセット性に寄与し、オイルを使用せずともカラートナーのオフセットの発生を防ぐことが可能となる。またキャリアへのスペントの発生を抑制でき現像剤の長寿命化を可能とできる。

[0134]

さらにはこの超高分子量成分を分子切断する際に、結着樹脂中でワックス、電荷制御剤の均一分散化処理を可能とすることができ、帯電量が均一化し、鮮明な解像度を有し、長期連続使用しても耐久性を悪化させることがない。また転写体のクリーニング性が向上し、現像器内でのハンドリング性が向上しトナー濃度の均一性が向上する。現像メモリーの発生も抑制できる。転写時の画像乱れ、中抜けを防止でき高効率な転写性を得ることが可能となる。

[0135]

M10/M90の値が8より大きく、または(M10-M90)/M90が7より大きい場合には、依然超高分子量成分が残存し、透光性を阻害する。M10/M90の値が0.5より小さく、または(M10-M90)/M90が0.1より小さい場合には、混練時の機械的負荷が過大となり生産性が低下する。トナーの耐久性が低下する。より好ましくはM10/M90の値が0.5~6であり、(M10-M90)/M90が0.1~4.5である。さらに好ましくは、M

10/M90の値が0.5~4.5であり、(M10-M90)/M90が0. 1~3.5である。

[0136]

これにより、デジタル高画質化、高彩色再現性カラー化、二成分現像における キャリアへのスペントを防止でき、定着ローラにオフセット防止用のオイルを使 用しないで高透光性と耐オフセット性の両立を図れる。

[0137]

さらにはクリーナプロセスの実現、転写間短距離、高速のタンデム転写プロセスにおける転写工程での中抜け防止、高転写性を実現することができる。

[0138]

上記した結着樹脂を溶融混練処理において高せん断力にて混練することで従来にない特性を発現することが可能となる。オイルを用いない定着でカラートナーの高い透光性と耐オフセット性を両立させることが出来る。つまり超高分子量成分を付与した結着樹脂を高せん断力により、超高分子量成分を低分子量化しそれにより高透光性が発現し、さらにはこの低分子量化した超高分子量成分の存在により耐オフセット性も満足できる。また超高分子量成分を有するため、混練時に高いせん断力がかかるため、ワックスがより均一に分散させることが可能となり、より透光性が良化し、非オフセット性、高画質、高彩色再現性、良好な転写性が得られる。またキャリアへのスペントの発生を抑制でき現像剤の長寿命化を可能とできる。

[0139]

溶融混練処理後のトナーの重量平均分子量が8000~18万、Z平均分子量が18000~45万、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が3~80、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が10~1000となることである。

[0140]

この適性範囲にトナーを高せん断力による混練処理することにより、オイルを 用いない定着でカラートナーの高透光性と耐オフセット性を両立させることが可 能となる。

[0141]

好ましくは重量平均分子量が8000~10万、Z平均分子量が18000~30万、重量平均分子量/数平均分子量が3~60、Z平均分子量/数平均分子量が10~500であることが好ましい。

[0142]

さらに好ましくは重量平均分子量が1万~4万、Z平均分子量が2万~8万、 重量平均分子量/数平均分子量が3~30、Z平均分子量/数平均分子量が10 ~50であることが好ましい。

[0143]

重量平均分子量が8000より小さく、Z平均分子量が18000より小さく、重量平均分子量/数平均分子量が3より小さく、Z平均分子量/数平均分子量が10より小さくなると、混練ストレスが充分にかからず、分子量を適正値に維持できなくなる。ワックスの分散性が低下し耐オフセット性、高温保存性の悪化、さらには中間転写体でのクリーニング不良、感光体へのフィルミングが発生する。

[0144]

重量平均分子量が18万より大きく、2平均分子量が45万より大きく、重量 平均分子量/数平均分子量が80より大きく、2平均分子量/数平均分子量が1 000より大きくなると、逆に電荷制御剤等の内添剤が相互に凝集を生じ、分散 性の低下につながり、かぶりの増加、画像濃度の低下、転写不良の発生を招く。 また定着強度の低下や、透光性、光沢度が低下する。

[0145]

また結着樹脂はTHF不溶成分が5重量%以下、好ましくはTHF不溶成分を有しないことである。THF不溶成分が5重量%より多いとカラー画像の透光性を悪化させる要因となり、画質を劣化させてしまう。

[0146]

本実施形態に好適に使用される結着樹脂は、アルコール成分とカルボン酸、カルボン酸エステル及びカルボン酸無水物等のカルボン酸成分との重縮合によって得られるポリエステル樹脂が好適に使用される。

[0147]

2価カルボン酸又は低級アルキルエステルとしては、マロン酸、コハク酸、グルタル酸、アジピン酸、ヘキサヒドロ無水フタル酸などの脂肪族二塩基酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、シトラコン酸などの脂肪族不飽和二塩基酸、及び無水フタル酸、フタル酸、テレフタル酸、イソフタル酸などの芳香族二塩基酸、及びこれらのメチルエステル、エチルエステル等を例示することが出来る。この中でコハク酸、フタル酸、テレフタル酸、イソフタル酸等の芳香族二塩基酸及びそれらの低級アルキルエステルが好ましい。コハク酸とテレフタル酸、若しくはフタル酸とテレフタル酸とを組合わせた使用が好ましい。

[0148]

[0149]

2価アルコールとしては、エチレングリコール、1,2ープロピレングリコール、1,3ープロピレングリコール、1,3ーブチレングリコール、1,4ーブチレングリコール、1,6ーへキサンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、ビスフェノールAエチレンオキサイド付加物、ビスフェノールAプロピレンオキサイド付加物、などのジオール、グレセリン、トリメチロールプロパン、トリメチロールエタンなどのトリオール、及びそれらの混合物を例示することが出来る。この中で特に(化3)に示すビスフェノールA、その誘導体、そのアルキレンオキサイド付加物、ネオペンチルグリコール、トチメチロールプロパンが好ましい。

[0150]

【化3】

(式中、Rはエチレン基又はプロピレン基を表し、x, yはそれぞれ1以上の整数で、かつx+yの平均値は2~10である)

[0151]

[0152]

重合は公知の重縮合、溶液重縮合等を用いることが出来る。これによって耐塩 ビマット性やカラートナーの色材の色を損なうことなしに、良好なトナーを得る ことができる。

[0153]

多価カルボン酸と多価アルコールの使用割合は通常、カルボキシル基数に対する水酸基数の割合 (OH/COOH) で $0.8 \sim 1.4$ が一般的である。

[0154]

樹脂、ワックス及びトナーの分子量は、数種の単分散ポリスチレンを標準サンプルとするゲル浸透クロマトグラフィー(GPC)によって測定された値である。

[0155]

装置は、東ソー社製HPLC8120シリーズ、カラムはTSKgel superHM-H H4000/H3000/H2000 (7.8mm径、150mm×3)、溶離液THF (テトラヒドロフラン)、流量0.6ml/min、試料濃度0.1%、注入量20μL、検出器RI、測定温度40℃、測定前処理

は試料をTHFに溶解後 0.45μ mの 7π のアカルターでろ過しシリカ等の添加剤を除去した樹脂成分を測定する。測定条件は、対象試料の分子量分布が、数種の単分散ポリスチレン標準試料により得られる検量線における分子量の対数とカウント数が直線となる範囲内に包含される条件である。

[0156]

また炭素数 $5\sim100$ の長鎖アルキルアルコール、不飽和多価カルボン酸又はその無水物、及び不飽和炭化水素系ワックスとの反応により得られるワックスの測定は、装置はWATERS製GPC-150C、カラムはShodex HT-806M(8.0mmI.D.-30cm $\times2$)、溶離液は0-ジクロロベンゼン、流量は1.0mL/min、試料濃度は0.3%、注入量は200 μ L、検出器はRI、測定温度は130 $\mathbb C$ 、測定前処理は試料を溶媒に溶解後0.5 μ mの金属焼結フィルターでろ過処理した。測定条件は、対象試料の分子量分布が、数種の単分散ポリスチレン標準試料により得られる検量線における分子量の対数とカウント数が直線となる範囲内に包含される条件である。

[0157]

また、結着樹脂の軟化点は、島津製作所のフローテスタ(CFT500)により、 $1\ cm^3$ の試料を昇温速度 $6\ C/$ 分で加熱しながらプランジャーにより約9 . $8\times 10^5 N/m^2$ の荷重を与え、直径 $1\ mm$ 、長さ $1\ mm$ のダイから押し出して、このプランジャーのピストンストロークと温度との関係における昇温温度特性との関係から、ピストンストロークが立上がり始める温度が流出開始温度($T\ f\ b$)、曲線の最低値と流出終了点の差の1/2を求め、それと曲線の最低値を加えた点の位置における温度を1/2法における溶融温度(軟化点 $T\ m$)となる。

[0158]

また樹脂のガラス転移点は示差走査熱量計を用い、100℃まで昇温し、その温度にて3分間放置した後、降温速度10K/minで室温まで冷却したサンプルを、昇温速度10K/minで昇温して熱履歴を測定した際に、ガラス転移点以下のベースラインの延長線とピークの立上がり部分からピークの頂点までの間での最大傾斜を示す接線との交点の温度を言う。

[0159]

DSCによる吸熱ピークの融点は、島津製作所の示差熱量分析計DSC-50を使用した。 $5 \, \mathrm{K/m} \, \mathrm{i} \, \mathrm{n} \, \mathrm{v} \, 2 \, 0 \, 0 \, \mathrm{C}$ まで昇温し、 $5 \, \mathrm{O} \, \mathrm{l} \, \mathrm{l} \, \mathrm{l} \, 1 \, 0 \, \mathrm{C}$ まで急冷後、 $1 \, 5 \, \mathrm{O} \, \mathrm{l} \,$

[0160]

[0161]

(4) 電荷制御剤

本実施形態ではトナーの電荷制御の目的、及びオイルレス定着をより強固なものとするために、電荷制御剤が添加される。好ましい材料としては、アクリルスルホン酸系の重合体で、スチレン系モノマーと極性基としてスルホン酸基を有す

るアクリル酸系モノマーとのビニル共重合体が好ましい。特にはアクリルアミドー2ーメチルプロパンスルホン酸との共重合体が好ましい特性を発揮できる。前記したキャリアと組合わせて使用することにより、現像器内でのハンドリング性を向上し、トナー濃度の均一性が向上する。さらに現像メモリーの発生を抑制できる。

[0162]

また、好ましい材料としては(化4)に示すサリチル酸誘導体の金属塩が用いられる。

[0163]

【化4】

$$\begin{bmatrix} R^1 & O & & \\ R^2 & C & O & B & O & C & \\ R^4 & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

(R¹, R⁴は水素原子、アルキル基又は置換基を有してもよい芳香環を示し、R², R³は置換されてもよい芳香環を示す。Xはアルカリ金属を表す)

[0164]

また、好ましい材料としては(化5)に示すベンジル酸誘導体の金属塩が用いられる。

[0165]

【化5】

$$\begin{bmatrix}
R^{1} & R^{3} \\
R^{2} & OH \\
COO-
\end{bmatrix}_{2}$$

(R¹、R²及びR³はそれぞれ独立して水素原子、直鎖又は分子鎖状の 炭素数1~10のアルキル基又はアリル基、Yは亜鉛、ニッケル、コバルト、 銅を及びクロムからなる群より選ばれた1種を示す)

[0166]

この構成により、オイルレス定着において広範囲の非オフセット温度域を確保できると共に、定着時での帯電作用による画像乱れを防止できる。これはワックスのもつ酸価を有する官能基と金属塩の帯電極性の効果と思われる。また連続使用時での帯電量の低下を防止できる。

添加量は結着樹脂100重量部に対し、0.5~5重量部が好ましい。より好ましくは1~4重量部、さらに好ましくは3~4重量部である。0.5重量部よりも少ないと、帯電作用効果が無くなる。5重量部よりも多くなるとカラー画像での色濁りが目立ってくる。

(5) 顔料

また、本実施形態に使用される顔料としては、カーボンブラック、鉄黒、グラファイト、ニグロシン、アゾ染料の金属錯体、、C. I. ピグメント・イエロー1,3,74,97,98等のアセト酢酸アリールアミド系モノアゾ黄色顔料、C. I. ピグメント・イエロー12,13,14,17等のアセト酢酸アリールアミド系ジスアゾ黄色顔料、C. I. ソルベントイエロー19,77,79、C. I. ディスパース・イエロー164、C. I. ピグメント・レッド48,49:1,53:1,57,57:1,81,122,5等の赤色顔料、C. I. ソルベント・レッド49,52,58,8等の赤色染料、C. I. ピグネント・ブルー15:3等のフタロシアニン及びその誘導体の青色染顔料が1種又は2種類以上で配合される。添加量は結着樹脂100重量部に対し、3~8重量部が好ましい。

(6)外添剤

また本実施形態では外添剤として、シリカ、アルミナ、酸化チタン、ジルコニア、マグネシア、フェライト、マグネタイト等の金属酸化物微粉末、チタン酸バリウム、チタン酸カルシウム、チタン酸ストロンチウム等のチタン酸塩、ジルコン酸バリウム、ジルコン酸カルシウム、ジルコン酸ストロンチウム等のジルコン酸塩あるいはこれらの混合物が用いられる。外添剤は必要に応じて疎水化処理される。

[0167]

シリカに処理されるシリコーンオイル系の材料としては、(化6)に示される

ページ: 49/

ものが好ましい。

[0168]

【化6】

(式中、 R^2 は炭素数1~3のアルキル、 R^3 はアルキル、ハロゲン変性アルキル、フェニル、変性フェニルの如きシリコーンオイル変性基を示し、 R^1 は炭素数1~3のアルキル基又はアルコキシ基を示し、m及Unは1以上100以下の整数を示す。

[0169]

例えばジメチルシリコーンオイル、メチルハイドロジェンシリコーンオイル、メチルフェニルシリコーンオイル、環状ジメチルシリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、カルビノール変性シリコーンオイル、メルカプト変性シリコーンオイル、ポリエーテル変性シリコーンオイル、メチルスチリル変性シリコーンオイル、アルキル変性シリコーンオイル、フッ素変性シリコーンオイル、アミノ変性シリコーンオイル、クロルフェニル変成シリコーンオイルのうちの少なくとも1種類以上で処理されるシリカが好適に使用される。例えば東レダウコーニングシリコーン社のSH200、SH510、SF230、SH203、BY16一823、BY16一855B等が挙げられる。処理は無機微粉末とシリコーンオイル等の材料とをヘンシェルミキサ等の混合機により混合する方法や、シリカへシリコーンオイル系の材料を噴霧する方法、溶剤にシリコーンオイル系の材料を溶解或いは分散させた後、シリカ微粉末と混合した後、溶剤を除去して作成する方法等がある。無機微粉末100重量部に対して、シリコーンオイル系の材料は0.1~10重量部配合されるのが好ましい。

[0170]

シランカップリング剤としては、ジメチルジクロロシラン、トリメチルクロル シラン、アリルジメチルクロルシラン、ヘキサメチルジシラザン、アリルフェニ ルジクロルシラン、ベンジルメチルクロルシラン、ビニルトリエトキシシラン、 γーメタクリルオキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、ジビニルクロルシラン、ジメチルビニルクロルシラン等がある。シランカップリング剤処理は、微粉体を攪拌等によりクラウド状としたものに気化したシランカップリング剤を反応させる乾式処理又は、微粉体を溶媒中に分散させたシランカップリング剤を滴下反応させる湿式法等により処理される。

[0171]

またシランカップリング処理した後にシリコーンオイル系の材料を処理することも好ましい。

[0172]

正極帯電性を有する無機微粉末はアミノシランや(化7)に示されるアミノ変性シリコーンオイル、エポキシ変性シリコーンオイルで処理される。

[0173]

【化7】

$$R^{6} - S_{i-0} - \left(S_{i-0} - S_{i-0} - S_{i$$

(式中、 R^1 は、 R^6 は水素、アルキル基、アリール基、又はアルコキシ基、 R^2 はアルキレン基、フェニレン基、 R^3 は含窒素複素環をその構造に有する化合物、 R^4 、 R^5 は水素、アルキル基、アリール基を表す。 対は1以上の数で、 R^4 、 R^5 は水素、アルキル基、アリール基を表す。

[0174]

また、疎水性処理を高めるため、ヘキサメチルジシラザンやジメチルジクロロシラン、他のシリコーンオイルによる処理の併用も好ましい。例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、アルキル変性シリコーンオイルのうちの少なくとも1種類以上で処理することが好ましい。

[0175]

また、脂肪酸エステル、脂肪酸アミド、脂肪酸金属塩により処理された無機微粉末の使用も好ましい。いずれか1種または2種以上を表面処理したシリカ又は酸化チタン微粉末がより好ましい。

[0176]

無機微粉末を表面処理する脂肪酸、脂肪酸金属塩としては、カプリル酸、カプリン酸、ウンデシル酸、ラウリル酸、ミスチリン酸、パリミチン酸、ステアリン酸、ベヘン酸、モンタン酸、ラクセル酸、オレイン酸、エルカ酸、ソルビン酸、リノール酸等が挙げられる。中でも炭素数15~20の脂肪酸が好ましい。

[0177]

また脂肪酸金属塩を構成する金属としては、アルミニウム、亜鉛、カルシウム、マグネシウム、リチウム、ナトリウム、鉛、バリウムが挙げられ、中でもアルミニウム、亜鉛、ナトリウムが好ましい。特に好ましくはジステアリン酸アルミニウム($A1(OH)(C_{17}H_{35}COO)_2$)、またはモノステアリン酸アルミニウム($A1(OH)_2(C_{17}H_{35}COO)$)、等のジ脂肪酸アルミニウム、モノ脂肪酸アルミニウムが好ましい。OH基を有することが過帯電を防止し、転写不良を抑えることができる。また処理時にシリカ等の無機微粉末との処理性が向上するものと考えられる。

[0178]

表面処理は前記した脂肪酸を芳香族系の溶剤に溶解し、それとシリカ、酸化チタン、アルミナ等の微粉末と湿式混合または噴霧して攪拌処理し、微粉末の表面に脂肪酸を付着又は反応させて、表面処理を施し、その後に乾燥、脱溶剤処理を行うことにより生成される。このときの処理量は無機微粉末母体100重量部に対して0.1~25重量部が好ましい。0.1より少ないと、処理剤の機能が十分に発揮されない。25よりも多いと浮遊脂肪酸が多くなり、現像性や耐久性に悪影響を与える。

[0179]

またより好ましい形態としては、処理される無機微粉末の表面をカップリング 剤及び/又はシリコーンオイルにて処理を施した後に、脂肪酸及び/又は脂肪酸 金属塩により処理を施すことが好ましい。単に親水性シリカの脂肪酸を処理する場合よりも均一な処理が可能となり、トナーの高帯電化を図れることと、トナーに添加したときの流動性が向上する効果があるためである。またカツプリング剤及び/又はシリコーンオイルとともに、脂肪酸及び/又は脂肪酸金属塩を処理する構成も採用でき、上記効果を奏する。

[0180]

また、外添処方の構成を特定することにより、トナー粒子のハンドリング性を向上でき、微細粒子に起因する現像、転写において高画質化と転写性向上の両立を図ることができる。現像においては潜像をより忠実に再現できる。そして転写の際のトナー粒子の転写率を悪化させることなく転写できる。またタンデム転写においても再転写を防止でき、中抜けの発生の抑制が可能となる。さらには現像量を少なくしても高画像濃度を得ることができる。また前記したキャリアやワックスと組合わせた使用により、耐スペント性をより向上でき、現像器内でのハンドリング性を向上させトナー濃度の均一性を上げることが出きる。また現像メモリー発生を抑制できる。

[0181]

平均粒子径6 nm~1 2 0 nmである無機微粉末をトナー母体粒子100重量部に対し1.5~5.5重量部外添処理する構成が好ましい。平均粒子径6 nmよりも小さいと、シリカ浮遊や感光体へのフィルミングが生じ易い。転写時の逆転写の発生を抑さえ切れない。1 2 0 nmよりも大きくなると、トナーの流動性が悪化する。1.5重量部よりも少ないとトナーの流動性が悪化する。転写時の逆転写の発生を抑さえ切れない。5.5重量部よりも多いとシリカ浮遊や感光体へのフィルミングが生じ易い。

[0182]

さらには、平均粒子径が6 nm~20 nmである無機微粉末をトナー母体粒子 100重量部に対し0.5~2重量部と、30 nm~120 nmである無機微粉 末をトナー母体粒子100重量部に対し1.0~3.5重量部とを少なくとも外 添処理する構成が好ましい。この構成により機能分離したシリカの使用で、現像でのハンドリング性、転写時の逆転写、中抜け、飛散りに対しよりマージンが取

[0183]

さらには、平均粒子径が6 nm~20nm、強熱減量が0.5~25wt%である無機微粉末をトナー母体粒子100重量部に対し0.5~2重量部と、平均粒子径が30nm~120nmで強熱減量が0.1~23wt%である無機微粉末をトナー母体粒子100重量部に対し1~3.5重量部とを、少なくとも外添処理する構成が好ましい。

[0184]

シリカの強熱減量を特定することにより、転写時の逆転写、中抜け、飛散りに対しよりマージンが取れる。また前記したキャリアやワックスと組合わせた使用により、耐スペント性をより向上でき、現像器内でのハンドリング性を向上させトナー濃度の均一性を上げることができる。また現像メモリー発生を抑制できる

[0185]

平均粒子径が6 nm~20 nmの強熱減量が0.5 w t %よりも少ないと、逆転写、中抜けに対する転写マージンが狭くなる。25 w t %よりも多くなると、表面処理がムラになり、帯電のバラツキが生じる。好ましくは強熱減量が1.5~20 w t %、より好ましくは5~19 w t %である。

[0186]

平均粒子径が30nm~120nmの強熱減量が0.1wt%よりも少ないと、逆転写、中抜けに対する転写マージンが狭くなる。23wt%よりも多くなると、表面処理がムラになり、帯電のバラツキが生じる。好ましくは強熱減量が1.5~18wt%、より好ましくは5~16wt%である。

[0187]

さらには、平均粒子径 6 n m~1 2 0 n m強熱減量が 0. 5~2 5 w t %である負帯電性無機微粉末をトナー母体粒子 1 0 0 重量部に対し 1. 8~4 重量部と、平均粒子径 6 n m~1 2 0 n m、強熱減量が 0. 5~2 5 w t %である正帯電性無機微粉末をトナー母体粒子 1 0 0 重量部に対し 0. 5~1. 5 重量部とを少

なくとも外添処理する構成が好ましい。

[0188]

正帯電性無機微粉末を添加する効果は、トナーが長期連続使用の際に過帯電になることを抑え、より現像剤寿命を延ばすことが可能となる。さらには過帯電による転写時の飛散りを抑える効果も得られる。またキャリアへのスペントを防止できる。0.5重量部よりも少ないとその効果が得にくい。1.5重量部よりも多くなると、現像でのかぶりが増大する。強熱減量は好ましくは1.5~20wt%、より好ましくは5~19wt%である。

[0189]

さらには、平均粒子径が6 nm~20 nm強熱減量が0.5~25 w t %である負帯電性無機微粉末をトナー母体粒子100重量部に対し0.8~2重量部と、平均粒子径が30 nm~120 nmで強熱減量が0.1~23 w t %である負帯電性無機微粉末をトナー母体粒子100重量部に対し1.2~2.0重量部と、平均粒子径が6 nm~20 nm強熱減量が0.5~25 w t %である正帯電性無機微粉末をトナー母体粒子100重量部に対し0.5~1.5重量部とを少なくとも外添処理する構成が好ましい。

[0190]

この構成により機能分離した負帯電性無機微粉末、例えばシリカの使用で、現像でのハンドリング性、転写時の逆転写、中抜け、飛散りに対しよりマージンが取れる。またキャリアへのスペントを防止できる。範囲が外れることで、そのマージン幅が狭まり、マシンサイドでの精度向上が要求されることになる。さらに6 nm~20 nmの正帯電性無機微粉末を添加することにより、トナーがライフ等により過帯電になることを抑え、より現像剤寿命を延ばすことが可能となる。さらには過帯電による転写時の飛散りを抑える効果も得られる。現像でのハンドリング性が安定する。ライフでの寿命安定化に効果がある。6 nm~20 nmの無機微粉末の強熱減量は、1.5~20 wt%、より好ましくは5~19 wt%である。30 nm~120 nmの無機微粉末の強熱減量は、好ましくは1.5~18 wt%、より好ましくは5~16 wt%である。

[0191]

さらには、平均粒子径が6 nm~20 nm強熱減量が0.5~25wt%である負帯電性無機微粉末をトナー母体粒子100重量部に対し0.8~2重量部と、平均粒子径が30 nm~120 nmで強熱減量が0.1~23wt%である負帯電性無機微粉末をトナー母体粒子100重量部に対し1.2~2.0重量部と、平均粒子径が30 nm~120 nmで強熱減量が0.1~23wt%である正帯電性無機微粉末をトナー母体粒子100重量部に対し0.5~1.5重量部とを外添処理する構成が好ましい。

[0192]

30 nm~120 nmの正帯電性無機微粉末の使用により、ライフでの寿命安定化と、転写での中抜け、逆転写の防止の両立に効果が得られる。6 nm~20 nmの無機微粉末の強熱減量は、1.5~20wt%、より好ましくは5~19 wt%である。30nm~120nmの無機微粉末の強熱減量は、好ましくは1.5~18wt%、より好ましくは5~16wt%である。

[0193]

乾燥減量(%)は、予め乾燥、放冷、精秤した容器に試料約1gを取り、精秤する。熱風乾燥器(105℃±1℃)で2時間乾燥する。デシケータ中で30分間放冷後その重量を精秤し次式より算出する。

乾燥減量(%)=[乾燥による減量(g)/試料量(g)]×100

強熱減量は、予め乾燥、放冷、精秤した磁性ルツボに試料約1gを取り、精秤する。500℃に設定した電気炉中で2時間強熱する。デシケータ中で1時間放冷後その重量を精秤し次式より算出する。

強熱減量(%) = [強熱による減量(g)/試料量(g)]×100

また処理された無機微粉末の水分吸着量が1wt%以下であることが好ましい。好ましくは0.5wt%以下、より好ましくは0.1wt%以下、さらに好ましくは0.05wt%以下である。1wt%より多いと、帯電性の低下、耐久時の感光体へのフィルミングを生じる。水分吸着量の測定は、水吸着装置については、連続蒸気吸着装置(BELSORP18:日本ベル株式会社)にて測定した

[0194]

疎水化度の測定は、250mlのビーカー中に装入した蒸留水50mlに試験すべき生成物0.2gを秤取する。先端に、液体中に浸威しているビュレットからメタノールを無機微粉末の総量がぬれるまで滴下する。その際不断に電磁攪拌機でゆっくりと攪拌する。完全に濡らすために必須なメタノール量a(ml)から次式により疎水化度が算出される。

疎水化度= [a/(50+a)]×100(%)

(7) トナーの粉体物性

本実施形態では、結着樹脂、着色剤及びワックスを含む少なくとも結着樹脂、着色剤及びワックスを含むトナーの体積平均粒径が3.5 \sim 6.5 μ mであり、個数分布における5.04 μ m以下の含有量が30 \sim 80個数%含有し、個数分布における3.17 μ m以下の含有量が5 \sim 35個数%含有し、6.35 \sim 10.1 μ mの粒径を有するトナー粒子が35体積%以下で含有する粒度分布とする構成である。

[0195]

さらに好適な本実施形態では、少なくとも結着樹脂、着色剤及びワックスを含むトナーの体積平均粒径が3.5~6.5 μ mであり、個数分布における5.0 4μ m以下の含有量が30~80個数%含有し、個数分布における3.17 μ m以下の含有量が5~35個数%含有し、6.35~10.1 μ mの粒径を有するトナー粒子が30体積%以下で含有し、個数分布における8 μ m以上の含有量が5体積%以下で含有する粒度分布とする構成である。

[0196]

高解像度画質、さらにはタンデム転写における逆転写の防止、中抜けを防止し、オイルレス定着との両立を図ることを可能とできる。

[0197]

画質体積平均粒径が 6. 5 μ m より大きいと画質と転写の両立が図れない。体積平均粒径が 3. 5 μ m より小さいと現像でのトナー粒子のハンドリグ性が困難となる。個数分布における 5. 0 4 μ m 以下の含有量が 3 0 個数% よりも少なくなると、画質と転写の両立が図れない。 8 0 個数% よりも多くなると、現像でのトナー粒子のハンドリグ性が困難となる。キャリア汚染が生じる。個数分布にお

ける3. 17μ m以下の含有量が5個数%よりも少ないと画質と転写の両立が図れない。35個数%よりも多く含有すると現像でのトナー粒子のハンドリグ性が困難となる。6. $35 \sim 10$. 1μ mの粒径を有するトナー粒子が35体積%よりも多く含有すると、画質と転写の両立が図れない。

[0198]

さらには、 $6.35\sim10.1\mu$ mの粒径を有するトナー粒子が30体積%よりも多く含有し、個数分布における 8μ m以上の含有量が5体積%よりも多く含有すると、画質と転写の両立が図れない。

[0199]

また、体積平均粒子径から換算した真球相当の比表面積値St(St=6/(真比重 \times 体積平均粒子径))と作成されたトナー母体の比表面積測定値との比SSt (SSt=(St/粉砕されたトナーの比表面積値)が $0.4\sim0.95$ となる構成とする。好ましくは $0.5\sim0.85$ 、より好ましくは $0.55\sim0.8$ である。0.95よりも大きいと球形化が進み、連続使用時の帯電性の低下を招き、転写時の飛び散り等の弊害を招く。0.4よりも小さいと形状が不定形になり過ぎるか、または過粉砕された微粉量が多い原因である。

[0200]

トナーの体積粒径分布の変動係数が16~32%、個数粒径分布の変動係数が18~35%であることが好ましい。より好ましくは、体積粒径分布の変動係数が18~24%、個数粒径分布の変動係数が20~26%、さらに好ましくは、体積粒径分布の変動係数が18~22%、個数粒径分布の変動係数が20~24%である。

[0201]

変動係数とはトナーの粒径における標準偏差を平均粒径で割ったものである。 コールターカウンタ (コールター社) を使用して測定した粒子径をもとにしたものである。標準偏差は、n個の粒子系の測定を行なった時の、各測定値の平均値からの差の2乗の和を (n-1) で割った値の平方根であらわされる。すなわち、変動係数とは粒度分布の広がり具合をあわらしたもので、体積粒径分布の変動係数が16%未満、又は個数粒径分布の変動係数が18%未満となると、生産的

に困難であり、コストアップの要因となる。体積粒径分布の変動係数が32%より大、または個数粒径分布の変動係数が35%より大きくなると、粒度分布がブロードとなるとトナーの凝集性が強くなり、感光体へのフィルミング、転写不良、クリーナーレスプロセスでの残留トナーの回収が困難となる。

トナー中の微粉はトナーの流動性、画質、貯蔵安定性、感光体や現像ローラ、転写体へのフィルミング、経時特性、転写性、特にタンデム方式での多層転写性に影響する。さらにはオイルレス定着での非オフセット性、光沢性、透光性に影響する。オイルレス定着実現のためにワックス等の離型剤を配合したトナーにおいて、タンデム転写性との両立において微粉量が影響する。

[0202]

微粉量が過大になると、分散しきれないワックスがトナー表面の露出が多くなり、感光体、転写体へのフィルミングが発生する。さらには微粉は熱ローラとの付着性も大きいためオフセットしやすい傾向にある。またタンデム方式において、トナーの凝集が強くなりやすく、多層転写時に2色目の転写不良を生じ易くなる。微粉量が少なくなると、画質の低下を招く。

[0203]

[0204]

また、静嵩密度と動嵩密度から算出されるのが圧縮度で、トナー流動性の指標の一つである。トナーの流動性はトナーの粒度分布、トナー粒子形状、外添剤、

ワックスの種類や量に影響される。トナーの粒度分布が狭く微粉が少ない場合、トナーの表面に凹凸が少なく形状が球形に近い場合、外添剤の添加量が多い場合、外添剤の粒径が小さい場合は、圧縮度が小さくなりトナーの流動性は高くなる。圧縮度は5~40%が好ましい。より好ましくは、10~30%である。オイルレス定着と、タンデム方式多層転写との両立を図ることが可能となる。5%より小さいと、定着性が低下し、特に透光性が悪化しやすい。現像ローラからトナー飛散が多くなりやすい。40%よりも大きい転写性が低下し、タンデム方式での中抜け、転写不良を生じる。

(8) 混練工法

高せん断力による混練により、添加するワックスをより微細分散化できる。そのロールの温度設定及び温度勾配、回転数及び負荷電流の混練条件と結着樹脂の軟化点、ガラス転移点を最適な条件で処理させることにより高分散化処理を可能とできる。高せん断力とは狭い間隙で対向させたロールを高速で回転させることにより結着樹脂等のトナー材料に作用する混練力をいい、狭い間隙に挟まれた時に生じる力と、回転速度差を有する回転ロールから受けるせん断力をいう。従来の二軸押出し機では発揮できない混練力を有する。これにより結着樹脂の高分子量成分を低分子量化することが可能となる。

[0205]

具体的は、異方向に回転し、加熱または冷却が可能な対向する2本のロールを有し、一方のロール(RL1)のロール温度ともう一方のロール(RL2)のロール温度に温度差を設け、かつ前記ロール(RL1)と前記ロール(RL2)とを異なる周速で回転させて2本のロール間で混練処理することにより実現できる。さらには一方のロール(RL1)が前半部と後半部で温度差を有する構成とすることである。

[0206]

2本ロールの回転数比を1.1倍~2.5倍の範囲内で行うことにより混練時に適切なせん断力が生じ、結着樹脂の分子切断、着色剤等の内部添加剤の分散性が向上し、定着性、現像性が向上する。加熱してトナーを溶融し巻き付ける側のロールの回転比を高くする構成である。1.1倍以下であると適切なせん断力が

生じず、分散性が向上せず、透光性が悪化する。逆に 2.5 倍以上であると、生産性が急激に低下し、また分散性が向上せず、現像性の悪化を招く。

[0207]

またこのときの2本のロールにかかる負荷電流値の比を1.25~10の範囲となるような条件で混練することで、適切なせん断力が加わりより内添剤の分散性が向上する。この範囲よりも小さいと分散性が向上せず、透光性が悪化する。また生産性も低下する。逆にこの範囲よりも大きいと、ローラにかかる負荷が大きくなりすぎ、超高分子量成分がより低分子量化しすぎるため、非オフセット性が低下し、オフセットが発生するようになる。

[0208]

図6にトナー溶融混練処理の概略斜視図を、図7に上から見た平面図、図8に 左側から見た側面図、図9に巻付いた状態での断面図を示す。601はトナー原 料の定量供給機、602はロール(RL1)、603はロール(RL2)、60 4はロール(RL1)上に巻きついたトナーの溶融膜である。図4においてロー ν 602は時計回り、603は反時計回りに回転する。602-1はロール (R L1)の前半部(原料の搬送方向の上流部)、602-2はロール(RL1)の 後半部(原料の搬送方向の下流部)、603-1はロール(RL2)の前半部(原料の搬送方向の上流部)、603-2はロール(RL2)の後半部(原料の搬 送方向の下流部)、605はロール(RL1)の前半部602-1を加熱するた めの熱媒体の流入口、606はロール(RL1)の前半部602-1を加熱した 熱媒体の流出口、607はロール(RL1)の後半部602-2を加熱又は冷却 するための媒体の流入口、608はロール(RL1)の後半部602-2を加熱 又は冷却した媒体の流出口、618はロール(RL2)の前半部603-1を加 熱又は冷却するための熱媒体の流入口、619はロール(RL2)の前半部60 3-1を加熱又は冷却した熱媒体の流出口、609はロール (RL2) の後半部 603-2を加熱又は冷却するための媒体の流入口、610はロール (RL2) の後半部603-2を加熱又は冷却した媒体の流出口、611はロール表面のス パイラル状の溝で深さは2~10mm程度、612はロール間で形成されるトナ 一溜りである。611の螺旋状の溝はトナーの混練時に材料が原料投入部の右端 から排出部の左端にスムーズに搬送されるに好ましいものである。603-1は 原料をロールに効率よく巻付かせるために、適当な熱を付加させるためのもので ある。

[0209]

定量供給機から原料供給フィーダ613を伝わりながら開口部614からトナー原料が矢印615のようにロール(RL1)602-1側の端部付近に落下させる。供給フィーダの開口部の長さは616で表させる。この長さはロール半径の1/2~4倍の長さが好ましい。短いと落下させる材料が溶融する前に2本のローラの隙間から下に落下する量が急増する。長すぎると原料フィーダでの搬送途中で原料が分離して均一な分散が得られない。

[0210]

また落下位置は図9の矢印にて図示するようにロール(RL1)602の2本のロールが最近接する点から20°~80°の範囲の地点に落下させる。20°よりも小さい角度であると2本のロールの隙間から落下する量が急増する。80°以上であると落下させる際、トナー粉末の舞上りが多くなり周辺を汚染する。またカバー617は開口部長さ616よりも広い領域をカバーできるように設置する。図8ではカバーの図示は省略している。

[0211]

定量供給機601からトナー原料は供給フィーダ613を伝わりながら開口部614から落下する。落下したトナー原料はロール(RL1)602-1側の端部付近に投下される。そして602-1の熱とロール(RL2)603との圧縮せん断力により樹脂が溶融し、ロール(RL1)の前半部602-1に巻付くようになる。その状態がロール(RL1)の後半部602-2の端部にまで広がり、ロール(RL1)の前半部602-1よりも低い温度で加熱又は冷却されたロール(RL2)の後半部602-2からトナー魂として剥離される。なお、上記処理の間、ロール603は室温以下に冷却されている。ロール(RL1)602とロール(RL2)603のクリアランスは0.1~0.9mmである。本実施例では原料投入量は10kg/h、ロール(RL1)(RL2)の直径は140mm、長さは800mmで行った。

(9) 粉砕

本実施形態に係るトナーは、小粒径化してもキャリアへのスペントを防止でき、オイルレス定着を実現することができる。その粉砕の一手法として例示すると、小粒径でかつ粒度分布をシャープにするため、トナー組成物を溶融混練した後、表面に凹凸を有し高速に回転する円筒状の回転体と、回転体の外側に 0.5 mm~40 mmの間隙を存して嵌装され、回転体と中心軸を共有する表面に凹凸を有する円筒状の固定体と、被トナー粉砕物を流入させる供給口と、粉砕処理されたトナー粉砕物を排出する排出口とを具備する粉砕機により、所定の粒度分布に粉砕される。このとき、被トナー粉砕物を供給口から流入させる前に、被トナー粉砕物の凝集を緩和する手段を付加させ、前記供給口から流入させて所定の粒度分布へ粉砕させる。

[0212]

被トナー粉砕物の凝集を緩和する手段としては、被トナー粉砕物を供給口から流入させる前に、被トナー粉砕物に蒸発性の媒体、例えば、水蒸気、エタノール、iso-プロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、iso-ブチルアルコール等で粉体の電荷を除去できることが目的である。被トナー粉砕物に霧状に噴霧供給して混合又は付着させ、粉砕供給口から流入させる方法である。

[0213]

また、被トナー粉砕物を供給口から流入させる前に、前記被トナー粉砕物に振動手段を付加させて、供給する方法で、振動手段としては超音波振動、バイブレーション振動等がある。被トナー粉砕物が配管内を通過して粉砕部供給口から流入させる前に配管部に振動装置を具備させ、被トナー粉砕物を分散させながら供給口から流入させる。

[0214]

また、被トナー粉砕物を供給口から流入させる前に、前記被トナー粉砕物に無機微粉末を前記被トナー粉砕物に供給して混合させ、前記供給口から流入させて粉砕する方法がある。無機微粉末としては前述した材料が適当である。トナーを粉砕処理する際、被トナー粉砕物を供給口から流入させる前に、被トナー粉砕物

に無機微粉末を供給して混合させ、供給口から流入させて所定の粒度分布へ粉砕する構成をとる。これにより被トナー粉砕物が均一に分散した状態で回転体を有する粉砕部に突入し、回転体の生ずる渦流により被トナー粉砕物が均一に粉砕される。これによりより小粒径化粉砕と、粗粉をシャープにカットされた状態での粉砕が可能となる。

[0215]

このとき供給して混合させる無機微粉末が、平均粒径8~40 n m、強熱減量が0.5~25 w t %であるシリカ又は酸化チタン微粉末が好ましい。さらには脂肪酸エステル、脂肪酸アミド、脂肪酸金属塩のいずれか1種または2種以上を表面処理したシリカ又は酸化チタン微粉末が好ましい。さらには、無機微粉末が、シリコーンオイルを表面処理したシリカ又は酸化チタン微粉末が好ましい材料である。また被トナー粉砕物の電荷を緩和する目的でトナー母体粒子の帯電極性と逆帯電極性を有する無機微粉末も有効な手段である。

[0216]

平均粒径が8 nmより小さいと、定量切出しが不安定となる。平均粒径が40 nmより大きいと均一粉砕性が良くならない。強熱減量が0.5 w t %より小さいと、微粉末が飛散してしまう。強熱減量が25 w t %より大きいと微粉末の凝集が強くなり、被トナー粉砕物の均一供給性が悪くなる。

[0217]

この無機微粉末はトナー母体に固着されることなく静電気的な付着状態でトナー表面に付着する。無機微粉末の供給量としては被トナー粉砕物の供給量の0.1~5 w t %程度が好ましい。

[0218]

回転体の凸部と、固定体の凸部との間隙を0.5~40mm、好ましくは0.5~10mm、より好ましくは0.5~6mmにすることにより粉砕効率と球形化作用をより高めることができる。0.5mmより小さいと粒子と回転体、固定体との接触が著しく増大するので、摩擦熱の発生が著しくなり、上記の先端部でトナーの融着が生じる。40mmより大きいと高速気流の激しい流動を発生させることができず、充分な粉砕性が得られない。

[0219]

この方式で行うと粉砕と同時に外添処理を施すことが可能であるため、製造工程が短縮できるメリットが大きい。またトナーは粒子の角がきれいに取られ球形化されるため、流動性は飛躍的に向上する。

[0220]

トナーの流動性が低いとベタ画像部にムラが発生したり、摩擦帯電性が低下し、逆極性トナーが増加し、感光体の非画像部にトナーが強く付着し除去できず、地カブリとなって画像を劣化させるし、また転写効率が低下する。外添剤シリカを増量してトナーの流動性を上げると、摩擦帯電が均一化し、地カブリの減少と、画像濃度の増加、ベタ黒画像部のムラが解消される傾向にある。しかし感光体へのシリカやトナーのフィルミングや、シリカ凝集物のベタ黒画像部への白点付着等の課題が発生する。

[0221]

そのため、少量のシリカの添加量で高流動性が得られ、浮遊シリカの発生が抑えられ、ベタ黒画像部へのシリカの白点や、中間転写体や感光体へのシリカ、トナーフィルミングの発生が抑えられる。また低流動性のトナーで見られるベタ黒画像部のムラの発生が抑えられ、均一な転写性が得られ、さらに逆極性トナーの発生を低く抑えられるため、転写効率が向上する要因となる。

[0222]

さらに転写時において、特に高温高湿時、文字やライン等のトナーが集中しているところで、所定の押圧力で転写しても、トナーの高流動性のため、トナー同士の凝集が起きにくく、中抜けのない鮮明な画像が得られる。

[0223]

図5に示した本実施形態のトナーの粉砕装置の1実施例について説明する。練物を粗粉砕によりメッシュ径約1~5mmパスした被トナー粉砕物503は定量供給機508から投入され、冷却器509によって供給される冷却エアー511により、粉砕供給部に送られ、粉砕処理部500で粉砕される。原料503は入口504から投入され、高速に回転し表面に凹凸部506を有する回転体501と、この回転体501と狭ギャップの間隙で位置している表面に凹凸部507を

有する固定体502との空間に運ばれ、高速に回転する回転体と固定体の間に発生する高速気流の流動に伴って、原料粒子相互が強力な衝突により粉砕されながら球形化される。球形化された粒子510は排出口505から出て、粗粉分級機513に送られ、粗い粒子は再度エアー511により、入口504に送られる。製品はサイクロン515に送られ、補集容器520に回収される。512は温度計、514はバグフィルター、516は風量計、517はブロアである。

[0224]

519はバイブレータ振動装置、518は無機微粉末供給装置である。粗粉分級により分離され再度粉砕部に供給されるとき、無機微粉末供給をその後ろから供給することが好ましい。これにより無機微粉末が粉砕物への衝突の際に均一に混合される。無機微粉末の代わりに蒸発性の溶剤を媒体を供給できる。

[0225]

図4に図3のA-A'断面図を示す。図5は図4のBの箇所を拡大したもので ある。 s 1 は固定体 5 0 2 の表面凹凸部 5 0 7 の凸部の幅、 s 2 は固定体 5 0 2 の表面凹凸部 5 0 7 の凸部間の距離、 s 3 は固定体 5 0 2 の表面凹凸部 5 0 7 の 凸部の高さ、r1は回転体501の表面凹凸部506の凸部の幅、r2501は 回転体の表面凹凸部506の凸部間の距離、r3は固定体501の表面凹凸部5 06の凸部の高さを示す。回転体が高速に回転し、シリカ等の無機微粉末の供給 を受けながら効率よくトナーを小粒径化しかつ球形化して粉砕するためには、固 定体502の表面凹凸部507の密度を回転体501の表面凹凸部506の密度 よりも高くする構成とすることにより実現できる。凸部は周長1cm当り1個以 上とする構成が好ましい。好ましくは2.5個である。さらには0.2≦s1/ $r 1 \le 0.7$ 、0.2 $\le s 2 / r 2 \le 0.7$ の関係を有することが好ましい。特 に無機微粉末を供給しながら粉砕処理する際、被粉砕物が均一に分散された状態 で投入されるため、固定体の壁面との衝突を安定化させるためには密度を高する 必要がある。0.2よりも小さくなると、表面加工の際のコストアップとなる。 0.7よりも大きくなると、渦流の流れが不均一となり小粒径への粉砕が困難と なる。

(10) 重合方法

小粒径トナーの作成方法としては、乳化重合法、懸濁重合法なども好適に使用できる。乳化重合法では、イオン性界面活性剤を含有する樹脂微粒子分散液を調製し、着色剤粒子分散液及びワックスの離型剤粒子分散液と混合し、前記イオン性界面活性剤とは反対の極性を有するイオン性界面活性剤により凝集を生じさせることによりトナー径の凝集粒子を形成させ、その後樹脂微粒子のガラス転移点以上の温度に加熱して前記凝集粒子を融合して、洗浄、乾燥する手段によりトナーを作成することができる。

[0226]

この時使用する界面活性剤を例示すると、硫酸エステル塩系、スルホン酸塩系、リン酸エステル系、せっけん系等のアニオン性界面活性剤、及びアミン塩型、4級アンモニウム塩型等のカチオン性界面活性剤を使用することができる。また、ポリエチレングリコール系、アルキルフェノールエチレンオキサイド付加物系、多価アルコール系等の非イオン性界面活性剤を併用することも効果的である。これらの分散手段としては、回転剪断型ホモジナイザーやメディアを有するボールミル、サンドミル、ダイノミルなどの一般的なものを使用できる。

[0227]

粒子生成後は、任意の洗浄工程、固液分離工程、乾燥工程を経て所望のトナーを得ることができるが、洗浄工程は、帯電性を発現・維持するため、十分にイオン交換水による置換洗浄を施すことが好ましい。また、固液分離工程は、特に制限はないが、生産性の点から吸引濾過、加圧濾過等が好ましく用いられる。さらに乾燥工程も特に制限はないが、生産性の点から凍結乾燥、フラッシュジェット乾燥、流動乾燥、振動型流動乾燥等が好ましく用いられる。

[0228]

また懸濁重合法では、重合性単量体、ワックス、着色剤等の各種添加剤を均一に溶解または分散させて加熱しホモジナイザー、超音波分散機等によって均一に溶解又は分散せしめ単量体組成物としたのち、単量体系を、分散安定剤を含有する単量体系と同温の水相中に通常の攪拌機又はホモミキサー・ホモジナイザー等により分散させる。

[0229]

好ましくは、単量体液滴が所定のトナー粒子のサイズの粒径を有するように攪拌速度・時間を調整し、その後は分散安定剤の作用により、粒子状態が維持され、かつ粒子の沈降が防止される程度の攪拌を行えば良い。重合温度は40℃以上、一般には50~80℃の温度に設定させる。

[0230]

このとき定着助剤の高分散化と、定着助剤を包含したトナー粒子を小さく均一な粒度分布とするためにも、攪拌速度は30m/sec以上が好ましい。

[0231]

反応終了後、生成したトナー粒子を洗浄、ろ過により回収し、乾燥する。懸濁 重合においては通常単量体系100重量部に対して水300~3000重量部を 分散媒として使用するのが好ましい。

[0232]

用いられる分散媒は、いずれも適当な安定化剤、有機化合物として、ポリビニルアルコール、ゼラチン、メチルセルコロース、メチルヒドロキシプロピルセルロース、エチルセルロース、カルボキシメチルセルロースのナトリウム塩、ポリアクリル酸及びその塩、デンプン、無機化合物としては、りん酸三カルシウム、リン酸マグネシウム、リン酸アルミニウム、リン酸亜鉛、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、メタケイ酸カルシウム、ベントナイト、シリカ、アルミナ等を水相に分散させて使用できる。

[0233]

分散安定剤の中で、無機化合物を用いる場合、より細かい粒子を得るため、水 系媒体中で該無機化合物を生成させても良い。例えば、りん酸カルシウムの場合 高速攪拌下において、リン酸ナトリウム水溶液と塩化カルシウム水溶液を混合す ると良い。

[0234]

またこれらの安定化剤の微細な分散のために、0.001~0.1重量部の界面活性剤を使用しても良い。これは上記分散安定剤の所期の作用を促進するためのものであり、その具体例として、ドデシルベンゼン硫酸ナトリウム、テトラデ

シル硫酸ナトリウム、ペンタデジル硫酸ナトリウム、オクチル硫酸ナトリウム、オレイン酸ナトリウム、ラウリル酸ナトリウム、ステアリン酸カリウム、オレイン酸カルシウム等が挙げられる。

[0235]

また、重合開始剤としては、2,2'ーアゾビスー(2,4ージメチルバレロニトリル)、2,2'ーアゾビスイソブチロニトリル、1,1'ーアゾビス(シクロヘキサンー1ーカルボニトリル)、2,2'ーアゾビスー4ーメトキシー2,4ージメチルバレロニトリル、アゾビスイソブチロニトリル等のアゾ系又はジアゾ系重合開始剤が使用できる。

(11) 二成分現像

感光体と現像ローラ間には直流バイアスと共に交流バイアスを印加する。 そのときの周波数が1~10kHz、交流バイアスが1.0~2.5kV(pp) であり、かつ感光体と現像ローラ間の周速度比が1:1.2~1:2である ことが好ましい。より好ましくは周波数が3.5~8kHz、交流バイアスが1 $2 \sim 2$. 0 k V (p-p) であり、かつ感光体と現像ローラ間の周速度比が 1: 1. 5~1:1. 8である。更に好ましくは周波数が 5. 5~7kHz、交流 バイアスが1.5~2.0kV(p-p)であり、かつ感光体と現像ローラ間の 周速度比が $1:1.6\sim1:1.8$ である。この現像プロセス構成と本実施形態 のトナーの使用により、ドットを忠実に再現でき、現像γ特性をねかせる特性に できる。高画質画像とオイルレス定着性を両立できる。また高抵抗キャリアでも 低湿下でのチャージアップを防止でき、連続使用においても高画像濃度を得るこ とができる。これは高帯電性を発現できるトナー、キャリア構成と交流バイアス との併用により、キャリアとの付着力を低減でき画像濃度を維持できると共にカ ブリを低減でき、ドットをも忠実に再現できるものと思われる。周波数が1kH zより小さいと、ドット再現性が悪化し、中間調再現性が悪化する。周波数が1 O k H z より大きくなると、現像領域での追随ができず、効果が現れない。この 周波数の領域では高抵抗キャリアを使用した二成分現像において、現像ローラと 感光体間よりもキャリアとトナー間での往復作用に働き、トナーをキャリアから 微少に遊離させる効果があり、これによりドット再現性、中間調再現性が良好に

行われ、かつ高画像濃度を出すことが可能になる。

[0236]

交流バイアスが1.0 k V (p-p) より小さくなると、チャージアップの抑制の効果が得られず、交流バイアスが2.5 k V (p-p) より大きくなるとカブリが増大する。感光体と現像ローラ間の周速度比が1:1.2 より小さいと(現像ローラが遅くなる)画像濃度が得にくい。感光体と現像ローラ間の周速度比が1:2 より大きくなると(現像ローラ速度が上がる)とトナー飛散が多くなる。

(12) タンデムカラープロセス

また、高速にカラー画像を形成するために、本実施形態では、感光体と帯電手段とトナー担持体を含むトナー像形成ステーションを複数個有し、像担持体上に形成した静電潜像を顕像化したトナー像を、前記像担持体に無端状の転写体を当接させて前記転写体に転写させる一次転写プロセスが順次連続して実行して、前記転写体に多層の転写トナー画像を形成し、その後前記転写体に形成した多層のトナー像を、一括して紙やOHP等の転写媒体に一括転写させる二次転写プロセスが実行されるよう構成された転写プロセスにおいて、第1の一次転写位置から第2の一次転写位置までの距離をd1(mm)、感光体の周速度をv(mm/s)とした場合、d1/v≤0.65となる転写位置構成を取る構成で、マシンの小型化と印字速度の両立を図るものである。毎分16枚(A4)以上処理でき、かつマシンがSOHO用途として使用できる大きさの小型化を実現するためには、複数のトナー像形成ステーション間を短く、かつプロセス速度を高める構成が必須である。その小型化と印字速度の両立のためには上記値が0.65以下とする構成がミニマムと考えられる。

[0237]

しかし、この構成をとるとき、例えば1色目のイエロートナーが一次転写された後、次の2色目のマゼンタトナーが一次転写されるまでの時間が極めて短く、 転写体の帯電緩和又は転写されたトナーの電荷緩和が殆ど生じず、イエロートナーの上にマゼンタトナーを転写する際に、マゼンタトナーがイエロートナーの電荷作用により反発され、転写効率の低下、転写時の文字の中抜けという問題が生 じる。さらに第3色目のシアントナーの一次転写の時、前のイエロー、マゼンタトナーの上に転写される際にシアントナーの飛び散り、転写不良、転写中抜けが顕著に発生する。さらに繰り返し使用しているうちに特定粒径のトナーが選択的に現像され、トナー粒子個々の流動性が大きく異なると摩擦帯電する機会が異なるため、帯電量のバラツキが生じ、より転写性の劣化を招いてしまう。

そこで、本実施形態の現像剤構成とすることにより、樹脂中でのワックス等の内 添剤が均一分散化し、帯電分布が安定化しトナーの過帯電を抑えると共に、流動 性変動を抑えることができるため、定着特性を犠牲にすることなく、転写効率の 低下、転写時の文字の中抜けを防止することができる。

(13) クリーナレスプロセス

また、本実施形態では、転写プロセス後に感光体上に残留したトナーをクリーニングにより回収するクリーニングプロセス工程を有さずに、次の帯電、露光、現像プロセスを行うクリーナーレスプロセスを基本構成とする電子写真装置に好適に使用される。

[0238]

本実施形態のトナーの使用により、トナーの凝集を抑え、過帯電を防止し、帯電性の安定化が得られ、高転写効率を得ることが可能となる。また樹脂中での均一分散性の向上、良好な帯電性、材料の有する離型性により、非画像部に残留したトナーの現像での回収が良好に行える。そのため、非画像部の前の画像パターンが残る現像メモリーも発生もない。

(14) オイルレスカラー定着

本実施形態では、トナーを定着する手段にベルト式の定着媒体を使用する構成の定着プロセスを具備する電子写真装置に好適に使用される。そのベルトとしては耐熱性と変形自在性とを有するニッケル電鋳ベルトやポリイミドベルトの耐熱ベルトが好適に用いられる。離形性を向上するために表面層としてシリコーンゴム、フッ素ゴム、フッ素樹脂を用いる構成である。これらの定着ベルトにおいてはこれまでは離型オイルを塗布してオフセットを防止してきた。オイルを使用せずに離型性を有するトナーにより、離型オイルを塗布する必要はなくなった。しかし離型オイルを塗布しないと帯電しやすく、未定着のトナー像がベルトと近接

すると帯電の影響により、トナー飛びが生じる場合がある。特に低温低湿下において発生しやすい。また従来の剛性の定着ローラと比べて弾性体のベルト式では、オイルレスにより傷による寿命低下が問題となる。

[0239]

そこで、本実施形態のトナーの使用により、オイルを使用せずともオフセットの発生を防止でき、カラー高透光性を得ることができる。またトナーの過帯電性を抑制できベルトとの帯電作用によるトナーの飛びを抑えられる。またベルトからの隔離時に先端部がベルトに持っていかれるオフセットトナーの分子量分布と滑性の効果により防止することが可能となる。

[0240]

【実施例】

次に、実施例により本発明を更に詳細に説明する。ただし本発明はこれに限定 されるものではない。

.[0241]

(キャリア製造例1)

15%のトリフロロプロピル基を含有する架橋型フッ素変性シリコーン樹脂を固形分換算で120g、 γ - (2-rミノエチル)アミノプロピルトリメトキシシラン6gを300ccのトルエン溶剤に溶解させた。これを平均粒径 50μ m、印加磁場が3000エルステットの時の飽和磁化が65emu/gであるフェライト粒子10kgに対し、液浸乾燥式被覆装置を用いてコーティング処理し、その後230℃で1.5時間焼き付けを行い、キャリアA1を得た。

[0242]

. (キャリア製造例2)

被覆樹脂を15%の $C_8F_{17}CH_2CH_2S_i$ (OCH₃) $_3$ を含有する架橋型フッ素変性シリコーン樹脂に変更した以外は、製造例1と同様の工程でコア材を製造し、コーティングを行い、キャリアA2を得た。

[0243]

(キャリア製造例3)

導電性カーボン (ケッチェンブラックインターナショナル社製 EC) を樹脂

固形分に対し5%をパールミルにて分散した以外は、製造例1と同様の工程でコア材を製造し、コーティングを行い、キャリアA3を得た。

[0244]

(キャリア製造例4)

アミノシランカップリング剤の添加量を30gに変更した以外は、製造例3と 同様の工程でコア材を製造し、コーティングを行い、キャリアA4を得た。

[0245]

(キャリア製造例5、比較例)

被覆樹脂をストレートシリコーン(東レ・ダウコーニング社製 SR-241 1)に変更した以外は、製造例1と同様の工程でコア材を製造し、コーティングを行い、キャリアb1を得た。

(キャリア製造例6、比較例)

被覆樹脂をパーフルオロオクチルエチルアクリレート/メタクリレート共重合体に変更した以外は、製造例3と同様の工程でコア材を製造し、コーティングを行い、キャリアb2を得た。

(キャリア製造例7、比較例)

被覆樹脂をアクリル変性シリコーン樹脂(信越化学社製 KR-9706)に変更した以外は、キャリア製造例3と同様の工程でコア材を製造し、コーティングを行い、キャリアb3を得た。

[0246]

表1に実施例で使用する結着樹脂の特性を示す。樹脂はビスフェノールAプロピルオキシド付加物、テレフタル酸、トリメリット酸、コハク酸、フマル酸を主成分としたポリエステル樹脂を使用し、配合比、重合条件により熱特性を変えた樹脂を使用した。この2価のアルコールと2価のカルボン酸、3価のカルボン酸の構成が定着性、分散性、キャリアのスペント性、粉砕性を両立させるために好適な構成である。

[0247]

【表1】

樹脂	PES-1	PES-2	PES-3	PES-4	PES-5	PES-6	pes-7
Mnf(× 104)	0.32	0.52	0.57	0.59	0.32	0.32	0.23
Mwf(× 10⁴)	2.10	4.40	5.60	5.91	6.40	10.20	1.40
Mzf(× 10°)	26.50	31.00	31.50	40.50	97.50	302.50	7.40
Wmf=Mwf/Mnf	6.56	8.46	9.82	10.02	20.00	31.88	6.09
Wzf=Mzf/Mnf	82.81	59.62	55.26	68.64	304.69	945.31	32.17
Tg	57.30	57.30	55.00	55.50	58.00	61.00	54.00
Tm	107.50	110.80	113.00	116.00	121.00	125.00	100.00
Tfb	96.20	97.50	98.50	99.20	105.60	107.80	85.00
AV	18	15	28	25	15	20	2

[0248]

Mnfは結着樹脂の数平均分子量、Mwfは結着樹脂の重量平均分子量、Mzfは結着樹脂のZ平均分子量、Wmfは重量平均分子量Mwfと数平均分子量Mnfとの比Mwf/Mnf、Wzfは結着樹脂のZ平均分子量Mzfと数平均分子量Mnfの比Mzf/Mnf、AVは樹脂酸価を示す。

[0249]

[0250]

【表2】

ワックス	材料	融点Tw(℃)	容積率C	加熱減量C	ヨウ桑価	けん化価
			t(%)	k(wt%)		
WA-1	極度水素添加ホホバ油	68	18.5	2.8	2	95.7
WA-2	カルナウハ・ワックス	83	15.3	4.1	10	80
WA-3	極度水素添加사ウフォーム油	71	3	2.5	2	90
WA-4	ホホハ、油脂肪酸ペンタエリスリトールモノエステル	120	3.5	3.4	2	120
WA-5	オレイン酸アミド	78		0.8		
WA-6	エチレンビスエルカ酸アミド	105		1.2		
WA-7	ネオペンチルポリオール脂肪酸エステル	110		2.2	0.2	150
WA-8	ペンタエリスリトールテトラステアレート	125		0.9	0.1	180

[0251]

【表3】

		融点Tw(℃)	酸価	針入度
WA-9	ボリエチレンワックス/無水マレイン酸/炭素数65末 端アルコール型ワックス/ターシャリーフチルハーオキシイソ プロ・ルモノカルボネート:100/20/8/4重量部		45	1
WA-10	フィッシャートロプッシュワックス/無水マレイン酸/1-オクタ ノール/ジクミルパーオキサイド:100/15/8/4重量部		58	1

[0252]

【表4】

	Mnr	Mwr	Mzr	Mwr/Mnr	Mzr/Mnr	Peak
WA-1	1009	1072	1118	1.06	1.11	1.02×10^{3}
WA-2	1100	1198	1290	1.09	1.17	1.2×10^{3}
WA-3	1015	1078	1124	1.06	1.11	1.03 × 10 ³
WA-4	1500	2048	3005	1.37	2.00	3.2×10^{3}
WA-5	1000	1050	1200	1.05	1.20	1.8×10^{3}
WA-6	1002	1100	1350	1.10	1.35	1.9×10^{3}
WA-7	1050	1205	1400	1.15	1.33	2.1×10^{3}
WA-8	1100	1980	3050	1.80	2.77	3.5×10^{3}
WA-9	1400	2030	2810	1.45	2.01	2.1×10^{3}
WA-10	1400	3250	5200	2.32	3.71	3.1×10^{3}

[0253]

表 5 に本実施例で使用する顔料を示す。

[0254]

【表 5】

素材No.	組成	
СМ	マゼンタ顔料:ピグメント・レッド57:1	
CC	シアン顔料:ピグメントブルー15:3	
CY	イエロー顔料:ピグメント・イエロー180	
вк	カーホンプラックMA100S(三菱化学社製)	

[0255]

表 6 に本実施例で使用する電荷制御剤及びその物性値を示す。サリチル酸誘導体の金属塩として、炭素数 $1\sim10$ のアルキル基としては例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s e c-ブチル基、t e r t-ブチル基等が挙げられる。金属 Y としては亜鉛、ニッケル、コバルト、銅、クロムが挙げられ、亜鉛、クロムが好ましい。ベンジル酸誘導体の金属塩としては、 $R^1\sim R^4$ がベンゼン環、アルカリ金属 X としてはリチウム、ナトリウム、カリウム等が挙げられ、カリウムが好ましい。

[0256]

【表6】

素材No.	組成	材料
CA1	サリチル酸誘導体のCr金属塩	E-81(オリエント化学社製)
CA2	ベンジル酸誘導体のK金属塩	LR-147(日本カーリット社製)

[0257]

表 7 に本実施例で使用する外添剤を示す。その帯電量はノンコートのフェライトキャリアとの摩擦帯電のブローオフ法により測定したものである。 $25 \, \mathbb{C} \, 45 \, \mathbb{C} \, 8 \, \mathbb{C} \, 100 \, \mathbb{C} \,$

[0258]

正帯電性では5分間攪拌後の5分値が+100~+800 μ C/gで、30分間攪拌後の30分の値が+50~+400 μ C/gであることが好ましい。30分値での帯電量が5分値での帯電量の40%以上を維持しているシリカが好ましい。低下率が大きいと長期連続使用中での帯電量の変化が大きく、一定の画像を維持できなくなる。

[0259]

負帯電性では5分値が $-100\sim-800\mu$ C/gで、30分の値が $-50\sim-600\mu$ C/gであることが好ましい。高い帯電量のシリカでは少量の添加量で機能を発揮できる。

[0260]

【表7】

無機器	材料	粒径	メタノール	水分吸	強熱減量	乾燥減量	5分值	30分值	5分值
粉末		(nm)	滴定(%)	碧墨(%)	(wt%)	(wt%)	(μC/g)	(μC/g)	/30分值
S 1	ジメチルシリコーンオイルで処理したシリカ	6	88	0.1	24	0.2	-890	-740	83.15
S2	ジメチルシリコーンオイルで処理したシリカ	12	88	0.1	18. 5	0.2	-670	-475	70.90
S3	ステアリン酸アルミニウム処理したシリカ	12	78	0.09	10. 5	0.2	-150	-70	46.67
S4	ジ メチルシリコーンオイル/ジ ステアリン酸アル	16	88	0.12	9. 5	0. 2	-685	-511	74.60
	ミニウム処理したシリカ	L							
S5	ジメチルシリコーンオイルで処理したシリカ	40	89	0.10	6.8	0.2	-710		
\$6	トリメチルメトキシシランノステアリン酸Znで処	40	88	0.05	5. 1	0.2	-860	-710	82.56
	理した酸化チタン								
S7	ジメチルシリコーンオイルで処理したシリカ	120	89	0.10	8.9	0.2	-370	-175	47.30
S8	アミノ変性シリコーンオイルで処理したシリカ	6	88	0. 20	6.8	0.9			
59	アミノ変性シリコーンオイルで処理したシリカ	12	68	0. 20	3.5	0.9	350	120	
\$10	アミノ変性シリコーンオイルで処理したシリカ	40	73	0.10	12.5	0.2	280		
\$11	7ミノ変性シリコーンオイルで処理したシリカ	120	73	0.10	8.8	0.2	410		
S12	ヘキサメチルジシラザンで処理したシリカ	40	68	0.60	1.6	0. 2	-800	-620	77.50

[0261]

本実施例での混練条件を表8に示す。

[0262]

Trj1 ($\mathbb C$) はロール (RL1) の前半部の加熱温度、Trk1 ($\mathbb C$) はロール (RL1) の後半部の加熱温度、Tr2 ($\mathbb C$) ロール (RL2) の加熱温度、Rw1はロール (RL1) の回転数、Rw2はロール (RL2) の回転数、Pu0 の回転数、Pu0 の回転時の負荷電流値をPu1、ロール (Pu1 の負荷電流値をPu2 と示している。原料投入量はPu1 に Pu2 の直径はPu3 の面径はPu4 0 mm、長さはPu8 の Pu9 の直径はPu9 の面径はPu9 の面で行った。

[0263]

【表8】

	混練条	Trj1(Trk1	Tr2(°C)	Rw1(mi	Rw2(mi	Rw1/R	Dr1(A)	Dr2(A)	Dr1/Dr
	件	°C)	(ව)		n-1)	n-1)	w2		_	_ 2
	Q-1	131	61	20	95.0	80.0	1.2	29.2	12.1	2.4
	0−2	152	40	6	95.0	65.0	1.5	31.0	16.5	1.9
ĺ	Q-3	118	55	20	75.0	65.0	1.2	25.2	12.5	2.0
	q-4	100	100	20	60.0	60.0	1.0	19.0	19.0	1.0

[0264]

表9、表10に本実施例での粉砕条件を示す。

[0265]

本実施例では、粉砕条件(1)回転体の周速:130m/s、回転体と固定体の 間隙:1.5mm、被トナー粉砕物の供給量:5kg/h、無機微粉末の供給量 :0.03 kg/h、冷却空気温度:0 C、排出部温度:45 C、粉砕条件(2) 回転体の周速:120 m/s、回転体と固定体の間隙:1 mm、被トナー粉砕物供給量:5 kg/h、無機微粉末の供給量:0.02 kg/h、冷却空気温度:0 C、排出部温度:40 Cで行った。s1 kg/m、s2 kg/m、s3 kg/m m、s3 kg/m m s3 kg/m m

[0266]

【表9】

	回転体と固定体 の間隙	回転体の周速	被トナー粉砕物 の供給量	冷却空気温度	排出部温度
KM1	1. 5mm	130m/s	5kg/h	ဝိင	45℃
KM2	1mm	120m/s	5kg/h	೦°೦	40℃

[0267]

【表10】

	供給される無機 微粉末	無機微粉末の 供給量	付与手段 1	付与手段2
KS1	S 1	0.48kg/h		
KS2	S2	0.12kg/h		
KS3	S4	0.09kg/h		
KS4	\$6	0.02kg/h	パイプレータ振動付与	
KS5	S8	0.09kg/h	パパルタ振動付与	
KS6	\$10	0.02kg/h		
KS7			パパルツ振動付与	
KS8				エタノール噴霧処理

[0268]

表11に本実施例に本実施例で使用したトナー材料組成、物性値を示す。

[0269]

【表11】

トナー	樹脂	電荷制御剤	顔料	ワックスコ	ワックス2	外添剤A	外添剤B	外添剤B	粉砕条	粉砕条	混練条
			<u> </u>	<u> </u>					件1	件2	件
TM1	PES-1	CA1(3)	CM(5)	WA1 (8)	_L	S2(3.2)			KM1	KS1	Q-1
TM2	PES-2	CA2(2.5)	CM(5)	WA2 (6)		S1(2.2)	S5(2.5)		KM2	KS2	Q-2
ТМЗ	PES-3	CA1(2)+CA3(1. 5)	CM(5)	WA3 (7)		S4(2.0)	S7(2.8)		KM1	KS3	Q-3
TM4	PES-4	CA2(3)+CA4(2)	CM(5)	WA4 (8)		S2(3.0)	S9(1.0)		KM2	KS6	0-1
ТМ5	PES-5	CA1(1.5)+CA3(2)	CM(5)	WA1 (5)	WA5 (3)	S1(1.8)	S5(1.2)	S8(0.5)	KM1	KS7	Q-2
TM6	PES-6	CA2(3)+CA4(2)	CM(5)	WA2 (6)	WA6 (2)	S2(1.5)	S6(1.2)	S11(1,5)	KM2	KS8	Q-3
tm7	pes-7	CA4(1)	CM(5)			S12(0.3)	-	071(1.07	KMI		q-4
TY1	PES-1	CA1(3)	CY(5)	WA9 (8)	 	S3(2.5)			KM1	KS1	0-1
TY2	PES-2	CA2(2.5)	CY(5)	WA10(6)	1	S1(1.5)	S7(2.8)		KM2	KS3	0-2
TY3	PES-3	GA2(2)+CA3(1. 4)	CY(5)	WA1 (7)		S4(2.0)	S7(2.8)		KM1	KS4	Q-3
TY4	PES-4	CA2(3)+CA4(2)	CY(5)	WA5 (8)		S2(0.5)	S9(1.5)		KM2	KS5	Q-1
TY5	PES-5	CA1(1.5)+CA3(2)	CY(5)	WA2 (5)	WA7 (3)	S2(2.0)	S5(2.0)	S9(1.5)	КМ1		0-2
TY6	PES-6	CA2(3)+CA4(2)	CY(5)	WA3 (6)	WA8 (2)	S2(2.0)	S7(2.0)	S11(1.5)	KM2	KS8	0-3
ty7	pes-7	CA4(1)	CY(5)			S12(0.3)			KM1		q-4
TC1	PES-1	CA1(3)	CC(5)	WA9 (8)		S2(2.5)				KS1	Q-1
TC2	PES-2	CA2(2.5)	CC(5)	WA10 (6)		S1(1.0)	S7(2.8)		KM2		Q-2
тсз	PES-3	CA1(2)+CA3(1. 5)	CC(5)	WA2 (7)		S2(1.0)	S5(2.8)		KM1	KS3	0-3
TC4	PES-4	CA2(3)+CA4(2)	CC(5)	WA7 (8)		S2(3.0)	S9(1.0)		KM2	KS4	Q-1
TC5	PES-5	GA1(1.5)+CA3(2)	CC(5)	WA3 (5)	WA4 (3)	S4(2.0)	S5(1.2)			KS5	0-2
TC6	PES-6	CA2(3)+CA4(2)	CC(5)	WA1 (6)	WA5 (2)	S4(2)	S7(2.0)	S10(1.5)	KM2	KS6	Q-3
tc7	pes-7	CA4(1)	CC(5)	1		S12(0.3)			KM1		q-4
TB1	PES-1	CA1(3)	BK(5)	WA1 (8)	1	S4(5.3)				KS1	Q-1
TB2	PES-2	CA2(2.5)	BK(5)	WA2 (6)		S2(2.5)	S7(2.8)				0-2
TB3	PES-3	GA1(2)+CA3(1)	BK(5)	WA3 (7)		-	S6(1.5)		KM1		0-3
TB4	PES-4	CA2(3)+CA4(2)	BK(5)	WA8 (8)	T		S8(0.5)				Q-1
TB5	PES-5	CA1(1.5)+CA3(2)	BK(5)	WA9 (5)	WA6 (3)			S8(0.5)		_	0-2
TB6	PES-6	CA2(3)+CA4(2)	BK(5)	WA10(6)	WA7 (2)	S2(1.5)	S6(1.2)	S11(1.5)	KM2	KS7	Q-3
ь7	pes-7	CA4(1)	BK(5)	T	1	S12(0.3)			KM1		q-4

[0270]

表11において、顔料、電荷制御剤、ワックスの配合量比は結着樹脂100重量部に対する配合量(重量部)比を括弧内に示す。外添剤はトナー母体100重量部に対する配合量(重量部)を示している。外添処理はFM20Bにおいて、攪拌羽根20S0型、回転数2000min-1、処理時間5min、投入量1kgで行った。

[0271]

表12、表13に本実施例で混練処理を施した後のトナーの分子量特性を示す。トナーはマゼンタトナーのTM1からTM7トナーで比較評価した。イエロー、シアン、ブラックトナーでも同様な結果になる。Mnvはトナーの数平均分子

[0272]

MLは分子量分布において低分子量側の分子量極大ピークを示す分子量値、MHは高分子量側の分子量極大ピークを示す分子量値、SmはHb/Ha、SK1はM10/M90、SK2は(M10-M90)/M90を示す。

[0273]

【表12】

トナー	TM-1	TM-2	тм-з	TM-4	TM-5	TM-6	tm-7
Mnv(× 10⁴)	0.33	0.50	0.51	0.64	0.36	0.31	0.24
Mwv(× 10°)	1.82	2.98	3.62	3.89	3.25	4.68	1.20
Mzv(× 10°)	7.98	9.86	12.88	13.12	15.21	84.60	4.90
Wmv=Mwv/Mnv	5.52	5.96	7.10	6.08	9.03	15.10	5.00
Wzv=Mzv/Mnv	24.18	19.72	25.25	20.50	42.26	272.90	20.42

[0274]

【表13】

トナー	TM-1	TM-2	TM-3	TM-4	TM-5	TM-6	tm-7
ML (×10⁴)	0.55	0.84	0.86	1.08	0.81	0.79	0.46
MH(×10⁴)	10.90	9. 38	10.00	9. 20	13.30	18.20	8.90
Sm	0.20	0.48	0.51	0.73	0.40	0.37	-
SK1	2.2	2.04	2.88	1.58	2. 25	1.81	-
SK2	1.21	1.04	1.89	0.58	1.25	0.81	_

[0275]

図1は本実施例で使用したフルカラー画像形成用の画像形成装置の構成を示す断面図である。図1において、カラー電子写真プリンタの外装筐は省略している。転写ベルトユニット17は、転写ベルト12、弾性体よりなる第1色(イエロー)転写ローラ10Y、第2色(マゼンタ)転写ローラ10M、第3色(シアン)転写ローラ10C、第4色(ブラック)転写ローラ10K、アルミローラよりなる駆動ローラ11、弾性体よりなる第2転写ローラ14、第2転写従動ローラ13、転写ベルト12上に残ったトナー像をクリーニングするベルトクリーナブレード16、クリーナブレードに対向する位置にローラ15を設けている。このとき、第1色(Y)転写位置から第2色(M)転写位置までの距離は35mm(

[0276]

転写ベルト12は、絶縁性ポリカーボネート樹脂中に導電性のフィラーを混練 して押出機にてフィルム化して用いる。本実施例では、絶縁性樹脂としてポリカ ーボネート樹脂(たとえば三菱ガス化学製,ユーピロン Z 3 0 0) 9 5 重量部に 、導電性カーボン(たとえばケッチェンブラック) 5 重量部を加えてフィルム化 したものを用いた。また、表面にフッ素樹脂をコートし、厚みは約100μm、 体積抵抗は $10^7 \sim 10^{12}\Omega$ ・c m、表面抵抗は $10^7 \sim 10^{12}\Omega$ / \square である。ド ット再現性を向上る効果がある。転写ベルト12の長期使用による弛みや、電荷 の蓄積を有効に防止できるようにするためであり、また、表面をフッ素樹脂でコ ートしているのは、長期使用による転写ベルト表面へのトナーフィルミングを有 効に防止できるようにするためである。体積抵抗が $10^7\Omega$ ・cmよりも小さい と、再転写が生じ易く、 $10^{12}\Omega$ ・cmよりも大きいと転写効率が悪化する。 第1転写ローラは外径10mmのカーボン導電性の発泡ウレタンローラで、抵抗 値は $10^2\sim10^6\Omega$ である。第1転写動作時には、第1転写ローラ10は、転写 ベルト12を介して感光体1に $1.0\sim9.8$ (N)の押圧力で圧接され、感光 体上のトナーがベルト上に転写される。抵抗値が $10^2\Omega$ よりも小さいと、再転 写が生じ易い。 $10^6\Omega$ よりも大きいと転写不良が生じ易くなる。1.0 (N) よりも小さいと転写不良を生じ、9.8(N)よりも大きいと転写文字抜けが生 じる。

[0277]

第2転写ローラ14は外径15mmのカーボン導電性の発泡ウレタンローラで、抵抗値は 10^2 ~ 10^6 Ω である。第2転写ローラ14は、転写ベルト12及び紙、OHP等の転写媒体19とを介して転写ローラ13に圧接される。この転写ローラ13は転写ベルト12に従動回転可能に構成している。第2次転写での第2転写ローラ14と対向転写ローラ13とは5.0~21.8(N)の押圧力で圧接され、紙等の記録材上<math>19に転写ベルトからトナーが転写される。抵抗値が 10^2 Ω よりも小さいと、再転写が生じ易い。 10^6 Ω よりも大きいと転写不良が

生じ易くなる。5.0 (N) よりも小さいと転写不良となり、21.8 (N) よりも大きいと負荷が大きくなり、ジッタが出やすくなる。

[0278]

イエロー (Y)、マゼンタ (M)、シアン (C)、黒 (B) の各色用の4組の像形成ユニット18Y、18M、18C、18Kが、図のように直列状に配置されている。

[0279]

各像形成ユニット18Y、18M、18C、18K、中に入れた現像剤を除き それぞれ同じ構成部材よりなるので、説明を簡略化するためY用の像形成ユニット18Yについて説明し、他色用のユニットの説明については省略する。

[0280]

像形成ユニットは以下のように構成されている。1は感光体、3は画素レーザ信号光、4は内部に1200ガウスの磁力を有する磁石を有するアルミよりなる外径12mmの現像ローラで、感光体とギャップ0.3mmで対向し、矢印の方向に回転する。6は攪拌ローラで現像器内のトナーとキャリアを攪拌し、現像ローラへ供給する。キャリアとトナーの配合比を透磁率センサーにより読み取り(図示せず)、トナーホッパー(図示せず)から適時供給される構成である。5は金属製の磁性ブレードで現像ローラ上に現像剤の磁気ブラシ層を規制する。現像剤量は150g投入している。ギャップは0.4mmとした。電源は、省略しているが、現像ローラ4には-500Vの直流と、1.5kV(p-p)、周波数6kHzの交流電圧が印可される。感光体と現像ローラ間の周速度比は1:1.6とした。またトナーとキャリアの混合比は93:7とし、現像器中の現像剤量は150gで行った。

[0281]

2はエピクロルヒドリンゴムよりなる外径12mmの帯電ローラで直流バイアス-1.2kVが印加される。感光体1表面を-600Vに帯電する。8はクリーナ、9は廃トナーボックス、7は現像剤である。

[0282]

紙搬送は転写ユニット17の下方から搬送され、転写ベルト12と第2転写口

[0283]

転写ベルト12上のトナーは第2転写ローラ14に印加された+1000Vにより紙19に転写され、定着ローラ201、加圧ローラ202、定着ベルト203、加熱媒体ローラ204、インダクションヒータ部205から構成される定着部に搬送され、ここで定着される。

[0284]

図2にその定着プロセス図を示す。定着ローラ201とヒートローラ204との間にベルト203がかけられている。定着ローラ201と加圧ローラ202との間に所定の加重がかけられており、ベルト203と加圧ローラ202との間でニップが形成される。ヒートローラ204の外部周面にはフェライトコア206、とコイル207よりなるインダクションヒータ部205が設けられ、外面には温度センサー208が配置されている。

[0285]

ベルトは 30μ mのNiを基体としてその上にシリコーンゴムを 150μ m、 さらにその上にPFAチューブ 30μ mの重ねあわせた構成である。

[0286]

加圧ローラ202は加圧バネ209により定着ローラ201に押しつけられている。トナー210を有する記録材19は、案内板211に沿って動く。

[0287]

定着部材としての定着ローラ201は、長さが250mm、外径が14mm、厚さ1mmのアルミニウム製中空ローラ芯金213の表面に、JIS規格によるゴム硬度(JIS-A)が20度のシリコーンゴムからなる厚さ3mmの弾性層214を設けている。この上にシリコーンゴム層215が3mmの厚みで形成され外径が約20mmとなっている。図示しない駆動モータから駆動力を受けて125mm/sで回転する。

[0288]

ヒートローラ204は肉厚1mm、外径20mmの中空パイプからなっている

ページ: 83/

。定着ベルト表面温度はサーミスタを用いて表面温度170度に制御した。

[0289]

加圧部材としての加圧ローラ202は、長さが250mm、外径20mmである。これは外径16mm、厚さ1mmのアルミニウムからなる中空ローラ芯金216の表面にJIS規格によるゴム硬度(JIS-A)が55度のシリコーンゴムからなる厚さ2mmの弾性層217を設けている。この加圧ローラ202は、回転可能に設置されており、片側147Nのバネ加重のバネ209によって定着ローラ201との間で幅5.0mmのニップ幅を形成している。

[0290]

以下、動作について説明する。フルカラーモードではY, M, C, Kのすべての第一転写ローラ10が押し上げられ、転写ベルト12を介して像形成ユニットの感光体1を押圧している。この時第一転写ローラには+800Vの直流バイアスが印可される。画像信号がレーザ光3から送られ、帯電ローラ2により表面が帯電された感光体1に入射し、静電潜像が形成される。感光体1と接触し回転する現像ローラ4上のトナーが感光体1に形成された静電潜像を顕像化する。

[0291]

このとき像形成ユニット18Yの像形成の速度(感光体の周速に等しい125mm/s)と転写ベルト12の移動速度は感光体速度が転写ベルト速度よりも0.5~1.5%遅くなるように設定されている。

[0292]

像形成工程により、Yの信号光3Yが像形成ユニット18Yに入力され、Yトナーによる像形成が行われる。像形成と同時に第1転写ローラ10Yの作用で、Yトナー像が感光体1Yから転写ベルト12に転写される。このとき第1転写ローラ10Yには+800Vの直流電圧を印加した。

[0293]

第1色(Y)第一転写と第2色(M)第一転写間のタイムラグを持たせて、M の信号光3Mが像形成ユニット18Mに入力され、Mトナーによる像形成が行われ、像形成と同時に第1転写ローラ10Mの作用で、Mトナー像が感光体1Mから転写ベルト12に転写される。このとき第一色(Y)トナーが形成されている

[0294]

転写ベルト12上には4色のトナー像が位置的に合致して重ね合わされカラー像が形成された。最後のBトナー像の転写後、4色のトナー像はタイミングを合わせて給紙カセット(図示せず)から送られる紙19に、第2転写ローラ14の作用で一括転写される。このとき転写ローラ13は接地し、第2転写ローラ14には+1kVの直流電圧を印加した。紙に転写されたトナー像は定着ローラ対201・202により定着された。紙はその後排出ローラ対(図示せず)を経て装置外に排出された。中間転写ベルト12上に残った転写残りのトナーは、クリーニングブレード16の作用で清掃され次の像形成に備えた。

[0295]

表14に図1の電子写真装置により、画像出しを行った結果を示す。表15ではトナーが3色重なったフルカラー画像における文字部での転写不良の状態、及び定着での定着ベルトへの紙の巻付き性を評価した。帯電量はフェライトキャリアとの摩擦帯電のブローオフ法により測定したものである。 $25 \, \mathbb{C}$ 、 $45 \, \mathbb{K} \, \mathbb{H}$ の環境下で、耐久性評価のサンプルを $0.3 \, \mathbb{G}$ 保取し、窒素ガス $1.96 \, \mathbb{K} \, \mathbb{G}$ (\mathbb{C}) で \mathbb{C} 1分間ブローした。

[0296]

【表14】

現像剤	 	キャリア	感光体上	画像	濃度(ID)	カブリ	全面ベタ画	転写時の	定着時のトナー
			フィルミング	初期	テスト後		像均一性	文字飛び	刮れ
DM1	TM1	A1	未発生	1.41	1.41	0	0	なし	発生なし
DM2	TM2	A2	未発生	1.44	1.52	0	0	なし	発生なし
DM3	ТМЗ	АЗ	未発生	1.42	1.46	0	0	なし	発生なし
DM4	TM4	Α4	未発生	1.41	1.44	0	0	なし	発生なし
DM5	TM5	A1	未発生	1.41	1.46	0	0	なし	発生なし
DM6	TM6	A2	未発生	1.42	1.45	0	0	なし	発生なし
dm7	tm7	b1	発生	1.11	1.03	×	×	発生	トナー飛び発生
DY1	TY1	A1	未発生	1.45	1.39	0	0	なし	発生なし
DY2	TY2	A2	未発生	1.44	1.48	0	0	なし	発生なし
DY3	TY3	АЗ	未発生	1.42	1.45	0	0	なし	発生なし
DY4	TY4	A4	未発生	1.45	1.47	0	0	なし	発生なし
DY5	TY5	A1	未発生	1.41	1.45	0	0	なし	発生なし
DY6	TY6	A2	未発生	1.41	1.47	0	0	なし	発生なし
dy7	ty7	b2	発生	1.18	1.03	×	×	発生	トナー飛び発生
DC1	TC1	A1	未発生	1.44	1.48	0	0	なし	発生なし
DC2	TC2	A2	未発生	1.43	1.50	0	0	なし	発生なし
DC3	TC3	АЗ	未発生	1.51	1.53	0	0	なし	発生なし
DC4	TC4	A4	未発生	1.43	1.45	0	0	なし	発生なし
DC5	TC5	A1	未発生	1.44	1.45	0	0	なし	発生なし
DC6	TC6	A2	未発生	1.46	1.50	0	0	なし	発生なし
dc7	tc7	b3	発生	1.22	1.02	×	×	発生	トナー飛び発生
DB1	TB1	A1	未発生	1.42	1.45	0	0	なし	発生なし
DB2	TB2	A2	未発生	1.47	1.49	0	0	なし	発生なし
DB3	ТВ3	АЗ	未発生	1.45	1.49	0	0	なし	発生なし
DB4	TB4	A4	未発生	1.41	1.46	0	0	なし	発生なし
DB5	TB5	A1	未発生	1.43	1.47	0	0	なし	発生なし
DB6	TB6	A2		1.44	1.49	0	0	なし	発生なし
db7	tb7	b1	発生	1.21	1.03	×	×	発生	トナー飛び発生

[0297]

【表15】

	第1色現 像剤	第2色現 像剤	第3色現 像剤	第4色現 像剤	逆転写	転写中抜け	定着ペルトへ の巻付性
CC1	DY1	DM1	DC1	DB1	未発生	未発生	未発生
CC2	DY2	DM2	DC2	DB2	未発生	未発生	未発生
ССЗ	DY3	DM3	DC3	DB3	未発生	未発生	未発生
CC4	DY4	DM4	DC4	DB4	未発生	未発生	未発生
CC5	DY5	DM5	DC5	DB5	未発生	未発生	未発生
CC6	DY6	DM6	DC6	DB6	未発生	未発生	未発生
cc7	dy7	dm7	dc7	db7	発生	発生	発生

[0298]

現像剤を用いて画像出しを行ったところ、横線の乱れやトナーの飛び散り、文字の中抜けなどがなくベタ黒画像が均一で、16本/mmの画線をも再現した極

めて高解像度高画質の画像が得られ、画像濃度1.3以上の高濃度の画像が得られた。また、非画像部の地かぶりも発生していなかった。更に、A4用紙10万枚の長期耐久テストにおいても、流動性、画像濃度とも変化が少なく安定した特性を示した。また現像時の全面ベタ画像を取ったときの均一性も良好であった。現像メモリーも発生していない。連続使用時においても、縦筋の異常画像は発生しなかった。キャリアへのトナー成分のスペントもほとんど生じていない。キャリア抵抗の変化、帯電量の低下も少なく、カブリは発生はない。高温高湿下、低温低湿下での帯電量の変動はほとんど生じていない。また転写においても中抜けは実用上問題ないレベルであり、転写効率は95%程度を示した。また、感光体、転写ベルトへのトナーのフィルミングも実用上問題ないレベルであった。転写ベルトのクリーニング不良も未発生であった。また定着時のトナーの乱れやトナー飛びもほとんど生じていない。

[0299]

また、3色の重なったフルカラー画像においても、転写不良は発生せず、定着 時において、定着ベルトへの紙の巻付きは発生しなかった。

[0300]

しかし、tm7、ty7、tc7、tb7のトナーは、感光体の距離を70mm、プロセス速度を100mm/sとした構成では転写中抜けや逆転写は許容できるレベルであったが、距離を65mm以下とし、速度を100mm/s以上とした構成で使用すると、感光体のフィルミングや転写不良や、転写時の文字の飛び散りが発生し、カブリも発生した。また、長期使用時にキャリアへのスペントが多く、キャリア抵抗の変化が大きく、帯電量の低下、カブリの増大する傾向が見られた。高温高湿下での帯電量の低下によるカブリの増大、低温低湿下での帯電量の増大による画像濃度の低下が見られた。転写効率は60~70%程度まで低下した転写ベルトのフィルミングや、クリーニング不良も発生した。現像時の全面ベタ画像を取ったときに後半部にかすれが生じた。連続使用時に現像ブレードにワックスが融着し、縦筋の異常画像が発生した。3色重ねの画像出力時には定着ベルトへの紙の巻付きが発生した。定着時にトナー飛びが発生した。

[0301]

次に(表16)に〇HP用紙に付着量1.2g/сm²以上のベタ画像をプロセス速度100mm/s、オイルを塗布しないベルトを用いた定着装置にて非オフセット性試験を行った。定着ニップ部でOHPのジャムは発生しなかった。普通紙の全面ベタグリーン画像では、オフセットは122000枚目までは全く発生しなかった。シリコン又はフッ素系の定着ベルトでオイルを塗布せずともベルトの表面劣化現象はみられない。

[0302]

透過率と、高温でのオフセット性を評価した。プロセス速度は100mm/s、定着温度180℃で透過率は分光光度計U-3200(日立製作所)で、700nmの光の透過率を測定した。定着性、耐オフセット性、保存安定性の結果を表16に示す。

[0303]

【表16】

	OHP 透過 率 (%)	高温オフセット発生 温度(℃)	保存性テスト
TM1	88.8	210	0
TM2	89.7	200	0
ТМЗ	91.2	210	0
TM4	92.5	200	0
TM5	93.2	210	0
TM6	91.8	210	0
tm7	88.9	全温度領域で発 生	×

[0304]

OHP透光性が80%以上を示しており、また非オフセット温度幅も40~60Kとオイルを使用しない定着ローラにおいて良好な定着性を示した。また60℃、5時間の保存安定性においても凝集はほとんど見られなかった。

[0305]

しかしtm7のトナーは貯蔵安定性テストで固まりが生じ、また非オフセット 温度域も狭い結果となった。

[0306]

【発明の効果】

以上のように、本発明によれば、特定のワックスを添加し、一定の外添処方を

有するトナーと、アミノシランカップリング剤を含有するフッ素変性シリコーン 樹脂を被覆樹脂とするキャリアと組合わせた二成分現像剤により、オイルを塗布 せずとも、高い〇HP透光性を維持しながらオフセット性を防止するオイルレス 定着を実現でき、キャリアへのトナー成分のスペントもなく長寿命化を図ること ができる。さらには転写時の中抜けや飛び散りを防止し、高転写効率を得ること が可能となる。

【図面の簡単な説明】

- 【図1】本発明の一実施例で使用した画像形成装置の構成を示す断面図
- 【図2】本発明の一実施例で使用した定着ユニットの構成を示す断面図
- 【図3】本発明の一実施例で使用したトナー粉砕処理の構成図
- 【図4】本発明の一実施例で使用したトナー粉砕処理の断面図
- 【図5】本発明の一実施例で使用したトナー粉砕処理の断面図
- 【図6】本発明の一実施例におけるトナーの混練装置の概略図
- 【図7】本発明の一実施例におけるトナーの混練装置の平面図
- 【図8】本発明の一実施例におけるトナーの混練装置の側面図
- 【図9】本発明の一実施例におけるトナーの混練装置の正面図

【符号の説明】

- 1 感光体
- 2 帯電ローラ
- 3 レーザ信号光
- 4 現像ローラ
- 5 ブレード
- 10 第1転写ローラ
- 12 転写ベルト
- 13 駆動テンションローラ
- 14 第2転写ローラ
- 17 転写ベルトユニット
- 18B, 18C, 18M, 18Y 像形成ユニット
- 18 像形成ユニット群

- 201 定着ローラ
- 202 加圧ローラ
- 203 定着ベルト
- 205 インダクションヒータ部
- 206 フェライトコア
- 207 コイル
- 508 定量供給機
- 500 粉砕処理部
- 501 回転体
- 502 固定体
- 503 原料
- 506 凹凸部
- 509 冷却器
- 511 エアー
- 5 1 2 温度計
- 514 バグフィルター
 - 515 サイクロン
 - 5 1 6 風量計
 - 517 ブロア
 - 518 無機微粉末供給装置
 - 519 バイブレータ振動装置
 - 602 混錬ローラ (RL1)
 - 603 混錬ローラ (RL2)
 - 604 トナーの溶融膜
 - 605 熱媒体の流入口
 - 606 熱媒体の流出口
 - 607 熱媒体の流入口
 - 608 熱媒体の流出口
 - 611 スパイラル状の渦

612 トナー溜り

図面

【図1】

【図4】

【図6】

【図8】

【図9】

【要約】

【課題】オイルを塗布せずとも、高いOHP透光性を維持しながらオフセット性を防止するオイルレス定着と、キャリアへのトナー成分のスペントもなく長寿命化を図る二成分現像剤を提供する。

【解決手段】少なくとも結着樹脂、着色剤及びワックスを含むトナーで、DS C法による吸熱ピーク温度が $50\sim120$ であるエステル系ワックスを結着樹脂100重量部に対して $5\sim20$ 重量部含み、平均粒子径が6nm ~120 nm である無機微粉末をトナー母体粒子100重量部に対し1. $5\sim5$.5重量部含み、アミノシランカップリング剤を含有するフッ素変性シリコーン樹脂を被覆樹脂とするキャリアと組合わせて二成分現像剤とする。

【選択図】 図1

出願人履歴情報

識別番号

[000005821]

1. 変更年月日 [変更理由]

住

氏 名

1990年 8月28日

由] 新規登録 所 大阪府門

大阪府門真市大字門真1006番地

松下電器産業株式会社