Brain Tumor TuMoRIa

Contenido

01

Problema

Contextualización, importancia, objetivo.

03

Datos

Muestra del dataSet, recuento Tratamiento de datos 02

Formulación

Propósito del proyecto Modelo a realizar, enfoques para abordar

04

Implementación

Red Dnn, Convolucional Augmented Data, Transfer Learning, Dataset Fusion

01

Problema

Importancia y descripción del problema

Definición del problema:

El cerebro y la columna vertebral constituyen el sistema nervioso central donde se controlan todas las funciones vitales. Los tumores cerebrales afectan el correcto funcionamiento del pensamiento, el habla y los movimientos corporales.

Pueden ser provocados debido al crecimiento de células anormales en el tejido cerebral.

Definición del problema:

Los doctores diagnostican los tumores por medio de un examen neurológico y otras pruebas como imágenes por Resonancia Magnética, tomografía computarizada o una biopsia.

Se requiere detectar en el menor tiempo posible si existe algún tipo de tumor, o no, además de determinar el tipo y malignidad.

02

Formulación

Propósito del proyecto Módelo a realizar

Objetivo

Desarrollo de un modelo de aprendizaje profundo para la clasificación eficiente y fiable de diferentes tipos de tumores cerebrales.

Utilización de diferentes técnicas para CNN

Se propone abordar(Metodología):

 Utilizar múltiples capas de convolución y submuestreo para extraer características importantes de los datos de entrada y reducir su dimensionalidad.

 Utilizar técnicas de regularización como el dropout y la normalización de batch para evitar el sobreajuste del modelo.

 Evaluación del enfoque de aprendizaje por transferencia

 Utilizar técnicas de enriquecimiento de datos (Data Augmentation)

Evaluar desempeños con técnica Dataset Fusion

03

Datos

Muestra del dataSet Tratamiento de datos

DataSet usados:

Glioma

Figshare

Brain Tumor MRI Dataset Meningioma

SARTAJ

7022

Pituitary

Br35H

Brain Tumor Classification (MRI)

No Tumor

3264

Estas muestras se reconocen para pruebas, se ha planteado agrupar más de 20 mil imágenes incluyendo muestras de otros dataset

Tratamiento de datos:

- Lectura iterativa de imágenes
- Normalización de imágenes
- Target Size configurado a (224,224)

04

Implementación

Red Dnn,Cnn, Data Augmentation, Transfer Learning, evaluación Dataset Fusion

Implementación de una red convolucional:

Implementación de Transfer learning:

Estos modelos son adecuados para una tarea de clasificación de imágenes de MRI debido a sus características y rendimiento en tareas similares.

Implementación Dataset Fusion:

Problema

Todas las imágenes a continuación pertenecen a la misma clase

image (11).jpg

Resultados obtenidos CNN Enfoque Simple // Dataset Fusion

Resultados obtenidos Data Augmentation Enfoque Simple // Dataset Fusion

Resultados obtenidos Transfer Learning Enfoque Simple // Dataset Fusion

Gracias!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**