"Oh dear! Oh dear! I shall be too late!".- said the White Rabbit

Alice's Adventures in Wonderland, Lewis Carroll

5. Valores e Vectores Próprios

- Definição de valores e vectores próprios de uma matriz.
- Cálculo de valores e vectores próprios de uma matriz
- Diagonalização.

Definição

Seja A uma matriz de ordem n. Diz-se que λ é um valor próprio de A se e só existir um vector $x \in R^n$, não nulo, tal que

$$Ax = \lambda x$$
.

Designa-se o vector x por vector próprio associado ao valor próprio λ .

Exemplo

Sendo
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
 tem-se para $x = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$ e $\lambda = 2$

$$Ax = \lambda x \Leftrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 2 \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

donde $\lambda = 2$ é um valor próprio de A associado ao vector próprio

$$x = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

Exemplos:

1. Seja A a matriz nula O_n de ordem n. Então,

Cada elemento de $\mathbb{R}^n \setminus \{0\}$ é um vector próprio associado ao valor próprio 0 de A.

2. Para
$$A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$
 e $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, tem-se
$$Ax = \begin{pmatrix} 3x_1 \\ 3x_2 \end{pmatrix} = 3\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 3x$$

Portanto, 3 é valor próprio de A associado a cada vector de $\mathbb{R}^2 \setminus \{0\}$.

- Chama-se espectro da matriz A ao conjunto de todos os valores próprios da matriz A, que se representa por $\lambda(A)$.
- Um vector próprio está associado apenas a um valor próprio De facto, se λ' é outro valor próprio associado a x, então tem-se $Ax = \lambda x$ e $Ax = \lambda' x$.

Logo, $\lambda x = \lambda' x$ donde $(\lambda - \lambda') x = 0$. Dado que $x \neq 0$, deduz-se assim que $\lambda - \lambda' = 0$, ou seja, que $\lambda = \lambda'$.

• Um valor próprio está associado uma infinidade de vectores próprios.

Na verdade, se x é um vector próprio associado ao valor próprio λ , então, αx , com $\alpha \in \mathbb{R} \backslash \{0\}$, também é um vector próprio associado ao valor próprio λ .

$$Ax = \lambda x \Leftrightarrow A(\alpha x) = \lambda(\alpha x), \ \alpha \in \mathbb{R} \setminus \{0\}$$

como calcular os valores próprios

Teorema

Seja A uma matriz de ordem n. Um escalar λ é um valor próprio de A se e só

$$det(A - \lambda I_n) = 0$$

Demonstração:

Para um número real λ são válidas as seguintes equivalências,

 λ é valor próprio de $A\Leftrightarrow Ax=\lambda x$ para algum $x\neq 0$ $\Leftrightarrow (A-\lambda I)x=0$ para algum $x\neq 0$ $\Leftrightarrow (A-\lambda I)x=0$ é um sistema indeterminado $\Leftrightarrow A-\lambda I$ é uma matriz não invertível $\Leftrightarrow |A-\lambda I|=0$

Exemplo

Seja
$$A = \begin{pmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{pmatrix}$$

$$det(A - \lambda I_3) = det \begin{pmatrix} -3 - \lambda & 1 & -1 \\ -7 & 5 - \lambda & -1 \\ -6 & 6 & -2 - \lambda \end{pmatrix}$$

$$= det \begin{pmatrix} -2 - \lambda & 1 & -1 \\ -2 - \lambda & 5 - \lambda & -1 \\ 0 & 6 & -2 - \lambda \end{pmatrix}$$

$$= -(2 + \lambda) det \begin{pmatrix} 1 & 1 & -1 \\ 1 & 5 - \lambda & -1 \\ 0 & 6 & -2 - \lambda \end{pmatrix}$$

$$= -(2 + \lambda) det \begin{pmatrix} 1 & 1 & -1 \\ 1 & 5 - \lambda & -1 \\ 0 & 6 & -2 - \lambda \end{pmatrix}$$

$$= -(2 + \lambda) det \begin{pmatrix} 0 & 4 - \lambda & 0 \\ 0 & 6 & -2 - \lambda \end{pmatrix}$$

$$= -(2 + \lambda)(4 - \lambda)(-2 - \lambda) = (2 + \lambda)^{2}(4 - \lambda)$$

Os valores próprios sao $\lambda = -2 e\lambda = 4$

- Designa-se por polinómio característico o polinómio, em λ , $det(A \lambda I_n)$. Este polinómio é de grau n, ordem da matriz A.
- Chama-se equação característica à equação $p(\lambda) = det(A \lambda I_n) = 0$.

Note-se que as raízes da equação característica são os valores próprios da matriz A.

Se $\lambda_1, \lambda_2, \dots, \lambda_m, (m \le n)$, são raízes do polinómio característico (ou seja valores próprios de A), então este pode ser factorizado do seguinte modo:

$$p(\lambda) = (-1)^n (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \dots (\lambda - \lambda_n)^{r_n}.$$

em que $r_1 + r_2 + \cdots + r_n = n$.

Diz-se que $\lambda_1, \lambda_2, \dots, \lambda_m$ têm multiplicidade algébrica r_1, r_2, \dots, r_n , respectivamente.

4□ > 4□ > 4 ≥ > 4 ≥ > ≥ 90

polinómio característico:
$$p(\lambda) = (2 + \lambda)^2 (4 - \lambda)$$

equação característica:
$$p(\lambda) = (2 + \lambda)^2 (4 - \lambda) = 0$$

Donde os valores próprios de A são $\lambda=-2$ de multiplicidade (algébrica) 2 e $\lambda=4$ de multiplicidade 1 (simples).

um subespaço próprio importante

Se λ é um valor próprio de uma matriz A, de ordem n então o conjunto

$$U_{\lambda} = \{x : Ax = \lambda x\},\$$

incluindo o vector nulo, é um subespaço, designado por subespaço próprio associado ao valor próprio λ .

À dimensão do subespaço próprio chama-se multiplicidade geométrica do valor próprio λ

Exemplo

A matriz
$$A = \begin{pmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{pmatrix}$$
, com valores próprios $\lambda = -2$, de multiplicidade algébrica 2, e $\lambda = 4$ simples.

De modo a determinar o subespaço associado a $\lambda=4$ temos que resolver o sistema $(A-4I_3)X=0$, ou seja:

$$\begin{pmatrix} -7 & 1 & -1 \\ -7 & 1 & -1 \\ -6 & 6 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

O sistema reduz-se a x=0,y-z=0, sendo então o conjunto solução, constituído por vectores da forma:

$$\begin{pmatrix} 0 \\ y \\ y \end{pmatrix}$$
,

tendo-se, o subespaço próprio associado a $\lambda = 4$:

 $U_{\lambda=4}=\{(0,y,y),y\in\mathbb{R}\}$, o qual tem dimensão 1, sendo $\lambda=-2$ de

De modo a determinar o subespaço associado a $\lambda = -2$ temos que resolver o sistema $(A + 2I_3)X = 0$, ou seja:

$$\begin{pmatrix} -1 & 1 & -1 \\ -7 & 7 & -1 \\ -6 & 6 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

O sistema reduz-se a x=y, z=0, sendo então o conjunto solução, constituído por vectores da forma:

$$\left(\begin{array}{c} x \\ x \\ 0 \end{array}\right),$$

tendo-se, o subespaço próprio associado a $\lambda = -2$:

$$U_{\lambda=-2} = \{(x, x, 0), x \in \mathbb{R}\}$$

o qual tem dimensão 1, sendo $\lambda=-2$ de multiplicidade geométrica 1. Sec

Propriedades

- Os valores próprios de uma matriz diagonal são os elementos da diagonal.
- Os valores próprios de uma matriz triangular superior (inferior) são os elementos da diagonal.
- Seja A uma matriz de ordem n. Se λ é valor próprio de A então $\alpha\lambda$ é valor próprio de αA , $\alpha \in \mathbb{R} \setminus \{0\}$.
- Se β é um número, então $\lambda+\beta$ é um valor próprio de $A+\beta I$ e x é um vector próprio associado.
- Seja A uma matriz de ordem n. Se λ é valor próprio de A associado ao vector próprio x, então λ^n é valor próprio de A^n associado ao vector próprio x.
- A é invertível se e só se $\lambda \neq 0$. Neste caso, $\frac{1}{\lambda}$ é um valor próprio de A^{-1} e x é um vector próprio associado.
- λ é um valor próprio de A^T .

Definição

Duas matrizes A e B dizem-se semelhantes se existir uma matriz S, invertível, tal que

$$B = S^{-1}AS$$

Teorema

Duas matrizes semelhantes têm os mesmos valores próprios.

Demonstração

Sejam A e B duas matrizes semelhantes. Então existe uma matriz S, invertível tal que $B = SAS^{-1}$.

Assim, vejamos que têm iguais polinómios característicos

Assim, veramos que tem iguais poinformos característicos
$$p_B(\lambda) = |B - \lambda I| = |SAS^{-1} - \lambda(SS^{-1})| = |SAS^{-1} - S\lambda S^{-1}|$$
$$= |S(A - \lambda I)S^{-1}| = |S||(A - \lambda I)||S^{-1}| = |S||(A - \lambda I)|\frac{1}{|S|}$$
$$= |A - \lambda I| =$$
$$= p_A(\lambda)$$

Teorema

Sejam A e B matrizes semelhantes.

Se x é um vector próprio de A associado ao valor próprio λ , então $S^{-1}x$ é vector próprio de B associado ao valor próprio λ .

Demonstração:

Seja B semelhante a A, ou seja, existe S, invertível, tal que: $B = S^{-1}AS$. Se x é um vector próprio de A associado ao valor próprio λ , então

$$Ax = \lambda x \quad \Rightarrow S^{-1}ASS^{-1}x = S^{-1}\lambda x$$
$$\Rightarrow (S^{-1}AS)(S^{-1}x) = \lambda(S^{-1}x)$$
$$\Rightarrow B(S^{-1}x) = \lambda(S^{-1}x)$$

ou seja $S^{-1}x$ é vector próprio de B associado ao valor próprio λ .

Relativamente à matriz $A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$,

• Subespaço próprio associado a $\lambda = -1$ $(A - \lambda I)x = 0 \Leftrightarrow (A + I)x = 0 \Leftrightarrow \begin{pmatrix} 2 & 4 \\ 2 & 4 \end{pmatrix}x = 0; \ U_{\lambda = -1} = \{(-2y, y) : y \in \mathbb{R}\}$

• Subespaço próprio associado a $\lambda=5$

$$(A - \lambda I)x = 0 \Leftrightarrow (A - 5I)x = 0 \Leftrightarrow \begin{pmatrix} -4 & 4 \\ 2 & -2 \end{pmatrix} x = 0;$$

$$U_{\lambda=5} = \{(x,x) : x \in \mathbb{R}\} \text{ Tem-se: } S = \begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix} \text{ e } S^{-1} = \begin{pmatrix} -1/3 & 1/3 \\ 1/3 & 2/3 \end{pmatrix}$$

e então
$$D = SAS^{-1} = \left(\begin{array}{cc} -2 & 1 \\ 1 & 1 \end{array} \right) \left(\begin{array}{cc} 1 & 4 \\ 2 & 3 \end{array} \right) \left(\begin{array}{cc} -1/3 & 1/3 \\ 1/3 & 2/3 \end{array} \right) = \left(\begin{array}{cc} -1 & 0 \\ 0 & 5 \end{array} \right)$$

Note-se que:

$$dim U_{\lambda=-1} + dim U_{\lambda=5} = 1 + 1 = 2 = n$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Teorema

Seja $A \in \mathbb{R}^{n \times n}$ e suponhamos que A tem n vectores próprios v_1, \ldots, v_n associados, respectivamente, a valores próprios $\lambda_1, \ldots, \lambda_n$ (não necessariamente distintos), linearmente independentes. Seja S a matriz que tem esses vectores próprios como colunas e seja D a matriz diagonal com elementos diagonais iguais a $\lambda_1, \ldots, \lambda_n$, i.e.

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_1 & 0 & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

Então:

- S é uma matriz invertível;
- $D = S^{-1}AS$

Demonstração:

- **1.** Sendo S a matriz $n \times n$ definida por $S = (v_1 \ v_2 \dots v_n)$ e, por hipótese, v_1, \dots, v_n são linearmente independentes, ter-se-á car(S) = n, o que garante que S é invertível.
- **2.** Como $Av_i = \lambda_i v_i$, tem-se

$$AS = A(v_1, v_2 \dots, v_n)$$

$$= (Av_1, Av_2 \dots, Av_n)$$

$$= (A\lambda_1, A\lambda_2 \dots, A\lambda_n)$$

$$= (v_1, v_2 \dots, v_n) \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_1 & 0 & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

$$= SD$$

De AS = SD vem, multiplicando ambos os membros, à esquerda, por S^{-1} , que $D = S^{-1}AS$.

17 / 22

Definição

Uma matriz é diagonalizável se for semelhante a uma matriz diagonal. Ou seja se existir uma matriz S, invertível, tal que

$$D = S^{-1}AS$$

é uma matriz diagonal.

Teorema

Uma matriz de ordem n é diagonalizável se e só se tem n vectores próprios linearmente independentes.

Corolário

Uma matriz de ordem n é diagonalizável se e só se existir uma base de R^n formada vectores próprios de A.

Exemplo

A matriz $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ não é diagonalizável.

Note-se que, sendo o polinómio característico de A, $p(\lambda) = (1 - \lambda)^2$, o único valor próprio é 1.

Sendo $U_{\lambda=1}=\{(x,0):x\in\mathbb{R}\}$, subespaço de dimensão 1, não é possível determinar 2 vectores próprios independentes.

Exemplo A matriz

$$\left(\begin{array}{ccc}
2 & -3 & 1 \\
1 & -2 & 1 \\
1 & -3 & 2
\end{array}\right)$$

é diagonalizável, uma vez que $\begin{pmatrix} 3 & 1 & 0 \end{pmatrix}^T$, $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^T$ e $\begin{pmatrix} -1 & 0 & 1 \end{pmatrix}^T$ são vectores próprios linearmente independentes.

Tem-se
$$S^{-1}AS = D$$
 com $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ e $S = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

A matriz S é a matriz cujas colunas são os vectores próprios, l. independentes, associados aos valores próprios.

A matriz D é uma matriz diagonal cujos elementos da diagonal principal são os valores próprios da matriz A.

Diagonalizacao de Matrizes Ortogonais Sendo P uma matriz ortogonal $P.P^T=I\Longrightarrow P^T=P^{-1}$ A matriz diagonal D obtém-se da igualdade $D=P^T.A.P$

Se $\lambda_1,\ldots,\lambda_s$ são valores próprios da matriz A, de ordem n, distintos, e u_k é um vector próprio de A associado a λ_k , para cada k, então u_1,\ldots,u_s são vectores linearmente independentes.

Corolário

Se uma matriz A, de ordem n, tem n valores próprios distintos, então é A diagonalizável.

Corolário

Se uma matriz A, de ordem n, e suponhamos que $\lambda_1,\ldots,\lambda_k$ são todos os valores próprios distintos de A. Então A é diagonalizável se e só se

$$dim(U_{\lambda_1}) + \cdots + dim(U_{\lambda_k}) = n,$$

ou seja, o somatório das multiplicidades geométricas de $\lambda_1,\ldots,\lambda_k$ é igual a n.

Em síntese:

se A é de ordem n, então,

- se *A* tem valores próprios distintos, então *A* tem *n* vectores próprios linearmente independentes e é, portanto, diagonalizável;
- se A não tem n valores próprios distintos, A pode ou não ser diagonalizável; se a equação característica de A tiver uma raíz real múltipla, seria necessário averiguar se A tem ou não n vectores próprios linearmente independentes.

Exemplo

A matriz

$$A = \left(\begin{array}{cc} 1 & 4 \\ 2 & 3 \end{array}\right)$$

é diagonalizável, uma vez que tem dois valores próprios distintos -1 e 5.