Risks and Odds

Andy Grogan-Kaylor

14 Jul 2020 11:54:07

Setup

. clear all

We are going to set up a table with 10 rows of information.

```
. set obs 10 // 10 rows of information number of observations (_N) was 0, now 10
```

. generate occasions = 100 // 100 hypothetical occasions

In each row of the table our event of interest happened a different number of times.

In the code below we make use of Stata's special variable for the row number of a data set: _n.

```
. generate event_happened = _n * 10
```

As a result, the event of interest didn't happen 100 – happened times.

```
. generate event_didnt_happen = 100 - event_happened
```

As you think through the rest of this example, it might be worth giving yourself a concrete example of the *event of interest*. What is a concrete example of a good thing that might happen, or a bad thing that might happen?

Our Table of Information So Far

Let's list out our table of information so far:

. list, abbreviate(20)

	occasions	occasions event_happened event_didnt_ha	
1.	100	10	90
2.	100	20	80
3.	100	30	70
4.	100	40	60
5.	100	50	50
6.	100	60	40
7.	100	70	30
8.	100	80	20
9.	100	90	10
10.	100	100	0

Risk

Now let's think about risk:

$$\mathrm{risk} = P(\mathrm{event}) = \frac{\mathrm{number\ of\ events\ that\ happened}}{\mathrm{number\ of\ events\ that\ happened} + \mathrm{number\ of\ events\ that\ didn't\ happened}}$$

. generate risk_event_happened = event_happened / (event_happened + event_didnt_happen)

There is also a risk that the event didn't happen.

```
. generate risk_event_didnt_happen = event_didnt_happen / (event_happened + event_didnt_h
> appen)
```

Odds

The odds are the probability that an event happened divided by the probability that it did not happen

$$odds = \frac{P(\text{event happened})}{P(\text{event didn't happen})}$$

$$= \frac{\frac{\text{number of events}}{\text{number of non-events}}}{\frac{\text{number of non-events}}{\text{number of events+number of non-events}}}$$

. generate odds = risk_event_happened / risk_event_didnt_happen
(1 missing value generated)

which incidentally reduces to

$$=\frac{\text{number of events}}{\text{number of non-events}}$$

Look At Our Table Of Information

Let's look at our table of information.

Notice how the odds start to overstate the risk, as the risk becomes more common.

```
. list event_happened ///
> risk_event_happened ///
> odds, ///
```

> abbreviate(20)

	event_happened	risk_event_happened	odds
1.	10	.1	.1111111
2.	20	.2	.25
3.	30	.3	.4285715
4.	40	.4	.6666666
5.	50	.5	1
6.	60	.6	1.5
7.	70	.7	2.333333
8.	80	.8	4
9.	90	.9	9
10.	100	1	•

We can even graph this.

```
. twoway scatter odds risk_event_happened event_happened, ///
> title("Risk and Odds") ///
> xtitle("How many times out of 100 did this happen?") ///
> scheme(michigan)
```

. quietly: graph export myscatter.png, width(500) replace

Figure 1: Risk and Odds $\,$