Signature-based algorithms for computing Gröbner bases over Principal Ideal Domains

Maria Francis¹, Thibaut Verron²

1. Indian Institute of Technology Hyderabad, Hyderabad, India

2. Institute for Algebra, Johannes Kepler University, Linz, Austria

Séminaire MAX, Laboratoire d'Informatique de l'École Polytechnique 18 février 2019

- Valuable tool for many questions related to polynomial equations (solving, elimination, dimension of the solutions...)
- Classically used for polynomials over fields
- Some applications with coefficients in general rings (elimination, combinatorics...)

- Valuable tool for many questions related to polynomial equations (solving, elimination, dimension of the solutions...)
- Classically used for polynomials over fields
- Some applications with coefficients in general rings (elimination, combinatorics...)

Many algorithms for fields

- First algorithm: Buchberger (1965)
- Optimizations related to selection strategies: "Normal" (1985), "Sugar" (1991)
- ► Criteria: Buchberger's coprime and chain criteria (1979), Gebauer-Möller (1988)
- Replace polynomial arithmetic with linear algebra: Lazard (1983), F4 (1999)
- ► Signature-based criteria: F5 (2002), GVW (2010)...

- Valuable tool for many questions related to polynomial equations (solving, elimination, dimension of the solutions...)
- Classically used for polynomials over fields
- Some applications with coefficients in general rings (elimination, combinatorics...)

Many algorithms for fields

- First algorithm: Buchberger (1965)
- Optimizations related to selection strategies: "Normal" (1985), "Sugar" (1991)
- Criteria: Buchberger's coprime and chain criteria (1979), Gebauer-Möller (1988)
- Replace polynomial arithmetic with linear algebra: Lazard (1983), F4 (1999)
- ► Signature-based criteria: F5 (2002), GVW (2010)...

And for rings:

- Möller (1988) for general rings and principal domains, Kandri-Rodi Kapur (1988) for Euclidean domains...
- Optimizations and general criteria are still available
- What about signatures?

- Valuable tool for many questions related to polynomial equations (solving, elimination, dimension of the solutions...)
- Classically used for polynomials over fields
- Some applications with coefficients in general rings (elimination, combinatorics...)

Many algorithms for fields

- First algorithm: Buchberger (1965)
- Optimizations related to selection strategies: "Normal" (1985), "Sugar" (1991)
- Criteria: Buchberger's coprime and chain criteria (1979), Gebauer-Möller (1988)
- Replace polynomial arithmetic with linear algebra: Lazard (1983), F4 (1999)
- ► Signature-based criteria: F5 (2002), GVW (2010)...

And for rings:

- Möller (1988) for general rings and principal domains, Kandri-Rodi Kapur (1988) for Euclidean domains...
- ▶ Optimizations and general criteria are still available
- What about signatures?

This work: signature-based algorithms for PIDs

Outline

1. Reminders about Gröbner bases over fields

- Gröbner bases, Buchberger's algorithm
- Signatures

2. Algorithms for rings

- Adding signatures to Möller's weak GB algorithm
- Adding signatures to Möller's strong GB algorithm

3. Proofs and experiments

- Skeleton of the proofs
- Experimental data
- Future work

Outline

- 1. Reminders about Gröbner bases over fields
 - ► Gröbner bases, Buchberger's algorithm
 - Signatures

Algorithms for rings

- Adding signatures to Möller's weak GB algorithm
- ► Adding signatures to Möller's strong GB algorithm

3. Proofs and experiments

- Skeleton of the proofs
- Experimental data
- ► Future work

Definition (Leading term, monomial, coefficient)

R ring, $A = R[X_1, ..., X_n]$ with a monomial order $<, f = \sum a_i X^{b_i}$

- ▶ Leading term LT(f) = $a_i X^{b_i}$ with $X^{b_i} > X^{b_j}$ if $j \neq i$
- ▶ Leading monomial $LM(f) = X^{b_i}$
- ▶ Leading coefficient $LC(f) = a_i$

Definition (Weak/strong Gröbner basis)

$$G \subset \mathfrak{a} = \langle f_1, \ldots, f_n \rangle$$

- ▶ G is a weak Gröbner basis $\iff \langle \mathsf{LT}(f) : f \in \mathfrak{a} \rangle = \langle \mathsf{LT}(g) : g \in G \rangle$
- ▶ *G* is a strong Gröbner basis \iff for all $f \in \mathfrak{a}$, f reduces to 0 modulo G

Equivalent if R is a field

$$f \in A = R[X], G = \{g_1, \dots, g_s\} \subset A$$

Definition (S-polynomial)

$$T(i) = \mathsf{LT}(g_i), T(i,j) = \mathsf{lcm}(\mathsf{LT}(g_i), \mathsf{LT}(g_j))$$

$$\mathsf{S-Pol}(g_i, g_j) = \frac{T(i,j)}{T(i)}g_i - \frac{T(i,j)}{T(j)}g_j$$

Definition (Reduction)

If $LT(f) = cX^aLT(g_i)$, then f reduces to $h = f - cX^ag$ modulo G.

We use the same word for the transitive closure of the relation.

Buchberger's criterion

G is a (strong) Gröbner basis \iff for all $i,j\in\{1,\ldots,s\},$ S-Pol (g_i,g_j) reduces to 0 modulo G.

(Strong) S-polynomial:

$$S-Pol = \frac{T(i,j)}{LT(g_i)}g_i - \frac{T(i,j)}{LT(g_j)}g_j$$

(Strong) reduction:

$$f \rightsquigarrow h = f - cX^a LT(g)$$

- ▶ 1st idea: keep track of the representation $g = \sum_i q_i f_i$ for $g \in \langle f_1, \dots, f_m \rangle$ [Möller, Mora, Traverso 1992]
- ▶ Work in the module $A^m = A\mathbf{e}_1 \oplus \cdots \oplus A\mathbf{e}_m$ with $\overline{\cdot} : \mathbf{e}_i \mapsto \overline{\mathbf{e}}_i = f_i$
- Example: S-polynomial: S-Pol($\mathbf{g}_i, \mathbf{g}_j$) = $\frac{T(i,j)}{T(i)} \mathbf{g}_i \frac{T(i,j)}{T(j)} \mathbf{g}_j$
- ► This computation is expensive!
- ▶ 2nd idea: we don't need the full representation, the largest term might be enough! [Faugère 2002; Gao, Volny, Wang 2010; Arri, Perry 2011... Eder, Faugère 2017]
- ▶ Define a signature $\mathfrak{s}(g)$ of g as

$$\mathfrak{s}(g) = \mathsf{LT}(q_j)\mathbf{e}_j = \mathsf{LT}(\mathbf{g}) \text{ for some } \mathbf{g} = \sum_{i=1}^m q_i\mathbf{e}_i \in A^m \text{ with } \mathbf{\bar{g}} = g = \sum_{i=1}^m q_if_i$$

where q_j is the last coef. $\neq 0$

► Signatures are ordered as "position over term":

$$aX^b \mathbf{e}_i < a'X^{b'} \mathbf{e}_j \iff i < j \text{ or } i = j \text{ and } X^b < X^{b'}$$

► Example: S-polynomial: S-Pol($\mathbf{g}_i, \mathbf{g}_j$) = $\frac{T(i,j)}{T(i)} \mathbf{g}_i - \frac{T(i,j)}{T(j)} \mathbf{g}_j$

Up to permutation, two situations:

$$\qquad \qquad \qquad \frac{T(i,j)}{T(i)}\mathsf{LT}(\mathbf{g}_i) > \frac{T(i,j)}{T(j)}\mathsf{LT}(\mathbf{g}_j) \quad \rightarrow \quad \mathsf{LT}(\mathsf{S-Pol}(\mathbf{g}_i,\mathbf{g}_j)) = \frac{T(i,j)}{T(i)}\mathsf{LT}(\mathbf{g}_i)$$

$$\qquad \qquad \qquad \qquad \frac{T(i,j)}{T(i)}\mathsf{LT}(\mathbf{g}_i) \simeq \frac{T(i,j)}{T(j)}\mathsf{LT}(\mathbf{g}_j) \quad \rightarrow \quad \mathsf{LT}(\mathsf{S-Pol}(\mathbf{g}_i,\mathbf{g}_j)) \leq \frac{T(i,j)}{T(i)}\mathsf{LT}(\mathbf{g}_i)$$

Signatures are ordered as "position over term":

$$aX^b \mathbf{e}_i < a'X^{b'} \mathbf{e}_j \iff i < j \text{ or } i = j \text{ and } X^b < X^{b'}$$

► Example: S-polynomial: S-Pol($\mathbf{g}_i, \mathbf{g}_j$) = $\frac{T(i, j)}{T(i)} \mathbf{g}_i - \frac{T(i, j)}{T(j)} \mathbf{g}_j$

Up to permutation, two situations:

$$T(i,j) \atop T(i) \atop S(g_i) > T(i,j) \atop T(j) \atop S(g_j) \longrightarrow S(S-Pol(g_i,g_j)) = T(i,j) \atop T(i) \atop S(g_i)$$
Regular S-polynomial

$$\qquad \qquad \qquad \qquad \frac{T(i,j)}{T(i)}\mathfrak{s}(g_i) \simeq \frac{T(i,j)}{T(j)}\mathfrak{s}(g_j) \qquad \rightarrow \qquad \mathfrak{s}(\text{S-Pol}(g_i,g_j)) \leq \frac{T(i,j)}{T(i)}\mathfrak{s}(g_i)$$

Non regular S-polynomial: possible signature drop

Keeping track of the signature is free if we restrict to regular S-pols and reductions!

Definition (Signature reductions)

 $f,g,h \in \langle f_1,\ldots,f_m \rangle$ with signatures, such that f reduces to $h=f-cX^ag$

The reduction is

▶ a
$$\mathfrak{s}$$
-reduction if $X^a \mathfrak{s}(g) \leq \mathfrak{s}(f)$

(i.e.
$$\mathfrak{s}(h) \leq \mathfrak{s}(f)$$
)

▶ a regular
$$\mathfrak{s}$$
-reduction if $X^a \mathfrak{s}(g) \subseteq \mathfrak{s}(f)$

$$(i.e.\ \mathfrak{s}(h)=\mathfrak{s}(f))$$

Definition (Signature Gröbner basis)

$$G = \{g_1, \dots, g_s\} \subset \mathfrak{a} = \langle f_1, \dots, f_m \rangle$$
 is a (strong) \mathfrak{s} -Gröbner basis

iff for all $f \in \mathfrak{a}$, $f \mathfrak{s}$ -reduces to 0 modulo G.

Key theorem

- ► A 5-Gröbner basis is a Gröbner basis
- ► Every ideal admits a finite \$-Gröbner basis

(Strong) S-polynomial:

$$S\text{-Pol} = \frac{T(i,j)}{\mathsf{LT}(g_i)}g_i - \frac{T(i,j)}{\mathsf{LT}(g_j)}g_j$$

Regular:
$$\frac{T(i,j)}{\mathsf{LT}(g_i)} \mathfrak{s}(g_i) > \frac{T(i,j)}{\mathsf{LT}(g_j)} \mathfrak{s}(g_j)$$

$$S(i,j) = \frac{T(i,j)}{\mathsf{LT}(g_i)} \mathfrak{s}(g_i)$$

(Strong) reduction:

$$f \rightsquigarrow h = f - cX^a LT(g)$$

Regular:
$$\mathfrak{s}(f) > X^a \mathfrak{s}(g)$$

$$\mathfrak{s}(h)=\mathfrak{s}(f)$$

Key property

Buchberger's algorithm with signatures computes GB elements with increasing signatures.

Main consequence

Buchberger's algorithm with signatures is correct and computes a signature GB.

Then we can add criteria...

Singular criterion: eliminate some redundant computations

If $\mathfrak{s}(g) \simeq \mathfrak{s}(g')$ then after regular reduction, LM(g) = LM(g').

F5 criterion: eliminate Koszul syzygies $f_i f_j - f_j f_i = 0$

If $\mathfrak{s}(g) = \mathsf{LT}(g')e_j$ and $\mathfrak{s}(g') = \star e_i$ for some indices i < j, then g reduces to 0 modulo the already computed basis.

Outline

- Reminders about Gröbner bases over fields
 - ► Gröbner bases, Buchberger's algorithm
 - Signatures

2. Algorithms for rings

- Adding signatures to Möller's weak GB algorithm
- Adding signatures to Möller's strong GB algorithm
- 3. Proofs and experiments
 - Skeleton of the proofs
 - Experimental data
 - ► Future work

 Type of rings	General rings	Principal domains	Euclidean domains
Type of GB	Weak	Strong	Strong
Algorithm	Möller weak	Möller strong	Kandri-Rodi Kapur
Techniques	Weak S-pols Weak reductions	Strong S-pols Strong reductions G-pols	Strong S-pols
			Strong reductions
			G-pols
			LC reductions

Type of rings	General rings	Principal domains	Euclidean domains
Type of GB	Weak	Strong	Strong
Algorithm	Möller weak	Möller strong	Kandri-Rodi Kapur
	Weak S-pols Weak reductions	Strong S-pols Strong reductions G-pols	Strong S-pols
Techniques			Strong reductions
reemiques			G-pols
			LC reductions
With signatures			

Main difficulty: how to order the signatures with their coefficients?

Type of rings	General rings	Principal domains	Euclidean domains
Type of GB	Weak	Strong	Strong
Algorithm	Möller weak	Möller strong	Kandri-Rodi Kapur
	Weak S-pols Weak reductions	Strong S-pols Strong reductions G-pols	Strong S-pols
Techniques			Strong reductions
reemiques			G-pols
			LC reductions
With signatures			[Eder, Popescu 2017]

Main difficulty: how to order the signatures with their coefficients?

- ▶ Eder, Popescu 2017: total order using absolute value of the coefficients
 - ► Impossible to avoid signature drops, signatures can decrease

Type of rings	General rings	Principal domains	Euclidean domains
Type of GB	Weak	Strong	Strong
Algorithm	Möller weak	Möller strong	Kandri-Rodi Kapur
	Weak S-pols Weak reductions	Strong S-pols Strong reductions G-pols	Strong S-pols
Techniques			Strong reductions
reemiques			G-pols
			LC reductions
With signatures	[F., V. 2018] (for PI	Ds) [F., V. 2019]	[Eder, Popescu 2017]

Main difficulty: how to order the signatures with their coefficients?

- ▶ Eder, Popescu 2017: total order using absolute value of the coefficients
 - Impossible to avoid signature drops, signatures can decrease
- ► This work: partial order disregarding the coefficients
 - ▶ No signature drops, signatures don't decrease (but they may not increase)
 - ► Möller's weak GB algo.: proved for PIDs
 - ► Möller's strong GB algo.: signatures also for the G-polynomials

Towards weak bases: saturated sets and weak S-polynomials

Definition (Saturated set)

Given a basis $\{g_1, \ldots, g_t\}$, saturated sets are constructed as follows:

- 1. Pick *J* ⊂ $\{1, ... t\}$
- 2. $M(J) \leftarrow \operatorname{lcm}\{LM(g_j) : j \in J\}$
- 3. Add to J all $j \in \{1, ..., t\}$ such that LM(g_j) divides M(J)

Definition (Weak S-polynomial)

Let $s = \max(J)$, $J^* = J \setminus \{s\}$, and let $c \neq 0$ an element of $\langle LC(g_j) : j \in J^* \rangle : \langle LC(g_s) \rangle$.

There exists $(b_j)_{j \in J^*}$ such that $LC(g_s)c = \sum_{i \in J^*} b_i LC(g_i)$.

The associated weak S-polynomial is

$$S-Pol(J;c) = c \frac{M(J)}{LM(g_s)} g_s - \sum_{j \in J^*} b_j \frac{M(J)}{LM(g_j)} g_j.$$

Definition (Weak reduction)

f weakly reduces to h modulo G if there exists $J \subset \{1, \ldots, t\}$ such that

- ▶ for all $j \in J$, LM(g_j) divides LM(f), say, X^{a_i} LM(g_j) = LM(f)
- ▶ LC(f) lies in $\langle LC(g_j) : j \in J \rangle$, say, LC(f) = $\sum_{j \in J} b_j LC(g_j)$
- $h = f \sum_{j \in J} b_j X^{a_j} g_j$

We use the same word for the transitive closure of the relation.

"Möller's criterion"

The following statements are equivalent:

- ▶ *G* is a weak Gröbner basis of $\mathfrak{a} = \langle G \rangle$
- $\land \langle \mathsf{LT}(G) \rangle = \langle \mathsf{LT}(\mathfrak{a}) \rangle$
- ► For all *f* in a, *f* weakly reduces to 0 modulo *G*
- For all J and c, the weak S-pol S-Pol(J; c) weakly reduces to 0 modulo G

Weak S-polynomial:

S-Pol =
$$c \frac{M(J)}{LM(g_s)} g_s - \sum b_j \frac{M(J)}{LM(g_j)} g_j$$

Weak reduction:

$$f \rightsquigarrow h = f - \sum c_i X^{a_i} g_i$$

[Möller 1988]

Definition (Saturated set)

Given a basis $\{g_1, \ldots, g_s\}$, saturated sets are constructed as follows:

- 1. Pick $J \subset \{1, \ldots s\}$
- 2. $M(J) \leftarrow \operatorname{lcm}\{LM(g_i) : j \in J\}$
- 3. Add to J all $j \in \{1, ..., s\}$ such that LM (g_i) divides M(J)

The signature of a saturated set is

$$S(J) = \max\left(\frac{M(J)}{LM(g_i)}\mathfrak{s}(g_i)\right)_{i \in J}$$

A regular saturated set is constructed such that this max is reached only once, at $s \in J$.

Then

$$\mathfrak{s}(S-Pol(J; s; c)) = cS(J)$$

Weak S-polynomial:

S-Pol =
$$c \frac{M(J)}{LM(g_s)} g_s - \sum b_j \frac{M(J)}{LM(g_j)} g_j$$

Regular: $\forall j, \frac{M(J)}{LM(g_s)} s(g_s) > \frac{M(J)}{LM(g_s)} s(g_j)$

$$S(J) = c \frac{M(i,j)}{LM(g_i)} \mathfrak{s}(g_i)$$

Weak reduction:

$$f \rightsquigarrow h = f - \sum c_i X^{a_i} g_i$$

Regular: $\forall i, \ \mathfrak{s}(f) > X^{a_i} \mathfrak{s}(g_i)$
 $\mathfrak{s}(h) = \mathfrak{s}(f)$

Signatures \$ do not decrease.

[Möller 1988] [F, V 2018]

Outline

- 1. Reminders about Gröbner bases over field
 - ► Gröbner bases, Buchberger's algorithm
 - Signatures

2. Algorithms for rings

- Adding signatures to Möller's weak GB algorithm
- Adding signatures to Möller's strong GB algorithm
- 3. Proofs and experiments
 - Skeleton of the proofs
 - Experimental data
 - ► Future work

Weak S-pols and reductions: Same as in Möller's weak GB

Strong S-pols and reductions: Same as in Buchberger

$$G = \{g_1, \ldots, g_s\}$$

Definition

A term-syzygy of G is $S = \sum_{i=1}^{s} s_i \varepsilon_i \in A^s$, whose syzygy polynomial $\bar{S} = \sum s_i g_i$ satisfies $LT(\bar{S}) \leq \max(LT(s_i g_i))$.

Syzygy lifting theorem

The following statements are equivalent:

- ► *G* is a (weak/strong) Gröbner basis
- ▶ If S is a basis of term-syzygies of G, for all $S \in S$, \overline{S} (weakly/strongly) red. to 0 mod. G.
- Buchberger's criterion: (Strong) S-polynomials form a basis of term-syzygies over a field
- Buchberger's chain criterion:
 Some S-pols can be removed without compromising the basis
- Möller's criterion:
 Weak S-polynomials form a basis of term-syzygies in general

Why is life easier with PIDs

Principal syzygies / Strong S-polynomials

If R is a principal ring, then principal syzygies (of the form $c_i X^{a_i} \varepsilon_i - c_j X^{a_j} \varepsilon_j$) form a basis of term syzygies.

Same as in Möller's weak GB

Strong S-pols and reductions:

Same as in Buchberger

Why is life easier with PIDs

Principal syzygies / Strong S-polynomials

If R is a principal ring, then principal syzygies (of the form $c_i X^{a_i} \varepsilon_i - c_j X^{a_j} \varepsilon_j$) form a basis of term syzygies.

Definition (G-polynomials)

From a Bézout relation gcd(LC(f), LC(g)) = uLC(f) + vLC(g),

the G-polynomial of f and g is defined as

$$G-Pol(f,g) = u \frac{lcm(LM(f), LM(g))}{LM(f)} f + v \frac{lcm(LM(f), LM(g))}{LM(g)} g$$

Completion

The completion C(F) of $F = \{f_1, \ldots, f_r\}$ is defined as follows:

- $\triangleright C(\varnothing) = \varnothing$
- ► $C(F \cup f_{r+1}) = C(F) \cup \{f_{r+1}\} \cup \{G\text{-Pol}(h, f_{r+1}) : h \in C(F)\}$

G is a weak Gröbner basis \iff C(G) is a strong Gröbner basis.

Same as in Möller's weak GB

Strong S-pols and reductions:

Same as in Buchberger

G-polynomial:

$$h = G-Pol = u \frac{lcm(...)}{LM(f)} f + v \frac{lcm(...)}{LM(g)} g$$

Same as in Möller's weak GB

Strong S-pols and reductions:

Same as in Buchberger

G-polynomial:

$$h = G-Pol = u \frac{lcm(...)}{LM(f)} f + v \frac{lcm(...)}{LM(g)} g$$

Same as in Möller's weak GB

Strong S-pols and reductions:

Same as in Buchberger

G-polynomial:

$$h = G-Pol = u \frac{lcm(...)}{LM(f)} f + v \frac{lcm(...)}{LM(g)} g$$

Same as in Möller's weak GB

Strong S-pols and reductions:

Same as in Buchberger

G-polynomial:

$$h = G-Pol = u \frac{lcm(...)}{LM(f)} f + v \frac{lcm(...)}{LM(g)} g$$

Weak S-pols and reductions:

Same as in Möller's weak GB

Strong S-pols and reductions:

Same as in Buchberger

G-polynomial:

$$h = G-Pol = u \frac{\operatorname{lcm}(...)}{\operatorname{LM}(f)} f + v \frac{\operatorname{lcm}(...)}{\operatorname{LM}(g)} g$$

$$\sigma(h) = \max(\frac{\chi^{\gamma}}{\chi^{\alpha}} \mathfrak{s}(f), \frac{\chi^{\gamma}}{\chi^{\beta}} \sigma(g))$$

$$\sigma(h) \text{ may be } > \mathfrak{s}(G-Pol(f,g)) !$$

Weak S-pols and reductions:

Same as in Möller's weak GB

Strong S-pols and reductions:

Same as in Buchberger

G-polynomial:

$$h = G-Pol = u \frac{\operatorname{lcm}(...)}{\operatorname{LM}(f)} f + v \frac{\operatorname{lcm}(...)}{\operatorname{LM}(g)} g$$

$$\sigma(h) = \max(\frac{\chi^{\gamma}}{\chi^{\alpha}} \mathfrak{s}(f), \frac{\chi^{\gamma}}{\chi^{\beta}} \sigma(g))$$

$$\sigma(h) \text{ may be } > \mathfrak{s}(G-Pol(f,g)) !$$

Signatures (\mathfrak{s} and σ) do not decrease.

Outline

- 1. Reminders about Gröbner bases over fields
 - ► Gröbner bases, Buchberger's algorithm
 - Signatures

2. Algorithms for rings

- Adding signatures to Möller's weak GB algorithm
- ► Adding signatures to Möller's strong GB algorithm

3. Proofs and experiments

- Skeleton of the proofs
- Experimental data
- ► Future work

Tool for the proof: signature version of the lifting theorem

Definition (Signatures for term-syzygies)

- ▶ Signature of $S = \sum_{i=1}^{s} s_i \varepsilon_i : \mathfrak{s}(S) = \max\{\mathsf{LT}(s_i)\mathfrak{s}(g_i) | s_i \neq 0\}$
- S-basis of term-syzygies: basis such that every element can be represented without a signature drop:

 $\{\Sigma_1,\ldots,\Sigma_k\}$ such that for all term-syzygy S, there exists τ_1,\ldots,τ_k such that

- $S = \sum_{i=1}^k \tau_i \Sigma_i$
- $\mathfrak{s}(S) \simeq \max\{\mathsf{LT}(\tau_i)S(\Sigma_i)|\tau_i \neq 0\}$

Syzygy lifting theorem, signature version

The following statements are equivalent:

- ► *G* is a (weak/strong) \$-Gröbner basis
- ▶ If S is a S-basis of term-syzygies of G, for all $S \in S$, \overline{S} (weakly/strongly) red. to 0 mod. G.

Skeleton of the proof

(R is a PID)

[F., V. 2018]

1. Reg. weak S-pols s-red. to 0 ⇒ weak S-GB Möller's weak GB algorithm with signatures is correct

30

Skeleton of the proof

(R is a PID)

30

(R is a PID)

30

Experimental data

Toy implementation of the algorithms in Magma: https://github.com/ThibautVerron/SignatureMoller

			Added as pairs, not S-pols		Added as S-pols, not reduced		Reduced, thrown away	
Algorithm	Pairs	S-pols (red)	Copr.	Chain	F5	Sing.	1-sing.	0 red.
Weak, sigs	2227	51	0	0	2125	51	0	0
Strong, no sigs	1191	344	251	596	0	0	0	282
Strong, sigs	488	178 (62)	157	153	115	1	6	0

Katsura-3 system (in $\mathbb{Z}[X_1,...,X_4]$)

Algorithm	Pairs	S-pols (red)	Copr.	Chain	F5	Sing.	1-sing.	0 red.
Strong, no sigs	2712	837	759	1116	0	0	0	739
Strong, sigs	1629	603 (206)	509	517	388	9	84	0

Katsura-4 system (in $\mathbb{Z}[X_1,...,X_5]$)

Results

- Signature-based algorithms for GB over principal domains
 - ▶ Möller's weak GB algorithm: computes a weak basis, useful as a theoretical tool
 - ▶ Möller's strong GB algorithm: computes a strong basis
 - ▶ In both cases: proof of correctness and termination, signatures do not decrease
 - ► Compatible with signature criteria (+ Buchberger criteria for the strong algo.)
- ► Toy implementation in Magma, with some first optimizations

Results and future work

- Signature-based algorithms for GB over principal domains
 - ▶ Möller's weak GB algorithm: computes a weak basis, useful as a theoretical tool
 - ▶ Möller's strong GB algorithm: computes a strong basis
 - ▶ In both cases: proof of correctness and termination, signatures do not decrease
 - ► Compatible with signature criteria (+ Buchberger criteria for the strong algo.)
- ▶ Toy implementation in Magma, with some first optimizations
- ▶ Main bottlenecks
 - Weak GB algo.: computation of the saturated sets (cost exp. in the size of the GB)
 - Strong GB algo.: basis growth and coefficient swell

Results and future work

- Signature-based algorithms for GB over principal domains
 - ▶ Möller's weak GB algorithm: computes a weak basis, useful as a theoretical tool
 - ▶ Möller's strong GB algorithm: computes a strong basis
 - ▶ In both cases: proof of correctness and termination, signatures do not decrease
 - ► Compatible with signature criteria (+ Buchberger criteria for the strong algo.)
- ▶ Toy implementation in Magma, with some first optimizations
- ▶ Main bottlenecks
 - ▶ Weak GB algo.: computation of the saturated sets (cost exp. in the size of the GB)
 - Strong GB algo.: basis growth and coefficient swell
- ► Future work
 - Against basis growth: more inclusive singular criterion?
 - ► Against coefficient swell: Euclidean reduction of LCs?
 - Compatibility with selection strategies? Term over position ordering?
 - ▶ Does Möller's weak GB algo. work for more general rings? For example UFDs?
- End goal
 - Competitive implementation of the algorithms

Thank you for your attention!

More information and references:

- Möller's weak GB with signatures
 Maria Francis and Thibaut Verron (2018). 'A Signature-based Algorithm for Computing Gröbner Bases over Principal Ideal Domains'. In: ArXiv e-prints. arXiv: 1802.01388 [cs.5C]
- Möller's strong GB with signatures Maria Francis and Thibaut Verron (2019). 'Signature-based Möller's Algorithm for strong Gröbner Bases over PIDs'. In: ArXiv e-prints. arXiv: 1901.09586 [cs.SC]