# Vanishing and exploding gradients

RECURRENT NEURAL NETWORKS FOR LANGUAGE MODELING IN PYTHON



David Cecchini
Data Scientist



# **Training RNN models**



Back propagation through time

# Forward propagation



Example:

$$a_2 = f(W_a, a_1, x_2) \ = f(W_a, f(W_a, a_0, x_1), x_2)$$

# Back propagation through time $\begin{array}{c} \hat{y} \\ \downarrow \\ a_0 \\ \downarrow \\ f(W_a, a_0, X_1) \end{array}$ $\begin{array}{c} a_{T-2} \\ \downarrow \\ \downarrow \\ X_\end{array}$ $\begin{array}{c} f(W_a, a_{T-1}, X_T) \\ \downarrow \\ \downarrow \\ \downarrow \\ X_\end{array}$

### Remember that:

$$a_T = f(W_a, a_{T-1}, x_T)$$

 $a_T$  also depends on  $a_{T-1}$  which depends on  $a_{T-2}$  and  $W_a$ , and so on !

# **BPTT** continuation

Computing derivatives leads to

$$\frac{\partial a_t}{\partial W_a} = (W_a)^{t-1} g(X)$$

- $(W_a)^{t-1}$  can converge to 0
- or diverge to  $+\infty$ !

# Solutions to the gradient problems

Some solutions are known:

### **Exploding gradients**

Gradient clipping / scaling

### Vanishing gradients

- Better initialize the matrix W
- Use regularization
- Use ReLU instead of tanh / sigmoid / softmax
- Use LSTM or GRU cells!

# Let's practice!

RECURRENT NEURAL NETWORKS FOR LANGUAGE MODELING IN PYTHON



# **GRU** and LSTM cells

RECURRENT NEURAL NETWORKS FOR LANGUAGE MODELING IN PYTHON



David Cecchini
Data Scientist









# No more vanishing gradients

- The simpleRNN cell can have gradient problems.
  - The weight matrix power t multiplies the other terms
- GRU and LSTM cells don't have vanishing gradient problems
  - Because of their gates
  - Don't have the weight matrices terms multiplying the rest
  - Exploding gradient problems are easier to solve

# Usage in keras

```
# Import the layers
from keras.layers import GRU, LSTM

# Add the layers to a model
model.add(GRU(units=128, return_sequences=True, name='GRU layer'))
model.add(LSTM(units=64, return_sequences=False, name='LSTM layer'))
```

# Let's practice!

RECURRENT NEURAL NETWORKS FOR LANGUAGE MODELING IN PYTHON



# The Embedding layer

RECURRENT NEURAL NETWORKS FOR LANGUAGE MODELING IN PYTHON



David Cecchini
Data Scientist



# Why embeddings

### Advantages:

Reduce the dimension

```
one_hot = np.array((N, 100000))
embedd = np.array((N, 300))
```

Dense representation

```
o king - man + woman = queen
```

Transfer learning

### Disadvantages:

• Lots of parameters to train: training takes longer

## How to use in keras

In keras:

```
from keras.layers import Embedding
model = Sequential()
# Use as the first layer
model.add(Embedding(input_dim=100000,
                    output_dim=300,
                    trainable=True,
                    embeddings_initializer=None,
                    input_length=120))
```

# Transfer learning

Transfer learning for language models

- GloVE
- word2vec
- BERT

### In keras:



# Using GloVE pre-trained vectors

Official site: https://nlp.stanford.edu/projects/glove/

```
# Get hte GloVF vectors
def get_glove_vectors(filename="glove.6B.300d.txt"):
   # Get all word vectors from pre-trained model
    glove_vector_dict = {}
    with open(filename) as f:
        for line in f:
            values = line.split()
            word = values[0]
            coefs = values[1:]
            glove_vector_dict[word] = np.asarray(coefs, dtype='float32')
    return embeddings_index
```

# Using the GloVE on a specific task

```
# Filter GloVE vectors to specific task
def filter_glove(vocabulary_dict, glove_dict, wordvec_dim=300):
    # Create a matrix to store the vectors
    embedding_matrix = np.zeros((len(vocabulary_dict) + 1, wordvec_dim))
    for word, i in vocabulary_dict.items():
        embedding_vector = glove_dict.get(word)
        if embedding_vector is not None:
            # words not found in the glove_dict will be all-zeros.
            embedding_matrix[i] = embedding_vector
    return embedding_matrix
```

# Let's practice!

RECURRENT NEURAL NETWORKS FOR LANGUAGE MODELING IN PYTHON



# Sentiment classification revisited

RECURRENT NEURAL NETWORKS FOR LANGUAGE MODELING IN PYTHON

David Cecchini
Data Scientist





# Previous results

We had bad results with our initial model.

```
model = Sequential()
model.add(SimpleRNN(units=16, input_shape=(None, 1)))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy'])
model.evaluate(x_test, y_test)
```

\$[0.6991182165145874, 0.495]

# Improving the model

To improve the model's performance, we can:

- Add the embedding layer
- Increase the number of layers
- Tune the parameters
- Increase vocabulary size
- Accept longer sentences with more memory cells

# Avoiding overfitting

### RNN models can overfit

- Test different batch sizes.
- Add Dropout layers.
- Add dropout and recurrent\_dropout parameters on RNN layers.

```
# removes 20% of input to add noise
model.add(Dropout(rate=0.2))
# Removes 10% of input and memory cells respectively
model.add(LSTM(128, dropout=0.1, recurrent_dropout=0.1))
```

# **Extra: Convolution Layer**

Not in the scope:

```
model.add(Embedding(vocabulary_size, wordvec_dim, ...))
model.add(Conv1D(num_filters=32, kernel_size=3, padding='same'))
model.add(MaxPooling1D(pool_size=2))
```

- Convolution layer do feature selection on the embedding vector
- Achieves state-of-the-art results in many NLP problems

# One example model

```
model = Sequential()
model.add(Embedding(
                     vocabulary_size, wordvec_dim, trainable=True,
                      embeddings_initializer=Constant(glove_matrix),
                      input_length=max_text_len, name="Embedding"))
model.add(Dense(wordvec_dim, activation='relu', name="Dense1"))
model.add(Dropout(rate=0.25))
model.add(LSTM(64, return_sequences=True, dropout=0.15, name="LSTM"))
model.add(GRU(64, return_sequences=False, dropout=0.15, name="GRU"))
model.add(Dense(64, name="Dense2"))
model.add(Dropout(rate=0.25))
model.add(Dense(32, name="Dense3"))
model.add(Dense(1, activation='sigmoid', name="Output"))
```

# Let's practice!

RECURRENT NEURAL NETWORKS FOR LANGUAGE MODELING IN PYTHON

