Closure of X

What we want to achieve

- when decomposing a relation schema R on which a set of functional dependencies F is defined, in addition to obtaining schemas in 3NF it is necessary to
 - preserving dependencies
 - to be able to reconstruct by join all and only the original information.
- the functional dependencies that we want to preserve are all those that are satisfied by every legal instance of R, i.e., the functional dependencies in F⁺
- so, we are interested in calculating F⁺ and we know how to do it, but...

What we want to achieve

·...calculating F⁺ requires exponential time in R

- •luckily, for our purposes it is enough to have a method to decide whether a functional dependency $X \rightarrow Y$ belongs to F^+ (i.e., to the closure of a set of dependencies)
- •this can be done by calculating X^+ and checking whether $Y \subseteq X^+$ in fact, because of the lemma : $X \to Y \in F^A$ if and only if $Y \subseteq X^+$ •and of the theorem, showing that $F^A = F^+$

Use of X⁺

- we will see that the calculation of X is useful in several cases:
 - to check if a set of attributes is the key of a schema
 - to check whether a decomposition preserves the functional dependencies of the original schems

How to compute X *

Algorithm "Calculation of X⁺"

Input a relation scheme R, a set F of functional dependencies on R, a subset X of R

X may be a single attribute

Output the closure of X with respect to F (**returned in the variable Z**)

```
begin
```

```
Z = X
S = A \mid Y \rightarrow V \in F, A \in V \land Y \subseteq Z
while S \not\subset Z do:
begin
Z = Z \cup S;
S = A \mid Y \rightarrow V \in F, A \in V \land Y \subseteq Z
end
end
```

We insert into S the **individual** attributes that make up the right-hand parts of dependencies **in F** whose left-hand part **is contained in Z** (in practice decomposing the right-hand parts)

at first, Z is just X, so we insert attributes that are functionally determined by X; once these have entered Z, from these we add more (by transitivity).

we can "number" the values of Z

How to compute X *

Algorithm "Calculation of X⁺"

Input a relation scheme R, a set F of functional dependencies on R, a subset X of R

X may be a single attribute

Output the closure of X with respect to F (returned in the variable Z)

begin

```
Z = X
S = A \mid Y \rightarrow V \in F, A \in V \land Y \subseteq Z
while S \not\subset Z do:
begin
Z = Z \cup S;
S = A \mid Y \rightarrow V \in F, A \in V \land Y \subseteq Z
end
end
```

at the iteration i+1 we add to S the single attributes that make up the right-hand parts of dependencies in F whose left part is contained in Z^{i-1} , i.e. $S^i = A \mid Y \rightarrow V \in F$, $A \in V \land Y \subseteq Z^{i-1}$

at the end of each iteration we add something to Z, **but we NEVER delete** any attributes

the algorithm stops when the **new** set S^i we obtain is (**already**) contained in the set Z^i , i.e., when **we cannot** add **new** attributes to the transitive closure of X

We are implicitly using F^A


```
F = \{AB \rightarrow C, B \rightarrow D, AD \rightarrow E, CE \rightarrow H\}

R = ABCDEHL
```

we want to calculate the closure of AB

Z=AB

S={C, D} $AB \rightarrow C$ in F, to insert D: $AB \rightarrow B$ (RIF) + $B \rightarrow D$ (in F) = $AB \rightarrow D$ (TRANS)

does S have anything extra?

 $Z=\{A,B,C,D\}$

S={C,D,E} to insert E: $AB \rightarrow B$ (RIF) + $B \rightarrow D$ (in F) + $AB \rightarrow AD$ (AUM) + $AD \rightarrow E$ (in F) = $AB \rightarrow E$ (TRANS)

does S have anything extra?

Z= ABCDE

S= CDEH to insert H: $AB \rightarrow C$ (in F) + $AB \rightarrow AD$ (AUM of $B \rightarrow D$ in F) + $AD \rightarrow E$ (in F) + $AB \rightarrow E$ (TRANS) + $AB \rightarrow CE$ (UNION) + $CE \rightarrow H$ (in F) = $AB \rightarrow H$ (TRANS)

does S have anything extra?

Z= ABCDEH

S=CDEH

does S have anything extra? STOP

extending the variable Z from which we take the determinants in successive while cycles is equivalent to applying Armstrong's axioms

The algorithm is correct

Theorem: The Algorithm "Calculation of X⁺" correctly computes the closure of a set of attributes X with respect to a set F of functional dependencies.

Dim. Let us denote by $Z^{(0)}$ the initial value of $Z(Z^{(0)}=X)$ and by $Z^{(i)}$ and $S^{(i)}$ the values of Z and S **after** the i-th execution of the while loop; it is easy to see that $Z^{(i)} \subseteq Z^{(i+1)}$, for each i

Remember:

In $Z^{(i)}$ there are the attributes added to Z **up to** the i-th iteration At the end of each iteration we add something to Z, **but we NEVER delete** any attributes

Let j be such that $S(j) \subseteq Z(j)$ (i.e., Z(j) is the value of Z when the algorithm **terminates**); we will prove that:

A∈Z^(j) if and only if A∈X⁺

- part 1 (only if) we will show by induction on i that Z⁽ⁱ⁾ ⊆ X⁺, for each i (and therefore, in particular, Z^(j) ⊆ X ⁺)
 reflexivity
- basis of induction (i = 0): since $Z^{(0)}=X$ and $X\subseteq X^+$, we have that it was added during the i-th iteration, as it was not in $Z^{(i-1)}$
- induction step (i > 0): for the inductive hypothesis Z⁽ⁱ⁻¹⁾ ⊆ X ⁺
 let A be an attribute in Z⁽ⁱ⁾-Z⁽ⁱ⁻¹⁾
- there **must** exist a dependency $Y \rightarrow V \in F$ such that $Y \subseteq Z^{(i-1)}$ and $A \in V$; since $Y \subseteq Z^{(i-1)}$, by the inductive hypothesis we have that $Y \subseteq X^+$ and by the lemma $X \rightarrow Y \in F^A$
- since $X \rightarrow Y \in F^A$ and $Y \rightarrow V \in F$, by transitivity we obtain $X \rightarrow V$ ∈ F^A and by the Lemma , $V \subseteq X^+$
- therefore, for each $A \rightarrow Z^{(i)} Z^{(i-1)}$ we obtain $A \in X^+$ and $Z^{(i)} \subseteq X^+$

the attributes in $Z^{(i-1)}$ are there by inductive hypothesis, and we have shown that those inserted in Z at the i-th iteration of the loop also go there

- part 2 (if) let A be an attribute in X⁺ and let j be such that S^(j) ⊂ Z^(j) (i.e., Z^(j) is the value of Z when the algorithm terminates); we will show that A ∈ Z^(j)
- as A ∈ X⁺, we know that X → A ∈ F⁺ (by the Theorem); therefore,
 X → A must be satisfied by each legal instance of R
- let us consider the following instance r of R:

					R- Z ^(j)			
r	1	1		1	1	1		1
	1	1		1	0	0		0

we first show that r is a legal instance of R

	$Z^{(j)}$				R- Z ^(j)				
))								
r	1	1		1	1	1		1	
	1	1		1	0	0		0	

- if we assume, by contradiction, that there exists a functional dependency
 V → W ∈ F which is not satisfied by r
- then it should be that $V \subseteq Z^{(j)}$ (the values of the two tuples **are equal ONLY** in that subset of R, and we **need them to be equal** to be able to say that a dependency IS NOT satisfied) and $W \cap (R Z^{(j)}) \neq \emptyset$
- but, in that case, we would have S^(j) ⊄ Z^(j) (contradiction)

	Z ^{(j}				R- Z ^(j)			
							Λ	
r	1	1		1	1	1		1
	1	1		1	0	0		0

- we assumed that j is the value for which S^(j) ⊄ Z^(j) (at iteration j we haven't added ANYTHING new)
- If $V \subseteq Z^{(j)}$ and $W \cap (R-Z^{(j)}) \neq \emptyset$, there would exist some elements of W that are not yet in $Z^{(j)}$; by applying the algorithm at the iteration j+1 we could collect these NEW elements via $V \rightarrow W$ and then insert them in S and $Z^{(j+1)}$
- but we said that the algorithm stops only when it is no longer possible to insert new elements in Z, so we reached a contradiction

	$Z^{(j)}$				R- Z ^(j)			
		/	()				Λ	
r	1	1		1	1	1		1
	1	1		1	0	0		0

- again, by contradiction, let's assume that A∈X⁺, A∉Z^(j)
- as r is a legal instance of R it must satisfy X → A ∈ F⁺
- so, if there are two tuples in r with the same values on X, then they must be equal also on A
- are there two tuples with the same values on X? yes, as $X \subseteq Z^{(0)} \subseteq Z^{(j)}$
- then the two tuples MUST also be equal on A, which, then, must be in $Z^{(j)}$ (contradiction)

Reminder: properties of the empty set

- Ø the empty set
- {Ø} a set that contains the empty set
- the empty set is a subset of each set A:

 $\forall A : A \supseteq \emptyset$

- the union of any set A with the empty set is $\forall A : A \cup \emptyset = A$
- the intersection of any set A with the empty set is the empty set: $\forall A : A \cap \emptyset = \emptyset$
- the Cartesian product of any set A with the empty set is the empty set: $\forall A : A \times \emptyset = \emptyset$
- the only subset of the empty set is the empty set itself
- the number of elements of the empty set (i.e., its cardinality) is zero; the empty set is therefore finite: $|\emptyset|$ = 0

- given the relation scheme R = (A, B, C, D, E, H) and the following set of functional dependencies on R
- F = { AB CD, EH D, D H }
- calculate the closure of the sets A, D and AB

$$R = (A, B, C, D, E, H) F = \{AB \rightarrow CD, EH \rightarrow D, D \rightarrow H\}$$

begin

Z = A

S = { L|Y \rightarrow V \in **F**, L \in V ^ Y \subseteq A} (A alone does not determine any other attribute)

while (S ⊄ Z)? no, we do not enter the first iteration of while

$$A = A$$


```
R = (A, B, C, D, E, H) F = \{AB \rightarrow CD, EH \rightarrow D, D \rightarrow H\}
```

```
begin
Z = D
S = \{L|Y \rightarrow V \in F, L \in V \land Y \subseteq D\} = H \text{ (for the dependency } D \rightarrow H)
while (S ⊄ Z): H⊄D so we enter the first iteration of the while
    begin (first iteration of while)
           7=7US=DUH=DH
           S = \{L|Y \rightarrow V \in F, L \in V \land Y \subseteq DH\} = H(for dependency D \rightarrow H)
    end
while (S ⊄ Z): H⊂DH (we haven't added anything new)
we exit the while
                                                       D = DH
```



```
R = (A, B, C, D, E, H) F = \{AB \rightarrow CD, EH \rightarrow D, D \rightarrow H\}
begin
Z = AB
S = \{L|Y \rightarrow V \in F, L \in V \land Y \subseteq AB\} = CD \text{ (for thr dependency } AB \rightarrow CD)
while (S ⊄ Z): CD ⊄ AB so, we enter the first iteration of while
      begin
            Z = Z \cup S = AB \cup CD = ABCD
            S = \{L|Y \rightarrow V \in F, L \in V \land Y \subseteq ABCD\} = \{C, D \text{ (for dependency } AB \rightarrow CD), H\}
            (for dependency D \rightarrow H)} = CDH
      end
while: CDH ⊄ ABCD so, we enter the second iteration
      begin
            Z = Z \cup S = ABCD \cup CDH = ABCDH
            S = \{L|Y \rightarrow V \in F, L \in V \land Y \subseteq ABCDH\} = \{C, D \text{ (for dependency } AB \rightarrow CD), \}
            H (for dependency D \rightarrow H )}=CDH
      end
while: CDH ⊂ ABCDH so, we exit the loop
we get out of the while
end
                                                     AB *= ABCDH
```

Exercise

•given the relation scheme R = (A, B, C, D, E, H, I) and the following set of functional dependencies on R

$$F = \{A \rightarrow E, AB \rightarrow CD, EH \rightarrow I, D \rightarrow H\}$$
 calculate the closure of AB

•the sequence of Z's and S's will be:

Z= AB

S=CDE

while loop

iter. 1 start with Z= ABCDE, compute S= CDEH

iter. 2 start with Z= ABCDEH, compute S= CDEHI

iter. 3 start with Z= ABCDEHI, compute S= CDEHI

AB *=ABCDEHI AB functionally determines the whole schema ...