CRUCIBLE

PRODUCT and WAREHOUSE
CATALOG

Special Steels for All Industry

CRUCIBLE

STEEL COMPANY OF AMERICA

THE OLIVER BLDG. .

MELLON SQUARE

PHTTSBURGH 22, PA

6 miento 9/22/58

Digitized by

ASSOCIATION FOR PRESERVATION TECHNOLOGY, INTERNATIONAL www.apti.org

BUILDING TECHNOLOGY HERITAGE LIBRARY

https://archive.org/details/buildingtechnologyheritagelibrary

From the collection of:

Mike Jackson, FAIA

V ELA

CRUCIBLE

PRODUCT and WAREHOUSE
CATALOG

Special Steels for All Industry

CRUCIBLE STEEL COMPANY OF AMERICA

THE OLIVER BLDG.

MELLON SQUARE

PITTSBURGH 22, PA.

Copyright 1956 by Crucible Steel Company of America

SPAULDING CAST PRODUCTS

TOOL STEELS

HIGH SPEED

PLASTIC-DIE CASTING

AIR HARDENIN

HOT WORK

We Are Ready to Serve You

CRUCIBLE'S 28 warehouses, located throughout the country, stand ready to meet your every specialty steel requirement. High Speed, Tool, Stainless, Alloy, Machinery and Special Purpose steels, in a wide range of types, tempers, and sizes are carried in stock for fast delivery to your plant.

This book is designed to show you at a glance the complete range of grades and sizes available from stock. In the event that a specific grade or size is not available from your local Crucible branch, it will be rushed to you from another branch in the vicinity.

Your Crucible Warehousemen are there to serve you. Specialists, with years of experience in the proper application and handling of quality steels, these men can help you with your steel problems. Available to you, too, are the services of highly trained Service Engineers and Metallurgists located at our mills. Working in modern testing laboratories, and with a wealth of data at their finger tips, these men can be helpful in unravelling the tougher problems you may encounter from time to time. And all of this service is no farther away than your telephone.

Data sheets showing the application, suggested heat treatment and metallurgical information are available for most grades of Crucible Steel. Write for data sheets on the grades you are interested in, or ask your Crucible representative for them.

V. ELIA

GENERAL INDEX

Please Refer to Section Index on Each Divider for Complete Listing of Grades

SPAULDING CAST PRODUCTS	Pages	5-13
TOOL STEELS	Pages	15-115
STAINLESS STEELS	Pages	117-154
TRENT TUBE "STAINLESS TUBING"	Pages	155-157
ALLOY STEELS	Pages	159-173
DRILL STEELS	Pages	175-177
ELECTRODES	Pages	179-197
MISCELLANEOUS STEELS	Pages	199-202
TABLES	Pages	203-232

SPAULDING CAST PRODUCTS

TOOL STEELS

HIGH SPEED

PLASTIC-DIE CASTING

You Can Rely On Crucible's Prompt Service

Crucible's 28 branch-warehouses give you prompt service on the quality steels you need for profitable production. Every grade in every shape and size ordinarily needed is on hand or quickly obtainable for your routine, special or rush requirements. Keep your inventory down . . . let your Crucible Branch-Warehouse be your stockroom. We cut to exact length . . . fill your orders promptly . . . rush your Crucible Steel to you fast!

USE CRUCIBLE ADVISORY SERVICE

Every Crucible Branch-Warehouse offers you the services of trained, experienced, practical men to cooperate with you in the selection and application of the best steels for each production purpose. Supplementing these men in the field is our staff of highly trained service engineers and metallurgists located at our various mills who are thoroughly competent to

Experienced, Capable Crucible Engineers

Can Help You

render the finest service available in the application, handling and heat treating of quality steels. Use this Crucible Advisory Service to assure yourself of maximum quality and quantity of output at minimum cost.

FIVE SPECIALTY STEEL MILLS

Crucible Branch-Warehouse Steels are produced in five specialty steel mills where expert craftsmen, modern furnaces, competent supervision and exacting laboratory tests result in clean, dependable, uniform, high-quality steels that meet the most rigid specifications. These are the same high quality steels supplied regularly to thousands of users on mill orders. All of Crucible's Specialty Mills carry extensive mill stocks to supplement Crucible's nationwide branch-warehouse distribution system.

TOOL STEELS

HIGH SPEED

PLASTIC-DIE CASTING

AIR HARDENING

HOT WOR

SPAULDING CAST PRODUCTS

TOOL STEELS

HIGH SPEED

PLASTIC-DIE CASTING

SPAULDING CAST PRODUCTS

Index

	Page
General Information	5,6
David Barrell Bits	
Rexalloy® Tool Bits	7
Solid—Square Tool Bits	•
Solid—Rectangular Tool Bits	7
Solid—Round Tool Bits	7
Ground Solid Cylinders	7
Ground Inserts	7, 8
A. Carallel Control	
Rexalloy Tipped Tools	8
Long Tips	9
Short Tips	
Tipped Cut-Off Blades	9
Solid Cut-Off Blades	10
Solid Cylinders for Boring and Turning	10
Solid Triangular Inserts	10
Solid Square Inserts	10
Finish Ground Balls	10
Accumet® Precision Investment Castings	11
Accumery Frecision investment Cashings	
Crucast Steel Castings	12, 13

SPAULDING CAST PRODUCTS

Index

		Page
Ge	eneral Information	5, 6
	xalloy® Tool Bits	0,0
it C.		
	Solid—Square Tool Bits	7
	Solid—Rectangular Tool Bits	7
	Solid—Round Tool Bits	7
	Ground Solid Cylinders	
	Ground Inserts	7 0
		7, 8
Re	xalloy Tipped Tools	
	Long Tips	8
	Short Tips	9
	Tipped Cut-Off Blades	7
	Solid Cut-Off Blades	9
	Solid Culinder for Build Solid Culinder for Build Solid Culinder for Build Solid Sol	10
	Solid Cylinders for Boring and Turning	10
181	Solid Triangular Inserts	10
	Solid Square Inserts	10
	Finish Ground Balls	10
Acc	cumet® Precision Investment Castings	11
Cri	ucast Stool Castings	
	cast Steel Castings	2, 13

REXALLOY CAST CUTTING TOOLS

Rexalloy is a cast non-ferrous cutting alloy, ranging in hardness from Rockwell C 60 to 62, which is designed for "Middle-Range" machining applications between high speed steels and tungsten carbides. Consistently uniform, its outstanding characteristics are:

Exceptionally high red hardness as evidenced by the fact that Rexalloy has a high temperature converted Brinell hardness at 425 as compared with 155 for Rex AA high speed steel at the same temperature.

Superior toughness and shock resistance as compared with any other cast non-ferrous cutting tool available, obtained through controlled melting and casting practice.

Resistance to abrasive wear surpassing that of any grade of high speed steel and equal to or better than that of any other cast non-ferrous cutting metal.

WHY YOU SHOULD USE REXALLOY

Rexalloy's high red hardness and other qualities afford definite advantages:

Increased speed, feed and depth of cut are assured for many machining applications presently tooled with high speed steel. Actual shop practice has shown Rexalloy tools to be most efficient when used at cutting speeds ranging from 25% to 80% over the maximum speed for high speed steel tools.

Intermittent cutting, machining of chilled castings and use on semi-rigid machine tool equipment are made possible by Rexalloy's inherent toughness.

Increased tool life between grinds, saving of valuable machine and operator time and improved finish are enabled through Rexalloy's resistance to abrasion. Rexalloy tools will not "crater" as readily as high speed steel tools.

WHERE TO USE REXALLOY

Use Rexalloy on any modern machine tool . . . lathe, milling machine, boring mill, planer, automatic screw machine, and the like . . . that has sufficient reserve power to withstand the greater tool load of increased cutting speed, feed or depth of cut. Rexalloy can be used on older machine tool equipment provided there is not too much chatter and looseness. Use Rexalloy for any machining operation on all types of steel, iron, copper,

TOOL STEELS

HIGH SPEED

PLASTIC-DIE CASTING

AIR HARDENING

HOT WOR

brass, bronze, aluminum, and other similar metals with the exception of the milling of steel.

Use Rexalloy where high speed steels have been giving too short a cutting life between grinds, particularly on hard materials, and where tungsten carbide tools are not producing the required results.

REXALLOY NON-CUTTING APPLICATIONS

Use Rexalloy for gauges, straightener guides, centerless grinder rests, wear strips, extrusion die inserts, seal rings, homogenizer valve stems and seats, jet nozzles, balls and seats for oil well barrel pumps and other parts that must resist abrasive or corrosive wear at high or low temperatures.

Submit inquiries for Rexalloy non-cutting applications through your local Crucible branch office.

Rexalloy Tool Bits give excellent performance on modern production equipment for turning, facing and boring at high cutting speeds. They are, in fact, general purpose tools for "Middle-Range" machining applications that each organization should maintain in stock for regular and special metal-cutting work.

	REXALLO	Y SOI	LID-SQUA	RE TOOL	BITS
--	---------	-------	----------	---------	------

3/16 Square x 21/8 Long	½ Square x 2½ Long	3/4 Square x 4 Long
x 2½ "	x 3 "	x 4½ "
	x 3½ "	x 5 "
1/4 Square x 21/8 Long	x 4 "	x 6 "
x 2½ "	x 4½ "	
	x 5 "	1/8 Square x 6 Long
1/2 Square x 2½ Long	x 6 "	
x 3 "		1 Square x 4 Long
	5/8 Square x 3 Long	x 5 "
3/8 Square x 3 Long	x 3½ "	x 6 "
x 4 "	x 4 "	x 7 "
	x 4½ "	
1/6 Square x 2½ Long	x 5 "	
x 3 "	x 6 "	
x 3½ "		

REXALLOY SOLID-RECTANGULAR TOOL BITS

3/6 x 3/8 x 3 Long x 3/4 x 3 "	3/8 x 1/2 x 4 Long x 1/2 x 5 "	1/2 x 3/4 x 6 Long x 1 x 2 "
x 1 x 6 "	x 5/8 x 3 " x 5/8 x 4 "	x1 x4 " x1 x6 "
1/4 x 5/16 x 2 Long x 1/2 x 3 "	x 5/8 x 5 " x 3/4 x 4 "	
x ½ x 4 "	x 3/4 x 5 "	5/8 x 3/4 x 51/2 Long x 3/4 x 6 "
x 3/4 x 5 " x 1 x 6 "	x 1 x 4 " x 1 x 6 "	x 1 x 6 " x 1 1/4 x 6 "
5/16 x 1/2 x 4 Long	½ x 5/8 x 4 Long	3/4 x 1 x 4 Long
x 5/8 x 5 " x 1 x 4 "	x 3/4 x 3 " x 3/4 x 4 "	x 1 x 6 " x 1 ½ x 5 "
	x 3/4 x 5 "	x 11/4 x 6 "

REXALLOY SOLID-ROUND TOOL BITS

1/4 Diam	eter x 3 Long	5/8 Diamet	er x 3 Long
5/16 "	x 3 "	3/4 "	x 3 "
3/8 "	x 3 "	7/8 "	x 3 "
1/2 "	x 3 "	1 "	x 3 "

REXALLOY GROUND SOLID CYLINDERS

3/8 Diameter x 1½ Long ½ Diameter x 1½ Long

REXALLOY GROUND INSERTS

3/8 Square x 1½ Long | ½ Square x 1½ Long | ¾ Square x 1½ Long

SHORT TIPS

(Same design as XB group)

m 1 M .		Shank Size	e		Tip Size	Size
Tool No.	A	В	C	D	W	L
Squares						
X-C1	1/2 5/8 3/4	1/2 5/8 3/4	4	5/32 3/16 1/4	1/2 5/8 3/4	1
X-C2	5/8	5/8	41/2	3/16	5/8	11
X-C3	3/4	3/4	5	1/4	3/4	11
X-C3½	7/8	7/8	6	5/16	7/8	11
X-C4	1	1	8	5/16	1	13
X-C5	11/4	11/4	8	3/8	11/4	13
X-C6	11/2	11/2	10	7/16	11/2	2
X-C7	2	2	12	5/8	2	1 ³ / ₂ 2 ¹ / ₂
Rectangles						1-
X-C8	1/2	1	7	5/16 3/8	1/2	13
X-C9	5/8	11/4	8 7	3/8	1/2 5/8 3/4 3/4	2
X-C10	3/4	1		3/8	3/4	13
X-C11	3/4 3/4	11/2	9 8	3/8 7/16	3/4	2
X-C12	1	11/4	8	3/8	1	13
X-C13	1	11/2	10	7/16	1	2 2
X-C14	1	2	12	5/8	1	2
X-C15	11/2	2	12	7/16 5/8 5/8 3/4	11/2	21
X-C16	2	$2\frac{1}{2}$	14	3/4	2	21

Unless otherwise specified, permissible tolerances for dimensions up to and including $1\frac{1}{4}$ inch $\pm .010$ inch; over $1\frac{1}{4}$ inch $\pm .015$ inch.

REXALLOY TIPPED CUT-OFF BLADES

m l. Nr.	Å	Shank Size		Tip Size		
Tool No.	A	В	C	D	W	L
X-P & X-M1	1/8	3/4	6	3/16	1/8	2
X-P & X-M2	1/8 3/16 1/8 3/16 1/8	3/4 3/4 7/8 7/8	6	3/16 3/16 3/16 3/16	1/8 3/16 1/8 3/16	2
X-P & X-M3	1/8	7/8	6	3/16	1/8	2
X-P & X-M4	3/16	7/8	6	3/16	3/16	2
X-P & X-M5	1/8	1	6	1/4 1/4	1/8 3/6 1/4 1/4 1/4 3/8	2
X-P & X-M6	3/16	1	7	1/4	3/16	2
X-P & X-M7		1	7	1/4	1/4	2
X-P & X-M8	1/4	11/4	8	1/4	1/4	2
X-P & X-M9	1/4 1/4 1/4 3/8	11/2	8	1/4 5/16	1/4	2½ 2½
X-P & X-M10	3/8	11/2	8	5/16	3/8	21/2

Unless otherwise specified, permissible tolerances for dimensions up to and including $1\frac{1}{4}$ inch $\pm .010$ inch; over $1\frac{1}{4}$ inch $\pm .015$ inch.

REXALLOY TIPPED TOOLS—Continued SOLID REXALLOY CUT-OFF BLADES

A	В	C	D
Thickness	Height	Length	Side Clearance Angle
1/8 1/6	3/4 7/8	5	1½ 1½ 1½
3/16 1/4	1 1½	5½ 6	134 134

Rexalloy cast alloy cutting tools are interchangeable in the holders for those inserts shown in the General Motors Standards pages C-7, C-7A and C-7B. Those sizes available from stock are shown below.

SOLID REXALLOY CYLINDERS FOR BORING & TURNING

4		Designation	Size
+.000 D	±1/32	RX-1212-G RX-1612-G	3/8 Diameter x 1½ ½ " x 1½

SOLID REXALLOY TRIANGULAR INSERTS

RADIUS-R. ON 3 CORNERS	Designation	Diameter of Inscribed Circle	Height B	Standard Corner Radius R
ON 3 CORNERS	RX-8122-G	1/4	.344	1/82
	RX-12123-G	3/8	.516	3/64
	RX-16124-G	1/2	.688	1/16

SOLID REXALLOY SQUARE INSERTS

90° t 0°5' ON 4 CORNERS RADIUS-R.ON 4 CORNERS	Designation	Nominal Size	Measu	rement	Standard Corner Radius
		A	В	C	R
To the second se	RQ-12122-G RQ-16123-G RQ-24124-G	3/8 1/2 3/4	.692 .780 .957	.598 .724 .983	1/82 3/64 1/16

REXALLOY FINISH GROUND BALLS*

5% Diameter	1½ Diameter	111/16 Diameter
3/4 "	11/4 "	2 "
15/16 "	13/8 "	21/2 "
1 "	11/2 "	1.0

^{*}Stocked at Spaulding Works, Harrison, N. J.

ACCUMET PRECISION INVESTMENT CASTINGS

Made by the "lost wax" process using wax or plastic injected patterns, these castings are made to extremely close tolerances with exceptionally smooth, satiny surface finish. The two principal advantages of these castings over conventional methods of forming steel are:

- 1. Intricate shapes with fine detail in machinable grades can be cast to eliminate expensive machining operations and costly tooling.
- Intricate shapes and fairly simple shapes can be cast in high alloy grades that are difficult or impossible to machine or forge.

SIZE:

From 0.001 lb. to about 3.0 lb. are the usual weight limitations but the large majority of successful applications are under 0.25 lbs. Dimensional limitations are about 10 inches long by 5 inches wide but these are extremes—this process is at its best in small parts a few inches or under with relatively thin sections under ½ inch.

GRADES:

MACHINERY:

AISI 1010, 1020, 1045, 4140, 4620, 8620.

TOOL STEEL:

Ketos, Airkool, Airdi 150, HYCC.

STAINLESS:

302, 303, 304, 316, 347, 410, 416, 420, 431, 440C, 440F.

SPECIAL:

Alnico, Rexalloy, Rexalloy 33, Rexalloy 51, Rezistal VT, X-40. A.M.S. 5350, 5360, 5362, 5366, 5382, 5385, 5388.

TYPICAL APPLICATIONS:

Aircraft Structural Parts.

Aircraft Accessory Parts—Carburetors, Fuel Injectors, Regulators, Gyroscopes, Gyro Indicators.

Aircraft Jet Engine Blades & Vanes.

Can Machinery—Grippers, Chain Links, Splash Shields.

Glass Shear Blades.

Machinery Wear Parts.

Magnets—Compass Needles, Head Sets, Hearing Aids, Flow Meter Switches, Toy Trains.

Milk Capping Machines.

Picture Engraving Styli.

Pneumatic Tools.

Radar Equipment.

Textile Machine Parts.

Valves and Valve Seats for Homogenizers, Spray Equipment.

ACCUMET PRECISION INVESTMENT CASTINGS

Made by the "lost wax" process using wax or plastic injected patterns, these castings are made to extremely close tolerances with exceptionally smooth, satiny surface finish. The two principal advantages of these castings over conventional methods of forming steel are:

- 1. Intricate shapes with fine detail in machinable grades can be cast to eliminate expensive machining operations and costly tooling.
- Intricate shapes and fairly simple shapes can be cast in high alloy grades that are difficult or impossible to machine or forge.

SIZE:

From 0.001 lb. to about 3.0 lb. are the usual weight limitations but the large majority of successful applications are under 0.25 lbs. Dimensional limitations are about 10 inches long by 5 inches wide but these are extremes—this process is at its best in small parts a few inches or under with relatively thin sections under $\frac{1}{4}$ inch.

GRADES:

MACHINERY:

AISI 1010, 1020, 1045, 4140, 4620, 8620.

TOOL STEEL:

Ketos, Airkool, Airdi 150, HYCC.

STAINLESS:

302, 303, 304, 316, 347, 410, 416, 420, 431, 440C, 440F.

SPECIAL:

Alnico, Rexalloy, Rexalloy 33, Rexalloy 51, Rezistal VT, X-40. A.M.S. 5350, 5360, 5362, 5366, 5382, 5385, 5388.

TYPICAL APPLICATIONS:

Aircraft Structural Parts.

Aircraft Accessory Parts—Carburetors, Fuel Injectors, Regulators, Gyroscopes, Gyro Indicators.

Aircraft Jet Engine Blades & Vanes.

Can Machinery—Grippers, Chain Links, Splash Shields.

Glass Shear Blades.

Machinery Wear Parts.

Magnets—Compass Needles, Head Sets, Hearing Aids, Flow Meter Switches, Toy Trains.

Milk Capping Machines.

Picture Engraving Styli.

Pneumatic Tools.

Radar Equipment.

Textile Machine Parts.

Valves and Valve Seats for Homogenizers, Spray Equipment.

· 11 ·

CRUCAST STEEL CASTINGS—Continued

TYPICAL APPLICATIONS:—Continued

Stainless & Heat Resistant Steels

Aircraft Parts.

Burner Parts.

Compressor & Combustion Engine

Valves & Valve Seats.

Die Casting Machine Nozzles.

Food Machinery Parts.

Furnace Links, Rollers, Pins, etc.

Glass Molds.

Machinery Parts — Chain Links, Pulleys, Rollers, Fittings, Flanges, etc.

Pipe Fittings.

Skimmers, Hooks, Rabbles.

SPECIAL CLOSE TOLERANCE CASTINGS:

Castings up to about 15 pounds made by the Shell Mold process are available. These castings have very smooth surface finish and tolerances of the order of \pm .010 inch or better can be held at moderate cost.

TOOL STEELS

General Index

	Page
Air Hardening Steels	51,60
Allowances for Machining	17, 18
Drill Rods	103, 115
High Speed Steels	21, 44
Hollow Tool Steels	99, 101
Hot Work Steels	61,72
Oil Hardening Steel	73, 81
Plastic Mold and Die Casting Die Steels	45, 49
Suggestions for Ordering Tool Steels	16
Tool Steel Data Sheets	20
Tool Steel for the Non-Metallurgist	19
Tool Steel Selector	15
Water Hardening Steel	83, 98

TOOL STEELS

General Index

	Page
Air Hardening Steels	51, 60
Allowances for Machining	17, 18
Drill Rods	103, 115
High Speed Steels	21, 44
Hollow Tool Steels	99, 101
Hot Work Steels	61,72
Oil Hardening Steel	73, 81
Plastic Mold and Die Casting Die Steels	45, 49
Suggestions for Ordering Tool Steels	16
Tool Steel Data Sheets	20
Tool Steel for the Non-Metallurgist	19
Tool Steel Selector	15
Water Hardening Steel	83. 98

TOOL STEELS

General Index

	Page
Air Hardening Steels	
Allowances for Machining	
Drill Rods	
High Speed Steels	
Hollow Tool Steels	
Hot Work Steels	
Oil Hardening Steel	
Plastic Mold and Die Casting Die Steels	45, 49
Suggestions for Ordering Tool Steels	
Tool Steel Data Sheets	
Tool Steel for the Non-Metallurgist	
Tool Steel Selector	15
Water Hardening Steel	83, 98

You'll want your CRUCIBLE TOOL STEEL SELECTOR. It uses the only logical method of tool steel selection—begin with the application to pick the right steel! And the answer you get with one turn of the Selector dial will prove satisfactory in every case, for the Crucible Tool Steel Selector covers 22 tool steels which fit 98% of all Tool Steel applications. All the tool steels on the Selector are in Warehouse Stock . . . that means when you get the answer, you can get the steel . . . fast!

Write for your Selector today! We want you to have it, because we know you've never seen anything that approaches your tool steel problems so simply and logically.

Here's how it works:

To use the Selector, all you need know is the characteristics that come with the job: type and condition of material to be worked, the number of pieces to be produced, the method of working, and the condition of the equipment to be used.

1. Move arrow to major class covering appli-

- cation
 2. Select sub-group which best fits application
- 3. Note major tool characteristics (under arrow) and other characteristics in cut-outs for each grade in sub-group
- 4. Select tool steel indicated

That's all there is to it!

Here's an example:

Application—Deep drawing die for steel

Major Class — Metal Forming — Cold

Sub-Group—Special Purpose

Tool Characteristics
Wear Resistance

Tool Steel—Airdi 150

One turn of the dial does it!

And you're sure you're right!!

SUGGESTIONS FOR ORDERING TOOL STEEL

Quantity—State the quantity required in pounds, or in feet, or in number of pieces, and state whether exact or random lengths are desired.

Size—State carefully the section or shape, such as round, square, flat, octagon, special, and whether a round cornered or square cornered edge is desired on square or flat sizes. Give accurately the dimensions, such as diameter and width and thickness on flat sections. In ordering octagons give the size as the distance between parallel flat surfaces. Special shapes should be sketched and dimensioned accurately. Specify any special tolerances on dimensions which may be required. All dimensions are assumed to be rough dimensions. If finished sizes, please so state.

Condition and Finish-Specify whether the material is desired as-

Hot rolled Hammered Rough turned

Cold rolled
Cold drawn
Centerless ground

State whether the material is desired in the-

Natural condition

Annealed condition

Heat treated condition

If heat treated material is desired, state the approximate hardness desired in the heat treated steel. If definite hardness limits are required, it must be so stated.

ALLOWANCES FOR MACHINING—Tool Steels require a uniformly hard surface for their successful use. It is therefore necessary to remove all decarburization and other surface imperfections before heat treating. The following tables list the minimum allowances for machining CRUCIBLE TOOL STEELS to assure freedom from undesirable surface conditions. It is important that these allowances be applied to the NOMINAL size of the bar, rod or forging.

MINIMUM ALLOWANCES FOR MACHINING

ROUNDS, HEXAGONS AND OCTAGONS

Minimum Allowance Per Side for Machining Prior to Heat Treatment, Inch

Nominal Size, Inches	Hot Rolled	Ham- mered	Rough Turned	Cold Drawn
Up to ½ Incl	.015	_		.015
Over ½ to 1 Incl	.025			.025
Over 1 to 2 Incl		_		.040
Over 2 to 3 Incl		. 100	.025	.055
Over 3 to 4 Incl		. 125	.030	
Over 4 to 5 Incl		.125	.040	_
Over 5 to 6 Incl			.050	_
Over 6		_	.060	_

MINIMUM ALLOWANCES FOR MACHINING HOT ROLLED SQUARE AND FLAT BARS

Minimum Allowance Per Side for Machining Prior to Heat Treatment, Inch

NOMINAL WIDTH, INCHES

Nominal Thickness, Inches	0 to ½	Over ½ to 1 Incl.	Over 1 to 2 Incl.	Over 2 to 3 Incl.	Over 3 to 4 Incl.	Over 4 to 6 Incl.	Over 6
	A .020	.020	.025	. 025	.030	. 035	.040
0 to 1/2 Incl	B .020	.030	. 045	.060	.080	. 100	. 125
0 to ½ men	A	.030	.030	. 030	. 035	.040	. 050
Over ½ to 1 Incl	В —	.030	.045	.060	.080	.100	. 125
Over 72 to 1 mem	A —	_	.045	.045	.050	.055	.060
Over 1 to 2 Incl	В —	_	.045	.060	.080	.100	.125
Over 1 to 2 mention	A —	_	_	.060	.060	.065	.070
Over 2 to 3 Incl	В —	_	_	.060	.085	.100	.125
0,000 2 00 0 2120000000	A —	_		_	.080	.080	_
Over 3 to 4 Incl	В —	-	-	-	.080	.100	_
	A *	_	-	-		-	_
Over 4	B*	-	-	-	-	-	-
				1	1	1	

^{*}Tool steel bars greater than 4 inches thick are usually hammered.

MINIMUM ALLOWANCES FOR MACHINING

HAMMERED SQUARE AND FLAT BARS

Minimum Allowance Per Side for Machining Prior to Heat Treatment, Inch

NOMINAL WIDTH, INCHES

Nominal Thickness, Inches	Under 2	Over 2 to 3 Inclusive	Over 3 to 6 Inclusive	Over 6 to 12 Inclusive	Over
Under 2	A * B * A B A B A B A # B #	.100	.100 .125 .125 .125 .125	.125 .125 .125 .125 .125	.125 .187 .125 .187

*Tool steel bars under 2 inches are usually rolled. fMachining allowances for hammered tool steel bars greater than 6 inches thick must be determined on the basis of the individual item.

No allowances for machining need be made on centerless ground material prior to heat treatment. However, consideration must be given to the normal size tolerances to which centerless ground material is supplied.

Shipping Instructions—Give full and complete shipping instructions, including any special routing instructions—whether freight, express, parcel post, ship, etc., and details as to the packing or boxing desired.

Warranty—We will replace defective steel and steel in first hands found unsuitable for the proper usage when the purpose for which the steel is to be used is stated on the order. We cannot assume consumers' own shop risks, such as damage in labor put upon the steel.

Purpose—State clearly on every order the purpose for which the steel is to be used. This may allow us to prevent a misapplication and to recommend other steels which may be more suitable for the purpose than that ordered and at the same time to put the steel shipped in the best condition for the particular application for which it is intended.

TOOL STEEL FOR THE NON-METALLURGIST

A tool is usually worth no more than its weight in scrap until it has been heat treated. It is, therefore, important that proper heat treating techniques be employed to achieve maximum service from your tools. Crucible's "Tool Steel For The Non-Metallurgist" is an excellent guide for the selection and proper heat treatment of tool steels.

FREE UPON REQUEST

WATER

HIGH SPEED

PLASTIC-DIE CASTING

AIR HARDENING

HOT WOR

CRUCIBLE DATA SHEETS

A Crucible Data Sheet is available for each grade of tool steel. They contain specific and detailed data pertaining to each grade including a TTT curve, working and heat treating recommendations.

FREE UPON REQUEST

HIGH SPEED STEELS

Index

Page	e I	Pa	ge
Rex AA High Speed Drill Rods		Rex AA High Speed Steel Bars	•
Rounds 10	14	Rounds	32
Rex M-2 High Speed Drill Rods	- 1	Flats	33
Rounds 10	15	Squares	33
Rex M-2 High Speed Steel Bars		Rex AA High Speed Round Tool Bits	34
	2	Rex AA High Speed Tool Bits	
Flats22, 23, 2	4	Squares, Flats, Double Beveled	34
Squares 2	4	Rex AA High Speed Treated Bars	
Rex M-2 High Speed Steel Sheets		Rounds, Flats, Squares	35
	4	Rex AA High Speed Nail Die Steel	
Rex M-2 High Speed Centerless		Bars Double Beveled (10)	35
	5	Rex AAA High Speed Steel Bars	
Rex M-2 High Speed Rough Ground		Rounds, Flats, Squares	36
Steel Bars	,	Rex AAA High Speed Tool Bits	
	25	Squares, Flats, Double Beveled	37
	25	Rex AAA High Speed Treated Bars	
	ا "	Squares	37
Rex M-2 High Speed Nail Die	25	Rex AAA High Speed Tool Bits	
	.5	Squares, Double Beveled	38
Rex M-2 High Speed Tool Bits	,	Rex 95 High Speed Steel Bars-Flats	38
•	26	Rex 95 High Speed Tool Bits	
	26	Squares	38
Rex M-2-S High Speed Steel Bars	_	Flats	39
	27	Double Beveled	39
Squares	27	Rex 95 Wheel Lathe Tool Inserts	
Flats	28	Rounds	39
Rex M-2-S High Speed Centerless		Rex 4-V Hot Rolled Annealed Bars	
Ground Steel Bars—Rounds 2	29	Round, Squares	40
Rex M-2-S Forgings	29	Rex 4-V High Speed Tool Bits	40
Rex M-2-5 High Speed Steel Bars		Rounds, Squares, Flats	40
	29	Rex Supervan High Speed Steel Bars	
	29	Rounds, Flats, Squares	41
	30	Rex Supervan High Speed Tool Bits	40
Rex M-3 High Speed Steel	"	Squares	42
	30	Rex 440 High Speed Steel Bars	42
		Rounds	42
	30	Rex 440 Tool Bits—Squares	
Rex M-3 High Speed Steel Bars—	03	Rex 440 Wheel Lathe Tool Inserts	42
Flats30,		Rex Champion High Speed Steel	43
	31	Rex Champion High Speed Tool Bits	40
Rex M-3-5 High Speed Steel Bars	21	Squares Tool Dite	43
	31	Rex Supercut High Speed Tool Bits	43
	31	Squares, Flats	43
Rex M-3-5 High Speed Tool Bits	32	Rex TMO® Bars Annealed	44
	-3/		-

HIGH SPEED STEELS

Index

Po	ge	Po	age
Rex AA High Speed Drill Rods Rounds		Rex AA High Speed Steel Bars Rounds	32
Rex M-2 High Speed Drill Rods		Flats	33
Rounds	105	Squares	33
Rex M-2 High Speed Steel Bars	103		
Rounds	22	Rex AA High Speed Round Tool Bits	34
Flats		Rex AA High Speed Tool Bits	0.4
Squares	24	Squares, Flats, Double Beveled	34
Rex M-2 High Speed Steel Sheets	24	Rex AA High Speed Treated Bars	
	0.4	Rounds, Flats, Squares	35
Annealed	24	Rex AA High Speed Nail Die Steel	0.
Rex M-2 High Speed Centerless	0.5	Bars Double Beveled (10)	35
Ground Steel—Rounds	25	Rex AAA High Speed Steel Bars	0/
Rex M-2 High Speed Rough Ground		Rounds, Flats, Squares	36
Steel Bars	0.5	Rex AAA High Speed Tool Bits	27
Rounds	25	Squares, Flats, Double Beveled	37
Flats	25	Rex AAA High Speed Treated Bars	27
Rex M-2 High Speed Nail Die		Squares	37
Steel Bars	25	Squares, Double Beveled	38
Rex M-2 High Speed Tool Bits		Rex 95 High Speed Steel Bars—Flats	38
Squares	26	Rex 95 High Speed Tool Bits	30
Rex M-2 High Speed Steel Forgings	26	Squares	38
Rex M-2-S High Speed Steel Bars		Flats	39
Rounds	27	Double Beveled	39
Squares	27	Rex 95 Wheel Lathe Tool Inserts	0,
Flats	28	Rounds	39
Rex M-2-S High Speed Centerless		Rex 4-V Hot Rolled Annealed Bars	-
Ground Steel Bars—Rounds	29	Round, Squares	40
Rex M-2-S Forgings	29	Rex 4-V High Speed Tool Bits	
Rex M-2-5 High Speed Steel Bars	27	Rounds, Squares, Flats	40
Squares	29	Rex Supervan High Speed Steel Bars	
		Rounds, Flats, Squares	41
Hot Rolled Flats	29	Rex Supervan High Speed Tool Bits	
Rex M-2-5 Bits—Squares	30	Squares	42
Rex M-3 High Speed Steel		Rex 440 High Speed Steel Bars	
Squares	30	Rounds	42
Rounds	30	Rex 440 Tool Bits—Squares	42
Rex M-3 High Speed Steel Bars—		Rex 440 Wheel Lathe Tool Inserts	42
Flats30,	31	Rex Champion High Speed Steel	43
Rex M-3 Bits—Squares	31	Rex Champion High Speed Tool Bits	
Rex M-3-5 High Speed Steel Bars	8	Squares	43
Flats	31	Rex Supercut High Speed Tool Bits	
Rex M-3-S High Speed Steel	31	Squares, Flats	43
Rex M-3-5 High Speed Tool Bits		Rex TMO® Bars Annealed	
Squares	32	Rounds	44

REX HIGH SPEED STEELS

Wherever high speed steels are used Crucible's Rex High Speed Steels are the standard by which all others are judged. It is a fact that large manufacturers of tools made of high speed steel depend upon Rex to maintain the reputation of their product. The ability of Rex to meet the exacting requirements and rigid inspection of the tool manufacturer is a definite assurance to the purchaser of high speed steel, that only the highest in quality leaves the mill under the Rex label.

REX M-2 HIGH SPEED STEEL

Rex M-2 is Crucible's tungsten-molybdenum high speed steel that gives outstanding performance in all operations for which a general purpose high speed steel is required. This steel has good red hardness and excellent toughness characteristics. Rex M-2 has a wider hardening range than other molybdenum type high speed steels.

OUTSTANDING ADVANTAGES

- 1. An improved tungsten-molybdenum high speed steel for general purpose use.
- 2. Costs less per pound, per bar, and per operation than 18-4-1 high speed steel.
- 3. Yields 7.5% more tools per pound than 18-4-1 high speed steel.
- Permits standardization on a single efficient tungsten-molybdenum high speed steel for general purpose use.
- The type chosen by the three largest motor car manufacturers for general purpose use.
- 6. Now in stock at Crucible Warehouses in a wide range of shapes and sizes.

Standardize on Rex M-2 for outstanding cutting efficiency on all general purpose work! HARDENING

STEELS TOO

PLASTIC-DIE CASTING

AIR HARDENING

HOT WOR

REX M-2 HIGH SPEED STEEL BARS

Carbon 0.83% Tungsten 6.40% Chromium 4.15%
Vanadium 1.90% Molybdenum 5.00%

Annealed

Rex M-2 is a tungsten-molybdenum high speed steel that gives outstanding performance in all operations for which a general purpose high speed steel is required. Rex M-2 has a wider hardening range than other molybdenum type high speed steels. It has good red hardness and excellent toughness characteristics.

		ROUNDS		
1/4	15/16	23/8	31/2	51/8
5/16	13/8	27_{16}	35/8	51/4
3/8	17/16	$2\frac{1}{2}$	33/4	511/32
7/16	$1\frac{1}{2}$	29/16	$3\frac{7}{8}$	53/8
1/2	19/16	25/8	4	5½
9/16	15/8	211/16	41/16	519/32
5/8	111/16	23/4	41/8	55/8
11/16	13/4	213/16	41/4	53/4
3/4	113/16	27/8	411/32	6
13/16	17/8	215/16	43/8	61/8
7/8	1 15/16	3	41/2	61/4
15/16	2	31/16	419/32	63/8
. 1	21/16	31/8	45/8	61/2
11/16	21/8	33/16	43/4	65/8
11/8	23/16	31/4	47/8	81/8
$1\frac{3}{16}$ $1\frac{1}{4}$	$\frac{2\frac{1}{4}}{2^{5}/6}$	33/8	5	101/8

FLATS 1/2 5/8 3/4 7/8 7∕8 x x 3/4 X $2\frac{1}{2}$ x 1/4 1/4 X X 1/8 1/8 1/8 1/8 1/8 3/16 1/4 1/4 1/4 1/4 1/4 3 x 3/8 x 5/8 x 11/16 x 7/8 1 11/16 x x 3/16 X X 11/1 X X X X 3/16 $\frac{1\frac{1}{2}}{1\frac{3}{4}}$ X 3/16 x 11/8 X 3/16 1½ x 1½ x ½ x ½ x 5/8 x 3/4 x 13/₁₆ X 3/₄ X 7/₈ X 3/16 11/4 x X 1/4 1/4 1/4 1/4 1/4 1½ x 1¾ x 1/8 3/8 1/2 9/16 5/8 X 1/4 X X 1/4 1/4 1/4 3/16 3/16 $\begin{array}{ccc} 2 & x \\ 2\frac{1}{4} & x \end{array}$ X 1½ x

REX M-2 HIGH SPEED STEEL BARS—Continued

FLATS—Continued

	FLATS—C	Continued	
1½ x ½	2½ x ½	19/16 x 11/16	5½ x 1/8
1 1/4 x 5/16	3 x ½	13/4 x 11/16	6 x 7/8
	3½ x ½	174 1 11/	
1½ x 5/16	3 ½ X ½	17/8 x 11/16	1½6 x 15/16
1 3/4 x 5/16	33/4 x 1/2	2 x 11/16	11/8 x 1
$2 \times \frac{5}{16}$	4 x ½	₹ x 3/4	1¼ x 1
$\frac{1}{2}$ x $\frac{3}{8}$	3/4 x 9/16	1 x 3/4	13/8 x 1
5/8 x 3/8	13/16 X 9/16	11/8 x 3/4	1½ x 1
3/4 x 3/8	15/16 x 9/16	$1\frac{1}{4} \times \frac{3}{4}$	15/8 x 1
7/8 x 3/8	1½6 x %6	13/8 x 3/4	134 x 1
	1716 X 716		174 X 1
, 0	1 ½ x 1/6	$1\frac{1}{2} \times \frac{3}{4}$	17/8 x 1
$1\frac{1}{8} \times \frac{3}{8}$	11/4 x 9/16	$1\frac{5}{8} \times \frac{3}{4}$	2 x 1
$1\frac{1}{4} \times \frac{3}{8}$	15/16 x 9/16	$1\frac{3}{4} \times \frac{3}{4}$	21/8 x 1
$1\frac{3}{8} \times \frac{3}{8}$	13/8 x 9/16	$2 \times \frac{3}{4}$	21/4 x 1
$1\frac{1}{2} \times \frac{3}{8}$	1½ x %	$2\frac{1}{4} \times \frac{3}{4}$	2½ x 1
13/4 x 3/8	15/8 x 9/16	23/8 x 3/4	23/4 x 1
$2 \times \frac{3}{8}$	13/4 x 9/16	$2\frac{1}{2} \times \frac{3}{4}$	3 x 1
$2\frac{1}{4} \times \frac{3}{8}$	2 x ½	23/4 x 3/4	$3\frac{1}{2} \times 1$
$2\frac{1}{2} \times \frac{3}{8}$	43/4 x 9/16	3 x 3/4	4 x 1
3 x 3/8	3/4 x 5/8	$3\frac{1}{2} \times \frac{3}{4}$	5 x 1
3½ x 3/8	7/8 x 5/8	4 x 3/4	6 x 1
4 x 3/8	1 x 5/8	$4\frac{1}{2} \times \frac{3}{4}$	125/8 x 1
5/8 x 1/16	11/8 x 5/8	1½ x 13/16	1½ x 1½
3/4 x 7/16	11/4 x 5/8	1 1/8 x 13/16	13/16 x 11/16
13/16 X 7/16	13/8 x 5/8	1 1/4 x 13/16	15/16 x 11/16
7/8 x 7/16	1½ x 5/8	15/16 x 13/16	13/8 x 11/16
1 x 7/16	15/8 x 5/8	13/8 x 13/16	1% x 11/16
1½ x ½	13/4 x 5/8	1½ x 13/16	113/16 x 11/16
1 1/4 x 7/16	, ,	19/16 X 13/16	2½6 x 1½6
13/8 x 7/16	21/4 x 5/8	113/16 x 13/16	11/4 x 11/8
$1\frac{1}{2} \times \frac{7}{16}$	2½ x 5/8	1 x ½	13/8 x 11/8
15/8 x 7/16	23/4 x 5/8	11/8 x 7/8	1½ x 1½
$1\frac{3}{4} \times \frac{7}{16}$	3 x 5/8	11/4 x 7/8	15/8 x 11/8
2 x 7/16	31/4 x 5/8	13/8 x 7/8	13/4 x 11/8
5/8 x 1/2	3½ x 5/8	1½ x 7/8	17/8 x 11/8
3/ w 1/	4 x 5/8	15/8 x 7/8	2 x 1½
$\frac{3}{4} \times \frac{1}{2}$, ,		
$\frac{7}{8} \times \frac{1}{2}$	13/16 X 11/16	$1\frac{3}{4} \times \frac{7}{8}$	2½ x 1½
1 x $\frac{1}{2}$	15/16 X 11/16	2 x ½	21/4 x 11/8
11/8 x 1/2	1 x 11/16	21/8 x 7/8	23/8 x 11/8
11/4 x 1/2	1½6 x 1½6	21/4 x 1/8	2½ x 1½
174 A 72	11/ 11/		93/ 11/8
$1\frac{3}{8} \times \frac{1}{2}$	1½ x 11/16	2½ x 7/8	23/4 x 11/8
$1\frac{1}{2} \times \frac{1}{2}$	11/4 x 11/16	23/4 x 7/8	3 x 1½
$1\frac{5}{8} \times \frac{1}{2}$	15/16 X 11/16	$3 \times \frac{7}{8}$	13/8 x 11/4
$1\frac{3}{4} \times \frac{1}{2}$	13/8 X 11/6	4 x 7/8	1½ x 1¼
2 x ½	17/6 x 11/6	$4\frac{1}{2} \times \frac{7}{8}$	15/8 x 11/4
$2\frac{1}{4} \times \frac{1}{2}$	1 ½ x 11/16	5 x 7/8	13/4 x 11/4
2/4 1 /2	1/2 1/10	1 /8	1/4 1/4
	1		

REX M-2 HIGH SPEED STEEL BARS-Continued

FLATS—Continued

2 x 1½	13/4 x 13/8	2½ x 1½	4 x 13/4
$2\frac{1}{8} \times 1\frac{1}{4}$	17/8 x 13/8	23/4 x 11/2	125/8 x 13/4
$2\frac{1}{4} \times 1\frac{1}{4}$	2 x 13/8	3 x 1½	21/4 x 2
23/8 x 11/4	2½ x 1¾	$3\frac{1}{2} \times 1\frac{1}{2}$	2½ x 2
$2\frac{1}{2}$ x $1\frac{1}{4}$	21/4 x 13/8	4 x 1½	2¾ x 2
3 x 1½	23/8 x 13/8	5 x 1½	3 x 2
$3\frac{1}{4} \times 1\frac{1}{4}$	$2\frac{5}{8} \times 1\frac{3}{8}$	6 x 1½	3½ x 2
$3\frac{1}{2} \times 1\frac{1}{4}$	$2\frac{3}{4} \times 1\frac{3}{8}$	$12\frac{5}{8} \times 1\frac{1}{2}$	4 x 2
4 x 1½	$3\frac{1}{8} \times 1\frac{3}{8}$	13/4 x 15/8	125/8 x 2
$4\frac{1}{2} \times 1\frac{1}{4}$	1% x 1%	17/8 x 15/8	3 x 2½
5 x 11/4	23/16 x 17/16	2 x 15/8	23/4 x 21/2
6 $\times 1\frac{1}{4}$	13/4 x 11/2	21/8 x 15/8	3 x 2½
$12\frac{5}{8} \times 1\frac{1}{4}$	17/8 x 11/2	25/8 x 15/8	3½ x 2½
$1\frac{9}{16} \times 1\frac{5}{16}$	$2 \times 1\frac{1}{2}$	2 x 13/4	4 x 2½
$2\frac{1}{16} \times 1\frac{5}{16}$	$2\frac{1}{8} \times 1\frac{1}{2}$	21/4 x 13/4	$12\frac{5}{8} \times 2\frac{1}{2}$
1½ x 13/8	21/4 x 11/2	2½ x 1¾	4 x 3
$1\frac{5}{8} \times 1\frac{3}{8}$	$2\frac{3}{8} \times 1\frac{1}{2}$	2¾ x 1¾	125/8 x 3

SQUARES

1/4 5/16 3/8 7/16 1/2	9/66 5/8 3/4 13/66 7/8	1 1½6 1½8 1¼ 1¾	$ \begin{array}{c c} 1\frac{1}{2} \\ 1\frac{5}{8} \\ 1\frac{3}{4} \\ 1\frac{7}{8} \\ 2 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1/2	1/8	13/8	2	4

REX M-2 HIGH SPEED STEEL SHEETS

Annealed

20 x .035/.041 x 72 Long	20 x .165/.175 x 72 Long
20 x .047/.053 x 72 "	20 x .180/.190 x 72 "
20 x .062/.068 x 72 "	20 x .194/.204 x 72 "
20 x .070/.076 x 72 "	20 x .202/.217 x 72 "
20 x .079/.085 x 72 "	20 x .215/.230 x 72 "
20 x .092/.098 x 72 "	20 x .224/.239 x 72 "
20 x .100/.107 x 72 "	20 x .242/.257 x 72 "
20 x .111/.119 x 72 "	20 x .276/.306 x 72 "
20 x .122/.130 x 72 "	20 x .307/.338 x 72 "
20 x .132/.140 x 72 "	20 x .339/.369 x 72 "
20 x .143/.153 x 72 "	20 x .370/.400 x 72 "
20 x .150/.160 x 72 "	20 x .433/.463 x 72 "

REX M-2 HIGH SPEED CENTERLESS GROUND STEEL BARS

12-14 FOOT LENGTHS

Annealed

	ROUNDS					
.260 9%2 5/16 .318	11/ ₃₂ 3/8 .385 25/64 7/6	.440 .448 ½ .505 .510	13/64 17/32 .628 41/64 21/32	11/16 .753 49/64 53/64 55/64	57 ₆₄ 1.005 1½ ₆₄ 1½ ₆	

REX M-2 HIGH SPEED ROUGH GROUND STEEL BARS

Annealed

	ROUNDS	
.538		.630
	FLATS	
15/ ₃₂ x 9/ ₃₂ 9/ ₁₆ x 9/ ₃₂	⁴¹ / ₆₄ x ¹³ / ₃₂ ³¹ / ₃₂ x ¹⁷ / ₃₂	113/ ₃₂ x 21/ ₃₂

REX M-2 HIGH SPEED NAIL DIE STEEL BARS

Hot Rolled Annealed

DOUBLE BEVELED				
# 8 15/8 x 11/8 # 10 11/2 x 15/16 # 14 13/8 x 13/16	# 16 1½8 x ½6 # 19 15½6 x ½6 # 21 15½6 x ½6	# 23 13/6 x 9/6 # 26 11/6 x 7/6		

REX M-2 HIGH SPEED TOOL BITS

Hardened — Ends Beveled

SQUARES

3/6 x 21/2 Long 1/4 x 21/2 " 5/6 x 21/2 "	3/8 x 3 Long 7/6 x 31/2 " 1/2 x 4 "	5/8 x 41/2 Long 3/4 x 5 "	7/8 x 6 Long 1 x 7 "

REX M-2 HIGH SPEED STEEL FORGINGS

Annealed

Rex M-2 High Speed Forgings offer cutter manufacturers a tungstenmolybdenum high speed forging of uniform structure, closeness to size and smooth finish.

Diameter	Thickness	Diameter	Thickness	Diameter	Thickness
17/8	1/2	$4\frac{1}{2}$ 5 5 5 5	3/4	7	1/2
21/4	2	5	3/8	7	1/2 5/8 3/4
3 3	1½ 1¾ 3	5	3/4 3/8 5/8 3/4	7	3/4
3	3	5	4	7	6
31/2	3	F1/	1.4		
4		51/2	1/2 5/8	71/2	6
	1/2	$ \begin{array}{r} 5\frac{1}{2} \\ 5\frac{1}{2} \\ 5\frac{1}{2} \end{array} $	1	8	1/8
4 4 4	3/8 1/2 5/8 3/4	6	1/4 3/8	8 8 8	3/8 1/2 5/8 3/4
4	%	6	3/8	8	3/4
4 4	7/8	6	1/2	8	7/8
	1		1/2 5/8 3/4 7/8	8	1
4	21/4	6	3/4	9	1
$\frac{4}{4}$ $4\frac{1}{2}$	5	6	1 /8	10 10	1/2
41/2	1/2			10	1

REX M-2-S HIGH SPEED STEEL BARS

Carbon 0.83%

Chromium 4.15%

Vanadium 1.90%

Tungsten 6.40%

Sulphur 0.15%

Molybdenum 5.00%

Rex M-2-S is the sulphur-bearing counterpart or modification of the regular Rex M-2 High Speed Steel. It has been designed for use where extensive machining is encountered. Under normal conditions, it will provide an improvement in "machinability" of about 25 to 35%, together with an expected increase in tool life.

In addition to these characteristics, Rex M-2-S embodies all the advantages of the standard Rex M-2 which is a tungsten-molybdenum high speed steel that gives outstanding performance in all operations for which a general purpose high speed steel is required. Rex M-2 has a wider hardening range than other molybdenum type high speed steels. It has good red hardness and excellent toughness characteristics.

Annealed

		ROU	NDS		
1/4 9/52 5/16 11/ ₅₂ 3/8	13/6 7/8 29/32 15/6 31/32	$ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{9}{16} \\ 1\frac{5}{8} \\ 1\frac{11}{16} \\ 1\frac{3}{4} \end{array} $	25/8 23/4 27/8 3 31/16	4 4½ 4½ 4½ 4¾ 4¾	$5\frac{1}{16}$ $5\frac{1}{8}$ $5\frac{1}{4}$ $5\frac{3}{8}$ $5\frac{1}{2}$
13 ₃₂ 7/6 1/2 9/16 19 ₃₂	1 1 ¹ / ₃₂ 1 ¹ / ₁₆ 1 ¹ / ₈	$ \begin{array}{c} 1^{13}/_{6} \\ 1^{7}/_{8} \\ 1^{15}/_{16} \\ 2 \\ 2^{1}/_{16} \end{array} $	3½ 3½ 3½ 3½ 3½ 3½	47/16 41/2 45/8 411/16 43/4	55/8 53/4 57/8 6 61/16
5/8 21/ ₃₂ 3/4 23/ ₃₂	1 ½ 1 ½ 1 ½ 1 3/8 1 ½ 16	$2\frac{1}{8}$ $2\frac{1}{4}$ $2\frac{3}{8}$ $2\frac{1}{2}$	3%6 35% 334 37%	$ \begin{array}{r} 4^{13}/6 \\ 4^{7}/8 \\ 5 \end{array} $	6½ 6¾ 6¾ 65%
	- 1	SQU	ARES		130
1/4 5/46 3/8 7/6 1/2 5/8		11/16 3/4 7/8 1 1 1/8 13/16	$ \begin{array}{c} 1\frac{1}{4} \\ 1\frac{5}{6} \\ 1\frac{3}{8} \\ 1\frac{7}{6} \\ 1\frac{1}{2} \\ 1\frac{3}{4} \end{array} $		2 2½ 3 4

REX M-2-S HIGH SPEED STEEL BARS-Continued

Annealed

FLATS

		FLA 15		
1 x }	4 1 3/4 :	x 9/16	1 ³ / ₁₆ x ¹⁵ / ₁₆	3 ½ x 13/8
9/16 X 5	16 113/16		1 5/16 x 15/16	3 ½ x 13/8
	16 2 1/16		1 7/16 x 15/16	4 ½ x 13/8
	16 7/8			
1 9/ x 5	16 /8		1 % x 15/16	1 5/8 x 17/16
1 % x 5	16 1 1/16 :	x 5/8	1 13/16 X 15/16	2 x 17/16
	1 1/4 :		2 ½ x 15/16	2 ½6 x 1½6
3/4 x 3	8 1 1/2 2	5/8	1 ½ x 1	2 ½ x 1½
1 5/16 x 3	8 1 3/4 2	5/8	1 1/4 x 1	1 5/8 x 1½
1 3/8 x 3	8 1 7/8 2	5/8	1 5/16 x 1	2 x 1½
	8 3 3/8 2		1 1/16 x 1	2 ½ x 1½
1 % x 3	8 1 3/16 >	11/6	1 ½ x 1	2 5/8 x 11/2
	8 113/16 X		1 ¹¹ / ₁₆ x 1	
				3 x 1½
			1 3/4 x 1	3 ½ x 1½
2 ½ x 3	8 1 1/16 X		1 13/16 x 1	111/ ₁₆ x 19/ ₁₆
2 ½ x 3	$8 \qquad 1 \frac{1}{4} \times $	3/4	1 15/16 x 1	113/16 x 19/16
3 1/4 x 3/			2 x 1	1 7/8 x 19/16
11/16 x 7/	6 1 7/16 X	3/4	$2\frac{1}{16} \times 1$	2 x 1%
15/16 x 7/1	6 1 ½ x		3 x 1	2 ½6 x 19/16
1 1/6 x 7/		3/4	7/16 x 11/16	2 1/4 x 15/8
1 3/16 x 7/1		3/4	5/8 x 1½6	2 ½ x 15/8
1 5/6 x 7/	6 1 7/8 x	3/4	1 3/4 x 11/16	2 3/4 x 15/8
1 1/6 x 1/1				
			2 3/16 x 11/16	3 x 15/8
1 % x %			2 5/16 x 11/16	3 ½ x 15/8
1 3/4 x 7/1		13/16	5/16 x 13/16	3 5/8 x 15/8
$2\frac{1}{8} \times \frac{7}{1}$	6 1 3/16 X	13/16	7/16 x 13/16	1 3/4 x 1 ¹¹ / ₁₆
2 % x 1/1	6 1 5/8 x	13/16	% x 13/16	2 1/6 x 111/16
$3\frac{1}{2} \times \frac{7}{1}$	6 1 3/4 x	13/16	11/16 x 13/16	1 1/8 x 13/4
1 x ½	2 2 x	13/16	13/16 x 13/16	2 ½ x 1¾
1 % x 1	$\frac{1}{2}$ $\frac{2}{8}$ x	13/16	15/16 x 13/16	2 1/4 x 13/4
1 3/4 x 1/			x 11/4	3 x 13/4
2 x ½	2 1 3/16 x	7/8	7/6 x 15/16	2 1/8 x 17/8
3 1/4 x 1/2			11/16 x 15/16	
				2 3/8 x 17/8
			13/16 x 15/16	$3\frac{1}{2} \times 1\frac{7}{8}$
√8 x %			15/16 x 15/16	2 ½ x 2
1 x %	6 111/16 X	7/8 2	2 3/16 x 15/16	2 ½ x 2
1 3/6 x 9/1			2 5/16 x 15/16	2 3/8 x 21/8
1 1/16 x 9/1	6 2 ½6 x	7/8 2	2 ½ x 13/8	2 5/8 x 21/8
1 % x %			5/8 x 13/8	70 78

REX M-2-S HIGH SPEED CENTERLESS GROUND STEEL BARS

Annealed

ROUNDS

.503

REX M-2-S FORGINGS

Diameter	Thickness	Diameter	Thickness	Diameter	Thickness
3	13/4	5	1	71/4	1
3½ 4	17/8	5½ 5½	3/8 3/4	7½ 8	11/4
4	1/2 3/4	6	1 1/2	8 8	1 3/4
$-\frac{4}{4\frac{1}{2}}$	11/8	$\frac{6\frac{1}{2}}{6\frac{1}{2}}$	1/2 5/8	9	11/16
$\frac{4\frac{1}{2}}{5}$	1/2	$\frac{6\frac{1}{2}}{7}$	3/4	10 10 12	1 1 1/2
5	1/2 3/4	7	1 3/4	12	1/2

REX M-2-5 HIGH SPEED STEEL BARS

Carbon 0.83% Tungsten 6.40% Chromium 4.15% Molybdenum 5.00% Vanadium 1.90% Cobalt 5.00%

Rex M-2-5 is a molybdenum-tungsten-cobalt high speed steel. The addition of cobalt to the molybdenum-tungsten base of Rex M-2 produces a steel which is suited for applications requiring higher red hardness and abrasion resistance than is obtainable with Rex M-2.

Annealed

SQUARES

5/8 3/4	1 1/16	1½ 1¾ 1¾
1/8	11/8	1 ½

HOT ROLLED FLATS

$3\frac{1}{2} \times 1\frac{1}{2}$	3½ x 2	4½ x 2

REX M-2-5 BITS

Hardened and Unground

SQUARES

5/16 x 21/2 Long	½ x 4 Long	34 x 5 Long
3/8 x 3 "	5% x 4½ "	1 x 7 "

REX M-3 HIGH SPEED STEEL

Carbon 1.05%

Chromium 4.00%

Vanadium 2.50%

Tungsten 5.75%

Molybdenum 5.00%

Rex M-3 is a special high speed steel that gives exceptional performance under conditions demanding high resistance to abrasion coupled with good impact strength. Broaches, form tools, lathe tools, reamers and cut-off tools are typical applications for Rex M-3.

Annealed

SQUARES

	111			
9/16 11/16	3/4 13/16	15/16 11/16	1½ 1¼	11/2
- 89A	A INTE	ROUNDS	i i i i i i i i i i i i i i i i i i i	UM.
1/2 5/8 11/6 3/4	13/ ₁₆ 7/ ₈ 1 11/ ₈	1 ³ / ₁₆ 1 ¹ / ₄ 1 ⁵ / ₁₆ 1 ³ / ₈	$1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$	$2\frac{1}{8}$ $2\frac{3}{8}$ $3\frac{1}{8}$

REX M-3 HIGH SPEED STEEL BARS

Annealed

FLATS

34 x 3/8 1 1 x 3/8 1 1 x 7/6 1	34 x ½ 1½ 1½6 x %6 13/6 x %6 1½8 x ½ 2 x %6 1¼4 x 5/8 1½6 x %6 1½ x 5/8	7/8 x 11/16 1 x 11/16 11/16 x 11/16 11/8 x 11/16 15/16 x 11/16
--------------------------------------	---	--

REX M-3 HIGH SPEED STEEL BARS—Continued

Annealed

	A 7	re	-Cor	43	
-	-		-L Or	ומוזו	IO.

19/16 x 11/16	13/16 x 13/16	115/16 X 15/16	$1\frac{1}{4} \times 1\frac{1}{8}$
2 x 11/16	15/8 x 13/16	1½6 x 1	1½ x 1¼
13/16 X 3/4	2½ x 13/16	1½ x 1	2 x 1½
11/8 x 3/4	1 x 7/8	11/4 x 1	$3\frac{1}{2} \times 1\frac{1}{4}$
1½ x ¾	11/8 x 7/8	1½ x 1	17/ ₁₆ x 15/ ₁₆
15/8 x 3/4 13/4 x 3/4	11/4 x 7/8	15/8 x 1	1% x 15/16
13/4 x 3/4	13/8 x 7/8	13/4 x 1	15/8 x 13/8
1 1/8 x 3/4	1½ x 1/8	2 x 1	$2 \times 1\frac{1}{2}$
2 x 3/4	13/4 x 7/8	11/8 x 11/16	$2\frac{1}{2} \times 1\frac{1}{2}$
$2\frac{1}{8} \times \frac{3}{4}$	21/8 x 7/8	11/4 x 11/16	3 x 2
1½6 x 13/16	1½ x 15/6	15/16 x 11/16	

REX M-3 BITS

Hardened and Ground

SQUARES

-			
½ x 2½ Long	5/ ₁₆ x 21/ ₂ Long	3/8 x 3 Long	½ x 4 Long

REX M-3-S HIGH SPEED STEEL

Carbon 1.05% Tungsten 5.75% Chromium 4.00% Sulphur 0.15% Vanadium 3.00% Molybdenum 5.00%

Rex M-3-S is the sulphur-bearing counterpart or modification of the regular Rex M-3 High Speed Steel. It has been designed for use where extensive machining is encountered. Under normal conditions, it will provide an improvement in "machinability" of about 25 to 35%, together with an expected increase in tool life.

In addition to these characteristics, Rex M-3-S embodies all the advantages of the standard Rex M-3, which is a special high speed steel that gives exceptional performance under conditions demanding high resistance to abrasion coupled with good impact strength. Broaches, form tools, lathe tools, reamers and cut-off tools are typical applications for Rex M-3-S.

REX M-3-S HIGH SPEED TOOL BITS

Hardened—Unground—Beveled Ends

	-			-	
•	•	 $\mathbf{\Lambda}$	\mathbf{v}	FS	

	1	
3/8 x 3 Long 7/16 x 3 1/2 "	½ x 4 Long 5/8 x 4½ "	34 x 5 Long

REX AA HIGH SPEED STEEL BARS

Carbon 0.73% Tungsten 18.00%

Chromium 4.00%

Vanadium 1.15%

Annealed

NX Temper (0.71% to 0.75%C) unless otherwise specified

Rex AA is the original 18-4-1 high speed steel, having been first introduced in 1904. Melting practice and processing have been improved since that time, but nevertheless it is so properly balanced and the fundamental characteristics so sound, that today it is still the standard, general purpose high speed steel. Rex AA has a wide hardening range. This steel is less susceptible to soft skin during hardening than other types and has good red hardness and toughness values.

ROUNDS

1/4 5/16 3/8 7/16 * 1/2	*11/4 *15/16 *13/8 *17/16 *11/2	$2\frac{3}{8}$ *2 $\frac{1}{2}$ *2 $\frac{5}{8}$ 2 $\frac{3}{4}$ 2 $\frac{13}{16}$	$3\frac{7}{8}$ 4 $4\frac{1}{6}$ $4\frac{1}{8}$ $4\frac{3}{16}$
9/16 * 5/8 11/16 * 3/4 * 13/16	19/16 *15/8 *11/16 *13/4 *17/8	27/8 *3 31/16 *31/8 31/4	41/4 41/2 45/8 43/4 5
* 7/8 15/16 *1 11/16 *11/8 *13/16	$\begin{array}{c} 1^{15} \cancel{16} \\ *2 \\ 2\cancel{1/8} \\ *2^{3} \cancel{16} \\ 2\cancel{1/4} \end{array}$	33/8 31/2 35/8 311/6 *33/4	5½ 5½ 5½ 5½ 6 65%

^{*} These sizes available in OX Temper, 0.63%C.

REX AA HIGH SPEED STEEL BARS - Continued

REX AA	HIGH SPEED	STEEL BARS-	- Continued	
	FLA	ATS		
1/4 x 1/8 1/2 x 1/8 3/4 x 1/8 1 x 1/8 1 1/4 x 1/8	2 x 3/8 21/4 x 3/8 21/2 x 3/8 3 x 3/8 5/8 x 1/2	2 x 3/4 21/4 x 3/4 21/2 x 3/4 3 x 3/4 4 x 3/4	2 x 1 ½ 2½ x 1½ 2½ x 1¼ 3 x 1¼ 3½ x 1¼	
3/8 X 3/16 1/2 X 3/16 3/4 X 3/16 1 X 3/16 1 1/4 X 3/16	34 x 1/2 7/8 x 1/2 1 x 1/2 11/8 x 1/2 11/4 x 1/2	6 x 3/4 1 x 7/8 11/8 x 7/8 11/4 x 7/8 11/2 x 7/8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1 ½ x ¾6 1½ x ¼ 3¼ x ¼ 7/8 x ¼ 1 x ¼	1½ x ½ 1¾ x ½ 2 x ½ 2½ x ½ 2½ x ½ 2½ x ½	15/8 x 7/8 13/4 x 7/8 2 x 7/8 21/4 x 7/8 21/2 x 7/8	2½ x 1½ 2¾ x 1½ 3 x 1½ 3½ x 1½ 4 x 1½	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 x ½ 4 x ½ 4½ x 1½ 6 x 1½ 1 x 9/6	1½ x 1 13% x 1 1½ x 1 1½ x 1 134 x 1 17% x 1	5 x 1½ 6 x 1½ 10 x 1½ 2 x 1¾ 2¼ x 1¾	
3/4 x 5/16 7/8 x 5/16 1 x 5/16 1 1/4 x 5/16 1 1/2 x 5/16	34 x 58 1 x 58 114 x 58 114 x 58 112 x 58 158 x 58	2 x 1 2½ x 1 2½ x 1 3 x 1 4 x 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
13/4 x 5/6 2 x 5/6 1/2 x 3/8 5/8 x 3/8 3/4 x 3/8	134 x 58 2 x 58 214 x 58 21/2 x 58 3 x 5/8	5 x 1 6 x 1 1½6 x 1½6 1½8 x 1½8 2 x 1½8	3 x 2½ 4 x 2½ 4 x 3 125/8 x 1 125/8 x 1¼	
7/8 x 3/8 1 x 3/8 11/8 x 3/8 11/4 x 3/8 11/2 x 3/8 13/4 x 3/8	4 x 5/8 6 x 5/8 1 x 3/4 11/4 x 3/4 11/2 x 3/4 13/4 x 3/4	2½ x 1½ 2¾ x 1½ 3 x 1½ 10 x 1½ 1½ x 1¼ 1¾ x 1¼	125/8 x 11/2 125/8 x 13/4 125/8 x 2 125/8 x 21/2 125/8 x 3	
74 78	SQUARES			
1/4 5/6 3/8 7/6 1/2 9/6	5/8 11/16 3/4 7/8 1	1½ 1¼ 1¾ 1¾ 1½ 1½	2 2½ 3 4 *4¼	

* This size available in PX Temper (0.56% to 0.60%C).

REX AA HIGH SPEED ROUND TOOL BITS

Hardened and Ground

14 4 7		
1/8 x 4 Long	% x 4 Long	5/16 x 6 Long
5/32 x 4 "	5/8 x 4 "	3/8 x 6 "
3/16 x 4 "	3/4 x 4 "	₹ ₁₆ x 6 "
₹ ₃₂ x 4 "	7/8 x 4 "	½ x 6 "
1/4 x 4 "	1 x 4 "	% x 6 "
5/16 x 4 "	½ x 6 "	5/8 x 6 "
3/8 x 4 "	3/16 x 6 "	3/4 x 6 "
7/16 x 4 "	1/4 x 6 "	7/8 x 6 "
½ x 4 "	9 ₃₂ x 6 "	1 x 6 "

REX AA HIGH SPEED TOOL BITS

Hardened—Ends Beveled

SQUARES

		1/8 x 21/2 Long 1/8 x 6 " 3/6 x 21/2 " 1/4 x 21/2 " 5/6 x 21/2 "	3/8 x 3 Long 3/6 x 31/2 " 1/2 x 4 " 9/6 x 4 " 5/8 x 41/2 "	34 x 5 Long 78 x 6 " 1 x 7 " 114 x 9 "
--	--	--	--	---

FLATS

3/4 x 1/8 x 5 Long	3/4 x 1/2 x 5 Long
3/8 x 1/4 x 3 "	1 x ½ x 7 "
1/2 x 1/4 x 4 "	7/8 x 5/8 x 6 "
$\frac{7}{16} \times \frac{5}{16} \times 3\frac{1}{2}$ "	1 x 3/4 x 7 "
½ x 3/8 x 4 "	

DOUBLE BEVELED (CUT OFF TOOLS)

	No. of the latest states and the latest stat
1/2 x 3/32 x 1/16 x 4 1/2 Long	7/8 x 3/16 x 1/8 x 7 Long
5/8 x 3/32 x 1/16 x 5 "	1 x 3/6 x 1/8 x 8 "
3/4 x 1/8 x 1/16 x 6 "	
	1/8 A 716 A 78 A 3
/8 A /8 A 716 A 1	$1 \times \frac{1}{4} \times \frac{3}{16} \times 8$ "
$1 \times \frac{1}{8} \times \frac{1}{16} \times 8$ "	1½ x ¼ x 3/6 x 10 "

REX AA HIGH SPEED TREATED BARS

30 Inch Lengths

NX Temper (0.71% to 0.75%C)

		ROUNDS		
1/4 5/16		3/8 7/16		1/2 5/8
-	'	FLATS		
3/8 x 1/8 1/2 x 1/8 5/8 x 1/8 3/4 x 1/8 7/8 x 1/8 1 x 1/8 3/8 x 3/6	1/2 x 3/16 5/8 x 3/16 3/4 x 3/16 1 x 3/16 3/8 x 1/4 1/2 x 1/4 3/4 x 1/4	1 x 1/4 11/4 x 1/4 1/6 x 5/6 1/2 x 5/6 3/4 x 5/6 1 x 5/6	1/2 x 3/8 5/8 x 3/8 9/4 x 3/8 1 x 3/8 11/4 x 3/8 5/8 x 1/2	34 x 1/2 1 x 1/2 11/2 x 1/2 1 x 5/8 11/4 x 5/8 1 x 3/4
		SQUARES		
3/16 1/4	⁵ / ₁₆ ³ / ₈	7/16 1/2	5/8 3/4	7/8

REX AA HIGH SPEED NAIL DIE STEEL BARS

Annealed

DOUBLE BEVELED (10)			
# 8 15% x 1½ # 10 1½ x 15/6 # 11 1½ x 13/6	# 14 13% x 13/6 # 16 11/8 x 11/16 # 19 15/6 x 9/16	# 21	

REX AAA HIGH SPEED STEEL BARS

Carbon 0.75% Vanadium 1.15% Tungsten 18.00% Molybdenum 0.75% Chromium 4.00% Cobalt 5.00%

Annealed

The 5% cobalt content of Rex AAA produces a high speed steel with greater red hardness, good wear resistance but with slightly less toughness than Rex AA. This steel is particularly recommended for continuous hogging cuts or where the tool must cut dry. Rex AAA is widely used for machining cast iron and non-ferrous alloys. It is generally used for single point tools.

		ROUNDS		
14 3/8 15/32 1/2 9/16	7/8 1 11/8 11/4 15/6	$1\frac{9}{6}$ $1\frac{5}{8}$ $1\frac{3}{4}$ $1\frac{7}{8}$	2 ³ / ₈ 2 ¹ / ₂ / ₂ 2 ⁵ / ₈ 2 ³ / ₄ 3	3½ 35/8 4½ 45/8 5½
5/8 3/4	13/8 11/2	$\frac{2\frac{1}{8}}{2\frac{1}{4}}$	31/8	61/8
		FLATS		
1 x \frac{1}{4} 1\frac{1}{2} x \frac{1}{4} 2 x \frac{1}{4} 2 x \frac{5}{16} 3\frac{3}{4} x \frac{5}{16} 1 x \frac{5}{16} 1\frac{1}{2} x \frac{5}{16} 1\frac{1}{2} x \frac{5}{16} 2 x \frac{5}{16} 3\frac{3}{4} x \frac{3}{8}	1 x 3/8 11/4 x 3/8 11/2 x 3/8 2 x 3/8 21/2 x 3/8 21/2 x 3/8 21/2 x 1/2 1 x 1/2 11/4 x 1/2 11/2 x 1/2 13/4 x 1/2	2 x ½ 2½ x ½ 3 x ½ 1 x 5% 1¼ x 5% 2 x 5% 2½ x 5% 2½ x 5% 1 x 34 1¼ x 34	1½ x ¾ 2 x ¾ 2½ x ¾ 3 x ¾ 1½ x 1 1½ x 1 1½ x 1 1½ x 1 2 x 1 2½ x 1 3 x 1	1½ x 1¼ 2 x 1¼ 2½ x 1¼ 3 x 1¼ 4½ x 1¼ 4½ x 1¼ 2 x 1½ 2 x 1½ 2¼ x 1½ 2½ x 1½ 3½ x 3
		SQUARES		
1/4 5/16 3/8 7/16	1/2 9/16 5/8 3/4		7/8 1 1 1 1/8 1 1/4	$\frac{1\frac{1}{2}}{1\frac{3}{4}}$ $\frac{2}{3\frac{1}{2}}$

SQUARES

3/16 x 21/2 Long	½ x 4 Long	7/8 x 6 Long
74 × 472	72 X 0	1 x 7 "
716 X 272	% X 4 1/2	11/4 x 9 "
%8 X • 3	98 X 0	
7/16 x 31/2 "	3/4 x 5 "	

FLATS

3/8 x 1/4 x 3 Long 1/2 x 1/4 x 4 " 3/4 x 1/4 x 5 " 1 x 1/4 x 7 " 1/6 x 5/6 x 31/2 "	34 x 3/8 x 5 Long 1/8 x 3/8 x 6 " 1 x 3/8 x 7 " 5/8 x 1/2 x 41/2 " 3/4 x 1/2 x 5 "	7/8 x 5/8 x 6 Long 1 x 5/8 x 7 " 11/4 x 5/8 x 9 " 1 x 3/4 x 7 " 11/4 x 3/4 x 9 "
5/8 x 5/6 x 41/2 " 1/2 x 3/8 x 4 " 5/8 x 3/8 x 41/2 "	34 x ½ x 6 " 1 x ½ x 7 " 34 x 58 x 5 "	1½ x ¾ x 12 " 1¼ x 1 x 9 "

DOUBLE BEVELED (CUT-OFF TOOLS)

5/8 x 3/32 x 1/6 x 5 Long	1 x 3/16 x 1/8 x 8 Long
3/4 x 1/8 x 1/6 x 6 "	1½ x ¾ x ½ x 9 "
⁷ / ₈ x ½ x ½ x ₹ "	1½ x ¼ x ¾ x 3/6 x 10 "
1 x ½ x ½ x ½ x 8 "	

REX AAA HIGH SPEED TREATED BARS

30 Inch Lengths

FT10 40	SQUARES	DE NEW
1/4 5/16 3/8	7/6 1/2	5/8 3/4

SQUARES

1/8 x 21/2	Long
3/16 x 21/2	"
1/4 x 21/2	и
5/c x 21/2	"

DOUBLE BEVELED (CUT-OFF BITS)

Hardened and Ground

Long

REX 95 HIGH SPEED STEEL BARS

Carbon 0.80% Vanadium 2.00% Tungsten 14.00% Molybdenum 0.75%

Chromium 4.00% Cobalt 5.25%

Annealed

Rex 95 is a tungsten-vanadium-cobalt high speed steel which was developed to meet the requirements for a steel combining high red hardness, superior abrasion resistance and good toughness. This steel is recommended for severe cutting operations and especially for machining stainless steels. Rex 95 is generally used for single point tools.

FLATS

1	X	3/8
-		10

1 x 5/8

REX 95 HIGH SPEED TOOL BITS

Hardened and Ground — Ends Beveled

SQUARES

½8 x 2½ Long 3/8 x 3 Long 5/8 x 4½ ¾6 x 2½ 7/6 x 3½ 3/4 x 5 ½4 x 2½ 1/2 x 4 7/8 x 6 ½6 x 2½ 1/2 x 4 1/2 x 7	1 / 4	g
---	-------	---

REX 95 HIGH SPEED TOOL BITS

Hardened and Ground—Ends Beveled

FLATS

1/2 X	1/8 x 4	Long	3/4 X	5/16 x 5	Long	1 x	5/8 x 7	Long
5/8 X	5/32 x 41/4	46	1 x	5/16 X 7	44	11/4 x	5/8 x 9	ш
3 8 X	3/16 x 3	"	5/8 X	3/8 x 41/2	"	11/2 x	5/8 x 12	u
1 x	316 x 7	"	1/2 X	38 x 4	64	1 x	3/4 x 7	"
	14 x 13/8	"		3/8 x 5	4	11/4 x	3/4 x 9	"
10		,						
3 8 X	14 x 3	"	1 x	38 x 7	44	1½ x	3/4 x 7	"
,	14 x 4	ш	5/8 X	1/2 x 41/2	"	11/2 x	3/4 x 8	"
	14 x 41/2	"	3/4 X	1/2 x 5	"	11/2 x	3/4 x 12	"
	14 x 5	"	1 x		"		7/8 x 7	ш
	14 x 7	ш		1/2 x 6	"		1 x 7	"
	/4		-/4	/ -				
$1\frac{1}{4}$ x	14 x 9	"	114 x	1/2 x 9	44	11/4 x	1 x 9	"
3 8 X	5/6 x 3	"	11/5 X	1/2 x 7	"	11/3 x		"
716 X	5/6 x 31/2	u	11/2 x		"	11/2 x		ш
1 6 X		46	3/4 X	58 x 5	u		11/4 x 9	ш
5 8 X		"	7/8 X	5/8 x 6	ш	-/-	/ *	
, 8 X	Ale 3. 4 1.5		/8.4	/8 ()				

DOUBLE BEVELED CUT-OFF TOOLS

1	X	3/16	x	1/8	x	8	Long
11/8	X	3/16	X	1/8	X	9	"

1 ½ x ¼ x ¾ x 3/6 x 10 Long 1 3/8 x ¼ x 3/6 x 11 "

REX 95 WHEEL LATHE TOOL INSERTS

Hardened and Ground

ROUNDS

11/2 Round x 21/4 Long

WAILK

HOLLOW TOO

PLASTIC-DIE CASTING

REX 4-V HOT ROLLED ANNEALED BARS

Carbon 1.25% Chromium 4.00% Vanadium 4.00% Tungsten 18.50% Molybdenum 0.75%

Rex 4-V is a special-purpose high speed steel, designed to give maximum performance in cutting extremely abrasive materials or under any conditions demanding high anti-wear properties in the tool. This steel has high resistance to cratering and will run to great advantage under high speeds and light cuts. Broaches, reamers, rifling and form tools are typical applications for Rex 4-V.

i etal	ROL	INDS	
1/2 5/8 3/4 1	1½ 1¼ 1½ 1½ 1¾	17/8 21/8 23/8 23/8 25/8	3½ 35/8 4½
	squ	ARES	
1/4 11/ ₃₂	3/8 7/16	1/2 5/8	3/4

REX 4-V HIGH SPEED TOOL BITS

Hardened and Ground

ROUNDS

1/8 x 4 Long	½ x 4 Long
3/16 x 4 "	½ x 6 "
1/4 x 4 "	5/16 x 6 "
5/16 x 4 "	3/8 x 6 "
3/8 x 4 "	½ x 6 "

SQUARES

3/6 x 21/2 Long 1/4 x 21/2 " 5/6 x 21/2 " 3/8 x 3 "	7/6 x 31/2 Long 1/2 x 4 " 5/8 x 41/2 " 3/4 x 5 "	78 x 6 Long 1 x 7 " 1 1/4 x 9 " 1 1/2 x 10 "
---	--	--

FLATS

	½ x 3/32 x 4½ Long	½ x 1/8 x 41/2 Long	½ x 5/6 x 4	Long
--	--------------------	---------------------	-------------	------

REX SUPERVAN HIGH SPEED STEEL BARS

Carbon 0.85%

Tungsten 18.50%

Chromium 4.00%

Vanadium 2.10%

Molybdenum 0.75%

Annealed

Rex Supervan due to its high vanadium content has remarkable characteristics for maintaining a sharp, keen cutting edge combined with good toughness. It is the standard steel where maximum abrasion resistance is required.

\mathbf{r}	v	v	N	-	-

1/2	11/8	17/8	3
9/16	13/16	2	31/16
5/8	11/4	21/8	31/8
11/16	15/16	21/4	31/2
1/2 9/6 5/8 11/16	$ \begin{array}{c} 1\frac{1}{8} \\ 1\frac{3}{16} \\ 1\frac{1}{4} \\ 1\frac{5}{16} \\ 1\frac{3}{8} \end{array} $	$2\frac{1}{8}$ $2\frac{1}{4}$ $2\frac{5}{16}$	3½6 3½ 3½ 3½ 3¾
13/ ₁₆ 7/ ₈ 15/ ₁₆	17/6 11/2 15/8 13/4 113/6	$2\frac{3}{8}$ $2\frac{1}{2}$ $2\frac{5}{8}$ $2\frac{3}{4}$ $2\frac{7}{8}$	4
7/8	$1\frac{1}{2}$	$2\frac{1}{2}$	4½ 4½ 4½ 4½
15/16	15/8	$2\frac{5}{8}$	41/4
1	13/4	23/4	41/2
1 1/16	113/16	27/8	

FLATS

7/8 x 3/8 13/8 x 3/8 3/4 x 1/2 7/8 x 1/2 1 x 1/2	1½ x ¾ 1½ x ¾ 1¾ x ¾ 1¾ x ¾ 1½ x ¾ 2 x ¾	2½ x ½ 1½ x 1 1¼ x 1 1¼ x 1 1¾ x 1 1½ x 1	15% x 1½ 134 x 1½ 13% x 1¼ 1½ x 1¼ 1½ x 1¼ 134 x 1¼
1½ x ½ 1¼ x ½ 1 x 5/8 1½ x 5/8 1¼ x 5/8	1 x ⁷ / ₈ 1 ¹ / ₈ x ⁷ / ₈ 1 ¹ / ₄ x ⁷ / ₈ 1 ¹ / ₂ x ⁷ / ₈ 1 ¹ / ₅ x ⁷ / ₈	13/4 x 1 2 x 1 21/8 x 1 21/4 x 1 23/8 x 1	2 x 1½ 2½ x 1½ 2½ x 1¼ 3 x 1½ 1¾ x 1½
1½ x 5/8 13⁄4 x 5/8 2 x 5/8 1 x 3⁄4 1½ x 3⁄4	1 3/4 x 7/8 1 7/8 x 7/8 2 x 7/8 2 1/8 x 7/8 2 1/4 x 7/8	2½ x 1 3 x 1 1¼ x 1½ 1½ x 1½	2 x 1½ 2¼ x 1½ 2¾ x 1½ 2¾ x 1½ 3 x 1½

SQUARES

1/2 5/8 3/4	1 1½ 1½	13/8 11/2 15/8	1¾ 2
⁹ / ₈ ³ / ₄	11/8	$\frac{1\frac{7}{2}}{1\frac{5}{8}}$	2

REX SUPERVAN HIGH SPEED TOOL BITS

Hardened — Ends Reveled

S	0	11	۸	D	ES	
~	w	u	~	\mathbf{n}		

14	X	214	Long
3 8			6

REX 440 HIGH SPEED STEEL BARS

Carbon 0.80%

Chrcmium 4.00%

Cobalt 12.00% Tungsten 19.50% Molybdenum 0.60%

Annealed

Rex 440 High Speed Steel is a highly alloyed cobalt steel for use where the ultimate in red hardness is required. To secure this extreme in red hardness, some sacrifice of toughness has been necessary. For this reason all tools should be supported full length and interrupted cuts avoided. Single point tools only are recommended for extremely heavy cuts where high tool temperatures are developed. Due to its high cobalt content protection during hardening is important unless complete grinding is possible.

ROUNDS

	1	

13/4

25 16

REX 440 TOOL BITS

Hardened and Ground

SQUARES

14	X	21/2	Long
5 16	X	21/2	"
3 %	x	3	"

3/4 x 5	Long
7/8 x 6	"
1 x 7	u ·

REX 440 WHEEL LATHE TOOL INSERTS

11/2 Round x 21/4 Long

REX CHAMPION HIGH SPEED STEEL

Carbon 0.73%

Vanadium 2.00%

Chromium 4.00%

Tungsten 14.00%

Rex Champion is particularly adapted to the cutting of heat treated alloy steels, sand castings, hard alloys or gritty materials where toughness and resistance to abrasion are essential.

REX CHAMPION HIGH SPEED TOOL BITS

SQUARES

5/16 x 21/2 Long

38 x 3 Long

1/2 x 4 Long

REX SUPERCUT HIGH SPEED TOOL BITS

Carbon 0.80%

Tungsten 18.50%

Chromium 4.00% Molybdenum 0.60% Cobalt 8.00% Vanadium 2.00%

Hardened-Ground

Rex Supercut is a tungsten-vanadium-cobalt high speed steel properly designed to provide a steel with excellent red hardness and superior abrasion resistance, yet with a good degree of toughness. Rex Supercut is particularly suited for heavy dry cuts and interrupted cuts on heat treated material and castings.

SQUARES

14 x 21/2 " 1/2 x 4 " 5/6 x 21/2 " 5/8 x 41/2 " 3/4 x 5 "	78 x 6 1 x 7 11/4 x 9	Long "
---	-----------------------------	-----------

FLATS

1/2 x 1/4 x 4	Long	1	x 1/2 x	7 Long
1/2 x 3/8 x 4	. "	11/4	x 1/2 x	7 "
3/4 x 3/8 x 5	"	1	x 3/4 x	7 "
3/4 x 1/2 x 5	"	11/4	x 3/4 x	6 "
3/4 x 1/2 x 6		11/2	x 3/4 x	. 6 "

REX TMO BARS ANNEALED

Carbon 0.74% Chromium 3.75% Vanadium 1.15%
Tungsten 1.55% Molybdenum 8.70%

Rex TMO is a molybdenum tungsten type of high speed steel, is tough high speed steel with high cutting efficiency and excellent finishing properties. It is adapted to fast light cuts on soft or medium hard materials. In the lower carbon range Rex TMO is successfully used for hot work applications requiring high abrasion resistance.

ROU	INDS	
.7276%	CARBON	
$ \begin{array}{c} 1^{13}_{16} \\ 2 \\ 2^{3}_{4} \end{array} $	2½ 2¾ 2¾	33/8 33/4
	.7276%	

PLASTIC MOLD AND DIE CASTING DIE STEELS

Index

	Page
Nu-Die V Die Casting Steel	
Flats, Squares, Rounds Square Billets	5, 46
Nu-Die Hollow Tool Steel Bars	46
Nu-Die Drill Rods	
Rounds	115
CSM 2 Tool Steel Flats, Rounds, Squares, Drill Rod, Square Billets	7, 48
CSM 2 Drill Rod	113
Nu-Die Ground and Polished Drill Rod Ground and Polished	48
Formold®	
Rounds, Squares, Flats	49
Rex AA High Speed Round Tool Bits	
Hardened and Ground	49

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

PLASTIC MOLD AND DIE CASTING DIE STEELS

Index

The state of the s	age
Nu-Die V Die Casting Steel	
Flats, Squares, Rounds Square Billets	46
Nu-Die Hollow Tool Steel Bars	46
Nu-Die Drill Rods	
Rounds	115
CSM 2 Tool Steel	
Flats, Rounds, Squares, Drill Rod, Square Billets47	, 48
CSM 2 Drill Rod	113
Nu-Die Ground and Polished Drill Rod Ground and Polished	40
	48
Formold®	
Rounds, Squares, Flats	49
Rex AA High Speed Round Tool Bits	
Hardened and Ground	49

Carbon 0.40%

Silicon 1.05%

Chromium 5.00%

Molybdenum 1.35%

Vanadium 1.10%

NU-DIE V is an outstanding die casting steel for aluminum and magnesium die casting dies. It is also recommended for long run zinc dies, die inserts, slides, sleeves and plungers.

c	Λ	TS	
	~	13	

	FLA	ATS	
1 x 3/4	41/ - 91/	0 1	
$\frac{1}{1\frac{1}{8}} \times \frac{34}{38}$	4½ x 2¼	8 x 1	14 x 5½
1½ x 1¾	5 x 3/4 5 x 1	8 x 1½	14 x 6
$1\frac{1}{2} \times 1\frac{9}{4}$ $1\frac{1}{2} \times \frac{3}{4}$	5 x 1½	8 x 2	16 x 2
2 x 3/4	5 x 1½ 5 x 2	8 x 2½ 8 x 3	16 x 2½
2 X %4	3 X Z	8 x 3	16 x 3
2 x 1	5 x 21/4	8 x 4	16 91/
$\frac{2}{2} \times \frac{11}{2}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 x 5	16 x 3½ 16 x 4
$\frac{21}{4} \times \frac{1}{8}$	5 x 3	10 x 2	
3 x 3/4	5 x 3½	$\begin{array}{cccc} 10 & \text{x 2} \\ 10 & \text{x 2} \\ 1 & \text{y 2} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 x 1	5 x 4	$\begin{array}{ccc} 10 & x & 2 & y_2 \\ 10 & x & 3 \end{array}$	16 x 5 ½
0 1	0 11	10 X 3	10 x 3½
3 x 1½	51/4 x 13/4	10 x 3½	16 x 6
$3 \times 1\frac{3}{4}$	5½ x 2	10 x 4	16 x 7
3 x 2	51/4 x 21/4	10 x 5	18 x 2½
$3 \times 2\frac{1}{2}$	6 x 3/4	12 x 1½	18 x 3
$3 \times 2\frac{3}{4}$	6 x 1	$12 \times 1\frac{1}{2}$	18 x 3½
		12 11/2	10 10/2
$3\frac{1}{4} \times 1\frac{1}{2}$	6 x 1½	12 x 2	18 x 4
$3\frac{1}{4} \times 3$	$6 \times 1\frac{1}{2}$	12 x 2½	18 x 4½
$3\frac{1}{2} \times 1\frac{1}{2}$	6 x 2	12 x 3	18 x 5
$3\frac{7}{8} \times 3\frac{1}{4}$	6 x 2½	12 x 3½	18 x 5½
$4 \times \frac{3}{4}$	6 x 3	12 x 4	18 x 6
4 x 1	6 x 3½	12 x 4½	$18 \times 6\frac{1}{2}$
$4 \times 1\frac{1}{2}$	6 x 4	12 x 5	18 x 7
4 x 2	6 x 5	12 x 5½	18 x 8
4 x 2½	63/ ₁₆ x 23/ ₁₆	12 x 6	20 x 4
4 x 3	7 x 1	$12\frac{1}{2} \times 3\frac{1}{2}$	$20 \times 4\frac{1}{4}$
4 x 3½	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14 x 1½	$20 \times 4\frac{1}{2}$
4½ x 1¾	7 x 2	14 x 2½	20 x 5
4½ x 2	7 x 2½ 7 x 3	14 x 3	$20 \times 5\frac{1}{2}$
$4\frac{1}{4} \times 2\frac{1}{4}$		14 x 3½	20 x 6
$4\frac{1}{4} \times 2\frac{1}{2}$	7 x 3½	14 x 4	20 x 7
417 0			
4½ x 3	7 x 4	14 x 4½	20 x 8
$4\frac{1}{2} \times 1\frac{3}{4}$	7 x 5	14 x 5	25 ⋅x 6
$4\frac{1}{2} \times 2$			

Stocked oversize to allow for finishing of sizes shown.

NU-DIE V DIE CASTING DIE STEEL - Continued

SQUARES					
1½ 1 1¼	$1\frac{1}{2}$ $1\frac{3}{4}$ 2	$ \begin{array}{c c} 2\frac{1}{4} \\ 2\frac{1}{2} \\ 3 \end{array} $	4 5 6	8 10 12	

Stocked oversize to allow for finishing of sizes shown.

		ROUNDS		
1/2 5/8 3/4 7/8 1 11/8 11/4 13/8 11/6 11/2	15/8 13/4 17/8 2 23/16 21/4 23/8 21/2 25/8	23/4 3 31/8 31/4 31/2 35/8 33/4 4 41/8	41/4 41/2 43/4 5 51/8 51/4 51/2 53/4 6	61/4 61/2 63/4 7 71/4 8 81/2 9
	so	QUARE BILLE	TS	
6	8	10	12	14

NU-DIE V HOLLOW TOOL STEEL BARS

All bars have been rough turned and bored free from decarburization with stock allowed to finish to sizes shown.

2½ O.D. x 1 I.D.	4½ O.D. x 2 I.D.	5½ O.D. x 2½ I.D.
2½ " x 1¼ "	4½ " x 2½ "	5½ " x 3 "
3 " x 1½ "	4¾ " x 1¾ "	6 " x 2¼ "
3½ " x 1½ "	5 " x 1½ "	6 " x 3 "
4 " x 1¾ "	5 " x 2 "	6¼ " x 3% "
4 " x 2½ " 4¼ " x 2 " 4¼ " x 2¾ "	5 " x 2½ " 5 " x 3 " 5½ " x 2 "	634 " x 35/8 " 714 " x 33/4 "

CSM 2 is an electric furnace tool steel produced for machine cut plastic molds, zinc die casting dies and die casting holder blocks.

FLATS

			413	
Flat bars are stocked	l to a	hardness o	f 197-228 Brinell	and 290-320 Brinell.
1 x 3/4	7	x 1	12 x 6	20 x 6
1½ x ¾	7	$x 1\frac{1}{2}$	12 x 8	20 x 7
1½ x 1	7	x 2	14 x 2	20 x 8
2 x 3/4	7	$x 2\frac{1}{2}$	14 x 2½	20 x 9
2 x 1	7	x 3	14 x 2½	20 x 10
				44
2 x 1½	7	$x \ 3\frac{1}{2}$	14 x 23/4	20 x 11
3 x 3/4	7	x 4	14 x 3	20 x 12
3 x 1	7	x 5	14 x 3½	20 x 15
3 x 1½	8	x 3/4	14 x 4	22 x 5
3 x 2	8	x 1	14 x 4½	22 x 10
			NAME AND ADDRESS OF TAXABLE PARTY.	
3 x 2½	8	$x 1\frac{1}{4}$	14 x 5	23 x 6
4 x 3/4	8	$x 1\frac{1}{2}$	16 x 2	24 x 4
4 x 1	8	x 2	16 x 2½	24 x 5
4 x 1½	8	$x 2\frac{1}{2}$	16 x 3	24 x 10
4 x 2	8	x 3	16 x 3½	24 x 12
4 x 2½	8	$x \ 3\frac{1}{2}$	16 x 4	25 x 4
4 x 3	8	x 4	16 x 4½	25 x 5
4 x 3½	10	x 3/4	16 x 5	25 x 6
5 x 3/4	10	x 11/4	16 x 5½	25 x 8
5 x 1	10	$x 1\frac{1}{2}$	16 x 6	25 x 9
5 x 1½	10	x 2	16 x 7	25 x 10
5 x 2	10	x 2½	16 x 8	25 x 11
$5 \times 2\frac{1}{2}$	10	x 3	18 x 5/8	25 x 12
5 x 3	10	x 3½	18 x 1	25 x 15
5 x 3½	10	x 4	18 x 1½	30 x 4
F = 4	10	x 41/2	10 - 0	20 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 12		18 x 2 18 x 3	30 x 6
	12	x 5/8		30 x 8
6 x 3/4		x 1	18 x 4	30 x 10
6- x 1	12	x 11/4	18 x 4½	30 x 12
6 x 1½	12	$x 1\frac{1}{2}$	18 x 5	36 x 4
6 x 1½	12	x 2	18 x 6	36 x 6
6 x 2	12	x 21/4	18 x 7	36 x 8
	12			
	12	-0.4		
	12			
6 x 3½	12	x 3	20 x 2	40 x 8
6 x 4	12	x 3½	20 x 3	40 x 10
6 x 5	12	x 4	20 x 4	40 x 12
63/16 x 23/16	12	x 5	20 x 5	10 A 12
0/10 1 2/10	12	. 0	20 1 0	1

Stocked oversize to allow for finishing to sizes shown.

CSM 2 TOOL STEEL BARS-Continued

Roui	ROUNDS Round bars are stocked to a hardness of 197-328 Brinell.					
$\frac{1}{2}$ $\frac{3}{4}$ $\frac{1}{1}$ $\frac{1}{4}$ $\frac{1}{3}$	134 178 2 218	25/8 23/4 3 31/4 31/2	4½ 5 5½ 6	7½ 8 9 10		
1 ½ 1 ½ 1 ½	21/4	3½	6½ 7	11 12		

SQUARES

Square bars are stocked to a hardness of 290-320 Brinell.

1	2	21/2	4	6
11/2	21/16	3	5	8

Stocked oversize to allow for finishing to sizes shown.

GROUND AND POLISHED DRILL ROD

1/16		3/32	1/8		3/16
	ROUND	CORNERE	SQUARE	BILLETS	
4	6	. 8		10	12

NU-DIE GROUND AND POLISHED DRILL ROD

Carbon 0.40% Silicon 1.05% Chromium 5.00% Vanadium 0.35% Molybdenum 1.35%

Nu-Die Drill Rods are widely used in the die casting industry for such applications as cores and various types of pins.

GROUND AND POLISHED

Gauge or Nearest Fractional Dimensions	Size Decimals of an Inch	Gauge or Nearest Fractional Dimensions	Size Decimals of an Inch	Gauge or Nearest Fractional Dimensions	Size Decimals of an Inch	
3/52 1/8 5/32 3/16 7/32	.0937 .125 .1562 .1875 .2187	11/ ₃₂ 3/8 13/ ₃₂ 7/16 15/ ₃₂	.3437 .375 .4062 .4375 .4687	21/ ₃₂ 11/ ₁₆ 23/ ₃₂ 47/ ₆₄ 3/ ₄	.6562 .6875 .7187 .7343 .750	
1/4 17/64 9/32 5/16	.250 .2656 .2812 .3125	1/2 9/16 5/8	.500 .5625 .625	13/16 7/8 1	.8125 .875 1.000	

Molybdenum 0.20%

Formold is an electric furnace alloy cold hubbing mold steel having a core strength equal to that of the AISI 3110 type mold steels, with cold hubbing properties better than AISI 3110 and approaching that of the low carbon iron mold steels.

		ROUNDS		
2 2 ¹ ⁄ ₄	2½ 3	3½ 4	4½ 5	6
,		SQUARES		
1½ 2	21/2 3	$\frac{31}{2}$	5	6 (Billets) 8 (Billets)
	· · · · · ·	FLATS		
2 x 1½ 3 x 1½ 4 x 1½ 2½ x 2 3 x 2	4 x 2 5 x 2 6 x 2 3 x 2 4 x 2	1 2 3 3	5 x 2½ 5 x 2½ 4 x 3 5 x 3 5 x 3	7 x 3 6 x 3½ 5 x 4 6 x 4 7 x 5

REX AA HIGH SPEED ROUND TOOL BITS

Carbon 0.73% Tungsten 18.00% Chromium 4.00% Vanadium 1.15%

Hardened and Ground

1/8 x 4 Long	% x 4 Long	5/6 x 6 Long
5⁄ ₃₂ x 4 "	5/8 x 4 "	3/8 x 6 "
3/16 x 4 "	3/4 x 4 "	7/16 x 6 "
₹%2 x 4 "	7/8 x 4 "	1/2 x 6 "
1/4 x 4 "	1 x 4 "	% x 6 "
5/6 x 4 "	½ x 6 "	5/8 x 6 "
3/8 x 4 "	3/16 x 6 "	3/4 x 6 "
7/16 x 4 "	1/4 x 6 "	7/8 x 6 "
1/2 x 4 "	9 ₃₂ x 6 "	1 x 6 "

AIR HARDENING STEELS

Index

	Page
HYCC® Tool Steel Bars	
Rounds, Flats	51
Squares, Square Billets	52
Airdi® 150 Drill Rods	112
Airdi 150 Tool Steel Bars	
Rounds	52
Flats	53
Squares, Square Billets	54
Airdi 150 Hollow Tool Steel Bars	54
Airkool Die Steel Bars	55
Rounds	55
Flats	55, 56
Squares	56
Square Billets	57
Airkool Drill Rods	
Rounds	105
Airkool Hollow Tool Steel	57
Tool Steel Electrodes	58
Airkool-S Die Steel	
Rounds	59
Flats	59, 60
Squares	60

AIR HARDENING STEELS

Index

HYCC® Tool Steel Bars	Page
Rounds, Flats	
Squares, Square Billets	51
	52
Airdi® 150 Drill Rods	112
Airdi 150 Tool Steel Bars	
Rounds	
Flats	52
Squares, Square Billets	53
	54
Airdi 150 Hollow Tool Steel Bars	54
Airkool Die Steel Bars	55
Rounds Flate	55
Flats	5, 56
Square Rillete	56
Square Billets	57
Airkool Drill Rods	
Rounds	105
Airkool Hollow Tool Steel	-7
	57
Tool Steel Electrodes	58
Airkool-S Die Steel	
Rounds	
Flats 59	59
Squares	
	60

Annealed

HYCC is a high carbon high chromium tool steel particularly adaptable for the making of blanking dies and punches from which long production runs are required. Due to its wear resisting property, this steel is likewise adaptable to high production forming operations. HYCC is an air hardening steel but may also be hardened by quenching in oil.

	1-00	ROUNDS		
1/4 5/6 3/8 1/2 9/6 5/8 3/4 1/8	1½ 1½ 1¾ 1¾ 1½ 1½ 1½ 1½ 1½ 1½ 2	21/8 21/4 21/2 25/8 23/4 3 31/8 31/4	3½ 3¾ 4 4¼ 4½ 4½ 5 5 5¼	5½ 6 6¼ 6½ 7 8 8½ 10
		FLATS	1	,
1/2 x 1/4 1 x 1/4 11/8 x 1/4 11/2 x 1/4 2 x 1/4 2 x 1/4 5 x 1/4 5 x 1/4 3/4 x 3/8 1 x 3/8	1 x 1½ x 2 ½ x 2½ x 2½ x 1 x 1¼ x 1½ x 2 x 2½ x	5/8 11/5/8 2 3/4 21/3/4 3 3/4 4	2 x 1 ¹ / ₄ x 1 ¹ / ₄	7 x 1½ 8 x 1½ 10 x 1½ 2 x 1¾ 2½ x 1¾ 4 x 1¾ 4 x 1¾ 2½ x 2 3 x 2 3½ x 2
1½ x 3/8 2 x 3/8 2½ x 3/8 3 x 3/8 3/4 x ½ 1 x ½ 1¼ x ½ 1½ x ½ 1½ x ½ 1¼ x ½	6 x 1 1/4 x 1 1 1/2 x 1 1 3/4 x 1 2 x 1	$\begin{bmatrix} 2 \\ 21/3 \\ 23/4 \end{bmatrix}$	$\begin{cases} x \ 1\frac{1}{2} \\ x \ 1\frac{1}{2} \end{cases}$	4 x 2 4½ x 2 5 x 2 5½ x 2 6 x 2 8 x 2 10 x 2 3 x 2½ 4 x 2½
2 x ½ 2½ x ½ 3 x ½ 3½ x ½ 4 x ½	3 x 1 3 ½ x 1 4 x 1 5 x 1	31/4	x 1½ ½ x 1½ x 1½ x 1½ x 1½ x 1½	5 x 2½ 6 x 2½ 4 x 3 5 x 3 6 x 3

3/4 x 5/8

6 x 1

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

HYCC TOOL STEEL BARS-Continued

		SQUARES		
1/2 5/8 3/4 1	11/4 11/2 13/4	2 214 21/2	$\frac{3}{3\frac{1}{2}}$	4½4 4½ 6
	sc	QUARE BILLETS	5	
3	4		3	8

AIRDI 150 TOOL STEEL BARS

Carbon 1.50% Chromium 11.50% Molybdenum 0.80% Vanadium 0.90%

Annealed

Airdi 150 is the outstanding high carbon, high chromium tool steel for general use. The most important characteristic of this air hardening die steel is its resistance to abrasion. Size change during hardening is negligible. Airdi 150 may also be hardened in oil from slightly lower hardening temperatures than when it is air cooled. Oil quenching may cause a little size change or distortion.

		ROUNDS		
1/4 5/16 3/8 1/16	13/8 11/2 15/8 13/4 17/8	$\frac{234}{278}$	$4\frac{3}{4}$ 5 $5\frac{1}{2}$ 534	$8\frac{1}{8}$ $8\frac{1}{2}$ $8\frac{3}{4}$
	$\frac{1\frac{3}{4}}{1\frac{7}{8}}$	3½ 3¼ 314	6	9 9½ 9½ 95/8
3/8 11/16 3/4 7/8	$2\frac{1}{8}$ $2\frac{1}{4}$ $2\frac{3}{8}$	$ \begin{array}{r} 3\frac{1}{2} \\ 3\frac{3}{4} \\ 4 \\ 4\frac{1}{4} \\ 4\frac{1}{2} \end{array} $	$6\frac{1}{4}$ $6\frac{1}{2}$ 7 $7\frac{1}{8}$	$ \begin{array}{c} 10 \\ 10 \frac{1}{8} \\ 10 \frac{3}{4} \end{array} $
1 1½ 1½ 1¼	$2\frac{1}{2}$ $2\frac{5}{8}$	4½ 45%	7½ 8	11½ 12

AIRDI 150 TOOL STEEL BARS

Annealed

FLATS

	r.	113	
1/2 x 1/4 3/4 x 1/4 1 x 1/4 1/2 x 1/4 2 x 1/4	1½ x ¾ 1½ x ¾ 1¾ x ¾ 2 x ¾ 2½ x ¾	4 x 1½ 4½ x 1½ 5 x 1½ 6 x 1¼ 8 x 1¼	4½ x 2 5 x 2 5½ x 2 6 x 2 7 x 2
2½ x ¼ 3 x ¼ 4 x ¼ ½ x ¾ 58 x ¾8	3 x 3/4 31/2 x 3/4 4 x 3/4 6 x 3/4 21/4 x 7/8	10 x 1½ 2 x 1½ 2¼ x 1½ 2½ x 1½ 2½ x 1½ 2¾ x 1½	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
3/4 x 3/8 1 x 3/8 11/4 x 3/8 11/2 x 3/8 2 x 3/8	1¼ x 1 1½ x 1 1¾ x 1 2 x 1 2¼ x 1	3 x 1½ 3½ x 1½ 4 x 1½ 4½ x 1½ 5 x 1½	4 x 2½ 5 x 2½ 6 x 2½ 3 x 2½ 3½ x 2½
2½ x 3/8 3 x 3/8 3/4 x ½ 1 x ½ 1¼ x ½	2½ x 1 2¾ x 1 3 x 1 3½ x 1 4 x 1	6 x 1½ 7 x 1½ 8 x 1½ 10 x 1½ 12 x 1½	$\begin{array}{c} 4 & x \ 2\frac{1}{2} \\ 4\frac{1}{2} & x \ 2\frac{1}{2} \\ 5 & x \ 2\frac{1}{2} \\ 6 & x \ 2\frac{1}{2} \\ 8 & x \ 2\frac{1}{2} \end{array}$
1½ x ½ 2 x ½ 2½ x ½ 3 x ½ 4 x ½	4½ x 1 5 x 1 6 x 1 7 x 1 8 x 1	2 x 1 ³ / ₄ 2 ¹ / ₂ x 1 ³ / ₄ 3 x 1 ³ / ₄ 3 ¹ / ₄ x 1 ³ / ₄ 3 ¹ / ₂ x 1 ³ / ₄	3½ x 3 4 x 3 4½ x 3 5 x 3 6 x 3
6 x ½ 3/4 x 5/8 1 x 5/8 1½ x 5/8 1½ x 5/8 1½ x 5/8	10 x 1 1½ x 1¼ 1¾ x 1¼ 2 x 1¼ 2½ ₈ x 1¼	4 x 13/4 41/2 x 13/4 5 x 13/4 6 x 13/4 21/4 x 2	8 x 3 9 x 3 10 x 3 4 x 3½ 4½ x 3½
2 x 5/8 21/4 x 5/8 21/2 x 5/8 3 x 5/8 4 x 5/8	2½ x 1½ 2½ x 1½ 2¾ x 1¼ 2¾ x 1¼ 3 x 1¼ 3¼ x 1¼	23/8 x 2 21/2 x 2 3 x 2 31/2 x 2 4 x 2	5 x 3½ 6 x 3½ 5 x 4 6 x 4 8 x 4
1 x 3/4	3½ x 1¼		

AIRDI 150 TOOL STEEL BARS-Continued

Annealed

	S	QUARES		
1/2 5/8 3/4 7/8	$ \begin{array}{c c} 1\frac{1}{4} \\ 1\frac{1}{2} \\ 1\frac{3}{4} \\ 2 \\ 2\frac{1}{4} \end{array} $		2½ 2¾ 3 3½	4 5 6 8
	SQU	ARE BILL	ETS	
4	6	8	10	12

AIRDI 150 HOLLOW TOOL STEEL BARS

All bars have been rough turned and bored free from decarburization with stock allowed to finish to sizes shown.

							1						
2 ().D. x 1	I.D.	512	0.D	x 212	1.1).		9 (X.		LD.	
3	" x 1	44	6	44	x 13/4	"		9	"	X	5	"	
31/4	" x 11/4	"	6	44	x 3	44		10	44	X	6	"	
31/2	" x 1	"	61/2	"	x 314	"	1	11	"	X	6	"	
$\frac{3\frac{1}{2}}{3\frac{1}{2}}$	" x 2	"	61/2	_ "	x 4	"		11	44	X	7	"	
4	" x 1½	и	7	и	x 21/4	"		12	"	X	5	"	
4	" x 2	"	7	"	x 31/2	44		12	"	X	6	"	
41/4	" x 13/4	44	71/2	"	x 4	ш		13	"	X	6	ш	
41/2	" x 2	44	73/4	"	x 4	"		13	"	X	8	"	
$4\frac{1}{4}$ $4\frac{1}{2}$ 5	" x 2	ш	8	"	x 5	ш		14	и	x	7	"	
5	" x 2½	и	81/4	"	x 3½	"		15	"	x	9	"	
$5\frac{1}{2}$	" x 13/4	ш	81/2	"	x 51/4	ш		16	"	X	10	ш	
							1						

Annealed

Airkool is an air hardening tool and die steel, intermediate in abrasion resistance between the oil hardening and high carbon, high chromium types. It possesses superior toughness characteristics to either of these types, together with excellent non-deforming properties and machines very readily. It may be broached and filed easily. This steel is particularly suited for applications which call for toughness and fairly high abrasion resistance. It is a deep hardening steel.

ROUNDS					
1/4 3/8 1/2 5/8 3/4	$1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$ $1\frac{7}{8}$	$ \begin{array}{c} 2\frac{3}{4} \\ 2\frac{7}{8} \\ 3 \\ 3\frac{1}{4} \\ 3\frac{1}{2} \end{array} $	4 ³ / ₄ 5 5 ¹ / ₄ 5 ¹ / ₂ 6	8 8½ 9 9½ 10	
7/8 1 11/8 11/4 13/8	$2\frac{1}{8}$ $2\frac{1}{4}$ $2\frac{3}{8}$ $2\frac{1}{2}$ $2\frac{5}{8}$	35/8 33/4 4 41/4 41/2	6½ 6½ 7 7½ 7½ 7½	101/s 105/s 11 12	

	FLA	ATS	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 x ½ 8 x ½ 1¼ x 5%	2 x 3/4 21/2 x 3/4 23/4 x 3/4	1½ x 1 1½ x 1 1¾ x 1
2 ¹ / ₄ x ³ / ₈ 3 x ³ / ₈ 4 x ³ / ₈	6 x ½ 8 x ½ 1¼ x 5% 1½ x 5% 2 x 5%	3 x 3/4 3 1/4 x 3/4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccc} 6 & x & \frac{3}{8} \\ \frac{3}{4} & x & \frac{1}{2} \\ 1 & x & \frac{1}{2} \end{array}$	2½ x 5/8 3 x 5/8 4 x 5/8 6 x 5/8	3½ x ¾ 3¾ x ¾ 4 x ¾	3 x 1 3½ x 1 4 x 1
$\frac{1\frac{1}{4} \times \frac{1}{2}}{1\frac{1}{2} \times \frac{1}{2}}$	8 x 5/8	4½ x ¾ 4½ x ¾	4 x 1 4½ x 1 4¾ x 1
2 x ½ 2½ x ½ 3 x ½ 4 x ½	10 x 5/8 1 x 3/4 11/4 x 3/4 11/2 x 3/4 13/4 x 3/4	5 x 34 6 x 34 7 x 34 8 x 34 10 x 34	5 x 1 51/4 x 1 6 x 1 7 x 1
4 x ½ 5 x ½	13/4 x 3/4	8 x 3/4 10 x 3/4	8 x 1

AIRKOOL DIE STEEL BARS-Continued

	FLATS-	-Continued			
10 x 1 12 x 1 1½ x 1¼ 1¾ x 1¼ 2 x 1¼	4½ x 1½ 5 x 1½ 5½ x 1½ 6 x 1½ 6 x 1½ 6½ x 1½	4½ x 2 5 x 2 5½ x 2 6 x 2 6½ x 2	12 x 2½ 3½ x 2¾ 3½ x 3 4 x 3 5 x 3		
2½ x 1¼ 2½ x 1¼ 3 x 1¼ 3½ x 1¼ 3½ x 1¼	7 x 1½ 7½ x 1½ 8 x 1½ 9 x 1½ 10 x 1½	7 x 2 8 x 2 9 x 2 10 x 2 12 x 2	6 x 3 7 x 3 8 x 3 10 x 3 12 x 3		
4 x 1½ 4½ x 1½ 4½ x 1¼ 5 x 1¼ 5 x 1¼ 5½ x 1¼	12 x 1½ 2 x 1¾ 2¼ x 1¾ 2½ x 1¾ 2½ x 1¾ 2¾ x 1¾	2½ x 2¼ 2¾ x 2¼ 3 x 2¼ 4 x 2¼ 5 x 2¼	8 x 3½ 10 x 3½ 4 x 3½ 4½ x 3½ 5 x 3½		
6 x 1 ½ 6½ x 1 ½ 7 x 1 ½ 8 x 1 ½ 9 x 1 ½	3 x 134 3½ x 134 4 x 134 4½ x 134 5 x 134	6 x 2½ 2¾ x 2½ 3 x 2½ 3¼ x 2½ 3½ x 2½ 3½ x 2½	5½ x 3½ 6 x 3½ 7 x 3½ 6¾ x 3¾ 6¾ x 3¾ 6¾ x 3¾		
10 x 1¼ 12 x 1¼ 1¾ x 1½ 2 x 1½ 2½ x 1½	6 x 134 7 x 134 8 x 134 10 x 134 214 x 2	4 x 2½ 4½ x 2½ 5 x 2½ 5½ x 2½ 6 x 2½	4½ x 4 5 x 4 6 x 4 7 x 4 8 x 4		
2½ x 1½ 2¾ x 1½ 3 x 1½ 3½ x 1½ 4 x 1½ 4½ 4¼ x 1½	2½ x 2 2¾ x 2 3 x 2 3½ x 2 4 x 2	6½ x 2½ 7 x 2½ 8 x 2½ 9 x 2½ 10 x 2½	10 x 4 12 x 4 6 x 4½ 6 x 5 6¾ x 5½		
SQUARES					
3/8 1/2 5/8 3/4 7/8	1 1 ¹ / ₄ 1 ¹ / ₂ 1 ³ / ₄ 2	2½ 2½ 3 3¼ 3½ 4	41/4 41/2 5 6 8 10		

SQUARE BILLETS 6 8 10 12

AIRKOOL HOLLOW TOOL STEEL

All bars have been rough turned and bored free from decarburization with stock allowed to finish to sizes shown.

2 O.D. x 1 I.D.	6 " x 2 "	10 " x	6 "
2½ " x 1 "	6½ " x3 "	11 " x	31/2 "
3 " x 1 "	7 " x 3 "		5 "
3 " x 1½ " 3¼ " x 1½ "	7 O.D. x 4 I.D.		7 "
$3\frac{1}{4}$ " x $1\frac{1}{2}$ "	7½ " x 4 "		31/2 "
			0/2
$3\frac{1}{2}$ O.D. x $1\frac{1}{2}$ I.D.	8 " x 4 "	12 O.D. x	6½ I.D.
4 " x 2 "	8 " x 5 "	12 " x	
4 " x 2½ "	8½ " x 4 "	13 " x	
4 " x 2½ " 5 " x 2 " 5 " x 2¾ "	9 " x 3½ "		8 "
5 " x 23/4 "	9 " x 4 "		10 "
		A A	10
5 O.D. x 3 I.D.	9 O.D. x 6 I.D.	15 " x	8 "
$5\frac{1}{2}$ " x $2\frac{1}{2}$ "	10 " x 3½ "	16 " x	10 "
	1		

TOOL STEEL ELECTRODES

AIRKOOL AIR HARDENING ELECTRODES

Airkool Air Hardening Electrodes are designed for welding in a wide variety of applications such as: cold extrusion dies, blanking dies, drawing dies and rings, hot trimming dies, burnishing rolls, etc. The high carbon-high chromium type is seldom used where shock is a prime factor, due to its tendency to fatigue. However, the deposit of Airkool Air Hardening Electrodes does not have this fatigue characteristic and may be used to make repairs to the high chromium type, with greatly improved resistance to fatigue.

Properties of Weld Metal—Deposits of these electrodes are wear resisting, with characteristics of air hardening 5% chromium non-deforming tool steels, air or oil quenched. "As-welded" hardness is approximately 58-60 Rockwell C, and may be annealed, reheat treated or tempered to any degree of hardness.

Heat Treatment—Anneal 1500-1600 F. Harden 1750-1850 F. Quench in air. Temper 300-1000 F. See Airkool data sheet.

Preheating—In making a repair to an oil hardening steel or in composite fabrication, preheat to 400-500 F. In repairing an air hardening steel, preheat to 700-900 F and keep the unit within this range during welding. If unit or die is too large to retain heat, work should be kept on hot plate during welding.

Postheating or tempering—See recommendations in Crucible Tool Steel data sheets.

D	0	11	N	n	C
10	$\mathbf{\circ}$	v		_	

3 32	1/8	532	

Approximate Current Settings— $\frac{3}{32}$ —60-90; $\frac{1}{8}$ —75-125; $\frac{5}{32}$ —100-150. Identification—End color—yellow.

AIRKOOL-S DIE STEEL

Carbon 1.00%

Vanadium 0.40%

Chromium 5.25%

Manganese 0.40%

Sulphur 0.15%

Molybdenum 1.15%

Airkool-S is the sulphur-bearing counterpart or modification of the regular Airkool Die Steel. It has been designed for use where extensive machining is encountered. Under normal conditions, it will provide an improvement in "machinability" of about 25 to 35%, together with an expected increase in tool life. In addition to these characteristics Airkool-S embodies all the advantages of the standard Airkool, which is an air hardening tool and die steel intermediate in abrasion resistance between the oil hardening and high carbon high chromium types. It possesses superior toughness characteristics to either of these types, together with excellent non-deforming properties and machines very readily. It may be broached and filed easily. This steel is particularly suited for applications which call for toughness and fairly high abrasive resistance. It is a deep hardening steel.

Hot Rolled Annealed

ROUNDS					
14 3/8 1/2 5/8 3/4	11/8 11/4 13/8 11/2 15/8 13/4 13/4	2 2) \{ 2) \{ 2) \{ 2\} \{ 2\} \{ 2\} \{ 2\} \{ 2\} \{ 2\} \{ 3\} \{ 2\} \{ 3\} \{ 3\} \{ 2\} \{ 3\} \{\} \{ 3\} \{\} \{\} \\$ \\$ \\$ \\$ \\$ \\$ \\$ \\$ \\$ \\$ \\$ \\$ \\$	3 3½ 3½ 3¾ 4 4	5 5½ 6 7 9	

FLATS

1½ x 3/8	3 x ½	1½ x ¾	5 x 1
2 x 3/8	4 x ½	1¾ x ¾	6 x 1
3 x 3/8	6 x ½	2 x ¾	8 x 1
4 x 3/8	1¼ x 5/8	4 x ¾	1½ x 1¼
6 x 3/8	1½ x 5/8	1¾ x 1	2 x 1¼
34 x 1/2	2 x 5/8	2 x 1	2½ x 1¼
1 x 1/2	21/2 x 5/8	2½ x 1	3 x 1¼
11/2 x 1/2	3 x 5/8	3 x 1	4 x 1¼
2 x 1/2	1 x 3/4	3½ x 1	7 x 1¼
21/2 x 1/2	11/4 x 3/4	4 x 1	8 x 1¼

FLATS—Continued

5

6

x 11/2

x 1½ x 1½ 2½ x 2 3 x 2

3½ x 2½ 4½ x 2½

3½ x 3 6 x 3 x 3 7 8 x 3 x 3 10

> x 3½ x 4 4

SQUARES

1/2 5/6	3/4 7/6	111/	1½	3
78	/8	1 74	472	4

TOOL STEELS HIGH SPEED

CAST PRODUCTS SPAULDING

PLASTIC-DIE CASTING

AIR HARDENING

HOT WORK STEELS

Index

Pa	ge
Nu-Die Hot Work Steel Bars Rounds, Squares, Hexagons	61
Peerless A Hot Work Steel Bars Rounds, Flats, Squares	62
Atha Pneu Tool Steel Bars Rounds, Flats, Squares, Octagons	63
Chro-Mow® Hot Work Steel Bars Rounds, Squares, Flats	64
Chro-Mow Forgings	65
Chro-Mow Hot Work Electrodes Rounds	65
Halcomb 218 Hot Work Steel Bars	66
Halvan® Tool Steel Rounds	67
Halvan Steel Bars Flats, Squares	67
Nu-Die V Die Casting Die Steel Bars Rounds, Flats, Squares	69
Nu-Die V Hollow Tool Steel Bars	69
Crusca 12-B Tool Steel Bars Rounds, Square Billets	70
CSM 2 Tool Steel Bars Rounds, Flats, Squares, Square Billets	72
La Belle HT Tool Steel Rounds, Flats, Squares	72

HOT WORK STEELS

Index

	Page
Nu-Die Hot Work Steel Bars Rounds, Squares, Hexagons	. 61
Peerless A Hot Work Steel Bars Rounds, Flats, Squares	. 62
Atha Pneu Tool Steel Bars Rounds, Flats, Squares, Octagons	. 63
Chro-Mow® Hot Work Steel Bars Rounds, Squares, Flats	. 64
Chro-Mow Forgings	64-65
Chro-Mow Hot Work Electrodes Rounds	. 65
Halcomb 218 Hot Work Steel Bars Rounds, Squares, Hexagons	. 66
Halvan® Tool Steel Rounds	. 67
Halvan Steel Bars Flats, Squares	. 67
Nu-Die V Die Casting Die Steel Bars Rounds, Flats, Squares	8, 69
Nu-Die V Hollow Tool Steel Bars	. 69
Crusca 12-B Tool Steel Bars Rounds, Square Billets	. 70
CSM 2 Tool Steel Bars Rounds, Flats, Squares, Square Billets	1, 72
La Belle HT Tool Steel Rounds, Flats, Squares.	

HOT WORK STEELS

In its constant efforts to anticipate the needs of industry, the Crucible Steel Company of America early recognized the continual improvements being made in the methods of hot forming and shaping metals. New forging machines with greater power and speed were introduced to increase production. This increase in available power permitted the successful forging, shaping, and heading of higher carbon and alloy steels at lower temperatures. As such changes took place, Crucible was ready with a hot work steel to meet these requirements. Many times red hardness became less desirable than extreme toughness. Other times, resistance to abrasive wear was preferred to either toughness or red hardness. The applications of hot work steel are so diversified that no one or two types are suitable for all requirements. Crucible therefore has developed and now stocks several hot work steels, each best suited for a particular type of service.

NU-DIE HOT WORK STEEL BARS

Carbon 0.40%

Silicon 1.00%

Chromium 5.00%

Molybdenum 1.35%

Annealed Vanadium 0.35%

Nu-Die is a tough hot work steel suitable for tools requiring a higher degree of toughness at room temperatures (and at moderate elevated temperatures) than obtainable with the tungsten types of hot work steels. It is particularly suitable for all hot work operations on which drastic coolants are used. Nu-Die is very resistant to heat checking when water cooled in operation.

Hot Rolled

rior kolled						
		ROUNDS				
3/4 1 11/4 11/2 13/4 2	2!4 23/8 2!/2 23/4 3 3!/4	$ \begin{array}{r} 3\frac{1}{2} \\ 3\frac{3}{4} \\ 4 \\ 4\frac{1}{2} \\ 4\frac{3}{4} \\ 5 \end{array} $	5½ 5½ 5¾ 6 6¼	6½ 6¾ 7 8 9		
	SQUARES					
1½6 1½8	$\frac{1\frac{3}{16}}{1\frac{3}{8}}$	1 ⁵ / ₈ 1 ⁷ / ₈	$\frac{2}{2\frac{1}{4}}$	4		
HEXAGONS						
13/16 7/8 15/16	1 1½6 1¾6	$1\frac{5}{16}$ $1\frac{1}{2}$ $1\frac{11}{16}$	$\frac{1\frac{7}{8}}{2\frac{1}{8}}$	2 ³ / ₈ 2 ¹ / ₂		

PEERLESS A HOT WORK STEEL BARS

Carbon 0.28% Chromium 3.25% Tungsten 9.00% Vanadium 0.25%

Annealed

Peerless A is a low carbon, medium tungsten, hot work steel which possesses excellent red hardness properties. This steel is successfully used in those applications where the tool operates at a dull red heat and has red hardness properties similar to those of high speed steel but of a lower order. It works best in those cases where the tool varies in temperature between 600F and 1100F. Usually tempered between 1100F and 1250F, Peerless A maintains the hardness developed by tempering during normal service. This grade is particularly adaptable for such applications as gripper dies, punches and forging insert dies.

		ROUND	S	
1/2 9/16 5/8 11/16 3/4	1 1½ 1½ 1¼ 15/6 13/8	15/8 111/6 13/4 113/6 17/8	2½ 2¾ 2¾ 2½ 25% 2¾	3½ 3½ 3¾ 4 4 4½
13 _{/16} 7/8 15/16	1½ 1½ 1½ 196	2 2½ FLATS	27/8	5 6
2½ x 1¼	2½ x	2	2¾ x 2¼	3½ x 2¼
-		SQUARE	S	
2	3	3½	4	6 (Billets)

ATHA PNEU TOOL STEEL BARS

Carbon 0.50% Chromium 1.25% Tungsten 2.75% Vanadium 0.20%

Atha Pneu has been used with great success for many applications involving severe pounding at a fairly low temperature and is truly a shock resisting steel. Its transverse strength under rapid shock is excellent. It does not possess the very high resistance to heat checking found in tungsten hot work steels. This steel also has been used with great success for shear blades and various types of header and swaging dies.

Annealed

		ROUNDS		
1.4 3.8 7.16 1.2 9.16 5.8	3/4 7/8 1 11/8 11/4 13/8	$1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$ 2 $2\frac{1}{4}$ $2\frac{1}{2}$	2 ⁵ / ₈ 2 ³ / ₄ 3 3 ¹ / ₄ 3 ¹ / ₂	4 4½ 5 6 6¼
		FLATS		
1 x 1/4 3 x 1/4 2 x 1/2 31/2 x 11/4	4 x 1 5 x 1 2 x 1 5 x 1	$\frac{1}{2}$ 3\frac{1}{2}	x 13/4 x 2 5 x 2	4 x 2 5 x 2 5 x 4
		SQUARES	-	
1	2	23/4	3	4
		OCTAGON	S	
3/8 1/2	5/8 3/4		7/8	1½ 1¼
/ 4	/4	2 3 749	8.7	-/4

CHRO-MOW HOT WORK STEEL BARS

Carbon 0.30% Molybdenum 1.35% Silicon 1.00% Tungsten 1.25%

Chromium 5.00% Vanadium 0.25%

Annealed

Chro-Mow is a good tough hot work steel and will harden from a relatively low temperature in air. Chro-Mow possesses excellent resistance to heat checking. As it has a slight secondary hardness when tempered at 1000F, it is resistant to softening at temperatures below 1000F.

		ROUNDS		
3/4 7/8 1 11/4	$2\frac{3}{8}$ $2\frac{1}{2}$ $2\frac{5}{8}$ $2\frac{3}{4}$	35/8 33/4 4 41/8	4 ¹³ / ₁₆ 5 5 ¹ / ₄ 5 ¹ / ₂	$ \begin{array}{c c} 63/4 \\ 7 \\ 71/2 \\ 8 \end{array} $
1½ 1¾ 2 2¼	$ \begin{array}{c} 3 \\ 3 \frac{1}{8} \\ 3 \frac{1}{4} \\ 3 \frac{1}{2} \end{array} $	41/4 43/8 41/2 43/4	6 6½ 6½	$ \begin{array}{c} 8\frac{1}{2} \\ 9 \\ 12\frac{1}{2} \end{array} $
		SQUARES		
3 4 4 (Billet: 4½	s)	4 1/4 4 3/4 5 1/4 6 (Billets)	10 (Billets) Billets) Billets) Billets)
		FLATS	-	
3 x 15/8 4 x 2	5½ x 6½ x	-/4	x 45/8 x 43/4	7 x 5

CHRO-MOW FORGINGS ANNEALED AND SAND BLASTED

All Sizes to Finish

4 x 3/4 6 x 23/4 6 x 3/4 6 x 31/4 6 x 1 61/2 x 1 6 x 11/4 61/2 x 21/2 6 x 11/2 7 x 1	7 x 2½ 73% x 1 8 x 1 8 x 3½ 9 x 2¾	10 x 1¼ 10 x 3 12 x 3 13 x 3 15 x 3
--	--	-------------------------------------

CHRO-MOW FORGINGS ANNEALED AND SAND BLASTED—Continued

4 x 1	8¾ x 2	10 x 5	13 x 2½
434 x 238	8.842 x 1.188	10 x 55/8	13 x 2½
6 x 2½	8.842 x 2.437	103/8 x 4	13 x 3
6 x 4	9½ x 4½	103/8 x 47/6	13 x 4
6½ x 3	10 x 1	103/8 x 57/6	13 x 5
7 x 3½ 8 x 2 8 x 25% 8 x 3 8½ x 2	10 x 13/8 10 x 2 10 x 21/4 10 x 25/8 10 x 4	103/8 x 63/8 103/8 x 73/4 111//6 x 45/8 1215/6 x 45/8 13 x 2	1334 x 138 1334 x 214 1334 x 558 17156 x 7

CHRO-MOW HOT WORK ELECTRODES

Chro-Mow Hot Work Electrodes are used to weld many types of hot work steels. They are recommended for welding damaged or worn hot working punches, headers, trimmers, etc., used in hot working of metals and plastics. They may also be used for composite fabrication of units requiring hot work steel using nickel-chromium steel base.

Properties of Weld Metals—Excellent but work air hardening characteristics-abrasive resistant and exceptionally tough. Deposits withstand alternate heating and cooling. "As-welded" hardness is approximately 52-55 Rockwell C., can be annealed or reheat-treated, drawn or tempered.

Heat Treatment—Anneal 1500-1600 F. Harden 1750-1850 F. Quench in oil. Harden 1800-1900 F. Quench in air. Temper 900-1200 F. Cool in still air. See Chro-Mow data sheet.

Procedure—For composite dies preheat to 500 F. To repair existing die units, preheat to 900 F and do not drop below 700 F during welding.

Postheating or Tempering—Temper to desired hardness or toughness to withstand condition to which unit will be subjected.

ROUNDS					
3 52	1/8		5/32		

 $\label{eq:approximate Current Setting. $\frac{3}{2}$—60-90; $\frac{1}{8}$—75-125; $\frac{5}{22}$—100-150. $Identification$$—End color—green.$

WATER

HOLLOW TOOL

RILL RODS

STAINLESS

CONTOUR

HALCOMB 218 HOT WORK STEEL BARS

Carbon 0.40%

Silicon 1.00%

Chromium 5.00%

Molybdenum 1.35%

Vanadium 0.35%

Annealed

Halcomb 218 is a tough hot work steel suitable for tools requiring a higher degree of toughness at room temperatures (and at modern elevated temperatures) than obtainable with the tungsten types of hot work steels. It is particularly suitable for all hot work operations on which drastic coolants are used. Halcomb 218 is very resistant to heat checking when water cooled in operation.

		ROUNDS		
3/4 1 1 1/4 1 1/5 1 3/4 2	2¼ 23% 2½ 2¾ 3 3 3¼	3½ 3¾ 4 4½ 4¾ 5	5½ 5½ 5¾ 6 6¼	6½ 6¾ 7 8 9
	·	SQUARES		
1½6 1½	1 ³ / ₆ 1 ³ / ₈	1 ⁵ / ₈ 1 ⁷ / ₈	2 2¼	4
		HEXAGONS		`
13/16 7/8 15/16	1 1 ¹ / ₁₆ 1 ³ / ₁₆	$1\frac{5}{16}$ $1\frac{1}{2}$ $1\frac{11}{16}$	17/8 21/8	2 ³ / ₈ 2 ¹ / ₂

Halvan Tool Steel is a tough alloy steel and is used for tools requiring resistance to shock and vibration. It is used for both cold and hot work applications.

Annealed

ROUNDS					
1/4 5/16 3/8 7/16 1/2	1½ 1¼ 1¾ 1¾ 1½ 1½	$2\frac{1}{4}$ $2\frac{3}{8}$ $2\frac{1}{2}$ $2\frac{5}{8}$ $2\frac{3}{4}$	3½ 3¾ 4 4½ 4½ 4¼	5½ 6 6½ 6¾ 7	
5/8 3/4 7/8	134 178 2 21/8	27/8 3 31/4	$4\frac{1}{2}$ $4\frac{3}{4}$ 5	9 10 12	

HALVAN STEEL BARS

Annealed

-	_	-		
F	Ł	Λ	т	G
		m		-

1 x ½ 1½ x ½ 2 x ½ 2½ x ½ 2½ x ½ 1 x ¾	2 x 1 2½ x 1 2½ x 1 3 x 1 3½ x 1	6 x 1¼ 2 x 1½ 2½ x 1½ 3 x 1½ 3½ x 1½	$\begin{array}{cccc} 6 & \text{x 2} \\ 8 & \text{x 2} \\ 3 & \text{x 2} \frac{1}{2} \\ 3\frac{1}{2} & \text{x 2} \frac{1}{2} \\ 4 & \text{x 2} \frac{1}{2} \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccccc} 4 & x & 1 & 1 & 2 \\ 4 & 1 & 2 & x & 1 & 1 & 2 \\ 5 & x & 1 & 1 & 2 & 2 \\ 6 & x & 1 & 1 & 2 & 2 & 2 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
8 x 34 114 x 78 114 x 1 112 x 1 134 x 1	2½ x 1¼ 3 x 1¼ 3½ x 1¼ 4 x 1¼ 5 x 1¼	3 x 2 3½ x 2 4 x 2 5 x 2	6 x 3 8 x 3 6 x 3½ 6 x 4

SQUARES

3/4 1 11/4 11/6	1 ³ / ₄ 2 2 ¹ / ₄ 2 ¹ / ₆	$ \begin{array}{c} 2\frac{3}{4} \\ 3 \\ 3\frac{1}{2} \\ 4 \end{array} $	4½ 5 6 6 (Billets)	8 8 (Billets) 10
1 7/2	2/2	4	6 (Billets)	

NU-DIE V DIE CASTING DIE STEEL BARS

Carbon 0.40% Molybdenum 1.35% Silicon 1.00%

Chromium 5.00% Vanadium 1.10%

Annealed

Nu-Die V is an outstanding die casting die steel, particularly for aluminum and magnesium dies. It is also economical to use Nu-Die V for long run zinc dies or die inserts.

The air hardening characteristics of Nu-Die V permit safe hardening with a minimum amount of distortion. In the annealed condition it can be readily machined and takes an excellent polish. Nu-Die V may be nitrided. A high core strength obtained after heat treatment is important for withstanding high casting pressures. Its exceptional resistance to heat checking and to the erosive action of molten aluminum alloys and magnesium alloys insures long service.

		ROUNDS		
1/2 5/8 3/4 7/8	15/8 13/4 17/8 2 23/16	23/4 3 31/8 31/4 31/2	4½ 4½ 4½ 4¾ 5 5½	6½ 6½ 6¾ 7 71¼
1½ 1¼ 1¾ 13/8 17/6 1½	$2\frac{1}{4}$ $2\frac{3}{8}$ $2\frac{1}{2}$ $2\frac{5}{8}$	35/8 33/4 4 41/8	5½ 5½ 5¾ 6	8 8½ 9 10

FLATS

11/8 x 3/8 1 x 3/4 11/2 x 3/4 2 x 3/4 3 x 3/4 4 x 3/4 5 x 3/4 6 x 3/4 11/2 x 1	8 x 1 6 x 1½ 12 x 1¼ 2¼ x 1¾ 2¼ x 1¾ 2 x 1½ 3 x 1½ 3¼ x 1½ 3½ x 1½ 4 x 1½ 5 x 1½	18 x 1½ 3 x 1¾ 4¼ x 1¾ 4½ x 1¾ 5¼ x 1¾ 5¼ x 1¾ 3 x 2 4 x 2 4¼ x 2 4½ x 2 5 x 2	12 x 2 16 x 2 6 ³ / ₁₆ x 2 ³ / ₁₆ 4 ¹ / ₄ x 2 ¹ / ₄ 4 ¹ / ₂ x 2 ¹ / ₄ 5 x 2 ¹ / ₄ 5 ¹ / ₄ x 2 ¹ / ₄ 3 x 2 ¹ / ₂ 4 x 2 ¹ / ₂ 4 y x 2 ¹ / ₂
3 x 1 4 x 1 5 x 1 6 x 1 7 x 1	6 x 1½ 7 x 1½ 8 x 1½ 12 x 1½ 14 x 1½	5½ x 2 6 x 2 7 x 2 8 x 2 10 x 2	$ \begin{array}{cccc} 5 & x & 2\frac{1}{2} \\ 6 & x & 2\frac{1}{2} \\ 7 & x & 2\frac{1}{2} \\ 8 & x & 2\frac{1}{2} \\ 10 & x & 2\frac{1}{2} \end{array} $

NU-DIE V DIE CASTING DIE STEEL BARS*-Continued

FLATS—Continued

12 x 2½ 14 x 2½	4 x 3½ 5 x 3½	13 x 4 20 x 4	12 x 5½ 14 x 5½
16 x $2\frac{1}{2}$	6 x 3½	20 x 41/4	$16 \times 5\frac{1}{2}$
18 x $2\frac{1}{2}$	7 x 3½	$12 \times 4\frac{1}{2}$	18 x 5½
$3 \times 2\frac{3}{4}$	10 x 3½	14 x 4½	$20 \times 5\frac{1}{2}$
3¼ x 3	12 x 3½	16 x 4½	12 x 6
4 x 3	$12\frac{1}{2} \times 3\frac{1}{2}$	18 x 4½	T4 x 6
$4\frac{1}{4} \times 3$	14 x 3½	$20 \times 4\frac{1}{2}$	16 x 6
5 x 3	16 x 3½	6 x 5	18 x 6
6 x 3	18 x 3½	7 x 5	20 x 6
7 x 3	5 x 4	8 x 5	25 x 6
8 x 3	6 x 4	10 x 5	18 x 6½
10 x 3	7 x 4	12 x 5	16 x 7

14

16

18

20

x 5

x 5

x 5

x 5

18

20

18

20

14 (Billets)

x 7

x 7

x 7

x 8

x 8

x 4

x 4

x 4

x 4

8 x 4

10

12

14

16

4

*All flat bars supplied to finish to size shown.

12

14

16

18

x 3

x 3

x 3

x 3

35/8 x 31/4

11/4 11/2

13/4

300	JAKES	
$\begin{array}{c} 2 \\ 2\frac{1}{4} \\ 2\frac{1}{2} \\ 3 \end{array}$	5 6 (Billets) 6 8 (Billets)	10 (Billets) 10 12 (Billets)

8

NU-DIE V HOLLOW TOOL STEEL BARS

COLLA DEC*

All bars have been rough turned and bored free from decarburization with stock allowed to finish to sizes shown.

2½ 0.D. x 1 I.D. 2½ " x 1½ " 3 " x 1½ " 3¼ " x 1½ " 4 " x 1¾ "	$4\frac{1}{2}$ O.D. \times 2 I.D. $4\frac{1}{2}$ " \times $2\frac{1}{2}$ " $4\frac{3}{4}$ " \times $1\frac{3}{4}$ " \times $1\frac{3}{4}$ " \times $1\frac{1}{2}$ " \times	5½ O.D. x 2½ I.D. 5½ " x 3 " 6 " x 2¼ " 6 " x 3 " 6¼ " x 3 "
4 " x 2½ " 4¼ " x 2 " 4¼ " x 23/8 "	5 " x 2½ " 5 " x 3 " 5½ " x 2 "	6¾ " x 3½ " 7¼ " x 3¾ " -

^{*} All squares supplied to finish to size shown.

CRUSCA 12-B TOOL STEEL BARS

Carbon 0.10%

Manganese 0.50% Chromium 1.60% Nickel 3.50%

Annealed

		ROUNDS		
$1\frac{3}{8}$ $1\frac{1}{2}$ $1\frac{3}{4}$ 2 $2\frac{1}{4}$	23/4 3 31/4 31/2 33/4	4 4½ 4¾ 5 5½	53/4 6 61/4 61/2 7	7½ 8
	S	QUARE BILLE	TS	
4	6	8	10	14

CSM-2 TOOL STEEL BARS

Carbon 0.30%

Manganese 0.75%

Silicon 0.50%

Chromium 0.80% Molybdenum 0.25%

Annealed

CSM 2 is an electric furnace tool steel made to meet the exacting requirements for zinc base die casting dies as well as plastic mold dies.

ROUNDS

Heat Treated to Brinell 187-228

		died to briller	1	
1/2	*13/4	*23/4	*416	71/2
1/2 3/4	17/8	*3	*5	7½ *8
*1	*2	*31/4	*51/2	*9
*1½ 1¾	21/8	*31/2	*6	10
13/8	*13/4 17/8 *2 21/8 *21/4	*23/4 *3 *31/4 *31/2 33/4	*41½ *5 *5½ *6 *6½	11
*11/6	*21/2	*4	*7	12
*1½ *1½	*2½ 25/8			12

^{*} Indicated sizes available in Brinell 197-228 or Brinell 290-320.

CSM-2 TOOL STEEL BARS—Continued

ALL FLAT BARS SUPPLIED TO FINISH TO SIZE SHOWN

FLATS Heat Treated to Brinell 197-228 or Brinell 290-320

Heat Ire	ated to Brinell 197	-228 or Brineil	290-320
12 x 5/8	7 x 2	10 x 3½	16 x 6
18 x 5/8	8 x 2	12 x 3½	$17\frac{1}{2} \times 6$
	10 x 2	14 x 3½	18 x 6
	10 x 2 12 x 2	16 x 3½	20 x 6
1½ x ¾	12 x 2 14 x 2	5 x 4	23 x 6
2 x 3/4	14 X Z	5 X 4	20 X 0
3 x 3/4	16 x 2	6 x 4	25 x 6
4 x 3/4	20 x 2	7 x 4	30 x 6
5 x 3/4	63/16 x 23/16	8 x 4	36 x 6
6 x 3/4	12 x 21/4	10 x 4	40 x 6
8 x 3/4	14 x 2½	12 x 4	16 x 7
10 x 3/4	22 x 21/4	14 x 4	18 x 7
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 x 4	20 x 7
1 ⁴ / ₂ x 1	3 X 2/2	16½ x 4	12 x 8
2 x 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18 x 4	16 x 8
3 x 1		20 x 4	18 x 8
4 x 1	6 x 2½	20 X 4	16 7.6
5 x 1	7 x 2½	24 x 4	20 x 8
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 x 4	25 x 8
6 x 1	$10 \times 2\frac{1}{2}$	30 x 4	30 x 8
7 x 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36 x 4	36 x 8
8 x 1		40 x 4	40 x 8
12 x 1	14 x 2½	40 X 4	40 x 0
18 x 1	16 x 2½	16 x 4½	20 x 9
6 x 1½	12 x 23/4	10 x 4½	25 x 9
8 x 1½	14 x 23/4	14 x 4½	20 x 10
10 x 11/4	4 x 3	16 x 4½	22 x 10
12 x 1 1/4	5 x 3	18 x 4½	24 x 10
12 X 1/4	0 10		
$2 \times 1\frac{1}{2}$	6 x 3	20 x 4½	25 x 10
$3 \times 1\frac{1}{2}$	7 x 3	22 x 4½	30 x 10
$4 \times 1\frac{1}{2}$	8 x 3	6 x 5	40 x 10
$5 \times 1\frac{1}{2}$	10 x 3	7 x 5	20 x 11
6 x 1½	12 x 3	12 x 5	25 x 11
7 x 1½	- 14 x 3	14 x 5	20 x 12
$8 \times 1\frac{1}{2}$	16 x 3	16 x 5	24 x 12
$10 \times 1\frac{1}{2}$	18 x 3	18 x 5	25 x 12
$10 \times 1\frac{7}{2}$ $12 \times 1\frac{1}{2}$	20 x 3	20 x 5	30 x 12
12 X 1 /2	4 x 3½	22 x 5	40 x 12
18 $\times 1\frac{1}{2}$	4 1 3/2	22 10	10 12
20 x 1½	5 x 3½	23 x 5	20 x 15
3 x 2	5½ x 3½	24 x 5	25 x 15
4 x 2	6 x 3½	25 x 5	
5 x 2	7 x 3½	16 x 5½	
6 x 2	8 x 3½	12 x 6	
0 2	1.0/2		

CSM-2 TOOL STEEL BARS - Continued

ALL SQUARE BARS SUPPLIED TO FINISH TO SIZE SHOWN

Heat Treated to Brinell 290-320

C	0	ш	A	D	•
2	u	u	A	ĸ	3

	T .		1	1
1	2	$\frac{21/2}{3}$	4*	6*
1½	2½6		5	8

^{*} These sizes available Brinell 197-228 or Brinell 290-320.

Annealed

SQUARE BILLETS

4	6	8	10	12

LA BELLE HT TOOL STEEL

Carbon 0.43% Chromium 1.35% Manganese 1.35% Vanadium 0.30% Silicon 2.25% Molybdenum 0.40%

LaBelle HT is a deep hardening alloy tool steel designed to have excellent toughness properties at relatively high hardness levels. This steel performs well in applications where shock and impact are major factors such as for heavy duty shearing, punching and cold striking dies.

Annealed

ROUNDS

1/4	5/8	1½	$\frac{134}{2}$ $\frac{21}{2}$	3
3/8	3/4	1¼		3½
1/2	1	1½		4

FLATS

1 x 3/8	1 x 3/4	13/4 x 1	$3 \times 1\frac{1}{4}$
$1\frac{1}{2} \times \frac{3}{8}$	1½ x ¾	$2\frac{1}{4} \times 1$	$3\frac{1}{2} \times 1\frac{1}{4}$
$1 \times \frac{1}{2}$	2 x 3/4	23/4 x 1	$4 \times 1\frac{1}{4}$
$1\frac{1}{2} \times \frac{1}{2}$	2½ x ¾	$3\frac{1}{4} \times 1$	$4\frac{1}{2} \times 1\frac{1}{4}$
1 1/4 x 5/8	3 x 3/4	3¾ x 1	$5 \times 1\frac{1}{4}$
13/4 x 5/8	4 x 3/4	$4\frac{1}{2} \times 1$	$5\frac{1}{2} \times 1\frac{1}{4}$

SQUARES

1/2	5/8	3/4	1	11/4	11/2

DIL HARDENING

WATER

HOLLOW TOOL

OIL HARDENING TOOL STEELS

Index

			Po	age
Keto	s® Oil Hardening Tool Steel Bars			Ŭ
	Rounds, Flats, Squares, Square Billets	73,	74,	75
Keto	s Hollow Tool Steel Bars			76
Keto	s Oil Hardening Tool Steel Sheets			76
Keto	s Oil Hardening Electrodes Rounds		76,	77
La B	elle® Silicon #2 Tool Steel Bars			
*	Annealed and Centerless Ground Rounds			77
	Annealed Bars			
	Rounds		77,	78
	Annealed			
	Squares			78
	Natural and Annealed Octagons			78
Atho	Pneu Tool Steel			
	Rounds, Flats, Squares, Octagons			79
La B	selle 2-70			
-	Rounds, Octagons, Hexagons			80
Halv	an Tool Steel			
	Rounds, Flats, Squares		80,	81

OIL HARDENING TOOL STEELS

Index

Po	age
Ketos® Oil Hardening Tool Steel Bars	
Rounds, Flats, Squares, Square Billets	75
Ketos Hollow Tool Steel Bars	76
Ketos Oil Hardening Tool Steel Sheets	76
Ketos Oil Hardening Electrodes Rounds	77
La Belle® Silicon #2 Tool Steel Bars	
Annealed and Centerless Ground	
Rounds	77
Annealed Bars	
Rounds	78
Annealed	
Squares	78
Natural and Annealed	
Octagons	78
Atha Pneu Tool Steel	
Rounds, Flats, Squares, Octagons	79
La Belle 2-70	
Rounds, Octagons, Hexagons	80
Halvan Tool Steel	
Rounds, Flats, Squares	81

KETOS OIL HARDENING TOOL STEEL BARS

Carbon 0.90%

Manganese 1.30%

Chromium 0.50%

Tungsten 0.50%

Annealed

The increased and continued use of Ketos Oil Hardening Tool Steel by both large and small users has demonstrated its superiority and firmly intrenched it as the standard in the field of oil hardening non-deforming tool steels. This steel may be hardened at fairly low temperatures with minimum volume change. Ketos has deep hardening qualities together with a fine grain structure affording a large production at a single grind and permitting a great many grinds before the tool is worn out.

1/4	11/8	$2\frac{1}{2}$	41/4	63/4
5/16	1 ½ 1 ½ 1 ½	25/8	$\frac{4\frac{1}{4}}{4\frac{3}{8}}$	7
3/8	11/4	23/4	41/2	71/4
7/6	15/16	27/8	45/8	71/2
1/4 5/16 3/8 7/16 1/2	13/8	3	43/4	8
9/16 5/8	17/16	31/8	5	81/2
5/8	11/2	31/4	$5\frac{1}{8}$	9
11/16	15/8	33/8	$5\frac{1}{4}$	91/2
11/ ₁₆ 3/4	13/4	31/2	$5\frac{1}{2}$	10
13/16	17/8	35/8	53/4	11
7/8 15/16	2	33/4	6	12
15/16	21/8	37/8	$6\frac{1}{4}$	141/8
1	21/4	4	$6\frac{1}{2}$	151/8
1 1/16	2½ 2¾ 2¾	41/8		

FLATS			
2 x ½6 1/2 x ½	3 x ½ 4 x ½	2 x 3/16	1 ½ x ¼
1/2 X 1/8 5/8 X 1/8	4 X ½ 3/8 3/16	2 x 3/16 2 1/2 x 3/16 3 x 3/16	1 ½ x ¼ 1 ¾ x ¼
2 x ½6 ½ x ½8 ½ x ½8 ¾ x ½8 1 x ½8	3 x ½ 4 x ½ 38 x ¾6 ½ x ¾6 34 x ¾6	3 x ³ / ₁₆ ³ / ₈ x ¹ / ₄ ¹ / ₂ x ¹ / ₄	1 ½ x ¼ 1 ½ x ¼ 1 ¾ x ¼ 2 x ¼ 2 ¼ x ¼ 2 ¼ x ¼
1 1/4 x 1/8	7/8 x 3/16 1 x 3/16	3/4 x 1/4 7/8 x 1/4	2 ½ x ¼ 3 x ¼ 3 ½ x ¼
1 ½ x ½ x	78 x 3/6 1 x 3/6 1 1/4 x 3/6 1 1/2 x 3/6 1 3/4 x 3/6	1 x 1½	2 ½ x ¼ 3 x ¼ 3 ½ x ¼ 4 x ¼ 5 x ¼
2 ½ x 1/8	1 3/4 x 3/16	1 ½ x ¼	5 x 1/4

KETOS OIL HARDENING TOOL STEEL BARS — Continued

	FLATS—	Continued	
6 x \frac{1}{4} \begin{align*} 13/16 x & 9/32 \\ 1/2 x & 5/16 \\ 5/8 x & 5/16 \\ 3/4 x & 5/16 \end{align*}	2 ½ x ½ 2 ½ x ½ 2 ½ x ½ 3 ¼ x ½ 3 x ½ 3 ½ x ½	2 x 3/4 2 1/4 x 3/4 2 1/2 x 3/4 2 3/4 x 3/4 3 x 3/4	5 x 1 5 ½ x 1 6 x 1 7 x 1 8 x 1
1 x 5/16	4 x ½	3 ½ x ¾	9 x 1
1 1/4 x 5/16	4 ½ x ½	3 ¾ x ¾	10 x 1
1 1/2 x 5/16	5 x ½	4 x ¾	12 x 1
1 3/4 x 5/16	6 x ½	4 ½ x ¾	2 x 1½
2 x 5/16	7 x ½	5 x ¾	3 x 1½
2 ½ x 5/6	8 x ½	6 x 3/4	4 x 11/8
3 x 5/6	9 x ½	7 x 3/4	6 x 11/8
4 x 5/6	10 x ½	8 x 3/4	1 1/2 x 11/4
6 x 5/6	12 x ½	10 x 3/4	1 3/4 x 11/4
½ x 3/8	34 x 58	12 x 3/4	2 x 11/4
5/8 x 3/8	7/8 x 5/8	1 x 7/8	2 ½ x 1¼
3/4 x 3/8	1 x 5/8	1 1/8 x 7/8	2 ½ x 1¼
7/8 x 3/8	1 1/8 x 5/8	1 1/4 x 7/8	2 ¾ x 1¼
1 x 3/8	1 1/4 x 5/8	1 1/2 x 7/8	3 x 1¼
1 1/4 x 3/8	1 1/2 x 5/8	1 3/4 x 7/8	3 ½ x 1¼
1 ½ x 3/8	1 ³ ⁄ ₄ x ⁵ ⁄ ₈ 2 x ⁵ ⁄ ₈ 2 ¹ ⁄ ₄ x ⁵ ⁄ ₈ 2 ¹ ⁄ ₂ x ⁵ ⁄ ₈ 2 ¹ ⁄ ₂ x ⁵ ⁄ ₈ 2 ³ ⁄ ₄ x ⁵ ⁄ ₈	2 x 7/8	4 x 1½
1 3/4 x 3/8		2 1/2 x 7/8	4½ x 1¼
2 x 3/8		3 x 7/8	5 x 1¼
2 ¼ x 3/8		3 1/2 x 7/8	5½ x 1¼
2 ½ x 3/8		4 x 7/8	6 x 1¼
3 x 3/8	3 x 5/8	5 x ½	6 ½ x 1¼
3 ½ x 3/8	3 1/4 x 5/8	6 x ½	7 x 1¼
4 x 3/8	3 1/2 x 5/8	1 ¼ x 1	8 x 1¼
4 ½ x 3/8	4 x 5/8	1 ½ x 1	9 x 1¼
5 x 3/8	4 1/2 x 5/8	1 ¾ x 1	10 x 1¼
6 x 3/8 5/8 x 1/2 3/4 x 1/2 7/8 x 1/2 1 x 1/2	5 x 5/8 6 x 5/8 8 x 5/8 10 x 5/8 7/8 x 3/4	2 x 1 2 ½ x 1 2 ½ x 1 2 ½ x 1 2 ¾ x 1 3 x 1	12 x 1¼ 1 ¾ x 1½ 2 x 1½ 2 ¼ x 1½ 2 ½ x 1½
1 ½ x ½ 1 ¼ x ½ 1 ½ x ½ 1 ½ x ½ 1 ¾ x ½ 2 x ½	1 x 34 1 ½ x 34 1 ¼ x 34 1 ½ x 34 1 ½ x 34 1 ¾ x 34	3 ½ x 1 3 ½ x 1 4 x 1 4 ¼ x 1 4 ½ x 1	2 ³ ⁄ ₄ x 1½ 3 x 1½ 3 ½ x 1½ 3 ½ x 1½ 4 x 1½

KETOS OIL HARDENING TOOL STEEL BARS

—Continued

FLATS—Continued	FL	AT	S-	Cont	inved	
-----------------	----	----	----	------	-------	--

$4\frac{1}{2} \times 1\frac{1}{2}$ 5 \times 1\frac{1}{2} 5\frac{1}{2} \times 1\frac{1}{2} 6 \times 1\frac{1}{2} 7 \times 1\frac{1}{2}	7	4 x 2½ 3 x 2½ 3½ x 2½ 4 x 2½	7 x 3 8 x 3 10 x 3 12 x 3
8 x 1½ 9 x 1½ 10 x 1½ 12 x 1½	3½ x 2 4 x 2 4½ x 2 5 x 2	$ 4\frac{1}{2} \times 2\frac{1}{2} $ $ 5 \times 2\frac{1}{2} $ $ 5\frac{1}{2} \times 2\frac{1}{2} $ $ 6 \times 2\frac{1}{2} $ $ 7 \times 2\frac{1}{2} $	4 x 3½ 4½ x 3½ 5 x 3½ 6 x 3½ 7 x 3½
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5½ x 2 6 x 2 7 x 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2¾ x 1¾ 3 x 1¾ 3½ x 1¾	7½ x 2 8 x 2 9 x 2	3½ x 3 4 x 3 4½ x 3	7 x 4 8 x 4 10 x 4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 x 2 12 x 2 3 x 2 ¹ / ₄	5 x 3 5½ x 3 6 x 3	5 x 4½ 6 x 5 8 x 5

SQUARES

				1
1/4	5/8	11/4	21/	4
5/16	3/4	$1\frac{1}{4}$ $1\frac{3}{8}$	21/2	41/2
5/16 3/8	1/8	11/2	$2\frac{1}{4}$ $2\frac{1}{2}$ $2\frac{3}{4}$	5
7/16	1	13/4	3	6
7/16 1/2	11/8	2	31/2	8
/ 2	-/6		0/2	

SQUARE BILLETS

4	6	8	10	12

KETOS HOLLOW TOOL STEEL BARS

Annealed and Machined

2 O.D. x 1 I.D. 6 O.D. x 2 I.D. 10 O.D. x 6	I.D.
2½ " x 1 " 6 " x 3 " 11 " x 4	"
2½ " x 1 " 6½ " x 3½ " 11 " x 6	"
2½ " x 1½ " 7 " x 1½ " 11 " x 7	"
3 " x 1 " 7 " x 3 " 12 " x 5	"
3 " x 1½ " 7 " x 4 " 12 " x 6	"
3½ " x 1¼ " 7½ " x 3 " 12 " x 7	"
3½ " x 1½ " 7½ " x 3½ " 12 " x 8	"
	66
3½ " x 2 " 8 " x 2¾ " 13 " x 6 4 " x 1½ " 8 " x 3½ " 13 " x 7	"
1	
4 " x 2 " 8 " x 5 " 13 " x 9	"
	"
1/2 X 2 0/2 X 0/4 14 X 1	"
5 " x 1½ " 9 " x 4 " 14 " x 10 5 " x 2 " 9 " x 5 " 15 " x 9	"
5 " x 2½ " 9 " x 6 " 15 " x 10	ш
5 " x 3 " 10 " x 4 " 16 " x 10	"
5½ " x 2 " 10 " x 5 " 16 " x 12	44
6 " x 1½ "	

All bars have been rough turned and bored free from decarburization with stock allowed to finish to sizes shown.

KETOS OIL HARDENING TOOL STEEL SHEETS

Annealed

SHEETS

18 x 1/8 x 72

KETOS OIL HARDENING ELECTRODES

Ketos Oil Hardening Electrodes are designed for welding the non-shrink and manganese tool steels. Tool steels of these types are known for their toughness and shock-resisting qualities. Recommended for repairing existing die units of the oil hardening class, and may be used for composite fabrication of units requiring oil hardening steel. Typical applications: cold blanking, trimming and forming dies, cold cutting and shearing, and where shrinking and deforming during treatment must be held to a minimum.

KETOS OIL HARDENING ELECTRODES—Continued

Properties of Weld Metal: "As-welded" hardness is approximately 58-60 Rockwell C., may be annealed and reheat-treated, drawn or tempered to any degree of hardness or toughness.

Heat Treatment—Anneal 1425-1450 F. Harden 1425-1475 F. Quench in oil, Temper 250-400 F. See Ketos data sheet.

Preheating-250/350 F.

Postheating or Tempering—Temper to desired hardness or toughness to withstand conditions to which unit will be subjected.

3/32	1/8	5/32

Approximate Current Settings: $\frac{3}{2}$ —60-90; $\frac{1}{8}$ —75-125; $\frac{3}{2}$ —100-150. Identification—End color—blue.

LA BELLE SILICON #2 TOOL STEEL BARS

Carbon 0.60% Manganese 0.75% Silicon 1.90%

Chromium 0.25%

7/16

3/1

Molybdenum 0.30%

13/8

13/4

The outstanding characteristic of La Belle Silicon #2 is its toughness at relatively high hardness. When properly quenched and tempered to Rockwell C 57 to 59, it resists impact and battering, yet maintains a good cutting edge. It can be hardened either in oil or water. Simple shapes and larger sections are usually water quenched and more complicated shapes and smaller sections may be oil quenched. It is particularly adaptable for such applications as concrete breakers, hammers, punches, shear blades and pneumatic chisels.

Annealed and Centerless Ground

ROUNDS						
1/2 5/8	3/4 7/8	1 11/8	11/4	11/2		
		Annealed Bars				
		ROUNDS				
1/4	1/2	13/16	11/8	17/16		
1/4 5/16 3/8	1/2 9/16 5/8	7/8 15/16	13/16	$1\frac{1}{2}$ $1\frac{5}{8}$		

 $\frac{3}{8}$ $\frac{1}{2}$

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

LA BELLE SILICON #2 TOOL STEEL BARS — Continued

Annea	iled Bars—Cont	inued	
RO	UNDS—Contin	ved	10-10-
$ \begin{array}{r} 2\frac{1}{2} \\ 2\frac{3}{4} \\ 3 \\ 3\frac{1}{4} \end{array} $	3½- 3¾ 4 4¼	4½ 5 5½	6 6½ 8
	Annealed		I
	SQUARES		
1/2 5/8 3/4	1 1½ 1½ 1¼	$\frac{1\frac{3}{8}}{1\frac{1}{2}}$	$\frac{21}{2}$
	Natural	OUR SINE	- 11
-	OCTAGONS		
	3/4		7/8
	Annealed		
- 1014	OCTAGONS		
	2½ 2¾ 3 3 3¼	## ROUNDS—Continum 2½ 3½ 3¾ 3¾ 3¾ 3¼ 4¼ 3¾ 4¼ 4¼ Annealed SQUARES ½ 1 1 1 1 1 1 1 1 1	Annealed SQUARES 1½

13/16 7/8

1 1½8

11/4

ATHA PNEU TOOL STEEL

Carbon 0.50%

Chromium 1.25% Vanadium 0.20% Tungsten 2.75%

Atha Pneu is an alloy tool steel designed for applications requiring extreme toughness combined with good wear resistance and cutting properties. It has very high resistance to fatigue and gives excellent results in applications where shock and impact are major factors. Atha Pneu may be applied on either hot working or cold working requirements. It gives excellent performance in hot working tools where the requirements are hardness and toughness and where high red hardness is not essential. Atha Pneu, when carburized, has found wide and successful application for draw punches and dies where high wear resistance combined with great core strength is required.

Annealed

		ROUNDS	•	
1/4 3/8 7/16 1/2 9/16	3/4 7/8 1 11/8 11/4	1½ 15% 134 2 2¼	25/8 23/4 3 31/4 31/2	$ \begin{array}{c c} 4 \\ 4^{1/2} \\ 5 \\ 6 \\ 6^{1/4} \end{array} $
5/8	13/8	2½ FLATS	ly o	

1 x ½ 3 x ½ 2 x ½ 3½ x 1½	4 x 1½ 5 x 1½ 2 x 1½ 5 x 1½	5½ x 1¾ 3 x 2 3½ x 2	4 x 2 5 x 2 5 x 4
---------------------------	--------------------------------------	----------------------------	-------------------------

SQUARES

1	2	23/4	3	4
•	_	-/4		

OCTAGONS

3/8	5/8	7/8	1½
1/2	3/4		1¼

ALLOY STEELS

LA BELLE 2-70

Carbon 0.60%

Silicon 1.90% Chromium 0.25% Manganese 0.75%

This steel is a tough alloy tool steel with good resistance to battering and shock at relatively high hardness. It may be quenched in water or oil. Simple shapes and larger sections are usually water quenched and more complicated shapes and smaller sections may be oil quenched.

Annealed Bars

		ROUND	S	
	3/8	5.1	5/8	
		OCTAGON	VS	
3⁄4	7/8	1	11/8	11/4
		HEXAGON	NS .	
1/2	5/8	ś	3/4	1

HALVAN TOOL STEEL

Carbon 0.50%

Manganese 0.80% Vanadium 0.20% Chromium 1.00%

Halvan Tool Steel is a tough alloy steel and is used for tools requiring resistance to shock and vibration. It is used for both cold and mild hot work applications.

Annealed

	ROUNDS						
1/4 5/16 3/8 7/16 1/2	1½ 1¼ 1¾ 1¾ 1½ 1½ 15%	$2\frac{1}{4}$ $2\frac{3}{8}$ $2\frac{1}{2}$ $2\frac{5}{8}$ $2\frac{3}{4}$	3½ 3¾ 4 4½ 4¼	5½ 6 6½ 6¾ 7			
5/8 3/4 7/8	134 176 2 21/8	2½ 3 3¼	4½ 4¾ 5	9 10 12			

FLATS

	FLA	ATS	
1 x ½ 1½ x ½	2 x 1 2½ x 1	6 x 1½ 2 x 1½	6 x 2 8 x 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2\frac{1}{2} \times 1$ 3×1	$2\frac{1}{2} \times 1\frac{1}{2}$ 3 × 1 $\frac{1}{2}$	$\begin{array}{c c} 3 & x 2\frac{1}{2} \\ 3\frac{1}{2} & x 2\frac{1}{2} \end{array}$
1 x 3/4 11/4 x 3/4	3½ x 1 4 x 1	$3\frac{1}{2} \times 1\frac{1}{2}$ $4 \times 1\frac{1}{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 x 1 5 x 1 6 x 1	$4\frac{1}{2} \times 1\frac{1}{2}$ 5 × 1\frac{1}{2}	$\begin{array}{cccc} 5 & x & 2\frac{1}{2} \\ 6 & x & 2\frac{1}{2} \end{array}$
2½ x ¾ 3 x ¾	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	4 x 3 5 x 3
8 x 3/4 11/4 x 7/8	$\frac{2\frac{1}{2} \times 1\frac{1}{4}}{3 \times 1\frac{1}{4}}$	3 x 2 3½ x 2	6 x 3 8 x 3
1½ x 1 1½ x 1	3½ x 1¼ 4 x 1¼ 5 x 1¼	4 x 2 5 x 2	6 x 3½ 6 x 4
13/4 x 1	5 x 1 ¹ / ₄		

SQUARES

34 1 1 ¹ / ₄ 1 ¹ / ₂ 1 ³ / ₄	$\begin{array}{c} 2\\ 2\frac{1}{4}\\ 2\frac{1}{2}\\ 2\frac{3}{4}\\ 3\end{array}$	3½ 4 4½ 5 6	8 10 6 (Billets) 8 (Billets)

WATER HARDENING TOOL STEELS

Index

Page	Page
Alva Extra Tool Steel Bars (Annealed) Rounds, Squares, Octagons	La Belle Striking Die Steel Squares, Flats
Alva Extra Tool Steel Bars (Natural) Octagons	La Belle Extra Carbon Tool Steel Rounds, Flats, Squares90, 91
Sanderson Special Carbon Tool Steel Bars, Rounds, Flats	Black Diamond Standard Carbon Tool Steel Bars (Annealed)—9 Temper Rounds, Flats, Squares, Hexagons, Octagons
Crescent Special Carbon Tool Steel Bars Rounds, Flats, Squares	Black Diamond Standard Carbon Tool Steel Bars (Natural) 9 Temper Rounds, Flats, Squares, Hexagons,
Blocks Squares, Flats	Octagons
Sanderson Extra Carbon Tool Steel Bars Annealed—10 Temper Rounds, Flats, Squares, Square	Annealed, Square Billets
Billets	Natural—8 Temper Octagons
Sanderson Extra Carbon Tool Steel Bars Annealed—8 Temper Octagons	Granada Vanadium Tool Steel Bars Rounds, Flats, Squares, Square Billets
Sanderson Extra Nail Die Steel Bars 89 La Belle Cold Striking Die Steel	Automotive Die Steel Bars 97 Crucible Double Special Tool Steel Bars
Pounds 00	Pounds Flats Squares 07 08

WATER HARDENING TOOL STEELS

Index

Rounds, Squares, Octagons	Page	Page
Sanderson Special Carbon Tool Steel Bars, Rounds, Flats		La Belle Striking Die Steel Squares, Flats
Steel Bars (Annealed)—9 Temper Rounds, Flats	Octagons 83	La Belle Extra Carbon Tool Steel Rounds, Flats, Squares90, 91
10 Temper	Bars, Rounds, Flats 84	Steel Bars (Annealed)—9 Temper
Rounds, Flats, Squares	10 Temper 84	Octagons
Squares, Flats	Rounds, Flats, Squares 85	Steel Bars (Natural) 9 Temper
Crescent Special Machined Jewelers Die Blocks	Blocks	Octagons 93
Sanderson Extra Carbon Tool Steel Bars Annealed—10 Temper Rounds, Flats, Squares, Square Billets	Crescent Special Machined Jewelers	Tool Steel Bars—12 Temper
Annealed—10 Temper Rounds, Flats, Squares, Square Billets	Sanderson Extra Carbon Tool Steel	Annealed, Square Billets 94
Annealed—9 Temper Rounds, Octagons, Hexagons 89 Sanderson Extra Carbon Tool Steel Bars Annealed—8 Temper Octagons 89 Sanderson Extra Nail Die Steel Bars. 89 La Belle Cold Striking Die Steel Octagons 9 Natural—7 Temper Squares 9 Granada Vanadium Tool Steel Bars Rounds, Flats, Squares, Square Billets 94, 95, 96, 9 Automotive Die Steel Bars 9 Crucible Double Special Tool Steel Bars	Rounds, Flats, Squares, Square	Steel Bars
Rounds, Octagons, Hexagons 89 Sanderson Extra Carbon Tool Steel Bars Annealed—8 Temper Octagons 89 Sanderson Extra Nail Die Steel Bars. 89 La Belle Cold Striking Die Steel Rounds, Flats, Squares, Square Billets 94, 95, 96, 99 Automotive Die Steel Bars 99 Crucible Double Special Tool Steel Bars		Octagons 94
Bars Annealed—8 Temper Octagons	Rounds, Octagons, Hexagons 89	Natural—7 Temper Squares
Sanderson Extra Nail Die Steel Bars 89 La Belle Cold Striking Die Steel Crucible Double Special Tool Steel Bars	Bars	Rounds, Flats, Squares, Square
La Belle Cold Striking Die Steel Crucible Double Special Tool Steel Bars	3	
Rounds	La Belle Cold Striking Die Steel	Crucible Double Special Tool Steel Bars
	Rounds 90	Rounds, Flats, Squares97, 98

ALVA EXTRA TOOL STEEL BARS

Carbon 0.95%

Vanadium 0.20%

Annealed

Alva Extra is a shallow hardening alloy tool steel. Due to its vanadium content, this grade is superior in toughness and resistance to fatigue to carbon tool steels. This makes its use desirable for many types of impact tools.

		ROUNDS		
3/8 1/2 5/8 3/4 7/8	1 1½ 1½ 1¼ 1¾ 1½ 1½	15/8 13/4 17/8 2 21/8	2½ 2½ 2¾ 3 3½	3½ 4 4½ 5⅓
		SQUARES		
3/8	1/2	5/8	1	2
		OCTAGONS		0.7
	3/4		7/8	

ALVA EXTRA TOOL STEEL BARS

Natural

11		OCTAGONS		
3/8	1/2	5/8	3/4	1

SANDERSON SPECIAL CARBON TOOL STEEL BARS

10½ Temper — 1.10% Carbon

Annealed

Sanderson Special is a superior quality water hardening carbon tool steel with deep hardening characteristics. It is electric furnace melted under very closely controlled melting standards and is maintained consistently within definite limits for hardenability and grain size. This tool steel has a broad hardening range and may be quenched between 1425F and 1500F, with very slight effect on grain coarsening or case depth. Sanderson Special is widely used in applications for cutting tools requiring ability to maintain a keen cutting edge together with excellent wear resistance. The deep hardening characteristics of this steel make it a preferred grade for use on large sections.

		ROUNDS		
3/8 1/2 5/8 3/4 7/8	1 1½8 1¼ 1¾ 1¾ 1½	15/8 13/4 17/8 2	2½ 2½ 2¾ 3	3½ 4 5 6
		FLATS		-
2 x 3/4 4 x 3/4 11/2 x 1	3 x 1 4 x 1 2 x 1 ¹ / ₄	6 3	x 1½ x 1½ x 1½ x 2	10 x 2 10 x 2½ 4 x 3
2 x 1	$2 \times 1\frac{1}{2}$		x 2	6 x 3

SANDERSON HOLLOW TOOL STEEL BARS

6 x 2

6 x 4

3 x 1½

21/2 x 1

Annealed and Machined

10 TEMPER

2 3½ 3½ 3½ 3½ 4½	D.D. " " "	. x x x x x	11/4	I.D. " "	7½ 7½ 8 8 8	O.D. " " "	x x x x x	3 3½ 3½ 5 6	I.D. " "	11 12 12 12 12 13	O.D.	X C X C X C	5 " 6 " 7 "
5 5 5½ 6 7 7	« « « «	x x x x x x	2 3 2½ 3 3 4	« « « «	8½ 9 9 10 10	« « « «	X X X X X	5½ 4 6 5 6 4	« « « «	14 15 15 16 16	« « «	x 10 x 10 x 10 x 10 x 10) " 1 "

All bars have been rough turned and bored free from decarburization with stock allowed to finish to sizes shown.

CRESCENT SPECIAL CARBON TOOL STEEL BARS

10 Temper — 1.05% Carbon

Annealed

Crescent Special is one of the highest quality water hardening carbon tool steels and may be classified as having medium deep hardening characteristics. It is electric furnace melted and is produced under rigid melting and processing standards to insure consistent uniformity in grain size and hardenability from heat to heat. Crescent Special may be hardened from a fairly broad temperature range without undue effect on case depth or grain size. The medium deep hardening characteristics provide a strong, tough core making this grade particularly adaptable for tools requiring extreme resistance to shock as well as wear resistance.

		ROUNDS		
3/8 7/16 1/2 9/16 5/8	7/8 15/16 1 11/16 11/8	$1\frac{3}{8}$ $1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$ $1\frac{7}{8}$	$\begin{array}{ c c c }\hline & 2\frac{1}{4} \\ & 2\frac{3}{8} \\ & 2\frac{1}{2} \\ & 2\frac{5}{8} \\ & 2\frac{3}{4} \\ \hline \end{array}$	$ \begin{array}{c c} 3\frac{1}{2} \\ 3\frac{3}{4} \\ 4 \\ 4\frac{1}{2} \\ 5 \end{array} $
11/ ₁₆ 3/ ₄	1 ½ 1 ½ 1 ½ 1 ½	$2 \\ 2\frac{1}{8}$	3 3½	6
	INDO	FLATS	3 - W_I	
1 x ½ 1½ x ½ 2 x ½ 1 x 5/8 1¼ x 5/8 1½ x 5/8 2 x 5/8 2½ x 5/8 2½ x 5/8 2½ x 5/8 2½ x 5/8 1½ x 3/4 1½ x 3/4 1½ x 3/4 2 x 3/4	2½ x 3 x 3½ x 4 x 1¼ x 1 1½ x 1 2 x 1 2½ x 1 3 x 1 1½ x 1 2 x 1 2½ x 1 3 x 1 1½ x 1	34 34 4 34 1 2 2 2 2 3 3 3 4 14 2	1/2 x 1/4 x 1/4 x 1/4 3/4 x 1/2 x 1/2 1/2 x 1/2 1/4 x 1/2	2½ x 2 2½ x 2 3 x 2 3½ x 2 5 x 2 3¼ x 2¼ 3 x 2½ 3½ x 2½ 3½ x 3½ 4 x 3½ 5 x 3½ 6 x 3½
		SQUARES	3	
5/16 1/2 5/8 3/4	7/8 1 11/8 11/4	$1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$	$ \begin{array}{c c} 2 \\ 2\frac{1}{4} \\ 2\frac{1}{2} \end{array} $	3 3½ 4

CRESCENT SPECIAL FORGED JEWELERS DIE BLOCKS

5 DEGREE BEVEL ALL SIDES

		SQUARES		
1 1½ 1½ 1½	$ \begin{array}{c} 1\frac{3}{4} \\ 2 \\ 2\frac{1}{4} \end{array} $	$2\frac{1}{2}$ 3 $3\frac{1}{2}$	4 5	6 8
2½ x 1 3 x 1 3½ x 1 3 x 1½	3½ x 3 x 2½ x: 3 x	$\begin{bmatrix} 1\frac{3}{4} \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$		4 x 3 5 x 3 6 x 4 7 x 5

CRESCENT SPECIAL MACHINED JEWELERS DIE BLOCKS

 $3\frac{1}{2} \times 2$

4 x 2

2 x 11/2

17/8 Face	2¾ Face

 $3\frac{1}{2} \times 2\frac{1}{2}$ 5 x 2\frac{1}{2}

x 5

x 6

SANDERSON EXTRA CARBON TOOL STEEL BARS

10 Temper - 0.95% Carbon

Annealed

Sanderson Extra is an electric furnace melted, high quality water hardening carbon tool steel, with medium shallow hardening characteristics. Rigid melting and processing standards are maintained to insure uniform quality and consistent performance at all times. Sanderson Extra may be used in a broad range of applications, making it a preferred general purpose water hardening tool steel. It develops sufficient case depth to insure good service in general purpose cutting tools such as blanking dies, reamers and punches, combined with a strong tough core which provides excellent shock resistance for all types of striking, blanking and forming dies.

ROUNDS

1/4	1	2	$\frac{35/8}{33/4}$	53/4
5/16	11/16	21/8	33/4	6 6½ 6¼ 6½ 6½
3/8	11/8	21/4	4	61/8
7/16	11/4	23/8	41/8	61/4
1/2	15/16	21/2	41/4	61/2
1/4 5/16 3/8 7/16 1/2 9/16	$1\frac{1}{8}$ $1\frac{1}{4}$ $1\frac{5}{16}$ $1\frac{3}{8}$	$2 \\ 2\frac{1}{8} \\ 2\frac{1}{4} \\ 2\frac{3}{8} \\ 2\frac{1}{2} \\ 2\frac{5}{8}$	4 4½ 4½ 4¼ 4½	7
5/8	17/16	$\frac{2\sqrt[3]{4}}{2\sqrt[7]{8}}$	45/8 43/4 5	$7\frac{1}{2}$ 8 8\frac{8\frac{1}{4}}{8\frac{1}{2}} 9\frac{1}{4}
11/16	$1\frac{1}{2}$	27/8	43/4	8
3/4	19/16	3	5	81/4
13/16	15/8	31/8	51/4	81/2
5/8 11/16 3/4 13/16 7/8 15/16	17/ ₁₆ 11/ ₂ 19/ ₁₆ 15/ ₈ 13/ ₄ 17/ ₈	$\frac{31/8}{31/4}$ $\frac{31/4}{31/2}$	$5\frac{1}{4}$ $5\frac{1}{2}$	91/4
15/16	17/8	31/2		

FLATS

17 17	414 04		
½ x ½	$1\frac{1}{2} \times \frac{3}{16}$	6 x ½	1 $x \frac{3}{8}$
5/8 x 1/8	2 x ³ / ₁₆	1/2 x 5/16	$1\frac{1}{8} \times \frac{3}{8}$
3/4 x 1/8	$2\frac{1}{2} \times \frac{3}{16}$	5/8 x 5/16	$1\frac{1}{4} \times \frac{3}{8}$
1 x ½8	3/8 x 1/4	3/4 X 5/16	$1\frac{1}{2} \times \frac{3}{8}$
$1\frac{1}{4} \times \frac{1}{8}$	½ x ¼	7/8 x 5/16	$1\frac{3}{4} \times \frac{3}{8}$
$1\frac{1}{2} \times \frac{1}{8}$	5/8 x 1/4	1 x 5/16	$2 \times \frac{3}{8}$
2 x ½	3/4 x 1/4	1 1/4 x 5/16	$2\frac{1}{2} \times \frac{3}{8}$
3 x ½	1 x ½	1½ x 5/16	$3 \times \frac{3}{8}$
3/8 x 3/16	11/4 x 1/4	13/4 x 5/16	$4 \times \frac{3}{8}$
$\frac{1}{2} \times \frac{3}{16}$	1½ x ¼	2 x ⁵ / ₁₆	6 x 3/8
	11110	THAT IS	
5/8 x 3/16	2 x ½	3 x ⁵ / ₁₆	5/8 x 1/2
3/4 X 3/16	21/4 x 1/4	1/2 x 3/8	$\frac{3}{4} \times \frac{1}{2}$
1 x 3/16	2½ x ¼	5/8 x 3/8	1 x ½
$1\frac{1}{16} \times \frac{3}{16}$	3 x ½	3/4 x 3/8	$1\frac{1}{8} \times \frac{1}{2}$
$1\frac{1}{4} \times \frac{3}{16}$	4 x ½	7/8 x 3/8	$1\frac{1}{4} \times \frac{1}{2}$

SANDERSON EXTRA CARBON TOOL STEEL BARS—

Continued

			-	- 4		
FL	A	TS	 _0	nti	nu	ed

	8		
1½ x ½	1½ x ¾	2½ x 1	3 x 1½
13/4 x 1/2	13/4 x 3/4	23/4 x 1	$3\frac{1}{2} \times 1\frac{1}{2}$
2 x ½	2 x 3/4	3 x 1	$4 \times 1\frac{1}{2}$
21/4 x 1/2	21/4 x 3/4	3½ x 1	$5 \times 1\frac{1}{2}$
$2\frac{1}{2} \times \frac{1}{2}$	2½ x ¾	4 x 1	6 x 1½
2¾ x ½	3 x 3/4	4½ x 1	8 x 1½
3 x ½	3½ x ¾	5 x 1	$2 \times 1\frac{3}{4}$
$3\frac{1}{2} \times \frac{1}{2}$	4 x 3/4	6 x 1	$2\frac{1}{4} \times 1\frac{3}{4}$
4 x ½	4½ x ¾	7 x 1	$2\frac{1}{2} \times 1\frac{3}{4}$
5 x ½	5 x 3/4	8 x 1	$3 \times 1\frac{3}{4}$
6 x ½	6 x 3/4	3¼ x 1⅓	21/4 x 2
3/4 x 5/8	11/4 x 7/8	$1\frac{1}{2} \times 1\frac{1}{4}$	$2\frac{1}{2} \times 2$
$\frac{7}{8} \times \frac{5}{8}$	1½ x 1/8	13/4 x 11/4	3 x 2
1 x 5/8	13/4 x 7/8	2 x 1½	$3\frac{1}{2} \times 2$
11/4 x 5/8	2 x 7/8	21/4 x 11/4	4 x 2
1½ x 5/8	21/4 x 7/8	2½ x 1¼	5 x 2
13/4 x 5/8	2½ x 1/8	3 x 1½	6 x 2
2 x 5/8	3 x 1/8	$3\frac{1}{4} \times 1\frac{1}{4}$	7 x 2
21/4 x 5/8	4 x 1/8	$3\frac{1}{2} \times 1\frac{1}{4}$	8 x 2
2½ x 5/8	4½ x 7/8	4 x 1½	3 x 2½
3 x 5/8	5 x 7/8	4½ x 1¼	3½ x 2½
3½ x 5/8	11/4 x 1	5 x 1½	4 x 2½
4 x 5/8	1½ x 1	6 x 1½	4 x 3
7/8 x 3/4	13/4 x 1	13/4 x 11/2	5 x 3
1 x 3/4	2 x 1	$2 \times 1\frac{1}{2}$	5 x 4
11/4 x 3/4	21/4 x 1	$2\frac{1}{2} \times 1\frac{1}{2}$	

SQUARES

1/4 5/16 3/8 7/16 1/2	9/16 5/8 3/4 7/8	1 ½ 1 ¼ 1 ¾ 1 3/8 1 ½ 1 5/8	134 2 214 21/2 3	3½ 4 5 6
/ 2	_	-/6		

SQUARE BILLETS

	8
	O

9	Tem	per-	0.95%	Carbon
---	-----	------	-------	--------

Annealed

ROUNDS

3/4	1	1½	2	2½
13/16	1½8	15/8	2 ¹ / ₄	3
7/8	11/4	13/4	1-2 70	

OCTAGONS

3/8 3/8 N 1/2 1/2 N	5/8 5/8 N 3/4 3/4 N	7/8 7/8 N 1	1 N 1½ 1½ N	1¼ 1¼ N 1½ N
------------------------------	------------------------------	-------------------	-------------------	--------------------

HEXAGONS

1/4	3/8 N	5/8	7/8	1½
1/4 N	7/6	5/8 N	7/8 N	1½ N
5/8	7/6 N	3/4	1	1¼
5/8 N	1/2	3/4 N	1 N	1¼ N
3/8	½ N			

SANDERSON EXTRA CARBON TOOL STEEL BARS

8 Temper - 0.85% Carbon

Annealed

OCTACONS

OCTAGONS								
3/8	5/8	1 1/8	1½					
1/2	3/4		1¼					

SANDERSON EXTRA NAIL DIE STEEL BARS

11½ Temper — 1.20% Carbon

Cold Drawn Annealed

DOUBLE BEVELED (10)

$(\#9) \ 1^{13}_{16} \ x^{-15}_{16} $ $(\#16) \ 1^{1}_{8} \ x^{-11}_{16}$

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

LA BELLE COLD STRIKING DIE STEEL

Carbon 0.95%

Manganese 0.35%

Silicon 0.45%

La Belle Cold Striking Die Steel is designed to withstand the high pressure per unit area, impact, and fatigue developed in rapid cold forming operations. It has been outstandingly successful as a die steel for striking nickel, sterling silver and stainless steel cutlery. This steel is a high quality, straight carbon tool steel with very deep hardening characteristics. Rigid melting and processing standards insure uniform quality and hardenability.

Centerless Ground and Annealed

ROUNDS							
115/16	$2\frac{3}{16}$	21/4	21/2	31/8			
		Annealed					
-		SQUARES					
		3					
		FLATS					
4½ x 2 3½ x 2	21/4	4 x 2½ 4½ x 2½	5	x 3½			

LA BELLE EXTRA CARBON TOOL STEEL BARS

9 Temper - 0.95% Carbon

Annealed

La Belle Extra Tool Steel is most widely used for cold header dies for such products as bolts, small screws and rivets. It hardens in water or brine.

5/8 3/4 7/8	13/8 11/2	21/8	27/8	31/2
1 1½ 1¼ 1¼	$1\frac{3}{8}$ $1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$ $1\frac{7}{8}$	$2\frac{1}{8}$ $2\frac{1}{4}$ $2\frac{3}{8}$ $2\frac{1}{2}$ $2\frac{5}{8}$ $2\frac{3}{4}$	3 3½ 3½ 3½ 3½	$ \begin{array}{r} 3\frac{1}{2} \\ 3\frac{5}{8} \\ 3\frac{3}{4} \\ 4 \\ 4\frac{1}{2} \end{array} $
		FLATS		

LA BELLE EXTRA CARBON TOOL STEEL BARS-Cont.

	SQUA	ARES	
2 21/6	2½ 2¾	3 314	33/8

LA BELLE EXTRA CARBON TOOL STEEL BARS

9 Temper—0.95% Carbon

Centerless Ground Annealed

ROUNDS						
†† 5/8 †† 3/4 † 7/8 †† 7/8 †1	††1½ ††1½6 ††1¼ ††1½ ††1½6 ††1¾	††1 ⁵ / ₈ ††1 ¹¹ / ₁₆ ††1 ³ / ₈ ††1 ³ / ₄ ††1 ¹³ / ₁₆	††2 ††2½6 ††2½8 ††2¼ ††2¾	††2 ¹ 1/ ₁₆ ††2 ³ / ₄ ††3 ††3 ¹ / ₈ †3 ³ / ₈		
††1 ††1½6	††17/6 ††1½	††1 ⁷ / ₈ ††1 ¹⁵ / ₁₆	$^{\dagger \dagger 2\frac{1}{2}}_{\dagger \dagger 2\frac{5}{8}}$	††3½		
† +.002-inch0	+.002-inch002-inch.			ch004-inch.		

BLACK DIAMOND STANDARD CARBON TOOL STEEL BARS

Black Diamond Standard is a good quality electric furnace melted water hardening carbon tool steel adapted for applications where specific close limits of case depth and grain size are not imperative. This grade has earned an excellent reputation for use as the standard in general shop tools requiring extreme toughness and resistance to shock and impact. It is principally used in the lower carbon ranges for tools such as pins, punches, hammers and sledges.

9 Temper — 0.95% Carbon

Annealed

ROUNDS							
1/4 5/16 3/8 7/16 1/2	3/4 13/16 7/8 15/16	1 ½ 15/6 1 3/8 17/6 1 ½	$2 \\ 2\frac{1}{8} \\ 2\frac{1}{4} \\ 2\frac{3}{8} \\ 2\frac{1}{2}$	3½ 3½ 3¾ 4 4¼			
9/16 5/8 11/16	$1\frac{1}{16}$ $1\frac{1}{8}$ $1\frac{3}{16}$	15/8 13/4 17/8	25/8 23/4 3	4½ 5 6			

BLACK DIAMOND STANDARD CARBON TOOL STEEL BARS—Continued

		FLATS		
34 x 1/8 1 x 1/8 11/4 x 1/8 11/2 x 1/8 2 x 1/8	2½ x 3	3 3 3 1	1/2 x 5/8 x 5/8	4 x 1 5 x 1 6 x 1 1½ x 1¼ 2 x 1¼
1/2 x 1/4 5/8 x 1/4 3/4 x 1/4 1 x 1/4 1 1/4 x 1/4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{2}$ $\frac{1}{2}$	1/2 x 3/4 3/4 x 3/4 x 3/4 1/2 x 3/4 x 3/4	2½ x 1¼ 3 x 1¼ 4 x 1¼ 5 x 1¼ 6 x 1¼
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{2\frac{1}{2}x}{3}$ x	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2 x 3/4 x 3/4 x 3/4 1/4 x 7/8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1/2 x 3/8 5/8 x 3/8 3/4 x 3/8 1 x 3/8 1 y 4 x 3/8 1 1/2 x 3/8	1 x 11/4 x	5/8 1 5/8 2 5/8 2 5/8 3	1/2 x 1 3/4 x 1 x 1 1/2 x 1 x 1 1/2 x 1	$ \begin{array}{ccccc} 6 & x & 1\frac{1}{2} \\ 2\frac{1}{2} & x & 2 \\ 3 & x & 2 \\ 4 & x & 2 \\ 5 & x & 2 \end{array} $
- 1 31	1 1 1 1 1 1	SQUARES	10171	1-22-20
1/4 5/16 3/8 1/2 5/8	3/4 7/8 1 11/8	1½ 1¾ 1¾ 1½ 1½ 1¾	2 2½ 2½ 2½ 3	3½ 4 5 6
		.80/.90 Carb	o n	
- 4	41/2	1.00	5	6
	1	HEXAGON	IS -	
1/4 5/16 3/8	1/2 5/8	3/4 7/8	1 11/8	11/4
		OCTAGON	IS	
3/8 1/2	5/8 3/4	7/8 1	1½ 1¼	11/2

BLACK DIAMOND STANDARD CARBON TOOL STEEL BARS—Continued

9 Temper — 0.95% Carbon

Natural

		ROUNDS		
1/4 5/16 3/8	7/16 1/2 5/8	3/4 7/8 1	1½ 1¼	11/2
U		FLATS		
34 x 14 1 x 14 2½ x 14 3 x 14 3 x 5/16	1½ x 1 x 1¼ x 1½ x 1½ x 2 x	3/8 1/2 2 1/2 1/2 3 1/2 1/2	x ½ x ¾ x ¾ x ¾ 2 x 1	2 x 1 3 x 1 4 x 1 5 x 1
		SQUARES		
1/4 5/16 3/8	1/2 5/8 3/4	7/8 1 11/8	$ \begin{array}{c c} 1\frac{1}{4} \\ 1\frac{1}{2} \\ 1\frac{3}{4} \end{array} $	$\begin{array}{c c}2\\2\frac{1}{2}\end{array}$
		HEXAGONS		
1/4 5/16 3/8	7/16 1/2 5/8	3/4 7/8	1 11/8	1½ 1½
		OCTAGONS		
1/4 5/16 3/8	1/2 5/8 3/4	7/8 1 11/8	1½ 1½	13/4

BLACK DIAMOND STANDARD CARBON TOOL STEEL BARS

12 Temper

QUARTER OCTAGONS					
1/2	5/8	3/4	7/8	1	

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

BLACK DIAMOND STANDARD CARBON TOOL STEEL BARS — Continued

Annealed

SQUARE BILLETS

6

BLACK DIAMOND STANDARD CARBON TOOL STEEL BARS

8 Temper - 0.85% Carbon

Natural

OCTAGONS

1/2	3/4	1	11/4
5/8	7/8	11/8	

BLACK DIAMOND STANDARD CARBON TOOL STEEL BARS

7 Temper - 0.75% Carbon

Natural

SQUARES

11/4	11/2	13/4	2	21/2

GRANADA VANADIUM TOOL STEEL BARS

Carbon 1.00%

Vanadium 0.20%

Annealed

Granada Vanadium is the Granada analysis plus vanadium to meet the specifications of several large manufacturers in the automotive industry.

ROUNDS

1/4	7/16	5/8	†3/4	15/16
5/16	1/2	11/16	13/16	1
3/8	9/16	3/4	7/8	11/16

† 9 Temper (.95 C.)

ROUNDS—Continued					
$1\frac{1}{8}$ $1\frac{1}{4}$ $1\frac{5}{16}$ $1\frac{3}{8}$ $1\frac{7}{16}$	2½6 2½8 2½ 2¼ 2¾ 2¾ 2½-	3½ 3¼ 3¾ 3½ 3½ 3¾	$ \begin{array}{r} 45\% \\ 43/4 \\ 5 \\ 51/4 \\ 51/2 \end{array} $	7 7½ 8 8½ 9	
$1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$ $1\frac{7}{8}$	25/8 23/4 27/8 3	4 4½ 4½ 4½ 4½	$ \begin{array}{c} 5\frac{3}{4} \\ 6 \\ 6\frac{1}{4} \\ 6\frac{1}{2} \end{array} $	9½ 10 11 12	

	FL	ATS	11.0
½ x ¼	4 x 3/8	13/8 x 5/8	2½ x ¾
5/8 x 1/4	5/8 x 1/2	1½ x 5/8	3 x 3/4
3/4 x 1/4	3/4 x 1/2	13/4 x 5/8	31/4 x 3/4
$1 \times \frac{1}{4}$	7/8 x 1/2	2 x 5/8	3½ x ¾
11/4 x 1/4	1 x ½	2½ x 5/8	4 x 3/4
1½ x ¼	11/4 x 1/2	21/4 x 5/8	4½ x ¾
$1\frac{3}{4} \times \frac{1}{4}$	1½ x ½	$2\frac{1}{2} \times \frac{5}{8}$	5 x 3/4
$2 \times \frac{1}{4}$	15/8 x 1/2	23/4 x 5/8	5½ x ¾
$2\frac{1}{2} \times \frac{1}{4}$	13/4 x 1/2	3 x 5/8	6 x 3/4
3 x ½	2 x ½	31/4 x 5/8	7 x 3/4
5 x ½	21/4 x 1/2	3½ x 5/8	8 x 3/4
6 x ½	$2\frac{1}{2} \times \frac{1}{2}$	4 x 5/8	9 x 3/4
$\frac{1}{2} \times \frac{3}{8}$	$2\frac{3}{4} \times \frac{1}{2}$	$4\frac{1}{2} \times \frac{5}{8}$	10 x 3/4
5/8 x 3/8	$3 \times \frac{1}{2}$	5 x 5/8	1 x 7/8
3/4 x 3/8	3½ x ½	5½ x 5/8	1½ x ½
7/8 x 3/8	33/4 x 1/2	6 x 5/8	11/4 x 7/8
1 x $\frac{3}{8}$	4 x ½	6½ x 5/8	1½ x 1/8
$1\frac{1}{8} \times \frac{3}{8}$	4½ x ½	7 x 5/8	13/4 x 7/8
$1\frac{1}{4} \times \frac{3}{8}$	5 x ½	8 x 5/8	2 x 7/8
13/8 x 3/8	$5\frac{1}{2} \times \frac{1}{2}$	9 x 5/8	21/4 x 7/8
$1\frac{1}{2} \times \frac{3}{8}$	6 x ½	10 x 5/8	2½ x 1/8
$1\frac{3}{4} \times \frac{3}{8}$	7 x ½	1 x 3/4	3 x 7/8
$2 \times \frac{3}{8}$	8 x ½	11/4 x 3/4	3½ x 1/8
$2\frac{1}{4} \times \frac{3}{8}$	10 x ½	13/8 x 3/4	4 x 7/8
$2\frac{1}{2}$ x $\frac{3}{8}$	7/8 x 5/8	1½ x ¾	5 x 7/8
23/4 x 3/8	1 x 5/8	13/4 x 3/4	6 x 7/8
$3 \times \frac{3}{8}$	1½ x 5/8	2 x 3/4	11/4 x 1
$3\frac{1}{2} \times \frac{3}{8}$	1½ x 5/8	21/4 x 3/4	1½ x 1

GRANADA VANADIUM TOOL STEEL BARS-

Continued

FI	ATO	:	Can	inued
FL	AI.		Con	inuea

	LLA13—	Continuea	
13/ 1	41/ 11/		
13/4 x 1	4½ x 1¼	33/4 x 13/4	6 x 21/4
2 x 1	43/4 x 11/4	4 x 13/4	$6\frac{1}{2} \times 2\frac{1}{4}$
21/4 x 1	5 x 11/4	$4\frac{1}{2} \times 1\frac{3}{4}$	7 x 21/4
$\frac{21}{2} \times 1$	$5\frac{1}{2} \times 1\frac{1}{4}$	5 x 13/4	8 x 21/4
2¾ x 1	6 x 1½	$5\frac{1}{2} \times 1\frac{3}{4}$	23/4 x 21/2
			, , , , ,
3 x 1	$6\frac{1}{2} \times 1\frac{1}{4}$	6 x 13/4	$3 \times 2\frac{1}{2}$
$3\frac{1}{4} \times 1$	7 x 1½	6½ x 1¾	$3\frac{1}{4} \times 2\frac{1}{2}$
$3\frac{1}{2} \times 1$	8 x 11/4	7 x 13/4	$3\frac{1}{2} \times 2\frac{1}{2}$
3¾ x 1	9 x 11/4	7 x 1 ³ / ₄ 8 x 1 ³ / ₄	$\frac{3}{2} \times \frac{2}{2}$
4 x 1	10 x 1½	21/4 x 2	$4\frac{1}{2} \times 2\frac{1}{2}$
	10 11/4	2/4 X 2	472 X 272
$4\frac{1}{4} \times 1$	12 x 1½	2½ x 2	F 01/
$4\frac{1}{2} \times 1$	13/4 x 11/2		$5 \times 2\frac{1}{2}$
5 x 1	$\frac{1}{4} \times \frac{1}{2}$ $2 \times \frac{1}{2}$	2¾ x 2	5½ x 2½
$5\frac{1}{2} \times 1$	$2 \frac{1}{4} \times \frac{1}{2}$	3 x 2	6 x 2½
		3½ x 2	6½ x 2½
6 x 1	$2\frac{1}{2} \times 1\frac{1}{2}$	3½ x 2	$7 \times 2\frac{1}{2}$
01/ 1	00/ 11/		
$6\frac{1}{2} \times 1$	$2\frac{3}{4} \times 1\frac{1}{2}$	3¾ x 2	$7\frac{1}{2} \times 2\frac{1}{2}$
7 x 1	3 x 1½	4 x 2	$8 \times 2\frac{1}{2}$
8 x 1	$3\frac{1}{4} \times 1\frac{1}{2}$	41/4 x 2	9 x $2\frac{1}{2}$
9 x 1	$3\frac{1}{2} \times 1\frac{1}{2}$	4½ x 2	$10 \times 2\frac{1}{2}$
10 x 1	$4 \times 1\frac{1}{2}$	43/4 x 2	$12 \times 2\frac{1}{2}$
			/ 2
12 x 1	41/4 x 11/2	5 x 2	3 x 23/4
13/4 x 11/8	$4\frac{1}{2} \times 1\frac{1}{2}$	5½ x 2	$3\frac{1}{4} \times 2\frac{3}{4}$
2 x 1½	43/4 x 11/2	6 x 2	$3\frac{1}{2} \times 2\frac{3}{4}$
$2\frac{1}{4} \times 1\frac{1}{8}$	$5 \times 1\frac{1}{2}$	6½ x 2	4 x 23/4
$2\frac{1}{2} \times 1\frac{1}{8}$	$5\frac{1}{2} \times 1\frac{1}{2}$	7 x 2	$4\frac{1}{2} \times 2\frac{3}{4}$
/2 /0	-/2/2	1 42	472 X 274
3 x 1½	6 x 1½	7½ x 2	F - 03/
3½ x 1½	$6\frac{1}{2} \times 1\frac{1}{2}$		5 x 23/4
4 x 1½	$7 \times 1\frac{1}{2}$	8 x 2	$5\frac{1}{2} \times 2\frac{3}{4}$
1½ x 1¼	$7\frac{1}{2} \times 1\frac{1}{2}$	9 x 2	6 x 23/4
13/4 x 11/4		10 x 2	31/4 x 3
174 X 174	8 x 1½	12 x 2	$3\frac{1}{2} \times 3$
9 " 11/	0 11/	01/ 01/	
2 x 1½	9 x 1½	$2\frac{1}{2} \times 2\frac{1}{4}$	4 x 3
2½ x 1½	10 x 1½	2¾ x 2¼	$4\frac{1}{2} \times 3$
2½ x 1¼	12 x 1½	3 x 21/4	5 x 3
2¾ x 1¼	2 x 13/4	31/4 x 21/4	$5\frac{1}{2} \times 3$
3 x 11/4	$2\frac{1}{4} \times 1\frac{3}{4}$	$3\frac{1}{2} \times 2\frac{1}{4}$	6 x 3
31/4 x 11/4	$2\frac{1}{2} \times 1\frac{3}{4}$	3¾ x 2¼	5 x 3½
$3\frac{1}{2} \times 1\frac{1}{4}$	23/4 x 13/4	4 x 21/4	5 x 4
3¾ x 1¼	3 x 13/4	4½ x 2¼	5½ x 4
4 x 11/4	31/4 x 13/4	5 x 21/4	6 x 5
41/4 x 11/4	$3\frac{1}{2} \times 1\frac{3}{4}$	5½ x 2¼	7 x 6
	7 2 - 7 4	72 =/4	7 7 0

GRANADA VANADIUM TOOL STEEL BARS-

Continued

		SQUARES		
3/8 7/16 1/2 5/8 3/4 7/8	1 1½8 1¼ 1¾ 1½ 1½ 1¾	17/8 2 21/4 21/2 23/4 3	3½ 3½ 3¾ 4 4 4½	43/4 5 51/2 6 8 10

4	6	8

AUTOMOTIVE DIE STEEL BARS

Carbon 1.00%

Automotive Die Steel is provided especially for the automotive industry. It is principally used in blanking and forming operations.

These grades, along with Granada, are stocked in a wide range of sizes for immediate shipment at Crucible's Detroit Warehouse.

CRUCIBLE DOUBLE SPECIAL TOOL STEEL BARS

Carbon 1.30%

Tungsten 3.50%

Annealed

Crucible Double Special is among the earliest of the shallow hardening alloy tool steels and owes its properties to the substantial addition of tungsten. This steel becomes intensively hard after quenching in water or brine.

The exceptional wear resistance of Crucible Double Special is due to the high hardness obtained on quenching and to the presence of extremely hard tungsten carbides uniformly distributed through the matrix.

ROUNDS						
3/8	7/8	13/8	17/8			
1/2	1	11/2	2			
5/8	11/8	15/8	21/4			
3/4	11/4	13/4	3			

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

CRUCIBLE DOUBLE SPECIAL TOOL STEEL BARS — Continued

	FLATS	
5/8 x 1/4	2 x 1/4	1½ x 5/8
	SQUARES	W
1/2	3/4	11/4

HOLLOW TOOL STEELS

Index

Crucible Hollow Tool Steel	Page 99
Sanderson Hollow Tool Steel Bars	99
Ketos Hollow Tool Steel Bars	100
Nu-Die V Hollow Tool Steel Bars	100
Airkool Hollow Steel Bars	101
Airdi 150 Hollow Tool Steel Bars	101

HOLLOW TOOL STEELS

Index

	Page
Crucible Hollow Tool Steel	99
Sanderson Hollow Tool Steel Bars	99
Ketos Hollow Tool Steel Bars	100
Nu-Die V Hollow Tool Steel Bars	100
Airkool Hollow Steel Bars	101
Airdi 150 Hollow Tool Steel Bars	101

CRUCIBLE HOLLOW TOOL STEEL

Crucible Hollow Tool Steel offers the well-known Crucible quality in a form ideally suited to parts with cut-out centers. Manufacturers of stamp dies, sleeves, ring gauges, rolls, slitters and similar parts look to Airdi 150, Airkool, Nu-Die V, Ketos, and Sanderson Hollow Tool Steel for fast economical production. By using Crucible Hollow Tool Steel they save the cost of the center metal and the cost of machining it out. Our warehouses have Crucible Hollow Tool Steel, forged and rough machined on the O.D. and I.D., in the sizes shown below ready for cutting to the length you need. Your inquiries are invited.

SANDERSON HOLLOW TOOL STEEL BARS

Carbon 1.10%

Manganese 0.25%

Silicon 0.20%

Deep hardening, water quenching steel for use where wear resistance is a factor. Not recommended for intricate shapes or where complete freedom from distortion is important.

Bar Color-Black

All bars have been rough turned and bored free from decarburization with stock allowed to finish to sizes shown.

	D.D.	x 1	I.D.	71/2	O.D	. x 3	I.D.	11	O.D	. x 6	-I.D
31/4	66	$x 1\frac{1}{4}$		71/2	66	x 3½		12	"	x 5	"
$\frac{3\frac{1}{4}}{3\frac{1}{2}}$	"	x 1½	"	8	"	x 3½	66	12	66	x 6	ш
31/2	46	x 2		8	"	x 5	"	12	"	x 7	"
$\frac{3\frac{1}{2}}{4\frac{1}{2}}$	"	x 2	u	81/2	"	x 51/4	"	13	"	x 7	"
5	ш	x 2	"	9	"	x 4	"	14	u	x 7	"
5	"	x 3	"	9	46	x 6	"	15	"	x 10	"
$5\frac{1}{2}$	ш	x 21/2	"	10	ш	x 5	"	15	"	x 11	"
6	ш	x 3	"	10	"	x 6	44	16	"	x 10	"
7	"	x 3	"	11	ш	x 4	44	16	ш	x 12	"
7	"	x 4	"								

DRILL RODS

ALLOY STEELS

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

KETOS HOLLOW TOOL STEEL BARS

Carbon 0.90%

Manganese 1.25% Tungsten 0.50% Chromium 0.50%

Oil hardening, non-deforming type which hardens at fairly low temperatures with minimum distortion. Hardens deeply, with fine tough grained structure.

Bar Color-Green

All bars have been rough turned and bored free from decarburization with stock allowed to finish to sizes shown.

0 (2 D	1	ID	1 6	D.D		9	LD	11	0.D.	C	ID
			I.D.					I.D.	11			I.D.
$2\frac{1}{2}$	"	x 1		61/2	"	X	$3\frac{1}{2}$	"	11	"	x 7	
$2\frac{1}{2}$	ш	$x 1\frac{1}{2}$	"	7	"	X	3		12	"	x 5	"
3	ш	x 1	"	7	"	X	4	"	12	"	x 6	u
3	"	$x 1\frac{1}{2}$	"	71/2	ш	X	3	"	12	"	x 7	и
31/4	"	x 11/4	u	71/2	ш	х	31/2	"	12	"	x 8	и
31/4	"	x 11/2	ш	8	"	X	31/2	66	13	66	x 6	44
31/2	ш	x 2	"	8	44	X	5	"	13	- "	x 7	"
4	"	x 11/2	"	81/2	"	X	51/4	44	13	"	x 9	ш
4	"	x 2	"	9	66	X	4	44	14	"	x 7	44
•						**	•		1.1		Α.,	
$4\frac{1}{2}$	"	x 2	44	9	44	X	5	"	14	"	x 10	46
5	"	x 2	"	10	44	x	4	"	15	"	x 9	"
5	"	x 21/2	"	10	44	x	5	"	15	"	x 10	66
5	66	x 3	"	10	"	x	6	ш	16	"	x 10	"
$5\frac{1}{2}$	"	x 2	"	11	"	X	4	"	16	"	x 12	ш
6	"	x 2	"									

NU-DIE V HOLLOW TOOL STEEL BARS

Carbon 0.40%

Silicon 1.05%

Molybdenum 1.35% Vanadium 1.10%

Chromium 5.00%

Adapted for hot work applications in aluminum and magnesium die casting sleeves. Air hardening characteristics permit safe hardening with minimum distortion. Has exceptional resistance to heat checking and the erosive action of molten aluminum and magnesium alloys. Can be nitrided if desired.

Bar Color—Yellow

All bars have been rough turned and bored free from decarburization with stock allowed to finish to sizes shown.

2½ 0.D. x 1 I.D. 2½ " x 1¼ " 3 " x 1½ " 3¼ " x 1½ " 4 " x 1¾ "	4½ O.D. x 2½ I.D. 4¾ " x 1¾ " 5 " x 1½ " 5 " x 2 " 5 " x 2 "	5½ O.D. x 2½ I.D. 5½ " x 3 " 6 " x 2¼ " 6 " x 3 " 6¼ " x 3%"
4 " x 2½ " 4½ " x 2 " 4½ " x 2 "	5 " x 3 " 5½ " x 2 "	6 ³ / ₄ " x 3 ⁵ / ₈ " 7 ¹ / ₄ " x 3 ³ / ₄ "

Air hardening 5% Chrome Tool Steel of intermediate wear and abrasion resistance between oil hardening and high Carbon, high Chrome types. Offers superior toughness, with minimum distortion in hardening and easy machining. Deep hardening type.

Bar Color-Red

All bars have been rough turned and bored free from decarburization with

2 O.D. x 1 I.D. 5½ O.1	D. x $2\frac{1}{2}$ I.D.		D. x 6 I.D.
2½ " x 1 " 6 "	x 2 "	11 "	x 5 "
3 " x 1 " 6½ "	x 3 "	11 "	x 7 "
3 " x 1½ " 7 "	x 3 "	12 "	x 6½ "
3½ " x 1½ " 7 "	x 4 "	12 "	x 8 "
3½ " x 1½ " 7½ "	x 4 "	13 "	x 8 "
4 " x 2 " 8 "	x 4 "	14 "	x 8 "
4 " x 2½ " 8	x 5 "	14 6	" x 10 "
5 " x 2 " 8½ "	x 4 "	15 '	' x 8 "
5 " x 23/4 " 9 "	x 4 "	16 "	' x 10 "
5 " x 3 " 9 "	x 6 "		

AIRDI 150 HOLLOW TOOL STEEL BARS

Carbon 1.50%

Chromium 11.50% Vanadium 0.90% Molybdenum 0.80%

High Carbon, high Chrome, air-hardening type with deep hardening, non-deforming characteristics and superior wear and abrasion resistance.

Bar Color-Blue

All bars have been rough turned and bored free from decarburization with stock allowed to finish in sizes shown.

5½ O.D.	x 2½ I.D.	. 81/2 ().D. x	5¼ I.D).
6 "	x 13/4 "	9	" X	5 "	
6 "	x 3 "	10	" x	6 "	
61/2 "	x 31/4 "	11	" X	7 "	
	, .	12	" x	5 "	
7 "	x 2½ "	13	" x	6 "	
7 "	x 31/2 "	13	" X	8 "	
		14	" X	7 "	
8 "	x 5 "	15	" x	9 "	
81/4 "	x 3½ "	16	" x	10 "	
	6 " 6 " 6 1/2 " 6 1/2 " 7 " 7 " 7 1/2 " 8 "	6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

DRILL RODS

Index

	Page
Characteristics of Crucible's Drill Rods	103
Standard Manufacturing Size Tolerances	103
Rex AA High Speed Drill Rods Rounds	104
Rex M-2 High Speed Drill Rods Rounds	105
Airkool Drill Rods Rounds	105
Ketos Oil Hardening Drill Rods Rounds	
Ketos Lime Drawn Drill Rods 3 Foot Lengths, Squares	107, 108
Crucible Double Special Drill Rods Rounds	
Halcomb 218 Drill Rods Rounds	109
Alva Extra Drill Rods Rounds	109, 110
Atha Pneu Lime Drawn Drill Rods	110
Sanderson Special Drill Rods Rounds Squares	
Airdi 150 Drill Rods	112
CSM-2 Drill Rod	113
Victor Drill Rods Rounds	113, 114, 115
Nu-Die Drill Rods Rounds	115

DRILL RODS

Index

	Page
Characteristics of Crucible's Drill Rods	103
Standard Manufacturing Size Tolerances	103
Rex AA High Speed Drill Rods	
Rounds	104
Rex M-2 High Speed Drill Rods	
Rounds	105
Airkool Drill Rods	
Rounds	105
Rounds	107
Ketos Lime Drawn Drill Rods	, 107
3 Foot Lengths, Squares	. 108
Crucible Double Special Drill Rods	, , , ,
Rounds	108
Halcomb 218 Drill Rods	
Rounds	109
Alva Extra Drill Rods	
Rounds	, 110
Atha Pneu Lime Drawn Drill Rods	110
Sanderson Special Drill Rods	
Rounds	
Squares	
Airdi 150 Drill Rods	112
CSM-2 Drill Rod	113
Victor Drill Rods	115
Rounds	, 115
Nu-Die Drill Rods Rounds	115
Nounus	113

DRILL RODS

Crucible's Drill Rods of high speed, alloy and carbon tool steels are produced entirely in the mills of the Crucible Steel Company of America. The process from initial melting to final inspection is performed by experienced craftsmen under the exacting supervision of experts in tool steel manufacture.

Because of this unified manufacturing skill and supervision . . . under constant laboratory control . . . Crucible's Drill Rods have long been famous for guaranteed high quality. Such Crucible trade names as Rex AA, Rex M-2, Special and Victor are well and favorably known wherever drill rods are used

Every standard size of high speed, alloy and carbon steel drill rod is regularly produced by Crucible and Crucible warehouses carry large stocks of the types, finishes and sizes for which there is any appreciable demand

Lists of available drill rod stock are given on the following pages.

CHARACTERISTICS OF CRUCIBLE'S DRILL RODS:

- 1. Close size tolerance
- 2. True roundness
- 3. Superior finish
- 4. Controlled analysis
- 5. Sound metal
- 6. Freedom from surface decarburization
- 7. Annealed and processed for best machinability, consistent with the analysis of each grade

This refers to round Crucible Drill Rods carried in stock, unless otherwise noted. Square and rectangular Crucible Drill Rods are customarily furnished lime drawn, unpolished.

Special cut lengths, special hardness and special analyses, not regularly stocked, can be supplied. See your Crucible representative.

STANDARD MANUFACTURING SIZE TOLERANCES

ROU	NDS		SQUARES —OCTAGONS
Size Range 1.500 to .500 .499 to .125 .125 and Under	.001 .0005 .0003	Dimension— Inches 1 to ¾ 1½ to ¼ Under ¼	.0015 .001 .0005

REX AA HIGH SPEED DRILL RODS

Carbon 0.73%

Chromium 4.00%

Vanadium 1.15%

Tungsten 18.00%

Rex AA High Speed Drill Rods are so manufactured that they are outstanding in freedom from decarburization, accuracy of size and fineness of finish. They offer consistent uniformity of quality for the making of such products as taps, reamers, drills and punches.

ROUNDS—3 FOOT LENGTHS

REX M-2 HIGH SPEED DRILL RODS

Carbon 0.83% Tungsten 6.40% Chromium 4.15% Molybdenum 5.00% Vanadium 1.90%

Rex M-2 High Speed Drill Rods, manufactured to Crucible's high standards of quality, are outstanding in accuracy of size, freedom from decarburization and fineness of finish. This type drill rod is recommended for general purpose use for the making of small tools.

ROUNDS - 3 FOOT LENGTHS

Gauge or Nearest Fractional Dimension	Size Decimals of an Inch	Gauge or Nearest Fractional Dimension	Size Decimals of an Inch	Gauge or Nearest Fractional Dimension	Size Decimals of an Inch
1/16 1/8	.0625 .125	19/64 5/16	.2968 .3125	1/2 17/32	.500 .5312
1/8 5/32 11/64	.1562 .1718	21 ₆₄ 11 ₃₂	.3281 .3437	9/16 5/8	.5625 .625
3/16	.1875	23/64	.3593	21/32	.6562
13/64 7/32	.2031 .2187	3/8 25/64	.375 .3906	11/ ₁₆ 3/4 13/ ₁₆	.6875 .750
7/32 1/4 17/64	.250 .2656	13/ ₃₂ 7/ ₁₆	.4062 .4375	7/8	.8125 .875
9/32	.2812	29/64	.4531	15/16 1	.9375 1.000

AIRKOOL DRILL RODS

Carbon 1.00% Manganese 0.40% Chromium 5.25% Vanadium 0.40% Molybdenum 1.15%

Airkool drill rods possess superior toughness together with excellent non-deforming properties. This steel machines very readily and has fairly high abrasion resistance.

ROUNDS — 3 FOOT LENGTHS

Gauge or	Size	Gauge or	Size	Gauge or	Size
Nearest	Decimals	Nearest	Decimals	Nearest	Decimals
Fractional	of an	Fractional	of an	Fractional	of an
Dimension 1/16 3/22 1/8 5/32 3/16	.0625 .0937 .125 .1562 .1875	Dimension 1/4 5/16 3/8 1/16 1/2	.250 .3125 .375 .4375 .500	Dimension 9/16 5/8 3/4 1	.5625 .625 .750 1.000

KETOS OIL HARDENING DRILL RODS

Carbon 0.90%

Manganese 1.30% Chromium 0.50%

Tungsten 0.50%

Ketos Oil Hardening Drill Rods are widely used where minimum distortion during hardening is required. They are recommended for knockout pins and small tools such as drills, taps, and reamers.

ROUNDS—3 FOOT LENGTHS					
Gauge or	Size	Gauge or	Size	Gauge or	Size
Nearest	Decimals	Nearest	Decimals	Nearest	Decimals
Fractional	of an	Fractional	of an	Fractional	of an
Dimension	Inch	Dimension	Inch	Dimension	
1/32	.0312	29	.134	3	.212
3/64	.0468	28	.139		.212
1/16	.0625	%4	.1406	7/32	.2187
50	.069		.142		.222
49	.072	27	.143	1	.227
48	.075	26	.146	_	.230
5/64	.0781	25	.148	15/64	.2343
46	.0789	24	.151	B 64	.238
45	.081	23	.153	B C	.242
_	.084	22	.155	_	.244
44	.085	5/32	.1562	D	.246
43	.088	21	.157		.248
_	.089	20	.161	1/4	.250
42	.092	19	.164	-	.253
3/32	.0937	-	.166	$\frac{\frac{1}{4}}{F}$.257
41	.095	18	.168	_	.261
40	.097	_	.169	17/64	.2656
_	.099	11/64	.1718	64	.268
38	.101	16	.175		.271
37	.103	15	.178		.277
_	.104	14	.180		900
36	.106	13	.182	9/	.280
35	.108	12	.185	9/32	.2812
7/64	.1093	3/16	.1875		.280
	.110	-10	.189	_	.293
33	.112	10	.191	19/64	
	.1135	9	.194	13/64	.2968
32	.115		.195		.302 .305
	.118	8	.197	5/16	.3125
31	.120	- 8 7	.199		.320
_	.122	6	.201	P	.323
½8 30	.125	13/64	.2031	_	.327
30	.127	5	.204	21/64	.3281
_	.128	4	.207		.338
	.131	-	.208	_	.342

ROUNDS—3 FOOT LENGTHS

Gauge or	Size	Gauge or	Size	Gauge or	Size		
Nearest	Decimals	Nearest	Decimals	Nearest	Decimals		
Fractional	of an	Fractional	of an	Fractional	of an		
Dimension	Inch	Dimension	Inch	Dimension	Inch		
				Dimension	inen		
11/	9.497	15 /	400=	45.4			
11/32	.3437	15/32	.4687	45/64	.7031		
	.352	31/64	.4843	23/32	.7187		
T	.354		.491	_	.739		
T	.358	1/2	.500	3/4	.750		
23/64	.3593		.503	25/32	.7812		
	.360	33/64	.515	13/16	.8125		
U	.368	_	.520	27/32	.8437		
	.372	17/32	.5312	7/8	.875		
3/8	.375	35/64	.5469	29/32	.9062		
_	.382		.558	15/16	.9375		
				. 10			
	.384		.560	31/32	.96875		
²⁵ / ₆₄ X	.3906	9/16	.5625	63/64	.9843		
X	.397	37/64	.5781	1	1.000		
	.400		.582	11/64	1.0156		
13/32	.4062	19/32	.5937	11/16	1.0625		
		7 32	10001	1/10	1.0020		
27/64	.4218	39/64	.6093	11/8	1.125		
_	.428	-04	.616	13/16	1.1875		
_	.430	5/8	.625	11/4	1.250		
7/16	.4375	41/64	.6406	15/16	1.3125		
-10	.440	21/32	.6562	13/8	1.375		
	.110	732	.0002	1/8	1.070		
	.452		.677	17/16	1.4375		
29/64	.4531	11/16	.6875	11/2	1.4373		
704	.462	/16	.0010	1/2	1.500		
	.102			La company			

KETOS LIME DRAWN DRILL RODS

Annealed and Pickled

3 FOOT LENGTHS

3/32 X 1/16	1/4 x 3/32	3/16 x 5/32	5/16 x 3/16
1/8 x 1/16	³ / ₁₆ x ¹ / ₈	¹ ⁄ ₄ x ⁵ ⁄ ₃₂	3/8 x 3/16
1/4 x 1/16	¹ / ₄ x ¹ / ₈	⁵ ⁄ ₁₆ x ⁵ ⁄ ₃₂	1/2 x 3/16
¹ / ₈ x ³ / ₃₂	3/8 x 1/8	7 ₃₂ x 3/ ₁₆	³ ⁄ ₄ x ³ ⁄ ₁₆
³ / ₁₆ x ³ / ₃₂	3/4 x 1/8	1/ ₄ x 3/ ₁₆	⁷ ⁄ ₈ x ³ ⁄ ₁₆

KETOS LIME DRAWN DRILL RODS—Continued

Annealed and Pickled

3 FOOT LENGTHS—Continued

1 x 3/6 5/8 x 1/4 x 7/32 7/8 x 3/8 x 1/4 1/2 x 1/4 5/8 x 1/4 1/2 x 1/4 5/8 x 1/2 x 1/4 5/8 x 1/2 x 1/4 5/8 x 1/4 1/8 x 1	1/4 1/2 x 3/8 1/4 9/6 x 3/8 1/4 5/8 x 3/8 1/4 5/8 x 3/8 5/6 1 x 3/8 5/6 1/4 x 3/8 5/6 3/4 x 7/6	34 x ½ 78 x ½ 1 x ½ 1 14 x ½ 156 x ½ 2 156 x ½ 34 x 58 78 x 58 1 x 54
--	---	---

- 10	1/8 3/16 7/32	1/4 5/16 3/8	7/16 1/2 9/16	5/8 3/4	1 7/8
------	---------------------	--------------------	---------------------	------------	-------

CRUCIBLE DOUBLE SPECIAL DRILL RODS

Carbon 1.30%

Tungsten 3.50%

Crucible Double Special Drill Rods are recommended for tools requiring a very keen cutting edge to be used for cutting soft non-ferrous metals such as brass and aluminum alloys.

ROUNDS — 3 FOOT LENGTHS

Gauge or	Size	Gauge or	Size	Gauge or	Size
Nearest	Decimals	Nearest	Decimals	Nearest	Decimals
Fractional	of an	Fractional	of an	Fractional	of an
Dimension	Inch	Dimension	Inch	Dimension	Inch
1/16 3/32 1/8 5/32 3/16	.0625 .0937 .125 .1562 .1875	1/4 5/16 3/8 7/16 1/2	.250 .3125 .375 .4375 .500	9/16 5/8 3/4 1	.5625 .625 .750 1.000

HALCOMB 218 DRILL RODS

Carbon 0.40%

Silicon 1.05%

Chromium 5.00%

Molybdenum 1.35%

Vanadium 0.35%

Halcomb 218 Drill Rods among other applications are extensively used for pins in plastic molding dies since this type steel successfully resists the high temperatures encountered in the molding of plastics.

ROUNDS — 3 FOOT LENGTHS

	oj wit	Gauge or Nearest Fractional Dimension 21/32 11/16 23/32 47/44 3/4 13/16 7/8 1	Size Decimals of an Inch .6562 .6875 .7187 .7343 .750 .8125 .875 1.000
--	--------	---	---

ALVA EXTRA DRILL RODS

Carbon 0.95%

Vanadium 0.20%

Alva Extra Drill Rods are recommended for applications requiring a slightly tougher tool than could be developed from carbon tool drill rod. This grade is also recommended for punches and knockout pins and for drills and taps.

ROUNDS - 3 FOOT LENGTHS

Gauge or Nearest Decimals	Gauge or Nearest Fractional Dimension 964 532 346 1364 752	Size Decimals of an Inch .1406 .1562 .1875 .203 .2187	Gauge or Nearest Fractional Dimension 15 ₆₄ 1/4 17 ₆₄ 9/62 18 ₆₄	Size Decimals of an Inch 2343 .250 .2656 .2812 .2968
-----------------------------	--	---	---	---

ALVA EXTRA DRILL RODS—Continued

ROUNDS—3 FOOT LENGTHS—Continued

Gauge or Nearest Fractional Dimension	Size Decimals of an Inch	Gauge or Nearest Fractional Dimension	Size Decimals of an Inch	Gauge or Nearest Fractional Dimension	Size Decimals of an Inch
5/16 21/64 11/32 23/64 3/8	.3125 .3281 .3437 .3593 .375	7/16 29/64 15/32 31/64	.4375 .4531 .4687 .4843 .500	5/8 11/16 3/4 13/16 7/8	.625 .6875 .750 .8125 .875
25/64 13/32 27/64	.3906 .4062 .4218	17 ₃₂ 9 ₁₆ 39 ₆₄	.5312 .5625 .6093	1 1½	1.000 1.250

ATHA PNEU LIME DRAWN DRILL RODS

3 FOOT LENGTHS

½ x 3/8	5/8 x 3/8	5/8 x ½

SANDERSON SPECIAL DRILL RODS

Carbon 1.25%

Special Drill Rods are outstanding in the field of carbon tool steel drill rods due to their high uniformity of quality, accuracy of size, high finish, and freedom from decarburization. This grade is used principally for small taps, reamers, punches, twist drills, dental tools, watch parts and hardened pins and in all cases where a high grade carbon tool steel of drill rod size and finish is required.

ROUNDS—3 FOOT LENGTHS

Gauge or	Size	Gauge or	Size	Gauge or	Size
Nearest	Decimals	Nearest	Decimals	Nearest	Decimals
Fractional	of an	Fractional	of an	Fractional	of an
Dimension	Inch	Dimension	Inch	Dimension	Inch
80	.013	78	.015	77	.016
79	.014	164	.0156	76	

POUNDS_3 FOOT LENGTHS_Continued

ROUNDS—3 FOOT LENGTHS—Continued						
Gauge or	Size	Gauge or	Size	Gauge or	Size	
Nearest	Decimals	Nearest	Decimals	Nearest	Decimals	
Fractional	of an	Fractional	of an	Fractional	of an	
Dimension	Inch	Dimension	Inch	Dimension	Inch	
75	.020	42	.092	3/16	.1875	
74	.022	3/32	.0937	11	.188	
73	.023	41	.095	10	.191	
72	.024	40	.097	9	.194	
71	.026	39	.099	8	.197	
70	.027	38	.101	7	.199	
69	.029	37	.103	6	.201	
68	.030	36	.106	13/64	.2031	
67	.031	35	.108	5	.204	
1/32	.0312	764	.1093	4	.207	
66	.032	34	.110	3	.212	
65	.033	33	.112	7/32	.2187	
64	.035	32	.115	2	.219	
63	.036	31	.120	1	.227	
62	.037	1/8	.125	A	.234	
61	.038	30	.127	15/64	.2343	
60	.039	29	.134	В	.238	
59	.040	28	.139	C	.242	
58	.041	964	.1406	D	.246	
57	.042	27	.143	1/4	.250	
56	.045	26	.146	F	.257	
3/64	.0468	25	.148	G	.261	
55	.050	24	.151	17/64	.2656	
54	.055	23	.153	H	.266	
53	.058	22	.155	I	.272	
1/16	.0625	5/32	.1562	J	.277	
52	.063	21	.157	K	.281	
51	.066	20	.161	9/32	.2812	
50	.069	19	.164	L	.290	
49	.072	18	.168	M	.295	
48	.075	11/64	.1718	19/64	.2968	
47	.077	17	.172	N	.302	
5/64	.078	16	.175	5/16	.3125	
46	.079	15	.178	0	.316	
45	.081	14	.180	P	.323	
44	.085	13	.182	21/64	.3281	

12

43

.088

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

SANDERSON SPECIAL DRILL RODS—Continued

ROUNDS — 3 FOOT LENGTHS—Continued

Gauge or	Size	Gauge or	Size	Gauge or	Size
Nearest	Decimals	Nearest	Decimals	Nearest	Decimals
Fractional	of an	Fractional	of an	Fractional	
Dimension	Inch	Dimension	Inch	Dimension	of an
17011001030010	1 nen	Dimension	Inch	Dimension	Inch
Y)					
R	.339	31/64	.4843	49/64	.7656
11/32	.3437	1/2	.500	25/32	.7812
S	.348	33/64	.5156	51/64	.7968
	.358	17/32	.5312	13/16	.8125
23/64	.3593	35/64	.5468	53/64	.8281
U	.368	9/16	.5625	27/32	.8437
3/8	.375	37/64	.5781		
v	.377		.5937	55/64	.8593
w	.386	19/32		7/8	.875
		39/64	.6093	29/32	.9062
25/64	.3906	5/8	.625	5964	.9218
X	.397	41/64	.6406	15/16	.9375
Y	.404	21/32	.6562	31/32	.9687
13 /32	.4062	43/64	.6718	1	1.000
Z	.413	11/16	.6875	11/16	1.0625
27/64	.4218	45/64	.7031	11/8	1.125
7/16	.4375	23/32	.7187	13/16	1.1875
29/64	.4531	47/64	.7343	11/4	1.250
15/32	.4687	3/4	.750	11/2	1.500
50	HADEC	2 5007 11	NOTUC	MAE DDAN	
34	UAKES —	3 FOOT LI	NG IHS—I	IME DRAV	M
1/16	.0625	1/4	.250	9/16	.5625
3/22	.0937	5/16	3125	716 5%	625

1/16	.0625	1/4	.250	9/16	.5625
3/32	.0937	5/16	.3125	5/8	.625
1/8	.125	3/8	.375	3/4	.750
5/32	.1562	- 7/16	.4375	7/8	.875
3/16	.1875	1/2	.500	1	1.000

AIRDI-150 DRILL ROD

Carbon 1.50%

Chromium 11.50% Vanadium 0.90% Molybdenum 0.80%

ROUNDS—3 FOOT LENGTHS

Gauge or	Size	Gauge or	Size	Gauge or	Size
Nearest	Decimals	Nearest	Decimals	Nearest	Decimals
Fractional	of an	Fractional	of an	Fractional	of an
Dimension	Inch	Dimension	Inch	Dimension	Inch
1/4	.250	3/8	.375	3/4	.750
5/16	.3125	1/2	.500	1	1.000

ROUNDS—3 FOOT LENGTHS

Gauge or	Size	Gauge or	Size	Gauge or	Size
Nearest	Decimals	Nearest	Decimals	Nearest	Decimals
Fractional	of an	Fractional	of an	Fractional	of an
Dimension	Inch	Dimension	Inch	Dimension	Inch
1/16 3/32	.0625	1/8	.125	3/16	.1875

VICTOR DRILL RODS

Carbon 1.00%

Victor is recommended for general use where a good quality hardening steel is required, demanding the size, accuracy and finish of drill rods. This grade is furnished true to roundness and within very close size tolerances. It is produced in special lengths for production applications. Widely used in automatic screw machine work, it has excellent free machining qualities. This grade is not recommended for use in comparison with the Special Carbon Tool Steel grade when a keen cutting edge is required. For shafts, rollers, pins, dowel pins, push rods, and other hardened wearing parts, Victor Drill Rod offers many of the advantages of the higher grade rods at a cost consistent with the physical properties required in the finished product.

ROUNDS - 3 FOOT LENGTHS

Gauge or	Size	Gauge or	Size	Gauge or	Size
Nearest	Decimals	Nearest	Decimals	Nearest	Decimals
Fractional	of an	Fractional	of an	Fractional	of an
Dimension	Inch	Dimension	Inch	Dimension	Inch
1/6	.0625	44	.085	35	.108
52	.063	43	.088	1/4	.1093
51	.066	42	.092	34	.110
50	.069	³ ⁄ ₃	.0937	33	.112
49	.072	41	.095	32	.115
48	.075	40	.097	31	.120
47	.077	39	.099	½	.125
564	.0781	38	.101	30	.127
46	.079	37	.103	29	.134
45	.081	36	.106	28	.139

OIL HARDENING

WATER

HOLLOW TOOL STEELS

VICTOR DRILL RODS—Continued

	ROUNDS—3 FOOT LENGTHS—Continued						
Gauge or Nearest Fractional Dimension	Size Decimals of an Inch	Gauge or Nearest Fractional Dimension	Size Decimals of an Inch	Gauge or Nearest Fractional Dimension	Size Decimals of an Inch		
26 25 24	.1406 .143 .146 .148 .151	H I J K	.266 .272 .277 .281 .2812	41/64 21/32 43/64 11/16 45/64	.6406 .6562 .6718 .6875 .7031		
23 22 5⁄3 21 20	.153 .155 .1562 .157 .161	L M 1964 N 5/16	.290 .295 .2968 .302 .3125	23 ₃₂ 47 ₆₄ 3,4 49 ₆₄ 25 ₃₂	.7187 .7343 .750 .7656 .7812		
19 18 11 ₆₄ 17 16	.164 .168 .1718 .172	O P 21/64 Q R	.316 .323 .3281 .332 .339	51/64 13/16 53/64 27/32 55/64	.7968 .8125 .8281 .84375		
15 14 13 12	.178 .180 .182 .185 .1875	11 _{/22} S T 23/64 U	.3437 .348 .358 .3593 .368	7/8 57/64 29/32 59/64 15/16	.875 .8906 .9062 .9218		
11 10 9 8	.188 .191 .194 .197 .199	3/8 V W 25/64 X	.375 .377 .386 .3906	61/64 81/32 63/64 1 11/64	.9531 .9687 .9843 1.000 1.0156		
6 1364 5 4	.201 .2031 .204 .207 .212	Y 13/32 Z 27/64	.404 .4062 .413 .4218	$1\frac{1}{32}$ $1\frac{3}{64}$ $1\frac{1}{16}$ $1\frac{3}{32}$	1.0312 1.0468 1.0625 1.0937		
7 ₅₂ 2 1 A	.212 .2187 .219 .227 .234 .2343	7/16 29/64 15/52 31/64 1/2 33/64	.4531 .4687 .4843 .500 .5156	$1\frac{1}{8}$ $1\frac{3}{16}$ $1\frac{7}{32}$ $1\frac{1}{4}$ $1\frac{9}{32}$ $1\frac{5}{16}$	1.125 1.1875 1.2187 1.250 1.2812 1.3215		
B C D 1/4 F	.238 .242 .246 .250 .257	17 _{\$2} 35 ₆₄ 916 37 ₆₄ 19 _{\$2}	.5312 .5468 .5625 .5781 .5937	13/8 113/52 17/6 11/2 15/8	1.375 1.4062 1.4375 1.500 1.625		
G 17/64	.261 .2656	39/64 5/8	.6093 .625	13/4	1.750 2.000		

ROUNDS — 12 FOOT LENGTHS

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Size Decimals of an Inch .2812 .3125 .375 .4375 .500 .5625 .625 .6875	Gauge or Nearest Fractional Dimension 3/4 13/16 7/8 15/16 1 11/8 11/4 11/2	Size Decimals of an Inch .750 .8125 .875 .9375 1.000 1.125 1.250 1.500
--	--	--	--

NU-DIE DRILL RODS

Carbon 0.40% Vanadium 0.35%

Silicon 1.05%

Chromium 5.00%

35% Molybdenum 1.35%

Nu-Die Drill Rods are widely used in the die casting industry for such applications as cores and various types of pins.

ROUNDS — 3 FOOT LENGTHS

Gauge or	Size	Gauge or	Size	Gauge or	Size
Nearest	Decimals	Nearest	Decimals	Nearest	Decimals
Fractional	of an	Fractional	of an	Fractional	of an
Dimension	Inch	Dimension	Inch	Dimension	Inch
3/32	.0937	11/ ₃₂ 3/8 13/ ₃₂ 7/16 15/ ₃₂	.3437	21 ₃₂	.6562
1/8	.125		.375	11 ₁₆	.6875
5/3/2	.1562		.4062	23 ₃₂	.7187
3/16	.1875		.4375	47 ₆₄	.7343
7/32	.2187		.4687	3 ₄	.750
1/4 17/64 9/32 5/16	.250 .2656 .2812 .3125	1/2 9/16 5/8	.50) .5625 .625	13/16 7/8 1	.8125 .875 1.000

CRUCIBLE REZISTAL® STAINLESS STEELS

Index

Page	
Rezistal Stainless Steel Selector 117	Rezi
Rezistal 201 Stainless Steel 119	Rezi
Rezistal 202 Stainless Steel 120	SI
Rezistal 301 Stainless Steel Sheets 120	P
Rezistal 302 Stainless Steel	Rezi
Sheets121, 122, 123	B
Wire Coils, Billets 123	Rezi
Stainless Wire123, 124	R
Rezistal 303 Stainless Steel Rounds124, 125	S
Squares, Billets, Hexagons 126	Rezi
Rezistal 304 Stainless Steel	В
Sheets127, 128	Rezi
Plates, Rounds	R
Squares, Billets, Hexagons, Flats 130 Angles, Round Coils	Cruc
Wire Coils 132	Rez
Rezistal 310 Stainless Steel	SI
Sheets, Plates, Billets132, 133	
Rezistal 314 Stainless Steel Billets 133	Rezi
Rezistal 316 Stainless Steel	
Sheets	Rezi
Plates	Rezi
Billets, Hexagons, Flats,	R
Stainless Wire Coils136, 137	W
Rezistal 321 Stainless Steel	Rezi
Sheets	R
Rounds138, 139	Rezi
Billets, Hexagons, Flats 139	R

Page
Rezistal 325 Stainless Steel Rounds 140
Rezistal 347 Stainless Steel
Sheets140, 141
Plates, Rounds, Coils 141
Rezistal 410 Stainless Steel Sheets 142
Rounds142, 143 Billets, Hexagons, Wire Coils143
Rezistal 416 Stainless Steel Rounds144, 145, 146
Squares, Billets, Hexagons146, 147
Rezistal 420 Stainless Steel
Billets, Wire Coils, Rounds 147
Rezistal 420F Stainless Steel
Round Bars 148
Crucible 422 Stainless Steel Billets 148
Rezistal 430 Stainless Steel
Sheets, Round Bars, Stainless Wire Coils
Rezistal 431 Stainless Steel Rounds, Squares, Hexagons, Flats 150
Rezistal 440A Stainless Steel Rounds 151
Rezistal 440C Stainless Steel
Rounds
Wire Coils 153
Rezistal 442 Stainless Steel
Rounds, Billets 153
Rezistal 446 Stainless Steel
Rounds, Squares, Billets 154

CRUCIBLE REZISTAL® STAINLESS STEELS

Index

Page	Page
Rezistal Stainless Steel Selector 117	Rezistal 325 Stainless Steel Rounds 14
Rezistal 201 Stainless Steel 119	
And the second s	Rezistal 347 Stainless Steel Sheets140, 14
Rezistal 202 Stainless Steel 120	Plates, Rounds, Coils
Rezistal 301 Stainless Steel Sheets 120	Rezistal 410 Stainless Steel Sheets 14
Rezistal 302 Stainless Steel	Rounds
Sheets121, 122, 123	Billets, Hexagons, Wire Coils 14
Wire Coils, Billets	Rezistal 416 Stainless Steel
	Rounds144, 145, 146
Rezistal 303 Stainless Steel Rounds124, 125	Squares, Billets, Hexagons146, 147
Squares, Billets, Hexagons 126	Rezistal 420 Stainless Steel
Rezistal 304 Stainless Steel	Billets, Wire Coils, Rounds 147
Sheets127, 128	Rezistal 420F Stainless Steel
Plates, Rounds 129	Round Bars148
Squares, Billets, Hexagons, Flats 130	Crucible 422 Stainless Steel Billets 148
Angles, Round Coils	Rezistal 430 Stainless Steel
Rezistal 310 Stainless Steel	Sheets, Round Bars, Stainless
Sheets, Plates, Billets132, 133	Wire Coils 149
Rezistal 314 Stainless Steel Billets 133	Rezistal 431 Stainless Steel
	Rounds, Squares, Hexagons, Flats 150
Rezistal 316 Stainless Steel Sheets	Rezistal 440A Stainless Steel Rounds 15
Plates	
Rounds135, 136	Rezistal 440C Stainless Steel Rounds
Billets, Hexagons, Flats,	Billets 151, 152
Stainless Wire Coils136, 137	Wire Coils 153
Rezistal 321 Stainless Steel	Rezistal 442 Stainless Steel
Sheets137, 138 Plates138	Rounds, Billets 153
Rounds	Rezistal 446 Stainless Steel
Billets, Hexagons, Flats 139	Rounds, Squares, Billets 154

The answers to most of your questions about stainless steels are right at your finger tips, when you use Crucible's unique new Stainless Steel Selector.

Want to know the machinability characteristics of a stainless grade? Resistance to corrosion or scaling? Physical or mechanical properties? You can get the answers to these and other questions simply by setting the arrow on the Selector slide at the proper window. It's just as quick and easy as that.

And almost as fast as you get the answer, you can get the steel you need. For many of the REZISTAL stainless steels shown on the Selector are carried in stock in Crucible warehouses conveniently located throughout the country.

Write for your free copy today!

HOW THE SELECTOR WORKS:

Start with the problem. For example, resistance to corrosion in contact with copper sulfate. Just set the slide at the proper index number shown on the Selector (in this case on the back), and you have the answer in a second—grades 302 and 316 are fully resistant to this form of attack.

REZISTAL 202 STAINLESS STEEL

Carbon 0.15% max. Manganese 7.50/10.00% max. Silicon 1.00% max. Phosphorus 0.060% max. Sulphur 0.030% max. Chromium 17.00/19.00% Nickel 4.00/6.00% Nitrogen 0.25% max.

Rezistal 202 is a non-hardenable austenitic chromium-manganese-nickel steel which is a general purpose corrosion resisting steel. This grade is non-magnetic in the annealed condition, but is slightly magnetic when cold worked.

PHYSICAL PROPERTIES

Modulus of Elasticity in Tension—psi. 28,600,000 Modulus of Elasticity in Torsion—psi 12,600,000 Specific Electrical Resistance
Specific Electrical Resistance
Room Temperature—microhms/cu. in
Specific Heat—Btu/lb./°F (32-212F)
Specific Gravity
Weight—(lb./cu. in.)
Thermal Conductivity—Btu/hr./sq. ft./°F/ft.
At 200 F
1000 F
Mean Coefficient of Thermal Expansion—in./in./°F x 10 ⁻⁶
32- 212 F
32- 600 F
32-1000 F
32–1200 F
Melting Point Range—F

SIZE RANGES

Any of the sizes and finishes listed on the following pages for Rezistal 302 Stainless Steel are available in the Rezistal 202 material.

REZISTAL 301 STAINLESS STEEL

Carbon 0.15% max. Manganese 2.00% max. Silicon 1.00% max. Phosphorus 0.045% max. Sulphur 0.03% max. Chromium 16.00/18.00% Nickel 6.00/8.00%

Rezistal 301 is a non-hardenable austenitic chromium nickel steel, capable of easily attaining high tensile strength and excellent ductility by moderate or severe cold working. Rezistal 301 is non-magnetic in the annealed condition, but becomes slightly magnetic when cold worked.

SHEETS

#2B Finish				
Est. Lbs. per Sheet	Size ¼ Hard	Est. Lbs. per Sheet	Size ½ Hard	
78.750 63.000 47.25 39.375 31.50	16 Ga x 36 x 120 18 Ga x 36 x 120 20 Ga x 36 x 120 22 Ga x 36 x 120 24 Ga x 36 x 120	22.1 78.750 63.00 47.25	25 Ga x 36 x 120 16 Ga x 36 x 120 18 Ga x 36 x 120 20 Ga x 36 x 120 25 Ga x 36 x 120	

22.1

25 Ga x 36 x 120

REZISTAL 302 STAINLESS STEEL

Carbon over 0.08/0.20% Manganese 2.00% max. Silicon 1.00% max.

Phosphorus 0.04% max. Sulphur 0.03% max. Chromium 17.00/19.00%

Nickel 8.00/10.00%

Rezistal 302 is a non-hardenable austenitic chromium nickel steel which is the general purpose corrosion resisting steel. This grade is non-magnetic in the annealed condition, but is slightly magnetic when cold worked.

SHEETS

#2B Finish

			1
Est. Lbs.		Est. Lbs.	
per Sheet	Size	per Sheet	Size
Participation	2000	per isiteet	2000
000.00	10.0 10 100	110.0	10 0 54 100
236.26	10 Ga x 48 x 120	118.3	16 Ga x 54 x 120
126.00	11 Ga x 36 x 96	50.40	18 Ga x 36 x 96
157.50	11 Ga x 36 x 120	63.00	18 Ga x 36 x 120
210.00	11 Ga x 48 x 120	84.00	18 Ga x 48 x 120
110.25	12 Ga x 36 x 96	39.812	19 Ga x 26 x 120
107.00	10 C 90 100	55 105	10 0 - 20 - 100
137.82	12 Ga x 36 x 120	55.125	19 Ga x 36 x 120
183.76	12 Ga x 48 x 120	37.80	20 Ga x 36 x 96
229.5	12 Ga x 60 x 120	47.25	20 Ga x 36 x 120
94.6	13 Ga x 36 x 96	50.40	20 Ga x 48 x 96
118.12	13 Ga x 36 x 120	63.00	20 Ga x 48 x 120
157 50	19 0 - 40 - 100	21 700	99 C 96 06
157.50	13 Ga x 48 x 120	31.500	22 Ga x 36 x 96
65.6	14 Ga x 30 x 96	39.375	22 Ga x 36 x 120
82.036	14 Ga x 30 x 120	52,500	22 Ga x 48 x 120
78.755	14 Ga x 36 x 96	21.000	24 Ga x 30 x 96
98.444	14 Ga x 36 x 120	25.200	24 Ga x 36 x 96
114.85	14 Ga x 42 x 120	31.500	24 Ga x 36 x 120
			24 Ga x 48 x 96
105.1	14 Ga x 48 x 96	33.600	
131.26	14 Ga x 48 x 120	42.000	24 Ga x 48 x 120
63.000	16 Ga x 36 x 96	18.900	26 Ga x 36 x 96
78.750	16 Ga x 36 x 120	23.625	26 Ga x 36 x 120
105.00	16 Ga x 48 x 120		

#3 Finish

0 Ga x 36 x 120	103.76	12 Ga x 48 x 120
0 Ga x 48 x 120	65.6	14 Ga x 30 x 96
2 Ga x 36 x 96	82.036	14 Ga x 30 x 120
2 Ga x 36 x 120	78.755	14 Ga x 36 x 96
2 Ga x 42 x 120	98,444	14 Ga x 36 x 120
2 Ga x 48 x 96	91.8	14 Ga x 42 x 96
	0 Ga x 48 x 120 2 Ga x 36 x 96 2 Ga x 36 x 120 2 Ga x 42 x 120	0 Ga x 48 x 120 65.6 2 Ga x 36 x 96 82.036 2 Ga x 36 x 120 78.755 2 Ga x 42 x 120 98.444

REZISTAL 302 STAINLESS STEEL — Continued

SHEETS—Continued

#3 Finish—Continued

Est. Lbs. per Sheet	Size	Est. Lbs. per Sheet	Size
114.85 105.1 131.26 52.6 65.625 63.000 78.750 91.875 84.000 105.00 42.00 52.50 50.40	14 Ga x 42 x 120 14 Ga x 48 x 96 14 Ga x 48 x 120 16 Ga x 30 x 96 16 Ga x 30 x 120 16 Ga x 36 x 120 16 Ga x 36 x 120 16 Ga x 42 x 120 16 Ga x 48 x 96 16 Ga x 48 x 120 18 Ga x 30 x 96 18 Ga x 36 x 96	63.00 73.50 67.50 84.00 37.80 47.25 63.00 31.500 39.375 52.500 25.200 31.50	18 Ga x 36 x 120 18 Ga x 42 x 120 18 Ga x 48 x 96 18 Ga x 48 x 120 20 Ga x 36 x 96 20 Ga x 36 x 120 20 Ga x 48 x 120 22 Ga x 36 x 96 22 Ga x 36 x 120 22 Ga x 36 x 120 24 Ga x 36 x 96 24 Ga x 36 x 96 25 Ga x 36 x 120 26 Ga x 36 x 120 27 Ga x 36 x 120 28 Ga x 36 x 120 29 Ga x 36 x 120

#4 Finish

126.00	11 Ga x 36 x 96	131.5	16 Ga x 60 x 120
157.50	11 Ga x 36 x 120	42.00	18 Ga x 30 x 96
184.0	11 Ga x 42 x 120	52.50	18 Ga x 30 x 120
210.00	11 Ga x 48 x 120	50.40	18 Ga x 36 x 96
110.25	12 Ga x 36 x 96	63.00	18 Ga x 36 x 120
137.82	12 Ga x 36 x 120	67.50	18 Ga x 48 x 96
160.79	12 Ga x 42 x 120	84.00	18 Ga x 48 x 120
183.76	12 Ga x 48 x 120	31.6	20 Ga x 30 x 96
128.63	12 Ga x 42 x 96	39.375	20 Ga x 30 x 120
270.0	12 Ga x 60 x 144	37.80	20 Ga x 36 x 96
78.755	14 Ga x 36 x 96	47.25	20 Ga x 36 x 120
98.444	14 Ga x 36 x 120	50.40	20 Ga x 48 x 96
105.1	14 Ga x 48 x 96	63.00	20 Ga x 48 x 120
131.26	14 Ga x 48 x 120	26.250	22 Ga x 30 x 96
147.6	14 Ga x 54 x 120	32.812	22 Ga x 30 x 120
164.0	14 Ga x 60 x 120	31.500	22 Ga x 36 x 96
196.8	14 Ga x 60 x 144	39.375	22 Ga x 36 x 120
65.625	16 Ga x 30 x 120	42.000	22 Ga x 48 x 96
63.000	16 Ga x 36 x 96	52.500	22 Ga x 48 x 120
78.750	16 Ga x 36 x 120	21.000	24 Ga x 30 x 96
73.500	16 Ga x 42 x 96	26.250	24 Ga x 30 x 120
91.875	16 Ga x 42 x 120	25.200	24 Ga x 36 x 96
105.00	16 Ga x 48 x 120	31.500	24 Ga x 36 x 120

REZISTAL 302 STAINLESS STEEL—Continued

SHEETS—Continued

E-1 11			
Est. Lbs. per Sheet	Size	Est. Lbs. per Sheei	Size
	-	-	
33.600	24 Ga x 48 x 96	18.900	26 Ga x 36 x 96
42.000	24 Ga x 48 x 120	19.688	26 Ga x 30 x 120
15.750	26 Ga x 30 x 96	23.625	26 Ga x 36 x 120

#2D Finish

118.0	13 Ga x 36 x 120	47.25	20 Ga x 36 x 120
78.750	16 Ga x 36 x 120	31.500	24 Ga x 36 x 120
63.00	18 Ga x 36 x 120	27.560	25 Ga x 26 x 120
63.00	18 Ga x 36 x 120	27.569	25 Ga x 36 x 120

BILLETS R.C. Square

Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size
54.40 122.4	4 6	341.33	10

WIRE COILS

Stainless, Medium, Hard, Cold Drawn, Bright

.080 Dia. .092 " .105 Dia. .120 "	.135 Dia.
---	-----------

Cold Drawn Annealed Coils

½ Rd.	¾6 Rd.	1/4 Rd.	5∕16 Rd.

STAINLESS WIRE

Condition A, Spec. QQ-W-423-5 lbs. Spools

.020	.025	.032	.041	.047

REZISTAL 302 STAINLESS STEEL—Continued STAINLESS WIRE COILS

Condition B, Spec. QQ-W-423

.010 .012 .018 .022 .024	.029 .041 .045 .047	.062 .072 .080 .091 .105	.135 .148 .156 .162 .177	.192 .207 .225 .243 .250
.026	.054	.120	.187	.200

REZISTAL 303 STAINLESS STEEL

Carbon 0.15% max. Manganese 2.00% max. Silicon 1.00% max.

Phosphorus 0.04% max. Sulphur 0.07% min. Chromium 17.00/19.00%

Nickel 8.00/10.00% Molybdenum 0.60% max.

Rezistal 303 is a non-hardenable austenitic chromium-nickel steel to which elements have been added to improve machinability and non-galling characteristics. This grade is non-magnetic in the annealed condition but is slightly magnetic when cold worked. For applications where slightly higher transverse properties are desired and slightly lower machinability is acceptable, a selenium bearing modification can be supplied.

Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size
.023 .042 .042 .042 .065 .094 .094 .128 .167 .167	332 CD 348 CD 348 CG 348 CG Pol. 352 CD 346 CD 344 CD 344 CG	.316 .376 .376 .376 .441 .511 .511 .587 .675	11/ ₃₂ CD 3/ ₈ CD 3/ ₈ CG Pol. 13/ ₅₂ CD 1/ ₆ CG Pol. 15/ ₅₂ CD 1/ ₂ CG 1/ ₂ CG Pol.
.167 .211 .261 .261 .300	14 CG Pol. 92 CD 56 CD 56 CG 335 CD	.754 .845 1.043 1.043 1.262	17/ ₈₂ CG 9/ ₆ CG 5/ ₈ CG 5/ ₈ CG Pol.

REZISTAL 303 STAINLESS STEEL — Continued

ROUNDS—Continued

	ROUNDS—Continued			
Est. Lbs.		Est. Lbs.		
per Ft.	Size	per Ft.	Size	
per 1 vi	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		~~~~	
1.502	3/4 CG	10.68	2 CG Pol.	
1.502	34 CG Pol.	12.06	21/8 CG	
1.763	13/16 CG	12.06	21/8 CG Pol.	
2.045	% CG	12.78	23/16 CG	
2.045	7/8 CG Pol.	12.78	23/16 CG Pol.	
2.347	15/ ₆ CG	13.52	21/4 CG	
2.670	1 CG	13.52	2½ CG Pol.	
2.670	1 CG Pol.	15.06	23/8 CG	
3.015	11/6 CG	16.69	2½ CG	
3.380	11/8 CG	16.69	2½ CG Pol.	
3.380	1½ CG Pol.	18.40	25% CG	
3.766	13/6 CG	19.20	211/6 CG	
3.766	13/6 CG Pol.	19.20	211/16 CG Pol.	
4.172	1½ CG	20.19	23/4 CG	
4.172	1¼ CG Pol.	20.19	2¾ CG Pol.	
4.172	174 CG 101.	20.19	2% CG Fol.	
4.600	15/16 CG	22.07	21/8 CG	
4.600	15/6 CG Pol.	23.04	215/16 CG Pol.	
5.049	13/8 CG	24.03	3 CG	
5.049	13% CG Pol.	24.03	3 CG Pol.	
5.518	17/6 CG	20.08	31/8 CG	
5.518	11/6 CG Pol.	28.21	3¼ CG	
6.008	1½ CG	32.71	3½ CG	
6.008	1½ CG Pol.	32.71	3½ RT	
6.519	1% CG	32.71	3½ CG Pol.	
7.051	15/8 CG	42.73	4 CG	
7.051	15% CG Pol.	48.23	41/4 ST	
7.604	111/16 CG	54.08	4½ ST	
7.604	111/6 CG Pol.	57.12	45/8 ST	
8.178	1¾ CG	57.12	45% CG	
8.178	13/4 CG Pol.	60.25	43/4 ST	
8.773	113/6 CG	60.25	43/4 CG	
9.388	17/8 CG	66.76	5 RT	
9.388	17/8 HR AP	66.76	5 ST	
10.02	115/16 CG	73.600		
10.02	115/6 CG Pol.	80.78	$5\frac{1}{4}$ ST $5\frac{1}{2}$ ST	
10.68	2 CD 2 CG	96.13	6 ST	
10.68	2 00			

REZISTAL 303 STAINLESS STEEL—Continued

SQUARES

Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size
.123 .213 .332 .478	\$\\\^{\}6 CD \\\\^{\}4 CD \\\\^{\}5\\\^{\}6 CD \\\^{3}\\\^{8} CD \\\\^{3}\\^{8} CD \\\\^{3}\\^{8} CD \\\\^{3}\\^{8} CD \\\\^{3}\\^{8} CD \\\\^{3}\\^{8} CD \\\\^{8}\\^{8} CD \\\\^{8}\\^{8} CD \\\\^{8}\\^{8} CD \\\^{8}\\^{8} CD \\\^{8}\\^{8}\\^{8} CD \\\^{8}\\	1.913 2.603 3.400 5.313	34 CD 38 CD 1 CD 114 CD
.651 .850 1.075 1.328	7/6 CD 1/2 CD 9/6 CD 5/8 CD	7.650 10.23 13.60	1½ CD 1¾ CD 2 CD

BILLETS

R.C. Square

54.40 122.4	4 6	219.9	8

HEXAGONS

nexagons -					
	104	3/16 CI		3.324	11/6 CD
	184	1/4 CD		3.727	1½ CD
	288	5/16 CI		4.601	1¼ CD
	414	3/8 CD		5.072	15/16 CD
	564	7/6 CD)	5.567	13% CD
	736	½ CD)	6,625	1½ CD
	932	% CD)	7.775	13% CD
	150	5/8 CD)	9.018	13/4 CD
	392	11/16 CD)	10.35	17/8 CD
1.0	656	34 CD)	11.95	2 ° CD
1.9	944	13/16 CD	,	13.30	$2\frac{1}{8}$ CD
2.2	254	7/8 CD		14.91	2½ CD
2.5	588	15/16 CD		16.61	23/8 CD
2.9	945	1 CD		18.404	2½ CD

REZISTAL 304 STAINLESS STEEL

Rezistal 304 is a non-hardenable austenitic low carbon chromium nickel steel which is a general purpose corrosion resisting steel. This grade is nonmagnetic in the annealed condition, but is slightly magnetic when cold worked.

SHEETS

Est. Lbs. per Sheet	Size	Est. Lbs. per Sheet	Size
252.00	11 Ga x 48 x 144	43.319	21 Ga x 36 x 120
55.125	19 Ga x 36 x 120	39.375	22 Ga x 36 x 120

#2B Finish

#25 1111311			
288.76	8 Ga x 48 x 120	105.1	14 Ga x 48 x 96
210.0	9 Ga x 48 x 96	131.36	14 Ga x 48 x 120
262.50	9 Ga x 48 x 120	157.4	14 Ga x 48 x 144
147.66	10 Ga x 30 x 120	164.07	14 Ga x 60 x 120
141.76	10 Ga x 36 x 96	196.8	14 Ga x 60 x 144
177.19	10 Ga x 36 x 120	65.625	16 Ga x 30 x 120
189.01	10 Ga x 48 x 96	63.000	16 Ga x 36 x 96
236.26	10 Ga x 48 x 120	78.750	16 Ga x 36 x 120
126.00	11 Ga x 36 x 96	91.875	16 Ga x 42 x 120
157.50	11 Ga x 36 x 120	84.000	16 Ga x 48 x 96
168.00	11 Ga x 48 x 96	105.00	16 Ga x 48 x 120
210.00	11 Ga x 48 x 120	126.2	16 Ga x 48 x 144
262.50	11 Ga x 60 x 120	157.50	16 Ga x 60 x 144
315.00	11 Ga x 60 x 144	42.00	18 Ga x 30 x 96
114.85	12 Ga x 30 x 120	52.50	18 Ga x 30 x 120
110.25	10 0 20 00	50.40	10.0 00 00
137.82	12 Ga x 36 x 96 12 Ga x 36 x 120	50.40	18 Ga x 36 x 96
160.79	12 Ga x 30 x 120 12 Ga x 42 x 120	63.00 73.50	18 Ga x 36 x 120 18 Ga x 42 x 120
147.01	12 Ga x 42 x 120 12 Ga x 48 x 96	67.50	18 Ga x 42 x 120 18 Ga x 48 x 96
183.76	12 Ga x 48 x 120	84.00	18 Ga x 48 x 90 18 Ga x 48 x 120
100.70	12 Ga x 46 x 120	84.00	18 Ga x 48 x 120
229.70	12 Ga x 60 x 120	100.8	18 Ga x 48 x 144
94.500	13 Ga x 36 x 96	31.50	20 Ga x 30 x 96
118.12	13 Ga x 36 x 120	39.375	20 Ga x 30 x 120
137.81	13 Ga x 42 x 120	37.80	20 Ga x 36 x 96
157.50	13 Ga x 48 x 120	47.25	20 Ga x 36 x 120
65.629	14 Ga x 30 x 96	50.40	20 Ga x 48 x 96
82.036	14 Ga x 30 x 120	63.00	20 Ga x 48 x 120
78.755	14 Ga x 36 x 96	75.8	20 Ga x 48 x 144
98.444	14 Ga x 36 x 120	26.250	22 Ga x 30 x 96
114.85	14 Ga x 42 x 120	38.812	22 Ga x 30 x 120
		00.012	== Ga A 00 A 120

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

REZISTAL 304 STAINLESS STEEL - Continued

SHEETS—Continued

#2B Finish—Continued

Est. Lbs. per Sheet	Size	Est. Lbs. per Sheet	Size
31.500	22 Ga x 36 x 96	31.500	24 Ga x 36 x 120
39.375	22 Ga x 36 x 120	33.600	24 Ga x 48 x 96
36.750	22 Ga x 42 x 96	42.000	24 Ga x 48 x 120
52.500	22 Ga x 48 x 120	15.750	26 Ga x 30 x 96
21.00	24 Ga x 30 x 96	18.900	26 Ga x 36 x 96
26.250	24 Ga x 30 x 120	19.688	26 Ga x 30 x 120
25.200	24 Ga x 36 x 96	23.625	26 Ga x 36 x 120

#3 Finish

183.76 98.444 131.36 78.750	12 Ga x 48 x 120 14 Ga x 36 x 120 14 Ga x 48 x 120 16 Ga x 36 x 120 16 Ga x 48 x 120	63.00 47.25 63.00 39.375	18 Ga x 36 x 120 20 Ga x 36 x 120 20 Ga x 48 x 120 22 Ga x 36 x 120
105.00	16 Ga x 48 x 120		

#4 Finish

177.19 10 Ga x 36 x 120 236.26 10 Ga x 48 x 120	67.50 84.00	18 Ga x 48 x 96 18 Ga x 48 x 120
126.00 11 Ga x 36 x 96 157.50 11 Ga x 36 x 120	73.50	19 Ga x 48 x 120
210.00 11 Ga x 48 x 120	31.50 39.375	20 Ga x 30 x 96 20 Ga x 30 x 120
110.25 12 Ga x 36 x 96	37.80	20 Ga x 36 x 96
137.82 12 Ga x 36 x 120	47.25	20 Ga x 36 x 120
183.76 12 Ga x 48 x 120	50.40	20 Ga x 48 x 96
78.755 14 Ga x 36 x 96	63.00	20 Ga x 48 x 120
98.444 14 Ga x 36 x 120	31.500	22 Ga x 36 x 96
105.1 14 Ga x 48 x 96	39.375	22 Ga x 36 x 120
131.26 14 Ga x 48 x 120	52.500	22 Ga x 48 x 120
65.625 16 Ga x 30 x 120	26.250	24 Ga x 30 x 120
63.000 16 Ga x 36 x 96	25,200	24 Ga x 36 x 96
78.750 16 Ga x 36 x 120	31.500	24 Ga x 36 x 120
105.00 16 Ga x 48 x 120	33.600	24 Ga x 48 x 96
52.50 18 Ga x 30 x 120	42.000	24 Ga x 48 x 120
50.40 18 Ga x 36 x 96	18.900	26 Ga x 36 x 96
63.00 18 Ga x 36 x 120	23.625	26 Ga x 36 x 120

REZISTAL 304 STAINLESS STEEL—Continued

PLATES #1 Finish

3/₁₆ x 36 x 120 3/₁₆ x 48 x 120 1/₄ x 36 x 96 1/4 x 36 x 120 1/4 x 48 x 120 ALLOY STEELS

DRILL STEELS

CONTOUR

	ROUNDS			
Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size	
.095 .169 .213 .264 .319	%6 CD 14 CD %2 CD %6 CD	3.766 4.218 4.600 5.105 5.579	1¾6 CD 1¼ CG 1¾6 CG 1¾6 CG 1¾6 CG	
.380 .446 .517 .517 .593	3/8 CD 13/2 CD 7/6 CD 7/6 HR AP 15/32 CD	6.074 6.519 7.129 8.268 8.773	1½ CG 1% CG 15% CG 134 CG 11% CG	
.668 .675 .854 1.00 1.054	.496 HR N ½ CG % CG .620 HR N 5% CG	9.491 10.80 12.19 13.67 15.23	11% CG 2 CG 21% CG 214 CG 23% CG	
1,262 1,440 1,519 1,782 2,067	11/6 CG .745 HR N 3/4 CG 13/6 CG 7/8 CG	16.89 18.60 20.41 22.07 24.29	2½ CG 2½ CG 2½ CG 2¾ CG 2½ CG 3 CG	
2.373 2.600 2.699 3.417 3.766	15/6 CG .994 HR N 1 CG 11/8 CG 13/6 CG HR	28.52 32.71 32.71 42.73	3¼ CG 3½ CG 3½ HR AP 4 CG	

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

REZISTAL 304 STAINLESS STEEL—Continued

KLZIO	TAL SOT SIAIN	ress sieer.	Continued
	squ	ARES	
Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size
.859 1.342 1.934 2.603	1/2 HR AP 5/8 HR AP 3/4 HR AP 7/8 HR	3.603 3.417 5.313 7.734	1 HR AP 1½ HR 1¼ HR AP 1½ HR AP
	BILI R.C. S	LETS iquare	
55.00 55.00 123.7	4 HR 4 HR N 6 HR	123.7 219.9	6 HR N 8 HR
	HEXA	GONS	
1.162 1.674	5% CD 34 CD	2.977	1 CD
9		ATS AP	
.161 .215 .268 .321 .376 .430 .537 .644 .759 1.072 1.294 .242 .322 .403	1/8 x 3/8 1/8 x 1/2 1/8 x 5/8 1/8 x 3/4 1/8 x 7/8 1/8 x 1 1/8 x 11/4 1/8 x 11/2 1/8 x 2 1/8 x 2 1/8 x 2 1/8 x 3 3/6 x 3/8 3/6 x 1/2 3/6 x 5/8	2.24 2.578 .430 .537 .643 .859 1.072 1.294 1.506 1.719 2.143 2.578 3.437 5.156	3/6 x 31/2 3/6 x 4 1/4 x 1/2 1/4 x 5/8 1/4 x 3/4 1/4 x 1 1/4 x 11/4 1/4 x 13/4 1/4 x 2 1/4 x 21/2 1/4 x 3 1/4 x 4 1/4 x 6
.482 .645 .806 .968 1.294 1.44 1.607 1.931	3/6 x 3/4 3/6 x 1 3/6 x 11/4 3/6 x 11/2 3/6 x 2 3/6 x 21/4 3/6 x 21/2 3/6 x 3	.537 1.072 1.347 1.607 2.143 2.679 .645 .968	5/6 x 1/2 5/6 x 1 1/4 5/6 x 1 1/2 5/6 x 2 2 5/6 x 2 1/2 3/8 x 1/2 3/8 x 3/4

REZISTAL 304 STAINLESS STEEL — Continued

FLATS—Continued
HR AP

Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size
1.294 1.607 1.941 1.941 2.253	3/8 x 1 3/8 x 1 ¹ /4 *3/8 x 1 ¹ / ₂ CD 3/8 x 1 ³ / ₂ 3/8 x 1 ³ / ₃	6.875 10.13 2.143 3.225 4.297	1/2 x 4 1/2 x 6 5/8 x 1 5/8 x 11/2 5/4 x 2
2.578 2.578 2.578 3.225 3.872 5.156	*3% x 2 CD 3% x 2 3% x 2½ 3% x 3 3% x 4	2.578 3.225 3.872 5.156 6.450	34 x 1 34 x 1 1/4 34 x 1 1/2 34 x 2 34 x 2 1/2
1.289 1.719 2.143 2.578	1/2 x 3/4 1/2 x 1 1/2 x 1 1/4 1/2 x 1 1/2	7.734 4.297 5.156 6.875	34 x 3 1 x 1 ¹ / ₄ 1 x 1 ¹ / ₂ 1 x 2
3.013 3.437 4.297 5.156	½ x 1¾ ½ x 2 ½ x 2½ ½ x 3	8.594 8.594 10.31	*1 x 2½ CD 1 x 2½ 1 x 3

^{*}These sizes are Cold Drawn, Annealed and Pickled

Hot Rolled, Annealed and Pickled (Approx. 20' Long)

ANGLES

1/8 x 3/4 x 3/4	3/6 x 1½ x 1½
1/8 x 1 x 1	3/6 x 2 x 2
1/8 x 11/4 x 11/4	3/6 x 2½ x 2½
1/8 x 11/2 x 11/2	½ x 1½ x 1¼
1/8 x 2 x 2	¼ x 1½ x 1½
3/6 x 1 x 1	½ x 2 x 2
3/6 x 11/4 x 11/4	½ x 2½ x 2½

ROUND COILS

Stainless Metallizing Wire Annealed Bright, Cold Drawn and Pickled

#11 Ga (B.&S) (.091)	50# Coils	½ Dia. (.125)	150# Coils
½ Dia. (.125)	50# Coils	½ Dia. (.1875)	50# Coils

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

REZISTAL 304 STAINLESS STEEL—Continued

Stainless Wire Coils, Cold Heading Quality, Copper Coated

WIRE COILS			
.131	.166	.221	.313
.140	.169	.223	.328
.150	.184	.243	.341
.155	.185	.251	.365
.158	.210	.269	.366
.159	.212	.278	.376
.165	.213	.306	
	.140 .150 .155 .158	.131 .166 .140 .169 .150 .184 .155 .185 .158 .210 .159 .212	.131 .166 .221 .140 .169 .223 .150 .184 .243 .155 .185 .251 .158 .210 .269 .159 .212 .278

REZISTAL 310 STAINLESS STEEL

Carbon 0.25% max.
Phosphorus 0.04% max.

Manganese 2.00% max. Sulphur 0.03% max.

Silicon 1.50% max. Chromium 24.00/26.00%

Nickel 19.00/22.00%

Rezistal 310 is a non-hardenable austenitic chromium nickel steel which is one of the best of all the heat resisting steels for general purposes. This steel is non-magnetic when annealed or cold worked.

SHEETS

#1 Finish

Est. Lbs. per Sheet	Size	Est. Lbs. per Sheet	Size
196.87	9 Ga x 36 x 120	75.2	18 Ga x 43 x 120
63.000	16 Ga x 36 x 96	67.50	18 Ga x 48 x 96
37.8	18 Ga x 36 x 72	84.00	18 Ga x 48 x 120
50.40	18 Ga x 36 x 96	27.6	19 Ga x 30 x 72
58.8	18 Ga x 42 x 96	55.125	19 Ga x 36 x 120
73.50	18 Ga x 42 x 120	64.4	19 Ga x 42 x 120

#2D Finish

196.87 9 Ga x 36 x 120 157.50 11 Ga x 36 x 120 210.00 11 Ga x 48 x 120 118.12 13 Ga x 36 x 120 157.50 13 Ga x 48 x 120	131.26 14 63.1 16 78.750 16	Ga x 36 x 120 Ga x 48 x 120 Ga x 36 x 96 Ga x 36 x 120 Ga x 48 x 120
--	-----------------------------------	--

REZISTAL 310 STAINLESS STEEL—Continued

SHEETS—Continued

#2	D	Fi	in	is	h

Est. Lbs. per Sheet	Size	Est. Lbs. per Sheet	Size
50.40	18 Ga x 36 x 96	73.50	19 Ga x 48 x 120
63.00	18 Ga x 36 x 120	63.00	20 Ga x 48 x 120
82.2	18 Ga x 47 x 120	43.2	21 Ga x 36 x 120
84.00	18 Ga x 48 x 120	39.375	22 Ga x 36 x 120
55.125	19 Ga x 36 x 120	52.500	22 Ga x 48 x 120
58.8	19 Ga x 48 x 96	25.200	24 Ga x 36 x 96

PLATES

#1 Finish

3/6 x 36 x 120

BILLETS

R.C. Square

Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size
54.40	4	217.6	8
122.4	6	341.33	10

REZISTAL 314 STAINLESS STEEL

Carbon 0.25% max. Manganese 2.00% max. Silicon 1.50/3.00%
Phosphorus 0.045% max. Sulphur 0.03% max. Chromium 23.00/26.00%
Nickel 19.00/22.00%

Rezistal 314 is a non-hardenable austenitic chromium nickel steel which is the best of all the heat resisting steels for general purposes. This steel is non-magnetic when annealed or cold worked.

BILLETS R.C. Square

Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size
123.7	6	219.9	8

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

REZISTAL 316 STAINLESS STEEL

Carbon 0.80% max.

Manganese 2.00% max.

Silicon 1.00% max.

Phosphorus 0.045% max.

Sulphur 0.03% max.

Chromium 16.00/18.00%

Nickel 10.00/14.00%

Molybdenum 2.00/3.00%

Rezistal 316 is a non-hardenable austenitic chromium nickel steel with superior corrosion and heat resisting qualities. This grade is non-magnetic in the annealed condition and is slightly magnetic when cold worked.

For special applications, Rezistal 317 with higher molybdenum can be supplied.

SHEETS

#2D Finish

Est. Lbs. per Sheet	Size	Esi. Lbs. per Sheet	Size	
210.00 52.6	11 Ga x 48 x 120 16 Ga x 24 x 120	91.875	16 Ga x 42 x 120	

#2B Finish

#2B Finish				
	0.0 00 00	105.1	14 Ga x 48 x 96	
173.0	8 Ga x 36 x _96			
217.0	8 Ga x 36 x 120	131.26	14 Ga x 48 x 120	
288.76	8 Ga x 48 x 120	196.8	14 Ga x 60 x 144	
262.50	9 Ga x 48 x 120	63.00	16 Ga x 36 x 96	
141.76	10 Ga x 36 x 96	78.750	16 Ga x 36 x 120	
177.19	10 Ga x 36 x 120	84.000	16 Ga x 48 x 96	
189.01	10 Ga x 48 x 96	105.00	16 Ga x 48 x 120	
236.26	10 Ga x 48 x 120	50.40	18 Ga x 36 x 96	
126.00	11 Ga x 36 x 96	63.00	18 Ga x 36 x 120	
157.50	11 Ga x 36 x 120	67.50	18 Ga x 48 x 96	
107.00	11 Ga x 55 x 125	0,,,,,		
168.00	11 Ga x 48 x 96	84.00	18 Ga x 48 x 120	
210.00	11 Ga x 48 x 120	37.80	20 Ga x 36 x 96	
252.00	11 Ga x 48 x 144	47.25	20 Ga x 36 x 120	
315.00	11 Ga x 60 x 144	44.2	20 Ga x 42 x 96	
110.25	12 Ga x 36 x 96	63.00	20 Ga x 48 x 120	
		04 700	22 0 22 22	
137.82	12 Ga x 36 x 120	31.500	22 Ga x 36 x 96	
147.01	12 Ga x 48 x 96	39.375	22 Ga x 36 x 120	
183.76	12 Ga x 48 x 120	52.500	22 Ga x 48 x 120	
229.70	12 Ga x 60 x 120	25.200	24 Ga x 36 x 96	
157.50	13 Ga x 48 x 120	31.500	24 Ga x 36 x 120	
82.036	14 Ga x 30 x 120	18,900	26 Ga x 36 x 96	
78.755	14 Ga x 36 x 96	23.625	26 Ga x 36 x 120	
98.444	14 Ga x 36 x 120	20.020	20 GR N 00 N 120	
00.444	14 Ca x 50 x 120			

REZISTAL 316 STAINLESS STEEL — Continued SHEETS—Continued

#4 Finish

Est. Lbs. per Sheet	Size	Est. Lbs. per Sheet	Size
157.50 183.76 78.755 131.20 78.750 105.00 157.8	11 Ga x 36 x 120 12 Ga x 48 x 120 14 Ga x 36 x 96 14 Ga x 48 x 120 16 Ga x 36 x 120 16 Ga x 48 x 120 16 Ga x 48 x 120 16 Ga x 60 x 144	63.00 47.25 63.00 39.375 52.500 42.000	18 Ga x 36 x 120 20 Ga x 36 x 120 20 Ga x 48 x 120 22 Ga x 36 x 120 22 Ga x 48 x 120 24 Ga x 48 x 120

PLATES

Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size
.167 .261 .261 .376 .376 .376 .441 .511 .511 .567 .668 .754 .845 1.043 1.043 1.262	14 CD 15 16 CD 16 CD 16 CD 16 CD 16 CD 16 CD 17 CG 15 CD 17 CG 17	2.045 2.347 2.670 3.015 3.175 3.380 3.380 3.766 4.172 4.600 5.049 5.518 6.008 6.008 7.051 7.604 8.178 9.388	7/8 CG Pol. 15/6 CG 1 CG 11/6 CG 13/2 CG 11/8 CG 11/8 CG 11/8 CG Pol. 13/6 CG 11/4 CG 15/6 CG 11/2 CG 11/3 CG 11/3 CG 11/3 CG 11/3 CG 11/4 CG 11/3 CG 11/4 CG 11/4 CG
1.901 2.045	²⁷ / ₃₂ CG 7/ ₈ CG	10.200 10.68	$^{115}_{16}$ CG 2 CG

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

REZISTAL 316 STAINLESS STEEL—Continued

	ROUNDS-	—Continued	
Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size
10.68	2 CG Pol.	20.19	23/4 CG
12.06	21/8 CG	22.07	21/8 CG
12.78	23/16 CG	23.04	215/16 CG
13.52	21/4 CG	24.03	3 CG
14.28	25/16 CG	26.08	31/8 CG
15.06	23/8 CG	28.21	31/4 CG
16.69	2½ CG	32.71	3½ CG
18.40	25/8 CG	66.76	5 ST
- 1		LETS Square	
54.40	4	122.4	6
85.00	5	217.6	8
		AGONS CD	
.564	7/16	3.727	11/8
.736 .932	1/2 9/16	4.601 5.072	$\frac{1\frac{1}{4}}{1\frac{5}{16}}$
1.150	5/8	5.567	13/8
1.392	11/16	6.625	11/2
1.656	3/4	7.189	19/16
1.944	13/16	9.018	13/4
2.254	1/8	11.95	2
2.945	1	14.91	21/4
3.324	11/16	18.40	$2\frac{1}{2}$
		ATS R AP	
.213	½ x ½	.957	3/ ₁₆ x 1 ½
.319	1/8 x 3/4	1.280	3/16 x 2
.425	½ x 1	1.590	$\frac{3}{16} \times \frac{21}{2}$
.638	½ x 1½	1.910	⁸ / ₁₆ x 3
.850	1/8 x 2	2.230	$\frac{3}{16} \times \frac{31}{2}$
1.060	1/8 x 21/2	2.550	3/16 x 4
1.280	½ x 3	.425	1/4 x 1/2
.319	3/16 x 1/2	.636	1/4 x 3/4 1/4 x 1
.638	3/16 x 1	.850	

REZISTAL 316 STAINLESS STEEL - Continued

FLATS—Continued HR AP

Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size
1.280	½ x 1½	6.380	3/8 x 5
1.700	1/4 x 2	1.700	½ x 1
2.120	1/4 x 21/2	2.550	½ x 1½
2.550	1/4 x 3	3.400	$\frac{1}{2} \times 2$
3.400	1/4 x 4	4.250	$\frac{1}{2} \times \frac{21}{2}$
.957	3/8 x 3/4	5.100	½ x 3
1.280	3/8 x 1	6.800	$\frac{1}{2} \times 4$
1.920	3/8 x 1½	3.830	$\frac{3}{4} \times 1\frac{1}{2}$
2,550	3/8 x 2	5.100	3/1 x 2
3.190	$\frac{3}{8} \times \frac{21}{2}$	6.380	$\frac{3}{4} \times \frac{21}{2}$
3.830	3/8 x 3	7.650	3/4 x 3
5.100	3/8 x 4		

STAINLESS WIRE COILS

Condition B. Spec. QQ-W-423

Condition by open eq. 11.120				
.047	.081 .091	.120 .125	.130	

REZISTAL 321 STAINLESS STEEL

Carbon 0.08% max. Manganese 2.00% max. Silicon 1.00% max.

Phosphorus 0.04% max. Sulphur 0.03% max. Chromium 17.00/19.00%

Nickel 8.00/11.00% Titanium 5 x C min.

Rezistal 321 is a non-hardenable austenitic chromium-nickel steel which is particularly adaptable for use at temperatures between 800 and 1650 F. This grade is non-magnetic in the annealed condition but is slightly magnetic when cold worked.

SHEETS

#1 Finish

Est. Lbs. per Sheet	Size	Est. Lbs. per Sheet	Size
94.500 25.3	13 Ga x 36 x 96 18 Ga x 29 x 60	31.500	22 Ga x 36 x 96

REZISTAL 321 STAINLESS STEEL—Continued

#2D Finish				
Est. Lbs. per Sheet	Size	Est. Lbs. per Sheet	Size	
157.0 196.87 177.19 236.26 126.00	9 Ga x 36 x 96 9 Ga x 36 x 120 10 Ga x 36 x 120 10 Ga x 48 x 120 11 Ga x 36 x 96	105.00 63.00 84.00 55.125 58.8	16 Ga x 48 x 120 18 Ga x 36 x 120 18 Ga x 48 x 120 19 Ga x 36 x 120 19 Ga x 48 x 96	
157.50 210.00 137.82 183.76	11 Ga x 36 x 120 11 Ga x 48 x 120 12 Ga x 36 x 120 12 Ga x 48 x 120	73.50 37.80 47.25 63.00	19 Ga x 48 x 120 20 Ga x 36 x 96 20 Ga x 36 x 120 20 Ga x 48 x 120	
118.12 157.50 98.444 131.26 78.750 84.000	13 Ga x 48 x 120 13 Ga x 48 x 120 14 Ga x 36 x 120 14 Ga x 48 x 120 16 Ga x 36 x 120 16 Ga x 48 x 96	39.375 52.500 31.500 27.569	21 Ga x 36 x 120 22 Ga x 36 x 120 22 Ga x 48 x 120 24 Ga x 36 x 120 25 Ga x 36 x 120	

#1 Finish

PLATES

3/16	x	36	X	96
3/16	x	36	x	120

½ x 36 x 120 ½ x 36 x 120

KOUNDS				
Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size	
.167 .261 .376 .511	14 CD 56 CD 38 CD 76 CD 12 CG	2.670 3.015 3.380 3.766 3.766	1 CG 1½6 CG 1½ CG 1¾6 CD 1¾6 CD	
.845 1.043 1.241 1.502 1.600	9% CG 5% CG 11% CG 34 CG 4%4 CG	4.600 5.049 6.008 7.051 8.178	1¼ CG 1¾ CG 1½ CG 1½ CG 1¼ CG	
1.763 2.045	13/ ₁₆ CG 7/ ₈ CG	9.388 10.68	17/8 CG 2 CG	

REZISTAL 321 STAINLESS STEEL - Continued

ALLOY STEELS

DRILL STEELS

MISCELLANEOUS

CONTOUR

	ROUNDS	—Continued	
Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size
12.06	21/8 CG	20.19	2¾ CG
13.52	21/4 CG	24.03	3 CG
15.060	23/8 CG	37.550	3¾ HR AP
16.69	2½ CG	42.730	4 HR AP
18.40	25% CG		
	BI	LLETS	
	R.C.	Square	
54.40	4	217.6	8
54.40	4 N	217.6	8 N
122.4	6	341.33	10 N
122.4	6 N	041.00	10 11
122.1	0.10		
	HEX	AGONS	
		CD	
.414	3/8	2.254	7/8
.564	7/16	2.588	15/16
.736	1/2	2.945	1
.932	9/16	3.727	11/8
1.150	5/8	4.601	11/4
1.392	11/16	5,567	13/8
1.656	3/4	6.085	17/16
1.944	13/16	6.625	1½
	FI	LATS	
	HR		
.425	1/4 x 1/2	2.130	5% x 1
.850	1/4 x 1	1.28	3/4 x 1/2
1.700	1/4 x 2	2.550	3/4 x 1
.645	3/8 x 1/2	3.830	3/4 x 1 1/2
1.289	1/2 x 3/4	5.100	3/4 x 2
1.200	72 X 74	3.100	74 X Z
	111	7 100	1 11/
1.700	1/2 X I	5.100	1 X 1 1/0
1.700 2.550	½ x 1 ½ x 1½	5.100 .960	1 x 1½ 1½ x ¼

REZISTAL 325 STAINLESS STEEL

Carbon 0.25/0.50% Manganese 2.00% max. Silicon 1.60/1.75% max.

Phosphorus 0.045% max. Sulphur 0.03% max. Chromium 7.00/10.00%

Nickel 19.50/23.50% Copper 1.00/1.50%

Rezistal 325 is a non-hardenable austenitic chromium-nickel steel which has superior corrosion resisting qualities for certain specific applications. This grade is non-magnetic in the annealed condition and is slightly magnetic when cold worked.

For special applications, a copper-free modification of Rezistal 325 can be supplied.

ROUNDS

Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size
3.417 4.218 4.218 6.074	1½ CG 1¼ CG 1¼ CG Pol. 1½ CG	6.074 7.051 9.388	1½ CG Pol. 15% CG 1% CG

REZISTAL 347 STAINLESS STEEL

Carbon 0.08% max. Manganese 2.00% max. Silicon 1.00% max.

Phosphorus 0.04% max. Sulphur 0.03% max. Chromium 17.00/19.00%

Nickel 9.00/12.00% Columbium 10 x C min.

Rezistal 347 is a non-hardenable austenitic chromium-nickel steel which is particularly adaptable for use at temperatures between 800 and 1650 F. This grade is non-magnetic in the annealed condition but is slightly magnetic when cold worked.

SHEETS

#1 Finish

Est. Lbs. per Sheet	Size	Est. Lbs. per Sheet	Size
63.00	16 Ga x 36 x 96	47.25	18 Ga x 36 x 120
105.00	16 Ga x 48 x 120	84.00	18 Ga x 48 x 120
42.0	18 Ga x 24 x 120	46.0	19 Ga x 30 x 120

REZISTAL 347 STAINLESS STEEL — Continued

ALLOY STEELS

MISCELLANEOUS

CONTOUR

SHEETS—Continued

#2D Finish

Est. Lbs. per Sheet	Size	Est. Lbs. per Sheet	Size
157.50	11 Ga x 36 x 120	73.50	19 Ga x 48 x 120
94.500	13 Ga x 36 x 96	47.25	20 Ga x 36 x 120
118.12	13 Ga x 36 x 120	50.40	20 Ga x 48 x 96
98.444	14 Ga x 36 x 120	63.00	20 Ga x 48 x 120
131.26	14 Ga x 48 x 120	39.375	22 Ga x 36 x 120
78.750	16 Ga x 36 x 120	52.500	22 Ga x 48 x 120
84.000	16 Ga x 48 x 96	31.500	24 Ga x 36 x 120
50.40	18 Ga x 36 x 96	25.20	.020 Ga x 36 x 120
63.00	18 Ga x 36 x 120	33.60	.020 Ga x 48 x 120
84.00	18 Ga x 48 x 120	201.60	.016 Ga x 36 x 120
55.125	19 Ga x 36 x 120		

PLATES

#1 Finish

2/ 20 100	3% x 36 x 120
3/ ₁₆ x 36 x 120	78 X 30 X 120
½ x 36 x 120	₹ x 36 x 120
5/ ₁₆ x 36 x 120	1 x 36 x 120

ROUNDS

Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size
1.043 1.519 2.699 4.218	5% CG 34 CG 1 CG 114 CG	10.68 13.67 42.73	2 CG 2¼ CG 4 CG

Rezistal Stainless Type 347 to Chemical Analysis of Spec. AMS 5680

1/16 RD. x Coils

Sulphur 0.03% max.

Chromium 11.50/13.50%

Rezistal 410 is a hardenable chromium steel which is adaptable for general purpose corrosion resisting and heat resisting applications. This grade is magnetic at all times.

SHEETS

#2D Finish

Est. Lbs. per Sheet	Size	Est. Lbs. per Sheet	Size
154.50	13 Ga x 48 x 120	82.40	18 Ga x 48 x 120
128.76	14 Ga x 48 x 120	55.125	19 Ga x 36 x 120
63.00	16 Ga x 36 x 96	72.10	19 Ga x 48 x 120
103.00	16 Ga x 48 x 120	51.500	22 Ga x 48 x 120
63.00	18 Ga x 36 x 120	41.200	24 Ga x 48 x 120

Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size	
.257	5/ ₁₆ CD A	3.323	1½ HR N	
.502	5/ ₁₆ CD A	3.323	1½ CG H	
.502	5/ ₁₆ HR A	4.101	1¼ HR AP	
.539	²⁹ ⁄ ₆₄ CD A	4.101 4.101	1¼ CG A	
.655	¹ ⁄ ₂ CG A		1¼ HR N	
1.023	5% CG A	4.963	13% HR AP	
1.023	5% HR AP	4.963	13% CG A	
1.476	34 CG A	5.906	1½ HR AP	
1.476	34 HR AP	5.906	1½ CG A	
1.476	34 HR N 76 CG A 76 HR N	5.906	1½ HT CG	
2.010		6.931	1½ CG A	
2.010		6.931	1½ HR AP	
2.010	78 HT CG	6.931	15% HR N	
2.307	15/6 HR N	6.408	19% HT CG	
2.307	15/6 HT CG	8.039	134 HR AP	
2.625	1 HR AP	8.039	1¾ CG A	
2.625	1 CG A	9.228	1½ CG A	
2.625	1 HR N	10.50	2 HR AP	
3.323	1½ HR AP	10.50	2 CG A	

REZISTAL 410 STAINLESS STEEL—Continued

E . 11		Est. Lbs.	
Est. Lbs. per Ft.	Size	per Ft.	Size
10.50	2 280/310 BHN	21.69	27/8 HR AP
	HR HT	23.62	3 HR AP
13.29	21/4 HR AP	27.73	31/4 HR
13.29	21/4 CG	27.73	3½ 280/310 BHN
13.29	21/4 CG HT		HR HT
16.41	$2\frac{1}{2}$ CG	29.90	33/8 HT CG
16.41	$2\frac{1}{2}$ HR AP	31.01	37/16 HT CG
16.41	2½ 280/310 BHN		
	HR HT	32.15	3½ HT CG
		32.15	$3\frac{1}{2}$ HR AP
18.09	25/8 HT CG	32.15	3½ 280/310 BHN
19.85	23/4 HR AP		HR HT
19.85	23/4 HT CG	36.91	33/4 HR AP
19.85	2¾ 280/310 BHN	42.00	4 HR AP
	HR HT		
		LLETS Square	
53.48 85,00	4 5	120.3 213.9	6 8
00.00	1 10		
	HEXA	GONS	
	11.95		2 HT CD

Stainless Wire Coils, Cold Heading Quality, Copper Coated

WIRE COILS				
.0915	.130	.145	.158	.184
.093	.131	.148	.164	.198
.106	.132	.150	.165	.2135
.110	.133	.151	.1655	.223
.124	.140	.152	.182	.3405

REZISTAL 416 STAINLESS STEEL

Carbon 0.15% max. Phosphorus .060% Manganese 1.25% max. Silicon 1.00% max. Sulphur 0.15% min. Chromium 12.00/14.00% Molybdenum 0.60% max.

Rezistal 416 is a hardenable chromium steel to which elements have been added to improve the machinability and non-galling characteristics. This grade is magnetic in all conditions. For applications where slightly higher transverse properties are desired and a slightly lower machinability is acceptable, a selenium bearing modification can be supplied.

	ROUNDS			
Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size	
.023	3½ CD	.657	½ CG	
.023	3½ CG	.657	½ HT CD	
.041	½ CD	.741	½ CG	
.064	.155 CD	.741	½ HT CG	
.064	5½ CD	.831	% CG	
.092	% CD	.831	% HT CD	
.092	% HT CD	.831	% HT CG	
.126	% CD	1.025	% CG	
.126	% HT CD	1.025	% HT CD	
.147	1% CD	1.025	% HT CG	
.164	¼ CD	1.241	11/6 CG	
.164	¼ CG	1.241	11/6 HT CD	
.164	¼ HT CD	1.241	11/6 HT CG	
.207	‰ CD	1.357	23/2 CG	
.207	‰ HT CD	1.476	3/4 CG	
.257 .257 .257 .311 .311	% CD % CG % HT CD 1% CD	1.476 1.476 1.476 1.476	34 CG Pol. 34 HT CD 34 HT CG 34 CG HT Pol. (10'-01/4" lgths)	
.376 .370 .370 .370 .401	.3735/.375 CG 3% CG 3% CD 3% HT CD ²⁵ / ₄₄ CD	1.733 1.733 1.733 1.733	13% CG 13% CG HT (20'/22' lgths) 13% HT CD 13% HT CG	
.434	13/ ₃₂ CD	2.010	7/8 CG	
.434	13/ ₃₂ HT CD	2.010	7/8 HT CD	
.502	7/ ₆ CD	2.307	15/6 CG	
.502	7/ ₆ HT CD	2.307	15/6 CG Pol.	
.567	15/ ₃₂ CD	2.307	15/6 HT CG	

ROUNDS—Continued

	ROUNDS—Continued				
Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size		
2.625	1 CG	8.624	113/16 CG		
2.625	1 CG Pol.	8.624	113/16 CG Pol.		
2.625	1 CG HT	8.624	113/16 HT CD		
2.964	1½ CG	8.624	113/16 HT CG		
2.964	1½ CG Pol.	9.228	17/8 CG		
2.964	11/16 HT CG	9.228	17/8 CG Pol.		
3.323	11/8 CG	9.228	17/8 HT CG		
3.323	11/8 CG Pol.	9.850	115/16 HT CG		
3.323	11/8 HT CG	9.850	115/16 CG		
3.702	13/16 CG	9.850	115/16 CG Pol.		
3.702	13/6 CG Pol.	10.50	2 CG		
3.702	13/16 HT CD	10.50	2 CG Pol.		
	(20/22'' lgths)	10.50	2 HT CG		
4.101	1¼ CG	11.85	21/8 CG		
4.101	1¼ CG Pol.	11.85	21/8 CG Pol.		
4.101	1¼ HT CG	11.85	21/8 HT CG		
4.522	15/16 CG	12.56	23/16 CG		
4.522	15/16 CG Pol.	12.56	23/16 CG Pol.		
4.522	15/16 HT CG	12.56	23/16 HT CG		
4.963	13% CG		(20/22')		
4.963	13/8 CG Pol.	13.29	21/4 CG		
4.963	13/8 HT CG	13.29	21/4 HT CG		
5.424	17/6 CG	14.80	23/8 CG		
5.424	17/6 CG Pol.	15.870	21/6 HT CG		
5.424	17/6 HT CG	10.010	(20/22')		
5,900	1½ CG	16.41	2½ CG		
5.900	1½ CG Pol.	16.41	2½ CG Pol.		
5.900	1½ HT CG	18.89	25% CG		
6.408	1% CG	19.20	211/16 HT CG		
6.408	1% HT CD		(20/22')		
6.931	15/8 CG	19.85	2¾ CG		
6.931	15/8 CG Pol.	19.85	2¾ HT CG		
6.931	15/8 HT CG	23.040	215/16 HT CG		
7.475	111/16 CG		(20/22')		
7.475	111/16 CG Pol.	23.62	3 CG		
7.475	111/16 HT CG	23.62	3 HT CG		
7.475	111/16 HR	25.63	31/8 CG		
8.039	13/4 CG	27.13	33/16 CG		
8.039	13/4 CG Pol.	27.13	33/16 HT CG		
8.039	13/4 HT CG	27.73	3¼ CG		

ELECTRODES

REZISTAL 416 STAINLESS STEEL—Continued

	JIAL 410 SIAIN	ress sieei	L — Continued
	ROUNDS-	-Continued	
Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size
31.550 32.15 34.49 36.91 36.91	37 ₁₆ HT CG 3½ CG 35 ₈ CG 33 ₄ CG 33 ₄ HR	53.16 53.16 59.22 59.22 65.62	4½ ST 4½ HR 4¾ HR 4¾ ST 5 HR
42.00 42.00 42.00 47.41 47.41	4 CG 4 HR 4 HR 4½ HR 4½ CG	65.62 72.35 72.35 79.41 79.41	5 ST 5)4 R T 5)4 ST 5)4 ST 5)2 R T 5)2 ST
47.41 53.16 53.16	4½ ST 4½ CG 4½ HR	96.130 96.130 104.30	6 ST 6 R T 6¼ R T
-	squ	ARES	-1 -4 -11
.859 3.342 4.229 4.713	½ CD 1 CD 1½ CD 1½ CD 1¾ CD	6.318 7.519 10.23 13.37	138 CD 1½ CD 134 CD 2 CD
	BILI R. C. S	LETS Square	
53.55 120.3	5 6	213.9	8
- 1 - 13	HEXA	GONS	
.102 .181 .283 .407 .407 .554 .554 .723 .723	%6 HT CD 14 CD 5% CD 3% CD 3% HT CD 7% CD 7% CD 1/2 CD 1/2 HT CD	1.368 1.368 + 1.628 1.628 1.911 1.911 2.216 2.544 2.895	11/6 CD 11/6 HT CD 34 CD 34 HT CD 13/6 CD 13/6 HT CD 7/8 CD 15/6 CD 1 CD
.916 .916 1.130 1.130	% CD % HT CD % CD % HT CD	2.895 2.895 3.267 3.664	1 HR 1 HT CD 1½6 CD 1½ CD

REZISTAL 416 STAINLESS STEEL - Continued

HEXAGONS—Continued

Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size
3.664 4.523 4.523 5.372 5.372 6.512	1½ HT CD 1½ CD 1¼ HT CD 1¾ CD 13% CD 13% HT CD 1½ CD	7.067 7.643 8.865 10.50 11.58 14.66	1% CD 15% CD 134 CD 17% CD 2 CD 214 CD

REZISTAL 420 STAINLESS STEEL

Carbon over 0.15%

Silicon 1.00% max.

Sulphur 0.03% max.

Manganese 1.00% max.

Phosphorus 0.04% max.

Chromium 12.00/14.00%

Rezistal 420 is a hardenable chromium steel which is the general purpose cutlery grade. This grade is magnetic at all times.

ROUNDS

Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size
1.150	21/ ₃₂ HT CG	2.307	15/16 CG
1.476	3/4 CG	2.625	1 HR
1.733	13/16 HT CG	4.400	1% HT CG
2.010	7/8 HR		

BILLETS R.C. Square

53.48	4	120,3	6 (**),

WIRE COILS

Stainless Metallizing Wire Annealed Bright, Cold Drawn and Pickled

REZISTAL 420 F STAINLESS STEEL

Carbon over 0.15% Manganese 1.00%

Silicon 1.00% Molybdenum 0.45% Chromium 12.00/14.00%

Sulphur 0.28% Phosphorus 0.04%

Rezistal 420 F is a hardenable chromium steel with a higher sulphur content that increases machinability. This grade is magnetic at all times.

ROUND BARS

Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size
.164	1/4 CD	4.522	15/ ₁₆ CG
.370	3/8 CD	4.963	13/ ₈ CG
.657	½ CG	5.906	1½ CG
1.025	5% CG	6.931	15% CG
1.476	34 CG	8.039	1¾ CG
1.733	13% CG		2 CG
2.010	7/8 CG	11.85	2½ CG
2.307	15/16 CG	13.29	2¼ CG
2.625	1 CG	16.41	2½ CG
2.964	1½ CG	19.85	2¾ CG
3.323 4.101	1½ CG 1¼ CG	23.62	3 CG

CRUCIBLE 422 STAINLESS STEEL

Carbon 0.20% Manganese 0.75% Tungsten 1.00% Silicon 0.35% Nickel 0.75%

Chromium 13.00% Vanadium 0.30% Molybdenum 1.00%

Crucible 422 is a hardenable stainless steel for use at temperatures approaching 1200 F. The carefully balanced composition of this steel provides unusual mechanical properties. Large sections can be heat treated without the formation of intermediate transformation products.

BILLETS R.C. Square

53.48

4

REZISTAL 430 STAINLESS STEEL

ALLOY STEELS

DRILL STEELS

MISCELLANEOUS

Carbon 0.12% max. Manganese 1.00% max. Silicon 1.00% max. Phosphorus 0.04% max. Sulphur 0.03% max. Chromium 14.00/18.00%

Rezistal 430 is essentially a nonhardenable chromium steel which is adaptable for general purpose corrosion and heat resisting applications. It is prone to slight hardening by heat treatment. This grade is magnetic at all times.

For those applications where superior machinability is desired and where slightly lowered corrosion resistance is satisfactory, Rezistal 430 F can be supplied.

SHEETS

		1-	*
	#2B	Finish	
Est. Lbs.		Est. Lbs.	
per Sheet	Size	per Sheet	Size
77.255	14 Ga x 36 x 96	37.80	20 Ga x 36 x 96
96.569	14 Ga x 36 x 120	47.25	20 Ga x 36 x 120
61.800	16 Ga x 36 x 96	61.80	20 Ga x 48 x 120
77.250	16 Ga x 36 x 120	31.500	22 Ga x 36 x 96
49.49	18 Ga x 36 x 96	24.720	24 Ga x 36 x 96
63.00	18 Ga x 36 x 120	18.900	26 Ga x 36 x 96
	#4	Finish	
115.87	13 Ga x 36 x 120	30,900	22 Ga x 48 x 96
37.09	20 Ga x 36 x 96	51.500	22 Ga x 48 x 120
	ROUN	D BARS	
	.657	½ CD	
	STAINLESS Cold Hardening Qu	WIRE COILS	
.091	.117 .1	50 .1	65 .211
.0915	.118 .1	52 .1	69 .212
.093			79 .221
.105	.131 .1	56 .1	83 .222
.109	.133 .1	58 .1	84 .271
.111	.138 .1	59 .1	85 .278
.113	.140 .1	64 .2	.306
.114	.145		

REZISTAL 431 STAINLESS STEEL

Carbon 0.20% max. Phosphorus 0.04% max. Manganese 1.00% max. Sulphur 0.03% max.

Silicon 1.00% max. Chromium 15.00/17.00%

Nickel 1.25/2.50%

Rezistal 431 is a hardenable nickel bearing chromium steel with superior corrosion resistance. This grade is magnetic at all times.

ROUNDS

Est. Lbs.	~.	Est. Lbs.	~.
per Ft.	Size	per Ft.	Size
.092	3/16 CD	9.228	17/8 CG
.164	$\frac{1}{4}$ CD	10.50	2 CG
.257	5/16 CD	13.29	21/4 CG
.370	3/8 CG	16.41	$2\frac{1}{2}$ CG
.502	₹/16 CD	19.85	$2\frac{3}{4}$ HR
.657	½ CG	23.62	3 HR
. 1.025	5% CG	27.73	3¼ HR
1.476	3/4 CD	32.15	$3\frac{1}{2}$ HR
2.010	₹ CG	42.00	4 HR
2.625	1 CG	53.16	4½ HR
4.101	11/4 CG	65.62	5 HR
4.963	13/8 CG	79.41	$5\frac{1}{2}$ HR
5.906	1½ CG	94.49	6 HR
8.039	13/4 CG	- 1 - 1-	

SQUARES

		1	
.470	3/8 CD	5.222	1¼ CD
.836	½ CD	7.519	$1\frac{1}{2}$ CD
1.305	5/8 CD	10.23	1¾ CD
3.342	1 CD		

HEXAGONS

.283 .407 .723	⁵ / ₁₆ CD ³ / ₈ CD ¹ / ₂ CD	1.130 1.628	5% CI 34 CI
		4	, ,

FLATS HR AP

.425 .9407 1.097 1.253 2.507	14 x 1/2 3/8 x 3/4 3/8 x 7/8 1/2 x 3/4 1/2 x 11/2	3.342 2.507 3.764 4.394 5.013 6.684	1/2 x 2 3/4 x 1 3/4 x 11/2 3/4 x 13/4 1 x 11/2
2.929	½ x 1¾	6.684	1 x 2

Carbon 0.60/0.75%

Phosphorus 0.04% max.

Manganese 1.00% max. Sulphur 0.03% max. Silicon 1.00% max. Chromium 16.00/18.00%

Molybdenum 0.75% max.

Rezistal 440A is a hardenable chromium steel which is the toughest of the high chromium cutlery grades. This grade is magnetic at all times.

ROU	NDS		
4. 1		Size	

Est. Lbs. per Ft.	Size
23.62	3 HR

REZISTAL 440C STAINLESS STEEL

Carbon 0.95/1.20% Phosphorus 0.04% max. Manganese 1.00% max. Sulphur 0.03% Silicon 1.00% max. Chromium 16.00/18.00%

Molybdenum 0.75% max.

Rezistal 440C is a hardenable chromium steel which has one of the highest attainable hardnesses of the corrosion and heat resisting grades. This grade is magnetic at all times.

For those applications where superior machinability is desired and where slightly lower corrosion resistance is satisfactory, Rezistal 440 F can be supplied.

Est. Lbs. per Ft.	Size	Est. Lbs. per Ft.	Size
.092	3/6 CD	1.025	58 CG
.164	1/4 CD	1.025	58 HR
.257	5/6 CD	1.241	11/6 CG
.257	5/6 HR	1.241	11/6 HR
.370	3/8 CD	1.476	34 HR
.370	3/8 HR	1.476	³ 4 CG
.502	7/6 CD	1.733	¹³ 6 HR
.502	7/6 HR	1.733	¹³ 6 CG
.567	15/2 HR	2.010	⁷ 8 CG
.657	1/2 CG	2.010	⁷ 8 HR
.657	½ HR	2.307	15/6 CG
.741	¹⁷ ½ HR	2.307	15/6 HR
.831	% CG	2.625	1 CG
.831	% HR	2.625	1 HR

REZISTAL 440C STAINLESS STEEL—Continued

ROUNDS—Continued			
Est. Lbs.		Est. Lbs.	
per Ft.	Size	per Ft.	Size
2.964	1½ CG	14.04	25/16 CG
2.964	11/16 HR	14.80	23% CG
3.143	13/32 CG	16.41	$2\frac{1}{2}$ CG
3.323	11/8 CG	18.89	25/8 CG
3.702	13/16 CG	19.85	2¾ CG
4.101	1¼ CG	19.85	2¾ HR
4.522	15/16 CG	21.69	$2\frac{7}{8}$ CG
4.743	111/32 CG	21.69	$2\frac{7}{8}$ HR
4.963	13/8 CG	23.62	3 CG
4.963	13/8 HR	23.62	3 HR
5.425	17/16 HR	27.73	3¼ HR
5.425	17/16 CG	27.73	31/4 RT
5.906	1½ CG	30.42	33/8 HR
6.931	15/8 CG	32.15	$3\frac{1}{2}$ HR
6.931	15/8 HR	32.15	3½ CG
7.475	111/16 HR	32.15	$3\frac{1}{2}$ RT
7.475	111/16 CG	36.91	3¾ HR
8.039	13/4 CG	36.91	33/4 RT
8.039	13/4 HR	36.91	3¾ CG
8.624	$1^{13}/_{16}$ HR	42.00	4 CG
9.228	17/8 CG	42.00	4 HR
9.850	115/16 CG	42.00	4 RT
10.50	2 CG	47.41	$4\frac{1}{4}$ HR
10.50	2 HR	47.41	41/4 RT
11.55	23/ ₃₂ HR	53.16	4½ CG
11.85	21/8 CG	53.16	$4\frac{1}{2}$ RT
12.56	23/16 HR	59.22	43/4 RT
13.29	$2\frac{1}{4}$ CG	65.62	5 CG
13.29	$2\frac{1}{4}$ HR	79.41	$5\frac{1}{2}$ RT
1.404	$2\frac{5}{16}$ HR	94.49	6 RT

BILLETS R.C. Square

53.48	4	213.9	8	
120.3	6	341.33	10	

WATER

HOLLOW TOOL

DRILL RODS

REZISTAL 442 STAINLESS STEEL

098

.120

.140

Carbon 0.25% max. Manganese 1.00% max. Silicon 1.00% max. Phosphorus 0.04% max. Sulphur 0.03% max. Chromium 18.00/23.00%

Rezistal 442 is a non-hardenable chromium steel which is suitable for general purpose corrosion and heat resisting applications. This grade is magnetic at all times.

ROUNDS Est. Lbs. Est. Lbs. Size Size per Ft. per Ft. 31/2 HR 10.38 2 HR. 32.15 4 HR 41.52 23.36 3 HR

BILLETS R.C. Square

53.48	4

· 153 ·

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

REZISTAL 446 STAINLESS STEEL

Carbon 0.20% max.
Phosphorus 0.04% max.

Manganese 1.50% max.
Sulphur 0.03% max. Chi

Silicon 1.00% max. Chromium 23.00/27.00%

Nitrogen 0.25% max.

Rezistal 446 is a non-hardenable chromium steel which has the highest corrosion and heat resisting properties of the straight chromium steels. This grade is magnetic at all times.

ROUNDS

Est. Lbs. per Ft.	Size	Est. Lbs. per Ft. 16.22	Size
10.38	2 HR SQU	41.52 ARES	4 HR

1			
13.22 20.66	2 HR 2½ HR	30.00	3 HR

BILLETS R.C. Square

53.48	4 HR	122.4	6 HR

Index

STAINLESS STEEL PIPE AND TUBING

Page 155 to Page 157

TRENT TUBE COMPANY

East Troy, Wisconsin
Subsidiary of Crucible Steel Company of America

110

HARDENING

HOLLOW TOOL STEELS

DRILL RODS

STAINLESS

Index

STAINLESS STEEL PIPE AND TUBING

Page 155 to Page 157

TRENT TUBE COMPANY

East Troy, Wisconsin

Subsidiary of Crucible Steel Company of America

PRESENTING

TRENT-PIONEER IN WELDED TUBING

Since it was formed nearly 15 years ago, the Trent Tube Company has led the welded tube industry in new developments to bring you better quality stainless pipe and tubing.

Trent was first, for example, to commercially produce welded tubing using a helium-gas shielded arc and nonconsumable electrode. This process, called TRENTWELD, was used exclusively by Trent for seven years, although today all welded stainless tubing is made by the inert-gas shielded method. The TRENTWELD process produces an exceptionally sound weld, free from gaseous inclusions and without contamination from extraneous metal. In fact the chemical and physical properties of TRENTWELD tubing are as good or better in the weld zone as in the body metal of the tube.

Recognizing that the uses for as-welded tubing were limited primarily to ornamental applications, Trent also led in developing and improving after-welding processing methods. Today Trent's cold working, annealing, pickling and passivating, testing, and inspection operations are unsurpassed in the welded tube industry.

Now, with Trent's new patented CONTOUR TRENTWELD process—another major and exclusively Trent development—you are assured of the highest quality stainless pipe and tubing available anywhere when you specify CONTOUR TRENTWELD.

ELECTRODES

SCELLANEOUS

ABLES

A MAJOR DEVELOPMENT IN STAINLESS PIPE

Big news for stainless and high-alloy pipe and tubing users! It's Trent's brand-new, patented CONTOUR TRENTWELD process that brings you the true uniformity of welded pipe and tubing, plus complete absence of weld bead or undercut. CONTOUR TRENTWELD produces a pipe and tube so smooth, so uniform that the weld is practically imperceptible.

And it means improved physical properties . . . better finish . . . elimination of cavitation corrosion or erosion. Flared or flanged ends are smoother, too. In fact, by whatever test you choose, Trent's CONTOUR TRENTWELD pipe and tubing will outperform any other pipe or tubing.

Here's why—CONTOUR TRENTWELD makes use of all the best features of the original Trentweld process—uniform stainless or high-alloy strip... controlled inert-gas shielded arc welding... absence of any filler rod. But there's one vital difference. In CONTOUR TRENTWELD the weld is made at the bottom of the formed strip. Gravity works to pull down the molten weld metal until it perfectly matches the contour of the pipe.

Like most good ideas, CONTOUR TRENTWELD sounds simple. But until Trent redesigned and rebuilt their mills, no equipment had ever been made to allow continuous welding at the bottom of the pipe or tube.

Wider range of grades available—Improved physical and metallurgical properties afforded by CONTOUR TRENTWELD

HOLLOW TOOL

make it possible to produce welded pipe and tubing in grades and sizes not readily available before in acceptable quality. Now, for example, you can get CONTOUR TRENTWELD Hastelloy, Zirconium, Zircoloy, Titanium and 19-9-DL grades.

Try Trent's new CONTOUR TRENTWELD pipe or tubing for yourself. Whether it's for corrosion or heat resistance—pressure or mechanical applications, you'll find CONTOUR TRENTWELD best. Prove it. Ask for a sample, and give it any test you like. It's the quickest way to satisfy yourself that CONTOUR TRENTWELD pipe and tubing outperforms all others. And remember, it's made by Trent—tube mill specialists.

* CONTOUR TRENTWELD is the trade mark of the Trent Tube Co. for its process of welding pipe and tubing which is protected under U. S. Patent 2,716,692.

WHY TRENT'S EXCLUSIVE CONTOUR-TRENTWELD PROCESS MEANS SMOOTHER WELDS...

Here's the conventional way of welding pipe. Gravity pulls some of

the molten metal down into the pipe to form a bead that is extremely difficult to remove by cold working. This is particularly troublesome in heavier gages. Cold working of the inside bead can lead to undercuts, focal points for erosive and corrosive attack. Cleaning is difficult.

Trent couldn't repeal gravity, so they put gravity to work. They flopped the pipe over, and made the weld at the bottom. Gravity still pulls the molten metal down—but, in doing so, it makes the weld contour correspond to the contour of the pipe itself. That's why there's

no tell-tale bulge of weld metal on the critical inside pipe surface. And, even on the outside surface, the weld contour more closely approaches that of the parent metal than any other welded pipe.

OIL HARDENING WATER HOLLOW TOOL STEELS DRILL RODS CONTOUR

ALLOY STEELS

DRILL STEELS

ELECTRODE

ALLOY STEELS

Index

	Page
General Information	159
Color Marking for MAX-EL & Alloy Warehouse Stock 160,	161
AISI-3140 Alloy Steel Bars Rounds	162
AISI-4130 Aircraft Quality Sheet	163
AISI-E-3310 Alloy Steel Bars Rounds	163
AISI-4140 Alloy Steel Bars Rounds	, 165
AISI-E-4340 Alloy Steel Bars Rounds	165
AISI-4615 Alloy Steel Bars Rounds	166
AISI-8620 Alloy Steel Bars Rounds	, 167
AISI-8630 Aircraft Quality Sheet	167
AISI-E-52100 Alloy Steel Bars Rounds	167
Free Machining Alloy Steel Bars	168
MAX-EL® 1B Machinery Steel Bars Rounds	168
MAX-EL 2B Machinery Steel Bars Rounds	169
MAX-EL 3 ½ Machinery Steel Bars Rounds	, 171
MAX-EL 3 ½ Brake Die Steel Squares, Flats	172
Special Alloy Steel Bars	172
HY-Tuf [®] Alloy Steel Rounds	172
NITRIDING Steel #135 Modified Rounds	173

ALLOY STEELS

Index

F	Page
General Information	159
Color Marking for MAX-EL & Alloy Warehouse Stock 160,	161
AISI-3140 Alloy Steel Bars Rounds	162
AISI-4130 Aircraft Quality Sheet	163
AISI-E-3310 Alloy Steel Bars Rounds	
AISI-4140 Alloy Steel Bars Rounds	165
AISI-E-4340 Alloy Steel Bars Rounds	165
AISI-4615 Alloy Steel Bars Rounds	166
AISI-8620 Alloy Steel Bars Rounds	167
AISI-8630 Aircraft Quality Sheet	167
AISI-E-52100 Alloy Steel Bars Rounds	167
Free Machining Alloy Steel Bars	168
MAX-EL® 1B Machinery Steel Bars	
Rounds	168
MAX-EL 2B Machinery Steel Bars Rounds	169
MAX-EL 3 ½ Machinery Steel Bars Rounds	171
MAX-EL 3 ½ Brake Die Steel Squares, Flats	172
Special Alloy Steel Bars	172
HY-Tuf® Alloy Steel Rounds	172
NITRIDING Steel #135 Modified	

ALLOY STEELS

All the standard warehouse AISI and SAE alloy steels listed are produced within the AISI and SAE standard composition limits to a McQuaid-Ehn grain size of 5 to 8. All Crucible Alloy Steels are manufactured with rigid metallurgical inspection to assure highest quality and uniformity.

Metallurgical data sheets covering most of the grades listed in this section are available from your local Crucible Branch Sales Office or Warehouse.

These data sheets contain typical analysis, recommended procedures for forging, annealing and hardening, and give representative mechanical properties to be expected after these operations. Information about fabrication is also included.

DRILL STEELS

ELECTRODES

MISCELLANEOUS

ABLES

COLOR MARKING for Max-el

MAX-EL 1-B Hot Rolled Natural

AISI-3140
Hot Rolled Annealed

MAX-EL 2-B Hot Rolled Natural

TS-8620 Hot Rolled Natural

AISI-3120 Hot Rolled Natural

TS-8620 Cold Finished Natural

NITRIDING MODIFIED -135
Hot Rolled Heat-Treated

AISI-4140 Hot Rolled Annealed

MAX-EL 31/2

TS-4140 Cold Drawn Annealed

AISI-8620 Cold Finished Natural

AISI-8620 Hot Rolled Natural

AISI-4615
Hot Rolled Natural

AISI-3140
Cold Finished Annealed

AISI-3140 Hot Rolled Heat-Treated

and Alloy Warehouse Stock

AISI-3120 Cold Finished Natural

E-4340 Hot Rolled Annealed

E-3310 Hot Rolled Annealed

MAX-EL 3½
Hot Rolled Annealed

MAX-EL 3½ Hot Rolled Heat-Treated

MAX-EL BRAKE DIE

MAX-EL 4
Hot Rolled Annealed

MAX-EL SHANK
Cold Drawn Annealed

TS-4140 Hot Rolled Annealed

AISI-4140
Hot Rolled Heat-Treated

E-4340 Hot Rolled Heat-Treated

AISI-4615
Cold Finished Natural

TS-4140 Hot Rolled Heat-Treated

AISI-4140
Cold Drawn Annealed

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

AISI-3140 ALLOY STEEL BARS

Average Chemistry

Carbon 0.40%

Chromium 0.65%

Nickel 1.25%

AISI-3140 is a medium carbon alloy steel which responds readily to simple heat treatments, offers no difficulties in the machine shop and its performance reflects the combined good effects of the two alloying elements, the nickel additions strengthening the ferritic matrix, while the chromium imparts a simultaneous improvement in the carbide structure. This grade may be hardened by water quenching, except in complicated shapes when it is advisable to employ either an interrupted water quench or an oil hardening treatment. This steel finds a wide variety of applications for both machine tool and automotive parts, such as steering knuckles and pitman arms, drive shafts, oil hardened gears, spline shafts, collets, etc. For other applications, where high strength or hardness is required, AISI-3140 oil hardened is frequently employed. These include crankshafts, rocker arms, power shovel parts, oil well tool joints, inserted tooth milling cutter bodies and similar highly stressed parts.

ROUNDS Hot Rolled, Annealed, Machine Straightened 229 MAX. BRINELL

5/8 3/4 7/8	1½ 1¼ 15/8	$ \begin{array}{c} 2 \\ 2 \frac{1}{4} \\ 2 \frac{1}{2} \end{array} $	3 3½ 35/8	4 5 6	
1	17/8	$2\frac{3}{4}$	33/4	8	

ROUNDS

Cold Finished, Annealed, Standard AISI Tolerances 241 MAX. BRINELL

5 16 7 16	5/8 3/4	15/ ₁₆	1½ 1¾ 13/8	15/8 13/4
9/16	13/16	11/8	11/2	2

AISI-4130 AIRCRAFT QUALITY SHEET

To Specification AN-QQ-S-685 As Amended (Condition N) Average Chemistry

Carbon 0.30%

Manganese 0.50% Chromium 0.95%

Molybdenum 0.20%

Hot Rolled, Normalized, Pickled and Oiled THICKNESS IN INCHES CARRIED IN WAREHOUSE STOCK

.032 .049 .065	.095 .125 .156	.1875 .250 .3125	.375 .500	.750 1.000
----------------------	----------------------	------------------------	--------------	---------------

18 Wide x 72 Long

AISI-4130 AIRCRAFT QUALITY SHEET

To Specification AMS-6350 Latest Revision Hot Rolled, Annealed and Pickled THICKNESS IN INCHES CARRIED IN WAREHOUSE STOCK

.043	.095	.125	.156	.1875	.250
			x 72 Long		

AISI-E-3310 ALLOY STEEL BARS

Average Chemistry

Carbon 0.10%

Nickel 3.50%

Chromium 1.60%

AISI-E-3310, a carburizing steel with air hardening tendencies, is one of the best chromium-nickel type alloy grades for applications where exceptionally severe service conditions are expected. The high strength and toughness developed in the core, and the wear and fatigue resistance of the case of this steel make it suitable for applications requiring resistance to extreme pressure and shocks such as rear axle and transmission gears of heavy duty trucks and busses.

ROUNDS

Hot Rolled, Spheroidized Annealed, Pickled and Machine Straightened

BRINELL 229 MAX.

$1\frac{1}{4}$ $1\frac{1}{2}$ $1\frac{3}{4}$	$\begin{array}{c} 2 \\ 2\frac{1}{8} \\ 2\frac{1}{2} \end{array}$	23/4 3 31/2	35/8 33/4 4	4½ 4½ 5
17/8				

AISI-4140 ALLOY STEEL BARS

Average Chemistry

Carbon 0.40%

Chromium 0.95%

Molybdenum 0.20%

AISI-4140 is a medium carbon alloy steel with a good hardenability and having good mechanical properties at room temperature and at elevated temperatures up to 900F. This steel is usually hardened by oil quenching and is employed for such applications as bolts, studs, cylinders for aircraft engines, heavy duty gears and shafts, connecting rods, etc. It is claimed by many that AISI-4140 machines better than other alloy steels of equal strength.

ROUNDS

Hot Rolled, Annealed, Machine Straightened

229 MAX. BRINELL

1/2 5/8 3/4 13/16 7/8	13/8 11/2 15/8 13/4 17/8	$2\frac{1}{2}$ $2\frac{5}{8}$ $2\frac{3}{4}$ $2\frac{7}{8}$	33/4 4 41/4 41/2 43/4	6 6½ 6½ 6¾
1 1½6 1½8 1¼	2 2 ¹ / ₈ 2 ¹ / ₄ 2 ³ / ₈	3½ 3½ 3½ 3¾ 3½	5 5½ 5½ 5½ 5¾	7 ¹ / ₄ 7 ¹ / ₂ 7 ³ / ₄ 8

ROUNDS

Cold Drawn Annealed

241 MAX. BRINELL

		T	1	
1/2 5/8 3/4	7/8 1 11/8	$ \begin{array}{c} 1\frac{1}{4} \\ 1\frac{1}{2} \\ 1\frac{3}{4} \end{array} $	17/8 2	$\frac{2\frac{1}{4}}{2\frac{1}{2}}$

AISI-4140 ALLOY STEEL BARS-Continued

ASTM A-193

Grade B7

ROUNDS

Hot Rolled, Heat Treated, Stress Relieved, and Machine Straightened

262/311 BRINELL

			014	107
1/2	13/8	21/4	31/4	43/4
3/8	11/2	2%	$\frac{3\frac{1}{2}}{3\frac{3}{4}}$	5
1/2 5/8 3/4 7/8	1 1 1 8	25/2	4	51/2
1 /8	1 ⁵ / ₈ 1 ³ / ₄ 1 ⁷ / ₈	$2\frac{1}{4}$ $2\frac{3}{8}$ $2\frac{1}{2}$ $2\frac{5}{8}$ $2\frac{3}{4}$ $2\frac{7}{8}$	41/4	$ 5\frac{1}{4} $ $ 5\frac{1}{2} $ $ 5\frac{3}{4} $
11/8	2	21/8	41/2	6
1½ 1¼	21/8	3	, -	

AISI-E-4340 ALLOY STEEL BARS

MIL-S-5000-A

Average Chemistry

Carbon 0.40%

Nickel 1.85% Molybdenum 0.25% Chromium 0.89%

AISI-E-4340 is an alloy steel with high impact strength and anti-fatigue properties, suitable for oil hardening gears, axle shafts, diesel engine crankshafts, and heavy duty shafting over 2-inch diameter.

ROUNDS

Hot Rolled, Annealed, Pickled and Machine Straightened

229 MAX. BRINELL

5/8 3/4 1 11/8 11/4 11/2	$1\frac{3}{4}$ 2 $2\frac{1}{4}$ $2\frac{1}{2}$ $2\frac{3}{4}$	3 3½ 3½ 3½ 3¾ 4	41/4 41/2 43/4 5 51/4	5½ 5¾ 6 6½ 8
---	---	--------------------------------	-----------------------------------	--------------------------

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

AISI-4615 ALLOY STEEL BARS

Average Chemistry

Carbon 0.15%

Nickel 1.85%

Molybdenum 0.25%

ROUNDS

Hot Rolled, Natural Condition, Machine Straightened

1/2 5/8	1½ 1¾ 1¾	2½ 2¼ 2¼	3 3½	4½ 4½ 4¾ 4¾
1/2 5/8 3/4 13/16 7/8	$1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$	$2\frac{1}{8}$ $2\frac{1}{4}$ $2\frac{3}{8}$ $2\frac{1}{2}$ $2\frac{5}{8}$	$ \begin{array}{r} 31/4 \\ 33/8 \\ 31/2 \end{array} $	$ \begin{array}{r} 4\frac{3}{4} \\ 5 \\ 5\frac{1}{4} \end{array} $
1 1½	17/8	2 ³ ⁄ ₄ 2 ⁷ ⁄ ₈	33/4	5½ 6

ROUNDS

Cold Finished, Natural Condition

 1/2	7/8	11/4	15/8	2
³ / ₈ ³ / ₄	1 1½	$\frac{1\frac{3}{8}}{1\frac{1}{2}}$	13/4 17/8	$\frac{21/4}{21/2}$

AISI-8620 ALLOY STEEL BARS

Average Chemistry

Carbon 0.20%

Nickel 0.55%

Chromium 0.50%

Molybdenum 0.20%

AISI-8620 is the standard triple-alloy carburizing steel. This steel develops good core properties and high case hardness and toughness. Its hardenability characteristics make this grade particularly suitable for small to medium parts, which do not require the benefit of high Nickel and Molybdenum content found in AISI-4615.

ROUNDS

Hot Rolled Natural and Machine Straightened

13/4 17/2	23/4	33/4	53/4
2	31/8	41/4 41/2	$ \begin{array}{c} 6 \\ 6 \frac{1}{4} \\ 6 \frac{1}{2} \\ 6 \frac{3}{4} \end{array} $
		4 ³ ⁄ ₄ 5	63/4
$\frac{2\frac{1}{2}}{2\frac{5}{8}}$	$\frac{3\frac{1}{2}}{3\frac{5}{8}}$		71/2
	17/8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

ROUNDS

Cold Finished Natural

1/2 9/16 5/8 11/16	13/6 7/8 15/16	1½6 1½8 1¾6 1¼	15/6 13/8 17/6 11/2	15/8 13/4 17/8 2	
-----------------------------	----------------------	-------------------------	------------------------------	---------------------------	--

AISI-8630 AIRCRAFT QUALITY SHEET

To Specification AMS 6355 Latest Revision

Average Chemistry

Carbon 0.30%

Manganese 0.80%

Nickel 0.55%

Chromium 0.50%

Molybdenum 0.20%

Hot Rolled, Annealed and Pickled

THICKNESS IN INCHES CARRIED AT BRANCH WAREHOUSES

.035	.0625	.093	.125 .156	.250 .3125
.043 .049	.078	.109	.1875	

18 Wide x 72 Long

AISI-E-52100 ALLOY STEEL BARS BALL AND ROLLER BEARING QUALITY ASTM A-295-46T

Type A

Carbon 1.02%

Manganese 0.35%

Chromium 1.45%

ROUNDS

Hot Rolled, Spheroidized Annealed and Machine Straightened

5/8 3/4 7/8 1 11/8 11/4 13/8	1½ 158 1¾ 1¾ 178 2 2½ 2¼	23/8 21/2 23/4 27/8 3 31/4	3½ 3¾ 3¾ 4 4¼ 4½	5 5½ 5½ 5¾ 6 7
--	---	---	---------------------------------	-------------------------------

FREE MACHINING ALLOY STEEL BARS

The Max-el machinery steels listed in the following pages represent an important class of material to industry in general. They offer greater ease of machinability than can be expected from either straight carbon or alloy steel of equal hardness. Parts made from Max-el steels show minimum distortion upon heat treating with less correction necessary by grinding or other expensive methods. Please refer to further data shown on the following pages for chemistry, treatment, and applications.

MAX-EL 1B MACHINERY STEEL BARS

Average Chemistry

Carbon 0.18%

Manganese 1.00% Molybdenum 0.10%

Sulphur 0.08%

Max-el 1B offers to machinery steel users a case hardening grade of excellent machining qualities, capable of high hardness response in the case plus good mechanical properties in the core with minimum distortion during heat treatment. This grade is melted to a controlled grain size of 5-8 and is more uniform than regular commercial alloy steels.

ROUNDS

Hot Rolled, Natural Condition, Machine Straightened

1/2 5/8 3/4 7/8	15/8 13/4 17/8	$2\frac{5}{8}$ $2\frac{3}{4}$ $2\frac{7}{8}$ 3	41/4 41/2 43/4 5 51/4	6½ 6½ 6¾ 7
1 /8	2 2½	31/4	5 5½	771/4
1½ 1¼ 1¾ 13/8 1½	21/4 23/8 21/2	$ \begin{array}{c} 3\frac{1}{2} \\ 3\frac{3}{4} \\ 4 \end{array} $	5½ 5¾ 6	7½ 7¾ 8

PARTIAL LIST OF TYPICAL APPLICATIONS

Carburized

· 168 ·

Automotive Parts

Camshafts King Pins Piston Pins

Push Rods Tappets

Worms Wrist Pins Machine Tool Parts

Arbors
Ball Races
Chuck Jaws
Clutches
Gears
Shafts

Other Uses

Boring Bars
Chain Links
Rivets and Pins
Die Head Bodies
Skeleton Frames
Feed Mill Hammers
Gauges—Plug, Thread

Roller Dies Seaming Rolls Set Screws Sprockets Studs Vise Jaws

MAX-EL 2B MACHINERY STEEL BARS

Average Chemistry

Carbon 0.40% Sulphur 0.08%

Manganese 1.00%

Phosphorus 0.05%

MISCELLANEOUS

Molybdenum 0.10%

Max-el 2B has a carbon range of 0.35 to 0.45 and otherwise is identical in composition and manufactured under the same conditions as our Max-el 1B.

This steel is generally used in the "as rolled" condition for applications where heat treatment is not required but where strength plus toughness and good machinability are important.

ROUNDS

Hot Rolled, Natural Condition, Machine Straightened

	1	1		
1/2	11/8	23/8	35/8	53/4
9/16	11/4	21/2	33/4	6
5/8	13/8	25/8	4	61/4
11/16	11/2	23/4	41/8	61/2
1/2 9/16 5/8 11/16	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23/8 21/2 25/8 23/4 27/8	35/8 33/4 4 41/8 41/4	6 6½ 6½ 6¾ 6¾
13/16	13/4 17/8	3 3½ 3½ 3½ 3¾ 3½	$4\frac{1}{2}$ $4\frac{3}{4}$ 5 $5\frac{1}{4}$ $5\frac{1}{2}$	7
7/8	17/8	31/8	43/4	71/4
13/ ₁₆ 7/ ₈ 15/ ₁₆	2	31/4	5	71/4 -71/2 73/4
1	21/8	33/8	$5\frac{1}{4}$	73/4
11/16	2½ 2½ 2¼	31/2	$5\frac{1}{2}$	8

PARTIAL LIST OF TYPICAL APPLICATIONS

Equipment Parts

Machine Tool Spindles Lead Screws Feed Screws Racks Worms Motor Shafts Renecking Rolls in Textile Plants
Printing Press Parts
Welded Shanks on
High Speed Tools
Piston Rods on
Locomotive Boosters

PARTIAL LIST OF TYPICAL APPLICATIONS—Continued

Equipment Parts—Continued

Armature Shafts
Griffin Mill Shafts in
Cement Plants
Surface Grinder Spindles
Sleeves and Sleeve Shafts
Turbine Shafts

Centrifugal Pump Shafts Drill Press Spindles Spring Clips Piston Rods Mine Car Axles Cream Separator Spindles

Flame Hardened Parts

Rolling Mill Equipment

Crane Axles
Line Shafts
Crane Drive Shafts

Conveyor Pins and Rollers Conveyor Rolls on Slab Turnover Impeller Shafts

MAX-EL 31/2 MACHINERY STEEL BARS

Average Chemistry

Carbon 0.50%

Manganese 1.25%

Sulphur 0.08%

Chromium 0.65%

Molybdenum 0.18%

Max-el 3½ has enjoyed widespread usage by leading manufacturers throughout the country for a number of years. The addition of the molybdenum contributes toward ease in machining, with a slight improvement in the physical properties, particularly in terms of impact values.

Max-el 3½ should be specified where substantial strength, toughness, and hardness are desired. The inherent qualities of Max-el 3½ can be fully developed by heat treatment.

ROUNDS

Hot Rolled, Annealed and Machine Straightened

1/2 9/16 5/8 11/16 3/4	1½8 1¾6 1¼ 1¾ 13%8	$2\frac{1}{4}$ $2\frac{3}{8}$ $2\frac{1}{2}$ $2\frac{5}{8}$ $2\frac{3}{4}$	$ \begin{array}{c c} 3\frac{1}{2} \\ 3\frac{5}{8} \\ 3\frac{3}{4} \end{array} $	5½ 5¾ 6
	1% 1½	$2\frac{5}{8}$ $2\frac{3}{4}$	4 41/8	$\frac{6\frac{1}{4}}{6\frac{1}{2}}$
13/16 7/8 15/16	15/8 13/4 17/8	21/8 3 31/8 31/4 33/8	$4\frac{1}{4}$ $4\frac{1}{2}$ $4\frac{3}{4}$	$\frac{634}{7}$
11/16	2 2½	31/4 33/8	5 5¼	$7\frac{1}{4}$ $7\frac{1}{2}$ $7\frac{3}{4}$ 8

MAX-EL 31/2 MACHINERY STEEL BARS-Continued

PARTIAL LIST OF TYPICAL APPLICATIONS

Transportation Equipment

Drive Shafts

Spring Clip U-Bolts

Motor Gears

Connecting Rod Bolts

Motor Studs

Steering Knuckle Spindles

Differential Gears

Jack Shafts

Transmission Gears

Excavating and Road Machinery

Heavy Duty Shafts, Gears Ditch Digger Teeth

Caterpillar Treads, Links, Pins

Draw Bench Chain, Links, Pins

Cement Mill Equipment

Kiln Gear Shafts

Quarry Car Axles

Pinion Shafts

Feed Mill or Grain Crushers

Hammers, Shafts

Machine Tools

Tool Posts

Tool Set Screws

Back Gear Shafts

Clutches

Gears, Drive, Feed

Arbors

Spindles

Pinions

Shafts

Boring Bars

Flame Hardened Parts

Gears, Pinions, Arbors

to be oil quenched

Logging Tools

Mine Car Axles

Oil Drilling Equipment

Oil Pumping Equipment

ROUNDS

Hot Rolled, Heat Treated, Machine Straightened and Stress Relieved

BHN 262/311

1/2	$1\frac{5}{8}$ $1\frac{3}{4}$ $1\frac{7}{8}$ 2 $2\frac{1}{8}$	25/8	4	6
5/8		23/4	4½	6½
3/4		27/8	4½	6½
7/8		3	4¾	7
1		31/8	5	7¼
$1\frac{1}{8}$ $1\frac{1}{4}$ $1\frac{3}{8}$ $1\frac{1}{2}$	2½	31/4	5½	7½
	23/8	31/2	5½	7¾
	2½	33/4	5¾	8

MAX-EL 31/2 BRAKE DIE STEEL

Stress Relieved

BHN 229/293

	SQUARES					
$\frac{134}{2}$ $2\frac{1}{2}$	3 3½ 4	4½ 5	6 8			
	FLA	ATS				
2 x ½	$ 4\frac{1}{2} \times 1 $ 5 \times 1 6 \times 1 2 \times 1\frac{1}{4} 2\frac{1}{2} \times 1\frac{1}{4}	3 x 1½	6 x 2½			
3 x ½		3½ x 1½	3 x 2½			
4 x ½		4 x 1½	3½ x 2½			
2 x 5%		5 x 1½	4 x 2½			
3 x 5%		6 x 1½	5 x 2½			
4 x 5/8	3 x 1¼	3 x 2	6 x 2½			
2 x 3/4	3½ x 1¼	3½ x 2	8 x 2½			
3 x 3/4	4 x 1¼	4 x 2	4 x 3			
4 x 3/4	4½ x 1¼	4½ x 2	5 x 3			
2 x 1	5 x 1¼	5 x 2	6 x 3			
2½ x 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 x 2	8 x 3			
3 x 1		8 x 2	5 x 4			
4 x 1		4 x 2 ¹ / ₄	6 x 4			

SPECIAL ALLOY STEEL BARS

HY-Tuf ALLOY STEEL

Carbon 0.25%

Manganese 1.30%

Silicon 1.50%

Nickel 1.80%

Molybdenum 0.40%

HY-Tuf is a low alloy thorough hardening steel possessing extraordinary mechanical properties. This grade combines high tensile strength and good ductility with relatively high impact strength and hardness.

ROUNDS Hot Rolled Annealed

1/2 5/8 3/4 7/8	1½ 1½ 1½ 15/8 1¾ 1½	$2 \\ 2\frac{1}{8} \\ 2\frac{1}{4} \\ 2\frac{3}{8}$	2½ 2¾ 3 3 3½	3 ³ / ₄ 4 4 ¹ / ₂ 5
--------------------------	------------------------------------	---	--------------------------	---

TYPICAL APPLICATIONS

Aircraft Parts
Aircraft Bolts and Studs
Automotive Parts
Hand Tools

Heavy Construction Equipment Power Plant Equipment Rock Drill Bit Bodies Pneumatic Tool Parts

NITRIDING STEEL #135 MODIFIED

AMS 6470

Carbon 0.38/0.43% Chromium 1.40/1.80% Manganese 0.50/0.70% Molybdenum 0.30/0.40% Silicon 0.20/0.40% Aluminum 0.95/1.30%

Nitriding Steel #135 Modified is a chromium-molybdenum-aluminum alloy steel designed particularly for nitriding. Its composition is such that the required microstructure for optimum nitriding is produced after heat treatment. Nitrided machined parts made from this steel have a remarkably high surface hardness of about 1000 Vickers, wear resistance, and resistance to certain types of corrosion.

ROUNDS HOT ROLLED, HEAT TREATED TO BHN 248/293

Her Reside, Harris To Sint 210/2/2							
1/2 5/8 3/4 7/8 1 11/8	1½ 1¾ 1¾ 1½ 1½ 15% 1¾ 17%	2 2½ 2½ 2½ 2¾ 2¾ 2½ 2½ 2¾	3 3½ 3½ 3½ 35% 33¼	4 4½ 4¾ 5 6			

TYPICAL APPLICATIONS

Alrcraft Engine Cylinder Barrels Bushings Crosshead Pins Fuel Pump Parts Gears Pinions
Pinion Shafts
Piston Pins
Splines and Splineshafts

Sprockets Valve Sleeves Worms Wrist Pins

CRUCIBLE DRILL STEELS

Index

	Page
General Information	175
CA Double Diamond Alloy Hollow Drill Steel	
Rounds, quarter octagons, hexagons	176
Crusca Hollow Drill Steel Bars	
Rounds, hexagons, quarter octagons	176
4E Alloy Hollow Drill Rod Steel Bars	
Rounds, quarter octagons, hexagons	177
Crusca Solid Drill Steel Bars	
Hexagons, octagons	177

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

CRUCIBLE DRILL STEELS

Index

	Page
General Information	. 175
CA Double Diamond Alloy Hollow Drill Steel	
Rounds, quarter octagons, hexagons	. 176
Crusca Hollow Drill Steel Bars	
Rounds, hexagons, quarter octagons	. 176
4E Alloy Hollow Drill Rod Steel Bars	
Rounds, quarter octagons, hexagons	. 177
Crusca Solid Drill Steel Bars	
Hexagons, octagons	. 177

CRUCIBLE DRILL STEELS

HOLLOW DRILL

In mines and quarries, roads and tunnels Crucible Hollow Drill Steel is giving users lower cost per foot drilled. Controlled hardenability, excellence of stress-bearing surfaces and uniform processing all contribute to the assurance that Crucible Hollow Drill Steel will cut costs in your drilling operation.

MISCELLANEOUS

You can depend upon the carbon and alloy hollow drill steels made by Crucible. Look for the trade names CRUSCA, CA DOUBLE DIA-MOND and 4 E, Crucible's alloy hollow drill steels.

SOLID DRILL

Crucible's solid drill steels are of the same grade and high quality as its hollow drill steels.

CA DOUBLE DIAMOND ALLOY HOLLOW DRILL STEEL

Carbon 1.00%

Manganese 0.30%

Chromium 1.35%

Silicon 0.25%

Molybdenum 0.35%

◆ CA ◆ Double Diamond Alloy Hollow Drill Steel is recommended for use with all types of detachable bits. Its hardness in the natural or as rolled condition is considerably higher than the straight carbon Crusca hollow drill steel, thereby giving it greater strength and resistance to fatigue. The high carbon and alloy content, moreover, gives this steel its superior resistance to wear and abrasion.

	ROUNDS						
1	11/8	11/4					
QUARTER OCTAGONS							
7/8		1					
	HEXAGONS						
7/8		1					

Standard mill lengths, 16 to 24 ft. Longer lengths, if required, can be supplied promptly. See page 218 for approximate weight per foot and hole size.

CRUSCA HOLLOW DRILL STEEL BARS

Carbon 0.80%

Manganese 0.30%

Silicon 0.15%

Crusca Hollow Drill Steel is of the straight carbon type which has been standard for hollow drill steel throughout the world for many years. Although alloy hollow drill steels have been developed and are superior, being used for many purposes, the straight carbon drill steel is the predominant, all-purpose, drill steel.

1 1	ROUN	DS	
1	11/8	11/4	1½
	HEXAGO	ONS	
7/8	4000	1	
. (QUARTER OC	TAGONS	
7/8			

Standard mill lengths, 16 to 24 ft. Longer lengths, if required, can be supplied promptly. See page 218 for approximate weight per foot and hole size.

CRUCIBLE 4E ALLOY HOLLOW DRILL ROD STEEL BARS

Carbon 0.28%

Nickel 0.30%

Silicon 0.65%

Molybdenum 0.30% Chromium 2.15% Manganese 1.00%

Crucible 4E Alloy Hollow Drill Rod Steel is a special analysis produced specifically for use with detachable bits. It was carefully designed to offer the mining and construction industries an improved material, relatively free from difficulties normally experienced in the field during forging and heat treating operations. Specifically, Crucible's 4E Alloy has the strength and resistance to fatigue of our CA Double Diamond Alloy Hollow Drill Steel, with a wider temperature range for forging and hardening cycles. This new grade was field tested for over a year in various mining and construction locations and has proven itself to be a very satisfactory addition to our hollow drill steel family.

RC	DUNDS
11/8	11/4
QUARTER	R OCTAGONS
7/8	1
HEX	(AGONS
7/8	1

CRUSCA SOLID DRILL STEEL BARS

Carbon 0.80%

Manganese 0.30%

Silicon 0.15%

Standard mill lengths, 16 to 24 ft. Longer lengths, if required, can be supplied promptly. See page 219 for approximate weight per foot.

	HEXA	AGONS	
3/4 7/8	1	11/8	11/4
	ОСТ	AGONS	
3/4 7/8	1 1½8	. 11/4	1½

MISCELLANEOUS

WELDING ELECTRODES

Index

Introduction	Page	REZISTAL ELECTRODES
Rezistal Stainless Steel Electrodes for AC and DC Welding 180, 181 Rezistal Stainless Steel Bare Welding Wire		DESCRIPTIONS—Cont.
Wire	al Stainless Steel Electrodes	Rezistal 430 Electrode: Rezistal 442 Electrode:
Rezistal 302B	Vire	Rezistal 446 Electrode Rezistal LoCro 2 Mo E Rezistal 502 Electrode
Paristal 310 Ch Flactrodes 184 Arc Welding	Pezistal 302B	Rezistal LoCro 9 Mo . Crucible 99 Electrodes Crucible 60 Electrodes High Carbon Austenitic sisting Electrodes Rezistal Electrode Standard E and Lengths Rezistal Electrode Flux Coatings Welding Procedure Arc Welding Heliarc
Rezistal 310 Mo Electrodes 184 Rezistal 312 Electrodes 184 Rezistal 316 Electrodes 185 Rezistal 317 Electrodes 185 Rezistal 318 Electrodes 185 Rezistal 318 Electrodes 185 Rezistal 318 Electrodes 185 Rezistal 320 Electrodes 185	Rezistal 312 Electrodes	Oxy-Acetylene
Rezistal 347 Electrodes	Rezistal 347 Electrodes	Welding Joints Illustrated Basic Welding Symbols FOR TOOL STEEL ELECTROD STEEL SECTION. Airkool Air Hardening Elect Chro-Mow Hot Work Electroo Ketos Oil Hardening Electroo

	Page
DESCRIPTIONS — Cont.	
Rezistal 430 Electrodes	
Rezistal 442 Electrodes	187
Rezistal 446 Electrodes	188
Rezistal LoCro 2 Mo Electrode	es 188
Rezistal 502 Electrodes	188
Rezistal LoCro 9 Mo	188
Crucible 99 Electrodes	189
Crucible 60 Electrodes	
High Carbon Austenitic Heat Re	
sisting Electrodes	189
Rezistal Electrode Standard Diamete	rs
and Lengths	189
Rezistal Electrode Flux	
Coatings18	19, 190
Welding Procedure	
Arc Welding190, 19	1, 192
Heliarc	192
Oxy-Acetylene	192
Magnetic Arc Blow	193
Alternate Electrodes	194
Rezistal Stainless Steel Electrode	
Table of Current Ranges for A	
or DC Welding	
Welding Joints Illustrated	196
Basic Welding Symbols	197
FOR TOOL STEEL ELECTRODES, SEE	TOOL
STEEL SECTION.	
Airkool Air Hardening Electrodes	58
Chro-Mow Hot Work Electrodes	
Ketos Oil Hardening Electrodes	
veros ou uninellillà Electiones	10,11

WELDING ELECTRODES

Index

	0
Introduction	Page
Rezistal Stainless Steel Electrodes	1/3
for AC and DC Welding 18	0 101
Rezistal Stainless Steel Bare Weld	
Wire	. 182
REZISTAL ELECTRODES	
DESCRIPTIONS	
Rezistal 302B	. 183
Rezistal Armorize MN 307	
Electrodes	. 183
Rezistal 308	
Rezistal Armorize Mo Mod	
Rezistal 308 Lc	
Rezistal 309 Electrodes	
Rezistal 309 Cb Electrodes	
Rezistal 310 Electrodes	
Rezistal 310 Cb Electrodes	
Rezistal 310 Mo Electrodes	
Rezistal 312 Electrodes	
Rezistal 316 Electrodes	
Rezistal 316 Lc	
Rezistal 317 Electrodes	
Rezistal 318 Electrodes	
Rezistal 330 Electrodes	
Rezistal 347 Electrodes	
Rezistal 15-60 Electrodes	
Rezistal 19-9 Wmo	186
Rezistal 20-80 Electrodes	186
Rezistal Wh Electrodes	186
Rezistal 410 Electrodes	186
Rezistal 420 Electrodes	187

REZISTAL ELECTRODES	Page
DESCRIPTIONS — Cont.	ugu
Rezistal 430 Electrodes	. 187
Rezistal 442 Electrodes	. 187
Rezistal 446 Electrodes	
Rezistal LoCro 2 Mo Electrode	
Rezistal 502 Electrodes	. 188
Rezistal LoCro 9 Mo	. 188
Crucible 99 Electrodes	. 189
Crucible 60 Electrodes	
High Carbon Austenitic Heat Re-	
sisting Electrodes	. 189
Rezistal Electrode Standard Diameters	
and Lengths	. 189
Rezistal Electrode Flux	
Coatings189	
Welding Procedure	
Arc Welding190, 191	
Heliarc	192
Oxy-Acetylene	192
Magnetic Arc Blow	193
Alternate Electrodes	194
Rezistal Stainless Steel Electrodes	
Table of Current Ranges for AC	
or DC Welding	195
Welding Joints Illustrated	196
Basic Welding Symbols	
OR TOOL STEEL ELECTRODES, SEE	TOOL
TEEL SECTION.	
irkool Air Hardening Electrodes	58
hro-Mow Hot Work Electrodes	
etos Oil Hardening Electrodes76	, 77

INTRODUCTION

The Crucible Steel Company of America pioneered the development of Rezistal Stainless Steels, and was one of the early companies in the development of welding rods. Crucible was instrumental in this development, from the phase of shearing pieces of strip from sheets (which served as filler rods at that time), to the present high standard of Rezistal Welding Rods and coated Electrodes.

Typical of the many contributions Crucible has made in the progress of the welding art is the popular Crucible Armorize Electrode, Type 308 Molybdenum Modified, for welding rolled and cast armor. This was solely pioneered and developed by Crucible.

The following data are dedicated to those individuals engaged in the field of welding, without whom a rapid progress in the development of welding rods, would not have been possible. These data were compiled for ready reference, to assist in the selection of the proper grade of welding rod for a given grade of Stainless Steel.

REZISTAL STAINLESS STEEL ELECTRODES

Rezistal Stainless Steel Electrodes are made of Rezistal Stainless Core Wire with an extruded coating, designed to produce a weld deposit of the following chemical and mechanical properties.

Electrode	Weld Deposit Nominal Composition Per Cent			
Grades		T		1
	Cr	Ni	C (Max.)	Other
Rezistal 302B	19.00	9.00	0.15	Si 2.25
Rezistal 308	19.00	9.00	0.07	DI 2.20
Rezistal 308LC	19.00	9.00	0.03	
Rezistal 309	24.00	13.00	0.10	
Rezistal 309Cb	24.00	13.00	0.10	Cb 1.00 max.
Rezistal 309Mo	24.00	13.00	0.10	Mo 2.00
Rezistal 310	25.00	20.00	0.15	110 2.00
Rezistal 310Cb	25.00	20.00	0.15	Cb 1.00 max.
Rezistal 310Mo	25.00	20.00	0.15	Mo 2.00
Rezistal 312	29.00	9.00	0.10	MO 2.00
Rezistal 316	18.00	13.00	0.10	Ma 2 00 /9 75
Rezistal 316LC	18.00	13.00	0.07	Mo 2.00/2.75
Rezistal 317	19.00	13.00	0.03	M 9 00 /4 00
	15.00	15.00	0.07	Mo 3.00/4.00
Rezistal 318 (316Cb)	18.00	13.00	0.07	Cb 0.75 max.
Rezistal 330	15.00	25.00		Mo 2.00/2.75
Rezistal 347	19.00	35.00	0.15	Cl. 10 Cl. 100
Rezistal 410		9.00	0.07	Cb 10xC—1.00 max
Rezistal 420	12.00	_	0.10	_
Rezistal 430	12.00	_	0.35	
	16.00	_	0.10	-
Rezistal 442	20.00	_	0.10	_
Rezistal 446	27.00	_	0.10	_
Rezistal LoCro 9Mo	9.00		0.10	Mo 1.00
Rezistal 502	5.00		0.10	Mo 0.50
Rezistal LoCro 2Mo	2.00		0.10	Mo 0.50
Rezistal 15-60	15.00	60.00	0.10	_
				(W 1.40
Rezistal 19-9WMo	19.00	9.00	0.13	CB 1.00
				Mo 0.50
Rezistal 20-80	20.00	80.00	0.10	
Rezistal WH	19.00	9.00	0.60	Mn 4.00
			HIG	H CARBON HEAT
Rezistal 308 HC	19.00	9.00	.45	_
Rezistal 309 HC	24.00	13.00	.50	
Rezistal 310 HC	25.00	20.00	.50	
Rezistal 330 HC	15.00	35.00	.65	Maria .
Rezistal 15-60 HC	15.00	60.00	.60	_
			1	ELECTRODES FOR
Crucible 60	1		Ti-1-1 00	
Crucible 99	Nickel 60.00%			
Ordensie 99		Γ	Vickel 99.	00%

ELECTRODES FOR

Armorize Mn 307

FOR AC AND DC WELDING

Note: Primary Color-At or on End of Electrode

Secondary Color—Spot or Band on Side of Electrode

*Note: Group Color—All Electrodes AC-DC Titania Coated Will Be Yellow, All DC Lime Coated Will Be Black

Mechanical (m		Stub En	d Colors*	Electrode	
Tensile Strength psi	Elongation % in 2 in.	Primary	Secondary	Grades	
85,000	35	Yellow	Red	Rezistal 302B	
80,000	35	Yellow	_	Rezistal 308	
_	_	Brown	_	Rezistal 308LC	
85,000	35	Black		Rezistal 309	
85,000	30	Black	Blue	Rezistal 309Cb	
_	_	Black	White	Rezistal 309Mo	
80,000	35	Red	_	Rezistal 310	
	_	Red	Blue	Rezistal 310Cb	
	_	Red	White	Rezistal 310Mo	
	_	Green	Red	Rezistal 312	
85,000	30	Yellow	White	Rezistal 316	
	_	Brown	White	Rezistal 316LC	
85,000	30	Yellow	Brown	Rezistal 317	
_		Yellow	Green	Rezistal 318 (316Cb)	
		Green	_	Rezistal 330	
85,000	30	Yellow	Blue	Rezistal 347	
70,000	30	Gray	Brown	Rezistal 410	
_	_	_	_	Rezistal 420	
75,000	20	Gray	Green	Rezistal 430	
	_	Gray	Red	Rezistal 442	
		Gray	Yellow	Rezistal 446	
_		Gray	White	Rezistal LoCro 9Mo	
70,000	30	Gray	Blue	Rezistal 502	
70,000	30	Gray		Rezistal LoCro 2Mo	
_	_	Green	Blue	Rezistal 15-60	
_	- 1	Yellow	Orange	Rezistal 19-9WMo	
_	_	Green	White	Rezistal 20-80	
_		Brown	Gray	Rezistal WH	
RESISTING ELECTRODES					
_	I –	-	-	Rezistal 308 HC	
_	_		_	Rezistal 309 HC	
	_	_	_	Rezistal 310 HC	
- 1		Green	Black	Rezistal 330 HC	
_	_	_	-	Rezistal 15-60 HC	
CAST IRC	N WELDI	NG			
		Orange	Brown	Crucible 60	
		Orange	Blue	Crucible 99	
	. = =	0.44.86			

WELDING ARMOR

Armorize 308 Mo Mod

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

REZISTAL STAINLESS STEEL BARE WELDING WIRE

Note: The Nominal Composition of the following grades is the same as shown for Rezistal Stainless Steel Electrodes.

OXY-ACETYLENE AND INERT GAS ARC-WELDING CUT LENGTHS

Registal 304 Rezistal 310 △Rezistal 321 Rezistal 308 Rezistal 310 CB Rezistal 308 LC Rezistal 316 Registal 309 Rezistal 316 LC Rezistal 309 CB Rezistal 318

AFor Inert Gas-Arc-Welding only.

INERT GAS ARC-WELDING WIRE

ON LAYER WOUND SPOOLS

Rezistal 308 Rezistal 310 Rezistal 318 Rezistal 308 LC Rezistal 310 CB *Rezistal 321 Rezistal 309 Rezistal 316 Rezistal 347 Rezistal 309 CB Rezistal 316 LC

Rezistal 330

Rezistal 347

Rezistal 15-60

*Nominal Composition Deposited.

Cr Ni Other Rezistal 321 19.00 900 .07 max. (Ti 5xC min.)

SUBMERGED ARC-WELDING WIRE

LAYER WOUND COILS

Rezistal 308 Rezistal 310 Rezistal 318 Registal 308 LC Rezistal 310 CB Rezistal 420 Rezistal 309 Rezistal 316 Rezistal 347 Rezistal 309 CB Rezistal 316 LC

METALLIZING WIRE LAYER WOUND COILS

Rezistal 304 308 309 310 316

†420 and Other Stainless Grades

†For Wear Resistance RC 45/55.

MISCELLANEOUS

REZISTAL ELECTRODES—DESCRIPTIONS

REZISTAL 302 B

Rezistal 302 B is a high silicon austenitic chromium-nickel electrode for welding heat resisting steels. This grade is particularly good for resistance to scaling up to 1700 F.

REZISTAL ARMORIZE MN 307 ELECTRODES

Rezistal Armorize Mn is an austenitic electrode conforming to Government Specifications for welding rolled and cast armor steels without preheating. This grade is adaptable for welding other dissimilar grades of steels; low and medium carbon steels and manganese steels.

REZISTAL 308

Rezistal 308 is an austenitic chromium nickel electrode conforming to Government and other specifications for welding types 301, 302, 304, 305 and 308 stainless steels. This grade is free from susceptibility to intergranular corrosion in presence of weak electrolytes after welding. This grade is also adaptable for welding dissimilar grades of steels, Lo Cro Mo, Types 501, 502, Lo Cro 9 Mo, Types 403, 405, 406, 410, 430 and high manganese steels.

REZISTAL ARMORIZE 308 MO MOD.

Rezistal Armorize 308 Mo Mod. is an austenitic electrode conforming to Government Specification for welding rolled and cast armor steels without pre-heating and post-heating. This grade is adaptable for welding other dissimilar grades of steels; low and medium carbon steels, Lo Cro 2 Mo, Types 501, 502, Lo Cro 9 Mo, Types 403, 405, 406, 410 and high manganese steels.

REZISTAL 308 LC

Rezistal 308 LC is a low carbon austenitic chromium-nickel electrode conforming to Government and other specifications for welding Types 301, 302, 304, 304 LC, 305, 308, 321 and 347. This grade is essentially free from carbide precipitation due to its low carbon content.

REZISTAL 309 ELECTRODES

Rezistal 309 for welding Type 309 steel, is an austenitic chromium-nickel electrode conforming to Government and other specifications for welding heat-resisting steels. This grade has greater corrosion resistance and better resistance to scaling up to 1950 F. than the lower chromium-nickel grades. Rezistal 309 can be used for welding same grades of stainless as Rezistal 308 electrodes, including Types 302 B and 442.

REZISTAL 309 CB ELECTRODES

Rezistal 309 CB is recommended where maximum resistance to corrosion is required without subsequent annealing after welding. This grade is adaptable for welding same grades of stainless and dissimilar steels as Rezistal 309.

REZISTAL 310 FLECTRODES

Rezistal 310 for welding Type 310 steel is an austenitic chromiumnickel electrode conforming to Government and other specifications for welding general corrosion and heat-resistant steels. This grade resists scaling depending on the atmosphere up to 2100 F. and is recommended where high concentration of SO 2 gas is encountered at elevated temperatures. This grade is adaptable for welding same grades as Rezistal 309, including Types 311-314, 446 stainless, dissimilar metals, high carbon steels, air hardening steels, rolled armor, cast armor steels, high manganese and stainless clad steels.

REZISTAL 310 CB ELECTRODES

Rezistal 310 CB is recommended for welding Type 310 CB and where maximum resistance to corrosion is required without subsequent annealing after welding as in Rezistal 309 CB. This grade is adaptable for welding same grades of steel as Rezistal 310.

REZISTAL 310 MO ELECTRODES

Rezistal 310 Mo is recommended for welding where high creep strength is desired at elevated temperatures. This grade is also recommended for welding extra heavy gages of stainless steel where high stresses are encountered to the extent that regular Types 310 and 310 CB may be susceptible to cracking. This grade is adaptable for welding same grades of steel as Rezistal 310, with exception of Types 430, 442 and 446.

REZISTAL 312 ELECTRODES

Rezistal 312 is an austenitic chromium-nickel electrode conforming to Government and other specifications for welding Type 312 stainless steel and super alloy high heat-resisting steels. This grade can be used as a substitute for welding Types 301, 302, and 304. Can be used for welding Lo Cro 2 Mo, Types 501, 502 and other dissimilar steel welding, low and high carbon and high manganese steel.

REZISTAL 316 ELECTRODES

Rezistal 316 is an austenitic chromium-nickel electrode for welding Type 316 stainless steel, has excellent corrosion resistance and is used for applications in sulphate or sulphite liquors in the paper industry, textile processing and some application in chemical industries. It is also recommended where high creep strength is desired at elevated temperatures.

This grade resists scaling up to 1650 F., has high tensile strength and excellent resistance to creep at elevated temperatures.

This grade can be used for welding Types 301, 302, 302 B, 304, 305 and 317.

REZISTAL 316 LC

Rezistal 316 LC is a low carbon austenitic chromium-nickel electrode for welding Type 316 LC stainless steel. This electrode is essentially free from carbide precipitation due to its low carbon content.

It may be used for the same application as Rezistal 316. In addition it can be used to weld the same grades as a Regular Rezistal 316 electrode, including Types 308 LC, 321 and 347.

REZISTAL 317 ELECTRODES

Rezistal 317 is an austenitic chromium-nickel electrode for welding Type 317 stainless steel. Its corrosion resistance is similar to that of Rezistal 316 and is used for sulphate of sulphite liquors in the paper industry, textile processing and some application in the chemical industries. Rezistal 317 is not recommended for operating above 1300 F.

This grade may be used as a substitute for welding Types 301, 302, 304 and 305. This grade may also be used for welding Type 316 if service operation is not above 1300 F.

REZISTAL 318 ELECTRODES

Rezistal 318 is columbium stabilized (formerly 316 CB) austenitic chromium-nickel-molybdenum electrode for welding Types 316 and 318. It is recommended where maximum resistance to corrosion is required without annealing after welding. It has high creep strength at elevated temperatures and resists scaling up to 1650 F.

This grade may be used as a substitute for welding Types 301, 302, 304, 305, 316, 317 and 347.

REZISTAL 330 ELECTRODES

Rezistal 330 is an austenitic chromium-nickel electrode primarily for welding Type 330 heat-resisting steels for elevated temperature service up to 2100 F. This grade is excellent for such applications as annealing boxes, hoods, mufflers, retorts, furnace linings, etc. However, it should not be used in the presence of sulphur gases.

When welding heavy sections with Rezistal 330, it is advisable to preheat at a minimum temperature of 300 F, prior to welding and stress relieve after welding at 700 F minimum.

REZISTAL 347 ELECTRODES

Rezistal 347 is an austenitic chromium-nickel, columbium stabilized electrode, conforming to Government and other specifications for welding Type 347 stainless steel for use in strong electrolytes. Rezistal 347 is recommended where maximum resistance to corrosion is required without subsequent annealing after welding. Rezistal 347 is scale resistant up to 1650 F depending on service atmosphere. Rezistal 347 can be used for welding Types 301, 302, 304, 305, 308, Lo Cro 2 Mo, Types 501, 502, Lo Cro 9 Mo, Types 403, 405, 406, 410, 430 and high manganese steels. Rezistal 347 may be used in service application above 800 F.

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

REZISTAL 15-60 ELECTRODES

Rezistal 15-60 is a chromium-nickel austenitic electrode for welding Type 15-60 heat-resisting steels for elevated temperatures service similar to Rezistal 330. This grade should not be used in the presence of sulphur gases. Rezistal 15-60 can be used for welding Type 330 heat-resisting steel. It is scale resistant, depending on service application, up to 2100 F.

For heavy section welding it is advisable that the same pre-heat and stress-relief be used as for Type 330.

REZISTAL 19-9 WMO

Rezistal 19-9 WMo is an austenitic chromium-nickel tungsten molybdenum electrode for welding Types 19-9 WMo, 19-9 DL, 16-25-6 and S 816. It is suitable for elevated temperature operations where high creep strengths are required.

REZISTAL 20-80 ELECTRODES

Rezistal 20-80 is an austenitic chromium-nickel electrode for welding Type 20-80 heat-resisting steels. This grade should not be used in the presence of sulphur gases. Rezistal 20-80 can be used for welding Types 330 and 16-65. Depending on the nature of the design and thickness of the structure to be welded, care must be exercised in welding, since this grade is somewhat prone to cracking. Parent metal should be pre-heated prior to welding and stress relieved at 700 F maximum. This grade is scale resistant up to 2200 F.

REZISTAL WH ELECTRODES

Rezistal WH is an austenitic chromium-nickel-manganese type electrode for welding high manganese steel, dissimilar steels and low and medium carbon steels. Excellent for resistance to heavy impact shock service, as for example, steel mill rolls, wabblers, coupling boxes, drivers, railroad tracks, cross-overs, frogs, switchjoints, etc.

It is recommended as an underlay metal prior to hard surfacing of other harder compositions. Hardness of WH, as deposited is around 200 BHN, will work harden under impact to 500 BHN.

REZISTAL 410 ELECTRODES

Rezistal 410 is a hardenable martensitic straight chromium electrode for welding Type 410. Rezistal 410 is corrosion resistant to atmosphere, fresh water, mild acids and alkalies. It is scale resistant, depending upon the atmosphere, up to 1200 F. Rezistal 410 is susceptible to cracking and air hardening unless pre-heated to a minimum temperature of 300 F prior to welding and post-heated directly after welding by low annealing at 1250 to 1400 F and air cooled or full annealing at 1500 to 1650 F then furnace cooling at a rate of 50 to 100 F per hour to 1100 and air cooled. This grade may be used as a substitute for welding Lo Cro 9 Mo, Lo Cro 2 Mo, Type 501 and 502.

Where it is not feasible to employ heat treatment, one of the austenitic grades may be used, viz: Rezistal 308, 308 LC, 309, 309 CB, 310, 310 CB and 347.

REZISTAL 420 ELECTRODES

Rezistal 420 is a hardenable martensitic straight chromium electrode for welding Type 420 steel. This material is corrosion resistant in mild acids and alkalies. It is a scale resistant depending upon the atmosphere up to 1200 F.

Rezistal 420 is susceptible to cracking and air hardening unless pre-heated to a minimum of 300 F prior to welding and post-heated directly after welding by low annealing at approximately 1300 F. Hold for 4 hours, air cool or fully anneal at 1500 to 1650 and furnace cool at a rate of 50 F per hour to 1100 F and air cool. Rezistal 420 has high hardening qualities due to the increased carbon content.

Where heat treatment is not feasible, one of the austenitic grades may be used; Rezistal 308, 309, 310, and 308 LC and 347.

Rezistal 420 is also a very popular grade for applications as an "overlay" deposit for wear resistance purposes, used with fusion welding and metal spraying processes.

REZISTAL 430 ELECTRODES

Rezistal 430 is a non-hardenable ferritic straight chromium electrode for welding Type 430 and for use where corrosion to nitric acid, fresh water, mild acids and alkalies is required. This grade is scale resistant depending upon the atmosphere up to 1650 F. When welding with Rezistal 430, a pre-heat at 300 F minimum prior to welding is generally advisable; then post-heat at 1400 to 1500 F, followed by an air cool or water quench. Rezistal 430 should not be used where high impact strength is required after welding without proper heat treatment.

To obtain maximum ductility, the weld should be peened at 1300 to 1500 F. Peening refines the grain structure permitting uniform appearance on polished surfaces of the weld deposit on parent metal.

Where heat treatment is not feasible, austenitic electrodes may be used, viz: Rezistal 308, 308 LC, 309, 309 CB, 310, 310 CB and 347.

REZISTAL 442 ELECTRODES

Rezistal 442 is a non-hardenable ferritic straight chromium electrode for use where corrosion resistance to nitric acid is required.

Rezistal 442 is scale resistant, depending upon the atmosphere, up to 1800 F. Rezistal 442 should not be used where high impact strength is required after welding without proper heat treatment. For welding, a preheat of 300 F minimum followed by a post-heat at 1400 to 1500 F with subsequent air cooling or water quenching is required.

To obtain maximum ductility, the weld deposit should be peened at 1300 to 1500 F. Peening refines the grain structure permitting a uniform appearance on polished surfaces of the weld deposit on parent metal. This grade can be used for welding Rezistal 430 stainless.

When heat treatment is not feasible, austenitic electrodes may be used, viz: Rezistal 309, 309 CB, 310.

REZISTAL 446 ELECTRODES

Rezistal 446 is a non-hardenable ferritic straight chromium electrode having the highest scale, corrosion and heat resistant properties of the straight chromium steels.

Rezistal 446 is scale resistant, depending upon the atmosphere, up to 2100 F. It should not be used however, where heavy impact is likely to occur. It is highly resistant to cold concentrated sulphuric acid where the solution of iron in the acid would cause discoloration. In welding, a minimum pre-heat temperature of 300 F followed by a post-heat at 1400 to 1450 F with subsequent air cooling or water quenching is required. For maximum ductility, the weld deposit should be peened at 1300 to 1500 F. Peening refines the grain structure permitting a uniform appearance on polished surfaces of the weld deposit or parent metal. Where heat treatment is not feasible, austenitic electrodes may be used, viz: Rezistal 310 and 310 CB.

REZISTAL LO CRO 2 MO ELECTRODES

Rezistal Lo Cro 2 Mo is a hardenable martensitic straight chromium-molybdenum electrode which is adaptable for service temperatures up to 1200 F.

This grade is susceptible to air hardening cracking unless the material is pre-heated to a minimum 300 F prior to welding and stress relieved at 1250 to 1400 F and air cool or by fully annealing at 1500 to 1650 F and furnace cool 50 F per hour to 1200 F and air cool.

Where it is not feasible to employ heat treatment, one of the austenitic grades may be used, viz: Rezistal 308, 308 LC, 309, 309 CB, 310, 310 CB and 347.

REZISTAL 502 ELECTRODES

Rezistal 502 is a martensitic hardenable Lo Cro Mo chromium-molybdenum electrode which is adaptable for service temperatures up to 1200 F. It is popular for petroleum industry applications and has a greater resistance to corrosion than lower alloy steels. Rezistal 502 should be pre-heated at 300 F minimum for welding, followed by annealing at 1500 to 1600 F, furnace cooling at a rate of 50 degrees per hr. to 1200 F and air cool. For sub-critical annealing, the material should be post-heated after welding to 1200-1400 F and air cooled. This electrode can be used for welding Lo Cro 2 Mo Steel.

If heat treatment is not feasible, austenitic electrodes may be used, viz: Rezistal 308, 308 LC, 309, 309 CB, 310, 310 CB, 347.

REZISTAL LO CRO 9 MO

Rezistal Lo Cro 9 Mo is a martensitic hardenable chromium-molybdenum electrode adaptable for service in temperatures up to 1300 F. It is popular for petroleum industry applications, particularly in sour crude regions and has better corrosion resistance than lower chromium grades. Rezistal Lo Cro 9 Mo should be pre-heated at 300 F minimum for welding, followed by annealing at 1500 to 1600 F, furnace cooling at a rate of 50 degrees per hr. to 1200 F and air cool. If heat treatment is not feasible, austenitic electrodes may be used, viz: Rezistal 308, 308 LC, 309, 309 CB, 310, 310 CB, 347.

CRUCIBLE 99 ELECTRODES

Crucible 99 is a non-hardenable nickel electrode recommended for welding cast iron. Crucible 99 is free machining, and offers the advantage of welding many cast iron applications at room temperature without the necessity of pre-heating and post-heating.

CRUCIBLE 60 ELECTRODES

Crucible 60 is a non-hardenable nickel-iron electrode recommended for welding cast iron. It is not as free machining as Crucible 99, since heat hardness will result at the fusion line of the weld, unless certain precautionary measures are taken during welding. For welding procedure, refer to Crucible 60 Data Sheet.

HIGH CARBON AUSTENITIC HEAT RESISTING ELECTRODES

Registal 308 Hi C Flectrode

Rezistal 308 Hi C is a non-hardenable austenitic electrode for welding Type 304, 305 and 308 high carbon castings.

Rezistal 309 Hi C Electrodes

Rezistal 309 Hi C is a non-hardenable austenitic electrode for welding Type 309 castings. Can be used for welding same grades as Rezistal 308 Hi C.

Rezistal 310 Hi C Electrodes

Rezistal 310 Hi C is a non-hardenable austenitic electrode for welding Type 310 Hi C castings. Can be used for welding same grades as Rezistal 309 Hi C.

Rezistal 330 Hi C Electrodes

Rezistal 330 Hi C is a non-hardenable austenitic electrode for welding Type 330 castings.

Rezistal 15-60 Hi C Electrodes

Rezistal 15-60 is a non-hardenable austenitic electrode for welding Type 15-60 castings, Can be used for welding Type 330 Hi C castings,

REZISTAL ELECTRODE STANDARD DIAMETERS AND LENGTHS

1/4" dia. x 9" long 1/4" dia. x 9" long ½" dia. x 9" and 12" long

⅓" dia. x 14" long

3/6" dia. x 14" long
1/4" dia. x 14" long

5/22" dia. x 14" long

Other lengths available on application

REZISTAL ELECTRODE FLUX COATINGS

In order to successfully cover the exacting requirements of the stainless welding industry, Rezistal Electrodes are manufactured with two different types of coating fluxes, namely, AC-DC Titania and DC Lime.

REZISTAL ELECTRODE FLUX COATINGS—Continued

1. TITANIA (Buff Coating)

Rezistal Electrodes with a buff coating indicate an AC-DC Titania flux which is designed for all position welding with exception of vertical-down. These electrodes operate with equally good results on either AC or DC current. With DC current, use reverse polarity (Electrode-positive; Work-negative). A Titania coating may be described as containing more than 20% titanium dioxide in addition to the usual alkaline earth compounds.

2. LIME (Green Coating)

Rezistal Electrodes with a green coating indicate a Lime base flux. These electrodes are especially designed for all position welding with DC current using reverse polarity (Electrode-positive; Work-negative). A lime coating may be described as consisting chiefly of compounds of alkaline earth elements containing less than 8% titanium dioxide.

Titania coating is applied to all 300 and 500 series of Rezistal Stainless Steel Electrodes, including Rezistal 430. Lime coating is applied to all grades of Rezistal Electrodes. Both coatings produce welds of equal quality in the grades they are applied to. There is, however, a difference in arcing characteristics of the two coatings. Titania coating produces a smoother arc, less spatter, smoother weld bead deposit and the slag comes off in large chunks. Lime produces a more erratic arc, the type that has a tendency to flare out, more convex bead and the slag comes off in the form of finer particles.

On the overall picture, Titania is predominantly used in all position welding, with the exception of vertical-down. It is not recommended for this position welding as the slag has an extreme tendency to flow ahead of the molten metal and solidify, then insulate out the arc as the molten puddle reaches the point of solidified slag.

WELDING PROCEDURE

In the welding of stainless steels with Rezistal coated Electrodes, the physical and mechanical properties of the parent metal must be taken into consideration. This is extremely important when welding the austenitic chromium-nickel grades as they have a high coefficient of expansion, high electrical resistance and a low thermal conductivity. The hardenable chromium grades, due to their hardening characteristics, must be correctly pre- and post-heated. The non-hardening chromium grades, on the other hand, must receive proper stress relieving. The correct heat-treatment recommendations for all types, may be secured from the corresponding "Rezistal Data Sheet."

ARC WELDING

The recommended polarity for DC welding generally is reversed polarity, having the electrode positive and the work negative. A close arc should be maintained at all times when welding with either DC or AC current. The welding arc length is governed by the amount of voltage drawn across the arc. When voltage is maintained at, or relatively near, the values given in the current range tables (see page 195) proper arc length will result. Proper welding current adjustment is most essential for best results.

FLAT POSITION WELDING

Welding technique is similar to that for mild steel with the exception that oscillation of the electrode is not recommended, i.e., taking the electrode out of the weld puddle and advancing a distance ahead of the puddle, then moving back into it. Weaving should be limited to two and one-half times the diameter of the electrode. Less current is necessary than for mild steel welding because the stainless steels have higher electrical resistance and lower heat conductivity than mild steel.

VERTICAL-DOWN WELDING

Vertical-down welding in stainless steel is not generally recommended with exception of extremely light gauge. There are several variables to contend with; once the arc is established, welding must be maintained at uniform speed of travel; any hesitation on the part of the operator will permit the slag to flow ahead of the molten pool, and cause arcing interference, poor fusion, slag inclusions, cold shuts, porosity and weld-bead cracking.

However, in the application of stainless strip lining in carbon steel vessels, vertical down-welding is entirely satisfactory. This is due to the higher heat dissipation of the backing material which permits the successful use of high welding currents, without the danger of burning through or slag interference.

VERTICAL-UP WELDING

For the best mechanical properties in a vertical seam, welding should be done starting at the bottom and working up on thickness approximately 18 gauge and heavier. If the vertical-down position is necessary only Lime coated electrodes should be used.

VERTICAL AND OVERHEAD

In general, for applications in vertical and overhead welding, the use of electrodes larger than 3/16 in. diameter is not recommended—5/32 in. max. is preferable. This is due to the inherent tendency for the development of a large molten weld pool, which presents difficulty to the operator from a standpoint of weld metal deposition. The use of a 5/32 in. maximum diameter electrode will prove to be advantageous, as the electrode can be maintained in the molten pool at all times during welding. This is essential for welding stainless steels.

LIGHT GAUGES

To maintain alignment and minimize warpage, light gauge sheets should be clamped, preferably in a jig, using copper backing with a suitable groove in the copper. When this set-up is not feasible, steel strips along each side of the seam will minimize warpage and help maintain the alignment of the seam. In tack welding light gauge sheets, it is important that tack welds be placed at close intervals to prevent buckling between the tacks on subsequent weld. Buckling may result in poor quality welds due to excessive burning through, cold shuts, slag inclusions and irregular penetration. On extremely light gauge sheets where penetration is instantaneous, straight polarity may be employed as an expedient to minimize any tendency for burning through. The practice of leaving the seam of a butt joint open more at one end than the other prior to welding is not necessary.

HEAVY GAUGES

For heavy gauge welding where multiple pass welding is employed, it is imperative that the slag be thoroughly cleaned from the preceding weld before starting subsequent welding. To eliminate a rough start when reestablishing an arc at the crater of a previously deposited weld, strike the arc at the top of the crater and draw an abnormally long arc. Then manipulate the electrode in a fanning manner, momentarily, to assure a very thin deposit of weld metal at this point. This also acts as a pre-heat to assure good penetration when progressing forward into the depth of the crater. The arc length should be shortened simultaneously until normal arc length is attained. This procedure will result in a smooth and sound weld.

HELIARC

Heliarc welding is done primarily without the use of a filler rod. The weld metal for the seam is supplied from the parent metal by butting the edges of the sheets tightly together and fusing them. The edges of the sheets must be squared absolutely true. Otherwise, the resultant openings will necessitate the use of a filler rod. The filler rod is flowed into the seam in the same manner as that employed for oxy-acetylene welding.

OXY-ACETYLENE

Oxy-acetylene welding is used primarily for light gauge welding to which electric arc or other welding methods do not lend themselves readily.

The process is still quite popular for field welding where gas driven motor generator welders are not available or where Heliarc is not adaptable because of surrounding atmosphere which would blow away the protective inert gas atmosphere from the molten metal.

A reducing flame (carbonizing flame) is generally used to facilitate better flowing characteristics of the molten weld metal, but care must be exercised in controlling the length of the reducing flame where corrosion is a factor in order to prevent carbon pick up in the weld from the welding flame. A reducing flame is identified by a feather flickering slightly over the end of the inner cone of the flame. The feather should be just visible and no more. However, where corrosion is not a factor, particularly on heat resisting applications, the feather may be increased.

When it is important to minimize carbide precipitation in the weld, a columbium bearing welding rod should be used. This is especially desirable when water cooling during welding and/or post annealing is not feasible.

This process is the most critical of all hand welding methods as far as influencing carbide precipitation in austenitic stainless steels, because the temperature of the flame is considerably lower than other welding processes. This means a longer time is required to bring the parent metal up to welding temperature, subjecting the weld area to the critical sensitizing temperature range of 800 to 1500 F resulting in excessive carbide precipitation.

Note: For further information on welding and other welding processes, refer to Crucible's publication—"Joining of Crucible Rezistal Stainless Steels."

MAGNETIC ARC BLOW

Frequently on flat, vertical, overhead and "in corner" welding with DC current, magnetic arc blow is a problem which seriously interferes with the production of sound welds. This condition is predominant when welding the carbon, alloy, low chromium, and high chromium steels. The cause of arc blow is the presence of a magnetic field in the pieces to be welded, the field being concentrated in the air-gap set up between the edges of the plates to be joined. The existence of a magnetic field creating arc blow, may be due to any of the following three conditions, or a combination of all three:

- Residual magnetism in the plates resulting from handling or moving the plates with electro-magnets.
- Magnetism induced in the plates by the earth's magnetic field. Although the density of the earth's field is relatively weak, it can be concentrated at the breaking points of continuity in large masses or structures (such as along welding seams) so that its effect is most pronounced.
- 3. The close proximity of DC cables to the welding seam.

The presence of a magnetic field at the weld seam caused by any one of the above three conditions has the effect of causing a directional pressure of variable intensity on the flow of current and molten weld metal. When this pressure or force is high enough and in counter direction to the direction of welding, the arc will become "wild" and will "blow." In order to eliminate magnetic arc blow, the use of Crucible "Little Giant" Cast Alnico Horseshoe Magnets is recommended. The magnets should be placed so that they straddle a weld seam, having one pole on each plate. When two magnets are used, they should be placed so that a complete circuit is formed. This requires the magnets to have opposite magnetic poles on the same plate. This can readily be checked by the use of a compass or by placing the two magnets together prior to placing them on the poles. When the magnets are brought together, they should attract each other, since unlike poles attract and like poles repel. By the proper location and spacing of the magnets on the work, the residual magnetism in the plates can be completely neutralized, and, as a result, controlled and effective welding can be obtained.

ALLO

ALTERNATE ELECTRODES

In order to assist in suggesting alternates in various grades of electrodes when the desired material is not available, the following grades may be substituted.

	- 1	
Base Metal	Proper Grade Electrode	Alternate Grade Electrode
302 B	302 B	309, 309 Cb, 310, 310 Cb
201, 202, 301, 302 304, 305, 308	308	308 LC, 347, 309, 309 Cb, 309 Mo, 310, 310 Cb, 316, 316 LC, 318
304 LC	308 LC	347, 309 Cb, 310 Cb, 316 LC, 315, 310 Mo Cb
308	308	309, 310, 310 Mo, 316, 318, 317, 316 LC, 347
309	309	309 Cb, 310, 310 Cb, 310 Mo, 310 Mo Cb
310	310	310 Cb, 310 Mo, 310 Mo Cb
310 Cb	310 Cb	310 Mo Cb
311	310	310 Cb, 310 Mo, 310 Mo Cb
312	312	None
314	310	310 Mo, 310 Mo Cb
316	316	318, 316 LC, 309 Mo, 310 Mo, 317, 310 Mo Cb
316 LC	316 LC	310 Mo Cb
317	317	316, 318, 309 Mo, 310 Mo, 310 Mo Cb
318	318	310 Mo Cb
321	347	308 LC, 309 Cb, 310 Cb, 318, 316 LC
330	330	15-60
347	347	308 LC, 309 Cb, 310 Cb, 318 (316 LC)
410	410	308, 308 LC, 347, 309, 309 CB, 310, 310 Cb
430	430	442, 308, 308 LC, 347, 309, 309 Cb, 310, 310 Cb
442	442	446, 309, 309 Cb, 310, 310 Cb, 330
446	446	310, 310 Cb, 330
Lo Cro 2 Mo	Lo Cro 2 Mo	502, Lo Cro 9 Mo (also same austenitic substitution as for 410)
502, 501	502	Lo Cro 9 Mo, 410 (also same austenitic substitution as for 410)
Lo Cro 9 Mo	Lo Cro 9 Mo	410, 308, 308 LC, 309, 309 Cb 310, 310 Cb
15-60	15-60	20-80
20-80	20-80	None
		1

REZISTAL STAINLESS STEEL ELECTRODES

Table of Recommended Current Ranges For AC or DC Welding

IMPORTANT: Current range readings below represent current passing across the arc during welding.

	Mate	rial Gauge	CI	iromiu Elect	m Nicl rodes	cel	Str	raight (Elect		um			Mo. 50: 9 Mo. rodes	-
Elec- trode Diam- eter Inch	U.S Std. (Rev.)	Equivalent Inches	Volts	Flat Am- peres	Ver- tical Up Am- peres	Over- head Am- peres	Volts	Flat Am- peres	Ver- tical Up Am- peres	Over- head Am- peres	Volts	Flat Am- peres	Ver- tical Up Am- peres	Over- head A m- peres
*1/16	24/20	.025/.037	20	20/35	20/25	20/30					1			
5/64	22/26	.031/.062	21	30/45	30/35	30/40								- 5
3/22	18/12	.050/.109	22	50/70	45/55	50/60	22	55/75	50/60	55/70	22	65/85	60/70	65/7
1/8	12/7	.109/.187	23	90/ 110	75/85	90/ 100	23	100/ 120	90/ 100	100/ 115	23/24	120/ 145	95/ 110	120/ 135
5/32	7/7/0°s	.187/.500	24/25	125/ 150	95/ 110	124/ 140	24/25	135/ 165	110/ 120	135/ 155	24/26	150/ 180	125/ 140	150/ 170
3/16	3/0's	.375/.750	25/27	155/ 195	105/ 120	155/ 185	25/27	170/ 210	115/ 130	170/ 200	26/28	215/ 255	140/ 155	215/ 245
1/4	-	.375 & over	26/28	240/ 290			26/28	260/ 310			28/30	315/ 360		
*5/16	-	,	27/30	325/ 375								-Y		

DC Polarity: Electrode-positive, Work-negative.

Optimum current setting normally selected at center of current table.

Vertical down continuous welding: Use only Lime Base Coated Electrodes with the same current setting as flat position.

^{*}AC current recommended. If DC employed: Use Alnico Magnets to eliminate arc blow.

IL STEELS

WELDING JOINTS ILLUSTRATED LEADING TYPES OF WELDING JOINTS

MISCELLANEOUS

BASIC WELDING SYMBOLS

ARC AND GAS WELD SYMBOLS

			TYPE O	F WELD			
2542		PLUG OR SLOT			GROOVE		
BEAD	FILLET	SLOT	SQUARE	٧	BEVEL	U	J
0	4	D	-	>	7	7	V

WELD	FIELD	CON	TOUR
ALL	WELD	FLUSH	CONVEX
0	•	_	^

RESISTANCE WELD SYMBOLS

	TYPE OF WELD				
SPOT	PROJECTION	SEAM	FLASH OR UPSET		
*	X	XXX			

MISCELLANEOUS STEELS

Index

	Page
Champaloy Steel Bars	
Rounds, Flats	199, 200
Squares	200
Ketos Machined Jeweler's Die Blocks	200
Butcher Saw Blade Steel	200
Little Giant Alnico 1 Blue Dot Magnets	200
Alnico No. V Speaker Magnets	201
Standard Scale Pivot Steel	201
Park High Carbon Steel Bars, Octagons	201
Onyx Steel Bars, Rounds	201
Flats	202
Consideration # 55 Charma Nichal Mah. Charta	202

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

MISCELLANEOUS STEELS

Index

	Page
Champaloy Steel Bars	
Rounds, Flats	200
Squares	200
Ketos Machined Jeweler's Die Blocks	200
Butcher Saw Blade Steel	200
Little Giant Alnico 1 Blue Dot Magnets	200
Alnico No. V Speaker Magnets	201
Standard Scale Pivot Steel	201
Park High Carbon Steel Bars, Octagons	201
Onyx Steel Bars, Rounds	201
Flats	
Specification #55 Chrome Nickel Moly Sheets	202

MISCELLANEOUS STEELS

Listed on the following pages are the grades and sizes of miscellaneous steels carried in Crucible Branch-warehouses. Each product is of the highest quality and you are assured of dependable, consistent results.

Although somewhat special in nature, they are stocked to meet the demands of certain industries.

CHAMPALOY STEEL BARS

Carbon 0.75% Manganese 0.70% Nickel 1.50% Chromium 0.75% Molybdenum 0.30%

Hot Rolled Annealed

Champaloy is an electric furnace alloy steel suitable for general purpose applications. It is recommended for such uses as pinions, collets, bushings, cams, rachets and heavy duty rolls.

		ROUND	S	
1/2 5/8 11/6 3/4 7/8 1 1 11/8 11/4	13/8 11/2 15/8 13/4 2 21/8 21/4	2½ 2¾ 3 3¼ 3½ 3½ 3¾ 4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 7½ 8½ 8½ 9½ 10½ 11½ 12½
	- 1	FLATS		
1 x 3/8 11/2 x 3/8 2 x 3/8 5 x 3/8 1 x 1/2 11/4 x 1/2 11/2 x 1/2 2 x 1/2 2 1/2 x 1/2 2 1/2 x 1/2 3 x 1/2	5 x	5/8 5/8 3/4 3/4 3/4	1½ x 1 2 x 1 2½ x 1 3 x 1 3½ x 1 4 x 1 4½ x 1 5 x 1 6 x 1 8 x 1	2 x 1 1/4 2 1/2 x 1 1/4 3 x 1 1/4 4 x 1 1/4 4 1/2 x 1 1/4 5 x 1 1/4 6 x 1 1/4 8 x 1 1/4 1 3/4 x 1 1/2 2 x 1 1/2

CHAMPALOY STEEL BARS—Continued

	FLATS—C	Continued	
3 x 1½ 4 x 1½ 5 x 1½ 6 x 1½ 7 x 1½	8 x 1½ 2½ x 2 3 x 2 3½ x 2 4 x 2	6 x 2 8 x 2 3 x 2½ 3½ x 2½ 4 x 2½	6 x 2½ 4 x 3 5 x 3 6 x 3 6 x 4
	SQUA	ARES	
1/2 5/8 3/4	1 11/4 11/2	$2 \\ 2\frac{1}{2}$	3 4

KETOS MACHINED JEWELER'S DIE BLOCKS

Annealed

17/8 Face	23/16 Face
, 0	10

BUTCHER SAW BLADE STEEL

21/32 x .020

LITTLE GIANT ALNICO I BLUE DOT MAGNETS

Magnetized, Painted Red With Keepers

The "Little Giant" of the aluminum-nickel-cobalt type is one of the most powerful magnets ever produced. The small horseshoe type weighing one tenth of a pound will lift approximately forty times its own weight.

There are many useful applications for "Little Giant" Magnets, such as gathering of tools accidentally dropped in quenching and plating baths, also tools that drop into otherwise inaccessible places.

In addition to these stocked sizes "Little Giant" Magnets are available from mill delivery in a wide range of sizes and shapes in quantities.

1022 Size	1031 Size	1041 Size	1060 Size
-----------	-----------	-----------	-----------

TABLES

ALNICO NO. V SPEAKER MAGNETS

Not Magnetized

	1
LG 4	LG 7
LG 5	LG 8
LG 6	LG 9A
	LG 5

STANDARD SCALE PIVOT STEEL

Natural

#5 (\$\frac{9}{52} \times \frac{3}{8}\$) #6 (\$\frac{5}{16} \times \frac{27}{64}\$) #7 (\$\frac{3}{8} \times \frac{3}{8}\times \frac{3}{84}\$) #11 (\$\frac{17}{52} \times \frac{47}{64}\$) #4E (\$\frac{39}{64} \times \frac{57}{52}\$)	#6 (5/16 x 27/64)	#8 (7/6 x ¹⁹ / ₅₂) #9 (¹⁵ / ₅₂ x ⁵ / ₈) #10 (³¹ / ₆₄ x ⁴³ / ₆₄) #11 (¹⁷ / ₅₂ x ⁴⁷ / ₆₄)	
--	-------------------	---	--

PARK HIGH CARBON STEEL BARS

Open Hearth Chisel Steel

0.85% Carbon

Natural

Park High Carbon is a good quality water hardening carbon steel for general shop applications. It responds uniformly to normal heat treatments and is particularly well adapted for service where production requirements are indefinite and subject to short runs and frequent changes.

	OCTA	AGONS	
1/2 5/8 11/4	3/4 7/8	1 11/8	1½ 1½

ONYX SPRING STEEL BARS

Hot Rolled Natural

The greatest care is exercised in the manufacture of this specialized grade. It is recommended for all purposes where a good high grade spring steel is required.

		ROUNDS		
3/16	5/16	7/16	5/8	1 7/8
1/4	3/8	1/2	3/4	

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

ONYX SPRING STEEL BARS—Continued

FLATS (Round Edge)

3/8 x 1/16	13/4 x 1/8	2 x ½	3½ x 3/8
$\frac{1}{2} \times \frac{1}{16}$	2 x ½	21/4 x 1/4	4 x 3/8
5/8 x 1/16	21/4 x 1/8	2½ x ¼	$4\frac{1}{2} \times \frac{3}{8}$
3/4 x 1/16	2½ x 1/8	3 x 1/4	5 x 3/8
1 x ½	3 x ½	3½ x ¼	6 x 3/8
> 10	/ 6	0/2 /4	0 11 /8
11/4 x 1/16	3½ x 1/8	4 x ½	3 x 1/16
1½ x ½	4 x ½	3/4 x 5/16	3½ x 1/16
13/4 x 1/16	1/2 x 3/16	1 x 5/16	4 x 7/16
2 x 1/16			
21/ ·· 1/			
$2\frac{1}{2} \times \frac{1}{16}$	3/4 X 3/16	1½ x 5/16	$5 \times \frac{7}{16}$
1/ 3/	7/ 3/	13/ - 5/	e - 7/
1/2 x 3/32	7/8 x 3/16	13/4 x 5/16	6 x 7/16
5/8 x 3/32	1 x 3/16	2 x 5/16	1 x ½
³ / ₄ x ³ / ₃₂	11/4 x 3/16	2½ x 5/16	$1\frac{1}{2} \times \frac{1}{2}$
1 x 3/32	1½ x 3/16	2½ x 5/16	$1\frac{3}{4} \times \frac{1}{2}$
$1\frac{1}{4} \times \frac{3}{32}$	13/4 x 3/16	3 x ½6	2 x ½
1½ x 3/32	2 x 3/16	1 x 3/8	2½ x ½
2 x 3/32	2½ x 3/16	11/4 x 3/8	$3 \times \frac{1}{2}$
3/8 x 1/8	3 x 3/16	1½ x 3/8	$3\frac{1}{2} \times \frac{1}{2}$
1/2 x 1/8	1/2 x 1/4	13/4 x 3/8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5/8 x 1/8	5/8 x 1/4	2 x 3/8	$4\frac{1}{2} \times \frac{72}{2}$
78 X 78	78 X 74	2 x 78	472 X 72
3/4 x 1/8	1 x 1/4	21/4 x 3/8	5 x ½
1 x ½	11/4 x 1/4	2½ x 3/8	$5\frac{1}{2} \times \frac{1}{2}$
11/4 x 1/8	1½ x ¼	3 x 3/8	6 x ½
1½ x 1/8	13/4 x 1/4	/8	1 /2

SPECIFICATION #55 CHROME NICKEL MOLY SHEETS

Hot Rolled Annealed

Carbon 0.68%

Manganese 0.60%

Nickel 0.65%

Chromium 0.70%

Molybdenum 0.20%

Specification #55 is a Special analysis designed for the manufacture of various types of saws, particularly circular saws. These sheets might be adapted to other applications requiring similar properties after heat treating.

.180 x 18 x 72 .165 x 18 x 72 .148 x 18 x 72 .134 x 18 x 72 .120 x 18 x 72 .109 x 18 x 72 .095 x 18 x 72	.083 x 18 x 72 .072 x 18 x 72 .072 x 25 x 72 .065 x 18 x 72 .065 x 25 x 72 .065 x 25 x 72
	1000 11 10 11 12

TABLES

TABLES

Index

	Page
Carbon Steel Bars — Handy Methods to Estimate Approximate Weight	203
Carbon Steel—Handy Weight Formulas	
Fractions of an inch and Decimal Equivalents	
Standard Gauges	216
Length Conversions	220, 221
Temperature Conversions	222, 223
Hardness Conversions for Steel	224, 225
Circumferences of Areas of Circles	226
Useful Information	231, 232
Weight Tables	
Carbon Bar Steel	204, 205
Carbon Bar Steel, rounds	206
Carbon Bar Steel, flats	207, 208
Tungsten High Speed Steel	209, 210
Tungsten High Speed Tool Bits	210
Drill Rods—High Speed	211, 212
Drill Rods	213, 214
Iron and Carbon Steel	217
Stainless Steel Sheets	218
Drill Steel—Hollow	218
Drill Steel—Solid	219
Rezistal Stainless Steel Wire Rezistal 304—Rezistal 410— 227, 228	. 229. 230

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

TABLES

Index

Carbon Steel Bars — Handy Methods to Estimate	Page
Approximate Weight	203
Carbon Steel—Handy Weight Formulas	204
Fractions of an inch and Decimal Equivalents	215
Standard Gauges	216
Length Conversions	220, 221
Temperature Conversions	222, 223
Hardness Conversions for Steel	224, 225
Circumferences of Areas of Circles	226
Useful Information	231, 232
Weight Tables	
Carbon Bar Steel	204, 205
Carbon Bar Steel, rounds	206
Carbon Bar Steel, flats	207, 208
Tungsten High Speed Steel	209, 210
Tungsten High Speed Tool Bits	210
Drill Rods—High Speed	211, 212
Drill Rods	213, 214
Iron and Carbon Steel	217
Stainless Steel Sheets	218
Drill Steel—Hollow	218
Drill Steel—Solid	219
Rezistal Stainless Steel Wire Rezistal 304—Rezistal 410— 227, 228,	229, 230

HANDY METHODS TO ESTIMATE APPROXIMATE WEIGHT OF CARBON STEEL BARS

ROUNDS

Multiply diameter by bar by 4. Square the result and divide by 6. For example:

Size 3" rd.—
$$3 \times 4 = 12$$

 $12 \times 12 = 144$
 $144 \div 6 = 24$ lbs. per foot

SQUARES

Square the section and add a cipher. This gives the weight per yard. Divide by 3 to get weight per foot. For example:

Size 4" square—
$$4 \times 4 = 16$$

Add a cipher = 160 lbs. per yd.
 $160 \div 3 = 53.33$ lbs. per foot

FLATS

Multiply the width by thickness. Add a cipher and divide by 3. For example:

Size 4" x 1"—4
$$\times$$
 1 = 4
Add a cipher = 40
40 \div 3 = 13.33 lbs. per foot

Shape	Pounds per Foot	Feet per Pound	Shape	Pounds per Foot	Feet per Pound
Round Flat Square	2.667 × d ² 3.396 × wt 3.396 × d ²	$.3749 \div d^{2}$ $.2945 \div wt$ $.2945 \div d^{2}$	Hexagonal Half Round. Half Oval	$2.942 \times d^{2}$ $1.334 \times d^{2}$ $2.647 \times wt$	$.3398 \div d^{2}$ $.7498 \div d^{2}$ $.3778 \div wt$

WEIGHTS OF CARBON BAR STEEL

PER LINEAR FOOT

Conversion Factors (Approximate): Tungsten High Speed Steel 1.11, Molybdenum High Speed Steels—Rex M-2 1.03, Rex VM and Rex TMO 1.01, Aluminum 0.346 Brass 1.07, Cast Iron 1.03, Copper and Bronze 1.128

Size in Inches	Round	Square	Octa- gon	Hexa- gon	Size in Inches	Round	Square	Octa- gon	Hexa- gon
1/	.010	.013	.011	.012	9/6	.845	1,076	.892	.932
16	.017	.022	.018	.019	37,64	.893	1.136	.943	.985
3 62	.023	.029	.024	.025	19 32	.941	1.199	.994	1.038
764	.031	.039	.033	.034	3964	.992	1.263	1.048	1.094
1/8	.042	.053	.044	.046	5/8	1.043	1.328	1.102	1.150
964	.053	.067	.056	.058	41/64	1.096	1.395	1.517	1.209
5 42	.065	.083	.069	.072	21/12	1.150	1.464	1.214	1.268
11/64	.079	.100	.083	.087	43,64	1.205	1.535	1.272	1.329
3.66	.094	.120	.099	.104	11/16	1.262	1.607	1.333	1.392
13/64	.110	.140	.116	.121	45,64	1.320	1.681	1.394	1.456
1/12	.128	.163	.135	.141	23 12	1.380	1.756	1.487	1.521
15,64	.147	.187	.155	.162	47/64	1.440	1.834	1.521	1.588
34	.167	.213	.176	.184	3/4	1.502	1.913	1.586	1.656
17,64	.188	.240	.199	.207	25.32	1.630	2.075	1.721	1.797
9 32	.211	.269	.223	.233	13/16	1.763	2.245	1.862	1.944
1964	.235	.300	.248	.259	27/52	1.901	2.421	2.008	2.09
5/16	.261	.332	.275	.288	7/8	2.045	2.603	2.159	2.25
21 64	.288	.360	.304	.318	29,52	2.193	2.792	2.316	2.41
11/12	.316	.402	.334	.348	15/16	2.347	2.988	2.479	2.58
23 64	.345	.439	.364	.381	81/52	2.506	3.191	2.646	2.76
3/8	.376	.478	.397	.414	1	2.670	3.400	2.820	2.94
25.64	.408	.519	.431	.450	11/16	3.015	3.838	3.183	3.32
13 62	.441	.561	.466	.486	11/8	3.380	4.303	3.569	3.72
27/64	.475	.605	.502	.524	13/16	3.766	4.795	3.977	4.15
7/16	.511	.651	.540	.564	11/4	4.172	5.313	4.407	4.60
29 64	.548	.698	.579	.604	15/16	4.600	5.857	4.858	5.07
15/32	.587	.747	.620	.647	13/8	5.049	6.428	5.332	5.56
31,64	.627	.798	.662	.692	17/16	5.518	7.026	5.827	6.08
1/2	.668	.850	.705	.736	11/2	6.008	7.650	6.345	6.62
33/64	.710	.904	.750	.783	19/16	6.519	8.301	6.885	7.18
17/82	.754	.960	.796	.831	15/8	7.051	8.978	7.446	7.77
35,64	.799	1.017	.844	.881	111/16	7.604	9.682	8.030	8.38

WEIGHTS OF CARBON BAR STEEL—Continued PER LINEAR FOOT

	1							
Size in			Octa-	Hexa-	Size in		250	Octa-
Inches	Round	Square	gon	gon	Inches	Round	Square	gon
11/	0.150	10.44	0.004	0.010	1-	00.70	05.00	70.50
13/4	8.178	10.41	8.634	9.018	5	66.76	85.00	70.50
113/16 17/8	8.773	11.17	9.265	9.673	51/16	68.44	87.14	72.27
115/6	9.388	11.95 12.76	9.911 10.58	10.35 11.05	51/8	70.14 71.86	89.30 91.50	74.07 75.89
					53/16			
2 21/16	10.68 11.36	13.60 14.46	11.28 11.99	11.78 12.53	51/4 55/6	73.60 75.36	93.71 95.96	77.72 79.59
2./16					5%16			
2½ 2¾ 2¾	12.06 12.78	15.35 16.27	12.73 13.49	13.30 14.09	5 3/8 57/16	77.15 78.95	98.23 100.5	81.47 83.38
21/4 25/16	13.52 14.28	17.21 18.18	14.27 15.08	14.91 15.75	5 ½ 5%	80.78 82.62	102.9 105.2	85.30 87.25
23/8	15.06	19.18	15.08	16.61	55/8	84.49	107.6	89.23
	15.87	20.20	16.75	17.49		86.38	110.0	91.22
21/16			10.75	17.49	511/16	80.38		91.22
21/2	16.69	21.25	17.62	18.40	53/4	88.29	112.4	93.23
29/16	17.53	22.33	18.52	19.34	513/16	90.22	114.9	95.27
25/8	18.40	23.43	19.43	20.29	57/8	92.17	117.4	97.33
211/16	19.29	24.56	20.37	21.27	515/16	94.14	119.9	99.41
23/4	20.19	25.71	21.33	22.27	6	96.13	122.4	101.5
213/16	21.12	26.90	22.31	23.29	61/16	98.15	125.0	103.6
27/8	22.07	28.10	23.31	24.34	61/8	100.2	127.6	105.8
215/16	23.04	29.34	24.33	25.41	63/16	102.2	130.2	108.0
3	24.03	30.60	25.38	26.50	61/4	104.3	132.8	110.2
31/16	25.05	31.89	26.45	27.62	65/6	106.4	135.5	112.4
31/8	26.08	33.20	27.54	28.76	63/8	108.5	138.2	114.6
33/16	27.13	34.55	28.65	29.92	67/16	110.7	140.9	116.9
31/4	28.21	35.91	29.79		61/2	112.8	143.7	119.1
35/16	29.30	37.21	30.94		69/16	115.0	146.4	121.4
3 3/8	30.42	38.73	32.12		65/8	117.2	149.2	123.8
31/16	31.55	40.18	33.32		611/16	119.4	152.1	126.1
31/2	32.71	41.65	34.54		634	121.7	154.9	128.5
39/16	33.90	43.15	35.79		613/16	123.9	157.8	130.9
35/8	35.09	44.68	37.07		67/8	126.2	160.7	133.3
311/16	36.31	46.23	38.34		615/16	128.5	163.6	135.7
33/4	37.55	47.81	39.65		7	130.9	166.6	138.2
313/16	38.81	49.42	40.99		71/16	133.2	169.6	140.7
37/8	40.10	51.05 52.71	42.34 43.72		71/8	135.6 138.0	172.6 175.6	143.2 145.7
2.716	41.40	32.71	40.72		73/16	138.0	175.0	140.7
4	42.73	54.40	45.12		71/4	140.4	178.7	148.2
41/16	44.07	56.11	46.54		75/16	142.8	181.8	150.8
41/8	45.44	57.85	47.98		7 3/8	145.2	184.9	153.4
43,16	46.83	59.62	49.45		71/16	147.7	188.1	156.0
41/4	48.23	61.41	50.93		7 1/2	150.2	191.3	158.6
45/16	49.66	63.23	52.44		75/8	155.3	197.7	164.0
43/8	51.11	65.08	53.98		73/4	160.4	204.2	169.4
47/16	52.58	66.95	55.53		7 1/8	165.6	210.9	174.9
41/2	54.08	68.85	57.10		8	170.9	217.6	180.5
49/16	55.59	70.78	58.70		81/4	181.8	230.9	192.0
45/8	57.12 58.68	72.73	60.32		81/2 83/4	192.9 204.4	245.7 259.6	203.8 215.8
43/4	60.25	76.71	63.63		9	216.3	275.4	228.4
413/16	61.85	78.75 80.80	65.32 67.02		10	267.0 323.1	340.0	282.0
47/8	63.46	80.80	67.02		11 12	323.1	411.4 489.6	341.2 406.1
4 /16	00.10	02.09	00.73		12	304.4	409.0	400.1

WEIGHTS OF ROUND CARBON BAR STEEL

PER LINEAR INCH

Conversion factors approximate: Tungsten High Speed Steel 1.11, Molybdenum High Speed Steels—Rex M-2 1.03, Rex VM and Rex TMO 1.01, Aluminum 0.346,

Brass 1.07, Cast Iron 1.03, Copper and Bronze 1.128

Diameter	Pounds	Diameter	Pounds	Diameter	Pounds	Diameter	Pounds
0 1/6 1/8 3/16	.01	0 1/16 1/8 3/16	3.57 3.68 3.80 3.91 4.03	0 1/16 1/8 3/16	14.28 14.50 14.73 14.95 15.18	0 1/16 1/8 3/16	32.13 32.46 32.80 33.13 33.48
5 16 3 8 7 16 0 1/2	.02 .03 .04 .06 .07	1/6/8/6/4/4/6/8/6/8/6/8/6/8/6/8/6/8/6/8/6	4.14 4.27 4.39 4.52 4.64 4.77	1/6 1/8 3/6 1/4 5/6 3/8 7/6 8/9/6 9/6 11/6	15.41	1.6 1.8 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	33.81 34.17 34.51 34.86 35.21 35.56
1/16 1/28 1/4 5/16 1/2 1/2 1/2 1/3 1/6 1/3 1/6 1/5 1/5 1/6 1/5 1/5 1/6 1/5 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6	.11 .13 .15 .17 .20	11,16 34 13,16 7,8 15,16	4.90 5.03 5.17 5.30 5.44	11,6 34 13,6 7,8 15,6	16.12 16.36 16.60 16.83 17.08 17.32 17.57	78 11,6 34 13,6 7,8 15,16	35.91 36.27 36.62 36.98 37.33
0 1/6 1/8 1/8 1/4 5/16 8/5 1/4 5/16 8/5 11/16 13/4 13/4 13/4 13/4	.22 .25 .28 .31 .35 .38 .42 .46 .50 .54 .59 .64 .68 .73 .78 .84	0 1/66 1/66 1/66 1/66 1/66 1/66 1/66 1/6	5.58 5.72 5.86 6.00 6.15 6.30 6.45 6.60 6.75 6.90 7.06 7.22 7.38 7.54 7.70 7.86	0 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6	18.07 18.32 18.58 18.83 19.09 19.34 19.61 19.87 20.13 20.40 20.67 20.93 21.21 21.48 21.76 22.03	0 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6	37.70 38.06 38.42 38.79 39.16 39.53 39.90 40.28 40.65 41.03 41.41 41.79 42.17 42.56 42.94 43.33
0 1/6 1/8 3/6 1/4 5/6 3/8 1/6 21/2 9/6 5/8 11/6 13/6	.89 .95 1.01 1.07 1.13 1.19 1.26 1.33 1.39 1.46 1.54 1.61 1.69 1.76 1.84	O 1/16 1/8 1/8 1/8 1/6 1/6 1/6 1/6 1/6 1/6 1/6	8.03 8.20 8.37 8.54 8.71 8.89 9.07 9.25 9.43 9.61 9.79 9.98 10.16 10.35 10.54 10.74	0 1/8 2/8 2/4 5/6 1/4 5/8 7/8 10/2 2/6 5/8 13/6 13/6 7/8	22.31 22.59 22.87 23.15 23.44 23.72 24.01 24.30 24.60 24.89 25.19 25.48 25.78 26.08 26.39 26.68	O 1,68 2,86 3,46 3,76 3,86 1,16 3,8 1,16 3,8 1,16 3,8 1,16 3,8 1,16 3,8 1,16 3,8 1,16 3,16 1,16 1,16 1,16 1,16 1,16 1,16	43.72 44.11 44.50 44.90 45.29 45.69 46.09 47.30 47.71 48.12 48.53 48.94 49.35
0 1/6/8 1/4/6 1/4/6 1/4/6 1/4/6 1/4/6 1/4/6 1/4/6 1/4/6	2.01 2.09 2.18 2.27 2.36 2.45 2.54 2.64 2.73 2.83 2.93 3.03 3.14 3.24 3.35 3.46	O 1/16 1/8 1/8 1/8 1/4 5/16 1/4 5/16 1/6 5/16 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6	10.93 11.13 11.33 11.52 11.73 11.93 12.13 12.34 12.55 12.76 12.97 13.18 13.40 13.61 13.84 14.05	0 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6	27.00 27.30 27.61 27.92 28.24 28.54 28.87 29.19 29.50 29.83 30.15 30.47 30.80 31.12 31.46	0 1/6 1/8 1/8 1/4 1/4 1/6 1/6 1/6 1/6 1/6 1/6 1/6	50.19 50.61 51.03 51.45 51.87 52.30 52.73 53.16 53.59 54.02 54.46 54.89 55.33 55.77 56.21 56.66

WEIGHTS OF FLAT CARBON BAR STEEL PER LINEAR FOOT

Conversion factors approximate: Tungsten High Speed Steel 1.11, Molybdenum High Speed Steels—Rex M-2 1.03, Rex VM and Rex TMO 1.01, Aluminum 0.346, Brass 1.07. Cast Iron 1.03, Copper and Bronze 1.128

		ass 1.07,			per ana t			
	1/2	5/8	3/4	7/8	1	11/8	11/4	13/8
1/6 1/8 8/8 1/4 5/6 1/2 9/6 5/8 11/16 3/4 13/16	.1060 .2125	.1381	.1594 .3188	.1859 .3720	.212 .425	.2391 .4782	.2656 .5312	.292 .585
3/16	.319	.399	.478	.558	.638	.717	.797	.875
1/4	.425	.531	.636	.743	.850	.957 1.20	1.06 1.33	1.17 1.46
3/16	.531	.664 .797	.797 .957	.929 1.116	1.06	1.43	1.59	1.76
7/8	.638 .744	.929	1.116	1.302	1.28 1.49 1.70	1.68	1.86	2.05
1/0	.850	1.06	1.275	1.487	1.70	1.92	1.86 2.12	2.34
9/16	.957	1.20	1.434	1.674	1.92	1.92 2.15	2.39	2.63
5/8	1.06	1.20 1.33	1.594	1.859	2.12	2.39	2.65	2.92
11/16	1.17 1.28	1.46	1.753	2.045	2.34 2.55	2.63	2.92 3.19	$\frac{3.22}{3.51}$
3/4	1.28	1.60	$1.913 \\ 2.072$	2.232 2.417	2.55	2.87 3.11	3.45	$\frac{3.31}{3.80}$
7/16	1.38 1.49	1.73	2.072	2.604	2.98	3.35	3.72	4.09
7/8 15/16	1.60	1.86 1.99	2.391	2.789	3.19	3.59	3.99	4.39
1	1 70	2.13	2.55	2.98	3.19 3.40	3.35 3.59 3.83	4.25	4.68
	1.91 2.12	2.39	2.87	3.35	3.83	4.30	4.78	5.26
11/4	2.12	2.66	3.19	3.72	4.25	4.79	5.31	5.85
13/8	2.34	2.92	3.51	4.09	4.67	5.26 5.74	5.84 6.38	6.43 7.02
11/2	2.55 2.76	3.19	3.83 4.15	4.47 4.84	5.10	6.74	6.90	7.60
$ \begin{array}{c} 1\frac{1}{8} \\ 1\frac{1}{4} \\ 1\frac{3}{8} \\ 1\frac{1}{2} \\ 1\frac{5}{8} \\ 1\frac{3}{4} \\ 1\frac{7}{8} \end{array} $	2.76	3.45 3.72	4.13	5.21	5.52 5.95 6.38	6.22 6.70	7.44	8.19
17%	3.19	3.99	4.79	5.21 5.58	6.38	7.17	7.97	8.77
2	3.40	4.25	5.10	5.95	6.80	7.65	8.50	9.35
	11/2	15/8	13/4	2	21/4	2½	23/4	3
1/16			.372	.425	.478	.531	.584	.638
1/16 1/8		.346	.372	.425	.478	.531 1.06	.584	.638
1/16 1/8 3/16		.346 .692 1.04	.372 .744 1.15	.425 .850 1.28	.478 .96 1.44	.531 1.06 1.59	.584 1.17 1.75	.638 1.28 1.91
1/6 1/8 3/16 1/4 5/		.346 .692 1.04 1.38	.372 .744 1.15 1.49	.425 .850 1.28 1.70	.478 .96 1.44 1.92	.531 1.06 1.59 2.12	.584 1.17 1.75 2.34	.638 1.28 1.91 2.55
1/16 1/8 3/16 1/4 5/16		.346 .692 1.04 1.38 1.73	.372 .744 1.15 1.49 1.86 2.23	.425 .850 1.28 1.70 2.12	.478 .96 1.44 1.92 2.39	.531 1.06 1.59 2.12 2.65 3.19	.584 1.17 1.75 2.34 2.92 3.51	.638 1.28 1.91 2.55 3.19 3.83
1/6 1/8 3/6 1/4 5/6		.346 .692 1.04 1.38 1.73 2.08 2.42	.372 .744 1.15 1.49 1.86 2.23 2.60	.425 .850 1.28 1.70 2.12 2.55 2.98	.478 .96 1.44 1.92 2.39 2.87 3.35	.531 1.06 1.59 2.12 2.65 3.19 3.72	.584 1.17 1.75 2.34 2.92 3.51 4.09	.638 1.28 1.91 2.55 3.19 3.83 4.46
1/6 1/8 3/16 1/4 5/16 3/8 7/16		.346 .692 1.04 1.38 1.73 2.08 2.42 2.72	.372 .744 1.15 1.49 1.86 2.23 2.60 2.98	.425 .850 1.28 1.70 2.12 2.55 2.98 3.40	.478 .96 1.44 1.92 2.39 2.87 3.35 3.83	.531 1.06 1.59 2.12 2.65 3.19 3.72 4.25	.584 1.17 1.75 2.34 2.92 3.51 4.09 4.67	.638 1.28 1.91 2.55 3.19 3.83 4.46
1/6 1/8 3/6 1/4 5/6 3/8 7/6 1/2 9/6		.346 .692 1.04 1.38 1.73 2.08 2.42 2.72 3.11	.372 .744 1.15 1.49 1.86 2.23 2.60 2.98 3.35	.425 .850 1.28 1.70 2.12 2.55 2.98 3.40 3.83	.478 .96 1.44 1.92 2.39 2.87 3.35 3.83 4.30	.531 1.06 1.59 2.12 2.65 3.19 3.72 4.25	.584 1.17 1.75 2.34 2.92 3.51 4.09 4.67 5.26	.638 1.28 1.91 2.55 3.19 3.83 4.46 5.10 5.74
1/6 1/8 3/6 1/4 5/6 3/8 7/6 1/2 9/16 5/8		.346 .692 1.04 1.38 1.73 2.08 2.42 2.72 3.11 3.46	.372 .744 1.15 1.49 1.86 2.23 2.60 2.98 3.35 3.72	.425 .850 1.28 1.70 2.12 2.55 2.98 3.40 3.83 4.25	.478 .96 1.44 1.92 2.39 2.87 3.35 3.83 4.30 4.78	.531 1.06 1.59 2.12 2.65 3.19 3.72 4.25 4.78 5.31	.584 1.17 1.75 2.34 2.92 3.51 4.09 4.67 5.26 5.84	.638 1.28 1.91 2.55 3.19 3.83 4.46 5.10 5.74 6.38
1/6 1/8 3/6 1/4 5/16 3/8 7/16 1/2 9/16 5/8		.346 .692 1.04 1.38 1.73 2.08 2.42 2.72 3.11 3.46	.372 .744 1.15 1.49 1.86 2.23 2.60 2.98 3.35 3.72 4.09	.425 .850 1.28 1.70 2.12 2.55 2.98 3.40 3.83 4.25 4.67	.478 .96 1.44 1.92 2.39 2.87 3.35 3.83 4.30 4.78	.531 1.06 1.59 2.12 2.65 3.19 3.72 4.25 4.78 5.31 5.84	.584 1.17 1.75 2.34 2.92 3.51 4.09 4.67 5.26 5.84	.638 1.28 1.91 2.55 3.19 3.83 4.46 5.10 5.74 6.38 7.02
1/6 1/8 3/8 3/6 1/4 5/16 1/2 9/16 5/8 11/6 3/8		.346 .692 1.04 1.38 1.73 2.08 2.42 2.72 3.11 3.46 3.80 4.15	.372 .744 1.15 1.49 1.86 2.23 2.60 2.98 3.35 3.72 4.09 4.47 4.84	.425 .850 1.28 1.70 2.12 2.55 2.98 3.40 3.83 4.25 4.67 5.10 5.53	.478 .96 1.44 1.92 2.39 2.87 3.35 3.83 4.30 4.78 5.26 5.75 6.21	.531 1.06 1.59 2.12 2.65 3.19 3.72 4.25 4.78 5.31 5.84 6.38	.584 1.17 1.75 2.34 2.92 3.51 4.09 4.67 5.26 5.84 6.43 7.02	.638 1.28 1.91 2.55 3.19 3.83 4.46 5.10 5.74 6.38 7.02 7.65 8.29
1,6 1,8 3,16 1,4 5,16 3,8 7,16 9,16 5,8 11,16 3,4 13,16		.346 .692 1.04 1.38 1.73 2.08 2.42 2.72 3.11 3.46 3.80 4.15 4.49 4.84	.372 .744 1.15 1.49 1.86 2.23 2.60 2.98 3.35 3.72 4.09 4.47 4.84 5.20	.425 .850 1.28 1.70 2.12 2.55 2.98 3.40 3.83 4.25 4.67 5.10 5.53 5.95	.478 .96 1.44 1.92 2.39 2.87 3.35 3.83 4.30 4.78 5.26 5.75 6.21 6.69	.531 1.06 1.59 2.12 2.65 3.19 3.72 4.25 4.78 5.31 5.84 6.38 6.90 7.44	1.584 1.17 1.75 2.34 2.92 3.51 4.09 4.67 5.26 5.84 6.43 7.02 7.60 8.18	.638 1.28 1.91 2.55 3.19 3.83 4.46 5.10 5.74 6.38 7.02 7.65 8.29 8.93
1/6 1/8 3/6 1/4 5/6 3/8 7/6 1/2 9/6 3/4 13/6 7/8	.319 .638 .957 1.28 1.59 1.92 2.23 2.55 2.87 3.19 3.51 3.83 4.14 4.47 4.78	.346 .692 1.04 1.38 1.73 2.08 2.42 2.72 3.11 3.46 3.80 4.15 4.49 4.84 5.18	.372 .744 1.15 1.49 1.86 2.23 2.60 2.98 3.35 3.72 4.09 4.47 4.84 5.20 5.58	.425 .850 1.28 1.70 2.12 2.55 2.98 3.40 3.83 4.25 4.67 5.10 5.53 5.95 6.38	.478 .96 1.44 1.92 2.39 2.87 3.35 3.83 4.30 4.78 5.26 5.75 6.21 6.69 7.18	.531 1.06 1.59 2.12 2.65 3.19 3.72 4.25 4.78 5.31 5.84 6.38 6.90 7.44	.584 1.17 1.75 2.34 2.92 3.51 4.09 4.67 5.26 5.84 6.43 7.02 7.60 8.18 8.77	.638 1.28 1.91 2.55 3.19 3.83 4.46 5.10 5.74 6.38 7.02 7.65 8.29 8.93 9.57
1/6 1/8 3/6 1/4 5/6 1/2 9/16 5/8 11/6 3/4 13/6 13/6 15/6	.319 .638 .957 1.28 1.59 1.92 2.23 2.55 2.87 3.51 3.83 4.14 4.47 4.78 5.10	.346 .692 1.04 1.38 1.73 2.08 2.42 2.72 3.11 3.46 3.80 4.15 4.49 4.84 5.18	.372 .744 1.15 1.49 1.86 2.23 2.60 2.98 3.35 3.72 4.09 4.47 4.84 5.20 5.58 5.95	.425 .850 1.28 1.70 2.12 2.55 2.98 3.40 3.83 4.25 4.67 5.10 5.53 5.95 6.80	.478 .96 1.44 1.92 2.39 2.87 3.35 3.83 4.30 4.78 5.26 5.75 6.21 6.69 7.18	.531 1.06 1.59 2.12 2.65 3.19 3.72 4.25 4.78 5.31 5.84 6.90 7.44 7.97 8.50	.584 1.17 1.75 2.34 2.92 3.51 4.09 4.67 5.26 5.84 7.02 7.60 8.18 8.77 9.35	.638 1.28 1.91 2.55 3.19 3.83 4.46 5.10 5.74 6.38 7.02 7.65 8.29 8.93 9.57 10.20
1	.319 .638 .957 1.28 1.59 1.92 2.23 2.55 2.87 3.19 3.51 3.83 4.14 4.47 4.78 5.10 5.74	346 .692 1.04 1.38 1.73 2.08 2.42 2.72 3.11 3.46 3.80 4.15 4.49 4.84 5.18 5.53 6.22	.372 .744 1.15 1.49 1.86 2.23 2.60 2.98 3.35 3.72 4.09 4.47 4.84 5.20 5.58 5.95 6.70	.425 .850 1.28 1.70 2.12 2.55 2.98 3.40 3.83 4.25 4.67 5.10 5.53 5.95 6.38 6.80 7.65	.478 .96 1.44 1.92 2.39 2.87 3.35 3.83 4.30 4.78 5.75 6.21 6.69 7.18 7.65	.531 1.06 1.59 2.12 2.65 3.19 3.72 4.25 4.78 5.31 5.84 6.38 6.90 7.44 7.97 8.50 9.57	.584 1.17 1.75 2.34 2.92 3.51 4.09 4.67 5.26 5.84 6.43 7.02 7.60 8.18 8.77 9.35	.638 1.28 1.91 2.55 3.19 3.83 4.46 5.10 5.74 6.38 7.02 7.65 8.29 8.93 9.57 10.20 11.48
1	.319 .638 .957 1.28 1.59 1.92 2.23 2.55 2.87 3.19 3.51 3.83 4.14 4.47 4.78 5.10 6.38	346 .692 1.04 1.38 1.73 2.08 2.42 2.72 3.11 3.46 3.80 4.15 4.49 4.84 5.18 5.53 6.22 6.91	.372 .744 1.15 1.49 1.86 2.23 2.60 2.98 3.35 3.72 4.09 4.47 4.84 5.20 5.58 5.95 6.70 7.44	.425 .850 1.28 1.70 2.12 2.55 2.98 3.40 3.83 4.25 4.67 5.53 5.95 6.38 6.80 7.65 8.50	.478 .96 1.44 1.92 2.39 2.87 3.35 3.83 4.30 4.78 5.26 6.21 6.69 7.18 7.65 8.61 9.57	.531 1.06 1.59 2.12 2.65 3.19 3.72 4.25 4.78 5.31 5.84 6.38 6.39 7.44 7.97 8.50 9.57 10.63	.584 1.17 1.75 2.34 2.92 3.51 4.09 4.67 5.26 5.84 6.43 7.02 7.60 8.18 8.77 9.35 10.52 11.69	.638 1.28 1.91 2.55 3.19 3.83 4.46 5.10 5.74 6.38 7.02 7.65 8.29 8.93 9.57 10.20 11.48 12.75
1	.319 .638 .957 1.28 1.59 1.92 2.23 2.55 2.87 3.19 3.51 3.83 4.14 4.47 4.78 5.10 5.74 6.38 7.02	346 .692 1.04 1.38 1.73 2.08 2.42 2.72 3.11 3.46 3.80 4.15 4.49 4.84 5.18 5.53 6.22 6.21 7.60	.372 .744 1.15 1.49 1.86 2.23 2.60 2.98 3.35 3.72 4.09 4.47 4.84 5.20 5.58 5.95 6.70 7.44 8.18	.425 .850 1.28 1.70 2.12 2.55 2.98 3.40 3.83 4.25 4.67 5.10 5.53 5.95 6.38 6.80 7.65 8.50 9.35	.478 .96 1.44 1.92 2.39 2.87 3.35 3.83 4.30 4.78 5.26 5.75 6.21 6.69 7.18 7.65 8.61 9.57	.531 1.06 1.59 2.12 2.65 3.19 3.72 4.25 4.78 5.31 5.84 6.90 7.44 7.97 8.50 9.57 10.63 11.69	.584 1.17 1.75 2.34 2.92 3.51 4.09 4.67 5.26 5.84 6.43 7.02 7.60 8.18 8.77 9.35 10.52 11.69 12.85	.638 1.28 1.91 2.55 3.19 3.83 4.46 5.10 5.74 6.38 7.02 7.65 8.29 8.93 9.57 10.20 11.48 12.75 14.03
1	.319 .638 .957 1.28 1.59 1.92 2.23 2.55 2.87 3.51 3.83 4.14 4.47 4.78 5.10 5.74 6.38 7.02 7.65	.346 .692 1.04 1.38 1.73 2.08 2.42 2.72 3.11 3.46 4.15 4.49 4.84 5.18 5.53 6.22 6.91 7.60 8.29	.372 .744 1.15 1.49 1.86 2.23 2.60 2.98 3.35 3.72 4.09 4.47 4.84 5.58 5.58 6.70 7.44 8.18	.425 .850 1.28 1.70 2.12 2.55 2.98 3.40 3.83 4.25 4.67 5.10 5.53 5.95 6.38 6.80 7.65 8.50 9.35 10.20	.478 .96 1.44 1.92 2.39 2.87 3.35 3.83 4.30 4.78 5.26 5.75 6.21 6.69 7.18 7.65 8.61 9.57 10.52 11.48	.531 1.06 1.59 2.12 2.65 3.19 3.72 4.25 4.78 5.31 5.84 6.38 6.90 7.44 7.97 8.50 9.57 10.63 11.69 12.75 13.81	.584 1.17 1.75 2.34 2.92 3.51 4.09 4.67 5.26 5.84 6.43 7.02 7.60 8.18 8.77 9.35 10.52 11.69 12.85 14.03 15.19	.638 1.28 1.91 2.55 3.19 3.83 4.46 5.10 5.74 6.38 7.02 7.65 8.29 8.93 9.57 10.20 11.48 12.75 14.03 15.30 16.58
1	.319 .638 .957 1.28 1.59 1.92 2.23 2.55 2.87 3.19 3.51 3.83 4.14 4.47 4.78 5.10 5.74 6.38 7.02 7.65 8.29 8.93	346 .692 1.04 1.38 1.73 2.08 2.42 2.72 3.11 3.46 3.80 4.15 4.49 4.84 5.18 5.53 6.22 6.91 7.60 8.29 8.98 9.67	372 .744 1.15 1.49 1.86 2.23 2.60 2.98 3.35 3.72 4.09 4.47 4.84 5.20 5.58 5.95 6.70 7.44 8.18 8.93 9.67 10.42	.425 .850 1.28 1.70 2.12 2.55 2.98 3.40 3.83 4.25 4.67 5.10 5.53 5.95 6.38 6.80 7.65 8.50 9.35 10.20	.478 .96 1.44 1.92 2.39 2.87 3.35 3.83 4.30 4.78 5.26 5.75 6.21 6.69 7.18 7.65 8.61 9.57 10.52 11.48 12.43 13.40	.531 1.06 1.59 2.12 2.65 3.19 3.72 4.25 4.78 5.31 5.84 6.38 6.90 7.44 7.97 8.50 9.57 10.63 11.69 12.75 13.81 14.88	.584 1.17 1.75 2.34 2.92 3.51 4.09 4.67 5.26 5.84 6.43 7.02 7.60 8.18 8.77 9.35 10.52 11.69 12.85 14.03 15.19 16.37	.638 1.28 1.91 2.55 3.19 3.83 4.46 5.10 5.74 6.38 7.02 7.65 8.29 8.93 9.57 10.20 11.48 12.75 14.03 15.30 16.58 17.85
1	.319 .638 .957 1.28 1.59 1.92 2.23 2.55 2.87 3.19 3.51 3.83 4.14 4.47 4.78 5.10 5.74 6.38 7.02 7.65 8.29 8.93 9.57	346 .692 1.04 1.38 1.73 2.08 2.42 2.72 3.11 3.46 3.80 4.15 4.49 4.84 5.18 5.53 6.22 6.91 7.60 8.29 8.98 9.67 10.36	.372 .744 1.15 1.49 1.86 2.23 2.60 2.98 3.35 3.72 4.09 4.47 4.84 5.20 5.58 5.95 6.70 7.44 8.18 8.93 9.67 10.42 11.15	.425 .850 1.28 1.70 2.12 2.55 2.98 3.40 3.83 4.25 4.67 5.10 5.53 5.95 6.38 6.80 9.35 10.20 11.05 11.90 12.75	.478 .96 1.44 1.92 2.39 2.87 3.35 3.83 4.30 4.78 5.26 5.75 6.21 6.69 7.18 7.65 8.61 9.57 10.52 11.48 12.43 13.40 14.34	.531 1.06 1.59 2.12 2.65 3.19 3.72 4.25 4.78 5.31 5.84 6.38 6.90 7.44 7.97 8.50 9.57 10.63 11.69 12.75 13.81 14.88 15.94	.584 1.17 1.75 2.34 2.92 3.51 4.09 4.67 5.26 5.84 6.43 7.02 7.60 8.18 8.77 9.35 10.52 11.69 12.85 14.03 15.19 16.37 17.53	.638 1.28 1.91 2.55 3.19 3.83 4.46 5.10 5.74 6.38 7.02 7.65 8.29 8.93 9.57 10.20 11.48 12.75 14.03 15.30 16.58 17.85 19.13
1/6 1/8 3/6 1/4 5/6 3/8 7/6 3/4 11/6 3/4 11/6 11/8 11/8 11/8 11/8 11/8 11/8 11/8	.319 .638 .957 1.28 1.59 1.92 2.23 2.55 2.87 3.19 3.51 3.83 4.14 4.47 4.78 5.10 5.74 6.38 7.02 7.65 8.29 8.93	346 .692 1.04 1.38 1.73 2.08 2.42 2.72 3.11 3.46 3.80 4.15 4.49 4.84 5.18 5.53 6.22 6.91 7.60 8.29 8.98 9.67	372 .744 1.15 1.49 1.86 2.23 2.60 2.98 3.35 3.72 4.09 4.47 4.84 5.20 5.58 5.95 6.70 7.44 8.18 8.93 9.67 10.42	.425 .850 1.28 1.70 2.12 2.55 2.98 3.40 3.83 4.25 4.67 5.10 5.53 5.95 6.38 6.80 7.65 8.50 9.35 10.20	.478 .96 1.44 1.92 2.39 2.87 3.35 3.83 4.30 4.78 5.26 5.75 6.21 6.69 7.18 7.65 8.61 9.57 10.52 11.48 12.43 13.40	.531 1.06 1.59 2.12 2.65 3.19 3.72 4.25 4.78 5.31 5.84 6.38 6.90 7.44 7.97 8.50 9.57 10.63 11.69 12.75 13.81 14.88	.584 1.17 1.75 2.34 2.92 3.51 4.09 4.67 5.26 5.84 6.43 7.02 7.60 8.18 8.77 9.35 10.52 11.69 12.85 14.03 15.19 16.37	.638 1.28 1.91 2.55 3.19 3.83 4.46 5.10 5.74 6.38 7.02 7.65 8.29 8.93 9.57 10.20 11.48 12.75 14.03 15.30 16.58 17.85

WEIGHTS OF FLAT CARBON BAR STEEL—Continued PER LINEAR FOOT

Conversion factors approximate: Tungsten High Speed Steel 1.11, Molybdenum High Speed Steels—Rex M-2 1.03, Rex VM and Rex TMO 1.01, Aluminum 0.346, Brass 1.07, Cast Iron 1.03, Copper and Bronze 1.128

		uss 1.07,	Cast Iron					
	31/4	3½	33/4	4	41/4	41/2	43/4	5
1/10	.691	.741	.80	.85	.90	.96	1.01	1.06
1/16 1/8 3/16 1/4 5/16 3/8 1/2 9/16 5/8 11/16 3/4 13/16 7/8 15/16	1.38	1.49	1.59	.85 1.70	1.81	1.91	2.02	2.13
3/8	2.07	2.23	2.39	2.55	2.71	2.87	3.03	3.19
16	2.01	2.23	3.19	3.40	3.61	3.83	4.04	4.25
/4	2.76	2.98	3.19	4.95	4.59	170	5.05	5.31
216	3.45	3.72	3.99	4.25 5.10 5.95	4.52	4.78 5.74	0.00	0.31
3/8	4.15	4.47	4.78	5.10	5.42	5.74	6.06	6.38
16	4.83	5.20	5.58	5.95	6.32	6.70	7.07	7.44
1/2	5.53	5.95	6.38	6.80	7.22	7.65	8.08	8.50
9/16	6.22	5.95 6.70	6.38 7.17	6.80 7.65	7.22 8.13	8.61	9.09	9.57
5/8	6.91 7.60	7.44	7.97 8.76	8.50	9.03	9.57	10.10	10.63
11/2	7.60	0 10	8.76	9.35	9.93	10.52	11.11	11.69
3/10	8.29	8.93	9.57 10.36	10.20	10.84 11.74	11.48	12.12	12.75
13/	8.98	0.67	10.36	11.05	11 74	12.43	13.12	13.81
7/16	9.67	8.93 9.67 10.41	11.16	11.90	12.65	13.39	14.13	14.87
/8	9.07	11.10	11.10	19.75	13.55	14.34	15.14	15.94
15/16	10.36	11.16	11.95 12.75	12.75 13.60	14.45	15.30	16.15	17.00
1	11.05	11.90	12.75	13.60	14.45	15.30	10.15	17.00
11/8	12.43	13.39	14.34	15.30	16.26	17.22	18.17	19.13
11/4	13.81	14.87	15.94	17.00	14.45 16.26 18.06	19.13	20.19	21.25
13/8	15.20	16.36	17.53	18.70	19.87	21.04	22.21	23.38
11/8 11/4 13/8 11/2 15/8 13/4 17/8 2	16.58 17.96	16.36 17.85 19.34	15.94 17.53 19.13 20.72	20.40	19.87 21.68	22.95	22.21 24.23 26.25 28.27	25.50
15%	17.96	19.34	20.72	22.10	23.48	24.87	26.25	27.63
13/	10.34	20.83	22.32	23.80	25.29	26.78	28.27	29.75
17/	19.34 20.72	22.31	23.91 25.50	25.50	27.10	28.69	30.28	31.87
1/8	22.10	23.80	25.50	25.50 27.20	28.90	30.60	32.30	34.00
	51/4	51/2	53/4	6	61/4	61/2	63/4	7
1/0	1.12	1.17	1.22	1.27	1.33	1.38	1.43	1.49
1/6	2.23	2.34	2.44	2.55	2.66	2.76	2.87	2.98
3/8	2.20			2.00		4 1 4	4.30	
	2 25	2 51	1 3 67	1 3 83	3 99	4 4		4 46
16	3.35	3.51	3.67	3.83	3.99	4.14	5 74	4.46
1/4	3.35 4.46	3.51	4.89	5.10	5.31	5.53	5.74	5.95
16 1/4 5/16	3.35 4.46 5.58	3.51	4.89 6.11	5.10 6.38	5.31 6.64	5.53 6.90	5.74 7.17	5.95
16 1/4 5/16 3/8	3.35 4.46 5.58	3.51	4.89 6.11 7.34	5.10 6.38 7.65	5.31 6.64 7.97	5.53 6.90 8.29	5.74 7.17 8.61	5.95 7.44 8.93
5/16 3/8 7/16	3.35 4.46 5.58 6.69 7.81	3.51	4.89 6.11 7.34 8.56	5.10 6.38 7.65 8.93	5.31 6.64 7.97 9.29	5.53 6.90 8.29 9.67	5.74 7.17 8.61 10.04	5.95 7.44 8.93 10.41
5/16 3/8 7/16 1/2	3.35 4.46 5.58 6.69 7.81 8.93	3.51 4.67 5.84 7.02 8.18 9.35	4.89 6.11 7.34 8.56 9.77	5.10 6.38 7.65 8.93 10.20	5.31 6.64 7.97 9.29 10.63	5.53 6.90 8.29 9.67 11.05	5.74 7.17 8.61 10.04 11.48	5.95 7.44 8.93 10.41 11.90
5 16 3 8 7 16 1 2 9 16	3.35 4.46 5.58 6.69 7.81 8.93 10.04	3.51 4.67 5.84 7.02 8.18 9.35 10.52	4.89 6.11 7.34 8.56 9.77	5.10 6.38 7.65 8.93 10.20	5.31 6.64 7.97 9.29 10.63 11.95	5.53 6.90 8.29 9.67 11.05 12.43	5.74 7.17 8.61 10.04 11.48 12.91	5.95 7.44 8.93 10.41 11.90 13.39
5 16 3/8 7 16 1/2 9/16 5/8	3.35 4.46 5.58 6.69 7.81 8.93 10.04	3.51 4.67 5.84 7.02 8.18 9.35 10.52 11.69	4.89 6.11 7.34 8.56 9.77 11.00 12.22	5.10 6.38 7.65 8.93 10.20	5.31 6.64 7.97 9.29 10.63 11.95 13.28	5.53 6.90 8.29 9.67 11.05 12.43 13.81	5.74 7.17 8.61 10.04 11.48 12.91 14.34	5.95 7.44 8.93 10.41 11.90 13.39 14.87
16 1/4 5/16 3/8 7/16 1/2 9/16 5/8 11/16	3.35 4.46 5.58 6.69 7.81 8.93 10.04	3.51 4.67 5.84 7.02 8.18 9.35 10.52 11.69 12.85	4.89 6.11 7.34 8.56 9.77 11.00 12.22 13.44	5.10 6.38 7.65 8.93 10.20 11.48 12.75 14.03	5.31 6.64 7.97 9.29 10.63 11.95 13.28 14.61	5.53 6.90 8.29 9.67 11.05 12.43 13.81	5.74 7.17 8.61 10.04 11.48 12.91 14.34 15.78	5.95 7.44 8.93 10.41 11.90 13.39 14.87 16.36
116 1/4 5/16 3/8 7/16 1/22 9/16 5/8 11/16	3.35 4.46 5.58 6.69 7.81 8.93 10.04	3.51 4.67 5.84 7.02 8.18 9.35 10.52 11.69 12.85	4.89 6.11 7.34 8.56 9.77 11.00 12.22 13.44	5.10 6.38 7.65 8.93 10.20 11.48 12.75 14.03 15.30	5.31 6.64 7.97 9.29 10.63 11.95 13.28 14.61 15.94	5.53 6.90 8.29 9.67 11.05 12.43 13.81 15.20 16.58	5.74 7.17 8.61 10.04 11.48 12.91 14.34 15.78 17.22	5.95 7.44 8.93 10.41 11.90 13.39 14.87 16.36 17.85
11/4 5/16 3/8 7/16 1/2 9/16 5/8 11/16 3/4 13/6	3.35 4.46 5.58 6.69 7.81 8.93 10.04	3.51 4.67 5.84 7.02 8.18 9.35 10.52 11.69 12.85	4.89 6.11 7.34 8.56 9.77 11.00 12.22 13.44	5.10 6.38 7.65 8.93 10.20 11.48 12.75 14.03 15.30 16.58	5.31 6.64 7.97 9.29 10.63 11.95 13.28 14.61 15.94 17.27	5.53 6.90 8.29 9.67 11.05 12.43 13.81 15.20 16.58 17.95	5.74 7.17 8.61 10.04 11.48 12.91 14.34 15.78 17.22 18.65	5.95 7.44 8.93 10.41 11.90 13.39 14.87 16.36 17.85 19.34
1/6 3/6 1/4 5/16 3/8 11/2 9/16 5/8 11/16 3/4 13/16	3.35 4.46 5.58 6.69 7.81 8.93 10.04 11.16 12.27 13.39 14.50	3.51 4.67 5.84 7.02 8.18 9.35 10.52 11.69 12.85	4.89 6.11 7.34 8.56 9.77 11.00 12.22 13.44	5.10 6.38 7.65 8.93 10.20 11.48 12.75 14.03 15.30 16.58	5.31 6.64 7.97 9.29 10.63 11.95 13.28 14.61 15.94 17.27	5.53 6.90 8.29 9.67 11.05 12.43 13.81 15.20 16.58 17.95	5.74 7.17 8.61 10.04 11.48 12.91 14.34 15.78 17.22 18.65	5.95 7.44 8.93 10.41 11.90 13.39 14.87 16.36 17.85 19.34
5/16 3/8 7/16 1/2 9/16 5/8 11/16 7/8	3.35 4.46 5.58 6.69 7.81 8.93 10.04 11.16 12.27 13.39 14.50	3.51 4.67 5.84 7.02 8.18 9.35 10.52 11.69 12.85 14.03 15.19 16.36	4.89 6.11 7.34 8.56 9.77 11.00 12.22 13.44 14.67 15.88 17.10	5.10 6.38 7.65 8.93 10.20 11.48 12.75 14.03 15.30 16.58 17.85	5.31 6.64 7.97 9.29 10.63 11.95 13.28 14.61 15.94 17.27 18.60	5.53 6.90 8.29 9.67 11.05 12.43 13.81 15.20 16.58 17.95 19.34	5.74 7.17 8.61 10.04 11.48 12.91 14.34 15.78 17.22 18.65 20.08	5.95 7.44 8.93 10.41 11.90 13.39 14.87 16.36 17.85 19.34 20.83
15/16	3.35 4.46 5.58 6.69 7.81 8.93 10.04 11.16 12.27 13.39 14.50 15.62 16.74	3.51 4.67 5.84 7.02 8.18 9.35 10.52 11.69 12.85 14.03 15.19 16.36 17.53	4.89 6.11 7.34 8.56 9.77 11.00 12.22 13.44 14.67 15.88 17.10 18.33	5.10 6.38 7.65 8.93 10.20 11.48 12.75 14.03 15.30 16.58 17.85 19.13	5.31 6.64 7.97 9.29 10.63 11.95 13.28 14.61 15.94 17.27 18.60 19.92	5.53 6.90 8.29 9.67 11.05 12.43 13.81 15.20 16.58 17.95 19.34 20.72	5.74 7.17 8.61 10.04 11.48 12.91 14.34 15.78 17.22 18.65 20.08 21.51	5.95 7.44 8.93 10.41 11.90 13.39 14.87 16.36 17.85 19.34 20.83 22.32
15/16	3.35 4.46 5.58 6.69 7.81 8.93 10.04 11.16 12.27 13.39 14.50 15.62 16.74	3.51 4.67 5.84 7.02 8.18 9.35 10.52 11.69 12.85 14.03 15.19 16.36 17.53 18.70	4.89 6.11 7.34 8.56 9.77 11.00 12.22 13.44 14.67 15.88 17.10 18.33 19.55	5.10 6.38 7.65 8.93 10.20 11.48 12.75 14.03 15.30 16.58 17.85 19.13 20.40	5.31 6.64 7.97 9.29 10.63 11.95 13.28 14.61 15.94 17.27 18.60 19.92 21.25	5.53 6.90 8.29 9.67 11.05 12.43 13.81 15.20 16.58 17.95 19.34 20.72 22.10	5.74 7.17 8.61 10.04 11.48 12.91 14.34 15.78 17.22 18.65 20.08 21.51 22.95	5.95 7.44 8.93 10.41 11.90 13.39 14.87 16.36 17.85 19.34 20.83 22.32 23.80
15/16	3.35 4.46 5.58 6.69 7.81 8.93 10.04 11.16 12.27 13.39 14.50 15.62 16.74 17.85	3.51 4.67 5.84 7.02 8.18 9.35 10.52 11.69 12.85 14.03 15.19 16.36 17.53 18.70 21.04	4.89 6.11 7.34 8.56 9.77 11.00 12.22 13.44 14.67 15.88 17.10 18.33 19.55 21.99	5.10 6.38 7.65 8.93 10.20 11.48 12.75 14.03 15.30 16.58 17.85 19.13 20.40 22.95	5.31 6.64 7.97 9.29 10.63 11.95 13.28 14.61 15.94 17.27 18.60 19.92 21.25 23.91	5.53 6.90 8.29 9.67 11.05 12.43 13.81 15.20 16.58 17.95 19.34 20.72 22.10 24.87	5.74 7.17 8.61 10.04 11.48 12.91 14.34 15.78 17.22 18.65 20.08 21.51 22.95 25.82	5.95 7.44 8.93 10.41 11.90 13.39 14.87 16.36 17.85 19.34 20.83 22.32 23.80 26.78
15/16	3.35 4.46 5.58 6.69 7.81 8.93 10.04 11.16 12.27 13.39 14.50 15.62 16.74 17.85 20.08 22.32	3.51 4.67 5.84 7.02 8.18 9.35 10.52 11.69 12.85 14.03 15.19 16.36 17.53 18.70 21.04 23.38	4.89 6.11 7.34 8.56 9.77 11.00 12.22 13.44 14.67 15.88 17.10 18.33 19.55 21.99 24.44	5.10 6.38 7.65 8.93 10.20 11.48 12.75 14.03 15.30 16.58 17.85 19.13 20.40 22.95 25.50	5.31 6.64 7.97 9.29 10.63 11.95 13.28 14.61 15.94 17.27 18.60 19.92 21.25 23.91 26.56	5.53 6.90 8.29 9.67 11.05 12.43 13.81 15.20 16.58 17.95 19.34 20.72 22.10 24.87 27.62	5.74 7.17 8.61 10.04 11.48 12.91 14.34 15.78 17.22 18.65 20.08 21.51 22.95 25.82 28.69	5.95 7.44 8.93 10.41 11.90 13.39 14.87 16.36 17.85 19.34 20.83 22.32 23.80 26.78
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.35 4.46 5.58 6.69 7.81 8.93 10.04 11.16 12.27 13.39 14.50 15.62 16.74 17.85 20.08 22.32 24.54	3.51 4.67 5.84 7.02 8.18 9.35 10.52 11.69 12.85 14.03 15.19 16.36 17.53 18.70 21.04 23.38 25.71	4.89 6.11 7.34 8.56 9.77 11.00 12.22 13.44 14.67 15.88 17.10 18.33 19.55 21.99 24.44 26.88	5.10 6.38 7.65 8.93 10.20 11.48 12.75 14.03 15.30 16.58 17.85 19.13 20.40 22.95 25.50 28.05	5.31 6.64 7.97 9.29 10.63 11.95 13.28 14.61 15.94 17.27 18.60 19.92 21.25 23.91 26.56 29.22	5.53 6.90 8.29 9.67 11.05 12.43 13.81 15.20 16.58 17.95 19.34 20.72 22.10 24.87 27.62 30.39	5.74 7.17 8.61 10.04 11.48 12.91 14.34 15.78 17.22 18.65 20.08 21.51 22.95 25.89 21.56	5.95 7.44 8.93 10.41 11.90 13.39 14.87 16.36 17.85 19.34 20.83 22.32 23.80 26.78 29.75 32.72
1 1 1 ¹ / ₈ 1 ¹ / ₄	3.35 4.46 5.58 6.69 7.81 8.93 10.04 11.16 12.27 13.39 14.50 15.62 16.74 17.85 20.08 22.32 24.54	3.51 4.67 5.84 7.02 8.18 9.35 10.52 11.69 12.85 14.03 15.19 16.36 17.53 18.70 21.04 23.38 25.71 28.05	4.89 6.11 7.34 8.56 9.77 11.00 12.22 13.44 14.67 15.88 17.10 18.33 19.55 21.99 24.44 26.88	5.10 6.38 7.65 8.93 10.20 11.48 12.75 14.03 15.30 16.58 17.85 19.13 20.40 22.95 25.50 30.60	5.31 6.64 7.97 9.29 10.63 11.95 13.28 14.61 15.94 17.27 18.60 19.92 21.25 23.91 26.56 29.22	5.53 6.90 8.29 9.67 11.05 12.43 13.81 15.20 16.58 17.95 19.34 20.72 22.10 24.87 27.62 30.39 33.15	5.74 7.17 8.61 10.04 11.48 12.91 14.34 15.78 17.22 18.65 20.08 21.51 22.95 25.82 28.69 31.56 34.43	5.95 7.44 8.93 10.41 11.90 13.39 14.87 16.36 17.85 19.34 20.83 22.32 23.80 26.78 29.75 32.72 35.70
1 1 1 ¹ / ₈ 1 ¹ / ₄	3.35 4.46 5.58 6.69 7.81 8.93 10.04 11.16 12.27 13.39 14.50 15.62 16.74 17.85 20.08 22.32 24.54 26.78 29.01	3.51 4.67 5.84 7.02 8.18 9.35 10.52 11.69 12.85 14.03 15.19 16.36 17.53 18.70 21.04 23.38 25.71 28.05	4.89 6.11 7.34 8.56 9.77 11.00 12.22 13.44 14.67 15.88 17.10 18.33 19.55 21.99 24.44 26.88 29.33 31.77	5.10 6.38 7.65 8.93 10.20 11.48 12.75 14.03 16.58 17.85 19.13 20.40 22.95 25.50 28.05 30.60 33.15	5.31 6.64 7.97 9.29 10.63 11.95 13.28 14.61 15.94 17.27 18.60 19.92 21.25 23.91 26.56 29.22 3.38 3.48 3.453	5.53 6.90 8.29 9.67 11.05 12.43 13.81 15.20 16.58 17.95 19.34 20.72 22.10 24.87 27.62 30.39 33.15 35.91	5.74 7.17 8.61 10.04 11.48 12.91 14.34 15.78 17.22 18.65 20.08 21.51 22.95 25.82 28.69 31.56 34.43 37.99	5.95 7.44 8.93 10.41 11.90 13.39 14.87 16.36 17.85 19.34 20.83 22.32 23.80 26.78 29.75 32.72 35.70 38.67
1 1 1/8 1 1/4 1 3/	3.35 4.46 5.58 6.69 7.81 8.93 10.04 11.16 12.27 13.39 14.50 15.62 16.74 17.85 20.08 22.32 24.54	3.51 4.67 5.84 7.02 8.18 9.35 10.52 11.69 12.85 14.03 15.19 16.36 17.53 18.70 21.04 23.38 25.71 28.05 30.39 32.73	4.89 6.11 7.34 8.56 9.77 11.00 12.22 13.44 14.67 15.88 17.10 18.33 19.55 21.99 24.44 26.88 29.33 31.77 34.22	5.10 6.38 7.65 8.93 10.20 11.48 12.75 14.03 15.30 16.58 17.85 19.13 20.40 22.95 25.50 28.05 30.60 33.15 35.70	5.31 6.64 7.97 9.29 10.63 11.95 13.28 14.61 15.94 17.27 18.60 19.92 21.25 23.91 26.56 29.22 31.88 34.53 37.19	5.53 6.90 8.29 9.67 11.05 12.43 13.81 15.20 16.58 17.95 19.34 20.72 22.10 24.87 27.62 30.39 33.15 35.91 38.68	5.74 7.17 8.61 10.04 11.48 12.91 14.34 15.78 17.22 18.65 20.08 21.51 22.95 25.82 28.69 31.56 34.43 37.99 40.17	5.95 7.44 8.93 10.41 11.90 13.39 14.87 16.36 17.85 19.34 20.83 22.32 23.80 26.78 29.75 32.72 35.70 41.65
1 1 1/8 1 1/4 1 3/	3.35 4.46 5.58 6.69 7.81 8.93 10.04 11.16 12.27 13.39 14.50 15.62 16.74 17.85 20.08 22.32 24.54 26.78 29.01	3.51 4.67 5.84 7.02 8.18 9.35 10.52 11.69 12.85 14.03 15.19 16.36 17.53 18.70 21.04 23.38 25.71 28.05	4.89 6.11 7.34 8.56 9.77 11.00 12.22 13.44 14.67 15.88 17.10 18.33 19.55 21.99 24.44 26.88 29.33 31.77	5.10 6.38 7.65 8.93 10.20 11.48 12.75 14.03 15.30 16.58 17.85 19.13 20.40 22.95 25.50 28.05 30.60 33.15 35.70 38.25	5.31 6.64 7.97 9.29 10.63 11.95 13.28 14.61 15.94 17.27 18.60 19.92 21.25 23.91 26.56 29.22 31.88 34.53 37.19 38.85	5.53 6.90 8.29 9.67 11.05 12.43 13.81 15.20 16.58 17.95 19.34 20.72 22.10 24.87 27.62 30.39 33.15 35.91 38.68 41.44	5.74 7.17 8.61 10.04 11.48 12.91 14.34 15.78 17.22 18.65 20.08 21.51 22.95 25.82 28.69 31.56 34.43 37.99 40.17 43.03	5.95 7.44 8.93 10.41 11.90 13.39 14.87 16.36 17.85 19.34 20.83 22.32 23.80 26.78 29.75 32.72 35.70 38.67 41.65 44.63
15/16	3.35 4.46 5.58 6.69 7.81 8.93 10.04 11.16 12.27 13.39 14.50 15.62 16.74 17.85 20.08 22.32 24.54 26.78 29.01 31.24	3.51 4.67 5.84 7.02 8.18 9.35 10.52 11.69 12.85 14.03 15.19 16.36 17.53 18.70 21.04 23.38 25.71 28.05 30.39 32.73	4.89 6.11 7.34 8.56 9.77 11.00 12.22 13.44 14.67 15.88 17.10 18.33 19.55 21.99 24.44 26.88 29.33 31.77 34.22	5.10 6.38 7.65 8.93 10.20 11.48 12.75 14.03 15.30 16.58 17.85 19.13 20.40 22.95 25.50 28.05 30.60 33.15 35.70	5.31 6.64 7.97 9.29 10.63 11.95 13.28 14.61 15.94 17.27 18.60 19.92 21.25 23.91 26.56 29.22 31.88 34.53 37.19	5.53 6.90 8.29 9.67 11.05 12.43 13.81 15.20 16.58 17.95 19.34 20.72 22.10 24.87 27.62 30.39 33.15 35.91 38.68	5.74 7.17 8.61 10.04 11.48 12.91 14.34 15.78 17.22 18.65 20.08 21.51 22.95 25.82 28.69 31.56 34.43 37.99 40.17	5.95 7.44 8.93 10.41 11.90 13.39 14.87 16.36 17.85 19.34 20.83 22.32 23.80 26.78 29.75 32.72 35.70 38.67 41.65

*WEIGHTS OF TUNGSTEN HIGH SPEED STEEL

1			1				
Diam- eter	1 Foot	1 Inch	1/8 Inch	Diam- eter	1 Foot	1 Inch	1/8 Inch
				28/	30.09	2.5075	.3134
1/16	.011	.0009	.0001	3%16	31.28	2.6067	.3258
1/8	.046	.0038	.0005	3 ³ / ₁₆ 1/4 5/ ₁₆		2.7075	.3384
3/16	.103	.0086	.0011	216	32.49	2.8108	.3514
1/4	.185	.0154	.0019	7/8	33.73	2.9158	.3645
1/6 1/8 3/6 1/4 5/6 1/2 9/6 5/8 11/6 3/8 11/6 15/6	.289	.0241	.0030	3.18 7.16 1.22 9.16 5.8 11.16 3.4 13.16	34.99 36.28	3.0233	.3779
3/8	.416	.0347	.0043	2	37.58	3.1317	.3915
7/16	.566	.0472	.0059	16	38.91	3.2425	.4053
1/2	.741	.0618	.0077	11/8	40.27	3.3558	.4195
9 16	9.37	.0781	.0098	3/16	41.64	3.4700	.4338
5/8	1.16	.0967	.0121	13/	43.04	3.5867	.4483
11/16	1.40	.1167	.0146	7/16	44.47	3.7058	.4632
3/4	1.67	.1392	.0174	7/8 15/16	45.91	3.8258	.4782
13/16	1.95	.1625	.0203	19/16	45.91	3.0200	.4102
7/8	2.27	.1892	.0237	1	47.38	3.9483	.4935
15/16	2.60	.2167	.0271	4		4.0725	.5091
		0.405	0000	1/16 1/8 3/16 1/4 5/16 3/8 7/16 1/2 9/16 5/8	48.87 50.39	4.1992	.5249
1	2.96	.2467	.0308	1/8	51.93	4.1952	.5409
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3.34	.2783	.0348	16	53.49	4.4575	.5572
1/8	3.75	.3125	.0391	/4		4.4070	.5737
3/16	4.18	.3483	.0435	716	55.07	4.5892	.5904
1/4	4.63	.3858	.0482	7/8	56.68	4.7233	.6074
5/16	5.10	.4250	.0531	16	58.31	4.8592	.6246
3/8	5.60	.4667	.0583	1/2	59.97	4.9975 5.1367	.6421
7/16	6.12	.5100	.0638	16	61.64	5.2783	.6598
1/2	6.66	.5550	.0694	118	63.34		.6778
9/16	7.23	.6025	.0753	11/16	65.07	5.4225	.6959
5/8	7.82	.6517	.0815	3/4	66.81	5.5675 5.7150	.7144
11/16	8.43	.7025	.0878	13/16	68.58	5.8650	.7331
3/4	9.07	.7558	.0945	7/8 15/16	70.38	6.0158	.7520
13/16	9.73	.8108	.1014	19/16	72.19	0.0108	.7520
7/8 15/16	10.41	.8675	.1084	-	74.02	6.1692	.7712
15/16	11.12	.9267	.1158	5	74.03	6.4817	.8102
		0000	1004	1/8		6.8017	.8502
2	11.85	.9875	.1234	4	81.62	7.1292	.8912
1/16	12.60	1.0500	.1313	1/8	85.55	7.4650	.9331
1/8	13.37	1.1142	.1393	1/8 1/4 3/8 1/2 5/8 3/4 7/8	89.58 93.70	7.8083	.9760
3/16	14.17	1.1808	.1476	1 8	97.91	8,1592	1.0199
1/4	14.99	1.2492	.1562	74	102.21	8.5175	1.0647
5/16	15.84	1.3200	.1650	/8	102.21	0.0170	1.0047
3/8	16.70	1.3917	.1740	0	106 61	8.8842	1.1105
1,8 3,6 1,4 5,6 3,8 7,16 1,2 9,16 5,8 11,16	17.59	1.4658	.1832	6	106.61	9.2575	1.1103
1/2	18.51	1.5425	.1928	1/8 1/4 3/8 1/2 5/8 3/4 7/8		9.2373	1.1372
9/16	19.45	1.6208	.2026	34	115.67		1.2538
5/8	20 41	1.7008		1/8	120.36	10.0300	1.3032
11/16	21.39	1.7825		1/2	125.11	10.4258	
3/4	22.39	1.8658		1 8	129.97 134.92	11.2433	
3/4 13/16	23.42	1.9517		74		11.6642	
7/8 15/16	24.48	2.0400			139.97	11.0042	1.4000
15/16	25.55	2.1292	.2662	7	145 10	19 0017	1 5115
			0==0	1	145.10	12.0917	
3	26.65	2.2208			150.33	12.5275	
1/16 1/8	27.79	2.3158			155.65	12.9708	1.0214
1/	28.92	2.4100	.3013				

^{*} These weights shown are Rex AA tungsten type high speed steel. Approximate weights of molybdenum high speed steels are as follows: Rex M-2 93% and Rex VM and Rex TMO 91% of above weights.

*WEIGHTS OF TUNGSTEN HIGH SPEED STEEL —Continued

	1		1		i	1	
Diam- eter	1 Foot	1 Inch	1/8 Inch	Diam- eter	1 Foot	1 Inch	1/8 Inch
73/8	161.07	13.4225	1.6778	11	358.31	29.8592	3.7324
1/2	166.57	13.8808	1.7351	1/4 1/2 3/4	374.79	31.2325	3.9041
5/8	172.17	14.3473	1.7934	$\frac{1}{2}$	391.63	32.6358	4.0795
3/4	177.86	14.8217	1.8527	3/4	408.84	34.0700	4.2588
1/2 5/8 3/4 7/8	183.65	15.3042	1.9130				
				12	426.42	35.5350	4.4419
8	189.52	15.7933	1.9742	1/4	444.38	37.0317	4.6290
	195.49	16.2908	2.0364	1/4 1/2 3/4	462.70	38.5583	4.8198
1/4	201.55	16.7958	2.0995	3/4	481.39	40.1158	5.0145
3/8	207.71	17.3092	2.1637				
1/2	213.95	17.8292	2.2287	13	500.45	41.7042	5.2130
5/8	220.29	18.3575	2.2947	1/4 1/2 3/4	519.89	43.3242	5.4155
3/4	226.72	18.8933	2.3617	1/2	539.69	44.9742	5.6218
1/8 1/4 3/8 1/2 5/8 3/4 7/8	233.25	19.4375	2.4297	3/4	559.87	46.6558	5.8320
9	239.86	19.9883	2.4985	14	580.41	48.3675	6.0459
	253.37	21.1142	2.6393	1/4	601.32	50.1100	6.2638
1/2	267.26	22.2717	2.7840	1/2	622.61	51.8842	6.4855
$\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$	281.51	23.4592	2.9324	1/4 1/2 3/4	644.26	53.6883	6.7110
10	296.13	24.6775	3.0847	15	666.29	55.5242	6.9405
	311.12	25.9267	3.2408		688.68	57.3900	7.1738
$\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$	326.48	27.2067	3.4008	1/4 1/2	711.45	59.2875	7.4109
3/	342.21	28.5175	3.5647	/2		1000	
74	042.21	20.0110	0.0011		1		

^{*} These weights shown are Rex AA tungsten type high speed steel. Approximate weights of molybdenum high speed steels are as follows: Rex M-2 93% and Rex VM and Rex TMO 91% of above weights.

**WEIGHTS OF TUNGSTEN HIGH SPEED TOOL BITS

Square	Length	A pproximate Number Per Pound
\$16 14 \$16 \$3,8 716 1/2 916 5,8 3,4 7,8	2½ Long 2½ " 2½ " 3 " 3½ " 4 " 4 4 4½ " 5 " 6 "	36 Bits 20 " 13 " 8 " 5 " 3 " 2 " 1 Bit, approx. 7/8 lb. 1 " " 11/2 " 1 " " 21/8 "

^{**} High speed tool bits are available in any quantity. They are usually packed in 5 lb. boxes of a size or assorted sizes.

WEIGHTS OF HIGH SPEED DRILL RODS

*Size — Decimal Equivalent — Weight (Tungsten Type)

Size	Decimal	Weight Pounds Per Foot	Size	Decimal	Weight Pounds Per Foot
11/	1.500	6.664	45/64	.7031	1.464
$\frac{11/2}{131/2}$	1.4843	6.526	11/16	.6875	1.400
115/64	1.4687	6.389	43/64	.6718	1.330
$ \begin{array}{c} 1^{31}_{64} \\ 1^{15}_{32} \\ 1^{29}_{64} \end{array} $	1.4531	6.255	21/32	.6562	1.275
17/16	1.4375	6.121	41 64	.6406	1.213
1 276			5/	.625	1.157
12764	1.4218	5.987	5/8	.6093	1.099
$ \begin{array}{c} 1^{27}_{64} \\ 1^{13}_{32} \\ 1^{25}_{64} \end{array} $	1.4062	5.856	39 ₆₄ 19 ₃₂ 37 ₆₄	.5937	1.045
12%4	1.3906	5.728	37/	.5781	.990
13/8 123/64	1.375	5.600	9/64	.5625	.937
12%4	1.3593	5.473	9/16		
111/32	1.3437	5.349	35/64 17/32	.5468	.880
12164	1.3281	5.225	11/32	.5312	.836
15/16	1.3125	5.103	33/64	.5156	.786
11964	1.2968	4.982	33/64 1/2 31/64	.500	.733
$1\frac{9}{32}$	1.2812	4.862	31/64	.4843	.687
117/64	1.2656	4.744	15/32	.4687	.644
11/4	1.250	4.629	23/2 A	.4531	.602
1 1/4 1 15/64	1.2343	4.513	7/16	.4375	.562
11/32	1.2187	4.399	7/16 27/64 Z	.4218	.520
113/64	1.2031	4.287	Z	.413	.500
13/16	1.1875	4.177	13/32 Y	.4062	.484
1 ¹¹ / ₆₄ 1 ⁵ / ₃₂ 1 ⁹ / ₆₄	1.1718	4.067	Y	.404	.479
15/32	1.1562	3.959	X	.397	.463
1%4	1.1406	3.854	2564	.3906	.448
11/8	1.125	3.748	W	.386	.444
1764	1.1093	3.645	V	.377	.425
13/32 15/64	1.0937	3.539	3/8 U	.375	.416
15%	1.0781	3.442	U	.368	.401
11/16	1.0625	3.343	23/64	.3593	.382
13/64	1.0468	3.241	T	.358	.380
11/32	1.0312	3.148	S	.348	.361
11/64	1.0156	3.051	11/32	.3437	.350
1	1.000	2.961	R.	.339	.342
63/64	.9843	2.868	Q	.332	.326
31/32	.9687	2.779	Q 21/64	.3281	.319
61 /.	.9531	2.691	P	.323	.307
15/6	.9375	2.603	0	.316	.295
594	.9218	2.513	5/16	.3125	.288
29/2	.9062	2.433	5/16 N	.302	.269
15/16 59/64 29/32 57/64	.8906	2.347	19/64	.2968	.260
7/4	.875	2.268	M	.295	.259
78 552.	.8593	2.178	L	.290	.250
7/8 55/64 27/ ₃₂ 53/64	.8437	2.109	9/32	.2812	.235
53/	.8281	2.031	%2 K	.281	.234
13/16	.8125	1.956	J	.277	.228
51.	.7968	1.877	I	.272	.220
51/64 25/32 49/64	.7812	1.808	Ĥ	.266	.209
49/	.7656	1.734	17/64	.2656	.209
3/4	.750	1.666	G	.261	.201
47/64	.7343	1.596	F	.257	.193
23/32	.7187	1.531	E	.250	.185
-/32	11101		-		

 $^{^{\}circ}$ These weights shown are for Rex AA tungsten type drill rods. Approximate weights of molybdenum high speed drill rods are as follows: Rex M-2 93% and Rex VM and Rex TMO 91% of above weights.

WEIGHTS OF HIGH SPEED DRILL RODS—Continued *Size — Decimal Equivalent — Weight (Tungsten Type)

Size	Decimal	Weight Pounds Per Foot	Size	Decimal	Weight Pounds Per Foot
			38	.1015	.031
1/4 D	.250 .246	.185 .179	39	.0995	.029
C	.240	.171	40	.0993	.029
B	.238	.167	40	.098	.028
15/64	.2343	.163		.0937	.026
			3/32		
A	.234	.162	42	.0935	.026
1	.228	.153	43	.089	.022
2	.221	.145	44	.086	.021
7/32 3	.2187	.143	45	.082	.020
	.213	.134	46	.081	.019
4	.209	.128	47	.0785	.018
5	.2055	.121	5/64	.0781	.018
6	.204	.121	48	.076	.017
13/64	.2031	.119	49	.073	.016
7	.201	.118	50	.070	.014
8	.199	.115	51	.067	.013
9	.196	.110	52	.0635	.012
10	.1935	.107	1/16	.0625	.011
11	.191	.104	53	.0595	.010
12	.189	.104	54	.055	.0089
	.1875	.102	55	.052	.0078
3/16 13	.185	.099	.56	.0465	.0066
14	.182	.099	57	.043	.0052
15	.180	.094	58	.043	.0052
16	.177	.091	59	.042	.0047
17	.173	.088	60	.040	.0044
11/64	.1718	.088	61	.039	.0042
18	.1695	.084	62	.038	.0041
19	.166	.079	63	.037	.0039
20	.161	.077	64	.036	.0037
21	.159	.073	65	.035	.0032
22	.157	.073	66	.033	.0030
5/32 23	.1562	.072	67	.032	.0028
23	.154	.070	68	.031	.0027
24	.152	.068	69	.02925	.0026
25	.1495	.065	70	.028	.0022
26	.147	.063	71	.026	.0020
27	.144	.061	72	.025	.0017
964	.1406	.058	73	.024	.0016
28	.1405	.057	74	.0225	.0014
29	.136	.053	75	.021	.0012
30	.1285	.048	76	.020	.0009
1/8	.125	.047	77	.018	.0007
1/8 31	.120	.043	78	.016	.0006
32	.116	.040	79	.0145	.0005
33	.113	.038	80	.0135	.0004
34	.111	.036	00	.0100	1000.
35	.110	.034			
7/64	.1093	.034		1	
36	.1065	.033			

^{*} These weights shown are for Rex AA tungsten type drill rods. Approximate weights of molybdenum high speed drill rods are as follows: Rex M-2 93% and Rex VM and Rex TMO 91% of above weights.

WEIGHTS OF DRILL RODS

*Size — Decimal Equivalent — Weight (Victor and Carbon Tool Types)

			10011	Aheal			
		Weight	Approx. Wt. Per			Weight	Approx. Wt. Per
Size	Decimal	Pounds	3 Foot	Size	Decimal	Pounds	3 Foot
-11/	1 5000	Per Foot	Bar	99 /	7107	Per Foot	Bar
11/2	1.5000 1.4843	6.004 5.879	18.0 17.6	23/32 45/64	.7187 .7031	1.379 1.319	4.14 3.96
$1^{31}_{64} \\ 1^{15}_{32}$	1.4687	5.756	17.3	11/10	.6875	1.261	3.78
$1\frac{29}{64}$ $1\frac{7}{16}$	1.4531 1.4375	5.635 5.514	16.9 16.5	43/64 21/32	.6718 .6562	1.201 1.149	3.60 3.44
127/64	1.4218	5.394	16.2	41/4	.6406	1.093	3.28
113/32	1.4062	5.276	15.8	5/8 39/64	.625	1.042	3.13
$\frac{1^{25}_{64}}{1^{3}_{8}}$	1.3906 1.375	5.160 5.045	15.5 15.1	39/64 19/32	.6093 .5937	.990 .941	2.97 2.82
123/64	1.3593	4.931	14.8	37 64	.5781	.892	2.68
$1^{11}_{32}_{121}_{64}$	1.3437	4.819	14.5	9/16	.5625	.844	2.53
$\frac{1^{21}_{64}}{1^{5}_{16}}$	1.3281 1.3125	4.707 4.597	14.1 13.8	35/64 17/32	.5468	.793 .753	2.38 2.26
119/84	1.2968	4.488	13.5	33/64	.5156	.708	2.12
19/32	1.2812	4.380	13.1	1/2	.500	.667	2.00
117/64	1.2656 1.250	4.274 4.170	12.8 12.5	31/64 15/32	.4843	.625 .583	1.88 1.75
$ \begin{array}{c} 1\frac{1}{4} \\ 1\frac{15}{64} \\ 1\frac{7}{32} \end{array} $	1.2343	4.066	12.2	49/8A	.4531	.542	1.63
17/32	1.2187	3.963	11.9	7/16	.4375 .4218	.510 .472	1.53 1.42
1^{13}_{64} 1^{3}_{16}	1.2031	3.862 3.763	11.6 11.3	27/64 Z	.413	.458	1.37
111/84	1.1718	3.664	11.0	13/22	.4062	.440	1.32
15/22	1.1562 1.1406	$3.567 \\ 3.472$	10.7 10.4	X	.404	.437 .421	1.31 1.26
$\frac{1\%4}{1\frac{1}{8}}$	1.125	3.377	10.4	25/64	.3906	.408	1.22
17/64	1.1093	3.284	9.85	W	.386	.400	1.20
$\frac{13}{32}$ $\frac{15}{64}$	1.0937	3.188	9.56 9.30	V 3/2	.377 .375	.383	1.15 1.12
11/16	1.0625	3.012	9.04	3/8 U	.368	.362	1.09
13/64	1.0468	2.920	8.76	23/64	.3593	.344	1.03
$\frac{11}{32}$ $\frac{11}{64}$	1.0312 1.0156	2.836 2.749	8.51 8.25	S	.358	.342	1.02
1	1.000	2.668	8.00	11/32	.3437	.315	.95
63/64 31/32	.9843	$2.584 \\ 2.504$	7.75 7.51	RQ	.339	.308	.92
61/64	.9531	2.424	7.27	21/64	.3281	.287	.86
15/16	.9375	2.345	7.04	P	.323	.277	.83
59/64 29/32	.9218	$2.264 \\ 2.192$	6.79 6.58	O 5/16	.316	.266 .261	.80 .78
57/64	.8906	2.114	6.34	N	.302	.242	.73
7/8	.875	2.043	6.13	1964	.2968	.234	.70
7/8 55/64 27/32	.8593	1.969 1.900	5.91 5.70	M L	.295 .290	.233	.70 .68
53/64	.8281	1.830	5.49	%2 K	.2812	.212	.64
13/16	.8125	1.762	5.29		.281	.212	.64
51/64 25/32	.7968 .7812	1.691 1.629	5.07 4.89	J	.277 .272	.205 .198	.62
49/84	.7656	1.562	4.69	H	.266	.188	.56
3/4 47/64	.750 .7343	1.501 1.438	4.50 4.31	17/64 G	.2656 .261	.188	.56
64	.7040	1.400	10.1	1 0	.201	.101	.04

^{*}IMPORTANT—The figures in this table correspond to Stubs' Steel Wire Gauge, which is commonly used for all tool steel or alloy steel drill rod sizes. Morse Twist Drill Gauge is commonly used for high speed steel and varies slightly from figures shown in above tables. The gauges and weights of high speed drill rod are shown on pages 131 and 132.

WEIGHTS OF DRILL RODS—Continued

*Size — Decimal Equivalent — Weight (Victor and Carbon Tool Types)

	Tool Types)								
Size	Decimal	Weight Pounds Per Foot	Approx. Wt. Per 3 Foot Bar	Size	Decimal	Weight Pounds Per Foot	Approx. Wt. Per 3 Foot Bar		
F E	.257 .250 .250	.174 .167 .167	.52 .50 .50	35 36 37	.108 .106 .103	.031 .030 .029	.093 .090 .087		
1/4 D C	.246 .242	.161 .154	.47 .46	38 39	.101 .099	.028	.084		
B 15/64	.238 .2343	.150 .147	.45 .44	40 41	.097	.025	.075		
A 1 2	.234	.147	.44	$\frac{3}{32}$ $\frac{42}{43}$.0937 .092 .088	.023 .023 .021	.069 .069 .063		
2 7/32	.219	.129	.39	44 45	.085	.019	.057		
7/ _{\$2} 3 4 5	.212 .207 .204	.121 .115 .109	.36 .35 .33	46 5/64	.079 .0781	.017 .016	.051 .048		
13/64	.2031	.109	.33	47 48 49	.077 .075 .072	.016 .015 .014	.048 .045 .042		
6 7 8 9	.199	.106	.32	50 51	.069	.013	.039		
9 10	.194 .191	.099 .096	.30 .29	52 1/16	.063 .0625	.011	.033 .030		
$\frac{11}{\frac{3}{16}}$.188	.094	.28	53 54	.058	.009	.027		
12 13 14	.185 .182 .180	.092 .089 .087	.28 .27 .26	55 3/64 56	.050 .0468 .045	.007 .006 .006	.021 .018 .018		
15 16	.178	.085	.26	57 58	.042	.005	.015		
17	.172 .1718	.079 .079	.24 .24	59 60	.040	.0043	.0129		
18 19	.168	.076	.23	61 62 63	.038 .037 .036	.0038 .0037 .0035	.0114 .0111 .0105		
20 21	.161	.069	.21 .20 .20	64 65	.035	.0033	.0099		
5/32 22	.1562 .155 .153	.066 .065 .063	.20	66	.032 .0312	.0027 .0027	.0081 .0081		
23 24 25	.153	.061	.18	67 68 69	.031 .030 .029	.0025 .0024 .0023	.0075 .0072 .0069		
26 27	.146	.057	.171	70 71	.027	.0020	.0069		
9/64 28	.1406 .139	.052 .052	.156 .156	72 73	.024	.0015	.0045 .0042		
29 30	.134	.048	.144 .129 .126	74 75 76	.022	.0013 .0011 .0009	.0039		
1/8 31	.125	.042 .039 .036	.126	76 77 1/64	.018 .016 .0156	.0009	.0027 .0021 .0021		
32 33 34	.115 .112 .110	.036	.108	78 79	.015	.0006	.0018		
7/64	.1093	.031	.093	80	.013	.0004	.0013		

[•] IMPORTANT—The figures in this table correspond to Stubs' Steel Wire Gauge, which is commonly used for all tool steel or alloy steel drill rod sizes, Morse Twist Drill Gauge is commonly used for high speed steel and varies slightly from figures shown in above tables. The gauges and weights of high speed drill rod are shown on pages 131 and 132.

FRACTIONS OF AN INCH AND DECIMAL EQUIVALENTS

	10	1/64	015625			33/64	.51562
	1/32		03125		17/32		.53125
		3/64	046875			35/64	54687
1/16			0625	9/16			.5625
		5/64	.078125			37/64	578125
	3/32		09375		19/32		59375
		764	.109375			39/64	609375
1/8			.125	5/8			625
		9/64	140625			41/64	.640625
	5/32		15625		21/32		.65625
	-	11/64	.171875			43/64	.671875
3/16			.1875	11/16			.6875
		13/64	.203125			45/64	.703125
	7/2		.21875		23/32		.71875
		15/64	.234375	1.00		47/64	
1/4			.250	3/4			.750
/4		17/64	.265625			49/64	.765625
	9/32		.28125		25/32		.78125
		1964	.296875			51/64	
5/16			.3125	13/16			.8125
10		21/64	.328125			53/64	.82812
	11/32		.34375		27/32		
		23/64				55/64	
3/8			375	7/8			875
, 0		25/64	390625	1		57/64	89062
	13/32		.40625		29/32		
	- 02	27/64	.421875			5964	
7/16			4375	15/16			9375
10-2-		2964	.453125			61/64	.95312
	15/32				31/32		96875
	02-	31/64			-	63/64	
1/2		. 01	.500	1			1.0000

STANDARD GAUGES

Dimensions of Sizes in Decimal Parts of an Inch

1			U.S. Stand-			
		***	ard Gauge	D.	4	
		Washburn	for Sheet	Birm-	Ameri-	Number
Stubs	Music	& Moen,	and Plate	ingham	can or	
Steel	Wire	or	Iron and	or Stubs'	Brown	of
Wire	Gauge	Steel Wire	Steel	Iron	a de	Wire
		Gauge	(Revised)	Wire	Sharpe	Gauge
						00000000
		.4900	.50			0000000
		.4615	.46875		.580	000000
	.004	.4305	.4375		.5165	00000
	.005	.3938	.40625	.454	.460	0000
	.006	.3625	.375	.425	.409642	000
	.007	.3310	.34375	.380	.364796	00
7	.008			.340	.324861	0
	.009	.3065	.3125	.300	.289297	1
.227	.010	.2830	.28125	.300	.257627	
.219	.011	.2625	.26563	.284	.229423	2 3
.212	.012	.2437	.250		.229423	4
.207	.013	.2253	.23438	.238		5
.204	.014	.2070	.21875	.220	.18194	6
.201	.016	.1920	.20313	.203	.162023	0
.199	.018	.1770	.1875	.180	.144285	7 8
.197	.020	.1620	.17188	.165	.12849	
.194	.022	.1483	.15625	.148	.114423	9
.191	.024	.1350	14063	.134	.101897	10
.188	.026	.1205	.125	.120	.090742	11
.185	.029	.1055	.10938	.109	.080808	12
.182	.031	.0915	.09375	.095	.071962	13
.180	.033	.0800	.07813	.083	.064084	14
.178	.035	.0720	.07031	.072	.057068	15
.175	.037	.0625	.0625	.065	.050821	16
.172	.039	.0540	.05625	.058	.045257	17
.168	.041	.0475	.050	.049	.040303	18
.164	.043	.0410	.04375	.042	.03589	19
.161	.045	.0348	.0375	.035	.031961	20
.157	.047	.03175	.03438	.032	.028462	21
.155	.049	.0286	.03125	.028	.025346	22
.153	.051	.0258	.02813	.025	.022572	23
.151	.055	.0230	.025	.022	.020101	24
.148	.059	.0204	.02188	.020	.0179	25
.146	.063	.0181	.01875	.018	.015941	26
.143	.067	.0173	.01719	.016	.014195	27
.139	.071	.0162	.01563	.014	.012641	28
.134	.075	.0150	.01406	.013	.011257	29
.127	.080	.0140	.0125	.012	.010025	30
.120	.085	.0132	.01094	.010	.008928	31
.115	.090	.0128	.01016	.009	.00795	32
.113	.095	.0118	.00938	.008	.00708	33
.112	.090	.0104	.00859	.007	.006305	34
		.0095	.00781	.005	.005615	35
.108		.0090	.00703	.004	.005	36
.106		.0090	.00664	.004	.004453	37
.103			.00625		.003965	38
.101		.0080	.00025		.003531	39
.099		.0075			.003331	40
.097		.0070			.000144	10

DRILL STEEL

ELECTRODES

MISCELLANEOU

WEIGHTS OF IRON AND CARBON STEEL *STANDARD GAUGES

(For estimated weights of stainless plates and sheets, see page 139)

				*** I	DIDI	. INCH	111 01	HOE
	U. S.	STANL	OARD GA	UGE	BIKM	IINGH	AM GA	UGE
No. of	Thickn		Weight		No.	Thick-	Wes	
Gauge	Incl	nes	Foo	ot	of	ness	Squar	e root
	Fractions	Decimals	Iron	Steel	Gauge	in Ins.	Iron	Steel
7-0's	1/2	.5	20.00	20.4				
6-0's	15/32	.46875	18.75	19.125				
5-0's	7/16 13/32	.4375	$17.50 \\ 16.25$	$17.85 \\ 16.575$	0000	.454	18.22	18.523
0000	3/8	.375	15.	15.30	000	.425	17.05	17.34
00	11/32	.34375	13.75	14.025	00	.38	15.25	15.504
0	5/16	.3125	12.50	12.75	0	.34	13.64	13.872
1	9/32	.28125	11.25	11.475	1	.3	12.04 11.40	12.24 11.587
2	17/64	.26562 $.25$	10.625 10.	10.8375 10.2	$\frac{2}{3}$.259	10.39	10.567
3 4	1/4 15/64	.23438	9.375	9.5625	4	.238	9.55	9.710
5	7/32	.21875	8.75	8.925	5	.22	8.83	8.976
6	13/64	.20313	8.125	8.2875	6	.203	8.15	8.282
7	3/16	.1875	7.5	7.65 7.0125	7 8	.18	7.22 6.62	$7.344 \\ 6.732$
8 9	11/64 5/32	.17188	$6.875 \\ 5.25$	6.375	9	.148	5.94	6.038
10	9/64	.14063	5.625	5.7375	10	.134	5.38	5.467
11	1/8	.125	5.	5.1	11	.12	4.82	4.896
12	7/64	.10938	4.375	4.4625	12	.109	4.37	4.497
13	3/32	.09375	3.75 3.125	3.825 3.1875	13 14	.095	3.81	$\frac{3.876}{3.386}$
14	5/64	.07813	2.8125	2.86875		.072	2.89	2.938
15 16	9/128	.07031	2.5125	2.55	16	.065	2.61	2.651
17	9/160	.05625	2.25	2.295	17	.058	2.33	2.366
18	1/20	.05	2.	2.04	18	.049	1.97	1.999
19	7/160	.04375	1.75	1.785	19	.042	1.69	1.714 1.428
20	3/80	.0375	1.50 1.375	1.53 1.4025	20 21	.035	1.40 1.28	1.428
21 22	11/320 1/32	.03438	1.25	1.4025	22	.028	1.12	1.142
23	9/320	.02813	1.125	1.1475	23	.025	1.00	1.02
24	1/40	.025	1.	1.02	24	.022	.883	.898
25	7/320	.02188	.875	.8925	25	.02	.803	.816 .734
26	3/160	.01875	.75	.765 .70125	26 27	.018	.722 .642	.653
27 28	11/640	.01719	.625	.6375	28	.014	.562	.571
29	9/640	.01406	.5625	.57375		.013		.530
30	1/80	.0125	.5	.51	30	.012		.49
31	7/640	.01094	.4375	.34625		.01		.408
32	13/1280	.01016	.4063	.41438	32 33	.009		.326
33 34	3/320	.00938	.3438	.35063		.007		.286
35	5/640	.00781	.3125	.31875		.005		.204
36	9/1280		.2813	.28688	36	.004		.163
37	17/2560	.00664	.2657	.27094				
38	1/160	.00625	.25	.255		-		

^{*} Sheet mills roll iron and steel sheets to U. S. Standard Gauge. Plate mills usually roll to Birmingham Gauge unless otherwise ordered. Bands and hoops, cold rolled strip steel and spring steel are rolled to Birmingham Gauge. Round wire is drawn to Washburn and Moen Gauge.

Thickness Ordering Range	Gauge	Approximate Decimal Parts	Average Wt.	Average Wt. per Sq. Ft. in
Inches	Number	of an inch	per Sq. Ft. in Lbs. for Chr. Iron Alloys	Lbs. for Chr. Nickel—Cold Rolled Alloys
.161 to .176	8	.171875	7.0813	7.2187
.146 to .160	9	.15625	6.4375	6.5625
.131 to .145	10	.140625	5.7937	5.9062
.115 to .130	11	.125	5.15	5.2500
.099 to .114	12	.109375	4.5063	4.5937
.084 to .098	13	.09375	3.8625	3.9375
.073 to .083	14	.078125	3.2187	3.2812
.066 to .072	15	.0703125	2.8968	2.9531
.059 to .065	16	.0625	2.575	2.6250
.053 to .058	17	.05625	2.3175	2.3625
.047 to .052	18	.050	2.06	2.1000
.041 to .046	19	.04375	1.8025	1.8375
.036 to .040	20	.0375	1.545	1.5750
.033 to .035	21	.034375	1.416	1.4437
.030 to .032	22	.03125	1.2875	1.3125
.027 to .029	23	.028125	1.1587	1.1813
.024 to .026	24	.025	1.03	1.0500
.0199 to .023	25	.021875	.9013	.9187
.0178 to .0198	26	.01875	.7725	.7875
.0161 to .0177	27	.0171875	.7081	.7218
.0146 to .0160	28	.015625	.6438	.6562
.0131 to .0145	29	.0140625	.5794	.5906
.0115 to .0130	30	.0125	.515	.5250
.0105 to .0114	31	.0109375	.4506	.4594
.0095 to .0104	32	.01015625	.4184	.4265

DRILL STEELS

WEIGHTS OF HOLLOW DRILL STEEL PER LINEAR FOOT IN POUNDS

Size	Weight	Hole Size, Diam
7/8 Hexagon	2.05	17,64
1 "	2.55	17/64
1½ " 1¼ "	3.35	11/32
11/4 "	4.10	17 ₆₄ 17 ₆₄ 11 ₃₂ 11 ₃₂
1 Round	2.50	17/4
11/8 "	3.07	17 ₆₄ 11 ₃₂ 11 ₃₂
11/4 "	3.85	11/32
1½ " 1¼ " 1½ "	5.18	1/2
% Quarter Octagon	2.30	1764
1 " "	2.98	17/64

WEIGHTS OF SOLID DRILL STEEL PER LINEAR FOOT IN POUNDS

Size	Octagon	Hexagon	Rounds	Qr. Oct.	Cruciform (R.M.P.)
1/2	.70	.75	.67	.82	
5/8	1.10	1.17	1.04	1.29	
3/4	1.58	1.68	1.50	1.85	1.16
7/8	2.16	2.29	2.04	2.50	1.63
1	2.82	2.99	2.67	3.25	2.31
11/8	3.56	3.78	3.38	4.10	2.72
11/4	4.40	4.66	4.17	5.10	3.30
13/8	5.32	5.65	5.05	6.15	3.95
11/2	6.34	6.72	6.01	7.30	4.77
15/8	7.32	7.89	7.05	8.55	5.52
13/4	8.64	9.14	8.18	9.95	6.29
17/8	9.92	10.50	9.38	11.30	6.97
2	11.28	11.95	10.71	13.30	7.96
21/4	14.24	15.12	13.60	16.40	9.53
21/2	17.65	18.66	16.68	20.20	11.58

LENGTH CONVERSIONS

Based on Value 1 m. = 39.37 in.

				basea (on valu	e i iii.	= 39.3	/ in.		
Iı	2	_	milli-					- 1		
11	٤.		meters							
	m.	=		inches						
F.	eet	=			melers	feet		yards		
	d.	=				7661	meters	yaras		
	liles	=							kilometers	
K	m.	=								miles
_	,		05 400 1	0.000.070	0.004.001	2 200 02	0.014.400	1 000 01	1 000 07	0.001.0=
	1 2		25.400 1 50.800 1	0.039 370 0.078 740	0.304 801 0.609 601	3.280 83 6.561 67	0.914 402 1.828 80	1.093 61 2.187 22	1.609 35 3.218 69	0.621 37 1.242 74
	3		76.200 2	0.118 110	0.914 402	9.842 50	2.743 21	3.280 83	4.828 04	1.864 11
	4		101.600	0.157 480	1.219 20	13.123 3	3.657 61	4.374 44	6.437 39	2.485 48
	5		127.000	0.196 850	1.524 00	16.404 2	4.572 01	5.468 06	8.046 74	3.106 85
	6 7		152.400	0.236 220	1.828 80	19.685 0	5.486 41	6.561 67	9.656 08	3.728 22
	8		177.800 203.200	0.275 590 0.314 960	2.133 60 2.438 40	22.965 8 26.246 7	6.400 81 7.315 21	7.655 28 8,748 89	11.265 4 12.874 8	4.349 59 4.970 96
	9		228.600	0.354 330	2.743 21	29.527 5	8.229 62	9.842 50	14.484 1	5.592 33
	10		254.001	0.393 700	3.048 01	32.808 3	9.144 02	10.936 1	16.093 5	6.213 70
	-11		279.401	0.433 070	3.352 81	36.089 2	10.058 4	12.029 7	17.702 8	6.835 07
	12 13		304.801	0.472 440 0.511 810	3.657 61	39.370 0	10.972 8	13.123 3	19.312 2	7.456 44
	14		330.201 355.601	0.511 810	3.962 41 4.267 21	42.650 8 45.931 7	11.887 2 12.801 6	14.216 9 15.310 6	20.921 5 22.530 9	8.077 81 8.699 18
	15		381.001	0.590 550	4.572 01	49.212 5	13.716 0	16.404 2	24.140 2	9.320 55
	16		406.401	0.629 920	4.876 81	52.943 3	14.630 4	17.497 8	25.749 6	9.941 92
	17		431.801	0.669 290	5.181 61	55.774 2	15.544 8	18.591 4	27.358 9	10.563 3
	18 19		457.201 482.601	0.708 660 0.748 030	5.486 41 5.791 21	59.005 0 62.335 8	16.459 2	19.685 0	28.968 2	11.184 7
	20		508.001	0.787 400	6.096 01	65.616 7	17.373 6 18.288 0	20.778 6 21.872 2	30.577 6 32.186 9	11.806 0 12.427 4
	21		533.401	0.826 770	6.400 81	68.896 5	19.202 4	22.965 8	33.196 3	13.048 8
	22		558.801	0.866 140	6.705 61	72.178 3	20.116 8	24.059 4	35.405 6	13.670 1
	23		584.201	0.905 510	7.010 41	75.459 2	21.031 2	25.153 1	37.015 0	14.291 5
	24 25		609.601 635.001	0.944 880 0.984 250	7.315 21 7.620 02	78.740 0 82.020 8	21.945 6 22.860 0	26.246 7 27.340 3	38.624 3 40.233 7	14.912 9 15.534 2
	26		660.401	1.023 62	7.924 82	85,301 7	23.774 4	28.433 9	41.843 0	16.155 6
	27		685.801	1.062 99	8.229 62	88.582 5	24.688 9	29.527 5	43.452 4	16.777 0
	28		711.201	1.102 36	8.534 42	91.863 3	25.603 3	30.621 1	45.061 7	17.398 4
	29 30		736.601 762.002	1.141 73 1.181 10	8.939 22 9.144 02	95.144 2 98.425 0	26.517 7 27.432 1	31.714 7 32.808 3	46.671 1	18.019 7
									48.280 4	18.641 1
	31 32		787.402 812.802	1.220 47 1.259 84	9.448 82 9.753 62	101.706 104.987	28.346 5 29.260 9	33.901 9 34.995 6	49.889 8 51.499 1	19.262 5 19.883 8
	33		838.202	1.299 21	10.058 4	108.268	30.175 3	36.089 2	53.108 5	20.505 2
	34		863.602	1.338 58	10.363 2	111.548	31.089 7	37.182 8	54.717 8	21.126 6
	35		889.002	1.377 95	10.668 0	114.829	32.004 1	38.276 4	56.327 2	21.747 9
	36		914.402	1.417 32	10.972 8	118.110	32.918 5	39.370 0	57.936 5	22.369 3
	37 38		939.802 965.202	1.456 69 1.496 06	11.277 6 11.582 4	121.391 124.672	33.832 9 34.747 3	40.463 6 41.557 2	59.545 8 61.155 2	22.990 7 23.612 1
	39		990.602	1.535 43	11.887 2	127.953	35.661 7	42.650 8	62.764 5	24.233 4
	40		1 016.00	1.574 80	12.192 0	131.233	36.576 1	43.744 4	64.373 9	24.854 8
	41		1 041.40	1.614 17	12.496 8	134.514	37.490 5	44.838 1	65.983 2	25.476 2
	42		1 066.80	1.653 54	12.801 6	137.795	38.404 9	45.931 7	67.592 6	26.097 5
	44		1 092.20 1 117.60	1.692 91 1.732 28	13.106 4 13.411 2	141.076 144.357	39.319 3 40.233 7	47.025 3 48.118 9	69.201 9 70.811 3	26.718 9 27.340 3
	45		1 143.00	1.771 65	12.716 0 ,	147.638	41.148 1	49.212 5	72.420 6	27.961 6
	46		1 168.40	1.811 02	14.020 8	150.918	42.062 5	50.306 1	74.030 0	28.583 0
	47		1 193.80	1.850 39	14.325 6	154.199	42.976 9	51.399 7	75.639 3	29.204 4
	48		1 219.20 1 244.60	1.889 76 1.929 13	14.630 4 14.935 2	157.480 160.761	43.891 3 44.805 7	52.493 3 53.586 9	77.248 7	29.825 8
	50		1 270.00	1.929 13	14.935 2	164.042	44.805 7	54.680 6	78.858 0 80.467 4	30.447 1 31.068 5
							1	1	1	1

From "Ready Reference Tables," courtesy Carl Hering.

LENGTH CONVERSIONS—Continued

Based on Value 1 m. = 39.37 in.

In.	200	milli- meters							
Mm.	=		inches						
Feet	=			meters			,		
М.	=				feet		yards		
Yd. Miles	=					meters		kilometers	
Mues Km.	=							Nesometer a	miles
11.116.	_								
51		1 295.40	2,007 87	15.544 8	167.323	46.634 5	55.774 2	82.076 7	31.689 9
52		1 320,80	2.047 24	15.849 6 16.154 4	170.603 173.884	47.548 9 48.463 3	56.867 8 57.961 4	83.686 1 85.295 4	32,311 2 32,932 6
53 54		1 346.20 1 371.60	2.086 61 2.125 98	16.134 4	177.165	49.377 7	59.055 0	86.904 7	33,554 0
55		1 397.00	2.165 35	16.764 0	180.446	50.292 1	60.148 6	88.514 1	34.175 3
56		1 422,40	2.204 72	17.068 8	183.727	51.206 5	61.242 2	90,123 4	34.796 7
57		1 447.80	2.244 09	17.373 6	187.008	52.120 9	62.335 8	91.732 8	35.418 1
58		1 473.20	2.283 46	17.678 4 17.983 2	190.288 193.569	53.035 3 53.949 7	63.429 4 64.523 1	93.342 1 94.951 5	36.039 5 36,660 8
59 60		1 498.60 1 524.00	2.322 83 2,362 20	18.288 0	196.850	54.864 1	65.616 7	96.560 8	37.282 2
61		1 549.40	2.401 57	18,592 8	200.131	55.778 5	66.710 3	98.170 2	37.903 6
62		1 574.80	2.440 94	18.897 6	203.412	56.692 9	67.803 9	99.779 5	38.524 9
63		1 600.20	2.480 31 2.519 68	19.202 4 19.507 2	206.693 209.973	57.607 3 58.521 7	68.897 5 69.991 1	101.389 102.998	39.146 3 39.767 7
64 65		1 625.60 1 651.00	2.559 05	19.812 0	213.254	59.436 1	71.084 7	104.608	40.389 0
66		1 676.40	2,598 42	20.116 8	216.535	60.350 5	72.178 3	106.217	41.010 4
67		1 701.80	2.637 79	20,421 6	219.816	61.264 9	73.271 9	107.826	41.631 8
68		1 727.20	2.677 16	20.726 4	223.097	62.179 3 63.093 7	74.365 6 75.459 2	109.436	42.253 2
69 70		1 752.60 1 778.00	2.716 53 2.755 90	21.031 2 21.336 0	226.378 229.658	64.008 1	76.552 8	112.654	43.495 9
71		1 803.40	2.795 27	21.640 8	232.939	64.922 5	77.646 4	114.264	44.117 3
72		1 828.80	2.834 64	21.945 6	236.220	65.836 9 66.751 3	78.740 0 79.833 6	115.873 117.482	44.738 6
73 74		1 854.20 1 879.60	2.874 01 2.913 38	22.250 4 22.555 2	239.501 242.782	67.665 7	80.927 2	119.092	45.981 4
75		1 905.00	2.952 75	22,860 0	246.063	68.580 1	82.020 8	120.701	46.602 7
76		1 930.40	2.992 12	23.164 8	249.343	69.494 5	83.114 4	122.310	47.224 1
77		1 955.80	3.031 49 3.070 86	23,469 6 23,774 4	252.624 255.905	70.408 9 71.323 3	84.208 1 85.301 7	123.920 125.529	47.845 5
78 79		1 981.20 2 006.60	3.110 23	24.079 2	259.186	72.237 7	86.395 3	127.138	49.088 2
80		2 032.00	3.149 60	24.384 0	262.467	73.152 1	87.488 9	128.748	49.709 6
81		2 057.40	3.188 97	24.688 8	265.748	74.066 5	88.582 5	130.357	50.331 (
82		2 082.80	3.228 34	24.993 6	269.028 272.309	74.981 0 75.895 4	89.676 1 90.769 7	131.966 133.576	50.952 3
83 84		2 108.20 2 133.60	3.267 71 3.307 08	25,298 4 25,603 3	275.590	76.809 8	91.863 3	135.185	52.195
85		2 159.00	3.346 45	25.908 1	278.871	77.724 2	92.956 9	136.795	52.816
86	3	2 184.40	3,385 82	26.212 9	282.152	78.638 6	94.050 6	138.404	53.437 8
87		2 209.80	3.425 19	26.517 7	285.433	79.553 0	95.144 2 96.237 8	140.013 141.623	54.059 5 54.680 6
88		2 235.20 2 260.60	3.464 56 3.503 93	26.822 5 27.127 3	288.713 291.994	80.467 4 81.381 8	97.331 4	143.232	55.301
90		2 286.00	3.543 30	27.432 1	295.275	82.296 2	98.425 0		55.923
91		2 311.40	3.582 67	27.736 9	298.556	83.210 6	99.518 6		56.544
92		2 336.80	3.622 04	28.041 7	301.837	84.125 0 85.039 4	100.612	148.060 149.669	57.160
93		2 362,20 2 387,60	3.661 41 3.700 78	28,346 5 28,651 3	305.118 308.398	85.039 4 85.953 8	101.706	151.279	58.408
94		2 413.00	3.740 15	28,956 1	311.679	86.868 2	103.893	152.888	59.030
90	6	2 438,40	3.779 52	29,260 9	314.960	87.782 6	104.987	154.497	59.651
9		2 463.80	3.818 89	29.565 7	318.241	88.697 0	106.080	156.107	60.272
9:		2 489.20	3.858 26	29.870 5	321.522 324.803	89.611 4 90.525 8	107.174	157.716 159.325	60.894
9	9	2 514.60 2 540.01	3.897 63 3.937 00	30.175 3 30.480 1	324.803	91.440 2	109.361	160.935	62.137

From "Ready Reference Tables," courtesy Carl Hering.

TEMPERATURE CONVERSIONS

Albert Sauveur type of table. Look up reading in middle column; if in degrees Centigrade, read Fahrenheit equivalent in right hand column; if in degrees Fahrenheit, read Centigrade equivalent in left hand column.

	- 459.4 t	00			0 to	100					100 t	o 1000		
C		F	C		F	C		F	C		F	C		F
- 273	- 459.4		-17.8	0	32	10.0	50	122.0	38	100	212	260	500	000
- 268	- 450		-17.2	1	33.8	10.6	51	123.8	43	110	230	266	510	932
-262	-440		-16.7	2	35.6	11.1	52	125.6	49	120	248	271	520	950
- 257	- 430		-16.1	3	37.4	11.7	53	127.4	54	130	266	277	530	980
- 251	-420		-15.6	4	39.2	12.2	54	129.2	60	140	284	282	540	100
- 246	-410		-15.0	5	41.0	12.8	55	131.0	66	150	302	288	550	102
- 240	-400		-14.4	6	42.8	13.3	56	132.8	71	160	320	293	560	1040
-234	-390		-13.9	7	44.6	13.9	57	134.6	77	170	338	299	570	1058
-229	-380		-13.3	8	46.4	14.4	58	136.4	82	180	356	304	580	107
-223	-370		-12.8	9	48.2	15.0	59	138.2	88	190	374	310	590	109
-218	-360		-12.2	10	50.0	15.6	60	140.0	93	200	392	316	600	1112
-212	- 350		-11.7	11	51.8	16.1	61	141.8	99	210	410	321	610	1130
-207	-340		-11.1	12	53.6	16.7	62	143.6	100	212	413.6	327	620	1148
-201	-330		-10.6	13	55.4	17.2	63	145.4	104	220	428	332	630	116
- 196	- 320		-10.0	14	57.2	17.8	64	147.2	110	230	446	338	640	1184
- 190	-310		- 9.4	15	59.0	18.3	65	149.0	116	240	464	343	650	1202
- 184	-300		- 8.9	16	60.8	18.9	66	150.8	121	250	482	349	660	1220
- 179	-290		- 8.3	17	62.6	19.4	67	152.6	127	260	500	354	670	1238
- 173	- 280		- 7.8	18	64.4	20.0	68	154.4	132	270	518	360	680	125
- 169	- 273	-459.4	- 7.2	19	66.2	20.6	69	156.2	138	280	536	366	690	1274
- 168	-270	-454	- 6.7	20	68.0	21.1	70	158.0	143	290	554	371	700	1293
-162	-260	-436	- 6.1	21	69.8	21.7	71	159.8	149	300	572	377	710	1310
- 157	- 250	-418	- 5.6	22	71.6	22.2	72	161.6	154	310	590	382	720	1328
- 151	-240	-400	- 5.0	23	73.4	22.8	73	163.4	160	320	608	388	730	1346
- 146	-230	-382	- 4.4	24	75.2	23.3	74	165.2	166	330	626	393	740	1364
- 140	- 220	-364	- 3.9	25	77.0	23.9	75	167.0	171	340	644	399	750	1382
- 134	-210	-346	- 3.3	26	78.8	24.4	76	168.8	177	350	662	404	760	1400
- 129	-200	-328	- 2.8	27	80.6	25.0	77	170.6	182	360	680	410	770	1418
- 123	-190	-310	- 2.2	28	82.4	25.6	78	172.4	188	370	698	416	780	1436
-118	- 180	-292	- 1.7	29	84.2	26.1	79	174.2	193	380	716	421	790	1454
-112	- 170	-274	- 1.1	30	86.0	26.7	80	176.0	199	390	734	427	800	1472
- 107	-160	-256	- 0.6	31	87.8	27.2	81	177.8	204	400	752	432	810	1490
- 101	-150	-238	0.0	32	89.6	27.8	82	179.6	210	410	770 -	438	820	1508
- 96	-140	-220	0.6	33	91.4	28.3	83	181.4	216	420	788	443	830	1526
- 90	- 130	-202	1.1	34	93.2	28.9	84	183.2	221	430	806	449	840	1544
- 84	- 120	-184	1.7	35	95.0	29.4	85	185.0	227	440	824	454	850	1562
- 79	-110	-166	2.2	36	96.8	30.0	86	186.8	232	450	842	460	860	1580
- 73	-100	-148	2.8	37	98.6	30.6	87	188.6	238	460	860	466	870	1598
- 68	- 90	-130	3.3	38	100.4	31.1	88	190.4	243	470	878	471	880	1616
62	- 80	-112	3.9	39	102.2	31.7	89	192.2	249	480	896	477	890	1634
57	- 70	- 94	4.4	40	104.0	32.2	90	194.0	254	490	914	482	900	1652
51	- 60	- 76	5.0	41	105.8	32.8	91	195.8			1 1	488	910	1670
46	- 50	- 58	5.6	42	107.6	33.3	92	197.6				493	920	1688
34	- 40 - 30	- 40 - 22	6.1	43	109.4 111.2	33.9 34.4	93 94	199.4 201.2				499 504	930 940	1706 1724
29	- 20	- 4	7.2	45	113.0		95							
23	- 10	14	7.8	46	114.8	35.0 35.6	96	203.0 204.8				510	950	1742
17.8	0	32	8.3	47	116.6	36.1	97	204.8				516 521	960 970	1760
		-	8.9	48	118.4	36.7	98	208.4			11.7	527	980	1778
	/		9.4	49	120.2	37.2	99	210.2				532	990	1796 1814
				-		37.8	100	212.0		1			1000	1832

TEMPERATURE CONVERSIONS

—Continued

		1000 to	2000			2000 to 3000						
С		F	c		F	c		F	C		F	
538	1000	1832	816	1500	2732	1093	2000	3632	1371	2500	4532	
543	1010	1850	821	1510	2750	1099	2010	3650	1377	2510	4550	
549	1020	1868	827	1520	2768	1104	2020	3668	1382	2520	456	
554	1030	1886	832	1530	2786	1110	2030	3686	1388	2530	458	
560	1040	1904	838	1540	2804	1116	2040	3704	1393	2540	460	
566	1050	1922	843	1550	2822	1121	2050	3722	1399	2550	462	
571	1060	1940	849	1560	2840	1127	2060	3740	1404	2560	464	
577	1070	1958	854	1570	2858	1132	2070	3758	1410	2570	465	
582	1080	1976	860	1580.	2876	1138	2080	3776	1416	2580	467	
588	1090	1994	866	1590	2894	1143	2090	3794	1421	2590	469	
593	1100	2012	871	1600	2912	1149	2100	3812	1427	2600	471	
599	1110	2030	877	1610	2930	1154	2110	3830	1432	2610	473	
604	1120	2048	882	1620	2948	1160	2120	3848	1438	2620	474	
610	1130	2066	888	1630	2966	1166	2130	3866	1443	2630	476	
616	1140	2084	893	1640	2984	1171	2140	3884	1449	2640	478	
621	1150	2102	899	1650	3002	1177	2150	3902	1454	2650	480	
627	1160	2120	904	1660	3020	1182	2160	3920	1460	2660	482	
632	1170	2138	910	1670	3038	1188	2170	3938	1466	2670	483	
638	1180	2156	916	1680	3056	1193	2180	3956	1471	2680	485	
643	1190	2174	921	1690	3074	1199	2190	3974	1477	2690	487	
649	1200	2192	927	1700	3092	1204	2200	3992	1482	2700	489	
654	1210	2210	932	1710	3110	1210	2210	4010	1488	2710	491	
660	1220	2228	938	1720	3128	1216	2220	4028	1493	2720	492	
666	1230	2246	943	1730	3146	1221	2230	4046	1499	2730	494	
671	1240	2264	949	1740	3164	1227	2240	4064	1504	2740	496	
677	1250	2282	954	1750	3182	1232	2250	4082	1510	2750	498	
682	1260	2300	960	1760	3200	1238	2260	4100	1516	2760	500	
688	1270	2318	966	1770	3218	1243	2270	4118	1521	2770	501	
693	1280	2336	971	1780	3236	1249	2280	4136	1527	2780	503	
699	1290	2354	977	1790	3254	1254	2290	4154	1532	2790	50	
704	1300	2372	982	1800	3272	1260	2300	4172	1538	2800	50	
710	1310	2390	988	1810	3290	1266	2310	4190	1543	2810	50	
716	1320	2408	993	1820	3308	1271	2320	4208	1549	2820	51	
721	1330	2426	999	1830	3326	1277 1282	2330 2340	4226 4244	1554 1560	2830 2840	51:	
727	1340	2444	1004	1840	3344	1202	2540					
732	1350	2462	1010	1850	3362	1288	2350	4262	1566	2850	51	
738	1360	2480	1016	1860	3380	1293	2360	4280	1571	2860	51	
743	1370	2498	1021	1870	3398	1299	2370	4298	1577	2870	51	
749	1380	2516	1027	1880	3416	1304	2380	4316	1582	2880	52	
754	1390	2534	1032	1890	3434	1310	2390	4334	1588	2890	52	
760	1400	2552	1038	1900	3452	1316	2400	4352	1593	2900	52	
766	1410	2570	1043	1910	3470	1321	2410	4370	1599	2910	52	
771	1420	2588	1049	1920	3488	1327	2420	4388	1604	2920	52	
777	1430	2606	1054	1930	3506	1332	2430	4406	1610	2930	53	
782	1440	2624	1060	1940	3524	1338	2440	4424	1616	2940	53	
788	1450	2642	1066	1950	3542	1343	2450	4442	1621	2950	53	
793	1460	2660	1071	1960	3560	1349	2460	4460	1627	2960	53	
799	1470	2678	1077	1970	3578	1354	2470	4478	1632	2970	53	
804	1480	2696	1082	1980	3596	1360	2480	4496	1638	2980	53	
810	1490	2714	1088	1990	3614	1366	2490	4514	1643	2990	54	
0-0	- 100		1093	2000	3632				1649	3000	54	

APPROXIMATE HARDNESS CONVERSION NUMBERS FOR STEEL BASED ON ROCKWELL "C" HARDNESS NUMBERS

Rockwell	Brinell Hard- ness No.	ROCK HARDN	WELL ESS NO.	Diamond	Chana	<i>T</i>
C-Scale Hard- ness No.	10-mm Tungsten Carbide Ball, 3,000- Kg Load	B-Scale, 100-Kg Load, 16-In. Diam. Ball	A-Scale, 60-Kg Load, Brale Pene- trator	Pramona Pyramid Hard- ness No., Vickers	Shore Sclero- scope Hard- ness No.	Tensile Strength (Approximate) in 1,000 psi
68 67 66 65 64	739 722	=	85.6 85.0 84.5 83.9 83.4	940 900 865 · 832 800	97 95 92 91 88	=
63 62 61 60 59	705 688 670 654 634		82.8 82.3 81.8 81.2 80.7	772 746 720 697 674	87 85 83 81 80	326
58	615		80.1	653	78	315
57	595		79.6	633	76	305
56	577		79.0	613	75	295
55	560		78.5	595	74	287
54	543		78.0	577	72	278
53	525		77.4	560	71	269
52	512		76.8	544	69	262
51	496		76.3	528	68	253
50	481		75.9	513	67	245
49	469		75.2	498	66	239
48	455	=	74.7	484	64	232
47	443		74.1	471	63	225
46	432		73.6	458	62	219
45	421		73.1	446	60	212
44	409		72.5	434	58	206
43	400	=	72.0	423	57	201
42	390		71.5	412	56	196
41	381		70.9	402	55	191
40	371		70.4	392	54	186
39	362		69.9	382	52	181
38 37 36 35 34	353 344 336 327 319	(109.0) (108.5) (108.0)	69.4 68.9 68.4 67.9 67.4	372 363 354 345 336	51 50 49 48 47	176 172 168 163 159
33	311	(107.5)	66.8	327	46	154
32	301	(107.0)	66.3	318	44	150
31	294	(106.0)	65.8	310	43	146
30	286	(105.5)	65.3	302	42	142
29	279	(104.5)	64.7	294	41	138
28	271	(104.0)	64.3	286	41	134
27	264	(103.0)	63.8	279	40	131
26	258	(102.5)	63.3	272	38	127
25	253	(101.5)	62.8	266	38	124
24	247	(101.0)	62.4	260	38	121
23	243	100.0	62.0	254	36	118
22	237	99.0	61.5	248	35	115
21	231	98.5	61.0	243	35	113
20	226	97.8	60.5	238	34	110

NOTE. The values shown are based on ASTM Spec (E48) and 1954 SAE Handbook. Values in () are beyond normal range and are given for information only.

APPROXIMATE HARDNESS CONVERSION NUMBERS FOR STEEL BASED ON BRINELL "C" HARDNESS NUMBERS

	DAJLU	OIA DKIIA	LLL C	HARDI	1233 140	MDLKO	
Brinell Indenta- tion Diam. mm	Brinell Hard- ness No. 10-mm Tungsten Carbide Ball, 3,000- Kg Load	C- Scale, 150-Kg Load, Brale Pene- trator	B- Scale, 100-Kg Load, 1/6-In. Diam. Ball	A- Scale, 60-Kg Load, Brale Pene- trator	Diamond Pyramid Hard- ness No. Vickers	Shore Sclero- scope Hard- ness No.	Tensile Strength (Approxi- mate) in 1,000 psi
2.25 ———————————————————————————————————	745 733 722 733 722 710 7608 684 682 670 6698 684 682 670 6656 653 647 630 627 601 578 555 534 514 477 477 461 441 444 449 4415 4415 4415 4415 4415 388 375 363 362 341 321 302 223 3227 222 225 225 228 221 227 207 201 197 192 223 2217 2207 201 197 192 183 179 174 163 163 163 163 163 163 179 170 1663 163 163 163 163 179	65.3 64.7 64.0 62.5 61.7 61.0 69.0 65.3 55.5 52.1 651.3 56.0 65.4 7.5 54.7 54.0 55.5 52.1 651.3 60.3 60.3 60.3 60.3 60.3 60.3 60.3 60	(110.0) (109.5) (108.0) (107.5) (106.0) (105.5) (104.0) (102.0) (106.0) (105.5) (104.0) (102.0) (106.0	84.1 83.8 83.4 83.6 82.6 82.2 81.3 81.2 81.3 80.6 80.7 79.8 79.8 77.8 76.7 76.7 76.7 76.7 76.7 76.7 77.9	840 820 800 780 780 740 740 740 740 697 690 680 670 640 667 677 640 640 657 640 657 640 640 591 579 569 553 547 530 538 401 447 447 447 447 447 447 447 44	91 90 88 87 86 84 81 80 79 77 75 73 71 70 68 66 63 63 63 65 59 56 43 41 40 40 33 38 37 36 41 41 40 40 40 40 40 40 40 40 40 40	

NOTE. The values shown are based on ASTM Spec. (E48) and 1954 SAE Handbook. Values in () are beyond normal range and are given for information only.

CIRCUMFERENCES AND AREAS OF CIRCLES

						44.11	10.1		
	OF OF	NE INCH				OF INCHES	OR FE	EET	
Fract.	Dec.	Circ.	Area	Dia.	Circ.	Area	Dia.	Circ.	Area
1/64 1/52 3/64 1/16 5/64 2/52 1/64	.015625 .03125 .046875 .0625 .078125 .09375 .109375 .125	.04909 .09818 .14726 .19635 .24545 .29452 .34363 .39270	.00019 .00077 .00173 .00307 .00479 .00690 .00939 .01227	1 2 3 4 5 6 7 8	3.1416 6.2832 9.4248 12.5664 15.7080 18.850 21.991 25.133	.7854 3.1416 7.0686 12.5664 19.635 28.274 38.485 50.266	64 65 66 67 68 69 70 71	201.06 204.20 207.34 210.49 213.63 216.77 219.91 223.05	3216.99 3318.31 3421.19 3525.65 3631.68 3739.28 3848.45 3959.19
964 532 1164 316 1364 742 1564	.140625 .15625 .171875 .1875 .203125 .21875 .234375 .25	.44181 .49087 .53999 .58905 .63817 .68722 .73635 .78540	.01553 .01917 .02320 .02761 .03241 .03758 .04314 .04909	9 10 11 12 13 14 15	28.274 31.416 34.558 37.699 40.841 43.982 47.124 50.265	63.617 78.540 95.033 113.1 132.73 153.94 176.71 201.06	72 73 74 75 76 77 78 79	226.19 229.34 232.48 235.62 238.76 241.90 245.04 248.19	4071.50 4185.39 4300.84 4417.86 4536.46 4656.63 4778.36 4901.67
17/64 9 122 19/64 5/16 21/64 11/12 23/64 8/8	.265625 .28125 .296875 .3125 .328125 .34375 .359375 .375	.83453 .88357 .93271 .98175 1.0309 1.0799 1.1291 1.1781	.05542 .06213 .06922 .07670 .08456 .09281 .10144 .11045	17 18 19 20 21 22 23 24	53.407 56.549 59.690 62.832 65.973 69.115 72.257 75.398	226.98 251.47 283.53 314.16 346.36 380.13 415.48 452.39	80 81 82 83 84 85 86 87	251.33 254.47 257.61 260.75 263.89 267.04 270.18 273.32	5026.55 5153. 5281.02 5410.61 5541.77 5674.50 5808.80 5944.68
25,64 13,52 27,64 7,66 29,64 15,52 31,64	.390625 .40625 .421875 .4375 .453125 .46875 .484375	1.2273 1.2763 1.3254 1.3744 1.4236 1.4726 1.5218 1.5708	.11984 .12962 .13979 .15033 .16126 .17257 .18427 .19635	25 26 27 28 29 30 31 32	79.540 81.681 84.823 87.965 91.106 94.248 97.389 100.53	490.87 530.93 572.56 615.75 660.52 706.86 754.77 804.25	88 89 90 91 92 93 94 95	276.46 279.60 282.74 285.88 289.03 292.17 295.31 298.45	6082.12 6221.14 6361.73 6503.88 6647.61 6792.91 6939.78 7088.22
33,64 17,52 35,64 9,16 37,64 19,52 39,64 5,8	.515625 .53125 .546875 .5625 .578125 .59375 .609375 .625	1.6199 1.6690 1.7181 1.7671 1.8163 1.8653 1.9145 1.9635	.20880 .22166 .23489 .24850 .26248 .27688 .29164 .30680	33 34 35 36 37 38 39 40	103.67 106.81 109.96 113.10 116.24 119.38 122.52 125.66	855.30 907.92 962.11 1017.88 1075.21 1134.11 1194.59 1256.64	96 97 98 99 100 101 102 103	301.59 304.73 307.88 311.02 314.16 317.30 320.44 323.58	7238.23 7339.81 7542.96 7697.69 7953.98 8011.85 8171.28 8332.29
41/64 21/52 43/64 11/66 45/64 23/52 47/64 3/4	.640625 .65625 .671875 .6875 .703125 .71875 .734375	2.0127 2.0617 2.1108 2.1598 2.2090 2.2580 2.3072 2.3562	.32232 .33824 .35453 .37122 .38828 .40574 .42356 .44179	41 42 43 44 45 46 47 48	128.81 131.95 135.09 138.23 141.37 144.51 147.65 150.80	1320.25 1385.44 1452.20 1520.53 1590.43 1661.90 1734.94 1809.56	104 105 106 107 108 109 110	326.73 329.87 333.01 336.15 339.29 342.43 345.58 348.72	8494.87 8659.01 8824.73 8992.02 9160.88 9331.32 9503.32 9676.89
49.64 25.52 51.64 13.16 53.64 27.52 55.64 7.8	.765625 .78125 .796875 .8125 .828125 .84375 .859375 .875	2.4054 2.4544 2.5036 2.5525 2.6017 2.6507 2.6999 2.7489	.45253 .47937 .49872 .51849 .53862 .55914 .58003 .60132	49 50 51 52 53 54 55	153.94 157.08 160.22 163.36 166.50 169.65 172.79 175.93	1885.74 1963.50 2042.82 2123.72 2206.18 2290.22 2375.83 2463.01	112 113 114 115 116 117 118 119	351.86 355. 358.14 361.28 364.42 367.57 370.71 373.85	9852.03 10028.75 10207.03 10386.89 10568.32 10751.32 10935.88 11122.02
57.64 29.52 59.64 15.16 61.64 31.52 63.64	.890625 .90625 .921875 .9375 .953125 .96875 .984375	2.7981 2.8471 2.8963 2.9452 2.9945 3.0434 3.0928	.62298 .64504 .66746 .69029 .71349 .73708 .76097	57 58 59 60 61 62 63	179.07 182.21 185.35 188.50 191.64 194.78 197.20	2551.76 2642.08 2733.97 2827.43 2922.47 3019.07 3117.25	120 121 122 123 124 125 126	377.99 380.13 383.27 386.42 389.56 392.70 395.84	11309.73 11499.01 11689.87 11882.29 12076.28 12271.85 12468.98

ILL STEELS

REZISTAL STAINLESS STEEL WIRE

The following tables have been compiled to indicate the weight variations in the different grades of stainless steel wire.

REZISTAL 304
Density .287 (lb./cu. in.)

REZISTAL 410 Density .278 (lb./cu. in.)

Diameter Inches	Pounds per Foot	Feet per Pound	Diameter Inches	Pounds per Foot	Feet per Pound
.002	.0000108	92,593	.002	.0000105	96,154
.003	.0000243	41,152	.003	.0000236	42,372
.004	.000043	23,256	.004	.000042	23,810
.005	.000068	14,706	.005	.000066	15,152
.006	.000097	10,309	.006	.000094	10,638
.007	.000133	7,519	.007	.000128	7,813
.008	.000173	5,780	.008	.000168	5,952
.009	.000219	4,566	.009	.000212	4,722
.010	.000270	3,703	.010	.000262	3,817
.011	.000327	3,058	.011	.000317	3,154
.012	.000389	2,570	.012	.000377	2,652
.013	.000457	2,188	.013	.000443	2,257
.014	.000530	1,888	.014	.000513	1,949
.015	.000608	1,644	.015	.000589	1,698
.016	.000692	1,445	.016	.000671	1,490
.017	.000781	1,280	.017	.000757	1,321
.018	.000876	1,141	.018	.000849	1,177
.019	.000976	1,024	.019	.000946	1,057
.020	.001081	925	.020	.001048	954
.021	.001192	839	.021	.001155	866
.022	.001309	764	.022	.001268	788
.023	.001430	699	.023	.001386	721
.024	.001558	642	.024	.001509	662
.025	.001690	592	.025	.001637	611
.026	.001828	547	.026	.001771	564
.027	.001971	507	.027	.001910	523
.028	.002120	472	.028	.002054	487
.029	.002274	440	.029	.002203	454
.030	.002434	411	.030	.002358	424
.031	.002599	385	.031	.002517	397
.032	.002769	361	.032	.002682	373
.033	.002945	340	.033	.002853	351
.034	.003126	320	.034	.003028	330
.035	.003313	302	.035	.003209	312
.036	.003505	285	.036	.003395	298
.037	.003703	270	.037	.003586	279

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

REZISTAL STAINLESS STEEL WIRE—Continued

REZISTAL 304
Density .287 (lb./cu. in.)

REZISTAL 410 Density .278 (lb./cu. in.)

Density .287 (lb./cu. in.)			Density .278 (lb./cu. in.)		
Diamete Inches	Pounds per Foot	Feet per Pound	Diameter Inches	Pounds per Foot	Feet per Pound
.038	.003905	256	.038	000700	
.039	.004114	243	.039	.003783	264
.040	.004327	231	.040	.003985	251
.041	.004546	220	.041	.004192	239
.042	.004771	210	.042	.004404	227 216
.043	.005001	200	.043	.004844	206
.044	.005236	191	.044	.005072	197
.045	.005477	183	.045	.005305	189
.046	.005723	175	.046	.005544	180
.047	.005975	167	.047	.005787	173
.048	.006232	160	.048	.006036	166
.049	.006494	154	.049	.006290	159
.050 .051	.006762	148	.050	.006550	152
.052	.007035	142	.051	.006814	146
.032	.007314	137	.052	.007084	141
.053 .054	.007598	132	.053	.007359	136
.055	.007887	127	.054	.007640	131
.056	.008182	122	.055	.007925	126
.057	.008482	118	.056	.008216	122
	.008788	114	.057	.008512	117
.058	.009099	110	.058	.008813	110
.059	.009415	106	.059	.009120	113
.060	.009737	103	.060	.009432	109 106
.061	.010064	99	.061	.009749	100
.062	.010397	96	.062	.010071	99
.063	.010735	93	.063	.010399	96
.064	.011079	90	.064	.010731	93
.066	.011428	88	.065	.011069	90
.067	.011782	85	.066	.011413	88
	.012142	82	.067	.011761	85
.068	.012507	80	.068	.012115	83
.070	.012878	78	.069	.012474	80
.070	.013254	75	.070	.012838	78
.072	.013635	73	.071	.013207	76
.073	.014022 .014414	71	.072	.013582	74
.0.0	.014414	69	.073	.013962	71

USEFUL INFORMATION

To find circumference of a circle multiply diameter by 3.1416.

To find diameter of a circle multiply circumference by 31831.

To find area of a circle multiply square of diameter by 7854.

Area of rectangle. Length multiplied by breadth. Doubling the diameter of a circle increases its area four times.

To find area of a triangle multiply base by ½ perpendicular height.

To find surface of a ball multiply square of diameter by 3.1416.

To find side of an inscribed square multiply diameter by 0.7071 or multiply circumference by 0.2251 or divide circumference by 4.4428.

To find side of an equal square multiply diameter by .8862.

Square. A side multiplied by 1.4142 equals diameter of its circumscribing circle.

A side multiplied by 4.443 equals circumference of its circumscribing circle.

A side multiplied by 1.128 equals diameter of an equal circle.

A side multiplied by 3.547 equals circumference of an equal circle.

Square inches multiplied by 1.273 equals circle inches of an equal circle.

To find cubic inches in a ball multiply cube of diameter by .5236.

To find cubic contents of a cone, multiply area of base by \\frac{1}{3}\) the altitude.

Doubling the diameter of a pipe increases its capacity four times.

A gallon of water (U. S. Standard) weighs $8\frac{1}{3}$ lb. and contains 231 cubic inches.

CRUCIBLE PRODUCT AND WAREHOUSE CATALOG

USEFUL INFORMATION—Continued

A cubic foot of water contains $7\frac{1}{2}$ gallons, 1728 cubic inches, and weighs $62\frac{1}{2}$ lb.

To find the pressure in pounds per square inch of a column of water multiply the height of the column in feet by .434.

Steam rising from water at its boiling point 212 (degrees) has a pressure equal to the atmosphere (14.7) lb. to the square inch.

A standard horsepower:—The evaporation of 30 lb. of water per hour from a feed water temperature of 100 F. into steam at 70 lb. gauge pressure.

To find capacity of tanks any size: given dimensions of a cylinder in inches, to find its capacity in U. S. gallons: square the diameter, multiply by the length and by .0034.

To ascertain heating surface in tubular boilers, multiply $\frac{2}{3}$ the circumference of boiler by length of boiler in inches and add to it the area of all the tubes.

One-sixth of tensile strength of plate multiplied by thickness of plate and divided by one-half the diameter of boiler gives safe working pressure for tubular boilers. For marine boilers add 20 per cent for drilled holes.

To find the capacity of an air compressor in cubic feet of free air per minute: Multiply the area of low pressure cylinder (on compound compressor), or area of simple compressor cylinder in square inches, by the stroke in inches and divide by 1728; and multiply this result—

- (a) In single acting, simple or compound, by the R.P.M.
- (b) Double acting, simple or compound, by 2 x R.P.M.
- (c) Duplex double acting, by 4 x R.P.M.

We hope that the information in this stock book has been found useful, valuable and informative. In the event there remain questions unanswered, a request for further information will be promptly answered.

WELIA

first name in special purpose steels

SALES OFFICES

Atlanta 18, Ga., 957 W. Marietta St., N. W	
Baltimore 2, Md., 1614 Mercantile Trust Bldg	Plaza 2-2883
Boston, Mass., 129-135 Binney St., Cambridge 42.	
Buffalo 7, N. Y., 2051 Elmwood Avenue	Riverside 9600
Charlotte, N. C., 123 North Poplar St	
Chicago 39, III., 4501-4531 W. Cortland St	Spaulding 2-0300
Cincinnati 25, Ohio, 2900 Spring Grove Ave	Kirby 3666-3667
Cleveland 3, Ohio, 1258-74 E. 55th Street	Henderson 1-9400
Columbus 15, Ohio, 81 East State Street	Adams 6068
Dallas 35, Texas, 7901 Sovereign Row	
Dayton 2, Ohio, 4 North Main St., Gem City Savings B	
Denver 5, Colorado, 2635 Walnut Street	Tabor 5-7218
Detroit 34, Michigan, 4920 E. Nevada Avenue	Forest 6-4400
Harrison, N. J., Mail Add.: P. O. Box 28, Harrison	N I
Whse.: 1000 So. 4th St., Harrison, N. J	
Houston 1, Texas, 6416 Navigation Blvd	
Indianapolis 1, Ind., 105 S. Keystone Avenue	Malrosa 6-6391-6
Kansas City 10, Mo., 801 E. Gregory Blvd	Highland 5353
Los Angeles 22, Calif., 3338 S. Malt Ave.	Paymend 3 4921 or
Los Angeles 22, Cant., 3556 S. Mail Ave	Parkview 8-7131
Memphis, Tenn., 5066 Edenshire Ave	Mutual 5-8861
Milwaukee 9, Wisconsin, 4200 W. Douglas Road.	Honking 1-2000-6
New Haven, Conn., 285 State St., North Haven	Chestrut 8-4457
New York 9, New York, 652 East 12th Street	
Philadelphia, Pa., Mail Add.: P. O. Box 7557	
Whse.: Oak Ave. & P.R.R., Primos, Pa	
Pittsburgh 22, Pa., The Oliver Bldg., Mellon Square	
Portland 10, Oregon, 2330 N. W. Raleigh Street.	
Providence 5, R. I., Mail Add.: Box 2096, Providence	
Whse. 141 Carolina Avenue	
Rockford 5, III., Rm. 1018, Rockford Natl. Trust Blo	Ig Dial 3-9389
Salt Lake City, Utah, 1960 Brookhill Drive	Hunter 5-5341
San Francisco 10, Calif., 2050 Bryant Street	Enterprise 1-1160
S 4 1: . 07555:	Atwater 2-8011
Seattle 4, Washington, 2755 First Avenue, South.	Ellioff 6050
Tacoma, Washington	Zenith 9/13
St. Louis 2, Mo., 1021 Chouteau Avenue	Central 1-800/-8-9
St. Paul 4, Minn., 1353 Laurel Avenue	Midway 0-0126
Syracuse 1, N. Y., State Fair Blvd., P. O. Box 977.	
Toledo 4, Ohio, 326 Richardson Blvd., 205 St. Clai	Enterprise 9389
Toronto 5 Ont 410 Place St. East	Cherry 1-8045
Toronto 5, Ont., 410 Bloor St., East	
Washington 5, D. C., 912-13 Shoreham Bldg	National 8-/006-/
The second secon	

CRUCIBLE STEEL COMPANY OF AMERICA

THE OLIVER BUILDING, MELLON SQUARE, PITTSBURGH 22, PA.