

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	
КАФЕДРА <u>«Программное обеспечение ЭВМ и информационные технологии»</u>	

Лабораторная работа № 16

Дисциплина Функциональное и логическое программирование

Тема <u>Использование правил в программе на Prolog</u>
Студент Ильясов И.М.
Группа <u>ИУ7-63Б</u>
Оценка (баллы)
Преподаватель Толпинская Н. Б., Строганов Ю. В.

Цель работы – изучить использование правил в программе: структуру, особенности оформления, а также, способ и принципы выполнения таких программ на Prolog.

Задачи работы:

- приобрести навыки эффективного декларативного описания предметной области с использованием фактов и правил;
- изучить порядок использования фактов и правил в программе на Prolog, принципы и особенности сопоставления и отождествления термов, на основе механизма унификации. Способ формирования и изменения резольвенты. Порядок формирования ответа

Задание лабораторной работы

Создать базу знаний: «ПРЕДКИ», позволяющую наиболее эффективным способом (за меньшее количество шагов, что обеспечивается меньшим количеством предложений БЗ - правил), используя разные варианты (примеры) одного вопроса, определить (указать: какой вопрос для какого варианта):

- 1. по имени субъекта определить всех его бабушек (предки 2-го колена),
- 2. по имени субъекта определить всех его дедушек (предки 2-го колена),
- 3. по имени субъекта определить всех его бабушек и дедушек (предки 2-го колена),
- 4. по имени субъекта определить его бабушку по материнской линии (предки 2-го колена),
- 5. по имени субъекта определить его бабушку и дедушку по материнской линии (предки 2-го колена).

Минимизировать количество правил и количество вариантов вопросов. Использовать конъюнктивные правила и простой вопрос.

Для одного из вариантов **ВОПРОСА** и конкретной Б3 **составить таблицу**, отражающую конкретный порядок работы системы, с объяснениями:

очередная проблема на каждом шаге и метод ее решения;

каково новое текущее состояние резольвенты, как получено;

какие дальнейшие действия? (Запускается ли алгоритм унификации? Каких термов? Почему этих?);

вывод по результатам очередного шага и дальнейшие действия.

Т.к. резольвента хранится в виде стека, то состояние резольвенты требуется отображать в столбик: <u>вершина – сверху!</u> Новый шаг надо начинать с нового состояния резольвенты!

Генеалогическое представление семьи:

Текст программы

```
domains
        father, mother, child = symbol.
predicates
        create_family(father, mother, symbol)
        get grandpars(symbol P, symbol GP1, symbol GM1, symbol GP2, symbol GM2)
clauses
        create_family(denis, masha, max).
        create_family(petya, sasha, polya).
        create_family(max, polya, nastya).
        create family(kirill, olya, pasha).
        create family(leonid, anya, lena).
        create family(pasha, lena, vasya).
        get_grandpars(P, GP1, GM1, GP2, GM2):-
                                          create family(F, M, P),
                                          create family(GP1, GM1, F),
                                          create_family(GP2, GM2, M).
goal
        get_grandpars(nastya, _, Grandma1, _, Grandma2).
```

Примеры работы программы

1. По имени субъекта определить всех его бабушек (предки 2-го колена).

Ниже приведен ответ на вопрос о всех бабушках Насти.

2. По имени субъекта определить всех его дедушек (предки 2-го колена).

Ниже приведен ответ на вопрос о всех дедушках Васи.

3. По имени субъекта определить всех его бабушек и дедушек (предки 2-го колена). Ниже приведен ответ на вопрос о всех бабушках и дедушках Васи.

4. По имени субъекта определить его бабушку по материнской линии (предки 2-го колена).

Ниже приведен ответ на вопрос о бабушке Насти по материнской линии.

5. По имени субъекта определить его бабушку и дедушку по материнской линии (предки 2-го колена).

Ниже приведен ответ на вопрос о бабушке и дедушке Насти по материнской линии.

Задание с таблицей

get_grandpars(nastya, _, Grandma1, _, Grandma2) – по имени субъекта имена всех бабушек.

No	Состояние	Для каких термов запускается	Дальнейшие
шага	резольвенты, и	алгоритм унификации: Т1=Т2	действия: прямой ход
	вывод: дальнейшие	и каков результат (и	или откат (почему и к
	действия (почему?)	подстановка)	чему приводит?)
1	get_grandpars(nastya, _,	T1 = get_grandpars(nastya, _,	Прямой ход к
	Grandma1, _, Grandma2))	Grandma1, _, Grandma2).	следующему
		T2 = create_family(denis, masha,	предложению.
		max).	
		Неудача, разные функторы.	
2	get_grandpars(nastya, _,	T1 = get_grandpars(nastya, _,	Прямой ход к
	Grandma1, _, Grandma2)	Grandma1, _, Grandma2).	следующему
		T2 = create_family(petya, sasha,	предложению.
		polya).Неудача, разные функторы.	
3	get_grandpars(nastya, _,	T1 = get_grandpars(nastya, _,	Прямой ход к
	Grandma1, _, Grandma2)	Grandma1, _, Grandma2).	следующему
		T2 = create_family(max, polya,	предложению.
		nastya).	
		Неудача, разные функторы.	
4	get_grandpars(nastya, _,	T1 = get_grandpars(nastya, _,	Прямой ход к
	Grandma1, _, Grandma2)	Grandma1, _, Grandma2).	следующему
		T2 = create_family(kirill, olya, pasha).	предложению.
		Неудача, разные функторы.	
5	get_grandpars(nastya, _,	T1 = get_grandpars(nastya, _,	Прямой ход к
	Grandma1, _, Grandma2)	Grandma1, _, Grandma2).	следующему
		T2 = create_family(leonid, anya,	предложению.
		lena).	
		Неудача, разные функторы.	
	l .		

6	get_grandpars(nastya, _,	T1 = get_grandpars(nastya, _,	Прямой ход к
	Grandma1, _, Grandma2)	Grandma1, _, Grandma2).	следующему
		T2 = create_family(pasha, lena,	предложению.
		vasya).	
		Неудача, разные функторы.	
7	get_grandpars(nastya, _,	T1 = get_grandpars(nastya, _,	Прямой ход к
	Grandma1, _, Grandma2)	Grandma1, _, Grandma2)	сопоставлению family(F,
		$T2 = get_grandpars(P, GP1, GM1,$	M, nastya), поиск с
		GP2, GM2).	начала предложений.
		Успех, подстановка {nastya=X,	
		Grandma1=GM1, Grandma2=GM2}.	
8	create_family(F, M,	T1 = create_family(F, M, nastya),	Прямой ход к
-	nastya),	T2 = create_family(denis, masha,	следующему
	create_family(_, GM1,	max).	предложению.
	F),	Неудача, nastya != max.	
	create_family(_, GM2,		
	M)		
9	create family(F, M,	T1 = create family(F, M, nastya),	Прямой ход к
	nastya),	T2 = create family(petya, sasha,	следующему
	create family(, GM1,	polya).	предложению.
	F),	Неудача, nastya != polya.	
	create_family(_, GM2,		
	M)		
10	create_family(F, M,	T1 = create_family(F, M, nastya),	Прямой ход к
	nastya),	T2 = create_family(max, polya,	сопоставлению
	create_family(_, GM1,	nastya).	create_family(_, GM1,
	F),	Успех, подстановка {F=max,	тах), поиск с начала
	create_family(_, GM2,	M=polya, nastya=nastya}.	предложений.
	M)		
11	create_family(_, GM1,	T1 = create_family(_, GM1, max),	Прямой ход к
	max),	T2 = create_family(denis, masha,	сопоставлению
	create_family(_, GM2,	max).	create_family(_, GM2,
	polya)	Успех, подстановка {GM1=masha,	polya), поиск с начала
		max=max}.	предложений.
12	create_family(_, GM2,	T1 = create_family(_, GM2, polya),	Прямой ход к
	polya)	T2 = create family(denis, masha,	следующему

		max).	предложению.
		Неудача, polya != max.	
		Trojdara, Porja i IIIairi	
13	create family(_, GM2,	T1 = create family(, GM2, polya),	Вывод: GM1=masha,
13		T2 = create family(petya, sasha,	
	polya)		GM2=sasha.
		polya).	Прямой ход к
		Успех, подстановка {GM2=sasha,	следующему
		polya=polya}.	предложению,
			реконкретизация GM2.
14	create_family(_, GM2,	T1 = create_family(_, GM2, polya),	Прямой ход к
	polya)	T2 = create_family(max, polya,	следующему
		nastya).	предложению.
		Неудача, polya != nastya.	
15	create_family(_, GM2,	T1 = create_family(_, GM2, polya),	Прямой ход к
	polya)	T2 = create_family(kirill, olya, pasha).	следующему
		Неудача, polya != pasha.	предложению.
16	create family(, GM2,	T1 = create family(, GM2, polya),	Прямой ход к
	polya)	T2 = create family(leonid, anya,	следующему
		lena).	предложению.
		Неудача, polya != lena.	1 11
		3/1 3	
17	create_family(_, GM2,	T1 = create family(, GM2, polya),	Прямой ход к
1 /	polya)	T2 = create family(pasha, lena,	следующему
	poryu)	vasya).	предложению.
		Heудача, polya != vasya.	предложению.
		Пеудача, рогуа :— vasya.	
10	granta family(CM2	T1 = greate family(CM2 = alva)	OTHER HAPOVOT V
18	create_family(_, GM2,	T1 = create_family(_, GM2, polya),	Откат, переход к
	polya)	$T2 = get_grandpars(P, GP1, GM1, GP2, GM2)$	предыдущему состоянию
		GP2, GM2).	резольвенты (шаг 11),
		Неудача, разные функторы.	реконкретизация GM1.
	0 11 (22 51	m	
19	create_family(_, GM1,	T1 = create_family(_, GM1, max),	Прямой ход к
	max),	T2 = create_family(petya, sasha,	следующему
	create_family(_, GM2,	polya).	предложению.
	polya)	Неудача, max != polya.	
	i .	ı	

20	create family(_, GM1,	T1 = create family(_, GM1, max),	Прямой ход к
	max),	T2 = create family(max, polya,	следующему
	create_family(_, GM2,	nastya).	предложению.
	polya)	Неудача, max != nastya.	
21	create_family(_, GM1,	T1 = create_family(_, GM1, max),	Прямой ход к
	max),	T2 = create_family(kirill, olya, pasha).	следующему
	create_family(_, GM2,	Неудача, max != pasha.	предложению.
	polya)		
22	create_family(_, GM1,	T1 = create_family(_, GM1, max),	Прямой ход к
	max),	T2 = create_family(leonid, anya,	следующему
	create_family(_, GM2,	lena).	предложению.
	polya)	Неудача, max != lena.	
23	create family(, GM1,	T1 = create family(, GM1, max),	Прямой ход к
23	max),	T2 = create_family(pasha, lena,	следующему
	create_family(_, GM2,	vasya).	предложению.
	polya)	Неудача, max != vasya.	предложению.
	porya)	псудача, шах : уазуа.	
24	create_family(_, GM1,	T1 = create_family(_, GM1, max),	Откат, переход к
	max),	T2 = get_grandpars(P, GP1, GM1,	предыдущему состоянию
	create_family(_, GM2,	GP2, GM2).	резольвенты (шаг 10),
	polya)	Неудача, разные функторы.	реконкретизация F и М.
25	create_family(F, M,	T1 = create_family(F, M, nastya),	Прямой ход к
	nastya),	T2 = create_family(kirill, olya, pasha).	следующему
	create_family(_, GM1,	Неудача, nastya != pasha.	предложению.
	F),		
	create_family(_, GM2,		
	M)		
26	create_family(F, M,	T1 = create_family(F, M, nastya),	Прямой ход к
	nastya),	T2 = create_family(leonid, anya,	следующему
	create_family(_, GM1,	lena).	предложению.
	F),	Неудача, nastya != lena.	
	create_family(_, GM2,		
	M)		
27	create_family(F, M,	T1 = create_family(F, M, nastya),	Прямой ход к
	nastya),	T2 = create_family(pasha, lena,	следующему
	create_family(_, GM1,	vasya).	предложению.
	F),	Неудача, nastya != vasya.	

	create_family(_, GM2,		
	M)		
28	create_family(F, M,	T1 = create_family(F, M, nastya),	Откат, переход к
	nastya),	$T2 = get_grandpars(P, GP1, GM1,$	предыдущему состоянию
	create_family(_, GM1,	GP2, GM2)	резольвенты (шаг 7).
	F),	Неудача, разные функторы.	
	create_family(_, GM2,		
	M)		
29	get_grandpars(nastya, _,		
	GM1, _, GM2);		
	конец clauses;		
	опустошение		
	резольвенты;		
	завершение работы.		

Ответы на вопросы

1) В каком случае система запускает алгоритм унификации? (Как эту необходимость на формальном уровне распознает система?)

Если есть что доказывать (цель), то процесс унификации запускается автоматически. Формально: если резольвента не пуста – запускается алгоритм унификации.

2) Каковы назначение и результат использования алгоритма унификации?

Назначение алгоритма унификации заключается в попарном сопоставлении термов и попытке построить для них общий пример. Унификация может завершаться успехом или тупиковой ситуацией (неудачей).

3) Какое первое состояние резольвенты?

Если задан простой вопрос, то сначала он попадает в резольвенту.

4) Как меняется резольвента?

Изменение резольвенты происходит в 2 этапа:

- 1) из стека выбирается подцель (верхняя, т.к. стек) и для нее выполняется редукция, т.е. замена подцели на тело найденного правила;
- 2) к полученной конъюнкции целей применяется подстановка (наибольший общий унификатор выбранной цели и заголовка сопоставленного с этой целью правила).

5) В каких пределах программы уникальны переменные?

Переменные уникальны в пределах предложения, т.е. в рамках предложения одно и то же имя принадлежит одной и той же переменной. Исключение – анонимные переменные (обозначаются символом нижнего подчеркивания «_») – каждая такая переменная является отдельной сущностью и применяется, когда ее значение неважно для данного предложения.

6) Как применяется подстановка, полученная с помощью алгоритма унификации?

Применение подстановки $\{XI=TI, ..., Xn=Tn\}$ заключается в замене каждого вхождения переменной Xi на соответствующий терм Ti.

7) В каких случаях запускается механизм отката?

Механизм отката запускается в 2 случаях:

- 1. Если алгоритм попал в тупиковую ситуацию.
- 2. Если резольвента не пуста и решение найдено, но в базе знание остались не отмеченные предложения.