1. DATABASE SYSTEMS

Database Design & Business Application

Development

LEARNING OBJECTIVES

- Define the difference between data and information
- Describe what a database is, various types, and why they are valuable assets for decision making
- Explain the importance of database design
- See how modern databases evolved from file systems
- Understand flaws in file system data management
- Outline the main components of the database system
- Describe the main functions of a database management system (DBMS)

Characteristics of data in today's world

Ubiquitous (i.e., abundant, global, and everywhere)

Pervasive (i.e., unescapable, prevalent, and persistent)

Databases make data persistent and shareable in a secure way

Specialized structures that allow computerbased systems to store, manage, and retrieve data very quickly

WHY DATABASES?

DATA VERSUS INFORMATION

Data consists of raw facts

- Not yet processed to reveal meaning to the end user
- Building blocks of information

Information results from processing raw data to reveal meaning

- Requires context
- Bedrock of knowledge
- Should be accurate, relevant, and timely

Shared, integrated computer structure that stores data

End-user data: raw facts of interest to end user

Metadata: data about data, through which the end-user data is integrated and managed

Describes data characteristics and relationships

Database management system (DBMS)

Collection of programs

Manages the database structure

Controls access to data stored in the database

INTRODUCING THE DATABASE

ROLE AND ADVANTAGES OF THE DBMS

Database management system (DBMS): intermediary between the user and the database

- Enables data to be shared
- Presents the end user with an integrated view of data
- Provides more efficient and effective data management
- Improves sharing, security, integration, access, decision-making, productivity, etc.

ROLE AND ADVANTAGES OF THE DBMS

Single-User Database: supports one user at a time

Desktop database: single-user database on a personal computer

Multiuser Database: supports multiple users at the same time

Workgroup databases: supports a small number of users or a specific department

Enterprise database: supports many users across many departments

Classification by location

- Centralized database: data located at a single site
- Distributed database: data distributed across different sites
- Cloud database: created and maintained using cloud data services that provide defined performance measures for the database

Classification by data type

General-purpose database: contains a wide variety of data used in multiple disciplines

Discipline-specific database: contains data focused on specific subject areas

Operational database: designed to support a company's day-to-day operations

Analytical database: stores historical data and business metrics used exclusively for tactical or strategic decision making

- Data warehouse: stores data in a format optimized for decision support
- Online analytical processing (OLAP): tools for retrieving, processing, and modeling data from the data warehouse
- Business intelligence: captures and processes business data to generate information that support decision making

Databases can be classified to reflect the degree to which the data is structured

- Unstructured data exists in its original (raw) state
- Structured data results from formatting
 - Structure is applied based on type of processing to be performed
- Semistructured data: processed to some extent

Extensible Markup Language (XML)

Represents data elements in textual format

WHY DATABASE DESIGN IS IMPORTANT

Focuses on design of database structure that will be used to store and manage end-user data

- Well-designed database: facilitates data management and generates accurate and valuable information
- Poorly designed database: causes difficult-to-trace errors that may lead to poor decision making

13

EVOLUTION OF FILE SYSTEM DATA PROCESSING

Manual file systems

Computerized file systems

File system redux: modern end-user productivity tools

Accomplished through a system of file folders and filing cabinets Data processing (DP) specialist created a computer-based system to track data and produce required reports Includes spreadsheet programs such as Microsoft Excel

Table 1.2	Basic File Terminology
TERM	DEFINITION
Data	Raw facts, such as a telephone number, a birth date, a customer name, and a year-to-date (YTD) sales value. Data has little meaning unless it has been organized in some logical manner.
Field	A character or group of characters (alphabetic or numeric) that has a specific meaning. A field is used to define and store data.
Record	A logically connected set of one or more fields that describes a person, place, or thing. For example, the fields that constitute a record for a customer might consist of the customer's name, address, phone number, date of birth, credit limit, and unpaid balance.
File	A collection of related records. For example, a file might contain data about the students currently enrolled at Gigantic University.

EVOLUTION OF FILE SYSTEM DATA PROCESSING

EVOLUTION OF FILE SYSTEM DATA PROCESSING

PROBLEMS WITH FILE SYSTEM DATA PROCESSING

Problems with file systems challenge the types of information that can be created from data as well as information accuracy

- Lengthy development times
- Difficulty of getting quick answers
- Complex system administration
- Lack of security and limited data sharing
- Extensive programming

STRUCTURAL AND DATA DEPENDENCE

Structural dependence

- Access to a file is dependent on its own structure
- All file system programs are modified to conform to a new file structure

Structural independence

 File structure is changed without affecting the application's ability to access the data

STRUCTURAL AND DATA DEPENDENCE

Data dependence

Data access changes when data storage characteristics change

Data independence

Data storage characteristics are changed without affecting the program's ability to access the data

Practical significance of data dependence is the difference between logical and physical format

Unnecessarily storing the same data at different places

- Islands of information (i.e., scattered data locations)
- Increases the probability of having different versions of the same data

DATA REDUNDANCY

20

DATA REDUNDANCY

Possible results of uncontrolled data redundancy

- Poor data security
- Data inconsistency
- Data-entry errors
- Data integrity problems

21

DATA ANOMALIES

Develop when not all of the required changes in the redundant data are made successfully

- Update anomalies
- Insertion anomalies
- Deletion anomalies

Logically related data stored in a single logical data repository

- Physically distributed among multiple storage facilities
- DBMS eliminates most of file system's data inconsistency, data anomaly, data dependence, and structural dependence problems

Current generation DBMS software

- Stores data structures, relationships between structures, and access paths
- Defines, stores, and manages all access paths and components

DATABASE

DATABASE SYSTEMS

THE DATABASE SYSTEM ENVIRONMENT

Database system: organization of components that define and regulate the collection, storage, management, and use of data within a database environment

- Hardware
- Software
- People
- Procedures
- Data

THE DATABASE SYSTEM ENVIRONMENT

DBMS FUNCTIONS

Data dictionary management

 Data dictionary: stores definitions of data elements and their relationships

Data storage management

 Performance tuning ensures efficient performance

Data transformation and presentation

Data is formatted to conform to logical expectations

Security management

Enforces user security and data privacy

DBMS FUNCTIONS

Multiuser access control

Sophisticated algorithms ensure that multiple users can access the database concurrently without compromising its integrity

Backup and recovery management

Enables recovery of the database after a failure

Data integrity management

Minimizes redundancy and maximizes consistency

DBMS FUNCTIONS

Database access languages and application programming interfaces

- Query language: lets the user specify what must be done without having to specify how
- Structured Query Language (SQL): de facto query language and data access standard supported by the majority of DBMS vendors

Database communication interfaces

 Accept end-user requests via multiple, different network environments

MANAGING THE DATABASE SYSTEM: A SHIFT IN FOCUS

Disadvantages of database systems

- Increased costs
- Management complexity
- Maintaining currency
- Vendor dependence
- Frequent upgrade/replacement cycles

PREPARING FOR YOUR DATABASE PROFESSIONAL CAREER

TABLE 1.3	DATABASE CAREER OPPORTUNITIES	
JOB TITLE	DESCRIPTION	SAMPLE SKILLS REQUIRED
Database Developer	Create and maintain database-based applications	Programming, database fundamentals, SQL
Database Designer	Design and maintain databases	Systems design, database design, SQL
Database Administrator	Manage and maintain DBMS and databases	Database fundamentals, SQL, vendor courses
Database Analyst	Develop databases for decision support reporting	QL, query optimization, data warehouses
Database Architect	Design and implementation of database environments (conceptual, logical, and physical)	DBMS fundamentals, data modeling, SQL, hardware knowledge, etc.
Database Consultant	Help companies leverage database technologies to improve business processes and achieve specific goals	Database fundamentals, data modeling, database design, SQL, DBMS, hardware, vendor-specific technologies, etc.
Database Security Officer	Implement security policies for data administration	DBMS fundamentals, database administration, SQL, data security technologies, etc.
Cloud Computing Data Architect	Design and implement the infrastructure for next-generation cloud database systems	Internet technologies, cloud storage technologies, data security, performance tuning, large databases, etc.
Data Scientist	Analyze large amounts of varied data to generate insights, relationships, and predictable behaviors	Data analysis, statistics, advanced mathematics, SQL, programming, data mining, machine learning, data visualization

SUMMARY

Data consists of raw facts and is usually stored in a database

- Database design defines the database structure
 - Can be classified according to the number of users, location, as well as data usage and structure
- Databases evolved from manual and computerized file systems
 - There are some limitations of file system data management
 - DBMSs were developed to address the file system's inherent weaknesses

32

REFERENCES

Concepts of Database Management, 10th Edition | Lisa Friedrichsen, Lisa Ruffolo, Ellen Monk, Joy Starks, Philip Pratt, Mary Last | ISBN: 978-0357422083 © 2020 | Publisher Course Technology — Cengage Learning

Database Concepts, 9th Edition | David M. Kroenke, David Auer, David J. Auer, Scott L. Vandenberg, Robert C. Yoder | ISBN: 978-0135188392 © 2020 | Publisher Pearson Education

Database System Concepts 7E, Abraham Silberschatz, Henry F. Korth, S. Sudarshan ©2020 McGraw Hill

DATABASE SYSTEMS Design, Implementation, and Management 13E, Carlos Coronel | Steven Morris, SBN-13: 978-1337627900 © 2018 Cengage Learning, Inc.

Microsoft SQL documentation - $\frac{\text{https:}}{\text{docs.microsoft.com/enus/sql/?view=sql-server-ver15}}$

Educational SQL resources - https://docs.microsoft.com/en-us/sql/sql-server/educational-sql-resources?view=sql-server-ver15

SQL Server Technical Documentation - https://docs.microsoft.com/en-us/sql/sql-server/?view=sql-server-ver15

SQL Developer Documentation - https://docs.oracle.com/cd/E12151 01/index.htm