

Welcome to Julie's Portfolio

O1 About Me
Self-introduction

02 Professional Experience

Background, experience, skills

03 Deep Learning Projects
Presentation of deep learning works

04 Machine Learning Projects

Presentation of machine learning works

05 Summary

Portfolio summary





### **About Me**

Julie Yan

Machine Learning Engineer
QA Engineer
Sports Lover

In 2015, I joined MSC software as a QA engineer, when I graduate from University of Southern California, and got my master degree. In 2016, msc former CEO, Dominic Gallello encouraged everybody to study machine learning, which discipline gets more and more popular and powerful. Online courses are provided to all employees, and that was the start point of my journey in artificial intelligence.

Over the past three years, I have dedicated a considerable amount of time and effort to machine learning. Work hard to equip and prepare myself to be a skilled machine learning engineer. I have completed a number of courses in machine learning, deep learning, data science, statistics, probability, computer science, data structure and algorithm; as well as challenging projects on computer vision and natural language processing.

Time fly, hopefully my career in machine learning can take off too.

## Experience

2013-2015

**University of Southern California** 

Mechanical Engineering
Master of Science

### 2016-future

#### **Machine Learning**

Start journey of artificial intelligence, machine learning, deep learning and data science







2009-2013

**Beihang University** 

Aerospace Engineering Bachelor of Science 2015-current

**MSC Software Corporation** 

**QA** Engineer



## A Skills

### **Machine Learning**

- Linear Regression
- Logistic Regression
- · Decision Tree
- KNN
- K-Means
- KD-tree
- Support Vector Machines
- Naïve Bayes

- Random Forest
- PCA
- Adaboost
- Gradient Boost
- XGBoost

### **Deep Learning**

- CNN
- R-CNN
- Fast R-CNN
- Faster R-CNN
- Mask R-CNN
- YOLO
- VGG
- ResNet

- Unet
- Deconvolution Net
- RNN
- LSTM
- GRU
- Attention
- Bi-directional



### **Computer Science**

- Data Structure
- Data Algorithm
- Python
- Windows / Linux

#### **Framework**

- Tensorflow
- Keras
- Scikit-learn
- Nltk
- Numpy

- Pandas
- Scipy
- Matplotlib
- · Beautiful soup
- cv2

#### **Mathematics**

- Statistics
- Probability
- Linear Algebra
- · Applied Mathematics
- · Engineering Mathematics

### Certificates

In the past three years, I have dedicated a considerable time and efforts on machine learning and deep learning. Here is a list of certificates I achieved for data science and machine learning.

|                                                            | CASH ON SHARE                   |  |  |  |  |  |
|------------------------------------------------------------|---------------------------------|--|--|--|--|--|
| Machine Learning Classification                            | University of Washington        |  |  |  |  |  |
| Machine Learning Regression                                | University of Washington        |  |  |  |  |  |
| Machine Learning Clustering & Retrieval                    | University of Washington        |  |  |  |  |  |
| Machine Learning                                           | Stanford University             |  |  |  |  |  |
| Neural Networks and Deep Learning                          | Deeplearning.Al                 |  |  |  |  |  |
| Structuring Machine Learning Projects                      | Deeplearning.Al                 |  |  |  |  |  |
| Convolutional Neural Network CNN                           | Deeplearning.Al                 |  |  |  |  |  |
| Recurrent Neural Network RNN                               | Deeplearning.Al                 |  |  |  |  |  |
| Hyper parameter tuning, Regularization and Optimization    | Deeplearning.Al                 |  |  |  |  |  |
| SQL for Data Science                                       | University of California, Davis |  |  |  |  |  |
| Python Data Structures                                     | University of Michigan          |  |  |  |  |  |
| Using Python to Access Web Data                            | University of Michigan          |  |  |  |  |  |
| Using Databases with Python                                | University of Michigan          |  |  |  |  |  |
| Retrieving, Processing, and Visualizing Data with Python   | University of Michigan          |  |  |  |  |  |
| Data Science in Python                                     | University of Michigan          |  |  |  |  |  |
| Applied Plotting, Charting & Data Representation in Python | University of Michigan          |  |  |  |  |  |





# Deep Learning Projects

**DNN CNN RNN Project Presentation** 



## **Segmentation Project**

The task is to do both categorization and segmentation of rich and complete apparel attributes, an important step toward real-world applications.

- Project: Kaggle iMaterialist (Fashion) 2019 at FGVC6, <a href="https://www.kaggle.com/c/imaterialist-fashion-2019-FGVC6">https://www.kaggle.com/c/imaterialist-fashion-2019-FGVC6</a>
- Model Structure: Mask RCNN
- Code: <a href="https://github.com/JialieY/Kaggle-iMaterialist">https://github.com/JialieY/Kaggle-iMaterialist</a>

# Object Detection Project

The task is to detect objects like traffic lights, truck, car, and pedestrian in the image and videos.

- Project: Autonomous driving Car detection
- Model Structure: Yolo model
- Code :

https://github.com/JialieY/dl\_ng/blob/master/Co urse4/Week3/Autonomous%20driving%20applic ation%20-%20Car%20detection%20-%20v1.ipynb

#### **How Does YOLO Work?**





## Face Recognition & Verification Project







It's younes, welcome home! (0.65939283, True)



The task is to recognize and verify people with existing images in the database.

- Project: Face Recognition & Verification
- Model Structure: FaceNet, DeepFace, Siamese network
- Code :

https://github.com/JialieY/dl\_ng/blob/master/Co urse4/Week4/Face/Face%20Recognition%20for %20the%20Happy%20House%20-%20v2.ipynb

## Neural Style Transfer Project

The task is to generate a new image with given content and given art style.

- Project: Art generation
- Model Structure: VGG16, VGG19
- Code:

https://github.com/JialieY/dl\_ng/blob/master/Co urse4/Week4/Neural%20Style%20Transfer/Art %20Generation%20with%20Neural%20Style%2 0Transfer%20-%20v1.ipynb

### content image



louvre museum

style image



impressionist style painting

## generated image



louvre painting with impressionist style

### **Quora Insincere Questions Classification**

The task is to classify the questions in the Quora to two categories: sincere and insincere questions.

Project: Text Classification

 Model Structure: Logistic Regression, Simple RNN, Attention, LSTM, GRU, XGboost, word count, tf-idf, word embedding

Code: <a href="https://github.com/JialieY/Kaggle-Quora-insincere-questions-classification">https://github.com/JialieY/Kaggle-Quora-insincere-questions-classification</a>

Report: <a href="https://github.com/JialieY/Kaggle-Quora-insincere-questions-classification/blob/master/insincere.pdf">https://github.com/JialieY/Kaggle-Quora-insincere-questions-classification/blob/master/insincere.pdf</a>



Step 1 Analyze Data

I can write poem.



Dark night,
love brings light to my mind,
when boomers post in the restating ming,
all love hear a thine say which thy tour
thy to the sweat of tonged is hieg my beariage,
my let crefinds in the my polinamed night.
to youth me tame so is of to sone are rode.
and thou lin of eye's sake my sweet fape spoin:
where on shied,
i farnipress lite not miseours an teplife,
for ming ventao en beauty ming with,
tame far that to said

## Sequence Generation Project

The technique is to learn the given pattern, and generate the similar output.

- Project: Name generation, Article generation, Music generation
- Model Structure: RNN, LSTM, Attention
- Code :

https://github.com/JialieY/dl\_ng/blob/master/Course5/Week1/Jazz

https://github.com/JialieY/dl\_ng/tree/master/Course5/Week1/Dinosaurus



### **Translator Project**

The task is to translate English sentence to French sentence.

- Project: English French Translator
- Model Structure: LSTM, Encode-Decode system





# Machine Learning Projects

Supervised & unsupervised learning Projects presentation

## **Amazon Review** Classification

The task is to predict whether the sentiments about a product are positive or negative.

- Project: Amazon product reviews classification
- Data input: Reviews
- Model Structure: Linear regression, Logistic regression, bag of words, tf-idf, L2 regularization, L1 regularization, Stochastic **Gradient Descent**

### **Problem**











### Input

review sentiment All of my kids have cried non-stop when I tried to ween them off their pacifier, until I found Thumbuddy To Love We wanted to get something to keep track of our child's milestones and this is a cute option. There aren't many ( My daughter had her 1st baby over a year ago. She did receive and fill up a First Year Calendar. When her son was One of baby's first and favorite books, and it is washable! I gave 1 less star than perfect because I'd like to see so 5 Very cute interactive book! My son loves this book! The bright colorful illustrations make this great for babies & 5 Beautiful book, I love it to record cherished times in my great granddaughters life with the beautiful pastel pink Try this out for a spring project !Easy ,fun and affordable wall decals ... Fine quality and brightens up any room.. 5 very nice Divine Mercy Pendant of Jesus now on chain around my neck. Love It! Divine Mercy represents Jesusw We bought the pins as my 6 year old Autistic son was able to open or break open normal safety pins we needed if It has been many years since we needed diaper pins, but I do like to pin my socks together through the wash and We found this book at a rummage sale and found it to be so useful, especially when several people are helping v

### Algorithm





### Input

| Α     | В     | С      | D      | Е      | F      | G        | Н        | - 1   | J      | K      | L       | М     | N      | 0       | Р      | Q       | R     | S       | T      | U       | V        |   |
|-------|-------|--------|--------|--------|--------|----------|----------|-------|--------|--------|---------|-------|--------|---------|--------|---------|-------|---------|--------|---------|----------|---|
| id    | membe | loan_a | funded | funded | term   | int_rate | installr | grade | sub_gr | emp_t  | i emp_l | home_ | annual | is_inc_ | issue_ | loan_s  | pymnt | url     | desc   | purpos  | title    | z |
| 1E+06 | 1E+06 | 5000   | 5000   | 4975   | 36 mor | 10.65    | 162.9    | В     | B2     |        | 10+ ye  | RENT  | 24000  | Verifie | 201112 | Fully P | n     | https:/ | Borro  | credit_ | Compu    | 8 |
| 1E+06 | 1E+06 | 2500   | 2500   | 2500   | 60 mor | 15.27    | 59.83    | С     | C4     | Ryder  | <1 yea  | RENT  | 30000  | Source  | 201112 | Charge  | n     | https:/ | Borro  | car     | bike     | 3 |
| 1E+06 | 1E+06 | 2400   | 2400   | 2400   | 36 mor | 15.96    | 84.33    | С     | C5     |        | 10+ ye  | RENT  | 12252  | Not Ve  | 201112 | Fully P | n     | https:/ | /www.l | small_  | real est | 6 |
| 1E+06 | 1E+06 | 10000  | 10000  | 10000  | 36 mor | 13.49    | 339.3    | С     | C1     | AIR RE | 10+ ye  | RENT  | 49200  | Source  | 201112 | Fully P | n     | https:/ | Borro  | other   | person   | 9 |
| 1E+06 | 1E+06 | 5000   | 5000   | 5000   | 36 mor | 7.9      | 156.5    | Α     | A4     | Veolia | 3 years | RENT  | 36000  | Source  | 201112 | Fully P | n     | https:/ | /www.l | weddir  | My we    | 8 |
| 1E+06 | 1E+06 | 3000   | 3000   | 3000   | 36 mor | 18.64    | 109.4    | E     | E1     | MKC A  | 9 years | RENT  | 48000  | Source  | 201112 | Fully P | n     | https:/ | Borro  | car     | Car Dov  | 9 |
| 1E+06 | 1E+06 | 5600   | 5600   | 5600   | 60 mor | 21.28    | 152.4    | F     | F2     |        | 4 years | OWN   | 40000  | Source  | 201112 | Charge  | n     | https:/ | Borro  | small_  | Expand   | 9 |
| 1E+06 | 1E+06 | 5375   | 5375   | 5350   | 60 mor | 12.69    | 121.5    | В     | B5     | Starbu | <1 yea  | RENT  | 15000  | Verifie | 201112 | Charge  | n     | https:/ | Borro  | other   | Buildin  | 7 |
| 1E+06 | 1E+06 | 6500   | 6500   | 6500   | 60 mor | 14.65    | 153.5    | С     | C3     | South  | 5 years | OWN   | 72000  | Not Ve  | 201112 | Fully P | n     | https:/ | Borro  | debt_c  | High in  | 8 |
| 1E+06 | 1E+06 | 12000  | 12000  | 12000  | 36 mor | 12.69    | 402.5    | В     | B5     | UCLA   | 10+ ye  | OWN   | 75000  | Source  | 201112 | Fully P | n     | https:/ | /www.l | debt_c  | Consol   | 9 |

### **Loan Classification**

The task is to predict whether a loan is safe or not.

- Project: Loan data classification
- Data input: numbers, text, and etc.
- Model Structure: Decision Tree, Adaboost

### AdaBoost



### **Decision Tree**





Arnold Schwarzenegger

Schwarzenegger began lifting weights at the age of 15. He bodybuilding and writing many books and articles on the sp after him. He is widely considered to be one of the greatest Soft assignment

### Cluster Wikipedia Documents

The task is to cluster similar documents together and find the topics.

- Project: Cluster Wikipedia Documents
- Data input: text
- Model Structure: Tokenize, bag of word, TF-IDF, KNN, Kmean, LSH, LDA, Guassian distribution
- Problem solved: nearest neighbor, probabilities, cluster



## Recommendation System

The algorithm is to build up a movie recommendation system.

- Project: Movie recommendation system
- Model Structure: Collaborative filtering, Content based recommendation

#### **Content based**

| Movie                 | Alice (1) | Bob (2) | Carol (3) | Dave (4) | $x_1$ (romance) | $x_2$ (action |
|-----------------------|-----------|---------|-----------|----------|-----------------|---------------|
| Love at last          | 5         | 5       | 0         | 0        | 0.9             | 0             |
| Romance forever       | 5         | ?       | ?         | 0        | 1.0             | 0.01          |
| Cute puppies of love  | ?         | 4       | 0         | ?        | 0.99            | Co            |
| Nonstop car<br>chases | 0         | 0       | 5         | 4        | 0.1             |               |
| Swords vs. karate     | 0         | 0       | 5         | ?        | 0               |               |

#### Collaborative filtering

| Movie                 | Alice (1) | Bob (2) | Carol (3) | Dave (4) |
|-----------------------|-----------|---------|-----------|----------|
| Love at last          | 5         | 5       | 0         | 0        |
| Romance forever       | 5         | ?       | ?         | 0        |
| Cute puppies of love  | ?         | 4       | 0         | ?        |
| Nonstop car<br>chases | 0         | 0       | 5         | 4        |
| Swords vs. karate     | 0         | 0       | 5         | ?        |

Input



Top recommendations for you:

Predicting rating 9.0 for movie Titanic (1997)

Predicting rating 8.9 for movie Star Wars (1977)

Predicting rating 8.8 for movie Shawshank Redemption, The (1994)

Predicting rating 8.5 for movie As Good As It Gets (1997)

Predicting rating 8.5 for movie Good Will Hunting (1997)

Predicting rating 8.5 for movie Usual Suspects, The (1995)

Predicting rating 8.5 for movie Schindler's List (1993)



Output

## **Anomaly Detection**

All data

The project is to detect the abnormal data from all data.

- Project: Anomaly detection
- Statistic model: Univariate
   Gaussian, Multivariate
   Gaussian

Statistic Model

Normal observations



Anomaly

### **Anomaly Detection**





#### Anomaly detection algorithm

- 1. Choose n features  $x_i$  that you think might be indicative of anomalous examples.
- 2. Fit parameters  $\mu_1,\ldots,\mu_n,\sigma_1^2,\ldots,\sigma_n^2$   $\mu_j=\frac{1}{m}\sum_{i=1}^m x_j^{(i)} \qquad \sigma_j^2=\frac{1}{m}\sum_{i=1}^m (x_j^{(i)}-\mu_j)$
- 3. Given new example x, compute p(x):  $p(x) = \prod_{j=1}^n p(x_j; \mu_j, \sigma_j^2) = \prod_{j=1}^n \frac{1}{\sqrt{2\pi}\sigma_j} \exp{(-\frac{(x_j \mu_j)^2}{2\sigma_j^2})}$

Anomaly if  $p(x) < \varepsilon$ 

### SUMMARY

### **Artificial Intelligence is Everywhere**

We now live in the age of "big data," an age in which we have the capacity to collect huge sums of information too cumbersome for a person to process. The application of artificial intelligence in this regard has already been quite fruitful in several industries such as technology, banking, marketing, and entertainment.

Deploying and exploring in the field will make a big difference in the world in the next twenty years, I cannot wait to be part of it.





# Thank You

Feel free to contact me if you have any questions

yanjialie@gmail.com