

ESTUDO COMPARATIVO ENTRE TOPOLOGIAS DE CONVERSORES ESTÁTICOS CA-CC COM REDUÇÃO DE COMPONENTES

Euzeli C. dos Santos Jr (1); Raphaell M. de Sousa (1)

(1) Centro Federal de Educação Tecnológica da Paraíba – CEFET PB Unidade de Ensino Descentralizada de Cajazeiras – UNED CZ Cajazeiras, Paraíba, Brasil Tel.: (83) 35314560, e-mail: euzeli@cefetpb.edu.br

RESUMO

O principal objetivo deste trabalho é realizar um estudo comparativo entre três topologias de conversores estáticos CA-CC utilizados, por exemplo, em carregadores de baterias, a partir de uma fonte primária monofásica. A primeira topologia, denominada Configuração I, estudada emprega um retificador a diodos, que tem a desvantagem de apresentar distorção na corrente de entrada e fator de potência não unitário, o que pode conduzir a multa imposta pela concessionária. A segunda topologia estudada, que representa outra possibilidade de conversão de energia CA-CC é a partir da configuração que implementa a retificação controlada, a partir de dispositivos ativos, denominada de Configuração II. Com esta configuração obtém-se forma de onda senoidal e fator de potência unitário na entrada do conversor. No entanto, a configuração com retificação controlada (Configuração II) emprega dez chaves de potência. Em geral, o uso de muitas chaves aumenta o custo e reduz a confiabilidade do sistema de conversão de potência. Além disto, estas topologias apresentam uma complicada estratégia de controle e necessita medição de tensão e corrente para obtenção de um alto fator de potência e corrente senoidal na fonte primária. A terceira configuração estudada, denominada de Configuração III, apresenta a vantagem de ser uma topologia de baixo custo e sem a necessidade de leitura ou controle de variáveis para obtenção do fator de potência unitário, similarmente a Configuração I, e as vantagens de alto fator de potência e corrente senoidal na fonte primária, similarmente a Configuração II. Portanto, a Configuração III agrega as principais vantagens das Configurações I e II. Resultados de simulação e experimentais são apresentados para validação do estudo proposto.

Palavras-chave: Conversor estático CA-CC, correção do fator de potência, estudo comparativo.

1. INTRODUÇÃO

Em algumas aplicações a rede elétrica de alimentação é monofásica e existe a necessidade de alimentar diferentes cargas, por exemplo, em aplicações rurais com cargas trifásicas (Bellar et al., 2005; Machado, Buso, Pomílio, 2005). Desta forma, a unidade retificadora do conversor estático, ou seja, o conversor CA-CC se torna essencial nestes casos.

Conversores estáticos CA-CC usualmente emprega a topologia com retificador a diodos, que tem a desvantagem de apresentar distorção na corrente de entrada e fator de potência não unitário, este conversor pode ser observado na Figura 1(a). Esta topologia é caracterizada pela sua simplicidade, já que não é preciso nenhuma estratégia de controle ou leituras de variáveis, ao mesmo tempo em que, é uma configuração com baixo custo, já que emprega apenas quatro diodos de potência. No entanto, a configuração observada na Figura 1 (a) apresenta restrições referentes à forma da corrente de entrada, ou seja, alta distorção harmônica e baixo fator de potência.

Uma possibilidade mais sofisticada para implementação do conversor CA-CC é a partir da configuração que realiza a retificação controlada, como pode ser observado na Figura 1(b), a partir da qual obtém-se forma de onda senoidal e fator de potência próximo do unitário na entrada do conversor (Enjeti, Rahman, 1993; Kim, Lipo, 1995; Jacobina et al., 2001; Machado et al., 2005).

No entanto, a configuração com retificação controlada [Figura 1(b)] emprega quatro chaves de potências além de uma complicada estratégia de controle, com realimentação e leitura de variáveis. Em geral, o uso de muitas chaves aumenta o custo e reduz a confiabilidade do sistema de conversão de potência.

A topologia proposta por Nabae (Nabae, Nakano, 1994) agrega as principais vantagens das duas topologias apresentadas anteriormente, ou seja, baixo custo e simplicidade de implementação. Desta forma, o objetido deste artigo é apresentar um estudo comparativo entre as topologias observadas na Figura 1.

Figura 1 - Configurações estudadas: (a) Retificação não controlada a diodos, (b) Retificação controlada a IGBT e (c) Retificador de Nabae.

2. CONFIGURAÇÃO I

O retificador não controlado a diodos, Configuração I [Figura 1 (a)] é composta por quatro diodos de potência. Esta é a topologia mais simples e barata entre os conversores CA-CC (ponte completa) encontrados na literatura, e apresenta uma série de limitações, tais como:

- Fluxo de potência unidirecional, com sentido: fonte carga;
- Fator de potência não unitário;
- Alta distorção harmônica na corrente de entrada;
- Tensão de saída não controlada.

Portanto apesar da simplicidade e do baixo custo, esta configuração apresenta uma série de limitações que podem restringir seu uso.

3. CONFIGURAÇÃO II

O retificador controlado com uso de chaves de potência, como aquele observado na Figura 1(b), pode ser uma alternativa para solucionar alguns problemas devido as restrições que o retificador não controlado apresenta [Figura 1(a)]. A Configuração II apresenta as seguintes vantagens:

- Fluxo de potência bidirecional;
- Fator de potência unitário;
- Baixa distorção harmônica na corrente de entrada;
- Tensão de saída controlada.

Apesar destas vantagens, a Configuração II requer um número relativamente alto de chaves de potência, o que pode aumentar consideravelmente o custo da topologia. Além disto, esta configuração normalmente exige uma estratégia de controle com realimentação de variáveis como a corrente da fonte primária e a tensão do barramento capacitivo, o que pode tornar a implementação desta configuração de difícil execução, já que é preciso, por exemplo, sintonizar controladores.

3.1. Estratégia de controle

O diagrama de blocos de controle da Configuração II é apresentado na Figura 2. A tensão do elo cc, tensão do capacitor, é controlada no valor de referência usando o controlador Rc. Este controlador fornece a amplitude da corrente de referência Ig^* . Para controlar o fator de potência, a corrente instantânea i_g é sincronizada à tensão e_g . Isto é obtido por meio do bloco SYN que fornece a geração de i^*_g . O controle da corrente i^*_g é implementado com o bloco Ro. O controlador de corrente define a tensão de referencia v^*_g .

Figure 2 - Diagrama de blocos de controle - Configuração II.

4. CONFIGURAÇÃO III

4.1. Princípio de operação

O Conversor de Nabae pode ser observado na Figura 1(c). Este conversor consiste de uma ponte de diodos $(D_1, D_2, D_3 \in D_4)$, um par de capacitores $(C_1 \in C_2)$, um par de indutores $(L_1 \in L_2)$ e um par de chaves de potência $(Q_1 \in Q_2)$. Este conversor tem desempenho melhorado com relação ao conversor *boost* padrão [Figura 1(b)], a Figura 3 ilustra esta melhoria no desempenho do conversor de Nabae frente o conversor *boost*, ambos operando no MDC.

Observa-se na Figura 3(a) o fator de potência e na Figura 3(b) a distorção harmônica, ambos em função de M, que representa a relação entre a tensão de saída e a tensão de entrada do conversor ($M = E/E_g$). As duas chaves de potência são ligadas e desligadas de forma complementar (com *duty cycle* de 50%) numa freqüência constante muito maior que a freqüência da fonte primária de tensão monofásica.

O princípio de funcionamento é composto por quatro modos de operação, como pode ser visto na Figura 4. No Modo I a chave Q_1 é ligada e a corrente circula através da malha $C_1 - D_1 - L_1 - Q_1$. A energia é armazenada em L_1 , enquanto a corrente descarrega o capacitor C através do lado de saída do conversor. No Modo II, a chave Q_1 é desligada e a chave Q_2 é ligada no mesmo momento. Então a energia armazenada em L_1 é liberada para o lado de saída do conversor, de forma que a corrente agora circula pela malha $C_1 - D_{s2} - L_1 - Q_1$, enquanto a indutância L_2 armazena energia através da circulação de corrente pela malha $L_2 - D_2 - C_2 - Q_2$.

Depois de toda energia armazenada em L_1 ser tranferida, inicia-se o Modo III, similarmente ao Modo I, mas relacionado com a parte de baixo do conversor. Da mesma forma para o Modo IV. Detalhes dos modos de operação do conversor de Nabe pode ser obtido em (Nabae, Nakano, 1994).

A forma de onda da corrente de entrada é senoidal e contínua, a freqüência do ripple é duas vezes maior que a freqüência de chaveamento, e a amplitude do ripple são significativamente diminuídas, comparadas com a corrente no indutor (Nabae, Nakano, 1994; Bento, da Silva, Jacobina, 2005). A corrente média na entrada do conversor é dada por

$$i_{g} = \frac{e_{g}T_{s}}{16L} \frac{1}{\left(1 - \frac{e_{s}}{2E}\right)}$$
 [Eq. 01]

onde e_s é a tensão da fonte primária, E é a tensão do barramento cc, T_s é o período de chaveamento, e L é o indutor de filtro ($L = L_1 = L_2$).

Figura 3 - Comparação entre o conversor da Configuração II e o circuito de Nabae. (a) Fator de potência. (b)

Distorção harmônica total

Figura 4 - Modos de operação do Conversor de Nabae. (a) Modo I. (b) Modo II. (c) Modo III. (d) Modo IV

5. COMPARAÇÃO ENTRE AS TOPOLOGIAS

A comparação entre as topologias pode ser resumida na tabela abaixo. Em termos de potência, a única restrição que o conversor de Nabae apresenta frente os outros conversores estudados, é o fato de a capacitância de saída ser dependente da potência da carga, como discutido em (Nabae, Nakano, 1994).

Tabela I – Comparação entre as topologias

	Conf. I	Conf. II	Conf. III
Chaves	0	4	2
Diodos	4	0	4
Indutor	0	1	2
Sensores	0	2	0

6. RESULTADOS DE SIMULAÇÃO E EXPERIMENTAL

As figuras 5(a) e 5(b) mostram os resultados de simulação e experimentais da corrente e tensão de entrada do conversor para a Configuração III. Estes resultados foram obtidos com o conversor de Nabae operando em DCM, como pode ser observado a partir da forma de onda de corrente no indutor, Figura 5(c).

Figure 5 – Resultados de simulação e experimental – Configuração III. (a) Resultado de simulação para a correção do fator de potência na entrada do conversor. (b) Resultado experimental para a correção do fator de potência na entrada do conversor. (b) Resultado experimental para as correntes nos indutores.

7. CONCLUSÕES

Este trabalho propôs um estudo comparativo entre as configurações de conversão CA-CC. Observa-se que configuração proposta por Nabae (Configuração III) representa uma interessante opção, já que emprega as mais principais vantagens das Configurações I e II, tais como:

- Fator de potência unitário;
- Baixa distorção harmônica na corrente de entrada;
- Sem malhas de controle;
- Sem leitura de variáveis;
- Baixo custo, já que o preço do diodo é significativamente menor que o preço da chave de potência;

REFERÊNCIAS

BELLAR, M. D. AND SILVA NETO, J. L. AND ROLIM, L. G. B. AND FERNANDES, R. M. AND AREDES, M. AND MOTHE, A. S. (2005). **Topology Selection of AC Motor Drive Systems with Soft-starting for Rural Applications**. In *Proc. IEEE PESC*, pages 2698-2704.

MACHADO, R. Q. AND BUSO, S. AND POMÍLIO, J. A. (2005). **Sistema de Geração Distribuída Utilizando Gerador de Indução Trifásico e Fontes CC Conectado a Rede Monofásica**. *Revista Brasileira de Eletrônica de Potência* - SOBRAEP, vol. 1, no. 10, Junho.

ENJETI, P. N. AND RAHMAN, A. (1993). A new single-phase to three-phase converter with active input current shaping for low cost AC motor drives. *IEEE Transactions on Industry Applications*, vol. 29, no. 4, pp. 806-813, July/Aug.

KIM, G.-T. AND LIPO, T. A. (1995). **VSI - PWM Rectifier/Inverter System with a Reduced Switch Count**. in *Conf. Rec. IEEE-IAS Annu. Meeting*, pp. 2327-2332.

JACOBINA, C. B. AND CORREA, M. B. DE R. AND LIMA, A. M. N. AND DA SILVA, E. R. C. (2001). **AC/AC converters with a reduced number of switch**. in *Proc. IEEE IAS Annual Meeting*, vol. 3, pp. 1755-1762, Sept.

MACHADO, R. Q. AND BUSO, S. AND POMILIO, J. A. AND MARAFAO, F. P. (2005). **Three-phase to single-phase direct connection rural cogeneration systems**. in *Proc. APEC*, pp. 1547-1553.

NABAE, A. AND NAKANO, H. AND ARAI, S. (1994). **Novel Sinusoidal Converters with High Power Factor**. in *Conf. Rec. IEEE-IAS Annu. Meeting*, pages 775-780.

JACOBINA, C. B. AND LIMA, A. M. N. AND DA SILVA, E. R. C. AND ALVES, R. N. C. AND SEIXAS, P. F. (2001). **Digital Scalar Pulse Width Modulation: a Simple Approach to Introduce Non-Sinusoidal Modulating Waveforms**. in *IEEE Trans. Power Electron.*, vol. 16, pp. 351-359, May.

AGRADECIMENTOS

Os autores agradecem ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pelo suporte financeiro à realização deste trabalho.