

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan 886-2-8698-3698

■ 886-2-8698-3699

	<u>⊗</u> <u>w</u>	ww.locosystech.com/
Product name	Description	Version
SC-1513	Datasheet of SC-1513 GPS module	1.4

1 Introduction

Locosys GPS SC-1513 module features high sensitivity, low power and ultra small form factor. This GPS module is powered by SiRF Star III, it can provide you with superior sensitivity and performance even in urban canyon and dense foliage environment. The miniature size makes the module easy and the best choice to integrate into portable device like mobile phone, PDAs, camera and vehicle locators.

2 Features

- SiRF Star III high sensitivity solution
- Support 20-channel GPS
- Fast TTFF at low signal level
- Capable of SBAS (WAAS, EGNOS, MSAS)
- 6 GPIO available
- Built-in LNA and SAW filter
- Small form factor 15 x 13 x 2.2 mm
- SMD type with stamp holes; RoHS compliant

3 Application

- Personal positioning and navigation
- Automotive navigation
- Marine navigation

Fig 3-1 Typical application circuit that uses passive antenna.

Fig 3-2 Typical application circuit that uses active antenna

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan

886-2-8698-3698
886-2-8698-3699
www.locosystech.com/

4 GPS receiver

SiRF Star III, GSC3f/LPx 7989		
L1 1575.42MHz, C/A code		
20		
te rate 1Hz		
Tracking	-159dBm	
Cold start	-144dBm	
Hot start (Open Sky)	< 2s	
Hot start (Indoor)	< 15s	
Cold Start (Open Sky)	35s (typical)	
Autonomous	< 10m (2D RMS)	
SBAS	< 5m (2D RMS)	
Max. Altitude < 60,000 ft		
Max. Velocity < 1,000 knots		
NMEA 0183 ver 3.0	9600 bps ⁽¹⁾ , 8 data bits, no parity, 1 stop bits (default)	
	1Hz: GGA, GLL, GSA, GSV, RMC, VTG	
SiRF Binary	38400 bps, 8 data bits, no parity, 1 stop bits	
	L1 1575.42MHz, C/A code 20 1Hz Tracking Cold start Hot start (Open Sky) Hot start (Indoor) Cold Start (Open Sky) Autonomous SBAS < 60,000 ft < 1,000 knots NMEA 0183 ver 3.0	

Note 1: Both baud rate and output message rate are configurable.

Table 4.1 Navigation Parameters

Track smooth mode	Disabled
Static navigation mode	Enabled

5 Software interface

5.1 NMEA output message

Table 5.1-1 NMEA output message

NMEA record Description		
GGA	Global positioning system fixed data	
GLL Geographic position - latitude/longitude		
GSA	GNSS DOP and active satellites	
GSV GNSS satellites in view		
RMC Recommended minimum specific GNSS data		
VTG Course over ground and ground speed		

• GGA--- Global Positioning System Fixed Data

www.locosystech.com/

Table 5.1-2 contains the values for the following example:

\$GPGGA,053740.000,2503.6319,N,12136.0099,E,1,08,1.1,63.8,M,15.2,M,,0000*64

Table 5.1 - 2 GGA Data Format

Name	Example	Units	Description
Message ID	\$GPGGA		GGA protocol header
UTC Time	053740.000		hhmmss.sss
Latitude	2503.6319		ddmm.mmmm
N/S indicator	N		N=north or S=south
Longitude	12136.0099		dddmm.mmmm
E/W Indicator	Е		E=east or W=west
Position Fix Indicator	1		See Table 5.1-3
Satellites Used	08		Range 0 to 12
HDOP	1.1		Horizontal Dilution of Precision
MSL Altitude	63.8	mters	
Units	M	mters	
Geoid Separation	15.2	mters	
Units	M	mters	
Age of Diff. Corr.		second	Null fields when DGPS is not used
Diff. Ref. Station ID	0000		
Checksum	*64		
<cr> <lf></lf></cr>			End of message termination

Table 5.1-3 Position Fix Indicators

Value	Description
0	Fix not available or invalid
1	GPS SPS Mode, fix valid
2	Differential GPS, SPS Mode, fix valid
3-5	Not supported
6	Dead Reckoning Mode, fix valid

• GLL--- Geographic Position – Latitude/Longitude

Table 5.1-4 contains the values for the following example:

\$GPGLL,2503.6319,N,12136.0099,E,053740.000,A,A*52

Table 5.1-4 GLL Data Format

Name	Example	Units	Description
Message ID	\$GPGLL		GLL protocol header
Latitude	2503.6319		ddmm.mmmm

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan 886-2-8698-3698

886-2-8698-3699

		www.locosystech.com/
N/S indicator	N	N=north or S=south
Longitude	12136.0099	dddmm.mmmm
E/W indicator	Е	E=east or W=west
UTC Time	053740.000	hhmmss.sss
Status	A	A=data valid or V=data not valid
Mode	A	A=autonomous, D=DGPS, E=DR
Checksum	*52	
<cr> <lf></lf></cr>		End of message termination

• GSA---GNSS DOP and Active Satellites

Table 5.1-5 contains the values for the following example:

\$GPGSA,A,3,24,07,17,11,28,08,20,04,,,,2.0,1.1,1.7*35

Table 5.1-5 GSA Data Format

Name	Example	Units	Description
Message ID	\$GPGSA		GSA protocol header
Mode 1	A		See Table 5.1-6
Mode 2	3		See Table 5.1-7
ID of satellite used	24		Sv on Channel 1
ID of satellite used	07		Sv on Channel 2
ID of satellite used			Sv on Channel 12
PDOP	2.0		Position Dilution of Precision
HDOP	1.1		Horizontal Dilution of Precision
VDOP	1.7		Vertical Dilution of Precision
Checksum	*35		
<cr> <lf></lf></cr>			End of message termination

Table 5.1-6 Mode 1

Value	Description
M	Manual- forced to operate in 2D or 3D mode
A	Automatic-allowed to automatically switch 2D/3D

Table 5.1-7 Mode 2

Value	Description
1	Fix not available
2	2D
3	3D

• GSV---GNSS Satellites in View

www.locosystech.com/

Table 5.1-8 contains the values for the following example:

\$GPGSV,3,1,12,28,81,285,42,24,67,302,46,31,54,354,,20,51,077,46*73

\$GPGSV,3,2,12,17,41,328,45,07,32,315,45,04,31,250,40,11,25,046,41*75

\$GPGSV,3,3,12,08,22,214,38,27,08,190,16,19,05,092,33,23,04,127,*7B

Table 5.1-8 GSV Data Format

Name	Example	Units	Description
Message ID	\$GPGSV		GSV protocol header
Total number of messages ¹	3		Range 1 to 3
Message number ¹	1		Range 1 to 3
Satellites in view	12		
Satellite ID	28		Channel 1 (Range 01 to 32)
Elevation	81	degrees	Channel 1 (Range 00 to 90)
Azimuth	285	degrees	Channel 1 (Range 000 to 359)
SNR (C/No)	42	dB-Hz	Channel 1 (Range 00 to 99, null when not tracking)
Satellite ID	20		Channel 4 (Range 01 to 32)
Elevation	51	degrees	Channel 4 (Range 00 to 90)
Azimuth	077	degrees	Channel 4 (Range 000 to 359)
SNR (C/No)	46	dB-Hz	Channel 4 (Range 00 to 99, null when not tracking)
Checksum	*73		
<cr> <lf></lf></cr>			End of message termination

^{1.} Depending on the number of satellites tracked multiple messages of GSV data may be required.

• RMC---Recommended Minimum Specific GNSS Data

Table 5.1-9 contains the values for the following example:

\$GPRMC,053740.000,A,2503.6319,N,12136.0099,E,2.69,79.65,100106,,,A*53

Table 5.1-9 RMC Data Format

Name	Example	Units	Description
Message ID	\$GPRMC		RMC protocol header
UTC Time	053740.000		hhmmss.sss
Status	A		A=data valid or V=data not valid
Latitude	2503.6319		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12136.0099		dddmm.mmmm
E/W Indicator	Е		E=east or W=west
Speed over ground	2.69	knots	True
Course over ground	79.65	degrees	
Date	100106		ddmmyy

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan 886-2-8698-3698

■ 886-2-8698-3699

www.locosystech.com/

Magnetic variation		degrees	
Variation sense			E=east or W=west (Not shown)
Mode	A		A=autonomous, D=DGPS, E=DR
Checksum	*53		
<cr> <lf></lf></cr>			End of message termination

VTG---Course Over Ground and Ground Speed

Table 5.1-10 contains the values for the following example:

\$GPVTG,79.65,T,,M,2.69,N,5.0,K,A*38

Table 5.1-10 VTG Data Format

Name	Example	Units	Description
Message ID	\$GPVTG		VTG protocol header
Course over ground	79.65	degrees	Measured heading
Reference	Т		True
Course over ground		degrees	Measured heading
Reference	M		Magnetic
Speed over ground	2.69	knots	Measured speed
Units	N		Knots
Speed over ground	5.0	km/hr	Measured speed
Units	K		Kilometer per hour
Mode	A		A=autonomous, D=DGPS, E=DR
Checksum	*38		
<cr> <lf></lf></cr>			End of message termination

5.2 Proprietary NMEA input message

Table 5.2-1 Message Parameters

Start Sequence	Payload	Checksum	End Sequence
\$PSRF <mid>1</mid>	Data ²	*CKSUM ³	<cr><lf>4</lf></cr>

- 1. Message Identifier consisting of three numeric characters. Input messages begin at MID 100.
- 2. Message specific data. Refer to a specific message section for <data>...<data> definition.
- CKSUM is a two-hex character checksum as defined in the NMEA specification, NMEA-0183Standard For Interfacing Marine Electronic Devices. Use of checksums is required on all input messages.
- 4. Each message is terminated using Carriage Return (CR) Line Feed (LF) which is \r\n which is hex 0D0A. Because \r\n are not printable ASCII characters, they are omitted from the example strings, but must be sent to terminate the message and cause the receiver to process that input message.

Note: All fields in all proprietary NMEA messages are required, none are optional. All NMEA messages are comma delimited.

www.locosystech.com/

Table 5.2-2 Proprietary NMEA input messages

Message	MID^1	Description
SetSerialPort	100	Set PORT A parameters and protocol
NavigationInitialization	101	Parameters required for start using X/Y/Z ²
SetDGPSPort	102	Set PORT B parameters for DGPS input
Query/Rate Control	103	Query standard NMEA message and/or set output rate
LLANavigationInitialization	104	Parameters required for start using Lat/Lon/Alt ³
Development Data On/Off	105	Development Data messages On/Off
Select Datum	106	Selection of datum to be used for coordinate transformations

- 1. Message Identification (MID).
- 2. Input coordinates must be WGS84.
- 3. Input coordinates must be WGS84

• 100---SetSerialPort

This command message is used to set the protocol (SiRF binary or NMEA) and/or the communication parameters (Baud, data bits, stop bits, and parity). Generally, this command is used to switch the module back to SiRF binary protocol mode where a more extensive command message set is available. When a valid message is received, the parameters are stored in battery-backed SRAM and the Evaluation Receiver restarts using the saved parameters.

Table 5.2-3 contains the input values for the following example:

Switch to SiRF binary protocol at 9600,8,N,1

\$PSRF100,0,9600,8,1,0*0C

Table 5.2-3 Set Serial Port Data Format

Name	Example	Units	Description
Message ID	\$PSRF100		PSRF100 protocol header
Protocol	0		0=SiRF binary, 1=NMEA
Baud	9600		4800,9600,19200,38400,57600
DataBits	8		8,71
StopBits	1		0,1
Parity	0		0=None, 1=Odd, 2=Even
Checksum	*0C		
<cr><lf></lf></cr>			End of message termination

^{1.} SiRF protocol is only valid for 8 data bits, 1 stop bit, and no parity.

• 101---NavigationInitialization

This command is used to initialize the Evaluation Receiver by providing current position (in X, Y, Z coordinates), clock offset, and time. This enables the Evaluation Receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters enable the Evaluation Receiver to acquire signals quickly.

www.locosystech.com/

Table 5.2-4 contains the input values for the following example:

Start using known position and time

\$P\$RF101,-2686700,-4304200,3851624,96000,497260,921,12,3*1C

Table 5.2-4 Navigation Initialization Data Format

Name	Example	Units	Description
Message ID	\$PSRF101		PSRF101 protocol header
ECEF X	-2686700	meters	X coordinate position
ECEF Y	-4304200	meters	Y coordinate position
ECEF Z	3851624	meters	Z coordinate position
ClkOffset	96000	Hz	Clock Offset of the Evaluation Receiver ¹
TimeOfWeek	497260	seconds	GPS Time Of Week
WeekNo	921		GPS Week Number
ChannelCount	12		Range 1 to 12
ResetCfg	3		See Table 5.2-5
Checksum	*1C		
<cr><lf></lf></cr>			End of message termination

^{1.} Use 0 for last saved value if available. If this is unavailable, a default value of 96000 is used.

Table 5.2-5 Reset Configuration

Hex	Description
0x01	Hot Start – All data valid
0x02	Warm Start – Ephemeris cleared
0x03	Warm Start (with Init) – Ephemeris cleared, initialization data loaded
0x04	Cold Start – Clears all data in memory
0x08	Clear Memory - Clears all data in memory and resets the receiver back to factory defaults

• 102---SetDGPSPort

This command is used to control the serial port used to receive RTCM differential corrections. Differential receivers may output corrections using different communication parameters. If a DGPS receiver is used that has different communication parameters, use this command to allow the receiver to correctly decode the data. When a valid message is received, the parameters are stored in battery-backed SRAM and the receiver restarts using the saved parameters.

Table 5.2-6 contains the input values for the following example:

Set DGPS Port to be 9600,8,N,1.

\$PSRF102,9600,8,1,0*12

Table 5.2-6 Set GPS Port Data Format

Name	Example	Units	Description
Message ID	\$PSRF102		PSRF102 protocol header

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan № 886-2-8698-3698

■ 886-2-8698-3699

www.locosystech.com/

Baud	9600	4800,9600,19200,3840	0
DataBits	8	8,7	
StopBits	1	0,1	
Parity	0	0=None, 1=Odd, 2=Ev	en
Checksum	*12		
<cr><lf></lf></cr>		End of message termina	ation

Note: RTCM is not supported.

• 103---Query/Rate Control

This command is used to control the output of standard NMEA messages GGA, GLL, GSA, GSV, RMC, and VTG. Using this command message, standard NMEA messages may be polled once, or setup for periodic output. Checksums may also be enabled or disabled depending on the needs of the receiving program. NMEA message settings are saved in battery-backed memory for each entry when the message is accepted.

Table 5.2-7 contains the input values for the following example:

- 1. Query the GGA message with checksum enabled \$PSRF103,00,01,00,01*25
- 2. Enable VTG message for a 1 Hz constant output with checksum enabled \$PSRF103,05,00,01,01*20
- 3. Disable VTG message \$P\$RF103,05,00,00,01*21

Table 5.2-7 Query/Rate Control Data Format (See example 1)

Name	Example	Units	Description
Message ID	\$PSRF103		PSRF103 protocol header
Msg	00		See Table 5.2-8
Mode	01		0=SetRate, 1=Query
Rate	00	seconds	Output – off=0, max=255
CksumEnable	01		0=Disable Checksum, 1=Enable Checksum
Checksum	*25		
<cr><lf></lf></cr>			End of message termination

Table 5.2-8 Messages

Value	Description
0	GGA
1	GLL
2	GSA
3	GSV

www.locosystech.com/

4	RMC
5	VTG
6	MSS (If internal beacon is supported)
7	Not defined
8	ZDA (if 1PPS output is supported)
9	Not defined

• 104---LLANavigationInitialization

This command is used to initialize the Evaluation Receiver by providing current position (in latitude, longitude, and altitude coordinates), clock offset, and time. This enables the receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters enable the receiver to acquire signals quickly.

Table 5.2-9 contains the input values for the following example:

Start using known position and time.

\$P\$RF104,37.3875111,-121.97232,0,96000,237759,1946,12,1*07

Table 5.2-9 LLA Navigation Initialization Data Format

Name	Example	Units	Description
Message ID	\$PSRF104		PSRF104 protocol header
Lat	37.3875111	degrees	Latitude position (Range 90 to –90)
Lon	-121.97232	degrees	Longitude position (Range 180 to –180)
Alt	0	meters	Altitude position
ClkOffset	96000	Hz	Clock Offset of the Evaluation Receiver ¹
TimeOfWeek	237759	seconds	GPS Time Of Week
WeekNo	1946		Extended GPS Week Number (1024 added)
ChannelCount	12		Range 1 to 12
ResetCfg	1		See Table 5.2-10
Checksum	*07		
<cr><lf></lf></cr>			End of message termination

1. Use 0 for last saved value if available. If this is unavailable, a default value of 96000 is used.

Table 5.2-10 Messages

Hex	Description
0x01	Hot Start – All data valid
0x02	Warm Start – Ephemeris cleared
0x03	Warm Start (with Init) – Ephemeris cleared,
0x03	initialization data loaded
0x04	Cold Start – Clears all data in memory

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan

886-2-8698-3698

886-2-8698-3699

www.locosystech.com/

0x08	Clear Memory – Clears all data in memory
UXUO	and resets receiver back to factory defaults

• 105---Development Data On/Off

Use this command to enable development data information if you are having trouble getting commands accepted. Invalid commands generate debug information that enables you to determine the source of the command rejection. Common reasons for input command rejection are invalid checksum or parameter out of specified range.

Table 5.2-11 contains the input values for the following example:

1. Debug On \$PSRF105,1*3E

2. Debug Off

\$PSRF105,0*3F

Table 5.2-11 Development Data On/Off Data Format

Name	Example	Units	Description
Message ID	\$PSRF105		PSRF105 protocol header
Debug	1		0=Off, 1=On
Checksum	*3E		
<cr><lf></lf></cr>			End of message termination

• 106---Select Datum

\$PSGPS receivers perform initial position and velocity calculations using an earth-centered earth-fixed (ECEF) coordinate system. Results may be converted to an earth model (geoid) defined by the selected datum. The default datum is WGS 84 (World Geodetic System 1984) which provides a worldwide common grid system that may be translated into local coordinate systems or map datums. (Local map datums are a best fit to the local shape of the earth and not valid worldwide.)

Table 5.2-12 contains the input values for the following example:

Datum select TOKYO_MEAN

\$PSRF106,178*32

Table 5.2-12 Development Data On/Off Data Format

Name	Example	Units	Description	
Message ID	\$PSRF106		PSRF106 protocol header	
Datum	178		21=WGS84	
			178=TOKYO_MEAN	
			179=TOKYO_JAPAN	
			180=TOKYO_KOREA	
			181=TOKYO_OKINAWA	
Checksum	*32			
<cr><lf></lf></cr>			End of message termination	

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan

886-2-8698-3698

886-2-8698-3699

www.locosystech.com/

6 Pin assignment and descriptions

Table 6-1 Pin descriptions

Pin#	Name	Type	Description	Note
1	RXB	I	Serial input for channel B (Default null)	2
2	TXB	О	Serial output for channel B (Default null)	
3	1PPS	О	Pulse per second (1 us pulse)	
4	TXA	O	Serial output for channel A (Default NMEA)	
5	RXA	I	Serial input for channel A (Default NMEA)	2
6	GPIO10	I/O	General purpose I/O	1
7	GPIO0	I/O	General purpose I/O (Default indicator, see Fig. 6-1)	1,2
8	GPIO1	I/O	General purpose I/O	1,2
9	RFPWRUP	O	Indicate power state (See Table 6-2)	
10	ON_OFF	I	Edge triggered soft on/off request. Should only be used to wake up module when RFPWRUP pin is low.	4
11	VBACKUP	P	Backup battery supply voltage. This pin must be powered to enable the module.	
12	VIN	P	DC supply voltage	
13	GPIO14	I/O	General purpose I/O	1,3
14	GPIO15	I/O	General purpose I/O	1,3
15	GPIO13	I/O	General purpose I/O	1,3
16	BOOTSEL	I	Boot mode select (Do not connect in normal operation)	5
17	VOUT	P	Linear regulator power output, 2.85V (Do not use this as	

www.locosystech.com/

			power source of backup battery) (See Table 6-2)	
18	GND	P	Ground	
19	RFIN	I	GPS RF signal input	
20	GND	P	Ground	
21	GND	P	Ground	
22	GND	P	Ground	

<Note>

- 1. Default input at reset
- 2. Internal $100K\Omega$ pull down
- 3. Internal $100 \text{K}\Omega$ pull up
- 4. Internal $15K\Omega$ pull down
- 5. Internal $115K\Omega$ pull down

Fig. 6-1 Indicator of position fixed condition

Table 6-2 Pin levels of system states

	RFPWRUP	VOUT
Full power	Н	Enable
Stand by	L	Enable
Hibernate	L	Disable

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan 886-2-8698-3698

■ 886-2-8698-3699 **©www.locosystech.com/**

7 DC & Temperature characteristics

7.1 Absolute maximum ratings

Parameter	Symbol	Ratings	Units
Input Voltage	VIN	6.5	V
Input Backup Battery Voltage	VBACKUP	7	V
2.85V Output Current	Iout	50	mA
Operating Temperature Range	Topr	-30 ~ 85	$^{\circ}\! \mathbb{C}$
Storage Temperature Range	Tstg	-40 ~ 125	$^{\circ}\!\mathbb{C}$

7.2 DC Electrical characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Voltage	VIN	Iout = 0	3.0		4.2	V
Input Backup Battery Voltage	VBACKUP		1.3		6.0	V
2.85V Output Voltage	VOUT		2.79	2.85	2.91	V
Supply Current	Iss	VIN = 3.3V,				
		Iout = 0,				
		Peak			46	A
		Acquisition		32		mA
		Tracking		28		
		Standby		1.5		
Backup Battery Current	Ibat			10		uA
2.85V Output Current	Iout	VIN = 3.3V			30	mA
High Level Input Voltage	$V_{ m IH}$		0.7*VOUT		3.6	V
Low Level Input Voltage	V_{IL}		-0.3		0.3*VOUT	V
High Level Input Current	Ітн		-10		10	uA
		with pull-down			60	
Low Level Input Current	IIL		-10		10	uA
		with pull-down			60	
High Level Output Voltage	V_{OH}		0.75*VOUT			V
Low Level Output Voltage	V_{OL}				0.25*VOUT	V
High Level Output Current	Іон			2		mA
Low Level Output Current	Iol			2		mA
Input Capacitance	C in				4	pF
Output Capacitance	Соит	Output buffer			4	pF

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan 886-2-8698-3698

■ 886-2-8698-3699 **©www.locosystech.com/**

7.3 LNA characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Insertion power gain	S 21 ²	$T_A = 25^{\circ}C$		18		dB
Noise figure	NF	$T_A = 25^{\circ}C$		0.9		dB

7.4 Temperature characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units
Operating Temperature	Topr	-30	-	85	$^{\circ}\!\mathbb{C}$
Storage Temperature	Tstg	-40	25	85	$^{\circ}\!\mathbb{C}$

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan

886-2-8698-3698

886-2-8698-3699

www.locosystech.com/

8 Mechanical specification

8.1 Outline dimensions

8.2 Recommended land pattern dimensions

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan 886-2-8698-3698

886-2-8698-3699

www.locosystech.com/

9 Reel Packing information

- 1.10 sprocket hole pitch cumulative tolerance ±0.20mm.
- 2. Carrier camber not to exceed 1mm in 100mm.
- 3. A0 and B0 measured on a plane 0.3mm above the bottom of the pocket.
- 4. KO measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- 5. All dimensions meet EIA-481-2 requirements.
- 6. Material: Black Anti-Static Polystyrene.
- 7. Component load per 13" reel :1000 pcs.

LOCOSYS

LOCOSYS Technology Inc.

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/

Document change list

Revision 1.0 to Revision 1.1

- Added (2D RMS) at Position Accuracy on page 3.
- Revised Table 6-1 Pin levels of system states (Stand by for RFPWRUP should be <u>Low</u>) on page 14.
- Revised 9. Reel Packing information for 1000 pcs per reel on page 18.

Revision 1.1 to Revision 1.2

- Corrected the name for HDOP in Table 5.1-2 on page 4.
- Corrected the name for "UTC Time" in Table 5.1-2, 5.1-4 and 5.1-9 on page 4, 5 and 6.
- Updated Table 5.1-3, "Position Fix Indicators", on page 4.
- Revised Table 6.1 to Table 6.2 on page 15.
- Added "Note: RTCM is not supported" on page 10.
- Added tolerance ± 0.15 in section 8.1 on page 18.

Revision 1.2 to Revision 1.3 (June 20, 2007)

- Changed GPS chip to SiRF star III Low power GSC3f/LP-7979 on page 3. The units with date code after 0713 were changed to low power chip.
- Revised Hot start time to 2s on page 3.
- Revised Cold start time to typical 38s on page 3.
- Revised Supply current on page 15.
- Added Solder paste stencil size on page 17.

Revision 1.3 to Revision 1.4 (June 24, 2008)

- Changed default baud rate to 9600bps on page 4.
- Changed GPS chip from GSC3f/LP 7979 to GSC3f/LPx 7989 on page 4. The units with date code after 0827 will be changed to new chip.
- Changed typical cold start time from 38s to 35s on page 4.
- Changed "Track smooth mode" to default disabled on page 4.
- Added "This pin must be powered to enable the module." on page 13.
- Changed the minimum voltage of VBACKUP from 1.6V to 1.3V on page 15.
- Changed the maximum supply current from 69mA to 46mA on page 15.
- Changed the typical supply current of acquisition, tracking and standby to 32mA, 28mA and 1.5mA, respectively on page 15.

www.locosystech.com/

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan

886-2-8698-3698

886-2-8698-3699

www.locosystech.com/

