Homework 1 due: Oct 7, 09:30

Problem 1 (30 points). Prove the following claims and show your calculations.

(a) Prove that $\mathbb{E}[Y] \leq \mathbb{E}[Y^2]^{\frac{1}{2}}$ for any real random variable Y. Moreover, show this implies $\mathbb{E}[|X - \mathbb{E}[X]|] \leq \sqrt{\mathsf{Var}(X)}$.

Answer:

$$Var(Y) = \mathbb{E}[(Y - E(Y))^2] = \mathbb{E}[Y^2 - 2Y \mathbb{E}(Y) + \mathbb{E}(Y)^2] = \mathbb{E}(Y^2) - \mathbb{E}(Y)^2$$

where $\operatorname{Var}(Y) \geq 0$, *i.e.*, $\mathbb{E}[Y^2] - \mathbb{E}[Y]^2 \geq 0$.

Thus, we can prove that $\mathbb{E}[Y] \leq \mathbb{E}[Y^2]^{\frac{1}{2}}$.

Then, according to $Var(X) = \mathbb{E}[(X - E(X))^2],$

we can obtain $\sqrt{\operatorname{Var}(X)} = \sqrt{\mathbb{E}[(X - E(X))^2]} = \mathbb{E}[(X - E(X))^2]^{\frac{1}{2}}$.

Let's assume that Y = X - E(X), and then $\mathbb{E}[X - E(X)] \leq \mathbb{E}[(X - E(X))^2]^{\frac{1}{2}} = \sqrt{\mathsf{Var}(X)}$. Thus, the above conclusion implies $\mathbb{E}[X - E(X)] \leq \sqrt{\mathsf{Var}(X)}$.

(b) For n independent variables X_1, \dots, X_n , prove that $\mathsf{Var}(X_1 + X_2 + \dots + X_n) = \mathsf{Var}(X_1) + \mathsf{Var}(X_2) + \dots + \mathsf{Var}(X_n)$.

Answer:

$$\begin{aligned} \mathsf{Var}(X_1 + X_2 + \ldots + X_n) &= \mathbb{E}[[(X_1 + X_2 + \cdots + X_n) - \mathbb{E}(X_1 + X_2 + \cdots + X_n)]^2] \\ &= \mathbb{E}[[(X_1 - \mathbb{E}(X_1)) + (X_2 - \mathbb{E}(X_2)) + \ldots + (X_n - \mathbb{E}(X_n))]^2] \\ &= \mathbb{E}[\sum_{i=1}^n \left(X_i - \mathbb{E}(X_i)\right)^2 + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^n \left(X_i - \mathbb{E}(X_i)\right)(X_j - \mathbb{E}(X_j))] \\ &= \mathbb{E}[\sum_{i=1}^n \left(X_i - \mathbb{E}(X_i)\right)^2 + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^n \left(X_i - \mathbb{E}(X_i)\right)(X_j - \mathbb{E}(X_j))] \\ &= \sum_{i=1}^n \mathbb{E}[(X_i - \mathbb{E}(X_i))^2] + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^n \mathbb{E}[(X_i - \mathbb{E}(X_i))(X_j - \mathbb{E}(X_j))] \\ &= \sum_{i=1}^n \mathsf{Var}(X_i) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^n \mathsf{Cov}(X_i, X_j) \end{aligned}$$

As we know, when $X_1, ..., X_n$ are independent variables, $Cov(X_i, X_j) = 0$. Thus, we can prove that $Var(X_1 + X_2 + \cdots + X_n) = Var(X_1) + Var(X_2) + \cdots + Var(X_n)$. (c) Consider d independent random coins $Z_1, ..., Z_d \in \{\pm 1\}$ where each Z_i is 1 or -1 with probability 1/2 separately. We define $n=2^d-1$ random variables as follows: For each non-empty subset $S \subseteq [n]$, we define $X_s = \prod_{i \in S} Z_i$. For example when d=3, there are 7 random variables $X_1 = Z_1, X_2 = Z_2, X_3 = Z_3, X_{1,2} = Z_1 \cdot Z_2, X_{1,3} = Z_1 \cdot Z_3, X_{2,3} = Z_2 \cdot Z_3$ and $X_{1,2,3} = Z_1 \cdot Z_2 \cdot Z_3$. Calculate $\mathsf{Var}(\sum_S X_S)$ and compare this with part (b).

Answer:

For $\forall i \in \{1, 2, \dots, d\}$, $\mathbb{E}[Z_i] = 1 \times \frac{1}{2} + (-1) \times \frac{1}{2} = 0$, $\mathbb{E}[Z_i^2] = 1^2 \times \frac{1}{2} + (-1)^2 \times \frac{1}{2} = 1$, For $\forall i \in S, S \subseteq [n]$, each coin Z_i is independent, then we can calculate $\mathbb{E}[X_S]$ and $\mathbb{E}[X_S^2]$:

$$\mathbb{E}[X_S] = \mathbb{E}[\prod_{i \in S} Z_i] = \prod_{i \in S} \mathbb{E}[Z_i] = 0$$

$$\mathbb{E}[X_S^2] = \mathbb{E}[\prod_{i \in S} Z_i^2] = \prod_{i \in S} \mathbb{E}[Z_i^2] = 1$$

Thus, we can calculate $Var(\sum_{S} X_{S})$ as follows:

$$\begin{aligned} \operatorname{Var}(\sum_{S} X_{S}) &= \operatorname{Var}(X_{1} + X_{2} + \dots + X_{n}) \\ &= \mathbb{E}[(X_{1} + X_{2} + \dots + X_{n})^{2}] - \mathbb{E}[X_{1} + X_{2} + \dots + X_{n}]^{2} \\ &= \sum_{i=1}^{n} \mathbb{E}[X_{i}^{2}] + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{E}[X_{i}X_{j}] - \sum_{i=1}^{n} \mathbb{E}[X_{i}]^{2} - 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{E}[X_{i}] \mathbb{E}[X_{j}] \\ &= n + 0 - 0 - 0 \\ &= n \end{aligned}$$

In addition, we can calculate $\sum_{S} \mathsf{Var}(X_S)$ as follows:

$$\begin{split} \sum_{S} \mathsf{Var}(X_S) &= \mathsf{Var}(X_1) + \mathsf{Var}(X_2) + \dots + \mathsf{Var}(X_n) \\ &= (\mathbb{E}[X_1] - \mathbb{E}[X_1]^2) + (\mathbb{E}[X_2] - \mathbb{E}[X_2]^2) + \dots + (\mathbb{E}[X_n] - \mathbb{E}[X_n]^2) \\ &= (1 - 0) + (1 - 0) + \dots + (1 - 0) \\ &= n \end{split}$$

Obviously, the above results are consistent with the results in problem I(b).

Problem 2 (20 points.). Consider a random distribution D over those bins $[n] = \{1, 2, ..., n\}$. We define its collision probability to be

$$\mathbf{Pr}_{a \sim D, b \sim D}[a = b]$$

where a and b are drawn from D independently.

Prove that the uniform distribution has the smallest collision probability among all distributions. This is the reason why we only consider uniform distribution over n bins in hash functions.

Hint 1. Define a random variable X (depends on D) such that the collision probability is equal.

Answer: First, we define a random variable X with the random distribution D, i.e., P(X = $i) = \frac{1}{n}, \forall i \in \{1, 2, ..., n\}.$

Second, we define a random variable $Y = \{Y_1, Y_2, \dots, Y_n\}$ with the distribution Y, we assume that $P(Y = i) = p_i$, and we can obtain $\sum_{i=1}^{n} p_i = 1$. We define the collision probability of Y as $\sum_{i=1}^{n} p_i^2$, which means the probability that two

variables drawn independently from Y are the same.

According to the Average Inequality: $\sqrt{\frac{\sum_{i=1}^{n}x_{i}^{2}}{n}} \geq \frac{\sum_{i=1}^{n}x_{i}}{n}$, we have $\sum_{i=1}^{n}p_{i}^{2} \geq n \cdot (\frac{\sum_{i=1}^{n}p_{i}}{n})^{2} = n \cdot (\frac{1}{n})^{2} = \frac{1}{n}$. Only when $p_{i} = \frac{1}{n}$, $\sum_{i=1}^{n}p_{i}^{2}$ can achieve the minimum value $\frac{1}{n}$, so that the collision probability of Y (i.e., $\sum_{i=1}^{n}p_{i}^{2}$) achieves the minimum value $\frac{1}{n}$.

We can also calculate the l_2 distance of distribution Y and D to further prove the conclusion of the above minimum value:

$$||Y - D||_2 = \sqrt{\sum_{i=1}^n (p_i - \frac{1}{n})^2}$$

$$= \sqrt{\sum_{i=1}^n (p_i^2 - \frac{2p_i}{n} + \frac{1}{n^2})}$$

$$= \sqrt{\sum_{i=1}^n p_i^2 - \frac{2}{n} \sum_{i=1}^n p_i + \sum_{i=1}^n \frac{1}{n^2}}$$

$$= \sqrt{\sum_{i=1}^n p_i^2 - \frac{2}{n} + \frac{1}{n}}$$

$$= \sqrt{\sum_{i=1}^n p_i^2 - \frac{1}{n}}$$

Because $||Y - D||_2 \ge 0 \Rightarrow \sum_{i=1}^n p_i^2 \ge \frac{1}{n}$, with equality holds only when $p_i = \frac{1}{n}$.

Finally, we prove that the uniform distribution has the smallest possible collision probability over all distributions.

Problem 3 (Birthday paradox 10 points.). Suppose everybody's birthday is a uniform random number in $\{1, 2, \dots, 365\}$ independently. Now we wanna ask m persons' birthday such that with probability more than $\frac{1}{2}$, two of them will have the same birthday.

Show the best estimation of m.

Hint 2. Think of this as balls into bins with n = 365 bins.

Answer:

We transform the problem to at most how many persons do not have the same birthday with a probability of no more than $\frac{1}{2}$? The probability is as follows:

$$\Pr[\forall i \neq j, b_i \neq b_j] = (1 - \frac{1}{n})(1 - \frac{2}{n}) \cdots (1 - \frac{m-1}{n}) \le \frac{1}{2}$$

According to Taylor Formula, the polynomial expansion of exponential function is as follows:

$$\exp(x) = \sum_{k=0}^{+\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \cdots$$

When $x \ge 0$, $1 + x \le e^x$, and we replace it in the above equation:

$$\mathbf{Pr}[\forall i \neq j, b_i \neq b_j] = (1 - \frac{1}{n})(1 - \frac{2}{n}) \cdots (1 - \frac{m-1}{n})$$

$$\leq e^{-\frac{1}{n}} e^{-\frac{2}{n}} \cdots e^{-\frac{m-1}{n}}$$

$$= e^{-\frac{1}{n} - \frac{1}{n} \cdots - \frac{1}{n}}$$

$$= e^{-\frac{m(m-1)}{2n}} \leq \frac{1}{2}$$

Thus, we have:

$$e^{-\frac{m(m-1)}{2n}} \le \frac{1}{2},$$

$$-\frac{m(m-1)}{2n} \le -ln2,$$

$$m(m-1) - 2nln2 \ge 0,$$

$$m^2 - m - 2nln2 \ge 0,$$

$$m \ge \frac{1 + \sqrt{1 + 8nln2}}{2} \approx 23.$$

When n = 365, we can obtain the best estimation of m is 23.

Problem 4. Consider the following game between Alice and Bob:

- 1. At the beginning of the game, Alice record a secret binary string $z \in \{0,1\}^n$ of length n.
- 2. Bob guesses m strings w_1, w_2, \dots, w_m of length n and sends these to Alice.
- 3. We define the agreement of two strings x and y to be the number of the same entries in x and y. Then Alice announce Bob's score as the largest agreement between z and one string of w_1, w_2, \cdots, w_m . In another word, Bob has a score

$$\max_{i \in [m]} \left\{ \sum_{j=1}^{n} 1\{z(j) = w_i(j)\} \right\}$$

Please design a strategy for Bob such that he could score as high as possible.

(a) (5 points) When $m=2^n$, come up with a strategy to score n.

Answer: For a '0-1' variable string with the length of n, there are 2^n possibilities, just satisfying $m=2^n$. Thus, Bob can directly enumerate the 2^n kinds of string z.

Bob can use a simple scheme, that is, converting decimal numbers $0-2^n$ into binary strings in turn (if the length is less than n, use '0' to fill in).

We show a Python code example, where n=4 and $m=2^4=16$:

```
>>> n = 4
>>> [bin(i)[2:].zfill(n) for i in range(pow(2, n))]
['0000', '0001', '0010', '0011', '0100', '0101', '0110', '0111', '1000',
'1001', '1010', '1011', '1100', '1101', '1110', '1111']
```

(b) (5 points) When m=2, come up with a strategy to score at least $\frac{n}{2}$.

Answer: Bob can construct a string with length n that is all composed of 0, i.e., $w_1 =$ '000...000', and a string that is all composed of 1, i.e., $w_2 = 111...111$ '.

Assume that if Alice records the binary string with x '0' and y '1', and x + y = n.

Case 1, if $x = y = \frac{n}{2}$, $score = \frac{n}{2}$;

Case 2, if x > y, $score = \sum_{j=1}^{n} 1\{z(j) = w_1(j)\} = x > \frac{n}{2}$; Case 3, if x < y, $score = \sum_{j=1}^{n} 1\{z(j) = w_2(j)\} = y > \frac{n}{2}$. In summary, the score of the above strategy is at least $\frac{n}{2}$.

(c) (Optional with 20 bonus points) Let us prove the following strategy of 2 guesses can score $\frac{n}{2} + 0.1 \cdot \sqrt{n}$ with probability at least 0.5: Bob sends a random string w and its flip (on every coordinate) \overline{w} to Alice.

Hint 3. omitted

Answer: First, Say the agreement between w and z is X. Since each coordinate of w and \overline{w} takes the opposite value, it is obvious that $X_i = \{0, 1\}, \forall i \in [n]$. In addition, $P(X_i = 0) = P(X_i = 1) = \frac{1}{2}$, $\mathbb{E}(X_i) = \frac{1}{2}$. Thus, we have $\mathbb{E}[X] = \sum_{i=1}^n \mathbb{E}[X_i] = \frac{n}{2}$.

Then, we calculate $\operatorname{Var}(X)$. $\operatorname{Var}(X_i) = \mathbb{E}[(X_i - \mathbb{E}[X_i])^2] = \frac{1}{2} \cdot [(0 - \frac{1}{2})^2 + (1 - \frac{1}{2})^2] = \frac{1}{4}$. As X_i is independent with each other, according to the conclusion in Problem I(b), we have $\operatorname{Var}(X) = \sum_{i=1}^n \operatorname{Var}(X_i) = \frac{n}{4}$.

On the one hand, according to the conclusion in Problem I(a), we have $\mathbb{E}[|X - \mathbb{E}[X]|] \le \sqrt{\mathsf{Var}(X)} = \frac{\sqrt{n}}{2} = \Theta(\sqrt{n}).$

On the other hand, according to Chevyshev's inequality, we have $\Pr[|X - \mathbb{E}[X]| \ge \sqrt{n}] \le \frac{\frac{n}{4}}{(\sqrt{n})^2} = \frac{1}{4}$, i.e., $\Pr[|X - \mathbb{E}[X]| \le \sqrt{n}] \ge 1 - \frac{1}{4} = \frac{3}{4}$.

Formally, suppose the probabilities that the score X around $\frac{n}{2}$ are the same, which is the uniform distribution:

$$\Pr[X = \frac{n}{2} - \sqrt{n}] = \Pr[X = \frac{n}{2} - \sqrt{n} + 1] = \dots = \Pr[X = \frac{n}{2}] = \dots = \Pr[X = \frac{n}{2} + \sqrt{n}]$$

Thus, we have:

$$\begin{aligned} \mathbf{Pr}[|X - \mathbb{E}[X]| &\geq 0.1\sqrt{n}] > \mathbf{Pr}[0.1\sqrt{n} \leq |X - \mathbb{E}[X]| \leq \sqrt{n}] \\ &= \mathbf{Pr}[0.1\sqrt{n} \leq |X - \mathbb{E}[X]|] \cdot \mathbf{Pr}[|X - \mathbb{E}[X]| \leq \sqrt{n}] \\ &= \frac{1 - 0.1}{1} \cdot \frac{3}{4} > \frac{1}{2} \end{aligned}$$

Finally, we prove that the above strategy of 2 guesses can score $\frac{n}{2} + 0.1 \cdot \sqrt{n}$ with probability at least 0.5.

Problem 5 (20 points). Consider the following generalization of Power of 2 choices to d > 2 choices:

- 1. Prepare d perfectly random hash functions $h_1, \dots, h_d : U > [n]$.
- 2. For each ball A, allocate it into the bin among his d choices $\{h_1(A), \dots, h_d(A)\}$ with the lightest load at this moment.

Suppose we are throwing n balls into n bins. Modify the proof sketch in lecture 2 to show that: With probability $1 - n^{-2}$, the max-load is $\log_d \log n + O(1)$ instead of $\log_2 \log n + O(1)$

Answer:

Base case: $m_3 \leq \frac{n}{3}$;

According to Chernoff bounds,

Bounding m_4 : since $\mathbb{E}[m_4] \leq \frac{n}{3^d}$, it implies $m_4 \leq 1.1 \cdot \frac{n}{3^d}$ w.h.p;

Then, we can obtain:

Bounding m_5 : $m_5 \le 1.1n \cdot (\frac{m_4}{n})^d = 1.1^{d+1} \cdot \frac{n}{3d^2}$;

Bounding m_l : $m_l \leq 1.1^{d^{l-3}-1} \cdot \frac{n}{3^{d^{l-3}}} \leq \frac{n}{2^{d^{l-3}}}$. We take logarithms on both sides of the equation:

$$\begin{aligned} &\frac{n}{2^{d^{l-3}}} \leq 1 \\ \Rightarrow &n \leq 2^{d^{l-3}} \\ \Rightarrow &\log_2 n \leq d^{l-3} \\ \Rightarrow &\log_d \log_2 n \leq l-3 \end{aligned}$$

Finally, we can prove that with probability $1 - n^{-2}$, the max-load is $\log_d \log n + O(1)$.