

Universidad de Granada Máster en Física y Matemática Departamento de Matemática Aplicada

Title

Bartolomé Ortiz Viso

Septiembre 2018

Abstract

Agradecimientos

I would like to express my gratitude to:

• My sister and my parents. Thank you for being there every time I need you.

And also: To all my professors, for the education they give me. Specially:

■ My supervisor: Óscar Sánchez .

Thank you for guiding and helping me at my first steps in applied mathematical research.

'A mathematician, like a painter or a poet, is a maker

of patterns. If his patterns are more permanent than theirs, it is because they are made with ideas.'

 $G.\ H.\ Hardy$

Índice general

Al	bstract	Ι
Ag	gradecimientos	111
1.	Introducción	1
	1.1. Motivación y objetivos	1
2.	Marco teórico	2
	2.1. Consideraciones previas	2
3.	Modelado teórico	3
	3.1. Consideraciones previas	3
4.	Análisis cualitativo	4
	4.1. Parámetros	4
5.	Conclusiones	6
\mathbf{Bi}	bliografía	6

Índice de cuadros

Índice de figuras

Introducción

1.1. Motivación y objetivos

[Ortiz, 2017, Cambon and Sanchez, ,Cambon, 2017, Lai et al., 2004, Saha and Schaffer, 2006, Bintu et al., 2005, Parker et al., 2011, Meijer et al., 2012]

Marco teórico

2.1. Consideraciones previas

Modelado teórico

3.1. Consideraciones previas

Análisis cualitativo

4.1. Parámetros

Tabla de parámetros, operador BEWARE						
Parámetro	Valor	Descripción	Fuente			
C	1	Constante positiva (valor 1 implica cooperatividad total)	[Cambon, 2017]			
a_{Gli}	4.35	Intensidad de represion transcripcional de Gli	[Cambon, 2017]			
a_{Gli3}	4,35	Intensidad de represion transcripcional de Gli3	[Cambon, 2017]			
r_{Gli3R}	5×10^{-5}	Intensidad de represion transcripcional de Gli	[Cambon, 2017]			
k_{Gli}	9×10^1	Constante de disociacion de los activadores para los potenciadores geneticos	[Cambon, 2017]			
k_{Gli3}	9×10^1	Constante de disociacion de los activadores para los potenciadores geneticos	[Cambon, 2017]			
k_{Gli3R}	9×10^1	Constante de disociacion de los represores para los potenciadores geneticos	[Cambon, 2017]			
k_{RNAP}	1	Afinidad de unión de RNA polimerasa	[Cambon, 2017]			
RNAP	1	Concentración de RNA po- limerasa	[Cambon, 2017]			
c_b	$1 nMmin^{-1}$	Constante del operador	[Cambon, 2017]			

4.1. Parámetros 5

Tabla de parámetros de [Lai et al., 2004]						
Parámetro	Valor	Descripción	Fuente			
Shh	0 - 30	Cantidad de Shh	[Cambon, 2017]			
k_{Shh}	0.58 - 2.0nM	Constante de disociación de los enlaces Ptc-Shh	[Cambon, 2017]			
k_{Ptc}	$8.3 \times 10^{-11} M$	Mitad de la máxima con- centración de Ptc que in- hibe la señal de Smo	[Cambon, 2017]			
k_{deg}	$0.009min^{-1}$	Constante de degradacion de todas las moleculas Gli	[Cambon, 2017]			
k_{g3rc}	$0.012min^{-1}$	Constante deconversion de Gli3 en Gli3R	[Lai et al., 2004]			
r_{g3b}	$1.6 \times 10^{-19} M^2/min$	Tasa basal de sintesis de Gli3	[Lai et al., 2004]			
K_{g3rc}	0,1	Constante de sensibilidad de la conversioon a fuerza de la señal	[Lai et al., 2004]			
k_{deg_p}	$0.09min^{-1}$	constante de degradacion de Ptc	[Cambon, 2017]			

Conclusiones

Bibliografía

- [Bintu et al., 2005] Bintu, L., Buchler, N. E., Garcia, H. G., Gerland, U., Hwa, T., Kondev, J., and Phillips, R. (2005). Transcriptional regulation by the numbers: models. Current opinion in genetics & development, 15(2):116–124.
- [Cambon, 2017] Cambon, M. (2017). Analysis of biochemical mechanisms provoking differential spatial expression in Hh target genes. ArXiv e-prints.
- [Cambon and Sanchez,] Cambon, M. and Sanchez, O. Beware modules with multiple competitivo transcription factors. Work in progress.
- [Lai et al., 2004] Lai, K., Robertson, M. J., and Schaffer, D. V. (2004). The sonic hed-gehog signaling system as a bistable genetic switch. *Biophysical Journal*, 86(5):2748–2757.
- [Meijer et al., 2012] Meijer, H., Dercole, F., and Oldeman, B. (2012). Numerical bifurcation analysis. In *Mathematics of Complexity and Dynamical Systems*, pages 1172–1194. Springer.
- [Ortiz, 2017] Ortiz, B. (2017). Análisis cualitativo de sistemas dinámicos con origen biológico. Mathematics bachelor's degree thesis, Universidad de Granada.
- [Parker et al., 2011] Parker, D. S., White, M. A., Ramos, A. I., Cohen, B. A., and Barolo, S. (2011). The cis-regulatory logic of hedgehog gradient responses: key roles for gli binding affinity, competition, and cooperativity. *Sci. Signal.*, 4(176):ra38–ra38.
- [Saha and Schaffer, 2006] Saha, K. and Schaffer, D. V. (2006). Signal dynamics in sonic hedgehog tissue patterning. *Development*, 133(5):889–900.