Lecture 16: Applications of integration + accumulated Change. Start with an example: Ex 1 (5.8 example 1 in text). · Medical clinic opens with 300 patients · Clinic gains, patients at a rate of 10 patients/month · The proportion of patients who remain with the clinic ofter to months after they first join is -t/20 Question: How many patients does the clinic have after 15 months? Solution: For the firsts 300 patients, after 15 months, $300e^{-15/20} = 300e^{-3/4} \approx 141.7$ remain with the clinic. When it comes to analysing how many of the patients gained per month remain with the

Clinic, we have a problem:
· patients are being gained continuosly
· how do we work out how many months
each of these patients have been at
the clinic when the clinic is 15 months
· We need to do Ahis so we can apply
Au formulat e-t/20.
Easier) problem: Lets make the problem easier.
a Assume Ale new patients are not being
gained continuosly, but rather the clinic
gains 10 partients at the start of every month.
Then Au clinic is 0 months old:
gain: 300 + 10 patients
at 15 mons: 300 e 15/20 + 10 e 15/20 cf Aluse remain
When the Clinic is I month old:
at 15 months: 10 e 10/20 of Ause remain
at 15 months: 10 e 20 of Ause remain
12/4 comes from the fact that the partients

At the start of the kth zmorth:
gained: 5 Mb patients
at 15 months: 5 Mbe patients at 15 months: 5 Mbe patients
Swhere: t, is Alu number of months elapsed after k znonths, i.e. t, = k/2ty.
Adding all of these contributions $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
Actual problem We can get the actual answer by taking
better and better approximations:
o Split the 15 worth period into n subintervals c Let n -> 00.
If we split into n intervals:
· Each time period is 15/n months long.
o Gain 10.15 = 150/n patients at the
stat start of every time period.

$$P = \lim_{N \to \infty} \left(\frac{300e^{-3/4}}{300e^{4}} + \sum_{k=0}^{n-1} \frac{15 \cdot 10e^{-(15-t_k)/20}}{n \cdot 10e^{-(15-t_k)/20}} \right)$$

$$= 300 e^{-3/4} + \lim_{N \to \infty} \left(\frac{15}{n} \sum_{k=0}^{n-1} \frac{-(15 - t_k)/20}{n} \right)$$

Where have we seen this before...?

Remnder:

$$\int_{a}^{b} f(t) dt := \lim_{n \to \infty} \left(\frac{b-a}{n} \sum_{k=0}^{n-1} f(t_{k}) \right)$$

where the a+k.b-a

Applying this to lim
$$\frac{15}{n \rightarrow \infty} = \frac{10e^{-(15-t_n)/20}}{\sqrt{n+100}}$$
with

with 6 b=15

$$P = 300e + 10e -(15-4)/20$$

Which we can solve to get an actual numerical answer!

$$= 300e^{-3/2} + \left[\frac{-(15-t)}{200} \right]^{15}$$

$$= 300e^{-3/4} + 200 - 200e^{-3/4}$$

=
$$100(e^{-3/4} + 2) \approx 247.2$$

Phew!

Lets try another. They'll get easier...

- from the bottom of the cone then $h_k = k \cdot \frac{h}{h}$
- o We want to streatculate the volume of this slice (and the add them up).
- o So we need to know S:

Volume of slice k: thickness x area of circlellar base

$$=\frac{h}{n}.\pi \cdot \frac{r^2}{h^2}(h-h_k)^2=$$

Adding These up

Volume =
$$\lim_{n\to\infty} \sum_{k=0}^{n-1} \frac{h}{n} \pi_{k}^{2} (h-h_{k})^{2}$$

$$=\int_{0}^{h} \frac{r^{2}}{h^{2}} \left(h-x\right)^{2} dx$$

$$= \frac{\pi r^2}{h^2} \left[\frac{1}{3} (h - x)^3 \right]_0^h$$

$$= \frac{\pi r^2}{h^2} \left(-\frac{1}{3} 0^2 + \frac{1}{3} h^3 \right)$$

$$= \frac{1}{3} \pi r^2 h$$

$$= \frac{1}{3} \pi r^2 h$$