

SMALL SIGNAL NPN TRANSISTOR

PRELIMINARY DATA

Ordering Code	Marking	Package / Shipment		
2N3904	2N3904	TO-92 / Bulk		
2N3904-AP	2N3904	TO-92 / Ammopack		

- SILICON EPITAXIAL PLANAR NPN TRANSISTOR
- TO-92 PACKAGE SUITABLE FOR THROUGH-HOLE PCB ASSEMBLY
- THE PNP COMPLEMENTARY TYPE IS 2N3906

APPLICATIONS

- WELL SUITABLE FOR TV AND HOME APPLIANCE EQUIPMENT
- SMALL LOAD SWITCH TRANSISTOR WITH HIGH GAIN AND LOW SATURATION VOLTAGE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage (I _E = 0)	60	V
V_{CEO}	Collector-Emitter Voltage (I _B = 0)	40	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	6	V
Ic	Collector Current	200	mA
P _{tot}	Total Dissipation at T _C = 25 °C	625	mW
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

February 2003 1/5

THERMAL DATA

R _{thj-amb} •	Thermal Resistance Junction-Ambient	Max	200	°C/W
R _{thj-case} •	Thermal Resistance Junction-Case	Max	83.3	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ $^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CEX}	Collector Cut-off Current (V _{BE} = -3 V)	V _{CE} = 30 V			50	nA
I _{BEX}	Base Cut-off Current (V _{BE} = -3 V)	V _{CE} = 30 V			50	nA
V _{(BR)CEO*}	Collector-Emitter Breakdown Voltage (I _B = 0)	I _C = 1 mA	40			V
V _{(BR)CBO}	Collector-Base Breakdown Voltage (I _E = 0)	I _C = 10 μA	60			V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage (I _C = 0)	I _E = 10 μA	6			V
V _{CE(sat)*}	Collector-Emitter Saturation Voltage	$\begin{split} I_C &= 10 \text{ mA} & I_B = 1 \text{ mA} \\ I_C &= 50 \text{ mA} & I_B = 5 \text{ mA} \end{split}$			0.2 0.2	V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 10 mA	0.65		0.85 0.95	V V
h _{FE} *	DC Current Gain	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	60 80 100 60 30		300	
f _T	Transition Frequency	$I_C = 10 \text{ mA } V_{CE} = 20 \text{ V } f = 100 \text{ MHz}$	250	270		MHz
Ссво	Collector-Base Capacitance	I _E = 0 V _{CB} = 10 V f = 1 MHz		4		pF
СЕВО	Emitter-Base Capacitance	$I_C = 0$ $V_{EB} = 0.5 \text{ V}$ $f = 1 \text{ MHz}$		18		pF
NF	Noise Figure	V_{CE} = 5 V I_{C} = 0.1 mA f = 10 Hz to 15.7 KHz R_{G} = 1 K Ω		5		dB
t _d t _r	Delay Time Rise Time	$I_C = 10 \text{ mA}$ $I_B = 1 \text{ mA}$ $V_{CC} = 30 \text{ V}$			35 35	ns ns
t _s	Storage Time Fall Time	$I_{C} = 10 \text{ mA}$ $I_{B1} = -I_{B2} = 1 \text{ mA}$ $V_{CC} = 30 \text{ V}$			200 50	ns ns

^{*} Pulsed: Pulse duration = 300 μs, duty cycle ≤ 2 %

2/5

NPN Silicon Switching Transistors

• High DC current gain: 0.1mA to 500 mA

• Low collector-emitter saturation voltage

• Complementary types: BSS80, BSS82 (PNP)

Туре	Marking	Pin Configuration			Package
BSS79B	CEs	1 = B	2 = E	3 = C	SOT23
BSS79C	CFs	1 = B	2 = E	3 = C	SOT23
BSS81B	CDs	1 = B	2 = E	3 = C	SOT23
BSS81C	CGs	1 = B	2 = E	3 = C	SOT23

Maximum Ratings

Parameter	Symbol	BSS79	BSS81	Unit
Collector-emitter voltage	V_{CEO}	40	35	V
Collector-base voltage	V_{CBO}	7	5	V
Emitter-base voltage	V_{EBO}	(6	
DC collector current	l _C	800		mA
Peak collector current	l∕ _{CM}	1		А
Base current	l _B	100		mA
Peak base current	l _{BM}	200		
Total power dissipation, $T_S = 77 ^{\circ}\text{C}$	P_{tot}	330		mW
Junction temperature	T_{j}	150		°C
Storage temperature	$T_{ m stg}$	-65	. 150	

Thermal Resistance

Junction - soldering point 1)	R _{thJS}	≤220	K/W
-------------------------------	-------------------	------	-----

1

 $^{^{1}}$ For calculation of R_{thJA} please refer to Application Note Thermal Resistance

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified.

Parameter		Symbol		Values	<u> </u>	Unit
			min.	typ.	max.	
DC Characteristics					,	
Collector-emitter breakdown voltage		V _{(BR)CEO}				V
$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$	BSS79		40	-	-	
	BSS81		35	-	-	
Collector-base breakdown voltage		V _{(BR)CBO}	75	-	-	
$I_{\rm C} = 10 \ \mu {\rm A}, \ I_{\rm E} = 0$						
Emitter-base breakdown voltage		V _{(BR)EBO}	6	-	-	
$I_{\rm E} = 10 \ \mu A, \ I_{\rm C} = 0$, ,				
Collector cutoff current		<i>I</i> CBO	-	-	10	nA
$V_{\text{CB}} = 60 \text{ V}, I_{\text{E}} = 0$						
Collector cutoff current		I _{CBO}	-	-	10	μA
$V_{\text{CB}} = 60 \text{ V}, I_{\text{E}} = 0 , T_{\text{A}} = 150 ^{\circ}\text{C}$						
Emitter cutoff current		I _{EBO}	-	-	10	nA
$V_{EB} = 3 \text{ V}, I_{C} = 0$						
DC current gain 1)		h _{FE}				-
$I_{\rm C} = 100 \ \mu \rm A, \ V_{\rm CE} = 10 \ V$	BSS79/81B		20	-	-	
	BSS79/81C		35	-	-	
$I_{\rm C} = 1 \text{ mA}, \ V_{\rm CE} = 10 \text{ V}$	BSS79/81B		25	-	-	
	BSS79/81C		50	-	-	
$I_{\rm C} = 10 \text{ mA}, \ V_{\rm CE} = 10 \text{ V}$	BSS79/81B		35	-	-	
	BSS79/81C		75	-	-	
$I_{\rm C}$ = 150 mA, $V_{\rm CE}$ = 10 V	BSS79/81B		40	-	120	
	BSS79/81C		100	-	300	
$I_{\rm C} = 500 \text{ mA}, \ V_{\rm CE} = 10 \text{ V}$	BSS79/81B		25	-	-	
	BSS79/82C		40	-	-	
Collector-emitter saturation voltage1)	V _{CEsat}				V
$I_{\rm C} = 150 \text{ mA}, I_{\rm B} = 15 \text{ mA}$		22001	-	_	0.3	
$I_{\rm C} = 500 \text{mA}, I_{\rm B} = 50 \text{mA}$			-	-	1.3	
Base-emitter saturation voltage 1)		V _{BEsat}				1
$I_{\rm C} = 150 \text{ mA}, I_{\rm B} = 15 \text{ mA}$			-	_	1.2	
$I_{\rm C} = 500 \text{mA}, I_{\rm B} = 50 \text{mA}$			-	_	2.0	

¹⁾ Pulse test: $t \le 300\mu s$, D = 2%

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified.

Parameter	Symbol		Values		Unit
		min.	typ.	max.	1
AC Characteristics	•	•	•	•	•
Transition frequency	f _T	-	250	-	MHz
$I_{C} = 20 \text{ mA}, \ V_{CE} = 20 \text{ V}, \ f = 100 \text{ MHz}$					
Collector-base capacitance	C _{cb}	-	6	-	pF
$V_{CB} = 10 \text{ V}, f = 1 \text{ MHz}$					
Delay time	t _d	-	-	10	ns
$V_{\rm CC}$ = 30 V, $I_{\rm C}$ = 150 mA, $I_{\rm B1}$ = 15 mA,					
$V_{BE(off)} = 0.5 \; V$					
Rise time	t _r	-	-	25	
$V_{\rm CC}$ = 30 V, $I_{\rm C}$ = 150 mA, $I_{\rm B1}$ = 15 mA,					
$V_{BE(off)} = 0.5 \; V$					
Storage time	t _{stg}	-	-	250	1
$V_{\rm CC} = 30 \text{ V}, I_{\rm C} = 150 \text{ mA}, I_{\rm B1} = I_{\rm B2} = 15 \text{mA}$					
Fall time	t_{f}	-	-	60]
$V_{\rm CC} = 30 \text{ V}, I_{\rm C} = 150 \text{ mA}, I_{\rm B1} = I_{\rm B2} = 15 \text{mA}$					

Test circuits Delay and rise time

Oscillograph: R > 100k Ω C < 12pF $t_{\rm f} < 5$ ns

Storage and fall time

Total power dissipation $P_{tot} = f(T_S)$

Permissible pulse load

$$P_{\text{totmax}} / P_{\text{totDC}} = f(t_p)$$

Collector-base capacitance $C_{CB} = f(V_{CB})$ f = 1MHz

Transition frequency $f_T = f(I_C)$

$$V_{CE} = 20V$$

Saturation voltage $I_{C} = f(V_{BEsat}, V_{CEsat})$ $h_{FE} = 10$

Delay time $t_{cl} = f(I_{cl})$ Rise time $t_{rl} = f(I_{cl})$

DC current gain $h_{FE} = f(I_C)$

$$V_{CE} = 10V$$

Storage time $t_{stg} = f(I_C)$

Fall time $t_f = f(I_C)$

Silicon diffused power transistors

BUT12; BUT12A

DESCRIPTION

High-voltage, high-speed, glass-passivated NPN power transistor in a TO-220AB package.

APPLICATIONS

- Converters
- Inverters
- Switching regulators
- Motor control systems.

PINNING

PIN	DESCRIPTION
1	base
2	collector; connected to mounting base
3	emitter

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
V _{CESM}	collector-emitter peak voltage	V _{BE} = 0		
	BUT12		850	V
	BUT12A		1000	V
V _{CEO}	collector-emitter voltage	open base		
	BUT12		400	V
	BUT12A		450	V
V _{CEsat}	collector-emitter saturation voltage	see Fig.8	1.5	V
I _{Csat}	collector saturation current			
	BUT12		6	Α
	BUT12A		5	Α
I _C	collector current (DC)	see Figs 3 and 4	8	Α
I _{CM}	collector current (peak value)	see Fig. 4	20	А
P _{tot}	total power dissipation	T _{mb} ≤ 25 °C; see Fig.2	125	W
t _f	fall time	resistive load; see Figs 12 and 13	0.8	μs

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-mb}	thermal resistance from junction to mounting base	1	K/W

Silicon diffused power transistors

BUT12; BUT12A

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CESM}	collector-emitter peak voltage	$V_{BE} = 0$			
	BUT12		_	850	V
	BUT12A		_	1000	V
V _{CEO}	collector-emitter voltage	open base			
	BUT12		_	400	V
	BUT12A		_	450	V
I _{Csat}	collector saturation current				
	BUT12		_	6	Α
	BUT12A		_	5	Α
I _C	collector current (DC)	see Figs 3 and 4	_	8	Α
I _{CM}	collector current (peak value)	see Fig. 4	_	20	А
I _B	base current (DC)		_	4	Α
I _{BM}	base current (peak value)		_	6	А
P _{tot}	total power dissipation	T _{mb} ≤ 25 °C; see Fig.2	_	125	W
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature			150	°C

Silicon diffused power transistors

BUT12; BUT12A

CHARACTERISTICS

 $T_j = 25$ °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CEOsust}	collector-emitter sustaining voltage	I _C = 100 mA; I _{Boff} = 0; L = 25 mH; see				
	BUT12	Figs 6 and 7	400	_	_	V
	BUT12A		450	_	_	V
V _{CEsat}	collector-emitter saturation voltage					
	BUT12	I _C = 6 A; I _B = 1.2 A; see Figs 8 and 10	_	_	1.5	V
	BUT12A	I _C = 5 A; I _B = 1 A; see Figs 8 and 10	_	_	1.5	٧
V _{BEsat}	base-emitter saturation voltage					
	BUT12	I _C = 6 A; I _B = 1.2 A; see Fig.8	_	_	1.5	V
	BUT12A	I _C = 5 A; I _B = 1 A; see Fig.8	_	_	1.5	٧
I _{CES}	collector-emitter cut-off current	V _{CE} = V _{CESmax} ; V _{BE} = 0; note 1	_	_	1	mA
		$V_{CE} = V_{CESmax}$; $V_{BE} = 0$; $T_j = 125$ °C; note 1	-	_	3	mA
I _{EBO}	emitter-base cut-off current	$V_{EB} = 9 \text{ V}; I_{C} = 0$	_	_	10	mA
h _{FE}	DC current gain	V _{CE} = 5 V; I _C = 10 mA; see Fig.11	10	18	35	
		V _{CE} = 5 V; I _C = 1 A; see Fig.11	10	20	35	
Switching	times resistive load (see Figs 12 a	and 13)			•	
t _{on}	turn-on time					
	BUT12	$I_{Con} = 6 \text{ A}; I_{Bon} = -I_{Boff} = 1.2 \text{ A}$	_	_	1	μs
	BUT12A	$I_{Con} = 5 \text{ A}; I_{Bon} = -I_{Boff} = 1 \text{ A}$	_	_	1	μs
t _s	storage time					
	BUT12	$I_{Con} = 6 \text{ A}; I_{Bon} = -I_{Boff} = 1.2 \text{ A}$	_	_	4	μs
	BUT12A	$I_{Con} = 5 \text{ A}; I_{Bon} = -I_{Boff} = 1 \text{ A}$	_	_	4	μs
t _f	fall time					
	BUT12	$I_{Con} = 6 \text{ A}; I_{Bon} = -I_{Boff} = 1.2 \text{ A}$	_	_	0.8	μs
	BUT12A	$I_{\text{Con}} = 5 \text{ A}$; $I_{\text{Bon}} = -I_{\text{Boff}} = 1 \text{ A}$	_	_	0.8	μs
Switching	times inductive load (see Figs 14	and 15)				
t _s	storage time					
	BUT12	$I_{Con} = 6 \text{ A}; I_{Bon} = 1.2 \text{ A}; V_{CL} = 250 \text{ V};$ $T_{c} = 100 ^{\circ}\text{C}$	_	1.9	2.5	μs
	BUT12A	I _{Con} = 5 A; I _{Bon} = 1 A; V _{CL} = 300 V; T _c = 100 °C	-	1.9	2.5	μs
t _f	fall time					
	BUT12	$I_{Con} = 6 \text{ A}; I_{Bon} = 1.2 \text{ A}; V_{CL} = 250 \text{ V};$ $T_{c} = 100 ^{\circ}\text{C}$	_	200	300	ns
	BUT12A	I _{Con} = 5 A; I _{Bon} = 1 A; V _{CL} = 300 V;	_	200	300	ns

Note

1. Measured with a half-sinewave voltage (curve tracer).

Silicon diffused power transistors

BUT12; BUT12A

Fig.4 Forward bias SOAR.

4

1997 Aug 13

Silicon diffused power transistors

BUT12; BUT12A

5

1997 Aug 13

Silicon diffused power transistors

BUT12; BUT12A

MGB911 1.6 V_{BE} 1.4 (1) 1.2 (2) (3) 1.0 0.8 0 $I_{B}(A)$ T_j = 25 °C. (2) $I_C = 6 A$. (1) $I_C = 8 A$. (3) $I_C = 3 A$. Fig.9 Base-emitter voltage as a function of base current; typical values.

Silicon diffused power transistors

BUT12; BUT12A

- (1) $I_C = 3 A$.
- (2) $I_C = 6 A$.
- (3) $I_C = 8 A$.

 T_j = 25 °C; solid line: typical values; dotted line: maximum values.

Fig.10 Collector-emitter saturation voltage as a function of base current.

1997 Aug 13

Silicon diffused power transistors

BUT12; BUT12A

Silicon diffused power transistors

BUT12; BUT12A

PACKAGE OUTLINE

Plastic single-ended package; heatsink mounted; 1 mounting hole; 3-lead TO-220

SOT78

0 5 10 mm

DIMENSIONS (mm are the original dimensions)

UNIT	A	A ₁	b	b ₁	С	D	D ₁	E	е	L	L ₁	L ₂ ⁽¹⁾ max.	Р	q	Q
mm	4.5 4.1	1.39 1.27	0.9 0.7	1.3 1.0	0.7 0.4	15.8 15.2	6.4 5.9	10.3 9.7	2.54	15.0 13.5	3.30 2.79	3.0	3.8 3.6	3.0 2.7	2.6 2.2

Note

1. Terminals in this zone are not tinned.

OUTLINE		REFER	ENCES	EUROPEAN ISSUE DAT				
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE		
SOT78		TO-220				97-06-11		

FRFET**M

FQP10N50CF / FQPF10N50CF 500V N-Channel MOSFET

Features

- 10A, 500V, $R_{DS(on)}$ = 0.61 Ω @ V_{GS} = 10 V
- Low gate charge (typical 43 nC)
- Low Crss (typical 16pF)
- · Fast switching
- · 100% avalanche tested
- · Improved dv/dt capability
- · Fast recovery body diode

Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficient switched mode power supplies and active power factor correction.

Absolute Maximum Ratings

Symbol		Parameter		FQP10N50CF	FQPF10N50CF	Unit
V _{DSS}	Drain-Source Volta	age		5	600	V
I _D	Drain Current	- Continuous (T _C =	25°C)	10	10*	Α
		- Continuous (T _C =	100°C)	6.35	6.35*	Α
I _{DM}	Drain Current	- Pulsed	(Note 1)	40	40*	Α
V _{GSS}	Gate-Source volta	ge		± 30		V
E _{AS}	Single Pulsed Ava	lanche Energy	(Note 2)	388		mJ
I _{AR}	Avalanche Curren	t	(Note 1)	10		Α
E _{AR}	Repetitive Avalance	che Energy	(Note 1)	14.3		mJ
dv/dt	Peak Diode Recov	very dv/dt	(Note 3)	4.5		V/ns
P _D	Power Dissipation	(T _C = 25°C)		143	48	W
		- Derate above 25°	°C	1.14	0.38	W/°C
T _{J,} T _{STG}	Operating and Storage Temperature Range			-55 to +150		°C
TL	Maximum Lead Te 1/8" from Case for	emperature for Soldering 5 Seconds	Purpose,	300		°C

^{*}Drain current limited by maximum junction temperature

Thermal Characteristics

Symbol	Parameter	FQP10N50CF	FQPF10N50CF	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	0.87	2.58	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	62.5	62.5	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FQP10N50CF	FQP10N50CF	TO-220	-	-	50
FQPF10N50CF	FQPF10N50CF	TO-220F	-	-	50

Electrical Characteristics $T_C = 25$ °C unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Off Charac	teristics	-		Į.		•
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V$, $I_D = 250\mu A$, $T_J = 25^{\circ}C$	500			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250μA, Referenced to 25°C		0.5		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 500V, V _{GS} = 0V			10	μА
		V _{DS} = 400V, T _C = 125°C			100	μА
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30V, V _{DS} = 0V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30V, V _{DS} = 0V			-100	nA
On Charac	teristics			II.		,
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10V, I _D = 5A		0.5	0.61	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 40V, I_D = 5A$ (Note 4)		15		S
Dynamic C	haracteristics				•	•
C _{iss}	Input Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$		1610	2096	pF
C _{oss}	Output Capacitance	f = 1.0MHz		177	230	pF
C _{rss}	Reverse Transfer Capacitance]		16	24	pF
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time	V _{DD} = 250V, I _D = 10A		29	67	ns
t _r	Turn-On Rise Time	$R_G = 25\Omega$		80	170	ns
t _{d(off)}	Turn-Off Delay Time]		141	290	ns
t _f	Turn-Off Fall Time	(Note 4, 5)		80	165	ns
Qg	Total Gate Charge	V _{DS} = 400V, I _D = 10A		43	56	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10V		7.5		nC
Q_{qd}	Gate-Drain Charge	(Note 4, 5)		18.5		nC
Drain-Sour	ce Diode Characteristics and Maximur	n Ratings				
I _S	Maximum Continuous Drain-Source Dio	de Forward Current			10	Α
I _{SM}	Maximum Pulsed Drain-Source Diode F	orward Current			40	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0V, I _S = 10A			1.4	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0V, I _S = 10A		50		ns
Q _{rr}	Reverse Recovery Charge	$dI_F/dt = 100A/\mu s$ (Note 4)		0.1		μС
	1	1				

Notes

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. L = 7mH, I_{AS} = 10A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C
- 3. $I_{SD} \leq$ 10A, di/dt \leq 200A/ μ s, $V_{DD} \leq$ BV $_{DSS}$, Starting T_J = 25°C
- 4. Pulse Test: Pulse width $\leq 300 \mu s, \, Duty \, Cycle \leq 2\%$
- 5. Essentially Independent of Operating Temperature Typical Characteristics

Typical Performance Characteristics

Figure 1. On-Region Characteristics

Figure 3. On-Resistance Variation vs.

I_D, Drain Current [A]

Note: T = 25

30

Figure 5. Capacitance Characteristics

5

Figure 2. Transfer Characteristics

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperatue

Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 9-1. Maximum Safe Operating Area for FQP10N50CF

Figure 8. On-Resistance Variation vs. Temperature

Figure 9-2. Maximum Safe Operating Area for FQPF10N50CF

Figure 10. Maximum Drain Current vs. Case Temperature

Typical Performance Characteristics (Continued)

Figure 11-1. Transient Thermal Response Curve for FQP10N50CF

Figure 11-2. Transient Thermal Response Curve for FQPF10N50CF

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

V_{GS} 10% - t_{co} - t

Unclamped Inductive Switching Test Circuit & Waveforms

Peak Diode Recovery dv/dt Test Circuit & Waveforms

Mechanical Dimensions

TO-220

10.00 ±0.20

Dimensions in Millimeters

Mechanical Dimensions (Continued) TO-220F 3.30 ± 0.10 10.16 ±0.20 2.54 ± 0.20 $\emptyset 3.18 \pm 0.10$ (0.70)(7.00) 6.68 ± 0.20 15.87 ±0.20 15.80 ±0.20 (1.00x45°) MAX1.47 9.75 ±0.30 0.80 ± 0.10 0.35 ± 0.10 $0.50^{\,+0.10}_{\,-0.05}$ 2.76 ± 0.20 2.54TYP 2.54TYP [2.54 ±0.20] [2.54 ±0.20]

Dimensions in Millimeters

 4.70 ± 0.20

 9.40 ± 0.20

UniFFT™

UltraFET[®]

VCXTM

Wire™

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FACT Quiet Series™ ACEx™ OCX^{TM} SILENT SWITCHER® ActiveArray™ GlobalOptoisolator™ OCXPro™ SMART START™ Bottomless™ OPTOLOGIC® GTO™ SPM™ HiSeC™ Stealth™ Build it Now™ OPTOPLANAR™ I²C™ SuperFET™ CoolFET™ PACMAN™ i-Lo™ РОР™ SuperSOT™-3 $CROSSVOLT^{TM}$ SuperSOT™-6 DOME™ ImpliedDisconnect™ Power247™ EcoSPARK™ IntelliMAX™ PowerEdge™ SuperSOT™-8 E²CMOS™ ISOPLANAR™ PowerSaver™ SyncFET™ PowerTrench® EnSigna™ LittleFET™ ТСМ™ MICROCOUPLER™ FACT™ **QFET®** TinyBoost™ $\mathsf{FAST}^{\mathbb{R}}$ MicroFET™ QS^{TM} TinyBuck™ $FASTr^{TM}$ MicroPak™ QT Optoelectronics™ TinyPWM™ FPS™ MICROWIRE™ Quiet Series™ TinyPower™ FRFET™ TinyLogic[®] RapidConfigure™ MSX™ TINYOPTO™ MSXPro™ RapidConnect™ Across the board. Around the world.™ µSerDes™ TruTranslation™ The Power Franchise® . ScalarPump™ UHC™

Programmable Active Droop™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS. SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Fast S-IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode

- 75% lower E_{off} compared to previous generation combined with low conduction losses
- Short circuit withstand time 10 μs
- Designed for:
 - Motor controls
 - Inverter
- NPT-Technology for 600V applications offers:
 - very tight parameter distribution
 - high ruggedness, temperature stable behaviour
 - parallel switching capability
- Very soft, fast recovery anti-parallel EmCon diode

Туре	V_{CE}	Ic	V _{CE(sat)}	$T_{\rm j}$	Package	Ordering Code
SKP10N60	600V	10A	2.2V	150°C	TO-220AB	Q67040-S4217
SKB10N60					TO-263AB	Q67040-S4218
SKW10N60					TO-247AC	Q67040-S4241

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CE}	600	V
DC collector current	I _C		Α
$T_{\rm C} = 25^{\circ}{\rm C}$		21	
$T_{\rm C} = 100^{\circ}{\rm C}$		10.9	
Pulsed collector current, t_p limited by T_{jmax}	I _{Cpuls}	42	
Turn off safe operating area	-	42	
$V_{\text{CE}} \le 600 \text{V}, \ T_{\text{j}} \le 150^{\circ} \text{C}$			
Diode forward current	I _F		
$T_{\rm C} = 25^{\circ}{\rm C}$		21	
$T_{\rm C} = 100^{\circ}{\rm C}$		10	
Diode pulsed current, t_p limited by T_{jmax}	I _{Fpuls}	42	
Gate-emitter voltage	V _{GE}	±20	V
Short circuit withstand time ¹⁾	t _{SC}	10	μs
$V_{\text{GE}} = 15\text{V}, \ V_{\text{CC}} \le 600\text{V}, \ T_{\text{j}} \le 150^{\circ}\text{C}$			
Power dissipation	P _{tot}	104	W
$T_{\rm C}$ = 25°C			
Operating junction and storage temperature	$T_{\rm j}$, $T_{ m stg}$	-55+150	°C

1

¹⁾ Allowed number of short circuits: <1000; time between short circuits: >1s.

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic	<u> </u>			
IGBT thermal resistance,	R _{thJC}		1.2	K/W
junction – case				
Diode thermal resistance,	R _{thJCD}		2.4	
junction – case				
Thermal resistance,	R _{thJA}	TO-220AB	62	
junction – ambient		TO-247AC	40	
SMD version, device on PCB ¹⁾	R _{thJA}	TO-263AB	40	

Electrical Characteristic, at $T_i = 25$ °C, unless otherwise specified

Davamatar	Symbol Conditions		Value			Unit
Parameter	Symbol	Conditions	min.	Тур.	max.	Unit
Static Characteristic						
Collector-emitter breakdown voltage	$V_{(BR)CES}$	$V_{\rm GE} = 0 \text{V}, I_{\rm C} = 500 \mu \text{A}$	600	-	-	V
Collector-emitter saturation voltage	$V_{CE(sat)}$	$V_{\rm GE} = 15 \rm V, \ I_{\rm C} = 10 \rm A$				
		<i>T</i> _j =25°C	1.7	2	2.4	
		T _j =150°C	-	2.2	2.7	
Diode forward voltage	V_{F}	$V_{GE} = 0 \text{V}, I_{F} = 10 \text{A}$				
		<i>T</i> _j =25°C	1.2	1.4	1.8	
		T _j =150°C	-	1.25	1.65	
Gate-emitter threshold voltage	$V_{\rm GE(th)}$	$I_{\rm C} = 300 \mu A, V_{\rm CE} = V_{\rm GE}$	3	4	5	
Zero gate voltage collector current	I _{CES}	$V_{CE} = 600 \text{ V}, V_{GE} = 0 \text{ V}$				μΑ
		<i>T</i> _j =25°C	-	-	40	
		T _j =150°C	-	-	1500	
Gate-emitter leakage current	I _{GES}	$V_{\text{CE}}=0\text{V}, V_{\text{GE}}=20\text{V}$	-	-	100	nA
Transconductance	g_{fs}	$V_{CE} = 20V, I_{C} = 10A$	-	6.7	-	S
Dynamic Characteristic						
Input capacitance	Ciss	V _{CE} =25V,	-	580	696	pF
Output capacitance	Coss	$V_{GE}=0V$,	-	70	84	
Reverse transfer capacitance	C _{rss}	f=1MHz	-	50	60	
Gate charge	Q _{Gate}	$V_{\rm CC} = 480 \text{V}, I_{\rm C} = 10 \text{A}$	-	64	83	nC
		$V_{GE}=15V$				
Internal emitter inductance	L_{E}	TO-220AB	-	7	-	nΗ
measured 5mm (0.197 in.) from case		TO-247AC	-	13	-	
Short circuit collector current ²⁾	$I_{C(SC)}$	$V_{\text{GE}} = 15 \text{V}, t_{\text{SC}} \le 10 \mu \text{s}$ $V_{\text{CC}} \le 600 \text{V},$ $T_{\text{j}} \le 150 ^{\circ} \text{C}$	-	100	-	A

¹⁾ Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70μm thick) copper area for collector connection. PCB is vertical without blown air.
²⁾ Allowed number of short circuits: <1000; time between short circuits: >1s.

2

Switching Characteristic, Inductive Load, at T_i =25 °C

Parameter	Cumbal	mbol Conditions		Value		
Parameter	Symbol Conditions		min.	typ.	max.	Unit
IGBT Characteristic						
Turn-on delay time	$t_{d(on)}$	<i>T</i> _j =25°C,	-	29	35	ns
Rise time	t _r	$V_{\rm CC} = 400 \text{V}, I_{\rm C} = 10 \text{A},$	-	21	25	
Turn-off delay time	$t_{d(off)}$	$V_{\rm GE} = 0/15 \rm V$	-	233	280	
Fall time	t_{f}	$R_{\rm G}$ =25 Ω ,	-	49	59	1
Turn-on energy	Eon	Energy losses include	-	0.20	0.230	mJ
Turn-off energy	E _{off}	"tail" and diode	-	0.17	0.221	
Total switching energy	Ets	reverse recovery.	-	0.370	0.451	
Anti-Parallel Diode Characteristic						
Diode reverse recovery time	t_{rr}	<i>T</i> _j =25°C,	-	220	-	ns
	$t_{\mathbb{S}}$	V_{R} =200V, I_{F} =10A,	-	20	-	
	t_{F}	$di_F/dt=200A/\mu s$	-	200	-	
Diode reverse recovery charge	Q _{rr}		-	310	-	nC
Diode peak reverse recovery current	I _{rrm}		-	4.5	-	Α
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	di _{rr} /dt		-	180	-	A/μs

Switching Characteristic, Inductive Load, at T_j =150 °C

Barrantan	Combal	O a malitia ma	Value			11
Parameter	Symbol Conditions		min.	typ.	max.	Unit
IGBT Characteristic						•
Turn-on delay time	$t_{d(on)}$	T _j =150°C	-	29	35	ns
Rise time	$t_{\rm r}$	$V_{\rm CC} = 400 \text{V}, I_{\rm C} = 10 \text{A},$	-	21	25	
Turn-off delay time	$t_{d(off)}$	$V_{GE} = 0/15 V$,	-	266	319	
Fall time	t_{f}	$R_{\rm G}$ =25 Ω	-	63	76	
Turn-on energy	Eon	Energy losses include	-	0.297	0.342	mJ
Turn-off energy	E _{off}	"tail" and diode reverse recovery.	-	0.28	0.364	
Total switching energy	Ets	Teverse recovery.	-	0.577	0.706	
Anti-Parallel Diode Characteristic						•
Diode reverse recovery time	t_{rr}	T _j =150°C	-	350	-	ns
	$t_{\mathbb{S}}$	V_{R} =200V, I_{F} =10A,	-	36	-	
	t_{F}	$di_F/dt=200A/\mu s$	-	314	-	
Diode reverse recovery charge	Q _{rr}		-	690	-	nC
Diode peak reverse recovery current	I _{rrm}		-	6.3	-	Α
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	di _{rr} /dt		-	200	-	A/μs

Figure 1. Collector current as a function of switching frequency

 $(T_{\rm j} \le 150^{\circ}{\rm C}, \ D = 0.5, \ V_{\rm CE} = 400{\rm V}, \ V_{\rm GE} = 0/+15{\rm V}, \ R_{\rm G} = 25\Omega)$

Figure 2. Safe operating area $(D = 0, T_C = 25^{\circ}C, T_i \le 150^{\circ}C)$

Figure 3. Power dissipation as a function of case temperature $(T_i \le 150^{\circ}C)$

Figure 4. Collector current as a function of case temperature

 $(V_{GE} \le 15V, T_{i} \le 150^{\circ}C)$

Figure 5. Typical output characteristics $(T_i = 25^{\circ}\text{C})$

Figure 6. Typical output characteristics $(T_i = 150^{\circ}\text{C})$

Figure 7. Typical transfer characteristics ($V_{CE} = 10V$)

Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature ($V_{GE} = 15V$)

Mar-00

5

Figure 9. Typical switching times as a function of collector current (inductive load, $T_j = 150^{\circ}\text{C}$, $V_{\text{CE}} = 400\text{V}$, $V_{\text{GE}} = 0/+15\text{V}$, $R_{\text{G}} = 25\Omega$)

Figure 10. Typical switching times as a function of gate resistor (inductive load, $T_j = 150^{\circ}\text{C}$, $V_{\text{CE}} = 400\text{V}$, $V_{\text{GE}} = 0/+15\text{V}$, $I_{\text{C}} = 10\text{A}$)

Figure 11. Typical switching times as a function of junction temperature (inductive load, $V_{CE} = 400\text{V}$, $V_{GE} = 0/+15\text{V}$, $I_{C} = 10\text{A}$, $R_{G} = 25\Omega$)

 $\it T_{\rm j},$ JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature ($\it I_{\rm C}=0.3 mA)$

Figure 13. Typical switching energy losses as a function of collector current (inductive load, $T_i = 150^{\circ}\text{C}$, $V_{\text{CE}} = 400\text{V}$,

 $V_{\rm GE} = 0/+15 \text{V}, R_{\rm G} = 25 \Omega$

Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, $T_j = 150^{\circ}\text{C}$, $V_{\text{CE}} = 400\text{V}$, $V_{\text{GE}} = 0/+15\text{V}$, $I_{\text{C}} = 10\text{A}$)

Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, $V_{\rm CE} = 400 \text{V}$, $V_{\rm GE} = 0/+15 \text{V}$, $I_{\rm C} = 10 \text{A}$, $R_{\rm G} = 25 \Omega$)

Figure 16. IGBT transient thermal impedance as a function of pulse width $(D = t_p / T)$

Figure 17. Typical gate charge $(I_C = 10A)$

Figure 18. Typical capacitance as a function of collector-emitter voltage $(V_{GE} = 0V, f = 1MHz)$

Figure 19. Short circuit withstand time as a function of gate-emitter voltage ($V_{CE} = 600V$, start at $T_i = 25^{\circ}C$)

Figure 20. Typical short circuit collector current as a function of gate-emitter voltage ($V_{CE} \le 600V$, $T_i = 150^{\circ}C$)

Mar-00

8

 $di_{\rm F}/dt$, DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope ($V_{\rm R} = 200 \, \text{V}, \, T_{\rm j} = 125 \, ^{\circ} \text{C}$)

 $di_{\rm F}/dt$, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope ($V_{\rm R} = 200 \text{V}$, $T_{\rm i} = 125 ^{\circ}\text{C}$)

 $di_{\rm F}/dt$, DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope ($V_{\rm R} = 200 \text{V}$, $T_{\rm i} = 125 ^{\circ}\text{C}$)

 d_{i_F}/dt , DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope ($V_R = 200V$, $T_i = 125$ °C)

Figure 25. Typical diode forward current as a function of forward voltage

Figure 26. Typical diode forward voltage as a function of junction temperature

 $t_{\rm p}$, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width $(D=t_{\rm p}/T)$

TO-220AB

dimensions					
symbol	[m	m]	[inch]		
	min	max	min	max	
Α	9.70	10.30	0.3819	0.4055	
В	14.88	15.95	0.5858	0.6280	
С	0.65	0.86	0.0256	0.0339	
D	3.55	3.89	0.1398	0.1531	
Е	2.60	3.00	0.1024	0.1181	
F	6.00	6.80	0.2362	0.2677	
G	13.00	14.00	0.5118	0.5512	
Н	4.35	4.75	0.1713	0.1870	
K	0.38	0.65	0.0150	0.0256	
L	0.95	1.32	0.0374	0.0520	
М	2.54 typ.		0.1 typ.		
N	4.30	4.50	0.1693	0.1772	
Р	1.17	1.40	0.0461	0.0551	
Т	2.30	2.72	0.0906	0.1071	

TO-263AB (D²Pak)

	dimensions				
symbol	[m	m]	[inch]		
	min	max	min	max	
Α	9.80	10.20	0.3858	0.4016	
В	0.70	1.30	0.0276	0.0512	
С	1.00	1.60	0.0394	0.0630	
D	1.03	1.07	0.0406	0.0421	
Е	2.54	typ.	0.1 typ.		
F	0.65	0.85	0.0256	0.0335	
G	5.08	typ.	0.2 typ.		
Н	4.30	4.50	0.1693	0.1772	
K	1.17	1.37	0.0461	0.0539	
L	9.05	9.45	0.3563	0.3720	
М	2.30	2.50	0.0906	0.0984	
N	15	typ.	0.5906 typ.		
Р	0.00	0.20	0.0000	0.0079	
Q	4.20	5.20	0.1654	0.2047	
R	8° r	nax	8° max		
S	2.40	3.00	0.0945	0.1181	
Т	0.40	0.60	0.0157	0.0236	
U	10.80		0.4252		
V	1.15		0.0453		
W	6.23		0.2453		
Х	4.60		0.1811		
Υ	9.40		0.3701		
Z	16.15		0.6358		

	dimensions					
symbol	[m	m]	[inch]			
	min	max	min	max		
Α	4.78	5.28	0.1882	0.2079		
В	2.29	2.51	0.0902	0.0988		
С	1.78	2.29	0.0701	0.0902		
D	1.09	1.32	0.0429	0.0520		
Е	1.73	2.06	0.0681	0.0811		
F	2.67	3.18	0.1051	0.1252		
G	0.76 max		0.0299 max			
Н	20.80	21.16	0.8189	0.8331		
K	15.65	16.15	0.6161	0.6358		
L	5.21	5.72	0.2051	0.2252		
М	19.81	20.68	0.7799	0.8142		
N	3.560	4.930	0.1402	0.1941		
ØP	3.61		0.1421			
Q	6.12	6.22	0.2409	0.2449		

 $di_{F}/dt \qquad t_{rr} = t_{S} + t_{F}$ $Q_{rr} = Q_{S} + Q_{F}$ $t_{rr} = t_{S} + t_{F}$ $Q_{rr} = Q_{S} + Q_{F}$ $t_{rr} = t_{S} + t_{F}$ $Q_{rr} = Q_{S} + Q_{F}$ $Q_{S} = Q_{S} + Q_{S}$ $Q_{S} = Q_$

Figure C. Definition of diodes switching characteristics

Figure A. Definition of switching times

Figure D. Thermal equivalent circuit

Figure B. Definition of switching losses

Published by Infineon Technologies AG, Bereich Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 2000 All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.