

Transfer Learning

01

Fundamentals

02

Feature Extractors

Transfer Learning

03

Fine-Tuning

04

Challenges & Case Studies

Transfer Learning: Extracting features with a pre-trained CNN


```
# import the necessary packages
from tensorflow.keras.applications import VGG16

model = VGG16(weights="imagenet", include_top=False)
features = model.predict(batchImages, batch_size=bs)
```

Shallow ML Classifier (Logistic Regression, RF, Xgboost, etc)

Image	Features 25088 columns	Class
#01		Cat
#02		Cat
#N		Dog

Caltech 101 8677 instances

Animals: Cat, Dog & Panda 3000 instances

Flowers 17 1360 instances


```
# INPUTS
dataset = "animals"
output = "animals/hdf5/features.hdf5"
# size of feature extraction buffer
buffer_size = 1000
# store the batch size in a convenience variable
bs = 32
# feature extraction
feature_extraction(dataset,output,buffer_size,bs)
# train and evaluate
train_and_evaluate(output)
```

Database keys ['features', 'label_names', 'labels'] [INFO] tuning hyperparameters [INFO] best hyperparameters: {'C': 0.1} [INFO] evaluating									
	precision recall f1-score suppor								
cats dogs panda	0.97 0.99 1.00	1.00 0.96 1.00	0.98 0.98 1.00	264 250 236					
accuracy macro avg weighted avg	0.99 0.99	0.99	0.99 0.99 0.99	750 750 750					

	precision	recall	f1-score	support
Faces	0.98	0.99	0.99	119
Faces_easy	0.99	0.99	0.99	109
Leopards	0.98	1.00	0.99	55
Motorbikes	1.00	1.00	1.00	195
accordion	1.00	1.00	1.00	12
airplanes	1.00	1.00	1.00	214
•		•	•	
•		•	•	
•		•	•	
watch	1.00	0.98	0.99	63
water_lilly	1.00	0.33	0.50	12
wheelchair	1.00	1.00	1.00	14
wild_cat	0.90	0.90	0.90	10
windsor_chair	1.00	1.00	1.00	15
wrench	1.00	0.89	0.94	9
yin_yang	0.88	0.88	0.88	16
accuracy			0.95	2170
macro avg	0.94	0.93	0.93	2170
weighted avg	0.96	0.95	0.95	2170

Caltech 101

Input Input Input (CONV * 2) => (CONV * 2) => (CONV * 2) => POOL POOL POOL (CONV * 2) => (CONV * 2) => (CONV * 2) => POOL POOL POOL Original (CONV * 3) => (CONV * 3) => (CONV * 3) => POOL POOL POOL Layers (CONV * 3) => (CONV * 3) => (CONV * 3) => POOL POOL POOL (CONV * 3) => (CONV * 3) => (CONV * 3) => POOL POOL POOL (FC * 3) => (FC * 3) => SOFTMAX SOFTMAX New FC Layers **Output Labels Output Features** Output Labels

Fine-Tuning

```
# a fully connect network
class FCHeadNet:
    @staticmethod
    def build(baseModel, classes, D):
        # initialize the head model that will be placed on top of
        # the base, then add a FC layer
        headModel = baseModel.output
        headModel = Flatten(name="flatten")(headModel)
        headModel = Dense(D, activation="relu")(headModel)
        headModel = Dropout(0.5)(headModel)

# add a softmax layer
        headModel = Dense(classes,activation="softmax")(headModel)

# return the model
        return headModel
```

(FC * 3) => SOFTMAX

Old FC Layers

Tip!

RMSprop is frequently used in situations where we need to quickly obtain reasonable performance (first stage - left image).

SGD using a very small learning rate (second

stage - right image)

loop over all layers in the base
model and freeze them so they
will *not* be updated during the
training process
for layer in baseModel.layers:
 layer.trainable = False

Let's do a fine tuning using VGG 16 over Flowers 17

Flowers 17 1360 instances

Previous result using feature extraction

	precision	recall	f1-score	support
bluebell	0.95	1.00	0.97	19
buttercup	1.00	0.87	0.93	23
coltsfoot	1.00	0.96	0.98	23
cowslip	0.67	0.80	0.73	25
crocus	1.00	0.90	0.95	20
daffodil	0.78	0.95	0.86	19
daisy	0.94	1.00	0.97	15
dandelion	1.00	0.89	0.94	19
fritillary	0.91	1.00	0.95	20
iris	1.00	0.86	0.92	21
lilyvalley	0.86	0.95	0.90	20
pansy	0.88	1.00	0.93	14
snowdrop	0.90	0.95	0.93	20
sunflower	1.00	1.00	1.00	18
tigerlily	1.00	0.94	0.97	18
tulip	0.89	0.65	0.76	26
windflower	0.95	1.00	0.98	20
accuracy			0.91	340
macro avg	0.93	0.92	0.92	340
weighted avg	0.92	0.91	0.91	340

Epochs: 25, RMSProp (0.001), FC (256)

[INFO] evalua	ating after	initializa		
	precision		f1-score	support
bluebell	0.94	0.79	0.86	19
buttercup	0.90	0.95	0.92	19
coltsfoot	0.79	0.94	0.86	16
cowslip	0.77	0.85	0.81	20
crocus	0.73	0.89	0.80	18
daffodil	0.78	0.78	0.78	23
daisy	1.00	0.95	0.97	20
dandelion	0.94	0.80	0.86	20
fritillary	1.00	0.86	0.92	21
iris	1.00	1.00	1.00	16
lilyvalley	0.95	0.95	0.95	22
pansy	1.00	0.91	0.95	23
snowdrop	0.95	0.83	0.88	23
sunflower	0.95	0.95	0.95	20
tigerlily	0.82	0.93	0.87	15
tulip	0.69	0.74	0.71	27
windflower	0.95	1.00	0.97	18
accuracy			0.88	340
macro avg	0.89	0.89	0.89	340
weighted avg	0.89	0.88	0.88	340

Stage #02

```
from tensorflow.keras.applications import VGG16
include top = 0
# load the VGG16 network
print("[INFO] loading network...")
model = VGG16(weights="imagenet", include top= include top > 0)
print("[INFO] showing layers...")
for (i, layer) in enumerate(model.layers):
  print("[INFO] {}\t{}\".format(i, layer. class . name ))
```

VGG-16 without FC

```
[INFO] loading network...
[INFO] showing layers...
[INFO] 0
              InputLayer
[INFO] 1
              Conv2D
[INFO] 2
              Conv2D
[INFO] 3
              MaxPooling2D
              Conv2D
[INFO] 4
[INFO] 5
              Conv2D
[INFO] 6
              MaxPooling2D
[INFO] 7
              Conv2D
[INFO] 8
              Conv2D
[INFO] 9
              Conv2D
              MaxPooling2D
[INFO] 10
              Conv2D
[INFO] 11
[INFO] 12
              Conv2D
[INFO] 13
              Conv2D
[INFO] 14
              MaxPooling2D
[INFO] 15
              Conv2D
[INFO] 16
              Conv2D
[INFO] 17
              Conv2D
[INFO] 18
              MaxPooling2D
```


Stage #02

Unfreeze Early Layers & Train All

```
# now that the head FC layers have been
trained/initialized, lets
# unfreeze the final set of CONV layers and
make them trainable
for layer in baseModel.layers[15:]:
    layer.trainable = True
```


VGG-16 without FC

[INFO]	loading	network
[INFO]	showing	layers
[INFO]	0	InputLayer
[INFO]	1	Conv2D
[INFO]	2	Conv2D
[INFO]	3	MaxPooling2D
[INFO]	4	Conv2D
[INFO]	5	Conv2D
[INFO]	6	MaxPooling2D
[INFO]	7	Conv2D
[INFO]	8	Conv2D
[INFO]	9	Conv2D
[INFO]	10	MaxPooling2D
[INFO]	11	Conv2D
[INFO]	12	Conv2D
[INFO]	13	Conv2D
[INFO]	14	MaxPooling2D
[INFO]	15	Conv2D
[INFO]	16	Conv2D
[INFO]	17	Conv2D
[INFO]	18	MaxPooling2D

Feature extraction

Stage #02 fine tuning SGD (0.001), epochs = 100

	precision	recall	f1-score	support		precision	recall	f1-score	support
bluebell	0.95	1.00	0.97	19	bluebell	0.90	0.95	0.92	19
buttercup	1.00	0.87	0.93	23	buttercup	1.00	0.95	0.97	19
coltsfoot	1.00	0.96	0.98	23	coltsfoot	0.83	0.94	0.88	16
cowslip	0.67	0.80	0.73	25	cowslip	0.90	0.90	0.90	20
crocus	1.00	0.90	0.95	20	crocus	0.85	0.94	0.89	18
daffodil	0.78	0.95	0.86	19	daffodil	0.91	0.87	0.89	23
daisy	0.94	1.00	0.97	15	daisy	1.00	0.95	0.97	20
dandelion	1.00	0.89	0.94	19	dandelion	0.89	0.85	0.87	20
fritillary	0.91	1.00	0.95	20	fritillary	1.00	0.90	0.95	21
iris	1.00	0.86	0.92	21	iris	1.00	1.00	1.00	16
lilyvalley	0.86	0.95	0.90	20	lilyvalley	1.00	0.95	0.98	22
pansy	0.88	1.00	0.93	14	pansy	1.00	0.91	0.95	23
snowdrop	0.90	0.95	0.93	20	snowdrop	0.92	1.00	0.96	23
sunflower	1.00	1.00	1.00	18	sunflower	1.00	0.90	0.95	20
tigerlily	1.00	0.94	0.97	18	tigerlily	1.00	1.00	1.00	15
tulip	0.89	0.65	0.76	26	tulip	0.81	0.93	0.86	27
windflower	0.95	1.00	0.98	20	windflower	1.00	1.00	1.00	18
accuracy			0.91	340	accuracy			0.94	340
macro avg	0.93	0.92	0.92	340	macro avq	0.94	0.94	0.94	340
weighted avg	0.92	0.91	0.91	340	weighted avg	0.94	0.94	0.94	340

Playground Prediction Competition

Dogs vs. Cats

Create an algorithm to distinguish dogs from cats

Kaggle · 213 teams · 7 years ago

Overview

Data Notebooks Discussion Leaderboard Rules

Team

Overview

Description

Prizes

Evaluation

Winners

In this competition, you'll write an algorithm to classify whether images contain either a dog or a cat. This is easy for humans, dogs, and cats. Your computer will find it a bit more difficult.

HDF5 AlexNet ResNet50 **Transfer Learning**

http://bit.do/alexnet_epoch45

