### Lecture 20

Today's topics :-

- · Related rates
- · Modelling using derivatives

- · Eol 18
- · Watch Mobius lec 18
- · Project 2 - due Fri 2 Nov.
- · Ex 5.1.2 (rel. rates q).

#### Related Rates.

- -> Often, multiple related quantities change as a function of the same variable.
- -> Use implicit differentiation to find related rates of change

Egy



Find dV .

Implicit diff: 
$$\frac{dV}{dt} = \frac{4\pi}{3}\pi \left(3r^2 \frac{dr}{dt}\right)$$
$$= 4\pi r^2 (2) = 8\pi r^2.$$

Radius of sphere changes at rate 2 m/s.

How quickly is volume changing at r=1m

We know  $\frac{dr}{dt} = 2$ ,  $V(t) = \frac{4}{3} \pi \left[ r(t) \right]^3$ 

V & r are related quantities that both change in time, t.

# At r=1, $\frac{dV}{dt} = 8\pi T \left( \frac{m^3}{s} \right) = \frac{1}{asked} \frac{dV}{ds}$ asked for them.

Eg/. The ideal gas law is PV = nRT

P - pressure V - volume

Assume fixed volume: V=10L.

n - # modes of gas

N, R constant.

R - wonstant T - temperature.

Gas heated at rate 5 K/h  $\left(\frac{dT}{at} = 5 \text{ K/h}\right)$ 

Find rate of pressure increase.

$$\frac{d}{dk}(PV) = \frac{d}{dk}(nRT)$$

$$\Rightarrow P'V + PV' = nRT' \qquad V' = 0 \quad (V \text{ const.})$$

$$\Rightarrow P'(loL) = nR(5k/h)$$

$$\Rightarrow P' = \frac{nR}{2}K/hL$$

## Modelling using derivatives

-> Often more intuitive to set up model using derivatives.

Eg/. Simple population growth:

- assume the growth rate
is proportional to the
population size.

Then dP dP

ie.  $\frac{dP}{dt} = kP$ , k constant. P(t) - population size at time t.

" twice the pop. size,

twice the # offspring".

Definition: Differential equation. (DE)

An equation involving an (unknown) function and one or more of its derivatives

de = RP: differential equation involving unknown function P(t) and its derivative.

-> A solution to the DE is a function P(t) that satisfies the given equation.

Finding a solution can be tricky, but thecking a proposed soln is straightforward.

$$E\alpha$$
/. Show that  $y=e^{\alpha}$  is a solution the DE  $y'=y$ .

Let 
$$y = e^{\alpha}$$
.  
Then  $y' = e^{\alpha} \Rightarrow y' = y$  and  $s \Rightarrow y = e^{\alpha}$  is a solu

Exp Show that 
$$P(t) = P_0 e^{Rt}$$
 is a solute to 
$$\frac{dP}{dt} = RP$$

$$\frac{d}{dk}P(k) = \frac{d}{dk} \left[ P_0 e^{kk} \right] = P_0 \frac{d}{dk} \left( e^{kk} \right) = P_0 k e^{kk}$$

$$= k \left( P_0 e^{kk} \right)$$

$$= k P$$



exponential growth!

### Modifying the population model.

of the assumes growth without bound.

Incorporate diminishing growth rate as revources become dominished.

Model behaubur:

for 
$$P \approx 10000$$
,  $1 - \frac{P}{10000} \approx 0$  =)  $\frac{\partial P}{\partial L} \approx 0$  (growth slows to tero)

$$1-\frac{P}{10000}<0$$
  $\Rightarrow$   $\frac{dP}{dt}<0$  (pop. decreases).





La 
$$(x) \Leftrightarrow the linearization of  $f(x)$  at  $\Leftrightarrow tangent line of f$  the point  $x=a$ .

as a function.$$

Ear of straight line through (xo, yo) is  $y-y_0 = m(x-x_0).$ 

For targent line, 
$$m = f'(a)$$
,  $y_0 = f(a)$ ,  $x_0 = a$ 

$$y = f(a) + f'(a)(x_0 - a)$$

As a function,

La 
$$(x) = f(a) + f'(a)(1-a)$$
.

The point where general to fix.

to  $f(x)$ .