Synchronous Circuits Timing Analysis

©Hanan Ribo

NOR based SR Latch

	CARY ieee; ieee.std_logic_1164.all;			
	TTY SRlatch IS PORT (s, r: IN std_logic; q, qbar: BUFFER std_logic); SRlatch;			
ARCHITECTURE dataflow OF SRlatch IS BEGIN				
	<pre>q <= not(r or qbar); qbar <= not(s or q);</pre>			
END	dataflow;			

S	r	q	qbar
0	0	q	qbar
0	1	0	1
1	0	1	0
1	1	0	Û

1-bit Memory=previous state (there are two possible different stable states)

Only a single stable state

Invalid input, causes a race condition when the input changes in the same time from s=r='1' to s=r='0' (there are two possible different stable states)

NAND based SR Latch

S	r	q	qbar
0	0	1	1
0	1	1	0
1	0	0	1
1	1	q	qbar

Invalid input, causes a race condition when the input changes in the same time from s=r='0' to s=r='1' (there are two possible different stable states)

Only a single stable state

1-bit Memory=previous state (there are two possible different stable states)

Gated D-Latch

In order to get rid from race condition (to get zero probability) in SR Latch we need to modify it to a structure called **Gated D-Latch** structure. Output

Symbol for a gated D latch

A gated D latch based on an SR NOR latch

A gated D latch based on an SR NAND latch

D Flip-Flop = DFF

In order to sample the input data at a single point in time (positive or negative edge trigger) we need to use rising/falling derivator structure.

Dynamic Discipline Obedience - Motivation

The output of each combinational logic path between two registers must be steady before each clock's rising edge.

Synchronous Data Movement

A single flip-flop is used on each cycle boundary. Data advance from one cycle to the next on each clock rising edge.

Combinational timing analysis

DFF timing analysis

Symbol for a DFF

HW requirement: $t_{su} < t_{hold} < t_{cd} < t_{cq}$

$$T_{min} = t_{cq} + t_{su}$$

$$f_{max} = \frac{1}{T_{min}} = \frac{1}{t_{max} + t_{max}}$$

Imax

DFF Timing recap

- $t_{cq} = t_{pd(FF)}$: time after clock change that the output is guaranteed to be stable (propagation delay).
- t_{su} : time before clock edge, data must be stable (Setup time)
- t_{hold} : time after clock edge data must be stable (Hold time)
- $t_a = t_{su} + t_{hold}$: time around clock edge data must be stable (Aperture time)
- t_{cd} : time after clock edge that Q is stable by the previous value (Continuation delay)
- $t_{cq} t_{cd}$: time after clock edge that Q might be unstable (Contamination delay)

Performance Measurement f_{max}

High Level System Description

- The most common mistake is to start HDL coding before describing the required digital system in high level of RTL form.
- In RTL system description it becomes clear what are the system's combinational and synchronous subunits.
- Any digital logic system can be disassembled to Combinational Logic blocks chained to FFs (registers).

RTL design - example

Components of Path Delay

- 1. # of levels of logic
- 2. Internal cell delay
- 3. wire delay
- 4. cell input capacitance
- 5. cell fan-out
- 6. cell output drive strength

Timing Delay Constraints - t_{hold} condition

$$t_{cq} + t_{cd} \ge t_{\text{hold}} \implies t_{cd} \ge t_{\text{hold}} - t_{cq}$$

©Hanan Ribo

Timing Delay Constraints - t_{setup} condition

f_{max} calculation – dynamic discipline Obedience

1. Notations:

- Each CL_i has its own $t_{pd(CL_i)}$
- We assume same technology for all FFs, means same t_{cq} , t_{cd} , t_{su} , t_{hold}
- 2. In order to get general expression for f_{max} , lets start with the timing condition between the path FF1 to FF2:
 - FF2 setup condition: $t_{cq(FF1)} + t_{pd(CL1)} + t_{su(FF2)} \le T_{clk}$
 - FF2 hold condition: $t_{cd(FF1)} + t_{pd(CL1)} \ge t_{hold(FF2)}$
- 3. General expression for f_{max} : Critical Path we strive in our design for balanced CL paths
 - Setup condition: $t_{cq} + \max_{i} \{t_{pd(CLi)}\} + t_{su} = T_{min} \rightarrow f_{max} = \frac{1}{T_{min}}$
 - Hold condition: $t_{cd} + \min_{i} \{t_{pd(CLi)}\} \ge t_{hold}$

Sequential Circuit Timing

Questions:

- Constraints on t_{CD} for the logic?
- Minimum clock period?
- Setup, Hold times for Inputs?

$$\begin{aligned} t_{S,\text{INPUT}} &= t_{\text{PD},\text{L}} + t_{S,\text{R}} = 7 \text{ nS} \\ t_{H,\text{INPUT}} &= t_{H,\text{R}} - t_{\text{CD},\text{L}} = 1 \text{ nS} \end{aligned}$$

$$t_{CD,R}$$
 (1 ns) + $t_{CD,L}$ (?) $\geq t_{H,R}$ (2 ns)
 $t_{CD,L} \geq 1$ ns

$$t_{\rm CLK} \geq t_{\rm PD,R} + t_{\rm PD,L} + t_{\rm S,R} = 10 {\rm nS}$$

Critical Path

- Critical Path: the path in the entire design with the maximum delay.
- This could be from state element to state element, from input to state element, state element to output, from input to output (unregistered paths).
- Example: what is the critical path in this circuit?

f_{max} calculation example

The Given data:

 $t_{su} = 200ps$, $t_{cq} = 300ps$, $t_{pd(gate)} = 100ps$, hold condition exists

$$T_{min} = t_{cq} + 2 \cdot t_{pd(gate)} + t_{su} = 700ps \rightarrow f_{max} = \frac{1}{T_{min}} = 1.428 \text{GHz}$$