

AKADEMIA INNOWACYJNYCH ZASTOSOWAŃ TECHNOLOGII CYFROWYCH (AI TECH)

"Uczenie maszynowe" – laboratorium

Laboratorium 0

Data aktualizacji: 03.03.2024

Wprowadzenie do Python

Cel ćwiczenia

Celem ćwiczenia laboratoryjnego jest uruchomienie (wraz z instalacją) środowiska programistycznego języka Python oraz narzędzi potrzebnych do realizacji zadań następnych list. W trakcie realizacji zadania wczytane zostaną standardowe zbiory danych, które będą podstawą dokładniejszej analizy. Użyty zostanie algorytm PCA i biblioteki wizualizacji danych.

Dostępność materiałów i narzędzi

Narzędzia oraz ich dokumentacja jest ogólnodostępna w sieci Internet na licencji opensource.

Sugerowane narzędzia

- Python w wersji 3.x jako język i środowisko oprogramowania https://www.python.org/
- Jupyter (notebook) środowisko programowania/generowania dokumentacji https://jupyter.org/
- scikit learn biblioteka python modeli do uczenia maszynowego https://scikit-learn.org/stable/
- scipy zbiór bibliotek python do operacji na danych https://www.scipy.org/ Szczególnie przydatne:
 - pandas struktury danych i analizy https://pandas.pydata.org/

- o numpy przydatna biblioteka do obliczeń w python https://numpy.org/
- mathplotlib biblioteka do wizualizacji (wykresy) w python https://matplotlib.org/stable/
- seaborn zaawansowana biblioteka wizualizacji danych https://seaborn.pydata.org/
- plotly zaawansowana biblioteka wizualizacji danych https://plotly.com/python/

Zbiory danych

W ćwiczeniu użyte będą powszechnie używane zbiory:

- IRIS https://archive.ics.uci.edu/ml/datasets/iris
- GLASS https://archive.ics.uci.edu/ml/datasets/glass+identification
- WINE https://archive.ics.uci.edu/ml/datasets/wine

Przebieg ćwiczenia

- 1. Instalacja Python wraz z niezbędnymi bibliotekami.
- 2. Instalacja Środowiska programistycznego (np. Jupyter)
- 3. Wczytanie zbioru IRIS, WINE, GLASS
- 4. Statystyczna <u>analiza</u> zbiorów IRIS, WINE, GLASS, np. klasy (liczba, interpretacja), instancje, atrybuty, dystrybucja klas w zbiorze.
- 5. Wizualizacja oraz <u>analiza</u> zbiorów IRIS, WINE, GLASS, np. Wykres 1, Wykres 2.

Wykres 1. Zależność długość i szerokości kielicha w zbiorze danych IRIS.

6. Użycie algorytmu PCA, wizualizacja oraz analiza wyników.

Algorytm PCA (ang. *principal component analysis*) tj. wyznaczania głównych składowych analizowanego zbioru. PCA stosuje się do zmniejszenia wymiarowości zbioru (więcej informacji w literaturze poniżej).

Wykres 2. Zależności zmiennych w zbiorze danych IRIS.

Punktacja

Przy realizacji zadania student może otrzymać max 5 punktów wedle poniższej punktacji.

1	Instalacja środowiska z niezbędnymi bibliotekami
1	Wczytanie zbioru IRIS, wyrysowanie wykresu zależności długości/szerokości płatków (jak Wykres 1), Analiza zbioru i wizualizacja rozkładu danych.
1	Wczytanie zbioru GLASS, wyrysowanie wykresu zależności wybranych atrybutów (jak Wykres 1), Analiza zbioru i wizualizacja rozkładu danych.
1	Wczytanie zbioru WINE, wyrysowanie wykresu zależności wybranych atrybutów (jak Wykres 1), Analiza zbioru i wizualizacja rozkładu danych.
1	Użycie PCA i narysowanie wykresu wynikowego dla trzech zbiorów

Pytania pomocnicze

- 1. Czym się różnią zbiory danych analizowane w treści zadania? Na czym może polegać "trudność" analizy. Który z nich wydaje się być łatwiejszy/trudniejszy?
- 2. Czy nierównomierny rozkład klas w zbiorze może stanowić problem dla analizy i dalszej budowy modelu danych?
- 3. Jak działa PCA i kiedy warto go stosować?

Literatura

- 1. https://scikit-learn.org/stable/modules/decomposition.html#pca
- 2. https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html# sklearn.decomposition.PCA