Yiqi Jiang

Email: yqjiang@stanford.edu https://github.com/YiqiJ Cell: +1 607-379-0618

EDUCATION

Stanford University, Electrical Engineering Ph.D. Program

GPA: 4.0

Cornell University, College of Engineering, Ithaca, NY

Bachelor of Science, Electrical and Computer Engineering

Bachelor of Science, Computer Science

Minor, Applied Mathematics

GPA: 4.142; Dean's List: all semesters

Merrill Presidential Scholar

Aug. 2018 - May 2022

Sept. 2022 - Expected Jun. 2027

PUBLICATION

Sun J., Jiang Y., Qiu J., Nobel P., Kochenderfer M., Schwager M., Conformal Prediction for Uncertainty-Aware Planning with Diffusion Dynamic Model, In Advances in Neural Information Processing Systems, 2023.

Akengin H.*, Aslihak M.*, Jiang Y.*, Miranda C., Pozo M., Hernandez O., Inan H., Dinc F., Schnitzer M., ActSort: An Active-learning Accelerated Cell Sorting Algorithm for Large-Scale Calcium Imaging, In Advances in Neural Information Processing Systems Workshop on Adaptive Experimental Design and Active Learning in the Real World. 2023.

RESEARCH EXPERIENCE

Linderman's Lab, Stanford University, Research Assistant

Apr. 2024 - Present

Advisor: Dr. Scott Linderman

- Leveraged variational auto-encoder (VAE) including linear / nonlinear encoder and linear / nonlinear decoder to study the geometry of large-scale neuronal populations.
- Analyzed the dimensionality using power law.
- Implementing structured VAE which combines probabilistic graphical model priors on latent variables and deep neural networks to link latent variables to observed large-scale neural activity data.

Schnitzer's Lab, Stanford University, Research Assistant

Mar. 2023 - Present

Advisor: Dr. Mark Schnitzer

- Developed active-learning accelerated cell sorting algorithms for large-scale calcium imaging pipeline using confidence-based active learning and discriminative active learning.
- Designed and implemented feature engineering on raw calcium movie to obtain the feature set for single cell.
- Surpassed human-level performance in both recall and precision labeling only < 5% cells, while current machine learning method requires 80% of annotated cells to achieve the same performance.
- Outperformed human annotators in multiple datasets across mice with < 2% of the human-annotated cells.
- Accelerated the software speed with parallel computing and GPU available in MATLAB.
- Researched on latent variable extraction capability in four brain regions motor cortex, dorsolateral striatum, cerebellum, and retrosplenial cortex - using PCA, partial least squares (PLS), latent factor analysis via dynamical system (LFADS), linear dynamical system (LDS), and recurrent switching linear dynamical system (rSLDS).
- Built and tested off-line and on-line decoder for brain-machine interface (BMI) using linear regression, partial least squares regression, deep neural networks, and hierarchical decoders.
- Achieved > 80% hit rate for real-time BMI.

Pilanci's Lab, Stanford University, Research Assistant

Jan. 2023 - Mar. 2023

Advisor: Dr. Mert Pilanci

- Reformulated the learnable network in the epistemic neural networks as a convex formula and observed faster convergence in training on neural networks that can quantify the epistemic uncertainty of the model.
- Deducted Baysian linear regression on two-layer ReLU Neural Network by lifting the input data to a high dimensional space so that the activation function is transformed from a non-convex function to a convex function.

Multi-Robot Systems Lab, Stanford University, Research Assistant

Sept. -Dec. 2022

Advisor: Dr. Mac Schwager

• Incorporated ORB-SLAM3 and DROID-SLAM for a single drone to estimate the localization while navigating.

- Calibrated the ground truth position and SLAM estimated position in nerfstudio.
- Implemented RGB-D NeRF training based on nerfstudio.

Independent Research, Researcher

Aug. - Oct. 2021

- Learned an optimal policy from imperfect demonstrations using confidence-based IL methods, namely two-step importance weighting (2IWIL), with meta-learned confidence scores as the weights for the data.
- Collected various performance policies, learned with the trust region policy optimization (TRPO) method in the Mujoco Swimmer3 environment, to obtain imperfect demonstrations from simulated trajectories.
- Built a meta-learning model to predict the confidence scores of unknown trajectories, given a small number of labeled data sampled from different source domains, namely different labeling strategies.
- Conducted meta-learning on multiple confidence score Neural Networks for different labeling criteria.

NICS-EFC Lab, Tsinghua University, Undergraduate Research Assistant

Feb. 2021-Aug. 2021

Advisor: Dr. Yu Wang

- Examined the Hanabi environment and aimed to increase training speed via multi-cores parallel computing.
- Wrote test cases for the iGibson environment, quadrotor robot, and room exploration tasks.
- Implemented an interface between the ORB-SLAM3 written in C++ and the robot provided in the iGibson environment written in Python to estimate the global map and the agent position based on RGB-D observations
- Built Neural SLAM for the quadrotor robot to achieve higher performance in obtaining an agent's position.

Electrical and Computer Engineering Department, Cornell University, *Undergraduate Researcher*. Jun.-Aug.2019 Advisor: Dr. Peter Doerschuk

- College of Engineering-wide project. Funded through the Engineering Learning Initiative (ELI) program. Granted \$3900 funding for the independent research projects.
- Derived a statistical model for 3-D convex regular polyhedron cages and the corresponding 2-D projection model.
- Employed direct maximization likelihood algorithms and EM algorithms to estimate the unknown parameters, the polyhedron cages' edge length and the probability distributions among the classes.
- Simulated the cryo-electron microscopy images of silica-cages using a Gaussian mixture model.
- Compiled a 10-page academic paper, Detecting and Characterizing Nano-particle Cage Structures in Cryo-Electron Microscopy Image, and presented the results to 20+ audience of students and faculties.
- Achieved 97% accuracy on edge length prediction and 94% accuracy on classification problems.

ENGINEERING EXPERIENCE

Autonomous Mobile Robot Navigation

Jan.-May. 2022

- Employed particle filter and EKF based on beacon data and depth data to estimate current location in a given map and utilized grid-point roadmap to navigate the robot to waypoints.
- Developed a re-localization algorithm when the robot's location estimation had low confidence.
- Implemented an unknown obstacle detection algorithm through which the robot was able to detect obstacles that were not originally provided in the map, and the robot was able to re-planned the navigation route.
- Successfully navigated to all the waypoints and reconstructed the map

TEACHING EXPERIENCE

CS 4789 Introduction to Reinforcement Learning, Teaching Assistant

Spring 2022

TA nomination

ECE 4670 Digital Communication System Design, Teaching Assistant

Spring 2022

• TA nomination

ECE 4110 Random Signals in Communications and Signal Processing, Teaching Assistant

CS 1110 Introduction to Computing using Python, Teaching Assistant

Fall 2021 Fall 2019

Associate of Computer Science Undergraduate, *Mentor*

Fall 2021

Women In Computing at Cornell, Mentor

Spring 2021

SPECIALIZED SKILLS

Programming Language: Python, MATLAB, Java, Arduino, AMPL, OCaml, ARM Cortex-M, UNIX Shell Script Frameworks and Tools: Pytorch, Jupyter Notebook, Git

EXTRACURRICULAR ACTIVITIES

Badminton: First Class National Athlete, 2021-2022 YONEX Eastern Collegiate Team Championship Division 1A

Symphony Orchestra: First chair of clarinet