Министерство науки и высшего образования Российской **Ф**едерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 3 по дисциплине «Моделирование»

Тема Распределения случайных величин

Студент Пермякова Е. Д.

Группа ИУ7-72Б

Преподаватели Рудаков И. В.

Теоретическая часть

Нормальное распределение

Случайная величина X имеет нормальное распределение с параметрами $\mu \in \mathbb{R}$ и $\sigma > 0$ (обозначается $X \sim N(\mu, \sigma^2)$), если её функция плотности $f_X(x)$ имеет вид:

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}.$$

Функция распределения $F_X(x)$ имеет вида:

$$F_X(x) = P(X \le x) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt.$$

Математическое ожидание и дисперсия:

$$M[X] = \mu, \quad D[X] = \sigma^2.$$

Экспоненциальное распределение

Случайная величина X имеет экспоненциальное распределение с параметром $\lambda>0$ (обозначается $X\sim {\rm Exp}(\lambda)$), если её функция плотности $f_X(x)$ имеет вид:

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

Функция распределения $F_X(x)$ имеет вид:

$$F_X(x) = P(X \le x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

Математическое ожидание и дисперсия:

$$M[X] = \frac{1}{\lambda}, \quad D[X] = \frac{1}{\lambda^2}.$$

Равномерное распределение

Случайная величина X имеет непрерывное равномерное распределение на отрезке [a,b], где $a,b\in\mathbb{R}$, если её плотность $f_X(x)$ имеет вид:

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b], \\ 0, & x \notin [a,b]. \end{cases}$$

Функция распределения $F_X(x)$ имеет вид:

$$F_X(x) = P(X \le x) = \begin{cases} 0, & x < a, \\ \frac{x-a}{b-a}, & a \le x < b, \\ 1, & x \ge b. \end{cases}$$

Математическое ожидание и дисперсия:

$$M[X] = \frac{a+b}{2}, \quad D[X] = \frac{(b-a)^2}{12}.$$

Распределение Пуассона

Дискретная случайная величина X имеет распределение Пуассона с параметром $\lambda>0$ (обозначается $X\sim\Pi(\lambda)$), если её функция вероятности P(X=k) имеет вид:

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k = 0, 1, 2, \dots$$

Математическое ожидание и дисперсия:

$$M[X] = \lambda, \quad D[X] = \lambda.$$

Распределение Эрланга

Случайная величина X имеет распределение Эрланга порядка $k \in \mathbb{N}$ и параметром $\lambda > 0$ (обозначается $X \sim \mathrm{Erlang}(k,\lambda)$), если её функция плотности $f_X(x)$ имеет вид:

$$f_X(x) = \begin{cases} \frac{\lambda^k x^{k-1} e^{-\lambda x}}{(k-1)!}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

Функция распределения $F_X(x)$ имеет вид:

$$F_X(x) = P(X \le x) = \begin{cases} 1 - \sum_{n=0}^{k-1} \frac{e^{-\lambda x} (\lambda x)^n}{n!}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

Математическое ожидание и дисперсия:

$$M[X] = \frac{k}{\lambda}, \quad D[X] = \frac{k}{\lambda^2}.$$

Результат работы программы

На рисунке ??-3 приведен результат работы программы.

Выход						
Начало:	0.00	🗘 Конец:		10.00	-	
Равномерное распреде	ление	a = b =	2.00 8.00		Показать	
Распределение Пуассона		lambda =	1.00	\$	Показать	
Экспоненциальное распределение		lambda =	1.00	\$	Показать	
Нормальное распределение		m = d =	0.00		Показать	
Распределение Эрланга	a	k = lambda =	1.00		Показать	

Рисунок 1 – Главное меню программы

Рисунок 2 – График функции распределения и плотности нормального распределения

Рисунок 3 – График функции распределения и плотности равномерного распределения

Рисунок 4 – График функции распределения и плотности экспоненциального распределения

Рисунок 5 – График функции распределения и плотности распределения Эрланга

Рисунок 6 – График функции распределения распределения Пуассона

Заключение

В ходе выполнения работы была разработана программа для численного решения системы уравнений Колмогорова и анализа марковских случайных процессов.