多工與多重存取簡介

cory@gms.tku.edu.tw

Outlines

- ■無線電波中的時間與空間
- 進階多工方案

關於調變

- 目的
 - 賦予電磁場波動邏輯上的意義
 - Modulation / Demodulation
- 基本原理
 - 振幅(波幅)
 - 頻率(波長)
 - 相位
- ■無線電波段中的空間與時間
- ■無線電波的物理特性

資源分配

- 使用者數量增加、通訊資料量與各種通訊需求增加
- 時間與空間有限
 - 基於有限時間、空間上的各種變化
 - 時間、頻率皆為連續的
- 多工 (multiplexing)
 - 多重存取 (multiple access)
 - 雙功(duplex)
 - 於通訊上指傳送、接收方向的多工

從時間下手

- ■早期的做法
 - 偵測碰撞
 - CSMA/CD (carrier sense multiple access / collision detection)
 - 傳統無線電語音通訊
 - 有線資料網路(如Ethernet)
 - 預防碰撞
 - CSMA/CA (carrier sense multiple access / collision avoidance)
 - RTS (ready to send)
 - CTS (clear to send)
 - 有線/無線皆有使用
 - Listen before talk

從時間下手

- 時槽 (slot)
 - ALOHA / Slotted ALOHA
 - 將時間整齊切分成長度一致的區段,並以區段為通訊的基本單位
- ■對時、管理策略
 - 定時發送Beacon
 - 集中管理端(如基地台)發送slot分配方式
- TDMA (time division multiple access)
- TDD (time division duplex)

從頻譜空間下手

- 在可用的頻率範圍內切分若干個可以使用的頻道
- FDMA (frequency division multiple access)
- FDD (frequency division multiplex)

從頻譜空間下手

- 頻率是連續的,基於元件材料與電磁波本身的物理特性,中心頻率周圍也會發生響應,甚至會有諧波產生
 - 部分用途會有guard-band配置
 - 有一些使用guard-band的解決方案
 - Wi-Fi TV Whitespace

頻率與時間的組合

- 以頻率與時間切分可供存取的資源
- 儘量填滿,避免浪費

從實體的空間下手

- ■大型基地台使用指向天線以不同角度發射較集中的波束,區隔服務範圍
 - 水平
 - 垂直
- ■使用小型基地台提供較多小分區
- Beam-forming
- RIS

Outlines

- 無線電波中的時間與空間
- 進階多工方案

展頻

- Spread spectrum
 - 使用較寬的頻率範圍
 - FHSS (frequency hopping spread spectrum)
 - 在範圍內不斷變換頻率(跳頻)
 - 安全性(攻擊者要知道跳頻序列才能進行攻擊)
 - 抗干擾性(避開固定頻率的干擾源)
 - 軍用資料鏈路、Bluetooth
 - DSSS (direct sequence spread spectrum)
 - 直接序列展頻
 - 使用較寬的頻寬、較高的傳輸速度
 - 使用展頻碼達到抗干擾、保護資料的目的
 - 衛星定位系統、Wi-Fi (IEEE 802.11b)、LoRa、ZigBee

DSSS

- ■使用較寬的頻寬、較低的功率
 - 避開頻寬較窄的干擾源
 - 解出正確資料的機率較高

DSSS

- 每個裝置有獨特的展頻碼
 - Pseudo-random
 - 使用裝置認證資訊計算產生
 - 以展頻碼的排列方式表達payload資料
- 範例
 - 展頻碼為: 1, 1, -1, 1, -1
 - 欲傳輸之資料為: 1, 1, -1, 1
 - ▶ 則實際發送的內容為: 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1

DSSS

- Spreading Factor (SF)
 - 展頻碼與payload資料的比值

DSSS展頻碼或 CDMA編碼長度

$$SF = \frac{Chip \ rate}{Symbol \ rate}$$

Payload資料長度

正交編碼組合

- CDMA (code division multiple access)
 - 每個裝置有一獨特的編碼,不同裝置的編碼彼此正交(orthogonal)
 - 允許chip疊加
- 範例(chip & symbol)
 - UE1
 - code: 1, -1, 1, -1, 1, -1, 1, -1
 - data: 1,0
 - UE2
 - code: 1, 1, -1, -1, 1, 1, -1, -1
 - data: 1, 1
 - UE3
 - code: 1, -1, -1, 1, 1, -1, -1, 1
 - data: 0, 1

- 範例(encode)
 - UE1
 - data(1,0), code(1,-1,1,-1,1,-1,1,-1)
 - 1, -1, 1, -1, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0
 - UE2
 - data(1, 1), code(1, 1, -1, -1, 1, 1, -1, -1)
 - UE3
 - data(0, 1), code(1, -1, -1, 1, 1, -1, -1, 1)
 - 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 1, -1, -1, 1
 - SUM
 - **2**, 0, 0, -2, 2, 0, 0, -2, 2, 0, -2, 0, 2, 0, -2, 0

- 範例(decode)
 - 實際傳輸的資料: 2,0,0,-2,2,0,0,-2,2,0,-2,0,2,0,-2,0
 - UE1
 - code(1,-1,1,-1,1,-1,1,-1)
 - **2**, 0, 0, 2, 2, 0, 0, 2 | 2, 0, -2, 0, 2, 0, -2, 0
 - 8/8=1 | 0/8=<mark>0</mark>
 - UE2
 - code(1, 1, -1, -1, 1, 1, -1, -1)
 - **2**, 0, 0, 2, 2, 0, 0, 2 | 2, 0, 2, 0, 2, 0, 2, 0
 - 8/8=1 | 8/8=1
 - UE3
 - code(1,-1,-1,1,1,-1,-1,1)
 - **2**, 0, 0, -2, 2, 0, 0, -2 | 2, 0, 2, 0, 2, 0, 2, 0
 - 0/8=<mark>0</mark> | 8/8=1

- 範例(UEl & UE2 only)
 - SUM: 2, 0, 0, -2, 2, 0, 0, -2, 1, 1, -1, -1, 1, 1, -1, -1

• UE1

- code(1,-1,1,-1,1,-1,1,-1)
- **2**, 0, 0, 2, 2, 0, 0, 2 | 1, -1, -1, 1, 1, -1, -1, 1
- 8/8=1 | 0/8=**0**

• UE2

- code(1, 1, -1, -1, 1, 1, -1, -1)
- **2**, 0, 0, 2, 2, 0, 0, 2 | 1, 1, 1, 1, 1, 1, 1, 1
- 8/8=1 | 8/8=1

- ■第三代行動通訊(3G)
 - UMTS (W-CDMA)
 - CDMA2000
 - TD-SCDMA

正交分頻

- ■回到FDMA
 - 有沒有辦法讓頻道靠得更近一點?

正交分頻多工

- OFDM (orthogonal frequency division multiplexing)
- ■在可用頻率範圍內切分若干個sub-carrier(子載波)
- 各sub-carrier主波波形(相位)與相鄰的sub-carrier波形正交
- 可大幅提升頻道容量

OFDIM

- ■實作上使用快速傅立葉轉換(FFT)進行
 - 硬體支援能力提升使此類技術得以普及

OFDM vs OFDMA

- OFDMA (orthogonal frequency multiple access)
 - OFDM搭配slot機制提升多重存取效率

OFDWA

- Guard-interval
 - 考量時間誤差、移動、訊號反射產生多路徑等因素給予的微小間隔
- SC-FDMA
 - 正交分頻以同一sub-carrier為主,不同sub-carrier分配在不同slots

應用

- Wi-Fi
 - OFDM
- WiMAX
 - OFDM
 - OFDMA
- E-UTRAN
 - Downlink: OFDMA
 - Uplink: SC-FDMA
- NR
 - OFDM

