FORMULAIRE

Rappels: identités remarquables

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

$$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

$$a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$$

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

I Suites arithmétiques et géométriques

1) Suites arithmétiques

Termes de la suite (r désigne la raison) :

$$u_{n+1} - u_n = r$$

$$u_n = u_0 + nr$$

$$u_n = u_p + (n-p)r$$

Somme des termes:

$$S_n = \sum_{k=0}^n u_k = \frac{(n+1)(u_0 + u_n)}{2}$$

Cas général avec $n_1 \le n_2$:

$$S' = \sum_{k=n_1}^{n_2} u_k = \frac{\text{(nombre de termes)(premier terme + dernier terme)}}{2}$$

Cas particulier:

$$1 + 2 + 3 + \cdots + (n-1) + n = \frac{n(n+1)}{2}$$

2) Suites géométriques

On suppose que la suite est non nulle. Termes de la suite (q désigne la raison) :

$$\frac{u_{n+1}}{u_n} = q$$

$$u_n = u_0 * q^n$$

$$u_n = u_n * q^{n-p}$$

Somme des termes:

$$S_n = \sum_{k=0}^n u_k = \begin{cases} u_0 * \frac{1 - q^{n+1}}{1 - q} & \text{si } q \neq 1\\ (n+1)u_0 & \text{si } q = 1 \end{cases}$$

Cas général avec $n_1 \le n_2$:

$$S' = \sum_{k=n_1}^{n_2} u_k = \begin{cases} (\text{premier terme}) * \frac{1 - \left(q^{\text{nombre de termes}}\right)}{1 - q} & \text{si } q \neq 1 \\ (\text{nombre de termes}) * (\text{premier terme}) & \text{si } q = 1 \end{cases}$$

II Formules de dérivation

1) Formules générales

Dans ce qui suit, u et v désignent deux fonctions d'une variable réelle x et k une constante réelle.

$$(u+v)' = u' + v'$$

$$(ku)' = ku'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(v \circ u)' = u' * (v' \circ u)$$

$$(u^{-1})' = \frac{1}{u' \circ u^{-1}}$$

2) Fonctions usuelles

a) Fonctions non composées

Fonction f	\mathcal{D}_f	Fonction dérivée f'	$\mathcal{D}_{f'}$		
k	\mathbb{R}	0	\mathbb{R}		
x	\mathbb{R}	1	\mathbb{R}		
$\frac{x}{\frac{1}{x}}$	\mathbb{R}^*	$-\frac{1}{x^2}$	\mathbb{R}^*		
\sqrt{x}	ℝ+	$\frac{-\frac{1}{x^2}}{\frac{1}{2\sqrt{x}}}$	R +*		
x^n avec $n \in \mathbb{Z}$	\mathbb{R} si $n \geq 0$	nx^{n-1}	\mathbb{R} si $n \geq 0$		
	\mathbb{R}^* si $n < 0$	162	\mathbb{R}^* si $n < 0$		
x^{α} avec $\alpha \in \mathbb{R}$	\mathbb{R}^+ si $\alpha \geq 0$	$\alpha x^{\alpha-1}$	\mathbb{R}^+ si $\alpha > 1$		
$\setminus \mathbb{Z}$	\mathbb{R}^{+*} si $\alpha < 0$	ux"	\mathbb{R}^{+*} si $\alpha < 1$		
ln x	R+*	$\frac{1}{x}$	R +*		
exp x	\mathbb{R}	exp x	\mathbb{R}		
sin x	\mathbb{R}	cos x	\mathbb{R}		
cos x	\mathbb{R}	$-\sin x$	\mathbb{R}		
$\tan x \qquad \qquad \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \right\}$		$1 + \tan^2 x = \frac{1}{\cos^2 x}$	$\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi\right\}$		
sh x	\mathbb{R}	ch x	\mathbb{R}		
ch x	\mathbb{R}	sh x	\mathbb{R}		
th x	R	$1 - \operatorname{th}^2 x = \frac{1}{\operatorname{ch}^2 x}$	\mathbb{R}		

Les dérivées des fonctions réciproques des fonctions trigonométriques et hyperboliques figurent sur les pages suivantes.

b) Fonctions composées

Fonction <i>f</i>	Fonction dérivée f'				
$\frac{1}{u}$	$-\frac{u'}{u^2}$				
и					
\sqrt{u}	$\frac{u'}{2\sqrt{u}}$				
u^{α}	$\alpha u'u^{\alpha-1}$				
$\ln u $	$\frac{u'}{u}$				
exp u	u' * exp u				
$\sin u$	$u' * \cos u$				
cos u	$-\mathbf{u}' * \sin u$				
tan u	$\mathbf{u}' * (1 + \tan^2 \mathbf{u}) = \frac{u'}{\cos^2 u}$				
sh u	$u'*\operatorname{ch} u$				
ch u	u' * sh u				
thu	$\mathbf{u}' * (1 - \mathbf{th}^2 \mathbf{u}) = \frac{u'}{\mathbf{ch}^2 u}$				

III Fonctions trigonométriques et hyperboliques

1) Fonctions trigonométriques

$\cos^{2}x + \sin^{2}x = 1$ $\cos(a+b) = \cos a \cos b - \sin a \sin b$ $\cos(a-b) = \cos a \cos b + \sin a \sin b$ $\sin(a+b) = \sin a \cos b + \sin b \cos a$ $\sin(a-b) = \sin a \cos b - \sin b \cos a$ $\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$ $\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$ $\cos a \cos b = \frac{1}{2}[\cos(a+b) + \cos(a-b)]$ $\sin a \sin b = \frac{1}{2}[\cos(a+b) + \sin(a-b)]$ $\sin a \cos b = \frac{1}{2}[\sin(a+b) + \sin(a-b)]$ $\cos a + \cos b = 2\cos\frac{(a+b)}{2}\cos\frac{(a-b)}{2}$ $\cos a - \cos b = -2\sin\frac{(a+b)}{2}\cos\frac{(a-b)}{2}$ $\sin a + \sin b = 2\sin\frac{(a+b)}{2}\cos\frac{(a-b)}{2}$ $\sin a - \sin b = 2\sin\frac{(a-b)}{2}\cos\frac{(a+b)}{2}$

2) Fonctions hyperboliques

$$ch^{2}x - sh^{2}x = 1$$

$$ch(a + b) = ch a ch b + sh a sh b$$

$$ch(a - b) = ch a ch b - sh a sh b$$

$$sh(a + b) = sh a ch b - sh a sh b$$

$$sh(a + b) = sh a ch b - sh b ch a$$

$$sh(a - b) = sh a ch b - sh b ch a$$

$$th(a + b) = \frac{th a + th b}{1 - th a th b}$$

$$th(a - b) = \frac{th a - th b}{1 + th a th b}$$

$$ch a ch b = \frac{1}{2} [ch(a + b) + ch(a - b)]$$

$$sh a sh b = \frac{1}{2} [sh(a + b) - ch(a - b)]$$

$$ch a + ch b = 2 ch \frac{(a + b)}{2} ch \frac{(a - b)}{2}$$

$$ch a - ch b = 2 sh \frac{(a + b)}{2} ch \frac{(a - b)}{2}$$

$$sh a + sh b = 2 sh \frac{(a + b)}{2} ch \frac{(a - b)}{2}$$

$$sh a - sh b = 2 sh \frac{(a - b)}{2} ch \frac{(a + b)}{2}$$

$$\cos(2x) = \cos^2 x - \sin^2 x$$

$$= 2\cos^2 x - 1$$

$$= 1 - 2\sin^2 x$$

$$= \frac{1 - \tan^2 x}{1 + \tan^2 x}$$

$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$

$$\sin^2 x = \frac{1 - \cos(2x)}{2}$$

$$\tan^2 x = \frac{1 - \cos(2x)}{1 + \cos(2x)}$$

$$\sin(2x) = 2\sin x \cos x$$

$$= \frac{2\tan x}{1 + \tan^2 x}$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

$$ch(2x) = ch^{2} x + sh^{2} x$$

$$= 2ch^{2} x - 1$$

$$= 1 + 2sh^{2} x$$

$$= \frac{1 + th^{2} x}{1 - th^{2} x}$$

$$ch^{2} x = \frac{1 + ch(2x)}{2}$$

$$sh^{2} x = \frac{ch(2x) - 1}{2}$$

$$th^{2} x = \frac{ch(2x) - 1}{ch(2x) + 1}$$

$$sh(2x) = 2 sh x ch x$$

$$= \frac{2 th x}{1 - th^{2} x}$$

$$th 2x = \frac{2 th x}{1 + th^{2} x}$$

3) Points sur le cercle trigonométrique

	-x	$\frac{\pi}{2} + x$	$\frac{\pi}{2}-x$	$\pi + x$	$\pi - x$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin	$-\sin x$	cos x	cos x	$-\sin x$	sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	cos x	$-\sin x$	sin x	$-\cos x$	$-\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	– tan x	$-\frac{1}{\tan x}$	$\frac{1}{\tan x}$	tan x	– tan x	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∄

Trigonométrie réciproque

$\arcsin x + \arccos x = \frac{\pi}{2}$ $\arctan x + \arctan \frac{1}{x} = \operatorname{sg}(x) \cdot \frac{\pi}{2}$ avec sg(x) = 1 si x > 0 et -1 si x < 0 $(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$ $(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}$ $(\arctan x)' = \frac{1}{1 + x^2}$ $(\arcsin u)' = \frac{u'}{\sqrt{1 - u^2}}$ $(\arccos u)' = -\frac{u'}{\sqrt{1-u^2}}$ $(\arctan u)' = \frac{u'}{1 + u^2}$

Trigonométrie hyperbolique réciproque

$$\operatorname{argsh} x = \ln\left(x + \sqrt{1 + x^2}\right)$$

$$\operatorname{argch} x = \ln\left(x + \sqrt{1 - x^2}\right)$$

$$\operatorname{argth} x = \frac{1}{2}\ln\left(\frac{1 + x}{1 - x}\right)$$

$$\left(\operatorname{argsh} x\right)' = \frac{1}{\sqrt{1 + x^2}}$$

$$\left(\operatorname{argch} x\right)' = \frac{1}{\sqrt{x^2 - 1}}$$

$$\left(\operatorname{argth} x\right)' = \frac{1}{1 - x^2}$$

$$\left(\operatorname{argch} u\right)' = \frac{u'}{\sqrt{1 + u^2}}$$

$$\left(\operatorname{argch} u\right)' = \frac{u'}{\sqrt{u^2 - 1}}$$

$$\left(\operatorname{argch} u\right)' = \frac{u'}{\sqrt{1 - u^2}}$$

$$(\operatorname{argth} u)' = \frac{u'}{1 - u^2}$$

IV Limites usuelles

1) Comportement à l'infini

$$\lim_{x \to +\infty} \ln x = +\infty$$

$$\lim_{x \to +\infty} \exp x = +\infty$$

$$\lim_{x \to -\infty} \exp x = 0$$

$$\operatorname{Si} \alpha > 0, \lim_{x \to +\infty} x^{\alpha} = +\infty$$

$$\operatorname{Si} \alpha < 0, \lim_{x \to +\infty} x^{\alpha} = 0$$

$$\operatorname{Si} \alpha > 0, \lim_{x \to +\infty} \frac{\exp x}{x^{\alpha}} = \lim_{x \to +\infty} \frac{e^{x}}{x^{\alpha}} = +\infty$$

$$\operatorname{Si} \alpha > 0, \lim_{x \to +\infty} x^{\alpha} * \exp(-x) = \lim_{x \to +\infty} x^{\alpha} e^{-x} = 0$$

$$\operatorname{Si} \alpha > 0, \lim_{x \to -\infty} |x|^{\alpha} e^{x} = 0$$

$$\operatorname{Si} \alpha > 0, \lim_{x \to +\infty} |x|^{\alpha} e^{x} = 0$$

$$\operatorname{Si} \alpha > 0, \lim_{x \to +\infty} |x|^{\alpha} e^{x} = 0$$

2) Comportement à l'origine

$$\lim_{x \to 0} \ln x = +\infty$$
Si $\alpha > 0$ lim

Si
$$\alpha > 0$$
, $\lim_{x \to 0^+} x^{\alpha} = 0$

Si
$$\alpha < 0$$
, $\lim_{x \to 0^+} x^{\alpha} = +\infty$

Si $\alpha > 0$, $\lim_{x \to 0^+} x^{\alpha} \ln x = 0$ propriété de croissance comparée

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

V Formules d'intégration

1) Primitives usuelles

Si
$$\alpha \neq -1$$
, $\int x^{\alpha} dx = \frac{1}{\alpha + 1} x^{\alpha + 1} + cte$

$$\int \frac{1}{x} dx = \ln|x| + cte$$

$$\int \frac{1}{x + a} dx = \ln|x + a| + cte$$

$$\int \exp x dx = \exp x + cte$$
Si $a > 0$ et $a \neq 1$,
$$\int a^{x} dx = \frac{1}{\ln a} * a^{x} + cte$$

$$\int \cos x dx = \sin x + cte$$

$$\int \sin x dx = -\cos x + cte$$
Si $a \neq 0$, $\int \cos ax dx = \frac{1}{a} \sin ax + cte$
Si $a \neq 0$, $\int \sin ax dx = -\frac{1}{a} \cos ax + cte$

$$\int (1 + (\tan x)^2) dx = \tan x + cte$$

$$\int \frac{1}{(\sin x)^2} dx = -\cot x + cte$$

$$= -\frac{1}{\tan x} + cte$$

$$\int \frac{1}{1 + x^2} dx = \arctan x + cte$$

$$\int \cosh x dx = \sinh x + cte$$

$$\int \sinh x dx = \cosh x + cte$$

$$\int \frac{1}{(\cosh x)^2} dx = \sinh x + cte$$

$$\int \frac{1}{(\cosh x)^2} dx = \frac{1}{(\cosh x)^2} + cte$$

 $\int \frac{1}{(\cos x)^2} dx = \tan x + cte$

2) Fonctions trigonométriques et hyperboliques

$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + cte$$

$$\int \frac{1}{1-x^2} dx = \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right| + cte$$

$$\int \frac{1}{\sqrt{1+x^2}} dx = \arg \sinh x + cte$$

$$\int \frac{1}{\sqrt{x^2-1}} dx = \arg \cosh x + cte$$

$$\int \frac{1}{1+x^2} dx = \arctan x + cte$$
Si $a \neq 0$,
$$\int \frac{1}{a^2+x^2} dx = \frac{1}{a} * \arctan \frac{x}{a} + cte$$
Si $a \neq 0$,
$$\int \frac{1}{\sqrt{x^2+a}} dx = \ln \left| x + \sqrt{x^2+a} \right| + cte$$

Si
$$a > 0$$
,
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + cte$$
Si $a > 0$,
$$\int \frac{1}{\sqrt{a^2 + x^2}} dx = \arg \sinh \frac{x}{a} + cte$$

$$\int \frac{1}{\sin x} dx = \ln \left| \tan \frac{x}{2} \right| + cte$$

$$\int \frac{1}{\cos x} dx = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + cte$$

$$\int \tan x \, dx = -\ln|\cos x| + cte$$

$$\int \ln x \, dx = \ln(\cosh x) + cte$$

$$\int \ln x \, dx = x * \ln x - x + cte$$

3) Fonctions composées

Si
$$\alpha \neq -1$$
,
$$\int u' * u^{\alpha} dx = \frac{1}{\alpha + 1} u^{\alpha + 1} + cte$$

$$\int \frac{u'}{u} dx = \ln|u| + cte$$

$$\int u' * \exp u dx = \exp u + cte$$

$$\int u' * \sin u dx = -\cos u + cte$$

$$\int u' * \sin u dx = -\cos u + cte$$

$$\int \frac{u'}{(\cos u)^2} dx = \tan u + cte$$

$$\int \frac{u'}{1 + u^2} dx = \arctan u + cte$$
Si $a \neq 0$,
$$\int \frac{u'}{a^2 + u^2} dx = \frac{1}{a} * \arctan \frac{u}{a} + cte$$

$$\int u' * \cosh u dx = \sinh u + cte$$

$$\int u' * \cosh u dx = \sinh u + cte$$

$$\int u' * \sinh u dx = \cosh u + cte$$

$$\int \frac{u'}{\sqrt{1 - u^2}} dx = \arcsin u + cte$$
Si $a \neq 0$,
$$\int \frac{u'}{\sqrt{u^2 + a}} dx = \ln |u + \sqrt{u^2 + a}| + cte$$
Si $a \neq 0$,
$$\int \frac{u'}{\sqrt{u^2 + a}} dx = \ln |u + \sqrt{u^2 + a}| + cte$$

$$\int \frac{u'}{\sin u} dx = \ln |\tan \frac{u}{2}| + cte$$

$$\int \frac{u'}{\cos u} dx = \ln |\tan (\frac{u}{2} + \frac{\pi}{4})| + cte$$

$$\int u' * \tan u dx = -\ln|\cos u| + cte$$

$$\int u' * \tan u dx = \ln|\cosh u| + cte$$

VI <u>Développements limités</u>

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 \dots + x^n + o(x^n)$$

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 \dots + (-1)^n x^n + o(x^n)$$

$$\exp x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} \dots + \frac{x^n}{n!} + o(x^n)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n)$$

$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} \dots - \frac{x^n}{n!} + o(x^n)$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 \dots + \frac{\alpha(\alpha-1) \dots (\alpha-n+1)}{n!} x^n + o(x^n)$$

$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$\tan x = x + \frac{x^3}{3} + \frac{2}{15} x^5 + o(x^6)$$

$$\sinh x = x + \frac{1}{2} \frac{x^3}{3} + \frac{3}{8} \frac{x^5}{5} \dots + \frac{1}{2} \frac{3 \dots * (2n-1)}{2 \times 4 \dots * (2n)} \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$

$$\arg \sinh x = x + \frac{x^3}{3} + \frac{x^5}{5} \dots + (-1)^n \frac{1 \times 3 \dots * (2n-1)}{2 \times 4 \dots * (2n)} \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$

$$\arg \sinh x = x + \frac{x^3}{3} + \frac{x^5}{5} \dots + (-1)^n \frac{1 \times 3 \dots * (2n-1)}{2 \times 4 \dots * (2n)} \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$