PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-207134

(43)Date of publication of application: 08.08.1995

(51)Int.Cl.

C08L 69/00

C08K 5/54

(21)Application number : 06-004069

(71)Applicant : MITSUBISHI CHEM CORP

(22)Date of filing:

19.01.1994

(72)Inventor: KAWA MANABU

(54) AROMATIC POLYCARBONATE RESIN COMPOSITION

(57)Abstract:

PURPOSE: To obtain an aromatic polycarbonate resin composition containing an intercalation compound containing a specific laminar silicate as a host and an organic onium ion as a guest, respectively, in a specific amount as an inorganic ash content and excellent in strength, stiffness, toughness, ductility, surface appearance of molding, melt fluidity and dimensional accuracy.

CONSTITUTION: This composition contains an intercalation compound containing a laminar silicate having ≥30mm equivalent/100g, preferably ≥70mm equivalent/100g of cation exchange capacity as a host, and an organic onium ion (preferably a quaternary onium ion having preferably ≥ a 12C alkyl group, especially trimethyloctadecylammonium ion) as a guest, respectively, in an amount of 0.1-10wt.%, preferably 0.3-4wt.% as an inorganic ash content.

LEGAL STATUS

[Date of request for examination]

20.12.2000

[Date of sending the examiner's decision of

28.05.2002

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or

application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's

2002-11759

decision of rejection]

[Date of requesting appeal against examiner's 27.06.2002

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The aromatic series polycarbonate resin constituent characterized by including the intercalation compound which makes a guest organic onium ion which cation exchange capacity makes a host 30 milliequivalent / sheet silicate 100g or more, and has a with a carbon numbers of 12 or more alkyl group 0.1 to 10% of the weight as an inorganic ash content. [Claim 2] The aromatic series polycarbonate resin constituent according to claim 1 characterized by being the 4th class onium ion in which the organic onium ion which has a with a carbon numbers [said] of 12 or more alkyl group has a with a carbon numbers of 12 or more alkyl group.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Industrial Application] This invention relates to the aromatic series polycarbonate resin constituent containing a specific intercalation compound. [0002]

[Description of the Prior Art] Conventionally, combination of inorganic fine particles, such as inorganic fibers, such as various fillers, for example, a glass fiber, a carbon fiber, and a potassium titanate whisker, a glass flake, a glass bead, talc, a mica, a kaolin, and wollastonite. has been performed in order to improve the reinforcement of aromatic series polycarbonate resin, and rigidity or dimensional accuracy. However, although such technique raised reinforcement and rigidity, it had the fault which spoils toughness and which specific gravity increases that a surface appearance fell, being such -- a filler -- or -- inorganic -- fine particles -- mixing -- it can set -- a fault -- general -- a filler -- a maldistribution -- or -- distribution -- an object -- size -- being large -- elapsing -- things -- and -- matrix resin -- an interface -- adhesion -- poor -- originating -- a thing -- ** -- thinking -- having -- **** -- being such -- a point -- from -aromatic series -- polycarbonate resin -- also setting -- a filler -- surface treatment -pulverization -- a configuration -- a device -- etc. -- being various -- an attempt -- making -having -- ****** -- although -- also ******(ing) -- it was not a satisfying thing. [0003] Moreover, there was a problem that a melting fluidity generally fell also in aromatic series polycarbonate resin like a resin ingredient by use of a filler. Furthermore, although the molding shrinkage of the direction of orientation of fiber fell when filled up with inorganic fibers, such as a glass fiber, there was also a problem of the anisotropy of the dimensional accuracy that the effectiveness is hardly regarded as this if perpendicular.

[0004] As mentioned above, although use of various inorganic fillers had been proposed in order to improve the reinforcement of aromatic series polycarbonate resin, rigidity, etc., neither the fall of the toughness of an ingredient nor the problem of the increment in specific gravity can necessarily be solved, and there is still a request of melting fluidity amelioration, and the problem was left behind also in the point of amelioration of dimensional accuracy. [0005]

[Problem(s) to be Solved by the Invention] While the purpose of this invention is excellent in reinforcement or rigidity, toughness, especially ductility are not spoiled greatly, and the increment in specific gravity is excellent in a shaping surface appearance or a melting fluidity few, and it is to offer the aromatic series polycarbonate resin constituent with which dimensional accuracy was moreover improved isotropic.

[Means for Solving the Problem] Made in order that this invention may solve an abovementioned problem, the summary consists in the aromatic series polycarbonate characterized by including the intercalation compound which makes a guest organic onium ion which cation exchange capacity makes a host 30 milliequivalent / sheet silicate 100g or more, and has a with a carbon numbers of 12 or more alkyl group 0.1 to 10% of the weight as an inorganic ash content.

[0007] Hereafter, this invention is further explained to a detail. The aromatic series polycarbonate resin used by this invention is manufactured by the reaction of one or more sorts of bisphenols which may contain polyhydric phenols as a copolymerization component, and carbonates, such as bis-alkyl carbonate, bis-aryl carbonate, and a phosgene. [0008] As bisphenols, specifically Screw (4-hydroxyphenyl) methane, 1 and 1-screw (4hydroxyphenyl) ethane, 1, and 1-screw (4-hydroxyphenyl) propane, 2 and 2-screw (4hydroxyphenyl) propane, i.e., bisphenol A, 2 and 2-screw (4-hydroxyphenyl) butane, 2, and 2screw (4-hydroxyphenyl) pentane, 2 and 2-screw (4-hydroxyphenyl)-3-methyl butane, 2, and 2screw (4-hydroxyphenyl) hexane, 2 and 2-screw (4-hydroxyphenyl)-4-methyl pentane, 1, and 1-screw (4-hydroxyphenyl) cyclopentane, 1 and 1-screw (4-hydroxyphenyl) cyclohexane. screw (4-hydroxy-3-methylphenyl) methane, Screw (4-hydroxy-3-methylphenyl) phenylmethane, 1, and 1-screw (4-hydroxy-3-methylphenyl) ethane, 2 and 2-screw (4-hydroxy-3-methylphenyl) propane, 2, and 2-screw (4-hydroxy-3-ethyl phenyl) propane, 2 and 2-screw (4-hydroxy-3-isopropyl phenyl) propane, 2 and 2-screw (4-hydroxy-3-sec-buthylphenyl) propane, 2 and 2-screw (4-hydroxy-3-sec-buthylphenyl) propane, Screw (4-hydroxyphenyl) phenylmethane, 1, and 1-screw (4-hydroxyphenyl)-1-phenyl ethane, A 1 and 1-screw (4hydroxyphenyl)-1-phenyl propane, Screw (4-hydroxyphenyl) diphenylmethane, screw (4hydroxyphenyl) dibenzyl methane, A 4 and 4'-dihydroxy diphenyl ether, 4, and 4'-dihydroxy diphenylsulfone, 4, and 4'-dihydroxydiphenyl sulfide, 4, and 4'-dihydroxy benzophenone, a phenolphthalein, etc. are mentioned. A thing typical in this is bisphenol A, 1, and 1-screw (4hydroxyphenyl)-1-phenyl ethane, 1, and 1-screw (4-hydroxyphenyl) cyclohexane, 2, and 2screw (4-hydroxy-3-methylphenyl) propane etc., and, most generally bisphenol A is used. [0009] Polyhydric phenols change the rheology-property of aromatic series polycarbonate resin, or it is used as a copolymerization component in order to improve a surface wear property, for example, tris phenols, such as 1, 1, and 1-tris (4-hydroxyphenyl) ethane, etc. are mentioned. Although there is no limit in the manufacture approach of the aromatic series polycarbonate resin used for this invention The interfacial polymerization which carries out a polycondensation reaction in the interface of the organic solvent and alkaline water which use the alkali-metal salt of bisphenols, and a carbonate derivative [activity / nucleophilic attack] as a raw material, and dissolve a generation polymer, The pyridine method which uses bisphenols and a carbonate derivative [activity / nucleophilic attack] as a raw material, and carries out a polycondensation reaction in organic bases, such as a pyridine, Generally the melting polymerization method to which bisphenols and carbonates, such as bis-alkyl carbonate and bis-aryl carbonate, are used as a raw material, and carry out melt polycondensation is learned. As an activity carbonate derivative, a phosgene, a KARUBOJI imidazole, etc. are mentioned to the nucleophilic attack used by interfacial polymerization and the pyridine method here, and a phosgene is the most common from acquisition ease especially. About the example of the carbonate used for a melting polymerization method (a) As bis-alkyl carbonate, dimethyl carbonate, diethyl carbonate, G n-propyl carbonate, diisopropyl carbonate, di-n-butyl carbonate, etc. (b) As bis-aryl carbonate, diphenyl carbonate. screw (2, 4-dichlorophenyl) carbonate, Screw (2, 4, 6-TORIKURORO phenyl) carbonate, screw (2-nitrophenyl) carbonate, Screw (2-cyanophenyl) carbonate, screw (4-methylphenyl) carbonate, screw (3-methylphenyl) carbonate, dinaphthyl carbonate, etc. are mentioned. In this, diaryl carbonate, such as bis-alkyl carbonate, such as dimethyl carbonate and diethyl carbonate, diphenyl carbonate, screw (4-methylphenyl) carbonate, and screw (3-methylphenyl) carbonate, is preferably used in raw material acquisition ease, and diphenyl carbonate is most preferably used from reaction ease especially.

[0010] Although there is especially no limit in the molecular weight of the aromatic series polycarbonate resin used by this invention, in the gel permeation chromatography (GPC) by the 40-degree C tetrahydrofuran (THF) solvent, the weight average molecular weight Mw as contrast is desirable from 15000 or more, toughness, or shaping ease, and 35000 to about 65000 are [20000 to about 80000] usually most preferably suitable in single molecular weight distribution polystyrene.

[0011] As a sheet silicate used for this invention, it is SiO4 of two sheets about the octahedron sheet structure containing aluminum, Mg, Li, etc. The 2:1 molds of the form which the tetrahedron sheet structure sandwiched are suitable, and the thickness of one layer which is the unit structure is usually about 9.5A. Bloating tendency synthetic mica, such as smectite system clay minerals, such as a montmorillonite, hectorite, fluorine hectorite, saponite, beidellite, and a SUCHIBUN site, Li mold fluorine TENIO light, Na mold fluorine TENIO light, a Na mold 4 silicon fluorine mica, and a Li mold 4 silicon fluorine mica, a vermiculite, a fluorine vermiculite, halloysite, etc. could be mentioned, and, specifically, the natural thing could also be compounded.

[0012] In this invention, although the cation exchange capacity (CEC) of these sheet silicates needs to be 30 milliequivalent / 100g or more, it is suitably desirable 50 milliequivalent / that they are 70 milliequivalent / 100g or more still more suitably 100g or more. Cation exchange capacity is measured by asking by the adsorption measurement of a methylene blue. Since cation exchange capacity becomes insufficient [30 milliequivalent / less than 100g / the amount of insertion (intercalation) of the organic onium ion of a between / layers] and the dispersibility to aromatic series polycarbonate resin worsens, neither the reinforcement of a constituent nor a rigid rise is enough, and a shaping surface appearance also worsens. Also in these sheet silicates, from cation exchange capacity or acquisition ease, a montmorillonite. Smectite system clay minerals, such as hectorite, Li mold fluorine TENIO light, Bloating tendency synthetic mica, such as Na mold fluorine TENIO light and a Na mold 4 silicon fluorine mica, is used suitably. In respect of purity, bloating tendency fluorine micas, such as Li mold fluorine TENIO light (the following type A), Na mold fluorine TENIO light (the following formula B). and a Na mold 4 silicon mica (the following type C), have the optimal montmorillonite which refines a bentonite from acquisition ease and is obtained especially to this invention. In addition, Formulas A, B, and C do not need to show an ideal presentation, and do not need to be strictly in agreement.

[0013]

[Formula 1]

LiMg2 Li(Si4 O10)F2 (A)

NaMg2 Li(Si4 O10)F2 (B)

NaMg2.5 (Si4 O10)F2 (C)

The organic onium ion used for this invention is represented by ammonium ion, phosphonium ion, the sulfonium ion, and the onium ion of the complex ring origin. By making this onium ion structure in this invention exist, the small hydrocarbon structure of intermolecular force can be introduced between the layers of the silicate layer charged in negative, and especially a limit is not carried out to the class of organic onium ion. From the point of acquisition ease and stability, ammonium ion, phosphonium ion, and the onium ion of the complex ring origin are [among these] suitable.

[0014] As ammonium ion, dodecyl ammonium, hexadecyl ammonium, The 1st class ammonium, such as octadecyl ammonium, methyl dodecyl ammonium, The 2nd class ammonium, such as butyl dodecyl ammonium and methyl octadecyl ammonium, Dimethyl dodecyl ammonium, dimethyl hexadecyl ammonium, Dimethyloctadecyl ammonium, diphenyl dodecyl ammonium, The 3rd class ammonium, such as diphenyl octadecyl ammonium, tetraethylammonium, The 4th class ammonium which has the same alkyl groups, such as

tetrabutylammonium and tetra-octyl ammonium, Trimethyl octyl ammonium, trimethyl DESHIRU ammonium, Trimethyl dodecyl ammonium, trimethyl tetradecyl ammonium, Trimethyl eicosanyl ammonium, trimethyl octadecenyl ammonium, Trimethyl alkylammonium, such as trimethyl octadecadienyl ammonium, Triethyl dodecyl ammonium, triethyl tetradecyl ammonium, Triethyl alkylammonium, such as triethyl hexadecyl ammonium and triethyl octadecyl ammonium,

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-207134

(43)公開日 平成7年(1995)8月8日

(51) Int.Cl.6

識別記号

庁内整理番号

FΙ

技術表示箇所

C08L 69/00 C08K 5/54 KKM

審査請求 未請求 請求項の数2 OL (全 8 頁)

(21)出願番号

特願平6-4069

(71)出願人 000005968

(22)出顧日

平成6年(1994)1月19日

三菱化学株式会社

東京都千代田区丸の内二丁目5番2号

(72)発明者 加和 学

神奈川県横浜市緑区鴨志田町1000番地 三

菱化成株式会社総合研究所内

(74)代理人 弁理士 長谷川 曉司

(54) 【発明の名称】 芳香族ポリカーポネート樹脂組成物

(57)【要約】

【構成】 陽イオン交換容量が30ミリ当量/100g 以上の層状珪酸塩をホストとし炭素数12以上のアルキル基を有する有機オニウムイオンをゲストとする層間化 合物を、無機灰分量として0.1~10重量%含む芳香 族ポリカーボネート樹脂組成物。

【効果】 強度や剛性に優れると同時に靱性、特に延性を大きく損なわず、かつ比重の増加が少なく成形表面外観や溶融流動性に優れ、しかも寸法精度が等方的に改良される。

【特許請求の範囲】

【請求項1】 陽イオン交換容量が30ミリ当量/100g以上の層状珪酸塩をホストとし炭素数12以上のアルキル基を有する有機オニウムイオンをゲストとする層間化合物を、無機灰分量として0.1~10重量%含むことを特徴とする芳香族ポリカーボネート樹脂組成物。【請求項2】 前記炭素数12以上のアルキル基を有する4級オニウムイオンであることを特徴とする請求項1に記載の芳香族ポリカーボネート樹脂組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、特定の層間化合物を含有する芳香族ポリカーボネート樹脂組成物に関する。 【0002】

【従来の技術】従来より、芳香族ポリカーボネート樹脂の強度や剛性あるいは寸法精度を向上する目的で、様々な充填材、例えばガラス繊維、炭素繊維、チタン酸カリウムウィスカー等の無機繊維、ガラスフレーク、ガラスドーズ、タルク、マイカ、カオリン、ウォラストナイト等の無機粉体の配合が行われてきた。しかし、これらの手法は強度や剛性を高めるものの、靭性を損なう、比重が増す、表面外観が低下するといった欠点があった。こうした充填材あるいは無機粉体の混合における欠点は、一般に充填材の分散不良あるいは分散物のサイズが大き過ぎること、及びマトリックス樹脂との界面の接着不良に起因するものと考えられており、こうした点から芳香族ポリカーボネート樹脂においても充填材の表面処理や微粉化、形状の工夫等様々な試みがなされてきているが必らずしも満足できるものではなかった。

【0003】また充填材の使用により一般に樹脂材料と同様芳香族ポリカーボネート樹脂においても溶融流動性が低下するという問題があった。更に、ガラス繊維等の無機繊維を充填した場合には繊維の配向方向の成形収縮率が低下するものの、これと垂直方向ではその効果がほとんど見られないという寸法精度の異方性の問題もあった。

【0004】以上のように、芳香族ポリカーボネート樹脂の強度や剛性等を改良する目的で様々な無機充填材の使用が提案されてきたが、材料の靱性の低下や比重の増加の問題を必ずしも解決できておらず、また、溶融流動性改良の要請は依然としてあり、寸法精度の改良の点においても問題が残されていた。

【0005】

【発明が解決しようとする課題】本発明の目的は、強度や剛性に優れると同時に靱性、特に延性を大きく損なわず、かつ比重の増加が少なく成形表面外観や溶融流動性に優れ、しかも寸法精度が等方的に改良された芳香族ポリカーボネート樹脂組成物を提供することにある。 【0006】 2

【課題を解決するための手段】本発明は上述の問題を解決するためになされたものであり、その要旨は、陽イオン交換容量が30ミリ当量/100g以上の層状珪酸塩をホストとし炭素数12以上のアルキル基を有する有機オニウムイオンをゲストとする層間化合物を、無機灰分量として0.1~10重量%含むことを特徴とする芳香族ポリカーボネートに存する。

【0007】以下、本発明をさらに詳細に説明する。本発明で用いられる芳香族ポリカーボネート樹脂は、多価10フェノール類を共重合成分として含有しても良い、1種以上のビスフェノール類と、ビスアルキルカーボネート、ビスアリールカーボネート、ホスゲン等の炭酸エステル類との反応により製造される。

【0008】ビスフェノール類としては、具体的にはビ ス(4-ヒドロキシフェニル)メタン、1,1-ビス (4-ヒドロキシフェニル) エタン、1,1-ビス(4 ーヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)プロパンすなわちビスフェノール $2, 2 - \forall \lambda (4 - \forall \lambda + \forall \lambda +$ ブタン、2,2-ビス(4-ヒドロキシフェニル)へキ サン、2,2ービス(4ーヒドロキシフェニル)-4-メチルペンタン、1,1-ビス(4-ヒドロキシフェニ ル)シクロペンタン、1,1-ビス(4-ヒドロキシフ ェニル)シクロヘキサン、ビス(4-ヒドロキシ-3-メチルフェニル) メタン、ビス (4-ヒドロキシ-3-メチルフェニル)フェニルメタン、1,1-ビス(4-ヒドロキシー3-メチルフェニル) エタン、2,2-ビ 30 ス(4-ヒドロキシー3-メチルフェニル)プロパン、 2, 2-ビス(4-ヒドロキシ-3-エチルフェニル) プロパン、2,2-ビス(4-ヒドロキシ-3-イソプ ロピルフェニル)プロパン、2,2-ビス(4-ヒドロ キシー3-sec-ブチルフェニル)プロパン、2、2 ービス (4ーヒドロキシー3-secーブチルフェニ ル)プロパン、ビス(4-ヒドロキシフェニル)フェニ ルメタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフ ェニル) -1-フェニルプロパン、ビス(4-ヒドロキ シフェニル) ジフェニルメタン、ビス (4-ヒドロキシ フェニル) ジベンジルメタン、4,4′ージヒドロキシ ジフェニルエーテル、4,4'ージヒドロキシジフェニ ルスルホン、4,4′-ジヒドロキシジフェニルスルフ ィド、4,4′ージヒドロキシベンゾフェノン、フェノ ールフタレイン等が挙げられる。この中で代表的なもの は、ビスフェノールA、1,1-ビス(4-ヒドロキシ フェニル)-1-フェニルエタン、1, 1-ビス (4-ヒドロキシフェニル) シクロヘキサン、2, 2-ビス (4-ヒドロキシ-3-メチルフェニル) プロパン等で 50 あり、最も一般的にはビスフェノールAが用いられる。

【0009】多価フェノール類は、芳香族ポリカーボネ ート樹脂のレオロジー的性質を変化させたり表面摩耗特 性を改良する目的で共重合成分として用いられ、例えば 1, 1, 1-トリス (4-ヒドロキシフェニル) エタン 等のトリスフェノール類等が挙げられる。本発明に使用 される芳香族ポリカーボネート樹脂の製造方法に制限は ないが、ビスフェノール類のアルカリ金属塩と求核攻撃 に活性な炭酸エステル誘導体とを原料とし生成ポリマー を溶解する有機溶剤とアルカリ水との界面にて重縮合反 応させる界面重合法、ビスフェノール類と求核攻撃に活 性な炭酸エステル誘導体とを原料としピリジン等の有機 塩基中で重縮合反応させるピリジン法、ビスフェノール 類とビスアルキルカーボネートやビスアリールカーボネ ート等の炭酸エステルとを原料とし溶融重縮合させる溶 融重合法が一般に知られている。ここで界面重合法とピ リジン法で用いられる求核攻撃に活性な炭酸エステル誘 導体としては、ホスゲン、カルボジイミダゾール等が挙 げられ、中でもホスゲンが入手容易性から最も一般的で ある。溶融重合法に用いられる炭酸エステルの具体例に ついては、(a)ビスアルキルカーボネートとしてジメ チルカーボネート、ジエチルカーボネート、ジーn-プ ロピルカーボネート、ジイソプロピルカーボネート、ジ -n-ブチルカーボネート等が、(b) ビスアリールカ ーボネートとしてジフェニルカーボネート、ビス(2, 4-ジクロロフェニル)カーボネート、ビス(2,4, 6-トリクロロフェニル) カーボネート、ビス(2-ニ トロフェニル) カーボネート、ビス (2-シアノフェニ ル)カーボネート、ビス(4-メチルフェニル)カーボ ネート、ビス(3-メチルフェニル)カーボネート、ジ ナフチルカーボネート等が挙げられる。この中で、原料 30 入手容易性においてジメチルカーボネート、ジエチルカ ーボネート等のビスアルキルカーボネート、ジフェニル カーボネート、ビス (4-メチルフェニル) カーボネー ト、ビス(3-メチルフェニル)カーボネート等のジア リールカーボネートが好ましく用いられ、中でも反応容 易性からジフェニルカーボネートが最も好ましく用いら れる。

【0010】本発明で用いられる芳香族ポリカーボネート樹脂の分子量には特に制限はないが、通常は40℃のテトラヒドロフラン(THF)溶媒によるゲルパーミエーションクロマトグラフィ(GPC)において、単分子量分散ポリスチレンを対照としての重量平均分子量Mwが15000以上、靱性や成形容易性から好ましくは2000~80000程度、最も好ましくは35000~65000程度が適当である。

【0011】本発明に用いられる層状珪酸塩としては、A1、Mg、Li等を含む八面体シート構造を2枚のSiO4四面体シート構造がはさんだ形の2:1型が好適であり、その単位構造である1層の厚みは通常9.5Å程度である。具体的には、モンモリロナイト、ヘクトラ

4

イト、フッ素へクトライト、サポナイト、バイデライト、スチブンサイト等のスメクタイト系粘土鉱物、Li型フッ素テニオライト、Na型フッ素テニオライト、Na型四珪素フッ素雲母、Li型四珪素フッ素雲母等の膨潤性合成雲母、バーミキュライト、フッ素バーミキュライト、ハロイサイト等が挙げられ、天然のものでも合成されたものでも良い。

【0012】本発明においては、これらの層状珪酸塩の 陽イオン交換容量(CEC)は30ミリ当量/100g 以上である必要があるが、好適には50ミリ当量/10 0g以上、さらに好適には70ミリ当量/100g以上 であるのが望ましい。陽イオン交換容量は、メチレンブ ルーの吸着量測定により求めることで測定される。陽イ オン交換容量が30ミリ当量/100g未満では、層間 への有機オニウムイオンの挿入(インターカレーショ ン)量が不十分となり芳香族ポリカーボネート樹脂への 分散性が悪くなるため、組成物の強度や剛性の上昇が十 分でなく成形表面外観も悪くなる。陽イオン交換容量や 入手容易性からこれらの層状珪酸塩の中でも、モンモリ ロナイト、ヘクトライト等のスメクタイト系粘土鉱物、 Li型フッ素テニオライト、Na型フッ素テニオライ ト、Na型四珪素フッ素雲母等の膨潤性合成雲母が好適 に用いられ、特に入手容易性からはベントナイトを精製 して得られるモンモリロナイトが、純度の点ではLi型 フッ素テニオライト(下記式A)、Na型フッ素テニオ ライト(下記式B)、Na型四珪素雲母(下記式C)等 の膨潤性フッ素雲母が本発明には最適である。なお、式 A、B、Cは理想的な組成を示したものであり、厳密に 一致している必要はない。

[0013]

LiMg2 Li (Si4 O10) F2

【化1】

NaMg2 Li (Si4 O10) F2 (B) NaMg2.5 (Si4 O10) F2 (C) 本発明に用いられる有機オニウムイオンとは、アンモニウムイオン、ホスホニウムイオン、スルホニウムイオン、複素芳香環由来のオニウムイオンに代表されるものである。本発明における該オニウムイオン構造を存在させることにより、負に帯電した珪酸塩層の層間に分子間力の小さい炭化水素構造を導入することができるのであって、有機オニウムイオンの種類に特に制限はされない。これらのうち、入手容易性、安定性の点からは、アンモニウムイオン、ホスホニウムイオン、複素芳香環由来のオニウムイオンが好適である。

(A)

【0014】アンモニウムイオンとしては、ドデシルアンモニウム、ヘキサデシルアンモニウム、オクタデシルアンモニウム等の1級アンモニウム、メチルドデシルアンモニウム、ブチルドデシルアンモニウム、メチルオクタデシルアンモニウム等の2級アンモニウム、ジメチル50ドデシルアンモニウム、ジメチルヘキサデシルアンモニ

ウム、ジメチルオクタデシルアンモニウム、ジフェニル ドデシルアンモニウム、ジフェニルオクタデシルアンモ ニウム等の3級アンモニウム、テトラエチルアンモニウ ム、テトラブチルアンモニウム、テトラオクチルアンモ ニウム等の同一のアルキル基を有する4級アンモニウ ム、トリメチルオクチルアンモニウム、トリメチルデシ ルアンモニウム、トリメチルドデシルアンモニウム、ト リメチルテトラデシルアンモニウム、トリメチルヘキサ デシルアンモニウム、トリメチルオクタデシルアンモニ ウム、トリメチルエイコサニルアンモニウム、トリメチ ルオクタデセニルアンモニウム、トリメチルオクタデカ ジエニルアンモニウム等のトリメチルアルキルアンモニ ウム、トリエチルドデシルアンモニウム、トリエチルテ トラデシルアンモニウム、トリエチルヘキサデシルアン モニウム、トリエチルオクタデシルアンモニウム等のト リエチルアルキルアンモニウム、トリブチルドデシルア ンモニウム、トリブチルテトラデシルアンモニウム、ト リブチルヘキサデシルアンモニウム、トリブチルオクタ デシルアンモニウム等のトリブチルアルキルアンモニウ ム、ジメチルジオクチルアンモニウム、ジメチルジデシ ルアンモニウム、ジメチルジテトラデシルアンモニウ ム、ジメチルジヘキサデシルアンモニウム、ジメチルジ オクタデシルアンモニウム、ジメチルジオクタデセニル アンモニウム、ジメチルジオクタデカジエニルアンモニ ウム等のジメチルジアルキルアンモニウム、ジエチルジ ドデシルアンモニウム、ジエチルジテトラデシルアンモ ニウム、ジエチルジヘキサデシルアンモニウム、ジエチ ルジオクタデシルアンモニウム等のジエチルジアルキル アンモニウム、ジブチルジドデシルアンモニウム、ジブ チルジテトラデシルアンモニウム、ジブチルジヘキサデ シルアンモニウム、ジブチルジオクタデシルアンモニウ ム等のジブチルジアルキルアンモニウム、メチルベンジ ルジヘキサデシルアンモニウム等のメチルベンジルジア ルキルアンモニウム、ジベンジルジヘキサデシルアンモ ニウム等のジベンジルジアルキルアンモニウム、トリオ クチルメチルアンモニウム、トリドデシルメチルアンモ ニウム、トリテトラデシルメチルアンモニウム等のトリ アルキルメチルアンモニウム、トリオクチルエチルアン モニウム、トリドデシルエチルアンモニウム等のトリア ルキルエチルアンモニウム、トリオクチルブチルアンモ ニウム、トリドデシルブチルアンモニウム等のトリアル キルブチルアンモニウム、トリメチルベンジルアンモニ ウム等の芳香環を有する4級アンモニウム、トリメチル フェニルアンモニウム等の芳香族アミン由来の4級アン モニウム等のイオンが挙げられ、ホスホニウムイオンと しては、テトラブチルホスホニウム、テトラオクチルホ スホニウム、トリメチルデシルホスホニウム、トリメチ ルドデシルホスホニウム、トリメチルヘキサデシルホス ホニウム、トリメチルオクタデシルホスホニウム、トリ ブチルドデシルホスホニウム、トリブチルヘキサデシル 50 ホスホニウム、トリブチルオクタデシルホスホニウム等 の4級ホスホニウムイオンが挙げられ、複素芳香環由来 のオニウムイオンとしては、ピリジニウム、キノリニウ

6

ム等のイオンが挙げられる。

【0015】これらの有機オニウムイオンのうち珪酸塩 層間の疎水化に寄与する炭化水素構造の有効性の点か ら、トリメチルドデシルアンモニウム、トリメチルテト ラデシルアンモニウム、トリメチルヘキサデシルアンモ ニウム、トリメチルオクタデシルアンモニウム、トリエ チルドデシルアンモニウム、トリエチルテトラデシルア ンモニウム、トリエチルヘキサデシルアンモニウム、ト リエチルオクタデシルアンモニウム等の炭素数12以上 のアルキル基を1分子中に1つ有する4級アンモニウ ム、ジメチルジドデシルアンモニウム、ジメチルジテト ラデシルアンモニウム、ジメチルジヘキサデシルアンモ ニウム、ジメチルジオクタデシルアンモニウム、ジエチ ルジドデシルアンモニウム、ジエチルジテトラデシルア ンモニウム、ジエチルジヘキサデシルアンモニウム、ジ エチルジオクタデシルアンモニウム等の炭素数12以上 のアルキル基を1分子中に2つ有する4級アンモニウ ム、トリメチルドデシルホスホニウム、トリメチルヘキ サデシルホスホニウム、トリメチルオクタデシルホスホ ニウム、トリブチルドデシルホスホニウム、トリブチル ヘキサデシルホスホニウム、トリブチルオクタデシルホ スホニウム等の炭素数12以上のアルキル基を有する4 級ホスホニウム等の4級オニウムイオンが好適に用いら れる。中でも、トリメチルヘキサデシルアンモニウム、 トリメチルオクタデシルアンモニウム等の炭素数16以 上のアルキル基を1分子中に1つ有する4級アンモニウ ム、ジメチルジテトラデシルアンモニウム、ジメチルジ ヘキサデシルアンモニウム、ジメチルジオクタデシルア ンモニウム等の炭素数14以上のアルキル基を1分子中 に2つ有する4級アンモニウム、トリメチルヘキサデシ ルホスホニウム、トリメチルオクタデシルホスホニウ ム、トリブチルヘキサデシルホスホニウム、トリブチル オクタデシルホスホニウム等の炭素数14以上のアルキ ル基を有する4級ホスホニウム等の4級オニウムイオン が樹脂組成物の靱性保持と入手容易性の点から更に好適 に用いられ、最も好適にはトリメチルオクタデシルアン モニウムイオン、ジメチルジヘキサデシルアンモニウム イオン、ジメチルジオクタデシルアンモニウムイオン、 トリブチルヘキサデシルホスホニウムイオン、トリブチ ルオクタデシルホスホニウムイオンが用いられる。なお これらの有機オニウムイオンは、単独でも複数種類の混 合物としても使用できる。

【0016】炭素数14以上のアルキル基を有するオニウムイオンを用いると、副次的な好ましい効果として組成物の溶融流動性の大きな向上が見られ、成形性、成形歪み、高複屈折等が改善され得る。これは、比較的長鎖のアルキル基の存在がマトリックス樹脂の分子易動性を

向上させるためと考えられる。本発明の樹脂組成物の原料として好適に用いられる、陽イオン交換容量が30ミリ当量/100g以上の層状珪酸塩をホストとし有機オニウムイオンをゲストとする層間化合物とは、有機オニウムイオンを、負の層格子および交換可能なカチオンを含有する粘土と反応させる公知の技術(例えば特公昭61-5492号公報、特開昭60-42451号公報等に記載)により製造される、層間に該オニウムイオンが挿入(インターカレーション)された化合物を意味する。該層間化合物の調製は、例えば特願平5-245199号、特願平5-245200号等に記載された4級アンモニウムイオンの挿入の場合の反応及び精製方法等により行われる。

【0017】層間化合物中の有機オニウムイオンの量は、原料の層状珪酸塩の陽イオン交換容量に対し0.8~2.0当量の範囲であれば特に制限はないが、通常の反応条件では1.0~1.3当量程度のものとなる。この量が0.8当量よりも少ないと、芳香族ポリカーボネート樹脂への分散性が低下し、2.0当量より多いと該オニウムイオン由来の遊離化合物が顕著となり、成形時20の熱安定性低下、発煙、金型汚染、臭気等の原因となる場合がある。

【0018】層間化合物の水分量は、芳香族ポリカーボ ネート樹脂との混合時の加水分解等の望ましくない副反 応を低減するために、7wt%以下、好ましくは5wt %以下、最も好ましくは3wt%以下に制御することが 望ましい。該水分量が7wt%を超えると芳香族ポリカ ーボネートの加水分解による分子量低下が顕著となり、 組成物の靭性が大きく低下する。本発明の芳香族ポリカ ーボネート樹脂組成物においては、層状珪酸塩を無機灰 分量として0.1~10重量%、靱性保持と補強効果発 現の点から好適には0.3~8重量%、さらに好適には 0.3~5重量%、延性発現の点で最も好適には0.3 ~4 重量%含む。ここで無機灰分量とは、芳香族ポリカ ーボネート組成物の有機成分を650℃の電気炉内で完 全に焼失せしめた残渣の重量分率のことである。該無機 灰分量が0.1重量%未満の場合は弾性率の向上が顕著 でなく、一方10重量%を超えると靱性低下が大きく、 いずれの場合も好ましくない。なお、層間化合物を添加 する場合は各々単独で用いてもよく併用してもよい。 【0019】本発明における特定の陽イオン交換容量の 層状珪酸塩に有機オニウムイオンをインターカレーショ ンした層間化合物は、芳香族ポリカーボネート樹脂マト リックスに対し極めて優れた劈開分散性を有し、樹脂マ トリックス中に微分散され、芳香族ポリカーボネート樹 脂の延性を維持しながら極めて効率的に強度や剛性を向 上させ、射出成形品において等方的に低い成形収縮率を 発現し、しかも溶融粘度を大きく低減させる。

【0020】本発明においては、陽イオン交換能を持つ 記,単位kg/c層状珪酸塩の層間陽イオンの有機オニウムイオンによる 50 %)を測定した。

交換において、有機オニウムイオンの構造制御により層間の疎水性を変化させ、構造が制御された有機オニウムイオンのインターカレーションによる層間引力の低減と層間距離の増大の相乗効果により、溶融した芳香族ボリカーボネート樹脂中での機械的剪断力のような簡便な手段でも劈開分散が容易と達成される。

8

【0021】本発明において、層状珪酸塩と芳香族ポリ カーボネート樹脂との混合方法には特に制限はないが、 層間化合物を用いる場合には芳香族ポリカーボネート樹 脂の溶融状態で機械的剪断下行われることが肝要であ り、この範囲において任意の段階で添加できる。例え ば、重合前の芳香族ポリカーボネート原料に添加し芳香 族ポリカーボネートの溶融重合とともに撹拌混合する方 法、芳香族ポリカーボネートの溶融重合途中ないしは溶 融重合後チップ化前に添加し撹拌混合する方法、あるい はチップ化後の芳香族ポリカーボネート樹脂に添加し押 出機等の混練機にて溶融混合する方法等任意の方法で混 合可能であるが、生産性、簡便性、汎用性から混練機を 用いた方法が好ましい。中でも、剪断効率の高い二軸押 出機の使用が好ましく、該層間化合物に含まれる水分を 効率的に除去できるベント付き二軸押出機の使用が最適 である。本発明の芳香族ポリカーボネート樹脂組成物に は、本発明の目的を損なわない限りにおいて必要に応じ 常用の各種添加成分、例えばガラス繊維、炭素繊維等の 無機繊維、ガラスフレーク、ガラスビーズ、雲母等の無 機粉体、各種可塑剤、安定剤、着色剤、難燃剤等を添加 できる。

【0022】更に、本発明の芳香族ポリカーボネート樹脂組成物には、本発明の目的を損なわない限りにおいて必要に応じ通常の芳香族ポリカーボネート樹脂にブレンドされる熱可塑性樹脂や熱可塑性エラストマー、例えばポリアミド樹脂、芳香族ポリエステル樹脂、ポリアリレート樹脂、ABS樹脂、ポリフェニレンエーテル樹脂、ポリアリーレンスルフィド樹脂、エボキシ樹脂、フェノキシ樹脂、ポリスチレン樹脂、無水マレイン酸変性ポリスチレン樹脂、エポキシ基を有する化合物で変性されたポリスチレン樹脂、芳香族ポリカーボネートポリシロキサン共重合体、ポリエステルエラストマー、酸無水物基またはエボキシ基を有する化合物で変性されたスチレン系熱可塑性エラストマー、アクリルゴム、コアーシェル型アクリルゴム、MBSゴム等を加えてもよい。

[0023]

【実施例】以下本発明を更に詳細に説明するが、本発明 はその要旨を越えない限り、以下の実施例に限定される ものではない。

【0024】〔評価項目と測定方法〕

〔引張試験〕ASTM D-638によった。降伏強度(YSと略記、単位 kg/cm^2)、弾性率(TMと略記、単位 kg/cm^2)、破断伸び(UEと略記、単位%)を測定した。

【0025】〔表面外観観察〕目視評価により射出成形品の表面の平滑性を比較した。

(溶融ストランド透明性)分散状態の簡易評価として目 視により行った。

〔成形収縮率〕2 mm厚、8 c m角フィルムゲートの金型により平板を射出成形し、流動方向(MD)とMDと垂直方向(TD)の2方向の寸法を測定して求めた。

【0026】 〔溶融流動性〕射出成形時の最低充填射出 圧(kg/cm²) により評価した。

〔分子量〕テトラヒドロフラン溶媒によるゲルパーミエ 10ーションクロマトグラフィ(東ソー(株)製HLC-8020,カラム: GMHXL, 温度: 40℃) により単*

*分子量分散ポリスチレンを対照とした重量平均分子量Mwを測定した。

1.0

【0027】〔使用した層状珪酸塩〕表1に使用した層状珪酸塩の名称、鉱物名、種類、メチレンブルー吸着法により測定した陽イオン交換容量(CECと略記)、メーカーを記載した。また、層間化合物として市販の有機ベントナイトであるエスベン74(豊順工業(株)製、モンモリロナイトとジメチルジオクタデシルアンモニウムイオンを主体とする層間化合物)も使用した。

[0028]

【表1】

表一】

名 称	鉱	物名	種類	CEC"	メーカー
クニピアF	モン・	モリロナイト	天然	1 2 0	クニミネ工業(株)
ME 1 0 0	脏潤	性フッ素雲母	合成	8 0	コープケミカル(株)
ダイモナイト	同	上	合成	1 4	トピー工業(株)
A-61	雲	母	天然	イオン交換性なし	山口當母工業所(株)

1) ミリ当量/100g

【0029】〔層間化合物の調製法〕層状珪酸塩約10 0gを精秤しこれを室温の水10リットルに撹拌分散 し、ここに層状珪酸塩のCECの1.2倍当量のオニウ ムイオンの塩酸塩を添加して6時間撹拌した。精製した 沈降性の固体を沪別し、次いで25リットルの脱塩水中 で撹拌洗浄後再び沪別した。この洗浄と沪別の操作を少 なくとも3回行い、洗液の硝酸銀試験で塩化物イオンが 検出されなくなるのを確認した。得られた固体は3~7 日の風乾後乳鉢で粉砕し、更に50℃の温風乾燥を3~ 10時間行い再度乳鉢で粉砕した。乾燥条件はゲストの オニウムイオンの種類により変動するが、最大粒径が1 00μm程度となる粉砕性の確保と、窒素気流下120 ℃で1時間保持した場合の熱重量減少で評価した残留水 分量が2~3wt%となることを指標とした。層間化合 物の灰分量は、窒素気流下500℃で3時間保持した場 合の残渣の重量分率を採用し、実施例と比較例の理論灰 40 分量の計算に供した。

【0030】 (実施例1~12) ビスフェノールAポリカーボネート (ノバレックス7025PJ、重量平均分子量Mw=45000、三菱化成(株)製、ノバレックスは登録商標)のフレークと表-2に示した層間化合物とを配合し、東芝機械(株)製の二軸押出機TEM35Bによりバレル温度設定280℃、スクリュ回転数150rpmの条件でベントを使用しながら溶融押出しチップ化した。得られたチップは日本製鋼所(株)製の射出成形機J28SAにより、バレル温度280℃、金型表※50

- ※面実測温度80℃、射出/冷却=10/10秒、射出速度最大の条件で成形し、引張試験片、曲げ試験片、平板をそれぞれ得た。組成物の灰分量は、成形片約1.5gを精秤し、650℃の電気炉内で完全に有機物を焼失せしめた残渣の重量分率を採用した。
- 90 【0031】〔比較例1〕層間化合物を加えずに実施例 1~12と同様の溶融押出実験を行った。

〔比較例2~5〕層間化合物の有機オニウムイオンとして、表−2に記載した炭素数12以上のアルキル基を持たないものを用いて実施例1~12と同様の溶融押出実験を行った。

【0032】〔比較例6〕層間化合物の代わりに表-2 に記載した天然モンモリロナイトを用いて実施例1~1 2と同様の溶融押出実験を行った。

〔比較例7〕表-2に記載した陽イオン交換容量(CEC)が30ミリ当量/100g未満の層状珪酸塩を用いて実施例7と同様の溶融押出実験を行った。

【0033】 [比較例8] 表-2に記載した汎用層状フィラーである天然雲母を用いて実施例1~12と同様の溶融押出実験を行った。

〔比較例9~10〕表-2に記載したように実施例8~12と同様の溶融押出実験を、灰分量がそれぞれ0.1 重量%未満、及び10重量%を超えるように配合して行った。

【0034】実施例と比較例の評価結果は、灰分量、引 張試験、表面外観、溶融ストランド透明性を表-2に、

12

分子量、溶融流動性、成形収縮率を表-3にそれぞれ示した。表-2から、本発明の実施例の組成物は、雲母の添加(比較例8)等に比べ少量の無機物の添加での強度や弾性率の向上が顕著であり、しかも引張破断伸び(UE)に示される靱性の低下が少なく射出成形品の表面外観も良好なものであり、炭素数12以上のアルキル基を持たない有機オニウムイオンによる層間化合物を用いた*

*場合(比較例2~5)や、層状珪酸塩の陽イオン交換容量が小さい場合(比較例7)に比べても優れていることがわかる。更に、表-3から本発明の実施例の組成物は、溶融流動性が大幅に改善され、また、成形収縮率も等方的に改善されることもわかる。

[0035]

【表2】

表 - 2

		層間化合物		灰分量	灰分量 引張試験		——— 険	表	<u> </u>	溶 融	
No.		層状珪酸塩	有機もこうなくまン	(wt%)	Y S	тм	UE	- 外	観		ランド 月 性
実施例]]	クニピアF	+N(CH ₃) ₃ C ₁₈ H ₃₇	2. 10	641	26500	64	平	滑	ほぼ	透明
"	2	クニピアド	+N(CH3)3C16H33	1. 59	631	24400	86	苹	滑	ほぼ	透明
,,	3	クニピアF	$^+$ N(CH3)3C12H25	2. 02	640	24900	68	平	滑	ほぼ	透明
"	4	クニピアF	$^{+}$ H $_{3}$ N-C $_{18}$ H $_{37}$	2. 07	637	24800	49	平	滑	III.	透明
"	5	クニピアF	$^{+}\mathrm{H}_{3}$ N-C $_{12}$ H $_{25}$	2. 03	630	23500	41	本	滑	ほぼ	透明
# .	6	クニピアF	$^{+}$ P(C4H9)3C16H33	2. 3 5	640	26700	69	苹	滑	ほぽ	透明
"	7	ME 1 0 0	+N(CH ₃) ₃ C ₁₈ H ₃₇	2. 43	651	27100	61	苹	滑	ほぼ	透明
"	8	エスへ	ベン74	0. 36	610	21000	119	本	滑	(E(3)	透明
"	9	エスへ	× 2 7 4	1. 34	629	24800	99	平	滑	ほぼ	透明
"	10	エスへ	ベン74	3. 04	650	27700	20	平	滑	ほぼ	透明
" .	11	エスへ	くン74	6. 01	* }	34800	4	本	滑	やや	蜀る
"	12	エスへ	く 7 4	9. 92	‡)	45100	2	平	滑	濁	3
比較例	1	(なし)	(なし)	0. 00	583	19800	131	華	滑	透	明
"	2	クニピアF	+N(CH ₃) ₃ C ₁₈ H ₃₇	2. 31	640	26400	18	並	滑	やや	蜀る
'n	3		⁺ N(CH ₃) ₃ phenyl	1. 99	633	24500	23	平	滑	やや	蜀る
n	4	クニピアF	+N(C4H9)4	1. 98	639	25000	21	平	滑	やや	蜀る
"	5	クニピアF	+P(C4H9)4	2. 16	643	26300	14	平	滑	やや	蜀る
"	6	クニピアF	(なし)	2. 98	590	21800	45	粒子	あり	獨	る
"	7	ダイモナイト	⁺ N(СН ₃) ₃ С ₁₈ Н ₃₇	2. 41	638	22400	29	平	滑	やや	蜀る
"	8	A - 6 1	(なし)	2. 10	586	21100	78	粒子	あり	蠲	る
"	9	エスベ	シ 7 4	0.09	589	20400	130	平	滑	is is is	證明
″ 1	10	エスベ	ン74	12. 98	(非常に	脆く成形	離型時	割れ	る)	濁	3

^{*)} 降伏せず。

[0036]

※ ※【表3】

表-3

No.	重量平均分子量	成形収縮率(%)			
NO.	Mw	(kg/cm²)	MD	TD	
実施例8	44500	9 3 0	0. 47	0. 57	
" 9	4 1 0 0 0	8 9 0	0.40	0.40	
″ 12	(測定	보 す 。)	0. 29	0.31	
比較例1	45000	1500	0.50	0.64	

[0037]

【発明の効果】本発明によって得られた芳香族ポリカーボネート樹脂組成物は、強度や剛性に優れると同時に靱性、特に延性を大きく損なわず、かつ比重の増加が少なく成形表面外観や溶融流動性に優れ、しかも寸法精度が等方的に改良されるという結果を与える。又、本発明に*

*より得られる芳香族ポリカーボネート樹脂組成物は、低 比重、良好な表面外観、高強度、高剛性、高靱性、低成 形収縮率、良好な溶融流動性等の性能に基づき、様々な 機械部品、自動車部品、電気電子部品、シート、フィル ム、包材等に適用できる。

14