

CSE211-Formal Languages and Automata Theory

U4L5_Universal Language Part 1

Dr. P. Saravanan

School of Computing SASTRA Deemed University

- Recap of previous class: Diagonalization
- Converting the Problem to a Language
- Binary-Strings from TM's
- TM Representation by binary
- Language representation by binary
- Universal Language
- Universal Turing Machine

Converting the Problem to a Language

Let M = (Q, Σ, Γ, δ, q₁, B, {q_n}) be a TM, where $Q = \{q_1, q_2, ..., q_n\}, \text{ order the states from 1 through n}$ $\Sigma = \{x_1, x_2\} = \{0, 1\}$ $\Gamma = \{x_1, x_2, x_3\} = \{0, 1, B\}$

Encode each transition:

$$\delta(q_i, x_j) = (q_k, x_l, d_m) \text{ where } q_i \text{ and } q_k \text{ are in ordered } Q$$

$$x_j \text{ and } x_l \text{ are in } \Sigma, \text{ and } d_m \text{ is in } \{L, R\} = \{d_1, d_2\} \text{ as:}$$

$$0^i 10^j 10^k 10^l 10^m$$

where the number of 0's indicate the corresponding id, and single 1 acts as a barrier

• The TM M can then be encoded as: 111code₁11code₂11code₃11 ... 11code₁111

- We shall restrict ourselves to TM's with input alphabet {0, 1}.
- Assign positive integers to the three classes of elements involved in moves:
 - States: q₁(start state), q₂ (final state), q₃, ...
 - Symbols X_1 (0), X_2 (1), X_3 (blank), X_4 , ...
 - Directions D_1 (L) and D_2 (R).

Less Formally:

Every state, tape symbol, and movement symbol is encoded as a sequence of 0's:

L 0 00...

Note that 1's are not used to represent the above, since 1 is used as a special separator symbol.

- Suppose $\delta(q_i, X_i) = (q_k, X_l, D_m)$.
- Represent this rule by string 0ⁱ10^j10^k10^l10^m.
- Key point: since integers i, j, ... are all > 0, there cannot be two consecutive 1's in these strings

Example:

$$\delta(q_2, 1) = (q_3, 0, R)$$
 Is encoded as:

00100100010100

TM Representation by binary

- Represent a TM by concatenating the codes for each of its moves, separated by 11 as punctuation.
 - That is: Code₁11Code₂11Code₃11 ...

What is the L(M)?

Coding for the above table:

Are the followings correct encoding of a TM?

01100001110001

111111

Language Representation by binary string

Definition:

$$L_t = \{x \mid x \text{ is in } \{0, 1\}^* \text{ and } x \text{ encodes a TM} \}$$

- Question: Is L_t recursive?
- Answer: Yes. [Check only for format, i.e. the order and number of 0's and 1's, syntax checking]
- Question: Is L_t decidable:
- Answer: Yes (same question).

References

John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson, 3rd Edition, 2011.

Peter Linz, An Introduction to Formal Languages and Automata, Jones and Bartle Learning International, United Kingdom, 6th Edition, 2016.

Next Class: Unit IV

Universal Language Part 2 Thank you.