Lecture I213E – Class 10

Discrete Signal Processing

Sakriani Sakti

Course Materials

Materials

→ Lecture notes will be uploaded before each lecture

https://jstorage-2018.jaist.ac.jp/s/PGXRrC7iFmN2FWo

Pass: dsp-i213e-2022

(Slide Courtesy of Prof. Nak Young Chong)

References

- → Chi-Tsong Chen: Linear System Theory and Design, 4th Ed., Oxford University Press, 2013.
- → Alan V. Oppenheim and Ronald W. Schafer: Discrete-Time Signal Processing, 3rd Ed., Pearson New International Ed., 2013.

Related Courses & Prerequisite

Related Courses

- → I212 Analysis for Information Science
- → I114 Fundamental Mathematics for Information Science

Prerequisite

→ None

Evaluation

Viewpoint of evaluation

- → Students are able to understand:
 - Basic principles in modeling and analysis of linear time-invariant systems
 - Applications of mathematical methods and tools to different signal processing problems.

Evaluation method

→ Homework, term project, midterm exam, and final exam

Evaluation criteria

→ Homework/labs (30%), term project (30%) midterm exam (15%), and final exam (25%)

Contact

Lecturer

→ Sakriani Sakti

TA

Tutorial hours & Term project

- → WANG Lijun (s2010026)
- → TANG Bowen (s2110411)

Homework

→ PUTRI Fanda Yuliana (s2110425)

Contact Email

→ dsp-i213e-2022@ml.jaist.ac.jp

Schedule

■ December 8th, 2022 – February 9th, 2023

■ Lecture Course Term 2-2

- \rightarrow Tuesday 9:00 10:40
- \rightarrow Thursday 10:50 12:30

Tutorial Hours

→ Tuesday 13:30-15:10

Schedule

	Sun	Mon	Tue	Wed	Thu	Fri	Sat
Dec					1	2	3
	4	5	6	7	8	9	10
		12	13	14	15	16	17
	18	19	20	21	22	23	24
		26	27	28	29	30	31

	Sun	Mon	Tue)	Wed	Thu	Fri	Sat
Jan	1	2	3		4	*	6	
	8	9	10		11	12	13	14
	15	16	17		18	19	20	
	22	23	*		25	26	27	28
	29	30	31					

	Sun	Mon	Tue	Wed	Thu	Fri	Sat
Feb				1	2	3	4
	5	6	7	8	9		11
	12	13	14	15	16	17	18
	19	20	21	22	23	24	25
	26	27	28				

Tuesday 9:00 — 10:40

Tutorial:

Tuesday 13:30 — 15:10

Midterm & final exam Thursday 10:50 — 12:30

Course review & term project evaluation (on tutorial hours)

Syllabus

		40	
Class	Date	Lecture Course Tue 9:00 — 10:40 / Thr 10:50 — 12:30	Tutorial Hours Tue 13:30 — 15:10
1	12/08	Introduction to Linear Systems with Applications to Signal Processing	
2	12/13	State Space Description	0
3	12/15	Linear Algebra	
4	12/20	Quantitative Analysis (State Space Solutions) and Qualitative Analysis (Stability)	0
5	12/22	Discrete-time Signals and Systems	
X	01/05		
6	01/10	Discrete-time Fourier Analysis	A
7	01/10*	Review of Discrete-time Linear Time-Invariant Signals and Systems (on Tutorial Hours)	
	01/12	Midterm Exam	
8	01/17	Sampling and Reconstruction of Analog Signals	0
9	01/19	z-Transform	
Χ	01/24		0
10	01/26	Discrete Fourier Transform	
11	01/31	FFT Algorithms	0
12	01/02	Implementation of Digital Filters	
13	02/07	Digital Signal Processors and Design of Digital Filters	A
14	02/07*	Review of the Course and Term Project Evaluation (on Tutorial Hours)	
	02/09	Final exam	

Class 10 Discrete Fourier Transform

Function Transformation

	Complex Freq.	Real Freq.		
		Periodic	Not Periodic	
Continuous Time	LT	CTFS	CTFT	
Discrete Time	$\mathbf{Z}\mathbf{T}$	DFT	DTFT	

Discrete Fourier Transform

- → Computer-based frequency domain analysis
 - Spectral analysis (e.g. Finding periodicities)
 - Denoising
 - Compression (e.g. JPEG)
 - Filtering
 - "Fast" Convolution

Discrete Transform: DTFT, Z-Transform & DFT

Review DTFT

DTFT & Z-Transform

Discrete-time Fourier Transform (DTFT)

→ Frequency-domain representation for absolutely summable sequences

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

Z-Transform

→ A generalized frequency-domain representation for arbitrary sequences

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

Two features in common

- 1. Defined for infinite-length sequences (From $-\infty$ to ∞)
- 2. Functions of continuous variables: ω or $z = re^{j\omega}$
- → Easiest to appreciate when they are defined as mathematical expressions.

But, practically (in a computer program), how to evaluate infinite sums at uncountably infinite frequencies?

DTFT & Z-Transform

 The discrete-time Fourier transform and the z-transform are not numerically computable transforms

We turn our attention to a numerically computable transform

Computer analysis: discrete time and finite duration (N)

Solutions:

- only consider a finite number of samples in time, and
- only consider a finite number of frequencies.

Discrete Fourier Series & Transform

- What are we supposed to do?
 - → Sample the discrete-time Fourier transform in the frequency domain (or z-transform on the unit circle).
 - → Construct a periodic sequence:

A periodic sequence can always be represented by a linear combination of harmonically related complex exponentials (which is a form of sampling).

Discrete Fourier Series

- → Study the effects of sampling in the time domain and the issue of reconstruction in the z-domain.
- → Extend the Discrete Fourier Series to finite-duration sequences.

Discrete Fourier Transform

Fourier Transform Family Relationship

Discrete-time Fourier Series (DTFS)/ Discrete Fourier Series (DFS)

Discrete Fourier Series

Periodic Sequence

$$\widetilde{x}(n) = \widetilde{x}(n+kN), \quad \forall n, k$$
 the fundamental period of the sequence

The periodic functions can be synthesized as a linear combination of complex exponentials whose frequencies are multiples (or harmonics) of the fundamental frequency $(2\pi/N)$.

There are a finite number of harmonics; the frequencies are

$$\left\{ \frac{2\pi}{N}k, \quad k = 0, 1, \dots, N - 1 \right\}$$

Discrete Fourier Series

Analysis: a DFS Equation

$$\widetilde{X}(k) = \sum_{n=0}^{N-1} \widetilde{x}(n) e^{-j\frac{2\pi}{N}nk}, \quad k = 0, \pm 1, \dots, \qquad W_N \equiv e^{-j\frac{2\pi}{N}}$$

$$\widetilde{X}(k) \equiv DFS \left[\widetilde{x}(n)\right] = \sum_{n=0}^{N-1} \widetilde{x}(n) W_N^{nk}$$

Synthesis: an inverse DFS Equation

$$\widetilde{x}(n) = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}(k) e^{j\frac{2\pi}{N}kn}, \quad n = 0, \pm 1, \dots, \quad W_N \equiv e^{-j\frac{2\pi}{N}}$$

$$\widetilde{x}(n) \equiv IDFS \left[\widetilde{X}(k)\right] = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}(k) W_N^{-nk}$$

Example

Find the DFS representation:

$$\widetilde{x}(n) = \{...,0,1,2,3,0,1,2,3,0,1,2,3,...\}$$

$$\tilde{X}(k) = \sum_{n=0}^{3} \tilde{x}(n)W_4^{nk}, \quad k = 0, \pm 1, \pm 2, \dots$$

$$\tilde{X}(0) = \sum_{0}^{3} \tilde{x}(n) W_{4}^{0n} = \tilde{x}(0) + \tilde{x}(1) + \tilde{x}(2) + \tilde{x}(3) = 6$$

$$\tilde{X}(1) = \sum_{0}^{3} \tilde{x}(n)W_{4}^{1n} = \sum_{0}^{3} \tilde{x}(n)(-j)^{n} = (-2+2j)$$

$$\tilde{X}(2) = \sum_{0}^{3} \tilde{x}(n) W_{4}^{2n} = \sum_{0}^{3} \tilde{x}(n) (-j)^{2n} = -2$$

$$\tilde{X}(3) = \sum_{0}^{3} \tilde{x}(n)W_{4}^{3n} = \sum_{0}^{3} \tilde{x}(n)(-j)^{3n} = (-2-2j)$$

$$N = 4$$
, $W_4 = e^{-j\frac{2\pi}{4}} = -j$

Example: MATLAB

$$DFS \ \textit{matrix}$$

$$W_{N} \equiv \begin{bmatrix} W_{N \ 0 \leq k, n \leq N-1}^{kn} \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & W_{N}^{1} & \cdots & W_{N}^{(N-1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & W_{N}^{(N-1)} & \cdots & W_{N}^{(N-1)^{2}} \end{bmatrix}$$

```
function [Xk] = dfs(xn,N)
% Compute Discrete Fourier Series Coefficients
% [Xk] = dfs(xn,N)
% Xk = DFS coeff. array over 0 \le k \le N-1
% xn = One period of periodic signal over <math>0 \le n \le N-1
% N = Fundamental period of xn
%
n = [0:1:N-1];
             % row vector for n
             % row vector for k
k = [0:1:N-1];
WN = \exp(-j*2*pi/N) % Wn factor
nk = n'*k;
                     % creates a N by N matrix of nk value
WNnk = WN .^ nk;  % DFS matrix
Xk = xn * WNnk; % row vector for DFS coefficients
```

Example: MATLAB

```
function [xn] = idfs(Xk,N)
% Compute Inverse Discrete Fourier Series
% [xn] = idfs(Xk,N)
% xn = One period of periodic signal over <math>0 \le n \le N-1
% Xk = DFS coeff. array over 0 \le k \le N-1
% N = Fundamental period of Xk
%
n = [0:1:N-1];
                          % row vector for n
k = [0:1:N-1];
                         % row vector for k
WN = \exp(-j*2*pi/N) % Wn factor
                 % creates a N by N matrix of nk value
nk = n'*k;
WNnk = WN .^{(-nk)}; % IDFS matrix
xn = (Xk * WNnk)/N; % row vector for IDFS values
```

The DFS in the previous example can be computed using MATLAB as

```
>> xn = [0,1,2,3]; N = 4; Xk = dfs(xn,N)
Xk =
6.0000 -2.0000 + 2.0000i -2.0000 - 0.0000i -2.0000 - 2.0000i
```

Relation to Z-Transform

Z-Transform of Finite-duration Sequence

x(n) a finite-duration sequence of duration N $x(n) = \begin{cases} Nonzero, & 0 \le n \le N - 1 \\ 0, & elsewhere \end{cases}$ $X(z) = \sum_{n=0}^{N-1} x(n)z^{-n}$

Z-Transform of Periodic Sequence

Construct $\tilde{x}(n)$ a periodic sequence by periodically repeating x(n)with period N

$$x(n) = \begin{cases} \widetilde{x}(n), & 0 \le n \le N - 1 \\ 0, & elsewhere \end{cases}$$

$$\widetilde{X}(k) = \sum_{n=0}^{N-1} \widetilde{x}(n) e^{-j\frac{2\pi}{N}nk} = \sum_{n=0}^{N-1} x(n) \left[e^{j\frac{2\pi}{N}k} \right]^{-n}$$

$$N \text{ evenly spaced samples of}$$

$$\widetilde{X}(k) = X(z)|_{z=e^{j\frac{2\pi}{N}k}}$$

$$the z\text{-transform } X(z)$$

the z-transform X(z)around the unit circle

Relation to DTFT

DTFT of Finite-duration Sequence

x(n) a finite-duration sequence of duration N (absolutely summable)

$$X(e^{j\omega}) = \sum_{n=0}^{N-1} x(n)e^{-j\omega n} = \sum_{n=0}^{N-1} \tilde{x}(n)e^{-j\omega n}$$

Sampling interval in the frequency domain

DFS
$$\tilde{X}(k) = X(e^{j\omega_k}) = X(e^{jk\omega_0})$$

 $\tilde{X}(k) = X(e^{j\omega})\Big|_{\omega = \frac{2\pi}{N}k}$
 $\omega_0 \equiv \frac{2\pi}{N}, \quad \omega_k \equiv \frac{2\pi}{N}k = k\omega_0$

The DFS is obtained by evenly sampling the DTFT at $\omega_0 = \frac{2\pi}{N}$ intervals.

Relation to Z-Transform & DTFT

Relationship between $\widetilde{X}(k)$, $X(e^{j\omega})$, and X(z)

Homework #10.1 (1 pt.): Due Feb 7

Let
$$x(n) = \{0, 1, 2, A\}.$$

- 1. Compute its discrete-time Fourier transform $X(e^{j\omega})$.
- 2. Sample $X(e^{j\omega})$ at $k\omega_0 = \frac{2\pi}{4}k$, k = 0,1,2,3.

Show that it is equal to $\widetilde{X}(k)$.

Sampling & Reconstruction

Sampling in Time Domain

Sampling in time corresponds to replication in the frequency domain

Sampling in Frequency Domain

Sampling in frequency corresponds to replication in the time domain

Sampling in Z-Domain & Reconstruction

Sampling in Z-Domain

x(m) a finite-duration sequence of duration N

$$X(z) = \sum_{m=-\infty}^{\infty} x(m)z^{-m}$$

We sample X(z) on the unit circle at equispaced points separated in angle by $\omega_0 = 2\pi / N$. \longrightarrow a DFS sequence

$$\widetilde{X}(k) \equiv X(z) \Big|_{z=e^{j\frac{2\pi}{N}k}}, \quad k = 0, \pm 1, \pm 2, \dots$$

$$= \sum_{m=-\infty}^{\infty} x(m) e^{-j\frac{2\pi}{N}km} = \sum_{m=-\infty}^{\infty} x(m) W_N^{km}$$

$$\widetilde{x}(n) = IDFS \Big[\widetilde{X}(k) \Big]$$

Sampling in Z-Domain & Reconstruction

■ Relation between the arbitrary x(n) and the periodic $\tilde{x}(n)$.

$$\widetilde{x}(n) = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}(k) W_N^{-kn}$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} \left\{ \sum_{m=-\infty}^{\infty} x(m) W_N^{km} \right\} W_N^{-kn}$$

$$\widetilde{x}(n) = \sum_{m=-\infty}^{\infty} x(m) \frac{1}{N} \sum_{0}^{N-1} W_N^{-k(n-m)} = \sum_{m=-\infty}^{\infty} x(m) \sum_{r=-\infty}^{\infty} \delta(n-m-rN)$$

$$= \left\{ \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} x(m) \delta(n-m-rN) \right\}$$

$$\widetilde{x}(n) = \sum_{n=-\infty}^{\infty} x(n-rN) = \dots + x(n+N) + x(n) + x(n-N) + \dots$$

Sampling in Z-Domain & Reconstruction

Reconstruction

Sampling X(z) on the unit circle, we obtain a periodic sequence in the time domain. A linear combination of the original sequence x(n) and its infinite replicas, each shifted by multiples of $\pm N$.

Aliasing in Time Domain

If x(n) = 0 for n < 0 and $n \ge N$, then there will be no overlap or aliasing in the time domain.

Able to recognize and recover x(n) from $\tilde{x}(n)$,

$$x(n) = \widetilde{x}(n)$$
 for $0 \le n \le (N-1)$

$$x(n) = \widetilde{x}(n) R_N(n) = \begin{cases} \widetilde{x}(n), & 0 \le n \le N - 1 \\ 0, & else \end{cases}$$

A rectangular window of length N

Sampling DTFT

Frequency-domain sampling of the Fourier transform

N equidistance samples in the interval $0 \le \omega < 2\pi$ with spacing $\delta \omega = 2\pi / N$.

DTFT at
$$\omega = 2\pi k / N$$
,

$$X\left(e^{j\frac{2\pi}{N}k}\right) = \sum_{n=-\infty}^{\infty} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$

Relation between the arbitrary x(n) and the periodic $\tilde{x}(n)$.

$$X\left(e^{j\frac{2\pi}{N}k}\right) = \cdots + \sum_{n=-N}^{-1} x(n)e^{-j2\pi kn/N} + \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}$$

$$+ \sum_{n=N}^{2N-1} x(n)e^{-j2\pi kn/N} + \cdots$$

$$= \sum_{r=-\infty}^{\infty} \sum_{n=rN}^{rN+N-1} x(n)e^{-j2\pi kn/N}$$

Changing the index from n to n-rN, and exchanging the order of the summation

$$X\left(e^{j\frac{2\pi}{N}k}\right) = \sum_{n=0}^{N-1} \left[\sum_{r=-\infty}^{\infty} x(n-rN)\right] e^{-j2\pi kn/N}, \quad k = 0,1,2,\dots,N-1.$$

$$\widetilde{x}(n)$$
- Periodic with fundamental period N
- Can be expanded in a Fourier series

Reconstruction

$$\tilde{x}(n) = \frac{1}{N} \sum_{k=0}^{N-1} X \left(e^{j\frac{2\pi}{N}k} \right) e^{j2\pi kn/N}, \quad n = 0, 1, \dots, N-1$$

$$\widetilde{x}(n) \to x(n)$$

Aperiodic sequence x(n) of length L and its periodic extension $\widetilde{x}(n)$ for $N \ge L$ and N < L.

no aliasing aliasing in the time domain

Reconstruction

<u>The spectrum</u> of an aperiodic discrete-time signal with finite duration L can be exactly recovered from its samples at frequencies $\omega_k = 2\pi k / N$, if $N \ge L$.

$$x(n) = \begin{cases} \widetilde{x}(n), & 0 \le n \le N - 1 \\ 0, & elsewhere \end{cases}$$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

Aliasing in Time Domain

$$x_{1}(n) = \{6, 5, 4, 3, 2, 1\},$$
 $\omega_{k} = \frac{2\pi k}{4},$ $k = 0, \pm 1, \pm 2, \pm 3, \dots$

$$X_{1}(e^{j\omega}) \text{ DTFT}$$

$$\widetilde{x}_{2}(n) = \sum_{r=-\infty}^{\infty} x_{1}(n-4r)$$

$$\widetilde{x}_{2}(k) \text{ DFS sequence}$$

$$\widetilde{x}_{2}(n) = \{\dots, 8, 6, 4, 3, 8, 6, 4, 3, 8, 6, 4, 3, \dots\}$$

x(4) is aliased into x(0), and x(5) is aliased into x(1).

Example (2)

Aliasing in Time Domain

$$x(n) = (0.7)^n u(n)$$
 Sample its z-transform on the unit circle with $N = 5$, 10, 20, 50.
 $X(z) = \frac{1}{1 - 0.7z^{-1}} = \frac{z}{z - 0.7}$, $|z| > 0.7$

$$\widetilde{X}(k) = X(z)|_{z=e^{j2\pi k/N}}, \quad k = 0,\pm 1,\pm 2,...$$

Example (2)

Aliasing in Time Domain

Aliasing for N=5 and N=10

Discrete Fourier Transform

Key Concept of Discrete Fourier Transform

- The discrete Fourier transform (DFT) is used for computer-based frequency domain analysis of signals.
 - a) The DFT requires signals be of finite duration, N.
 - b) The DFT produces N frequency-domain coefficients.
- 2) A length-N DFT computes N samples of the discrete-time Fourier transform at frequency intervals of $\frac{2\pi}{N}$.
- Sampling in frequency causes replication of the signal in the time domain at integer multiples of the DFT length.
- 4) Use of a length-N DFT implies the time signal is N-periodic.

DFS & DFT

DFT: From DFS

- → the primary period of the DFS
- → the ultimate numerically computable Fourier transform for arbitrary finite-duration sequences

We define a finite-duration sequence x(n) that has N samples over $0 \le n \le N-1$ as an N-point sequence.

$$\widetilde{x}(n) = \sum_{r=-\infty}^{\infty} x(n-rN) \Longrightarrow \widetilde{x}(n) = x(n \mod N)$$

$$x((n))_N \equiv x(n \operatorname{mod} N)$$

$$\widetilde{x}(n) = x((n))_N$$
 (Periodic extension)

$$x(n) = \widetilde{x}(n)R_N(n)$$
 (Window operation)

```
function m = mod(n,N)
% Computes m = (n mod N) index
% -----
% m = mod(n,N)
m = rem(n,N); m = m+N; m = rem(m,N)
```

$$x(n) = \left\{ 1, 2, 3, 4 \right\}$$

$$((n))_m$$

$$qm + R$$

$$y(n) = x((n-1))_4$$

$$y(0) = x((-1))_4 = x(3) = 4$$

$$y(1) = x((0))_4 = x(0) = 1$$

$$y(2) = x((1))_4 = x(1) = 2$$

$$y(3) = x((2))_4 = x(2) = 3$$

$$y(n) = x((n+2))_4$$

$$y(0) = x((2))_4 = x(2) = 3$$

$$y(1) = x((3))_4 = x(3) = 4$$

$$y(2) = x((4))_4 = x(0) = 1$$

$$y(3) = x((5))_4 = x(1) = 2$$

DFS & DFT

DFT: From DFS

DFS is practically equivalent to the *DFT* when $0 \le n \le N-1$.

$$\Rightarrow DFS \quad \widetilde{x}(n)$$

The Discrete Fourier Transform of an N-point sequence

$$X(k) = DFT[x(n)] = \begin{cases} \widetilde{X}(k), & 0 \le k \le N - 1 \\ 0, & elsewhere \end{cases} = \widetilde{X}(k)R_N(k)$$

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}, \qquad 0 \le k \le N-1$$

The inverse Discrete Fourier Transform of an N-point DFTX(k)

$$x(n) \equiv IDFT[X(k)] = \widetilde{x}(n)R_N(n)$$

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn}, \qquad 0 \le n \le N-1$$
(Not defined outside $0 \le n \le N-1$)

DFS & DFT

DFT: From DFS

DFS is practically equivalent to the *DFT* when $0 \le n \le N-1$.

```
Function [Xk] = dft(xn,N)
% Compute Discrete Fourier Transform
 % [Xk] = dft(xn,N)
% Xk = DFT coeff. array over 0 <= k <= N-1
% xn = N-point finite-duration sequence
% N = Length of DFT
n = [0:1:N-1]; % row vector k = [0:1:N-1]; % row vector WN = \exp(-j^*2*pi/N); % wn factor % creates an
                                        % row vector for n
                                         % row vector for k
                                            % creates an N by N matrix of nk values % DFT matrix
\frac{W}{W}Nnk = WN .^nk;

Xk = xn * WNnk;
                                            % row vector for DFT coefficients
function [xn] = idft(Xk,N)
% Compute Inverse Discrete Fourier Transform
% [xn] = idft(Xk,N)
% xn = N-point sequence over 0 \le n \le N-1
% Xk = DFT coeff. array over 0 \le n \le N-1
% N = Length of DFT
n = [0:1:N-1];
                                            % row vector for n
k = [0:1:N-1]; % row vector N = \exp(-j*2*pi/N); % wn factor N = n'*k; % creates an
                                            % row vector for k
                                            % creates an N by N matrix of nk values
 WNnk = WN .^(-nk);
xn = (Xk * WNnk)/N:
                                            % row vector for IDFT values
```

DTFT & DFT

DTFT:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

■ Sampling ω at $\omega_k = \frac{2\pi}{N}k$, k = 0,1,2,...,N-1

Define DFT

$$X[k] = X^{\left(e^{j\frac{2\pi}{N}k}\right)} = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$$

Inverse DFT

$$x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X[k] e^{j\frac{2\pi}{N}kn}$$

DTFT & DFT

DFT:

$$X[k] = X^{\left(e^{j\frac{2\pi}{N}k}\right)} = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$$

Let
$$W_N = e^{-j\frac{2\pi}{N}}$$

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}$$

$$\begin{pmatrix} X(0) \\ X(1) \\ X(2) \\ \vdots \\ X(N-1) \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & W & W^2 & W^3 & \cdots & W^{N-1} \\ 1 & W^2 & W^4 & W^6 & \cdots & W^{N-2} \\ 1 & W^3 & W^6 & W^9 & \cdots & W^{N-3} \\ \vdots & & & & & \\ 1 & W^{N-1} & W^{N-2} & W^{N-3} & \cdots & W \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ \vdots \\ x(N-1) \end{pmatrix}$$

DTFT

$$x(n) = \begin{cases} 1, & 0 \le n \le 3 \\ 0, & \text{otherwise} \end{cases}$$

$$X(e^{j\omega}) = \sum_{0}^{3} x(n)e^{-j\omega n}$$

$$\sum_{0}^{3} x(n)e^{-j\omega n} = e^{-j0\omega} + e^{-j1\omega} + e^{-j2\omega} + e^{-j3\omega}$$

$$= \left(e^{j\frac{3}{2}\omega} + e^{j\frac{1}{2}\omega} + e^{-j\frac{1}{2}\omega} + e^{-j\frac{3}{2}\omega}\right)e^{-j\frac{3}{2}\omega}$$

$$= 2\left(\cos\frac{3}{2}\omega + \cos\frac{1}{2}\omega\right)e^{-j\frac{3}{2}\omega}$$

$$= \frac{\sin(2\omega)}{\sin(\omega/2)}e^{-j\frac{3}{2}\omega}$$

$$2\left(\cos\frac{3}{2}\omega + \cos\frac{1}{2}\omega\right)$$

$$= 2\left(\cos\left(\omega + \frac{\omega}{2}\right) + \cos\left(\omega - \frac{\omega}{2}\right)\right)$$

$$= 2\left(2\cos\omega\cos\frac{\omega}{2}\right)$$

$$= 2\left(2\sin\omega\cos\omega\frac{\cos(\omega/2)}{\sin\omega}\right)$$

$$= 2\left(\sin2\omega\frac{1}{2\sin(\omega/2)}\right)$$

$$= \frac{\sin2\omega}{\sin(\omega/2)}$$

DTFT

$$x(n) = \begin{cases} 1, & 0 \le n \le 3 \\ 0, & otherwise \end{cases}$$

$$X(e^{j\omega}) = \sum_{0}^{3} x(n)e^{-j\omega n} = \frac{\sin(2\omega)}{\sin(\omega/2)}e^{-j3\omega/2}$$

$$|X(e^{j\omega})| = \left|\frac{\sin(2\omega)}{\sin(\omega/2)}\right|$$

$$\angle X(e^{j\omega}) = \begin{cases} -\frac{3\omega}{2}, & \text{when } \frac{\sin(2\omega)}{\sin(\omega/2)} > 0\\ -\frac{3\omega}{2} \pm \pi, & \text{when } \frac{\sin(2\omega)}{\sin(\omega/2)} < 0 \end{cases}$$

Frequency response: magnitude and phase

DFT: Sampling DTFT

$$X_4(k) = \sum_{n=0}^{3} x(n)W_4^{nk}; \quad k = 0,1,2,3; \quad W_4 = e^{-j2\pi/4} = -j$$

$$X_4(k) = \begin{cases} 4, & 0, & 0, \\ \uparrow & \end{cases}$$

Why only one non-zero sample?

DFT: Sampling DTFT

How can we obtain other samples of the **DTFT**?

– at dense (finer) frequencies

$$x(n) = \begin{cases} 1, & 1, & 1, & 0, & 0, & 0 \end{cases}$$

$$W_8 = e^{-j\pi/4}, \quad \omega_0 = 2\pi/8 = \pi/4$$

$$W_{16} = e^{-j\pi/8}, \quad \omega_0 = 2\pi/16 = \pi/8$$

zero-padding operation: more zeros are appended to the original sequence


```
x(n) = \cos(0.48\pi n) + \cos(0.52\pi n)
```

Determine and plot the discrete-time Fourier transform of x(n), $0 \le n \le 100$.

```
>> subplot(2,1,1); stem(n,x);

>> title('signal x(n), 0 <= n <= 99'); xlabel('n')

>> X = dft(x,100); magX = abs(X(1:1:51));

>> k = 0:1:50; w = 2*pi/100*k;

>> subplot(2,1,2); plot(w/pi.magX); title('DTFT Magnitude');

>> xlabel('frequency in pi units')
```

One has to obtain <u>more data</u> from the experiment or observations

High-resolution spectrum: clearly shows two frequencies, which are very close to each other

signal x(n), 0 <= n <= 99

Properties of DFT

Properties of the DFT

1. Linearity The DFT is a linear transform

$$DFT[ax_1(n) + bx_2(n)] = aDFT[x_1(n)] + bDFT[x_2(n)]$$

2. Circular folding

$$x((-n))_{N} = \begin{cases} x(0), & n = 0 \\ x(N-n), & 1 \le n \le N-1 \end{cases}$$

$$DFT[x((-n))_N] = X((-k))_N = \begin{cases} X(0), & k = 0 \\ X(N-k), & 1 \le k \le N-1 \end{cases}$$

Proof:

$$X(k) = \sum_{n=0}^{N-1} x(n)W_N^{nk}, \quad m = N - n$$

$$X(k) = \sum_{m=N}^{1} x(N - m)W_N^{(N-m)k}$$

$$= \sum_{m=1}^{N} x(N - m)W_N^{(N-m)k}$$

$$= \sum_{m=0}^{N-1} x(N - m)W_N^{(N-m)k}$$

$$= \sum_{n=0}^{N-1} x(N - n)W_N^{(N-n)k}$$

$$= \sum_{n=0}^{N-1} x(N - n)W_N^{nk}W_N^{-nk}$$

$$= \sum_{n=0}^{N-1} x(N - n)W_N^{nk}$$

$$X(N-k) = \sum_{n=0}^{N-1} x(N-n)W_N^{-n(N-k)}$$

$$= \sum_{n=0}^{N-1} x(N-n)W_N^{-nN}W_N^{nk}$$

$$= \sum_{n=0}^{N-1} x(N-n)W_N^{nk}$$

$$DFT[x(N-n)] = X(N-k)$$
$$DFT[x((-n))_N] = X((-k))_N$$

Circular folding (time reversal)

Example: $x(n) = 10(0.8)^n$, $0 \le n \le 10$.

Determine and plot $x((-n))_{11}$.

```
>> n = 0:10; x = 10*(0.8) .^ n; y = x(mod(-n,11)+1);

>> subplot(2,1,1); stem(n,x); title('Original sequence')

>> xlabel('n'); ylabel('x(n)');

>> subplot(2,1,2); stem(n,y); title('Circularly folded sequence')

>> xlabel('n'); ylabel('x(-n mod 11)');
```


Verify the circular folding property.

```
>> X = dft(x,11); Y = dft(y,11);

>> subplot(2,2,1); stem(n,real(X));

>> title('Real{DFT[x(n)]}'); xlabel('k');

>> subplot(2,2,2); stem(n,imag(X));

>> title('Imag{DFT[x(n)]}'); xlabel('k');

>> subplot(2,2,3); stem(n,real(Y));

>> title('Real{DFT[x((-n))11]}'); xlabel('k');

>> subplot(2,2,4); stem(n,imag(Y));

>> title('Imag{DFT[x((-n))11]}'); xlabel('k');
```


3. Conjugation the circular folding in the frequency domain

$$DFT[x*(n)] = X*((-k))_N$$

4. Symmetry properties for real sequence

$$X(k) = X * ((-k))_N$$

circular conjugate symmetry

$$Re[X(k)] = Re[X((-k))_{N}]$$

$$Im[X(k)] = -Im[X((N-k))_{N}]$$

$$|X(k)| = |X((-k))_{N}|$$

$$\angle X(k) = -\angle X((-k))_{N}$$

circular-even sequence circular-odd sequence circular-even sequence circular-odd sequence

The DFT samples are arranged around a circle so that the indices k=0 and k=N overlap. Symmetric w.r.t. k=0.

Proof: Conjugation

$$DFT \Big[x^*(n) \Big] = \sum_{n=0}^{N-1} x^*(n) e^{-j\frac{2\pi}{N}nk} \qquad IDFT \Big[X^*(k) \Big] = \frac{1}{N} \sum_{k=0}^{N-1} X^*(k) e^{j\frac{2\pi}{N}nk}$$

$$= \Big[\sum_{n=0}^{N-1} x(n) e^{j\frac{2\pi}{N}nk} \Big]^* \qquad \qquad = \Big[\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{-j\frac{2\pi}{N}nk} \Big]^*$$

$$= \Big[\sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi}{N}n(-k)} \Big]^* \qquad \qquad = \Big[\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}n(-k)} \Big]^*$$

$$= \Big[X((-k))_N \Big]^* \qquad \qquad = [x((-n))_N \Big]^*$$

$$= X^*((-k))_N \qquad \qquad = x^*((-n))_N$$

$$= X^*(N-k) \qquad \qquad = x^*(N-n)$$

Proof: Periodic & Symmetry

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}, \qquad W_N = e^{-j\frac{2\pi}{N}}$$
$$= \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi nk}{N}}$$

$$X(k+N) = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi n(k+N)}{N}}$$

$$= \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi nk}{N}}e^{-j\frac{2\pi nN}{N}}$$

$$= \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi nk}{N}}e^{-j2\pi n}$$

$$= \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi nk}{N}}$$

$$= X(k) \quad Periodic$$

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}$$

$$X^{*}(k) = \sum_{n=0}^{N-1} x^{*}(n)W_{N}^{-nk}$$

$$= \sum_{n=0}^{N-1} x(n)W_{N}^{-nk}$$

$$= \sum_{n=0}^{N-1} x(n)W_{N}^{-nk}W_{N}^{nN}$$

$$= \sum_{n=0}^{N-1} x(n)W_{N}^{n(N-k)}$$

$$= X(N-k)$$
Symmetry

Proof: Circular-even and odd

 $DFT[x_{ec}(n)] = Re[X(k)] = Re[X((-k))_N]$

```
 \begin{aligned} & \textit{circular-even} \\ & x_{ec}(n) \equiv \frac{1}{2} \big[ x(n) + x((-n))_N \big] = \begin{cases} x(0), & n = 0 \\ \frac{1}{2} \big[ x(n) + x(N-n) \big], & 1 \le n \le N-1 \end{cases} \\ & \textit{circular-odd} \\ & x_{oc}(n) \equiv \frac{1}{2} \big[ x(n) - x((-n))_N \big] = \begin{cases} 0, & n = 0 \\ \frac{1}{2} \big[ x(n) - x(N-n) \big], & 1 \le n \le N-1 \end{cases}
```

```
DFT[x_{oc}(n)] = Im[X(k)] = Im[X((-k))_{N}]
function [xec, xoc] = circevod(x)
% signal decomposition into circular-even and circular-odd parts
% -------
% [xec, xoc] = circevod(x)
%
if any(img(x) = 0)
error('x'is not a real sequence')
end
N = length(x); n = 0:(N-1)
xec = 0.5*(x + x(mod(-n,N)+1)); xoc = 0.5*(x - x(mod(-n,N)+1));
```

Proof: Circular-even and odd

$$X(k) = A + jB, \quad X^*(k) = A - jB$$

$$DFT [x_{ec}(n)] = \frac{1}{2} \{ DFT [x(n)] + DFT [x((-n))_N] \}$$

$$= \frac{1}{2} \{ X(k) + X((-k))_N \}$$

$$= \frac{1}{2} \{ X(k) + X^*(k) \}$$

$$= A$$

$$DFT [x_{oc}(n)] = \frac{1}{2} \{ DFT [x(n)] - DFT [x((-n))_N] \}$$

$$= \frac{1}{2} \{ X(k) - X((-k))_N \}$$

$$= \frac{1}{2} \{ X(k) - X^*(k) \}$$

$$= jB$$

Example: $x(n) = 10(0.8)^n$, $0 \le n \le 10$.

Decompose and plot the $x_{ec}(n)$ and $x_{oc}(n)$ components.

```
>> n = 0:10; x = 10*(0.8) .^ n; y = x(mod(-n,11)+1);

>> [xec,xoc] = circevod(x);

>> subplot(2,1,1); stem(n,xec); title('Circular-even component')

>> xlabel('n'); ylabel('xec(n)'); axis([-0.5,10.5,-1,11])

>> subplot(2,1,2); stem(n,xoc); title('Circular-odd component')

>> xlabel('n'); ylabel('xoc(n)'); axis([-0.5,10.5,-4,4])
```



```
>> X = dft(x,11); Xec = dft(xec,11); Xoc = dft(xoc,11);
>> subplot(2,2,1); stem(n,real(X)); axis([-0.5,10.5,-5,50])
>> title('Real{DFT[x(n)]}'); xlabel('k');
>> subplot(2,2,2); stem(n,imag(X)); axis([-0.5,10.5,-20,20])
>> title('Imag{DFT[x(n)]}'); xlabel('k');
>> subplot(2,2,3); stem(n,real(Xec)); axis([-0.5,10.5,-5,50])
>> title('DFT[xec(n)]'); xlabel('k');
>> subplot(2,2,4); stem(n,imag(Xoc)); axis([-0.5,10.5,-20,20])
>> title('DFT[xoc(n)]'); xlabel('k');
```


5. Circular shift of a sequence

$$\widetilde{x}(n-m) = x((n-m))_N$$
 a periodic shift of $\widetilde{x}(n)$

$$\widetilde{x}(n-m)R_N(n) = x((n-m))_N R_N(n)$$
 circular shift of $x(n)$

$$DFT[x((n-m))_N R_N(n)] = W_N^{km} X(k)$$

The sequence x(n) is wrapped around a circle.

Rotate the circle by k samples.

Unwrap the sequence from $0 \le n \le N-1$.

6. Circular shift in the frequency domain

$$DFT[W_N^{-\ln}x(n)] = X((k-l))_N R_N(k)$$

Recall Properties of DTFT (2): Time Shifting

$$F[x(k-m)] = X(e^{j\omega})e^{-j\omega m}$$

$$x[k] = x[k-m]$$

$$\sum_{k=-\infty}^{\infty} x[k-m]e^{-j\omega k}, \quad k-m=n$$

$$=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega(n+m)}$$

$$=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}e^{-j\omega m}$$

$$=X(e^{j\omega})e^{-j\omega m}$$

Properties of DTFT (3): Frequency Shifting

$$F[x(k)e^{j\omega_0 k}] = X(e^{j(\omega-\omega_0)})$$

$$x[k] = x[k]e^{j\omega_0 k}$$

$$\sum_{k=-\infty}^{\infty} x[k] e^{j\omega_0 k} e^{-j\omega k}$$

$$=\sum_{k=-\infty}^{\infty}x[k]e^{-j(\omega-\omega_0)k}$$

$$=X(e^{j(\omega-\omega_0)})$$

Proof: Circular time & frequency shift

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn}$$

$$x(n-m) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-k(n-m)}$$

$$x((n-m))_{N} = \frac{1}{N} \left\{ \sum_{k=0}^{N-1} X(k) W_{N}^{km} \right\} W_{N}^{-kn}$$

$$= IDFT \left[X(k)W_N^{km} \right]$$

$$DFT\left[X((n-m))_{N}\right] = W_{N}^{km}X(k)$$

Circular time shift

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn}$$

$$X(k-l) = \sum_{k=0}^{N-1} x(n) W_N^{(k-l)n}$$

$$= \left\{ \sum_{k=0}^{N-1} x(n) W_N^{-ln} \right\} W_N^{kn}$$

$$X((k-l))_N = DFT \left[W_N^{-\ln} x(n) \right]$$

$$DFT\left[W_N^{-\ln}x(n)\right] = X((k-l))_N$$

Circular frequency shift

```
x(n) = 10(0.8)^n, 0 \le n \le 10.
```

```
x((n+4))_{11}R_{11}(n) a circular shift by 4 samples toward the left x((n-3))_{15}R_{15}(n) a circular shift by 3 samples toward the right
```

$$x(n) = 10(0.8)^n$$
, $0 \le n \le 10$.

 $x((n+4))_{11}R_{11}(n)$ a circular shift by 4 samples toward the left

 $x((n-3))_{15}R_{15}(n)$ a circular shift by 3 samples toward the right

$$x((n+4))_{11}R_{11}(n)$$
 versus $x((n+4))_{15}R_{15}(n)$

Lab #10.2 (1 pt.): Due Feb 7

Given an 11-point sequence $x(n) = 10(0.8)^n$, $0 \le n \le 10$, determine and plot $x((n-A))_{15}$.

Use Your ID: sGFEDCBA

7. Circular convolution

→ Convolution of periodic sequence

a convolution operation that contains a circular shift

$$x_1(n)$$
 N $x_2(n) = \sum_{m=0}^{N-1} x_1(m) x_2((n-m))_N, \quad 0 \le n \le N-1$

A linear convolution between two N-point sequences will result in a longer sequence.

When we multiply two N-point DFTs in the frequency domain, we get the circular convolution (and not the usual linear convolution) in the time domain.

Proof: Circular convolution

$$X_1[k] = \sum_{n=0}^{N-1} x_1(n)e^{-j2\pi nk/N}, \quad k = 0, 1, \dots, N-1$$

$$X_2[k] = \sum_{n=0}^{N-1} x_2(n)e^{-j2\pi nk/N}, \quad k = 0, 1, \dots, N-1$$

$$X_3[k] = X_1[k]X_2[k], k = 0,1,...,N-1$$

$$x_3(n) = \frac{1}{N} \sum_{k=0}^{N-1} X_3[k] e^{j2\pi kn/N}$$
$$= \frac{1}{N} \sum_{k=0}^{N-1} X_1[k] X_2[k] e^{j2\pi kn/N}$$

Proof: Circular convolution

$$\begin{aligned} x_3(n) &= \frac{1}{N} \sum_{k=0}^{N-1} \left[\sum_{m=0}^{N-1} x_1(m) e^{-j2\pi km/N} \right] \left[\sum_{l=0}^{N-1} x_2(l) e^{-j2\pi kl/N} \right] e^{j2\pi kn/N} \\ &= \frac{1}{N} \sum_{m=0}^{N-1} x_1(m) \sum_{l=0}^{N-1} x_2(l) \left[\sum_{k=0}^{N-1} e^{j2\pi k(n-m-l)/N} \right] \end{aligned}$$

$$\sum_{k=0}^{N-1} a^{k} = \begin{cases} N, & a = 1\\ \frac{1-a^{N}}{1-a}, & a \neq 1 \end{cases}, \quad a = e^{j2\pi(n-m-l)/N}$$

$$= \begin{cases} N, & l = n-m+pN = ((n-m))_{N}, & p \text{ an integer} \\ 0, & otherwise \end{cases}$$

$$x_3(n) = \sum_{m=0}^{N-1} x_1(m) x_2((n-m))_N, \quad n = 0, 1, \dots, N-1$$

Example: $x_1(n) = \{1, 2, 2\}, x_2(n) = \{1, 2, 3, 4\}$

Compute the 4-point circular convolution $x_1(n)$ 4 $x_2(n)$.

Time-domain approach
$$x_1(n)$$
 4 $x_2(n) = \sum_{m=0}^{3} x_1(m)x_2((n-m))_4$

$$x_1(m) = \{1, 2, 2, 0\}, x_2(m) = \{1, 2, 3, 4\}$$

$$\underbrace{for \ n = 0}_{m=0} \sum_{m=0}^{3} x_1(m) \cdot x_2((0-m))_4 = \sum_{m=0}^{3} [\{1, 2, 2, 0\} \cdot \{1, 4, 3, 2\}] = \sum_{m=0}^{3} \{1, 8, 6, 0\} = 15$$

$$\underline{for \ n = 1} \ \sum_{m=0}^{3} x_1(m) \cdot x_2((1-m))_4 = \sum_{m=0}^{3} \left[\{1, 2, 2, 0\} \cdot \{2, 1, 4, 3\} \right] = \sum_{m=0}^{3} \{2, 2, 8, 0\} = 12$$

$$\underline{for \ n = 2} \ \sum_{m=0}^{3} x_1(m) \cdot x_2((2-m))_4 = \sum_{m=0}^{3} \left[\{1, 2, 2, 0\} \cdot \{3, 2, 1, 4\} \right] = \sum_{m=0}^{3} \{3, 4, 2, 0\} = 9$$

$$\underbrace{for \ n = 3}_{m=0} \sum_{m=0}^{3} x_1(m) \cdot x_2((3-m))_4 = \sum_{m=0}^{3} \left[\{1, 2, 2, 0\} \cdot \{4, 3, 2, 1\} \right] = \sum_{m=0}^{3} \{4, 6, 4, 0\} = 14$$

$$x_1(n)$$
 4 $x_2(n) = \{15, 12, 9, 14\}$

Example: $x_1(n) = \{1, 2, 2\}, x_2(n) = \{1, 2, 3, 4\}$

$$\sum_{m=0}^{3} x_1(m) \cdot x_2((0-m))_4 \qquad x_1(1) = 2 \qquad x_2(3) = 4$$

$$x_1(2) = 2 \qquad x_1(m) \qquad x_1(0) = 1 \qquad x_2(2) = 3 \qquad x_2((-m)) \qquad x_2(0) = 1$$

$$\sum_{m=0}^{3} x_1(m) \cdot x_2((1-m))_4 \qquad 2 \qquad 1$$

$$\sum_{m=0}^{3} x_1(m) \cdot x_2((2-m))_4 \qquad 2$$

$$\sum_{m=0}^{3} x_1(m) \cdot x_2((2-m))_4 \qquad 2$$

$$\sum_{m=0}^{3} x_1(m) \cdot x_2((3-m))_4 \qquad 2$$

Example:

Frequency-domain approach

$$\underline{DFT \ of \ x_1(n)} \quad x_1(n) = \{1, 2, 2, 0\} \Rightarrow X_1(k) = \{5, -1 - j2, 1, -1 + j2\}
\underline{DFT \ of \ x_2(n)} \quad x_2(n) = \{1, 2, 3, 4\} \Rightarrow X_2(k) = \{10, -2 + j2, -2, -2 - j2\}$$

$$X_1(k) \cdot X_2(k) = \{50,6+j2,-2,6-j2\}$$

$$x_1(n)$$
 (4) $x_2(n) = \{15, 12, 9, 14\}$

the same as before

Example:

```
function y = circonvt(x1,x2,N)
% N-point circular convolution between x1 and x2: (time domain)
% [y] = circonvt(x1,x2,N)
% y = output sequence containing the circular convolution
% x1 = input sequence of length N1 <= N
% x^2 = \text{input sequence of length N}^2 <= N
\% N = size of circular buffer
% Method: y(n) = sum (x1(m)*x2((n-m) mod N))
% Check for the length of x1
if length(x1) > N
       error('N must be \geq the length of x1')
end
% Check for the length of x2
if length(x2) > N
       error('N must be \geq the length of x2')
end
x1 = [x1 \text{ zeros}(1, N-\text{length}(x1))];
x2 = [x2 zeros(1,N-length(x2))];
m = [0:1:N-1]; x2 = x2(mod(-m,N)+1); H = zeros(N,N);
for n = 1:1:N
H(n,:) = cirshftt(x2,n-1,N);
end
y = x1*conj(H');
```

Lab #10.3 (2 pt.): Due Feb 7

```
x_1(n) = \{1, 2, 2\}, x_2(n) = \{1, 2, 3, 4\}
>> x1 = [1,2,2]; x2 = [1,2,3,4]; y = circonvt(x1, x2, 4)
y = 15 12 9 14
```

$$x_1(n)$$
 4 $x_2(n) = \{15, 12, 9, 14\}$

Compute $x_1(n)$ $\bigcirc x_2(n)$.

Compute $x_1(n)$ 6 $x_2(n)$.

Compute $x_1(n)$ $\stackrel{\triangle}{\bigoplus}$ $x_2(n)$.

8. Multiplication

$$DFT[x_1(n) \cdot x_2(n)] = \frac{1}{N} X_1(k) \ \widehat{N} \ X_2(k)$$

9. Parseval's relation computes the energy in the frequency domain

$$\varepsilon_{x} = \sum_{n=0}^{N-1} |x(n)|^{2} = \frac{1}{N} \sum_{k=0}^{N-1} |X(k)|^{2}$$

$$\frac{|X(k)|^2}{N}$$
 the energy spectrum of finite-duration sequences

$$\frac{\left|\tilde{X}(k)\right|^2}{N}$$
 the power spectrum of periodic sequences

Proof: Multiplication

Proof: Parseval's relation

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn}$$

$$x^*(n) = \frac{1}{N} \sum_{k=0}^{N-1} X^*(k) W_N^{kn}$$

$$\sum_{n=0}^{N-1} x^*(n)x(n) = \sum_{n=0}^{N-1} \frac{1}{N} \sum_{k=0}^{N-1} X^*(k) W_N^{kn} x(n)$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} X^*(k) \sum_{n=0}^{N-1} x(n) W_N^{kn}$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} X^*(k) X(k)$$

$$\sum_{n=0}^{N-1} |x(n)|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X(k)|^2$$

Linear Convolution using DFT

Linear Convolution Using the DFT

The DFT operations result in a circular convolution.

How to use the DFT to perform a linear convolution?

How to make a circular convolution identical to the linear convolution?

$$N_{1}$$
-point N_{2} -point sequence
$$x_{3}(n) = x_{1}(n) * x_{2}(n)$$

$$= \sum_{k=-\infty}^{\infty} x_{1}(k) x_{2}(n-k) = \sum_{0}^{N_{1}-1} x_{1}(k) x_{2}(n-k)$$

$$(N_{1}+N_{2}-1)$$
-point sequence

Circular Convolution: Aliasing

$$N = N_1 + N_2 - 1$$
, $x_1(n), x_2(n)$ N-point sequence

$$x_{4}(n) = x_{1}(n) \quad \widehat{N} \quad x_{2}(n)$$

$$= \left[\sum_{m=0}^{N-1} x_{1}(m) x_{2}((n-m))_{N}\right] R_{N}(n)$$

$$= \left[\sum_{m=0}^{N-1} x_{1}(m) \sum_{r=-\infty}^{\infty} x_{2}(n-m-rN)\right] R_{N}(n)$$

$$= \left[\sum_{r=-\infty}^{\infty} \sum_{m=0}^{N_{1}-1} x_{1}(m) x_{2}(n-m-rN)\right] R_{N}(n)$$

$$= \left[\sum_{r=-\infty}^{\infty} x_{3}(n-rN)\right] R_{N}(n) \qquad x_{4}(n) = x_{3}(n); \quad 0 \le n \le N-1$$

The circular convolution is an aliased version of the linear convolution.

Circular Convolution: Aliasing

Example
$$x_1(n) = \{1, 2, 2, 1\}, x_2(n) = \{1, -1, -1, 1\}$$

Determine their linear convolution.

>>
$$x1 = [1,2,2,1]; x2 = [1,-1,-1,1]; x3 = \underbrace{conv}(x1, x2)$$

 $x3 = 1 \quad 1 \quad -1 \quad -2 \quad -1 \quad 1$

Hence the linear convolution is a 7-point sequence.

>>
$$x4 = \frac{circonvt(x1,x2,7)}{x4 = 1 \quad 1 \quad -1 \quad -2 \quad -1 \quad 1 \quad 1}$$

In order to use the DFT for linear convolution, we must choose N properly.

Circular Convolution: Aliasing

Example $x_1(n) = \{1, 2, 2, 1\}, x_2(n) = \{1, -1, -1, 1\}$

2 2 -1 -2 -1

If we make both $x_1(n)$ and $x_2(n)$ $N = N_1 + N_2 - 1$ point sequences by padding an appropriate number of zeros, then the circular convolution is identical to the linear convolution.

Example $x_3(n) = \{1,1,-1,-2,-1,1,1\}$

Error Analysis

When $N = \max(N_1, N_2)$ is chosen for circular convolution, then the first (M-1) samples are in error, where $M = \min(N_1, N_2)$.

$$x_4(n) = x_1(n) \underbrace{6} x_2(n) = \{2,1,-1,-2,-1,1\}$$

$$e(n) = \{2,1,-1,-2,-1,1\} - \{1,1,-1,-2,-1,1\}, \quad 0 \le n \le 5$$

$$= \{1,0,0,0,0,0\}$$

$$= x_3(n+6)$$

$$x_4(n) = x_1(n) \underbrace{5} x_2(n) = \{2, 2, -1, -2, -1\}$$

$$e(n) = \{2, 1, -1, -2, -1\} - \{1, 1, -1, -2, -1\}, \quad 0 \le n \le 4$$

$$= \{1, 1, 0, 0, 0\}$$

$$= x_3(n+5)$$

$$\begin{split} x_4(n) &= x_1(n) \ \textcircled{4} \ x_2(n) = \{0,2,0,-2\} \\ e(n) &= \{0,2,0,-2\} - \{1,1,-1,-2\}, \quad 0 \le n \le 3 \\ &= \{-1,1,1,0\} \\ &= x_3(n+4)_{\textit{Discrete-time Signal Processing @ JAIST, Japan | December 2022 - February 2023} \end{split}$$

Block Convolution

We want to filter an input sequence that is being received continuously, such as a speech signal from a microphone.

Some practical problems:

- 1. will have to compute a large DFT
- 2. output samples are not available until all input samples are processed
- 3. an unacceptably large amount of delay

Therefore

- 1. segment the infinite-length input sequence into smaller sections (or blocks)
- 2. process each section using the DFT
- 3. assemble the output sequence from the outputs of each section

Example
$$x(n) = (n+1), 0 \le n \le 9, g(n) = \{1,0,-1\}$$
 the overlap-save method using $N=6$ to compute $y(n) = x(n) * g(n)$.

$$x_{1}(n) = \{0,0,1,2,3,4\}$$

$$x_{2}(n) = \{3,4,5,6,7,8\}$$

$$x_{3}(n) = \{7,8,9,10,0,0\}$$

$$y_{1} = x_{1}(n) \quad 6 \quad g(n) = \{-3,-4,1,2,2,2,2\}$$

$$y_{2} = x_{2}(n) \quad 6 \quad g(n) = \{-4,-4,2,2,2,2,2\}$$

$$y_{3} = x_{3}(n) \quad 6 \quad g(n) = \{7,8,2,2,-9,-10\}$$

$$N = 6, M = 3$$

$$N = L + M - 1$$

$$L = 4$$

$$y(n) = \{1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -9, -10\}$$

Agrees with the linear convolution

$$x(n) * g(n) = \{1, 2, 2, 2, 2, 2, 2, 2, 2, 2, -9, -10\}$$

```
function [y] = \text{ovrlpsav}(x,g,N)
% Overlap-Save method of block convolution
% [y] = ovrlpsav(x,g,N)
% y = output sequence
% x = input sequence
% g = impulse response
% N = block length
%
Lenx = length(x); M = length(g); M1 = M-1; L = N-M1;
g = [g zeros(1,N-M)];
%
x = [zeros(1,M1), x, zeros(1,N-1)]; % preappend (M-1) zeros
K = floor((Lenx+M1-1)/(L)); % # of blocks
Y = zeros(K+1,N);
% convolution with successive blocks
for k = 0: K
xk = x(k*L+1:k*L+N);
Y(k+1,:) = circonvt(xk,g,N);
end
Y = Y(:,M:N)';
                                 % discard the first (M-1) samples
                                 % assemble output
y = (Y(:))';
```

```
>> n = 0:9; x = n+1; g = [1,0,-1]; N = 6; y = ovrlpsav(x,g,N)
y =
1 2 2 2 2 2 2 2 2 2 -9 -10
```

Thank you

