

 $W(n-1) = W(n-2) + n^{c}, \quad with \quad c \ge 1$ $W(n-1) = W(n-2) + (n-1)^{c} + n^{c}.$ $W(n-2) = V(n-3) + (n-2)^{c}$ $W(n) = W(n-3) + (n-2)^{c} + (n-1)^{c} + n^{c}$ $W(n) = W(n-K) + n^{c} + (n-1)^{c} + (n-K+1)^{c}$ Let K = n-1 1 = n-K $n^{c} \ge (n-1)$

= W(1)= 1 + n^c + (n-1)^c + ... + 2^c
= 1 + n^c + n^c + ...
= 1 + n^c × n
= 1 + n^{c+1}

O(n^{c+1})

