Outlier Analysis

Lijun Zhang

zlj@nju. edu. cn

http://cs. nju. edu. cn/zlj

Outline

- Introduction
- Extreme Value Analysis
- □ Probabilistic Models
- ☐ Clustering for Outlier Detection
- Distance-Based Outlier Detection
- Density-Based Methods
- Information-Theoretic Models
- Outlier Validity
- □ Summary

Introduction (1)

■ A Quote

"You are unique, and if that is not fulfilled, then something has been lost."—Martha Graham

An Informal Definition

"An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism."

□ A Complementary Concept to Clustering

- Clustering attempts to determine groups of data points that are similar
- Outliers are individual data points that are different from the remaining data

Introduction (2)

- Applications
 - Data cleaning
 - Remove noise in data
 - Credit card fraud
 - Unusual patterns of credit card activity
 - Network intrusion detection
 - ✓ Unusual records/changes in network traffic

Introduction (3)

- □ The Key Idea
 - Create a model of normal patterns
 - Outliers are data points that do not naturally fit within this normal model
 - The "outlierness" of a data point is quantified by a outlier score
- Outputs of Outlier Detection Algorithms
 - Real-valued outlier score
 - Binary label

Outline

- Introduction
- □ Extreme Value Analysis
- □ Probabilistic Models
- ☐ Clustering for Outlier Detection
- Distance-Based Outlier Detection
- Density-Based Methods
- Information-Theoretic Models
- Outlier Validity
- □ Summary

Extreme Value Analysis (1)

■ Statistical Tails

http://www.regent sprep.org/regents/ math/algtrig/ats2/ normallesson.htm

- □ All extreme values are outliers
- Outliers may not be extreme values
 - **1**,3,3,3,50,97,97,97,100
 - 1 and 100 are extreme values
 - 50 is an outlier but not extreme value

Extreme Value Analysis (2)

- ☐ All extreme values are outlies
- Outlies may not be extreme values

Univariate Extreme Value Analysis (1)

- Statistical Tail Confidence Tests
 - Suppose the density distribution is $f_X(x)$
 - Tails are extreme regions s.t. $f_X(x) \le \theta$
- SymmetricDistribution
 - Two symmetric tails
 - The areas inside tails represent the cumulative probability

(a) Symmetric distribution

Univariate Extreme Value Analysis (2)

- Statistical Tail Confidence Tests
 - Suppose the density distribution is $f_X(x)$
 - Tails are extreme regions s.t. $f_X(x) \le \theta$
- ☐ Asymmetric Distribution
 - Areas in two tails are different
 - Regions in the interior are not tails

(b) Asymmetric distribution

The Procedure (1)

A model distribution is selected

Normal Distribution with mean μ and standard deviation σ

$$f_X(x) = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{\frac{-(x-\mu)^2}{2 \cdot \sigma^2}}$$

Parameter Selection

- Prior domain knowledge
- Estimate from data

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$

The Procedure (2)

 \square Z-value of a random variable

$$z_i = \frac{x_i - \mu}{\sigma}$$

- Large positive values of z_i correspond to the upper tail
- Large negative values of z_i correspond to the lower tail
- \blacksquare z_i follows the standard normal distribution

- Extreme values
 - $|z_i| \ge \tau$

Multivariate Extreme Values (1)

- Unimodal probability distributions with a single peak
 - Suppose the density distribution is $f_X(x)$
 - Tails are extreme regions s.t. $f_X(x) \le \theta$
- Multivariate Gaussian Distribution

$$f(\overline{X}) = \frac{1}{\sqrt{|\Sigma|} \cdot (2 \cdot \pi)^{(d/2)}} \cdot e^{-\frac{1}{2} \cdot (\overline{X} - \overline{\mu}) \Sigma^{-1} (\overline{X} - \overline{\mu})^T}$$
$$= \frac{1}{\sqrt{|\Sigma|} \cdot (2 \cdot \pi)^{(d/2)}} \cdot e^{-\frac{1}{2} \cdot Maha(\overline{X}, \overline{\mu}, \Sigma)^2}$$

where $Maha(\bar{X}, \bar{\mu}, \Sigma)$ is the Mahalanobis distance between \bar{X} and $\bar{\mu}$

Multivariate Extreme Values (2)

- \square Extreme-value Score of \bar{X}
 - \blacksquare $Maha(\bar{X}, \bar{\mu}, \Sigma)$
 - Larger values imply more extreme behavior

(b) Multivariate extreme values

Multivariate Extreme Values (2)

- \square Extreme-value Score of \bar{X}
 - \blacksquare $Maha(\bar{X}, \bar{\mu}, \Sigma)$
 - Larger values imply more extreme behavior
- \square Extreme-value Probability of \bar{X}
 - Let \mathcal{R} be the region $\mathcal{R} = \{ \overline{Y} | Maha(\overline{Y}, \overline{\mu}, \Sigma) \geq Maha(\overline{X}, \overline{\mu}, \Sigma) \}$
 - \blacksquare Cumulative probability of \mathcal{R}
 - Cumulative Probability of χ^2 distribution for which the value is larger than $Maha(\bar{X}, \bar{\mu}, \Sigma)$

Why χ^2 distribution?

□ The Mahalanobis distance

 \blacksquare Let Σ be the covariance matrix

$$Maha(\overline{Y}, \overline{\mu}, \Sigma) = \sqrt{(\overline{Y} - \overline{\mu})\Sigma^{-1}(\overline{Y} - \overline{\mu})^{\top}}$$

- Projection + Normalization
 - \checkmark Let $\Sigma = U\Lambda U^{\top} = \sum_{i=1}^{d} \sigma_i^2 \mathbf{u}_i \mathbf{u}_i^{\top}$
 - \checkmark Then, $\Sigma^{-1} = U\Lambda^{-1}U^{\top} = \sum_{i=1}^{d} \sigma_i^{-2} \mathbf{u}_i \mathbf{u}_i^{\top}$

$$Maha(\bar{Y}, \bar{\mu}, \Sigma) = \sqrt{(\bar{Y} - \bar{\mu}) \left(\sum_{i=1}^{d} \sigma_i^{-2} \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}\right) (\bar{Y} - \bar{\mu})^{\mathsf{T}}} = \sqrt{\sum_{i=1}^{d} \left(\frac{\mathbf{u}_i (\bar{Y} - \bar{\mu})^{\mathsf{T}}}{\sigma_i}\right)^2}$$

Adaptive to the Shape

\square B is an extreme value

Depth-Based Methods

□ Convex Hull

The $convex\ hull$ of a set C, denoted $\mathbf{conv}\ C$, is the set of all convex combinations of points in C:

conv
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_i \in C, \ \theta_i \ge 0, \ i = 1, \dots, k, \ \theta_1 + \dots + \theta_k = 1\}.$$

Corners

The Procedure

- \square The index k is the outlier score
 - Smaller values indicate a grate tendency

```
Algorithm FindDepthOutliers (Data Set: \mathcal{D}, Score Threshold: r) begin k=1; repeat
Find set S of corners of convex hull of \mathcal{D};
Assign depth k to points in S;
\mathcal{D} = \mathcal{D} - S;
k = k + 1;
until(D is empty);
Report points with depth at most r as outliers; end
```


An Example

□ Peeling Layers of an Onion

Limitations

■ No Normalization

- Many data points are indistinguishable
- □ The computational complexity increases significantly with dimensionality

Outline

- Introduction
- Extreme Value Analysis
- □ Probabilistic Models
- ☐ Clustering for Outlier Detection
- Distance-Based Outlier Detection
- Density-Based Methods
- Information-Theoretic Models
- Outlier Validity
- □ Summary

Probabilistic Models

- □ Related to Probabilistic Model-Based Clustering
- □ The Key Idea
 - Assume data is generated from a mixture-based generative model
 - Learn the parameter of the model from data
 - ✓ EM algorithm
 - Evaluate the probability of each data point being generated by the model
 - Points with low values are outliers

Mixture-based Generative Model

- \square Data was generated from a mixture of k distributions with probability distribution G_1, \dots, G_k
- \square G_i represents a cluster/mixture component
- \square Each point \bar{X} is generated as follows
 - Select a mixture component with probability $\alpha_i = P(G_i)$, i = 1, ..., k
 - Assume the r-th component is selected
 - \blacksquare Generate a data point from G_r

Learning Parameter from Data

$$f^{point}(\overline{X}_{j}|\mathcal{M}) = \sum_{i=1}^{k} P(G_{i}, \overline{X}_{j}) = \sum_{i=1}^{k} P(G_{i})P(\overline{X}_{j}|G_{i}) = \sum_{i=1}^{k} \alpha_{i} \cdot f^{i}(\overline{X}_{j})$$

☐ The probability of the data set $\mathcal{D} = \{\overline{X_1}, ..., \overline{X_n}\}$ generated by \mathcal{M}

$$f^{data}(\mathcal{D}|\mathcal{M}) = \prod_{j=1}^{n} f^{point}(\overline{X_j}|\mathcal{M}).$$

☐ Learning parameters that maximize

$$\mathcal{L}(\mathcal{D}|\mathcal{M}) = \log(\prod_{j=1}^n f^{point}(\overline{X_j}|\mathcal{M})) = \sum_{j=1}^n \log(\sum_{i=1}^k \alpha_i f^i(\overline{X_j}))$$

Identify Outliers

Outlier Score is defined as

$$f^{point}(\overline{X}_{j}|\mathcal{M}) = \sum_{i=1}^{k} P(G_{i}, \overline{X}_{j}) = \sum_{i=1}^{k} P(G_{i}) P(\overline{X}_{j}|G_{i}) = \sum_{i=1}^{k} \alpha_{i} \cdot f^{i}(\overline{X}_{j})$$

Outline

- Introduction
- Extreme Value Analysis
- □ Probabilistic Models
- □ Clustering for Outlier Detection
- Distance-Based Outlier Detection
- Density-Based Methods
- Information-Theoretic Models
- Outlier Validity
- □ Summary

Clustering for Outlier Detection

- Outlier Analysis v.s. Clustering
 - Clustering is about finding "crowds" of data points
 - Outlier analysis is about finding data points that are far away from these crowds
- □ Every data point is
 - Either a member of a cluster
 - Or an outlier
- □ Some clustering algorithms also detect outliers
 - DBSCAN, DENCLUE

The Procedure (1)

□ A Simple Way

- 1. Cluster the data
- 2. Define the outlier score as the distance of the data point to its cluster centroid

The Procedure (2)

- □ A Better Approach
 - 1. Cluster the data
 - 2. Define the outlier score as the local Mahalanobis distance
 - ✓ Suppose \bar{X} belongs to cluster r

$$Maha(\overline{X}, \overline{\mu_r}, \Sigma_r) = \sqrt{(\overline{X} - \overline{\mu_r})\Sigma_r^{-1}(\overline{X} - \overline{\mu_r})^T}.$$

- $\checkmark \overline{\mu_r}$ is the mean vector of the r-th cluster
- \checkmark Σ_r is the covariance matrix of the r-th cluster
- Multivariate Extreme Value Analysis
 - Global Mahalanobis distance

A Post-processing Step

□ Remove Small-Size Clusters

Outline

- Introduction
- Extreme Value Analysis
- □ Probabilistic Models
- ☐ Clustering for Outlier Detection
- Distance-Based Outlier Detection
- Density-Based Methods
- Information-Theoretic Models
- Outlier Validity
- □ Summary

Distance-Based Outlier Detection

■ An *Instance-Specific* Definition

The distance-based outlier score of an object 0 is its distance to its k-th nearest neighbor

k > 3

Distance-Based Outlier Detection

- ☐ An *Instance-Specific* Definition
 - The distance-based outlier score of an object 0 is its distance to its k-th nearest neighbor
 - Sometimes, average distance is used
- \square High-computational Cost $O(n^2)$
 - Index structure
 - Effective when the dimensionality is low
 - Pruning tricks
 - ✓ Designed for the case that only the top-r outliers are needed

The Naïve Approach for Finding Top r-Outliers

1. Evaluate the $n \times n$ distance matrix

The Naïve Approach for Finding Top r-Outliers

1. Evaluate the $n \times n$ distance matrix

2. Find the k-th smallest value in each row

The Naïve Approach for Finding Top r-Outliers

1. Evaluate the $n \times n$ distance matrix

- 2. Find the k-th smallest value in each row
- 3. Choose r data points with largest $V_k(\cdot)$

Pruning Methods—Sampling

1. Evaluate a $s \times n$ distance matrix

NANNITAS D'ATTI

Pruning Methods—Sampling

1. Evaluate a $s \times n$ distance matrix

2. Find the k-th smallest value in each row

Pruning Methods—Sampling

1. Evaluate a $s \times n$ distance matrix

- 2. Find the k-th smallest value in each row
- 3. Identify the r-th score in top s-rows

Pruning Methods—Sampling

1. Evaluate a $s \times n$ distance matrix

- 2. Find the k-th smallest value in each row
- 3. Identify the *r*-th score in top *s*-rows
- 4. Remove points with $\widehat{V_k}(\cdot) \leq L_r$

Pruning Methods—Early Termination

■ When completing the empty area

Pruning Methods—Early Termination

■ When completing the empty area

- \square Update $\widehat{V_k}(\cdot)$ when more distances are known
- \square Stop if $\widehat{V_k}(\cdot) \leq L_r$
- \square Update L_r if necessary

Local Distance Correction Methods

☐ Impact of Local Variations

Local Outlier Factor (LOF)

- Let $V^k(\bar{X})$ be the distance of \bar{X} to its k-nearest neighbor
- \square Let $L_k(\bar{X})$ be the set of points within the k-nearest neighbor distance of \bar{X}
- □ Reachability Distance

$$R_k(\overline{X}, \overline{Y}) = \max\{Dist(\overline{X}, \overline{Y}), V^k(\overline{Y})\}\$$

- Not symmetric between \bar{X} and \bar{Y}
- If $Dist(\bar{X}, \bar{Y})$ is large, $R_k(\bar{X}, \bar{Y}) = Dist(\bar{X}, \bar{Y})$
- Otherwise, $R_k(\bar{X}, \bar{Y}) = V^k(\bar{Y})$
 - ✓ Smoothed out by $V^k(\overline{Y})$, more stable

Local Outlier Factor (LOF)

■ Average Reachability Distance

$$AR_k(\overline{X}) = \text{MEAN}_{\overline{Y} \in L_k(\overline{X})} R_k(\overline{X}, \overline{Y})$$

■ Local Outlier Factor

$$LOF_k(\overline{X}) = MEAN_{\overline{Y} \in L_k(\overline{X})} \frac{AR_k(\overline{X})}{AR_k(\overline{Y})}$$

- Larger for Outliers
- Close to 1 for Others
- Outlier Score

$$\max_{k} LOF_{k}(\bar{X})$$

Instance-Specific Mahalanobis Distance (1)

- Define a local Mahalanobis distance for each point
 - Based on the covariance structure of the neighborhood of a data point

□ The Challenge

- Neighborhood of a data point is hard to define with the Euclidean distance
- Euclidean distance is biased toward capturing the circular region around that point

Instance-Specific Mahalanobis Distance (2)

- □ An agglomerative approach for neighborhood construction
 - Add \bar{X} to $L^k(\bar{X})$
 - Data points are iteratively added to $L^k(\bar{X})$ that have the smallest distance to $L^k(\bar{X})$

$$\operatorname{argmin}_{\bar{Y} \in \mathcal{D}} \min_{\bar{Z} \in L^{k}(\bar{X})} dist(\bar{Y} - \bar{Z})$$

■ Instance-specific Mahalanobis score

$$LMaha_k(\overline{X}) = Maha(\overline{X}, \overline{\mu_k(X)}, \Sigma_k(\overline{X}))$$

 \square Outlier score $\max_{k} LMaha_{k}(\bar{X})$

Instance-Specific Mahalanobis Distance (3)

☐ Can be applied to both cases

□ Relation to clustering-based approaches

Outline

- Introduction
- Extreme Value Analysis
- □ Probabilistic Models
- ☐ Clustering for Outlier Detection
- Distance-Based Outlier Detection
- □ Density-Based Methods
- Information-Theoretic Models
- Outlier Validity
- □ Summary

Density-Based Methods

□ The Key Idea

Determine sparse regions in the underlying data

□ Limitations

Cannot handle variations of density

Histogram- and Grid-Based Techniques

- ☐ Histogram for 1-dimensional data
 - Data points that lie in bins with very low frequency are reported as outliers

https://www.mathsisfun.com/data/histograms.html

- ☐ Grid for high-dimensional data
- Challenges
 - Size of grid
 - Too local
 - Sparsity

Kernel Density Estimation

 \square Given n data points $\overline{X_1}, ..., \overline{X_n}$

$$f(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} K(\overline{X} - \overline{X_i}).$$

 \blacksquare $K(\cdot)$ is a kernel function

$$K(\overline{X} - \overline{X_i}) = \left(\frac{1}{h\sqrt{2\pi}}\right)^d e^{-\frac{||\overline{X} - \overline{X_i}|}{2 \cdot h^2}}$$

- ☐ The density at each data point
 - Computed without including the point itself in the density computation
 - Low values of the density indicate greater tendency to be an outlier

Outline

- Introduction
- Extreme Value Analysis
- □ Probabilistic Models
- ☐ Clustering for Outlier Detection
- Distance-Based Outlier Detection
- Density-Based Methods
- Information-Theoretic Models
- Outlier Validity
- □ Summary

Information-Theoretic Models

- □ An Example

 - The 1st One: "AB 17 times"
 - C in 2nd string increases its minimum description length
- Conventional Methods
 - Fix model, then calculate the deviation
- Information-Theoretic Models
 - Fix the deviation, then learn the model
 - Outlier score of \bar{X} : increase of the model size when \bar{X} is present

Probabilistic Models

□ The Conventional Method

- Learn the parameters of generative model with a fixed size
- Use the fit of each data point as the outlier score

Information-Theoretic Method

- Fix a maximum allowed deviation (a minimum value of fit)
- Learn the size and values of parameters
- Increase of size is used as the outlier score

Outline

- Introduction
- Extreme Value Analysis
- □ Probabilistic Models
- ☐ Clustering for Outlier Detection
- Distance-Based Outlier Detection
- Density-Based Methods
- Information-Theoretic Models
- □ Outlier Validity
- □ Summary

Outlier Validity

- Methodological Challenges
 - Internal criteria are rarely used in outlier analysis
 - A particular validity measure will favor an algorithm using a similar objective function criterion
 - Magnified because of the small sample solution space
- External Measures
 - The known outlier labels from a synthetic data set
 - The rare class labels from a real data set

Receiver Operating Characteristic (ROC) curve

- \square *g* is the set of outliers (ground-truth)
- □ An algorithm outputs a outlier score
- \square Given a threshold t, we denote the set of outliers by S(t)
 - True-positive rate (recall)

$$TPR(t) = Recall(t) = 100 * \frac{|\mathcal{S}(t) \cap \mathcal{G}|}{|\mathcal{G}|}$$

■ The false positive rate

$$FPR(t) = 100 * \frac{|\mathcal{S}(t) - \mathcal{G}|}{|\mathcal{D} - \mathcal{G}|}$$

- ROC Curve
 - Plot TPR(t) versus FPR(t)

An Example

Algorithm	Rank of ground-truth outliers
Algorithm A	1, 5, 8, 15, 20
Algorithm B	3, 7, 11, 13, 15
Random Algorithm	17, 36, 45, 59, 66
Perfect Oracle	1, 2, 3, 4, 5

Outline

- Introduction
- Extreme Value Analysis
- □ Probabilistic Models
- Clustering for Outlier Detection
- Distance-Based Outlier Detection
- Density-Based Methods
- Information-Theoretic Models
- Outlier Validity
- □ Summary

Summary

- Extreme Value Analysis
 - Univariate, Multivariate, Depth-Based
- Probabilistic Models
- ☐ Clustering for Outlier Detection
- Distance-Based Outlier Detection
 - Pruning, LOF, Instance-Specific
- Density-Based Methods
 - Histogram- and Grid-Based, Kernel Density
- Information-Theoretic Models
- Outlier Validity
 - ROC curve