# Calculus 1 - Notes

## Dom Hutchinson

## February 28, 2018

## Contents

| 1 | Bef                            | ore Calculus 2                      |  |
|---|--------------------------------|-------------------------------------|--|
|   | 1.1                            | Fundamental Theorem of Calculus     |  |
|   | 1.2                            | Intervals                           |  |
| 2 | Limits                         |                                     |  |
|   | 2.1                            | Limits                              |  |
|   | 2.2                            | Exponential Function                |  |
| 3 | The Derivative                 |                                     |  |
|   | 3.1                            | Techniques for finding derivative   |  |
|   | 3.2                            | Implicit Differentiation            |  |
|   | 3.3                            | Applications of The Derivative      |  |
|   | 3.4                            | Sketching Curves                    |  |
| 4 | Inegration                     |                                     |  |
|   | 4.1                            | The Primitive                       |  |
| 5 | Parametric Curves & Arc-Length |                                     |  |
|   | 5.1                            | Parametric Curves                   |  |
|   | 5.2                            | Tangent of a Curve                  |  |
|   | 5.3                            | Arc-Length                          |  |
|   | 5.4                            | Level Curves                        |  |
| 6 | Differential Equations         |                                     |  |
|   | 6.1                            | First Order Differential Equations  |  |
|   | 6.2                            | Integrating Factor                  |  |
|   | 6.3                            | Second Order Differential Equations |  |
|   | 6.4                            | Wronskian                           |  |
|   | 6.5                            |                                     |  |

## 1 Before Calculus

#### 1.1 Fundamental Theorem of Calculus

Definition 1.01 - Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus states

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

**Definition 1.02 -** Common Sets of Numbers

Natural Numbers, set of positive integers -  $\mathbb{N} := \{1, 2, 3, ...\}$ .

Whole Numbers, set of all integers -  $\mathbb{Z} := \{..., -2, -1, 0, 1, 2, ...\}$ .

Rational Numbers, set of fractions -  $\mathbb{Q} := \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N} \right\}$ .

Real Numbers, set of all rational & irrational numbers - R.

### 1.2 Intervals

**Definition 1.03 -** *Intervals* 

Sets of real numbers that fulfil in given ranges.

Notation

$$[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$$

$$(a, b] := \{ x \in \mathbb{R} : a < x \le b \}$$

$$[a, b) := \{x \in \mathbb{R} : a \le x < b\}$$

$$(a,b) := \{x \in \mathbb{R} : a < x < b\}$$

#### Example

In what interval does x lie such that:

$$|3x+4| < |2x-1|$$

Solution

Case 1: 
$$x \ge \frac{1}{2}$$
  
=> 1 - 2x < 3x + 4 < 2x - 1  
=> 1 - 2x < 3x + 4  
=>  $x > \frac{-3}{5}$ 

And, 
$$=> 3x + 4 < 2x - 1$$
  
 $=> x < -5$ 

There are no real solutions in this range.

Case 2: 
$$x < \frac{1}{2}$$
  
=>  $2x - 1 < 3x + 4 < 1 - 2x$   
=>  $2x - 1 < 3x + 4$   
=>  $-5 < x$ 

And, => 
$$3x + 4 < 1 - 2x$$
  
=>  $5x < -3$   
=>  $x < \frac{-3}{5}$ 

$$= > -5 < x < \frac{-3}{5}, \ x \in \left(-5, \frac{-3}{5}\right)$$

#### **Definition 1.04 -** Functions

Functions map values between fields of numbers. The signature of a function is defined by

$$f:A\to B$$

Where f is the name of the function, A is the domain and B is the co-domain.

The *Domain* of a function is the set of numbers it can take as an input.

The Co-Domain is the set of numbers that the domain is mapped to.

N.B. - A function is valid iff it maps each value in the domain to a single value in the co-domain.

#### **Definition 1.05 -** Maximal Domain

The Maximal Domain of a function is the largest set of values which can serve as the domain of a function.

## Remark 1.06 - Types of Function

Let  $f: A \to B$ 

Polynomials

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

Rational

$$f(x) = \frac{p(x)}{q(x)}, \quad q(x) \neq 0 \ \forall \ x \in A$$

Trigonometric

$$sin(x), cos(x), tan(x)$$
 etc.

## 2 Limits

#### 2.1 Limits

## **Definition 2.01 - Limits**

A limit is the value a function tends to, for a given  $\mathbf{x}$ .

*i.e.* The value f(x) has at it gets very close to x.

Formally We say L is the limit of f(x) as x tends to  $x_0$  if

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ st if } x \in A \text{ and } |x - x_0| < \delta => |f(x) - L| < \varepsilon$$

Notation

$$\lim_{x \to x_0} f(x) = L$$

#### **Definition 2.02 -** Directional Limits

Sometimes the value of a limit depends on which direction you approach it from.

 $\lim_{x\to x_0+}$  is used when approaching from values greater than  $x_0$ .

 $\lim_{x\to x_0-}$  is used when approaching from values less than  $x_0$ .

#### Theorem 2.03 - Operations with limits

Let  $\lim_{x\to x_0} f(x) = L_f$  and  $\lim_{x\to x_0} g(x) = L_g$  Then

$$\lim_{x \to x_0} [f(x) + g(x)] = L_f + L_g$$

$$\lim_{x \to x_0} f(x) \cdot g(x) = L_f \cdot L_g$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{L_f}{L_g} \quad L_g \neq 0$$

#### 2.2 Exponential Function

**Definition 2.04 -** Exponential Function

$$e := \lim_{x \to \infty} \left( 1 + \frac{1}{n} \right)^n \simeq 2.7182818...$$

## Theorem 2.05 - Binomial Expansion

A techique for expanding binomial expressions

$$\left(1 + \frac{x}{n}\right)^n = \sum_{i=0}^n \binom{i}{n} \cdot 1^{(n-i)} \cdot \left(\frac{x}{n}\right)^i$$
$$= 1 + x + \frac{n-1}{2n} \cdot x^2 + \dots + \frac{x^n}{n^n}$$

## 3 The Derivative

**Definition 3.01 -** Differentiable Equations

Let  $f: A \to B$  and  $x_0 \in A$ .

f is differentiable at  $x_0$  if  $\exists L \in B$  such that

$$L = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

If this limit exists  $\forall x \in A$  then we can define the derivative of f(x)

$$f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

**Definition 3.02 -** Notation for Differentiation

There are two ways to denote the derivative of an equation

$$f'(x) \iff \frac{df}{dx}, f''(x) \iff \frac{d^2f}{dx^2}, ..., f^{(n)}(x) \iff \frac{d^nf}{dx^n}$$

N.B. - Using  $\frac{df}{dx}$  is more informative, especially for equations with multiple variables.

## 3.1 Techniques for finding derivative

Theorem 3.03 - Sum Rule

Let f, g be differentiable with respect to x.

$$(f+q)' = f' + q'$$

Theorem 3.04 - Product Rule

Let f, g be differentiable with respect to x.

$$(fg)' = f'g + fg'$$

Theorem 3.05 - Quotient Rule

Let f, g be differentiable with respect to x.

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

**Definition 3.06 -** Composite Functions

Let  $f: B \to C$  and  $g: A \to B$  Then

$$(f \circ g)(x) = f(g(x))$$

Theorem 3.07 - Chain Rule

Let f, g be differentiable with respect to x.

$$\frac{d}{dx}f(g(x)) = f'(g(x)).g'(x)$$

## 3.2 Implicit Differentiation

**Definition 3.08** - Implicit Differentiation

Sometimes it is hard to isolate variables in multi-variable equations, in these cases differentiate both sides with respect to the same variable.

Remembering

$$\frac{d}{dx}(x) = 1$$
 and  $\frac{d}{dx}(y) = \frac{dy}{dx} = y'$ 

Example

Find y if  $x^3 + y^3 = 6xy$ 

$$\frac{d}{dx}(x^3 + y^3) = \frac{d}{dx}(6xy)$$
=>3x<sup>2</sup> + 3y<sup>2</sup>.y' = 6y + 6x.y'  
=>y'(3y<sup>2</sup> - 6x) = 6y - 3x<sup>2</sup>  
=>y' =  $\frac{2y - x^2}{y^2 - 2x}$ 

## 3.3 Applications of The Derivative

#### Thoerem 3.09 - Netwon's Method

Let f be differentiable. Using Newton's Method we can approximate a solution to f(x) = 0.

- i) Take an inital guess,  $x_0$ ;
- ii) Find the value of x where the tangent to  $x_0$  on f(x) intercepts the x-axis;
- iii) Use this value as the next guess;
- iv) Repeat until the value of x reduces little.

The equation for the tangent is

$$y = f(x_0) + (x - x_0)f'(x_0)$$

so a simplified equation for the process can be deduced

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

**Theorem 3.10 -** Angle between Intersecting Curves

Let  $y = f_1(x)$  and  $y = f_2(x)$  be two curves which intersect at  $(x_0, y_0)$ .

Then 
$$y_0 = f_1(x_0) = f_2(x_0)$$

Let  $m_1, m_2$  be the gradient of the tangents to  $f_1 \& f_2$  at  $x_0$ .

Then  $\theta_i := tan^{-1}(m_i)$  for i = 1, 2.

Let 
$$\phi = |\theta_1 - \theta_2|$$
, then

$$\phi = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

## Theorem 3.11 - L'Hospital's Rule

For two equations, f, g with limit of  $-\infty, 0$  or  $\infty$  as x tends to a, it is hard to solve

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

Provided the limit exists, L'Hospital's Rule states that

$$\lim_{x \to a} \frac{f(x)}{g(x)} \iff \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

#### 3.4 Sketching Curves

#### Remark 3.11 - Sketching Curves

Evaluating the derivative of a curve can make it easier to sketch:

- i) When f'(x) > 0 the curve is heading upwards;
- ii) When f'(x) < 0 the curve is heading downwards;
- iii) When f'(x) = 0 the curve is flat;
- iv) When  $f'(x) = \infty, -\infty$  there are assymptotes.

#### **Definition 3.12 -** Even Functions

If f(x) = f(-x) then the function is symmetrical and said to be *even*. Examples -  $x^2$ , cos(x), |x|

#### **Definition 3.13 -** Odd Functions

If f(x) = -f(-x) then the function is said to be *odd*. Examples - x, sin(x), x.cos(x)

### Remark 3.14

Some functions are neither odd nor even.

Example -  $x + x^2$ 

## 4 Inegration

## 4.1 The Primitive

### **Definition 4.01 -** The Primitive

A function,  $F:A\to\mathbb{R}$ , is a primative for the function  $f:A\to\mathbb{R}$  if F is differentiable and

$$\frac{d}{dx}F = f$$

N.B. - Primitives are also called *Indefinite Integral* or *Anti-Derivative*.

#### Remark 4.02 - Area Under a Curve

Let  $f:[a,b]\to\mathbb{R}$  be a continuous function. Then the area between the curve and the x-axis is found by integration.

$$A := \int_{a}^{b} f(x)dx$$

#### **Definition 4.03 -** Convergent Improper Integrals

Let b > a and define a function,  $f: [a, \infty) \to \mathbb{R}$ , which is continuous in [a, b] Then

$$\int_{0}^{\infty} f(x)dx := \lim_{b \to \infty} \int_{a}^{b} f(x)dx$$

If this limit exists then the improper integral is convergent, otherwise it is divergent.

### **Definition 4.04 -** Definite Integral

Let F be the primative for the function f. Then

$$\int_{b}^{a} f(x)dx = F(a) - F(b)$$

Notation - 
$$F(x)\Big|_a^b = F(b) - F(a)$$

## Remark 4.05 - Summing Definite Inegrals

For all a < c < b

$$\int_{a}^{b} f(x)dx = \int_{c}^{a} f(x)dx + \int_{b}^{c} f(x)dx$$
$$\int_{b}^{a} f(x)dx := -\int_{a}^{b} f(x)dx$$

#### Theorem 4.06 - Taylor Series

Functions can be expanded into polynomial form with degree n,  $T_n$ , and remainder  $R_n$  such that  $f(x) = T_n(x) + R_n(x)$ .

$$T_n(x) = f(a) + (x - a)f'(a) + \dots + \frac{1}{n} \cdot (x - a)^n \cdot f^n(a)$$
$$R_n(x) = \frac{1}{n} \int_a^x (x - t)^n \cdot f^{(n+1)}(t) dt$$

## 5 Parametric Curves & Arc-Length

## 5.1 Parametric Curves

#### **Definition 5.01 -** Parametric Curves

Parametric equations are an alternative to Cartesian equations, for representing curves. They can also represent a point in 3D space.

$$\boldsymbol{p} = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$$

#### **Theorem 5.02 -** Parametric to Cartesian Equations

As all equations in a Parametric series have a common variable, substition can be used to form a single equation.

Example Let 
$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} t-2 \\ \frac{t}{t-2} \end{pmatrix}$$
.

$$x = t - 2$$

$$=>t = x + 2$$

$$=>y = \frac{x + 2}{(x + 2) - 2}$$

$$= \frac{x + 2}{x}$$

$$y = 1 + \frac{2}{x}$$

## 5.2 Tangent of a Curve

#### **Theorem 5.02 -** Tangent to a Parametric Curve

Let (x(t), y(t)) be a parametric equation. If we want to find the tangent at a point on the line, (a, b), we need to find the value  $t_0$  such that  $x(t_0) = a \& y(t_0) = b$ .

Then by using the chain rule we can deduce the following equation for the tangent when  $t = t_0$ :

$$\frac{dy(t_0)}{dx(t_0)} = \frac{y - y(t_0)}{x - x(t_0)}$$

. Similarly we can deduce the equation for the normal when  $t = t_0$ :

$$-\frac{dx(t_0)}{dy(t_0)} = \frac{y - y(t_0)}{x - x(t_0)}$$

## 5.3 Arc-Length

#### Theorem 5.03 - Arc-Length

Arc-Length is the length of a curve, following a function, between two points. For a cartesian equation, y = f(x), between the points x and x + dx is

$$ds = \sqrt{dx^2 + dy^2}$$

So for a set of parametric equations,  $(x(t), y(t)), a \le t \le b$ ,

$$ds = \sqrt{\frac{dx^2}{dt} + \frac{dy^2}{dt}}$$

To find the length of a curve between points a and b

$$s = \int_{a}^{b} \sqrt{\frac{dx^2}{dt} + \frac{dy^2}{dt}} dt$$

#### **Definition 5.04** - Curvature

Curvature measures how fast the unit tangent vector to a curve rotates. Curvature of a curve, y = f(x), can be found using the equation:

$$K(x) = \frac{|y''(x)|}{[1 + (y'(x))^2]^{\frac{3}{2}}}$$

For a set of parametric equations, (x(t), y(t)), it can be found using:

$$K(t_0) = \frac{y''(t_0).x'(t_0) - y'(t_0).x''(t_0)}{[(x'(t_0))^2 + (y'(t_0))^2]^{\frac{3}{2}}}$$

### 5.4 Level Curves

## **Definition 5.05 -** Level Curves

Let  $f: \mathbb{R}^d \to \mathbb{R}$  be a function with  $d \geq 2$ ,  $d \in \mathbb{N}$ . A level curve for f is the set of real solutions for  $f(x) = c, c \in \mathbb{R}$ .

 $\underline{\text{N.B}} - f(x) = c$  is often written as f = c.

## 6 Differential Equations

## **Definition 6.01 -** Differential Equations

Differential equations take the form

$$f(x, y, \frac{dx}{dy}, ..., \frac{d^{(n)}y}{dx^{(n)}}) = 0, \ x \in I$$

## 6.1 First Order Differential Equations

## Definition 6.02 - First Order

First order differential equations are equations of form  $f(x, y, \frac{dx}{dy}) = 0$ .

#### **Definition 6.03 -** Seperable Equations

An equation, f, is said to be separable if there exists two equations, M(x), N(y), such that

$$f(x, y, y') = y' - M(x).N(y)$$

Thus

$$y' = M(x).N(y)$$

$$= > \frac{y'}{N(y)} = M(x)$$

$$= > \int \frac{1}{N(y)} dy = \int M(x) dx$$

After integration, the equation can be rearranged to be in terms of y.

## 6.2 Integrating Factor

Theorem 6.04 - Integrating Factor

Consider the equation y' + f(x)y + g(x). Let  $F(x) = \int f(x)dx$ . Thus

$$\begin{split} e^{F(x)}.y' + e^{F(x)}.y &= e^{F(x)}.g(x) \\ = > \frac{d}{dx} \left( e^{F(x)}.y \right) &= e^{F(x)}.g(x) \\ = > e^{F(x)}.y &= \int e^{F(x)}.g(x) \ dx \\ = > y &= e^{-F(x)} \int e^{F(x)}.g(x) \ dx \end{split}$$

## 6.3 Second Order Differential Equations

**Definition 6.05 -** Linear Differential Equations

A differential equation is said to be linear if it can be written in the form

$$Ay(x) := a_n(x).y^{(n)}(x) + \dots + a_1(x).y'(x) + a_0(x).y(x) = b(x)$$

We define the set of solutions as

$$S(A,b) := y : I \to \mathbb{R}; Ay = b$$

If the only solution is b = 0 then the system is homogenous, otherwise it is inhomogenous.

When solving a differential equation, Ay(x) = b(x), we need to find two functions in order to find the final solution.

- i) Complementary Function,  $y_c$  The homogenous case of the equation, Ay(x) = 0;
- ii) Particular Function,  $y_p$  The inhomogenous case of the equation, Ay(x) = b(x) for a given b(x).

Then  $y = y_c + y_p$  is the final solution for Ay(x) = b(x).

**Theorem 6.07 -** Complementary Function of LDEs with Constant Coefficients Take a linear differential equation

$$a_n y^{(n)}(x) + \dots + a_1 y'(x) + a_0 y(x) = b(x)$$

where  $a_n, ..., a_1, a_0 \in \mathbb{R} \& b(x) : \mathbb{R} \to \mathbb{R}$  are all constant.

To find the Complementary Function we solve the equation

$$a_n.\lambda^n + \dots + a_1.\lambda^n + a_0 = 0$$

. to get solutions  $\lambda_1, ..., \lambda_k$  and then produce the complimentary function

$$y_c(x) = \mu_1 e^{\lambda_1 x} + \dots + \mu_k e^{\lambda_k x}$$

Where  $\mu_1, ..., \mu_k$  are constants to be found later, by comparing with b(x).

Remark 6.08 - Complementary Function

The complementary function,  $y_c$ , for differential equations with constant coefficients depends upon the  $\lambda_1, ..., \lambda_k$  we find, due to Euler's Formula.

- i)  $\lambda_i = c$ ,  $y_{c_i} = \mu_i e^{\lambda_i x}$ ;
- ii)  $\lambda_i = \pm ib$ ,  $y_{c_i} = \mu_{i_1} cos(bx) + \mu_{i_2} sin(bx)$ ;
- iii)  $\lambda_i = a \pm ib$ ,  $y_{c_i} = e^{ax} [\mu_{i_1} cos(bx) + \mu_{i_2} sin(bx)].$

Then  $y_c = \sum_{i=1}^k y_{c_i}$ .

## Remark 6.09 - Particular Function

The particular function,  $y_p$ , for a differential equation with constand coefficients, Ay(x) = b(x), depends on the form of b(x).

- i)  $b(x) = a_n x^n + ... + a_1 x + a_0, \quad y_p = b_n x^n + ... + b_1 x + b_0;$
- ii)  $b(x) = ae^{bx}$ ,  $y_p = \alpha e^{\beta x}$ ;
- iii)  $b(x) = a.sin(bx) + c.cos(dx), \quad y_p = \alpha sin(\beta x) + \gamma cos(\delta x).$

Where the constants of  $y_p$  are values to be found, when given certain conditions.

Theorem 6.10 - Particular Function of LDEs with Constant Coefficients

Take a linear differential equation

$$a_n y^{(n)}(x) + \dots + a_1 y'(x) + a_0 y(x) = b(x)$$

where  $a_n, ..., a_1, a_0 \in \mathbb{R} \& b(x) : \mathbb{R} \to \mathbb{R}$  are all constant.

Deduce the particular function for the differential equation, given b(x), and then differentiate  $y_p$  n times.

Substitute in these values, in place of the ys, into the original equation and solve to find values for the constants in  $y_p$ .

Example

 $\overline{\text{Solve } y''} - y' + y = x^2.$ 

#### 2Complementary Function

Let 
$$\lambda^2 - \lambda + 1 = 0$$
  
=>  $\lambda = \frac{1 \pm \sqrt{1-4}}{2}$ 

$$= \frac{1}{2} \pm i \frac{\sqrt{3}}{2}$$

$$= y_c = e^{\frac{x}{2}} \left[ A\cos(x \frac{\sqrt{3}}{2}) + B\sin(\frac{\sqrt{3}}{2}) \right]$$

#### **Particular Function**

Let 
$$y_p = \alpha x^2 + \beta x + \gamma$$
  
 $=> y_p'(x) = 2\alpha x + \beta, \&$   
 $=> y_p''(x) = 2\alpha$   
 $=> (2\alpha) - (2\alpha x + \beta) + (\alpha x^2 + \beta x + \gamma) = x^2$   
 $=> x^2[\alpha] + x[\beta - 2\alpha] + [2\alpha - \beta + \gamma] = x^2$ 

$$\begin{split} [x^2] : \alpha &= 1 \\ [x] : \beta - 2\alpha &= 0 \\ &=> \beta = 2 \\ [x^0] : 2\alpha + \gamma - \beta &= 0 \\ &=> \gamma = 0 \\ &=> y_p = x^2 + 2x \\ => y = x^2 + 2x + e^{\frac{x}{2}} [Acos(x\frac{\sqrt{3}}{2}) + Bsin(\frac{\sqrt{3}}{2})] \end{split}$$

## 6.4 Wronskian

## **Definition 6.11 -** The Wronskian

The Wronskian,  $W[y_1, y_2]$ , of two differentiable functions is defined by

$$W[y_1, y_2](x) = y_1(x).y_2'(x) - y_1'(x).y_2(x)$$

The notation for this is

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} := ad - bc$$

So

$$W[y_1, y_2] = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$$

#### Remark 6.12

If  $W[y_1, y_2] \neq 0$  then  $y_1, y_2$  are linearly independent.

## 6.5 Variation of Constants

#### Theorem 6.12

This is a technique for solving all differential equations, not just ones with constant coefficients. Consider the equation

$$Ay(x) := y''(x) + \beta(x)y'(x) + \gamma(x)y(x) = b(x)$$
, for a known  $b(x)$ 

We can deduce a complementary function in the form

$$y_c = \lambda_1(x)y_1(x) + \lambda_2(x)y_2(x)$$

where  $y_1 \& y_2$  are linearly independent, thus  $W[y_1, y_2] \neq 0$ .

## WIP