Saliency Filters: Contrast Based Filtering for Salient Region Detection

Avinash Vadlamudi Sravan Chandra Kamineni Vikas

Saliency

- Saliency is what stands out to you and how you are able to quickly focus on the most relevant parts of what you see.
- Saliency detection, essentially, can be used in any area in which you're trying to automate the process of understanding what stands out in an image.

Approach-1:

We have implemented the paper:

Saliency Filters: Contrast Based Filtering for Salient Region Detection.

CVPR 2012

Abstraction:

→ For the image abstraction, we use an adaptation of SLIC superpixel to abstract the image into perceptually uniform regions.

Uniqueness:

$$U_i = \sum_{j=1}^N \|\mathbf{c}_i - \mathbf{c}_j\|^2 \cdot \underbrace{w(\mathbf{p}_i, \mathbf{p}_j)}_{w_{ij}^{(p)}}.$$

Distribution:

$$D_i = \sum_{j=1}^N \|\mathbf{p}_j - \mu_i\|^2 \underbrace{w(\mathbf{c}_i, \mathbf{c}_j)}_{w_{ij}^{(c)}},$$

Saliency Assignment

- \rightarrow We start by normalizing both uniqueness U_i and distribution D_i to the range [0..1].
- → We compute Saliency value S_i for each element using,

$$S_i = U_i \cdot \exp(-k \cdot D_i)$$

 \rightarrow We used k = 6 as the scaling factor for the exponential.

- → As the final step, we need to assign a final saliency value to each image pixel, which can be interpreted as an upsampling of the per-element saliency S_i.
- We define the saliency \tilde{S}_i of a pixel as a weighted linear combination of the saliency S_j of its surrounding image elements.

$$\tilde{S}_i = \sum_{j=1}^N w_{ij} S_j.$$

- By choosing a Gaussian weight as $w_{ij} = 1/Z_i \times \exp(-1/2 \times (\alpha ||c_i c_j||^2 + \beta ||p_i p_j||^2))$ we can ensure the up-sampling process is both local and color sensitive.
- \rightarrow Here α and β are parameters controlling the sensitivity to color and position.

Abstraction Uniqueness Distribution Saliency Assignment

Results:

Extension:

As, In the above Approach, we noticed that some of the results are not good, So
we tried to perform on pixel level instead of superpixels.

$$U_{i} = \sum_{j=1}^{N} \|\mathbf{c}_{i} - \mathbf{c}_{j}\|^{2} w_{ij}^{(p)}$$

$$= \mathbf{c}_{i}^{2} \sum_{j=1}^{N} w_{ij}^{(p)} - 2\mathbf{c}_{i} \sum_{j=1}^{N} \mathbf{c}_{j} w_{ij}^{(p)} + \sum_{j=1}^{N} \mathbf{c}_{j}^{2} w_{ij}^{(p)}$$

$$= \sum_{j=1}^{N} \|\mathbf{p}_{j} - \mu_{i}\|^{2} w_{ij}^{(c)}$$

$$= \sum_{j=1}^{N} \mathbf{p}_{j}^{2} w_{ij}^{(c)} - 2\mu_{i} \sum_{j=1}^{N} \mathbf{p}_{j} w_{ij}^{(c)} + \mu_{i}^{2} \sum_{j=1}^{N} w_{ij}^{(c)}$$

$$= \sum_{j=1}^{N} \mathbf{p}_{j}^{2} w_{ij}^{(c)} - \mu_{i} \sum_{blur \mathbf{p}_{j}}^{2} \cdots \sum$$

Uniqueness

Distribution

Saliency Assignment

Results:

Approach-2: Energy Minimization

- Saliency Optimization from Robust Background Detection (CVPR 2014)
- Here, We solve the problem from the fact that background objects are more linked to the boundary where as salient objects are not much linked to the boundary of the image.
- The image is first abstracted as a set of nearly regular superpixels using the SLIC method.

- We then construct an undirected weighted graph by connecting all adjacent superpixels (p, q) and assigning their weight d_{app}(p, q) as the Euclidean distance between their average colors in the CIELab color space.
- We further add edges between any two boundary superpixels. This is useful when a physically connected background region is separated due to occlusion of foreground objects.
- The geodesic distance between any two superpixels d_{geo}(p, q) is defined as the accumulated edge weights along their shortest path on the graph.

- So, we give the measure to the saliency through following idea:
 - Here, we use the below ratio to measure saliency,

$$BndCon(p) = \frac{Len_{bnd}(p)}{\sqrt{Area(p)}}$$

Where, length of a superpixel p is the length along the boundary.

$$Len_{bnd}(p) = \sum_{i=1}^{N} S(p, p_i) \cdot \delta(p_i \in Bnd)$$

And Area(p) is the area of the superpixel p:

$$d_{geo}(p,q) = \min_{p_1 = p, p_2, \dots, p_n = q} \sum_{i=1}^{n-1} d_{app}(p_i, p_{i+1})$$
 (2)

For convenience we define $d_{geo}(p,p) = 0$. Then we define the "spanning area" of each superpixel p as

$$Area(p) = \sum_{i=1}^{N} exp(-\frac{d_{geo}^{2}(p, p_{i})}{2\sigma_{clr}^{2}}) = \sum_{i=1}^{N} S(p, p_{i}), \quad (3)$$

where N is the number of superpixels.

We minimize the below non-linear function,

$$\underbrace{\sum_{i=1}^{N} w_i^{bg} s_i^2}_{\text{background}} + \underbrace{\sum_{i=1}^{N} w_i^{fg} (s_i - 1)^2}_{\text{foreground}} + \underbrace{\sum_{i,j} w_{ij} (s_i - s_j)^2}_{\text{smoothness}}$$

Where,

$$w_i^{bg} = 1 - exp(-\frac{BndCon^2(p_i)}{2\sigma_{bndCon}^2})$$

$$w_{ij} = exp(-\frac{d_{app}^2(p_i, p_j)}{2\sigma_{clr}^2}) + \mu$$

$$wCtr(p) = \sum_{i=1}^{N} d_{app}(p, p_i) w_{spa}(p, p_i) w_i^{bg}$$

$$w_{spa}(p, p_i) = exp(-\frac{d_{spa}^2(p, p_i)}{2\sigma_{spa}^2}). d_{spa}(p, p_i)$$

Here, wCtr is background weighted contrast, which is equivalent to wfg.

Results:

Failures of Approach-2:

- In the first image, it contains the blue border, so using this approach, it considers that entire image is distinct with border, so everything is considered as salient.
- As we can see, the second image doesn't have blue border, so we are getting good detection of features.

Analysis:

	Approach-1	Extension
Abstraction	0.55301452 s	
Uniqueness	0.009122849 s	0.1385328 s
Distribution	0.01104879 s	77.074188 s
Saliency	0.01099658 s	6.2409470 s

	Approach-1	Extension	Approach-2
Total Time	0.58 s	83.3974419 s	7.242528

SLIC	Using Inbuilt	Coded (For 5 iter's)
Time Taken	0.2575693 s	21.516971 s

Applications

- → Incorporate higher-level features such as face detectors, number plate detection.
- → Automatic cropping of Images (Seam Carving).
- → Thumbnail generation.

Number Plate Detection

Citations

- ★ Main Paper:- http://www.philkr.net/papers/2012-06-01-cvpr/2012-06-01-cvpr.pdf
- ★ Second Paper:- https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909756
- ★ Dataset: http://saliencydetection.net/dut-omron/