(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 23.10.2002 Bulletin 2002/43
- (21) Application number: 98929467.3
- (22) Date of filing: 26.06.1998

(51) Int CL7: F23C 10/02

(11)

- (86) International application number: PCT/F198/00560
 - (87) International publication number: WO 99/002920 (21.01.1999 Gazette 1999/03)

- (54) FLUIDIZED BED REACTOR WIRBELSCHICHTREAKTOR REACTEUR A LIT FLUIDISE
- (84) Designated Contracting States: DE ES FI FR GB IT SE
- (30) Priority: 07.07.1997 US 888790
- (43) Date of publication of application: 26.04,2000 Bulletin 2000/17
- (60) Divisional application: 02006367.3 / 1 219 896
- (73) Proprietor: Foster Wheeler Energia Oy 00440 Helsinki (FI)

- (72) Inventors:
 - · WIETZKE, Donald, L. Carlsbad, CA 92009 (US)
 - · RASKIN, Nell, R.
 - Carlsbad, CA 92009 (US) DARLING, Scott
 - Annandale, NJ 08801 (US)
- (56) References cited: EP-A- 0 179 996

DE₂C₂ 19 501 504

US-A- 4 817 563 US-A- 4 864 944 WO-A-98/25074 FR-A- 2 681 668 US-A- 4 841 884

US-A- 5 678 497

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

2

Description

[0001] The present invention refers to a fluidized bed reactor having in its lower part a furnace section, delimited by side walls and a bottom grid, and supplying means, for introducing a gas, such as partial combustion is, into a bed of fluidized particles in the furnace section. Such supplying means include a gas source chamber, such as a windbox and at least one nozzle or conduit connected to one opening in, side wall, for introducing gas from sald gas source chamber to the furnace section.

[0002] This invention is particularly applicable to large circulating fluidized bed (CFB) boilers having a thermal effect of, e.g., 200-400 MWe, or more, in which boilers the lower section of the boiler furnace and the bottom grid may be divided in two or more furnace sections, e. g, by a dual wall partition structure. The dual wall partition structure may be a complete partition wall reaching In the furnace from one wall to the opposite wall or a partial wall, i.e. the dual wall construction may consist of a continuous or a discontinuous wall between two opposite furnace walls. In these large bollers partial air may be distributed through supplying means connected to the external side walls and/or through supplying means connected to the partition wall structure. The partition wall structure, which typically is of a dual wall construction may be made a refractory wall or a cooled wall connected to the cooling water circulation of the boiler.

BACKGROUND OF THE INVENTION

[0003] Optimized emission control and maximum fuel burn-up are decisive qualifications for a successful furnace design. Thus, they must especially be taken into consideration in circulating fluidized bed scale-up. A simple proportional scaling up of designs used in smaller systems may easily lead to problems in attempting to provide for a good mixing of fuel, combustion air and fluidized bed sollds. Additionally, such designs may suffer from not being capable of providing a uniform furnace temperature within the optimum range and a sufficient heat transfer area. All these problems, which may cause enhanced emissions and less than optimal fuel burn-up, have led to a desire to find alternative solutions. Such solutions have e.g. included designs with multiple furnaces with a common back pass, providing heat transfer panels and/or partial or full division walls within the furnace, or dividing the lower part of the furnace and the bottom grid with e.g. a dual wall structure.

[0004] Different solutions for sectioning the bottomarea of a fluidized bed belier funcace are known in the prior art. US patent 4,864,944 discloses a division of a fluidtized bed reactor into compartments by partition walls having openings for secondary gas to be distributed in a desired manner into the reactor. The partition walls have ducts which are connected to air supply, sources and lead to discharace openings at different heights in the partition walls. Correspondingly, US patent 4,817,563 discloses a fluidized bed system provided with one or more displacement bodies, which may be provided with lines and inlet openings for introducing secondary gas to segmented sections in the lower re-

[0005] US patent 5,370,084 discloses different configurations for effective mixing of fuel in a partitioned circulating fluidized bed boiler, including ducts which feed air Into the boiler on the interior walls. US patent 5,215,042 and FR 2 681 668 disclose reactors divided into compartments by at least one vertical, substantially gas tight partition in the upper part of the combustion chamber. The partition wall comprises cooling tubes and is provided with at least one line with a distributing manifold to feed combustion air into the compartments.

[0065] US patent 4,545,959 discloses a chamber for the treatment of particulate matter in a fluidized bed, comprising a duct with triangular cross section on the bottom of the chamber, and an arrangement of holes or sto

10077. The above mentioned publications suggest Introduction of gas into a reactor chamber, e.g. furnace chamber, through a partition wall within the chamber. A problem arises, however, as the ducting from the air or gas ounce chamber to the air or gas injection point may be rather long and cause a high pressure drop. A problem arises also in these conventional supply duct constructions due to solids back sifting, i.e. the problems with solid particles from the furnace tending to flow into the gas supply ducts and increase the pressure drop over the gas supply ducts. The increase in pressure drop may be very difficult to after to or to take into consideration when controlling the gas supply.

[0008] Conventional bottom grid nozzle constructions, e.g. those equipped with bubble caps normally reaching upward from the bottom grid, would be exposed to heavy erosion if installed on a vertical partition wall within a fluidized bed, due to very high erosive forces caused by the downward flowing solid particle layers In the vicinity of the wall. In fluidized bed reactor furnaces solid particles tend to flow upward in the middle of each furnace section and downward along its vertical side walls. Such downward flowing particles come in the lower part of the furnace sections, when the cross sectional area of the furnace sections abruptly decreases, Into intense turbulent motion which may locally lead to very strong erosive forces, e.g. also in the regions of secondary gas inlets. In the prior art no special solution for preventing backsifting into gas nozzles or conduits arranged on partition walls has been disclosed.

[0009] It is therefore an object of the present invention to provide a fluidized bed reactor with a furnace construction with an improved gas supply configuration.

[0010] It is particularly an object of the present invention to provide an improved gas supply configuration

B1

suitable for large scale circulating fluidized bed (CFB) boilers.

[0011] It is then more specifically an object of the present invention to provide an improved secondary gas supply configuration arranged in a partition wall within the lower part of a boller furnace.

[0012] It is more specifically an object of the present invention to provide a fluidized bed reactor with improved gas supply means, with minimized backsifting of solid particles into gas supply condults therein.

[0013] It is thereby also an object of the present invention to provide a fluidized bad reactor with improved gas supply means with decreased pressure losses in the gas supply means.

SUMMARY OF THE INVENTION

[0014] These objects of the present Invention are achieved in a fluidized bed reactor as defined in enclosed claims. There is arranged in the reactor in the lower part of a furnace section therein, which furnace section is delimited by side walls and a bottom grid, a supplying means including.

- a gas source chamber, such as a windbox, at least one opening in at least one of said side walls at a level above the bottom grid, and
- at least one conduit, connected by its one end to said at least one opening and by its other end to said gas source chamber, for introducing gas from 30 said gas source chamber to said furnace section.

whereby, said at least one conduit comprises a solid flow seal, preventing solid particles from flowing backward from said furnace section into said at least one conduit as in a manner preventing or noticeably decreasing said introduction of gas from said gas source chamber to said furnace section.

[0015] In large scale fluidized bed reactors, divided by wal-awail partitions Into separate furnace sections, at least a part of the free Internal space between the partition walls may according to a preferred embodiment of the present invention constitute the gas source chamber or windbox, providing secondary or other gas to the furnace sections. The gas source chamber may on the other hand if desired according to another preferred embodiment of the present invention be formed at another location also, e.g. connected to an external side wall or to the bottom grid.

[0016] Secondary gas or other similar gas is typically introduced into fumea sections through a plurality of gas injecting openings formed in the side walls delimiting the fumace sections. The openings may be arranged in a single row at the same vertical level in each wall, or the openings may if desired be arranged in some other configuration and at several different vertical levels in the walls. A conduit, such as a bent pipe construction, is according to the present invention disposed between

each of the openings and a gas source chamber, for introducing gas from the gas source chamber through the openings into the furnace sections.

[0117] A solid flow seal is formed in the conduits so as to prevent solid particles from flowing backward into the conduit in a manner preventing or noticeably decreasing the introduction of gas from the gas source chamber to the furnace sections. Some minor back and forth flow of solid particles within the conduits close to the openings may be tolerable. The solid flow seals may be formed in different ways, e.g. depending on the location of the gas source chamber.

[0018] In a fluidized bed reactor, in which the gas source chamber is formed in the space between two partition walls forming a partition on the bottom grid, secondary gas/air nozzles or conduits in the form of openended standpipes may be used. The standpipes have a first open end connected to an opening in one of the partition walls at a first vertical level I1, e.g. at the secondary air Injection level, and a second open end opening into the gas source chamber at a second vertical level is which is at a higher level than the first vertical level. This construction may be used when at least a portion of the gas source chamber reaches to a vertical level above the injection level of the gas, e.g. the injection level of secondary air. However, this construction does not fall under the scope of the present invention. [0019] The standpipe preferably has a circular cross section, but other forms are possible, such as slot like cross sections. The vertical extent of the standpipe, i.e.

from the furnace section to the gas source chamber. [0020] The standpipe may be bent at its lower end, is such that the lower end thereof may be fastened more easily to a vertical or only slightly inclined side wail construction. The standpipe may even have a short nearly hortzontal lower portion in order to bring the standpipe out from the side wall construction. Preferably a mini-mum distance or clearance is provided between the side wall and the standpipe along the entire length of the standpipe, it.e. also when the side wall is inclined and approaches the standpipe at the upper end thereof. Another solution would be to make the standpipe slightly inclined.

the difference I₂ - I₁, has to be big enough to generally prevent solid particles from backsifting therethrough

[0021] The standpipe is, however, preferably substantially uplight, but may due to constructional reasons and as discussed above have a lowermost portion, forming a < 90°, typically about 45°, but always ≥ 30° angle with the hortzontal plane. The rest of the standpipe, i.e. the upper portion of the standpipe, is mainly unfight forming a ≥ 30° angle with the hortzontal plane. [0022] In a fluidized bed reactor having a gas source chamber at a substantially different location, e.g. partly or totally above or below the grid level, another conduit or nozzle construction may be used in order to bring up gas from the gas source chamber to e.g. the secondary gas level. The conduit, which may be formed of a pipe

or other similar element, has according to the present invention the form of an upside down U-bend. A first end of the conduit is connected to an opening at a first vertical level I, I no no of the side walls and a second end of the conduit is connected at a third vertical level I, and the conduit is connected at a third vertical level I, and the conduit has between its first and second ends an upward bent portion, having is highest point at a second vertical level I₂, which is at a higher level than the first I, and third I₃ vertical levels. The first level I, and the secondary air injection level, typically is at a higher level than the third level, which may be a.g. at the bottom grid level or below or above the grid level.

I Do23] The vertical extent of an upright standpipe or the helight of the first portion of a bent conduit, correlates to the solid flow backsiting preventing ability of the conduit. The helight difference al between the first I, and second I, vertical levels is directly reliated to the pressure required to move solid particles through the standpipe, e.g. the larger the AZ the longer the standpipe, and the less solid particles are able to backsift through the conduit.

[0024] Typically, a vertical column $\Delta \ell$ of about 1.0 meters may be needed for providing an efficient solid flow seal against normal furnace pressure variations.

[0025] The constructions described above may be used, as discussed earlier, in fluidized bed reactors having the lower part of the fumace section divided by a dual-wall partition. Such a partition may if desired reach from the bottom grid up to the roof of the fumace, dividing the entire fumace chamber in two separate sections. Such fumace dividing walls preferably include at least one opening in their upper part to allow horizontal mixing of the gases and fluidized particles in the separate furnace sections.

[0026] The partition wells dividing the lower part of the furnece or the divisional walls dividing the entire furnece into two parts or sections may preferably be constructed of finned tube panels, where the flow direction of the cooling medium is upwards from a header on the level of or believ the furnece bottom. The cooling tubes of a partition wall may extend substantially vertically up to the roof of the furnece thus forming a divisional wall within the furnece, the tubes providing additional cooling surface area within the furnece.

[0027] In many known fluidized bed reactor constructions the interior of duel wait partitions contain various
ducts for different purposes, but the interior space
formed between the partition walls has not been otherwise utilized. When using, according to the present invention, at least a part of the interior of the duel wall
partition as a windbox for air or gas, which is to be disstrictly described in the formace above the primary air grid,
space is correspondingly spared below the main furnace ig rid. Moreover, the required length of ducting between windbox and air/gas introduction point in the furnace is minimized, which leads to decreased pressure
losses, i.e. lower cost, compared to conventional con-

structions. The present invention then provides, due to the decreased pressure losses, a better sir/gas distribution and hence more optimal reaction conditions within the furnace. Also by locating structures preventing back sitting of solid particles into the Interior of a dual wail partition, the structures are protected from the creatforces of moving solids in the violarity of the partition.

BRIEF DESCRIPTION OF THE DRAWINGS

[0028] The above brief description, as well as further objects, features and advantages of the present invention will be more fully appreciated by reference to the following detailed description of following embodiments taken in conjunction with the accompanying drawings in

- FIG. 1 schematically shows a vertical cross section of a first exemplary fluidized bed reactor according to the present Invention;
- FIG. 2 schematically shows a vertical and partly axonometrical cross section of the lower part of the fluidized bed reactor shown in FIG. 1;
- FIG. 3 schematically shows a vertical cross section of another fluidized bed reactor;
- FIG. 4 schematically shows a vertical cross section of the lower part of the other fluidized bed reactor shown in FIG. 3, and
- FIG. 5 schematically shows an enlargement of a cross section of a standpipe connected to a side wall.

[0029] The arrangements shown in figures 3 to 5 do not fall under the scope of the claims.

DETAILED DESCRIPTION OF THE DRAWINGS

[0030] Referring now specifically to FIG. 1 and FIG. 2 of the drawings, the reference numeral 10 refers, in general, to the fluidized bed reactor, having a furnace 12, the lower part of which is divided in two furnace sections 14 and 16 by a partition 18, having a dual wall construction. The partition 18 is in FIG. 2 shown as a discontinuous partition consisting of partial partitions 18' and 18" separated by an intermediate free portion 19 allowing solids and gas flow from one furnace section 14, 16 to the other 16, 14. The discontinuous partition shown in FIG. 2 is one example of a solids and gas flow path between furnace sections 14, 16, other embodiments not shown in these example drawings include one or more conduits through the partition wall; a partial partition dual wall construction; and others, A fluidized bed of solid particles 20 is maintained in the furnace 12. The furnace has external side walls 22 and 24, a roof 26 and a bottom grid 28. Fluidizing air or gas is introduced into the furnace sections 14 and 16 through grid parts 28' and 28" from windboxes 30 and 32.

[0031] The partition 18, i.e. the partial partitions 18'

and 18", dividing the lower part of the furnaco 12, is of a dual wall construction, i.e. formed of two inclinice partition walls, i.e. a first 34 and a second 36 partition walls. Thereby a partition space 38, or an internal space of the partition, wall shad and 36 and a bottom 40 covered by the partition. The bottom 40 is in Fils. 2 shown to be disposed slightly below the grid 28 level, but could be formed at the same level as the grid or even above the grid level. A free space is formed between the windboxes 30 and 32 which can be used for other purposes. The gas space 38 between the partition walls 34 and 36 is divided by a horzontal nozzie supporting partition 41 into an upper 38" and a lower 38" oas space.

[0032] Nozzles or condults 42 and 44 according to the invention are disposed in two rows in the partition space 38' on the nozzle supporting partition or plate 41. The conduits 42 and 44 are made of tubes or pipes formed as upside down U-bends, one leg being longer than the other. The first conduits 42 are connected by their shorter legs 46, i.e. the first ends of the conduits, to openings 48 In the partition wall 34 at a first vertical level I4. The shorter legs 46 reach within the partition space 38' upward from the openings 48 to a second vertical level la. i.e. the highest point of the U-bend. The first conduits 42 are further connected by their longer legs 50, i.e. the second ends of the conduits, at a third vertical level la to openings 52 in the nozzle supporting partition 41, the openings opening into a windbox or gas source chamber formed in the gas space 38" between the bottom 40 30 and the nozzle support partition 41. Similarly the other bent conduits 44 are connected to openings, in partition wall 36 and nozzle supporting partition 41.

10033] The height difference Al = I₂ - I₁ between the first ends of condults 42 or 44 and the highest points of the condults 4, and the highest points of the condults, i.e. of the U-bends, which corresponds to the vertical extension of the shorter legs 45 of the condults, provides a solid flow seal. The pressure provided by the leg of solids against the counterflowing gas stream within the conduit then prevents particles from flowing from the furnace sections 14 and 16 upward into the condults in such a manner that a severe pressure drop affecting gas flow through the condults would arise. The solid flow seel also prevents backsifling of solid particles through the entire conduits 42, 44 from the furnace to the windtox 38".

[0034] Thereby in the FIG. 1 and 2 embodiment openings 48, conduits 42, 44, including first legs 46 and second legs 50, as well as, a windbox 38" constitute e.g. a secondary gas supplying means for the fluidized bed reactor.

[0035] FIG. 3, 4 and 5 reter to another fluidized bed reactor-which does not fall under the scope of the claims. Same reference numerals as in FIGS. 1 and 2 have been used where applicable. In this reactor is partition 18 reaches from the bottom gnd 28 to the root 26 dividing the entire furnace into two sections 14 and 16. A discontinuous partition, as indicated by reference numeral continuous partition, as indicated by reference numeral

19 in FiG. 2, or other similar solids and gas communication conduit between the furnace sections 14 and 16 may also be provided. The lowermost portion of the partition 18 comprises two partition walls 34, 36, forming a pyramidal free space 39 between the partition walls. The space 39 between partition walls 34 and 36 and a bottom plate 56 is used as a windbox or gas source chamber may be divided by a horizontal partition 54, as shown in FiG. 4, hto an upper 39 and a lower 39" windbox.

[0036] The bottom plate 58 is disposed at the bottom grid level 28, but could be disposed above or below sald level. A free space 58 is due to this construction formed below the grid level between the fluidizing air windboxes 5 ao. 30, 32, which space may be used for locating ancillary elements which otherwise would have to be located on the periphery of the reactor. The reactor's total footprint area may thus be used more efficiently.

area may thus be used more efficiently.

[0937] In this reactor the gas injecting conduits 60, 62

are simple upright open ended standpipes located within the lower partition space 39°, the space thus forming
a windbox. The standpipes are connected by their lower
ends 64 at a vertical level, to openings 48 in the partition walls 34, 35. The upper free ends 65 of the conduits
5° reach upward within the partition space 39 to a vertical
level 1₂. The difference AI in height between levels 1, and
1₂ provides the solid flow seat preventing solid flow upward in the conduits 60, 62 and into the partition space

po [0038] Air is supplied from the free gas space or windbox 39" through condults 60, 62, e.g. as secondary air into the furnace sections 14 and 16. The air flows from the windbox 39" into the standpipes 60 and 62 at their upper open ends 66 and further downward through the standpipes, via a bend 63 at the lower end of the standpipes and through openings 48 into the furnace. The lower end of the standpipes is bent for better enabling a fixing of the standpipes to the openings 48 in the generally vertical walls 34, 35.

[0039] FiG. 5 shows more clearly an exemplary position of standpipe 60, connected to opening 48 in partition wall 34. The lower end 64 of the standpipe is disposed almost horizontally, upwardly inclined in an angle $\alpha \geq 30^{\circ}$ but < 90° to the horizontal plane, in order for the standpipe to be able to stand out from the wall. The upper or main part 66 of the standpipe is almost vertical, inclined in an angle $\beta > 45^{\circ}$ to the horizontal plane.

[0040] Typically all secondary air or gas ac onduits are arranged to introduce air or gas at a certain predetermined level. There may, however, be conduits at different levels, as well. Thus conduits 60° and 62° (in FIG. 4) may be used to introduce tertiary air at a higher level than conduits 60° and 62. The tertiary air conduits 60° and 62° are as shown in FIG. 4 located in the separate of upper portion 39° of the free gas space 39. The hortzontal partition 54 dividing the free gas space into separate lower and upper gas spaces enables separate control of e.g. secondary and tertiary air injection. Vertical par-

25

10

tition walls may also be used (not shown in the drawings) to divide the free gas space further and to enable separate control of gas injected to the separate furnace sections 14 and 16.

[0041] There may elso be conduits connected to 5 openings in the external side walls 22 and 24. Such-a conduit 68 is depicted in FIG. 4. The conduit 16 is depicted in FIG. 4. The conduit 16 isotated in a windbox 70 connected to the externel side well 22. [0042] White the invention has been described in connection with whet is presently considered to be the most 10 practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications end equivalent arangements included within the scope of the appended 15 relains.

Claims

- 1. A fluidized bed reactor comprising in its lower pert
 - a furnece (12), delimited by side walls (22, 24), and a bottom grid (28), said furnece further having a bed of fluidized solid particles therein,
 - a pertition (18) extending within the furnece from the grid upward, sald partition being formed as e double well construction of two upnght or inclined partition walls (34, 36), and
 - supplying meens, for introducing a gas, such as pertiel combustion elr, into the furnace at e level ebove the bottom grid, said supplying means including
 - e gas source chamber (38"), such as a windbox, disposed at least partity within said partition.
 - et least one opening (48) in at least one of seld partition wells (34, 36) et e level above the bottom grid, and
 - at least one conduit (42, 44) having a first end (46) connected to seld at least one opening at a first vertical level I, and a second end (50) connected to said gas source chember (87), at a vertical I, for introducing gas from said gas source chamber to said furnece.

characterized by

said at least one conduit (42, 44) having an upward bent portion between its first and (46) end its second and (50), the highest point of said upward bent portion being at a second vertical level (2, which second vertical level 1₂ is higher than the first vertical level 1₃ not said level 1₃, for forming a solld flow seat, preventing soild particles from flowing backward forms aid furnace into said at least one conduit in a maner preventing or noticeably decreasing said intro-

duction of gas from said gas source chamber to said furnace.

- A fluidized bed reactor eccording to claim 1, wherein the supplying means include
 - a plurality of openings et the same vertical level in et leest one of the partition walls, and
 - one of said et leest one conduits being connected to each of said openings.
- A fluidized bed reactor eccording to claim 1, wherein said second end (50) is connected at said vertical level 1₃ to an opening (52) in en enclosure delimiting said gas source chamber (38").
- A fluidized bed reector according to claim 3, wherein the gas source chamber (38") is at least partly ebove the bottom grid (28", 28") and the first vertical level 1, is ebove said vertical level 1.
- A fluidized bed reactor according to cleim 1, wherein a part of the partition space (39, 39') formed between the two partition walls forms the ges source chember.
- A fluidized bed reactor according to claim 1, wherein e part of the pertition space formed between the
 two partition walls (34, 36) is delimited at its bottom
 by a nozzle supporting plate (41) separating said
 pert of the partition space from the ges source
 chember (38"), end
 - the conduits (42, 44) arranged within the partition space are connected by their second ends (50) to openings (52) in the nozzle supporting plate (41), for providing gas from the gas source chamber (38") to the furnece.
- A fluidized bed reactor according to cleim 1, wherein the partition (18) is made of cooling surfaces.
 - 8. A fluidized bed boiler eccording to cleim 1, wherein
 - the free gas space is divided by a horizontal partition (54) into en upper and a lower free gas space;
 - the secondary air conduits (60, 62) in said lower free gas space are connected to a row of openings at a first level in the wells of the pertition, and additionally
 - tertlary air conduits (60', 62') are provided in said upper free gas space and connected to a row of openings et a second level in the partition.

6

Wirbelschichtreaktor, der in seinem unteren Teit umfasst.

- eine Brennkammer (12), durch Seitenwände (22, 24) und einen Bodenrost (28) abgegrenzt, welche Brennkammer ein Bett aus fluidisierten Feststoffnartikeln darin eufweist.
- einen Trennkörper (18), der sich Innerhalb der Brennkammer vom Rost aufwärts erstreckt. welcher Trennkörper els zwelwandige Konstruktion aus zwel aufrechten oder geneigten Trennwänden ausgebildet ist. (34, 36), und
- Zuführungsmitteln zur Einführung eines Gases, wie etwa von pertieller Verbrennungsluft. In die Brennkammer auf einem Niveau oberhalb das Bodenrostes, besagte Zuführungsmittel hestebend aus
- einer Gesquellenkammer (38"), wie etwa einem Windkasten, der zumindest teilweise innerhalb des Trennkörpers engeordnet ist.
- zumindest einer Öffnung (48) in zumindest einer der Trennwende (34, 36) auf einem Niveau oberheib des Bodenrostes, und
- zumindest einem Stutzen (42, 44), der ein erstes Ende (46), das mit der zumindest einen Öffnung auf einem ersten Vertikalniveau I. verbunden ist, und ein zweites Ende (50) hat, das mit der Gasquellenkammer (38") auf einem 30 Vertikalniveau I₃ verbunden ist zur Einführung von Gas eus der Gasquellenkammer in die Brennkammer.

dadurch gekennzeichnet, dass

der zumindest eine Stutzen (42, 44) einen aufwärts gebogenen Abschnitt zwischen seinem ersten Ende (46) und seinem zwelten Ende (50) het, wobei sich die höchste Stelle des eufwärts gebogenen Teils euf einem zweiten Vertikalniveau I2 befindet, welches zweite Vertikalniveeu I, höher als das erste Vertikalniveau I, und das Niveau I, ist, um eine Feststoffschleuse zu bilden, die verhindert, dass Feststoffpartikel aus der Brennkammer in den zumindest einen Stutzen auf solche Weise zurückfileßen. dass die Einführung von Ges aus der Gesquellenkammer in die Brennkammer verhindert oder bemerkenswert verringert wird.

- 2. Wirbelschichtreaktor nach Anspruch 1, dadurch gekennzeichnet, dass die Zuführungsmittel umfassen.
 - eine Vielzahl von Öffnungen auf dem gleichen Vertikalniveau in zumindest einer der Trenn- 55 wände, und
 - einer aus den zumindest einem Stutzen mit jeder der Öffnungen verbunden ist.

- 3. Wirbelschichtreaktor nach Anspruch 1, dadurch gekennzeichnet, dass das zweite Ende (50) auf dem Vertikaniyeau la mit einer Öffnung (52) in einem geschlossenen Reum verbunden ist, der die
- Wirbelschichtreaktor nech Anspruch 3. dadurch gekennzelchnet, dass die Gasquelienkammer (38") sich zumindest teilweise oberhalb des Bodenrosts (28', 28") und das erste Vertikalniveau I, sich oberhalb des Vertikalniveaus I₃ befindet.
- 5. Wirbelschichtreaktor nach Anspruch 1, dadurch gekennzeichnet, dass ein Teil des zwischen den zwei Trennwänden gebildeten Trennraums (39, 39') die Gesquellenkammer bildet.
- 6. Wirbelschichtreaktor nach Anspruch 1. dadurch gekennzeichnet, dass ein Teil des zwischen den zwei Trennwänden gebildeten (34, 36) Trennraums an seinem unteren Teil durch eine Düsen-Stützplatte (41) abgegrenzt ist, die besagten Teil des Trennraums von der Gasquellenkammer (38") trennt, und
 - dle Im Trennraum angeordneten Stutzen (42, 44) an Ihren zweiten Enden (50) mit Öffnungen (52) In der Düsen-Stützplatte (41) verbunden sind, um die Brennkammer mit Gas aus der Gasquelienkammer (38") zu versorgen.
- 7. Wirbelschichtreaktor nach Anspruch 1. dadurch gekennzeichnet, dass der Trennkörper (18) aus Kühlflächen besteht.
- Wirbelschichtkessel nach Anspruch 1, dadurch gekennzeichnet, dass
 - der freie Gesreum durch eine horizontale Trennwand (54) in einen oberen und einen unteren freien Gasraum unterteilt ist:
 - die Sekundärluftstutzen (60, 62) im unteren freien Gasraum mit einer Reihe von Öffnungen euf einem ersten Niveeu in den Wänden des Trennkörpers verbunden sind, und zusätzlich
 - Tertlärluftstutzen (60', 62") im oberen freien Gasraum vorgesehen und mit einer Reihe von Öffnungen auf einem zweiten Niveau im Trennkörper verbunden sind.

Revendications

- 1. Réacteur à lit fluidisé comprenant, dans sa partie inférieure :
 - un fover (12), délimité par des parois latérales (22, 24), et une grille de fond (28), ledit fover ayant, en outre, à l'intérieur, un lit de particules

Gasquellenkammer (38") abgrenzt.

solides fluidisées

- une cloison (18) s'étendant dans le foyer, vers le haut depuis la grille, ladite cloison étant formée par une construction à doubles parois de deux parois de cloison droites ou inclinées (34, 36), et
- des moyens d'alimentation pour introduire un gaz, tel que de l'air de combustion partielle, dans le foyer à un niveau supéneur à la grille de fond, lesdits moyens d'alimentation incluant :
 - une chambre de source de gaz (38"), telle qu'une boîte à vent, disposée au moins partiellement à l'intérieur de ladite cloison,
 - au moins une ouverture (48) dans au moins une desdites parois de cloison (34, 36) à un niveau supérieur à la grille de fond,
 - au moins un conduit (42, 44) ayant une première extrémité (46) connectée à ladite au moins une ouverture à un premier niveau vertical I, et une deuxième extrémité (50) connectée à ladite chambre de source de gaz (38°) à un niveau vertical I₃, pour introduire du gaz de ladite chambre de source de gaz audit foyer,
 - caractérisé en ce que ledit au moins un conduit (42, 44) possède une partie courbée vers le haut entre sa première extrémité (46) et sa deuxième extrémité (50), le point le plus élevé de ladite partie courbée vers le haut étant à un deuxième niveau vertical l2, lequel deuxième niveau vertical l₂ étant plus élevé que le premier niveau 35 vertical I1 et ledit niveau I3 afin de former une étanchéité aux écoulements de solides, empêchant les particules solides de s'écouler vers l'arrière, dudit foyer dans ledit au moins un conduit, de manière à empêcher ou à diminuer de façon notable ladite introduction de gaz de ladite chambre de source de gaz audit fover.
- Réacteur à lit fluidisé selon la revendication 1, dans 45 lequel les moyens d'alimentation incluent :
 - une pluralité d'ouverture au même niveau vertical dans au moins une des parois de cloison, et
 - un desdits au moins un conduit étant connecté à chacune desdites ouvertures.
- Réacteur à lit fludisé selon la revendication 1, dans lequel adite deuxième extrémité (50) est connectée 5 audit niveau vertical 1₃ à une ouverture (52) dans une enceinté délimitant ladite chambre de source de gaz (38°).

- Réacteur à lit fluidisé selon la revendication 3, dans lequel la chambre de source de gaz (38") est située, au moins partiellement, au-dessus de la grille de fond (28°, 28°) et le premier niveau vertical I₁ est supérieur audit niveau vertical I₂.
- Réacteur à Ilt fluidisé selon la revendication 1, dans lequel une partie de l'espace de cloisonnement (39, 39'), ménagé entre les deux parois de cloison, forme la chambre de source de gaz.
- 6. Réacteur à lit fluidisé solon la revendication 1, dans lequel une partie de l'espace de cloisonnement, ménagé entre les deux parois de cloison (34, 36), est délimitée à sa partie la plus inférieure par une plaque de support de buse (41) ésparant ladite partie de l'espace de cloisonnement de la chambre de source de par (38").
 - les conduits (42, 44), disposés dans l'espace de cloisonnement, sont connectés par leurs deuxièmes extérnités (50) à des ouvertures (52) dans la plaque de support de buse (41), pour délivrer du gaz de la chambre de source de gaz (38") au foyer.
- Réacteur à lit fluidisé selon la revendication 1, dans lequel la cioison (18) est faite de surfaces de refroidissement.
- Chaudière à lit fluidisé selon la revendication 1, dans laquelle :
 - l'espace de gaz libre est divisé par une clolson horizontale (54) en des espaces de gaz libres supérieur et Inférieur;
 - les conduits d'air secondaires (60, 62), dans ledit espace de gaz libre inférieur, sont connectés à une rangée d'ouvertures à un premier niveau dans les parois de la cloison et de plus
 - des conduits d'air tertiaires (60°, 62°) sont prévus dans ledit espace de gaz libre supérieur et sont connectés à une rangée d'ouvertures à un deuxième niveau dans la cloison.

FIG. 1

FIG. 2

