Polynômes

Jérémy Meynier

Exercice 1

- 1. Montrer que $\exists ! T_n \in \mathbb{R}[X] / T_n(\cos(\theta)) = \cos(n\theta)$
- 2. Montrer que $\forall x \in [-1, 1], T_{n+2} = 2XT_{n+1} T_n$
- 3. Donner le coefficient dominant et le degré de T_n
- 4. Donner une équation différentielle du second ordre vérifiée par T_n
- 5. Donner les racines de T_n , puis le factoriser
- 6. Montrer que les $(T_n)_{n\in\mathbb{N}}$ forment une famille orthogonale

Exercice 2

Donner le reste de la division euclidienne de $(\cos(\theta) + X\sin(\theta))^n$ par $(X^2 + 1)$

Exercice 3

Trouver les polynômes $P \in \mathbb{R}[X]/$ $P(X^2) = (X^2 + 1)P(X)$

Exercice 4

Montrer que si $P \in \mathbb{R}[X] \setminus \{0\}$ vérifie $P(X^2) = P(X)P(X+1)$, ses racines sont parmi $\{0, 1, -j, -j^2\}$. En déduire tous les polynômes solutions

Exercice 5

Déterminer les polynômes $P \in \mathbb{R}[X]/(X+4)P(X) = XP(X+1)$

Exercice 6

Déterminer les polynômes $P \in \mathbb{R}[X]/ \forall n \in \mathbb{N} \int_{n}^{n+1} P(t) dt = n^2 + 1$