触发器 Flip-Flops

刘鹏

浙江大学信息与电子工程学院

liupeng@zju.edu.cn

复习

□ 组合电路和Verilog语言

本节内容

- □时序电路的基本概念
- □触发器

时序逻辑

□时序电路

- ■带有正反馈功能的电路
- 电平敏感锁存器Latches
 - -使用信号级别而不是信号转换操作的存储单元称为锁存器
- 边沿触发器Flip-flops
 - -触发器是一种能够存储一位信息的二进制存储器件

□定时方法

- ■触发器级联的正确操作
- ■时钟脉冲相位差

时序电路

□ 带有反馈的电路

- 输出 = F(当前输入, 早先输入, 早先输出)
- ■将"存储器"构建到逻辑电路中的基础
- 例如时序电路的例子:门锁
 - 状态通过存储器保持
 - 状态改变根据组合逻辑输出和信号输入决定
 - 存储的输出选择组合电路

带有反馈的电路

- □ 如何控制反馈?
 - 是什么阻止值无休止地循环往复

最简单的反馈电路

□ 一个静态存储单元由两个反相器构成

■ 只需提供电源就会保持其值

□ 记忆单元如何获得一个新值?

- 选择性断开反馈路径
- 加载新值到单元

锁存器置位

□ 在Set脉冲前 (a) **Q** = **0**时和 (b) **Q** = **1**时,将SET输入 置为 "0" 状态,在这两种情况下,Q都以**高电平**结束

锁存器复位

□ 在RESET脉冲之前, (a) Q = 0或 (b) Q=1时, 将RESET输入脉冲 复位成LOW ("0") 状态, 在每种情况下, Q值都是低电平

具有交叉耦合门的存储单元

□ 交叉耦合NOR门

■ 类似于反相器对,能够强制输出为0(复位=0)或1(置位为1)

□ 交叉耦合NAND门

■ 类似于反相器对,能够强制输出为0(复位=0)或1(置位为1)

时序行为

R-S锁存器的状态行为

□ R-S锁存器的真值表

S	R	Q
0	0	保持
0	1	0
1	0	1
1	1	不定

理论上R-S锁存器行为

□状态图

■ 状态: 可能的值

■ 状态转换: 根据输入进行改变

可能冲突在 状态00和 11

观察到R-S锁存器的行为

- □ 观察R-S锁存器1-1状态较难
 - R或S经常有一个先改变
- □ 返回到状态0-1或1-0
 - 所谓的竞争条件
 - 或不确定的转变

R-S锁存器分析

□断开反馈路径

		S		
	0	0	X	1
Q(t)	1	0	X	1
•	R			

特性方程 Q(t+∆) = S + R' Q(t)

门控R-S锁存器

□控制R和S的输入

■ 否则,在启用低电平时 R 或 S 上的最轻微毛刺 可能会导致存储值发生 变化

时钟

□ 用来保持时间

- 等待足够长的时间让输入 (R' 和 S') 稳定下来
- 允许对存储的值产生影响

□ 时钟是有规律的周期性信号

- 周期 period(滴答之间的时间)
- **占空比duty cycle** (滴答之间时钟是高电平部分 表示为周期的百分比)

时钟(续)

□用时钟控制R-S锁存器

- 时钟有效时,不能让R和 S改变(允许R和S通过)
- 只有一半的时钟周期用于信号变化传播
- 信号必须在时钟周期的另一半保持稳定

锁存器级联

- □ 连接一个锁存器的输出到另一个的输入
- □ 如何通过链来阻止变化?
 - 需要控制从一个锁存器到下一个锁存器的数据流
 - 每个时钟周期从一个锁存器前进
 - 担心锁存器(如图中箭头所示)之间的逻辑太快

主从结构

□ 通过交替的时钟断开流

- 使用正时钟将输入锁存到一个 R-S 锁存器中
- 使用负时钟通过另一个 R-S 锁存器改变输出

□ 视为一个基本单元

- 主从触发器
- 两倍的逻辑

"1"的捕获问题

□ 主从FF的第一R-S阶段

- 当时钟为高时, R或S上的0-1-0毛刺被主级"捕获"
- 从而逻辑上的约束是无危险的

D触发器

□ 使S和R互为补

- 消除 "1" 的捕获问题
- 不能只保留以前的值(必须在每个时钟周期准备好新值)
- 时钟变低之前的 D 值是存储在触发器中的值
- 可以通过添加逻辑来制作 R-S 触发器D = S + R' Q

