<u>David Charte</u> Iván Sevillano María J. Lucena José L. Martín Francisco Charte Francisco Herrera 23 sep 2021 – HAIS 2021 (Deep Learning)

Andalusian Research Institute on Data Science and Computational Intelligence (UGR/UJA)

Hospital Universitario Clínico San Cecilio de Granada, Granada, Spain

Introduction

Introduction: data complexity

- Classes can have overlap or complex boundaries
- Other sources of complexity: dimensionality, imbalance, nonlinearity
- Complexity metrics: F1, F2, F3, N1, N2, ...

Introduction

LICER

Experimen 0000

Conclusio

Introduction: autoencoders

Input space $\stackrel{\mathbf{f}}{\longrightarrow}$ Encoding space $\stackrel{\mathbf{g}}{\longrightarrow}$ Input space

Optimize so that $\mathbf{g}(\mathbf{f}(\mathbf{x})) \approx \mathbf{x}$ (optionally, some other properties)

INTRODUCTION

LICER

Experimen 0000 Conclusio OOO

Objective

Learn simpler features to:

- improve the performance of basic/interpretable classifiers
- combine with variables from other sources

Slicer

Introducing class information for complexity reduction

Figure 1: Basic schema of the Slicer model

$$\mathcal{J}_{\mathrm{LSSVM}}(x,y,\theta) = \frac{\mu}{2} w^T w + \frac{\zeta}{2} \sum_{i=1}^n \left(y^{(i)} - w^T f\left(x^{(i)}\right) + b \right)^2 \tag{1}$$

$$\mathcal{J}(x, y, \theta) = \mathcal{J}_{RE}(x, \theta) + \mathcal{J}_{LSSVM}(x, y, \theta)$$
 (2)

Slicer: Feature Learning for Class Separability with Least-Squares Support Vector Machine Loss and COVID-19 Chest X-ray Case Study

Slicer model for feature learning in images

Figure 2: A convolutional autoencoder using Slicer loss

Experiments

COVIDGR-1 dataset

Openly available chest X-ray dataset for COVID detection:

https://github.com/ari-dasci/OD-COVIDGR

Figure 3: A negative sample and a positive one

class	#	severities	
negative	426		
positive	426	Normal-PCR+	76
		Mild	100
		Moderate	171
		Severe	79

Table 1: Class distribution. Normal-PCR+ = PCR-positive patients with 'asymptomatic' X-rays.

Experiment workflow

Dataset \rightarrow **Feature learner** \rightarrow Classifiers \rightarrow Evaluation metrics

Feature sets	Classifiers	Evaluation	Evaluation metrics	
Original	Decision tree (DT)	Accuracy	$\frac{TP + TN}{TP + TN + FP + FN}$	
Basic AE	k nearest neighbors (kNN) $$	Precision	$\frac{ ext{TP}}{ ext{TP} + ext{FP}}$	
Slicer	Support vector machine (SVM)	Recall	$\frac{TP}{TP + FN}$	
	Gaussian process (GP)	F1-score	$\frac{2 \cdot \operatorname{Precision} \cdot \operatorname{Recall}}{\operatorname{Precision} + \operatorname{Recall}}$	

Source code: https://github.com/fdavidcl/slicer-conv

LICER

EXPERIMENTS 000

NCLUSIO

Results

Classifier	Features	Accuracy	Precision	Recall	F1-score
DT	original	58.098	58.259	57.470	57.665
DT	autoencoder	58.377	58.889	55.919	57.196
DT	slicer	58.593	58.837	57.422	57.988
GP	original	50.024	45.333	1.266	2.452
GP	autoencoder	50.024	4.000	0.047	0.093
GP	slicer	62.656	64.339	56.673	60.032
kNN	original	62.585	65.804	52.780	58.358
kNN	autoencoder	61.837	65.091	51.469	57.194
kNN	slicer	62.326	63.624	57.284	60.092
SVM	original	67.329	66.611	69.920	67.931
SVM	autoencoder	67.072	67.006	67.622	67.057
SVM	slicer	65.987	66.235	65.025	65.393

GAN+CNN-based models achieve 76.18% accuracy / 75.71 F1 on this same dataset^a.

^aTabik, Siham, et al. COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on Chest X-Ray images. IEEE Journal of Biomedical and Health Informatics, 2020, vol. 24, no 12, p. 3595-3605.

Table 2: Average classification metrics over 25 runs (5x 5-fold CV).

Conclusion

Conclusions

- Slicer is an AE-based feature learner with linear classification loss for complexity reduction
- The model improves features over basic AE and maintains or improves respect to the original data

Future work:

- Analyze the influence of severity levels in class complexity
- · Combine learned features with clinical data
- Feature disentanglement for easier interpretation
- Variational or adversarial versions of the model

Thanks for your attention!

Slicer: Feature Learning for Class Separability with Least-Squares Support Vector Machine Loss and COVID-19 Chest X-ray Case Study

<u>David Charte</u> Iván Sevillano María J. Lucena José L. Martín Francisco Charte Francisco Herrera 23 sep 2021 – HAIS 2021 (Deep Learning)

Andalusian Research Institute on Data Science and Computational Intelligence (UGR/UJA)

Hospital Universitario Clínico San Cecilio de Granada, Granada, Spain

