## TEMA 5.

# LAS DIANAS BIOLÓGICAS Y LOS RECEPTORES PARA FÁRMACOS

# **QFUNO**







# Índice del Tema 5

- 1) DIANA BIOLÓGICA Y NATURALEZA QUÍMICA
  - a) LÍPIDOS
  - b) ÁCIDOS NUCLEICOS
  - c) PROTEÍNAS ENZIMAS Y RECEPTORES DE MEMBRANA
  - d) INTERACCIONES FÁRMACOS-RECEPTORES DE MEMBRANA: TEORÍA DE LA ADAPTACIÓN INDUCIDA
- 2) TIPOS DE RECEPTORES
- 3) TIPOS DE ENLACES ENTRE EL FÁRMACO Y EL RECEPTOR ENLACES: EJEMPLO (PROCAÍNA)
- 4) ASPECTOS ESTEREOQUÍMICOS DE LOS FÁRMACOS
- 5) EJERCICIOS DEL TEMA

6) PREGUNTAS FIR RELACIONADAS CON ESTE TEMA





# Índice del Tema 5

## Parte I

- 1) DIANA BIOLÓGICA Y NATURALEZA QUÍMICA
  - a) LÍPIDOS
  - b) ÁCIDOS NUCLEICOS
  - c) PROTEÍNAS ENZIMAS Y RECEPTORES DE MEMBRANA
  - d) INTERACCIONES FÁRMACOS-RECEPTORES DE MEMBRANA: TEORÍA DE LA ADAPTACIÓN INDUCIDA







**Definición:** Lugar específico del organismo (a nivel molecular) donde un fármaco interactúa para ejercer su acción y producir una respuesta biológica (efecto terapéutico).

El Viaje del Fármaco: Para alcanzar su diana, el fármaco debe atravesar distintas barreras y compartimentos del cuerpo (membranas lipídicas, fluidos acuosos).

Interacción Fármaco-Diana: Es la base del mecanismo de acción. Implica procesos químicos moleculares entre el fármaco y la biomolécula diana.

Tipos Principales de Dianas Biológicas: Aunque los lugares de acción pueden ser diversos, la naturaleza química de la mayoría de las dianas conocidas pertenece a:

- •Proteínas (las más comunes: receptores, enzimas, transportadores, canales iónicos)
- •<u>Ácidos Nucleicos</u> (ADN, ARN)
- •Lípidos (ej. componentes de membranas celulares)

**Importancia:** Comprender la diana es fundamental para estudiar el mecanismo de acción y diseñar nuevos fármacos.



LÍPIDOS

Dianas biológicas

**ÁCIDOS NUCLEICOS** 



**PROTEÍNAS** 





## LÍPIDOS

Frecuencia: Grupo minoritario de dianas para fármacos.

Mecanismo Principal: Alteración de las propiedades fisicoquímicas de las membranas celulares.

#### Tipos de Fármacos Implicados:

Antisépticos

Algunos Antibióticos

#### Ejemplos (Antisépticos):

Detergentes (Tensioactivos): Provocan lisis celular (ruptura de la membrana).

Cloruro de benzalconio: desinfectante

Clorhexidina: Doble biguanida que interactúa con componentes de la pared/membrana celular.

#### Desinfectante bucal











## LÍPIDOS

Fármaco: Anfotericina B (Clase: Antibiótico Poliénico, Uso principal: Antifúngico).

Estructura Clave: Molécula Anfifílica:

Mitad Hidrófoba (sistema poliénico).

Mitad Hidrófila (sistema polihidroxilado).



#### Mecanismo de Acción:

Se inserta en la membrana celular del hongo (rica en ergosterol, un lípido específico).

Varias moléculas de Anfotericina B se auto-asocian formando canales o poros.

#### Consecuencia:

Los canales alteran la permeabilidad de la membrana.

Provocan la salida de iones y componentes vitales del citoplasma.

Resultado Final: Muerte de la célula fúngica.







## ÁCIDOS NUCLÉICOS

Mecanismo General: Fármacos que alteran procesos vitales como:

Replicación (copia del ADN).

Transcripción (síntesis de ARN a partir de ADN).



Consecuencia Final: Muerte celular (o inhibición del crecimiento/replicación).

### Usos Terapéuticos Principales:

Antineoplásicos (quimioterapia contra el cáncer). 5-FU; Cisplatino

Antibacterianos.

Antivíricos.

#### Mecanismos Moleculares Comunes (Ejemplos):

Alteración de la estructura de doble hélice del ADN.

Intercalación: Inserción del fármaco entre los pares de bases del ADN.

Corte de cadenas: Rotura de una o ambas hebras del ADN.







## ÁCIDOS NUCLÉICOS

## **ARN**

The Druggable Transcriptome Project: From Chemical Probes to Precision Medicines

Disney, Matthew D. Biochemistry, 2025, https://doi.org/10.1021/acs.biochem.5c00006









## PROTEINAS - ENZIMAS - RECEPTORES

**Definición:** Macromoléculas (generalmente proteínas) ubicadas principalmente en la membrana celular.

Función: Reconocen y se unen selectivamente a ligandos específicos (mensajeros químicos

endógenos o fármacos).

#### Interacción Ligando-Receptor:

Provoca un cambio conformacional en el receptor.

Se basa en la formación de enlaces (no covalentes usualmente).

El ligando NO se modifica químicamente durante la unión.

#### Tipos de Fármacos según Respuesta:

Agonistas: Se unen y activan el receptor, generando una respuesta biológica.

<u>Antagonistas:</u> Se unen pero NO activan el receptor (lo bloquean, impidiendo la unión del agonista).

Resultado: La naturaleza y función intrínseca del receptor determinan la respuesta biológica inal que se desencadena.





## PROTEINAS - ENZIMAS - RECEPTORES

•Los receptores interactúan con una amplia variedad de neurotransmisores y hormonas:

#### Moléculas Simples:

- Sales de amonio cuaternario: Acetilcolina (ACh)
- Monoaminas: Noradrenalina (NA), Dopamina (DA), Serotonina (5-HT)
- Aminoácidos: GABA, Ácido Glutámico, Glicina

#### Estructuras Más Complejas:

- Eicosanoides: *Prostaglandinas*
- Neuropéptidos: Encefalinas, Endorfinas
- Hormonas Peptídicas: Angiotensina









## PROTEINAS - ENZIMAS - RECEPTORES

- •Premisa: La interacción Fármaco-Receptor desencadena procesos bioquímicos que resultan en la respuesta farmacológica.
- •Teoría Clásica (Obsoleta): "Llave-Cerradura" (Fischer, 1894) Modelo rígido.
- •Teoría Actual: Ajuste Inducido (Koshland, 1980) Modelo flexible y dinámico.
  - Tanto el fármaco como el receptor son flexibles.
  - Ambos sufren cambios conformacionales para lograr una adaptación mutua óptima durante el proceso de unión.
  - El <u>cambio conformacional</u> del RECEPTOR es el responsable de iniciar la respuesta biológica (ej. activando enzimas asociadas).







## PROTEINAS - ENZIMAS - RECEPTORES

- •Proceso Dinámico: La energía liberada al formar enlaces F-R impulsa estos cambios conformacionales.
- •Consecuencia Importante: La conformación del fármaco unido al receptor puede ser diferente a su conformación más estable en disolución.
- •Implicaciones para Agonistas/Antagonistas:
  - Agonistas: Estabilizan una conformación productiva (activa) del receptor.
  - Antagonistas: Estabilizan una conformación no productiva (inactiva) del receptor.
    - No competitivos/Alostéricos: Se unen a un sitio diferente.
    - Competitivos: Se unen al mismo sitio que el ligando endógeno.









## AGONISMO PARCIAL

- •Concepto: Fármacos con comportamiento intermedio entre agonistas y antagonistas puros.
- •Efecto: Producen una activación del receptor, pero de baja intensidad (respuesta biológica subóptima o parcial, inferior a la de un agonista completo).
- •Explicación (Teoría del Ajuste Inducido):
  - Estabilizan una conformación del receptor que es **productiva** (activa), pero de "bajo nivel" o parcialmente activa.
  - No logran inducir el cambio conformacional óptimo que genera la máxima respuesta.







## Teoría Clásica de Ariëns

•Objetivo: Tratar cuantitativamente las interacciones Fármaco-Receptor (agonismo, antagonismo, agonismo parcial).

 $E = \alpha [FR]$ 

#### Modelo de Interacción (Ariëns, ~1960):

 $F + R <=>[k1][k2]=> FR --[\alpha]--> E$ 

•F: Fármaco

•R: Receptor

•FR: Complejo Fármaco-Receptor

•E: Efecto Farmacológico

•k1, k2: Constantes de velocidad (Asociación/Disociación) -> Relacionadas con la Afinidad.

•α: Actividad Intrínseca -> Relacionada con la Eficacia.

#### Actividad Intrínseca (α):

•Cuantifica la eficacia o capacidad del complejo FR para generar la respuesta biológica (E).

•Interpretación de los valores de α:

•Agonista Puro:  $\alpha = 1$  (Máxima eficacia, igual que el ligando endógeno)

•Antagonista Puro:  $\alpha = 0$  (Se une, pero no produce efecto; eficacia nula)

•Agonista Parcial:  $0 < \alpha < 1$  (Eficacia intermedia/submáxima)



**Ligando Endógeno:** Por definición, tiene  $\alpha = 1$ .



**Agonistas puros:** 

**Antagonistas puros:** 

**Agonistas parciales:** 

a=1

a=0

(0 < a < 1)