Polar Form of Complex Numbers

Table of Contents

- 1 Plot Numbers in the Complex Plane
- Find the Modulus and Argument of a Complex Number
- Write Complex Numbers in Polar Form and Vice Versa
- Perform Arithmetic Operations on Complex Numbers in Polar Form
- 5 Find Roots of Complex Numbers

The Complex Plane

The complex plane is very similar to the Cartesian (x, y) plane from algebra.

The point (x, y) in the Cartesian plane is represented by

$$z = x + yi$$

in the complex plane.

x is called the *real part* and y is called the *imaginary part*.

The Complex Plane

Imaginary axis

Table of Contents

- Plot Numbers in the Complex Plane
- Find the Modulus and Argument of a Complex Number
- Write Complex Numbers in Polar Form and Vice Versa
- Perform Arithmetic Operations on Complex Numbers in Polar Form
- 5 Find Roots of Complex Numbers

Modulus of a Complex Number

The modulus of a complex number is the absolute value of it:

$$|z| = |x + yi| = \sqrt{x^2 + y^2}$$

and it denotes the distance the point is to the origin.

Argument of a Complex Number

If we connect out point to the origin, it models an angle drawn in standard position.

Argument of a Complex Number

If z is in polar form, the total angle rotated θ is the argument of z.

The set of all arguments of z is denoted arg(z). (These can be found by using co-terminal angles).

If $z \neq 0$ and $-\pi < \theta \leq \pi$, then θ is the principal argument of z, and is written $\theta = \text{Arg}(z)$

We can get the angle rotated via reference angles using

$$\theta' = \tan^{-1}\left(\frac{y}{x}\right)$$

Plot each complex number, find its modulus, real and imaginary parts, arg(z) and Arg(z).

(a)
$$z = \sqrt{3} - i$$

Plot each complex number, find its modulus, real and imaginary parts, arg(z) and Arg(z).

(a)
$$z = \sqrt{3} - i$$

The real part of z is $\sqrt{3}$ and the imaginary part of z is -1.

The modulus is

$$|z| = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{4} = 2$$

Tip: Find the principal argument of z, denoted Arg(z), before finding the general solution, arg(z).

Tip: Find the principal argument of z, denoted Arg(z), before finding the general solution, arg(z).

Tip: Find the principal argument of z, denoted Arg(z), before finding the general solution, arg(z).

$$Arg(z) = tan^{-1} \left(\frac{-1}{\sqrt{3}}\right) = -30^{\circ} = -\frac{\pi}{6}$$

To find arg(z), use co-terminal angles with the answer you got for Arg(z) to get

$$\arg(z) = -\frac{\pi}{6} + 2\pi k$$

where k is an integer.

(b)
$$z = -2 + 4i$$

(b)
$$z = -2 + 4i$$

The real part of z is -2 and the imaginary part of z is 4.

$$z = -2 + 4i \qquad \qquad \uparrow \qquad 4$$

The modulus is

$$|z| = \sqrt{(-2)^2 + 4^2} = \sqrt{20} = 2\sqrt{5}$$

$$Arg(z)$$
 is

$$\tan^{-1}\left(\frac{4}{-2}\right) = \tan^{-1}(-2) \approx -63.4^{\circ}$$

Arg(z) is

$$\tan^{-1}\left(\frac{4}{-2}\right) = \tan^{-1}(-2) \approx -63.4^{\circ}$$

Since z is in the 2nd quadrant, we can put a 63.4° reference angle (*Reminder*: $63.4^{\circ} \approx \tan^{-1}(2)$) in quadrant II, so the total angle rotated is about 116.6° , or $\pi - \tan^{-1}(2)$ to be exact.

Arg(z) is

$$\tan^{-1}\left(\frac{4}{-2}\right) = \tan^{-1}(-2) \approx -63.4^{\circ}$$

Since z is in the 2nd quadrant, we can put a 63.4° reference angle (*Reminder*: 63.4° $\approx \tan^{-1}(2)$) in quadrant II, so the total angle rotated is about 116.6°, or $\pi - \tan^{-1}(2)$ to be exact.

Thus,
$$Arg(z) = \pi - tan^{-1}(2)$$
,

Arg(z) is

$$\tan^{-1}\left(\frac{4}{-2}\right) = \tan^{-1}(-2) \approx -63.4^{\circ}$$

Since z is in the 2nd quadrant, we can put a 63.4° reference angle (*Reminder*: $63.4^{\circ} \approx \tan^{-1}(2)$) in quadrant II, so the total angle rotated is about 116.6° , or $\pi - \tan^{-1}(2)$ to be exact.

Thus,
$$Arg(z) = \pi - tan^{-1}(2)$$
,

and

$$\arg(z) = \left(\pi - \tan^{-1}(2)\right) + 2\pi k$$

(c)
$$z = 3i$$

(c)
$$z = 3i$$

The real part of z is 0 and the imaginary part of z is 3.

The modulus is 3.

The modulus is 3.

$$Arg(z) = \frac{\pi}{2}$$

The modulus is 3.

$$Arg(z) = \frac{\pi}{2}$$

$$arg(z) = \frac{\pi}{2} + 2\pi k$$

(d)
$$z = -117$$

(d)
$$z = -117$$

The real part of z is -117 and the imaginary part of z is 0.

The modulus of z is 117.

The modulus of z is 117.

$$Arg(z) = \pi$$

The modulus of z is 117.

$$\mathsf{Arg}(z) = \pi$$
 $\mathsf{arg}(z) = \pi + 2\pi k$

Table of Contents

- 1 Plot Numbers in the Complex Plane
- 2 Find the Modulus and Argument of a Complex Number
- 3 Write Complex Numbers in Polar Form and Vice Versa
- Perform Arithmetic Operations on Complex Numbers in Polar Form
- 5 Find Roots of Complex Numbers

Writing polar form of complex numbers is a lot like writing rectangular coordinates as polar coordinates.

Writing polar form of complex numbers is a lot like writing rectangular coordinates as polar coordinates.

Using the fact that $x = r \cos \theta$ and $y = r \sin \theta$, we get

$$z = x + yi$$

Writing polar form of complex numbers is a lot like writing rectangular coordinates as polar coordinates.

Using the fact that $x = r \cos \theta$ and $y = r \sin \theta$, we get

$$z = x + yi$$
$$= r\cos\theta + (r\sin\theta)i$$

Writing polar form of complex numbers is a lot like writing rectangular coordinates as polar coordinates.

Using the fact that $x = r \cos \theta$ and $y = r \sin \theta$, we get

$$z = x + yi$$

$$= r \cos \theta + (r \sin \theta)i$$

$$= r(\cos \theta + i \sin \theta)$$

 $r(\cos \theta + i \sin \theta)$ is often abbreviated $r \operatorname{cis} \theta$.

Write each in polar form.

(a)
$$z = \sqrt{3} - i$$

Write each in polar form.

(a)
$$z = \sqrt{3} - i$$

From Example 1a, r=2, and $\theta=-\frac{\pi}{6}$.

Thus,
$$z = 2 \operatorname{cis} \left(-\frac{\pi}{6}\right)$$

Write each in polar form.

(b)
$$z = -2 + 4i$$

Write each in polar form.

(b)
$$z = -2 + 4i$$

From Example 1b, $r = 2\sqrt{5}$, and $\theta = \pi - \tan^{-1}(2)$.

Thus,
$$z = (2\sqrt{5}) \operatorname{cis} (\pi - \tan^{-1}(2))$$

Example 2c.

Write each in polar form.

(c)
$$z = 3i$$

Example 2c.

Write each in polar form.

(c)
$$z = 3i$$

From Example 1c, r=3, and $\theta=\frac{\pi}{2}$.

Thus,
$$z = 3 \operatorname{cis}\left(\frac{\pi}{2}\right)$$

Example 2d.

Write each in polar form.

(d)
$$z = -117$$

Example 2d.

Write each in polar form.

(d)
$$z = -117$$

From Example 1d, r=117, and $\theta=\pi$.

Thus,
$$z = 117 \operatorname{cis}(\pi)$$

Write Complex Polar Numbers in Rectangular Form

Going backwards, expand and evaluate cis and distribute the modulus r.

Write each of the following in rectangular form.

(a) $4 \operatorname{cis}\left(\frac{2\pi}{3}\right)$

Write each of the following in rectangular form.

(a)
$$4 \operatorname{cis}\left(\frac{2\pi}{3}\right)$$

$$4\operatorname{cis}\left(\frac{2\pi}{3}\right) = 4\left(\operatorname{cos}\left(\frac{2\pi}{3}\right) + i\operatorname{sin}\left(\frac{2\pi}{3}\right)\right)$$

Write each of the following in rectangular form.

(a)
$$4 \operatorname{cis}\left(\frac{2\pi}{3}\right)$$

$$4 \operatorname{cis}\left(\frac{2\pi}{3}\right) = 4 \left(\operatorname{cos}\left(\frac{2\pi}{3}\right) + i \operatorname{sin}\left(\frac{2\pi}{3}\right)\right)$$
$$= 4 \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)$$

Write each of the following in rectangular form.

(a)
$$4 \operatorname{cis}\left(\frac{2\pi}{3}\right)$$

$$4 \operatorname{cis}\left(\frac{2\pi}{3}\right) = 4 \left(\operatorname{cos}\left(\frac{2\pi}{3}\right) + i \operatorname{sin}\left(\frac{2\pi}{3}\right)\right)$$
$$= 4 \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)$$
$$= -2 + 2i\sqrt{3}$$

(b) $2 \operatorname{cis} \left(-\frac{3\pi}{4}\right)$

(b)
$$2 \operatorname{cis} \left(-\frac{3\pi}{4}\right)$$

$$2\operatorname{cis}\left(-\frac{3\pi}{4}\right) = 2\left(\operatorname{cos}\left(-\frac{3\pi}{4}\right) + i\operatorname{sin}\left(-\frac{3\pi}{4}\right)\right)$$

(b) $2 \operatorname{cis} \left(-\frac{3\pi}{4}\right)$

$$2\operatorname{cis}\left(-\frac{3\pi}{4}\right) = 2\left(\operatorname{cos}\left(-\frac{3\pi}{4}\right) + i\operatorname{sin}\left(-\frac{3\pi}{4}\right)\right)$$
$$= 2\left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)$$

(b)
$$2 \operatorname{cis} \left(-\frac{3\pi}{4}\right)$$

$$2\operatorname{cis}\left(-\frac{3\pi}{4}\right) = 2\left(\operatorname{cos}\left(-\frac{3\pi}{4}\right) + i\operatorname{sin}\left(-\frac{3\pi}{4}\right)\right)$$
$$= 2\left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)$$
$$= -\sqrt{2} - i\sqrt{2}$$

(c) $3 \operatorname{cis}(0)$

(c) $3 \operatorname{cis}(0)$

$$3 \operatorname{cis}(0) = 3(\cos(0) + i \sin(0))$$

(c) $3 \operatorname{cis}(0)$

$$3 \operatorname{cis}(0) = 3(\cos(0) + i \sin(0))$$
$$= 3(1+0) = 3$$

(d) $\operatorname{cis}\left(\frac{\pi}{2}\right)$

(d) $\operatorname{cis}\left(\frac{\pi}{2}\right)$

$$\operatorname{cis}\left(\frac{\pi}{2}\right) = \operatorname{cos}\left(\frac{\pi}{2}\right) + i\operatorname{sin}\left(\frac{\pi}{2}\right)$$

(d) $\operatorname{cis}\left(\frac{\pi}{2}\right)$

$$\operatorname{cis}\left(\frac{\pi}{2}\right) = \operatorname{cos}\left(\frac{\pi}{2}\right) + i\operatorname{sin}\left(\frac{\pi}{2}\right)$$
$$= 0 + 1i = i$$

Table of Contents

- Plot Numbers in the Complex Plane
- 2 Find the Modulus and Argument of a Complex Number
- Write Complex Numbers in Polar Form and Vice Versa
- Perform Arithmetic Operations on Complex Numbers in Polar Form
- 5 Find Roots of Complex Numbers

Arithmetic Operations on Complex Numbers in Polar Form

The rules for multiplying, dividing, and finding powers of complex numbers are the same as those for exponents.

Arithmetic Operations on Complex Numbers in Polar Form

The rules for multiplying, dividing, and finding powers of complex numbers are the same as those for exponents.

Rule	Exponents	Complex Numbers
Product	$3x^{15} \cdot 4x^7 = 12x^{22}$	$3 \operatorname{cis} 15^{\circ} \cdot 4 \operatorname{cis} 7^{\circ} = 12 \operatorname{cis} 22^{\circ}$
Quotient	$\frac{3x^{15}}{4x^7} = \frac{3}{4}x^8$	$\frac{3 \operatorname{cis} 15^{\circ}}{4 \operatorname{cis} 7^{\circ}} = \frac{3}{4} \operatorname{cis} 8^{\circ}$
Power	$(3x^{15})^2 = 9x^{30}$	$(3 \operatorname{cis} 15^{\circ})^2 = 9 \operatorname{cis} 30^{\circ}$

The Power Rule is known as DeMoivre's Theorem

Let $z=2\sqrt{3}+2i$ and $w=-1+i\sqrt{3}$. Find each of the following and write your answers in rectangular form.

(a) *zw*

Let $z = 2\sqrt{3} + 2i$ and $w = -1 + i\sqrt{3}$. Find each of the following and write your answers in rectangular form.

(a) zw

In polar form, $z = 4 \operatorname{cis} \frac{\pi}{6}$ and $w = 2 \operatorname{cis} \frac{2\pi}{3}$.

Let $z = 2\sqrt{3} + 2i$ and $w = -1 + i\sqrt{3}$. Find each of the following and write your answers in rectangular form.

(a) zw

In polar form, $z = 4 \operatorname{cis} \frac{\pi}{6}$ and $w = 2 \operatorname{cis} \frac{2\pi}{3}$.

Thus,
$$zw = \left(4 \operatorname{cis} \frac{\pi}{6}\right) \left(2 \operatorname{cis} \frac{2\pi}{3}\right) = 8 \operatorname{cis} \frac{5\pi}{6}$$

Let $z = 2\sqrt{3} + 2i$ and $w = -1 + i\sqrt{3}$. Find each of the following and write your answers in rectangular form.

(a) zw

In polar form, $z = 4 \operatorname{cis} \frac{\pi}{6}$ and $w = 2 \operatorname{cis} \frac{2\pi}{3}$.

Thus,
$$zw = \left(4 \operatorname{cis} \frac{\pi}{6}\right) \left(2 \operatorname{cis} \frac{2\pi}{3}\right) = 8 \operatorname{cis} \frac{5\pi}{6}$$

In rectangular form, $8 \operatorname{cis} \frac{5\pi}{6} = -4\sqrt{3} + 4i$

Example 4b

(b) w^5

Example 4b

(b)
$$w^5$$

$$w^5 = \left(2\cos\frac{2\pi}{3}\right)^5 = 32\cos\frac{10\pi}{3}$$

Example 4b

(b)
$$w^5$$

$$w^5 = \left(2 \operatorname{cis} \frac{2\pi}{3}\right)^5 = 32 \operatorname{cis} \frac{10\pi}{3}$$

$$32\operatorname{cis}\frac{10\pi}{3} = 32\operatorname{cis}\frac{4\pi}{3} = -16 - 16i\sqrt{3}$$

(c)
$$\frac{z}{w}$$

(c)
$$\frac{z}{w}$$

$$\frac{z}{w} = \frac{4 \operatorname{cis} \frac{\pi}{6}}{2 \operatorname{cis} \frac{2\pi}{3}}$$

(c)
$$\frac{z}{w}$$

$$\frac{z}{w} = \frac{4 \operatorname{cis} \frac{\pi}{6}}{2 \operatorname{cis} \frac{2\pi}{3}}$$
$$= 2 \operatorname{cis} \left(\frac{\pi}{6} - \frac{2\pi}{3}\right)$$

(c)
$$\frac{z}{w}$$

$$\frac{z}{w} = \frac{4 \operatorname{cis} \frac{\pi}{6}}{2 \operatorname{cis} \frac{2\pi}{3}}$$
$$= 2 \operatorname{cis} \left(\frac{\pi}{6} - \frac{2\pi}{3}\right)$$
$$= 2 \operatorname{cis} \left(-\frac{\pi}{2}\right) = -2i$$

Table of Contents

- Plot Numbers in the Complex Plane
- Find the Modulus and Argument of a Complex Number
- Write Complex Numbers in Polar Form and Vice Versa
- Perform Arithmetic Operations on Complex Numbers in Polar Form
- 5 Find Roots of Complex Numbers

Recall that $\sqrt[n]{x} = x^{1/n}$.

We can reverse DeMoivre's Theorem to get roots of complex numbers.

Recall that $\sqrt[n]{x} = x^{1/n}$.

We can reverse DeMoivre's Theorem to get roots of complex numbers.

Given w and z are complex numbers, if there is a natural number n such that $w^n = z$, then w is an nth root of z.

Let $z \neq 0$ be a complex number with polar form $z = r \operatorname{cis} \theta$. For each natural number n, z has n distinct nth roots (denoted by $w_0, w_1, \ldots, w_{n-1}$, given by

$$w_k = \sqrt[n]{r} \operatorname{cis}\left(\frac{\theta + 2\pi k}{n}\right)$$

Let $z \neq 0$ be a complex number with polar form $z = r \operatorname{cis} \theta$. For each natural number n, z has n distinct nth roots (denoted by $w_0, w_1, \ldots, w_{n-1}$, given by

$$w_k = \sqrt[n]{r} \operatorname{cis}\left(\frac{\theta + 2\pi k}{n}\right)$$

Tip: You can still work in degrees and convert your answers to radians.

Find each of the following.

Find each of the following.

$$z = 4 \operatorname{cis} \frac{2\pi}{3} (\text{or } 4 \operatorname{cis} 120^{\circ})$$

Find each of the following.

$$z = 4 \operatorname{cis} \frac{2\pi}{3} \left(\operatorname{or} 4 \operatorname{cis} 120^{\circ} \right)$$
$$= 4^{1/2} \left(\cos \frac{120^{\circ} + 360k}{2} + i \sin \frac{120^{\circ} + 360k}{2} \right)$$

Find each of the following.

$$z = 4 \operatorname{cis} \frac{2\pi}{3} \left(\operatorname{or} 4 \operatorname{cis} 120^{\circ} \right)$$

$$= 4^{1/2} \left(\cos \frac{120^{\circ} + 360k}{2} + i \sin \frac{120^{\circ} + 360k}{2} \right)$$

$$= 2 \left(\cos \left(60^{\circ} + 180k \right) + i \sin \left(60^{\circ} + 180k \right) \right)$$

Find each of the following.

$$z = 4 \operatorname{cis} \frac{2\pi}{3} \left(\operatorname{or} 4 \operatorname{cis} 120^{\circ} \right)$$

$$= 4^{1/2} \left(\cos \frac{120^{\circ} + 360k}{2} + i \sin \frac{120^{\circ} + 360k}{2} \right)$$

$$= 2 \left(\cos \left(60^{\circ} + 180k \right) + i \sin \left(60^{\circ} + 180k \right) \right)$$

$$= 2 \operatorname{cis} 60^{\circ}, 2 \operatorname{cis} 240^{\circ}$$

Find each of the following.

$$z = 4 \operatorname{cis} \frac{2\pi}{3} \left(\operatorname{or} 4 \operatorname{cis} 120^{\circ} \right)$$

$$= 4^{1/2} \left(\cos \frac{120^{\circ} + 360k}{2} + i \sin \frac{120^{\circ} + 360k}{2} \right)$$

$$= 2 \left(\cos \left(60^{\circ} + 180k \right) + i \sin \left(60^{\circ} + 180k \right) \right)$$

$$= 2 \operatorname{cis} 60^{\circ}, 2 \operatorname{cis} 240^{\circ}$$

$$= 1 + i\sqrt{3}, \quad -2 + 2i\sqrt{3}$$

$$z=16 \operatorname{cis} 180^{\circ}$$

$$z = 16 \operatorname{cis} 180^{\circ}$$
 $= 16^{1/4} \operatorname{cis} \left(\frac{180^{\circ} + 360 k}{4} \right)$

$$z = 16 \operatorname{cis} 180^{\circ}$$

$$= 16^{1/4} \operatorname{cis} \left(\frac{180^{\circ} + 360 k}{4} \right)$$

$$= 2 \operatorname{cis} (45^{\circ} + 90 k)$$

(b) the four fourth roots of z = -16

$$z = 16 \operatorname{cis} 180^{\circ}$$

= $16^{1/4} \operatorname{cis} \left(\frac{180^{\circ} + 360 k}{4} \right)$
= $2 \operatorname{cis} (45^{\circ} + 90 k)$

 $2 \operatorname{cis} 45^{\circ}, 2 \operatorname{cis} 135^{\circ}, 2 \operatorname{cis} 225^{\circ}, 2 \operatorname{cis} 315^{\circ}$

(b) the four fourth roots of z = -16

$$z = 16 \operatorname{cis} 180^{\circ}$$

$$= 16^{1/4} \operatorname{cis} \left(\frac{180^{\circ} + 360 k}{4} \right)$$

$$= 2 \operatorname{cis} (45^{\circ} + 90 k)$$

 $2\,cis\,45^\circ,2\,cis\,135^\circ,2\,cis\,225^\circ,2\,cis\,315^\circ$

$$\sqrt{2} + i\sqrt{2}, -\sqrt{2} + i\sqrt{2}, -\sqrt{2} - i\sqrt{2}, \sqrt{2} - i\sqrt{2}$$

Visualization of Solutions

$$z=2\operatorname{cis}\left(45^{\circ}\right)$$

$$z = 2\operatorname{cis}(45^{\circ})$$
$$= 2^{1/3}\left(\operatorname{cis}\left(\frac{45^{\circ} + 360k}{3}\right)\right)$$

$$z = 2 \operatorname{cis} (45^{\circ})$$

$$= 2^{1/3} \left(\operatorname{cis} \left(\frac{45^{\circ} + 360k}{3} \right) \right)$$

$$= \sqrt[3]{2} \operatorname{cis} (15^{\circ} + 120k)$$

$$z = 2 \operatorname{cis} (45^{\circ})$$

$$= 2^{1/3} \left(\operatorname{cis} \left(\frac{45^{\circ} + 360 k}{3} \right) \right)$$

$$= \sqrt[3]{2} \operatorname{cis} (15^{\circ} + 120 k)$$

$$\sqrt[3]{2}$$
 cis 15° , $\sqrt[3]{2}$ cis 135° , $\sqrt[3]{2}$ cis 255°

$$z = 1 \operatorname{cis} 0$$

$$z = 1 \operatorname{cis} 0$$

$$= \operatorname{cis} \left(\frac{0 + 360k}{5} \right)$$

$$z = 1 \operatorname{cis} 0$$

$$= \operatorname{cis} \left(\frac{0 + 360k}{5} \right)$$

$$= \operatorname{cis} (0 + 72k)$$

(d) the five fifth roots of z = 1

$$z = 1 \operatorname{cis} 0$$

$$= \operatorname{cis} \left(\frac{0 + 360k}{5} \right)$$

$$= \operatorname{cis} (0 + 72k)$$

1, cis 72°, cis 144°, cis 216°, cis 288°