Real Analysis

August Bergquist

March 9, 2023

1 Converse Part of the Cauchy Criterion Theorem

Theorem 1. Suppose $f:[a,b]\to\mathbb{R}$ is Reimann integrable. Then it satisfies the Cauchy Criterion.

Proof. Let $\epsilon > 0$. Then $\epsilon/2 > 0$. By integrability, it follows that there exists some $\delta > 0$ such that whenever $\mathcal{R}(f, P)$ is a Reimann sum for a partition P of mesh less than δ , we have

$$\left| \mathcal{R}(f, P) - \int_{a}^{b} f \right| < \epsilon/2.$$

Now consider any such partition P with $||P|| < \delta$, and consider any two Reimann sums $\mathcal{R}_1(f, P)$ and $\mathcal{R}_2(f, P)$. By construction of δ and P, it follows that

$$\left| \mathcal{R}_{1,2}(f,P) - \int_a^b f \right| < \delta.$$

Then

$$\left| \mathcal{R}_{1}(f,P) - \mathcal{R}_{2}(f,P) \right|$$

$$= \left| \mathcal{R}_{1}(f,P) - \int_{a}^{b} f + (I - \mathcal{R}_{2}(f,P)) \right| \leq \left| \mathcal{R}_{1}(f,P) - \int_{a}^{b} f \right| + \left| \mathcal{R}_{2}(f,P) - \int_{a}^{b} f \right| < \epsilon/2 + \epsilon/2 = \epsilon.$$
(1)

This proves that f on [a, b] satisfies the Cauchy Criterion.

2 Upper and Lower Sum Criterion

Proposition 1. Let $f:[a,b] \to \mathbb{R}$ be a bounded function (boundedness is needed to make sense of upper and lower sums). Then for all $\epsilon > 0$, there exists some $\delta > 0$ such that whenever P is a partition of [a,b] with $||P|| < \delta$, the inequality

$$|\mathcal{U}(f,P) - \mathcal{L}(f,P)| < \epsilon$$

holds, if and only if f is Reimann integrable on [a, b].

Proof. First suppose that f is Reimann integrable. Let $\epsilon > 0$. Then $\epsilon/2 > 0$. By the converse to the Cauchy Criterion Theorem, there exists some δ such that for all P with $||P|| < \delta$, and for any Reimann sums $\mathcal{R}_1(f, P)$ and $\mathcal{R}_2(f, P)$, we have

$$|\mathbb{R}_2 U(f, P) - \mathbb{R}_1 L(f, P)| < \epsilon/2.$$

Chose any such P. Then the above inequality holds for any Reimann sums of the above form. By Lemma 11.4.7 of the textbook, we have

$$|\mathcal{U}(f, P) - \mathcal{L}(f, P)| \le \epsilon/2 < \epsilon.$$

The partition P was arbitrary with mesh size less than δ , hence for any partition, the above inequality would hold. This proves the converse.

Now suppose that for all $\epsilon > 0$, there exists some $\delta > 0$ such that whenever P is a partition of [a, b] with $||P|| < \delta$, the inequality

$$|\mathcal{U}(f, P) - \mathcal{L}(f, P)| = \mathcal{U}(f, P) - \mathcal{L}(f, P) < \epsilon.$$

For ϵ fixed, we have one such δ . Suppose we have some parition P with mesh size less that δ . Let $\mathcal{R}_1(f,P)$ and $\mathcal{R}_2(f,P)$ be Reimann sums for this partition. Since the inequality with the upper and lower sums hold

for this particular δ , and this particular ϵ , and this particular partition, we have $\mathcal{L}(f,P) \leq \mathcal{R}_1(f,P), \mathcal{R}_2(f,P) \leq \mathcal{U}(f,P)$. Without loss of generality, suppose that $\mathcal{R}_1(f,P) \geq \mathcal{R}_2(f,P)$, whence $|\mathcal{R}_1(f,P) - \mathcal{R}_2(f,P)| = \mathcal{R}_1(f,P) - \mathcal{R}_2(f,P)$. Since $\mathcal{U}(f,P) \geq \mathcal{R}_1(f,P)$ and $\mathcal{L} \leq \mathcal{R}_2(f,P)$, we have

$$||\mathcal{R}_1(f,P) - \mathcal{R}_2(f,P)| = \mathcal{R}_1(f,P) - \mathcal{R}_2(f,P) \le \mathcal{U}(f,P) - \mathcal{L}(f,P) < \epsilon.$$

Since ϵ was arbitrary, and P was as well, and so were the Reimann sums, it follows that f satisfies the Cauchy Criterion on [a, b]. From this and the Caucy Criterion Theorem, it follows that f is Riemann integrable on [a, b].