

Avaliação: (X) AP1 () AP2 () Sub-AP1 () Sub-AP2 () Exame Final Disciplina: Cálculo Numérico

Código da turma: 03 5CANU-NT3

Professor: Heleno Cardoso Data: 09/10/2018

Nome do aluno		
Assinatura do aluno		

INSTRUÇÕES:

- 1. Esta prova compõe-se de (03) páginas. Confira!
- **2.** Leia atentamente toda a prova antes de iniciá-la. Informe imediatamente qualquer erro na impressão ou constituição.
- **3.** Preencha a prova com caneta azul ou preta. Respostas preenchidas a lápis não serão consideradas na correção.
- **4.** Na parte objetiva assinale a resposta no local a isto destinado e não rasure, pois caso o faça a questão não será considerada.
- **5.** Ocorrendo erro no preenchimento de respostas dissertativas, risque a parte errada, coloque-a entre parênteses e, a seguir, escreva a resposta correta. **NÃO UTILIZE TINTA OU FITA CORRETIVA**, pois se o fizer sua resposta não será considerada na correção.

Exemplo: ...isto (pôsto) posto podemos concluir que...

- 6. Início da prova às 18:35h com duração de 02h:20 min e um tempo mínimo de permanência em sala de 60 min.
- 7. A prova é **Individual**. A consulta ou comunicação a terceiros ensejará a atribuição de grau 0 (**ZERO**) ao(s) aluno(s). Apenas com **AUTORIZAÇÃO** antes do início da resolução poderá ser feita **CONSULTA** à legislação, bibliografia ou qualquer espécie de apontamento. Caso isto ocorra o (s) aluno (s) deverão acatar a ordem do aplicador da prova, sair da sala sem atrapalhar os colegas, devendo procurar o seu coordenador para manifestar qualquer insatisfação.

BOA SORTE!

Valor da avaliação: 10 (Peso 03)

ATENÇÃO: RESULTADOS SÓ SERÃO ACEITOS COM A MEMÓRIA DE CÁLCULO

1.	Dados os sistemas de numeração, converta os seguintes números:
	(Peso=1,0)
	Número decimal (37) ₁₀ para sua forma binária:
b)	Número binário (101101) ₂ para sua forma decimal:
c)	Número decimal (3899) ₁₀ para sua forma hexadecimal:
d)	Número binário (110101011) ₂ para sua forma octal:
e)	Número binário (110101011) ₂ para sua forma hexadecimal:

- 2. Dados os valores abaixo, calcule de acordo com o seu sistema de numeração: (Peso=0,5)
 - a) Dados os binários: 12 = (01100)₂; 2 = (00010)₂
 Total da Subtração em Binário, Utilizando Complemento de 2 de: -12 + 2: Resposta em binário
 - b) Total da Soma em Hexadecimal: (AA + BD + 83)₁₆
 - c) Total da Soma em Octal: (67 + 73)8
 - d) Total da Soma em Binário: (1010110)₂ + (1011011)₂
 - e) Total da Multiplicação em Binário: (101)₂ * (110)₂

- 3. Expresse os números a seguir usando representação numérica em ponto flutuante normalizada na base indicada: (Peso=0,5)
 - a) $(5.987)_{10} =$
 - b) $(0.000000512)_{10} =$
 - c) $(11111)_2 =$
 - d) $(10.11)_2 =$
 - e) $(0.0001000)_2 =$
- 4. Considere uma aritmética de ponto flutuante SPF(10,2,-5,5), de um computador que opera computacionalmente por arredondamento ABNT, dados:
- a) X = 875 e Y = 3172. Calcular X * Y. (**Peso=0,2**)
- b) X = 0.0064 e Y = 7312. Calcular X / Y. (Peso=0.2)
- c) Qual o menor e o maior número representados nesta máquina?(Peso=0,2)
- 5. Resolva as questões abaixo:
- a) Seja o sistema SPF(10, 4, L, U) que opera com arredondamento ABNT. Qual o erro absoluto ao representar X = 1428,756 nesse sistema? (Peso=0,2)
- b) Seja y = 1000,5 e \bar{y} = 1000,6; u = 10,5 e \bar{v} = 10,6. Nota-se que EA(y) = EA(u) = 0,1. Quais os erros relativos? (Peso=0,2)
- c) Seja o sistema SPF(10,2,L,U) que opera com arredondamento ABNT. Multiplique 1234 por 0.016 nesse sistema. (Peso=0,2)
- 6. Calcule a operação aritmética, propagação de erro, abaixo. A máquina opera por arredondamento ABNT e está exatamente representada. (Peso=0,8)

Dados:
$$X = 0.937 \times 10^4$$
; $Y = 0.1272 \times 10^2$; $Z = 0.231 \times 10^1$; $t = 4$ dígitos.

- a) |E(x + y + z)| =
- 7. Dada a função f(x) = x * logx -1, calcule a raiz real estimada da função utilizando o método numérico de livre escolha com precisão < 0,002, adotando [a₀; b₀] = [2;3] como intervalo inicial. (Peso=1,0)
- 8. Dada a equação abaixo, encontre a melhor aproximação para a raiz contida no intervalo [-3.83; -0.62], utilizando o método das tangentes (Newton-Raphson), com tolerância ε < 0,6, para a f(x) = x^3 -3 x^2 -6x + 8. (Peso=1,0)
- 9. Determinar a raiz real estimada da função, utilizando o método numérico da bissecção, com um erro absoluto inferior a ϵ < 0,06 e o zero de f(x) = X^3 -X -1 no intervalo [1; 2] = [X_0 ; X_1]. (Peso=1,0)

10. Resolva o sistema de equações lineares pelo método numérico de Gauss. (Peso=1,0)

11. Resolva o sistema de equações lineares pelo método numérico de Jordan.

(Peso= 1,0)

$$\begin{cases} X + 2Y + Z &= 9 \\ 2X + Y - Z &= 3 \\ 3X - Y - 2Z &= -4 \end{cases}$$

12. Resolva o sistema de equações lineares pelo método numérico de Pivoteamento Parcial. (Peso= 1,0)

$$\begin{cases} 2x + y + z = 8\\ x + y + 4z = 15\\ 3y + 2z = 9 \end{cases}$$