MATH 152 Study Notes <u>Linear Systems</u>

Yecheng Liang

Contents

1. Sca	lars	3
2. Vec	ctors	4
2.1.	. Vector Demensions	4
2.2.	. Vector Operations	4
	2.2.1. Vector & Scalar	
	2.2.2. Vector & Vector	4

1. Scalars

A scalar x has

$$x \in \mathbb{R}.$$
 (1)

In this course,

$$x \in \mathbb{C}$$
 (complex numbers) (2)

is also a scalar.

2. Vectors

A vector is 2 or more scalars arranged in a predetermined order.

When written, an arrow is placed above the variable to indicate that it is a vector.

$$x$$
 is a normal variable, (3.1)

$$\vec{x}$$
 is a vector. (3.2)

In printed media, vectors are often written in boldface.

$$x$$
 is a vector. (4)

2.1. Vector Demensions

The number of scalars in a vector is called the dimension of the vector. For example,

$$a = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \text{ is a } \mathbb{R}^2 \tag{5.1}$$

$$\boldsymbol{b} = \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix} \text{ is a } \mathbb{R}^4 \tag{5.2}$$

2.2. Vector Operations

2.2.1. Vector & Scalar

Yeah just do it.

2.2.2. Vector & Vector

For addition and subtraction, simply add or subtract the corresponding scalars. Commutate, associate and distribute them.

$$a + b = c + d \tag{6.1}$$

$$= e \tag{6.2}$$

$$e - a = b \tag{6.3}$$

$$e - c = d \tag{6.4}$$