SOLUTIONS SHEET 8

YANNIS BÄHNI

Exercise 1. We follow [IL03, pp. 99–101]. Let $U := \mathbb{C} \setminus \{\pm e^{\pm i\pi/4}\}$ and define $F : U \to \mathbb{C}$ by

$$F(z) := \frac{1}{1 + z^4}. (1)$$

Clearly $F \in \mathcal{O}(U)$ as a well-defined rational function, U is open in \mathbb{C} and $\mathbb{R} \subseteq U$. Furthermore $F|_{\mathbb{R}} = f$. Hence F is a holomorphic continuation of f. Since havin an analytic continuation is equivalent to be real-analytic (see [IL03, p. 100]), we have that f is real-analytic.

Let $x_0 \in \mathbb{R}$. The Taylor series expansion of f is completely determined by the one of F. So the only thing which restricts the radius of convergence of the Taylor series expansions are the singularities of F. I will again formalize why this is the case. Let

$$F(z) = \sum_{\nu=0}^{\infty} a_{\nu} (z - x_0)^{\nu}$$
 (2)

be the Taylor expansion of F around x_0 . By Cauchy-Taylor the radius of convergence of the expansion (2) is at least $|x_0 - e^{i\pi/2}|$ if $x_0 \ge 0$ and $|x_0 + e^{i\pi/4}|$ if $x_0 \le 0$. Let $r := |x_0 - e^{i\pi/4}|$ and assume $x_0 \ge 0$. (the case $x_0 \le 0$ is similar) and R > r. Hence the series in (2) converges in $B_R(x_0)$. Hence it defines a function $G: B_R(x_0) \to \mathbb{C}$ by

$$G(z) := \sum_{\nu=0}^{\infty} a_{\nu} (z - x_0)^{\nu}$$
(3)

with $G|_{B_r}(x_0) = F$. Since G is expandable in a power series, we have $G \in \mathcal{O}(B_R(x_0))$ by [RS02, p. 187]. Since any holomorphic function continuous, we have $G \in \mathcal{C}(B_R(x_0))$. Let $(z_{\nu})_{\nu \in \mathbb{N}}$ be a sequence in $B_r(x_0)$ such that $\lim_{\nu \to \infty} z_{\nu} = e^{i\pi/4}$. Clearly

$$\lim_{\nu \to \infty} F(z_{\nu}) = \infty \tag{4}$$

and since $G|_{B_r(x_0)} = F$ we have

$$\lim_{\nu \to \infty} G(z_{\nu}) = \infty. \tag{5}$$

But since R > r, G is continuous at $e^{i\pi/4}$ and so we must have

$$G(e^{i\pi/4}) = \lim_{\nu \to \infty} G(z_{\nu}) = \infty.$$
 (6)

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

Thus the series G diverges at $e^{i\pi/4}$, contradicting that $e^{i\pi/4} \in B_R(x_0)$. Now for general $x_0 \in \mathbb{R}$, the radius of convergence R of the Taylor series expansion of f in x_0 is the radius of convergence of the restriction of the Taylor series expansion of F in x_0 on \mathbb{R} , hence

$$R = \begin{cases} |x_0 - e^{i\pi/4}| & x_0 \ge 0, \\ |x_0 + e^{i\pi/4}| & x_0 \le 0. \end{cases}$$

References

- [IL03] Wolfgang Fischer and Ingo Lieb. Funktionentheorie: Komplexe Analysis in einer Veränderlichen. 8. Auflage. vieweg studium; Aufbaukurs Mathematik. Vieweg+Teubner Verlag, 2003.
- [RS02] R. Remmert and G. Schumacher. Funktionentheorie 1. Springer-Lehrbuch. Springer Berlin Heidelberg, 2002. ISBN: 9783540418559.