Exercise 1

We want to implement a gate $\mathbf{mod}[\mathbf{q}]$ taking input s of width n and whose action is defined as follows:

$$\mathbf{mod}[\mathbf{q}] = \begin{cases} 0 & \text{if } hw(s) \equiv 0 \bmod q; \\ 1 & \text{otherwise.} \end{cases}$$

The function $hw(\cdot)$ is the Hamming weight and counts the number of 1s in the input. Such a gate is helpful in an implementation of the recursive Fourier sampling problem (RFS), also called recursive Bernstein-Vazirani problem.

We are given an operator \mathbf{M}_q on $k = \lceil \log_2 q \rceil$ qubits which acts as follows:

$$\mathbf{M}_q |x\rangle = \begin{cases} |x + 1 \bmod q\rangle & \text{if } x < q; \\ |x\rangle & \text{if } x \ge q. \end{cases}$$

We are interested in the case q = 3. We claim that \mathbf{M}_3 with its matrix given below can be used to implement $\mathbf{mod}[\mathbf{q}]$ for q = 3.

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

This matrix looks quite similar to the matrix of the **SWAP** gate. Simply exchange in M_3 row 0 with row 2 in order to obtain **SWAP**.

- 1.1 An important condition \mathbf{M}_q has to satisfy is $(\mathbf{M}_q)^q = \mathbf{I}$. Show that $(\mathbf{M}_3)^3$ results in the identity.
- 1.2 Implement a gate \mathbf{M}_3 using one \mathbf{CNOT}^0 gate and one \mathbf{SWAP} gate. Recall that \mathbf{CNOT}^0 acts when the control qubit is in state $|0\rangle$. Use Qiskit and employ the unitary simulator to obtain the matrix form of your implementation. Is this matrix equal to \mathbf{M}_3 ?
- 1.3 Implement a single-controlled version cM_3 of gate M_3 in Qiskit. Test your implementation and document the test cases.
- 1.4 Implement the $\mathbf{mod}[\mathbf{q}]$ gate for q=3 and n=4 input qubits as a gate array in Qiskit.

Start with $k = \lceil \log_2 q \rceil$ ancillary qubits and apply four \mathbf{cM}_3 gates each controlled by the negation of another single input qubit. The target qubits are the ancillary qubits. Apply then an OR gate with target r exploiting that $a \vee b$ is equivalent to $\neg(\neg a \wedge \neg b)$. Measure the negated r and uncompute.

Test your implementation with all possible 16 values for the input.