Multiplicación de enteros grandes

Meza Rodriguez Fiorella Ivonne

Contenido

01 Problema

02 Diseño de la solución

03 Complejidad

04 Código

01 Problema

El algoritmo tradicional consiste en colocar de forma vertical los números y realizar la multiplicación por cada dígito del número inferior con el número superior empezando desde las unidades , finalmente se obtiene el resultado sumando estos productos. Éste método tiene una complejidad de $\mathrm{O}(n^2)$ y se observó que no funcionaba bien para números enteros grandes.

			2	4	3
		X	2	5	6
		1	4	5	8
	1	2	1	5	
+	4	8	6		
	6	2	2	0	8

Orden de complejidad : $O(n^2)$

02 Diseño de la solución

En 1960, el matemático ruso de 23 años llamado Anatoly Karatsuba descubre un algoritmo para multiplicar números enteros muy grandes.

El algoritmo de Karatsuba

Consideramos a 2 números enteros x e y

$$x = a * 10^{n/2} + b$$

$$y = c * 10^{n/2} + d$$

$$x * y = (a * 10^{n/2} + b)^*(c * 10^{n/2} + d)$$

$$x * y = (a * 10^{\frac{n}{2}})(c * 10^{\frac{n}{2}}) + ad * 10^{\frac{n}{2}} + bc * 10^{\frac{n}{2}} + bd$$

$$x * y = ac * 10^{2(\frac{n}{2})} + (ad + bc) * 10^{\frac{n}{2}} + bd$$

Notamos:

$$(a+b)(c+d) - ac - bd$$

$$(ac+ad+bc+bd) - ac - bd = ad + bc$$

$$x * y = ac * 10^{2\binom{n}{2}} + (ad + bc) * 10^{\frac{n}{2}} + bd$$

```
ac <- multiplicacion(a,c)
bd <- multiplicacion(b,d)
ad_sum_bc <- multiplicacion(a+b, c+d)-ac-bd
mult <- ac * (10 ** (2 * medio)) + (ad_sum_bc * (10 ** medio)) + bd
```

Ejemplo: Consideramos 2 números de 6 dígitos, donde x= 146 123 e y = 352 120

x: **146 123**


```
Caso base
```

```
Funcion mult <- multiplicacion( num1 , num2)
   Si num1 < 10 0 num2 < 10 Entonces
        mult <- num1*num2
        n <- maximum (length(string(num1), string(num2)))</pre>
        mitad <- ndiv2
        a <- num1 div (10^mitad)
        b <- num1 mod(10^mitad)</pre>
        c <- num2 div (10^mitad)
        d <- num2 mod(10^mitad)</pre>
        ac <- multiplicacion(a,c)</pre>
        bd <- multiplicacion(b,d)</pre>
        ad_sum_bc <- multiplicacion(a+b, c+d)-ac-bd</pre>
        mult <- ac * (10 ** (2 * mitad)) + (ad_sum_bc * (10 ** mitad)) + bd
    FinSi
FinFuncion
```

03

Complejidad

1 1 1 1

Costo temporal de la función multiplicar:

$$T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + c * n$$

$$\to T(n) = 3 * T\left(\frac{n}{2}\right) + c * n$$

$$T\left(\frac{n}{2}\right) = 3 * T\left(\frac{n}{4}\right) + c * \frac{n}{2}$$

$$T\left(\frac{n}{4}\right) = 3 * T\left(\frac{n}{8}\right) + c * \frac{n}{4}$$

• • •

Tendremos la siguiente expresión:

$$T(n) = 3^{i}T\left(\frac{n}{2^{i}}\right) + \left(\frac{3}{2}\right)^{i-1}cn + \left(\frac{3}{2}\right)^{i-2}cn + \dots + cn$$

Hacemos:

$$\frac{n}{2^i} = 1 \to n = 2^i \qquad i = \log_2 n$$

$$T(n) = 3^{\log_2 n} + cn \left[\frac{\left(\frac{3}{2}\right)^i - 1}{\frac{3}{2} - 1} \right]$$

$$T(n) = 3^{\log_2 n} + 2nc \left[\left(\frac{3}{2} \right)^{\log_2 n} - 1 \right]$$

$$T(n) = 3^{\log_2 n} + 2cn \left(\frac{3}{2}\right)^{\log_2 n} - 2nc = n^{\log_2 3} + 2c * n * n^{\log_2 3 - 1} - 2nc$$

$$T(n) = 2cn^{\log_2 3} + n^{\log_2 3} - 2nc$$

Gráficas

04 Código

```
multiplicacion(x, y):
   if x < 10 or y < 10:
        return x * y
    else:
        n = max(len(str(x)), len(str(y)))
        mitad = n // 2
        a = x // (10 ** (mitad))
        b = x \% (10 ** (mitad))
        c = y // (10 ** (mitad))
        d = y \% (10 ** (mitad))
        ac = multiplicacion(a, c)
        bd = multiplicacion(b, d)
        ad_sum_bc = multiplicacion(a+b, c+d)-ac-bd
        return ac * (10 ** (2 * mitad)) + (ad_sum_bc * (10 ** mitad)) + bd
print("Resultado: ")
print(multiplicacion(146123,352120))
```

Resultado: 51452830760

Avances en los métodos de multiplicación.

Año	M(n)	autor
-2000?	$O(n^2)$	desconocido
1960	$O(n^{\log_2 3})$	Karatsuba
1966	$O(n\log n \ e^{\sqrt{2\log_2 n}})$	Toom-Cook
1971	$O(n\log n\log\log n)$	Schönhage-Strassen
2007	$O(n\log n \ K^{\log^* n})$	Fürer
2018	$O(n\log n \ 4^{\log^* n})$	Harvey-van der Hoeven

