Gradient Descent

Gradient descent is an **iterative optimization algorithm** for finding the **local minimum** of a function. To find the local minimum of a function using gradient descent, it is essential to take steps proportional to the **negative of the gradient** (move away from the gradient) of the function at the current point. Gradient descent was originally proposed by **CAUCHY** in 1847. It is also known as the steepest descent.

The goal of the gradient descent algorithm is to **minimize** the given function (say, **cost function**).

- To achieve this goal, it performs two steps iteratively:
- Compute the gradient (slope), the first-order derivative of the function at that point
- Make a step (move) in the direction opposite to the gradient. The
 opposite direction of the slope increases from the current point by alpha
 times the gradient at that point

Working

- The algorithm starts with an initial set of parameters and updates
 them in small steps to minimize the cost function.
- 2. In each iteration of the algorithm, the gradient of the cost function with respect to each parameter is computed.
- The gradient tells us the direction; by moving in the opposite direction, we can find the direction of the steepest descent.
- 4. The learning rate controls the step size, determining how quickly the algorithm moves towards the minimum.
- The process is repeated until the cost function converges to a
 minimum. Therefore, indicating that the model has reached the optimal
 set of parameters.

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
(for $j = 1$ and $j = 0$)

Different variations of gradient descent include batch gradient descent, stochastic gradient descent, and mini-batch gradient descent, each with advantages and limitations.

Gradient descent guides ML models toward optimal performance by iteratively adjusting parameters to minimize the cost function.

Linear Regression

Hypothesis function for simple linear regression

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

x- the input feature.

Parameters: θ₀ (intercept), θ₁ (slope)

Cost Function: $J(\theta)$: $J(\theta_0, \theta_1)$

Goal: Minimize J (θ_0, θ_1)

For linear regression, the cost function used to evaluate how well the model fits the data is the **Mean Squared Error (MSE)**:

❖ Cost Function

$$J(heta) = rac{1}{m} \sum_{i=1}^m (y^{(i)} - h_ heta(x^{(i)}))^2$$

❖ The gradient of the Cost Function:

$$rac{\partial J(heta)}{\partial heta_j} = rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)}$$

❖ Use the parameter update rule given below for regression

$$heta_j := heta_j - lpha \cdot rac{\partial J(heta)}{\partial heta_j}$$

$$heta_j := heta_j - lpha \cdot rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)}$$

The algorithm converges when the change in the cost function becomes sufficiently small or after a predetermined number of iterations.

Key Considerations:

Learning rate (α): Choosing an appropriate learning rate is crucial. If it's too large, the algorithm might not converge. If it's too small, convergence will be slow.

Convergence criteria: Can stop the iteration if the cost function decreases below a threshold or after a certain number of iterations.