Hochschule Merseburg (FH) Fachbereich Ingenieur- und Naturwissenschaften Lehrgebiet Analytik Datum: 15.06.2020
Gruppe: 2.4
Namen: Willy Messersdwidt

Roman Zant

Praktikum:

OBAC/2.Sem.:"Analytik"OProtokoll genehmigt●BCUC/4.Sem.:"Analytik"OProtokoll korrigierenOBCUU/4.Sem.:"Analytik"ORücksprache erbetenOBWIWU/4.Sem.:"Analytik"OProtokoll registriert

PROTOKOLL

Versuch: Molekülspektroskopie / UV-VIS-Bereich / Photometrie

3.1 NH₄⁺-Bestimmung im Trinkwasser

Analysenproben: A1: Laborprobe

A2: Labor probe
A3: Leitungswasser

Probenahme:

Probenvorbereitung:

Kalibrierung:

für jede Wiederholung (Wh.) einer Kalibrierprobe bereiten Sie nach Versuchsanleitung eine neue Messprobe vor

- Einheit der NH_4^+ -Konzentration: $[X] = \underbrace{MI}_{MI} \underbrace{\mathcal{I}}_{X}$

Kalibrier- lösungen	NH ₄ ⁺ - Konzentration $\left[\frac{\mu g}{\omega_l}\right]$	Absorbanz 1. Wh.	Absorbanz 2. Wh.	Absorbanz 3. Wh.	Absorbanz Mittelwert
K1	0,5	0,020	0,017	0,021	0,0133
K2	1,5	0,124	0,124	0,126	0,1246
К3	3,0	0,283	0, 267	0,304	0,285

Messergebnisse:

- Für jede wiederholte Messung bereiten Sie nach Versuchsanleitung eine neue Messprobe

Probe	Wiederholung	Absorbanz	NH4 ⁺ -Konz.	$\frac{NH_4^+}{\overline{x}(NH_4^+)}$	$\frac{N}{x(N)}$
	1	0,029	0,53		
A1	2	0,063	0131	0,69	0,54
	3	0,027	0,58		
A2	1	0,153	1,8		
	2	0,148	1,7	1,8	1,4
	3	0,154	1,8		
A3	1	0,029	0,53		
	2	0,028	0,53	0,59	0,46
	3	0,028	0,53		

Analysenergebnisse und statistische Bewertung

- Alle Angaben in dieser Tabelle in mg l⁻¹
- Wenn ein Analysenwert kleiner als die kleinste Kalibrierkonzentration ist, dann entfällt der statistische Test (Angabe "statistischer Test entfällt)
- Wenn ein Analysenwert größer als die größte Kalibrierkonzentration ist, dann müssen Sie verdünnen

Analysenergebnisse				Statistische Bewertung				
Probe	N	\bar{x}	s	$\operatorname{cnf}(\bar{x})$	XGRENZ	t _{EMP}	t CRIT	Entscheidung
A1	3	0,63	0,13	0,69+	0,5	1,73	2,92	GW Oberschillen
A2	3	1,8	0,1	1,8 ± 0,25	0,5	22,52	2,32	GW Oberschillen
A3	3	0,53	0,00	0,53 ±	0,5	temp → 20 da s=0	2, 92	GW Obarschitten