Devoir maison à rendre le 28 avril 2023

Tous les résultats du cours, polycopié ou PC peuvent être utilisés à condition d'être clairement cités.

Exercice 1

Soit G un groupe d'ordre 8 non commutatif.

- 1. Quels sont les ordres possibles pour les éléments de G? Montrer qu'il existe au moins un élément σ d'ordre 4.
- 2. Soit H le sous-groupe engendré par σ . Montrer que H est distingué dans G.
- 3. On suppose qu'il existe un élément τ d'ordre 2 qui n'est pas dans H. Montrer que $\sigma\tau=\tau\sigma^{-1}$.
- 4. Quels sont les ordres des éléments de G? Quels sont les sous-groupes de G?
- 5. On suppose maintenant qu'il n'y a pas d'élément d'ordre 2 dans $G\backslash H$. Montrer que pour tout $x\in G\backslash H$, $x^2=\sigma^2$ et $\sigma x=x\sigma^{-1}$.
- 6. Quels sont les ordres des éléments de G? Quels sont les sous-groupes de G?

Solution

- L'ordre d'un élément divise le cardinal du groupe, c'est-à-dire 8. De plus, il ne peut être égal à 8, sinon le groupe serait cyclique, donc commutatif. Il peut donc valoir 1, 2 ou 4.
 S'il n'y aucun élément d'ordre 4, alors x² = e pour tout x ∈ G. Cela implique que G est commutatif. En effet, on a x = x⁻¹, et xy = (xy)⁻¹ = y⁻¹x⁻¹ = yx pour tous x, y ∈ G.
- 2. H est de cardinal 4, donc d'indice 2 dans G. Cela implique que H est distingué. En effet, si $g \in G$ n'est pas dans H, on a $G \setminus H = gH = Hg$, donc $gHg^{-1} = H$.
- 3. On voit que G est constitué des éléments $\sigma^k, \tau \sigma^k, 0 \le k \le 3$. L'élément $\sigma \tau$ ne peut être égal à un σ^k , donc il existe j tel que $\sigma \tau = \tau \sigma^j$. Les éléments σ et σ^j sont conjugués, et ont donc le même ordre. Cela implique $\sigma \tau = \tau \sigma$ ou $\sigma \tau = \tau \sigma^{-1}$. Puisque le groupe est non commutatif, le premier cas est exclu.
- 4. On vérifie que

$$(\tau \sigma^k)(\tau \sigma^k) = \tau \tau \sigma^{-k} \sigma^k = e$$

Le groupe G a donc un élément d'ordre 1, cinq éléments d'ordre 2 et deux éléments d'ordre 4. Les sous-groupes non-triviaux sont d'ordre 2 ou d'ordre 4. Il y a cinq sous-groupes d'ordre 2 (engendré par chacun des éléments d'ordre 2). Soit K un sous-groupe d'ordre 4. En considérant le morphisme $G \to G/H \simeq \{-1,1\}$, on voit que $H \cap K$ est de cardinal 2 ou 4 (suivant que la restriction du morphisme à K est surjective ou non). Dans tous les cas K contient σ^2 . Puisque le groupe $\sigma^2 > 0$ est distingué, un sous-groupe d'ordre 4 de G s'identifie à un sous-groupe d'ordre 2 de G/(1). Ce dernier groupe a cardinal 4, et ses éléments sont d'ordre 1 ou 2. Il est isomorphe à $(\mathbb{Z}/2\mathbb{Z})^2$, et il y a donc 3 sous-groupes d'ordre 4 de G.

5. Dans ce cas, le groupe G est constitué de $\sigma^k, x\sigma^k, 0 \le k \le 3$. L'élément x^2 ne peut être égal à $x\sigma^k$, donc $x^2 = \sigma^j$. Puisque x est d'ordre 4, x^2 est d'ordre 2, et $x^2 = \sigma^2$. Le même argument que précédemment montre que $\sigma x = x\sigma^{-1}$.

6. Tous les éléments dans $G\backslash H$ sont d'ordre 4. Le groupe G a donc un élément d'ordre 1, un élément d'ordre 2 et six éléments d'ordre 4. Il y a un sous-groupe d'ordre 2, engendré par σ^2 . Puisque G ne contient qu'un seul élément d'ordre 2, un sous-groupe d'ordre 4 est cyclique, engendré par un élément d'ordre 4. Il y a donc trois sous-groupes d'ordre 4, engendré respectivement par σ , x et $x\sigma$.

Exercice 2

On considère le polynôme à coefficients rationnels $P = X^4 - 3X - 3$, et L son corps de décomposition (L est donc une extension finie de \mathbb{Q}).

- 1. Montrer que P est irréductible sur \mathbb{Q} , qu'il a deux racines réelles, et deux racines complexes conjuguées.
- 2. Soit $X^2 + aX + b$ l'unique polynôme réel irréductible de degré 2 divisant P. Montrer que $a^6 + 12a^2 9 = 0$.
- 3. Montrer que le degré de L est un multiple de 12.
- 4. Montrer que A_4 est l'unique sous-groupe de S_4 d'ordre 12.
- 5. Déterminer le degré de L sur \mathbb{Q} et le groupe $\operatorname{Gal}(L/\mathbb{Q})$.

Solution

- 1. Le critère d'Eisenstein pour p=3 montre que P est irréductible. Une étude de fonctions montre que P a exactement deux racines réelles.
- 2. On factorise P en $P = (X^2 + aX + b)(X^2 + a'X + b')$. On obtient les équations a' = -a, $b + b' = a^2$, a(b' b) = -3 et bb' = -3. Les réels b, b', sont donc racines de $X^2 a^2X 3$, polynôme de discriminant $\Delta = a^4 + 12$. On a de plus

$$\Delta = (b - b')^2 = \frac{9}{a^2}$$

d'où $a^6 + 12a^2 - 9 = 0$.

- 3. Puisque P est de degré 4 et irréductible, le degré de L est un multiple de 4. De plus, L contient a^2 , racine du polynôme $X^3 + 12X 9$. On vérifie que ce polynôme est irréductible sur \mathbb{Q} . Si ce n'était pas le cas, il aurait une racine dans \mathbb{Q} . Celle =-ci serait entière, positive, diviserait 9 et serait multiple de 3. On vérifie que ce n'est pas le cas. Donc a^2 est de degré 3 sur \mathbb{Q} , et le degré de L est un multiple de 3.
- 4. Soit H une sous-groupe de S₄ d'ordre 12, distinct de A₄. La signature restreinte à H est donc surjective, et H ∩ A₄ est d'ordre 6. Puisque A₄ ne contient pas d'élément d'ordre 6, il est isomorphe à S₃, et contient 3 élément d'ordre 2. Il contient donc K, le sous-groupe engendré par les double transpositions. On obtient une contradiction, car K est de cardinal 4, qui ne divise pas 6.
- 5. Le groupe de Galois de L/\mathbb{Q} se plonge dans S_4 , le groupe de permutations des racines de P. Il est de cardinal 12 ou 24. De plus, il contient la conjugaison complexe, qui échanges les deux racines complexes, et correspond donc à une transposition dans S_4 . D'après ce qui précède, le groupe de Galois ne peut avoir cardinal 12, sinon il se plongerait dans A_4 ce qui n'est pas le cas. L est donc de degré 24, et $Gal(L/\mathbb{Q}) \simeq S_4$.