- 1.27. In this chapter, we introduced a number of general properties of systems. In particular, a system may or may not be
 - (1) Memoryless
 - (2) Time invariant
 - (3) Linear
 - (4) Causal
 - (5) Stable

Determine which of these properties hold and which do not hold for each of the following continuous-time systems. Justify your answers. In each example, y(t) denotes the system output and x(t) is the system input.

(a)
$$y(t) = x(t-2) + x(2-t)$$
 (b) $y(t) = [\cos(3t)]x(t)$
(c) $y(t) = \int_{-\infty}^{2t} x(\tau)d\tau$ (d) $y(t) = \begin{cases} 0, & t < 0 \\ x(t) + x(t-2), & t \ge 0 \end{cases}$
(e) $y(t) = \begin{cases} 0, & x(t) < 0 \\ x(t) + x(t-2), & x(t) \ge 0 \end{cases}$ (f) $y(t) = x(t/3)$

1.31. In this problem, we illustrate one of the most important consequences of the properties of linearity and time invariance. Specifically, once we know the response of a linear system or a linear time-invariant (LTI) system to a single input or the responses to several inputs, we can directly compute the responses to many other

input signals. Much of the remainder of this book deals with a thorough exploitation of this fact in order to develop results and techniques for analyzing and synthesizing LTI systems.

- (a) Consider an LTI system whose response to the signal $x_1(t)$ in Figure P1.31(a) is the signal $y_1(t)$ illustrated in Figure P1.31(b). Determine and sketch carefully the response of the system to the input $x_2(t)$ depicted in Figure P1.31(c).
- (b) Determine and sketch the response of the system considered in part (a) to the input $x_3(t)$ shown in Figure P1.31(d).

Figure P1.31

- **2.43.** One of the important properties of convolution, in both continuous and discrete time, is the associativity property. In this problem, we will check and illustrate this property.
 - (a) Prove the equality

$$[x(t) * h(t)] * g(t) = x(t) * [h(t) * g(t)]$$
 (P2.43–1)

by showing that both sides of eq. (P2.43-1) equal

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(\tau)h(\sigma)g(t-\tau-\sigma)\,d\tau\,d\sigma.$$