3D- Riduzione Gerarchica di Modello con le basi istruite

Matteo Aletti & Andrea Bortolossi

Politecnico di Milano

16 Ottobre 2013

- Fondamenti teorici
 - Hierarchical Model Reduction in 3D
 - Basi istruite

Motivazione

esistenza di una direzione dominante

Vogliamo risolvere un certo tipo di problemi: quelli che presentano una direzione preferenziale

Impostazione geometrica

il dominio

- Fibra di supporto rettilinea Ω_{1D} dove avviene la dinamica dominante.
- Suddivisione del dominio in slices γ_x ortogonali alla fibra di supporto.

Processo di riduzione

mapping e serie di Fourier

Idea:

• mappare Ω in un dominio di riferimento $\widehat{\Omega}$ in modo che

$$\hat{\gamma}_{\hat{x}} = \hat{\gamma} \ \forall \hat{x} \in \widehat{\Omega}_{1D}$$

 espandere, in direzione trasversale, la soluzione rispetto alla base di Fourier generalizzata

$$\{\varphi_k(\hat{y},\hat{z})\}_{k\in\mathbb{N}}$$

Noi lavoreremo direttamente in un riferimento, quindi non utilizzeremo la notazione con i cappelli.

Spazi in direzione trasversale

$$V_{\gamma}^{\infty} = \left\{ v(y, z) = \sum_{k=1}^{\infty} v_k \varphi_k(y, z) \right\}$$

$$V_{\gamma}^{m} = \left\{ v(y, z) = \sum_{k=1}^{m} v_k \varphi_k(y, z) \right\}$$

Lungo la direzione principale usiamo uno spazio V_{1D} di tipo $H^1(\Omega_{1D})$ che consideri correttamente le condizioni al bordo. Possiamo ora definire gli spazi ridotti come spazi prodotto:

Spazi ridotti

$$V^{\infty}(\Omega) = V_{1D} \otimes V_{\gamma}^{\infty} := \left\{ v(x, y, z) = \sum_{k=1}^{\infty} v_k(x) \varphi_k(y, z), v_k \in V_{1D} \right\}.$$

$$V^m(\Omega) = V_{1D} \otimes V_{\gamma}^m := \left\{ v(x, y, z) = \sum_{k=1}^m v_k(x) \varphi_k(y, z), v_k \in V_{1D} \right\}.$$

II problema

Caso condizioni di Dirichlet

Il problema che vogliamo risolvere ...

$$\begin{cases} -\mu \Delta u + \beta \cdot \nabla u + \sigma u = f & \text{in} \Omega \\ u = 0 & \text{su} \partial \Omega \end{cases}$$

... e la sua formulazione debole Trovare $u \in H^1_0(\Omega)$ tale che

$$\int_{\Omega} \mu \nabla u \nabla v + \beta \cdot \nabla u v + \sigma u v d\Omega = \int_{\Omega} f v d\Omega \qquad \forall v \in H_0^1(\Omega).$$

Modelli ridotti

Problemi 1D accoppiati

Trovare $\{u_k\}_{k=1}^m$ con $u_k \in V_{1D} \ \forall k = 1 \dots m$ tale che

$$\sum_{k=1}^{m} \int_{\Omega_{1D}} \left[\underbrace{\hat{r}_{k,j}^{11} \frac{\partial u_k}{\partial x}}_{\text{Diffusion}} \frac{\partial \theta_j}{\partial x} + \underbrace{\hat{r}_{k,j}^{10} \frac{\partial u_k}{\partial x}}_{\text{Advection}} \theta_j + \underbrace{\hat{r}_{k,j}^{00} u_k \theta_j}_{\text{Reaction}} dx \right] = \int_{\Omega_{1D}} \theta_j f_k dx. \quad \forall j = 1 \dots m \quad \theta_j \in V_{1D}$$

I problemi 1D sono accoppiati fra di loro con i coefficienti $r_{k,j}^{st}$ che comprimono le informazioni provenienti dalla direzione trasversale tramite degli opportuni integrali su γ .

Scelta della base

Base sinusoidale e polinomi di Legendre

Letteratura

Nel caso di condizioni di Dirichlet, lungo la direzione trasversale è necessario scegliere una base opportuna. In letteratura, in 2D, sono state utilizzate delle funzioni sinusoidali

$$sin(\pi kx)$$
 $in(0,1)$

oppure i polinomi di Legendre, moltiplicati per un fattore $(1-x^2)$, normalizzati con un procedimento di Gram-Schmidt.

Teorema

Siano V,H spazi di Hilbert, con H separabile, V denso in H, e tali che l'immersione di V in H sia compatta. Sia a(,) una forma bilineare in V, continua, simmetrica e debolmente coerciva. Allora:

- (a) $\sigma(a) = \sigma_p(a) \subset (-\lambda_0, +\infty)$. Inoltre, se la successione degli autovalori $\{\lambda_m\}_{m\geq 1}$ è infinita allora $\lambda_m \to +\infty$;
- (b) se u ,v sono autovettori corrispondenti ad autovalori differenti, allora a(u,v)=0=(u,v). Inoltre, H ha una base ortonormale $\{u_m\}_{m\geq 1}$ di autovettori di a;
- (c) la successione $\{u_m/\sqrt{\lambda_0+\lambda_m}\}_{m\geq 1}$ costituisce una base ortonormale in V, rispetto al prodotto scalare

$$((u,v)) = a(u,v) + \lambda_0(u,v).$$

Ipotesi geometriche

Dominio parallelepipedo

- si può fare anche con il cerchio
- condizioni al bordo a coefficienti costanti su ogni lato del quadrato

Separazione di variabili

Due sottoproblemi agli autovalori

- i conti
- la tabella con i risultati

Un problema di ordinamento

Esempio caso condizioni di Dirichlet

facciamo qui un esempio numerico con Ly diverso da Lz e i conti proprio questa ultima slide ci da il la per la seconda sezione