Practical: 06

Title: Implement K-Means clustering/ hierarchical clustering on sales_data_sample.csv dataset.Determine the number of clusters using the elbow method. Dataset link:

https://www.kaggle.com/datasets/kyanyoga/sample-sales-data

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import sklearn

dataset = pd.read_csv('/content/sales_data_sample.csv',sep=",", encoding='Latin-1')

dataset.head()

8	ORDERNUMBER	QUANTITYORDERED	PRICEEACH	ORDERLINENUMBER	SALES	ORDERDATE	STA
0	10107	30	95.70	2	2871.00 2765.90 3884.34 3746.70 5205.27	2/24/2003	Ship
·	10101	33	000	_		0:00	
1	10121	34	81.35	5		5/7/2003 0:00	Ship
2	10134	41	94.74	2		7/1/2003 0:00	Ship
3	10145	45	83.26	6		8/25/2003 0:00	Ship
4	10159	49	100.00	14		10/10/2003	Ship
5 r	ows × 25 column	S					
4							•

dataset.tail()

	ORDERNUMBER	QUANTITYORDERED	PRICEEACH	ORDERLINENUMBER	SALES	ORDERDATE
2818	10350	20	100.00	15	2244.40	12/2/2004 0:00
2819	10373	29	100.00	1	3978.51	1/31/2005 0:00
2820	10386	43	100.00	4	5417.57	3/1/2005 0:00
2821	10397	34	62.24	1	2116.16	3/28/2005 0:00
	10111		^= = <u>^</u>	•	0070 44	5/6/2005

dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2823 entries, 0 to 2822
Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype
0	ORDERNUMBER	2823 non-null	int64
1	QUANTITYORDERED	2823 non-null	int64
2	PRICEEACH	2823 non-null	float64
3	ORDERLINENUMBER	2823 non-null	int64
4	SALES	2823 non-null	float64
5	ORDERDATE	2823 non-null	object
6	STATUS	2823 non-null	object
7	QTR_ID	2823 non-null	int64
8	MONTH_ID	2823 non-null	int64
9	YEAR_ID	2823 non-null	int64
10	PRODUCTLINE	2823 non-null	object
11	MSRP	2823 non-null	int64
12	PRODUCTCODE	2823 non-null	object
13	CUSTOMERNAME	2823 non-null	object
14	PHONE	2823 non-null	object
15	ADDRESSLINE1	2823 non-null	object
16	ADDRESSLINE2	302 non-null	object
17	CITY	2823 non-null	object
18	STATE	1337 non-null	object
19	POSTALCODE	2747 non-null	object
20	COUNTRY	2823 non-null	object
21	TERRITORY	1749 non-null	object
22	CONTACTLASTNAME	2823 non-null	object
23	CONTACTFIRSTNAME	2823 non-null	object
24	DEALSIZE	2823 non-null	object

dtypes: float64(2), int64(7), object(16)

memory usage: 551.5+ KB

dataset.shape

(2823, 25)

dataset.isnull().sum()

Χ

```
ORDERNUMBER
                            0
     QUANTITYORDERED
                            0
     PRICEEACH
                            0
     ORDERLINENUMBER
                            0
     SALES
                            0
                            0
     ORDERDATE
     STATUS
                            0
     QTR ID
                            0
     MONTH_ID
                            0
     YEAR_ID
                            0
     PRODUCTLINE
                            0
                            0
     MSRP
     PRODUCTCODE
                            0
                            0
     CUSTOMERNAME
     PHONE
                            0
     ADDRESSLINE1
                            0
     ADDRESSLINE2
                         2521
     CITY
                            0
     STATE
                         1486
     POSTALCODE
                           76
     COUNTRY
                            0
     TERRITORY
                         1074
     CONTACTLASTNAME
                            0
     CONTACTFIRSTNAME
                            0
                            0
     DEALSIZE
     dtype: int64
X = dataset.iloc[:, [1, 2]].values
     array([[ 30. , 95.7 ],
            [ 34. , 81.35],
            [ 41. , 94.74],
            ...,
            [ 43. , 100. ],
            [ 34. , 62.24],
            [ 47. , 65.52]])
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
    kmeans.fit(X)
    wcss.append(kmeans.inertia_)
plt.plot(range(1,11), wcss)
plt.xlabel("Number of Clusters")
plt.ylabel("WCSS")
plt.show()
```


kmeans = KMeans(n_clusters = 5, init = "k-means++", random_state = 42)
y_kmeans = kmeans.fit_predict(X)

y_kmeans

array([3, 1, 0, ..., 0, 2, 1], dtype=int32)

```
plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 60, c = 'red', label = 'Cluster1
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 60, c = 'blue', label = 'Cluster
plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 60, c = 'green', label = 'Cluste
plt.scatter(X[y_kmeans == 3, 0], X[y_kmeans == 3, 1], s = 60, c = 'violet', label = 'Clust
plt.scatter(X[y_kmeans == 4, 0], X[y_kmeans == 4, 1], s = 60, c = 'yellow', label = 'Clust
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 100, c = 'bl
plt.xlabel('Quantity Ordered')
plt.ylabel('Price Each')
plt.legend()
```

plt.show()

Colab paid products - Cancel contracts here

