北京工业大学 2022—2023 学年第一学期 《高等数学(工)—1》期末考试试卷 A 卷

考试说明: 考试日期: 2022 年 12 月 14 日。考试时间: 95 分钟。考试方式: 闭卷 承诺:

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,在考试过程中自觉遵守有关规定和纪律,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考,若有违反,愿接受相应处分。

承诺人:		学号:		班号:			
	式卷共 <u>二</u> 氏和草稿纟	氏。	, 满分 100 分,考 汇 总 表(阅卷教师		······ 烧后附	 加的统	
题 号			=	总成约	总成绩		
满分		90	10				
得 分							
 得 分		单项选择题:((在每小题给出的	为四个选项中	只有	与一项	
		十次远洋巡。((在47)处印山口	7日十起次十,	<i>/</i> \/	1 7	
	符合题	5目要求,请将	将正确选项的字 。	母写在括号内	. 本フ	大题共	
30 小题, 每小题 3 分, 共 90 分.)							
1. 若 $f(x) = \begin{cases} (1+2x)^{\frac{1}{x}} & x \neq 0 \text{ 在 } x = 0 \text{ 处连} \end{cases}$			=0 处连续,则 <i>a</i> =		()	
A. 1		B. \sqrt{e}	C. e^2	D. 2			
2. 设函数 $y = f(x)$ 由方程 $xy + 2\ln x = y^4$ 所确定,则曲线 $y = f(x)$ 在点(1,1) 处的切							
线》	方程为				()	

A. y = x B. y = -x C. x + y = 2 D. x - y = 2

3.
$$x = 0$$
 是 $f(x) = x \cdot \cos \frac{1}{2x}$ 的哪一类间断点 ()

- A. 跳跃间断点 B. 无穷间断点 C.可去间断点 D. 不是间断点

4.
$$\lim_{x \to 0} \frac{f(3x) - f(0)}{2x} = 1$$
, $\iint f'(0) =$

- A. $\frac{3}{2}$ B. $\frac{2}{3}$ C. 6 D. $\frac{1}{6}$

5. 设
$$\begin{cases} x = \ln(1+t^2) \\ y = t - \arctan t \end{cases}$$
 确定了函数 $y = y(x)$,则
$$\frac{d^2x}{dy^2} \Big|_{t=1} =$$
 (

- A. 1 B. $-\frac{1}{2}$ C. 2 D. -4

6.
$$y = x^2 - 4x + 10$$
 在点 (2,6) 处的曲率为

- A. 0
- B. $\frac{1}{2}$

- C. 2 D. $\frac{1}{(1+r^2)^{\frac{3}{2}}}$

7. 当
$$x > 0$$
 时,曲线 $y = x \sin \frac{1}{x}$ (

- A. 有且仅有水平渐近线
- B. 有且仅有垂直渐近线
- C. 既有水平渐近线又有垂直渐近线 D. 既无水平渐近线也无垂直渐近线

- A. 左、右导数都存在但不相等
- B. 左导数存在但右导数不存在
- C. 左导数不存在但右导数存在 D. 左、右导数都不存在

9. 设函数
$$f(x)$$
 的导函数为 $\sin x$,则 $f(x)$ 的一个原函数为 ()

- A. $1+\sin x$ B. $1-\sin x$
- C. $1 + \cos x$ D. $1 \cos x$

- A. $2\sqrt{1+2x}$ B. $\sqrt{1+2x}$ C. $\sqrt{1+4x^2}$ D. $2\sqrt{1+4x^2}$

11. 关于方程
$$x^5 + 2x^3 + 3x + 4 = 0$$
,下列说法正确的是 () 资料由公众号 [工大喵] 收集整理并免费分享

A. 无实根 B. 有唯一实根 C. 有三个不同的实根 D. 有五个不同的实根

12. 函数
$$y = x^{1+x}$$
, 则 $dy|_{x=2} =$ ()

- A. 12dx
- B. $8 \ln 2 dx$ C. $(8 \ln 2 + 12) dx$ D. 8 dx

13. 当
$$x \to 0$$
时, $(1-\cos x)^2$ 是 $\sin^2 x$ 的

- A. 高阶无穷小 B. 同阶无穷小,但不等价 C. 低阶无穷小 D. 等价无穷小
- 14. $f(x) = \frac{1}{1+2x}$ 的 n 阶麦克劳林多项式为 $P_n(x) = a_0 + a_1 x + \dots + a_n x^n$,则

$$a_n =$$
 ()

- A. $(-1)^n 2^n \cdot n!$ B. $(-1)^n 2^n$ C. $\frac{(-1)^n}{2^n}$ D. $\frac{(-1)^n 2^n}{n!}$

15. 设
$$f(x) = e^{x}(x-1)^{2}$$
,则关于 $f(x)$ 的极值,下面说法正确的是 ()

- A. x=-1 不是极值点, x=1 是极值点
- B. x=-1 是极大值点, x=1 是极小值点
- C. x=-1是极小值点, x=1是极大值点
- D. x=-1, x=1都不是极值点

A.
$$\frac{2022!}{3} \left[\frac{1}{(x-4)^{2023}} - \frac{1}{(x-1)^{2023}} \right]$$
 B. $\frac{2022!}{3} \left[\frac{1}{(x-4)^{2022}} - \frac{1}{(x-1)^{2022}} \right]$

B.
$$\frac{2022!}{3} \left[\frac{1}{(x-4)^{2022}} - \frac{1}{(x-1)^{2022}} \right]$$

C.
$$\frac{2022!}{3} \left[\frac{1}{(x-1)^{2023}} - \frac{1}{(x-4)^{2023}} \right]$$
 D. $\frac{2022!}{3} \left[\frac{1}{(x-1)^{2022}} - \frac{1}{(x-4)^{2022}} \right]$

D.
$$\frac{2022!}{3} \left[\frac{1}{(x-1)^{2022}} - \frac{1}{(x-4)^{2022}} \right]$$

17. 曲线
$$y = (x-5)x^{\frac{2}{3}}$$
的拐点坐标为

- A. (0,0) B. $(2,-3\sqrt[3]{4})$
- C. 无拐点 D. (-1,-6)

18. 设
$$y = f(\sqrt{x})$$
, 其中 $f(x)$ 具有连续的一阶导数,则 $y' =$ ()

A.
$$\frac{\left(f(\sqrt{x})\right)'}{2\sqrt{x}}$$
 B. $\frac{f'(\sqrt{x})}{\sqrt{x}}$

B.
$$\frac{f'(\sqrt{x})}{\sqrt{x}}$$

C.
$$\frac{f'(\sqrt{x})}{2\sqrt{x}}$$

D.
$$f'(\sqrt{x})$$

19.
$$\int_{-2}^{2} \frac{|x| + x}{2 + x^2} \, \mathrm{d}x =$$

(

D. 0

$$20. \int x \cos^2 x dx =$$

()

A.
$$\frac{1}{4}x^2 + \frac{x}{4}\sin 2x + \frac{1}{8}\cos 2x + C$$

B.
$$\frac{1}{4}x^2 + \frac{x}{4}\sin 2x - \frac{1}{8}\cos 2x + C$$

C.
$$\frac{1}{2}x^2 + \frac{x}{4}\sin 2x + \frac{1}{8}\cos 2x + C$$

D.
$$\frac{1}{2}x^2 - \frac{x}{4}\sin 2x - \frac{1}{8}\cos 2x + C$$

21.
$$\int_{1}^{5} \frac{x-1}{1+\sqrt{2x-1}} dx =$$

A.
$$\frac{7}{3}$$
 B. $\frac{19}{3}$

B.
$$\frac{19}{3}$$

C.
$$\frac{44}{3}$$

D.
$$\frac{80}{3}$$

22.
$$\int_{-5}^{5} 4\sqrt{25 - x^2} \, \mathrm{d}x =$$

A.
$$\frac{25\pi}{2}$$

C.
$$50\pi$$

D.
$$100\pi$$

23. 广义积分
$$\int_0^{+\infty} \frac{\mathrm{d}x}{x^2 + 2x + 2} =$$

B.
$$\frac{\pi}{2}$$

C.
$$\frac{3\pi}{4}$$

D.
$$\frac{\pi}{4}$$

24. 由
$$y = \ln x$$
, $y = \ln 2$, $y = \ln 4$ 和 y 轴所围成的图形的面积为

25. 曲线
$$y = \frac{\sqrt{x}}{3}(3-x)$$
上相应于 $1 \le x \le 3$ 的弧长为

$$A. \quad \frac{1}{2} \int_{1}^{3} \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right)^{2} dx$$

B.
$$\frac{1}{2}\int_{1}^{3} \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) dx$$

C.
$$\int_{1}^{3} \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right) dx$$

D.
$$\int_{1}^{3} \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right)^{2} dx$$

26. 由
$$y = x^2 - 2x$$
, $x = 1$ 和 x 轴所围图形绕 y 轴旋转所得立体的体积为()

A.
$$\pi \int_{-1}^{0} (1 + \sqrt{1 - y})^2 dy - \pi$$

B.
$$\pi \int_{-1}^{0} (1 - \sqrt{1 - y})^2 dy - \pi$$

C.
$$\pi - \pi \int_{-1}^{0} (1 - \sqrt{1 + y})^2 dy$$

D.
$$\pi - \pi \int_{1}^{0} (1 + \sqrt{1 + y})^2 dy$$

27.
$$\int_0^{\frac{\pi}{2}} \cos^5 x dx =$$

A.
$$\frac{8}{15}\pi$$
 B. $\frac{4}{15}\pi$

B.
$$\frac{4}{15}\pi$$

C.
$$\frac{8}{15}$$

C.
$$\frac{8}{15}$$
 D. $\frac{4}{15}$

28. 设函数
$$f(x) = \begin{cases} e^{-x}, & x < 0 \\ x, & x \ge 0 \end{cases}$$
, 记 $F(x) = \int_{-1}^{x} f(t) dt$, 则

A.
$$F(x) = \begin{cases} e-1, & x < 0 \\ \frac{x^2}{2} + \frac{1}{2}, & x \ge 0 \end{cases}$$
 B. $F(x) = \begin{cases} e-e^{-x}, & x < 0 \\ \frac{x^2}{2} + \frac{1}{2}, & x \ge 0 \end{cases}$

B.
$$F(x) = \begin{cases} e - e^{-x}, & x < 0 \\ \frac{x^2}{2} + \frac{1}{2}, & x \ge 0 \end{cases}$$

C.
$$F(x) = \begin{cases} e - e^{-x}, & x < 0 \\ e - 1 + \frac{x^2}{2}, & x \ge 0 \end{cases}$$
 D. $F(x) = \begin{cases} e - 1, & x < 0 \\ e - 1 + \frac{x^2}{2}, & x \ge 0 \end{cases}$

D.
$$F(x) = \begin{cases} e-1, & x < 0 \\ e-1+\frac{x^2}{2}, & x \ge 0 \end{cases}$$

29.
$$I_1 = \int_e^x \ln t dt$$
 , $I_2 = \int_e^x \ln t^2 dt$, 其中 $x > 1$, 则

A. 仅当
$$x > e$$
时, $I_1 < I_2$

B. 对一切
$$x \neq e$$
有 $I_1 < I_2$

C. 仅当
$$x < e$$
时, $I_1 < I_2$

D. 对一切
$$x \neq e$$
有 $I_1 \geq I_2$

$$30. \lim_{n\to\infty}\sum_{i=1}^n\frac{i}{n^2}e^{\left(\frac{i}{n}\right)^2}=$$

A.
$$\int_0^1 e^x dx$$
 B.
$$\int_0^1 x e^x dx$$

B.
$$\int_{0}^{1} xe^{x} dx$$

$$C. \int_0^1 e^{x^2} dx$$

$$D. \int_0^1 x e^{x^2} dx$$

二、证明题: (本大题共2小题,每小题5分,共10分)

得 分

31 证明: $\frac{1}{2} \le \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin x}{x} dx \le \frac{\sqrt{2}}{2}$.

得 分

32. 设 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, 且 f(0) = 0, $f(\frac{1}{2}) = \frac{1}{2}$,

证明: 存在 $\xi \in (0,1)$, 使得 $f'(\xi) + 2[f(\xi) - \xi] = 1$.