Math 116: Practice Midterm

Owen Jones

2/16/2024

$$x y 26 1 0 1 17 0 1 1 1 0 1 1 1 8 -1 2 1 2 -3 m = -3(E(m) - 6) (mod 26) BANG 675$$

- 2. $n \mid x^3 y^3 \Rightarrow n \mid (x y)(x^2 + xy + y^2)$. Let $d = \gcd(x - y, n)$. If d = 1 then \exists integers s, t s.t $n(x^2 + xy + y^2)s + nt = (x^2 + xy + y^2) \Rightarrow n \mid (x^2 + xy + y^2)$ which is is known to be false. If d = n then $n \mid (x - y)$ which we also know to be false. Thus, d must be a non-trivial factor of n.
- 3. $a_0 = 2^{65} \equiv 8192 \pmod{n}$ $a_1 = (-129)^2 \equiv -1 \pmod{n}$ $\Rightarrow 8321$ is probably prime.
- 4. Let $c \in Im(E_k)$, i.e there exists some $m \in \mathcal{P}$ s.t $c = E_k(m)$. By (1), we obtain $D_k(c) = m \Rightarrow c = E_k(m) = E_k(D_k(c))$. It suffices to show $Im(E_k) = \mathcal{C}$. E_k must be 1 to 1 for (1) to hold because D_k can't map an encrypted message to multiiple plaintext messages. Because \mathcal{C} and \mathcal{P} are the same size, E_k must be onto. Thus, $\mathcal{C} = Im(E_k)$.