1 – Calcule a direção, o sentido e a intensidade do campo elétrico no ponto P da figura ao lado devido às três cargas pontuais, onde q = e.

2– Quais a intensidade, a direção e o sentido do campo elétrico no centro do quadrado da figura ao lado se $q = 1.0 \times 10^{-8} \text{ C e } a = 5.0 \text{ cm}$?

3 —Determine a intensidade, a direção e o sentido do campo elétrico no ponto P devidos ao dipolo elétrico na figura ao lado. P está localizado a uma distância r > d ao longo da bissetriz perpendicular à linha que une as cargas. Expresse a sua resposta em termos da intensidade, da direção e do sentido do momento de dipolo elétrico \overrightarrow{P} .

4 - A figura ao lado mostra dois anéis paralelos nãocondutores dispostos com seus eixos centrais ao longo de uma mesma linha (são colineares). O anel 1 possui carga uniforme q_1 e raio R; o anel 2 possui carga uniforme q_2 e o mesmo raio R. Os anéis estão separados por uma distância 3R. O campo elétrico resultante no ponto P sobre a linha comum, a uma distância R do anel

5 — Uma haste fina de vidro é encurvada em forma de semicírculo raio r. Na figura ao lado, Uma carga +q está uniformemente distribuída ao longo da metade superior e uma carga -q está uniformemente distribuída ao longo da metade inferior, como mostra a figura ao lado. Determine a intensidade a direção e o sentido do campo elétrico \overline{E} no ponto P, o centro do semicírculo.

