A Trans-dimensional Bayesian Model for Pattern Recognition in DNA Sequences

Sierra M. Li^{1*} Jon Wakefield² Steve Self³

Division of Oncology Biostatistics Sidney Kimmel Cancer Center
 Johns Hopkins School of Medicine Baltimore, MD 21205-2013
 email: sierrali@jhmi.edu Tel: (410) 664-4770 Fax: (410) 955-0859
 Department of Biostatistics University of Washington Seattle, WA 98195-7232
 Fred Hutchinson Cancer Research Center Seattle, WA 98109-1024

 * To whom correspondence should be addressed.

Supplementary Material

1 UPDATE NON-DIMENSION-CHANGING PARAMETERS

The values of q_0 , Q, A, and Z do not change the dimensionality of the parameter space and with their conjugate priors, we can easily update them via the Gibbs Sampler.

Let $\Theta_{-\boldsymbol{q}_0}$ and $\Theta_{-\boldsymbol{q}_{mi}}$ denote the parameter set without \boldsymbol{q}_0 and \boldsymbol{q}_{mi} , respectively. Because $\pi(\boldsymbol{q}_0|\Theta_{-\boldsymbol{q}_0},\boldsymbol{Y}) \propto p(\boldsymbol{Y}|\Theta)\pi(\Theta) \propto \boldsymbol{q}_0^{\boldsymbol{c}_0+\boldsymbol{\delta}_0}$ and $\pi(\boldsymbol{q}_{mi}|\Theta_{-\boldsymbol{q}_{mi}},\boldsymbol{Y}) \propto p(\boldsymbol{Y}|\Theta)\pi(\Theta) \propto \boldsymbol{q}_0^{\boldsymbol{c}_{mi}+\boldsymbol{\delta}}$, the conditional posteriors for \boldsymbol{q}_0 and \boldsymbol{q}_{mi} are $\mathrm{Dir}(\boldsymbol{c}_0+\boldsymbol{\delta}_0)$ and $\mathrm{Dir}(\boldsymbol{c}_{mi}+\boldsymbol{\delta})$, for $i=1,2,\cdots,W_m,\ m=1,2,\cdots,M$.

Updating $(a_{m,n}, z_{m,n})$, the location and orientation of site n in motif m, provides a means to replace a current site by a new site. The joint prior $\pi(a_{m,n}, z_{m,n}|\Theta_{-\{a_{m,n}, z_{m,n}\}})$ is $1/(2|\mathbf{L}(a_{m,n}|\Theta_{-a_{m,n}})|)$, where $|\mathbf{L}(a_{m,n}|\Theta_{-a_{m,n}})|$ is the number of possible positions for $a_{m,n}$. Let \mathbf{c}_{mni} denote the 4×1 vector of nucleotide indicators for site n, at the i-th position in motif m, taking into account the orientation of site n. We use \mathbf{d}_{mni} to denote the 4×1 vector of nucleotide indicators for corresponding "background"

loss", where d_{mi} does not consider the orientation of the site. Both c_{mni} and d_{mni} are unit vectors, since they are the counts at a single nucleotide. It is easy to see that $c_{mi} = \sum_{n=1}^{N_m} c_{mni}$ and $d_{mi} = \sum_{n=1}^{N_m} d_{mni}$.

Letting c_Y denote the 4×1 vector of nucleotides counts for bases in Y, including both the background and motif bases, we have $c_Y = c_0 + \sum_{m=1}^M \sum_{n=1}^{N_m} \sum_{i=1}^{W_m} d_{mni}$. The likelihood in can be written as $P(Y|\Theta) = q_0^{c_Y} \prod_{m=1}^M \prod_{n=1}^{N_m} \prod_{i=1}^{W_m} q_{mi}^{c_{mni}}/q_0^{d_{mni}}$, so the joint conditional posterior is easily derived as

$$\pi(a_{m,n}, z_{m,n} | \boldsymbol{\Theta}_{-\{a_{m,n}, z_{m,n}\}}, \boldsymbol{Y}) \propto \prod_{i=1}^{W_m} \frac{\boldsymbol{q}_{mi}^{\boldsymbol{c}_{mni}}}{\boldsymbol{q}_0^{\boldsymbol{d}_{mni}}},$$
(1.1)

where \boldsymbol{c}_{mni} and \boldsymbol{d}_{mni} depend on $(a_{m,n}, z_{m,n})$.

The computation time for updating all sites is proportional to $|L|^{\sum_{m=1}^{M} N_m}$. This step becomes expensive when the sequence data is large. Consequently, we update $(a_{m,n}, z_{m,n})$ every few hundred of iterations.

2 UPDATE DIMENSION-CHANGING PARAMETERS

The dimension of the parameter space, $\Theta = (\boldsymbol{Q}, \boldsymbol{q}_0, \boldsymbol{A}, \boldsymbol{Z}, \boldsymbol{N}, \boldsymbol{W}, M)$, is $3 \sum_{m=1}^{M} W_m 3 + 2 \sum_{m=1}^{M} N_m + 2M + 4$, and is therefore a function of $\boldsymbol{N}, \boldsymbol{W}$ and M. Updating $\boldsymbol{N}, \boldsymbol{W}$ and M is associated with dimensional changes of the parameter space; therefore, simple Gibbs sampler and usual Metropolis-Hastings steps are no longer possible.

We use RJMCMC to update the parameters. Table 2.1 gives a schematic presentation of the probabilities of choosing moves, where M is the number of motifs and M_2 is the number of motifs with 2 sites and s_1 and s_2 are constants of choice. The motif birth step will be taken if there are currently no motifs. In practice, we have found that using $s_1 = 0.1$ and $s_2 = 0.5$ works well.

2.1 Move 1: change the width for a randomly selected motif.

When Move 1 is proposed, for a randomly selected motif m, its width W_m is randomly increased or decreased by 1, either at the front or the rear end of the motif.

Table 2.1: Probabilities for moves 1–4 in the RJMCMC algorithm; s_1 and s_2 are specified constants that lie in (0, 1).

M	M_2	η_W	η_N	η_b	η_d
0	0	0	0	1	0
$[1, M_{\text{max}} - 1]$	0	$(1-s_1)s_2$	$(1-s_1)(1-s_2)$	s_1	0
$[1, M_{\text{max}} - 1]$	[1, M]	$(1-s_1)s_2$	$(1-s_1)(1-s_2)$	$s_1/2$	$s_1/2$
$M_{ m max}$	0	s_2	$1 - s_2$	0	0
$M_{ m max}$	[1, M]	$(1-s_1)s_2$	$(1-s_1)(1-s_2)$	0	s_1

Recall that c_{mi} denotes the nucleotide count at the *i*-th position of motif m, over all N_m sites accounting for site orientations. Let c_{m0} represent the nucleotide count for adjacent bases directly preceding the sites, and $c_{m(W_m+1)}$ the count for bases directly following the sites.

Due to the expansion of the motif width, the loss of nucleotide count from the background is \mathbf{d}_{m0} or $\mathbf{d}_{m(W_m+1)}$. A column is added to the motif composition matrix \mathbf{Q}_m with \mathbf{q}_{mx} proposed from $\mathrm{Dir}(\mathbf{c}_{mx})$, x=0 or W_m+1 . The acceptance probability is $\min(1,\alpha_{W+})$ and

$$\alpha_{W+} = \frac{\text{candidate posterior}}{\text{current posterior}} \times \frac{\text{p(candidate point} \to \text{current point})}{\text{p(current point} \to \text{candidate point})} \times |J|$$

$$= \frac{L(\boldsymbol{Y}|\boldsymbol{\Theta}^*)}{L(\boldsymbol{Y}|\boldsymbol{\Theta})} \frac{\pi(\boldsymbol{\Theta}^*)}{\pi(\boldsymbol{\Theta})} \frac{p(\boldsymbol{\Theta}^* \to \boldsymbol{\Theta})}{p(\boldsymbol{\Theta} \to \boldsymbol{\Theta}^*)} |J|.$$
(2.1)

The Jacobian matrix $|J| = |\partial(\boldsymbol{\Theta}^*)/\partial(\boldsymbol{\Theta}, \boldsymbol{q}_{mi})| = 1$ and the proposal densities are

$$p(\mathbf{\Theta}^* \to \mathbf{\Theta}) = \frac{1}{M} \eta_W$$
 and $p(\mathbf{\Theta} \to \mathbf{\Theta}^*) = \frac{1}{M} \eta_W \frac{\Gamma(|\mathbf{c}_{mi} + \boldsymbol{\delta}|)}{\Gamma(\mathbf{c}_{mi} + \boldsymbol{\delta})} (\mathbf{q}_{mi})^{\mathbf{c}_{mi} + \boldsymbol{\delta}}$.

for i = 0 or $W_m + 1$.

It is easy to show $L(\mathbf{Y}|\mathbf{\Theta}^*)/L(\mathbf{Y}|\mathbf{\Theta}) = (\mathbf{q}_{mi})^{\mathbf{c}_{mi}}/\mathbf{q}_i^{\mathbf{d}_{mi}}$. Though it can be calculated in explicit but complicated form, we write $\pi(\mathbf{A}^*|\mathbf{N}, \mathbf{W}^*, M)/\pi(\mathbf{A}|\mathbf{N}, \mathbf{W}, M) = R_{W+}$, where R_{W+} is the ratio of the two priors, for the site locations \mathbf{A} , with and without the width expansion. When the dataset has sufficiently large $|\mathbf{L}|$, the prior ratio for site locations R_{W+} can be very closely approximated by 1. Therefore, the

prior ratio is $\pi(\boldsymbol{\Theta}^*)/\pi(\boldsymbol{\Theta}) = \pi(\boldsymbol{q}_{mi})R_{W+}$. Hence, the acceptance is min(1, α_{W+}), where

$$\alpha_{W+} = \boldsymbol{q}_0^{-\boldsymbol{d}_{mx}} R_{W+} \frac{\Gamma(|\boldsymbol{\delta}|)}{\Gamma(\boldsymbol{\delta})} \frac{\Gamma(\boldsymbol{c}_{mx} + \boldsymbol{\delta})}{\Gamma(|\boldsymbol{c}_{mx} + \boldsymbol{\delta}|)}, \quad x = 0 \text{ or } W_m + 1.$$
 (2.2)

Similarly, let R_{W-} be the prior ratio of \boldsymbol{A} with and without the width deduction. The acceptance rate of the reversible jump is $\min(1, \alpha_{W-})$, where

$$\alpha_{W-} = \boldsymbol{q}_0^{\boldsymbol{d}_{mx}} R_{W-} \frac{\Gamma(\boldsymbol{\delta})}{\Gamma(|\boldsymbol{\delta}|)} \frac{\Gamma(|\boldsymbol{c}_{mx} + \boldsymbol{\delta}|)}{\Gamma(\boldsymbol{c}_{mx} + \boldsymbol{\delta})}, \quad x = 1 \text{ or } W_m.$$
 (2.3)

2.2 Move 2: change the number of sites for a randomly selected motif.

When Move 2 is proposed, for a randomly selected motif m, the number of sites N_m is proposed to increase by 1, via the birth of a new site, or decrease by 1, via the death of a current site. When a new site of motif m, labeled N_{m+1} , is born, its location and orientation, a_{m,N_m+1} and z_{m,N_m+1} , are generated from their conditional posterior. It is easy to show |J| = 1, $L(\mathbf{Y}|\mathbf{\Theta}^*)/L(\mathbf{Y}|\mathbf{\Theta}) = \prod_{i=1}^{W_m} \mathbf{q}_{mi}^{\mathbf{c}_{m(N_m+1)i}}/\mathbf{q}_0^{\mathbf{d}_{m(N_m+1)i}}$ and $\pi(\mathbf{\Theta}^*)/\pi(\mathbf{\Theta}) = 2R_{N+}$, where R_{N+} is the conditional prior ratio of the site locations with or without the additional site. Let R_{N-} denote the conditional prior ratio of the site locations before and after the death of site n. The acceptance rates for the birth and death steps are min $(1, \alpha_{N+})$ and min $(1, \alpha_{N-})$, where

$$\alpha_{N+} = 2R_{N+} \sum_{a_{m,N_{m+1}}} \sum_{z_{m,N_{m+1}}} \left(\prod_{i=1}^{W_m} \frac{q_0^{\mathbf{d}_{m(N_{m+1})i}}}{q_{mi}^{\mathbf{c}_{m(N_{m+1})i}}} \right) \text{ and } \alpha_{N-} = \frac{1}{2R_{N-}} \sum_{a_{m,n}} \sum_{z_{m,n}} \left(\prod_{i=1}^{W_m} \frac{q_0^{\mathbf{d}_{mni}}}{q_{mi}^{\mathbf{c}_{mni}}} \right).$$
(2.4)

When the sequence data is sufficiently large, R_{N+} and R_{N-} are very close to $|\mathbf{L}(a_{m,N_m+1}|\mathbf{\Theta})|$ and $|\mathbf{L}(a_{m,n}|\mathbf{\Theta}_{-a_{m,n}})|$, respectively, where $|\mathbf{L}(a_{m,N_m+1}|\mathbf{\Theta})|$ is the number of available locations for the new site and $|\mathbf{L}(a_{m,n}|\mathbf{\Theta}_{-a_{m,n}})|$ is the number of available locations given $\mathbf{\Theta}_{-a_{m,n}}$. With these approximations, acceptance rates have the simple interpretation of average likelihood ratios over the available positions.

2.3 Move 3: birth of a new motif.

When we propose the birth of the motif labeled M+1 (with two sites), the width W_{m+1} is generated from a discrete uniform on $[W_{\min}, W_{\max}]$. The locations the two new-born sites are randomly selected from the available positions, from their conditional priors, the orientations are generated with a probability 1/2, and the motif composition Q_{M+1} is generated from the conditional posterior. Therefore, the proposal density $p(\Theta \to \Theta^*)$ is

$$\frac{\eta_b}{4|\boldsymbol{L}(\boldsymbol{a}_{M+1,1},\boldsymbol{a}_{M+1,2}|\boldsymbol{\Theta})|\;(W_{\max}-W_{\min}+1)}\prod_{i=1}^{W_{M+1}}\frac{\Gamma(|\boldsymbol{c}_{(M+1)i}+\boldsymbol{\delta}|)}{\Gamma(|\boldsymbol{c}_{(M+1)i}+\boldsymbol{\delta})}\boldsymbol{q}_{(M+1)i}^{\boldsymbol{c}_{(M+1)i}+\boldsymbol{\delta}}.$$

The proposal density $p(\mathbf{\Theta}^* \to \mathbf{\Theta}) = \eta_d$, and the likelihood ratio and the prior ratio are $L(\mathbf{Y}|\mathbf{\Theta}^*)/L(\mathbf{Y}|\mathbf{\Theta}) = \prod_{i=1}^{W_{M+1}} \mathbf{q}_{(M+1)i}^{\mathbf{c}_{(M+1)i}}/\mathbf{q}_0^{\mathbf{d}_{(M+1)i}}$, and

$$\frac{\pi(\boldsymbol{\Theta}^*)}{\pi(\boldsymbol{\Theta})} = \frac{\lambda}{4(M+1)(W_{\max} - W_{\min} + 1)} \prod_{i=1}^{W_{M+1}} R_{M+} \frac{\Gamma(|\boldsymbol{\delta}|)}{\Gamma(\boldsymbol{\delta})} \boldsymbol{q}_{(M+1)i}^{\boldsymbol{\delta}},$$

where $|\boldsymbol{L}(\boldsymbol{a}_{M+1,1}, \boldsymbol{a}_{M+1,2}|\boldsymbol{\Theta}|)$ stands for the number of available locations for $a_{M+1,1}$ and $a_{M+1,2}$ given $\boldsymbol{\Theta}$, and R_{M+} is the conditional prior ratio of site locations, with or without the 2 sites. It can be shown that $R_{M+}|\boldsymbol{L}(a_{M+1,1}, a_{M+1,2}|\boldsymbol{\Theta})|$ is very close to 1. Again, the Jacobian matrix |J| is 1. Thus, the acceptance probability is min(1, α_b), where

$$\alpha_{b} = \frac{\eta_{d}}{\eta_{b}} \frac{\lambda}{M+1} R_{M+} |\mathbf{L}(a_{M+1,1}, a_{M+1,2}|\mathbf{\Theta})|$$

$$\times \mathbf{q}_{0}^{-\sum_{i=1}^{W_{M+1}} \mathbf{d}_{mi}} \left(\frac{\Gamma(|\boldsymbol{\delta}|)}{\Gamma(\boldsymbol{\delta})}\right)^{W_{M+1}} \prod_{i=1}^{W_{M+1}} \frac{\Gamma(\mathbf{c}_{(M+1)i} + \boldsymbol{\delta})}{\Gamma(|\mathbf{c}_{(M+1)i} + \boldsymbol{\delta}|)},$$
(2.5)

2.4 Move 4: death of a motif.

When M is proposed to decrease by 1, we randomly select a motif with 2 sites, say it is labeled m, and propose that it dies. Let R_{M-} be the conditional prior ratio of

site locations, before and after the death of motif m. The acceptance rate is min(1, α_d), where

$$\alpha_{d} = \frac{\eta_{b}}{\eta_{d}} \frac{M}{\lambda} \frac{1}{|\boldsymbol{L}(a_{m,1}, a_{m,2}|\boldsymbol{\Theta}_{-\{a_{m,1}, a_{m,2}\}})| R_{M-}}$$

$$\times \boldsymbol{q}_{0}^{\sum_{i=1}^{W_{m}} \boldsymbol{d}_{mi}} \left(\frac{\Gamma(\boldsymbol{\delta})}{\Gamma(|\boldsymbol{\delta}|)}\right)^{W_{m}} \prod_{i=1}^{W_{m}} \frac{\Gamma(|\boldsymbol{c}_{mi} + \boldsymbol{\delta}|)}{\Gamma(\boldsymbol{c}_{mi} + \boldsymbol{\delta})},$$

$$(2.6)$$

and $|L(a_{m,1}, a_{m,2}|\Theta_{-\{a_{m,1}, a_{m,2}\}})| R_{M-}$ is very close to 1. Details of this calculation is similar to those in Section 2.3.

3 PERSISTENT MOTIFS IN OCT4, SOX2 AND NANOG CHIP

Figure 3.1: Sequence Logos for 5 motifs discovered in Oct4 ChiP study

Figure 3.2: Sequence Logos for 6 motifs discovered in Sox2 ChiP study

Figure 3.3: Sequence Logos for 8 motifs discovered in NANOG ChiP study