CS 179: GPU Computing

Recitation 2: Synchronization, Shared memory, Matrix Transpose

Synchronization

Ideal case for parallelism:

- no resources shared between threads
- no communication between threads

Many algorithms that require just a little bit of resource sharing can still be accelerated by massive parallelism of GPU

Examples needing synchronization

- (1) Parallel BFS
- (2) Summing a list of numbers
- (3) Loading data into a GPU's shared memory

__syncthreads()

- __syncthreads()
 synchronizes all threads in a
 block.
- Remember that shared memory is per block. Every block that is launched will have to allocate shared memory for its own itself on its resident SM.
- This __synchthreads() call is very useful for kernels using shared memory.

Atomic instructions: motivation

Two threads try to increment variable x=42 concurrently. Final value should be 44.

Possible execution order:

```
thread 0 load x (=42) into register r0
thread 1 load x (=42) into register r1
thread 0 increment r0 to 43
thread 1 increment r1 to 43
thread 0 store r0 (=43) into x
thread 1 store r1 (=43) into x
Actual final value of x: 43
:(
```

Atomic instructions

- An atomic instruction executes as a single unit, cannot be interrupted.
- Serial access

Atomic instructions on CUDA

Syntax: atomicAdd(float *address, float val)

Work in both global and shared memory!

(Synchronization) budget advice

Do more cheap things and fewer expensive things!

Example: computing sum of list of numbers

Naive:

each thread atomically increments each number to accumulator in global memory

Sum example

Smarter solution:

- each thread computes its own sum in register
- use warp shuffle (next slide) to compute sum over warp
- each warp does a single atomic increment to accumulator in global memory
- Reduce number of atomic instructions by a factor of 32 (warp size)

Warp-synchronous programming

What if I only need to synchronize between all threads in a warp?
Warps are already synchronized!

Can reduce __syncthreads() calls

Warp shuffle

Read value of register from another thread in warp.

```
int __shfl(int var, int srcLane, int width=warpSize)
```

Extremely useful to compute sum of values across a warp.

First available on Kepler (no Fermi, only CC >= 3.0)

Quick Aside: blur_v from Lab 1

```
blur_device.cu x

public device.cu x

#include <cuda_runtime.h>

#include "blur_device.cuh"

public device.cuh"

global_

void cudaBlurKernel(const float *raw_data, const float *blur_v, float *out_data, int n_frames, int blur_v_size) {

// TODO: Fill in the implementation for the GPU-accelerated convolution.

//

// It may be helpful to use the information in the lecture slides, as well

// as the CPU implementation, as a reference.

}
```

Shared memory is great place to put blur v.

- blur_v is relatively small and easily fits in shared memory.
- Every thread reads from blur v
- Stride 0 access. No bank conflicts – all values broadcasted for i > GAUSSIAN_SIZE (majority of threads)

Lab 2

- (1) Questions on latency hiding, thread divergence, coalesced memory access, bank conflicts, instruction dependencies
- (2) What you actually have to do: Need to comment on all non-coalesced memory accesses and bank conflicts in provided kernel code. Lastly, improve the matrix transpose kernel by using cache and memory optimizations.

Matrix Transpose

```
C:\Windows\system32\cmd.exe
C:\Users\sunbo\Desktop\lab2>transpose
Size 512 naive CPU: 0.717173 ms
Size 512 GPU memcpy: 0.049180 ms
Size 512 naive GPU: 0.035495 ms
Size 512 shmem GPU: 0.013257 ms
Size 512 optimal GPU: 0.014113 ms
Size 1024 naive CPU: 4.053718 ms
Size 1024 GPU memcpy: 0.068424 ms
Size 1024 naive GPU: 0.013685 ms
Size 1024 shmem GPU: 0.014113 ms
Size 1024 optimal GPU: 0.013685 ms
Size 2048 naive CPU: 42.969670 ms
Size 2048 GPU memcpy: 0.038489 ms
Size 2048 naive GPU: 0.016678 ms
Size 2048 shmem GPU: 0.022666 ms
Size 2048 optimal GPU: 0.014113 ms
Size 4096 naive CPU: 230.006496 ms
Size 4096 GPU memcpy: 0.038489 ms
Size 4096 naive GPU: 0.012402 ms
Size 4096 shmem GPU: 0.022666 ms
Size 4096 optimal GPU: 0.026942 ms
```

An interesting IO problem, because you have a stride 1 access and a stride n access. Not a trivial access pattern like "blur v" from Lab 1.

Transpose is just a fancy memcpy, so memcpy provides a great performance target.

Note: This example output is for a clean project without the shmem and optimal kernels completed. Your final output should show a decline in kernel time for the different kernels.

Matrix Transpose

```
global
void naiveTransposeKernel(const float *input, float *output, int n) {
// launched with (64, 16) block size and (n / 64, n / 64) grid size
// each block transposes a 64x64 block
const int i = threadIdx.x + 64 * blockIdx.x;
int j = 4 * threadIdx.y + 64 * blockIdx.y;
const int end j = j + 4;
for (; j < end j; j++) {
         output[j + n * i] = input[i + n * j];
```

Shared memory & matrix transpose

Idea to avoid non-coalesced accesses:

- Load from global memory with stride 1
- Store into shared memory with stride x
- __syncthreads()
- Load from shared memory with stride y
- Store to global memory with stride 1

Choose values of x and y perform the transpose.

Showing the first 7/32 banks filled with arbitrary integers

Bank 7	7	15	23				
Bank 6	6	14	22				
Bank 5	5	13	21	****			
Bank 4	4	12	20	***			
Bank 3	3	11	19	***			
Bank 2	2	10	18				
Bank I	1	9	17	1,250			
Bank 0	0	8	16				

OK: one shared memory access is broadcast in parallel to all the threads in the half-warp.

OK: this access pattern satisfies the main rule as all threads in the half-warp access different shared memory banks.

Not OK: in this case all threads in a half warp access the same bank. The read/writes are bank conflicted, and are performed sequentially. In this example the read/write performance would be 1/8 of maximum.

Avoiding bank conflicts

You can choose x and y to avoid bank conflicts.

A stride n access to shared memory avoids bank conflicts iff gcd(n, 32) == 1.

ta_utils.cpp

- Included in the UNIX version of this set
- Should minimize lag or infinite waits on GPU function calls.
- Please leave these functions in the code if you are using Haru
- Namespace TA_Utilities

```
ta utilities.hpp 💠 🗙
     // TA Utilities.hpp
     // Allow a shared computer to run smoothly when it is being used
     // by students in a CUDA GPU programming course.
     // TA Utilities.cpp/hpp provide functions that programatically limit
     // the execution time of the function and select the GPU with the
     // lowest temperature to use for kernel calls.
     #pragma once

    □ namespace TA Utilities

        /* Create a child thread that will kill the parent thread after the
            specified time limit has been exceeded. UNIX only */
         void enforce time limit(int time limit);
        /* Select the least utilized GPU on this system. Estimate
            GPU utilization using GPU temperature. UNIX only. */
         void select coldest GPU();
                                                       Col 5
                                                                     Ch 5
                                          Ln 21
```