I - Exercice 1

I.A -

Comme f est positive, on a $\forall x \in \mathbb{R}_+$, $f''(x) \geq f(x) \geq 0$, donc f'' est positive, f est donc convexe Car f est continue sur \mathbb{R}_+ , on a donc la courbe représentative de f est au-dessus ses tangentes. Soit $a \in \mathbb{R}_+$, on a donc $\forall x \in \mathbb{R}_+$, $f(x) \geq f'(a)(x-a)+f(a)$. Si f'(a)>0, on a $f(x)\geq f'(x-a)+f(a) \xrightarrow[x\to+\infty]{} +\infty$, c'est l'absurde(f) est bornée sur \mathbb{R}_+ d'après l'énoncé). Donc $f'(a)\leq 0$

On a donc $\forall a \in \mathbb{R}_+, f'(a) \leq 0$, donc f' est négative sur $\mathbb{R}_+, f'(a) \leq 0$

I.B -

f est décroissante est bornée sur $\mathbb{R}_+,$ donc f admet une limite, on le note l

Car f" est positive sur \mathbb{R}_+ , donc f' est croissante sur \mathbb{R}_+ . f' admet aussi une limite car elle est majorée par 0, on le note l'

Soit $a \in \mathbb{R}_+$, soit $x \in \mathbb{R}_+$ tel que x > a, d'après TAF, on a il existe $\xi \in]a, x[$, tel que $f'(\xi) = \frac{f(x) - f(a)}{x - a}$, on a donc $l' = f'(\xi) \xrightarrow[x \to +\infty]{} (l - f(a)) \times 0 = 0$. Alors $\lim_{x \to +\infty} f'(x) = l' = 0$,

On a aussi $\forall x \in \mathbb{R}_+, f^{"}(x) \geq f(x) \geq l$ car f est décroissante, donc de même méthode, soit $b \in \mathbb{R}_+$, soit $x \in \mathbb{R}_+$ tel que x > b, d'après TAF, on a il existe $\lambda \in]b, x[$, tel que $l \leq f^{"}(\lambda) = \frac{f'(x) - f'(b)}{x - b}$, donc $l \leq \frac{l' - f'(b)}{x - b} \xrightarrow[x \to +\infty]{} 0$. Car f est positive, donc $l \geq 0$, donc $\lim_{x \to +\infty} f(x) = l = 0$

I.C -

On a $\forall x \in \mathbb{R}_+$, $h'(x) = [f''(x) - f(x)]e^{-x} \le 0$, h est donc croissante.

De puis, on a $h(x) = \frac{f(x) + f'(x)}{e^x} \xrightarrow[x \to +\infty]{} 0$, car h est croissante, on a $\forall x \in \mathbb{R}_+, h(x) \le 0$.

On a donc $\forall x \in \mathbb{R}_+, f(x) + f'(x) \le 0$ car $x \mapsto e^{-x}$ est positive. Et on a $\forall x \in \mathbb{R}_+, g'(x) = [f(x) + f'(x)]e^x \le 0$, g est donc décroissante

I.D -

Car g est décroissante, on a $\forall x \in \mathbb{R}_+, f(0)e^0 \ge f(x)e^x$, donc $\forall x \in \mathbb{R}_+, f(x) \le f(0)e^{-x}$

II - Exercice 2

II.A -

Soit $x \in \mathbb{R}$, on note $u_n = \frac{|x - a_n|}{3^n}$. C'est une série à termes positifs. On a $u_n \sim \frac{1}{3^n}$ car $(a_n)_{n \in \mathbb{N}}$ est bornée, donc $\sum u_n$ converge car $\sum \frac{1}{3^n}$ est une série géométrique converge. Donc f est bien définie sur \mathbb{R} Soit $(x,y) \in \mathbb{R}^2$, $t \in [0,1]$, on a

$$f(tx + (1-t)y) = \sum_{n=0}^{+\infty} \frac{|tx + (1-t)y - a_n|}{3^n}$$

$$\leq \sum_{n=0}^{+\infty} \frac{|tx - ta_n|}{3^n} + \sum_{n=0}^{+\infty} \frac{|(1-t)y - (1-t)a_n|}{3^n}$$

$$= t \sum_{n=0}^{+\infty} \frac{|x - a_n|}{3^n} + (1-t) \sum_{n=0}^{+\infty} \frac{|y - a_n|}{3^n}$$

$$= t f(x) + (1-t) f(y)$$

f est donc convexe

II.B -

soit $h \in \mathbb{R}$, on a

$$|f(a_0 + h) - f(a_0) - |h|| = \left| \sum_{n=0}^{+\infty} \frac{|a_0 + h - a_n|}{3^n} - \sum_{n=0}^{+\infty} \frac{|a_0 - a_n|}{3^n} - |h| \right|$$

$$= \left| \sum_{n=1}^{+\infty} \frac{|a_0 + h - a_n|}{3^n} + |h| - \sum_{n=1}^{+\infty} \frac{|a_0 - a_n|}{3^n} - |h| \right|$$

$$\leq \left| \sum_{n=1}^{+\infty} \frac{|a_0 - a_n|}{3^n} + \sum_{n=1}^{+\infty} \frac{|h|}{3^n} - \sum_{n=1}^{+\infty} \frac{|a_0 - a_n|}{3^n} \right|$$

$$= \left| \sum_{n=1}^{+\infty} \frac{|h|}{3^n} \right|$$

$$= |h| \left(\sum_{n=1}^{+\infty} \frac{1}{3^n} \right)$$

$$\leq \frac{|h|}{2}$$

Car $\sum_{n=1}^{+\infty} \frac{1}{3^n}$ converge(série géométrique convergente), et vaut $\frac{1/3}{1-1/3} = \frac{1}{2}$

Donc, on a
$$\forall h \in \mathbb{R}, |f(a_0 + h) - f(a_0) - |h|| \leq \frac{|h|}{2}$$

Car f est convexe, elle admet les dérivées à droite et à gauche en tous les $a_i, i \in \mathbb{N}$

On le montre par l'absurde : supposons que f est dérivable en tous les points de la suite $(a_n)_{n\in\mathbb{N}}$. Soit $i\in\mathbb{N}$, on note $f'_d(a_i)$ la dérivée de a_i à droite, $f'_g(a_i)$ la dérivée de a_i à gauche, $f'_g(a_i)\leq f'_d(a_i)$ car f est convexe

On suppose que $f'_d(a_i) = f'_g(a_i)$.

On a $|f(a_0 + h) - f(a_0) - |h|| \le \frac{|h|}{2}$, soit $h \ne 0$

 \blacktriangleright h > 0, on a donc

$$\frac{-h}{2} \le f(a_0 + h) - f(a_0) - h \le \frac{h}{2}$$

donc

$$\frac{1}{2} \le \frac{f(a_0 + h) - f(a_0)}{h} \le \frac{3}{2}$$

donc

$$\frac{1}{2} \le f'_d(a_0) = \lim_{h \to 0^+} \frac{f(a_0 + h) - f(a_0)}{h} \le \frac{3}{2}$$

 \blacktriangleright h < 0, on a donc

$$\frac{h}{2} \le f(a_0 + h) - f(a_0) + h \le -\frac{h}{2}$$

donc

$$-\frac{3}{2} \le \frac{f(a_0 + h) - f(a_0)}{h} \le -\frac{1}{2}$$

donc

$$-\frac{3}{2} \le f_g'(a_0) = \lim_{h \to 0^-} \frac{f(a_0 + h) - f(a_0)}{h} \le -\frac{1}{2}$$

on a

$$f'_d(a_0) \ge \frac{1}{2} > -\frac{1}{2} \ge f'_g(a_0)$$

Donc il est impossible que $f'_d(a_0) = f'_g(a_0)$, c'est l'absurde.

Finalement, |f| n'est pas dérivable en a_0

II.C -

Initialisation : f n'est pas dérivable en a_0

Hérédité: on suppose que (H_k) : f n'est pas dérivable en tous les $a_i, i \in [0, \dots, k]$ soit vrai. Pour le rang k+1, on a

$$f(x) = \sum_{n=0}^{+\infty} \frac{|x - a_n|}{3^n} = \sum_{n=0}^{k} \frac{|x - a_n|}{3^n} + \sum_{n=k+1}^{+\infty} \frac{|x - a_n|}{3^n}$$

Si on note $\forall i \in \mathbb{N}, b_i = a_{i+k+1}$, donc la suite $(b_n)_{n \in \mathbb{N}}$ est aussi une suite de réels bornée.

On a donc

$$\sum_{n=k+1}^{+\infty} \frac{|x-a_n|}{3^n} = \frac{1}{3^{k+1}} \sum_{n=0}^{+\infty} \frac{|x-b_n|}{3^n}$$

qui n'est pas dérivable en $b_0=a_{k+1}$ Et on a $\sum_{n=0}^k \frac{|x-a_n|}{3^n}$ est dérivable en a_{k+1} lorsque $a_{k+1}\neq a_i, \forall i\in [0,\cdots,k]$ (lorsque il existes $i \in [0, \dots, k]$ tel que $a_i = a_{k+1}$, f est indérivable en cet $a_i = a_{k+1}$

Alors, f n'est pas dérivable en a_{k+1} . Par notre hypothèse que f n'est pas dérivable en tous les $a_i, i \in [0, \cdots, k]$, on a donc f n'est pas dérivable en tous les $a_i, i \in [0, \cdots, k+1]$, (H_{k+1}) est encore vraie.

Finalement, on a f n'est pas dérivable en tous les $(a_n)_{n\in\mathbb{N}}$