Linear differential equations
Laplace transform
Solving LDEs with the Laplace transform
Properties of state-space representation
Transfer functions
Transient response analysis of first order and second order systems

Chapter 5: Continuous-time systems

July 27, 2015

Linear differential equations

Laplace transform Solving LDEs with the Laplace transform Properties of state-space representation Transfer functions

Transient response analysis of first order and second order systems

Outline

- Linear differential equations
- 2 Laplace transform
- 3 Solving LDEs with the Laplace transform
- Properties of state-space representation
- **5** Transfer functions
 - Impulse response and time constant
 - Relationship between state space and transfer functions
- Transient response analysis of first order and second order systems
 - First order systems
 - Second order systems

Linear differential equations: definitions 1/2

Linear differential equations (LDE) are of the following form:

$$L[y(t)] = f(t),$$

where L is some linear operator.

The linear operator *L* is of the following form:

$$L_n(y) = \sum_{i=0}^n A_i(t) \frac{d^{n-i}y}{dt^{n-i}},$$

with given functions $A_{1:n}$.

The **order of a LDE** is the index of the highest derivative of y.

Linear differential equations: definitions 2/2

$$L_n(y) = \sum_{i=0}^n A_i(t) \frac{d^{n-i}y}{dt^{n-i}} = f(t).$$

- y is a scalar function → ordinary differential equation (ODE);
- y is a vector function \rightarrow partial differential equation (PDE);
- f = 0 → homogeneous equation
 → solutions are called complementary functions;
- if $A_{0:n}(t)$ are constants (i.e. not functions of time), the LDE is said to have **constant coefficients**.

Example: radioactive decay 1/2

Let N(t) be the number of radioactive atoms at time t, then:

$$\frac{dN(t)}{dt} = -kN(t),$$

for some constant k > 0.

This is a first order homogeneous LDE with constant coefficients.

Example: radioactive decay 2/2

Decay of Carbon - 14

Solving homogeneous LDEs with constant cofficients 1/3

Solutions of LDEs must be of the form e^{zt} with $z \in \mathbb{C}$. We assume an LDE with constant coefficients:

$$\sum_{i=0}^n A_i y^{(n-i)} = 0.$$

Replacing $y = e^{zt}$ leads to:

$$\sum_{i=0}^{n} A_i z^{n-i} e^{zt} = 0$$

Dividing by e^{zt} yields the *n*th order **characteristic polynomial**:

$$F(z)=\sum_{i=0}^n A_i z^{n-i}=0.$$

Solving homogeneous LDEs with constant cofficients 2/3

Characteristic equation:

$$F(z) = \sum_{i=0}^{n} A_i z^{n-i} = 0.$$

- ① Solving the polynomial F(z) yields n zeros z_1 to z_n ;
- ② Substituting a given zero z_i into e^{zt} gives a solution e^{z_it} .

Homogeneous LDEs obey the superposition position:

 \rightarrow any linear combination of solutions $e^{z_1t}, \dots, e^{z_nt}$ is a solution

Solving homogeneous LDEs with constant cofficients 2/3

Characteristic equation:

$$F(z) = \sum_{i=0}^{n} A_i z^{n-i} = 0.$$

- ① Solving the polynomial F(z) yields n zeros z_1 to z_n ;
- ② Substituting a given zero z_i into e^{zt} gives a solution e^{z_it} .

Homogeneous LDEs obey the superposition position:

- \rightarrow any linear combination of solutions $e^{z_1t}, \ldots, e^{z_nt}$ is a solution
- $\rightarrow e^{z_1 t}, \dots, e^{z_n t}$ form a basis of the solution space of the LDE

The specific linear combination depends on initial conditions.

Solving homogeneous LDEs with constant cofficients 3/3

Example

$$y^{(4)}(t) - 2y^{(3)}(t) + 2y^{(2)}(t) - 2y^{(1)}(t) + y(t) = 0.$$

This is a 4th order homogeneous LDE with constant coefficients. The corresponding characteristic equation:

$$F(z) = z^4 - 2z^3 + 2z^2 - 2z + 1 = 0.$$

The zeros of F(z) are $(j = \sqrt{-1})$:

$$z_1 = j$$
, $z_2 = -j$, $z_{3,4} = 1$.

These zeros correspond to the following basis functions *t*:

$$e^{jt}$$
, e^{-jt} , e^t , te^t .

Linear differential equations

Laplace transform

Solving LDEs with the Laplace transform

Properties of state-space representation

Transfer functions

Transient response analysis of first order and second order systems

Outline

- Linear differential equations
- 2 Laplace transform
- 3 Solving LDEs with the Laplace transform
- 4 Properties of state-space representation
- Transfer functions
 - Impulse response and time constant
 - Relationship between state space and transfer functions
- Transient response analysis of first order and second order systems
 - First order systems
 - Second order systems

The Laplace transform

Definition

The Laplace transform of f(t), for all real numbers $t \geq 0$:

$$F(s) = \mathcal{L}\lbrace f(t)\rbrace = \int_0^\infty e^{-st} f(t) dt.$$

The parameter $s = \sigma + j\omega$ is the complex number frequency.

The initial value theorem states $f(0^+) = \lim_{s \to \infty} sF(s)$. The final value theorem states $f(\infty) = \lim_{s \to 0} sF(s)$, if all poles of sF(s) are in the left half plane (i.e. real part < 0).

Important properties of the Laplace transform

property	time domain	s-domain
linearity differentiation	$af(t)+bg(t) \ f^{(1)}(t)$	$aF(s)+bG(s) \ sF(s)-f(0)$
integration	$\int_0^t f(\tau)d\tau = (u*f)(t)$	$\frac{1}{s}F(s)$
convolution	$(f*g)(t)=\int_0^t f(\tau)g(t-\tau)d\tau$	$F(s) \cdot G(s)$
time scaling	f(at)	$\frac{1}{a}F(\frac{s}{a})$
time shifting	f(t-a)u(t-a)	$e^{-as}F(s)$

Inverse Laplace transform

Definition

The inverse Laplace transform converts s-domain to time domain:

$$f(t) = \mathcal{L}^{-1}{F(s)} = \frac{1}{j2\pi} \int_{\gamma-jT}^{\gamma+jT} e^{st} F(s) ds.$$

Practically, the inverse Laplace transform takes two steps:

- write F(s) in terms of partial fractions
- 2 transform each term in the partial fraction based on tables of s/t-domain pairs (course notes p. 4.32-4.33)