

Hochschule Karlsruhe Technik und Wirtschaft

UNIVERSITY OF APPLIED SCIENCES

Projektbericht

Optimierung von Programmen

Autor: Betreuer:

Adrian Weber Prof. Dr. Christian Pape

Inhaltsverzeichnis

1	Syst	emumgebung	3
2	Hin	weise zur Zeitmessung	4
3	Ver	wendete Algorithmen	5
	3.1	Minimumsuche	5
	3.2	Sortieren durch direkte Auswahl	6
	3.3	Sortieren durch direktes Einfügen	8
	3.4	Bottum-Up Mergesort	11
	3.5	Quicksort mit Three-Way-Partitioning	13
4	Zeit	messung: Ergebnisse	15
	4.1	Minimumsuche	15
	4.2	Sortieren durch direkte Auswahl	18
	4.3	Sortieren durch direktes Einfügen	20
	4.4	Bottom-Up Mergesort	22
	4.5	Quicksort	23

1 Systemumgebung

Die benötigten Komponenten für das Labor (Compiler, Debugger) für dieses Labor wurden mit *Cygwin* installiert. Die genauen Daten zur relevanten Hardware und den Versionen der Komponenten können aus Tabelle 1 entnommen werden.

Gerätebezeichnung	Samsung RFC 730 SE07DE
Prozessor	Intel(R) Core(TM) i7-2670QM COU @2.20GHz
Arbeitsspeicher	8GB (1333 Mhz)
Festplatte	Samsung SSD 850 EVO 250GB
Systemtyp	64-Bit Betriebssystem
Betriebssystem	Windows 10 Home Version 1607 (Build 14393.351)
Compiler	gcc-g++ Version 5.4.0-1
Debugger	gdb 7.11.1-2

Tabelle 1: Beschreibung des Testsystems.

2 Hinweise zur Zeitmessung

In diesem Projektbericht werden für verschiedene Algorithmen Zeitmessungen vorgenommen und tabellarisch dokumentiert. Alle Messungen finden unter den Bedingungen der in Kapitel 1 beschriebenen Systemumgebung statt. Zusätzlich gelten für die Zeitmessung folgende Vorgaben.

- Zeitmessungen werden mit dem Datentyp double durchgeführt.
- Für die Messungen wird die Bibliothek std::chrono in C++ verwendet.
- Die Feldgrößen entsprechen einer 2er-Potenz und werden solange verdoppelt, bis der Hauptspeicher nicht mehr ausreicht. Gestartet wird mit der Feldgröße n := 65536.
- Es gibt insgesamt drei Testszenarien für die Zeitmessung.
 - Der Algorithmus wird mit einer aufsteigen sortierten Folge getestet (In den Tabellen mit ASC bezeichnet).
 - Der Algorithmus wird mit einer absteigend sortierten Folge getestet (In den Tabellen mit DESC bezeichnet).
 - Der Algorithmus wird mit einer folge von generierten Zufallszahlen getestet
 (In den Tabellen mit RAND bezeichnet).

3 Verwendete Algorithmen

In diesem Abschnitt werden die verwendeten Algorithmen kurz Vorgestellt, dabei wird Bezug auf Funktionsweise und die Komplexität jedes Algorithmus genommen. Zusätzlich wird jede Ausführung in einem kleinen Beispiel gezeigt.

3.1 Minimumsuche

Die Minimumsuche sucht das kleinste Element in einer Menge von vergleichbaren Elementen und gibt dieses zurück. Dabei müssen alle Elemente mindestens einmal betrachtet werden, was eine Laufzeit von O(n) zur Folge hat. Der nachfolgende Pseudocode verdeutlicht die Vorgehensweise des Algorithmus.

```
1  A := array with comparable elements;
2  minimum = A[0];
3  for i = 1 to n do
4   if minimum > A[i] then
5    minimum = A[i];
6  end if
7  i := i + 1;
8  end for
```

Beispiel 3.1.1 - Ausführung der Minimumsuche

Für die Ausführung des Algorithmus wird das Array A, eine Variable minimum und eine Zählvariable i wie folgt initialisiert.

```
A := \{7, 4, 17, 1, 6, 7\}, \ minimum := A[0] = 7, \ i := 1
```

Im ersten Schritt der Schleife wird nun die Stelle A[i] (blau) mit dem aktuellen Minimum (rot) verglichen. Ist die Stelle A[i] größer als das aktuelle Minimum, wird dieses aktualisiert. Das ganze wiederholt sich, bis jedes Element einmal betrachtet wurde. Nachfolgend der Zustand der Variablen in Zeile vier der Minimumsuche.

```
A = \{7, 4, 17, 1, 6, 7\}, \ minimum = 7, \ i = 1
A = \{7, 4, 17, 1, 6, 7\}, \ minimum = 4, \ i = 2
A = \{7, 4, 17, 1, 6, 7\}, \ minimum = 4, \ i = 3
A = \{7, 4, 17, 1, 6, 7\}, \ minimum = 1, \ i = 4
A = \{7, 4, 17, 1, 6, 7\}, \ minimum = 1, \ i = 5
```

3.2 Sortieren durch direkte Auswahl

Der Algorithmus Sortieren durch direkte Auswahl (englisch Selectionsort) sortiert ein Array von Elementen in aufsteigender Reihenfolge. Dabei läuft der Algorithmus mit einer Variablen i über das Array der Größe SIZE, sucht im Bereich A[i] - A[SIZE] das Minimum MIN und vertauscht die Stellen A[i] und A[MIN]. So entsteht ein sortierter Bereich von A[0] - A[i].

Um ein Array mit n Elementen mittels Selectionsort zu soriteren, muss n-1-mal das Minimum bestimmt und vertauscht werden. Die Anzahl der notwendigen Vergleiche wären dann:

$$(n-1) + (n-2) + (n-3) + \dots + 3 + 2 + 1$$

 $\Leftrightarrow \frac{n^2}{2} - \frac{n}{2}$

Der Selectionsort-Algorithmus hat also eine Laufzeit von $O(n^2)$. Der Folgende Pseudocode beschreibt die Implementierung von Selectionsort.

```
1 A := array with comparable elements;
2 for i = 0 to n - 1 do
3    minimum = searchMin(A, i);
4    switch(A[i], minimum);
5 end for
```

Beispiel 3.2.1 - Ausführung Sortieren durch direkte Auswahl

Für die Ausführung des Algorithmus wird das Array A und eine Zählvariable i initialisiert. Zur Verdeutlichung werden wird i blau und das aktuell gefundene Minimum rot markiert. Der bereits sortierte Teil des Arrays wird grün markiert

$$A := \{7, 4, 17, 1, 6, 7\}, i := 0$$

Der Algorithmus startet bei A[0] = 7, dazu wird im Bereich A[0] - A[5] das Minimum 1 gefunden.

$$A = \{7, 4, 17, 1, 6, 7\}, i = 0$$

Anschließend wird das Minimum mit dem aktuellen Index vertauscht, da 7 > 1.

$$A = \{1, 4, 17, 7, 6, 7\}, i = 0$$

Nach dem vertauschen startet der nächste Schleifendurchlauf mit A[1] = 4.

$$A = \{1, 4, 17, 7, 6, 7\}, i = 1$$

In diesem Fall muss nicht getauscht werden da 4 bereits das Minimum ist.

$$A = \{1, 4, 17, 7, 6, 7\}, i = 1$$

Im nächsten Schritt wird A[2] = 17 mit dem gefundenen Minimum 6 aus A[2] - A[5] behandelt.

$$A = \{1, 4, 17, 7, 6, 7\}, i = 2$$

Wieder wird vertauscht, da 17 > 6.

$$A = \{1, 4, 6, 7, 17, 7\}, i = 2$$

Für A[3] = 7 wird kein Minimum gefunden, da 7 bereits das kleinste Element ist.

$$A = \{1, 4, 6, 7, 17, 7\}, i = 3$$

Anschließend werden noch A[4] = 17 mit dem letzten Minimum 7 aus A[4] - A[5] betrachtet.

$$A = \{1, 4, 6, 7, 17, 7\}, i = 4$$

Die Elemente werden vertauscht, da 17 > 7.

$$A = \{1, 4, 6, 7, 7, 17\}, i = 4$$

Anschließend terminiert der Algorithmus, dass letzte Element muss nicht mehr geprüft werden, da es bereits im letzte Schritt behandelt wurde.

3.3 Sortieren durch direktes Einfügen

Der Algorithmus Sortieren durch direktes Einfügen (englisch Insertionsort) sortiert ein Array in aufsteigender Reihenfolge. Dabei iteriert der Algorithmus in einer äußeren Schleife über das gesamte Array. Jedes Element wird anschließend in einer inneren Schleife mit jedem Vorgänger verglichen und vertauscht, solange dieser größer ist wie das aktuelle Element. Am Ende entsteht so ein vollständig sortiertes Array.

Der Algorithmus hat im durchschnittlichen und schlimmsten Fall eine Komplexitätsklasse von $O(n^2)$, im besten Fall eine Komplexität von O(n). Die Laufzeit im schlechtesten Fall ist jedoch immer schlecht, da für jedes Element stets j-1 Schiebeoperationen benötigt werden. Folgender Pseudocode beschreibt den Insertionsrot-Algorithmus:

```
1    A := array with comparable elements;
2    for i = 1 to n do
3       for j = i to j > 0 and A[j - 1] > A[j] do
4            switch(A[j], A[j - 1]);
5       end for
6    end for
```

Beispiel 3.3.1 - Ausführung Sortieren durch Einfügen

Für die Ausführung des Algorithmus wird das Array A und zwei Zählvariablen i und j initialisiert. Zur Verdeutlichung wird i blau, j und j-1 rot und der bereits sortierte Teil des Arrays grün dargestellt.

$$A := \{7, 4, 17, 1, 6, 7\}, i := 1, j := 0$$

Der Algorithmus startet mit i = 1 bei A[1] = 4 in der äußeren Schleife

$$A = \{7, 4, 17, 1, 6, 7\}, i = 1, j = 0$$

In der inneren Schleife wird j = i = 1 gesetzt und A[j]mitA[j-1] verglichen.

$$A = \{7, 4, 17, 1, 6, 7\}, i = 1, j = 1$$

Da 7 > 4 werden die beiden Elemente vertauscht und j anschließend dekrementiert.

$$A = \{4, 7, 17, 1, 6, 7\}, i = 1, j = 0$$

Da j=0 wird die innere Schleife abgebrochen und mit der äußeren fortgefahren.

$$A = \{4, 7, 17, 1, 6, 7\}, i = 2, j = 0$$

Anschließend wird wieder die innere Schleife mit j = i = 2 ausgeführt.

$$A = \{4, 7, 17, 1, 6, 7\}, i = 2, j = 2$$

Da bereits 7 < 17 muss nicht getauscht werden und die innere Schleife wird abgebrochen.

$$A = \{4, 7, 17, 1, 6, 7\}, i = 3, j = 2$$

Die innere Schleife wird jetzt mit j=i=3 ausgeführt. Da 17 > 1 werden die Elemente A[j] mit A[j-1] vertauscht. Das wiederholt sich bis j=0, da außerdem 7 > 1 und 4 > 1. Anschließend terminiert die innere Schleife wegen j=0.

$$A = \{4, 7, 17, 1, 6, 7\}, i = 3, j = 3$$

$$A = \{4, 7, 1, 17, 6, 7\}, i = 3, j = 2$$

$$A = \{4, 1, 7, 17, 6, 7\}, i = 3, j = 1$$

$$A = \{1, 4, 7, 17, 6, 7\}, i = 3, j = 0$$

Die äußere Schleife wird jetzt mit i = 4 fortgesetzt.

$$A = \{1, 4, 7, 17, 6, 7\}, i = 4, j = 0$$

Die innere Schleife wird dann mit j=i=4 ausgeführt. Da 17 > 6 werden die Elemente A[j] mit A[j-1] vertauscht. Das wiederholt sich bis j=2, da außerdem 7 > 6. Anschließend terminiert die innere Schleife wegen A[j-1] < A[j].

$$A = \{1, 4, 7, 17, 6, 7\}, i = 4, j = 4$$

$$A = \{1, 4, 7, 6, 17, 7\}, i = 4, j = 3$$

$$A = \{1, 4, 6, 7, 17, 7\}, i = 4, j = 2$$

Die äußere Schleife wird mit dem letzten Element i = 5 fortgesetzt.

$$A = \{1, 4, 6, 7, 17, 7\}, i = 4, j = 2$$

Die innere Schleife startet bei j=i=5 und vergleicht A[j-1] mit A[j]. Da 17 > 7 werden die Elemente vertauscht, danach bricht die Schleife ab da A[j-1]=A[j].

$$A = \{1, 4, 6, 7, 17, 7\}, i = 4, j = 3$$

$$A = \{1, 4, 6, 7, 7, 17\}, i = 4, j = 3$$

Anschließend Terminiert die äußere Schleife wegen i=N und der Algorithmus ist fertig.

$$A = \{1, 4, 6, 7, 7, 17\}, i = 4, j = 2$$

3.4 Bottum-Up Mergesort

Der Bottom-Up-Mergesort-Algorithmus besteht aus zwei Teilen: Einer Merge-Funktion und zwei verschachtelten Schleifen, welche die Funktion aufrufen. In dieser Implementierung wurde eine bitonische Variante von Merge verwendet, bei welcher zwei gegenläufig sortierte Hälften miteinander verschmolzen werden.

Abbildung 1: Bitonische Variante von Mergesort.

Bottom-Up Mergesort ist nicht rekursiv implementiert, sondern wir stattdessen mit zwei Schleifen realisiert. Für das Merge wird ein zweiten Array für Zwischenwerten benötigt. In einer effizienten Implementierung wird dieser Zwischenspeicher nur einmal erzeugt und für jeden Merge-Schritt wiederverwendet. Die Komplexität des Algorithmus beträgt O(n*log(n)) im Besten, durchschnittlichen und schlechtesten Fall. Der Algorithmus wird mit folgendem Pseudocode beschrieben.

```
1    A := array with comparable elements;
2    C := array as cache;
3    for len = 1 to n do
4        for lo = 0 to n - len do
5             mid := len + lo - 1;
6             hi := min(lo + 2 * len - 1, n - 1);
7             merge(A, C, lo, mid, hi);
8             end for
```

Beispiel 3.4.1 - Ausführung von Bottom-Up Mergesort

Der Algorithmus beginnt mit Teilarrays der Größe n=1.

$$\{4\}, \{15\}, \{9\}, \{1\}, \{10\}, \{7\}, \{9\}, \{13\}, \{2\}, \{5\}$$

Anschließend werden die Elemente zu Arrays der Größe 2 verschmolzen.

Dieser Schritt wiederholt sich jetzt mit den Arrays der Größe 2. Diese werden zu Arrays der Größe 4 verschmolzen. Ausnahme ist das letzte, da die Anzahl der Arrays ungerade ist.

$${4,15}, {1,9}, {7,10}, {9,13}, {2,5}$$

 ${1,4,9,15}, {7,9,10,13}, {2,5}$

Im nächsten Schritt werden die Arrays der Größe 4 miteinander verschmolzen, es verbleibt wieder das letzte Array der Größe 2.

$$\{1,4,9,15\}, \{7,9,10,13\}, \{2,5\}$$

 $\{1,4,7,9,9,10,13,15\}, \{2,5\}$

Schließlich wird das verbleibende Array der Länge 2 mit dem Rest verschmolzen. Das Ergebnis ist ein aufsteigend sortiertes Array.

$$\{1, 4, 7, 9, 9, 10, 13, 15\}, \{2, 5\}$$

 $\{1, 2, 4, 5, 7, 9, 9, 10, 13, 15\}$

3.5 Quicksort mit Three-Way-Partitioning

Bei dieser Variante von Quicksort handelt es sich um eine Implementierung von Robert Sedgewick und Jon Bentey¹. Bei dieser Variante werden drei Partitionen erstellt, die Erste enthält Elemente, die kleiner sind als das Pivotelement, die Zweite alle Elemente, welche gleich groß sind wie das Pivotelement und die letzte Partition enthält die Größeren.

Abbildung 2: Quicksort mit drei Partitionen.

Zwei Variablen i und j laufen vom Anfang beziehungsweise dem Ende des Arrays aufeinander zu und verteilen die Elemente bezüglich des Pivotelementes . Wenn die Zeiger sich überschneiden entstehen zwei Teilmengen, welche anschließend rekursiv mit Quicksort sortiert werden. Dies wiederholt sich, bis schließlich das komplette Array sortiert vorliegt.

Quicksort hat eine Komplexität von O(n*log(n)) im besten und durchschnittlichen Fall sowie eine Komplexität von $O(n^2)$ im schlechtesten. Die Laufzeit hängt im Wesentlichen von der Wahl des Pivotelementes ab, liegt dieses beispielsweise am Ende oder Anfang des Arrays wird jeder Rekursionsschritt nur um eins keiner, was dem schlechtesten Fall entspricht.

¹siehe: https://www.cs.princeton.edu/ rs/talks/QuicksortIsOptimal.pdf

Beispiel 3.5.1 - Ausführung von Quicksort Three-Way-Partitioning

Für das Beispiel werden die in Abbildung 2 gezeigten variablen lo, lt, gt und hi verwendet. Ein Zeiger i = lo startet von Beginn des Arrays und wandert bis an das Ende. Als Pivotelement p wird die Mitte des Arrays verwendet (blau hervorgehoben). Der Algorithmus startet also mit:

$$A := \{4, 15, 9, 1, 7, 10, 9, 1, 2, 5\}, p = 7$$

Während der Zeiger i von links nach rechts wandert werden für jede Stelle im Array folgende Prüfungen angewendet.

- Wenn A[i] < p tausche A[lt] und A[i], anschließend inkrementiere lt und i.
- Wenn A[i] > p tausche A[i] und A[gt], anschließend dekrementiere gt.
- Wenn A[i] = p inkrementiere i.

4 Zeitmessung: Ergebnisse

4.1 Minimumsuche

Folgende Zeitmessungen zeigen die Laufzeiten der Minimumsuche mit drei verschiedenen Implementierungen: Normal, mit ausgerollten Schleifen und mit einem Prefetch-Befehl.

4.1.1 Variante 1: Normal

Foldoviško [n]		Laufzeit $[\mu s]$	
Feldgröße [n]	ASC	DESC	RAND
16384	30	29	29
32768	54	61	58
65536	111	123	108
131072	233	232	213
262144	421	479	425
524288	880	886	903
1048576	1740	1737	1743
2097152	3764	3751	3566
4194304	6926	6951	7049
8388608	13348	13548	13558
16777216	27043	27975	28325
33554432	55425	53431	54039
67108864	109768	106431	108913
134217728	202659	206078	204265
268435456	409796	400175	444034
536870912	1077360	961671	955176

Tabelle 2: Normale Minimumsuche.

4.1.2 Variante 2: Mit Schleifen Ausrollen

Folderië Ro [n]		Laufzeit $[\mu s]$	
Feldgröße [n]	ASC	DESC	RAND
16384	31	30	28
32768	58	64	59
65536	106	108	109
131072	216	233	230
262144	426	441	443
524288	901	914	889
1048576	1746	1758	1773
2097152	3530	3518	3513
4194304	7045	7041	7035
8388608	13597	13635	14096
16777216	27933	28018	27096
33554432	53879	55001	52187
67108864	104367	101978	104117
134217728	216644	216945	215795
268435456	444691	460349	466158
536870912	840530	813142	899364

Tabelle 3: Minimumsuche mit Schleifen ausrollen

4.1.3 Variante 3: Mit Prefetch

Feldgröße [n]		Laufzeit $[\mu s]$	
	ASC	DESC	RAND
16384	26	27	26
32768	57	54	53
65536	98	99	97
131072	197	196	198
262144	395	397	395
524288	841	831	831
1048576	1617	1614	1617
2097152	3286	3280	3286
4194304	6532	6412	6376
8388608	12936	12353	12426
16777216	25763	26332	25283
33554432	50038	49740	52096
67108864	98898	106837	103934
134217728	203489	198460	199950
268435456	408708	381526	407902
536870912	834184	831809	1117660

Tabelle 4: Minimumsuche mit Prefetch.

4.1.4 Interpretation

Bei genauerer Betrachtung der Tabellen 2, 3 und 4 sind zunächst keine großen Unterschiede zu erkennen. Die Laufzeit wächst, wie erwartet, konstant mit der Feldgröße. Auch zwischen den unterschiedlichen Varianten der Array-Befüllung sind keine nennenswerten Auswirkungen auf die Laufzeit festzustellen, da in jedem Fall immer alle Elemente untersucht werden müssen. Die Variante mit Schleifen ausrollen ist etwas schneller als die normale Minimumsuche, was zu erwarten war. Unerwartet sind die Laufzeiten der Prefetch-Minimumsuche im Vergleich zur Variante mit Schleifen ausrollen. Die Minimumsuche mit Prefetch scheint etwas langsamer zu sein, dies könnte ein Indiz dafür sein, dass die Schleifen nicht ausgerollt werden.

4.2 Sortieren durch direkte Auswahl

Die nachfolgenden Tabellen zeigen die Laufzeiten von drei verschiedenen Varianten von Sortieren durch direkte Auswahl. Dabei wird bei jeder Variante eine andere Implementierung der Minimumsuche (siehe Abschnitt oben) verwendet.

4.2.1 Variante 1: Normal

Folderiöße [n]		Laufzeit [ms]	
Feldgröße [n]	ASC	DESC	RAND
16384	242	248	250
32768	977	970	968
65536	3761	3768	3765
131072	15548	15534	15539
262144	62171	62314	62207
524288	252007	258822	251515
1048576	1052480	1027300	1028070

Tabelle 5: Sortieren durch direkte Auswahl mit normaler Minimumsuche.

4.2.2 Variante 2: Mit Schleifen Ausrollen

Foldernäße [n]		Laufzeit [ms]	
Feldgröße [n]	ASC	DESC	RAND
16384	158	157	156
32768	638	638	636
65536	2871	4280	2551
131072	10134	10148	10152
262144	40565	40554	40590
524288	162909	162888	165314
1048576	698178	678409	693544

Tabelle 6: Sortieren mit Minimumsuche und Schleifen ausrollen.

4.2.3 Variante 3: Mit Prefetch

Feldgröße [n]		Laufzeit [ms]	
relagione [II]	ASC	DESC	RAND
16384	166	164	163
32768	632	633	630
65536	2533	2531	2538
131072	10128	10127	10150
262144	40515	40519	40549
524288	162415	162706	162673
1048576	713851	696861	697996

Tabelle 7: Sortieren mit Minimumsuche und Prefetch

4.2.4 Interpretation

Die Laufzeit aller drei Varianten von Sortieren durch direkte Auswahl wächst exponentiell, also mit $O(n^2)$. Ein deutlicher Unterschied zeigt sich insbesondere zwischen der Variante mit normaler Minimumsuche und den beiden optimierten Varianten. Die Minimumsuche mit Schleifen ausrollen beziehungsweise mit Prefetch bringen hier einen Zeitvorteil von ca. 34%.

Vergleicht man dagegen Die Laufzeiten der beiden optimierten Varianten, bestätigt sich der Verdacht aus dem vorherigen Abschnitt. Der Selectionsort, welcher Minimumsuche mit Prefetch verwendet ist eher etwas langsamer als die anderen optimierte Variante.

4.3 Sortieren durch direktes Einfügen

Die nachfolgenden Laufzeiten vergleichen zwei unterschiedliche Implementierungen des Algorithmus Sortieren durch Einfügen. In der ersten Variante wird mit zwei Schleifen sortiert, in der zweiten Abwandlung wird die innere Schleife ausgerollt und ein Prefetch-Befehl verwendet.

4.3.1 Variante 1: Normal

Feldgröße [n]		Laufzeit $[ms]$	
relagione [n]	ASC	DESC	RAND
16384	0	282	139
32768	0	1113	554
65536	0	4525	2256
131072	0	18043	9026
262144	0	72410	36246
524288	0	290495	144620
1048576	1	1190247	587934

Tabelle 8: Sortieren durch Einfügen (Normal).

4.3.2 Variante 2: Mit Prefetch

Feldgröße [n]		Laufzeit [ms]	
relagione [II]	ASC	DESC	RAND
16384	19	162	91
32768	80	633	365
65536	429	2780	1596
131072	1907	11194	6578
262144	7791	44479	26199
524288	32901	179240	105709
1048576	198462	862873	509700

Tabelle 9: Sortieren durch Einfügen mit Prefetch.

4.3.3 Interpretation

Bei der normalen Variante bestätigt sich die Komplexität von O(n) im besten Fall, sowie $O(n^2)$ im durchschnittlichen und schlechtesten Fall. Wie zu erwarten sind die Laufzeiten bei absteigend sortierten Folgen deutlich größer, da hier jedes Element bis nach vorne getauscht werden muss.

Die optimierte Variante verhält sich im durchschnittlichen und schlechtesten Fall gleich wie die Normale. Zusätzlich ist die Laufzeit hier durch den Prefetch-Befehl besser geworden. Im besten Fall gab es jedoch eine deutliche Verschlechterung, hier wächst die Komplexität plötzlich quadratisch, möglicherweise ausgelöst durch den an dieser Stelle unnötig ausgeführten Prefetch.

4.4 Bottom-Up Mergesort

Nachfolgende Tabelle zeigt die Laufzeit des Bottom-Up Mergesort Algorithmus.

Foldenöße [n]		Laufzeit [ms]	
Feldgröße [n]	ASC	DESC	RAND
1048576	118	121	122
2097152	249	254	253
4194304	520	530	530
8388608	1097	1116	1113
16777216	2285	2347	2307
33554432	4753	4808	4793
67108864	9860	9934	9947
134217728	20679	20721	20647

Tabelle 10: Sortieren mit Bottom-Up Mergesort.

4.4.1 Interpretation

Bottom-Up Mergesort verhält sich wie erwartet in allen drei Fällen gleich: Die Komplexität ist O(n * log(n)). Es spielt dabei keine Rolle in welcher Reihenfolge die Elemente im Array vorliegen, allein die Größe der Liste spielt bei der Laufzeit eine Rolle.

4.5 Quicksort

Nachfolgend werden die Laufzeiten von zwei Variante des *Quicksort* Algorithmus verglichen. Einmal wird der Quicksort mit Three-Way-Partitioning, das zweite mal Hybrid implementiert.

4.5.1 Variante 1: Three-Way-Partitioning

Feldgröße [n]		Laufzeit [ms]	
relagrone [II]	ASC	DESC	RAND
1048576	24	26	111
2097152	50	54	238
4194304	105	114	497
8388608	218	239	1064
16777216	458	498	2189
33554432	950	1021	4601
67108864	1977	2139	9435
134217728	4129	4420	20014

Tabelle 11: Sortieren mit Quicksort (Three-Way-Partitioning).

4.5.2 Variante 2: Hybrid

Feldgröße [n]	${\bf Laufzeit} [ms]$		
	ASC	DESC	RAND
1048576	111	113	165
2097152	238	240	347
4194304	501	510	728
8388608	1067	1078	1552
16777216	2248	2278	3247
33554432	4722	4776	6675
67108864	9893	10055	14204
134217728	21060	21035	29604

Tabelle 12: Sortieren mit hybrider Quicksort-Variante.

4.5.3 Interpretation

Die normale Implementierung des Algorithmus bestätigt bei allen drei Testvarianten eine Komplexität von O(n*log(n)). Da als Pivotelement die Mitte gewählt wurde, ist die Laufzeit im absteigenden, beziehungsweise aufsteigenden Fall deutlich besser, wie bei zufällig generierten Werden. Der schlechteste Fall könnte bei diesem Testszenario nur bei den zufällig befüllten Arrays entstehen. Dies kann in den Messwerten hier jedoch nicht bestätigt werden.

Die Hybride Variante verhält sich bei der Komplexität gleich wie die Normale, jedoch ist die Laufzeit dort konstant schlechter. Insbesondere bei aufsteigend und absteigend sortierten Arrays. Möglicherweise wäre sie beim Eintreffen des schlechtesten Falls schneller, dies lässt sich an den Ergebnissen jedoch nicht bestätigen.