

اختبار الفصل الأول في مادة الهندسة كهربائية

نظام آلى لملء علب وتصريفها

دفتر الشروط:

- 1. الهدف من التألية: يهدف النظام الى ملء علب ذات أحجام مختلفة بمادة غذائية بصفة آلية ومستمرة.
 - 2. وصف التشغيل: بعد العمل التحضيري من ملء الخزان بالمادة الغذائية وتعبئة القناة بالعلب كما هو موضح في المناولة الهيكلية ينطلق النظام الآلي في التشغيل المستمر مباشرة بعد اختيار النمط الآلي معدى ولل الضغط على زر انطلاق الدورة dcy وذلك وفق الأشغولات الآتية.

الأشغولة (1) (دفع علبتين): تتم عملية سحب علبتين الى الأسفل بواسطة خروج ساق الرافعة B ثم دخوله ودفعهما إلى البساط (1) بخروج ساق الرافعة (A).

- الأشغولة (2) (تقديم علبتين للملء) الأشغولة (3) (الخلط والملء)
- الأشغولة (4) (التحويل الى البساط (2)) الأشغولة (5) (تصريف العلب المملوءة)
 - 3. الأمن: حسب القوانين المعمول بها في النظام الدولي (SI) لضمان الأمن.
- 4. الجاهزية: يستوجب على النظام الآلي ألا يتوقف أكثر من 30min في اليوم للحفاظ على مردوده.
 - 5. الاستغلال: يستوجب حضور عاملين (تقنى مختص ، عامل دون تخصص).
 - 6. التحليل الوظيفى:
 - الوظيفة الشاملة للنظام: مخطط النشاط (A-O)

اعدادات: (W_E) اعدادات: $(N_2; N_1; t_2; t_1)$ اعدادات: $(N_2; N_1; t_2; t_1)$

7. المناولة الزمنية:

9. جدول الاختيارات التكنولوجية:

الوظائف	أشغولة دفع علبتين	أشغولة تقديم	أشغولة الخلط	أشغولة التحويل	أشغولة التصريف		
		علبتين	والملء				
3	الرافعة A بسيطة المفعول الرافعة B ثنائية المفعول	المحرك خطوة خطوة Mpp	الرافعة C ثنائية المفعول محرك M ₁ لاتزامني ثلاثي الطور اتجاهين	الرافعة D ثنائية المفعول	المحرك M ₂ لاتزامني ثلاثي الطور اتجاه واحد للدوران 230v/400v		
	dA: موزع 3/2	التحكم بسجل	للدوران 230v/400v dC ⁺ ,dC ⁻ موزع	-dD ⁺ ,dD موزع	:KM ₂ ملامس		
المنفذات النتصدرة	تحكم كهرو هوائي أحادي الاستقرار ~24V -dB+,dB: موزع 4/2 تحكم كهرو هوائي ثنائي الاستقرار ~24V	ازاحة (الدارة 74LS74) T ₁ : مؤجلة	5/2 تحكم كهرو هوائي ثنائي الاستقرار $\sim 24V$ T_2 : مؤجلة KM_D و KM_D ملامسين كهربائيين $\sim 24V$	5/2 تحكم كهرو هوائي ثنائي الاستقرار ~24V	كَهربائي ~24V		
	a و b ₀ ,b ₁ ملتقطات نهاية شوط k ₁ , k2 : ملتقطي الكشف عن وجود علب في القناة	t ₁ =5s : مدة تقديم علبتين	ر التقطي الكشف عن مستوى الكشف عن مستوى السائل $t_2=10s$, ,	k ₆ : ملتقط الكشف عن توفر أربعة علب التصريف Cp ₂ : خلية كهروضوئية لكشف وعد العلب المصرفة (N ₂)		
القيادة	حرارية (لحماية المحركات) Init : زر التهيئة						
شبكة التغذية ثلاثية الطور: 50Hz ، 230V/400V.							

10. إنجازات تكنولوجية:

دارة التحكم في درجه حرارة السائل:

دارة التحكم في المحرك Mpp لتدوير البساط (1):

الشكل (3)

دارة المؤجلة للتحكم في مدة ملء العلب حسب الحجم

2N2222	V _{CEmax} =40V	I _{Cmax} =800mA	V _{CESat} =0.3V	Vbe=0.7V	β=100
BSS50	V _{CEmax} =30V	I _{Cmax} =1A	V _{CESat} =0.3V	Vbe=1.4V	β>2000

خصائص المرحلات الكهرومغناطيسية

الاستطاعة الاسمية (mW)	مقاومة الوشيعة (Ω)	التيار الإقصى للتماس (A)	$ m V_{DC}$ توتر التغذية
900	51	10	6
450	360	10	12
900	600	10	24

10. ملحق وثائق الصانع:

جول الحقيقة للدارة74LS74

	Inp	Outp	ıts		
PR	CLR	CLK	D	Q	Q
L	Н	X	X	Н	L
Н	L	X	х	L	Н
L	L	X	x	Н	Н
Н	Н	↑	Н	Н	L
Н	Н	↑	L	L	Н
Н	Н	L	Х	Q_0	\overline{Q}_0

 \mathbf{H} :مستوی منطقی اعلی و \mathbf{L} :مستوی منطقی اُدنی \mathbf{X} :مهما یکن المستوی المنطقی ($\mathbf{0}$ او $\mathbf{1}$)

الدارة المندمجة 74LS74

جول الحقيقة للدارة 74LS90

	Reset Inputs				Outj	outs	
R0 ₍₁₎	R0 ₍₂₎	R9 ₍₁₎	R9 ₍₂₎	Qυ	Qc	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
Н	Н	L	х	L	L	L	L
Н	Н	X	L	L	L	L	L
x	X	Н	Н	Н	L	L	Н
X	L	X	L	co	unt		
L	X	L	X	co	unt		
L	X	X	L	co	ount	:	
x	L	L	X	co	ount	:	

الدارة المندمجة 74LS90

العمل المطلوب

- 1) أكمل التحليل الوظيفي التنازلي (النشاط A-0) على وثيقة الإجابة 2/1 (الصفحة 7).
- 2) أكمل متمن الأشغولة (1) دفع علبتين من وجهة نظر جزء التحكم على وثيقة الإجابة 2/1 (الصفحة 7).
 - 3) أكمل جدول معادلات تنشيط وتخميل الأشغولة (4) على وثيقة الإجابة 2/1 (الصفحة 7).
 - دارة التحكم في درجة حرارة السائل: الشكل(1) الصفحة (4).
 - ho احسب قيمة التوتر ho.
 - $V_2 = \left(1 + \frac{RT}{R3}\right) . V_1$. فثبت أن. (5
 - 6) أتمم ملأ جدول تشغيل الدارة على وثيقة الإجابة 2/2 (الصفحة 7).
 - دارة التحكم في المحرك Mpp لتدوير البساط (1): الشكل (2) الصفحة (4).
 - C_1 عين دارتي الشحن والتفريغ للمكثفة C_1
 - 8) اكتب عبارة زمن الشحن وزمن التفريغ للمكثفة.
 - . T=10s من اجل C_1 من اجل (9
 - 10) أكمل رسم المخطط المنطقي لدارة السجل الحلقي على وثيقة الإجابة 2/2 (الصفحة 8).
 - دارة الكشف وعد 16 علبة مصرفة: الشكل(3) الصفحة (4).
 - 11) أعط إسم ودور الطوابق (1) ، (2) والطابق (3).
 - مستعينا بوثائق الصانع في الملحق: الصفحة (5).
 - (12 كاريار T_2 المار في وشيعة المرحل T_2)، مع المقحل T_2 من نوع T_2).
 - 13) أكمل ترسيمة العداد لعد 16 قطعة بالدارة المندمجة 74LS90 على ورقة الإجابة 2/2 (الصفحة 8).
 - دارة المؤجلة للتحكم في مدة ملء العلب حسب الحجم: الشكل(4) الصفحة (5).
 - التركيب. X_{32} ما هو دور المبدلة X_{32} في التركيب.
 - C3=470u و $P=18.58k\Omega$ و P=18.58k و P=18.58k
 - 16) اذكر الهيكل المادي الذي يجسد وظيفة الترابط المنسجم بين التكنولوجية الكهربائية والهوائية في هذه الدارة.
 - g=4%; 1500tr/min بسرعة الحقل الدوار 230V/400V; 50Hz : M_2 بسرعة الحقل الدوار M_2 علل إجابتك.

وثيقة الإجابة 2/1 (تعاد مع أوراق الإجابة) ج1/التحليل الوظيفي التنازلي (A0)

ج2/ متمن الاشغولة(1) دفع علبتين إلى البساط (1) ج3/ جدول تنشيط وتخميل المراحل

التخميل	التنشيط	المرحلة
		X_{40}
		X ₄₁
		X_{42}
		X_{43}

ج 6/ جدول تشغيل دارة التحكم في درجة حرارة السائل

$\theta(^{0}C)$	$R_T(\Omega)$	V ₂ (v)	V ₃ (v)	S	R	حالة الوشيعة KA
θ=73	3020		12.18			
θ=75	3100		12.18			

وثيقة الإجابة 2/2 (تعاد مع أوراق الإجابة)

ج10/رسم المخطط المنطقي لدارة السجل الحلقي:

ج 13/ ترسيمة العداد لعد 16 قطعة بالدارة المندمجة 74LS90

ج1/التحليل الوظيفي التنازلي (A0)

ج2/ متمن الاشغولة (1) دفع علبتين إلى البساط (1) ج3/ جدول تنشيط وتخميل المراحل

التخميل	التنشيط	المرحلة
X_{41}	$X_{45}.\overline{X}_4$	X_{40}
X_{42}	$X_{40}.X_{4}.X_{104}+X_{42}.\overline{N}_{1}$	X_{41}
$X_{41} + X_{43}$	X_{41}	X_{42}
X ₄₄	$X_{42}.N_1$	X_{43}

ج4/حساب التوتر V:

باستعمال قاسم التوترنجد:
$$V=3v$$
 ومنه 12. $V=\frac{1}{1+3}$ إذن $V=\frac{R1}{R1+R2}$. 12

ج5/

$$V_1 = V_1$$
 و منه $V^+ = V_1$ و منه $V^+ = V_1$ و الإن $V_2 = \left(1 + \frac{RT}{R3}\right)$. V_1 و الإن $V_2 = \left(1 + \frac{RT}{R3}\right)$. V_1 و منه $V_1 = \frac{R3}{R3 + RT}$. $V_2 = \left(1 + \frac{RT}{R3}\right)$. $V_1 = \frac{R3}{R3 + RT}$. $V_2 = \left(1 + \frac{RT}{R3}\right)$

0.75

ج 6/ جدول تشغيل دارة التحكم في درجة حرارة السائل

ج7/ دارة الشحن:R1; P/3; R2; كارة الشحن:R2; 2P/3

ج8/ كتابة عبارة زمن الشحن: tch=(R1+P/3+R2).C1ln2.

 t_{dch} =(R₂+2P/3).C₁ln2. كتابة عبارة زمن التفريغ: T=10s .

 C_1 =470uf وبعد التعويض نجد: C_1 = $T/(R_1+2R_2+P)\ln 2$ ج10رسم المخطط المنطقي لدارة السجل الحلقي

الطابق(1):خلية كشف دورها:الكشف عن العلب. الطابق(2):قلاب RS دوره:ضد ارتدادات الملمس (إشارة ساعة). الطابق(3):عداد عشرى دوره:العد.

ج12/ حساب قيمة I المار في المرحل KA_1 :

$$V_{CEsat}=0.3V$$
 من الجدول نستخرج $I=32.5 \text{mA}$ إذن $I=\frac{12-Vcesat}{RKA1}=\frac{12-0.3}{360}$

ج 13/ ترسيمة العداد لعد 16 قطعة بالدارة المندمجة 74LS90

ج 14/ نوع إقران المحرك M_2 مع التعليل:

400 المركب الشبكة التغذية 400 ومنه 230 ومنه $\frac{400}{\sqrt{3}} \approx 230$ ومنه $\frac{400}{\sqrt{3}} \approx 230$

الموقع الأول لتحضير الفروض والاختبارات في الجزائر https://www.dzexams.com

https://www.dzexams.com/ar/0ap	القسم التحضيري
https://www.dzexams.com/ar/1ap	السنة الأولى ابتدائي
https://www.dzexams.com/ar/2ap	السنة الثانية ابتدائي
https://www.dzexams.com/ar/3ap	السنة الثالثة ابتدائي
https://www.dzexams.com/ar/4ap	السنة الرابعة ابتدائي
https://www.dzexams.com/ar/5ap	السنة الخامسة ابتدائي
https://www.dzexams.com/ar/bep	شهادة التعليم الابتدائي
https://www.dzexams.com/ar/1am	السنة الأولى متوسط
https://www.dzexams.com/ar/2am	السنة الثانية متوسط
https://www.dzexams.com/ar/3am	السنة الثالثة متوسط
https://www.dzexams.com/ar/4am	السنة الرابعة متوسط
https://www.dzexams.com/ar/bem	شهادة التعليم المتوسط
https://www.dzexams.com/ar/1as	السنة الأولى ثانوي
https://www.dzexams.com/ar/2as	السنة الثانية ثانوي
https://www.dzexams.com/ar/3as	السنة الثالثة ثانوي
https://www.dzexams.com/ar/bac	شهادة البكالوريا