Insegnamento di Metodi Numerici

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

Docenti: Lucia Romani e Damiana Lazzaro

12 Luglio 2021 - 9:00 ESAME IN PRESENZA

1. Siano assegnati i punti del piano di coordinate (x_i, y_i) , $i = 1, \ldots, 4$ con

$$x_1 = 0$$
, $x_2 = 4$, $x_3 = 0$, $x_4 = 5$
 $y_1 = 0$, $y_2 = 0$, $y_3 = 4$, $y_4 = 6$.

Scrivere lo script Matlab/Python es1 in cui

- a) si costruisca il sistema lineare sovradeterminato ottenuto imponendo il passaggio della circonferenza di equazione $x^2 + y^2 + a_0x + a_1y + a_2 = 0$ per i quattro punti assegnati, e si denotino con \mathbf{A} e \mathbf{b} la matrice dei coefficienti e il termine noto ottenuti;

 [Punti: 4]
- b) si determinino le matrici **Q** e **R** della fattorizzazione QR della matrice **A** ottenuta al punto a), facendo uso della function **qr** del pacchetto **scipy.linalg**;
- c) si sfrutti la decomposizione QR ottenuta al punto b) per ottenere la soluzione \mathbf{a}^* del problema ai minimi quadrati $\min_{\mathbf{a} \in \mathbb{R}^3} \|\mathbf{A}\mathbf{a} \mathbf{b}\|_2^2$; Punti: 4
- d) si calcoli il valore di $\|\mathbf{A}\mathbf{a}^* \mathbf{b}\|_2^2$ e, dopo aver determinato il centro $C = \left(-\frac{a_0^*}{2}, -\frac{a_1^*}{2}\right)$ e il raggio $R = \sqrt{\frac{(a_0^*)^2}{4} + \frac{(a_1^*)^2}{4} a_2^*}$ della circonferenza di equazione $x^2 + y^2 + a_0^*x + a_1^*y + a_2^* = 0$ (individuata dalla soluzione \mathbf{a}^* del problema ai minimi quadrati), si rappresentino in una stessa figura la circonferenza e i quattro punti assegnati dal problema. Suggerimento: per rappresentare la circonferenza si utilizzino le formule parametriche $x(t) = -\frac{a_0^*}{2} + R\cos(t)$, $y(t) = -\frac{a_1^*}{2} + R\sin(t)$ con $t \in [0, 2\pi]$. Punti: 4

Totale: 16

Punti: 4