01: Preprocessament inicial de les dades

Soulaiman el Hamri

2025-04-22

Contents

1.	Introducció	1
	1.1. Fonts de dades	1
2.	Descripció de les dades	2
	2.1. Dades meteorològiques (Meteocat)	2
	2.2. Dades de qualitat de l'aire	2
3.	Preprocessat	3
	3.1. Dades meteorologiques	3
	3.2. Dades de contaminants	6
4.	Conclusions generals	8

1. Introducció

Aquest document descriu el **preprocessament inicial de les dades meteorològiques i de qualitat de l'aire** registrades a la ciutat de Barcelona. Aquest pas és essencial per garantir la **coherència**, **qualitat i integritat** de les dades abans de realitzar qualsevol anàlisi estadística o modelització posterior.

1.1. Fonts de dades

- Dades meteorològiques (2021–2025): registres diaris i extrems de Meteocat.
- Metadades meteorològiques: descripcions de cada acrònim i unitats.
- Fitxer d'estacions: ubicació i municipi de cada estació meteorològica.
- Dades de qualitat de l'aire: mesuraments històrics dels principals contaminants (NO2, PM10, PM2.5, O3, etc.).

2. Descripció de les dades

2.1. Dades meteorològiques (Meteocat)

Els conjunts de dades meteorològiques corresponen als anys 2021, 2022, 2023, 2024 i 2025, i han estat descarregats del portal de dades obertes de la Generalitat de Catalunya. Cada fitxer conté observacions diàries o valors extrems mesurats per les estacions automàtiques (XEMA) gestionades per Meteocat.

Les columnes principals són:

- DATA_LECTURA: Data (i hora opcional) de la mesura, en format "YYYY-MM-DD" o "YYYY-MM-DD HH:MM:SS".
- DATA_EXTREM: En cas de valors extrems (p. ex., temperatura màxima), indica la data i hora exactes en què es va produir el valor.
- CODI_ESTACIO: Codi identificador únic de l'estació meteorològica.
- ACRÒNIM: Sigla curta que identifica la variable mesurada (ex.: TM, TX, HRM, PPT, PM...)
- VALOR: Valor mesurat de la variable corresponent.

Aquesta informació es completa amb un fitxer de metadades, que inclou:

- ACRÒNIM: Coincideix amb el del dataset principal.
- NOM_VARIABLE: Nom complet de la variable (ex.: "Temperatura mitjana diària").
- UNITAT: Unitat de mesura (ex.: °C, %, mm, hPa).
- CODI_VARIABLE: Identificador intern de la variable.

Exemples de variables meteorològiques rellevants:

ACRÒNIM	NOM VARIABLE	UNITAT
$\overline{\text{TM}}$	Temperatura mitjana diària	$^{\circ}\mathrm{C}$
TX	Temperatura màxima diària	$^{\circ}\mathrm{C}$
HRM	Humitat relativa mitjana	%
PPT	Precipitació acumulada	mm
PM	Pressió atmosfèrica mitjana	hPa
VVM10	Velocitat mitjana del vent a 10 m	m/s

Aquestes dades són fonamentals per contextualitzar els nivells de contaminació en funció de la meteorologia.

2.2. Dades de qualitat de l'aire

El conjunt de dades conté registres de **mesures horàries** de concentració de contaminants atmosfèrics des de l'any 1991 fins al 2025. L'origen de les dades és l'administració ambiental catalana i el portal Open Data.

Les columnes principals inclouen:

- codi estacio: Codi alfanumèric de l'estació de mesura.
- nom_estacio: Nom de l'estació (ex.: "Eixample", "Gràcia", "Zona Universitària"...).

- data: Data de mesura.
- hora: Hora de mesura (de 1 a 24).
- contaminant: Substància mesurada (ex.: NO2, PM10, PM2.5, O3).
- valor: Valor de concentració horària (normalment en μg/m³).

Es descarten columnes complementàries com:

• magnitud, codi_ine, municipi, geocoded_column, codi_comarca, nom_comarca

Contaminants d'interès seleccionats:

- NO2 (diòxid de nitrogen): Indica presència de trànsit intens.
- PM10 i PM2.5 (partícules en suspensió): Afavoreixen problemes respiratoris.
- 03 (ozó troposfèric): Forma contaminant secundari amb impactes en salut i vegetació.

3. Preprocessat

3.1. Dades meteorologiques

Aquest apartat descriu detalladament el procés de preparació inicial de les dades meteorològiques corresponents als anys 2021 a 2025. El flux de treball inclou la lectura dels fitxers, la unificació en un únic conjunt de dades, l'enriquiment amb metadades descriptives, la conversió correcta de dates i el filtratge per seleccionar només les estacions ubicades a Barcelona.

Primerament, farem la lectura dels fitxers anuals

```
# Carreguem els fitxers corresponents als anys 2021 a 2025
df_2021 <- read_csv("../data/raw/meteocat/2021_MeteoCat_Detall_Estacions.csv")
df_2022 <- read_csv("../data/raw/meteocat/2022_MeteoCat_Detall_Estacions.csv")
df_2023 <- read_csv("../data/raw/meteocat/2023_MeteoCat_Detall_Estacions.csv")
df_2024 <- read_csv("../data/raw/meteocat/2024_MeteoCat_Detall_Estacions.csv")
df_2025 <- read_csv("../data/raw/meteocat/2025_MeteoCat_Detall_Estacions.csv")</pre>
```

Cada fitxer conté les mateixes columnes i estructura, per tant es poden combinar fàcilment.

A continuació unifiquem els conjunts:

```
# Unifiquem tots els conjunts de dades en un únic dataframe
df_all_years <- bind_rows(df_2021, df_2022, df_2023, df_2024, df_2025)

# Mostrem un resum del conjunt complet
summary(df_all_years)</pre>
```

```
CODI_ESTACIO
                                                               ACRÒNIM
##
    DATA LECTURA
                        DATA_EXTREM
          :2021-01-01
                        Length: 78169
                                          Length: 78169
                                                             Length: 78169
##
   Min.
  1st Qu.:2022-01-19
                        Class1:hms
                                          Class :character
                                                             Class : character
## Median :2023-02-06
                        Class2:difftime
                                          Mode :character
                                                             Mode : character
         :2023-02-07
## Mean
                        Mode :numeric
```

```
3rd Qu.:2024-02-24
##
          :2025-04-05
   Max.
##
       VALOR
## Min.
          : -1.4
##
   1st Qu.: 12.2
## Median: 40.0
         : 224.1
## Mean
## 3rd Qu.: 197.0
## Max.
          :1035.7
```

Incorporem les metadades:

```
# Carreguem el fitxer de metadades

df_metadata <- read_csv("../data/raw/meteocat/MeteoCat_Metadades.csv", col_types = cols(
    CODI_VARIABLE = col_double(),
    NOM_VARIABLE = col_character(),
    UNITAT = col_character(),
    ACRÒNIM = col_character()
))

# Fem la unió per l'acrònim per enriquir les dades amb noms i unitats
df_enriched <- left_join(df_all_years, df_metadata, by = "ACRÒNIM")</pre>
```

Aquesta unió afegeix per a cada fila el nom complet de la variable i la seva unitat de mesura.

```
na_summary <- colSums(is.na(df_enriched))
print(na_summary)</pre>
```

```
## DATA_LECTURA DATA_EXTREM CODI_ESTACIO ACRÒNIM VALOR
## 0 35371 0 0 0
## CODI_VARIABLE NOM_VARIABLE UNITAT
## 0 0 0
```

Com es pot observar, **només la columna DATA_EXTREM conté valors nuls**, ja que aquesta variable només s'omple en el cas de variables de tipus extrem (com TX, TN, etc.). Aquest comportament és **esperat i no implica un error de les dades**. La resta de columnes no presenta valors nuls, fet que confirma la bona qualitat del conjunt principal.

```
# Llibreries necessàries
library(dplyr)
library(readr)
```

```
# Llegim el fitxer d'estacions meteorològiques
estacions <- read_csv("../data/raw/meteocat/estacions_xema.csv")</pre>
# Filtratge per municipi: seleccionem només estacions de Barcelona (codi INE 80193)
estacions barcelona <- estacions %>%
  filter(nom_municipi == 80193)
# Extreiem els codis d'estació com a vector
codis_barcelona <- estacions_barcelona$codi_estacio %>% unique()
# Mostrem els codis obtinguts per verificació
print(codis_barcelona)
## [1] "X2" "X4" "AN" "D5" "X8"
# Guardem les estacions de Barcelona en un CSV
write_csv(estacions_barcelona, "../data/processed/meteocat/estacions_barcelona.csv")
# Apliquem el filtratge al dataset meteorològic enriquit
df_bcn <- df_enriched %>%
  filter(CODI ESTACIO %in% codis barcelona)
# Assegurem-nos que el directori de sortida existeix
dir.create("../data/processed/meteocat", recursive = TRUE, showWarnings = FALSE)
# Guardem el conjunt filtrat amb només les estacions de Barcelona
write_csv(df_bcn, "../data/processed/meteocat/meteocat_2021_2025_bcn_processed.csv")
```

També s'han processat les dades meteorológiques de les 4 estacions que hi ha a Barcelona, inlcouen registres històrics de 1995 a 2025.

```
# Forcem que totes les columnes es llegeixin com a text per evitar errors en unir-les
col_types_forcats <- cols(.default = "c")</pre>
# Llegim els CSVs des de les seves rutes
df_D5 <- read_csv("../data/raw/meteocat/dades_estacions/30597_D5.csv", col_types = col_types_forcats, n</pre>
df_X2 <- read_csv(".../data/raw/meteocat/dades_estacions/30597_X2.csv", col_types = col_types_forcats, n
df_X4 <- read_csv("../data/raw/meteocat/dades_estacions/30597_X4.csv", col_types = col_types_forcats, n</pre>
df_X8 <- read_csv("../data/raw/meteocat/dades_estacions/30597_X8.csv", col_types = col_types_forcats, n
# Unim tots els dataframes en un sol
df_meteo <- bind_rows(df_D5, df_X2, df_X4, df_X8)</pre>
# Carreguem el fitxer de metadades
df_metadata <- read_csv(".../data/raw/meteocat/MeteoCat_Metadades.csv", col_types = cols(</pre>
 CODI_VARIABLE = col_double(),
 NOM_VARIABLE = col_character(),
 UNITAT = col_character(),
  ACRÒNIM = col_character()
))
# Variables que tenen columna de 'Data Extrem'
variables_amb_extrem <- c("TX", "TN", "HRX", "HRN", "PX", "PN", "VVX10")</pre>
```

```
# Normalitzem la data de lectura
df meteo <- df meteo %>%
  mutate(DATA LECTURA = dmy(DATA) %>% format("%Y-%m-%dT00:00:00Z"))
# Transformem a format llarg
acronims <- df metadata$ACRONIM
resultats <- map dfr(acronims, function(acronim) {
  col_valor <- sym(acronim)</pre>
  # Si la variable té data extrem, l'afegim
  if (acronim %in% variables_amb_extrem) {
    col_extrem <- sym(paste0("Data Extrem ", acronim))</pre>
    dades <- df_meteo %>%
      select(DATA_LECTURA, CODI_ESTACIO = EMA, valor = !!col_valor, data_extrem = !!col_extrem)
  } else {
    dades <- df_meteo %>%
      select(DATA_LECTURA, CODI_ESTACIO = EMA, valor = !!col_valor) %>%
      mutate(data_extrem = NA)
  }
  # Tractament del valor i format final
  dades %>%
    filter(!is.na(valor)) %>%
    mutate(
      ACRÒNIM = acronim,
      VALOR = str_replace(valor, ",", ".") %>% as.numeric(),
      DATA_EXTREM = if_else(
        !is.na(data_extrem),
        format(ymd_hms(data_extrem), "%Y-%m-%dT%H:%M:%SZ"),
        NA_character_
      )
    ) %>%
    select(DATA_LECTURA, DATA_EXTREM, CODI_ESTACIO, ACRÒNIM, VALOR)
  left_join(df_metadata, by = "ACRONIM") %>%
  select (DATA LECTURA, DATA EXTREM, CODI ESTACIO, ACRÒNIM, VALOR, CODI VARIABLE, NOM VARIABLE, UNITAT)
# Ordenem per data, estació i variable
resultats <- resultats %>%
  arrange(DATA_LECTURA, CODI_ESTACIO, ACRÒNIM)
# Guardem el resultat final en CSV
write_csv(resultats, "../data/processed/meteocat/meteocat_1995_2025_bcn_processed.csv")
```

3.2. Dades de contaminants

En aquest apartat es duu a terme el preprocessament de les dades de qualitat de l'aire, provinents del conjunt històric (1991–2025) que conté mesuraments horaris dels principals contaminants atmosfèrics a diferents estacions de Catalunya. Ens centrarem exclusivament en les estacions ubicades dins del municipi de Barcelona, i seleccionarem només aquells contaminants d'interès per a l'estudi, amb un filtratge, neteja i preparació estructurada per a l'anàlisi posterior.

```
# Carrequem les dades crues de qualitat de l'aire
contaminants_raw <- read_csv("../data/raw/contaminants/dades_qualitat_aire_1991_2025.csv")</pre>
head(contaminants_raw)
## # A tibble: 6 x 40
     codi_eoi nom_estacio
                                    data
                                                        magnitud contaminant unitats
     <chr>>
              <chr>>
                                    <dttm>
                                                           <dbl> <chr>
                                                                             <chr>>
## 1 08307012 Vilanova i la Geltrú 2025-04-07 00:00:00
                                                               6 CO
                                                                             mg/m3
## 2 43171002 Vila-seca (IES Vila~ 2025-04-07 00:00:00
                                                              14 03
                                                                             µg/m3
## 3 43162005 Vandellòs (Barranc ~ 2025-04-07 00:00:00
                                                               7 NO
                                                                             μg/m3
## 4 25120001 Lleida
                                   2025-04-07 00:00:00
                                                               9 PM2.5
                                                                             µg/m3
## 5 25196001 Montsec
                                   2025-04-07 00:00:00
                                                              14 03
                                                                             μg/m3
## 6 43103001 Perafort (Puigdelfí) 2025-04-07 00:00:00
                                                              12 NOX
                                                                             µg/m3
## # i 34 more variables: tipus_estacio <chr>, area_urbana <chr>, codi_ine <chr>,
       municipi <chr>, codi_comarca <chr>, nom_comarca <chr>, h01 <dbl>,
## #
       h02 <dbl>, h03 <dbl>, h04 <dbl>, h05 <dbl>, h06 <dbl>, h07 <dbl>,
## #
      h08 <dbl>, h09 <dbl>, h10 <dbl>, h11 <dbl>, h12 <dbl>, h13 <dbl>,
      h14 <dbl>, h15 <dbl>, h16 <dbl>, h17 <dbl>, h18 <dbl>, h19 <dbl>,
## #
## #
      h20 <dbl>, h21 <dbl>, h22 <dbl>, h23 <dbl>, h24 <dbl>, altitud <dbl>,
       latitud <dbl>, longitud <dbl>, geocoded_column <chr>
# Filtratge per municipi (municipi == "Barcelona")
df_bcn_contaminants <- contaminants_raw %>%
  filter(municipi == "Barcelona")
# Definim els contaminants rellevants per a l'estudi
contaminants_interessants <- c("NO2", "PM10", "PM2.5", "O3")</pre>
# Seleccionem només les observacions corresponents a aquests contaminants
df_bcn_contaminants <- df_bcn_contaminants %>%
  filter(contaminant %in% contaminants_interessants)
# Comptem quantes observacions hi ha per estació i contaminant
df_bcn_contaminants %>%
  count(nom_estacio, contaminant) %>%
  arrange(nom_estacio, contaminant)
## # A tibble: 34 x 3
      nom_estacio
                                         contaminant
                                                         n
##
      <chr>
                                         <chr>
                                                     <int>
## 1 Barcelona (Ciutadella)
                                         NO2
                                                      7383
## 2 Barcelona (Ciutadella)
                                        03
                                                      7475
## 3 Barcelona (Eixample)
                                        NO2
                                                      9231
## 4 Barcelona (Eixample)
                                        03
                                                      9525
## 5 Barcelona (Eixample)
                                        PM10
                                                      6684
## 6 Barcelona (Eixample)
                                        PM2.5
                                                      829
## 7 Barcelona (Gràcia - Sant Gervasi) NO2
                                                      9422
## 8 Barcelona (Gràcia - Sant Gervasi) 03
                                                      9528
## 9 Barcelona (Gràcia - Sant Gervasi) PM10
                                                      4557
## 10 Barcelona (Gràcia - Sant Gervasi) PM2.5
                                                       253
## # i 24 more rows
```

```
# Eliminem columnes que no aporten valor analític directe

df_bcn_contaminants <- df_bcn_contaminants %>%
    select(-magnitud, -codi_ine, -municipi, -codi_comarca, -nom_comarca, -geocoded_column)

# Comprovem la presència de valors nuls a les columnes principals
na_summary_contaminants <- colSums(is.na(df_bcn_contaminants))
print(na_summary_contaminants)</pre>
```

##	codi_eoi	nom_estacio	data	contaminant	unitats
##	0	0	0	0	0
##	tipus_estacio	area_urbana	h01	h02	h03
##	0	0	4808	5175	4842
##	h04	h05	h06	h07	h08
##	4684	4803	4863	4827	4955
##	h09	h10	h11	h12	h13
##	5688	6428	8044	8604	8487
##	h14	h15	h16	h17	h18
##	7452	6829	6716	5241	4535
##	h19	h20	h21	h22	h23
##	4436	4322	4363	4547	4562
##	h24	altitud	latitud	longitud	
##	4813	0	0	0	

```
# Ordenem les dades per facilitar l'anàlisi temporal posterior

df_bcn_contaminants <- df_bcn_contaminants %>%
    arrange(nom_estacio, contaminant, data)

# Crear carpeta de sortida si no existeix
dir.create("../data/processed/contaminants", recursive = TRUE, showWarnings = FALSE)

# Guardar el dataset filtrat
write_csv(df_bcn_contaminants, "../data/processed/contaminants/contaminants_bcn_filtrat.csv")
```

El dataset resultant conté les observacions horàries dels contaminants NO2, PM10, PM2.5 i O3 a les diferents estacions de Barcelona, estructurat cronològicament i amb les columnes essencials per a l'anàlisi temporal i espacial. En la següent fase es podrà integrar amb les dades meteorològiques per estudiar les relacions entre qualitat de l'aire i condicions ambientals.

4. Conclusions generals

Aquest document ha permès dur a terme una primera fase fonamental del projecte: la preparació, neteja i estructuració dels conjunts de dades que seran la base de les anàlisis posteriors sobre la qualitat de l'aire a la ciutat de Barcelona.

S'han abordat dues fonts de dades complementàries:

• Dades meteorològiques (2021–2025), proporcionades pel Servei Meteorològic de Catalunya, que han estat unificades, enriquides amb metadades descriptives i filtrades geogràficament per a les estacions situades dins del municipi de Barcelona. El conjunt resultant conté variables ambientals clau (temperatura, humitat, precipitació, pressió atmosfèrica, etc.) en format net i estandarditzat.

Dades de contaminants atmosfèrics (1991–2025), provinents de l'administració ambiental catalana, que han estat transformades i filtrades per obtenir observacions horàries dels contaminants NO2, PM10, PM2.5 i O3 a estacions urbanes de Barcelona. Les dades han estat reorganitzades cronològicament i simplificades per facilitar l'anàlisi temporal i espacial.

Gràcies a aquest treball de preprocessament:

- S'ha garantit la coherència temporal i geogràfica entre les diferents fonts.
- S'ha assegurat la qualitat i integritat de les dades, descartant camps no rellevants i detectant possibles valors nuls.
- S'han creat conjunts de dades **preparats per a la fusió** i anàlisi conjunta, amb l'objectiu d'estudiar les relacions entre condicions meteorològiques i nivells de contaminació atmosfèrica.

A partir d'aquesta base sòlida, en la següent fase del projecte es podrà dur a terme una anàlisi exploratòria, visualització de sèries temporals, estudi de correlacions i construcció de models explicatius o predictius.

Aquest preprocessament inicial constitueix, doncs, una etapa clau per garantir la robustesa i el rigor analític de tot el treball posterior.