

Tessuto CONNETTIVO CELLULE MATRICE EXTRACELLULARE SOSTANZA FONDAMENTALEFIBRE

*Ha funzione trofo-meccanica: si interpongono tra tessuti di diversa origine e li nutrono, li proteggono, li sostengono e li connettono gli uni agli altri

*connessione del parenchima di organi e tessuti (sostegno meccanico: ossa, tendini)

**nutrizione e scambi ionici e gassosi (supporto metabolico, funzione trofica: sangue e linfa, tessuto adiposo)

***difesa e riparazione dei tessuti.

*Derivazione mesodermica

*I tessuti connettivi sono caratterizzati da un'abbondante matrice extracellulare in cui sono immerse cellule residenti e cellule mobili.

*FIBROBLASTI: cellule più numerose, sintesi e secrezione della matrice extracellulare. Organizzazione della matrice extracellulare. Favoriscono la riparazione dei tessuti.

Nell'organismo adulto, dopo aver organizzato la matrice nella quale restano intrappolati, diventano fibrociti quiescenti.

*MACROFAGI: morfologia dipendente dallo stato funzionale, sono cellule fagocitiche, derivano dai monociti del sangue

*MASTOCITI: cellule grandi ricche di granuli secretori, coinvolti nei processi infiammatori e immunitari e nella riparazione dei tessuti.

Derivano da precursori del midollo osseo.

Nel connettivo proliferano e si differenziano.

*PLASMACELLULE: forma ovoidale con RER e apparato di Golgi sviluppati dove avviene la sintesi di anticorpi (derivano dai linfociti B)

*LINFOCITI E PLASMACELLULE:

- -migrano dal sangue attraverso i vasi per diapedesi (attraversamento della parete dei capillari) soprattutto durante processi infiammatori
- -vengono richiamati da fattori chemiotattici
- -non ritornano nel sangue ad eccezione dei linfociti

*ADIPOCITI: sintetizzano, accumulano e rilasciano grassi

Figura 6–6 Microfotografia ottica di tessuto adiposo bianco di ipoderma di scimmia (×132). Il materiale lipidico si è solubilizzato durante l'allestimento del preparato. Si noti, inoltre, come il nucleo ed il citoplasma (*frecce*) sono stati spinti alla periferia. Dei setti connettivali (S) dividono il tessuto adiposo in lobuli.

PROPRIAMENTE DETTI

SPECIALIZZATI

TABELLA 3-5 Tipi di tessuto connettivo				
NOME DEL TESSUTO	SOSTANZA FONDAMENTALE	TIPO DI FIBRE A DISPOSIZIONE	TIPI CELLULARI PRINCIPALI	SEDI
Tessuto connettivo lasso	Gel; sostanza fondamentale più abbondante rispetto alle cellule e alle fibre	Collagene, elastiche, reticolari; casuale	Fibroblasti	Cute, circonda vasi e organi, subepiteliale
Tessuto connettivo denso e irregolare	Più fibre rispetto alla sostanza fondamentale	Soprattutto collagene; casuale	Fibroblasti	Guaine muscolari e nervose
Tessuto connettivo denso e regolare	Più fibre rispetto alla sostanza fondamentale	Collagene; parallele	Fibroblasti	Tendini e legamenti
Tessuto adiposo	Molto scarsa	Nessuno	Adipociti bruni e adipociti bianchi	Dipende dall'età e dal sesso
Sangue	Acquosa	Nessuno	Cellule ematiche	Nei vasi sanguigni e linfatici
Cartilagine	Rigida ma elastica; acido ialuronico	Collagene	Condroblasti	Superfici articolari, colonna vertebrale, orecchio, naso, laringe
Tessuto osseo	Rigida a causa dei sali di calcio	Collagene	Osteoblasti, osteociti e osteoclasti	Ossa

Tessuto connettivo LASSO

Tessuto connettivo **DENSO**

tessuti connettivi densi compongono i tendini, i legamenti e le guaine che circondano i muscoli e i nervi, fornendo resistenza e flessibilità.

Sono costituiti da fibroblasti.

in fasci paralleli

Tessuto ADIPOSO

Gli adipociti intervengono attivamente nella sintesi, nell'accumulo e nella liberazione dei trigliceridi, la cui sintesi e rilascio sono regolati da ormoni.

I trigliceridi vengono accumulati in una singola grande goccia (uniloculare) o in più gocce (multiloculare) in funzione del tipo di tessuto adiposo (bianco o bruno, rispettivamente).

Tessuto ADIPOSO BIANCO

Il tessuto adiposo bianco rappresenta un tessuto di riserva energetica e la sua quantità può variare notevolmente con la dieta.

Il 50% del tessuto adiposo si localizza nello strato sottocutaneo dove svolge una funzione termoregolatrice e di protezione meccanica.

Una piccola parte è localizzata in specifiche regioni corporee sottoposte a pressione (pianta del piede, palmo della mano) dove funziona da *ammortizzatore*.

Tessuto ADIPOSO BRUNO

La funzione del tessuto adiposo bruno è quello di *immagazzinare lipidi, i quali* vengono degradati per produrre energia sotto forma di calore.

Gli adipociti bruni contengono la termogenina a livello della membrana mitocondriale interna. Tale proteina dissipa il gradiente protonico ma senza farlo fluire attraverso l'ATP sintasi. L'energia viene quindi rilasciata sotto forma di calore.

Tessuti connettivi di sostegno: CARTILAGINE

La cartilagine è un tessuto dotato di resistenza alla compressione e allo stesso tempo elastico e flessibile.

E' sprovvista di nervi e vasi sanguigni ed è nutrita per diffusione attraverso la sua matrice.

I condrociti sono posizionati nelle lacune della matrice (lacune cartilaginee)

*lalina: trachea, setto nasale, laringe.
Collagene di tipo II. Molto compatta.

*Elastica: padiglioni auricolari, epiglottide.

Collagene di tipo II e fibre elastiche

*Fibrosa: dischi intervertebrali, menischi articolari Collagene di tipo II e I.

*I diversi tipi di cartilagine si differenziano in base alla proporzione e alla disposizione delle fibre elastiche e di collagene.

Tessuto connettivo di sostegno:

OSSO

Il tessuto osseo ha funzione di sostegno, protezione e riserva di sali minerali (calcio).

La matrice è costituita da una componente organica (collagene di tipo I) e inorganica (fosfato di calcio in forma di *idrossiapatite*). La matrice è mineralizzata.

L'osteonectina promuove la mineralizzazione della matrice.

La sialoproteina ha affinità per le proteine di membrana.

T.O. SPUGNOSO

A Tessuto osseo lamellare spugnoso

B Tessuto osseo lamellare compatto

Nel tessuto osseo sono presenti 4 popolazioni di cellule con diversa localizzazione a livello delle ossa.

Le cellule progenitrici sono importanti per il processo di osteogenesi.

Gli osteoblasti sono responsabili della sintesi e della deposizione della matrice organica e della sua mineralizzazione. Gli osteociti si trovano nelle lacune mentre gli osteoclasti sono responsabili del rimodellamento osseo.

Cellula osteoprogenitrice (cellula staminale)

(sintetizza matrice ossea)

(mantiene il tessuto osseo)

Tessuto connettivo circolante: SANGUE

Tipi cellulari del sangue

Basofilo

Neutrofilo Monocita

Eosinofilo

Linfocita

Formula leucocitaria

Neutrofili	55-70%	
Eosinofili	1-4%	
Basofili	0-1%	
Linfociti	20-25%	
monociti	3-8%	

Le cellule ematiche (globuli rossi o eritrociti, globuli bianchi o leuciti e piastrine), si differenziano tutte da un unico precursore (cellula staminale pluripotente) all'interno del midollo osseo.

Eritrociti

Cellule differenziate terminali. Prive di nucleo e organuli citoplasmatici. Vita media 120 giorni.

Forma biconcava aumenta il rapporto superficie/volume e facilita gli scambi gassosi. Emoglobina per trasporto ossigeno e anidride carbonica.

Leucociti

Granulociti polimorfonucleati e agranulociti mononucleati

Neutrofili (leucociti polimorfonucleati)

60-70% dei leucociti, diametro 12-15 µm, nucleo con 2-5 lobi

Granuli specifici molto piccoli con vari enzimi necessari per l'attività antimicrobica Granuli azurofili (lisosomi) con idrolasi acide, mieloperossidasi, lisozima Granuli terziari con gelatinasi e glicoproteine

Contengono glicogeno utilizzato nella glicolisi che permette di sopravvivere in ambiente anaerobico

Eosinofili

2-4% dei leucociti, 12-15 µm, nucleo bilobato

Granuli specifici molto grandi, numerosi e molto colorati con forma ovale e nucleo cristallino

contengono la proteina basica principale (ricca di arginine), proteina cationica eosinofila attive contro elminti e protozoi

Basofili

 $1\%\,$ dei leucociti, $\,12\text{-}15~\mu m$, nucleo 2 o più lobi irregolari Nucleo mascherato da granuli specifici fortemente colorati di blu

Granuli contenenti Eparina ed altri GAG solforati, Istamina ed altri mediatori dell'infiammazione

Monociti

leucociti, dimensione 12-20 µm, nucleo a forma reniforme

Citoplasma con piccoli granuli azurofili (lisosomi) e numerosi mitocondri

Sono i precursori delle cellule del sistema dei fagociti mononucleati

Linfociti

Dimensione 6-15 µm

Sono attivi solo nel tessuto connettivo

Sono gli unici leucociti che dai tessuti possono rientrare nel sangue

Piastrine (trombociti)

Frammenti di cellule (2-4 µm) con forma discoidale. Derivano dai megacariociti, cellule giganti poliploidi

Creano un tappo piastrinico e promuovono la coagulazione del sangue impedendone la fuoriuscita attraverso lesioni di vasi

