实验一 门电路电特性的测量

2019010175 孔瑞阳 计科 91

一、电压传输特性的测量

V_{IL}留出 0.5V 为 1.90V

V_{OH}留出 0.1V 为 5.01V

V_{TH}为 2.56V

V_{IH}留出 0.5V 为 3.28V

V_{OL}留出 0.1V 为 0.48V

整理数据如下表:

正之处况不一心。		
V_{OH}	5. 01V	
V_{OL}	0. 48V	
$V_{\mathrm{I}H}$	3. 28V	
$V_{ m IL}$	1. 90V	
$V_{\mathrm TH}$	2. 56V	
NM_H	1. 73V	
NM_L	1. 42V	

二、延迟时间的测量

$$t_{pd} = \frac{5706 - 5648 + 8035 - 7628}{6} = 77.5 \, ns$$

根据测量和计算,

传输延迟时间 $t_{pd} = 77.5 \, ns$; 失效延迟时间 $t_{cd} = 58.17 \, ns$ 。

三、瞬时导通功率的观察

由 $P \propto U^2$, 输入从低电平改变至高电平时, 瞬时导通功率最高约为静态功率的 36 倍; 当输入从高电平变至低电平时, 瞬时导通功率最高约为静态功率的 25 倍。

分析: 当输入电压从低电平变为高电平,或者从高电平变为低电平时,都会经过一段时间满足 $V_{GD(th)N} < V < V_{DD} - \left|V_{GD(th)P}\right|$,导致两个 MOS 管同时导通,导致瞬时导通功率比静态功率大很多。

四、不同电源电压下噪声容限的变化

结合实验(1),整理数据如下表:

电源电压	5V	8V
V_{OH}	5. 01V	7. 56V
V_{OL}	0. 48V	0. 41V
$V_{\mathrm{I}H}$	3. 28V	4. 31V
V_{IL}	1. 90V	2. 40V
NM_H	1. 73V	3. 25V
NM_L	1. 42V	1. 99V

当电源电压增加时, 噪声容限也变大了。

分析: 电源电压增加, 由于 MOS 管的物理性质, V_{IL} AV_{IH} 成比例增加, 所以噪声容限也会成比例增加。

五、输入端悬空瞬时导通功耗

相比之前的波形, 静态功率更强了, 且瞬时导通功率仅有微小的改变。

分析: CMOS 是电路绝缘栅,属于高输入阻抗的器件,所以悬空导致很容易受到外界干扰,可能在两个状态中不断变化,使得两个 MOS 管同时导通的频率/时间更长,导致静态功耗也增加非常多。而一个门状态的变化导致的功率增加相对于其他门不断的变化,带来的影响就变小了。