

ALC5616

Ultra-Low Power Audio CODEC for Mobile Devices

Application Note

Rev. 0.1 28 Sep 2012

Realtek Semiconductor Corp.

No. 2, Industry E. Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan Tel: +886-3-5780211 Fax: +886-3-5776047 www.realtek.com.tw

COPYRIGHT

©2012 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document "as is", without warranty of any kind, neither expressed nor implied, including, but not limited to, the particular purpose. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

CONFIDENTIALITY

This document is confidential and should not be provided to a third-party without the permission of Realtek Semiconductor Corporation.

USING THIS DOCUMENT

This document is intended for the hardware and software engineer's general information on the Realtek ALC5616 Audio CODEC chip.

Though every effort has been made to assure that this document is current and accurate, more information may have become available subsequent to the production of this guide. In that event, please contact your Realtek representative for additional information that may help in the development process.

.Revision History

Revision	Release Date	Summary
0.1	2012-9-28	preliminary

Table of Contents

1.	Init	al	4
	1.1.	POWER ON/OFF SEQUENCE	4
	1.2.	POWER BLOCK DIAGRAM.	4
2.	PLI	J	5
	2.1.	Power ON	5
	2.2.	PLL Input Path	5
	2.3.	PLL OUTPUT PATH	6
	2.4.	PLL PARAMETER SETTING	
	2.4.1.	PLL Parameter	
	2.5.	PLL SETTING EXAMPLE	8
3.	Play	back	9
	3.1.	Power ON	9
	3.2.	MIXER CONTROL	. 10
	3.2.1.	Power	
	3.2.2.	Path Setup	
	3.2.3.	HP Output Control	
	3.2.4. 3.2.5.	LOUT Output Control	
	3.3.	POWER BLOCK OF PLAYBACK	
	3.4.	PLAYBACK SETTING EXAMPLE	
4.		ord	
т.	4.1.	Power	
	4.2.	MIXER CONTROL	
	4.2.1.	Power	
	4.2.2.	REC Mixer Control	
	4.3.	INPUT CONTROL	
	4.3.1.	Stereo Input Control	28
		1 Power	
		2 Stereo Input Volume Control	
	4.3.2.	IN1/2 (MIC) In Control	
		.2 IN1/2 In Boost Control	
		3 MICBIAS function	
	4.4.	ADC CONTROL	. 31
	4.4.1.	Stereo ADC Format & Sample Rate Relative Setting.	
	4.5.	POWER BLOCK OF RECORD.	. 31
	4.6.	RECORD SETTING EXAMPLE	. 32
5.	Digi	tal Mixer	. 33
	5.1.	DIGITAL AUDIO INTERFACE.	. 33
	5.1.1.	Digital to DAC	
_	5.1.2.	ADC to digital	
6.		RC	
	6.1.	PATH SETTING	
	6.2.	CLOCK SETTING	
7.		lio H/W Processing	
	7.1.	POWER	
	7.2.	7-BAND EQ CONTROL	
	7.2.1.	LPO	
	7.2.2. 7.2.3.	BP1	
	7.2.3. 7.2.4.	BP3	
	7.2.5.	BP4	

ALC5616 Application Note

7.2.6.	HPF1	
7.2.7.	HPF2	43
7.2.8.	EQ volume	43
7.3.	EQ SETTING EXAMPLE	44
7.4.	WIND FILTER	45
7.5.	WIND FILTER SETTING PROCEDURE	47
8. D	RC/AGC	48
8.1.	DRC/AGC RELATIVE PARAMETER REGISTER SETTING	49
8.1.1.	Limit level	49
8.1.2.	Noise gate	
8.1.3.	Attack and Recovery Time	
8.1.4.	DRC Compressor	
8.1.5.	Parameter update	52
9. Ja	ack Detection	53
9.1.	JD SETTING EXAMPLE	54
10. G	PIO & IRQ	55
10.1.	Initial	55
10.2.	GPIO & IRQ CONTROL	55

1. Initial

1.1. Power on/off sequence

To avoid the unexpected issue, the power on/off sequence of ALC5616 is better to be as below:

- i. The power on sequence:
- (1) Power on DBVDD & AVDD & CPVDD & DACREF.
- (2) Power on MICVDD
- (3) Software initialize
- ii. The power off sequence:
- (1) Power down all codec power by software
- (2) Power off MICVDD
- (3) Power off the DBVDD & AVDD & CPVDD& DACREF.

1.2. Power block diagram

When codec is initial power on, we suggest customer to enable the registers as below:

Control Register	Reg	Value	Description	Note
Pow_bg_bias	MX63[11]	1'b	Power On MBIAS Bandgap	
Pow_vref1	MX63[15]	1'b	Power On Vref1	
Pow_main_bias	MX63[13]	1'b	Power On Main Bias	
Pow_vref2	MX63[4]	1'b	Power On Vref2	
En_ fastb1	MX63[14]	0'b	Enable fast Vref1	
En_ fastb2	MX63[3]	0'b	Enable fast Vref2	
digital_gate_ctrl	MXFA[0]	1'b	Enable MCLK input	

Part of the analog can be used after enable **Pow_vref1 & Pow_vref2** (with the fast Vref1& fast Vref2 enable) pass through 0.2 second. After Vref1 and Vref2 power is ready(0.2 sec), the **En_fastb1 & En_fastb** can be disable(set to 1'b) for better audio performance.

After power on these registers, we will not disable them unless the system is power down. The picture as below is the power block diagram of ALC5616. The function just like Record ..etc. in this picture will be introduced one by one in later chapter.

2. PLL

PLL is mainly used to generate I2S required clock for Audio CODEC by input an unrelated reference clock.

2.1. Power ON

For Enable PLL, the related block has to be power on and Register shown as below has to be enabled.

Control Register	Reg	Value	Description	Note
Pow_bg_bias	MX63[11]	1'b	Power On MBIAS Bandgap	
Pow_vref1	MX63[15]	1'b	Power On Vref1	
Pow_main_bias	MX63[13]	1'b	Power On Main Bias	
Pow_vref2	MX63[4]	1'b	Power On Vref2	
Pow_pll	MX64[9]	1'b	Power On PLL	

Note: MX63[11], MX63[15], MX63[4], MX63[13] should enable first

2.2.PLL Input Path

There are three sources that can be used as PLL input source: MCLK and BCLK1 can be configured by **sel_pll_sour**. And there is a divider in front of PLL by setting **sel_pll_pre_div**.

Name	Bits	Default value	Function Description
sel_pll_	MX80	0'h	Pll Source Selection
sour	[13:12]		00'b: From MCLK
			01'b: From BCLK1
			10'b: Reserved
			11'b: Reserved
sel_pll_	MX80[3]	0'b	PLL Pre-Divider
pre_div			0'b: ÷ 1
			1'b: ÷ 2

2.3.PLL Output Path

The system clock of I2S Stereo DAC/ADC is SYSCLK which can source from MCLK or PLL by setting $sel_sysclk1$.

Name	Bits	Default value	Function Description
sel_sysclk	MX80	0'h	SYSCLK1 Source MUX Control
	[15:14]		00'b: MCLK
			01'b: PLL
			10'b: Reserved
			11'b: Reserved

2.4.PLL Parameter Setting

2.4.1. PLL Parameter

According to different PLL reference input clock frequency, different PLL parameters have to be set by Driver.

Name	Bits	Default value	Function Description
Pll_n_c	MX81	0'h	PLL N[8:0] Code
ode	[15:7]		000000000'b: Div 2
			000000001'b: Div 3
			~
			1111111111'b: Div 513
Pll_k_c	MX81	0'h	PLL K[4:0] Code
ode	[4:0]		000'b: ÷ 2
			001'b: ÷ 3
			~
			111'b: ÷ 9
Pll_m_c	MX82	0'h	PLL M[3:0] Code
ode	[15:12]		0000'b: Div 2
			0001'b: Div 3
			1111'b: Div 17
Pll_m_b	MX82	0'h	Bypass PLL M Code
ypass	[11]		0'b: No bypass
			1'b: Bypass

The Function of PLL is as below:

 $F_{OUT} = (MCLK * (N+2)) / ((M+2) * (K+2)) \{Typical K=2\}$

For example 1:

48KHz sample rate:

(unit: MHz)

PLL IN	N	M	F _{VCO}	K	F _{OUT}	MX81	MX82
13	119	14	98.312	2	24.578	3B82	E000
3.6864	78	1	98.304	2	24.576	2702	1000
2.048	46	0	98.304	2	24.576	1702	0800
4.096	22	0	98.304	2	24.576	0B02	0800
12	129	14	98.25	2	24.562	4082	E000
15.36	30	3	98.304	2	24.576	0F02	3000
16	41	5	98.285	2	24.571	1482	5000
19.2	85	15	98.258	2	24.564	2A82	F000
19.68	3	0	98.4	2	24.6	0182	0800

For example 2:

44.1KHz sample rate

(unit: MHz)

PLL IN	N	M	$\mathbf{F}_{\mathbf{VCO}}$	K	F _{OUT}	MX81	MX82
13	116	15	90.235	2	22.558	3A02	F000
3.6864	47	0	90.316	2	22.5792	1782	0000
2.048	439	8	90.316	2	22.5792	DB82	8000
4.096	213	11	67.741	1	22.58	6A81	B000
12	126	15	90.352	2	22.588	3F02	F000
15.36	98	15	90.352	2	22.588	3102	F000
16	77	12	90.285	2	22.571	2682	C000
19.2	78	15	90.352	2	22.588	2702	F000
19.68	76	15	90.296	2	22.574	2602	F000

2.5. PLL Setting Example

For example: The input clock source from Samsung CPU is 12 MHz.

Step1: When the codec initialize. At first, we should enable the power for PLL. The setting is as below:

- a. Set MX63[11] to 1'b
- b. Set MX63 [15] to 1'b
- c. Set MX63 [13] to 1'b
- d. Set MX63 [4] to 1'b
- e. Set MX64[9] to 1'b

Step2: Set the PLL divider to transform 12MHz to 24.576MHz

The user needs to set the value of MX81 & MX82 for clock transformation.

Note: Realtek has made a tool for customer to easily produce the MX81 & MX82 value. The using of PLL tool is in the picture as below:

- a. Use the PLL tool to produce the value [4082] for MX81 and [E000] for MX82
- b. Set MX81: 4082'h
- c. Set MX82: E000'h

Step3: Set the system clock source from MCLK to PLL.

The original system clock source is from MCLK (MX80[15:14]: 00'b)

We have to change the clock source from MCLK to PLL.

So, we set MX80[15:14]:01'b and then delay 10m sec

Step4: After setting MX80[15:14] to change the clock source to PLL , the clock source change to PLL immediately. PLL starts using for system clock.

3. Playback

3.1. Power ON

The Register shown as below has to be set in order to enable DAC.

Control Register	Reg	Value	Description	Note
Pow_bg_bias	MX63[11]	1'b	Power On MBIAS Bandgap	
Pow_vref1	MX63[15]	1'b	Power On Vref1	
Pow_main_bias	MX63[13]	1'b	Power On Main Bias	
Pow_vref2	MX63[4]	1'b	Power On Vref2	
Pow_dac_l_1	MX61[12]	1'b	Power ON DACL1	Depends on path
Pow_dac_r_1	MX61[11]	1'b	Power ON DACR1	Depends on path
Pow_dac_stereo1_filter	MX62[11]	1'b	Power ON Stereo1 DAC Digital Filter	Depends on path
En_i2s1	MX61[15]	1'b	Enable I2S1 Digital interface	Depends on path
digital_gate_ctrl	MXFA[0]	1'b	Enable MCLK input	
En_detect_clk_sys	MXFA[3]	1'b	Enable MCLK detection and auto switch internal clock	Depends on application
Ckxen_dac	PR3D[10]	1'b	Enable DAC Clock1 Generator	
En_ckgen_dac	PR3D[9]	1'b	Enable DAC Clock2 Generator	

3.2. Mixer Control

3.2.1. Power

The power of each mixer can be individually power down in order to save power consumption. The following power management register should be enabled according to playback path.

Control Register	Reg	Value	Description	Note
Pow_outmixl	MX65[15]	1'b	Power On Left OUT Mixer	Depends On Path
Pow_outmixr	MX65[14]	1'b	Power On Right OUT Mixer	Depends On Path

3.2.2. Path Setup

3.2.2.1.OUT mixer

ALC5616 has a stereo OUT mixer which can input the signal from DAC or IN2...etc .The input source of Out mixer can be set by **MX4F** & **MX52**. Each input signal has an attenuate gain control before input OUT mixer.

Name	Bits	Default value	Function Description
Mu_bst2_out mixl	MX4F [6]	1'b	Mute Control for BST2 to OUTMIXL 0'b: Un-Mute 1'b: Mute
Mu_bst1_out mixl	MX4F [5]	1'b	Mute Control for BST1 to OUTMIXL 0'b: Un-Mute 1'b: Mute
Mu_inl_outmi xl	MX4F [4]	1'b Mute Control for INL to OUTMIXI 0'b: Un-Mute 1'b: Mute	
Mu_recmixl_o utmixl	MX4F [3]	1'b	Mute Control for RECMIXL to OUTMIXL 0'b: Un-Mute 1'b: Mute
Mu_dacl1_out mixl	MX4F [0]	1'b	Mute Control for DACL1 to OUTMIXL 0'b: Un-Mute 1'b: Mute
Mu_bst2_out mixr	MX52 [6]	1'b	Mute Control for BST2 to OUTMIXR 0'b: Un-Mute 1'b: Mute
Mu_bst1_out mixr	MX52 [5]	1'b Mute Control for BST1 to OUTMIX 0'b: Un-Mute 1'b: Mute	
Mu_inr_outmi xr	MX52 [4]	1'b	Mute Control for INR to OUTMIXR 0'b: Un-Mute 1'b: Mute
Mu_recmixr_o utmixr	MX52 [3]	1'b	Mute Control for RECMIXR to OUTMIXR 0'b: Un-Mute 1'b: Mute
Mu_dacr1_out mixr	MX52 [0]	1'b	Mute Control for DACR1 to OUTMIXR 0'b: Un-Mute 1'b: Mute

ייון	T		
Gain_bst2_out	MX4D	0'h	Gain Control for BST2 to OUTMIXL
mixl	[12:10]		000'b: 0dB
			001'b: -3dB
			010'b: -6dB
			011'b: -9dB
			100'b: -12dB
			101'b: -15dB
			110'b: -18dB
			Others: reserved
Gain_bst1_out	MX4D	0'h	Gain Control for BST1 to OUTMIXL
mixl	[9:7]	V II	000'b: 0dB
IIIIAI	[2.7]		001'b: -3dB
			010'b: -6dB
			011'b: -9dB
			100'b: -12dB
			100 b12dB 101'b: -15dB
			110'b: -18dB
C. t. I	MYAD	0'h	Others: reserved
Gain_inl_out	MX4D	U n	Gain Control for INL to OUTMIXL
mixl	[6:4]		000'b: 0dB
			001'b: -3dB
			010'b: -6dB
			011'b: -9dB
			100'b: -12dB
			101'b: -15dB
			110'b: -18dB
			Others: reserved
Gain_recmixl_	MX4D	0'h	Gain Control for RECMIXL to
outmixl	[3:1]		OUTMIXL
			000'b: 0dB
			001'b: -3dB
			010'b: -6dB
			011'b: -9dB
			100'b: -12dB
			101'b: -15dB
			110'b: -18dB
			Others: reserved
Gain_dacl1_o	MX4E	0'h	Gain Control for DACL1 to OUTMIXL
utmixl	[9:7]		000'b: 0dB
			001'b: -3dB
			010'b: -6dB
			011'b: -9dB
			100'b: -12dB
			101'b: -15dB
			110'b: -18dB
			Others: reserved
Gain_bst2_out	MX50	0'h	Gain Control for BST2 to OUTMIXR
mixr	[12:10]	0 11	000'b: 0dB
IIIIXI	[12.10]		001'b: -3dB
			001 U. - 3 U D

010'b: -6dB 011'b: -9dB 100'b: -12dB 101'b: -15dB 110'b: -18dB Others: reserved Gain_bst1_out mixr MX50 O'h Gain Control for BST1 to OUTMIXR 000'b: 0dB 001'b: -3dB 010'b: -6dB 011'b: -9dB
100'b: -12dB 101'b: -15dB 110'b: -18dB Others: reserved Gain_bst1_out mixr MX50 O'h Gain Control for BST1 to OUTMIXR 000'b: 0dB 001'b: -3dB 010'b: -6dB 011'b: -9dB
101'b: -15dB 110'b: -18dB Others: reserved Gain_bst1_out mixr MX50 O'h Gain Control for BST1 to OUTMIXR 000'b: 0dB 001'b: -3dB 010'b: -6dB 011'b: -9dB
110'b: -18dB Others: reserved
Others: reserved
Gain_bst1_out mixr MX50 [9:7] O'h Gain Control for BST1 to OUTMIXR 000'b: 0dB 001'b: -3dB 010'b: -6dB 011'b: -9dB
mixr [9:7] 000'b: 0dB 001'b: -3dB 010'b: -6dB 011'b: -9dB
001'b: -3dB 010'b: -6dB 011'b: -9dB
001'b: -3dB 010'b: -6dB 011'b: -9dB
011'b: -9dB
10011 10 17
100'b: -12dB
101'b: -15dB
110'b: -18dB
Others: reserved
Gain_inr_out MX50 0'h Gain Control for INR to OUTMIXR
mixr [6:4] 000'b: 0dB
001'b: -3dB
010'b: -6dB
011'b: -9dB
100'b: -12dB
101'b: -15dB
110'b: -18dB
Others: reserved
Gain_recmixr MX50 0'h Gain Control for RECMIXR to
_outmixr [3:1] OUTMIXR
000'b: 0dB
001'b: -3dB
010'b: -6dB
011'b: -9dB
100'b: -12dB
101'b: -15dB
110'b: -18dB
Others: reserved
Gain_dacr1_o MX51 0'h Gain Control for DACR1 to OUTMIXR
utmixr [9:7] 000'b: 0dB
001'b: -3dB
010'b: -6dB
011'b: -9dB
100'b: -12dB
101'b: -15dB
110'b: -18dB
Others: reserved

3.2.3. HP Output Control

3.2.3.1.Power

The power management of Headphone out is shown as below:

Control Register	Reg	Value	Description	Note
en_out_hp	MX8E[4]	1'b	Enable Headphone output	
Pow_pump_hp	MX8E[3]	1'b	Power On Charge pump	
En_l_hp	MX63[7]	1'b	Power On Headphone Amplifier Left Channel	
En_r_hp	MX63[6]	1'b	Power On Headphone Amplifier Right Channel	
Pow_hpovoll	MX66[11]	1'b	Power On Left Headphone Output Volume	Depends On Path
Pow_hpovolr	MX66[10]	1'b	Power On Right Headphone Output Volume	Depends On Path
Pow_capless	MX8E[0]	1'b	HP Amp All Power On	

3.2.3.2.HP Volume

When HP output signal is from Out mixer, its volume can be controlled by HPOVOL L/R. It also has a mute/unmute before HPOVOL L/R.

Name	Bits	Default value	Function Description
Mu_hpovoll_ in	MX02 [14]	1'h	Mute Control for Left Headphone Volume Channel(HPOVOLL) 0'b: Un-Mute 1'b: Mute
vol_hpol	MX02 [13:8]	8'h	Left Headphone Channel Volume Control (HPOVOLL) 00'h: +12dB 08'h: 0dB
			27'h: -46.5dB, with 1.5dB/step
Mu_hpovolr _in	MX02 [6]	1'h	Mute Control for Right Headphone Volume Channel(HPOVOLR) 0'b: Un-Mute 1'b: Mute
vol_hpor	MX02 [5:0]	8'h	Right Headphone Channel Volume Control (HPOVOLR) 00'h: +12dB 08'h: 0dB 27'h: -46.5dB, with 1.5dB/step

3.2.3.3.HP Out control

HP Output can select its source to HPOMIX, and the source can be selected from Out mixer or just direct form DAC1.

When using direct path from DAC1, the HPO Volume will be useless. HPOMIX also has gain control on it.

After selecting the source of input, HP Out also has a mute function which can be set by register. Customer can use it to mute the sound which output to HPO.

Name	Bits	Default value	Function Description
mu_dac1_hp omix	MX45 [14]	1'h	Mute Control for DAC1 to HPOMIX 0'b: Un-Mute 1'b: Mute
mu_hpovol_ hpomix	MX45 [13]	1'h	Mute Control for HPOVOL to HPOMIX 0'b: Un-Mute 1'b: Mute
Gain_hpomi x	MX45 [12]	0'h	Gain Control for HPOMIX 0'b: 0dB 1'b: -6dB

3.2.3.4.HP Out depop control

ALC5616 supports depop mode which can use to decrease pop noise.ALC5616 also has a DC calibration function to shorten the delay time of depop.

	HP OUT initial DC calibration for De-pop						
Step	Procedure	Register	Set	Remark			
1	Enable I2S clock	MX-FA[0]	1'b				
2	Enable depop function	MX-8F	3100'h				
	Enable charge pump & HPO power	MX-8E	0009'h				
4	Enable DC calibration	PR-77	9F00'h				

	HP OUT initial Power on + Un-mute De-pop						
Step	Procedure	Register	Set	Remark			
1	Enable power on depop	MX-8F	1140'h				
2	Power On Vref & Main Bias MX-63 A8F0'h						
3	Delay >80m Sec						
4	Disable fast Vref	MX-63	E8F8'h				
5	Select depop timing	MX-90	0636'h				
6	Enable HPO amp power	MX-8E	0005′h				
7	HPO Un-Mute	MX-02[15][7]	00'b				
8	Delay >100m Sec						

	HP OUT Mute + Power off De-pop					
Step	Procedure	Register	Set	Remark		
1	HPO Mute	MX-02[15][7]	11'b			
2	Delay >100m Sec					
3	Disable HPO amp power	MX-8E	0004′h			
4	4 Delay >50m Sec					
5	Power Off Vref & Main Bias	MX-63	0000'h			

3.2.4. LOUT Output Control

3.2.4.1.Power

The power management of LOUT out is shown as below:

Control Register	Reg	Value	Description	Note
Pow_lout	MX63[12]	1'b	Power On LOUT mixer	
Pow_pump_hp	MX8E[3]	1'b	Power On Charge pump	
Pow_outvoll	MX66[13]	1'b	Power On Left Output Volume	Depends On Path
Pow_outvolr	MX66[12]	1'b	Power On Right Output Volume	Depends On Path

3.2.4.2.LOUT Out Volume

When LOUT output signal is from Out mixer, its volume can be controlled by OUTVOL L/R. It also has a mute/unmute before OUTVOL L/R.

Name	Bits	Default value	Function Description
Mu_outvoll_in	MX03	1'h	Mute Control for Left Output Volume Channel
	[14]		(OUTVOLL)
	[1.]		0'b: Un-Mute
			1'b: Mute
Vol_outl	MX03	08'h	Left Output Volume Control (OUTVOLL)
	[13:8]		00'h: +12dB
	. ,		
			08'h: 0dB
			27'h: -46.5dB, with 1.5dB/step
Mu_outvolr_in	MX03	1'h	Mute Control for Right Output Volume Channel
	[6]		(OUTVOLR)
			0'b: Un-Mute
			1'b: Mute
Vol_outr	MX03	8'h	Right Output Volume Control
	[5:0]		00'h: +12dB
			08'h: 0dB
			27'h: -46.5dB, with 1.5dB/step

3.2.4.3.LOUT Out control

LOUT Output has a LOUT mixer which can select its source, and the source can be selected from Out mixer or just direct form DAC1.

When using direct path from DAC1, the OUT Volume will be useless. LOUT mixer also has gain control on it.

After selecting the source of input, LOUT also has a mute function which can be set by register. Customer can use it to mute the sound which output to LOUT.

Name	Bits	Default value	Function Description
Mu_dacl1_lo ut	MX53 [15]	1'h	Mute Control for DACL1 to LOUTMIX 0'b: Un-Mute 1'b: Mute
Mu_dacr1_lo ut	MX53 [14]	1'h	Mute Control for DACR1 to LOUTMIX 0'b: Un-Mute 1'b: Mute
Mu_outvoll_l out	MX53 [13]	1'h	Mute Control for OUTVOLL to LOUTMIX 0'b: Un-Mute 1'b: Mute
Mu_outvolr_l out	MX53 [12]	1'h	Mute Control for OUTVOLR to LOUTMIX 0'b: Un-Mute 1'b: Mute
Gain_lout	MX53 [11]	0'h	Gain Control for LOUTMIX 0'b: 0dB 1'b: -6dB
Mu_lout_l	MX03 [15]	1'h	Mute Control for Left Line Output Port(LOUTL) 0'b: Un-Mute 1'b: Mute
Mu_lout_r	MX03 [7]	1'h	Mute Control for Right Line Output Port (LOUTR) 0'b: Un-Mute 1'b: Mute

LOUT Output also supports differential mode function which is set by register to invert the R channel to minus 180 degree.

Name	Bits	Default value	Function Description
En_ dfo	MX05	0'h	Enable Differential Line Output
	[15]		0'b: Disable
			1'b: Enable (LP / RN)

3.2.5. Digital Interface Format Setting

3.2.5.1.I2S/PCM Format Setting

The Digital Interface of ALC5616 can be configured as Master mode or Slave mode, and three different audio data formats are supported: I2S, Left Justify and PCM. In addition, PCM interface can support mode-A and mode-B. Each kind of audio data format supports different data length, and polarity of LRCK and BCLK can be inverted depends on audio data format.

ALC5616 also support A law, u law format, and customer can also set these two format by register control.

Name	Bits	Default value	Function Description
Sel_i2s1_ms	MX70	1'h	I2S1 Digital Interface Mode
	[15]		Control
	[]		0'b: Master Mode
			1'b: Slave Mode
en_i2s1_out_	MX70	0'h	I2S1 Output Data Compress (For
comp	[11:10]		ADCDAT1 Output)
			00'b: OFF
			01'b: μ law
			10'b: A law
			11'b: Reserved
en_i2s1_in_c	MX70	0'h	I2S1 Input Data Compress (For
omp	[9:8]		DACDAT1 Input)
			00'b: OFF
			01'b: μ law
			10'b: A law
			11'b: Reserved
Inv_i2s1_bcl	MX70	0'h	I2S1 BCLK Polarity Control
k	[7]		0'b: Normal
			1'b: Invert
sel_i2s1_len	MX70	0'h	I2S1 Data Length Selection
	[3:2]		00'b: 16 bits
			01'b: 20 bits
			10'b: 24 bits
			11'b: 8 bits
sel_i2s1_for	MX70	0'h	I2S1 PCM Data Format Selection
mat	[1:0]		00'b: I2S format
			01'b: Left justified
			10'b: PCM Mode A (LRCK One
			Plus at Master Mode)
			11'b: PCM Mode B (LRCK One
			Plus at Master Mode)

3.2.5.2. Stereo DAC Sample Rate Relative Setting

The sample rate Relative setting of DAC1 can be set in the register shown below:

Name	Bits	Default value	Function Description
sel_i2s_pre_	MX73	1'h	I2S Clock Pre-Divider 1
div1	[14:12]		000'b: ÷ 1
			001'b: ÷ 2
			010'b: ÷ 3
			011'b: ÷ 4
			100'b: ÷ 6
			101'b: ÷ 8
			110'b: ÷ 12
			111'b: ÷ 16
sel_dac_osr	MX73	0'h	Stereo DAC Over Sample Rate Select
	[3:2]	0 11	00'b: 128Fs
	. ,		01'b: 64Fs 10'b: 32Fs
			11'b: 128Fs/3
sel_adc_osr	MXZZ	011	Stereo ADC Over Sample Rate Select
SCI_auc_USI	MX73	0'h	00'b: 128Fs
	[1:0]		01'b: 64Fs
			10'b: 32Fs
			11'b: 128Fs/3

In I2S/PCM mode, sample rate is setting by $sel_i2s_pre_div1$. About the register setting, please refer to the table in page $31\sim32$.

Master Mode:

Clock	source	I2S1 (Clock	MX73	MX70	MX80
MCLK	PLL	LRCLK	BCLK		[15]	[15:14]
24576000	X	Fs=8000	64Fs	6110	0'b	00'b
(3072Fs)						
24576000	X	Fs=16000	64Fs	4110	0'b	00'b
(1536Fs)						
24576000	X	Fs=24000	64Fs	3110	0'b	00'b
(1024Fs)						
24576000	X	Fs=32000	64Fs	2110	0'b	00'b
(768Fs)						
24576000	X	Fs=48000	64Fs	1110	0'b	00'b
(512Fs)						
22579200	X	Fs=11025	64Fs	5110	0'b	00'b
(2048Fs)						
22579200	X	Fs=22050	64Fs	3110	0'b	00'b
(1024Fs)					_	
22579200	X	Fs=44100	64Fs	1110	0'b	00'b
(512Fs)				5110	0.01	0.4.44
	24576000	$F_{S}=8000$	64Fs	6110	0'b	01'b
	(3072Fs)	7 16000	6.47	4440	0.11	0.4.11
	24576000	Fs=16000	64Fs	4110	0'b	01'b
	(1536Fs)	E 24000	6.45	2110	0.11	0.1.11
	24576000	Fs=24000	64Fs	3110	0'b	01'b
	(1024Fs)	F 22000	CAE	2110	021	0121
•	24576000	Fs=32000	64Fs	2110	0'b	01'b
	(768Fs)	E49000	C4E-	1110	021-	0121-
	24576000	Fs=48000	64Fs	1110	0'b	01'b
	(512Fs)	Fs=11025	64Fs	5110	0'b	01'b
	(2048Fs)	rs-11023	0418	3110	UB	OID
	22579200	Fs=22050	64Fs	3110	0'b	01'b
	(1024Fs)	FS-22U3U	0468	3110	0.0	010
	22579200	Fs=44100	64Fs	1110	0'b	01'b
	(512Fs)	ГS -44 100	0468	1110	0.0	01.0
	(31258)				ļ	

Slave Mode:

Clock	source	I2S1 Clock		MX73	MX70	MX80
MCLK	PLL	LRCLK	BCLK		[15]	[15:14]
2048000	X	Fs=8000	X	0110	1'b	00'b
(256Fs)						
4096000	X	Fs=16000	X	0110	1'b	00'b
(256Fs)						
6144000	X	Fs=24000	X	0110	1'b	00'b
(256Fs)						
8192000	X	Fs=32000	X	0110	1'b	00'b
(256Fs)						
12288000	X	Fs=48000	X	0110	1'b	00'b
(256Fs)						
2822400	X	Fs=11025	X	0110	1'b	00'b
(256Fs)						
5644800	X	Fs=22050	X	0110	1'b	00'b
(256Fs)						
11289600	X	Fs=44100	X	0110	1'b	00'b
(256Fs)						
4096000	X	Fs=8000	X	1110	1'b	00'b
(512Fs)						
8192000	X	Fs=16000	X	1110	1'b	00'b
(512Fs)						
6144000	X	Fs=24000	X	1110	1'b	00'b
(512Fs)						
16384000	X	Fs=32000	X	1110	1'b	00'b
(512Fs)						
24576000	X	Fs=48000	X	1110	1'b	00'b
(512Fs)						
5644800	X	Fs=11025	X	1110	1'b	00'b
(512Fs)						
11289600	X	Fs=22050	X	1110	1'b	00'b
(512Fs)						
22579200	X	Fs=44100	X	1110	1'b	00'b
(512Fs)						

X: Don't care

•: MCLK does't use 24576000Hz clock, and using PLL changing clock to 24576000Hz.

Note: PLL output as System Clock only support Master Mode.

3.3. Power block of playback

The picture as below is the power block diagram of playback, the relative power register is marked red in this picture. It is easy for customer to setting the power register by checking this picture.

 $Note: MX63[11], \, MX63[15], \, MX63[4], \, MX63[13] \, \, should \, \, enable \, \, first$

3.4. Playback setting example

For example1: The playback path is I2S1→DAC1→OUT mixer→HPOL/R out

Step1: At first, we should enable the analog power for codec. The setting is as below:

- a. Set MX63[11] to 1'b
- b. Set MX63[15] to 1'b
- c. Set MX63[4] to 1'bd. Set MX63[13] to 1'b

Step2:Then refer to the power block of playback, the relative power as below need to be power on

- MX61[15]
- b. PR3D[10:9]
- c. MX61[12:11]
- d. MX62[11:10]
- e. MX65[15:14]
- f. MX66[11:10]
- g. MX63[7:6]
- h. MX8E[4:3]
- MX8E[0]

Step3:Refer to the audio mixer path in ALC5616 datasheet to enable the path register

Step4:Finally, the setting register will be as below

Register	Value
MXFA	0011
MX63	E8D8
MX61	9800
MX62	0800
MX65	C000
MX66	0C00
PR3D	2E00
MX8E	0019
MX8F	3100
MX2A	1212
MX4F	0278
MX52	0278
MX45	4000
MX02	0808

For example2: The playback path is I2S1→DAC1→ HPOL/R out

Step1: At first, we should enable the analog power for codec. The setting is as below:

- a. Set MX63[11] to 1'b
- b. Set MX63[15] to 1'b
- c. Set MX63[4] to 1'b
- d. Set MX63[13] to 1'b

Step2:Then refer to the power block of playback, the relative power as below need to be power on

- a. MX61[15]
- b. PR3D[10:9]
- c. MX61[12:11]
- d. MX62[11:10]
- e. MX63[7:6]
- f. MX8E[4:3]
- g. MX8E[0]

Step3:Refer to the audio mixer path in ALC5616 datasheet to enable the path register

Step4:Finally, the setting register will be as below

Register	Value
MXFA	0011
MX63	E8D8
MX61	9800
MX62	0800
PR3D	2E00
MX8E	0019
MX8F	3100
MX45	2000
MX02	4848

4. Record

4.1.Power

The Register shown as below has to be set in order to enable ADC.

Control Register	Reg	Value	Description	Note
Pow_bg_bias	MX63[11]	1'b	Power On MBIAS Bandgap	
Pow_vref1	MX63[15]	1'b	Power On Vref1	
Pow_main_bias	MX63[13]	1'b	Power On Main Bias	
Pow_vref2	MX63[4]	1'b	Power On Vref2	
Pow_adc_l	MX61[2]	1'b	Power On left ADC	
Pow_adc_r	MX61[1]	1'b	Power On right ADC	
Pow_adc_stereo1_filte	MX62[15]	1'b	Power on stereo1 ADC digital filter	Depends on path
r				
En_i2s1	MX61[15]	1'b	Enable I2S1 Digital interface	Depends on path
digital_gate_ctrl	MXFA[0]	1'b	Enable MCLK input	
en_ckgen_adc	PR3D[12]	1'b	Enable ADC clock input	

4.2. Mixer Control

4.2.1. Power

The power of each mixer can be individually power down in order to save power consumption. The following power management register should be enabled according to Record path.

Control Register	Reg	Value	Description	Note
Pow_recmixl	MX65[11]	1'b	Power On left REC mixer	
Pow_recmixr	MX65[10]	1'b	Power On right REC mixer	

4.2.2. REC Mixer Control

REC mixer is used to select the record source of ADC. There are two channels REC mixer which can be configured separately by MX3C & MX3E. Each input source of REC mixer also has each gain control.

Name	Bits	Default value	Function Description
Mu_inl_rex	MX3C	1'h	Mute Control for INL to RECMIXL
mixl	[5]		0'b: Un-Mute
			1'b: Mute
Mu_bst2_r	MX3C	1'h	Mute Control for BST2 to RECMIXL
ecmixl	[2]		0'b: Un-Mute
			1'b: Mute
Mu_bst1_r	MX3C	1'h	Mute Control for BST1 to RECMIXL
ecmixl	[1]		0'b: Un-Mute
			1'b: Mute
Mu_inr_re	MX3E	1'h	Mute Control for INR to RECMIXR
xmixr	[5]		0'b: Un-Mute
		4	1'b: Mute
Mu_bst2_r	MX3E	1'h	Mute Control for BST2 to RECMIXR
ecmixr	[2]		0'b: Un-Mute
		4.11	1'b: Mute
Mu_bst1_r	MX3E	1'h	Mute Control for BST1 to RECMIXR
ecmixr	[1]		0'b: Un-Mute
		0.11	1'b: Mute
Gain_inl_r	MX3B	0'h	Gain Control for INL to RECMIXL
ecmixl	[12:10]		000'b: 0dB
			001'b: -3dB
			010'b: -6dB 011'b: -9dB
			100'b: -12dB
			100 b12dB 101'b: -15dB
			110'b: -18dB
			Others: Reserved
Gain_bst2_	MV2D	0'h	Gain Control for BST2 to RECMIXL
recmixl	MX3B	V II	000'b: 0dB
1 CCIIIAI	[3:1]		001'b: -3dB
			010'b: -6dB
			011'b: -9dB
			100'b: -12dB
			101'b: -15dB
			110'b: -18dB
			Others: Reserved
Gain_bst1_	MX3C	0'h	Gain Control for BST1 to RECMIXL
recmixl	[15:13]		000'b: 0dB
	[10.10]		001'b: -3dB

—Jii.			
			010'b: -6dB
			011'b: -9dB
			100'b: -12dB
			101'b: -15dB
			110'b: -18dB
			Others: Reserved
Gain_inr_r	MX3D	0'h	Gain Control for INR to RECMIXR
ecmixr	[12:10]		000'b: 0dB
	[12.10]		001'b: -3dB
			010'b: -6dB
			011'b: -9dB
			100'b: -12dB
			101'b: -15dB
			110'b: -18dB
			Others: Reserved
Gain_bst2_	MX3D	0'h	Gain Control for BST2 to RECMIXR
recmixr	[3:1]		000'b: 0dB
	[3.1]		001'b: -3dB
			010'b: -6dB
			011'b: -9dB
			100'b: -12dB
			101'b: -15dB
			110'b: -18dB
			Others: Reserved
Gain_bst1_	MX3E	0'h	Gain Control for BST1 to RECMIXR
recmixr	[15:13]	-	000'b: 0dB
	[13.13]		001'b: -3dB
			010'b: -6dB
			011'b: -9dB
			100'b: -12dB
			101'b: -15dB
			110'b: -18dB
			Others: Reserved

4.3. Input Control

4.3.1. Stereo Input Control

4.3.1.1 Power

The analog IN2 can be a stereo single end input (linein function) .The power management of stereo input is shown as below, each channel can be enable/disable individually.

Control Register	Reg	Value	Description	Note
Pow_inlvol	MX66[9]	1'b	Power On INL Input Volume	Depends on Application
Pow_inrvol	MX66[8]	1'b	Power On INR Input Volume	Depends on Application

4.3.1.2 Stereo Input Volume Control

The volume gain of different channel of stereo input can be adjusted individually by following register.

Name	Bits	Default value	Function Description
Vol_inl	MX0F	8'h	INL Channel Volume Control
	[12:8]		00'h: +12dB
			08'h: 0dB
			1F'h: -34.5dB, with 1.5dB/step
Vol_inr	MX0F	8'h	INR Channel Volume Control
	[4:0]		00'h: +12dB
			08'h: 0dB
			1F'h: -34.5dB, with 1.5dB/step

4.3.2. IN1/2 (MIC) In Control

4.3.2.1 Power

ALC5616 can be configured as one differential microphone or two single end microphone. The power management of Microphone can be disable/enable individually and shown as below.

Control Register	Reg	Value	Description	Note
Pow_bst1	MX64[15]	1'b	Power On MIC BST1 Boost Gain	Depends on Application
Pow_bst2	MX64[14]	1'b	Power On MIC BST2 Boost Gain	Depends on Application
Pow_bst2_op2	MX64[4]	1'b	Power On MIC BST2 Single End Mode	Depends on Application
pow_micbias1	MX64[11]	1'b	Power On MICBIAS1	Depends on Application

4.3.2.2 IN1/2_In Boost Control

ALC5616 IN2_In can be configured as Differential mode or Single Ended mode. The boost gain of BST1 & BST2 can be adjusted individually by following register.

Name	Bits	Default value	Function Description
En_in2_df	MX0E	0'h	IN2 Input Mode Control
	[6]		0'b: Single Ended Mode
	[0]		1'b: Differential Mode
Sel_bst1	MX0D	0'h	IN1 Boost Control (BST1)
	[15:12]		0000'b: Bypass
	. ,		0001'b: +20dB
			0010'b: +24dB
			0011'b: +30dB
			0100'b: +35dB
			0101'b: +40dB
			0110'b: +44dB
			0111'b: +50dB
			1000'b: +52dB
			Others: Reserved
Sel_bst2	MX0D	0'h	IN2 Boost Control (BST2)
	[11:8]		0000'b: Bypass
			0001'b: +20dB
			0010'b: +24dB
			0011'b: +30dB
			0100'b: +35dB
			0101'b: +40dB
			0110'b: +44dB
			0111'b: +50dB
			1000'b: +52dB
			Others: Reserved

4.3.2.3 MICBIAS function

ALC5616 provide two kind of MICBIAS voltage for user selection. User can choose 0.9*MICVDD or 0.75*MICVDD for different microphone sensitivity.

ALC5616 also provides short current detect for each microphone bias which is configured by **Pow_mic1_ovcd**. Different short current threshold is set by register setting, and the short current status is shown on MXBE [3]. User can use sticky function to hold the short current status when short current happens.

Name	Bits	Default value	Function Description
Sel_micbias	MX93	0'h	MICBIAS1 Output Voltage Control
1	[15]		0'b: 0.9 * MICVDD
			1'b: 0.75 * MICVDD
Pow_mic1_	MX93	0'h	MICBIAS1 Short Current Detector Control
ovcd	[11]		0'b: Disable
			1'b: Enable
Mic1_ovcd	MX93	0'h	MICBIAS1 Short Current Detector Threshold
_th_sel	[10:9]		00'b: 600uA
			01'b: 1500uA
			1x'b: 2000uA
			Note: tolerance is 200uA
en_micbias	MXBE	0'h	Sticky Control for MICBIAS1 Over Current
1_ovcd_stic	[11]		0'b: Disable
ky			1'b: Enable
inv_micbia	MXBE	0'h	MICBIAS1 over current status polarity
s1_ovcd	[7]		0'b: Normal
			1'b: Output Invert
Ovc_micbi	MXBE	0'h	MICBIAS1 Over Current Status
as1	[3]		Read: return status of each status pin
			Write: Write '0' to clear stick bit

4.4.ADC Control

4.4.1. Stereo ADC Format & Sample Rate Relative Setting

The sample rate relative setting of ADC is same as DAC sample rate setting, and user can also refer to the sample rate register setting table in chapter $3.2.5.2 \sim 3.2.5.3$.

4.5. Power block of record

The picture as below are the power block diagram of record, the relative power register is marked red in these pictures. It is easy for customer to setting the power register by checking these pictures.

Record path

Note: MX63[11], MX63[15], MX63[4], MX63[13] should enable first

4.6. Record setting example

Example1: Record path is IN2(differential 40dB) → ADC Record mixer→ ADC → I2S1

Step1: At first, we should enable the analog power for codec . The setting is as below:

- a. Set MX63[11] to 1'b
- b. Set MX63[15] to 1'b
- c. Set MX63[4] to 1'b
- d. Set MX63[13] to 1'b

Step2:Then refer to the power block of Record path 1, the relative power as below need to be power on

- a. MX64[14][11]
- b. MX65[11:10]
- c. MX61[2:1]
- d. PR3D[12]
- e. MX62[15]
- f. MX61[15]

Step3:Refer to the audio mixer path in ALC5616 datasheet to enable the path register

Step4:Finally, the setting register will be as below

Register	Value
PR3D	3800
MXFA	0011
MX63	E818
MX64	4800
MX65	0C00
MX61	8006
MX62	8000
MX0D	0540
MX3C	006B
MX3E	006B

5. Digital Mixer

ALC5616 supports several digital mixers. The digital mixer can mix the data which comes from different digital path. Customer can refer to the digital mixer path to implement many kinds of complicate application path.

5.1. Digital Audio Interface

5.1.1. Digital to DAC

The digital data comes from digital interface1 (IF1_DAC1) will pass to a mixer which is before audio sound effect block. And there is a mute/unmute control and digital volume control before that mixer.

Name	Bits	Default value	Function Description
mu_ dac_l	MX29	0'h	Mute Control for I2S-1 to DAC Left Channel
	[14]		0'b: Un-Mute
			1'b: Mute
mu_ dac_r	MX29	0'h	Mute Control for I2S-1 to DAC Right Channel
	[6]		0'b: Un-Mute
			1'b: Mute
vol_dac1_l	MX19	AF'h	DAC1 Left Channel Digital Volume
	[15:8]		00'h: -65.625dB
			AF'h: 0dB, with 0.375dB/Step
vol_dac1_r	MX19	AF'h	DAC1 Right Channel Digital Volume
	[7:0]		00'h: -65.625dB
			AF'h: 0dB, with 0.375dB/Step

ALC5616 DACL1 & DACR1 has each mixer which can mix the signal from DACL & DACR. Each input of the mixer also has a gain control which can attenuate -6dB at the input signal.

Name	Bits	Default value	Function Description
mu_stereo_	MX2A	1'h	Mute Control for DACL1 to Stereo DAC Left
dacl1_mixl	[14]		Mixer
			0'b: Un-Mute
			1'b: Mute
mu_stereo_	MX2A	1'h	Mute Control for DACR1 to Stereo DAC Left
dacr1_mixl	[9]		Mixer
			0'b: Un-Mute
			1'b: Mute
mu_stereo_	MX2A	1'h	Mute Control for DACR1 to Stereo DAC Right
dacr1_mixl	[6]		Mixer
			0'b: Un-Mute
			1'b: Mute
mu_stereo_	MX2A	1'h	Mute Control for DACL1 to Stereo DAC Right
dacl1_mixl	[1]		Mixer
			0'b: Un-Mute
			1'b: Mute
gain_dacl1	MX2A	0'h	Gain Control for DACL1 to Stereo DAC Left
_to_stereo_	[13]		Mixer
1			0'b: 0dB
			1'b: -6dB
gain_dacr1	MX2A	0'h	Gain Control for DACR1 to Stereo DAC Left
_to_stereo_	[8]		Mixer
1			0'b: 0dB
			1'b: -6dB
gain_dacr1	MX2A	0'h	Gain Control for DACR1 to Stereo DAC Right
_to_stereo_	[5]		Mixer
r			0'b: 0dB
			1'b: -6dB
gain_dacl1	MX2A	0'h	Gain Control for DACL1 to Stereo DAC Right
_to_stereo_	[0]		Mixer
r			0'b: 0dB
			1'b: -6dB

5.1.2. ADC to digital

The ADC path has a mute function which can disconnect the signal.

Name	Bits	Default value	Function Description
mu_stereo1	MX27	1'h	Mute Control for Stereo1 ADC1 Left Channel
_adcl1	[14]		0'b: Un-Mute
			1'b: Mute
mu_stereo1	MX27	1'h	Mute Control for Stereo1 ADC1 Right Channel
_adcr1	[6]		0'b: Un-Mute
			1'b: Mute

After the signal mix in Stereo1_ADC_L/R mixer, there is a gain and a volume control which can be set before the signal pass through EQ or AGC functions. At the last, the signal can pass to IF1_ADC1 interface or the mixer in DAC path.

Name	Bits	Default value	Function Description
Ad_boost_	MX1E	0'h	ADC Left Channel Digital Boost Gain
gain_l	[15:14]		00'b: 0dB
			01'b: 12dB
			10'b: 24dB
			11'b: 36dB
Ad_boost_	MX1E	0'h	ADC Right Channel Digital Boost Gain
gain_r	[13:12]		00'b: 0dB
			01'b: 12dB
			10'b: 24dB
			11'b: 36dB
Vol_adc1_l	MX1C	2F'h	Stereo1 ADC Left Channel Volume Control
	[14:8]		00'h: -17.625dB
			2F'h: 0dB
			7F'h: +30dB, with 0.375dB/Step
Vol_adc1_r	MX1C	2F'h	Stereo1 ADC Right Channel Volume Control
	[6:0]		00'h: -17.625dB
			2F'h: 0dB
			7F'h: +30dB, with 0.375dB/Step
Mu_adc_vo	MX1C	0'h	Mute Control for Stereo1 ADC Left Volume
1_1	[15]		Channel
			0'b: Un-Mute

ALC5616 Application Note

			1'b: Mute
Mu_adc_vo	MX1C	0'h	Mute Control for Stereo1 ADC Right Volume
l_r	[7]		Channel
			0'b: Un-Mute
			1'b: Mute
mu_stereo1	MX29	1'h	Mute Control for Stereo1 ADC Left Channel to
_adc_mixer	[15]		DAC 0'b: Un-Mute
_1			1'b: Mute
mu_stereo1	MX29	1'h	Mute Control for Stereo1 ADC Right Channel
_adc_mixer	[15]		to DAC 0'b: Un-Mute
_ r			1'b: Mute

6. ASRC

ALC5616 support ASRC(Asynchronous Sample Rate Converter) function under I2S slave mode. Normally, the MCLK and BCLK clock should be synchronous(MCLK should be 8 or 16 times of BCLK). The ASRC allows the clock sources from MCLK and BCLK1 to be asynchronous.

6.1. Path setting

When using different path, the different setting should be implement .The relative setting is as below:

1. I2S1→DAC1

The register as below should be enable, and the register setting will be MX-83: 8000'h, MX-84: A000'h

Name	Bits	Default value	Function Description
sel_if1_asrc	MX83 [15]	0'h	Mode Select Control for I2S1 0'b : Normal Mode 1'b : ASRC Mode
en_if1_asrc	MX84 [15]	0'h	Enable Control for I2S1 0'b: Normal Mode 1'b: ASRC Mode
sel_stereo1 _dac_mode	MX84 [13]	0'h	Select Control for Stereo1 DAC Filter 0'b: Normal Mode 1'b: ASRC Mode

2. Analog In→Stereo1 ADC→I2S1

The register as below should be enable, and the register setting will be MX-83: 8000'h, MX-84: 8800'h

Name	Bits	Default value	Function Description
sel_if1_asrc	MX83 [15]	0'h	Mode Select Control for I2S1 0'b : Normal Mode 1'b : ASRC Mode
en_if1_asrc	MX84 [15]	0'h	Enable Control for I2S1 0'b: Normal Mode 1'b: ASRC Mode
sel_adc_mo de	MX84 [11]	0'h	Select Control for ADC Stereo Filter 0'b: Normal Mode 1'b: ASRC Mode

6.2. Clock setting

Although ASRC support asynchronous MCLK , it still need to be limited at a clock range about $384Fs\sim768Fs$ (Fs = sample rate) . If the MCLK is too fast for system clock, customer can use the divider to let the system clock meet the ASRC support clock range.

Name	Bits	Default value	Function Description
i2s1_track_	MX89	0'h	Set I2S1 Clock Division for Stereo Filter
prediv	[14:12]		000'b: div1 001'b: div2 010'b: div3
			011'b: div4 100'b: div6 101'b: div8
			110'b: div12 111'b: div16

7. Audio H/W Processing

ALC5616 provides 7 band EQ for DAC or ADC, 1 wind filter for ADC and SounzReal Sound effect as Audio H/W Processing.

7.1. Power

The Register shown as below has to be set in order to enable H/W Processing.

Control Register	Reg	Value	Description	Note
Pow_bg_bias	MX63[11]	1'b	Power On MBIAS Bandgap	
Pow_vref1	MX63[15]	1'b	Power On Vref1	
Pow_main_bias	MX63[13]	1'b	Power On Main Bias	
Pow_vref2	MX63[4]	1'b	Power On Vref2	
Pow_dac_l_1	MX61[12]	1'b	Power On left DAC1	Depend on path
Pow_dac_r_1	MX61[11]	1'b	Power On right DAC1	Depend on path
Pow_adc_l	MX61[2]	1'b	Power On left ADC	Depend on path
Pow_adc_r	MX61[1]	1'b	Power On right ADC	Depend on path
En_i2s1	MX61[15]	1'b	Enable I2S1 Digital interface	
digital_gate_ctrl	MXFA[0]	1'b	Enable MCLK input	
Ckxen_dac	PR3D[10]	1'b	Enable DAC Clock1 Generator	Depend on path
En_ckgen_dac	PR3D[9]	1'b	Enable DAC Clock2 Generator	Depend on path
en_ckgen_adc	PR3D[12]	1'b	Enable ADC clock input	Depend on path

7.2.7-band EQ Control

ALC5616 has 7 band EQ which can be applied both on DAC or ADC. The 7 band EQ contains LPF, BPF1, BPF2, BPF3, BPF4, HPF1 and HPF2. Each band can be disabled separately. In addition, there is a Max. -66dB attenuator in front of EQ block and a Max. +24dB gain in rear of EQ block to avoid clamping during EQ processing. Realtek provides **EQ Tool.exe** to our customer in order to generate customized EQ parameter. The following register can be fully set according to the parameter that suggested by **EQ Tool.exe**. After setting the EQ parameter, customer need to load the parameter to each filter by setting MXB0[14] to 1. Customer can load the EQ parameter to filter dynamically.

Name	Bits	Default value	Function Description
eq_sour	MXB0	0'b	EQ Path Control
	[15]		0'b: DAC path
			1'b: ADC path

nog tym hnf	MVD1	0,4	EO High Dogg Eilter 1 Mode Control
reg_typ_hpf	MXB1	0'b	EQ High Pass Filter 1 Mode Control
_en	[8]		0'b: High frequency shelving filter
			1'b: 1st order Butterworth HPF (-20dB per
1.6	MXD1	021	decade)
reg_typ_lpf_	MXB1	0'b	EQ Low Pass Filter Mode Control
en	[7]		0'b: Low frequency shelving filter
			1'b: 1st order Butterworth LPF (-20dB per
1 00) O'D 1	0.11	decade)
en_hpf2	MXB1	0'b	EQ High Pass 2nd Butterworth Filter (HPF)
	[6]		Control.
			0'b: Disabled (bypass) and reset
		0.04	1'b: Enabled
en_hpf1	MXB1	0'b	EQ High Pass Filter (HPF) Control.
	[5]		0'b: Disabled (bypass) and reset
			1'b: Enabled
en_bpf4	MXB1	0'b	EQ Band-4 (BP4) shelving Filter Control.
	[4]		0'b: Disabled and reset
			1'b: Enabled.
en_bpf3	MXB1	0'b	EQ Band-3 (BP3) shelving Filter Control.
	[3]		0'b: Disabled and reset
			1'b: Enabled.
en_bpf2	MXB1	0'b	EQ Band-2 (BP2) shelving Filter Control.
	[2]		0'b: Disabled and reset
			1'b: Enabled.
en_bpf1	MXB1	0'b	EQ Band-1 (BP1) shelving Filter Control.
	[1]		0'b: Disabled and reset
			1'b: Enabled.
en_lpf	MXB1	0'b	EQ Low Pass Filter (LPF) Filter Control.
	[0]		0'b: Disabled and reset
			1'b: Enabled.
Eq_pre_vol	PrivateB3	0800'h	2's Complement in 5.11 Format. (Default is 0dB)
	[15:0]		The range is from $-16 \sim 15.99$, pre-gain should be
			in 0 ~15.99 [+24dB ~ -66dB]
Eq_post_vol	PrivateB4	0800'h	2's Complement in 5.11 Format. (Default is 0dB)
	[15:0]		The range is from $-16 \sim 15.99$, pre-gain should be
			in 0 ~15.99 [+24dB ~ -66dB]

7.2.1. LP0

Name	Bits	Default value	Function Description
lpf_a1	PrivateA0	1C10'h	2's complement in 3.13 format. (The range is
	[15:0]		from $-4 \sim 3.99$, the a1 should be in $-2 \sim 1.99$)
lpf_h0	PrivateA1	01F4'h	2's complement in 3.13 format. (The range is
	[15:0]		from $-4 \sim 3.99$, the Ho should be in $-4 \sim 3.99$)

7.2.2. BP1

Name	Bits	Default value	Function Description
Bpf1_a1	PrivateA2	C5E9'h	2's complement in 3.13 format. (The range is
	[15:0]		from $-4 \sim 3.99$, the a1 should be in $-2 \sim 1.99$)
Bpf1_a2	PrivateA3	1A98'h	2's complement in 3.13 format. (The range is
	[15:0]		from $-4\sim3.99$, the al should be in $-2\sim1.99$)
Bpf1_h0	PrivateA4	1D2C'h	2's complement in 3.13 format. (The range is
	[15:0]		from $-4 \sim 3.99$, the Ho should be in $-4 \sim 3.99$)

7.2.3. BP2

Name	Bits	Default value	Function Description
Bpf2_a1	PrivateA5	C882'h	2's complement in 3.13 format. (The range is
	[15:0]		from $-4 \sim 3.99$, the a1 should be in $-2 \sim 1.99$)
Bpf2_a2	PrivateA6	1C10'h	2's complement in 3.13 format. (The range is
	[15:0]		from $-4\sim3.99$, the al should be in $-2\sim1.99$)
Bpf2_h0	PrivateA7	01F4'h	2's complement in 3.13 format. (The range is
	[15:0]		from $-4 \sim 3.99$, the Ho should be in $-4 \sim 3.99$)

7.2.4. BP3

Name	Bits	Default	Function Description
		value	
Bpf3_a1	PrivateA8	E904'h	2's complement in 3.13 format. (The range is
	[15:0]		from $-4 \sim 3.99$, the a1 should be in $-2 \sim 1.99$)
Bpf3_a2	PrivateA9	1C10'h	2's complement in 3.13 format. (The range is
	[15:0]		from $-4 \sim 3.99$, the a1 should be in $-2 \sim 1.99$)
Bpf3_h0	PrivateAA	01F4'h	2's complement in 3.13 format. (The range is
	[15:0]		from $-4\sim3.99$, the Ho should be in $-4\sim3.99$)

7.2.5. BP4

Name	Bits	Default	Function Description
		value	
Bpf4_a1	PrivateAB	E904'h	2's complement in 3.13 format. (The range is
	[15:0]		from $-4 \sim 3.99$, the a1 should be in $-2 \sim 1.99$)
Bpf4_a2	PrivateAC	1C10'h	2's complement in 3.13 format. (The range is
	[15:0]		from $-4 \sim 3.99$, the a1 should be in $-2 \sim 1.99$)
Bpf4_h0	PrivateAD	01F4'h	2's complement in 3.13 format. (The range is
	[15:0]		from $-4\sim3.99$, the Ho should be in $-4\sim3.99$)

7.2.6. HPF1

Name	Bits	Default	Function Description
		value	
Hpf1_a1	PrivateAE	1C10'h	2's complement in 3.13 format. (The range is
	[15:0]		from $-4 \sim 3.99$, the a1 should be in $-2 \sim 1.99$)
Hpf1_h0	PrivateAF	01F4'h	2's complement in 3.13 format. (The range is
	[15:0]		from $-4\sim3.99$, the Ho should be in $-4\sim3.99$)

7.2.7. HPF2

Name	Bits	Default	Function Description
		value	
Hpf2_a1	PrivateB0	C01E'h	2's complement in 3.13 format. (The range is
	[15:0]		from $-4 \sim 3.99$, the al should be in $-2 \sim 1.99$)
Hpf2_a2	PrivateB1	1FE2'h	2's complement in 3.13 format. (The range is
	[15:0]		from $-4 \sim 3.99$, the al should be in $-2 \sim 1.99$)
Hpf2_h0	PrivateB2	1FF1'h	2's complement in 3.13 format. (The range is
	[15:0]		from $-4 \sim 3.99$, the Ho should be in $-4 \sim 3.99$)

7.2.8. EQ volume

Name	Bits	Default	Function Description
		value	
Eq_pre_vo	PrivateB3	0800'h	2's Complement in 5.11 Format. (Default is
1	[15:0]		0dB)The range is from -16 ~ 15.99, pre-gain
			should be in 0 ~15.99 [+24dB ~ -66dB]
Eq_post_v	PrivateB4	0800'h	2's Complement in 5.11 Format. (Default is
ol	[15:0]		0dB)The range is from -16 ~ 15.99, pre-gain
			should be in 0 ~15.99 [+24dB ~ -66dB]

7.3.EQ setting example

For setting the EQ parameter, there is a register setting sequence of ALC5616. The setting sequence should be as below:

Step1:Power on main bias , MX63[11][13] : 11'b

Step2:Power on I2S interface, MX61[15]: 1'b

Step3:Power on left/right DAC, MX61[12:11]: 11'b (or left/right ADC, MX61[2:1]: 11'b)

Step4:set the EQ parameter to register , PR-A0~ PR-B4

Step5: Enable EQ block , MX-B1[8:0]

Step6:Update EQ parameter, MX-B0[14]: 1'b

Step7:EQ parameter setting finish

7.4. Wind Filter

The wind filter is implemented by a high pass filter equalizer. The wind filter is mainly for ADC recording used. The cut-off frequency of wind filter is programmable and is varied according to different sample rate. The filter is used to remove DC offset at normal condition, and to remove wind noise at application mode.

The following table is shown the Fc with sample rate selection.

For the formula of Fc calculation is also shown as:

$$Fc = (Fs * tan^{-1}(a/(2-a))) / \pi$$

Where:

Sample rate = 8K/12K/16K (MX-D3[14:12] & [10:8]), $a = 2^{-6} + n * 2^{-6}$ (n is MX-D4[13:8] & [5:0])

Sample rate = 24K/32K (MX-D3[14:12] & [10:8]), $a = 2^{-7} + n * 2^{-7}$ (n is MX-D4[13:8] & [5:0])

Sample rate = 44.1 K/48 L (MX-D3[14:12] & [10:8]), $a = 2^{-8} + n * 2^{-8}$ (n is MX-D4[13:8] & [5:0])

Sample rate = 88.2 K/96 L (MX-D3[14:12] & [10:8]), $a = 2^{-9} + n * 2^{-9}$ (n is MX-D4[13:8] & [5:0])

Sample rate = 176.4 K/192 L (MX-D3[14:12] & [10:8]), $a = 2^{-10} + n * 2^{-10}$ (n is MX-D4[13:8] & [5:0])

Name	Bits	Default value	Function Description
adj_hpf_2nd _en	MXD3 [15]	0'h	Enable Adjustable 2nd Wind Filter 0'b : Disable (bypass mode) 1'b : Enable
adj_hpf_coe f_l_sel	MXD3 [14:12]	3'h	Left Channel Coefficient Sample Rate Selection 000'b: 8K/12K/16K Hz 001'b: 24K/32K Hz 010'b: 48K/44.1K Hz 011'b: 96K/88.2K Hz 100'b: 192K/176.4K Hz Others: Reserved
adj_hpf_coe f_r_sel	MXD3 [10:8]	2'h	Right Channel Coefficient Sample Rate Selection 000'b: 8K/12K/16K Hz 001'b: 24K/32K Hz 010'b: 48K/44.1K Hz 011'b: 96K/88.2K Hz 100'b: 192K/176.4K Hz Others: Reserved
adj_hpf_coe f_l_num	MXD4 [13:8]	0'h	Left Channel Coefficient Fine Parameter Selection $(0 \sim 63)$
adj_hpf_coe f_r_num	MXD4 [13:8]	0'h	Right Channel Coefficient Fine Parameter Selection $(0 \sim 63)$

MX-D4	L & R Channel Sample Rate Setting				
n	8K	16K	32K	44.1K	48K
000000'b, 0	20.0	40.1	39.9	27.4	29.8
000001'b, 1	40.4	80.8	80.2	55.0	59.9
000010'b, 2	61.1	122.2	120.7	82.7	90.0
000011'b, 3	82.1	164.2	161.6	110.5	120.3
000100'b, 4	103.4	206.9	202.8	138.4	150.6
000101'b, 5	125.1	250.2	244.4	166.4	181.1
000110'b, 6	147.1	294.3	286.2	194.5	211.7
000111'b, 7	169.5	339.0	328.4	222.7	242.5
001000'b, 8	192.2	384.4	371.0	251.1	273.3
001001'b, 9	215.2	430.5	413.8	279.5	304.3
001010'b, 10	238.7	477.4	457.0	308.1	335.4
001011'b, 11	262.4	524.9	500.5	336.8	366.6
001100'b, 12	286.6	573.2	544.4	365.6	397.9
001101'b, 13	311.1	622.3	588.6	394.5	429.4
001110'b, 14	336.0	672.1	633.2	423.5	460.9
001111'b, 15	361.3	722.6	678.1	452.6	492.6
010000'b, 16	386.9	773.9	723.3	481.9	524.5
010001'b, 17	413.0	826.0	768.9	511.2	556.4
010010'b, 18	439.4	878.9	814.9	540.7	588.5
010011'b, 19	466.2	932.5	861.2	570.3	620.7
010100'b, 20	493.5	987.0	907.8	600.0	653.0
010101'b, 21	521.1	1042.2	954.9	629.8	685.5
010110'b, 22	549.1	1098.2	1002.2	659.7	718.1
010111'b, 23	577.5	1155.0	1050.0	689.8	750.8
011000'b, 24	606.3	1212.7	1098.1	719.9	783.6
011001'b, 25	635.5	1271.1	1146.6	750.2	816.6
011010'b, 26	665.1	1330.3	1195.5	780.6	849.6
011011'b, 27	695.2	1390.4	1244.7	811.1	882.9
011100'b, 28	725.6	1451.2	1294.3	841.8	916.2
011101'b, 29	756.4	1512.9	1344.3	872.5	949.7
011110'b, 30	787.6	1575.3	1394.7	903.4	983.3
011111'b, 31	819.3	1638.6	1445.4	934.4	1017.0
100000'b, 32	851.3	1702.7	1496.5	965.5	1050.9
100001'b, 33	883.7	1767.5	1548.0	996.8	1084.9
100010'b, 34	916.6	1822.3	1599.9	1028.1	1119.0
100011'b, 35	949.8	1899.6	1652.2	1059.6	1153.3
100100'b, 36	983.3	1966.7	1704.9	1091.2	1187.7
100101'b, 37	1017.3	2034.7	1757.9	1122.9	1222.2

MX-D4		L & R Channel Sample Rate Setting				
n	8K	16K	32K	44.1K	48K	
100110'b, 38	1051.6	2103.3	1811.4	1154.8	1256.9	
100111'b, 39	1086.3	2172.7	1865.2	1186.7	1291.7	
101000'b, 40	1121.4	2242.9	1919.5	1218.8	1326.6	
101001'b, 41	1156.8	2313.7	1974.1	1251.0	1361.7	
101010'b, 42	1192.6	2385.2	2029.1	1283.4	1396.9	
101011'b, 43	1228.7	2457.4	2084.6	1315.8	1432.2	
101100'b, 44	1265.1	2530.2	2140.4	1348.4	1467.7	
101101'b, 45	1301.8	2603.6	2196.6	1381.1	1503.3	
101110'b, 46	1338.8	2677.7	2253.3	1414.0	1539.0	
101111'b, 47	1376.1	2752.3	2310.3	1447.0	1574.9	
110000'b, 48	1413.7	2827.5	2367.7	1480.0	1610.9	
110001'b, 49	1451.5	2903.1	2425.5	1513.3	1647.1	
110010'b, 50	1489.6	2979.3	2483.8	1546.6	1683.4	
110011'b, 51	1528.0	3056.0	2542.4	1580.1	1719.8	
110100'b, 52	1566.5	3133.1	2601.5	1613.7	1756.4	
110101'b, 53	1605.3	3210.6	2660.9	1647.4	1793.1	
110110'b, 54	1644.2	3288.4	2720.8	1681.3	1830.0	
110111'b, 55	1683.3	3366.6	2781.0	1715.3	1867.0	
111000'b, 56	1722.5	3445.1	2841.7	1749.4	1904.1	
111001'b, 57	1761.9	3523.9	2902.7	1783.6	1941.4	
111010'b, 58	1801.4	3602.9	2964.2	1818.0	1978.8	
111011'b, 59	1841.0	3682.1	3026.1	1852.5	2016.3	
111100'b, 60	1880.7	3761.4	3088.3	1887.1	2054.0	
111101'b, 61	1920.4	3840.8	3151.0	1921.9	2091.9	
111110'b, 62	1960.2	3920.4	3214.1	1956.8	2129.9	
111111'b, 63	2000.0	4000.0	3277.5	1991.8	2168.0	

7.5. Wind Filter setting procedure

Step1: Disable wind filter – MX-D3[15]

Step2: Select target sample rate – MX-D3[14:12] and MX-D3[10:8]

Step3: Fine tune wind filter Fc – MX-D4[13:8] and MX-D4[5:0]

Step4: Enable wind filter – MX-D3[15]

8. DRC/AGC

The behavior of DRC/AGC function is shown in the picture as bellow:

8.1.DRC/AGC relative parameter register setting

DRC/AGC can be disabled and enabled by register control. And the noise gate function in AGC can also be disabled or enabled individually. The DRC/AGC function also needs to change the register setting when using different sampling rate.

The default setting is for 48k Hz sampling rate.

Name	Bits	Default	Function Description
		value	
sel_drc_a	MXB4	0'h	DRC/AGC Enable
gc	[15:14]		00'b: Disable DRC/AGC
			01'b: Enable DRC to DAC Path
			10'b: Disable DRC/AGC
			11'b: Enable AGC to ADC Path
Drc_agc_	MXB4	0'h	DRC/AGC Rate Control for Sample Rate
rate_sel	[7:5]		Change
			001'b: 48kHz
			010'b: 96kHz
			011'b: 192kHz
			101'b: 44.1kHz
			110'b: 88.2kHz
			111'b: 176.4kHz
			Others: Reserved

8.1.1. Limit level

AGC/DRC has a target level which can be controlled by register setting. For DAC playback or ADC recording mode, when the input signal exceeds target threshold, the signal will decrease "DRC/AGC Digital Volume" (0.375dB/step at every zero-crossing) until drop to target level then keep the digital volume. When input signal is below the target threshold, the signal will step-up "DRC/AGC Digital Volume" (0.375dB/step every zero-crossing) until return to original level. If want to return to the target level, need to set the pre-gain to achieve.

Name	Bits	Default value	Function Description
sel_drc_a	MXB6	0'h	DRC/AGC Limiter Level (1.5dB/step)
gc_thmax	[11:7]		00'h= 0dBFS
			01'h= -1.5dBFS
			02'h= -3dBFS
			03'h= -4.5dBFS
			1F'h= -46.5dBFS

sel_drc_a	MXB5	0'h	DRC/AGC Digital Pre-Boost GAin
gc_pre_b	[4:0]		(1.5dB/step)
st			00'h= 0 dB
			01'h= 1.5dB
			02'h= 3dB
			03'h= 4.5 dB
			13'h= 28.5dBFS
			Others: Reserved
sel_drc_a	MXB5	1f'h	DRC/AGC Digital Post-Boost Gain
gc_post_	[13:8]		(0.375dB/step)
bst			00'h= -11.625dB
			3F'h= 12dB
			Others: Reserved

8.1.2. Noise gate

When input signal is below noise gate, the input signal will be reduced and to suppress the background noise. The reducing level can be set by register. And when input signal is above noise gate, the input signal will be boosted to target level.

The noise gate function is only suggested to use in record AGC function, and customer can disable it when playback DRC.

Name	Bits	Default	Function Description
		value	
en_drc_a	MXB6	0'h	Enable Noise Gate function
gc_noise_	[6]		0'b: Diaable
gate			1'b: Enable
sel_drc_a	MXB6	0'h	Noise Gate Threshold (-1.5dB/step)
gc_noise_	[4:0]		00'h: -36dBFS
th			01'h: -37.5 dBFS
			1F'h: -82.5 dBFS
Noise_gat	MXB6	0'h	Select Compensation Gain When Signal is
e_boost	[15:12]		Below Noise Gate
			0'h: 0dB
			1'h: 3dB
			2'h: 6dB
			E'h: 42dB
			F'h: 45dB

8.1.3. Attack and Recovery Time

The AGC/DRC function can modify the attack and recovery time by register setting. The attack time is for speed of the decreasing gain, and the recovery time is for the speed of the increasing gain.

The attack and recovery time are relative to the sampling rate, and the formula is shown as below:

Name	Bits	Default	Function Description
		value	
sel_drc_a	MXB4	2'h	Select DRC/AGC attack rate (0.375dB/TU) •
gc_atk	[12:8]		00'h: 83 uSec
			01'h: 0.167 mSec
			10'h: 5.46 Sec
			Others: Reserved
sel_rc_ra	MXB4	6'h	Select DRC/AGC recovery rate (0.375dB/TU) ②
te	[4:0]		00'h: 83 uSec
			01'h: 0.167 mSec
			10'h: 5.46 Sec
			Others: Reserved

Note: • Attack time = (4*2^n)/Sample Rate, n = Reg64[12:8], default=0.33mS, Sample Rate = 48kHz

②Recovery time = (4*2[^]n)/Sample Rate, n = Reg64[4:0], default=5.3mS, Sample Rate = 48kHz

8.1.4. DRC Compressor

For the Noise Gate function is used to make sound smooth and comfortable when transition from normal mode into Limiter mode. The ALC5616 has four segments Compressor ratio for tuning.

The ratio 1:1 is mean:

output level = input level * speaker ratio gain

The output level is equal to input level multiply by speaker ratio gain. That is no compression in DRC1

The ratio 1:2 is mean:

output level = input level/2 * speaker ratio gain

The output level is equal to input level divide by 2 then multiply by speaker ratio gain. So the output with input has 2 multiples compression in DRC2.

Name	Bits	Default value	Function Description
En_drc_a	MXB5	0'h	DRC Compression Function Control
gc_compr	[7]		0'b: Disable
ess			1'b: Enable
Sel_ratio	MXB5	0'h	DRC Compression Ratio Selection
	[6:5]		00'b: 1:1
			01'b: 1:2
			10'b: 1:3
			11'b: 1:4

8.1.5. Parameter update

After setting the DRC/AGC parameter, user need to set MXB4 [13]:1'b to update all the DRC/AGC parameter.

Name	Bits	Default value	Function Description
update_d	MXB4	1'h	Update DRC/AGC Parameter
rc_agc_p	[13]		Write 1'b to update all DRC/AGC parameter
aram			

9. Jack Detection

ALC5616 supports Jack detect function to switch ON/OFF the analog Output (Headphone Out...etc) by setting MX-BB Jack Detect Control Register. The Jack detect source can be GPIO1, JD1 or JD2. JD2 is pin shared from IN2N. User should decide the JD pin source from GPIO or JD1 JD2 first by setting **Sel_jd_trigger**. If user decide to use GPIO pin for jack detection, please select the GPIO by **sel_gpio_jd**.

Name	Bits	Default value	Function Description	
Sel_jd_trigger	MXBC [11:9]	0'h	JD Trigger Source Selection 000'b: From sta gpio jd 001'b: From sta jd1 1 010'b: From sta jd1 2 011'b: From sta_jd2 Others: Reserved	
sel_gpio_jd	MXBB [15:13]	0'h	Jack Detect Selection 000'b: OFF 001'b: GPIO1 Others: Reserved	
en_jd_hpo	MXBB [11]	0'h	Enable Jack Detect Trigger HPOUT 0'b: Disable 1'b: Enable	
polarity_jd_tri_h po	MXBB [10]	0'h	Select Jack Detect Polarity Trigger HPOUT 0'b: Low trigger 1'b: High trigger	
en_jd_pdm_l	MXBB [9]	0'h	Enable Jack Detect Trigger PDM_L 0'b: Disable 1'b: Enable	
polarity_jd_tri_p dm_l	MXBB [8]	0'h	Select Jack Detect Polarity Trigger PDM_L 0'b: Low trigger 1'b: High trigger	
en_jd_pdm_r	MXBB [7]	0'h	Enable Jack Detect for Trigger S PDM_ R 0'b: Disable 1'b: Enable	
polarity_jd_tri_p dm_r	MXBB [6]	0'h	Select Jack Detect Polarity Trigger PDM_ R 0'b: Low trigger 1'b: High trigger	
en_jd_lout	MXBB [3]	0'h	Enable Jack Detect Trigger LOUT 0'b: Disable 1'b: Enable	
polarity_jd_tri_lo ut	MXBB [2]	0'h	Select Jack Detect Polarity Trigger LOUT 0'b: Low trigger 1'b: High trigger	

9.1.JD setting example

For example, HP and LOUT auto switch when JD is trigger.

Setting procedure:

- 1. Select JD source: use sta_jd1_1 as JD status. MX-BC[11:9] = 001'b
- 2. Set target behavior by JD active HP & LOUT auto switch when JD is triggered.

MX-BB[11:10] = 11'b & MX-BB[3:2] = 10'b

3. When JD status is low, HP_OUT is mute and LOUT is un-mute.

When JD status is low go high, HP is un-mute and LOUT is mute.

Note: For HPO and LOUT jack switch function, driver need to turn-on DAC to HP path and DAC to LOUT path first. The register control of MX-BB is only do mute/un-mute function for HPO and LOUT.

10. GPIO & IRQ

Pin 28 of ALC5616 can be pin share to GPIO and IRQ.

10.1. Initial

When **sel_gpio1_type** ="0"b", Pin 37 is assigned to GPIO1

sel_gpio1_type ="1"b", Pin 37 is assigned to IRQ

Control Register	Reg	Value	Description	Note
sel_gpio1_type	MXC0[15]	0'b	As GPIO1	
sel_gpio1_type	MXC0[15]	1'b	As IRQ	

10.2. GPIO & IRQ Control

ALC5616 GPIO can be configured As Input/ Output by MXC1. When GPIO is configured as Output, MXC1 can also used to Drive GPIO to High (1'b) or Low (0'b). The status can be read in MXBF[11:4].

Independent to GPIO, there are some Internal Event Signals (Jack Detection, Over temperature and MICBIAS short detect) which is the same as GPIO input and can be treat as Interrupts source. The application of Internal Event Signal is the same as GPIO and located in MXBD MXBE MXBF.

Figure 1. GPIO function block

Figure 2.IRQ function block

Realtek Semiconductor, Corp.

Headquarters

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan.

Tel: 886-3-5780211 Fax: 886-3-5774713

www.realtek.com.tw