AN ATLAS OF ABSORPILON SPECTRA

BY

C.E. KENNETH MIEES

Med K1249 b/- net

AN ATLAS OF

ABSORPTION SPECTRA

BY

C. E. KENNETH MEES, D.Sc. (LOND.)

LONGMANS, GREEN, AND CO.

39, PATERNOSTER ROW, LONDON NEW YORK, BOMBAY, AND CALCUTTA

WRATTEN AND WAINWRIGHT, LTD.
CROYDON

1909

ENSHIVE

3-3

7) (()	E RISHTUTE
50/	oemCiviley:
1371	FT OF TOURSE ATTECHNESS SCHOOL SCHOOL STATEMENT OF THE ST
31.6.8.	
	The second secon
	and the American State of the American State
	o to control of a superprise configure suggestion did and the "Articular anticon control contr

AN ATLAS OF ABSORPTION SPECTRA.

INTRODUCTION.

One of the branches of our Works being concerned with the manufacture of Colour Filters for all purposes, our laboratory has naturally devoted a considerable amount of attention to the measurement of dye-stuffs, with a view to selecting those suitable for various purposes. Of published records of Absorptions, there are few, and the only atlas of Absorption Spectra, giving Spectra in a convenient form, which is accessible to the student, is the very valuable atlas by Uhler & Wood, published by the Carnegie Institute of Washington. The book by Formánek, useful as it is, can scarcely be termed an "Atlas."

The above-mentioned Atlas was prepared specially with regard to absorptions in the ultra-violet, and to this end the spectra have been photographed with great care; but for the purpose of producing filters for visual work and for photographic work with red-sensitive plates it is necessary to pay special attention to the red, and even the infra-red portions of the spectrum, which are not included in the photographs taken by Uhler & Wood.

Moreover, the dyes used by Uhler & Wood do not include all those in common use, much attention having been paid to the orange and red dyes, while the greens are almost entirely neglected, and the blue dyes have been photographed only to a small extent. For visual

work greens are among the most important dye colours.

For these reasons, our laboratory compiled an atlas for themselves, specially adapted for the purpose of selecting dyes for the manufacture of Filters, and when the work was finished it was decided to publish this atlas. We have added to the photographs of dye-stuffs a series of photographs showing the absorptions of some seventy of our own Filters, and we believe that this additional atlas may be of use to those who wish to use filters of a particular kind, and do not want the trouble of preparing their own.

Our best thanks are due to Dr. Roques and Dr. E. Koenig, of the Farbwerke, Hoechst, a/M., both for much direct assistance given, and also for the many valuable new dyes which have been worked out in their laboratories and made available for commerce. Dr. Koenig also read the proofs and revised the list of dyes, supplying much valuable information, including the column giving the Stability to

Light.

RESEARCH LABORATORY OF WRATTEN & WAINWRIGHT, LTD.

C. E. KENNETH MEES (Director).

MATERIAL.

Most of the dye samples which have been photographed were obtained from the Hoechst Farbwerke, and these are generally pure Those samples which were not chemically pure are indicated in the list by an asterisk. This indication is only to be taken as meaning that the sample used was not specially purified from inorganic salts, it does not mean that the dye cannot be obtained in a Many of the dyes can be obtained from any dye works, and the origin of some of ours is not known. Where possible, we have shown from where they were obtained. All the dyes were The Filters represent those which we measured in water solution. have in stock. These filters are prepared by coating gelatine solutions of the dye, and after drying, stripping the film from glass. They are standardised by comparison with a standard which is kept, and of which the absorption curve has been measured on a spectro-photometer, a comparison being performed by the aid of a crossing filter which allows only a small portion of the spectrum to be passed, when placed over the portion of the filter to be examined. The tricolour Green filter B, for instance, is tested by means of the tricolour Blue and tricolour Red filters. The test consists of a piece of standard Red and a piece of standard Blue side by side, with the standard piece of Green covering half of each of them. The sheet to be tested is placed so as to cover the other half of each film, and a small deviation from standard can be easily perceived on looking through at a diffused light source. The filters are put on the market as film, and also as prepared filters cemented in glass. They are used for orthochromatic and tricolour photography, photo-micrography, spectroscopy, etc.

Probably this complete list of the standard varieties which we keep will be of considerable use to our readers. We have, of course, a number of variants of these standards, and also some special filters

for which the use is limited, and which we have not given here.

APPARATUS.

The spectroscope used was a small box-form spectroscope with a The slit was used at a width of about 1/3 m/m, and a scale was fastened in front of the plate with a yellow film arranged to cut out the ultra-violet of the second order, where it overlapped in the The scale was adjusted so that approximate wave-lengths could be read direct on the photographs. The apparatus was arranged with a Nernst lamp, focussed by means of a condenser upon the horizontal slit; in front of the slit was held a wedge cell containing the dye solution to be photographed (Fig. 1). This wedge cell was a rectangular cell of 1 c/m internal length, and 5 m/m internal width, with a diagonal partition which divided it into two wedge-shaped cells. One of these was filled with the dye solution to be photographed, the other contained plain water. In this way the absorption of the dye varied from end to end of the slit; from a very slight thickness of dye to a very considerable thickness, the actual ratio of thickness from end to end of the slit being about 1 to 15.

The photographs of dye spectra therefore show graphically the variation in the absorption with growing thickness of dye, or what is

nearly the same thing, with growing concentration.

Fig. 1. Arrangement of Spectroscope.

Fig. 2. Wedge Spectrum of Wratten Spectrum Panchromatic Plate.

Fig. 3. Black Wedge Spectrum of Screet te.

Fig. 4. Black Wedge.

Fig. 4. Dye Wedge.

Digitized by the Internet Archive in 2016

THE PLATE AND THE COMPENSATING FILTERS.

We were very desirous in this investigation to use as extended a spectrum as possible, and we particularly required to photograph far into the deep Red and Infra Red. For this reason we used the plate which we manufacture for use in the photography of the extreme and Infra red, and which we term the "Spectrum Panchromatic" plate. This plate, beside the usual maximum in the violet, has a very strong maximum at 6,500 in the Red, and then falls off towards the Infra Red. With long exposures, its sensitiveness extends to 8,000. It will be seen, however, from Fig. 2, which shows its curve to the Nernst lamp, that its distribution of sensitiveness throughout the spectrum is unequal. This was compensated by the introduction of a special screen and two cells containing solutions of Mandarine Orange and P-nitrosodimethylaniline. By this means, a very even spectrum indeed was obtained, extending from about 7,200 to 3,900, and falling off on the one side gradually to 7,500, and on the other 3,500 (Fig. 3).

Two groups of dyes, however, were photographed with other arrangements. The dyes which absorb mainly in the Infra Red, beside being photographed for the whole spectrum, were photographed especially for the Red and Infra Red, a Red screen being used, the Spectrum Panchromatic plate and another special filter enabling us to get records extending to 8,000. The Yellows, on the other hand, were photographed on a plate not sensitive to Red, and with stronger solutions of Mandarine Orange and P-nitrosodimethyl-

aniline, enabling us to get even records to 3,500.

THE SPECTRUM PHOTOGRAPHS OF FILTERS.

With the filters, we were of course unable to use the wedge cell, and in order to get a graphic representation of the variation of their absorption with wave-length, we used the Spectrum Panchromatic plate, adjusted, as before, and fitted a black wedge made of neutral black glass in front of the slit, in the place of the wedge cell. This black glass gives a range of intensity from end to end of the slit of from 1 to 10,000, and the practically useful portion of the gradation has a range of about 1 to 400. On putting a filter in front of this, we get a graphic representation of the intensity of the light coming through; the interpretation of which is to some extent complicated by the fact that it is affected by the sensitiveness curve of the plate. It seems, however, to be the most satisfactory method of automatically representing the curve of a filter.

Fig. 4 shows for comparison purposes the absorption spectrum of a dye wedge of Xylene Red, and the absorption of a cell of the same solution measured by means of a black wedge. It will be seen that while the latter result is not so satisfactory as the dye wedge, it does give a very good idea as to the variation of the transmission of the

light in the spectrum.

INDEX OF DYES.

						G. 1.11.
No	o. Page.	Name of Dye.	Strength.	Source of Dye.	Basic.	Stability to Light.
					(1	represents highest
]	13	β-Naphtholdisul-	1/2,500	H (Hœchst)	A	stability, 5 lowest)
6	19	phonic Acid. R. β-Naphtholdisul-	1/2,500	11 (116661136)		0 10 11 000)
2	2 13	phonic Acid. R.	1/100	Н	A	
•	3 13	Æsculine	1/1,000	Merck		
	13	Picric Acid	1/100		A	
	5 14	Filter Yellow K	1/1,000	H	A	2
	6 14	Martius Yellow	1/2,500	*	A	•
	7 14	Aurophenine Am-	_/ -,			
	, II	monia Salt (Chry-				
		sophenine)	1/1,000	H	A	1-2
9	8 14	Naphthol Yellow	1/1,000	Badische *	A	4-5
	$9 \overline{15}$	Beizengelb O. 5G.	1/1,000	H	A	
1		Pinatype Yellow F.	1/5,000	H	A	2-3
i		Thiazole Yellow	1/2,500	Bayer *	A	
1		Auramine	1/10,000	H	В	3
1		p-nitrosodimethyl-	, ,			
1		aniline	1/2,000	H	В	
1	4 16	Tartrazine	1/5,000	Bayer *	A	2-3
ī		Pinatype Gold				0.4
_		Yellow	1/5,000	H	A	3-4
1	6 16	Mandarine Orange	1/10,000	Agfa *	A	
	7 17	p-toluchinolinchlor-				_
		aceticester dyestuff	1/1,000	H	Т	5
1	8 17	Flavophosphine	1/10,000	H	В	0.9
- 1	9 17	Acridine Orange		Leonhardt, Mülhein		2-3
2	0 17	Auracine G	1/5,000	Bayer *	A	3
_ 2	1 18	Uranine	1/5,000	H * ,	A	3
2	2 18	Chrysoidine	1/10,000	H	В	4
2	3 18	Chrysoidine	1/1,000	H H (Mintung	B	$\begin{array}{c}4\\2\\1\end{array}$
	4 18	Pinatype Purple	1/1,500	H (Mixture) A A	1
	5 19	Pinatype Red	1/1,500	H	A	3-4
	6 19	Fast Red	1/1,000	H H	A	2
	7 19	Rapid Filter Red	1/2,000	H	A	$\frac{1}{2}$
	8 19	Rapid Filter Red	1/1,000	H	A	2
	29 20	Rapid Filter Red	1/200	II	I	
3	30 20	Complementary	1/1 500	Н	A	
	w	Scarlet	1/1,500	11	71	
3	31 20	Complementary	1/1 000	Н	A	
		Scarlet	1/1,000	11	4.1	
5	32 20	Complementary	1/800	Н	A	
		Scarlet	1/800	11	4.4	

					Acid or	Stability
No.	Page.	Name of Dye.	Strength.	Source of Dye.	Basic.	to Light.
33	21	Complementary Red 1	1/2,000	Н	A	
34	21	Complementary Red 1	1/1,000	Н	A	
35	21	Complementary Red D	1/1,500	н	A	3-4
36	21	Brilliant Carmine C.	1/2,000	Badische	A	
37	22	Crystal Ponceau	1/1,000	H	A	3
38	22	Crystal Ponceau	1/500	H	A	
39	22	Brilliant Croceine	1/2,000	H	A	
40	22	Coccinine	1/1,000	H	A	2
41	23	Alizarine Red	1/2,000	H	A	2-3
- 42	23	Congo Red	1/2,000	*	A	
43	23	Congo Red	1/1,000	*	A	3-4
44	23	Iodobenzoin 92	1/200	Н	A No	t on market
45	24	Azine Scarlet	1/500	H	A	
-46	24	Fluorescinate of				
		Sodium (Uranine,				
		pure)	1/1,000	H	A	4-5
47	24	Monobromofluores-				
		cinate of Sodium	1/1,000	H	A	4-5
48	24	Dibromofluorescin-				
		ate of Sodium	1/1,000	H	A	
49	25	Eosin Yellow Bayer	1/1,000	Bayer *	A	
50	25	Eosin Blue	1/1,000		A	
5 1	25	Tetrabromofluores-				
		cinate of Sodium	7 /7 000			_
	~~	(Eosin, pure)	1/1,000	H	A	5
5 2	25	Diiodofluorescinate	1 /7 000			
	0.0	of Sodium	1/1,000	H	A	
53	26	Tetraiodofluorescin-				
		ate of Sodium	7 /7 000	**		_
- 1	0.0	(Erythrosin, pure)		H	A	5
54	26	Scarlet B.B. extra N.		H	A	
55	26	Scarlet B.B. extra B.		H	A	
56	26	Scarlet B.B. extra B.	1/1,000	Н	A	
57	27	Tetraiododichloro-				
		fluorescinate of				
		Sodium (Rose Ben-	7 /7 500	**		_
F0	n H	gal)	1/1,500	H	A	5
58	27	Rose Bengal		H	A	5
59	27	Rose Bengal 5 B		H	A	5 5 5 5 5
60	27	Rose Bengal 5 B		H	A	5
61	28	Cyanosine		H	A	5
6 2	28	Phloxine B.A. Extra		H	A	
63	28	Phloxine 194	1/1,000	Н	A	5

NY.	D	Name of Due	Strength.	Source of Dye.	Acid or Basic.	Stability to Light.
No.		Name of Dye.			A	5
64	28	Phloxine A	1/3,000	H	B	5
65	29	Phloxine Rhodamine	1/1,000	H	В	3-4
66	29	Rhodamine 6 G	1/1,000	H	ъ	0-1
67	2 9	Tetramethyl Rhoda-	1/0.000	Н	В	3-4
00	20	mine	1/2,000	11	ъ	0 1
68	29	Acid Rhodamine 3	1/1 000	Н	Α	
••	•0	R	1/1,000	Bayer *	B	3-4
69	30	Rhodamine B	1/1,000	H	В	0 1
70	30	Phenosafranine	1/2,000	H	A & B	
71	30	Xylene Red B	1/2,500	11	II W D	
72	30	Amidonaphthol Red	1/2,500	Н	Α	2-3
ĦO	คา	6 B	1/2,500 $1/2,500$	H	A	
- 73	31	Safranine G	1/2,500 $1/2,500$	H	A	3 3
74	31	Safranine R	1/1,000	H	Ā	3-4
75 76	31	Pinatype Amaranth	1/2,000	H	A	3-4
76	31	Pinatype Violet	1/2,000	Ĥ	A	
77	32	Pinatype Carmine Pinatype Carmine	1/500	H	A	
78	$\frac{32}{32}$	Rapid Filter Blue	1/5,000	H	Ā	2-3
79	$\frac{32}{32}$	Rapid Filter Blue	1/1,000	H	Ā	2-3
80 81	33	Rosinduline 2 B.	1/1,000			
01	00	Bluish	1/2,500	H	A	
82	33	Acid Violet 4 R	1/2,500	Badische *	A	2-3
83	33	Acid Violet 4 R	1/2,000	Badische *	Α	2-3
84	33	Chromotrope F. 4B.	1/2,000	H *	Α	
85	34	Chromotrope 10 B.	1/2,500	H *	A	
86	34	Acid Chrome Blue				
	0.1	2 R	1/2,500	H	Α	
87	34	Acid Chrome Blue	1/2,500	H *	Α	
88	34	Echt Beizenblau	1/2,000	H *	A	
- 89	35	Fuchsine	1/2,500	Bayer *	В	4-5
90	35	Rubin Fuchsine	1/2,500	H	В	4-5
91	3 5	Methyl Violet B.B.R.		H	В	5 5
92	35	Methyl Violet 6 B.	1/2,500	*	B	5
93	36	Methyl Violet 1 B.	1/16,000	Bayer *	В	5
94	36	Crystal Violet	1/10,000	H	В	
95	36	Crystal Violet	1/5,000	H	В	
96	36	Gentian Violet	1/2,000	Bayer *	В	4 5
97	37	Acid Violet B. N.	1/300	H *	A	4-5
98	37	Acid Violet 4 B. C.	1/2,500	Badische *	A	4-5
99	37		1/500	Badische *	A	4-5
100	37	Rhoduline Blue R.	1/2,500	H	В	4-5
101	38	Aniline Blue	1/2,500	H *	В	3 3 3
1.02	38	Alkali Blue	1/5,000	H *	AA	2
103	38	Alkali Blue	1/1,000	H*	B	3
- 104	38	Victoria Pure Blue B.	1/10,000	Badische *	Б	

No.	Page.	Name of Dye.	Strength.	Source of Dye.	Acid or Basic.	Stability to Light.
105	39	Victoria Pure Blue				
		В	1/2,000	Badische *	В	
106	39	Victoria Blue B	1/10,000	Badische *	В	4-5
107	39	Victoria Blue B	1/2,500	Badische *	В	4-5
108	39	Victoria Blue B. S.	1/10,000	Badische *	В	4-5
109	40		1/10,000	Badische *	В	4-5
110	40	Victoria Blue 4 R.	1/10,000	Badische *	В	4-5
111	40	Victoria Blue 4 R.	1/5,000	Badische *	В	4-5
112	40	Victoria Blue R	1/10,000	Badische *	В	4-5
113	41	Victoria Blue R	1/5,000	Badische *	В	4-5
-114	41	Night Blue	1/5,000	Badische *	В	
115	41	Night Blue	1/2,000	Badische *	В	
116	41	Pinatype Blue	1/5,000	H	A	3
117	42	Toluidine Blue	1/5,000	H	A	1
118	42	Toluidine Blue (red				terminate de la company de
		end only)	1/10,000	H	A	
119	42	Toluidine Blue (red				
		end only)	1/1,000	H	A	
-120	42	Methylene Blue	1/10,000	H	B	2-3
121	43	Methylene Blue	1/5,000	H	В	2-3
122	43	Methylene Blue (red				
		end only)	1/5,000	H	В	2-3
123		Thionine Blue	1/10,000	H	В	
124	43	Janus Green	1/1,000	H *	В	4-5
125	44	Patent Blue A	1/10,000	H	A	3
126	44	Patent Blue A	1/2,500	H	A	3
127	44	Patent Blue V	1/10,000	H	A	3
128	44	Patent Blue V	1/5,000	H	A	3
129	45	Patent Blue V	1/1,000	H	A	3
130	45	Cyanine Blue	1/10,000	H	A	3 3 3 3 3
131	45	Erioglaucine A	1/10,000	Geigy *	A	3
132	45	Erioglaucine A	1/1,000	Geigy *	A	3
133	46	Setoglaucine	1/5,000	Geigy *	В	
134	46	Turkish Blue B.B.	1/10,000	Bayer *	A	
135 136	46	Turkish Blue B.B.	1/1,000	Bayer *	A	0
130	46	Methylene Green	1/5,000	H *	В	2 🕶
138	47 47	Methylene Green	1/1,000	H *	В	2 5
139	47	Iodine Green	1/10,000	H * H *	В	
140	47	Iodine Green	1/1,000	п	В	5
140	41	Fast Green Blue Shade	1/1 000	Donor *	A	
141	48		1/1,000	Bayer *	A	
141	10	Complementary Green 1	1/10,000	Н	A	,
142	48	Complementary	1/10,000	П	A	4
112	10	^ 1	1/1,000	Н	A	4
143	48	Solid Green	1/1,000	Bayer	A	4
110	10	John Green	1/1,000	Dayer	Α	

No.	Page.	Name of Dye.	Strength.	Source of Dye.	Acid or Basic.	Stability to Light.
			_			to Bigner
144	48	NewSolidGreen 3B.	1/10,000	H	A	
145	49	New Solid Green 3B.	1/1,000	H	A	9 1
146	49	Naphthaline Green	1/10,000	H	A	3-4
147	49	Naphthaline Green	1/1,000	H	A	3-4
148	49	Rapid Filter Green	1/10,000	H	A	$egin{array}{c} 3 \\ 3 \\ 4 \\ 4 \end{array}$
149	50	Rapid Filter Green	1/1,000	H	A	3
150	50	Acid Green	1/5,000	H *	A	4
151	50	Acid Green	1/1,000	H *	A	4
152	50	Emerald Green	1/1,000	Bayer *	В	,
153	51	Brilliant Green	1/5,000		В	4
154	51	Diamond Green	1/10,000	Badische *	В	
155	51	Diamond Green	1/1,000	Badische *	В	
156	51	Victoria Green 1	1/10,000	Bayer *	В	
157	5 2	Victoria Green 1	1/1,000	Bayer *	В	
158	52	Eboli Green	1/1,000	Leonhardt *	A	
159	52	Naphthol Green	3 / 2 000	**		1.0
- 40		(red end only)	1/5,000	H	A	1-2
160	52	Naphthol Green	- /- 000	**		1.0
		(red end only)	1/1,000	H	A	1-2
161	53	Naphthol Green	1/1,000	H	A	1-2
162	53	Naphthol Green 2.6	1/0 700	**	A	
	~ ~	(red end only)	1/2,500	H	A	
163	53	Naphthol Green 2.6	1/1,000	Н	A	
164	53	Pinatype Green M	1 / 000		A	1
105	J.,	(red end only)	1/5,000	H	A	1
165		Pinatype Green M	1/1,000	Н	A	1
166	54	Toluidine Green	1 10 000	TT	Δ	1
		(red end only)	1/2,000	H	A	1
167	54	Filter Blue Green	1/1,000	H	A	3-4
168	54	Filter Blue Green	1.500	TT	A	9.4
7.00		(red end only)	1/500	H	A	3-4
169	55	Filter Blue Green	1/000	TT	Λ	2 1
1 70	ب ب	(red end only)	1/200	Н	A	3-4
170	55	Filter Blue Green	1/100	TT	A	2 1
		(red end only)	1/100	H	A	3-4

INDEX OF FILTERS.

No. Page. Name of Filter. Acid	**	n	N. C.E.I.	L TAT	D	Name of Filter
Acid	_					
2 56	1	90				
3 56 Picric Acid "D"	_	-0				
4 56 Picric Acid "C" 5 57 Picric Acid "B" 6 57 Picric Acid "A" 7 57 K1 8 57 K2 9 58 K3. M. 10 58 Tartrazine 1 11 58 Tartrazine 2 12 58 Minus Blue. Standard Complementary				ì		
Complementary				!		
6 57 Picric Acid "A" 45 67 H. M. 7 57 K1	4			44	66	
7		57				
S	6	57	Picric Acid "A"	45	67	H. M.
S	7	57	K1	46	67	η Blue
9 58 K3. M. 10 58 Tartrazine 1 11 58 Tartrazine 2 12 58 Minus Blue. Standard Complementary 13 59 G.A. 1 14 59 G.A. 4 15 59 G. M. 16 59 Flavazine T. 17 60	8	57	K2	47	67	C (light)
Tricolour Tri	9	58	K3. M.	48	67	
11						
Second Standard Complementary Second Complementary Second Complementary Second Contrast "L" Contrast "L" Second Contrast "L" Contrast "L" Second Contrast "L" Contrast "L" Second Contrast "L" Cont				49	68	
Complementary 13 59 G.A. 1 14 59 G.A. 4 51 68 Naphthol Green 1 52 68 Naphthol Green 2 53 69 Naphthol Green 3 54 69 Naphthol Green 3 54 69 Naphthol Green 3 54 69 Naphthol Green 3 56 69 B3 57 70 B2 (light) 58 70 B2 (light) 70 B2				1		
13 59 G.A. 1 14 59 G.A. 4 50 G.A. 4 50 G.A. 4 50 G.A. 4 50 G.A. 5 50 G.A. 4 50 G.A. 5 50 G.A. 6 50 G.A. 4 50 G.A. 5 50 G.A. 6 50 G.A. 4 50 G.A. 5 50 G.A. 6 50 G.A. 4 50 G.A. 5 50 G.A. 6 50 50 50 50 50 50 50			_			
14 59 G.A. 4 15 59 G. M. 16 59 Flavazine T. 17 60 p-nitrosodimethylaniline 18 60 Ultraviolet Filter 19 60 Mandarine Orange 20 60 Monobromofluoresceine (light) 21 61 Monobromofluoresceine (dark) 22 61 E2. M. 23 61 E1 24 61 E. (red) 25 62 A. M. Standard Tricolour 26 62 Stereo Red. 27 62 F1 28 62 F2 29 63 F3. M. 30 63 Rose Bengal 31 63 Minus Green 1 32 63 Minus Green 1 32 64 Mylene Red 33 64 Xylene Red 34 64 D (light) 35 64 Methyl Violet B.B.R. 36 65 β Blue (dark) 51 68 Naphthol Green 1 52 68 Naphthol Green 2 53 69 Naphthol Green 3 54 69 Naphthol Green 4 55 69 Stereo Green 56 69 B3 67 70 B2 (light) 58 70 B2 70 B. M. Standard Tricolour Green 60 70 δ Green (Contrast "P") 61 71 Additive Green (Contrast "N") 62 71 Mercury Green. Mercury Monochromat 63 71 ε Green 64 71 Minus Red 3 (light) 65 72 Minus Red 3 66 72 Rapid Filter Green 67 72 γ Green 2 68 72 γ Green 2 68 72 γ Green 3 69 73 γ Green 4 69 Raphthol Green 1 69 Naphthol Green 2 69 Naphthol Green 1 69 Naphthol Green 2 69 Naphthol Green 2 60 Naphthol Green 3 60 Naphthol Green 1 69 Naphthol Green 3 60 Naphthol Green 4 60 Naphthol Green 1 61 Naphthol Green 1 61 Naphthol Green 1 61 Naphthol Green 1 62 Gleshty 1 63 Naphtho	13	59				
15 59 G. M. 16 59 Flavazine T. 17 60 p-nitrosodimethylaniline 18 60 Ultraviolet Filter 19 60 Mandarine Orange 20 60 Monobromofluoresceine (light) 21 61 Monobromofluoresceine (dark) 22 61 E2. M. 23 61 E1 24 61 E. (red) 25 62 A. M. Standard Tricolour 26 62 Stereo Red. 27 62 F1 28 62 F2 30 63 F3. M. 30 63 Rose Bengal 31 63 Minus Green 1 32 63 Minus Green 1 32 64 Xylene Red 35 64 Methyl Violet B.B.R. 36 64 Methyl Violet B.B.R. 37 65 β Blue 38 65 β Blue (dark) 52 68 Naphthol Green 2 53 69 Naphthol Green 3 54 69 Stereo Green 55 69 B3 57 70 B2 (light) 58 70 B2 59 70 B. M. Standard Tricolour Green 56 69 B3 57 70 B2 (light) 58 70 B2 69 Rapid Flavazine T. 56 69 B3 57 70 B2 (light) 58 70 B2 69 Rapid Flavazine T. 56 69 B3 67 70 β Green (Contrast "P") 61 71 Additive Green (Contrast "N") 62 71 Mercury Green. Mercury Monochromat 63 71 ε Green 64 71 Minus Red 3 (light) 65 72 Minus Red 3 66 72 Rapid Filter Green 67 72 γ Green 2 68 72 γ Green 2 68 72 γ Green 3 69 73 γ Green 4 α (Monochromat) 70 73 α (Monochromat) 71 73 β (Monochromat) 72 73 γ (Monochromat) 73 74 δ (Monochromat) 74 74 ε (Monochromat) 75 74 η (Monochromat)				51	68	
16 59 Flavazine T. 17 60 β-nitrosodimethylaniline 18 60 Ultraviolet Filter 19 60 Mandarine Orange 20 60 Monobromofluoresceine (light) 21 61 Monobromofluoresceine (dark) 22 61 E2. M. 23 61 E1 24 61 E. (red) 25 62 A. M. Standard Tricolour 26 62 Stereo Red. 27 62 F1 28 62 F2 29 63 F3. M. 30 63 Rose Bengal 31 63 Minus Green 1 32 63 Minus Green 1 32 64 Mylene Red 44 D (light) 35 64 D. M. 36 64 Methyl Violet B.B.R. 37 65 β Blue 38 65 β Blue (dark) 38 65 β Blue (dark) 39 Naphthol Green 3 54 69 Naphthol Green 3 54 69 Naphthol Green 4 55 69 Stereo Green 56 69 B3 57 70 B2 (light) 58 70 B2 59 70 B. M. Standard Tricolour Creen 60 70 δ Green (Contrast "P") 61 71 Additive Green (Contrast "N") 62 71 Mercury Green. Mercury Monochromat 63 71 ϵ Green 64 71 Minus Red 3 (light) 65 72 Minus Red 3 66 72 Rapid Filter Green 67 72 γ Green 2 68 72 γ Green 3 69 73 γ Green 4 70 73 α (Monochromat) 71 73 β (Monochromat) 72 73 γ (Monochromat) 73 γ (Monochromat) 74 γ ϵ (Monochromat) 75 74 γ (Monochromat)				I		
17 60 p-nitrosodimethylaniline 18 60 Ultraviolet Filter 19 60 Mandarine Orange 20 60 Monobromofluoresceine (light) 58 70 B2 (light) 58 70 B2 19 10 10 10 10 10 10 10						
18 60 Ultraviolet Filter 19 60 Mandarine Orange 20 60 Monobromofluoresceine (light) 21 61 Monobromofluoresceine (dark) 22 61 E2. M. 23 61 E1 24 61 E. (red) 25 62 A. M. Standard Tricolour 26 62 Stereo Red. 27 62 F1 28 62 F2 30 63 F3. M. 30 63 Rose Bengal 31 63 Minus Green 1 32 63 Minus Green 1 32 63 Minus Green 3. Standard dard Complementary 33 64 Xylene Red 34 64 D (light) 35 64 D. M. 36 64 Methyl Violet B.B.R. 37 65 β Blue 38 65 β Blue (dark) 56 69 B3 57 70 B2 (light) 58 70 B2 69 T0 B. M. Standard Tricolour Creen 60 70 δ Green (Contrast "P") 61 71 Additive Green (Contrast "P") 62 71 Mercury Green. Mercury Monochromat 63 71 ε Green 64 71 Minus Red 3 (light) 65 72 Minus Red 3 66 72 Rapid Filter Green 67 72 γ Green 2 68 72 γ Green 2 68 72 γ Green 3 69 73 γ Green 4 70 73 α (Monochromat) 71 73 β (Monochromat) 72 73 γ (Monochromat) 73 74 δ (Monochromat) 74 74 ε (Monochromat) 75 74 η (Monochromat)						
19 60 Mandarine Orange				•		
20 60 Monobromofluoresceine (light) 21 61 Monobromofluoresceine (dark) 22 61 E2. M. 23 61 E1 24 61 E. (red) 25 62 A. M. Standard Tricolour 26 62 Stereo Red. 27 62 F1 28 62 F2 30 63 Rose Bengal 30 63 Rose Bengal 31 63 Minus Green 1 32 63 Minus Green 3. Standard dard Complementary 33 64 Xylene Red 34 64 D (light) 35 64 D. M. 36 64 Methyl Violet B.B.R. 37 65 β Blue 38 65 β Blue (dark) 57 70 B2 (light) 58 70 B2 59 70 B. M. Standard Tricolour Creen 60 70 δ Green (Contrast "P") 61 71 Additive Green (Contrast "N") 62 71 Mercury Green. Mercury Monochromat 63 71 ε Green 64 71 Minus Red 3 (light) 65 72 Minus Red 3 66 72 Rapid Filter Green 67 72 γ Green 2 68 72 γ Green 3 69 73 γ Green 4 70 73 α (Monochromat) 71 73 β (Monochromat) 72 73 γ (Monochromat) 73 74 δ (Monochromat) 74 74 ε (Monochromat) 75 74 η (Monochromat)				1		
Contrast Contrast						
21	20	60				
Tricolour Green 22 61 E2. M. 60 70 δ Green (Contrast "P") 23 61 E1 61 71 Additive Green (Contrast "N") 25 62 A. M. Standard Tricolour "N") 26 62 Stereo Red. 62 71 Mercury Green. Mercury Monochromat 26 62 Stereo Red. 63 71 ϵ Green 27 62 F1 64 71 Minus Red 3 (light) 28 62 F2 65 72 Minus Red 3 29 63 F3. M. 66 72 Rapid Filter Green 30 63 Rose Bengal 67 72 γ Green 2 31 63 Minus Green 1 68 72 γ Green 3 32 63 Minus Green 3. 54 γ Green 3 33 64 γ Yylene Red 34 64 γ Monochromat 35 64 γ M. 36 γ Monochromat 37 γ Monochromat <t< td=""><td></td><td></td><td>(light)</td><td>1</td><td></td><td></td></t<>			(light)	1		
22 61 E2. M. 23 61 E1 24 61 E. (red) 25 62 A. M. Standard Tricolour 26 62 Stereo Red. 27 62 F1 28 62 F2 29 63 F3. M. 30 63 Rose Bengal 31 63 Minus Green 1 32 63 Minus Green 3. Standard dard Complementary 33 64 Xylene Red 34 64 D (light) 35 64 D. M. 36 64 Methyl Violet B.B.R. 37 65 β Blue 38 65 β Blue (dark) 60 70 δ Green (Contrast "P") 61 71 Additive Green (Contrast "P") 62 71 Mercury Green. Mercury Monochromat 62 71 Mercury Green. Mercury 62 62 72 Minus Red 3 (light) 65 72 Minus Red 3 66 72 Rapid Filter Green 67 72 γ Green 2 68 72 γ Green 3 69 73 γ Green 4 70 73 α (Monochromat) 71 73 β (Monochromat) 72 73 γ (Monochromat) 73 74 δ (Monochromat) 74 74 ε (Monochromat) 75 74 η (Monochromat)	21	61	Monobromofluoresceine	59	70	
23 61 E1 24 61 E. (red) 25 62 A. M. Standard Tricolour 26 62 Stereo Red. 27 62 F1 28 62 F2 29 63 F3. M. 30 63 Rose Bengal 31 63 Minus Green 1 32 63 Minus Green 3. Standard						
24 61 E. (red) 25 62 A. M. Standard Tricolour 26 62 Stereo Red. 27 62 Fl 28 62 F2 29 63 F3. M. 30 63 Rose Bengal 31 63 Minus Green 1 32 63 Minus Green 3. Standard dard Complementary 33 64 Xylene Red 464 D (light) 35 64 D. M. 36 64 Methyl Violet B.B.R. 37 65 β Blue 38 65 β Blue (dark) "N") 62 71 Mercury Green. Mercury Monochromat 63 71 ϵ Green 64 71 Minus Red 3 (light) 65 72 Minus Red 3 66 72 Rapid Filter Green 67 72 γ Green 2 68 72 γ Green 3 69 73 γ Green 4 70 73 α (Monochromat) 71 73 β (Monochromat) 72 73 γ (Monochromat) 74 74 ϵ (Monochromat) 75 74 η (Monochromat)	22	61	E2. M.	1	70	δ Green (Contrast "P")
Tricolour 26 62 Stereo Red. 27 62 F1 28 62 F2 29 63 F3. M. 30 63 Rose Bengal 31 63 Minus Green 1 32 63 Minus Green 3. Standard dard Complementary 33 64 Xylene Red 34 64 D (light) 35 64 D. M. 36 64 Methyl Violet B.B.R. 37 65 β Blue 38 65 β Blue (dark) 62 71 Mercury Green. Mercury Monochromat 63 71 ε Green 64 71 Minus Red 3 (light) 65 72 Minus Red 3 66 72 Rapid Filter Green 67 72 γ Green 2 68 72 γ Green 3 69 73 γ Green 4 70 73 α (Monochromat) (Contrast " R") 71 73 β (Monochromat) 72 73 γ (Monochromat) 74 74 ε (Monochromat) 75 74 η (Monochromat)	23	61	E1	61	71	Additive Green (Contrast
Tricolour 26 62 Stereo Red. 27 62 F1 28 62 F2 63 71 ε Green 64 71 Minus Red 3 (light) 65 72 Minus Red 3 66 72 Rapid Filter Green 67 72 γ Green 2 68 72 γ Green 3 69 73 γ Green 4 70 73 α (Monochromat) 70 73 α (Monochromat) 71 73 β (Monochromat) 72 73 γ (Monochromat) 73 64 Methyl Violet B.B.R. 74 74 ε (Monochromat) 75 74 η (Monochromat)	24	61	E. (red)			"N")
Tricolour 26 62 Stereo Red. 27 62 F1 28 62 F2 29 63 F3. M. 30 63 Rose Bengal 31 63 Minus Green 1 32 63 Minus Green 3. Standard Complementary 33 64 Xylene Red 464 D (light) 35 64 D. M. 36 64 Methyl Violet B.B.R. 37 65 β Blue 38 65 β Blue (dark) Monochromat 63 71 ε Green 64 71 Minus Red 3 (light) 65 72 Minus Red 3 66 72 Rapid Filter Green 67 72 γ Green 2 68 72 γ Green 3 69 73 γ Green 4 70 73 α (Monochromat) 71 73 β (Monochromat) 72 73 γ (Monochromat) 74 74 ε (Monochromat) 75 74 η (Monochromat)	25	62	A. M. Standard	62	71	Mercury Green. Mercury
26 62 Stereo Red. 27 62 F1 28 62 F2 69 63 F3. M. 30 63 Rose Bengal 31 63 Minus Green 1 32 63 Minus Green 3. Standard Complementary 33 64 Xylene Red 34 64 D (light) 35 64 D. M. 36 64 Methyl Violet B.B.R. 37 65 β Blue 38 65 β Blue (dark) 37 62 F1 68 71 Minus Red 3 (light) 65 72 Minus Red 3 66 72 Rapid Filter Green 67 72 γ Green 2 68 72 γ Green 3 69 73 γ Green 4 70 73 α (Monochromat) 71 73 β (Monochromat) 72 73 γ (Monochromat) 73 74 δ (Monochromat) 74 74 ε (Monochromat) 75 74 η (Monochromat)						
27 62 F1 28 62 F2 29 63 F3. M. 30 63 Rose Bengal 31 63 Minus Green 1 32 63 Minus Green 3. Standard Complementary 33 64 Xylene Red 34 64 D (light) 35 64 D. M. 36 64 Methyl Violet B.B.R. 37 65 β Blue 38 65 β Blue (dark) 38 64 F2 65 72 Minus Red 3 66 72 Rapid Filter Green 67 72 γ Green 2 68 72 γ Green 3 69 73 γ Green 4 70 73 α (Monochromat) (Contrast " R") 71 73 β (Monochromat) 72 73 γ (Monochromat) 74 74 ε (Monochromat) 75 74 η (Monochromat)	26	62		63	71	€ Green
28 62 F2 29 63 F3. M. 30 63 Rose Bengal 31 63 Minus Green 1 32 63 Minus Green 3. Standard Complementary 33 64 Xylene Red 34 64 D (light) 35 64 D. M. 36 64 Methyl Violet B.B.R. 37 65 β Blue 38 65 β Blue (dark) 39 63 Rose Bengal 66 72 Rapid Filter Green 67 72 γ Green 2 68 72 γ Green 3 69 73 γ Green 4 70 73 α (Monochromat) 71 73 β (Monochromat) 72 73 γ (Monochromat) 73 74 δ (Monochromat) 74 74 ε (Monochromat) 75 74 η (Monochromat)	27	62		64		Minus Red 3 (light)
29 63 F3. M. 30 63 Rose Bengal 31 63 Minus Green 1 32 63 Minus Green 3. Standard Complementary 33 64 Xylene Red 34 64 D (light) 35 64 D. M. 36 64 Methyl Violet B.B.R. 37 65 β Blue 38 65 β Blue (dark) 30 63 Rose Bengal 66 72 Rapid Filter Green 67 72 γ Green 2 68 72 γ Green 3 69 73 γ Green 4 70 73 α (Monochromat) 71 73 β (Monochromat) 72 73 γ (Monochromat) 74 74 ε (Monochromat) 75 74 η (Monochromat)			F2			
30 63 Rose Bengal 31 63 Minus Green 1 32 63 Minus Green 3. Stan- dard Complementary 33 64 Xylene Red 34 64 D (light) 35 64 D. M. 36 64 Methyl Violet B.B.R. 37 65 β Blue 38 65 β Blue (dark) 30 67 72 γ Green 2 68 72 γ Green 3 69 73 γ Green 4 70 73 α (Monochromat) 71 73 β (Monochromat) 72 73 γ (Monochromat) 73 74 δ (Monochromat) 74 74 ε (Monochromat) 75 74 η (Monochromat)						
31 63 Minus Green 1 32 63 Minus Green 3. Stan-dard Complementary 33 64 Xylene Red 34 64 D (light) 35 64 D. M. 36 64 Methyl Violet B.B.R. 37 65 β Blue 38 65 β Blue (dark) 39 Green 3 69 73 γ Green 4 70 73 α (Monochromat) 71 73 β (Monochromat) 72 73 γ (Monochromat) 73 74 δ (Monochromat) 74 74 ε (Monochromat) 75 74 η (Monochromat)						•
32 63 Minus Green 3. Standard Complementary 33 64 Xylene Red 34 64 D (light) 35 64 D. M. 36 64 Methyl Violet B.B.R. 37 65 β Blue 38 65 β Blue (dark) 69 73 γ Green 4 70 73 α (Monochromat) 71 73 β (Monochromat) 72 73 γ (Monochromat) 73 74 δ (Monochromat) 74 74 ϵ (Monochromat) 75 74 η (Monochromat)						· ·
dard Complementary7073a (Monochromat)3364Xylene Red(Contrast "R")3464D (light)7173 β (Monochromat)3564D. M.7273 γ (Monochromat)3664Methyl Violet B.B.R.7374 δ (Monochromat)3765 β Blue7474 ϵ (Monochromat)3865 β Blue (dark)7574 η (Monochromat)						
33 64 Xylene Red (Contrast "R") 34 64 D (light) 71 73 β (Monochromat) 35 64 D. M. 72 73 γ (Monochromat) 36 64 Methyl Violet B.B.R. 73 74 δ (Monochromat) 37 65 β Blue 74 74 ϵ (Monochromat) 38 65 β Blue (dark) 75 74 η (Monochromat)	02	00				
3464D (light)7173 β (Monochromat)3564D. M.7273 γ (Monochromat)3664Methyl Violet B.B.R.7374 δ (Monochromat)3765 β Blue7474 ϵ (Monochromat)3865 β Blue (dark)7574 η (Monochromat)	33	64			10	
35 64 D. M. 72 73 γ (Monochromat) 36 64 Methyl Violet B.B.R. 73 74 δ (Monochromat) 37 65 β Blue γ Blue (dark) 74 74 ϵ (Monochromat) 38 65 β Blue (dark) 75 74 γ (Monochromat)				71	72	
3664Methyl Violet B.B.R.7374 δ (Monochromat)3765 β Blue7474 ϵ (Monochromat)3865 β Blue (dark)7574 η (Monochromat)						
3765 β Blue7474 ϵ (Monochromat)3865 β Blue (dark)7574 η (Monochromat)						
38 65 β Blue (dark) 75 74 η (Monochromat)						
						· · · · · · · · · · · · · · · · · · ·
39 60 Blue 203 76 74 θ (Monochromat)						
	39	00	Blue 203	76	74	(Monochromat)

SPECIAL SERIES OF FILTERS INCLUDED IN THE FILTER LIST.

Series.			Variety.		Number.		
K (Orthochromatic)	•••	K1	• • •		7		57
		K2	• • •	• • •	8	• • •	57
		K3	• • •	•••	9	• • •	58
Tricolour Standard	•••	Red	• • •	• • •	25	• • •	62
		Green	•••	• • •	59		70
		Blue	•••	• • •	48		67
Complementary Filters	•••	Minus	Red	•••	44	• • •	66
-			Green		32	• • •	63
		Minus		• • •	12		58
M. Filters (for Microsco	opy)	A	•••	• • •	25	•••	62
•		В	•••	• • •	59	•••	70
		C		•••	48	•••	67
		Ď		•••	35	•••	64
		$\widetilde{\mathbf{E}}$		•••	22	•••	61
		$\overline{\overline{\mathbf{F}}}$			29	•••	63
		Ğ			15	• • •	59
		H			45		67
		K3	•••	•••	9		58
Monochromats		a	•••	•••	70	•••	73
	•••	$\tilde{\beta}$	•••	•••	71	•••	73
			• • •	•••	72	• • •	73
		$\delta $	•••	•••	73	• • •	74
		€	•••	•••	74		$7\overline{4}$
			•••	• • •	75	•••	74
		$\overset{oldsymbol{\eta}}{ heta}$	•••	•••	76		74
Mercury Vapour Lam	p Mono-	Green	• • •	• • •	62	• • •	71
chromats	p Mono		(E.2.)		22	•••	61
Cinomats		Violet		• • •	50	• • •	68
Contrast Filters not in	cluded in		olet)	• • •	50	•••	68
"M" set	cidded iii	•	re Gree		61		71
141 300			ie Greei		60	• • •	70
		•			70		73
		K (De	ep Red	1	10	•••	13

Dyes.

Fig. 1 β -Naphtholdisulphonic Acid R. 1/2,500 (Blue end only).

Fig. 2. β -Naphtholdisulphonic Acid R. 1/100 (Blue end only).

Fig. 3. Æsculine 1/1,000 (Blue end only).

Fig. 4. Pieric Acid 1/100.

Fig. 5. Filter Yellow K. 1/1,000 (Blue end only).

Fig. 6 Martius Yellow 1/2,500 (Blue end only).

Fig. 7. Aurophenine Ammonia Salt 1/1,000 (Blue end only).

Fig. 8. Naphthol Yellow 1/1,000 (Blue end only).

Fig. 9. Beizengelb O. 5 G. 1/1,000 (Blue end only).

Fig. 10. Pinatype Yellow F. 1/5,000 (Blue end only).

Fig. 11. Thiazole Yellow 1/2,500 (Blue end only).

Fig. 12. Auramine 1/10,000 (Blue end only).

Fig. 13. p-nitrosodimethylaniline 1/2,000 (Blue end only).

Fig. 14. Tartrazine 1/5,000 (Blue end only).

Fig. 15. Pinatype Gold Yellow 1/5,000 (Blue end only).

Fig. 16. Mandarine Orange 1/10,000 (Blue end only).

Fig. 17. p-toluchinolinchloraceticesterdyestuff 1/1,000 (Blue end only).

Fig. 18. Flavophosphine 1/10,000 (Blue end only).

Fig. 19. Acridine Orange 1/5,000 (Blue end only).

Fig. 20. Auracine G. 1/5,000 (Blue end only).

Fig. 21. Uranine 1/5,000 (Blue end only).

Fig. 22. Chrysoidine 1/10,000 (Blue end only).

Fig. 23. Chrysoidine 1/1,000.

Fig. 24. Pinatype Purple 1/1,500.

Fig. 25. Pinatype Red 1/1,500

Fig. 26. Fast Red 1/1,000.

Fig. 27. Rapid Filter Red 1/2,000

Fig. 28. Rapid Filter Red 1/1,000.

Fig. 29. Rapid Filter Red 1/200.

Fig. 30. Complementary Scarlet 1/1,500.

Fig. 31. Complementary Scarlet 1/1,000.

Fig. 32. Complementary Scarlet 1/800.

Fig. 33. Complementary Red 1. 1/2,000

Fig. 34. Complementary Red 1. 1/1,000.

Fig. 35. Complementary Red D. 1/1,500.

Fig. 36. Brilliant Carmine C. 1/2,000.

Fig. 37. Crystal Ponceau 1/1,000.

Fig. 38. Crystal Ponceau 1/500.

Fig. 39. Brilliant Croceine 1/2,000

Fig. 40. Coccinine 1/1,000.

Fig. 41. Alizarine Red 1/2,000.

Fig. 42. Congo Red 1/2,000.

Fig. 43. Congo Red 1/1,000.

Fig. 44. Iodobenzoin 92. 1/200.

Fig. 45. Azine Scarlet 1/500.

Fig. 46. Fluorescinate of Sodium 1/1,000.

Fig. 47. Monobromofluorescinate of Sodium 1/1,000.

Fig. 48. Dibromofluorescinate of Sodium 1/1,000.

Fig. 49. Eosine Yellow Bayer 1/1,000.

Fig. 50. Eosine Blue 1/1,000.

Fig. 51. Tetrabromofluorescinate of Sodium 1/1,000.

Fig. 52. Diiodofluorescinate of Sodium 1/1,000.

Fig. 53. Tetraiodofluorescinate of Sodium 1/1,000.

Fig. 54. Scarlet B.B. extra N. 1/1,000.

Fig. 55. Scarlet B.B. extra B. 1/2,000.

Fig. 56. Scarlet B.B. extra B. 1/1,000.

Fig. 57. Rose Bengal 1/1,500.

Fig. 58. Rose Bengal 1/1,000.

Fig. 59. Rose Bengal 5 B. 1/4,000.

Fig. 60. Rose Bengal 5 B. 1/400.

Fig. 61. Cyanosine 1/1.000.

Fig. 62. Phloxine B.A. Extra 1/1,000.

Fig. 63. Phloxine 194. 1/1,000.

Fig. 64. Phloxine A. 1/3,000.

Fig. 65. Phloxine Rhodamine 1/1,000.

Fig. 66. Rhodamine 6 G. 1/1,000.

Fig. 67. Tetramethyl Rhodamine 1/2,000.

Fig. 68. Acid Rhodamine 3 R. 1/1,000.

Fig. 69. Rhodamine B. 1/1,000.

Fig. 70. Phenosafranine 1/2,000.

Fig. 71. Xylene Red B. 1/2,500.

Fig. 72. Amidonaphthol Red 6 B. 1/2,500.

Fig. 73. Safranine G. 1/2,500.

Fig. 74. Safranine R. 1/2,500.

Fig. 75. Pinatype Amaranth 1/1,000.

Fig. 76. Pinatype Violet 1/2,000.

Fig. 77. Pinatype Carmine 1/2,000.

Fig. 78. Pinatype Carmine 1/500.

Fig. 79. Rapid Filter Blue 1/5,000.

Fig. 80. Rapid Filter Blue 1/1,000.

Fig. 81. Rosinduline 2 B. Bluish 1/2,500.

Fig. 82. Acid Violet 4 R. 1/2,500.

Fig. 83. Acid Violet 4 R. 1/2,000.

Fig. 84. Chromotrope F. 4 B 1/2,000.

Fig. 85. Chromotrope 10 B. 1/2,500.

Fig. 86. Acid Chrome Blue 2 R. 1/2,500.

Fig. 87. Acid Chrome Blue 1/2,500.

Fig. 88. Echt Beizenblau 1/2,000.

Fig. 89. Fuchsine 1/2,500.

Fig. 90. Rubin Fuchsine 1/2,500.

Fig. 91. Methyl Violet B. B. R. 1/2,500.

Fig. 92. Methyl Violet 6 B. 1/2,500.

Fig. 93. Methyl Violet 1 B. 1/16,000.

Fig. 94. Crystal Violet 1/10,000.

Fig. 95. Crystal Violet 1/5,000.

Fig. 96. Gentian Violet 1/2,000.

Fig. 97. Acid Violet B. N. 1/300.

Fig. 98. Acid Violet 4 B.C. 1/2,500.

Fig. 99. Acid Violet 4 B.C. 1/500.

Fig. 100. Rhoduline Blue R. 1/2,500.

Fig. 101. Aniline Blue 1/2,500.

Fig. 102. Alkali Blue 1/5000.

Fig. 103. Alkali Blue 1/1,000.

Fig. 104. Victoria Pure Blue B. 1/10,000.

Fig. 105. Victoria Pure Blue B. 1/2,000.

Fig. 106. Victoria Blue B. 1/10,000.

Fig. 107. Victoria Blue B. 1/2,500.

Fig. 108. Victoria Blue B. S. 1/10,000.

Fig. 109. Victoria Blue B. S. S. 1/10,000.

Fig. 110. Victoria Blue 4 R. 1/10,000.

Fig. 111. Victoria Blue 4 R. 1/5,000,

Fig. 112. Vietoria Blue R. 1/10,000.

Fig. 113 Victoria Blue R. 1/5,000.

Fig. 114. Night Blue 1/5,000.

Fig. 115. Night Blue 1/2,000.

Fig. 116. Pinatype Blue 1/5,000.

Fig. 117. Toluidine Blue 1/5,000.

Fig. 118. Toluidine Blue 1/10,000. (Red end only).

Fig. 119. Toluidine Blue 1/1,000 (Red end only).

Fig. 120. Methylene Blue 1/10,000.

Fig. 121. Methylene Blue 1/5,000.

Fig. 122. Methylene Blue 1/5,000 (Red end only).

Fig. 123. Thionine Blue 1/10,000.

Fig. 124. Janus Green 1/1,000.

Fig. 125. Patent Blue A. 1/10,000.

Fig. 126. Patent Blue A. 1/2,500.

Fig. 127. Patent Blue V. 1/10,000.

Fig. 128. Patent Blue V. 1/5,000.

Fig. 129. Patent Blue V. 1/1,000.

Fig. 130. Cyanine Blue 1/10,000.

Fig. 131. Erioglaucine A. 1/10,000.

Fig. 132. Erioglaucine A. 1/1,000.

Fig. 133. Setoglaucine 1/5,000.

Fig. 134. Turkish Blue B. B. 1/10,000.

Fig. 135. Turkish Blue B. B. 1/1,000.

Fig. 136. Methylene Green 1/5,000.

Fig. 137. Methylene Green 1/1,000.

Fig. 138. Iodine Green 1/10,000.

Fig. 139. Iodine Green 1/1,000.

Fig. 140. Fast Green Blue Shade 1/1,000.

Fig. 141. Complementary Green 1. 1/10,000.

Fig. 142. Complementary Green 1. 1/1,000.

Fig. 143. Solid Green 1/1,000.

Fig. 144. New Solid Green 1/10,000.

Fig. 145. New Solid Green 1/1,000.

Fig. 146. Naphthaline Green 1/10,000.

Fig. 147. Naphthaline Green 1/1,000.

Fig. 148. Rapid Filter Green 1/10,000.

Fig. 149. Rapid Filter Green 1/1,000.

Fig. 150. Acid Green 1/5,000.

Fig. 151. Acid Green 1/1,000.

Fig. 152. Emerald Green 1/1,000.

Fig. 153. Brilliant Green 1/5,000.

Fig. 154. Diamond Green 1/10,000.

Fig. 155. Diamond Green 1/1,000.

Fig. 156. Victoria Green 1. 1/10,000.

Fig. 157. Victoria Green 1. 1/1,000.

Fig. 158. Eboli Green 1/1,000.

Fig. 159. Naphthol Green 1/5,000 (Red end only).

Fig. 160. Naphthol Green 1/1,000 (Red end only).

Fig. 161. Naphthol Green 1/1,000.

Fig. 162. Naphthol Green 2.6. 1/2,500 (Red end only).

Fig. 163. Naphthol Green 2.6. 1/1,000.

Fig. 164. Pinatype Green M. 1/5,000 (Red end only).

Fig. 165. Pinatype Green M. 1/1,000.

Fig. 166. Toluidine Green 1/2,000 (Red end only).

Fig. 167. Filter Blue Green 1/1,000.

Fig. 168. Filter Blue Green 1/500 (Red end only).

Fig. 169. Filter Blue Green 1/200 (Red end only).

Fig. 170. Filter Blue Green 1/100 (Red end only).

Filters.

Fig. 1. β -Naphtholdisulphonic Acid.

Fig. 2. Æsculine.

Fig. 3. Pierie Aeid "D."

Fig. 4. Pierie Acid "C."

Fig. 5. Pierie Acid "B."

Fig. 6. Pierie Acid "A."

Fig. 7. K1.

Fig. 8. K2.

Fig. 9. K.3 M.

Fig. 10. Tartrazine 1.

Fig. 11. Tartrazine 2

Fig. 12. Minus Blue. Standard Complementary.

Fig. 13. G.A. 1.

Fig. 14. G.A. 4.

Fig. 15. G M.

Fig. 16. Flavazine T.

Fig. 17. p-nitrosodimethylaniline.

Fig. 18. Ultraviolet Filter.

Fig. 19. Mandarine Orange.

Fig. 20. Monobromofluoresceine (light).

Fig. 21. Monobromofluoresceine (dark).

Fig. 22. E2 "M."

Fig. 23. E1.

Fig. 24. E (red).

Fig. 25. A.M. Standard Tricolour.

Fig. 26. Stereo Red.

Fig. 27. F1.

Fig. 28. F2.

Fig. 29. F3. M.

Fig. 30. Rose Bengal.

Fig. 31. Minus Green 1.

Fig. 32. Minus Green 3. Standard Complementary.

Fig. 33. Xylene Red.

Fig. 34. D (light).

Fig. 35. D. M.

Fig. 36. Methyl Violet B.B.R.

Fig. 37. β Blue.

Fig. 38. β Blue (dark)

Fig. 39. Blue 203.

Fig. 40. Blue 316.

Fig. 41. Blue 363.

Fig. 42. Blue 445.

Fig. 43. Minus Red 2.

Fig. 44. Minus Red 4. Standard Complementary.

Fig. 45. H. M.

Fig. 46. η Blue.

Fig. 47 C (light).

Fig. 48. Cl. M. Standard Tricolour.

Fig. 49. C2.

Fig. 50. L. Mercury Violet. Mercury Monochromat.

Fig. 51. Naphthol Green 1.

Fig. 52. Naphthol Green 2.

Fig. 53. Naphthol Green 3.

Fig. 54. Naphthol Green 4.

Fig. 55. Stereo Green.

Fig. 56. B3.

Fig. 57. B2 (light).

Fig. 58. B2.

Fig. 59. B. M. Standard Tricolour Green.

Fig. 60. P. & Green.

Fig. 61. N. Additive Green.

Fig. 62. Mercury Green. (Mercury Monochromat.)

Fig. 63. ϵ Green.

Fig. 64. Minus Red 3 (light).

Fig. 65. Minus Red 3.

Fig. 66. Rapid Filter Green.

Fig. 67. γ Green 2.

Fig. 68. γ Green 3.

Fig. 69. γ Green 4.

Fig. 70. a (Monochromat).

Fig. 71. β (Monochromat).

Fig. 72. γ (Monochromat).

Fig. 73. δ (Monochromat).

Fig. 74. ϵ (Monochromat).

Fig. 75. η (Monochromat).

Fig. 76. θ (Monochromat).

