Lattice cryptography

October 08, 2018

Definition: Post-Quantum Cryptography – classically computed protocols secure against quantum adversaries.

Lattices 1

A lattice is a grid of dots, not necessarily aligned with the coordinate axes. It is always > 2 dimensions. (usually n-dimensional where $n \approx 100$)

Formally, a lattice falls under either of two definitions:

(1) Any discrete subgroup of \mathbb{R}^n

(2) Let $B = \{b1, ..., b_k\}$ be a linearly independent subset of \mathbb{R}^n . The lattice is the set $L(B) = \left\{ \sum_{i=1}^{k} x_i b_i | x_i \in \mathbb{Z} \right\}$

For example, the lattice L(B) where $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ Is the grid of all points with integer coordinates. Here is an illustration:

The lattice L(B) where $B = \begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix}$, is the same lattice as before.

The lattice L(B) where $B = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, is the same lattice as before, except the points (1,0),(0,1),(-1,0),(0,-1) are not in the lattice, as in the illustration below.

The set $B = (1 \sqrt{2})$ does not form a lattice, since the elements are not linearly independent.

Thought not formally required, usually a full rank lattice is used.

2 Hardness assumptions

Cryptography relies on hardness assumptions. For lattices, these are:

- (1) Shortest Vector Problem (SVP): Given $B \in \mathbb{Z}^{n \times n}$ find $v \in L(B)$ {0} s.t. |v| is minimized.
- (2) Closest vector problem (CVP): Given $B \in \mathbb{Z}^{n \times n}$, $u \in \mathbb{Z}^n$ find $v \in L(B)$
- $\{0\}$ s.t. |v-u| is minimized.

These problems are easy in dimension 2 but harder in higher dimensions.

3 Approximation

Unfortunately, these problems are NP hard in the exact case. Instead, we use approximate variations of the problems, SVP_{γ} and CVP_{γ} , which are correct to within a gamma factor of optimal.

4 Decisional variants

We also define decision SVP and CVP problems. The decisional variant of SVP is called gap-SVP $_{\gamma}$, outputs "yes" if, given (B,S), the shortest vector is of length at most s, and outputs "no" if, given (B,S), the shortest vector is of length at most γs . The behavior for shortest vectors between lengths s and γs is undefined. gap-CVP $_{\gamma}$ is defined similarly.

5 Complexity landscape

The complexity landscape of SVP_{γ} is as follows:

- 1. $1 < \gamma < 2^{(\log n)^{1-\epsilon}}$: NP-hard
- 2. $\sqrt{n} < \gamma < n$: NP \cap : Co-NP

```
3. n < \gamma < 2^{n \frac{\log \log n}{\log n}}: Acceptable for cryptography
```

4.
$$\gamma > 2^{n \frac{\log \log n}{\log n}}$$
: Easy

6 Trapdoors

Observe: not all bases are created equal. This lets us create trapdoor functions. For example, we can use Lattice Rounding to solve CVP_{γ} .

Suppose all entries are bounded by δ . Then we can solve $v = B\lceil B^{-1}u \rfloor$, and $|v - u| = |B(\lceil B^{-1}u \rceil - (B^{-1}u))| \le n^{\frac{3}{2}}\delta$

7 Encryption

Scheme for encryption:

Secret Key: A "good" basis B

Public Key: A "bad" basis B' s.t. L(B) = L(B')

Enc(pk, m): Map m onto L(B'), add some small error to get ciphertext c

Decr(sk, m): Solve CVP_{γ} to find m.

8 Signatures

In general, signatures have 2 functions:

 $Sign(sk,m) \to \sigma$

 $Ver(pk,m,\sigma) \rightarrow "Yes"$, if σ corresponds to m. "No" otherwise.

It also must hold that given just (pk,m), it is hard to find σ .

For lattices, our scheme is:

Secret Key: A "good" basis B

Public Key: A "bad" basis B' s.t. L(B) = L(B')

Sign(sk,m): Map $m \to \mathbb{R}^n$, then use CVP_{γ} to find the closest vector on the

lattice, σ .

Ver(pk,m, σ): Test that $|m-\sigma|$ is sufficiently small and that σ is in L(B')

9 Short integer solutions

Special lattices that make cryptography easier.

A short integer solution lattice $SIS_{n,m,q,b}$ is defined s.t. $m >> n, b \approx \sqrt{m}$. Choose a random $A \in \mathbb{Z}_{\mathbb{N}}^{n \times m}$. Then it is hard to find $x \in \mathbb{Z}^m$ s.t. $|x| < b, x \neq 0, A \cdot x = 0 \mod q$.

It turns out this is a special case of SVP $_{\gamma}$, with the lattice $\Lambda(A) = \{x \in \mathbb{Z}_m | A \cdot x = 0 \mod q\}$. In particular, the hardness of the worst case of SVP implies the hardness of the average case of SIS.

10 Collision-resistant hashing

Using SIS, we can construct collision resistant hashing.

Let D be the short integer vectors in \mathbb{Z}^m . Then let $h_A: D \to \mathbb{Z}_q^n$ be a hash function such that $h_A(x) = A \cdot x \mod q$. To show collision resistance, assume

we find a collision x_0, x_1 i.e. $A \cdot x_0 \mod q = A \cdot x_1 \mod q$. Then we find a short vector $(x_0 - x_1) \neq 0$ s.t. $A \cdot (x_0 - x_1) = 0 \mod q$, violating the SIS hardness assumption.