Fourier Transform (IV) — 2D DFT

Dr. Xiqun Lu

College of Computer Science

Zhejiang University

Image Representation

PRIORI BASIS FOR NATURAL IMAGES

Discrete Fourier Transform

Forward transform (Analysis)

$$X(k_1, k_2) = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x(n_1, n_2) \exp\left(-jk_1 \frac{2\pi}{N_1} n_1 - jk_2 \frac{2\pi}{N_2} n_2\right)$$

Inverse transform (Synthesis)

$$x(n_1, n_2) = \frac{1}{N_1 N_2} \sum_{k_1=0}^{N_1-1} \sum_{k_2=0}^{N_2-1} X(k_1, k_2) \exp\left(jk_1 \frac{2\pi}{N_1} n_1 + jk_2 \frac{2\pi}{N_2} n_2\right)$$

Synthesized 2D images and their magnitude spectrums

Synthesized 2D image and its magnitude spectrum (II)

(a) This image exclusively has 4 cycles horizontally and 16 cycles vertically.

(b) Magnitude spectrum of the image

Two step images and their magnitude spectrums

The Magnitude (DFT of Lena)

To Combine the Magnitude of One Image and the Phase of the Other Image

Resulting

Hint: fft2, abs and angle in the MatlabTM.

References

• [1] A. V. Oppenheim, A. S. Willsky and I. T. Young, Signals and Systems, Prentice-Hall, 1983.

Thank You!

Dr. Xigun Lu xqlu@zju.edu.cn