using the sample of men, $\hat{\beta}_{w,1}$ denote the OLS estimator constructed from the sample of women, and $SE(\hat{\beta}_{m,1})$ and $SE(\hat{\beta}_{w,1})$ denote the corresponding standard errors. Show that the standard error of $\hat{\beta}_{m,1} - \hat{\beta}_{w,1}$ is given by $SE(\hat{\beta}_{m,1} - \hat{\beta}_{w,1}) = \sqrt{[SE(\hat{\beta}_{m,1})]^2 + [SE(\hat{\beta}_{w,1})]^2}$.

Empirical Exercises

- **E5.1** Using the data set **CPS08** described in Empirical Exercise E4.1, run a regression of average hourly earnings (*AHE*) on *Age* and carry out the following exercises.
 - a. Is the estimated regression slope coefficient statistically significant? That is, can you reject the null hypothesis H_0 : $\beta_1 = 0$ versus a two-sided alternative at the 10%, 5%, or 1% significance level? What is the p-value associated with coefficient's t-statistic?
 - b. Construct a 95% confidence interval for the slope coefficient.
 - c. Repeat (a) using only the data for high school graduates.
 - d. Repeat (a) using only the data for college graduates.
 - e. Is the effect of age on earnings different for high school graduates than for college graduates? Explain. (*Hint:* See Exercise 5.15.)
- E5.2 Using the data set **TeachingRatings** described in Empirical Exercise E4.2, run a regression of *Course_Eval* on *Beauty*. Is the estimated regression slope coefficient statistically significant? That is, can you reject the null hypothesis H_0 : $\beta_1 = 0$ versus a two-sided alternative at the 10%, 5%, or 1% significance level? What is the *p*-value associated with coefficient's *t*-statistic?
- **E5.2** Using the data set **CollegeDistance** described in Empirical Exercise E4.3, run a regression of years of completed education (*ED*) on distance to the nearest college (*Dist*) and carry out the following exercises.
 - a. Is the estimated regression slope coefficient statistically significant? That is, can you reject the null hypothesis H_0 : $\beta_1 = 0$ versus a two-sided alternative at the 10%, 5%, or 1% significance level? What is the p-value associated with coefficient's t-statistic?
 - b. Construct a 95% confidence interval for the slope coefficient.
 - c. Run the regression using data only on females and repeat (b).
 - d. Run the regression using data only on males and repeat (b).
 - e. Is the effect of distance on completed years of education different for men than for women? (*Hint:* See Exercise 5.15.)