Recommender Systems 2

Internet Analytics (COM-308)

Prof. Matthias Grossglauser School of Computer and Communication Sciences

Overview

- Focus on recommendation of text (prose, tags, ...)
- Vector space model
 - Each dimension ~ one term (word)
- TF-IDF metric:
 - Frequency in document makes a word important
 - Frequency in many docs makes a word less important
- Probabilistic model for text classification
 - Naïve Bayes: every word is i.i.d. given class
- Smoothing:
 - Dealing with rare words not seen in training

Basic idea

- Recommend to user u items similar to the ones he/she liked before
 - Collaborative filtering: similar = liked by people who like the same stuff as \boldsymbol{u}
 - Content-based: similar = with similar content features as previously liked items
- What features:
 - Context-dependent
 - Images&music: signal properties (hard); metainformation; tags;...
 - Pandora: music genome project, ~ 400 features
 - Text: easiest & most widespread
 - Prose, tags,...

Vector space model

- Compact description of a document
 - Ignores order "bag of words"
- One dimension per term/word
 - Typically very sparse
- Count vector:
 - f_i = # of occurrences of word i in document
- Note: not reversible, ignores order of words
 - The meaning of a sentence would be lost on a human reader!
 - (a a be human lost meaning of on reader sentence the would!)

Profile from words

- How to create a useful profile of a document?
 - Frequent words are characteristic of "topic"
 - Document A: ("Probability":50, "Markov":20, "Poisson":15,...)
 - Document B: ("Wimbledon":30, "Federer":8, "Nadal":5,...)
- TF: Term Frequency
 - Function of one document j (not the whole corpus)
 - Def: $f_{ij} = \#$ of occurrences (frequency) of word i in doc j
 - Def: $TF_{ij} = \frac{f_{ij}}{\max_{k} f_{kj}}$
 - Importance of word i in document j

TF-IDF: A measure of word importance

Problem:

- Most frequent terms would be (in English):
 the, be, to, of, and, a, in, that, have, I, it, for, not, on,
 with, he, as, you, do, at,...
- No information, because common to all docs
- We want words that are frequent only in target docs
- IDF: Inverse Document Frequency
 - Function of whole corpus
 - Def: $n_i = \#$ documents j where word i occurs (at least once)
 - Def: $IDF_i = -\log_2 \frac{n_i}{N}$
 - If I know word i, number of bits of information I learn about which document is the target within corpus

TF-IDF vector space model

- Document profile D within a corpus:
 - $TFIDF_{ij} = TF_{ij} \times IDF_i$
 - Take top terms as document profile
 - High score: word frequent in this document, but not in most others
- Vectors are high-dim but sparse
- Refinements: text preprocessing
 - Remove stop words: the, be, to, of, and, a,...
 - Stemming & lemming: transforming
 - "the boy's cars are different colors" ->
 "the boy car be differ color" [Manning et al.]
 - Vector cutoff to most important terms
 - Allow multi-word terms ("United States")

Queries and recommendations

- User profile (query) Q:
 - Explicit: e.g., formulating a query ("north korea")
 - Implicit: ratings (e.g., "likes")
- Explicit:
 - These models are from information retrieval:
 - Searching by query: return most similar docs to query
 - Query terms → TF-IDF vector Q
- Assumption:
 - Likelihood that user Q likes document $D \sim sim(Q, D)$
 - Options for sim(Q, D):
 - sim(Q, D) = cos(Q, D)
 - $sim(Q,D) = \frac{\sum_{i} (q_i \overline{q})(d_i d)}{\sqrt{\sum_{i} (q_i \overline{q})^2 \sum_{i} (d_i \overline{d})^2}}$

From queries to ratings

- Implicit: user rates documents rather than queries:
 - Treat highly rated/liked docs as "positive queries", low rated/not liked as "negative queries"
- How to rate a new document D?
 - Classification problem: many methods
 - Generic non-parametric method: $kNN \ (k \text{ nearest neighbors})$
 - Select k rated docs in Q closest to D according to sim(Q,D); majority in this set is predictor

kNN classifier

kNN classifier: learning k

Binary kNN Classification Training Set

[Burton DeWilde: Data Science Rules (datasciencerules.blogspot.com), Oct 2012]

kNN: impact of *k*

[Burton DeWilde: Data Science Rules (datasciencerules.blogspot.com), Oct 2012]

Critique of vector-space approach

- Assumptions implicit in approach
 - "small angle between TF-IDF vectors means document close to query": intuitively ok, hard to quantify
 - Quantities do not have "physical meaning", purely heuristic
- We would like a clean model: assumptions, performance measure we can optimize & compare
 - Probabilistic model: rigorous treatment of uncertainty

Probabilistic models

- Significant uncertainty in predictions
 - Quantization effects: like/dislike -> how much?
 - Context: e.g.: dislike right now (mood), or dislike categorically?
 - Errors, confusions, etc.
- Uncertainty → model explicitly as probability
 - Make assumptions explicit
 - Easier to interpret significance
 - Result comes with measure of uncertainty (confidence interval, etc.)

ML: supervised vs unsupervised

- Supervised learning:
 - Given: (input, output) → find input-output map

- Unsupervised learning:
 - Given: (input) → find structure

Supervised ML: classification vs regression

- Classification:
 - Y is a class label
 - Categorical (not necessarily numeric)
 - Example: {spam, not spam}; {blue, green}; political party affiliation inferred from questions
- Regression:
 - Y is (typically) in \mathbb{R}
 - Example: temperature tomorrow; ranking for a movie (1...5 stars)

Bayesian inference

- Statistical inference: frequentist (non-Bayesian)
 - Observation Z
 - Model: $p_{\theta}(z)$: distribution of Z, depending on hidden parameter θ
 - Goal: infer θ from observation(s) of Z
 - Maximum Likelihood estimator: $\hat{\theta} = \max_{\theta} p_{\theta}(Z)$
 - Estimated parameter best explains observed data

Bayesian inference

- Statistical inference: Bayesian
 - We know something about θ : prior knowledge about the problem
 - θ is a random variable with a known distribution: prior
 - Model: $p(Z|\theta)$: distribution of Z, conditional on hidden random variable θ
 - Bayes' rule:

$$P(\theta|Z) = \frac{P(\theta,Z)}{P(Z)} = \frac{P(Z|\theta)P(\theta)}{\sum_{\theta'} P(Z|\theta')P(\theta')}$$

Maximum A Posteriori (MAP) estimator:

$$\widehat{\theta} = \max_{\theta} P(\theta|Z)$$

- But the full posterior distribution $P(\theta|Z)$ carries additional information!
 - How certain/uncertain are we about θ given data Z

Example: Max-Likelihood vs Bayesian

- Medical test
 - You take a medical test whose accuracy is 90% that is, prob. test gives right result = 0.9
 - Frequentist:
 - P(pos|sick) = 0.9; P(pos|healthy) = 0.1
 - ML: $Z = pos \rightarrow \hat{\theta} = sick$
 - Test comes back positive → you conclude you are sick

Example: ML vs Bayesian

- Medical test:
 - Bayesian:
 - Medical test; prior = one in a million: $P(sick) = 10^{-6}$
 - If test comes back positive:
 - $P(sick|pos) = \frac{P(pos|sick)P(sick)}{P(pos|sick)P(sick)+P(pos|healthy)P(healthy)}$
 - $P(sick|pos) \approx 0.9 \times 10^{-5}$
 - You conclude you are very likely healthy!
 - Watch out: doctors apparently don't know this!

Naive Bayes classifier

- Need a probabilistic model for a document
- Simplest model:
 - Naïve = independent terms (features)
 - Each word is generated according to i.i.d. distribution

$$P(Z_1, ..., Z_n | \theta) = \prod_i P(Z_i | \theta)$$

- Hidden variable:
 - Relevant (good, G) or not relevant (bad, B)
- Observable variable:
 - Message = set of words $(z_1, z_2, ..., z_n)$
- Classify message into (G, B)
- Model $p(Z|\{G,B\}), p(\{G,B\})$:
 - Learn from data

Example: naive Bayes classifier

• Training set:

Get nice watch
New York rocks!
Watch for rocks

Cheap replica watch
New cheap loan
Get lottery million
Million dollar watch

- Prior: $P(\theta = G) = \frac{3}{7}$; $P(\theta = B) = \frac{4}{7}$
- Conditional word distributions $P(Z|\theta)$:

Z	get	nice	watch	new	york	rocks	for	cheap	replica	loan	lottery	million	dollar	perfect
9 $\times P(Z G)$	1	1	2	1	1	2	1	0	0	0	0	0	0	0
$12 \times P(Z B)$	1	0	2	1	0	0	0	2	1	1	1	2	1	0

Example: naive Bayes classifier

- Classifying sentences $M = (Z_1, Z_2, Z_3, ...)$:
 - «get new watch»:

$$P(G|M) = \frac{P(Z_{1}|G)P(Z_{2}|G)P(Z_{3}|G)P(G)}{P(Z_{1}|G)P(Z_{2}|G)P(Z_{3}|G)P(G) + P(Z_{1}|B)P(Z_{2}|B)P(Z_{3}|B)P(B)} = \frac{9^{-3} \cdot 1 \cdot 1 \cdot 2 \cdot 3/7}{9^{-3} \cdot 1 \cdot 1 \cdot 2 \cdot \frac{3}{7} + 12^{-3} \cdot 1 \cdot 1 \cdot 2 \cdot 4/7} = 0.64$$

Z	get	nice	watch	new	york	rocks	for	cheap	replica	loan	lottery	million	dollar	perfect
$9 \times P(Z G)$	1	1	2	1	1	2	1	0	0	0	0	0	0	0
$12 \times P(Z B)$	1	0	2	1	0	0	0	2	1	1	1	2	1	0

Example: naive Bayes classifier

- Classifying sentences $M = (Z_1, Z_2, Z_3, ...)$:
 - «cheap replica rocks»:

• Undefined!

Z	get	nice	watch	new	york	rocks	for	cheap	replica	loan	lottery	million	dollar	perfect
9 $\times P(Z G)$	1	1	2	1	1	2	1	0	0	0	0	0	0	0
$12 \times P(Z B)$	1	0	2	1	0	0	0	2	1	1	1	2	1	0

Problem with unseen training terms

Sparsity problem:

- If alphabet of words is large w.r.t. training set, there are some words z we never see (e.g., z ="mesonoxian")
 - Estimate: $P(\text{mesonoxian}|\{G,B\}) = 0$
- If target message contains "mesonoxian":

$$P(\{G,B\}) = \frac{P(z|\theta)P(\theta)}{\sum_{\theta'} P(z|\theta')P(\theta')} = \frac{0}{0}$$

Problem:

- We estimate a distribution from a very small set of samples - a form of overfitting
- How to correctly estimate very rare words?

Approach 1:

Ignore unseen words → simple, but crude; throws away information

Laplace smoothing

- Idea: assume every word occurs at least once
 - Aka "additive smoothing", "add-one smoothing"
- Bias towards uniform distribution
 - A form of regularization
- Estimate of a distribution over domain $D = \{d_1, ..., d_C\}$ from data set $\{x_1, x_2, ..., x_n\}$
 - Unsmoothed: $p(X = x) = \frac{|\{x: x = d_i\}|}{n}$ (n=# samples)
 - Smoothed: assume k "fake" observations for each class

$$p(X = d_i) = \frac{|\{x : x = d_i\}| + k}{n + kC}$$

- Empty dataset $(n = 0) \rightarrow P(Z|\theta)$ uniform
- Large dataset $(n \gg 1)$ → smoothed $P(Z|\theta)$ ≅ unsmoothed $P(Z|\theta)$

Laplace smoothing

Example: Laplace-smoothed classifier

Sentence M = «cheap replica rocks»:

$$P(G|M) = \frac{P(Z_{1}|G)P(Z_{2}|G)P(Z_{3}|G)P(G)}{P(Z_{1}|G)P(Z_{2}|G)P(Z_{3}|G)P(G) + P(Z_{1}|B)P(Z_{2}|B)P(Z_{3}|B)P(B)} = \frac{23^{-3} \cdot 1 \cdot 1 \cdot 3 \cdot 4/9}{23^{-3} \cdot 1 \cdot 1 \cdot 3 \cdot 4/9 + 26^{-3} \cdot 3 \cdot 2 \cdot 3 \cdot 5/9} = 0.37$$

- Advantages:
 - We can compute an estimate for any message
 - For small training sets → avoids overfitting

Z	get	nice	watch	new	york	rocks	for	cheap	replica	loan	lottery	million	dollar	perfect
$23 \times P(Z G)$	2	2	3	2	2	3	2	1	1	1	1	1	1	1
$26 \times P(Z B)$	2	1	3	2	1	1	1	3	2	2	2	3	2	1

RecSys: content vs collaborative

Pros

Independent of other users → no cold start problem for new items (item comes with features)

Independent of other users → can recommend for unique tastes, no "trend to average"

Can provide reasons for recommendation (e.g., matching keywords)

Cons

Multimedia etc.: hard to identify features

Independent of other users \rightarrow no discovery, no surprises

Cold start problem for new user

- In practice: combination
 - Lack of ratings, few users → rely more on content
 - Lots of users, few tags → collaborative

Summary

- Content: text, tags, user comments, subtitles,...
- Collaborative filtering vs content-based:
 - Blind to content vs blind to other users
- Classical approaches from information retrieval:
 - Vector space models, similarity metrics
- Modern probabilistic approaches from ML:
 - Naïve Bayes, language models (n-grams), word embeddings
- Other application for naïve Bayes: spam filtering
 - $P(B) \cong 0.8 \dots 0.9$

References

- [A. Rajaraman, J. D. Ullman: Mining of Massive Datasets, Cambridge, 2012 (chapter 9)]
- [S. Russell, P. Norvig: Artificial Intelligence A Modern Approach (3rd ed), Pearson, 2010 (chapter22)]
- [W. B. Croft, D. Metzler, T. Strohman: Search Engines - Information Retrieval in Practice, Addison Wesley, 2010 (chapters 7&10)]
- [Ch. D. Manning, P. Raghavan, H. Schütze: Introduction to Information Retrieval, Cambridge, 2008]