Estrutura de Dados I

Análise Empírica e Assintótica

Prof. Rodrigo Minetto

Universidade Tecnológica Federal do Paraná

Sumário

- Análise de algoritmos
- Análise empírica
- Análise assintótica
- Motação assintótica
- 5 Definição limite assintótico superior (
- 6 Definição limite assintótico inferior Ω
- O Definição limite assintótico restrito Θ

A análise de algoritmos, descrita e difundida por Donald Knuth (autor da série de livros The Art of Computer Programming), pode ser definida como o estudo da eficiência ou complexidade de um algoritmo em função do tamanho do problema, do número de passos necessário (complexidade temporal), e da memória do sistema usado para executar o algoritmo (complexidade espacial).

O objetivo não é apenas fazer códigos corretos, mas que sejam também eficientes. **Pergunta**: qual a funcionalidade e complexidade do algoritmo a seguir?

Algoritmo-A (int n)

- 1. s = 0; 2. for (i = 1; i < n; i++)
- 3. **for** $(j = 1; j \le i; j++)$
- 4. s = s + 1;
- 5. **return s**;

O objetivo não é apenas fazer códigos corretos, mas que sejam também eficientes. **Pergunta**: qual a funcionalidade e complexidade do algoritmo a seguir?

Algoritmo-B (int n)

- 1. s = 0;
- 2. **for** (i = 1; $i \le n$; i++)
- 4. $\mathbf{s} = \mathbf{s} + \mathbf{i}$;
- 5. **return s**;

O objetivo não é apenas fazer códigos corretos, mas que sejam também eficientes. **Pergunta**: qual a funcionalidade e complexidade do algoritmo a seguir?

Algoritmo-C (int n)

- 1. $\mathbf{s} = (\mathbf{n} \times (\mathbf{n} + 1))/2;$
- 2. **return s**;

Sumário

- Análise de algoritmos
- 2 Análise empírica
- Análise assintótica
- Motação assintótica
- 5 Definição limite assintótico superior (
- 6 Definição limite assintótico inferior Ω
- Definição limite assintótico restrito Θ

As técnicas de análise matemática podem ser aplicadas com sucesso em muitos algoritmos simples. Porém, a análise matemática pode ser muito difícil, principalmente a análise do caso médio. Uma alternativa à análise matemática da eficiência de um algoritmo é a análise empírica.

Plano geral para a análise empírica:

- Selecionar um algoritmo (módulo ou função) a ser analisado;
- Escolher uma métrica de eficiência:
 - unidade de tempo;
 - número de operações básicas;
- Selecionar amostras para avaliar o desempenho do algoritmo:
 - faixa e distribuição de valores;
 - tamanho $(n, 2n, 4n, \ldots \text{ ou } n, 10n, 100n, \ldots);$
- Executar o algoritmo sobre as amostras;
- Analisar os dados.

Objetivos:

- Avaliar a corretude do algoritmo (identificar erros);
- Comparar a eficiência de diferentes algoritmos;
- Comparar implementações alternativas (otimizadas) do mesmo algoritmo;
- Estimar a complexidade de um algoritmo;

Problemas:

- Tempo do sistema geralmente não é preciso (diferentes tempos para execuções iguais);
- Tempo registrado pode ser zero (velocidade dos computadores);
- Tempo de execução vs Tempo real (usertime);

Como analisar os dados?

- Tabular os dados para as diferentes entradas;
- Representar os dados graficamente;

Como analisar os dados?

Vantagens:

- Aplicável a qualquer algoritmo/função/módulo;
- Pode ser realizada dentro do próprio sistema;
- Fornece informação específica sobre a performance de um algoritmo em um ambiente particular;
- Pode revelar gargalos na performance do sistema;

Desvantagens:

- Depende das características específicas do ambiente de teste;
- Pode não permitir comparações genéricas com algoritmos cujos testes foram realizados em outro ambiente;
- Geralmente buscamos utilizar uma entrada típica.
 Mas o que é uma entrada típica? Quais amostras devemos utilizar?

Sumário

- Análise de algoritmos
- Análise empírica
- Análise assintótica
- Motação assintótica
- 5 Definição limite assintótico superior (
- 6 Definição limite assintótico inferior Ω
- O Definição limite assintótico restrito Θ

Análise assintótica de algoritmos

Ao ver uma expressão como n + 10 ou $n^2 + 1$, a maioria das pessoas pensa automaticamente em valores pequenos de n, valores próximos de zero. A análise de algoritmos faz exatamente o contrário: ignora os valores pequenos e concentra-se nos valores enormes de n.

Análise assintótica de algoritmos

Para valores enormes de n, as funções

$$n^2$$
 $\frac{3n^2}{2}$ 9999 n^2 $\frac{n^2}{1000}$ $n^2 + 100n$ crescem todas com a mesma velocidade (**ordem**) e portanto são todas "equivalentes". Esse tipo de matemática, interessada somente em valores enormes de n , é chamado assintótico.

Análise assintótica de algoritmos

Quando observamos tamanhos de entradas grandes o suficiente para tornar relevante apenas a ordem de crescimento do tempo de execução, estamos estudando a eficiência assintótica dos algoritmos — Algoritmos. 2 edição. Cormen et al.

Complexidade de tempo ou de espaço

Em análise de algoritmos conta-se o número de operações consideradas relevantes realizadas pelo algoritmo e expressa-se esse número como uma função de **n**.

Complexidade de tempo ou de espaço

Vamos expressar complexidade através de funções em variáveis que descrevam o tamanho de instâncias do problema. Exemplos:

- Problemas de aritmética de precisão arbitrária: número de bits (ou bytes) dos inteiros.
- Problemas em grafos: número de vértices e/ou arestas
- Problemas de ordenação de vetores: tamanho do vetor.
- Busca em textos: número de caracteres do texto ou padrão de busca.

Medida de complexidade e eficiência de algoritmos

Vamos supor que funções que expressam complexidade são **sempre positivas**, já que estamos medindo número de operações.

A complexidade de tempo (= eficiência) de um algoritmo é o número de instruções básicas que ele executa em função do tamanho da entrada.

Medida de complexidade e eficiência de algoritmos

O número de operações realizadas por um determinado algoritmo pode depender da particular instância da entrada. Em geral interessa-nos o pior caso, i.e., o maior número de operações usadas para qualquer entrada de tamanho n.

Análises também podem ser feitas para o melhor caso e o caso médio. Neste último, supõe-se conhecida uma certa distribuição da entrada.

Medida de complexidade e eficiência de algoritmos

Um algoritmo é chamado eficiente se a função que mede sua complexidade de tempo é limitada por um polinômio no tamanho da entrada. Por exemplo: n, 3n - 7, $4n^2$, $143n^2 - 4n + 2$, n^5 .

Mas por que polinômios?

Resposta: polinômios são funções bem "comportadas".

Algoritmos e tecnologia

Considere 5 algoritmos com diferentes complexidade de tempo. Suponha que uma operação leve 1 ms.

n	n	nlogn	n^2	n^3	2 ⁿ
16	0.016s	0.064s	0.256s	4s	1m 4s
32	0.032s	0.16s	1s	33s	46 dias
512	0.512s	9s	4m 22s	1 dia 13h	10137 séc.

Para uma máquina mais rápida onde uma operação leve 1 ps ao invés de 1 ms, precisariamos 10128 séculos ao invés de 10137 séculos :-)

Sumário

- Análise de algoritmos
- 2 Análise empírica
- Análise assintótica
- 4 Notação assintótica
- 5 Definição limite assintótico superior (
- 6 Definição limite assintótico inferior Ω
- O Definição limite assintótico restrito Θ

Notação O

Quando afirmamos que "o tempo de execução do algoritmo é $O(n^2)$ ", equivale a dizer que o tempo de execução do pior caso é $O(n^2)$.

Exemplos de funções $O(n^2)$

•
$$f(n) = n^2$$

•
$$f(n) = n^2 + n$$

•
$$f(n) = n^2 - n$$

•
$$f(n) = 1000n^2 + 1000n$$

•
$$f(n) = n$$

•
$$f(n) = n/1000$$

•
$$f(n) = n^{1.999999}$$

•
$$f(n) = log n$$

•
$$f(n) = \sqrt{n}$$

Notação Ω

Quando afirmamos que "o tempo de execução do algoritmo é $\Omega(n^2)$ ", equivale a dizer que o tempo de execução no melhor caso é $\Omega(n^2)$.

Exemplos de funções $\Omega(n^2)$

•
$$f(n) = n^2$$

•
$$f(n) = n^2 + n$$

•
$$f(n) = n^2 - n$$

•
$$f(n) = 1000n^2 + 1000n$$

•
$$f(n) = 1000n^2 - 1000n$$

•
$$f(n) = n^3$$

•
$$f(n) = n^{2.0000001}$$

•
$$f(n) = n^2 \log_2 \log_2 \log_2 n$$

•
$$f(n) = 2^n$$

Notação Θ (limite assintótico restrito)

Dadas duas funções f(n) e g(n), temos $f(n) = \Theta(g(n))$ se e somente se

- $\bullet \ f(n) = O(g(n))$
- $f(n) = \Omega(g(n))$

Notação ⊖

Sumário

- Análise de algoritmos
- Análise empírica
- Análise assintótica
- Motação assintótica
- 5 Definição limite assintótico superior O
- $\fbox{6}$ Definição limite assintótico inferior Ω
- \bigcirc Definição limite assintótico restrito Θ

Notação O (limite assintótico superior)

Definição

Uma função f(n) está em O(g(n)) se existem constantes positivas c e n_0 tais que

$$0 \le f(n) \le cg(n)$$
 para todo $n \ge n_0$

- hd ''f está em O(g)" tem jeito de " $f\leq g$ "
- \triangleright tem jeito de "f não cresce mais que g"
- > conceito sob medida para tratar consumo de tempo de algoritmos

Notação O

Isto é, para valores de n suficientemente grandes, f(n) é igual ou menor que g(n).

Notação *O* - Exemplo

Usando a definição mostre que $\frac{1}{2}n^2 - 3n = O(n^2)$, onde $f(n) = \frac{1}{2}n^2 - 3n$ e $g(n) = n^2$.

Definição: f(n) = O(g(n)) se $0 \le f(n) \le cg(n)$ para todo $n \ge n_0$.

Para isso devemos definir constantes positivas $c \in n_0$ tais que

$$0 \le \frac{1}{2}n^2 - 3n \le cn^2 \tag{1}$$

para todo $n \geq n_0$.

Notação O - Exemplo

$$0 \le \frac{1}{2}n^2 - 3n \le cn^2$$
 para todo $n > n_0$.

A divisão por n^2 produz

$$\frac{1}{2} - \frac{3}{2} < c$$

$$0 \le \frac{1}{2} - \frac{3}{n} \le c$$

$$0 \le \frac{1}{2} - \frac{1}{n} \le c$$

$$0 \le \frac{1}{2} - \frac{1}{n} \le c$$

Para $c = \frac{1}{2}$ e $n \ge 7$ $(n_0 = 7) \to \frac{1}{2}n^2 - 3n = O(n^2)$.

(2)

Sumário

- Análise de algoritmos
- 2 Análise empírica
- Análise assintótica
- 4 Notação assintótica
- Definição limite assintótico superior (
- 6 Definição limite assintótico inferior Ω
- O Definição limite assintótico restrito Θ

Notação Ω (limite assintótico inferior)

Definição

Uma função f(n) está em $\Omega(g(n))$ se existem constantes positivas c e n_0 tais que

$$\rhd$$
 " $f \in \Omega(g)$ " tem jeito de " $f > g$ "

 $0 \le cg(n) \le f(n)$ para todo $n \ge n_0$

Notação Ω

Isto é, para valores de n suficientemente grandes, f(n) é igual ou **maior** que g(n).

Notação Ω - Exemplo

Usando a definição mostre que $\frac{1}{2}n^2 - 3n = \Omega(n^2)$, onde $f(n) = \frac{1}{2}n^2 - 3n$ e $g(n) = n^2$.

Definição: $f(n) \in \Omega(g(n))$ se $0 \le cg(n) \le f(n)$ para todo $n \ge n_0$.

Para isso devemos definir constantes positivas c e \emph{n}_0 tais que

$$0 \le cn^2 \le \frac{1}{2}n^2 - 3n \tag{4}$$

para todo $n \ge n_0$.

Notação Ω - Exemplo

$$0 \le cn^2 \le \frac{1}{2}n^2 - 3n$$
 para todo $n > n_0$.

A divisão por
$$n^2$$
 produz

$$0 \le c \le \frac{1}{2} - \frac{3}{n}$$
 Para $c = \frac{1}{14}$ e $n \ge 7$ $(n_0 = 7) \rightarrow \frac{1}{2}n^2 - 3n = \Omega(n^2)$.

(5)

Notação Ω

Considerando que a notação Ω descreve um limite inferior, quando a usamos para limitar o tempo de execução do melhor caso de um algoritmo, por implicação também limitamos o tempo de execução do algoritmo sobre entradas arbitrárias.

Notação Ω

Por exemplo, o tempo de execução do melhor caso da ordenação por inserção é $\Omega(n)$. Assim, o tempo de execução da ordenação por inserção recai entre $\Omega(n)$ e $O(n^2)$, pois ele fica em qualquer lugar entre uma função linear de n e uma função quadrática de n.

Sumário

- Análise de algoritmos
- Análise empírica
- Análise assintótica
- 4 Notação assintótica
- 5 Definição limite assintótico superior (
- 6 Definição limite assintótico inferior Ω
- Definição limite assintótico restrito Θ

Notação Θ (limite assintótico restrito)

Dadas duas funções f(n) e g(n), temos $f(n) = \Theta(g(n))$ se e somente se

- $\bullet \ f(n) = O(g(n))$
- $f(n) = \Omega(g(n))$

Em outras palavras, existem números positivos c_1 , c_2 e n_0 tais que $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ para todo $n > n_0$.

Notação ⊖

