

Geodatenanalyse I: Regressionsanalyse – Lineare Regression

Kathrin Menberg

Stundenplan

	08:30 – 12:30 Uhr	13:30 – 17:30 Uhr
Montag	Tag 1 / Block 1	Tag 1 / Block 2
Dienstag	Tag 2 / Block 1	Tag 2 / Block 2
Mittwoch	Tag 3 / Block 1	Tag 3 / Block 2
Donnerstag	Tag 4 / Block 1	Tag 4 / Block 2
Freitag	Tag 5 / Block 1	Tag 5 / Block 2

- **▶** 2.13 Regressionsanalyse Lineare Regression
- 2.14 Regressionsanalyse Verallgemeinerte lineare Modelle
- 2.15 Fragestunde und Abschluss

Lernziele Block 2.13

Am Ende der Stunde werden die Teilnehmer:

- mit den mathematischen Grundlagen von der statistischen Regression vertraut sein.
- ... eine einfache lineare Regression in Python durchführen können.
- ... die Qualit\u00e4t der Modelanpassung mit Hilfe von verschiedenen Kriterien bestimmen und beurteilen k\u00f6nnen.

Anknüpfung an gestern...

- Interpolation mit Gauß-Prozess Regression
- Grundwassertemperatur als Funktion von x- und y-Koordinaten

- Verallgemeinerung Regression
- Erklärung einer beobachteten abhängigen Variablen durch eine oder mehrere unabhängige Variablen

Wozu Regressionsanalyse?

- ► Vorhersagen (prediction)
 - Modellierung von existierenden Beobachtungen
 - Neue Datenwerte vorhersagen
 - Siehe Interpolation mit Gauß-Prozesse zur Regression

Variablenassoziation

- Zusammenhänge von Variablen identifizieren
- Gliederungen und Strukturen in Datensätzen

Wozu Regressionsanalyse?

www.pinterest.at

Extrapolation

 Ausgleichen des Unterschieds zwischen Stichprobe und Grundgesamtheit

MY HOBBY: EXTRAPOLATING

► Kausale Schlussfolgerungen

(causal inference)

- Effekte von Verfahren (Variablenänderungen) ableiten
- Experimentelles Design!

4-Stufen Zyklus der statistischen Analyse

- Schwachstellen suchen
- Annahmen hinterfragen
- Mögliche Verbesserungen

- Modell erweitern
- Variablen hinzufügen
- Daten transformieren

- Graphische Darstellung
- Beziehungen zwischen Variablen und Messungen untersuchen

- Datenmanipulation
- Koeffizienten schätzen
- Unsicherheiten

Grundlagen lineare Regression

 Abhängige Variable als eine Linearkombination der Regressionskoeffizienten

- ightharpoonup eine unabhängige Variable: einfache lineare Regression (x_1)
- ightharpoonup mehrere unabhängige Variablen: multiple lineare Regression (x_n)
- ightharpoonup Ziel: Parameter $\hat{\alpha}$ und $\hat{\beta}_i$ finden, die die beste Übereinstimmung zwischen gemessenen und berechneten Werten liefern (ϵ_i minimieren)

Kleinste-Quadrate (KQ) Schätzung

- engl. Ordinary Least Squares (OLS)
- Berechnung der Summe der quadrierten Residuen
- Koeffizienten für einfache lineare Regression:

$$\qquad \hat{\alpha} = \bar{Y} - \beta * \bar{X}$$

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2} = \frac{cov(X, Y)}{var(X)}$$

Für multiple lineare Regression:

$$\hat{\mathbf{y}} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{y}$$

Vektor mit Koeffizienten $\hat{\gamma} = (\alpha, \beta)$

Überprüfung der Anpassungsgüte

- Fehlermaße:
 - Root Mean Square Error (RMSE)
 - Residuenquadratsumme (SQR) und totale Quadratsumme (SQT)
 - ▶ Bestimmtheitsmaß (R²)
 - u.v.m.
- Methoden zur Validierung:
 - Bootstrap und Jackknife
 - Kreuzvalidierung
 - u.v.m.

Fehlermaße

- \triangleright y: Beobachtungen, \hat{y}_i Vorhersagen, \bar{y} : Mittelwert der Beobachtungen
- totale Quadratsumme, Summe der Quadrate der Totalen Abweichungen (SQT):
 - erfasst die "Gesamtvariation" in der abhängigen Variablen

- Residuenquadratsumme (SQR):
 - beschreibt die Ungenauigkeit des Modells
 - $\triangleright SQR = \sum_{i=1}^{n} (Y_i \hat{Y})^2$

 $(\hat{\varepsilon}_3)^2 (y_3 - \bar{y})^2$ 10 $(y_1 - \bar{y})^2$ \bar{y} 5 $(\hat{\varepsilon}_1)^2$ 5 10 15

www.wikipedia.org

Bestimmtheitsmaß (R², r²)

- engl. Coefficient of Determination
- y: Beobachtungen, \hat{y}_i Vorhersagen

$$R^2 = 1 - \frac{Residuenquadratsumme}{totalen\ Quadratsumme}$$

- Wie viel Streuung in den Daten durch ein lineares Regressions-model "erklärt" werden kann
- R(0,1)
- Für einfache lineare Regression $r^2 = Korrelationskoeffizient^2$

www.wikipedia.org

Schacht & Lanquillion (2019)

Kreuzvalidierung (cross validation)

- Unterteilung in "Trainingsdaten " und "Testdaten"
- Regression mit den Trainingsdaten
- Vergleich der Regressionsergebnisse mit den Testdaten
- Bewertung der Güte der Regression
- iterative Analyse mit verschiedenen Trainings-/Testdatensätzen

Kreuzvalidierung mit k=5 Partitionen

Annahmen für lineare Regression

- Abhängige Variable ist eine Linearkombination der Regressionskoeffizienten
 - aber nicht zwingend der unabhängigen Variablen
 - Transformation der Daten

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

- Normalverteilung der unabhängigen Variablen
 - Verallgemeinerte lineare Modelle (generalized linear models)
 - Verteilungen aus der Exponentialfamilie (Poisson, Gamma, usw.)
 - ▶ Diskrete Variablen → logistische Regression (n\u00e4chste Stunde)

Annahmen für KQ-Schätzung

- ▶ Residuen sind normalverteilt $\sim (0, \sigma)$, homoskedastisch und weisen keine Autokorrelation auf
 - Tests für Homoskedastizität: z.B. Breusch-Pagan, White test, ...
 - ► Alternative: Verallgemeinerte KQ-Schätzung (weighted least squares)
 - Berechnung gewichtete Residuen-Quadratsumme

Multikollinearität

- Korrelation von zwei oder mehr unabhängigen Variablen
- KQ-Schätzung wird ineffizient und ungenau
 - Hohe Varianz im Regressionsmodel
 - ► Hohes Bestimmtheitsmaß R²
- Identifikation über Korrelationsmatrix
- gilt für lineare und verallgemeinerte Regressionsmodelle

Übung 2.13: Lineare Regression

- Lineare Regression in Python
 - Einfache lineare Regression "from scratch"
 - Multiple lineare Regression mit scikit-learn
 - Fehlermaße
 - Validierung mi Hilfe von Trainings- und Test-Daten
- Aufgaben in Jupyter Notebook: geodatenanalyse_1-2-13

Aufgabenbesprechung

- ► Einfache, lineare Regression "from scratch"
- Übereinstimmung der Regressionskoeffizienten


```
2.0031670124623426 0.3229396867092763

np.random.seed(0)
X = 2.5 * np.random.randn(100) + 1.5
res = 0.5 * np.random.randn(100)
```

print (alpha, beta)

y = 2 + 0.3 * X + res

Karlsruher Institut für Technologie

Aufgabenbesprechung

- Multiple lineare Regression mit scikit-learn
- Parameterauswahl: "LSTAT" und "RM"

Literatur

- Trauth (2015): MATLAB Recipes for Earth Sciences (4th Ed.), Springer
- Gelman et al. (2020) Regression and Other Stories, Cambridge University Press

Nützliche Weblinks:

https://towardsdatascience.com/introduction-to-linear-regressionin-python-c12a072bedf0

