Simulated Detection Rates of Pre-Supernova Neutrinos using SNOwGLoBES

Mark Schöne

Duke University

Supervisor: Prof. Scholberg

October 12, 2017

Pre-Supernova Neutrinos

- neutrinos emitted before the supernova
- produced during the different burning stages

Stage	Duration [1]
$H \rightarrow He$	$7 \cdot 10^6$ years
$He \to C$	$7 \cdot 10^5$ years
$C \to O$	600 years
$O \to Si$	6 month
$Si\toFe$	1 day
Core Collapse	$1/4 \ {\sf second}$

Pre-Supernova Neutrinos

Figure 1: Time evolution of neutrino number luminosity. Supernova emission data taken from Kato et al. [4].

Considered interactions:

- thermal pair emisson
 - electron-positron annihilation
 - plasmon decay
 - bremsstrahlung
 - photo process
- neuclear weak interactions

 u_e : electron capture, eta^+ decay

 $ar{
u}_e$: positron capture, eta^- decay

Motivation

Why do we investigate pre-supernova neutrinos?

- establish a supernova early warning system [3]
- distinguish the type of the progenitor [4]
 - iron-core collapse supernova (FeCCSN), $10M_{\odot} < M$
 - electron capture supernova (ECSN), $8M_{\odot} < M < 10M_{\odot}$

• determine progress of the burning phase [4]

Detection possible?			
	FeCCSN	ECSN	
$ar{ u}_{e}$	✓	×	
$ u_{e}$	✓	\checkmark	

Setting and Neutrino Oscillations

- progenitor at 200 pc (betelgeuse)
- calculate event rates for DUNE, JUNO, and Hyper-K
- using the adiabatic limit for oscillations:

- $\cos^2 \theta_{12} = 0.692$
- ullet $heta_{13}$ terms don't appear because $\cos^2 heta_{13}pprox 1$ and $\sin^2 heta_{13}pprox 0$

SNOwGLoBES Results for DUNE

→ approximately 191 events for normal ordering until 0.1s before the collapse.

Figure 2: Estimated neutrino events in DUNE integrated over energy.

SNOwGLoBES Results for DUNE

→ approximately 879 events for inverted ordering until 0.1s before the collapse.

Figure 3: Estimated neutrino events in DUNE integrated over energy.

SNOwGLoBES Results for JUNO

→ approximately 486 events for normal ordering until 0.1s before the collapse.

Figure 4: Estimated neutrino events in JUNO integrated over energy.

SNOwGLoBES Results for JUNO

→ approximately 355 events for inverted ordering until 0.1s before the collapse.

Figure 5: Estimated neutrino events in JUNO integrated over energy.

SNOwGLoBES Results for Hyper-K

→ approximately 2005 events for normal ordering until 0.1s before the collapse.

Figure 6: Estimated neutrino events in Hyper-K, integrated over energy

SNOwGLoBES Results for Hyper-K

→ approximately 1664 events for inverted ordering until 0.1s before the collapse.

Figure 7: Estimated neutrino events in Hyper-K, integrated over energy

Adding Backgrounds

- assuming constant background rates from 1 Hz to 100 kHz
- The residual is S = T B, with
 - B the background rate integrated over a time bin
 - T the sum of the background rates and the neutrino event rates integrated over a time bin
- propagation of uncertaincies: $\Delta S = \sqrt{2B+S}$
- ullet calculating significance bin by bin: ${S\over \Delta S}$
- also looked at the impact of detector sided thresholds

Backgrounds in DUNE (normal ordering, no threshold)

Figure 8: Events and according significance in DUNE for normal ordering, no threshold, and different backgrounds at a distance of 200 pc to the progenitor.

Backgrounds in DUNE (normal ordering, 4 MeV threshold)

Figure 9: Events and according significance in DUNE for normal ordering, 4 MeV threshold, and different backgrounds at a distance of 200 pc to the progenitor.

Backgrounds in DUNE (inverted ordering, no threshold)

Figure 10: Events and according significance in DUNE for inverted ordering, no threshold, and different backgrounds at a distance of 200 pc to the progenitor.

Backgrounds in DUNE (inverted ordering, 4 MeV threshold)

Figure 11: Events and according significance in DUNE for inverted ordering, 4 MeV threshold, and different backgrounds at a distance of 200 pc to the progenitor.

Backgrounds in JUNO (normal ordering, no threshold)

Figure 12: Events and according significance in JUNO for normal ordering, no threshold, and different backgrounds at a distance of 200 pc to the progenitor.

Backgrounds in JUNO (normal ordering, 4 MeV threshold)

Figure 13: Events and according significance in JUNO for normal ordering, 4 MeV threshold, and different backgrounds at a distance of 200 pc to the progenitor.

Backgrounds in JUNO (inverted ordering, no threshold)

Figure 14: Events and according significance in JUNO for inverted ordering, no threshold, and different backgrounds at a distance of 200 pc to the progenitor.

Backgrounds in JUNO (inverted ordering, 4 MeV threshold)

Figure 15: Events and according significance in JUNO for inverted ordering, 4 MeV threshold, and different backgrounds at a distance of 200 pc to the progenitor.

Backgrounds in Hyper-K (normal ordering, no threshold)

Figure 16: Events and according significance in Hyper-K for normal ordering, no threshold, and different backgrounds at a distance of 200 pc to the progenitor.

Backgrounds in Hyper-K (normal ordering, 4 MeV threshold)

Figure 17: Events and according significance in Hyper-K for normal ordering, 4 MeV threshold, and different backgrounds at a distance of 200 pc to the progenitor.

Backgrounds in Hyper-K (inverted ordering, no threshold)

Figure 18: Events and according significance in Hyper-K for inverted ordering, no threshold, and different backgrounds at a distance of 200 pc_to the progenitor.

Backgrounds in Hyper-K (inverted ordering, 4 MeV threshold)

Figure 19: Events and according significance in Hyper-K for inverted ordering, 4 MeV threshold, and different backgrounds at a distance of 200 pc to the progenitor.

Results of the Background and Threshold Analysis

- time window for significant events: 1s up to 10s
 - \longrightarrow reasonable time buffer size $\leq 10 \, \text{s}$
 - ---- early warning system for supernova quite optimistic in this scope
 - distinguishing the state of the burning phase probably not possible in this scope
- thresholds don't affect the significance to much
 - → could be a useful tool to reduce backgrounds
- prospect: using more advanced statistical methods leads to better early warning
 - take knowledge from simulations about increasing neutrino fluxes into account

Considering Different Distances for DUNE (normal ordering, no threshold)

Figure 20: Significance of pre-supernova neutrino events in DUNE for normal ordering and no detector-sided threshold. Event rates and backgrounds have been integrated over the last 10 s before the collapse.

Considering Different Distances for DUNE (inverted ordering, no threshold)

Figure 21: Significance of pre-supernova neutrino events in DUNE for inverted ordering and no detector-sided threshold. Event rates and backgrounds have been integrated over the last 10 s before the collapse.

Considering Different Distances for JUNO (normal ordering, no threshold)

Figure 22: Significance of pre-supernova neutrino events in JUNO for normal ordering and no detector-sided threshold. Event rates and backgrounds have been integrated over the last 10 s before the collapse.

Considering Different Distances for JUNO (inverted ordering, no threshold)

Figure 23: Significance of pre-supernova neutrino events in JUNO for inverted ordering and no detector-sided threshold. Event rates and backgrounds have been integrated over the last 10 s before the collapse.

Considering Different Distances for Hyper-K (normal ordering, no threshold)

Figure 24: Significance of pre-supernova neutrino events in Hyper-K for normal ordering and no detector-sided threshold. Event rates and backgrounds have been integrated over the last 10 s before the collapse.

Considering Different Distances for Hyper-K (inverted ordering, no threshold)

Figure 25: Significance of pre-supernova neutrino events in Hyper-K for inverted ordering and no detector-sided threshold. Event rates and backgrounds have been integrated over the last 10 s before the collapse.

Results of the Distances Analysis

- Distances > 200 pc reduce the significance drastically
- Low Backgrounds need to be achieved in order to measure pre-supernova neutrinos from stars further away than Betelgeuse ($\approx 220~\rm pc)$

Core-collapse.

 $\verb|http://astronomy.swin.edu.au/cosmos/C/Core-collapse|.$

Accessed: 2017-10-9.

Evolved star fusion shells.

https://upload.wikimedia.org/wikipedia/commons/thumb/3/37/Evolved_star_fusion_shells.svg/280px-Evolved_star_fusion_shells.svg.png.

Accessed: 2017-10-9.

K. Asakura et al.

Kamland sensitivity to neutrinos from pre-supernova stars.

https://arxiv.org/abs/1506.01175v4, 2015.

Chinami Kato et al.

Neutrino emission in all flavors up to the pre-bounce of massive stars and the possibility of their detections.

https://arxiv.org/abs/1704.05480, 2017.