Indústria do nitrogênio Ácido nítrico

Curso de Engenharia Química da UNESP, 2021
Disciplina de Processos da Indústria Química
Apresentado por Felipe Kreft Batista
Professor Dr Arnaldo Sarti

Sumário

Rota química do processo

Ácido nítrico

- Histórico do processo
- Aplicação do produto
- Matéria-Prima
- Descrição do processo
- Fluxograma
- Resíduos
- Fluxograma de rotas

Atenção aqui

Química

Compound, structure	Oxidation state		
Nitrate, NO ₃ -	+5		
Nitrogen dioxide, NO ₂	+4		
Nitrite, NO ₂ -	+3		
Nitric oxide, NO	+2		
Nitroxyl, HNO	+1		
Nitrogen, N ₂	0		
Hydroxylamine, NH ₂ OH	-1		
Ammonia, NH ₃	-3		

Compound, structure	Oxidation state
Nitrate, NO ₃ -	+5
Nitrogen dioxide, NO ₂	+4
Nitrite, NO ₂ -	+3
Nitric oxide, NO	+2
Nitroxyl, HNO	+1
Nitrogen, N ₂	0
Hydroxylamine, NH₂OH	-1
Ammonia, NH ₃	-3

Comece aqui

Compound, structure	Oxidation state
Nitrate, NO ₃ -	+5
Nitrogen dioxide, NO ₂	+4
Nitrite, NO ₂ -	+3
Nitric oxide, NO	+2
Nitroxyl, HNO	+1
Nitrogen, N ₂	0
Hvdroxvlamine. NH OH	-1
Ammonia, NH ₃	-3

Venha pra cá

Oxidat	ion state
+5	
+4	
+3	
+2	
+1	
0	
-1	
-3	
	+5 +4 +3 +2 +1 0

Depois pra cá

Oxidation state			Compound, structure		
3	+5				
	+4				
	+3				
	+2				
	+1				
1	0				
	-1				
_	-3				
		3 +5 +4 +3 +2 +1 0 -1			

Pronto, vc sabe oq acontece com o nitrogênio!

$$-0 \stackrel{O}{\stackrel{H}{\longrightarrow}} H \stackrel{O}{\stackrel{H}{\longrightarrow}} 0$$

Ácido nítrico

Histórico

Processo de Ostwald, patente em 1902

Fig 53: Friedrich Wilhelm Ostwald 1853 - 1932

Responsável por:

- catálise
- Cunhou o termo 'mol'
- Coeficiente de Ostwald
- Sistema de cor de Ostwald
- Lei de diluição de Ostwald
- Maturação de Ostwald
- Lei de Ostwald
- Viscosímetro de Ostwald
- Pipeta de Ostwald -Folin
- Equação de Ostwald-Freundlich
- Ciclo de Ostwald-Liesegang
- Relação de Ostwald-de Waele
- HSL e HSV \rightarrow HSB

Aplicação do produto

- Fertilizante na forma de nitrato
- Nitrocompostos
 - Reações orgânicas
 - Nitração
 - Nitroalcanos
 - Nitroaromáticos
 - Amidas
- Explosivo

Matéria prima

Descrição da química do processo

Evaporador

- Amônia
 - Líquido
 - Vapor
- ▶ 1 atm
 - ► Ebulição (-33,4°C)
- Água de refrigeração
 - Aquecimento

Evaporador

- Amônia
 - Líquido
 - Vapor
- ► 1 atm
 - ► -33,4°C

Filtro de ar

- Multiestágio
 - Fibra de vidro
 - Plástico
- Meio suporte
 - Aço inox
- Partículas > 0,5 mm
 - **99,9**%

Filtro de amônia

- Multiestágio
 - Teflon
 - Metais sinterizados
- Remove
 - Halogênio
 - ► Traços de óleo
- Partículas > 0,5 mm
 - **99,9**%

Misturador estático de gás

- Razão de mistura
 - ► Amônia 1
 - ► Ar 10
- FT 1
- Segurança
 - Amônia é explosiva
 - Superaquecimento localizado
- Melhor eficiência
 - conversão

Filtro pré-conversor

- Particulado
 - Exterior
 - Interior
 - Corrosão
- Mistura
 - Melhora
- Material
 - Cartuchos cerâmicos
 - Dióxido de sílício

Conversor

$$4 \text{ NH}_3 + 5 \text{ O}_2 \rightarrow 4 \text{ NO} + 6 \text{ H}_2\text{O}$$

 $\Delta H = -904 \text{ kJ/mol Mistura}$

- Material
 - Catalisador
 - gaze
 - Caldeira integrada
 - Aproveitamento energético

- ▶ a = 1 bar
- b = 4 bar

Reator de oxidacao catalitica de amonia com sistema de recuperacao de calor I - Lentjes

reator de oxidacao catalitica de amonia com recuperacao integrada de calor

reator de oxidacao catalitica de amonia com recuperacao integrada de calor com caldeira

Recuperação de calor

Condensador - resfriador

2 NO + O₂
$$\rightarrow$$
 2 NO₂
 Δ H = -1127 kJ/mol

Desenho térmico difícil

Torre de absorção

Modelo de absorção não estequiométrico de nitrogênio em água

Torre de absorção

▶ FT 3

Tratamento de NO_x

- Conversão catalítica não seletiva
 - ▶ Pt, V₂O_{5,} Óxido de Ferro, Titânio

$$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$$

$$CH_4 + 4 NO \rightarrow CO_2 + 2 H_2O + 2 N_2$$

$$CH_4 + 2 NO_2 \rightarrow CO_2 + 2 H_2O + N_2$$

- Conversão catalítica seletiva
 - Usa amônia

$$6 \text{ NO} + 4 \text{ NH}_3 \rightarrow 5 \text{ N}_2 + 6 \text{ H}_2\text{O}$$

$$6 \text{ NO}_2 + 8 \text{ NH}_3 \rightarrow 7 \text{ N}_2 + 12 \text{ H}_2\text{O}$$

$$NO + NO_2 + 2 NH_3 \rightarrow 2 N_2 + 3 H_2O$$

$$4 \text{ NO} + \text{O}_2 + 4 \text{ NH}_3 \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$$

Fluxograma de rotas tecnológicas

Processo de alta pressão

Processo de duas pressões pressão (queimador e absorvedor)

Processo de produção de ácido nítrico forte

Processo de produção de ácido nítrico forte com nitrato de magnésio

Processo de produção de ácido nítrico forte com ácido sulfúrico

Referências

- [1] ANDREW, S. P. S. Ammonia, Nitric Acid, Ammonium Nitrate and Urea. In: THOMPSON, R. Industrial Inorganic Chemicals: Production and uses. Cambrige: The Royal Society of Chemistry, 1995. Cap. 6, p. 149-173.
- ▶ [2] APPL, M. Ammonia Principles and Industrial Practice. New York: Wiley-VCH, 1999. Disponivel em: https://sci-hub.hkvisa.net/10.1002/9783527613885
- [3] APPL, M. Ammonia, 1. Introduction. In:
 _____ Ullmann's Encyclopedia of Industrial Inorganic Chemistry. Dannstadt-Schauernheim: Wiley VCH, v. v.24, 2012a.
- [4] APPL, M. Ammonia, 2. Production Processes. In: _____ Ullmann's Encyclopedia of Industrial Inorganic Chemistry. Dannstadt-Schauernheim: Wiley VCH, v. v.24, 2012b

- [5] HAUSSINGER, P.; LOHMULLER, R.; WATSON, A. M. Hydrogen. In: _____ Ullmann's Encyclopedia of Industria Inorganic Chemistry. [S.I.]: Wiley-VCH, 2007.
 - Introduction to Ammonia Production. American Institute of Chemical Engineers, Setembro 2016.

 Disponivel em:
 https://www.aiche.org/resources/publications/cep/2016/september/introduction-ammonia-production>. Acesso em: 27 maio 2021.
 - In: _____ Ullmann's Encyclopedia of Industrial Inorganic Chemistry. Dannstadt-Schauernheim: Wiley VCH, v. v.24, 2012c

Referências

- ▶ [7] PATTABATHULA, V.; WILLIAMS, G. One Hundred Years of Ammonia Production - A recap of significant contributions to feeding the world. Annual Safety in Ammonia Plants and Related Facilities Symposium, Frankfurt, 54, 2013
- [8] REIMERT, R. et al. Gas Production, 2.
 Processes. In: _____ Ullmann's
 Encyclopedia of Industrial Chemistry. [S.I.]:
 Willey-VCH, v. 16, 2012.
- [9] THIEMANN, M.; SCHEIBLER, ; WIEGAND, K. W. Nitric Acid, Nitrous Acid, and Nitrogen Oxides. In: _____ Ullmann's Encyclopedia of Industrial Chemistry. [S.I.]: Willey VCH, v. 24, 2012