Affine spaces

Gabriel Nivasch

March 22, 2020

Affine combination of points

$$p_1, \dots, p_k \in \mathbb{R}^d$$

$$w = \alpha_1 p_1 + \dots + \alpha_k p_k$$

where
$$\alpha_1 + \cdots + \alpha_k = 1$$

w is an **Affine Combination** (AC) of p_1, \dots, p_k

Examples:

Affine Hull (AH) (or affine span): Set of all affine combinations

Affine combination of points

Examples:

Affine combination of points

Affinely Dependent points

Definition 1: Points p_1, \dots, p_k are Affinely Dependent if one of them is an AC of the others.

Example:

$$p_1, p_2, p_3$$

$$p_2 = 4p_1 - 3p_3$$

 p_2 is an AC of p_1 , p_3

Definition 2: Points p_1, \dots, p_k are Affinely Dependent if there exist scalars $\alpha_1, \dots, \alpha_k$, not all zero, such that

$$\alpha_1 p_1 + \dots + \alpha_k p_k = \vec{0}$$
$$\alpha_1 + \dots + \alpha_k = 0$$

$$4p_1 - p_2 - 3p_3 = \vec{0}$$

Affinely Dependent points

In other words, points p_1, \dots, p_k are Affinely Independent if the only solution to the homogeneous system

$$\alpha_1 p_1 + \dots + \alpha_k p_k = \vec{0}$$

$$\alpha_1 + \dots + \alpha_k = 0$$

is the trivial one $\alpha_1 = \cdots = \alpha_k = 0$

Examples in the plane:

Exercise 1: Prove that the two definitions of AD are equivalent

Affine Combination: $\sum \alpha_i = 1$

Affinely Dependent: $\sum \alpha_i = 0$

Recall from Linear Algebra: d+1 vectors in \mathbb{R}^d are always LD.

Exercise 2: Use this to prove that d+2 points in \mathbb{R}^d are always AD.

Exercise 3: Prove that Affinely Dependent points are "unnecessary" for Affine Combinations:

If $q \in \mathbb{R}^d$ is an AC of $p_1, \dots, p_k \in \mathbb{R}^d$, and p_1 is an AC of p_2, \dots, p_k , then q is an AC of p_2, \dots, p_k

(Just like with LD and LC in Linear Algebra)

Affinely closed sets

Definition: A subset $F \subseteq \mathbb{R}^d$ is *affinely closed* if every AC of finitely many points of F

is also in *F*

up to d + 1 is enough

Affinely closed subsets of the plane:

Affinely closed sets

Affinely closed subsets of three-dimensional space:

- pointslinesplanesthe whole space

Affine subspaces

Definition: An *affine subspace* is a translated

linear subspace:

$$F = \{v + w | v \in V\}$$
 V linear subspace

Exercise 4: Prove that the above two notions are equivalent:

A subset of \mathbb{R}^d is affinely closed if and only if it is an affine subspace.

Representation of affine subspaces

There are two ways to represent affine subspaces:

- With points
- With equations

affine subspace = "flat" k-dimensional affine subspace = "k-flat"

$$F = AH((1, 1), (3, 2))$$
 two points

$$F = \{(x, y) \in \mathbb{R}^2 | x - 2y = -1\}$$
 one equation

A k-flat in \mathbb{R}^d can be represented by

- k+1 points
- d k equations

Hyperplanes

A (d-1)-dimensional flat in \mathbb{R}^d is called a *hyperplane*

• Line in the plane • Plane in space ...

A hyperplane is defined by a single equation

It partitions \mathbb{R}^d into two *half-spaces*

$$x - 2y < -1$$
 open half-space

$$x - 2y \le -1$$
 closed half-space

Affine transformation

An affine transformation is a linear transformation plus a translation

Example in the plane:

