中

悱

线

江

亚	1	4	マ	科	11:	上	بيلار
29	女	中.	J	<i>የ</i> ት	17	ス	子

考试时间__120__分钟

试

题

题号	1	1 1	111	四	总分
分数					

1.考试形式: 闭卷□ 开卷□; 2.本试卷共三大题, 满分 100 分;

3.考试日期:

年 月

日; (答题内容请写在装订线外)

一、单项选择题(本大题共15小题,每小题2分,共30分)

- 1. 算法的时间复杂度为 $O(n^2)$, 说明该算法 (D)
 - (A) 问题规模为 n²
- (B) 执行的时间为 n²
- (C) 源代码的长度为 n²
- (D) 执行的时间与 n² 成正比
- 2. 关于数据的逻辑结构和存储结构说法正确的是(C)
 - (A) 数据的逻辑结构唯一决定数据的存储结构
 - (B) 数据的存储结构唯一决定数据的逻辑结构
 - (C) 数据的逻辑结构独立于数据的存储结构
 - (D) 数据的存储结构独立于数据的逻辑结构
- 3. 顺序存储结构的优点是 (A)
 - (A) 存储密度大

- (B) 插入运算方便
- (C) 删除运算方便
- (D) 适用于各种逻辑结构
- 4. 假设一个链表最常用的操作是在末尾插入结点和删除尾结点,当链表长度较大时,选用下列哪种存储结构最节省时间(D)
 - (A) 单链表

- (B) 单循环链表
- (C) 带尾指针的单循环链表
- (D) 带尾指针的双循环链表
- 5. 已知单链表 A 的长度为 m, 单链表 B 的长度为 n, 若要将 B 链接到 A 的末尾, 在没有链尾指针的情况下, 算法时间复杂度为(B))
 - (A) O(1)

(B) O(m)

(C) O(n)

- (D) O(m+n)
- 6. 假设一个栈的输入序列是 12345,则不可能得到的输出序列是(B)
 - (A) 12345

(B) 45123

第1页共 页

(C) 54321	(D) 13542
7. 下列哪种操作利用到了队列的结构	(C)
(A) 递归函数调用	(B) 线索二叉树的遍历
(C) 图的广度优先遍历	(D) 图的深度优先遍历
8. 设有一个 n×n 的对称矩阵 A 的下	三角部分按行存放在一个一维数组 B 中,
A[0][0]存放于 B[0]中, 那么 A 中的元	素 A[i][j]在 B 中的存放位置是 (A)
(A) (i+1)*i/2+j	(B) (i+1)*j/2+j
(C) (2n-i+1)*j/2	(D) (2n-i-1)*j/2
9.下列关于二叉树的描述错误的是(A)
(A) 二叉树是树的度等于 2 的有序	树
(B) 深度为 h 的二叉树最多有 2 ^h -1	个结点
(C) 二叉树的第 i 层上最多有 2 ⁱ⁻¹	卜 结点
(D) 满二叉树中叶子结点的个数多	于分支结点的个数
10. 有 n 个叶结点的 Huffman 树中,	非终端结点的个数为(C)
(A) 2n-1	(B) n+1
(C) n-1	(D) n
11. 下面关于平衡二叉树的描述错误的	5 D)
(A) 对平衡二叉树进行中序遍历得	到的关键字序列有序
(B) 平衡二叉树中每个结点的左右	子树的高度至多相差 1
(C) AVL 树是平衡二叉树	
(D) 不是所有的平衡二叉树都是二	叉排序树
12.下面哪一个算法可以用来判断一个	图是否有回路存在 (B)
(A) 最小生成树算法	(B) 拓扑排序算法
(C) 关键路径算法	(D) 最短路径算法
13. 对线性表进行折半查找时,要求约	线性表必须(C)
(A) 以顺序方式存储	
(B) 以链式方式存储	
(C) 以顺序方式存储,且结点按关	键字有序排列
(D) 以链式方式存储,且结点按关	键字有序排列
14.构造哈希函数的方法很多,常用的	构造方法有 (A)
(A) 数字分析法、除留余数法、平	方取中法
(B) 线性探测法、二次探测法、除	留余数法
(C) 线性探测法、除留余数法、链	地址法

第2页共 页

(D) 线性探测法、二次探测法、链地址法 15.下述算法中,不稳定的排序算法是(C) (A) 直接插入排序 (B) 冒泡排序 (C) 堆排序 (D) 归并排序 二、填空题(本大题共 15 小题, 每小题 1 分, 共 15 分) 16. 数据结构是指相互之间存在一种或多种特定关系的 数据元素 集合。 17. 在长度为 n 的顺序表中插入一个新元素的平均时间复杂度为 O(n) 。 18. 已知一个栈的进栈序列为 1, 2, 3, ..., n, 其输出序列为 p1, p2, ..., pn。若 p1=n,则 pi 的值为 n-i+1 。 19. 若循环队列 Q 的最大容量为 maxSize, 队头和队尾指针分别为 front 和 rear。 则 Q 中的数据元素个数为 (Q.rear-Q.front+ maxSize)% maxSize 。 20. 一个二维数组 A[10][20]按行存放于一个连续的存储空间中,A[0][0]的存储 地址是 200, 每个元素占 1 个存储字,则 A[4][5]的地址为 285 。 21. 假设广义表 A=(a, ((b, c), d, e)),则 GetHead(GetTail(GetHead(GetTail(A)))) 的操作结果为 d 。 22. 设树 T 的度为 4, 其中度为 1, 2, 3 和 4 的结点个数分别为 4, 2, 1, 1。 则树 T 中的叶子结点个数为 8。 23. 给定有 n 个结点的二叉树,在采用二叉链表结构进行存储时,空指针的个 数有 n+1 个。 24. 设一棵二叉树的先序遍历序列为 ABDEC,中序遍历序列为 DBEAC,则该 二叉树的后序遍历序列为 DEBCA 。 25. 由权值为 8, 4, 5, 7, 6 的五个叶结点构造一棵 Huffman 树, 该 Huffman 树的带权路径长度为____69___。 26. 具有 n 个顶点 e 条边的无向图,若采用邻接矩阵存储,则其邻接矩阵中零 元素的个数为 n^2 -2e 个。 27. 在长度为 n 的带有岗哨的顺序表中进行顺序查找,查找不成功时,与关键 字的比较次数为 <u>n+1</u>。 28. 若哈希表的表长为 14,哈希函数为 H(key)=key%11,表中已有四个关键字 为 15, 38, 61, 84 的数据, 现要将关键字为 49 的数据加到表中, 采用线性探 测再散列法解决冲突,则放入哈希表的位置是____8。

29. 向具有 n 个结点的堆中插入一个新元素的时间复杂度为 O($\log_2 n$)。
30. 分别采用堆排序,快速排序,起泡排序和归并排序,对初态为有序的表,

第3页共 页

- 三、应用题(本大题共7小题,共47分)
- 31. 已知一森林的先序遍历序列为 ABDCEGFHJKI, 中序遍历序列为 BDAGECJHKFI, 要求:
- (1) 画出该森林; (3分)
- (2) 将该森林对应的二叉树后序线索化, 画出后序线索化之后的二叉树。(3分)

32. 已知有序序列{3, 7, 11, 20, 45, 77, 90}, 画出折半查找过程的判定树,并计算 ASL 成功和 ASL 失败。(5分)

ASL 成功=(1*1+2*2+4*3)/7=17/7 (1分)

第4页共 页

33. 写出下图所示无向图的邻接矩阵,并写出每个顶点的度。(6分)

34. 已知一有向图的邻接表如下图所示, 其中表结点中的域为:

邻接顶点编号 边上的权值 next 指针

(1) 根据邻接表从顶点 V0 出发做深度优先遍历,写出遍历序列,并

第5页共 页

画出生成树; (3分)

- (2) 根据邻接表从顶点 V0 出发做广度优先遍历,写出遍历序列,并画出生成树; (3分)
- (3) 该图存在包含全部顶点的拓扑序列吗? 若存在,则写出所有序列;若不存在,说明原因; (3分)
- (4) 用 Dijkstra 算法求顶点 V0 到 V5 的最短路径,写出最短路径及其长度。

要求写出求解过程中每一步的 D[n]数组; (3分)

- (5) 将该图看作无向图,从顶点 V0 开始用 Prim 算法求最小生成树; 要求标明边的生成顺序。(3分)
- (1) V0 V1 V2 V3 V5 V4 (1分)

(2) V0 V1 V2 V3 V4 V5 (1 分)

(3) 存在

V0 V1 V2 V3 V4 V5 V0 V1 V2 V4 V3 V5

(4) 路径: V0 V1 V3 V5, 长度 18 (1分)

求解过程中 D[n]数组的变化: (2分)

确定点 V0 V1 V2 V3 V4 V5

V1	0	8	9	∞	8	8
V2	0	8	9	14	19	∞
V4	0	8	9	14	13	∞
V3	0	8	9	14	13	20
V5	0	8	9	14	13	18

(5)

(没有标顺序只给1分)

35. 试按线型表 (10,8,9,12,20,5,6,15) 中元素的排列次序,将所有元素插入一棵初始为空的二叉排序树中,使之仍是一棵二叉排序树。

- (1) 画出插入完成之后的二叉排序树; (3分)
- (2) 若查找元素 13, 它将依次与二叉排序树中哪些元素进行比较; (1分)
- (3) 假设每个元素的查找概率相等, 试计算查找成功时的平均查 找长度 ASL。(1分)

(2) 10, 12, 20, 15 (1 分)

(3) ASL = (1+2+2+3+3+3+4+4)/8 = 22/8 = 2.75 (1 $\frac{1}{2}$)

36. 假定一个待散列存储的线性表为(32,75,63,48,94,25,36,18,70), 散列地址空间为[0..10], 若散列函数为 H(key)=key%11, 并

第7页共 页

采用拉链法处理冲突,试给出它们对应的散列表。并计算等概率查找 情况下查找成功和查找失败的平均查找长度。(5分)

查找成功: ASL _{成功}=(1*7+2*2)/9=11/9 (1分) 查找失败: ASL _{失败}=(2*2+5*1)/11=9/11 (1分)

37. 将一组键值(80, 50, 65, 13, 80*, 35, 96, 39, 79, 59)应用堆排序算法从小到大排序,写出初始大顶堆的序列,以及后续堆排序各趟的结果(要求全部写成顺序表方式)。(5分)

初始堆为: (96,80*,80,79,50,35,65,39,13,59) 初始堆构建 2 分第一次: (80*,79,80,59,50,35,65,39,13,96) 9 趟结果 3 分第二次: (80,79,65,59,50,35,13,39,80*,96) 第三次: (79,59,65,39,50,35,13,80,80*,96) 第四次: (65,59,35,39,50,13,79,80,80*,96) 第五次: (59,50,35,39,13,65,79,80,80*,96) 第六次: (39,13,35,50,59,65,79,80,80*,96) 第七次: (35,13,39,50,59,65,79,80,80*,96) 第九次: (13,35,39,50,59,65,79,80,80*,96)

第8页共 页

四、算法设计题(本大题共1小题,共8分)

38. 以二叉链表作为存储结构, 试编写算法求二叉树中度为 1 的结点 个数。其类型定义如下: typedef struct NodeType { DateType data; struct NodeType *leftChild, *rightChild; } BinTNode, *BinTree; int countOne(BinTree root) { if (root==NULL) return 0; if (root->leftChild) if (root->rightChild) return countOne(leftChild)+countOne(rightChild); else return 1+countOne(leftChild); else if (root->rightChild) return 1+countOne(rightChild); else return 0; }