# Physics Formula Sheet

402-0023-01L Physics

 $2023/\ 2024$ 

### Constants

| Constant                   | Symbol       | Value                                            |
|----------------------------|--------------|--------------------------------------------------|
| Speed of light             | c            | $3.00 \times 10^{8} \text{ m/s}$                 |
| Gravitational constant     | G            | $6.674 \times 10^{-11} \text{ N(m/kg)}^2$        |
| Planck's constant          | h            | $6.626 \times 10^{-34} \text{ J.s}$              |
| Mass of the electron       | $m_e$        | $9.10939 \times 10^{-31} \text{ kg}$             |
| Mass of the proton         | $m_p$        | $1.67262 \times 10^{-27} \text{ kg}$             |
| Charge of the electron     | -e           | $-1.60218 \times 10^{-19} \text{ C}$             |
| Permittivity of free space | $\epsilon_0$ | $8.85419 \times 10^{-12} \text{ C}^2/\text{J m}$ |
| Permeability of free space | $\mu_0$      | $4\pi \times 10^{-7} \text{ T m / A}$            |
| Boltzmann constant         | $k_B$        | $1.38066 \times 10^{-23} \text{ J/ K}$           |
| Avogadro's constant        | $N_A$        | $6.022 \times 10^{23} \text{ 1/mol}$             |

# Oscillations

Hook's Law:

$$F = kx$$

# Equation of Motion

Undamped simple harmonic oscillator:

$$m\frac{d^2x}{dt^2} + kx = 0$$

Standard solution:

$$x(t) = A \sin(\omega_0 t + \phi)$$

The equation of motion for a damped simple harmonic oscillator is:

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = 0$$

#### General Solutions

Light damping:  $(b^2 < 4mk)$ , the general solution is:

$$x(t) = e^{-\frac{b}{2m}t} \left(C_1 \cos(\omega_d t) + C_2 \sin(\omega_d t)\right)$$

Where:

$$\omega_d = \sqrt{\frac{k^2}{m^2} - \frac{b^2}{4m^2}}$$

Critical camping:  $(b^2 = 4mk)$ , the general solution is:

$$x(t) = e^{-\frac{b}{2m}t} (C_1 + C_2t)$$

Heavy camping:  $(b^2>4mk)$ , the general solution is:

$$x(t) = e^{-\frac{b}{2m}t} \left( C_1 e^{\lambda_1} + C_2 e^{\lambda_2} \right)$$

where

$$\lambda_{1,2} = -\frac{b}{2m} \pm \sqrt{\frac{b^2}{4m^2} - \frac{k^2}{m^2}}$$

Amplitude of forced oscillations:

$$A = \frac{F_0}{\sqrt{m^2(\omega_0^2 - \omega^2)^2 + b^2\omega^2}}$$

Phase of forced oscillations:

$$\phi = \arctan[\frac{b\omega}{m(\omega_0^2 - \omega^2)}]$$

In the limit  $\omega << \omega_0$ 

$$A \rightarrow \frac{F_0}{m\omega_0^2}, \phi \rightarrow 0$$

In the limit  $\omega >> \omega_0$ 

$$A \rightarrow \frac{F_0}{m_{e'}^2}, \phi \rightarrow \pi$$

$$A \rightarrow \frac{1}{m\omega^2}, \phi \rightarrow 1$$

When  $\omega = \omega_0$ 

$$A = \frac{F_0}{m\omega_0^2}Q, \phi = \pi/2$$

### Graphs



# Pendulum

Torque:

$$\vec{\tau} = \vec{r} \times \vec{F}$$
 
$$\frac{d^2\theta}{dt^2} + \frac{rMg}{I} \sin \theta = 0$$
 
$$\omega_0 = \sqrt{\frac{g}{l}}$$

Standard solution (for small angles):

$$A\sin(\omega_0 t + \phi)$$

# Q Factor

The quality factor, or  ${\cal Q}$  factor, describes the damping of the system:

$$Q = \frac{1}{\frac{b}{2\sqrt{mk}}} = \frac{\omega_0}{\Delta\omega}$$

2

A higher Q means the system is less damped.

#### Moments of Inertia

$$I = \int r^2 dm$$

Parallel axis theorem:

$$I_0 = I_{cg} + md^2$$
(1)

Perpendicular axis Theorem:

$$I_z = I_x + I_y \tag{2}$$

| Object                 | Axis                                   | Moment of Inertia (I)                            |                      |
|------------------------|----------------------------------------|--------------------------------------------------|----------------------|
|                        |                                        |                                                  | 12                   |
| Thin cylindrical shell | Diameter through centre                | $\frac{1}{2}mr^2 + \frac{1}{12}ml^2$             |                      |
| This calindaise label  | Anin                                   | $mr^2$                                           | R                    |
| Thin cylindrical shell | Axis                                   | mr-                                              |                      |
| Thin rod               | End                                    | $\frac{1}{3}ml^2$                                |                      |
| Thin rod               | Centre                                 | $\frac{1}{12}ml^2$                               | L                    |
| Spherical shell        | Centre                                 | $\frac{2}{3}mr^2$                                | Σ, ω                 |
| Solid sphere           | Centre                                 | $\frac{2}{5}mr^2$                                | ω ω                  |
| Solid cylinder         | Axis                                   | $\frac{1}{2}mr^2$                                | $\bigcap^{\omega}_R$ |
| Solid cylinder         | Diameter through the centre            | $\frac{1}{4}mr^2 + \frac{1}{12}ml^2$             | '/C)                 |
| Hollow cylinder        | Axis                                   | $\frac{1}{2}m(r_1^2+r_2^2)$                      | $R_1$ $R_2$          |
| Hollow cylinder        | Diameter through centre                | $\frac{1}{4}m(r_1^2 + r_2^2) + \frac{1}{12}ml^2$ |                      |
|                        | Through centre, perpendicular to sides |                                                  |                      |

### Thermodynamics

**0th law:** If two objects are in thermal equilibrium with a third object, then all three objects are in thermal equilibrium with each other

3

1st law: For any process concerning a given system, the change in internal energy  $\Delta U$  of that system is equal to the sum of the heat Q transferred to that system and the work W performed on that system.

$$\Delta U = Q + W$$

$$dU = \delta Q + \delta W$$

2nd law:

- ullet Carnot: Wherever there exists a difference in temperature, motive power can be produced.
- Kelvin: It is impossible for a self-acting machine to convey heat from a colder body to a hotter
- Clausius: Heat cannot flow from a colder to a hotter body without another process occurring, connected therewith, simultaneously.

Ideal gas law:

$$pV = NkT$$
 
$$(p + a(\frac{N}{V})^2)(V - bN) = Nk_BT$$

Van der Waals equation of state:

$$T = \left(\frac{\partial U}{\partial S}\right)_{V,N}$$

Average energy per particle for p degrees of freedom:

$$\langle E_{\text{mode}} \rangle = \frac{p}{2} k_B T$$

Heat capacity, C:

$$Q = C\Delta T, \quad Q = \int_{T_1}^{T_2} C(T) \, dT$$

Latent heat, L:

$$L = \frac{Q_{\text{latent}}}{m}$$

Isochoric process:

$$W=-\int PdV=0$$

Isothermal process:

$$\Delta T = 0$$
 
$$Q = \Delta U - W = -W = Nk_BT_A \ln(\frac{V_B}{V_*})$$

Adiabatic process:

$$dU = \delta W$$

Adiabatic component:

$$\gamma = \frac{C_P}{C_V}$$

Where P, V indicate at constant pressure/ volume Polytropic equation for an adiabatic process:

 $pV^{\gamma} = \text{constant}$ 

Efficiencies: Heat engine:  $\epsilon=\frac{W}{Q_H}$  Heat pump:  $\epsilon=\frac{Q_H}{W}$  Fridge:  $\epsilon=\frac{Q_G}{W}$ 



Carnot cycle

#### Electrostatics and dynamics

$$\mathbf{F} = \sum_{i=1}^{N} \frac{q_0 q_i (\mathbf{r} - \mathbf{r_i})}{4\pi \epsilon_0 |\mathbf{r} - \mathbf{r_i}|^3}$$

Electric field:  $\vec{F} = q\vec{E}$ 

Torque:  $\vec{\tau} = \vec{p} \times \vec{E}$ 

Energy of a dipole:  $U(\theta) = -\vec{p} \cdot \vec{E}$ 

Gauss' law:  $\phi = \oiint_S \vec{E} \cdot d\vec{A}$ 

Potential:  $\Delta V \equiv \frac{\Delta U}{q} = -\int_C \vec{E} \cdot d\vec{l}$ 

Energy of a capacitor:  $U = \frac{Q^2}{2C}$ 

Current:  $I=\dot{Q}$ 

Potential:  $V_b - V_a = -\int_a^b \vec{E} \cdot d\vec{l}$ 



Cyclotron radius:  $r = \frac{mv}{\Omega}$ 

Biot-Savart:  $\mathbf{B} = \frac{\mu_0}{4\pi} \cdot \frac{q\mathbf{v} \times \hat{r}}{r^2}$ 

Faraday's Law:  $\mathcal{E} = -\frac{d\phi_m}{dt}$ 

Self-inductance of a solenoid:  $L = \mu_0 n^2 A l$ 

Mutual inductance:  $\frac{\phi_{m1}}{N_1} = \frac{\phi_{m2}}{N_2}$ 

Impedance:  $Z_R=R,\,Z_C=\frac{1}{i\omega C},\,Z_L=i\omega L$ 

Impedance in series and parallel:  $Z_{\text{series}} = \sum_{i=1}^{n} Z_i$ ,  $\frac{1}{Z_{\text{parallel}}} = \sum_{i=1}^{n} \frac{1}{Z_i}$ 

Ampere's Law:  $\oint_C \vec{B} \cdot \vec{ds} = \mu_0 I_C$ 

### Waves & Quantum

$$\oint_{\mathbf{E}} \mathbf{E} \cdot d\mathbf{A} = \frac{Q_{\text{enc}}}{\epsilon_{\alpha}}$$
 (Gauss's Law for Electricity) (3)

$$\begin{split} & \int_{S} \mathbf{B} \cdot \boldsymbol{\epsilon}_{0} \\ & \oint_{S} \mathbf{B} \cdot d\mathbf{A} = 0 \\ & \oint_{C} \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi_{B}}{dt} \\ & \oint_{C} \mathbf{B} \cdot d\mathbf{l} = \mu_{0} I_{\text{enc}} + \mu_{0} \epsilon_{0} \frac{d\Phi_{E}}{dt} \\ & \oint_{C} \mathbf{B} \cdot d\mathbf{l} = \mu_{0} I_{\text{enc}} + \mu_{0} \epsilon_{0} \frac{d\Phi_{E}}{dt} \\ \end{split} \tag{Ampère's Law with Maxwell's addition)} \tag{6}$$

$$\oint \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi_B}{dt}$$
(Faraday's Law) (5)

$$\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{\text{enc}} + \mu_0 \epsilon_0 \frac{d\Phi_E}{\mu}$$
(Ampère's Law with Maxwell's addition) (6)

In electromagnetic waves, the ratio  $B_0 = \frac{E_0}{c}$  holds.

Wavenumber:  $\omega = vk$ 

String wave velocity:  $v = \sqrt{\frac{F_T}{\mu}}$ 

String wave power:  $P_{\text{ave}} = \frac{1}{2}\mu v \omega^2 A^2$ 

Bulk:  $v=\sqrt{\frac{B}{\rho}},$  Longitudinal wave:  $v=\sqrt{\frac{E}{\rho}},$  Transverse/ shear wave:  $v=\sqrt{\frac{G}{\rho}}$ 

Compton wavelength:  $\lambda_c = \frac{h}{m_e c}$ 

Compton scattering:  $\Delta \lambda = \lambda_c (1 - \cos \theta)$ 

De Broglie wavelength:  $\lambda_{\mathrm{dB}} = \frac{h}{p}$ 

Heisenberg uncertainty relation:  $\Delta x \Delta p \ge \frac{h}{4\pi}$ 

Energy of a particle in a 1D box:  $E_n = \frac{h^2 n^2}{8L^2 m}$ 

Energy of a photon:  $h\nu=E_m-E_n$ 

Time-dependent Schrodinger's Equation :  $i\hbar \frac{\partial}{\partial t} \Psi(\vec{x},t) = [-\frac{\hbar^2}{2m} (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}) + V(x)]\Psi(\vec{x},t)$ 

6

# Special relativity

- Postulates of relativity and inertial reference frames:
  1: Absolute uniform motion cannot be detected.
  2: The speed of light in a vacuum is independent of the motion of the source.

Time dilation:  $\Delta t = \gamma \Delta t_0$ 

Length contraction:  $L = \frac{L_0}{\gamma}$ 

### Doppler Shift

Non-relativistic Doppler Shift:

$$f' = f\left(\frac{c \pm v_{\text{observer}}}{c \pm v_{\text{source}}}\right)$$
 (for sound or slow-moving sources) (7)

Relativistic Doppler Shift:

$$f' = f \sqrt{\frac{1+\beta}{1-\beta}}$$
 (for motion towards the observer) (8)

$$f' = f \sqrt{\frac{1-\beta}{1+\beta}}$$
 (for motion away from the observer) (9)

where  $\beta = \frac{v_{\text{source}}}{c}$ 

#### Velocity Transformations in Special Relativity

For two observers in relative motion with velocity v along the x-axis:

$$u'_{x} = \frac{u_{x} + v}{1 + \frac{vu_{x}}{c^{2}}}$$
(10)

$$u_y' = \frac{u_y}{\gamma(1 + \frac{vv_x}{\gamma})} \tag{11}$$

$$u'_z = \frac{u_z}{\gamma(1 + \frac{vu_z}{c^2})}$$
(12)

where  $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$  is the Lorentz factor

#### Energy

$$\mathbf{E}_{\mathrm{total}} = \gamma mc^2 = \sqrt{p^2c^2 + m^2c^4}, \\ \mathbf{E}_{\mathrm{rest}} = mc^2$$

#### Spherical coordinates

 $x = r \sin \theta \cos \phi, y = r \sin \theta \sin \phi, z = r \cos \phi$ 

Volume fraction:

 $dV = r^2 \sin \theta dr d\theta d\phi$ 

Solid angle:

$$d\Omega = \frac{dS_r}{r^2} = \sin \theta d\theta d\phi$$

Surface element:

$$dS_r = r^2 \sin \theta d\theta d\phi$$

$$\nabla f = \frac{\partial f}{\partial r} \vec{r} + \frac{1}{r} \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \vec{\phi}$$
 (13)

$$\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 F_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta F_\theta) + \frac{1}{r \sin \theta} \frac{\partial F_{\varphi}}{\partial \varphi}. \quad (14)$$

$$\cdot \mathbf{F} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 F_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta F_\theta) + \frac{\partial}{r \sin \theta} \frac{\partial}{\partial \varphi}.$$

$$(14)$$

$$\nabla \times \mathbf{F} = \frac{1}{r \sin \theta} (\frac{\partial}{\partial \theta} (A_{\phi} \sin \theta) - \frac{\partial A_{\theta}}{\partial \phi}) \vec{r}$$

$$+ \frac{1}{r} (\frac{1}{\sin \theta} \frac{\partial A_r}{\partial \phi} - \frac{\partial}{\partial r} (r A_{\phi})) \vec{\theta}$$

$$+ \frac{1}{r} (\frac{\partial}{\partial r} (r A_{\phi}) - \frac{\partial A_r}{\partial \phi}) \vec{\phi}$$

$$(15)$$

$$\nabla^{2} f = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left( r^{2} \frac{\partial f}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} f}{\partial \varphi^{2}} = \left( \frac{\partial^{2}}{\partial r^{2}} + \frac{2}{r} \frac{\partial}{\partial r} \right) f + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial}{\partial \theta} \right) f + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}} f$$

$$(16)$$

# Inner product and expectation

Expectation value (discrete)

$$\langle f_i \rangle = \sum_i P_i f_i$$

Expectation value (continuous)

$$\langle f(x) \rangle = \int_{-\infty}^{\infty} f(x)P(x) dx$$

$$\langle \hat{O} \rangle = \int \psi^*(\mathbf{r}) \hat{O} \psi(\mathbf{r}) \, d^3 r$$

Inner product

$$\langle \psi | \phi \rangle = \int \psi^*(x) \phi(x) \, dx$$

Variance  $\sigma_f^2 = \langle f^2 \rangle - \langle f \rangle^2$ 

$$\sigma_f^2 = \langle f^2 \rangle - \langle f \rangle^2$$

# Trigonometry and Taylor

 $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$  $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ 

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \dots$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Where  $x \in \mathbb{R}$ .

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots$$
$$= \sum_{n=0}^{\infty} x^n$$

Where  $x \in (-1, 1)$ .

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$
$$= \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

Where  $x \in \mathbb{R}$ .

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

Where  $x \in \mathbb{R}$ .

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \dots$$

| Substance        | c, kJ/kg⋅K | c, kcal/kg · K<br>or Btu/lb · F° | a' 1/mal.K  |
|------------------|------------|----------------------------------|-------------|
| Substance        | c, kJ/kg·k | OF BIU/ID*F                      | c', J/mol·K |
| Aluminium        | 0.900      | 0.215                            | 24.3        |
| Bismuth          | 0.123      | 0.0294                           | 25.7        |
| Copper           | 0.386      | 0.0923                           | 24.5        |
| Glass            | 0.840      | 0.20                             | _           |
| Gold             | 0.126      | 0.0301                           | 25.6        |
| Ice (-10°C)      | 2.05       | 0.49                             | 36.9        |
| Lead             | 0.128      | 0.0305                           | 26.4        |
| Silver           | 0.233      | 0.0558                           | 24.9        |
| Tungsten         | 0.134      | 0.0321                           | 24.8        |
| Zinc             | 0.387      | 0.0925                           | 25.2        |
| Alcohol (ethyl)  | 2.4        | 0.58                             | 111         |
| Mercury          | 0.140      | 0.033                            | 28.3        |
| Water            | 4.18       | 1.00                             | 75.2        |
| Steam (at 1 atm) | 2.02       | 0.48                             | 36.4        |

Figure 2

9

| Substance      | MP, K  | $L_{\rm r}$ , kJ/kg | BP, K  | $L_v$ , kJ/kg |
|----------------|--------|---------------------|--------|---------------|
| Alcohol, ethyl | 159    | 109                 | 351    | 879           |
| Bromine        | 266    | 67.4                | 332    | 369           |
| Carbon dioxide | _      | _                   | 194.6* | 573*          |
| Copper         | 1356   | 205                 | 2839   | 4726          |
| Gold           | 1336   | 62.8                | 3081   | 1701          |
| Helium         | _      | _                   | 4.2    | 21            |
| Lead           | 600    | 24.7                | 2023   | 858           |
| Mercury        | 234    | 11.3                | 630    | 296           |
| Nitrogen       | 63     | 25.7                | 77.35  | 199           |
| Oxygen         | 54.4   | 13.8                | 90.2   | 213           |
| Silver         | 1234   | 105                 | 2436   | 2323          |
| Sulfur         | 388    | 38.5                | 717.75 | 287           |
| Water (liquid) | 273.15 | 333.5               | 373.15 | 2257          |
| Zinc           | 692    | 102                 | 1184   | 1768          |

Figure 3