

Analysis approaches

- · Basic physical laws:
 - Conservation of mass
 - Newton's second law (conservation of momentum, moment of momentum)
 - First law of thermodynamics (conservation of energy)
 - For incompressible fluid flow, only the first two will be used
 For compressible fluid flow, all three may be needed

2

System and control volume

- System:
 - A specified collection of fluid particles
 - Corresponding to Lagrangian approach
- · Control volume:
 - A fixed volume in space
 - Could be a real or imaginary volume
 - Corresponding to Eulerian approach

Integral and differential approaches

- · Differential approach:
 - The basic equations are written in differential form
 - Reflects parameter change in neighborhood areas
 - Gives detailed physical parameter change in space
 - Differential equations are difficult to solve
- · Integral approach:
 - The basic equations are written in integral form
 - Reflects parameter change in finite control volume
 - Does not need to know details of the fluid field

4

Continuity equation

- The mass of fluid flows into a specific control volume during a unit time span should be equal to the summation of fluid mass flowed out and the increased fluid mass in the control volume
- · Differential form:

Left:
$$u_x - \frac{1}{2} \frac{\partial u_x}{\partial x} dx, \rho - \frac{1}{2} \frac{\partial \rho}{\partial x} dx$$

Right:
$$u_x + \frac{1}{2} \frac{\partial u_x}{\partial x} dx, \rho + \frac{1}{2} \frac{\partial \rho}{\partial x} dx$$

5

Continuity equation

The mass flows in the control volume per unit time from left:

$$\left(\rho - \frac{1}{2}\frac{\partial\rho}{\partial x}dx\right)\left(u_x - \frac{1}{2}\frac{\partial u_x}{\partial x}dx\right)dydz$$

 $\bigg(\rho-\frac{1}{2}\frac{\partial\rho}{\partial x}dx\bigg)\bigg(u_x-\frac{1}{2}\frac{\partial u_x}{\partial x}dx\bigg)dydz$ The mass flows out the control volume per unit time from right:

$$\left(\rho + \frac{1}{2}\frac{\partial\rho}{\partial x}dx\right)\left(u_x + \frac{1}{2}\frac{\partial u_x}{\partial x}dx\right)dydz$$

The net mass flows per unit time in the control volume in x direction:

$$\left(\rho - \frac{1}{2}\frac{\partial \rho}{\partial x}dx\right)\left(u_x - \frac{1}{2}\frac{\partial u_x}{\partial x}dx\right)dydz - \left(\rho + \frac{1}{2}\frac{\partial \rho}{\partial x}dx\right)\left(u_x + \frac{1}{2}\frac{\partial u_x}{\partial x}dx\right)dydz = -\frac{\partial(\rho u_x)}{\partial x}dxdydz$$

Continuity equation

The net mass flows in the control volume in y and z direction:

$$-\frac{\partial \left(\rho u_{y}\right)}{\partial y}dxdydz \qquad -\frac{\partial \left(\rho u_{z}\right)}{\partial z}dxdydz$$

The overall net mass flow into the control volume:

$$-\left(\frac{\partial(\rho u_x)}{\partial x} + \frac{\partial(\rho u_y)}{\partial y} + \frac{\partial(\rho u_z)}{\partial z}\right) dxdydz$$

The overall mass increase in the control volume:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \qquad \frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \mathbf{u}) = 0 \qquad \frac{\partial \rho}{\partial t} + (\rho u_i)_{,i} = 0$$

7

Continuity equation

· For steady flow:

$$\frac{\partial \rho}{\partial t} = 0 \qquad \qquad \frac{\partial (\rho u_x)}{\partial x} + \frac{\partial (\rho u_y)}{\partial y} + \frac{\partial (\rho u_z)}{\partial z} = 0$$

Masses of fluid flowing in and out are equal

· For incompressible flow:

$$\rho = \text{const} \qquad \frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} = 0$$

8

Continuity equation

• Integral form – steady flow:

For steady flow, the position and shape of stream tube will not change with time, then the fluid mass inside the control volume is constant:

For impressible fluid:

$$\rho_1 = \rho_2 = \text{const} \qquad \qquad \overline{u}_1 A_1 = \overline{u}_2 A_2 = Q$$

When flow rate is constant, the smaller the effective area, the greater the flow velocity

Differential equation of motion of ideal flow

· Ideal fluid has no viscosity

$$\left(p - \frac{1}{2}\frac{\partial p}{\partial x}dx\right)dydz - \left(p + \frac{1}{2}\frac{\partial p}{\partial x}dx\right)dydz + f_{s}\rho dxdydz = \rho dxdydz\frac{du_{s}}{dt}$$

$$f_x - \frac{1}{\rho} \frac{\partial p}{\partial x} = \frac{du_x}{dt}$$

 $\int \frac{\partial p}{\partial y} = \frac{du_y}{dt}$

$$\mathbf{f} - \frac{1}{\rho} \nabla p = \frac{d\mathbf{u}}{dt}$$
 $\mathbf{f} - \mathbf{u} \nabla p = \frac{d\mathbf{u}}{dt}$
 $\mathbf{f} - \mathbf{u} \nabla p = \mathbf{u} \nabla p = \mathbf{u} \nabla p = \mathbf{u} \nabla p$

$$f_z - \frac{1}{\rho} \frac{\partial p}{\partial z} = \frac{du_z}{dt}$$

This equation is appropriate for both compressible and incompressible fluid

10

Differential equation of ideal flow

$$f_x - \frac{1}{\rho} \frac{\partial p}{\partial x} = \frac{du_x}{dt} = \frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z}$$

$$f_{y} - \frac{1}{\rho} \frac{\partial p}{\partial y} = \frac{du_{y}}{dt} = \frac{\partial u_{y}}{\partial t} + u_{x} \frac{\partial u_{y}}{\partial x} + u_{y} \frac{\partial u_{y}}{\partial y} + u_{z} \frac{\partial u_{y}}{\partial z}$$

$$f_z - \frac{1}{\rho} \frac{\partial p}{\partial z} = \frac{du_z}{dt} = \frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z}$$

$$\mathbf{f} - \frac{1}{2} \nabla p = \frac{d\mathbf{u}}{dt} = \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u}$$

Four unknows for ideal & incompressible flow: u_x, u_y, u_z, p

Plus one continuity equations, theoretically, we can solve the unknows for **ideal** & **incompressible** fluid flow problems

11

Differential equation of ideal flow

$$f_{x} - \frac{1}{\rho} \frac{\partial p}{\partial x} - \frac{\partial}{\partial x} \left(\frac{u^{2}}{2} \right) = \frac{\partial u_{x}}{\partial t} + 2 \left(u_{z} \omega_{y} - u_{y} \omega_{z} \right)$$

$$f_{y} - \frac{1}{\rho} \frac{\partial p}{\partial y} - \frac{\partial}{\partial y} \left(\frac{u^{2}}{2}\right) = \frac{\partial u_{y}}{\partial t} + 2\left(u_{x}\omega_{z} - u_{z}\omega_{x}\right) \qquad \Rightarrow \qquad \mathbf{f} - \frac{1}{\rho}\nabla p - \nabla\left(\frac{u^{2}}{2}\right) = \frac{\partial \mathbf{u}}{\partial t} + 2\left(\mathbf{\omega} \times \mathbf{u}\right)$$

$$f_z - \frac{1}{\rho} \frac{\partial p}{\partial z} - \frac{\partial}{\partial z} \left(\frac{u^2}{2} \right) = \frac{\partial u_z}{\partial t} + 2 \left(u_y \omega_x - u_x \omega_y \right)$$

Lamb's equation

For unspinning flow, $\omega = 0$, the second component on the RHS is zero

Differential equation of ideal flow

- Potential body force:
 - If the body force vector ${\bf f}$ can be described by the gradient of a scalar function $(-\pi)$, i.e.

$$\mathbf{f} = \nabla (-\pi)$$

 $\mbox{-}\pi$ is the body force potential function

If only gravity exists, we have

$$\pi = gz$$
$$\mathbf{f} = 0\mathbf{i} + 0\mathbf{j} - g\mathbf{k}$$

13

Differential equation of ideal flow

- · Barotropic fluid:
 - The density of fluid is a function of pressure only, i.e.

$$\rho = \rho(p)$$

- Introducing a pressure function:

$$P_F = \int \frac{dp}{\rho(p)}$$
 i.e. $dP_F = \frac{dp}{\rho}$

Since we have:

$$dP_F = \frac{\partial P_F}{\partial x} dx + \frac{\partial P_F}{\partial y} dy + \frac{\partial P_F}{\partial z} dz \qquad dp = \frac{\partial p}{\partial x} dx + \frac{\partial p}{\partial y} dy + \frac{\partial p}{\partial z} dz$$

Therefore, we have

$$\frac{\partial P_{\scriptscriptstyle F}}{\partial x} = \frac{1}{\rho} \frac{\partial p}{\partial x}, \frac{\partial P_{\scriptscriptstyle F}}{\partial y} = \frac{1}{\rho} \frac{\partial p}{\partial y}, \frac{\partial P_{\scriptscriptstyle F}}{\partial z} = \frac{1}{\rho} \frac{\partial p}{\partial z} \quad \text{i.e.} \quad \nabla P_{\scriptscriptstyle F} = \frac{\nabla p}{\rho}$$

14

Differential equation of ideal flow

- Barotropic fluid:
 - For incompressible fluid:

 $\rho = const$

therefore

$$P_F = \frac{p}{\rho}$$

- · Baroclinic fluid:
 - Density is a function of not only pressure, e.g.,

$$\rho = \rho(p,T)$$

Differential equation of ideal flow

- Velocity potential:
 - If a flow is non-spinning, i.e.,

- There must be a scalar function called the velocity potential function

$$\varphi(x, y, z, t)$$

which gives the velocity field by

 $\mathbf{u} = \nabla \phi$

Non-spinning flow is called potential flow

The introduce of velocity potential function φ reduces the number of unknows

16

Bernoulli integral

If the body force of a fluid flow is potential function based, and the fluid is a barotropic fluid, for steady flow, we have

$$\frac{\partial \mathbf{u}}{\partial t} = 0$$

· The Lamb's equation becomes:

$$\mathbf{f} - \frac{1}{\rho} \nabla p - \nabla \left(\frac{u}{2} \right) = 2(\boldsymbol{\omega} \times \mathbf{u})$$

$$\nabla \left(-\pi - P_F - \frac{u^2}{2} \right) = 2(\boldsymbol{\omega} \times \mathbf{u})$$

$$\nabla \left(\pi + P_F + \frac{u^2}{2} \right) = -2(\boldsymbol{\omega} \times \mathbf{u})$$

17

Bernoulli integral

Based on the integration along streamlines, multiplying an infinitesimal sector on the streamline on the two sides of the equation:

$$\nabla \left(\pi + P_F + \frac{u^2}{2}\right) \cdot d\mathbf{s} = -2(\mathbf{\omega} \times \mathbf{u}) \cdot d\mathbf{s} \qquad \text{where}$$

$$d\mathbf{s} = dx\mathbf{i} + dy\mathbf{j} + dz$$

$$\nabla \left(\pi + P_F + \frac{u^2}{2}\right) \cdot d\mathbf{s} = 0$$

$$\begin{array}{l} \frac{\partial}{\partial x} \left(\frac{1}{x} + P_r + \frac{u^2}{2} \right)_{dx} + \frac{\partial}{\partial x} \left(\frac{1}{x} + P_r + \frac{u^2}{2} \right)_{dy} + \frac{\partial}{\partial z} \left(\frac{1}{x} + P_r + \frac{u^2}{2} \right)_{dz} \\ = d \left(\frac{1}{x} + P_r + \frac{u^2}{2} \right) = 0 \\ & \bullet \\ &$$

Lagrangian integral

- If the body force of a fluid flow is potential function based, and the fluid is a barotropic fluid and, the flow is non-spinning,

• The Lamb's equation becomes:

$$\mathbf{f} - \frac{1}{\rho} \nabla p - \nabla \left(\frac{u^2}{2} \right) = \frac{\partial \mathbf{u}}{\partial t}$$

$$\nabla \left(-\pi - P_F - \frac{u^2}{2} \right) = \frac{\partial u}{\partial t}$$

$$\frac{\partial \mathbf{u}}{\partial t} + \nabla \left(\pi + P_F + \frac{u^2}{2} \right) = 0$$

19

Lagrangian integral

- · For non-spinning flow, there exists a velocity potential function
- Then,

$$\frac{\partial \mathbf{u}}{\partial t} = \frac{\partial \left(\nabla \mathbf{\phi}\right)}{\partial t} = \nabla \frac{\partial \mathbf{\phi}}{\partial t}$$

$$\nabla \left(\frac{\partial \varphi}{\partial t} + \pi + P_F + \frac{u^2}{2} \right) =$$

$$\begin{split} \frac{\partial \phi}{\partial t} + \pi + P_F + \frac{u^2}{2} &= C(t) \\ \text{For steady flow, we have:} \\ \pi + P_F + \frac{u^2}{2} &= C \end{split} \qquad \begin{array}{ll} \bullet & \text{Ideal fluid (compressible \& incompressible)} \\ \bullet & \text{Body force is potential function based} \\ \bullet & \text{Barotropic fluid} \\ \bullet & \text{Non-spinning flow} \end{split}$$

20

Bernoulli's equation

For steady and incompressible fluid, if the body force only contains gravity, we have:

$$\pi = gz, P_F = \frac{p}{\rho}$$

• Then the Bernoulli integral becomes

$$z + \frac{p}{\rho g} + \frac{u^2}{2g} = C_l$$
 along a streamline

 $z+\frac{p}{\rho g}+\frac{u^2}{2g}=C_i\qquad\text{along a streamline}$ $z_i+\frac{p_1}{\rho g}+\frac{u_1^2}{2g}=z_2+\frac{p_2}{\rho g}+\frac{u_2^2}{2g}\qquad\text{at two points on a streamline}$

- For ideal and incompressible flow, the energy equation is equivalent to the motion equation
 Bernoulli's equation reflects the energy conservation and conversion in fluid mechanics

Bernoulli's equation

22

Bernoulli's equation

23

Application of Bernoulli's equation

Pitot tube:

Total flow Bernoulli's equation

The overall energy on the effective cross-section is constant:

particle cross-section is nestant:
$$\int_{A} \left(z + \frac{p}{pg} + \frac{u^2}{2g}\right) p dQ = \text{const}$$

For gradually varied flow.

$$\int_{A} \frac{u^{2}}{2g} \rho dQ = \alpha \frac{\overline{u}^{2}}{2g} \rho Q$$

$$\int_{A} \left(z + \frac{p}{\rho g}\right) \rho dQ = \left(z + \frac{p}{\rho g}\right) \rho \int_{A} dQ = \left(z + \frac{p}{\rho g}\right) \rho Q$$

$$\left(z + \frac{p}{\rho g}\right) \rho Q + \frac{\overline{u}^2}{2g} \rho Q = \text{const} \qquad \qquad z + \frac{p}{\rho g} + \frac{\overline{u}^2}{2g} = \text{const} \quad \text{(along total flow})$$

25

Total flow Bernoulli's equation

$$z_1 + \frac{p_1}{\rho g} + \frac{\overline{u_1}^2}{2g} = z_2 + \frac{p_2}{\rho g} + \frac{\overline{u_2}^2}{2g}$$
(along total flow)
(along total flow)
(along total flow)

Suitable for:

- Ideal fluid
 Incompressible fluid
 Body force is gravity

- Steady flow
 Cross-sections are chosen in gradually varied flow areas

26

Momentum equation

- The previous continuity (mass) and Bernoulli's (energy) equation cannot reflect the interactive forces between fluid
- · The increase of momentum in unit time is equal to the overall external forces:

$$\sum \mathbf{F} = \frac{m\mathbf{u}_2 - m\mathbf{u}_1}{\Delta t} = \frac{\Delta \mathbf{K}}{\Delta t}$$

Momentum equation

For steady and incompressible flow

$$\rho_1=\rho_2=\rho$$

• At time t.

$$\boldsymbol{K}_{1-2} = \boldsymbol{K}_{1-1'} + \boldsymbol{K}_{1'-2}$$

• At time $t+\Delta t$.

$$\mathbf{K}_{1'-2'} = \mathbf{K}_{1'-2} + \mathbf{K}_{2-2'}$$

• The increase of momentum:

$$\Delta \mathbf{K} = \mathbf{K}_{1'-2'} - \mathbf{K}_{1-2} = \mathbf{K}_{2-2'} - \mathbf{K}_{1-1'}$$

28

Momentum equation

• The momentum of fluid flows into 1-1 during Δ*t*:

$$\rho \cdot u_1 dA_1 \Delta t \cdot \mathbf{u}_1$$

• The momentum of fluid flows out 2-2 during Δt .

$$\rho \cdot u_2 dA_2 \Delta t \cdot \mathbf{u}_2$$

· Therefore:

$$\mathbf{K}_{1-1'} = \int_{A_1} \rho \cdot u_1 dA_1 \Delta t \cdot \mathbf{u}_1$$

$$\mathbf{K}_{2-2'} = \int_{A_2} \boldsymbol{\rho} \cdot \boldsymbol{u}_2 dA_2 \Delta t \cdot \mathbf{u}_2$$

$$\Delta \mathbf{K} = \mathbf{K}_{2-2'} - \mathbf{K}_{1-1'} = \int_{A_2} \rho \cdot u_2 dA_2 \Delta t \cdot \mathbf{u}_2 - \int_{A_1} \rho \cdot u_1 dA_1 \Delta t \cdot \mathbf{u}_1$$

The momentum increase of the fluid system has been converted to the momentum difference between the fluid mass flowing in and flowing out the control volume

29

Momentum equation

The overall external force:

$$\sum \mathbf{F} = \frac{\Delta \mathbf{K}}{\Delta t} = \int_{A_2} \mathbf{u}_2 \rho u_2 dA_2 - \int_{A_1} \mathbf{u}_1 \rho u_1 dA_1$$

 $\Sigma \mathbf{F}$ represents the surface forces and body forces

The integrations:

$$\int_{A} \mathbf{u} \rho u dA = \beta \overline{\mathbf{u}} \rho \overline{u} A = \rho Q \overline{\mathbf{u}} = \dot{m} \overline{\mathbf{u}}$$

• Therefore,

$$\sum F_{z} = pQ(\overline{u}_{2z} - \overline{u}_{1z}) = \dot{m}(\overline{u}_{2z} - \overline{u}_{1z})$$

$$\sum F_{z} = \dot{p}Q(\overline{u}_{2y} - \overline{u}_{1y}) = \dot{m}(\overline{u}_{2y} - \overline{u}_{1y})$$

$$\sum F_{z} = pQ(\overline{u}_{2z} - \overline{u}_{1z}) = \dot{m}(\overline{u}_{2z} - \overline{u}_{1z})$$

$$\sum F_{z} = pQ(\overline{u}_{2z} - \overline{u}_{1z}) = \dot{m}(\overline{u}_{2z} - \overline{u}_{1z})$$

The overall external forces the control volume subjected to is equal to the momentum difference between the fluid mass flowing out and flowing in the control volume in unit time

Momentum equation

 For steady and incompressible flow:

$$\sum \mathbf{F} = \left(\dot{m}_4 \overline{\mathbf{u}}_4 + \dot{m}_5 \overline{\mathbf{u}}_5\right) \\ - \left(\dot{m}_1 \overline{\mathbf{u}}_1 + \dot{m}_2 \overline{\mathbf{u}}_2 + \dot{m}_3 \overline{\mathbf{u}}_3\right)$$

- Suitable for:

 Steady flow
 Incompressible fluid
 Cross-sections are chosen in gradually varied flow areas
 No restriction on fluid type (ideal fluid or viscous fluid)

31

Example

 For steady and incompressible flow:

32

Example

 For steady and incompressible flow:

Angular momentum equation

The increase of angular momentum in unit time is equal to the momentum of the overall

$$\mathbf{M} = \mathbf{r} \times \sum \mathbf{F} = m(\mathbf{r}_2 \times \mathbf{u}_2 - \mathbf{r}_1 \times \mathbf{u}_1)$$

· For steady and incompressible flow:

$$\begin{aligned} \mathbf{M} &= \mathbf{r} \times \sum \mathbf{F} = \int_{A_{2}} (\mathbf{r}_{2} \times \mathbf{u}_{2}) \rho u_{2} dA_{2} \\ &- \int_{A_{1}} (\mathbf{r}_{1} \times \mathbf{u}_{1}) \rho u_{1} dA_{1} \\ &= \rho Q \left(\mathbf{r}_{2} \times \overline{\mathbf{u}}_{2} - \mathbf{r}_{1} \times \overline{\mathbf{u}}_{1} \right) \end{aligned}$$

The momentum of the overall external forces is equal to the angular momentum difference between the fluid mass flowing in and flowing out the control volume in unit time

34

Example

$$z_{1} + \frac{p_{1}}{\rho_{g}} + \frac{\overline{u_{1}}^{2}}{2g} = z_{2} + \frac{p_{2}}{\rho_{g}} + \frac{\overline{u_{2}}^{2}}{2g}$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

35

Example

1. Bernoulli's equation

$$z_0 + \frac{p_0}{\rho g} + \frac{\overline{u_0}^2}{2g} = z_1 + \frac{p_1}{\rho g} + \frac{\overline{u_1}^2}{2g} = z_2 + \frac{p_2}{\rho g} + \frac{\overline{u_2}^2}{2g}$$

$$\overline{u} = \overline{u} = \overline{u}$$

• 2. Continuity equation:

• 4. Angular momentum equation:

$$-Fe = -\rho b_1 \overline{u}_1 \overline{u}_1 \frac{b_1}{2} + \rho b_2 \overline{u}_2 \overline{u}_2 \frac{b_2}{2} - 0$$

$$e = \rho b_1 \overline{u}_1 \overline{u}_1 \frac{b_1}{2F} - \rho b_2 \overline{u}_2 \overline{u}_2 \frac{b_2}{2F} = \frac{\rho \overline{u}_0^2}{2F} \left(b_1^2 - b_2^2\right) = \frac{b_1^2 - b_2^2}{b_0 \sin \alpha} = \frac{b_0}{2} \cot \alpha$$

Navier-Stokes equation

Stress tensor in fluid flow:

$$\boldsymbol{\sigma}_{ij} = \begin{bmatrix} \boldsymbol{\sigma}_{z}^{\prime} & \boldsymbol{\tau}_{xy} & \boldsymbol{\tau}_{xz} \\ \boldsymbol{\sigma}_{y}^{\prime} & \boldsymbol{\tau}_{xz} \\ sym. & \boldsymbol{\sigma}_{z}^{\prime} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\sigma}_{x} - p & \boldsymbol{\tau}_{xy} & \boldsymbol{\tau}_{xz} \\ \boldsymbol{\sigma}_{y} - p & \boldsymbol{\tau}_{yz} \\ sym. & \boldsymbol{\sigma}_{z} - p \end{bmatrix} = -p\delta_{ij} + \boldsymbol{\tau}_{ij}$$

$$\tau_{ij} = \begin{bmatrix} \sigma_{x} & \tau_{xy} & \tau_{xz} \\ \sigma_{y} & \tau_{yz} \\ sym. & \sigma_{z} \end{bmatrix}$$

$$\tau_{ij} \text{ is the viscous stress tensor}$$

37

Navier-Stokes equation

· Force equilibrium:

$$\sum F_{x} = 0: \qquad \left(\sigma'_{x} + \frac{\partial \sigma'_{x}}{\partial x} dx\right) dy - \sigma'_{x} dy + \left(\tau_{yx} + \frac{\partial \tau_{yx}}{\partial y} dy\right) dx - \tau_{yx} dx + f_{y} \rho dx dy = \rho dx dy \frac{du_{x}}{dt}$$

$$f_{x} + \frac{1}{\rho} \frac{\partial \sigma'_{x}}{\partial x} + \frac{1}{\rho} \frac{\partial \tau_{yx}}{\partial y} = \frac{du_{x}}{dt} \qquad \Rightarrow \qquad f_{x} - \frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{1}{\rho} \left(\frac{\partial \sigma_{x}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} \right) = \frac{du_{x}}{dt}$$

38

Navier-Stokes equation

• 3D:

$$f_x - \frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{1}{\rho} \left(\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} \right) = \frac{du_x}{dt} = \frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z}$$

$$f_{y} - \frac{1}{\rho} \frac{\partial p}{\partial y} + \frac{1}{\rho} \left(\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_{y}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} \right) = \frac{du_{y}}{dt} = \frac{\partial u_{y}}{\partial t} + u_{x} \frac{\partial u_{y}}{\partial x} + u_{y} \frac{\partial u_{y}}{\partial y} + u_{z} \frac{\partial u_{y}}{\partial z}$$

$$f_z - \frac{1}{\rho} \frac{\partial p}{\partial z} + \frac{1}{\rho} \left(\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} \right) = \frac{du_z}{dt} = \frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z}$$

valid for any fluid in any general motion

Navier-Stokes equation

Viscous stress tensor components for incompressible

40

Navier-Stokes equation

• When μ is constant:

$$\begin{split} \frac{\partial \sigma_{x}}{\partial x} + \frac{\partial \tau_{xx}}{\partial y} + \frac{\partial \tau_{xx}}{\partial z} &= \mu \left(\frac{\partial^{2} u_{x}}{\partial x^{2}} + \frac{\partial^{2} u_{x}}{\partial y^{2}} + \frac{\partial^{2} u_{x}}{\partial z^{2}} \right) + \mu \frac{\partial}{\partial x} \left(\frac{\partial u_{x}}{\partial x} + \frac{\partial u_{x}}{\partial y} + \frac{\partial u_{x}}{\partial z} \right) &= \mu \left(\frac{\partial^{2} u_{x}}{\partial x^{2}} + \frac{\partial^{2} u_{x}}{\partial y^{2}} + \frac{\partial^{2} u_{x}}{\partial z^{2}} \right) \\ \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_{y}}{\partial y} + \frac{\partial \tau_{xy}}{\partial z} &= \mu \left(\frac{\partial^{2} u_{x}}{\partial x^{2}} + \frac{\partial^{2} u_{y}}{\partial y^{2}} + \frac{\partial^{2} u_{y}}{\partial z^{2}} \right) + \mu \frac{\partial}{\partial y} \left(\frac{\partial u_{x}}{\partial x} + \frac{\partial u_{x}}{\partial y} + \frac{\partial u_{x}}{\partial z} \right) &= \mu \left(\frac{\partial^{2} u_{x}}{\partial x^{2}} + \frac{\partial^{2} u_{y}}{\partial y^{2}} + \frac{\partial^{2} u_{y}}{\partial z^{2}} \right) \\ \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \sigma_{x}}{\partial z} &= \mu \left(\frac{\partial^{2} u_{x}}{\partial x^{2}} + \frac{\partial^{2} u_{x}}{\partial y^{2}} + \frac{\partial^{2} u_{x}}{\partial z^{2}} \right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial u_{x}}{\partial x} + \frac{\partial u_{x}}{\partial y} + \frac{\partial u_{x}}{\partial z} \right) &= \mu \left(\frac{\partial^{2} u_{x}}{\partial x^{2}} + \frac{\partial^{2} u_{x}}{\partial y^{2}} + \frac{\partial^{2} u_{x}}{\partial z^{2}} \right) \\ &= \sin c \qquad \frac{\partial u_{x}}{\partial x} + \frac{\partial u_{y}}{\partial y} + \frac{\partial u_{x}}{\partial z} &= 0 \quad \text{(continuity equation for incompressible fluid)} \end{split}$$

41

Navier-Stokes equation

$$\begin{split} f_x - \frac{1}{\rho} \frac{\partial p}{\partial x} + \mathbf{V} \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_y}{\partial z^2} \right) &= \frac{\partial u_x}{\partial t} + u_z \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_x}{\partial z} \\ f_y - \frac{1}{\rho} \frac{\partial p}{\partial y} + \mathbf{V} \left(\frac{\partial^2 u_y}{\partial x^2} + \frac{\partial^2 u_y}{\partial y^2} + \frac{\partial^2 u_y}{\partial z^2} \right) &= \frac{\partial u_y}{\partial t} + u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_y}{\partial z} \\ f_z - \frac{1}{\rho} \frac{\partial p}{\partial z} + \mathbf{V} \left(\frac{\partial^2 u_z}{\partial x^2} + \frac{\partial^2 u_z}{\partial y^2} + \frac{\partial^2 u_z}{\partial z^2} \right) &= \frac{\partial u_z}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_y}{\partial z} \\ f_z - \frac{1}{\rho} \frac{\partial p}{\partial z} + \mathbf{V} \left(\frac{\partial^2 u_z}{\partial x^2} + \frac{\partial^2 u_z}{\partial y^2} + \frac{\partial^2 u_z}{\partial z^2} \right) &= \frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z} \\ \end{split}$$
Kinematic viscosity

Suitable for:

- Incompressible fluid
 Homogeneous fluid, μ is constant

Four unknows for incompressible and viscous flow: Plus one incompressible continuity equations, theoretically, we could find all the unknows

Comparison

Navier-Stokes equation (incompressible viscous fluid):

$$\mathbf{f} - \frac{1}{\rho} \nabla p + v \nabla^2 \mathbf{u} = \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u}$$

Euler's differential equation of fluid motion (ideal and compressible/incompressible fluid):

$$\mathbf{f} - \frac{1}{\rho} \nabla p = \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u}$$

Euler's equilibrium equation of fluid statics:

$$\mathbf{f} - \frac{1}{\rho} \nabla p = 0$$

• Equilibrium equation of static solid mechanics:

$$\mathbf{f} + \nabla \cdot \mathbf{\Sigma} = 0$$

$$\mathbf{f} + G \nabla^2 \mathbf{u} + (\lambda + G) \nabla \nabla \cdot \mathbf{u} = 0$$
 Navier's equation

43

Application examples

- · Parallel laminar flow:
 - All fluid particle are flowing in the same direction

 $u_x \neq 0, u_y = u_z = 0$

• 1. continuity equation (incompressible):

$$\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} = 0 \qquad \qquad \frac{\partial u_x}{\partial x} = 0$$

$$u_{x}$$
 does not change in x direction, i.e. $u_{x} = u_{x}(y, z, t)$

• 2. Navier-Stokes equation:

• 2. Navier-Stokes equation:
$$f_{x} - \frac{1}{\rho} \frac{\partial p}{\partial x} + v \left(\frac{\partial^{2} u_{x}}{\partial y^{2}} + \frac{\partial^{2} u_{x}}{\partial z^{2}} \right) = \frac{\partial u_{x}}{\partial t} \qquad \qquad -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \left(\frac{\partial^{2} u_{x}}{\partial y^{2}} + \frac{\partial^{2} u_{x}}{\partial z^{2}} \right) = \frac{\partial u_{x}}{\partial t}$$

$$f_{y} - \frac{1}{\rho} \frac{\partial p}{\partial y} = 0 \qquad \qquad \frac{\partial p}{\partial y} = 0 \qquad \qquad \frac{\partial p}{\partial y} = 0$$

$$f_{z} = f_{y} = 0, \ f_{z} = -g \qquad \qquad \frac{\partial p}{\partial z} = \rho g \qquad \qquad Pressure does not chang with y; pressure follows rules of fluid statics$$

44

Couette flow

- Steady flow:
- u_x does change in y:

• If $\partial p/\partial x = \text{const}$, after integration:

$$u_x = \frac{1}{2\mu} \frac{\partial p}{\partial x} z^2 + C_1 z + C_2$$

$$z = 0, u_x = 0$$

$$z = h, u_x = U$$

$$u_x = \frac{U}{h} z + \frac{z}{2\mu} \frac{\partial p}{\partial x} (z - h)$$

$$\frac{\partial p}{\partial x} = 0:$$

$$u_x = \frac{U}{h} z + \frac{z}{2\mu} \frac{\partial p}{\partial x} (z - h)$$

$$\frac{\partial p}{\partial x} = 0:$$

$$u_x = \frac{U}{h} z + \frac{z}{2\mu} \frac{\partial p}{\partial x} (z - h)$$

Poiseuille flow

Steady flow:

$$\frac{\partial p}{\partial x} = \mu \frac{d^2 u}{dz^2}$$

• Boundary condition:

$$z = \frac{h}{2}, u_x = 0; z = -\frac{h}{2}, u_x = 0$$
 $u_x = \frac{1}{2\mu} \frac{\partial p}{\partial x} \left(z^2 - \frac{h^2}{4} \right)$

46

Laminar flow in tube

· Similar to Poiseuille flow:

$$u_r=\frac{1}{4\mu}\frac{\partial p}{\partial x}\Big(r^2-r_0^{\ 2}\Big)$$
 Boundary condition: $r=r_0,u_r=0$

$$r = 0$$
 $u_r = u_{\text{max}} = -\frac{1}{4\mu} \frac{\partial p}{\partial x} r_0^2$

47

