Отношение сравнимости

Многие свойства чисел, а также вопросы разрешимости уравнений в целых числах удобно описывать в терминах сравнений.

Определение 2.1. Пусть $m \in \mathbb{N}$, m > 1. Целые числа a и b называются *сравнимыми по модулю m* (обозначается $a \equiv b \pmod{m}$), если разность a - b делится на m.

Отношение сравнимости обладает следующими свойствами.

- 1. $Peфлексивность: a ≡ a \pmod{m}$.
- 2. Симметричность: если $a \equiv b \pmod{m}$, то $b \equiv a \pmod{m}$.
- 3. Транзитивность: если $a \equiv b \pmod{m}$ и $b \equiv c \pmod{m}$, то $a \equiv c \pmod{m}$.
- 4. Сравнения можно почленно складывать (вычитать): если $a_1 \equiv b_1 \pmod{m}$, $a_2 \equiv b_2 \pmod{m}$, то $a_1 \pm a_2 \equiv b_1 \pm b_2 \pmod{m}$.

Доказательство. Из определения отношения сравнимости имеем: a_1-b_1 делится на m, a_2-b_2 делится на m. Тогда, по свойству 2 делимости, сумма и разность $(a_1-b_1)\pm(a_2-b_2)$ делятся на m, откуда $(a_1\pm a_2)-(b_1\pm b_2)$ делится на m.

- 5. Сравнения можно почленно перемножать: если $a_1 \equiv b_1 \pmod{m}$, $a_2 \equiv b_2 \pmod{m}$, то $a_1 a_2 \equiv b_1 b_2 \pmod{m}$.
- 6. Обе части сравнения и модуль можно разделить на их общий делитель: если $ac \equiv bc \pmod{mc}$, где $c \neq 0$, то $a \equiv b \pmod{m}$.
- 7. Обе части сравнения можно разделить на их общий делитель d, если d взаимно прост с модулем.

- 8. Если m_1 делитель числа m и $a \equiv b \pmod{m}$, то $a \equiv b \pmod{m_1}$.
- 9. Если f(x) полином с целыми коэффициентами и $a \equiv b \pmod{m}$, то $f(a) \equiv f(b) \pmod{m}$.

Отношение, обладающее свойствами рефлексивности, симметричности и транзитивности, называется *отношением* эквивалентности. Таким образом, отношение сравнимости является отношением эквивалентности на множестве **Z** целых чисел.

Отношение эквивалентности разбивает множество, на котором оно определено, на *классы эквивалентности*. Любые два класса эквивалентности либо не пересекаются, либо совпадают.

Классы эквивалентности, определяемые отношением сравнимости, называются классами вычетов по модулю m. Класс вычетов, содержащий число a, обозначается $a \pmod{m}$ или a и представляет собой множество чисел вида a+km, где $k \in \mathbb{Z}$; число a называется npedcmasume-лем этого класса вычетов.

Множество классов вычетов по модулю m обозначается $\mathbb{Z}/m\mathbb{Z}$, состоит ровно из m элементов и относительно операций сложения и умножения является кольцом классов вычетов по модулю m.

Пример 2.1. Если m = 2, то $\mathbb{Z}/2\mathbb{Z} = \{0 \pmod{2}, 1 \pmod{2}\}$, где $0 \pmod{2} = 2\mathbb{Z}$ — множество всех четных чисел, $1 \pmod{2} = 2\mathbb{Z} + 1$ — множество всех нечетных чисел.

Пример 2.2. При m = 15 отношение сравнимости разбивает множество \mathbb{Z} на 15 классов вычетов: $\mathbb{Z}/15\mathbb{Z} = \{0 \pmod{15}, 1 \pmod{15}, \dots, 14 \pmod{15}\}$, где 0 $\pmod{15} = \{\dots, -30, -15, 0, 15, 30, \dots\}$, 1 $\pmod{15} = \{\dots, -29, -14, 1, 16, 31, \dots\}$, ..., 14 $\pmod{15} = \{\dots, -16, -1, 14, 29, 44, \dots\}$.

Определение 2.2. Полной системой вычетов по модулю m называется совокупность m целых чисел, содержащая точно по одному представителю из каждого класса вычетов по модулю m. Совокупность чисел 0, 1, 2, ..., m-1 называется системой наименьших неотрицательных вычетов. Совокупность чисел

$$0,\pm 1,...,\pm \frac{m-1}{2}$$
 при нечетном m ; $-\frac{m}{2}+1,...,-1,0,1,...,\frac{m}{2}$ при четном m

называется системой абсолютно наименьших вычетов по модулю т. Каждый из абсолютно наименьших вычетов по абсолютной величине не превосходит половины модуля. Часть полной системы вычетов, состоящая из чисел, взаимно простых с модулем, называется приведенной системой вычетов.

Пример 2.3. Найдем различные системы вычетов по модулю m=6.

Полная система вычетов: $\{0, 1, 2, 3, 4, 5\}$, или $\{6, -5, 14, 9, -14, -19\}$, или $\{0, 1, 2, -3, -2, -1\}$.

Система наименьших неотрицательных вычетов: {0, 1, 2, 3, 4, 5}.

Система абсолютно наименьших вычетов: $\{-2, -1, 0, 1, 2, 3\}$.

Приведенная система вычетов: {1, 5}. □