To CI Pollo (TOD)
Traveling Salesperson Problem (TSP)
Input: Complete graph $G = (U_1 E)$ with distance $d: E \rightarrow \mathbb{R}^+$.
Output: Town T=(V1,,Vn,V1) S.t. (Devery vertex (except V1) is visited
Seguence of utos exactly once. (n= V)
(U1Ux) S.t. (U1/Abrellet) (2) A(T) = 5 d(V1, Vivi) is minimized
Sequence of utis (UUk) S.t. (U. Abrilet and Uk = U. (Define Uher = V.)
Many variants
- Complete us general graph
- Undirected us directed graph
- visit exactly once us visit at least once.
- Vestriction on distances (e.g., triangle inequality.
can d(1,k)>d(1,5)+d(5,6)?
If you care about pay-time approximation, then these differences matter.
(roughly 3 really different versions)
For today, any version is fine.
The TSP 7s NP-hard a
Name algo: Fix VI. Try every permetation (UI, V2,, Vn).
Running time: (n-1)! pdy(n) = (%)" · pdy(n]
Will see: 2. poly(n) - time algo.

Fix arbitrary VI EV.
Detain Table, Vil SSV and vES, we want to define T s.t.
T[S, v] = m(n d(p) walk p=(vi,,v) that visits each vix in S exactly ance.
Sequence That visits each utx In S exactly ance.
(U1UE) of vtcs S.t. (U., MillEE VIELL-O)
N
Recurrence Relation, Bose case: S= fu, vil with u=vi: T[S, u]=d(u,u)
fullesev with 1stx2 and ves/1013
T[S, v] = min $(T[S\setminus\{v\}, v'] + d(v', v))$ $v' \in S\setminus\{v,v\}$
Final answer: min (T[V,v] + d(v,v,1))
correctness,
T[S,v] defined by (**) satisfies (*)
Pf. Induction on ISI. If (SI=luxi) than T[Siu] = d(vi,u).
Pf. Induction on ISI. If (SI=luxus) then T[Siu] = d(vi,u). Fix S and VES. If the statement is true for every T with IT(<151,

9(b)

min

walk p=(v,...,v)
that visits each vtx

In S exactly whee.

 $\varphi(b) =$

min

walk p=(V1,...,V/V)
that visits each vtx T
in S exactly are.

Set Cover Set (collection) of subcets of U. [ive., each SES sockefies SEU. Input: "Set system" (U, S). Output: Subcollection $S \subseteq S$ S.+. $U, S = U$. SES
Indut: "Set system" (U, S).
Outros: Subcollection S'SS S.+. U.S = U.
(eV: minim; 3 \
(Seen as "Contractor problem" in 376.
proved NP-hardness there.)
Let n=101, n=151.
2" palyon) time is eary.
We can also get 2° poly(n,n)-time also using DP.
gen 2 J
YS⊆U and k∈[m],
$T[S,k] = [1 : f^{3}S_{1},,S_{k} \in S_{5t}, S \in S_{5t}]$
0 00
Then, $T[\phi, o] = 1$ and
$T[S,k]=1 \Leftrightarrow {}^{3}T \in S \text{ s.t. } T[S,k-1]=1.$
Answer: smallest & set. T[U,k]=1.
ā.
Running time: 2" poly(n, H)