ÜBUNGEN ZUR PHYSIK IV – FESTKÖRPERPHYSIK

Wolfgang Hansen, Sommersemester 2015

Übungsblatt 9

Ausgabe 15.06.2015, Abgabe: 22.06.2015, 10:15 Uhr (vor der Vorlesung), Hörsaal AP

Übungsgruppe: Teilnehmer 1:
Gruppenleiter: Teilnehmer 2:

Aufgabe	20	21	Σ
mögliche Punkte	5	5	10
erreichte Punkte			

Aufgabe 20: Zyklotronfrequenz bei parabolischer Energiedispersion

Die Energiedispersion der Leitungsbandelektronen in einem Material sei parabolisch mit unterschiedlichen effektiven Massen m_x , m_y und m_z in den unterschiedlichen Kristallrichtungen:

$$E(\mathbf{k}) = \frac{\hbar^2}{2} \left(\frac{k_x^2}{m_x} + \frac{k_y^2}{m_y} + \frac{k_z^2}{m_z} \right)$$

a) Zeigen Sie, dass bei einem Magnetfeld in z-Richtung die Periode der Zyklotronorbits unabhängig von der Wellenvektorkomponente k_z ist! Verwenden Sie hierfür die Beziehung für die Periode

$$T_C = \frac{\hbar^2}{eB} \cdot \frac{\partial A_k}{\partial E} \bigg|_{E=E_E}$$

wobei A_k die vom Zyklotronorbit eingeschlossene Querschnittsfläche des Fermi-Körpers ist.

- b) Geben Sie die Zyklotronmasse für diese Magnetfeldorientierung an.
- c) Zeigen Sie dass die Zyklotronmasse für eine beliebige Magnetfeldorientierung folgendermaßen angegeben werden kann:

$$m_{CR}^* = \sqrt{\frac{m_x m_y m_z}{m_x n_x^2 + m_y n_y^2 + m_z n_z^2}}$$

Dabei ist $\vec{\mathbf{n}} = (n_x, n_y, n_z)$ ein Einheitsvektor in Richtung des Magnetfeldes: $\vec{\mathbf{n}} = \vec{\mathbf{B}}/B$.

Anleitung: Gehen sie von der Bewegungsgleichung

$$\begin{pmatrix} m_x & 0 & 0 \\ 0 & m_y & 0 \\ 0 & 0 & m_z \end{pmatrix} \frac{\partial}{\partial t} \vec{\mathbf{v}} = q \vec{\mathbf{v}} \times \vec{\mathbf{B}}$$

aus und machen Sie den Ansatz $\vec{\mathbf{v}} = \vec{\mathbf{v}}_0 \exp(i\omega t)$. Die Zyklotronresonanzfrequenz ergibt sich aus der Lösbarkeitsbedingung des Gleichungssystems für $\vec{\mathbf{v}}_0$.

Punkte: 2+1+2=5

Aufgabe 21: de Haas-van Alphen Effekt in Kupfer

(a) Berechnen Sie die Periode $\Delta(1/B)$, die beim **de Haas-van Alphen Effekt** in Kupfer nach dem Modell freier Elektronen zu erwarten ist. Kupfer hat eine fcc-Struktur mit der Gitterkonstanten a = 0.361 nm.

ÜBUNGEN ZUR PHYSIK IV – FESTKÖRPERPHYSIK

Wolfgang Hansen, Sommersemester 2015

(b) Im Experiment wurden für Kupfer folgende Perioden $\Delta(1/B)$ gemessen:

Magnetfeldorientierung	$\Delta(1/B)$ in 10^{-5} T ⁻¹	
<100>	1.557	
⟨110⟩	3.80	
⟨111⟩	1.608 und 38	

Ordnen Sie die Perioden entsprechenden Extremalbahnen auf der Fermi-Fläche von Kupfer zu.

(c) Wie gut muss die Homogenität des Magnetfeldes sein, damit bei *B* = 5 T Oszillationen beobachtet werden können?

<u>Anmerkung:</u> Die Abbildung zeigt die Fermi-Fläche von Kupfer und ist der WEB-site

<u>http://www.phys.ufl.edu/fermisurface/</u> entnommen.

Punkte: 1+3+1=5