Datenformate und Standards

Bachelor Informationsmanagement Modul Digitale Bibliothek (SS 2014)

Dr. Jakob Voß

2014-05-05

Übersicht

- Grundlagen
- Allgemeine Datenstrukturierungsprachen
- Konkrete Daten- und Dateiformate
- Standards und Schemata

Verwandte Themen dieser Lehrveranstaltung

- ▶ Digitalität am 17.3.2014
- ▶ Datenkonvertierung am 4.7.2014
- ▶ Identifier-Systeme am 14.4.2014
- Digitalisierung am 12.5.2014

Was ist Digitalität?

- Daten als Unterschiede ("x being distinct from y")
- Daten als Fakten, Beobachtungen und/oder Nachrichten
- Daten als unzweifelhafte Auswahl aus einer klar definierter Menge möglicher Werte (z.B. 0 oder 1, ein Unicode-Zeichen...)

Daten basieren auf Datenmodellierung

Was ist Datenkonvertierung?

Überführung von Daten von einem Format in ein anderes Format

Überführung Konvertierung, Konversion, Transformation, Mapping...

Daten Datensätze, digitale Objekte/Dokumente, Dateien...

Format Datenstruktur, Dateiformat...

Regelbasierte Überführung von Daten

 $\mathsf{Quellformat} \longrightarrow \mathit{Konvertierung} \longrightarrow \mathsf{Zielformat}$

Beispiel: Ersetzungsregeln zur Datenkonvertierung

- ▶ Nachname, Vorname → Vorname Nachname
- ► Sehr hilfreich: Reguläre Ausdrücke:

$$(.+)$$
, $(.+) \Rightarrow $2 1

Was sind an diesem Beispiel die Formate?

Wie könnten diese Formate als Standard definiert werden?

Identifier-Systeme

- Künstliche Merkmale zur Identifizierung eines Objektes
- Meist eindeutig (nicht homonym und möglichst nicht synonym)
- Oft strukturiert und organisiert (Namensräume, Qualifikatoren...)

In Datenformaten an verschiedenen Stellen relevant, z.B. als Index, (Feld)name oder Pfad.

Was ist Digitalisierung?

Überführung von analogen Signalen (Zeit, Lautstärke, Farbe, Größe...) in digital kodierte Werte.

Bestandteile von Daten bzw. digitalen Kodierungen

```
Quantisierung Begrenzte Menge zulässiger Werte
(z.B. Rot, Grün- und Blauanteil je 0 bis 255)

Datenformate Definierte Strukturen
(z.B. Felder, Dimensionen, Ordnungsmethoden, Muster...)
```

Allgemeine Datenstrukturierungsprachen

- 1. Zeichenketten (Strings)
- 2. Comma Separated Values (CSV)
- 3. JavaScript Object Notation (JSON)
- 4. Extensible Markup Language (XML)
- Resource Description Framework (RDF)

Verwandte Systeme (hier aber ausgelassen):

- Datenbanken
- Dateisysteme
- data binding languages

DSS 1/5: Zeichenketten

- Liste von Zeichen
- Unicode, ASCII...
- Wenig Struktur
- Spezialfall: leere Zeichenkette ("")

Kodierung von Zeichenketten

- ► Alles einer vorher angegebenen Länge
- Alles bis zum Ende-Zeichen (z.B. Null-Byte)

Beispiel: Zeichenketten in Anführungszeichen ("Hallo")

Was wenn die Zeichenkette Anführungszeichen enthält?

Typisches Verfahren: Escape-Sequenzen

- Escape-Sequenz für Anführungszeichen \"
- Escape-Sequenz für Escape-Zeichen \\
- Escape-Sequenzen für Sonderzeichen
 - ▶ \n : Zeilenumbrung
 - ▶ \t : Tabulator
 - ▶ \uXXXX : Unicode-Zeichen mit beliebigem Code XXXX
 - ٠.

2/5: Comma Separated Values (CSV)

- Liste von Zeilen mit Liste von Werten.
- Viele verschiedene Varianten
 - Trennzeichen (Komma, Tabulator, Semikolon...)
 - Kopfzeile
 - Zeichenkodierung (ASCII, Unicode...)
 - Escape-Sequenzen (z.B. für Zeilenumbrüche)

3/5: JavaScript Object Notation (JSON)

- vorgeschlagen 2002 von Douglas Crockford
- Datenstruktur stammt aus der Programmiersprache JavaScript
- Relativ einfache Syntax
- Sehr populär, vor allem in Webanwendungen
- Erste Spezifikation und Dokumentation unter http://json.org/

Bestandteile von JSON

- Arrays (Listen)
- Objekte (Key/Value-Menge)
- Zahlen (Ganzzahlen und [Fließ]kommazahlen)
- Zeichenketten (Unicode)
- Boolesche Werte (true/false)
- Nullwert (null)

JSON-Syntax als Diagram (Ausschnitt)

JSON-Syntax

- Leerzeilen und -zeichen sind irrelevant
- Zahlen, Boolesche Werte und Nullwerte direkt (42, 3.1, false, null...)
- Zeichenkette in Anführungszeichen "Und sie so:\n\"na toll!\""
- Arrays in eckigen Klammern
 [[42, 3.1,], [], [null, 23, "na, du?!"]]
- Objekte in geschweiften Klammern mit Doppelpunkten {
 "Name": "Alice", "Alter": 25, "Geschlecht": null
 }

4/5 Extensible Markup Language (XML)

- Baumstruktur bestene aus Elementen
- Genau ein Wurzelelement.
- Jedes Element kann
 - Zeichenketten und Kinder-Flementen enthalten (Sonderfälle Mixed-Content und Empty Tags)
 - Attribute haben *
- ▶ Weitere Besonderheiten, die meist nicht gebraucht werden und XML nur viel zu kompliziert machen (DTD, Pls, namespaces...)

XML-Syntax

- Elemente bestehen aus Start- und End-Tag
- Escape-Sequenzen für Sonderzeichen an verschiedenen Stellen
- Whitespace ist an verschiedenen Stellen irrelevant

Beispiel: Beliebige XHTML-Seite

5/5 Resource Description Framework (RDF)

Siehe Einheit zu Semantic Web und Linked Open Data am 14.4.2014

- RDF-Tripel Subjekt (URI oder blank node), Prädikat (URI) und Objekt (URI, blank node oder Literal)
- Vorteile:
 - Zusammenführen und Ausschneiden immer möglich
 - Einigung auf einheitliche URIs realistisch
- Seralisierung in verschiedenen Formaten (u.A. Turtle)

Grundsätzliche Strukturen

Allgemeinen Datenstrukturierungsprachen basieren im Wesentlichen auf allgemeinen Strukturierungsmustern.

Listen Strings Tabellen CSV Hierarchien/Bäume JSON, XML Zuordnungen/Identifier JSON-Objekte, XML-Attribute Graphen RDF

Weitere Strukturierungsmuster existieren auch in allen anderen Datenstrukturen und -Formaten.

Konvertierung allgemeiner Strukturierungssprachen

Beispiel: CSV nach JSON oder XML

https://shancarter.github.io/mr-data-converter/

Konkrete Daten- und Dateiformate

- Beispiele sind
 - immer konkret
 - anschaulich
 - ggf. zu speziell

Was ist Beispiel, was gehört zum Format?

JSON-Beispiel: Tweet

```
"text": "Old librarians like books. New librarians like data
"id": "438186931139383296",
"retweet_count": "117",
"favourites count": "73",
"source": "web",
"user": {
  "name": "nichtich",
  "location": "Nauru"
```

Beispiele für XML

- Sitemaps
- ► OAI-PMH
- ► TEI
- **.**..

Beispiele für RDF

- ▶ Jede RDF-Ontologie definiert ein eigenes Format
- Bei RDF lassen sich Formate auch mischen

Beispiel für Format mit eigener Strukturierung: BibTeX

```
@misc{voss2014librarians,
  author = {Voß, Jakob},
  title = {Old librarians like books.
            New librarians like data.
            Good librarians like people.}
  booktitle = {Twitter},
  year = \{2014\},\
  day = \{28\}.
  month = \{2\}.
 url = {https://twitter.com/nichtich/status/438186931139383
```

Standards und Schemata

- Im Zweifelsfall Nachlesen ("RTFM")
- Spezifikationen sind wie Gesetzestexte
- Verschiedene Standard-Gremien und Organisationen (W3C, IETF, ISO...)

Anforderungen an Standards für Datenformate

- Verständlich
- Eindeutig
- Leicht zu Implementieren

Negativbeispiel u.A. Office Open XML (ISO/IEC 29500) mit 6000 Seiten

Bestandteile einer Spezifikation

- Formale Spezifikation (z.B. Schema-Sprache, Reguläre Ausdrücke etc.)
- Informelle Beschreibung (mit zwingenden und erklärenden Teilen)
- Bezugnahme auf andere Spezifikationen

Beispiel: Spezifikation von JSON als RFC

- Request for Comment (RFC)
- RFC 7159: 2014 (vorher RFC 4627: 2006, vorher json.org: 2002)

http://rfc7159.net/rfc7159

Beispiel: JSON-Spezifikation


```
Object := "{" ( Pair ( ", " Pair )* )? "}"
```

Pair := Space* Key Space* ":" Space* Value

Space := #x20 | #x09 | #x0A | #x0D

Beispiel: Open Search Suggestions

 $\mathsf{HTML} \to \mathsf{OSD}\text{-}\mathsf{XML} \to \mathsf{Suggestions}\text{-}\mathsf{JSON}$

Zusammenfassung

- Allgemeine Sprachen und Muster zur Datenstrukturierung (CSV, JSON, XML, RDF...)
- Konkrete Formate basieren meist auf Datenstrukturierungssprachen
- Definition durch Spezifikationen und Schemata