week9实验记录

zxp

November 18, 2023

1 environment

cpu:Inter i5-12400f (2.5 GHz) System:Ubuntu 22.04.1 Compiler:x86_64-linux-gun-gcc-11

2 Experiment

重新绘制O2、O3、Ofast的图片,用了统一的y轴方便比较

Figure 1: Compilation Optimization option: -O2

Figure 2: Compilation Optimization option: -o3

Figure 3: Compilation Optimization option: -Ofast -march=native

Figure 4: 三张图放在一起比较

2.1 Analysis

-O3大幅度优化了tensor1d和tensor4d在直接卷积的表现,在-O3优化下tensor1d和tensor4d十分接近wetensor,甚至在Conv2、3、4、11、12下tensor1d或tensor4d小幅度超越wetensor。

然而,在-Ofast -march=native的优化下,tensor1d、tensor4d和wetensor直接卷积反而比O3花费了更多时间。

3 Experiment2

Test the impact of different optimizations on direct convolution.

Figure 5: Compilation Optimization option: -O0 -fipa-profile

Figure 6: Compilation Optimization option: -O0 -fipa-pure-const

Figure 7: Compilation Optimization option: -O0 -fipa-reference-addressable

Figure 8: Compilation Optimization option: -O0 -fmerge-constants

Figure 9: Compilation Optimization option: -O0 -fipa-pure-const

3.1 Analysis

These 5 have little impact on direct convolution.

4 Experiment3

roofline

Figure 10: docker中绘制的

Figure 11: docker中绘制的

Figure 12: 直接绘制的

5 Experiment4

这周我测测试-O3比-O2多开的优化选项。尝试在O2优化的基础上一个个单独打开某个选项的效果,并且测试打开其他选项而不开该选项的效果。 O3比O2多开了16个选项。(具体数据见data.xlsx。折线图见figure文件夹)

					_				
1	02	tensor1d-times:		_	_	82.4708	-	4. 3772	3.057
2		tensor4d-times:	_	_	4.51243	97.1272	9.80776	4. 95215	3. 392
3	03	tensor1d-times:		0.601354		16.3731	1.81675	1.12595	0.546
4		tensor4d-times:		0.612413	0.613059	16.923	1.86218	1.157	0.525
5	-02 -fgcse-after-reload	tensor1d-times:			4.04236	85.1644	8.55483	4. 25432	3. 036
6		tensor4d-times:	_		4.79943	97.3069	9. 99623	4. 90247	3.380
7	-02 -fipa-cp-clone	tensor1d-times:	0.593494	0.619275			1.88597	1.12621	0.566
8		tensor4d-times:	0.7046	0.818112	0.766289	20.742	2.37913	1.47	0.878
9	-02 -floop-interchange	tensor1d-times:	3.67828	3.74929	4.18258	83. 4273	8.57173	4.33707	3.047
10		tensor4d-times:	4.14144	_	4.62219	99.8363	9.74534	4. 93331	3. 440
11	-02 -floop-unroll-and-jam	tensor1d-times:	3.51829	3.61445	4.21359	86.442	8.62653	4. 47378	3.170
12		tensor4d-times:			4.67076	100.509	9.94717	4.957	3. 445
13	-02 -fpeel-loops	tensor1d-times:			4.05642	86. 9827	8.81011	4. 56376	3. 209
14		tensor4d-times:			4.51666	101.258	10.3363	5. 24944	3. 439
15	-02 -fpredictive-commoning	tensor1d-times:		_	4.06334	82.8534	8. 48836	4. 23963	3.041
16		tensor4d-times:		4.11256	4.53322	99.366	9.85236	4.96741	3. 397
17	-02 -fsplit-loops	tensor1d-times:			4.41691	90.5012	8.94876	4.56643	3. 248
18		tensor4d-times:			4. 49844	96. 4461	9.71338	4. 93076	3. 329
19	-02 -fsplit-paths	tensor1d-times:		3.48611	3.87353	80.084	7.87781	3.97886	2. 887
20		tensor4d-times:			4.53143	96. 8992	9. 77629	4. 91671	3. 393
21	-02 -ftree-loop-distribution	tensor1d-times:			4.03843	82. 5841	8. 45551	4. 28688	3.051
22		tensor4d-times:			4.50272	97.0073	9. 78734	4. 95111	3. 393
23	-02 -ftree-loop-vectorize	tensor1d-times:			4.20283	83.3296	8.51064	4. 31931	3.040
24		tensor4d-times:			4.73357	97.5197	10.0823	4. 95895	3.399
25	-02 -ftree-partial-pre	tensor1d-times:			3.86043	81.034	7.99165	3.91487	2. 929
26		tensor4d-times:			4.47108	97.6925	9.93149	4. 99115	3. 295
27	-02 -ftree-slp-vectorize	tensor1d-times:		3.92034	4.32413	88.6368	8.83443	4. 37532	3. 157
28		tensor4d-times:			4. 49547	96.3549	9.76309	4. 94877	3. 365
29	-02 -funroll-completely-grow-si				4.04809	82. 5988	8. 45777	4.37184	3.042
30		tensor4d-times:	3. 95152		4.50938	97.0846	9.82135	4. 9396	3. 395
31	-02 -funswitch-loops	tensor1d-times:			3.83732	79.8728	7.84337	3.86727	2. 827
32		tensor4d-times:	4.08929		4.50682	96.9162	9. 79671	4. 92355	3. 373
33	-02 -fvect-cost-model=dynamic	tensor1d-times:			4.04625	82.533	8. 4413	4. 26797	3.053
34		tensor4d-times:	3.95424		4. 49094	96.9625	9.79128	4. 921	3. 394
35	-02 -fversion-loops-for-strides	tensor1d-times:			4.02116	82.6121	8. 48728	4. 24863	3. 054
36		tensor4d-times:	3. 95273	4.09259	4. 49219	97.0446	9.77464	4. 93718	3. 392

标红的是需要花费最长时间的conv,从图中可以看出,这16个选项中影响最大的是-fipa-cp-clone。可以看到开启这个优化后,性能已经相当接近O3

Figure 13: 开启-O2 -fipa-cp-clone优化

Figure 14: 开启-O3的其他选项但不开启-fipa-cp-clone优化

这个优化选择的官方解释是Perform cloning to make Interprocedural constant propagation stronger.执行克隆以使程序间常量传播更强。 看看这个优化选项做了什么。

左边为O2优化,右边为O2加上-fipa-cp-clone优化。开了这个优化后汇编码

从1479行涨到1679行。开了这个优化后最主要的不同是,这个优化把调用的直接卷积函数复制到了调用的位置。不开这个优化到函数调用的时候会执行call命令,跳到对应的函数部分,开了这个优化后会直接执行直接卷积。并且不是一模一样的复制,就长度而言tensor1d直接卷积部分要比tensor4d的长。

6 Experiment5

这部分是找为什么在-Ofast -march=native的优化下,tensor1d、tensor4d和wetensor直接卷积反而比O3花费了更多时间。先写结论,不是优化选项的问题,是后面的-march=native影响了性能。

Ofast的比O3多开了7个优化选项,但也关闭3个优化选项。我尝试在O3的基础上一个个把Ofast多开的优化选项打开和在-Ofast -march=native的基础上把Ofast比O3少开的优化选项打开,结果发现影响不大,是-march=native的问题(具体数据见data.xlsx。折线图见figure文件夹)

然后尝试在O3的基础上加上-march=native和直接用Ofast,发现开了-march=native后性能变差

Figure 15: Compilation Optimization option: -O3 -march=native

Figure 16: Compilation Optimization option: -Ofast

