Ozyegin University CS 321 Programming Languages

Sample Problems on Imperative Programming

1. (PLC Ex. 7.2.(i)) Write a C program containing a function void arrsum(int n, int arr[], int *sump) that computes and returns the sum of the first n elements of the given array arr. The result must be returned through the sump pointer.

```
Solution:

void arrsum(int n, int arr[], int *sump) {
   int sum = 0;
   for (int i = 0; i < n; i++) {
      sum += arr[i];
   }
   *sump = sum;
}</pre>
```

2. (PLC Ex. 7.2.(ii)) Write a C program containing a function void squares(int n, int arr[]) that, given n and an array arr of length n or more, fills arr[i] with i*i for i = 0, ..., n-1.

```
Solution:

    void squares(int n, int arr[]) {
        for (int i = 0; i < n; i++) {
            arr[i] = i * i;
        }
    }
}</pre>
```

3. Write a **recursive** C function **void fib(int n**, **int** *res) that computes the **n**th fibonacci number and returns it through the **res** pointer.

```
Solution:

void fib(int n, int *res) {
    if (n == 0 || n == 1) {
        *res = 1;
    } else {
        int f1;
        fib(n-1, &f1);
        int f2;
        fib(n-2, &f2);
        *res = f1 + f2;
    }
}
```

4. Assuming that the environment and the store are initially empty, give a possible environment and store at the end of the following piece of C program.

```
int n = 38;
int a[3] = {5, 9, 13};
int *p;
p = &a[1];
*p = n;
*(p+1) = a[0]*2;
p = &n;
p++;
```

Solution: After the third line, that is, after the declarations are handled, we may have an environment and a store such as below, where the value of p is garbage (i.e. it's not set, therefore it could be anything).

\mathbf{E}	nv
n:	70
a:	74
p:	75

Store							
70	71	72	73	74	75		
38	5	9	13	71	XX		

Executing the statement p = &a[1]; gives us

n:	70
a:	74
p:	75

70	71	72	73	74	75	
38	5	9	13	71	72	

Executing the statement *p = n; gives us

n:	70
a:	74
p:	75

70	71	72	73	74	75	
38	5	38	13	71	72	

Executing the statement *(p+1) = a[0]*2; gives us

n:	70
a:	74
p:	75

70	71	72	73	74	75	
38	5	38	10	71	72	

Executing the statement p = &n; gives us

n:	70
a:	74
n:	75

 70	71	72	73	74	75	
38	5	38	10	71	70	

Executing the statement p++; gives us

n:	70
a:	74
p:	75

70	71	72	73	74	75	
38	5	38	10	71	71	

5. In C++, parameters of functions that are declared using the & operator are passed by reference. What is the output of the C++-like program below?

```
void main() {
  int a[3] = {3, 7, 10};
  int m = 56;
  int n = 99;
  mystery(m, n, a);
  print m, n, a[0], a[1], a[2]
}
void mystery(int x, int &y, int a[]) {
  a[0] += 1;
  int temp = x;
  x = y;
  y = temp;
}
```

Solution: 56 56 4 7 10

6. An array can be represented as a pointer. For instance, the array definition

```
int a[4] = \{12, 13, 14, 15\};
```

can be represented using the following env/store:

Explain how you can use this representation to find the length of an array.

Solution: Find the difference between the address and the value of the array variable. That is, & a - a

7. A C-like program is given below.

```
m = &n; // A

*m = k[2]; // B

k--; m++; // C

*k = *m; // D

m[2] = n; // E
```

Starting from the env. and store given below, show the environment and the store after each statement.

```
Env => m: 50, n: 51, k:56
```

```
Solution: After A:
Env =>
         m: 50, n: 51, k:56
Store =>
           | 51 | 53 | 49 | 17 | 41 | 50 | 52 |
         -----
            50 51 52 53 54 55 56
After B:
Env =>
         m: 50, n: 51, k:56
         _____
Store =>
           | 51 | 41 | 49 | 17 | 41 | 50 | 52 |
            50 51 52 53 54 55 56
After C:
Env =>
         m: 50, n: 51, k:56
Store =>
           | 52 | 41 | 49 | 17 | 41 | 50 | 51 |
             50 51 52 53 54 55 56
After D:
Env =>
         m: 50, n: 51, k:56
Store =>
           | 52 | 49 | 49 | 17 | 41 | 50 | 51 |
            50 51 52 53 54 55 56
After E:
Env =>
         m: 50, n: 51, k:56
Store =>
           | 52 | 49 | 49 | 17 | 49 | 50 | 51 |
            50 51 52 53 54 55 56
```

8. In C++, parameters of functions that are declared using the & operator are passed by reference. A C++ program is given below.

```
void main() {
                               void f(int &x, int *y, int z[]) {
 int a[3] = {8, 15, 6};
                                 // B
 int b = 88;
                                 *y = *y + 1;
 int c = 33;
                                 // C
                                 y = &(z[1]);
  // A
 f(b, &c, a);
                                 // D
  // I
                                 y++; x++;
                                 *y = x + 10;
                                 x = *y;
                                 // G
                                z[2] = -1;
                                 // H
```

The *environment* maps names to locations; the *store* maps locations to values. Suppose the environment and the store at point A are as given below. Give possible environment and store configurations for points B–I. It is OK to show the changes only.

	E	nv	1					Stor	e							
A:	a:	53	_	50	51	52	53	54	55	56	57	58	59	60	61	
	b:	54 55		8	15	6	50	88	33							
	c:	99	-													L
В:	x:	54	-	50	51	52	53	54	55	56	57	58	59	60	61	
	y:	56	-							55	50					
	z:	57	-													L
C:	x:] -	50	51	52	53	54	55	56	57	58	59	60	61	
	y:		-						34							
	z:															
D:	x:] -	50	51	52	53	54	55	56	57	58	59	60	61	
	y:		-		01	02		01		51						Т
	z:] .							91						
E:	x:] -	F 0	F 1	F0	F0.	F 4		F.0	F 17	F0	F0	00	01	
	y:		-	50	51	52	53	54	55	56	57	58	59	60	61	_
	z:							89		52						
F:			י .													
	x:			50	51	52	53	54	55	56	57	58	59	60	61	
	y: z:					99										
	Δ.		-													
G:	x:		-	50	51	52	53	54	55	56	57	58	59	60	61	
	y:		-					99								
	z:															
Н:	x:] -	50	51	52	53	54	55	56	57	58	59	60	61	
	y:		-			-1										
	z:] .							<u> </u>		<u> </u>		<u> </u>		<u> </u>
I:	a:	53	-	50	51	52	53	54	55	56	57	58	59	60	61	
	b:	54	-		01						· ·				01	
	c:	55	_													