A CONTRACTION OF THE PROPERTY OF THE PROPERTY

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακ. έτος 2020-2021, 5ο εξάμηνο, ΣΗΜΜΥ

TMHMA 10 (A - ΚΑΣ)

2^η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ ΣΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Ημερομηνία παράδοσης: 5/1/2021

Θοδωρής Αράπης Εl18028

Άσκηση 2.1

s(1) e(13) f(16)

S	Εκθέτης	Κλάσμα
---	---------	--------

x = 8

s (πρόσημο): 1 bit

e (Εκθέτης): 13 bits

f (Κλάσμα): 16 bits

P (Πόλωση): $P = 2^{13-1} - 1 = 4095$

 (α)

Συνθήκη	Τιμή									
0 < e < 8191	$(-1)^s \cdot 2^{(e-4095)} \cdot (1,f)$ (κανονικοποιημένη μορφή)									
$e=0; f \neq 0$	$(-1)^s \cdot 2^{-4094} \cdot (0,f)$ (υπο-κανονική μορφή)									
e = 0; f = 0; s = 0	+0.0 (θετικό μηδέν)									
e = 0; f = 0; s = 1	−0.0 <i>(αρνητικό μηδέν)</i>									
e = 8191; f = 0; s = 0	+∞ (ϑετικό άπειρο)									
e = 8191; f = 0; s = 1	−∞ (αρνητικό άπειρο)									
$e = 8191; f \neq 0; s = x$	NaN (μη-αριθμός)									

(β)

Ο μέγιστος παραστήσιμος αριθμός κανονικοποιημένης μορφής υπολογίζεται ως:

$$V_{max} = \pm (1, \underbrace{11111111111111111}_{16}) \cdot 2^{(8190-4095)}$$

Το 8190 είναι η μέγιστη τιμή που μπορεί να πάρει το $e \in (0,8191) \cup \mathbb{Z}$ σύμφωνα με τον πίνακα.

Το εύρος θα είναι: $[-V_{max}, V_{max}]$

(γ)

Η ακρίβεια για την κανονικοποιημένη μορφή:

$$D_{normal} = \left(1, \underbrace{0000000000000000}_{16}\right) \cdot 2^{(1-4095)} = 2^{-4094}$$

Το 1 είναι η μικρότερη τιμή που μπορεί να πάρει το $e \in (0,8191) \cup \mathbb{Z}$ σύμφωνα με τον πίνακα.

Η ακρίβεια για την υπο-κανονική μορφή:

$$D_{subnormal} = \left(0, \underbrace{00000000000000000}_{16}\right) \cdot 2^{-4094} = 2^{-16} \cdot 2^{-4094} \Rightarrow$$

$$D_{subnormal} = 2^{-4110}$$

Άσκηση 2.2

Έχουμε τον παρακάτω κώδικα:

```
1:
               add $t5, $zero, $zero
2:
               add $t0, $zero, $zero
3:
              sll $t1, $t0, 2
               add $t2, $t1, $s1
4:
5:
              lw $t4, 0($t2)
               add $t3, $t1, $s2
6:
7:
               add $t5, $t5, $t3
              add $t4, $t4, $t5
8:
9:
              sw $t4, 0($t2)
10:
               addi $t0, $t0, 1
              slt $t6, $t0, $s3
11:
              bne $t6, $zero, L
12:
13:
       L:
              sll $t1, $t0, 2 #Δεύτερη επανάληψη
```

 (α)

Παρατηρούνται οι εξής καθυστερήσεις:

(Η αρίθμηση των εντολών φαίνεται παραπάνω)

Κύκλοι 5-6: Έχουμε καθυστέρηση πριν την εκτέλεση των σταδίων ΕΧ και ID των εντολών 3 και 4 αντίστοιχα. Η καθυστέρηση αυτή οφείλεται στο γεγονός ότι ο καταχωρητής \$t0 δεν έχει λάβει την τελική του τιμή. Πρέπει, λοιπόν, πρώτα να ολοκληρωθεί το στάδιο Write Back της 2^{ης} εντολής, προκειμένου να εκτελεστούν στην συνέχεια οι επόμενες εντολές. Επομένως στις εντολές 3 και 4 εισάγονται δύο φυσαλίδες στους κύκλους 5 και 6.

- Κύκλοι 8-9: Έχουμε καθυστέρηση 2 κύκλων πριν την εκτέλεση των σταδίων ΕΧ και ID των εντολών 4 και 5 αντίστοιχα. Αυτό συμβαίνει επειδή η 3ⁿ εντολή δεν έχει φτάσει στο στάδιο επεξεργασίας WB, οπότε ο καταχωρητής \$t1 δεν έχει λάβει την τελική του τιμή.
- Κύκλοι 11-12: Παρόμοια με πριν έχουμε καθυστέρηση 2 κύκλων πριν την εκτέλεση των σταδίων ΕΧ και ID των εντολών 5 και 6 αντίστοιχα, καθώς η 4^η εντολή δεν έχει φτάσει στο στάδιο επεξεργασίας WB, οπότε ο καταχωρητής \$t2 δεν έχει λάβει την τελική του τιμή.
- Κύκλοι 15-16: Έχουμε πάλι καθυστέρηση 2 κύκλων πριν την εκτέλεση των σταδίων ΕΧ και ID των εντολών 7 και 8 αντίστοιχα, αφού η 6^η εντολή δεν έχει φτάσει στο στάδιο επεξεργασίας WB, οπότε ο καταχωρητής \$t3 δεν έχει λάβει την τελική του τιμή.
- Κύκλοι 18-19: Έχουμε καθυστέρηση 2 κύκλων πριν την εκτέλεση των σταδίων ΕΧ και ID των εντολών 8 και 9 αντίστοιχα. Αυτό συμβαίνει διότι η 7^η εντολή δεν έχει φτάσει στο στάδιο επεξεργασίας WB, οπότε ο καταχωρητής \$t5 δεν έχει λάβει την τελική του τιμή.
- Κύκλοι 21-22: Έχουμε, για ακόμα μια φορά, καθυστέρηση 2 κύκλων πριν την εκτέλεση των σταδίων ΕΧ και ID των εντολών 9 και 10 αντίστοιχα, μιας και η 8^η εντολή δεν έχει φτάσει στο στάδιο επεξεργασίας WB, οπότε ο καταχωρητής \$t4 δεν έχει λάβει την τελική του τιμή.
- * Κύκλοι 25-26: Έχουμε καθυστέρηση 2 κύκλων πριν την εκτέλεση των σταδίων ΕΧ και ID των εντολών 11 και 12 αντίστοιχα. Αυτό οφείλεται στο γεγονός ότι η 10^η εντολή δεν έχει φτάσει στο στάδιο επεξεργασίας WB, οπότε ο καταχωρητής \$t0 δεν έχει λάβει την τελική του τιμή.
- Κύκλοι 28-29: Έχουμε καθυστέρηση 2 κύκλων πριν την εκτέλεση του σταδίου ΕΧ της εντολής 12, αφού η 11^η εντολή δεν έχει φτάσει στο στάδιο επεξεργασίας WB, οπότε ο καταχωρητής \$t6 δεν έχει λάβει την τελική του τιμή.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
1	IF	I D	E X	M E M	W B																														
2		IF	I D	E X	M E M	W B																													
3			IF	I D	-	-	E X	M E M	W B																										
4				IF	-	-	I D	-	-	E X	M E M	W B																							
5							IF	-	•	I D	1	1	E X	M E M	W B																				
6										IF	1	-	I D	E X	M E M	W B																			
7													IF	I D	-	1	E X	M E M	W B																
8														IF	-	1	– D	ı	1	E X	M E M	W B													
9																	IF	ı	ı	- о	- 1	ı	E X	M E M	W B										
10																				IF	1	1	I D	E X	M E M	W B									
11																							IF	- D	ı	ı	E X	M E M	W B						
12																								IF	1	•	IF	•	•	E X	M E M	W B			
13																															IF	I D	E X	M E M	W B

Παρατηρούμε ότι χρειάζονται 32 κύκλοι για να ολοκληρωθεί η πρώτη επανάληψη. Ακόμη, ο \$s3 περιέχει τον αριθμό 0x100, δηλαδή το 256 σε δεκαδική μορφή. Άρα το L loop, επομένως και όλο το πρόγραμμα, θα χρειαστεί 256 επαναλήψεις για να ολοκληρωθεί. Επιπλέον, για να ολοκληρωθεί το L loop, ύστερα από την πρώτη επανάληψη του προγράμματος, θα χρειαστούν 26 κύκλοι. Επομένως απαιτούνται συνολικά: $32 + 26 \cdot 255 = 6662cc$ για την εκτέλεση του κώδικα.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	IF	ID	EX	MEM	WB														
2		IF	ID	EX	MEM	WB													
3			IF	ID	EX	MEM	WB												
4				IF	ID	EX	MEM	WB											
5					IF	ID	EX	MEM	WB										
6						IF	ID	EX	MEM	WB									
7							IF	ID	EX	MEM	WB								
8								IF	ID	EX	MEM	WB							
9									IF	ID	EX	MEM	WB						
10										IF	ID	EX	MEM	WB					
11											IF	ID	EX	MEM	WB				
12												IF	ID	EX	MEM	WB			
13															IF	ID	EX	MEM	WB

Παρατηρούμε ότι χρειάζονται 16 κύκλοι για να ολοκληρωθεί η πρώτη επανάληψη του προγράμματος. Για τις υπόλοιπες 255 επαναλήψεις του προγράμματος απαιτούνται 12 κύκλοι. Οπότε θα έχουμε συνολικά: $16+12\cdot 255=3076cc$ για την εκτέλεση του προγράμματος.

(γ)

Είναι προφανές ότι με τις προωθήσεις στο ερώτημα (β) το πρόγραμμα τρέχει ήδη με τον πιο βέλτιστο τρόπο, αφού δεν υπάρχουν καθυστερήσεις.