5.1 Feature Engineering

Dr. Sultan Alfarhood

Feature Engineering

- The problem of transforming raw data into a dataset is called feature engineering.
- **Informative features**: those would allow the learning algorithm to build a model that does a good job of predicting labels of the data used for training.
 - Highly informative features are also called features with high **predictive power**.

Feature Selection vs Feature Extraction

Feature Selection

 Selecting subset of extracted features. This subset is relevant and contributes to minimizing the error rate of a trained model.

Feature Extraction

 Combining existing features to produce a more useful one.

Label Encoding

- Encode attributes and target labels with value between 0 and NumberOfClasses-1
 - Using ordered numbers as values is likely to confuse the learning algorithm
- Label Encoding can be helpful when the ordering of values of some categorical variable matters

	quality	
	bad	<i>/</i>
•••	bad	
•••	good	•••
•••	excellent	

•••	quality	
	0	
/	0	//
	1	
	2	

One-Hot Encoding

Transforming categorical feature into several binary ones:

•••	Color	•••
•••	red	
•••	blue	
•••	blue	
•••	green	•••

•••	Color_red	Color_blue	Color_green	•••
•••	1	0	0	/ •••
	0	1	0	•••
•••	0	1	0	•••
•••	0	0	1	•••

- Binning is the conversion of continuous values into categorical ones.
- Prevent overfitting.

Sex	Age
male	22
female	38
female	26
female	35
male	35
male	80
male	54
male	2
female	27
female	14
female	4
female	58

Sex	Age
male	Adult
female	Adult
female	Adult
female	Adult
male	Adult
male	Elderly
male	Adult
male	Toddler/baby
female	Adult
female	Child
female	Toddler/baby
female	Adult

Feature Scaling

- There are two common ways to get all attributes to have the same scale:
 - Normalization
 - Standardization

No Scaling Problem

person_name	Salary	Year_of_ experience	Expected Position Level
Aman	100000	10	2
Abhinav	78000	7	4
Ashutosh	32000	5	8
Dishi	55000	6	7
Abhishek	92000	8	3
Avantika	120000	15	1
Ayushi	65750	7	5

The attributes salary and year_of_experience are on different scale and hence attribute salary can take high priority over attribute year_of_experience in the model.

CSC462: MACHINE LEARNING (FALL 2023)

• Normalization (or min-max normalization) scale all values in a fixed range between **0** and **1**.

$$\bar{x}^{(j)} = \frac{x^{(j)} - min^{(j)}}{max^{(j)} - min^{(j)}}$$

$\bar{\mathbf{x}}^{(j)} =$		110010	
<i>x</i> • <i>r</i> =	$\overline{max^{()}}$	$(-min^{(j)})$	j)

•	$min^{(j)}$:	Minimum	value	of the	feature	j
---	---------------	---------	-------	--------	---------	---

• $max^{(j)}$: Maximum value of the feature j

. cost	
. 55000	
. 70000	
. 65000	
. 43000	

 cost	
 0.4444	
 1	
 0.8148	
 0	

• Standardization (or z-score normalization) is the procedure during which the feature values are rescaled so that they have the properties of a standard normal distribution with $\mu = 0$ and $\sigma = 1$.

$$\hat{x}^{(j)} = \frac{x^{(j)} - \mu^{(j)}}{\sigma^{(j)}}$$

•••	cost	•••
•••	55000	
•••	70000	<i></i>
•••	65000	
•••	43000	

 cost	
 -0.314	
 1.137	
 0.653	
 -1.476	

 $\mu^{(j)}$: Mean value of the feature j

 $\sigma^{(j)}$: Standard deviation from the mean value of the feature j

• Standardization is much less affected by outliers.

Dealing with Missing Features

 Missing data are values that are not recorded in the dataset, represented by NaN.

- Different ways of dealing with missing features:
 - 1. Removing the examples with missing data from the dataset.
 - 2. Using a learning algorithm that can deal with missing feature values.
 - 3. Using a data imputation technique.

	Wissingvalues									
PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	ricket	Fare	Cabin	Embarked
1	0	3	male	22	1	0	A/5 21171	7.15	4	s
2	1	1	female	38	1	9	PC 17599	71.2033	C85	С
3	1	3	female	26	0	0	STON/02. 3101282	7.925		s
4	1	1	female	35	1	0	113803	53.1	C123	s
5	0	3	male	35	0	0	373450	8.05	4	s
6	0	3	male		0	0	330877	8.4583		Q

CSC462: MACHINE LEARNING (FALL 2023)

11

- Data Imputation Techniques are ways to deal with missing features by filling them with values such as:
 - Mean/Median Values
 - Most Frequent or Zero/Constant Values
 - Predicted value using a regression model

	col1	col2	col3	col4	col5			col1	col2	col3	col4	col5
0	2	5.0	3.0	6	NaN	mean()	0	2.0	5.0	3.0	6.0	7.0
1	9	NaN	9.0	0	7.0		1	9.0	11.0	9.0	0.0	7.0
2	19	17.0	NaN	9	NaN		2	19.0	17.0	6.0	9.0	7.0

CSC462: MACHINE LEARNING (FALL 2023)

12

• https://colab.research.google.com/drive/1YwvH-HLpmm4RDBrqOVX UHQ66UskHwgS?usp=sharing

CSC462: MACHINE LEARNING (FALL 2023)