|              | I/P = 0   |     | I/P = 1   |     |
|--------------|-----------|-----|-----------|-----|
| PresentState | NextState | O/P | NextState | O/P |
| $q_20$       | $q_11$    | 1   | $q_21$    | 1   |
| $q_21$       | $q_11$    | 1   | $q_21$    | 1   |
| $q_3$        | $q_20$    | 1   | $q_0$     | 1   |

The converted Moore machine is

| NextState         |         |         |     |  |
|-------------------|---------|---------|-----|--|
| State             | I/P = 0 | I/P = 1 | O/P |  |
| $\rightarrow q_0$ | $q_0$   | $q_10$  | 1   |  |
| $q_10$            | $q_3$   | $q_3$   | 0   |  |
| $q_11$            | $q_3$   | $q_3$   | 1   |  |
| $q_20$            | $q_11$  | $q_21$  | 0   |  |
| $q_21$            | $q_11$  | $q_21$  | 1   |  |
| $q_3$             | $q_20$  | $q_0$   | 1   |  |

To get rid of the problem of occurrence of a null string, we need to include another state,  $q_a$ , with the same transactions as that of q0 but with output 0.

The modified final Moore machine equivalent to the given Mealy machine is

| NextState         |         |         |     |  |
|-------------------|---------|---------|-----|--|
| State             | I/P = 0 | I/P = 1 | O/P |  |
| $\rightarrow q_a$ | $q_0$   | $q_10$  | 0   |  |
| $q_0$             | $q_0$   | $q_10$  | 1   |  |
| $q_10$            | $q_3$   | $q_3$   | 0   |  |
| $q_11$            | $q_3$   | $q_3$   | 1   |  |
| $q_20$            | $q_11$  | $q_21$  | 0   |  |
| $q_21$            | $q_11$  | $q_21$  | 1   |  |
| $q_3$             | $q_20$  | $q_0$   | 1   |  |

 $17. \ \, \text{Convert the following Mealy Machine to a Moore Machine.} \qquad [\text{WBUT 2008}]$ 

|              | Next State $I/P = 0$ |        | Next State $I/P = 1$ |        |
|--------------|----------------------|--------|----------------------|--------|
| PresentState | State                | Output | State                | Output |
| $Q_1$        | $q_2$                | 1      | $q_1$                | 0      |
| $Q_2$        | $q_3$                | 0      | $q_4$                | 1      |
| $Q_3$        | $q_1$                | 0      | $q_4$                | 0      |
| $Q_4$        | $q_3$                | 1      | $q_2$                | 1      |

 $106 \mid$  Introduction to Automata Theory, Formal Languages and Computation

**Solution:**  $Q_3$  and  $_4$  as next states produce outputs 0 and 1, and so the states are divided into  $Q_30$ ,  $Q_31$  and  $Q_40$ ,  $Q_41$ . Thus, the constructing Moore machine contains six states. The Moore machine becomes

| State  | I/P = 0 | I/P = 1 | Output |
|--------|---------|---------|--------|
| $Q_1$  | $Q_2$   | $Q_1$   | 0      |
| $Q_2$  | $Q_30$  | $Q_41$  | 1      |
| $Q_30$ | $Q_1$   | $Q_40$  | 0      |
| $Q_31$ | $Q_1$   | $Q_40$  | 1      |
| $Q_40$ | $Q_31$  | $Q_2$   | 0      |
| $Q_41$ | $Q_31$  | $Q_2$   | 1      |

18. From the following Mealy machine, find the equivalent Moore machine. Check whether the Mealy machine is a minimal one or not. Give proper justification to your answer.

[WBUT 2007]

|              | I/P = 0   |     | I/P = 1   |     |
|--------------|-----------|-----|-----------|-----|
| PresentState | NextState | O/P | NextState | O/P |
| $S_1$        | $S_2$     | 0   | $S_1$     | 0   |
| $S_2$        | $S_2$     | 0   | $S_3$     | 0   |
| $S_3$        | $S_4$     | 0   | $S_1$     | 0   |
| $S_4$        | $S_2$     | 0   | $S_5$     | 0   |
| $S_5$        | $S_2$     | 0   | $S_1$     | 1   |

#### Solution:

i) In the Mealy machine,  $S_1$  as the next state produces output 0 for some cases and produces output 1 for one case. For this reason, the state  $S_1$  is divided

into two parts:  $S_10$  and  $S_11$ . All the other states produce output 0. To get rid of the problem of occurrence of a null string, we need to include another state,  $S_a$ , with the same transactions as that of  $S_10$  but with output 0.

The modified final Moore machine equivalent to the given Mealy machine will be as follows.

The converted Moore machine is

| NextState |         |         |        |  |
|-----------|---------|---------|--------|--|
| State     | I/P = 0 | I/P = 1 | Output |  |
| $S_a$     | $S_2$   | $S_10$  | 0      |  |
| $S_10$    | $S_2$   | $S_10$  | 0      |  |
| $S_11$    | $S_2$   | $S_10$  | 1      |  |
| $S_2$     | $S_2$   | $S_3$   | 0      |  |
| $S_3$     | $S_4$   | $S_10$  | 0      |  |
| $S_4$     | $S_2$   | $S_5$   | 0      |  |
| $S_5$     | $S_2$   | $S_11$  | 0      |  |

ii) All the states are 0 equivalents.

$$P_0 = \{S_1 S_2 S_3 S_4 S_5\}$$

For string length 1, all the states produce output 0 except  $S_5$ .

$$P_1 = \{S_1 S_2 S_3 S_4\} \{S_5\}$$

The next states of all the states (belong to the first subset) for all inputs belong to one set except  $S_4$ . The modified partition is

$$P_2 = \{S_1 S_2 S_3\} \{S4\} \{S5\}$$

By this process,  $P_3 = \{S1S2\}\{S3\}\{S4\}\{S5\}$ 

$$P_4 = \{S_1\}\{S_2\}\{S_3\}\{S_4\}\{S_5\}$$

The machine is a reduced machine as the number of subsets of the machine is the same as the number of states of the original Mealy machine. Hence, the machine is a minimal machine.

19. Convert the following Moore machine into an equivalent Mealy machine by the transitional format.

### 1 picture



#### Solution:

i) In this machine, A is the beginning state. So start from A. For A, there are three incoming arcs, from A to A with input b, one in the form of start-state indication with no input, and the last is from D to A with input a. State A is labelled with output 1. As the start-state indication contains no input, it is useless and, therefore, keep it as it is.

Modify the label of the incoming edge from D to A and from A to A including the output of state A. So, the label of the incoming state will be D to A with label a/1 and A to A with label b/1.

ii) State B is labelled with output 0. The incoming edges to the state B are from A to B with input a and from D to B with input b.

Modify the labels of the incoming edges including the output of state B. So, the labels of the incoming states will be A to B with label a/0 and from D to B with label b/0.

iii) State C is labelled with output 0. There are two incoming edges to this state, from B to C with input b and from C to C with input a.

The modified label will be B to C with label b/0 and C to C with label a/0.

 $108 \mid$  Introduction to Automata Theory, Formal Languages and Computation

iv) State D is labelled with output 1. There are two incoming edges to this state, from B to D with input a and from C to D with input b.

The modified label will be B to D with label a/1, and C to D with label b/1.

The converted Mealy machine will be

# 2 picture



20. Convert the following Mealy machine into an equivalent Moore machine by the transitional format.

## 3 picture



**Solution:** The machine contains four states. Let us start from the state A. The incoming edges to this state are from D to A with label a/0. There is

no difference in the outputs of the incoming edges to this state, and so in the constructing Moore machine the output for this state will be 0.

## 4 picture



For the state B, the incoming edges are B to B with label a/1, from A to B with label a/0, and from C to B with label b/1.

We get two different outputs for two incoming edges (B to B output 1, A to B output 0). So, the state B will be divided into two, namely, B0 and B1. The outgoing edges are duplicated for both the states generated from B. The modified machine is