

High-Performance Computing (HPC)

Understanding the Power of Supercomputers

An Introduction for Beginners

Dr A.Khalatyan

Researcher at eScience/Supercomputing/IT
Leibniz-Institut für Astrophysik Potsdam (AIP), Germany
AIP,2025

Scientific life (top to down)

EXCOSM-2025

Scientific life (top to down)

Infrastructure (down to top)

EXCOSM-2025

What is High-Performance Computing (HPC)?

- HPC combines computing power to deliver higher performance
- Multiple computers working together as one system
- Solves complex problems faster than regular computers
- Think of it as a "supercomputer"

XCOSM-2025

What is High-Performance Computing (HPC)?

- **Definition**: Computing systems with capabilities significantly beyond typical desktop computers
- Key characteristics:
 - Massive parallelization
 - High-speed interconnects
 - Specialized hardware
 - Advanced cooling systems
 - Custom software environments
- Scale: From small clusters to the world's fastest supercomputers

The Scale of HPC

Operations/Second

1 Quadrillion = 1,000,000,000,000

EXCOSM-2025

How Does HPC Work?

EXCOSM-2025

The Evolution of HPC

•**1960s**: First supercomputers (CDC 6600, IBM 7030)

•1980s: Vector processing (Cray-1, Cray-2)

•1990s: Massive parallel processing

•2000s: Cluster computing

•2010s: Heterogeneous computing (CPU + GPU/FPGA)

•2020s: Exascale computing and specialized Al systems

Exponential growth of CPU-based computing power

Moore's law is the observation that the number of transistors in an integrated circuit (IC) doubles about every two years.

But GPUs are following Huang's Law

He observed that Nvidia's GPUs were "25 times faster than five years ago"!

Components of an HPC System

- Compute Nodes: Thousands of processors working together
- **Network**: High-speed, low-latency interconnects (InfiniBand, OmniPath), 100+ Gb/s, <1 microsecond
- Storage Systems: Parallel file systems handling petabytes of data
- Operating System: Specialized Linux distributions
- Job Scheduler: Software that manages computing resources
- Power & Cooling: Advanced infrastructure to maintain operation

HPC Architecture Basics

Key Architectural Models:

- Shared Memory: Multiple processors accessing the same memory space
- Distributed Memory: Each processor has its own memory
- Hybrid Systems: Combination of shared and distributed memory
- Accelerated Systems: CPUs paired with GPUs or other accelerators

Measuring HPC Performance

Key Metrics:

- FLOPS (Floating Point Operations Per Second)
 - TeraFLOPS (trillion 10^12)
 - PetaFLOPS (quadrillion10^15)
 - ExaFLOPS (quintillion 10^18)
- **Scalability**: How performance increases with more resources
- Efficiency: Ratio of actual to theoretical peak performance
- Bandwidth: Data transfer rates between components
- Latency: Time delay in communication
- As of November 2024, the world's fastest supercomputer is El Capitan at 1.742
 exaFLOPS at LLNL California

https://top500.org/news/el-capitan-achieves-top-spot-frontier-and-aurora-follow-behind/

Types of HPC Systems

1.Clusters

- 1. Connected computers
- 2. Common in universities

2.Supercomputers

- 1. Specialized systems
- 2. National facilities

3.Cloud HPC

- 1. Remote access
- 2. Pay-as-you-go

Benefits of Using HPC

- Faster research results
- Better scientific models
- New discoveries
- Economic advantages
- Competitive edge
- Innovation enablement

Who Uses HPC?

- Scientists
- Researchers
- Engineers
- Companies
- Government agencies
- Universities

Scientific Applications

Examples:

- Climate Modeling: Simulating global climate systems
 - Predicting climate change effects
 - Hurricane path prediction
- Genomics: DNA sequencing and analysis
 - Human Genome Project reduced from years to hours
- Astrophysics: Universe simulations
 - Galaxy formation models
 - Black hole collision simulations

HPC in Astrophysics & Cosmology

Key Applications:

- N-body simulations
- Galaxy formation models
- Dark matter distribution
- Cosmic structure evolution
- Gravitational wave analysis

Cosmological N-body Simulations

What are they?

- Track motion of particles under gravity
- Model dark matter distribution
- Simulate cosmic structure formation
- Billions to trillions of particles
- Time evolution from early universe to present

Why HPC for Cosmological Simulations?

1. Scale of Computation

- 10⁹ 10¹² particles
- Long-range gravitational forces
- Multiple time steps

2. Memory Requirements

- Particle positions & velocities
- Force calculations
- Tree structures for optimization

3.Data Output

Terabytes to Petabytes

Famous Cosmological Simulations

Millennium Simulation

- 10 billion particles
- 2.2 billion light-years box
- Dark matter evolution

IllustrisTNG

- Galaxy formation physics
- Magnetic fields
- Gas dynamics
- Dark matter + baryons
- Balck holes and more..

N-body Algorithms & HPC Implementation

Methods:

Particle-Particle (PP)

- Direct force calculation
- O(N²) complexity

Particle-Mesh (PM)

- Grid-based approach
- Faster but lower resolution

Tree Codes

- Hierarchical force calculation
- Barnes-Hut algorithm

N-body Algorithms & HPC Implementation

Parallelization:

- Domain decomposition
- Load balancing
- MPI + OpenMP hybrid approach

Future of HPC

- Al and machine learning
- Increased accessibility
- Green computing
- Exascale systems becoming common
- Quantum computing integration

Getting Started with HPC

- Learn parallel programming
- Understand basic concepts
- Start with small projects
- Use university resources
- Join HPC communities

Conclusion

- HPC is essential for modern research
- Enables solutions to complex problems
- Drives innovation and discovery
- Future of computing technology
- Growing field with many opportunities

Questions?