AD-A232 874

TECHNICAL REPORT BRL-TR-3211

BRL

DISRUPTION OF 0°-LINE FLOW INDUCED BY BARRICADE FRONTING A SIMULATED EXPLOSIVES STORAGE MAGAZINE

EDMUND J. GION CHARLES N. KINGERY

SELECTE D SMAR 2 7, 1991.

FEBRUARY 1991

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

91 3 20 005

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

UNCLASSIFIED

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington readquarters Services, Directionate for Information, Operations and Reports, 1215 Jefferson Charles and Control of the Control

collection of information, including suggestions Davis Highway, Suite 1204, Arlington, VA 2220	for reducing this burden, to Washington He 1-4302, and to the Office of Management and	adquarters Services. Directorate for Budget, Paperwork Reduction Proj	r information ject (0704-018	Operations and Reports, 1215 Jetterson (8), Washington, DC 20503	
1. AGENCY USE ONLY (Leave blan	k) 2. REPORT DATE	3. REPORT TYPE AN Final, Dec 88 - Dec	DDATES	COVERED	
4. TITLE AND SUBTITLE	February 1991	Thial, Dec 66 - Dec		ING NUMBERS	
Disruption of 0°-Line Flow Induced by Barricade Fronting a Simulated Explosives Storage Magazine			PR: 1	L16212OAH25	
6. AUTHOR(S)			1		
Edmund J. Gion and Charles N	. Kingery	i			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGE	•)		SORING/MONITORING ICY REPORT NUMBER	
US Army Ballistic Research La	boratory				
ATTN: SLCBR-DD-T Aberdeen Proving Ground, MD 21005-5066			ВІ	RL-TR-3211	
11. SUPPLEMENTARY NOTES	· · · · · · · · · · · · · · · · · · ·				
12a. DISTRIBUTION / AVAILABILITY	STATEMENT		12b. DIS	TRIBUTION CODE	
Approved for public release; dis	stribution unlimited				
13. ABSTRACT (Maximum 200 word	(s)				
A model barricade, scaled internal diameter shock tube, we simulated tunnel has been shown tunnel. Measurement results are observation. These show that the is very effective in reducing the	n in previous work to enhance of exhibited, with and without a e model barricadefor the singl	d explosives storage monsiderably the loadings barricaded tunnel, using	nagazine. s on struc s pressure	The jet flow from the tures sited in front of the gages and shadowgraph	
,					
14. SUBJECT TERMS 15. NUMBER OF PAGES					
Shock tubes, blast, over-pressure, munitions storage, barricade, blast reduction, jet flow, quantity-distance				27 16. PRICE CODE	
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFIC	CATION	20. LIMITATION OF ABSTRACT	
OF REPORT UNCLASSIFIED	OF THIS PAGE UNCLASSIFIED	OF ABSTRACT UNCLASSIFIED		UL	

NSN 7540-01-280-5500

UNCLASSIF!ED

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std 239-18 298-102 ١

INTENTIONALLY LEFT BLANK.

TABLE OF CONTENTS

		Page
	LIST OF FIGURES	v
	LIST OF TABLES	v
1.	INTRODUCTION	1
2.	EXPERIMENTAL SETUP AND PROCEDURES	1
2.1 2.2 2.3 2.4	Model Barricade	1 3 3 3
3.	RESULTS	6
3.1 3.2 3.2.1 3.2.2 3.2.3	Shadowgraph Results Pressure Measurements Sample Pressure Traces Side-On Overpressures Stagnation Pressures	6 6 6 15 15
4.	CONCLUSIONS	18
5.	REFERENCES	19
	DISTRIBUTION LIST	21

Accession For NTIS GRANI DTIC TAB Unannounced Justification_

.

INTENTIONALLY LEFT BLANK.

v

LIST OF FIGURES

<u>Figure</u>		<u>Page</u>
1	Model Barricade Scaled to Full Size	2
2	Photographs Depicting Shock Tube and Barricade, With Tube Opening From Simulated Mountain Side	4
3	Data Acquisition and Reduction Scheme	5
4a	Shadowgraphs of Flow Without Barricade	7
4b	Flow With Barricade in Place	8
5	Jet Flow Motion	9
6а	Side-On Pressure Traces, With Barricade	10
6b	Side-On Pressure Traces, Without Barricade	11
7a	Stagnation Pressure Traces, With Barricade	12
7b	Stagnation Pressure Traces, Without Barricade	13
8	Typical Pressure Traces at Exit and at Barricade Face	14
9	Pressure Ratio ($\Delta P/P_w$) vs. Distance Ratio (R/D _T) With and Without Barricade	16
10	Stagnation Pressure (P_{STAG}) vs. Distance Ratio (R/D_T) With and Without Barricade .	17
	LIST OF TABLES	
Table		Page
1	Side-On Peak Overpressure vs. Distance Without and With a Barricade	16
2	Stagnation Pressure vs. Distance Without and With a Barricade	17

INTENTIONALLY LEFT BLANK.

1. INTRODUCTION

High velocity jet flow exiting from shock tubes and underground munition storage site models was investigated by Kingery and Gion (1989) and by Zardas (1990). The jet flow creates stagnation pressures from four to seven times greater than the side-on overpressures along the 0° line in front of the tube. The pcak side-on overpressure is used in the criterion for structural damage and quantity-distance (Q-D) relationships for the citing of various constructions. Thus, the greater loading effect from the jet flow suggests that the Q-D criteria should be revised, or, a method developed for interrupting this jet flow. The current U.S. Army Ballistic Research Laboratory (BRL) project has resulted, with funding from the Department of Defense Explosives Safety Board.

It is clear that an efficient method for disrupting the jet flow would be through the use of a barricade erected a short distance from the end of the tunnel. Recently, proposals have been made for large-scale Klotz Club tests (Vretblad 1988), in which a barricade fronting the explosives magazine tunnel may be used for one or more of the planned shots. The purpose of the barricade is to influence the blast dispersion and the debris and fragments ejected.

For the BRL 25.4-mm (1-in) shock tube facility, we have constructed a model barricade, scaled approximately 1:140 of the barricade of the proposed Klotz tests. The pressure measurements and the shadowgraph observation of the flow field beyond the barricade are the subject of the present report. The data reported here may offer some comparisons with the full-scale data when these are available.

2. EXPERIMENTAL SETUP AND PROCEDURES

2.1 <u>Model Barricade</u>. The model barricade is scaled about 1:140 of full scale, based on a 3.5-m equivalent diameter for the full-size tunnel opening. The dimensions, scaled up to the full-size barricade, are as shown in Figure 1. These may not be precisely those of the proposed barricade since revisions in the dimensions have occurred since the proposal date (Vretblad 1988). The model was constructed of hardwood and fastened to the groundplane (plywood platform) surface at a scaled distance of six meters, considered the minimum distance for access. The front face of the barricade was inlet to accept a flush-mounted pressure gage to read the face-on pressures.

Figure 1. Model Barricade Scaled to Full Size.

- 2.2 Shock Tube and Test Site. The shock tube is the 25.4-mm (1-in) internal diameter (i.d.) shock tube used in the previous work for the free-field blast and jet effects from a simulated explosives storage magazine (Kingery and Gion 1989). The driver tube is 1.50 m long, and the driven tube is 1.33 m long. The tube is mounted onto a platform to facilitate instrumentation, which platform serves as the groundplane for the flow development. The cut sides of the mountain into which the full-scale tunnel is bored are simulated by two vertical boards coming off the tube exit and paralleling the sides of the barricade. The mountain sides rise vertically some 19+ m as scaled. The photograph of Figure 2a shows the tube exit from the mountain walls with gage stations along the 0° line. (A mounting board bringing pressure gages to height is not shown in the photographs). Figure 2b shows the filmholders in place for the shadowgraphs, while Figure 2c shows the barricade in place and gage stations.
- 2.3 <u>Pressure Measurement</u>. The data acquisition and reduction arrangement for the pressures is standard and is illustrated in Figure 3. Pressure transducers are piezoelectric type which may be flush-mounted in the ground plane, for the side-on measurements, or coupled to a Pitot probe configuration, for the stagnation pressure measurements. Only a single flow condition could be fired for this work, due to time and fiscal constraints. This condition was for an exit pressure $(P_w) \approx 500 \text{ kPa}$. Shots at other conditions would be very useful.
- 2.4 <u>Shadowgraphs</u>. Shadowgraphs of the barricade's effect on the flow field were thought to be a useful complement to the pressure measurements to be made. Some shots were taken also without the barricade to see if the "mountain sides" noticeably affected the free-field blast and flow.

The shadowgraph setup is a simple one. A single spark source, a Hi Voltage Components, Inc., Model SS55P, was used. It illuminates three 20 x 25 cm (8 x 10-in) film and holders from an overhead position 1.09 m (42.5 in) above the ground plane. The spark source, with built-in power supply, is triggered by an Orthometrics Type 308b Time-Delay Unit, which receives the signal from the shock tube's exit pressure gage. Filmholders are placed beneath a protective glass sheet which now forms a portion of the ground plane. The glass sheet and holders may be shifted, if desired, to observe different portions of the flow field. For this work, only the 0° line was observed. From Kingery and Gion (1989), for $P_W \approx 500$ kPa, the inhabited building distance is about 35 tunnel diameters from the tunnel exit. Thus, for such distances, it was sufficient to place the filmholders next to each other, straddling the 0° line, and next to the trailing edge of the barricade.

Figure 2. Photographs Depicting Shock Tube and Barricade. With Tube Opening From Simulated Mountain Side.

Figure 3. Data Acquisition and Reduction Scheme.

3. RESULTS

3.1 <u>Shadowgraph Results</u>. Figure 4a shows a set of shadowgraphs for the jet flow at 4.5 ms after tunnel exit. These films are for the tunnel without barricade (but with "mountain side"). The films for Figures 4a and 4b are not in true distance relationship to each other, as for a shot, but are juxtaposed to fit on the page. Figure 4b shows the result with barricade in place, at the same 4.5 ms after shock exit. Some pressure waves running in a generally forward direction are visible in film No. 3, whereas the jet flow has apparently disappeared from the 0°-line flow. A trace of the jet flow is yet visible at the top of film No. 1, or coming around the side of the barricade.

The arrival times of the forward edge of the jet, for the flow without barricade, are plotted in Figure 5. The points and curve from the free-field jet flow for the same flow condition, from Kingery and Gion (1989), are also shown. Apparently, the mountain side has no noticeable effect on the jet flow. However, some reinforcement of the free-air blast might be expected, but no separate measurements for such pressures were made.

3.2 Pressure Measurements.

3.2.1 Sample Pressure Traces. As mentioned, only one exit pressure level was fired due to time and fiscal constraints- $P_w \approx 500$ kPa. Measurements were made along the 0° line at 10, 15, 23, and 35 D from the tube exit, the farthest distance being the "inhabited building distance" for this exit pressure level, with the side-on pressure ≈ 7 kPa (1 psi).

Sample side-on traces, for barricade in place, are shown in Figure 6a. For comparison, earlier free-field traces from the work of Kingery and Gion (1989) are shown in Figure 6b. Similarly, the stagnation pressure traces [which are approximately the dynamic pressures in the unbarricaded case (Kingery and Gion 1989)] are shown in Figure 7a for the barricaded situation and Figure 7b for the unbarricaded situation. The greatly enhanced stagnation pressure levels of the unbarricaded case, due to the jet flow over the stations, is very evident. And, the jet flow's absence, with barricade in place, is very clear. Moreover, absolute peak levels apparently have decreased somewhat from the unbarricaded case to the barricaded case. Figure 8a shows an example of the tube exit pressure trace, which is the reference condition for the exiting flow. Figure 8b shows a typical trace for the face-mounted gage in the barricade. At 1.72 D (scaled 6 m) from the exit, the reflected pressure is seen to be below P_w.

Figure 4a. Shadowgraphs of Flow Without Barricade.

Figure 4b. Flow With Barricade in Place.

Figure 5. Jet Flow Motion.

Figure 6a. Side-On Pressure Traces. With Barricade.

Figure 6b. Side-On Pressure Traces. Without Barricade.

Figure 7a. Stagnation Pressure Traces. With Barricade.

Figure 7b. Stagnation Pressure Traces. Without Barricade.

a. Exit Pressure.

b. Reflected Pressure.

Figure 8. Typical Pressure Traces at Exit and at Barricade Face.

3.2.2 Side-on Overpressures. The peak side-on overpressures (ΔP) recorded without barricade in place follow a predictable decay with distance along the 0° line. Table 1 lists values of ΔP [from Kingery and Gion (1989)], for the unbarricaded case, along with exit pressure (P_w), the pressure ratio, $\Delta P/P_w$, and predicted $\Delta P/P_w$ [using equation (1) from Skjeltrope, Hegdahl, and Jenssen (1977)]:

$$\Delta P/P_{W} = 1.24 (R/D_{T})^{-1.35}$$
 (1)

Similar values are presented in Table 1 for the barricaded case.

Figure 9 shows plots of $\Delta P/P_W$ vs. R/D_T for the barricaded, unbarricaded, and calculated cases. Here it can be seen that the barricade tends to lower the side-on pressures at the 10 and 15 D stations, but at the 23 and 35 D stations, the values are larger. It is not known at present whether this increase at the 23 and 35 D stations is due to interactions of the flow with the barricade and the vertical walls leading from the tunnel or to other phenomena. The values are about 30% higher, which could affect the distance at which inhabited buildings could survive.

3.2.3 Stagnation Pressures. The stagnation overpressures from Kingery and Gion (1989), recorded along the 0° line without a barricade, are listed in Table 2 and plotted in Figure 10. It can be seen in Table 2 that the stagnation pressure created by the jet flow from the driver tube can range from two to eight times the side-on overpressure. In free-field blast, a peak side-on pressure of 27.6 kPa, as at station 10 say, should produce a stagnation pressure of 30.1 kPa, an increase of only about 9%. The stagnation pressure created by the jet flow was found to be 225.5 kPa, approximately 750% greater.

With barricade in place, stagnation pressures recorded along the 0° line show a dramatic decrease in levels. The recorded values are listed in Table 2 and plotted in Figure 10. The stagnation pressure and the side-on pressure are equal at 10 diameters, within reading error. This tells us that there is no jet flow enhancement at this station since the theoretical stagnation pressure should be 21 kPa, which is well within the error band of the instrumentation. Station 15 records a slight rise in stagnation pressure, indicating some flow enhancement, but there is a sharp decrease at the 23 and 35 D stations. We conclude that, with barricade in place, the jet flow effects have been greatly negated.

Table 1. Side-On Peak Overpressure vs. Distance Without and With a Barricade.

Distance, diameters	ΔP, kPa	P _w , kPa	Ratio, $\Delta P/P_w$	Predicted Ratio, ΔΡ/P _w
		Without Barri	cade	
10	27.6	503	0.0549	0.0554
15	15.9	503	0.0316	0.0320
23	9.0	503	0.0179	0.0180
35	4.8	503	0.0095	0.0102
		With Barrica	ade	
10	19.7	527	0.0374	0.0554
15	15.5	494	0.0314	0.0320
23	11.8	494	0.0239	0.0180
35	6.5	494	0.0132	0.0102

Figure 9. Pressure Ratios ($\Delta P/P_w$) vs. Distance Ratio (R/D_T) With and Without a Barricade.

Table 2. Stagnation Pressure vs. Distance Without and With a Barricade.

Distance, diameters	P _{STAG} , kPa	ΔP, kPa	Ratio P _{STAG} /∆P
	Without	Barricade	
10	225.5	27.6	8.2
15	100.0	15.9	6.3
23	50.3	9.0	5.6
35	10.3	4.8	2.1
	With B	arricade	
10	19.7	19.7	1.0
15	21.5	15.5	1.4
23	13.7	11.8	1.2
35	8.7	6.5	1.3

Figure 10. Stagnation Pressure (P_{STAG}) vs. Distance Ratio (R/D_T) With and Without a Barricade.

4. CONCLUSIONS

A model barricade built to about 1:140 scale of a barricade for some proposed Klotz tests (Vretblad 1988) has been exposed to the shock tube flow simulating an explosion in an explosives storage magazine. Only a single flow condition was attempted, a tube exit pressure $(P_w) \approx 500$ kPa (≈ 73 psi). Shadowgraphs and pressure measurements are exhibited. The results show that the barricade almost totally negates the jet flow enhancement of loadings along the 0° line. However, an increase of about 30% in side-on pressure level is noted at the inhabited building distance, which may be due to flow interactions with barricade and mountain side. This feature may merit consideration in the Q-D relationships.

5. REFERENCES

- Kingery, C.N. and E.J. Gion. "Jet Flow from Shock Tubes." BRL-TR-3015, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, July 1989. (ADA 210651)
- Skjeltrope, A., T. Hegdahl, and R. Jenssen. "Blast Propagation Outside a Typical Ammunition Storage Site." Proceedings of the Fifth International Symposium on Military Applications of Blast Simulators, Stockholm, May 1977.
- Vretblad, Bengt. "Proposal for Continued Klotz Club Tests." Fort F--Royal Fortification Administration, S63189 Eskilstuna, Sweden, July 1988.
- Zardas, Stephen J. "Free-Field Stagnation Presure and Impulse from H.E. Detonation in a Model Underground Munitions Storage Facility." BRL-TR-3085, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, April 1990. (ADA 221035)

INTENTIONALLY LEFT BLANK.

- 2 Administrator
 Defense Technical Info Center
 ATTN: DTIC-DDA
 Cameron Station
 Alexandria, VA 22304-6145
- 1 HQDA (SARD-TR) WASH DC 20310-0001
- 1 Commander
 US Army Materiel Command
 ATTN: AMCDRA-ST
 5001 Eisenhower Avenue
 Alexandria, VA 22333-0001
- 1 Commander
 US Army Laboratory Command
 ATTN: AMSLC-DL
 Adelphi, MD 20783-1145
- 2 Commander
 US Army, ARDEC
 ATTN: SMCAR-IMI-I
 Picatinny Arsenal, NJ 07806-5000
- 2 Commander
 US Army, ARDEC
 ATTN: SMCAR-TDC
 Picatinny Arsenal, NJ 07806-5000
- 1 Director
 Benet Weapons Laboratory
 US Army, ARDEC
 ATTN: SMCAR-CCB-TL
 Watervliet, NY 12189-4050
- 1 Commander
 US Army Armament, Munitions
 and Chemical Command
 ATTN: SMCAR-ESP-L
 Rock Island, IL 61299-5000
- Director US Army Aviation Research and Technology Activity ATTN: SAVRT-R (Library) M/S 219-3 Arnes Research Center Moffett Field, CA 94035-1000

No of Copies Organization

- 1 Commander
 US Army Missile Command
 ATTN: AMSMI-RD-CS-R (DOC)
 Redstone Arsenal, AL 35898-5010
- 1 Commander
 US Army Tank-Automotive Command
 ATTN: AMSTA-TSL (Technical Library)
 Warren, Mt 48397-5000
- Director US Army TRADOC Analysis Command ATTN: ATRC-WSR White Sands Missile Range, NM 88002-5502
- (Class. only) 1 Commandant
 US Army Infantry School
 ATTN: ATSH-CD (Security Mgr.)
 Fort Benning, GA 31905-5660
- (Unclase. enly) 1 Commandant
 US Army Infantry School
 ATTN: ATSH-CD-CSO-OR
 Fort Benning, GA 31905-5660
 - 1 Air Force Armament Laboratory ATTN: AFATL/DLODL Eglin AFB, FL 32542-5000

Aberdeen Proving Ground

- 2 Dir, USAMSAA ATTN: AMXSY-D AMXSY-MP, H. Cohen
- 1 Cdr, USATECOM ATTN: AMSTE-TD
- 3 Cdr, CRDEC, AMCCOM
 ATTN: SMCCR-RSP-A
 SMCCR-MU
 SMCCR-MSI
- 1 Dir, VLAMO ATTN: AMSLC-VL-D

- Secretary of Defense
 ADUSDRE (R/AT) (ET)
 ATTN: Mr. J. Persh, Staff Specialist,
 Materials and Structures
 Washington, DC 20301
- 1 Under Secretary of Defense for Research and Engineering Department of Defense Washington, DC 20301
- 1 Director of Defense, Research and Engineering Washington, DC 20301
- 1 Assistant Secretary of Defense (Atomic Energy) ATTN: Document Control Washington, DC 20301
- 1 Assistant Secretary of Defense (MRA&L) ATTN: EO&SP Washington, DC 20301
- Director
 Defense Advanced Research Projects
 Agency
 1400 Wilson Boulevard
 Arlington, VA 22209
- 1 Director
 Defense Intelligence Agency
 ATTN: DT-1B, Dr. J. Vorona
 Washington, DC 20301
- 2 Chairman
 Joint Chiefs of Staff
 ATTN: J-3, Operations
 J-5, Plans & Policy
 (R&D Division)
 Washington, DC 20301
- 4 Director
 Defense Nuclear Agency
 ATTN: SPTD, Mr. T. E. Kennedy
 DDST (E), Dr. E. Sevin
 OALG, Mr. T. P. Jeffers
 LEEE, Mr. J. Eddy
 Washington, DC 20305

- 30 Chairman
 DoD Explosives Safety Board
 Room 856-C, Hoffman Bldg 1
 2461 Eisenhower Avenue
 Alexandria, VA 22331-0600
 - 1 HQDA (DAEN-ECE-T, Mr. R. L. Wright) WASH DC 20310
 - 1 HQDA (DAEN-MCC-D, Mr. L. Foley) WASH DC 20310
 - 1 HQDA (DAEN-RDL, Mr. Simonini) WASH DC 20310
 - 1 HQDA (DAEN-RDZ-A, Dr. Choromokos) WASH DC 20310
 - 1 HQDA (DALO-SMA,COL W.F. Paris II) WASH DC 20310
 - 1 HQDA (DAPE-HRS) WASH DC 20310
- Commander
 US Army Ballistic Missile Defense
 Systems Command
 ATTN: J. Veeneman
 P.O. Box 1500, West Station
 Huntsville, AL 35807
- Director
 US Army Ballistic Missile Defense
 Systems Command
 Advanced Technology Center
 ATTN: M. Whitfield
 P.O. Box 1500
 Huntsville, AL 35807-3801
- 1 US Army Engineer Division ATTN: Mr. Char P.O. Box 1600 Huntsville, AL 35807
- 1 Commandant
 US Army Engineer School
 ATTN: ATSE-CD
 Fort Leonard Wood, MO 65473-6620

- Director
 US Army Engineer Waterways
 Experimental Station
 ATTN: WESNP
 K. Davis
 P.O. Box 631
 Vicksburg, MS 39180-0631
- 1 Commander
 US Army Materiel Command
 ATTN: AMCSF
 5001 Eisenhower Avenue
 Alexandria, VA 22333-0001
- 2 Commander
 HQ AMCCOM
 ATTN: AMSMC-IS
 Rock Island, IL 61299-6000
- 1 Commander
 HQ AMCCOM
 ATTN: AMSMC-IMP-L
 Rock Island, IL 61299-7300
- 1 Commanding General
 US Army Armament Command
 ATTN: AMSAR-SA
 Rock Island Arsenal
 Rock Island, IL 61201
- 1 Commander
 US Army, ARDEC
 ATTN: SMCAR-FSM-SPC
 Picatinny Arsenal, NJ 07806-5000
- 1 Commander
 US Army Pine Bluff Arsenal
 Pine Bluff, AR 71601
- 1 Commander
 US Army Rock Island Arsenal
 Rock Island, IL 61299

- Director
 Lewis Directorate
 US Army Air Mobility Research and Development Laboratory
 Lewis Research Center
 ATTN: Mail Stop 77-5
 21000 Brookpark Road
 Cleveland, OH 44135
- 1 Commander, USACECOM
 R&D Technical Library
 ATTN: ASQNC-ELC-I-T, Myer Center
 Fort Monmouth, NJ 07703-5301
- Director
 US Army Harry Diamond Laboratories
 ATTN: SLCHD-TI
 2800 Powder Mill Road
 Adelphi, MD 20783-1197
- 1 Director
 US Army Missile and Space
 Intelligence Center
 ATTN: AIAMS-YDL
 Redstone Arsenal, AL 35898-5500
- 3 Commander
 US Army Belvoir Research and
 Development Center
 ATTN: STRBE-NN
 Fort Belvoir, VA 22060-5606
- Commander
 US Army Natick Research and
 Development Laboratories
 ATTN: AMDNA-D, Dr. D. Seiling
 Natick, MA 01760
- 1 Commander
 Dugway Proving Ground
 ATTN: STEDP-TO-H, Mr. Miller
 Dugway, UT 84022
- US Army Foreign Science and
 Technology Center
 ATTN: Research and Data Branch
 Federal Office Building
 220 7th Street, NE
 Charlottesville, VA 22901

- 1 Director
 US Army Materials Technology
 Laboratory
 ATTN: SLCMT-ATL
 Watertown, MA 02172-0001
- 1 Director
 US Army Research Office
 P.O. Box 12211
 Research Triangle Park,
 NC 27709-2211
- 1 Assistant Secretary of the Navy (Research and Development) Navy Development Washington, DC 20350
- 1 Commander
 Naval Research Laboratory
 ATTN: Code 2027, Technical
 Library
 Washington, DC 20375
- 2 Commander Naval Surface Warfare Center White Oak Laboratory ATTN: R-15, Mr. M. M. Swisdak Mr. W. D. Smith III Silver Spring, MD 20902-5000
- 1 Commander (Code 62C2)
 Naval Weapons Center
 ATTN: G. Ostermann
 China Lake, CA 93555-6001
- 1 Commander
 Naval Weapons Evaluation Facility
 ATTN: Document Control
 Kirtland AFB
 Albuquerque, NM 87117
- 1 Air Force Systems Command ATTN: IGFG Andrews AFB Washington, DC 20334

- 1 Air Force Armament Laboratory ATTN: AFATL/DOIL (Technical Information Center) Edlin AFB, FL 32542-5438
- 1 AFML
 ATTN: LNN, Dr. T. Nicholas
 MAS
 MBC, Mr. D. Schmidt
 Wright-Patterson AFB, OH 45433
- 1 Headquarters
 Department of Energy
 Office of Military Application
 Washington, DC 20545
- 1 Bureau of Mines ATTN: Mr. Richard A. Watson Cochrans Mill Road P.O. Box 18070 Pittsburgh, PA 15236
- 1 Director
 Lawrence Livermore Laboratory
 Technical Information Division
 P.O. Box 808
 Livermore, CA 94550
- 1 Director
 Los Alamos Scientific Laboratory
 ATTN: Dr. J. Taylor
 P.O. Box 1663
 Los Alamos, NM 87544
- Director
 Sandia National Laboratories
 Information Distribution Division
 ATTN: Dr. W. A. von Riesemann, Div 6442
 Albuquerque, NM 87115
- Director, NASA
 George C. Marshall Space Flight
 Center
 Huntsville, AL 35812

- Director, NASA
 Scientific and Technical Information
 Facility
 P.O. Box 8757
 Baltimore/Washington International
 Airport, MD 21240
- National Academy of Science ATTN: Mr. D. G. Groves
 2101 Constitution Avenue, NW Washington, DC 20418
- 10 Central Intelligence Agency OIR/DB/Standard GE47 HQ Washington, DC 20505
- 1 Aerospace Corporation P.O. Box 92957 Los Angeles, CA 90009
- Aeronautical Research Associates of Princeton, Inc.
 ATTN: Dr. C. Donaldson
 Washington Road
 P.O. Box 2229
 Princeton, NJ 08540
- 1 Agbabian Associates ATTN: Dr. D. P. Reddy 250 N. Nash Street El Segundo, CA 90245
- 1 Ammann and Whitney ATTN: Mr. N. Dobbs Suite 1700 Two World Trade Center New York, NY 10048
- Applied Research Associates, Inc.
 ATTN: Mr. John H. Keefer
 30 Diamond St.
 P.O. Box 548
 Aberdeen, MD 21001

- 1 AVCO Corporation
 Structures and Mechanics Dept.
 ATTN: Dr. William Broding
 Dr. J. Gilmore
 201 Lowell Street
 Wilmington, MA 01887
- 1 Wilfred Baker Engineering ATTN: Dr. Wilfred E. Baker P.O. Box 6477 San Antonio, TX 78209
- 1 Black and Veatch, Engineers-Architects ATTN: Mr. H.D. Laverentz 1500 Meadow Lake Parkway Kansas City, MO 64114
- 2 The Boeing Company
 Aerospace Division
 ATTN: Dr. Peter Grafton
 Dr. D. Strome
 Mail Stop 8C-68
 P.O. Box 3707
 Seattle, WA 98124
- DNA Information an Analysis Center Kaman Tempo
 ATTN: DASOAC
 816 State Street
 P.O. Drawer 1479
 Santa Barbara, CA 93102
- 1 General American Transportation
 Corporation
 General American Research Division
 ATTN: Dr. J. C. Shang
 7449 N. Natchez Avenue
 Niles, IL 60648
- J. G. Engineering Research Associates 3831 Menlo Drive Baltimore, MD 21215
- McDonnell Douglas Astronautics
 Western Division
 ATTN: Dr. Lea Cohen
 5301 Bosla Avenue
 Huntington Beach, CA 92647

- 1 Physics International Company 2700 Merced Street San Leandro, CA 94577
- 1 R&D Associates ATTN: G.P. Ganong P.O. Box 9377 Albuquerque, NM 87119
- 1 Science Applications, Inc. Division 164, MST-3-2 1710 Goodridge Drive McLean, VA 22102
- 2 Battelle Memorial Institute ATTN: Dr. L.E. Hulbert Mr. J.E. Backofen, Jr. 505 King Avenue Columbus, OH 43201
- 1 Brown University
 Division of Engineering
 ATTN: Prof. R. Clifton
 Providence, RI 02912
- 1 Florida Atlantic University
 Dept. of Ocean Engineering
 ATTN: Prof. K.K. Stevens
 Boca Raton, FL 33432
- 1 Georgia Institute of Technology ATTN: Dr. S. Atluri 225 North Avenue, NW Atlanta, GA 30332
- 3 Director
 Institute for Defense Analyses
 ATTN: Dr. H. Menkes
 Dr. J. Bengston
 Technical Information Office
 1801 Beauregard St.
 Alexandria, VA 22311
- 1 ITT Research Institute ATTN: Mrs. H. Napadensky 10 West 35 Street Chicago, IL 60616

No. of Copies Organization

- 1 Lovelace Research Institute ATTN: Dr. E.R. Fletcher P.O. Box 5890 Albuquerque, NM 87115
- 2 Southwest Research Institute ATTN: Dr. H.N. Abramson Dr. U.S. Lindholm 8500 Culebra Road San Antonio, TX 78228
- Texas A&M University
 Department of Aerospace Engineering
 ATTN: Dr. James A. Stricklin
 College Station, TX 77843
- 1 University of Alabama ATTN: Dr. T.L. Cost P.O. Box 870278 Tuscaloosa, AL 35487-0278

Aberdeen Proving Ground

- 1 Cdr, USATECOM ATTN: AMSTE-SI-F
- 1 Cdr, US Army Toxic and Hazardous Materials Agency ATTN: AMXTH-TE

USER EVALUATION SHEET/CHANGE OF ADDRESS

This laboratory undertake publishes. Your comments	es a continuing effort to improve the quality of the report s/answers below will aid us in our efforts.	s it
interest for which the repo		
2. How, specifically, is the	e report being used? (Information source, design data, proced	
dollars saved, operating	this report led to any quantitative savings as far as man-hour costs avoided, or efficiencies achieved, etc? If so, ple	ease
(Indicate changes to organ	What do you think should be changed to improve future reponization, technical content, format, etc.)	
BRL Report Number	BRL-TR-3211 Division Symbol	
Check here if desire to be	removed from distribution list.	
Check here for address ch	nange	
Current address:	OrganizationAddress	
EPARTMENT OF THE ARMY		NO POSTAGE NECESSARY IF MALLED
OFFICIAL BUSINESS	BUSINESS REPLY MAIL FIRST CLASS PERMIT No 0001, APG, MO	IN THE UNITED STATES
	Postage will be paid by addressee.	