2-3.여러 가지 방정식과 부등식

2-3-4.이차부등식과 연립이차부등식 천재(이준열)

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일: 2020-03-05

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

개념check /

[이차부등식과 이차함수의 관계]

이차함수 $y=ax^2+bx+c\;(a>0)$ 의 그래프를 이용하여 이차부등식의 해를 구할 수 있다.

이차부등식	이차부등식		
$ax^2+bx+c>0$ 의 해	$ax^2+bx+c<0$ 의 해		
(y>0인 x의 범위)	(y<0인 x의 범위)		
	$a \ominus \beta \hat{x}$		
$x < \alpha$ 또는 $x > \beta$	$\alpha < x < \beta$		
\bigoplus \bigoplus \bigcap	a x		
$x \neq \alpha$ 인 모든 실수	없다.		
⊕ \	*		
모든 실수	없다.		

[이차부등식의 해]

이차부등식 $y = ax^2 + bx + c (a > 0)$ 의 해는 이차함수의 그래프와 x축 의 위치 관계로 구할 수 있다.

$ax^2 + bx + c = 0$ 의 판별식 D 의 부호	D>0	D=0	D < 0
$y = ax^2 + bx + c$ 의 그래프	α β x	$\frac{1}{\alpha}$	
$ax^2+bx+c>0$ 의 해	x < α 또는 x > β	$x \neq \alpha$ 인 모든 실수	모든 실수
$ax^2 + bx + c \ge 0$ 의 해	$x \le \alpha$ 또는 $x \ge \beta$	모든 실수	모든 실수
$ax^2+bx+c<0$ 의 해	$\alpha < x < \beta$	해는 없다.	해는 없다.
$ax^2 + bx + c \le 0$ 의 해	$\alpha \leq x \leq \beta$	$x = \alpha$	해는 없다.

[연립이차부등식]

- (1) 각 부등식의 해를 구한다.
- (2) 공통부분을 찾아 해를 구한다.

기본문제

[예제]

- **1.** 이차부등식 $x^2 x 6 \le 0$ 의 해를 구하면?
 - ① $-2 \le x \le 1$
- ② $-2 \le x \le 2$
- $\bigcirc 3 2 \le x \le 3$
- (4) $-3 \le x \le 3$
- (5) $-2 \le x \le 4$

[문제]

- **2.** 이차부등식 $x^2 7x + 10 < 0$ 의 해를 구하면?
 - ① 1 < x < 3
- ② 2 < x < 4
- (3) 3 < x < 4
- $\bigcirc 2 < x < 5$
- ⑤ 3 < x < 5

[예제]

- **3.** 이차부등식 $x^2-6x+9>0$ 의 해를 구하면?
 - ① x < 3
- ② x > 3
- ③ 모든 실수
- ④ *x* ≠ 6인 모든 실수
- ⑤ $x \neq 3$ 인 모든 실수

[문제]

- **4.** 이차부등식 $-x^2 + 8x 16 \ge 0$ 의 해를 구하면?
 - ① $x \neq 4$ 인 모든 실수
- ② x = 4
- ③ 모든 실수
- $4 \ x > 4$
- (5) x < 4

[예제]

5. 이차부등식 $3x^2 - 5x + 4 > 0$ 의 해를 구하면?

- ① 모든 실수
- ② x > 2
- ③ $x < -\frac{1}{3}$ ④ $x < -\frac{1}{3}$ 또는 x > 2

[문제]

6. 이차부등식 $-x^2-x+2>0$ 의 해를 구하면?

- ① -3 < x < 1
- $\bigcirc 2 2 < x < 1$
- $\bigcirc 3 3 < x < 2$
- $\bigcirc 4 2 < x < 2$
- (5) -3 < x < 3

7. x에 대한 이차방정식 $x^2 + (a+3)x + a^2 = 0$ 이 서 로 다른 두 실근을 가질 때, 실수 a의 값의 범위 는?

- $\bigcirc -2 < a < 1$
- (2) -1 < a < 1
- $\bigcirc 3 2 < a < 2$
- $\bigcirc 4 1 < a < 3$
- \bigcirc -2 < a < 3

[문제]

8. 회전 교차로의 최소 반경 r m는 차량의 최대 진 입 속도 a km/h를 고려할 때, 대략 $r = 0.36a^2$ 의 관계가 성립하도록 설계한다. 최소 반경이 9 m인 교차로를 진입하는 차량의 속도를 x km/h라고 할 때, x의 값의 범위는?

- ① $0 < x \le 1$
- ② $0 < x \le 2$
- $3 \ 0 < x \le 3$
- (4) $0 < x \le 4$
- (5) $0 < x \le 5$

[예제]

- ① $-6 \le x < -2$
- ② $-6 \le x \le 4$
- $3 2 < x \le 4$
- (4) $-2 < x \le 6$
- $\boxed{5} -4 \le x < -2$

[문제]

10. x > 0에서 부등식 2 < x(x-1) < 6의 해는?

- ① 1 < x < 3
- ② 2 < x < 3
- $\bigcirc 3 \ 1 < x < 5$
- $\bigcirc 2 < x < 5$
- (5) 2 < x < 6

평가문제

[소단원 확인 문제]

11. 이차부등식 $x^2-3x-10<0$ 의 해를 구하면?

- ① -2 < x < 5
- $\bigcirc 2 2 < x < 4$
- $\bigcirc 3 2 < x < 3$
- $\bigcirc (4) -1 < x < 4$
- ⑤ -1 < x < 3

[소단원 확인 문제]

12. 연립부등식 $\begin{cases} 2x-1>x-2 \\ x^2+x-6\leq 0 \end{cases}$ 의 해는?

- $\bigcirc -3 \le x \le 2$
- $\bigcirc -3 \le x < -1$
- $3 1 < x \le 2$
- (4) $-1 < x \le 3$
- (5) $-2 \le x < -1$

[소단원 확인 문제]

13. 모든 실수 x에서 이차부등식

 $x^2 + 2kx + 2k + 3 \ge 0$ 이 항상 성립할 때, 실수 k의 값의 범위는?

- ① $-2 \le k \le 2$
- ② $-2 \le k \le 3$
- $3 1 \le k \le 1$
- $4 1 \le k \le 2$
- (5) $-1 \le k \le 3$

[소단원 확인 문제]

14. 계수 a, b, c가 실수인 x의 이차부등식 $ax^2+bx+c>0$ 의 해가 모든 실수일 때의 조건은?

- ① a < 0, $b^2 4ac < 0$ ② a > 0, $b^2 4ac < 0$
- (3) a < 0. $b^2 4ac = 0$
- (4) a > 0. $b^2 4ac > 0$
- ⑤ a < 0, $b^2 4ac > 0$

[중단원 연습 문제]

- **15.** 이차부등식 $x^2 + 2x 24 < 0$ 의 해가 a < x < b일 때, 실수 a, b에 대하여 a+b의 값은?
 - $\bigcirc -3$
- $\bigcirc -2$
- 3 1
- **4** 1
- (5) 2

[중단원 연습 문제]

- **16.** 연립부등식 $\begin{cases} 3x-2>x-6 \\ x^2-x-12<0 \end{cases}$ 의 해는?
 - $\bigcirc -2 < x < 4$
- $\bigcirc 2 2 < x < 3$
- $\bigcirc 3 2 < x < 2$
- $\bigcirc 3 < x < 3$
- (5) -3 < x < 4

[중단원 연습 문제]

- **17.** 일차부등식 ax+b>0의 해가 $x<-\frac{5}{2}$ 일 때, 이차부등식 $ax^2 - bx < 0$ 의 해는? (단, a, b는 실수)
 - ① $-\frac{5}{2} < x < \frac{5}{2}$ ② $0 < x < \frac{5}{2}$

 - ③ $-\frac{5}{2} < x < 0$ ④ $x < -\frac{5}{2}$ 또는 x > 0
 - ⑤ x < 0 또는 $x > \frac{5}{2}$

[중단원 연습 문제]

- **18.** 모든 실수 x에서 이차부등식
 - $x^2-2ax+a+6 \ge 0$ 이 항상 성립하도록 하는 모든 정수 a의 값의 합은?
 - \bigcirc 0
- ② 1
- 3 2
- **(4)** 3
- (5) 4

[중단원 연습 문제]

- **19.** x에 대한 두 이차방정식 $x^2 + a^2 9 = 0$. $x^2 + ax + 2a = 0$ 이 모두 서로 다른 두 실근을 갖도록 하는 실수 a 값의 범위는?
 - (1) -1 < a < 0
- $\bigcirc -3 < a < 0$
- $\bigcirc 3 1 < a < 1$
- $\bigcirc 3 < a < 1$
- (5) -3 < a < 2

[중단원 연습 문제]

- **20.** 넓이가 200 m^2 이상인 직사각형 모양의 꽃밭을 만들려고 한다. 둘레의 길이가 60 m라고 할 때, 이 꽃밭의 한 변의 길이의 범위는?
 - (1) $5 \le x \le 15$
- ② $5 \le x \le 25$
- $3 10 \le x \le 15$
- $\bigcirc 10 \le x \le 20$
- (5) $10 \le x \le 25$

[중단원 연습 문제]

- **21.** 세 변의 길이가 각각 x, x+3, x+6인 삼각형이 둔각삼각형이 되도록 하는 모든 자연수 x의 값의 합은?
 - ① 25
- ② 30
- ③ 33
- **4**) 39
- (5) 42

- [중단원 연습 문제]
- **22.** 이차부등식 $ax^2 + bx + c > 0$ 의 해가 -2 < x < 3일 때, 부등식 $cx^2 - bx + a < 0$ 의 해를 구하면? (단, a, b, c는 실수)

 - ① $-\frac{1}{3} < x < 0$ ② $-\frac{1}{2} < x < -\frac{1}{3}$
 - $3 \frac{1}{3} < x < \frac{1}{2}$ $4 \frac{1}{2} < x < \frac{1}{3}$

[중단원 연습 문제]

23. 연립부등식 $\begin{cases} x^2-4x+3>0 \\ x^2+(a+1)x+a\leq 0 \end{cases}$ 의 해가

 $-1 \le x < 1$ 이 되도록 하는 실수 a의 값의 범위는?

- ① $-3 \le a < -1$
- ② $-3 \le a \le -1$
- $3 3 < a \le -1$
- $4 1 \le x \le 3$
- ⑤ $1 \le x < 3$

[대단원 종합 문제]

24. 이차부등식 $-x^2-5x+2>0$ 의 해가

 $\alpha < x < \beta$ 일 때, $\frac{1}{\alpha} + \frac{1}{\beta}$ 의 값은?

① 2

② $\frac{5}{2}$

3 3

 $4 \frac{7}{2}$

⑤ 4

[대단원 종합 문제]

- **25.** 부등식 $2 \le (a-1)x+b \le x^2+2x+6$ 이 모든 실수 x에서 항상 성립할 때, a+b의 값이 될 수 없는 것은? (단, a, b는 실수)
 - 1) 2

- ② 3
- 3 4

4 5

⑤ 6

[대단원 종합 문제]

26. 다음 그림과 같이 $\overline{AC} = \overline{BC} = 8$ 인 직각이등변삼각형 ABC가 있다. 빗변 AB 위의 점 P에서 변 BC와 변 AC에 내린 수선의 발을 각각 Q, R라고 할때, 삼각형 APR과 삼각형 PBQ의 넓이는 각각 직사각형 PQCR의 넓이보다 작다. $\overline{BQ} = x$ 일 때, x의 값의 범위가 a < x < b이다. a + b의 값은?

1 0

- 2 2
- 3 4
- **4**) 6

⑤ 8

정답 및 해설

1) [정답] ③

[해설] 이차함수 $y=x^2-x-6$ 에서

 $y=x^2-x-6=(x+2)(x-3)$ 이므로 그 그래프가 x축과 만나는 점의 x좌표는 -2, 3이다.

따라서 주어진 부등식의 해는 $-2 \le x \le 3$

2) [정답] ④

[해설] 이차함수 $y = x^2 - 7x + 10$ 에서

 $y=x^2-7x+10=(x-2)(x-5)$ 이므로 그 그래프 가 x축과 만나는 점의 x좌표는 2, 5이다.

따라서 주어진 부등식의 해는 2 < x < 5

3) [정답] ⑤

[해설] 이차함수 $y = x^2 - 6x + 9$ 에서

 $y=x^2-6x+9=(x-3)^2$ 이므로 그 그래프가 x축과 만나는 점의 x좌표는 3이다.

따라서 주어진 부등식의 해는 $x \neq 3$ 인 모든 실수

4) [정답] ②

[해설] 이차함수 $y = -x^2 + 8x - 16$ 에서

 $y=-x^2+8x-16=-(x-4)^2$ 이므로 그 그래프가 x축과 만나는 점의 x좌표는 4이다.

따라서 주어진 부등식의 해는 x=4

5) [정답] ①

[해설] 이차함수 $y = 3x^2 - 5x + 4$ 에서

이차방정식 $3x^2-5x+4=0$ 의 판별식을 D라고 하면

 $D=(-5)^2-4\times 3\times 4=-23<0$ 이므로 그래프는 x축과 만나지 않는다.

따라서 주어진 부등식의 해는 모든 실수이다.

6) [정답] ②

[해설] 이차함수 $y = -x^2 - x + 2$ 에서

 $y=-x^2-x+2=-(x+2)(x-1)$ 이므로 그래프가 x축과 만나는 점의 x좌표는 -2, 1이다.

따라서 주어진 부등식의 해는 -2 < x < 1

7) [정답] ④

[해설] 이차방정식 $x^2 + (a+3)x + a^2 = 0$ 은 서로 다른

두 실근을 가지므로 판별식을 D라고 하면

$$D = (a+3)^2 - 4a^2 > 0$$

 $-3a^2+6a+9>0$

 $a^2-2a-3 < 0$, (a+1)(a-3) < 0

-1 < a < 3

8) [정답] ⑤

[해설] 교차로를 진입하는 차량의 속도는 0보다 크고 최대 진입 속도보다 작으므로

$$0 < x \le a$$

 $r = 0.36a^2$ 에서 r = 9이므로

 $9 = 0.36a^2$. $a^2 = 25$

a는 최대 진입 속도이므로 a>0, a=5

따라서 $0 < x \le 5$

9) [정답] ③

[해설] $\begin{cases} x-4 < 3x & \cdot \\ x^2 + 2x - 24 \le 0 & \cdot \end{cases}$

..... 🗓

부등식 🗇을 풀면

2x > -4, $\stackrel{\sim}{\neg} x > -2$

부등식 ①을 풀면 $(x+6)(x-4) \le 0$

 $-6 \le x \le 4$

回, ②을 수직선 위에 나타내면

따라서 구하는 해는 $-2 < x \le 4$

10) [정답] ②

[해설] 주어진 연립부등식은 다음과 같이 나타낼 수 있다.

$$\int 2 < x^2 - x$$

$$x^2 - x < 6$$

..... ① ①

부등식 ①을 풀면

$$x^2-x-2>0$$
, $(x+1)(x-2)>0$

즉 x < -1 또는 x > 2

x > 0이므로

x > 2 (\Box)

부등식 ①을 풀면

$$x^2-x-6<0$$
, $(x+2)(x-3)<0$

-2 < x < 3

x > 0이므로

0 < x < 3

..... 包

ⓒ, ②을 수직선 위에 나타내면

따라서 구하는 해는

2 < x < 3

11) [정답] ①

[해설] 이차함수 $y = x^2 - 3x - 10$ 에서

 $y=x^2-3x-10=(x+2)(x-5)$ 이므로 그래프가 x축과 만나는 점의 x좌표는 -2, 5이다.

따라서 주어진 부등식의 해는 -2 < x < 5

12) [정답] ③

[해설] $\begin{cases} 2x-1>x-2 & \cdots & \bigcirc \\ x^2+x-6 \leq 0 & \cdots & \bigcirc \end{cases}$

부등식 🗇을 풀면

x > -1 \bigcirc

부등식 (L)을 풀면

 $(x+3)(x-2) \le 0$

$$-3 \le x \le 2$$

ⓒ, ②을 수직선 위에 나타내면

따라서 구하는 해는 $-1 < x \le 2$

13) [정답] ⑤

[해설] $x^2 + 2kx + 2k + 3 = 0$ 의 판별식을 D라고 하면

$$\frac{D}{A} = k^2 - 1 \times (2k+3) = k^2 - 2k - 3 = (k-3)(k+1)$$

 $x^2 + 2kx + 2k + 3 \ge 0$ 이 모든 실수 x에 대하여 성 립하므로

 $(k-3)(k+1) \le 0, -1 \le k \le 3$

14) [정답] ②

[해설] $ax^2+bx+c>0$ 이 모든 실수에서 성립하려면 이차함수 $y=ax^2+bx+c$ 의 그래프는 다음 그림 과 같아야한다.

따라서 a > 0. $b^2 - 4ac < 0$

15) [정답] ②

[해설] $x^2 + 2x - 24 < 0$ 에서

$$x^2 + 2x - 24 = (x+6)(x-4)$$
이므로 $(x+6)(x-4) < 0$ 즉 $-6 < x < 4$

따라서 a = -6, b = 4이고 a+b = -2

16) [정답] ①

[해설] $\begin{cases} 3x-2>x-6 & \cdots \ 2^2-x-12<0 & \cdots \ \end{bmatrix}$

부등식 🗇을 풀면

2x > -4, $\stackrel{\frown}{\lnot} x > -2$ \bigcirc

부등식 ⓒ을 풀면

(x+3)(x-4) < 0

-3 < x < 4

ⓒ, ②을 수직선 위에 나타내면

따라서 구하는 해는

-2 < x < 4

17) [정답] ⑤

[해설] 일차부등식 ax+b>0의 해는

$$a>0$$
일 때, $x>-\frac{b}{a}$ $a<0$ 일 때, $x<-\frac{b}{a}$ 이므로 $-\frac{b}{a}=-\frac{5}{2}$, 즉 $b=\frac{5}{2}a$ 이고 $a<0$ 이차부등식 $ax^2-bx<0$ 에서 $b=\frac{5}{2}a$ 이므로 $ax^2-\frac{5}{2}ax<0$, $ax\left(x-\frac{5}{2}\right)<0$ $a<0$ 이므로 $x\left(x-\frac{5}{2}\right)>0$ 따라서 이차부등식의 해는 $x<0$ 또는 $x>\frac{5}{2}$

18) [정답] ④

[해설] 이차방정식 $x^2-2ax+a+6=0$ 의 판별식을 D 라고 하면 이차부등식 $x^2-2ax+a+6>0$ 이 항상 성립해야하므로

$$\begin{split} \frac{D}{4} &= (-a)^2 - 1 \times (a+6) = a^2 - a - 6 \le 0, \\ &\stackrel{\sim}{=} a^2 - a - 6 \le 0 \\ a^2 - a - 6 &= (a+2)(a-3) \circ | 므로 \\ -2 &\le a \le 3 \\ 모든 정수 a의 값의 합은 \\ (-2) + (-1) + 0 + 1 + 2 + 3 = 3 \end{split}$$

19) [정답] ②

[해설] $x^2+a^2-9=0$ 의 판별식을 D_1 이라고 하면 $D_1=0^2-4\times1\times(a^2-9)=-4a^2+36>0$ 즉 (a+3)(a-3)<0, -3<a<3 $x^2+ax+2a=0$ 의 판별식 D_2 라고 하면 $D_2=a^2-4\times1\times2a=a^2-8a>0$ 즉 a(a-8)>0, a<0 또는 a>8 따라서 -3<a<0

20) [정답] ④

[해설] 꽃밭의 한 변의 길이를 x라고 하면 다른 한 변의 길이는 30-x 직사각형의 꽃밭의 넓이는 $x(30-x) \ge 200$, 즉 $x^2-30x+200 \le 0$ $x^2-30x+200=(x-10)(x-20)$ 이므로 $10 \le x \le 20$

21) [정답] ②

22) [정답] ⑤

[해설] 해가 -2 < x < 3인 이차부등식은 $(x+2)(x-3) < 0, \ \, 즉 \ \, x^2-x-6 < 0$ $a < 0, \ \, b=-a, \ \, c=-6a$ $cx^2-bx+a=-6ax^2+ax+a=-a(6x^2-x-1)$ 즉 $6x^2-x-1<0$ $6x^2-x-1=(2x-1)(3x+1) 이므로$ $-\frac{1}{3} < x < \frac{1}{2}$

23) [정답] ②

[해설]
$$\begin{cases} x^2 - 4x + 3 > 0 & \dots & \bigcirc \\ x^2 + (a+1)x + a \le 0 & \dots & \bigcirc \end{cases}$$
 부등식 ①을 풀면 $(x-1)(x-3) > 0$ 즉 $x < 1$ 또는 $x > 3$ 주어진 연립부등식의 해는 $-1 \le x < 1$ 이므로 부등식 \bigcirc 을 풀면 $(x+1)(x+a) \le 0$ 즉 $-1 \le x \le -a$ 따라서 $1 \le -a \le 3$ 이므로 $-3 \le a \le -1$

24) [정답] ②

[해설] $-x^2 - 5x + 2 > 0$ 에서 $x^2 + 5x - 2 < 0$ 이고 해가 $\alpha < x < \beta$ 일 때, α , β 는 이차방정식 $x^2 + 5x - 2 = 0$ 의 해이다. 근과 계수의 관계에 의하여 $\alpha + \beta = -5$, $\alpha\beta = -2$ $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{-5}{-2} = \frac{5}{2}$

25) [정답] ①

[해설] $2 \le (a-1)x + b \le x^2 + 2x + 6$

주어진 부등식은 다음과 같이 나타낼 수 있다.

$$\begin{cases} 2 \leq (a-1)x+b & \cdots \bigcirc \bigcirc \\ (a-1)x+b \leq x^2+2x+6 & \cdots \bigcirc \bigcirc \end{cases}$$
 부등식 \bigcirc 을 풀면 $(a-1)x \geq 2-b$,

모든 실수 x에서 항상 성립해야하므로

$$x^2 - (a-3)x + 6 - b \ge 0$$
,

이차방정식 $x^2+2x+6-b=0$ 의 판별식을 D라고 하면

$$\frac{D}{4} = 1^2 - 1 \times (6 - b) = b - 5 \le 0$$

모든 실수 x에서 항상 성립해야하므로

$$b \le 5$$
 $\stackrel{\frown}{\cong}$

©, ②을 수직선 위에 나타내면

a=1, $2 \leq b \leq 5$ 이旦로

 $3 \le a+b \le 6$

26) [정답] ⑤

[해설] △ABC는 직각이등변삼각형이므로

$$0 < x < 8$$
이고,

$$\overline{PQ} = \overline{BQ} = x$$
, $\overline{PR} = \overline{AR} = 8 - x$

이때 \square PQCR의 넓이는 x(8-x)

$$\triangle$$
APR의 넓이는 $\frac{1}{2}(8-x)^2$,

 \triangle PBQ의 넓이는 $\frac{1}{2}x^2$

한편, (△APR의 넓이)<(□PQCR의 넓이), (△PBQ의 넓이)<(□PQCR의 넓이)이므로

$$\begin{cases} \frac{1}{2}(8-x)^2 < x(8-x) & \cdots \\ \frac{1}{2}x^2 < x(8-x) & \cdots \\ \vdots \end{cases}$$

부등식 ①을 풀면

$$3x^2 - 32x + 64 < 0$$

$$(3x-8)(x-8) < 0 \le \frac{8}{3} < x < 8 \cdots$$

부등식 ①을 풀면

$$3x^2 - 16x < 0$$

$$x(3x-16) < 0 = 0 < x < \frac{16}{3} \cdots$$

ⓒ, ②을 수직선 위에 나타내면

$$\frac{8}{3} < x < \frac{16}{3}$$
 of $|x|$ $a = \frac{8}{3}$, $b = \frac{16}{3}$

따라서 a+b=8