Introducing TensorFlow

Jerry Kurata
CONSULTANT

@jerrykur www.insteptech.com

Overview

Installing TensorFlow

Creating Models in TensorFlow

Discussing TensorFlow architecture

Installing TensorFlow

Installation factors

- OS
- GPU
- Environment
 - Direct, Virtual, or Docker Container
- Python version
 - Linux, MacOS 2.7, 3.3 or later
 - Windows 3.5 or later

Demo

- Windows 10
- Python 3.5

Demo

Implement House Price Prediction
Illustrate TensorFlow Concepts

Training a Model with TensorFlow

Concept

Prepared Data

Inference

Loss Measurement

Optimizer to Minimize Loss

Implementation

Generated house size and price data

Price = (sizeFactor * size) + priceOffset

Mean Square Error

Gradient Descent Optimizer

Tensor

An n-dimensional array or list used in Tensor to represent all data.

Tensor

An n-dimensional array or list used in Tensor to represent all data.

Defined by the properties, Rank, Shape, and Type.

Dimensionality of a Tensor.

Dimensionality of a Tensor.

Rank Description Example

O Scalar s = 145

Dimensionality of a Tensor.

Rank	Description	Exampl	е
------	-------------	--------	---

O Scalar s = 145

1 Vector v = [1, 3, 2, 5, 7]

Dimensionality of a Tensor.

Rank	Description	Example
0	Scalar	s = 145
1	Vector	v = [1, 3, 2, 5, 7]
2	Matrix	m = [[1,5,6], [5,3,4]]

Dimensionality of a Tensor.

Rank	Description	Example
0	Scalar	s = 145
1	Vector	v = [1, 3, 2, 5, 7]
2	Matrix	m = [[1,5,6],[5,3,4]]
3	3-Tensor (cube)	c = [[[1,5,6], [5,3,4]], [[9,3,5], [3,4,9]], [[4,3,2], [3,6,7]]]

Shape of data in Tensor. Related to Rank.

Rank Descr	iption Examp	ole	Shape
------------	--------------	-----	-------

O Scalar s = 145

Rank	Description	Example	Shape
0	Scalar	s = 145	
1	Vector	v = [1, 3, 2, 5, 7]	[5]

Rank	Description	Example	Shape
0	Scalar	s = 145	
1	Vector	v = [1, 3, 2, 5, 7]	[5]
2	Matrix	m = [[1,5,6], [5,3,4]]	[2,3]

Rank	Description	Example	Shape
0	Scalar	s = 145	
1	Vector	v = [1, 3, 2, 5, 7]	[5]
2	Matrix	m = [[1,5,6], [5,3,4]]	[2,3]
3	3-Tensor (cube)	c = [[[1,5,6], [5,3,4]], [[9,3,5], [3,4,9]], [[4,3,2], [3,6,7]]]	[3,2,3]

DataType

float32, float64 int8, int16, int32, int64 uint8, uint16 string bool complex64, complex128 qint8, qint16, quint8

Quantitized values

Scaled to reduce size

Processed faster

TensorFlow Processing Units (TPUs) utilize quantitized values

Methods

get_shape() - returns shape
reshape() - changes shape
rank - returns rank
dtype - return data type
cast - change data type

Gradient Descent

Gradient Descent

Summary

TensorFlow installation

House Price prediction

Training process

Tensors

Gradient Descent optimizer

