ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

Федеральное государственное бюджетное образовательное

учреждение высшего образования

«Санкт-Петербургский государственный университет телекоммуникаций

им. проф. М. А. Бонч-Бруевича»

Дисциплина «Техническая электродинамика»

Лабораторная работа № 2

Исследование электромагнитного поля в прямоугольном волноводе

Выполнили: ст. гр. ИКТЗ-83 Миколаени М. С. Громов А. А.

> Проверил: Гуреев А. Е.

Цель работы:

- Экспериментальное исследование структуры электромагнитного поля волны основного типа H_{10} и высшего типа H_{20} в прямоугольном волноводе.
- Измерение длины волны в волноводе для волны типа H_{10}
- Изучение зависимости фазовой скорости от частоты для волны типа H_{10}
- Исследование отражающего фильтра для подавления нежелательного типа волны.

Схема установки и оборудование:

Рис 2.1 - Схема лабораторной установки

В состав системы входят:

- 1. Генератор высокочастотных колебаний
- 2. Переменный аттенюатор
- 3. Коаксиальный волновод
- 4. Переход с коаксиального волновод на прямоугольный
- 5. Прямоугольный волновод
- 6. Измерительная линия
- 7. Устройство для измерения зависимости амплитуды Е от поперечной координаты
- 8. Короткозамыкающая пластина
- 9. Индикатор

Габариты прямоугольного волновода:

- $a \times b = 72 \times 34 \text{ mm}^2$
- Электрическая проницаемость диэлектрика в полости волновода (воздух) ε=1

Рис 2.2 Исследуемый волновод.

Рис 2.3 Поле основного типа H_{10} в волноводе

Теоретическая часть:

Прямоугольный волновод получил широкое распространение на практике как линия передачи СВЧ. В прямоугольном волноводе может существовать бесконечное множество типов волн E_{mn} и H_{mn}

Для волн типа E_{mn} m и n должны быть отличными от нуля, а для волн типа волн типа H_{mn} значения m и n по отдельности могут быть равны нулю.

У волн типа E_{mn} наряду с поперечными составляющими векторов поля существует также продольная составляющая напряженности электрического поля и отсутствует продольная напряженности магнитного поля; у поля типа H_{mn} наряду с поперечными составляющими векторов поля отсутствует продольная составляющая напряженности электрического поля и существует продольная напряженности магнитного поля.

Волны типов E_{mn} и H_{mn} характеризуются критической длиной волны $\lambda_{\kappa p} = 2/\sqrt{(m/a)^2 + (n/b)^2}$), которая в общем случае зависит от размеров а и b поперечного сечения волновода и от типа поля (от значения индексов и т.п.). Критические длины волн образуют бесконечную

убывающую последовательность значений (рис 2.1). Если $\lambda < \lambda_{\kappa p}$, то поле представляет собой распространяющуюся плоскую бегущую волну, которая носит вдоль волновода энергию.

Если $\lambda > \lambda_{\kappa p}$, поле представляет собой местное экспоненциально затухающее вдоль волновода поле, которое не может переносить энергию.

Для распространения в волноводе бегущей волны только

основного типа при заданном значении λ и местных затухающих полей всех остальных типов необходимо выбрать размеры поперечного сечения т. о., чтобы одновременно выполнялись сл. неравенства: $\lambda_{\kappa p0} > \lambda > \lambda_{\kappa p1}$, где $\lambda_{\kappa p0}$ и $\lambda_{\kappa p1}$ – критические длины волн полей основного и первого высшего типа, который имеет наибольшее значение λ кр после поля основного типа.

Условие одноволнового режима (для H_{10}): $2a > \lambda > a$.

Критическая частота $f = c/\lambda_{\kappa p}$. Переходя от длин волн к частоте: $f_{\kappa p0} < f < f_{\kappa p1}$, причем с в случае $a \ge b \ f_{\kappa p0} = c/2a$ и $f\kappa_{p1} = c/a$.

Зависимость амплитуды напряженности электрического поля от координаты x: $E_m(x)/E_{max\ m} = sin(\Pi x/a)$.

Скорость, с которой распространяются вдоль оси z плоские поверхности постоянной фазы бегущей волны, называются ее фазовой скоростью: $\upsilon \varphi = c/\sqrt{(1-(\lambda/\lambda_{\rm KP})^2)}$, для H_{10} прямоугольного волновода $\lambda_{\rm KD} = 2a$.

Скорость распространения энергии, переносимой вдоль оси волновода гармонической бегущей волной: $v_3 = c2/v_{\varphi} = c\sqrt{(1-(\lambda/\lambda_{\kappa p})^2)}$.

Бегущая волна типа H_{10} характеризуется длиной волны в волноводе \land , определяемой расстоянием вдоль оси волновода, на котором фаза волны изменяется на 2Π : $\land = \upsilon_{th} T = \upsilon_{th} / f = \lambda / \sqrt{(1-(\lambda/\lambda_{kn})^2)}$.

Распределение амплитуд напряженности электрического поля вдоль оси x: $Em(x)/E_{max\ m} = |\sin(\Pi x/a)|$.

Отражающий фильтр для подавления нежелательного типа волны обычно представляет собой решетку из тонких проводников, ориентированных параллельно вектору напряженности этой волны. В этом случае подавленный тип волны интенсивно возбуждает в проводниках электрические токи и отражается решеткой.

Если проводники решетки ориентированы ортогонально линиям вектора напряженности волны рабочего типа, то эта волна не возбуждает в проводниках токов и происходит сквозь решётку почти без отражения.

Предварительные расчеты:

1.
$$a*b = 72*34 \text{ мм}^2$$
 $c = c_0 = 3*10^8 \text{ м/c}$ $f_{\kappa p 0} < f < f_{\kappa p 1}$ Так как $a \ge b$, то $f_{\kappa p 0} = c/2a$ и $f\kappa_{p 1} = c/a$ $f_{\kappa p 0} = (3*10^8 \text{ m/c}) / (2*72 \text{ мм}^2) = 2083,3 \text{ Мгц}$ $f\kappa_{p 1} = (3*10^8 \text{ m/c}) / (72 \text{ мм}^2) = 4166, 6 \text{ Мгц}$ $2083,3 \text{ Мгц} < f < 4166, 6 \text{ Мгц}$

2. Построим зависимость амплитуды электрического поля от координаты x: Формула выражающая зависимость:

$$E_m(x)/E_{max m} = \sin(\pi x/a)$$
, где $a = 72 \text{ мм}$

Рис. 2.4 "Теоретическая зависимость амплитуды электрического поля от координаты х"

1. Рассчитаем для исследуемого волновода зависимости $V_{\varphi}(f)$, $V_{\vartheta}(f)$ и \wedge (f) в полосе частот 2800-3800 МГц , с интервалом 200 МГц (для волны типа H10).

f, МГц	λ _{расч} , м	∧ _{расч} , м	$v_{ m \phi \ pac^{ m q}}, \ 10^8 { m m/c}$	υ _{э расч} , 10 ⁸ м/с	∧эксп, М	υ _{ф эксп} , 10 ⁸ м/с	υ _{э эксп} , 10 ⁸ м/с
2800	0,11	0,17	4,64	1,9	0,18	5,04	1,8
3000	0,1	0,14	4,17	2,15	0,14	4,2	2,23
3200	0,09	0,12	3,84	2,34	0,12	3,84	2,34
3400	0,088	0,11	3,79	2,37	-	-	-
3600	0,083	0,1	3,67	2,45	-	-	-
3800	0,079	0,09	3,59	2,51	-	-	-

Формулы для расчета:

$$\nu_{\Phi} = \frac{c}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \nu_{\text{3}} = \frac{c^2}{\nu_{\Phi}} = c * \sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2} \; ; \qquad \Lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} = \frac{\lambda}{\sqrt{1 - \left(\frac{\lambda}{\lambda_{\text{kp}}}\right)^2}} \; ; \qquad \lambda = \nu_{\Phi} * T = \frac{\nu_{\Phi}}{f} =$$

3. Определим частотную границу, начиная с которой по рассматриваемому волноводу может распространяться бегущая волна типа H_{20}

$$f > f_{\kappa p} => f > c/a$$

$$f_{\kappa p1} = \frac{3 * 10^8}{72 * 10^{-3}} = 4.2 \Gamma \Gamma \mu$$

$$f > 4.2 \Gamma \Gamma \mu$$

Измерения:

Измерение уровня E вдоль поперечной координаты x:

X, MM	а(х), мВ	$\sqrt{(a(x)/a_{max})}$
0	0,0	0,00
0,7	1,1	0,27
10	2,6	0,51
15	4,7	0,69
20	7	0,84
25	8,4	0,92
30	9,5	0,98
35	9,9	1
40	9,7	0,99
45	8,9	0.95
50	7,6	0,88
55	5,5	0,75
60	2,8	0,53
65	0,6	0,25

Данные таблицы проиллюстрированы на рис 2.5.

 $E_m(x)/E_m$ макс

Рис. 2.5 "График экспериментальной и теоретической кривой $E_m(x)/E_m$ макс"

Измерение уровня E вдоль продольной координаты z:

f= 2800 МГц

Z	a(z)	$\sqrt{(a(z)/a_{max})}$
40	0,05	0,092

	45	0,01	0,041
z_1	55	0,01	0,041
	65	1	0,415
	75	4,1	0,840
	85	5,5	0,973
z_0	95	5,8	1
	105	4,7	0,9
	120	1,25	0,464
\mathbf{z}_2	135	0,01	0,041
	140	0,6	0,321

Данные таблицы проиллюстрированы на рис 2.6.

 $E_m(z)/E_m$ макс

Рис. 2.6 "График экспериментальной и теоретической кривой $E_m(z)/E_m$ макс"

Из рис 2.9 находим Λ :

$$\Lambda \approx (140 - 50) * 2 \approx 180 \,\mathrm{MM}$$

Находим следующие величины:

$$v_{\phi} = \Lambda * f_I = 0.18 \text{ m} * 2800 \text{ MFu} = 5.04 * 10^8 \text{ m/c}$$

 $v_{\theta} = c^2 / v_{\phi} = (3*10^8 \text{ m/c})^2 / 5.04 * 10^8 \text{ m/c} = 1.8 * 10^8 \text{ m/c}$

f= 3000 МГц

	Z	a(z)	$\sqrt{(a(z)/a_{max})}$
	30	0,05	0,13
\mathbf{z}_1	40	0,02	0,085
	50	0,1	0,19
	60	1,7	0,78
	70	2,7	0,98
	80	2	0,89
	90	0,15	0,23
	100	0,02	0,085
\mathbf{z}_2	110	0,02	0,085
	120	0,2	0,27

$E_m(z)/E_m$ макс

Z, MM

Рис. 2.7 "График экспериментальной и теоретической кривой $E_m(z)/E_m$ макс"

Из рис 2.7 находим Λ :

$$\Lambda \approx (110 - 40) * 2 \approx 140 \,\mathrm{MM}$$

Находим следующие величины:

$$v_{\phi} = \Lambda * f_I = 0.14 \text{ m} * 3000 \text{ MFu} = 4.2 * 10^8 \text{ m/c}$$

 $v_{\theta} = c^2/v_{\phi} = (3*10^8 \text{ m/c})^2/4.02 * 10^8 \text{ m/c} = 2.23 * 10^8 \text{ m/c}$

f= 3200 МГц

	Z	a(z)	$\sqrt{(a(z)/a_{max})}$
	70	0,6	0,258
z_1	80	0,03	0,057
	90	0,5	0,235

	105	7,9	0,936
z_0	115	9	1
	125	5	0,745
	130	1,3	0,38
\mathbf{z}_2	140	0,03	0,2057
	150	1,5	0,408

 $E_m(z)/E_m$ макс

z, mm

Рис. 2.8 "График экспериментальной и теоретической кривой $E_m(z)/E_m$ макс"

Из рис 2.8 находим Λ :

$$\Lambda \approx (140 - 80) * 2 \approx 120 \,\text{MM}$$

Находим следующие величины:

$$v_{\phi} = \Lambda * f_1 = 0.12 \text{ m} * 3200 \text{ MFu} = 3.84 * 10^8 \text{ m/c}$$

 $v_{9} = c^2/v_{\phi} = (3*10^8 \text{ m/c})^2/3.84 * 10^8 \text{ m/c} = 2.3 * 10^8 \text{ m/c}$

Рис. 2.9 "График экспериментальной и теоретической кривой $V_9(f)$ "

Рис. 2.10 "Теоретическая зависимость $V_{\phi}(f)$ "

Рис. 2.11 "График экспериментальной и теоретической кривой $\Lambda(f)$ "

Выводы:

- 1. Теоретические значения v_{φ} , v_{ϑ} , \wedge практически полностью совпадают с экспериментально измеренными.
- 2. Экспериментальные и теоретические графики v_{ϕ} , v_{\flat} , \wedge почти совпадают, также графики экспериментальных и теоретических кривых $E_m(z)/E_m$ макс и $E_m(x)/E_m$ макс практически совпадают.