AMENDMENT TO THE CLAIMS

The following **Listing of Claims** will replace all prior versions, and listings of claims in the application.

- 1. (CURRENTLY AMENDED) A pharmaceutical composition comprising:
 - a pharmaceutically acceptable carrier, adjuvant or vehicle; and
 - a therapeutically effective amount of a compound for treating inhibiting tumor metastases metastasis having the structure:

$$\begin{array}{c|c}
R_a & Y_1 & Y_2 & Q \\
\hline
R_b & X_1 & R_6 \\
\hline
R_5 & R_6 & R_6
\end{array}$$

$$\begin{array}{c|c}
R_1 & R_6 & R$$

or pharmaceutically acceptable salt thereof;

wherein R_1 and R_2 are each independently hydrogen or lower alkyl;

R₃ is hydrogen or lower alkyl, heteroaliphatic,—alieyelie, heteroalieyelie, aryl—or heteroaryl-moiety; or a prodrug-moiety or an oxygen-protecting-group;

 \mathbf{R}_5 is hydrogen or lower alkyl;

 $\mathbf{R_6}$ is lower alkyl;

 $\mathbf{R}_{\mathbf{a}}$ and each occurrence of $\mathbf{R}_{\mathbf{b}}$ and $\mathbf{R}_{\mathbf{c}}$ are independently hydrogen;

n is 3:

 X_1 is O, NH, or CH_2 -NR^{X1}-or $CR^{X1}R^{X2}$; wherein R^{X1} -and R^{X2} -are independently hydrogen;

Q is hydrogen, lower alkyl,

 Y_1 and Y_2 are independently hydrogen, lower alkyl, or CF_3 ; or WR^{Y1} ; wherein W is independently $-O_-$, or $-NR^{Y2}_-$, wherein each occurrence of R^{Y1} and R^{Y2} is independently hydrogen, or lower alkyl; or an aliphatic, or heteroaliphatic, or Y_1 and Y_2 together with the

carbon atom to which they are attached form a moiety having the structure: $\sqrt[R^{N}]{} = \sqrt[R^{N}]{} = \sqrt[R^{N$

whereby the composition is formulated for administration to a subject, wherein a dosage of a compound of Formula I is between about 0.1 mg/kg to about 50 mg/kg of body weight,

with the proviso that the compound does not have the following structure:

2. (ORIGINAL) The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 50 mg/kg of body weight.

- 3. (ORIGINAL) The composition of claim 1, wherein the dosage is between about 0.1 mg/kg to about 40 mg/kg of body weight.
- 4. (ORIGINAL) The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 40 mg/kg of body weight.
- 5. (ORIGINAL) The composition of claim 1, wherein the dosage is between about 0.1 mg/kg to about 30 mg/kg of body weight.
- 6. (ORIGINAL) The composition of claim 1, wherein the dosage is between about 5 mg/kg to about 30 mg/kg of body weight.
- 7. (ORIGINAL) The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 30 mg/kg of body weight.
- 8. (ORIGINAL) The composition of claim 1, wherein the dosage is between about 0.1 mg/kg to about 20 mg/kg of body weight.
- 9. (ORIGINAL) The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 20 mg/kg of body weight.
- 10. (ORIGINAL) The composition of claim 1, wherein the dosage is 10 mg/kg or greater of body weight.
- (CURRENTLY AMENDED) The composition of claim 1, wherein:
 R¹ and R² are each independently hydrogen or substituted or unsubstituted lower alkyl;
 R₃ is hydrogen, or substituted or unsubstituted lower alkyl;

R₄ is halogen, -OR^{4A}, -OC(=O)R^{4A}, oxo, OCH₃ or NR^{4A}R^{4B}; wherein each R^{4A} and R^{4B}—are is independently hydrogen, or substituted or unsubstituted lower alkyl or lower alkoxy; a nitrogen protecting group or an oxygen protecting group;

R₅ is hydrogen or substituted or unsubstituted lower alkyl;

 \mathbf{R}_{6} is substituted or unsubstituted lower alkyl;

R_a, and each occurrence of R_b and Rc are independently hydrogen;

n is 3;

 X_1 is O, NH, or CH_2 -NR^{X1}-or $CR^{X1}R^{X2}$; wherein R^{X1} -and R^{X2} -are independently hydrogen;

Q is hydrogen, lower alkyl,

$$CH_3$$
 CH_3 CH_3

 Y_1 and Y_2 are independently hydrogen, lower alkyl, or CF_3 ; or WR^{Y1} ; wherein W is independently O,-or-NR^{Y2}, wherein each occurrence of R^{Y1} -and R^{Y2} -is independently hydrogen, or an lower alkyl, or heteroaliphatic, or Y_1 and Y_2 together with the carbon atom to which they

are attached form a moiety having the structure: $(\sqrt{N}, \sqrt{N}, \sqrt{N})$, (\sqrt{N}, \sqrt{N}) or (\sqrt{N}, \sqrt{N})

Y₁ and Y₂ together with the carbon atom to which they are attached form a moiety having

the structure: $N^{N^{Y_1}}$ wherein N^{Y_1} is lower alkyl or heteroaliphatic.

12. (CURRENTLY AMENDED) The composition of claim 1, wherein R_a , R_b and R_e are each hydrogen, and the compound has one of the following structures:

wherein R_1 - R_6 , Y_2 , X_1 , n, W, R^{YI} , and Q are as defined in claim $1_{\underline{\cdot}}$; W is Q or NH; and R^{YI} is hydrogen, an aliphatic moiety, or a heteroaliphatic moiety.

- 13. (CANCELED).
- 14. (CURRENTLY AMENDED) The composition of claim 1, wherein R_a , R_b and R_c are each hydrogen, n is 3 and the compound has one of the following structures:

wherein R_1 - R_6 , Y_2 , Q, W, and X_1 are as defined in claim 1; W-is-O-or-NH; and R^{Y1} is hydrogen, lower alkyl, an aliphatic moiety, or a heteroaliphatic moiety.

- 15. (CANCELED).
- 16. (PREVIOUSLY PRESENTED) The composition of claim 1, wherein R_1 and R_2 are each hydrogen.
- 17. (PREVIOUSLY PRESENTED) The composition of claim 1, wherein R_5 and R_6 are each methyl.

- 18. (PREVIOUSLY PRESENTED) The composition of claim 1, wherein R_3 is lower alkyl.
- 19. (PREVIOUSLY PRESENTED) The composition of claim 18, wherein R_3 is methyl.
- 20. (CURRENTLY AMENDED) The composition of claim 1, wherein R₄ is OH, NH₂ or halogen.
- 21-27. (CANCELED).
- 28. (WITHDRAWN/PREVIOUSLY PRESENTED) The composition of claim 12, wherein Y_1 is OR^{Y_1} and Y_2 is lower alkyl; wherein R^{Y_1} is hydrogen or lower alkyl.
- 29. (WITHDRAWN/PREVIOUSLY PRESENTED) The composition of claim 28, wherein Y_1 is OH and Y_2 is CF_3 .
- 30. (CURRENTLY AMENDED) The composition of claim 44[[1]] wherein-R_a, R_b and R_e are each hydrogen, and the compound has one of the structures:

or pharmaceutically acceptable derivative thereof;

wherein R_3 - R_6 , n, and Q are as defined in claim 1; and Y_2 and R^{Y1} are independently hydrogen or lower alkyl.

31. (WITHDRAWN/PREVIOUSLY PRESENTED) The composition of claim 1 wherein the compound has the structure:

or pharmaceutically acceptable derivative thereof;

wherein R_3 - R_6 , and Q are as defined in claim 11; and Y_2 and R^{Y1} are independently hydrogen or lower alkyl.

32-40. (CANCELED).

41. (CURRENTLY AMENDED) The composition of claim 11 wherein the compound has the following structure:

$$Y_1$$
 Y_2
 X_1
 R_{SHHHMM}
 R_{3}
 R_{4}

or a pharmaceutically acceptable salt thereof;

wherein X_1 is CH_2 , NH or O;

 Y_1 and Y_2 are independently OH, CF_3 , $C(R^{Y_1})_3$ or Y_1 and Y_2 taken together with the carbon atom to which they are attached are -C=O, wherein R^{Y_1} is halo;

R₆ is lower alkyl;

R₅ is H or lower alkyl;

R₄ is OH, –OAc or oxo; and

R₃ is <u>lower</u> alkyl.

42. (ORIGINAL) The composition of claim 41 wherein the compound has one of the following structures:

Claims 43 and 44 (CANCELED).

- 45. (ORIGINAL) The composition of claim 1, further comprising a cytotoxic agent.
- 46. (ORIGINAL) The composition of claim 45, wherein the cytotoxic agent is an anticancer agent.
- 47. (ORIGINAL) The composition of claim 1, further comprising a palliative agent.

Claims 48-62 (CANCELED).