Събиране на хармонични трептения в две взаимно перпендикулярни направления. Частни случаи. Фигури на Лисажу

Събиране на хармонични трептения в две взаимно перпендикулярни направления

Ако трептенията, в които участва материалната точка, са във взаимно перпендикулярни направления, движенито ѝ в общия случай не е хармонично трептене. Материалната точка се движи по някаква криволинейна траектория, в зависимост от честотите, амплитудите и началните фази на двете трептения. Получените траектории при различни съотношения на честотите на двете трептения се наричат фигури на Лисажу. В този случай е по-лесно вместо да използваме векторни диаграми да определим уравнението на траекторията на движение. Ние ще разгледаме пак най-простият случай – когато честотите на двете трептения са равни. Нека уравненията на движение на двете трептения са:

(4)
$$x = A\cos\omega t$$

$$y = B\cos(\omega t + \varphi).$$

Това е параметричното уравнение на кривата в равнината **XY**. За да получим зависимостта y(x) в явен вид, трябва да изключим времето t от двете уравнения (4):

$$\cos \omega t = \frac{x}{A}$$

$$\sin \omega t = \sqrt{1 - \cos^2 \omega t} = \sqrt{1 - \frac{x^2}{A^2}}$$

$$\cos(\omega t + \varphi) = \cos \omega t \cos \varphi - \sin \omega t \sin \varphi = \frac{y}{B}$$

$$\frac{y}{B} - \frac{x}{A} \cos \varphi = -\sqrt{1 - \frac{x^2}{A^2}} \sin \varphi$$

$$\left(\frac{y}{B}\right)^2 - 2\frac{y}{B}\frac{x}{A} \cos \varphi + \left(\frac{x}{A}\right)^2 \cos^2 \varphi = \sin^2 \varphi - \left(\frac{x}{A}\right)^2 \sin^2 \varphi$$

$$(5) \left(\frac{y}{B}\right)^2 - 2\frac{y}{B}\frac{x}{A} \cos \varphi + \left(\frac{x}{A}\right)^2 = \sin^2 \varphi$$

Това е уравнение на елипса, чиято голяма полуос сключва някакъв ъгъл с оста \mathbf{X} . Следователно траекторията на движение на материалната точка е елипса, параметрите на която зависят от разликата $\boldsymbol{\varphi}$ в началните фази на двете трептения и техните амплитуди.

Частни случаи. Фигури на Лисажу

Ще разгледаме няколко частни случая.

1. Разликата в началните фази на двете трептения **ф=0**. В този случай (5) ще бъде:

$$\left(\frac{y}{B}\right)^2 - 2\frac{y}{B}\frac{x}{A} + \left(\frac{x}{A}\right)^2 = 0$$

$$\frac{y}{B} - \frac{x}{A} = 0$$

$$y = \frac{B}{A}x$$

Това е уравнение на права в I и III квадрант, която минава през началото на координатната система и сключва ъгъл $\frac{B}{A}$ с оста X. Това е хармонично трептене по тази права с амплитуда $\sqrt{A^2 + B^2}$ с уравнение:

$$r = \sqrt{A^2 + B^2} \cos \omega t .$$

2. Разликата в началните фази на двете трептения $\phi = \pi$. Този случай се отличава от предишния само по положението на правата – тя ще бъде във II и IV квадрант:

$$\left(\frac{y}{B}\right)^2 + 2\frac{y}{B}\frac{x}{A} + \left(\frac{x}{A}\right)^2 = 0$$

$$\frac{y}{B} + \frac{x}{A} = 0$$

$$y = -\frac{B}{A}x$$

Уравнението на движение ще има същия вид, но началното положение ще бъде друго.

3. Разликата в началните фази на двете трептения $\phi = \pm \pi/2$. От (5) следва, че движението ще бъде по елипса, чиито главни оси съвпадат с координатните оси:

$$\left(\frac{y}{B}\right)^2 + \left(\frac{x}{A}\right)^2 = 1.$$

Двата случая се различават само по посоката на движение на точката по елипсата – при $\varphi = \pi/2$ движението е по часовниковата стрелка, а при $\varphi = -\pi/2$ е в обратна посока. Ако амплитудите на двете трептения са равни, A = B = R, резултантното движение ще бъде по окръжност с радиус R.

При плавна промяна на фазовата разлика от 0 до 2π , траекторията се променя и преминава от права в I и III квадрант през наклонена елипса, елипса по координатните оси, права в II и IV квадрант пак наклонена елипса и т.н. до права в I и III квадрант при $\phi = 2\pi$.

Случаят, който разгледахме (при равни кръгови честоти на двете трептения), е най-простият случай на фигурите на Лисажу, които се получават при наслагване на взаимно перпендикулярни трептения. В общия случай фигурите на Лисажу са криви, които са решение на системата параметрични уравнения:

$$x = A\cos\omega_1 t$$
$$y = B\cos(\omega_2 t + \varphi)$$

при различни съотношения на кръговите честоти ω_1/ω_2 .

Когато съотношението на честотите е рационално число, напр. 1:2, 3:2, 3:4 и т.н. се получават посложни затворени криви, които също могат да се наблюдават на осцилоскоп.