

planetmath.org

Math for the people, by the people.

proof that a Noetherian domain is Dedekind if it is locally a PID

 ${\bf Canonical\ name} \quad {\bf ProofThat AN oetherian Domain Is Dedekind If It Is Locally APID}$

Date of creation 2013-03-22 18:35:27 Last modified on 2013-03-22 18:35:27

Owner gel (22282) Last modified by gel (22282)

Numerical id 4

Author gel (22282)

Entry type Proof

 $\begin{array}{ll} {\rm Classification} & {\rm msc} \ 13{\rm F}05 \\ {\rm Classification} & {\rm msc} \ 13{\rm A}15 \\ \end{array}$

We show that for a http://planetmath.org/NoetherianNoetherian domain R with field of fractions k, the following are equivalent.

- 1. R is Dedekind. That is, it is integrally closed and every nonzero prime ideal is maximal.
- 2. for every maximal ideal \mathfrak{m} ,

$$R_{\mathfrak{m}} \equiv \left\{ s^{-1}x : s \in R \setminus \mathfrak{m}, x \in R \right\}$$

is a principal ideal domain.

For a given maximal ideal \mathfrak{m} and ideal \mathfrak{a} of R, we shall write $\bar{\mathfrak{a}}$ for the ideal generated by \mathfrak{a} in $R_{\mathfrak{m}}$, which consists of the elements of the form $s^{-1}a$ for $a \in \mathfrak{a}$ and $s \in R \setminus \mathfrak{m}$. It is then easily seen that $\mathfrak{p} \mapsto \bar{\mathfrak{p}}$ gives a bijection between the prime ideals of R contained in \mathfrak{m} and the prime ideals of $R_{\mathfrak{m}}$, with inverse $\mathfrak{p} \mapsto R \cap \mathfrak{p}$. In particular $\bar{\mathfrak{m}}$ is the unique maximal ideal of $R_{\mathfrak{m}}$, which is therefore a local ring.

Now suppose that R is Dedekind, then the localization $R_{\mathfrak{m}}$ will be a Dedekind domain (localizations of Dedekind domains are Dedekind) with a unique maximal ideal, so it is a principal ideal domain (Dedekind domains with finitely many primes are PIDs).

Only the converse remains to be shown, so suppose that R is a Noetherian domain such that $R_{\mathfrak{m}}$ is a principal ideal domain for every maximal ideal \mathfrak{m} . In particular, $R_{\mathfrak{m}}$ is integrally closed and every nonzero prime ideal is maximal, so it contains a unique nonzero prime ideal $\bar{\mathfrak{m}}$.

We start by showing that every nonzero prime ideal \mathfrak{p} of R is maximal. Choose a maximal ideal \mathfrak{m} containing \mathfrak{p} . Then, $\bar{\mathfrak{p}}$ is a nonzero prime ideal, so $\bar{\mathfrak{p}} = \bar{\mathfrak{m}}$ and therefore $\mathfrak{p} = \mathfrak{m}$ is maximal.

We finally show that R is integrally closed. So, choose any x integral over R and lying in its field of fractions. Let \mathfrak{a} be the ideal

$$\mathfrak{a}=\left\{ a\in R:ax\in R\right\} .$$

We use proof by contradiction to show that \mathfrak{a} is the whole of R. So, supposing that this is not the case, there exists a maximal ideal \mathfrak{m} containing \mathfrak{a} . Then x will be integral over the integrally closed ring $R_{\mathfrak{m}}$ and therefore $x \in R_{\mathfrak{m}}$. So, $x = s^{-1}y$ for some $s \in R \setminus \mathfrak{m}$ and $y \in R$. Then, $sx = y \in R$ so $s \in \mathfrak{a} \subseteq \mathfrak{m}$, which is the required contradiction. Therefore, $\mathfrak{a} = R$ and, in particular, $1 \in \mathfrak{a}$ and $x = 1x \in R$, showing that R is integrally closed.