Tempo de execução

Carlos Eduardo Gonzaga Romaniello de Souza - 19.1.4003 25 de março de 2022

1 Primeira tabela ($t = 10^{-6}$ segundos)

Função de	Tamanho da Instância do Problema					
complexidade	10	20	30	40	50	60
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006
	segundos	segundos	segundos	segundos	segundos	segundos
n^2	10^-4	4*10^-4	9*10^-4	16*10^-4	25*10^-4	36*10^-4
	segundos	segundos	segundos	segundos	segundos	segundos
n^3	0.001	0.008	0.027	0.064	0.125	0,216
	segundos	segundos	segundos	segundos	segundos	segundos
n^5	0.1	3.2	24.3	102.4	312.5	777.6
	segundos	segundos	segundos	segundos	segundos	segundos
2 n	0.001024	1.048576	18	305	35	36
	segundos	segundos	minutos	horas	anos	milênios
3 ⁿ	0.059049	58.1	6.5	38.5	22764396	1344214810858
	segundos	minutos	anos	milênios	milênios	milênios

Figure 1: Tabela 1

•
$$n^2: T_{(n)} \times t = T \to n^2 \times t = T \to n^2 \times 10^{-6} = T$$

- $10: 10^2 \times 10^{-6} = T \to T = 10^{-4} \text{ segundos}$
- $20: 20^2 \times 10^{-6} = T \to T = 2^2 \times 10^2 \times 10^{-6} \to T = 4 \times 10^{-4} \text{ segundos}$
- $30: 30^2 \times 10^{-6} = T \to T = 3^2 \times 10^2 \times 10^{-6} \to T = 9 \times 10^{-4} \text{ segundos}$

- $-40: 40^2 \times 10^{-6} = T \rightarrow T = 4^2 \times 10^2 \times 10^{-6} \rightarrow T = 16 \times 10^{-4} \text{ segundos}$
- $-50: 50^2 \times 10^{-6} = T \rightarrow T = 5^2 \times 10^2 \times 10^{-6} \rightarrow T = 25 \times 10^{-4} \text{ segundos}$
- $-60: 60^2 \times 10^{-6} = T \rightarrow T = 6^2 \times 10^2 \times 10^{-6} \rightarrow T = 36 \times 10^{-4} \text{ segundos}$
- $n^3: T_{(n)} \times t = T \to n^3 \times t = T \to n^3 \times 10^{-6} = T$
 - 10: $10^3 \times 10^{-6} = T \rightarrow T = 10^{-3} \rightarrow T = 0.001$ segundos
 - 20: $20^3\times 10^{-6}=T\to T=2^3\times 10^3\times 10^{-6}\to T=8\times 10^{-3}\to T=0.008$ segundos
 - 30: $30^3\times 10^{-6}=T\to T=3^3\times 10^3\times 10^{-6}\to T=27\times 10^{-3}\to T=0.027$ segundos
 - 40: $40^3\times 10^{-6}=T\to T=4^3\times 10^3\times 10^{-6}\to T=64\times 10^{-3}\to T=0.064$ segundos
 - 50: $50^3 \times 10^{-6} = T \rightarrow T = 5^3 \times 10^3 \times 10^{-6} \rightarrow T = 125 \times 10^{-3} \rightarrow T = 0.125$ segundos
 - 60: $60^3\times 10^{-6}=T\to T=6^3\times 10^3\times 10^{-6}\to T=216\times 10^{-3}\to T=0.216$ segundos
- $n^5: T_{(n)} \times t = T \to n^5 \times t = T \to n^5 \times 10^{-6} = T$
 - 10: $10^5 \times 10^{-6} = T \rightarrow T = 10^{-1} \rightarrow T = 0.1 \text{ segundos}$
 - 20: $20^5\times 10^{-6}=T\to T=2^5\times 10^5\times 10^{-6}\to T=32\times 10^{-1}\to T=3.2$ segundos
 - 30: $30^5\times 10^{-6}=T\to T=3^5\times 10^5\times 10^{-6}\to T=243\times 10^{-1}\to T=24.3$ segundos
 - $-40: 40^5 \times 10^{-6} = T \rightarrow T = 4^5 \times 10^5 \times 10^{-6} \rightarrow T = 1024 \times 10^{-1} \rightarrow T = 102.4$ segundos
 - 50: $50^5\times 10^{-6}=T\to T=5^5\times 10^5\times 10^{-6}\to T=3125\times 10^{-1}\to T=312.5$ segundos
 - − 60: $60^5 \times 10^{-6} = T \rightarrow T = 6^5 \times 10^5 \times 10^{-6} \rightarrow T = 7776 \times 10^{-1} \rightarrow T = 777.6$ segundos
- $2^n: T_{(n)} \times t = T \to 2^n \times t = T \to 2^n \times 10^{-6} = T$
 - $-10: 2^{10} \times 10^{-6} = T \rightarrow 1024 \times 10^{-6} \rightarrow T = 0.001024 \text{ segundos}$
 - $-20: 2^{20} \times 10^{-6} = T \rightarrow 1048576 \times 10^{-6} \rightarrow T = 1.048576 \text{ segundos}$
 - 30: $2^{30}\times 10^{-6}=T\to 1073741824\times 10^{-6}\to T=1073.741824$ segundos ≈ 18 minutos
 - 40: $2^{40}\times 10^{-6}=T\to 1099511627776\times 10^{-6}\to T=1099511.627776$ segundos ≈ 305.4 horas

- 50: $2^{50}\times 10^{-6}=T\to 1125899906842624\times 10^{-6}\to T=1125899906.842624$ segundos ≈ 35.7 anos
- -60: $2^{60}\times 10^{-6}=T\to 1152921504606846976\times 10^{-6}\to T=1152921504606.846976$ segundos ≈ 36.5 milênios
- $3^n: T_{(n)} \times t = T \to 3^n \times t = T \to 3^n \times 10^{-6} = T$
 - $-10: 3^{10} \times 10^{-6} = T \rightarrow 59049 \times 10^{-6} \rightarrow T = 0.059049 \text{ segundos}$
 - 20: $3^{20}\times 10^{-6}=T\to 3486784401\times 10^{-6}\to T=3486.784401$ segundos ≈ 58.1 minutos
 - 30: $3^{30}\times 10^{-6}=T\to 205891132094649\times 10^{-6}\to T=205891132.094649$ segundos ≈ 6.5 anos
 - 40: $3^{40}\times 10^{-6}=T\to 12157665459056928801\times 10^{-6}\to T=1215766545905.928801$ segundos ≈ 38.5 milênios
 - $-50:~3^{50}\times 10^{-6}=T\to 717897987691852588770249\times 10^{-6}\to T=717897987691852588.770249$ segundos ≈ 22764396 milênios
 - 60: $3^{60}\times 10^{-6}=T\to 42391158275216203514294433201\times 10^{-6}\to T=42391158275216203514294.433201$ segundos \approx 1344214810858 milênios

2 Segunda tabela

Maior instância que um computador resolve em 1 hora							
Função de complexidade	Computador Atual	Computador 100x mais rápido	Computador 1000x mais rápido				
n	N	100 N	1000 N				
n^2	M	10 M	31,6 M				
n^3	Z	3/1007 Z	102				
n^5	W	5/100 2	√1000 Z				
2 ⁿ	Х	log 2 ¹⁰⁰ X	log (000 X				
3 ⁿ	Y	log 3 ¹⁰⁰ /	log 3 ¹⁰⁰⁰ y				

Figure 2: Tabela 2

•
$$n^3: T_{(n)} \times t = T \rightarrow n^3 = \frac{T}{t} \rightarrow n = \sqrt[3]{\frac{T}{t}} = Z$$

– 100 vezes mais rápido:
$$n^3=\frac{T}{\frac{t}{100}}\to n^3=100\times\frac{T}{t}\to n=\sqrt[3]{100}\times\sqrt[3]{\frac{T}{t}}\to n=\sqrt[3]{100}\times Z$$

– 1000 vezes mais rápido:
$$n^3=\frac{T}{\frac{t}{1000}}\to n^3=1000\times\frac{T}{t}\to n=\sqrt[3]{1000}\times\sqrt[3]{\frac{T}{t}}\to n=10\times Z$$

•
$$n^5: T_{(n)} \times t = T \rightarrow n^5 = \frac{T}{t} \rightarrow n = \sqrt[5]{\frac{T}{t}} = W$$

– 100 vezes mais rápido:
$$n^5=\frac{T}{\frac{t}{100}}\to n^5=100\times\frac{T}{t}\to n=\sqrt[5]{100}\times\sqrt[5]{\frac{T}{t}}\to n=\sqrt[5]{100}\times W$$

– 1000 vezes mais rápido:
$$n^5=\frac{T}{\frac{t}{1000}}\to n^5=1000\times\frac{T}{t}\to n=\sqrt[5]{1000}\times \sqrt[5]{\frac{T}{t}}\to n=\sqrt[5]{1000}\times W$$

•
$$2^n: T_{(n)} \times t = T \to 2^n = \frac{T}{t} \to \log 2^n = \log \frac{T}{t} \to n \times \log 2 = \log \frac{T}{t} \to n = \frac{\log \frac{T}{t}}{\log 2} \to n = \log_2 \frac{T}{t} = X$$

– 100 vezes mais rápido:
$$2^n=100\times\frac{T}{t}\to n=\frac{\log 100}{\log 2}+\frac{\log\frac{T}{t}}{\log 2}\to n=\log_2 100+X$$

– 1000 vezes mais rápido:
$$2^n=1000\times\frac{T}{t}\to n=\frac{\log 1000}{\log 2}+\frac{\log \frac{T}{t}}{\log 2}\to n=\log_2 1000+X$$

•
$$3^n: T_{(n)} \times t = T \to 3^n = \frac{T}{t} \to \log 3^n = \log \frac{T}{t} \to n \times \log 3 = \log \frac{T}{t} \to n = \frac{\log \frac{T}{t}}{\log 3} \to n = \log_3 \frac{T}{t} = Y$$

– 100 vezes mais rápido:
$$3^n=100\times\frac{T}{t}\to n=\frac{\log 100}{\log 3}+\frac{\log \frac{T}{t}}{\log 3}\to n=\log_3 100+Y$$

- 1000 vezes mais rápido:
$$3^n=1000\times\frac{T}{t}\to n=\frac{\log 1000}{\log 3}+\frac{\log \frac{T}{t}}{\log 3}\to n=\log_3 1000+Y$$