Sistemes Intel·ligents – Examen Final (Bloc 1), 8 gener 2019 Test A (2 punts) <u>puntuació</u>: max (0, (encerts – errors/3)/3)

Cognoms: Nom:
Grup: A B C D E F G

1) Considerant el següent arbre de cerca, quants nodes com a màxim s'emmagatzemen en memòria, aplicant un procediment de cerca en profunditat iterativa? (Assumiu que a igual profunditat es tria el node més a l'esquerra)

- A. 6
- B. 3
- C. 4
- D. 5
- 2) Donat l'arbre de la figura, on els nodes ombrejats són nodes objectiu, indica la resposta **CORRECTA**:

- A. L'aplicació d'una estratègia en amplària retorna la mateixa solució que cost uniforme.
- B. L'aplicació d'una estratègia en amplària retorna la mateixa solució que una estratègia de profunditat a nivell màxim de profunditat m=2.
- C. L'aplicació d'una estratègia en amplària retorna la mateixa solució que una estratègia de profunditat a nivell màxim de profunditat m=3.
- D. L'aplicació d'una estratègia per cost uniforme retorna la mateixa solució que aprofundiment iteratiu.

- 3) L'aplicació d'una heurística admissible, h1, a un problema retorna un node solució G1 i el nombre de nodes que expandeix és n1. L'aplicació d'una heurística admissible, h2, al mateix problema, on h2 domina a h1, retorna un node solució G2 i expandeix un nombre de nodes igual a n2. Indica la resposta CORRECTA:
 - A. Es compleix que g(G1) < g(G2)
 - B. Es compleix h1(G1) < h2(G2)
 - C. Es compleix que n1 < n2
 - D. Cap de les respostes anteriors és correcta.
- 4) Donat l'arbre de la següent figura, quants nodes es generarien (incloent el node inicial) si s'aplicara un algorisme A? (en cas d'igualtat de f(n), s'expandeix el node més a l'esquerra).

- A. 6
- B. 8
- **C**. 9
- D. 10

5) Donat l'espai de cerca d'un joc representat en la figura següent, assumint que s'aplica un procediment alfa-beta, indica el valor que hauria de prendre el node ombrejat perquè es produïsca el tall assenyalat en la branca R2:

- A. Un valor en [- ∞, 1]
- B. Un valor en $[1, +\infty]$
- C. El node ombrejat sol pot prendre el valor 1
- D. No es pot produir el tall de la figura.

6) Donat el següent arbre de joc i aplicant un procediment alfa-beta, quants nodes terminals no fa falta generar?

- A. 13
- B. 15
- C. 16
- D. 17

Sistemes Intel·ligents – Examen Final (Bloc 1), 8 gener 2019 Problema: 3 punts

En un aeroport es disposa de diversos trens d'equipatge per a portar les maletes des de la zona de facturació a l'avió assignat al vol de les maletes. Una maleta facturada porta l'etiqueta del vol corresponent. Inicialment els trens no estan assignats a cap vol. El vol assignat a un tren serà el vol de la primera maleta que es carregue al tren. Un tren només pot portar maletes per a un únic vol i cada vol només es pot assignar a un tren.

El patró per a representar la informació dinàmica d'un estat d'aquest problema és:

(aeroport [TREN nums dests malm]m) on

num ∈ INTEGER ;; és un número que identifica el tren

 $dest \in \{res, F1, F2, F3,...\}$;; és un símbol que representa el vol assignat al tren (inicialment quan el vol és desconegut, el símbol serà res)

 $mal \in \{M1, M2, M3,...\}$; és un símbol que representa l'identificador de la maleta (inicialment este camp està buit)

Una possible situació inicial del problema és la següent:

- Es tenen cinc maletes (M1, M2, M3, M4 i M5), les dues primeres estan facturades per al vol F14, la tercera per al vol F2 i les dues últimes per al vol F10
- Es disposa de tres trens per a recollida i repartiment d'equipatge i els trens estan buits

Es desitja resoldre aquest problema mitjançant un procés de cerca en un espai d'estats amb el disseny d'un SBR en CLIPS. Es demana:

- 1) (0.7 punts) Escriu la Base de Fets corresponent a la situació inicial que es mostra a dalt. Inclou els patrons addicionals que necessites per a representar la informació estàtica del problema, així com els fets associats a aquests patrons.
- 2) (1 punt) Escriu una regla per a carregar la primera maleta en un tren i assignar el vol de la maleta carregada a aquest tren.
- 3) (0.8 punts) Escriu una regla per a carregar una maleta a un tren quan el tren ja té assignat un vol. El vol de la maleta ha de ser el mateix que el del tren i la maleta no ha d'estar ja carregada al tren.
- 4) (0.5 punts) Suposem el patró (vol vol^s) on vol^s ∈ {F1, F2, F3,...} és l'identificador d'un vol. Assumint un fet que representa un vol determinat, escriu una regla que mostre per pantalla totes les maletes carregades al tren per a aquest vol. S'haurà de mostrar un únic missatge del tipus: "Les maletes X X X han sigut carregades al tren Y".

```
(deffacts dades
 (destinació M1 F14)
 (destinació M2 F14)
 (destinació M3 F2)
 (destinació M4 F10)
 (destinació M5 F10)
 (aeroport TREN 1 res TREN 2 res TREN 3 res))
(defrule tren vol
 (destinació?mal?flight)
 (aeroport $?y TREN ?n ?dest $?z)
 (test (eq ?dest res))
 (test (not (member ?flight $?y)))
 (test (not (member ?flight $?z)))
 (assert (aeroport $?y TREN ?n ?flight ?mal $?z)))
(defrule maleta tren
  (destinació?mal?flight)
  (aeroport $?x TREN ?n ?flight $?maletes)
  (test (not (member ?mal $?maletes)))
 =>
  (assert (aeroport $?x TREN ?n ?flight ?mal $?maletes)))
(defrule llistat_maletes
  (vol ?flight)
  (aeroport $? TREN ?n ?flight $?maletes $?resta)
  (test (not (member TREN $?maletes)))
  (test (or (= (length$ $?resta) 0) (eq (nth$ 1 $?resta) TREN)))
  (printout t "La s maletes " $?maletes " han sigut carregades a el tren " ?n crlf))
```

Examen Final de SIN: bloc 2 (5 punts) (tipus A)

ETSINF, Universitat Politècnica de València, 8 de gener de 2019

Cognoms:	Nom:	

Grup:
$$\Box$$
 3A \Box 3B \Box 3C \Box 3D \Box 3E \Box 3F \Box 3G \Box 4IA

Qüestions (2 punts)

Marca cada quadre amb una única opció. Puntuació: max(0, (encerts - errors/3) / 3).

1 B Siga un problema de classificació en dues classes, c = 1, 2, per a objectes en un espai de representació de 4 elements, $E = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$. La taula de la dreta arreplega les (vertaderes) probabilitats a posteriori $P(c \mid \mathbf{x})$, per a tot c i \mathbf{x} ; així com la (vertadera) probabilitat incondicional, $P(\mathbf{x})$, per a tot \mathbf{x} . Així mateix, aquesta taula inclou la classe assignada a cada $\mathbf{x} \in E$ per un cert classificador $c(\mathbf{x})$. Amb base en el coneixement probabilístic donat, la probabilitat d'error de $c(\mathbf{x})$, ε , és:

	$P(c \mid \mathbf{x})$			
\mathbf{x}	c = 1	c = 2	$P(\mathbf{x})$	$c(\mathbf{x})$
\mathbf{x}_1	1	0	1/3	1
\mathbf{x}_2	3/4	1/4	1/4	1
\mathbf{x}_3	1/4	3/4	1/4	1
\mathbf{x}_4	1/2	1/2	1/6	2

- A) $0/4 \le \varepsilon < 1/4$.
- $\varepsilon = \frac{1}{3} \cdot 0 + \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{3}{4} + \frac{1}{6} \cdot \frac{1}{2} = \frac{1}{3}$ B) $1/4 \le \varepsilon < 2/4$.
- C) $2/4 \le \varepsilon < 3/4$.
- D) $3/4 \le \varepsilon \le 4/4$.
- 2 A Considereu la probabilitat d'error del classificador de Bayes, o error de Bayes, per al problema de classificació descrit en la qüestió anterior. Aquest error, que denotem com ε^* , és:
 - A) $0/4 \le \varepsilon^* < 1/4$. $\varepsilon^* = \frac{1}{3} \cdot 0 + \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{6} \cdot \frac{1}{2} = \frac{5}{24} = 0.2083$ B) $1/4 \le \varepsilon^* < 2/4$. C) $2/4 \le \varepsilon^* < 3/4$. D) $3/4 \le \varepsilon^* \le 4/4$.
- $3 \mid D \mid$ Siga un problema de classificació en quatre classes d'objectes representats en \mathbb{R}^3 . Es té un classificador les funcions discriminants del qual són lineals amb vectors de pesos (en notació homogènia):

$$\mathbf{a}_1 = (-2, 1, 2, 0)^t$$
 \mathbf{a}_2

$$\mathbf{a}_2 = (0, 2, 2, 0)^t$$

$$\mathbf{a}_3 = (1, 1, 1, 0)^t$$

$$\mathbf{a}_4 = (3, 0, 0, 2)$$

Indica a quina classe s'assignarà l'objecte $\mathbf{x} = (1, 2, 2)^t$ (no en notació homogènia).

- $-2 + 1 \cdot 1 + 2 \cdot 2 + 0 \cdot 2 = 3$
- $0 + 2 \cdot 1 + 2 \cdot 2 + 0 \cdot 2 = 6$ B) 2.
- $1 + 1 \cdot 1 + 1 \cdot 2 + 0 \cdot 2 = 4$ C) 3.
- D) 4. $3 + 0 \cdot 1 + 0 \cdot 2 + 2 \cdot 2 = 7$
- 4 D Suposeu que s'està aplicant l'algorisme Perceptró amb b=1.5 i que els vectors de pesos actuals de les classes són els donats en la qüestió 3. Així mateix, suposeu que l'objecte $\mathbf{x} = (1,2,2)^t$ donat en la qüestió 3 és la següent mostra d'entrenament a processar, la qual suposem pertanyent a la classe 3. Llavors:
 - A) Es modificaran els vectors de pesos \mathbf{a}_2 , \mathbf{a}_3 i \mathbf{a}_4 .
 - B) Es modificarà només el vector de pesos \mathbf{a}_3 .
 - C) No es modificarà cap vector de pesos.
 - D) Es modificaran tots els vectors de pesos.
- $g_1(\mathbf{x}) + b > g_3(\mathbf{x})? \to 4.5 > 4? \text{ Si} \to \text{mod } \mathbf{a}_1$
- $g_2(\mathbf{x}) + b > g_3(\mathbf{x})? \rightarrow 7.5 > 4? \text{ Si} \rightarrow \text{mod } \mathbf{a}_2$
- $g_4(\mathbf{x}) + b > g_3(\mathbf{x})? \rightarrow 8.5 > 4? \text{ Si} \rightarrow \text{mod } \mathbf{a}_4$
- S'ha produït algun error? Sí \rightarrow mod \mathbf{a}_3
- 5 D Donat l'arbre de classificació de mostres bidimensionals de 2 classes (∘ i •) de la figura de la dreta, quina de les següents particions representa correctament l'arbre?

6 C En la figura de la dreta es mostra una partició de 6 punts bidimensionals en 2 clústers, o i •, obtinguda mitjançant l'algorisme C-mitjanes (convencional o "popular"). Si transferim els punts $(1,2)^t$ i $(2,1)^t$ del clúster \circ al clúster \bullet , llavors:

- A) es produeix un increment de la SEC.
- B) no s'altera la SEC.
- C) es produeix un decrement de la SEC.
- D) es produeix una SEC igual a 0.

$$J = J_{\circ} + J_{\bullet} = \frac{4}{3} + \frac{4}{3} = \frac{8}{3}$$

$$\Delta J = J - J' = \frac{8}{3} - 4 = -\frac{4}{3} < 0$$

 $J' = J'_{\circ} + J'_{\bullet} = 4 + 0 = 4$

Problema (3 punts)

Siga M un model de Markov de conjunt d'estats $Q = \{1, 2, F\}$; alfabet $\Sigma = \{a, b, c\}$; probabilitats inicials $\pi_1 = \frac{1}{2}, \pi_2 = \frac{1}{2}$; i probabilitats de transició entre estats i d'emissió de símbols:

A	1	2	F
1	$\frac{1}{4}$	$\frac{2}{4}$	$\frac{1}{4}$
2	$\frac{1}{4}$ $\frac{2}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

B	a	b	c
1	$\frac{2}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
2	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{2}{4}$

Siga x = "ac". Es demana:

- 1. (0,75 punts) Feu una traça de l'algorisme Forward per a trobar la probabilitat $P_M(x)$ que M genere x.
- 2. (0,75 punts) Realitzeu una traça de l'algorisme de Viterbi per a obtindre la seqüència d'estats més probable, $\tilde{q}_M(x)$, amb la qual M genera x.
- 3. (0,50 punts) Amb base en els resultats obtinguts en els apartats anteriors, podem afirmar que M genera x amb probabilitat $P_M(x)$, seguint la seqüència d'estats $\tilde{q}_M(x)$. Cert o fals? Raoneu breument la resposta.
- 4. (1 punt) A partir de les cadenes d'entrenament x i "cb", i sabent que $\tilde{q}_M(cb) = "21F$ ", re-estimeu els paràmetres de M mitjançant l'algorisme de re-estimació per Viterbi (fins a convergència).

1.

α_{qt}	a	c
1	$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$	$\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{8} \cdot \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{64} + \frac{1}{64} = \frac{2}{64}$
2	$\frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}$	$\frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{8} \cdot \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{16} + \frac{1}{64} = \frac{5}{64}$

$$P_M(x) = \frac{2}{64} \cdot \frac{1}{4} + \frac{5}{64} \cdot \frac{1}{4} = \frac{7}{256}$$

2.

V_{qt}	a	c		
1	$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$	$\max\left(\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}, \frac{1}{8} \cdot \frac{1}{2} \cdot \frac{1}{4}\right) = \max\left(\frac{1}{64}, \frac{1}{64}\right) = \frac{1}{64}$		
2	$\frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}$	$\max\left(\frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{2}, \frac{1}{8} \cdot \frac{1}{4} \cdot \frac{1}{2}\right) = \max\left(\frac{1}{16}, \frac{1}{64}\right) = \frac{1}{16}$		

$$\tilde{P}_M(x) = \max\left(\frac{1}{64} \cdot \frac{1}{4}, \frac{1}{16} \cdot \frac{1}{4}\right) = \frac{1}{64}$$

$$\tilde{q}_M(x) = "12F"$$

- 3. Fals, M genera x amb probabilitat $P_M(x)$, seguint la seqüència d'estats "12F" $(\tilde{q}_M(x))$, "11F", "21F" o "22F". Més precisament, M genera x mitjançant "12F" amb probabilitat $\tilde{P}_M(x)$; però també pot generar x mitjançant una seqüència diferent de "12F", amb probabilitat $P_M(x) - \tilde{P}_M(x) = \frac{7}{256} - \frac{1}{64} = \frac{3}{256}$.
- 4. En la primera iteració, hem de trobar la seqüència d'estats més probable amb la qual M genera "ac", així com la seqüència d'estats més probable amb la qual M genera "cb". La primera, obtinguda en l'apartat segon, és "12F". La segona, donada en l'enunciat, és "21F". A partir dels parells ("ac", "12F") i ("cb", "21F"), obtenim:

$$\pi_1 = \frac{1}{2}, \quad \pi_2 = \frac{1}{2}$$

A	1	2	F
1	0	$\frac{1}{2}$	$\frac{1}{2}$
2	$\frac{1}{2}$	0	$\frac{1}{2}$

En la segona iteració, partim d'un model en el qual els símbols "a" i "b" només s'emeten en l'estat 1, mentre que "c" només s'emet en el 2. Per tant, "ac" només pot generar-se pel camí "12F", i "cb" només per "21F". Això és, obtenim els mateixos parells (cadena-d'entrenament, camí-més-probable) que en la primera iteració, per la qual cosa la segona iteració acaba amb el mateix model que la primera i l'algorisme de re-estimació acaba.