

Wave Information Studies of US Coastlines

Wave Information Study Annual Summary Report, Gulf of Mexico 1994

by Barbara A. Tracy, Alan Cialone

Approved For Public Release; Distribution Is Unlimited

19960925 107

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Wave Information Study Annual Summary Report, Gulf of Mexico 1994

by Barbara A. Tracy, Alan Cialone
U.S. Army Corps of Engineers
Waterways Experiment Station
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Final report

Approved for public release; distribution is unlimited

Waterways Experiment Station Cataloging-in-Publication Data

Tracy, Barbara A.

Wave information study annual summary report, Gulf of Mexico, 1994 / by Barbara A. Tracy, Alan Cialone; prepared for U.S. Army Corps of Engineers.

56 p. : ill. ; 28 cm. — (WIS report ; 35)

Includes bibliographic references.

1. Ocean waves — Mexico, Gulf of — Measurement — Databases. 2. Water waves — Mexico, Gulf of — Measurement — Databases. 3. Coastal Engineering Data Retrieval System (Computer program) 4. Coastal engineering — Databases. I. Cialone, Alan. II. United States. Army. Corps of Engineers. III. U.S. Army Engineer Waterways Experiment Station. IV. Title. V. Series: WIS report; 35.

TA7 W349 no.35

Contents

Preface	vi
1—Introdu	action
	ve
2—Weath	er Events Description
3—Verific	ation of Model Results
4—Model	Results
5—Data A	vailability
References	s
SF 298	
Figure 1.	Gulf of Mexico grid extends from latitude 18° to 30.5° N (51 rows) and from longitude 98° to 79.5° W (75 columns) 2
Figure 2.	Locations of stations where Gulf of Mexico data are saved 3
Figure 3.	Tracks of Tropical Storm Alberto and Hurricane Gordon 8
Figure 4.	Locations of buoys in Gulf of Mexico
Figure 5.	Tropical Storm Alberto wave comparison. Buoy 42036 is located off the Florida coast at latitude 28.5 °N, longitude 84.5 °W
Figure 6.	Hurricane Gordon comparison at NOAA buoy 42037 11
Figure 7.	Example comparison plot for March
Figure 8.	Wave height means and wave period means, January 1994 27
Figure 9.	Wave height means and wave period means, February 1994 28
Figure 10	Wave height means and wave period means. March 1994 29

Figure 1	 Wave height means and wave period means, April 1994 30
Figure 12	2. Wave height means and wave period means, May 1994 31
Figure 13	3. Wave height means and wave period means, June 1994 32
Figure 14	Wave height means and wave period means, July 1994 33
Figure 15	Wave height means and wave period means, August 1994 34
Figure 16	Wave height means and wave period means, September 1994
Figure 17	
Figure 18	. Wave height means and wave period means, November 1994
Figure 19	Wave height means and wave period means, December 1994
Figure 20	Wave height means and wave period means, 1994
List of	Tables
Table 1.	Gulf of Mexico Output Stations
Table 2.	Buoy Locations
Table 3.	Gulf of Mexico, January
Table 4.	Gulf of Mexico, February
Table 5.	Gulf of Mexico, March
Table 6.	Gulf of Mexico, April
Table 7.	Gulf of Mexico, May
Table 8.	Gulf of Mexico, June
Table 9.	Gulf of Mexico, July
Table 10.	Gulf of Mexico, August
Table 11.	Gulf of Mexico, September
Table 12.	Gulf of Mexico, October
Table 13.	Gulf of Mexico, November
Table 14.	Gulf of Mexico, December
Table 15.	Gulf of Mexico 1994
Table 16.	Mean Wave Height
Γable 17.	Mean Wave Period

Table 18.	Maximum Wave Heights with Associated
	Period and Direction

Preface

In late 1976 a study to produce a wave climate for U.S. coastal waters was initiated at the U.S. Army Engineer Waterways Experiment Station (WES). The Wave Information Studies (WIS) was authorized by Headquarters, U.S. Army Corps of Engineers (HQUSACE) as part of the Coastal Field Data Collection Program, which is managed by the WES Coastal Engineering Research Center (CERC). Messrs. John H. Lockhart, Jr.; Charles B. Chesnutt; and Barry W. Holliday, HQUSACE, are Program Monitors for the Coastal Field Data Collection Program; Ms. Carolyn M. Holmes, CERC, is Program Manager; and Dr. Jon M. Hubertz, CERC, is WIS Project Manager.

This report, the 35th in a series, is a description of the Gulf of Mexico nowcast procedure and the 1994 Gulf of Mexico wave climatology. Wind products for the 1994 hindcast were obtained from the University Center for Atmospheric Research (UCAR) which archives the National Meteorological Center data. The authors appreciate Ms. Ilana Stern, UCAR, for assisting with data transfer. Ms. Barbara Tracy, CERC, served as principal investigator for the Gulf of Mexico nowcast. Mr. Alan Cialone, CERC, produced data analysis and comparison results. Dr. Hubertz provided technical assistance. This report was prepared by Ms. Tracy and Mr. Cialone.

The study was conducted under the direct supervision of Dr. Martin C. Miller, Chief, Coastal Oceanography Branch, and Mr. H. Lee Butler, Chief, Research Division, CERC; and under the general supervision of Dr. James R. Houston and Mr. Charles C. Calhoun, Jr., Director and Assistant Director, CERC, respectively.

At the time of publication of this report, Dr. Robert W. Whalin was Director of WES. COL Bruce K. Howard, EN, was Commander.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

1 Introduction

Objective

This report discusses the Wave Information Studies (WIS) 1994 Gulf of Mexico (GOM) wave hindcast for U.S. GOM nearshore coastal stations. Previous WIS GOM nearshore coastal wave information for 1956-1975 is documented in WIS Report 18 (Hubertz and Brooks 1989). Wave information for GOM hurricane events during 1956-1975 is available at the same nearshore stations (Abel et al. 1989). Updated GOM wave information for 1976-1993 will be available in the near future. WIS has instituted a "nowcast" system to make U.S. coastal wave information available from 1994 to the present. The WIS nowcast adds yearly updates to the original database and meets the needs of coastal engineers who need recent wave information. The nowcast wave hindcasts use monthly wind information from the National Meteorological Center (NMC) to drive the WIS wave hindcast numerical model. Measured wave buoy data, available several months after being recorded, are used to verify the numerical hindcasts. When the completed hindcast has been verified with measured data, the nowcast information is transferred to the Coastal Engineering Data Retrieval System (CEDRS) (McAneny 1995) on the World Wide Web computer network. The first nowcast, 1994, was produced for the Atlantic Ocean and is discussed in WIS Report 34 (Tracy and Cialone 1995). This 1994 GOM nowcast report with a format similar to WIS Report 34 provides a description and analysis of the 1994 GOM wave climatology and is the first in a series of annual GOM nowcast reports.

Approach

NMC global winds were used to produce the wind fields for the wave hind-casts. These winds consist of u,v wind speed components every 6 hr at an elevation of 10 m on a global grid with a spacing of 0.9375 deg latitude and longitude. The September 1989 issue of Weather and Forecasting is devoted to papers on the NMC modeling system. An overview of the system is provided by Bonner (1989). Recent changes to the NMC global system are documented in Kanamitsu et al. (1991). Previous wind fields for the 1956-1975 hindcast were produced from a numerical analysis of the pressure fields

(Corson, Resio, and Vincent 1980; Resio, Vincent, and Corson 1982) using computer programs developed within WIS.

The GOM latitude-longitude grid (shown in Figure 1) has a spacing of 0.25 deg latitude and longitude. The previous GOM hindcast for 1956-1975 (Hubertz and Brooks 1989) used a latitude-longitude grid with a spacing of 0.5 deg. The current grid was enlarged from the previous grid to include an area for wave development east of the stations in the Key West area. The NMC global *u,v* wind components were interpolated to the grid intersections in Figure 1. The few missing 6-hr wind fields were interpolated from the available 6-hr information on either side of the missing hour.

Figure 1. Gulf of Mexico grid extends from latitude 18° to 30.5° N (51 rows) and from longitude 98° to 79.5° W (75 columns)

The latest version of the WIS wave hindcast model, WISWAVE 2.1, described in WIS Report 27 (Hubertz 1992), was used to produce the 1994 GOM wave hindcast. This is the same version of the model that produced the 1994 Atlantic wave nowcast described in WIS Report 34 (Tracy and

Cialone 1995). Data were saved at the output locations shown in Figure 2. The finer spacing of the new hindcast grid allows a better definition of the land-water boundary and more closely spaced output locations than the previous hindcast. Table 1 lists the output station number, grid column and row, latitude, longitude, and depth of each station. These 1994 data are available from the CEDRS database and are in the same form as all the recent WIS output station data. McAneny (1995) gives a description of the CEDRS data. The CEDRS data and a data description are now available on the Internet (see page 51). Wave parameters including significant wave height, peak wave period, mean wave period, wave direction, wind speed, and wind direction are available at 1-hr intervals for the entire year at each station in Figure 2.

Figure 2. Location of stations where Gulf of Mexico data are saved

Station	l (column)	J (row)	Latitude	Longitude	Depth (m)
1	68	27	24.50	81.25	102
2	67	26	24.25	81.50	451
3	66	26	24.25	81.75	450
4	65	26	24.25	82.00	496
5	64	26	24.25	82.25	475
6 .	63	27	24.50	82.50	14
7	64	28	24.75	82.25	22
8	65	28	24.75	82.00	16
9	66	28	24.75	81.75	9
10	67	29	25.00	81.50	8
11	68	29	25.00	81.25	4
12	68	30	25.25	81.25	3
13	67	31	25.50	81.50	6
14	66	32	25.75	81.75	7
15	65	33	26.00	82.00	12
16	65	34	26.25	82.00	12
17	63	35	26.50	82.50	18
18	63	36	26.75	82.50	16
19	63	37	27.00	82.50	10
20	62	38	27.25	82.75	12
21	61	39	27.50	83.00	17
22	61	40	27.75	83.00	11
23	61	41	28.00	83.00	11
24	61	42	28.25	83.00	8
25	61	43	28.50	83.00	10
26	61	44	28.75	83.00	5
27	61	45	29.00	83.00	5
28	60	46	29.25	83.25	4
29	59	47	29.50	83.50	4
30	58	48	29.75	83.75	5
31	57	49	30.00	84.00	3
32	56	49	30.00	84.25	4
33	55	48	29.75	84.50	11
34	54	47	29.50	84.75	19
35	53	47	29.50	85.00	7
36	52	47	29.50	85.25	19

tation	i (column)	J (row)	Latitude	Longitude	Depth (m)
37	51	48	29.75	85.50	19
38	50	49	30.00	85.75	19
39	49	49	30.00	86.00	31
40	48	50	30.25	86.25	28
41	47	50	30.25	86.50	16
42	46	50	30.25	86.75	14
43	45	50	30.25	87.00	11
44	44	50	30.25	87.25	5
45	43	49	30.00	87.50	28
46	42	49	30.00	87.75	28
47	41	49	30.00	88.00	28
48	40	49	30.00	88.25	29
49	39	49	30.00	88.50	25
50	38	49	30.00	88.75	14
51	38	48	29.75	88.75	14
52	38	47	29.50	88.75	18
53	38	46	29.25	88.75	61
54	38	45	29.00	88.75	209
55	37	44	28.75	89.00	574
56	36	44	28.75	89.25	205
57	35	44	28.75	89.50	101
58	34	45	29.00	89.75	37
59	33	45	29.00	90.00	25
60	32	45	29.00	90.25	13
61	31	45	29.00	90.50	10
62	30	45	29.00	90.75	7
63	29	45	29.00	91.00	6
64	28	45	29.00	91.25	4
65	27	46	29.25	91.50	4
66	26	46	29.25	91.75	7
67	25	46	29.25	92.00	7
68	24	46	29.25	92.25	5
69	23	47	29.50	92.50	9
70	22	47	29.50	92.75	13
71	21	47	29.50	93.00	12
72	20	47	29.50	93.25	13
73	19	47	29.50	93.50	9

Station	l (column)	J (row)	Latitude	Longitude	Depth (m)
74	18	47	29.50	93.75	10
75	17	47	29.50	94.00	12
76	16	47	29.50	94.25	11
77	15	46	29.25	94.50	15
78	14	45	29.00	94.75	18
79	13	45	29.00	95.00	15
80	12	44	28.75	95.25	20
81	11	44	28.75	95.50	14
82	10	43	28.50	95.75	20
83	9	43	28.50	96.00	15
84	8	42	28.25	96.25	22
85	7	42	28.25	96.50	9
86	6	41	28.00	96.75	16
87	5	40	27.75	97.00	18
88	5	39	27.50	97.00	27
89	4	38	27.25	97.25	20
90	4	37	27.00	97.25	24
91	4	36	26.75	97.25	18
92	5	35	26.50	97.00	35
93	5	34	26.25	97.00	27
94	5	33	26.00	97.00	27
95	34	33	26.00	89.75	3062
96	19	33	26.00	93.50	3125
97	49	33	26.00	86.00	3210
98	13	40	27.75	95.00	458
9	7	37	27.00	96.50	142
00	71	28	24.75	80.50	183
)1	55	43	28.50	84.50	50

2 Weather Events Description

The 1994 hurricane season produced one hurricane and one tropical storm that affected the U.S. GOM coastal stations. Tropical Storm Alberto moved from the western tip of Cuba into the GOM at the end of June and made landfall at the Florida panhandle on the morning of July 3, with a central pressure of 993 mb. Figure 3 shows Alberto's track as a solid line. Gordon traveled through the eastern GOM from November 8 to November 16. Although Gordon reached hurricane status, it was classified as a tropical storm in the Gulf. Figure 3 shows Gordon's track with a dashed line. Gordon first moved over the Florida Keys from the Caribbean area into the Gulf of Mexico. The storm next moved over the west coast of Florida with a central pressure of 996 mb and then moved into the Atlantic after crossing Florida.

The nowcasting procedure provides the opportunity to check the model output data at all the measurement devices each month. Figure 4 shows the GOM buoy locations. Preliminary hindcasts using only the NMC winds showed underprediction in comparison with the measured data in the eastern GOM for both Alberto and Gordon. A better storm wind field representation was needed so the data in the preliminary report (Pasch 1995) from the National Hurricane Center (NHC) were used in the HURWIN process described in WIS Report 33 (Brooks and Brandon 1995) to create a hurricane wind field for Gordon. Hurricane storm parameter information available via the computer network from NHC was used to prepare the Alberto wind fields. These hurricane winds were calculated at 1-hr intervals and were written to the 0.25-deg GOM grid locations. These new hurricane wind fields were then blended into the original NMC GOM wind fields to produce a better definition of tropical storms Alberto and Gordon. Figure 5 compares the model output, using the redefined Alberto wind field, to measured data from buoy 42036 for the month of July. Alberto moved over this location during the first week of July and produced a maximum significant wave height of 4 m. Figure 6 compares data for the month of November at a station in the Florida Keys close to Gordon's path. Gordon moved near this location (buoy 42037) on November 15 and produced the wind speed and significant wave height peak shown in Figure 5. This comparison location (near the Florida Keys) was not only affected as the storm passed over, but it was also affected by swell moving in from the northwest as the storm made its way up the west coast of Florida.

Figure 3. Tracks of Tropical Storm Alberto (solid line) and Hurricane Gordon (dashed line)

The WIS significant wave height for Gordon at this location is slightly high because all the shallow-water processes cannot be included and the Florida Keys cannot be resolved sufficiently at this grid spacing. Chapter 3 contains a discussion of the statistics for these monthly plots and the other verification locations.

Figure 4. Location of buoys in Gulf of Mexico

Figure 5. Tropical Storm Alberto wave comparison. Buoy 42036 is located off the Florida coast at latitude 28.5 °N, longitude 84.5 °W

Figure 6. Hurricane Gordon comparison at NOAA buoy 42037

3 Verification of Model Results

Wind and wave data from nine National Oceanic and Atmospheric Administration (NOAA) wave gauges and one Network for Engineering Monitoring of the Ocean wave gauge (FL02 at Sarasota, FL) shown in Figure 4 were used for comparisons with the closest WIS stations. Table 2 lists the location and depth of each buoy and the corresponding WIS station number. Comparisons were done each month and included 7 to 10 buoys each month, depending on data availability. Figure 7 shows a representative comparison plot for NOAA buoy 42036 and the corresponding WIS station for March 1994. Buoy 42036 is located northwest of Tampa, FL. This figure contains separate plots for significant wave height (Hs), peak period (Tp), peak mean wave direction (Dp), wind speed (Ws), and a wind direction (Wd) comparison.

Table 2 Buoy Lo	cations			
Buoy	WIS Station	Latitude	Longitude	Depth (m)
42025	100	24.95	80.44	52
42037	1	24.51	81.38	101
FL02	20	27.30	82.59	7
42036	101	28.50	84.50	51
42003	97	25.94	85.91	3164
42001	95	25.93	89.65	3246
42002	96	25.89	93.57	3200
42035	77	29.25	94.41	15
42019	98	27.90	95.00	120
42020	99	27.01	96.51	131

Statistics describing the monthly means taken from the monthly plots are shown in Tables 3 through 14. The bias, the root mean square difference, and the number of cases used for comparison are listed in these tables. Root mean

Figure 7. Example comparison plot for March

square differences between the hindcast and the measured data were calculated by summing the square of the difference between the two for each time period, then taking the square root of the total and dividing it by the number of records used. The bias for each month was calculated by subtracting the monthly buoy mean from the monthly WIS mean. A positive bias indicates the WIS value is higher than the measured value. Monthly statistics describing the plots shown in Figure 7 are listed in the second row of the March statistics table (Table 5). The wave height bias is +0.2 m, and the peak period bias is -0.3 sec. The wave height and peak period bias indicate very good agreement

Gauge Station Bias 42036 101 .2 FL02 20 .4 44002 96 .1 42035 77 .1 42001 95 .1 42003 97 .0	7	Cases 716 672 740	Bias 2 9	RMSD 1.5 1.9	Cases 716	Bias	RMSD	(San) do		Ws (m/s)	_		(geb) bW	(Be
101 20 36 77 95 97	r. r. 8	716 672 740	5	1.5	716	2.5		Cases	Bias	RMSD	Cases	Bias	RMSD	Cases
28 77 88 89 89 89 89 89 89 89 89 89 89 89 89	rvi rvi	672 740	6.	1.9	440	2	64.3	710	4.	2.7	716	22.1	51.2	669
98 77 89 89	9.	740			2	-5.8	99.4	411	0.	0.0	0	0.0	0.0	0
95			٠į	1.1	740	0.0	0.0	0	4	2.1	740	7.0	32.1	724
95	rć	739	-2	1.3	725	0.0	0.0	0	80.	2.6	739	14.6	43.1	723
26	æ	740	6.	1.1	740	0.0	0.0	0		2.3	740	4.6	38.9	732
80	9.	739	4	1.3	739	0	0.	0	8.	2.6	738	5.0	29.5	725
200	7.	281	-:2	1.4	281	0.	0.	0	<u>ن</u>	2.3	278	-6.2	29.6	273
42020 99 .0	rύ	739	4.	1.3	739	0.	0.	0		2.1	739	3.1	35.0	705
96 Japon	i L' rờ		5 4	1.3	281	0 0	6 0 0	00	6 Qi	23 2.1		278		3. 1.

Table 4 Gulf of Me	Table 4 Gulf of Mexico, February	ruary														
			Hs (m)			Tp (sec)			Dp (deg)			Ws (m/s)			Wd (deg)	(B
Gauge	Station	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases
42036	101	ci	č.	554	-1	1.3	554	-2.5	41.2	532	.3	2.0	553	14.2	33.4	540
FL02	82	ь: -	4.	929	-1.3	2.0	321	82.1	103.2	299	0.	o.	0	0.	o.	0
42035	22	- -	ω.	653	2	1.3	653	o.	0.	0	2	2.0	652	15.7	45.7	643
42001	96	٠.	4.	654	6.	1.0	654	0.	0.	0	3	1.8	654	6.4	36.1	651
42002	96	۲.	4	657	7	1.1	657	o.	0.	0	9.	2.0	657	æ. ∓.	31.5	652
42003	26	- .	4.	649	5.	1.3	649	o.	0.	0	7	2.0	649	6.8	37.3	648
42019	86	1.	ω <u>;</u>	652	1	1.3	652	0.	0.	0	ω,	2.1	646	3.2	32.1	628
42020	66	0.	4.	651	5	1.4	651	ο.	0.	0	4.	2.3	650	7	33.5	636
42025	100	.2	4.	296	3	1.3	596	ο.	0.	0	0.	0.	0	ο.	0.	0
Bias = model - gauge Direction from, compass Values every 1 hour, 744	Bias = model - gauge Direction from, compass Values every 1 hour, 744 possible	sible						·								

15

Gulf of M	Gulf of Mexico, March	irch														
			Hs (m)			Tp (sec)			Dp (deg)	(1		Ws (m/s)			(Gep) pM	(6
Gauge	Station	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases
42037	-	0.	.3	92	-1.6	2.2	92	19.0	76.8	91	6.	1.7	95	20.7	41.1	91
42036	101	и	ιť	575	6.	1.2	575	10.5	44.4	561	6.	2.1	285	27.3	53.1	571
FL02	&	ω	4.	727	-1.0	2.1	453	95.3	106.6	451	0	0.	0	0'	0.	0
42035	77	0.	ю.	738	က္	1.2	738	0.	0.	0	2:-	2.1	740	20.0	49.8	729
42001	96	Сİ	٦Ċ	730	-:1	1.0	730	0.	0.	0	6.	2.3	729	14.1	46.2	727
42002	8	٠.	ιć	735	ė.	1.1	735	0.	0	0	5	2.5	735	9.6	40.1	722
42003	26	٠.	4.	739	9.	1.2	739	ο.	0.	0	1	1.7	738	5.5	44.0	733
42019	86	0	4.	740	7	ø.	740	0.	0.	0	1.	1.9	622	12.5	38.8	730
42020	8	0.	4.	743	4	1.3	743	0.	0.	0	2.	2.1	742	2.6	38.0	737
42025	100	5.	.3	548	7	1.7	548	0.	0.	0	0.	0.	0	ο.	0.	0
Bias = model - gauge Direction from, compass Values every 1 hour, 744	Bias = model - gauge Direction from, compass Values every 1 hour, 744 possible	ossible														

Gulf o	Gulf of Mexico, April	, Apri														
			Hs (m)			Tp (sec)			Dp (deg)			We (m/e)			77.77	
Gauge	Station	Bias	RMSD	Cases	Bias	RMSD	Jacob	a a	20100						(Bep) pM	
42037	-	,					Cases	Dids	HMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases
		5	4.	90/	/:-	-	902	-4.3	41.9	689	1.4	22	710.	44.0		
42036	101	o,	6.	683	4	-	682	-16.2	46.4	670	,	1		0.	44.0	90/
FL02	8	2	6	380		6				0/0	o.	2.0	703	27.4	58.5	289
10001			2	3	?	6.0	153	82.6	96.4 4.	152	0.	0.	0	0.0	c	6
42035	//	- -	ω.	718		1.0	718	٥	c	c		Į,			ş	,
42001	95	Si	4	717	67	6	1,1		. .	,	2	2.2	2	16.9	40.7	715
42002	g				,	2		2	o.	0	4.	-8	716	<u>6.</u>	38.3	717
TEANE	ß	-]	.	7.8	4.	o.	718	0	0	0		40	740	000		
42003	97	0.	6,	719	.12	6	718	6	,		اِ	2	9	3.6	45.0	718
42019	86	-	4	235			2	ş	2	2	2.	1.7	716	5.3	33.8	711
9000				3	-	5	720	0.	0.	0	0.	2.3	719	14.0	40.2	716
42020	66	- -	ιtί	367	7	1.0	292	0.	O,	0	ď	36	726			2
42025	100	ε.	4.	629	6.	-	629	,			,	Pi	è	9.	28.2	363
					٦		070	Э.	O.	0	0.	0.	0	0.	0.	
Dispetion 6	Disortion (rect)															
Direction in	Direction from, compass	9														
Values eve	Values every 1 hour, 744 possible	44 poss	ible													

Gauge Station Bias RMSD Cases Bias Cases Cases Bias Cases Cases Bias Cases Cases <th></th> <th></th> <th></th> <th>Hs (m)</th> <th></th> <th></th> <th>Tp (sec)</th> <th></th> <th></th> <th>Op (deg)</th> <th></th> <th></th> <th>Ws (m/s)</th> <th></th> <th></th> <th>Wd (deg)</th> <th></th>				Hs (m)			Tp (sec)			Op (deg)			Ws (m/s)			Wd (deg)	
1 .1 .2 623 -1.2 1.8 624 12.1 56.0 584 .7 1.7 720 4.4 57.5 101 .2 .3 671 -4.2 61.2 636 1.0 2.1 720 19.3 66.8 20 .2 .3 185 .7 1.0 38 58.2 74.6 38 .0	Gauge	Station	Bias	RMSD	Cases	Bias	RMSD	Саѕөѕ	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases
101 .2 .3 671 .2 .4 .2 61.2 636 1.0 2.1 720 19.3 66.8 20 .2 .3 185 .7 1.0 38 58.2 74.6 38 .0 <td>42037</td> <td>1</td> <td>-.</td> <td>.2</td> <td>623</td> <td>-1.2</td> <td>1.8</td> <td>624</td> <td>12.1</td> <td>96.0</td> <td>584</td> <td>7.</td> <td>1.7</td> <td>720</td> <td>4.4</td> <td>57.5</td> <td>502</td>	42037	1	- .	.2	623	-1.2	1.8	624	12.1	96.0	584	7.	1.7	720	4.4	57.5	502
20 .2 .3 185 .7 1.0 38 58.2 74.6 38 .0 <	42036	101	5.	.3	671	2	о ;	671	-4.2	61.2	636	1.0	2.1	720	19.3	8.99	712
77 .1 .2 731 .5 1.4 730 .0 .0 .0 .1 .2 734 .2 .1 .2 .3 .1 .3 .0 .0 .0 .0 .1 1.6 724 .6 35.1 96 .1 .2 735 .3 .8 735 .0 .0 .0 .0 .0 .0 .0 .6 1.8 735 .5 30.4 97 .0 .2 726 .1 1.8 726 .0 .0 .0 .3 1.5 733 2.5 44.8 98 .1 .2 729 .4 1.0 729 .0 .0 .0 .1 1.9 730 .1.5 36.0 99 .1 .3 737 .5 1.0 .0 .0 .0 .1 .1 .2 77 .7 36.6	FL02	20	2.	.3	185	7	1.0	88	58.2	74.6	88	o.	0.	0	o	o	0
95 1 2 731 .5 1.1 731 .0 .0 .0 .0 724 .6 35.1 96 .1 .2 735 .3 .0 .0 .0 .0 .6 1.8 735 5.6 30.4 97 .0 .2 726 .1 726 .0 .0 .0 .3 1.5 733 2.5 44.8 98 .1 .2 729 .4 1.0 729 .0 .0 .1 1.9 730 .1.5 36.0 99 .1 .3 737 .5 1.0 737 .0 .0 .1 2.2 737 .7 36.6	42035	77	7.	.2	731	5.	1.4	730	o.	0.	0	-1.3	2.6	730	7.4	36.6	724
96 .1 .2 735 .3 .8 735 .0 .	42001	95	τ.	5.	731	5.	1.1	731	о.	0.	٥	7	1.6	724	9.	35.1	720
97 .0 .2 726 .1 1.8 726 .0 .0 .0 .0 .3 1.5 733 2.5 44.8 98 .1 .2 729 .0 .0 .0 .1 1.9 730 .1.5 36.0 99 .1 .3 737 .5 1.0 737 .0 .0 .0 .0 .7 2.2 737 .7.2 36.6	42002	%	₩.	.2	735	6.	œί	735	0.	0.	0	9:-	1.8	735	5.6	30.4	735
98 1 .2 729 4 1.0 729 .0 .0 0 .1 1.9 730 -1.5 36.0 99 1 .3 737 5 1.0 737 .0 .0 0 1 2.2 737 -7.2 36.6	42003	26	0.	.2	726	-1.0	1.8	726	0.	o.	0	6.	1.5	733	2.5	8.44	732
991 .3 7375 1.0 737 .0 .0 01 2.2 737 .7.2 36.6	42019	86	7:	5.	729	4	1.0	729	0.	0.	0		1.9	730	-1.5	36.0	730
	42020	86	1.	ъ.	737	÷.5	1.0	737	О.	0.	0	7	2.2	737	-7.2	36.6	737
	Values ev	Values every 1 hour, 744 possible	744 pos	eigle													

Table 8 Gulf of	Table 8 Gulf of Mexico, June	, June														
			Hs (m)			Tp (sec)			Dp (deg)			Ws (m/s)			Wd (deg)	
Gauge	Station	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases
42037	1	.2	6.	644	-7	1.3	644	6.7	38.6	633	0.	1.8	069	6.1	48.0	889
42036	101	0.	2	710	-1.3	2.1	710	12.8	56.0	869	<u>ه</u>	2.1	708	25.8	65.9	707
FL02	20			217	7	1.7	8	136.7	140.6	88	o	0.	0	0	C	c
42035	11	o.	2	718	6	=	712	0.	0.	0	-1.0	2.4	716	5.7	44.9	715
42001	95		ભ	712	4	1.0	712	o.	0.	0	5	1.6	706	4.7	34.6	706
42002	96	O.	2	716	9.	1.1	716	o.	0.	0	8.	2.0	716	1.5	42.0	714
42003	26	2	4.	713	-2.3	2.8	713	o.	0.	0	-1.4	2.7	10	-2.8	19.3	9
42019	86	17	6.	705	9.	1.2	705	o.	0.	0	4.	2.1	621	2.0	9.69	621
42020	66	0.	e,	718	÷.5	1.0	718	0.	0.	0	7	2.2	718	4.8	38.0	718
Diae - mo	Rise - model . gauge															

Bias = model · gauge Direction from, compass Values every 1 hour, 744 possible

			Hs (m)			Tp (sec)			Dp (deg)			Ws (m/s)			Wd (dea)	
Gauge	Station	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases
42037	1	.2	ω.	902	ċ.	1.0	706	4.7	22.3	703	1.2	6.5	706	5.2	25.6	706
42036 1	101	0.	5.	716	- <u>1</u> .6	2.6	716	-1.2	46.5	713	ω	2.0	714	9.0	48.6	3 2
FL02	20	-		163	4.	1.0	29	16.7	47.8	29	0.	0	0		2 0	
42035	77	1:1	.2	726	6.	6.	725	0.	o.	0	1-	2.5	725	-8.7	37.6	22
42001	95		ω.	720	2.	1.1	718	0.	0.	0	7	16	712	14.5	46.0	2 0 7
42002	88	-	2,	730	7	1.0	729	Q	0	٥	r.	1,	730	2 2	2 4	2 2
42003	97	7	٧i	721	-2.2	2.8	721	0				0	200	9	0.0	00/
42019	86	7	٧i	661	-2	æ	199	0		, c	. 0	5.0	20 20	4	0.00	3 3
42020	8	0.	ω.	726	6.	0.	726	0	0	0	i di	21	72K	7. 14.4	0.90	201
		_][5	750	ç:	D.	/د٥	o.	O.	o	£.	2.1	726	4.11.4	29.4	726
Direction from compass	i - gauge	ų,														
Values every 1 hour. 744 possible	1 hour. 7	744 poss	ible													

Table 10 Gulf of N	Table 10 Gulf of Mexico, August	o, Aug	just													
			Hs (m)			Tp (sec)			Dp (deg)			Ws (m/s)			Wd (dea)	
Gauge	Station	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases
42037	-	.2	6.	734	7	1.4	734	5.0	28.0	727	1.5	2.1	733	3.6	98.9	734
42036	101	7	.3	718	7	5.1	718	-7.0	43.0	702	2.	1.7	729	20.2	53.3	728
FL02	8	۳.	.2	279	-1.6	2.3	136	19.4	40.8	136	o.	0.	0	0	o	c
42035	77	0.	4	741	·.5	1.2	734	O.	0.	0	1.0	2.1	719	10.5	57.3	710
42001	92	.2	5	725	9.	1.3	724	0	o	0		1.8	731	- -	40.0	720
42002	96		Si.	738	9.	1.3	738	0.	0.	0	2	1.9	738	50	41.3	736
42003	97	o.	ςi	716	-1.2	6.1	716	0.	o	0	- 5	1.9	716	9	52 B	724
42019	86	1	ε.	140	9.	αó	140	O.	0.	0	ç	121	276	10.3	47.6	27.4
42020	66	0.	6.	738	5.	o .	738	0.	0.	0	77	2.2	737	-4.4	39.2	736
Bias = mo Direction f Values ev	Bias = model - gauge Direction from, compass Values every 1 hour, 744 possible	je pass , 744 pos	ssible													

21

IMSD Cases Bias RMSD Cases Bias RMSD Cases Bias RMSD 8 667 -5 1.1 667 12.3 33.0 654 1.1 2.0 8 699 -7 1.6 699 -3.8 51.7 696 -1 1.6 9 355 -1.9 2.5 213 -42.5 68.8 213 .0 .0 10 701 -6 1.3 697 -11.3 39.9 670 -2 1.8 10 708 -5 1.3 708 .0 0 -1.4 2.5 10 708 -5 1.3 708 .0 0 -3 1.9 10 708 -6 1.1 708 .0 0 -3 1.9				Hs (m)			Tp (sec)			Op (deg)			Wa (m/e)			W. 1.4	
2 .3 667 .5 1.1 667 12.3 33.0 654 1.1 2.0 .0 .3 667 .5 1.1 667 12.3 33.0 654 1.1 2.0 .0 .3 699 .7 1.6 699 .3.8 51.7 696 .1 1.6 .0 .2 697 .1 33.9 670 .2 1.8 .1 .3 701 .6 1.3 695 .0 .0 .0 .1.4 2.5 .1 .3 708 .5 1.3 695 .0 .0 .0 .1.4 2.5 .1 .3 708 .5 1.3 708 .0 .0 .3 1.9 .1 .3 708 .6 .0 .0 .0 .3 1.9	Gauge	Station	Rise	DMCD									(emil) em			Ma (aeg)	1
2 .3 667 .5 1.1 667 12.3 33.0 654 1.1 2.0 .0 .3 699 .7 16 699 .3.8 51.7 696 .1 1.6 .1 .2 355 -1.9 2.5 213 42.5 68.8 213 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .3 1.9 .1 .2 .3 1.9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .3 1.9		longo.	Dias	DOWN	Cases	Blas	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases
.0 .3 699 .7 1.6 699 .3.8 51.7 696 .1 1.6 .1 .2 355 -1.9 2.5 213 -42.5 68.8 213 .0 .1 .2 .2 .1 .2 .2 .1 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .3 .1 .9 .1 .2 .2 .1 .2 .2 .1 .3 .0 .0 .0 .0 .0 .0 .0 .1 .2 .2 .1 .2 .2 .1 .2 .2 .1 .2 .2 .1 .2 .2 .1 .2 .2 .1 .2 .2 .2 .2 </td <td>42037</td> <td>-</td> <td>લ</td> <td>ю.</td> <td>299</td> <td>5.</td> <td>1.1</td> <td>299</td> <td>12.3</td> <td>33.0</td> <td>654</td> <td>-</td> <td>20</td> <td>700</td> <td>S</td> <td>47.0</td> <td>200</td>	42037	-	લ	ю.	299	5.	1.1	299	12.3	33.0	654	-	20	700	S	47.0	200
1 2 355 -1.9 2.5 213 -42.5 68.8 213 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .1.4 2.5 1.8 11 .3 708 .5 1.3 695 .0 .0 .0 .1.4 2.5 1.8 11 .3 708 .5 1.1 708 .0 .0 .0 .3 1.9 11 .3 708 .6 1.1 708 .0 .0 .0 .1 2.2	42036	101	o.	ω.	669	-7	1.6	669	8.6	517	202				9.5	0.75	980
.0 .2 .35 .1.9 2.5 213 .42.5 68.8 213 .0 .1 .2 .2	FI 02	8	-	,	35.5				3		060	-	0.	250	10.3	44.6	697
.0 .2 697 .6 1.3 697 -11.3 39.9 670 .2 1.8 .1 .3 701 .6 1.3 695 .0 .0 .0 -1.4 2.5 .1 .3 708 .5 1.3 708 .0 .0 .0 .3 1.9 .1 .3 708 .6 1.1 708 .0 .0 .1 2.2		2	-	i	333	6.L-	2.5	213	-42.5	8.89	213	0.	0.	0	0	c	٥
1 3 701 -6 1.3 695 .0 .0 0 -1.4 2.5 11 3 708 -5 1.3 708 .0 .0 0 .3 1.9	42002	8	0.	7	269	9	13	607	11.2	900	020	,				:	,
.1 .3 708 .5 1.3 695 .0 .0 0 -1.4 2.5 .1 .3 708 .5 1.3 708 .0 .0 .0 .0 .0 .3 1.9 .1 .1 .3	ASOBE	F		Į,					?	93.9	0/0	7.	œ.	969	9.0	45.5	88
.1 .3 708 .5 1.3 708 .0 .0 0 .3 1.9 .1.9 .1.9 .1.9 .1.9 .1.9 .1.9 .1	15000	;	7	υ.	701	9	E. T	695	o.	0	0	-1.4	25	607	4	6 52	9
1 .3 708 .6 1.1 708 .0 .0 0 .1 2.2	42001	92	۳.	6.	708	ıç	1.3	70g	c	,	,	,		3	2	8.8	8
1. 1. 1. 1. 1. 1. 1. 1.	42020	8		,	200	1				,	,	3	P.	80/	4 .5	52.2	695
	222	88	-	ç.	80/	9.	1.1	708	0.	0.	0		2.2	708	6.7-	52.7	5
Direction from, compass	Bias = mod	tel - gauge															
	Direction fr	om, compas	Š														
Values every 1 hour, 744 possible	Values ever	ry 1 hour, 7.	44 possil	əle													

Table 12 Gulf of N	Table 12 Gulf of Mexico, October	, Octol	ber				5									
			Hs (m)			Tp (sec)			Op (deg)			Ws (m/s)			Wd (deg)	
Gauge	Station	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases
42037	1		6.	715	-1.3	2.1	715	-24.6	9.09	683	æ	1.6	719	6.3	502	718
42036	101	1.	4.	722	6	1.3	722	-7.2	44.7	715	ø.	1.9	724	11.7	49.0	721
FL02	8	si	6.	228	-1.0	1.8	154	-20.6	56.6	154	0	0.0	0	c		٥
42002	8	o.	6.	669	5.	1.3	669	13.1	33.3	969	15	1.7	669	2 0	24.8	288
42035	77	Ŧ.	6.	734	6	1.1	734	0.	0.	0	1.3	2.3	736	7.0	41.1	715
42001	98	۳.	ю.	733	6	1.2	733	O.	0.	0	4	1.7	733	8.6	35.6	723
42020	66	o.	ю.	736	9.	1.5	736	0.	0.	0	7.	1.8	736	3.5	31.6	727
č	, ,															

Bias = model - gauge Direction from, compass Values every 1 hour, 744 possible

		Hs (m)			Tp (sec)			Op (deg)			Ws (m/s)			(Gep) pM	
Station	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases
-	1.	4.	711	2	1.5	602	-20.2	67.2	889	9.	1.8	711	9.6	39.5	902
101	5.	.5	703	0.	1.2	703	-10.0	41.1	682	ø,	2.1	713	4.4	9.04	869
20	Б.	15.	218	-1.0	1.6	138	-54.0	93.0	138	o,	0.	0	0.	0.	0
%	₩.	4.	684	-:2	1.1	683	1.7	33.1	089	6.	1.7	684	-2.4	38.6	684
77	-:1	6.	703	1	6.	703	0.	0.	0	6	2.2	703	12.4	27.4	693
95	2i	4.	711	-:1	1.0	711	0.	0.	0	7	1.6	710	2.9	29.0	969
86	- -	4.	315	۲.	1.2	315	0.	0.	0	tú.	1.6	315	3.8	29.5	314
66	.0	4.	712	2	1.2	712	0.	0.	0	2	1.9	712	-2.6	35.2	669
Bias = model - gauge Direction from, compas	92	1													
	Station 1 101 20 96 77 77 95 98 99 99 99 99 77 77 77 77 77 77 77 77 77 77 7	Gauge Station Bias 42037 1 .1 42036 101 .2 FL02 20 .3 42002 96 .1 42035 77 .1 42036 77 .1 42031 98 .1 42020 99 .0 Bias = model - gauge .1 Direction from, compass Values every 1 hour. 744 possil	He (m) Gauge Station Bias RMSD 42037 1 .1 .4 42036 101 .2 .5 FL02 20 .3 .5 42002 96 .1 .4 42035 77 .1 .3 42019 98 .1 .4 42020 99 .0 .4 Bias = model - gauge .0 .4 Direction from, compass Values every 1 hour. 744 possible	MSD Cases 711 703 218 684 684 703 711 711 711	m) Cases 711 703 218 684 703 711 712	m) Cases Bias F 7117 1 1 218 -1.0 1 1 218 7031 1 1 1 215 7111 1 1 215 7122 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ha (m) Tp (sec) MSD Cases Bias RMSD 711 7 1.5 703 .0 1.2 218 -1.0 1.6 684 2 1.1 703 1 .9 711 1 .9 711 1 1.2 712 1 1.2 712 2 1.2 712 2 1.2	Hs (m) Tp (sec) Bias Th (sec) Bias Cases Bias Bias Cases Bias -20 -20 -20 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20	Cases Bias RMSD Cases Cases	Cases Bias RMSD Cases Ca	Cases Bias RMSD Cases Bias RMSD Cases 711 7 1.5 709 -20.2 67.2 688 703 .0 1.2 703 -10.0 41.1 682 218 -1.0 1.6 138 -54.0 93.0 138 684 2 1.1 683 1.7 33.1 680 703 1 .9 703 .0 .0 0 711 1 1.0 711 .0 .0 0 712 2 1.2 315 .0 .0 0 712 2 1.2 712 .0 .0 0 712 2 1.2 712 .0 .0 0 713 2 1.2 712 .0 .0 0 714 2 1.2 712 .0 .0 0 715 2 1.2 712 .0 .0 0 716 2 1.2 712 .0 .0 0 717 2 1.2 712 .0 .0 0 718 2 1.2 712 .0 .0 0 719 2 1.2 712 .0 .0 .0 710 2 1.2 712 .0 .0 .0 711 2 712 .0 .0 .0 712 2 712 .0 .0 .0 713 2 712 .0 .0 .0 714 2 715 .0 .0 .0 715 2 715 .0 .0 .0 716 2 717 .0 .0 .0 717 2 717 .0 .0 .0 718 2 712 .0 .0 .0 719 2 712 .0 .0 .0 710 2 712 .0 .0 .0 711 2 712 .0 .0 .0 712 2 712 .0 .0 .0 713 2 713 .0 .0 .0 714 2 715 .0 .0 .0 715 2 715 .0 .0 .0 717 2 717 .0 .0 .0 718 2 712 .0 .0 .0 719 2 712 .0 .0 .0 710 2 712 .0 .0 .0 711 2 712 .0 .0 .0 712 2 713 .0 .0 .0 713 2 715 .0 .0 .0 714 2 715 .0 .0 .0 715 2 715 .0 .0 .0 715 2 715 .0 .0 .0 716 2 717 .0 .0 .0 717 2 717 .0 .0 .0 718 2 717 .0 .0 .0 719 2 712 .0 .0 .0 710 2 712 .0 .0 .0 711 2 712 .0 .0 .0 712 2 712 .0 .0 .0 713 2 712 .0 .0 .0 714 2 715 .0 .0 .0 715 2 715 .0 .0 .0 715 2 715 .0 .0 .0 715 2 715 .0	HS (m) Tp (sec) Dp (deg) Ws (m/s) MSD Cases Bias RMSD Cases Bias RMSD Assemblars Assemblars RMSD Assemblars Assemblars	Has (m) Tp (sec) Dp (deg) Wes (m/s) MSD Cases Bias RMSD Cases Bias RMSD Asserting RMSD Wes (m/s) 711 7 1.5 709 -20.2 67.2 688 .6 1.8 703 .0 1.2 703 -10.0 41.1 682 .9 2.1 218 -1.0 1.6 138 -54.0 93.0 138 .0 .0 .0 .0 .0 684 2 1.1 683 1.7 33.1 680 .3 1.7 703 1 9 703 .0 .0 .0 .9 .2 2 711 1 1.0 711 .0 .0 .0 .0 .0 .0 .0 .1 .1 .6 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	HS (m) Tp (sec) Dp (deg) We (m/s) MSD Cases Bias RMSD Cases Bias RMSD Cases Bias Bias <td> Cases Bias RMSD Cases Bias Bias RMSD Cases Bias RMSD Cases Bias Bias RMSD Cases Bias Bias Cases Bias Cases /td>	Cases Bias RMSD Cases Bias Bias RMSD Cases Bias RMSD Cases Bias Bias RMSD Cases Bias Bias Cases Bias Cases Cases

Table 14	14	1	,													
Gulf of	Gulf of Mexico, December	Decei	mper													
			Hs (m)			Tp (sec)			Dp (deg)			Ws (m/s)			(geb) bW	
Gauge	Station	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases
42037	-	۲.	ε.	742	-1.2	2.2	742	-2.4	63.5	701	8.	1.6	741	13.9	37.9	724
42036	101	Si	z;	724	si	1.0	724	4.3	41.3	695	9.	1.9	731	7.4	39.0	200
FL02	8	Si	6.	280	9.	1.6	190	-25.9	70.0	187	0.	0.	0	0.	0.	0
42002	8	۳.	6.	669	2	œ,	669	0.	o.	0	1.	1.9	869	6.4	37.7	681
42035	77	7	6.	729	4	1.0	722	O.	o.	0	-1.5	2.4	726	11.2	35.7	697
42001	95	ь	6,	740	0.	8.	740	o.	o.	0	0.	2.0	740	7.2	38.9	718
42019	86	o.	ω.	382	7.	ω.	382	O.	0.	0	2	1.5	382	1.5	29.9	378
42020	8	7	ε.	742	4	1.0	742	0.	0'	0	6	1.8	742	-3.6	31.8	708
Gio	Disc - model aside															

Bias = model - gauge Direction from, compass Values every 1 hour, 744 possible with the measured data. The wave direction shows a bias of $10.5 \, \mathrm{deg}^1$. The Dp plot in Figure 7 shows generally good agreement on the wave direction. The wind speed (Ws) bias indicates good agreement with a bias of $+0.9 \, \mathrm{m/sec}$. The wind direction (Wd) bias is 27.2 deg. The wind direction may show some variation, since it is an interpolated direction. The largest wave direction differences with the WIS data are shown by FL02 on the Florida coast south of Tampa. Since the WIS comparison point is farther offshore than FL02, WIS wave heights are consistently higher than the FL02 measurements; and local directional changes close to shore cannot be shown at the WIS station.

Figures 8 through 19 reduce the information from the monthly plots (similar to Figure 7) to a monthly bar chart comparison of the mean significant wave height and the mean peak period for each gauge-WIS station set. The WIS mean is shown as an empty bar, and the gauge mean is shown with cross-bar shading.

Figure 20 shows the bar charts relating the yearly mean significant wave heights and the yearly mean peak periods for each of the comparison locations. Table 15 lists the statistics related to these yearly means. Table 15 has the same format as Tables 3-14. The average wave height bias for the year is +0.11 m, and the average peak period bias for the year is -0.56 sec. Positive numbers indicate that the WIS parameter is higher than the gauge. These statistics indicate that the WIS wave heights run slightly high and the WIS peak periods are slightly low. These statistics show good agreement between the WIS hindcast wave heights and peak periods and the measured data. The yearly wave direction bias averages 5.8 deg. If only the NOAA buoys are included, the yearly average wave direction bias is -1.56 deg, indicating very close agreement of the WIS and buoy wave direction. The average yearly wind speed bias is +0.02 m/sec, and the average yearly wind direction bias is +4.3 deg. Wind speeds and directions are very close to the measured data.

To convert degrees (angle) to radians, multiply times a factor of 0.01745329.

Figure 8. Wave height means and wave period means, January 1994

Figure 9. Wave height means and wave period means, February 1994

Figure 10. Wave height means and wave period means, March 1994

Figure 11. Wave height means and wave period means, April 1994

Figure 12. Wave height means and wave period means, May 1994

Figure 13. Wave height means and wave period means, June 1994

Figure 14. Wave height means and wave period means, July 1994

Figure 15. Wave height means and wave period means, August 1994

Figure 16. Wave height means and wave period means, September 1994

Figure 17. Wave height means and wave period means, October 1994

Figure 18. Wave height means and wave period means, November 1994

Figure 19. Wave height means and wave period means, December 1994

Figure 20. Wave height means and wave period means, 1994

			Hs (m)			Tp (sec)			(Bep) dQ			Ws (m/s)			Wd (deg)	
Gauge	Station	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases	Bias	RMSD	Cases
42037	1	2.	ε.	6340	6:-	1.6	6339	-1.2	48.7	6153	1.0	1.9	6522	8.0	43.9	6480
42002	%	1.	₆ .	8548	4:-	1.1	8546	8.	34.3	2387	6.	1.9	8546	2.3	38.3	8465
42036	101	1.	4.	8191	6	1.5	8190	-2.7	49.2	8010	9.	2.0	8292	16.5	51.6	8174
FL02	102	4.	5.	4370	-1.0	6.1	2366	28.0	90.3	2342	o.	0.	0	o	o.	0
42035	77	0.	Е.	8631	6.	1.2	8589	o,	o.	0	6	2.3	8600	9.1	43.2	8474
42001	96	- .	εί.	8621	6.	1.1	8618	0.	0.	0	7	1.9	8603	2.9	40.8	8523
42003	26	0.	4.	5722	-1.2	2.0	5721	o.	0.	0	6	1.9	4420	2.1	41.4	4403
42019	86	o.	ω.	5325	ķ	1.0	5325	o.	0.	0	7	2.0	4787	5.1	42.1	4745
42020	66	0.	ω.	6998	4	1.1	6998	0.	o.	0	0.	2.1	8665	-2.8	36.9	8544
42025	100	.2	4.	1773	4.	1.4	1772	0.	0.	0	o.	O.	0	o	o.	0
Bias = mc Direction 1 Values ev	Bias = model - gauge Direction from, compass Values every 1 hour, 8,760 possible	ss 3,760 pos	sible													

4 Model Results

Hindcast results for 1994 were tabulated for every fifth station shown in Figure 2. The 1994 data for all stations shown in Figure 2 are available from the CEDRS database. Table 16 lists the 1994 mean wave heights for every fifth output station beginning with station 5. Monthly means and a yearly mean are shown. Table 17 lists the monthly and yearly peak mean periods for the same group of stations. Table 18 lists the 1994 maximum wave for each month and the maximum wave for the year for the selected Gulf of Mexico output stations. The associated period and direction of each maximum wave are also included. Periods are in seconds and directions are in meteorological convention.

WIS Report 18 (Hubertz and Brooks 1989) contains information on the means and maxima for the previous Gulf of Mexico hindcast (1956-1975). When comparing maximum and mean wave information between the two hindcasts, remember that the 1956-1975 hindcast did not contain any hurricanes and was run with a different numerical hindcast model. The previous wind fields were created from pressure fields, and the new hindcast was run using NMC winds.

Table 16													
Mean Wave Height (m)	re Height	(m)											
WIS Station	January	February	March	April	May	June	Juty	August	September	October	November	December	1004
2	1.4	1.0	б .	==	ø.	7.	1.0	89.	0,	7	13	1-1	٤
10	1.0	7.	7.	7.	4	4	ø.	R.	ιδί	ις	000	α	2 4
15	80 .	æ.	9.	4	6.	6,	ε.	6.	60	4	ي و	5 K	2 u
&	80.	ις	7.	4.	4	tú.	ε.	6,	4	.v.	9	ی ز	i ra
25	.7	ĸ.	7.	6.	4	4	4	4	4	ıcı	ı	i k	j (r
30	9.	ئ. د	œ.	ω.	4	rv.	4	4	6.	4	4	4	<u> </u>
35	1.0	80.	O,	κί	κί	7.	7.	œ,	9.	0,	6	α	,
40	7.	9.	7.	4.	4.	7.	ø.	4	4.	ဖ	٠	i la	
45	1.1	80 .	o,	9.	κi	80.	7.	z;	9.	6	6		
80	1.0	80.	80.	7.	ιć	7.	g.	25.	9.	œ	00	7	-
55	1.6	1.2	1.2	1.0	ø.	89.	80.	7.	80.	1.1	1.3	-	Ç
09	1.2	6.	<u>ه</u>	6.	ø.	7.	7.	g.	7.	σ.	10	00	00
65	8.	9.	7.	7.	κί	ø.	ø.	4	4.	9.	7	LC.	ي و
20	6:	7.	7.	œί	ø.	7.	7.	4	6:	ø.	7	ı.c	و
75	1.1	6.	8.	o .	7.	œί	7.	85	3.	œ	ص.	7	00
80	1.3	1.0	6.	1.1	ω .	o;	6.	7.	9.	6.	1.1	6	6
85	1.2	1.0	6.	1.1	80.	6:	6.	80,	9.	6.	7	00	6
8	1.2	1.0	6.	1.1	o,	6:	Ø.	æ	9.	6.	1.0	o.	<u>ත</u>
95	2.0	1.5	1.4	1.2	œ,	o;	7.	7.	o.	1.1	1.4	1.4	1.2
100	1.2	o.	8.	1.0	5.	9.	œί	7.	7.	9.	1.0	80.	∞.

Table 17													
Mean wave Period (sec)	re Period	(sec)											
WIS Station	January	February	March	April	May	June	July	August	September	October	November	December	1994
ည	5.6	5.1	4.9	5.3	4.0	4.3	5.1	4.8	4.7	4.4	5.6	5.1	4.9
10	4.7	4.3	4.5	3.9	3.4	3.6	3.6	3.5	3.6	4.0	4.5	4.6	40
15	4.5	4.0	4.3	3.7	3.5	3.5	3.8	3.5	3.5	4.0	3.9	4.3	30
20	4.4	3.9	4.4	3.4	3.4	3.8	3.7	3.6	3.4	3.9	3.7	4.0	8 8
25	4.7	4.0	4.6	3.4	3.6	3.9	4.2	3.9	3.4	3.9	3.6	80	3.9
8	4.7	4.2	4.6	3.5	3.4	1.1	4.0	4.0	3.6	4.2	3.5	3.5	3.9
35	5.0	4.5	4.7	3.9	3.7	4.3	4.3	4.1	4.0	4.6	4.4	4.1	4.3
40	8.4	4.6	5.0	4.3	3.8	4.5	4.5	4.3	3.9	4.5	4.0	3.6	4.3
45	5.2	4.9	4.9	4.2	3.8	4.5	4.5	4.2	4.1	4.7	4.5	4.2	4.5
80	5.1	4.8	6.9	4.3	4.0	4.4	4.3	4.2	4.3	4.7	4.4	4.3	4.5
55	6.2	5.6	5.4	5.0	4.4	4.8	4.8	4.5	4.8	5.3	5.7	5.2	5.2
	5.3	5.0	5.1	4.8	4.1	4.8	4.7	4.4	4.5	4.9	4.7	4.6	4.7
	5.4	5.0	5.0	5.1	4.4	5.0	8.4	4.5	4.2	4.8	4.7	4.1	4.8
20	5.4	5.4	5.1	5.4	4.5	5.2	4.8	4.6	4.6	5.0	5.1	4.3	6.4
75	5.8	5.4	5.5	5.7	4.7	5.4	5.0	4.8	4.6	5.0	5.1	4.5	5.1
	6.1	5.7	5.9	5.8	5.1	5.4	5.4	5.0	4.9	5.3	5.6	5.1	5.4
	6.4	5.7	0.9	6.2	5.4	5.6	5.6	5.1	5.0	5.5	5.8	5.4	5.6
	6.8	6.1	5.6	6.0	5.2	5.3	5.4	5.1	5.0	5.8	6.1	5.9	5.7
	7.0	6.4	6.0	5.6	4.8	5.1	4.8	4.6	5.1	5.6	6.2	6.1	5.6
100	5.0	4.4	4.2	4.6	3.6	3.8	4.4	4.1	4.1	3.8	4.5	4.2	4.2

Table 18													
Maximum	Wave H	Maximum Wave Height (m) with As	with As	sociate	d Period	s (sec)	and Dire	sociated Period (sec) and Direction (deg)	g)				
WIS Station	January	February	March	April	May	June	July	August	September	October	November	December	1994
က	4.0	2.7	3.7	2.9	2.0	1.7	2.2	1.9	2.4	2.9	3.7	3.0	4.0
	ωi	.8	6	8.	7.	6.	7.	7.	8.	7.	αċ	œ	αi
	94.	90.	288.	94.	90.	.06	97.	97.	108.	79.	248.	310.	8.
10	2.2	1.5	2.7	1.4	1.3	1.0	1.3	1.1	1.3	1.5	2.6	2.4	2.7
	œί	5.	တ်	ιςi	5.	4	ιώ	4	ý.	5.	ஏ	1 0.	တ်
	281.	65.	288.	101.	29.	97.	108.	108.	61.	54.	245.	288.	288.
15	3.0	1.2	2.9	1.1	σ.	ø.	9.	9	8.	1.5	2.5	2.4	3.0
	αċ	4.	10.	5.	4.	4.	89	3.	4.	.9	7.	αċ	œ.
	266.	342.	270.	317.	288.	187.	256.	104.	130.	234.	158.	288.	266.
50	3.7	1.3	3.2	1.0	1.2	80.	1.0	ο.	1.0	2.3	1.8	2.6	3.7
	တ်	7.	αċ	رن ن	5.	S.	œi	4.	4.	œ	ć.	o i	6
	252.	270.	223.	317.	310.	202.	238.	126.	61.	230.	43.	266.	252.
25	3.1	1.6	3.0	8.	1.3	1.0	1.2	1.6	6:	2.5	1.4	2.4	3.1
	တ်	7.	6	5.	5.	5.	6	7.	5.	<i>б</i> і	ı,	αċ	6
	259.	259.	270.	306.	18.	263.	238.	230.	230.	245.	356.	288.	259.
30	2.4	1.8	2.6	6.	1.0	1.4	2.5	2.5	1.0	3.2	1.0	1.3	3.2
	7.	7.	6	4.	5.	9	6	ő	5.	6	5.	5.	9.
	234.	223.	212.	212.	241.	223.	209.	212.	223.	212.	281.	320.	212.
												(Sh	(Sheet 1 of 3)

Table 18 (Continued)	(Continu	ed)											
WIS Station January	January	February	March	April	May	June	July	August	September	October	November	December	1994
35	2.6	2.0	2.8	1.2	1.4	1.7	4.4	2.8	1.7	4.4	1.7	2.0	4.4
	86	œ	9.	5.	5.	9	6	တံ	9	б	ω̈	7.	9.
	245.	184.	173.	133.	58.	198.	169.	191.	126.	191.	72.	292.	169.
40	2.4	2.2	2.1	1.0	6:	1.8	3.3	1.1	1.4	3.1	4. 8.	1.3	3.3
	œ	œi	89	6.	4.	6.	10.	9	7.	œί	7.	4	10.
	169.	187.	176.	162.	220.	205.	173.	223.	176.	187.	187.	328.	173.
45	3.2	2.6	2.6	1.3	1.3	2.4	3.5	1.3	2.2	3.0	2.1	1.8	3.5
	6	8.	80	6.	5.	7.	6	ري ري	7.	œ.	7.	Ŋ.	6
	155.	194.	173.	144.	47.	209.	133.	230.	119.	130.	169.	331.	133.
50	3.0	2.3	5.6	1.4	1.1	1.7	2.1	ග	1.7	2.7	2.1	1.4	3.0
	10.	.9	ő	6.	5.	rç.	တ်	ເດັ	7.	αċ	œί	5.	10.
	137.	187.	155.	133.	148.	212.	137.	126.	115.	119.	158.	317.	137.
55	4.3	3.1	3.6	2.2	1.7	2.2	3.1	1.3	5.6	3.2	3.0	2.5	4.3
	10.	7.	6	7.	e.	7.	89	IJ.	.89	·6	αċ	7.	10.
	122.	54.	176.	47.	104.	212.	241.	108.	.67	108.	173.	47.	122.
9	3.0	2.0	3.1	1.7	1.5	1.5	2.3	1.1	2.1	2.3	2.5	1.7	3.1
	10.	Θ.	တ်	7.	9	Θ.	89	5.	6.	.6	6.	5.	.6
	144.	209.	166.	140.	122.	191.	216.	.24	.98	130.	166.	320.	166.
65	2.5	1.4	2.5	1.3	1.0	1.3	1.7	6.	8.	1.3	2.5	1.5	2.5
	ெ	7.	6	7.	9	9	7.	7.	7.	8.	6	7.	6
	194.	194.	194.	191.	191.	220.	223.	194.	180.	187.	202.	212.	194.
												(She	(Sheet 2 of 3)

Table 18 (Concluded)	(Conclud	(pa)											
WIS Station	January	February	March	April	May	June	July	August	September	October	November	December	1994
20	2.5	1.6	2.5	1.8	1.3	1.6	1.3	1.1	6.	1.4	2.7	1.7	2.7
	90	5.	10.	8.	9	5.	5.	80	7.	rç.	7.	7.	7.
	184.	176.	169.	166.	173.	202.	205.	176.	166.	133.	180.	205.	180.
75	2.6	1.8	2.4	2.2	1.4	1.6	1.4	1.3	1.1	1 .8	2.7	1.7	2.7
	б	7.	10.	8.	6.	6.	5.	83	7.	7.	6	7.	6
	184.	176.	169.	162.	158.	194.	187.	169.	166.	140.	180.	169.	180.
80	2.9	1.9	2.3	2.5	1.6	1.6	1.4	1.5	1.4	2.1	3.1	1.8	3.1
	6	7.	Ġ.	ထ	7.	6.	S.	80	7.	7.	œί	7.	œί
	180.	173.	162.	151.	151.	137.	173.	155.	151.	133.	180.	151.	180.
85	2.6	1.9	2.0	2.5	1.7	1.7	1.7	1.7	1.5	2.2	2.5	2.2	2.6
	6	7.	6	6	9	7.	9	œ	7.	œί	တ်	တ်	ஏ
	162.	162.	144.	140.	144.	144.	155.	144.	140.	140.	158.	155.	162.
8	2.4	1.8	1.8	1.9	1.6	1.6	1.7	1.5	1.7	1.7	2.1	6.1	2.4
	œ.	5.	5.	6	5.	7.	9	ø;	6	6	7.	80	æί
	83.	173.	353.	108.	148.	119.	140.	122.	94.	06	. 92	112.	83.
92	3.8	3.0	4.6	2.5	1.8	1.9	2.1	1.6	4.0	2.9	3.1	3.6	4.6
	6	ъ.	6	8.	7.	.9	6	œ.	6	6	7.	<i>б</i> і	б
	133.	36.	158.	22.	43.	180.	112.	140.	E	83.	32.	349.	158.
100	2.8	2.3	2.6	2.3	1.7	1.4	1.9	1.6	2.0	2.1	3.8	3.2	3.8
	7.	9.	7.	6.	9	6.	9	6.	6.	.9	8.	89	œ
	43.	54.	119.	97.	144.	115.	119.	112.	112.	58.	212.	184.	212.
												(Sh	(Sheet 3 of 3)

5 Data Availability

WIS hindcast data are available on the Internet by anonymous ftp (file transfer protocol). Information about obtaining this data may be viewed at World Wide Web site http://www.wes.army.mil by selecting the Coastal Engineering Research Center. If a Web browser is not available, the following instructions will be of assistance:

ftp Bigfoot.cerc.army.wes.mil

id: anonymous

password: your email address

cd /pub/gul

The file entitled README.NOW will give instructions about downloading data. For help or additional information, please contact webmaster@cerc.wes.army.mil by email.

This report is the first in a yearly series of nowcast reports. WIS is attempting to make current wave information available for coastal projects. The NMC wind fields provide an accurate representation of the 1994 wind climate. Monthly comparisons with measurements provide quality control on the numerical wave output data. The ability to redefine the hurricane winds with the HURWIN process gives more realistic hurricane wave results. New procedures to redefine other nontropical storms will be added to the procedure as they become available.

References

- Abel, C. E., Tracy, B. A., Vincent, C. L., and Jensen, R. E. (1989), "Hurricane hindcast methodology and wave statistics for Atlantic and Gulf hurricanes from 1956-1975," WIS Report 19, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Bonner, W. D. (1989). "NMC overview: Recent progress and future plans," Weather and Forecasting 4, 275-85.
- Brooks, R. M., and Brandon, W. A. (1995). "Hindcast wave information for the U.S. Atlantic Coast: Update 1976-1993 with hurricanes," WIS Report 33, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Corson, W. D., Resio, D. T., and Vincent, C. L. (1980). "Wave Information Study for U.S. Coastlines; Report 1, Surface pressure field reconstruction for wave hindcasting purposes," Technical Report HL-80-11, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Hubertz, J. M. (1992). "A users guide to the WIS wave model, Version 2.0," WIS Report 27, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Hubertz, J. M, and Brooks, R. M. (1989). "Gulf of Mexico hindcast wave information," WIS Report 18, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Kanamitsu, M., Alpert, J. C., Campana, K. A., Caplan, P. M., Deaven, D. G.,
 Iredell, M., Katz, B., Pan, H. L., Sela, J., and White, G. H. (1991).
 "Recent changes implemented into the global forecast system at NMC,"
 Weather and Forecasting 6, 425-35.
- McAneny, D. (1995). "Coastal Engineering Data Retrieval System (CEDRS)," U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Pasch, R. J. (1995). "Preliminary Report, Hurricane Gordon, 8-21 November 1994," National Hurricane Center, Coral Gables, FL.

- Resio, D. T., Vincent, C. L., and Corson, W. D. (1982). "Objective specification of Atlantic Ocean wind fields from historical data," WIS Report 4, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Tracy, B. A., and Cialone, A. (1995). "Wave Information Study annual summary report Atlantic 1994," WIS Report 34, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing Instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED June 1996 Final report 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Wave Information Study Annual Summary Report, Gulf of Mexico 1994 6. AUTHOR(S) Barbara A. Tracy, Alan Cialone 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER U.S. Army Engineer Waterways Experiment Station 3909 Halls Ferry Road Vicksburg, MS 39180-6199 WIS Report 35 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING U.S. Army Corps of Engineers AGENCY REPORT NUMBER Washington, DC 20314-1000 11. SUPPLEMENTARY NOTES Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited. 13. ABSTRACT (Maximum 200 words) Under the Wave Information Studies authorized by Headquarters, U.S. Army Corps of Engineers, a "nowcast" system has been instituted to make U.S. coastal wave information available to users. The WIS nowcast adds yearly updates to the original database and meets the needs of coastal engineers who need recent wave information. The nowcast wave hindcasts use monthly wind information from the National Meteorological Center to drive the WIS wave hindcast model. Measured wave buoy data, available several months after being recorded, are used to verify the numerical hindcasts. When the completed hindcast has been verified with measured data, the nowcast information is transferred to the Coastal Engineering Data Retrieval System (CEDRS) on the World Wide Web computer network. This report, the first in a series of annual GOM nowcast reports, discusses the WIS 1994 Gulf of Mexico (GOM) wave hindcast for U.S. nearshore coastal stations in the gulf. 14. SUBJECT TERMS 15. NUMBER OF PAGES Gulf of Mexico waves Nowcast Waves Hindcast Wave Information Studies 16. PRICE CODE 17. SECURITY CLASSIFICATION

SECURITY CLASSIFICATION

OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION

OF ABSTRACT

UNCLASSIFIED

OF REPORT

20. LIMITATION OF ABSTRACT

