CMPS 130

Spring 2016

Homework Assignment 1

Solutions

Chapter 1 (p.34): 18, 19ab, 20a-e, 23a-c, 25a-c, 26, 27a-c, 28a-c, 30

1. Problem 1.18

Find a formula for a function from \mathbb{Z} to \mathbb{N} that is a bijection.

Solution:

Define $f: \mathbb{Z} \to \mathbb{N}$ by

$$f(k) = \begin{cases} 2k-1 & \text{if } k > 0 \\ -2k & \text{if } k \le 0 \end{cases}$$

f is one-to-one: Assume $f(k_1) = f(k_2)$. Then this common value is either even or odd. If it is even then $f(k_1) = -2k_1$ and $f(k_2) = -2k_2$. We have $-2k_1 = -2k_2$, and hence $k_1 = k_2$. If this common value is odd then $f(k_1) = 2k_1 - 1$ and $f(k_2) = 2k_2 - 1$. In this case $2k_1 - 1 = 2k_2 - 1$, hence $2k_1 = 2k_2$ and therefore $k_1 = k_2$. In either case $k_1 = k_2$, showing that f is one-to-one.

<u>f</u> is onto: Let $n \in \mathbb{N}$. If n is even let k = -n/2. Then $k \le 0$, hence f(k) = -2(-n/2) = n. If n is odd then put $k = \frac{n+1}{2}$. Then k > 0 and $f(k) = 2 \cdot \frac{n+1}{2} - 1 = n + 1 - 1 = n$. In either case there exists $k \in \mathbb{Z}$ such that f(k) = n, showing that f is onto.

2. Problem 1.19

In each case say whether the function is one-to-one and whether it is onto.

- a. $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ be defined by f(a, b) = (a+b, a-b).
- b. $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ be defined by f(a, b) = (a + b, a b).

Solution:

We can solve both parts simultaneously by noticing that the function f is a linear transformation of the plane given by matrix multiplication

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a+b \\ a-b \end{pmatrix}$$

The matrix $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ is invertible with inverse $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{-1} = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix}$. The function f in part (b) is therefore invertible with inverse f^{-1} : $\mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ given by

$$f^{-1}(x, y) = ((x+y)/2, (x-y)/2).$$

Being invertible, the function in (b) is a bijection (both one-to-one and onto.) The function in (a) is nothing but the restriction of the function in (b) to the integer lattice $\mathbb{Z} \times \mathbb{Z}$. The restriction of a one-

to-one function is one-to-one, so the function in (a) is one-to-one. It is not onto however since by the above formula $f^{-1}(1, 0) = (1/2, 1/2)$ which is not part of the integer lattice. Therefore there is no $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ such that f(a, b) = (1, 0).

3. Problem 1.20

Suppose A and B are sets and $f: A \rightarrow B$. For a subset S of A, we use the notation f(S) to denote the set $\{f(x) \mid x \in S\}$. Let S and T be subsets of A.

- a. Is the set $f(S \cup T)$ a subset of $f(S) \cup f(T)$? If so, give a proof; if not, give a counterexample (i.e., say what the sets A, B, S, and T are and what the function f is).
- b. Is the set $f(S) \cup f(T)$ a subset of $f(S \cup T)$? Give either a proof or a counterexample.
- c. Repeat part (a) with intersection instead of union.
- d. Repeat part (b) with intersection instead of union.
- e. In each of the first four parts where your answer is no, what extra assumption on the function f would make the answer yes? Give reasons for your answer.

Solution

a. $f(S \cup T) \subseteq f(S) \cup f(T)$? **Yes**.

Proof: Let $y \in f(S \cup T)$. We must show that $y \in f(S) \cup (T)$. Since $y \in f(S \cup T)$, there exists $x \in S \cup T$ such that y = f(x). Either $x \in S$ or $x \in T$. If $x \in S$ then y = f(S). If $x \in T$ then y = f(T). Thus either $y \in f(S)$ or $y \in f(T)$, and hence $y \in f(S) \cup (T)$. We've shown that $f(S \cup T) \subseteq f(S) \cup f(T)$, as required.

///

b. $f(S) \cup f(T) \subseteq f(S \cup T)$? **Yes**.

Proof: Let $y \in f(S) \cup f(T)$. We must show that $y \in f(S \cup T)$. Since $y \in f(S) \cup f(T)$, either $y \in f(S)$ or $y \in f(T)$. If $y \in f(S)$, then there exists $x_1 \in S$ such that $y = f(x_1)$. But $S \subseteq S \cup T$, so $x_1 \in S \cup T$, whence $y \in f(S \cup T)$. If on the other hand, $y \in f(T)$, then there exists $x_2 \in T$ such that $y = f(x_2)$. But again since $S \subseteq S \cup T$, we have $x_2 \in S \cup T$, whence $y \in f(S \cup T)$. In both cases we have $y \in f(S \cup T)$. We've shown that $f(S) \cup f(T) \subseteq f(S \cup T)$, as required.

///

c. $f(S \cap T) \subseteq f(S) \cap f(T)$? **Yes**.

Proof: Let $y \in f(S \cap T)$. We must show that $y \in f(S) \cap f(T)$. Since $y \in f(S \cap T)$, there exists $x \in S \cap T$ such that y = f(x). Since $x \in S \cap T$, we have $x \in S$ and $x \in T$, hence $y \in f(S)$ and $y \in f(T)$, showing that $y \in f(S) \cap f(T)$. We've shown that $f(S \cap T) \subseteq f(S) \cap f(T)$, as required.

///

d. $f(S) \cap f(T) \subseteq f(S \cap T)$? No.

Counter example: Let $A = \{-1, 0, 1\}$, $B = \{0, 1\}$ and define $f: A \to B$ by $f(x) = x^2$. Let $S = \{0, 1\}$ and $T = \{0, -1\}$. Then $\{0, 1\} = f(S) = f(T) = f(S) \cap f(T)$. Also $f(S \cap T) = f(\{0\}) = \{0\}$. But $\{0, 1\} \nsubseteq \{0\}$ so $f(S) \cap f(T) \nsubseteq f(S \cap T)$.

///

e. If the function $f: A \to B$ is injective, then the answer in (d) is **Yes**.

Proof: Assume $f: A \to B$ is injective and let $y \in f(S) \cap f(T)$. We must show that $y \in f(S \cap T)$. We have that $y \in f(S)$ and $y \in f(T)$. Since $y \in f(S)$, there exists $x_1 \in S$ such that $y = f(x_1)$. Since $y \in f(T)$, there exists $x_2 \in T$ such that $y = f(x_2)$. Therefore $f(x_1) = y = f(x_2)$. Since f is injective, this implies that $x_1 = x_2$. Let x denote this common value, i.e. $x = x_1 = x_2$. Thus $x = x_1 \in S$ and $x = x_2 \in T$, whence $x \in S \cap T$ and y = f(x). Therefore $y \in f(S \cap T)$, showing that $f(S) \cap f(T) \subseteq f(S \cap T)$, as required.

///

4. Problem 1.23

In each case below, a relation on the set {1, 2, 3} is given. Of the three properties, reflexivity, symmetry, and transitivity, determine which ones the relation has. Give reasons.

- a. $R = \{(1, 3), (3, 1), (2, 2)\}$
- b. $R = \{(1, 1), (2, 2), (3, 3), (1, 2)\}$
- c. $R = \emptyset$

Solution:

a. *R* is **not reflexive**.

Reason: 1*R*1 and 3*R*3 are both false, so it is not the case that xRx is true for all $x \in \{1, 2, 3\}$. *R* is **symmetric**.

Reason: When x and y range independently over $\{1, 2, 3\}$, there are only three cases in which xRy is true. In the case 1R3, we also have 3R1, so the implication $1R3 \rightarrow 3R1$ is true. In the case 3R1 we also have 1R3, so the implication $3R1 \rightarrow 1R3$ is true as well. In the case 2R2 we again have the true implication $2R2 \rightarrow 2R2$. If xRy is false then the implication $xRy \rightarrow yRx$ is automatically true. Thus $xRy \rightarrow yRx$ is true for all $x,y \in \{1,2,3\}$.

R is **not transitive**.

Reason: 1R3 and 3R1 are both true, so 1R3 \land 3R1 is true. But 1R1 is false, so the implication 1R3 \land 3R1 \rightarrow 1R1 is false. Thus $xRy \land yRz \rightarrow xRz$ is not true for all $x, y, z \in \{1, 2, 3\}$.

b. *R* is reflexive.

Reason: 1R1, 2R2 and 3R3 are all true.

R is **not symmetric**.

Reason: 1R2 is true but 2R1 is false.

R is **transitive**.

Reason: Of the 27 instances of the statement $xRy \land yRz \rightarrow xRz$, there are only 5 in which the statement $xRy \land yRz$ is true, namely $1R1 \land 1R1 \rightarrow 1R1$, $1R1 \land 1R2 \rightarrow 1R2$, $1R2 \land 2R2 \rightarrow 1R2$, $2R2 \land 2R2 \rightarrow 2R2$ and $3R3 \land 3R3 \rightarrow 3R3$, which are all true. The remaining implications are all true since in those cases, $xRy \land yRz$ is false.

c. R is **reflexive**.

Reason: The statement $\forall x \in \emptyset$: xRx can be false only if there exists an $x \in \emptyset$ for which xRx is false. But obviously no such x exists in the empty set.

R is symmetric.

Reason: The statement $\forall x, y \in \emptyset$: $xRy \rightarrow yRx$ is false only if there exists $x, y \in \emptyset$ for which xRy is true and yRx is false. No such x, y exists in the empty set.

R is **transitive**.

Reason: The statement $\forall x, y, z \in \emptyset$: $xRy \land yRz \rightarrow xRz$ is false only if there exists $x, y, z \in \emptyset$ for which both xRy and yRz are true and xRz is false. No such x, y, z exist in the empty set.

5. Problem 1.25

Each case below gives a relation on the set of all nonempty subsets of \mathbb{N} . In each case, say whether the relation is reflexive, whether it is symmetric, and whether it is transitive.

- a. R is defined by: ARB if and only if $A \subseteq B$.
- b. R is defined by: ARB if and only if $A \cap B = \emptyset$.
- c. R is defined by: ARB if and only if $1 \in A \cap B$.

Solution:

a. *R* is **reflexive**.

Reason: $A \subseteq A$ for any $A \subseteq \mathbb{N}$.

R is **not symmetric**.

Reason: $\{1\} \subseteq \{1, 2\}$ but $\{1, 2\} \nsubseteq \{1\}$.

R is **transitive**.

Reason: It is a general fact of set theory that $(A \subseteq B) \land (B \subseteq C) \rightarrow (A \subseteq C)$, however we provide a proof here for the sake of completeness. (The following is not necessary for full credit.) **Proof:** Assume $(A \subseteq B) \land (B \subseteq C)$ we must show that $A \subseteq C$. Let $x \in A$ be chosen arbitrarily. We must now show that $x \in C$. Since $x \in A$ and $A \subseteq B$ we have that $x \in B$. Now since $B \subseteq C$ we have $x \in C$, as required.

b. R is **not reflexive**.

Reason: If A is a non-empty subset of N, then $A \cap A = A \neq \emptyset$.

R is **symmetric**.

Reason: If $A \cap B = \emptyset$ then $B \cap A = A \cap B = \emptyset$.

R is **not transitive**.

Reason: Let $A = \{1\}$, $B = \{2\}$, $C = \{1,3\}$. Then $A \cap B = \emptyset$ and $B \cap C = \emptyset$ but $A \cap C \neq \emptyset$.

c. R is **not reflexive**.

Reason: $1 \notin \{2\} = \{2\} \cap \{2\}$ so $\{2\}R\{2\}$ is false, hence $\forall A \subseteq \mathbb{N}$: ARA is false.

R is **symmetric**.

Reason: Since $A \cap B = B \cap A$, we have $1 \in A \cap B$ implies $1 \in B \cap A$.

R is transitive.

Reason: Suppose $1 \in A \cap B$ and $1 \in B \cap C$, so $1 \in A$, $1 \in B$ and $1 \in C$. Therefore $1 \in A \cap C$.

6. Problem 1.26

Let *R* be a relation on a set *S*. Write three quantified statements (the domain being *S* in each case), which say, respectively, that *R* is not reflexive, *R* is not symmetric, and *R* is not transitive.

Solution:

R is not reflexive: $\exists x \in S$: $\neg xRx$ (here \neg is the logical negation operator.)

R is not symmetric: $\exists x, y \in S$: $xRy \land \neg yRx$.

R is not transitive: $\exists x, y, z \in S$: $xRy \land yRz \land \neg xRz$.

7. Problem 1.27

Suppose *S* is a nonempty set, $A = 2^S$, and the relation *R* on *A* is defined as follows: For every *X* and every *Y* in *A*, *XRY* if and only if there is a bijection from *X* to *Y*.

- a. Show that R is an equivalence relation.
- b. If *S* is a finite set with *n* elements, how many equivalence classes does the equivalence relation *R* have?
- c. Again assuming that S is finite, describe a function $f: A \to N$ so that for every X and Y in A, XRY if and only if f(X) = f(Y).

Solution:

a. *R* is reflexive:

Reason: Let $X \subseteq S$. Then there is a bijection from X to X, namely the identity mapping. Thus XRX for any $X \subseteq S$.

R is symmetric:

Reason: If $g: X \to Y$ is a bijection, then g is invertible and its inverse $g^{-1}: Y \to X$ is also a bijection. (See remarks at the end of this document.)

R is transitive:

Reason: If $g: X \to Y$ and $h: Y \to Z$ are bijections, then so is their composition $h \circ g: X \to Z$. (See remarks at the end of this document.)

b. R has n + 1 equivalence classes.

Proof: By part (c) below, XRY if and only X and Y have the same number of elements. Therefore the equivalence classes of R are exactly: {0-element subsets of S}, {1-element subsets of S}, {2-element subsets of S},,{n-element subsets of S}. Therefore R has n+1 equivalence classes.

c. Define $f: A \to N$ by f(X) = |X| = the number of elements in X.

Reason: If $g: X \to Y$ is a bijection, then each element in X corresponds, via g, to exactly one element in Y, and each element in Y corresponds, via g^{-1} , to exactly one element in X. This is exactly what it means for X and Y to have the same number of elements. Thus that XRY if and only if |X| = |Y|, and hence XRY if and only if f(X) = f(Y).

8. Problem 1.28

Suppose A and B are sets, $f: A \to B$ is a function, and R is the relation on A so that for $x, y \in A$, xRy if and only if f(x) = f(y).

- a. Show that *R* is an equivalence relation on *A*.
- b. If $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$, B = N, and $f(x) = (x 3)^2$ for every $x \in A$, how many equivalence classes are there, and what are the elements of each one?
- c. Suppose A has p elements and B has q elements. If the function f is one-to-one (not necessarily onto), how many equivalence classes does the equivalence relation R have? If the function f is onto (not necessarily one-to-one), how many equivalence classes does R have?

Solution:

a. R is reflexive.

Reason: For any $x \in A$ we have f(x) = f(x).

R is symmetric.

Reason: For any $x, y \in A$ we have f(x) = f(y) implies f(y) = f(x).

R is transitive.

Reason: For any $x, y, z \in A$, if f(x) = f(y) and f(y) = f(z) then f(x) = f(z).

b. R has 6 equivalence classes: {0, 6}, {1, 5}, {2, 4}, {3}, {7}, {8}.

Proof: Let $x \in A$ and suppose f(x) = m. The equivalence class of x is the set $[x] = \{ y \in A \mid f(y) = m \}$. This set is usually called the *inverse image* of m under f, and is denoted $f^{-1}(m)$. (Note this notation does not require that f be invertible.) Therefore the equivalence classes of this relation are the sets $f^{-1}(m)$ where $m \in \text{range}(f)$. One readily checks that $f^{-1}(0) = \{3\}$, $f^{-1}(1) = \{2,4\}$, $f^{-1}(4) = \{1,5\}$, $f^{-1}(9) = \{0,6\}$, $f^{-1}(16) = \{7\}$ and $f^{-1}(25) = \{8\}$.

c. If $f: A \to B$ is one-to-one, where |A| = p and |B| = q, then R has p equivalence classes.

Proof: Since f is one-to-one, each inverse image under f contains exactly one element, hence the equivalence classes are the singleton subsets of A, of which there are p.

If $f: A \to B$ is onto, where |A| = p and |B| = q, then R has q equivalence classes.

Proof: Since f is onto, range(f) = B, hence for each $b \in B$ there is exactly one equivalence class $f^{-1}(b)$. The number of such equivalence classes is therefore g.

9. Problem 1.30

For a positive integer n, find a function $f: N \to N$ so that the equivalence relation \equiv_n on N can be described as in Exercise 1.28.

Solution:

Define $f: N \to N$ by f(k) = the remainder of k on (integer) division by n. It was mentioned in class (and proved below, though that proof is not necessary for full credit) that $f(k_1) = f(k_2)$ if and only if $k_1 \equiv_n k_2$, as required.

Remarks

The following facts from CMPE 16 may be used without proof in this and subsequent assignments.

- A function $f: A \to B$ is a bijection if and only if it is *invertible*, i.e. if and only if there exists a function $g: B \to A$ such that $g \circ f(x) = x$ for all $x \in A$, and $f \circ g(y) = y$ for all $y \in B$. The function g is usually denoted f^{-1} and called the *inverse* of f.
- If f is a bijection, then so is f^{-1} , and in fact $(f^{-1})^{-1} = f$.
- The composition of two bijections is a bijection. To see this suppose $f: A \to B$ and $g: B \to C$ are bijections. Then $(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1} = g \circ \text{identity}_{B \to B} \circ g^{-1} = g \circ g^{-1}$ = identity_{$C \to C$}. Similarly $(f^{-1} \circ g^{-1}) \circ (g \circ f) = \text{identity}_{A \to A}$. Hence $g \circ f$ is invertible, with inverse $f^{-1} \circ g^{-1}$, and therefore $g \circ f$ is a bijection.
- $a \equiv_n b$ if and only if a and b have the same remainder upon division by n. **Proof:** First suppose $a \equiv_n b$. Then the difference a - b is divisible by n. This means a - b = kn for some $k \in \mathbb{Z}$. Divide both a and b by n to get quotients and remainders: $a = q_1n + r_1$ and $b = q_2n + r_2$ where both $0 \le r_1 < n$ and $0 \le r_2 < n$. At most one of the numbers $r_1 - r_2$ and $r_2 - r_1$ is negative, hence at least one is non-negative. Suppose for definiteness that $r_1 - r_2 \ge 0$ (the other case being similar, and we omit it.) Together with the previous inequalities we get $0 \le r_1 - r_2 < n$. Also

$$kn = a - b = (q_1n + r_1) - (q_2n + r_2) = (q_1 - q_2)n + (r_1 - r_2)$$

and hence $r_1 - r_2 = (k - q_1 + q_2)n$, showing that $r_1 - r_2$ is divisible by n. But this, together with $0 \le r_1 - r_2 < n$ implies that $r_1 - r_2 = 0$, whence $r_1 = r_2$. We've shown that $a \equiv_n b$ implies that a and b have the same remainder when divided by n. For the converse, assume a and b have the same remainder upon division by n. Then $a = q_1 n + r$ and $b = q_2 n + r$ where $0 \le r < n$. Therefore $a - b = (q_1 n + r) - (q_2 n + r) = (q_1 - q_2)n$, showing a - b is divisible by n, and hence $a \equiv_n b$.