CS 70: Homework 1

William Guss 26793499 wguss@berkeley.edu

January 28, 2016

1. Watsons experiment.

Theorem 1. If a person has ice cream for desert, he/she has to do the dishes after dinner.

Proof. Flip Charlie and Bob.

- 2. For the following answers I employed a truth table generator as a latex extension. This is a programmatic method of proof, but it does not detract from the argument.
 - (a) Theorem 2. $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$

Proof. On the left hand side we have that

a	b	c	a	\vee	(b	\wedge	c)
1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	0
1	0	1	1	1	0	0	1
1	0	0	1	1	0	0	0
0	1	1	0	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0	0	1
0	0	0	0	0	(b) 1 1 0 0 1 1 1 0 0 0 0 0 0	0	0

On the right hand side we have

a	b	c	(a	\vee	b)	\wedge	(a	\vee	c)
			1						
1	1	0	1	1	1	1	1	1	0
1	0	1	1	1	0	1	1	1	1
1	0	0	1	1	0	1	1	1	0
0	1	1	0	1	1	1	0	1	1
0	1	0	0	1	1	0	0	0	0
0	0	1	0	0	0	0			1
0	0	0	0	0	0	0	0	0	0

Since these exhibit ident ical truth values, they myust therefore be the same. \Box

(b)

Theorem 3. $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$.

Proof. On the left hand side it follows that,

a	b	c	a	\wedge	(b) 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	V	c)
1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	0
1	0	1	1	1	0	1	1
1	0	0	1	0	0	0	0
0	1	1	0	0	1	1	1
0	1	0	0	0	1	1	0
0	0	1	0	0	0	1	1
0	0	0	0	0	0	0	0

On the right hand side the truth table gives

			(a						
1	1		1						1
1	1		1						0
1	0	1	1	0	0	1	1	1	1
1	0	0	1	0	0	0	1	0	0
0	1	1	0	0	1	0	0	0	1
0	1	0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0

There is logical equivalence and the proof is complete.

(c)

Theorem 4. $A \implies (B \land C) \equiv (A \implies B) \land (A \implies C)$

Proof. Let $Q = (B \wedge C)$. Then $A \Longrightarrow Q$ if and only if $\neg A \vee Q$. And so, $\neg A \vee (B \wedge C)$ if and only if $(\neg A \vee B) \wedge (\neg A \vee C)$ by theorem 2 All of that holds if and only if $(A \Longrightarrow B) \wedge (A \Longrightarrow C)$. This completes the proof.

(d)

Theorem 5. $A \implies (B \lor C) \equiv (A \implies B) \lor (A \implies C)$

Proof. Let $Q = (B \vee C)$. Then $A \Longrightarrow Q$ if and only if $\neg A \vee Q$. And so, $\neg A \vee (B \vee C)$ if and only if $(\neg A \vee B) \vee (\neg A \vee C)$ by associativity. All of that holds if and only if $(A \Longrightarrow B) \vee (A \Longrightarrow C)$. This completes the proof. \square

- 3. Justify equivalence.
 - (a) There exists an equivalence since the only use of y is for the expression involving Q(x,y). In particular the implication is equivalent to $\mathcal{P}(x)\vee Q(x,\boldsymbol{y})$. So it follows that \exists can be inserted deeper within the statement.

(b) Since negation flips qualifiers we have the following logic,

$$\neg \exists x \forall y (P(x) \implies \neq Q(x,y))$$

$$\iff \forall x \neg \forall y (P(x) \implies \neq Q(x,y))$$

$$\iff \forall x \exists y \neg (P(x) \implies \neq Q(x,y))$$

$$\iff \forall x \exists y \neg (\neg P(x) \lor \neq Q(x,y))$$

$$\iff \forall x \exists y (\neg (\neg P(x)) \land \neg (\neq Q(x,y)))$$

$$\iff \forall x \exists y (P(x) \land Q(x,y)).$$
(1)

Therefore, the equivalence holds.

(c) There is not an equivalence by the following argument:

$$\forall x \exists y (Q(x,y) \Longrightarrow P(x))$$

$$\iff \forall x \exists y (\neg Q(x,y) \lor P(x))$$

$$\iff \forall x \exists y \neg Q(x,y) \lor P(x)$$

$$\iff \forall x \neg \forall y Q(x,y) \lor P(x)$$

$$\iff \forall x (\neg (\forall y Q(x,y)) \lor P(x))$$

$$\iff \forall x (\forall y Q(x,y)) \Longrightarrow P(x)$$

$$(2)$$

Which is certainly not equal to the right hand side.

4. Prove or disprove!

(a)

Theorem 6. The following is true. For every x there exists a y such that xy > 0 implies y > 0.

Proof. Fix x. Then take any y > 0. Clearly, y > 0, and so the implication is always true since it is equivalent to $xy \le 0$ or y > 0. This completes the proof.

(b)

Theorem 7. The following is false. There exists a x such that for all y, $xy < x^2$.

Proof. Suppose it were true. Then consider the rectangle of side-length x. The closed and bounded set $S_y = [0,x] \times [0,y]$ must then have outer measure less than that of $X = [0,x]^2$ for all x. Since $x \in \mathbb{R}$, we have that $\forall y, m(S_y) < X$. Then take the sequence $\{a_n\}_{n \in \mathbb{N}}$ where $a_n = n$. The mesure sequence $(m(S_{a_n})$ is bounded and monotone increasing by the initial supposition, so by the monotone convergence theorem, it converges.

Since the measure sequence is bounded and S_y is a closed and bounded compact set for all y, we have that the sequence of diameters is bounded and converges $diam(S_{a_n})$. Furthermore the diameter of such a set is then dominated by a_n by the archimedian property. So we have that $a_n \to a \in \mathbb{R}$. A contradiction to the unboundedness of \mathbb{N} !

This completes the proof without loss of generality since negative rectangles make sense from a measure theory prospective. \Box

(c)

Theorem 8. There exist a y such that for all $x, xy \ge x^2$.

Proof. Take the sequence $a_n = n$. Then if there existed y such that $ny \ge n^2$, then $y \ge n$ for all n, a contradiction to the archimedian property of \mathbb{R} . QED

5. Problems concerning ducks.

(a) i.
$$\forall x D(x) \Longrightarrow I(x)$$
.
ii. $\forall x V(x) \Longrightarrow H_{issues}(x)$
iii. $\forall x C(x) \Longrightarrow \neg W(x)$
iv. $\forall x H_{issues}(x) \Longrightarrow W(x)$
v. $\forall x I(x) \Longrightarrow C(x)$
vi. $\forall x P(x) \Longrightarrow V(x)$
(b) i. $\forall x \neg I(x) \Longrightarrow \neg D(x)$
ii. $\forall x \neg H_{issues}(x) \Longrightarrow \neg V(x)$
iii. $\forall x W(x) \Longrightarrow \neg C(x)$
iv. $\forall x \neg W(x) \Longrightarrow \neg H_{issues}(x)$
v. $\forall x \neg C(x) \Longrightarrow \neg I(x)$
vi. $\forall x \neg V(x) \Longrightarrow \neg P(x)$

(c) We use the following argument

$$P(x) \implies V(x)$$

$$\implies H_{issues}(x)$$

$$\implies W(x)$$

$$\implies \neg C(x)$$

$$\implies \neg I(x)$$

$$\implies \neg D(x).$$

to conclude that those who wear party hats vote; and so they have done their homework on the issues; and so they are well informed; and so they are not confused; and so they have read the candidates positions; and so they are not a Duck dynasty viewer. 6. (a) The following truth table is produced

a	b	c	d	O(a,b,c,d)
1	1	1	1	0
1	1	1	0	0
1	1	0	1	0
1	1	0	0	0
1	0	1	1	0
1	0	1	0	1
1	0	0	1	0
1	0	0	0	1
0	1	1	1	0
0	1	1	0	0
0	1	0	1	0
0	1	0	0	0
0	0	1	1	0
0	0	1	0	1
0	0	0	1	0
0	0	0	0	1

(b) Thereby giving the following Karneugh table:

- (c) It is equivalent to $\neg B \land \neg D$. This follows since we have $(\neg B \land \neg D) \lor \neg (A \lor C) \lor \neg (A \lor \neg C) \lor \neg (A \lor C) \lor \neg (A \lor \neg C)$. And so we have cancellation.
- 7. Proof by contrapositive

(a)

Theorem 9. If $x, y, a \in \mathbb{Z}$ if a does not divide xy, then a does not divide x and x does not divide y.

Proof. Suppose that a|x or a|y. Then there exists a k so that ka = x or ma = y. Then xy = kay or xy = max. In either case a|xy. Take the contraposition and the theorem holds.

- (b) See the proof of (a).
- (c) Consider the case when a=9, b=12, c=30, clearly 9 doesnt divide 12 and 30, but it does divide 360. So the converse is not true.
- 8. Proof time.
 - (a) Direct

Theorem 10. For all natural numbers n, if n is odd then $n^2 + 3n$ is even.

<i>Proof.</i> if n is odd, then $n=2k+1$, it follows that $n^2=4k^2+4k+1$ and $3n=6k+3$, so $n^2+3n=4k^2+10k+4$ which is divisible by 2.
Direct Theorem 11. For all natural numbers $n, n^2 + 7n$ is even.
<i>Proof.</i> If n is even $n^2 + 7n = 4k^2 + 14k$, and the theorem is complete. If n is odd then $n^2 + 7n = n^2 + 3n + 4n$ which is $2m + 4n$ by the previous theorem and so $n^2 + 7n$ is divisible by 2. This completes the proof.
Contraposition Theorem 12. If $a, b \in \mathbb{R}$ and $a + b \ge 10$ then $a \ge 7$ or $b \ge 3$.
<i>Proof.</i> Consider the contrapositive. If $a < 7$ and $b < 3$ then $a + b < 7 + 3 = 10$. There fore $a + b \ge 10$ implies $a \ge 7$ or $b \ge 3$.
Contraposition Theorem 13. If $r \in \mathbb{Q}^c$ the $r+1 \in \mathbb{Q}^c$.
<i>Proof.</i> Consider the contrapositive. If $r+1 \in \mathbb{Q}$ then $r+1 = \frac{a}{b}$ and $r = \frac{a}{b} - \frac{b}{b} = \frac{a-b}{b}$. So $r \in \mathbb{Q}$. Therefore the contrapositive holds and the proof is complete.
Counterexample
<i>Proof.</i> Take $n = 100$, then clearly $1000 < 100 * 10 * 9 < 100!$.
Contrapositive,

(f)

(b)

(c)

(d)

(e)

Theorem 14. For all natural numbers a where a^5 is odd.

Proof. Consider the contrapositive. If a is even the a=2k, and $a^5=2^5k$ which is divisible by 2. So the contrapositive holds. This completes the proof.