Image Inpainting

M. Bertalmio, A.L. Sapiro, V. Caselles, C. Ballester

Navier Stokes, Fluid Dynamics and Image and Video Inpainting

M. Bertalmio, A.L. Bertozzi & G. Sapiro

presented by Roman Stanchak

Goal

- Given image with significant portions missing or damaged
- Reconstitute missing regions with data consistent with the rest of the image

Cracks in Photos

Scratches in Film

Add or remove elements

Professional Inpainters Approach

- Goal:
 - Subjectively restore unity to artwork
- General Approach:
 - Structure of surrounding area continued into gap
 - Color of surrounding area is continued into gap
 - Texture is added

Gestalt Law of Continuation

 Principle holding that there is an innate tendence to perceive a line as continuing its established direction

General Algorithm

- Iteratively
 - Continue structure of surrounding area into gap
 - Continue color of surrounding area into gap

Algorithm

- Define image update as follows:
- $It(i,j) = dL(i,j) \cdot N(i,j)$
 - It(i,j) is change in intensity to used to update the image
 - L(i,j) is the information to propagate
 - N(i,j) is the propagation direction
 - dL(i,j) . N(i,j) is the change in information along the propagation direction

Propagation Direction

- Want to preserve angle of 'arrival'
- Propagate along isophotes
 - lines of equivalent intensity levels

Propagation Direction

- More formally:
 - Image gradient
 - largest change
 - Perpindicular
 - smallest change
 - this is the isophote

Isophote is this boundary

Algorithm

- What information to propagate?
 - 'smoothness'
 - Laplacian == Ixx(i,j) + Iyy(i,j) = L(i,j)

Algorithm

- Repeat this image update step to restore image
- When to stop?
 - Stop when update value is negligible
 - i.e. It(i,j) < epsilon for all i,j
 - Stop after n iterations

Some results

Some results

Some results

More results

More results

More results

Navier-Stokes equations

- Nonlinear partial differential equations
- Describe the flow of fluids such as liquids and gases
 - Air currents
 - Ocean currents
 - Water flow in a pipe

Navier-Stokes equations

Relation to Inpainting

- Inpainting
 - Propagation of intensity along isophote according to smoothness
- Fluid mechanics
 - Convection of fluid along velocity field according to vorticity

Relation to Inpainting

- Mapping
 - Image intensity == Stream function
 - Isophote direction == fluid velocity
 - Smoothness == vorticity
- Propels inpainting into an established field with a wealth of theoretical and numerical literature!

Super Resolution Result

Up scaled image

Bicubic sampled

Navier-Stokes