INTRO TO RNASEQ AND QUALITY CONTROL/TRIMMING

RNASEQ

RNASEQ

RNA EXTRACTION METHODS:

- Dependent on starting material: Tissue type, Amount
- End product: mRNA or total RNA?
 - Total RNA: Trizol vs. Columns (Promega, RNeasy, ect.)
 - mRNA: direct extraction or isolation from total RNA
- RNA from Bird Blood?
 - Contact: Loren Cassin Sackett loren.sackett@gmail.com

http://www.nature.com/nprot/journal/v8/n11/full/nprot.2013.141.html

RNA-Seq: How do we make cDNA?

Slide courtesy of Joshua Levin, Broad Institute.

Slide from: https://github.com/trinityrnaseq/RNASeq_Trinity_Tuxedo_Workshop/blob/master/docs/ rnaseq_workshop_slides.pdf

Overview of RNA-Seq

From: http://www2.fml.tuebingen.mpg.de/raetsch/members/research/transcriptomics.html

Slide from: https://github.com/trinityrnaseq/RNASeq_Trinity_Tuxedo_Workshop/blob/master/docs/ rnaseq_workshop_slides.pdf

Common Data Formats for RNA-Seq

FASTA format:

>61DFRAAXX100204:1:100:10494:3070/1

AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAAACACTTTCCGGCCAT

FASTQ format:

@61DFRAAXX100204:1:100:10494:3070/1

AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAACACTTTCCGGCCAT

+

ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC@@CACCCCCA

Read

Quality values

AsciiEncodedQual(x) =
$$-10 * log10(Pwrong(x)) + 33$$

AsciiEncodedQual ('C') = 64

So, Pwrong('C') = $10^{(64-33/(-10))}$ = $10^{-3.4}$ = **0.0004**

Slide from: https://github.com/trinityrnaseq/RNASeq_Trinity_Tuxedo_Workshop/blob/master/docs/rnaseq_workshop_slides.pdf

Paired-end Sequences

Two FastQ files, read name indicates left (/1) or right (/2) read of paired-end

@61DFRAAXX100204:1:100:10494:3070/1
AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAAACACTTTCCGGCCAT
+
ACCCCCCCCCCCCCCCCCCCCCCCCCC@@CACCCCA

Slide from: https://github.com/trinityrnaseq/RNASeq_Trinity_Tuxedo_Workshop/blob/master/docs/rnaseq_workshop_slides.pdf

Overview of RNA-Seq

From: http://www2.fml.tuebingen.mpg.de/raetsch/members/research/transcriptomics.html

Slide from: https://github.com/trinityrnaseq/RNASeq_Trinity_Tuxedo_Workshop/blob/master/docs/ rnaseq_workshop_slides.pdf

COMMON RNASEQ APPLICATIONS

- Raw genetic data
 - Population genomics
 - Phylogenomics
- Experimental biology
 - Differential expression analysis

COMMON RNASEQ APPLICATIONS

- Raw genetic data
 - Population genomics
 - Phylogenomics
- Experimental biology
 - Differential expression analysis

QUALITY CHECK SHORT READ SEQUENCE

- FASTQC "A quality control tool for high throughput sequence data"
 - http://www.bioinformatics.babraham.ac.uk/projects/ fastqc/

TRIMMING

- Many different trimmers available
- Trim adapters/low quality reads
- Trim Galore! is one that works well on Hydra

HANDS-ON

- Go to https://github.com/SmithsonianWorkshops/RNA-seq
- Click on "2a_Raw Read QA-QC.md"