COMP 306: Database Management Systems Fall 2023 - Exercise Questions

Question 1. Consider a DBMS that uses 2PL. You are given the following transactions with their intended reads and writes on objects A, B, C. Does there exist a schedule in which these transactions would be deadlocked? If so, draw the schedule, show all lock and unlock events, and explain briefly. If not, explain why a deadlock is not possible.

 T_1 : R(A), R(B), R(C) T_2 : W(B), R(C), W(A)

Question 2. Consider the following schedule with four transactions (T_1, T_2, T_3, T_4) and four database objects: A, B, C, D. There are two types of locks: S-locks and X-locks. Transactions do not release a granted lock unless they are killed or aborted. For simplicity, only lock-related events are shown in the schedule (reads and writes are not shown).

time	T_1	T_2	T ₃	T_4
t_1	S-LOCK(C)			
t_2		X-LOCK(A)		
t_3			S-LOCK(D)	
t_4	S-LOCK(A)			
t_5				X-LOCK(D)
t_6			X-LOCK(B)	
t ₇			X-LOCK(C)	
t ₈		X-LOCK(B)		

- (a) Draw the waits-for graph of this schedule with all necessary edges. On each edge, write which database object is causing that edge.
 - (b) Does this schedule contain a deadlock? Why or why not?
- (c) Now consider that the DBMS is using the Wait-Die policy for deadlock prevention. Assume that T_1 started first, then T_2 , then T_3 , then T_4 . Also assume all transactions automatically release their locks if they die or abort. Explain what action is taken by the DBMS at each timestamp $(t_1, t_2, t_3, ..., t_8)$. Justify briefly when necessary.