Box-valued AE - a single framework for denoising, (self/semi/un)supervised and transfer learning

Box as an uncertainty model and AE input/output

Mladen Đalto, mladendalto@gmail.com

Motivation

- reduce discarded data
- enable use of partially matching datasets

Theory

- conditions ensuring: box \rightarrow AE \rightarrow box, (margin)
- uncertain or missing samples represented as subset of e.g. $\left[-1,1\right]^n$
- morphing corruption, $\delta \sim \mathbb{U}_{[0,1]^n}$: $z \to z_{\delta} = (1_n \delta) \odot z \oplus \delta [-1, 1]^n$
- independent corruption, $\delta_u, \delta_d \sim \mathbb{U}_{[0,1]^n}$: $z \to z_{\delta_d,\delta_u} = [(1_n \delta_d) \odot z + \delta_d \odot d, (1_n \delta_u) \odot z + \delta_u \odot u]$
- loss = any box distance $+\lambda$ box volume: $\mathcal{L}_p(\mathcal{Z}_k, \hat{\mathcal{Z}}_k) = \max(0, \hat{u}_k u_k)^p + \max(0, d_k \hat{u}_k)^p + \max(0, d_k \hat{u}_k)^p + \max(0, d_k \hat{d}_k)^p + \lambda |\hat{u}_k \hat{d}_k|^q$

Results

- conditions for box \rightarrow AE \rightarrow smaller box, (margin)
- ullet work in progress with examples (classification \to theory only)

corrupted	•	0.5	0.4	0.3	0.2	0.1	0
samples	dataset	0.0	0.1	0.0	0.2	0.1	J
1	CCPP	0.1492	0.1191	0.0929	0.0640	0.0349	0.004
	RWQ	0.0944	0.0749	0.0571	0.0475	0.0375	0.0172
	EE	0.1699	0.1588	0.0804	0.0814	0.1320	0.0484
2	CCPP	0.2419	0.1938	0.1526	0.1026	0.0544	0.004
	RWQ	0.1430	0.1117	0.0857	0.0618	0.0381	0.0172
	EE	0.2279	0.1856	0.1189	0.1046	0.1150	0.0484
3	CCPP	0.3269	0.26847	0.2053	0.1417	0.0724	0.004
	RWQ	0.1854	0.1494	0.1136	0.0768	0.0441	0.0172
	EE	0.2648	0.1848	0.1564	0.1027	0.0954	0.0484
4	CCPP	0.4095	0.3354	0.2594	0.1787	0.0914	0.004
	RWQ	0.2219	0.1768	0.1373	0.0928	0.0493	0.0172
	EE	0.3361	0.2597	0.2078	0.147	0.0947	0.0484

Conditions ensuring box \rightarrow AE \rightarrow box

Matrix-box multiplication can be written simpler if we decompose $W \in \mathbb{R}^{m \times n}$ into a difference of matrices with non-negative elements $W = W^+ - W^-$ where $W^+ = \max(W,0)$, and $W^- = \max(W,0)$, giving a box $W\mathcal{R} = W^+ + W^-$

$$\{z \in \mathbb{R}^m \mid W^+d - W^-u \le z \le W^+u - W^-d\}.$$

Another operation which preserves boxes is translation by a vector $b \in \mathbb{R}^m$:

$$\mathcal{R} \oplus b = \{ z \in \mathbb{R}^m \mid d+b \leq z \leq u+b \}$$

where the Minkowski sum is taken between a box \mathcal{R} and a singleton set b.

If we assume monotonic activation function and apply it to a box we get:

$$\psi\left(\mathcal{R}\right) = \begin{cases} \psi(d) \preceq z \preceq \psi(u), \text{ if } \psi' \geq 0, \\ \psi(u) \preceq z \preceq \psi(d), \text{ if } \psi' \leq 0. \end{cases}$$

 $box \rightarrow AE \rightarrow smaller box?$

Box-valued AE with ${\cal L}$ hidden layers can be formulated as follows:

$$\mathcal{Z}_0 = \mathcal{X}_k \times \mathcal{Y}_k,$$
 $\mathcal{V}_l = W_l \mathcal{Z}_{l-1} \oplus \{b_l\}, 1 \leq l \leq L$
 $\mathcal{Z}_l = \psi_l(\mathcal{V}_l), 1 \leq l \leq L$
 $\hat{\mathcal{Z}} = \mathcal{Z}_L,$

where $\psi_l(\cdot)$ are monotonic.

Volume of the boxes propagated through boxAE layers is a measure of uncertainty. Generally, we have no analytic expression for $|\hat{\mathcal{Z}}|$ in terms of W_l so we resort to upper bounds derived using Lipschitz continuity:

$$|\hat{\mathcal{Z}}| \leq \left(\prod_{l=1}^{L} K_l^{n_l} || \det \left(W_l^T W_l \right) || \right) || \mathcal{X}_k || \mathcal{Y}_k ||$$
 where K_l is the Lipschitz constant of $\psi_l(\cdot)$. When $|\hat{\mathcal{Z}}|/(|\mathcal{X}_k||\mathcal{Y}_k|) \leq 1$ boxAE will reduce box volume almost everywhere.

Datasets:

CCPP - Combined Cycle Power Plant RWQ - Red Wine Quality EE - Energy Efficiency

