Grundlagen von Datenbanken

Wintersemester 2011/2012

Kapitel 9

DB-Zugriffsverfahren:

- Übersicht
- Hashing auf Externspeichern
- B-Bäume
- B*-Bäume

Übersicht

Listen

Sequentielle Listen auf Externspeichern

Prinzip: Zusammenhang der Satzmenge wird durch physische Nachbarschaft hergestellt

Reihenfolge der Sätze: ungeordnet (Einfügereihenfolge) oder sortiert nach einem oder mehreren Attributen (sog. Schlüssel)

wichtige Eigenschaft: Cluster-Bildung, d. h., physisch benachbarte Speicherung von logisch zusammengehörigen Sätzen

Sequentielle Listen garantieren Cluster-Bildung in Seiten für die Schlüssel-/Speicherungsreihenfolge

pro Satztyp kann Cluster-Bildung nur bezüglich eines Kriteriums erfolgen, falls keine Redundanz eingeführt werden soll

Listen

Gekettete Listen auf Externspeichern

Prinzip: Verkettung erfolgt zwischen Datensätzen

Speicherung der Sätze i. Allg. in verschiedenen Seiten

Seiten können beliebig zugeordnet werden

Mehrfachverkettung nach verschiedenen Kriterien (Schlüsseln) möglich

Hashing auf Externspeichern

Hash-Adresse bezeichnet Bucket (Behälter, Seite)

Das Kollisionsproblem wird dadurch entschärft, dass mehr als ein Satz auf seiner Hausadresse gespeichert werden kann.

Aufnahme von bis zu b Sätzen (b = Bucket-Kapazität)

Primärbereich kann bis zu b*m Sätze aufnehmen!

Überlaufbehandlung

Überlauf tritt erst beim (b+1)-ten Synonym auf

viele (bekannte) Verfahren sind möglich, aber lange Sondierungsfolgen im Primärbereich sollten vermieden werden

häufig Wahl eines separaten Überlaufbereichs mit dynamischer Zuordnung der Buckets

Optionen: Verkettung der Überlauf-Buckets pro Primär-Bucket oder Zuordnung von Überlauf-Buckets zu mehreren Primär-Buckets

Hashing auf Externspeichern

Speicherungsreihenfolge im Bucket

ohne Ordnung (Einfügefolge)

nach der Sortierfolge des Schlüssels: aufwendiger, jedoch Vorteile beim Suchen (sortierte Liste!)

Bucket-Größe

Bucket-Adressierung eignet sich besonders gut für die Anwendung auf Externspeichern

Wahl der Bucket-Größe: meist Seite (Transfereinheit)

Zugriff auf die Hausadresse bedeutet dann eine physische E/A; jeder weitere Zugriff auf ein Überlauf-Bucket löst jeweils einen weiteren physischen E/A-Vorgang aus.

Hashing auf Externspeichern

Allgemeine Bäume

Die Anzahl der Kinder eines Knotens ist beliebig.

Rekursive Definition:

- Ein einzelner Knoten ist ein Baum.
- Wenn x ein Knoten ist und T₁, ..., T_k Bäume sind, dann ist auch das Tupel (x, T₁, ..., T_k) ein Baum.

Ein Tupel $(x, T_1, ..., T_k)$ wird graphisch dargestellt als

maximales k
= Grad des Baumes

Implementierung von allgemeinen Bäumen

Grundstruktur eines Knotens:

- Implementierung des Knotens als record oder class
- Verwendung einer der bekannten Listenimplementierungen für die Zeigerliste

m-Wege-Suchbäume

Definition: Ein <u>m-Wege-Suchbaum</u> oder ein <u>m-ärer Suchbaum</u> B ist ein Baum, in dem alle Knoten einen Grad ≤ m besitzen. Entweder ist B leer oder er hat folgende Eigenschaften:

1. Jeder Knoten des Baums hat folgende Struktur:

Die P_i , $0 \le i \le b$, sind Zeiger auf die Unterbäume des Knotens und die K_i und D_i , $1 \le i \le b$, sind Schlüsselwerte und Daten.

- 2. Die Schlüsselwerte im Knoten sind aufsteigend geordnet: $K_i \le K_{i+1}$, $1 \le i < b$.
- 3. Alle Schlüsselwerte im Unterbaum von P_i sind kleiner als der Schlüsselwert K_{i+1} , $0 \le i < b$.
- 4. Alle Schlüsselwerte im Unterbaum von P_i sind größer als der Schlüsselwert K_i , $1 \le i \le b$.
- 5. Die Unterbäume von P_i , $0 \le i \le b$, sind auch m-Wege-Suchbäume.

Knotenformat eines m-Wege-Suchbaums

```
typedef
             Seite *Sptr;
       unsigned int Index;
       struct EintragTyp
                    Schluessel key;
                     Info info;
                     Sptr ptr;
              } Eintrag;
       struct SeiteTyp
                    Index b;
                     /* aktuelle Anzahl von Einträgen */
                     Sptr p0;
                    Eintrag evektor[MAX-1];
              } Seite;
```

Aufbaubeispiel m-Wege-Suchbäume

m = 4 Einfügereihenfolge: 30, 50, 80, 10, 15, 69, 90, 20, 35, 5, 95, 1, 25, 85

Beobachtung zu m-Wege-Suchbäume

Beobachtung:

Die Schlüssel in den inneren Knoten besitzen zwei Funktionen. Sie identifizieren Daten(sätze) und sie dienen als Wegweiser in der Baumstruktur.

Der m-Wege-Suchbaum ist im allgemeinen nicht ausgeglichen. Es ist für Aktualisierungsoperationen kein Balancierungsmechanismus vorgesehen. (schlechte Platzausnutzung, Entartung)

Wichtige Eigenschaften von m-Wege-Suchbäumen

- Die D_i können Daten oder Zeiger auf die Daten repräsentieren. Zur Vereinfachung werden die D_i (in den Illustrationen) weggelassen.
- S(P_i) sei die Seite, auf die P_i zeigt, und K(P_i) sei die Menge aller Schlüssel, die im Unterbaum mit Wurzel S(P_i) gespeichert werden können.

Dann gelten folgende Ungleichungen:

```
i. \quad x \in K(P_0): (x < K_1)
ii. \quad x \in K(P_i): (K_i < x < K_{i+1}), f "i" i = 1, 2, ..., b-1
iiii. \quad x \in K(P_b): (K_b < x)
```

Sie gelten für alle Mehrwegbäume!

Kostenanalyse für m-Wege-Suchbäume

• Die Anzahl der Knoten N in einem vollständigen Baum der Höhe h ist $\frac{h-1}{m^h-1}$

$$N = \sum_{i=0}^{h-1} m^i = \frac{m^h - 1}{m - 1}$$

bei voller Belegung ergibt sich als Anzahl der Einträge

$$n = N \cdot (m-1)$$

• im ungünstigsten Fall ist der Baum völlig entartet

$$n = N = h$$

Schranken für die Höhe eines m-Wege-Suchbaums

$$\log_m(n+1) \le h \le n$$

Wartungsaufwand: O(n)

Aufsuchen eines Schlüssels in einem m-Wege-Suchbaum

```
void Msuche (Schluesseltyp x, Sptr p, Eintrag *element)
{Index i;
      if (p == NULL)
          printf("Schluessel X nicht vorhanden"); }
      else if (x < p-\text{>evektor}[0].key) /* x < K_1 */
      { Msuche(x, p->po, element); }
      else
             i = 0; /* Feldnummerierung von 0 bis b-1 !!! */
             while ((i < p->b-1) && (x > p->evektor[i].key))
                i += 1; }
             if (p->evektor[i].key == x) /* Kj = x, 1 \le j \le b */
             *element = p->evektor[i]; }
             else /* K_i < x < K_{i+1}, 1 \le j \le b oder x > K_b */
                  Msuche(x, p->evektor[i].ptr, element);
```

Durchlaufen eines m-Wege-Suchbaums in symmetrischer Ordnung

Mehrwegbäume

Ziel: Aufbau sehr breiter Bäume von geringer Höhe

- in Bezug auf Knotenstruktur vollständig ausgeglichen
- effiziente Durchführung der Grundoperationen
- Zugriffsverhalten ist weitgehend unabhängig von Anzahl der Sätze
- Einsatz als universelle Zugriffs- oder Indexstruktur

Grundoperationen:

- Einfügen/Löschen eines Satzes
- direkter Schlüsselzugriff auf einen Satz
- sortiert sequentieller Zugriff auf mehrere Sätze

Breites Spektrum von Anwendungen

- Dateiorganisation ("logische Zugriffsmethode", VSAM)
- Datenbanksysteme (Varianten des B*-Baumes in allen DBVS!)
- Text- und Dokumentenorganisation
- . . .

Definition: Seien k, h ganze Zahlen, $h \ge 0$, k > 0. Ein <u>B-Baum</u> B der Klasse τ (k,h) ist entweder ein leerer Baum oder ein geordneter Suchbaum mit folgenden Eigenschaften:

- 1. Jeder Pfad von der Wurzel zu einem Blatt hat die gleiche Länge h-1.
- 2. Jeder Knoten außer der Wurzel und den Blättern hat mindestens k+1 Söhne. Die Wurzel ist ein Blatt oder hat mindestens 2 Söhne.
- 3. Jeder Knoten hat höchstens 2k+1 Söhne.
- 4. Jedes Blatt mit der Ausnahme der Wurzel als Blatt hat mindestens k und höchstens 2k Einträge.

Für einen B-Baum ergibt sich folgendes Knotenformat

GDB-7-19

Einträge

- Die Einträge für Schlüssel, Daten und Zeiger haben die festen Längen l_b, l_K, l_D und l_p .
- Die Knoten- oder Seitengröße sei L.
- Maximale Anzahl von Einträgen pro Knoten $b_{\text{max}} = \left| \frac{L l_b l_p}{l_K + l_D + l_p} \right| = 2k$

Reformulierung der Def.:

- (4) und (3) ,Eine Seite darf höchstens voll sein.
- (4) und (2) Jede Seite (außer der Wurzel) muss mindestens halb voll sein. Die Wurzel enthält mindestens einen Schlüssel.
- (1) Der Baum ist, was die Knotenstruktur angeht, vollständig ausgeglichen.

Beispiel: B-Baum der Klasse $\tau(2,3)$

- In jedem Knoten stehen die Schlüssel in aufsteigender Ordnung mit K₁<K₂<...<K_b.
- Jeder Schlüssel hat eine Doppelrolle als Identifikator eines Datensatzes und als Wegweiser im Baum.
- Die Klassen $\tau(k,h)$ sind nicht alle disjunkt. Beispielsweise ist ein maximaler Baum aus $\tau(2,3)$ ebenso in $\tau(3,3)$ und $\tau(4,3)$.

Bei einem B-Baum der Klasse $\tau(k,h)$ mit n Schlüsseln gilt für seine Höhe: $\log_{2k+1}(n+1) \le h \le \log_{k+1}((n+1)/2) + 1$ für $n \ge 1$ h = 0 für n = 0

Balancierte Struktur

- unabhängig von Schlüsselmenge
- unabhängig von ihrer Einfügereihenfolge

Einfügealgorithmus (ggf. rekursiv)

- suche Einfügeposition;
- wenn Platz vorhanden ist, speichere Element, sonst schaffe Platz durch Split-Vorgang und füge ein.

Beispiel: B-Baum der Klasse $\tau(2, h)$, Einfügen

Einfügereihenfolge: <u>77, 12, 48, 69, 33, 89, 97, 91, 37, 45, 83, 2, 5, 57, 90, 95, 99, 50</u>

Beispiel: B-Baum der Klasse $\tau(2, h)$, Einfügen

Einfügereihenfolge: 77, 12, 48, 69, 33, 89, 97, 91, 37, 45, 83, 2, 5, 57, 90, 95, 99, 50

Beispiel: B-Baum der Klasse $\tau(2, h)$, Einfügen

Einfügereihenfolge: 77, 12, 48, 69, 33, 89, 97, 91, 37, 45, 83, 2, 5, 57, 90, 95, 99, 50

Beispiel: B-Baum der Klasse $\tau(2, h)$, Einfügen

Einfügereihenfolge: 77, 12, 48, 69, 33, 89, 97, 91, 37, 45, 83, 2, 5, 57, 90, 95, 99, 50

Beispiel: B-Baum der Klasse $\tau(2, h)$, Einfügen

Einfügereihenfolge: 77, 12, 48, 69, 33, 89, 97, 91, 37, 45, 83, 2, 5, 57, 90, 95, 99, <u>50</u>

Kostenanalyse für Einfügen und Suchen

Anzahl der zu holenden Seiten: f (fetch)

Anzahl der zu schreibenden Seiten: w (write)

Direkte Suche

f_{min} = 1 : der Schlüssel befindet sich in der Wurzel

f_{max} = h : der Schlüssel ist in einem Blatt

f_{avg} = ? : bei maximaler/minimaler Belegung des B-Baumes

Kostenanalyse Direkte Suche

gesamte Zugriffskosten bei maximaler Belegung

$$Z_{\text{max}} = 2k \cdot \sum_{i=0}^{h-1} (i+1) \cdot (2k+1)^i = h \cdot m^h - 1 - \frac{m^h - m}{m-1} \text{ mit } m = 2k+1$$
 mittlere Zugriffskosten bei maximaler Belegung

$$f_{avg}(\text{max}) = \frac{Z_{\text{max}}}{n_{\text{max}}} = h - \frac{1}{2k} + \frac{h}{(2k+1)^h - 1}$$
gesamte Zugriffskosten bei minimaler Belegung

$$Z_{\min} = 1 + 2k \cdot \sum_{i=0}^{h-2} (i+2) \cdot (k+1)^{i} = 1 + 2h \cdot m^{h-1} - 4 - 2\frac{m^{h-1} - m}{m-1} \text{ mit } m = k+1$$

mittlere Zugriffskosten bei minimaler Belegung

$$f_{avg}(min) = \frac{Z_{min}}{n_{min}} = h - \frac{1}{k} + \frac{h-1}{2(k+1)^{h-1} - 1} + \frac{1}{k(2(k+1)^{h-1} - 1)}$$

Kostenanalyse Direkte Suche (Forts.)

Abschätzung möglich, da k meistens im Bereich ,100 bis 200':

$$f_{avg} = h$$
 für h=1

$$h - \frac{1}{k} \le f_{avg} \le h - \frac{1}{2k} \qquad \text{für h>1}$$

Beim B-Baum sind die maximalen Zugriffskosten eine gute Abschätzung der mittleren Zugriffskosten:

bei h=3 und k=100 ergibt sich $2.99 \le f_{avg} \le 2.995$

Kostenanalyse (Forts.)

Sequentielle Suche

Durchlauf in symmetrischer Ordnung: $f_{seq} = N$; Pufferung der Zwischenknoten im HSP wichtig!

Einfügen

günstigster Fall (kein Split): $f_{\min} = h$; $w_{\min} = 1$;

ungünstigster Fall: $f_{\text{max}} = h; \quad w_{\text{max}} = 2h + 1;$ durchschnittlicher Fall: $f_{avg} = h; \quad w_{avg} < 1 + \frac{2}{k};$

(wenn k=100 unterstellt wird, kostet eine Einfügung im Mittel w_{avg}<1+2/100 Schreibvorgänge, d.h., es entsteht eine Belastung von 2% für den Split)

Löschen

Die B-Baum-Eigenschaft muss wiederhergestellt werden, wenn die Anzahl der Elemente in einem Knoten kleiner als k wird.

Durch **Ausgleich** mit Elementen aus einer Nachbarseite oder durch **Mischen** (Konkatenation) mit einer Nachbarseite wird dieses Problem gelöst. Beim Ausgleichsvorgang sind in der Seite P k-1 Elemente und in P' mehr als k Elemente.

Löschmaßnahme: Ausgleich durch Verschieben von Schlüsseln

Löschmaßnahme: Mischen von Seiten

GDB-7-35

Löschalgorithmus

1. Löschen in Blattseite

```
Suche x in Seite P;
```

Entferne x in P und wenn

 $b \ge k$ in P: tue nichts,

b = k-1 in P und b > k in P': gleiche Unterlauf über P' aus,

b = k-1 in P und b = k in P': mische P und P'.

2. Löschen in innerer Seite

Suche x;

Ersetze $x = K_i$ durch kleinsten Schlüssel y in $B(P_i)$ oder größten Schlüssel y in $B(P_{i-1})$ (nächst größerer oder nächst kleinerer Schlüssel im Baum);

Entferne y im Blatt P;

Behandle P wie unter 1.

Beispiel: Löschen

Kostenanalyse Löschen

günstigster Fall: $f_{\min} = h$; $w_{\min} = 1$;

ungünstigster Fall (pathologisch): $f_{\text{max}} = 2h-1$; $w_{\text{max}} = h+1$;

obere Schranke für durchschnittliche Löschkosten

(drei Anteile: 1. Löschen, 2. Ausgleich, 3. anteilige Mischkosten):

$$f_{avg} \le f_1 + f_2 + f_3 < h + 1 + \frac{1}{k}$$

$$w_{avg} \le w_1 + w_2 + w_3 < 2 + 2 + \frac{1}{k} = 4 + \frac{1}{k}$$

Überlaufbehandlung

Einfügen in den B-Baum bei doppeltem Überlauf ($\tau(2,2)$)

Überlaufbehandlung (Forts.)

Einfügen in den B-Baum bei doppeltem Überlauf ($\tau(2,2)$) (Forts.)

Überlaufbehandlung (Forts.)

Einfügen in den B-Baum bei doppeltem Überlauf ($\tau(2,2)$) (Forts.)

Überlaufbehandlung (Forts.)

Einfügekosten bei m=2

$$f_{\min} = h; \quad w_{\min} = 1;$$

$$f_{\text{max}} = 2h - 1; \quad w_{\text{max}} = 3h;$$

$$f_{avg} \le h + 1 + \frac{2}{k}; \quad w_{avg} \le 1 + 2 + \frac{3}{k} = 3 + \frac{3}{k}$$

Verbesserung des Belegungsgrades

(verallgemeinerte Überlaufbehandlung)

Speicherplatzbelegung β (als Funktion des Split-Faktors m)

Split-Faktor	β_{min}	β_{avg}	β_{max}
1	1/2 (50%)	In2 (69%)	1
2	2/3 (66%)	2 In(3/2) (81%)	1
3	³ / ₄ (75%)	3 In(4/3) (86%)	1
m	$\frac{m}{m+1}$	$m \cdot \ln(\frac{m+1}{m})$	1

Definition: Seien k, k* und h* ganze Zahlen, h* \geq 0, k, k* > 0. Ein <u>B*-Baum</u> B der Klasse t (k,k*,h*) ist entweder ein leerer Baum oder ein geordneter Suchbaum, für den gilt:

- 1. Jeder Pfad von der Wurzel zu einem Blatt besitzt die gleiche Länge h*-1.
- Jeder Knoten außer der Wurzel und den Blättern hat mindestens k+1 Söhne, die Wurzel mindestens 2 Söhne, außer wenn sie ein Blatt ist.
- 3. Jeder innere Knoten hat höchstens 2k+1 Söhne.
- 4. Jeder Blattknoten mit Ausnahme der Wurzel als Blatt hat mindestens k* und höchstens 2k* Einträge.

2 Knotenformate:

innerer Knoten

Blattknoten

M enthalte eine Kennung des Seitentyps sowie die Zahl der aktuellen Einträge GDB-7-47

Es gilt:

$$L = l_M + l_P + 2 \cdot k(l_K + l_P);$$
 $k = \left[\frac{L - l_M - l_P}{2 \cdot (l_K + l_P)}\right]$

$$L = l_M + 2 \cdot l_P + 2 \cdot k^* (l_K + l_D); \qquad k^* = \left| \frac{L - l_M - 2l_P}{2 \cdot (l_K + l_D)} \right|$$

Beispiel: B*-Baum der Klasse $\tau(3, 2, 3)$

Erklärungsmodell für den B*-Baum

Der B*-Baum lässt sich auffassen als eine gekettete sequentielle Datei von Blättern, die einen Indexteil besitzt, der selbst ein B-Baum ist. Im Indexteil werden insbes. beim Split-Vorgang die Operationen des B-Baums eingesetzt.

Grundoperationen beim B*-Baum

Direkte Suche:

Da alle Schlüssel in den Blättern sind, kostet jede direkte Suche h* Zugriffe. h* ist jedoch im Mittel kleiner als h in B-Bäumen. Da f_{avg} beim B-Baum in guter Näherung mit h abgeschätzt werden kann, erhält man also durch den B*-Baum eine effizientere Unterstützung der direkten Suche.

Sequentielle Suche:

Sie erfolgt nach Aufsuchen des Linksaußen der Struktur unter Ausnutzung der Verkettung der Blattseiten. Es sind zwar ggf. mehr Blätter als beim B-Baum zu verarbeiten, doch da nur h*-1 innere Knoten aufzusuchen sind, wird die sequentielle Suche ebenfalls effizienter ablaufen.

Grundoperationen beim B*-Baum (Forts.)

Einfügen:

Es ist von der Durchführung und vom Leistungsverhalten her dem Einfügen in einen B-Baum sehr ähnlich. Bei inneren Knoten wird die Spaltung analog zum B-Baum durchgeführt. Beim Split-Vorgang einer Blattseite muss gewährleistet sein, dass jeweils die höchsten Schlüssel einer Seite als Wegweiser in den Vaterknoten kopiert werden. Die Verallgemeinerung des Split-Vorgangs lässt sich analog zum B-Baum einführen.

Löschen:

Datenelemente werden immer von einem Blatt entfernt (keine komplexe Fallunterscheidung wie beim B-Baum). Weiterhin muss beim Löschen eines Schlüssels aus einem Blatt dieser Schlüssel nicht notwendigerweise aus dem Indexteil entfernt werden; er kann seine Funktion als Wegweiser behalten.

Schema für den Split-Vorgang:

Optimierungsmöglichkeiten (Erhöhung der Baumbreite), z.B. durch Schlüsselkomprimierung oder minimale Seperatoren

Beispiel: Konstruktion ,irgendeines' Separators S mit der Eigenschaft

Cookiemonster ≤ S < Ernie

Eigenschaften:

Anzahl der Blattknoten bei minimaler Belegung

$$B_{\min}(k,h^*)=1$$

$$f\ddot{u}r h^* = 1$$

$$B_{\min}(k,h^*) = 2(k+1)^{h^*-2}$$

für
$$h^*$$
 ≥ 2

Minimale Anzahl von Elementen

$$n_{\min}(k, k^*, h^*) = 1$$

$$f\ddot{u}r\ h^*=1$$

$$n_{\min}(k, k^*, h^*) = 2k^* \cdot (k+1)^{h^*-2}$$
 für $h^* \ge 2$

für
$$h^*$$
 ≥ 2

Eigenschaften (Forts.):

Anzahl der Blattknoten bei maximaler Belegung

$$B_{max}(k, h^*) = (2k+1)^{h^*-1} \text{ für } h^* \ge 1$$

Maximale Anzahl von Elementen

$$n_{\text{max}}(k, k^*, h^*) = 2k^* (2k+1)^{h^*-1} \text{ für } h^* \ge 1$$

Es lässt sich zeigen, dass die Höhe h* eines B*-Baumes mit n Datenelementen begrenzt ist durch

$$1 + \log_{2k+1}(n/2k^*) \le h^* \le 2 + \log_{k+1}(n/2k^*)$$
 für $h^* \ge 2$

B- und B*-Baum: Quantitativer Vergleich

Seitengröße L: 2048 Bytes

Zeiger P_i, Schlüssel K_i, Hilfsinformation: 4 Bytes

Daten D_i eingebettet: 76 Bytes; separat: 4 Bytes (Zeiger)

Datensätze separat (k=85)

h	n _{min}	n _{max}
1	1	170
2	171	29.240
3	14.791	5.000.210
4	1.272.112	855.036.083

Datensätze eingebettet (k=12)

h	n _{min}	n _{max}
1	1	24
2	25	624
3	337	15.624
4	4.393	390.624

B-Baum

B- und B*-Baum: Quantitativer Vergleich

Datensätze separat (k=127, k*=127)

h	n _{min}	n _{max}
1	1	254
2	254	64.770
3	32.512	16.516.350
4	4.161.536	4.211.669.268

Datensätze eingebettet (k=127, k*=12)

h	n _{min}	n _{max}
1	1	24
2	24	6.120
3	3.072	1.560.600
4	393.216	397.953.001

B*-Baum

Weiterführende Literatur B*-Bäume

Härder, T.: Mehrwegbäume, auf GDB-Web-Seite

Härder, T., Rahm, E: Datenbanksysteme – Konzepte und Techniken der Implementierung, Springer, 1999.

Zusammenfassung

M-Wege-Suchbäume i. Allg. nicht balanciert

B-Bäume

- balanciert unabhängig von Schlüsselmenge und Einfügereihenfolge
- beträchtliche Zugriffsunterstützung, aber auch Reorganisationsaufwand
- mittlere Zugriffskosten ,nahe an' Baumhöhe

Indexstrukturen als B*-Bäume

- Weiterentwicklung der B-Bäume (Blatt- statt Knotenorientierung)
- sehr gute Unterstützung:
 - direkter Schlüsselzugriff auf einen indexierten Satz
 - sortiert sequentieller Zugriff auf alle Sätze (unterstützt Bereichsanfragen, Verbundoperation usw.)
- in SQL mit CREATE INDEX ,einstellbar'