

Searches for invisible decay modes of the Higgs boson with the CMS detector

P. Dunne - Imperial College London

CMS and the LHC

CMS

The Higgs Boson

Why Higgs to Invisible?

Why Higgs to Invisible?

Experimental motivation

- At the end of run 1 significant BSM Higgs properties are not excluded:
 - Limit from ATLAS+CMS on ${\rm BR}_{BSM} \sim 35\%$

Theoretical motivation

- Many BSM theories predict Higgs boson decays to invisible final states:
- e.g. SUSY, extra dimensions, fourth-generation neutrinos
- ► These final state particles are often dark matter candidates

Direct and Indirect Searches

Indirect searches

- ► BSM Higgs decays affect the total Higgs width:
- Visible decays can, therefore, constrain the invisible branching fraction

Direct searches

- Direct searches must be performed in channels where the Higgs recoils against a visible system
- We look in the VBF, W/ZH and ggH channels

VBF outline

Signal Topology and Selection

- ightharpoonup Two high p_T VBF jets with large rapidity separation
 - no activity between jets
- ► Large missing transverse momentum (MET)
- Cut hard to remove backgrounds

Backgrounds

Reducing QCD Backgrounds

Background estimation

Data Driven Background Estimation

- Choose control region enriched in background
- Use MC signal-control ratio to go to signal region:

$$N_{Bkg}^{signal} = (N_{obs}^{control} - N_{otherbkgs}^{control}) \cdot \frac{N_{MC}^{signal}}{N_{MC}^{control}}.$$

VBF results

Number of events within one σ of the SM expectation:

Total background	$439.7 \pm 41.0(stat.) \pm 55.8(syst.)$
VBF H(inv.) assuming B(H→inv)=100%	$273.4 \pm 31.2 (syst.)$
ggF H(inv.) assuming B(H→inv)=100%	22.6 ± 15.6 (syst.)
Observed data	508

- ► Set limits on $\sigma \times B(H \to inv)$
- Perform a single bin counting experiment using CL_S method
- Observed(expected) 95% C.L. limit on $B(H \rightarrow inv)$ is 0.57 (0.40)

VBF results

Number of events within one σ of the SM expectation:

Trainber of Grants William one of the Office of Apoctation	
Total background	$439.7 \pm 41.0(stat.) \pm 55.8(syst.)$
VBF H(inv.) assuming B(H→inv)=100%	$273.4 \pm 31.2 (syst.)$
ggF H(inv.) assuming B(H→inv)=100%	$22.6 \pm 15.6 (syst.)$
Observed data	508

- ► Set limits on $\sigma \times B(H \rightarrow inv)$
 - Perform a single bin counting experiment using CL_S method
- Observed(expected) 95% C.L. limit on $B(H \rightarrow jv)$ is 0.57 (0.40)

What does this mean?

CLs

- ▶ Want to exclude signal models which are less than 5% likely to give data
- lacktriangle Exclude everything where shaded area (CL_{S+B}) is < 5%

CLs

- ► What if background only model is also unlikely?
- ▶ What if you have no sensitivity even to the background?
- ► Risk of overexcluding

CLs

- ightharpoonup Gets bigger if CL_B is small too
- Avoids overexcluding

Combinations - Assumptions

- ▶ Want to improve limit using constraints from other channels
- Need to be careful that the quantity they set limits on is the same
 - We assume that the Higgs we're looking at is produced as in the SM

Combinations - Correlations

- ▶ Objects in one analysis might be very different from objects in others
- Energy scales and other uncertainties may or may not be correlated
- Measurement in one channel can constrain uncertainties in other channels

Combination Results

- ▶ The individual limits on $\sigma \times B(H \rightarrow inv)$ from all channels are combined
- SM production cross-sections are used to interpret this as a limit on $B(H{\to}inv)$

 $\begin{array}{c} \text{Observed (expected) limits on} \\ \text{B(H}\rightarrow\text{inv) at 95\% C.L. for} \\ \underline{M_{H}=125 \text{ GeV}} \\ \hline \text{Channel} \qquad \qquad \text{Limit/\%} \\ \hline \text{VBF-tagged} \qquad 57(40) \\ \text{VH-tagged} \qquad 60(69) \\ \underline{\text{ggH-tagged}} \qquad 67(71) \\ \hline \text{Combined} \qquad 36(30) \\ \end{array}$

Signatures of Dark Matter (DM)

▶ If DM couples to the Higgs the following diagrams are possible

- ▶ Limits on $\mathcal{B}(H\rightarrow inv)$ therefore constrain Higgs Portal DM models
- These constraints are directly comparable to those from other experiments

Dark Matter Interpretation

- Previously used an effective field theory model which translates $B(H \to inv)$ into a DM-nucleon cross-section
- Consider three DM spin scenarios: scalar, vector, Majorana fermion:
- all but one go to infinity as the mass goes to zero
- Need new models watch this space

Dark Matter Interpretation

- ▶ Previously used an effective field theory model which translates $B(H \rightarrow inv)$ into a DM-nucleon cross-section
- Consider three DM spin scenarios: scalar, vector, Majorana fermion:
- all but one go to infinity as the mass goes to zero
- ► Need new models watch this space

Conclusions

- ▶ We have set limits on invisible decays of the Higgs using the VBF channel
- ▶ This has been combined with other channels to give tighter limits
- We can use these limits to constrain dark matter models but we need to be careful

Backup