Generating trees for permutations avoiding generalized patterns

Sergi Elizalde

Dartmouth College

Permutation Patterns 2006, Reykjavik

Generating trees for permutations avoiding generalized patterns

Sergi Elizalde Emiliosson

Dartmouth College

Permutation Patterns 2006, Reykjavik

- Definitions
 - Generalized patterns
 - Generating trees
 - Rightward generating trees
- Enumeration of permutations avoiding generalized patterns

Idea: Succession rule → Functional equation → Generating function

- Definitions
 - Generalized patterns
 - Generating trees
 - Rightward generating trees
- Enumeration of permutations avoiding generalized patterns

Idea: Succession rule ---- Functional equation ---- Generating function

- Generating trees with one label
 - $\{2\text{-}1\text{-}3,\overline{2}\text{-}31\}$ -avoiding
 - $\{2\text{-}1\text{-}3, \bar{2}\text{-}31\}$ -avoiding
 - $\{2\text{-}1\text{-}3, 2\text{-}3\text{-}41, 3\text{-}2\text{-}41\} \text{-avoiding}$
- Generating trees with two labels
 - $\{2\text{-}1\text{-}3, 12\text{-}3\}$ -avoiding
 - {2-1-3, 32-1}-avoiding
 - 1-23-avoiding
 - 123-avoiding
- Some unsolved cases

(Mireille Bousquet-Mélou)

Generalized patterns

- Dashes can be inserted between entries in the pattern.
- Entries not separated by a dash have to be adjacent in an occurrence of the pattern in a permutation.

Examples:

```
\pi = \underline{35}42\underline{7}1\underline{6} \text{ contains } \sigma = 12\text{-}4\text{-}3 \pi = 3542716 \text{ avoids } 12\text{-}43 \text{ (it is } 12\text{-}43\text{-avoiding)}
```

Generating trees (usual kind)

- Nodes at each level are indexed by permutations of a given length.
- There is a rule that describes the children of each node.

Generating trees (usual kind)

- Nodes at each level are indexed by permutations of a given length.
- There is a rule that describes the children of each node.

Usually, the children of a permutation are obtained by inserting the largest entry.

Example: Generating tree for 123-avoiding permutations:

Rightward generating trees (RGT)

To incorporate the adjacency condition in generalized patterns, it is more convenient to consider rightward generating trees.

To obtain a child of π :

- **ightharpoonup** append a new entry k to the right of π ,
- ullet shift up by one the entries of π that were $\geq k$.

Example:

If we append 3 to the right of $\pi = 24135$, we obtain is the child 251463.

Example of RGT with one label

Generating tree for 2-13-avoiding permutations:

Example of RGT with one label

Generating tree for 2-13-avoiding permutations:

If $\pi \in \mathcal{S}_n$, let $r(\pi) = \pi_n$ be its rightmost entry.

This tree is described by the succession rule

$$(1)$$

$$(r) \longrightarrow (1) (2) \cdots (r) (r+1).$$

Example of RGT with two labels

Generating tree for $\{2\text{-}13, 12\text{-}3\}$ -avoiding permutations:

Example of RGT with two labels

Generating tree for $\{2\text{-}13, 12\text{-}3\}$ -avoiding permutations:

If
$$\pi \in \mathcal{S}_n$$
, let $l(\pi) = \begin{cases} n+1 & \text{if } \pi = n(n-1)\cdots 21, \\ \min\{\pi_i : i > 1, \ \pi_{i-1} < \pi_i\} \end{cases}$ otherwise.

Example of RGT with two labels

Generating tree for $\{2-13, 12-3\}$ -avoiding permutations:

If
$$\pi \in \mathcal{S}_n$$
, let $l(\pi) = \begin{cases} n+1 & \text{if } \pi = n(n-1)\cdots 21, \\ \min\{\pi_i : i>1, \ \pi_{i-1} < \pi_i\} \end{cases}$ otherwise.

This tree is described by the succession rule

$$(2,1) \\ (l,r) \longrightarrow \begin{cases} (l+1,1) & (l+1,2) & \cdots & (l+1,l) \\ (l+1,1) & (l+1,2) & \cdots & (l+1,r) & (r+1,r+1) \end{cases}$$
 if $l=r$, if $l>r$.

RGT with one label: $\{2\text{-}1\text{-}3, \overline{2}\text{-}31\}$ -avoiding permutations (1)

 π avoids $\overline{2}$ -31 if every occurrence of 31 in π is part of an occurrence of 2-31

Example: $\pi = 4623751$ avoids $\overline{2}$ -31

RGT with one label: $\{2\text{-}1\text{-}3, \overline{2}\text{-}31\}$ -avoiding permutations (1)

 π avoids $\overline{2}$ -31 if every occurrence of 31 in π is part of an occurrence of 2-31 Example: $\pi=4623751$ avoids $\overline{2}$ -31

Proposition. The number of $\{2\text{-}1\text{-}3, \overline{2}\text{-}31\}$ -avoiding permutations of size n is the n-th Motzkin number M_n .

RGT with one label: $\{2-1-3, \overline{2}-31\}$ -avoiding permutations (1)

 π avoids $\overline{2}$ -31 if every occurrence of 31 in π is part of an occurrence of 2-31

Example: $\pi = 4623751$ avoids $\overline{2}$ -31

Proposition. The number of $\{2\text{-}1\text{-}3, \overline{2}\text{-}31\}$ -avoiding permutations of size n is the n-th Motzkin number M_n .

Proof:

The RGT for this class is described by the succession rule

$$(1)$$

$$(r) \longrightarrow (1) (2) \cdots (r-1) (r+1).$$

Let
$$D(t, u) = \sum_{n \ge 1} \sum_{\pi \in S_n(2^{-1} - 3, \overline{2} - 31)} u^{r(\pi)} t^n = \sum_{r \ge 1} D_r(t) u^r$$
.

The succession rule translates into

$$\begin{split} D(t,u) &= tu + t \sum_{r \geq 1} D_r(t)(u + u^2 + \dots + u^{r-1} + u^{r+1}) \\ &= tu + t \sum_{r \geq 1} \left[\frac{D_r(t)(u^r - u)}{u - 1} + D_r(t)u^{r+1} \right] = tu + \frac{t}{u - 1} [D(t,u) - uD(t,1)] + tuD(t,u) \\ &\text{Permutation Patterns 2006, Reykjavik - p.8} \end{split}$$

RGT with one label: $\{2\text{-}1\text{-}3, \overline{2}\text{-}31\}$ -avoiding permutations (2)

$$\left(1 - \frac{t}{u-1} - tu\right)D(t,u) = tu - \frac{tu}{u-1}D(t,1)$$

Kernel method:

$$1 - \frac{t}{u_0(t) - 1} - t \ u_0(t) = 0 \implies u_0(t) = \frac{1 + t - \sqrt{1 - 2t - 3t^2}}{2t}$$

Substitute $u = u_0(t)$ to cancel the left hand side:

RGT with one label: $\{2-1-3, \overline{2}-31\}$ -avoiding permutations (2)

$$\left(1 - \frac{t}{u-1} - tu\right)D(t,u) = tu - \frac{tu}{u-1}D(t,1)$$

Kernel method:

$$1 - \frac{t}{u_0(t) - 1} - t \ u_0(t) = 0 \implies u_0(t) = \frac{1 + t - \sqrt{1 - 2t - 3t^2}}{2t}$$

Substitute $u = u_0(t)$ to cancel the left hand side:

$$D(t,1) = u_0(t) - 1 = \frac{1 - t - \sqrt{1 - 2t - 3t^2}}{2t},$$

which is the generating function for the Motzkin numbers.

RGT with one label: $\{2\text{-}1\text{-}3, \frac{\circ}{2}\text{-}31\}$ -avoiding permutations (1)

 π avoids $\overset{\circ}{2}\text{-}31$ if every occurrence of 31 in π is part of an odd number of occurrences of 2-31

Example: $\pi=4623751$ avoids $\frac{\circ}{2}$ -31

RGT with one label: $\{2\text{-}1\text{-}3, \frac{\circ}{2}\text{-}31\}$ -avoiding permutations (1)

 π avoids $\overset{\circ}{2}\text{-}31$ if every occurrence of 31 in π is part of an odd number of occurrences of 2-31

Example: $\pi=4623751$ avoids $\frac{\circ}{2}$ -31

Proposition. The number of $\{2\text{-}1\text{-}3, \frac{\circ}{2}\text{-}31\}$ -avoiding permutations of size n is

$$\begin{cases} \frac{1}{2k+1} {3k \choose k} & \text{if } n = 2k, \\ \frac{1}{2k+1} {3k+1 \choose k+1} & \text{if } n = 2k+1. \end{cases}$$

RGT with one label: $\{2\text{-}1\text{-}3, \frac{\circ}{2}\text{-}31\}$ -avoiding permutations (1)

 π avoids $\overset{\circ}{2}\text{-}31$ if every occurrence of 31 in π is part of an odd number of occurrences of 2-31

Example: $\pi=4623751$ avoids $\frac{\circ}{2}$ -31

Proposition. The number of $\{2\text{-}1\text{-}3, \frac{\circ}{2}\text{-}31\}$ -avoiding permutations of size n is

$$\begin{cases} \frac{1}{2k+1} {3k \choose k} & \text{if } n = 2k, \\ \frac{1}{2k+1} {3k+1 \choose k+1} & \text{if } n = 2k+1. \end{cases}$$

Proof sketch:

The RGT for this class is described by the succession rule

$$\begin{array}{c} (1) \\ (r) \longrightarrow (r+1) \ (r-1) \ (r-3) \cdots \end{array}$$

RGT with one label: $\{2\text{-}1\text{-}3, \frac{\circ}{2}\text{-}31\}$ -avoiding permutations (2)

Let
$$D(t,u) = \sum_{n\geq 1} \sum_{\pi \in S_n(2-1-3,\frac{o}{2}-31)} u^{r(\pi)} t^n$$
,

RGT with one label: $\{2\text{-}1\text{-}3, \frac{\circ}{2}\text{-}31\}$ -avoiding permutations (2)

Let
$$\eth(t,u) = \sum_{n\geq 1} \sum_{\pi \in \mathcal{S}_n(2\text{-}1\text{-}3,\frac{o}{2}\text{-}31)} u^{r(\pi)} t^n$$
,

RGT with one label: $\{2\text{-}1\text{-}3, \overset{\circ}{2}\text{-}31\}$ -avoiding permutations (2)

Let
$$\eth(t,u) = \sum_{n\geq 1} \sum_{\pi \in \mathcal{S}_n(2\text{-}1\text{-}3,\frac{o}{2}\text{-}31)} u^{r(\pi)} t^n$$
,

and $\eth^e(t,u) = \text{terms in } \eth(t,u)$ with even exponent in u.

The succession rule translates into

$$\left(1 - \frac{tu^3}{u^2 - 1}\right) \eth(t, u) = tu - \frac{tu^2}{u^2 - 1} \eth(t, 1) + \frac{tu(u - 1)}{u^2 - 1} \eth^e(t, 1)$$

Using two different roots $u_1(t)$ and $u_2(t)$ of the Kernel, we get two equations relating $\eth(t,1)$ and $\eth^e(t,1)$. Solve for $\eth(t,1)$.

RGT with one label: $\{2\text{-}1\text{-}3, \overset{\circ}{2}\text{-}31\}$ -avoiding permutations (2)

Let
$$\eth(t,u) = \sum_{n\geq 1} \sum_{\pi \in \mathcal{S}_n(2\text{-}1\text{-}3,\frac{o}{2}\text{-}31)} u^{r(\pi)} t^n$$
,

and $\eth^e(t,u) = \text{terms in } \eth(t,u)$ with even exponent in u.

The succession rule translates into

$$\left(1 - \frac{tu^3}{u^2 - 1}\right) \eth(t, u) = tu - \frac{tu^2}{u^2 - 1} \eth(t, 1) + \frac{tu(u - 1)}{u^2 - 1} \eth^e(t, 1)$$

Using two different roots $u_1(t)$ and $u_2(t)$ of the Kernel, we get two equations relating $\eth(t,1)$ and $\eth^e(t,1)$. Solve for $\eth(t,1)$.

A similar argument gives the number of $\{2\text{-}1\text{-}3, \overline{2}\text{-}31\}$ -avoiding permutations.

(π avoids $\frac{\varepsilon}{2}$ -31 if every occurrence of 31 in π is part of an even number of occurrences of 2-31)

Let
$$K(t,u) = \sum_{n\geq 1} \sum_{\pi \in \mathcal{S}_n(2\text{-}1\text{-}3,2\text{-}3\text{-}41,3\text{-}2\text{-}41)} u^{r(\pi)} t^n = \sum_{r\geq 1} K_r(t) u^r$$
.

Proposition.

$$K(t,u) = \frac{1 - t - 2tu - \sqrt{1 - 2t - 3t^2}}{2t(\frac{1}{u} + 1 + u) - 2}.$$

Let
$$K(t,u) = \sum_{n\geq 1} \sum_{\pi \in \mathcal{S}_n(2-1-3,2-3-41,3-2-41)} u^{r(\pi)} t^n = \sum_{r\geq 1} K_r(t) u^r$$
.

Proposition.

$$K(t,u) = \frac{1 - t - 2tu - \sqrt{1 - 2t - 3t^2}}{2t(\frac{1}{u} + 1 + u) - 2}.$$

Proof sketch:

Succession rule:

$$(r) \longrightarrow \begin{cases} (r-1) \ (r) \ (r+1) \end{cases} \quad \text{if } r > 1,$$

$$(r) \ (r+1) \quad \text{if } r = 1.$$

Let
$$K(t,u) = \sum_{n\geq 1} \sum_{\pi \in \mathcal{S}_n(2\text{-}1\text{-}3,2\text{-}3\text{-}41,3\text{-}2\text{-}41)} u^{r(\pi)} t^n = \sum_{r\geq 1} K_r(t) u^r$$
.

Proposition.

$$K(t,u) = \frac{1 - t - 2tu - \sqrt{1 - 2t - 3t^2}}{2t(\frac{1}{u} + 1 + u) - 2}.$$

Proof sketch:

Succession rule: (1)

$$(r) \longrightarrow \begin{cases} (r-1) \ (r) \ (r+1) & \text{if } r > 1, \\ (r) \ (r+1) & \text{if } r = 1. \end{cases}$$

Functional equation:

$$\left[1 - t\left(\frac{1}{u} + 1 + u\right)\right] K(t, u) = tu - tK_1(t).$$

Apply Kernel method to find $K_1(t)$, and then find K(t, u).

Let
$$K(t,u) = \sum_{n\geq 1} \sum_{\pi \in \mathcal{S}_n(2-1-3,2-3-41,3-2-41)} u^{r(\pi)} t^n = \sum_{r\geq 1} K_r(t) u^r$$
.

Proposition.

$$K(t,u) = \frac{1 - t - 2tu - \sqrt{1 - 2t - 3t^2}}{2t(\frac{1}{u} + 1 + u) - 2}.$$

Proof sketch:

Succession rule: (1)

$$(r) \longrightarrow \begin{cases} (r-1) \ (r) \ (r+1) \end{cases} \quad \mbox{if } r > 1, \\ (r) \ (r+1) \end{cases} \quad \mbox{if } r = 1.$$

Functional equation:

$$\left[1 - t\left(\frac{1}{u} + 1 + u\right)\right] K(t, u) = tu - tK_1(t).$$

Apply Kernel method to find $K_1(t)$, and then find K(t, u).

Known (Mansour): K(t,1) also enumerates $\{1\text{-}3\text{-}2,123\text{-}4\}$ -avoiding perms.

Open: Bijective proof of $|S_n(2-1-3, 2-3-41, 3-2-41)| = |S_n(1-3-2, 123-4)|$?

Known (Claesson): $|S_n(2-1-3, 12-3)| = M_n$.

Known (Claesson): $|S_n(2-1-3, 12-3)| = M_n$.

The RGT for $\{2-1-3, 12-3\}$ -avoiding permutations is described by

$$(2,1) \\ (l,r) \longrightarrow \begin{cases} (l+1,1) \ (l+1,2) \ \cdots \ (l+1,l) \\ (l+1,1) \ (l+1,2) \ \cdots \ (l+1,r) \ (r+1,r+1) \end{cases} \text{ if } l=r,$$

where $l(\pi)$ is the smallest value of the top of a rise in π .

Known (Claesson): $|S_n(2-1-3, 12-3)| = M_n$.

The RGT for $\{2-1-3, 12-3\}$ -avoiding permutations is described by

$$(l,r) \longrightarrow \begin{cases} (l+1,1) & (l+1,2) & \cdots & (l+1,l) \\ (l+1,1) & (l+1,2) & \cdots & (l+1,r) & (r+1,r+1) \end{cases}$$
 if $l=r$, if $l>r$,

where $l(\pi)$ is the smallest value of the top of a rise in π . Let

$$M(t, u, v) = \sum_{n \ge 1} \sum_{\pi \in \mathcal{S}_n(2\text{-}1\text{-}3, 12\text{-}3)} u^{l(\pi)} v^{r(\pi)} t^n = \sum_{l,r} M_{l,r}(t) u^l v^r$$

Proposition.

$$M(t, u, v) = \frac{[(1-u)v + c_1t + c_2t^2 + c_3t^3 + c_4t^4 - ((1-u)v + tu + t^2u^2v)\sqrt{1 - 2t - 3t^2})]u^2v}{2(1 - u - tu(1-u) + t^2u^2)(1 - uv + tuv + t^2u^2v^2)},$$

where
$$c_1 = 2 - u - v - uv + 2u^2v$$
, $c_2 = u(-1 + (2 - u)v + 2(u - 1)v^2)$, $c_3 = u^2v(-3 + 2v - 2uv)$, $c_4 = -2u^3v^2$.

Proof sketch: The succession rule

$$(2,1) \\ (l,r) \longrightarrow \begin{cases} (l+1,1) \ (l+1,2) \ \cdots \ (l+1,l) \\ (l+1,1) \ (l+1,2) \ \cdots \ (l+1,r) \ (r+1,r+1) \end{cases} \text{ if } l=r,$$

translates into

$$M(t, u, v) = tu^{2}v + t\sum_{l} M_{l, l}(t)u^{l+1}(v + v^{2} + \dots + v^{l}) + t\sum_{l > r} M_{l, r}(t)[u^{l+1}(v + v^{2} + \dots + v^{r}) + u^{r+1}v^{r+1}]$$

Proof sketch: The succession rule

$$(2,1) \\ (l,r) \longrightarrow \begin{cases} (l+1,1) & (l+1,2) & \cdots & (l+1,l) \\ (l+1,1) & (l+1,2) & \cdots & (l+1,r) & (r+1,r+1) \end{cases} \text{ if } l = r,$$

translates into

$$M(t, u, v) = tu^{2}v + t\sum_{l} M_{l,l}(t)u^{l+1}(v + v^{2} + \dots + v^{l}) + t\sum_{l>r} M_{l,r}(t)[u^{l+1}(v + v^{2} + \dots + v^{r}) + u^{r+1}v^{r+1}]$$

Let $M_{>}(t, u, v) = \text{terms in } M(t, u, v)$ where exponent of u > exponent of v.

$$M_{>}(t, u, v) = tu^{2}v + \frac{tuv}{v-1} \left[tuv \ M_{>}(t, 1, uv) - tu \ M_{>}(t, 1, u) + M_{>}(t, u, v) - M_{>}(t, u, 1) \right].$$

Proof sketch:

$$M(t, u, v) = tu^{2}v + t\sum_{l} M_{l, l}(t)u^{l+1}(v + v^{2} + \dots + v^{l}) + t\sum_{l > r} M_{l, r}(t)[u^{l+1}(v + v^{2} + \dots + v^{r}) + u^{r+1}v^{r+1}]$$

Let $M_{>}(t, u, v) = \text{terms in } M(t, u, v)$ where exponent of u > exponent of v.

$$M_{>}(t, u, v) = tu^{2}v + \frac{tuv}{v-1} \left[tuv \ M_{>}(t, 1, uv) - tu \ M_{>}(t, 1, u) + M_{>}(t, u, v) - M_{>}(t, u, 1) \right].$$

For
$$u = 1$$
,
$$\left(1 - \frac{t^2v^2}{v - 1} - \frac{tv}{v - 1}\right) M_{>}(t, 1, v) = tv - \frac{t(t + 1)v}{v - 1} M_{>}(t, 1, 1).$$

Apply the Kernel method to find $M_{>}(t,1,1)$ and $M_{>}(t,1,v)$.

Proof sketch:

$$M(t, u, v) = tu^{2}v + t\sum_{l} M_{l, l}(t)u^{l+1}(v + v^{2} + \dots + v^{l}) + t\sum_{l > r} M_{l, r}(t)[u^{l+1}(v + v^{2} + \dots + v^{r}) + u^{r+1}v^{r+1}]$$

Let $M_{>}(t, u, v) = \text{terms in } M(t, u, v)$ where exponent of u > exponent of v.

$$M_{>}(t, u, v) = tu^{2}v + \frac{tuv}{v-1} \left[tuv \ M_{>}(t, 1, uv) - tu \ M_{>}(t, 1, u) + M_{>}(t, u, v) - M_{>}(t, u, 1) \right].$$

For
$$u = 1$$
,
$$\left(1 - \frac{t^2v^2}{v - 1} - \frac{tv}{v - 1}\right) M_{>}(t, 1, v) = tv - \frac{t(t + 1)v}{v - 1} M_{>}(t, 1, 1).$$

Apply the Kernel method to find $M_{>}(t,1,1)$ and $M_{>}(t,1,v)$.

Now apply the Kernel method to

$$\left(1 - \frac{tuv}{v-1}\right) M_{>}(t, u, v) = tu^{2}v + \frac{tuv}{v-1} \left[tuv M_{>}(t, 1, uv) - tu M_{>}(t, 1, u) - M_{>}(t, u, 1)\right]$$

to find $M_{>}(t, u, 1)$ and $M_{>}(t, u, v)$.

Finally,
$$M(t, u, v) = M_{>}(t, u, v) + tuv M_{>}(t, 1, uv)$$
.

Known (Claesson): $|S_n(2-1-3, 32-1)| = 2^{n-1}$.

Known (Claesson): $|S_n(2-1-3, 32-1)| = 2^{n-1}$.

Let

$$h(\pi) = \begin{cases} 0 & \text{if } \pi = 12 \cdots n, \\ \max\{\pi_i : i > 1, \ \pi_{i-1} > \pi_i\} \end{cases}$$
 otherwise.

The RGT for $\{2-1-3, 32-1\}$ -avoiding permutations is described by

$$(0,1)$$

 $(h,r) \longrightarrow (h+1,h+1) (h+1,h+2) \cdots (r,r) (h,r+1).$

Known (Claesson): $|S_n(2-1-3, 32-1)| = 2^{n-1}$.

Let

$$h(\pi) = \begin{cases} 0 & \text{if } \pi = 12 \cdots n, \\ \max\{\pi_i : i > 1, \ \pi_{i-1} > \pi_i\} \end{cases}$$
 otherwise.

The RGT for $\{2-1-3, 32-1\}$ -avoiding permutations is described by

$$(0,1)$$

 $(h,r) \longrightarrow (h+1,h+1) (h+1,h+2) \cdots (r,r) (h,r+1).$

Let
$$N(t, u, v) = \sum_{n \geq 1} \sum_{\pi \in \mathcal{S}_n(2\text{-}1\text{-}3, 32\text{-}1)} u^{h(\pi)} v^{r(\pi)} t^n$$
.

From the succession rule,

$$N(t, u, v) = tv + tvN(t, u, v) + \frac{tuv[N(t, 1, uv) - N(t, uv, 1)]}{uv - 1}.$$

Known (Claesson): $|S_n(2-1-3, 32-1)| = 2^{n-1}$.

Let

$$h(\pi) = \begin{cases} 0 & \text{if } \pi = 12 \cdots n, \\ \max\{\pi_i : i > 1, \ \pi_{i-1} > \pi_i\} \end{cases}$$
 otherwise.

The RGT for $\{2-1-3, 32-1\}$ -avoiding permutations is described by

$$(0,1)$$

 $(h,r) \longrightarrow (h+1,h+1) (h+1,h+2) \cdots (r,r) (h,r+1).$

Let
$$N(t,u,v) = \sum_{n \geq 1} \sum_{\pi \in \mathcal{S}_n(2\text{-}1\text{-}3,32\text{-}1)} u^{h(\pi)} v^{r(\pi)} t^n$$
.

From the succession rule,

$$N(t, u, v) = tv + tvN(t, u, v) + \frac{tuv[N(t, 1, uv) - N(t, uv, 1)]}{uv - 1}.$$

Solving this functional equation we get

$$N(t, u, v) = \frac{tv(1 - t + tu - tuv)}{(1 - tv)(1 - t - tuv)}.$$

Known (Claesson): $|S_n(1-23)| = B_n$, the *n*-th Bell number.

Known (Claesson): $|S_n(1-23)| = B_n$, the *n*-th Bell number.

The RGT for 1-23-avoiding permutations is described by

$$(1,1) \\ (r,n) \longrightarrow \begin{cases} (1,n+1) \ (2,n+1) \ \cdots \ (n+1,n+1) \end{cases} & \text{if } r = 1, \\ (1,n+1) \ (2,n+1) \ \cdots \ (r,n+1) & \text{if } r > 1. \end{cases}$$

Known (Claesson): $|S_n(1-23)| = B_n$, the *n*-th Bell number.

The RGT for 1-23-avoiding permutations is described by

$$(1,1) \atop (r,n) \longrightarrow \begin{cases} (1,n+1) \ (2,n+1) \ \cdots \ (n+1,n+1) \end{cases} \quad \text{if } r = 1, \\ (1,n+1) \ (2,n+1) \ \cdots \ (r,n+1) \qquad \text{if } r > 1.$$

Let $G(t,u) = \sum_{n\geq 1} \sum_{\pi\in\mathcal{S}_n(1-23)} u^{r(\pi)} t^n$. From the succession rule,

$$\left(1 - \frac{tu}{u-1}\right)G(t,u) = tu + t^2u^2 + \frac{tu}{u-1}\left[tu^2G(tu,1) - (1+tu)G(t,1)\right]$$

Known (Claesson): $|S_n(1-23)| = B_n$, the *n*-th Bell number.

The RGT for 1-23-avoiding permutations is described by

$$(r,n) \longrightarrow \begin{cases} (1,n+1) \ (2,n+1) \ \cdots \ (n+1,n+1) \end{cases} \quad \text{if } r = 1, \\ (1,n+1) \ (2,n+1) \ \cdots \ (r,n+1) \qquad \text{if } r > 1. \end{cases}$$

Let $G(t,u) = \sum_{n\geq 1} \sum_{\pi\in\mathcal{S}_n(1-23)} u^{r(\pi)} t^n$. From the succession rule,

$$\left(1 - \frac{tu}{u-1}\right)G(t,u) = tu + t^2u^2 + \frac{tu}{u-1}\left[tu^2G(tu,1) - (1+tu)G(t,1)\right]$$

Applying the Kernel method,

$$G(t,1) = \frac{t}{1-t} \left(1 + G(\frac{t}{1-t}, 1) \right)$$

Known (Claesson): $|S_n(1-23)| = B_n$, the *n*-th Bell number.

The RGT for 1-23-avoiding permutations is described by

$$(r,n) \longrightarrow \begin{cases} (1,n+1) \ (2,n+1) \ \cdots \ (n+1,n+1) \end{cases} \quad \text{if } r = 1, \\ (1,n+1) \ (2,n+1) \ \cdots \ (r,n+1) \qquad \text{if } r > 1. \end{cases}$$

Let $G(t,u) = \sum_{n>1} \sum_{\pi \in S_n(1-23)} u^{r(\pi)} t^n$. From the succession rule,

$$\left(1 - \frac{tu}{u-1}\right)G(t,u) = tu + t^2u^2 + \frac{tu}{u-1}\left[tu^2G(tu,1) - (1+tu)G(t,1)\right]$$

Applying the Kernel method,

$$G(t,1) = \frac{t}{1-t} \left(1 + G(\frac{t}{1-t}, 1) \right)$$

$$G(t,1) = \frac{t}{1-t} \left(1 + \frac{t}{1-2t} \left(1 + \frac{t}{1-3t} \left(1 + \cdots \right) \right) \right) = \sum_{k>1} \frac{t^k}{(1-t)(1-2t)\cdots(1-kt)}$$

We can also get a formula for G(t, u).

Known (E, Noy): The exponential GF for 123-avoiding permutations is

$$\frac{\sqrt{3}}{2} \frac{e^{t/2}}{\cos(\frac{\sqrt{3}}{2}t + \frac{\pi}{6})}.$$

Known (E, Noy): The exponential GF for 123-avoiding permutations is

$$\frac{\sqrt{3}}{2} \frac{e^{t/2}}{\cos(\frac{\sqrt{3}}{2}t + \frac{\pi}{6})}.$$

Define labels:

$$\pi \longrightarrow \begin{cases} (\pi_n, n) & \text{if } \pi_{n-1} > \pi_n \text{ or } n = 1, \\ (\pi_n, n)' & \text{if } \pi_{n-1} < \pi_n. \end{cases}$$

Known (E, Noy): The exponential GF for 123-avoiding permutations is

$$\frac{\sqrt{3}}{2} \frac{e^{t/2}}{\cos(\frac{\sqrt{3}}{2}t + \frac{\pi}{6})}.$$

Define labels:

$$\pi \longrightarrow \begin{cases} (\pi_n, n) & \text{if } \pi_{n-1} > \pi_n \text{ or } n = 1, \\ (\pi_n, n)' & \text{if } \pi_{n-1} < \pi_n. \end{cases}$$

The RGT for 123-avoiding permutations is described by

$$(1,1)$$

$$(r,n) \longrightarrow (1,n+1)(2,n+1)\cdots(r,n+1)(r+1,n+1)'(r+2,n+1)'\cdots(n+1,n+1)'$$

$$(r,n)' \longrightarrow (1,n+1)(2,n+1)\cdots(r,n+1)$$

Known (E, Noy): The exponential GF for 123-avoiding permutations is

$$\frac{\sqrt{3}}{2} \frac{e^{t/2}}{\cos(\frac{\sqrt{3}}{2}t + \frac{\pi}{6})}.$$

Define labels:

$$\pi \longrightarrow \begin{cases} (\pi_n, n) & \text{if } \pi_{n-1} > \pi_n \text{ or } n = 1, \\ (\pi_n, n)' & \text{if } \pi_{n-1} < \pi_n. \end{cases}$$

The RGT for 123-avoiding permutations is described by

$$(1,1)$$

$$(r,n) \longrightarrow (1,n+1)(2,n+1)\cdots(r,n+1)(r+1,n+1)'(r+2,n+1)'\cdots(n+1,n+1)'$$

$$(r,n)' \longrightarrow (1,n+1)(2,n+1)\cdots(r,n+1)$$

Let
$$C(t,u) = \sum_{n\geq 1} \sum_{\pi \in \mathcal{S}_n(123)} u^{r(\pi)} t^n = A(t,u) + B(t,u)$$
, where A (resp. B) are the terms with a label of the form $(\ ,\)$ (resp. $(\ ,\)'$).

The succession rule translates into

$$A(t,u) = tu + \frac{tu}{u-1} [C(t,u) - C(t,1)]$$

$$B(t,u) = \frac{tu}{u-1} [uA(tu,1) - A(t,u)]$$

The succession rule translates into

$$A(t,u) = tu + \frac{tu}{u-1}[C(t,u) - C(t,1)]$$

$$B(t,u) = \frac{tu}{u-1}[uA(tu,1) - A(t,u)]$$

Solved by Bousquet-Mélou:

$$C(t,1) = \frac{3+i\sqrt{3}}{2(3t-i\sqrt{3})} C\left(\frac{t}{1+i\sqrt{3}t},1\right) - \frac{3(2t+1-i\sqrt{3})t}{(2t-1-i\sqrt{3})(3t-i\sqrt{3})}.$$

The succession rule translates into

$$A(t,u) = tu + \frac{tu}{u-1}[C(t,u) - C(t,1)]$$

$$B(t,u) = \frac{tu}{u-1}[uA(tu,1) - A(t,u)]$$

Solved by Bousquet-Mélou:

$$C(t,1) = \frac{3 + i\sqrt{3}}{2(3t - i\sqrt{3})} C\left(\frac{t}{1 + i\sqrt{3}t}, 1\right) - \frac{3(2t + 1 - i\sqrt{3})t}{(2t - 1 - i\sqrt{3})(3t - i\sqrt{3})}.$$

From this, one can obtain a recurrence for the coefficients of C(t,1), and derive their exponential generating function.

Unsolved RGT with three labels: 1-2-34-avoiding perms. (1)

If
$$\pi \in \mathcal{S}_n$$
, let $m(\pi) = \begin{cases} n+1 & \text{if } \pi = n(n-1) \cdots 21, \\ \min\{\pi_i : \exists j < i \text{ with } \pi_j < \pi_i\} \end{cases}$ otherwise.

Unsolved RGT with three labels: 1-2-34-avoiding perms. (1)

If
$$\pi \in \mathcal{S}_n$$
, let $m(\pi) = \begin{cases} n+1 & \text{if } \pi = n(n-1) \cdots 21, \\ \min\{\pi_i : \exists j < i \text{ with } \pi_j < \pi_i\} \end{cases}$ otherwise.

The RGT for 1-2-34-avoiding permutations is described by:

$$(m,r,n) \longrightarrow \begin{cases} (m+1,1,n+1) \ (2,2,n+1) \ (3,3,n+1) \ \cdots \ (m,m,n+1) \\ (m,m+1,n+1) \ \cdots \ (m,n+1,n+1) \end{cases} & \text{if } r=1, \\ (m+1,1,n+1) \ (2,2,n+1) \ (3,3,n+1) \ \cdots \ (m,m,n+1) \\ (m,m+1,n+1) \ \cdots \ (m,n+1,n+1) \end{cases} & \text{if } m=r, \\ (m+1,1,n+1) \ (2,2,n+1) \ (3,3,n+1) \ \cdots \ (m,m,n+1) \\ (m,m+1,n+1) \ \cdots \ (m,r,n+1) \end{cases} & \text{if } m < r.$$

Unsolved RGT with three labels: 1-2-34-avoiding perms. (1)

If
$$\pi \in \mathcal{S}_n$$
, let $m(\pi) = \begin{cases} n+1 & \text{if } \pi = n(n-1) \cdots 21, \\ \min\{\pi_i : \exists j < i \text{ with } \pi_j < \pi_i\} \end{cases}$ otherwise.

The RGT for 1-2-34-avoiding permutations is described by:

$$(m,r,n) \longrightarrow \begin{cases} (m+1,1,n+1) \ (2,2,n+1) \ (3,3,n+1) \ \cdots \ (m,m,n+1) \\ (m,m+1,n+1) \ \cdots \ (m,n+1,n+1) \end{cases} & \text{if } r=1, \\ (m+1,1,n+1) \ (2,2,n+1) \ (3,3,n+1) \ \cdots \ (m,m,n+1) \\ (m+1,1,n+1) \ (2,2,n+1) \ (3,3,n+1) \ \cdots \ (m,m,n+1) \end{cases} & \text{if } m=r, \\ (m+1,1,n+1) \ (2,2,n+1) \ (3,3,n+1) \ \cdots \ (m,m,n+1) \\ (m,m+1,n+1) \ \cdots \ (m,r,n+1) \end{cases} & \text{if } m < r.$$

Let
$$G(t, u, v) = \sum_{n \ge 1} \sum_{\pi \in \mathcal{S}_n (1 - 2 - 34)} u^{m(\pi)} v^{r(\pi)} t^n$$
.

Unsolved RGT with three labels: 1-2-34-avoiding perms. (2)

Functional equation:

$$\left(1 - \frac{tv}{v-1}\right)G(t,u,v) = \left(tuv - \frac{t^2uv^2}{v-1}\right)G(t,u,1) - \frac{t(u-1)v + t^2uv^2}{(v-1)(uv-1)}G(t,uv,1)
+ \left(\frac{t^2u^2v^3}{(v-1)(uv-1)} - \frac{tu^2v^2}{uv-1}\right)G(t,1,1) + \frac{t^2u^2v^3}{(u-1)(v-1)}G(tv,u,1)
- \frac{t^2u^2v^3}{(u-1)(v-1)}G(tv,1,1) + tu^2v + tu^2v^2$$

Unsolved RGT with three labels: 1-2-34-avoiding perms. (2)

Functional equation:

$$\left(1 - \frac{tv}{v-1}\right)G(t,u,v) = \left(tuv - \frac{t^2uv^2}{v-1}\right)G(t,u,1) - \frac{t(u-1)v + t^2uv^2}{(v-1)(uv-1)}G(t,uv,1)
+ \left(\frac{t^2u^2v^3}{(v-1)(uv-1)} - \frac{tu^2v^2}{uv-1}\right)G(t,1,1) + \frac{t^2u^2v^3}{(u-1)(v-1)}G(tv,u,1)
- \frac{t^2u^2v^3}{(u-1)(v-1)}G(tv,1,1) + tu^2v + tu^2v^2$$

Don't know how to solve it...

Unsolved RGT with three labels: 12-34-avoiding perms.

The RGT for 12-34-avoiding permutations is described by:

$$(l,r,n) \longrightarrow \begin{cases} (l+1,1,n+1) \ (l+1,2,n+1) \ \cdots \ (l+1,r,n+1) \ (r+1,r+1,n+1) \end{cases} \\ (l+1,1,n+1) \ (l+1,2,n+1) \ \cdots \ (l+1,l,n+1) \ \cdots \ (l,n+1,n+1) \end{cases} \quad \text{if } l \ge r,$$

$$(l+1,1,n+1) \ (l+1,2,n+1) \ \cdots \ (l+1,l,n+1)$$

$$(l,l+1,n+1) \ (l,l+2,n+1) \ \cdots \ (l,r,n+1)$$

$$(l+1,n+1) \ (l+1,n+1) \ (l+1,n+1) \ \cdots \ (l+1,n+1)$$

Unsolved RGT with three labels: 12-34-avoiding perms.

The RGT for 12-34-avoiding permutations is described by:

$$(l,r,n) \longrightarrow \begin{cases} (l+1,1,n+1) \; (l+1,2,n+1) \; \cdots \; (l+1,r,n+1) \; (r+1,r+1,n+1) \\ (r+2,r+2,n+1) \; \cdots \; (l,l,n+1) \; (l,l+1,n+1) \; \cdots \; (l,n+1,n+1) \end{cases} \quad \text{if } l \geq r, \\ (l+1,1,n+1) \; (l+1,2,n+1) \; \cdots \; (l+1,l,n+1) \\ (l,l+1,n+1) \; (l,l+2,n+1) \; \cdots \; (l,r,n+1) \end{cases} \quad \text{if } l < r.$$

Let
$$H(t,u,v)=\sum_{n\geq 1}\ \sum_{\pi\in\mathcal{S}_n(12\text{--}34)}u^{l(\pi)}v^{r(\pi)}\ t^n$$
, $J(t,u,v)=$ terms of $H(t,u,v)$ with $l\geq r$.

Functional equations:

$$\left(1 - \frac{tv}{v - 1}\right) H(t, u, v) = -\frac{tv}{v - 1} H(t, uv, 1) + \left(1 - \frac{tv}{v - 1}\right) J(t, u, v) + \frac{tv^2}{v - 1} J(tv, u, 1)$$

$$\left(1 - \frac{tuv}{v - 1}\right) J(t, u, v) = \frac{tuv}{v - 1} H(t, uv, 1) - \frac{tuv}{v - 1} H(t, u, 1)$$

$$+ tuv \left(\frac{1}{uv - 1} - \frac{1}{v - 1}\right) J(t, uv, 1) - \frac{tuv}{uv - 1} J(t, 1, uv) + tu^2 v$$

Unsolved RGT with three labels: 12-34-avoiding perms.

The RGT for 12-34-avoiding permutations is described by:

$$(l,r,n) \longrightarrow \begin{cases} (l+1,1,n+1) \; (l+1,2,n+1) \; \cdots \; (l+1,r,n+1) \; (r+1,r+1,n+1) \\ (r+2,r+2,n+1) \; \cdots \; (l,l,n+1) \; (l,l+1,n+1) \; \cdots \; (l,n+1,n+1) \end{cases} \quad \text{if } l \geq r, \\ (l+1,1,n+1) \; (l+1,2,n+1) \; \cdots \; (l+1,l,n+1) \\ (l,l+1,n+1) \; (l,l+2,n+1) \; \cdots \; (l,r,n+1) \end{cases} \quad \text{if } l < r.$$

Let
$$H(t,u,v)=\sum_{n\geq 1}\ \sum_{\pi\in\mathcal{S}_n(12\text{--}34)}u^{l(\pi)}v^{r(\pi)}\ t^n$$
, $J(t,u,v)=$ terms of $H(t,u,v)$ with $l\geq r$.

Functional equations:

$$\left(1 - \frac{tv}{v - 1}\right) H(t, u, v) = -\frac{tv}{v - 1} H(t, uv, 1) + \left(1 - \frac{tv}{v - 1}\right) J(t, u, v) + \frac{tv^2}{v - 1} J(tv, u, 1)$$

$$\left(1 - \frac{tuv}{v - 1}\right) J(t, u, v) = \frac{tuv}{v - 1} H(t, uv, 1) - \frac{tuv}{v - 1} H(t, u, 1)$$

$$+ tuv \left(\frac{1}{uv - 1} - \frac{1}{v - 1}\right) J(t, uv, 1) - \frac{tuv}{uv - 1} J(t, 1, uv) + tu^2 v$$

Don't know how to solve either...

TAKK