Constrained Optimization

Prithwijit Guha Dept. of EEE, IIT Guwahati

Overview

- The Constrained Optimization Problem
- Contour Plot and Gradients
- Objective Function and Gradients
- The KKT Conditions
 - Necessary Conditions
 - Sufficient Conditions
- The Primal-Dual Formulation

Constrained Optimization: Definition & Formulation

Constrained Optimization is the Process of Maximizing or Minimizing a Desired Objective Function while Satisfying a Set of Prevailing Constraints

Minimize f(X)

Subject To

$$g_i(X) \le 0; i = 1, ... m$$
 $h_j(X) = 0; j = 1, ... l$

Objective Functions & Gradients: Linear Case

Objective Functions & Gradients (Contd.)

Minmize f(X)

Subject to

$$g(X) \leq 0$$

$$h(X) = 0$$

Observation:

 $\nabla f(X)$, $\nabla g(X)$ and $\nabla h(X)$ pass through the same point

Thus, we can write

$$\nabla f(X) + \mu \nabla g(X) + \lambda \nabla h(X) = 0$$

Karush-Kuhn-Tucker (KKT) Conditions

Minimize f(X) subject to $g_i(X) \le 0$; $i = 1 \dots m$ and $h_j(X) = 0$; $j = 1 \dots l$

Construct Lagrangian Function L

$$L(X; \boldsymbol{\mu}, \boldsymbol{\lambda}) = f(X) + \sum_{i=1}^{m} \mu_i g_i(X) + \sum_{j=1}^{l} \lambda_j h_j(X)$$

Where, $\boldsymbol{\mu} = \{ \mu_1 \dots \mu_i \dots \mu_m \}$ and $\boldsymbol{\lambda} = \{ \lambda_1 \dots \lambda_j \dots \lambda_l \}$

KKT Conditions (Contd.)

Optimality:
$$\nabla_X L(X; \boldsymbol{\mu}, \boldsymbol{\lambda}) = \nabla_X f(X) + \sum_{i=1}^m \mu_i \nabla_X g_i(X) + \sum_{j=1}^l \lambda_j \nabla_X h_j(X) = 0$$

Non – negativity: $\mu_i \ge 0$; $i = 1 \dots m$

Complementarity: $\mu_i g_i(X) = 0$; i = 1, ... m

Feasibility: $g_i(X) \le 0$; i = 1, ... m and $h_i(X) = 0$; j = 1, ... l

Necessary Conditions

KKT Conditions (Contd.)

 X^* : Optimal Solution of $\nabla_X L(X; \boldsymbol{\mu}, \boldsymbol{\lambda}) = 0$

Hessian Matrix $\nabla_X^2 L(X^*; \mu, \lambda)$ is Positive Definite in $\mathbf{T} \subset \mathbb{R}^n$

$$T = \{y: [\nabla g_i(X^*)^T y = 0; i = 1 \dots m] \land [\nabla h_j(X^*)^T y = 0; j = 1 \dots l]\}$$

Sufficient Condition: $y^T \nabla_X^2 L(X^*; \mu, \lambda) y > 0$; $||y||_2 \neq 0$; $y \in T$

Stronger Condition: $\mathbf{y}^T \nabla_X^2 L(X^*; \mu, \lambda) \mathbf{y} > 0$; $||\mathbf{y}||_2 \neq 0$; $\mathbf{y} \in \mathbb{R}^n$

Problem

Minimize
$$f(x_1, x_2) = 2x_1 + x_2$$

Subject To

$$h(x_1, x_2) = x_1^2 + x_2^2 - 1 = 0$$

Solution

$$L(x_1, x_2; \lambda) = 2x_1 + x_2 + \lambda(x_1^2 + x_2^2 - 1)$$

$$\frac{\partial L}{\partial x_1} = 0 \rightarrow x_1 = -\frac{1}{\lambda}$$

$$\lambda = \pm \frac{\sqrt{5}}{2}$$

$$A = \left(x_1 = -\frac{2}{\sqrt{5}}, x_2 = -\frac{1}{\sqrt{5}}\right)$$

$$A = \left(x_1 = \frac{2}{\sqrt{5}}, x_2 = \frac{1}{\sqrt{5}}\right)$$

$$A = \left(x_1 = \frac{2}{\sqrt{5}}, x_2 = \frac{1}{\sqrt{5}}\right)$$

Primal-Dual Formulation

Minimize f(X) subject to $g_i(X) \le 0$; $i = 1 \dots m$ and $h_j(X) = 0$; $j = 1 \dots l$

 X^*, μ^*, λ^* : Optimal Solution of the **Primal Problem** $\nabla_X L(X; \mu, \lambda) = 0$

 (X^*, μ^*, λ^*) is a **Saddle Point** of $L(X; \mu, \lambda)$ *i.e.* $L(X^*, \mu, \lambda) \leq L(X^*, \mu^*, \lambda^*) \leq L(X, \mu^*, \lambda^*)$

 (X^*, μ^*, λ^*) solves the following dual problem

Maximize $L = f + \mu^T g + \lambda^T h$ Subject To $[\nabla L = 0] \wedge [\mu \ge 0]$

Problem

Minimize
$$f(x_1, x_2) = (x_1 - 3)^2 + (x_2 - 3)^2$$

Subject To

$$g_1(x_1, x_2) = 2x_1 + x_2 - 2 \le 0$$

$$g_2(x_1, x_2) = -x_1 \le 0$$

$$g_3(x_1, x_2) = -x_2 \le 0$$

Solution

$$L(x_1, x_2; \boldsymbol{\mu}) = (x_1 - 3)^2 + (x_2 - 3)^2 + \mu_1(2x_1 + x_2 - 2) - \mu_2 x_1 - \mu_3 x_2$$

$$\frac{\partial L}{\partial x_1} = 0 \to x_1 = \frac{\mu_2}{2} - \mu_1 + 3$$

$$\frac{\partial L}{\partial x_2} = 0 \to x_2 = \frac{\mu_3}{2} - \frac{\mu_1}{2} + 3$$

$$Q(\boldsymbol{\mu}) = -\frac{5\mu_1^2}{4} - \frac{\mu_2^2}{4} - \frac{\mu_3^2}{4} + \frac{\mu_1 \mu_3}{2} + \mu_1 \mu_2 + 7\mu_1 - 3\mu_2 - 3\mu_3$$

Dual Function to be Maximized w. r. t. μ

Applications

- Principal Component Analysis
- Linear Discriminant Analysis
- Factor Analysis
- Regularization
- Neural Network Learning
- Support Vector Machines
- Parameter Estimation And Many Others...

Summary

- Constrained Minimization
- Visualizations
 - Contour Plots & Gradients
 - Objective Functions & Gradients
 - Feasible Regions and Best Solutions
- Karush-Kuhn-Tucker Conditions
 - Necessary Conditions
 - Sufficient Conditions
- Primal-Dual Formulations
- Applications

Thank You