Statystyka stosowana 2023/2024

Lista 3

1. Niech

$$f(x,y) = \begin{cases} c(x^2 + y^2) & \text{dla } (x,y) \in K \\ 0 & \text{poza tym,} \end{cases}$$

gdzie $K = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, x - 1 \le y \le 1 - x\}.$

- a) Wyznaczyć stałą c tak, aby funkcja f(x,y) była gęstością pewnej zmiennej losowej (X,Y).
- **b)** Obliczyć $P(X^2 + Y^2 \le 0.5)$.
- 2. Zmienna losowa (X,Y) ma rozkład jednostajny na zbiorze $K=\{(x,y): (x,y)\in [0,1]\times [0,1],\ y>x+0.5\ lub\ x-0.5\leqslant y\leqslant x\}.$
 - a) Sprawdzić, czy rozkłady brzegowe są jednostajne na odcinku [0,1].
 - b) Czy zmienne losowe X i Y są niezależne?
- 3. Dwuwymiarowa zmienna losowa (X,Y) ma rozkład dany w tabeli

$X \mid Y$	1	2	3		
0	0.3	0.2	0.1		
1	0.2	0.1	0.1		

- a) Sprawdzić czy X i Y są niezależne.
- b) Obliczyć EZ i VarZ, gdzie Z = 2X + Y.
- 4. Gęstość dwuwymiarowej zmiennej losowej (X,Y) dana jest wzorem

$$f(x,y) = \begin{cases} e^{-x-y} & \text{dla } x > 0, \ y > 0 \\ 0 & \text{poza tym,} \end{cases}$$

Obliczyć $P(1 < X < 2, \ 1 < Y < 2)$. Znaleźć wartość oczekiwaną i wariancję zmiennej losowej Z = 2X - 3Y.

5. Niech

$$f(x,y) = \begin{cases} Ae^{-(\alpha x + \beta y)} & \text{dla } x > 0, \ y > 0 \\ 0 & \text{poza tym}, \end{cases}$$

Czy istnieje stała A taka, że f jest gęstością wektora losowego (X,Y)? Jeśli tak, to znaleźć rozkłady brzegowe i warunkowe.

6. *Wysymuluj próbę dla dwuwymiarowego rozkładu normalnego o danym wektorze średnich μ i macierzy kowariancji Σ o długości 1000. Wyznacz dwuwymiarową dystrybuantę empiryczną i porównaj ją z dystrybuantą teoretyczną dwywymiarowego rozkładu normalnego z podanymi parametrami.

- 7. Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych o gęstościach $f_X(x)=2e^{-2x}$ i $f_Y(y)=e^{-y}$. Niech $Z=\max(X,Y)$ i $W=\min(X,Y)$ znajdź rozkłady brzegowe $F_Z(z)$ i $F_W(w)$.
- 8. Współczynnik korelacji kolejnościowej (rangowej) Spearmana służy do opisu siły korelacji dwóch cech, zwłaszcza gdy mają one rodzaj jakościowy i istnieje możliwość uporządkowania obserwacji empirycznych w określonej kolejności. Współczynnik korelacji Spearmana obliczamy według wzoru

$$r_S = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)},$$

gdzie d_i oznaczają różnice między rangami odpowiadających sobie wartości cechy x_i i cechy $y_i, (i=1,2,...,n)$.

Ustal natężenie współzależności między opiniami o nauczycielach dyrektora szkoły i wizytatora. Opinie zostały wydane na podstawie kontroli pracy zawodowej i kwalifikacji nauczycieli. Wynik kontroli ujęto w punktach.

	A	В	С	D	Е	F	G	Н	I	J	K
punkty od dyrektora	41	27	35	33	25	47	38	53	43	35	36
punkty od wizytatora	38	24	34	29	27	47	43	52	39	31	29

Punktowym ocenom nauczycieli przypisujemy rangi przy czym największej liczbie punktów przypisujemy rangę 1.

- 9. W wyniku ankiety przeprowadzonej wśród czytelników dokonaj oceny podobieństwa preferencji dwóch respondentów:
 - a) X- praktyk (najmniejszy udział treści teoretycznych tj. 15 procent)
 - b) Y-teoretyk (największy udział treści teoretycznych w publikajci tj. 60 procent)

Wymienieni respondenci przypisali rangi poszczególnym rodzajom dodatków do publikacji w następujący sposób

Rodzaj e-booka	Rangi X	Rangi Y
Chi-kwadrat	5	6
Szeregi czasowe	4	2
Rachunek prawdopodobieństwa	6	3
Analiza danych	2	5
Przykłady w Excelu	1	1
Animacje Power Point	3	4