7. A microcontroller in deep

AVR Architecture: Family

- 8-bits RISC Architecture.
- Harvard architecture → Flash + (SRAM + EEPROM)
- Execution model Register-Register

7.1. AVR Architecture (ATMega328)

AVR (ATMega328)

ATmegaX8PA

Dispositivos	Flash (Programa)	EEPROM (datos)	SRAM (datos)	Tamaño vector interrupción
ATmega48PA	4K Bytes	256 Bytes	512 Bytes	1 instrucción
ATmega88PA	8K Bytes	512 Bytes	1K Bytes	1 instrucción
ATmega168PA	16K Bytes	512 Bytes	1K Bytes	2 instrucciones
ATmega328P	32K Bytes	1K Bytes	2K Bytes	2 instrucciones

AVR PAckage (ATMega328)

Two different packages of the ATmega328. Images courtesy of Sparkfun and Wikimedia.

AVR Features (ATMega328)

- /4/8/16/32KBytes of In-System Programmable Flash
- 256/512/512/1Kbytes EEPROM
- 512/1K/1K/2Kbytes SRAM
- 32 general purpose 8-bit registers
- Three flexible Timer/Counters with compare modes
- Internal and external interrupt
- Serial programmable USART
- A byte-oriented 2-wire Serial Interface (TWI) → I2C
- SPI serial port
- 6-channel 10-bit ADC
- A programmable Watchdog Timer with internal Oscillator
- Five software selectable power saving modes

AVR Features (ATMega328)

- Supply voltages \rightarrow 1.8 to 5.5 V.
- 5 power saving modes (Software)
- Clock speeds → 0 to 20 MHz (@4.5V)
- AVRs feature an on-chip oscillator and external clock options
- Some AVRs also have a system clock prescaler >> by up to 1024.
- Cycle-clocks per instruction:
 - With registers \rightarrow 1 cycle
 - Memory, branch \rightarrow 2 cycle

AVR Architecture: Core

AVR Architecture

- Harvard architecture (Modified)
- The program memory is In-System Reprogrammable Flash memory.
- Program Flash memory space is divided in two sections:
 - Boot Program
 - Application Program
- Instructions → 16-bit or 32-bit
- Program flow is sequential

 conditional and unconditional jump and call instructions.

AVR Architecture: Register-file

- 32 x 8-bit general purpose
- Single clock cycle access time >
 single-cycle ALU operation
- In a typical ALU operation, two operands are output from the Register File, the operation is executed, and the result is stored back in the Register File – in one clock cycle.

7 0	Dirección
R0	0x00
R1	0x01
R2	0x02
R14	0x0E
R15	0x0F
R16	0x10
R17	0x11
R26 (XL)	0x1A
R27 (XH)	0x1B
R28 (YL)	0x1C
R29 (YH)	0x1D
R30 (ZL)	0x1E
R31 (ZH)	0x1F

- 6 of the 32 registers → 3 pointers for Data Space addressing
- One of the these → for look up tables in Flash program memory.

AVR Architecture: More features

- Stack → data SRAM
- The Stack Pointer (SP) \rightarrow I/O space (RAM).
- Data SRAM → five addressing modes
- Global Interrupt Enable (I) bit in the Status Register.
- One Interrupt Vector for each interrupt.
- Interrupt Priority

 The lower the Interrupt Vector address, the higher the priority.

AVR Architecture: More features

- ALU

 arithmetic and logic operations between registers or between a constant and a register.
- Single register operations can also be executed in the ALU.
- The ALU operations are divided into three main categories – arithmetic, logical, and bit-functions.
- Some implementations → multiplier
- Status Register updated after ALU

AVR Architecture: Instruction Execution Timing

I/O Ports

AVR Memory