Recursive structure of primes reloaded. Now with mod 2, too.*

Carolin Zöbelein[†]

March 29, 2016

Abstract.

Contents

1	Introduction	1
2	Road map	1
3	What we already know	2
4	Intersection	3
5	Solution of intersection equation	3
6		4

1 Introduction

In this working document I will make a revision of my work [1]. Now for mod 2 and not mod 6 which makes all so easy. Sometimes I'm so stupid. wtf!

2 Road map

Since the main steps will be the same like in [1] I will only make a few comments. If you need more information please read the arXiv paper at first.

^{*}Keywords: integer divisible numbers, prime numbers, recursive structure, mod 2; License: CC BY-ND 3.0 DE (see also LICENSE), No warranty for mistakes!

 $^{^\}dagger E\text{-}mail\ address:$ contact@carolin-zoebelein.de, $PGP\ Fingerprint:$ D4A7 35E8 D47F 801F 2CF6 2BA7 927A FD3C DE47 E13B; URL: http://www.carolin-zoebelein.de

To future comments: Yes, I know it's no 'professional' math, but why I should use abstract math if it's also possible to explain issues with easy tools. This here is to be only a first impression. Not the solution of all! After this you can construct your buildings, too!

Personal road map for this document:

- 1. Formulation of the important points for mod 2.
- 2. Consequences from this.
- 3. ...

3 What we already know ...

Short repetition of the properties of primes which we already know and we will use for our work.

- 1. Q: What are prime numbers \mathbb{P} ?
 - A: A prime number $p \in \mathbb{P}$ is a integer number lager than one which has no positive integer divisors apart from 1 and itself.
 - \Rightarrow More mathematical: $p \in \mathbb{Z}$: $\gcd(n,p) = 1, \forall n \neq p \in \mathbb{N}$
- 2. The set of primes: $\mathbb{P} := \{2, 3, 5, 7, 11, 13, \dots\}$
- 3. The number 2 is the only even prime.

In the following work we will always ignore the prime 2!

 \Rightarrow Hence, for all primes $p \in \mathbb{P} \setminus \{2\}$ we know that we are able to write them as $p_n := 2n + 1, n \in \mathbb{N}_0$. Q: For which n we receive primes?

Now if we look at the set of all odd integer divisible numbers $p_{nn'} \in \mathbb{N}$. We recognise

$$p_{nn\prime} := (2n+1)(2n\prime+1)$$

$$= 4nn\prime + 2n + 2n\prime + 1$$

$$= 2\left(\underbrace{2nn\prime + n + n\prime}_{=:N_{n,n\prime}}\right) + 1,$$
(1)

 $\forall n, n' \in \mathbb{N}_0$. Since the case $a \cdot 1 = 1 \cdot a = a$ isn't interesting for use we will change our domain of definition from $n, n' \in \mathbb{N}_0$ to $n, n' \in \mathbb{N}$.

Additionally we will see that it make sense to expand p_n to p_z with the set \mathbb{Z} . In this case we will write

$$p_{z,z'} := (2z+1)(2z'+1)$$

$$= 4zz' + 2z + 2z' + 1$$

$$= 2\left(\underbrace{2zz' + z + z'}_{=:Z_{z,z'}}\right) + 1,$$
(2)

 $\forall z, z' \in \mathbb{Z}$. Here we are also not interested in the cases $a \cdot 1 = 1 \cdot a = a$ and $a \cdot (-1) = (-1) \cdot a = -a$. So we use $z, z' \in \mathbb{Z} \setminus \{-1, 0\}$.

4 Intersection

Ok. Now we have an equation to describe all integer divisible numbers of \mathbb{Z} . So we also write

$$Z_{z,z'} = 2zz' + z + z'$$

$$= (2z+1)z' + z$$

$$= (2z'+1)z + z'.$$
(3)

For example, the second line can be interpreted as the equation which gives us all $Z_{z,z'}$ which belongs to numbers which are the product of (2z+1)V, $V \in \mathbb{Z}$.

We use this to write the following for all numbers which are not integer divisible by (2z+1):

$$Z_{z,z'} = (2z+1)z' + z + \chi_z,$$
 (4)

 $\chi_z \in [1,(2z+1)-1]$. For the intersection of two of this equations follows

$$0 = Z_{z_{i},z_{i}'} - Z_{z_{j},z_{j}'}$$

$$= (2z_{i} + 1) z_{i}' - (2z_{j} + 1) z_{j}' + \underbrace{z_{i} + \chi_{z_{i}}}_{=:\kappa_{z_{i}}} - \underbrace{\left(\underbrace{z_{j} + \chi_{z_{j}}}_{=:\kappa_{z_{j}}}\right)}_{=:\kappa_{z_{j}}}$$

$$= (2z_{i} + 1) z_{i}' - (2z_{j} + 1) z_{j}' + \kappa_{z_{i}} - \kappa_{z_{j}},$$
(5)

 $\forall i, j \in \mathbb{N} : i \neq j$.

5 Solution of intersection equation

Assume $|(2z_i + 1)| < |(2z_j + 1)|$ and $(2z_i + 1) \perp (2z_j + 1)$. Be $z_j = z_i + \Delta z_{i,j} : \Delta z_{i,j} \in \mathbb{N}$ we can write

$$0 = (2z_{i} + 1) z_{i} \prime - (2z_{j} + 1) z_{j} \prime + \kappa_{(z_{i}, \chi_{z_{i}})} - \kappa_{(z_{j}, \chi_{z_{j}})}$$

$$= (2z_{i} + 1) (z_{i} \prime - z_{j} \prime) - 2\Delta z_{j} + \chi_{z_{i}} - \chi_{z_{j}},$$
(6)

with $\chi_{z_i} \in [1, 2z_i]$ and $\chi_{z_j} \in [1, 2(z_i + \Delta z_{i,j})]$. Like in [1] we receive for z_j

$$z_{j} I^{\Delta z_{i,j}} = (2z_{i} + 1) Y_{j \circ i} - (\chi_{z_{i}} - \chi_{z_{j}}) z_{i} \prod_{k=2}^{\Delta z_{i,j}} \left(1 + \frac{2}{k} z_{i}\right)$$
 (7)

and in the same way for $z_i = z_j - \Delta z_{i,j}$ we receive for z_i'

$$z_{i} I^{\Delta z_{i,j}} = (2z_{j} + 1) Y_{j \circ i} - (\chi_{z_{i}} - \chi_{z_{j}}) z_{j} \prod_{k=2}^{\Delta z_{i,j}} \left(1 + \frac{2}{k} z_{j}\right).$$
 (8)

Finally we can write

$$\prod_{k=2}^{\Delta z_{i,j}} \left(1 + \frac{2}{k} z_{i,j} \right) = \frac{\Gamma\left(2z_{i,j} + \Delta z_{i,j} + 1\right)}{\Gamma\left(\Delta z_{i,j} + 1\right)\Gamma\left(2z_{i,j} + 2\right)}$$
(9)

6 ...

Until now all was a repetition of [1]. Question: How does the way with 2 make all easier now?

References

[1] ZÖBELEIN, C.: The recursive structure of the distribution of primes. In: ArXiv e-prints, 1411.2824 [math.GM] (2014), November