Pattern Recognition

Probability Distributions Revision

Content

Probability Distributions

Bernoulli Distribution

Multinomial Distribution

- A probability distribution gives the possibility of each outcome of a random experiment or event.
 - o Probability is a measure of uncertainty of various phenomena.

- Probabilities help us make predictions.
- Given a probabilistic output, we can always compute our "best guess" as to the "true label"
 - The most probable class label
- Google has a system known as SmartASS (ad selection system) that predicts
 the probability you will click on an ad based on your search history and other
 user and ad-specific features. This probability is known as the click-through
 rate or CTR and can be used to maximize expected profit.

 You can find common probability distributions and their applications at https://en.wikipedia.org/wiki/Probability distribution

https://miro.medium.com/max/700 1*cr9 -ts4vqVBOttf-EVuQQ.png

Content

Content

Probability Distributions

Bernoulli Distribution

Multinomial Distribution

• Bernoulli distribution is a discrete probability distribution where variables can have value 0 or 1.

$$Bern(x|\mu) = \mu^{x}(1-\mu)^{1-x}$$

- $\circ x$ is the random variable
- $\circ \mu$ is the probability that x = 1
- The output depends on μ .

There are two ways to compute μ :

- 1. Maximum likelihood estimation: $\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$
- 2. Using Beta distribution as a prior distribution:

$$Beta(\mu|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1}$$

- $\circ \Gamma(x)$ is a gamma function.
- \circ a is the number of objects with x=1.
- \circ *b* is the number of objects with x=0.

• To use Beta as a prior for computing μ in the Bernoulli distribution, we get the model as

$$p(x = 1|D) = \frac{m+a}{m+a+l+b}$$

- $\circ m$ is the number of objects = 1
- $\circ l = \text{number of elements in the dataset} m$

• Example 1: using maximum likelihood estimation

Email	Spam?
email 1	1
email 2	1
email 3	1
email 4	1
email 5	1
email 6	0
email 7	0
email 8	0
email 9	0
email 10	1

$$Bern(x|\mu) = \mu^{x}(1-\mu)^{1-x}$$

1. Compute μ :

$$\frac{1+1+1+1+1+0+0+0+1}{10} = 0.6$$

2.
$$P(x = 1 | \mu = 0.6) = 0.6^{1}(1 - 0.6)^{1-1} = 0.6$$

3.
$$P(x = 0 | \mu = 0.6) = 0.6^{0}(1 - 0.6)^{1-0} = 0.4$$

Example 2: using maximum likelihood estimation

Email	Spam?
email 1	1
email 2	1
email 3	1
email 4	1
email 5	1
email 6	1
email 7	1
email 8	1
email 9	1
email 10	1

$$Bern(x|\mu) = \mu^x (1-\mu)^{1-x}$$

1. Compute μ : $\frac{1+1+1+1+1+1+1+1+1+1}{10} = 1$ 2. $P(x = 1|\mu = 1) = 1^{1}(1-1)^{1-1} = 1$ 3. $P(x = 0|\mu = 1) = 1^{0}(1-1)^{1-0} = 0$

Example 3: using Beta prior

Email	Spam?
email 1	1
email 2	1
email 3	1
email 4	1
email 5	1
email 6	1
email 7	1
email 8	1
email 9	1
email 10	1

Bern
$$(x|\mu) = \mu^x (1-\mu)^{1-x}$$

$$p(x = 1|D) = \frac{m+a}{m+a+l+b}$$

1. Compute
$$\mu$$
 (suppose $a = 2, b = 3$):
$$\frac{10 + 2}{10 + 2 + 0 + 3} = 0.8$$
2. $P(x = 1 | \mu = 0.8) = 0.8^{1}(1 - 0.8)^{1-1} = 0.8$
3. $P(x = 0 | \mu = 0.8) = 0.8^{0}(1 - 0.8)^{1-0} = 0.2$

Content

Content

Probability Distributions

Bernoulli Distribution

Multinomial Distribution

• Given the vector x and the vector μ , the distribution of x is given by

$$p(\boldsymbol{x}|\boldsymbol{\mu}) = \prod_{k=1}^{K} \mu_k^{x_k}$$

- $\circ \mu = (\mu_1, \mu_2, ... \mu_k)^T$ and the parameter μ_k is the probability that x=1.
- The output depends on μ

There are two ways to compute μ

1. Using maximum likelihood estimation

$$\mu_k^{ML} = \frac{m_k}{N}$$

2. Using Dirichlet distribution as a prior

$$Dir(\boldsymbol{\mu}|\boldsymbol{\alpha}) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1), \dots \Gamma(\alpha_K)} \prod_{k=1}^K \mu_k^{\alpha_k - 1}$$

 $\circ \alpha$ are the parameters that control the distributions.

$$0 \alpha_0 = \alpha_1 + \alpha_2 + \cdots + \alpha_k$$

To use Dirichlet distribution as a prior inside multinomial distribution, we get the new lpha parameters as follows

$$\alpha_k = \alpha_k + m_k$$

Where the new α s can be normalized and used in the multinomial model.

Example 4: using maximum likelihood estimation

Day	Cloudy	Rainy	Sunny
day 1	1	0	0
day 2	0	1	0
day 3	1	0	0
day 4	0	0	1
day 5	0	1	0
day 6	1	0	0
day 7	0	0	1
day 8	0	0	1
day 9	0	1	0
Day 10	0	0	1

1. Compute
$$\mu_1$$
:
$$\frac{1+0+1+0+0+1+0+0+0}{10} = 0.3$$

2. Compute
$$\mu_2$$
:
$$\frac{0+1+0+0+1+0+0+1+0}{10} = 0.3$$

3. Compute
$$\mu_3$$
:
$$\frac{0+0+0+1+0+0+1+1+0+1}{10} = 0.4$$

$$p(\boldsymbol{x}|\boldsymbol{\mu}) = \prod_{k=1}^{K} \mu_k^{x_k}$$

- 1. $P(cloudy|[0.3, 0.3, 0.4]) = 0.3^{1} * 0.3^{0} * 0.4^{0} = 0.3$
- 2. $P(rainy|[0.3, 0.3, 0.4]) = 0.3^{0} * 0.3^{1} * 0.4^{0} = 0.3$
- 3. $P(sunny|[0.3, 0.3, 0.4]) = 0.3^{\circ} * 0.3^{\circ} * 0.4^{\circ} = 0.4^{\circ}$

Example 5: using maximum likelihood estimation

Day	Cloudy	Rainy	Sunny
day 1	0	0	1
day 2	0	0	1
day 3	0	0	1
day 4	0	0	1
day 5	0	0	1
day 6	0	0	1
day 7	0	0	1
day 8	0	0	1
day 9	0	0	1
Day 10	0	0	1

1. Compute
$$\mu_1$$
:
$$\frac{0+0+0+0+0+0+0+0+0+0}{10} = 0$$

2. Compute
$$\mu_2$$
:
$$\frac{0+0+0+0+0+0+0+0+0+0}{10} = \frac{1}{10}$$

3. Compute
$$\mu_3$$
:
$$\frac{1+1+1+1+1+1+1+1+1}{10} = 1$$

1.
$$P(cloudy|[0,0,1]) = 0^1 * 0^0 * 1^0 = 0$$

2.
$$P(rainy|[0,0,1]) = 0^0 * 0^1 * 1^0 = 0$$

3.
$$P(sunny|[0,0,1]) = 0^0 * 0^0 * 1^1 = 1$$

$$p(\boldsymbol{x}|\boldsymbol{\mu}) = \prod_{k=1}^{K} \mu_k^{x_k}$$

Example 6: using Dirichlet distribution as a prior

Day	Cloudy	Rainy	Sunny
day 1	0	0	1
day 2	0	0	1
day 3	0	0	1
day 4	0	0	1
day 5	0	0	1
day 6	0	0	1
day 7	0	0	1
day 8	0	0	1
day 9	0	0	1
Day 10	0	0	1

1.
$$\mu_1 = 0$$

2.
$$\mu_2 = 0$$

3.
$$\mu_3 = 1$$

$$p(\boldsymbol{x}|\boldsymbol{\mu}) = \prod_{k=1}^K \mu_k^{x_k}$$

$$\alpha_k = \alpha_k + m_k$$

1. Suppose
$$\alpha_1 = 2$$
, $\alpha_2 = 3$, $\alpha_3 = 5$.

2. we have
$$m_1 = 0$$
, $m_2 = 0$, $m_3 = 10$

3.
$$\alpha'_1 = 2 + 0 = 2$$

4.
$$\alpha'_2 = 3 + 0 = 3$$

5.
$$\alpha_3 = 5 + 10 = 15$$

https://courses.cs.duke.edu/fall14/compsci527/notes/Dirichlet.pdf

https://www.cs.ubc.ca/~nando/340-2012/lectures/l19.pdf

https://stephentu.github.io/writeups/dirichlet-conjugate-prior.pdf

https://leimao.github.io/blog/Introduction-to-Dirichlet-Distribution/#Binomial-Distribution

Machine learning – a Probabilistic Perspective