Calculating a Brunerie Number

Axel Ljungström

October 20, 2022

• In his PhD thesis, Brunerie contructed a number n s.t. $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/n\mathbb{Z}$

- In his PhD thesis, Brunerie contructed a number n s.t. $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/n\mathbb{Z}$
- He then proved that $n=\pm 2$, thereby also showing that $\pi_4(\mathbb{S}^3)\cong \mathbb{Z}/2\mathbb{Z}$

- In his PhD thesis, Brunerie contructed a number n s.t. $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/n\mathbb{Z}$
- He then proved that $n=\pm 2$, thereby also showing that $\pi_4(\mathbb{S}^3)\cong \mathbb{Z}/2\mathbb{Z}$
- Proving that $n=\pm 2$ should not be necessary everything is constructive, so we should be able to simply compute n by plugging it into our favourite proof assistant

- In his PhD thesis, Brunerie contructed a number n s.t. $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/n\mathbb{Z}$
- He then proved that $n=\pm 2$, thereby also showing that $\pi_4(\mathbb{S}^3)\cong \mathbb{Z}/2\mathbb{Z}$
- Proving that $n=\pm 2$ should not be necessary everything is constructive, so we should be able to simply compute n by plugging it into our favourite proof assistant
- Not that easy...

- In his PhD thesis, Brunerie contructed a number n s.t. $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/n\mathbb{Z}$
- He then proved that $n=\pm 2$, thereby also showing that $\pi_4(\mathbb{S}^3)\cong \mathbb{Z}/2\mathbb{Z}$
- Proving that $n = \pm 2$ should not be necessary everything is constructive, so we should be able to simply compute n by plugging it into our favourite proof assistant
- Not that easy...
- But n is still constructively defined. Maybe if we unfold its definition enough, we should be able to deduce $n=\pm 2$ by simply staring at it.

- In his PhD thesis, Brunerie contructed a number n s.t. $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/n\mathbb{Z}$
- He then proved that $n=\pm 2$, thereby also showing that $\pi_4(\mathbb{S}^3)\cong \mathbb{Z}/2\mathbb{Z}$
- Proving that $n = \pm 2$ should not be necessary everything is constructive, so we should be able to simply compute n by plugging it into our favourite proof assistant
- Not that easy...
- But n is still constructively defined. Maybe if we unfold its definition enough, we should be able to deduce $n = \pm 2$ by simply staring at it.
- In this talk, I will present such a proof

Suspensions

Definition 1 (Suspensions)

The suspension of a type A, denoted ΣA , is given by the following HIT

- north, south : ΣA
- merid : $A \rightarrow \text{north} = \text{south}$

Spheres

Definition 2 (The circle)

We define the circle \mathbb{S}^1 by the HIT

- base : \mathbb{S}^1
- loop : base = base

Definition 3 (Spheres)

For $n \ge 1$, we define the *n*-sphere by (n-1)-fold suspension of \mathbb{S}^1 , i.e.

$$\mathbb{S}^n:=\Sigma^{n-1}\mathbb{S}^1$$

Suspension maps

For a pointed type A, there is a canonical map

$$\sigma: A \to \underbrace{\Omega(\Sigma A)}_{:=(\mathsf{north} = \mathsf{north})}$$

given by

$$\sigma(a) = \operatorname{merid}(a) \cdot \operatorname{merid}(*_{\mathcal{A}})^{-1}$$

In particular, when $A = \mathbb{S}^n$, we get

$$\sigma: \mathbb{S}^n \to \Omega \mathbb{S}^{n+1}$$

Definition 4 (Joins)

The join of two types A and B, denoted A * B, is given by

- inl : $A \rightarrow A * B$
- inr : $B \rightarrow A * B$
- push : $((a, b) : A \times B) \rightarrow \operatorname{inl}(a) = \operatorname{inr}(b)$

$$\begin{array}{ccc}
A \times B & \longrightarrow & B \\
\downarrow & & \downarrow & \downarrow & \downarrow \\
A & \longrightarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
A & \longrightarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
A & \longrightarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\end{array}$$

Joins

• There is a very useful way to construct maps $A*B \to C$ out of maps $A \times B \to \Omega C$.

Definition 5

Let $f: A \times B \to \Omega C$. Define $\iota_f: A * B \to C$ by

$$\iota_f(\mathsf{inl}(a)) = \star_C$$
 $\iota_f(\mathsf{inr}(b)) = \star_C$
 $\mathsf{ap}_{\iota_f}(\mathsf{push}(a,b)) = f(a,b)$

• We note that functions $f, g: A \times B \to \Omega C$ can be 'composed':

$$(f \cdot g)(a,b) = f(a,b) \cdot g(a,b)$$

• Q: is there a way of saying that ι is a 'homomorphism' i.e. $\iota_{f \cdot g} = \iota_f + \iota_g$?

An ad hoc construction

- A: yes, if A and B are reasonable.
- Recall, $\pi_n(A) := \|\mathbb{S}^n \to_* A\|_0$

Definition 6

For a pointed type A, define $\pi_{n+m+1}^*(A) = \|\mathbb{S}^n * \mathbb{S}^m \to_* A\|_0$

An ad hoc construction

- A: yes, if A and B are reasonable.
- Recall, $\pi_n(A) := \|\mathbb{S}^n \to_* A\|_0$

Definition 6

For a pointed type A, define $\pi_{n+m+1}^*(A) = \|\mathbb{S}^n * \mathbb{S}^m \to_* A\|_0$

Theorem 7

There is a group structure on $\pi_{n+m+1}^*(A)$ such that

- $\pi_{n+m+1}^*(A) \cong \pi_{n+m+1}(A)$
- For $f, g : \mathbb{S}^n \times \mathbb{S}^m \to \Omega A$, we have $\iota_{f \cdot g} = \iota_f + \iota_g$

An ad hoc construction

- A: yes, if A and B are reasonable.
- Recall, $\pi_n(A) := \|\mathbb{S}^n \to_* A\|_0$

Definition 6

For a pointed type A, define $\pi_{n+m+1}^*(A) = \|\mathbb{S}^n * \mathbb{S}^m \to_* A\|_0$

Theorem 7

There is a group structure on $\pi_{n+m+1}^*(A)$ such that

- $\pi_{n+m+1}^*(A) \cong \pi_{n+m+1}(A)$
- For $f, g : \mathbb{S}^n \times \mathbb{S}^m \to \Omega A$, we have $\iota_{f \cdot g} = \iota_f + \iota_g$
- Disclaimer: Formalisation only for n = m = 1 and A
 1-connected. (only case we'll use)

$$\mathbb{S}^1 * \mathbb{S}^1 \simeq \mathbb{S}^3$$

- Here is a particularly important example of the ι -construction.
- There is a canonical map \smile : $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{S}^2$.
- Composing it with σ gives us $(\sigma \circ \smile) : \mathbb{S}^1 \times \mathbb{S}^1 \to \Omega \mathbb{S}^3$
- Define $\mathcal{F} = \iota_{(\sigma \circ \smile)} : \mathbb{S}^1 * \mathbb{S}^1 \to \mathbb{S}^3$

Proposition 8

 ${\mathcal F}$ is an equivalence, and $(_\circ {\mathcal F}^{-1}): \pi_3^*(A) \cong \pi_3(A)$

The Hopf Map and the Brunerie Map

• Define $h, \beta: \mathbb{S}^1 \times \mathbb{S}^1 \to \Omega \mathbb{S}^2$ by

$$h(x, y) = \sigma(y - x)$$

$$\beta(x, y) = \sigma(y) \cdot \sigma(x)$$

ullet Above, the subtraction comes from the group structure on \mathbb{S}^1

The Hopf Map and the Brunerie Map

• Define $h, \beta: \mathbb{S}^1 \times \mathbb{S}^1 \to \Omega \mathbb{S}^2$ by

$$h(x, y) = \sigma(y - x)$$

$$\beta(x, y) = \sigma(y) \cdot \sigma(x)$$

- ullet Above, the subtraction comes from the group structure on \mathbb{S}^1
- The induced maps $\iota_h, \iota_\beta : \mathbb{S}^1 * \mathbb{S}^1 \to \mathbb{S}^2$ are called the *Hopf map* and the *Brunerie Map* respectively.

• By precomposition with $\mathcal{F}^{-1}: \mathbb{S}^3 \to \mathbb{S}^2$, we get two corresponding elements $\hat{\iota_h}, \hat{\iota_\beta}: \pi_3(\mathbb{S}^2)$.

- By precomposition with $\mathcal{F}^{-1}: \mathbb{S}^3 \to \mathbb{S}^2$, we get two corresponding elements $\hat{\iota_h}, \hat{\iota_h}: \pi_3(\mathbb{S}^2)$.
- Fact: $\pi_3(\mathbb{S}^2) \cong \mathbb{Z}$ and is generated by $\hat{\iota}_h$.

- By precomposition with $\mathcal{F}^{-1}: \mathbb{S}^3 \to \mathbb{S}^2$, we get two corresponding elements $\hat{\iota_h}, \hat{\iota_h}: \pi_3(\mathbb{S}^2)$.
- Fact: $\pi_3(\mathbb{S}^2) \cong \mathbb{Z}$ and is generated by $\hat{\iota}_h$.

Theorem 9 (Brunerie 16)

 $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/n\mathbb{Z}$ where n is the integer s.t.

$$n \cdot \hat{\iota_h} = \hat{\iota_\beta}$$

- By precomposition with $\mathcal{F}^{-1}: \mathbb{S}^3 \to \mathbb{S}^2$, we get two corresponding elements $\hat{\iota_h}, \hat{\iota_h}: \pi_3(\mathbb{S}^2)$.
- Fact: $\pi_3(\mathbb{S}^2) \cong \mathbb{Z}$ and is generated by $\hat{\iota}_h$.

Theorem 9 (Brunerie 16)

 $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/n\mathbb{Z}$ where n is the integer s.t.

$$\mathbf{n} \cdot \hat{\iota_h} = \hat{\iota_\beta}$$

• We will attempt to solve this equation directly. I claim that n = -2 is the solution.

Proof sketch

• In order to show that n = -2, we would like to show that

$$\hat{\iota_h} + \hat{\iota_h} = -\hat{\iota_\beta}$$

i.e.

$$(\iota_h \circ \mathcal{F}^{-1}) + (\iota_h \circ \mathcal{F}^{-1}) = -(\iota_\beta \circ \mathcal{F}^{-1})$$

• With our π_3^* construction, the above can be rewritten to something much nicer:

$$(\iota_h + \iota_h) \circ \mathcal{F}^{-1} = (-\iota_\beta) \circ \mathcal{F}^{-1}$$

Proof sketch

• Idea for the rest of the proof: keep rewriting the above equation by passing it through the sequence of isomorphisms

$$\pi_3(\mathbb{S}^2) \xrightarrow{-\circ \mathcal{F}} \pi_3^*(\mathbb{S}^2) \xrightarrow{(\iota_h \circ _)^{-1}} \pi_3^*(\mathbb{S}^1 * \mathbb{S}^1) \xrightarrow{\mathcal{F} \circ _} \pi_3^*(\mathbb{S}^3)$$

• When we reach $\pi_3^*(\mathbb{S}^2)$, the equation will have turned into something cute!

Step 1

$$\pi_{3}(\mathbb{S}^{2}) \xrightarrow{-\circ \mathcal{F}} \pi_{3}^{*}(\mathbb{S}^{2}) \xrightarrow{(\iota_{h}\circ_{-})^{-1}} \pi_{3}^{*}(\mathbb{S}^{1} * \mathbb{S}^{1}) \xrightarrow{\mathcal{F}\circ_{-}} \pi_{3}^{*}(\mathbb{S}^{3})$$

$$\downarrow^{\text{YOU}}$$
ARE
HERE

Applying the highlighted isomorphism above reduces our old equation (in $\pi_3(\mathbb{S}^2)$)

$$(\iota_h + \iota_h) \circ \mathcal{F}^{-1} = (-\iota_\beta) \circ \mathcal{F}^{-1}$$

to the following equation in $\pi_3^*(\mathbb{S}^2)$

$$\iota_{h} + \iota_{h} = -\iota_{\beta}$$

Step 2

$$\pi_3(\mathbb{S}^2) \xrightarrow{\circ \mathcal{F}} \pi_3^*(\mathbb{S}^2) \xrightarrow{(\iota_h \circ _)^{-1}} \pi_3^*(\mathbb{S}^1 * \mathbb{S}^1) \xrightarrow{\mathcal{F} \circ} \pi_3^*(\mathbb{S}^3)$$

- We would like to rewrite our equation to an equation in $\pi_3^*(\mathbb{S}^1 * \mathbb{S}^1)$ via the highlighted isomorphism.
- To this end, we construct two maps in $f,g:\mathbb{S}^1*\mathbb{S}^1\to\mathbb{S}^1*\mathbb{S}^1$ s.t.

$$\iota_h \circ f = \iota_h + \iota_h$$
$$\iota_h \circ g = \iota_\beta$$

- f is given by id + id
- g has a somewhat more complicated construction

Step 2

$$\pi_3(\mathbb{S}^2) \xrightarrow{\circ \mathcal{F}} \pi_3^*(\mathbb{S}^2) \xrightarrow{(\iota_h \circ _)^{-1}} \pi_3^*(\mathbb{S}^1 * \mathbb{S}^1) \xrightarrow{\mathcal{F} \circ} \pi_3^*(\mathbb{S}^3)$$

$$\xrightarrow{\text{YOU}}$$
HERE

• Define $g: \mathbb{S}^1 * \mathbb{S}^1 \to \mathbb{S}^1 * \mathbb{S}^1$ by

$$g(\mathsf{inl}(x)) = \mathsf{inr}(-x)$$

$$g(\mathsf{inr}(y)) = \mathsf{inr}(y)$$

$$\mathsf{ap}_g(\mathsf{push}(x,y)) = \mathsf{push}(y-x,-x)^{-1} \cdot \mathsf{push}(y-x,y)$$

• It is very direct to verify that $\iota_h \circ g = \iota_{eta}$

$$\pi_{3}(\mathbb{S}^{2}) \xrightarrow{-\circ \mathcal{F}} \pi_{3}^{*}(\mathbb{S}^{2}) \xrightarrow{(\iota_{h}\circ_)^{-1}} \pi_{3}^{*}(\mathbb{S}^{1} * \mathbb{S}^{1}) \xrightarrow{\mathcal{F}\circ} \pi_{3}^{*}(\mathbb{S}^{3})$$

• So we have new equation in $\pi_3^*(\mathbb{S}^1 * \mathbb{S}^1)$:

$$id + id = -g$$

- Let's apply the highlighted isomorphism to (id + id) and g.
- For the LHS: we have, trivially,

$$\mathcal{F} \circ (\mathsf{id} + \mathsf{id}) = \mathcal{F} + \mathcal{F}$$

$$\pi_3(\mathbb{S}^2) \xrightarrow{-\circ \mathcal{F}} \pi_3^*(\mathbb{S}^2) \xrightarrow{(\iota_h \circ _)^{-1}} \pi_3^*(\mathbb{S}^1 * \mathbb{S}^1) \xrightarrow{\mathcal{F} \circ} \pi_3^*(\mathbb{S}^3)$$

Proposition 10

$$\mathcal{F} \circ g = (-\mathcal{F}) + (-\mathcal{F})$$

Proof.

Using the fact that \mathcal{F} is just $\iota_{(\sigma \circ \smile)}$ and the homomorphism property of ι , the proof boils down to proving

$$-((y-x)\smile(-x))=-(x\smile y)$$
$$(y-x)\smile y=-(x\smile y)$$

which is easy.

Final step

$$\pi_3(\mathbb{S}^2) \xrightarrow{\circ \mathcal{F}} \pi_3^*(\mathbb{S}^2) \xrightarrow{(\iota_h \circ _)^{-1}} \pi_3^*(\mathbb{S}^1 * \mathbb{S}^1) \xrightarrow{\mathcal{F} \circ} \pi_3^*(\mathbb{S}^3)$$

$$\xrightarrow{\text{YOU}}$$
ARE
HERE

So we are reduced to verifying

$$\mathcal{F} + \mathcal{F} = -((-\mathcal{F}) + (-\mathcal{F}))$$

which, of course, is trivial.

• Combining all the steps, we have shown:

Theorem 11

The Brunerie number (with our definition) is -2.

• Paired together with chapters 1–3 in Brunerie's thesis, the above theorem allows us to conclude

Theorem 12

$$\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/2\mathbb{Z}$$

- Cool things about this:
 - Much shorter than Brunerie's original proof (skips chapters 4–6)
 - Does not use (co)homology

 Ignoring chapters 1–3, we also get a short, standalone proof of the following fact

Theorem 13

If $\pi_4(\mathbb{S}^3)$ is non-trivial, then $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/2\mathbb{Z}$.

• The proof only uses |n| = 2, the Freudenthal suspension theorem and Eckmann-Hilton.

 Ignoring chapters 1–3, we also get a short, standalone proof of the following fact

Theorem 13

If $\pi_4(\mathbb{S}^3)$ is non-trivial, then $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/2\mathbb{Z}$.

- The proof only uses |n| = 2, the Freudenthal suspension theorem and Eckmann-Hilton.
- In particular, an easy corollary is the following:

Theorem 14

If
$$\Sigma \mathbb{C}P^2 \not\simeq \mathbb{S}^3 \vee \mathbb{S}^5$$
, then $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/2\mathbb{Z}$.

 Ignoring chapters 1–3, we also get a short, standalone proof of the following fact

Theorem 13

If $\pi_4(\mathbb{S}^3)$ is non-trivial, then $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/2\mathbb{Z}$.

- The proof only uses |n| = 2, the Freudenthal suspension theorem and Eckmann-Hilton.
- In particular, an easy corollary is the following:

Theorem 14

If $\Sigma \mathbb{C}P^2 \not\simeq \mathbb{S}^3 \vee \mathbb{S}^5$, then $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/2\mathbb{Z}$.

• Proving $\Sigma \mathbb{C}P^2 \not\simeq \mathbb{S}^3 \vee \mathbb{S}^5$ can be done using Steenrod squares (WIP, joint with David Wärn)

 Ignoring chapters 1–3, we also get a short, standalone proof of the following fact

Theorem 13

If $\pi_4(\mathbb{S}^3)$ is non-trivial, then $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/2\mathbb{Z}$.

- The proof only uses |n| = 2, the Freudenthal suspension theorem and Eckmann-Hilton.
- In particular, an easy corollary is the following:

Theorem 14

If $\Sigma \mathbb{C}P^2 \not\simeq \mathbb{S}^3 \vee \mathbb{S}^5$, then $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/2\mathbb{Z}$.

- Proving $\Sigma \mathbb{C}P^2 \not\simeq \mathbb{S}^3 \vee \mathbb{S}^5$ can be done using Steenrod squares (WIP, joint with David Wärn)
- But a direct proof, not relying on cohomology would be amazing (suggestions?)

Future work

- Prove $\Sigma \mathbb{C}P^2 \not\simeq \mathbb{S}^3 \vee \mathbb{S}^5$ to complete the new proof of $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/2\mathbb{Z}$
- The Brunerie map is an example of a 'Whitehead product':

$$[_,_]:\pi_n(X)\times\pi_m(X)\to\pi_{n+m-1}(X)$$

These play an important role in the computation of the homotopy groups of spheres. The methods used here could possibly be mimicked for other Whitehead products too.