EUROPEAN PATENT APPLICATION

(2) Application number: 88300698.3

2 Date of filing: 27.01.88

@ int.CL4: C 08 F 4/64 C 08 F 4/76, C 08 F 10/00, C 07 F 17/00

@ Priority: 30.01.87 US 11471 21.12.87 US 133052

(4) Date of publication of application: 03.08.88 Bulletin 88/31

Designated Contracting States:
 AT BE DE ES FR GB IT LU NL SE

Applicant: EXXON CHEMICAL PATENTS INC. 1900 East Linden Avenue Linden New Jersey 07038 (US)

2 Inventor: Turner, Howard William 303 Elder Glen Webster Texas (US)

> Histky, Gregory George 15900 Spece Center Blvd., N-2 Houston Texas 77082 (US)

Representative: Dew, Melvyn John et al Exxon Chemical Limited Exxon Chemical Technology Centre P.O. Box 1 Abingdon Oxfordshire, OX136BB (GB)

Catalysts, method of preparing these catalysts, and polymerization processes wherein these catalysts are used.

 A catalyst is prepared by combining a bis(cyclopentadienyl)zirconium compound which may be represented by one of the following general formulae:

(A-Cp)MX₁X₂ (A-Cp)MX'1X'2

(A-Cp)ML; and (Cp*)(CpR)MX₁

ä

0

읎

wherein: M is e metal selected from the Group consisting of titanium (Ti), zirconium (Zr) and hafnium (Hf); (A-Cp) is either (Cp)(Cp*) or Cp-A'-Cp* and Cp and Cp* are the same or different substituted or unsubstituted cyclopentedienyl radicals; A' is a covelent bridging group containing e Group IV-A element; L is an olefin, diolefin or aryne ligand; X1 and X2 are, Independently, selected from the Group consisting of hydride radicals, hydrocarbyl radicals, substituted-hydrocarbyl radicals, organometalloid radicals and the like; X'1 and X'2 are joined and bound to the metal atom to form a metallacycle, in which the metal, X'1 and X'2 form a hydrocarbocyclic ring having from about 3 to about 20 carbon atoms; and R is e substituent on one of the cyclopentedienyl radicals which is also bound to the metal atom

with a second compound comprising a cation capable of donating e proton and a bulky, labile anion comprising a plurality of boron atoms capable of stabilizing the zirconium cation formally having a coordination number of 3 and a valence of +4 which is formed as a result of the combination, said second compound having one of the following general formulae:

[L'-H][(CX)a(BX')mX"b]c-Wherein:

L'-H is either H+, ammonium or a substituted-ammonium radical having up to 3 hydrogen atoms replaced with a hydrocarbyl or substituted-hydrocarbyl radical, a phosphonium or substituted-phosphonium radical having up to 3 hydrogen atoms replaced with a hydrocarbyl or substituted-hydrocarbyl radical and the like; B and C are, respectively, boron and carbon; X, X' and X" are radicals selected, independently, from the Group consisting of hydride radicals, halide radicale, hydrocarbyl or substituted-hydrocarbyl radicals, organo-metallold radicals and the like; a and b are integers ≥ 0; c is an Integer ≥ 1; e + B + c = an even-numbered Integer from 2 to about 8, and m is an integer ranging from 5 to about 22.

[L'-H][[[(CX₅)_a·(BX₄)_m·(X₅)_b·]o'-]₂Mn+]d-

Wherein: L'-H ie either H+, ammonium or a substituted-ammonium radical having up to 3 hydrogen etoms replaced with a hydrocarbyl or substituted-hydrocarbyl radical, a phosphonium or eubstituted-phoephonium radical having up to 3 hydrogen

atoms replaced with a hydrocarthy or substituted-hydrocarthy redical and the fixe; B.C. M. and H are, respectively, boron, carbon, a transition metal and hydrogen; $X_{\rm b}$. XL and X is rearradicals selected, independently, from the Grup consisting of hydride radicals, halide radicals, hydrocarthy or substituted-hydrocarthy radicals, organo-metaltical radicals and this sit and orcorbly radicals, organo-metaltical radicals and insight or an integer $\gtrsim 1$. If the control of the con

Making or my catalysts mus formed are stable and isolable and will be recovered and stored. The catalysts may be preformed and the control of the catalysts may be preformed formed in situ during polymerization by adding the separate components to the polymerization nearlos. The catalysts will be formed when the two components are combined at a temperature within the range from about 100°C to about 300°C. The catalysts thus prepared afford better control of polymer molecular weight and an not subject to equilibrium polymer molecular weight and an not subject to equilibrium than the molecular subject that the size is also less prycephoric than the molecular control of the catalysts.

Description

30

CATALYSTS, METHOD OF PREPARING THESE CATALYSTS, AND POLYMERIZATION PROCESSES WHEREIN THESE CATALYSTS ARE USED

This is a Continuation-in-Part of U.S. Patent Application Serial No. 011,471, filed January 30, 1987.

BACKGROUND OF THE INVENTION

This invention relates to compositions of metter useful as catalysts, to e method for preparing these catalysts, to a process wherein these compositions of matter are used as cetalysts and to polymeric products produced with these catalysts. More particularly, this invention relates to catalyst compositions, to a method of making said catalyst compositions, to e method for polymerizing olefins, diolefins and/or ecetylenically unsaturated monomers wherein these catalyete compositione are used, and to polymeno products produced with these catalyst compositions.

The use of soluble Ziegler-Natte type catalysts in the polymerization of olefins is, of course, well known in the prior art. In general, these soluble systems comprise a Group IV-B metal compound and a metal alkyl cocatalyst, particularly an aluminum alkyl cocatelyst. A subgenus of these catalysts is thet subgenus comprising a bis(cyclopentadienyl) compound of the Group IV-B metals, particularly titanium, and an aluminum elkyl cocatalyet. While speculation remains concerning the actual structure of the active catalyst species in the subgenus of soluble Ziegler-Netta type olefin polymerizetion catalysts, it would appear generally accepted that the active catalyst species is an ion or a decomposition product thereof which will alkylete an olefin in the presence of e labile stabilizing anion. This theory mey heve first been edvoceted by Breslow and Newburg, and Long and Breslow, as indicated in their respective articles eppearing in J. Am. Chem. Soc., 1959, Vol. 81, pp. 81-86, and J. Am. Chem. Soc., 1960, Vol. 82, pp. 1953-1957. As indicated in these articles, various studies suggested that the active catalyst species is a titanium-alkyl complex or a epeciee derived therefrom when a titanium compound; viz., bis(cyclopentadienyi)titenium dihalide, and an aluminum aikyi ere used as a catalyst or catalyst precursor. The presence of ions, all being in equilibrium, when a titanium compound is used was elso suggested by Dyachkovskii, Vysokomol. Soyed., 1965, Vol. 7, pp. 114-115 and by Dyachkovskii, Shilova and Shilov, J. Polym. Sci., Part C, 1967, pp. 2333-2339. That the active catalyst species is a cation complex when a titanium compound is used, was further suggested by Eisch et al., J. Am. Chem. Soc., 1985, Vol. 107, pp. 7219-7221,

While the foregoing articles teach or suggest that the active catalyst species is an ion pair and, particularly an ion pair wherein the metal component is present as e cetion or a decomposition product thereof, and while these references teech or suggest coordination chemistry to form such active catalyst species, all of the articles teach the use of a cocatalyst comprising a Lewis acid either to form or to stabilize the active ionic catalyst species. The ective catalyst is, apparently, formed through a Lewis acid-Lewis base reaction of two neutral components (the metallocene and the aluminum alkyl), leeding to en equilibrium between a neutral, apperently inactive, adduct and an ion pair, presumebly the active catalyst. As a result of this equilibrium, there is a competition for the enion which must be present to stabilize the active cation catalyst speciee. This equilibrium le, of course, reversible and such reversal will descrivete the catalyst. Moreover, the catalyst systems heretofore contemplated are subject to poisoning by the presence of basic impurities in the system. Further, many, if not all, of the Lewis acids heretofore contemplated for use in soluble Ziegler-Natta type catalyst systems ere chein transfer agents and, as a result, prevent effective control of the product polymer molecular weight and product molecular weight distribution. Still further, most, if not ali, of the cocatalysts heretofore contemplated are highly pyrophonic and, as a result, somewhat hazardous to use.

The eforementioned cetalyst systems have not, generally, been particularly ective when zirconium or hafnium is the Group IV-B metel used. Recently, however, it has been found that active Ziegler-Natta type catalysts can be formed when bls(cyclopentadlenyl)hafnium and bis(cyclopentadlenyl)zirconium compounds are used with alumoxanes. As is well known, these systems offer several distinct advantages, including vastly higher catalytic activities than the aforementioned bis (cyclopentadienyi)titanium catalysts and the production of polymers with narrower molecular weight distributions than those from conventional Ziegier-Netta catalysts. These systems remain subject to poisoning when basic impurities are present and do, however, require an 50 undesirable excess of the elumoxane to function efficiently. Moreover, the hefnium containing systems are not as active as the zirconium containing systems, et least when used for homopolymerization. Thie has been suggested by Glannetti, Nicoletti, and Mazzocohi, J. Polym. Sci., Polym. Chem., 1985, Vol. 23, pp. 2117-2133, who claimed that the ethylene polymerization rates of bis(cyclopentadienyi)harnium compounds were five to ten times slower than those of similar bis(cyclopentadienyl)zirconium compounds while there was little difference between the two catalysts in the molecular weight of the polyethylene formed from them.

In light of the several deficiencies of the coordination catalyst systems heretofore contemplated, the need for en improved coordination system which: (1) permits better control of molecular weight and molecular weight distribution; (2) is not subject to activation equilibrium; and (3) does not involve the use of an undesirable cocatalysts is believed reedily epparent.

SUMMARY OF THE INVENTION

It has now been discovered that the foregoing and other disadvantages or the prior art ionic orelin optimization catalysts can be avoided, or all east reduced, with the lonic catalysts of the present invention and an improved olefin, diolefin and/or acetylerically unsaturated monomer polymerization process provided therewith. It is, therefore, an object of this invention to provide improved catalysts systems useful in the polymerization of clefins, diolefins and acetylenically unsaturated monomers. It is another object of this invention to provide a method for preparing such improved catalysts. It is a further object of this invention to provide a method for preparing such improved catalysts. It is a further object of this invention to provide such an improved catalyst which is not subject to lon equilibrium reversal. It is still a further object of this invention to provide such an improved catalyst which have permit better control of the provide such an improved catalyst which may be used with iess fils of fire, it is even another object of the invention to provide such an improved catalyst which may be used with iess fils of fire, it is even another object of the invention to provide such an improved catalyst which may be used with iess fils of fire, it is even another object of the invention to provide such an improved catalyst which may be used with iess fils of fire, it is even another object of the invention to the objects and advantages of the present invention will become apparent from the description set forth herefranter and the examples included herein.

15

20

30

In accordance with the present invention, the foregoing and other objects and advantages are accomplished with and by using a catalyst prepared by combining at least two components, the first of which is a soluble, bis(cyclopentadienyl)-substituted Group IV-B metal compound containing at least one ligand which will combine with a Lewis or Bronsted acid thereby yielding a Group IV-B metal cation and the second of which compounds comprises a catton capable of donating a proton and reacting Irreversibly with said ligand in said Group IV-B metal compound to liberate a free, neutral by-product and a compatible noncoordinating anion comprising a plurality of boron atoms, which compatible noncoordinating anion is stable, bulky and labile. The soluble Group IV-B metal compound must be capable of forming a cation formally having a coordination number of 3 and a valence of +4 when said ligand is liberated therefrom. The anion of the second compound must be capable of stabilizing the Group IV-B metal cation complex without interfering with the Group IV-B metal cation's or its decomposition product's ability to function as a catalyst and must be sufficiently labile to permit displacement by an olefin, a diolefin or an acetylenically unsaturated monomer during polymerization. For example, Bochmann and Wilson have reported (J. Chem. Soc., Chem. Comm., 1986, pp. 1610-1611) that bls(cyclopentadlenyl)-titanium dimethyl reacts with tetrafluoroboric acid to form bis(cyclopentadienyl)titanium methyl tetrafluoroborate. The anion is, however, insufficiently labile to be displaced by ethylene.

DETAILED DESCRIPTION OF THE INVENTION

As indicated supra, the present invention relates to catalysts, to a method for preparing such catalysts, to a method for preparing such catalysts. The amethod of using such catalysts and to polymeric products produced with such catalysts. The catalysts are particularly useful in the polymerization of α-olefins, diolefins and acetylenically unsaturated monomers. The improved catalysts are prepared by combining at least one first compound which is a bis(evic)operntationly) derivative of a metal of droup IV-B of the Periodic Table of the Elements capable of forming a cation formally having a coordination number of 3 and a valence of +4 and attents one second compound comprising a cation capable of donating a proton and a compatible noncoordinating anion comprising a plurality of boron atoms, which anion is both bulky and lablie, and capable of stabilizing the Group IV-B metal cation without interfering with said Group IV-B metal cation's or its decomposition product's ability to polymerize α-olefins, diolefins and/or acetylenically unsaturated monomers.

All reference to the Periodic Table of the Elements herein shall refer to the Periodic Table of the Elements, as published and copyrighted by CRC Press. Inc., 1984. Also, any reference to a Group or Groups of such Periodic Table of the Elements shall be to the Group or Groups as reflected in this Periodic Table of the Elements.

As used herein, the recitation "compatible noncoordinating alion" means an anion which either does not coordinate to said cation three's prealing sufficiently labile to be displaced by a neutral Lewis base. The recitation "compatible noncoordinating anion" specifically refers to an anion which when functioning as a stabilizing anion in the catalyst system of this invention does mirransfer an anione substituent of ragment therefor to said cation thereby forming a neutral four coordinate metallocene and a neutral boron by-product. Compatible anions are those which are not degraded to neutrality when the initially formed complex decomposes.

The Groups IV-B metal compounds, and particularly titanium, ztronium and hafnium compounds, useful as first compounds in the improved catalyst of this invention are bis(cyclopentalianyl) derivatives of titanium, zirconium and hafnium. In general, useful titanium, zirconium and hafnium compounds may be represented by the following operared incruniacy.

wherein:

M is a metal selected from the Group consisting of titanium (Ti), zirconium (Zr) and hafnium (Hf), (A-Cp) is either (Cp)(Cp') or Cp-A'-Cp' and Cp and Cp' are the same or different substituted or unsubstituted

cyclopentadienty radicals, wherein A' is a covalent bridging group containing a Group IV-A element; L is an olefin, diolefin or aryne ligand, 'X i and X are, independently, selected from the Group consisting of hydride radicals, hydrocarby; radicals having from 1 to about 20 carbon atoms, substituted-hydrocarby radicals having from 1 to about 20 carbon atoms, organo-metalloid radicals comprising a Group IV-A element wherein seeh of the hydrocarby substituents contained in the organo portion of said organo-metalloid, independently, contain from 1 to about 20 carbon atoms and the like; X1 and X2 are joined and bound to the metal atom to form a metallacycle, in which the metal, X1 and X2 from a hydrocarbocyclic ring containing from about 3 to about 20 carbon atoms, and 8 is a substituent, preferably a hydrocarby substituent, having from 1 to about 20 carbon atoms, on one of the cyclopentadinyn radicals which is also bound to the metal atom.

Each carbon atom in the cyclopentadieny radical may be, independently, unsubstituted or substituted with the same or a different radical selected from the Grup consisting of hydrocarby radicals, substituted-hydrocarby radicals wherein none or more hydrogen atoms is repliced by a halogen atom, hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from Group IV-A of the Perrodic Table in the Elements, halogen radicals and the like. Suitable hydrocarbyl and substituted-hydrocarbyl radicals which may be substituted for at least one hydrogen atom in the cyclopentadenyl radical will contain from 1 to about 20 carbon atoms and include straight and branched alkyl radicals, cyclic hydrocarbon radicals, skilly-substituted cyclic hydrocarbon radicals, aromatic radicals and aikyl-substituted aromatic radicals. Similarly, and when X, and/or X, is a hydrocarbyl or substituted-hydrocarbyl radical, each may, independently, contain from 1 to about 20 carbon atoms and be a straight or branched sikyl radical, a cyclic hydrocarbyl radical, an aromatic radical six or cyclic hydrocarbyl radical, an aromatic radical or an alkyl-substituted cyclic hydrocarbyl radical, an aromatic radical or an alkyl-substituted aromatic radicals for the hydrocarbyl substituted cyclic hydrocarbyl radical, an aromatic radical or an alkyl-substituted cyclic hydrocarbyl radical, an aromatic radical or an alkyl-substituted cyclic hydrocarbyl radical, an aromatic radical or an alkyl-substituted cyclic hydrocarbyl radical, or an alkyl-substituted cyclic hydrocarbyl radical, an aromatic radical or an alkyl-substituted cyclic hydrocarbyl radical, or an alkyl-substituted cyclic hydrocarbyl radical, an aromatic radical or an alkyl-substituted cyclic hydrocarbyl radical, an aromatic radical or an alkyl-substituted cyclic hydrocarbyl radical, an aromatic radical or an alkyl-substituted cyclic hydrocarbyl radical and architectured radicals for the filter hydrocarbyl groups contain from 1 to about 20 carbon atoms. Suitable cyclic hydrocarbyl r

myl, trimethylgermyl and the like."

illustrative, but not limiting examples of bis(cyclopentadienyl)zirconium compounds which may be used in the preparation of the improved catalyst of this invention are dihydrocarbyl-substituted bis(cyclopentadienyl)zirconium compounds such as bis(cyclopentadienyl)zirconium dimethyl, bie(cyclopentadienyl)zirconium diethyl, bls(cyclopentadienyl) zirconium dipropyl, ble(cyclopentadienyl)zirconium dibutyl, bls(cyclopentadienyl)zirconium diphenyl, bis(cyclopentadienyl) zirconium dineopentyl, bis(cyclopentadienyl)zirconium di(m-tolyl), bis(cyclopentadlenyl)zirconium di(p-tolyl) and the like; (monohydrocarbyl-substituted cyclopentadlenyl)zirconium compounds such as (methyloyclopentadlenyl)(cyclopentadlenyl) and bis(methyloyclopentadlenyl)zirconium dimethyl, (ethylcyclopentadienyl)(cyclopentadienyl) and bis(ethylcyclopentadienyl) zirconium dimethyl, (propylcyclopentadienyl)(cyclopentadienyl) and bis(propylcyclopentadienyl)zirconium dimethyl, (n-butylcyclo pentadienyl) (cyclopentadienyl) and bis(n-butylcyclopentadienyl) zirconium dimethyl, (t-butylcyciopentadienyi)(cyclopentadienyi) and bis(t-butyicyclopentadienyi)zirconium dimethyl, (cyclohexylmethylcyclopentadienyl)(cyclopentadienyl) and bis(cyclohexylmethylcyclopentadienyl)zirconium dimethyl, (benzylcyclopentadienyi) (cyclopentadienyi) and bis(benzylcyclopentadienyi)zirconium dimethyl, (diphenyimethylcyclopentadienyl) (cyclopentadienyl) and bls(diphenylmethylcyclopentadienyl)zirconium dimethyl, (methylcyclopentadienyl)(cyclopentadienyl) and bis(methylcyclopentadienyl)zirconium dihydride, (ethylcyclopenta dlenyl) (cyclopentadlenyl) and bis(ethylcyclopentadlenyl)zirconium dihydride, (propylcyclopentadlenyl)(cyclopentadienyl) and bis(propylcyclopentadienyl)zirconium dihydride, (n-butylcyclopentadienyl)(cyclopentadienyl) and bls(n-butylcyclopentadlenyl) zirconium dihydride, (t-butylcyclopentadlenyl)(cyclopentadlenyl) and bis(t-butylcyclopentadlenyl)zirconium dihydride, (cyclohexylmethylcyclopentadlenyl)(cyclopentadlenyl) and bis(cyclohexylmethylcyclopentadienyl)zirconium dihydride, (benzylcyclopentadienyl)(cyclopentadienyl) and bis(benzylcyclopentadienyi)zirconium dihydride, (diphenylmethylcyclopentadienyi)(cyclopentadienyi) and bls(diphenylmethylcyclopentadlenyl)zirconium dihydride and the like; (polyhydrocarbyl-substituted-cyclopentadienyl)zirconium compounds such as (dimethylcyclopentadienyl)(cyclopentadienyl) and bis(dimethylcyciopentadienyl)zirconium dimethyl, (trimethylcyclopentadienyl) (cyclopentadienyl) and bis(trimethylcyclopentadienyl)zirconium dimethyl, (tetramethylcyclopentadienyl)(cyclopentadienyl) and bis(tetramethylcyclopentadienyl)zirconium dimethyl, (permethylcyclopentadienyl)(cyclopentadienyl) and bis(permethylcyclopentadienyl)zirconium dimethyl, (ethyltetramethylcyclopentadienyl)(cyclopentadienyl) and bis(ethyltetramethylcyclopentadienyl) zirconium dimethyl, (indenyl)(cyclopentadienyl) and bis(indenyl) zirconium dimethyl, (dimethylcyclopentadlenyl)(cyclopentadlenyl) and bis(dimethylcyclopentadlenyl)zirconium dihydride, (trimethylcyclopentadienyi)(cyclopentadienyi) and bis(trimethylcyclopentadienyi)zirconium dihydride, (tetramethylcyclopentadienyl) (cyclopentadienyl) and bis(tetramethylcyclo pentadienyl)zirconium dihydride, (permethylcyclor entadienyl) (cyclopentadienyl) and bis(permethylcyclopentadienyl)zirconium dihydride, (ethyltetramethylcyclopentadienyi)(cyclopentadienyi) and ble(ethyltetramethylcyclopentadienyi)zirconium dihydride, (indenyl) (cyclopentadienyl) and bis(indenyl)zirconium dihydride and the like; (metal hydrocarbyl-substituted cyclopentadlenyl)zirconium compounds such as (trimethylsilylcyclopentadlenyl) (cyclopentadlenyl) and bis(irimethylsilylcyclopentadienyl)zirconium dimethyl, (trimethylgermylcyclopentadienyl)(cyclopentadienyl) and bis(trimethylgermylcyclopentadienyl)zirconium dimethyl, (trimethylstannylcyclopentadienyl)(cyclopentadieryl) and bis(trimethylstannylcyclopentadienyl)zirconium dimethyl, (trimethylpiumbylcyclopentadienyl)(cyclopentadienyl) and bls(trimethylplumbylcyclopentadienyl)zirconium dimethyl, (trimethylsilylcyclopentadienyl):cyclopentadienyl) and bis(trimethylsllylcyclopentadienyl)zirconium dihydride, (trimethylgermylcyclopentadienyl)(cyclopentadienyl) and bis(trimethylgermylcyclopentadienyl)zirconium dihydride, (trimethylstannylcyclopentadienyl)(cyclopentadienyl) and bis(trimethylstannylcyclopentadienyl)zirconium dlhydride, (trimethylplumbylcyclopentadienyl) (cyclopentadienyl) and bis(trimethylplumbylcyclopentadienyl)zirconium dihyd-ide and the like; (halogen-substituted-cyclopentadieneyl)zirconium compounds such as (trifluoromethylcyciopentadlenyi)(cyclopentadlenyi) and bis(trifluoromethylcyclopentadlenyi)zirconium dimethyi, (trifluoromethylcyclopentadienyi)(cyclopentadienyi) and bis(trifluoromethylcyclopentadienyi)zirconium dihydride and the like; silyl-substituted bis(cyclopentadienyl)zirconium compounds such as bis(cyclopentadienyl)(trimethylsilyi)(methyi)zirconium, bis(cyclopentadienyi)[triphenyisilyi)(methyi)zirconium, bis(cyclopentadienyi)[tris(dimethylsilyl)silyl](methyl)zirconium, bis(cyclopentadienyl)[bis(mesityl)silyl](methyl)zirconium, bis(cyclopentadienvi)(trimethylsilvi)(trimethylsilvimethyl)zirconium, bis(cyclopentadienyl)(trimethylsilvi)(benzyl) and the like; (bridge-cyclopentadienyi)zirconium compounds such as methylene ble(cyclopentadienyi)zirconium dimethyl, ethylene bis(cyclopentadienyl)zirconium dimethyl, dimethylsilyl bis(cyclopentadienyl)zirconium dimethyl, methylene bis(cyclopentadienyl)zirconium dihydride, ethylene bis(cyclopentadienyl)zirconium dihydride and dimethylsilyl bis (cyclopentadienyl)zirconium dihydride and the like; zirconacycles euch as bis(pentamethylcyclopentadlenyl) zirconacyclobutane, bis(pentamethyloyclopentadienyl) zirconacyclopentane, bis(cyclopentadienyl)zirconalndane and the like; olefin, diolefin and aryne ligand substituted bis(cyclopentadienyl)zirconium compounds such as bis(cyclopentadienyl) (1,3-butadiene)zirconium, bis(cyclopentadienyl) (2,3-dimethyl-1,3-butadiene)zirconium, bis(pentamethyloyclopentadienyl)(benzyne) zirconium and the like: (hydrocarbyl) (hydride) bis (cyclopentadienyl) zirconium compounds such as bis (pentamethylcyclopentadienyl) zirconium (phenyl)(hydride), bis(pentamethylcyclopentadlenyl)zirconium (methyl)(hydride) and the like; and bis(cyclopentadienyl)zirconium compounds in which a substituent on the cyclopentadienyl radical is bound to the metal such as (pentamethylcyclopentadienyl)(tetramethylcyclopentadienylmethylene) zirconium hydnde, (pentamethylcyclopentadlenyl)(tetramethylcyclopentadlenylmethylene) zirconium phenyl and the like.

A similar list of illustrative bis(cyclopentadienyl) hathum and bis(cyclopentadienyl)trainum compounds could be made, but since the lists would be neads to that already presented with respect to bis(cyclopentadienyl)zirconium compounds, euch lists are not deemed sesential to a complete disclosure. Those skilled in the art, however, are aware that bis(cyclopentadienyl) zirconium compounds are bis(cyclopentadienyl) titanium compounds are obtained by the compounds are obtained by the

25

55

2

Compounds useful as a second component in the preparation of the catalyst of this invention will comprise a cation, which is a B conseted acid capable of donating a proton, and a compatible arison containing a pullrality of boron atoms, which anion is relatively large, capable of stabilizing the active catalyst species which is formed when the two compounds are combined and said anion will be sufficiently labile to be displaced by olefinic, diolefinic and acetylenically unsaturated substrates or other neutral Lewis bease such as ethers, inthies and the like, in general, a second compound useful in the preparation of the catalyst of this invention may be any compound represented by one of the following general formulae.

 [L'-H][(CX)_a(BX')_mX"_b]o-Wherein;

L'-Hie either H+, ammonium or a substituted ammonium cation having up to 3 hydrogen atoms replaced with a hydrocarby radical containing from 1 to about 20 carbon atoms or a substituted-hydrocarby radical, wherein one or more of the hydrogen atoms is replaced by a halogen atom, containing from 1 to about 20 carbon atoms, phosphonium radicals, substituted-hydrophonium radicals having up to 3 hydrogen atoms replaced with a hydrocarby radical containing from 1 to about 20 carbon atoms or a substituted-hydrocarby radical, wherein 1 or more of the hydrogen atoms is replaced by a halogen atom, containing from 1 to about 20 carbon atoms and the like; B and C are, respectively, boron and carbon; X, Y and X" are radicals selected, independently, from the Group consisting of hydride radicals, hydrocarby radicals containing from 1 to about 20 carbon atoms, substituted-hydrocarby radicals, wherein one or more of the hydrogen atoms is replaced by a halogen atom, containing from 1 to about 20 carbon atoms, organomatalloid radicals wherein as hydrocarby substitution in the organo portion contains from 1 to about 20 carbon atoms and said metal is selected from Group IV-A of the Perdoid Table of the Elements and the like; a and b are integers 2 °C, c is an integer \$\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}

 [L'-H][[[(CX₃)_{a'}(BX₄)_{m'}(X₅)_{b'}]c'-]₂Mn+]d-Wherein:

L'-Hi si either H+, ammonium or a substituted ammonium radical having up to 3 hydrogen atoms replaced with a hydrocarby in dicale containing from 1 to about 20 carbon atoms or a substituted-hydrocarby radical, wherein 1 or more of the hydrogen atoms is replaced by a halogen atom, containing from 1 to about 20 carbon atoms, a phosphonium radical, a substituted-hydrocarbophonium radical having up to 3 hydrogen atoms replaced with a hydrocarby radical containing from 1 to about 20 carbon atoms or a substituted-hydrocarby radical, wherein 1 or more of the hydrogen atoms is replaced by a halogen atom, containing from 1 to about 20 carbon atoms and the like; B, C, M and H are, respectively, boron; carbon, a transition metal and hydrogen; Xs, Xs, and Xs are radicals selected, indeepndentith, from the Group consisting of hydrogen radicals, halide radicals, hydrocarbyl radicals containing from 1 to about 20 carbon atoms, substituted-hydrocarbyl radicals, wherein one or more of the hydrogen atoms is replaced by a halogen atom, containing from 1 to about 20 carbon atoms, organo-metalloid radicals wherein each hydrocarbyl substitution in the organo portion or said organo-metalloid contains from 1 to about 20 carbon atoms and said metal is selected from Group IV-A of the Periodic Table of the Elements and the like; a' and b' are the same or a different integer ≥ 0; c' is an integer ≥ 2; a' + b' + c' = an even-numbered integer from 4 to about 8; m' is an integer from 6 to about 12; n is an

integer such that 2c' - n = d; and d is an integer ≥ 1.

Illustrative, but not limiting, examples of the second compounds which can be used as a second component in the catalyst compositions of this invention are ammonium salts such as ammonium 1-carbadodecaborate (using 1-carbododecaborate as an illustrative, but not limiting, counterion for the ammonium cations listed below): monohydrocarbyl-subetituted ammonlum ealts such as methylammonlum 1-carbododecaborate, ethylammonium 1-carbadode caborate, propylammonium 1-carbadodecaborate, isopropylammonium 1-carbadodecaborate, (n-butyl)ammonium 1-carbadodecaborate, anilinium 1-carbadodecaborate, and (p-tolyl)ammonium 1-carbadodecaborate and the like; dihydrocarbyl-substituted ammonium salts such as dimethylammonium 1-carbadodecaborate, diethylammonium 1-carbadodecaborate, dipropylammonium 1-carbadodecaborate, disopropylammonium 1-carbadodecaborate, di(n-butyl)ammonium 1-carbadodecaborate, diphenylammonlum 1-carbadodecaborate, dl(p-tolyl)ammonlum 1-carbadodecaborate and the like; trihydrocarbylsubstituted ammonium salts such as trimethylammonium 1-carbadodecaborate, triethylammonium 1-carbadodecaborate, tripropylammonium 1-carbadodecaborate, tri(n-butyl) ammonium 1-carbadodecaborate, triphenylammonlum 1-carbadodecaborate, tri(p-tolyl)ammonlum 1-carbadodecaborate, N,N-dimethylanilinium

1-carbadodecaborate, N,N-diethylanilinium 1-carbadodecaborate and the like.

tri(n-butyl)ammonium as an illustrative, but not limiting, counterion for the anions listed below) are saits of anions such as bis[tri(n-butyl)ammonium] nonaborate, bis[tri(n-butyl)ammonium]decaborate. bis[tri(n-butyl)ammonlum]undecaborate, bis[tri(n-butyl)ammonlum] dodecaborate, bis[tri(n-butyl)ammonlum]decachiorodecaborate, bis[trl(n-butyl)ammonlum]dodecachiorododecaborate, [trl(n-butyl)ammonlum 1-carbadecaborate, tri(n-butyl)ammonium 1-carbaundecaborate, tri(n-butyl)ammonium 1-carbadodecaborate, tri(n-butyl)ammonium 1-trimethylsilyl-1-carbadecaborate, tri(n-butyl)ammonium dibromo-1-carbadodecaborate and the like; borane and carborane complexes and salts of borane and carborane anlons such as decaborane (14). 7.8-dicarbaundecaborane(13), 2.7-dicarbaundecaborane(13), undecabydrido-7.8-dimethyl-7.8-dicarbaundecaborane, dodecahydrido-11-methyl-2,7-dicarbaundecaborane, tri(n-butyl)ammonium undecaborate (14), tri(n-butyl)ammonium 6-carbadecaborate(12), tri(n-butyl)ammonium 7-carbaundecaborate(13), tri(n-butyl)ammonium 7,8-dicarbaundecaborate(12), tri(n-butyl)ammonium 2,9-dicarbaundecaborate(12), tri(n-butyl)ammonium dodecahydrido-8-methyl-7,9-dicarbaunde caborate, tri(n-butyl)ammonium undecahydrido-8-ethyl-7,9-dicarbaundecaborate, tri(n-butyl)ammonium undecahydrido-8-butyl-7,9-dicarbaundecaborate, tri(n-butyi)ammonium undecahydrido-8-allyl-7,9-dicarbaundecaborate, tri(n-butyi)ammonium undecahydrido-9-trimethylsilvi-7.8-dicarbaundecaborate, tri(n-butyl)ammonium undecahydrido-4.8-dibromo-7-carbaundecaborate and the like; boranes and carboranes and salts of boranes and carboranes such as 4-carbanonabo-

Illustrative, but not limiting examples of second compounds corresponding to Formula 5 [using

rane(14), 1,3-dlcarbanonoborane(13), 6,9-dlcarbadecaborane(14), dodecahydrido-1-phenyl-1,3-dlcarbanonaborane, dodecahydrido-1-methyl-1.3-dicarbanonaborane, undecahydrido-1.3-dimethyl-1.3-dicarbanonaborane and the like. Illustrative, but not limiting, examples of second compounds corresponding to Formula 6 [using

tri(n-butyl)ammonium as an lilustrative, but not limiting, counterion for the anions listed below] are salts of metallacarborane and metallaborane anions such as tri(n-butyl)ammonium bis(nonahydrido-1,3-dicarbanonaborato) cobaltate(iii), tri(n-butyl)ammonium bis(undecahydrido-7,8-dicarbaundecaborato)ferrate(iii), tri(n-butyl)ammonlum bis(undecahydrido-7,8-dicarbaundecaborato)cobaltate(III), tri(n-butyl) ammonlum bis(undecahydrido-7,8-dicarbaundecaborato) nickelate(III), tri(n-butyl)ammonium bis(undecabydrido-7,8-dicarbaundecaborato) cuprate(III), tri(n-butyl)ammonium bis(undecahydrido-7,8-dicarbaundercaborato)aurate(III), tri(n-butyl)ammonlum bis(nonahydrido-7.8-dimethyl-7.8-dicarbaundecaborato)-ferrate(iii), tri(n-butyl) am-SΩ monium bis(nonahydrido-7,8-dimethyl-7,8-dicarbaundecaborato) chromate(III), tris(n-butyl)ammonium bis(tribromooctahydrido-7.8-dicarbaundecaborato)cobaltate(iii). tri(n-butyl)ammonium bis(dodecahydridodicarbadodecaborate)cobaltate(III), bis[tri(n-butyl)ammonium] bis(dodecabydridodecaborato) nickelate(III), tris-[tri(n-butyi)ammonlum] bis(undecahydrido-7-carbaundecaborato)chromate(iii), bis[tri(n-butyi) ammonlum] bis(undecahydrido-7-carbaundecaborato)manganate(iV), bis[tri(n-butyl)ammonlum] bis(undecahydro-7-carbaundecaborato) cobaltate(III), bis[tri(n-butyl)ammonium] bis(undecahydrido-7carbaundecaborato)nickelate(IV) and the like. A similar list of representative phosphonium compounds could be recited as illustrative second compounds, but for the sake of brevity, it is simply noted that the phosphonium and substituted-phosphonium salts corresponding to the listed ammonium and substituted-ammonium salts could be used as second compounds in the present invention.

In general, and while most first components identified above may be combined with most second components identified above to produce an active olefin polymerization catalyst, it is important to continued polymerization operations that either the initially formed metal cation or a decomposition product thereof be a relatively stable olefin polymerization catalyst. It is also important that the anion of the second compound be stable to hydrolysis when an ammonium salt is used. Further, it is important that the acidity of the second component be sufficient, relative to the first, to facilitate the needed proton transfer. Conversely, the basicity of the metal complex must also be sufficient to facilitate the needed proton transfer. Certain metallocane compounds—using bis(pentamethyloyclopentadienyl)hamhum cimethyl as an itiusitative, but not limiting example—are resistant to reaction with all but the strongest Bronsted acids and thus are not suitable as first components to form the catalysts described herein. In general, bis(cyclopentadienyl)metal compounds which can be hydrolycod by squeueus soutions can be considered suitable as first components to form the catalysts.

With respect to the combination of the desired cation and the stabilizing anion to form an active catalyst of the present invention, it should be noted that the two compounds combined for preparation of the active catalyst must be selected so as to ensure displacement of the anion by monomer or another neutral Lawis base. This could be done by steric hindrance, resulting from substitutions on the cyclopentadienyl carbon atoms as well as from substitutions on the anion itself. The use of perhydrocarbyl-substituted cyclopentadienyl metal compounds and/or bulky second components does not generally prevent the desired combination and, in fact, generally yields more labile anions. It follows, then, that metal compounds (first components) comprising perhydrocarbyl-substituted cyclopentadienyl radicals could be effectively used with a wider range of second compounds than could metal compounds (first components) comprising unsubstituted cyclopentadieny radicals. In fact, first compounds comprising perhydrocarbyl-substituted cyclopentadienyl radicals would, generally, be effective when used in combination with second components having both larger and smaller anions. As the amount and size of the substitutions on the cyclopentadienyl radicals are reduced, however, more effective catalysts are obtained with second compounds containing larger anions, such as those encompassed by Equation 6 above and those having larger m values in Equation 5. In these cases, it is further preferable that in using second compounds which are encompassed by Equation 5, a + b + c = 2. Second compounds in which a+b+c= even-numbered integers of 4 or more have acidic B-H-B moleties which can react further with the metal cation formed, leading to catalytically inactive compounds.

In general, the catalyst can be prepared by combining the two components in a suitable solvent at a temperature within the trange from about 100°C to about 300°C. The catalyst may be used to polymerize celefins and carefyierically unsated monomers having from two to about eighteen carbon atoms and citied having from two to about eighteen carbon atoms eight on some components and the second properties of the carbon atoms either alternation. The catalyst may also be used to the carbon atoms either alternation from control the carbon atoms either alternation. The catalyst may also be complished at conditions well known in the prior art for the polymerization of monomers of this type. It will, of course, be appreciated that the catalyst year will form in aits if the components thereof are added citiently to the polymerization of monomers of this type. It will, of course, be appreciated that the catalyst year will will be considered the control of the catalyst components there or are added citiently to the polymerization process. It is, however, preferred, to form the catalyst in a separate step prior to adding the same to the polymerization step. While the catalysts do not contain pyrophoric species, the catalyst components are sensitive to both molsture and oxygen and should be handled and transferred in a intert atmosphere such as introgen, argon or helium.

As indicated supra, the Improved catalyst of the present Invention will, generally, be prepared in a suitable solvent or diluent. Suitable solvents or diluent include any of the solvents known in the prior art to be useful as solvents in the polymerization of olderins. Suitable solvents in the include, but are not necessarily limited to, straight and branched-chain hydrocarbons such as isobutane, butane, pertiane, baxane, heptane, octane and the like, oyclic and alloyclic hydrocarbons such as cyclothareane, cyclopertane, methrycyclohexpnae, methrycyclohexpnae and the like and aromatic and alloyful butable solvents also include basic solvents not heration; susful as polymerization solvents when conventional Zlegler-Natta type polymerization catalysts are used such as chorobaxane, dichloromethrane and propyle richoride.

r

While the inventors do not wish to be bound by any particular theory, it is believed that when the two compounds used to prepare the improved catalysts of the present invention are combined in a suitable solvent or diluent, all or a part of the cation of the second compound (the proton) combines with one of the substituents on the metal-containing (first) component. In the case where the first component has a formula corresponding to that of general formula 1 supra, a neutral compound is liberated which either remains in solution or is liberated as a gas. In this regard, it should be noted that if the cation of the second compound is a proton and either X1 or X2 in the metal containing (first) compound is a hydride, hydrogen gas may be liberated. Similarly, if the cation of the second compound is a proton and either X1 or X2 is a methyl radical, methane may be liberated as a gas. In the cases where the first component has a formula corresponding to those of general formulae 2, 3 or 4, one of the substituents on the metal-containing (first) component is protonated but, in general, no substituent is liberated from the metal. It is preferred that the ratio of metal containing (first) component to second component cations be about 1:1 or greater. The conjugate base of the cation of the second compound, if such a portion does remain, will be a neutral compound which will remain in solution or complex with the metal cation formed, though, in general, a cation is chosen such that any binding of the neutral conjugate base to the metal cation will be weak or nonexistent. Thus, as the steric bulk of this conjugated base increases, it will, simply, remain in solution without interfering with the active catalyst. For example, if the cation of the second compound is an ammonium ion, this ion will liberate a hydrogen atom which may then react as in the case when the hydrogen atom was the cation to form gaseous hydrogen, methane or the like and the conjugate base of the cation will be ammonia. In like fashion, if the cation of the second compound were a hydrocarbyl-substituted ammonium ion containing at least one hydrogen atom, as is essential to the present invention, the hydrogen atom would be given up to react in the same fashion as when

hydrogen were the cation and the conjugate base of the cation would be an amine. Further, if the cation of the second compound were a hydrocarbyl-substituted phosphonium ion containing at least one proton, as is essential to the present invention, the conjugate base of the cation would be phosphine.

While still not wishing to be bound by any particular theory, it is also believed their when the metal containing (first) component has reacted with the second component, the non-coordinating anion originally contained in the second compound used in the cetalyst preparation combines with and stabilizes either the metal cation, formally having a coordination number of 3 and a 4-wisence, or a decomposition product thereof. The cation and anion will remain so combined until the catalyst is contacted with one or more olefins, diolefins and/or ecelylanically insaturated monomers either alone or in combination with one or more other moments. As indicated supra, the anion contained in the second compound must be sufficiently labile to permit rapid displacement by an olefin, a diolefin or an acetylenically unsaturated monomer for facilitate powerfuscion.

As Indicated supra, most first compounds identified above will combined with most second compounds identified above to produce an eclive catalyst, particularly an active polymerization catalyst. The activula active catalyst species is not, however, always sufficiently stable as to permit its separation and subsequent identification. Moreover, and while many of the initial metal cations are reliatively stable, it has become apparent that the initially formed metal cation mey decompose yielding either an eartive polymerization catalyst species or a cetalytically lactive species. Most decomposition products are, however, catalytically active. While the inventors still do not wish to be bound by ery particular theory, it is believed that the active catalyst species which heve not been isoleted, including active decomposition products, are of the same type as those which have been isoleted and fully characterized or at least retain the sessential structure required for functioning as a

cetalyst such as a reective metal-carbon bond.

55

60

While still not wishing to be bound by any particular theory and as indicated supra, it is also believed that the extent and neture of the substitution on the ovelopenatedly ring dictates the size of the stebilizing anion needed to generate a particularly ective olefin polymertzation catalyst. In this regard, it is believed that as the number of substituents on the cyclopentaclienty racical in the metallicone cation are decreased from 5 to 0, a given anion will become increasingly less abidis. Thus, it is suggested that as the number of substituents on the cyclopentaclentyl racical in the metallocene cation are reduced from 5 to 0, larger or less reactive anions should be used to ensure liability and allow for the generation of a particularly active catalyst species.

Consistent with the foregoing, stable, isolable, characterizible oldin polymerization catalysts heve been prepared when bisigementhy/cipopentadiny/jizrocinum dimetrity has been combined with and reacted with tif(n-buty)/ammonium 7,8-dicarbaundeceborate(12) or 7,8-dicarbaundeceborane(13). A stable, isolable, olefin polymerization catalyst has also been prepared when bisigethy/atteramethy/cipopentademy/ij-cronium dimetryl has been combined with 7,8-dicarbaundeceborane(13). In sech of these cases, the stable polymerization catalyst was prepared by edding the reactants into a suitable sowhert or diluent at a temperature within the range from about -100°C to about 300°C. Essed on this and other information available to the inventors, it eppears clear that isolable and characterizable polymerization catalysts are prepared when e bisiperhydrocarbyl-substituted cyclopentadieny/invatial compound is combined with any one or more of the bisiperhydrocarbyl-substituted cyclopentadieny/invatial compound is combined with any one or more of the bisiperhydrocarbyl-substituted cyclopentadieny/invatial compound is combined with any one or more of the bisiperhydrocarbyl-substituted cyclopentadieny/invatial compound is combined with any one or more of the bisiperhydrocarbyl-substituted cyclopentadieny/invatialen pylitromialen one Alba, excellent pylitromialen one Alba, excellent pylitromialent pylit

The chemical reactions which occur may be represented by reference to the general formulae set forth herein es follows:

Copied from 10553760 on 10/07/2009

D.
$$(C_p)(R_{C_p}^{\bullet})MX_1 + [L'-H]^{+}[B']^{-} \longrightarrow [(C_p)(H_{R_p}^{\bullet})MX_1]^{+}[B']^{-} + L' \text{ or }$$

$$[(C_p)(R_{C_p}^{\bullet})M]^{+}[B']^{-} + HX_1 + L'$$

In the foregoing reaction equations, the letters A-D correspond to the numbers 1-4, respectively, set forth in combination with the general equations for useful metallocene compounds. B? represents a compatible ion corresponding to the general formulae outlined in formulae 5 and 6 above. The reaction of each of the four classes of metallocenes with Ny-dimethylamilliput bid (2,8-diarbanufacebarotic)cobaltate (III) has been examined by solution 1th NMR or 12C NMR spectroscopy. In each case, products conforming to those outlined show were observed.

In general, the stable, isolable catalysts formed by the method of this Invention may be separated from the solvent and stored for subsequent use. The unisolated catalysts, however, will, generally, be retained in solution until utilizately used in the polymerization of oleffins. Alternatively, any of the catalysts prepared by the method of this invention may be retained in solution for subsequent use or used directly after preparation and polymerization catalyst. Moreover, and as indicated supra, the catalysts may be prepared in situ by passing the separate components into the polymerization vessel where the components will be contacted and react to produce the improved catalyst of this invention.

In general, and as Indicated supra, the Improved catalyst of this invention will polymerize oleffins, diolefine and/or acetylenically unsaturated monomere either alone or in combination with other olefine and/or other unsaturated monomers at conditions well known in the prior art for conventional Zieglen-Natta catalysis. In the polymerization process of this invention, the molecular weight appears to be a function of both catalyst concentration, polymerization temperature and polymerization pressure. In general, the polymers produced with the catalyst of this invention, when produced in an atmosphere free of hydrogen or other chain terminating agents, will contain terminal unions.

The polymer products produced with the catalyst of this Invention will, of course, be free of certain trace step separally found in polymers produced in Ziegler-Natta type catalysts such as aluminum, magnesium, chiloride and the like. The polymer products produced with the catalysts of this Invention should than have broader range of applications than polymers produced with more conventional Ziegler-Natta type catalysts comprising a metal alixif, such as an aluminum alixyl.

PREFERRED EMODIMENT OF THE INVENTION

In a preferred embodiment of the present invention, a polymerization cetalyst will be prepared by combining a bis(cyic)pentatienty) compound of one of the Group IV-B matals, most preferably a bis(cyic)pentation nyl)ztronium of bis(cyic)pentadienyl)fishinum compound, containing two independently substituted or unsubstituted cyclopentadienyl radicals and two lower alkyl substituents or two hydrides with one of the followino:

55

- (1). A trisubstituted ammonium salt of a borane or carborane anion satisfying the general formula:
 7. [(CH)_{BX}(BH)_{BX}]exWherein:
- B, C, and H are, respectively, boron, carbon and hydrogen;
- ax is either 0 or 1; cx is either 1 or 2; ax + cx = 2; and
- bx is an integer ranging from 10 to 12.
- (2). A trisubstituted ammonium salt of a borane or carborane anion or a neutral borane or carborane

compound satisfying the general formula:

8. [(CH)ay(BH)myHby]cywherein:

B, C and H are, respectively, boron, carbon and hydrogen;

ay is an integer from 0 to 2; by Is an integer from 0 to 3;

cy is an integer from 0 to 3; ay + by = cy = 4; and my is an integer from 9 to 18.

(3). A trisubstituted ammonium salt of a metallaborane or metallacarborane anion satisfying the general formula:

[[[(CH)az(BH)mzHbz]cz-]2MZnz+]dz-

Wherein:

B, C, H and MZ are, respectively, boron, carbon, hydrogen and a transition metal; az is an integer from 0 to 2; bz is an integer from 0 to 2; cz is either 2 or 3; mz is an integer from 9 to 11; az + bz + cz = 4; and nz and dz are, respectively, 2 & 2 or 3 & 1.

Each of the trisubstitutions in the ammonium cation will be the same or a different lower alkyl or anyl radical. By lower alkyl is meant an alkyl radical containing from one to four carbon atoms. In a most preferred embodiment of the present invention wherein an anion represented by Formula 7 is used, bis(pentamethylcyclopentadlenyl)zirconium dimethyl will be combined with tri(n-butyl)ammonium 1-carbaundecaborate to produce a most preferred catalyst. In a most preferred embodiment of the present invention wherein an anion represented by Formula 8 is used, bis(pentamethylcyclopentadienyl)zirconium dimethyl will be combined with 7,8-dicarbaundecaborane(13) to produce a most preferred catalyst. In a most preferred embodiment of the present invention wherein an anion represented by Formula 9 is used, bis(cyclopentadienyl)zirconium or -hafnium dimethyl will be combined with N,N-dimethylanilinium bis(7,8-dicarbaundecaborato) cobaltate(iii) to produce a most preferred catalyst. In a preferred embodiment of this invention, the two components used to prepare the catalyst will be combined at a temperature within the range from about 0°C to about 100°C. The components will be combined, preferably, in an aromatic hydrogen solvent, most preferably toluene. Nominal holding times within the range from about 10 seconds to about 60 minutes will be sufficient to produce both the preferred and most preferred catalysts of this invention.

In a preferred and most preferred embodiment of this invention, the catalyst, immediately after formation, will be used to polymerize one or more lower α -olefins, particularly ethylene and propylene, most preferably ethylene, at a temperature within the range from about 0°C to about 100°C and at a pressure within the range from about 15 to about 500 psig. The monomers will be maintained at polymerization conditions for a nominal holding time within the range from about 1 to about 60 minutes and the catalyst will be used at a concentration within the range of about 10^{-5} to about 10^{-1} moles per liter of solvent or diluent.

Having thus broadly described the present Invention and a preferred and most preferred embodiment thereof, it is believed that the same will become even more apparent by reference to the following examples. It will be appreciated, however, that the examples are presented solely for purposes of illustration and should not be construed as limiting the invention. In the examples wherein an active catalyst was isolated and Identified, the analysis was by solid-state ¹⁹C NMR spectroscopy and solution ¹H NMR spectroscopy,

In this example, an active olefin polymerization catalyet was prepared and isolated by combining 1.0 g of bis(pantamethylcyclopentadienyl)zirconium dimethyl in 50 ml of toluene and then adding 0.82 g of tri(n-butyl)ammonium 7,8-dicarbaundecaborate(12). The mixture was stirred at room temperature for 30 minutes, the solvent was evaporated to half its original volume and pentage added to the point of cloudiness. After cooling at -20°C overnight, a yellow solid was filtered off, washed with pentane and dried. The yield of active catalyst was 0.75 g. A portion of this product was analyzed and identified as bis(pentamethyloyclopentadienyl)(dodecahydrido-7,8-dicarbaundecaborato)zirconium.

In this example, an active clefin polymerization catalyst was prepared by dissolving 1.2 g of bis(pentamethylcyclopentadienyl)zirconium dimethyl in 100 ml pentane and then adding dropwise 5 ml of a toluene solution containing 0.38 g of 7,8-dicarbaundecaborane(13), A bright yellow solid precipitated from solution. After thirty minutes, the solid was filtered off, washed with pentane and dried. The yield of product was 0.95 g. A portion of the product was analyzed and identified as bis(pentamethylcyclopentadienyl)methyl(dodecahydrido-7,8-dicarbaundecaborato) zirconlum, the same active catalyst produced in Example 1.

EXAMPLE 3

In this example, an active olefin polymerization catalyst was prepared by dissolving 0.425 g of bis(ethyltetramethyloyclopentadlenyl)zirconlum dimethyl in 60 ml of pentane and adding dropwise 5 ml of a toluene solution containing 0.125 g of 7,8-dicarbaundecaborane(13). A bright yellow solld precipitated from solution. After fifteen minutes, the solid was filtered off, washed with pentane and dried. The yield of product was 0.502 g. A portion of the product was analyzed and identified as bis(ethyltetramethylcyclopentadienyl)methyl(dodecahydrido-7,8-dl-carbaundecaborato)zirconium.

EXAN	IPL	.E	
------	-----	----	--

In this example, ethylene was polymertzed using a portion of the catelyst produced in Example 2 by dissolving 50 mg of the catelyst in 100 ml of toluene and transferring the catelyst solution under a nitrogen atmosphere into a stirred, steef if liter autoclave which was previously flushed with nitrogen. The autoclave was pressured with 300 peig ethylene and stirred at 60°C. After thirty minutes, the reactor was vented and opened. The yield of linear polysthylene formed was 22.95 g.

EXAMPLE 5

In this example, ethylene was polymertzed with the catalyst porduced in Example 3 by dissolving 50 mg of the catalyst in 100 mil of toluene and transferring the catalyst solution under a nitrogen atmosphere into a stirred, steel I liter autoclave which was previously flushed with nitrogen. The autoclave was pressured with 400 psig ethylene and stirred at 40°C. After one hour, the reactor was vented and opened. The yield of linear polystitylene formed was 248.

10

20

30

*

EXAMPLE 6

In this example, ethylene was again polymerized with a portion of the catalyst produced in Example 2 by dissolving 75 mg of the catalyst in 100 mil of chlorobenzene and transferring under a nitrogen atmosphere into a stirred, steel 1 liter autoclave which was previously flushed with nitrogen. The autoclave was pressured with 150 psig ethylene and stirred at 40°C. After twenty minutes, the reactor was vented and opened. The tield of linear polyethylene formed was 3.3 g.

EXAMPLE 7

In this example, ethylene was polymerized with an active catalyst formed in situ by dissolving 80 mg of ble(pentamethylcyolopentadlenyl/sizronlum dimethyl and 35 mg of 1,2-dicarbaundecaborane(13) in 20 ml of dichloromethane. Ethylene was then bubbled through the solution at atmospheric conditions for one minute and the sturry then poured into an excess of athanol. The polyethylene formed was filtered off, washed with water and actions and dried. The yield of polyethylene was 1.8 ml.

EXAMPLE 8

In this example, an active catalyst was prepared by reacting bis(pentamethylcyclopentadienyl)zirconium dimethyl (46 mg) with octadecaborane(22) (20 mg) in toluene (5 ml). There was considerable gas evolution. On passing ethylene through the solution for one minute, the solution grew hot. The visit was opened and acetone added to precipitate the polymer, which was filtered off, washed with acetone, and dried. The yield of polymer isolated was 0.32 c.

YAMPIE

In this example, an active catalyst was prepared by reacting bis(pentamethylcyclopentadienyl)zirnonium dimethyl (40 mg) with ri(fr-buly)ammonlum tridearhydrio-rachanudeaborate (30 mg) in bluene (50 ml) in a serum-cappad round-bottomed flask. The solution turned from coloriess to orange-yellow. On passing ethylen the solution for timults, the solution oraw hot ap olymer precipitated from solution.

EXAMPLE 10

In this example, an active catalyst was prepared in an NMR tube by combining 50 mg of bis[pentamethylyolopentadlenyl) zirconium dimethyl and 40 mg of thir[b-utylyammonlum1-carbacedoceaborate in 1 ml of hexadeuteriobenzene and placing the solution into the NMR tube. Bid eliseppearance of starting materials was then observed by "H NMR spectroscopy and when the starting materials had disappeared ethylene was incided into the NMR tube. Solid polymer precipitated from the solution.

EXAMPLE 11

In this example, an active catelyst was again prepared in an NMR tube by dissolving 100 mg of bis[1,3-bls(rimethylsily)] cyclopentadlenyl]zirconium dimethyl and 60 mg of tri(n-butyl) ammonium 1-carbadodecarborate in 1 ml of hexadeuteriobenzene and then placing the solution into the NMR tube. The disepperarence of starting materials was observed in the "14 NMR spectrum. When all of the starting zirconium compound had diseppeared, stythen was injected into the tube and solid polymer propipitate from solution.

EXAMPLE 12

In this example, an active catalyst was again formed in an NMR tube by dissolving 100 mg of (pentamethycylopentadieny) I,3-ble(trimethylisyloydopentadienyl)zironium dimethyl and 70 mg of trifin-bulylammonium 1-carbadodecaborate in 1 ml of havadeuterioberazers and then placing the solution in the NMR tube. Disappearance of starting material was followed by 1'H NMR spectrum and when all of the starting zironium compound had disappeared ethylene was injected into the tube. Solid ethylene polymer then praclidated from solution.

EXAMPLE 13

In this example, an active catelyst was prepared by suspending 80 mg bis(pentamethylcyclopentadienyi)zirconium dimethyl and 50 mg of bis(tri(n-buty)aimnoulmidodecaborate in 7 mi of toluene in a serum capped vlal. On mixing, the suspension turned from coloriess to yellow-greerf. Bubbling ethylene through the solution for 30 seconds caused e white polymer to form as the solution became warm. The vlal was opened and the polymer precipitated with ethanol. The yield of polyethylene was 0.13 g.

EXAMPLE 14

In this example, an active catalyst was prepared by reacting bis(pentamethylcyclopentadienyl/piz/condimethyl(s/G no) with tri(n-volyl)gammonium underabyridfot-carboundecaborate (30 mg) in blouene (5 ml) in a serum-capped vial. The solution turned from colorless tyellow. On passing ethylene through the solution for 30 seconds, the solution even hot as polymer precipitated.

EXAMPLE 15

in this example, an active catalyst was prepared by suspending 80 mg of bis(pentamethylcyclopentadie-nyl)zirconium dimethyl and 90 mg of NN-dimethylanilnium bis(7,8-dicarbaundecaboratol)cobatate(iii) in 5 mi of toluene in a serum-capped vial. The yellow solution turned organe-vollet with gas evolution. On passing ethylene through the solution for 30 seconds, the solution turned deep violet with considerable evolution of heat and became viscous. The vial was opened and the solids precipitated with ethanol. These were washed with 1090 aqueous sodium hydroxide solution, ethanol, acetone and hexane. The yield of polyethylene was 0.41 o.

EXAMPLE 16

In this example, an active catalyst was prepared by reacting bis(pentamethylcyclopentedienyi)zirconium of dimethyl (40 mg) with N,N-dimethylenilinium bis(7,8-dicarbeundecaborato)ferrate(iii) (45 mg) in toluens (10 mi) in a serum-capped vial. On pessing ethylene through the solution, the mixture grew hot as polymer formed. The vial was opened and the contents diluted with acetone, then filtered and dried. The yield of polymer isoleted with 0,33 d.

SO EXAMPLE 17

In this example, an active catalyst was prepared by reacting bis(pentamethylcyclopentadienyl/zirconlum (innethyl (40 my) with frin-bullylamnonium bis(7,6-dicarbaundechaptrol)ndrelse(iii) (18 mg) in toutene (30 mi) in a serum-capped round-bottomed flask. Einylene was passed through the solution for one minute. The solution grew hot as polymer precipitated from solution, the face twas opened and the contents distined with acetone. The solid polymer was filtered off, washed with acetone and dried. The yield of isolated polymer was 0.48 g.

EXAMPLE 18

In this example, an ective catelyst was prepared by suspending 100 mg of bis(methylcyclopentadienyl)zirconium dihydride and 180 mg of N.N-dimethyfanilinium bis(7,8-dicarbaundeaborato) cobatrote(iii) in 100 mt toluane in a 250 ml round bottomed flesk capped with a rubber septum. Ethylene was bubbled through the solution for 10 minutes. The flask was opened, the contents poured into hexane, filtered off and dried. The yield of polymer was 2,98 q.

EXAMPLE 19

50

In this example, an active catalyst was prepared by suspending 105 mg of bis[1,2-bis[trimethylell/li)clopentedlenyl/zirconium dimethyl and 90 mg of N.N-dimethylanilinum bis[7,8-dicarbeundecaborato]-cobaltateliii) in 30 ml of toluone in e 100 ml round bottomed flask capped with e rubber septum. Ethylene was bubbled through the solution for 10 minutes. The flask was opened and the contents poured into ethanol and eveporated. The yield of polymer was 2.7 a.

EXAMPLE 20

In this example, an ective catalyst was prepared by stirring 50 mg of bis(cyclopentedienyl)zirconium dimethyl and 50 mg of NN-dimethylamillinum bis(7.8-dicatavamdeaborato)coletate(III) is 60 mf of tolusen is a 5 100 ml round bottomed flask capped with a rubber septim. On passing ethylene throught the solution, no obvious reaction was observed for one minute, after which a pronounced turbidity could be seen. After 10 minutes, the flesk was opened, the contents diluted with ethanol and evaporated. The yield of polymer was 1.9

60 EXAMPLE 21

In this example, ethylene wes polymerized by resetting 69 mg of bis(cyclopentedlenyl)hafnium dimethyl with 9 mg of N.N-dimethylarillnium bis(7,8-dicenteundeaborato)cobalate(III) in 5 ml of ni of toluene in a septum-capped round bottomed flask. On passing ethylene through the solution, a pronounced turbidity eppeared efter 30 seconds as the solution grew hot. After 10 minutes, the solution was poured into ecetone, and the polymer filtered of and dried. The visid of linear polyethylene was 2.2 c.

EXAME	LE 22
-------	-------

In this example, ethylene was polymertized by reacting 50 mg of bis(trimethylsillyds)clopentadienyl)hafnum dimethyl with 45 mg of N,N-dimethylarillinium bis(7,8-dicarbaundecaborato) cobaltate(iii) in 5 mi of toluene in a serum-capped vial. On passing ethylene through the solution, polymer formed as the mixture grew hot. After 1 minute, the vial was opened and the content diluted with acetone and filtered off. The yield of linear polyethylene was 0,35 o.

EXAMPLE 23

In this example, ethylene and 1-butene were copolymerized in a toluene diluent by adding under a nitrogen atmosphere to a littler stainless-steel autoclave, previously flushed with introgen and containing ado om lof dry, oxygen-free toluene, 35 ml of a toluene solution containing a catalyst prepared in situ from 50 mg of bid(cyclopentadeny)zirconium dimethy and 45 mg of N.N-dimethylamillum bisi(7,6-disenbaundeaboratorobelta(bill), 1-Butene (200 ml) was added to the autoclave, which was further pressurized with 120 psig of ethylene. The autoclave was situred at 50° for 30 minutes, then cooled and ventuch. The contents were dired under a stream of air. The weight of the polymer isolated was 44.7 g. The melting point of the polymer was 17°C. and analysis by intra-red spectroscopy indicated that there were about 17° ethyl branches per 1000. 10

15

20

25

30

25

50

EXAMPLE 24

In this example, ethylene and 1-butene were copolymerized in a toluene diluent by adding under a nitrogen atmosphere to a liter stainless-steel autoclaw, previously flushed with nitrogen and containing 400 mild dry, oxygen-free toluene, 50 mild a catalyst solution in toluene containing 70 mg of bis(cyclopentadienyl)hafnium dimethyl and 45 mg of NN-dimethylanilinum bis(7.8-dicarbanulcaborato)cobattad(III). 1-butene (200 mil) was added to the autoclaw, which was further pressurtzed with 12-psig of ethylene. The autoclaw was stirred at 50° for 20 milutes, then cooled and vented. The contents were drided under a stream of air. The yield of isolated polymer was 75.1 g. The metting point of the polymer was 109°C and analysis by infra-red spectroscopy indicated that there were about 29 ethyl branches per 1000 cerbon atoms.

EXAMPLE 25

In this example, ethylene was polymerized by reacting 68 mg of 1-bis(cyclopentadlenyl)tinans-3-dimethylsallaryclobutane and 88 mg of N.N-dimethylsallarium bis(7,8-dicarbaundecaborato) cotalitate(iii) in 25 ml of toluene in a serum-capped round-bottomed flask. The solution darkened on passage of ethylene through it. After 10 minutes, the flask was opened and the contents diluted with ethanol. The polymer was filtered off, washed with ethanol and acctone, and dried. The yield of ophethylene isolated was 0.09 a.

EXAMPLE 29

In this example, ethylene was polymerized by reacting 61 mg of 1-bicl(cyclopentadieny)/2ircona-3-dimethylsilacyclobutane and 67 mg of Ny-dimethyladilinium bia/g-3-clorabuneaceborato cotaltate[iii] in 20 ml of toluone in a serum-capped round-bottomed flask. On passing ethylene through the solution, polymer precipitated as the solution grew warm. After 10 minutes, the value was opened and the contents diluted with ethanol. The precipitate was filtered off, washed with ethanol, and dried. The yield of polyethylene isolated was 141 o.

EXAMPLE 27

In this example, ethylene was polymerized by reacting 82 mg of 1-bis(cyclopentadlenyl)hafna-3-dimethylsillacyclobuther and 88 mg of Nh-dimethylanillanum bis(78-dicatanudeacborato) cobattate(III) n 20 ml of toluene in a serum-capped round-bottomed flask. On passing ethylene through the solution, polymer precipitated as the solution grew hot. After 5 minutes, the flask was opened and the contents distinct with ethanol. The polymer was filtered off, washed with ethanol, and dried. The yield of polyethylene isolated was 1.54 a.

EXAMPLE 28

In this example, ethylene was polymerted by reacting 67 mg of bis(cyclopentadionyl)zircontum(23-dimethyl-1,3-butadien) and 8 mg of N,N-dimethylarilinub ibs(7-dicatenhundeaboralo) cobattae(III) in 60 ml of toluene in a serum-capped bottie. Ethylene was passed through the solution, which gradually grew warm. After 15 minutes, the bottle was opened and the contents diluted with ethanol. The polymer was filtered off, washed with ethanol, and drief. The yeld of polymer isolated was 1.67 g.

EXAMPLE 29

In this example, ethylene was polymertzed by reacting 40 mg of ble(cyclopentadienyl)harhium(2,3-dimethyl-1,3-butadiene) with 43 mg of N,N-dimethylarillnium bis(7,8-dicarbaundecaborato) cobaltate(III) in 50 ml of toluene in a serum-capped bottle. Ethylene was passed through the solution, which became turbid within 30 seconds. After 20 minutes, the bottle was popend and the contents diluted with ethanol. The solid polymer was filtered off, washed with ethanol, and dried. The yield of polyethylene isolated was 0.43 g. **EXAMPLE 30**

In this example, ethylene was polymertzed by reacting 55 mg of (pentamethylcyclopentademyl) (tetramethyleta'-methylene -etae'-cyclopentademylzrochum phenyl and 45 mg of (Nh.-dhenthylanillhum bid/R-dicabaundecaborato)cobaltate(iii) in 20 ml of toluene in a serum-capped round-bottomed flask. On passing ethylene strough the solution, polymer formed almost instantly and much heat was evolved. After 5 minutes, the flask was opened and the contents diluted with ethanol. The precipitate was filtered off, washed with acetone, and dried. The yleid of polysthylene isolated was 0.55 g.

EXAMPLE 31

In this example, ethylene was polymerized by reacting 80 mg of (pentamethylcyclopentadienyl) (tetramethylcyclopentadienylmethylene) pathulum benzyl and 60 mg of 10.Nd-dimethylarillnum bis(P.8-clierabaundeaborsto)cobaltate(iii) in 50 ml of toluene in a serum-capped bottle. Ethylene was passed through the solution for 10 minutes. Polymer precipitated as the solution grew warm. The bottle was opened and the contents distrate with ethanol. The solid polymer was filtered off, washed with acetone, and dried. The yield of polyethylene isolated was 0.92 c.

EXAMPLE 32

In this exizinple, ethylene was polymerized by reacting 0.42 g of bleftrimethylellytoyclopentadienyl)harhum dimethyl with 0.08 g N.H.-dimethylellinibum blef(.8-dicarbundeeaborts)cobartaef(iii) in 1 on if otiuene. A portion of this solution (0.4 mi) was injected under a pressure of 3000 bar of loopar into an autoclawe pressured to 1500 bar with ethylene and heated to 160°. After 5 seconds the contents of the autoclawe were discharged. Linear polyethylene (2.1 g) with a weight-average molecular weight of 144,000 and a molecular weight definition of 2.0 was isolated.

While the present invention has been described and illustrated by reference to particular embodiments thereof, it will be appreciated by those of ordinary skill in the art that the same lends itself to variations not noessarily illustrated herein. For this reason, then, reference should be made solely to the appended claims for purposes of determining the true scope of the present invention.

Claims

30

35

ΔŊ

45

50

ബ

65

Method for preparing a catalyst comprising the steps of:

(a) combining, in a suitable eolvent or diluent, at least one first compound consisting of a bic(cyclopentaclenyl)metal compound containing at least one substituent capable of reacting with a proton, said metal being selected from the group consisting of titanium, zirconium and hafnium and at least one second compound comprising a cation, capable of donating a proton, and an and containing a plurality of boron stoms which is bulky, labile and capable of stabilizing the metal cation formed as a result of the reaction between the two compounds:

(b) maintaining the contacting in step (a) for a sufficient period of time to permit the proton provided by the cation of eald second compound to react with eald substituent contained in said metal compound; and

(c) recovering an active catalyst as a direct product or as a decomposition product of one or more of said direct products from Step (b).

2. Method according to Claim 1 wherein said bis(cyclopentadienvi)metal compound may be

represented by the following general formulae: (A-Cp)MX₁X₂ (A-Cp)ML and/or

(A-Cp)MX'1X'2 (Cp*)(CpR)MX1

Wherein

White a metal selected from the group consisting of titanium (TI), zirconium (Zr) and hefnium (HI); (A-Cp) is either (Cp)(Cp') or CPA*-CP' and Cp and Cp' are the same or different substituted or unsubstituted corporated on the control of the cont

3. Method according to Claim 1 or Claim 2 wherein said second compound may be represented by one of the following general formulae:

[L'-H][(CX)a(BX')mX"h]c-

Wherein:

L'-Hi setther H+, ammonium or a substituted ammonium nacical naving up to 3 hydrogen atoms replaced with a hydrocarbyl or substituted-hydrocarbyl ractical, a hopsophonium or substituted-hydrocarbyl ractical and the like; B and C are, respectively, boron and carbon; X, X and X" are radicals selected, independently, from the group consisting of hydride radicals, a hallor radicals, hydrocarbyl radicals and the like; a and b are integers \geq 0; c is an integer \geq 1; a + b + c = an even-numbered integer from 2 to about 8; and m is an integer ranging from 5 to about 2; and/or

5

15

50

[L'-H][[(CX₃)_{a'}(BX₄)_{m'}(X₅)_{b'}]o'-]₂Mn+]d-

Wherein:

L'-Hi si either H+, ammonium or a substituted ammonium radical having up to 3 hydrogen atoms replaced with a hydrocarbyl or substituted-hydrocarbyl madical, a phosphonium or substituted-hydrosphonium radical having up to 3 hydrogen atoms replaced with a hydrocarbyl or substituted-hydrocarbyl radioal and like; B, O, M and H нar, respectively, boron, carbon, a transition metal and hydrogen; N₃ X, and X s are radicals selected, independently, from the group consisting of hydride radicals, halide radicals, hydrocarbyl radioals, organo-metalloid radicals and the like; and b' are the same or a different integer ≥ 0; c' is an integer ≥ 2; a + b' + c' = an even-numbered integer from 4 to about 8; m' is an integer from 6 to about 12; nis an integer south that 2c' - n = d; and d is an integer ≥ 1.

4. Method according to any of the preceding claims wherein the contacting of step (a) is accomplished at a temperature within the range from about -100°C to about 300°C, preferably at from 0 to 45,000 psig. 5. Method according to any of the preceding claims wherein said second compound is represented by

the general formula:

[L'-H][(CH)ax(BH)bx]cx-

Wherein:

L'-H is either H+, ammonlum or a substituted-ammonlum optionally tri-substituted radical having up to 3 hydrogen atoms replaced with a hydrocarbyl or substituted-hydrocarbyl radical, a phosphonium or substituted-phosphonium radical having up to 3 hydrogen atoms replaced with a hydrocarbyl or substituted-hydrocarbyl radical and the like; B, C, and H are, respectively, boron, carbon and hydrogen; ax is either 0 or 1; cxl seither 2 or 1; ax + cx = 2; and bx is an integer ranging from 10 to 12.

6. Method according to Claim 6 wherein said second compound is selected from the group consisting of bis[tri(n-buty)] ammonium) dodecaborate and tri(n-buty)]ammonium 1-carbaundeca or 1-carbaddecaborate and said first compound is selected from the group consisting of bis[pentamethyloyclopentadlenyl):zirconium dimethyl, (pentamethyloyclopentadlenyl) (cyclopentadlenyl):zirconium dimethyl, and 13-bist(trimethysilin)/evolcopentadlenyl); (pentamethyloyclopentadlenyl); (pentamethyloyclopentadlen

7. Method according to any of Claims 1 to 4 wherein said second compound is represented by the following general formula:

[L'-H][(CH)av(BH)mvHbv]cv-

1.44 is aither H+, ammonium or a substituted-ammonium, optionally tris-substituted, racioal having up to 3 hydrogen atoms replaced with a hydrocaptal of or substituted-hydrocapty radical, a phosphonium or substituted-hydrocapty radical and the like; 8, C and H are, respectively, borno, carbon and hydrogen; as to substituted-hydrocapty radical and the like; 8, C and H are, respectively, borno, carbon and hydrogen; as an integer from 0 to 2; by is an integer from 0 to 3; ay + by + cy = 4; and mx is an integer from 8 to 18.

8. Method according to Claim 7 wherein said second compound is selected from the group consisting of tri(n-buty) ammonium 7.8-dicarbaundecaborate and tri(n-buty) ammonium tridecabydride-7-carbaundecaborate in which case preferably the first compound is bis(pentamethyleyclopentadienyl)z/cronium dimethyl and/or where in L'-It is H+, preferably 7.8-dicarbaundecaborane(13) or catadecaborane(22) in which case optionally said first compound is selected from the group consisting of bis(pentamethyleyclopentadienyl)z/cronium dimethyl and bis(ethylteramethyleyclopentadienyl)z/cronium dimethyl.

9. Method according to any of Claims 1 to 4 wherein said second compound may be represented by the following general formula:

[L'-H][[[(CH)az(BH)mzHbz]cz-]2MZnz+]dz-

L'-H is either H+, ammonium or a substituted ammonium radical having up to 3 hydrogen atoms replaced with a hydrocarbyl or substituted-hydrocarbyl radical, a phosphonium or substituted-hydrocarbyl radical and the phosphonium radical having up to 3 hydrogen atoms replaced with a hydrocarbyl or substituted-hydrocarbyl radical and the like; B. C. Hand MZ are, respectively, boron, carbon, hydrogen and a transition metal; as is an integer from 0 to 2; bz is an integer from 0 to 2; cz is either 2 or 3; mz is an integer from 9 to 11; az + bz + cz = 4; and rad dz are, respectively, 2 a 2 or 3 å 1.

 Method according to Claim 9 wherein sald second compound is NN-dimetriyhanilinium bis(undecalydrido-7,8-dicarbaundecaborato) cobaltate(iii) and/or wherein sald first compound is selected from the groups consisting of 1-bisicyolopartadienyi)thania-3-dimetryl-silacyolobutane, 1-bisicyolopartadienyi)tizconia-3-dimetrylisilacyolobutane, and 1-bisicyolopartadienyi)hafina-3-dimetryl-silacyolobutane, bisicyolobutane, bisicyolopartadienyi) ziroonium (2-3-dimetryl-1,3-butadiene) and bisicyolopartadienyi)

harfum/2.3-dimethyl-1.3-butediene), (pentamethylcyclopentadienyl) (tetramethylcyclopentadienylmylene)/circollum phenyl and (pentamethylcyclopentadienyll) (tetramethylcyclopentadienylmylene)/circollum phenyl and (pentamethylcyclopentadienyll) (etramethylcyclopentadienylmethylcyclopentadienylmethylcyclopentadienylmethylcyclopentadienylmethylcyclopentadienyllcyclo

11. Method for polymerizing an α -olefin, a diolefin and/or an acetylenically unsaturated compound containing from 2 to about 18 carbon atoms either alone or in combination with one or more other monomers comprising the steps of:

(a) contacting at a temperature within the range from about -100°C to about 300°C and at a pressure within the range from about 0 to about 45,000 psig, an olefin, diolefin and/or an acetylenically unsaturated monomer either alone or in combination with one or more other monomers in a suitable carrier, solvent or diluent with a catalyst prepared previously or in situ during polymeritarille by a method accordance to such the procedure selection.

polymerization by a method according to any of the preceding claims;
(b) continuing the contacting of etep (a) for a sufficient period of time to polymerize at least a

portion of said olefin;

(c) recovering a polymer product.

12. A catalyst prepared by a method according to any of Claims 1 to 10.

13. Polyolefin produced in accordance with the method of claim 11.

A-CohMX-B'

 A-CohMX-B

Wherein:

5

10

15

an

50

65

en

M is a metal selected from the group consisting of titanium (II), zirconium (2r) and hathium (H1); (A-Cp) is either (Cp)(Cp') or CP-A'-Cp' and Cp and Cp' are the seem or different abustituted or unsubstituted cyclopentaclieny radicals; A' is a covialent bridging group containing a Group IV-A element; X₁ is selected from the group consisting of hydride andleas, hydrocarby radicals, organo-metalloid radicals and the lise; and B' is a compatible non-coordinating anion which may be represented by one of the following general formulas:

[(CX)_a(BX')_mX"_b]cwherein:

B and C are, respectively, boron and carbon; X and X' and X" are radicals selected, independently, from the group consisting of hydride radicals, halide radicals, hydrocarbyl radicals, organo-metalloid radicals and the like; a and b are integers ≥ 0; o; is an integer ≥ 1.

a + b + c = an even-numbered integer from 2 to about 8; and m is an integer ranging from 5 to about 22; and 34

 $[[[(CX_3)_{a'}(BX_4)_{m'}(X_5)_{b'}]^{c'}]_2Mn+]d-$

Wherein:

B, C and M are, respectively, boron, carbon and a transition metal; X₃, X₄ and X₅ are radicals selected, independently, from the group consisting of hydride radicals, halide radicals, hydrocarbyl radicals, organo-metalloid radicals and the like; A' and b' are the same or a different integer ≥ 0; C' le an integer ≥ 2; a' + b' + c' = an even-numbered integer from 4 to about 8; m' is an integer from 6 to about 12; n is an integer such that Zc' - n = d; and is an integer ≥ 1.

15. Composition of matter according to Claim 14 wherein (A-Cp) is a bis(penalkyl-substituted cyclopentadienyl); X is an alkyl group; B' is (dodecalyndrido-7.8-clicarbaundecaborato) and M is zirconium and wherein each of the alkyl groups in the penalkyl-substituted cyclopentadienyl radicals are, independently, C1-C2s alkyl radicals and the alkyl group is a C1-C2s alkyl radical, the penalkyl substitution being preferably pentamentyl or ethylsteramently and the alkyl radical being preferably a methyl radical.

16

EP 88 30 0698

	DOCUMENTS CONS	IDERED TO BE RELEVA	NT	
Category	Citation of document with of relevant pa	indication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.4)
D,A	JOURNAL OF THE CHEMICAL COMMUNICAT 1610-1611; M. BOCHM "Synthesis and insecationic alkylbis(cyclopenta complexes" * Whole abstract *	TIONS, 1986, pages MANN et al.: ertion reactions of	1	C 08 F 4/64 C 08 F 4/76 C 08 F 10/00 C 07 F 17/00
D,A	EP-A-0 200 351 (MI * Whole document *	TSUI PETROCHEM)	1	
A	US-A-3 231 593 (W. * Claims; column 5, line 7; examples *	HAFNER et al.) line 71 - column 6,	1	
			İ	*
			TECHNICAL FIELDS SEARCHED (tot. CI.4)	
				C 08 F C 07 F
	¥			
		÷		
	The present search report has l	een drawn up for all claims		
THI	triace of search E HAGUE	Date of completion of the search 14-04-1988	DE	ROECK R.G.
X : par V : par	CATEGORY OF CITED DOCUME ticularly relevant if taken alone ticularly relevant if combined with an nument of the same category	E : earlier patent after the filing other D : document elte	ciple underlylog the document, bot pob g date of lo the application d for other reasons	ished on, or