# AI프로그래밍

- 3주차

인하 공전 컴퓨터 정보과 민 정혜

# 오늘 수업 순서

- 지난 주 내용 복습
- 선형 회귀 실습 (linear regression)
- 경사하강법

### 머신 러닝





# 머신 러닝



# 머신 러닝 - 예제



## 회귀 (regression)

#### ■ 데이터를 이용하여 결과를 예측 하는 함수를 도출 y=f(x)

#### ■ 선형 회귀

- 입력 값 x가 1차원일때
- 직선의 방정식
- Y=ax+b
- $\Rightarrow$ Y =wx+b, w: weight, b: bias

| 키(단위: cm) | 몸무게(단위: kg) |
|-----------|-------------|
| 174       | 71          |
| 152       | 55          |
| 138       | 46          |
| 128       | 38          |
| 186       | 88          |
|           |             |

| 공부한 시간 | 2    | 4    | 6    | 8    |
|--------|------|------|------|------|
| 성적     | 81   | 93   | 91   | 97   |
| 예측 값   | 83.6 | 88.2 | 92.8 | 97.4 |



참고자료 : 딥러닝 express

8

97

97,4

- 공부한 시간(x)과 성적 (y)
- Y=wx+b 로 예측
- 오차를 최소화 하는 w와 b 찾기



그림 3-4 공부한 시간과 성적의 관계도



공부한 시간

성적

예측 값

2

81

83.6

그림 3-5 임의의 직선 그려보기



6

91

92.8

4

93

88.2

그림 3-6 임의의 직선과 실제 값 사이의 거리

오차

# 선형 회귀 예제



그림 3-7 기울기를 너무 크게 잡았을 때의 오차



그림 3-8 기울기를 너무 작게 잡았을 때의 오차

#### 선형 회귀 예제 실습

| x | Υ   |
|---|-----|
| 0 | 3   |
| 1 | 3.5 |
| 2 | 5.5 |
|   |     |



```
import numpy as np
import matplotlib.pyplot as plt
X = np.array([0.0, 1.0, 2.0])
y = np.array([3.0, 3.5, 5.5])
         # 기울기
w = 0
         # 절편
b = 0
Irate = 0.01 # 학습률
epochs = 1000 # 반복 횟수
n = float(len(X)) # 입력 데이터의 개수
# 경사 하강법
for i in range(epochs):
  y_pred = w*X + b
                                                 # 선형 회귀 예측값
                                     # 넘파이 배열간의 산술 계산은 요소별로 적용
  dw = (2/n) * sum(X * (y_pred-y))
                                     # sum()은 모든 요소들의 합을 계산하는 내장 함수
  db = (2/n) * sum(y_pred-y)
                                     # 기울기 수정
  w = w - Irate * dw
  b = b - lrate * db
                                     # 절편 수정
# 기울기와 절편을 출력한다.
print (w, b)
# 예측값을 만든다.
y_pred = w*X + b
# 입력 데이터를 그래프 상에 찍는다.
plt.scatter(X, y)
# 예측값은 선그래프로 그린다.
plt.plot([min(X), max(X)], [min(y_pred), max(y_pred)], color='red')
plt.show()
```



| X | Υ   |
|---|-----|
| 0 | 3   |
| 1 | 3.5 |
| 2 | 5.5 |
|   |     |

```
# 경사 하강법
import numpy as np
                                                         for i in range(epochs):
import matplotlib.pyplot as plt
                                                           y_pred = w*X + b
                                                                                # 선형 회귀 예측값
                                                           dw = (2/n) * sum(X * (y_pred-y)) # 넘파이 배열간의 산술 계산은 요소별로 적용
                                                           db = (2/n) * sum(y_pred-y) # sum()은 모든 요소들의 합을 계산하는 내장 함수
def mse(y,y hat):
                                                           w = w - Irate * dw # 기울기 수정
  return ((y-y_hat)**2).mean()
                                                           b = b - Irate * db # 절편 수정
                                                           if (i\%50==0):
def mse val(y,predict result):
                                                             print('iteration %3d: loss %4.2f w %3.2f b %3.2f '%(i,mse(y,y_pred),w,b))
 return mse(np.array(y),np.array(predict result))
                                                         # 기울기와 절편을 출력한다.
                                                         print ('######## final w,b',w, b)
X = np.array([0.0, 1.0, 2.0])
y = np.array([3.0, 3.5, 5.5])
                                                        # 예측값을 만든다.
                                                        y \text{ pred} = w*X + b
       # 기울기
w = 0
       # 절편
b = 0
                                                        # 입력 데이터를 그래프 상에 찍는다.
Irate = 0.01 # 학습률
                                                         plt.scatter(X, y)
epochs = 500 # 반복 횟수
                                                        # 예측값은 선그래프로 그린다.
n = float(len(X)) # 입력 데이터의 개수
                                                         plt.plot([min(X), max(X)], [min(y_pred), max(y_pred)], color='red')
                                                         plt.show()
```

첫번째 loss 값과 w,b 값을 저에게 채팅으로 보내 주세요.

```
for i in range(epochs):
    y_pred = w*X + b # 선형 회귀 예측값
    dw = (2/n) * sum(X * (y_pred-y)) # 넘파이 배열간
의 산술 계산은 요소별로 적용
    db = (2/n) * sum(y_pred-y) # sum()은 모든 요소
들의 합을 계산하는 내장 함수
    w = w - lrate * dw # 기울기 수정
    b = b - lrate * db # 절편 수정
    if (i%50==0):
        print('iteration %3d: loss %4.2f w %3.2f b %3.2f
'%(i,mse(y,y_pred),w,b))
```

```
iteration 0: loss 17.17 w 0.10 b 0.08
iteration 50: loss 0.61 w 1.73 b 1.71
iteration 100: loss 0.33 w 1.73 b 2.05
iteration 150: loss 0.24 w 1.63 b 2.23
iteration 200: loss 0.19 w 1.53 b 2.36
iteration 250: loss 0.16 w 1.47 b 2.45
iteration 300: loss 0.15 w 1.41 b 2.52
iteration 350: loss 0.14 w 1.37 b 2.58
iteration 400: loss 0.13 w 1.34 b 2.62
iteration 450: loss 0.13 w 1.32 b 2.65
########### final w,b 1.3033228991130752
2.6760184293088694
```

1.25 2.74

#### 선형 회귀 예제 실습

| X | Υ   |
|---|-----|
| 0 | 3   |
| 1 | 3.5 |
| 2 | 5.5 |
|   |     |



```
import matplotlib.pylab as plt
from sklearn import linear_model
# 선형 회귀 모델을 생성한다.
reg = linear model.LinearRegression()
# 데이터는 파이썬의 리스트로 만들어도 되고 아니면 넘파이의 배열로 만들어도 됨
                               # 반드시 2차원으로 만들어야 함
X = [[0], [1], [2]]
                               # y = x + 3
y = [3, 3.5, 5.5]
# 학습을 시킨다.
reg.fit(X, y)
                               # 직선의 기울기
print(reg.coef_)
                   # 직선의 v-절편
print(reg.intercept_)
print(reg.score(X, y))
print(req.predict([[5]]))
# 학습 데이터와 y 값을 산포도로 그린다.
plt.scatter(X, y, color='black')
# 학습 데이터를 입력으로 하여 예측값을 계산한다.
y_pred = reg.predict(X)
# 학습 데이터와 예측값으로 선그래프로 그린다.
# 계산된 기울기와 y 절편을 가지는 직선이 그려진다.
plt.plot(X, y pred, color='blue', linewidth=3)
plt.show()
```



#### Numpy

```
indexing으로 길이가 1인 새로운 축 추가 : arr(:, np.newaxis,:)

a = np.array([1., 2., 3., 4.])

shape : (4,)

a[:, np.newaxis]

array([[1.],
[2.],
[3.],
[4.]])

shape : (4, 1)
```

```
import numpy as np
arr = np.array([1, 2, 3, 4])
arr1=arr
arr2=arr[np.newaxis]
arr3=arr[:, np.newaxis]
print(arr1, arr1.shape)
print(arr2,arr2.shape)
print(arr3, arr3.shape)
arr1 [1 2 3 4] (4,)
arr2 [[1 2 3 4]] (1, 4)
arr3 [[1] [2] [3] [4]] (4, 1)
```

#### 선형 회귀 예제 실습 – 당뇨병 예제



Bmi와 혈당간의 관계 예측

diabetes\_X, diabetes\_y = datasets.load\_diabetes(return\_X\_y=True)
print('diabetes\_X',diabetes\_X.shape )

# 하나의 특징(BMI)만 추려내서 2차원 배열로 만든다. BMI 특징의 인덱

스가 2이다.
diabetes\_X\_new0 = diabetes\_X[:, 2]
print('diabetes\_X\_new0',diabetes\_X\_new0.shape )
diabetes\_X\_new = diabetes\_X\_new0[:, np.newaxis]
print('diabetes\_X\_new',diabetes\_X\_new.shape )



```
diabetes_X (442, 10)
diabetes_X_new0 (442,)
diabetes_X_new (442, 1)
```

#### 선형 회귀 예제 실습



#### 442개

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(diabetes_X_new, diabetes_y, test_size=0.1, random_state=0)
print('X_train',X_train.shape )
print('X_test',X_test.shape )
print('Y_train',y_train.shape )
print('Y_test',y_test.shape )
X train (397, 1)
X test (45, 1)
Y train (397,)
Y test (45,)
```

#### 선형 회귀 예제 실습 – 당뇨병 예제

```
import matplotlib.pylab as plt
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn import datasets, linear_model
# 당뇨병 데이터 세트를 적재한다.
diabetes X, diabetes y = datasets.load diabetes(return X y=True)
print('diabetes_X',diabetes_X.shape )
# 하나의 특징(BMI)만 추려내서 2차원 배열로 만든다. BMI 특징의 인덱스가 2이다.
diabetes X new0 = diabetes X[:, 2]
print('diabetes X new0',diabetes X new0.shape )
diabetes_X_new = diabetes_X[:, np.newaxis, 2]
print('diabetes_X_new',diabetes_X_new.shape )
# 학습 데이터와 테스트 데이터를 분리한다.
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(diabetes X new, diabetes y, test size=0.1,
random_state=0)
print('X_train',X_train.shape)
print('X test',X test.shape)
print('y_train',y_train.shape)
print('y_test',y_test.shape)
regr = linear_model.LinearRegression()
regr.fit(X train, y train)
# 테스트 데이터로 예측해보자.
y_pred = regr.predict(X_test)
print(regr.predict([[0.01]])) # bmi가 0.01일때 혈당 예측값
# 실제 데이터와 예측 데이터를 비교해보자.
# plt.plot(y_test, y_pred, '.')
```

plt.scatter(X\_test, y\_test, color='black')

plt.show()

plt.plot(X\_test, y\_pred, color='blue', linewidth=3)

자료실의 diabetes\_exe.ipynb Bmi가 0.025일때의 혈당의 예측 값을 채팅으로 보내주세요



### 선형 회귀 예제 실습

다음은 집의 면적 당 가격을 정리한 표이다.

| 면적 | 5  | 7  | 12 | 13 | 19 |
|----|----|----|----|----|----|
| 가격 | 12 | 19 | 28 | 37 | 48 |

자료실의 regression1.ipnb 프로그램을 이용하여 (학습률은 0.001로 변경하시오)

- 1) 선형회귀로 분석 하여 직선의 방정식 y=wx+b를 구하여라
- 2) 면적이 10일때의 가격을 예측해보자.

w,b, 면적이 10일때의 가격의 예측 값을 채팅으로 보내주세요.

### 선형 회귀 예제 실습

다음은 CPU 속도와 프로그래밍 수행 시간을 정리한 표이다.

| CPU   | 30 | 50  | 80  | 90  | 120 |
|-------|----|-----|-----|-----|-----|
| 수행 시간 | 70 | 140 | 145 | 170 | 260 |

자료실의 regression2.ipnb 프로그램을 이용하여

- 1) 선형회귀로 분석 하여 직선의 방정식 y=wx+b를 구하여라
- 1) CPU 속도가 100일때의 수행 시간을 예측 하시오.

w,b, CPU 속도가 100일때의 수행시간 예측 값을 예측 값을 채팅으로 보내주세요.

## 오차 계산하기 (1)

| 공부한 시간(x)   | 2  | 4          | 6  | 8   |
|-------------|----|------------|----|-----|
| 성적(실제 값, y) | 81 | 93         | 91 | 97  |
| 예측 값        | 82 | 88         | 94 | 100 |
| 오차          | 1  | <b>-</b> 5 | 3  | 3   |

- 이렇게 해서 구한 오차를 모두 더하면 1 + (-5) + 3 + 3 = 2가 됨
- 이 값은 오차가 실제로 얼마나 큰지를 가늠하기에는 적합하지 않음
- 오차에 양수와 음수가 섞여 있어서 오차를 단순히 더해 버리면 합이 0이 될 수도 있기 때문임
- 부호를 없애야 정확한 오차를 구할 수 있음

오차=loss=손실 함수

# 오차 계산하기 (2)

평균 제곱 오차(Mean Squared Error, MSE) :

오차의 합에 이어 각 x 값의 평균 오차를 이용함 위에서 구한 값을 n으로 나누면 오차 합의 평균을 구할 수 있음

평균 제곱 오차(MSE) = 
$$\frac{1}{n}\sum (\hat{y}_i - y_i)^2$$

• 선형 회귀란 :

임의의 직선을 그어 이에 대한 평균 제곱 오차를 구하고, 이 값을 가장 작게 만들어 주는 a와 b 값을 찾아가는 작업임

#### 오차 수정하기 : 경사 하강법

- Y=ax
- 오차가 가장 작은 지점은?









- 컴퓨터를 이용해 m의 값을 구하려면 임의의 한 점 $(a_1)$ 을 찍고 이 점을m 에 가까운 쪽으로 점점 이동 $(a_1 
  ightarrow a_2 
  ightarrow a_3)$ 시키는 과정이 필요함
- 경사 하강법(gradient descent):

그래프에서 오차를 비교하여 가장 작은 방향으로 이동시키는 방법이 있는데 바로 <mark>미분 기울기를</mark> 이용

- $y = x^2$  그래프에서 x에 다음과 같이  $a_1$ ,  $a_2$ 그리고 m을 대입하여 그 자리에 서미분하면 그림 4-2처럼 각점에서의 순간 기울기가 그려짐
  - 여기서 눈여겨 봐야 할 것은 우리가 찾는 최솟값 m에서의 순간 기울기임
  - 그래프가 이차 함수 포물선이므로 꼭짓점의 기울기는 x축과 평행한 선이 됨
  - 즉, 기울기가 0임
  - 우리가 할 일은 '미분 값이 0인 지점'을 찾는 것이 됨



- 1 | *a*<sub>1</sub> 에서 미분을 구함
- 2 | 구해진 기울기의 반대 방향 (기울기가 +면 음의 방향, -면 양의 방향)으로 얼마간 이동시킨  $a_2$ 에서 미분을 구함(그림 4-3 참조).
- 3 | 위에서 구한 미분 값이 0이 아니면 위 과정을 반복함



- 최솟값을 구하기 위해서는 이차 함수에서 미분을 해야 함
- 그 이차 함수는 평균 제곱 오차를 통해 나온다는 것임
- 평균 제곱 오차의 식을 다시 옮겨 보면 다음과 같음

$$\frac{1}{n}\sum (\hat{y}_i - y_i)^2$$

• 여기서  $\hat{y}_i$ 은  $x_i$  를 집어 넣었을 때의 값이므로  $y_i = ax_i + b$  를 대입하면 다음과 같이 바뀜

$$\frac{1}{n}\sum \left( \left( ax_i + b \right) - y_i \right)^2$$

# a로 편미분한 결과 유도 과정

$$\frac{a}{\partial a}MSE(a,b) = \frac{1}{n} \sum \left[ (ax_i + b - y_i)^2 \right]'$$

$$= \frac{2}{n} (ax_i + b - y_i) \left[ (ax_i + b - y_i) \right]'$$

$$= \frac{2}{n} \sum (ax_i + b - y_i) x_i$$

#### b로 편미분한 결과 유도 과정

$$\frac{a}{\partial a}MSE(a,b) = \frac{1}{n} \sum \left[ (ax_i + b - y_i)^2 \right]'$$

$$= \frac{2}{n} (ax_i + b - y_i) \left[ (ax_i + b - y_i) \right]'$$

$$= \frac{2}{n} \sum (ax_i + b - y_i)$$

```
y_pred = a * x_data + b # 오차 함수인 y = ax + b를 정의한 부분
error = y_data - y_pred # 실제값 - 예측값, 즉 오차를 구하는 식
# 평균 제곱 오차를 a로 미분한 결과
a_diff = -(2 / len(x_data)) * sum(x_data * (error))
# 평균 제곱 오차를 b로 미분한 결과
b_diff = -(2 / len(x_data)) * sum(y_data - y_pred)
```

```
a = a - lr * a_diff # 미분 결과에 학습률을 곱한 후 기존의 a값을 업데이트 
 <math>b = b - lr * b_diff # 미분 결과에 학습률을 곱한 후 기존의 b값을 업데이트
```

#### 선형 회귀 예제 실습

| x | Υ   |
|---|-----|
| 0 | 3   |
| 1 | 3.5 |
| 2 | 5.5 |
|   |     |



```
import numpy as np
import matplotlib.pyplot as plt
X = np.array([0.0, 1.0, 2.0])
y = np.array([3.0, 3.5, 5.5])
         # 기울기
w = 0
         # 절편
b = 0
Irate = 0.01 # 학습률
epochs = 1000 # 반복 횟수
n = float(len(X)) # 입력 데이터의 개수
# 경사 하강법
for i in range(epochs):
  y_pred = w*X + b
                                                 # 선형 회귀 예측값
                                     # 넘파이 배열간의 산술 계산은 요소별로 적용
  dw = (2/n) * sum(X * (y_pred-y))
                                     # sum()은 모든 요소들의 합을 계산하는 내장 함수
  db = (2/n) * sum(y_pred-y)
                                     # 기울기 수정
  w = w - Irate * dw
  b = b - lrate * db
                                     # 절편 수정
# 기울기와 절편을 출력한다.
print (w, b)
# 예측값을 만든다.
y_pred = w*X + b
# 입력 데이터를 그래프 상에 찍는다.
plt.scatter(X, y)
# 예측값은 선그래프로 그린다.
plt.plot([min(X), max(X)], [min(y_pred), max(y_pred)], color='red')
plt.show()
```

### 선형 회귀 예제 실습

```
iteration 0: loss 17.17 w 0.10 b 0.08
iteration 50: loss 0.61 w 1.73 b 1.71
iteration 100: loss 0.33 w 1.73 b 2.05
iteration 150: loss 0.24 w 1.63 b 2.23
iteration 200: loss 0.19 w 1.53 b 2.36
iteration 250: loss 0.16 w 1.47 b 2.45
iteration 300: loss 0.15 w 1.41 b 2.52
iteration 350: loss 0.14 w 1.37 b 2.58
iteration 400: loss 0.13 w 1.34 b 2.62
iteration 450: loss 0.13 w 1.32 b 2.65
########### final w,b 1.3033228991130752
2.6760184293088694
```

1.25 2.74

- 손실 함수 y = (x-3)²+10²
- 그래디언트: y' = 2x-6



• 손실 함수 
$$y = (x-3)^2 + 10$$

■ 그래디언트: y' = 2x-6

■ 학습률: 0.2

■ X=10, y'=14, <mark>0.2</mark>\*14=2.8,

Gradient의 반대 방향 => -2.8

10-2.8=7.2

**X=7.2, Y=8.4, 0.2\*8.4=** 



그림 6-12 그래디언트의 계산

```
import numpy as np
import matplotlib.pyplot as plt
x = 10
learning rate = 0.2
precision = 0.00001
max iterations = 100
# 손실함수를 람다식으로 정의한다.
loss func = lambda x: (x-3)**2 + 10
# 그래디언트를 람다식으로 정의한다. 손실함수의 1차 미분값이다.
gradient = lambda x: 2*x-6
list1 = []
list2 = []
# 그래디언트 강하법
for i in range(max_iterations):
   x = x - learning rate * gradient(x)
   list1.append(x)
   list2.append(loss func(x))
   print("X=", x, "loss", loss func(x))
print("최소값 = ", x)
x1 = np.linspace(0.0, 10.0)
y1 = loss func(x1)
fig, ax = plt.subplots() # Create a figure containing a single axes.
ax.plot(x1,y1) # Plot some data on the axes.
ax.plot(list1,list2, '*') # Plot some data on the axes.
```

grad2\_exe.ipynb

```
f(x,y) = x^2 + y^2
```

grad3.ipynb 실습

```
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(-5, 5, 0.5)
y = np.arange(-5, 5, 0.5)
X, Y = np.meshgrid(x, y) # 참고 박스
Z = X**2 +Y**2 # 넘파이 연산
fig = plt.figure(figsize=(6,6))
ax = fig.add_subplot(111, projection='3d')
# 3차원 그래프를 그린다.
ax.plot surface(X, Y, Z)
plt.show()
```



```
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(-5,5,0.5)
y = np.arange(-5,5,0.5)
X, Y = np.meshgrid(x,y)
U = -2*X
V = -2*Y
plt.figure()
Q = plt.quiver(X, Y, U, V, units='width')
plt.show()
```

# 경서 하강법 실습





이것은 마치 산에서 내려오는 것과 유사합니다. 현재 위치에서 산의 기울기를 계산하여서 기울기의 반대 방향으로 이동하면산에서 내려오게 됩니다.

- 그림 4-3처럼 기울기가 0인 한 점( m )으로 수렴함



경사 하강법 :

이렇게 반복적으로 기울기 a를 변화시켜서 m의 값을 찾아내는 방법을 말함

그림 4-3 최솟점 m을 찾아가는 과정

#### 경서 하강법 실습

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 공부 시간 X와 성적 Y의 리스트를 만들기
data = [[2, 81], [4, 93], [6, 91], [8, 97]]
x = [i[0] \text{ for } i \text{ in data}]
y = [i[1] \text{ for } i \text{ in data}]
# 그래프로 나타내기
plt.figure(figsize=(8,5))
plt.scatter(x, y)
plt.show()
#리스트로 되어 있는 x와 v 값을 넘파이 배열로 바꾸기(인덱스를 주어 하나씩 불러와 계산이 가능하게 하기 위함)
x_{data} = np.array(x)
y data = np.array(y)
# 기울기 a와 절편 b의 값 초기화
a = 0
b = 0
```

| 공부한 시간 | 2    | 4    | 6    | 8    |
|--------|------|------|------|------|
| 성적     | 81   | 93   | 91   | 97   |
| 예측 값   | 83.6 | 88.2 | 92.8 | 97.4 |

#### # 학습률 정하기

1r = 0.05

```
# 몇 번 반복될지 설정(0부터 세므로 원하는 반복 횟수에 +1)
epochs = 2001

# 경사 하강법 시작
for i in range(epochs): # 에포크 수만큼 반복

y_pred = a * x_data + b # y를 구하는 식 세우기
error = y_data - y_pred # 오차를 구하는 식
# 오차 함수를 a로 미분한 값
a_diff = -(1/len(x_data)) * sum(x_data * (error))
# 오차 함수를 b로 미분한 값
b_diff = -(1/len(x_data)) * sum(y_data - y_pred)
```

#### 경서 하강법 실습

```
a = a - lr * a_diff # 학습률을 곱해 기존의 a값 업데이트
   b = b - lr * b_diff # 학습률을 곱해 기존의 b값 업데이트
   if i % 100 == 0: # 100번 반복될 때마다 현재의 a값, b값 출력
       print("epoch=%.f, 기울기=%.04f, 절편=%.04f" % (i, a, b))
# 앞서 구한 기울기와 절편을 이용해 그래프를 다시 그리기
y_pred = a * x_data + b
plt.scatter(x, y)
plt.plot([min(x_data), max(x_data)], [min(y_pred), max(y_pred)])
plt.show()
```



epoch=0, 기울기=23,2000, 절편=4,5250

epoch=100, 기울기=7.9316, 절편=45.3932

epoch=200, 기울기=4.7953, 절편=64.109

epoch=300, 기울기=3.4056, 절편=72.4022

(중략)

epoch=1800, 기울기=2.3000, 절편=79.0000

epoch=1900, 기울기=2.3000, 절편=79.0000

epoch=2000, 기울기=2,3000, 절편=79,0000

- colab\_03\_Linear\_Regression.ipynb 실행
- 학습률 Ir=0.0003 일때의 첫번째와 두번째 loss => 채팅으로 보내기
- 학습률 Ir=0.0009 일때의 첫번째와 두번째 loss => 채팅으로 보내기

#### 학습률 실습

• 구글의 텐서 플로우 플레이그라운드는 이주 유용한 사이트 (https://playground.tensorflow.org)이다.



# 학습률 실습



## 수업 내용 요약

- 손실 함수 (오차=loss)는 경사 하강법으로 감소 시킴
- 경사 하강법
  - 손실 함수(오차)를 미분한 값(기울기)의 반대 방향으로 진행 하여 최소값을 찾아감
  - 학습률에 비례 하여 진행
  - 학습률에 따라 최소값에 도달하는 시간과 정확도가 정해짐

matplotlib -7 224th 2217

# 수고 하셨습니다

jhmin@inhatc.ac.kr