Q. 05	a.	Describe the operations of the Phase gate (S-gate) and show that the S-gate can be formed by connecting two T-gates in series.	09	3	L4
	b.	Describe the working of the Controlled NOT gate and mention its matrix representation and truth table	07	2	L3
	c.	Find the probability that we find in the qubit in the state 0> and 1>,	04	2	L3
		i. $ \psi> = \frac{1}{\sqrt{3}} 0> + \sqrt{\frac{2}{3}} 1>$	5004 5041		
		ii. $ \psi>=\frac{1}{2} 0>+\frac{\sqrt{3}}{2} 1>$			
		OR			
0.06			00	2	98 7 38 0
Q. 06	a.	Visualize the Qubit state $ \psi\rangle$ on a 3D Bloch sphere by determining the appropriate polar angle (Θ) and azimuthal angle (φ)	09	3	L4
	b.	Explain the Pauli matrices and apply Pauli matrices in the state 0> and	07	2	1.2
	0.	> and matrices and apply Fault matrices in the state 0 and	07	2	L3
	c.	Consider the following two kets $ \psi\rangle = \begin{pmatrix} -3i \\ 8i \\ 1 \end{pmatrix}$ and $ \phi\rangle = \begin{pmatrix} 1 \\ 0 \\ 5i \end{pmatrix}$.	04	2	L3
		i. Find $ \psi>^*$ and $ \phi>^*$	* *		
		ii. Are $ \psi\rangle$ and $ \phi\rangle$ orthogonal?			
		Module -4			
Q. 07	a.	Based on the DC Josephson effect, explain the construction and working	08	3	L4
		of DC SQUID with a neat diagram.	00	5	L4
	b.	Describe the Fermi factor based on the variation of energy value and	08	2	L3
		temperature, and analyze their occupancy with a neat diagram.	2000		20
	c.	The superconducting transition temperature of Lead is 7.26K. Calculate	04	2	L3
		the critical magnetic field at 0K given the critical Field at 5K is			
		33.644×10 ³ A/m.			
		ŌR	i i i i i i i i i i i i i i i i i i i	1	
Q. 08	a.	Verify the failures of the classical free electron theory of different metals	08	3	L4
		in explaining electrical conductivity dependence on temperature and			
	-	electron concentration.	00	_	
	b.	Explain Meissner's Effect also discuss the variation of the critical magnetic field with the temperature of a superconductor.	08	2	L3
	c.	Find the temperature at which there is a 1% probability that a state with	04	2	L3
		energy 0.05 eVabove Fermi energy is occupied.	••		125
		Module -5	1 - 12 may	* * * * * * * * * * * * * * * * * * *	
Q. 09	a.	Discuss the salient features of Normal distribution using bell curves.	06	2	L3
	b.	Analyze the odd rule and odd rule scenarios with a suitable example.	10	3	L4
		Given the base distance is 2m for the slow-in-motion. Find the distance			
		covered between frames 2 nd and 3 rd , 1 st and 5 th frame.			
	c.	In the case of the Jump action, the push height is 0.4m and the Jump	04	2	L3
		magnification is 5. Calculate the jump height, and push acceleration.			
		Acceleration due to gravity = 9.8 m/s^2 .	5 5 - #5 V#2/VIE		
		OR			91
Q. 10	a.	Elucidate the importance of Size & Scale, Weight & Strength in	06	2	L3
	L	Animation.	10		¥ 4
	b.	Estimate the value of Pi by explaining the Monte Carlo method. At a place, a volcanic eruption occurs twice in 100 years. Calculate the	10	3	L4
		probability at $K = 0, 1, 2, 3$ assuming the Poisson Model and $\lambda = 2$.			
	c.	While animating speeding up car animation, the total distance covered	04	2	L3
		over 7 frames is 0.18m. Calculate the base distance by using Odd rule	04	-	LJ
		Multipliers.			
1. 1. 1. 1. 1. 1. 1.	4 4 4 4	*********************	ىلەر كەر كەر كەر كەر كەر كەر كەر كەر	ماد ماد ماد ماد	

Maharaja Education Trust (R), Mysuru

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

An Autonomous Institute, affiliated Visvesvaraya Technological University, Belagavi Belawadi, Srirangapatna Taluk, Mandya – 571 477 Approved by AICTE, New Delhi |Recognized by Govt. of Karnataka|

First Semester B.E Degree Examination, February/March 2024 Applied Physics for CSE Stream

Duration: 3 hrs

Max. Marks: 100

Note: 1. Answer five full questions choosing one complete question from each module.

2. Formula Hand Book is permitted

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Questions	M	CO	1.
		Module -1			
Q. 01	a.	Deduce the expression for the energy density of radiation at thermal equilibrium in terms of Einstein's coefficients and thus conclude on B ₁₂ = B ₂₁ .	08	3	L4
	b.	Discuss the application of LASER in the laser Printer and Laser Cooling.	08	2	L3
	c.	A medium in thermal equilibrium at a temperature of 330 K has two energy levels with a wavelength separation of 2 μm. Find the ratio of population densities of upper and lower energy states.	04	2	L3
		OR	-	-	<u> </u>
Q. 02	a.	Study the construction and working of Semiconductor LASER with a neat sketch and energy level diagram to produce LASER of wavelength nearly 887 nm.(E _g =1.4 eV)	08	3	L4
	b.	Describe attenuation and explain the various fiber losses.	08	2	L3
	c.	The angle of acceptance of an optical fiber is 30° when kept in the air. Find the angle of acceptance when it is in a medium of refractive index 1.33.	04	2	L3
		Module -2	CODE .	1	
Q. 03	a.	Setup time independent Schrodinger wave equation for a free particle in one dimension.	09	2	L3
	b.	Discuss the wave function and its physical significance in explaining the concept of matter waves.	06	2	L3
	c.	An electron is bound in a one-dimensional potential well of width 10 nm of infinite height. Find its energy values in eV in the ground state and the first two excited states.	05	2	L3
		OR		i filmone	- PE
Q. 04	a.	Assuming time independent Schrodinger wave equation, obtain expression for Eigen energy and Eigen function for a particle in an one dimensional infinite potential well. Also, derive the expression for the normalized wave function.	09	2	L3
	b.	Using Heisenberg's uncertainty principle show that an electron does not exist inside the nucleus.	06	2	L3
	c.	An electron is associated with a de-Broglie wavelength of 8 nm. Calculate the energy of the electron in eV and also calculate its momentum.	05	2	L3