Estimation using structural mean models with multiple instruments

Tom Palmer¹ Paul Clarke² Frank Windmeijer^{2,3,4}

- 1. MRC CAITE Centre, School of Social and Community Medicine, University of Bristol, UK 2. CMPO. University of Bristol, UK
 - 3. Department of Economics, University of Bristol, UK 4. CEMMAP/IFS, London, UK

14 September 2011

Outline

- Introduction to Mendelian randomization example
- Potential outcomes and causal parameters
- Multiplicative structural mean model
 - ► Identification, G-estimation
 - ► GMM & Hansen over-id test
 - ► Implementation in Stata & R
 - Example estimates
 - ► Alternative parameterisation
 - Multiple instruments
 - ► Local risk ratios
- ► (double) Logistic SMM
 - ▶ Joint estimation of association & causal models
- Including covariates
- Summary

Introduction to Mendelian randomization example

▶ Mendelian randomization: use of genotypes robustly associated with exposures (from replicated genome-wide association studies, $P < 5 \times 10^{-8}$) as instrumental variables (Davey Smith & Ebrahim, 2003)

Introduction to Mendelian randomization example

▶ Mendelian randomization: use of genotypes robustly associated with exposures (from replicated genome-wide association studies, $P < 5 \times 10^{-8}$) as instrumental variables (Davey Smith & Ebrahim, 2003)

Copenhagen General Population study (N=55,523)

Example descriptive statistics 1

	No Hypertension	Hypertension	Total
Not	10,066	13,909	23,975
Overweight	42%	58%	
Overweight	6,906 22%	24,642 78%	31,548
Total	16,972	38,551	55,523
	31%	69%	χ² P<0.001

Risk ratio for hypertension 1.35 (1.32, 1.37)

Example descriptive statistics 2

Distribution of instrument (Z)

FTO	MC4R	Ζ	Freq
0	0	0	0.20
0	1	1	0.15
1	0	1	0.27
1	1	2	0.21
2	0	2	0.09
2	1	3	0.07

Example descriptive statistics 3

Exposure (over-weight) & outcome (hypertension) by instrument

Potential outcomes and causal parameters

Potential outcomes for an individual

Potential outcomes and causal parameters

Potential outcomes and causal parameters

SMMs identify effect of treatment of treated

Multiplicative SMM

Notation: X exposure/treatment, Y outcome, Z instrument, $Y\{X=0\}$ exposure/treatment free potential outcome

Robins, Rotnitzky, & Scharfstein, 1999; Hernán & Robins, 2006

$$\begin{split} \log(E[Y|X,Z]) - \log(E[Y\{0\}|X,Z]) &= (\psi + \psi_1 Z) X \\ \text{Identification NEM by } Z \colon \psi_1 &= 0 \\ &= \psi X \\ \frac{E[Y|X,Z]}{E[Y\{0\}|X,Z]} &= \exp(\psi X) \\ \psi \colon \log \text{ causal risk ratio} \\ \text{Rearrange: } Y\{0\} &= Y \exp(-\psi X) \end{split}$$

Under the instrumental variable assumptions (Robins, 1989):

$$Y\{0\} \perp \!\!\!\perp Z$$
$$Y \exp(-\psi X) \perp \!\!\!\perp Z$$

Under the instrumental variable assumptions (Robins, 1989):

$$Y\{0\} \perp\!\!\!\perp Z$$

$$Y \exp(-\psi X) \perp\!\!\!\perp Z$$
 trick: $Y \exp(-\psi X) - Y\{0\} \perp\!\!\!\perp Z$

Under the instrumental variable assumptions (Robins, 1989):

$$Y\{0\} \perp\!\!\!\perp Z$$

$$Y \exp(-\psi X) \perp\!\!\!\perp Z$$
 trick: $Y \exp(-\psi X) - Y\{0\} \perp\!\!\!\perp Z$

Moment conditions

$$Z = 0,1$$

$$E[(Y \exp(-\psi X) - Y\{0\})1] = 0$$

$$E[(Y \exp(-\psi X) - Y\{0\})Z_1] = 0$$

Under the instrumental variable assumptions (Robins, 1989):

$$Y\{0\} \perp\!\!\!\perp Z$$

$$Y \exp(-\psi X) \perp\!\!\!\perp Z$$
 trick: $Y \exp(-\psi X) - Y\{0\} \perp\!\!\!\perp Z$

Moment conditions

$$Z=0,1,2,3$$

Over-identified

$$E[(Y \exp(-\psi X) - Y\{0\})1] = 0$$

$$E[(Y \exp(-\psi X) - Y\{0\})Z_1] = 0$$

$$E[(Y \exp(-\psi X) - Y\{0\})Z_2] = 0$$

$$E[(Y \exp(-\psi X) - Y\{0\})Z_3] = 0$$

What is GMM?

Minimises quadratic form: $Q = m'W^{-1}m$

Two-step GMM

- 1. Minimize quadratic form: $m'W^{-1}m$
- 2. Estimate \widehat{W}_1 , minimize quadratic form starting from \widehat{W}_1
- ► Two-step GMM gives efficient SEs (Chamberlain, 1987)
- ► Stata Hansen test command (estat overid) requires this

Implementation in Stata & R

Stata: gmm command

```
\label{eq:continuous} $\operatorname{\mathsf{gmm}}$ (y*\exp(-1*x*\{\mathrm{psi}\}) - \{\mathrm{ey0}\}), instruments(z1\ z2\ z3)$
```

Implementation in Stata & R

Stata: gmm command

```
gmm (y*exp(-1*x*{psi}) - {ey0}), instruments(z1 z2 z3)
```

R: gmm package (Chaussé, 2010)

```
library(gmm)
msmmMoments <- function(theta,x){
    # extract variables from x
    Y <- x[,1]; X <- x[,2]; Z1 <- x[,3]; Z2 <- x[,4]; Z3 <- x[,5]
    # moments
    m1 <- (Y*exp(- X*theta[2]) - theta[1])
    m2 <- (Y*exp(- X*theta[2]) - theta[1])*Z1
    m3 <- (Y*exp(- X*theta[2]) - theta[1])*Z2
    m4 <- (Y*exp(- X*theta[2]) - theta[1])*Z3
    return(cbind(m1,m2,m3,m4))
}
fit <- gmm(msmmMoments, data, t0=c(0,0))</pre>
```

MSMM example estimates

MSMM: Hansen over-identification test P=0.31 $E[Y{0}]=0.58$ (0.50, 0.65)

MSMM alternative parameterisation

$$Y \exp(-X\psi - \log(Y\{0\})) - 1 = 0$$

- ► Same as moments used by Mullahy, 1997; Nichols, 2007
- ► First parameterisation more numerically stable (Drukker, 2010)
- ► Also see Windmeijer & Santos Silva, 1997; Windmeijer, 2002, 2006; Clarke & Windmeijer, 2010
- ▶ Use X as instrument for itself = Gamma regression (log link)

How does GMM deal with multiple instruments?

GMM estimator solution to:

$$\frac{\partial m'(\psi)}{\partial \psi} W^{-1} m(\psi) = 0$$

- ▶ MSMM: instruments combined into linear projection of $YX \exp(-X\psi)$ on $Z = (1, Z_1, Z_2)'$ (Bowden & Vansteelandt, 2010)
- LSMM: GMM also equivalent to their optimal instruments approach

Local risk ratios for MSMM

- ► Identification depends on NEM by Z ... what if it doesn't hold?
- ▶ Alternative assumption of monotonicity: $X(Z_k) \ge X(Z_{k-1})$
- ► Local Average Treatment Effect (LATE) (Imbens & Angrist, 1994)
 - effect among those whose exposures are changed (upwardly) by changing (counterfactually) the IV from Z_{k-1} to Z_k

Local risk ratios for MSMM

- ► Identification depends on NEM by Z ... what if it doesn't hold?
- ▶ Alternative assumption of monotonicity: $X(Z_k) \ge X(Z_{k-1})$
- ► Local Average Treatment Effect (LATE) (Imbens & Angrist, 1994)
 - effect among those whose exposures are changed (upwardly) by changing (counterfactually) the IV from Z_{k-1} to Z_k

Similar result holds for MSMM:
$$e_{\mathsf{All}}^{\psi} = \sum_{k=1}^{K} \tau_k e_{k,k-1}^{\psi}$$

Local risk ratios in example

(double) Logistic SMM

$$logit(p) = log(p/(1-p)), expit(x) = e^x/(1+e^x)$$

Goetghebeur, 2010

$$\begin{split} \log & \mathsf{it}(E[Y|X,Z]) - \mathsf{logit}(E[Y\{0\}|X,Z]) = \psi X \\ & \psi : \ \mathsf{log\ causal\ odds\ ratio} \\ & \mathsf{Rearrange\ for\ } Y\{0\} = \mathsf{expit}(\mathsf{logit}(Y) - \psi X) \end{split}$$

(double) Logistic SMM

$$logit(p) = log(p/(1-p)), expit(x) = e^x/(1+e^x)$$

Goetghebeur, 2010

$$\begin{split} \log & \mathrm{id}(E[Y|X,Z]) - \mathrm{logit}(E[Y\{0\}|X,Z]) = \psi X \\ & \psi: \ \ \mathrm{log\ causal\ odds\ ratio} \\ & \quad \ \ \, \mathrm{Rearrange\ for\ } Y\{0\} = \mathrm{expit}(\mathrm{logit}(Y) - \psi X) \end{split}$$

- ► Can't be estimated in a single step (Robins et al., 1999)
- ► First stage association model (Vansteelandt & Goetghebeur, 2003):
 - (i) logistic regression of Y on X & Z & interactions
 - (ii) predict Y, estimate LSMM using predicted Y

(double) Logistic SMM moment conditions

Association model moment conditions

Logistic regression using GMM

$$\begin{split} &E[(Y - \text{expit}(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z))1] = 0 \\ &E[(Y - \text{expit}(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z))X] = 0 \\ &E[(Y - \text{expit}(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z))Z] = 0 \\ &E[(Y - \text{expit}(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z))XZ] = 0 \end{split}$$

(double) Logistic SMM moment conditions

Association model moment conditions

Logistic regression using GMM

$$\begin{split} &E[(Y - \text{expit}(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z))1] = 0 \\ &E[(Y - \text{expit}(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z))X] = 0 \\ &E[(Y - \text{expit}(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z))Z] = 0 \\ &E[(Y - \text{expit}(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z))XZ] = 0 \end{split}$$

Causal model moment conditions

$$E[(\operatorname{expit}(\operatorname{logit}(\widehat{p}) - \psi X) - Y\{0\})1] = 0$$

$$E[(\operatorname{expit}(\operatorname{logit}(\widehat{p}) - \psi X) - Y\{0\})Z] = 0$$

Problem: SEs incorrect - need association model uncertainty

LSMM joint estimation

Joint estimation = correct SEs (Gourieroux, Monfort, & Renault, 1996)

Vansteelandt & Goetghebeur, 2003; Bowden & Vansteelandt, 2010

$$\begin{split} E[(Y - \text{expit}(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z))1] &= 0 \\ E[(Y - \text{expit}(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z))X] &= 0 \\ E[(Y - \text{expit}(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z))Z] &= 0 \\ E[(Y - \text{expit}(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z))XZ] &= 0 \\ E[(\text{expit}(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z - \psi X) - Y\{0\})1] &= 0 \\ E[(\text{expit}(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z - \psi X) - Y\{0\})Z] &= 0 \end{split}$$

Stata gmm command - allows multiple equations - still 1 line of code

Example: causal model SEs ×10

LSMM example estimates

LSMM: Hansen over-identification test P=0.29 $E[Y{0}]=0.57$ (0.45, 0.68)

Including covariates

TSLS: include covariates in both stages

GMM: use covariates as instruments for themselves

Including (pre-exposure) covariates in MSMM

$$Y\{0\} \perp \!\!\!\perp Z|C$$

$$\log(E[Y|X,Z,C]) - \log(E[Y\{0\}|X,Z,C]) = \psi X + \psi_c C$$

Including covariates

TSLS: include covariates in both stages

GMM: use covariates as instruments for themselves

Including (pre-exposure) covariates in MSMM

$$Y\{0\} \perp \!\!\! \perp Z|C$$

$$\log(E[Y|X,Z,C]) - \log(E[Y\{0\}|X,Z,C]) = \psi X + \psi_c C$$

Example estimates

Covariates	RR (95%CI)	Over-id P
	1.36 (1.08, 1.72)	0.31
sex	1.36 (1.07, 1.72)	0.39
sex, age	1.35 (1.07, 1.71)	0.58
sex, age, chol	1.33 (1.05, 1.68)	0.49

Summary

- ▶ Structural Mean Models estimated using IVs by G-estimation $Y\{0\} \perp \!\!\! \perp Z$
- ► GMM estimation approach:
 - ► Estimate *Y*{0}
 - Hansen over-id test of joint validity of instruments
 - Optimal combination of multiple instruments
 - ► LSMM: joint estimation
 - ► Implementation in Stata and R (inc. covariates)
- www.bris.ac.uk/cmpo/publications/papers/2011/wp266.pdf
- SMMs subtly different to additive residual IV GMM
 - ▶ RR: $Y \exp(\psi X) \perp \!\!\! \perp Z$
 - ▶ OR: $Y \expit(\psi X) \perp \!\!\!\perp Z$

(Cameron & Trivedi, 2009; Johnston, Gustafson, Levy, & Grootendorst, 2008; Foster, 1997; Rassen, Schneeweiss, Glynn, Mittleman, & Brookhart, 2009)

► Review of some of the methods (Palmer et al., 2011)

Acknowledgements

- ► MRC Collaborative grant G0601625
- ► MRC CAiTE Centre grant G0600705
- ► ESRC grant RES-060-23-0011
- With thanks to Nuala Sheehan, Vanessa Didelez, Debbie Lawlor, Jonathan Sterne, George Davey Smith, Sha Meng, Neil Davies, Roger Harbord, Nic Timpson, Borge Nordestgaard.

References I

- Bowden, J., & Vansteelandt, S. (2010). Mendelian randomisation analysis of case-control data using structural mean models. *Statistics in Medicine*. (in press)
- Cameron, A. C., & Trivedi, P. K. (2009). *Microeconometrics Using Stata*. College Station, Texas: Stata Press.
- Chamberlain, G. (1987). Asymptotic efficiency in estimation with conditional moment restrictions. *Journal of Econometrics*, *34*(3), 305–334.
- Chaussé, P. (2010). Computing generalized method of moments and generalized empirical likelihood with R. *Journal of Statistical Software*, 34(11), 1–35. Available from http://www.jstatsoft.org/v34/i11/
- Clarke, P. S., & Windmeijer, F. (2010). Identification of causal effects on binary outcomes using structural mean models. *Biostatistics*, 11(4), 756–770.
- Davey Smith, G., & Ebrahim, S. (2003). 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease. *International Journal of Epidemiology*, 32, 1–22.
- Drukker, D. (2010). An introduction to GMM estimation using Stata. In *German stata users group meeting*. Berlin.
- Foster, E. M. (1997). Instrumental variables for logistic regression: an illustration. *Social Science Research*, 26, 487–504.
- Goetghebeur, E. (2010). Commentary: To cause or not to cause confusion vs transparency with Mendelian Randomization. *International Journal of Epidemiology*, 39(3), 918–920.

References II

- Gourieroux, C., Monfort, A., & Renault, E. (1996). Two-stage generalized moment method with applications to regressions with heteroscedasticity of unknown form. *Journal of Statistical Planning and Inference*, 50(1), 37–63.
- Hernán, M. A., & Robins, J. M. (2006). Instruments for Causal Inference. An Epidemiologist's Dream? *Epidemiology*, 17, 360–372.
- Imbens, G. W., & Angrist, J. D. (1994). Identification and Estimation of Local Average Treatment Effects. *Econometrica*, *62*, 467–467.
- Johnston, K. M., Gustafson, P., Levy, A. R., & Grootendorst, P. (2008). Use of instrumental variables in the analysis of generalized linear models in the presence of unmeasured confounding with applications to epidemiological research. Statistics in Medicine, 27, 1539–1556.
- Mullahy, J. (1997). Instrumental-variable estimation of count data models: Applications to models of cigarette smoking behaviour. *The Review of Economics and Statistics*, 79(4), 568–593.
- Nichols, A. (2007). *ivpois: Stata module for IV/GMM Poisson regression*. Statistical Software Components, Boston College Department of Economics. (available at http://ideas.repec.org/c/boc/bocode/s456890.html)
- Palmer, T. M., Sterne, J. A. C., Harbord, R. M., Lawlor, D. A., Sheehan, N. A., Meng, S., et al. (2011). Instrumental variable estimation of causal risk ratios and causal odds ratios in mendelian randomization analyses. *American Journal* of Epidemiology, 173, 1392–1403.

References III

- Rassen, J. A., Schneeweiss, S., Glynn, R. J., Mittleman, M. A., & Brookhart, M. A. (2009). Instrumental Variable Analysis for Estimation of Treatment Effects With Dichotomous Outcomes. *American Journal of Epidemiology*, 169(3), 273–284.
- Robins, J. M. (1989). Health services research methodology: A focus on aids. In L. Sechrest, H. Freeman, & A. Mulley (Eds.), (chap. The analysis of randomized and non-randomized AIDS treatment trials using a new approach to causal inference in longitudinal studies). Washington DC, US: US Public Health Service.
- Robins, J. M., Rotnitzky, A., & Scharfstein, D. O. (1999). Statistical models in epidemiology: The environment and clinical trials. In M. E. Halloran & D. Berry (Eds.), (pp. 1–92). New York, US: Springer.
- Vansteelandt, S., & Goetghebeur, E. (2003). Causal inference with generalized structural mean models. *Journal of the Royal Statistical Society: Series B*, 65(4), 817–835.
- Windmeijer, F. (2002). ExpEnd, A Gauss program for non-linear GMM estimation of exponential models with endogenous regressors for cross section and panel data (Tech. Rep.). Centre for Microdata Methods and Practice.
- Windmeijer, F. (2006). *GMM for panel count data models* (Bristol Economics Discussion Papers No. 06/591). Department of Economics, University of Bristol, UK. Available from http://ideas.repec.org/p/bri/uobdis/06-591.html

References IV

Windmeijer, F., & Santos Silva, J. (1997). Endogeneity in Count Data Models: An Application to Demand for Health Care. *Journal of Applied Econometrics*, 12(3), 281–294.

Comparison example estimates

	RR (95% CI)	P over-id
MSMM	1.36 (1.08, 1.72)	0.31
$Y - \exp(\psi X) \perp \!\!\! \perp Z$	1.36 (1.07, 1.75)	0.30
Control function	1.36 (1.08, 1.71)	
	OR (95% CI)	P over-id
LSMM two-stage	1.88 (1.75, 2.02)	
LSMM joint	2.87 (1.25, 6.55)	0.29
$Y - expit(\psi X) \perp \!\!\! \perp Z$	2.69 (1.23, 5.90)	0.30
Control function	2.69 (1.21, 5.97)	

ASMM example estimates

MSMM: Hansen over-identification test P=0.30 $E[Y{0}]=0.58$ (0.48, 0.67)