1	CLAI	CLAIMS	
2			
3	1.	A method of inducing gamete maturation to be	
4		competent to fertilise in marine worms of the	
5		family Arenicolidae which exhibit epidemic	
6		spawning, said method comprising:	
7		providing maturing male and/or female worms in	
8		a housing substrate in sea water at a	
9		temperature of 4 to 8°C for a time period of	
10		14 to 24 days.	
11			
12	2.	The method as claimed in Claim 1 wherein the	
13		worms are maintained at a temperature of 5 to	
14		7°C for 20 to 22 days.	
15			
16	3.	A method for inducing spawning of marine worms	
17		of the family Arenicolidae which exhibit	
18		epidemic spawning, said method comprising	
19		inducing gamete maturation by the method of	
20		either one of Claims 1 and 2, and further	
21		comprising exposing the worms to a hormone	
22		able to induce gamete release.	
23			
24	4.	The method of Claim 3 wherein said worms are	
25		male worms and said hormone is	
26		8,11,14-eicosatrienoic acid.	
27			
28	5.	The method of Claim 3 wherein said worms are	
29		female worms and said hormone is provided as	
30		an homogenate of prostomium.	
31			

WO 2005/043994 PCT/GB2004/004596

30

1	6.	A method for inducing spawning of marine worms
2		of the family Arenicolidae and which exhibit
3		epidemic spawning, said method comprising
4		inducing gamete maturation by the method of
5		either one of Claims 1 and 2, and further
6		including raising the temperature of the sea
7		water to 12 to 14°C.
8		
9	7.	The method as claimed in Claim 6 wherein the
10		temperature of the sea water is increased at a
11		rate of 1°C per hour to 12 to 14°C.
12		
13	8.	The method as claimed in any one of Claims 1
14		to 7 wherein said marine worms are
15		Arenicolidae marina or Arenicola defodiens.
16		
17	9.	The method as claimed in any one of Claims 1
18		to 8 wherein said substrate is sand.
19		
20	10.	The method as claimed in any one of Claims 1
21		to 9 wherein said marine worms are cultured
22		worms which have previously been maintained at
23		a temperature of 14 to $16^{\circ}\mathrm{C}$ for at least one
24		month.