Demonstração XOR usando apenas NANDs

Autor e vai e vai e vai

July 19, 2021

1 Tabela verdade de uma NAND

A NAND B pode ser escrito como $\neg (A \land B)$. Abaixo sua tabela verdade:

Tabela Verdade $\neg(A \land B)$

A	B	$A \wedge B$	$\neg(A \land B)$
V	V	V	F
V	\mathbf{F}	\mathbf{F}	V
F	V	\mathbf{F}	V
\mathbf{F}	\mathbf{F}	\mathbf{F}	V

Como verificado acima, uma NAND funciona como uma AND (um "e") mas com sua saída (resultado) negado. Agora seguiremos para uma tabela verdade de uma XOR (ou exclusivo).

2 Tabela verdade de uma XOR

Podemos escrever A XOR B como $A \oplus B$ ou como $(\neg A \land B) \lor (A \land \neg B)$. Verificamos a tabela abaixo:

	Tabela Verdade $A \oplus B$ $(A \oplus B)$					
A	$\neg A$	B	$\neg B$	$\neg A \wedge B$	$A \wedge \neg B$	$\overbrace{(\neg A \land B) \lor (A \land \neg B)}$
V	F	V	\mathbf{F}	\mathbf{F}	\mathbf{F}	F
V	F	\mathbf{F}	V	\mathbf{F}	V	V
\mathbf{F}	V	V	\mathbf{F}	V	F	V
\mathbf{F}	V	\mathbf{F}	V	\mathbf{F}	\mathbf{F}	\mathbf{F}

2.1 O problema

Para demonstrar que é possível construir uma proposição lógica equivalente a um "ou exclusivo" (XOR), mas usando somente "nãos" (NOTs) e "es" (ANDs), ou seja NANDs, precisaríamos transformar a proposição inicial, removendo o "ou" (OR) com algum artifício lógico disponível.

2.1.1 De Morgan e dupla negação

A primeira forma de remover o "ou" (OR) seria usando "De Morgan", que descreve que:

$$\neg (A \land B) \equiv \neg A \lor \neg B$$

e também que:

$$\neg (A \lor B) \equiv \neg A \land \neg B$$

Mas como fica visível, precisaríamos que as partes da proposição estivessem ambas negadas ou que a própria proposição inteira estivesse negada. Podemos então desenvolver $(\neg A \land B) \lor (A \land \neg B)$ usando uma dupla negação:

$$(\neg A \land B) \lor (A \land \neg B) = \neg \neg ((\neg A \land B) \lor (A \land \neg B))$$

Agora, a partir de De Morgan, temos que:

$$\neg(\neg((\neg A \land B) \lor (A \land \neg B))) = \neg(\neg(\neg A \land B) \land \neg(A \land \neg B))$$

2.1.2 O problema de $\neg A$ e $\neg B$

Da forma atual, a expressão tem "nãos isolados", nos casos de \mathbf{A} e \mathbf{B} , e então precisamos desenvolver $\neg A$ e $\neg B$. Logo, como verificado na tabela:

A	$\neg A$	$A \wedge A$	$\neg (A \land A)$	B	$\neg B$	$B \wedge B$	$\neg(B \land B)$
V	F	V	F	V	F	V	F
V	\mathbf{F}	V	\mathbf{F}	\mathbf{F}	V	\mathbf{F}	V
\mathbf{F}	V	\mathbf{F}	V	V	\mathbf{F}	V	\mathbf{F}
F	V	\mathbf{F}	V	F	V	\mathbf{F}	V

Sabemos que:

$$\neg A = \neg (A \land A) \in \neg B = \neg (B \land B),$$

Agora temos que:

$$\neg(\neg(\neg A \land B) \land \neg(A \land \neg B)) = \neg(\neg(\neg(A \land A) \land B) \land \neg(A \land \neg(B \land B)))$$

2.2 Desenvolvimento da tabela verdade

Agora complementando a tabela, e usando os resultados da tabela anterior, temos:

Tabela Verdade Final - Parte 1

$\neg(A \land A) \land B$	$\neg(\neg(A \land A) \land B)$	$A \wedge \neg (B \wedge B)$	$\neg(A \land \neg(B \land B))$
F	V	F	V
\mathbf{F}	V	V	${ m F}$
V	\mathbf{F}	\mathbf{F}	V
\mathbf{F}	V	\mathbf{F}	V

E em seguida construindo a tabela para a conjunção dos termos negados da tabela anterior:

Tabela Verdade Final - Parte 2

$\neg(\neg(A \land A) \land B)$	$\neg(A \land \neg(B \land B))$	$\neg(\neg(A \land A) \land B) \land \neg(A \land \neg(B \land B))$
V	V	V
V	\mathbf{F}	\mathbf{F}
F	V	\mathbf{F}
V	V	V

E agora a negação da conjunção:

Tabela Verdade Final - Parte 3

$\neg(\neg(A \land A) \land B) \land \neg(A \land \neg(B \land B))$	$\neg(\neg(\neg(A \land A) \land B) \land \neg(A \land \neg(B \land B)))$
V	\mathbf{F}
\mathbf{F}	V
\mathbf{F}	V
V	\mathbf{F}

E finalmente, comparando com os resultados da tabela inicial:

$$\begin{array}{c|c} \neg(\neg(\neg(A \land A) \land B) \land \neg(A \land \neg(B \land B))) & \overbrace{(\neg A \land B) \lor (A \land \neg B)}^{(A \oplus B)} \\ \hline F & F \\ V & V \\ V & V \\ F & F \end{array}$$

3 Conclusão

Verificando que as duas tabelas têm as mesmas saídas (continuam a ter, na verdade), podemos concluir então, que é possível descrever $A \oplus B$ (A XOR B) usando apenas NANDs.

Escrevendo como no início do problema, em que A NAND B = $\neg(A \land B)$, teríamos que:

$$A \oplus B = \neg(\neg(\neg(A \land A) \land B \land (\neg(A \land (\neg(B \land B))))))$$

pode ser escrito também como:

A XOR B = ((A NAND A)NAND B) NAND (A NAND(B NAND B)) ou com outra notação:

$$A \vee\!\!\vee B = ((A \wedge\!\!\!\wedge A) \wedge\!\!\!\wedge B) \wedge\!\!\!\wedge (A \wedge\!\!\!\wedge (B \wedge\!\!\!\wedge B))$$

ou com mais uma outra notação:

$$A\oplus B=\overline{\overline{(\overline{(AA)}.B).\overline{(A.\overline{(BB)})}}}$$