Rust Crypto For XChain

```
Rust Crypto For XChain
  Xuper-sdk-go vs rust-sgx for Crypto
  ECC
     ECDSA
        ECDSA签名:
        ECDSA 验证签名
      ECIES算法
        加密
        解密
        证明过程
        Refer
  有限域运算
     表示
        多项式基表示法
        正规基表示法
     运算
        加法
        减法
        乘法
        除法
        求逆
```

Xuper-sdk-go vs rust-sgx for Crypto

	超级链	crate-rust-sgx
ecdsa	crypto/ecdsa: P256-SHA256-ANS1	ring::P256-SHA256-ASN1 ring::P256-SHA384-ASN1
hash	crypto/hmac crypto/sha512 crypto/sha256 "golang.org/x/crypto/ripemd160"	ring::{hmac,sha256,sha512} ripemd160
encode	self/base58 自己实现的	base58
bigint	math/bigint	num-bigint
rand	crypto/rand	rand
aes	crypto/aes (Rijndael 128, 192, 256)	ring
ecies	Kylom's implementation curve: P256	需要实现
sign	multi_sign, schnorr_ring_sign, schnorr_sign	需要实现
hdwallet/keychain	hdwallet/keychain	需要实现

ECDSA

Parameter	
CURVE	the elliptic curve field and equation used
G	elliptic curve base point, a point on the curve that generates a <u>subgroup of</u> <u>large prime order n</u>
n	integer order of G , means that n x G=O , where O is the identity element.
k	the private key (randomly selected)
Р	the public key (calculated by elliptic curve)
М	the message to send

ECDSA签名:

$$P = (x_1,y_1) = k imes G \ S = k^{-1}(Hash(M) + k * x_1) \ mod \ p \ Signature = (x_1,S)$$

ECDSA 验证签名

$$P^{'}=S^{-1}*Hash(M) imes G+S^{-1}*x_{1} imes P \ =P$$

• 证明

$$egin{aligned} P^{'} &= S^{-1} * Hash(M) imes G + S^{-1} * k imes G \ &= (S^{-1} * Hash(M) + S^{-1} * k) imes G \ &= (Hash(M) + x_1) * S^{-1} imes G \end{aligned} \ &= (Hash(M) + x_1) * (k^{-1}(Hash(M) + k))^{-1} imes G \ &= (Hash(M) + x_1) * k * (Hash(M) + k)^{-1} imes G \ &= k imes G \ &= (x_1, y_1) \end{aligned}$$

ECIES算法

为了向Bob发送ECIES加密信息, Alice需要以下信息:

● 密码学套件(KDF, MAC, 对称加密E)

- 椭圆曲线(p, a, b, G, n, h)
- Bob的公钥:

$$K_b, K_b = k_b G, k_b \in [1, n-1]$$

共享信息

 S_1, S_2

● 无穷远点O

加密

Alice使用Bob的公钥加密消息m:

$$For\ random\ r\in[1,n-1], calculate\ R=rG$$
 $derive\ shared\ secret: S=P_x, where\ P=P(P_x,P_y)=rK_b, P\neq O$ $derive\ K_E||K_M=KDF(S||S_1)$ $encrypt\ message\ m:c=E(k_E;m)$ $calculate\ MAC: d=MAC(k_M;c||S_2)$ $output: R||c||d$

解密

Bob解密密文 R||c||d的步骤如下:

$$egin{aligned} derive \ shared \ secret: S = P_x, P = P(P_x, P_y) = k_B R \ derive \ K_E || K_M = KDF(S || S_1) \ verify \ MAC: d == MAC(k_M; c || S_2) \ decrypt: m = E^{-1}(k_E; c) \end{aligned}$$

证明过程

we need ensure S is really shared by Alice and Bob:

$$P = K_B r = k_B R$$

Refer

1. https://en.wikipedia.org/wiki/Integrated_Encryption_Scheme

有限域运算

表示

有限域:

这里专门针对p=2为特征的多项式进行计算。	(1	,
多项式基表示法		
正规基表示法		
运算		

减法

加法

乘法

除法

求逆