## Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Go to next item

1/1 point

| 1. | What do | you think app | lying this f | filter to a gra | vscale image | will do? |
|----|---------|---------------|--------------|-----------------|--------------|----------|
|    |         |               |              |                 |              |          |

 $\begin{bmatrix} 0 & 1 & -1 & 0 \\ 1 & 3 & -3 & -1 \\ 1 & 3 & -3 & -1 \\ 0 & 1 & -1 & 0 \end{bmatrix}$ 

| Detect | image | contract |
|--------|-------|----------|

Oetect 45 degree edges

O Detect horizontal edges

Detect vertical edges



## ✓ Correct

Correct! As you can see the difference between values from the left part and values from the right of this filter is high. When convolving this filter on a grayscale image, the vertical edges will be detected.

2. Suppose your input is a 128 by 128 grayscale image, and you are not using a convolutional network. If the first hidden layer has 256 neurons, each one fully connected to the input, how many parameters does this hidden layer have (including the bias parameters)?

1/1 point

12583168

12582912

4194304

4194560



## **⊘** Correct

Correct, the number of inputs for each unit is  $128 \times 128$  since the input image is grayscale, so we need  $128 \times 128 \times 256$  parameters for the weights and 256 parameters for the bias thus  $128 \times 128 \times 256 + 256 = 4194560$ .

3. Suppose your input is a 256 by 256 color (RGB) image, and you use a convolutional layer with 128 filters that are each  $7 \times 7$ . How many parameters does this hidden layer have (including the bias parameters)?

1/1 point

18944

O 6400

1233125504

18816



| <b>4.</b> You have an input volume that is $121 \times 121 \times 16$ , and convolve it with 32 filters of $4 \times 4$ , using a stride of 3 and no padding. What is the output volume? $\begin{array}{c} 118 \times 118 \times 32 \\ \hline 118 \times 118 \times 16 \\ \hline & 40 \times 40 \times 32 \\ \hline & 40 \times 40 \times 16 \end{array}$ | 1/1 point |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                                                                                                                                                                                                                                                                                                                                           |           |
| 5. You have an input volume that is 31x31x32, and pad it using "pad=1". What is the dimension of the resulting volume (after padding)?  (a) 33x33x32 (b) 31x31x34 (c) 32x32x32 (c) 33x33x33                                                                                                                                                               | 1/1 point |
|                                                                                                                                                                                                                                                                                                                                                           | 1/1 point |
| Correct Yes, when using a padding of 4 the output volume has $n_H = \frac{64-9+2\times4}{1} + 1$ .  7. You have an input volume that is $32x32x16$ , and apply max pooling with a stride of 2 and a filter size of 2. What is the output volume? $15x15x16$ $16x16x16$                                                                                    | 1/1 point |

|     | ∠ <sup>™</sup> Expand                                                                                                                                             |            |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|     | $\odot$ <b>C</b> orrect Correct, using the following formula: $n_H^{[l]} = rac{n_H^{[l-1]} + 2 	imes p - f}{s} + 1$                                              |            |
| 8.  | /hich of the following are hyperparameters of the pooling layers? (Choose all that apply)                                                                         | 1/1 point  |
| ٥.  |                                                                                                                                                                   | 1/1 point  |
|     | Average weights.  Number of filters.                                                                                                                              |            |
|     | ✓ Whether it is max or average.                                                                                                                                   |            |
|     | <ul> <li>Correct</li> <li>Yes, these are the two types of pooling discussed in the lectures, and choosing which to use is considered a hyperparameter.</li> </ul> |            |
|     | Filter size.                                                                                                                                                      |            |
|     | ✓ Correct  Vas although usually we set                                                                                                                            |            |
|     | ∠ <sup>≯</sup> Expand                                                                                                                                             |            |
|     | ○ Correct     Great, you got all the right answers.                                                                                                               |            |
|     |                                                                                                                                                                   |            |
| 9.  | /hich of the following are true about convolutional layers? (Check all that apply)                                                                                | 1/1 point  |
|     | Convolutional layers provide sparsity of connections.                                                                                                             |            |
|     | Correct Yes, this happens since the next activation layer depends only on a small number of activations from the previous layer.                                  |            |
|     | It allows a feature detector to be used in multiple locations throughout the whole input volume.                                                                  |            |
|     | Correct Yes, since convolution involves sliding the filter throughout the whole input volume the feature detector is computed over all the volume.                |            |
|     | It speeds up the training since we don't need to compute the gradient for convolutional layers.                                                                   |            |
|     | It allows parameters learned for one task to be shared even for a different task (transfer learning).                                                             |            |
|     | ∠ <sup>7</sup> Expand                                                                                                                                             |            |
|     |                                                                                                                                                                   |            |
| 10. | lecture we talked about "sparsity of connections" as a benefit of using convolutional layers. What does this mean?                                                | 1/1 point  |
|     |                                                                                                                                                                   | -, z ponit |
|     | Each layer in a convolutional network is connected only to two other layers  Regularization causes gradient descent to set many of the parameters to zero.        |            |
|     | Each activation in the next layer depends on only a small number of activations from the previous layer.                                                          |            |
|     | Each filter is connected to every channel in the previous layer.                                                                                                  |            |
|     |                                                                                                                                                                   |            |

32x32x8

∠<sup>7</sup> Expand



Yes, each activation of the output volume is computed by multiplying the parameters from with a volumic slice of the input volume and then summing all these together.