Take
$$n=2$$
, then $(2+1)$ $0!$ $> 2^2$

NOW
$$(k+2)! = (k+1)! (k+2) > 2^{k} (k+2)$$

$$72^{K+1}$$
 [: 2+K, 72]

Page-1

Hence by the principle of mathematical induction the inequality holds for
$$\forall n>2$$

2)
$$P(n): 1+2^2+3^2+\cdots+n^2=\frac{1}{6}n(n+1)(2n+1)$$

$$n=1$$
: $1 = \frac{1}{6} \cdot 1^{-2} \cdot 3 = 1$.

So
$$p(1)$$
 is fine. Let $p(x)$ is fine. i.e. e^{-x}

$$1+2^2+3^2+\cdots+K^2=\frac{1}{6}K(K+1)(2K+1)$$

Now
$$|^2 + 2^2 + 3^2 + \cdots + k^2 + (k+1)^2 = \frac{1}{6} k(k+1)(2k+1) + (k+1)^2$$

$$= \frac{1}{6}(\kappa+1)\left[\kappa(2\kappa+1)+6(\kappa+1)\right]$$

$$= \frac{1}{6} \left(k+1 \right) \left[2k^2 + 3k + 4k + 6 \right]$$

$$= \frac{1}{6} \left(k+1 \right) \left(2 k+3 \right) \left(k+2 \right)$$

$$=\frac{1}{6}\left(\mathsf{K+1}\right)\left(2\left(\mathsf{K+1}\right)+1\right)\left(\left(\mathsf{K+1}\right)+1\right)$$

So the P(x+1) is fre

$$\Rightarrow$$
 P(n) is frue for \forall n \in N.

- 3) similare.

Suppose a is the least positive real them a, o.

$$\Rightarrow$$
 $0 < \frac{q}{2} < a$ (by above).

- $\frac{a}{2}$: $\frac{a}{2} \in \mathbb{R}$ and $\frac{a}{2}$? $\frac{a}{2}$ $\neq a$
- =) a is not least positive real.
- =) There is no least positive real.
- (3) Let $Y \in \mathbb{Q}$, $\chi \in \mathbb{R} \setminus \mathbb{Q}$ but $Q = Y + \chi \in \mathbb{Q} \Rightarrow \chi = Q Y \in \mathbb{Q}$ Which is a contradiction to $\chi \in \mathbb{R} \setminus \mathbb{Q}$.

$$||y| \quad \forall \quad \forall \quad x = 9 \in \mathbb{Q}, \quad r \neq 0, \quad \Rightarrow \quad x = \frac{9}{7} \in \mathbb{Q} \Rightarrow \Leftarrow$$

$$\Rightarrow \quad \forall \quad x \in \mathbb{R} \setminus \mathbb{Q}.$$

- Fage-3

 (a) $a,b \in \mathbb{R}$ and a < b is given, Non $\sqrt{2}a$, $\sqrt{2}b \in \mathbb{R}$.

 Then by densitis property of rational $\exists \ r \in \mathbb{R}$. Such that $\sqrt{2}a < r < \sqrt{2}b = a < \frac{r}{\sqrt{2}} < b$ Take $\xi = \frac{r}{\sqrt{2}}$ which is irrahional.
- P $S = \{\frac{5}{n} : n \in \mathbb{N}\}$. We will prove that inf S = 0We have $\forall n \in \mathbb{N}$, $5 \neq 0$. So o' is a lower bound of S.
- 8 $S \subseteq \mathbb{R}$, $S \neq \emptyset$ and S is bdd. Ket $S \in S$ then $S \ge \inf S$ and $S \le S \inf S$ =) $\inf S \le S \le S \inf S$ =) $\inf S \le S \iint S$

If $\sup S = \inf S = A$ then $A \le S \le A \Rightarrow A = B$ So Shas only one element A.

- (9(a) By assumption any tET is an upper bound of S and any SES is assor a lower bound of T. Since S and T aree non-empty, we conclude that s is bold above and T is bold below.
- (b) Fix $t \in T$. Since $s \leq t$ $\forall s \in S = |sup_S| \leq t$ Now sup_ $S \leq t$ $\forall t \in T$ $= |sup_S| \leq |inf| T$
 - (c) S = [0,1], T = [1,2], SNT = {1} sups = infT
 - (d) [0,1], T = (1,2], $S \cap T = \emptyset$, $S \cap T = \emptyset$.
 - (1) Let $S = \{ r \in \mathbb{Q} : r < a \}$. Then for any $r \in S$, $r \in A$ $\Rightarrow sup_S \leq a$. If $sup_S \neq a$ then $sup_S \leq a$.

Then by denseness of OL, there is $T \in OL$ such that sups

sups
 $< T < a \cdot Now$ since $T < a \Rightarrow T \in S$
 $\Rightarrow T < Sups$ which is contradiction to sups
 < T < Sups

=) sup S = a.

(11) (a) Let €>0. consider

$$\left|\frac{(-1)^n}{n} - 0\right| = \frac{1}{n} < \epsilon \Rightarrow n \in \mathbb{Z} > \frac{1}{\epsilon}$$

Take $N = \begin{bmatrix} \frac{1}{\epsilon} \end{bmatrix}$

Then for any
$$\epsilon > 0$$
, $\forall n > N$, $\left| \frac{(-1)^n}{n} - 0 \right| < \epsilon$

$$=) \qquad \lim_{n \to \infty} \frac{\left(-1\right)^n}{n} = 0.$$

(b) Similare

(c) Lu E70, unider

$$\left|\frac{2n-1}{3n+2}-\frac{2}{3}\right|<\epsilon$$

$$\Rightarrow \left| \frac{6n-3-6n-4}{(3n+2)3} \right| < \epsilon \Rightarrow \frac{7}{3(3n+2)} < \epsilon$$

$$\Rightarrow n > \left(\frac{7}{9\epsilon} - \frac{2}{3}\right)$$

Take $N = \left[\frac{7}{9\epsilon} - \frac{2}{3}\right]$

So for any $\in 70$, $\forall n > N$, $\left|\frac{2n-1}{3n+2} - \frac{2}{3}\right| \leq \epsilon$

$$=) \qquad \lim_{n \to \infty} \frac{2^{n-1}}{3^{n+2}} = \frac{2}{3}$$

(12) $\{x_m\}$ is a bild sequence $s_0 \ni M > 0 \ni$ $|x_m| \leq M \quad \forall \quad m \in \mathbb{N}.$

Again $\{y_n\}$ converges to zero. So for any $\in 70 \ \overline{7} \ N \in \mathbb{N}$ $\exists \forall n \geqslant N$, $|y_n - 0| < \frac{\epsilon}{M}$.

Now 4 2>1

$$\Rightarrow \lim_{N\to\infty} \lim_{N\to\infty} 0.$$

(3) Given that $\limsup_{n \to \infty} a_n \le a_n \le b$ for any $\in \gamma_0 \ni \mathbb{N} \in \mathbb{N}$ $\forall n \ne n \ne n$, $|a_n - a| < \epsilon$

Now choose some N as above and \$ 670

So for any $\epsilon > 0$, $\exists N \in \mathbb{N}$, $\forall n \ge N$, $||a_n| - |a_1|| \le \epsilon$

The converge of the statement is not fine. For an example consider (a = 1)

 $|a_n|=1 \Rightarrow |a_n|=1 \Rightarrow 1=a$. But $\{a_n\}$ does not unwarge to a.

The converse is if $|a_n| \rightarrow |a|$ then an $\rightarrow a$. This will be free when l = -l i.e. l = 0.

(14) Consider $a_n = (-1)^n$, So $|a_n| \le 1$. The terms of the sequence area $1-1,1,-1,-\ldots, y$, which is not convergent.

(15) and (16) applications of limit theorems.