Модель гармонических колебаний

Дорофеева Алёна Тимофеевна НПИбд-01-20 23 февраля, 2023, Москва, Россия

Российский Университет Дружбы Народов

Цели и задачи работы

Цель лабораторной работы

Построить фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора.

Задание к лабораторной работе

- 1. Построить решение уравнения гармонического осциллятора без затухания и без действий внешней силы
- 2. Построить решение уравнения колебания гармонического осциллятора с затуханием и без действий внешней силы.
- 3. Построить решение уравнения колебания гармонического осциллятора с затуханием и под действием внешней силы.

лабораторной работы

Процесс выполнения

Теоретический материал

Движение грузика на пружинке, маятника, заряда в электрическом контуре, а также эволюция во времени многих систем в физике, химии, биологии и других науках при определенных предположениях можно описать одним и тем же дифференциальным уравнением, которое в теории колебаний выступает в качестве основной модели. Эта модель называется линейным гармоническим осциллятором. Уравнение свободных колебаний гармонического осциллятора имеет следующий вид:

$$\ddot{x} + 2\gamma\dot{x} + \omega_0^2 = 0$$

Теоретический материал

При отсутствии потерь в системе ($\gamma=0$) получаем уравнение консервативного осциллятора энергия колебания которого сохраняется во времени.

$$\ddot{x} + \omega_0^2 x = 0$$

Для однозначной разрешимости уравнения второго порядка необходимо задать два начальных условия вида

$$\begin{cases} x(t_0) = x_0 \\ x(\dot{t}_0) = y_0 \end{cases}$$

Теоретический материал

Уравнение второго порядка можно представить в виде системы двух уравнений первого порядка:

$$\begin{cases} x = y \\ y = -\omega_0^2 x \end{cases}$$

Начальные условия для системы примут вид:

$$\begin{cases} x(t_0) = x_0 \\ y(t_0) = y_0 \end{cases}$$

Постройте фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев

- 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы $\ddot{x}+6.5x=0$
- 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы $\ddot{x} + 4\dot{x} + 5x = 0$
- 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы $\ddot{x}+3\dot{x}+7x=sin(2t)$

На интервале $t \in [0;75]$, шаг 0.05, $x_0 = -1, y_0 = 0$

Случай 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы на OpenModelica

Рис. 1: График решения для случая 1

Рис. 2: Фазовый портрет для случая 1

Случай 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы на Julia

Рис. 3: График решения для случая 1

Случай 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы на OpenModelica

$$\ddot{x} + 4\dot{x} + 5x = 0$$

Рис. 5: График решения для случая 1

Рис. 6: Фазовый портрет для случая 1

Случай 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы на Julia

$$\ddot{x} + 4\dot{x} + 5x = 0$$

Рис. 7: График решения для случая 1

Случай 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы на OpenModelica

$$\ddot{x} + 3\dot{x} + 7x = \sin(2t)$$

Рис. 9: График решения для случая 1

Рис. 10: Фазовый портрет для случая 1

Случай 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы на Julia

$$\ddot{x} + 3\dot{x} + 7x = \sin(2t)$$

Рис. 11: График решения для случая 1

Выводы по проделанной работе

Вывод

В ходе выполнения лабораторной работы были построены решения уравнения гармонического осциллятора и фазовые портреты гармонических колебаний без затухания, с затуханием и при действии внешней силы.