Contents under Creative Commons BY 4.0 license and code under MIT license. © Julian Parra 2019. This material is part of the Master of Engineering program by Julian Parra at Universidad EAFIT.

Linear 2D frame under horizontal static loads (NLSTA).

This problem describes the static analysis of a linear two-dimensional frame under point loads. The analysis is performed in a single step.

Input and output files for this problem are available in the examples folder of this REPO (notebooks\Examples).

- Element type for columns and beams: 2
- Columns cross section 0.50 m x 0.50 m
- Beams cross section 0.40 m x 0.40 m
- Material profile for all elements is concrete with elastic modulus of 2000000 tonf/m² and specific weight of 2.4 tonf/m³

Internal forces, together with a simple vertification of static global equilibrium are available in the file:

 $*notebooks\Examples\Ex_01\Output.xls*$

```
%matplotlib inline
In [1]:
        import matplotlib.pyplot as plt
        import numpy as np
        import sympy as sym
        from os import sys
        sys.path.append("../source/")
        from STRUCTURE import Struct DYN
        from postprocesor import *
        # Execute analysis
        displacement,folder,IBC,nodes,elements,ninc,T,MvarsGen,ILFGen = Struct_DYN("Examples/E
        01/01_INPUT/")
        Number of nodes: 12
        Number of elements: 15
        Number of equations: 27
        Number of equations after constraints: 27
        Natural periods of the system : Not computed, static system solution
        Time step for solution: 0.002 sec
        Number of time increments: 500
        Duration for system solution: 0:00:00.931524
        Duration for the system's solution: 0:00:00.932524
        Duration for post processing: 0:00:00
        Analysis terminated successfully!
```

Results

The displacement response along the horizontal direction for node 3 is shown below.

The code can also display the structure under study for verification purposes.

17/6/2020 06_Example01

In [3]: model = GrafModel(elements, nodes)


```
In [4]: from IPython.core.display import HTML
    def css_styling():
        styles = open('./nb_style.css', 'r').read()
        return HTML(styles)
    css_styling()
```

Out[4]:

In []: