1. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{5x}{7x+5} + \frac{-4x^2}{-14x^2 - 59x - 35} = \frac{5}{-2x-7}$$

A. All solutions lead to invalid or complex values in the equation.

B.
$$x_1 \in [-6.71, -4.31]$$
 and $x_2 \in [-0.57, -0.28]$

C.
$$x \in [-3.61, -3.27]$$

D.
$$x_1 \in [-6.71, -4.31]$$
 and $x_2 \in [-1, -0.57]$

E.
$$x \in [-1.16, 0.71]$$

2. Determine the domain of the function below.

$$f(x) = \frac{3}{24x^2 - 56x + 30}$$

- A. All Real numbers except x = a, where $a \in [23.7, 25.5]$
- B. All Real numbers except x = a and x = b, where $a \in [-0.8, 0.9]$ and $b \in [0.9, 3]$
- C. All Real numbers except x=a and x=b, where $a\in[23.7,25.5]$ and $b\in[29,31.9]$
- D. All Real numbers except x = a, where $a \in [-0.8, 0.9]$
- E. All Real numbers.
- 3. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{-36}{60x + 84} + 1 = \frac{-36}{60x + 84}$$

- A. All solutions lead to invalid or complex values in the equation.
- B. $x_1 \in [-3.4, -0.4]$ and $x_2 \in [0.4, 2.4]$
- C. $x \in [-2.4, -0.4]$

- D. $x \in [0.4, 2.4]$
- E. $x_1 \in [-3.4, -0.4]$ and $x_2 \in [-3.4, 0.6]$
- 4. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{42}{-30x + 24} + 1 = \frac{42}{-30x + 24}$$

- A. $x \in [-0.2, 1.8]$
- B. $x \in [-1.5, -0.5]$
- C. All solutions lead to invalid or complex values in the equation.
- D. $x_1 \in [0.5, 1.3]$ and $x_2 \in [-1.2, 2.8]$
- E. $x_1 \in [-1.5, -0.5]$ and $x_2 \in [-1.2, 2.8]$
- 5. Choose the graph of the equation below.

D.

A.

В.

2

4

E. None of the above.

6. Determine the domain of the function below.

$$f(x) = \frac{6}{12x^2 + 29x + 15}$$

- A. All Real numbers except x = a, where $a \in [-16.7, -14.9]$
- B. All Real numbers except x=a and x=b, where $a\in[-16.7,-14.9]$ and $b\in[-12.3,-11.6]$
- C. All Real numbers.
- D. All Real numbers except x = a, where $a \in [-4, -1.5]$
- E. All Real numbers except x = a and x = b, where $a \in [-4, -1.5]$ and $b \in [-1.6, 0.1]$
- 7. Choose the equation of the function graphed below.

- A. $f(x) = \frac{-1}{(x-2)^2} 7$
- B. $f(x) = \frac{1}{(x+2)^2} 7$
- C. $f(x) = \frac{1}{x+2} 7$
- D. $f(x) = \frac{-1}{x-2} 7$

- E. None of the above
- 8. Choose the equation of the function graphed below.

A.
$$f(x) = \frac{1}{(x+3)^2} - 1$$

B.
$$f(x) = \frac{-1}{(x-3)^2} - 1$$

C.
$$f(x) = \frac{1}{x+3} - 1$$

D.
$$f(x) = \frac{-1}{x-3} - 1$$

- E. None of the above
- 9. Choose the graph of the equation below.

$$f(x) = \frac{-1}{x+3} - 1$$

A.

В.

С.

E. None of the above.

10. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{-2x}{-2x+6} + \frac{-3x^2}{-12x^2 + 22x + 42} = \frac{-4}{6x+7}$$

A. $x \in [-2.01, -0.52]$

B. $x_1 \in [0.05, 1.45]$ and $x_2 \in [-3.2, -0.8]$

C. $x \in [-3.39, -1.71]$

D. All solutions lead to invalid or complex values in the equation.

E. $x_1 \in [0.05, 1.45]$ and $x_2 \in [-1.6, 4.7]$