Cheatsheet di Algoritmi e Strutture Dati

Giacomo Scampini

10 luglio 2025

1 Complessità

1.1 Notazioni di Complessità Asintotica in Elenco

- f(n) = O(g(n)) O grande Limite asintotico superiore
- $f(n) = \Omega(g(n))$ Omega grande Limite as intotico inferiore
- $f(n) = \Theta(g(n))$ Theta grande Limite asintotico sia superiore che inferiore

1.2 Confronto Tramite Limiti

Dato il limite $L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$:

- Se L = 0, allora $\Theta(f(n)) < \Theta(g(n))$.
- Se L = c (con $c \neq 0, \infty$), allora $\Theta(f(n)) = \Theta(g(n))$.
- Se $L = \infty$, allora $\Theta(f(n)) > \Theta(g(n))$.

1.3 Gerarchia Fondamentale degli Ordini di Grandezza

Per costanti $k, h \in \mathbb{R}^+$ e a > 1:

$$\Theta(1) < \Theta((\log n)^k) < \Theta(n^h) < \Theta(a^n) < \Theta(n!) < \Theta(n^n)$$

1.4 Complessità degli Automi

- DFSA (Automa a Stati Finiti Deterministico)
 - Complessità Temporale: $T_A(n) = \Theta(n)$
 - Complessità Spaziale: $S_A(n) = \Theta(1)$
- DPDA (Automa a Pila Deterministico)
 - Complessità Temporale: $T_A(n) = \Theta(n)$
 - Complessità Spaziale: $\Theta(0) \leq \Theta(S_A(n)) \leq \Theta(n)$
- k-DTM (Macchina di Turing Deterministica a k-nastri)
 - Complessità Temporale: Nessun limite generale.
 - Complessità Spaziale: $\Theta(S_M(n)) \leq \Theta(T_M(n))$
- SDTM (Macchina di Turing Deterministica a nastro singolo)
 - Complessità Temporale: Nessun limite generale.
 - Complessità Spaziale: $S_M(n) = \Omega(n)$

1.5 Complessità delle RAM

1.5.1 Criteri di Costo

- Costo Costante: Ogni istruzione ha costo 1. Ogni cella di memoria ha costo 1, indipendentemente dal valore contenuto.
- Costo Logaritmico: Il costo di un'operazione e dello spazio occupato dipende dalla dimensione (logaritmo) dei valori numerici coinvolti.

$$l(x) := \begin{cases} \lfloor \log_2 x \rfloor + 1 & \text{se } x \neq 0 \\ 1 & \text{se } x = 0 \end{cases} \quad \text{N.B.: } l(x) = \Theta(\log x)$$

• Quando sceglierli: I due criteri sono equivalenti se la dimensione degli operandi è limitata da una costante. Se i numeri possono diventare arbitrariamente grandi, il criterio logaritmico è più realistico.

1

1.5.2 Calcolo del Costo Logaritmico (caso semplificato)

Sotto l'ipotesi di usare un numero costante di celle di memoria:

- Costo Spaziale: Lo spazio totale è la somma della "lunghezza" (logaritmo) di tutti i numeri più grandi salvati in ogni cella di memoria utilizzata.
- Gestione di un intero i (es. LOAD, STORE, READ, WRITE, JZ)
 - Costo Temporale: $\Theta(\log i)$
- Operazioni Aritmetiche (su operandi n_1, n_2)
 - Addizione (+), Sottrazione (-): $\Theta(\log n_1 + \log n_2)$
 - Moltiplicazione (*), Divisione (/): $\Theta(\log n_1 \cdot \log n_2)$

1.6 Classi di Complessità Comuni

- $\mathcal{O}(1)$: Costante (es. accesso a un elemento di un array)
- $\mathcal{O}(\log n)$: Logaritmica (es. ricerca binaria)
- $\mathcal{O}(n)$: Lineare (es. scansione di una lista)
- $\mathcal{O}(n \log n)$: Lineare-logaritmica (es. merge sort, heapsort)
- $\mathcal{O}(n^2)$: Quadratica (es. bubble sort, selection sort)
- $\mathcal{O}(2^n)$: Esponenziale (es. problemi risolti con la forza bruta)
- $\mathcal{O}(n!)$: Fattoriale (es. problema del commesso viaggiatore con forza bruta)

2 Strutture Dati

3 Algoritmi di Ordinamento

3.1 Algoritmi comuni

Algoritmo	Complessità temporale	Complessità spaziale
Insertion sort	$\Theta(n^2)$	$\Theta(1)$
Merge sort	$\Theta(n \log n)$	$\Theta(n)$
Heapsort	$\Theta(n \log n)$	$\Theta(1)$
Quicksort	$\Theta(n^2)$	$\Theta(1)$
Counting sort	$\Theta(n+k)$	$\Theta(k)$

4 Confronto SDTM, KTM e RAM

5 Organizza Dati con Strutture Dati

6 Equazioni di Ricorrenza