MATH 5302 Elementary Analysis II - Homework 2

Jonas Wagner

2022, Febuary 9th

Problem 1

Show that

$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx$$

is well-defined for $\alpha > 0$ and $\beta > 0$.

Definition 1. The improper integral

$$\int_0^a f(x) \, \mathrm{d}x$$

is well-defined iff

$$\lim_{\epsilon \to 0} \int_0^a f(x) \, \mathrm{d}x$$

exists.

Definition 2. The gamma function $\Gamma(\alpha)$ is defined as

$$\Gamma(\alpha) = \int_0^\infty e^{-x} x^{\alpha - 1} \, \mathrm{d}x$$

for $0 < \alpha < \infty$.

Definition 3. The beta function $B(\alpha, \beta)$ is defined as

$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

for $\alpha > 0$ and $\beta > 0$.

Theorem 1. Limit Comparison Test: Let $f, g : [a, b) \to \mathbb{R}$ be two functions such that (i) f(x) and g(x) are integrable on $[a, A] \subset [a, b)$, for a < A < b; (ii) There exists $a \le K \le b$ such that $\lim_{x \to b^-} \frac{f(x)}{g(x)} = K$. Then,

- a. If $0 < K < \infty$, then $\int_a^b g(x) dx$ converges iff $\int_a^b f(x)$ converges.
- b. If K = 0, then $\int_a^b g(x)$ converges implies $\int_a^b f(x) dx$ converges.
- c. If $K \infty 0$, then $\int_a^b g(x)$ divergent implies $\int_a^b f(x) dx$ divergent.

Theorem 2. The improper integral that defines the beta function

$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx$$

is well-defined for $\alpha > 0$ and $\beta > 0$.

Proof. The integrand of $B(\alpha, \beta)$,

$$b(\alpha, \beta) = x^{\alpha - 1} (1 - x)^{\beta - 1}$$

is not strictly bounded $\forall_{\alpha,\beta>0}$, but this is not necessary for convergence. $\forall \alpha,\beta \in [0,\infty)$ the $b(\alpha,\beta)$ is bounded. This makes $B(\alpha,\beta)$ a proper integral which is therefore convergent.

In the other case the integrand is not bounded, but the improper integral still converges. $\forall_{\alpha \in (0,1)}$ then $b(\alpha,\beta)$ is unbounded at x=0. Similarly, $\forall_{\beta \in (0,1)}$ then $b(\alpha,\beta)$ is unbounded at x=1. The beta function can instead be split up into two parts:

$$B(\alpha, \beta) = \int_0^c x^{\alpha - 1} (1 - x)^{\beta - 1} dx + \int_c^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx$$

where $c \in (0,1)$.

For the first improper integral, $\int_0^c x^{\alpha-1} (1-x)^{\beta-1} dx$ a discontinuity exists at x=0 for $\alpha \in (0,1)$. Using the Limit Comparison Test from Theorem 1 with $g(x)=x^{\alpha-1}$,

$$\lim_{x \to 0^+} \frac{f(x)}{g(x)} = \lim_{x \to 0^+} \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{x^{\alpha - 1}}$$
$$= \lim_{x \to 0^+} (1 - x)^{\beta - 1}$$
$$= 1 \neq 0$$

Which then implies that $\int_0^c x^{\alpha-1} (1-x)^{\beta-1} dx$ converges $\forall_{\alpha,\beta>0}$.

For the second improper integral, $\int_c^1 x^{\alpha-1} (1-x)^{\beta-1} dx$ a discontinuity exists at x=1 for $\beta \in (0,1)$. Using the Limit Comparison Test from Theorem 1 with $g(x)=(1-x)^{\beta-1}$,

$$\lim_{x \to 1^{-}} \frac{f(x)}{g(x)} = \lim_{x \to 1^{-}} \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{(1 - x)^{\beta - 1}}$$
$$= \lim_{x \to 1^{-}} x^{\alpha - 1}$$
$$= 1 \neq 0$$

Which then implies that $\int_c^1 x^{\alpha-1} (1-x)^{\beta-1} dx$ converges $\forall_{\alpha,\beta>0}$.

Together, the convergence of $\int_0^c x^{\alpha-1} (1-x)^{\beta-1} dx$ and $\int_c^1 x^{\alpha-1} (1-x)^{\beta-1} dx$ implies that $B(\alpha, \beta)$ converges $\forall_{\alpha,\beta>0}$ and therefore $B(\alpha,\beta)$ is well defined.

Show that f if Riemann integrable on [a, b], then

$$\lim_{\epsilon \to 0^+} \int_a^{b-\epsilon} f(x) \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x$$

Definition 4. Let $f:[a,b] \to \mathbb{R}$ be bounded on [a,b].

a. A Partition of [a,b] is any ordered $P \subset [a,b]$ given as

$$P = \{a = x_0 < x_1 < \dots < x_n < b\}$$

b. A Mesh of partition P, mesh(P), is the maximum length of the subintervals in P. (i.e) For $P = \{a = x_0 < x_1 < \cdots < x_n < b\}$,

$$mesh(P) = max[\{x_i - x_{i-1} : i = 1, 2, ..., n\}]$$

c. A Riemann Sum of f associated with partition P, S(f, P), is the sum defined as

$$\sum_{i=1}^{n} f(x_i^*)(x_i - x_{i-1})$$

where the specific $x_i^* \in [x_{i-1}, x_i]$ is arbitrary.

d. f is considered Riemann Integrable on [a, b] if

$$\exists_r \forall_{\epsilon>0} \exists_{\delta>0} : \forall_{S(f,P) : mesh(P)<\delta} \Longrightarrow |S(f,P)-r| < \epsilon$$

where the number r is considered the Riemann Integral of f on [a,b], $\mathcal{R} \int_a^b f$.

Theorem 3. Let $f:[a,b] \to \mathbb{R}$. f being Riemann integrable on [a,b] implies that

$$\lim_{\epsilon \to 0^+} \int_a^{b-\epsilon} f(x) \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x$$

Proof. By the definition of a function being Riemann Integrable, Definition 4, it is known that f must be bounded. From this fact, the limit described will always exists and an asymptote at the boundary would not be a concern. Using the construction of Riemann sum itself,

$$\lim_{\epsilon \to 0^+} \int_a^{b-\epsilon} f(x) \, \mathrm{d}x = \lim_{\epsilon \to 0^+} r : \forall_{P = \{a = x_0 < x_1 < \dots < x_n < b - \epsilon\}} \forall_{\epsilon_0 > 0} \exists_{\delta > 0} : \forall_{S(f,P) : \operatorname{mesh}(P) < \delta} \implies |S(f,P) - r| < \epsilon_0$$

$$= r : \forall_{P = \{a = x_0 < x_1 < \dots < x_n < b\}} \forall_{\epsilon_0 > 0} \exists_{\delta > 0} : \forall_{S(f,P) : \operatorname{mesh}(P) < \delta} \implies |S(f,P) - r| < \epsilon_0$$

$$\lim_{\epsilon \to 0^+} \int_a^{b-\epsilon} f(x) \, \mathrm{d}x = \mathcal{R} \int_a^b f = \int_a^b f(x) \, \mathrm{d}x$$

Evaluate $\int_0^1 (1-x^{\frac{2}{3}})^{\frac{3}{2}} dx$. Hint: Express the integral in terms of the gamma function first.

Example 1. Let

$$F(x) = \int_0^1 (1 - x^{\frac{2}{3}})^{\frac{3}{2}} dx$$

This can be simplified using u-substitution. Let

$$u = x^{\frac{2}{3}}$$

then

$$\mathrm{d}u = \frac{2}{3}x^{-\frac{1}{3}}\,\mathrm{d}x$$

and

$$\mathrm{d}x = \frac{3}{2}x^{\frac{1}{3}}\,\mathrm{d}u$$

The bounds are found as

$$0 = u(a) = a^{\frac{2}{3}} \implies a = 0^{\frac{3}{2}} = 0$$

and

$$1 = u(b) = b^{\frac{2}{3}} \implies b = 1^{\frac{3}{2}} = 1$$

$$F(x) = \int_0^1 \left(1 - x^{\frac{2}{3}}\right)^{\frac{3}{2}} \left(\frac{3}{2}x^{\frac{1}{3}} du\right)$$
$$= \frac{3}{2} \int_0^1 (1 - u)^{\frac{3}{2}} u^{\frac{1}{2}} du$$
$$= \frac{3}{2} \int_0^1 u^{\frac{3}{2} - 1} (1 - u)^{\frac{5}{2} - 1} du$$

which is of the form of the beta function as defined in Definition 3

$$= \frac{3}{2}B(\frac{3}{2}, \frac{5}{2})$$

$$= \frac{3}{2}\frac{\Gamma(\frac{3}{2})\Gamma(\frac{5}{2})}{\Gamma(\frac{3}{2} + \frac{5}{2})}$$

$$= \frac{3\Gamma(\frac{3}{2})\Gamma(\frac{5}{2})}{2\Gamma(4)}$$

$$= \frac{3\left(\frac{\sqrt{\pi}}{2}\right)\left(\frac{3\sqrt{\pi}}{4}\right)}{2(3!)}$$

$$= \frac{\frac{9\pi}{8}}{(2)(3)(2)(1)}$$

$$= \frac{9\pi}{96}$$

$$F(x) = \frac{3\pi}{32} \approx 0.29452$$

Let

$$f(x) = \begin{cases} x \sin(\frac{1}{x}) & \text{if } 0 < x \le 1; \\ 0 & \text{if } x = 0 \end{cases}$$

Show that f is bounded and continuous on [0,1], but not of bounded variation on [0,1].

Definition 5. $f:(a,b)\to\mathbb{R}$ is a bounded function iff

$$\exists_{N \in \mathbb{R}} : \forall_{x \in (a,b)} |f(x)| < N$$

Definition 6. $f:(S_1,d_1)\to (S_2,d_2)$ is a <u>continuous function</u> iff

$$\forall_{x \in S_1} \forall_{\epsilon > 0} \exists_{\delta(x,\epsilon) > 0} \forall_{y \in S_1} : d_1(x,y) < \delta \implies d_2(f(x),f(y)) < \epsilon$$

Definition 7. For function $f:[a,b] \to \mathbb{R}$ and partition $P = \{a = x_0 < x_1 < \cdots < x_n = b\}$:

a. the variaton of f over P is defined as

$$V_a^b(f, P) = \sum_{i=1}^n |f(x_i) - f(x_{i-1})|$$

b. the variaton of f from a to b is defined as

$$V_a^b(f) = \sup_P V_a^b(f, P)$$

- c. f is considered of bounded variation on [a,b] if $V_a^b(f)$ is finite.
- d. the family of functions of bounded variation on [a,b] is denoted as BV_a^b .

Example 2. Let

$$f(x) = \begin{cases} x \sin(\frac{1}{x}) & 0 < x \le 1\\ 0 & x = 0 \end{cases}$$

a) f(x) is bounded

Proof. For $x \in \{0\}$, f(x) = 0. For $x \in (0, 1]$,

$$f(x) = x \sin\left(\frac{1}{x}\right) \le x(1) \le 1$$

which is bounded. Therefore, f(x) is bounded $\forall_{x \in [0,1]}$.

b) f(x) is continuous

Proof. For $x \in \{0\}$, f(x) = 0. This means that

$$\lim_{x \to 0^-} f(x) = 0$$

For $x \in (0, 1]$,

$$f(x) = x \sin\left(\frac{1}{x}\right)$$

which is continuous on (0,1]. Additionally, this results in

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x \sin\left(\frac{1}{x}\right) = 0$$

Therefore, f(x) is continuous $\forall_{x \in [0,1]}$.

c) f(x) is not of bounded variation on [0,1].

Proof. In order for f to be of bounded variation on [a,b], the variation

$$V_a^b(f) = \sup_{P} V_a^b(f, P)$$

must be finite. The existence of this bound can be demonstrated with the following counter-example: Let

$$\{a\}_k := \left\{a_k = (2k+1)\frac{\pi}{2} \forall_{k=0,\dots,N-1}\right\}$$

For size N, define partition of [0, 1]

$$P_N = \left\{ 0 = x_0 = 0 < x_1 = \frac{1}{a_{N-1}} < x_2 = \frac{1}{a_{N-2}} < \dots < x_{n-1} = \frac{1}{a_0} < x_n = 1 \right\}$$

which can be used to construct a sequence, but that's not the point.

The variation $V_a^b(f, P_N)$ is finite only for bounded N. i.e. $\exists_{0 < M_N < \infty}$ that bounds the variation $V_a^b(f, P_N)$ for a given N:

$$V_a^b(f, P_N) = \sum_{i=1}^N |f(x_i) - f(x_i - 1)|$$

$$= \left| \frac{1}{a_{N-1}} \sin(a_{N-1}) \right| + \sum_{i=2}^N \left| \frac{1}{a_{N-i}} \sin(a_{N-i}) - \frac{1}{a_{N-i-1}} \sin(a_{N-i-1}) \right|$$

$$= \left| \frac{1}{a_{N-1}} \right| + \sum_{i=1}^N \left| \frac{1}{a_{N-i}} - \frac{1}{a_{N-i-1}} \right| |(1) - (-1)|^1$$

$$= \left| \frac{1}{a_{N-1}} \right| + 2 \sum_{i=1}^N \left| \frac{a_{N-i} - a_{N-i-1}}{a_{N-i}a_{N-i-1}} \right|$$

However, this variation over [a, b] is since the sum does not converge as $N \to \infty$.

Assume f is differentiable on [a,b] with $|f'(x)| \le M < \infty$ for $a \le x \le b$. Show that f is of bounded variation and $V_a^b(f) \le M(b-a)$. (Hint: Use Mean Value Theorem)

Theorem 4. *Mean Value Theorem:* Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). There exists $c \in (a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Theorem 5. Let $f:[a,b] \to \mathbb{R}$ be differentiable on [a,b]. If the derivative is bounded $\exists_{M>0}: \forall_{x\in[a,b]}|f'(x)| \le M < \infty$, then f will have a bounded variation with $V_a^b(f) \le M(b-a)$.

Proof. From Definition 7, we have the following: The variation of f associated with P is

$$V_a^b(f, P) = \sum_{i=1}^{N} |f(x_i) - f(x_{i-1})|$$

In order for f to be of bounded variation on [a, b], the variation

$$V_a^b(f) = \sup_P V_a^b(f, P)$$

must be finite.

We also refer to the principles underlying Theorem 4, which ultimately states that

$$\exists_{c \in (a,b)} : f'(c) = \frac{f(b) - f(a)}{b - a}$$

which represents the mean of the derivative overall.

Since f'(x) has a bound, $|f'(x)| \leq M$, $V_a^b(f, P)$ for a given P will also be bounded.

$$V_a^b(f, P) = \sum_{i=1}^N |f(x_i) - f(x_{i-1})|$$

$$\leq \sum_{i=1}^N |M(x_i - x_i - 1)|$$

$$= \sum_{i=1}^N |M||x_i - x_i - 1|$$

$$= M \sum_{i=1}^N x_i - x_{i-1}$$

$$= M(x_1 - x_0 + x_2 - x_1 + \dots + x_{N-1} - x_{N-2} + x_N - x_{N-1})$$

$$= M(x_1 - x_1 + x_2 - x_2 + \dots + x_{N-1} - x_{N-1} + x_N - x_0)$$

$$= M(x_N - x_0)$$

$$= M(b - a)$$

This means that

$$V_a^b(f, P) \le M(b - a)$$

for all partitions of [a, b]. Therefore, by definition, the variation of f on [a, b] is

$$V_a^b(f) \le M(b-a)$$