Feature Selection

Ahmet Sacan

Feature Selection vs. Feature Extraction

- Feature Selection: select a subset of features to improve classification (or to reduce the cost of calculating the feature vector).
- Feature Extraction: represent the samples in a new feature space.
 - Dimension Reduction methods. e.g., PCA
 - Calculation of new features from raw data. e.g, histograms or LocalBinaryPatterns extracted from image data.

Why Feature Selection?

- · Features may be expensive to obtain
 - You measure all genes in research (expensive), but want to use only a few for the final biomarker set
- · Easier interpretation of the classifier rules/decision
 - Measurement units (length, weight, etc.) are preserved in feature selection, but lost in feature extraction.
- Fewer parameters to learn for pattern recognition
 - Improved generalization
 - Reduced time & space requirements

Feature Selection

- Given F features, find the subset that gives the best classification performance.
- Number of possible subsets is exponential in F:
 - Selecting k features: $\binom{F}{k}$
 - Selecting any subset of features: 2^F
- Exhaustive Search impractical.

Objective function

 Objective function: the "goodness" of a candidate subset.

• Filter:

 Evaluate feature subsets by their information content; e.g. interclass distance, statistical dependence.

Wrapper:

- Evaluate feature subsets by their predictive accuracy (cross-validation) when used in a pattern classifier

Filters vs. Wrappers

• Filters:

- Fast execution: a non-iterative computation on the dataset
- Generality: evaluate intrinsic properties of data. Can use the feature set with many classifier methods
- Tendency to select large subsets. Objective function is generally monotonic, where selecting all features is optimal. Need to (arbitrarily) decide on a target number of features.

Wrappers:

- Accuracy: Achieve better prediction accuracy.
- Lack of generality: The selected feature set is classifier-specific and may not be the best set when another classifier is used.
- Slow execution: Need to train & test classifier for subsets of features to identify the best performing subset.

Filters

- Distance or Separability Measures
 - Distance between classes: Euclidean, City distance
 - Distance between & within classes: determinant of $S_W^{-1}S_B$ (LDA eigenvalues)
- Correlation and information-theoretic Measures
 - Idea: Good feature sets are highly correlated with the target class and not correlated with each other.
 - Linear: $\frac{\sum_{i} \rho_{i,class}}{\sum_{i} \sum_{j} \rho_{i,j}}$ where $i, j \in featureset F$
 - Mutual Information: Decrease in the entropy of the class by knowledge of X_F

Filter Methods

Method		X		Y	Comments	
Name	Formula B M C B M C					
Bayesian accuracy Balanced accuracy Bi-normal separation F-measure Odds ratio	Eq. 3.1 4 Eq. 3.4 4 Eq. 3.5 4 Eq. 3.7 4 Eq. 3.6 4	- s	+	8 8 8	Theoretically the golden standard, rescaled Bayesian relevance Eq. 3.2. Average of sensitivity and specificity; used for unbalanced dataset, same as AUC for binary targets. Used in information retrieval. Harmonic of recall and precision, popular in information retrieval. Popular in information retrieval.	
Means separation T-statistics Pearson correlation Group correlation χ^2 Relief Separability Split Value	Eq. 3.13 + Eq. 3.8 +	- i - i - s - s	+ + + + + + + +	i i s	Based on two class means, related to Fisher's criterion. Based also on the means separation. Linear correlation, significance test Eq. 3.12, or a permutation test. Pearson's coefficient for subset of features. Results depend on the number of samples m. Family of methods, the formula is for a simplified version ReliefX, captures local correlations and feature interactions. Decision tree index.	
Kolmogorov distance Bayesian measure Kullback-Leibler divergence Jeffreys-Matusita distance Value Difference Metric	Eq. 3.16 + Eq. 3.20 +	- s - s	+ + +	s s	+ Difference between joint and product probabilities. + Same as Vajda entropy Eq. 3.23 and Gini Eq. 3.39. + Equivalent to mutual information. + Rarely used but worth trying. Used for symbolic data in similarity-based methods, and symbolic feature-feature correlations.	
Mutual Information Information Gain Ratio Symmetrical Uncertainty J-measure Weight of evidence MDL	Eq. 3.32 + Eq. 3.35 + Eq. 3.36 +	- s - s - s	+ + + + + + + + + + + + + + + + + + + +	s s	+ Equivalent to information gain Eq. 3.30. + Information gain divided by feature entropy, stable evaluation. + Low bias for multivalued features. + Measures information provided by a logical rule. + So far rarely used. Low bias for multivalued features.	

Feature Extraction - Foundations and Applications. Guyon et.al., (eds.)

Wrapper Methods: Search Strategies

- · Naïve: order features by their individual goodness and keep top k.
 - Drawback: Worse features may be better in combination.
- Exponential algorithms
 - Exhaustive search
 - Branch & Bound
- Sequential algorithms
 - Iteratively add or remove features
 - Tendency to be trapped in local minima
- Randomized algorithms
 - Randomize to escape local minima
 - Genetic algorithms

Sequential Search

Sequential Backward Selection (SBS) aka. Recursive Elimination (RE)

Sequential Forward Selection

• Start with empty set $F = \{\}$

• Iterate:

- Find (and add) the feature that when added to F result in the best objective function value.
- Optional: Stop if objective function value cannot be improved by adding a new feature.

Sequential Backward Selection

• Start with $F = \{all \ features\}$

• Iterate:

- Find (and remove) the feature that when removed, results in the best objective function value.
- Optional: Stop if objective function value cannot be improved by removal of a feature.

SFS and SBS

- When to use SFS vs SBS:
 - SFS works well when the optimal subset is small.
 - SFS is computationally more efficient if you stop before considering the full feature set.
 - SBS works well when the optimal subset is large.
- Limitations of SFS and SBS:
 - SFS is unable to remove features that become non-useful with the addition of additional features.
 - SBS is unable to re-evaluate the usefulness of a feature once it has been discarded.
- Variations:
 - Bidirectional Search
 - Plus-L, minus-R selections (LRS)
 - Sequential floating forward/backward selection

SFS/SBS Variants

- Bidirectional Search
 - Perform SFS and SBS simultaneously
 - Features selected by SFS are not removed by SBS
 - Features removed by SBS are not added by SFS
- Plus-L, minus-R selection (LRS)
 - L>R: F={}; iterate: add L, remove R.
 - L<R: F=all; iterate: remove R, add L.
- Sequential Floating Forward/Backward Selection (SFFS, SFBS)
 - Similar to LRS
 - SFFS: After each forward step, perform backward steps as long as the objective function improves.

Genetic Algorithms (GAs)

- Model the search for the best solution as evolution of a population of candidate solutions.
- Requirements:
 - Genetic representation of the solution domain
 - Commonly: bit string representation
 - Fitness function
 - f(candidate solution) →
 fitness value

Feature Selection by Genetic Algorithm

- Each chromosome:
 - Bit string specifying whether or not a feature is used.
- Population of encoded Solutions:
 - E.g., 4 samples in population, 32 features:

00010101 00111010 11110000

00010001 00111011 10100101

00100100 10111001 01111000

11000101 01011000 01101010

GA: Fitness evaluation

 Fitness of an "individual": Prediction performance when that feature subset is used by the classifier. eg.,

$$fitness(F) = w_1 * Accuracy + w_2 * NumZeros$$

 $w_1 \gg w_2$

GA: Selection

- · Best-performing individuals survive
 - Perform selection probabilistically, e.g. using "Roulette Wheel Selection"

Population	Fitness]	Ind 5 (11) 10%	Ind 1 (15) 14%
Individual 1 Individual 2 Individual 3 Individual 4 Individual 5	15 27 6 52 11			Ind 2 (27) 24%
		Iz	nd 4 (52) 47%	Ind 3 (6) 5%
			ĺ	ļ
Individual 2 is	selected		Randomly gener	ated number = 21

GA: Cross-over

- Cross-over: hope to combine the good parts of the two solutions to obtain a better solution.
- Perform cross-over with probability p_c (typically [0.5..0.8])
 - Single-Point:

- Two-Point:

GA: Mutation

- Mutation adds diversity to the population of solutions.
- Perform mutation with probability p_m (typically [0.001..0.01])

 $1100010\underline{1}$ 01011000 01101010 \longrightarrow 1100010 $\underline{0}$ 01011000 01101010

GA: Termination

• Termination Criteria:

- A solution is found that satisfies minimum criteria
- Fixed number of generations reached
- Allocated budget (computation time/money) reached
- The highest ranking solution's fitness is reaching or has reached a plateau such that successive iterations no longer produce better results
- Manual inspection
- Tired of waiting
- Any Combinations of the above