

Verknüpfungen

Motivation

Rechenregeln in \mathbb{N}_0

Für alle $x, y, z \in \mathbb{N}_0$ gilt:

$$\rightarrow x + (y + z) = (x + y) + z$$

▶
$$0 + x = x$$

$$\triangleright x + y = y + x$$

$$\blacktriangleright x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

▶
$$1 \cdot x = x$$

$$\triangleright x \cdot y = y \cdot x$$

Die Operationen + und \cdot sind Beispiele für Verknüpfungnen.

Definition

M Menge

Verknüpfung auf M: Abbildung \bullet : $M \times M \rightarrow M$

Notation:

 $\bullet \text{ für } x,y \in M: \quad x \bullet y := \bullet(x,y)$

Beispiele

- ightharpoonup auf \mathbb{N}_0 :
- ightharpoonup auf \mathbb{Z} :
- ightharpoonup auf \mathbb{Q} :

Definition

M Menge, • Verknüpfung auf M

▶ • assoziativ: für alle
$$x, y, z \in M$$
:

$$x \bullet (y \bullet z) = (x \bullet y) \bullet z$$

▶ • *kommutativ*: für alle
$$x, y \in M$$
:

$$x \bullet y = y \bullet x$$

Definition

M Menge, • Verknüpfung auf M

neutrales Element bzgl. •: $e \in M$ so, dass für $x \in M$:

$$e \bullet x = x \bullet e = x$$

Bemerkung

M Menge, • Verknüpfung auf M

es gibt höchstens ein neutrales Element bzgl. \bullet

Definition

M Menge, ullet Verknüpfung auf M, e neutrales Element bzgl. ullet $x \in M$

▶ *linksinverses Element* zu x bzgl. •: $y \in M$ mit

$$y \bullet x = e$$

▶ rechtsinverses Element zu x bzgl. •: $y \in M$ mit

$$x \bullet y = e$$

▶ inverses Element zu x bzgl. •: $y \in M$ mit

$$y \bullet x = e = x \bullet y$$

Bemerkung

M Menge

 \bullet assoziative Verknüpfung auf $M,\ e$ neutrales Element bzgl. \bullet $x\in M$

es gibt höchstens ein inverses Element zu x bzgl. ullet

Monoide

Definition

- ► Monoid: besteht aus
 - ► *M* Menge
 - ▶ assoziative Verknüpfung auf M
 - ▶ e, neutrales Element bezgl. •

Missbrauch von Notation: notiere Monoid wieder als M

Terminologie und Notationen:

- ► *Multiplikation* von *M*: Notation:
- ► M Monoid

M heißt abelsch (oder kommutativ): · ist kommutativ

Axiome in Standardnotation

- ► Monoid *M*:
 - für $x, y, z \in M$: x(yz) = (xy)z
 - es ex. $e \in M$ so, dass für $x \in M$: ex = e = xe
- ► Abelsches Monoid *M*:

Zusätzlich:

• für
$$x, y \in M$$
: $xy = yx$

Wir sagen auch: M ist multiplikativ geschrieben.

Bei multiplikativer Schreibweise benutzt man oft das Zeichen 1 für das neutrale Element e. Für $x \in M$ und $n \in \mathbb{N}$ schreibt man auch $x^n := x \cdot x \cdot \cdots \cdot x$ (n Faktoren).

Bei einem abelschen Monoid M benutzt man oft das Zeichen + für die Verknüpfung.

Wir sagen auch: *M* ist *additiv geschrieben*.

In diesem Fall schreibt man meistens 0 für das neutrale Element. Für $x \in M$ und $n \in \mathbb{N}$ schreibt man auch $nx := x + x + \cdots + x$ (n Summanden).

Axiome in Standardnotation

• es ex.
$$0 \in M$$
 so, dass für $x \in M$: $0 + x = x = x + 0$

Beispiele

- ► N mit üblicher Addition:
 - ightharpoonup mit üblicher Multiplikation:
- ► N₀ mit üblicher Addition:
 - $\blacktriangleright \ \mathbb{N}_0$ mit üblicher Multiplikation:

Beispiel

nicht-kommutatives Monoid mit genau drei Elementen:

•	1	c_1	<i>c</i> ₂
1	1	c_1	<i>c</i> ₂
c_1	c_1	c_1	c_1
<i>c</i> ₂	<i>c</i> ₂	<i>c</i> ₂	c_2

Wortmonoid

Definition

A Menge

▶ Für $n \in \mathbb{N}$ und $a_1, \ldots, a_n \in A$ nennen wir

$$a_1 a_2 \cdot \cdot \cdot a_n$$

ein Wort der Länge n über A.

- ▶ $A^* := \{ w \mid w \text{ ist Wort der Länge } n \text{ über } A, n \in \mathbb{N}_0 \}.$ A^* enthält das Wort ϵ der Länge 0.
- ▶ Für zwei Wörter $v := a_1 \cdots a_n$ und $w := b_1 \cdots b_m$ über A sei

$$v * w := a_1 \cdots a_n b_1 \cdots b_m$$

die Verkettung oder Konkatenation von v und w.

▶ $(A^*,*)$ ist ein Monoid mit neutralem Element ϵ , das Wortmonoid über A.

Abbildungsmonoid

Bemerkung

M Menge

 $\mathrm{Abb}(M,M)$ ist Monoid mit Verknüpfung $(g,f)\mapsto g\circ f$ und neutralem Element id_M .

Bemerkung

Sei M Menge und $f \in Abb(M, M)$.

- ▶ f besitzt Rechtsinverses $\Leftrightarrow f$ ist surjektiv.
- ▶ f besitzt Linksinverses $\Leftrightarrow f$ ist injektiv.
- ▶ f besitzt Inverses $\Leftrightarrow f$ ist bijektiv.

Invertierbare Elemente

Definition

- ▶ M Monoid, $x \in M$
 - ▶ x invertierbar in M: es gibt ein inverses Element zu x bzgl. ·
 - ► x invertierbar

Inverse zu x in M: das zu x inverse Element y bzgl. · Notation:

► Menge der invertierbaren Elemente in M:

$$M^{\times} = \{x \in M \mid x \text{ invertierbar}\}$$

Invertierbare Elemente (Forts.)

Beispiel

- ▶ $\mathbb{N}_0^{\times} = \{1\}$
- $lackbox{ 0 einziges invertierbare Element in } \mathbb{N}_0$
- ▶ A Menge: $(A^*)^{\times} = \{\epsilon\}$

Proposition

M Monoid

- ► für $x, y \in M^{\times}$: $xy \in M^{\times}$ mit $(xy)^{-1} = y^{-1}x^{-1}$
- $1 \in M^{\times} \quad \text{mit } 1^{-1} \qquad = 1$
- für $x \in M^{\times}$: $x^{-1} \in M^{\times}$ mit $(x^{-1})^{-1} = x$

Gruppen

Definition

- Gruppe: Monoid, in dem jedes Eleement invertierbar ist.
- ► Abelsche Gruppe: abelsches Monoid, in dem jedes Element invertierbar ist.

Gruppen (Forts.)

Beispiel

- - $ightharpoonup \mathbb{Z}$ mit üblicher Multiplikation:
- - $ightharpoonup \mathbb{Q}$ mit üblicher Multiplikation:

•

Gruppen (Forts.)

Definition

A abelsche Gruppe

Subtraktion von A: Verknüpfung $(x, y) \mapsto x + (-y)$ auf A Notation: -

Gruppe der invertierbaren Elemente

Definition

M Monoid

Einheitengruppe von M (oder Gruppe der invertierbaren Elemente): Gruppe M^{\times} mit Multiplikation gegeben durch diejenige von M.

Beispiel

- $ightharpoonup \mathbb{Z}^{\times} = \{1, -1\}$
- $ightharpoonup \mathbb{Q}^{\times} = \mathbb{Q} \setminus \{0\}$
- ► *A* Menge:

$$S_A := Abb(A, A)^{\times}$$
, die symmetrische Gruppe auf A. $S_A = \{f \in Abb(A, A) \mid f \text{ ist invertierbar}\}.$

Untergruppen

Definition

G Gruppe, $U \subseteq G$.

U heißt Untergruppe von G, falls gilt:

- $ightharpoonup e \in U$.
- ▶ Für alle $x, y \in G$ ist auch $x \cdot y^{-1} \in G$.

Untergruppen (Forts.)

Beispiele

▶ Für $n \in \mathbb{Z}$ ist

$$n\mathbb{Z} := \{ nz \mid z \in \mathbb{Z} \}$$

eine Untergruppe von $(\mathbb{Z}, +)$.

Z.B. ist

- ► 2ℤ die Menge der gerande Zahlen.
- ► $0\mathbb{Z} = \{0\}.$
- $ightharpoonup 1\mathbb{Z} = \mathbb{Z}.$
- ▶ Sei A eine Menge und $a \in A$. Dann ist

$$S_{A,a} := \{ f \in S_A \mid f(a) = a \}$$

eine Untergruppe von S_A .

▶ $(\mathbb{N},+)$ ist keine Untergruppe von $(\mathbb{Z},+)$.

Ringe und Körper

Definition

Ring: Menge R mit zwei Verknüpfungen + und \cdot , so dass gilt:

- ightharpoonup (R,+) abelsche Gruppe
- \blacktriangleright (R, \cdot) Monoid
- ▶ für alle $x, y, z \in R$ gilt:

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z)$$
$$(x+y) \cdot z = (x \cdot z) + (y \cdot z)$$

Die letzten beiden Axiome heißen die Distributivgesetze.

Ringe und Körper (Forts.)

► *R* Ring

R kommutativ: · kommutativ

- ► Körper: kommutativer Ring K mit
 - ► 1 ≠ 0
 - ▶ jedes Element von $K \setminus \{0\}$ ist invertierbar

Ringe und Körper (Forts.)

Beispiele

- ► Z mit üblicher Addition und Multiplikation:
- ► ℚ mit üblicher Addition und Multiplikation:

Ringe und Körper (Forts.)

Beispiel

Körper mit genau zwei Elementen:

+	0	1		0	1
0	0	1	0	0	0
1	1	0	1	0	1