

Математическая статистика

Основы машинного обучения

План занятия

▶ Введение в машинное обучение: задача регрессии

- ▶ Введение в машинное обучение: задача регрессии
 - ▶ Линейная регрессия

- ▶ Введение в машинное обучение: задача регрессии
 - Линейная регрессия
 - ▶ Метрики качества для задачи регрессии

- ▶ Введение в машинное обучение: задача регрессии
 - Линейная регрессия
 - Метрики качества для задачи регрессии
- Свойства оценок

- ▶ Введение в машинное обучение: задача регрессии
 - Линейная регрессия
 - Метрики качества для задачи регрессии
- Свойства оценок

Линейная регрессия

Метод наименьших квадратов

Впервые регрессия упоминается в работе Гальтона

"Регрессия к середине в наследственности роста", 1885 г.

Впервые регрессия упоминается в работе Гальтона

"Регрессия к середине в наследственности роста", 1885 г.

x — рост родителей, y — рост детей

Впервые регрессия упоминается в работе Гальтона

"Регрессия к середине в наследственности роста", 1885 г.

x — рост родителей, y — рост детей

Установлена зависимость $y-\overline{y} pprox rac{2}{3}(x-\overline{x})$, т.е. регрессия к середине.

Впервые регрессия упоминается в работе Гальтона

"Регрессия к середине в наследственности роста", 1885 г.

x — рост родителей, y — рост детей

Установлена зависимость $y-\overline{y} \approx \frac{2}{3}(x-\overline{x})$, т.е. регрессия к середине.

Задача регрессии: интуиция

Есть объект, обладающий признаками x.

Задача регрессии: интуиция

Есть объект, обладающий признаками x.

Примеры признаков: рост песика, экспрессия белка, энергия частицы.

Задача регрессии: интуиция

Есть объект, обладающий признаками x.

Примеры признаков: рост песика, экспрессия белка, энергия частицы.

Мы предполагаем, что есть зависимость какой-то численной характеристики объекта y от его признаков:

$$y \approx f(x)$$

Задача регрессии: интуиция

Есть объект, обладающий признаками x.

Примеры признаков: рост песика, экспрессия белка, энергия частицы.

Мы предполагаем, что есть зависимость какой-то численной характеристики объекта y от его признаков:

$$y \approx f(x)$$

Пример: зависимость уровня когнитивных способностей от параметров поражения мозга при рассеянном склерозе.

Задача регрессии: интуиция

Есть объект, обладающий признаками x.

Примеры признаков: рост песика, экспрессия белка, энергия частицы.

Мы предполагаем, что есть зависимость какой-то численной характеристики объекта y от его признаков:

$$y \approx f(x)$$

Пример: зависимость уровня когнитивных способностей от параметров поражения мозга при рассеянном склерозе.

Однако мы не знаем, какова эта зависимость на самом деле.

Задача регрессии: интуиция

Есть объект, обладающий признаками x.

Примеры признаков: рост песика, экспрессия белка, энергия частицы.

Мы предполагаем, что есть зависимость какой-то численной характеристики объекта у от его признаков:

$$y \approx f(x)$$

Пример: зависимость уровня когнитивных способностей от параметров поражения мозга при рассеянном склерозе.

Однако мы не знаем, какова эта зависимость на самом деле.

На основании данных — набора объектов, для которых известны x и y, мы пытаемся "восстановить" зависимость:

Пример

Пусть x — рост песика, а y — его вес.

Что мы знаем?

Пример

Пусть x — рост песика, а y — его вес.

Что мы знаем?

- чем крупнее песик, тем больший вес он имеет;
- песики одинакового роста могут иметь разный вес.

Пример

Пусть x — рост песика, а y — его вес.

Что мы знаем?

- чем крупнее песик, тем больший вес он имеет;
- песики одинакового роста могут иметь разный вес.

Выводы:

- ightharpoonup для фиксированного роста песика x его вес y=f(x) является случайной величиной;
- ightharpoonup в среднем вес f(x) возрастает при увеличении роста песика x.

Пример

Пусть x — рост песика, а y — его вес.

Что мы знаем?

- чем крупнее песик, тем больший вес он имеет;
- песики одинакового роста могут иметь разный вес.

Выводы:

- ightharpoonup для фиксированного роста песика x его вес y=f(x) является случайной величиной;
- ightharpoonup в среднем вес f(x) возрастает при увеличении роста песика x.

Пример

Простая зависимость:

$$y = \theta_0 + \theta_1 x + \varepsilon,$$

Пример

Простая зависимость:

$$y = \theta_0 + \theta_1 x + \varepsilon,$$

x — рост песика,

Пример

Простая зависимость:

$$y = \theta_0 + \theta_1 x + \varepsilon,$$

х — рост песика,

у — вес песика,

ê

Пример

Простая зависимость:

$$y = \theta_0 + \theta_1 x + \varepsilon,$$

x — рост песика,

у — вес песика,

 θ_0, θ_1 — неизвестные параметры,

Пример

Простая зависимость:

$$y = \theta_0 + \theta_1 x + \varepsilon,$$

x — рост песика,

у — вес песика,

 θ_0, θ_1 — неизвестные параметры,

arepsilon — случайная составляющая с нулевым средним (погрешность).

ê

Пример

Простая зависимость:

$$y = \theta_0 + \theta_1 x + \varepsilon,$$

x — рост песика,

у — вес песика,

 θ_0, θ_1 — неизвестные параметры,

arepsilon — случайная составляющая с нулевым средним (погрешность).

Зависимость линейна по параметрам, линейна по аргументу.

ê

Пример

Простая зависимость:

$$y = \theta_0 + \theta_1 x + \varepsilon,$$

x — рост песика,

у — вес песика,

 θ_0, θ_1 — неизвестные параметры,

arepsilon — случайная составляющая с нулевым средним (погрешность).

Зависимость линейна по параметрам, линейна по аргументу.

Пример

Более сложная зависимость:

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_2^2 + \varepsilon,$$

Пример

Более сложная зависимость:

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_2^2 + \varepsilon,$$

 x_1 — рост песика,

 x_2 — обхват туловища песика,

у — вес песика,

ê

Пример

Более сложная зависимость:

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_2^2 + \varepsilon,$$

 x_1 — рост песика,

 x_2 — обхват туловища песика,

у — вес песика,

 $\theta_0, \theta_1, \theta_2, \theta_3$ — неизвестные параметры,

 ε — случайная составляющая с нулевым средним.

Зависимость линейна по параметрам, квадратична по аргументам.

ê

Пример

Более сложная зависимость:

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_2^2 + \varepsilon,$$

 x_1 — рост песика,

 x_2 — обхват туловища песика,

у — вес песика,

 $\theta_0, \theta_1, \theta_2, \theta_3$ — неизвестные параметры,

 ε — случайная составляющая с нулевым средним.

Зависимость линейна по параметрам, квадратична по аргументам.

Модель линейной регрессии

Рассматриваем функциональную зависимость вида

$$y = y(x) = \theta_1 x_1 + \dots + \theta_d x_d$$

Модель линейной регрессии

Рассматриваем функциональную зависимость вида

$$y = y(x) = \theta_1 x_1 + \dots + \theta_d x_d$$

 $x_1, ..., x_d$ — признаки ,

 $\theta = (\theta_1, ..., \theta_d)^T$ — вектор параметров.

Модель линейной регрессии

Рассматриваем функциональную зависимость вида

$$y = y(x) = \theta_1 x_1 + \dots + \theta_d x_d$$

 $x_1, ..., x_d$ — признаки ,

 $\theta = (\theta_1, ..., \theta_d)^T$ — вектор параметров.

Для оценки θ производится n испытаний вида

$$Y_i = \theta_1 x_{i1} + ... + \theta_d x_{id} + \varepsilon_i, \quad i = 1, ..., n,$$

Модель линейной регрессии

Рассматриваем функциональную зависимость вида

$$y = y(x) = \theta_1 x_1 + \dots + \theta_d x_d$$

 $x_1, ..., x_d$ — признаки ,

 $\theta = (\theta_1, ..., \theta_d)^T$ — вектор параметров.

Для оценки θ производится n испытаний вида

$$Y_i = \theta_1 x_{i1} + ... + \theta_d x_{id} + \varepsilon_i, \quad i = 1, ..., n,$$

 $x_i = (x_{i1},...,x_{id})$ — признаковые описания объекта i (обычно неслучайные),

Рассматриваем функциональную зависимость вида

$$y = y(x) = \theta_1 x_1 + \dots + \theta_d x_d$$

 $x_1, ..., x_d$ — признаки ,

 $\theta = (\theta_1, ..., \theta_d)^T$ — вектор параметров.

Для оценки θ производится n испытаний вида

$$Y_i = \theta_1 x_{i1} + ... + \theta_d x_{id} + \varepsilon_i, \quad i = 1, ..., n,$$

 $x_i = (x_{i1},...,x_{id})$ — признаковые описания объекта i (обычно неслучайные),

 ε_i — случайная ошибка измерений.

Рассматриваем функциональную зависимость вида

$$y = y(x) = \theta_1 x_1 + \dots + \theta_d x_d$$

 $x_1, ..., x_d$ — признаки ,

 $\theta = (\theta_1, ..., \theta_d)^T$ — вектор параметров.

Для оценки θ производится n испытаний вида

$$Y_i = \theta_1 x_{i1} + ... + \theta_d x_{id} + \varepsilon_i, \quad i = 1, ..., n,$$

 $x_i = (x_{i1},...,x_{id})$ — признаковые описания объекта i (обычно неслучайные),

 ε_i — случайная ошибка измерений.

Введем обозначения

$$Y = \begin{pmatrix} Y_1 \\ \dots \\ Y_n \end{pmatrix}, \quad X = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \dots & & \\ x_{n1} & \dots & x_{nd} \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix}.$$

Введем обозначения

$$Y = \begin{pmatrix} Y_1 \\ \dots \\ Y_n \end{pmatrix}, \quad X = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \dots & & & \\ x_{n1} & \dots & x_{nd} \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix}.$$

Матричная форма записи проведенных испытаний

Введем обозначения

$$Y = \begin{pmatrix} Y_1 \\ \dots \\ Y_n \end{pmatrix}, \quad X = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \dots & & \\ x_{n1} & \dots & x_{nd} \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix}.$$

Матричная форма записи проведенных испытаний

$$Y = X\theta + \varepsilon$$
.

Введем обозначения

$$Y = \begin{pmatrix} Y_1 \\ \dots \\ Y_n \end{pmatrix}, \quad X = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \dots & & & \\ x_{n1} & \dots & x_{nd} \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix}.$$

Матричная форма записи проведенных испытаний

$$Y = X\theta + \varepsilon$$
.

 $X \in \mathbb{R}^{n imes d}$ — регрессоры (или матрица плана эксперимента),

Введем обозначения

$$Y = \begin{pmatrix} Y_1 \\ \dots \\ Y_n \end{pmatrix}, \quad X = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \dots & & \\ x_{n1} & \dots & x_{nd} \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix}.$$

Матричная форма записи проведенных испытаний

$$Y = X\theta + \varepsilon$$
.

 $X \in \mathbb{R}^{n imes d}$ — регрессоры (или матрица плана эксперимента), $Y \in \mathbb{R}^n$ — отклик.

Введем обозначения

$$Y = \begin{pmatrix} Y_1 \\ \dots \\ Y_n \end{pmatrix}, \quad X = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \dots & & \\ x_{n1} & \dots & x_{nd} \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix}.$$

Матричная форма записи проведенных испытаний

$$Y = X\theta + \varepsilon$$
.

 $X \in \mathbb{R}^{n imes d}$ — регрессоры (или матрица плана эксперимента), $Y \in \mathbb{R}^n$ — отклик.

Матричный вид зависимости: $y(x) = x^T \theta$.

Введем обозначения

$$Y = \begin{pmatrix} Y_1 \\ \dots \\ Y_n \end{pmatrix}, \quad X = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \dots & & \\ x_{n1} & \dots & x_{nd} \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix}.$$

Матричная форма записи проведенных испытаний

$$Y = X\theta + \varepsilon$$
.

 $X \in \mathbb{R}^{n imes d}$ — регрессоры (или матрица плана эксперимента), $Y \in \mathbb{R}^n$ — отклик.

Матричный вид зависимости: $y(x) = x^T \theta$.

Ê

Замечание

Зависимость y = y(x) должна быть линейна по параметрам, но не обязана быть линейной по признакам.

Замечание

Зависимость y = y(x) должна быть линейна по параметрам, но не обязана быть линейной по признакам.

Пусть $z_1, ..., z_k$ — набор "независимых" переменных.

Замечание

Зависимость y = y(x) должна быть линейна по параметрам, но не обязана быть линейной по признакам.

Пусть $z_1,...,z_k$ — набор "независимых" переменных. Можно рассматривать модель

$$y(x) = \theta_1 x_1(z_1, ..., z_k) + ... + \theta_d x_d(z_1, ..., z_k),$$

где $x_i(z_1,...,z_k)$ — некоторые функции (м.б. нелинейные).

Замечание

Зависимость y = y(x) должна быть линейна по параметрам, но не обязана быть линейной по признакам.

Пусть $z_1,...,z_k$ — набор "независимых" переменных. Можно рассматривать модель

$$y(x) = \theta_1 x_1(z_1,...,z_k) + ... + \theta_d x_d(z_1,...,z_k),$$

где $x_j(z_1,...,z_k)$ — некоторые функции (м.б. нелинейные).

$$x(z_1,...,z_k) = 1;$$

Зависимость y = y(x) должна быть линейна по параметрам, но не обязана быть линейной по признакам.

Пусть $z_1,...,z_k$ — набор "независимых" переменных.

Можно рассматривать модель

$$y(x) = \theta_1 x_1(z_1,...,z_k) + ... + \theta_d x_d(z_1,...,z_k),$$

где $x_j(z_1,...,z_k)$ — некоторые функции (м.б. нелинейные).

- $(z_1,...,z_k)=1;$
- $x(z_1,...,z_k) = \ln z_1;$

Зависимость y = y(x) должна быть линейна по параметрам, но не обязана быть линейной по признакам.

Пусть $z_1,...,z_k$ — набор "независимых" переменных.

Можно рассматривать модель

$$y(x) = \theta_1 x_1(z_1,...,z_k) + ... + \theta_d x_d(z_1,...,z_k),$$

где $x_j(z_1,...,z_k)$ — некоторые функции (м.б. нелинейные).

$$\times x(z_1,...,z_k)=1; \qquad \times x(z_1,...,z_k)=z_1;$$

$$x(z_1,...,z_k) = \ln z_1;$$

Зависимость y = y(x) должна быть линейна по параметрам, но не обязана быть линейной по признакам.

Пусть $z_1,...,z_k$ — набор "независимых" переменных.

Можно рассматривать модель

$$y(x) = \theta_1 x_1(z_1,...,z_k) + ... + \theta_d x_d(z_1,...,z_k),$$

где $x_j(z_1,...,z_k)$ — некоторые функции (м.б. нелинейные).

$$(z_1,...,z_k)=1;$$
 $(z_1,...,z_k)=z_1;$

$$x(z_1,...,z_k) = \ln z_1;$$
 $x(z_1,...,z_k) = z_1^2 z_2.$

Зависимость y = y(x) должна быть линейна по параметрам, но не обязана быть линейной по признакам.

Пусть $z_1,...,z_k$ — набор "независимых" переменных.

Можно рассматривать модель

$$y(x) = \theta_1 x_1(z_1,...,z_k) + ... + \theta_d x_d(z_1,...,z_k),$$

где $x_j(z_1,...,z_k)$ — некоторые функции (м.б. нелинейные).

$$(z_1,...,z_k)=1;$$
 $(z_1,...,z_k)=z_1;$

$$x(z_1,...,z_k) = \ln z_1;$$
 $x(z_1,...,z_k) = z_1^2 z_2.$

► На платформу помещается тело — диск, разрезанный по диаметру;

На платформу помещается тело — диск, разрезанный по диаметру;

I — момент инерции тела;

- На платформу помещается тело диск,
 разрезанный по диаметру;
 - / момент инерции тела;
 - ▶ m масса тела;

- На платформу помещается тело диск, разрезанный по диаметру;
 - I момент инерции тела;
 - ▶ m масса тела;
 - h расстояние от половинок до оси вращения;

- На платформу помещается тело диск, разрезанный по диаметру;
 - / момент инерции тела;
 - ▶ m масса тела;
 - h расстояние от половинок до оси вращения;
 - I₀ момент инерции нераздвинутого диска.

- На платформу помещается тело диск, разрезанный по диаметру;
 - / момент инерции тела;
 - ▶ m масса тела;
 - h расстояние от половинок до оси вращения;
 - I₀ момент инерции нераздвинутого диска.
- Половинки диска постепенно раздвигаются;

- На платформу помещается тело диск, разрезанный по диаметру;
 - / момент инерции тела;
 - m масса тела;
 - h расстояние от половинок до оси вращения;
 - I₀ момент инерции нераздвинутого диска.
- Половинки диска постепенно раздвигаются;
- Снимается зависимость момента инерции системы / от h.

- На платформу помещается тело диск,
 разрезанный по диаметру;
 - I момент инерции тела;
 - ▶ m масса тела;
 - h расстояние от половинок до оси вращения;
 - I₀ момент инерции нераздвинутого диска.
- Половинки диска постепенно раздвигаются;
- ► Снимается зависимость момента инерции системы / от h

Рис. 2. Трифилярный подвес

По материалам "Модели и концепции физики: механика. Лабораторный практикум"

Согласно теореме Гюйгенса-Штейнера должно выполняться:

$$I = I_0 + mh^2$$

Пример: Момент инерции

Согласно теореме Гюйгенса-Штейнера должно выполняться:

$$I=I_0+mh^2$$

Итого, предполагается линейная зависимость момента инерции I от квадрата расстояния h^2 . Мы хотим найти неизвестные m и I_0 .

Пример: Момент инерции

Согласно теореме Гюйгенса-Штейнера должно выполняться:

$$I=I_0+mh^2$$

Итого, предполагается линейная зависимость момента инерции I от квадрата расстояния h^2 . Мы хотим найти неизвестные m и I_0 . Наблюдения: $I_i = I_0 + mh_i^2 + \varepsilon_i$, где ε_i — погрешность.

Согласно теореме Гюйгенса-Штейнера должно выполняться:

$$I = I_0 + mh^2$$

Итого, предполагается линейная зависимость момента инерции I от квадрата расстояния h^2 . Мы хотим найти неизвестные m и I_0 . Наблюдения: $I_i = I_0 + mh_i^2 + \varepsilon_i$, где ε_i — погрешность.

В данном примере $x_1(h) = 1, x_2(h) = h^2$,

$$X = \begin{pmatrix} 1 & h_1^2 \\ \dots & \\ 1 & h_n^2 \end{pmatrix}, Y = \begin{pmatrix} l_1 \\ \dots \\ l_n \end{pmatrix}, \theta = \begin{pmatrix} l_0 \\ m \end{pmatrix}.$$

Согласно теореме Гюйгенса-Штейнера должно выполняться:

$$I = I_0 + mh^2$$

Итого, предполагается линейная зависимость момента инерции I от квадрата расстояния h^2 . Мы хотим найти неизвестные m и I_0 . Наблюдения: $I_i = I_0 + mh_i^2 + \varepsilon_i$, где ε_i — погрешность.

В данном примере $x_1(h) = 1, x_2(h) = h^2$,

$$X = \begin{pmatrix} 1 & h_1^2 \\ \dots & \\ 1 & h_n^2 \end{pmatrix}, Y = \begin{pmatrix} l_1 \\ \dots \\ l_n \end{pmatrix}, \theta = \begin{pmatrix} l_0 \\ m \end{pmatrix}.$$

Пример: Потребление мороженого

Метод наименьших квадратов

Зависимость: $y(x) = x^T \theta$, $\theta \in \mathbb{R}^d$.

Метод наименьших квадратов

Зависимость: $y(x) = x^T \theta$, $\theta \in \mathbb{R}^d$.

Испытания: $Y = X\theta + \varepsilon$, $X \in \mathbb{R}^{n \times d}$, $Y \in \mathbb{R}^n$.

Метод наименьших квадратов

Зависимость: $y(x) = x^T \theta$, $\theta \in \mathbb{R}^d$.

Испытания: $Y = X\theta + \varepsilon$, $X \in \mathbb{R}^{n \times d}$, $Y \in \mathbb{R}^n$.

Хотим как-то оценить параметр θ на основании полученных данных.

Метод наименьших квадратов

Зависимость: $y(x) = x^T \theta$, $\theta \in \mathbb{R}^d$.

Испытания: $Y = X\theta + \varepsilon$, $X \in \mathbb{R}^{n \times d}$, $Y \in \mathbb{R}^n$.

Хотим как-то оценить параметр θ на основании полученных данных.

Пусть $\widehat{\theta} = \widehat{\theta}(X, Y)$ — наша оценка θ .

Метод наименьших квадратов

Зависимость: $y(x) = x^T \theta$, $\theta \in \mathbb{R}^d$.

Испытания: $Y = X\theta + \varepsilon$, $X \in \mathbb{R}^{n \times d}$, $Y \in \mathbb{R}^n$.

Хотим как-то оценить параметр θ на основании полученных данных.

Пусть $\widehat{\theta} = \widehat{\theta}(X, Y)$ — наша оценка θ .

Как понять, что она хорошая?

ê

Метод наименьших квадратов

Зависимость: $y(x) = x^T \theta$, $\theta \in \mathbb{R}^d$.

Испытания: $Y = X\theta + \varepsilon$, $X \in \mathbb{R}^{n \times d}$, $Y \in \mathbb{R}^n$.

Хотим как-то оценить параметр θ на основании полученных данных.

Пусть $\widehat{\theta} = \widehat{\theta}(X, Y)$ — наша оценка θ .

Как понять, что она хорошая?

Метрика MSE:

$$MSE(\widehat{\theta}) = \left| \left| Y - X\widehat{\theta} \right| \right|^2$$

Метод наименьших квадратов

Зависимость: $y(x) = x^T \theta$, $\theta \in \mathbb{R}^d$.

Испытания: $Y = X\theta + \varepsilon$, $X \in \mathbb{R}^{n \times d}$, $Y \in \mathbb{R}^n$.

Хотим как-то оценить параметр θ на основании полученных данных.

Пусть $\widehat{\theta} = \widehat{\theta}(X, Y)$ — наша оценка θ .

Как понять, что она хорошая?

Метрика MSE:

$$MSE(\widehat{\theta}) = \left| \left| Y - X\widehat{\theta} \right| \right|^2$$

Оценка $\widehat{\theta} = \mathop{\arg\min}_{\theta} MSE(\widehat{\theta})$ называется оценкой по методу наименьших квадратов параметра θ .

Метод наименьших квадратов

Теорема. Если матрица X^TX невырождена, то $\widehat{\theta} = (X^TX)^{-1}X^TY$.

Метод наименьших квадратов

Теорема. Если матрица X^TX невырождена, то $\widehat{\theta} = (X^TX)^{-1}X^TY$.

$$MSE(\theta) = ||Y - X\theta||^2 = (Y - X\theta)^T (Y - X\theta) = Y^T Y - 2Y^T X\theta + \theta^T X^T X\theta$$

Метод наименьших квадратов

Теорема. Если матрица X^TX невырождена, то $\widehat{\theta} = (X^TX)^{-1}X^TY$.

$$MSE(\theta) = ||Y - X\theta||^2 = (Y - X\theta)^T (Y - X\theta) = Y^T Y - 2Y^T X\theta + \theta^T X^T X\theta$$
 Берем производную по θ и приравниваем ее к нулю.

Метод наименьших квадратов

Теорема. Если матрица X^TX невырождена, то $\widehat{\theta} = (X^TX)^{-1}X^TY$.

$$MSE(\theta) = ||Y - X\theta||^2 = (Y - X\theta)^T (Y - X\theta) = Y^T Y - 2Y^T X\theta + \theta^T X^T X\theta$$

Берем производную по θ и приравниваем ее к нулю.

$$\frac{\partial MSE(\theta)}{\partial \theta} = -2Y^TX + 2\theta^TX^TX = 0$$

Отсюда получается утверждение теоремы.

Ê

Метод наименьших квадратов

Теорема. Если матрица X^TX невырождена, то $\widehat{\theta} = (X^TX)^{-1}X^TY$.

$$MSE(\theta) = ||Y - X\theta||^2 = (Y - X\theta)^T (Y - X\theta) = Y^T Y - 2Y^T X\theta + \theta^T X^T X\theta$$

Берем производную по θ и приравниваем ее к нулю.

$$\frac{\partial MSE(\theta)}{\partial \theta} = -2Y^TX + 2\theta^TX^TX = 0$$

Отсюда получается утверждение теоремы.

Предсказанием отклика на новом объекте x будет величина $\widehat{y}(x) = x^T \widehat{\theta}$.

Реализация в sklearn

```
m = sklearn.linear_model.LinearRegression(fit_intercept=True)
Обучение модели:
m.fit(X, Y)
Вектор коэффициентов:
m.coef_
Свободный коэффициент:
m.intercept_
Предсказания:
m.predict(X)
```


Метрики качества в задаче регрессии

Ê

Обозначения

Пусть $x_1, \ldots x_n$ — признаковые описания объектов;

$$Y = (Y_1, \dots Y_n)^T$$
 — наблюдения.

Обозначения

Пусть $x_1, ... x_n$ — признаковые описания объектов;

 $Y = (Y_1, \dots Y_n)^T$ — наблюдения.

Пусть $\widehat{f}(x)$ — оцененная нами зависимость.

В случае линейной регрессии $\widehat{f}(x) = x^T \widehat{\theta}$.

Обозначения

Пусть $x_1, \dots x_n$ — признаковые описания объектов;

$$Y = (Y_1, \dots Y_n)^T$$
 — наблюдения.

Пусть $\widehat{f}(x)$ — оцененная нами зависимость.

В случае линейной регрессии $\widehat{f}(x) = x^T \widehat{\theta}$.

Пусть
$$\widehat{Y}_i = \widehat{f}(x_i)$$
 — предсказание нашей модели на i -м объекте; $\widehat{Y} = (\widehat{Y}_1, \dots \widehat{Y}_n)^T$.

Метрики качества в задаче регрессии

Y — реальные наблюдения, \widehat{Y} — предсказания.

Метрики качества в задаче регрессии

Y — реальные наблюдения, \widehat{Y} — предсказания.

► MSE (Mean Squared Error):

$$MSE(Y, \widehat{Y}) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

Метрики качества в задаче регрессии

Y — реальные наблюдения, \widehat{Y} — предсказания.

► MSE (Mean Squared Error):

$$MSE(Y, \widehat{Y}) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

► MAE (Mean Absolute Error):

$$MAE(Y, \widehat{Y}) = \frac{1}{n} \sum_{i=1}^{n} |Y_i - \widehat{Y}_i|$$

Метрики качества в задаче регрессии

Y — реальные наблюдения, \widehat{Y} — предсказания.

► MSE (Mean Squared Error):

$$MSE(Y, \widehat{Y}) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

► MAE (Mean Absolute Error):

$$MAE(Y, \widehat{Y}) = \frac{1}{n} \sum_{i=1}^{n} |Y_i - \widehat{Y}_i|$$

► MAPE (Mean Absolute Percentage Error):

$$MAPE(Y, \widehat{Y}) = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{Y_i - \widehat{Y}_i}{Y_i} \right| *100\%$$

Зависимость: $y = 5x - 6x^2$, имеется погрешность

Недообучение

Если все время работать с одной и той же выборкой (это жаргон, корректно понимать "реализацией выборки") и все больше улучшать модель, "подгонять" ее под выборку, может возникнуть переобучение.

Если все время работать с одной и той же выборкой (это жаргон, корректно понимать "реализацией выборки") и все больше улучшать модель, "подгонять" ее под выборку, может возникнуть переобучение.

Предсказание на новом объекте может быть неадекватным.

Если все время работать с одной и той же выборкой (это жаргон, корректно понимать "реализацией выборки") и все больше улучшать модель, "подгонять" ее под выборку, может возникнуть переобучение.

Предсказание на новом объекте может быть неадекватным.

Поэтому перед началом работы имеющиеся данные делят на две части: тренировочную (обучающую) и тестовую выборки.

Если все время работать с одной и той же выборкой (это жаргон, корректно понимать "реализацией выборки") и все больше улучшать модель, "подгонять" ее под выборку, может возникнуть переобучение.

Предсказание на новом объекте может быть неадекватным.

Поэтому перед началом работы имеющиеся данные делят на две части: тренировочную (обучающую) и тестовую выборки.

train	test
70%	30%

Если все время работать с одной и той же выборкой (это жаргон, корректно понимать "реализацией выборки") и все больше улучшать модель, "подгонять" ее под выборку, может возникнуть переобучение.

Предсказание на новом объекте может быть неадекватным.

Поэтому перед началом работы имеющиеся данные делят на две части:

тренировочную (обучающую) и тестовую выборки.

train	test
70%	30%

На тренировочной выборке происходит обучение моделей (например, оценка коэффициентов в линейной регрессии).

Если все время работать с одной и той же выборкой (это жаргон, корректно понимать "реализацией выборки") и все больше улучшать модель, "подгонять" ее под выборку, может возникнуть переобучение.

Предсказание на новом объекте может быть неадекватным.

Поэтому перед началом работы имеющиеся данные делят на две части:

тренировочную (обучающую) и тестовую выборки.

train	test
70%	30%

На тренировочной выборке происходит обучение моделей (например, оценка коэффициентов в линейной регрессии).

На тестовой выборке происходит оценка качества итоговой модели с использванием метрик качества.

