

UNIVERSIDAD SIMON BOLIVAR Departamento de Electrónica y Circuitos Comunicaciones II (EC-3423)

Práctica 4. Codificación del canal Laboratorio

Elaborador por:

José Morán - 1410714 Adrián González – 1410433 Obtenga experimentalmente las Probabilidades de Error de bit y bloque, y las Efectividades de corrección de bloque que describen el desempeño del código Hamming con m=3 (7,4), m=4 y m=5 para los siguientes valores de Eb/No

Eb/No (dB)	Número de bits a simular
4	50000
5	20000
6	50000
7	100000
8	1000000

• Caso m = 3

Eb/No (dB)	Pe de bit	Pe de bloque	Eficiencia %
4	0.0168	0.0374	86.26
5	0.0078	0.0176	90.57
6	0.0078	0.0058	94.69
7	0.0008	0.0017	96.97
8	0.0001	0.0003	98.86

• Caso m = 4

Eb/No (dB)	Pe de bit	Pe de bloque	Eficiencia %
4	0.0124	0.0620	82.13
5	0.0039	0.0187	91.08
6	0.0010	0.0048	95.37
7	0.0001	0.009	98.17
8	0	0.0001	99.43

• Caso m = 5

Eb/No (dB)	Pe de bit	Pe de bloque	Eficiencia %
4	0.0142	0.1367	72.32
5	0.0046	0.0442	85.22
6	0.0015	0.0135	91.10
7	0.0001	0.0010	98.10
8	0	0.0001	99.25

Caso m = 0

Eb/No (dB)	Pe de bit
4	0.0128
5	0.0063
6	0.0023
7	0.0007
8	0.0002

La siguiente imagen muestra la gráfica de la probabilidad de error en función de la relación señal a ruido.

La siguiente tabla muestra la ganancia de código para diferentes probabilidades de error y diferentes índices de codificación

m	Ganancia (Pe = 10^-3)	Ganancia (Pe = 10^-4)	Ganancia (Pe = 10^-5)
3	0.0711	0.260	0.458
4	0.570	1.192	1.448
5	0.732	1.272	1.482

La ganancia de código aumenta cuando disminuye la probabilidad de error, es decir, cuando la relación señal a ruido aumenta. Esto tiene sentido ya que aumentar la relación señal a ruido implica que la secuencia de datos transmitida es menos

susceptible a las perturbaciones del canal, lo que implica que se recibirán menos errores y, a su vez, la corrección del bloque errado será más efectiva. Sin embargo, al aumentar m, también se aumenta el ancho de banda de la señal a transmitir ya que el ancho de banda aumentará a razón de n/k porque se necesitan transmitir más bits por palabra.

Por ultimo, se muestra una gráfica donde se representa la eficiencia de la codificación en función de la razón señal a ruido.

En esta gráfica se observa que ambas tendencias son alcistas, resaltando que a mayor razón señal a ruido, el índice de código es irrelevante y se obtienen resultados muy similares. Sin embargo, para una baja relación señal a ruido, se observa que a mayor índice de código, menor es la eficiencia y esto tiene sentido ya que a mayor m, mayor es la cantidad de bits que se agregan y hay mayor probabilidad de error en el bloque ya que los codigos Hamming solo pueden corregir un error.