1. Determina se as seguintes especificacións de sistemas son consistentes ou non:

A mensaxe de diagnóstico almacénase nun buffer ou vólvese a trasmitir.

Si a mensaxe de diagnóstico se almacena no buffer, entón vólvese a trasmitir.

A mensaxe de diagnóstico non se almacena no buffer.

Solución: Ver na páxina 14 do libro de Kenneth H. Rosen: Matemática Discreta y sus Aplicaciones (5ª ed.) Exemplo 12

- 2. Constrúe as táboas de verdade das seguintes proposicións:
 - (a) $(q \lor \neg p) \to p$
 - (b) $\neg p \lor (q \to p)$
 - (c) $(p \lor q) \to (p \land q)$
 - (d) $(p \land q) \rightarrow (\neg p \lor \neg q)$

Solución: Ver na páxina 16 do libro de Kenneth H. Rosen: Matemática Discreta y sus Aplicaciones (5ª ed.) Exercicio 23, e a súa solución ao final do libro.

- 3. Sexa I(x) o predicado $\ll x$ ten conexión a internet \gg e C(x,y) o predicado $\ll x$ ten chateado con $y\gg$, onde o dominio das varialbles x e y é o alumnado da clase de Fundamentos de Matemáticas. Utiliza cuantificadores para formalizar cada unha das seguintes frases:
 - (a) Exactamente unha persoa da clase ten conexión a internet.
 - (b) Toda persoa da clase que ten conexión a internet chateou con polo menos outra persoa da clase.
 - (c) Alguén da clase ten conexión a internet, pero non chateou con ninguén da clase.
 - (d) Hai unha persoa na clase que chateou con todas as demais da clase.
 - (e) Non toda a xente na clase ten conexión a internet.

Solución: Ver na páxina 48 do libro de Kenneth H. Rosen: Matemática Discreta y sus Aplicaciones (5ª ed.) Exercicio 12

(a)
$$\exists x [I(x) \land \forall y ((y \neq x) \rightarrow \neg I(y))]$$

(b)
$$\forall x [I(x) \rightarrow \exists y ((y \neq x) \land C(x,y))]$$

(c)
$$\exists x [I(x) \land \forall y \neg C(x, y)]$$

(d)
$$\exists x \forall y [(y \neq x) \rightarrow C(x, y)]$$

(e)
$$\neg \forall x I(x)$$

4. Pódese concluir que A=B sendo A, B e C conxuntos arbitrarios tales que $A\cup C=B\cup C$ e $A\cap C=B\cap C$. Argumentar.

Solución:

Veremos que de $A \cup C \subseteq B \cup C$ e $A \cap C \subseteq B \cap C$ podemos concluir que $A \subseteq B$, polo que usando ous outros contidos teremos probado que A = B.

Sexa $x \in A$, temos que ver que $x \in B$. Como $A \subseteq A \cup C \subseteq B \cup C$, temos que $x \in B \cup C$, é dicir, $x \in B$ ou $x \in C$. Pero, se $x \in B$, xa temos o que queremos, e se $x \in C$, como partimos de $x \in A$, teremos que $x \in A \cap C \subseteq B \cap C$, é dicir, $x \in B$ e $x \in C$.

Resumindo, partindo de $x \in A$ temos $x \in B$ ou $x \in C$, e en calquera dos dous casos chegamos a que $x \in B$, como queriamos.

5. Demostra por inducción matemática que, para n > 1, se verifica

$$1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n}.$$

Solución

Paso Base: Para n=2, o primeiro caso posible, cúmplese que

$$1 + \frac{1}{2^2} = \frac{5}{4} < 2 - \frac{1}{2} = \frac{3}{2} = \frac{6}{4}$$

PASO INDUTIVO: Supoñendo (hipótese de inducción)

$$1 + \frac{1}{2^2} + \dots + \frac{1}{k^2} < 2 - \frac{1}{k}$$

queremos ver que

$$1 + \frac{1}{2^2} + \dots + \frac{1}{(k+1)^2} < 2 - \frac{1}{k+1}.$$

Pero

$$1 + \frac{1}{2^2} + \dots + \frac{1}{k^2} + \frac{1}{(k+1)^2} < 2 - \frac{1}{k} + \frac{1}{(k+1)^2}$$

sen máis que sumar $\frac{1}{(k+1)^2}$ en ambos dous lados da hipótese de indución, polo que abondará ver que

$$2 - \frac{1}{k} + \frac{1}{(k+1)^2} \le 2 - \frac{1}{k+1}$$

ou, equivalentemente,

$$\frac{1}{(k+1)^2} \le \frac{1}{k} - \frac{1}{k+1} = \frac{1}{k(k+1)}$$

que é evidente, xa que $(k+1)^2 = (k+1)(k+1) > k(k+1)$.