□电子科技大学 课 程 作 业

课程名称:	组合优化理论
学生姓名:	
学 号:	
指导教师:	陈安龙
名单序号:	

信息与软件工程学院

作业要求:

- (1) 提交时间: 第15周星期五之前交QQ群作业
- (2) 点名序号是群里发的研究生选课名单中的序号;
- ⑶学号姓名必须自己手写:
- (4) 封面格式与上一页完全一致;
- (5) 作业用A4<mark>纸手写</mark>,只须按照顺序写出解题内容,不抄题目, 注意写清楚题目编号;
- ⑥ 拍照后将作业图片按照作业顺序插入word文件,并转成PDF 文件
- (7) PDF文件命名为: 点名册序号-学号-姓名

2023年秋《组合优化理论》作业

- 1、我国在某科学实验卫星的研制过程中,拟从下列仪器装置中选择若干件安装 到卫星上进行科学实验。已知仪器装置 x_i (i=1,2,...,7) 的体积为 v_i , 重量为 w_i , 该装置在实验中的价值为c, 要求满足:

 - (2) x,和x,最多安装一件; (3) x、和x、至少安装一件;

Z= Z KILL Z WIKEW

(4) x_x和x_x或者都安装,或者都不安装。 请写出该问题的钱性规划模型

 $N^+X_2 \leq 1$ X2+X4>1 75= X6

是Vixivev

2、有艘货轮分前、中、后三个舱位,它们的容积与最大允许载重量见后面的表 格。现有3种货物待运,已知有关数据列于后面的表格。为了航运安全,前、 中、后舱的实际载重量大体保持各舱最大允许载重量的比例关系。具体要求: 前、后舱分别与中舱之间载重量比例的偏差不超过10%,前、后舱载重量比例 的偏差不超过5%。问该货轮应装载A、B、C各多少件运费收入才最大?试建立 的线性规划模型。

项目	前舱	中舱	后舱
最大允许载重量(t)	2000	3000	1500
容积 (m3)	4000	5400	1500

0-96×61-1

	I	,	.000	7.00		
					ð_	gy cx= 117
	商品	数量 (件)	每件体积 (m3/件)	每件重量 (t/件)	运价 (元/件)	
M	A	600	10	8	1200	-0.17 = X-7 E
Kz	В	1000	5	6	800	[x-y
My	С	800	7	5	700	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

-0.17 = X-Y E017 X-7/60.17

3、有三道作业在计算机系统上执行,每道作业划分为多个处理阶段,每个阶 段分别在不同处理机上执行,下列是三道作业在不同处理机上执行的时间,为 了求解完成所有作业的最早完成时间,请建立该处理机调度问题的整数规划模 型。

	处理机1	处理机2	处理机3	处理机4
作业1	9	0	4	5
作业2	6	8	0	7
作业3	0	6	7	0

4、已知 $\min Z = 3x_1 + 4x_2 + 2x_3 + 5x_4 + 9x_5$

MAX == 27, +3/2

s.t.
$$\begin{cases} x_2 + x_3 - 5x_4 + 3x_5 \ge 2 \\ x_1 + x_2 - x_3 + x_4 + 2x_5 \ge 3 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

试通过求解对偶问题的最优解来求解原问题的最优解。

5、使用割平面法求解下列整数规划问题:

$$\max Z = x_1 + x_2$$

$$s.t. \begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0, x_1, x_2$$
 整数

6、使用分支定界法求解下列整数规划问题:

max
$$Z = 40x_1 + 90x_2$$

 $st.$

$$\begin{cases}
9x_1 + 7x_2 \le 56 \\
7x_1 + 20x_2 \le 70 \\
x_1, x_2 \ge 0, x_1, x_2$$
为整数

7、使用**动**态规划法求解下列问题: $\max Z = x_1^2 x_2 x_3^2$

$$s.t.\begin{cases} x_1 + x_2 + x_3 \le 12 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

8、请用单纯油求解下列LP问题的最优解 $z = 6x_1 + 2x_2 + 12x_3$

$$s.t \begin{cases} 4x_1 + x_2 + 3x_3 \le 24 \\ 2x_1 + 6x_2 + 3x_3 \le 30 \\ x_1, \quad x_2, \quad x_3 \ge 0 \end{cases}$$

9、试用过偶理论证明该问题的最优值不超过25.

$$\max w = 4x_1 + 7x_2 + 2x_3$$

$$\begin{cases} x_1 + 2x_2 + x_3 \le 10 \\ 2x_1 + 3x_2 + 3x_3 \le 10 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

10、试用对偶单纯形法求解下列问题的最优解

$$\begin{aligned} \min w &= 2x_1 + 3x_2 + 4x_3\\ s.t. & x_1 + 2x_2 + x_3 \ge 3\\ 2x_1 - x_2 + 3x_3 \ge 4\\ x_i \ge 0, i = 1, 2, 3 \end{aligned}$$

11、对于下列线性规划原问题,已知其对偶问题的最 试用对偶理论求出原问题的最优解.

$$\max \overline{z = x_1 + 2x_2 + 3x_3 + 4x_4} \\ \left\{ \begin{array}{l} x_1 + 2x_2 + 2x_3 + 3x_4 \le 20 \\ 2x_1 + x_2 + 3x_3 + 2x_4 \le 20 \\ x_1, \cdots, x_4 \ge 0 \end{array} \right.$$

12、试不用求最优解,用单纯形法的相关性质、验证X=(0,2,0,0,2)T是否是以下 线性规划问题的最优解。

$$\max z = x1 + 4x2 + 3x3$$

$$2x1 + 2x2 + x3 \le 4$$

$$x1 + 2x2 + 2x3 \le 6$$

$$x1, x2, x3 \ge 0$$

13、利用过偶理论证明下列线性规划问题无最优解

$$\min z = x_1 - x_2 + x_3$$
s.t.
$$\begin{cases} x_1 - x_3 \ge 4 \\ x_1 - x_2 + 2x_3 \ge 3 \end{cases}$$

445

TH

14、分配甲、乙、丙、丁四个人去完成A、B、C、D、E五项任务。每个人完成 各项任务的时间如表所示。由于任务数多于人数、考虑任务E必须完成、其他4 项中可任选3项完成。试确定最优分配方案、使完成任务的总时间最少。

任务 人员	A	В	С	D	Е	
甲	25	29	31	42	37	
Z	39	38	26	20	33	
丙	34	27	28	40	32	7
丁	24	42	36	23	45	

15、用标号算法求下图中s→t的最大流量,并找出最小割。

51+35=100

