Рассмотрим задачу безусловной оптимизации

$$f(x)=rac{1}{2}\|Ax-b\|^2+\gamma\|x\|_1 o \min$$

При обучении Lasso регрессии мы придем к данной задаче оптимизации. Матрица A будет являться матрицей объектов-признаков, вектор x будет являться вектором весов линейной модели. Вектор b будет являться вектором значений целевой переменной.

Функция f(x) не является дифференцируемой на всем \mathbb{R}^d , поэтому для решения поставленной задачи оптимизации нельзя применять стандартные алгоритмы.

Если сделать замену z=Ax-b, то функцию f(x) можно будет заменить на функцию $f(x,z)=\frac{1}{2}\|z\|^2+\gamma\|x\|_1$ при условии z=Ax-b. Получим задачу условной оптимизации:

$$f(x,z) = rac{1}{2} \|z\|^2 + \gamma \|x\|_1
ightarrow \min
onumber \ z = Ax - b$$

Получение двойственной задачи оптимизации

Задача условной оптимизации регулярна, так как она выпукла и отсутствуют условия типа неравенств (применяем достаточное условие Слейтера при m=0).

Для решения данной задачи попробуем составить двойственную задачу. Для этого запишем функцию Лагранжа:

$$\mathcal{L}(x,z,\mu) = rac{1}{2} \|z\|^2 + \gamma \|x\|_1 + \mu^T (Ax - b - z)$$

Для сведения к двойственной задаче нужно проминимизировать $\mathcal{L}(x,z,\mu)$ по переменным $x\in\mathbb{R}^d$, $z\in\mathbb{R}^l$ для всех значений $\mu\in\mathbb{R}^l$. Функция Лагранжа не является дифференцируемой по z, поэтому не получится воспользоваться необходимым условием безусловного локального минимума.

Попробуем записать функцию Лагранжа в ином виде:

$$\mathcal{L}(x,z,\mu) = rac{1}{2} \sum_i z_i^2 + \gamma \sum_j |x_i| + \sum_j (A^T \mu)_j x_j - \sum_i \mu_i z_i - \mu^T b_i$$

$$\mathcal{L}(x,z,\mu) = \sum_i \left(rac{1}{2}z_i^2 - \mu_i z_i
ight) + \sum_j \left(\gamma |x_i| - (A^T \mu)_j x_j
ight) - \mu^T b^T$$

Мы смогли разбить функцию Лагранжа на d+l независимых слагаемых. Поэтому минимизацию $\mathcal L$ можно свести к независимой минимизации всех слагаемых. Во все слагаемые входят μ_i , но при минимизации по x,z все μ_i --- зафиксированные параметры, через которые мы хотим выразить x и z.

Для начала проминимизируем слагаемые, отвечающие z_i :

$$rac{1}{2}z_i^2 - \mu_i z_i
ightarrow \min_{z_i} \Rightarrow z_i = \mu_i$$

Тогда

$$\inf\left(rac{1}{2}z_i^2-\mu_iz_i
ight)=-rac{1}{2}\mu_i^2$$

Тогда

$$\inf\left(\sum_irac{1}{2}z_i^2-\mu_iz_i
ight)=-rac{1}{2}\|\mu\|^2$$

Теперь проминимизируем слагаемые, отвечающие x_j . Данные слагаемые недифференцируемы, поэтому для минимизации придется использовать "метод пристального взгляда". Приведем слагаемые к более удобному виду и нарисуем графики получившихся одномерных функций при различных значениях μ :

$$h_j(x_j) = \gamma |x_j| - (A^T \mu)_j x_j$$

Для удобства обозначим $c_j := (A^T \mu)_j$. Тогда h_j примет следующий вид:

$$h_j(x_j) = \gamma |x_j| - c_j x_j = egin{cases} (\gamma - c_j) x_j &, & x_j \geq 0 \ (-\gamma - c_j) x_j &, & x_j < 0 \end{cases}$$

Теперь проминимизируем функцию $h_j(x_j)$. Для этого проминимизируем по $x_j \geq 0$ и $x_j < 0$ и возьмем наименьшее значение

$$\inf_{x_j \in \mathbb{R}} h_j(x_j) = \min\{\inf_{x_j \geq 0} h_j(x_j), \inf_{x_j < 0} h_j(x_j)\}$$

$$\inf_{x_j \geq 0} h_j(x_j) = egin{cases} 0, & \gamma - c_j > 0 \ 0, & \gamma - c_j = 0 \ -\infty, & \gamma - c_j < 0 \end{cases}$$

$$\inf_{x_j<0}h_j(x_j)=egin{cases} -\infty, & -\gamma-c_j>0 \ 0, & -\gamma-c_j=0 \ 0, & -\gamma-c_j<0 \end{cases}$$

Ситуация $|c_j| < \gamma$ приводит к отбору признаков, так как в данном случае $\inf h_j(x_j)$ достигается только в точке $x_j = 0$

Таким образом, получим

$$\inf_{x_j} h_j(x_j) = egin{cases} 0, & c_j \leq \gamma \ \wedge \ c_j \geq -\gamma \ -\infty, & ext{иначе} \end{cases}$$
 $\inf_{x_j} h_j(x_j) = egin{cases} 0, & |c_j| < \gamma \ -\infty, & |c_j| \geq \gamma \end{cases}$ $\inf_{x} \sum_j ig(\gamma |x_i| - (A^T \mu)_j x_jig) = \sum_j \inf_{x_j} h_j(x_j) = egin{cases} 0, & orall j \Rightarrow |c_j| < \gamma \ -\infty, & \exists j: & |c_j| \geq \gamma \end{cases}$

Если вспомнить, что $c_j = A^T \mu_j$, то мы получим выражение для $\inf \mathcal{L}(x,z,\mu)$:

$$g(\mu) = \inf_{x,z} \mathcal{L}(x,z,\mu) = egin{cases} -\infty, & \exists j: \ |(A^T \mu)_j| \geq \gamma \ -rac{1}{2} \|\mu\|^2, & orall j \Rightarrow -\gamma \leq (A^T \mu)_j \leq \gamma \end{cases}$$

Тогда получим следующую двойственную задачу:

$$egin{aligned} g(\mu) &= -rac{1}{2} \|\mu\|^2 o \max \ (A^T \mu)_j &\leq \gamma \ \ orall j &\leq \gamma \ \ orall j &\leq \gamma \ \ orall j \end{aligned}$$

Получили задачу условной максимизации с линейными ограничениями и дифференцируемой целевой функцией!

Причем данная задача относится к классу задач квадратичного программирования. Для данного класса задач реализованы эффективные численные методы оптимизации, поэтому далее мы легко находим μ^* --- точку глобального максимума двойственной задачи.

После нахождения μ^* можно получить номера координат, которые обратятся в 0 из-за условия $|(A^T\mu^*)_j|=|c_j|<\gamma$. Далее остается найти значения ненулевых координат, для этого воспользуемся равенством $z=\mu^*$ и условием Ax-b=z. Отсюда получим, что x --- решение системы $Ax=\mu^*+b$. Перед запуском процедуры вычисления исключаем нулевые координаты.

В общем случае уравнение $Ax = \mu^* + b$ может не иметь решений, но так как μ^* --- решение двойственной задачи, то оно гарантирует выполнение равенства Ax - b = z

для оптимальной пары x,z . І аккуратно найти.	Поэтому данная	система имеет	решение, то	олько его нужно