PadhAl: Backpropagation - the full version

One Fourth Labs

A running example of backpropagation

The full story so far

1. Consider the following sample Neural Network

- 2. Steps to implement Backpropagation
 - a. Randomly initialise W and b
 - b. Forward propagation
 - i. For k = 1 to L-1 do $a_k = b_k + W_k h_{k-1}$ $h_k = g(a_k)$
 - ii. end
 - iii. $a_L = b_L + W_L h_{L-1;}$
 - iv. $\hat{y} = O(a_1)$

PadhAl: Backpropagation - the full version

One Fourth Labs

- c. Backpropagation
 - i. //Compute output gradient

ii.
$$\nabla_{a_i} L(\theta) = -(y - \hat{y}_i)$$

iii. For k = L to 1 do

//Compute gradients w.r.t parameters

$$\nabla_{W_k} L(\theta) = \nabla_{ak} L(\theta) \cdot h_{k-1}^T$$
$$\nabla_{b_k} L(\theta) = \nabla_{ak} L(\theta)$$

//Compute gradients w.r.t layer below

$$\nabla_{h_{k-1}} L(\theta) = (W_k)^T (\nabla_{a_k} L(\theta))$$

/// Compute gradients w.r.t layer below (pre-activation)

$$\nabla_{a_{k-1}} L(\theta) = \nabla_{h_{k-1}} L(\theta) \circ [..., g'(a_{k-1,j}), ...]$$

- iv. end
- 3. Sample calculations to be added at a later date. $\Delta y_n/\Delta x_n$