# Introduction to Computer Organization

DIS 1A - WEEK 1

## DIS 1A

TA: Shikhar Malhotra

• Email: <a href="mailto:shikharmalhotra1@gmail.com">shikharmalhotra1@gmail.com</a>

● Office Hours: TR 12:30 P.M – 1:30 P.M.

• TA Room: BH 2432

# Today's Schedule

- Administrative information
- Linux overview and accessing the SEASnet Linux servers
- C (as opposed to C++)
- Lab 0 overview
- Lecture Review

## Administrative information

Discussion Slides will be mailed to the group

Labs carry 40% of the total grade

• Lab 0 will contribute 1% towards the final grade

 You are encouraged to use Discussion Forum on CCLE for any doubts

# Getting Started

This class is based around C, not C++

• You are highly recommended to ditch Visual Studio and work in a Linux environment, specifically the SEASnet Linux servers.

Your assignments will be tested on the SEASnet Linux servers

## Setup

In order to login to SEASnet, you need to be connected to wireless networks on campus

OR

login with VPN software

https://www.it.ucla.edu/bol/services/virtual-private-network-vpn-clients

# Setup Guide for Windows

#### **Download PuTTY**

https://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

## **PuTTY**

#### First Run

- Type Inxsrv@seas.ucla.edu for Host Name
- Type SEASnet for Saved Sessions
- Click Save
- Click Open
- Type your SEASnet username and password

Double-click SEASnet under Saved Sessions in the future



# Setup Guide for Mac



## Terminal

Type ssh <SEASnet username>@lnxsrv.seas.ucla.edu

Enter your password

## Copying between local machine and SEASnet

- For Windows users:
- WinSCP: An scp client
- scp stands for secure copy. You use it to secure copy.

**Download WinSCP** 

http://winscp.net/download/winscp427setup.exe

## WinSCP

Type *Inxsrv.seas.ucla.edu* for Host name

Type your SEASnet username and password

Right click a file and select upload or download



# Copying between local machine and SEASnet

#### Download Cyberduck

https://update.cyberduck.io/Cyberduck-5.2.2.21483.zip



# Cyberduck

**Click Open Connection** 

Select SFTP (SSH File Transfer

Protocol)

Type *Inxsrv.seas.ucla.edu* for Server

Type your username and password

**Click Connect** 



### Linux Introduction

 Linux is the operating system/kernel that you will be learning about in this

• The primary interface into Linux that you'll be using is a command line interface akin to MSDOS

- Linux command format:
- [command name] -X -Y -Z [argument]
- (X, Y, and Z are optional flags)
- Flags modify/specify the behavior of the command

- pwd print working directory
- Is list contents of current directory
- Is -I ("-I" flag will print contents in long form)
- cd change directory
- cd a (navigates to the "a" directory which is located in the current directory)
- cd .. (navigate to the parent directory)
- cd ../dir (navigate to a directory called "dir" that is located within the parent)
- cd . (navigate to the current directory. Great work)

- Editing files. If you're interested familiarizing yourselves with Linux (which will have to happen eventually), it is recommended that you use "vi" or "emacs".
- vi text.txt
- emacs text.txt
- Commands that start with a colon :

:w save

:x save and quit

:q quit (will trigger error if file hasn't been saved)

:q! quit without saving

- The standard Linux C compiler is gcc.
- gcc main.c (compile the file main.c into an executable file with default name "a.out")
- gcc main.c -o main (compile the file main.c into an executable file called "main")
- gcc main.c -O2 (compile the file with optimizations, level 2)

- Executing executables
- -./main (executes the executable file called "main")

In a (very simplified) nutshell, C++ is an extension to C.

• The syntax of the language is nearly identical, but you will find that C lacks certain features, namely the "Object Oriented" paradigm.

Some features are analogous, but have different names.

- In C++:
- for(int i = 0; i < size; i++)
- By default, gcc uses a 1990's C standard which prohibits declarations in "for" loops. As a result, you will have to do either
- int i;
- for(i = 0; I < size; i++)
- Or explicitly use gcc to compile with a different C standard
- gcc -std=c99 temp.c

#### Dynamic memory allocation

- In C++:
- char \* c\_arr = new char[10];
- delete c\_arr;
- "new" allows you to specify repetitions of a specific data type.

- In C, these declarations force you to be more specific. Instead of "new", use "malloc" and instead of "delete", use "free".
- char \* c\_arr = (char \*) malloc(sizeof(char) \* 10);
- free(c\_arr);
- Note: These are analogous but not the same.
- "malloc" and other "\_alloc" variations operate on the principle that you're specifying a specific amount of memory to allocate rather than a specific data type.

```
Instead of:
- int x = 10;
- cout << x;</pre>
You'll use "printf"
- printf("hello");
- printf("%d", x);

    printf takes in as the first parameter a string to print out that is populated with

format codes that correspond to the remaining arguments.
```