VV286 RC4

JIANG Yicheng

November 11, 2017

Complex Analysis

We say that a function $f:\mathbb{C}\to\mathbb{C}$ is complex differentiable, or holomorphic, at $z\in\mathbb{C}$ if

$$f'(z) := \lim_{\substack{h \to 0 \\ h \in \mathbb{C}}} \frac{f(z+h) - f(z)}{h}$$

exists.

We say that a function is holomorphic on an open set $\Omega \subset \mathbb{C}$ if it is holomorphic at every $z \in \Omega$. A function that is holomorphic on \mathbb{C} is called *entire*.

- 1. A holomorphic function is automatically infinitely often differentiable (*Cauchy Integral Formulas P331/P334*)
- 2. A holomorphic function is automatically analytic (has a power series expansion)(P337);
- 3. Any closed curve integral of a holomorphic function is vanishes.(Cauchy's Theorem)

The Cauchy-Riemann Differential Equations

For a complex function

$$f: \mathbb{C} \to \mathbb{C}, \quad f(x+iy) = u(x,y) + iv(x,y)$$

where $u, v : \mathbb{R}^2 \to \mathbb{R}$, if f is complex differentiable, then

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Suppose that the partial derivatives of u and v exist, are continuous and satisfy the Cauchy-Riemann equations. Then f is holomorphic.

Define differential operators

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right), \quad \frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y} \right)$$

For holomorphic function,

$$f'(z) = \frac{\partial f}{\partial z} = 2\frac{\partial u}{\partial z}, \quad \frac{\partial f}{\partial \overline{z}} = 0$$

If f is a holomorphic function given by f(x+iy)=u(x,y)+v(x,y)i, then u and v are harmonic, i.e.

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \Delta v = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

Relation to Vector Field

For a vector field $F: \Omega \to \mathbb{R}^2$, if it's divergence and rotation are zero, i.e.

$$\exists U : \mathbb{R}^2 \to \mathbb{R}, F = \nabla U, \text{ i.e. } F_1 = \frac{\partial U}{\partial x}, F_2 = \frac{\partial U}{\partial y}$$
$$\exists V : \mathbb{R}^2 \to \mathbb{R}, \ F_1 = \frac{\partial V}{\partial y}, F_2 = -\frac{\partial V}{\partial x}$$

Then for function G = U(x, y) + iV(x, y),

$$\frac{\partial U}{\partial x} = \frac{\partial V}{\partial y}, \quad \frac{\partial U}{\partial y} = -\frac{\partial V}{\partial x}$$

it's holomorphic.

Sets in the Complex Plane

- 1. A set $\Omega \subset \mathbb{C}$ is called open if for every $z \in \Omega$ there exists an $\varepsilon > 0$ such that $B_{\varepsilon}(z) = \{w \in \mathbb{C} : |w z| < \varepsilon\} \subset \Omega$. A set is called closed if its complement is open.
- 2. A set $\Omega \subset \mathbb{C}$ is called bounded if $\Omega \subset B_R(0)$ for some R > 0.
- 3. A set $K \subset \mathbb{C}$ is called compact if every sequence in K has a subsequence that converges in K. A set $K \in \mathbb{C}$ is compact if and only if it is closed and bounded.
- 4. An open (closed) set $\Omega\subset\mathbb{C}$ is called disconnected if there exist two open (closed) sets $\Omega_1,\Omega_2\subset\mathbb{C}$ such that $\Omega_1\cap\Omega_2=\emptyset$ and $\Omega=\Omega_1\cup\Omega_2$. If Ω is not disconnected, Ω is called connected. A set $\Omega\subset\mathbb{C}$ is conneted if and only if for any two points in Ω there exists a curve joining them.
- 5. A *region* or *domain* in \mathbb{C} is an open and conneted set.

We define the diameter of a set $\Omega \subset \mathbb{C}$ by

$$\operatorname{diam}(\Omega) = \sup_{z,w \in \Omega} |z - w|$$

If (Ω_n) is a sequence of non-empty compact sets such that $\Omega_{n+1} \subset \Omega_n$ for $n \in \mathbb{N}$ and diam $\Omega_n \to 0$ as $n \to \infty$, then there exists a unique point $w \in \mathbb{C}$ such that $w \in \Omega_n$ for all n.

Primitive

Let $\Omega \subset \mathbb{C}$ be an open set, $f:\Omega \to \mathbb{C}$. A primitive for f is a holomorphic function $F:\Omega \to \mathbb{C}$ such that f(z)=F'(z) for all $z\in \Omega$.

If a continuous function f has a primitive F in Ω , and C^* is a curve in Ω that begins at w_1 and ends at w_2 , then

$$\int_{\mathcal{C}^*} f(z) dz = F(w_2) - F(w_1)$$

Especially, if C^* is a closed curve,

$$\int_{\mathcal{C}^*} f(z) dz = 0$$

If f is holomorphic in a region Ω and f' = 0, then f is constant.

Integrals along Complex Curves

Let $\Omega \subset \mathbb{C}$ be an open set, f holomorphic on Ω and $\mathcal{C}^* \subset \Omega$ an oriented smooth curve. We then define the integral of f along \mathcal{C}^* by

$$\int_{\mathcal{C}^*} f(z) dz = \int_I f(\gamma(t)) \cdot \gamma'(t) dt$$

where $\gamma: I \to \mathcal{C}^*$ is a parametrization of the parameterized curve \mathcal{C}^* .

Curve Length

$$\ell(\mathcal{C}) = \left| \int_{\mathcal{C}} dz \right|$$

$$\int_{-\mathcal{C}^*} f(z) dz = - \int_{\mathcal{C}^*} f(z) dz, \quad \left| \int_{\mathcal{C}^*} f(z) dz \right| \leq \ell(\mathcal{C}) \cdot \sup_{z \in \mathcal{C}} |f(z)|$$

Cauchy's Theorem

If f is holomorphic in an open (simple) connected set Ω , and C^* is a closed curve in Ω ,

$$\int_{\mathcal{C}^*} f(z) dz = 0$$

Singularities

Let $\Omega \subset \mathbb{C}$ be open, $z_0 \in \Omega$ and $f : \Omega \setminus \{z_0\} \to \mathbb{C}$ holomorphic. Then f is said to have a point singularity or isolated singularity at z_0 .

- 1. The singularity is said to be removable if there exists an analytic continuation $\tilde{f}: \Omega \to \mathbb{C}$. (such \tilde{f} is unique)
- 2. The singularity is said to be a **pole** if g = 1/f is holomorphic on $\Omega \setminus \{z_0\}$ and has a removable singularity at z_0 such that the analytic continuation \tilde{q} of q satisfies $\tilde{g}(z_0) = 0.$
- 3. The singularity is said to be essential if it is neither removable nor a pole.

How to judge?

Removable Singularity

Whether $\lim_{z\to z_0} f$ exists.

e.g.

$$\lim_{z\to 0}\frac{\sin z}{z}=1$$

So $f(z) = \frac{\sin z}{z}$ has removable singularity at z = 0.

Pole (Informal way)

$$f(z) = \frac{g(z)}{h(z)}$$
, then all z_0 such that $h(z_0) = 0$ may be a pole. (All z_0 such that $g(z_0) = 0$ may be a zero.)

Multiplicity of Poles

If $f: \Omega \to \mathbb{C}$ has a pole at $z_0 \in \Omega$, then in a neighborhood U of that point there exist a non-vanishing holomorphic function h and a unique positive integer n such that

$$f(z) = (z - z_0)^{-n}h(z)$$
 for all $z \in U$

The integer n is called the multiplicity or order of the pole of f. If n = 1, we say that the pole is **simple**.

$$f(z) = (z - z_0)^{-n} \sum_{m=0}^{\infty} b_m (z - z_0)^m$$

$$= \frac{b_0}{(z - z_0)^n} + \frac{b_1}{(z - z_0)^{n-1}} + \dots + \frac{b_{n-1}}{z - z_0} + \sum_{m=n}^{\infty} b_m (z - z_0)^{m-n}$$

$$= \underbrace{\frac{a_{-n}}{(z - z_0)^n} + \frac{a_{-(n-1)}}{(z - z_0)^{n-1}} + \dots + \frac{a_{-1}}{z - z_0}}_{\text{Principle part}} + \sum_{m=0}^{\infty} a_0 (z - z_0)^m$$

Residue

Let $\Omega \subset \mathbb{C}$ be a domain and $f : \Omega \setminus \{z_0\} \to \mathbb{C}$ have a pole of order n at z_0 . Then

$$a_{-1} = \operatorname{res}_{z_0} f = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} ((z-z_0)^n f(z))$$

Residue Theorem

Suppose that f is holomorphic in an open set containing a (positively oriented) toy contour C and its interior, except for **poles** at the points z_1, \dots, z_N inside C. Then

$$\int_{\mathcal{C}} f(z) dz = 2\pi i \sum_{k=1}^{N} \operatorname{res}_{z_k} f$$

Complex Logarithm

On any simply connected open set Ω , $(1 \in \Omega, 0 \notin \Omega)$, set

$$\ln 1 = 0$$
, $\ln z = \int_{\mathcal{C}} \frac{dz}{z}$

where $\mathcal{C} \subset \Omega$ is any simple curve joining $1 \in \Omega$ to $z \in \Omega$.

- 1. $\ln(re^{i\phi}) = \ln r + \varphi i, (r > 0, -\pi < \phi < \pi)$
- 2. $\ln(re^{i\phi}) = \ln r + \varphi i, (r > 0, 0 < \phi < 2\pi)$

Complex Powers

$$z^{\alpha} = e^{\alpha \ln z}, \quad \alpha \in \mathbb{C}, z \in \mathbb{C} \setminus \mathbb{R}^{0}_{-}$$

Complex Roots

$$\sqrt[n]{\alpha} = z^{1/n}$$

Evaluation of Real Integrals

- 1. Extend the real domain to complex domain.
 - 1.1 Usually you only need to change $x \in \mathbb{R}$ to $z \in \mathbb{C}$
 - 1.2 For $\sin x$, $\cos x$, do integral for e^{iz}
- 2. Find poles for the function f(z)
- 3. Decide the countour and the branch if needed.
- 4. Calculate the residue for poles in the countour.
 - 4.1 During an exam, you may calculate residue for all poles if you cannot decide the countour at first.
- 5. Apply residue theorem or Cauchy's theorem.
- Save the integral part we need and solve other parts one by one.
 - 6.1 You may need to use Jordan's Lemma or do similar operation

Countour 1—-Semi-circle

Most common ones.
You have use them to solve

$$\int_0^\infty \frac{\sin x}{x} dx, \quad \int_{-\infty}^\infty \frac{\cos x}{x^2 + a^2} dx, \quad \int_{-\infty}^\infty \frac{x \sin x}{x^2 + a^2} dx, \quad \int_{-\infty}^\infty \frac{dx}{1 + x^4}$$

$$\int_0^\infty \frac{x \sin x}{(x^2+4)^2} dx, \quad \int_{-\infty}^\infty \frac{dx}{(1+x^2)^{n+1}} dx, \quad \int_0^\infty \frac{1-\cos x}{x^2} dx$$

Countour 2—-Sector

Similar to Semi-circle. May be useful for integral containing $sin(x^n)$, $cos(x^n)$ (choose central angle= $\frac{\pi}{2n}$)
You have use it to solve

$$\int_0^\infty \sin^2 x dx, \quad \int_0^\infty \cos^2 x dx$$

Used for integral containing \sqrt{x} , $\ln x$ (For these two countours, the branch we choose is $\mathbb{C}\setminus\mathbb{R}^0_-$, so $\phi\in(0,2\pi)$)

$$\int_0^\infty \frac{\sqrt{x}}{x^2 + a^2} dx, \quad \int_0^\infty \frac{\ln x}{x^2 + a^2} dx$$

Residue Calculus for Functions with Branch Points

Let P and Q be polynomials of degree m and n, respectively, where $n \geqslant m+2$. If $Q(x) \neq 0$ for x>0, if Q has a zero of order at most 1 at the origin and if

$$f(z) = \frac{z^{\alpha}P(z)}{Q(z)}, \quad 0 < \alpha < 1$$

then

p.v.
$$\int_0^\infty \frac{x^\alpha P(x)}{Q(x)} dx = \frac{2\pi i}{1 - e^{2\pi \alpha i}} \sum_{j=1}^K \operatorname{res}_{z_j} f$$

This theorem is obtained by using the countour in the left on last slide. Pay attention to the branch. Also pay attention to its requirement.

$$\int_0^\infty \frac{e^{ax}}{1+e^x} dx$$

Jordan's Lemma

Assume that for some $R_0>0$ the function $g:\mathbb{C}\setminus B_{R_0}(0)\to\mathbb{C}$ is holomorphic. Let

$$f(z) = e^{iaz}g(z)$$
, for some $a > 0$

Let

$$C_R = \{ z \in \mathbb{C} : z = R \cdot e^{i\theta}, 0 \leqslant \theta \leqslant \pi \}$$

be a semi-circle segement in the upper half-plane and assume that

$$\sup_{0 \le \theta \le \pi} |g(Re^{i\theta})| \xrightarrow{R \to \infty} 0$$

Then

$$\lim_{R\to\infty}\int_{C_R'}f(z)dz=0$$

$$(C'_R \subset C_R)$$

The following theorem is used to prove Cauchy's Theorem.

Goursat's Theorem

Let $\Omega \subset \mathbb{C}$ be an open and f holomorphic on Ω . Let $T \subset \Omega$ be a *triangle* whose interior is also contained in Ω . Then

$$\oint_T f(z)dz=0$$

and therefore, for a rectangle R,

$$\oint_{B} f(z)dz = 0$$

Morera's Theorem

Let $\Omega\subset\mathbb{C}$ be an open, connected set and let $f:\Omega\to\mathbb{C}$ be continuous. Suppose that

$$\oint_T f(z)dz = 0$$
 for any triangle T wholly contained in Ω

- 1. f has a primitive on Ω
- 2. (*f* is holomorphic.)

For the proof of this theorem, it's similar to the one in below.

Local Existence of Primitives

A holomorphic function in an open disc has a primitive in that disc. (P316)

 $\forall z \in \Omega$, choose some z_0 such that $z \in B_{\delta}(z_0)$ for some $\delta > 0$. Then define the function

$$F: B_{\delta}(z_0) \to \mathbb{C}, \quad F(z) = \int_{\mathcal{C}(z_0,z)} f(\zeta) d\zeta$$

where $\mathcal{C}(z_0, z)$ is parametrized by

$$\gamma: [0,1] \to \mathbb{C}, \quad \gamma(t):=(1-t)z_0+tz$$

Suppose that $z + h \in B_{\delta}(z_0)$ for some h. Any integral along the triangle with vertices z_0 , z and z + h vanishes, so that

$$F(z+h) - F(z) = \int_{\mathcal{C}(z,z+h)} f(\zeta)d\zeta = \int_0^1 f((1-t)z + t(z+h)) \cdot hdt$$
$$= h \int_0^1 f(z+th)dt$$

Proof (continued)

Since f is continuous, $f(z + th) = f(z) + \psi(h)$, where $\psi(h) \to 0$ as $h \to 0$, so

$$F(z+h) = F(z) + hf(z) + o(h)$$

So F'(z) = f(z). A holomorphic function is automatically infinitely often differentiable. So f(z) is holomorphic.

Cauchy Integral Formulas

Suppose f is a holomorphic function in an open set $\Omega \subset \mathbb{C}$. If D is an open disc whose closure is contained in Ω then

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{\zeta - z} d\zeta$$

where $C = \partial D$ is the (positively oriented) boundary circle of D. (It holds for all toy contours.)

If f is a holomorphic function in an open set $\Omega \subset \mathbb{C}$, then f has infinitely many complex derivatives in Ω . Moreover, if D is an open disc whose closure is contained in Ω ,

$$f^{(n)} = \frac{n!}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z)^{n+1}}$$

where $C = \partial D$ is the (positively oriented) boundary circle of D.

Holomorphic Functions are Analytic

Suppose f is a holomorphic function in an open set Ω . If D is an open disc centered at z_0 whose closure is contained in Ω , then f has a power series expansion at z_0

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

for all $z \in D$ and the coefficients are given by

$$a_n=rac{f^{(n)}(z_0)}{n!}, \quad n\in\mathbb{N}$$

Uniqueness of Holomorphic Functions

Let $\Omega\subset\mathbb{C}$ be a region and $f,g:\Omega\to\mathbb{C}$ two holomorphic functions. Suppose that $S\subset\Omega$ has an accumulation point that is contained in Ω and that

$$f(z) = g(z)$$
 for all $z \in S$

Then f(z) = g(z) for all $z \in \Omega$.

Analytic Continuation

Let $M \subset \mathbb{C}$ be a any set and $f: M \to \mathbb{C}$ any function. Let Ω be a region with $M \subset \Omega$ and $g: \Omega \to \mathbb{C}$ a holomorphic function such that g(z) = f(z) for $z \in M$. Then g is called an analytic continuation of f to Ω .