1. (2 points) Find an expression for this function.

$$f(x) = \begin{cases} -2, & -3 <= x <=-1 \\ 2x + 2, & -1 < x <= 0 \\ x/2 + 2, & 0 < x <= 2 \end{cases}$$

 $\phi(x) = \sqrt{\frac{x}{x - x}}$ 2. (2points) Find the domain of the function:

$$\phi\left(x\right) = \sqrt{\frac{x}{\pi - x}}$$
 is defined when $\frac{x}{\pi - x} \ge 0$.

- (1) $x \le 0$ and $\pi x < 0 \ (\Leftrightarrow x > \pi)$, which is impossible,
- (2) $x \ge 0$ and $\pi x > 0$ ($\Leftrightarrow x < \pi$), and so the domain is $[0, \pi)$.
- 3. (2 points) Find the functions $f \circ g$, $f \circ f$ and their domains.

$$f(x) = \frac{1}{x-1}, \quad g(x) = \frac{x-1}{x+1}$$

$$(f \circ g)(x) = f\left(\frac{x-1}{x+1}\right) = \left(\frac{x-1}{x+1} - 1\right)^{-1} = \left(\frac{-2}{x+1}\right)^{-1} = \frac{-x-1}{2},$$

domain $D = \{x \mid x \neq -1\}.$

$$(f \circ f)(x) = f\left(\frac{1}{x-1}\right) = \frac{1}{1/(x-1)-1} = \frac{x-1}{2-x}, \ D = \{x \mid x \neq 1, 2\}.$$

4. (2 points) Find the domain and sketch the function $h(x) = \sqrt{x^2 - 4}$

 ${x \mid x^2 - 4 \ge 0} = (-\infty, -2] \cup [2, \infty).$

 $h\left(x\right)=\sqrt{x^2-4}$. Now $y=\sqrt{x^2-4} \Rightarrow y^2=x^2-4 \Leftrightarrow x^2-y^2=4$, the graph is the top half of a hyperbola. The domain is

5. (2 points) Starting from the graph of $\,y=\sqrt[3]{x}$,

Sketch the graph of (a) $y = \sqrt[3]{x+2}$

and (b) $y = \sqrt[3]{x+2} - 1$

