TH zürich

Addressing Deployment-time and Run-time Variability in Robotics Software Systems

Luca Gherardi Bergamo - October 20th, 2014

Approach overview

Problem

- Huge amount of variability makes hard the configuration of robotics software architectures
- Run-time variability resolution (aka run-time adaptation) is often hardcoded in the functional components

Goal

- Model variability and context information
- To configure and adapt software architecture
- Based on deployment-time requirements and state of the context

A possible scenario

Deployment-time Variability Resolution Luca Gherardi and Davide Brugali

Feature Model

Feature Model

Template System Model

Template System Model

- 3 types of configurations
 - Change component's implementation
 - Change connections
 - Set properties

Deployment-time Resolution Model

Deployment-time Feature Selection

Deployment-time Feature Selection

 The feature selection is sent to the Deployment-time Resolution Engine

Deployment-time configured system model

Deployment-time configured system model

Run-time Variability Resolution Luca Gherardi and Nico Hochgeschwender

Deployment-time Feature Selection

- Some of the features can be better chosen at run-time
 - More information about the context is available
- We have to model this information and reason about it

Approach overview

- The run-time variability resolution is a feed-back loop continuously executed
- It is based on the architecture defined in the Deploymenttime Configured System Model

Deployment-time Feature Selection

Feature	Attribute	Value
Channel A	Latency	Low
Channel A	Power Consumption	High
Channel B	Latency	High
Channel B	Power Consumption	Low

Context Dependent Measurement Model

Context Dependent Measurement Model

CDM	Component	Interace	Function
BattLev	Robot Driver	Battery Level	
SemLoc	Map Based Nav.	Semantic Location	_
ObstDist	Laser Scanner	Laser Scan	getClosestObst
Material	Radio Switch	Object Material	_

Context Monitor

- A ros-cpp node is automatically generated based on the Context Dependent Measurements Model
 - Listens for components outputs
 - Produces as output Context Dependent Measurements

Adaptation Model

Adaptation Model

```
import caseStudy.featureModel
import caseStudy.contextDepMeasModel as cdm

rule RackSize:
   if( cdm.SemLoc == "RoomA")
        activate_feature(Small)
   else if( cdm.SemLoc == "RoomB")
        activate_feature(Large)
   else deactivate_feature((Large AND Small))

rule Radio:
   if( cdm.batteryLevel > "50" )
        select_feature_from_variants_of(Communic. Channel)
        where_attribute MIN(Latency)
   else select_feature_from_variants_of(Communic. Channel)
        where_attribute MIN(PowerConsump)
```


Adaptation Engine

- A ros-java node is automatically configured based on the Adaptation Model
 - Listens for Context Dependent Measurements
 - Produces as output a selection of features

Run-time Resolution Engine

- 3 types of transformations
 - Start/stop components
 - Change connections
 - Set properties

M. W. Mueller and R. D'Andrea. Stability and control of a quadro-copter despite the complete loss of one, two or three propellers.

In International Conference on Robotics and Automation (ICRA), 2014.

Thank you! Any Questions?

