k-Means

Mick Bos en Youri de Vor

Uitleg Code

Call Tree

- genDataSet
- genLabels
- findminmax
- scale
- kMeans
 - findNearestCentroids
 - calculateNewCentroids

Totaal-Uitleg

Door middel van de functies **genDataSet en genLabels** wordt de dataseten de bijbehorende labellijst aangemaakt. Vervolgens worden de metingen in de lijst genormaliseerd door middel van **findminmax en scale**

Het **kMeans** algoritme werkt door middel van het maken van de clusters. Dit doet **findNearestCentroids** door voor ieder meetpunt de dichtsbijzijnde centroid te zoeken en aan het bijbehorende cluster toe te voegen. Daarna is het de taak van **calculateNewCentroids** om het gemiddelde van alle datapunten in het cluster te pakken en dit te gebruiken als nieuwe centroid.

In de main code wordt voor iedere K-waarde het algoritme 10 maal gedraaid en de laagste AICD* waarde gekozen om outliers zoveel mogelijk te voorkomen binnen acceptabele runtime.

Resultaten

Tabel

K	AICD*	Δ(AICD*)	Δ(Δ(AICD*))
2	9523.75485585923	х	x
3	6422.11370023002	-3101.64115562921	x
4	4672.68894843331	-1749.42475179671	1352.2164038325
5	3733.076444249	-939.612504184306	809.812247612403
6	3234.77954167139	-498.29690257761	441.315601606696
7	2787.31493526697	-447.464606404425	50.8322961731847
8	2481.23991947576	-306.075015791204	141.389590613222
9	2120.37370849266	-360.866210983102	-54.7911951918982
	·		·

K	AICD*	Δ(AICD*)	Δ(Δ(AICD*))
10	1835.41325952478	-284.960448967887	75.9057620152155
11	1805.50496124369	-29.9082982810885	255.052150686798
12	1568.46230117925	-237.042660064437	-207.134361783349
13	1554.63548438087	-13.8268167983813	223.215843266056
14	1462.00023042752	-92.6352539533452	-78.8084371549639
15	1355.5824652721	-106.417765155426	-13.7825112020805
16	1213.07090983894	-142.511555433158	-36.0937902777323
17	1100.35883433671	-112.71207550223	29.7994799309279
18	1136.68681979866	36.3279854619502	149.04006096418
19	1002.44746404609	-134.239355752569	-170.567341214519
20	953.390246895767	-49.0572171503247	85.1821386022441

Aggregate Intra-Cluster Distance geplot tegen K

In bovenstaand plot is een trendlijn gefit op de AICD per K. Door deze tweemaal af te leiden

Beste K

In de hierboven te vinden resultaten tabel is de AICD* tegen de K uitgezet, waarna de verandering en de "verandering van de verandering" ernaast uitgezet zijn. In de verandering van de verandering* is duidelijk te zien dat de deze hard afzakt na K = 6. Deze zakt bij K = 7 naar 50, waar deze bij de vorige stap nog ~10

keer zo groot was. Op basis hiervan kiezen wij 6 als elleboog in het screeplot en is volgens de scree plot methode de ideale K dus 6.

AICD Aggregate Intra-Cluster Distance

verandering van de verandering voor onze doelen een acceptabele vervanger voor de tweede afgeleide van AICD* aangezien Δ K altijd 1 is in Δ AICD*/ Δ K, omdat een Δ K van kleiner dan 1 geen toepassing heeft bij kMeans