

北京邮电大学研究生课程

数字超大规模集成电路分析与设计

第十六讲 IO单元和ESD

梁利平

集成电路学院 2023年12月27日

第十六讲 IO单元和ESD

本讲主要内容

- □(一)IO单元的设计考虑
- □(二)ESD模型和保护电路

1.1 IO单元的设计考虑

- □ IO单元的作用
 - 电平转换和匹配
 - 增加驱动能力
 - 静电防护(ESD)
- □ IO单元的种类

IO单元种类	IO单元的功能
输出(output)	仅从芯片内部输出信号
输入(input)	仅从芯片外部输入信号
双向 (Bidirectional)	双向的,兼有输入输出功能
电源/时钟 (VDD/GND/CLK)	驱动能力强,不能引入较大噪声的外部输入
模拟(Analog)	传输精确的模拟信号

1.2 IO单元的设计考虑

- □ 输入输出的电平兼容性
- □ 驱动能力
- □ 静电防护

1.3 IO单元的设计考虑

□常见的IO逻辑电平标准

	5V TTL	5V CMOS	3.3V LVTTL	3.3V 逻辑电平	2.5V CMOS	1.8V CMOS	1.5V CMOS	1.2V CMOS
电源	5V	5V	3.3V	3.3V	2.5V	1.8V	1.5V	1.2V
地	0V	0V	0V	0V	0V	0V	0V	0V
Vон	2.4V	4.44V	2.4V	2.4V	2.0V	Vcc - 0.45V		
Vol	0.4V	0.5V	0.4V	0.2V	0.2V	0.45V		
Vih	2V	3.5V	2.0V	2.0V	1.7V	$0.65 \mathrm{V}_{\mathrm{CC}}$	0.65Vcc	0.65Vcc
VIL	0.8V	1.5V	0.8V	0.8V	0.7V	0.35Vcc	0.35Vcc	0.35Vcc
V_{M}	1.5V	2.5V	1.5V	1.5V	1.2V			

1.3 IO单元的设计考虑

- □ IO单元的种类
 - 输入缓冲器
 - 输出缓冲器

•

• 双向缓冲器

1.5 IO单元的设计考虑—输入缓冲器

- □ 输入缓冲器的作用
 - 作为电平转换接口电路
 - 改善输入信号的驱动能力
- □ 输入缓冲器的结构
 - 由两级反相器构成
 - 第一级反相器兼有电平转换的功能

1.6 IO单元的设计考虑 - 输入缓冲器

□ 兼容TTL接口CMOS输入缓冲器 至内部电路 VIN

□ 施密特触发器作为输入缓冲

□ 兼容高电压输入的输入缓冲器

1.9 IO单元的设计考虑 - 输入缓冲器

口 带差分放大的输入缓冲器

□ 带差分放大时钟锁存的输入缓冲器

1.11 IO单元的设计考虑 - 输出缓冲器

□ 电平移位电路(Level Shifter)

13

1.12 IO单元的设计考虑 - 输出缓冲器

口 利用反相器链增加驱动能力

1.13 IO单元的设计考虑 - 输出缓冲器

□ 一种三态输出电路

1.14 IO单元的设计考虑 - 输出缓冲器

□ 带传输门的三态输出

□ 常用的CMOS三态输出电路 新式作力 30

1.16 IO单元的设计考虑 - 输出缓冲器

□ 带使能的输出缓冲器

Off-chip-driver Vdd rail

1.17 IO单元的设计考虑 - 双向缓冲器

□ 一种CMOS双向缓冲器

第十六讲 IO单元和ESD

本讲主要内容

- □(一)IO单元的设计考虑
- □(二)ESD模型和保护电路

2.1 ESD模型和电路保护

- □ 三种ESD模型
 - HBM

• **MM**

• **CDM**

2.2 ESD模型和电路保护一HBM模型

- □ 人体放电模式 (Human-Body Model, HBM)
 - 人体放电模式(HBM)的ESD是指因人体在地上走动磨擦或其它因素在人体上已累积了静电,当此人去碰触到IC时,人体上的静电便会经由IC的脚(pin)而进入IC内,再经由IC放电到地去,如图所示。此放电的过程会在短到几百毫微秒(ns)的时间内产生数安培的瞬间放电电流,此电流会把IC内的组件给烧毁。不同HBM静电电压相对产生的瞬间放电电流与时间的关系显示于图2.1-1(b)。对一般商用IC的2-KV ESD放电电压而言,其瞬间放电电流的尖峰值大约是1.33 安培。

ESD CURRENTS

2.3 ESD模型和电路保护一HBM模型

- □ 人体放电模式 (HBM) (续)
 - · 有关于HBM的ESD已有工业测试的标准:
 - 图显示工业标准 (MIL-STD-883C method 3015.7)的等效电路图,其中人体的 等效电容定为100pF,人体的等效放电电阻定为 $1.5K\Omega$ 。
 - 表是国际电子工业标准(EIA/JEDEC STANDARD) 对人体放电模式订定 测试规范(EIA/JESD22-A114-A)

CLASS	STRESS LEVELS
CLASS I	0-1999V
CLASS II	2999-3999V
CLASS III	4999-15999 V

2.4 ESD模型和电路保护一MM模型

- □ 机器放电模式 (Machine Model, MM)
 - 机器放电模式的ESD是指机器(例如机械手臂)本身累积了静电,当此机器去碰触到IC时,该静电便经由IC的pin放电。因为机器是金属,其等效电阻为0Ω,其等效电容为200pF。由于机器放电模式的等效电阻为0,故其放电的过程更短,在几毫微秒到几十毫微秒之内会有数安培的瞬间放电电流产生。
 - · 此机器放电模式工业测试标准为 EIAJ-IC-121 method20,其等效电路图和 等级如下:

CLASS	STRESS LEVELS		
M0	0-50V		
М	50-100V		
M2	100-200 V		
М3	200-400 V		
M4	400-800 V		
M5	>800 V		

- □ 机器放电模式 (Machine Model, MM)(续)
 - 2-KV HBM与200-V MM的放电比较
 - 如图,虽然HBM的电压2 KV比MM的电压 200V来得大,但是200-V MM的放电电流却 比2-KV HBM的放电电流来得大很多,放电 电流波形有上下振动(Ring)的情形,是因为 测试机台导线的杂散等效电感与电容互相耦 合而引起的。因此机器放电模式对IC的破坏 力更大。
 - 国际电子工业标准 (EIA/JEDEC STANDARD) 亦对此机器放电模式订定测试 规范 (EIA/JESD22-A115-A)

Comparison HBM and MM pulse

- □ 组件充电模式 (Charged-Device Model, CDM)
 - 此放电模式是指IC先因磨擦或其它因素而在IC内部累积了静电,但在静电累积的过程中IC并未被损伤。此带有静电的IC在处理过程中,当其pin去碰触到接地面时,IC内部的静电便会经由pin自IC内部流出来,而造成了放电的现象。此种模式的放电时间更短,仅约几毫微秒之内,而且放电现象更难以真实的被模拟。

2.7 ESD模型和电路保护 - CDM模型

- □ 组件充电模式 (Charged-Device Model, CDM) (续)
 - · CDM模式ESD可能发生的情形显示:
 - (1) IC自IC管中滑出后,带电的IC脚接触接到地面而形成放电现象。
 - (2) IC自IC管中滑出后, IC脚朝上, 但经由接地的金属工具 而放电。

情形(2)

2.8 ESD模型和电路保护 - ESD测试

□ PAD的ESD测试

进入芯片的静电可以通过任意一个引脚放电,测试时,任意两个引脚之间都应该进行放电

- 测试,每次放电检测都有正负两种极性,所以对 I/O 引脚会进行以下六种测试:
- 1) PS 模式: VSS 接地, 引脚施加正的 ESD 电压, 对 VSS 放电, 其余引脚悬空;
- 2) NS 模式: VSS 接地, 引脚施加负的 ESD 电压, 对 VSS 放电, 其余引脚悬空;
- 3) PD 模式: VDD 接地, 引脚施加正的 ESD 电压, 对 VDD 放电, 其余引脚悬空;
- 4) ND 模式: VDD 接地, 引脚施加负的 ESD 电压, 对 VDD 放电, 其余引脚悬空;
- 5) 引脚对引脚正向模式:引脚施加正的 ESD 电压,其余所有 I / O 引脚一起接地, VDD 和VSS 引脚悬空;
- 6) 引脚对引脚反向模式:引脚施加负的 ESD 电压,其余所有 I / O 引脚一起接地, VDD 和VSS 引脚悬空。

VDD 引脚只需进行(1)(2)项测试

2.9 ESD模型和电路保护 - ESD保护设计

- □ 建立六种低阻ESD 电流通路
 - · 引脚焊块(PAD)到 VSS 的低阻 放电通路
 - · VSS 到 PAD 的低阻放电通路
 - PAD 到 VDD 的低阻放电通路
 - · VDD 到 PAD 的低阻放电通路
 - PAD 受到正向 ESD 放电时, PAD 到 PAD 的通路
 - PAD 受到负向 ESD 放电时, PAD 到 PAD 的通路
 - VDD 与 VSS 之间的电流通路

图3

加入ESD电流通路的I/O电路,

二极管ND是NMOS漏极与P型衬底形成的寄生二级管,二极管PD是PMOS漏极与N阱形成的寄生二级管,VDD与VSS之间的二极管Dp是N阱与P型衬底形成的寄生二级管.电阻Rs和Rin用于进一步降低被保护器件上的ESD电压。

2.10 ESD模型和电路保护 - ESD保护设计

□ ESD保护电路设计考虑

- · 大部分的 ESD 电流来自电路外部, (CMD 模型除外,它是基于已带电的器件通过管脚与地接触时,发生对地放电引起器件失效而建立的), ESD 保护电路一般设计在 PAD 旁,输入输出(I/O,Input/Output) 电路内部。典型的 I/O 电路示意图(如图 2),它的工作电路由两部分组成输出驱动(Output Driver) 和输入接收器(Input Receiver).。
- ESD 通过 PAD 导入芯片内部,因此 I/O 里 所有与 PAD 直接相连的器件都需要建立与之 平行的ESD 低阻旁路,将 ESD 电流引入电 压线,再由电压线分布到芯片各个管脚,降 低 ESD的影响。

图 2 典型的I/O电路示意图

2.11 ESD模型和电路保护 - ESD保护设计

- □ PS 模式下,PAD和VSS 之间的 ESD 低阻旁路
 - 每一个 I/O 引脚电路中都应建立一个 PAD 到 VSS 的 ESD 保护电路
 - 常用的 ESD 保护器件有电阻、二极管、双极性晶体管、MOS 管、可控硅

图 4 PAD对VSS反向ESD放电时的电流通路.

2.12 ESD模型和电路保护 - ESD保护设计

- □ PS 模式下,PAD和VSS 之间的 ESD 低阻旁路(续1)
 - 由于 MOS 管与 CMOS 工艺兼容性 好,我们常采用 MOS 管构造保护电 路。
 - CMOS 工艺条件下的 NMOS 管有一个横向寄生 n-p-n(源极-p 型衬底-漏极)晶体管,如图所示。这个寄生的晶体管开启时能吸收大量的电流。利用这一现象可在较小面积内设计出较高 ESD 耐压值的保护电路。

图 5 (a) NMOS管有一个横向寄生n-p-n(源极-p型衬底 - 漏极)晶体管。 Rsub为衬底电阻

2.13 ESD模型和电路保护 - ESD保护设计

□ PS 模式下,PAD和VSS 之间的 ESD 低阻旁路(续2)

• 最典型的器件结构就是栅极接地 NMOS(GGNMOS,Gate Grounded NMOS)

 在正常工作情况下,NMOS 横向晶体管不会导通。当 ESD 发生时,漏极和衬底的耗尽区将发生 雪崩,并伴随着电子空穴对的产生。一部分产生的空穴被源极吸收,其余的流过衬底。由于衬底 电阻 Rsub 的存在,使衬底电压提高。当衬底和源之间的 PN结正偏时,电子就从源发射进入衬底。 这些电子在源漏之间的电场的作用下被加速,产生电子、空穴的碰撞电离,从而形成更多的电子 空穴对,使流过 n-p-n 晶体管的电流不断增加,最终使 NMOS 晶体管发生二次击穿,此时的击穿

不再可逆,则 NMOS 管损坏。

33

- □ PS 模式下, PAD和VSS 之间的 ESD 低阻旁路(续3)
 - 为了进一步降低输出驱动上 NMOS 在 ESD 时两端的电压,可在 ESD 保护器件与GGNMOS 之间加一个电阻(图 6)。这个电阻不能影响工作信号,因此不能太大。画版图时可采用多晶硅(poly)电阻。

图 6 (a) PAD到VSS电流通路的等效电路图 (b)ESD发生时的I-V特性图,电阻Rs会让 OD ESD耐压值有一个It2OD*Rs的偏移

- □ NS 模式下, VSS和PAD 之间 ESD 低阻旁路
 - 在 ESD 过程中,如果 PAD 对 VSS 负向放电,放电通路由 p 型衬底和每一个与 PAD相连 NMOS 的漏极产生的寄生二极管组成所示。此时二极管正向导通,因为二极管正向导通电压小,导通电阻小,有很高 ESD 防护能力,PAD 对 VSS 的负向放电可以很容易的分布到芯片各个管脚。

2.16 ESD模型和电路保护 - ESD保护设计

- □ PD 模式下, PAD和VDD 之间 ESD 低阻旁路
 - 在 ESD 过程中,如果 PAD 对 VDD 正向放电,放电通路由 N 阱和每一个与 PAD 相连PMOS 的漏极产生的寄生二极管组成。此时二极管正向导通,有很高 ESD 防护能力,PAD对 VDD 的正向放电可以很容易的分布到芯片各个管脚。

- □ ND 模式下, VDD和PAD 之间 ESD 低阻旁路
 - 在 ESD 过程中,如果 PAD 对 VDD 负向放电,放电通路如图 10。PAD 对 VDD 负向放电通路由 PMOS 横向寄生晶体管组成。电路原理和结构 与 PS 模式下 PAD 到 VSS 的电路类似。

2.18 ESD模型和电路保护 - ESD保护设计

□ VDD和VSS 之间 ESD 低阻旁路

- VDD, VSS 的 PAD 上也可能发生 ESD 事件, 因此也需要有 ESD 保护。
- 在 ESD 过程中,如果 VDD 对 VSS 正向放电,基本的 VDD 到 VSS 的保护电路结构是在 VDD 和 VSS 之间加一 个大尺寸的 GGNMOS(如图)。为了提高 VDD 到 VSS 之间保护电路的效率,减小电源线间寄生电阻电容对其 ESD 保护性能的影响,可将这个保护电路复制多份,分布到芯片中去。
- 在 ESD 过程中,如果 VDD 对 VSS 反向放电, ESD 电流通过 P 衬底和 N 阱形成的二极管被旁路掉,此时这个寄生二极管正向导通,所以它的 ESD 保护能力强。

□ PAD, PAD 之间 ESD 低阻旁路

• 在 PAD 到 PAD 的电流通路中,ESD 电流经输入端的 ESD 保护器件流入电源线,再通过电源线流经个个输出端的 ESD 保护器件到地。

图11 VDD到VSS 基本 ESD电路保护结构

谢谢!

欢迎指正!