Fresnel Boundaries

This is code to accompany the book:

A Hitchhiker's Guide to Multiple Scattering

© 2019 Eugene d'Eon www.eugenedeon.com

Non-polarized

Reflection and Refraction

Helper functions to reflect and refract vectors:

$$In[1327] := refract[w_{n}, n_{n}, etal_{n}, etal_{n}] := \frac{-etal}{eta2} (w - (w.n) n) - \left(\sqrt{1 - \left(\frac{etal}{eta2}\right)^{2} \left(1 - (w.n)^{2}\right)}\right) n;$$

$$reflect[v_{n}] := -v + 2 n n.v;$$

Dielectric Fresnel

Dielectric reflectance for incoming light with incoming cosine *costhetai* and ratio of internal to external indices of *etaratio*:

```
\begin{split} &\text{In[1657]:= evalF[g\_, c\_] := } \frac{1}{2} \, \frac{(g-c)^2}{(g+c)^2} \, \bigg( 1 + \frac{(c \, (g+c)-1)^2}{(c \, (g-c)+1)^2} \bigg) \,; \\ &\text{FR[etaratio\_, costhetai\_] := If[} \\ &\text{etaratio}^2 - 1 + costhetai^2 \ge 0 \,, \\ &\text{evalF} \Big[ \sqrt{\text{etaratio}^2 - 1 + costhetai}^2 \, , \, \text{costhetai} \Big] \,, \\ &1 \Big] \end{split}
```

interactive Snell's law explorer

```
In[*]:= Manipulate[
          plotFresnel = Graphics[
                Gray,
                GrayLevel[.9],
                Rectangle[{-1, -1}, {1, 0}],
                Black,
                Line[{{-1, 0}, {1, 0}}],
                {Dashed,
                  Arrow[\{\{0,0\},\{0,1\}\}\}],
                Arrow[\{\{-\sin[\theta i], \cos[\theta i]\}, \{0, 0\}\}\}],
                \mathsf{Arrow}\big[\big\{\{\mathtt{0}\,,\,\mathtt{0}\}\,,\,\mathsf{FR}\big[\frac{\eta\mathsf{t}}{n\mathsf{i}}\,,\,\mathsf{Cos}[\theta\mathsf{i}]\big]\,\{\mathsf{Sin}[\theta\mathsf{i}]\,,\,\mathsf{Cos}[\theta\mathsf{i}]\}\big\}\big]\,,
                Arrow[{{0,0}},
                    \left(1 - FR\left[\frac{\eta t}{n i}, Cos[\theta i]\right]\right) refract[{-Sin[\theta i], Cos[\theta i]}, {0, 1}, \eta i, \eta t]\}],
                Text["\eta_i", {.9, 0.05}],
                Text["\eta_t", {.9, -0.05}],
                Text["F<sub>R</sub>", 1.2 FR[\frac{\eta t}{\eta i}, Cos[\theta i]] {Sin[\theta i], Cos[\theta i]}],
                Text["F<sub>T</sub>",
                  1.2 \left(1 - FR\left[\frac{\eta t}{ni}, Cos[\theta i]\right]\right) refract[{-Sin[\theta i], Cos[\theta i]}, {0, 1}, \eta i, \eta t],
                GrayLevel[.8],
                Circle [\{0, 0\}, 0.5, \{\frac{Pi}{2}, \frac{Pi}{2} + \theta i\}],
                Text["\thetai", .55 {-\sin\left[\frac{\theta i}{2}\right], \cos\left[\frac{\theta i}{2}\right]}]
           ], \{\eta i, 1, 2\}, \{\eta t, 1, 2\}, \{\theta i, 0, \frac{Pi}{2}\}]
```


Benchmark data

ln[1603]:= ns = {0.5, 0.7, 0.9, 0.99, 1.01, 1.1, 1.4, 2};

FRdata =

Table[NumberForm[FR[n, Cos[t]], 10], $\{n, ns\}, \{t, \{0., 0.2, 0.5, 1., 1.2, 1.5\}\}$]; Transpose[Join[{Table[n, $\{n, ns\}\}$ }, Transpose[FRdata]]] // Grid

	0.5	0.11111111	0.11175197	0.28326782	1	1	1
Out[1605]=		11	78	62			
	0.7	0.03114186	0.03124674	0.03870036	1	1	1
		851	478	015			
	0.9	0.00277008	0.00277588	0.00309558	0.04529666	1	1
		3102	1268	6937	859		
	0.99	0.00002525%	0.00002529%	0.00002756	0.00018462	0.00132454	1
		188758	542523	061109	13332	3092	
	1.01	0.00002475	0.00002479	0.00002690	0.00016094	0.00096252	0.14322538
		186258	279742	032652	63153	52542	85
	1.1	0.00226757	0.00227070%	0.00242550	0.00987357	0.03762338	0.50722589
		3696	1284	2197	0083	63	47
	1.4	0.02777777	0.02779989	0.02881387	0.06118057	0.13573578	0.65791346
		778	414	74	067	39	05
	2	0.11111111	0.11114523	0.11262120	0.15018950	0.22278594	0.68340008
		11	34	91	51	62	72

Hemispherical Albedo - Smooth Dielectric

[Dunkle 1963, Ozisik 1973 p. 60]

In[1610]:= DielectricHemisphericalAlbedo[n_] := $\frac{1}{2} + \frac{(n-1)(3n+1)}{6(n+1)^2}$ -

$$\frac{2\;n^{3}\;\left(n^{2}+2\;n-1\right)}{\left(n^{2}+1\right)\;\left(n^{4}-1\right)}+\frac{8\;n^{4}\;\left(n^{4}+1\right)}{\left(n^{2}+1\right)\;\left(n^{4}-1\right)^{2}}\;Log\left[n\right]+\frac{n^{2}\;\left(n^{2}-1\right)^{2}}{\left(n^{2}+1\right)^{3}}\;Log\left[\frac{n-1}{n+1}\right]$$

Our approximation [Aug 2019] for $1 < \eta < 3$:

In[1622]:= DielectricHemisphericalAlbedoApprox[n_] := Log $\left[\frac{10.893 \text{ n} - 1438.2}{1 + 10.212 \text{ n} - 774.4 \text{ n}^2}\right]$

Error plot:

Conductor Fresnel

Exact

In[1333]:= Clear[p, q, rhoPerp, rhoPar, Rs, Rp];
$$p[ni_-, n_-, k_-, \text{theta}_-] := \\ \sqrt{\left(\frac{1}{2}\left(\sqrt{\left(n^2-k^2-ni^2\,\text{Sin}[\text{theta}]^2\right)^2+4\,n^2\,k^2} + \left(n^2-k^2-ni^2\,\text{Sin}[\text{theta}]^2\right)\right)}; \\ q[ni_-, n_-, k_-, \text{theta}_-] := \\ \sqrt{\left(\frac{1}{2}\left(\sqrt{\left(n^2-k^2-ni^2\,\text{Sin}[\text{theta}]^2\right)^2+4\,n^2\,k^2} - \left(n^2-k^2-ni^2\,\text{Sin}[\text{theta}]^2\right)\right)}; \\ In[1336]:= rhoPerp[p_-, q_-, n1_-, t_-] := \frac{\left(n1\,\text{Cos}[t]-p\right)^2+q^2}{\left(n1\,\text{Cos}[t]+p\right)^2+q^2}; \\ rhoPar[p_-, q_-, n1_-, t_-] := \frac{\left(p-n1\,\text{Sin}[t]\,\text{Tan}[t]\right)^2+q^2}{\left(p+n1\,\text{Sin}[t]\,\text{Tan}[t]\right)^2+q^2} rhoPerp[p, q, n1, t] \\ In[1338]:= FR[ni_-, n_-, k_-, t_-] := \frac{1}{2}\left(rhoPerp[p[ni, n, k, t], q[ni, n, k, t], ni, t] + rhoPar[p[ni, n, k, t], q[ni, n, k, t], ni, t]\right)$$

Reflectance at normal incidence:

In[1339]:= ConductorNormalReflectance[ni_, n_, k_] :=
$$1 - \frac{4 \text{ ni n}}{(\text{ni} + \text{n})^2 + \text{k}^2}$$

modified Gulbrandsen mapping for ni = 1:

These two functions take F0 (r) and G tint parameter and map to n + i k:

$$\begin{split} & & \ln[1340] := \; \mathsf{nmaprG}\big[r_-, \, \mathsf{G}_-\big] \; := \; \frac{-1 + \left(2 - 4 \left(1 - \mathsf{Sin}\left[\frac{\mathsf{G}\,\pi}{2}\right]^2\right)\right) \, \sqrt{r} \, - r}{-1 + r} \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

These two functions find G from n + i k. (r is ConductorNormalReflectance[1,n,k])

Schlick's Approximation

```
ln[1352] := mix[a_, b_, t_] := bt + (1-t) a;
      FRSchlickFresnel[ni_, n_, k_, theta_] := mix[
         ConductorReflectance[ni, n, k],
        (1 - Cos[theta])^5
```

Additional approximate form

Mentioned in [Pharr and Humphreys - Physically Based Rendering], first edition, [9.1], [9.2] (more accurate for larger k). See also [Dunkle 1963]

$$\begin{split} & \text{In}[\text{1354}] \coloneqq \text{FRPharrHumphreys}[\text{n_, k_, t_]} := \\ & \frac{1}{2} \left(\frac{\left(\text{n}^2 + \text{k}^2 \right) \, \text{Cos}[\text{t}]^2 - 2 \, \text{n} \, \text{Cos}[\text{t}] + 1}{\left(\text{n}^2 + \text{k}^2 \right) \, \text{Cos}[\text{t}]^2 + 2 \, \text{n} \, \text{Cos}[\text{t}] + 1} + \left(\frac{\left(\text{n}^2 + \text{k}^2 \right) - 2 \, \text{n} \, \text{Cos}[\text{t}] + \text{Cos}[\text{t}]^2}{\left(\text{n}^2 + \text{k}^2 \right) + 2 \, \text{n} \, \text{Cos}[\text{t}] + \text{Cos}[\text{t}]^2} \right) \end{split}$$

Hemispherical Albedo - Smooth Conductor

approximation 1

[Dunkle 1963, Ozisik 1973 p. 60] - approximation, exact for PharrHumphreys approximate

(parallel and perpendicular integrals):

In[1768]:= ConductorAlbedo1[n_, k_] :=
$$1 - \left(8 \, n - 8 \, n^2 \, \text{Log} \left[\frac{1 + 2 \, n + n^2 + k^2}{n^2 + k^2} \right] + \frac{8 \, n \, \left(n^2 - k^2 \right)}{k} \, \text{ArcTan} \left[\frac{k}{n + n^2 + k^2} \right] \right)$$

In[1769]:= ConductorAlbedo2[n_, k_] :=

$$1 - \left(\frac{8 \text{ n}}{n^2 + k^2} - \frac{8 \text{ n}^2}{\left(n^2 + k^2\right)^2} \text{ Log}\left[1 + 2 \text{ n} + n^2 + k^2\right] + \frac{8 \text{ n}\left(n^2 - k^2\right)}{k\left(n^2 + k^2\right)^2} \text{ ArcTan}\left[\frac{k}{1 + n}\right]\right)$$

unpolarized average:

$$\begin{array}{ll} & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \\ & \begin{array}{ll} \text{ConductorAlbedo1[n, k] + ConductorAlbedo2[n, k])} \\ \end{array}$$

approximation 2

Our 1st approximation [Aug 2019] for $0.1 < \eta < 4$, 1.7 < k < 8 - accurate to within about 0.001

```
In[1775]:= ConductorHemisphericalAlbedoApprox2[n_, k_] :=
       (-8.214737476609672` + (133.7359744765862` -98.9832978804228` n) n +
           k (-182.3702003078492` + (59.56171376011442` -3.9828814738544107` n) n) +
           k^2 (-62.591907101534154` + (-13.109290817253394` + 0.3081804514395202` n) n)) /
        ((-395.2681486337069` -78.47602559071363` n) n +
           k (-187.16625841046798` + (94.65173464738277` -15.855805815946251` n) n) +
           k^2 (-62.07520207202666` + n (-15.438703954274438` + 1.` n)))
```

approximation 2

Our 2nd approximation [Aug 2019] for $0.1 < \eta < 4$, 1.7 < k < 8 - accurate to within about 0.00006

```
In[1773]:= rGfit[r_, G_] :=
         (-2.0451558353360357` + 14.9839211083631` G + 1.3890774118488598` G<sup>2</sup> +
             60.88405996107553` r + 97.32802959940146` G r - 145.19694441443767` G<sup>2</sup> r +
             322.2806535116558 \dot{r}^2 - 687.9935126644131 \dot{g} \dot{r}^2 + 338.6486829760271 \dot{g}^2 \dot{r}^2 /
           (230.27759868799 G - 198.15004297964407 G<sup>2</sup> + 512.5359759247783 r -
             1005.5551398186406` Gr + 470.70682665699746` G<sup>2</sup> r - 127.45924551986035` r<sup>2</sup> +
             191.70842828834142 ^{\circ} G r^2 - 73.78542717613104 ^{\circ} G<sup>2</sup> r^2
In[1774]:= ConductorHemisphericalAlbedoApprox3[n_, k_] :=
         rGfit[ConductorReflectance[1, n, k], Gmap[n, k]]
```

Schlick approximation

```
Conductor Hemispherical Albedo Schlick [n\_, k\_] := 1 - \frac{80 \text{ n}}{21 \left(k^2 + (1+n)^2\right)}
```

Asymptotic behaviour (large k)

```
In[1831]:= ConductorHemisphericalAlbedoLargek[n_, k_] := 1 - \frac{16 \text{ n}}{2 \text{ k}^2}
```

Misunderstood form: Substitute complex index (n+ik) into the dielectric formula and take the magnitude of the result, Abs[FR]

Remove the conditional so that this works with complex numbers:

```
FR2[etaratio_, costhetai_] := evalF[\sqrt{\text{etaratio}^2 - 1 + \text{costhetai}^2}, costhetai]
```

Conductor Fresnel Reflectance Comparison

```
Manipulate[
 condFRplot = Show[
   Plot[{
      FR[ni, n, k, t],
      FRSchlickFresnel[ni, n, k, t],
      FRPharrHumphreys[n, k, t],
      Abs\big[FR2\big[\big(n+I\;k\big)\,,\;Cos[t]\,\big]\big]
     , \{t, 0, \frac{Pi}{2}\}, PlotRange \rightarrow \{0, 1\},
     PlotStyle → {Black, Dashed, DotDashed, Red}], Frame → True,
    FrameLabel -> {{FR[\theta_i],},
      \{\theta_i, "Conductor Fresnel Reflectance: \eta_i = 1, \eta = " \iff
         ToString[n] <> ", k = " <> ToString[k] <>
         ", \nexact (black), Schlick (dashed), \nPharr (dot-dashed), complex
           dielectric (red)"}}], {ni, 1, 2}, {n, 0.1, 5}, {k, 0, 5}]
```


Benchmark data

```
ns = \{1.01, 1.1, 1.4, 2, 10\};
ni = 1;
k = 0.5;
FRdata1 = Table[FR[ni, n, k, t], {n, ns}, {t, {0., 0.2, 0.5, 1., 1.2, 1.5}}];
FRdata2 = Table[FR[ni, n, k, t], {n, ns}, {t, {0., 0.2, 0.5, 1., 1.2, 1.5}}];
Join[Transpose[Join[{Table[n, {n, ns}]}, Transpose[FRdata1]]],
  Transpose[Join[{Table[n, {n, ns}]}, Transpose[FRdata2]]]] // Grid
1.01 0.058297 0.0583739 0.0617829 0.143398 0.270677 0.771216
1.1 0.055794 0.0558562 0.0586152 0.127731 0.243942 0.751578
1.4 0.0682196 0.0682653 0.070265 0.121631 0.216441 0.716803
     10
     0.670103
               0.67007
                         0.66871
                                 0.640179 0.594733 0.500498
1.01 0.860882
             0.860862
                         0.86007
                                 0.845425 0.827007 0.880432
                        0.849536 0.834112 0.814725 0.871181
1.1
     0.850391
               0.85037
1.4 0.817945 0.817922 0.816973 0.799379 0.777241 0.841838
     0.764706  0.764679  0.763584  0.7431  0.716979  0.789545
 2
10 0.726027 0.725995 0.724679 0.696901 0.651431 0.522924
```