BTS - Equations Différentielles et plans d'expériences -DS - A

Exercice 1 : Équations Différentielles (10 points)

On considère deux réactions totales et successives d'ordre 1 dans un milieu homogène. Celles-ci concernent trois produits A, B et C, selon le schéma est le suivant : $\mathbf{A}_{[f]} \xrightarrow{k_1} \mathbf{B}_{[g]} \xrightarrow{k_2} \mathbf{C}_{[h]}$ où f,g et h sont les concentrations relatives des produits A, B et C à l'instant t (en minutes) ($t \geqslant 0$), concentrations que l'on souhaite déterminer en fonction de t. Les conditions initiales sont les suivantes : f(0) = 1, g(0) = 0 et h(0) = 0.

Exercice 1:

- 1. L'étude cinétique permet d'abord d'écrire l'équation différentielle $\begin{cases} (E_1) &: f'(t) + 0.5f(t) = 0 \\ (ci_i) &: f(0) = 1 \end{cases}$
 - \circ Vrai ou faux (pas de justification demandée) : (E_1) est homogène.
 - \circ Déterminer les solutions générales de (E_1) .
 - \circ Déterminer la solution f qui vérifie la condition initiale (ci_1) .
- 2. L'étude cinétique permet ensuite d'écrire l'équation (E_2) vérifiée par g : $\begin{cases} (E_2) & : & g'(t) + g(t) = 0, 5\mathrm{e}^{-0,5t} \\ (ci_2) & : & g(0) = 0 \end{cases}$

On veut vérifier que $g(t)=\mathrm{e}^{-0.5t}-\mathrm{e}^{-t}$ est solution de (E_2) . Pour cela :

- \circ Calculer g(0)
- \circ Calculer g'(t) pour tout t.
- \circ Simplifier l'expression g'(t) + g(t) et conclure.
- 3. D'après le principe de conservation de la matière, on a, pour tout nombre réel t positif :

$$f(t)+g(t)+h(t)=f(0)+g(0)+h(0)$$
 . Exprimer alors $h(t)$ en fonction de t .

4. En remarquant que $g'(t) = e^{-0.5t} \left(-0.5 + e^{-0.5t}\right)$,, déterminer l'instant t pour lequel g atteint un maximum.

Exercice 2 : Plans d'Expérience (10 points)

Niveaux

Niveau	Dilution	Surface	
-1	10%	5cm ²	
1	90%	10cm ²	

Un technicien étudie le courant d'électrolyse traversant une cellule contenant une solution d'un électrolyte donné.

Il souhaite optimiser ce courant en faisant varier deux facteurs :

- la dilution de la solution, comprise entre 10% et 90%;
- la surface de l'électrode comprise entre 5 et 10 cm²;

pour cela, il va réaliser un plan d'expérience 2² avec interaction, construit selon l'algorithme de Yates.

résultats des expériences

Expérience	Dilution	Surface	Courant			
1	10%	5cm ²	15%			
2	90%	5cm ²	9%			
3	10%	10cm²	17%			
4	90%	10cm ²	11%			

Le courant traversant le circuit est ensuite mesuré et est exprimé par le rapport de ce courant à un courant servant de référence, ce qui permet de l'exprimer en pourcentage. Cette valeur Y est modélisée par une expression de la forme :

 $Y=a_0+a_1X_1+a_2X_2+a_{12}X_1X_2+\varepsilon$ est une variable aléatoire qui suit une loi normale de moyenne nulle. Elle sera ignorée dans les calculs.

- X_1 représente la dilution ;
- X_2 la surface de l'électrode ;

1 sur 6 16/01/2023 23:16

Exercice 2:

- 1. Compléter la matrice des effets sur le tableau ci-après.
- 2. Calculer une estimation ponctuelle des coefficients du modèle et écrire l'expression complète du modèle.

- 3. Certains effets sont-ils à négliger (justifier)?
 4. Exprimer Y en fonction de X_2 dans le cas d'une dilution de 50%.
 5. Que conseilleriez-vous au technicien afin d'obtenir un courant maximum?

Expériences	Global	X_1	X_2	X_1X_2	Passage du courant
1					15%
2					9%
3					17%
4					11%

16/01/2023 23:16 2 sur 6

BTS - Equations Différentielles et plans d'expériences -DS - B

Exercice 1 : Équations Différentielles (10 points)

On considère deux réactions totales et successives d'ordre 1 dans un milieu homogène. Celles-ci concernent trois produits A, B et C, selon le schéma est le suivant : $A_{[f]} \xrightarrow{k_1} B_{[g]} \xrightarrow{k_2} C_{[h]}$ où f,g et h sont les concentrations relatives des produits A, B et C à l'instant t (en minutes) ($t \ge 0$), concentrations que l'on souhaite déterminer en fonction de t. Les conditions initiales sont les suivantes : f(0) = 1, g(0) = 0 et h(0) = 0.

Exercice 1:

- 1. L'étude cinétique permet d'abord d'écrire l'équation différentielle $egin{cases} (E_1) &: & f'(t)+0.5f(t)=0 \\ (ci_i) &: & f(0)=1 \end{cases}$
 - \circ Vrai ou faux (pas de justification demandée) : (E_1) est homogène.
 - \circ Déterminer les solutions générales de (E_1) .
 - \circ Déterminer la solution f qui vérifie la condition initiale (ci_1) .
- 2. L'étude cinétique permet ensuite d'écrire l'équation (E_2) vérifiée par g: $\begin{cases} (E_2) &: g'(t) + g(t) = 0,5e^{-0,5t} \\ (ci_2) &: g(0) = 0 \end{cases}$

On veut vérifier que $g(t)=\mathrm{e}^{-0.5t}-\mathrm{e}^{-t}$ est solution de (E_2) . Pour cela :

- \circ Calculer g(0)
- \circ Calculer g'(t) pour tout t.
- \circ Simplifier l'expression g'(t) + g(t) et conclure.
- 3. D'après le principe de conservation de la matière, on a, pour tout nombre réel t positif :

$$f(t)+g(t)+h(t)=f(0)+g(0)+h(0)$$
 . Exprimer alors $h(t)$ en fonction de t .

4. En remarquant que $g'(t) = e^{-0.5t} (-0.5 + e^{-0.5t})$,, déterminer l'instant t pour lequel g atteint un maximum.

Exercice 2 : Plans d'Expérience (10 points)

Niveaux

Niveau	Dilution	Température	
-1	10%	50°C	
1	90%	80°C	

Un technicien étudie le courant d'électrolyse traversant une cellule contenant une solution d'un électrolyte donné.

Il souhaite optimiser ce courant en faisant varier trois facteurs :

- la dilution de la solution, comprise entre 10% et 90%;
- la température de la solution, comprise entre 50°C et 80°C;
- la surface de l'électrode comprise entre 5 et 10 cm²;

pour cela, il va réaliser un plan d'expérience 2², construit selon l'algorithme de Yates.

résultats des expériences

Expérience	Dilution	Température	Courant	
1	10%	50°C	17%	
2	90%	50°C	11%	
3	10%	80°C	64%	
4	90%	80°C	54%	

Le courant traversant le circuit est ensuite mesuré et est exprimé par le rapport de ce courant à un courant servant de référence, ce qui permet de l'exprimer en pourcentage. Cette valeur Y est modélisée par une expression de la forme :

$$Y = a_0 + a_1 X_1 + a_2 X_2 + a_{12} X_1 X_2 + \varepsilon$$

arepsilon est une variable aléatoire qui suit une loi normale de moyenne nulle. Elle sera ignorée dans les calculs.

- *X*₁ représente la dilution ;
- X_2 la température ;

3 sur 6 16/01/2023 23:16

Exercice 2:

- 1. Compléter la matrice des effets sur le tableau ci-après.
- 2. Calculer une estimation ponctuelle des coefficients du modèle et écrire l'expression complète du modèle.

- 3. Certains effets sont-ils à négliger (justifier)?

 4. Exprimer Y en fonction de X_2 dans le cas d'une dilution de 50%.

 5. Que conseilleriez-vous au technicien afin d'obtenir un courant maximum?

Expériences	Global	X_1	X_2	X_{12}	Passage du courant
1					17%
2					11%
3					64%
4					54%

16/01/2023 23:16 4 sur 6

BTS - Equations Différentielles et plans d'expériences -DS - C

Exercice 1 : Équations Différentielles (10 points)

On considère deux réactions totales et successives d'ordre 1 dans un milieu homogène. Celles-ci concernent trois produits A, B et C, selon le schéma est le suivant : $A_{[f]} \xrightarrow{k_1} B_{[g]} \xrightarrow{k_2} C_{[h]}$ où f,g et h sont les concentrations relatives des produits A, B et C à l'instant t (en minutes) ($t \geqslant 0$), concentrations que l'on souhaite déterminer en fonction de t. Les conditions initiales sont les suivantes : f(0) = 1, g(0) = 0 et h(0) = 0.

Exercice 1:

- 1. L'étude cinétique permet d'abord d'écrire l'équation différentielle $\begin{cases} (E_1) &: f'(t) + 0.5f(t) = 0 \\ (ci_i) &: f(0) = 1 \end{cases}$
 - \circ Vrai ou faux (pas de justification demandée) : (E_1) est homogène.
 - \circ Déterminer les solutions générales de (E_1) .
 - \circ Déterminer la solution f qui vérifie la condition initiale (ci_1) .
- 2. L'étude cinétique permet ensuite d'écrire l'équation (E_2) vérifiée par g : $\begin{cases} (E_2) & : & g'(t) + g(t) = 0, 5\mathrm{e}^{-0,5t} \\ (ci_2) & : & g(0) = 0 \end{cases}$

On veut vérifier que $g(t)=\mathrm{e}^{-0.5t}-\mathrm{e}^{-t}$ est solution de (E_2) . Pour cela :

- \circ Calculer g(0)
- \circ Calculer g'(t) pour tout t.
- \circ Simplifier l'expression g'(t) + g(t) et conclure.
- 3. D'après le principe de conservation de la matière, on a, pour tout nombre réel t positif :

$$f(t)+g(t)+h(t)=f(0)+g(0)+h(0).$$
 Exprimer alors $h(t)$ en fonction de t .

4. En remarquant que $g'(t) = e^{-0.5t} \left(-0.5 + e^{-0.5t} \right)$,, déterminer l'instant t pour lequel g atteint un maximum.

Exercice 2 : Plans d'Expérience (10 points)

Niveaux

Niveau Dilution		Température	Surface	
-1	10%	50°C	5cm²	
1	90%	80°C	10cm²	

Un technicien étudie le courant d'électrolyse traversant une cellule contenant une solution d'un électrolyte donné.

Il souhaite optimiser ce courant en faisant varier trois facteurs :

- la dilution de la solution, comprise entre 10% et 90%;
- la température de la solution, comprise entre 50°C et 80°C;
- la surface de l'électrode comprise entre 5 et 10 cm²;

pour cela, il va réaliser un plan d'expérience 2³, sans tenir compte des interactions, construit selon l'algorithme de Yates.

résultats des expériences

Expérience	Dilution	Température	Surface	Courant
1	10%	50°C	5cm ²	15%
2	90%	50°C	5cm ²	9%
3	10%	80°C	5cm ²	61%
4	90%	80°C	5cm ²	49%
5	10%	50°C	10cm ²	17%
6	90%	50°C	10cm ²	11%
7	10%	80°C	10cm ²	64%
8	90%	80°C	10cm ²	54%

5 sur 6 16/01/2023 23:16

Le courant traversant le circuit est ensuite mesuré et est exprimé par le rapport de ce courant à un courant servant de référence, ce qui permet de l'exprimer en pourcentage. Cette valeur Y est modélisée par une expression de la forme :

 $Y=a_0+a_1X_1+a_2X_2+a_3X_3+arepsilon$ où l'on ne tient pas compte des interactions.

- arepsilon est une variable aléatoire qui suit une loi normale de moyenne nulle. Elle sera ignorée dans les calculs.
 - X_1 représente la dilution ; X_2 la température ; X_3 la surface de l'électrode ;

Exercice 2:

- 1. Compléter la matrice des effets sur le tableau ci-après.
- 2. Calculer une estimation ponctuelle des coefficients du modèle et écrire l'expression complète du modèle.
- 3. Certains effets sont-ils à négliger (justifier)?
- 4. Exprimer Y en fonction de $\widetilde{X_2}$ dans le cas d'une dilution de 50%.
- 5. Que conseilleriez-vous au technicien afin d'obtenir un courant maximum?

Expériences	X_1	X_2	X_3	Passage du courant
1				15%
2				9%
3				61%
4				49%
5				17%
6				11%
7				64%
8				54%

6 sur 6 16/01/2023 23:16