

Universidad Nacional de Tres de Febrero UNTREF

Ingeniería de Sonido

Formulario y estándar de ecuaciones de uso normal en Acústica

Realizado por los docentes de la carrera de Ingeniera de Sonido:

Ing. Alejandro Bidondo

Ing. Joaquín Mansilla

Ing. Florent Masson

Ing. Francisco Ruffa

Ing. German Said

Doc. Shin-Ichi Sato

Formulario de ecuaciones

Indice

INDICE		2
1 ECUACIO	ONES MATEMÁTICAS	3
1.1 ARITMÉ	IÉTICA Y ALGEBRA	3
	NOMETRÍA	
1.3 DERIVA	ADAS E INTEGRALES	7
1.3.1	Derivadas	7
1.3.2	Integrales	8
1.4 FUNCIO	ONES CLÁSICAS	RCADOR NO DEFINIDO.
2 UNIDADE	ES	14
3 ECUACIO	ONES DE LA ACÚSTICA	15
3.1 FORMU	ULAS Y PARÁMETROS GENERALES	15
3.2 Parám	METROS DE LA ACÚSTICA ARQUITECTÓNICA	16
3.3 Parám	METROS DE ANDO	17
3.4 TIEMPO	OS DE REVERBERACIÓN ESTÁNDARES	18
3.5 FORMU	ULAS Y PARÁMETROS DE LA ACÚSTICA AMBIENTAL	19
BIBLIOGRAFIA	jERROR! MARCAI	OOR NO DEFINIDO.
ANEXO 1. FAC	CTORES DE CONVERSIÓN DE UNIDADES INGLESAS AL SISTEMA SI	21
ANEXO 2. PERF	FILES NC Y RC – VALORES RECOMENDADAS	22

Ecuaciones matemáticas

1.1 Aritmética y Algebra

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$a^2 - b^2 = (a-b)(a+b)$$

$$a^3 - b^3 = (a-b)(a^2 + ab + b^2)$$

$$a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \dots + b^{n-1})$$
Para n imper: $a^n + b^n = (a+b)(a^{n-1} - a^{n-2}b + a^{n-3}b^2 - \dots - b^{n-1})$

Para n par: $a^n - b^n = (a + b)(a^{n-1} - a^{n-2}b + a^{n-3}b^2 - ... + b^{n-1})$

Fórmula del binomio de Newton:

$$(a+b)^n = a^n + n \, a^{n-1}b + \frac{n(n-1)}{1 \cdot 2} \, a^{n-2}b^2 + \frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} \, a^{n-3}b^3 + \dots + b^n$$

Los coeficientes del binomio so:, los números combinatorios $\binom{n}{p}$:

$$\binom{n}{1} = n, \binom{n}{2} = \frac{n(n-1)}{2!}, \binom{n}{3} = \frac{n(n-1)(n-2)}{3!}, \dots,$$

$$\binom{n}{p} = \frac{n(n-1)(n-2)\dots(n-p+1)}{p!}$$

siendo $p! = 1 \times 2 \times 3 \times ... \times p$, llamado factorial de p.

Por convención es 0! = 1.

Propiedades de los números combinatorios:

$$\binom{n}{p} = \binom{n}{n-p}; \quad \binom{n}{n} = \binom{n}{0} = 1; \quad \binom{n}{1} = \binom{n}{n-1} = n;$$

$$\binom{n+1}{p+1} = \binom{n}{p+1} + \binom{n}{p} = \binom{n}{p} + \binom{n-1}{p} + \binom{n-2}{p} + \dots + \binom{p}{p}$$

Logaritmos:

$$\log_a b = c$$
 si $a^c = b$.

Logaritmos decimales: a = 10 y se escriben $\log b$.

Logaritmos neperienos o naturales: a = e y se escriben ln b.

Formulario de ecuaciones

Fórmulas de transformación:

$$\log b = \ln b \times M;$$

$$\ln b = \log b \times \frac{1}{M}$$

siendo
$$M = 0,434294..., \frac{1}{M} = 2,302585...$$

Progresiones aritméticas:

$$a, a+d, a+2d, \ldots, a+(n-1)d=l.$$

Suma:
$$S = \frac{1}{2}(a + l)n$$
.

Progresiones geométricas:

$$a, aq, aq^2, \ldots, aq^{n-1} = l.$$

Suma:
$$S = a \frac{q^n - 1}{q - 1} = a \frac{1 - q^n}{1 - q}$$

Series finitas:

$$1+2+\ldots+n=\frac{1}{2}n(n+1)$$

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{1}{6}n(n+1)(2n+1)$$

$$1^3 + 2^3 + \ldots + n^3 = \frac{1}{4}n^2 (n+1)^2$$

1.2 Trigonometría

Relaciones fundamentales:

$$sen^2 \alpha + cos^2 \alpha = 1$$
 $sen \alpha : cos \alpha = tg \alpha$ $cos \alpha : sen \alpha = cotg \alpha$

$$\sec\alpha=1:\cos\alpha$$

$$cosec \alpha = 1 : sen \alpha$$

$$\sin\alpha = \sqrt{1-\cos^2\alpha} = \frac{\operatorname{tg}\alpha}{\sqrt{1+\operatorname{tg}^2\alpha}} \cdot \cos\alpha = \sqrt{1-\sin^2\alpha} = \frac{1}{\sqrt{1+\operatorname{tg}^2\alpha}}$$

Fórmulas de adición:

$$sen (\alpha \pm \beta) = sen \alpha \cos \beta \pm sen \beta \cos \alpha$$

$$\cos{(\alpha\pm\beta)}=\cos{\alpha}\,\cos{\beta}\mp\sin{\alpha}\,\sin{\beta}$$

$$tg (\alpha \pm \beta) = \frac{tg \alpha \pm tg \beta}{1 \mp tg \alpha tg \beta}$$

Formulario de ecuaciones

sen
$$\alpha + \sin \beta = 2 \sin \frac{1}{2} (\alpha + \beta) \cos \frac{1}{2} (\alpha - \beta)$$

sen
$$\alpha - \sin \beta = 2 \sin \frac{1}{2} (\alpha - \beta) \cos \frac{1}{2} (\alpha + \beta)$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{1}{2} (\alpha + \beta) \cos \frac{1}{2} (\alpha - \beta)$$

$$\cos \alpha - \cos \beta = -2 \operatorname{sen} \frac{1}{2} (\alpha + \beta) \operatorname{sen} \frac{1}{2} (\alpha - \beta)$$

sen
$$\alpha$$
 sen $\beta = \frac{1}{2} [\cos (\alpha - \beta) - \cos (\alpha + \beta)]$

sen
$$\alpha \cos \beta = \frac{1}{2} \left[\text{sen} (\alpha + \beta) + \text{sen} (\alpha - \beta) \right]$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos (\alpha + \beta) + \cos (\alpha - \beta)]$$

Funciones de los múltiplos y submúltiplos de un ángulo:

$$\sin 2 \alpha = 2 \sin \alpha \cos \alpha$$
 $\sin \alpha = 2 \sin \frac{1}{2} \alpha \cos \frac{1}{2} \alpha$

$$\cos 2 \alpha = \cos^2 \alpha - \sin^2 \alpha = 2 \cos^2 \alpha - 1 = 1 - 2 \sin^2 \alpha$$

$$\cos \alpha = \cos^2 \frac{1}{2} \alpha - \sin^2 \frac{1}{2} \alpha = 2 \cos^2 \frac{1}{2} \alpha - 1 = 1 - 2 \sin^2 \frac{1}{2} \alpha$$

$$sen^2 \alpha = \frac{1}{2} (1 - \cos 2 \alpha)$$
 $cos^2 \alpha = \frac{1}{2} (1 + \cos 2 \alpha)$

$$tg \frac{1}{2}\alpha = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}; \quad tg 2\alpha = \frac{2 tg \alpha}{1 - tg^2 \alpha}; \quad tg \alpha = \frac{2 tg \frac{1}{2}\alpha}{1 - tg^2 \frac{1}{2}\alpha}$$

Funciones circulares inversas:

$$\arcsin x = \arccos \sqrt{1-x^2} = \frac{1}{2}\pi - \arccos x$$

$$arc \cos x = arc \sin \sqrt{1 - x^2} = \frac{1}{2}\pi - arc \sin x$$

$$\arctan \operatorname{tg} x = \arctan \frac{x}{\sqrt{1+x^2}} = \frac{1}{2}\pi - \operatorname{arc} \operatorname{cotg} x$$

$$\arcsin x \pm \arcsin y = \arcsin \left[x\sqrt{1-y^2} \pm y\sqrt{1-x^2}\right]$$

$$arc \cos x \pm arc \cos y = arc \cos \left[xy \mp \sqrt{(1-x^2)(1-y^2)}\right]$$

$$arc tg x \pm arc tg y = arc tg \frac{x \pm y}{1 \mp xy}$$

$$arc sen (-x) = -arc sen x$$

$$arc cos (-x) = \pi - arc cos x$$

$$arc tg (-x) = -arc tg x$$
.

Ecuaciones de Euler:
$$cos(a) = \frac{e^{ja} + e^{-ja}}{2}$$
 $sin(a) = \frac{e^{ja} - e^{-ja}}{2j}$

Formulario de ecuaciones

Resolución de Triángulos:

Ley de los senos
$$\sin \alpha \sin \beta \sin \alpha$$

$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \theta}{c}$$

Ley de los cosenos
$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

Circulo Trigonométrico

$$\sin a = \frac{\overline{BD}}{\overline{OB}} = \frac{\overline{BD}}{r} = \frac{\overline{BD}}{1} = \overline{BD}$$

$$\cos a = \frac{\overline{OD}}{\overline{OB}} = \frac{\overline{OD}}{r} = \frac{\overline{OD}}{1} = \overline{OD}$$

$$\tan a = \frac{\overline{BD}}{\overline{OD}} = \frac{\overline{TC}}{\overline{OC}} = \frac{\overline{TC}}{r} = \frac{\overline{TC}}{1} = \overline{TC}$$

$$\csc a = \frac{\overline{OB}}{\overline{BD}} = \frac{\overline{OR}}{\overline{RS}} = \frac{\overline{OR}}{\overline{OA}} = \frac{\overline{OR}}{r} = \frac{\overline{OR}}{1} = \overline{OR}$$

$$\sec a = \frac{\overline{OB}}{\overline{OD}} = \frac{\overline{OT}}{\overline{OC}} = \frac{\overline{OT}}{r} = \frac{\overline{OT}}{1} = \overline{OT}$$

$$\cot a = \frac{\overline{OD}}{\overline{RD}} = \frac{\overline{OS}}{\overline{RS}} = \frac{\overline{AR}}{\overline{OA}} = \frac{\overline{AR}}{r} = \frac{\overline{AR}}{1} = \overline{AR}$$

1.3 Derivadas e integrales

1.3.1 Derivadas

La letra D significa derivada respecto de x; se considera u como función de x; u' indica la derivada de u respecto de x.

1.
$$D(G) = 0$$
.

2.
$$Dx = 1$$
.

3.
$$D u^n = n u^{n-1} u'$$

3.
$$Du^n = nu^{n-1}u'$$
. 4. $D\frac{1}{u^n} = -\frac{u'}{u^{n+1}}$

$$5. \quad D\sqrt{u} = \frac{1}{2} \frac{u'}{\sqrt{u}}.$$

5.
$$D\sqrt{u} = \frac{u'}{\sqrt{u}}$$
 6. $D(u+v-w) = u'+v'-w'$.

7.
$$D(u \cdot v) = u'v + uv'.$$

7.
$$D(u \cdot v) = u'v + uv'$$
. 8. $D\left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2}$.

9.
$$D(\ln u) = \frac{u'}{u}$$

9.
$$D(\ln u) = \frac{u'}{u}$$
 10. $D(\log_a u) = \frac{u'}{u} \log_a e$.

11.
$$D \operatorname{sen} u = \cos u \cdot u'$$
.

12.
$$D \cos u = - \sin u \cdot u'$$
.

13.
$$D \operatorname{tg} u = \operatorname{sec}^2 u \cdot u'$$
.

14.
$$D \cot u = - \csc^2 u \cdot u'$$
.

15.
$$D \sec u = \sec u \cdot \operatorname{tg} u \cdot u'$$

15.
$$D \sec u = \sec u \cdot \operatorname{tg} u \cdot u'$$
. 16. $D \csc u = -\csc u \cdot \cot u \cdot u'$.

17.
$$D \operatorname{Sh} u = \operatorname{Ch} u \cdot u'$$
.

18.
$$D \operatorname{Ch} u = \operatorname{Sh} u \cdot u'$$
.

19.
$$D \operatorname{Th} u = \operatorname{Sech}^2 u \cdot u'$$
.

20.
$$D \operatorname{Cth} u = - \operatorname{Csch}^2 u \cdot u'$$
.

21.
$$D \operatorname{Sech} u = - \operatorname{Sech} u \cdot \operatorname{Th} u \cdot u'$$
.

22.
$$D \operatorname{Csch} u = - \operatorname{Csch} u \cdot \operatorname{Cth} u \cdot u'$$
.

23.
$$D e^u = e^u u'$$
.

$$D a^{u} = a^{u} \cdot u' \ln a$$

$$25. \quad D \operatorname{arc sen} u = \frac{u'}{\sqrt{1 - u^2}}.$$

25.
$$D \operatorname{arc sen} u = \frac{u'}{\sqrt{1 - u^2}}$$
 26. $D \operatorname{arc cos} u = -\frac{u'}{\sqrt{1 - u^2}}$

27.
$$D \arctan u = \frac{u'}{1 + u^2}$$

$$28. \quad D \operatorname{arc cotg} u = -\frac{u}{1 + u^2}$$

29.
$$D \operatorname{arc} \sec u = \frac{u'}{u\sqrt{u^2 - 1}}$$

27.
$$D \operatorname{arc} \operatorname{tg} u = \frac{u'}{1 + u^2}$$
 28. $D \operatorname{arc} \operatorname{cotg} u = -\frac{u'}{1 + u^2}$ 29. $D \operatorname{arc} \operatorname{sec} u = \frac{u'}{u\sqrt{u^2 - 1}}$ 30. $D \operatorname{arc} \operatorname{cosec} u = -\frac{u'}{u\sqrt{u^2 - 1}}$

31.
$$D \operatorname{Arg} \operatorname{Sh} u = \frac{u'}{\sqrt{u^2 + 1}}$$
 32. $D \operatorname{Arg} \operatorname{Ch} u = \frac{u'}{\sqrt{u^2 - 1}}$

32.
$$D \operatorname{Arg} \operatorname{Ch} u = \frac{u'}{\sqrt{u^2 - 1}}$$

33.
$$D \text{ Arg Th } u = \frac{u'}{1 - u^2}$$
 34. $D \text{ Arg Cth } u = \frac{u'}{1 - u^2}$

34.
$$D \operatorname{Arg} \operatorname{Cth} u = \frac{u'}{1 - u^2}$$

35.
$$D \text{ Arg Sech } u = -\frac{u'}{u\sqrt{1-u^2}}$$

36.
$$D \operatorname{Arg} \operatorname{Csch} u = -\frac{u'}{u\sqrt{1+u^2}}$$

Formulario de ecuaciones

1.3.2 Integrales

1.
$$\int dx = x.$$

2.
$$\int a f(x) dx = a \int f(x) dx.$$

3.
$$\int (u+v-w) dx = \int u dx + \int v dx - \int w dx$$
.

4.
$$\int x^m dx = \frac{x^{m+1}}{m+1}.$$
 5.
$$\int (ax+b)^m dx = \frac{(ax+b)^{m+1}}{a(m+1)}.$$

$$6. \quad \int \frac{dx}{x} = \ln x.$$

6.
$$\int \frac{dx}{x} = \ln x.$$
 7.
$$\int \frac{dx}{ax+b} = \frac{1}{a} \ln (ax+b).$$

8.
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \operatorname{arc} \operatorname{tg} \frac{x}{a}$$

Sean $P = a x^2 + b x + c$ y $\Delta = b^2 - 4 a c$, entonces:

10.
$$\int \frac{dx}{P} = \frac{1}{\sqrt{\Delta}} \ln \frac{2ax + b - \sqrt{\Delta}}{2ax + b + \sqrt{\Delta}} \qquad \text{si} \qquad \Delta > 0$$

$$= \frac{2}{\sqrt{-\Delta}} \arctan \operatorname{tg} \frac{2ax + b}{\sqrt{-\Delta}} \qquad \text{si} \qquad \Delta < 0$$

12.
$$\int \sqrt{x^2 \pm a^2} \, dx = \frac{1}{2} \left[x \sqrt{x^2 \pm a^2} \pm a^2 \ln \left(x + \sqrt{x^2 \pm a^2} \right) \right]$$
$$= \frac{1}{2} \left[x \sqrt{x^2 \pm a^2} \pm a^2 \operatorname{Arg Sh} \frac{x}{a} \right] + c'.$$

13.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{1}{2} \left[x \sqrt{a^2 - x^2} + a^2 \arcsin \frac{x}{a} \right].$$

14.
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \operatorname{Arg Sh} \frac{x}{a} = \ln (x + \sqrt{x^2 + a^2}).$$

15.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \text{Arg Ch } \frac{x}{a} = \ln (x + \sqrt{x^2 - a^2}).$$

16.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}.$$

Formulario de ecuaciones

17.
$$\int \frac{dx}{\sqrt{p}} = \frac{1}{\sqrt{a}} \ln \left[\sqrt{p} + \frac{2ax + b}{2\sqrt{a}} \right]$$
 si $a > 0$.

$$= -\frac{1}{\sqrt{-a}} \arcsin \frac{2ax + b}{\sqrt{\Delta}} \qquad \text{si } a < 0.$$

18.
$$\int \sqrt{P} \, dx = \frac{(2ax+b)\sqrt{P}}{4a} - \frac{\Delta}{8a} \int \frac{dx}{\sqrt{P}}.$$

19.
$$\int \ln x \, dx = x \, (\ln x - 1)$$
.

20.
$$\int x^n \ln x \, dx = x^{n+1} \left[\frac{\ln x}{n+1} - \frac{1}{(n+1)^2} \right].$$

21.
$$\int e^x dx = e^x.$$
 22.
$$\int a^x dx = \frac{a^0}{\ln a}$$

23.
$$\int xe^{ax} dx = \frac{e^{ax}}{a^2} (ax - 1).$$

24.
$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx.$$

25.
$$\int \sin x \, dx = -\cos x.$$

26.
$$\int \sin^2 x \, dx = \frac{1}{2} (x - \sin x \cos x).$$

Si n es impar, igual a 2k + 1, conviene escribir $sen^n x dx = sen^{2k} x \cdot sen x dx = -(1 - cos^2 x)^k d(cos x)$.

$$28. \quad \int \cos x \, dx = \sin x.$$

29.
$$\int \cos^2 x \, dx = \frac{1}{2} (x + \sin x \cos x).$$

Si n es impar, igual a 2k+1, conviene escribir $\cos^n x \, dx = \cos^{2k} x \cdot \cos x \, dx = (1 - \sin^2 x)^k \, d(\sin x)$.

Formulario de ecuaciones

32.
$$\int \sin^n x \cos^m x \, dx = \frac{\sin^{n+1} x \cos^{m-1} x}{m+n} + \frac{m-1}{m+n} \int \sin^n x \cos^{m-2} x \, dx.$$

34.
$$\int \frac{\sin^n x}{\cos^n x} dx = - \frac{\sin^{n-1} x}{(n-m)\cos^{m-1} x} + \frac{n-1}{n-m} \int \frac{\sin^{n-2} x}{\cos^m x} dx =$$

$$= \frac{\sin^{n+1} x}{(m-1)\cos^{m-1} x} - \frac{n-m+2}{m-1} \int_{-\infty}^{\infty} \frac{\sin^n x}{\cos^{m-2} x} dx = \frac{1}{m-1} \int_{-\infty}^{\infty} \frac{\sin^n x}$$

$$= \frac{\sin^{n-1} x}{(m-1)\cos^{m-1} x} - \frac{n-1}{m-1} \int \frac{\sin^{n-2} x}{\cos^{m-2} x} dx.$$

$$= \frac{\cos^{m-1} x}{(m-n) \, \sin^{n-1} x} + \frac{m-1}{m-n} \int_{-\infty}^{\infty} \frac{\cos^{m-2} x}{\sin^n x} \, dx =$$

$$= -\frac{\cos^{m-1}x}{(n-1)\, {\rm sen}^{n-1}\, x} - \frac{m-1}{n-1} \int \frac{\cos^{m-2}x}{{\rm sen}^{n-2}\, x}\, dx.$$

$$\Im v. \quad \int \operatorname{tg} x \, dx = -\ln \cos x.$$

Si n es impar, igual a 2k + 1, conviene escribir $tg^n dx = tg^{2k} x tg x dx = (sec^2 x - 1)^k tg x dx$.

38.
$$\int \cot g \, x \, dx = \ln \, \sin x.$$

39.
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1}$$
 $\int \cot^{n-2} x \, dx$.

Si n es impar, igual a 2k + 1, conviene escribir $\cot g^n x \, dx = \cot g^{2k} x \cot g \, x \, dx = (\csc^2 x - 1)^k \cot x \, dx$.

Formulario de ecuaciones

40.
$$\int_{-\infty}^{\infty} \sec x \, dx = \int_{-\infty}^{\infty} \frac{dx}{\cos x} = \ln(\sec x + \lg x) = \ln\lg\left(\frac{x}{2} + \frac{\pi}{4}\right)$$

41.
$$\int \sec^2 x \, dx = \operatorname{tg} x.$$

42.
$$\int \sec^n x \, dx = \int \frac{dx}{\cos^n x} = \frac{\sin x}{(n-1)\cos^{n-1} x} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx.$$

Si *n* es *par*, igual a 2k, conviene escribir $\sec^n x \, dx = \sec^2(k-1) x \sec^2 x \, dx = (\tan^2 x + 1)^{k-1} \, d(\tan x)$.

43.
$$\int \csc x \, dx = \int \frac{dx}{\sin x} = \ln(\csc x - \cot x) = \ln tg \frac{1}{2} x.$$

$$44. \quad \int \csc^2 x \, dx = -\cot x.$$

Si n es par, igual a 2k, conviene escribir $\csc^n x \, dx = \\ = \csc^2(k-1) x \csc^2 x \, dx = -(\cot^2 x + 1)^{k-1} d(\cot x).$

46.
$$\int x \sin x \, dx = \sin x - x \cos x.$$

47.
$$\int x \cos x \, dx = \cos x + x \sin x.$$

48.
$$\int \operatorname{sen} mx \operatorname{sen} nx \, dx = \frac{1}{2} \frac{\operatorname{sen} (m-n) x}{m-n} = \frac{1}{2} \frac{\operatorname{sen} (m+n) x}{m+n}.$$

49.
$$\int \sin mx \cos nx \, dx = -\frac{1}{2} \frac{\cos (m-n) x}{m-n} - \frac{1}{2} \frac{\cos (m+n) x}{m+n}.$$

50.
$$\int \cos mx \cos nx \, dx = \frac{1}{2} \frac{\sin (m+n) x}{m+n} + \frac{1}{2} \frac{\sin (m-n) x}{m-n}.$$

51
$$\int e^{ax} \operatorname{sen} mx \, dx = \frac{e^{ax} \left(a \operatorname{sen} mx - m \cos mx \right)}{a^2 + m^2}$$

53.
$$\int \operatorname{arc} \operatorname{sen} x \, dx = x \operatorname{arc} \operatorname{sen} x + \sqrt{1 - x^2}.$$

Formulario de ecuaciones

54.
$$\int \arccos x \, dx = x \arccos x - \sqrt{1 - x^2}.$$

55.
$$\int \operatorname{arc} \operatorname{tg} x \, dx = x \operatorname{arc} \operatorname{tg} x - \ln \sqrt{1 + x^2}.$$

56.
$$\int \operatorname{Sh} x \, dx = \operatorname{Ch} x.$$

56.
$$\int \operatorname{Sh} x \, dx = \operatorname{Ch} x.$$
 57.
$$\int \operatorname{Ch} x \, dx = \operatorname{Sh} x.$$

58.
$$\int \text{Sh}^2 x \, dx = \frac{1}{2} \left(\text{Sh} \, x \, \text{Ch} \, x - x \right).$$

59.
$$\int Sh^{n} x \, dx = \frac{Sh^{n-1} x Ch x}{n} - \frac{n-1}{n} \int Sh^{n-2} x \, dx.$$

60.
$$\int \text{Ch}^2 x \, dx = \frac{1}{2} \, (\text{Sh } x \, \text{Ch } x + x).$$

62.
$$\int \operatorname{Th} x \, dx = \ln \operatorname{Ch} x.$$

62.
$$\int \operatorname{Th} x \, dx = \ln \operatorname{Ch} x.$$
 63.
$$\int \operatorname{Th}^2 x \, dx = x - \operatorname{Th} x.$$

64.
$$\int \operatorname{Cth} x \, dx = \ln \operatorname{Sh} x.$$

64.
$$\int \operatorname{Cth} x \, dx = \ln \operatorname{Sh} x.$$
 65.
$$\int \operatorname{Cth}^2 x \, dx = x - \operatorname{Cth} x.$$

66.
$$\int \operatorname{Sech} x \, dx = \int \frac{dx}{\operatorname{Ch} x} = \operatorname{arc} \operatorname{tg} \left(\operatorname{Sh} x \right) = \operatorname{gd} x.$$

67.
$$\int \operatorname{Csch} x \, dx = \int \frac{dx}{\operatorname{Sh} x} = \operatorname{In} \operatorname{Th} \frac{1}{2} x.$$

68.
$$\int \operatorname{Sech}^2 x \, dx = \operatorname{Th} x.$$

68.
$$\int \operatorname{Sech}^2 x \, dx = \operatorname{Th} x.$$
 69.
$$\int \operatorname{Csch}^2 x \, dx = -\operatorname{Cth} x.$$

71.
$$\int \text{Sh } mx \text{ Ch } nx \, dx = \frac{1}{2} \frac{\text{Ch } (m+n) x}{m+n} + \frac{1}{2} \frac{\text{Ch } (m-n) x}{m-n}.$$

Formulario de ecuaciones

73.
$$\int \operatorname{Arg} \operatorname{Sh} x \, dx = x \operatorname{Arg} \operatorname{Sh} x - \sqrt{1 + x^2}.$$

74.
$$\int \operatorname{Arg} \operatorname{Ch} x \, dx = x \operatorname{Arg} \operatorname{Ch} x - \sqrt{x^2 - 1}.$$

75.
$$\int \operatorname{Arg} \operatorname{Th} x \, dx = x \operatorname{Arg} \operatorname{Th} x + \ln \sqrt{1 - x^2}.$$

76.
$$\int x^{m} (a + bx^{n})^{p} dx = \frac{x^{m-n+1} (a + bx^{n})^{p+1}}{b(pn+m+1)} - \frac{a(m-n+1)}{b(pn+m+1)} \int x^{m-n} (a + bx^{n})^{p} dx = \frac{x^{m+1} (a + bx^{n})^{p}}{pn+m+1} + \dots$$

$$+\frac{apn}{pn+m+1}\int_{a}^{b}x^{m}(a+bx^{n})^{p-1}dx.$$

77.
$$\int \frac{dx}{x^m (a+bx^n)^p} = -\frac{1}{a(m-1)x^{m-1} (a+bx^n)^{p-1}} - \frac{b(m-n+pn-1)}{a(m-1)} \int \frac{dx}{x^{m-n} (a+bx^n)^p} =$$

$$= \frac{1}{an(p-1)x^{m-1}(a+bx^n)^{p-1}} +$$

$$+\frac{m-n+pn-1}{an(p-1)}\int \frac{dx}{x^m(a+bx^n)^{p-1}}.$$

78.
$$\int \frac{x^m dx}{(a+bx^n)^p} = \frac{x^{m-n+1}}{b(m-pn+1)(a+bx^n)^{p-1}} -$$

$$-\frac{a(m-n+1)}{b(m-np+1)} \int \frac{x^{m-n} dx}{(a+bx^n)^p} =$$

$$=\frac{x^{m+1}}{an(p-1)(a+bx^n)^{p-1}}$$

$$-\frac{m+n-pn+1}{an(p-1)} \int \frac{x^m \, dx}{(a+bx^n)^{p-1}}$$

Formulario de ecuaciones

2 Unidades

Las unidades vienen del sistema internacional (SI).

Los valores numéricos siempre preceden las unidades. Un espacio siempre se utiliza para separar la unidad del número.

Ejemplo:

Se midió un nivel de 76dB.

Se midió un nivel de 76 dB.

Se midió un nivel de 76 db.

Se midió un nivel de 76 dB. → Es la única buena forma de escribir el conjunto numero / unidad.

SI unidad	Descripción	Nota
m	Metro	
kg	Kilogramo	
S	Segundo	
min	Minuto	
h	Horas	
Hz	Hertz o hertzio	"H" se escribe en letra capital
kHz	Kilohertz	"k" se escribe en minúscula
dB	Debibel	"B" en letra capital
dBA	Decibel A	"A" no se pone entre paréntesis
°C	Grados Celsius	
K	Grados Kelvin	
m ²	Metro cuadrado	"2" es un superíndice.
m ³	Metro cubico	"3" es un superíndice.
Pa	Pascales	Se utiliza para la unidad de presión
W	Watt o vatio	Se utiliza para informar la potencia
W/m ²	Intensidad	
%	Porcentaje	En el Sistema Internacional se debe deja un espacio entre la unidad y el numero cuando en ingles común se considera que no se deja espacio.

3 Ecuaciones de la Acústica

3.1 Formulas y parámetros generales

Descripción	Parámetro Unidad	Fórmula	Notas
Decibel	dB	$dB = 10\log_{10}\left(\frac{p_1}{p_2}\right)$	Es la principal unidad logarítmica de medición utilizada en acústica y sonido. Esta unidad equivale a la décima parte del Bel y expresa la relación existente entre dos valores cualesquiera, p ₁ y p ₂ .
Presión sonora eficaz	Pa	$p_{ef} = \sqrt{\frac{1}{T} \int_0^T p^2(t) dt}$	
Nivel de presión sonora	L _p	$L_p = 10\log_{10}\left(\frac{p_{ef}}{p_o}\right)^2$	p_{ef} es la presión sonora eficaz en pascal p_o es igual a 20 μPa
Nivel de presión sonora ponderado A	L _{pA} dBA	$L_{pA} = 10\log_{10}\left(\frac{p_{efA}}{p_o}\right)^2$	p_A es la presión sonora eficaz ponderada A en pascal
Nivel de potencia	L _w	$L_{w} = 10\log_{10}\left(\frac{W}{W_{o}}\right)$	W₀ es la potencia de referencia igual a 10 ⁻¹² W
Nivel de intensidad	L _i dB	$L_{i} = 10\log_{10}\left(\frac{I}{I_{o}}\right)$	I _o es la mínima intensidad que el oído humano puede percibir = 10 ⁻¹² W/m ²
Relación de frecuencia central a frecuencia central anterior	F _{o,k} Hz	$f_{o,k} = 2^{\frac{1}{n}} \times f_{o,k-1}$	Siendo f _{ok} la frecuencia central k de la octava o fracción de octava n.
Relación de frecuencia superior a frecuencia inferior	F _{s,k} Hz	$f_{s,k} = 2^{\frac{1}{n}} \times f_{i,k}$	Siendo $f_{s,k}$ la frecuencia superior k de la octava o fracción de octava n y $f_{i,k}$ la inferior.
Relación de frecuencia superior a frecuencia central	F _{s,k} Hz	$f_{s,k} = 2^{\frac{1}{2n}} \times f_{o,k}$	Siendo $f_{s,k}$ la frecuencia superior k de la octava o fracción de octava n y $f_{o,k}$ la central.
Relación de frecuencia inferior a frecuencia central	F _{i,k} Hz	$f_{_{i,k}}=2^{-\frac{1}{2n}}\times f_{_{o,k}}$	Siendo $f_{i,k}$ la frecuencia inferior k de la octava o fracción de octava n y $f_{o,k}$ la central.
Frecuencia central	F _{i,k} Hz	$f_{o,k} = \sqrt{f_{i,k} \times f_{s,k}}$	Siendo $f_{o,k}$ la frecuencia central k de la octava o fracción de octava n , $f_{i,k}$ la inferior y $f_{s,k}$ la superior.

Formulario de ecuaciones

Ecuación de onda expresada en relación con la presión en el aire		$\nabla^2 p - \frac{1}{c} \frac{\partial^2 p}{\partial t^2} = 0$	Con ∇ el operador laplaciano (derivada del espacio) y c la velocidad del sonido en el aire
Presión sonora de una fuente monopolar	Pa	$p(r) = A \frac{e^{-jkr}}{r}$	Siendo r la distancia a la fuente y A su amplitud
Presión sonora de una fuente plana	Pa	$p(x) = Ae^{-jkx}$	Siendo x la distancia a la fente y A su amplitud
Índice de debilitamiento de una pared	RoTL	$R = 10\log\left[1 + \left(\frac{\pi M_s f}{\rho_0 c}\right)^2\right] = 10\log\left(\frac{W_{incidense}}{W_{transmixda}}\right)$	Siendo M _s la masa por unidad de superficie y f la frecuencia

3.2 Parámetros de la acústica arquitectónica

Descripción	Parámetro	Unidad	Nota
Tiempo de reverberación	Т	s	"T" en cursiva
Tiempo de reverberación	T ₂₀ or T ₃₀	S	"T" en cursiva, "20" o "30" subíndice.
Early decay time	EDT	S	
Sound strength	G	dB	"G"
Early-to-late arriving sound energy ratio	C_{te}	dB	"C" en cursiva. El número early time limit " $t_{\rm e}$ subíndice. C_{80} se llamar usualmente "clarity", claridad
Definición	D ₅₀		"D" en cursiva. "50" subíndice.
Tiempo central	$T_{\rm s}$	ms	"T" en cursiva. "s" subíndice.
Early lateral energy fraction	LF		Medido con un micrófono de figura de ocho.
Early lateral energy fraction	LFC		Con contribución que varía como el cosenos del ángulo.
Late lateral sound level	LG	dB	
Inter-aural cross correlation coefficients	IACC		Cross-correlación interaural
Early support	ST _{Early}	dB	"Early" subíndice. "E" en letra capital.
Late support ST _{Late} dB "Late" subíndice. "L" en let		"Late" subíndice. "L" en letra capital.	

Formulario de ecuaciones

3.3 Parámetros de Ando

Unidad	Descripción	Nota
dBA	Listening level	
ms	Initial time delay gap between the direct sound and the first reflection	Delta is "D" in Greek alphabet in a capital letter. "1" is a subscript.
s	Subsequent reverberation time	"sub" is a subscript. Defined by the decay rate to decrease to 60 dB just after early reflections.
	Magnitude of the interaural cross-correlation function	
ms	Effective duration of the autocorrelation function	Tau is "t" in Greek alphabet in a lowercase letter. "e" is a subscript.
ms	Minimum value of τ _e obtained by analyzing the running autocorrelation function on a segment of source signal 2T (s).	Tau is "t" in Greek alphabet in a lowercase letter. "e" and "min" are subscript. The integration interval 2T should be described.
ms	Delay time of the first peak in the autocorrelation function	Tau is "t" in Greek alphabet in a lowercase letter. "1" is subscript.
	Amplitude at the first peak at the delay τ ₁ in autocorrelation function,	Phi is "f" in Greek alphabet in a lowercase letter. "1" is a subscript.
dBA	Sound energy given by the time origin of the autocorrelation function	Phi is "F" in Greek alphabet in a capital letter.
ms	Width of amplitude f(τ), around the origin of the delay time	Phi is "F" in Greek alphabet in a capital letter. "F(0)" is a subscript.
ms	Width of the interaural cross-correlation function at TIACC	"IACC" is a subscript.
ms	Interaural delay time	Tau is "t" in Greek alphabet in a lowercase letter. "IACC" is a subscript.
	ms s ms ms dBA ms ms	Initial time delay gap between the direct sound and the first reflection Subsequent reverberation time Magnitude of the interaural cross-correlation function Effective duration of the autocorrelation function Minimum value of τ _e obtained by analyzing the running autocorrelation function on a segment of source signal 2T (s). Delay time of the first peak in the autocorrelation function Amplitude at the first peak at the delay τ ₁ in autocorrelation function, Sound energy given by the time origin of the autocorrelation function Width of amplitude f(τ), around the origin of the delay time Width of the interaural cross-correlation function at T _{IACC}

Formulario de ecuaciones

3.4 Tiempos de reverberación estándares

Descripción	Parámetro Unidad	Fórmula	Notas
Tiempo de reverberación de Sabine	S	$T = \frac{24}{c\log(\exp)} \frac{V}{\overline{\alpha}S_T} = \frac{0.161 \ V}{A}$	Con V el volumen y A = α S la absorción Sabine en m ²
Tiempo de reverberación de Norris-Eyring	S	$T = \frac{0.161 \ V}{-\ln(1-\overline{\alpha})S_T}$	
Tiempo de reverberación de Eyring-Millington	s	$T = \frac{0.161 V}{-\sum_{j} S_{j} \ln \left[1 - \frac{1}{S_{T}} \sum_{i} S_{i} \alpha_{i}\right]}$	
Tiempo de reverberación de Millington	s	$T = \frac{0.161 V}{-\sum_{i} S_{i} \ln(1 - \alpha_{i})}$	
Tiempo de reverberación de Eyring	s	$T = \frac{0.161 V}{-S_T \ln \left[1 - \frac{1}{S_T} \sum_{i} S_i \alpha_i\right]}$	
Tiempo de reverberación de Fitzroy	s	$T = \sum_{j=x,y,z} \frac{0,161 V}{-\frac{S_T^2}{S_j} \ln(1 - \alpha_j)}$	

Formulario de ecuaciones

3.5 Formulas y parámetros de la acústica ambiental

Descripción	Parámetro Unidad	Fórmula	Notas
Exposición sonora ponderada A	E _{A,T} Pascales ² por segundo (Pa ² .s)	$E_{A,T} = \int_{1}^{2} p_{A}^{2}(t) dt$	$p_{\rm A}({\rm t})$ es la presión sonora instantánea ponderada A de la señal sonora integrada sobre un período T , entre los instantes t_1 y t_2
Nivel sonoro continuo equivalente ponderado A	$L_{Aeq},_{T}$ dBA	$L_{\text{Aeq,T}} = 10 \log_{10} \left[\frac{1}{t_2 - t_1} \int_{1}^{2} \frac{p_{\text{A}}^2(t)}{p_o^2} dt \right]$	t_2-t_1 es el periodo T en el cual se promedia, comenzando en t_1 y terminando en t_2
Nivel sonoro continuo equivalente ponderado A (fórmula práctica)	L _{Aeq} dBA	$L_{Aeq} = 10\log_{10} \frac{1}{T} \sum_{i}^{n} t_{i} \times 10^{\frac{L_{i}}{10}}$	$L_{\rm i}$ es el nivel sonoro presente durante el intervalo de medición $t_{\rm i}$, en dBA T = $\Sigma t_{\rm i}$ es el tiempo total de medición.
Nivel de exposición al ruido referido a una jornada laboral de 8 horas	L _{EX,8h}	$L_{\text{EX,8h}} = L_{\text{Aeq,T}_{c}} + 10\log_{10}\left(\frac{T_{e}}{T_{o}}\right)$	$T_{ m e}$ es la duración efectiva de la jornada laboral $T_{ m o}$ es la duración de referencia (= 8h)
Noise criterion	NC25		Criterios de niveles de ruido (ver anexo 2)
Percentiles de nivel de presión sonora	L _{xx}		Los percentiles pueden tomar cualquier valor entre 0 y 100 Los ejemplos los más comunes son los L ₁₀ , L ₅₀ , L ₉₀ , y L ₉₉
Signal to noise ratio	SNR		Relación señal sobre ruido, generalmente expresada en dB
Time-averaged and frequency-weighted sound pressure level	L _{pAF}		
Maximum time- averaged and frequency- weighted sound pressure level	L _{AFmax}		
Nivel de presión sonora Peak	L _{Cpeak}		
Nivel de exposición sonora	L _{AE}		

Formulario de ecuaciones

Bibliografía

Formulario de ecuaciones

Anexo 1. Factores de conversión de unidades inglesas al sistema SI

Factor de Multiplicación	Para efectuar la conversión de	
2,540	Pulgadas a centimetros	
0,305	Pies a metros	
1,609	Millas a kilómetros	
0,454	Libras a kilógramos	
0,394	Centímetros a pulgadas	
3,281	Metros a pies	
0,621	Kilómetros a millas	
2,204	Kilógrama a libras	

Anexo 2. Perfiles NC y RC - Valores recomendadas

Destino de recinto	Criterio RC recomendado	Criterio NC recomendado
Estudio de grabación	RC10 – 20(N)	NC10 – 20
Salas de concierto	RC15 – 20(N)	NC15 – 20
Estudios de TV y salas de música	RC20 – 25(N)	NC20 – 25
Teatros	RC20 – 25(N)	NC20 – 25
Residencias privadas	RC25 – 30(N)	NC25 - 30
Salas de conferencias	RC25 – 30(N)	NC25 – 30
Aulas, salas de lectura	RC25 – 30(N)	NC25 - 30
Oficinas ejecutivas	RC25 – 30(N)	NC25 – 30
Oficinas privadas	RC30 – 35(N)	NC30 - 35
Iglesias	RC30 – 35(N)	NC30 - 35
Cinematógrafos	RC30 – 35(N)	NC30 – 35
Departamentos, dormitorios de hoteles	RC30 – 35(N)	NC30 – 35
Cortes de Justicia	RC35 – 40(N)	NC35 – 40
Oficinas	RC35 – 40(N)	NC35 – 40
Bibliotecas	RC35 – 40(N)	NC35 – 40
Áreas públicas	RC35 – 40(N)	NC35 – 40
Restaurantes	RC40 – 45(N)	NC40 – 45
Grandes oficinas	RC40 - 45(N)	NC40 - 45

