WUOLAH

S9-maxima.pdfSesión 9 Maxima resuelta

- 1° Cálculo
- Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación Universidad de Granada

¿Quieres Amazon Prime gratis? Entra por nuestro link o QR y consigue **90 días de Prime gratis** y después **50% de descuento.**

Los recomendados de amazon y **WUOLAH**

https://amzn.to/33EbAFJ

EJERCICIOS SESION 9 MÁXIMA RESUELTOS:

1. Sea la función f(x)=1/1+x^2.

a) Considera 21 puntos igualmente distribuidos sobre la gráfica de la función f en el intervalo [−1,1]. Halla el polinomio interpolador de Lagrange que pasa por estos puntos y dibújalo junto a la gráfica de f. Interpreta el resultado y observa si la interpolación es buena.

21 puntos -> 20 trozos

WUOLAH

```
color=red,
points(puntos),
color=dark-green,
explicit(g(x),x,-2,2),
color = blue,
explicit(f(x),x,-2,2),
yrange=[-2,2]
);
```

Vemos que es una buena interpolación ya que ni se nota la diferencia de valor en los puntos dados con la gráfica. Pero más allá de esos puntos, se empieza a distorsionar, algo típico del polinomio Lagrange.

b) Elige ahora los 21 puntos sobre la gráfica de
 la función f en el intervalo [-5,5] y calcula el polinomio de Lagrange que pasa por dichos puntos.
 Interpreta de nuevo el resultado y observa si la interpolación es buena.

```
a:makelist(-5+k/2,k,0,20);

puntos2:makelist([a[i],f(a[i])],i,1,20);

define(p(x),expand(lagrange(puntos2)));
```

Página 2|7

Donde vemos una interpolación buena en la parte central, pero en los extremos se empieza a alejar a f(x), por lo que no es del todo buena la interpolación.

c) Calcula el polinomio interpolador por el método de los splines cúbicos en la situación del apartado anterior y compara el resultado con el polinomio de Lagrange obtenido.

```
define(q(x),cspline(puntos2))$
wxdraw2d(
    point_type=7,
    color=red,
    points(puntos2),
    color=dark-green,
    explicit(p(x),x,-6,6),
```

Página 3 | 7

Master BIM Management

60 Créditos ECTS

Clases Online Prácticas Becas

Ponle nombre a lo que quieres ser

Jose María Girela **Bim Manager.**


```
color = blue,
  explicit(f(x),x,-6,6),
  color = pink,
  explicit(q(x),x,-6,6),
  yrange=[-2,2]
);
```

Vemos que la línea rosa se aleja mucho más a la realidad de la función, por lo que la interpolación es bastante mejor que con lagrange

a)El polinomio de Lagrange que pasa por los cinco primeros naturales.

```
kill (all);

f(x):=log(x);

load(interpol)$

naturales:[[1,f(1)],[2,f(2)],[3,f(3)],[4,f(4)],[5,f(5)]];

define(t(x),expand(lagrange(naturales)));
```

b) El spline cúbico que pasa por dichos puntos.

Dibuja las tres gráficas protagonistas del problema.

define(q(x),cspline(naturales))\$

WUOLAH

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad

(Para ver quien se aproxima mejor haríamos el error entre la función dada y con t(x) o q(x) o también se puede hacer a ojo quien se aproxima más a la realidad.)

```
float(q(%pi));
float(t(%pi));
float(f(%pi)); /*El valor real */
Se aproxima mejor a log de pi lagrange, pero una decena más exacto que
spline. A partir del extremo de la derecha(no existe log negativo) la función de
lagrange se aleja más del
log que el spline cúbico
float(t(%pi));
wxdraw2d(
        point_type=7,
        color=red,
        points(naturales),
        color=dark-green,
        explicit(t(x),x,0,7),
        color = blue,
        explicit(f(x),x,0,7),
        color = pink,
```

Página 6 | 7


```
explicit(q(x),x,0,7),
yrange=[-1,3]
);
```


Página **7 | 7**

