Tehtävä 1. Olkoon $a_0 < a_1 < a_2 < \cdots$ päättymätön jono positiivisia kokonaislukuja. Todista, että on olemassa yksi ja vain yksi kokonaisluku $n \ge 1$, jolle pätee

$$a_n < \frac{a_0 + a_1 + \dots + a_n}{n} \le a_{n+1}.$$

Tehtävä 2. Olkoon $n \geq 2$ kokonaisluku. Tarkastellaan $n \times n$ -šakkilautaa, jonka n^2 yksikköneliötä muodostavat. Kutsutaan n:n laudalla olevan tornin asetelmaa rauhalliseksi, jos laudan jokaisella vaaka- ja pystyrivillä on tasan yksi torni. Määritä suurin sellainen positiivinen kokonaisluku k, jolle jokaista rauhallista n:n tornin asetelmaa kohden on olemassa $k \times k$ -neliö, jonka yhdessäkään sen k^2 :sta yksikköneliöstä ei ole tornia.

Tehtävä 3. Kuperassa nelikulmiossa ABCD on $\angle ABC = \angle CDA = 90^{\circ}$. Piste H on pisteen A kohtisuora projektio suoralla BD. Piste S on sivulla AB ja piste T on sivulla AD niin, että H on kolmion SCT sisällä ja

$$\angle CHS - \angle CSB = 90^{\circ}, \quad \angle THC - \angle DTC = 90^{\circ}.$$

Todista, että suora BD on kolmion TSH ympäri piirretyn ympyrän tangentti.

Tehtävä 4. Pisteet P ja Q ovat teräväkulmaisen kolmion ABC sivulla BC niin, että $\angle PAB = \angle BCA$ ja $\angle CAQ = \angle ABC$. Piste M on suoralla AP ja piste N on suoralla AQ niin, että P on janan AM keskipiste ja Q on janan AN keskipiste. Todista, että suorien BM ja CN leikkauspiste on kolmion ABC ympäri piirretyllä ympyrällä.

Tehtävä 5. Kapkaupungin Pankki laskee liikkeelle kolikkoja, joiden arvo on $\frac{1}{n}$, kaikilla positiivisilla kokonaisluvuilla n. Tarkastellaan äärellistä kokoelmaa tällaisia kolikkoja (joiden ei tarvitse olla keskenään eriarvoisia), jonka yhteisarvoarvo on enintään $99 + \frac{1}{2}$. Todista, että kokoelma voidaan jakaa sataan tai vähempään osaan, joista jokaisen arvo on enintään 1.

Tehtävä 6. Joukko tason suoria on yleisessä asemassa, jos mitkään kaksi eivät ole yhdensuuntaisia eivätkä mitkään kolme kulje saman pisteen kautta. Yleisessä asemassa oleva suorajoukko leikkaa tason alueiksi, joista jotkin ovat pinta-alaltaan äärellisiä; kutsutaan näitä joukon äärellisiksi alueiksi. Todista, että kaikilla riittävän suurilla n:n arvoilla on mahdollista värittää jokaisesta yleisessä asemassa olevassa n:n suoran joukosta ainakin \sqrt{n} suoraa sinisiksi niin, että suorajoukon minkään äärellisen alueen reuna ei ole kokonaan sininen.

Huomautus: Todistukset, joissa \sqrt{n} :n tilalla on $c\sqrt{n}$, saavat pisteitä sen mukaan, mikä on vakion c arvo.

Language: Finnish Työaika: 4 tuntia 30 minuuttia. Kunkin tehtävän enimmäispistemäärä on 7.