Metaheurísticas - Modelagem de Problema de Otimização Combinatória

Helder Mateus dos Reis Matos¹

¹ Programa de Pós-Graduação em Ciência da Computação (PPGCC) Instituto de Ciências Exatas e Naturais (ICEN) Universidade Federal do Pará (UFPA) Av. Augusto Correa 01, 66075-090 – Belém – PA – Brasil

helder.matos@icen.ufpa.br

1. Descrição do Problema

Uma empresa precisa, anualmente, planejar a execução de uma série de projetos que serão terceirizados para diferentes subsidiárias e estúdios parceiros.

Para o planejamento deste ano há 9 projetos a serem planejados para execução por 9 terceirizadas. Cada parceira pode executar apenas um projeto e não há qualquer ordem de precedência entre eles.

A tabela abaixo apresenta a matriz de custos da relação empresa (E) x projeto (P), com o respectivo custo que cada empresa cobra para realizar cada projeto.

Emp./Proj.	P1	P2	P3	P4	P5	P6	P7	P8	P9
E1	12	18	15	22	9	14	20	11	17
E2	19	8	13	25	16	10	7	21	24
E3	6	14	27	10	12	19	23	16	8
E4	17	11	20	9	18	13	25	14	22
E5	10	23	16	14	7	21	12	19	15
E6	13	25	9	17	11	8	16	22	20
E7	21	16	24	12	20	15	9	18	10
E8	8	19	11	16	22	17	14	10	13
E9	15	10	18	21	13	12	22	9	16

O problema então é alocar cada empresa a um e somente um projeto específico, de forma que o custo total dessas alocações seja o menor possível.

2. Solução

A descrição informa que o custo total da alocação das empresas aos projetos deve ser o menor possível, o que leva a conclusão de que este é um **problema de minimização** sobre o custo da alocação.

Somado a este fato, é importante destacar que cada empresa deve executar um e somente um projeto específico. Dessa forma, a variável de decisão deve capturar a alocação ou não de uma empresa i a um projeto j, de forma binária.

$$x_{ij} = \begin{cases} 1, \text{ se a empresa } i \text{ for alocada ao projeto } j. \\ 0, \text{ caso contrário.} \end{cases}$$

De posse da variável de decisão, a função objetivo é expressa em função dessa variável, considerando o valor do custo c_{ij} da mesma, com o objetivo de minimização.

$$Min Z = \sum_{i=1}^{9} \sum_{j=1}^{9} x_{ij} \cdot c_{ij}$$

Além disso, as alocações estão sujeitas à restrições, especialmente em relação à alocação unitária, garantindo que nenhuma empresa pegue mais que um projeto. Considerando a tabela fornecida como uma matriz, é fácil perceber que a soma da variável de decisão para cada linha deve ser igual a 1, o mesmo valendo para a soma de cada coluna. Dessa forma, variando i ou variando j de cada vez, a soma desses eixos é igual a 1.

- $\sum_{i=1}^{9} x_{ij} = 1, \forall i \in \{1, 2, ..., 9\}$: cada empresa está alocada a somente um projeto; $\sum_{j=1}^{9} x_{ij} = 1, \forall j \in \{1, 2, ..., 9\}$: cada projeto é executado por uma empresa; $x_{ij} = 1, \forall i \in \{0, 1\}$: a alocação é binária.

Uma solução possível (z = 147, para efeitos de comparação) é dada pela tabela a seguir, onde está mapeada a restrição binária da variável de decisão x_{ij} e a última linha e última coluna representam as somas de x_{ij} ao variar i e j, respectivamente:

	x_{i1}	x_{i2}	x_{i3}	x_{i4}	x_{i5}	x_{i6}	x_{i7}	x_{i8}	x_{i9}	$\sum_{j=1}^{9} x_{ij}$
x_{1j}	0	1	0	0	0	0	0	0	0	1
x_{2j}	0	0	0	0	0	0	0	1	0	1
x_{3j}	0	0	0	0	1	0	0	0	0	1
x_{4j}	0	0	1	0	0	0	0	0	0	1
x_{5j}	0	0	0	0	0	0	1	0	0	1
x_{6j}	0	0	0	0	0	0	0	0	1	1
x_{7j}	0	0	0	0	0	1	0	0	0	1
x_{8j}	1	0	0	0	0	0	0	0	0	1
x_{9j}	0	0	0	1	0	0	0	0	0	1
$\sum_{i=1}^{9} x_{ij}$	1	1	1	1	1	1	1	1	1	

Dessa forma, o problema é modelado da seguinte forma:

$$Min Z = \sum_{i=1}^{9} \sum_{j=1}^{9} x_{ij} \cdot c_{ij}$$

sujeito a:
$$\begin{cases} \sum_{i=1}^{9} x_{ij} = 1, \forall i \in \{1, 2, ..., 9\} \\ \sum_{j=1}^{9} x_{ij} = 1, \forall j \in \{1, 2, ..., 9\} \\ x_{ij} = 1, \forall i \in \{0, 1\} \end{cases}$$