CONTINUOUS RANDOM VARIABLES: PRACTICE 1; **UNIFORM DISTRIBUTION**

STUDENT LEARNING OUTCOMES:

GIVEN:

The age of cars in the staff parking lot of a suburban college is uniformly distributed from six months (0.5 years) to 9.5 years.

Pro

PROPERTIES OF THE DATA	
1.	What is being measured here?
2.	In words, define the Random Variable X.
	X =
3.	Are the data continuous or discrete?
4.	The interval of values for X is:
5.	X ~
PROBABILITY DISTRIBUTION	
6.	Write the probability density function: $f(x) = $
7.	Sketch the graph of the probability distribution. Include: a. lowest value for $X = \underline{\hspace{1cm}}$ highest value for $X = \underline{\hspace{1cm}}$

b. labeling on x-axis (words):

c. height of rectangle = _____ labeling on y-axis: _____

RANDOM PROBABILITY

Find the probability that a randomly chosen car in the lot was less than 4 years old.

8. a. Sketch the graph. Shade the area of interest.

b. Find the probability. P(X < 4) =

9. Out of just the cars less than 7.5 years old, find the probability that a randomly chosen car in the lot was less than 4 years old.

a. Sketch the graph. Shade the area of interest.

b. Find the probability. P(X < 4 | X < 7.5) =

10. Discussion question:

What has changed in problems (1) and (2) above to make the solutions different?

QUARTILES

11. Find the average age of cars in the lot. $\mu = \underline{\hspace{1cm}}$
12. Find the third quartile of ages of cars in the lot. This means you will have to find the value such that 3/4, or 75%, of the cars are at most (less than or equal to) that age. a. Sketch the graph. Include shading of the area of interest.
b. Find the value k such that $P(X < k) = 0.75$. $k = $
c. The third quartile is