Svingende pendelum

Simon Bakken-Jantasuk

20. desember 2022

Innhold

1	Introduksjon 1.1 Hensikt	2 2 2
2	Teori	2
3	Fremgangsmåte 3.1 Målinger	3
4	Resultat 4.1 Python	
5	Diskusjon 5.1 Konklusjon	5
\mathbf{T}	abeller	
	1 rundetid (T) , sekunder (s)	3

1 Introduksjon

1.1 Hensikt

- 1. Å bestemme tyngdeakselersajonen, g, ved hjelp av en pendel.
- 2. Å bruke feilforplantningsreglene til å finne måleusikkerheten i et beregnet resultat.

1.2 Oppsummering

Vi har målt lengden til tråden, og regnet g
 ved at ser på ϕ som liten; sånn at vi kan se på pendelen som et harmonisk serie; som gir formelen (1) $g = \frac{4\pi^2}{T^2}l$ Ved bruk av (1) så regner vi ut g-verdiene. Vi regner med usikkerhet av g, ved hensyn til usikkerhet av tid.

Utstyr

- 1. Kule
- 2. Tråd
- 3. Krok
- 4. Linjal
- 5. Stoppeklokke

2 Teori

Bevegelsen av pendelen har vertikal sirkelbevegelse. Dette vil si at summen av kreftene peker innover mot sentrum mens fartsretningen endrer. Det virker en gravitasjonel kraft V_g og en snorkraft F_s på kulen.

For pendelen så er

$$\Sigma F = ma = mg\sin\phi$$

Hvor

$$a = g \sin \phi$$

Vi vet at

$$a = -\omega^2 x$$

Sånn at

$$g\sin\phi = -\omega^2 x$$

Vi vet at

$$x = l\phi$$

Da må

$$g\sin\phi = -\omega^2 l\phi$$

Vi vet at

$$\omega = \frac{2\pi}{T}$$

Da må

$$g\sin\phi = -\frac{4\pi^2}{T^2}l\phi$$

$$g = -\frac{4\pi^2l}{T^2}\frac{\phi}{\sin\phi}$$

De vinkelene vi jobber med er svært små. Så vi kan godt se på dette som en harmonisk serie.

$$\lim_{\phi \to 0} g = \lim_{\phi \to 0} -\frac{4\pi^2 l}{T^2} \frac{\phi}{\sin \phi}$$

$$g = -\frac{4\pi^2}{T^2} l$$

3 Fremgangsmåte

- 1. Fest tråden i kulen, og heng den opp slik at kulen får svinge fritt.
- 2. Gjennomfør nødvendige målinger og før opp resultatene.
- 3. Finn ut usikkerheten i de målte verdiene.
- 4. Bruk de målte verdiene med usikkerhet til å beregne tyngdens akselerasjon med usikkerhet.

3.1 Målinger

Lengden l på tråden var $86\times 10^{-2}~\mathrm{m}$

Tabell 1: rundetid (T), sekunder (s)

 T_1 1.90 s T_2 1.79 s T_3 1.89 s T_4 2.04 s T_5 2.13 s T_6 2.06 s T_7 1.94 s T_8 1.87 s T_9 1.91 s T_{10} 1.96 s

4 Resultat

4.1 Python

```
from math import *
from pylab import *
rundeTid = [
   1.90,
   1.79,
   1.89,
   2.04,
   2.13,
   2.06,
   1.94,
   1.87,
   1.91,
   1.96
lengdeTraad = 86 * 10 ** -2
gjennomsnittVerdi = sum(rundeTid)/len(rundeTid)
variasjonsBredde = max(rundeTid) - min(rundeTid)
usikkerhet = variasjonsBredde/2
def g(i)
       Regner ut gravitasjons akselerasjonen basert ved hensyn
           \hookrightarrow til array rundeTid.
parameter
       (Number) variabel i som er lik variabel til array rundeTid
return
       (Number) gravitasjons akselerasjonen
$$$
def g(i):
   return 4 * pi ** 2 / rundeTid[i] ** 2 * lengdeTraad
i = 0
while i < len(rundeTid):</pre>
   g(i)
   print(f"g_{i + 1}", g(i))
   i = i + 1
def beregnerUsikkerhet(usikkerhet)
       Beregner ut usikkerheten for gravitasjons akselerasjonen,

→ ved hensyn til usikkerheten til tid.
```

4.1.1 Output

5 Diskusjon

En måte å redusere usikkerhet på, kunne ha vært å latt pendelen bevege av seg selv. Dog, så er resultat forventet.

5.1 Konklusjon

Vi har målt lengden til tråden, og regnet g
 ved at ser på ϕ som liten; sånn at vi kan se på pendelen som et harmonisk serie; som gir formelen (1) $g = \frac{4\pi^2}{T^2}l$ Ved bruk av (1) så regner vi ut g-verdiene. Vi regner med usikkerhet av g, ved hensyn til usikkerhet av tid.

g er ca. mellom fra $7m/s^2$ til $11m/s^2$