

Foundations of Robotics

Lec 2: Configuration Space

主讲人 滕瀚哲

美国加州大学河滨分校 ARCS实验室博士

\$ Outline

- 1. Configuration Space
- 2. Degrees of Freedom
- 3. Topology and Representation
- 4. Homework

\$ Outline

- 1. Configuration Space
- 2. Degrees of Freedom
- 3. Topology and Representation
- 4. Homework

A robot is mechanically constructed by **joints** and **links**.

The most fundamental question one may ask: What is the current state of the robot?

Configuration: A complete specification of the position of every point of the robot.

\$ Configuration Space

Configuration: A complete specification of the position of every point of the robot.

Configuration Space (C-space): The n-dimensional space containing all possible configurations of the robot.

➤ The configuration of a robot is represented by a point in its C-space.

- 1. Configuration Space
- 2. Degrees of Freedom
- 3. Topology and Representation
- 4. Homework

S Degrees of Freedom

Configuration: A complete specification of the position of every point of the robot.

Configuration Space (**C-space**): The n-dimensional space containing all possible configurations of the robot.

Degrees of Freedom (dof): The <u>minimum</u> number n of real-valued coordinates <u>needed</u> to represent the configuration is the number of degrees of freedom (dof) of the robot.

➤ Alternatively, it is the dimension of the C-space.

Degrees of Freedom

What is the dof for general rigid bodies in 2D space?

• Let's investigate this by <u>picking points</u> on rigid bodies.

Point	Coordinates	Independent Constraints	
A	2	0	2
В	2	1	1
C	2	2	0
D	2	2	0
Total	-	-	3

What is the dof for general rigid bodies in 3D space?

Point	Coordinates	Independent Constraints	
A	3	0	3
В	3	1	2
C	3	2	1
D	3	3	0
Total	-	-	6

\$ Degrees of Freedom

We have been applying the following general rule for determining the number of degrees of freedom of a system:

```
degrees of freedom = (sum of freedoms of the points) –

(number of independent constraints)
```

Alternatively:

```
degrees of freedom = (number of variables) –

(number of independent equations)
```

A better solution for general robots consisting of many rigid bodies:

```
degrees of freedom = (sum of freedoms of the bodies) − 
(number of independent constraints) → Grübler's Formula!
```

\$ Grübler's Formula

Grübler's Formula

degrees of freedom = (sum of freedoms of the bodies) –

(number of independent constraints)

The main idea of applying Grübler's Formula:

- (1) identify <u>links</u> and <u>joints</u> in the system,
- (2) compare them with our known joint-link systems, and
- (3) plug into the formula accordingly.

Note: we use the terms "links" and "bodies" interchangeably.

\$ Typical Joints

\$ Typical Joints

		Constraints c	Constraints c
		between two	between two
Joint type	$\operatorname{dof} f$	planar	spatial
		rigid bodies	rigid bodies
Revolute (R)	1	2	5
Prismatic (P)	1	2	5
Helical (H)	1	N/A	5
Cylindrical (C)	2	N/A	4
Universal (U)	2	N/A	4
Spherical (S) 3		N/A	3

Recall that

dof = (sum of freedoms of the bodies) - (number of independent constraints)

$$dof = m(N-1) - \sum_{i=1}^{J} c_i$$

$$= m(N-1) - \sum_{i=1}^{J} (m - f_i)$$

$$= m(N-1-J) + \sum_{i=1}^{J} f_i$$

Grübler's Formula!

Notation	Definition		
N	number of bodies, including ground		
J	number of joints		
m	dof of a rigid body (m=3 for planar bodies, m=6 for spatial bodies)		
c_i	number of constraints introduced by joint i		
f_i	number of freedoms introduced by joint i		

Grübler's Formula

$$dof = m(N - 1 - J) + \sum_{i=1}^{J} f_i$$

3R serial "open-chain" robot arm

$$dof = 3(4 - 1 - 3) + 3 = 3$$

Four-bar "closed-chain" mechanism

$$dof = 3(4-1-4)+4=1$$

$$dof = m(N - 1 - J) + \sum_{i=1}^{J} f_i$$

A parallelogram linkage

$$dof = 3(5 - 1 - 6) + 6 = 0$$
?

No, the dof should be 1. Grübler's Formula does not apply.

Notes on Grübler's Formula

- The formula holds only if all joint constraints are <u>independent</u>, and a linear analysis of mobility suffices.
- ➤ Alternatively, you may remove redundant links and compute again.
- In other words, it holds in most generic cases, but a mechanism may have <u>more</u> dof or <u>fewer</u> dof in some special cases.

- 1. Configuration Space
- 2. Degrees of Freedom
- 3. Topology and Representation
- 4. Homework

- Until now we have been focusing on one important aspect of a robot's C-space: its dimension, or the number of degrees of freedom.
- However, the shape of the space is also important.

A point moving on a plane

A point moving on the surface of a sphere

- Both are two dimensional, but they do not have the same shape.
 - ➤ The plane extends infinitely while the sphere wraps around.

- Until now we have been focusing on one important aspect of a robot's C-space: its dimension, or the number of degrees of freedom.
- However, the shape of the space is also important.
- Formally, it is described by the topology of the space.

Two spaces are **topologically equivalent** if one can be <u>continuously</u> deformed into the other <u>without cutting or gluing</u>.

• Topologically distinct: not topologically equivalent

Topologically-distinct one-dimensional spaces

Topologically-distinct two-dimensional spaces

• Topologically-distinct one-dimensional spaces

Notation	Meaning	1D Topology	
$S \text{ or } S^1$	circle	circle	
\mathbb{E} or \mathbb{E}^1	1D Euclidean space	line	
\mathbb{R} or \mathbb{R}^1	real number	line	
$[a,b]\subset\mathbb{R}^1$	closed interval	closed interval	
$(a,b) \subset \mathbb{R}^1$ open interval		line*	

^{*}An open interval can be continuously deformed into a line.

Topologically-distinct two-dimensional spaces

Notation	2D Topology
\mathbb{E}^2 or \mathbb{R}^2	plane
S^2	sphere
$T^2 = S^1 \times S^1$	torus*
$\mathbb{E}^1\times S^1$	cylinder*

^{*}Some C-spaces can be expressed as the Cartesian product of two or more spaces of lower dimension.

Configuration Space Representation

- To perform computations, we must have a numerical representation of the space, consisting of a set of real numbers.
 - We need to choose the type of representation.
 - The topology of a space is independent of our choice of the representation; it is a fundamental property of the space itself.
- Explicit representation
 - A <u>choice</u> of n coordinates or parameters
 - Example: n-vector for Euclidean spaces, e.g., $(x, y, z) \in \mathbb{R}^3$
 - Example: latitude-longitude representation for the surface of a sphere
- Implicit representation
 - Uses the coordinates of the higher-dimensional space, but <u>subjects to constraints</u>
 - Example: loop-closure equations for a closed-chain mechanism
 - Example: $x^2 + y^2 + z^2 = 1$ for the surface of a sphere

Configuration Space Representation

Note: using explicit representation for non-Euclidean spaces can cause singularities!

- Example: the latitude-longitude representation of a 2D unit sphere embedded in a 3D space, i.e. $[-180^{\circ}, 180^{\circ}) \times [-90^{\circ}, 90^{\circ}]$, can have singularities at the North and South Poles, due to the fact that a sphere does not have the same topology as a plane.
- Example: See the following representations for the space of 3D rotations.

Representation	Explicit/Implicit	Singularity	# of Parameters	# of Constraints
Roll-pitch-yaw angles	Explicit	Yes	3	0
Euler angles	Explicit	Yes	3	0
Exponential coordinates	Explicit	Yes	3	0
Axis-angle	Implicit	Yes	4	1
Unit quaternions	Implicit	No	4	1
Rotation matrices	Implicit	No	9	6

Configuration Space Representation

\$ Outline

- 1. Configuration Space
- 2. Degrees of Freedom
- 3. Topology and Representation
- 4. Homework

Homework

(1) Find the degrees of freedom of the following mechanisms

- Textbook Exercises: 2.1, 2.9(a-b), 2.11(a-b), 2.29
- (3) Lab Assignments: Open-loop control of the Turtlebot robot
 - In Gazebo simulation, write a script using ROS (in Python or C++) to make the robot run along the sides of a square.

Thanks for Listening

