Bases and subbases

2016-01-28 9:00 -0500

Definition (Smaller topology)

If τ and τ' are topologies on X, where $\tau \subseteq \tau'$, we say that τ is smaller than τ' . (Not coarser than τ' , as in the book).

Definition (Smaller topology)

If τ and τ' are topologies on X, where $\tau \subseteq \tau'$, we say that τ is smaller than τ' . (Not coarser than τ' , as in the book).

Lemma (Condition of smaller topology)

Let $\mathcal{B}, \mathcal{B}'$ be bases for topologies on X. Then the following are equivalent:

Definition (Smaller topology)

If τ and τ' are topologies on X, where $\tau \subseteq \tau'$, we say that τ is smaller than τ' . (Not coarser than τ' , as in the book).

Lemma (Condition of smaller topology)

Let $\mathcal{B}, \mathcal{B}'$ be bases for topologies on X. Then the following are equivalent:

• $\tau_{\mathcal{B}}$ is smaller than $\tau_{\mathcal{B}'}$.

Definition (Smaller topology)

If τ and τ' are topologies on X, where $\tau \subseteq \tau'$, we say that τ is smaller than τ' . (Not coarser than τ' , as in the book).

Lemma (Condition of smaller topology)

Let $\mathcal{B}, \mathcal{B}'$ be bases for topologies on X. Then the following are equivalent:

- $\tau_{\mathcal{B}}$ is smaller than $\tau_{\mathcal{B}'}$.
- For each $x \in X$ and $B \in \mathcal{B}$ with $x \in B$, there is $B' \in \mathcal{B}'$ with $x \in B' \subseteq B$.

• Suppose $\tau_{\mathcal{B}} \subseteq \tau_{\mathcal{B}'}$, and let $x \in \mathcal{B} \in \mathcal{B}$.

- Suppose $\tau_{\mathcal{B}} \subseteq \tau_{\mathcal{B}'}$, and let $x \in \mathcal{B} \in \mathcal{B}$.
- Since $B \in \mathcal{B} \subseteq \tau_{\mathcal{B}} \subseteq \tau_{\mathcal{B}'}$, by definition of the generated topology $\tau_{\mathcal{B}'}$, there is $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$.

- Suppose $\tau_{\mathcal{B}} \subseteq \tau_{\mathcal{B}'}$, and let $x \in \mathcal{B} \in \mathcal{B}$.
- Since $B \in \mathcal{B} \subseteq \tau_{\mathcal{B}} \subseteq \tau_{\mathcal{B}'}$, by definition of the generated topology $\tau_{\mathcal{B}'}$, there is $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$.
- Now assume the second condition, and let $U \in \tau_{\mathcal{B}}$. We have to prove $U \in \tau_{\mathcal{B}'}$.

- Suppose $\tau_{\mathcal{B}} \subseteq \tau_{\mathcal{B}'}$, and let $x \in \mathcal{B} \in \mathcal{B}$.
- Since $B \in \mathcal{B} \subseteq \tau_{\mathcal{B}} \subseteq \tau_{\mathcal{B}'}$, by definition of the generated topology $\tau_{\mathcal{B}'}$, there is $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$.
- Now assume the second condition, and let $U \in \tau_{\mathcal{B}}$. We have to prove $U \in \tau_{\mathcal{B}'}$.
- Let $x \in U$. Since $U \in \tau_{\mathcal{B}}$, there is $B \in \mathcal{B}$ with $x \in B \subseteq U$.

- Suppose $\tau_{\mathcal{B}} \subseteq \tau_{\mathcal{B}'}$, and let $x \in \mathcal{B} \in \mathcal{B}$.
- Since $B \in \mathcal{B} \subseteq \tau_{\mathcal{B}} \subseteq \tau_{\mathcal{B}'}$, by definition of the generated topology $\tau_{\mathcal{B}'}$, there is $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$.
- Now assume the second condition, and let $U \in \tau_{\mathcal{B}}$. We have to prove $U \in \tau_{\mathcal{B}'}$.
- Let $x \in U$. Since $U \in \tau_{\mathcal{B}}$, there is $B \in \mathcal{B}$ with $x \in B \subseteq U$.
- By the assumed condition, there is $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$.

- Suppose $\tau_{\mathcal{B}} \subseteq \tau_{\mathcal{B}'}$, and let $x \in \mathcal{B} \in \mathcal{B}$.
- Since $B \in \mathcal{B} \subseteq \tau_{\mathcal{B}} \subseteq \tau_{\mathcal{B}'}$, by definition of the generated topology $\tau_{\mathcal{B}'}$, there is $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$.
- Now assume the second condition, and let $U \in \tau_{\mathcal{B}}$. We have to prove $U \in \tau_{\mathcal{B}'}$.
- Let $x \in U$. Since $U \in \tau_{\mathcal{B}}$, there is $B \in \mathcal{B}$ with $x \in B \subseteq U$.
- By the assumed condition, there is $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$.
- Hence $x \in B' \subseteq U$, which proves $U \in \tau_{\mathcal{B}'}$. \square

Lemma

Let (X, τ) be a topological space. Let $\mathcal{C} \subseteq \tau$ be such that for any $U \in \tau$ and $x \in U$, there is $C \in \mathcal{C}$ such that $x \in C \subseteq U$. Then \mathcal{C} is base for a topology on X, and $\tau_{\mathcal{C}} = \tau$.

Lemma

Let (X, τ) be a topological space. Let $\mathcal{C} \subseteq \tau$ be such that for any $U \in \tau$ and $x \in U$, there is $C \in \mathcal{C}$ such that $x \in C \subseteq U$. Then \mathcal{C} is base for a topology on X, and $\tau_{\mathcal{C}} = \tau$.

Lemma

Let (X, τ) be a topological space. Let $\mathcal{C} \subseteq \tau$ be such that for any $U \in \tau$ and $x \in U$, there is $C \in \mathcal{C}$ such that $x \in C \subseteq U$. Then \mathcal{C} is base for a topology on X, and $\tau_{\mathcal{C}} = \tau$.

Proof

ullet The collection ${\mathcal C}$ satisfies (B1) by hypothesis.

Lemma

Let (X, τ) be a topological space. Let $\mathcal{C} \subseteq \tau$ be such that for any $U \in \tau$ and $x \in U$, there is $C \in \mathcal{C}$ such that $x \in C \subseteq U$. Then \mathcal{C} is base for a topology on X, and $\tau_{\mathcal{C}} = \tau$.

- ullet The collection ${\mathcal C}$ satisfies (B1) by hypothesis.
- Let C_1 , $C_2 \in \mathcal{C}$ and $x \in C_1 \cap C_2$. Since $C_1 \cap C_2$ is open, by hypothesis there is $C_3 \in \mathcal{C}$ such that $x \in C_3 \subseteq C_1 \cap C_2$. So \mathcal{C} satisfies (B2) and is base for a topology.

Lemma

Let (X, τ) be a topological space. Let $\mathcal{C} \subseteq \tau$ be such that for any $U \in \tau$ and $x \in U$, there is $C \in \mathcal{C}$ such that $x \in C \subseteq U$. Then C is base for a topology on X, and $\tau_{\mathcal{C}} = \tau$.

- ullet The collection ${\mathcal C}$ satisfies (B1) by hypothesis.
- Let C_1 , $C_2 \in \mathcal{C}$ and $x \in C_1 \cap C_2$. Since $C_1 \cap C_2$ is open, by hypothesis there is $C_3 \in \mathcal{C}$ such that $x \in C_3 \subseteq C_1 \cap C_2$. So \mathcal{C} satisfies (B2) and is base for a topology.
- Now, to prove $\tau_C = \tau$, let $U \in \tau_C$. Since U is union of elements of C, and these are in τ , then $U \in \tau$.

Lemma

Let (X, τ) be a topological space. Let $\mathcal{C} \subseteq \tau$ be such that for any $U \in \tau$ and $x \in U$, there is $C \in \mathcal{C}$ such that $x \in C \subseteq U$. Then \mathcal{C} is base for a topology on X, and $\tau_{\mathcal{C}} = \tau$.

- ullet The collection ${\mathcal C}$ satisfies (B1) by hypothesis.
- Let C_1 , $C_2 \in \mathcal{C}$ and $x \in C_1 \cap C_2$. Since $C_1 \cap C_2$ is open, by hypothesis there is $C_3 \in \mathcal{C}$ such that $x \in C_3 \subseteq C_1 \cap C_2$. So \mathcal{C} satisfies (B2) and is base for a topology.
- Now, to prove $\tau_C = \tau$, let $U \in \tau_C$. Since U is union of elements of C, and these are in τ , then $U \in \tau$.
- Finally, if $U \in \tau$, then for any $x \in U$, by our hypothesis, there is $C \in \mathcal{C}$ such that $x \in C \subseteq U$. Hence $U \in \tau_C$.

Why bases are useful

 We will now give several examples of topological spaces defined by bases. As a matter of fact, most of the topologies we meet in the course are given that way.

Why bases are useful

- We will now give several examples of topological spaces defined by bases. As a matter of fact, most of the topologies we meet in the course are given that way.
- Many theorems on certain topologies are easier to prove using properties of the base that generate them.

Standard topology on $\mathbb R$

Definition (The standard topology)

If $X = \mathbb{R}$, the collection of all open intervals $(a, b) \subseteq \mathbb{R}$ with a < b, for $a, b \in \mathbb{R}$ is a base for a topology, called standard topology.

Sorgenfrey line

Definition (The Sorgenfrey line)

The collection of all intervals of the form

$$[a, b) = \{x \in \mathbb{R} \mid a \le x < b\}$$

for $a, b \in \mathbb{R}$, is also a base for a topology on \mathbb{R} . The topological space obtained is called the Sorgenfrey line.

Sorgenfrey line

Definition (The Sorgenfrey line)

The collection of all intervals of the form

$$[a, b) = \{x \in \mathbb{R} \mid a \le x < b\}$$

for $a, b \in \mathbb{R}$, is also a base for a topology on \mathbb{R} . The topological space obtained is called the Sorgenfrey line.

Lemma (Sorgenfrey line is bigger)

The Sorgenfrey topology is strictly bigger than the standard topology.

Subbases

Definition (Subbase)

Let $S \subseteq P(X)$. We say that S is subbase of a topology on X if $\cup S = X$.

Subbases

Definition (Subbase)

Let $S \subseteq P(X)$. We say that S is subbase of a topology on X if $\cup S = X$.

Theorem (Topology generated by a subbase)

The collection of all finite intersections of elements of a subbase S is a base for a topology on X.

• Let $\mathcal B$ be the collection of all finite intersections of elements of $\mathcal S$. Observe that $\mathcal S \subseteq \mathcal B$

- Let $\mathcal B$ be the collection of all finite intersections of elements of $\mathcal S$. Observe that $\mathcal S\subseteq \mathcal B$
- Given $x \in X$, by our hypothesis, there is $S \in S$ such that $x \in S$. Since $S \in \mathcal{B}$, we have (B1).

- Let $\mathcal B$ be the collection of all finite intersections of elements of $\mathcal S$. Observe that $\mathcal S\subseteq \mathcal B$
- Given $x \in X$, by our hypothesis, there is $S \in S$ such that $x \in S$. Since $S \in \mathcal{B}$, we have (B1).
- Let $B_1, B_2 \in \mathcal{B}$, and $x \in B_1 \cap B_2$. Suppose that there are $S_1, \ldots, S_n, S_1', \ldots, S_m' \in \mathcal{S}$ such that:

$$B_1 = S_1 \cap \cdots \cap S_n$$
, $B_2 = S'_1 \cap \cdots \cap S'_m$.

- Let $\mathcal B$ be the collection of all finite intersections of elements of $\mathcal S$. Observe that $\mathcal S\subseteq \mathcal B$
- Given $x \in X$, by our hypothesis, there is $S \in S$ such that $x \in S$. Since $S \in \mathcal{B}$, we have (B1).
- Let $B_1, B_2 \in \mathcal{B}$, and $x \in B_1 \cap B_2$. Suppose that there are $S_1, \ldots, S_n, S_1', \ldots, S_m' \in \mathcal{S}$ such that:

$$B_1 = S_1 \cap \cdots \cap S_n$$
, $B_2 = S'_1 \cap \cdots \cap S'_m$.

• Then, taking

$$B_3 = S_1 \cap \cdots \cap S_n \cap S'_1 \cap \cdots \cap S'_m$$

we obtain $B_3 \in \mathcal{B}$, and $x \in B_3 \subseteq B_1 \cap B_2$. Hence (B2) is satisfied. \square

1. Let $X = \{1, 2, 3, 4, 5, 6\}$, and $S = \{\{1, 2, 3\}, \{3, 4, 5\}, \{4, 5, 6\}\}$. Enumerate the open sets of τ_S .

- 1. Let $X = \{1, 2, 3, 4, 5, 6\}$, and $S = \{\{1, 2, 3\}, \{3, 4, 5\}, \{4, 5, 6\}\}$. Enumerate the open sets of τ_S .
- 2. Show that if S is a subbase for a topology on X, then τ_S is equal to the intersection of the topologies on X that contain S.

- 1. Let $X = \{1, 2, 3, 4, 5, 6\}$, and $S = \{\{1, 2, 3\}, \{3, 4, 5\}, \{4, 5, 6\}\}$. Enumerate the open sets of τ_S .
- 2. Show that if S is a subbase for a topology on X, then τ_S is equal to the intersection of the topologies on X that contain S.
- 3. Let $S = \{[a, b] \subseteq \mathbb{R} \mid a < b, a, b \in \mathbb{Q}\}$. Prove that S is a subbase for a topology. Prove also that if $\mathcal{B} = S \cup \{\{a\} \mid a \in \mathbb{Q}\}$, then \mathcal{B} is base of a topology, and $\tau_S = \tau_{\mathcal{B}}$.

- 1. Let $X = \{1, 2, 3, 4, 5, 6\}$, and $S = \{\{1, 2, 3\}, \{3, 4, 5\}, \{4, 5, 6\}\}$. Enumerate the open sets of τ_S .
- 2. Show that if S is a subbase for a topology on X, then τ_S is equal to the intersection of the topologies on X that contain S.
- 3. Let $S = \{[a, b] \subseteq \mathbb{R} \mid a < b, a, b \in \mathbb{Q}\}$. Prove that S is a subbase for a topology. Prove also that if $\mathcal{B} = S \cup \{\{a\} \mid a \in \mathbb{Q}\}$, then \mathcal{B} is base of a topology, and $\tau_S = \tau_{\mathcal{B}}$.
- 4. Given a natural number n, denote by $[n] = \{kn \in \mathbb{N} \mid k \in \mathbb{N}\}$. Prove that $\mathcal{B} = \{[n] \mid n \in \mathbb{N}\}$ is a base for a topology on \mathbb{N} . Show also that $\mathcal{S} = \{[p^r] \mid p \text{ is prime, } r \in \mathbb{N}\}$ is a subbase for a topology on \mathbb{N} , and $\tau_{\mathcal{S}} = \tau_{\mathcal{B}}$.

Links

• Lower limit topology - Wikipedia, the free encyclopedia

Links

- Lower limit topology Wikipedia, the free encyclopedia
- Subbase Wikipedia, the free encyclopedia