Simon König 3344789 - Klausurzettel

Turingmaschine: $M=(Z,\Sigma,\Gamma,\delta,z_0,\Box,E)$ mit $\delta:Z\times\Gamma\to Z\times\Gamma\times\{L,N,R\}$

Endl. Automat: $M = (Z, \Sigma, \delta, S, E)$

Gerichteter Graph $G=(V,E), E=\left\{(v,w)\in V^2\ \middle|\ \text{von }v\ \text{zu }w\right\}$

Ungerichteter Graph $G = (V, E), E = \{\{v, w\} \subseteq V \mid v, w \text{ sind verbunden}\}$

1 Berechenbarkeit

LOOP-Anweisungen:

- $x_i := x_i + c$ bzw. $x_i := x_i c$ mit $c \in \mathbb{N}$
- LOOP x_i DO P END
- Hintereinanderausführung von LOOP-Programmen

Primitiv rekursive Funktionen:

 $\begin{array}{lll} \bullet & \mathrm{s} \, (\mathrm{n}) & \bullet & \mathrm{c}_{j}^{i} = \mathrm{j} \\ \bullet & \mathrm{dec} \, (\mathrm{n}) & \bullet & \mathrm{even} \, (\mathrm{n}) \\ \bullet & \mathrm{add} \, (\mathrm{a}, \mathrm{b}) & \bullet & \mathrm{odd} \, (\mathrm{n}) \\ \bullet & \mathrm{sub} \, (\mathrm{a}, \mathrm{b}) & \bullet & \mathrm{leq} (\mathrm{a}, \mathrm{b}) \\ \bullet & \mathrm{mul} \, (\mathrm{a}, \mathrm{b}) & \bullet & \mathrm{eq} (\mathrm{a}, \mathrm{b}) \end{array}$

Nicht LOOP-berechenbare Funktionen (aber Turing):

- \bullet Ω , nirgends definierte Funktion
- a(x, y), Ackermannfunktion

2 Entscheidbarkeit

- ullet $A \leq B$ und A nicht semi-entscheidbar, dann ist B ebenfalls nicht semi-entscheidbar. Ist B semi-entscheidbar, dann ist auch A semi-entscheidbar
- ullet Satz von Rice: ${\mathcal R}$ die Menge der Turing-berechenbaren Funktionen. Die Menge

$$C(S) = \{w \mid M_w \text{ berechnet eine Funktion aus } S\}$$

ist unentscheidbar, wenn $\emptyset \neq \mathcal{S} \neq \mathcal{R}$.

ullet Eine Sprache ist genau dann semi-entscheidbar, wenn sie sich auf H reduzieren lässt. (Vortragsübung)

Entsc	haid	har	vaitan

	Dankerten			
	Wortproblem	Leerheit	Äquivalenz	Schnitt
REG	✓	\checkmark	✓	\checkmark
DCFL	✓	\checkmark	✓	Χ
CFL	✓	\checkmark	X	Χ
CSL	\checkmark	X	X	X
r.e.	X	X	Χ	Χ

Abschlusseigenschaften

Schnitt	Vereinig.	Kompl.	Konkat.	Stern
✓	\checkmark	\checkmark	\checkmark	\checkmark
X	X	\checkmark	X	Χ
X	\checkmark	X	\checkmark	\checkmark
✓	\checkmark	\checkmark	\checkmark	\checkmark
✓	\checkmark	Χ	\checkmark	\checkmark
	Schnitt √ X X ✓	Schnitt Vereinig. X X X V ✓ ✓ ✓	Schnitt Vereinig. Kompl. X X X X X X X X X X X X X X X X X X	Schnitt Vereinig. Kompl. Konkat. V V V V V V X X X X V X V V V V V V V

2.1 Probleme

3 Komplexität

 \bullet In den Platzklassen ist $\mathcal{O} ext{-Notation}$ egal, Konstanten können vernachlässigt werden

$$DSPACE(\mathcal{O}(f)) = DSPACE(f)$$

 $NSPACE(\mathcal{O}(f)) = NSPACE(f)$

ullet In nichtdeterministischen Zeitklassen spielt die $\mathcal{O} ext{-Notation}$ keine Rolle

$$NTIME(\mathcal{O}(f)) = NTIME(f)$$

• Bei deterministischen Zeitklassen gilt i.A. $\mathrm{DTIME}(\mathcal{O}(f)) \neq \mathrm{DTIME}(f)$, nur für größer als lineare Funktionen gilt Gleichheit d.h.

$$DTIME(\mathcal{O}(f)) = DTIME(f)$$
 $f(n) \ge (1 + \epsilon)n$ für ein $\epsilon > 0$

ullet Satz von Hennie und Stearns: Falls $\epsilon>0, f(n)\geq (1+\epsilon)n$, dann gilt

$$DTIME(f) \subseteq DTIME(f \log f)$$

• Für alle $f(n) \ge n$ gilt für die Zeitklassen

$$DTIME(f) \subseteq NTIME(f) \subseteq DSPACE(f)$$

• Und für alle $f(n) > \log n$ gilt

$$DSPACE(f) \subseteq NSPACE(f) \subseteq DTIME(2^{\mathcal{O}(f)})$$

• Satz von Immerman und Szelepcsenyi: Falls $f \in \Omega(\log(n))$, gilt:

$$NSPACE(f) = coNSPACE(f)$$

 Alle deterministischen Zeit- und Platzklassen sind gegen Komplement abgeschlossen:

$$DSPACE(f) = coDSPACE(f)$$
$$DTIME(f) = coDTIME(f)$$

• Satz von Savitch: Sei $s \in \Omega(\log(n))$, dann gilt

$$NSPACE(s) \subset DSPACE(s^2)$$

• Sei $s_1 \not\in \Omega(s_2)$ und $s_2 \in \Omega(\log(n))$ und beide platzkonstruierbar, dann gilt der **Platzhierarchiesatz**

$$DSPACE(s_2) \setminus DSPACE(s_1) \neq \emptyset$$

 $\Rightarrow DSPACE(s_1) \subseteq DSPACE(s_2)$

• Sei $t_1 \log(t_1) \not \in \Omega(t_2)$ und $t_2 \in \Omega(n \log(n))$ und beide zeitkonstruierbar, dann gilt der **Zeithierarchiesatz**

$$DTIME(t_2) \setminus DTIME(t_1) \neq \emptyset$$

 $\Rightarrow DTIME(t_1) \subseteq DTIME(t_2)$

 \bullet Lückensatz von Borodin: Für jede totale berechenbare Funktion $r(n) \geq n$ existiert effektiv eine totale berechenbare Funktion $s(n) \geq n+1$ mit

$$DTIME(s(n)) = DTIME(r(s(n)))$$

• Translationtechnik:

Die Translationssätze werden verwendet, Separationen von größeren zu kleineren Klassen bzw. Gleichheiten oder Inklusionen von kleineren zu größeren Klassen zu übertragen. Die durch Padding aufgebläte Sprache ist $Pad_f(L) \coloneqq \left\{ w\$^{f(|w|)-|w|} \,\middle|\, w \in L \right\}.$

1. Für zwei Funktionen $f(n), g(n) \ge n$ gilt der Translationssatz für Zeitklassen:

$$Pad_f(L) \in DTIME(\mathcal{O}(g)) \Leftrightarrow L \in DTIME(\mathcal{O}(g \circ f))$$

 $Pad_f(L) \in NTIME(\mathcal{O}(g)) \Leftrightarrow L \in NTIME(\mathcal{O}(g \circ f))$

2. Und analog für $g \in \Omega(\log)$ und $f(n) \ge n$ der Translationssatz für Platzklassen:

$$Pad_f(L) \in DSPACE(\mathcal{O}(g)) \Leftrightarrow L \in DSPACE(\mathcal{O}(g \circ f))$$

 $Pad_f(L) \in NSPACE(\mathcal{O}(g)) \Leftrightarrow L \in NSPACE(\mathcal{O}(g \circ f))$

Zu den Reduktionen

1. Für zwei beliebige Sprachen A und B gilt

$$A \leq_{\log} B \Rightarrow A \leq_{p} B \Rightarrow A \leq B \Rightarrow A \leq_{T} B$$

- 2. $A \leq_p B \land B \in \mathbf{P} \Rightarrow A \in \mathbf{P}$
- 3. $A \leq_n B \land B \in \mathbf{NP} \Rightarrow A \in \mathbf{NP}$
- 4. A NP-vollständig, dann: $A \in P \Leftrightarrow P = NP$

3.1 Vollständige Probleme

NL-vollstädnig bezüglich \leq_{\log} ist **GAP**: existiert ein Pfad vom source-Knoten zum target-Knoten in einem gerichteten Graphen?

4 Beispiele

Verhältnis von NSPACE(2ⁿ) und DSPACE(5ⁿ):

$$\begin{split} & \text{NSPACE}(2^n) \overset{\text{S.v.S.}}{\subseteq} \text{DSPACE}(2^{2n}) \\ &= \text{DSPACE}(4^n) \overset{\text{P.H.S.}}{\subsetneq} \text{DSPACE}(5^n) \end{split}$$

• Folgerung mit Translationssatz, $\mathbf{P} \subseteq \mathbf{L} \Rightarrow \mathbf{EXPTIME} \subseteq \mathbf{PSPACE}$: Sei $L \in \mathbf{EXPTIME} \Rightarrow L \in \mathrm{DTIME}(2^{n^k})$ für ein $k \in \mathbb{N}$, dann ist mit der Translationsfunktion $f(n) = 2^{\frac{n^k}{k}}$ (denn $f(n^k) = 2^{k*(n^k)*\frac{1}{k}} = 2^{n^k}$) nach dem Translationssatz für Zeitklassen $Pad_f(L) \in \mathrm{DTIME}(n^k)$. Nach der Annahme $\mathbf{P} \subseteq \mathbf{L}$ folgt dann, $Pad_f(L) \in \mathrm{DSPACE}(\log n)$. Mit dem Translationssatz für Platzklassen und der selben Funktion folgt, $L \in \mathrm{DSPACE}(\log f(n)) = \mathrm{DSPACE}(\log(2^{\frac{n^k}{k}})) = \mathrm{DSPACE}(\frac{n^k}{k}) \subseteq \mathbf{PSPACE}$.

• Ungleichheit mit dem Translationssatz, $\forall c \in \mathbb{N}: \mathrm{NSPACE}(n^c) \neq \mathrm{NP}:$

Annahme: $\exists c \in \mathbb{N}: \mathrm{NSPACE}(n^c) = \mathbf{NP}.$ Sei $L \in \mathrm{NSPACE}(n^{3c})$ beliebig. Mit $f(n) = n^3$ folgt dann, $Pad_f(L) \in \mathrm{NSPACE}(n^c) \subseteq \mathbf{NP}$ nach Annahme. Es existiert also ein $k \in \mathbb{N}: Pad_f(L) \in \mathrm{NTIME}(n^k)$, nach Zeithierarchiesatz ist $L \in \mathrm{NTIME}(n^{3k})$. Es wurde gezeigt:

$$NSPACE(n^c) \subseteq NP \Rightarrow NSPACE(n^{3c}) \subseteq NP$$

Damit folgt aber nach Annahme

$$NSPACE(n^{3c}) \subseteq NP = NSPACE(n^c)$$

Was im Widerspruch zum Platzhierarchiesatz steht.