

Dr. Carlos Roe Battistini Dr. Eduardo Roe Battistini

Dr. Manuel Leiva Beraún

Dr. Juan C. Gómez De la Torre

GONZALEZ AMOEDO JUAN ALBERTO

08/08/2015

021412309

Análisis	Resultado	Rango de Referencia	Unidades			
HEMOGRAMA [CBC]						
LEUCOCITOS	6.4	(niños) (4.0 - 11.0) (4 - 16)	$x10^3/mm^3$			
LEUCOCITOS	0.4	(4.0 - 11.0) (4 - 10)	XIO 7/ IIIII 7			
- diferencial porcentual:						
- mielocitos	0	(0)	%			
- metamielocitos	0	(0)	%			
- abastonados	4	(0 - 5)	%			
- segmentados	67	(42 - 72)	%			
- linfocitos	19	(20 - 51)	%			
- monocitos	9	(0 - 12)	%			
- eosinófilos	1	(0 - 5)	%			
- basófilos	0	(0 - 1)	%			
- otros	0	(0)	%			
- diferencial absoluto:	0.0	(0)	102/ 2			
mielocitosmetamielocitos	0.0	(0)	$x10^{3}$ /mm ³ $x10^{3}$ /mm ³			
- metamielocitos - abastonados	0.0	(0)				
- abastonados - segmentados	0.3	(0.0 - 0.7) (1.8 - 7.7)	$x10^{3}$ /mm ³ $x10^{3}$ /mm ³			
- linfocitos	1.2	(1.8 - 7.7) (1.0 - 5.0) $(2.0-8.0)$				
- monocitos	0.6	(0.0 - 1.0)	$\times 10^3 / \text{mm}^3$			
- eosinófilos	0.1	(0.0 - 1.0) (0.0 - 0.5) $(0.0-0.7)$				
- basófilos	0.0	(0.0 - 0.3) (0.0-0.7)	$\times 10^3 / \text{mm}^3$			
- otros	0.0	(0)	$\times 10^3 / \text{mm}^3$			
HEMARITEC	4.02	(2.00 5.00)	10(c)/			
HEMATIES	4.83	(3.80 - 5.80)	×10{6}/mm			
HEMOGLOBINA	15.6	(12.0 - 17.2)(11 - 15)	_			
HEMATOCRITO	45.1	(36.0 - 51.0)(33 - 44)	%			
VOL. CORPUSCULAR MEDIO (VCM)	93.4	(82.0 - 98.0)(75 - 90)				
HB. CORPUSCULAR MEDIA (HCM)	32.3	(27.0 - 32.0)(25 - 30)				
CONC.HB.CORPUSC.MEDIA (CHCM)	34.6	(30.0 - 35.0)	96			
R.D.W.(indice de anisocitosis)	12.9	(11.5 - 14.0)				
PLAQUETAS RECUENTO DE	227	(150 - 450)	$x10^3/mm^3$			
VOL. PLAQUETARIO MEDIO (VPM)	9.0	(7.0 - 11.0)	fL			
PROT. C REACTIVA (PCR)	9.5	(0 - 5.0)	mg/L			
INFLUENZA VIRUS (DIRECTO)						
INFLUENZA VIRUS A	NEGATIVO					
INFLUENZA VIRUS B	NEGATIVO					
	Se recomiend	la detección molecular	d e			
	INFLUENZA VI	US A, AH1N1 y B por PCR,				
	el cuadro cl	nico lo justifique. No r				
	nueva toma d	muestra si se solicita	d entro de			

Dr. Carlos Roe Battistini

Dr. Eduardo Roe Battistini

Dr. Juan C. Gómez De la Torre

Dr. Manuel Leiva Beraún

GONZALEZ AMOEDO JUAN ALBERTO

08/08/2015

021412309

	021412309								
Análisis	F	Resultado	Ra	Rango de Referencia				Unidades	
	las	24hrs de	real	izado	el	test	rápido.		