# Optimal Bayesian Kalman Filtering with Prior Update

#### Toshinori Kitamura

University of California Davis tkitamura@ucdavis.edu

March 5, 2019

### Overview

- What's this paper?
- Overview Kalman Filter
  - Basic Idea
  - Algorithm
  - Problem of Kalman Filter
  - Solutions of the Problem
- 🗿 A Bayesian Solution: IBR Kalman Filter
  - Basic Idea
  - Algorithm
- 4 Prior update: Optimal Bayesian Kalman Filter
  - Basic Idea
  - Algorithm
  - Find Posterior Expectations
  - Performance
  - Problems and Future Works
- Summary



# What's this paper?

- Overview Kalman Filter
  - Basic Idea
  - Algorithm
  - Problem of Kalman Filter
  - Solutions of the Problem
- 3 A Bayesian Solution: IBR Kalman Filte
  - Basic Idea
  - Algorithm
- 4 Prior update: Optimal Bayesian Kalman Filter
  - Basic Idea
  - Algorithm
  - Find Posterior Expectations
  - Performance
  - Problems and Future Works
- 5 Summary

# What's this Paper?

- Introduce a new Kalman Filter: Optimal Bayesian Kalman Filter(OBKF)[Dehghannasiri et al., 2018]
- OBKF is an advanced Kalman Filter of IBR Kalman Filter[Dehghannasiri et al., 2017]
- OBKF exploits the measured data to estimate the true unknown value

- What's this paper?
- Overview Kalman Filter
  - Basic Idea
  - Algorithm
  - Problem of Kalman Filter
  - Solutions of the Problem
- 3 A Bayesian Solution: IBR Kalman Filter
  - Basic Idea
  - Algorithm
- 4 Prior update: Optimal Bayesian Kalman Filter
  - Basic Idea
  - Algorithm
  - Find Posterior Expectations
  - Performance
  - Problems and Future Works
- 5 Summary

#### Kalman Filter: Basic idea

- Outputs the optimal estimation of the state of a dynamic system
- Exploits both the prediction based on the model and the measurement
- Robot Localization

# Kalman Filter: Algorithm I

Works for linear dynamic systems:

### Linear Dynamic System Example

$$\mathbf{x}_{k+1} = \mathbf{\Phi}_k \mathbf{x}_k + \mathbf{\Gamma}_k \mathbf{u}_k$$

$$\mathbf{y}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{v}_k$$

- **x**<sub>k</sub>: state vector
- y<sub>k</sub>: observation vector
- $\mathbf{u}_k$ ,  $\mathbf{v}_k$ : zero-mean noise vector
- $Φ_k$ ,  $Γ_k$ ,  $H_k$ : transition matrix

# Kalman Filter: Algorithm II

### **Algorithm 1** Classic Kalman Filter

```
Input: \hat{\mathbf{x}}_{k}, \mathbf{P}^{x}_{k}, \mathbf{y}_{k}

1: \tilde{\mathbf{z}}_{k} = \mathbf{y}_{k} - \mathbf{H}_{k}\hat{\mathbf{x}}_{k}

2: \mathbf{K}_{k} = \mathbf{P}^{x}_{k}\mathbf{H}_{k}^{T}(\mathbf{H}_{k}\mathbf{P}^{x}_{k}\mathbf{H}_{k}^{T} + \mathbf{R})^{-1}

3: \hat{\mathbf{x}}_{k+1} = \mathbf{\Phi}_{k}\hat{\mathbf{x}}_{k} + \mathbf{\Phi}_{k}\mathbf{K}_{k}\tilde{\mathbf{z}}_{k}

4: \mathbf{P}^{x}_{k+1} = \mathbf{\Phi}_{k}(\mathbf{I} - \mathbf{K}_{k}\mathbf{H}_{k})\mathbf{P}^{x}_{k}\mathbf{\Phi}_{k}^{T} + \mathbf{\Gamma}_{k}\mathbf{Q}\mathbf{\Gamma}_{k}^{T}

Output: \hat{\mathbf{x}}_{k+1}, \mathbf{P}^{x}_{k+1}
```

- $\hat{\mathbf{x}}_k$ : estimated mean
- **P**<sup>x</sup><sub>k</sub>: estimated covariance
- R: Noise covariance of **u**<sub>k</sub>
- **Q**: Noise covariance of  $\mathbf{v}_k$

#### Problems of Kalman Filter

 The performance is sensitive to the accuracy of the noise covariance matrixes: Q and R [Sangsuk-lam and Bullock, 1990]

# Uncertainty of the noise covariances

Assume the covariances are parameterized by  $\theta = [\theta_1, \theta_2]$ 

- The covariance matrix of  ${\bf u}$  is  ${\bf Q}^{\theta_1}$  (e.g.  ${\bf Q}^{\theta_1}=\theta_1{\bf I}$ )
- The covariance matrix of  $\mathbf{v}$  is  $\mathbf{R}^{\theta_2}$  (e.g.  $\mathbf{R}^{\theta_2} = \theta_2 \mathbf{I}$ )
- Unknown prameter:  $\theta = [\theta_1, \theta_2]$

If the  $\theta$  used in the algorithm is very different from the true  $\theta$ , Kalman Filter provides a poor estimation

### Solutions of the Problem

- Non-Bayesian Approach: Adaptive Kalman Filter
  - Doesn't require any prior knowledge ( $\theta$  is not a R.V.)
  - Requires a lot measured data

### Solutions of the Problem

- Non-Bayesian Approach: Adaptive Kalman Filter
  - Doesn't require any prior knowledge ( $\theta$  is not a R.V.)
  - Requires a lot measured data
- Bayesian Approach: IBR Kalman Filter
  - Require prior knowledge ( $\theta$  is a R.V.)
  - Robust: Guarantees the best average performance relative to the prior distribution

### Solutions of the Problem

- Non-Bayesian Approach: Adaptive Kalman Filter
  - Doesn't require any prior knowledge ( $\theta$  is not a R.V.)
  - Requires a lot measured data
- Bayesian Approach: IBR Kalman Filter
  - Require prior knowledge ( $\theta$  is a R.V.)
  - Robust: Guarantees the best average performance relative to the prior distribution
- Bayesian Approach: Optimal Bayesian Kalman Filter
  - Requires prior knowledge ( $\theta$  is a R.V.)
  - Utilizes measured data to estimate unknown parameters
  - Optimal over the posterior distribution obtained from measured data

- What's this paper?
- Overview Kalman Filter
  - Basic Idea
  - Algorithm
  - Problem of Kalman Filter
  - Solutions of the Problem
- A Bayesian Solution: IBR Kalman Filter
  - Basic Idea
  - Algorithm
- 4 Prior update: Optimal Bayesian Kalman Filter
  - Basic Idea
  - Algorithm
  - Find Posterior Expectations
  - Performance
  - Problems and Future Works
- 5 Summary

### Basic Idea

- Assume the prior distribution  $\pi(\theta)$  for the uncertainty of the covariance matrices
- Best estimation relative to  $\pi(\theta)$ :  $\underset{\hat{\mathbf{x}}_{\theta}(k)}{\arg \min} E_{\theta}[E[(\mathbf{x}_{\theta}(k) - \hat{\mathbf{x}}_{\theta}(k))^{T} \times (\mathbf{x}_{\theta}(k) - \hat{\mathbf{x}}_{\theta}(k))]]$

# Algorithm: IBR Kalman Filter

 IBR Kalman Filter is obtained just replacing Q and R in Classic Kalman Filter with  $E_{\theta_1}[\mathbf{R}^{\theta_1}]$  and  $E_{\theta_2}[\mathbf{Q}^{\theta_2}]$  respectively

### Algorithm 2 IBR Kalman Filter

Input: 
$$\hat{\mathbf{x}}_k^{\theta}$$
,  $E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_k]$ ,  $\mathbf{y}_k^{\theta}$ 

1: 
$$\tilde{\mathbf{z}}_{k}^{\theta} = \mathbf{y}_{k}^{\theta} - \mathbf{H}_{k} \hat{\mathbf{x}}_{k}^{\theta}$$

2: 
$$\mathbf{K}_{k}^{\Theta} = E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k}]\mathbf{H}_{k}^{T}E_{\theta}^{-1}[\mathbf{H}_{k}\mathbf{P}^{\mathbf{x},\theta}_{k}\mathbf{H}_{k}^{T} + \mathbf{R}^{\theta_{2}}]$$

3: 
$$\hat{\mathbf{x}}_{k+1}^{\theta} = \mathbf{\Phi}_k \hat{\mathbf{x}}_k^{\theta} + \mathbf{\Phi}_k \mathbf{K}_k^{\Theta} \hat{\mathbf{z}}_k^{\theta}$$

$$4: E_{\theta}[\mathsf{P}^{\mathsf{x},\theta}{}_{k+1}] = \mathbf{\Phi}_{k}(\mathsf{I} - \mathsf{K}_{k}^{\Theta}\mathsf{H}_{k})E_{\theta}[\mathsf{P}^{\mathsf{x},\theta}{}_{k}]\mathbf{\Phi}_{k}^{T} + \mathsf{\Gamma}_{k}E_{\theta_{1}}[\mathsf{Q}^{\theta_{1}}{}_{k}]\mathsf{\Gamma}_{k}^{T}$$

Output:  $\hat{\mathbf{x}}_{k+1}^{\theta}$ ,  $E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k+1}]$ 

- What's this paper?
- Overview Kalman Filter
  - Basic Idea
  - Algorithm
  - Problem of Kalman Filter
  - Solutions of the Problem
- 3 A Bayesian Solution: IBR Kalman Filte
  - Basic Idea
  - Algorithm
- 4 Prior update: Optimal Bayesian Kalman Filter
  - Basic Idea
  - Algorithm
  - Find Posterior Expectations
  - Performance
  - Problems and Future Works
- **5** Summary

### Basic Idea: OBKF

- Based on the IBR Kalman Filter
- Utilize measured data  $\mathcal{Y}_k = \{\mathbf{y}_0, ..., \mathbf{y}_k\}$  to obtain the posterior distribution  $\pi(\theta|\mathcal{Y}_k)$
- Best estimation relative to  $\pi(\theta|\mathcal{Y}_{k-1})$ :  $\underset{\hat{\mathbf{x}}_{\theta}(k)}{\arg \min} E_{\theta}[E[(\mathbf{x}_{\theta}(k) \hat{\mathbf{x}}_{\theta}(k))^{T} \times (\mathbf{x}_{\theta}(k) \hat{\mathbf{x}}_{\theta}(k))]|\mathcal{Y}_{k-1}]$

# Algorithm: OBKF

• OBKF is obtained just replacing  $\mathbf{Q}$  and  $\mathbf{R}$  in Classic Kalman Filter with  $E_{\theta_1}[\mathbf{Q}^{\theta_1}|\mathcal{Y}_k]$  and  $E_{\theta_1}[\mathbf{R}^{\theta_2}|\mathcal{Y}_k]$  respectively

### Algorithm 3 OBKF

Input: 
$$\hat{\mathbf{x}}_{k}^{\theta}$$
,  $E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k}|\mathcal{Y}_{k-1}]$ ,  $\mathcal{Y}_{k}$   
1:  $\tilde{\mathbf{z}}_{k}^{\theta} = \mathbf{y}_{k}^{\theta} - \mathbf{H}_{k}\hat{\mathbf{x}}_{k}^{\theta}$   
2:  $\mathbf{K}_{k}^{\Theta^{*}} = E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k}|\mathcal{Y}_{k-1}]\mathbf{H}_{k}^{T}E_{\theta}^{-1}[\mathbf{H}_{k}\mathbf{P}^{\mathbf{x},\theta}_{k}\mathbf{H}_{k}^{T} + \mathbf{R}^{\theta_{2}}|\mathcal{Y}_{k-1}]$   
3:  $\hat{\mathbf{x}}_{k+1}^{\theta} = \mathbf{\Phi}_{k}\hat{\mathbf{x}}_{k}^{\theta} + \mathbf{\Phi}_{k}\mathbf{K}_{k}^{\Theta}\tilde{\mathbf{z}}_{k}^{\theta}$   
4:  $E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k+1}|\mathcal{Y}_{k}] = \mathbf{\Phi}_{k}(\mathbf{I} - \mathbf{K}_{k}^{\Theta^{*}}\mathbf{H}_{k})E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k}|\mathcal{Y}_{k}]\mathbf{\Phi}_{k}^{T} + \mathbf{\Gamma}_{k}E_{\theta_{1}}[\mathbf{Q}^{\theta_{1}}|\mathcal{Y}_{k}]\mathbf{\Gamma}_{k}^{T}$   
Output:  $\hat{\mathbf{x}}_{k+1}^{\theta}$ ,  $E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k+1}|\mathcal{Y}_{k}]$ 

# Algorithm: OBKF

• OBKF is obtained just replacing  $\mathbf{Q}$  and  $\mathbf{R}$  in Classic Kalman Filter with  $E_{\theta_1}[\mathbf{Q}^{\theta_1}|\mathcal{Y}_k]$  and  $E_{\theta_1}[\mathbf{R}^{\theta_2}|\mathcal{Y}_k]$  respectively

### **Algorithm 4** OBKF

Input: 
$$\hat{\mathbf{x}}_{k}^{\theta}$$
,  $E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k}|\mathcal{Y}_{k-1}]$ ,  $\mathcal{Y}_{k}$   
1:  $\tilde{\mathbf{z}}_{k}^{\theta} = \mathbf{y}_{k}^{\theta} - \mathbf{H}_{k}\hat{\mathbf{x}}_{k}^{\theta}$   
2:  $\mathbf{K}_{k}^{\Theta^{*}} = E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k}|\mathcal{Y}_{k-1}]\mathbf{H}_{k}^{T}E_{\theta}^{-1}[\mathbf{H}_{k}\mathbf{P}^{\mathbf{x},\theta}_{k}\mathbf{H}_{k}^{T} + \mathbf{R}^{\theta_{2}}|\mathcal{Y}_{k-1}]$   
3:  $\hat{\mathbf{x}}_{k+1}^{\theta} = \mathbf{\Phi}_{k}\hat{\mathbf{x}}_{k}^{\theta} + \mathbf{\Phi}_{k}\mathbf{K}_{k}^{\Theta}\tilde{\mathbf{z}}_{k}^{\theta}$   
4:  $E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k+1}|\mathcal{Y}_{k}] = \mathbf{\Phi}_{k}(\mathbf{I} - \mathbf{K}_{k}^{\Theta^{*}}\mathbf{H}_{k})E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k}|\mathcal{Y}_{k}]\mathbf{\Phi}_{k}^{T} + \mathbf{\Gamma}_{k}E_{\theta_{1}}[\mathbf{Q}^{\theta_{1}}|\mathcal{Y}_{k}]\mathbf{\Gamma}_{k}^{T}$   
Output:  $\hat{\mathbf{x}}_{k+1}^{\theta}$ ,  $E_{\theta}[\mathbf{P}^{\mathbf{x},\theta}_{k+1}|\mathcal{Y}_{k}]$ 

How are the posterior expectations found:  $E_{\theta_1}[\mathbf{Q}^{\theta_1}|\mathcal{Y}_k]$  and  $E_{\theta_2}[\mathbf{R}^{\theta_2}|\mathcal{Y}_k]$  ?

# Find Posterior Expectatoins: $E_{\theta_1}[\mathbf{Q}^{\theta_1}|\mathcal{Y}_k]$ and $E_{\theta_2}[\mathbf{R}^{\overline{\theta_2}}|\mathcal{Y}_k]$

- Approximate  $E_{\theta_1}[\mathbf{Q}^{\theta_1}|\mathcal{Y}_k]$  and  $E_{\theta_2}[\mathbf{R}^{\theta_2}|\mathcal{Y}_k]$  using Metropolis Hastings MCMC
- MCMC requires the likelihood function  $f(\mathcal{Y}_k|\theta)$
- $f(\mathcal{Y}_k|\theta)$  is calculated by:
  - Marginalize  $f(\mathcal{Y}_k, \mathcal{X}_k | \theta)$  over  $\mathcal{X}_k$
  - Factorize  $f(\mathcal{Y}_k, \mathcal{X}_k | \theta)$  by the Markov assumption
  - Using the factor-graph, this step can be simplified
  - ullet  $f(\mathcal{Y}_k| heta)$  can be calculated by recursive algorithm

### Algorithm: Likelihood Function Calculation

### **Algorithm 5** Factor-Graph-Based Likelihood Function Calculation

#### Input: $\theta$ , $\mathcal{Y}_k$

1: 
$$\mathbf{M}_0 \leftarrow E[\mathbf{x}_0], \ S_0 \leftarrow 1, \ \mathbf{\Sigma}_0 \leftarrow cov[\mathbf{x}_0], \ i \leftarrow 0$$

2: while 
$$i \leq k-1$$
 do

3: 
$$\mathbf{W}_i \leftarrow \mathbf{H}_i^T (\mathbf{R}^{\theta_2})^{-1} \mathbf{y}_i + \mathbf{\Sigma}_i^{-1} \mathbf{M}_i$$

4: 
$$\mathbf{\Lambda}_{i}^{-1} \leftarrow \mathbf{\Phi}_{i}^{T}(\tilde{\mathbf{Q}}_{i}^{\theta_{1}})^{-1}\mathbf{\Phi}_{i} + \mathbf{H}_{i}^{T}(\mathbf{R}^{\theta_{2}})^{-1}\mathbf{H}_{i} + \mathbf{\Sigma}_{i}^{-1}$$

5: 
$$\mathbf{\Sigma}_{i+1}^{-1} \leftarrow (\tilde{\mathbf{Q}}_{i}^{\theta_{1}})^{-1} - (\tilde{\mathbf{Q}}_{i}^{\theta_{1}})^{-1} \mathbf{\Phi}_{i} \mathbf{\Lambda}_{i} \mathbf{\Phi}_{i}^{T} (\tilde{\mathbf{Q}}_{i}^{\theta_{1}})^{-1}$$

6: 
$$\mathbf{M}_{i+1} \leftarrow \mathbf{\Sigma}_{i+1}(\tilde{\mathbf{Q}}_i^{\theta_1})^{-1}\mathbf{\Phi}_i\mathbf{\Lambda}_i(\mathbf{H}_i^T(\mathbf{R}^{\theta_2})^{-1}\mathbf{y}_i + \mathbf{\Sigma}_i^{-1}\mathbf{M}_i)$$

7: 
$$S_{i+1} \leftarrow \text{using Eq.}(29) \text{ in the paper}$$

8: 
$$i \leftarrow i + 1$$

9: end while

10: 
$$\mathbf{\Delta}_k^{-1} \leftarrow \mathbf{H}_k^T (\mathbf{R}^{\theta_2})^{-1} \mathbf{H}_k + \mathbf{\Sigma}_k^{-1}$$

11: 
$$\mathbf{G}_{k} \leftarrow \mathbf{\Delta}_{k} (\mathbf{H}_{k}^{T} (\mathbf{R}^{\theta_{2}})^{-1} \mathbf{y}_{k} + \mathbf{\Sigma}_{k}^{-1} \mathbf{M}_{k})$$

12: 
$$f(\mathcal{Y}_k|\theta) \leftarrow \text{using Eq.(34)}$$
 in the paper

Output:  $f(\mathcal{Y}_k|\theta)$ 

# Performance: Accuracy



Figure: Performance analysis for specific  $\theta_1=1$  and known  $\theta_2$  OBKF achieves the lowest MSE (cited from [Dehghannasiri et al., 2018])

# Performance: Data Efficiency



Figure: Unknown  $\theta_1$  and comparison with an adaptive Kalman Filter (cited from [Dehghannasiri et al., 2018])

### Problems and Future Works

- If the prior distribution doesn't include the true value, the estimation won't converge
- Factor-graph and MCMC are computationally expensive. Finding an efficient approach is a future work.

- What's this paper?
- Overview Kalman Filter
  - Basic Idea
  - Algorithm
  - Problem of Kalman Filter
  - Solutions of the Problem
- 3 A Bayesian Solution: IBR Kalman Filte
  - Basic Idea
  - Algorithm
- Prior update: Optimal Bayesian Kalman Filter
  - Basic Idea
  - Algorithm
  - Find Posterior Expectations
  - Performance
  - Problems and Future Works
- Summary

### Summary

- OBKF converges to the optimal estimation as long as the prior distribution includes the true value
- OBKF requires much less data compared to Non-Bayesian methods
- Computational cost and deciding the prior distribution are problems

### References I

- Analysis of Discrete-Time Kalman Filterinng Under Incorrect Noise Covariances.
- Dalton, L. A. and Dougherty, E. R. (2014). Intrinsically optimal bayesian robust filtering. IEEE Transactions on Signal Processing, 62(3):657–670.
- Dehghannasiri, R., Esfahani, M. S., and Dougherty, E. R. (2017). Intrinsically Bayesian robust kalman filter: An innovation process approach.
  - *IEEE Transactions on Signal Processing*, 65(10):2531–2546.
- Dehghannasiri, R., Esfahani, M. S., Qian, X., and Dougherty, E. R. (2018).
  - Optimal Bayesian Kalman Filtering with Prior Update.
  - IEEE Transactions on Signal Processing, 66(8):1982–1996.

### References II



A New Approach to Linear Filtering and Prediction Problems. *Journal of Basic Engineering*, 82(1):35.

🔋 Sangsuk-lam, S. and Bullock, T. (1990).

Analysis of discrete-time Kalman filtering under incorrect noise covariances.

IEEE Transactions on Automatic Control, 35(12):1304–1309.