

•

• Simple DC behavior
• Schematic

• Schematic

VDD

Rp

Vout

Vout

Vin = VDD

Voin = 0

Voin = VDD

Administrivia

• Homework 5 due this week

• Lab 6 (last) this week

• Projects start next week

Static Complementary CMOS $\rm V_{\rm DD}$ ln_1 Pull-up Inverting switches ln_2 Network $\ln_{\rm N}$ $F(ln_1,ln_2,...ln_N)$ $\frac{\ln_1}{\ln_2}$ Pull-down Non-Inverting switches Network ln_N PUN and PDN are dual logic networks PUN and PDN functions are complementary **Dual Graphs** EECS151 L12 CMOS2 14 Berkeley @090 Nikolić Fall 2021

Example Gate: NAND $\begin{array}{c|cccc}
\hline
A & B & Out \\
\hline
0 & 0 & 1 \\
\hline
1 & 1 & 0 \\
\hline
1 & 1 & 0
\end{array}$ $\begin{array}{c|cccc}
\hline
A & B & Out \\
\hline
0 & 1 & 1 \\
\hline
1 & 1 & 0
\end{array}$ $\begin{array}{c|cccc}
\hline
A & B & Out \\
\hline
0 & 1 & 1 \\
\hline
1 & 1 & 0
\end{array}$ $\begin{array}{c|cccc}
\hline
A & B & Out \\
\hline
0 & 1 & 1 \\
\hline
1 & 1 & 0
\end{array}$ $\begin{array}{c|cccc}
\hline
A & B & Out \\
\hline
0 & 1 & 1 \\
\hline
1 & 1 & 0
\end{array}$ $\begin{array}{c|cccc}
\hline
A & B & Out \\
\hline
0 & 1 & 1 \\
\hline
1 & 1 & 0
\end{array}$ $\begin{array}{c|cccc}
\hline
A & B & Out \\
\hline
0 & 1 & 1 \\
\hline
1 & 1 & 0
\end{array}$ $\begin{array}{c|cccc}
\hline
A & B & Out \\
\hline
0 & 1 & 1 \\
\hline
0 & 1 &$

CMOS Multiplexer

Sel Y
0 A
1 B

EECS151 L12 CMOS2

Nikolić Foll 2021
28 Berkeley

Summary

- CMOS allows for convenient switch level abstraction
- CMOS pull-up and pull-down networks are complementary
 - Graph models for CMOS gates
- Transistor sizing affects gate performance
- Delay is a linear function of R and C

EECS151 L12 CMOS2

Nikolić Fall 202

43 Berkeley 60 60