Package 'oec'

January 29, 2017

Type Package

Title Use the Observatory of Economic Complexity's API in R
Version 3.0
Date 2016-11-17
Author Cesar A. Hidalgo hidalgo@media.mit.edu [aut], Dave Landry <dave@datawheel.us> [aut] Alexander Simoes <alex@datawheel.us> [aut, cph], Mauricio Vargas S. mauricio Vargas S. smaller.cl [aut, cre]</alex@datawheel.us></dave@datawheel.us>
Maintainer Mauricio Vargas S. <mvargas@dcc.uchile.cl></mvargas@dcc.uchile.cl>
<pre>URL http://atlas.media.mit.edu/en/, https://github.com/pachamaltese/oec/</pre>
Description Use The Observatory of Economic Complexity's API in R to download international trade data in csv and create and D3Plus visualizations.
License MIT + file LICENSE
LazyData TRUE
Depends curl, data.table, jsonlite, plyr, servr RoxygenNote 5.0.1 R topics documented:
oec-package countries_list demos getdata getdata_interval hs92_2char hs92_6char hs92_8char hs92_colors install_d3plus network network_interval sitc_rev2_2char

2 oec-package

Index			1	13
	treemap_interval	 	 1	1
	treemap	 	 1	1
	sitc_rev2_colors	 	 1	0
	sitc_rev2_4char	 	 1	0

oec-package

The Observatory of Economic Complexity

Description

Use The Observatory of Economic Complexity's API from R console to obtain international trade data to create spreadsheets (csv format) and D3Plus visualizations.

Details

The functions provided within this package are:

install_d3plus Installs D3 and D3Plus.

demos Copies the demo file.

getdata Downloads and processes the data from the API for a certain year.

getdata_interval Experimental function.

network Creates a network for a given year.

treemap Creates a treemap for a given year.

treemap_interval Experimental function.

The datasets provided within this package are:

countries_list A list of all the countries in the world and its respective country code.

hs92_2char HS92 groups. This file is used to create spreadsheets and visualizations with trade data.

hs92_6char HS92 products (6 characters codes). This file is used to create spreadsheets and visualizations with trade data.

hs92_8char HS92 products (8 characters codes). This file is used to create spreadsheets and visualizations with trade data.

hs92_colors HS92 colors. This file is used to create spreadsheets and visualizations based on trade data.

sitc_rev2_2char SITC (rev. 2) groups. This file is used to create spreadsheets and visualizations with trade data.

sitc_rev2_4char SITC (rev. 2) products (4 characters codes). This file is used to create spread-sheets and visualizations with trade data.

sitc_rev2_colors SITC (rev. 2) colors. This file is used to create spreadsheets and visualizations with trade data.

countries_list 3

countries_list

A list of all the countries

Description

A list of all the countries in the world and its country code. You need the country code (e.g. chl) to obtain data of a country (e.g Chile)

Usage

```
countries_list
```

Format

A data frame with 262 observations on the following 2 variables.

```
country the full names of the countries country_code the ids of the countries
```

Examples

```
# see the list of countries
# countries_list
```

demos

Copies the demo file

Description

Copies the demo file

Usage

demos()

Value

Copies a file named $demo_examples.R$ to the working directory.

```
# demos()
```

4 getdata_interval

getdata

Downloads and processes the data from the API

Description

Downloads and processes the data from the API

Usage

```
getdata(origin, destination, year, classification)
```

Arguments

origin Country code of origin (e.g. "chl" for Chile)

destination Country code of destination (e.g. "chn" for China)

year The OEC's API ranges from 1962 to 2014

classification $\,$ Trade classification that can be "6" (HS92 6 characters) or "8" (HS92 8 characters) are solved as a classification of the classificati

ters) for the year 1995 and going or "4" (SITC rev.2 4 characters) for the year

1962 and ongoing. The default is set to "6".

Examples

```
# Run countries_list() to display the full list of countries
# Chile is "chl" and China is "chn"

# Download trade data from OEC's API (HS92 6 characters product list)
# for Chile and China in the year 2014
# getdata("chl", "chn", 2014)
# is the same as
# getdata("chl", "chn", 2014, 6)

# Download trade data from OEC's API (HS92 8 characters product list)
# for Chile and China in the year 2014
# getdata("chl", "chn", 2014, 8)

# Download trade data from OEC's API (SITC rev.2 4 characters product list)
# for Chile and China in the year 2014
# getdata("chl", "chn", 2014, 4)
```

getdata_interval

Downloads and processes the data from the API

Description

Downloads and processes the data from the API

Usage

```
getdata_interval(origin, destination, initial_year, final_year, classification,
  interval)
```

hs92_2char 5

Arguments

origin Country code of origin (e.g. "chl" for Chile)

destination Country code of destination (e.g. "chn" for China)

initial_year The OEC's API ranges from 1962 to 2014. This needs to be lower than 'final_year'

final_year The OEC's API ranges from 1962 to 2014. This needs to be greater than 'initial_year'

classification Trade classification that can be "6" (HS92 6 characters) or "8" (HS92 8 characters) for the year 1995 and going or "4" (SITC rev.2 4 characters) for the year 1962 and ongoing. The default is set to "6".

interval is an optional parameter to define the distance between years (by default set to

1)

Examples

```
# Run countries_list() to display the full list of countries
# Chile is "chl" and China is "chn"
# Download trade data from OEC's API (HS92 6 characters product list)
# for Chile and China in the years 2010 to 2014
# getdata_interval("chl", "chn", 2011, 2014)
# is the same as
# getdata_interval("chl", "chn", 2011, 2014, 6, 1)
# Download trade data from OEC's API (HS92 6 characters product list)
# for Chile and China in the years 2010, 2012 and 2014
# getdata_interval("chl", "chn", 2011, 2014, 6, 2)
# Download trade data from OEC's API (HS92 8 characters product list)
# for Chile and China in the years 2010, 2012 and 2014
# getdata_interval("chl", "chn", 2011, 2014, 8, 2)
# Download trade data from OEC's API (SITC rev.2 4 characters product list)
# for Chile and China in the years 2010, 2012 and 2014
# getdata_interval("chl", "chn", 2011, 2014, 4, 2)
```

hs92_2char

HS92 groups

Description

HS92 groups. This file is used to create the visualizations.

Usage

hs92_2char

Format

A data frame with 22 observations on the following 2 variables.

hs92_group_name Contains the H292 groups (e.g. animal products, vegetable products, etc) hs92_group_id Contains the associated codes of every group (e.g. animal products is 01)

6 hs92_8char

Examples

```
# see the group codes for HS92 (6 and 8 characters)
# hs92_2char
```

hs92_6char

HS92 products (6 characters)

Description

HS92 products (6 characters). This file is used to create the visualizations.

Usage

hs92_6char

Format

A data frame with 1242 observations on the following 4 variables.

hs92_product_name Contains the H292 products' names (e.g. horses, bovine, pigs, etc) hs92_group_name Contains the H292 groups (e.g. animal products, vegetable products, etc) hs92_product_id Contains the associated codes of every product (e.g. horses is 010101)

hs92_group_id Contains the associated codes of every group (e.g. animal products is 01)

Examples

```
\# see the group codes and product codes for HS92 (6 characters) \# hs92_6char
```

hs92_8char

HS92 products (8 characters)

Description

HS92 products (8 characters). This file is used to create the visualizations.

Usage

hs92_8char

Format

A data frame with 5040 observations on the following 4 variables.

hs92_product_name Contains the H292 products' names (e.g. horses, bovine, pigs, etc) hs92_group_name Contains the H292 groups (e.g. animal products, vegetable products, etc) hs92_product_id Contains the associated codes of every product (e.g. horses is 010101) hs92_group_id Contains the associated codes of every group (e.g. animal products is 01)

Examples

```
\# see the group codes and product codes for HS92 (8 characters)
```

hs92_8char

hs92_colors 7

hs92_colors

HS92 colors

Description

HS92 colors. This file is used to create the visualizations.

Usage

hs_colors

Format

A data frame with 21 observations on the following 2 variables.

hs92_group_name Contains the H292 groups (e.g. animal products, vegetable products, etc) hs92_color Contains the associated colors of every group (e.g. mineral products is #330000)

Examples

```
\mbox{\#} see the group codes and group colors for HS92 (6 and 8 characters) \mbox{\#} hs92_colors
```

install_d3plus

Installs D3 and D3Plus

Description

Installs D3 and D3Plus

Usage

```
install_d3plus()
```

Value

Copies a folder named d3plus to the working directory and it contains the js files and icons to make the visualizations

```
# install_d3plus()
```

8 network_interval

network

Creates a network of exports for a given year

Description

Creates a network of exports for a given year

Usage

```
network(origin, destination, year, classification)
```

Arguments

origin is the country code of origin (e.g. "chl" for Chile)
destination is the country code of origin (e.g. "chn" for China)
year is the year and the OEC's API ranges from 1962 to 2014

classification refers to the trade classification that can be "6" (HS92 6 characters) or "8" (HS92

8 characters) for the year 1995 and going or "4" (SITC rev.2 4 characters) for

the year 1962 and ongoing

Value

Creates an HTML file with a network visualization for a given year.

Examples

```
# Visualize trade data from OEC's API (HS92 6 characters product list)
# for exports from Chile to China in the year 2014
# network("chl", "chn", 2014, 6)
# is the same as
# network("chl", "chn", 2014)
```

network_interval

Creates a network of exports for a given year

Description

Creates a network of exports for a given year

Usage

```
network_interval(origin, destination, initial_year, final_year, interval,
  classification)
```

sitc_rev2_2char 9

Arguments

origin is the country code of origin (e.g. "chl" for Chile)

is the country code of origin (e.g. "chn" for China)

initial_year The OEC's API ranges from 1962 to 2014. This needs to be lower than 'final_year'

final_year The OEC's API ranges from 1962 to 2014. This needs to be greater than 'initial_year'

interval is an optional parameter to define the distance between years (by default set to 1)

classification refers to the trade classification that can be "6" (HS92 6 characters) or "8" (HS92

8 characters) for the year 1995 and going or "4" (SITC rev.2 4 characters) for

the year 1962 and ongoing

Value

Creates an HTML file with a network visualization for a given year.

Examples

```
# Visualize trade data from OEC's API (HS92 6 characters product list)
# for exports from Chile to China in the year 2014
# network("chl", "chn", 2014, 6)
# is the same as
# network("chl", "chn", 2014)
```

sitc_rev2_2char

SITC (rev. 2) groups

Description

SITC (rev. 2) groups. This file is used to create the visualizations.

Usage

hs92_2char

Format

A data frame with 36 observations on the following 2 variables.

```
sitc_rev2_group_name Contains the SITC (rev.2) groups (e.g. machinery, electronics, etc) sitc_rev2_group_id Contains the associated codes of every group (e.g. machinery is 10)
```

```
# see the group codes for SITC rev.2 (4 characters)
# sitc_rev2_2char
```

10 sitc_rev2_colors

sitc_rev2_4char

SITC (rev.2) products (4 characters)

Description

SITC (rev. 2) products (4 characters). This file is used to create the visualizations.

Usage

```
sitc_rev2_4char
```

Format

A data frame with 988 observations on the following 5 variables.

sitc_rev2_product_name Contains the SITC rev.2 products' names (e.g. initiating devices, polymerization ion exchangers, etc)

sitc_rev2_group_name Contains the SITC rev.2 groups (e.g. machinery, electronics products,
 etc)

sitc_rev2_product_id Contains the associated codes of every product (e.g. initiating devices is 5722)

sitc_rev2_group_id Contains the associated codes of every group (e.g. machinery is 10)

sitc_rev2_product_code Contains the associated extended codes of every group (e.g. machinery is 105722 that is sitc group + sitc id)

Examples

```
# see the group codes and product codes for SITC rev.2 (4 characters)
# sitc_rev2_4char
```

sitc_rev2_colors

SITC (rev. 2) colors

Description

SITC (rev. 2) colors. This file is used to create the visualizations.

Usage

```
hs_colors
```

Format

A data frame with 36 observations on the following 2 variables.

```
sitc_rev2_group_name Contains the SITC (rev.2) groups (e.g. machinery, electronics, etc) sitc_rev2_color Contains the associated colors of every group (e.g. machinery is #17bcef)
```

```
# see the group codes and group colors for SITC rev.2 (4 characters)
# sitc_rev2_colors
```

treemap 11

treemap	Creates a treemap for a given year	
---------	------------------------------------	--

Description

Creates a treemap for a given year

Usage

```
treemap(origin, destination, variable, year, classification, depth)
```

Arguments

origin is the country code of origin (e.g. "chl" for Chile)

destination is the country code of origin (e.g. "chn" for China)

variable is the variable to visualize and it can be "imports", "exports" or "exchange" (trade exchange)

year is the year and the OEC's API ranges from 1962 to 2014

classification refers to the trade classification that can be "6" (HS92 6 characters) or "8" (HS92 8 characters) for the year 1995 and going or "4" (SITC rev.2 4 characters) for the year 1962 and ongoing

is an optional parameter that can take values "0" (group's detail) or "1" (prod-

uct's detail)

Value

depth

Creates an HTML file with a treemap visualization for a given year.

Examples

```
# Visualize trade data from OEC's API (HS92 6 characters product list)
# for Chile and China in the year 2014
# treemap("chl", "chn", "exports", 2014, 6)
# is the same as
# treemap("chl", "chn", "exports", 2014)
```

treemap_interval

Creates a treemap for a given given period of years

Description

Creates a treemap for a given given period of years

Usage

```
treemap_interval(origin, destination, variable, initial_year, final_year,
  interval, classification, depth)
```

12 treemap_interval

Arguments

origin is the country code of origin (e.g. "chl" for Chile) destination is the country code of origin (e.g. "chn" for China)

variable is the variable to visualize and it can be "imports", "exports" or "exchange"

(trade exchange)

initial_year is the initial year and the OEC's API ranges from 1962 to 2014 final_year is the final year and the OEC's API ranges from 1962 to 2014

interval is an optional parameter to define the distance between years (by default set to

1)

classification refers to the trade classification that can be "6" (HS92 6 characters) or "8" (HS92

8 characters) for the year 1995 and going or "4" (SITC rev.2 4 characters) for

the year 1962 and ongoing

depth is an optional parameter that can take values "0" (group's detail) or "1" (prod-

uct's detail), by defaults its set to 1

Value

Creates an HTML file with a treemap visualization for a given period of years.

Examples

```
# Visualize trade data from OEC's API (HS92 6 characters product list)
# for Chile and China in the years 2011 to 2014
# treemap_interval("chl", "chn", "exports", 2011, 2014, 1, 6 ,1)
# is the same as
```

treemap_interval("chl", "chn", "exports", 2011, 2014)

Index

```
*Topic datasets
    countries_list, 3
    hs92_2char, 5
    hs92_6char, 6
    hs92_8char, 6
    hs92_colors, 7
    sitc_rev2_2char, 9
    sitc_rev2_4char, 10
    sitc_rev2_colors, 10
*Topic functions
    demos, 3
    getdata, 4
    getdata_interval, 4
    install_d3plus, 7
    network, 8
    network_interval, 8
    treemap, 11
    treemap_interval, 11
countries_list, 2, 3
demos, 2, 3
getdata, 2, 4
getdata_interval, 2, 4
hs92_2char, 2, 5
hs92_6char, 2, 6
hs92_8char, 2, 6
hs92\_colors, 2, 7
install_d3plus, 2, 7
network, 2, 8
network_interval, 8
oec (oec-package), 2
oec-package, 2
sitc_rev2_2char, 2, 9
sitc_rev2_4char, 2, 10
sitc_rev2_colors, 2, 10
treemap, 2, 11
treemap_interval, 2, 11
```