Resolución de problemas CI-0112 Programación 1

Sivana Hamer - sivana.hamer@ucr.ac.cr
Escuela de Ciencias de la Computación e Informática
Universidad de Costa Rica
Licencia: CC BY-NC-SA 4.0

¿Qué es la resolución de problemas?

La resolución de problemas es un proceso donde se...

La resolución de problemas tiene...

Los problemas son lo que buscamos resolver

¿Cuáles son ejemplos de problemas que se pueden resolver en computación?

Problema: Determine si es un número es primo. Resuelvan el problema en grupos :)

La resolución de problemas se puede ver como un ciclo

Análisis

Analizar es entender el problema

Vocabulario

Puede ser conocido como requerimientos o ilicitación.

Los problemas son ambiguos

Dado la ambiguedad, se debe...

- Obtener buena información inicial.
- Entender bien el contexto y la situación.
- Preguntar todo lo que no entienda.
- Establecer los limites del problema.

Diseño

Diseñar es dar una solución abstracta

Nota

Es cuando un arquitecto crea un plano.

Existen algunas estrategias para resolucionar problemas...

Se puede usar fuerza bruta que es intentar todas las posibles soluciones

Nota

Use la fuerza bruta para iniciar el diseño pero no como solución final.

Se puede descomponer el problema en subproblemas

Se puede utilizar inducir utilizando varios ejemplos para determinar un patron

Existen distintas maneras en que se puede diseñar una solución...

Con algoritmos se puede describir una serie de pasos finitos, ordenados y claros para resolver un problema

Cocinar palomitas

- 1. Quitar el plástico de la bolsas.
- 2. Abrir el microondas.
- 3. Meter la bolsa en el microondas.
- 4. Cerrar el microondas.
- 5. Poner de tiempo 3 minutos en el microondas.
- 6. Iniciar el microondas.
- 7. Esperar 3 minutos.
- 8. Abrir el microondas.
- 9. Sacar las palomitas del microondas.

Con pseudocódigo se puede escribir algoritmos similares al lenguaje natural

Cocinar palomitas

```
// Los tiempos son en segundos
palomitas = Palomitas()
microondas = Microondas()
microondas.meter(palomitas, 180) // Abre, mete y cierra
tiempoEspera = 0
si tiempoEspera < 180:
    tiempoEspera += 1
    esperar(1)
comida = microondas.sacar() // Abre, mete y cierra</pre>
```

Con los modelos se puede visualizar el diseño de un sistema

Nota

En computación los modelos UML son muy usados.

Se deben considerar varios aspectos cuando damos una solución

- Simpleza: ¿Qué tan sencillo es la implementación del algoritmo?
- Claridad: ¿Qué tan claro es la solución?
- Eficiencia: ¿Cuánto trabajo debe realizar el algoritmo?
- Generabilizidad: ¿Qué tan ajustable a nuevas entradas es el algoritmo?
- Otros más avanzados como usabilidad, privacidad, mantenibilidad...

Implementación

Implementar es dar una solución programada con código

```
<stop stop-color="#1D304B" offset="]</pre>
weet width="800" height="450" rx="8" fill="w
linearGradient x1="87.565%" y1
             <stop stop-color="#FFF"
             <stop stop-color="#FFF"</pre>
             <feOffset dy="16" in=
             reGaussianBlur stdDeviation
             <feColorMatrix values="""</pre>
```

Nota

Vamos a estudiar en profundidad como programar en todo el semestre

Pruebas

Probar involucrar verificar que funciona

Nota

Las pruebas son parte de la solución. Si no prueba, no se puede saber si la solución funciona.

Se prueba tomando en cuenta casos de prueba, con sus entradas y salidas

Test Case Type	Description	Test Step	Expected Result	Status
Functionality	Area should accommodate up to 20 characters	Input up to 20 characters	All 20 characters in the request should be appropriate	Pass or Fail
Security	Verify password rules are working	Create a new password in accordance with rules	The user's password will be accepted if it adheres to the rules	Pass or Fail
Usability	Ensure all links are working properly	Have users click on various links on the page	Links will take users to another web page according to the on-page URL	Pass or Fail

Ahora, ya saben como resolver problemas...

Ahora, ya saben como resolver problemas...
Resuelvan el problema anterior (de nuevo) en grupos :)

FAQ (Frequently asked questions)

Q: ¿Cuántas maneras existen para resolucionar un problema?

Q: ¿Cuántas maneras existen para resolucionar un problema? A: ¡Infinitas! Q: ¿Cuál es la mejor resolución de un problema?

Q: ¿Cuál es la mejor resolución de un problema? A: Depende del contexto y la circunstancia. Q: ¿Cómo puedo mejorar solucionando problemas?

Q: ¿Cómo puedo mejorar solucionando problemas? A: Práctica, práctica y más práctica. También más práctica. Q: ¿Se resuelve el problema secuencialmente?

Q: ¿Se resuelve el problema secuencialmente? A: No. Es un proceso iterativo no secuencial.

"My team has created a very innovative solution, but we're still looking for a problem to go with it."

Referencias I

"Class notes: Algorithmic thinking." [Online]. Available: https://www.cs.cmu.edu/~112/notes/notes-algorithmic-thinking.html

"How problem solving skills can help with anger management," [Image]. [Online]. Available: https://lifesupportscounselling.com.au/wp-content/uploads/2017/01/problem-solving-anger-management.png

"Can't automate what you don't understand," [Image]. [Online]. Available: https://cdn.sysaid.com/wp-content/uploads/2021/06/cant-automate.png

"Duck and rabbit," [Image]. [Online]. Available: https://img.ti-media.net/wp/uploads/sites/46/2016/02/imagemain-920x613.jpg

"Clarity grow your businessg," [Image]. [Online]. Available: https://executiveleader.com/wp-content/uploads/2020/08/Clarity-growth-small-copy-862x610.jpg

Referencias II

[Image]. [Online]. Available:

https://images.unsplash.com/photo-1542831371-29b0f74f9713?ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=1950&q=80

[Image]. [Online]. Available:

https://static-cms.hotjar.com/images/website-usability-testing.width-1500.png

[Image]. [Online]. Available: https://rockcontent.com/es/wp-content/uploads/sites/3/2021/02/plan-de-marketing-1024x538.png.webp

[Image]. [Online]. Available:

https://soundcloud.com/sspacelordmusic/game-over-try-again

[Image]. [Online]. Available:

https://www.barefootcomputing.org/concepts-and-approaches/decomposition

[Image]. [Online]. Available:

https://www.parasoft.com/blog/how-to-write-test-cases-for-software-examples-tutorial/

Referencias III

[Image]. [Online]. Available: https://miro.medium.com/max/1296/1*FDy196B8EFhUnyFbGclEXA.png1

L. Villalobos, "Fundamentos de la computación," Material del curso CI-0202, Universidad de Costa Rica, 2019.

S. Hamer, "Fundamentos de la computación," Material del curso CI-0202, Universidad de Costa Rica, 2021.

Textbook of Computer Science for Class XI, 2019.

A. B. Downey and C. Mayfield, *Think Java: How to Think Like a Computer Scientist*, second edition ed., 2020.

R. Glasbergen, [Image]. [Online]. Available: https://glasbergen.b-cdn.net/wp-content/gallery/creative/cre8.gif