

MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425

SLAS874-MAY 2015

MSP430FG662x, MSP430FG642x Mixed-Signal Microcontrollers

1 Device Overview

1.1 Features

- Low Supply Voltage Range:
 3.6 V Down to 1.8 V
- Ultra-Low Power Consumption
 - Active Mode (AM):
 All System Clocks Active:
 250 μA/MHz at 8 MHz, 3.0 V, Flash Program Execution (Typical)
 - Standby Mode (LPM3):
 Watchdog With Crystal, and Supply Supervisor
 Operational, Full RAM Retention, Fast Wakeup:
 3.2 μA at 2.2 V, 3.4 μA at 3.0 V (Typical)
 - Shutdown RTC Mode (LPM3.5):
 Shutdown Mode, Active Real-Time Clock With Crystal:
 0.9 µA at 3.0 V (Typical)
 - Shutdown Mode (LPM4.5):0.2 μA at 3.0 V (Typical)
- Wake up From Standby Mode in 3 µs (Typical)
- 16-Bit RISC Architecture, Extended Memory, up to 20-MHz System Clock
- Flexible Power-Management System
 - Fully Integrated LDO With Programmable Regulated Core Supply Voltage
 - Supply Voltage Supervision, Monitoring, and Brownout
- Unified Clock System
 - FLL Control Loop for Frequency Stabilization
 - Low-Power Low-Frequency Internal Clock Source (VLO)
 - Low-Frequency Trimmed Internal Reference Source (REFO)
 - 32-kHz Crystals (XT1)
 - High-Frequency Crystals up to 32 MHz (XT2)
- Four 16-Bit Timers With 3, 5, or 7 Capture/Compare Registers

1.2 Applications

- Analog Sensor Systems
- Digital Sensor Systems
- Hand-Held Meters

- Two Universal Serial Communication Interfaces
 - USCI A0 and USCI A1 Each Support
 - Enhanced UART With Automatic Baud-Rate Detection
 - IrDA Encoder and Decoder
 - Synchronous SPI
 - USCI_B0 and USCI_B1 Each Support
 - I²C
 - Synchronous SPI
- Full-Speed Universal Serial Bus (USB)
 - Integrated USB-PHY
 - Integrated 3.3-V and 1.8-V USB Power System
 - Integrated USB-PLL
 - Eight Input and Eight Output Endpoints
- Continuous-Time Sigma-Delta 16-Bit Analog-to-Digital Converter (ADC) With Internal Reference With 10 External Analog Inputs, 6 Single-Ended and 4 Selectable as Differential or Single-Ended
- Dual Low-Power Operational Amplifiers
- Quad Low-Impedance Ground Switches
- Dual 12-Bit Digital-to-Analog Converters (DACs) With Synchronization
- Voltage Comparator
- Integrated LCD Driver With Contrast Control for up to 160 Segments
- Hardware Multiplier Supports 32-Bit Operations
- Serial Onboard Programming, No External Programming Voltage Needed
- Six-Channel Internal DMA
- Real-Time Clock (RTC) Module With Supply Voltage Backup Switch
- Table 3-1 Summarizes Family Members
- For Complete Module Descriptions, See the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208)
- Medical Diagnostic Meters
- · Hand-Held Industrial Testers
- Measurement Equipment

TEXAS INSTRUMENTS

1.3 Description

The TI MSP430™ family of ultra-low-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows the device to wake up from low-power modes to active mode in 3 µs (typical).

The MSP430FG6626 and MSP430FG6625 are microcontrollers with a high-performance 16-bit analog-to-digital converter (ADC), dual 12-bit digital-to-analog converters (DACs), dual operational amplifiers, a comparator, two universal serial communication interfaces (USCIs), USB 2.0, a hardware multiplier, DMA, four 16-bit timers, a real-time clock (RTC) module with alarm capabilities, an LCD driver, and up to 73 I/O pins.

The MSP430FG6426 and MSP430FG6425 are microcontrollers with a high-performance 16-bit ADC, dual 12-bit DACs, dual low-power operational amplifiers, a comparator, two USCIs, a 3.3-V LDO, a hardware multiplier, DMA, four 16-bit timers, an RTC module with alarm capabilities, an LCD driver, and up to 73 I/O pins.

Typical applications for these devices include analog and digital sensor systems, hand-held meters, such as medical diagnostic meters, measurement equipment, and hand-held industrial testers.

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE (2)		
MSP430FG6626IPZ	PZ (100)	14 mm × 14 mm		
MSP430FG6626IZQW	ZQW (113)	7 mm × 7 mm		

⁽¹⁾ For the most current part, package, and ordering information for all available devices, see the Package Option Addendum in Section 9, or see the TI website at www.ti.com.

⁽²⁾ The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 9.

www.ti.com SLAS874 – MAY 2015

1.4 Functional Block Diagrams

Figure 1-1 shows the functional block diagram for the MSP430FG6626 and MSP430FG6625 devices.

Figure 1-1. Functional Block Diagram - MSP430FG6626, MSP430FG6625

Figure 1-2 shows the functional block diagram for the MSP430FG6426 and MSP430FG6425 devices.

Figure 1-2. Functional Block Diagram - MSP430FG6426, MSP430FG6425

Table of Contents

1	Devi	ce Overview 1		6.6	USB BSL	. 74
	1.1	Features 1		6.7	UART BSL	. 74
	1.2	Applications 1		6.8	JTAG Operation	. <u>75</u>
	1.3	Description		6.9	Flash Memory	. 75
	1.4	Functional Block Diagrams 3		6.10	RAM	. 76
2	Revi	sion History 4		6.11	Backup RAM	. 76
3	Devi	ce Comparison <u>5</u>		6.12	Peripherals	. 76
4	Tern	ninal Configuration and Functions		6.13	Device Descriptors	131
	4.1	Pin Diagrams 6		6.14	Memory	132
	4.2	Pin Attributes 9		6.15	Identification	146
	4.3	Signal Descriptions	7	Appl	lications, Implementation, and Layout	147
	4.4	Pin Multiplexing		7.1	Device Connection and Layout Fundamentals	147
	4.5	Connection of Unused Pins		7.2	Peripheral- and Interface-Specific Design	
5	Spec	cifications 25			Information	
	5.1	Absolute Maximum Ratings	8	Devi	ce and Documentation Support	160
	5.2	ESD Ratings		8.1	Device Support	160
	5.3	Recommended Operating Conditions		8.2	Documentation Support	163
	5.4	Thermal Characteristics		8.3	Related Links	163
	5.5	Timing and Switching Characteristics		8.4	Community Resources	163
6	Deta	illed Description 70		8.5	Trademarks	163
	6.1	Overview 70		8.6	Electrostatic Discharge Caution	<u>164</u>
	6.2	CPU 70		8.7	Glossary	<u>164</u>
	6.3	Instruction Set	9		hanical, Packaging, and Orderable	
	6.4	Operating Modes			mation	
	6.5	Interrupt Vector Addresses		9.1	Packaging Information	164

2 Revision History

DATE	REVISION	NOTES
May 2015	*	Initial Release

3 Device Comparison

Instruments

Table 3-1 summarizes the available family members.

Table 3-1. Device Comparison⁽¹⁾⁽²⁾

					US	SCI							
DEVICE	FLASH (KB)	SRAM (KB) ⁽³⁾	Timer_A ⁽⁴⁾	Timer_B ⁽⁵⁾	CHANNEL A: UART, IrDA, SPI	CHANNEL B: SPI, I ² C	CTSD16 (Ch) ⁽⁶⁾	DAC12_A (Ch)	OA	Comp_B (Ch)	USB	I/O	PACKAGE
MSP430FG6626	128	8 + 2	5, 3, 3	7	2	2	10 ext, 5 int	2	2	12	1	73	100 PZ 113 ZQW
MSP430FG6625	64	8 + 2	5, 3, 3	7	2	2	10 ext, 5 int	2	2	12	1	73	100 PZ 113 ZQW
MSP430FG6426	128	10	5, 3, 3	7	2	2	10 ext, 5 int	2	2	12	0	73	100 PZ 113 ZQW
MSP430FG6425	64	10	5, 3, 3	7	2	2	10 ext, 5 int	2	2	12	0	73	100 PZ 113 ZQW

- (1) For the most current package and ordering information, see the Package Option Addendum in Section 9, or see the TI website at www.ti.com.
- (2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging.
- (3) The additional 2KB of USB SRAM that is listed can be used as general-purpose SRAM when USB is not in use.
- (4) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.
- (5) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.
- (6) ADC inputs consist of a mix of single ended and differential. Refer to the pinning for available input pairs and types.

INSTRUMENTS

Terminal Configuration and Functions

Pin Diagrams

Figure 4-1 shows the pin assignments for the MSP430FG6626 and MSP430FG6625 devices in the 100pin PZ package.

Figure 4-1. 100-Pin PZ Package (Top View), MSP430FG6626IPZ, MSP430FG6625IPZ

SLAS874 - MAY 2015

Figure 4-2 shows the pin assignments for the MSP430FG6426 and MSP430FG6425 devices in the 100pin PZ package.

CAUTION: LCDCAP/R33 must be connected to DV_{SS} if not used.

Figure 4-2. 100-Pin PZ Package (Top View), MSP430FG6426IPZ, MSP430FG6425IPZ

Figure 4-3 shows the pin assignments for the 113-pin ZQW package.

ZQW PACKAGE (TOP VIEW)

NOTE: For terminal assignments, see Table 4-2.

Figure 4-3. 113-Pin ZQW Package (Top View), MSP430FG6626IZQW, MSP430FG6625IZQW, MSP430FG6426IZQW, MSP430FG6425IZQW

SLAS874-MAY 2015

4.2 **Pin Attributes**

Table 4-1 describes the attributes of the pins.

Table 4-1. Pin Attributes

PIN	NO.	(I) (D)		BUFFER TYPE	POWER	RESET STATE
PZ	ZQW	SIGNAL NAME (1) (2)	SIGNAL TYPE (3)	(4)	SOURCE ⁽⁵⁾	AFTER BOR (6)
		P6.4	I/O	LVCMOS	DVCC	OFF
4	0.4	CB4	I	Analog	DVCC	N/A
1	A1	AD0+	I	Analog	DVCC	N/A
		OA0O	0	Analog	DVCC	N/A
		P6.5	I/O	LVCMOS	DVCC	OFF
	DO.	CB5	I	Analog	DVCC	N/A
2	B2	AD0-	I	Analog	DVCC	N/A
		OA0IN0	I	Analog	DVCC	N/A
		P6.6	I/O	LVCMOS	DVCC	OFF
	D4	CB6	I	Analog	DVCC	N/A
3	B1	AD1+	I	Analog	DVCC	N/A
		G0SW0	I	Analog	DVCC	N/A
		P6.7	I/O	LVCMOS	DVCC	OFF
	00	CB7	I	Analog	DVCC	N/A
4	C3	AD1-	I	Analog	DVCC	N/A
		G0SW1	I	Analog	DVCC	N/A
		P7.4	I/O	LVCMOS	DVCC	OFF
_	60	CB8	I	Analog	DVCC	N/A
5	C2	AD2+	I	Analog	DVCC	N/A
		OA1O	0	Analog	DVCC	N/A
		P7.5	I/O	LVCMOS	DVCC	OFF
6	C1	CB9	I	Analog	DVCC	N/A
6	C1	AD2-	I	Analog	DVCC	N/A
		OA1IN0	I	Analog	DVCC	N/A
		P7.6	I/O	LVCMOS	DVCC	OFF
7	D4	CB10	I	Analog	DVCC	N/A
7	D4	AD3+	I	Analog	DVCC	N/A
		G1SW0	1	Analog	DVCC	N/A
		P7.7	I/O	LVCMOS	DVCC	OFF
0	Do	CB11	I	Analog	DVCC	N/A
8	D2	AD3-	1	Analog	DVCC	N/A
		G1SW1	I	Analog	DVCC	N/A

⁽¹⁾ For each multiplexed pin, the signal that is listed first in this table is the reset default.

OFF = High-impedance input with pullup or pulldown disabled (if available)

HiZ = High-impedance (neither input nor output)

PD = High-impedance input with pulldown enabled

PU = High-impedance input with pullup enabled

DRIVE0 = Drive output low

DRIVE1 = Drive output high N/A = Not applicable

To determine the pin mux encodings for each pin, refer to Section 6.12.23, Input/Ouput Schematics.

 ⁽³⁾ Signal Types: I = Input, O = Output, I/O = Input or Output, P = power
 (4) Buffer Types: LVCMOS, HVCMOS, Analog, or Power (see Table 4-3 for details).

The power source shown in this table is the I/O power source, which may differ from the module power source.

⁽⁶⁾ Reset States:

For Debug pins: Emu = with emulator attached at reset, No Emu = without emulator attached at reset

PIN	I NO.	/n /n		BUFFER TYPE	POWER	RESET STATE
PZ	ZQW	SIGNAL NAME (1) (2)	SIGNAL TYPE (3)	(4)	SOURCE ⁽⁵⁾	AFTER BOR (6)
		P5.0	I/O	LVCMOS	DVCC	OFF
9	D1	VREFBG	0	Analog	DVCC	N/A
		VeREF+	I	Analog	N/A	N/A
		P5.1	I/O	LVCMOS	DVCC	OFF
10	E4	A4	I	Analog	DVCC	N/A
		DAC0	0	Analog	DVCC	N/A
		P5.6	I/O	LVCMOS	DVCC	OFF
11	E2	A5	I	Analog	DVCC	N/A
		DAC1	0	Analog	DVCC	N/A
12	E1	NR	I	Analog	N/A	N/A
13	F2	AVSS1	Р	Power	N/A	N/A
14	F1	XOUT	0	Analog	N/A	N/A
15	G1	XIN	I	Analog	N/A	N/A
16	H1, G2	DVCC	Р	Power	N/A	N/A
17	G4	CPCAP	I/O	Analog	DVCC	N/A
		P2.0	I/O	LVCMOS	DVCC	OFF
18	H2	P2MAP0	I/O	LVCMOS	DVCC	N/A
		DAC0	0	Analog	DVCC	N/A
	J1	P2.1	I/O	LVCMOS	DVCC	OFF
19		P2MAP1	I/O	LVCMOS	DVCC	N/A
		DAC1	0	Analog	DVCC	N/A
00	H4	P2.2	I/O	LVCMOS	DVCC	OFF
20		P2MAP2	I/O	LVCMOS	DVCC	N/A
04	J2	P2.3	I/O	LVCMOS	DVCC	OFF
21		P2MAP3	I/O	LVCMOS	DVCC	N/A
		P2.4	I/O	LVCMOS	DVCC	OFF
22	K1	P2MAP4	I/O	LVCMOS	DVCC	N/A
		R03	I/O	Analog	DVCC	N/A
00	Ka	P2.5	I/O	LVCMOS	DVCC	OFF
23	K2	P2MAP5	I/O	LVCMOS	DVCC	N/A
		P2.6	I/O	LVCMOS	DVCC	OFF
0.4	L2	P2MAP6	I/O	LVCMOS	DVCC	N/A
24	LZ	LCDREF	1	Analog	N/A	N/A
		R13	I/O	Analog	DVCC	N/A
		P2.7	I/O	LVCMOS	DVCC	OFF
25	L3	P2MAP7	I/O	LVCMOS	DVCC	N/A
		R23	I/O	Analog	DVCC	N/A
26	L1	DVCC1	Р	Power	N/A	N/A
27	M1	DVSS1	Р	Power	N/A	N/A
28	M2	VCORE	Р	Power	DVCC	N/A
29	M3	LCDCAP	I/O	Analog	DVCC	N/A
	IVIO	R33	I/O	Analog	DVCC	N/A
30	J4	COM0	0	Analog	DVCC	N/A
		P5.3	I/O	LVCMOS	DVCC	OFF
31	L4	COM1	0	Analog	DVCC	N/A
		S42	0	Analog	DVCC	N/A

SLAS874-MAY 2015

PIN NO.		(A) (B)	(0)	BUFFER TYPE	POWER	RESET STATE
PZ	ZQW	SIGNAL NAME (1) (2)	SIGNAL TYPE (3)	(4)	SOURCE ⁽⁵⁾	AFTER BOR (6)
		P5.4	I/O	LVCMOS	DVCC	OFF
32	M4	COM2	0	LVCMOS	DVCC	N/A
		S41	0	Analog	DVCC	N/A
		P5.5	I/O	LVCMOS	DVCC	OFF
33	J5	COM3	I/O	LVCMOS	DVCC	N/A
		S40	0	Analog	DVCC	N/A
		P1.0	I/O	LVCMOS	DVCC	OFF
34	L5	TA0CLK	I	LVCMOS	DVCC	N/A
04	20	ACLK	0	LVCMOS	DVCC	N/A
		S39	0	Analog	DVCC	N/A
		P1.1	I/O	LVCMOS	DVCC	OFF
35	M5	TA0.0	I/O	LVCMOS	DVCC	N/A
33	IVIO	BSLTX	0	LVCMOS	DVCC	N/A
		S38	0	Analog	DVCC	N/A
		P1.2	I/O	LVCMOS	DVCC	OFF
26	J6	TA0.1	I/O	LVCMOS	DVCC	N/A
36	30	BSLRX	I	LVCMOS	DVCC	N/A
		S37	0	Analog	DVCC	N/A
	H6	P1.3	I/O	LVCMOS	DVCC	OFF
37		TA0.2	I/O	LVCMOS	DVCC	N/A
		S36	0	Analog	DVCC	N/A
	M6	P1.4	I/O	LVCMOS	DVCC	OFF
38		TA0.3	I/O	LVCMOS	DVCC	N/A
		S35	0	Analog	DVCC	N/A
	L6	P1.5	I/O	LVCMOS	DVCC	OFF
39		TA0.4	I/O	LVCMOS	DVCC	N/A
		S34	0	Analog	DVCC	N/A
	J7	P1.6	I/O	LVCMOS	DVCC	OFF
40		TA0.1	I/O	LVCMOS	DVCC	N/A
		S33	0	Analog	DVCC	N/A
		P1.7	I/O	LVCMOS	DVCC	OFF
41	M7	TA0.2	I/O	LVCMOS	DVCC	N/A
		S32	0	Analog	DVCC	N/A
		P3.0	I/O	LVCMOS	DVCC	OFF
		TA1CLK	I	LVCMOS	DVCC	N/A
42	L7	CBOUT	0	LVCMOS	DVCC	N/A
		S31	0	Analog	DVCC	N/A
		P3.1	I/O	LVCMOS	DVCC	OFF
43	H7	TA1.0	I/O	LVCMOS	DVCC	N/A
	117	S30	0	Analog	DVCC	N/A
		P3.2	I/O	LVCMOS	DVCC	OFF
44	M8	TA1.1	I/O	LVCMOS	DVCC	N/A
		S29	0	Analog	DVCC	N/A
		P3.3	I/O	LVCMOS	DVCC	OFF
45	L8	TA1.2	I/O	LVCMOS	DVCC	N/A
.•		S28	0	Analog	DVCC	N/A

PIN NO.		(1) (2)	(3)	BUFFER TYPE	POWER	RESET STATE
PZ	ZQW	SIGNAL NAME (1) (2)	SIGNAL TYPE (3)	(4)	SOURCE ⁽⁵⁾	AFTER BOR (6)
		P3.4	I/O	LVCMOS	DVCC	OFF
46	J8	TA2CLK	1	LVCMOS	DVCC	N/A
		SMCLK	0	LVCMOS	DVCC	N/A
		S27	0	Analog	DVCC	N/A
		P3.5	I/O	LVCMOS	DVCC	OFF
47	M9	TA2.0	1/0	LVCMOS	DVCC	N/A
		S26	0	Analog	DVCC	N/A
40	1.0	P3.6 TA2.1	1/0	LVCMOS	DVCC	OFF N/A
48	L9		0			N/A
		S25 P3.7	1/0	Analog LVCMOS	DVCC	N/A OFF
40	M10	TA2.2	1/0		DVCC	N/A
49	IVITO	S24	0	LVCMOS	DVCC	N/A N/A
		P4.0	1/0	Analog LVCMOS	DVCC	OFF
50	J9	TB0.0	1/0	LVCMOS	DVCC	N/A
50	J9	S23	0	Analog	DVCC	N/A
		P4.1	1/0	LVCMOS	DVCC	OFF
51	M11	TB0.1	I/O	LVCMOS	DVCC	N/A
01		S22	0	Analog	DVCC	N/A
	L10	P4.2	I/O	LVCMOS	DVCC	OFF
52		TB0.2	I/O	LVCMOS	DVCC	N/A
		S21	0	Analog	DVCC	N/A
	M12	P4.3	I/O	LVCMOS	DVCC	OFF
53		TB0.3	I/O	LVCMOS	DVCC	N/A
		S20	0	Analog	DVCC	N/A
	L12	P4.4	I/O	LVCMOS	DVCC	OFF
54		TB0.4	I/O	LVCMOS	DVCC	N/A
		S19	0	Analog	DVCC	N/A
		P4.5	I/O	LVCMOS	DVCC	OFF
55	L11	TB0.5	I/O	LVCMOS	DVCC	N/A
		S18	0	Analog	DVCC	N/A
		P4.6	I/O	LVCMOS	DVCC	OFF
56	K11	TB0.6	I/O	LVCMOS	DVCC	N/A
		S17	0	Analog	DVCC	N/A
		P4.7	I/O	LVCMOS	DVCC	OFF
57	K12	TB0OUTH	I	LVCMOS	DVCC	N/A
0.	11.2	SVMOUT	0	LVCMOS	DVCC	N/A
		S16	0	Analog	DVCC	N/A
		P8.0	I/O	LVCMOS	DVCC	OFF
58	J11	TB0CLK	I	LVCMOS	DVCC	N/A
		S15	0	Analog	DVCC	N/A
		P8.1	1/0	LVCMOS	DVCC	OFF
59	J12	UCB1STE	1/0	LVCMOS	DVCC	N/A
		UCA1CLK	1/0	LVCMOS	DVCC	N/A
		S14	0	Analog	DVCC	N/A

SLAS874-MAY 2015

PIN NO.		(1) (2)	(3)	BUFFER TYPE	POWER	RESET STATE	
PZ	ZQW	SIGNAL NAME (1) (2)	SIGNAL TYPE (3)	(4)	SOURCE ⁽⁵⁾	AFTER BOR (6)	
		P8.2	I/O	LVCMOS	DVCC	OFF	
60	H11	UCA1TXD	0	LVCMOS	DVCC	N/A	
60	n11	UCA1SIMO	I/O	LVCMOS	DVCC	N/A	
		S13	0	Analog	DVCC	N/A	
		P8.3	I/O	LVCMOS	DVCC	OFF	
61	H12	UCA1RXD	1	LVCMOS	DVCC	N/A	
01	ПІ	UCA1SOMI	I/O	LVCMOS	DVCC	N/A	
		S12	0	Analog	DVCC	N/A	
		P8.4	I/O	LVCMOS	DVCC	OFF	
60	G11	UCB1CLK	I/O	LVCMOS	DVCC	N/A	
62	GTT	UCA1STE	I/O	LVCMOS	DVCC	N/A	
		S11	0	Analog	DVCC	N/A	
63	G12	DVSS2	Р	Power	N/A	N/A	
64	F12	DVCC2	Р	Power	N/A	N/A	
		P8.5	I/O	LVCMOS	DVCC	OFF	
65	F11	UCB1SIMO	I/O	LVCMOS	DVCC	N/A	
00	FII	UCB1SDA	I/O	LVCMOS	DVCC	N/A	
		S10	0	Analog	DVCC	N/A	
		P8.6	I/O	LVCMOS	DVCC	OFF	
66	G 9	UCB1SOMI	I/O	LVCMOS	DVCC	N/A	
66		UCB1SCL	I/O	LVCMOS	DVCC	N/A	
		S9	0	Analog	DVCC	N/A	
67	E12	P8.7	I/O	LVCMOS	DVCC	OFF	
67		S8	0	Analog	DVCC	N/A	
69	E11	P9.0	I/O	LVCMOS	DVCC	OFF	
68	E11	S7	0	Analog	DVCC	N/A	
60	F0.	P9.1	I/O	LVCMOS	DVCC	OFF	
69	F9	S6	0	Analog	DVCC	N/A	
70	D12	P9.2	I/O	LVCMOS	DVCC	OFF	
70	D12	S5	0	Analog	DVCC	N/A	
71	D11	P9.3	I/O	LVCMOS	DVCC	OFF	
71	D11	S4	0	Analog	DVCC	N/A	
70	F0	P9.4	I/O	LVCMOS	DVCC	OFF	
72	E9	S3	0	Analog	DVCC	N/A	
70	C12	P9.5	I/O	LVCMOS	DVCC	OFF	
73	C12	S2	0	Analog	DVCC	N/A	
7.4	044	P9.6	I/O	LVCMOS	DVCC	OFF	
74	C11	S1	0	Analog	DVCC	N/A	
7.5	D0	P9.7	I/O	LVCMOS	DVCC	OFF	
75	D9	S0	0	Analog	DVCC	N/A	
76	B11, B12	VSSU	Р	Power	N/A	N/A	
		PU.0	I/O	HVCMOS	VBUS	HiZ	
77	A12	DP	I/O	HVCMOS	VBUS	N/A	
78	B10	PUR (FG662x only)	I/O	HVCMOS/open- drain	VBUS	HiZ	
· ·	טוט	NC (FG642x only)	I/O	N/A	N/A	N/A	

PIN NO.				BUFFER TYPE	POWER	RESET STATE
PZ	ZQW	SIGNAL NAME (1) (2)	SIGNAL TYPE (3)	(4)	SOURCE ⁽⁵⁾	AFTER BOR (6)
79	A11	PU.1	I/O	HVCMOS	VBUS	HiZ
19	All	DM	I/O	HVCMOS	VBUS	N/A
80	A10	VBUS	I	Power	N/A	N/A
00	Alu	LDOI	I	Analog	External	N/A
81	A9	VUSB	0	Power	N/A	N/A
01	7.3	LDOO	0	Analog	VBUS	N/A
82	B9	V18 (FG662x only)	0	Power	N/A	N/A
02	D9	NC (FG642x only)	_	N/A	N/A	N/A
83	A8	AVSS2	Р	Power	N/A	N/A
84	B8	P7.2	I/O	LVCMOS	DVCC	OFF
04	БО	XT2IN	I	Analog	DVCC	N/A
85	B7	P7.3	I/O	LVCMOS	DVCC	OFF
	D1	XT2OUT	0	Analog	DVCC	N/A
86	A7	VBAK	I/O	Analog	N/A	N/A
87	D8	VBAT	Р	Power	N/A	N/A
		P5.7	I/O	LVCMOS	DVCC	OFF
88	D7	DMAE0	I	LVCMOS	DVCC	N/A
		RTCCLK	RTCCLK O		DVCC	N/A
89	A6	DVCC3	Р	Power	N/A	N/A
90	A5	DVSS3	Р	Power	N/A	N/A
91	B6	TEST	1	LVCMOS	DVCC	No Emu: PD Emu: PD
		SBWTCK	I	LVCMOS	DVCC	N/A
	B5	PJ.0	I/O	LVCMOS	DVCC	OFF
92		TDO	0	LVCMOS	DVCC	No Emu: OFF Emu: DRIVE0
		PJ.1	I/O	LVCMOS	DVCC	OFF
93	A4	TDI	1	LVCMOS	DVCC	No Emu: OFF Emu: PU
		TCLK	1	LVCMOS	DVCC	No Emu: OFF Emu: OFF
		PJ.2	I/O	LVCMOS	DVCC	OFF
94	E7	TMS	1	LVCMOS	DVCC	No Emu: OFF Emu: PU
		PJ.3	I/O	LVCMOS	DVCC	OFF
95	D6	тск	1	LVCMOS	DVCC	No Emu: OFF Emu: PU
		RST	I/O	LVCMOS	DVCC	PU
96	А3	NMI	I	LVCMOS	DVCC	N/A
		SBWTDIO	I/O	LVCMOS	DVCC	PU
		P6.0	I/O	LVCMOS	DVCC	OFF
97	B4	CB0	I	Analog	DVCC	N/A
		A0	I	Analog	DVCC	N/A
		P6.1	I/O	LVCMOS	DVCC	OFF
98	В3	CB1	I	Analog	DVCC	N/A
		A1	I	Analog	DVCC	N/A

www.ti.com SLAS874 – MAY 2015

PIN	NO.	(4) (2)	(2)	BUFFER TYPE	POWER	RESET STATE
PZ	ZQW	SIGNAL NAME (1) (2)	SIGNAL TYPE (3)	(4)	SOURCE ⁽⁵⁾	AFTER BOR (6)
		P6.2	I/O	LVCMOS	DVCC	OFF
99	A2	CB2	I	Analog	DVCC	N/A
99	AZ	A2	I	Analog	DVCC	N/A
		OA0IP0	I	Analog	DVCC	N/A
		P6.3	I/O	LVCMOS	DVCC	OFF
100	D5	CB3	1	Analog	DVCC	N/A
100	Do	A3	I	Analog	DVCC	N/A
		OA1IP0	I	Analog	DVCC	N/A
N/A	E5, E6, E8, F4, F5, F8, G5, G8, H5, H8, H9	Reserved	-	-	-	_

4.3 Signal Descriptions

Table 4-2 describes the signals for all device variants and package options.

Table 4-2. Signal Descriptions

Table 4-2. Signal Descriptions					
FUNCTION	SIGNAL NAME	PIN	NO.	PIN TYPE ⁽¹⁾	DESCRIPTION
	A0	97	B4	l	ADC analog single ended input A0
	A1	98	В3	ı	ADC analog single ended input A1
	A2	99	A2	ı	ADC analog single ended input A2
	A3	100	D5	ı	ADC analog single ended input A3
	A4	10	E4	ı	ADC analog single ended input A4
	A5	11	E2	I	ADC analog single ended input A5
	AD0+	1	A1	I	ADC positive analog differential input AD0+
ADC	AD0-	2	B2	ı	ADC negative analog differential input AD0-
	AD1+	3	B1	I	ADC positive analog differential input AD1+
	AD1-	4	C3	I	ADC negative analog differential input AD1-
	AD2+	5	C2	I	ADC positive analog differential input AD2+
	AD2-	6	C1	ı	ADC negative analog differential input AD2-
	AD3+	7	D4	I	ADC positive analog differential input AD3+
	AD3-	8	D2	I	ADC negative analog differential input AD3-
	VeREF+	9	D1	I	Input for an external reference voltage to the ADC and DAC
501	BSLRX	36	J6	ı	BSL receive input
BSL	BSLTX	35	M5	0	BSL transmit output
Backup	VBAK	86	A7	I/O	Capacitor for backup subsystem. Do not load this pin externally. For capacitor values, see C _{BAK} in Recommended Operating Conditions.
	VBAT	87	D8	Р	Backup or secondary supply voltage. If backup voltage is not supplied, connect to DVCC externally.
Charge Pump	CPCAP	17	G4	I/O	Capacitor for op amp and CTSD16 rail-to-rail charge pump
	ACLK	34	L5	0	ACLK output (divided by 1, 2, 4, 8, 16, or 32)
	RTCCLK	88	D7	0	RTCCLK output
	SMCLK	46	J8	0	SMCLK output
Clock	XIN	15	G1	I	Input terminal for crystal oscillator XT1
	XOUT	14	F1	0	Output terminal of crystal oscillator XT1
	XT2IN	84	B8	1	Input terminal for crystal oscillator XT2
	XT2OUT	85	B7	0	Output terminal of crystal oscillator XT2
	CB0	97	B4	I	Comparator_B input CB0
	CB1	98	B3	I	Comparator_B input CB1
	CB2	99	A2	I	Comparator_B input CB2
	CB3	100	D5	I	Comparator_B input CB3
	CB4	1	A1	- 1	Comparator_B input CB4
	CB5	2	B2	I	Comparator_B input CB5
Comparator	CB6	3	B1	1	Comparator_B input CB6
	CB7	4	C3	I	Comparator_B input CB7
	CB8	5	C2	I	Comparator_B input CB8
	CB9	6	C1	I	Comparator_B input CB9
	CB10	7	D4	I	Comparator_B input CB10
	CB11	8	D2	I	Comparator_B input CB11
	CBOUT	42	L7	0	Comparator_B output

NSTRUMENTS

SLAS874 - MAY 2015

FUNCTION	SIGNAL NAME	PIN PZ	NO.	PIN TYPE ⁽¹⁾	DESCRIPTION
DAC	DAC0	10 18	E4 H2	0	DAC output channel 0
DAC	DAC1	11 19	E2 J1	0	DAC output channel 1
DMA	DMAE0	88	D7	I	DMA external trigger input
	SBWTCK	91	B6	1	Spy-Bi-Wire input clock
	TCK	95	D6	1	Test clock
Debug	TCLK	93	A4	I	Test clock input
	TDI	93	A4	I	Test data input
	TDO	92	B5	0	Test data output
	TEST	91	B6	1	Test mode pin; selects digital I/O on JTAG pins
	TMS	94	E7	1	Test mode select
	SBWTDIO	96	A3	I/O	Spy-Bi-Wire data input/output
	P1.0	34	L5	I/O	General-purpose digital I/O with port interrupt
	P1.1	35	M5	I/O	General-purpose digital I/O with port interrupt
	P1.2	36	J6	I/O	General-purpose digital I/O with port interrupt
	P1.3	37	H6	I/O	General-purpose digital I/O with port interrupt
	P1.4	38	M6	I/O	General-purpose digital I/O with port interrupt
	P1.5	39	L6	I/O	General-purpose digital I/O with port interrupt
	P1.6	40	J7	I/O	General-purpose digital I/O with port interrupt
	P1.7	41	M7	I/O	General-purpose digital I/O with port interrupt
	P2.0	18	H2	I/O	General-purpose digital I/O with port interrupt and mappable secondary function
	P2.1	19	J1	I/O	General-purpose digital I/O with port interrupt and mappable secondary function
	P2.2	20	H4	I/O	General-purpose digital I/O with port interrupt and mappable secondary function
GPIO	P2.3	21	J2	I/O	General-purpose digital I/O with port interrupt and mappable secondary function
GFIO	P2.4	22	K1	I/O	General-purpose digital I/O with port interrupt and mappable secondary function
	P2.5	23	K2	I/O	General-purpose digital I/O with port interrupt and mappable secondary function
	P2.6	24	L2	I/O	General-purpose digital I/O with port interrupt and mappable secondary function
	P2.7	25	L3	I/O	General-purpose digital I/O with port interrupt and mappable secondary function
	P3.0	42	L7	I/O	General-purpose digital I/O with port interrupt
	P3.1	43	H7	I/O	General-purpose digital I/O with port interrupt
	P3.2	44	M8	I/O	General-purpose digital I/O with port interrupt
	P3.3	45	L8	I/O	General-purpose digital I/O with port interrupt
	P3.4	46	J8	I/O	General-purpose digital I/O with port interrupt
	P3.5	47	M9	I/O	General-purpose digital I/O with port interrupt
	P3.6	48	L9	I/O	General-purpose digital I/O with port interrupt
	P3.7	49	M10	I/O	General-purpose digital I/O with port interrupt

FUNCTION	SIGNAL	PIN	NO.	PIN	DECORPTION
FUNCTION	NAME	PZ	ZQW	TYPE ⁽¹⁾	DESCRIPTION
	P4.0	50	J9	I/O	General-purpose digital I/O with port interrupt
	P4.1	51	M11	I/O	General-purpose digital I/O with port interrupt
	P4.2	52	L10	I/O	General-purpose digital I/O with port interrupt
	P4.3	53	M12	I/O	General-purpose digital I/O with port interrupt
	P4.4	54	L12	I/O	General-purpose digital I/O with port interrupt
	P4.5	55	L11	I/O	General-purpose digital I/O with port interrupt
	P4.6	56	K11	I/O	General-purpose digital I/O with port interrupt
	P4.7	57	K12	I/O	General-purpose digital I/O with port interrupt
	P5.0	9	D1	I/O	General-purpose digital I/O
	P5.1	10	E4	I/O	General-purpose digital I/O
	P5.3	31	L4	I/O	General-purpose digital I/O
	P5.4	32	M4	I/O	General-purpose digital I/O
	P5.5	33	J5	I/O	General-purpose digital I/O
	P5.6	11	E2	I/O	General-purpose digital I/O
	P5.7	88	D7	I/O	General-purpose digital I/O
	P6.0	97	B4	I/O	General-purpose digital I/O
	P6.1	98	B3	I/O	General-purpose digital I/O
	P6.2	99	A2	I/O	General-purpose digital I/O
	P6.3	100	D5	I/O	General-purpose digital I/O
	P6.4	1	A1	I/O	General-purpose digital I/O
	P6.5	2	B2	I/O	General-purpose digital I/O
CDIO	P6.6	3	B1	I/O	General-purpose digital I/O
GPIO	P6.7	4	C3	I/O	General-purpose digital I/O
	P7.2 P7.3	84 85	B8 B7	I/O I/O	General-purpose digital I/O General-purpose digital I/O
	P7.4	5	C2	I/O	General-purpose digital I/O
	P7.5	6	C2 C1	I/O	General-purpose digital I/O
	P7.6	7	D4	I/O	General-purpose digital I/O
	P7.7	8	D2	I/O	General-purpose digital I/O
	P8.0	58	J11	I/O	General-purpose digital I/O
	P8.1	59	J12	I/O	General-purpose digital I/O
	P8.2	60	H11	I/O	General-purpose digital I/O
	P8.3	61	H12	I/O	General-purpose digital I/O
	P8.4	62	G11	I/O	General-purpose digital I/O
	P8.5	65	F11	I/O	General-purpose digital I/O
	P8.6	66	G9	I/O	General-purpose digital I/O
	P8.7	67	E12	I/O	General-purpose digital I/O
	P9.0	68	E11	I/O	General-purpose digital I/O
	P9.1	69	F9	I/O	General-purpose digital I/O
	P9.2	70	D12	I/O	General-purpose digital I/O
	P9.3	71	D11	I/O	General-purpose digital I/O
	P9.4	72	E9	I/O	General-purpose digital I/O
	P9.5	73	C12	I/O	General-purpose digital I/O
	P9.6	74	C11	I/O	General-purpose digital I/O
	P9.7	75	D9	I/O	General-purpose digital I/O
	1	1	1	1	

SLAS874-MAY 2015

FUNCTION SIGNAL PIN NO. PIN DESCRIE							
FUNCTION	NAME	PZ	ZQW	TYPE ⁽¹⁾	DESCRIPTION		
	PJ.0	92	B5	I/O	General-purpose digital I/O		
	PJ.1	93	A4	I/O	General-purpose digital I/O		
GPIO	PJ.2	94	E7	I/O	General-purpose digital I/O		
GPIO	PJ.3	95	D6	I/O	General-purpose digital I/O		
GPIO Ground Switch	PU.0	77	A12	I/O	General-purpose digital I/O - controlled by USB control register (FG662x devices) or PU control register		
	PU.1	79	A11	I/O	General-purpose digital I/O - controlled by USB control register (FG662x devices) or PU control register		
	G0SW0	3	B1	I	Analog switch to AVSS. Internally connected to ADC positive analog differential input AD1+.		
Ground Switch	G0SW1	4	С3	I	Analog switch to AVSS. Internally connected to ADC negative analog differential input AD1		
Ground Switch	G1SW0	7	D4	I	Analog switch to AVSS. Internally connected to ADC positive analog differential input AD3+.		
	G1SW1	8	D2	I	Analog switch to AVSS. Internally connected to ADC negative analog differential input AD3		
UCB1SCL 66 G9 I/O USCI_B1 I ² C clock		_					
	UCB1SDA	65	F11	I/O	USCI_B1 I ² C data		
	COM0	30	J4	0	LCD common output COM0 for LCD backplane		
	COM1	31	L4	0	LCD common output COM1 for LCD backplane		
	COM2	32	M4	0	LCD common output COM2 for LCD backplane		
	COM3	33	J5	I/O	LCD common output COM3 for LCD backplane		
	LCDCAP	29	М3	I/O	LCD capacitor connection CAUTION: LCDCAP/R33 must be connected to DV _{SS} if not used.		
	LCDREF	24	L2	I	External reference voltage input for regulated LCD voltage		
	R03	22	K1	I/O	Input/output port of lowest analog LCD voltage (V5)		
	R13	24	L2	I/O	Input/output port of third most positive analog LCD voltage (V3 or V4)		
	R23	25	L3	I/O	Input/output port of second most positive analog LCD voltage (V2)		
	R33	29	МЗ	I/O	Input/output port of most positive analog LCD voltage (V1) CAUTION: LCDCAP/R33 must be connected to DV _{SS} if not used.		
	S0	75	D9	0	LCD segment output S0		
	S1	74	C11	0	LCD segment output S1		
	S2	73	C12	0	LCD segment output S2		
LCD	S3	72	E9	0	LCD segment output S3		
200	S4	71	D11	0	LCD segment output S4		
	S5	70	D12	0	LCD segment output S5		
	S6	69	F9	0	LCD segment output S6		
	S7	68	E11	0	LCD segment output S7		
	S8	67	E12	0	LCD segment output S8		
	S9	66	G9	0	LCD segment output S9		
	S10	65	F11	0	LCD segment output S10		
	S11	62	G11	0	LCD segment output S11		
	S12	61	H12	0	LCD segment output S12		
	S13	60	H11	0	LCD segment output S13		
	S14	59	J12	0	LCD segment output S14		
	S15	58	J11	0	LCD segment output S15		
	S16	57	K12	0	LCD segment output S16		
	S17	56	K11	0	LCD segment output S17		
	S18	55	L11	0	LCD segment output S18		

FUNCTION	SIGNAL	PIN NO.		PIN	250205501		
FUNCTION	NAME	PZ	ZQW	TYPE ⁽¹⁾	DESCRIPTION		
	S19	54	L12	0	LCD segment output S19		
	S20	53	M12	0	LCD segment output S20		
	S21	52	L10	0	LCD segment output S21		
	S22	51	M11	0	LCD segment output S22		
	S23	50	J9	0	LCD segment output S23		
	S24	49	M10	0	LCD segment output S24		
	S25	48	L9	0	LCD segment output S25		
	S26	47	M9	0	LCD segment output S26		
	S27	46	J8	0	LCD segment output S27		
	S28	45	L8	0	LCD segment output S28		
	S29	44	M8	0	LCD segment output S29		
LCD	S30	43	H7	0	LCD segment output S30		
LCD	S31	42	L7	0	LCD segment output S31		
	S32	41	M7	0	LCD segment output S32		
	S33	40	J7	0	LCD segment output S33		
	S34	39	L6	0	LCD segment output S34		
	S35	38	M6	0	LCD segment output S35		
	S36	37	H6	0	LCD segment output S36		
	S37	36	J6	0	LCD segment output S37		
	S38	35	M5	0	LCD segment output S38		
	S39	34	L5	0	LCD segment output S39		
	S40	33	J5	0	LCD segment output S40		
	S41	32	M4	0	LCD segment output S41		
	S42	31	L4	0	LCD segment output S42		
	P2MAP0	18	H2	I/O	Default mapping: USCI_B0 SPI slave transmit enable; USCI_A0 clock input/output Mapping Options: See Table 6-8		
	P2MAP1	19	J1	I/O	Default mapping: USCI_B0 SPI slave in/master out; USCI_B0 I ² C data Mapping Options: See Table 6-8		
	P2MAP2	20	H4	I/O	Default mapping: USCI_B0 SPI slave out/master in; USCI_B0 I ² C clock Mapping Options: See Table 6-8		
Mannahla	P2MAP3	21	J2	I/O	Default mapping: USCI_B0 clock input/output; USCI_A0 SPI slave transmit enable Mapping Options: See Table 6-8		
Mappable	P2MAP4	22	K1	I/O	Default mapping: USCI_A0 UART transmit data; USCI_A0 SPI slave in/master out Mapping Options: See Table 6-8		
	P2MAP5	23	K2	I/O	Default mapping: USCI_A0 UART receive data; USCI_A0 slave out/master in Mapping Options: See Table 6-8		
	P2MAP6	24	L2	I/O	Default mapping: no secondary function Mapping Options: See Table 6-8		
	P2MAP7	25	L3	I/O	Default mapping: no secondary function Mapping Options: See Table 6-8		
Noise Reduction	NR	12	E1	I	Noise reduction. Connect pin to analog ground.		

SLAS874-MAY 2015

	OLONIA!	DIN	NO.	500			
FUNCTION	SIGNAL NAME	PZ	ZQW	PIN TYPE ⁽¹⁾	DESCRIPTION		
	OA1IN0	6	C1	ı	OA1 negative input internally connected to ADC negative analog differential input AD2-		
	OA0IN0	2	B2	I	OA0 negative input internally connected to ADC negative analog differential input AD0-		
	OA0IP0	99	A2	I	OA0 positive input internally connected to ADC analog input A2		
Ор Атр	OA0O	1	A1	0	OA0 output internally connected to ADC positive analog differential inpuAD0+		
	OA1IP0	100	D5	I	OA1 positive input internally connected to ADC analog input A3		
	OA1O	5	C2	0	OA1 output internally connected to ADC positive analog differential input AD2+		
	AVSS1	13	F2	Р	Analog ground supply		
	AVSS2	83	A8	Р	Analog ground supply		
	DVCC	16	H1, G2	Р	Digital power supply		
	DVCC1	26	L1	Р	Digital power supply		
	DVCC2	64	F12	Р	Digital power supply		
Power	DVCC3	89	A6	Р	Digital power supply		
	DVSS1	27	M1	Р	Digital ground supply		
	DVSS2	63	G12	Р	Digital ground supply		
	DVSS3	90	A5	Р	Digital ground supply		
	LDOI	80	A10	I	LDO input (not available on FG662x devices)		
	LDOO	81	A9	0	LDO output (not available on FG662x devices)		
	VCORE ⁽²⁾	28	M2	0	Regulated core power supply (internal use only, no external current loading)		
REF	VREFBG	9	D1	0	Output of reference voltage to the ADC and DAC		
	NC	78 82	B10 B9	I/O	Not connected (not available on FG662x devices)		
Reserved	Reserved	-	E5, E6, E8, F4, F5, F8, G5, G8, H5, H8, H9	-	Reserved. Internally connected to DVSS. TI recommends external connection to ground (DVSS).		
	UCA1CLK	59	J12	I/O	USCI_A1 clock input/output		
	UCA1SIMO	60	H11	I/O	USCI_A1 SPI slave in/master out		
	UCA1SOMI	61	H12	I/O	USCI_A1 SPI slave out/master in		
CDI	UCA1STE	62	G11	I/O	USCI_A1 SPI slave transmit enable		
SPI	UCB1CLK	62	G11	I/O	USCI_B1 clock input/output		
	UCB1SIMO	65	F11	I/O	USCI_B1 SPI slave in/master out		
	UCB1SOMI	66	G9	I/O	USCI_B1 SPI slave out/master in		
	UCB1STE	59	J12	I/O	USCI_B1 SPI slave transmit enable		
	NMI	96	А3	I	Nonmaskable interrupt input		
System	RST	96	А3	I/O	Reset input (active low) ⁽³⁾		
	SVMOUT	57	K12	0	SVM output		

⁽²⁾ VCORE is for internal use only. No external current loading is possible. VCORE must be connected to the recommended capacitor value, C_{VCORE} . When this pin is configured as reset, the internal pullup resistor is enabled by default.

	SIGNAL	PIN	NO.	PIN			
FUNCTION	NAME	PZ	ZQW	TYPE ⁽¹⁾	DESCRIPTION		
	TA0.0	35	M5	I/O	Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output		
Timer_A	TA0.1	36	J6	I/O	Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output		
	140.1	40	J7	I/O	Timer TA0 CCR1 capture: CCI1B input, compare: Out1 output		
	TA0.2	37	H6	I/O	Timer TA0 CCR2 capture: CCI2A input, compare: Out2 output		
	170.2	41	M7	I/O	Timer TA0 CCR2 capture: CCI2B input, compare: Out2 output		
	TA0.3	38	M6	I/O	Timer TA0 CCR3 capture: CCl3A input compare: Out3 output		
	TA0.4	39	L6	I/O	Timer TA0 CCR4 capture: CCI4A input, compare: Out4 output		
	TA0CLK	34	L5	I	Timer TA0 clock signal TACLK input		
	TA1.0	43	H7	I/O	Timer TA1 capture CCR0: CCI0A input, compare: Out0 output		
	TA1.1	44	M8	I/O	Timer TA1 capture CCR1: CCI1A input, compare: Out1 output		
	TA1.2	45	L8	I/O	Timer TA1 capture CCR2: CCI2A input, compare: Out2 output		
	TA1CLK	42	L7	I	Timer TA1 clock input		
	TA2.0	47	M9	I/O	Timer TA2 capture CCR0: CCI0A input, compare: Out0 output		
	TA2.1	48	L9	I/O	Timer TA2 capture CCR1: CCI1A input, compare: Out1 output		
	TA2.2	49	M10	I/O	Timer TA2 capture CCR2: CCI2A input, compare: Out2 output		
	TA2CLK	46	J8	1	Timer TA2 clock input		
	TB0.0	50	J9	I/O	Timer TB0 capture CCR0: CCI0A input, compare: Out0 output		
	TB0.1	51	M11	I/O	Timer TB0 capture CCR1: CCI1A input, compare: Out1 output		
Timer_B	TB0.2	52	L10	I/O	Timer TB0 capture CCR2: CCI2A input, compare: Out2 output		
	TB0.3	53	M12	I/O	Timer TB0 capture CCR3: CCl3A input, compare: Out3 output		
	TB0.4	54	L12	I/O	Timer TB0 capture CCR4: CCI4A input, compare: Out4 output		
	TB0.5	55	L11	I/O	Timer TB0 capture CCR5: CCI5A input, compare: Out5 output		
	TB0.6	56	K11	I/O	Timer TB0 capture CCR6: CCI6A input, compare: Out6 output		
	TB0CLK	58	J11	I	Timer TB0 clock input		
	TB0OUTH	57	K12	1	Timer TB0: Switch all PWM outputs high impedance		
	UCA1CLK	59	J12	I/O	USCI_A1 clock input/output		
UART	UCA1RXD	61	H12	I	USCI_A1 UART receive data		
	UCA1TXD	60	H11	0	USCI_A1 UART transmit data		
	DM	79	A11	I/O	USB data terminal DM (not available on FG6426 and FG6425 devices)		
	DP	77	A12	I/O	USB data terminal DP (not available on FG6426 and FG6425 devices)		
					USB pullup resistor pin (open drain). The voltage level at the PUR pin is used to invoke the default USB BSL.		
	PUR	78	B10	I/O	Recommended 1-M $\!\Omega$ resistor to ground. See Section 6.6 for more information.		
USB					Not available on FG6426 and FG6425 devices.		
(FG662x only)	V18	82	В9	0	USB regulated power (internal use only, no external current loading) (not available on FG6426 and FG6425 devices)		
	VBUS	80	A10	I	USB LDO input (connect to USB power source) (not available on FG6426 and FG6425 devices)		
	VSSU	76	B11 B12	Р	USB PHY ground supply		
	VUSB	81	A9	0	USB LDO output (not available on FG6426 and FG6425 devices)		

4.4 **Pin Multiplexing**

Pin multiplexing for these devices is controlled by both register settings and operating modes (for example, if the device is in test mode). For details of the settings for each pin and schematics of the multiplexed ports, see Section 6.12.23.

Table 4-3. Buffer Type

BUFFER TYPE (STANDARD)	NOMINAL VOLTAGE	HYSTERESIS	PU OR PD	NOMINAL PU OR PD STRENGTH (μA)	OUTPUT DRIVE STRENGTH (mA)	OTHER CHARACTERISTICS
Analog ⁽¹⁾	3.0 V	N	N/A	N/A	N/A	See analog modules in Section 5, Specifications for details
HVCMOS	5.0 V	Υ	N/A	N/A	See Section 5.5.5.1, Typical Characteristics - Outputs	
LVCMOS	3.0 V	Υ(2)	Programmable	See Section 5.5.5, General- Purpose I/Os	See Section 5.5.5.1, Typical Characteristics – Outputs	
Power (DVCC) ⁽³⁾	3.0 V	N	N/A	N/A	N/A	SVS enables hysteresis on DVCC
Power (AVCC) ⁽³⁾	3.0 V	N	N/A	N/A	N/A	
Power (DVSS and AVSS) ⁽³⁾	0 V	N	N/A	N/A	N/A	

This is a switch, not a buffer.

Only for input pins

⁽²⁾ (3) This is supply input, not a buffer.

4.5

SLAS874-MAY 2015 www.ti.com

Connection of Unused Pins

Table 4-4 lists the correct termination of all unused pins.

Table 4-4. Connection of Unused Pins⁽¹⁾

PIN	POTENTIAL	COMMENT
AVCC	DV _{CC}	
AVSS	DV _{SS}	
CPCAP	Open	For devices where the charge pump is not used (no rail-to-rail OA and no rail-to-rail CTSD16).
LCDCAP	DV _{SS}	
LDOI	DV _{SS}	For devices with LDO-PWR module when not being used in the application.
LDOO	Open	For devices with LDO-PWR module when not being used in the application.
NC	Open	
PJ.0/TDO PJ.1/TDI PJ.2/TMS PJ.3/TCK	Open	The JTAG pins are shared with general-purpose I/O function (PJ.x). If not being used, these must be switched to port function, output direction (PJDIR.n = 1). When used as JTAG pins, these pins must remain open.
PU.0/DP PU.1/DM	Open	For USB devices only when USB module is not being used in the application
PUR ⁽²⁾	DV _{SS}	For USB devices only when USB module is not being used in the application
Px.y	Open	Switched to port function, output direction (PxDIR.n = 1). Px.y represents port x and bit y of port x (for example, P1.0, P1.1, P2.2, PJ.0, PJ.1)
RST/NMI	DV _{CC} or V _{CC}	47-kΩ pullup or internal pullup selected with 10-nF (2.2 nF) pulldown ⁽³⁾
Reserved	DV _{SS}	
TEST	Open	This pin always has an internal pulldown enabled.
V18	Open	For USB devices only when USB module is not being used in the application
VBAK	Open	For devices where no separate battery backup supply is used in the system. Set bit BAKDIS = 1.
VBAT	DV _{CC}	For devices where no separate battery backup supply is used in the system. Set bit BAKDIS = 1.
VBUS, VSSU	DV _{SS}	For USB devices only when USB module is not being used in the application
VUSB	Open	For USB devices only when USB module is not being used in the application
XIN	DV _{SS}	For dedicated XIN pins only. XIN pins with shared GPIO functions must be programmed to GPIO and follow Px.y recommendations.
XOUT	Open	For dedicated XOUT pins only. XOUT pins with shared GPIO functions must be programmed to GPIO and follow Px.y recommendations.
XT2IN	DV _{SS}	For dedicated XT2IN pins only. XT2IN pins with shared GPIO functions must be programmed to GPIO and follow Px.y recommendations.
XT2OUT	Open	For dedicated XT2OUT pins only. XT2OUT pins with shared GPIO functions must be programmed to GPIO and follow Px.y recommendations.

Any unused pin with a secondary function that is shared with general-purpose I/O should follow the Px.y unused pin connection

ISTRUMENTS

The default USB BSL evaluates the state of the PUR pin after a BOR reset. If it is pulled high externally, then the BSL is invoked. Therefore, unless invoking the BSL, it is important to keep PUR pulled low after a BOR reset, even if BSL or USB is never used. TI recommends a 1-M Ω resistor to ground.

The pulldown capacitor should not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools such as FET interfaces or GANG programmers.

5 Specifications

5.1 Absolute Maximum Ratings (1)

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Voltage applied at V _{CC} to V _{SS}	-0.3	4.1	V
Voltage applied to any pin (excluding VCORE, VBUS, V18, LDOI) (2)	-0.3	$V_{CC} + 0.3$	V
Diode current at any device pin		±2	mA
Storage temperature, T _{stg} ⁽³⁾	- 55	150	°C
Maximum junction temperature, T _J		95	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

			VALUE	UNIT
\/	V _(ESD) Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±1000	
V(ESD)		Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±250	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1000 V may actually have higher performance.

5.3 Recommended Operating Conditions

Typical values are specified at V_{CC} = 3.3 V and T_A = 25°C (unless otherwise noted)

			MIN	NOM	MAX	UNIT	
		PMMCOREV = 0	1.8		3.6		
V _{CC}	Supply voltage during program execution and flash	PMMCOREV = 0, 1	2.0		3.6	V	
	programming (AVCC = DVCC1 = DVCC2 = DVCC3 = $DV_{CC} = V_{CC}$) (1) (2) (3)	PMMCOREV = 0, 1, 2	2.2		3.6	V	
	55 55,	PMMCOREV = 0, 1, 2, 3	2.4		3.6		
		PMMCOREV = 0	1.8		3.6		
	Supply voltage during USB operation, USB PLL disabled	PMMCOREV = 0, 1	2.0		3.6		
V _{CC,USB} (2)	(USB_EN = 1, UPLLEN = 0)	PMMCOREV = 0, 1, 2	2.2		3.6	V	
		PMMCOREV = 0, 1, 2, 3	2.4		3.6		
	Supply voltage during USB operation, USB PLL enabled	PMMCOREV = 2	2.2		3.6		
	(4) (USB_EN = 1, UPLLEN = 1)	PMMCOREV = 2, 3	2.4		3.6	<u></u>	
V _{SS}	Supply voltage (AVSS1 = AVSS2 = AVSS3 = DVSS1 = DV	/SS2 = DVSS3 = V _{SS})		0		V	
V	Dealers annual valtage with DTC energtional	$T_A = 0$ °C to 85°C	1.55		3.6	\	
$V_{BAT,RTC}$	Backup-supply voltage with RTC operational	$T_A = -40$ °C to 85°C	1.70		3.6	V	
$V_{BAT,MEM}$	Backup-supply voltage with backup memory retained.	$T_A = -40$ °C to 85°C	1.20		3.6	V	
T _A	Operating free-air temperature	I version	-40		85	°C	
TJ	Operating junction temperature	I version	-40		85	ů	
C _{BAK}	Capacitance at pin VBAK		1	4.7	10	nF	
C _{VCORE}	Capacitor at VCORE ⁽⁵⁾	<u> </u>		470		nF	

⁽¹⁾ TI recommends powering AV_{CC} and DV_{CC} from the same source. A maximum difference of 0.3 V between AV_{CC} and DV_{CC} can be tolerated during power up and operation.

⁽²⁾ All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied.

⁽³⁾ Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V may actually have higher performance.

⁽²⁾ Some modules may have reduced recommended ranges of operation.

⁽³⁾ The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the threshold parameters in Table 5-19 for the exact values and further details.

⁴⁾ USB operation with USB PLL enabled requires PMMCOREV ≥ 2 for proper operation.

⁵⁾ A capacitor tolerance of ±20% is required.

Recommended Operating Conditions (continued)

Typical values are specified at $V_{CC} = 3.3 \text{ V}$ and $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

			MIN	NOM	MAX	UNIT
C _{DVCC} / C _{VCORE}	Capacitor ratio of DVCC to VCORE		10		•	
fsystem		PMMCOREV = 0, 1.8 V \leq V _{CC} \leq 3.6 V (default condition)	0		8.0	
	Processor frequency (maximum MCLK frequency) (6) (7) (see Figure 5-1)	PMMCOREV = 1, 2 V ≤ V _{CC} ≤ 3.6 V	0		12.0	MHz
		PMMCOREV = 2, 2.2 V \leq V _{CC} \leq 3.6 V	0		16.0	ı
		PMMCOREV = 3, 2.4 V \leq V _{CC} \leq 3.6 V	0		20.0	ļ
f _{SYSTEM_USB}	Minimum processor frequency for USB operation					MHz
USB_wait	Wait state cycles during USB operation			16		cycles

⁽⁶⁾ The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the specified maximum frequency.

⁽⁷⁾ Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.

The numbers within the fields denote the supported PMMCOREVx settings.

Figure 5-1. Frequency vs Supply Voltage

NSTRUMENTS

Table 5-1. Active Mode Supply Current Into V_{CC} Excluding External Current

over recommended operating free-air temperature (unless otherwise noted) (1) (2) (3)

	EVECUTION			FREQUENCY (f _{DCO} = f _{MCLK} = f _{SMCLK})									
PARAMETER	EXECUTION MEMORY	V _{CC}	PMMCOREV	1 MHz		8 MHz		12 MHz		20 MHz		UNIT	
				TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX		
	I _{AM, Flash} Flash 3 V		0	0.31	0.36	2.0	2.4						
		Flash 3 V	1	0.35		2.3		3.4	4.0			m ^	
IAM, Flash			2	0.37		2.5		3.8				mA	
			3	0.4		2.7		4.0		6.6			
			0	0.2	0.23	1.1	1.2						
I _{AM, RAM} RAM	DAM	3 V	RAM 3 V	1	0.22		1.3		1.9	2.1			mA
	RAM			2	0.24		1.5		2.2				IIIA
			3	0.26		1.6		2.4		3.9			

All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current.

The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load (2)capacitance are chosen to closely match the required 12.5 pF.

Characterized with program executing typical data processing. FG6626 and FG6625 USB disabled (VUSBEN = 0, SLDOEN = 0). FG6426 and FG6425 LDO disabled (LDOEN = 0).

 $f_{ACLK} = 32786$ Hz, $f_{DCO} = f_{MCLK} = f_{SMCLK}$ at specified frequency. XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0.

Table 5-2. Low-Power Mode Supply Currents (Into V_{CC}) Excluding External Current

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2)

	DADAMETER	V	DMMCODEV	-40)°C	25	°C	60	°C	85	°C	UNIT	
	PARAMETER	V _{CC}	PMMCOREV	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	UNII	
	1 (3) (4)	2.2 V	0	72		77	87	81		87	98		
I _{LPM0,1MHz}	Low-power mode 0 ⁽³⁾ (4)	3 V	3	86		92	105	97		104	117	μA	
	Low-power mode 2 ⁽⁵⁾ (4)	2.2 V	0	6.9		7.5	9.9	8.5		12	17		
I _{LPM2}	Low-power mode 2(9) (1)	3 V	3	7.9		8.5	11	9.7		14	20	μA	
			0	2.8		3.2	3.7	4.2		7.6	13.5		
		2.2 V	1	3.1		3.6		4.6		8.2			
			2	3.5		4.0		5.1		8.8			
I _{LPM3,XT1LF}	Low-power mode 3, crystal mode (6) (4)		0	3.0		3.4	4.0	4.4		7.9	14	μΑ	
	5. y 5. 5. 1110 d 5	,	3 V	1	3.3		3.8		4.9		8.5		
		3 V	2	3.7		4.2		5.3		9.0			
				3	3.7		4.2	4.8	5.3		9.1	16	
	Low-power mode 3, VLO mode, Watchdog enabled ⁽⁷⁾ (4)		0	1.2		1.5	2.1	2.4		5.8	12.5		
I _{LPM3.}		3 V	1	1.4		1.6		2.6		6.1			
VLO,WDT			2	1.6		1.8		2.8		6.5		μA	
			3	1.6		1.8	2.6	2.9		6.5	14		
			0	0.6		0.9	1.8	1.9		5.4	11.5		
	Low-power mode 4 ⁽⁸⁾ (4)	3 V	1	0.7		1.0		2.0		5.6			
I _{LPM4}	Low-power mode 4 (5)	3 V	2	0.8		1.1		2.2		5.9		μA	
			3	0.8		1.1	2.1	2.2		6.0	13		
I _{LPM3.5} , RTC,VCC	Low-power mode 3.5 (LPM3.5) current with active RTC into primary supply pin DV _{CC} ⁽⁹⁾	3 V				0.2				0.7	1.7	μΑ	
I _{LPM3.5,} RTC,VBAT	Low-power mode 3.5 (LPM3.5) current with active RTC into backup supply pin VBAT ⁽¹⁰⁾	3 V				0.7				0.9	1.2	μA	
I _{LPM3.5,} RTC,TOT	Total low-power mode 3.5 (LPM3.5) current with active RTC ⁽¹¹⁾	3 V		0.8		0.9		1.0		1.6	2.9	μA	

- (1) All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.
- The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance are chosen to closely match the required 9 pF.
- (3) Current for watchdog timer clocked by SMCLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0); f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = f_{DCO} = 1 MHz FG6626 and FG6625 USB disabled (VUSBEN = 0, SLDOEN = 0). FG6426 and FG6425 LDO disabled (LDOEN = 0).
- (4) Current for brownout included. Low side supervisor and monitors disabled (SVS_L, SVM_L). High side supervisor and monitor disabled (SVS_H, SVM_H). RAM retention enabled.
- (5) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0).CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2); f_{ACLK} = 32768 Hz, f_{MCLK} = 0 MHz, f_{SMCLK} = f_{DCO} = 0 MHz; DCO

setting = 1 MHz operation, DCO bias generator enabled.

- FG6626 and FG6625 USB disabled (VUSBEN = 0, SLDOEN = 0). FG6426 and FG6425 LDO disabled (LDOEN = 0).
- (6) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0).CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); f_{ACLK} = 32768 Hz, f_{MCLK} = f_{SMCLK} = f_{DCO} = 0 MHz FG6626 and FG6625 USB disabled (VUSBEN = 0, SLDOEN = 0). FG6426 and FG6425 LDO disabled (LDOEN = 0).
- (7) Current for watchdog timer clocked by VLO included.
 - CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); $f_{ACLK} = f_{MCLK} = f_{SMCLK} = f_{DCO} = 0 \text{ MHz}$ FG6625 and FG6625 USB disabled (VUSBEN = 0, SLDOEN = 0). FG6426 and FG6425 LDO disabled (LDOEN = 0).
- (8) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4); $f_{DCO} = f_{ACLK} = f_{MCLK} = 0$ MHz FG6626 and FG6625 USB disabled (VUSBEN = 0, SLDOEN = 0). FG6426 and FG6425 LDO disabled (LDOEN = 0).
- (9) $V_{VBAT} = V_{CC} 0.2 \text{ V}$, $f_{DCO} = f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}$, $f_{ACLK} = 32768 \text{ Hz}$, PMMREGOFF = 1, RTC in backup domain active (10) $V_{VBAT} = V_{CC} 0.2 \text{ V}$, $f_{DCO} = f_{MCLK} = f_{SMCLK} = 0 \text{ MHz}$, $f_{ACLK} = 32768 \text{ Hz}$, PMMREGOFF = 1, RTC in backup domain active, no current drawn on VBAK
- (11) $f_{DCO} = f_{MCLK} = f_{SMCLK} = 0$ MHz, $f_{ACLK} = 32768$ Hz, PMMREGOFF = 1, RTC in backup domain active, no current drawn on VBAK

NSTRUMENTS

INSTRUMENTS

Low-Power Mode Supply Currents (Into V_{cc}) Excluding External Current (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)

PARAMETER		V	PMMCOREV	-40	°C	25	°C	60	°C	85	°C	UNIT
		V _{CC} PMMCOREV	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	UNII	
I _{LPM4.5}	Low-power mode 4.5 (LPM4.5) ⁽¹²⁾	3 V		0.12		0.2	0.6	0.32		0.8	1.9	μΑ

⁽¹²⁾ Internal regulator disabled. No data retention.

CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5); f_{DCO} = f_{ACLK} = f_{MCLK} = f_{SMCLK} = 0 MHz

Table 5-3. Low-Power Mode With LCD Supply Currents (Into V_{CC}) Excluding External Current

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2)

	3 2 2 3 3 2 3 4 4		J			7	empera	ture (T _A))			
	PARAMETER	V _{CC}	PMMCOREV	-40	°C	25	°C	60	°C	85	°C	UNIT
				TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
	Low-power mode 3		0	3.7		4.3	4.9	5.5		9.0	15.0	
I _{LPM3} ,	(LPM3) current, LCD 4-	3 V	1	4.1		4.7		5.9		9.6		
LCD, ext. bias	mux mode, external biasing (3) (4)		2	4.5		5.1		6.3		10.2		μA
			3	4.5		5.2	5.8	6.5		10.4	18.0	
Low-power mode 3		0	4.2		4.8	5.4	6.0		9.6	17.0		
	2.1/	1	4.7		5.4		6.6		10.4		μA	
LCD, int. bias	mux mode, internal biasing, charge pump	3 V	2	5.1		5.8		7.1		11.0		μΑ
	biasing, charge pump disabled ^{(3) (5)}		3	5.0		5.7	6.4	7.0		11.0	19.0	
			0			6.4						
		2.2 V	1			6.77						μA
	Low-power mode 3 (LPM3) current, LCD 4-		2			7.13						
I _{LPM3} LCD,CP	mux mode, internal		0			6.53						
bi	biasing, charge pump enabled ⁽³⁾ (6)	2.1/	1			7.0						
	onablea	3 V	2			7.43						μA
			3		<u> </u>	7.6		<u>'</u>			<u> </u>	

- (1) All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.
- (2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance are chosen to closely match the required 9 pF.
- (3) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
 - CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); $f_{ACLK} = 32768 \text{ Hz}$, $f_{MCLK} = f_{SMCLK} = f_{DCO} = 0 \text{ MHz}$ Current for brownout included. Low-side supervisor (SVS_L) and low-side monitor (SVM_L) disabled. High-side supervisor (SVS_H) and high-side monitor (SVM_H) disabled. RAM retention enabled.
- (4) LČDMx = 11 (4-mux mode), LCDREXT = 1, LCDEXTBIAS = 1 (external biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (f_{LCD} = 32768 Hz/32/4 = 256 Hz)
 Current through external resistors not included (voltage levels are supplied by test equipment).
 Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.
- (5) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (f_{LCD} = 32768 Hz/32/4 = 256 Hz) Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.
- (6) LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 1 (charge pump enabled), VLCDx = 1000 (V_{LCD} = 3 V, typ.), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (f_{LCD} = 32768 Hz/32/4 = 256 Hz) Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.

5.4

Thermal Characteristics

	PARAMETER		VALUE	UNIT
0	Junction-to-ambient thermal resistance, still air (1)	QFP (PZ)	122	°C/W
θ_{JA}	Junction-to-ambient thermal resistance, still all V	BGA (ZQW)	108	· C/VV
^	lunction to again (tan) thermal registeres (2)	QFP (PZ)	83	°C/W
$\theta_{\text{JC(TOP)}}$	Junction-to-case (top) thermal resistance (2)	BGA (ZQW)	72	· C/VV
0	Junction-to-board thermal resistance (3)	QFP (PZ)	98	0C AA
θ_{JB}	Junction-to-board thermal resistance (**)	BGA (ZQW)	76	°C/W

The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

Timing and Switching Characteristics 5.5

Power Supply Sequencing

TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up, power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits specified in Section 5.1, Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and flash.

Table 5-4. Brownout and Device Reset Power Ramp Requirements

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

				,		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$V_{(DVCC_BOR_IT-)}$	BOR _H on voltage, DV _{CC} falling level	$\mid dDV_{CC}/d_t \mid < 3 \text{ V/s}$			1.47	V
V _(DVCC_BOR_IT+)	BOR _H off voltage, DV _{CC} rising level	$\mid dDV_{CC}/d_t \mid < 3 \text{ V/s}$	0.80	1.30	1.55	V
V _(DVCC_BOR_hys)	BOR _H hysteresis		60		250	mV

5.5.2 Reset Timing

Table 5-5. Reset Input

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TYP	UNIT
t _{RESET}	Pulse duration required at RST/NMI pin to accept a reset	2	μs

STRUMENTS

The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

5.5.3 Clock Specifications

Table 5-6. Crystal Oscillator, XT1, Low-Frequency Mode⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		f _{OSC} = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1			0.075		
$\Delta I_{DVCC,LF}$	Differential XT1 oscillator crystal current consumption from lowest drive setting, LF mode	f_{OSC} = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 2	3 V		0.170		μΑ
	a	f _{OSC} = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3			0.290		
f _{XT1,LF0}	XT1 oscillator crystal frequency, LF mode	XTS = 0, XT1BYPASS = 0			32768		Hz
f _{XT1,LF,SW}	XT1 oscillator logic-level square- wave input frequency, LF mode	XTS = 0, XT1BYPASS = 1 ⁽²⁾ (3)		10	32.768	50	kHz
ΟΛ. –	Oscillation allowance for	$ \begin{array}{l} XTS = 0, \\ XT1BYPASS = 0, XT1DRIVEx = 0, \\ f_{XT1,LF} = 32768 Hz, C_{L,eff} = 6 pF \end{array} $			210		kΩ
OA _{LF}	LF crystals ⁽⁴⁾	XTS = 0, XT1BYPASS = 0, $XT1DRIVEx = 1$, $f_{XT1,LF} = 32768$ Hz, $C_{L,eff} = 12$ pF			300		K22
		$XTS = 0, XCAPx = 0^{(6)}$			1		
C	Integrated effective load	XTS = 0, $XCAPx = 1$			5.5		pF
$C_{L,eff}$	capacitance, LF mode ⁽⁵⁾	XTS = 0, $XCAPx = 2$			8.5		þi
		XTS = 0, $XCAPx = 3$			12.0		
	Duty cycle, LF mode	XTS = 0, Measured at ACLK, f _{XT1,LF} = 32768 Hz		30%		70%	
f _{Fault,LF}	Oscillator fault frequency, LF mode ⁽⁷⁾	XTS = 0 ⁽⁸⁾		10		10000	Hz
^t START,LF	Start-up time, LF mode	$\begin{split} f_{OSC} &= 32768 \text{ Hz, XTS} = 0, \\ \text{XT1BYPASS} &= 0, \text{XT1DRIVEx} = 0, \\ C_{L,eff} &= 6 \text{ pF} \end{split}$	3 V		1000		mo
	Start-up time, LF mode	$\begin{split} &f_{OSC} = 32768 \text{ Hz, XTS} = 0, \\ &\text{XT1BYPASS} = 0, \text{XT1DRIVEx} = 3, \\ &C_{L,\text{eff}} = 12 \text{ pF} \end{split}$	3 V				ms

- To improve EMI on the XT1 oscillator, the following guidelines should be observed.
 - Keep the trace between the device and the crystal as short as possible.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
 - Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
 - If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
- When XT1BYPASS is set, XT1 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this data sheet.
- Maximum frequency of operation of the entire device cannot be exceeded.
- Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following quidelines, but should be evaluated based on the actual crystal selected for the application:
 - For XT1DRIVEx = 0, $C_{L,eff} \le 6 pF$.
 - For XT1DRIVEx = 1, 6 $pF \le C_{L,eff} \le 9 pF$.
 - For XT1DRIVEx = 2, 6 pF \leq C_{L,eff} \leq 10 pF.
- For XT1DRIVEx = 3, C_{L,eff} ≥ 6 pF.
 Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
- Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the flag.
- Measured with logic-level input frequency but also applies to operation with crystals.

Table 5-7. Crystal Oscillator, XT2

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		$f_{OSC} = 4$ MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 0, $T_A = 25^{\circ}C$			200		
1	XT2 oscillator crystal current	f_{OSC} = 12 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 1, T_A = 25°C	3 V		260		
I _{DVCC,XT2}	consumption	f_{OSC} = 20 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 2, T_A = 25°C	3 V		325		μΑ
		$f_{OSC} = 32$ MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 3, $T_A = 25^{\circ}\text{C}$			450		
f _{XT2,HF0}	XT2 oscillator crystal frequency, mode 0	XT2DRIVEx = 0, $XT2BYPASS = 0$ ⁽³⁾		4		8	MHz
f _{XT2,HF1}	XT2 oscillator crystal frequency, mode 1	XT2DRIVEx = 1, XT2BYPASS = 0 ⁽³⁾		8		16	MHz
f _{XT2,HF2}	XT2 oscillator crystal frequency, mode 2	XT2DRIVEx = 2, XT2BYPASS = 0 ⁽³⁾		16		24	MHz
f _{XT2,HF3}	XT2 oscillator crystal frequency, mode 3	XT2DRIVEx = 3, XT2BYPASS = 0 ⁽³⁾		24		32	MHz
f _{XT2,HF,SW}	XT2 oscillator logic-level square- wave input frequency	XT2BYPASS = 1 (4) (3)		0.7		32	MHz
	$XT2DRIVEx = 0$, $XT2BYPASS = 0$, $f_{XT2,HF0} = 6$ MHz, $C_{L,eff} = 15$ pF			450			
0.4	Oscillation allowance for	$XT2DRIVEx = 1$, $XT2BYPASS = 0$, $f_{XT2,HF1} = 12$ MHz, $C_{L,eff} = 15$ pF			320		
OA _{HF}	HF crystals ⁽⁵⁾	$XT2DRIVEx = 2$, $XT2BYPASS = 0$, $f_{XT2,HF2} = 20$ MHz, $C_{L,eff} = 15$ pF			200		Ω
		$XT2DRIVEx = 3$, $XT2BYPASS = 0$, $f_{XT2,HF3} = 32$ MHz, $C_{L,eff} = 15$ pF			200		
	Start up time	$ \begin{aligned} f_{OSC} &= 6 \text{ MHz} \\ \text{XT2BYPASS} &= 0, \text{ XT2DRIVEx} = 0, \\ T_A &= 25^{\circ}\text{C}, \\ C_{L,eff} &= 15 \text{ pF} \end{aligned} $	3 V		0.5		ma
t _{START,H} F	Start-up time	$ \begin{aligned} &f_{OSC} = 20 \text{ MHz} \\ &\text{XT2BYPASS} = 0, \text{XT2DRIVEx} = 3, \\ &T_A = 25^{\circ}\text{C}, \\ &C_{L,eff} = 15 \text{ pF} \end{aligned} $	3 V		0.3		ms
$C_{L,eff}$	Integrated effective load capacitance, HF mode (6) (1)				1		pF
	Duty cycle	Measured at ACLK, f _{XT2,HF2} = 20 MHz		40%	50%	60%	
f _{Fault,HF}	Oscillator fault frequency ⁽⁷⁾	XT2BYPASS = 1 ⁽⁸⁾		30		300	kHz

- (1) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
- To improve EMI on the XT2 oscillator the following guidelines should be observed.
 - Keep the traces between the device and the crystal as short as possible.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.
 - Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.
 - Use assembly materials and processes that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.
 - If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
- Maximum frequency of operation of the entire device cannot be exceeded.
- When XT2BYPASS is set, the XT2 circuit is automatically powered down.
- Oscillation allowance is based on a safety factor of 5 for recommended crystals.
 - Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the flag.
- Measured with logic-level input frequency but also applies to operation with crystals.

NSTRUMENTS

Table 5-8. Internal Very-Low-Power Low-Frequency Oscillator (VLO)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

RUMENTS

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
f_{VLO}	VLO frequency	Measured at ACLK	1.8 V to 3.6 V	6	9.4	14	kHz
df_{VLO}/d_{T}	VLO frequency temperature drift	Measured at ACLK ⁽¹⁾	1.8 V to 3.6 V		0.5		%/°C
df_{VLO}/dV_{CC}	VLO frequency supply voltage drift	Measured at ACLK ⁽²⁾	1.8 V to 3.6 V		4		%/V
	Duty cycle	Measured at ACLK	1.8 V to 3.6 V	40%	50%	60%	

Calculated using the box method: (MAX(-40° C to 85° C) - MIN(-40° C to 85° C)) / MIN(-40° C to 85° C) / (85° C - (-40° C)) Calculated using the box method: (MAX(1.8 V to 3.6 V) - MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V - 1.8 V)

Table 5-9. Internal Reference, Low-Frequency Oscillator (REFO)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP	MAX	UNIT
I _{REFO}	REFO oscillator current consumption	T _A = 25°C	1.8 V to 3.6 V	3		μΑ
	REFO frequency calibrated	Measured at ACLK	1.8 V to 3.6 V	32768		Hz
f _{REFO}	REFO absolute tolerance	Full temperature range	1.8 V to 3.6 V		±3.5%	
	calibrated	T _A = 25°C	3 V		±1.5%	
df _{REFO} /d _T	REFO frequency temperature drift	Measured at ACLK ⁽¹⁾	1.8 V to 3.6 V	0.01		%/°C
df _{REFO} /dV _{CC}	REFO frequency supply voltage drift	Measured at ACLK ⁽²⁾	1.8 V to 3.6 V	1.0		%/V
	Duty cycle	Measured at ACLK	1.8 V to 3.6 V	40% 50%	60%	
t _{START}	REFO start-up time	40%/60% duty cycle	1.8 V to 3.6 V	25		μs

Calculated using the box method: (MAX(-40°C to 85°C) - MIN(-40°C to 85°C)) / MIN(-40°C to 85°C) / (85°C - (-40°C))

⁽²⁾

Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)

Table 5-10. DCO Frequency

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{DCO(0,0)}	DCO frequency $(0, 0)^{(1)}$	DCORSELx = 0, $DCOx = 0$, $MODx = 0$	0.07		0.20	MHz
f _{DCO(0,31)}	DCO frequency (0, 31) ⁽¹⁾	DCORSELx = 0, DCOx = 31, MODx = 0	0.70		1.70	MHz
f _{DCO(1,0)}	DCO frequency (1, 0) ⁽¹⁾	DCORSELx = 1, $DCOx = 0$, $MODx = 0$	0.15		0.36	MHz
f _{DCO(1,31)}	DCO frequency (1, 31) ⁽¹⁾	DCORSELx = 1, DCOx = 31, MODx = 0	1.47		3.45	MHz
f _{DCO(2,0)}	DCO frequency (2, 0) ⁽¹⁾	DCORSELx = 2, $DCOx = 0$, $MODx = 0$	0.32		0.75	MHz
f _{DCO(2,31)}	DCO frequency (2, 31) ⁽¹⁾	DCORSELx = 2, DCOx = 31, MODx = 0	3.17		7.38	MHz
f _{DCO(3,0)}	DCO frequency (3, 0) ⁽¹⁾	DCORSELx = 3, DCOx = 0, MODx = 0	0.64		1.51	MHz
f _{DCO(3,31)}	DCO frequency (3, 31) ⁽¹⁾	DCORSELx = 3, DCOx = 31, MODx = 0	6.07		14.0	MHz
f _{DCO(4,0)}	DCO frequency (4, 0) ⁽¹⁾	DCORSELx = 4, DCOx = 0, MODx = 0	1.3		3.2	MHz
f _{DCO(4,31)}	DCO frequency (4, 31) ⁽¹⁾	DCORSELx = 4, DCOx = 31, MODx = 0	12.3		28.2	MHz
f _{DCO(5,0)}	DCO frequency (5, 0) ⁽¹⁾	DCORSELx = 5, DCOx = 0, MODx = 0	2.5		6.0	MHz
f _{DCO(5,31)}	DCO frequency (5, 31) ⁽¹⁾	DCORSELx = 5, DCOx = 31, MODx = 0	23.7		54.1	MHz
f _{DCO(6,0)}	DCO frequency (6, 0) ⁽¹⁾	DCORSELx = 6, DCOx = 0, MODx = 0	4.6		10.7	MHz
f _{DCO(6,31)}	DCO frequency (6, 31) ⁽¹⁾	DCORSELx = 6, DCOx = 31, MODx = 0	39.0		88.0	MHz
f _{DCO(7,0)}	DCO frequency (7, 0) ⁽¹⁾	DCORSELx = 7, DCOx = 0, MODx = 0	8.5		19.6	MHz
f _{DCO(7,31)}	DCO frequency (7, 31) ⁽¹⁾	DCORSELx = 7, DCOx = 31, MODx = 0	60		135	MHz
S _{DCORSEL}	Frequency step between range DCORSEL and DCORSEL + 1	$S_{RSEL} = f_{DCO(DCORSEL+1,DCO)}/f_{DCO(DCORSEL,DCO)}$	1.2		2.3	ratio
S _{DCO}	Frequency step between tap DCO and DCO + 1	$S_{DCO} = f_{DCO(DCORSEL,DCO+1)}/f_{DCO(DCORSEL,DCO)}$	1.02		1.12	ratio
	Duty cycle	Measured at SMCLK	40	50	60	%
df _{DCO} /dT	DCO frequency temperature drift	f _{DCO} = 1 MHz,		0.1		%/°C
df _{DCO} /dV _{CC}	DCO frequency voltage drift	f _{DCO} = 1 MHz		1.9		%/V

⁽¹⁾ When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, f_{DCO}, should be set to reside within the range of f_{DCO(n, 0),MAX} ≤ f_{DCO} ≤ f_{DCO(n, 31),MIN}, where f_{DCO(n, 0),MAX} represents the maximum frequency specified for the DCO frequency, range n, tap 0 (DCOx = 0) and f_{DCO(n,31),MIN} represents the minimum frequency specified for the DCO frequency, range n, tap 31 (DCOx = 31). This ensures that the target DCO frequency resides within the range selected. It should also be noted that if the actual f_{DCO} frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the selected range is at its minimum or maximum tap setting.

Figure 5-2. Typical DCO Frequency

NSTRUMENTS

5.5.4 Wake-Up Characteristics

RUMENTS

Table 5-11. Wake-Up Times From Low-Power Modes and Reset

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
	Wake-up time from LPM2,	PMMCOREV = SVSMLRRL = n	f _{MCLK} ≥ 4 MHz		3	6.5	
t _{WAKE-UP-FAST}	LPM3, or LPM4 to active mode ⁽¹⁾	(where n = 0, 1, 2, or 3), SVSLFP = 1	1 MHz < f _{MCLK} < 4 MHz	4	8.0	μs	
t _{WAKE-UP-SLOW}	Wake-up time from LPM2, LPM3 or LPM4 to active mode ⁽²⁾	PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 0			150	165	μs
t _{WAKE-UP-LPM5}	Wake-up time from LPM3.5 or LPM4.5 to active mode (3)				2	3	ms
t _{WAKE-UP-RESET}	Wake-up time from RST or BOR event to active mode (3)				2	3	ms

⁽¹⁾ This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVS_L) and low-side monitor (SVM_L). Fastest wake-up times are possible with SVS_L and SVM_L in full performance mode or disabled when operating in AM, LPM0, and LPM1. Various options are available for SVS_L and SVM_L while operating in LPM2, LPM3, and LPM4. See the *Power Management Module and Supply Voltage Supervisor* chapter in the *MSP430x5xx* and *MSP430x6xx Family User's Guide* (SLAU208).

⁽²⁾ This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVS_L) and low-side monitor (SVM_L). In this case, the SVS_L and SVM_L are in normal mode (low current) mode when operating in AM, LPM0, and LPM1. Various options are available for SVS_L and SVM_L while operating in LPM2, LPM3, and LPM4. See the *Power Management Module and Supply Voltage Supervisor* chapter in the *MSP430x5xx and MSP430x6xx Family User's Guide* (SLAU208).

⁽³⁾ This value represents the time from the wake-up event to the reset vector execution.

5.5.5 General-Purpose I/Os

Table 5-12. Schmitt-Trigger Inputs – General-Purpose I/O⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
\/	Docitive going input threshold voltage		1.8 V	0.80		1.40	V
VIT+	V _{IT+} Positive-going input threshold voltage		3 V	1.50		2.10	V
V	Negative going input threshold voltage		1.8 V	0.45		1.00	V
V _{IT}	Negative-going input threshold voltage		3 V	0.75		1.65	V
\ <u>\</u>	Input voltage hysteresis (V _{IT+} – V _{IT-})		1.8 V	0.3		0.8	V
V _{hys} Input			3 V	0.4		1.0	
R _{Pull}	Pullup/pulldown resistor	For pullup: $V_{IN} = V_{SS}$ For pulldown: $V_{IN} = V_{CC}$		20	35	50	kΩ
C_{l}	Input capacitance	$V_{IN} = V_{SS}$ or V_{CC}			5		pF

⁽¹⁾ Same parametrics apply to clock input pin when crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN).

Table 5-13. Inputs – Ports P1, P2, P3, and P4⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
t _(int) External interrupt timing ⁽²⁾	Port P1, P2, P3, P4: P1.x to P4.x, External trigger pulse duration to set interrupt flag	2.2 V, 3 V	20		ns

Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.

Table 5-14. Leakage Current – General-Purpose I/O

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{CC}	MIN MAX	UNIT
I _{Ikg(Px.x)} High-impedance leakage current		⁽¹⁾ (2)1.8 V, 3 V	±50	nA

The leakage current is measured with V_{SS} or V_{CC} applied to the corresponding pin(s), unless otherwise noted.

Table 5-15. Outputs – General-Purpose I/O (Full Drive Strength)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
V _{OH}	High-level output voltage	$I_{(OHmax)} = -3 \text{ mA}^{(1)}$	1.0.1/	V _{CC} - 0.25	V _{CC}	V
		$I_{(OHmax)} = -10 \text{ mA}^{(2)}$	1.8 V	V _{CC} - 0.60	V_{CC}	
		$I_{(OHmax)} = -5 \text{ mA}^{(1)}$	2.1/	V _{CC} - 0.25	V_{CC}	
		$I_{(OHmax)} = -15 \text{ mA}^{(2)}$	3 V	V _{CC} - 0.60	V_{CC}	
V _{OL}	Low-level output voltage	$I_{(OLmax)} = 3 \text{ mA}^{(1)}$	4.0.1/	V _{SS}	$V_{SS} + 0.25$	V
		$I_{(OLmax)} = 10 \text{ mA}^{(2)}$	1.8 V	V _{SS}	V _{SS} + 0.60	
		$I_{(OLmax)} = 5 \text{ mA}^{(1)}$	2.1/	V _{SS}	V _{SS} + 0.25	
		$I_{(OLmax)} = 15 \text{ mA}^{(2)}$	3 V	V _{SS}	V _{SS} + 0.60	

The maximum total current, I_(OHmax), and I_(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop (1)

RUMENTS

An external signal sets the interrupt flag every time the minimum interrupt pulse duration t_(int) is met. It may be set by trigger signals shorter than t_(int).

The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is

The maximum total current, I_(OLmax) and I_(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage drop specified.

Table 5-16. Outputs - General-Purpose I/O (Reduced Drive Strength)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
		$I_{(OHmax)} = -1 \text{ mA}^{(2)}$	1.8 V	V _{CC} - 0.25	V _{CC}	V
V _{OH} High-level output voltage	Lligh lovel output valtage	$I_{(OHmax)} = -3 \text{ mA}^{(3)}$	1.6 V	V _{CC} - 0.60	V_{CC}	
	I _(OHmax) = -	$I_{(OHmax)} = -2 \text{ mA}^{(2)}$	3 V	V _{CC} - 0.25	V_{CC}	
		$I_{(OHmax)} = -6 \text{ mA}^{(3)}$		V _{CC} - 0.60	V_{CC}	
		$I_{(OLmax)} = 1 \text{ mA}^{(2)}$	1.8 V	V _{SS}	$V_{SS} + 0.25$	
V	Low lovel output voltage	$I_{(OLmax)} = 3 \text{ mA}^{(3)}$	1.6 V	V _{SS}	$V_{SS} + 0.60$	
V _{OL}	Low-level output voltage	$I_{(Olmax)} = 2 \text{ mA}^{(2)}$	V _{SS}	$V_{SS} + 0.25$	V	
		$I_{(OLmax)} = 6 \text{ mA}^{(3)}$	3 V	V _{SS}	V _{SS} + 0.60	

⁽¹⁾ Selecting reduced drive strength may reduce EMI.

Table 5-17. Output Frequency - Ports P1, P2 and P3

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			MAX	UNIT
f _{Px.y}	Port output frequency	P3.4/TA2CLK/SMCLK/S27	$V_{CC} = 1.8 \text{ V}$ PMMCOREVx = 0		8	NAL 1-
	(with load)	$C_L = 20 \text{ pF}, R_L = 1 \text{ k}\Omega^{(1)} \text{ or } 3.2 \text{ k}\Omega^{(2)}$ (3)	V _{CC} = 3 V PMMCOREVx = 3		20	MHz
		P1.0/TA0CLK/ACLK/S39 P3.4/TA2CLK/SMCLK/S27	V _{CC} = 1.8 V PMMCOREVx = 0		8	NAL I
f _{Port_CLK}	Clock output frequency	$P2.0/P2MAP0 (P2MAP0 = PM_MCLK)$ $C_L = 20 pF^{(3)}$	V _{CC} = 3 V PMMCOREVx = 3		20	MHz

Full drive strength of port: A resistive divider with 2 x 0.5 kΩ between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider.

⁽²⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified.

⁽³⁾ The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified.

⁽²⁾ Reduced drive strength of port: A resistive divider with 2 x 1.6 kΩ between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider.

⁽³⁾ The output voltage reaches at least 10% and 90% V_{CC} at the specified toggle frequency.

5.5.5.1 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

Figure 5-3. Typical Low-Level Output Current vs Low-Level Output Voltage

NSTRUMENTS

Figure 5-4. Typical Low-Level Output Current vs Low-Level Output Voltage

Figure 5-5. Typical High-Level Output Current Vs High-Level Output Voltage

Figure 5-6. Typical High-Level Output Current Vs High-Level Output Voltage

5.5.5.2 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

Figure 5-7. Typical Low-Level Output Current vs Low-Level Output Voltage

Figure 5-8. Typical Low-Level Output Current vs Low-Level Output Voltage

Figure 5-9. Typical High-Level Output Current vs High-level Output Voltage

Figure 5-10. Typical High-Level Output Current vs High-level Output Voltage

5.5.6 PMM

Table 5-18. PMM, Core Voltage

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
V _{CORE3} (AM)	Core voltage, active mode, PMMCOREV = 3	$2.4 \text{ V} \le \text{DV}_{CC} \le 3.6 \text{ V}, 0 \text{ mA} \le \text{I}(\text{V}_{CORE}) \le 21 \text{ mA}$	1.90	V
V _{CORE2} (AM)	Core voltage, active mode, PMMCOREV = 2	$2.2 \text{ V} \le \text{DV}_{CC} \le 3.6 \text{ V}, 0 \text{ mA} \le \text{I}(\text{V}_{CORE}) \le 21 \text{ mA}$	1.80	V
V _{CORE1} (AM)	Core voltage, active mode, PMMCOREV = 1	$2 \text{ V} \leq \text{DV}_{\text{CC}} \leq 3.6 \text{ V}, 0 \text{ mA} \leq \text{I}(\text{V}_{\text{CORE}}) \leq 17 \text{ mA}$	1.60	V
V _{CORE0} (AM)	Core voltage, active mode, PMMCOREV = 0	1.8 V ≤ DV _{CC} ≤ 3.6 V, 0 mA ≤ $I(V_{CORE})$ ≤ 13 mA	1.40	V
V _{CORE3} (LPM)	Core voltage, low-current mode, PMMCOREV = 3	2.4 V ≤ DV _{CC} ≤ 3.6 V, 0 μ A ≤ I(V _{CORE}) ≤ 30 μ A	1.94	V
V _{CORE2} (LPM)	Core voltage, low-current mode, PMMCOREV = 2	$2.2 \text{ V} ≤ \text{DV}_{CC} ≤ 3.6 \text{ V}, 0 \text{ μA} ≤ \text{I}(\text{V}_{CORE}) ≤ 30 \text{ μA}$	1.84	V
V _{CORE1} (LPM)	Core voltage, low-current mode, PMMCOREV = 1	2 V ≤ DV _{CC} ≤ 3.6 V, 0 μA ≤ $I(V_{CORE})$ ≤ 30 μA	1.64	V
V _{CORE0} (LPM)	Core voltage, low-current mode, PMMCOREV = 0	1.8 V ≤ DV _{CC} ≤ 3.6 V, 0 μ A ≤ I(V _{CORE}) ≤ 30 μ A	1.44	V

Table 5-19. PMM, SVS High Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		SVSHE = 0, DV _{CC} = 3.6 V		0		^
I _(SVSH)	SVS current consumption	SVSHE = 1, DV _{CC} = 3.6 V, SVSHFP = 0		200		nA
		SVSHE = 1, DV _{CC} = 3.6 V, SVSHFP = 1		2.0		μA
		SVSHE = 1, SVSHRVL = 0	1.59	1.64	1.69	V
V	C)/C(1)	SVSHE = 1, SVSHRVL = 1	1.79	1.84	1.91	
V _(SVSH_IT-)	SVS _H on voltage level ⁽¹⁾	SVSHE = 1, SVSHRVL = 2	1.98	2.04	2.11	
		SVSHE = 1, SVSHRVL = 3	2.10	2.16	2.23	
	SVS _H off voltage level ⁽¹⁾	SVSHE = 1, SVSMHRRL = 0	1.62	1.74	1.81	
		SVSHE = 1, SVSMHRRL = 1	1.88	1.94	2.01	V
		SVSHE = 1, SVSMHRRL = 2	2.07	2.14	2.21	
M		SVSHE = 1, SVSMHRRL = 3	2.20	2.26	2.33	
$V_{(SVSH_IT+)}$		SVSHE = 1, SVSMHRRL = 4	2.32	2.40	2.48	
		SVSHE = 1, SVSMHRRL = 5	2.56	2.70	2.84	
		SVSHE = 1, SVSMHRRL = 6	2.85	3.00	3.15	
		SVSHE = 1, SVSMHRRL = 7	2.85	3.00	3.15	
	CVC propagation dolor	SVSHE = 1, dV _{DVCC} /dt = 10 mV/µs, SVSHFP = 1		2.5		
t _{pd(SVSH)}	SVS _H propagation delay	SVSHE = 1, $dV_{DVCC}/dt = 1 \text{ mV/}\mu\text{s}$, SVSHFP = 0		20		μs
	CVC on or off dolou time	SVSHE = 0→1, SVSHFP = 1		12.5		
t _(SVSH)	SVS _H on or off delay time	SVSHE = 0→1, SVSHFP = 0		100		μs
dV _{DVCC} /dt	DV _{CC} rise time		0		1000	V/s

The SVS_H settings available depend on the VCORE (PMMCOREV) setting. See the *Power Management Module and Supply Voltage Supervisor* chapter in the *MSP430x5xx and MSP430x6xx Family User's Guide* (SLAU208) on recommended settings and usage.

ISTRUMENTS

SLAS874-MAY 2015

Table 5-20. PMM, SVM High Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		SVMHE = 0, DV _{CC} = 3.6 V		0		~ ^
I _(SVMH)	SVM _H current consumption	SVMHE = 1, DV _{CC} = 3.6 V, SVMHFP = 0		200		nA
		SVMHE = 1, DV _{CC} = 3.6 V, SVMHFP = 1		2.0		μΑ
		SVMHE = 1, SVSMHRRL = 0	1.65	1.74	1.86	
		SVMHE = 1, SVSMHRRL = 1	1.85	1.94	2.02	
		SVMHE = 1, SVSMHRRL = 2	2.02	2.14	2.22	
		SVMHE = 1, SVSMHRRL = 3	2.18	2.26	2.35	
V _(SVMH)	SVM _H on or off voltage level ⁽¹⁾	SVMHE = 1, SVSMHRRL = 4	2.32	2.40	2.48	V
		SVMHE = 1, SVSMHRRL = 5	2.56	2.70	2.84	
		SVMHE = 1, SVSMHRRL = 6	2.85	3.00	3.15	
		SVMHE = 1, SVSMHRRL = 7	2.85	3.00	3.15	
		SVMHE = 1, SVMHOVPE = 1		3.75		
4	C)/AA managetica dele-	SVMHE = 1, dV _{DVCC} /dt = 10 mV/µs, SVMHFP = 1		2.5		
t _{pd(SVMH)}	SVM _H propagation delay	SVMHE = 1, dV _{DVCC} /dt = 1 mV/µs, SVMHFP = 0		20		μs
	C)/M on or off delegations	SVMHE = 0→1, SVSMFP = 1		12.5		
t _(SVMH)	SVM _H on or off delay time	SVMHE = 0→1, SVMHFP = 0		100		μs

⁽¹⁾ The SVM_H settings available depend on the VCORE (PMMCOREV) setting. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) on recommended settings and usage.

Table 5-21. PMM, SVS Low Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		SVSLE = 0, PMMCOREV = 2		0		A
I _(SVSL)	SVS _L current consumption	SVSLE = 1, PMMCOREV = 2, SVSLFP = 0		200		nA
, ,		SVSLE = 1, PMMCOREV = 2, SVSLFP = 1		2.0		μΑ
	CVC propagation dalay	SVSLE = 1, $dV_{CORE}/dt = 10 \text{ mV/}\mu\text{s}$, $SVSLFP = 1$		2.5		
t _{pd} (SVSL)	SVS _L propagation delay	SVSLE = 1, $dV_{CORE}/dt = 1 \text{ mV/}\mu\text{s}$, SVSLFP = 0		20		μs
	CVC on or off dolors time	SVSLE = 0→1, SVSLFP = 1		12.5		
t(SVSL)	SVS _L on or off delay time	SVSLE = 0→1, SVSLFP = 0		100		μs

Table 5-22. PMM, SVM Low Side

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER TEST CONDITIONS		MIN	TYP	MAX	UNIT
		SVMLE = 0, PMMCOREV = 2		0		~ Λ
I _(SVML)	SVM _L current consumption	SVMLE = 1, PMMCOREV = 2, SVMLFP = 0		200		nA
, ,		SVMLE = 1, PMMCOREV = 2, SVMLFP = 1		2.0		μA
4	0.44	SVMLE = 1, dV _{CORE} /dt = 10 mV/µs, SVMLFP = 1		2.5		
t _{pd(SVML)}	SVM _L propagation delay	SVMLE = 1, $dV_{CORE}/dt = 1 \text{ mV/}\mu\text{s}$, SVMLFP = 0		20		μs
4	C)/M on or off doloy time	SVMLE = 0→1, SVMLFP = 1		12.5		
t _(SVML)	SVM _L on or off delay time	SVMLE = 0→1, SVMLFP = 0		100		μs

5.5.7 Timers

Table 5-23. Timer_A, Timers TA0, TA1, and TA2

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TER TEST CONDITIONS		MIN	MAX	UNIT
f_{TA}	Timer_A input clock frequency	Internal: SMCLK, ACLK External: TACLK Duty cycle = 50% ±10%	1.8 V, 3 V		20	MHz
t _{TA,cap}	Timer_A capture timing	All capture inputs, Minimum pulse duration required for capture	1.8 V, 3 V	20		ns

Table 5-24. Timer_B, Timer TB0

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		PARAMETER TEST CONDITIONS		MIN	MAX	UNIT
f _{TB}	Timer_B input clock frequency	Internal: SMCLK, ACLK External: TBCLK Duty cycle = 50% ±10%	1.8 V, 3 V		20	MHz
t _{TB,cap}	Timer_B capture timing	All capture inputs, Minimum pulse duration required for capture	1.8 V, 3 V	20		ns

5.5.8 Battery Backup

Table 5-25. Battery Backup

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST COND	ITIONS	V _{CC}	MIN	TYP	MAX	UNIT
			T _A = -40°C			0.43		
		VBAT = 1.7 V,	T _A = 25°C			0.52		
		DVCC not connected, RTC running	T _A = 60°C			0.58		
			T _A = 85°C			0.66		
	Current into VBAT terminal in case no primary battery is connected.		T _A = -40°C			0.50		
		VBAT = 2.2 V,	T _A = 25°C			0.59		
I _{VBAT}		DVCC not connected, RTC running	T _A = 60°C			0.64		μA
		Ŭ	T _A = 85°C			0.72		
			T _A = -40°C			0.68		
		VBAT = 3 V,	T _A = 25°C			0.75		
		DVCC not connected, RTC running	T _A = 60°C			0.79		
			T _A = 85°C			0.86		
			General			V _{SVSH_IT} -		
			SVSHRL = 0		1.59		1.69	
V_{SWITCH}	Switch-over level (V _{CC} to VBAT)	$C_{VCC} = 4.7 \mu F$	SVSHRL = 1		1.79		1.91	V
	V D/(()		SVSHRL = 2		1.98		2.11	.11
			SVSHRL = 3		2.10		2.23	
R _{ON_VBAT}	On-resistance of switch between VBAT and VBAK	V _{BAT} = 1.8 V		0 V		0.35	1	kΩ
	VBAT to ADC:			1.8 V		0.6	±5%	
V_{BAT3}	V _{BAT} divided,			3 V		1.0	±5%	V
5,110	$V_{BAT3} = V_{BAT}/3$			3.6 V		1.2	±5%	
V_{CHVx}	Charger end voltage	CHVx = 2			2.65	2.7	2.9	V

ISTRUMENTS

42

Battery Backup (continued)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		V _{CC}	MIN	TYP	MAX	UNIT
R _{CHARGE}	Charge limiting resistor		CHCx = 1				5.2	
			CHCx = 2				10.2	kΩ
			CHCx = 3				20	

5.5.9 USCI

Table 5-26. USCI (UART Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
f _{USCI}	USCI input clock frequency	Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ±10%			f _{SYSTEM}	MHz
f _{BITCLK}	BITCLK clock frequency (equals baud rate in MBaud)				1	MHz
	LIART receive declirate time (1)		2.2 V	50	600	
T _T	UART receive deglitch time (1)		3 V	50	600	ns

Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized, their duration should exceed the maximum specification of the deglitch time.

Table 5-27. USCI (SPI Master Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 5-11 and Figure 5-12)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
f _{USCI}	USCI input clock frequency	SMCLK, ACLK, Duty cycle = 50% ±10%			f _{SYSTEM}	MHz
		PMMCOREV = 0	1.8 V	55		
	COMI input data actus time	PIVIVICOREV = 0	3 V	38		20
t _{SU,MI}	SOMI input data setup time	DMMCODEV 2	2.4 V	30		ns
		PMMCOREV = 3	3 V	25		
		DMMCODEV 0	1.8 V	0		
	OOM invest data haddi'aa	PMMCOREV = 0	3 V	0		ns
t _{HD,MI}	SOMI input data hold time	DMMCODEV 2	2.4 V	0		
		PMMCOREV = 3	3 V	0		
		UCLK edge to SIMO valid,	1.8 V		20	
t _{VALID.MO}	SIMO output data valid time ⁽²⁾	$C_L = 20 \text{ pF},$ PMMCOREV = 0	3 V		18	ns
VALID,MO	Cinio cuipat data vana timo	UCLK edge to SIMO valid,	2.4 V		16	110
		C _L = 20 pF, PMMCOREV = 3	3 V		15	-
		O CONTENTACOREVA O	1.8 V	-10		ns
	(3)	$C_L = 20 \text{ pF}, \text{PMMCOREV} = 0$	3 V	-8		
t _{HD,MO}	SIMO output data hold time (3)	0 00 5 000000000	2.4 V	-10		
		$C_L = 20 \text{ pF}, \text{PMMCOREV} = 3$	3 V	-8		

 $f_{UCXCLK} = 1/2t_{LO/HI} \text{ with } t_{LO/HI} \ge max(t_{VALID,MO(USCI)} + t_{SU,SI(Slave)}, t_{SU,MI(USCI)} + t_{VALID,SO(Slave)}).$ For the slave parameters $t_{SU,SI(Slave)}$ and $t_{VALID,SO(Slave)}$, see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams

in Figure 5-11 and Figure 5-12.

Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 5-11 and Figure 5-12.

Figure 5-11. SPI Master Mode, CKPH = 0

Figure 5-12. SPI Master Mode, CKPH = 1

SLAS874-MAY 2015

Table 5-28. USCI (SPI Slave Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 5-13 and Figure 5-14)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	MAX	UNIT
		DMMCODEV 0	1.8 V	11		
	CTE land time. CTE law to class.	PMMCOREV = 0	3 V	8		
t _{STE,LEAD}	STE lead time, STE low to clock	DMMCODEV 2	2.4 V	7		ns
		PMMCOREV = 3	3 V	6		
		DMMOODEW 0	1.8 V	3		
	OTE less times the established to OTE high	PMMCOREV = 0	3 V	3		
t _{STE,LAG}	STE lag time, Last clock to STE high	PMMOODEV 0	2.4 V	3		ns
		PMMCOREV = 3	3 V	3		
		DIMAGODEV O	1.8 V		66	
	0.75	PMMCOREV = 0	3 V		50	
t _{STE,ACC}	STE access time, STE low to SOMI data out	DMM00DEV 0	2.4 V		36	ns
		PMMCOREV = 3	3 V		30	
		DIMAGODEN O	1.8 V		30	
	STE disable time, STE high to SOMI high	PMMCOREV = 0	3 V		30	
t _{STE,DIS}	impedance		2.4 V		30	ns
		PMMCOREV = 3	3 V		30	
		PMMCOREV = 0	1.8 V	5		
	0010		3 V	5		ns
t _{SU,SI}	SIMO input data setup time		2.4 V	2		
		PMMCOREV = 3	3 V	2		
		DIMAGODEN O	1.8 V	5		
	OIMO instant data haddiffere	PMMCOREV = 0	3 V	5		
t _{HD,SI}	SIMO input data hold time	DMMCODEV 2	2.4 V	5		ns
		PMMCOREV = 3	3 V	5		
		UCLK edge to SOMI valid,	1.8 V		76	
	COMI autout data valid time (2)	$C_L = 20 \text{ pF},$ PMMCOREV = 0	3 V		60	
t _{VALID,SO}	UCLK ed	UCLK edge to SOMI valid,	2.4 V		44	ns
		$C_L = 20 \text{ pF},$ PMMCOREV = 3	3 V		40	
		C _L = 20 pF,	1.8 V	12		ns
	SOMI output data hold time (3)	PMMCOREV = 0	3 V	12		
t _{HD,SO}	SOIVII output data noid time 17	C _L = 20 pF,	2.4 V	12		
		PMMCOREV = 3	3 V	12		

⁽¹⁾

 $f_{UCxCLK} = 1/2t_{LO/HI} \text{ with } t_{LO/HI} \geq \max(t_{VALID,MO(Master)} + t_{SU,SI(USCI)}, t_{SU,MI(Master)} + t_{VALID,SO(USCI)}).$ For the master parameters $t_{SU,MI(Master)}$ and $t_{VALID,MO(Master)}$, see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams in Figure 5-13 and Figure 5-14.

Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-13 and Figure 5-14.

Figure 5-13. SPI Slave Mode, CKPH = 0

Figure 5-14. SPI Slave Mode, CKPH = 1

Table 5-29. USCI (I²C Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-15)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	MAX	UNIT
f _{USCI}	USCI input clock frequency	Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ±10%			f _{SYSTEM}	MHz
f _{SCL}	SCL clock frequency		2.2 V, 3 V	0	400	kHz
	Hold time (reported) CTART	f _{SCL} ≤ 100 kHz	221/21/	4.0		
t _{HD,STA}	Hold time (repeated) START	f _{SCL} > 100 kHz	2.2 V, 3 V	0.6		μs
	Cotus time for a repeated CTART	f _{SCL} ≤ 100 kHz	2.2 V, 3 V	4.7		
t _{SU,STA}	Setup time for a repeated START	f _{SCL} > 100 kHz	2.2 V, 3 V	0.6		μs
t _{HD,DAT}	Data hold time		2.2 V, 3 V	0		ns
t _{SU,DAT}	Data setup time		2.2 V, 3 V	250		ns
	Cotus time for CTOD	f _{SCL} ≤ 100 kHz	221/21/	4.0		
t _{SU,STO}	Setup time for STOP	f _{SCL} > 100 kHz	2.2 V, 3 V	0.6		μs
	Pulse duration of spikes suppressed by input		2.2 V	50	600	
t _{SP}	filter		3 V	50	600	ns

Figure 5-15. I²C Mode Timing

5.5.10 LCD Controller

NSTRUMENTS SLAS874-MAY 2015 www.ti.com

Table 5-30. LCD_B, Recommended Operating Conditions

	PARAMETER	CONDITIONS	MIN	NOM	MAX	UNIT
V _{CC,LCD_B} , CP en,3.6	Supply voltage range, charge pump enabled, $V_{LCD} \le 3.6 \text{ V}$	LCDCPEN = 1, 0000 < VLCDx ≤ 1111 (charge pump enabled, V _{LCD} ≤ 3.6 V)	2.2		3.6	V
V _{CC,LCD_B} , CP en,3.3	Supply voltage range, charge pump enabled, $V_{LCD} \le 3.3 \text{ V}$	LCDCPEN = 1, 0000 < VLCDx ≤ 1100 (charge pump enabled, V _{LCD} ≤ 3.3 V)	2.0		3.6	V
$V_{CC,LCD_B,}$ int. bias	Supply voltage range, internal biasing, charge pump disabled	LCDCPEN = 0, VLCDEXT = 0	2.4		3.6	V
V _{CC,LCD_B} , ext. bias	Supply voltage range, external biasing, charge pump disabled	LCDCPEN = 0, VLCDEXT = 0	2.4		3.6	V
V _{CC,LCD_B} , VLCDEXT	Supply voltage range, external LCD voltage, internal or external biasing, charge pump disabled	LCDCPEN = 0, VLCDEXT = 1	2.0		3.6	V
V _{LCDCAP/R33}	External LCD voltage at LCDCAP/R33, internal or external biasing, charge pump disabled	LCDCPEN = 0, VLCDEXT = 1	2.4		3.6	V
C _{LCDCAP}	Capacitor on LCDCAP when charge pump enabled	LCDCPEN = 1, VLCDx > 0000 (charge pump enabled)		4.7	10	μF
f _{Frame}	LCD frame frequency range	$f_{LCD} = 2 \times mux \times f_{FRAME}$ (mux = 1 (static), 2, 3, 4)	0		100	Hz
f _{ACLK,in}	ACLK input frequency range		30	32	40	kHz
C _{Panel}	Panel capacitance	100-Hz frame frequency			10000	pF
V_{R33}	Analog input voltage at R33	LCDCPEN = 0, VLCDEXT = 1	2.4		V _{CC} + 0.2	V
V _{R23,1/3bias}	Analog input voltage at R23	LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0	V_{R13}	$V_{R03} + 2/3 \times (V_{R33} - V_{R03})$	V_{R33}	V
V _{R13,1/3bias}	Analog input voltage at R13 with 1/3 biasing	LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0	V_{R03}	$V_{R03} + 1/3 \times (V_{R33} - V_{R03})$	V_{R23}	V
V _{R13,1/2bias}	Analog input voltage at R13 with 1/2 biasing	LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 1	V_{R03}	$V_{R03} + 1/2 \times (V_{R33} - V_{R03})$	V _{R33}	V
V _{R03}	Analog input voltage at R03	R0EXT = 1	V _{SS}			V
V _{LCD} -V _{R03}	Voltage difference between V _{LCD} and R03	LCDCPEN = 0, R0EXT = 1	2.4		V _{CC} + 0.2	V
V _{LCDREF/R13}	External LCD reference voltage applied at LCDREF/R13	VLCDREFx = 01	0.8	1.2	1.5	V

Table 5-31. LCD_B, Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT	
		VLCDx = 0000, VLCDEXT = 0	2.4 V to 3.6 V		V _{CC}			
		LCDCPEN = 1, VLCDx = 0001	2 V to 3.6 V		2.60			
		LCDCPEN = 1, VLCDx = 0010	2 V to 3.6 V		2.66			
		LCDCPEN = 1, VLCDx = 0011	2 V to 3.6 V		2.72			
		LCDCPEN = 1, VLCDx = 0100	2 V to 3.6 V		2.79			
		LCDCPEN = 1, VLCDx = 0101	2 V to 3.6 V		2.85			
		LCDCPEN = 1, VLCDx = 0110	2 V to 3.6 V		2.92			
	I CD walte as	LCDCPEN = 1, VLCDx = 0111	2 V to 3.6 V		2.98		V	
V _{LCD}	LCD voltage	LCDCPEN = 1, VLCDx = 1000	2 V to 3.6 V		3.05		V	
		LCDCPEN = 1, VLCDx = 1001	2 V to 3.6 V		3.10			
		LCDCPEN = 1, VLCDx = 1010	2 V to 3.6 V		3.17			
		LCDCPEN = 1, VLCDx = 1011	2 V to 3.6 V		3.24			
		LCDCPEN = 1, VLCDx = 1100	2 V to 3.6 V		3.30			
		LCDCPEN = 1, VLCDx = 1101	2.2 V to 3.6 V		3.36			
		LCDCPEN = 1, VLCDx = 1110	2.2 V to 3.6 V		3.42			
		LCDCPEN = 1, VLCDx = 1111	2.2 V to 3.6 V		3.48	3.6		
I _{CC,Peak,CP}	Peak supply currents due to charge pump activities	LCDCPEN = 1, VLCDx = 1111	2.2 V		400		μΑ	
t _{LCD,CP,on}	Time to charge C _{LCD} when discharged	$\label{eq:closed} \begin{array}{l} C_{LCD} = 4.7~\mu\text{F},\\ LCDCPEN = 0{\rightarrow}1,\\ VLCDx = 1111 \end{array}$	2.2 V		100	500	ms	
I _{CP,Load}	Maximum charge pump load current	LCDCPEN = 1, VLCDx = 1111	2.2 V	50			μΑ	
R _{LCD,Seg}	LCD driver output impedance, segment lines	LCDCPEN = 1, VLCDx = 1000, I _{LOAD} = ±10 μA	2.2 V			10	kΩ	
R _{LCD,COM}	LCD driver output impedance, common lines	LCDCPEN = 1, VLCDx = 1000, $I_{LOAD} = \pm 10 \mu A$	2.2 V			10	kΩ	

5.5.11 CTSD16

NOTE

The delta-sigma analog-to-digital converter uses the CTSD16. The CTSD16 is proceeded by a unitygain buffer stage following the channel muxing as shown in Figure 6-1. Refer to Table 5-46 for the electrical characteristics of the PGA buffer stages.

Table 5-32. CTSD16, Power Supply and Recommended Operating Conditions

	PARAMETER	TEST CONDI	TIONS	V _{CC}	MIN	TYP	MAX	UNIT
V_{CC}	Supply voltage range	AVSS = DVSS = 0 V			2.2		3.6	V
	Analog plus digital supply		GAIN: 1, 2, 4, 8, 16	3 V		190 ⁽¹⁾		
I _{CTSD16}	current per converter (reference current not included)	CTSD16OSRx = 256, CTSD16RRI = 0	GAIN: 1, 16	3 V			300 ⁽¹⁾	μΑ
I _{CTSD16CLK}	CTSD16 clock current consumption	CTSD16RRIBURST = 0, or whinput mode (OARRI = 1), or whis on. The current should only	This is requested when CTSD16 is converting, or CTSD16RRIBURST = 0, or when OA is in rail-to-rail nput mode (OARRI = 1), or when OA charge pump s on. The current should only be counted once even if both OA and CTSD16 are requesting the			205	240	μА

⁽¹⁾ Refer to table Table 5-33 to calculate total current from CTSD16 for different use cases.

Table 5-33 explains how to compute the total current, I_{TOTAL}, when the CTSD, along with associated modules, are used. Refer to Table 5-47 for a similar table for the OA. A "yes" means it must be included in computing I_{TOTAL}. Here is an example current calculation for CTS16D in rail-to-rail input mode (CTSD16RRI = 1) using the internal reference (CTSD16REFS = 1) and OA0 and OA1 enabled in rail-to-rail input modes, OARRI = 1.

As an example, assume that the application uses the CTS16D in rail-to-rail input mode (CTSD16RRI = 1) with the internal reference (CTSD16REFS = 1) and OA0 and OA1 are enabled in rail-to-rail input modes, OARRI = 1. The total current, I_{TOTAL}, would be computed as follows:

 $I_{TOTAL} = I_{CTSD16} + I_{CTSD16CLK} + I_{CP} + I_{REFBG} + 2 \times I_{OA}$

Table 5-33. CTSD16, Current Calculation

USE CASE NAME	USE CASE DETAILS	I _{CTSD16}	I _{CTSD16CLK} (1)	I _{CP} (2)	I _{REFBG} (3)	I _{REF} ⁽⁴⁾
CTSD16		yes	yes	no	yes if CTSD16REFS = 1 no if CTSD16REFS = 0	yes
CTSD16 rail-to-rail inputs	CTSD16RRI = 1	yes	yes	yes	yes if CTSD16REFS = 1 no if CTSD16REFS = 0	yes

- Count this only once no matter how many modules use it. OA can also use this when rail-to-rail input is selected.
- Count this only once no matter how many modules use it. OA also uses this. This current is listed in the Table 5-46 table.
- Count this only once no matter how many modules use it. DAC can use this as well as internal reference when it is available externally, REFOUT=1. This current is listed in the Table 5-39 table.
- Count this only once no matter how many modules use it. This current is listed in the Table 5-46 table. If I_{REFBG} is used that includes I_{REF} current.

RUMENTS

Table 5-34. CTSD16, External Voltage Reference

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V _{VeREF+}	Input voltage range	CTSD16REFS = 0	3 V	1.0	1.2	1.5	V
I _{VeREF+}	Input current	CTSD16REFS = 0	3 V			50	nA

Table 5-35. CTSD16, Input Range⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST C	ONDITIONS	V _{CC}	MIN 7	TYP MAX	UNIT
$V_{\text{ID,FSR}}$	Differential full-scale input voltage range	$V_{ID} = V_{I,A+} - V_{I,A-}$			-V _R /Gain	+V _R /Gain	V
$V_{I,FSR}$	Single-ended full-scale input voltage range	$V_{ID} = V_{I,A+} - V_R$ negative input is tie	d to V _R		V _R – V _R /Gain	V _R + V _R /Gain	V
			CTSD16GAINx = 1		±	928	
			CTSD16GAINx = 2		±	464	
V_{ID}	Differential input voltage range for specified performance (2)	CTSD16REFS = 1	CTSD16GAINx = 4		±	232	mV
			CTSD16GAINx = 8		±	116	
			CTSD16GAINx = 16			±58	
VI	Single-ended input voltage range for specified performance				V _R – (0.8 × V _R /Gain)	V _R + (0.8 × V _R /Gain)	V
Z _I	Input impedance (pin Ax or ADx+ or ADx- to AVSS)	CTSD16GAINx = 1,	16	3 V		20	ΜΩ
Z _{ID}	Differential input impedance (pin ADx+ to pin ADx-)	CTSD16GAINx = 1,	16	3 V		35	ΜΩ
VI	Absolute input voltage range				AVSS	V _{CC}	V
V _{IC}	Common-mode input voltage range				AVSS	V _{CC}	٧

⁽¹⁾ All parameters pertain to each CTSD16 input.

Table 5-36. CTSD16, Performance

CTSD16OSRx = 256, CTSD164REFS = 1

	PARAMETER	TEST CONDITION	IS	V _{CC}	MIN	TYP	MAX	UNIT
f _M	modulator clock					1.024		MHz
		CTSD16GAINx = 1, input ADx+ and ADx-(differential)			84	87		
		CTSD16GAINx = 2, input ADx+ and ADx- (differential)				86		
SINAD	Signal-to-noise + distortion ratio for differential inputs	CTSD16GAINx = 4, input ADx+ and ADx- (differential)	f _{IN} = 50 Hz ⁽¹⁾	3 V		85		dB
		CTSD16GAINx = 8, input ADx+ and ADx- (differential)				82		
		CTSD16GAINx = 16, input ADx+ and ADx- (differential)				77		

 $\begin{aligned} V_{I,A+}(t) &= 0 \text{ V} + V_{PP}/2 \times \sin(2\pi \times f_{IN} \times t) \\ V_{I,A-}(t) &= 0 \text{ V} - V_{PP}/2 \times \sin(2\pi \times f_{IN} \times t) \end{aligned}$

resulting in a differential voltage of $V_{ID} = V_{IN,A+}(t) - V_{IN,A-}(t) = V_{PP} \times \sin(2\pi \times f_{IN} \times t)$ with V_{PP} being selected as the maximum value allowed for a given range (according to CTSD16 input range).

The full-scale range is defined by $V_{FSR+} = +V_R/GAIN$ and $V_{FSR-} = -V_R/GAIN$; FSR = $V_{FSR+} - V_{FSR-} = 2xV_R/GAIN$. If V_R is sourced externally, the analog input range should not exceed 80% of V_{FSR+} or V_{FSR-} ; that is, $V_{ID} = 0.8 \ V_{FSR-}$ to 0.8 V_{FSR+} . If V_R is sourced internally, the given V_{ID} ranges apply.

⁽¹⁾ The following voltages were applied to the CTSD16 inputs:

CTSD16, Performance (continued)

CTSD16OSRx = 256, CTSD164REFS = 1

	PARAMETER	TEST CONDITION	NS	V _{CC}	MIN	TYP	MAX	UNIT
		CTSD16GAINx = 1, input Ax (single-ended)				83		
		CTSD16GAINx = 2, input Ax (single-ended)				82		
SINAD	Signal-to-noise + distortion ratio for single-ended input	CTSD16GAINx = 4, input Ax (single-ended)	f _{IN} = 50 Hz ⁽¹⁾	3 V		78		dB
	Single chaca input	CTSD16GAINx = 8, input Ax (single-ended)				72		
		CTSD16GAINx = 16, input Ax (single-ended)				66		
		CTSD16GAINx = 1	•			1		
		CTSD16GAINx = 2				2		•
G	Nominal gain	CTSD16GAINx = 4		3 V		4		
		CTSD16GAINx = 8				8		
		CTSD16GAINx = 16				16		
E _G	Gain error	CTSD16GAINx: 1,8,16 with exter (1.2 V)	rnal reference	3 V	-1%		+1%	
$\Delta E_G / \Delta T$	Gain error temperature coefficient, internal reference	CTSD16GAINx: 1,8,16.		3 V		3	50	ppm/ °C
ΔΕ _G / ΔΤ	Gain error temperature coefficient, external reference	CTSD16GAIN: 1,8,16 with exterr V)	nal reference (1.2	3 V		4	15	ppm/ °C
ΔE _G / ΔVCC	Gain error vs VCC	CTSD16GAINx: 1,8,16.				0.02		%/V
_	Offset error	CTSD16GAINx = 1		3 V			±4.1	mV
E _{OS}	Oliset elloi	CTSD16GAINx = 16		3 V			±3.4	IIIV
ΔΕΟS/ΔΤ	Offset error temperature coefficient	CTSD16GAINx = 1, 16		3 V		±1	±10	ppm FSR/ °C
ΔEOS/ΔV CC	Offset error vs VCC	CTSD16GAINx = 1, 16		3 V		11		μV/V
CMRR,50	Common-mode	CTSD16GAINx = 1, V _{ID} = 928 mV, f _{IN} = 50 Hz		0.14		78		Ē
Hz	rejection ratio at 50 Hz	CTSD16GAINx = 16, V _{ID} = 58 mV, f _{IN} = 50 Hz		3 V		80		dB
		CTSD16GAINx: 1, V _{CC} = 3 V ±50 f _{Vcc} × t), f _{Vcc} = 50 Hz, Inputs grounded (no analog signs				95		
AC PSRR AC power supply rejection ratio		CTSD16GAINx: 8, V_{CC} = 3 V ±50 mV × sin(2 π × f_{Vcc} × t), f_{Vcc} = 50 Hz, Inputs grounded (no analog signal applied)				105		dB
		CTSD16GAINx: 16, V_{CC} = 3 V ±50 mV × sin(2 π × f _{Vcc} × t), f _{Vcc} = 50 Hz, Inputs grounded (no analog signal applied)				105		
DC PSRR	DC power supply rejection ratio	CTSD16GAINx: (1, 8, 16), V_{CC} = (PSRR [dB] = -20 log(dVout/dVolobserved as change in the digital result; assumed to be dominated	c) with dVout I conversion			90		dB

NSTRUMENTS

Figure 5-17. CTSD16 Typical Offset Voltage vs Common-Mode Voltage

Figure 5-18. SINAD Performance vs OSR

Table 5-37. Built-in V_{cc} Sense

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{CC}	s,sense AV _{CC} divider	CTSD16ON = 1, CTSD16INCH = 0111	0.95 x (AVCC / 2)	AVCC / 2	1.05 x (AVCC / 2)	V

Table 5-38. Temperature Sensor

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{sensor}	Temperature sensor output voltage ⁽¹⁾ (2)	CTSD16ON = 1, CTSD16INCH = 110, V _{CC} = 3 V, T _A = 30°C		800		mV
I _{sensor}	Temperature sensor quiescent current consumption	CTSD16ON = 1, CTSD16INCH = 110, T _A = 85°C		2		uA

The temperature sensor offset can be as much as ±30°C. TI recommends a single-point calibration to minimize the offset error of the built-in temperature sensor.

STRUMENTS

The device descriptor structure contains calibration values for 30°C ±3°C and 85°C ±3°C for each of the available reference voltage levels. The sensor voltage can be computed as V_{SENSOR} = TC_{SENSOR} * (Temperature, °C) + V_{SENSOR}, where TC_{SENSOR} and V_{SENSOR} can be computed from the calibration values for higher accuracy.

5.5.12 REF

Table 5-39. REF and REFBG, Built-In Reference

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{REFBG}	Operating supply current into AVCC terminal (1)	V _{CC} = 3.0 V, REFON = 1 and REFOUT = 1		110	130	μA
V _{REFBG}	Bandgap output voltage calibrated	$V_{CC} = 3.0 \text{ V},$ VeREF+ $\leq 1.5 \text{ V}$ if used	1.146	1.16	1.174	V
I _{REF}	Operating supply current into AVCC terminal (1)	V _{CC} = 3.0 V, REFON=1		15	20	μA
		REFVSEL = {2} for 2.5 V, REFON = 1		2.5	±1%	
V_{REF}	Positive built-in reference voltage output	REFVSEL = {1} for 2.0 V, REFON = 1		2.0	±1%	V
	output	REFVSEL = {0} for 1.5 V, REFON = 1		1.5	±1%	
		DAC12SREFx=0, REFVSEL = {0} for 1.5 V	2.2			
AV _{CC(min)}	AVCC minimum voltage, Positive built-in reference active	DAC12SREFx=0, REFVSEL = {1} for 2 V	2.3			V
	ball in reference delive	DAC12SREFx=0, REFVSEL = {2} for 2.5 V	2.8			
PSRR_DC	Power supply rejection ratio (DC)	$V_{CC} = 2.2 \text{ V to } 3.6 \text{ V}, T_A = 25^{\circ}\text{C}$		50		μV/V
PSRR_AC	Power supply rejection ratio (AC)	$V_{CC} = 2.2 \text{ V to } 3.6 \text{ V}, T_A = 25^{\circ}\text{C},$ f = 1 kHz, $\Delta\text{Vpp} = 100 \text{ mV}$		1.5		mV/V
TC _{REF+}	Bandgap reference temperature coefficient (2)	I _{VREF+} = 0 A		15	50	ppm/°C
t _{SETTLE}	Settling time of V _{REFBG} reference voltage ⁽³⁾	$AV_{CC} = AV_{CC \text{ (min)}}$ through $AV_{CC(\text{max})}$, REFON = $0 \rightarrow 1$			120	μs
C _{VREFBG}	Capacitance at VREFBG terminal	See (4)			1	nF
I _{LOAD}	VREFBG maximum load current	REFOUT = REFON = 1			1	mA
I _{L(VREFBG)}	Load-current regulation, VREFBG terminal ⁽⁵⁾	$I_{(VREF+)}$ = +1 mA or -1 mA, AV_{CC} = $AV_{CC \text{ (min)}}$, REFON = REFOUT = 1			3.5	mV/mA

⁽¹⁾ The internal reference current is supplied from terminal AVCC. Consumption is independent of the CTSD16ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.

⁽²⁾ Calculated using the box method: $(MAX(-40^{\circ}C \text{ to } 85^{\circ}C) - MIN(-40^{\circ}C \text{ to } 85^{\circ}C)) / MIN(-40^{\circ}C \text{ to } 85^{\circ}C)/(85^{\circ}C - (-40^{\circ}C))$.

⁽³⁾ The condition is that the error in a conversion started after t_{REFON} is less than ± 0.5 LSB.

⁽⁴⁾ There is no capacitance required on VREFBG if the reference voltage is not used externally. However, TI recommends a capacitance close to the maximum value to reduce any reference voltage noise.

⁽⁵⁾ Contribution only due to the reference and buffer including package. This does not include resistance due to PCB traces or other external factors.

5.5.13 DAC

Table 5-40. 12-Bit DAC, Supply Specifications

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
AV _{CC}	Analog supply voltage	$AV_{CC} = DV_{CC}$, $AV_{SS} = DV_{SS} = 0$ V		2.2		3.6	V
		DAC12AMPx = 2, DAC12IR = 0, DAC12OG = 1, DAC12_XDAT = 0800h, VeREF+ = VREFBG = 1.16 V	3 V		65		
I _{DD}	Supply current, single DAC channel ⁽¹⁾ (2)	$\begin{split} DAC12AMPx &= 2, DAC12IR = 1,\\ DAC12_xDAT &= 0800h,\\ VeREF+ &= AV_{CC} \end{split}$			125	165	μA
		$\begin{split} &DAC12AMPx = 5, DAC12IR = 1, \\ &DAC12_xDAT = 0800h, \\ &VeREF+ = AV_{CC} \end{split}$	2.2 V to 3.6 V		250	350	
		$\begin{split} &DAC12AMPx = 7, DAC12IR = 1, \\ &DAC12_xDAT = 0800h, \\ &VeREF+ = AV_{CC} \end{split}$			750	1100	
DCDD	Power cupply rejection ratio (3) (4)	DAC12_xDAT = 800h, VeREF+ = 1.16 V or 1.5 V, ΔAV _{CC} = 100 mV	2.2 V to 3.6 V		70		dB
FSKK	Power supply rejection ratio ^{(3) (4)}	DAC12_xDAT = 800h, VeREF+ = 1.16 V or 2.5 V ΔAV _{CC} = 100 mV	3 V		70		uБ

- No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly.
- Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input specifications Table 5-43.
- $\mathsf{PSRR} = 20 \; \mathsf{log} \; (\Delta \mathsf{AV}_{\mathsf{CC}} \, / \, \Delta \mathsf{V}_{\mathsf{DAC12_xOUT}})$
- The internal reference is not used.

Figure 5-19. Linearity Test Load Conditions and Gain/Offset Definition

NSTRUMENTS

Table 5-41. 12-Bit DAC, Linearity Specifications

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-19)

F	PARAMETER	TEST CONI	DITIONS	V _{CC}	MIN	TYP	MAX	UNIT
	Resolution	12-bit monotonic			12			bits
INL	Integral	V _{eREF+} = 1.16 V, DAC12AMPX	c = 7, DAC12IR = 1	2.2 V, 3 V		±2	±4	LSB
INL	nonlinearity ⁽¹⁾	V _{eREF+} = 2.5 V, DAC12AMPx	= 7, DAC12IR = 1	2.2 V, 3 V		±2	±4	LOB
DNL	Differential	V _{eREF+} = 1.16 V, DAC12AMPx	c = 7, DAC12IR = 1	2.2 V, 3 V		±0.4	±1	LSB
DINL	nonlinearity ⁽¹⁾	V _{eREF+} = 2.5 V, DAC12AMPx	= 7, DAC12IR = 1	2.2 V, 3 V		±0.4	±1	LOD
		Without calibration ⁽¹⁾ (2)	V _{eREF+} = 1.16 V, DAC12AMPx = 7, DAC12IR = 1	2.2 V, 3 V			±21	
-	Office to college	without calibration (1) (-)	V _{eREF+} = 2.5 V, DAC12AMPx = 7, DAC12IR = 1	2.2 V, 3 V			±21	
E _O	Offset voltage	$V_{eREF+} = 1.16 \text{ V},$ DAC12AMPx = 7, DAC12IP = 1	±1.5	mV				
	With calibration ⁽¹⁾ (2)	$V_{eREF+} = 2.5 \text{ V},$ DAC12AMPx = 7, DAC12IR = 1	2.2 V, 3 V			±1.5		
$d_{E(O)}/d_{T}$	Offset error temperature coefficient ⁽¹⁾	With calibration		2.2 V, 3 V		±10		μV/°C
ı	Cain aman	V _{eREF+} = 1.16 V		2.2 V, 3 V			±2.5	0/ FCD
E _G	Gain error	V _{eREF+} = 2.5 V		2.2 V, 3 V			±2.5	%FSR
$d_{E(G)}/d_{T}$	Gain temperature coefficient ⁽¹⁾			2.2 V, 3 V		10		ppm of FSR/ °C
		DAC12AMPx = 2					165	
t _{Offset_Cal}	Time for offset calibration (3)	DAC12AMPx = 3, 5		2.2 V, 3 V			66	ms
	Cambration	DAC12AMPx = 4, 6, 7					16.5	

Parameters calculated from the best-fit curve from 0x0F to 0xFFF. The best-fit curve method is used to deliver coefficients "a" and "b" of the first-order equation: y = a + bx. $V_{DAC12_XOUT} = E_O + (1 + E_G) \times (Ve_{REF+}/4095) \times DAC12_XDAT$, DAC12R = 1. The offset calibration works on the output operational amplifier. Offset Calibration is triggered setting bit DAC12CALON The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx =

^{{0, 1}.} TI recommends configuring the DAC12 module before initiating calibration. Port activity during calibration may affect accuracy and is not recommended.

Table 5-42. 12-Bit DAC, Output Specifications

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PAF	RAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		No load, $V_{eREF+} = AV_{CC}$, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7		0		0.005	
V	Output voltage range ⁽¹⁾ (see	No load, $V_{eREF+} = AV_{CC}$, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7	2.2 V, 3.6 V	AV _{CC} - 0.05		AV _{CC}	V
Vo	Figure 5-20)	$\begin{array}{l} R_{Load} = 3 \ k\Omega, \ V_{eREF+} = AV_{CC}, \\ DAC12_xDAT = 0h, \ DAC12IR = 1, \\ DAC12AMPx = 7 \end{array}$	2.2 V, 3.0 V	0		0.1	V
		$R_{Load} = 3 k\Omega$, $V_{eREF+} = AV_{CC}$, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7		AV _{CC} - 0.13		AV _{CC}	
C _{L(DAC12)}	Maximum DAC12 load capacitance		2.2 V, 3.6 V			100	pF
	Maximum DAC12	$\begin{aligned} &DAC12AMPx = 2, DAC12_xDAT = 0FFFh, \\ &V_{O/P(DAC12)} > AV_{CC} - 0.3 \end{aligned}$	2.2 V, 3.6 V	-1			mA
I _{L(DAC12)}	load current	$\begin{aligned} &DAC12AMPx = 2, DAC12_xDAT = 0h, \\ &V_{O/P(DAC12)} < 0.3 V \end{aligned}$	2.2 V, 3.0 V			1	IIIA
		R_{Load} = 3 k Ω , $V_{O/P}$ (DAC12) < 0.3 V, DAC12AMPx = 2, DAC12_xDAT = 0h			150	250	
R _{O/P(DAC12)}	Output resistance (see Figure 5-20)	$\begin{aligned} R_{Load} &= 3 \text{ k}\Omega, \text{ V}_{O/P(DAC12)} > \text{AV}_{CC} - 0.3 \text{ V}, \\ DAC12_xDAT &= 0 \text{FF} \text{h} \end{aligned}$	2.2 V, 3.6 V		150	250	Ω
		$R_{Load} = 3 \text{ k}\Omega,$ $0.3 \text{ V} \leq V_{O/P(DAC12)} \leq AV_{CC} - 0.3 \text{ V}$				6	

(1) Data is valid after the offset calibration of the output amplifier.

ISTRUMENTS

Figure 5-20. DAC12_x Output Resistance Tests

Table 5-43. 12-Bit DAC, Reference Input Specifications

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PA	RAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
V	Reference input	DAC12IR = $0^{(1)}$ (2)	221/40261/		AV _{CC} / 3	$AV_{CC} + 0.2$	V
V _{eREF+}	voltage range	DAC12IR = 1 (3) (4)	2.2 V to 3.6 V		AV _{CC}	AV _{CC} + 0.2	V
Ri _(VREFBG) , Ri _(VeREF+)		DAC12_0 IR = DAC12_1 IR = 0		20			МΩ
	Reference input	DAC12_0 IR = 1, DAC12_1 IR = 0	2.2 V, 3 V		52		
Ri _(VREF+) ,	resistance ⁽⁵⁾	DAC12_0 IR = 0, DAC12_1 IR = 1	2.2 V, 3 V		52		kΩ
Ri _(VeREF+)		DAC12_0 IR = DAC12_1 IR = 1, DAC12_0 SREFx = DAC12_1 SREFx ⁽⁶⁾			26		1122

- (1) For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC).
- (2) The maximum voltage applied at reference input voltage terminal VeREF+ = $[AV_{CC} V_{E(O)}] / [3 \times (1 + E_G)]$.
- (3) For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC).
- (4) The maximum voltage applied at reference input voltage terminal VeREF+ = $[AV_{CC} V_{E(O)}]/(1 + E_G)$.
- (5) This impedance depends on tradeoff in power savings. Current devices have 48 kΩ for each channel when divide is enabled. Can be increased if performance can be maintained.
- (6) When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel reducing the reference input resistance.

Table 5-44. 12-Bit DAC, Dynamic Specifications

 $V_{REF} = V_{CC}$, DAC12IR = 1 (see Figure 5-21 and Figure 5-22), over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST (CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
		DAC12 xDAT = 800h,	DAC12AMPx = $0 \rightarrow \{2, 3, 4\}$			60	120	
t_{ON}	DAC12 on time	$Error_{V(O)} < \pm 0.5 LSB^{(1)}$	$DAC12AMPx = 0 \to \{5, 6\}$	2.2 V, 3 V		15	30	μs
		(see Figure 5-21)	$DAC12AMPx = 0 \to 7$			6	12	İ
			DAC12AMPx = 2			100	200	
t _{S(FS)}	Settling time, full scale	DAC12_xDAT = $80h \rightarrow F7Fh \rightarrow 80h$	DAC12AMP $x = 3, 5$	2.2 V, 3 V		40	80	μs
		0011 -> 1 71 11 -> 0011	DAC12AMPx = 4, 6, 7			15	30	Ì
		DAC12 xDAT =	DAC12AMPx = 2			5		
t _{S(C-C)}	Settling time, code to code	$3F8h \rightarrow 408h \rightarrow 3F8h$,	DAC12AMPx = 3, 5	2.2 V, 3 V		2		μs
	COUC	BF8h → C08h → BF8h	DAC12AMPx = 4, 6, 7			1		İ
			DAC12AMPx = 2		0.05	0.35		
SR	Slew rate	DAC12_xDAT = $80h \rightarrow F7Fh \rightarrow 80h^{(2)}$	DAC12AMP $x = 3, 5$	2.2 V, 3 V	0.35	1.10		V/µs
		0011 -> 1 71 11 -> 0011	DAC12AMPx = 4, 6, 7		1.50	5.20		Ì
	Glitch energy	DAC12_xDAT = 800h → 7FFh → 800h	DAC12AMPx = 7	2.2 V, 3 V		35		nV-s

- (1) R_{Load} and C_{Load} connected to AV_{SS} (not AV_{CC}/2) in Figure 5-21.
- (2) Slew rate applies to output voltage steps ≥ 200 mV.

Figure 5-21. Settling Time and Glitch Energy Testing

Figure 5-22. Slew Rate Testing

Table 5-45. 12-Bit DAC, Dynamic Specifications (Continued)

over recommended ranges of supply voltage and T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
	3-dB bandwidth.	DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h		40			
BW _{-3dB}	$V_{DC} = 1.5 \text{ V},$ $V_{AC} = 0.1 \text{ V}_{PP}$	DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h	2.2 V, 3 V	180			kHz
	(see Figure 5-23)	DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h		550			
	Channel-to-channel crosstalk (1) (see	DAC12_0DAT = 800h, No load, DAC12_1DAT = 80h \leftrightarrow F7Fh, R _{Load} = 3 k Ω , f _{DAC12_1OUT} = 10 kHz at 50/50 duty cycle	2.2 V. 3 V		-80		dB
	Figure 5-24)	DAC12_0DAT = 80h \leftrightarrow F7Fh, R _{Load} = 3 k Ω , DAC12_1DAT = 800h, No load, f _{DAC12_0OUT} = 10 kHz at 50/50 duty cycle	2.2 V, 3 V		-80		uБ

(1) $R_{Load} = 3 \text{ k}\Omega$, $C_{Load} = 100 \text{ pF}$

Figure 5-23. Test Conditions for 3-dB Bandwidth Specification

Figure 5-24. Crosstalk Test Conditions

5.5.14 Operational Amplifier

Table 5-46. Operational Amplifier, OA0, OA1, PGA Buffers

over operating free-air temperature range (unless otherwise noted)

PA	ARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
V _{CC}	Analog supply voltage	$AV_{CC} = DV_{CC}$, $AV_{SS} = DV_{SS} = 0$ V		2.2		3.6	V
C _{CPCAP}	External charge pump capacitor to AVSS.	Required when charge pump is enabled		20	22	24	nF
I _{CP_PEAK}	Charge pump peak current	OARRI = 0h to 1h, $I_{CP_LOAD} = 0 \mu A$			1.6		mA
I _{CP}	Charge pump average current	OARRI = 1h, I _{CP_LOAD} = 100 μA			570 ⁽¹⁾	710 ⁽¹⁾	μΑ
t _{CP_EN_fast}	Charge pump enable time fast	OARRI = 0h to 1h, $I_{CP_LOAD} = 0 \mu A$, AFE biases previously enabled and settled which can be done with REFON=1 or other modules requesting REFON.			50		μs
t _{CP_EN_slow}	Charge pump enable time slow	OARRI = 0h to 1h, I_{CP_LOAD} = 0 μ A, Includes AFE bias settling			75		μs
I _{OA}	Supply current, per opamp	I _O = 0 mA, OARRI = 0h (charge pump disabled)			105 ⁽¹⁾	130 ⁽¹⁾	μΑ
V _{OS}	Input offset voltage	Noninverting, unity gain			±2		mV
dV _{OS} /dT	Input offset voltage temperature drift	Noninverting, unity gain			±1		μV/°C
dV _{OS} /dV	Input offset voltage voltage drift	Noninverting, unity gain			±3		μV/V
•		Differential			4		pF
C _{in}	Input capacitance	Common mode			6		pF
PSRR_DC	Power supply rejection ratio, DC	Noninverting, unity gain, V _{INP} = positive input of OA = 1 V			50		μV/V
M	Common mode	OARRI = 0h, Noninverting, unity gain		0.1		V _{CC} - 1.0	V
V_{CM}	voltage range (2)	OARRI = 1h, Noninverting, unity gain		0.1		V _{CC} - 0.1	V
CMRR_DC	Common mode rejection ratio, DC	Over common-mode voltage range			110		dB
•	Input voltage noise	f = 100 Hz, OARRI = 0h or 1h	3.0 V		90		nV/√Hz
e _n	density	f = 50 kHz, OARRI = 0h or 1h	3.0 V		25		110/ 1112
A _{OL}	Open-loop voltage gain, DC				95		dB
GBW	Gain-bandwidth product	C _L = 100 pF, OAM = 1h			800		kHz
SR	Slew rate	Noninverting, unity gain, C _L = 100 pF, OAM = 1h			0.4		V/µs
t _{SETTLE}	Settling time	Noninverting, unity gain, 2.0-V step, 0.1%, OAM = 1h	3.0 V		5.3		μs
Vo	Voltage output swing from rail	-250μ A ≤ I _O ≤ 250 μ A, Noninverting, unity gain (OAM = 1h)			5	55	mV

⁽¹⁾ Refer to Table 5-47 to calculate total current from OA for different use cases.

⁽²⁾ The common-mode input range is measured with the OA in a unity-gain source-follower configuration. The input signal is swept from 0 V to V_{CC}, and the output of the OA is monitored. The minimum and maximum values represent when the input and output differ more than 10 mV, not including the offset, V_{OS}.

TRUMENTS

Operational Amplifier, OA0, OA1, PGA Buffers (continued)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
t _{EN_FAST}	Enable time fast	Noninverting, unity gain, OAM = 0h transition to 1h, AFE biases previously enabled and settled which can be done with REFON=1 or other modules requesting REFON ⁽³⁾			3	7	μs
t _{EN_SLOW}	Enable time slow	Noninverting,unity gain, OARRI = 0h transition to 1h, OAM = 0h transition to 1h, Includes AFE bias and charge pump settling (3)			190	225	μs
t _{DIS}	Disable time				0.4		μs

The AFE bias is used by several modules including the OA charge pump, OA, and CTSD16. Any of these modules will request the AFE bias when enabled. The AFE bias is generated by the REF module, so enabling the REF module also enables the AFE bias.

Table 5-47 explains how to compute the total current, I_{TOTAL}, when the OA and associated modules are used. Refer to Table 5-33 for a similar table for the CTSD16. A "yes" means it must be included in computing I_{TOTAL}.

As an example, assume that the application uses the CTS16D in rail-to-rail input mode (CTSD16RRI = 1) with the internal reference (CTSD16REFS = 1) and OA0 and OA1 are enabled in rail-to-rail input modes, OARRI = 1. The total current, I_{TOTAL}, would be computed as follows:

Table 5-47. OA, Current Calculation

USE CASE NAME	USE CASE DETAILS	I _{OA}	I _{CTSD16CLK} (1)	I _{CP} ⁽²⁾	I _{REF} (3)
OA	OARRI = 0	yes	no	no	yes
OA with rail-to-rail input	OARRI = 1	yes	yes	yes	yes
Rail-to-rail input up, module off	(CTSD16SC = 0) AND (CTSD16RRI = 1) AND (CTSD16RRIBURST = 0) OR ((OARRI = 1 (for any OA)) AND (OAM = 0))	no	yes	yes	yes

⁽¹⁾ Count this current only once no matter how many modules use it. CTSD16 and the charge pump also use this. This current is listed in Table 5-32.

Count this current only once no matter how many modules use it. CTSD16 also uses this when rail-to-rail inputs are selected.

Count this current only once no matter how many modules use it. This current is listed in Table 5-46. If I_{REFBG} is used, that includes the I_{REF} current.

5.5.15 Switches

Table 5-48. Ground Switches (GSW0A, GSW0B, GSW1A, GSW1B)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{CC}	Supply voltage		2.2		3.6	V
	lance lands and (1)	$T_A = 0$ °C to 60 °C		±0.25		^
I _{LKG}	Input leakage ⁽¹⁾	$T_A = -40$ °C to 85°C			±50	nA
I _{IN}	Input current switch to AVSS		0		100	μΑ
R _{ON}	Switch ON resistance with switch closed	$I_{IN} = 100 \mu A,$ $T_A = -40$ °C to 85°C		9.5	18.5	Ω
R _{OFF}	Switch OFF resistance with switch open	T _A = -40°C to 85°C, Input signal frequency < 100 Hz	100			ΜΩ
t _{ON/OFF}	Enable or disable time	$T_A = -40$ °C to 85°C		0.25		μs

⁽¹⁾ Ground switches are shared with general-purpose I/Os. This leakage includes all leakage seen at the device pin, not only leakage caused by the switch itself.

Table 5-49. Operational Amplifier Switches

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{CC}	Supply voltage		2.2		3.6	V
I _{LKG} Input leakage (1)		$T_A = 0$ °C to 60°C		±0.25		^
		$T_A = -40$ °C to 85°C			±50	nA
I _{IN}	Input current through switch		0		100	μΑ
R _{ON}	Switch ON resistance with switch closed (2)	$I_{IN} = 100 \mu A,$ $T_A = -40$ °C to 85°C		1		kΩ
R _{OFF}	Switch OFF resistance with switch open	T _A = -40°C to 85°C, Input signal frequency < 100 Hz	100			МΩ
t _{ON/OFF}	Enable or disable time	$T_A = -40$ °C to 85°C		0.45		μs

⁽¹⁾ This leakage includes all leakage seen at the device pin, not only leakage caused by the switch itself. It assumes a total of five switches present and a shared digital I/O.

⁽²⁾ The resistance varies with input voltage range. This resistance represents the peak resistance at the worst case input range (see Figure 5-29).

5.5.16 Comparator

Table 5-50. Comparator_B

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

!	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
V _{CC}	Supply voltage			1.8		3.6	V
			1.8 V			40	
		CBPWRMD = 00, CBON = 1, CBRSx = 00	2.2 V		30	50	
	Comparator operating supply current into		3 V		40	65	
I _{AVCC_COMP}	AVCC, Excludes reference resistor ladder	CBPWRMD = 01, CBON = 1, CBRSx = 00	2.2 V, 3 V		10	30	μA
		CBPWRMD = 10, CBON = 1, CBRSx = 00	2.2 V, 3 V		0.5	1.3	
I _{AVCC_REF}	Quiescent current of resistor ladder into AVCC, Includes REF module current	CBREFACC = 1, CBREFLx = 01, CBRSx = 10, REFON = 0, CBON = 0	2.2 V, 3 V		10	22	μΑ
V_{IC}	Common mode input range			0		V _{CC} -1	V
\/	land offert values	CBPWRMD = 00		-20		20	\/
V _{OFFSET}	Input offset voltage	CBPWRMD = 01, 10		-10		10	mV
C _{IN}	Input capacitance				5		pF
D	Carias input registeres	ON (switch closed)			3	4	kΩ
R _{SIN}	Series input resistance	OFF (switch open)		50			МΩ
		CBPWRMD = 00, CBF = 0				450	
t_{PD}	Propagation delay, response time	CBPWRMD = 01, CBF = 0				600	ns
	response time	CBPWRMD = 10, CBF = 0				50	μs
		CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 00		0.35	0.6	1.5	
	Propagation delay with	CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 01		0.6	1.0	1.8	
t _{PD,filter}	filter active	CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 10		1.0	1.8	3.4	μs
		CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 11		1.8	3.4	6.5	
t _{EN_CMP}	Comparator enable time	CBON = 0 to CBON = 1,			1	2	μs
t _{EN_REF}	Resistor reference enable time	CBON = 0 to CBON = 1			1.0	1.5	μs
TC _{CB_REF}	Temperature coefficient of V _{CB_REF}					50	ppm/ °C
V _{CB_REF}	Reference voltage for a given tap	VIN = reference into resistor ladder, n = 0 to 31		VIN x (n+0.5) /32	VIN × (n+1) /32	VIN × (n+1.5) /32	V

5.5.17 USB

Table 5-51. Ports PU.0 and PU.1

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	0 11 7 0	· · · · · · · · · · · · · · · · · · ·			
	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V_{OH}	High-level output voltage	$V_{USB} = 3.3 \text{ V } \pm 10\%, I_{OH} = -25 \text{ mA}$	2.4		V
V_{OL}	Low-level output voltage	$V_{USB} = 3.3 \text{ V } \pm 10\%, I_{OL} = 25 \text{ mA}$		0.4	V
V_{IH}	High-level input voltage	$V_{USB} = 3.3 \text{ V } \pm 10\%$	2.0		V
V_{IL}	Low-level input voltage	$V_{USB} = 3.3 \text{ V } \pm 10\%$		8.0	V

Figure 5-30. Ports PU.0, PU.1 Typical Low-Level Output Characteristics

Figure 5-31. Ports PU.0, PU.1 Typical High-Level Output Characteristics

NSTRUMENTS

SLAS874-MAY 2015

Figure 5-32. Ports PU.0, PU.1 Typical Input Threshold Characteristics

Table 5-52. USB Output Ports DP and DM

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	or or recommended and supply remays and spending need an temperature (amous suremes needs)							
	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT			
V _{OH}	D+, D- single ended	USB 2.0 load conditions	2.8	3.6	V			
V_{OL}	D+, D- single ended	USB 2.0 load conditions	0	0.3	V			
Z _(DRV)	D+, D- impedance	Including external series resistor of 27 Ω	28	44	Ω			
t _{RISE}	Rise time	Full speed, differential, C _L = 50 pF, 10%/90%, Rpu on D+	4	20	ns			
t _{FALL}	Fall time	Full speed, differential, C _L = 50 pF, 10%/90%, Rpu on D+	4	20	ns			

Table 5-53. USB Input Ports DP and DM

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	MIN	MAX	UNIT
V _(CM)	Differential input common mode range	0.8	2.5	V
Z _(IN)	Input impedance	300		kΩ
V_{CRS}	Crossover voltage	1.3	2.0	V
V_{IL}	Static SE input logic low level	0.8		V
V_{IH}	Static SE input logic high level		2.0	V
VDI	Differential input voltage		0.2	V

Table 5-54. USB-PWR (USB Power System)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{LAUNCH}	V _{BUS} detection threshold				3.75	V
V_{BUS}	USB bus voltage	Normal operation	3.76		5.5	V
V_{USB}	USB LDO output voltage			3.3	±9%	V
V ₁₈	Internal USB voltage ⁽¹⁾			1.8		V
I _{USB_EXT}	Maximum external current from VUSB terminal (2)	USB LDO is on			12	mA
I _{DET}	USB LDO current overload detection (3)		60		100	mA
I _{SUSPEND}	Operating supply current into VBUS terminal (4)	USB LDO is on, USB PLL disabled			250	μΑ
C _{BUS}	VBUS terminal recommended capacitance			4.7		μF
C _{USB}	VUSB terminal recommended capacitance			220		nF
C ₁₈	V18 terminal recommended capacitance			220		nF
t _{ENABLE}	Settling time V _{USB} and V ₁₈	Within 2%, recommended capacitances			2	ms
RPUR	Pullup resistance of PUR terminal		70	110	150	Ω

- (1) This voltage is for internal use only. No external DC loading should be applied.
- (2) This represents additional current that can be supplied to the application from the VUSB terminal beyond the needs of the USB operation.
- (3) A current overload is detected when the total current supplied from the USB LDO, including I_{USB EXT}, exceeds this value.
- (4) Does not include current contribution of Rpu and Rpd as outlined in the USB specification.

Table 5-55. USB-PLL (USB Phase-Locked Loop)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNIT
I _{PLL}	Operating supply current			7	mA
f _{PLL}	PLL frequency		48		MHz
f _{UPD}	PLL reference frequency	1.5		3	MHz
t _{LOCK}	PLL lock time			2	ms
t _{Jitter}	PLL jitter		1000		ps

STRUMENTS

SLAS874-MAY 2015

5.5.18 Flash

Table 5-56. Flash Memory

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DV _{CC(PGM/ERASE)}	Program and erase supply voltage		1.8		3.6	V
I _{PGM}	Average supply current from DV _{CC} during program			3	5	mA
I _{ERASE}	Average supply current from DV _{CC} during erase			6	11	mA
I _{MERASE} , I _{BANK}	Average supply current from $\mathrm{DV}_{\mathrm{CC}}$ during mass erase or bank erase			6	11	mA
t _{CPT}	Cumulative program time	See (1)			16	ms
	Program and erase endurance		10 ⁴	10 ⁵		cycles
t _{Retention}	Data retention duration	T _J = 25°C	100			years
t _{Word}	Word or byte program time	See (2)	64		85	μs
t _{Block, 0}	Block program time for first byte or word	See (2)	49		65	μs
t _{Block, 1-(N-1)}	Block program time for each additional byte or word, except for last byte or word	See (2)	37		49	μs
t _{Block, N}	Block program time for last byte or word	See (2)	55		73	μs
t _{Seg Erase}	Erase time for segment, mass erase, and bank erase when available	See (2)	23		32	ms
f _{MCLK,MGR}	MCLK frequency in marginal read mode (FCTL4.MGR0 = 1 or FCTL4.MGR1 = 1)		0		1	MHz

The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming methods: individual word or byte write and block write modes.

5.5.19 Debug and Emulation

Table 5-57. JTAG and Spy-Bi-Wire Interface

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	V _{cc}	MIN	TYP	MAX	UNIT
f _{SBW}	Spy-Bi-Wire input frequency	2.2 V, 3 V	0		20	MHz
t _{SBW,Low}	Spy-Bi-Wire low clock pulse duration	2.2 V, 3 V	0.025		15	μs
t _{SBW, En}	Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) (1)	2.2 V, 3 V			1	μs
t _{SBW,Rst}	Spy-Bi-Wire return to normal operation time		15		100	μs
	TCV input fragues of (4 mins ITAC)(2)	2.2 V	0		5	MHz
f _{TCK}	TCK input frequency (4-wire JTAG) ⁽²⁾	3 V	0		10	MHz
R _{internal}	Internal pulldown resistance on TEST	2.2 V, 3 V	45	60	80	kΩ

⁽¹⁾ Tools that access the Spy-Bi-Wire interface must wait for the t_{SBW,En} time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge.

These values are hardwired into the state machine of the flash controller.

⁽²⁾ f_{TCK} may be restricted to meet the timing requirements of the module selected.

TEXAS INSTRUMENTS

6 Detailed Description

6.1 Overview

The MSP430FG6626 and MSP430FG6625 are microcontroller configurations with a high-performance 16-bit analog-to-digital converter (ADC), dual 12-bit digital-to-analog converters (DACs), dual low-power operational amplifiers (OAs), a comparator (COMPB), two universal serial communication interfaces (USCIs), USB 2.0, a hardware multiplier (MPY32), DMA, four 16-bit timers, a real-time clock (RTC) module with alarm capabilities, an LCD driver, and up to 73 I/O pins.

The MSP430FG6426 and MSP430FG6425 are microcontroller configurations with a high-performance 16-bit analog-to-digital converter (ADC), dual 12-bit digital-to-analog converters (DACs), dual low-power operational amplifiers (OAs), a comparator (COMPB), two universal serial communication interfaces (USCIs), a 3.3-V LDO, a hardware multiplier (MPY32), DMA, four 16-bit timers, a real-time clock (RTC) module with alarm capabilities, an LCD driver, and up to 73 I/O pins.

6.2 CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

Program Counter	PC/R0
Stack Pointer	SP/R1
Status Register	SR/CG1/R2
Constant Generator	CG2/R3
General-Purpose Register	R4
General-Purpose Register	R5
General-Purpose Register	R6
General-Purpose Register	R7
General-Purpose Register	R8
General-Purpose Register	R9
General-Purpose Register	R10
General-Purpose Register	R11
General-Purpose Register	R12
General-Purpose Register	R13
General-Purpose Register	R14
General-Purpose Register	R15

SLAS874-MAY 2015

6.3 **Instruction Set**

The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. Table 6-1 shows examples of the three types of instruction formats; Table 6-2 shows the address modes.

Table 6-1. Instruction Word Formats

INSTRUCTION WORD FORMAT	EXAMPLE	OPERATION
Dual operands, source-destination	ADD R4,R5	R4 + R5 → R5
Single operands, destination only	CALL R8	$PC \rightarrow (TOS), R8 \rightarrow PC$
Relative jump, un/conditional	JNE	Jump-on-equal bit = 0

Table 6-2. Address Mode Descriptions

ADDRESS MODE	S ⁽¹⁾	D ⁽¹⁾	SYNTAX	EXAMPLE	OPERATION
Register	+	+	MOV Rs,Rd	MOV R10,R11	R10 → R11
Indexed	+	+	MOV X(Rn),Y(Rm)	MOV 2(R5),6(R6)	$M(2+R5) \rightarrow M(6+R6)$
Symbolic (PC relative)	+	+	MOV EDE,TONI		$M(EDE) \rightarrow M(TONI)$
Absolute	+	+	MOV &MEM, &TCDAT		$M(MEM) \rightarrow M(TCDAT)$
Indirect	+		MOV @Rn,Y(Rm)	MOV @R10,Tab(R6)	$M(R10) \rightarrow M(Tab+R6)$
Indirect auto-increment	+		MOV @Rn+,Rm	MOV @R10+,R11	$\begin{array}{c} M(R10) \rightarrow R11 \\ R10 + 2 \rightarrow R10 \end{array}$
Immediate	+		MOV #X,TONI	MOV #45,TONI	#45 → M(TONI)

⁽¹⁾ S = source, D = destination

6.4 Operating Modes

The devices have one active mode and seven software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.

The following seven operating modes can be configured by software:

- Active mode (AM)
 - All clocks are active
- Low-power mode 0 (LPM0)
 - CPU is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
 - FLL loop control remains active
- Low-power mode 1 (LPM1)
 - CPU is disabled
 - FLL loop control is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
- Low-power mode 2 (LPM2)
 - CPU is disabled
 - MCLK, FLL loop control, and DCOCLK are disabled
 - DCO's DC generator remains enabled
 - ACLK remains active
- Low-power mode 3 (LPM3)
 - CPU is disabled
 - MCLK, FLL loop control, and DCOCLK are disabled
 - DCO's DC generator is disabled
 - ACLK remains active
- Low-power mode 4 (LPM4)
 - CPU is disabled
 - ACLK is disabled
 - MCLK, FLL loop control, and DCOCLK are disabled
 - DCO's DC generator is disabled
 - Crystal oscillator is stopped
 - Complete data retention
- Low-power mode 3.5 (LPM3.5)
 - Internal regulator disabled
 - No data retention
 - RTC enabled and clocked by low-frequency oscillator
 - Wake up from RST/NMI, RTC B, P1, P2, P3, and P4
- Low-power mode 4.5 (LPM4.5)
 - Internal regulator disabled
 - No data retention
 - Wake up from RST/NMI, P1, P2, P3, and P4

NSTRUMENTS

6.5 Interrupt Vector Addresses

The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.

Table 6-3. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
System Reset Power-Up, External Reset Watchdog Time-out, Key Violation Flash Memory Key Violation	WDTIFG, KEYV (SYSRSTIV) ⁽¹⁾⁽²⁾	Reset	0FFFEh	63, highest
System NMI PMM Vacant Memory Access JTAG Mailbox	SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG, VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG, JMBOUTIFG (SYSSNIV) ⁽¹⁾	(Non)maskable	0FFFCh	62
User NMI NMI Oscillator Fault Flash Memory Access Violation	NMIIFG, OFIFG, ACCVIFG, BUSIFG (SYSUNIV) ⁽¹⁾⁽²⁾	(Non)maskable	0FFFAh	61
Comp_B	Comparator B interrupt flags (CBIV) ⁽¹⁾⁽³⁾	Maskable	0FFF8h	60
Timer TB0	TB0CCR0 CCIFG0 ⁽³⁾	Maskable	0FFF6h	59
Timer TB0	TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6, TB0IFG (TBIV) ⁽¹⁾ (3)	Maskable	0FFF4h	58
Watchdog Interval Timer Mode	WDTIFG	Maskable	0FFF2h	57
USCI_A0 Receive or Transmit	UCA0RXIFG, UCA0TXIFG (UCA0IV)(1)(3)	Maskable	0FFF0h	56
USCI_B0 Receive or Transmit	UCB0RXIFG, UCB0TXIFG (UCB0IV) (1) (3)	Maskable	0FFEEh	55
CTSD16	CTSD16IFG0, CTSD16OVIFG0 ⁽¹⁾⁽³⁾	Maskable	0FFECh	54
Timer TA0	TA0CCR0 CCIFG0 ⁽³⁾	Maskable	0FFEAh	53
Timer TA0	TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4, TA0IFG (TA0IV) ⁽¹⁾⁽³⁾	Maskable	0FFE8h	52
USB_UBM ⁽⁴⁾	USB interrupts (USBIV) ⁽¹⁾⁽³⁾	Maalaabla	٥٦٦٥٠	F4
LDO-PWR (5)	LDOOFFIG, LDOONIFG, LDOOVLIFG	Maskable	0FFE6h	51
DMA	DMA0IFG, DMA1IFG, DMA2IFG, DMA3IFG, DMA4IFG, DMA5IFG (DMAIV) (1) (3)	Maskable	0FFE4h	50
Timer TA1	TA1CCR0 CCIFG0 ⁽³⁾	Maskable	0FFE2h	49
Timer TA1	TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2, TA1IFG (TA1IV) ⁽¹⁾⁽³⁾	Maskable	0FFE0h	48
I/O Port P1	P1IFG.0 to P1IFG.7 (P1IV) ^{(1) (3)}	Maskable	0FFDEh	47
USCI_A1 Receive or Transmit	UCA1RXIFG, UCA1TXIFG (UCA1IV)(1)(3)	Maskable	0FFDCh	46
USCI_B1 Receive or Transmit	UCB1RXIFG, UCB1TXIFG (UCB1IV)(1)(3)	Maskable	0FFDAh	45
I/O Port P2	P2IFG.0 to P2IFG.7 (P2IV) ^{(1) (3)}	Maskable	0FFD8h	44
LCD_B	LCD_B Interrupt Flags (LCDBIV) ⁽¹⁾	Maskable	0FFD6h	43
RTC_B	RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG, RTCOFIFG (RTCIV) ⁽¹⁾⁽³⁾	Maskable	0FFD4h	42
DAC12_A	DAC12_0IFG, DAC12_1IFG ⁽¹⁾⁽³⁾	Maskable	0FFD2h	41
Timer TA2	TA2CCR0 CCIFG0 ⁽³⁾	Maskable	0FFD0h	40
Timer TA2	TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2, TA2IFG (TA2IV) ⁽¹⁾⁽³⁾	Maskable	0FFCEh	39
I/O Port P3	P3IFG.0 to P3IFG.7 (P3IV) ⁽¹⁾⁽³⁾	Maskable	0FFCCh	38
I/O Port P4	P4IFG.0 to P4IFG.7 (P4IV) ⁽¹⁾⁽³⁾	Maskable	0FFCAh	37

⁽¹⁾ Multiple source flags

⁽²⁾ A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.

(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.

⁽³⁾ Interrupt flags are located in the module.

⁴⁾ Only on devices with peripheral module USB (MSP430FG6626 and MSP430FG6625)

⁽⁵⁾ Only on devices with peripheral module LDO-PWR (MSP430FG6426 and MSP430FG6425)

Table 6-3. Interru	ot Sources, Flags,	and Vectors	(continued)

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
			0FFC8h	36
Reserved	Reserved ⁽⁶⁾		:	:
			0FF80h	0, lowest

⁽⁶⁾ Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, TI recommends reserving these locations.

6.6 USB BSL

The devices MSP430FG6626 and MSP430FG6625 come pre-programmed with the USB BSL. Use of the USB BSL requires external access to the six pins shown in Table 6-4. In addition to these pins, the application must support external components necessary for normal USB operation; for example, the proper crystal on XT2IN and XT2OUT, proper decoupling, and so on.

Table 6-4. USB BSL Pin Requirements and Functions

DEVICE SIGNAL	BSL FUNCTION
RST/NMI/SBWTDIO	Entry sequence signal
PU.0/DP	USB data terminal DP
PU.1/DM	USB data terminal DM
PUR	USB pullup resistor terminal
VBUS	USB bus power supply
VSSU	USB ground supply

NOTE

The default USB BSL evaluates the logic level of the PUR pin after a BOR reset. If it is pulled high externally, then the BSL is invoked. Therefore, unless the application is invoking the BSL, it is important to keep PUR pulled low after a BOR reset, even if BSL or USB is never used. TI recommends applying a $1-M\Omega$ resistor to ground.

6.7 UART BSL

On devices without an USB module (MSP430FG642x) come pre-programmed with the UART BSL. A UART BSL is also available for devices with the USB module (MSP430FG662x), and it can be programmed by the user into the BSL memory by replacing the pre-programmed factory-supplied USB BSL. Use of the UART BSL requires external access to the six pins shown in Table 6-5.

Table 6-5. UART BSL Pin Requirements and Functions

DEVICE SIGNAL	BSL FUNCTION		
RST/NMI/SBWTDIO	Entry sequence signal		
TEST/SBWTCK	Entry sequence signal		
P1.1	Data transmit		
P1.2	Data receive		
VCC	Power supply		
VSS	Ground supply		

6.8 JTAG Operation

6.8.1 JTAG Standard Interface

The MSP430 family supports the standard JTAG interface, which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/Os. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. The JTAG pin requirements are shown in Table 6-6. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface (SLAU320).

DEVICE SIGNAL DIRECTION FUNCTION PJ.3/TCK IN JTAG clock input PJ.2/TMS IN JTAG state control PJ.1/TDI/TCLK IN JTAG data input, TCLK input OUT PJ.0/TDO JTAG data output TEST/SBWTCK IN Enable JTAG pins RST/NMI/SBWTDIO IN External reset VCC Power supply VSS Ground supply

Table 6-6. JTAG Pin Requirements and Functions

6.8.2 Spy-Bi-Wire Interface

In addition to the standard JTAG interface, the MSP430 family supports the two-wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. The Spy-Bi-Wire interface pin requirements are shown in Table 6-7. For further details on interfacing to development tools and device programmers, see the *MSP430 Hardware Tools User's Guide* (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see *MSP430 Programming Via the JTAG Interface* (SLAU320).

 DEVICE SIGNAL
 DIRECTION
 FUNCTION

 TEST/SBWTCK
 IN
 Spy-Bi-Wire clock input

 RST/NMI/SBWTDIO
 IN, OUT
 Spy-Bi-Wire data input/output

 VCC
 Power supply

 VSS
 Ground supply

Table 6-7. Spy-Bi-Wire Pin Requirements and Functions

6.9 Flash Memory

The flash memory can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the flash memory include:

- Flash memory has n segments of main memory and four segments of information memory (A to D) of 128 bytes each. Each segment in main memory is 512 bytes in size.
- Segments 0 to n may be erased in one step, or each segment may be individually erased.
- Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory.
- Segment A can be locked separately.

IEXAS INSTRUMENTS

6.10 RAM

The RAM is made up of n sectors. Each sector can be completely powered down to save leakage; however, all data is lost. Features of the RAM include:

- RAM has n sectors. The size of a sector can be found in Section 6.14.
- Each sector 0 to n can be complete disabled; however, data retention is lost.
- Each sector 0 to n automatically enters low-power retention mode when possible.
- For devices that contain USB memory, the USB memory can be used as normal RAM if USB is not required.

6.11 Backup RAM

The backup RAM provides a limited number of bytes of RAM that are retained during LPMx.5 and during operation from a backup supply if the Battery Backup System module is implemented.

There are 8 bytes of backup RAM. It can be word-wise accessed through the control registers BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3.

6.12 Peripherals

Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).

6.12.1 Digital I/O

There are up to nine 8-bit I/O ports implemented: P1 through P9 are complete except P5.2, and port PJ contains four individual I/O ports.

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Programmable pullup or pulldown on all ports.
- Programmable drive strength on all ports.
- Edge-selectable interrupt input capability for all the eight bits of ports P1, P2, P3, and P4.
- Read and write access to port-control registers is supported by all instructions.
- Ports can be accessed byte-wise (P1 through P9) or word-wise (P1 through P8) in pairs (PA through PD).

76

SLAS874-MAY 2015

6.12.2 Port Mapping Controller

The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P2 (see Table 6-8).

Table 6-8. Port Mapping Mnemonics and Functions

VALUE	PxMAPy MNEMONIC	INPUT PIN FUNCTION	OUTPUT PIN FUNCTION				
0	PM_NONE	None	DVSS				
4	PM_CBOUT	-	Comparator_B output				
1	PM_TB0CLK	Timer TB0 clock input	-				
2	Reserved	-	Reserved				
2	PM_DMAE0	DMAE0 Input	-				
2	PM_SVMOUT	-	SVM output				
3	PM_TB0OUTH	Timer TB0 high impedance input TB0OUTH	-				
4	PM_TB0CCR0B	Timer TB0 CCR0 capture input CCI0B	Timer TB0: TB0.0 compare output Out0				
5	PM_TB0CCR1B	Timer TB0 CCR1 capture input CCI1B	Timer TB0: TB0.1 compare output Out1				
6	PM_TB0CCR2B	Timer TB0 CCR2 capture input CCI2B	Timer TB0: TB0.2 compare output Out2				
7	PM_TB0CCR3B	Timer TB0 CCR3 capture input CCl3B	Timer TB0: TB0.3 compare output Out3				
8	PM_TB0CCR4B	Timer TB0 CCR4 capture input CCI4B	Timer TB0: TB0.4 compare output Out4				
9	PM_TB0CCR5B	Timer TB0 CCR5 capture input CCI5B	Timer TB0: TB0.5 compare output Out5				
10	PM_TB0CCR6B	Timer TB0 CCR6 capture input CCI6B	Timer TB0: TB0.6 compare output Out6				
11	PM_UCA0RXD	USCI_A0 UART RXD (Direction controlled by USCI - input)					
11	PM_UCA0SOMI	USCI_A0 SPI slave out master	in (direction controlled by USCI)				
12	PM_UCA0TXD	USCI_A0 UART TXD (Direction	on controlled by USCI - output)				
12	PM_UCA0SIMO	USCI_A0 SPI slave in master o	ut (direction controlled by USCI)				
13	PM_UCA0CLK	USCI_A0 clock input/output ((direction controlled by USCI)				
13	PM_UCB0STE	USCI_B0 SPI slave transmit enable	(direction controlled by USCI - input)				
4.4	PM_UCB0SOMI	USCI_B0 SPI slave out master	in (direction controlled by USCI)				
14	PM_UCB0SCL	USCI_B0 I ² C clock (open drain a	and direction controlled by USCI)				
15	PM_UCB0SIMO	USCI_B0 SPI slave in master o	ut (direction controlled by USCI)				
15	PM_UCB0SDA	USCI_B0 I ² C data (open drain a	and direction controlled by USCI)				
40	PM_UCB0CLK	USCI_B0 clock input/output ((direction controlled by USCI)				
16	PM_UCA0STE	USCI_A0 SPI slave transmit enable	(direction controlled by USCI - input)				
17	PM_MCLK	-	MCLK				
18-30	Reserved	None	DVSS				
31 (0FFh) ⁽¹⁾	PM_ANALOG		Disables the output driver and the input Schmitt-trigger to prevent parasitic cross currents when applying analog signals.				

⁽¹⁾ The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide and the upper bits are ignored, which results in a read out value of 31.

Table 6-9. Default Mapping

PIN	PxMAPy MNEMONIC	INPUT PIN FUNCTION	OUTPUT PIN FUNCTION			
P2.0/P2MAP0	PM_UCB0STE, PM_UCA0CLK		(direction controlled by USCI - input), (direction controlled by USCI)			
P2.1/P2MAP1	PM_UCB0SIMO, PM_UCB0SDA	USCI_B0 SPI slave in master out (direction controlled by USCI), USCI_B0 I ² C data (open drain and direction controlled by USCI)				
P2.2/P2MAP2	PM_UCB0SOMI, PM_UCB0SCL	USCI_B0 SPI slave out master in (direction controlled by USCI), USCI_B0 I ² C clock (open drain and direction controlled by USCI)				
P2.3/P2MAP3	PM_UCB0CLK, PM_UCA0STE	USCI_B0 clock input/output (direction controlled by USCI), USCI_A0 SPI slave transmit enable (direction controlled by USCI - input)				
P2.4/P2MAP4	PM_UCA0TXD, PM_UCA0SIMO		n controlled by USCI - output), ut (direction controlled by USCI)			
P2.5/P2MAP5/R23	PM_UCA0RXD, PM_UCA0SOMI	USCI_A0 UART RXD (direction controlled by USCI - input), USCI_A0 SPI slave out master in (direction controlled by USCI)				
P2.6/P2MAP6/R03	PM_NONE	-	DVSS			
P2.7/P2MAP7/LCDREF/R13	PM_NONE	-	DVSS			

6.12.3 Oscillator and System Clock

The clock system in the MSP430FG662x and MSP430FG642x devices are supported by the Unified Clock System (UCS) module that includes support for a 32-kHz watch crystal oscillator (in XT1 LF mode; XT1 HF mode is not supported), an internal very-low-power low-frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), an integrated internal digitally controlled oscillator (DCO), and a highfrequency crystal oscillator XT2. The UCS module is designed to meet the requirements of both low system cost and low power consumption. The UCS module features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turnon clock source and stabilizes in 3 µs (typical). The UCS module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1), a high-frequency crystal (XT2), the internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal digitally-controlled oscillator (DCO).
- Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources available to ACLK.
- Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by same sources available to ACLK.
- ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.

6.12.4 Power Management Module (PMM)

The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor (SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit provides the proper internal reset signal to the device during power on and power off. The SVS and SVM circuitry detect if the supply voltage drops below a user-selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not automatically reset). SVS and SVM circuitry is available on the primary supply and the core supply.

6.12.5 Hardware Multiplier (MPY32)

The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-bit, 24-bit, 16-bit, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed and unsigned multiply-and-accumulate operations.

78

6.12.6 Real-Time Clock (RTC B)

The RTC_B module can be configured for real-time clock (RTC) or calendar mode providing seconds, minutes, hours, day of week, day of month, month, and year. Calendar mode integrates an internal calendar which compensates for months with less than 31 days and includes leap year correction. The RTC_B also supports flexible alarm functions and offset-calibration hardware. The implementation on this device supports operation in LPM3.5 mode and operation from a backup supply.

6.12.7 Watchdog Timer (WDT A)

The primary function of the WDT_A module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

6.12.8 System Module (SYS)

The SYS module handles many of the system functions within the device. These include power-on reset and power-up clear handling, NMI source selection and management, reset interrupt vector generators, bootstrap loader entry mechanisms, and configuration management (device descriptors). SYS also includes a data exchange mechanism through JTAG called a JTAG mailbox that can be used in the application.

Table 6-10. System Module Interrupt Vector Registers

INTERRUPT VECTOR REGISTER	INTERRUPT EVENT	WORD ADDRESS	OFFSET	PRIORITY
	No interrupt pending		00h	
	Brownout (BOR)		02h	Highest
	RST/NMI (BOR)		04h	
	PMMSWBOR (BOR)		06h	
	LPM3.5 or LPM4.5 wakeup (BOR)		08h	
	Security violation (BOR)		0Ah	
	SVSL (POR)		0Ch	
	SVSH (POR)		0Eh	
CVCDCTIV Custom Decet	SVML_OVP (POR)	04056	10h	
SYSRSTIV, System Reset	SVMH_OVP (POR)	019Eh	12h	
	PMMSWPOR (POR)		14h	
	WDT time-out (PUC)		16h	
	WDT key violation (PUC)		18h	
	KEYV flash key violation (PUC)		1Ah	
	Reserved		1Ch	
	Peripheral area fetch (PUC)		1Eh	
	PMM key violation (PUC)		20h	
	Reserved		22h to 3Eh	Lowest

Table 6-10. System Module Interrupt Vector Registers (continued)

INTERRUPT VECTOR REGISTER	INTERRUPT EVENT	WORD ADDRESS	OFFSET	PRIORITY
	No interrupt pending		00h	
	SVMLIFG		02h	Highest
	SVMHIFG		04h	
	DLYLIFG		06h	
	DLYHIFG		08h	
SYSSNIV, System NMI	VMAIFG	019Ch	0Ah	
	JMBINIFG		0Ch	
	JMBOUTIFG		0Eh	
	SVMLVLRIFG		10h	
	SVMHVLRIFG		12h	
	Reserved		14h to 1Eh	Lowest
	No interrupt pending		00h	
	NMIFG		02h	Highest
OVOLINIIV. Harara NIMI	OFIFG	04041	04h	
SYSUNIV, User NMI	ACCVIFG	019Ah	06h	
	BUSIFG		08h	
	Reserved		0Ah to 1Eh	Lowest
	No interrupt pending		00h	
SYSBERRIV, Bus Error	USB wait state time-out	0198h	02h	Highest
	Reserved		04h to 1Eh	Lowest

6.12.9 DMA Controller

The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a peripheral.

The USB timestamp generator also uses the channel 0, 1, and 2 DMA trigger assignments described in Table 6-11. The USB timestamp generator is only available on devices with USB module (MSP430FG662x).

Table 6-11. DMA Trigger Assignments⁽¹⁾

TRICOER			CH	ANNEL			
TRIGGER	0	1	2	3	4	5	
0			DM	IAREQ			
1			TA0CC	R0 CCIFG			
2			TA0CC	R2 CCIFG			
3			TA1CC	R0 CCIFG			
4			TA1CC	R2 CCIFG			
5			TA2CC	R0 CCIFG			
6			TA2CC	R2 CCIFG			
7			TBCCI	R0 CCIFG			
8			TBCCI	R2 CCIFG			
9			Re	served			
10			Re	served			
11			Re	served			
12			Re	served			
13			Re	served			
14			Re	served			
15			Re	served			
16			UCA	0RXIFG			
17			UCA	.0TXIFG			
18			UCB	0RXIFG			
19			UCB	0TXIFG			
20			UCA	1RXIFG			
21			UCA	1TXIFG			
22			UCB	1RXIFG			
23			UCB	1TXIFG			
24			CTSI	D16IFG0			
25			DAC	12_0IFG			
26	DAC12_1IFG						
27	USB FNRXD ⁽²⁾						
28	USB ready ⁽²⁾						
29	MPY ready						
30	DMA5IFG	DMA0IFG	DMA1IFG	DMA2IFG	DMA3IFG	DMA4IFG	
31			DI	MAE0			

Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers do not cause any DMA trigger event when selected.

Only on devices with peripheral module USB (MSP430FG662x), otherwise reserved (MSP430FG642x).

6.12.10 Universal Serial Communication Interface (USCI)

The USCI modules are used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3-pin or 4-pin) and I^2C , and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection, and IrDA. Each USCI module contains two portions, A and B.

The USCI_An module provides support for SPI (3-pin or 4-pin), UART, enhanced UART, or IrDA.

The USCI_Bn module provides support for SPI (3-pin or 4-pin) or I²C.

The MSP430FG662x and MSP430FG642x include two complete USCI modules (n = 0 to 1).

6.12.11 Timer TA0

Timer TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. TA0 supports multiple capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 6-12. Timer TA0 Signal Connections

INPUT PIN	N NUMBER	DEVICE	MODULE	MODULE	MODULE	DEVICE	OUTPUT P	N NUMBER
PZ	ZQW	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	PZ	ZQW
34-P1.0	L5-P1.0	TA0CLK	TACLK					
		ACLK	ACLK	Timer	T:	NA		
		SMCLK	SMCLK	rimer	NA	NA		
34-P1.0	L5-P1.0	TA0CLK	TACLK					
35-P1.1	M5-P1.1	TA0.0	CCI0A				35-P1.1	M5-P1.1
		DV _{SS}	CCI0B	CCDO	TA0	TAO 0		
		DV _{SS}	GND	CCR0	R0 TA0	TA0.0		
		DV _{CC}	V _{CC}					
36-P1.2	J6-P1.2	TA0.1	CCI1A				36-P1.2	J6-P1.2
40-P1.6	J7-P1.6	TA0.1	CCI1B	CCP4	TA1	TA0.1	40-P1.6	J7-P1.6
		DV _{SS}	GND	CCR1 TA1	140.1			
		DV _{CC}	V _{CC}					
37-P1.3	H6-P1.3	TA0.2	CCI2A				37-P1.3	H6-P1.3
41-P1.7	M7-P1.7	TA0.2	CCI2B	CCR2	TA2	TA0.2	41-P1.7	M7-P1.7
		DV _{SS}	GND	CCR2	TAZ	1A0.2		
		DV _{CC}	V _{CC}					
38-P1.4	M6-P1.4	TA0.3	CCI3A				38-P1.4	M6-P1.4
		DV _{SS}	CCI3B	CCR3	TA3	TA0.3		
		DV _{SS}	GND	CCR3	TAS	1A0.3		
		DV _{CC}	V _{CC}					
39-P1.5	L6-P1.5	TA0.4	CCI4A				39-P1.5	L6-P1.5
		DV _{SS}	CCI4B	CCR4	TA4	TA0.4		
		DV _{SS}	GND	CCK4	1 /4	1 AU.4		
		DV _{CC}	V _{CC}					

6.12.12 Timer TA1

Timer TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA1 supports multiple capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 6-13. Timer TA1 Signal Connections

INPUT PIN	NUMBER	DEVICE	MODULE	MODULE	MODULE	DEVICE	OUTPUT P	IN NUMBER
PZ	ZQW	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	PZ	ZQW
42-P3.0	L7-P3.0	TA1CLK	TACLK					
		ACLK	ACLK	Timer NA	NA			
		SMCLK	SMCLK		INA	INA		
42-P3.0	L7-P3.0	TA1CLK	TACLK					
43-P3.1	H7-P3.1	TA1.0	CCI0A				43-P3.1	H7-P3.1
		DV _{SS}	CCI0B	CCR0	TA0	TA4.0		
		DV _{SS}	GND	CCRU		TA1.0		
		DV _{CC}	V _{CC}					
44-P3.2	M8-P3.2	TA1.1	CCI1A				44-P3.2	M8-P3.2
		CBOUT (internal)	CCI1B	DAC12 DAC12_0, D CCR1 TA1 TA1.1 (intern		, DAC12_1		
		DV _{SS}	GND					
		DV _{CC}	V _{CC}					
45-P3.3	L8-P3.3	TA1.2	CCI2A				45-P3.3	L8-P3.3
		ACLK (internal)	CCI2B	CCR2	TA2	TA1.2		
		DV _{SS}	GND					
		DV _{CC}	V _{CC}					

INSTRUMENTS

6.12.13 Timer TA2

Timer TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA2 supports multiple capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 6-14. Timer TA2 Signal Connections

INPUT PIN	NUMBER	DEVICE	MODULE	MODULE	MODULE	DEVICE	OUTPUT P	IN NUMBER
PZ	ZQW	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	PZ	ZQW
46-P3.4	J8-P3.4	TA2CLK	TACLK					
		ACLK	ACLK	Timer	NA	NA		
		SMCLK	SMCLK	rimer	INA	INA		
46-P3.4	J8-P3.4	TA2CLK	TACLK					
47-P3.5	M9-P3.5	TA2.0	CCI0A				47-P3.5	M9-P3.5
		DV _{SS}	CCI0B	CCDO	TA0	TA2.0		
		DV _{SS}	GND	CCR0	TA0	1A2.U		
		DV _{CC}	V _{CC}					
48-P3.6	L9-P3.6	TA2.1	CCI1A				48-P3.6	L9-P3.6
		CBOUT (internal)	CCI1B	CCR1	TA1	TA2.1		
		DV _{SS}	GND					
		DV _{CC}	V _{CC}					
49-P3.7	M10-P3.7	TA2.2	CCI2A				49-P3.7	M10-P3.7
		ACLK (internal)	CCI2B	CCR2	TA2	TA2.2		
		DV _{SS}	GND					
		DV _{CC}	V _{CC}					

6.12.14 Timer TB0

Timer TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. TB0 supports multiple capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Table 6-15. Timer TB0 Signal Connections

INPUT PIN	N NUMBER	DEVICE	MODULE	MODULE	MODULE	DEVICE	OUTPUT PI	N NUMBER
PZ	ZQW	INPUT SIGNAL	INPUT SIGNAL	BLOCK	OUTPUT SIGNAL	OUTPUT SIGNAL	PZ	ZQW
58-P8.0 P2MAPx ⁽¹⁾	J11-P8.0 P2MAPx ⁽¹⁾	TB0CLK	TB0CLK					
		ACLK	ACLK	Timer	NA	NA		
		SMCLK	SMCLK	rimer	INA	INA		
58-P8.0 P2MAPx ⁽¹⁾	J11-P8.0 P2MAPx ⁽¹⁾	TB0CLK	TB0CLK					
50-P4.0	J9-P4.0	TB0.0	CCI0A				50-P4.0	J9-P4.0
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.0	CCI0B	CCDO	TDO	TB0.0	P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾
		DV _{SS}	GND	CCR0	TB0	180.0		
		DV _{CC}	V _{CC}					
51-P4.1	M11-P4.1	TB0.1	CCI1A				51-P4.1	M11-P4.1
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.1	CCI1B	0004	TD4	TB0.1	P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾
		DV _{SS}	GND	CCR1	TB1	180.1		
		DV _{CC}	V _{CC}					
52-P4.2	L10-P4.2	TB0.2	CCI2A				52-P4.2	L10-P4.2
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.2	CCI2B		TB2		P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾
		DV_{SS}	GND	CCR2		TB0.2	DAC12_A DAC12_0, DAC12_1 (internal)	
		DV _{CC}	V _{CC}					
53-P4.3	M12-P4.3	TB0.3	CCI3A				53-P4.3	M12-P4.3
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.3	CCI3B	0000	TDO	TD 0.0	P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾
		DV _{SS}	GND	CCR3	TB3	TB0.3		
		DV _{CC}	V _{CC}					
54-P4.4	L12-P4.4	TB0.4	CCI4A				54-P4.4	L12-P4.4
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.4	CCI4B	0004	TD 4	TD0 4	P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾
		DV _{SS}	GND	CCR4	TB4	TB0.4		
		DV _{CC}	V _{CC}					
55-P4.5	L11-P4.5	TB0.5	CCI5A				55-P4.5	L11-P4.5
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.5	CCI5B	0005	TDE	TD 2 5	P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾
		DV _{SS}	GND	CCR5	TB5	TB0.5		
		DV _{CC}	V _{CC}					
56-P4.6	K11-P4.6	TB0.6	CCI6A				56-P4.6	K11-P4.6
P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾	TB0.6	CCI6B	0000	TDO	TDOO	P2MAPx ⁽¹⁾	P2MAPx ⁽¹⁾
		DV _{SS}	GND	CCR6	TB6	TB0.6		
		DV _{CC}	V _{CC}	1				

⁽¹⁾ Timer functions are selectable by the port mapping controller.

INSTRUMENTS

6.12.15 Comparator_B

The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions, battery voltage supervision, and monitoring of external analog signals.

6.12.16 Signal Chain

All devices include all the building blocks to construct a complete signal chain. These blocks include two digital-to-analog converter (DAC) channels, two integrated operational amplifiers (OAs), a sigma-delta analog-to-digital converter (CTSD16), and low-ohmic switches (GSW). Figure 6-1 shows the various signal chain blocks and their interconnections in the overall system.

SLAS874-MAY 2015

NOTE: Refer to the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) for additional module details.

Figure 6-1. Signal Chain

TEXAS INSTRUMENTS

6.12.16.1 CTSD16

The CTSD16 module integrates a single sigma-delta ADC with ten external inputs and four internal inputs. The converter is designed with a fully differential analog input pair and a programmable gain amplifier input stage. The converter is based on second-order over-sampling sigma-delta modulators and digital decimation filters. The decimation filters are comb type filters with selectable oversampling ratios of up to 256.

The CTSD16 is proceeded by an analog multiplexer which is used for channel selection, followed by a unity gain buffer stage useful when sampling high impedance sensors.

The CTSD16 can use as its reference the internal bandgap voltage from the REF module or an external reference at the VeREF+ pin.

6.12.16.2 DAC12_A

The DAC12_A module is a 12-bit R-ladder voltage-output DAC. The DAC12_A may be used in 8-bit or 12-bit mode, and may be used in conjunction with the DMA controller. When multiple DAC12_A modules are present, they may be grouped together for synchronous operation. There are two complete channels available, DAC12_0 and DAC12_1.

6.12.16.3 Operational Amplifiers (OA)

The device integrates two low power operational amplifiers. The operational amplifiers can perform signal conditioning of low-level analog signals before conversion by the ADC. Each operational amplifier can be individually controlled by software.

6.12.16.4 Ground Switches (GSW)

The device integrates four low-ohmic switches to ground that are individually controllable in software. These can switch in and out various components in the measurement system.

6.12.17 REF Voltage Reference

The reference module (REF) generates all of the critical reference voltages that can be used by the various analog peripherals in the device.

6.12.18 CRC16

The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.

6.12.19 LCD_B

The LCD_B driver generates the segment and common signals that are required to drive a liquid crystal display (LCD). The LCD_B controller has dedicated data memories to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-mux, 3-mux, and 4-mux LCDs are supported. The module can provide a LCD voltage independent of the supply voltage with its integrated charge pump. It is possible to control the level of the LCD voltage, and thus contrast, by software. The module also provides an automatic blinking capability for individual segments.

6.12.20 USB Universal Serial Bus

The USB module is a fully integrated USB interface that is compliant with the USB 2.0 specification. The module supports full-speed operation of control, interrupt, and bulk transfers. The module includes an integrated LDO, PHY, and PLL. The PLL is highly flexible and can support a wide range of input clock frequencies. USB RAM, when not used for USB communication, can be used by the system.

The USB module is only available on the MSP430FG662x devices.

6.12.21 LDO and PU Port

The integrated 3.3-V power system incorporates an integrated 3.3-V LDO regulator that allows the entire MSP430 microcontroller to be powered from nominal 5-V LDOI when it is made available for the system. Alternatively, the power system can supply power only to other components within the system, or it can be unused altogether.

The Port U Pins (PU.0 and PU.1) function as general-purpose high-current I/O pins. These pins can only be configured together as either both inputs or both outputs. Port U is supplied by the LDOO rail. If the 3.3-V LDO is not being used in the system (disabled), the LDOO pin can be supplied externally.

The LDO-PWR module (LDO and PU Port) is only available on the MSP430FG6426 and MSP430FG6425 devices.

6.12.22 Embedded Emulation Module (EEM) (L Version)

The EEM supports real-time in-system debugging. The L version of the EEM has the following features:

- Eight hardware triggers or breakpoints on memory access
- Two hardware triggers or breakpoints on CPU register write access
- Up to ten hardware triggers can be combined to form complex triggers or breakpoints
- Two cycle counters
- Sequencer
- State storage
- · Clock control on module level

6.12.23 Input/Output Schematics

6.12.23.1 Port P1, P1.0 to P1.7, Input/Output With Schmitt Trigger

INSTRUMENTS

SLAS874 - MAY 2015

Table 6-16. Port P1 (P1.0 to P1.7) Pin Functions

DINI NIAME (D4)		FUNCTION	CONTR	OL BITS OR SI	GNALS ⁽¹⁾
PIN NAME (P1.x)	X	FUNCTION	P1DIR.x	P1SEL.x	LCDS3239
P1.0/TA0CLK/ACLK/	0	P1.0 (I/O)	I: 0; O: 1	0	0
S39		Timer TA0.TA0CLK	0	1	0
		ACLK	1	1	0
		S39	X	X	1
P1.1/TA0.0/S38	1	P1.1 (I/O)	I: 0; O: 1	0	0
		Timer TA0.CCI0A capture input	0	1	0
		Timer TA0.0 output	1	1	0
		S38	X	X	1
P1.2/TA0.1/S37	2	P1.2 (I/O)	I: 0; O: 1	0	0
		Timer TA0.CCI1A capture input	0	1	0
		Timer TA0.1 output	1	1	0
		S37	X	Х	1
P1.3/TA0.2/S36	3	P1.3 (I/O)	I: 0; O: 1	0	0
		Timer TA0.CCI2A capture input	0	1	0
		Timer TA0.2 output	1	1	0
		S36	X	Х	1
P1.4/TA0.3/S35	4	P1.4 (I/O)	I: 0; O: 1	0	0
		Timer TA0.CCI3A capture input	0	1	0
		Timer TA0.3 output	1	1	0
		S35	X	Х	1
P1.5/TA0.4/S34	5	P1.5 (I/O)	I: 0; O: 1	0	0
		Timer TA0.CCI4A capture input	0	1	0
		Timer TA0.4 output	1	1	0
		S34	X	Х	1
P1.6/TA0.1/S33	6	P1.6 (I/O)	I: 0; O: 1	0	0
		Timer TA0.CCI1B capture input	0	1	0
		Timer TA0.1 output	1	1	0
		S33	X	Х	1
P1.7/TA0.2/S32	7	P1.7 (I/O)	I: 0; O: 1	0	0
		Timer TA0.CCI2B capture input	0	1	0
		Timer TA0.2 output	1	1	0
		S32	X	Х	1

⁽¹⁾ X = Don't care

6.12.23.2 Port P2, P2.0 to P2.7, Input/Output With Schmitt Trigger

INSTRUMENTS

SLAS874-MAY 2015

Table 6-17. Port P2 (P2.0 to P2.7) Pin Functions

DINI NAME (D2 v)		FUNCTION		CONT	ROL BITS C	R SIGNALS ⁽¹⁾	
PIN NAME (P2.x)	Х	FUNCTION	P2DIR.x	P2SEL.x	P2MAPx	DAC12OPS	DAC12AMPx
P2.0/P2MAP0/DAC0	0	P2.0 (I/O)	I: 0; O: 1	0		Х	0
		Mapped secondary digital function	Х	1	≤ 19	X	0
		DAC0	Х	Х	= 31	1	>1
P2.1/P2MAP1/DAC1	1	P2.1 (I/O)	I: 0; O: 1	0		X	0
		Mapped secondary digital function	Х	1	≤ 19	Х	0
		DAC1	Х	Х	= 31	1	>1
P2.2/P2MAP2	2	P2.2 (I/O)	I: 0; O: 1	0		Х	0
		Mapped secondary digital function	Х	1	≤ 19	Х	0
P2.3/P2MAP3	3	P2.3 (I/O)	I: 0; O: 1	0		Х	0
		Mapped secondary digital function	Х	1	≤ 19	Х	0
P2.4/P2MAP4/R03	4	P2.4 (I/O)	I: 0; O: 1	0		Х	0
		Mapped secondary digital function	Х	1	≤ 19	Х	0
		R03	Х	1	= 31	Х	0
P2.5/P2MAP5	5	P2.5 (I/O	I: 0; O: 1	0		Х	0
		Mapped secondary digital function	Х	1	≤ 19	Х	0
P2.6/P2MAP6/LCDREF	6	P2.6 (I/O)	I: 0; O: 1	0		Х	0
/R13		Mapped secondary digital function	Х	1	≤ 19	Х	0
		LCDREF/R13	Х	1	= 31	Х	0
P2.7/P2MAP7/R23	7	P2.7 (I/O)	I: 0; O: 1	0		Х	0
		Mapped secondary digital function	Х	1	≤ 19	Х	0
		R23	Х	1	= 31	Х	0

⁽¹⁾ X = Don't care

6.12.23.3 Port P3, P3.0 to P3.7, Input/Output With Schmitt Trigger

Instruments

SLAS874-MAY 2015

Table 6-18. Port P3 (P3.0 to P3.7) Pin Functions

DINI MAME (DO)		FUNCTION	CONTR	OL BITS OR S	GIGNALS ⁽¹⁾
PIN NAME (P3.x)	X	FUNCTION	P3DIR.x	P3SEL.x	LCDS2431
P3.0/TA1CLK/CBOUT/S31	0	P3.0 (I/O)	I: 0; O: 1	0	0
		Timer TA1.TA1CLK	0	1	0
		CBOUT	1	1	0
		S31	X	Х	1
P3.1/TA1.0/S30	1	P3.1 (I/O)	I: 0; O: 1	0	0
		Timer TA1.CCI0A capture input	0	1	0
		Timer TA1.0 output	1	1	0
		S30	X	Х	1
P3.2/TA1.1/S29	2	P3.2 (I/O)	I: 0; O: 1	0	0
		Timer TA1.CCI1A capture input	0	1	0
		Timer TA1.1 output	1	1	0
		S29	X	Х	1
P3.3/TA1.2/S28	3	P3.3 (I/O)	I: 0; O: 1	0	0
		Timer TA1.CCI2A capture input	0	1	0
		Timer TA1.2 output	1	1	0
		S28	X	Х	1
P3.4/TA2CLK/SMCLK/S27	4	P3.4 (I/O)	I: 0; O: 1	0	0
		Timer TA2.TA2CLK	0	1	0
		SMCLK	1	1	0
		S27	X	Х	1
P3.5/TA2.0/S26	5	P3.5 (I/O)	I: 0; O: 1	0	0
		Timer TA2.CCI0A capture input	0	1	0
		Timer TA2.0 output	1	1	0
		S26	X	Х	1
P3.6/TA2.1/S25	6	P3.6 (I/O)	I: 0; O: 1	0	0
		Timer TA2.CCI1A capture input	0	1	0
		Timer TA2.1 output	1	1	1
		S25	X	Х	1
P3.7/TA2.2/S24	7	P3.7 (I/O)	I: 0; O: 1	0	0
		Timer TA2.CCI2A capture input	0	1	0
		Timer TA2.2 output	1	1	0
		S24	X	Х	1

⁽¹⁾ X = Don't care

TEXAS INSTRUMENTS

6.12.23.4 Port P4, P4.0 to P4.7, Input/Output With Schmitt Trigger

SLAS874-MAY 2015

Table 6-19. Port P4 (P4.0 to P4.7) Pin Functions

DINI NIAME (D4)		FUNCTION	CONTR	OL BITS OR S	IGNALS ⁽¹⁾
PIN NAME (P4.x)	X	FUNCTION	P4DIR.x	P4SEL.x	LCDS1623
P4.0/TB0.0/S23	0	P4.0 (I/O)	I: 0; O: 1	0	0
		Timer TB0.CCI0A capture input	0	1	0
		Timer TB0.0 output ⁽²⁾	1	1	0
		S23	Х	Х	1
P4.1/TB0.1/S22	1	P4.1 (I/O)	I: 0; O: 1	0	0
		Timer TB0.CCI1A capture input	0	1	0
		Timer TB0.1 output ⁽²⁾	1	1	0
		S22	X	Х	1
P4.2/TB0.2/S21	2	P4.2 (I/O)	l: 0; O: 1	0	0
		Timer TB0.CCI2A capture input	0	1	0
		Timer TB0.2 output ⁽²⁾	1	1	0
		S21	X	Х	1
P4.3/TB0.3/S20	3	P4.3 (I/O)	I: 0; O: 1	0	0
		Timer TB0.CCI3A capture input	0	1	0
		Timer TB0.3 output ⁽²⁾	1	1	0
		S20	X	Х	1
P4.4/TB0.4/S19	4	P4.4 (I/O)	I: 0; O: 1	0	0
		Timer TB0.CCI4A capture input	0	1	0
		Timer TB0.4 output ⁽²⁾	1	1	0
		S19	X	Х	1
P4.5/TB0.5/S18	5	P4.5 (I/O)	I: 0; O: 1	0	0
		Timer TB0.CCI5A capture input	0	1	0
		Timer TB0.5 output ⁽²⁾	1	1	0
		S18	X	Х	1
P4.6/TB0.6/S17	6	P4.6 (I/O)	I: 0; O: 1	0	0
		Timer TB0.CCI6A capture input	0	1	0
		Timer TB0.6 output ⁽²⁾	1	1	0
		S17	X	Х	1
P4.7/TB0OUTH/	7	P4.7 (I/O)	I: 0; O: 1	0	0
SVMOUT/S16		Timer TB0.TB0OUTH	0	1	0
		SVMOUT	1	1	0
		S16	X	Х	1

 ⁽¹⁾ X = Don't care
 (2) Setting TB0OUTH causes all Timer_B configured outputs to be set to high impedance.

6.12.23.5 Port P5, P5.0, Input/Output With Schmitt Trigger

Table 6-20. Port P5 (P5.0) Pin Functions

DIN NAME (DE v)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾						
PIN NAME (P5.x)	Х		P5DIR.x	P5SEL.x	REFOUT	REFON ⁽²⁾	CTSD16REFS ⁽³⁾		
P5.0/VREFBG/VeR EF+	0	P5.0 (I/O) ⁽⁴⁾	I: 0; O: 1	0	Х	Х	X		
		VeREF+ ⁽⁵⁾	Х	1	0	Х	0		
		VREFBG ⁽⁶⁾	Х	1	1	1	1		

- (1) X = Don't care
- (2) If a module is requesting a reference then REFON need not be set to 1 for VREFBG to be selected on P5.0.
- (3) If CTSD16 is active, this bit must be set as shown in the table. Otherwise if set to 1, it will force VREFBG to be selected regardless of REFOUT setting and if P5SEL.x is set to 0 it will cause possible contention on the I/O.
- (4) Default condition
- (5) Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. An external voltage can be applied to VeREF+ and used as the reference for the CTSD16 or DAC.
- (6) Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The internal reference voltage signal, V_{REFBG}, is available at the pin.

STRUMENTS

6.12.23.6 Port P5, P5.1 and P5.6, Input/Output With Schmitt Trigger

Table 6-21. Port P5 (P5.1 and P5.6) Pin Functions

DIN NAME (DC v)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾				
PIN NAME (P6.x)	X	FUNCTION	P5DIR.x	P5SEL.x	DAC12OPS	DAC12AMPx	
P5.1/A4/DAC0	1	P5.1(I/O)	I: 0; O: 1	0	Х	0	
		A4 ⁽²⁾ (3)	Х	1	Х	0	
		DAC0	Х	Х	0	>1	
P5.6/A5/DAC1	1	P5.6(I/O)	I: 0; O: 1	0	Х	0	
		A5 ^{(2) (3)}	Х	1	Х	0	
		DAC1	Х	Χ	0	>1	

X = Don't care

ISTRUMENTS

⁽²⁾ Setting the P5SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

The ADC channel Ax is connected internally to AV_{SS} if not selected by the respective INCHx bits.

6.12.23.7 Port P5, P5.3 to P5.5, P5.7, Input/Output With Schmitt Trigger

Table 6-22. Port P5 (P5.3 to P5.5, P5.7) Pin Functions

DINI NIAME (DE)		FUNCTION	CONTR	OL BITS OR S	IGNALS ⁽¹⁾
PIN NAME (P5.x)	X	FUNCTION	P5DIR.x	P5SEL.x	LCDS4042
P5.3/COM1/S42	3	P5.3 (I/O)	I: 0; O: 1	0	0
		COM1	Х	1	Х
		S42	Х	0	1
P5.4/COM2/S41	4	P5.4 (I/O)	I: 0; O: 1	0	0
		COM2	X	1	Х
		S41	Х	0	1
P5.5/COM3/S40	5	P5.5 (I/O)	I: 0; O: 1	0	0
		COM3	X	1	Х
		S40	X	0	1
P5.7/DMAE0/RTCCLK	7	P5.7 (I/O)	I: 0; O: 1	0	na
		DMAE0	0	1	na
		RTCCLK	1	1	na

⁽¹⁾ X = Don't care

6.12.23.8 Port P6, P6.0 to P6.1, Input/Output With Schmitt Trigger

NSTRUMENTS

Table 6-23. Port P6 (P6.0 to P6.1) Pin Functions

DIN NAME (DC v)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P6.x)	X		P6DIR.x	P6SEL.x	CBPD.x	
P6.0/CB0/A0	0	P6.0 (I/O)	I: 0; O: 1	0	0	
		CB0	Х	Х	1	
		A0 ⁽²⁾ (3)	Х	1	Х	
P6.1/CB1/A1	1	P6.1 (I/O)	I: 0; O: 1	0	0	
		CB1	Х	Х	1	
		A1 ⁽²⁾ (3)	Х	1	Х	

⁽¹⁾ X = Don't care

⁽²⁾ Setting the P6SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

⁽³⁾ The ADC channel Ax is connected internally to AV_{SS} if not selected by the respective INCHx bits.

6.12.23.9 Port P6, P6.2 to P6.3, Input/Output With Schmitt Trigger

NSTRUMENTS

Table 6-24. Port P6 (P6.2 to P6.3) Pin Functions

DIN NAME (DC)		FUNCTION	CONTRO	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P6.x)	X	FUNCTION	P6DIR.x	P6SEL.x ⁽²⁾	CBPD.x ⁽²⁾		
P6.2/CB2/A2/OA0IP0	2	P6.2 (I/O)	I: 0; O: 1	0	0		
		CB2	X	X	1		
		A2 ⁽³⁾	Х	1	Х		
		OA0IP0 ⁽²⁾	Х	1	Х		
P6.3/CB3/A3/OA1IP0	3	P6.2 (I/O)	I: 0; O: 1	0	0		
		CB3	Х	Х	1		
		A3 ⁽⁴⁾	Х	1	Х		
		OA1IP0 ⁽²⁾	Х	1	Х		

X = Don't care

Setting the P6SEL.x bit or CBPD.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when (2) Setting the Foot Et.A bit of OBI BLA bit disables the stages arrest and any applying analog signals.
 (3) The ADC channel Ax is connected internally to AV_{SS} if not selected by the respective INCHx bits.
 (4) The ADC channel Ax is connected internally to AV_{SS} if not selected by the respective INCHx bits.

6.12.23.10 Port P6, P6.4, Input/Output With Schmitt Trigger

NSTRUMENTS

Table 6-25. Port P6 (P6.4) Pin Functions

DINI NAME (De v)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾				
PIN NAME (P6.x)	X	FONCTION	P6DIR.x	P6SEL.x ⁽²⁾	CBPD.x ⁽²⁾	OAMx	
P6.4/CB4/AD0+/OA0O	4	P6.4 (I/O)	I: 0; O: 1	0	0	0(3)	
		CB4	Х	Х	1	0(3)	
		AD0+ (4)	Х	1	Х	0(3)	
		OA0O	Х	Х	Х	= 1 ⁽³⁾	

⁽¹⁾ X = Don't care

RUMENTS

⁽²⁾ Setting the P6SEL.x bit, the CBPD.x bit, or the OAMx bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

⁽³⁾ Setting OAMx = 0 disables the operational amplifier and its output is high impedance. Setting OAMx = 1 enables the operational amplifier output. Because the operational amplifier output is shared with the ADC channel, selection of the respective ADC channel allows for direct measurement of the amplifier's output voltage.

⁽⁴⁾ The ADC channel Ax is connected internally to AV_{SS} if not selected by the respective INCHx bits.

6.12.23.11 Port P6, P6.5, Input/Output With Schmitt Trigger

ISTRUMENTS

Table 6-26. Port P6 (P6.5) Pin Functions

DIN NAME (D6 v)	v	FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P6.x)	X	FUNCTION	P6DIR.x	P6SEL.x ⁽²⁾	CBPD.x ⁽²⁾	
P6.5/CB5/AD0-/OA0IN0	5	P6.5 (I/O)	I: 0; O: 1	0	0	
		CB5	Х	Х	1	
		AD0- (3)	Х	1	Х	
		OA0IN0 ⁽⁴⁾	Х	1	Х	

⁽¹⁾ X = Don't care

RUMENTS

⁽²⁾ Setting the P6SEL.x bit or CBPD.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

⁽³⁾ The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.

⁽⁴⁾ Setting the P6SEL.x bit or CBPD.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

6.12.23.12 Port P6, P6.6, Input/Output With Schmitt Trigger

NSTRUMENTS

Table 6-27. Port P6 (P6.6) Pin Functions

DIN NAME (D6 v)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾				
PIN NAME (P6.x)	X	FUNCTION	P6DIR.x	P6SEL.x ⁽²⁾	CBPD.x ⁽²⁾	GSW0 ⁽²⁾	
P6.6/CB6/AD1+/G0SW0	6	P6.6 (I/O)	I: 0; O: 1	0	0	0	
		CB6	Х	Х	1	0	
		AD1+ (3)	Х	1	Х	0	
		G0SW0 ⁽⁴⁾	Х	Х	Х	1	

⁽¹⁾ X = Don't care

RUMENTS

⁽²⁾ Setting the P6SEL.x bit, the CBPD.x bit, or the GSW0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

⁽³⁾ The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.

⁽⁴⁾ Setting GSW0 = 1 closes the switch and forces the pin to be switched to ground. All switches are independent of each other, so different settings can impose different voltages on the pin. Application must ensure there are no conflicts.

NSTRUMENTS

6.12.23.13 Port P6, P6.7, Input/Output With Schmitt Trigger

Table 6-28. Port P6 (P6.7) Pin Functions

DINI NAME (De v)		FUNCTION		CONTROL BITS	OR SIGNALS(1)	
PIN NAME (P6.x)	X	FUNCTION	P6DIR.x	P6SEL.x ⁽²⁾	CBPD.x ⁽²⁾	GSW1 ⁽²⁾
P6.7/CB7/AD1-/G0SW1	7	P6.7 (I/O)	I: 0; O: 1	0	0	0
		CB7	Х	Х	1	0
		AD1- ⁽³⁾	Х	1	Х	0
		G0SW1 (4)	Х	Х	Х	1

⁽¹⁾ X = Don't care

RUMENTS

⁽²⁾ Setting the P6SEL.x bit, the CBPD.x bit, or the GSW0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

⁽³⁾ The ADC channel Ax is connected internally to AV_{SS} if not selected by the respective INCHx bits.

⁽⁴⁾ Setting GSW1 = 1 closes the switch and forces the pin to be switched to ground. All switches are independent of each other, so different settings can impose different voltages on the pin. Application must ensure there are no conflicts.

6.12.23.14 Port P7, P7.2, Input/Output With Schmitt Trigger

NSTRUMENTS

6.12.23.15 Port P7, P7.3, Input/Output With Schmitt Trigger

Table 6-29. Port P7 (P7.2 and P7.3) Pin Functions

DINI NIAME (DZ)		FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾					
PIN NAME (P7.x)	X	FUNCTION	P7DIR.x	P7SEL.2	P7SEL.3	XT2BYPASS		
P7.2/XT2IN	2	P7.2 (I/O)	I: 0; O: 1	0	Х	Х		
		XT2IN crystal mode ⁽²⁾	Х	1	Х	0		
		XT2IN bypass mode ⁽²⁾	Х	1	Х	1		
P7.3/XT2OUT	3	P7.3 (I/O)	I: 0; O: 1	0	Х	Х		
		XT2OUT crystal mode ⁽³⁾	Х	1	Х	0		
		P7.3 (I/O) ⁽³⁾	Х	1	Х	1		

⁽¹⁾ X = Don't care

⁽²⁾ Setting P7SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P7.2 is configured for crystal mode or bypass mode.

⁽³⁾ Setting P7SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P7.3 can be used as general-purpose I/O.

6.12.23.16 Port P7, P7.4, Input/Output With Schmitt Trigger

NSTRUMENTS

Table 6-30. Port P7 (P7.4) Pin Functions

DIN NAME (DC v)	v	FUNCTION	C	CONTROL BITS	OR SIGNALS	1)
PIN NAME (P6.x)	X	FUNCTION	P6DIR.x	P7SEL.x ⁽²⁾	CBPD.x ⁽²⁾	OAMx ⁽²⁾
P7.4/CB8/AD2+/OA1O	4	P7.4 (I/O)	I: 0; O: 1	0	0	0(3)
		CB8	Х	Х	1	0(3)
		AD2+ ⁽⁴⁾	Х	1	Х	0(3)
		OA10	Х	Х	Х	1 ⁽³⁾

⁽¹⁾ X = Don't care

⁽²⁾ Setting the P6SEL.x bit, the CBPD.x bit, or the OAMx bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

⁽³⁾ Setting OAMx = 0 disables the operational amplifier and its output is high impedance. Setting OAMx = 1 enables the operational amplifier output. Because the operational amplifier output is shared with the ADC channel, selection of the respective ADC channel allows for direct measurement of the amplifier's output voltage.

⁽⁴⁾ The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.

Instruments

6.12.23.17 Port P7, P7.5, Input/Output With Schmitt Trigger

Table 6-31. Port P7 (P7.5) Pin Functions

DIN NAME (DZ v)		FUNCTION	CONTR	OL BITS OR SIGI	NALS ⁽¹⁾
PIN NAME (P7.x)	Х	FUNCTION	P7DIR.x	P7SEL.x ⁽²⁾	CBPD.x ⁽²⁾
P7.5/CB9/AD2-/OAIN0	5	P7.5 (I/O)	I: 0; O: 1	0	0
		CB9	Х	Х	1
		AD2- ⁽³⁾	Х	1	Х
		OAINO ⁽²⁾	Х	1	Х

X = Don't care

Setting the P7SEL.x bit or the CBPD.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

The ADC channel Ax is connected internally to AV_{SS} if not selected by the respective INCHx bits.

6.12.23.18 Port P7, P7.6, Input/Output With Schmitt Trigger

NSTRUMENTS

Table 6-32. Port P7 (P7.6) Pin Functions

DIN NAME (D7 v)		FUNCTION	C	CONTROL BITS	OR SIGNALS	1)
PIN NAME (P7.x)	Х	FUNCTION	P6DIR.x	P7SEL.x ⁽²⁾	CBPD.x ⁽²⁾	GSW0 ⁽²⁾
P7.6/CB10/AD3+/G1SW0	6	P7.6 (I/O)	I: 0; O: 1	0	0	0
		CB10	Х	Х	1	0
		AD3+ ⁽³⁾	Х	1	Х	0
		G1SW0 ⁽⁴⁾	Х	Х	Х	1

⁽¹⁾ X = Don't care

RUMENTS

⁽²⁾ Setting the P7SEL.x bit, the CBPD.x bit, or the GSW0 disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

⁽³⁾ The ADC channel Ax is connected internally to AV_{SS} if not selected by the respective INCHx bits.

⁽⁴⁾ Setting GSW0 = 1 closes the switch and forces the pin to be switched to ground. All switches are independent of each other, so different settings can impose different voltages on the pin. Application must ensure there are no conflicts.

6.12.23.19 Port P7, P7.7, Input/Output With Schmitt Trigger

NSTRUMENTS

Table 6-33. Port P7 (P7.7) Pin Functions

DIN NAME (D7 v)		x FUNCTION		(CONTROL BITS OR SIGNALS ⁽¹⁾			
PIN NAME (P7.x)	Х	FUNCTION	P6DIR.x	P7SEL.x ⁽²⁾	CBPD.x ⁽²⁾	GSW1 ⁽²⁾		
P7.7/CB11/AD3-/G1SW1	7	P7.7 (I/O)	I: 0; O: 1	0	0	0		
		CB11	Х	Х	1	0		
		AD3- ⁽³⁾	Х	1	Х	0		
		G1SW1 ⁽⁴⁾	Х	Х	Х	1		

⁽¹⁾ X = Don't care

RUMENTS

⁽²⁾ Setting the P7SEL.x bit, the CBPD.x bit, or the GSW1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

⁽³⁾ The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.

⁽⁴⁾ Setting GSW1 = 1 closes the switch and forces the pin to be switched to ground. All switches are independent of each other, so different settings can impose different voltages on the pin. Application must ensure there are no conflicts.

6.12.23.20 Port P8, P8.0 to P8.7, Input/Output With Schmitt Trigger

INSTRUMENTS

SLAS874-MAY 2015

Table 6-34. Port P8 (P8.0 to P8.7) Pin Functions

DINI NAME (DO)		FUNCTION	CONTR	OL BITS OR S	IGNALS ⁽¹⁾
PIN NAME (P9.x)	X	FUNCTION	P8DIR.x	P8SEL.x	LCDS816
P8.0/TB0CLK/S15	0	P8.0 (I/O)	I: 0; O: 1	0	0
		Timer TB0.TB0CLK clock input	0	1	0
		S15	X	X	1
P8.1/UCB1STE/UCA1CLK/S14	1	P8.1 (I/O)	I: 0; O: 1	0	0
		UCB1STE/UCA1CLK	X	1	0
		S14	Х	X	1
P8.2/UCA1TXD/UCA1SIMO/S13	2	P8.2 (I/O)	I: 0; O: 1	0	0
		UCA1TXD/UCA1SIMO	Х	1	0
		S13	Х	X	1
P8.3/UCA1RXD/UCA1SOMI/S12	3	P8.3 (I/O)	I: 0; O: 1	0	0
		UCA1RXD/UCA1SOMI	Х	1	0
		S12	Х	Х	1
P8.4/UCB1CLK/UCA1STE/S11	4	P8.4 (I/O)	I: 0; O: 1	0	0
		UCB1CLK/UCA1STE	Х	1	0
		S11	Х	X	1
P8.5/UCB1SIMO/UCB1SDA/S10	5	P8.5 (I/O)	I: 0; O: 1	0	0
		UCB1SIMO/UCB1SDA	Х	1	0
		S10	Х	X	1
P8.6/UCB1SOMI/UCB1SCL/S9	6	P8.6 (I/O)	I: 0; O: 1	0	0
		UCB1SOMI/UCB1SCL	Х	1	0
		S9	Х	Х	1
P8.7/S8	7 P8.7 (I/O)		I: 0; O: 1	0	0
		S8	Х	Х	1

⁽¹⁾ X = Don't care

TEXAS INSTRUMENTS

6.12.23.21 Port P9, P9.0 to P9.7, Input/Output With Schmitt Trigger

Table 6-35. Port P9 (P9.0 to P9.7) Pin Functions

DIN MANE (DO)		FUNCTION	CONTRO	OL BITS OR SIG	SNALS ⁽¹⁾
PIN NAME (P9.x)	X	FUNCTION	P9DIR.x	P9SEL.x	LCDS07
P9.0/S7	0	P9.0 (I/O)	I: 0; O: 1	0	0
		S7	X	Х	1
P9.1/S6	1	P9.1 (I/O)	I: 0; O: 1	0	0
		S6	X	X	1
P9.2/S5	2	P9.2 (I/O)	I: 0; O: 1	0	0
		S5	X	Х	1
P9.3/S4	3	P9.3 (I/O)	I: 0; O: 1	0	0
		S4	X	Х	1
P9.4/S3	4	P9.4 (I/O)	I: 0; O: 1	0	0
		S3	X	X	1
P9.5/S2	5	P9.5 (I/O)	I: 0; O: 1	0	0
		S2	X	Х	1
P9.6/S1	6	P9.6 (I/O)	I: 0; O: 1	0	0
		S1	X	Х	1
P9.7/S0	7	P9.7 (I/O)	I: 0; O: 1	0	0
		S0	X	Х	1

⁽¹⁾ X = Don't care

6.12.23.22 Port PU.0/DP, PU.1/DM, PUR USB Ports for MSP430FG662x

Table 6-36. Port PU.0/DP, PU.1/DM Output Functions for MSP430FG662x

	CONTR	OL BITS		PIN N	IAME	FUNCTION	
PUSEL	PUDIR	PUOUT1	PUOUT0	PU.1/DM	PU.0/DP	FUNCTION	
0	0	X	X	Hi-Z	Hi-Z	Outputs off	
0	1	0	0	0	0	Outputs enabled	
0	1	0	1	0	1	Outputs enabled	
0	1	1	0	1	0	Outputs enabled	
0	1	1	1	1	1	Outputs enabled	
1	Х	Х	Х	DM	DP	Direction set by USB module	

CONTR	OL BITS	FUNCTION
PUSEL	PUREN	FUNCTION
0	0	Input disabled Pullup disabled
0	1	Input disabled Pullup enabled
1	0	Input enabled Pullup disabled
1	1	Input enabled Pullup enabled

NSTRUMENTS

6.12.23.23 Port J, J.0 JTAG pin TDO, Input/Output With Schmitt Trigger or Output

6.12.23.24 Port J, J.1 to J.3 JTAG pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output

Table 6-38. Port PJ (PJ.0 to PJ.3) Pin Functions

PIN NAME (PJ.x)	x	FUNCTION	CONTROL BITS OR SIGNALS ⁽¹⁾
. ,			PJDIR.x
PJ.0/TDO	0	PJ.0 (I/O) ⁽²⁾	I: 0; O: 1
		TDO ⁽³⁾	X
PJ.1/TDI/TCLK	1	PJ.1 (I/O) ⁽²⁾	I: 0; O: 1
		TDI/TCLK ⁽³⁾ (4)	X
PJ.2/TMS	2	PJ.2 (I/O) ⁽²⁾	I: 0; O: 1
		TMS ⁽³⁾ (4)	X
PJ.3/TCK	3	PJ.3 (I/O) ⁽²⁾	I: 0; O: 1
		TCK ⁽³⁾ (4)	X

⁽¹⁾ X = Don't care

ISTRUMENTS

⁽²⁾ Default condition

⁽³⁾ The pin direction is controlled by the JTAG module.

⁽⁴⁾ In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.

6.13 Device Descriptors

Table 6-39 summarizes the contents of the device descriptor tag-length-value (TLV) structure.

Table 6-39. Device Descriptor Table

	DECODINE	4555500	ADDRESS SIZE (bytes)	VALUE			
	DESCRIPTION	ADDRESS		FG6626	FG6625	FG6426	FG6425
	Info length	01A00h	1	06h	06h	06h	06h
	CRC length	01A01h	1	06h	06h	06h	06h
Info Block	CRC value	01A02h	2	per unit	per unit	per unit	per unit
INTO BIOCK	Device ID	01A04h	2	8234h	8235h	8236h	8237h
	Hardware revision	01A06h	1	per unit	per unit	per unit	per unit
	Firmware revision	01A07h	1	per unit	per unit	per unit	per unit
	Die Record Tag	01A08h	1	08h	08h	08h	08h
	Die Record length	01A09h	1	0Ah	0Ah	0Ah	0Ah
Die Record	Lot/Wafer ID	01A0Ah	4	per unit	per unit	per unit	per unit
Die Record	Die X position	01A0Eh	2	per unit	per unit	per unit	per unit
	Die Y position	01A10h	2	per unit	per unit	per unit	per unit
	Test results	01A12h	2	per unit	per unit	per unit	per unit
	CTSD16 Calibration Tag	01A14h	1	1Dh	1Dh	1Dh	1Dh
	CTSD16 Calibration length	01A15h	1	0Ch	0Ch	0Ch	0Ch
	CTSD16 gain factor gain=1	01A16h	2	per unit	per unit	per unit	per unit
	CTSD16 gain factor gain=16	01A18h	2	per unit	per unit	per unit	per unit
CTSD16 Calibration	CTSD16 offset gain=1	01A1Ah	2	per unit	per unit	per unit	per unit
	CTSD16 offset gain=16	01A1Ch	2	per unit	per unit	per unit	per unit
	CTSD16 Internal Reference Temp. Sensor 30°C	01A1Eh	2	per unit	per unit	per unit	per unit
	CTSD16 Internal Reference Temp. Sensor 85°C	01A20h	2	per unit	per unit	per unit	per unit

6.14 Memory

Table 6-40 summarizes the memory organization for all devices.

Table 6-40. Memory Organization (1)(2)

		MSP430FG6626	MSP430FG6625	MSP430FG6426	MSP430FG6425
Memory (flash)	Total Size	128KB	64KB	128KB	64KB
Main: interrupt vector		00FFFFh-00FF80h	00FFFFh-00FF80h	00FFFFh-00FF80h	00FFFFh-00FF80h
	Bank 3	32KB 0243FFH-01C400h	NA	32KB 0243FFH-01C400h	NA
Main: code memory	Bank 2	32KB 01C3FFh-014400h	NA	32KB 01C3FFh-014400h	NA
Main. code memory	Bank 1	32KB 0143FFh-00C400h	32KB 0143FFh-00C400h	32KB 0143FFh-00C400h	32KB 0143FFh-00C400h
	Bank 0	32KB 00C3FFh-004400h	32KB 00C3FFh-004400h	32KB 00C3FFh-004400h	32KB 00C3FFh-004400h
	Sector 3	2KB 0043FFh-003C00h	2KB 0043FFh-003C00h	2KB 0043FFh-003C00h	2KB 0043FFh-003C00h
RAM	Sector 2	2KB 003BFFh-003400h	2KB 003BFFh-003400h	2KB 003BFFh-003400h	2KB 003BFFh-003400h
IVAIVI	Sector 1	2KB 0033FFh-002C00h	2KB 0033FFh-002C00h	2KB 0033FFh-002C00h	2KB 0033FFh-002C00h
	Sector 0	2KB 002BFFh-002400h	2KB 002BFFh-002400h	2KB 002BFFh-002400h	2KB 002BFFh-002400h
RAM ⁽³⁾	Sector 7	NA	NA	2 KB 0023FFh-001C00h	2KB 0023FFh-001C00h
USB RAM ⁽⁴⁾	Sector 7	2KB 0023FFh-001C00h	2KB 0023FFh-001C00h	NA	NA
	Α	128 B 001BFFh-001B80h	128 B 001BFFh-001B80h	128 B 001BFFh–001B80h	128 B 001BFFh–001B80h
TI factory memory	В	128 B 001B7Fh–001B00h	128 B 001B7Fh–001B00h	128 B 001B7Fh–001B00h	128 B 001B7Fh–001B00h
(ROM)	С	128 B 001AFFh-001A80h	128 B 001AFFh-001A80h	128 B 001AFFh-001A80h	128 B 001AFFh-001A80h
	D	128 B 001A7Fh–001A00h	128 B 001A7Fh–001A00h	128 B 001A7Fh-001A00h	128 B 001A7Fh-001A00h
	Info A	128 B 0019FFh–001980h	128 B 0019FFh-001980h	128 B 0019FFh–001980h	128 B 0019FFh–001980h
Information memory	Info B	128 B 00197Fh–001900h	128 B 00197Fh-001900h	128 B 00197Fh–001900h	128 B 00197Fh–001900h
(flash)	Info C	128 B 0018FFh–001880h	128 B 0018FFh-001880h	128 B 0018FFh-001880h	128 B 0018FFh–001880h
	Info D	128 B 00187Fh–001800h	128 B 00187Fh-001800h	128 B 00187Fh–001800h	128 B 00187Fh–001800h
	BSL 3	512 B 0017FFh–001600h	512 B 0017FFh–001600h	512 B 0017FFh–001600h	512 B 0017FFh–001600h
Bootstrap loader	BSL 2	512 B 0015FFh–001400h	512 B 0015FFh–001400h	512 B 0015FFh–001400h	512 B 0015FFh-001400h
(BSL) memory (flash)	BSL 1	512 B 0013FFh–001200h	512 B 0013FFh-001200h	512 B 0013FFh-001200h	512 B 0013FFh-001200h
	BSL 0	512 B 0011FFh–001000h	512 B 0011FFh–001000h	512 B 0011FFh–001000h	512 B 0011FFh–001000h
Peripherals	Size	4 KB 000FFFh-000000h	4KB 000FFFh-000000h	4KB 000FFFh-000000h	4KB 000FFFh-000000h

N/A = Not available.

ISTRUMENTS

⁽²⁾ Backup RAM is accessed through the control registers BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3.

Only available on FG642x.

Only available on FG662x. USB RAM can be used as general-purpose RAM when not used for USB operation.

SLAS874-MAY 2015

6.14.1 Peripheral File Map

Table 6-41 lists all of the the available peripherals and their base addresses. Table 6-42 through Table 6-78 list the registers and their offset addresses for each peripheral.

Table 6-41. Peripherals

MODULE NAME	BASE ADDRESS	OFFSET ADDRESS RANGE ⁽¹⁾
Special Functions (see Table 6-42)	0100h	000h-01Fh
PMM (see Table 6-43)	0120h	000h-010h
Flash Control (see Table 6-44)	0140h	000h-00Fh
CRC16 (see Table 6-45)	0150h	000h-007h
RAM Control (see Table 6-46)	0158h	000h-001h
Watchdog (see Table 6-47)	015Ch	000h-001h
UCS (see Table 6-48)	0160h	000h-01Fh
SYS (see Table 6-49)	0180h	000h-01Fh
Shared Reference (see Table 6-50)	01B0h	000h-001h
Port Mapping Control (see Table 6-51)	01C0h	000h-003h
Port Mapping Port P2 (see Table 6-51)	01D0h	000h-007h
Port P1, P2 (see Table 6-52)	0200h	000h-01Fh
Port P3, P4 (see Table 6-53)	0220h	000h-01Fh
Port P5, P6 (see Table 6-54)	0240h	000h-00Bh
Port P7, P8 (see Table 6-55)	0260h	000h-00Bh
Port P9 (see Table 6-56)	0280h	000h-00Bh
Port PJ (see Table 6-57)	0320h	000h-01Fh
Timer TA0 (see Table 6-58)	0340h	000h-02Eh
Timer TA1 (see Table 6-59)	0380h	000h-02Eh
Timer TB0 (see Table 6-60)	03C0h	000h-02Eh
Timer TA2 (see Table 6-61)	0400h	000h-02Eh
Battery Backup (see Table 6-62)	0480h	000h-01Fh
RTC_B (see Table 6-63)	04A0h	000h-01Fh
32-Bit Hardware Multiplier (see Table 6-64)	04C0h	000h-02Fh
DMA General Control (see Table 6-65)	0500h	000h-00Fh
DMA Channel 0 (see Table 6-65)	0510h	000h-00Ah
DMA Channel 1 (see Table 6-65)	0520h	000h-00Ah
DMA Channel 2 (see Table 6-65)	0530h	000h-00Ah
DMA Channel 3 (see Table 6-65)	0540h	000h-00Ah
DMA Channel 4 (see Table 6-65)	0550h	000h-00Ah
DMA Channel 5 (see Table 6-65)	0560h	000h-00Ah
USCI_A0 (see Table 6-66)	05 C 0h	000h-01Fh
USCI_B0 (see Table 6-67)	05E0h	000h-01Fh
USCI_A1 (see Table 6-68)	0600h	000h-01Fh
USCI_B1 (see Table 6-69)	0620h	000h-01Fh
DAC12_A (see Table 6-70)	0780h	000h-01Fh
Comparator_B (see Table 6-71)	08C0h	000h-00Fh
USB configuration (see Table 6-72) ⁽²⁾	0900h	000h-014h
USB control (see Table 6-73) ⁽²⁾	0920h	000h-01Fh
LDO-PWR; LDO and Port U configuration (see Table 6-74) (3)	0900h	000h-014h

⁽¹⁾ For a detailed description of the individual control register offset addresses, see the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).

Only on devices with peripheral module USB.

Only on devices with peripheral module LDO-PWR.

Table 6-41. Peripherals (continued)

MODULE NAME	BASE ADDRESS	OFFSET ADDRESS RANGE ⁽¹⁾
LCD_B control (see Table 6-75)	0A00h	000h-05Fh
CTSD16 (see Table 6-76)	0A80h	000h-05Fh
OA0 and GSW0 (see Table 6-77)	0AE0h	000h-00Fh
OA1 and GSW1 (see Table 6-78)	0AF0h	000h-00Fh

Table 6-42. Special Function Registers (Base Address: 0100h)

REGISTER DESCRIPTION	REGISTER	OFFSET
SFR interrupt enable	SFRIE1	00h
SFR interrupt flag	SFRIFG1	02h
SFR reset pin control	SFRRPCR	04h

Table 6-43. PMM Registers (Base Address: 0120h)

REGISTER DESCRIPTION	REGISTER	OFFSET
PMM Control 0	PMMCTL0	00h
PMM control 1	PMMCTL1	02h
SVS high side control	SVSMHCTL	04h
SVS low side control	SVSMLCTL	06h
PMM interrupt flags	PMMIFG	0Ch
PMM interrupt enable	PMMIE	0Eh
PMM power mode 5 control	PM5CTL0	10h

Table 6-44. Flash Control Registers (Base Address: 0140h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Flash control 1	FCTL1	00h
Flash control 3	FCTL3	04h
Flash control 4	FCTL4	06h

Table 6-45. CRC16 Registers (Base Address: 0150h)

REGISTER DESCRIPTION	REGISTER	OFFSET
CRC data input	CRC16DI	00h
CRC result	CRC16INIRES	04h

Table 6-46. RAM Control Registers (Base Address: 0158h)

REGISTER DESCRIPTION	REGISTER	OFFSET
RAM control 0	RCCTL0	00h

Table 6-47. Watchdog Registers (Base Address: 015Ch)

REGISTER DESCRIPTION	REGISTER	OFFSET
Watchdog timer control	WDTCTL	00h

Table 6-48. UCS Registers (Base Address: 0160h)

REGISTER DESCRIPTION	REGISTER	OFFSET
UCS control 0	UCSCTL0	00h
UCS control 1	UCSCTL1	02h
UCS control 2	UCSCTL2	04h

Detailed Description

vww.ti.com SLAS874 – MAY 2015

Table 6-48. UCS Registers (Base Address: 0160h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
UCS control 3	UCSCTL3	06h
UCS control 4	UCSCTL4	08h
UCS control 5	UCSCTL5	0Ah
UCS control 6	UCSCTL6	0Ch
UCS control 7	UCSCTL7	0Eh
UCS control 8	UCSCTL8	10h

Table 6-49. SYS Registers (Base Address: 0180h)

REGISTER DESCRIPTION	REGISTER	OFFSET
System control	SYSCTL	00h
Bootstrap loader configuration area	SYSBSLC	02h
JTAG mailbox control	SYSJMBC	06h
JTAG mailbox input 0	SYSJMBI0	08h
JTAG mailbox input 1	SYSJMBI1	0Ah
JTAG mailbox output 0	SYSJMBO0	0Ch
JTAG mailbox output 1	SYSJMBO1	0Eh
Bus Error vector generator	SYSBERRIV	18h
User NMI vector generator	SYSUNIV	1Ah
System NMI vector generator	SYSSNIV	1Ch
Reset vector generator	SYSRSTIV	1Eh

Table 6-50. Shared Reference Registers (Base Address: 01B0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Shared reference control	REFCTL	00h

Table 6-51. Port Mapping Registers (Base Address of Port Mapping Control: 01C0h, Port P2: 01D0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port mapping password register	PMAPPWD	00h
Port mapping control register	PMAPCTL	02h
Port P2.0 mapping register	P2MAP0	00h
Port P2.1 mapping register	P2MAP1	01h
Port P2.2 mapping register	P2MAP2	02h
Port P2.3 mapping register	P2MAP3	03h
Port P2.4 mapping register	P2MAP4	04h
Port P2.5 mapping register	P2MAP5	05h
Port P2.6 mapping register	P2MAP6	06h
Port P2.7 mapping register	P2MAP7	07h

Table 6-52. Port P1, P2 Registers (Base Address: 0200h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P1 input	P1IN	00h
Port P1 output	P1OUT	02h
Port P1 direction	P1DIR	04h
Port P1 pullup/pulldown enable	P1REN	06h
Port P1 drive strength	P1DS	08h

Table 6-52. Port P1, P2 Registers (Base Address: 0200h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P1 selection	P1SEL	0Ah
Port P1 interrupt vector word	P1IV	0Eh
Port P1 interrupt edge select	P1IES	18h
Port P1 interrupt enable	P1IE	1Ah
Port P1 interrupt flag	P1IFG	1Ch
Port P2 input	P2IN	01h
Port P2 output	P2OUT	03h
Port P2 direction	P2DIR	05h
Port P2 pullup/pulldown enable	P2REN	07h
Port P2 drive strength	P2DS	09h
Port P2 selection	P2SEL	0Bh
Port P2 interrupt vector word	P2IV	1Eh
Port P2 interrupt edge select	P2IES	19h
Port P2 interrupt enable	P2IE	1Bh
Port P2 interrupt flag	P2IFG	1Dh

Table 6-53. Port P3, P4 Registers (Base Address: 0220h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P3 input	P3IN	00h
Port P3 output	P3OUT	02h
Port P3 direction	P3DIR	04h
Port P3 pullup/pulldown enable	P3REN	06h
Port P3 drive strength	P3DS	08h
Port P3 selection	P3SEL	0Ah
Port P3 interrupt vector word	P3IV	0Eh
Port P3 interrupt edge select	P3IES	18h
Port P3 interrupt enable	P3IE	1Ah
Port P3 interrupt flag	P3IFG	1Ch
Port P4 input	P4IN	01h
Port P4 output	P4OUT	03h
Port P4 direction	P4DIR	05h
Port P4 pullup/pulldown enable	P4REN	07h
Port P4 drive strength	P4DS	09h
Port P4 selection	P4SEL	0Bh
Port P4 interrupt vector word	P4IV	1Eh
Port P4 interrupt edge select	P4IES	19h
Port P4 interrupt enable	P4IE	1Bh
Port P4 interrupt flag	P4IFG	1Dh

Table 6-54. Port P5, P6 Registers (Base Address: 0240h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P5 input	P5IN	00h
Port P5 output	P5OUT	02h
Port P5 direction	P5DIR	04h
Port P5 pullup/pulldown enable	P5REN	06h
Port P5 drive strength	P5DS	08h
Port P5 selection	P5SEL	0Ah

Table 6-54. Port P5, P6 Registers (Base Address: 0240h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P6 input	P6IN	01h
Port P6 output	P6OUT	03h
Port P6 direction	P6DIR	05h
Port P6 pullup/pulldown enable	P6REN	07h
Port P6 drive strength	P6DS	09h
Port P6 selection	P6SEL	0Bh

Table 6-55. Port P7, P8 Registers (Base Address: 0260h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P7 input	P7IN	00h
Port P7 output	P7OUT	02h
Port P7 direction	P7DIR	04h
Port P7 pullup/pulldown enable	P7REN	06h
Port P7 drive strength	P7DS	08h
Port P7 selection	P7SEL	0Ah
Port P8 input	P8IN	01h
Port P8 output	P8OUT	03h
Port P8 direction	P8DIR	05h
Port P8 pullup/pulldown enable	P8REN	07h
Port P8 drive strength	P8DS	09h
Port P8 selection	P8SEL	0Bh

Table 6-56. Port P9 Register (Base Address: 0280h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port P9 input	P9IN	00h
Port P9 output	P9OUT	02h
Port P9 direction	P9DIR	04h
Port P9 pullup/pulldown enable	P9REN	06h
Port P9 drive strength	P9DS	08h
Port P9 selection	P9SEL	0Ah

Table 6-57. Port J Registers (Base Address: 0320h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Port PJ input	PJIN	00h
Port PJ output	PJOUT	02h
Port PJ direction	PJDIR	04h
Port PJ pullup/pulldown enable	PJREN	06h
Port PJ drive strength	PJDS	08h

Table 6-58. TA0 Registers (Base Address: 0340h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA0 control	TA0CTL	00h
Capture/compare control 0	TA0CCTL0	02h
Capture/compare control 1	TA0CCTL1	04h
Capture/compare control 2	TA0CCTL2	06h
Capture/compare control 3	TA0CCTL3	08h

Table 6-58. TA0 Registers (Base Address: 0340h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
Capture/compare control 4	TA0CCTL4	0Ah
TA0 counter register	TA0R	10h
Capture/compare register 0	TA0CCR0	12h
Capture/compare register 1	TA0CCR1	14h
Capture/compare register 2	TA0CCR2	16h
Capture/compare register 3	TA0CCR3	18h
Capture/compare register 4	TA0CCR4	1Ah
TA0 expansion register 0	TA0EX0	20h
TA0 interrupt vector	TAOIV	2Eh

Table 6-59. TA1 Registers (Base Address: 0380h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA1 control	TA1CTL	00h
Capture/compare control 0	TA1CCTL0	02h
Capture/compare control 1	TA1CCTL1	04h
Capture/compare control 2	TA1CCTL2	06h
TA1 counter register	TA1R	10h
Capture/compare register 0	TA1CCR0	12h
Capture/compare register 1	TA1CCR1	14h
Capture/compare register 2	TA1CCR2	16h
TA1 expansion register 0	TA1EX0	20h
TA1 interrupt vector	TA1IV	2Eh

Table 6-60. TB0 Registers (Base Address: 03C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TB0 control	TB0CTL	00h
Capture/compare control 0	TB0CCTL0	02h
Capture/compare control 1	TB0CCTL1	04h
Capture/compare control 2	TB0CCTL2	06h
Capture/compare control 3	TB0CCTL3	08h
Capture/compare control 4	TB0CCTL4	0Ah
Capture/compare control 5	TB0CCTL5	0Ch
Capture/compare control 6	TB0CCTL6	0Eh
TB0 register	TB0R	10h
Capture/compare register 0	TB0CCR0	12h
Capture/compare register 1	TB0CCR1	14h
Capture/compare register 2	TB0CCR2	16h
Capture/compare register 3	TB0CCR3	18h
Capture/compare register 4	TB0CCR4	1Ah
Capture/compare register 5	TB0CCR5	1Ch
Capture/compare register 6	TB0CCR6	1Eh
TB0 expansion register 0	TB0EX0	20h
TB0 interrupt vector	TB0IV	2Eh

Table 6-61. TA2 Registers (Base Address: 0400h)

REGISTER DESCRIPTION	REGISTER	OFFSET
TA2 control	TA2CTL	00h
Capture/compare control 0	TA2CCTL0	02h
Capture/compare control 1	TA2CCTL1	04h
Capture/compare control 2	TA2CCTL2	06h
TA2 counter register	TA2R	10h
Capture/compare register 0	TA2CCR0	12h
Capture/compare register 1	TA2CCR1	14h
Capture/compare register 2	TA2CCR2	16h
TA2 expansion register 0	TA2EX0	20h
TA2 interrupt vector	TA2IV	2Eh

Table 6-62. Battery Backup Registers (Base Address: 0480h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Battery Backup Memory 0	BAKMEM0	00h
Battery Backup Memory 1	BAKMEM1	02h
Battery Backup Memory 2	BAKMEM2	04h
Battery Backup Memory 3	BAKMEM3	06h
Battery Backup Control	BAKCTL	1Ch
Battery Charger Control	BAKCHCTL	1Eh

Table 6-63. Real-Time Clock Registers (Base Address: 04A0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
RTC control register 0	RTCCTL0	00h
RTC control register 1	RTCCTL1	01h
RTC control register 2	RTCCTL2	02h
RTC control register 3	RTCCTL3	03h
RTC prescaler 0 control register	RTCPS0CTL	08h
RTC prescaler 1 control register	RTCPS1CTL	0Ah
RTC prescaler 0	RTCPS0	0Ch
RTC prescaler 1	RTCPS1	0Dh
RTC interrupt vector word	RTCIV	0Eh
RTC seconds	RTCSEC	10h
RTC minutes	RTCMIN	11h
RTC hours	RTCHOUR	12h
RTC day of week	RTCDOW	13h
RTC days	RTCDAY	14h
RTC month	RTCMON	15h
RTC year low	RTCYEARL	16h
RTC year high	RTCYEARH	17h
RTC alarm minutes	RTCAMIN	18h
RTC alarm hours	RTCAHOUR	19h
RTC alarm day of week	RTCADOW	1Ah
RTC alarm days	RTCADAY	1Bh
Binary-to-BCD conversion register	BIN2BCD	1Ch
BCD-to-binary conversion register	BCD2BIN	1Eh

Table 6-64. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
16-bit operand 1 – multiply	MPY	00h
16-bit operand 1 – signed multiply	MPYS	02h
16-bit operand 1 – multiply accumulate	MAC	04h
16-bit operand 1 – signed multiply accumulate	MACS	06h
16-bit operand 2	OP2	08h
16 x 16 result low word	RESLO	0Ah
16 x 16 result high word	RESHI	0Ch
16 x 16 sum extension register	SUMEXT	0Eh
32-bit operand 1 – multiply low word	MPY32L	10h
32-bit operand 1 – multiply high word	MPY32H	12h
32-bit operand 1 – signed multiply low word	MPYS32L	14h
32-bit operand 1 – signed multiply high word	MPYS32H	16h
32-bit operand 1 – multiply accumulate low word	MAC32L	18h
32-bit operand 1 – multiply accumulate high word	MAC32H	1Ah
32-bit operand 1 – signed multiply accumulate low word	MACS32L	1Ch
32-bit operand 1 – signed multiply accumulate high word	MACS32H	1Eh
32-bit operand 2 – low word	OP2L	20h
32-bit operand 2 – high word	OP2H	22h
32 × 32 result 0 – least significant word	RES0	24h
32 x 32 result 1	RES1	26h
32 x 32 result 2	RES2	28h
32 × 32 result 3 – most significant word	RES3	2Ah
MPY32 control register 0	MPY32CTL0	2Ch

Table 6-65. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA Channel 4: 0550h, DMA Channel 5: 0560h)

REGISTER DESCRIPTION	REGISTER	OFFSET
DMA General Control: DMA module control 0	DMACTL0	00h
DMA General Control: DMA module control 1	DMACTL1	02h
DMA General Control: DMA module control 2	DMACTL2	04h
DMA General Control: DMA module control 3	DMACTL3	06h
DMA General Control: DMA module control 4	DMACTL4	08h
DMA General Control: DMA interrupt vector	DMAIV	0Ah
DMA Channel 0 control	DMA0CTL	00h
DMA Channel 0 source address low	DMA0SAL	02h
DMA Channel 0 source address high	DMA0SAH	04h
DMA Channel 0 destination address low	DMA0DAL	06h
DMA Channel 0 destination address high	DMA0DAH	08h
DMA Channel 0 transfer size	DMA0SZ	0Ah
DMA Channel 1 control	DMA1CTL	00h
DMA Channel 1 source address low	DMA1SAL	02h
DMA Channel 1 source address high	DMA1SAH	04h
DMA Channel 1 destination address low	DMA1DAL	06h
DMA Channel 1 destination address high	DMA1DAH	08h
DMA Channel 1 transfer size	DMA1SZ	0Ah
DMA Channel 2 control	DMA2CTL	00h

140

SLAS874-MAY 2015

Table 6-65. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA Channel 4: 0550h, DMA Channel 5: 0560h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
DMA Channel 2 source address low	DMA2SAL	02h
DMA Channel 2 source address high	DMA2SAH	04h
DMA Channel 2 destination address low	DMA2DAL	06h
DMA Channel 2 destination address high	DMA2DAH	08h
DMA Channel 2 transfer size	DMA2SZ	0Ah
DMA Channel 3 control	DMA3CTL	00h
DMA Channel 3 source address low	DMA3SAL	02h
DMA Channel 3 source address high	DMA3SAH	04h
DMA Channel 3 destination address low	DMA3DAL	06h
DMA Channel 3 destination address high	DMA3DAH	08h
DMA Channel 3 transfer size	DMA3SZ	0Ah
DMA Channel 4 control	DMA4CTL	00h
DMA Channel 4 source address low	DMA4SAL	02h
DMA Channel 4 source address high	DMA4SAH	04h
DMA Channel 4 destination address low	DMA4DAL	06h
DMA Channel 4 destination address high	DMA4DAH	08h
DMA Channel 4 transfer size	DMA4SZ	0Ah
DMA Channel 5 control	DMA5CTL	00h
DMA Channel 5 source address low	DMA5SAL	02h
DMA Channel 5 source address high	DMA5SAH	04h
DMA Channel 5 destination address low	DMA5DAL	06h
DMA Channel 5 destination address high	DMA5DAH	08h
DMA Channel 5 transfer size	DMA5SZ	0Ah

Table 6-66. USCI_A0 Registers (Base Address: 05C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI control 0	UCA0CTL0	00h
USCI control 1	UCA0CTL1	01h
USCI baud rate 0	UCA0BR0	06h
USCI baud rate 1	UCA0BR1	07h
USCI modulation control	UCA0MCTL	08h
USCI status	UCA0STAT	0Ah
USCI receive buffer	UCA0RXBUF	0Ch
USCI transmit buffer	UCA0TXBUF	0Eh
USCI LIN control	UCA0ABCTL	10h
USCI IrDA transmit control	UCA0IRTCTL	12h
USCI IrDA receive control	UCA0IRRCTL	13h
USCI interrupt enable	UCA0IE	1Ch
USCI interrupt flags	UCA0IFG	1Dh
USCI interrupt vector word	UCA0IV	1Eh

Table 6-67. USCI_B0 Registers (Base Address: 05E0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI synchronous control 0	UCB0CTL0	00h
USCI synchronous control 1	UCB0CTL1	01h

Table 6-67. USCI_B0 Registers (Base Address: 05E0h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI synchronous bit rate 0	UCB0BR0	06h
USCI synchronous bit rate 1	UCB0BR1	07h
USCI synchronous status	UCB0STAT	0Ah
USCI synchronous receive buffer	UCB0RXBUF	0Ch
USCI synchronous transmit buffer	UCB0TXBUF	0Eh
USCI I2C own address	UCB0I2COA	10h
USCI I2C slave address	UCB0I2CSA	12h
USCI interrupt enable	UCB0IE	1Ch
USCI interrupt flags	UCB0IFG	1Dh
USCI interrupt vector word	UCB0IV	1Eh

Table 6-68. USCI_A1 Registers (Base Address: 0600h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI control 0	UCA1CTL0	00h
USCI control 1	UCA1CTL1	01h
USCI baud rate 0	UCA1BR0	06h
USCI baud rate 1	UCA1BR1	07h
USCI modulation control	UCA1MCTL	08h
USCI status	UCA1STAT	0Ah
USCI receive buffer	UCA1RXBUF	0Ch
USCI transmit buffer	UCA1TXBUF	0Eh
USCI LIN control	UCA1ABCTL	10h
USCI IrDA transmit control	UCA1IRTCTL	12h
USCI IrDA receive control	UCA1IRRCTL	13h
USCI interrupt enable	UCA1IE	1Ch
USCI interrupt flags	UCA1IFG	1Dh
USCI interrupt vector word	UCA1IV	1Eh

Table 6-69. USCI_B1 Registers (Base Address: 0620h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USCI synchronous control 0	UCB1CTL0	00h
USCI synchronous control 1	UCB1CTL1	01h
USCI synchronous bit rate 0	UCB1BR0	06h
USCI synchronous bit rate 1	UCB1BR1	07h
USCI synchronous status	UCB1STAT	0Ah
USCI synchronous receive buffer	UCB1RXBUF	0Ch
USCI synchronous transmit buffer	UCB1TXBUF	0Eh
USCI I2C own address	UCB1I2COA	10h
USCI I2C slave address	UCB1I2CSA	12h
USCI interrupt enable	UCB1IE	1Ch
USCI interrupt flags	UCB1IFG	1Dh
USCI interrupt vector word	UCB1IV	1Eh

Table 6-70. DAC12_A Registers (Base Address: 0780h)

REGISTER DESCRIPTION	REGISTER	OFFSET
DAC12_A channel 0 control register 0	DAC12_0CTL0	00h
DAC12_A channel 0 control register 1	DAC12_0CTL1	02h
DAC12_A channel 0 data register	DAC12_0DAT	04h
DAC12_A channel 0 calibration control register	DAC12_0CALCTL	06h
DAC12_A channel 0 calibration data register	DAC12_0CALDAT	08h
DAC12_A channel 1 control register 0	DAC12_1CTL0	10h
DAC12_A channel 1 control register 1	DAC12_1CTL1	12h
DAC12_A channel 1 data register	DAC12_1DAT	14h
DAC12_A channel 1 calibration control register	DAC12_1CALCTL	16h
DAC12_A channel 1 calibration data register	DAC12_1CALDAT	18h
DAC12_A interrupt vector word	DAC12IV	1Eh

Table 6-71. Comparator_B Registers (Base Address: 08C0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Comp_B control register 0	CBCTL0	00h
Comp_B control register 1	CBCTL1	02h
Comp_B control register 2	CBCTL2	04h
Comp_B control register 3	CBCTL3	06h
Comp_B interrupt register	CBINT	0Ch
Comp_B interrupt vector word	CBIV	0Eh

Table 6-72. USB Configuration Registers (Base Address: 0900h)

REGISTER DESCRIPTION	REGISTER	OFFSET
USB key/ID	USBKEYID	00h
USB module configuration	USBCNF	02h
USB PHY control	USBPHYCTL	04h
USB power control	USBPWRCTL	08h
USB power voltage setting	USBPWRVSR	0Ah
USB PLL control	USBPLLCTL	10h
USB PLL divider	USBPLLDIV	12h
USB PLL interrupts	USBPLLIR	14h

Table 6-73. USB Control Registers (Base Address: 0920h)

REGISTER DESCRIPTION	REGISTER	OFFSET
Input endpoint_0 configuration	USBIEPCNF_0	00h
Input endpoint_0 byte count	USBIEPBCNT_0	01h
Output endpoint_0 configuration	USBOEPCNFG_0	02h
Output endpoint_0 byte count	USBOEPBCNT_0	03h
Input endpoint interrupt enables	USBIEPIE	0Eh
Output endpoint interrupt enables	USBOEPIE	0Fh
Input endpoint interrupt flags	USBIEPIFG	10h
Output endpoint interrupt flags	USBOEPIFG	11h
USB interrupt vector	USBIV	12h
USB maintenance	USBMAINT	16h
Time stamp	USBTSREG	18h
USB frame number	USBFN	1Ah

Table 6-73. USB Control Registers (Base Address: 0920h) (continued)

REGISTER DESCRIPTION	REGISTER	OFFSET
USB control	USBCTL	1Ch
USB interrupt enables	USBIE	1Dh
USB interrupt flags	USBIFG	1Eh
Function address	USBFUNADR	1Fh

Table 6-74. LDO and Port U Configuration Registers (Base Address: 0900h)

REGISTER DESCRIPTION	REGISTER	OFFSET
LDO key and ID register	LDOKEYPID	00h
PU port control	PUCTL	04h
LDO power control	LDOPWRCTL	08h

Table 6-75. LCD_B Registers (Base Address: 0A00h)

REGISTER DESCRIPTION	REGISTER	OFFSET
LCD_B control register 0	LCDBCTL0	000h
LCD_B control register 1	LCDBCTL1	002h
LCD_B blinking control register	LCDBBLKCTL	004h
LCD_B memory control register	LCDBMEMCTL	006h
LCD_B voltage control register	LCDBVCTL	008h
LCD_B port control register 0	LCDBPCTL0	00Ah
LCD_B port control register 1	LCDBPCTL1	00Ch
LCD_B port control register 2	LCDBPCTL2	00Eh
LCD_B charge pump control register	LCDBCTL0	012h
LCD_B interrupt vector word	LCDBIV	01Eh
LCD_B memory 1	LCDM1	020h
LCD_B memory 2	LCDM2	021h
:	:	:
LCD_B memory 22	LCDM22	035h
LCD_B blinking memory 1	LCDBM1	040h
LCD_B blinking memory 2	LCDBM2	041h
:	:	:
LCD_B blinking memory 22	LCDBM22	055h

Table 6-76. CTSD16 Registers (Base Address: 0A80h)

REGISTER DESCRIPTION	REGISTER	OFFSET
CTSD16 Control	CTSD16CTL	00h
CTSD16 Channel 0 Control	CTSD16CCTL0	02h
CTSD16 Channel 0 Input Control	CTSD16INCTL0	04h
CTSD16 Channel 0 Preload	CTSD16PRE0	06h
CTSD16 Interrupt Flag Register	CTSD16IFG	2Ch
CTSD16 Interrupt Enable Register	CTSD16IE	2Eh
CTSD16 Interrupt Vector	CTSD16IV	30h
CTSD16 Channel 0 Conversion Memory	CTSD16MEM0	32h

Table 6-77. OA0 Registers (Base Address: 0AE0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
OA0 Control 0 register	OA0CTL0	00h
OA0 Positive Input Terminal Switches	OA0PSW	02h
OA0 Negative Input Terminal Switches	OA0NSW	04h
OA0 Ground Switches	OA0GSW	0Eh

Table 6-78. OA1 Registers (Base Address: 0AF0h)

REGISTER DESCRIPTION	REGISTER	OFFSET
OA1 Control 0 register	OA1CTL0	00h
OA1 Positive Input Terminal Switches	OA1PSW	02h
OA1 Negative Input Terminal Switches	OA1NSW	04h
OA1 Ground Switches	OA1GSW	0Eh

SLAS874 - MAY 2015 www.ti.com

STRUMENTS

6.15 Identification

6.15.1 Revision Identification

The device revision information is shown as part of the top-side marking on the device package. The device-specific errata sheet describes these markings. For links to all of the errata sheets for the devices in this data sheet, see Section 8.2.

The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For details on this value, see the "Hardware Revision" entries in Section 6.13.

6.15.2 Device Identification

The device type can be identified from the top-side marking on the device package. The device-specific errata sheet describes these markings. For links to all of the errata sheets for the devices in this data sheet, see Section 8.2.

A device identification value is also stored in the Device Descriptor structure in the Info Block section. For details on this value, see the "Device ID" entries in Section 6.13.

6.15.3 JTAG Identification

Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in detail in the MSP430 Programming Via the JTAG Interface User's Guide (SLAU320).

Applications, Implementation, and Layout

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

7.1 **Device Connection and Layout Fundamentals**

This section discusses the recommended guidelines when designing with the MSP430. These guidelines are to make sure that the device has proper connections for powering, programming, debugging, and optimum analog performance.

7.1.1 Power Supply Decoupling and Bulk Capacitors

TI recommends connecting a combination of a 1-µF plus a 100-nF low-ESR ceramic decoupling capacitor to each AVCC and DVCC pin. Higher-value capacitors may be used but can impact supply rail ramp-up time. Decoupling capacitors must be placed as close as possible to the pins that they decouple (within a few millimeters). Additionally, separated grounds with a single-point connection are recommend for better noise isolation from digital to analog circuits on the board and are especially recommended to achieve high analog accuracy.

Figure 7-1. Power Supply Decoupling

7.1.2 External Oscillator

Depending on the device variant (see Section 3), the device can support a low-frequency crystal (32 kHz) on the XT1 pins, a high-frequency crystal on the XT2 pins, or both. External bypass capacitors for the crystal oscillator pins are required.

It is also possible to apply digital clock signals to the XIN and XT2IN input pins that meet the specifications of the respective oscillator if the appropriate XT1BYPASS or XT2BYPASS mode is selected. In this case, the associated XOUT and XT2OUT pins can be used for other purposes. If they are left unused, they must be terminated according to Table 4-4.

Figure 7-2 shows a typical connection diagram.

SLAS874 – MAY 2015 www.ti.com

Figure 7-2. Typical Crystal Connection

See the application report *MSP430 32-kHz Crystal Oscillators* (SLAA322) for more information on selecting, testing, and designing a crystal oscillator with the MSP430 devices.

7.1.3 JTAG

With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or MSP-FET430UIF) can be used to program and debug code on the target board. In addition, the connections also support the MSP-GANG production programmers, thus providing an easy way to program prototype boards, if desired. Figure 7-3 shows the connections between the 14-pin JTAG connector and the target device required to support in-system programming and debugging for 4-wire JTAG communication. Figure 7-4 shows the connections for 2-wire JTAG mode (Spy-Bi-Wire).

The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are identical. Both can supply VCC to the target board (through pin 2). In addition, the MSP-FET and MSP-FET430UIF interface modules and MSP-GANG have a VCC sense feature that, if used, requires an alternate connection (pin 4 instead of pin 2). The VCC-sense feature senses the local VCC present on the target board (that is, a battery or other local power supply) and adjusts the output signals accordingly. Figure 7-3 and Figure 7-4 show a jumper block that supports both scenarios of supplying VCC to the target board. If this flexibility is not required, the desired VCC connections may be hard-wired to eliminate the jumper block. Pins 2 and 4 must not be connected at the same time.

For additional design information regarding the JTAG interface, see the MSP430 Hardware Tools User's Guide (SLAU278).

- If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used, make connection J2.
- The upper limit for C1 is 2.2 nF when using current TI tools.

Figure 7-3. Signal Connections for 4-Wire JTAG Communication

SLAS874-MAY 2015 www.ti.com

- A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the debug or programming adapter.
- The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during JTAG access, and any capacitance that is attached to this signal may affect the ability to establish a connection with the device. The upper limit for C1 is 2.2 nF when using current TI tools.

Figure 7-4. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)

7.1.4 Reset

The reset pin can be configured as a reset function (default) or as an NMI function in the Special Function Register (SFR), SFRRPCR.

In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing specifications generates a BOR-type device reset.

Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is edge sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the external NMI. When an external NMI event occurs, the NMIIFG is set.

The RST/NMI pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either pullup or pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not. If the RST/NMI pin is unused, it is required either to select and enable the internal pullup or to connect an external 47-kΩ pullup resistor to the RST/NMI pin with a 2.2-nF pulldown capacitor. The pulldown capacitor should not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools like FET interfaces or GANG programmers.

See the device family user's guide (SLAU208) for more information on the referenced control registers and bits.

7.1.5 Unused Pins

For details on the connection of unused pins, see Section 4.5.

7.1.6 General Layout Recommendations

- Proper grounding and short traces for external crystal to reduce parasitic capacitance. See the application report MSP430 32-kHz Crystal Oscillators (SLAA322) for recommended layout guidelines.
- Proper bypass capacitors on DVCC, AVCC, and reference pins if used.
- Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital switching signals such as PWM or JTAG signals away from the oscillator circuit.
- Refer to the Circuit Board Layout Techniques design guide (SLOA089) for a detailed discussion of PCB layout considerations. This document is written primarily about op amps, but the guidelines are generally applicable for all mixed-signal applications.
- Proper ESD level protection should be considered to protect the device from unintended high-voltage electrostatic discharge. See the application report MSP430 System-Level ESD Considerations (SLAA530) for guidelines.

7.1.7 Do's and Don'ts

TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up, power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits specified in Section 5.1, Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and flash.

7.2 Peripheral- and Interface-Specific Design Information

7.2.1 CTSD16 Peripheral

For internal connections between signal chain modules such as CTSD16, OA, and DAC12, see Section 6.12.16. When internal connections are available, they should be chosen over external connections to reduce noise and save pins.

Solid decoupling on both the digital and analog supply are also required (best with two capacitors, one 10 μF and one 100 nF, as shown in Section 7.1.1).

- A. The capacitor reduces noise when using internal V_{REFBG} setting. This pin is also used for the external reference input for the CTSD16 or DAC, and when doing so the capacitor is not needed. Because of the shared signal path and pin, the internal and external references (V_{REFBG} and V_{eREF+}, respectively) cannot be used at the same time.
- The capacitor on CPCAP is required when the charge pump is enabled. The charge pump can be enabled by rail-torail operation of the CTSD16 or by the OA module. See the register settings for each module in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) for enabling this operation.

Figure 7-5. CTSD16 Partial Schematic

SLAS874-MAY 2015 www.ti.com

ISTRUMENTS

Example Measurement Schematic – Differential Input 7.2.1.1

TI recommends an external RC antialiasing low-pass filter for the CTSD16 to prevent aliasing of the input signal. The cutoff frequency should be <10 kHz for a 1-MHz modulator clock and OSR = 256. The cutoff frequency may be set to a lower frequency for applications that have lower bandwidth requirements. It is up to the user to determine the configuration and type of low-pass filter used.

Figure 7-6. CTSD16 Measurement Schematic – Differential Input

7.2.1.2 Example Measurement Schematic – Single-Ended Input

TI recommends an external RC antialiasing low-pass filter for the CTSD16 to prevent aliasing of the input signal. The cutoff frequency should be <10 kHz for a 1-MHz modulator clock and OSR = 256. The cutoff frequency may be set to a lower frequency for applications that have lower bandwidth requirements. It is up to the user to determine the configuration and type of low-pass filter used.

Figure 7-7. CTSD16 Measurement Schematic – Single-Ended Input

Design Requirements 7.2.1.3

As with any high-resolution ADC, appropriate printed circuit board layout and grounding techniques should be followed to eliminate ground loops, unwanted parasitic effects, and noise.

Ground loops are formed when return current from the ADC flows through paths that are common with other analog or digital circuitry. If care is not taken, this current can generate small unwanted offset voltages that can add to or subtract from the reference or input voltages of the ADC. Therefore, solid decoupling on both the digital and analog supply is required (best with two capacitors, one 10 µF and one 100 nF, as shown in Section 7.1.1).

In addition to grounding, ripple and noise spikes on the power-supply lines due to digital switching or switching power supplies can corrupt the conversion result. TI recommends a noise-free design using separate analog and digital ground planes with a single-point connection to achieve high accuracy.

If the internal reference is used, the reference voltage should be buffered externally by connecting a small (approximately 1 nF) capacitor to the VREFBG pin to reduce the noise on the reference.

vww.ti.com SLAS874 – MAY 2015

The CTSD16 has a fixed 1.024-MHz clock (f_M). Fault flags for this oscillator are described in the CTSD16 and UCS section of the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).

Rail-to-rail operation mode is available when the OA module is used to buffer the CTSD16 inputs. For more information, see the CTSD16 and the OA modules in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).

7.2.1.4 Detailed Design Procedure

7.2.1.4.1 OSR and Sampling Frequency

A simple equation guides the relationship between effective sampling frequency and oversampling ratio (OSR) for CTSD16.

$$f_{S} = \frac{f_{m}}{OSR} \tag{1}$$

Where

- f_s = effective sampling frequency
- f_m = modulation frequency

For the CTSD16, the modulation frequency is set to 1.024 MHz. Using Equation 1 with an example OSR of 256, the effective sampling frequency would be 4 kHz. The OSR value also affects the number of bits in the digital filter output. See the CTSD16 chapter in the *MSP430x5xx and MSP430x6xx Family User's Guide* (SLAU208) for additional information and available OSR values.

7.2.1.4.2 Differential Input Range Explanation

The following equations can give guidance on the input range for the CTSD16 while using an external reference. Keep in mind the absolute bounds of an external reference as mentioned in the specifications section of this module. The external and internal references cannot be used at the same time, because they share the same signal path and pin. For internal reference ranges, see Section 5.5.11.

$$V_{FSR+} = \frac{+V_R}{GAIN} \tag{2}$$

$$V_{FSR-} = \frac{-V_R}{GAIN} \tag{3}$$

Full-Scale Range =
$$V_{FSR+} - V_{FSR-} = 2 \times \frac{V_R}{GAIN}$$
 (4)

$$V_{ID} = 0.8 V_{FSR-}$$
 to 0.8 V_{FSR+} , with externally sourced V_{R} (5)

Where

- V_{FSR} is the full-scale range voltage
- V_{ID} is the differential input voltage
- V_R is the reference voltage

The differential input voltage range with internal voltage reference at different GAIN settings is given in Section 5.5.11. Using Equation 2 through Equation 5, determine the absolute maximum differential input ranges for the CTSD16 with a given external voltage reference. Equation 6 corresponds to the example circuit in Figure 7-6 and can be used after a range is chosen to limit differential input voltage to acceptable levels by solving for the external resistors R1 and R2.

SLAS874 – MAY 2015 www.ti.com

$$V_{in} = V_{m} \times \frac{R_{2}}{R_{2} + 2R_{1}} \times \frac{1}{1 + \frac{R_{eff}}{2R_{in}}}$$
(6)

Where

- $R_{eff} = (R_2 \times 2R_1) / ((R_2 + 2R_1))$
- V_{in} is the differential voltage input to CTSD16
- V_m is the voltage to measure
- R_{in} is the internal resistance of the CTSD16 (see Section 5.5.11)

7.2.1.4.3 Single-Ended Input Mode

The CTSD16 has six single-ended analog inputs and four differential inputs that can be placed in single-ended mode by the CTSDINCHx bits in the CTSD16INCTLx registers. These single-ended modes use the fully differential path of the CTSD16 by internally tying the negative input to the V_{REFBG}/V_{eREF+} signal. This means for the differential inputs in single-ended mode, the external pin normally tied to the negative input can be used for its alternate functions. Equation 7 through Equation 10 apply for full-scale range while in single-ended mode.

$$V_{FSR+} = V_R + \frac{V_R}{GAIN} \tag{7}$$

$$V_{FSR-} = V_R - \frac{V_R}{GAIN} \tag{8}$$

Full-Scale Range =
$$V_{FSR+} - V_{FSR-} = \left(V_R + \frac{V_R}{GAIN}\right) - \left(V_R - \frac{V_R}{GAIN}\right) = 2 \times \frac{V_R}{GAIN}$$
 (9)

$$V_I = V_R - 0.8 \times \left(\frac{V_R}{GAIN}\right) \text{ to } V_R + 0.8 \times \left(\frac{V_R}{GAIN}\right)$$
 (10)

Where

- V_{FSR} is the full-scale range voltage
- V_I is the single-ended input voltage range for data-sheet specified performance
- V_R is the reference voltage

To ensure the measured voltage is within the single-ended voltage range, a simple voltage divider circuit can be used to condition the desired input signal. In single-ended mode, additional error may be introduced by noise when compared to a fully differential measurement. Equation 11 corresponds to the example circuit in Figure 7-7 and can be used after a range is chosen to limit differential input voltage to acceptable levels by solving for the external resistors R1 and R2.

$$V_{in} = V_{m} \times \frac{R_{2}}{R_{1} + R_{2}} \tag{11}$$

Where

- V_{in} is the single-ended voltage input to CTSD16
- V_m is the voltage to measure

7.2.1.4.4 Offset Calibration

In some applications, it is necessary to calibrate the module for offset error. This module allows an easy way to do this by providing internal connections from input to VREF or DAC0. To short AD4+ and AD4- to VREF or DAC0, change the CTSD16INCHx setting for each channel to 0x11 for VREF and 0x12 for DAC0. This allows calibration of the CTSD16 input stage by what is measured from the ideal value. The total signal chain offset depends on the impedance of the external circuitry; thus, the actual offset seen at any of the analog inputs may be different.

7.2.1.5 Layout Guidelines

Components that are shown in the partial schematic (see Figure 7-5) should be placed as close as possible to the respective device pins. Avoid long traces, because they add additional parasitic capacitance, inductance, and resistance on the signal.

Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM), because the high-frequency switching can be coupled into the analog signal.

The analog differential input signals must be routed closely together to minimize the effect of noise on the resulting signal.

7.2.2 Operational Amplifier With Ground Switches Peripheral

For internal connections between signal chain modules such as CTSD16, OA, and DAC12, see Section 6.12.16. When internal connections are available, they should be chosen over external connections to reduce noise and save pins.

Solid decoupling on both the digital and analog supply are also required (best with two capacitors, one 10 μ F and one 100 nF, as shown in Section 7.1.1).

7.2.2.1 Reference Schematic

A. The capacitor on CPCAP is required when the charge pump is enabled. The charge pump can be enabled by rail-to-rail operation of the PGA buffers of the CTSD16 or by the OA module. See the register settings for each module in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) for enabling this operation.

Figure 7-8. RTC_B with Battery Backup Partial Schematic

7.2.2.2 Design Requirements

As with any analog signals, appropriate printed circuit board layout and grounding techniques should be followed to eliminate ground loops, unwanted parasitic effects, and noise.

In addition to grounding, ripple and noise spikes on the power-supply lines due to digital switching or switching power supplies can corrupt the signal. TI recommends a noise-free design using separate analog and digital ground planes with a single-point connection to achieve high accuracy. For more information about noise and its effects on op amps, see *Noise Analysis in Operational Amplifiers* (SLVA043).

Rail-to-rail operation mode is available with the OA module at the cost of increased current. This should be used when OA input is near the AVCC rail. Refer to the V_{CM} specification (see Section 5.5.14) to see if rail-to-rail operation is required for your application. For more information, see the OA chapter of the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).

Ground switches are also available for use. See Section 6.12.16 for connections. These ground switches provide a low ohmic connection to ground to both internal connections and to the external pin. When a ground switch is active, the Digital I/O logic for the corresponding pin is ignored.

SLAS874-MAY 2015 www.ti.com

NSTRUMENTS

7.2.2.3 Detailed Design Procedure

Operational amplifiers are a diverse and useful tool in many applications. Some common configurations that might prove to be useful to the user are transimpedance amplifiers to convert currents to voltage, voltage-gain amplifiers, and buffering configurations. For more information about how to design these circuits along with other common configurations, see the following application notes.

- Op Amps for Everyone Design Guide (SLOD006)
- Handbook of Operational Amplifier Applications (SBOA092)
- Understanding Basic Analog Ideal Op Amps (SLAA068)
- An Applications Guide for Op Amps (SNOA621)

7.2.2.4 Layout Guidelines

Components that are shown in the partial schematic (see Figure 7-8) should be placed as close as possible to the respective device pins. Avoid long traces, because they add additional parasitic capacitance, inductance, and resistance on the signal. Avoid routing analog input signals close to a highfrequency pin (for example, a high-frequency PWM), because the high-frequency switching can be coupled into the analog signal. When possible, use internal connections to other modules to limit the potential of error introduction.

7.2.3 RTC_B With Battery Backup System

If not using a separate battery backup supply in the system, see Section 4.5 for VBAT and VBAK connections.

7.2.3.1 Partial Schematic

BAT can be a battery or super-capacitor. See Section 5.5.8 for specifications.

Figure 7-9. OA Partial Schematic

7.2.3.2 Retaining an Accurate Real-Time Clock (RTC) Through Main Supply Interrupts

The RTC_B module with Battery Backup System is designed to keep an accurate RTC during main supply interruptions and during low-power modes. For more details on when the Backup Battery System engages, see the Battery Backup System chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208). See Using the MSP430 RTC_B Module With Battery Backup Supply (SLAA665) for more information and example code on how to keep an accurate RTC through power loss.

7.2.3.3 Charging Super-Capacitors With Built-In Resistive Charger

In applications that use a super-capacitor instead of a battery for secondary supply, the charging circuit functionality of the Battery Backup System can be used to charge the super-capacitor. The resistive charger circuit connects VBAT to DVCC with selectable resistor values found in Section 5.5.8. This means that if DVCC is not present, you cannot use this feature to charge a super-capacitor connected to VBAT. The CTSD16 module can be used to sense the voltage level on VBAT divided by a factor of three. Typical values during VBAT sensing are listed in Section 5.5.8. Channel A8 of the CTSD16 is routed internally for this. See the CTSD16 chapter of the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) for more information. The BAKADC bit in the BAKCTL register must also be enabled for this feature to

Applications, Implementation, and Layout

operate. Additionally, RTC interrupts can be used to wake up from LPMx.5 states to charge the supercapacitor. While in an LPMx.5 state, the super-capacitor on VBAT drains. This means that the "wakeup to charge" interrupt interval must be designed so that charging starts before the leftover charge in the supercapacitor is too small to accommodate the worst-case backup time if the system were to suddenly lose power. To estimate this time, use Equation 12 for capacitor discharge in an RC circuit.

$$V(t) = V_0 e^{\frac{-t}{RC}}$$
 (12)

Where

- V_O = initial voltage of capacitor
- t = time
- R = circuit resistance
- C = capacitance

Because the operational current is given for when RTC is operating within the specifications section, R can be replaced with V_O/I_{LPM3.5} by Ohm's Law. By setting V(t) to the minimum voltage for RTC operation while in backup supply, Vo as voltage of capacitor when fully charged, and C as the super-capacitor capacitance, the estimated RTC operation time can be calculated. If periodic wakeups from LPM3.5 are not desirable for a given application, external means of charging the super-capacitor must be implemented by the user.

For a detailed list of when the secondary supply VBAT powers the backup-supplied subsystem, see the Battery Backup System chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).

7.2.4 LCD_B Peripheral

7.2.4.1 Partial Schematic

Required LCD connections greatly vary by the type of display that is used (static or multiplexed), whether external or internal biasing is used, and also whether the on-chip charge pump is employed. For any display used, there is flexibility as to how the segment (Sx) and common (COMx) signals are connected to the MCU which (assuming that the correct choices are made) can be advantageous for the PCB layout and for the design of the application software.

Because LCD connections are application specific, it is difficult to provide a single one-fits-all schematic. However for an example of a schematic using the LCD_B module with an MSP430F6638, see the TI Design Flow Meter host MCU board with segment LCD and prepayment or dual RF option (TIDM-FLOWMETER_DUALRF).

7.2.4.2 Design Requirements

Due to the flexibility of the LCD B peripheral module to accommodate various segment-based LCDs, selecting the right display for the application in combination with determining specific design requirements is often an iterative process. There can be well-defined requirements in terms of how many individually addressable LCD segments need to be controlled, what the requirements for LCD contrast are, which device pins are available for LCD use and which are required by other application functions, and what the power budget is, to name just a few. TI strongly recommends reviewing the LCD_B peripheral module chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) during the initial design requirements and decision process. The following table provides a brief overview over different choices that can be made and their impact.

OPTION OR FEATURE	IMPACT OR USE CASE
Multiplexed LCD	 Enable displays with more segments Use fewer device pins LCD contrast decreases as mux level increases Power consumption increases with mux level Requires multiple intermediate bias voltages
Static LCD	 Limited number of segments that can be addressed Use a relatively large number of device pins Use the least amount of power Use only V_{CC} and GND to drive LCD signals
Internal Bias Generation	 Simpler solution – no external circuitry Independent of V_{LCD} source Somewhat higher power consumption
External Bias Generation	 Requires external resistor ladder divider Resistor size depends on display Ability to adjust drive strength to optimize tradeoff between power consumption and good drive of large segments (high capacitive load) External resistor ladder divider can be stabilized through capacitors to reduce ripple
Internal Charge Pump	 Helps ensure a constant level of contrast despite decaying supply voltage conditions (battery-powered applications) Programmable voltage levels allow software-driven contrast control Requires an external capacitor on the LCDCAP pin Higher current consumption than simply using V_{CC} for the LCD driver

7.2.4.3 Detailed Design Procedure

A major component in designing the LCD solution is determining the exact connections between the LCD_B peripheral module and the display itself. Two basic design processes can be employed for this step, although in reality often a balanced co-design approach is necessary:

- PCB layout-driven design
- · Software-driven design

In the PCB layout-driven design process, the segment Sx and common COMx signals are connected to respective MSP430 device pins so that the routing of the PCB can be optimized to minimize signal crossings and to keep signals on one side of the PCB only, typically the top layer. For example, using a multiplexed LCD, it is possible to arbitrarily connect the Sx and COMx signals between the LCD and the MSP430 device as long as segment lines are swapped with segment lines and common lines are swapped with common lines. It is also possible to not contiguously connect all segment lines but rather skip LCD_B module segment connections to optimize layout or to allow access to other functions that may be multiplexed on a particular device port pin. Employing a purely layout-driven design approach, however, can result in the LCD_B module control bits that are responsible for turning on and off segments to appear scattered throughout the memory map of the LCD controller (LCDMx registers). This approach potentially places a rather large burden on the software design that may also result in increased energy consumption due to the computational overhead required to work with the LCD.

The other extreme is a purely software-driven approach that starts with the idea that control bits for LCD segments that are frequently turned on and off together should be co-located in memory in the same LCDMx register or in adjacent registers. For example, in case of a 4-mux display that contains several 7-segment digits, from a software perspective it can be very desirable to control all 7 segments of each digit though a single byte-wide access to an LCDMx register. And consecutive segments are mapped to consecutive LCDMx registers. This allows use of simple look-up tables or software loops to output numbers on an LCD, reducing computational overhead and optimizing the energy consumption of an application. Establishing the most convenient memory layout must be performed in conjunction with the specific LCD that is being used to understand its design constraints in terms of which segment and which common signals are connected to, for example, a digit.

For design information regarding the LCD controller input voltage selection including internal and external options, contrast control, and bias generation, refer to the LCD_B controller chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).

For additional design information, see the application report Designing With MSP430 and Segment LCD (SLAA654).

7.2.4.4 Layout Guidelines

LCD segment (Sx) and common (COMx) signal traces are continuously switching while the LCD is enabled and should, therefore, be kept away from sensitive analog signals such as ADC inputs to prevent any noise coupling. TI recommends keeping the LCD signal traces on one side of the PCB grouped together in a bus-like fashion. A ground plane underneath the LCD traces and guard traces employed alongside the LCD traces can provide shielding.

If the internal charge pump of the LCD module is used, the externally provided capacitor on the LCDCAP pin should be located as close as possible to the MCU. The capacitor should be connected to the device using a short and direct trace and also have a solid connection to the ground plane that is supplying the V_{SS} pins of the MCU.

For an example layout of the LCD_B module with an MSP430F6638, see the TI Design Flow Meter host MCU board with segment LCD and prepayment or dual RF option (TIDM-FLOWMETER_DUALRF).

SLAS874 – MAY 2015 www.ti.com

8 Device and Documentation Support

8.1 Device Support

8.1.1 Getting Started

For more information on the MSP430[™] family of devices and the tools and libraries that are available to help with your development, visit the Getting Started page.

8.1.2 Development Tools Support

All MSP430[™] microcontrollers are supported by a wide variety of software and hardware development tools. Tools are available from TI and various third parties. See them all at www.ti.com/msp430tools.

8.1.2.1 Hardware Features

See the Code Composer Studio for MSP430 User's Guide (SLAU157) for details on the available features.

MSP430 Architecture	4-Wire JTAG	2-Wire JTAG	Break- points (N)	Range Break- points	Clock Control	State Sequencer	Trace Buffer	LPMx.5 Debugging Support
MSP430Xv2	Yes	Yes	8+2	Yes	Yes	Yes	Yes	No

8.1.2.2 Recommended Hardware Options

8.1.2.2.1 Target Socket Boards

The target socket boards allow easy programming and debugging of the device using JTAG. They also feature header pin outs for prototyping. Target socket boards are orderable individually or as a kit with the JTAG programmer and debugger included. The following table shows the compatible target boards and the supported packages.

Package	Target Board and Programmer Bundle	Target Board Only
100-pin LQFP (PZ)	MSP-FET430U100AUSB	MSP-TS430PZ100AUSB

8.1.2.2.2 Experimenter Boards

Experimenter Boards and Evaluation kits are available for some MSP430 devices. These kits feature additional hardware components and connectivity for full system evaluation and prototyping. See www.ti.com/msp430tools for details.

8.1.2.2.3 Debugging and Programming Tools

Hardware programming and debugging tools are available from TI and from its third party suppliers. See the full list of available tools at www.ti.com/msp430tools.

8.1.2.2.4 Production Programmers

The production programmers expedite loading firmware to devices by programming several devices simultaneously.

Part Number	PC Port	Features	Provider
MSP-GANG	Serial and USB	Program up to eight devices at a time. Works with PC or standalone.	Texas Instruments

8.1.2.3 Recommended Software Options

8.1.2.3.1 Integrated Development Environments

Software development tools are available from TI or from third parties. Open-source solutions are also available.

This device is supported by Code Composer Studio™ IDE (CCS).

ISTRUMENTS

8.1.2.3.2 MSP430Ware

MSP430Ware is a collection of code examples, data sheets, and other design resources for all MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing MSP430 design resources, MSP430Ware also includes a high-level API called MSP430 Driver Library. This library makes it easy to program MSP430 hardware. MSP430Ware is available as a component of CCS or as a standalone package.

8.1.2.3.3 SYS/BIOS

SYS/BIOS is an advanced real-time operating system for the MSP430 microcontrollers. It features preemptive deterministic multi-tasking, hardware abstraction, memory management, and real-time analysis. SYS/BIOS is available free of charge and is provided with full source code.

8.1.2.3.4 MSP430 USB Developer's Package

The MSP430 USB Developer's Package (MSP430USBDEVPACK) is an easy-to-use USB stack implementation for the MSP430 microcontrollers.

8.1.2.3.5 Command-Line Programmer

MSP430 Flasher is an open-source, shell-based interface for programming MSP430 microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP430 Flasher can be used to download binary files (.txt or .hex) files directly to the MSP430 Flash without the need for an IDE.

8.1.3 Device and Development Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP430 MCU devices and support tools. Each MSP430 MCU commercial family member has one of three prefixes: MSP, PMS, or XMS (for example, MSP430F5438A). TI recommends two of three possible prefix designators for its support tools: MSP and MSPX. These prefixes represent evolutionary stages of product development from engineering prototypes (with XMS for devices and MSPX for tools) through fully qualified production devices and tools (with MSP for devices and MSP for tools).

Device development evolutionary flow:

XMS - Experimental device that is not necessarily representative of the electrical specifications for the final device

PMS - Final silicon die that conforms to the electrical specifications for the device but has not completed quality and reliability verification

MSP - Fully qualified production device

Support tool development evolutionary flow:

MSPX – Development-support product that has not yet completed Tl's internal qualification testing.

MSP – Fully-qualified development-support product

XMS and PMS devices and MSPX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

MSP devices and MSP development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (XMS and PMS) have a greater failure rate than the standard production devices. TI recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

SLAS874 – MAY 2015 www.ti.com

TEXAS INSTRUMENTS

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PZP) and temperature range (for example, T). Figure 8-1 provides a legend for reading the complete device name for any family member.

Figure 8-1. Device Nomenclature

8.2 **Documentation Support**

The following documents describe the MSP430FG662x and MSP430FG642x devices. Copies of these documents are available on the Internet at www.ti.com.

SLAU208	MSP430x5xx and MSP430x6xx Family User's Guide. Detailed information on the modules and peripherals available in this device family.
SLAZ667	MSP430FG6626 Device Erratasheet. Describes the known exceptions to the functional specifications for all silicon revision of the device.
SLAZ668	MSP430FG6625 Device Erratasheet. Describes the known exceptions to the functional specifications for all silicon revision of the device.
SLAZ669	MSP430FG6426 Device Erratasheet. Describes the known exceptions to the functional specifications for all silicon revision of the device.
SLAZ670	MSP430FG6425 Device Erratasheet. Describes the known exceptions to the functional

8.3 **Related Links**

Table 8-1 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 8-1. Related Links

specifications for all silicon revision of the device.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
MSP430FG6626	Click here	Click here	Click here	Click here	Click here
MSP430FG6625	Click here	Click here	Click here	Click here	Click here
MSP430FG6426	Click here	Click here	Click here	Click here	Click here
MSP430FG6425	Click here	Click here	Click here	Click here	Click here

8.4 **Community Resources**

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Community

TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

TI Embedded Processors Wiki

Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices.

8.5 **Trademarks**

MSP430, Code Composer Studio, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

SLAS874 – MAY 2015 www.ti.com

INSTRUMENTS

8.6 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

8.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

9 Mechanical, Packaging, and Orderable Information

9.1 Packaging Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

27-May-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
MSP430FG6425IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	(3) Level-3-260C-168 HR	-40 to 85	(4/5) FG6425	Samples
MSP430FG6425IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	FG6425	Samples
MSP430FG6426IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FG6426	Samples
MSP430FG6426IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	FG6426	Samples
MSP430FG6625IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FG6625	Samples
MSP430FG6625IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	FG6625	Samples
MSP430FG6626IPZ	ACTIVE	LQFP	PZ	100	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FG6626	Samples
MSP430FG6626IPZR	ACTIVE	LQFP	PZ	100	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	FG6626	Samples
MSP430FG6626IZQWR	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	FG6626	Samples
MSP430FG6626IZQWT	ACTIVE	BGA MICROSTAR JUNIOR	ZQW	113	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	FG6626	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

27-May-2015

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2015

TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MSP430FG6425IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430FG6425IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430FG6426IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430FG6426IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430FG6625IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430FG6625IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430FG6626IPZR	LQFP	PZ	100	1000	330.0	24.4	17.0	17.0	2.1	20.0	24.0	Q2
MSP430FG6626IZQWR	BGA MI CROSTA R JUNI OR	ZQW	113	2500	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1
MSP430FG6626IZQWT	BGA MI CROSTA	ZQW	113	250	180.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2015

Device	_	Package Drawing	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	R JUNI OR										

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MSP430FG6425IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430FG6425IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	336.6	336.6	28.6
MSP430FG6426IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430FG6426IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	336.6	336.6	28.6
MSP430FG6625IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430FG6625IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	336.6	336.6	28.6
MSP430FG6626IPZR	LQFP	PZ	100	1000	367.0	367.0	45.0
MSP430FG6626IZQWR	BGA MICROSTAR JUNIOR	ZQW	113	2500	336.6	336.6	28.6
MSP430FG6626IZQWT	BGA MICROSTAR JUNIOR	ZQW	113	250	213.0	191.0	55.0

ZQW (S-PBGA-N113)

PLASTIC BALL GRID ARRAY

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225
- D. This is a Pb-free solder ball design.

MicroStar Junior is a trademark of Texas Instruments.

PZ (S-PQFP-G100)

PLASTIC QUAD FLATPACK

1

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-026

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity