Correction acoustique

Exemple de calcul de la durée de réverbération d'un local vide

Caractéristiques du local :

longueur : 6 m ; largeur : 4 m ; hauteur : 3 m ;

plafond : plâtre peint ;

sol : carrelage ;

portes : type isoplane légère ;

vitrage : verre ordinaire ;

murs : enduit au ciment lissé.

1) Calcul de T à 1000 Hz.

2) Calcul de T à 250 Hz.

	Absorption en fonction de la fréquence								
Parois du local	Fréquences	250) Hz	500) Hz	1000	O Hz	200	0 Hz
	Surfaces (m²)	α	αA	α	α Α	α	α Α	α	α Α
Sol									
Plafond									
Parois									
Portes									
Fenêtres									
Aire d'absorptio	n A								
$T = 0.16 \times \frac{V}{A}$									

CŒFFICIENTS D'ABSORPTION

1			Fréquences en Hz	s en Hz		<u>L</u>			Fréquenc	Fréquences en Hz	
	Cerricients a absorption	250	200	1000	2000		Cæfficients d'absorption	250	200	1000	2000
	MURS ET PLAFONDS	COEFF	CIENTS	COEFFICIENTS D'ABSORPTION	TION	<u> </u>	SOLS	COEFFI	COEFFICIENTS D'ABSORPTION	'ABSORP	NOIL
						<u>.</u>					
	Marbre	0,01	0,01	10,0	0,01		Parquet sur lambourdes (ciré)	0,11	0,10	70,0	80'0
	Plâtre nu	0,02	60'0	0,04	0,04		Parquet collé (ciré)	0,04	90'0	90'0	90'0
	Plâtre peint	10,0	0,02	0,03	0,04	·	Carrelage	0,01	0,02	0,03	0,04
	Enduit ciment brut	0,02	0,03	0,04	90'0		Linoléum sur feutre	80'0	60'0	0,10	0,12
	Enduit ciment fissé	10,0	0,02	0,02	0,02	-	Dalle thermoplastique	0,03	0,04	0,04	0,03
	Brique nue	0,02	0,03	0,04	0,05					77 80	
	Brique peinte	10,0	0,02	0,02	0,02						
-	Staff	. 0,12	80'0	90'0	0,04						
	Glace ou miroir	0,04	0,03	0,03	0,02	-	Tapis haute laine	0,30	0,40	0,50	09'0
	Vitrages (dimensions courantes sur châssis)	0,25	0,18	0,12	0,07		Moguette sur béton	0.08	0.21	0.26	0.27
	Porte bois traditionnelle	0,11	0,10	60'0	80,0		Moquette sur feutre	0,14	0,37	0,43	0,27
	Porte isoplane	22	71	9	ç						
	Rideaux lourds à plis	0,31	0,49	0,50	0,66	30					
	<code>MEUBLES</code> (aire équivalente d'absorption en m^2)	osorptior	ı en m²)				ASSISTANCE (aire équivalente d'absorption en m^2)	d'absorp	tion en <i>n</i>	12)	
	Chaise nue	0,02	0,03	0,04	0,04		Adulte debout	0,33	0,40	0,50	09'0
	Fauteuil capitonné	0,37	0,33	96'0	0,40		Enfant	0,20	0,35	0,40	0,50
D'api	Fauteuil capitonné siège relevé (cinéma)	0,32	0,28	06,0	0,34		Personne assise sur siège				
ės Sa	Panneau (Surface 1 m^2) contre-						capitonné (cinéma)	96,0	0,40	0,46	0,48
int-Goba	plaqué 5 mm à 50 mm du mur	0,42	0,35	0,12	01,0		Personne assise sur siège bois	0,25	0,31	0,35	0,33
100						ل					

Exercices d'application cours :

Ex1: On se trouve en présence de deux bruits de niveaux de pression $L_{p1}=60$ dB et $L_{p2}=40$ dB.

- a) Calculer les pressions acoustiques correspondantes P_1 et P_2 . (1PTS)
- b) Calculer le niveau de pression acoustique correspondant à la superposition des deux bruits ci-dessus ? Commentaires, conclusion. (1PTS)

Ex2: On se trouve en présence de deux bruits de niveaux de pression $L_{p1}=72$ dB et $L_{p2}=75$ dB.

- a) Calculer les pressions acoustiques correspondantes P_1 et P_2 . (0,5PTS)
- b) Calculer le niveau de pression acoustique correspondant à la superposition des deux bruits ci-dessus ? Commentaires, conclusion. (0,5PTS)

Ex3: On se trouve en présence de deux bruits de niveaux de pression identiques $L_{p1} = L_{p2} = 65 \text{ dB}$.

- a) Calculer la pression acoustique correspondante P. (1PTS)
- b) Calculer le niveau de pression acoustique correspondant à la superposition des deux bruits ci-dessus ? Commentaires, conclusion. (1 PTS)

Exercices:

Quelle sera l'inten produits simultanér		ue si deux bruits, l'un de 100 dB et l'autre de 70 dB sont
		0,5 PTS
Quelle sera l'inten produits simultanén		ue si deux bruits, l'un de 70 dB et l'autre de 76 dB sont
		1 PTS
Quelle sera l'intens	ité acoustique	e si dix bruits de 60 dB sont produits simultanément?
	0,5 PTS	
Quelle sera l'intens	ité acoustique	e si deux bruits de 0 dB sont produits simultanément?
	1 PTS	
Quelle sera l'intensi	ité acoustique	e si dix bruits de 0 dB sont produits simultanément?
	1 PTS	

Notion ISOLATION ACOUSTIQUE

L'isolation est l'ensemble des techniques et procédés mis en œuvre pour obtenir un isolement acoustique recherché.

L'isolement est une performance acoustique souhaitée pour un local par rapport aux locaux voisins.

Isolation et isolement dépendent de 3 paramètres :

- les propriétés isolantes des matériaux utilisés
- les diverses techniques de mise en œuvre
- le contexte architectural

a) L'INDICE D'AFFAIBLISSEMENT ACOUSTIQUE PONDÉRÉ « Rw »

L'indice Rw (indice unique européen) caractérise la qualité acoustique d'une paroi. Il traduit sa résistance à transmettre des bruits aériens.

On mesure l'indice d'affaiblissement acoustique R (par bande de tiers d'octave) uniquement en laboratoire et ne prend en compte que la transmission directe (il ne prend pas en compte les transmissions latérales). On effectue la pondération pour obtenir l'indice unique européen **Rw**, qui s'exprime en **dB**. R est mesuré sur l'ensemble du spectre de 100 à 3150 Hz pour le bruit rose et pour le bruit route.

Les constructeurs de parois sont tenus de présenter les résultats sous la forme :

$$R_{W}(C;C_{tr})$$

C et Ctr sont des termes correctifs à ajouter au Rw pour retrouver la valeur de l'indice d'affaiblissement acoustique respectivement par rapport à un bruit Rose et à un bruit Route.

If y a donc un R rose = $R_A = R_W + C$ et un R route = $R_{A,tr} = R_W + C_{tr}$

 R_A = Indice d'affaiblissement acoustique d'un bruit Rose $R_{A,tr}$ = Indice d'affaiblissement acoustique d'un bruit Route

Plus R est grand, meilleure est la performance.

RÉALISATION D'ISOLEMENT ACOUSTIQUE CORRECT :

Pour réaliser une bonne isolation acoustique, il faut :

- utiliser des matériaux performants
- et les mettre en œuvre suivant les règles de l'art

Pour obtenir l'isolement acoustique on peut :

- éviter les ponts phoniques
- augmenter la masse des parois (loi de masse)
- •doubler les parois et incorporer une laine minérale
- on peut également incorporer une mousse

a) <u>Les parois simples – LA LOI DE MASSE :</u>

La loi expérimentale de masse montre que l'indice d'affaiblissement acoustique Rw d'une paroi augmente avec sa **masse surfacique** (plus une paroi est pesante plus elle isole des bruits aériens)

Les coefficients d'adaptation de spectre C et C_{tr} prendront les valeurs suivantes :

C = -1 à -2 pour des masses élevés

 $C_{tr} = 16 - 9*Log (m)$ sachant qu'il doit être compris entre -1 et -7

MATERIAUX	Kg/m³	MATERIAUX	$-$ Kg/ m^3
pierre lourde	2700	bois lourd	750
grés	2200	bois léger	450
béton plein	2300	contreplaqué	450
béton léger	1500	verre	2500
mortier	1900	acier	7780
brique pleine	1700	aluminium	2700
fibrociment	1800	plomb	11340
plâtre	1300	zinc	7130
bloc de béton plein	2000	bloc de béton creux	1300
béton cellulaire	500	brique creuse	750

Méthode expérimentale

LOI DE MASSE - INDICE D'AFFAIBLISSEMENT ACOUSTIQUE D'UNE PAROI SIMPLE : R en dB(A)

MASSE	BRUIT ROSE	BRUIT ROUTE
SURFACIQUE		
inférieure à 50 kg/m ²	R _A = essai de laboratoire	R _{A,tr} = essai de laboratoire
comprise entre 50 et 150 kg/m ²	$R_A = (17 \log m) + 5$	$R_{A,tr} = (13 \log m) + 9$
comprise entre 150 et 700 kg/m ²	$R_A = (40 \log m) - 45$	
comprise entre 150 et 670 kg/m ²		$R_{A,tr} = (40 \log m) - 50$
supérieure à 700 kg/m²		
	$R_A = 69 \text{ dB}$	
supérieure à 670 kg/m²		$R_{A,tr} = 63 \text{ dB}$

<u>Exercices 1</u>: <u>méthode empirique</u>

1. Quel est l'affaiblissement acoustique d'une paroi construite en briques pleines de 22 cm d'épaisseur ? Faîtes le calcul de Rw.

1 PTS

2. Quelle devra être l'épaisseur de béton plein nécessaire pour satisfaire la règlementation acoustique dans le cas d'un voile séparant deux pièces principales de deux appartements (Rw = 56 dB) ?

2 PTS

<u>Exercices2</u>: <u>méthode expérimentale</u>

1. Quel est l'indice d'affaiblissement acoustique R_A correspondant à l'émission d'un bruit rose en dB d'un mur séparatif en béton de 18 cm d'épaisseur ?

2 PTS

- 2. Quel est l'indice d'affaiblissement acoustique R_{A,tr} correspondant à l'émission d'un bruit route en dB d'un mur extérieur constitué de : enduit de mortier de 20 mm
 - bloc de béton creux de 20 cm
 - enduit de plâtre de 10 mm

3 PTS

3. Le DnTw règlementaire pour une cloison séparative étant de 54 dB, Il faudra choisir un système de cloison ayant au moins un Rw (0, -4) de 61 dB.

Si cette cloison est en béton, quelle sera sa masse surfacique ? Quelle sera donc son épaisseur mini ?

2 PTS

Exercice : On considère la pièce suivante : dimensions : 10,00 x 5,00 x 3,00

Une des parois comporte des vitrages simples sur une hauteur de 2,00 m et une longueur de 10,00 m.

Deux portes planes en bois permettent l'accès à cette pièce.

- La première : 1,40 x 2,10 m

- La seconde : 0,70 x 2,10 m

Le sol est revêtu de dalles plastiques, les murs et les plafonds sont en plâtre peint.

- 1- Calculer le temps de réverbération aux fréquences de 250, 500, 1000, 2000 Hz pour le local suivant.
- 2- On équipe le plafond de dalles acoustiques qui ont des coefficients d'absorption donnée ci-dessous. Calculer le nouveau temps de réverbération de la pièce.

Fréquences (en Hz)	250	500	1000	2000
α dalles	0,50	0,75	0,80	0,80