Rule	Expression
Commutativity	X + Y = Y + X
	$X \cdot Y = Y \cdot X$
Associativity	(X+Y)+Z=X+(Y+Z)
	$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$
Distributivity	$X \cdot Y + X \cdot Z = X \cdot (Y + Z)$
	$(X+Y)\cdot(X+Z) = X+Y\cdot Z$
Covering	$X + X \cdot Y = X$
	$X \cdot (X + Y) = X$
Combining	$X \cdot Y + X \cdot Y' = X$
	$(X+Y)\cdot(X+Y')=X$
Consensus	$X \cdot Y + X' \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z$
	$(X+Y)\cdot(X'+Z)\cdot(Y+Z) = (X+Y)\cdot(X'+Z)$
Redundancy	X + X'Y = X + Y
Generalized Idempotency	$X + X + \dots + X = X$
	$X \cdot X \cdot \cdots \cdot X = X$
DeMorgan's Theorems	$(X_1 \cdot X_2 \cdot \dots \cdot X_n)' = X_1' + X_2' + \dots + X_n'$
	$(X_1 + X_2 + \dots + X_n)' = X_1' \cdot X_2' \cdot \dots \cdot X_n'$
Generalized DeMorgan's	$F(X_1, X_2, \dots, X_n, +, \cdot) = F(X_1, X_2, \dots, X_n, \cdot, +)'$
Shannon's Expansion	$F(X_1, X_2, \dots, X_n) = X_1 \cdot F(1, X_2, \dots, X_n) + X_1' \cdot F(0, X_2, \dots, X_n)$
	$F(X_1, X_2, \dots, X_n) = [X_1 + F(0, X_2, \dots, X_n)] \cdot [X_1' + F(1, X_2, \dots, X_n)]$
Dual	Interchange $+$ with \cdot , and 0 with 1

```
// ! : Logical NOT, ~ : Bitwise NOT

// &0 : Logical AND, & : Bitwise AND

// | : Logical OR, | : Bitwise OR

// ~ : Bitwise XOR

// ~ : Bitwise XNOR

// == : Equality, == : Case Equality (4-state)

// != : Inequality, !== : Case Inequality (4-state)
```

```
module top_module (
  input logic x1,
  input logic y1,
  output logic f1
);
  // Module internals here
endmodule

module sub_module (
  input logic x2,
  input logic y2,
  output logic f2
);
  // Submodule internals here
endmodule

sub_module sub_inst(.x2(x1), .y2(y1), .f2(f1));
```

```
// Sequential (synchronous) logic
always_ff @(posedge clk or posedge rst) begin
if (rst)
  out <= 0;
else
  out <= ~out;
end

// Combinational logic
always_comb begin
  // assignments that depend solely on input combinatorics
end</pre>
```

```
interface simple_if (input logic clk);
logic data;
modport master (output data);
modport slave (input data);
endinterface
```

Buffer			
A	Output		
0	0		
1	1		

NOT			
A Output			
0	1		
1	0		

OR			
A	В	Output	
0	0	0	
0	1	1	
1	0	1	
1	1	1	
<u> </u>			

AND			
A	В	Output	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

A	В	Output	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

A	В	Output
0	0	1
0	1	0
1	0	0
1	1	0

A	В	Output
0	0	0
0	1	1
1	0	1
1	1	0
1		

XNOR

A	В	Output	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

NMOS

Parameter	PMOS	NMOS
Substrate Type	n-type	p-type
Threshold Voltage	Negative	Positive

Gate	PMOS Configuration	NMOS Configuration
OR(A+B)	Parallel	Series
$AND(A \cdot B)$	Series	Parallel

$$N_{MH} = V_{OH} - V_{IH}$$

$$N_{ML} = V_{IL} - V_{OL}$$

$$N_{MH}(A \rightarrow B) = V_{OHA} - V_{IHB}$$

$$N_{ML}(A \rightarrow B) = V_{ILB} - V_{OLA}$$

 t_{pHL} : The time between an input change and the corresponding output change when the output changes from HIGH to LOW.

 t_{pLH} : The time between an input change and the corresponding output change when the output changes from LOW to HIGH.

ullet Note: t_p is measured from the 50% crossing of the input to the 50% crossing of the output

 t_f : Time between 90% of output high and 10% output low

 t_r : Time between 10% of output low and 90% output high

$$P = cV^2 f$$