





# Lecture 4\_1: Velocities

Advanced Robotics Hamed Ghafarirad

#### **Outlines**

- **\*** Time Varying Position and Orientation
- Linear Velocity of Rigid Bodies
- \* More on Linear Velocity Due to the Rotational Motion
- Angular Velocity of Rigid Bodies
- \* Motion of the Links of a Robot
- Velocity "Propagation"

#### **☐** The Linear Velocity Vector

The velocity of a position vector:

The linear velocity of the point in space represented by the position vector:

$${}^{B}V_{Q} = \frac{d}{dt} {}^{B}Q = \lim_{\Delta t \to 0} \frac{{}^{B}Q(t + \Delta t) - {}^{B}Q(t)}{\Delta t}$$

- It is the derivative of Q relative to frame  $\{B\}$ .
- If Q is not changing in time relative to  $\{B\}$ , then the velocity calculated is zero (even if there is some other frame in which Q is varying).
- A velocity vector can be described in terms of any frame:

$${}^{A}({}^{B}V_{Q}) = \frac{{}^{A}d}{dt}{}^{B}Q$$

•  ${}^{A}({}^{B}V_{Q})$  is the calculated velocity vector when expressed in terms of frame  $\{A\}$ .

#### **☐** The Linear Velocity Vector

- The velocity numerical values depend on **two frames**:
  - ➤ With respect to which the differentiation was done (**Differentiation**).
  - ➤ In which the resulting velocity vector is expressed (**Expression**).
- When both superscripts are the same, do not indicate the outer one.

$${}^{B}({}^{B}V_{Q}) = {}^{B}V_{Q}$$

• The outer leading superscript can always be removed, by explicitly including the **rotation matrix**.

$$^{A}(^{B}V_{Q}) = {^{A}R_{B}}^{B}V_{Q}$$

- Consider the velocity of the origin of a frame relative to some understood universe reference frame.
- For this special case, a shorthand notation is used:

$$v_c = {}^{U}V_{CORG}$$

☐ The Linear Velocity Vector

$$v_c = {}^{U}V_{CORG}$$

•  ${}^{A}v_{C}$  is the velocity of the origin of  $\{C\}$  expressed in  $\{A\}$ , although differentiation is done relative to  $\{U\}$ .

#### ☐ The Linear Velocity Vector

- **Example:**
- Assume: A fixed universe frame,  $\{U\}$ ,
- A frame attached to a train,  $\{T\}$ , traveling at 100 mph in the  $\hat{Y}_U$  direction
- A frame attached to a car,  $\{C\}$ , traveling at 30 mph in the  $\hat{Y}_U$  direction
- The rotation matrices,  ${}^{U}R_{T}$  and  ${}^{U}R_{C}$  are known and constant.
- Calculate  $\frac{U}{dt}UP_{CORG}$ ,  $C(UV_{TORG})$ ,  $C(TV_{CORG})$ ?



#### The Linear Velocity Vector

- **Example:**
- Train traveling at 100 mph, car traveling at 30 mph in  $\hat{Y}_{II}$  direction
- Calculate  $\frac{U}{dt}UP_{CORG}$ ,  $C(UV_{TORG})$ ,  $C(TV_{CORG})$



• 
$${}^{C}({}^{U}V_{TORG}) = {}^{C}v_{T} = {}^{C}R_{U}v_{T} = {}^{C}R_{U}(100 \hat{Y}) = {}^{U}R_{C}^{-1}(100 \hat{Y})$$

#### ☐ The Angular Velocity Vector

- Linear velocity (V) describes an attribute of a point.
- Angular velocity  $(\Omega)$  describes an attribute of a body.
- Frames are always attached to the bodies, so angular velocity is described as rotational motion of a frame.
- ${}^{A}\Omega_{B}$  describes the time varying rotation of frame {B} relative to {A}.
- The angular velocity vector is given by (One of the all representations is):

$$\bullet \quad {}^{A}\Omega_{B} = \hat{k} \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \hat{k} \dot{\theta}$$



- **Direction** of  ${}^{A}\Omega_{B}$ : the instantaneous axis of rotation of  $\{B\}$  relative to  $\{A\}$ .
- **Magnitude** of  ${}^{A}\Omega_{B}$ : the speed of rotation.

#### ☐ The Angular Velocity Vector

- Angular velocity vector may be expressed in any coordinate system.
- ${}^{C}({}^{A}\Omega_{B})$  is the angular velocity of frame  $\{B\}$  relative to  $\{A\}$  expressed in terms of frame  $\{C\}$ .
- For the case in which there is an understood reference frame, it need not be mentioned in the notation.

$$\omega_c = {}^{U}\Omega_C$$

- $\omega_C$  is the angular velocity of frame  $\{C\}$  relative to some understood reference frame, i.e.  $\{U\}$ .
- $^{A}\omega_{C}$  is the angular velocity of frame  $\{C\}$  expressed in terms of  $\{A\}$  (though the angular velocity is with respect to  $\{U\}$ ).

- Note:
- The velocity vector is the differentiation of position vector but it <u>seems</u> that the angular velocity vector does not have such a description.
- Differentiation of orientation ?!!

- Investigate the description of motion of a rigid body, as far as velocity.
- Extend the notions of translations and orientations to the time-varying case.
- Frames are attached to rigid bodies.
- Motion of rigid bodies can be equivalently studied as the motion of frames relative to one another.
- Linear Velocity could be caused by:
  - > Linear motion
  - > Rotational motion
  - > Simultaneous linear and rotational motions



11

 $\{A\}$ 

#### ☐ Linear Motion

- Consider a frame {B} attached to a rigid body.
- Frame {B} is located relative to {A}, as described by  ${}^{A}R_{B}$  &  ${}^{A}P_{BORG}$ .
- {B} is linearly moving relative to {A}.
- The motion of Q relative to frame  $\{B\}$  ( ${}^{B}V_{O}$ ) is known.
- Describe the motion of Q relative to frame  $\{A\}$  ( ${}^{A}V_{0}=?$ ).



#### **☐** Linear Motion

- The motion of *Q* relative to frame {B} ( ${}^{B}V_{Q}$ ) is known. ( ${}^{A}V_{Q}$ =?).
- Assumptions:
  - ➤ {A} is fixed.
  - $ightharpoonup ^{A}R_{B}$  is not changing with time.
  - $\triangleright$  {B} is linearly moving relative to {A}, i.e.  $\frac{d}{dt}^A P_{BORG} = {}^A V_{BORG}$ .



1st Case: Vector  ${}^BQ$  locates a point fixed in {B}, i.e.  ${}^BV_O = 0$ .

$$^{A}V_{Q} = ???$$

#### **□** Linear Motion

- The motion of *Q* relative to frame {B} ( ${}^{B}V_{Q}$ ) is known. ( ${}^{A}V_{Q}$ =?).
- Assumptions:
  - $\triangleright$  {A} is fixed.
  - $ightharpoonup ^A R_B$  is not changing with time.
  - $\triangleright$  {B} is linearly moving relative to {A}, i.e.  $\frac{d}{dt}^A P_{BORG} = {}^A V_{BORG}$ .



- 1st Case: Vector  ${}^BQ$  locates a point fixed in {B}, i.e.  ${}^BV_Q = 0$ .
- The motion of point Q relative to {A} is due to  ${}^{A}P_{BORG}$  changing in time.  ${}^{A}V_{O} = {}^{A}V_{BORG}$

#### **☐** Linear Motion

- The motion of *Q* relative to frame {B} ( ${}^{B}V_{Q}$ ) is known. ( ${}^{A}V_{Q}$ =?).
- Assumptions:
  - ➤ {A} is fixed.
  - $ightharpoonup ^{A}R_{B}$  is not changing with time.
  - $\triangleright$  {B} is linearly moving relative to {A}, i.e.  $\frac{d}{dt}^A P_{BORG} = {}^A V_{BORG}$ .



**2nd** Case: Vector  ${}^BQ$  is a moving point in {B}, i.e.  ${}^BV_Q \neq 0$ .

$$^{A}V_{Q} = ???$$

#### **□** Linear Motion

- The motion of *Q* relative to frame {B} ( ${}^{B}V_{Q}$ ) is known. ( ${}^{A}V_{Q}$ =?).
- Assumptions:
  - $\triangleright$  {A} is fixed.
  - $ightharpoonup ^{A}R_{B}$  is not changing with time.
  - $\triangleright$  {B} is linearly moving relative to {A}, i.e.  $\frac{d}{dt}^A P_{BORG} = {}^A V_{BORG}$ .



- **2nd** Case: Vector  ${}^BQ$  is a moving point in {B}, i.e.  ${}^BV_Q \neq 0$ .
- The motion of point Q relative to  $\{A\}$  is due to  ${}^AP_{BORG}$  &  ${}^BQ$  changing in time.

$${}^{A}V_{Q} = {}^{A}V_{BORG} + {}^{A}R_{B}{}^{B}V_{Q}$$

#### **□** Rotational Motion

- Two frames with coincident origins and with zero linear relative velocity.
- Their origins will remain coincident for all time.
- The orientation of frame {B} with respect to frame {A} is changing in time.
- Rotational velocity of {B} relative to {A} is  ${}^{A}\Omega_{B}$ .
- How does a vector change with time as viewed from {A} when it is fixed in {B}?
- **Two Solution** Methods:
  - > Geometrical
  - Mathematical
- Now, follow the Geometrical solution.



#### **□** Rotational Motion

- 1st Case: Vector  ${}^BQ$  locates a point fixed in {B}, i.e.  ${}^BV_Q = 0$ .
- Q will have a velocity as seen from  $\{A\}$  due to the rotational velocity  ${}^A\Omega_B$ .
- Consider two instants of time as vector Q rotates around  ${}^A\Omega_B$ .
- This is what an observer in {A} would observe.

•  $|\Delta Q| = (|AQ| \sin \theta)(|A\Omega_B| \Delta t)$ 



#### **□** Rotational Motion

1st Case: Vector  ${}^BQ$  locates a point fixed in {B}, i.e.  ${}^BV_Q = 0$ .

$$|\Delta Q| = (|^{A}Q|\sin\theta)(|^{A}\Omega_{B}|\Delta t)$$

■ These conditions on magnitude and direction immediately suggest the vector cross product.

$${}^{A}V_{Q} = {}^{A}\Omega_{B} \times {}^{A}Q$$



#### **☐** Rotational Motion

• 2<sup>nd</sup> Case: Vector  ${}^BQ$  is a moving point in {B}, i.e.  ${}^BV_Q \neq 0$ .

$${}^{A}V_{Q} = {}^{A}({}^{B}V_{Q}) + {}^{A}\Omega_{B} \times {}^{A}Q$$

• Using a rotation matrix to remove the dual-superscript, and noting that the description of  ${}^{A}Q$  at any instant is  ${}^{A}R_{B}{}^{B}Q$ .

$${}^{A}V_{Q} = {}^{A}R_{B}{}^{B}V_{Q} + {}^{A}\Omega_{B} \times {}^{A}R_{B}{}^{B}Q$$



#### **☐** Simultaneous Linear and Rotational Motions

• {B} is rotating relative to {A} by  ${}^{A}\Omega_{B}$  &  ${}^{B}Q$  locates a point fixed in {B}.

$${}^{A}V_{Q} = {}^{A}\Omega_{B} \times {}^{A}Q = {}^{A}\Omega_{B} \times {}^{A}R_{B}{}^{B}Q$$

• The vector Q could also be changing with respect to frame  $\{B\}$ .

$${}^{A}V_{Q} = {}^{A}R_{B}{}^{B}V_{Q} + {}^{A}\Omega_{B} \times {}^{A}R_{B}{}^{B}Q$$

■ The case where origins are not coincident is the final result for the derivative of a vector in a moving frame as seen from a stationary frame.

$${}^{A}V_{Q} = {}^{A}V_{BORG} + {}^{A}R_{B}{}^{B}V_{Q} + {}^{A}\Omega_{B} \times {}^{A}R_{B}{}^{B}Q$$

#### **□** Rotational Motion

- Consider the same problem:
  - Two frames with coincident origins and with zero linear relative velocity.
  - > Their origins will remain coincident for all time.
  - The orientation of frame {B} with respect to frame {A} is changing in time.
  - $\triangleright$  Rotational velocity of {B} relative to {A} is  ${}^{A}\Omega_{B}$ .
  - ➤ How does a vector change with time as viewed from {A} when it is fixed in {B}?

Now, follow the Mathematical solution.



#### **☐** A Property of the Derivative of an Orthonormal Matrix

• For any  $n \times n$  orthonormal matrix, R,  $R R^T = I_n$ 

• where 
$$I_n$$
 is the  $n \times n$  identity matrix (Why?)

- Our interest, is in the case where n = 3 and R is the rotation matrix.
- Differentiating:

$$\dot{R} R^T + R \dot{R}^T = 0_n$$
 or  $\dot{R} R^T + (\dot{R} R^T)^T = 0_n$ 

Defining:

$$S = \dot{R} R^T$$
$$S + S^T = 0_n$$

- *S* is a skew-symmetric matrix.
- A property relating the derivative of orthonormal matrices with skewsymmetric matrices:

$$S = \dot{R} R^{-1}$$
 or  $\dot{R} = S R$ 

#### **□** Velocity of a Point Due to Rotating Reference Frame

• Consider  ${}^BP$  is a fixed vector in frame  $\{B\}$ , its description in another frame  $\{A\}$  with the same origin is given as:

$$^{A}P = {^{A}R_{B}} {^{B}P}$$

• If frame  $\{B\}$  is rotating (i.e., the derivative is nonzero),

$${}^{A}\dot{P} = {}^{A}\dot{R}_{B}{}^{B}P$$
 or  ${}^{A}V_{P} = {}^{A}\dot{R}_{B}{}^{B}P$ 

• Substituting for  ${}^{B}P$ :

$${}^AV_P = {}^A\dot{R}_B \,\, {}^AR_B^{-1}{}^AP$$



#### **□** Velocity of a Point Due to Rotating Reference Frame

$${}^{A}V_{P} = {}^{A}\dot{R}_{B} \, {}^{A}R_{B}^{-1}{}^{A}P$$

Using the result for orthonormal matrices:

$$^{A}V_{P} = ^{A}S_{R}^{A}P$$

- ${}^{A}S_{B}$ : The <u>skew-symmetric matrix</u> associated with the <u>rotation matrix</u>  ${}^{A}R_{B}$ .
- ${}^{A}S_{B}$  is called the **angular-velocity matrix.**



#### ☐ Skew-Symmetric Matrices and the Vector Cross-Product

 $\blacksquare$  Assign the elements in a skew-symmetric matrix S as

$$S = \begin{bmatrix} 0 & -\Omega_z & \Omega_y \\ \Omega_z & 0 & -\Omega_x \\ -\Omega_y & \Omega_x & 0 \end{bmatrix}$$

• Define the  $3 \times 1$  column vector:

$$\Omega = egin{bmatrix} \Omega_{\chi} \ \Omega_{y} \ \Omega_{z} \end{bmatrix}$$

• It is easily verified that:

$$SP = \Omega \times P$$

P is any vector, and  $\times$  is the vector cross-product.

- The  $3 \times 1$  vector which corresponds to the  $3 \times 3$  angular-velocity matrix, is called the **angular-velocity vector**.
- Hence

$${}^{A}V_{P} = {}^{A}S_{B}{}^{A}P = {}^{A}\Omega_{B} \times {}^{A}P$$

The same notation as in previous section.

#### ☐ Gaining Physical Insight Concerning the Angular-Velocity Vector

• Having concluded that there exists some vector  $\Omega$  such that:

$${}^{A}V_{P} = {}^{A}S_{B}{}^{A}P = {}^{A}\Omega_{B} \times {}^{A}P$$

Now, explore its physical meaning.

• Derive  $\Omega$  by direct differentiation of a rotation matrix.

$$\dot{R} = \lim_{\Delta t \to 0} \frac{R(t + \Delta t) - R(t)}{\Delta t}$$

- Write  $R(t + \Delta t)$  as the composition of two matrices  $R(t + \Delta t) = R_K(\Delta \theta) R(t)$  over the interval  $\Delta t$ , a small rotation of  $\Delta \theta$  has occurred about axis  $\widehat{K}$ .
- So,

$$\dot{R} = \left(\lim_{\Delta t \to 0} \frac{R_K(\Delta \theta) - I_3}{\Delta t}\right) R(t)$$

#### ☐ Gaining Physical Insight Concerning the Angular-Velocity Vector

$$\dot{R} = \left(\lim_{\Delta t \to 0} \frac{R_K(\Delta \theta) - I_3}{\Delta t}\right) R(t)$$

Remember

$$R_K(\theta) = \begin{bmatrix} k_x k_x v \theta + c \theta & k_x k_y v \theta - k_z s \theta & k_x k_z v \theta + k_y s \theta \\ k_x k_y v \theta + k_z s \theta & k_y k_y v \theta + c \theta & k_y k_z v \theta - k_x s \theta \\ k_x k_z v \theta - k_y s \theta & k_y k_z v \theta + k_x s \theta & k_z k_z v \theta + c \theta \end{bmatrix}$$

• From small angle ( $\Delta\theta$ ) substitution:

$$R_K(\Delta\theta) = \begin{bmatrix} 1 & -k_z \, \Delta\theta & k_y \, \Delta\theta \\ k_z \, \Delta\theta & 1 & -k_x \, \Delta\theta \\ -k_y \, \Delta\theta & k_x \, \Delta\theta & 1 \end{bmatrix}$$

#### ☐ Gaining Physical Insight Concerning the Angular-Velocity Vector

$$\dot{R} = \left(\lim_{\Delta t \to 0} \frac{R_K(\Delta \theta) - I_3}{\Delta t}\right) R(t)$$

$$R_K(\Delta\theta) = \begin{bmatrix} 1 & -k_z \, \Delta\theta & k_y \, \Delta\theta \\ k_z \, \Delta\theta & 1 & -k_x \, \Delta\theta \\ -k_y \, \Delta\theta & k_x \, \Delta\theta & 1 \end{bmatrix}$$

SO

$$\dot{R} = \begin{pmatrix} \begin{bmatrix} 0 & -k_z \, \Delta\theta & k_y \, \Delta\theta \\ k_z \, \Delta\theta & 0 & -k_x \, \Delta\theta \\ -k_y \, \Delta\theta & k_x \, \Delta\theta & 0 \end{bmatrix} \\ \Delta t \end{pmatrix} R(t)$$

• Finally, dividing the matrix through by  $\Delta t$  and then taking the limit,

$$\dot{R} = \begin{bmatrix} 0 & -k_z \dot{\theta} & k_y \dot{\theta} \\ k_z \dot{\theta} & 0 & -k_x \dot{\theta} \\ -k_y \dot{\theta} & k_x \dot{\theta} & 0 \end{bmatrix} R(t)$$

#### ☐ Gaining Physical Insight Concerning the Angular-Velocity Vector

$$\dot{R} = \begin{bmatrix} 0 & -k_z \dot{\theta} & k_y \dot{\theta} \\ k_z \dot{\theta} & 0 & -k_x \dot{\theta} \\ -k_y \dot{\theta} & k_x \dot{\theta} & 0 \end{bmatrix} R(t)$$

Hence

$$\dot{R}R^{-1} = \begin{bmatrix} 0 & -\Omega_z & \Omega_y \\ \Omega_z & 0 & -\Omega_x \\ -\Omega_y & \Omega_x & 0 \end{bmatrix}$$

where

$$\Omega = \begin{bmatrix} \Omega_x \\ \Omega_y \\ \Omega_z \end{bmatrix} = \begin{bmatrix} k_x \dot{\theta} \\ k_y \dot{\theta} \\ k_z \dot{\theta} \end{bmatrix} = \dot{\theta} \hat{K}$$

- Physical meaning of the angular-velocity vector:
  - At any instant, the change in orientation of a rotating frame can be viewed as a rotation about some axis  $\widehat{K}$ .
  - Angular-velocity vector is the instantaneous axis of rotation scaled by the speed of rotation  $(\dot{\theta})$ .

- ☐ Remark:
- ☐ Simultaneous Linear and Rotational Velocity (*Geometrical Sol.*)
- {B} is rotating relative to {A} by  ${}^{A}\Omega_{B} \& {}^{B}Q$  locates a point fixed in {B}

$${}^{A}V_{Q} = {}^{A}\Omega_{B} \times {}^{A}Q = {}^{A}\Omega_{B} \times {}^{A}R_{B}{}^{B}Q$$

■ The vector Q could also be changing with respect to frame {B}

$${}^{A}V_{Q} = {}^{A}R_{B}{}^{B}V_{Q} + {}^{A}\Omega_{B} \times {}^{A}R_{B}{}^{B}Q$$

■ The case where origins are not coincident is the final result for the derivative of a vector in a moving frame as seen from a stationary frame

$${}^{A}V_{Q} = {}^{A}V_{BORG} + {}^{A}R_{B}{}^{B}V_{Q} + {}^{A}\Omega_{B} \times {}^{A}R_{B}{}^{B}Q$$

#### ☐ Simultaneous Linear and Rotational Velocity (Mathematical Sol)

• In the general case:

$$^{A}Q = ^{A}P_{BORG} + ^{A}R_{B} ^{B}Q$$

By differentiation of two sides:

$$\frac{d}{dt}{}^{A}Q = \frac{d}{dt} \left[ {}^{A}P_{BORG} + {}^{A}R_{B} {}^{B}Q \right]$$

So:

$${}^{A}V_{Q} = {}^{A}V_{BORG} + {}^{A}R_{B}{}^{B}V_{Q} + {}^{A}\dot{R}_{B}{}^{B}Q$$

■ It was shown:

$${}^A\dot{R}_B = {}^A\Omega_B \times {}^AR_B$$

Therefore:

$${}^{A}V_{Q} = {}^{A}V_{BORG} + {}^{A}R_{B}{}^{B}V_{Q} + {}^{A}\Omega_{B} \times {}^{A}R_{B}{}^{B}Q$$

#### **☐** Angular Velocity

- Assume
  - $\triangleright$  {B} is rotating relative to {A} with  ${}^{A}\Omega_{B}$
  - $\triangleright$  {C} is rotating relative to {B} with  ${}^B\Omega_C$
- Therefore

$${}^{A}\Omega_{C} = {}^{A}\Omega_{B} + {}^{A}R_{B} {}^{B}\Omega_{C}$$

#### **☐** Other Representations of Angular Velocity

Assume the orientation of the rotating frame relative to the base frame is described by the set of Z-Y-Z Euler angles  $(\alpha, \beta, \gamma)$  (one of the 24 angle sets).

$$R = f(\Theta)$$
  $\Theta_{Z'Y'Z'} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$ 

• **Objective:** Express the angular velocity  $(\Omega)$  of a rotating frame as rates of the set of Z-Y-Z Euler angles  $(\dot{\alpha}, \dot{\beta}, \dot{\gamma})$ .

$$\Omega = f(\Theta, \dot{\Theta}) \qquad \dot{\Theta}_{Z'Y'Z'} = \begin{bmatrix} \dot{\alpha} \\ \dot{\beta} \\ \dot{\gamma} \end{bmatrix}$$

☐ Other Representations of Angular Velocity

$$\Omega = f(\Theta, \dot{\Theta}) \quad \Theta_{Z'Y'Z'} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} \quad \dot{\Theta}_{Z'Y'Z'} = \begin{bmatrix} \dot{\alpha} \\ \dot{\beta} \\ \dot{\gamma} \end{bmatrix}$$

• We have:

$$\dot{R}R^T = egin{bmatrix} 0 & -\Omega_z & \Omega_y \ \Omega_z & 0 & -\Omega_x \ -\Omega_y & \Omega_\chi & 0 \end{bmatrix}$$

From this matrix equation, one can extract three independent equations.

$$\Omega_{x} = \dot{r}_{31}r_{21} + \dot{r}_{32}r_{22} + \dot{r}_{33}r_{23}$$

$$\Omega_{y} = \dot{r}_{11}r_{31} + \dot{r}_{12}r_{32} + \dot{r}_{13}r_{33}$$

$$\Omega_{z} = \dot{r}_{21}r_{11} + \dot{r}_{22}r_{12} + \dot{r}_{23}r_{13}$$

From the symbolic description of R in terms of an angle set  $(\alpha, \beta, \gamma)$ , derive the expressions that relate the equivalent angular-velocity vector  $(\Omega)$  to the angle-set velocities  $(\dot{\alpha}, \dot{\beta}, \dot{\gamma})$ .

#### **☐** Other Representations of Angular Velocity

$$\begin{split} &\Omega_x = \dot{r}_{31} r_{21} + \dot{r}_{32} r_{22} + \dot{r}_{33} r_{23} \\ &\Omega_y = \dot{r}_{11} r_{31} + \dot{r}_{12} r_{32} + \dot{r}_{13} r_{33} \\ &\Omega_y = \dot{r}_{21} r_{11} + \dot{r}_{22} r_{12} + \dot{r}_{23} r_{13} \end{split}$$

• It can be expressed in matrix form:

$$\Omega = E_{Z'Y'Z'}(\Theta_{Z'Y'Z'}) \dot{\Theta}_{Z'Y'Z'}$$

- E(.) is a Jacobian relating an angle-set velocity vector  $(\Omega)$  to the angular-velocity vector  $(\dot{\alpha}, \dot{\beta}, \dot{\gamma})$  and is a function of the instantaneous values of the angle set  $(\alpha, \beta, \gamma)$ .
- Hint

### Angular Velocity of Rigid Bodies

#### ☐ Other Representations of Angular Velocity

#### **Example:**

• Construct the *E* matrix that relates Z-Y-Z Euler angles to the angular-velocity vector.

$${}^{A}R_{BZ'Y'Z'}(\alpha,\beta,\gamma) = \begin{bmatrix} c\alpha c\beta c\gamma - s\alpha s\gamma & -c\alpha c\beta s\gamma - s\alpha c\gamma & c\alpha s\beta \\ s\alpha c\beta c\gamma + c\alpha s\gamma & -s\alpha c\beta s\gamma + c\alpha c\gamma & s\alpha s\beta \\ -s\beta c\gamma & s\beta s\gamma & c\beta \end{bmatrix}$$

$$\dot{R}R^T = \begin{bmatrix} 0 & -\Omega_z & \Omega_y \\ \Omega_z & 0 & -\Omega_x \\ -\Omega_y & \Omega_x & 0 \end{bmatrix} \quad \begin{array}{c} \Omega_x = \dot{r}_{31}r_{21} + \dot{r}_{32}r_{22} + \dot{r}_{33}r_{23} \\ \Omega_y = \dot{r}_{11}r_{31} + \dot{r}_{12}r_{32} + \dot{r}_{13}r_{33} \\ \Omega_y = \dot{r}_{21}r_{11} + \dot{r}_{22}r_{12} + \dot{r}_{23}r_{13} \end{array}$$

$$\Omega = E_{Z'Y'Z'}(\Theta_{Z'Y'Z'}) \dot{\Theta}_{Z'Y'Z'}$$

$$E_{Z'Y'Z'} = \begin{bmatrix} 0 & -s\alpha & c\alpha s\beta \\ 0 & c\alpha & s\alpha s\beta \\ 1 & 0 & c\beta \end{bmatrix}$$

### Motion of the Links of a Robot

- We will always use link frame {0} as the reference frame.
- $v_i$  is the linear velocity of the origin of link frame  $\{i\}$ .
- $\omega_i$  is the angular velocity of link frame  $\{i\}$ .



• It is indicated that they are expressed in frame  $\{i\}$ .

- A manipulator is a chain of bodies, each one capable of motion relative to its neighbors.
- So, compute the velocity of each link in order, starting from the base.
- The velocity of link i + 1 =(Velocity of link i) + (New velocity components added by joint i + 1)
- Figure shows links i and i + 1, along with their velocity vectors expressed in the link frames.



- Assume Joint i + 1 is **Revolute**
- Angular Velocity
- The angular velocity of  $\underline{\text{link}} \ i + 1$  is the same as that of  $\underline{\text{link}} \ i$  plus a new component caused by rotational velocity at joint i + 1.

$${}^{i}\omega_{i+1} = {}^{i}\omega_{i} + {}^{i}R_{i+1} \dot{\theta}_{i+1}{}^{i+1}\hat{Z}_{i+1}$$
,  $\dot{\theta}_{i+1}{}^{i+1}\hat{Z}_{i+1} = \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{i+1} \end{bmatrix}$ 

By premultiplying by  $^{i+1}R_i$ , the description of the angular velocity of link i+1 with respect to frame  $\{i+1\}$  is as follow:



- Assume Joint i + 1 is **Revolute**
- Angular Velocity

$$^{i+1}\omega_{i+1} = {}^{i+1}R_i{}^i\omega_i + \dot{\theta}_{i+1}{}^{i+1}\hat{Z}_{i+1}$$

- Alternative Method:
- Remember:

$${}^{A}\Omega_{C} = {}^{A}\Omega_{B} + {}^{A}R_{B} {}^{B}\Omega_{C}$$

• Assume:

$$C = i + 1$$
$$B = i$$
$$A = 0$$



- Assume Joint i + 1 is **Revolute**
- Linear Velocity
- The linear velocity of the origin of frame  $\{i+1\}$  is the same as that of the origin of frame  $\{i\}$  plus a new component caused by rotational velocity of link i.

$${}^{i}v_{i+1} = {}^{i}v_i + {}^{i}\omega_i \times {}^{i}P_{i+1}$$

 $\triangleright$  Premultiplying both sides by  $^{i+1}R_i$ :



- Assume Joint i + 1 is **Revolute**
- Linear Velocity

$$^{i+1}v_{i+1} = ^{i+1}R_i(^iv_i + ^i\omega_i \times ^iP_{i+1})$$

- > Alternative Method:
- Remember:

$${}^{A}V_{Q} = {}^{A}V_{BORG} + {}^{A}R_{B}{}^{B}V_{Q} + {}^{A}\Omega_{B} \times {}^{A}R_{B}{}^{B}Q$$

• Assume:

$$Q = i + 1$$

$$B = i$$

$$A = 0$$

$$i_{\nu_{i}}$$

$$i_{\nu_{i}}$$

$$\hat{Y}_{i+1}$$

$$\hat{Y}_{i+1}$$

$$\hat{X}_{i+1}$$

• Assume Joint i + 1 is **Prismatic** 

$${}^{i+1}\omega_{i+1} = {}^{i+1}R_i{}^i\omega_i$$
 
$${}^{i+1}v_{i+1} = {}^{i+1}R_i\big({}^iv_i + {}^i\omega_i \times {}^iP_{i+1}\big) + \dot{d}_{i+1}{}^{i+1}\hat{Z}_{i+1}$$

- Using successively from link to link, we can compute  ${}^{N}\omega_{N}$  and  ${}^{N}v_{N}$  the rotational and linear velocities of the last link.
- They can be rotated into base coordinates by multiplication with  ${}^0R_N$ .



#### **Example:**

- A two-link manipulator with rotational joints (RR).
- Calculate the velocity of the tip of the arm as a function of joint rates.
- In terms of frame {3} and also in terms of frame {0}.
- $^{3}v_{3} \& ^{3}\omega_{3} = ?$
- $v_3 \& {}^0\omega_3 = ?$



#### **Example:**

- $^{3}v_{3} \& ^{3}\omega_{3} = ?$
- ${}^{0}v_{3} \& {}^{0}\omega_{3} = ?$
- Start by attaching frames to the links

$${}_{1}^{0}T = \begin{bmatrix} c_{1} & -s_{1} & 0 & 0 \\ s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}T = \begin{bmatrix} c_{2} & -s_{2} & 0 & l_{1} \\ s_{2} & c_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$







Compute the velocity of the origin of each frame, starting from the base frame {0}, which has zero velocity

### **Example:**

- $^3v_3 \& ^3\omega_3 = ?$
- $v_3 \& {}^0 \omega_3 = ?$



To find these velocities with respect to the base frame, rotate them with the rotation matrix  ${}^{0}R_{3}$ .

$${}^{0}R_{3} \ = \ {}^{0}R_{1} \ {}^{1}R_{2} \ {}^{2}R_{3} = \left[ \begin{array}{ccc} c_{12} & -s_{12} & 0 \\ s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{array} \right] \qquad {}^{0}v_{3} \ = \left[ \begin{array}{ccc} -l_{1}s_{1}\dot{\theta}_{1} - l_{2}s_{12}(\dot{\theta}_{1} + \dot{\theta}_{2}) \\ l_{1}c_{1}\dot{\theta}_{1} + l_{2}c_{12}(\dot{\theta}_{1} + \dot{\theta}_{2}) \\ 0 & 0 & 0 \end{array} \right]$$

What about  ${}^0\omega_3 = ?$ 

# The END

• References:

1)