# Analysis of brain data using graph theory techniques

Paul McCarthy

Al Lab Friday 4-5

Friday, August 13, 2010

#### Graph Theory 101

The data

The process

Correlation techniques

Research questions

Some boring graphs

End

#### Graph Theory 101

The data

The process

Correlation techniques

Research questions

Some boring graphs

End

## What is a graph?

"A graph G is an ordered pair of disjoint sets (V, E) such that E is a subset of the set  $V^{(2)}$  of unordered pairs of V" [1].

## What is a graph?

In other words:



## Types of graphs

► Weighted/unweighted

## Types of graphs

- Weighted/unweighted
- ▶ Directed/undirected

### Types of graphs

- Weighted/unweighted
- ▶ Directed/undirected
- ► Labelled/unlabelled

Degree

- Degree
- ▶ Density:  $D_G = \frac{2|E|}{|V|(|V|-1)}$

- Degree
- ▶ Density:  $D_G = \frac{2|E|}{|V|(|V|-1)}$
- ▶ Path length:  $L_G = \frac{\sum_{i \neq j \in V} l_{ij}}{|V|(|V|-1)}$

- Degree
- ▶ Density:  $D_G = \frac{2|E|}{|V|(|V|-1)}$
- ▶ Path length:  $L_G = \frac{\sum_{i \neq j \in V} l_{ij}}{|V|(|V|-1)}$
- ► Clustering coefficient:  $C_i = \frac{2|\{(j,k): j \neq k \in N_i, (j,k) \in E\}|}{|N|(|N|-1)}$

Graph Theory 101

The data

The process

Correlation techniques

Research questions

Some boring graphs

End

## EEG/MEG



## MRI/fMRI



Graph Theory 101

The data

The process

Correlation techniques

Research questions

Some boring graphs

Enc

#### The Process



Graph Theory 101

The data

The process

Correlation techniques

Research questions

Some boring graphs

Enc

► Covariance/Correlation:  $\rho(x,y) = \frac{\sum (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$ 

- ► Covariance/Correlation:  $\rho(x,y) = \frac{\sum (x_i \overline{x}) (y_i \overline{y})}{\sqrt{\sum (x_i \overline{x})^2 \sum (y_i \overline{y})^2}}$
- ► Coherence:  $\frac{|\langle P_{xy} \rangle|^2}{\langle P_{xx} \rangle \langle P_{yy} \rangle}$

- ► Covariance/Correlation:  $\rho(x,y) = \frac{\sum (x_i \overline{x}) (y_i \overline{y})}{\sqrt{\sum (x_i \overline{x})^2 \sum (y_i \overline{y})^2}}$
- ► Coherence:  $\frac{|\langle P_{xy} \rangle|^2}{\langle P_{xx} \rangle \langle P_{yy} \rangle}$
- ► Functional distance ([4]):  $w(x,y) = e^{-\left(\frac{\sqrt{\sum (x_i y_i)^2}}{\sigma \xi}\right)^2}$

- ► Covariance/Correlation:  $\rho(x,y) = \frac{\sum (x_i \overline{x}) (y_i \overline{y})}{\sqrt{\sum (x_i \overline{x})^2 \sum (y_i \overline{y})^2}}$
- ► Coherence:  $\frac{|\langle P_{xy} \rangle|^2}{\langle P_{xx} \rangle \langle P_{yy} \rangle}$
- ► Functional distance ([4]):  $w(x,y) = e^{-\left(\frac{\sqrt{\sum(x_i-y_i)^2}}{\sigma\xi}\right)^2}$
- Synchronization Likelihood ([5])
- Wavelet techniques
- Multivariate techniques

Graph Theory 101

The data

The process

Correlation techniques

Research questions

Some boring graphs

End

#### Questions

- ► Can we find small-world/scale-free (or other) characteristics in graphs generated from brain data?
- ▶ Do paricular correlation techniques tend to generate graphs with specific characteristics?
- Can graph theory techniques be used in the diagnosis of neurological disorders?

Graph Theory 101

The data

The process

Correlation techniques

Research questions

Some boring graphs

Enc

#### Correlation on randomly generated data

100 sets of 200 time series, each with 20 samples, were randomly generated via Cholesky factorisation, to have a desired correlation in the range [0.4, 0.6].

Three correlation techniques (pearson, coherence, functional distance) were applied to the data sets, and the probability distributions of the generated correlation values were plotted.

#### Pearson correlation



#### Coherence



## Functional distance ( $\sigma = 0.5$ )



## Functional distance ( $\sigma = 1.0$ )



## Functional distance ( $\sigma = 2.0$ )



Graph Theory 101

The data

The process

Correlation techniques

Research questions

Some boring graphs

End

#### Thanks!

#### Questions?

- pmccarthy@cs.otago.ac.nz
- pauld.mccarthy@gmail.com
- http://miracle.otago.ac.nz/postgrads/pmccarthy/

#### References I

Béla Bollobás.

Modern Graph Theory.

Graduate Texts in Mathematics. Springer, 1998.

Washington irving.

Sample fmri data.

http://en.wikipedia.org/wiki/FMRI.

Der Lange.

Generalized 3 hz spike and wave discharges in a child with childhood absence epilepsy.

http://en.wikipedia.org/wiki/EEG.

X Shen, X Papademetris, and R T Constable.

Graph-theory based parcellation of functional subunits in the brain from resting-state fMRI data.

Neuroimage, 50(3):1027-35, 2010.

#### References II



C.J. Stam and B. W. van Dijk.

Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets.

Physica D, 163(3-4):236-251, 2002.