#### 庁 日 PATENT OFFICE JAPAN

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年 9月10日

Kimiyasu MORIMURA, et al. METHOD OF PRODUCING SILVER HALIDE PHOTOSENSITIVE MATERIAL

Date Filed: September 10, 2003

Mark Boland 1 of 1

(202) 293-7060

番 出願

Application Number:

特願2002-263715

[ ST.10/C ]:

[JP2002-263715]

出 願 Applicant(s):

富士写真フイルム株式会社

6 日 2003年 5月

特許庁長官 Commissioner, Japan Patent Office



【書類名】

特許願

【整理番号】

A000203963

【提出日】

平成14年 9月10日

【あて先】

特許庁長官 殿

【国際特許分類】

G03C 5/50

G03C 1/08

G03C 7/20

【発明の名称】

ハロゲン化銀写真感光材料の処理方法

【請求項の数】

1

【発明者】

【住所又は居所】

神奈川県南足柄市中沼210番地 富士写真フイルム株

式会社内

【氏名】

森村 公保

【発明者】

【住所又は居所】

神奈川県足柄上郡開成町宮台798番地 富士写真フイ

ルム株式会社内

【氏名】

山田 耕三郎

【特許出願人】

【識別番号】

000005201

【氏名又は名称】 富士写真フイルム株式会社

【代理人】

【識別番号】

100058479

【弁理士】

【氏名又は名称】 鈴江 武彦

【電話番号】

03-3502-3181

【選任した代理人】

【識別番号】

100084618

【弁理士】

【氏名又は名称】 村松 貞男

【選任した代理人】

【識別番号】 100068814

【弁理士】

【氏名又は名称】 坪井 淳

【選任した代理人】

【識別番号】 100092196

【弁理士】

【氏名又は名称】 橋本 良郎

【選任した代理人】

【識別番号】 100091351

【弁理士】

【氏名又は名称】 河野 哲

【選任した代理人】

【識別番号】 100088683

【弁理士】

【氏名又は名称】 中村 誠

【手数料の表示】

【予納台帳番号】 011567

【納付金額】

21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【包括委任状番号】 9800696

要 【プルーフの要否】

【書類名】

明細書

【発明の名称】

ハロゲン化銀写真感光材料の処理方法

【特許請求の範囲】

【請求項1】 下記一般式 $(1-1)\sim(4-2)$ で表される化合物の少なくとも一種を含有するハロゲン化銀写真感光材料を溶解物理現像が起こる現像液で処理する工程を含むことを特徴とするハロゲン化銀写真感光材料の処理方法。

【化1】



一般式(1-1)において $\mathrm{RED}_{11}$ は還元性基を表し、 $\mathrm{L}_{11}$ は脱離基を表し、 $\mathrm{R}_{112}$ は

水素原子または置換基を表す。R<sub>111</sub>は炭素原子(C)およびRED<sub>11</sub>と共に、5 員もしくは6 員の芳香族環(芳香族ヘテロ環を含む)のテトラヒドロ体、ヘキサヒドロ体、もしくはオクタヒドロ体に相当する環状構造を形成し得る非金属原子団を表す

一般式(1-2)において $\mathrm{RED}_{12}$ および $\mathrm{L}_{12}$ は、それぞれ一般式(1-1)の $\mathrm{RED}_{11}$ および $\mathrm{L}_{11}$ と同義の基を表す。 $\mathrm{R}_{121}$ および $\mathrm{R}_{122}$ は、それぞれ水素原子または炭素原子に置換可能な置換基を表し、これは一般式(1-1)の $\mathrm{R}_{112}$ と同義の基である。 $\mathrm{ED}_{12}$ は電子供与性基を表す。一般式(1-2)において $\mathrm{R}_{121}$ と $\mathrm{RED}_{12}$ 、 $\mathrm{R}_{121}$ と $\mathrm{R}_{12}$ 2、または $\mathrm{ED}_{12}$ と $\mathrm{RED}_{12}$ とは、互いに結合して環状構造を形成していてもよい。

一般式(2)において $RED_2$ は一般式(1-2)の $RED_{12}$ と同義の基を表す。 $L_2$ はカルボキシ基またはその塩を表し、 $R_{21}$ 、 $R_{22}$ は水素原子または置換基を表す。 $RED_2$ と $R_{21}$ とは互いに結合して環構造を形成していてもよい。但し一般式(2)で表される化合物は、分子内にハロゲン化銀への吸着性基を2つ以上有する化合物である。

一般式(3)において $RED_3$ は一般式(1-2)の $RED_{12}$ と同義の基を表す。 $Y_3$ は、 $RED_3$ が1電子酸化されて生成する1電子酸化体と反応して、新たな結合を形成し うる炭素-炭素2重結合部位または炭素-炭素3重結合部位を含む反応性基を表 す。 $L_3$ は $RED_3$ と $Y_3$ とを連結する連結基を表す。

一般式(4-1)および一般式(4-2)において $RED_{41}$ および $RED_{42}$ は、それぞれ一般式(1-2)の $RED_{12}$ と同義の基を表す。 $R_{40} \sim R_{44}$ および $R_{45} \sim R_{49}$ は、それぞれ水素原子または置換基を表す。一般式(4-2)において $Z_{42}$ は一 $CR_{420}$  $R_{421}$ 一、一 $NR_{423}$ 一、または-Oーを表す。ここに $R_{420}$ 、 $R_{421}$ は、それぞれ水素原子または置換基を表し、 $R_{423}$ は水素原子、アルキル基、アリール基、ヘテロ環基を表す。

## 【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明はハロゲン化銀写真感光材料の処理方法に関するものである。

[0002]

## 【従来の技術】

近年、写真感光材料は、感度が低感度のものから高感度のものまで種々のライ ンナップが揃えられており、例えば撮影感材では感度表示がISO25ほどからISO32 00までのものがある。低感度のものは多くの光量を必要とするために速いシャッ タースピードでのスナップ写真撮影には向かない反面、撮影画像は滑らかでざら つきが目立たない(粒状性に優れる)。一方、高感度のものは、フラッシュなし での撮影も可能となるので撮影対象範囲が広がるが、撮影画像のざらつきが目立 つようになる(粒状性が劣る)。理想的には粒状性に優れた高感度感材が求めら れる。画像のざらつきのもとは、感光素子でありかつ表示素子の担い手でもある ハロゲン化銀乳剤粒子のサイズが大きいためであり、粒子サイズをできるだけ小 さくすることが粒状性を良化するために必要である。しかしながら粒子サイズを 小さくすると感度が低下するので低感化分を補う高感化技術が別途必要となる。 ハロゲン化銀の固有の感度を高めるためには様々な方法が用いられている。例え ば、硫黄、金および第VIII族金属化合物などの化学増感剤による高感化、硫黄、 金および第VIII族金属化合物などの化学増感剤とそれらの増感効果を促進させる 添加剤との組み合わせによる高感化、およびハロゲン化銀乳剤種により増感効果 をもつ添加剤の添加による高感化などが行われており、いわゆる還元増感剤を添 加して、還元銀を乳剤の内部あるいは表面に形成し、高感化する方法も良く知ら れている。

[0003]

電子供与基と脱離基からなる有機電子供与化合物を用いた増感技術がいくつかの特許等の明細書に報告されている(例えば、特許文献1~7参照)。

[0004]

しかしながら像露光後の現像処理において、溶解物理現像が起こる現像液による処理工程を含む場合に上記の有機電子供与化合物を適用すると、従来の還元増 感剤を添加した高感化の方法に比べて、効果は認められるものの高感化の程度は 低く、保存性を悪化させるという問題があった。

[0005]

特開2001-42466号公報には有機電子供与化合物と特定の保存改良剤

とを組み合わせて用いることにより保存性が改良されることが報告されている。 しかし、追試結果では、溶解物理現像が起こる現像処理を施す工程で保存性改良 効果が僅かとなった。

[0006]

【特許文献1】

米国特許第5,747,235号

【特許文献2】

米国特許第5,747,236号

【特許文献3】

米国特許第6,054,260号

【特許文献4】

欧州特許第786,692A1号

【特許文献5】

米国特許第893,731A1号

【特許文献6】

米国特許第893,732A1号

【特許文献7】

W099/05570号

[0007]

【発明が解決しようとする課題】

本発明は、ハロゲン化銀写真感光材料の感度を向上させ、かつ保存性を改良することにある。より詳しくは、溶解物理現像が起こる現像液による処理を必要とするハロゲン化銀写真感光材料の感度を向上させ、かつ保存性を改良することにある。

[0008]

【課題を解決するための手段】

本発明者らは、現像処理において溶解物理現像が起こる現像液を必要とするハロゲン化銀写真感光材料に対し、有機電子供与化合物の添加による高感化の検討を行い、従来から知られているものに比べて、感度および保存性で優れた性能を

有するものを見出した。更に、該ハロゲン化銀感光材料に対し、特定の範囲にある酸化電位を有する化合物を併用することで更にかぶりが低く保存性に優れることを見出した。

[0009]

前記の課題は以下の(1)あるいは(2)に記載のハロゲン化銀感光材料の処理方法により達成された。

さらに、本発明は、以下の(3)から(7)に記載のハロゲン化銀反転写真感 光材料も提供する。これらのハロゲン化銀反転写真感光材料は、感度および保存 性に優れた性能を有している。

[0010]

(1)下記タイプ1~タイプ4の中から選ばれる化合物の少なくとも一種を含有するハロゲン化銀写真感光材料を溶解物理現像が起こる現像液で処理する工程を含むことを特徴とするハロゲン化銀写真感光材料の処理方法。

[0011]

(タイプ1)

1電子酸化されて生成する1電子酸化体が、引き続く結合開裂反応を伴って、さらに2電子以上の電子を放出し得る化合物。

[0012]

(タイプ2)

1電子酸化されて生成する1電子酸化体が、引き続く炭素-炭素結合開裂反応を 伴って、さらにもう1電子を放出し得る化合物で、かつ同じ分子内にハロゲン化 銀への吸着性基を2つ以上有する化合物。

[0013]

(タイプ3)

1電子酸化されて生成する1電子酸化体が、引き続く結合形成過程を経た後に、 さらに1電子もしくはそれ以上の電子を放出し得る化合物。

[0014]

(タイプ4)

1電子酸化されて生成する1電子酸化体が、引き続く分子内の環開裂反応を経た

後に、さらに1電子もしくはそれ以上の電子を放出し得る化合物。

[0015]

本発明の上記タイプ  $1\sim$  タイプ 4 に属する化合物のうち好ましいものは、以下の一般式  $(1-1)\sim(4-2)$  で表される。即ち、本発明の上記タイプ 1 に属する化合物のうち好ましいものは、以下の一般式 (1-1) および (1-2) で表され、上記タイプ 2 に属する化合物のうち好ましいものは、以下の一般式 (2) で表され、上記タイプ 3 に属する化合物のうち好ましいものは、以下の一般式 (3) で表され、上記タイプ 4 に属する化合物のうち好ましいものは、以下の一般式 (3) で表され、上記タイプ 4 に属する化合物のうち好ましいものは、以下の一般式 (4-1) および (4-2) で表される。

[0016]

【化2】



[0017]

一般式(1-1)においてRED $_{11}$ は還元性基を表し、L $_{11}$ は脱離基を表し、R $_{112}$ は

水素原子または置換基を表す。R<sub>111</sub>は炭素原子(C)およびRED<sub>11</sub>と共に、5員もしくは6員の芳香族環(芳香族ヘテロ環を含む)のテトラヒドロ体、ヘキサヒドロ体、もしくはオクタヒドロ体に相当する環状構造を形成し得る非金属原子団を表す

## [0018]

一般式(1-2)において $\mathrm{RED}_{12}$ および $\mathrm{L}_{12}$ は、それぞれ一般式(1-1)の $\mathrm{RED}_{11}$ および $\mathrm{L}_{11}$ と同義の基を表す。 $\mathrm{R}_{121}$ および $\mathrm{R}_{122}$ は、それぞれ水素原子または炭素原子に置換可能な置換基を表し、これは一般式(1-1)の $\mathrm{R}_{112}$ と同義の基である。 $\mathrm{ED}_{12}$ は電子供与性基を表す。一般式(1-2)において $\mathrm{R}_{121}$ と $\mathrm{RED}_{12}$ 、 $\mathrm{R}_{121}$ と $\mathrm{RED}_{12}$ 、 $\mathrm{R}_{121}$ と $\mathrm{RED}_{12}$ 、 $\mathrm{R}_{121}$ と $\mathrm{RED}_{12}$ 、 $\mathrm{RED}_{12}$ と $\mathrm{RED}_{12}$ 

## [0019]

一般式(2)において $\text{RED}_2$ は一般式(1-2)の $\text{RED}_{12}$ と同義の基を表す。 $\text{L}_2$ はカルボキシ基またはその塩を表し、 $\text{R}_{21}$ 、 $\text{R}_{22}$ は水素原子または置換基を表す。 $\text{RED}_2$  と $\text{R}_{21}$ とは互いに結合して環構造を形成していてもよい。但し一般式(2)で表される化合物は、分子内にハロゲン化銀への吸着性基を2つ以上有する化合物である。

## [0020]

一般式(3)において $\text{RED}_3$ は一般式(1-2)の $\text{RED}_{12}$ と同義の基を表す。  $\text{Y}_3$ は、  $\text{RED}_3$ が1電子酸化されて生成する1電子酸化体と反応して、新たな結合を形成し うる炭素 - 炭素2 重結合部位または炭素 - 炭素3 重結合部位を含む反応性基を表す。  $\text{L}_3$ は $\text{RED}_3$ と $\text{Y}_3$ とを連結する連結基を表す。

## [0021]

一般式(4-1)および一般式(4-2)において $RED_{41}$ および $RED_{42}$ は、それぞれ一般式(1-2)の $RED_{12}$ と同義の基を表す。 $R_{40}$ ~ $R_{44}$ および $R_{45}$ ~ $R_{49}$ は、それぞれ水素原子または置換基を表す。一般式(4-2)において $Z_{42}$ は一 $CR_{420}$  $R_{421}$ 一、 $-NR_{423}$ 一、または-Oーを表す。ここに $R_{420}$ 、 $R_{421}$ は、それぞれ水素原子または置換基を表し、 $R_{423}$ は水素原子、アルキル基、アリール基、ヘテロ環基を表す。

## [0022]

上記タイプ1、タイプ3、タイプ4に属する化合物のうち好ましいものは、「 分子内にハロゲン化銀への吸着性基を有する化合物」であるか、または「分子内 に、分光増感色素の部分構造を有する化合物」である。より好ましくは「分子内 にハロゲン化銀への吸着性基を有する化合物」である。

[0023]

また同様に上記一般式 (1-1)~一般式(4-2)で表される化合物のうち好ましいものは、「分子内にハロゲン化銀への吸着性基を有する化合物」であるか、または「分子内に、分光増感色素の部分構造を有する化合物」である。より好ましくは「分子内にハロゲン化銀への吸着性基を有する化合物」である。

[0024]

(2) タイプ1~タイプ4の中から選ばれる化合物が分子内に吸着性基または 増感色素の部分構造を有する化合物であることを特徴とする(1)に記載のハロ ゲン化銀写真感光材料の処理方法。

[0025]

(3) (1) に記載のタイプ1~タイプ4の中から選ばれる化合物の少なくと も1種を含有することを特徴とするハロゲン化銀反転写真感光材料。

[0026]

(4) (1) に記載のタイプ1~タイプ4の中から選ばれる化合物の少なくとも1種が、ハロゲン化銀乳剤中に含有されることを特徴とする(3) に記載のハロゲン化銀反転写真感光材料。

[0027]

(5)酸化電位が0.18eVから0.90eVを示す化合物の少なくとも1種を含有する層を有することを特徴とする(3)あるいは(4)に記載のハロゲン化銀反転写真感光材料。

[0028]

(6)化学増感工程後にハロゲン化銀によりシェル付けされたハロゲン化銀乳 剤粒子を有することを特徴とする(3)ないし(5)のいずれか一項に記載のハ ロゲン化銀反転写真感光材料。

[0029]

(7) 下記一般式で表されるアゾール系マゼンタカプラーを少なくとも一種含有することを特徴とする(3) ないし(6) のいずれか一項に記載のハロゲン化銀カラー反転写真感光材料

【化3】

[0030]

一般式 (MC-I) の式中、 $R_1$ は水素原子または置換基を表し、 $G_1$ 、 $G_2$ はいずれか一方が炭素原子、もう一方が窒素原子を表し、 $R_2$ は置換基を表し、 $G_1$ 、 $G_2$ のうち炭素原子であるほうに置換する。 $R_1$ または $R_2$ は更に置換基を有していても良く、また $R_1$ 、 $R_2$ を介して一般式(MC-I)の多量体を形成していても良く、 $R_1$ または $R_2$ を介して高分子鎖に結合していても良い。 Xは、水素原子または 芳香族第 1 級アミンカラー現像主薬の酸化体とのカップリング反応により離脱する基を表す。

[0031]

## 【発明の実施の形態】

次に本発明を詳細に説明する。本発明において、溶解物理現像が起こる現像液とは、現像主薬を含む液(カラー反転処理の場合には第1現像液に相当)の1L中に亜硫酸イオンを0.10mol以上含むものとする。亜硫酸イオンは二亜硫酸イオンの分解からも生成し、銀イオンと結合し錯イオンを形成するのでハロゲン化銀粒子を良く溶解する。この場合は二亜硫酸イオン1分子を亜硫酸イオンの2分子として換算するものとする。

[0032]

次に本発明に用いられている化合物タイプ1~タイプ4に属する化合物について詳しく説明する。

[0033]

(タイプ1)

1電子酸化されて生成する1電子酸化体が、引き続く結合開裂反応を伴って、さらに2電子以上の電子を放出し得る化合物。

[0034]

(タイプ2)

1電子酸化されて生成する1電子酸化体が、引き続く炭素-炭素結合開裂反応を 伴って、さらにもう1電子を放出し得る化合物で、かつ同じ分子内にハロゲン化 銀への吸着性基を2つ以上有する化合物。

[0035]

(タイプ3)

1電子酸化されて生成する1電子酸化体が、引き続く結合形成過程を経た後に、 さらに1電子もしくはそれ以上の電子を放出し得る化合物。

[0036]

(タイプ4)

1電子酸化されて生成する1電子酸化体が、引き続く分子内の環開裂反応を経た 後に、さらに1電子もしくはそれ以上の電子を放出し得る化合物。

[0037]

本発明の上記タイプ1~タイプ4に属する化合物のうち好ましいものは、以下の一般式 (1-1)~(4-2)で表される。即ち、本発明の上記タイプ1に属する化合物のうち好ましいものは、以下の一般式(1-1)および(1-2)で表され、上記タイプ2に属する化合物のうち好ましいものは、以下の一般式(2)で表され、上記タイプ3に属する化合物のうち好ましいものは、以下の一般式(3)で表され、上記タイプ4に属する化合物のうち好ましいものは、以下の一般式(4-1)および(4-2)で表される。

[0038]

【化4】



[0039]

一般式(1-1)において $\mathrm{RED}_{11}$ は還元性基を表し、 $\mathrm{L}_{11}$ は脱離基を表し、 $\mathrm{R}_{112}$ は

水素原子または置換基を表す。R<sub>111</sub>は炭素原子(C)およびRED<sub>11</sub>と共に、5員もしくは6員の芳香族環(芳香族ヘテロ環を含む)のテトラヒドロ体、ヘキサヒドロ体、もしくはオクタヒドロ体に相当する環状構造を形成し得る非金属原子団を表す

### [0040]

一般式(1-2)において $\mathrm{RED}_{12}$ および $\mathrm{L}_{12}$ は、それぞれ一般式(1-1)の $\mathrm{RED}_{11}$ および $\mathrm{L}_{11}$ と同義の基を表す。 $\mathrm{R}_{121}$ および $\mathrm{R}_{122}$ は、それぞれ水素原子または炭素原子に置換可能な置換基を表し、これは一般式(1-1)の $\mathrm{R}_{112}$ と同義の基である。 $\mathrm{ED}_{12}$ は電子供与性基を表す。一般式(1-2)において $\mathrm{R}_{121}$ と $\mathrm{RED}_{12}$ 、 $\mathrm{R}_{121}$ と $\mathrm{RED}_{12}$ 、または $\mathrm{ED}_{12}$ と $\mathrm{RED}_{12}$ とは、互いに結合して環状構造を形成していてもよい。

## [0041]

一般式(2)において $\operatorname{RED}_2$ は一般式(1-2)の $\operatorname{RED}_{12}$ と同義の基を表す。 $\operatorname{L}_2$ はカルボキシ基またはその塩を表し、 $\operatorname{R}_{21}$ 、 $\operatorname{R}_{22}$ は水素原子または置換基を表す。 $\operatorname{RED}_2$  と $\operatorname{R}_{21}$ とは互いに結合して環構造を形成していてもよい。但し一般式(2)で表される化合物は、分子内にハロゲン化銀への吸着性基を2つ以上有する化合物である。

### [0042]

一般式(3)において $RED_3$ は一般式(1-2)の $RED_{12}$ と同義の基を表す。  $Y_3$ は、 $RED_3$ が1電子酸化されて生成する1電子酸化体と反応して、新たな結合を形成しうる炭素-炭素2重結合部位または炭素-炭素3重結合部位を含む反応性基を表す。  $L_3$ は $RED_3$ と $Y_3$ とを連結する連結基を表す。

## [0043]

一般式(4-1)および一般式(4-2)において $RED_{41}$ および $RED_{42}$ は、それぞれ一般式(1-2)の $RED_{12}$ と同義の基を表す。 $R_{40}$ ~ $R_{44}$ および $R_{45}$ ~ $R_{49}$ は、それぞれ水素原子または置換基を表す。一般式(4-2)において $Z_{42}$ は一 $CR_{420}$  $R_{421}$ 一、 $-NR_{423}$ 一、または-Oーを表す。ここに $R_{420}$ 、 $R_{421}$ は、それぞれ水素原子または置換基を表し、 $R_{423}$ は水素原子、アルキル基、アリール基、ヘテロ環基を表す。

## [0044]

上記タイプ1、タイプ3、タイプ4に属する化合物のうち好ましいものは、「 分子内にハロゲン化銀への吸着性基を有する化合物」であるか、または「分子内 に、分光増感色素の部分構造を有する化合物」である。より好ましくは「分子内 にハロゲン化銀への吸着性基を有する化合物」である。

## [0045]

また同様に上記一般式(1-1)~一般式(4-2)で表される化合物のうち好ま しいものは、「分子内にハロゲン化銀への吸着性基を有する化合物」であるか、 または「分子内に、分光増感色素の部分構造を有する化合物」である。より好ま しくは「分子内にハロゲン化銀への吸着性基を有する化合物」である。

### [0046]

次に本発明の化合物について詳しく説明する。

タイプ1に属する化合物は、1電子酸化されて生成する1電子酸化体が、引き続く結合開裂反応を伴って、さらに2電子以上の電子を放出し得る化合物である。タイプ1に属する化合物において「結合開裂反応」とは具体的に炭素-炭素もしくは炭素-ケイ素結合の開裂を意味し、炭素-水素結合の開裂がこれに付随してもよい。タイプ1に属する化合物は1電子酸化されて1電子酸化体となった後に、初めて結合開裂反応を伴って、さらに2電子以上(好ましくは3電子以上)の電子を放出し得る化合物である。言いかえればさらに2電子以上(好ましくは3電子以上)酸化され得る化合物である。

### [0047]

タイプ1に属する化合物のうち好ましい化合物は一般式(1-1)または一般式(1-2)で表されるが、これら化合物は一般式(1-1)または一般式(1-2)の、RED $_{11}$ またはRED $_{12}$ で表される還元性基が1電子酸化された後、自発的に $L_{11}$ または $L_{12}$ を結合開裂反応により離脱することで、即ちC(炭素原子) $-L_{11}$ 結合またはC(炭素原子) $-L_{12}$ 結合が開裂することで、これに伴いさらに電子を2つ以上、好ましくは3つ以上放出し得る化合物である。

#### [0048]

以下、先ず一般式(1-1)で表される化合物について詳しく説明する。

一般式(1-1)において $RED_{11}$ で表される1電子酸化され得る還元性基は、後

述する $R_{111}$ と結合して特定の環形成をし得る基であり、具体的には次の1価基か ら環形成をするのに適切な箇所の水素原子1個を除いた2価基が挙げられる。例 えば、アルキルアミノ基、アリールアミノ基(アニリノ基、ナフチルアミノ基等) 、ヘテロ環アミノ基(ベンズチアゾリルアミノ基、ピロリルアミノ基等)、アルキ ルチオ基、アリールチオ基(フェニルチオ基等)、ヘテロ環チオ基、アルコキシ基 、アリールオキシ基(フェノキシ基等)、ヘテロ環オキシ基、アリール基(フェニ ル基、ナフチル基、アントラニル基等)、芳香族または非芳香族のヘテロ環基(こ こで、ヘテロ環の具体例としては、ヘテロ原子として少なくとも1つのS、O、 N原子を含むヘテロ環であって、例えばテトラヒドロキノリン環、テトラヒドロ イソキノリン環、テトラヒドロキノキサリン環、テトラヒドロキナゾリン環、イ ンドリン環、インドール環、インダゾール環、カルバゾール環、フェノキサジン 環、フェノチアジン環、ベンゾチアゾリン環、ピロール環、イミダゾール環、チ アゾリン環、ピペリジン環、ピロリジン環、モルホリン環、ベンゾイミダゾール 環、ベンゾイミダゾリン環、ベンゾオキサゾリン環、3,4-メチレンジオキシフェ ニル環等が挙げられる)である(以後、便宜上RED<sub>11</sub>は1価基名として記述する) 。これらは置換基を有していてもよい。

# [0049]

置換基としては、例えばハロゲン原子、アルキル基(アラルキル基、シクロアルキル基、活性メチン基等を含む)、アルケニル基、アルキニル基、アリール基、ヘテロ環基(置換する位置は問わない)、4級化された窒素原子を含むヘテロ環基(例えばピリジニオ基、イミダゾリオ基、キノリニオ基、イソキノリニオ基)、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、カルボキシ基またはその塩、スルホニルカルバモイル基、アシルカルバモイル基、スルファモイルカルバモイル基、カルバゾイル基、オキサリル基、オキサモイル基、シアノ基、チオカルバモイル基、ヒドロキシ基、アルコキシ基(エチレンオキシ基もしくはプロピレンオキシ基単位を繰り返し含む基を含む)、アリールオキシ基、ヘテロ環オキシ基、アシルオキシ基、(アルコキシもしくはアリールオキシ)カルボニルオキシ基、カルバモイルオキシ基、スルホニルオキシ基、アミノ基、(アルキル、アリール、またはヘテロ環)アミノ基、アシルアミノ

基、スルホンアミド基、ウレイド基、チオウレイド基、イミド基、(アルコキシもしくはアリールオキシ)カルボニルアミノ基、スルファモイルアミノ基、セミカルバジド基、チオセミカルバジド基、ヒドラジノ基、アンモニオ基、オキサモイルアミノ基、(アルキルもしくはアリール)スルホニルウレイド基、アシルウレイド基、アシルスルファモイルアミノ基、ニトロ基、メルカプト基、(アルキル、アリール、またはヘテロ環)チオ基、(アルキルまたはアリール)スルホニル基、(アルキルまたはアリール)スルフィニル基、スルホ基またはその塩、スルファモイル基、アシルスルファモイル基、スルホニルスルファモイル基またはその塩、リン酸アミドもしくはリン酸エステル構造を含む基、等が挙げられる。これら置換基は、これら置換基でさらに置換されていてもよい。

[0050]

一般式(1-1)において $L_{11}$ は、 $RED_{11}$ で表される還元性基が1電子酸化された後に初めて結合開裂により脱離し得る脱離基を表し、具体的にはカルボキシ基もしくはその塩、またはシリル基を表す。

[0051]

 $L_{11}$ がカルボキシ基の塩を表すとき、塩を形成するカウンターイオンとしては具体的にアルカリ金属イオン( $L_{i}$  \* N a \* K \* C s \* 等)、アルカリ土類金属イオン( $M_{g}$  \* C a \* 2 \* +  $B_{i}$  a \* 2 \* 等)、重金属イオン( $A_{i}$  \*  $A_$ 

[0052]

一般式(1-1)において $R_{112}$ は水素原子または炭素原子に置換可能な置換基を表す。 $R_{112}$ が炭素原子に置換可能な置換基を表す時、ここに置換基とは具体的に、 $RED_{11}$ が置換基を有する時の置換基の例と同じものが挙げられる。但し $R_{112}$ が  $L_{11}$ と同じ基を表すことはない。

[0053]

一般式(1-1)においてR<sub>111</sub>は炭素原子(C)およびRED<sub>11</sub>と共に、特定の5員もしくは6員の環状構造を形成し得る非金属原子団を表す。ここにR<sub>111</sub>が形成する特定の5員もしくは6員の環状構造とは、5員もしくは6員の芳香族環(芳香族ヘテロ環を含む)のテトラヒドロ体、ヘキサヒドロ体もしくはオクタヒドロ体に相当する環構造を意味する。ここにヒドロ体とは、芳香族環(芳香族ヘテロ環を含む)に内在する炭素-炭素2重結合(または炭素-窒素2重結合)が部分的に水素化された環構造を意味し、テトラヒドロ体とは2つの炭素-炭素2重結合(または炭素-窒素2重結合(または炭素-窒素2重結合)が水素化された構造を意味し、ヘキサヒドロ体とは3つの炭素-炭素2重結合(または炭素-窒素2重結合)が水素化された構造を意味し、オクタヒドロ体とは4つの炭素-炭素2重結合(または炭素-窒素2重結合)が水素化された構造を意味する。水素化されることで芳香族環は、少なくとも部分的に水素化された非芳香族の環構造となる。

[0054]

具体的には、単環の5員環の場合の例としてはピロール環、イミダゾール環、チアゾール環、ピラゾール環、オキサゾール環等の芳香族環のテトラヒドロ体に相当する、ピロリジン環、イミダゾリジン環、チアゾリジン環、ピラゾリジン環 およびオキサゾリジン環等が挙げられる。6員環の単環の場合の例としてはピリジン環、ピリダジン環、ピリミジン環、ピラジン環等の芳香族環のテトラヒドロ 体もしくはヘキサヒドロ体が挙げられ、例えばピペリジン環、テトラヒドロピリジン環、テトラヒドロピリミジン環、ピペラジン環等が挙げられる。6員環の縮合環の場合の例としてはナフタレン環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環等の芳香族環のテトラヒドロ体に相当する、テトラリン環、テトラヒドロキノリン環、テトラヒドロキナゾリン環、およびテトラヒドロキノキサリン環等が挙げられる。3環性化合物の場合の例としてはカルバゾール環のテトラヒドロ体のテトラヒドロカルバゾール環やフェナントリジン環のオクタヒドロ体であるオクタヒドロフェナントリジン環等が挙げられる。

[0055]

これらの環構造はさらに置換されていてもよく、その置換基の例としては $\mathtt{RED}_1$ 

1が有していてもよい置換基について説明したものと同じものが挙げられる。これらの環構造の置換基どおしがさらに連結して環を形成していてもよく、ここに新たに形成される環は非芳香族の炭素環またはヘテロ環である。

[0056]

次に本発明の一般式(1-1)で表される化合物の好ましい範囲を説明する。

[0057]

一般式(1-1)においてRED<sub>11</sub>は、好ましくはアルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基、アリール基、芳香族または非芳香族のヘテロ環基であり、このうちヘテロ環基に関してはテトラヒドロキノリニル基、テトラヒドロキノサニル基、インドレニル基、カルバゾリル基、フェノキサジニル基、フェノチアジニル基、ベンゾチアゾリニル基、ピロリル基、イミダゾリル基、チアゾリジニル基、ベンゾイミダゾリル基、ベンゾイミダゾリル基、ベンゾイミダゾリール基などが好ましい。さらに好ましくはアリールアミノ基(特にアニリノ基)、アリール基(特にフェニル基)である。

[0058]

ここでRED<sub>11</sub>がアリール基を表す時、アリール基は少なくとも1つの電子供与性基を有していることが好ましい。電子供与性基の数は、好ましくは4つ以下、さらに好ましくは1~3つがよい。ここに電子供与性基とは即ち、ヒドロキシ基、アルコキシ基、メルカプト基、スルホンアミド基、アシルアミノ基、アルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基、活性メチン基、電子過剰な芳香族へテロ環基((例えばインドリル基、ピロリル基、イミダゾリル基、ベンズイミダゾリル基、チアゾリル基、ベンズチアゾリル基、インダゾリル基など)、窒素原子で置換する非芳香族含窒素ヘテロ環基(ピロリジニル基、インドリニル基、ピペリジニル基、ピペラジニル基、モルホリノ基など)である。ここで活性メ

チン基とは2つの電子求引性基で置換されたメチン基を意味し、ここに電子求引性基とはアシル基、アルコシキカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルスルホニル基、アリールスルホニル基、スルファモイル基、トリフルオロメチル基、シアノ基、ニトロ基、イミノ基を意味する。ここで2つの電子求引性基は互いに結合して環状構造をとっていてもよい。

[0059]

RED<sub>11</sub>がアリール基を表す時、そのアリール基の置換基としてより好ましくはアルキルアミノ基、ヒドロキシ基、アルコキシ基、メルカプト基、スルホンアミド基、活性メチン基、窒素原子で置換する非芳香族含窒素へテロ環基であり、さらに好ましくはアルキルアミノ基、ヒドロキシ基、活性メチン基、窒素原子で置換する非芳香族含窒素へテロ環基であり、最も好ましくはアルキルアミノ基、窒素原子で置換する非芳香族含窒素へテロ環基である。

[0060]

一般式(1-1)においてR<sub>112</sub>は好ましくは水素原子、アルキル基、アリール基(フェニル基など)、アルコキシ基(メトキシ基、エトキシ基、ベンジルオキシ基など)、ヒドロキシ基、アルキルチオ基(メチルチオ基、ブチルチオ基など)、アミノ基、アルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基であり、より好ましくは水素原子、アルキル基、アルコキシ基、フェニル基、アルキルアミノ基である。

[0061]

一般式(1-1)においてR<sub>111</sub>は好ましくは、炭素原子(C)およびRED<sub>11</sub>と共に、以下の特定の5員もしくは6員の環状構造を形成し得る非金属原子団である。即ち、単環の5員環の芳香族環であるピロール環、イミダゾール環のテトラヒドロ体に相当するピロリジン環、イミダゾリジン環など。単環の6員環の芳香族環であるピリジン環、ピリダジン環、ピリミジン環、ピラジン環のテトラヒドロ体もしくはヘキサヒドロ体。例えば、ピペリジン環、テトラヒドロピリジン環、テトラヒドロピリミジン環、ピペラジン環など。縮合環の6員環の芳香族環であるナフタレン環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環のテトラヒドロ体に相当する、テトラリン環、テトラヒドロキノリン環、テトラヒド

ロイソキノリン環、テトラヒドロキナゾリン環,およびテトラヒドロキノキサリン環など。3環性の芳香族環であるカルバゾール環のテトラヒドロ体であるテトラヒドロカルバゾール環や、フェナントリジン環のオクタヒドロ体であるオクタヒドロフェナントリジン環などが挙げられる。

[0062]

R<sub>111</sub>が形成する環状構造としてさらに好ましくは、ピロリジン環、イミダゾリジン環、ピペリジン環、テトラヒドロピリジン環、テトラヒドロピリミジン環、ピペラジン環、テトラヒドロキノリン環、テトラヒドロキナゾリン環、テトラヒドロキノリン環、テトラヒドロキナゾリン環、テトラヒドロカルバゾール環であり、特に好ましくは、ピロリジン環、ピペリジン環、ピペラジン環、テトラヒドロキノリン環、テトラヒドロキノリン環、テトラヒドロキノリン環、テトラヒドロキノリン環であり、最も好ましくはピロリジン環、ピペリジン環、テトラヒドロキノリン環である。

[0063]

次に一般式(1-2)について詳しく説明する。

一般式(1-2)において $RED_{12}$ 、 $L_{12}$ は、それぞれ一般式(1-1)の $RED_{11}$ 、 $L_{11}$ に同義の基であり、その好ましい範囲もまた同じである。但し、 $RED_{12}$ は下記の環状構造を形成する場合以外は1 価基であり、具体的には $RED_{11}$ で記載した1 価基名の基が挙げられる。 $R_{121}$ および $R_{122}$ は一般式(1-1)の $R_{112}$ に同義の基であり、その好ましい範囲もまた同じである。 $ED_{12}$ は電子供与性基を表す。 $R_{121}$ と $RED_{12}$ 、 $R_{121}$ と $R_{122}$ 、または $ED_{12}$ と $RED_{12}$ とは、互いに結合して環状構造を形成していてもよい。

[0064]

一般式(1-2)においてED<sub>12</sub>で表される電子供与性基とは、ヒドロキシ基、アルコキシ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルホンアミド基、アシルアミノ基、アルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基、活性メチン基、電子過剰な芳香族ヘテロ環基(例えばインドリル基、ピロリル基、インダゾリル基)、窒素原子で置換する非芳香族含窒素ヘテロ環基(ピロリジニル基、ピペリジニル基、インドリニル基、ピペラジニル基

、モルホリノ基など)、およびこれら電子供与性基で置換されたアリール基(例えばp-ヒドロキシフェニル基、p-ジアルキルアミノフェニル基、o,p-ジアルコキシフェニル基、4-ヒドロキシナフチル基など)である。ここで活性メチン基とは、R  $ED_{11}$ がアリール基を表すときの置換基として説明したものに同じである。

[0065]

ED<sub>12</sub>として好ましくはヒドロキシ基、アルコキシ基、メルカプト基、スルホンアミド基、アルキルアミノ基、アリールアミノ基、活性メチン基、電子過剰な芳香族へテロ環基、窒素原子で置換する非芳香族含窒素へテロ環基、およびこれら電子供与性基で置換されたフェニル基であり、さらにヒドロキシ基、メルカプト基、スルホンアミド基、アルキルアミノ基、アリールアミノ基、活性メチン基、窒素原子で置換する非芳香族含窒素へテロ環基、およびこれら電子供与性基で置換されたフェニル基(例えばp-ヒドロキシフェニル基、p-ジアルキルアミノフェニル基、o,p-ジアルコキシフェニル基等)が好ましい。

[0066]

一般式(1-2)において $R_{122}$ と $RED_{12}$ 、 $R_{122}$ と $R_{121}$ 、または $ED_{12}$ と $RED_{12}$ とは、互いに結合して環状構造を形成していてもよい。ここで形成される環状構造とは、非芳香族の炭素環もしくはヘテロ環であって、5 員 $\sim 7$  員環の単環または縮合環で、置換もしくは無置換の環状構造である。

[0067]

 $R_{122}$ と $RED_{12}$ とが環構造を形成するとき、その具体例としてはピロリジン環、 ピロリン環、イミダゾリジン環、イミダゾリン環、チアゾリン環、チアゾリン環、ピラゾリジス環、ピラゾリン環、オキサゾリン環、オキサゾリン環、インダン環、ピペリジン環、ピペラジン環、モルホリン環、テトラヒドロピリジン環、テトラヒドロピリミジン環、インドリン環、テトラリン環、テトラヒドロキノリン環、テトラヒドロイソキノリン環、テトラヒドロキノキサリン環、テトラヒドロイソキノリン環、テトラヒドロキノキサリン環、テトラヒドロー1,4-オキサジン環、2,3-ジヒドロベンゾー1,4-オキサジン環、2,3-ジヒドロベンゾフラン環、2,3-ジヒドロベンゾチオフェン環等が挙げられる。

[0068]

 $\mathrm{ED}_{12}$ と $\mathrm{RED}_{12}$ とが環構造を形成するとき、 $\mathrm{ED}_{12}$ は好ましくはアミノ基、アルキルアミノ基、アリールアミノ基を表し、形成される環構造の具体例としては、テトラヒドロピラジン環、ピペラジン環、テトラヒドロキノキサリン環、テトラヒドロイソキノリン環などが挙げられる。

## [0069]

 $R_{122}$ と $R_{121}$ とが環構造を形成するとき、その具体例としてはシクロヘキサン環、シクロペンタン環などが挙げられる。

## [0070]

本発明の一般式(1-1)で表される化合物のうちさらに好ましいものは、以下の一般式 $(1\ 0)$ ~ $(1\ 2)$ で、また一般式(1-2)で表される化合物のうちさらに好ましいものは、以下の一般式 $(1\ 3)$ および $(1\ 4)$ で表される。

[0071]

## 【化5】

[0072]

一般式(10) $\sim$ (14)において、 $L_{100}$ 、 $L_{101}$ 、 $L_{102}$ 、 $L_{103}$ 、 $L_{104}$ は一般式(1-1)の $L_{11}$ に同義の基であり、その好ましい範囲もまた同じである。 $R_{110}$ 

 $0^{\text{とR}}_{1101}$ 、 $R_{1110}^{\text{とR}}_{1111}$ 、 $R_{1120}^{\text{とR}}_{1121}$ 、 $R_{1130}^{\text{とR}}_{1131}$ 、 $R_{1140}^{\text{とR}}_{1141}$ は、それぞれ一般式(1-2)の $R_{122}^{\text{とR}}_{121}$ に同義の基であり、その好ましい範囲もまた同じである。 $\text{ED}_{13}$ 、 $\text{ED}_{14}$ はそれぞれ一般式(1-2)の $\text{ED}_{12}^{\text{と}}$ と同義の基を表し、その好ましい範囲もまた同じである。

## [0073]

 $X_{10}$ 、 $X_{11}$ 、 $X_{12}$ 、 $X_{13}$ 、 $X_{14}$ はそれぞれベンゼン環に置換可能な置換基を表し、 $m_{10}$ 、 $m_{11}$ 、 $m_{12}$ 、 $m_{13}$ 、 $m_{14}$ はそれぞれ $0\sim3$ の整数を表し、これらが複数の時、複数の $X_{10}$ 、 $X_{11}$ 、 $X_{12}$ 、 $X_{13}$ 、 $X_{14}$ は同じでも異なっていてもよい。 $Y_{12}$ および $Y_{14}$ はアミノ基、アルキルアミノ基、アリールアミノ基、窒素原子で置換する非芳香族の含窒素へテロ環基(ピロリル基、ピペリジニル基、インドリニル基、ピペラジノ基、モルホリノ基など)、ヒドロキシ基、アルコキシ基を表す。

## [0074]

 $Z_{10}$ 、 $Z_{11}$ 、 $Z_{12}$ は、特定の環構造を形成しうる非金属原子団を表す。 $Z_{10}$ が形成する特定の環構造とは、5 員または6 員の、単環もしくは縮合環の、含窒素芳香族へテロ環のテトラヒドロ体もしくはヘキサヒドロ体にあたる環構造で、具体的にはピロリジン環、イミダゾリジン環、チアゾリジン環、ピラゾリジン環、ピペリジン環、テトラヒドロピリジン環、テトラヒドロピリミジン環、パペラジン環、テトラヒドロキノリン環、テトラヒドロオノキノリン環、テトラヒドロキナゾリン環、テトラヒドロキノキサリン環、などが例として挙げられる。 $Z_{11}$ が形成する環構造とは、 $Z_{11}$ が形成する環構造が縮合するベンゼン環も含めた環構造としてテトラヒドロキノリン環、テトラヒドロキノキサリン環、ホトラヒドロキノキサリン環である。 $Z_{12}$ が形成する特定の環構造とは、 $Z_{12}$ が形成する特定の環構造が縮合するベンゼン環も含めた環構造としてテトラリン環、テトラヒドロキノリン環、テトラヒドロ

# [0075]

 $\mathrm{RN}_{11}$ 、  $\mathrm{RN}_{13}$ はそれぞれ水素原子、または窒素原子に置換可能な置換基である。 置換基としては具体的に、アルキル基、アルケニル基、アルキニル基、アリール 基、複素環基、アシル基であり、好ましくはアルキル基、アリール基である。

[0076]

X<sub>10</sub>、X<sub>11</sub>、X<sub>12</sub>、X<sub>13</sub>、X<sub>14</sub>で表されるベンゼン環に置換可能な置換基としては、一般式(1-1)のRED<sub>11</sub>が有していてもよい置換基の例と同じものが具体例として挙げられる。好ましくは、ハロゲン原子、アルキル基、アリール基、複素環基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、シアノ基、アルコキシ基(エチレンオキシ基もしくはプロピレンオキシ基単位を繰り返し含む基を含む)、(アルキル、アリール、またはヘテロ環)アミノ基、アシルアミノ基、スルホンアミド基、ウレイド基、チオウレイド基、イミド基、(アルコキシもしくはアリールオキシ)カルボニルアミノ基、ニトロ基、(アルキル、アリール、またはヘテロ環)チオ基、(アルキルまたはアリール)スルホニル基、スルファモイル基等である。

[0077]

 $m_{10}$ 、 $m_{11}$ 、 $m_{12}$ 、 $m_{13}$ 、 $m_{14}$ は好ましくは $0\sim2$ であり、さらに好ましくは0または1である。

[0078]

 $Y_{12}$ および $Y_{14}$ は好ましくはアルキルアミノ基、アリールアミノ基、窒素原子で置換する非芳香族の含窒素へテロ環基、ヒドロキシ基、アルコキシ基であり、さらに好ましくはアルキルアミノ基、窒素原子で置換する $5\sim6$  員の非芳香族含窒素へテロ環基、ヒドロキシ基であり、最も好ましくはアルキルアミノ基(特にジアルキルアミノ基)または窒素原子で置換する $5\sim6$  員の非芳香族含窒素へテロ環基である。

[0079]

一般式(13)において $R_{1131}$ と $X_{13}$ 、 $R_{1131}$ と $RN_{13}$ 、 $R_{1130}$ と $X_{13}$ 、または $R_{1130}$ と  $RN_{13}$ とが結合して、環状構造を形成していてもよい。また一般式(14)において  $R_{1141}$ と $X_{14}$ 、 $R_{1141}$ と $X_{140}$ 、 $ED_{14}$ と $X_{14}$ 、または $X_{140}$ と $X_{14}$ とが結合して、環状構造を形成していてもよい。ここで形成される環状構造とは、非芳香族の炭素環 もしくはヘテロ環であって、5 員~7 員環の単環または縮合環で、置換もしくは 無置換の環状構造である。

[0080]

一般式(13)において $R_{1131}$ と $X_{13}$ とが結合して環状構造を形成する場合、およ

び $\mathbf{R}_{1131}$ と $\mathbf{RN}_{13}$ とが結合して環状構造を形成する場合は、環構造を形成しない場合と同様に、一般式 $(1\ 3)$ で表される化合物の好ましい例である。

[0081]

一般式(13)において $R_{1131}$ と $X_{13}$ とで形成される環構造としては具体的に、インドリン環(この場合、 $R_{1131}$ は単結合を表すことになる)、テトラヒドロキノリン環、テトラヒドロキノキサリン環、2,3-ジヒドロベンゾ-1,4-オキサジン環、2,3-ジヒドロベンゾ-1,4-オキサジン環、2,3-ジヒドロベンゾ-1,4-チアジン環、などが挙げられる。特に好ましくはインドリン環、テトラヒドロキノリン環、テトラヒドロキノリン環である。

[0082]

一般式(13)においてR<sub>1131</sub>とRN<sub>13</sub>とで形成される環構造としては具体的に、 ピロリジン環、ピロリン環、イミダゾリジン環、イミダゾリン環、チアゾリジン 環、チアゾリン環、ピラゾリジン環、ピラゾリン環、オキサゾリジン環、オキサ ゾリン環、ピペリジン環、ピペラジン環、モルホリン環、テトラヒドロピリジン 環、テトラヒドロピリミジン環、インドリン環、テトラヒドロキノリン環、テト ラヒドロイソキノリン環、テトラヒドロキノキサリン環、テトラヒドロ-1,4-オ キサジン環、2,3-ジヒドロベンゾ-1,4-オキサジン環、テトラヒドロ-1,4-チアジ ン環、2,3-ジヒドロベンゾ-1,4-チアジン環、2,3-ジヒドロベンゾフラン環、2,3 -ジヒドロベンゾチオフェン環、等が挙げられる。特に好ましくはピロリジン環 、ピペリジン環、テトラヒドロキノリン環、テトラヒドロキノキサリン環である

[0083]

一般式(14)において $R_{1141}$ と $X_{14}$ とが結合して環状構造を形成する場合、および $ED_{14}$ と $X_{14}$ とが結合して環状構造を形成する場合は、環構造を形成しない場合と同様に、一般式(14)で表される化合物の好ましい例である。一般式(14)において $R_{1141}$ と $X_{14}$ とが結合して形成する環状構造としては、インダン環、テトラリン環、テトラヒドロキノリン環、テトラヒドロイソキノリン環、インドリン環などが挙げられる。 $ED_{14}$ と $X_{14}$ とが結合して形成する環状構造としては、テトラヒドロイソキノリン環、テトラヒドロイソキノリン環、テトラヒドロシンノリン環などが挙げられる。

[0084]

次にタイプ2に属する化合物について説明する。

タイプ2に属する化合物は1電子酸化されて1電子酸化体となった後に、初めて炭素-炭素結合開裂反応を伴なってさらにもう1電子を放出し、言いかえればさらに1電子酸化され得る化合物である。ここに結合開裂反応とは炭素-炭素結合の開裂を意味し、炭素-水素結合の開裂がこれに付随してもよい。

## [0085]

タイプ 2 に属する化合物のうち好ましい化合物は一般式(2)で表されるが、ここにRED $_2$ で表される還元性基が 1 電子酸化された後、自発的に $L_2$ を結合開裂反応により離脱することで、即ちC (炭素原子)  $-L_2$ 結合が開裂することで、これに伴いさらに電子を 1 つ放出し得る化合物である。

### [0086]

但しタイプ2に属する化合物は分子内にハロゲン化銀への吸着性基を2つ以上 有する化合物である。より好ましくは2つ以上のメルカプト基で置換された含窒素へテロ環基を吸着性基として有する化合物である。吸着基の数は、好ましくは 2~6、さらに好ましくは、2~4が良い。吸着性基については後述する。

## [0087]

一般式(2)において $\mathrm{RED}_2$ は一般式(1-2)の $\mathrm{RED}_{12}$ と同義の基を表し、その好ましい範囲も同じである。 $\mathrm{L}_2$ はカルボキシ基またはその塩を表し、塩を形成するカウンターイオンについては一般式(1-1)の $\mathrm{L}_{11}$ について説明したのと同じであり、その好ましい範囲も同じである。 $\mathrm{R}_{21}$ 、 $\mathrm{R}_{22}$ は水素原子または置換基を表し、これらは一般式(1-1)の $\mathrm{R}_{112}$ と同義の基であり、その好ましい範囲も同じである。 $\mathrm{RED}_2$ と $\mathrm{R}_{21}$ とは互いに結合して環構造を形成していてもよい。

## [0088]

ここで形成される環構造とは、5 員もしくは6 員の、単環もしくは縮合環の芳香族環 (芳香族ヘテロ環を含む) のジヒドロ体に相当する環構造で、置換基を有していてもよい。

## [0089]

環構造の具体例としては、例えば2-ピロリン環、2-イミダゾリン環、2-チアゾリン環、1,2-ジヒドロピリジン環、1,4-ジヒドロピリジン環、イ ンドリン環、ベンゾイミダゾリン環、ベンゾチアゾリン環、ベンゾオキサゾリン環、2,3-ジヒドロベンゾチオフェン環、2,3-ジヒドロベンゾフラン環、ベンゾーα-ピラン環、1,2-ジヒドロキノリン環、1,2-ジヒドロキナゾリン環、1,2-ジヒドロキノキサリン環などが挙げられる。好ましくは、2-イミダゾリン環、2-チアゾリン環、インドリン環、ベンゾイミダゾリン環、ベンゾチアゾリン環、ベンゾオキサゾリン環、1,2-ジヒドロピリジン環、1,2-ジヒドロキノリン環、1,2-ジヒドロキナゾリン環、1,2-ジヒドロキノキサリン環などが挙げられ、インドリン環、ベンゾイミダゾリン環、ベンゾチアゾリン環、1,2-ジヒドロキノリン環がより好ましく、インドリン環が特に好ましい。

[0090]

次にタイプ3に属する化合物について説明する。

タイプ3に属する化合物は1電子酸化されて生成する1電子酸化体が、引き続く結合形成過程を経た後に、さらに1電子もしくはそれ以上の電子を放出し得ることを特徴とする化合物であり、ここに結合形成過程とは炭素-炭素、炭素-窒素、炭素-硫黄、炭素-酸素などの原子間結合の形成を意味する。

[0091]

タイプ3に属する化合物は好ましくは、1電子酸化されて生成する1電子酸化体が、引き続いて分子内に共存する炭素-炭素2重結合部位または炭素-炭素3 重結合部位と反応して結合を形成した後に、さらに1電子もしくはそれ以上の電子を放出し得ることを特徴とする化合物である。

[0092]

タイプ3に属する化合物が1電子酸化されて生成する1電子酸化体とはカチオンラジカル種であるが、そこからプロトンの脱離を伴って中性のラジカル種となる場合も在り得る。この1電子酸化体(カチオンラジカル種もしくはラジカル種)が、同じ分子内に共存する炭素 - 炭素 2 重結合部位または炭素 - 炭素 3 重結合部位に、一般に「付加環化反応」と呼ばれる形式の化学反応を起し、炭素 - 炭素、炭素 - 硫黄、炭素 - 酸素などの原子間結合を形成して、分子内に新たな環構造を形成する。その際同時に、もしくはその後に、さらに1電子もしく

はそれ以上の電子が放出される点にタイプ3に属する化合物の特徴がある。

[0093]

さらに詳細に述べるとタイプ3に属する化合物は、1電子酸化された後にこの 付加環化反応により新たに環構造を有するラジカル種を生成するが、このラジカ ル種から直接もしくはプロトンの脱離を伴って、さらに2電子目の電子が放出さ れ、酸化される特徴を有している。

[0094]

タイプ3に属する化合物にはさらに、そうして生成した2電子酸化体がその後、ある場合には加水分解反応を受けた後に、またある場合には直接、プロトンの移動に伴なう互変異性化反応を起して、そこからさらに1電子以上、通常2電子以上の電子を放出し、酸化される能力を有しているものが含まれる。あるいはまたこうした互変異性化反応を経由せずに、直接その2電子酸化体から、さらに1電子以上、通常2電子以上の電子を放出し、酸化される能力を有しているものが含まれる。

[0095]

タイプ3に属する化合物は好ましくは、一般式(3)で表される。

[0096]

一般式(3)において $RED_3$ は、一般式(1-2)の $RED_{12}$ と同義の基を表す。

[0097]

RED<sub>3</sub>として好ましくは、アリールアミノ基、ヘテロ環アミノ基、またはヒドロキシ基、メルカプト基、アルキルチオ基、メチル基およびアミノ基からなる群から選択される基で置換されたアリール基もしくはヘテロ環基である。

[0098]

RED<sub>3</sub>がアリールアミノ基を表すとき、例えばアニリノ基、ナフチルアミノ基などが挙げられる。ヘテロ環アミノ基のヘテロ環は、芳香族または非芳香族の、単環または縮合環のヘテロ環であり、少なくとも一つの芳香族環を部分構造として含んでいるのが好ましい。ここで芳香族環を部分構造として含むとは、1)ヘテロ環自体が芳香族環である、2)ヘテロ環に芳香族環が縮環している、3)ヘテロ環に芳香族環が置換している、のいずれであってもよいが、1)または2)が

好ましい。ここにアミノ基は該へテロ環に部分構造として含まれる芳香族環上に直接置換されている。該へテロ環としては例えばピロール環、インドール環、インドリン環、イミダゾール環、ベンゾイミダゾール環、ベンゾイミダゾリン環、チアゾール環、ベンゾチアゾール環、ベンゾチアゾリン環、オキサゾール環、ベンゾオキサゾール環、ベンゾオキサゾリン環、キノリン環、テトラヒドロキノリン環、キノキサリン環、テトラヒドロキノキサリン環、キナゾリン環、テトラヒドロキノリン環、キノキサリン環、ピリジン環、イソキノリン環、チオフェン環、ベンゾチオフェン環、2、3ージヒドロベンゾチオフェン環、フラン環、ベンゾフラン環、2、3ージヒドロベンゾフラン環、カルバゾール環、フェノチアジン環、フェノキサジン環、フェナジン環等が挙げられる。

[0099]

RED3がアリールアミノ基またはヘテロ環アミノ基を表すとき、ここにアリールアミノ基のアミノ基、およびヘテロ環アミノ基のアミノ基は、さらに任意の置換基で置換されていてもよく、この置換基によって、該アリール基または該ヘテロ環基とさらに環構造を形成していてもよい。この様な例としては、例えば、インドリン環、テトラヒドロキノリン環、カルバゾール環などが挙げられる。

[0100]

RED<sub>3</sub>がヒドロキシ基、メルカプト基、メチル基、アルキルチオ基またはアミノ基などで置換されたアリール基またはヘテロ環基を表すとき、ここにアリール基とはフェニル基、ナフチル基などが挙げられ、ヘテロ環基のヘテロ環としては、「ヘテロ環アミノ基のヘテロ環」について説明したのと同じものが挙げられる。またここでメチル基は任意の置換基を有していてもよく、さらにこの置換基によってアリール基またはヘテロ環基と環構造を形成していてもよい。この様な環構造としては、例えばテトラリン環、インダン環などが挙げられる。一方アミノ基も、アルキル基、アリール基、ヘテロ環基を置換基として有していてもよく、さらにこれら置換基によってアリール基またはヘテロ環基と環構造を形成していてもよい。この様な環構造としては、例えばテトラヒドロキノリン環、インドリン環、カルバゾール環等が挙げられる。

[0101]

RED<sub>3</sub>は、好ましくはアリールアミノ基、あるいはヒドロキシ基、メルカプト基、メチル基またはアミノ基で置換されたアリール基またはヘテロ環基であり、さらに好ましくはアリールアミノ基、あるいはメルカプト基、メチル基またはアミノ基で置換されたアリール基またはヘテロ環基である。RED<sub>3</sub>は特に好ましくはアリールアミノ基、あるいはメチル基またはアミノ基で置換されたアリール基またはヘテロ環基である。

### [0102]

アリールアミノ基としてはアニリノ基、ナフチルアミノ基が好ましく、特にアニリノ基が好ましい。アニリノ基の置換基としては、クロル原子、アルキル基、アルコキシ基、アシルアミノ基、スルファモイル基、カルバモイル基、ウレイド基、スルホンアミド基、アルコシキカルボニル基、シアノ基、アルキルもしくはアリールスルホニル基、ヘテロ環基などが好ましい。

### [0103]

ヒドロキシ基で置換されたアリール基もしくはヘテロ環基として好ましくは、 例えばヒドロキシフェニル基、5ーヒドロキシインドリン環基、6ーヒドロキシ -1,2,3,4ーテトラヒドロキノリン環基などが挙げられ、中でもヒドロキ シフェニル基が特に好ましい。

### [0104]

メルカプト基で置換されたアリール基もしくはヘテロ環基として好ましくは、 例えば、メルカプトフェニル基、5ーメルカプトインドリン環基、6ーメルカプトー1,2,3,4ーテトラヒドロキノリン環基などが挙げられ、中でもメルカプトフェニル基が特に好ましい。

#### [0105]

メチル基で置換されたアリール基もしくはヘテロ環基として好ましくは、例えばメチルフェニル基、エチルフェニル基、イソプロピルフェニル基、3ーメチルインドール環基、3ーイソプロピルインドール環基、5ーメチルインドール環基、5ーメチルインドリン環基、6ーメチルー1,2,3,4ーテトラヒドロキノリン環基、6ーメチルー1,2,3,4ーテトラヒドロキノギウリン環基等が挙げられる。

[0106]

アミノ基で置換されたアリール基もしくはヘテロ環基として好ましくは、例えば、メチルアミノフェニル基、オクチルアミノフェニル基、ドデシルアミノフェニル基、フェニルアミノフェニル基、フェニルアミノフェニル基、メチルアミノナフチル基、5ーメチルアミノテトラリン、1ーブチルアミノー3,4ーメチレンジオキシフェニル基、3ーメチルアミノピロール環基、3ーエチルアミノインドール環基、5ーベンジルアミノインドリン環基、2ーアミノイミダゾール環基、2ーメチルアミノチアゾール環基、6ーフェニルアミノベンゾチアゾール環基などが挙げられる。これらのうちさらに好ましくはアルキルアミノ基またはフェニルアミノ基で置換されたフェニル基であり、特に好ましくはアルキルアミノ基で置換されたフェニル基である。

[0107]

ヒドロキシ基、メルカプト基、メチル基またはアミノ基で置換されたアリール 基またはヘテロ環基が有する置換基としては、クロル原子、アルキル基、アルコ キシ基、アシルアミノ基、スルファモイル基、カルバモイル基、ウレイド基、ス ルホンアミド基、アルコシキカルボニル基、シアノ基、アルキルもしくはアリー ルスルホニル基、ヘテロ環基、アルキルアミノ基、アリールアミノ基などが好ま しい。

[0108]

一般式(3)において $Y_3$ で表される反応性基とは、具体的には炭素-炭素2重結合部位または炭素-炭素3重結合部位を少なくとも1つ含む有機基を表す。炭素-炭素2重結合部位を有する有機基としては、置換または無置換のビニル基が挙げられ、炭素-炭素3重結合部位を有する有機基としては、置換または無置換のエチニル基が挙げられる。該炭素-炭素2重結合または炭素-炭素3重結合部位を少なくとも1つ含む有機基は置換基を有していてもよく、置換基としては、一般式(1-1)のRED $_{11}$ が有していてもよい置換基として説明したものと同じものが挙げられる。好ましくは、アルキル基、アリール基、アルコキシカルボニル基、カルバモイル基、アシル基、シアノ基、電子供与性基などである。ここに電子供与性基とは、アルコキシ基、ヒドロキシ基、アミノ基、アルキルアミノ基、

アリールアミノ基、ヘテロ環アミノ基、スルホンアミド基、アシルアミノ基、活性メチン基、メルカプト基、アルキルチオ基、アリールチオ基、およびこれらの基を置換基に有するアリール基である。ここで活性メチン基とは、2つの電子求引性基で置換されたメチン基を意味し、ここに電子求引性基とはアシル基、アルコシキカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルスルホニル基、アリールスルホニル基、スルファモイル基、トリフルオロメチル基、シアノ基、ニトロ基、イミノ基を意味する。ここで2つの電子求引性基は互いに結合して環状構造をとっていてもよい。

## [0109]

¥3が炭素-炭素2重結合部位を少なくとも1つ含む基を表すとき、その置換基としてより好ましくは、アルキル基、アルコキシカルボニル基、カルバモイル基、電子供与基などであり、ここに電子供与性基として好ましくは、アルコキシ基、アミノ基、アルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基、スルホンアミド基、アシルアミノ基、活性メチン基、メルカプト基、アルキルチオ基、およびこれら電子供与性基を置換基に有するフェニル基である。また置換基としてアルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基などが互いに結合して炭素-炭素2重結合を含む環構造を形成する場合も好ましく、具体的には、例えば2、3-ジヒドローγーピラン環基、シクロヘキセン環基、1-チアー2-シクロヘキセン-3-イル基、テトラヒドロピリジン環基などが挙げられる。

## [0110]

Y<sub>3</sub>が炭素 - 炭素 2 重結合部位を少なくとも 1 つ含む有機基を表す時、その置換基が互いに結合して環状構造を形成していてもよい。ここに形成される環状構造は、非芳香族の、5 員~7 員の炭素環もしくはヘテロ環である。 Y<sub>3</sub>が炭素 - 炭素 3 重結合部位を少なくとも 1 つ含む基を表すとき、その置換基としては水素原子、アルコキシカルボニル基、カルバモイル基、電子供与基などが好ましく、ここに電子供与性基として好ましくは、アルコキシ基、アミノ基、アルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基、スルホンアミド基、アシルアミノ基、活性メチン基、メルカプト基、アルキルチオ基、およびこれら電子供与性基

を置換基に有するフェニル基である。

### [0111]

一般式(3)において $Y_3$ で表される反応性基としてより好ましくは、炭素-炭素 2 重結合を少なくとも 1 つ含む有機基である。

# [0112]

一般式(3)において $L_3$ は、 $RED_3$ と $Y_3$ とを連結する連結基を表し、具体的には単結合、アルキレン基、アリーレン基、ヘテロ環基、-O-、-S-、-NRN-、-C (=O) -、 $-SO_2$ -、-SO-、-P (=O) -の各基の単独、またはこれらの基の組み合わせからなる基を表す。ここにRNは水素原子、アルキル基、アリール基、ヘテロ環基を表す。 $L_3$ で表される連結基は置換基を有していてもよい。置換基としては、-般式(1-1)の $RED_{11}$ が有していてもよい置換基として説明したものと同じものが挙げられる。

### [0113]

一般式(3)の $L_3$ で表される基は、一般式(3)の $RED_3$ が酸化されて生成するカチオンラジカル種、またはそこからプロトンの脱離を伴って生成するラジカル種と、一般式(3)の $Y_3$ で表される反応性基とが反応して結合形成する際、これに関わる原子団が、 $L_3$ を含めて3~7員の環状構造を形成しうることが好ましい

### [0114]

# [0115]

一般式(3)で表される化合物のうち、好ましい化合物は、以下の一般式(I)~(IV)によって表される。

# [0116]

【化6】



[0117]

一般式(I)~(IV)において $A_{100}$ 、 $A_{200}$ 、 $A_{300}$ 、 $A_{400}$ はアリール基またはへテロ環基を表し、その好ましい範囲は一般式(3)のRED $_3$ の好ましい範囲と同じである。ただし、 $A_{100}$ 、 $A_{200}$ 、および $A_{400}$ は、アリール基又はヘテロ環基から水素原子を1つ除いた2価の基を表す。 $L_{301}$ 、 $L_{302}$ 、 $L_{303}$ 、 $L_{304}$ は連結基を表し、これは一般式(3)の $L_3$ と同義の基を表し、その好ましい範囲もまた同じである。 $Y_{100}$ 、 $Y_{200}$ 、 $Y_{300}$ 、 $Y_{400}$ は反応性基を表し、これは一般式(3)の $Y_{300}$  、 $Y_{400}$ は反応性基を表し、これは一般式(3)の $Y_{300}$  、 $Y_{300}$  、 $Y_{400}$  は反応性基を表し、これは一般式(3)の $Y_{300}$  、 $Y_{300}$  、 $Y_{400}$  は反応性基を表し、これは一般式(3)の $Y_{300}$  、 $Y_{310}$  。 $Y_{310}$  。

[0118]

ここで一般式(I)~(IV)と一般式(3)との関係を説明すると、一般式(I)の $A_{10}$ 0は $-CH(R_{3110})(R_{3100})$ で置換されたアリール基またはヘテロ環基を表し、一般式(II)の $A_{200}$ は $-N(R_{3210})(R_{3200})$ で置換されたアリール基もしくはヘテロ環基を表し、一般式(IV)の $A_{400}$ は $X_{400}$ で表されるヒドロキシ基、メルカプト基、またはアルキルチオ基で置換されたアリール基もしくはヘテロ環基を表し、一般式(III)の $A_{300}$  $-N(R_{3310})$ -で表される基は同様にアリールアミノ基またはヘテロ環アミノ基を表す。

# [0119]

一般式(I)~(IV)のうち、より好ましい化合物は、一般式(I)、(II)、(IV)で表される化合物である。

### [0120]

次にタイプ4に属する化合物について説明する。

タイプ4に属する化合物は還元性基の置換した環構造を有する化合物であり、 該還元性基が1電子酸化された後、環構造の開裂反応を伴ってさらに1電子もし くはそれ以上の電子を放出しうる化合物である。

# [0121]

タイプ4に属する化合物は1電子酸化を受けた後に環構造が開裂する。ここで 言う環の開裂反応は、次の反応式で表される形式のものを指す。

### [0122]

【化7】

[0123]

上記反応式中、化合物aはタイプ4に属する化合物を表す。化合物a中、Dは還元性基を表し、X、Yは環構造中の1電子酸化後に開裂する結合を形成している原子を表す。まず化合物aが1電子酸化されて1電子酸化体 b を生成する。ここからD-Xの単結合が2重結合になると同時にX-Yの結合が切断され開環体 c が生成する。あるいはまた1電子酸化体 b からプロトンの脱離を伴ってラジカル中間体 d が生成し、ここから同様に開環体eを生成する経路をとる場合もある。このように生成した開環体 c またはeから、引き続きさらに1つ以上の電子が放出される点に本発明の化合物の特徴がある。

#### [0124]

タイプ4に属する化合物が有する環構造とは、3~7員環の炭素環またはヘテロ環であり、単環もしくは縮環の、飽和もしくは不飽和の非芳香族の環を表す。好ましくは飽和の環構造であり、より好ましくは3員環あるいは4員環である。好ましい環構造としてはシクロプロパン環、シクロブタン環、オキシラン環、オキセタン環、アジリジン環、アゼチジン環、エピスルフィド環、チエタン環が挙げられる。より好ましくはシクロプロパン環、シクロブタン環、オキシラン環、オキセタン環、アゼチジン環であり、特に好ましくはシクロプロパン環、シクロブ

タン環、アゼチジン環である。環構造は置換基を有していても良い。

# [0125]

タイプ4に属する化合物は好ましくは一般式(4-1)または(4-2)で表される。

### [0126]

一般式(4-1)および一般式(4-2)において $\text{RED}_{41}$ および $\text{RED}_{42}$ は、それぞれ一般式(1-2)の $\text{RED}_{12}$ と同義の基を表し、その好ましい範囲もまた同じである。  $\text{R}_{40} \sim \text{R}_{44}$ および $\text{R}_{45} \sim \text{R}_{49}$ は、それぞれ水素原子または置換基を表す。置換基としては $\text{RED}_{12}$ が有していてもよい置換基と同じものが挙げられる。一般式(4-2)において $\text{Z}_{42}$ は、 $-\text{CR}_{420}$  $\text{R}_{421}$ -、 $-\text{NR}_{423}$ -、または-O-を表す。ここに $\text{R}_{4}$ 20、 $\text{R}_{421}$ は、それぞれ水素原子または置換基を表し、 $\text{R}_{423}$ は水素原子、アルキル基、アリール基またはヘテロ環基を表す。

# [0127]

一般式(4-1)においてR<sub>40</sub>は、好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ環基、アルコキシ基、アミノ基、アルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基、アルコキシカルボニル基、アシル基、カルバモイル基、シアノ基、スルファモイル基を表し、より好ましくは水素原子、アルキル基、アリール基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アシル基、カルバモイル基であり、特に好ましくは水素原子、アルキル基、アリール基、ヘテロ環基、アルコキシカルボニル基、カルバモイル基である。

### [0128]

 $R_{41} \sim R_{44}$ は、これらのうち少なくとも1つがドナー性基である場合と、 $R_{41} \succeq R_{4}$ 2、あるいは $R_{43} \succeq R_{44}$ がともに電子求引性基である場合が好ましい。より好ましくは $R_{41} \sim R_{44}$ の少なくとも1つがドナー性基である場合である。さらに好ましくは $R_{41} \sim R_{44}$ の少なくとも1つがドナー性基であり且つ、 $R_{41} \sim R_{44}$ の中でドナー性基でない基が水素原子またはアルキル基である場合である。

### [0129]

ここで言うドナー性基とは、ヒドロキシ基、アルコキシ基、アリールオキシ基

、メルカプト基、アシルアミノ基、スルホニルアミノ基、活性メチン基、あるい  $\mathsf{tRED}_{41}$ および $\mathsf{RED}_{42}$ として好ましい基の群から選ばれる基である。ドナー性基と して好ましくはアルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基、窒素 原子を環内に1つ持つ5員環の芳香族へテロ環基(単環でも縮環でもよい)、窒素 原子で置換する非芳香族含窒素ヘテロ環基、少なくとも1つの電子供与性基で置 換されたフェニル基(ここでは電子供与性基はヒドロキシ基、アルコキシ基、ア リールオキシ基、アミノ基、アルキルアミノ基、アリールアミノ基、ヘテロ環ア ミノ基、または窒素原子で置換する非芳香族含窒素ヘテロ環基を表す)が用いら れる。より好ましくはアルキルアミノ基、アリールアミノ基、窒素原子を環内に 1つ持つ5員環の芳香族ヘテロ環基(ここでは芳香族ヘテロ環はインドール環、ピ ロール環、カルバゾール環を表す)、電子供与性基で置換されたフェニル基(こ こでは特に3つ以上のアルコキシ基で置換されたフェニル基、ヒドロキシ基また はアルキルアミノ基またはアリールアミノ基で置換されたフェニル基を表す)が 用いられる。特に好ましくはアリールアミノ基、窒素原子を環内に1つ持つ5員環 の芳香族へテロ環基(ここでは3-インドリル基を表す)、電子供与性基で置換 されたフェニル基(ここでは特にトリアルコキシフェニル基、アルキルアミノ基 またはアリールアミノ基で置換されたフェニル基を表す)が用いられる。電子求 引性基は、既に活性メチン基についての説明の中で説明したものと同じである。

[0130]

一般式(4-2)において $R_{45}$ の好ましい範囲は、上述の一般式(4-1)の $R_{40}$ のそれと同じである。

### [0131]

 $R_{46} \sim R_{49}$ として好ましくは水素原子、アルキル基、アルケニル基、アルキール基、アリール基、ヘテロ環基、ヒドロキシ基、アルコキシ基、アミノ基、アルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基、メルカプト基、アリールチオ基、アルキルチオ基、アシルアミノ基、スルホンアミノ基であり、より好ましくは水素原子、アルキル基、アリール基、ヘテロ環基、アルコキシ基、アルキルアミノ基、アリールアミノ基、ヘテロ環アミノ基である。特に好ましい $R_{46} \sim R_{49}$ は、 $Z_{42} \acute{n} - CR_{420} R_{421} - c$ 表される基の場合には水素原子、アルキル基、アリー

ル基、ヘテロ環基、アルキルアミノ基、アリールアミノ基であり、 $Z_{42}$ が $-NR_{423}$  - を表す場合には水素原子、アルキル基、アリール基、ヘテロ環基であり、 $Z_{42}$  が-0- を表す場合には水素原子、アルキル基、アリール基、ヘテロ環基である

# [0132]

 $\mathbf{Z}_{42}$ として好ましくは $-\mathbf{CR}_{420}\mathbf{R}_{421}$ ーまたは $-\mathbf{NR}_{423}$ ーであり、より好ましくは $-\mathbf{NR}_{423}$ ーである。

### [0133]

 $R_{420}$ 、 $R_{421}$ は好ましくは、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ環基、ヒドロキシ基、アルコキシ基、アミノ基、メルカプト基、アシルアミノ基、スルホンアミノ基であり、より好ましくは水素原子、アルキル基、アリール基、ヘテロ環基、アルコキシ基、アミノ基である。 $R_{423}$ は好ましくは水素原子、アルキル基、アリール基、芳香族ヘテロ環基を表し、より好ましくはメチル基、エチル基、イソプロピル基、tーブチル基、tーアミル基、ベンジル基、ジフェニルメチル基、アリル基、フェニル基、ナフチル基、2 ーピリジル基、4 ーピリジル基、2 ーチアゾリル基である。

### [0134]

 $R_{40} \sim R_{49}$ および $R_{420}$ 、 $R_{421}$ 、 $R_{423}$ の各基が置換基である場合にはそれぞれ総炭素数が40以下のものが好ましく、より好ましくは総炭素数30以下で、特に好ましくは総炭素数15以下である。またこれらの置換基は互いに結合して、あるいは分子中の他の部位 $(RED_{41}$ 、 $RED_{42}$ あるいは $Z_{42}$ )と結合して環を形成していても良い

### [0135]

本発明のタイプ1、3、4に属する化合物は、「分子内にハロゲン化銀への吸着性基を少なくとも1つ有する化合物」であるか、または「分子内に、分光増感色素の部分構造を少なくとも1つ有する化合物」であることが好ましい。タイプ2に属する化合物は、「分子内にハロゲン化銀への吸着性基を2つ以上有する化合物」である。

# [0136]

本発明のタイプ1~4に属する化合物においてハロゲン化銀への吸着性基とは、ハロゲン化銀に直接吸着する基、またはハロゲン化銀への吸着を促進する基であり、具体的には、メルカプト基(またはその塩)、チオン基(-C(=S)-)、窒素原子、硫黄原子、セレン原子およびテルル原子から選ばれる少なくとも1つの原子を含むヘテロ環基、スルフィド基、ジスルフィド基、カチオン性基、またはエチニル基である。

### [0137]

但し、本発明のタイプ2に属する化合物においては、吸着性基としてスルフィ ド基は含まれない。

### [0138]

吸着性基としてメルカプト基(またはその塩)とは、メルカプト基(またはその 塩)そのものを意味すると同時に、より好ましくは、少なくとも1つのメルカプ ト基(またはその塩)の置換したヘテロ環基またはアリール基またはアルキル基を 表す。ここにヘテロ環基は、5員~7員の、単環もしくは縮合環の、芳香族また は非芳香族のヘテロ環基で、例えばイミダゾール環基、チアゾール環基、オキサ ゾール環基、ベンゾイミダゾール環基、ベンゾチアゾール環基、ベンゾオキサゾ ール環基、トリアゾール環基、チアジアゾール環基、オキサジアゾール環基、テ トラゾール環基、プリン環基、ピリジン環基、キノリン環基、イソキノリン環基 、ピリミジン環基、トリアジン環基等が挙げられる。また4級化された窒素原子 を含むヘテロ環基でもよく、この場合、置換したメルカプト基が解離してメソイ オンとなっていてもよく、この様なヘテロ環基の例としてはイミダゾリウム環基 、ピラゾリウム環基、チアゾリウム環基、トリアゾリウム環基、テトラゾリウム 環基、チアジアゾリウム環基、ピリジニウム環基、ピリミジニウム環基、トリア ジニウム環基などが挙げられ、中でもトリアゾリウム環基(例えば1,2,4-トリアゾリウム-3-チオレート環基)が好ましい。アリール基としてはフェニ ル基またはナフチル基が挙げられる。アルキル基としては炭素数1~30の直鎖 または分岐または環状のアルキル基が挙げられる。メルカプト基が塩を形成する とき、対イオンとしてはアルカリ金属、アルカリ土類金属、重金属などのカチオ ン(Li<sup>+</sup>、Na<sup>+</sup>、K<sup>+</sup>、Mg<sup>2+</sup>、Ag<sup>+</sup>、Zn<sup>2+</sup>等)、アンモニウムイオン、4級 化された窒素原子を含むヘテロ環基、ホスホニウムイオンなどが挙げられる。

[0139]

吸着性基としてのメルカプト基はさらにまた、互変異性化してチオン基となっていてもよく、具体的にはチオアミド基(ここでは-C(=S)-NH-基)、および該チオアミド基の部分構造を含む基、すなわち、鎖状もしくは環状のチオアミド基、チオウレイド基、チオウレタン基、またはジチオカルバミン酸エステル基などが挙げられる。ここで環状の例としてはチアゾリジン-2-チオン基、オキサゾリジン-2-チオン基、2-チオヒダントイン基、ローダニン基、イソローダニン基、チオバルビツール酸基、2-チオキソーオキサゾリジン-4-オン基などが挙げられる。

### [0140]

吸着性基としてチオン基とは、上述のメルカプト基が互変異性化してチオン基となった場合を含め、メルカプト基に互変異性化できない(チオン基のα位に水素原子を持たない)、鎖状もしくは環状のチオアミド基、チオウレイド基、チオウレタン基、またはジチオカルバミン酸エステル基も含まれる。

#### [0141]

吸着性基として窒素原子、硫黄原子、セレン原子およびテルル原子から選ばれる少なくとも1つの原子を含むヘテロ環基とは、イミノ銀(>NAg)を形成しうる-NH-基をヘテロ環の部分構造として有する含窒素ヘテロ環基、または配位結合で銀イオンに配位し得る、"-S-"基または"-Se-"基または"-Te-"基または"=N-"基をヘテロ環の部分構造として有するヘテロ環基で、前者の例としてはベンゾトリアゾール基、トリアゾール基、インダゾール基、ピラゾール基、テトラゾール基、ベンゾイミダゾール基、イミダゾール基、プリン基などが、後者の例としてはチオフェン基、チアゾール基、オキサゾール基、ベンゾチオフェン基、ベンゾチアゾール基、ベンゾオキサゾール基、チアジアゾール基、オキサジアゾール基、ドリアジン基、セレノアゾール基、ベンゾセレノアゾール基、テルルアゾール基、ベンゾテルルアゾール基などが挙げられる。好ましくは前者である。

[0142]

吸着性基としてスルフィド基またはジスルフィド基とは、"-S-"または"-S-S-"の部分構造を有する基すべてが挙げられるが、好ましくはアルキル(またはアルキレン)-X-アルキル(またはアルキレン)、アリール(またはアリーレン)-X-アルキル(またはアルキレン)、アリール(またはアリーレン)-X-アリール(またはアリーレン)の部分構造を有する基で、ここにXは-S-基または-S-S-基を表す。さらにこれらのスルフィド基またはジスルフィド基は、環状構造を形成していてもよく、環状構造を形成する場合の具体例としてはチオラン環、1,3-ジチオラン環、1,2-ジチオラン環、チアン環、ジチアン環、チオモルホリン環などを含む基が挙げられる。スルフィド基として特に好ましくはアルキル(またはアルキレン)-S-アルキル(またはアルキレン)の部分構造を有する基が、またジスルフィド基として特に好ましくは1,2-ジチオラン環基が挙げられる。

### [0143]

吸着性基としてカチオン性基とは、4級化された窒素原子を含む基を意味し、具体的にはアンモニオ基または4級化された窒素原子を含む含窒素へテロ環基を含む基である。ここにアンモニオ基とは、トリアルキルアンモニオ基、ジアルキルアリールアンモニオ基、アルキルジアリールアンモニオ基などで、例えばベンジルジメチルアンモニオ基、トリヘキシルアンモニオ基、フェニルジエチルアンモニオ基などが挙げられる。4級化された窒素原子を含む含窒素へテロ環基とは、例えばピリジニオ基、キノリニオ基、イソキノリニオ基、イミダゾリオ基などが挙げられる。好ましくはピリジニオ基およびイミダゾリオ基であり、特に好ましくはピリジニオ基である。これら4級化された窒素原子を含む含窒素へテロ環基は任意の置換基を有していてもよいが、ピリジニオ基およびイミダゾリオ基の場合、置換基として好ましくはアルキル基、アリール基、アシルアミノ基、クロル原子、アルコキシカルボニル基、カルバモイル基などが挙げられ、ピリジニオ基の場合、置換基として特に好ましくはフェニル基である。

#### [0144]

吸着性基としてエチニル基とは、-C≡CH基を意味し、該水素原子は置換されていてもよい。

上記の吸着性基は任意の置換基を有していてもよい。

# [0145]

なお吸着性基の具体例としては、さらに特開平11-95355号公報 p4~p7に記載されているものが挙げられる。

### [0146]

吸着性基としてより好ましいものは、メルカプト置換へテロ環基(例えば2-メルカプトチアジアゾール基、3-メルカプト-1,2,4-トリアゾール基、5-メルカプトテトラゾール基、2-メルカプト-1,3,4-オキサジアゾール基、2-メルカプトベンズチアゾール基、1,5-ジメチル-1,2,4-トリアゾリウム-3-チオレート基など)、ジメルカプト置換へテロ環基(例えば2,4-ジメルカプトピリミジン基、2,4-ジメルカプトトリアジン基、3,5-ジメルカプト-1,2,4-トリアゾール基、2,5-ジメルカプト-1,3-チアゾール基など)、またはイミノ銀(>NAg)を形成しうる-NH-基をヘテロ環の部分構造として有する含窒素ヘテロ環基(例えばベンゾトリアゾール基、ベンズイミダゾール基、インダゾール基など)である。吸着性基は、一般式(1-1)~(4-2)のどこに置換されていてもよいが、一般式(1-1)~(3)においては、RED<sub>11</sub>、RED<sub>12</sub>、RED<sub>2</sub>、RED<sub>3</sub>に、一般式(4-1)、(4-2)においては、RED<sub>41</sub>、R<sub>41</sub>、RED<sub>42</sub>、R<sub>46</sub>~R<sub>48</sub>に置換されていることが好ましく、さらに、一般式(1-1)~(4-2)の全てにおいて、RED<sub>11</sub>~RED<sub>42</sub>に置換されていることが好ましり。

### [0147]

分光増感色素の部分構造とは、分光増感色素の発色団を含む基であり、分光増感色素化合物から任意の水素原子または置換基を除いた残基である。分光増感色素の部分構造は、一般式(1-1)~(4-2)のどこに置換されていてもよいが、一般式(1-1)~(3)においては、 $RED_{11}$ 、 $RED_{12}$ 、 $RED_2$ 、 $RED_3$ に、一般式(4-1)、(4-2)においては、 $RED_{41}$ 、 $RED_{42}$ 、 $R_{46}$   $R_{48}$   $R_{48}$   $R_{46}$   $R_{48}$   $R_{48}$   $R_{46}$   $R_{48}$   $R_{46}$   $R_{48}$   $R_{4$ 

色素類、複合シアニン色素類、メロシアニン色素類、複合メロシアニン色素類、同極のシアニン色素類、スチリル色素類、ヘミシアニン色素類を含む。代表的な分光増感色素は、リサーチディスクロージャー、アイテム36544、1994年9月に開示されている。前記リサーチディスクロージャー、もしくはF.M.Hame RのThe CyaninEDyes and RelatED Compounds (InteRscience PublisheRs, New y pRk, 1964)に記載される手順によって当業者は、これらの色素を合成することができる。さらに特開平11-95355号公報の $p7\sim p14$  (米国特許6, 054, 260号明細書)に記載された色素類が全てそのまま当てはまる。

### [0148]

本発明のタイプ $1\sim4$ に属する化合物は、その総炭素数が $10\sim60$ の範囲のものが好ましい。より好ましくは $10\sim50$ 、さらに好ましくは $11\sim40$ であり、特に好ましくは $12\sim30$ である。

# [0149]

本発明のタイプ1~4に属する化合物は、これを用いたハロゲン化銀写真感光材料が露光されることを引き金に1電子酸化され、引き続く反応の後、さらに1電子、あるいはタイプによっては2電子以上の電子が放出され、酸化されるが、その1電子目の酸化電位は、約1.4 V以下が好ましく、さらには1.0 V以下が好ましい。この酸化電位は好ましくは0 Vより高く、より好ましくは0.3 Vより高い。従って酸化電位は好ましくは約0~約1.4 V、より好ましくは約0.3~約1.0 Vの範囲である。

### [0150]

ここに酸化電位はサイクリックボルタンメトリーの技法で測定でき、具体的には試料をアセトニトリル:水(0.1 Mの過塩素酸リチウムを含む)=80%:20%(容量%)の溶液に溶解し、10分間窒素ガスを通気した後、ガラス状のカーボンディスクを動作電極に用い、プラチナ線を対電極に用い、そしてカロメル電極(SCE)を参照電極に用いて、25℃で、0.1 V/秒の電位走査速度で測定したものである。サイクリックボルタンメトリー波のピーク電位の時に酸化電位対SCEをとる。

### [0151]

本発明のタイプ  $1\sim 4$  に属する化合物が 1 電子酸化され、引き続く反応の後、さらに 1 電子を放出する化合物である場合には、この後段の酸化電位は好ましくは-0. 5 V $\sim -2$  Vであり、より好ましくは-0. 7 V $\sim 2$  Vであり、さらに好ましくは-0. 9 V $\sim -1$ . 6 Vである。

### [0152]

本発明のタイプ1~4に属する化合物が1電子酸化され、引き続く反応の後、 さらに2電子以上の電子を放出し、酸化される化合物である場合には、この後段 の酸化電位については特に制限はない。2電子目の酸化電位と3電子目以降の酸 化電位が明確に区別できない点で、これらを実際に正確に測定し区別することは 困難な場合が多いためである。

### [0153]

以下に本発明のタイプ1~4に属する化合物の具体例を列挙するが、本発明は これらに限定されるものではない。

[0154]

# 【化8】

[0155]

【化9】

# 【化10】

[0157]

<u>28</u>

# 【化11】

[0158]

# 【化12】

[0159]

# 【化13】

[0160]

本発明のタイプ $1\sim4$ に属する化合物は、それぞれ特願2002-192373号、特願2002-192374号、特願2002-188537号、特願2002-188537号、特願2002-188537号、特願2001-272137号の明細書において、詳細に説明した化合物と同じものである。これら特許出願明細書に記載した具体的化合物例もまた、本発明のタイプ $1\sim4$ に属する化合物の具体例として挙げることができる。また本発明のタイプ $1\sim4$ に属する化合物の合成例も、これら特許に記載したものと同じである。

### [0161]

本発明のタイプ1~4に属する化合物は、乳剤調製時、感材製造工程中のいかなる場合にも使用しても良い。例えば粒子形成時、脱塩工程、化学増感時、塗布前などである。またこれらの工程中の複数回に分けて添加することも出来る。添加位置として好ましくは、粒子形成終了時から脱塩工程の前、化学増感時(化学増感開始直前から終了直後)、塗布前であり、より好ましくは化学増感時、塗布前である。

### [0162]

本発明のタイプ1~4に属する化合物は、水、メタノール、エタノールなどの水可溶性溶媒またはこれらの混合溶媒に溶解して添加することが好ましい。水に溶解する場合、pHを高くまたは低くした方が溶解度が上がる化合物については、pHを高くまたは低くして溶解し、これを添加しても良い。

### [0163]

本発明のタイプ  $1\sim 4$  に属する化合物は、乳剤層中に使用するのが好ましいが、乳剤層と共に保護層や中間層に添加しておき、塗布時に拡散させてもよい。本発明の化合物の添加時期は増感色素の前後を問わず、それぞれ好ましくはハロゲン化銀 1 モル当り、 $1\times 1$  0  $^{-9}\sim 5\times 1$  0  $^{-2}$  モル、更に好ましくは  $1\times 1$  0  $^{-8}\sim 2\times 1$  0  $^{-3}$  モルの割合でハロゲン化銀乳剤層に含有する。

### [0164]

本発明のハロゲン化銀写真感光材料は酸化電位が 0.18eVから 0.90eVを示す化合物の少なくとも 1 種を含有する層を有することが好ましく、更に好ましくは該化合物が、上述した一般式(1-1)~一般式(4-2)で表される

化合物の中から選ばれた化合物を少なくとも1種含有するハロゲン化銀乳剤層に含まれることである。ここで酸化電位は前述と同様のサイクリックボルタンメトリーの技法で測定できる。

[0165]

以下に、本発明の酸化電位が 0. 18 e V から 0. 90 e V を示す化合物を例示するが、本発明はこれに限定されるものではない。

[0166]

# 【化14】

[0167]

本発明のハロゲン化銀乳剤粒子は後述する硫黄増感剤、セレン増感剤およびテルル増感剤のうち少なくとも一種の増感剤を用いて化学増感を行うことが好ましく、化学増感工程後に更にハロゲン化銀によりシェル付けされていると本発明の

効果が大きい。

### [0168]

シェル付けにおいて、ハロゲン化銀微粒子、あるいは臭素、塩素または沃素の アルカリ金属塩を少なくとも一種含有する水溶液のようなハロゲンイオンを含む 溶液と銀イオンを含む溶液を添加あるいはハロゲン化銀微粒子と銀イオンを含む 溶液の併用添加、のいずれの方法でも良い。

### [0169]

またシェル付けにおいてハロゲン化銀微粒子を用いる場合には、ハロゲン化銀 微粒子が含む塩化銀量はハロゲン化銀微粒子中に0mol%以上かつ10mol%以下で あることが望ましく、ハロゲン化銀微粒子の代わりにハロゲンイオンを含む溶液と銀イオンを含む溶液を添加した場合には、添加される塩化物イオンが、当該ハロゲンイオンを含む溶液中の総ハロゲンイオンの0mol%以上かつ10mol%以下と なることが望ましい。

### [0170]

上記シェル付けで用いられるハロゲン化銀の使用量はシェル付けの対象となるハロゲン化銀粒子に対して0.05mol%以上20mol%以下であり、望ましくは0.2mol%以上15mol%以下である。

#### [0171]

本発明で用いるハロゲン化銀粒子は0.5mol%以上22mol%以下の沃化銀を含むことが好ましい。さらに好ましくは、沃化銀含有率が1mol%以上10mol%以下であることである。沃化銀含有率が異なる層間の境界は明確なものであっても、連続的になだらかに変化しているものであっても良い。粒子形成時において、ヨードイオンは後述する成長過程の途中からそれ以降の沃化銀含有率が均一になるように添加しても良い、最初は高濃度で後ほど低濃度あるいは最初は低濃度で後ほど高濃度あるいはヨードイオン濃度が途中で変化しても良い。沃化銀の導入はヨードイオンを含むハロゲンイオン溶液と硝酸銀溶液の同時添加でも良いし、別々の添加でも良い。粒子中にヨードイオンが取り込まれる条件においてヨードイオンを含む溶液のみを添加するだけでも良い。また沃化銀微粒子を添加する方法を用いても良い。粒子形成途上のヨードギャップ導入により粒子の主表面あるいは周囲

部に転位線は入っても入らなくとも良い。

### [0172]

粒子の形状については正常晶でも、平板状粒子でも良い。平板状粒子は、互いに平行な主表面とこれらの主表面を連結する側面を有する。平板状粒子には、通常、主平面間に1または2の双晶面がある。本発明において用いる平板状粒子は、上記記載のように双晶面を含む平板状粒子でも良い。しかしながら、平板状粒子についてより好ましくは平均の投影面積直径が0.08μm以上でかつ2.0μm以下であることである。立方体の正常晶の場合、その一辺の長さは、0.2μm以下が好ましい。特に好ましくは平均の投影面積直径が0.1μm以上でかつ0.8μm以下であることである。最も好ましくは平均の投影面積直径が0.15μm以上でかつ0.5μm以下であることである。

### [0173]

粒子の投影面積直径の分布の変動係数は、30%以下が好ましく、25%以下が更に好ましい。ここで投影面積直径ならびにアスペクト比は参照用のラテックス球とともにシャドーをかけたカーボンレプリカ法による電子顕微鏡写真から測定することができる。平板状粒子は、主平面に対して垂直方向から見た時に、通常六角形、三角形もしくは円形状の形態をしているが、該投影面積と等しい面積の円の相当直径を投影面積直径とする。投影面積直径を平板状粒子の厚みで割った値がアスペクト比である。平板状粒子の主平面の形状は六角形の比率が高いほど好ましく、また、六角形の各隣接する辺の長さの比は1:2以下であることが好ましい。ここで、平均の投影面積直径およびアスペクト比は、均一な乳剤に含有される100個以上の粒子の投影面積直径および粒子厚みの平均値から求めたものをいう。

### [0174]

平板状粒子における本発明の効果は、平板状粒子のアスペクト比がある程度高いほど良く、好ましくは平板状粒子の全投影面積の50%以上がアスペクト比5以上の粒子で占められることである。アスペクト比があまり大きくなりすぎると、前述した粒子サイズ分布の変動係数が大きくなる方向になるために、通常アスペクト比は20以下が好ましい。

# [0175]

本発明において好ましい平板状沃臭化銀乳剤を含む本発明の乳剤は、種々の方法によって調製することが可能である。一例を挙げると、平板状粒子の調製は通常、核形成、熟成ならびに成長の基本的に3工程よりなる。核形成の工程においては米国特許4,713,320号および同4,942,120号明細書に記載のメチオニン含有量の少ないゼラチンを用いること、米国特許4,914,014号明細書に記載の高pBrで核形成を行うこと、特開平2-222940号公報に記載の短時間で核形成を行うことは本発明で好ましい平板状粒子乳剤の核形成工程において極めて有効である。熟成工程において米国特許5,254,453号明細書に記載の低濃度のベースの存在下で行うこと、米国特許5,013,641号明細書に記載の高いpHでおこなうことは、本発明の粒子の平板部の熟成工程において有効である場合がある。成長工程においては、米国特許5,248,587号明細書に記載の低温で成長をおこなうこと、米国特許4,672,027号、および同4,693,964号明細書に記載の沃化銀微粒子を用いることは本発明の乳剤粒子の成長工程において特に有効である。

# [0176]

本発明のハロゲン化銀乳剤粒子は、下記一般式で表されるアゾール系マゼンタカプラーを少なくとも一種含有するハロゲン化銀カラー反転感光材料において用いると効果が増大する。

[0177]

【化15】

# [0178]

一般式(MC-I)の式中、 $R_1$ は水素原子または置換基を表し、 $G_1$ 、 $G_2$ はいずれか一方が炭素原子、もう一方が窒素原子を表し、 $R_2$ は置換基を表し、 $G_1$ 、 $G_2$ のうち炭素原子であるほうに置換する。 $R_1$ または $R_2$ は更に置換基を有してい

ても良く、また $R_1$ 、 $R_2$ を介して一般式(MC-I)の多量体を形成していても良く、 $R_1$ または $R_2$ を介して高分子鎖に結合していても良い。Xは、水素原子または芳香族第 1 級アミンカラー現像主薬の酸化体とのカップリング反応により離脱する基を表す。

### [0179]

以下一般式(MC-I)について説明する。

式中R<sub>1</sub>は水素原子または置換基を、R<sub>2</sub>は置換基を表し、置換基の例としてはハロゲン原子、アルキル基(シクロアルキル基、ビシクロアルキル基を含む)、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む)、アルキニル基、アリール基、ヘテロ環基、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基、アリールオキシ基、アリルオキシ基、アンルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキル及びアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル及びアリールスルフィニル基、アルキル及びアリールスルボニル基、アルキル及びアリールスルボニル基、アルキル及びアリールスルボニル基、アルキル及びアリールスルボニル基、アルキル及びアリールスルボニル基、アリールオキシカルボニル基、アルキシカルボニル基、カルバモイル基、アリール及びヘテロ環アソ基、イミド基、ホスフィール基、ホスフィニルオキシ基、ホスフィニルアミノ基、シリル基が例として挙げられる。

### [0180]

更に詳しくは、ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子)、アルキル基 [直鎖、分岐、環状の置換もしくは無置換のアルキル基を表す。アルキル基 (好ましくは炭素数 1 から 3 0 のアルキル基、例えばメチル、エチル、ロープロピル、イソプロピル、tーブチル、ローオクチル、エイコシル、2 ークロロエチル、2 ーシアノエチル、2 ーエチルへキシル)、シクロアルキル基(好ましくは、炭素数 3 から 3 0 の置換または無置換のシクロアルキル基、例えば、シクロペキシル、シクロペンチル、4 ーロードデシルシクロヘキシル)、ビシクロ

アルキル基 (好ましくは、炭素数5から30の置換もしくは無置換のビシクロア ルキル基、つまり、炭素数5から30のビシクロアルカンから水素原子を一個取 り去った一価の基である。例えば、ビシクロ[1,2,2]ヘプタンー2ーイル 、ビシクロ[2, 2, 2] オクタン-3-イル)]、アルケニル基[直鎖、分岐 、環状の置換もしくは無置換のアルケニル基を表す。アルケニル基(好ましくは 炭素数2から30の置換または無置換のアルケニル基、例えば、ビニル、アリル 、プレニル、ゲラニル、オレイル)、シクロアルケニル基(好ましくは、炭素数 3から30の置換もしくは無置換のシクロアルケニル基、つまり、炭素数3から 30のシクロアルケンの水素原子を一個取り去った一価の基である。例えば、2 ーシクロペンテンー1ーイル、2ーシクロヘキセンー1ーイル)、ビシクロアル ケニル基(置換もしくは無置換のビシクロアルケニル基、好ましくは、炭素数5 から30の置換もしくは無置換のビシクロアルケニル基、つまり二重結合を一個 持つビシクロアルケンの水素原子を一個取り去った一価の基である。例えば、ビ シクロ[2, 2, 1] ヘプトー2ーエンー1ーイル、ビシクロ[2, 2, 2] オ クトー2ーエンー4ーイル) ]、アルキニル基(好ましくは、炭素数2から30 の置換または無置換のアルキニル基、例えば、エチニル、プロパルギル、トリメ チルシリルエチニル基、アリール基(好ましくは炭素数6から30の置換もしく は無置換のアリール基、例えばフェニル、pートリル、ナフチル、mークロロフ ェニル、0-ヘキサデカノイルアミノフェニル)、ヘテロ環基(好ましくは5ま たは6員の置換もしくは無置換の、芳香族もしくは非芳香族のヘテロ環化合物か ら一個の水素原子を取り除いた一価の基であり、更に好ましくは、炭素数3から 30の5もしくは6員の芳香族へテロ環基である。例えば、2-フリル、2-チ エニル、2-ピリミジニル、2-ベンゾチアゾリル)、シアノ基、ヒドロキシル 基、ニトロ基、カルボキシル基、アルコキシ基(好ましくは、炭素数1から30 の置換もしくは無置換のアルコキシ基、例えば、メトキシ、エトキシ、イソプロ ポキシ、t-ブトキシ、n-オクチルオキシ、2-メトキシエトキシ)、アリー ルオキシ基(好ましくは、炭素数6から30の置換もしくは無置換のアリールオ キシ基、例えば、フェノキシ、2-メチルフェノキシ、4-t-ブチルフェノキ シ、3-二トロフェノキシ、2-テトラデカノイルアミノフェノキシ)、シリル オキシ基(好ましくは、炭素数3から20のシリルオキシ基、例えば、トリメチ ルシリルオキシ、tーブチルジメチルシリルオキシ)、ヘテロ環オキシ基(好ま しくは、炭素数2から30の置換もしくは無置換のヘテロ環オキシ基、1-フェ ニルテトラゾールー5-オキシ、2-テトラヒドロピラニルオキシ)、アシルオ キシ基(好ましくはホルミルオキシ基、炭素数2から30の置換もしくは無置換 のアルキルカルボニルオキシ基、炭素数7から30の置換もしくは無置換のアリ ールカルボニルオキシ基、例えば、ホルミルオキシ、アセチルオキシ、ピバロイ ルオキシ、ステアロイルオキシ、ベンゾイルオキシ、p-メトキシフェニルカル ボニルオキシ)、カルバモイルオキシ基(好ましくは、炭素数1から30の置換 もしくは無置換のカルバモイルオキシ基、例えば、N, N-ジメチルカルバモイ ルオキシ、N, N-ジエチルカルバモイルオキシ、モルホリノカルボニルオキシ 、N,N-ジ-n-オクチルアミノカルボニルオキシ、N-n-オクチルカルバ モイルオキシ)、アルコキシカルボニルオキシ基(好ましくは、炭素数2から3 0の置換もしくは無置換アルコキシカルボニルオキシ基、例えばメトキシカルボ ニルオキシ、エトキシカルボニルオキシ、t-ブトキシカルボニルオキシ、n-オクチルカルボニルオキシ)、アリールオキシカルボニルオキシ基(好ましくは 、炭素数7から30の置換もしくは無置換のアリールオキシカルボニルオキシ基 、例えば、フェノキシカルボニルオキシ、p-メトキシフェノキシカルボニルオ キシ、p-(n-ヘキサデシルオキシ)フェノキシカルボニルオキシ)、アミノ 基(アニリノ基を含む) (好ましくは、アミノ基、炭素数1から30の置換もし くは無置換のアルキルアミノ基、炭素数6から30の置換もしくは無置換のアニ リノ基、例えば、アミノ、メチルアミノ、ジメチルアミノ、アニリノ、N-メチル ーアニリノ、ジフェニルアミノ)、アシルアミノ基(好ましくは、ホルミルアミ ノ基、炭素数2から30の置換もしくは無置換のアルキルカルボニルアミノ基、 炭素数7から30の置換もしくは無置換のアリールカルボニルアミノ基、例えば 、ホルミルアミノ、アセチルアミノ、ピバロイルアミノ、ラウロイルアミノ、ベ ンゾイルアミノ、3,4,5-トリー(n-オクチルオキシ)フェニルカルボニ ルアミノ)、アミノカルボニルアミノ基(好ましくは、炭素数1から30の置換 もしくは無置換のアミノカルボニルアミノ、例えば、カルバモイルアミノ、N,

N-ジメチルアミノカルボニルアミノ、N, N-ジエチルアミノカルボニルアミ ノ、モルホリノカルボニルアミノ)、アルコキシカルボニルアミノ基(好ましく は炭素数2から30の置換もしくは無置換アルコキシカルボニルアミノ基、例え ば、メトキシカルボニルアミノ、エトキシカルボニルアミノ、t-ブトキシカル ボニルアミノ、n-オクタデシルオキシカルボニルアミノ、N-メチル-メトキ シカルボニルアミノ)、アリールオキシカルボニルアミノ基(好ましくは、炭素 数7から30の置換もしくは無置換のアリールオキシカルボニルアミノ基、例え ば、フェノキシカルボニルアミノ、p-クロロフェノキシカルボニルアミノ、m - (n-オクチルオキシ)フェノキシカルボニルアミノ)、スルファモイルアミ ノ基(好ましくは、炭素数0から30の置換もしくは無置換のスルファモイルア ミノ基、例えば、スルファモイルアミノ、N,N-ジメチルアミノスルホニルア ミノ、N-(n-オクチル)アミノスルホニルアミノ)、アルキル及びアリール スルホニルアミノ基(好ましくは炭素数1から30の置換もしくは無置換のアル キルスルホニルアミノ、炭素数6から30の置換もしくは無置換のアリールスル ホニルアミノ、例えば、メチルスルホニルアミノ、ブチルスルホニルアミノ、フ ェニルスルホニルアミノ、2,3,5-トリクロロフェニルスルホニルアミノ、 p-メチルフェニルスルホニルアミノ)、メルカプト基、アルキルチオ基(好ま しくは、炭素数1から30の置換もしくは無置換のアルキルチオ基、例えばメチ ルチオ、エチルチオ、n-ヘキサデシルチオ)、アリールチオ基(好ましくは炭 素数6から30の置換もしくは無置換のアリールチオ、例えば、フェニルチオ、 p-クロロフェニルチオ、m-メトキシフェニルチオ)、ヘテロ環チオ基(好ま しくは炭素数3から30の置換または無置換のヘテロ環チオ基、例えば、2-ベ ンゾチアゾリルチオ、1-フェニルーテトラゾール-5-イルチオ)、スルファ モイル基(好ましくは炭素数0から30の置換もしくは無置換のスルファモイル 基、例えば、N-エチルスルファモイル、N-(3-ドデシルオキシプロピル) スルファモイル、N, Nージメチルスルファモイル、Nーアセチルスルファモイ ル、N-ベンゾイルスルファモイル、N-(N'-フェニルカルバモイル)スル ファモイル)、スルホ基、アルキル及びアリールスルフィニル基(好ましくは、 炭素数1から30の置換または無置換のアルキルスルフィニル基、6から30の

置換または無置換のアリールスルフィニル基、例えば、メチルスルフィニル、エ チルスルフィニル、フェニルスルフィニル、p-メチルフェニルスルフィニル) 、アルキル及びアリールスルホニル基(好ましくは、炭素数1から30の置換ま たは無置換のアルキルスルホニル基、6から30の置換または無置換のアリール スルホニル基、例えば、メチルスルホニル、エチルスルホニル、フェニルスルホ ニル、pーメチルフェニルスルホニル)、アシル基(好ましくはホルミル基、炭 素数2から30の置換または無置換のアルキルカルボニル基、炭素数7から30 の置換もしくは無置換のアリールカルボニル基、例えば、アセチル、ピバロイル 、2-クロロアセチル、ステアロイル、ベンゾイル、p-(n-オクチルオキシ ) フェニルカルボニル)、アリールオキシカルボニル基(好ましくは、炭素数7 から30の置換もしくは無置換のアリールオキシカルボニル基、例えば、フェノ キシカルボニル、oークロロフェノキシカルボニル、mーニトロフェノキシカル ボニル、p‐(t‐ブチル)フェノキシカルボニル)、アルコキシカルボニル基 (好ましくは、炭素数2から30の置換もしくは無置換アルコキシカルボニル基 、例えば、メトキシカルボニル、エトキシカルボニル、t-ブトキシカルボニル 、n-オクタデシルオキシカルボニル)、カルバモイル基(好ましくは、炭素数 1から30の置換もしくは無置換のカルバモイル、例えば、カルバモイル、N-メチルカルバモイル、N, Nージメチルカルバモイル、N, Nージーnーオクチ ルカルバモイル、N-(メチルスルホニル)カルバモイル)、アリール及びヘテ ロ環アゾ基(好ましくは炭素数6から30の置換もしくは無置換のアリールアゾ 基、炭素数3から30の置換もしくは無置換のヘテロ環アゾ基、例えば、フェニ ルアゾ、p-クロロフェニルアゾ、5-エチルチオー1,3,4-チアジアゾー ルー2-イルアゾ)、イミド基(好ましくは、N-スクシンイミド、N-フタル イミド)、ホスフィノ基(好ましくは、炭素数2から30の置換もしくは無置換 のホスフィノ基、例えば、ジメチルホスフィノ、ジフェニルホスフィノ、メチル フェノキシホスフィノ)、ホスフィニル基(好ましくは、炭素数2から30の置 換もしくは無置換のホスフィニル基、例えば、ホスフィニル、ジオクチルオキシ ホスフィニル、ジエトキシホスフィニル)、ホスフィニルオキシ基(好ましくは 、炭素数2から30の置換もしくは無置換のホスフィニルオキシ基、例えば、ジ

フェノキシホスフィニルオキシ、ジオクチルオキシホスフィニルオキシ)、ホスフィニルアミノ基(好ましくは、炭素数2から30の置換もしくは無置換のホスフィニルアミノ基、例えば、ジメトキシホスフィニルアミノ、ジメチルアミノホスフィニルアミノ)、シリル基(好ましくは、炭素数3から30の置換もしくは無置換のシリル基、例えば、トリメチルシリル、tーブチルジメチルシリル、フェニルジメチルシリル)。

# [0181]

上記の置換基の中で、水素原子を有するものは、これを取り去り更に上記の基で置換されていても良い。そのように構成される置換基の例としては、アルキルカルボニルアミノスルホニル基、アリールカルボニルアミノスルホニル基、アルキルスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基が挙げられる。その例としては、メチルスルホニルアミノカルボニル、pーメチルフェニルスルホニルアミノカルボニル、アセチルアミノスルホニル、ベンゾイルアミノスルホニル基が挙げられる。

### [0182]

このうちR<sub>1</sub>としては水素原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アミノ基、アシルアミノ基、アリールチオ基、アルキルチオ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、カルバモイルオキシ基、ヘテロ環チオ基が好ましく、これらは置換基を有していても良い。

### [0183]

R<sub>1</sub>としてより好ましくはアルキル基、アリール基、アルコキシ基、アリールオキシ基、アミノ基(アニリノ基を含む)であり、更に好ましくは総炭素数3~15の第2級または第3級アルキル基であり、炭素数4~10の第3級アルキル基が最も好ましい。

### [0184]

 $G_1$ 、 $G_2$ はいずれか一方が窒素原子であり、残る一方は炭素原子であり、炭素原子である方に一般式(MC-I)で示した $R_2$ が置換する。本発明では $G_1$ が炭素原子、 $G_2$ が窒素原子であり、 $R_2$ が $G_1$ に置換しているものが好ましい。

### [0185]

R<sub>2</sub>として好ましくは、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アルキルチオ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アシルアミノ基を挙げることができ、更にR<sub>2</sub>は炭素数 6 以上 3 0 以下のアルキル基またはアリール基を部分構造として含有する総炭素数 6 以上 7 0 以下の基であり、一般式(MC-I)のカプラーに不動性を付与していることが好ましい。

### [0186]

またはR<sub>2</sub>がアルキル基、アリール基、アルコキシ基、アリールオキシ基、アルキルチオ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アシルアミノ基およびこれらの組み合わされた基を介して高分子鎖に結合している基であり、一般式(MC-I)のカプラーに不動性を付与していることも好ましい

### [0187]

本明細書において、「アリール基を部分構造として含有する」基とは、その基がアリール基によって置換されている場合の他に、その基自体がアリール基である場合も含まれる。アリール基以外の基(例えばアルキル基)を部分構造として含有する場合についても同様である。即ち、ある基が「アルキル基を部分構造として含有する」とは、その基にアルキル基が置換している場合と、その基自体がアルキル基である場合とが含まれる。

### [0188]

Xは水素原子または芳香族第1級アミンカラー現像薬酸化体とのカップリング 反応において離脱可能な基を表す。水素原子以外の離脱可能な基としては、ハロ ゲン原子、アルコキシ基、アリールオキシ基、アシルオキシ基、アルキルもしくはアリールスルホニルオキシ基、アシルアミノ基、アルキルもしくはアリールスルホンアミド基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アルキル、アリールもしくはヘテロ環チオ基、カルバモイルアミノ基、カルバモイルオキシ基、5員もしくは6員の含窒素ヘテロ環基、イミド基、アリールアゾ基などがあり、これらの基は更にR2で置換基として挙げた基で置換されていてもよい。

[0189]

さらに詳しくは、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子) 、アルコキシ基(例えばエトキシ、ドデシルオキシ、メトキシエチルカルバモイ ルメトキシ、カルボキシプロピルオキシ、メチルスルホニルエトキシ、エトキシ カルボニルメトキシ)、アリールオキシ基(例えば4ーメチルフェノキシ、4ー クロロフェノキシ、4-メトキシフェノキシ、4-カルボキシフェノキシ、4-メトキシカルボキシフェノキシ、4-カルバモイルフェノキシ、3-エトキシカ ルボキシフェノキシ、3-アセチルアミノフェノキシ、2-カルボキシフェノキ シ)、アシルオキシ基(例えばアセトキシ、テトラデカノイルオキシ、ベンゾイ ルオキシ)、アルキルもしくはアリールスルホニルオキシ基(例えばメタンスル ホニルオキシ、トルエンスルホニルオキシ)、アシルアミノ基(例えばジクロル アセチルアミノ、ヘプタフルオロブチロイルアミノ)、アルキルもしくはアリー ルスルホンアミド基(例えばメタンスルホンアミノ、トリフルオロメタンスルホ ンアミノ、p-トルエンスルホニルアミノ)、アルコキシカルボニルオキシ基( 例えばエトキシカルボニルオキシ、ベンジルオキシカルボニルオキシ)、アリー ルオキシカルボニルオキシ基(例えばフェノキシカルボニルオキシ)、アルキル 、アリールもしくはヘテロ環チオ基(例えばドデシルチオ、1-カルボキシドデ シルチオ、フェニルチオ、2-ブトキシ-5-t-オクチルフェニルチオ、テト ラゾリルチオ)、カルバモイルアミノ基(例えばNーメチルカルバモイルアミノ 、N-フェニルカルバモイルアミノ)、カルバモイルオキシ基(例えば、N, N - ジメチルカルバモイルオキシ、N - フェニルカルバモイルオキシ、モルホリニ ルカルボニルオキシ、ピロリジニルカルボニルオキシ)、5員もしくは6員の含 窒素ヘテロ環基(例えばイミダゾール、ピラゾリル、トリアゾリル、テトラゾリ ル、1、2-ジヒドロ-2-オキソ-1-ピリジル)、イミド基(例えばスクシ ンイミド、ヒダントイニル)、アリールアゾ基(例えばフェニルアゾ、4-メト キシフェニルアゾ) などである。Xは、これら以外に炭素原子を介して結合した 離脱基としてアルデヒド類又はケトン類で4当量カプラーを縮合して得られるビ ス型カプラーの型を取る場合もある。

[0190]

好ましいXは、水素原子、ハロゲン原子、アリールオキシ基、アルキルもしくはアリールチオ基、カップリング活性位に窒素原子で結合する5員もしくは6員の含窒素へテロ環基であり、より好ましくは水素原子、塩素原子、置換されていてもよいフェノキシ基であり、本発明では水素原子が処理依存性のバランスの点で最も好ましい。

[0191]

一般式(MC-I)で表されるカプラーのうち好ましいものは、R<sub>1</sub>が2級または3級のアルキル基、またはアリール基であり、G<sub>1</sub>が炭素原子、G<sub>2</sub>が窒素原子であり、R<sub>2</sub>が置換アルキル基または置換アリール基であり、R<sub>2</sub>に置換する置換基としてアルコキシ基、アリールオキシ基、アシルアミノ基、アミノカルボニルアミノ基、アルキルチオ基、アリールチオ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アルキルおよびアリールスルホニルアミノ基、カルバモイル基、スルファモイル基、スルホニル基、アルコキシカルボニル基、アシルオキシ基、カルバモイルオキシ基、スルフィニル基、ホスホニル基、アシル基、ハロゲン原子から選ばれる基であり、Xが水素原子、塩素原子、または置換されていても良いフェノキシ基であるものである。うち、Xが水素原子であるものがより好ましい。

[0192]

一般式(MC-I)のうち更に好ましいものとして $R_2$ が下記一般式(BL-1) 乃至一般式(BL-2)で表される置換基である化合物を挙げることが出来る

[0193]

【化16】

[0194]

【化17】

### 一般式(BL-2)

$$-(G_3)_{a} N - G_4 - R_9$$
 $R_8$ 

[0195]

一般式(B L -1)の式中 $R_3$ 、 $R_4$ 、 $R_5$ 、 $R_6$ 、 $R_7$ は水素原子または置換基を表し、これらのうち少なくとも1つは総炭素数4以上70以下の、置換または無置換のアルキル基を部分構造として含む置換基、または総炭素数6以上70以下の、置換または無置換のアリール基を部分構造として含む置換基を表す。

[0196]

以下一般式(BL-1)で表される基について説明する。 $R_3$ 、 $R_4$ 、 $R_5$ 、 $R_6$ 、 $R_7$ は各々独立に水素原子または置換基を表し、置換基である場合、置換基の例としては $R_2$ の項で挙げたものが挙げられる。 $R_3$ 、 $R_4$ 、 $R_5$ 、 $R_6$ 、 $R_7$ のうち少なくとも1つは総炭素数 4 以上 7 0 以下の、置換または無置換のアルキル基を部分構造として含む置換基、または総炭素数 6 以上 7 0 以下の置換または無置換のアリール基を部分構造として含む置換基であるが、好ましくは総炭素数 4 以上(アリール基を含む場合 6 以上) 7 0 以下の、置換または無置換のアルキル基またはアリール基を部分構造として含むアルコキシ基、アリールオキシ基、アシルアミノ基、アミノカルボニルアミノ基、カルバモイル基、アルコキシカルボニルアミノ基、スルファモイル基、スルファモイルアミノ基、アルコキシカルボニル基にアリール基である。

[0197]

中でも炭素数4以上70以下のアルキル基、および炭素数4以上70以下のアルキル基を部分構造として含むアルコキシ基、アシルアミノ基、アルキルおよびアリールスルホニルアミノ基が好ましい。

[0198]

特に $R_3$ が、または $R_4$ と $R_6$ の2つが上記総炭素数4以上(アリール基を含む場合

は6以上) 70以下の、置換または無置換のアルキル基またはアリール基を部分 構造として含む置換基であることが好ましい。

[0199]

一般式 (BL-2) の式中 $G_3$ は置換または無置換のメチレン基を表し、 a は 1 から 3 の整数を表し、  $G_4$ は-O-、  $-SO_2-$ 、 -CO-を表し、  $R_8$ は水素原子またはアルキル基、アリール基を表し、  $R_9$ は総炭素数 6 以上 7 0 以下の、置換または無置換のアルキル基またはアリール基を部分構造として含む置換基を表す

[0200]

 $R_{o}$ が置換基を有する場合は置換基としては $R_{2}$ の項で挙げたものが挙げられる。

[0201]

aが2以上であるとき複数のG3は全て同じであっても異なっていても良い。

[0202]

 $G_3$ で表される置換または無置換のメチレン基は、単なるメチレン、または炭素数 1 以上 2 0 以下のアルキル基、または置換または無置換のフェニル基で置換されたメチレン基であることが好ましい。 a は 1 から 3 の自然数を表すが、 1 または 2 が好ましい。

[0203]

より好ましくは( $G_3$ ) a で表される基が $-CH_2-$ 、-C( $CH_3$ ) H-、-C ( $CH_3$ )  $_2-$ 、 $-C_2H_4-$ 、-C ( $CH_3$ )  $_3$   $_4-$  -C ( $CH_3$ )  $_4$   $_5$   $_6$  -C ( $CH_3$ )  $_2$   $_6$  -C ( $CH_3$ )  $_7$  -C ( $CH_3$ ) -C -C ( $CH_3$ )

[0204]

 $G_4$ として好ましくは、-CO-、 $-SO_2-$ であり、かつ $R_8$ は水素原子が好ましい。

[0205]

R<sub>9</sub>として好ましくは、総炭素数10以上70以下の、置換または無置換のアルキル基またはアリール基であり、アリール基である場合はフェニル基が好ましい

## [0206]

一般式(MC-I)で表される化合物のうち、 $G_1$ が窒素原子で $G_2$ が炭素原子である場合には、 $R_1$ が第3級アルキル基で、 $R_2$ が一般式(BL-1)で表される基であり、 $R_4$ 、 $R_6$ が総炭素数4以上の置換または無置換のアルキル基または炭素数6以上の置換または無置換のアリール基により置換されたアシルアミノ基、スルホンアミド基、ウレイド基、アルコキシカルボニルアミノ基、スルホニル基、カルバモイル基、スルファモイル基、スルファモイルアミノ基、アルコキシカルボニル基から選ばれる基、Xが水素原子であることが好ましい。

## [0207]

一般式(MC-I)で表される化合物のうち $G_1$ が炭素原子で $G_2$ が窒素原子である場合は、 $R_1$ が第3級アルキル基で、 $R_2$ が一般式(BL-1)または一般式(BL-2)で表される基であることが好ましく、特に好ましくは $R_2$ は一般式(BL-2)で表される基、または一般式(BL-1)で $R_3$ と $R_7$ が炭素数1以上6以下のアルキル基であり、 $R_4$ 、 $R_5$ 、 $R_6$ のうち少なくとも1つが総炭素数6以上70以下の、置換または無置換のアルキル基またはアリール基を部分構造として含む基、Xが水素原子であるものが好ましい。

## [0208]

本発明では $G_1$ が炭素原子で、 $G_2$ が窒素原子、 $R_1$ が第3級アルキル基で、 $R_2$ が一般式(BL-2)で表され、かつ一般式(BL-2)において、 $R_9$ が炭素数6以上70以下のアルキル基を部分構造として含む基を置換基として少なくとも1つ有するフェニル基、 aが1または2であるものが好ましく、このうち更に $R_9$ が一〇H、-SO $_2$ N H $_2$ 、-SO $_2$ N H $_3$ 0、-N H SO $_2$ R $_1$ 0、-SO $_2$ N H COR $_1$ 0、-CON H SO $_2$ R $_1$ 0、-COO H、-CON H $_2$ 0 から選ばれる基を部分構造として有する基であるものが特に好ましい。

## [0.209]

R<sub>10</sub>は置換または無置換のアルキル基、アリール基を表し、R<sub>10</sub>がアリール基である場合は、好ましくはフェニル基であり、該フェニル基が少なくとも1つの電子吸引性基が置換していることが好ましい。好ましい電子吸引性基としては、ハ

ロゲン原子、シアノ基、少なくとも1つのハロゲン原子で置換されたアルキル基、少なくとも1つのハロゲン原子で置換されたアリール基、アシル基、カルバモイル基、アルキルまたはアリールオキシカルボニル基、スルホニル基、アルキルまたはアリールアミノスルホニル基が挙げられる。

[0210]

また $R_{10}$ がアルキル基である場合、好ましくは炭素数 1 以上 5 0 以下(より好ましくは 1 以上 3 0 以下の)の置換または無置換の直鎖状または分岐状のアルキル基である。

[0211]

一般式 (MC-I) のカプラーが多量体を形成する場合、  $2\sim4$  量体が好ましく、特に 2 量体が好ましい。また高分子鎖に結合する場合は、高分子の総分子量として 8, 0 0  $0\sim1$  0 0 0 0 が好ましく、またカプラー母核 1 つあたりの分子量として 5 0  $0\sim1$  , 0 0 0 が好ましい。

[0212]

以下一般式 (MC-I) の具体的な化合物例を示すが本発明はこれら具体例に 限定されない。

[0213]

【化18】

\* アルキル基において、指定無きものは、ノルマルアルキル基である。

[0214]

# 【化19】

[0215]

# 【化20】

MC-10

MC-10

MC-11

MC-11

MC-12

$$CI$$
 $CI$ 
 $CI$ 

[0216]

# 【化21】

[0217]

## 【化22】

[0218]

# 【化23]

[0219]

# 【化24】

[0220]

## 【化25】

[0221]

## 【化26】

[0222]

本発明の一般式 (MC-I) のカプラーの合成は公知の方法により合成できる。例えば、米国特許第4,540,654号、同4,705,863号、同5,

451,501号、特開昭61-65245号、同62-209457号、同62-249155号、同63-41851号、特公平7-122744号、同5-105682号、同7-13309号、同7-82252号または米国特許第3,725,067号、同4,777,121号、特開平2-201442号、同2-101077号、同3-125143号、同4-242249号の各明細書および公報に記載されている。

### [0223]

本発明の乳剤を製造するための方法において、化学増感工程は、通常、粒子成長工程終了後、例えば、水洗により脱塩した後に行う。複数種の化学増感剤を用いて化学増感を施す場合、それらの化学増感剤は、同時に添加することも別々に添加することもできる。化学増感時の乳剤の温度は、通常、30~90℃に、pHは、通常、4~9に、pAgは、通常、7~10に維持することができる。

#### [0224]

本発明で好ましく実施しうる化学増感は、カルコゲン増感と貴金属増感の単独 又は組合せであり、ジェームス(T. H. James)著、ザ・フォトグラフィック・ プロセス、第4版、マクミラン社刊、1977年、(T. H. James、The Theory of the Photographic Process, 4<sup>th</sup> ed., Macmillan, 1977)67~76頁に記載さ れるように活性ゼラチンを用いて行うことができる。また、リサーチ・ディスク ロージャー、120巻、1974年4月、12008;リサーチ・ディスクロージャー、34巻 、1975年6月、13452、米国特許第2,642,361号、同第3,297,446号、同第3,772,03 1号、同第3,857,711、同第3,901,714号、同第4,266,018号、および同第3,904,41 5号、並びに英国特許第1,315,755号の各明細書に記載されるように、pAg5~10、 pH5~8および温度30~80℃において硫黄、セレン、テルル、金、白金、パラジウ ム、イリジウムまたはこれら増感剤の複数の組合せを用いて行うことができる。

#### [0225]

貴金属増感においては、金、白金、パラジウム、イリジウム等の貴金属塩を用いることができ、中でも特に金増感、パラジウム増感および両者の併用が好ましい。金増感の場合には、塩化金酸、カリウムクロロオーレート、カリウムオーリックチオシアネート、硫化金、金セレナイドのような公知の化合物、あるいは、

米国特許第5,220,030号明細書に記載のメソイオン金化合物や第5,049,484号明細書に記載のアゾール金化合物などを用いることができる。パラジウム化合物はパラジウム2価塩または4価の塩を意味する。好ましいパラジウム化合物は、 $R_2$ P d  $X_6$ または $R_2$ P d  $X_4$ で表わされる。ここでRは水素原子、アルカリ金属原子またはアンモニウム基を表わす。Xはハロゲン原子を表わし塩素、臭素または沃素原子を表わす。

### [0226]

具体的には、 $K_2$ PdCl<sub>4</sub>、 $(NH_4)_2$ PdCl<sub>6</sub>、 $Na_2$ PdCl<sub>4</sub>、 $(NH_4)_2$ PdCl<sub>4</sub>、 $Li_2$ PdCl<sub>4</sub>、 $Na_2$ PdCl<sub>6</sub>または $K_2$ PdBR<sub>4</sub>が好ましい。 金化合物およびパラジウム化合物はチオシアン酸塩あるいはセレノシアン酸塩と併用することが好ましい。

## [0227]

硫黄増感剤として、ハイポ、チオ尿素系化合物、ロダニン系化合物および米国特許第3,857,711号、同4,266,018号および同4,054,457号の各明細書に記載されている硫黄含有化合物を用いることができる。いわゆる化学増感助剤の存在下に化学増感することもできる。有用な化学増感助剤には、アザインデン、アザピリダジン、アザピリミジンのごとき、化学増感の過程でカブリを抑制し、且つ感度を増大するものとして知られた化合物が用いられる。化学増感助剤改質剤の例は、米国特許第2,131,038号、同3,411,914号、同3,554,757号、特開昭58-126526号公報および前述ダフィン著「写真乳剤化学」、138~143頁に記載されている。

## [0228]

本発明の乳剤はカルコゲン増感に、金増感を併用することが好ましい。金増感剤の好ましい量としてハロゲン化銀1 モル当り $1 \times 10^{-4} \sim 1 \times 10^{-7}$  モルであり、さらに好ましいのはハロゲン化銀1 モル当たり $1 \times 10^{-5} \sim 5 \times 10^{-7}$  モルである。パラジウム化合物の好ましい範囲はハロゲン化銀1 モル当たり $1 \times 10^{-3}$ から $5 \times 10^{-7}$ である。チオシアン酸塩あるいはセレノシアン酸塩の好ましい範囲はハロゲン化銀1 モル当たり $5 \times 10^{-2}$ から $1 \times 10^{-6}$ である。

#### [0229]

本発明で用いるハロゲン化銀粒子に対して使用する好ましいカルコゲン増感剤量はハロゲン化銀1モル当り $1\times10^{-4}$ ~ $1\times10^{-7}$ モルであり、さらに好ましいのは $1\times10^{-5}$ ~ $5\times10^{-7}$ モルである。

## [0230]

具体的には、本発明で用いる粒子は金硫黄増感されていることが好ましい。表面増感されていることが好ましいが粒子の内部が増感されていても良い。ここで粒子表面とはハロゲン化銀粒子表面と粒子を覆っているゼラチンあるいは粒子への吸着物との界面から内部へ10オングストロームまでの領域を指す。粒子内部とはこの領域よりも内部を指す。粒子内部の化学増感は200オングストロームよりも深い部位の化学増感では効果が少ない。表面増感が好ましいことは、金硫黄増感の場合のみならず、カルコゲン増感についても同様である。

#### [0231]

本発明で用いる粒子は金セレン増感されていることが好ましい。本発明で用いられるセレン増感は以下に掲げるセレン増感剤により増感処理することを意味する。

#### [0232]

すなわち、セレン増感においては、不安定セレン化合物を用いることができ、 US3,297,446号、同3,297,447号、特開平4-25832号 、同4-109240号、同4-147250号、同4-271341号、同5-40324号、同5-224332号、同5-224333号、同5-113 85号、同6-43576号、同6-75328号、同6-175258号、同6-175259号、同6-180478号、同6-208184号、同6-2 08186号の各明細書および公報などに記載の化合物が好ましい。

#### [0233]

具体的には、ホスフィンセレニド類(例えば、トリフェニルホスフィンセレニド、ジフェニル(ペンタフルオロフェニル)ホスフィンセレニド、セレノフォスフェート類(例えば、トリーp-トリルセレノフォスフェート)、セレノホスフィニック アシッド エステル類、セレノホスホニック アシッド エステル類、セレノ尿素類(例えば、N, N-ジメチルセレノウレア、N-アセチル-N,

ートリメチルセレノウレア)、セレノアミド類(例えば、N, N-ジメチルセレ ノベンズアミド、N、N-ジエチルセレノベンズアミド)、セレノエステル類( 例えば、p-メトキシセレノベンゾイックアシッド o-イソプロピルエステル 、p-メトキシセレノベンゾイックアッシド Se(3'-オキソシクロヘキシ ル)エステル)、ジアシルセレニド類(例えば、ビス(2,6-ジメトキシベン ゾイル) セレニド、ビス(2,4-ジメトキシベンゾイル) セレニド)、ジカル バモイルセレニド類(例えば、ビス(N,N-ジメチルカルバモイル)セレニド )、ビス(アルコキシカルボニル)セレニド類(例えば、ビス(n-ブトキシカ ルボニル)セレニド、ビス(ベンジルオキシカルボニル)セレニド)、トリセレ ナン類 (例えば、2, 4, 6-トリス (p-メトキシフェニル) トリセレナン) 、ジセレニド類、ポリセレニド類、セレニウムスルフィド、セレノケトン類、セ レノカルボン酸類、イソセレノシアネート類、コロイド状セレンなどが挙げられ る。好ましくは、ホスフィンセレニド類、セレノアミド類、ジカルバモイルセレ ニド類、ビス(アルコキシカルボニル)セレニド類、セレノエステル類が用いら れる。

#### [0234]

また、更に、特公昭46-4553号公報、同52-34492号公報などに 記載の非不安定セレン化合物、例えば亜セレン酸ナトリウム、セレノシアン酸カ リウム、セレナゾール類、セレニド類なども用いることができる。

#### [0235]

また本発明で用いる粒子は金テルル増感されていることが好ましい。本発明で 用いられるテルル増感は以下に掲げるテルル増感剤により増感処理することを意味する。

#### [0236]

すなわち、テルル増感においては、不安定テルル化合物を用い、特開平4-2 24595号、同4-271341号、同4-333043号、同5-3031 57号、同6-27573号、同6-175258号、同6-180478号、 同6-208184号、同6-208186号、同6-317867号、同7140579号、同7-301879号、同7-301880号の各公報などに記載されている不安定テルル化合物を用いることができる。

## [0237]

具体的には、ホスフィンテルリド類(例えば、ノルマルブチルージイソプロピルホスフィンテルリド、トリイソブチルホスフィンテルリド、トリイソプロピルホスフィンテルリド)、ジアシル(キシホスフィンテルリド、トリイソプロピルホスフィンテルリド)、ジアシル(ジ)テルリド類(例えば、ビス(ジフェニルカルバモイル)ジテルリド、ビス(NーフェニルーNーメチルカルバモイル)ジテルリド、ビス(NーフェニルーNーメチルカルバモイル)テルリド、ビス(Nーフェニルーベンジルカルバモイル)テルリド、ビス(エトキシカルボニル)テルリド、テルロ尿素類(例えば、N、N'ージメチルエチレンテルロ尿素)、テルロアミド類、テルロエステル類などを用いればよい。好ましくはホスフィンテルリド類、ジアシル(ジ)テルリド類である。

### [0238]

上記セレン増感剤およびテルル増感剤の使用量は、使用するハロゲン化銀粒子や化学増増感条件などにより変わるが、ハロゲン化銀1 モル当たり $10^{-8}$ ~ $10^{-2}$  モル、好ましくは、 $10^{-7}$ ~ $10^{-3}$  モル程度を用いることができる。

## [0239]

セレン増感およびテルル増感の条件としては、特に制限はないが、pAgとしては $6\sim11$ , 好ましくは $7\sim10$ であり、pHは $4\sim10$ 、好ましくは $5\sim8$ 、温度としては $40\sim95$   $\mathbb{C}$ 、好ましくは $45\sim85$   $\mathbb{C}$ である。

### [0240]

本発明の粒子は硫黄、セレン、テルルの実現し得る組成比により金カルコゲン 増感されていることが好ましいが、最も好ましくは金硫黄セレン増感されている ことである。

#### [0241]

本発明において化学増感過程で使用するハロゲン化銀微粒子は本発明で用いる ハロゲン化銀平板状粒子よりも粒子サイズ(球相当直径)が小さいものであれば、その晶癖がいずれでも良く、双晶面を含んでいても良い。前記ハロゲン化銀微 粒子のハロゲン化銀組成としては、塩化銀、臭化銀、臭沃化銀、塩臭化銀、塩臭 沃化銀を用いることができる。またその粒子形成の履歴はいかなるものでも良い 。ハロゲン化銀微粒子が含むヨード量は、当該微粒子中の全ハロゲン化銀に対し て平均で0mol%以上かつ20mol%以下のヨードイオンを含むことが望ましいが、更 に望ましくは0.3mol%以上かつ10mol%以下のヨードイオンを含むことである。

#### [0242]

本発明の乳剤粒子は粒子の内部あるいは表面または内部と表面を還元増感領域を含むのが特に有効である。粒子の表面および内部の定義は上述と同様である。還元増感領域はハロゲン化銀乳剤に還元増感剤を添加する方法、銀熟成と呼ばれる p A g 1 ~ 7の低 p A g の雰囲気で成長させるあるいは、熟成させる方法、高 p H熟成と呼ばれる p H 8 ~ 1 1 の高 p H の雰囲気で成長させるあるいは熟成させる方法のいずれかにより形成することができる。また 2 つ以上の方法を併用することもできる。

### [0243]

還元増感剤を添加して形成する方法は還元増感のレベルを微妙に調節できる点で好ましい方法である。

#### [0244]

還元増感剤として第一錫塩、アスコルビン酸およびその誘導体、アミンおよびポリアミン類、ヒドラジン誘導体、ホルムアミジンスルフィン酸、シラン化合物、ボラン化合物などが公知である。本発明の還元増感にはこれら公知の還元増感剤を選んで用いることができ、また2種以上の化合物を併用することもできる。還元増感剤として塩化第一錫、二酸化チオ尿素、ジメチルアミンボラン、アスコルビン酸およびその誘導体が好ましい化合物である。還元増感剤の添加量は乳剤製造条件に依存するので添加量を選ぶ必要があるが、ハロゲン化銀1モル当り10<sup>-7</sup>~10<sup>-3</sup>モルの範囲が適当である。

#### [0245]

還元増感剤は水あるいはアルコール類、グリコール類、ケトン類、エステル類、アミド類などの溶媒に溶かし粒子成長中に添加される。あらかじめ反応容器に添加するのもよいが、粒子成長の適当な時期に添加する方が好ましい。また水溶

性銀塩あるいは水溶性アルカリハライドの水溶液にあらかじめ還元増感剤を添加 しておき、これらの水溶液を用いてハロゲン化銀粒子を沈澱せしめてもよい。ま た粒子成長に伴って還元増感剤の溶液を何回かに分けて添加しても連続して長時 間添加するのも好ましい方法である。

### [0246]

還元増感は、粒子調製の工程で行っても、その後の水洗工程後に行ってもよく 、化学増感(後熟)工程で行ってもよい。

## [0247]

本発明の乳剤の調製時に用いられる保護コロイドとして、およびその他の親水 性コロイド層のバインダーとしては、ゼラチンを用いるのが有利であるが、それ 以外の親水性コロイドも用いることができる。

#### [0248]

例えばゼラチン誘導体、ゼラチンと他の高分子とのグラフトポリマー、アルブミン、カゼイン等の蛋白質;ヒドロキシエチルセルロース、カルボキシメチルセルロース、セルロース硫酸エステル類等の如きセルロース誘導体、アルギン酸ソーダ、澱粉誘導体などの糖誘導体;ポリビニルアルコール、ポリビニルアルコール部分アセタール、ポリーNービニルピロリドン、ポリアクリル酸、ポリメタクリル酸、ポリアクリルアミド、ポリビニルイミダゾール、ポリビニルピラゾール等の単一あるいは共重合体の如き多種の合成親水性高分子物質を用いることができる。

#### [0249]

ゼラチンとしては石灰処理ゼラチンのほか、酸処理ゼラチンやBull. Soc. Sci. Photo. Japan. No. 16、P30(1966)に記載されたような酵素処理ゼラチンを用いてもよく、特開平8-82883号公報に記載されているフタル酸による処理を経たゼラチンを用いても良い。また、ゼラチンの加水分解物や酵素分解物も用いることができる。

#### [0250]

本発明の乳剤は脱塩のために水洗し、新しく用意した保護コロイド分散にする ことが好ましい。水洗の温度は目的に応じて選べるが、5℃~50℃の範囲で選 ぶことが好ましい。水洗時のpHも目的に応じて選べるが2~10の間で選ぶことが好ましい。さらに好ましくは3~8の範囲である。水洗時のpAgも目的に応じて選べるが5~10の間で選ぶことが好ましい。水洗の方法としてヌードル水洗法、半透膜を用いた透析法、遠心分離法、凝析沈降法、イオン交換法のなかから選んで用いることができる。凝析沈降法の場合には硫酸塩を用いる方法、有機溶剤を用いる方法、水溶性ポリマーを用いる方法、ゼラチン誘導体を用いる方法などから選ぶことができる。

#### [0251]

米国特許第3,772,031号明細書に記載されているようなカルコゲナイド化合物を乳剤調製中に添加する方法も有用な場合がある。S、Se、Te以外にもシアン塩、チオシアン塩、セレノシアン酸、炭酸塩、リン酸塩、酢酸塩を存在させてもよい。

## [0252]

本発明の乳剤の製造工程中に銀に対する酸化剤を用いることが好ましい。銀に 対する酸化剤とは、金属銀に作用して銀イオンに変換せしめる作用を有する化合 物をいう。特にハロゲン化銀粒子の形成過程および化学増感過程において副生す るきわめて微小な銀粒子を、銀イオンに変換せしめる化合物が有効である。ここ で生成する銀イオンは、ハロゲン化銀、硫化銀、セレン化銀等の水に難溶の銀塩 を形成してもよく、又、硝酸銀等の水に易溶の銀塩を形成してもよい。銀に対す る酸化剤は、無機物であっても、有機物であってもよい。無機の酸化剤としては 、オゾン、過酸化水素およびその付加物(例えば、 $NaBO_9$ ・ $H_9O_9$ ・ $3H_9O$  $.2 \text{NaCO}_{3} \cdot 3 \text{H}_{2}\text{O}_{2}, \text{Na}_{4}\text{P}_{2}\text{O}_{7} \cdot 2 \text{H}_{2}\text{O}_{2}, 2 \text{Na}_{2}\text{SO}_{4} \cdot \text{H}_{2}\text{O}_{2} \cdot 2$  $H_2O$ )、ペルオキシ酸塩(例えば $K_2S_2O_8$ 、 $K_2C_2O_6$ 、 $K_2P_2O_8$ )、ペルオ キシ錯体化合物(例えば、 $K_9$  [Ti( $O_9$ )  $C_9O_4$ ]・3 $H_9O$ 、4 $K_9SO_4$ ・ Ti  $(O_2)$  OH  $\cdot$  SO $_4$   $\cdot$  2 H $_2$ O, Na $_3$  (VO  $(O_2)$   $(C_2$ H $_4$ )  $_2$ )  $\cdot$  6 H $_2$ O)、過マンガン酸塩(例えば、 ${
m KM\,n\,O_4}$ )、クロム酸塩(例えば、 ${
m K_2C\,r_2}$  $O_7$ )などの酸素酸塩、沃素や臭素などのハロゲン元素、過ハロゲン酸塩(例えば 過沃素酸カリウム)高原子価の金属の塩(例えば、ヘキサシアノ第二鉄酸カリウ ム) およびチオスルフォン酸塩などがある。また、有機の酸化剤としては、pキノンなどのキノン類、過酢酸や過安息香酸などの有機過酸化物、活性ハロゲンを放出する化合物(例えば、N-ブロムサクシイミド、クロラミンT、クロラミンB)が例として挙げられる。

## [0253]

本発明の好ましい酸化剤は、オゾン、過酸化水素およびその付加物、ハロゲン 元素、チオスルフォン酸塩の無機酸化剤およびキノン類の有機酸化剤である。前 述の還元増感と銀に対する酸化剤を併用するのは好ましい態様である。酸化剤を 用いたのち還元増感を施こす方法、その逆方法あるいは両者を同時に共存させる 方法のなかから選んで用いることができる。これらの方法は粒子形成工程でも粒 子形成工程後に用いても良い。

## [0254]

本発明の乳剤は、潜像を主として表面に形成する表面潜像型でも、粒子内部に 形成する内部潜像型でも表面と内部のいずれにも潜像を有する型のいずれでもよ いが、ネガ型の乳剤であることが必要である。内部潜像型のうち、特開昭63-264740号公報に記載のコア/シェル型内部潜像型乳剤であってもよい。こ のコア/シェル型内部潜像型乳剤の調製方法は、特開昭59-133542号公 報に記載されている。この乳剤のシェルの厚みは、現像処理等によって異なるが 、3~40nmが好ましく、5~30nmが特に好ましい。

#### [0255]

本発明の写真乳剤には、感光材料の製造工程、保存中あるいは写真処理中のカブリを防止し、あるいは写真性能を安定化させる目的で、種々の化合物を含有させることができる。すなわちチアゾール類、例えばベンゾチアゾリウム塩、ニトロイミダゾール類、ニトロベンズイミダゾール類、クロロベンズイミダゾール類、ブロモベンズイミダゾール類、メルカプトチアゾール類、メルカプトベンゾチアゾール類、メルカプトベンズイミダゾール類、メルカプトチアジアゾール類、アミノトリアゾール類、ベンゾトリアゾール類、ニトロベンゾトリアゾール類、メルカプトテトラゾール類(特に1-フェニル-5-メルカプトテトラゾール)など;メルカプトピリミジン類;メルカプトトリアジン類;たとえばオキサドリンチオンのようなチオケト化合物;アザインデン類、たとえばトリアザインデン

類、テトラアザインデン類(特に4ーヒドロキシ置換(1,3,3a,7)テトラアザインデン類)、ペンタアザインデン類などのようなカブリ防止剤または安定剤として知られた、多くの化合物を加えることができる。たとえば米国特許第3,954,474号明細書、同3,982,947号明細書、特公昭52-28660号公報に記載されたものを用いることができる。好ましい化合物の一つに特開昭63-212932号に記載された化合物がある。かぶり防止剤および安定剤は粒子形成前、粒子形成中、粒子形成後、水洗工程、水洗後の分散時、化学増感前、化学増感中、化学増感後、塗布前のいろいろな時期に目的に応じて添加することができる。乳剤調製中に添加して本来のかぶり防止および安定化効果を発現する以外に、粒子の晶壁を制御する、粒子サイズを小さくする、粒子の溶解性を減少させる、化学増感を制御する、色素の配列を制御するなど多目的に用いることができる。

### [0256]

本発明の写真乳剤は、メチン色素類その他によって分光増感されることが本発明の効果を発揮するのに好ましい。用いられる色素には、シアニン色素、メロシアニン色素、複合シアニン色素、複合メロシアニン色素、ホロポーラーシアニン色素、ヘミシアニン色素、スチリル色素およびヘミオキソノール色素が包含される。特に有用な色素は、シアニン色素、メロシアニン色素、および複合メロシアニン色素に属する色素である。これらの色素類には、塩基性異節環核としてシアニン色素類に通常利用される核のいずれをも適用できる。すなわち、ピロリン核、オキサゾリン核、チオゾリン核、ピロール核、オキサゾール核、チアゾール核、セレナゾール核、イミダゾール核、テトラゾール核、ピリジン核など;これらの核に脂環式炭化水素環が融合した核;およびこれらの核に芳香族炭化水素環が融合した核、即ち、インドレニン核、ベンズインドレニン核、インドール核、ベンズオキサドール核、ナフトオキサゾール核、ベンゾチアゾール核、ナフトチアゾール核、ベンゾセレナゾール核、ベンズイミダゾール核、キノリン核などが適用できる。これらの核は炭素原子上に置換されていてもよい。

#### [0257]

メロシアニン色素または複合メロシアニン色素にはケトメチレン構造を有する

核として、ピラゾリン-5-オン核、チオヒダントイン核、2-チオオキサゾリジン-2,4-ジオン核、チアゾリジン-2,4-ジオン核、ローダニン核、チオバルビツール酸核などの5~6員異節環核を適用することができる。

### [0258]

これらの増感色素は単独に用いてもよいが、それらの組合せを用いてもよく、増感色素の組合せは特に、強色増感の目的でしばしば用いられる。その代表例は米国特許第2,688,545号、同2,977,229号、同3,397,060号、同3,522,052号、同3,527,641号、同3,617,293号、同3,628,964号、同3,666,480号、同3,672,898号、同3,679,428号、同3,703,377号、同3,769,301号、同3,814,609号、同3,837,862号、同4,026,707号、英国特許第1,344,281号、同1,507,803号、特公昭43-4936号、同53-12375号、特開昭52-110618号、同52-109925号の各明細書及び公報に記載されている。

#### [0259]

増感色素とともに、それ自身分光増感作用をもたない色素あるいは可視光を実質的に吸収しない物質であって、強色増感を示す物質を乳剤中に含んでもよい。

#### [0260]

増感色素を乳剤中に添加する時期は、これまで有用であると知られている乳剤 調製の如何なる段階であってもよい。もっとも普通には化学増感の完了後塗布前までの時期に行なわれるが、米国特許第3,628,969号明細書、および同第4,225,666号明細書に記載されているように化学増感剤と同時期に添加し分光増感を化学増感と同時に行うことも、特開昭58-113928号公報に記載されているように化学増感に先立って行うことも出来、またハロゲン化銀粒子沈澱生成の完了前に添加し分光増感を開始することも出来る。更にまた米国特許第4,225,666号明細書に教示されているようにこれらの前記化合物を分けて添加すること、即ちこれらの化合物の一部を化学増感に先立って添加し、残部を化学増感の後で添加することも可能であり、米国特許第4,183,756号明細書に開示されている方法を始めとしてハロゲン化銀粒子形成中のどの

時期であってもよい。添加量は、ハロゲン化銀1モル当り、 $4 \times 10^{-6} \sim 8 \times 10^{-3}$ モルで用いることができるが、 $5 \times 10^{-5} \sim 5 \times 10^{-3}$ モルがより有効である。

[0261]

本発明の乳剤は、ハロゲン化銀写真感光材料において、感光性層であれば、赤感光性、緑感光性、青感光性のいずれの感光性層にも添加することができる。更に、ハロゲン化銀写真感光材料において、同一の感色性層を有する層が感度の異なる複数のサブ層から構成される場合において、本発明の乳剤は、いずれのサブ層に添加することもできる。本発明の乳剤の添加量は、感光材料  $1 \text{ m}^2$ 当たり銀量に換算して $0.05g\sim6.0g$ に設定することができる。

[0262]

本発明のハロゲン化銀写真乳剤、およびそれを用いたハロゲン化銀写真感光材料に用いることのできる種々の技術や無機・有機の素材については一般にはリサーチディスクロージャーNo. 308119 (1989)、No. 37038 (1995)に記載されたものを用いることができる。

[0263]

より具体的には本発明のハロゲン化銀写真乳剤が適用できるカラー写真感光材料に用いることができる技術および無機・有機素材については、欧州特許第436,938A2号明細書の下記の箇所および下記に引用の特許に記載されている

[0264]

項目

## 該当箇所

| 1) イエローカプラー | 第137頁35行目~第146頁33行目 |
|-------------|---------------------|
|             | 、第149頁21行目~23行目     |
| 2) マゼンタカプラー | 第149頁24行目~第28行目;欧州特 |
|             | 許第421,453A1号の第3頁5行目 |
|             | ~第25頁55行目           |
| 3) シアンカプラー  | 第149頁29行目~33行目;欧州特許 |
|             | 第432,804A2号の第3頁28行目 |

~第40頁2行目

4) ポリマーカプラー 第149頁34行目~38行目;欧州特許

第435,334A2号の第113頁39

行目~第123頁37行目

第53頁42行目~第137頁34行目、 5) カラードカプラー

第149頁39行目~45行目

6) その他の機能性 第7頁1行目~第53頁41行目、第14

9頁46行目~第150頁3行目;欧州特

許第435,334A2号の第3頁1行目

~第29頁50行目

7)防腐、防黴剤 第150頁25行目~28行目

8) ホルマリンスカベンジャー 第149頁15行目~17行目

9)その他の添加剤 第153頁38行目~47行目;欧州特許

第421, 453A1号の第75頁21行

目~第84頁56行目、第27行目40行

目~第37頁40行目

10)分散方法 第150頁4行目~24行目

11) 支持体 第150頁32行目~34行目

12)膜厚・膜物性 第150頁35行目~49行目

13) 発色現像・黒白 第150頁50行目~第151頁47行目

現像・かぶらせ ;欧州特許第442,323A2号の第34

頁11行目~54行目、第35頁14行目

~22行目

第151頁48行目~152頁53行目

第152号54行目~第153頁2行目

第153頁3行目~37行目

14) 脱銀工程

工程

15) 自動現像機

16) 水洗・安定工程

カプラー

[0265]

【実施例】

以下に、本発明を実施例により、更に詳細に説明するが、本発明はこれらに限

定されるものではない。

[0266]

(実施例1)

乳剤Em-aの調製

臭化カリウム6g、平均分子量1~2万の低分子量ゼラチン0.8gを蒸留水1.5 Lに溶かした水溶液を良く攪拌しながら、これに500mLあたり臭化カリウム64gと低分子量ゼラチン5.0gを含む水溶液と500mLあたり硝酸銀90gと硝酸アンモニウム4gを含む水溶液を35℃においてダブルジェット法により30秒間加えた。このときのpAgは9.0に保った(この添加(1)で全銀量の5.7%を消費した。)。

[0267]

この後物理熟成工程を経て、KBr水溶液でpAgを9.5に調整したのち液温を50℃に昇温し、フタル酸による処理を施したゼラチンを35g加えたのち、1Lあたり臭化カリウムを225g含む水溶液と1Lあたり硝酸銀を316gと硝酸アンモニウムを0.6g含む水溶液をダブルジェット法により14分間添加した。このときのpAgは8.8に保った(この添加(2)で全銀量の9.2%を消費した。)。

[0268]

次に1Lあたり沃化カリウムを17.2g含む水溶液と1Lあたり硝酸銀を67.5gと硝酸アンモニウムを13.2g含む水溶液をダブルジェット法により6分30秒間で同じ当量添加した(この添加(3)で全銀量の3.5%を消費した。)。

[0269]

続いて(2)の添加過程で使用したKBr水溶液と硝酸銀水溶液をpAgを8.8に保ちながら、30分間添加した(この添加(4)で全銀量の81%を消費した。)。

[0270]

続いて、上記乳剤に対し35℃にて公知のフロキュレーション法により水洗し、ゼラチンを加え40℃でpH=6.3、pAg=8.3に調整し、同体積の球に

換算した平均粒子直径が $0.23\mu$  mで平均投影面積直径が $0.28\mu$  mで平均アスペクト比が2.7の平板状AgBrI乳剤(平均I=3.5mol%、変動係数20%)を得、56 に昇温した後、最適に金硫黄セレン増感を施しEm-a を得た。

[0271]

乳剤Em-bおよびEm-cの調製

乳剤Em-aにおいて、(1)の添加工程後の物理熟成工程を経て、還元増感剤として二酸化チオ尿素を完成粒子の銀1 モルあたり $3 \times 10^{-5}$  モルの添加を行い、(4)の添加工程後に、 $C_2H_5-SO_2S-N$  a を銀1 モルあたり $2.5 \times 1$   $0^{-4}$  モルの添加を行った以外はEm-a と同じにして、Em-b を得た。同様に二酸化チオ尿素を銀1 モルあたり $3 \times 10^{-5}$  モルの添加を(4)の添加工程後に行い、Em-c を得た。

[0272]

乳剤Em-d~Em-kの調製

Em-aに対して、それぞれ有機電子供与化合物A-1、1、6、19、20、21、36、45を(4)の添加工程後に最適に作用させ、Em-d~Em-kを得た。

[0273]

乳剤Em-l~Em-pの調製

Em-aに対して、有機電子供与化合物 A-1あるいは 2.1 を (4) の添加工程後に最適に作用させた後に、保存性改良化合物 A-2、 A-3、 A-4あるいは A-5を添加して  $Em-1\sim Em-p$  を得た。

[0274]

表1に、乳剤Em-a~Em-pに作用させた還元増感剤量、有機電子供与化合物の種類および使用量、保存性改良化合物の種類、量および酸化電位を示した

[0275]

【表1】

| (A) | 保存性改良化合物  | 量(mol/mol Ag) 酸化電位(eV) | 比較例   |                           | 比較例 | 比較例                   | 本発明                | 本発明                  | ——— 本祭明              | 本発明                  | ——— 本発明              | —————————————————————————————————————— | 本発明                  | 3×10 <sup>-4</sup> 0.18 比較例 | 3×10-4 0.22 本発明          | 3×10 <sup>-4</sup> 0.18 本発明 | 3×10-4 0.77 本発明         | 3×10-4 0 90 本無明 |
|-----|-----------|------------------------|-------|---------------------------|-----|-----------------------|--------------------|----------------------|----------------------|----------------------|----------------------|----------------------------------------|----------------------|-----------------------------|--------------------------|-----------------------------|-------------------------|-----------------|
|     | 有機電子供与化合物 | 当物 量 (mol/mol Ag) 化合物  | ┼     |                           |     | -1 8×10 <sup>-6</sup> | 3×10 <sup>-6</sup> | 6 4×10 <sup>-6</sup> | 9 4×10 <sup>-6</sup> | 0 6×10 <sup>-6</sup> | 1 8×10 <sup>-6</sup> | 8 × 10 <sup>-6</sup>                   | 5 8×10 <sup>-6</sup> | -1 8×10 <sup>-6</sup> A-    | 21 8×10 <sup>-6</sup> A- | 1 8×10 <sup>-6</sup> A-     | 1 8×10 <sup>-6</sup> A- | - V 9-U X X V   |
|     | 還元增感剤     | 位置、量(mol/mol Ag) 化合物   |       | (1)工程後 3×10 <sup>-5</sup> |     | 4                     |                    |                      |                      | 2                    | 7                    | 8                                      | 4                    | A -                         | 2                        | 2                           | 2                       | 0               |
|     | 石石石       | L                      | E   E | ه ا                       | O   | Ъ                     | П<br> <br>         | Em – f               | Em 1                 | łт                   | Ш<br>В – :           | Ш<br>В В                               | En-k                 | Em – 1                      | En-m                     | Ш<br>Н<br>Н                 | о<br>1<br>8<br>Ш        |                 |

[0276]

【化27】

A-1

[0277]

乳剤Em-a~Em-pにそれぞれ下記に示す化合物を加え、下塗り層を有するトリアセチルセルロースフィルム支持体上に保護層と共に同時押しだし法で塗布し、それぞれ試料101~116を得た。

[0278]

## (1)乳剤層

- ・乳剤 乳剤Em-a~Em-pのいずれか(試料101~116にそれぞれ対応)
  - ・安定剤 4-ヒドロキシー6-メチルー1,3,3a,7-テトラザインデン
  - (2)保護層
  - ・ゼラチン

[0279]

これらの試料に富士フィルターSC50を通した光で適切なセンシトメトリー 用露光(1秒)を与え、下記組成CR56第1現像液により20℃で10分間白黒現 像処理を行った後、常法により停止、定着、水洗、乾燥し、濃度測定を行った。

[0280]

以下に処理液の組成を示す。

[CR56第一現像液]

[タンク液]

ニトリローN, N, N-トリメチレンホスホン酸

・5ナトリウム塩
 ジエチレントリアミン五酢酸・5ナトリウム塩
 亜硫酸ナトリウム
 ハイドロキノン・モノスルホン酸カリウム
 1.5 g
 2.0 g

| 15 g   |
|--------|
| 12 g   |
|        |
| 2.5 g  |
| 2.5 g  |
| 1.2 g  |
| 2.0 mg |
| 13 g   |
| 1000mL |
| 9.60   |
|        |

p Hは硫酸又は水酸化カリウムで調整した。

[0281]

この現像液は亜硫酸ナトリウムを十分に含む(亜硫酸イオンとして1 L中に0.24mol含有)ので溶解物理現像が起こる現像液とみなすことができる。

[0282]

下記表2に感度、かぶりおよび試料を55℃、30%の環境で3日間放置した 後に現像した時のかぶりの結果を示す。感度はかぶりと最大濃度の和の半分の濃 度を与える露光量の逆数で定義し、試料101の値からの感度差をlogE相対値で 示した。

[0283]

【表2】

|    |                         | 比較例  | 比較例   | 比較例   | 比較例   | 本発明   | 比較例   | 本発明   | 本発明   | 本発明   | 本発明   |
|----|-------------------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 表2 | 55°C、30%、<br>3日間保存後のかぶり | 0.08 | 0.20  | 0.35  | 0. 19 | 0.10  | 0. 10 | 0.09  | 0. 11 | 0. 11 | 0.09  | 0.09  | 0. 17 | 0.09  | 0.08  | 0.09  | 0.08  |
|    | かぶり                     | 0.04 | 0.08  | 0. 12 | 0.08  | 0.06  | 0.07  | 0.07  | 0.08  | 0.08  | 0.06  | 0.05  | 0.07  | 0.05  | 0.04  | 0.05  | 0.05  |
|    | 整度 (logE)               | 0.00 | +0.10 | +0.12 | +0.16 | +0.30 | +0.31 | +0.30 | +0.28 | +0.29 | +0.28 | +0.25 | +0.17 | +0.31 | +0.32 | +0.31 | +0.31 |
|    | 乳剤                      | Em-a | Em-b  | Em-c  | Em-d  | Em-e  | Em-f  | Em-g  | Em-h  | Em- i | Em-j  | Em-k  | Em-1  | Em-m  | Em-n  | Em-o  | Em-p  |
|    | 塗布試料                    | 101  | 102   | 103   | 104   | 105   | 106   | 107   | 108   | 109   | 110   | 111   | 112   | 113   | 114   | 115   | 116   |

[0284]

表2に示されるように、溶解物理現像が起こる現像液を用いた現像処理を行う 場合には、還元増感剤や従来の有機電子供与化合物を作用させる増感方法よりも 、本発明の有機電子供与化合物を作用させる増感方法を行ったハロゲン化銀写真 感光材料のほうが、高感度、低かぶりでかつ保存性にも優れることが明らかであ る。

[0285]

比較として、 $Na_2SO_3\cdot7H_2O$ を減量して調整した現像処理液(2種類)を用いて現像したときの塗布試料101、104、105、112、113の結果を表3に示す。いずれも感度は試料101を基準として示した。本発明の優れた効果は溶解物理現像が起こる現像液(0.10mo1/L以上亜硫酸イオン)で顕著に現れることが分かる。

[0286]

【表3】

[0287]

(実施例-2)

塗布試料201の作成

### 1. トリアセチルセルロースフィルムの作製

トリアセチルセルロースを通常の溶液流延法により、ジクロロメタン/メタノール=92/8 (質量比) にトリアセチルセルロースを溶解 (質量で13%)、可塑剤トリフェニルフォスフェートとビフェニルジフェニルフォスフェートを質量比2:1で、合計がトリアセチルセルロースに対して14%になるように添加したものをバンド法にて作製した。乾燥後の支持体の厚みは97μmであった。

[0288]

### 2. 下塗り層の内容

上記トリアセチルセルロースフィルムの両面に対して以下の下塗りを施した。 数字は下塗り液1.0リットルあたりに含まれる重量を表す。

なお、下塗りを施す前に、両面にコロナ放電処理を施した。

ゼラチン10.0gサリチル酸0.5gグリセリン4.0gアセトン700mL

メタノール 200mL

ジクロロメタン 80 mL

ホルムアルデヒド 0.1mg

水を加えて 1.0リットル

[0289]

#### 3. バック層の塗布

下塗りを施した支持体の片面に以下に示すバック層を塗布した。

第1層 バインダー:酸処理ゼラチン(等電点9.0) 1.00g

ポリマーラテックス: P-2 (平均粒径 $0.1\mu$  m) 0.13g

ポリマーラテックス: P-3 (平均粒径 $0.2\mu$  m) 0.23g

紫外線吸収剤U-1 0.030 g

紫外線吸収剤U-3 0.010g

紫外線吸収剤U-4 0.020g

高沸点有機溶媒〇il-2 0.030g

## 特2002-263715

| 界面活性剤W-3                   | 0.010 g |
|----------------------------|---------|
| 界面活性剤W-6                   | 3.0m g  |
| [0290]                     |         |
| 第2層 バインダー:酸処理ゼラチン(等電点9.0)  | 3.10 g  |
| ポリマーラテックス: P-3 (平均粒径0.2μm) | 0.11 g  |
| 紫外線吸収剤U-1                  | 0.030 g |
| 紫外線吸収剤U-3                  | 0.010 g |
| 紫外線吸収剤U-4                  | 0.020 g |
| 高沸点有機溶媒Oil-2               | 0.030 g |
| 界面活性剤W-3                   | 0.010 g |
| 界面活性剤W-6                   | 3.0 m g |
| 染料D-2                      | 0.10 g  |
| 染料D-10                     | 0.12 g  |
| 硫酸カリウム                     | 0.25 g  |
| 塩化カルシウム                    | 0.5 m g |
| 水酸化ナトリウム                   | 0.03 g  |
| [0291]                     |         |
| 第3層 バインダー:酸処理ゼラチン(等電点9.0)  | 3.30 g  |
| 界面活性剤W-3                   | 0.020 g |
| 硫酸カリウム                     | 0.30 g  |
| 水酸化ナトリウム                   | 0.03 g  |
| [0292]                     |         |
| 第4層 バインダー:石灰処理ゼラチン(等電点5.4) | 1.15 g  |
| メタクリル酸とメチルメタクリレートの1:9の共重   | 合体      |
| (平均粒径 2. 0 μ m)            | 0.040 g |
| メタクリル酸とメチルメタクリレートの6:4の共重   | 合体      |
| (平均粒径 2. 0 μ m)            | 0.030 g |
| 界面活性剤W-3                   | 0.060 g |
| 界面活性剤W-2                   | 7.0 m g |

硬化剤H-1

 $0.23\,\mathrm{g}$ 

[0293]

## 4. 感光性乳剤層の塗布

バック層を塗布したのと反対側に、以下に示す感光性乳剤層を塗布し、試料201とした。数字はm<sup>2</sup>あたりの添加量を表す。なお添加した化合物の効果は記載した用途に限らない。

[0294]

## 第1層:ハレーション防止層

| 黒色コロイド銀          | 0.25 g  |
|------------------|---------|
| ゼラチン             | 2.40 g  |
| 紫外線吸収剤U-1        | 0.15 g  |
| 紫外線吸収剤U-3        | 0.15 g  |
| 紫外線吸収剤U-4        | 0.10 g  |
| 紫外線吸収剤U-5        | 0.10 g  |
| 高沸点有機溶媒Oi1-1     | 0.10 g  |
| 高沸点有機溶媒Oil-2     | 0.10 g  |
| 染料D-4            | 1.0 m g |
| 染料D-8            | 2.5 m g |
| 染料 E-1 の微結晶固体分散物 | 0.05 g  |
|                  |         |

[0295]

## 第2層:中間層

| ゼラチン         | 0.50g   |
|--------------|---------|
| 化合物Cpd-A     | 0.2mg   |
| 化合物Cpd-K     | 3.0 m g |
| 化合物Cpd-M     | 0.030g  |
| 紫外線吸収剤U-6    | 6.0 m g |
| 高沸点有機溶媒Oil-3 | 0.010g  |
| 高沸点有機溶媒〇i1-4 | 0.010g  |
| 高沸点有機溶媒Oil-7 | 2.0 m g |

染料 D - 7

4.0 m g

[0296]

第3層:中間層

黄色コロイド銀

0.020g

予め表面および内部が被らされた沃臭化銀乳剤 (立方体粒子、平均沃化銀含有率1mo1%、

球相当平均粒径 O. O 6 μ m)

銀量 0.010 g

ゼラチン

 $0.60\,\mathrm{g}$ 

化合物Cpd-D

 $0.020\,\mathrm{g}$ 

高沸点有機溶媒Oil-3

 $0.010\,\mathrm{g}$ 

高沸点有機溶媒Oi1-8

 $0.010\,\mathrm{g}$ 

[0297]

第4層:低感度赤感性乳剤層

乳剤A 銀量 0.15g

乳剤B

銀量 0.20g

乳剤C

銀量 0.20 g

ゼラチン

 $0.80\,\mathrm{g}$ 

カプラーC-1

 $0.10\,\mathrm{g}$ 

カプラーC-2

0.05g

カプラーC-3

 $0.02\,\mathrm{g}$ 

カプラーC-10

3.0 m g

カプラーC-11

2.0 m g

0.010 g

紫外線吸収剤U-3

0.020 g

化合物Cpd-I

3.0 m g

化合物Cpd-D

化合物Cpd-J

2.0 m g

高沸点有機溶媒Oil-2

0.070 g

添加物 P-1

5.0 m g

[0298]

#### 第5層:中感度赤感性乳剤層

| 乳剤C          | 銀量 | 0.25 g  |
|--------------|----|---------|
| 乳剤D          | 銀量 | 0.25 g  |
| ゼラチン         |    | 0.80g   |
| カプラーC-1      |    | 0.15 g  |
| カプラーC-2      |    | 0.08g   |
| カプラーC-3      |    | 0.02g   |
| カプラーC-10     |    | 3.0 m g |
| 化合物Cpd-D     |    | 3.0 m g |
| 紫外線吸収剤U-3    |    | 0.010 g |
| 高沸点有機溶媒〇i1-2 |    | 0.10 g  |
| 添加物 P-1      |    | 7.0 m g |
| [0299]       |    |         |
|              |    |         |

## 第6層:高感度赤感性乳剤層

| 乳剤E          | 銀量 | $0.25\mathrm{g}$ |
|--------------|----|------------------|
| 乳剤F          | 銀量 | 0.30 g           |
| ゼラチン         |    | 1.70 g           |
| カプラーC-1      |    | 0.10 g           |
| カプラーC-2      |    | 0.10 g           |
| カプラーC-3      |    | 0.60g            |
| カプラーC-10     |    | 5.0 m g          |
| 紫外線吸収剤U-1    |    | 0.010 g          |
| 紫外線吸収剤U-2    |    | 0.010 g          |
| 高沸点有機溶媒Oi1-2 |    | 0.050 g          |
| 化合物Cpd-K     |    | 1.0 m g          |
| 化合物Cpd-F     |    | 0.030g           |
| 化合物Cpd-L     |    | 1.0 m g          |
| 添加物 P - 1    |    | 0.010g           |
| 添加物 P - 4    |    | 0.030g           |

# [0300]

| 第7層:中間層 | 尋 |
|---------|---|
|---------|---|

| ゼラチン         | 0.70 g  |
|--------------|---------|
| 添加 P - 2     | 0.10 g  |
| 染料D-5        | 0.020 g |
| 染料 D - 9     | 6.0 m g |
| 化合物Cpd-I     | 0.010 g |
| 化合物Cpd-M     | 0.040 g |
| 化合物Cpd-O     | 3.0 m g |
| 化合物Cpd-P     | 5.0 m g |
| 高沸点有機溶媒〇i1-6 | 0.050g  |
| [0301]       |         |

## 第8層:中間層

| 黄色コロイド銀          | 銀量 | 0.020 g |
|------------------|----|---------|
| ゼラチン             |    | 1.00 g  |
| 添加物 P - 2        |    | 0.05 g  |
| 紫外線吸収剤U-1        |    | 0.010 g |
| 紫外線吸収剤U-3        |    | 0.010 g |
| 化合物C p d - A     |    | 0.050g  |
| 化合物Cpd-D         |    | 0.030 g |
| 化合物C p d -M      |    | 0.050 g |
| 高沸点有機溶媒〇i1-3     |    | 0.010 g |
| 高沸点有機溶媒〇 i l - 6 |    | 0.050 g |
|                  |    |         |

## 第9層:低感度緑感性乳剤層

[0302]

| 乳剤G  | 銀量 | 0.30 g |
|------|----|--------|
| 乳剤H  | 銀量 | 0.35 g |
| 乳剤I  | 銀量 | 0.30 g |
| ゼラチン |    | 1.70 g |

| カプラーC-4           |       | 0.20 g  |
|-------------------|-------|---------|
| カプラーC-5           |       | 0.050 g |
| カプラーC-6           |       | 0.020 g |
| カプラーC-7           |       | 0.010 g |
| 化合物Cpd-A          |       | 5.0 m g |
| 化合物Cpd-B          |       | 0.030 g |
| 化合物Cpd-D          |       | 5.0 m g |
| 化合物Cpd-G          |       | 2.5 m g |
| 化合物Cpd-F          |       | 0.010 g |
| 化合物Cpd-K          |       | 2.0 m g |
| 紫外線吸収剤U-6         |       | 5.0 m g |
| 高沸点有機溶媒Oil-2      |       | 0.15 g  |
| 添加剤 P - 1         |       | 5.0 m g |
| [0303]            |       |         |
| 第10層:中感度緑感性乳剤層    |       |         |
| 乳剤I               | 銀量    | 0.30 g  |
| 乳剤 J              | 銀量    | 0.30 g  |
| 内部を被らせた臭化銀乳剤(立力   | 5体粒子、 |         |
| 球相当平均粒径0.11μm)    | 銀量    | 3.0 m g |
| ゼラチン              |       | 0.70 g  |
| カプラーC-4           |       | 0.050g  |
| カプラーC-5           |       | 0.050 g |
| カプラーC-6           |       | 0.020 g |
| カプラーC-7           |       | 0.010 g |
| 化合物Cpd-A          |       | 5.0 m g |
| 化合物Cpd-B          |       | 0.030 g |
| 化合物Cpd-F          | . ,   | 0.010 g |
| 化合物Cpd-G          |       | 2.0mg   |
| 高沸点有機溶媒 O i 1 - 2 |       | 0.030 g |
|                   |       |         |

# [0304]

# 第11層:高感度緑感性乳剤層

| 銀量       | 0.60g                |
|----------|----------------------|
|          | 0.80 g               |
|          | 0.40 g               |
|          | 5.0 m g              |
|          | 5.0 m g              |
|          | 0.030 g              |
|          | 0.010 g              |
|          | 0.030 g              |
|          |                      |
| <b>3</b> |                      |
| 銀量       | 0.010 g              |
|          | 1.0 g                |
|          | 0.010 g              |
|          | 0.10 g               |
|          | 0.020 g              |
|          | 0.10 g               |
| 女物       | 0.20 g               |
|          |                      |
|          |                      |
|          | 0.40 g               |
|          | 0.20 g               |
|          | 2.0 mg               |
|          | 0.010 g              |
|          |                      |
|          |                      |
| 銀量       | 0.15 g               |
| 銀量       | 0.20 g               |
|          | <b>銀</b> 銀 銀 銀 銀 銀 量 |

| 乳剤N                                                                                                                                             | 銀量         | 0.10 g                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------|
| ゼラチン                                                                                                                                            |            | 0.80g                                                                             |
| カプラーC-8                                                                                                                                         |            | 0.020 g                                                                           |
| カプラーC-9                                                                                                                                         |            | 0.30 g                                                                            |
| カプラーC-10                                                                                                                                        |            | 5.0 m g                                                                           |
| 化合物Cpd-B                                                                                                                                        |            | 0.10 g                                                                            |
| 化合物Cpd-I                                                                                                                                        |            | 8.0 m g                                                                           |
| 化合物Cpd-K                                                                                                                                        |            | 1.0 m g                                                                           |
| 化合物Cpd-M                                                                                                                                        |            | 0.010 g                                                                           |
| 紫外線吸収剤U-6                                                                                                                                       |            | 0.010 g                                                                           |
| 高沸点有機溶媒Oil-2                                                                                                                                    |            | 0.010 g                                                                           |
| [0308]                                                                                                                                          |            |                                                                                   |
| 第15層:中感度青感性乳剤層                                                                                                                                  |            |                                                                                   |
| 乳剤N                                                                                                                                             | 銀量         | 0.20 g                                                                            |
|                                                                                                                                                 | AH- 12     |                                                                                   |
| 乳剤〇                                                                                                                                             | 銀量         | 0.20 g                                                                            |
| 乳剤 O<br>内部を被らせた臭化銀乳剤 (立)                                                                                                                        |            | _                                                                                 |
|                                                                                                                                                 | 方体粒子       | _                                                                                 |
| 内部を被らせた臭化銀乳剤(立                                                                                                                                  | 方体粒子       |                                                                                   |
| 内部を被らせた臭化銀乳剤(立<br>球相当平均粒径0.11μm)                                                                                                                | 方体粒子       | 3.0 m g                                                                           |
| 内部を被らせた臭化銀乳剤(立<br>球相当平均粒径0.11μm)<br>ゼラチン                                                                                                        | 方体粒子       | 3.0 m g                                                                           |
| 内部を被らせた臭化銀乳剤(立<br>球相当平均粒径 0. 1 1 μ m)<br>ゼラチン<br>カプラーC - 8                                                                                      | 方体粒子       | 3.0 m g<br>0.80 g<br>0.020 g                                                      |
| 内部を被らせた臭化銀乳剤(立)<br>球相当平均粒径0.11μm)<br>ゼラチン<br>カプラーC-8<br>カプラーC-9                                                                                 | 方体粒子       | 3.0 m g<br>0.80 g<br>0.020 g<br>0.25 g                                            |
| 内部を被らせた臭化銀乳剤(立)<br>球相当平均粒径0.11μm)<br>ゼラチン<br>カプラーC-8<br>カプラーC-9<br>カプラーC-10                                                                     | 方体粒子       | 3.0 m g<br>0.80 g<br>0.020 g<br>0.25 g<br>0.010 g                                 |
| 内部を被らせた臭化銀乳剤(立)<br>球相当平均粒径0.11μm)<br>ゼラチン<br>カプラーC-8<br>カプラーC-9<br>カプラーC-10<br>化合物Cpd-B                                                         | 方体粒子       | 3.0 m g<br>0.80 g<br>0.020 g<br>0.25 g<br>0.010 g<br>0.10 g                       |
| 内部を被らせた臭化銀乳剤(立)<br>球相当平均粒径0.11μm)<br>ゼラチン<br>カプラーC-8<br>カプラーC-9<br>カプラーC-10<br>化合物Cpd-B<br>化合物Cpd-N                                             | 方体粒子       | 3.0 m g<br>0.80 g<br>0.020 g<br>0.25 g<br>0.010 g<br>0.10 g<br>2.0 m g            |
| 内部を被らせた臭化銀乳剤(立)<br>球相当平均粒径0.11μm)<br>ゼラチン<br>カプラーC-8<br>カプラーC-9<br>カプラーC-10<br>化合物Cpd-B<br>化合物Cpd-N<br>高沸点有機溶媒Oi1-2                             | 方体粒子       | 3.0 m g<br>0.80 g<br>0.020 g<br>0.25 g<br>0.010 g<br>0.10 g<br>2.0 m g            |
| 内部を被らせた臭化銀乳剤(立)<br>球相当平均粒径0.11μm)<br>ゼラチン<br>カプラーC-8<br>カプラーC-9<br>カプラーC-10<br>化合物Cpd-B<br>化合物Cpd-N<br>高沸点有機溶媒Oi1-2<br>【0309】                   | 方体粒子       | 3.0 m g<br>0.80 g<br>0.020 g<br>0.25 g<br>0.010 g<br>0.10 g<br>2.0 m g            |
| 内部を被らせた臭化銀乳剤(立)<br>球相当平均粒径0.11μm)<br>ゼラチン<br>カプラーC-8<br>カプラーC-9<br>カプラーC-10<br>化合物Cpd-B<br>化合物Cpd-N<br>高沸点有機溶媒Oi1-2<br>【0309】<br>第16層:高感度青感性乳剤層 | 方体粒子<br>銀量 | 3.0 m g<br>0.80 g<br>0.020 g<br>0.25 g<br>0.010 g<br>0.10 g<br>2.0 m g<br>0.010 g |

| カプラーC-3           | 5.0 m g    |
|-------------------|------------|
| カプラーC-8           | 0.10 g     |
| カプラーC-9           | 1.00 g     |
| カプラーC-10          | 0.020 g    |
| 高沸点有機溶媒 O i 1 - 2 | 0.10 g     |
| 高沸点有機溶媒Oil-3      | 0.020 g    |
| 紫外線吸収剤U-6         | 0.10 g     |
| 化合物Cpd-B          | 0.20 g     |
| 化合物Cpd-E          | 0.030 g    |
| 化合物Cpd-N          | 5.0 m g    |
| [0310]            |            |
| 第17層:第1保護層        |            |
| ゼラチン              | 1.00 g     |
| 紫外線吸収剤U-1         | 0.15 g     |
| 紫外線吸収剤U-2         | 0.050 g    |
| 紫外線吸収剤U-5         | 0.20 g     |
| 化合物Cpd-O          | 5.0mg      |
| 化合物Cpd-A          | 0.030 g    |
| 化合物Cpd-H          | 0.20 g     |
| 染料D-1             | 8.0 m g    |
| 染料D-2             | 0.010 g    |
| 染料D-3             | 0.010 g    |
| 高沸点有機溶媒〇il-3      | 0.10 g     |
| [0311]            |            |
| 第18層:第2保護層        |            |
| コロイド銀 錐           | {量 2.5mg   |
| 微粒子沃臭化銀乳剤(球相当平均   | J粒径0.06μm、 |
| 沃化銀含有率 1m o 1%) 錐 | {量 0.10g   |
| ゼラチン              | 0.80 g     |

紫外線吸収剤U-1

 $0.030\,\mathrm{g}$ 

紫外線吸収剤U-6

 $0.030 \, \mathrm{g}$ 

高沸点有機溶媒Oil-3

 $0.010\,\mathrm{g}$ 

[0312]

第19層:第3保護層

ゼラチン

1.00 g

ポリメチルメタクリレート (平均粒径1.5 µ m)

 $0.10\,\mathrm{g}$ 

メチルメタクリレートとメタクリル酸の6:4の共重合体

(平均粒径 1.5 μm)

 $0.15\,\mathrm{g}$ 

シリコーンオイルSO-1

 $0.20\,\mathrm{g}$ 

界面活性剤W-1

3.0 m g

界面活性剤W-2

8.0 m g

界面活性剤W-3

 $0.040\,\mathrm{g}$ 

界面活性剤W-7

 $0.015\,\mathrm{g}$ 

[0313]

また、すべての乳剤層には上記組成物の他に添加剤 $F-1\sim F-9$ を添加した。さらに各層には上記組成物の他にゼラチン硬化剤H-1及び塗布用、乳化用界面活性剤W-3、W-4、W-5、W-6を添加した。

更に防腐、防黴剤としてフェノール、1,2-ベンズイソチアゾリン-3-オン、2-フェノキシエタノール、フェネチルアルコール、p-安息香酸ブチルエステルを添加した。

[0314]

【化28】

C-1

$$(t)C_5H_{11} \longrightarrow 0$$

$$(t)C_5H_{11}$$

$$(t)C_5H_{11}$$

C-2

$$\begin{array}{c|c} & OH \\ & C_2H_5 \\ \hline \\ (t)C_5H_{11} \\ \hline \\ (t)C_5H_{11} \end{array}$$

C-3

C-4

$$(t)C_5H_{11} \longrightarrow CONH$$

$$(t)C_5H_{11} \qquad CONH$$

$$N \qquad O$$

$$CI \qquad CI$$

[0315]

# 【化29】

C-5 
$$(t)C_5H_{11} \longrightarrow OCH_2CONH \longrightarrow CONH$$

$$(t)C_5H_{11}$$

$$CONH$$

$$N$$

$$N$$

$$CI$$

$$CI$$

$$CI$$

C-7
$$(n)C_{13}H_{27}CONH \longrightarrow CI$$

$$NH$$

$$N$$

$$CI$$

$$CI$$

$$CI$$

[0316]

【化30】

C-8

$$CH_3$$
 $CH_3$ 
 $CH_3$ 
 $COOC_{12}H_{25}(n)$ 
 $C_2H_5O$ 
 $CH_2$ 

C-10 
$$CH_3$$
  $CI$   $CH_3$   $CH_3$ 

[0317]

【化31】

C-13

[0318]

# 【化32】

Oil-1 リン酸トリーn-ヘキシル

Oil-2 リン酸トリクレジル

Oil-3 
$$O=P-\left(\begin{array}{ccc} CH_3 & CH_3 \\ OCH_2CH_2CHCH_2CCH_3 \\ CH_3 \end{array}\right)_3$$

Oil-4 リン酸トリシクロヘキシル

Oil-5 コハク酸ビス(2-エチルヘキシル)

Oil-8
$$C_{11}H_{23}CON = C_{2}H_{5}$$

$$C_{2}H_{5}$$

[0319]

【化33】

Cpd-A

Cpd-B

Cpd-C

[0320]

【化34】

Cpd-D

Cpd-E

Cpd-F

Cpd-G

Cpd-H

[0321]

【化35】

Cpd-I

Cpd-J

Cpd-K

Cpd-L

Cpd-M

[0322]

【化36】

Cpd-N

Cpd-O

Cpd-P

Cpd-Q

[0323]

【化37】

U-2
CH3—CH=C CN
COOC<sub>16</sub>H<sub>33</sub>

U-3 CI OH  $C_4H_9(t)$   $(t)C_4H_9$ 

U-4

OH

(t)C<sub>4</sub>H<sub>9</sub>

U-5  $(C_2H_5)_2NCH=CH-CH=C$  SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—SO<sub>2</sub>—S

U-8

CI OH C<sub>4</sub>H<sub>9</sub>(t)

(CH<sub>2</sub>)<sub>2</sub>COOC<sub>8</sub>H<sub>17</sub>

[0324]

【化38】

S-1

S-2

$$\begin{array}{c|c} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

S-3

S-4

[0325]

【化39】

S-5

S-6

**S-7** 

S-8

[0326]

【化40】

S-11

S-13

C2H5

CH=C-CH

CH2)3SO3

(CH2)3SO3H•N(C2H5)3

[0327]

【化41】

D-4
$$CONH(CH_2)_3O \longrightarrow C_5H_{11}(t)$$

$$C_5H_{11}(t)$$

$$C_2H_5 \longrightarrow C_2H_5$$

[0328]

# 【化42】

D-5

D-6

D-7

$$C_2H_5$$
 $C_2H_5$ 
 $C_2H_5$ 

D-8

D-9

[0329]

【化43】

[0330]

【化44】

E-2

H-1

[0331]

## 【化45】

[0332]

W-1 
$$C_8F_{17}SO_2NHCH_2CH_2CH_2OCH_2CH_2N(CH_3)_3$$
 $CH_3 \longrightarrow SO_3^{\Theta}$ 

W-2  $C_8F_{17}SO_2NCH_2COOK$ 
 $C_3H_7$ 

W-3  $CH_2COOCH_2CH(C_2H_5)C_4H_9$ 
 $NaO_3S - CHCOOCH_2CH(C_2H_5)C_4H_9$ 

W-4  $C_8H_{17} \longrightarrow (OCH_2CH_2)_3 SO_3Na$ 

W-5  $C_3H_7 C_3H_7$ 

W-6  $C_{12}H_{25} \longrightarrow SO_3Na$ 

W-7  $C_8F_{17}SO_3Li$ 

出証特2003-3032689

## 【化46】

P-1

$$CONHC_4H_9(t)$$
 $COOC_2H_5$ 
 $COOC_2H$ 

[0333]

# 【化47】

[0334]

有機固体分散染料の調製

(染料 E-1の微結晶固体分散物の調製)

染料E-1のウェットケーキ(E-1の正味量として270g) にBASF社製PluRonic F88(エチレンオキシドープロピレンオキシド ブロック共重合体)100gおよび水を加えて攪拌し4000gとした。次に、アイメックス(株)製ウルトラビスコミル(UVM-2)に平均粒径0.5mのジルコニアビースを1700m1充填し、スラリーを通して周速約10m/sec、吐出量0.51/minで2時間粉砕した。ビーズを濾過して除き、水を加えて染料濃度3%に希釈した後、安定化のために90m0m0 時間加熱した。得られた染料微粒子の平均粒径は0.30m0m0m0%であった。

[0335]

(染料 E-2の微結晶固体分散物の調製)

水を30質量%含むE-2のウエットケーキ1400gに水及びW-4を270 の g加えて攪拌し、E-2濃度40質量%のスラリーとした。次に分砕機、アイメックス(株)製ウルトラビスコミル(UVM-2)に平均粒径0.5mmのジルコニアビーズを1700mL充填し、スラリーを通して周速約10m/sec、吐出量0.5リットル/mincolore8時間粉砕した。これをイオン交換水で、20質量%に希釈し、微結晶固体分散物を得た。平均粒子サイズは、 $0.15\mu m$ であった。

[0336]

表4には使用した乳剤の特徴を、表5には乳剤に添加した分光増感色素および その量を示す。

[0337]

【表4】

6 0 0 0 0 0 0 0 ☻ O 0 0 0 0 0 その他の特徴 **©** 0 0 0 0 0 0 0 0 0 0 0 0 0  $\Theta$ 0 0 0 0 0 0 0 0 沃化銀含有率 粒子表面の Ŋ ហ 0  $\infty$ വ വ Ŋ 2 8 0 0 Q 0 4 0 ハロゲン化銀乳剤の構成 01に用いた沃奥化銀乳剤 粒子のviny、2 パケン と 観 3重構造 3重構造 4 藍構造 組成構造 3 重構造 重構造 4 重構造 4 重構造 3重構造 4重構造 5 重構造 4 重構造 ന 沃化銀含 有率 (%) D 中乙 ß 0 S 0 S വ တ S 0 ~ က <sub>(C)</sub> က 4 S က 4 က N 表4. 试粒-1 变動係数 თ 8 0 0 0 0 0 8 2 2 ~ N 平均粒径 0 4 0 S ဖ 4 ហ œ 球相当 (m #) S Ø က က S N က က 4 ហ 0 0 0 Ö 0 0 0 o O O O 単分散(111)平板状粒子 平均アスペクト比2. 8 単分散(111) 平板状粒子 単分散(111)平板状粒子 単分散(111) 平板状粒子 単分散(111)平板状粒子 単分散(111) 平板状粒子 単分散 (1111) 平板状粒子 単分散(1111)平板状粒子 平均アスペクト比2. 1 平均アスペクト比5.0 ß 中均アスペクト比4.0 平均アスペクト比3. 平均アスペクト比3. 平均アスペクト比4. 平均アスペクト比5. 単分散14面体粒子 特徵 単分散立方体粒子 単分散立方体粒子 乳劑 ∢ Ø Ç Δ ш Щ **5** I っ  $\boldsymbol{\mathsf{x}}$ 

[0338]

【表5】

表4の結束

|          |                  |        |          | 女々の靴で      | 気で              |        |          |       |          |   |          |
|----------|------------------|--------|----------|------------|-----------------|--------|----------|-------|----------|---|----------|
|          |                  |        | 試料 1     | 01に用い      | 試料101に用いた沃奥化銀乳剤 |        |          |       |          |   |          |
|          |                  | 球相当    | 4        | 年本         | nnf.ン化銀         | 粒子表面の  |          |       |          |   |          |
| 型劑       | 特徵               | 平均粒俗   | 文明(未改    | 沃化銀含       | 粒子のvnf、2        | 沃化銀含有率 |          | 40    | その他の特徴   | 鞭 |          |
|          |                  | ( m m) | (94)     | 有率 (%)     | 組成構造            | (%)    |          |       |          |   |          |
|          |                  |        |          |            |                 |        | $\odot$  | 0     | <b>©</b> | ✐ | <b>©</b> |
| Σ        | 単分散14面体粒子        | 0.30   | 6        | 7.5        | 3重構造            | 5.0    | 0        | 0     |          | 0 | 0        |
| Z        | 単分散 (1111) 平板状粒子 | 2 2 0  | 1 3      | 6          | 対象部を            | •      | (        | C     |          |   |          |
| 2        | 平均アスペクト比3.0      |        | <b>o</b> | . 7        | + 墨冊尼           |        |          | >     | )        |   |          |
| (        | 単分散(111)平板状粒子    | 0 7    | o        | <b>1</b> 0 | イ管権が            | •      | (        | (     |          | C | (        |
| <b>)</b> | 平均アスペクト比3.0      | 0. 43  | 6        | 6 . 3      | + 里情追           | O .    | )        | )     |          | ) | )        |
| ٥        | 単分散(111)平板状粒子    | 0 7 0  | 1 6      | 0 6        | り香焼洗            | 0.5    | (        | 0     |          |   | (        |
| L<br>    | 平均アスペクト比6.5      | 0. / 4 | 1 7      | 7.0        | 野に新っ            |        | )        | )     |          |   | <br>)    |
|          | loc .            | 000    | 0        | a<br>C     | 4 衛 4 年 2年      | ,      | (        | (     |          |   | (        |
| 3        | 平均アスペクト比6.2      | 0<br>0 | 0        | ю          | 4 里保頂           | 4      | <u> </u> | <br>> |          |   | <br>)    |

(その他の特徴)

①:粒子形成中に還元増懸剤を添加した。

②:後熟薬品としてセレン増感剤を使用した。

③:粒子形成中にロジウム塩を添加した。

④:後熟した後に、その時点での乳剤粒子に対し銀モル比で10%の硝酸銀およびそれと等モルの臭化カリウムを添加して シェル付けした。

⑤:1粒子当たり平均10本以上の転位線が存在することを透過型電子顕微鏡で観察した。

なお、全ての感光性乳剤は、チオ硫酸ナトリウム、チオシアン酸カリウム、塩化金酸ナトリウムを用いて後熟した。

また粒子形成中にイリジウム塩を適宜添加した。

また、乳剤B,C,E,H,J,N,Qには、乳剤調製時にゼラチンのアミノ基の一部をフタル酸アミドとした 化学修飾ゼラチンを添加した。

[0339]

【表 6】

表 5. 乳剤A~Pの分光増感

|    | - 20.    | ナレカリス・ト リンカラしょ自治な            | <del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del> |
|----|----------|------------------------------|--------------------------------------------------|
| 乳剤 | 添加した増感色素 | ハロゲン化銀 1 m o l<br>あたりの添加量(g) | 增感色素添加時期                                         |
| Α  | S 1      | 0. 01                        | 後熟した後                                            |
|    | S-2      | 0. 35                        | 後熟する前                                            |
| !  | S-3      | 0. 02                        | 後熟する前                                            |
|    | S-8      | 0. 03                        | 後熟する前                                            |
|    | S-13     | 0. 015                       | 後熟する前                                            |
|    | S-14     | 0. 01                        | 後熟する前                                            |
| В  | S-2      | 0. 35                        | 後熟する前                                            |
|    | S-3      | 0. 02                        | 後熟する前                                            |
|    | S-8      | 0. 03                        | 後熟する前                                            |
|    | S-13     | 0, 015                       | 後熟する前                                            |
|    | S-14     | 0. 01                        | 後熟する前                                            |
| C  | S-2      | 0. 45                        | 後熟する前                                            |
|    | S-8      | 0.04                         | 後熟する前                                            |
|    | S-13     | 0. 02                        | 後熟する前                                            |
| Δ  | S-2      | 0. 52                        | 後熟した後                                            |
|    | S-3      | 0. 05                        | 後熟した後                                            |
|    | S-8      | 0. 05                        | 後熟する前                                            |
|    | S-13     | 0. 015                       | 後熟する前                                            |
| E  | S – 1    | 0. 01                        | 後熟する前                                            |
| :  | S-2      | 0. 48                        | 後熟する前                                            |
|    | S-8      | 0. 05                        | 後熟する前                                            |
| ,  | S-13     | 0. 01                        | 後熟した後                                            |
| F  | S-2      | 0. 42                        | 後熟する前                                            |
|    | S-3      | 0. 04                        | 後熟する前                                            |
|    | S-8      | 0. 04                        | 後熟する前                                            |
| G  | S-4      | 0. 3                         | 後熟した後                                            |
|    | S-5      | 0. 05                        | 後熟した後                                            |
|    | S-12     | 0. 1                         | 後熟した後                                            |
| Н  | S-4      | 0. 2                         | 後熟する前                                            |
|    | S-5      | 0. 05                        | 後熟した後                                            |
|    | S-9      | 0. 15                        | 後熟する前                                            |
|    | S-14     | 0. 02                        | 後熟した後                                            |

[0340]

【表7】

表5のつづき

| 乳剤   | 添加した増感色素      | ハロゲン化銀1mol<br>あたりの添加量(g) | 增感色素添加時期 |
|------|---------------|--------------------------|----------|
| I    | S – 4         | 0. 3                     | 後熟する前    |
| Ì    | S-9           | 0. 2                     | 後熟する前    |
| Ī    | S-12          | 0. 1                     | 後熟する前    |
| J    | S-4           | 0. 35                    | 後熟する前    |
|      | S — 5         | 0. 05                    | 後熟した後    |
| ľ    | S-12          | 0. 1                     | 後熟する前    |
| К    | S-4           | 0. 32                    | 後熟する前    |
|      | S-9           | 0. 05                    | 後熟する前    |
| •    | S-12          | 0. 1                     | 後熟する前    |
|      | S-14          | 0. 02                    | 後熟する前    |
| L, M | <b>\$</b> - 6 | 0. 1                     | 後熟した後    |
|      | S-10          | 0. 2                     | 後熟した後    |
|      | S-11          | 0. 05                    | 後熟した後    |
| N    | S-6           | 0. 05                    | 後熟した後    |
|      | S-7           | 0. 05                    | 後熟した後    |
|      | S-10          | 0. 25                    | 後熟した後    |
|      | S-11          | 0. 05                    | 後熟した後    |
| 0    | S-10          | 0. 4                     | 後熟した後    |
|      | S-11_         | 0. 15                    | 後熟した後    |
| Р    | S-6           | 0. 05                    | 後熟した後    |
|      | S-7           | 0. 05                    | 後熟した後    |
|      | S-10          | 0. 33                    | 後熟する前    |
|      | S-11          | 0. 1                     | 後熟する前    |
| Q    | S-6           | 0. 05                    | 後熟する前    |
|      | S-7           | 0. 05                    | 後熟する前    |
|      | S-10          | 0. 2                     | 後熟する前    |
|      | S-11          | 0. 27                    | 後熟する前    |

[0341]

Em-(i)の作成

実施例1の乳剤Em-aの未化学増感乳剤に、化学増感を施すのに最適な量の色素S-2を添加して40Cで20分間作用させ、その後56Cに昇温し、チオシアン酸カリウムの存在下で、硫黄増感剤としてハイポ、セレン増感剤としてN、N-ジメチルセレノウレア、金増感剤として塩化金酸をそれぞれ用いて金硫黄セレン増感を最適に施し、Em-(i)を得た。

[0342]

Em- (ii) ~ Em- (vi) の作成

上記Em-(i)と同様に、それぞれEm-d、Em-e、Em-i、Em-

1、Em-nについて、色素S-2を添加して作用させたのちに、金硫黄セレン増感を最適に施しEm-(ii)、Em-(iii)、Em-(iv)、Em-(v)、Em-(vi) を得た。

[0343]

Em- (vii) ~Em- (ix) の作成

それぞれEm- (ii)、Em- (iii)、Em- (vi) の調製後、沃化銀を1m o 1 %含有する直径0.05 μ m相当 (同体積の球に換算)のAgBrIハロゲン化銀微粒子乳剤を、それぞれホスト粒子の銀量に対し3mo 1 %に相当する量を添加して熟成し、Em- (vii)、Em- (viii)、Em- (ix)を調製した。

[0344]

以上の乳剤を試料201の乳剤Bと置き換えてそれぞれ試料202~210とした。

[0345]

試料の評価

感度およびかぶりの評価

作成した試料202~210を2500Luxで1/50秒の色温度4800K の白色光源を用い、富士写真フィルム(株)製SC-39フィルターを通してウエッジ露光を施し、下記の現像処理を行った後に、シアン発色濃度が0.2を与える相対露光量の逆数(E)を求め、これを各試料のシアン発色感度とした。シアン発色感度は試料201において、主に乳剤Bがもたらすことを確認しており、具体的には試料202の感度を100とした相対値で示した。また、試料202のシアン発色最大濃度を基準として、その値からの低下濃度を求めた。反転感材では、便宜的にこの低下濃度を各試料のかぶりとみなすことができる。一般的にシアン発色最大濃度が低下すると、かぶりは増加する。保存中におけるかぶり変化の評価は、試料を45℃、55%の環境で7日間保存した試料と保存経時を経なかった試料のシアン発色最大濃度の差を試料202の場合の基準値と比較して行った。試料の詳細および結果を表6に示す。

[0346]

【表8】

|      |           | 有機電子       | 保存性改良 | 化学増感後の                         | シアン領展         | シアン発色  | 45℃、55%で7日間          |     |
|------|-----------|------------|-------|--------------------------------|---------------|--------|----------------------|-----|
| 塗布試料 | 乳剤        | 供与<br>化合物種 | 化合物種  | シェル付けの 0.2での相対<br>有無 <u>密度</u> | 0.2での相対<br>感度 | 最大濃度   | 保存後のシアン発色最大<br>濃度の変化 |     |
| 202  | Em-(i)    |            |       |                                | 100           | 基準     | 恭奉                   | 比較例 |
| 203  | Em-(ii)   | A-1        |       |                                | 140           | -0.08  | -0.23                | 比較例 |
| 204  | Em- (iii) | 1          |       |                                | 198           | -0.04  | 90'0-                | 本発明 |
| 205  | Em-(iv)   | 2.1        |       |                                | 194           | -0.08  | 90 0-                | 本発明 |
| 206  | Em-(v)    | A – 1      | A – 3 |                                | 147           | -0.06  | -0.18                | 比較例 |
| 207  | Em-(vi)   | 2 1        | A-3   |                                | 210           | -0.01  | -0.02                | 本発明 |
| 208  | Em-(vii)  | A-1        |       | シェル付有り                         | 155           | -0. 12 | -0.30                | 比較例 |
| 209  | Em-(viii) | -          |       | シェル付有り                         | 208           | -0.05  | -0.07                | 本発明 |
| 210  | Em-(ix)   | 2.1        | A – 3 | シェル付有り                         | 225           | -0.03  | -0.04                | 本発明 |

[0347]

表6から赤感性乳剤において本発明の有機電子供与化合物が従来知られている ものよりも高感度、低かぶりでかつ保存後のかぶり程度が小さく、保存性改良物 が有効に働くことが分かる。また、乳剤粒子をシェル付けすると本発明の有機電 子供与化合物がより有効に働くことが分かった。

[0348]

(実施例-3)

Em- (x) の作成

実施例1の乳剤Em-aの未化学増感乳剤に、化学増感を施すのに最適な量の色素S-4を添加して40Cで20分間作用させ、その後56Cに昇温し、チオシアン酸カリウムの存在下で、硫黄増感剤としてハイポ、セレン増感剤としてN、N-ジメチルセレノウレア、金増感剤として塩化金酸をそれぞれ用いて金硫黄セレン増感を最適に施し、Em-(x)を得た。

[0349]

Em- (xi) ~Em- (xiii) の作成

上記Em-(x) と同様に、それぞれEm-d、Em-e、Em-gについて、色素S-4 を添加して作用させたのちに、金硫黄セレン増感を最適に施しEm-(xi)、Em-(xii)、Em-(xiii) を得た。

[0350]

試料302~309の作成

以上の乳剤を試料 201 の乳剤 G に置き換えてそれぞれ試料  $302\sim304$  とした。また、試料  $302\sim304$  のカプラーC-4 および C-5 をそれぞれのモル数の 0. 6 倍に相当する C-12 および C-13 に置き換えて試料  $305\sim309$  とした。

[0351]

試料の評価

感度およびかぶりの評価

作成した試料302~309を2500Luxで1/50秒の色温度4800K の白色光源を用い、富士写真フィルム(株)製SC-39フィルターを通してウエッジ露光を施し、下記の現像処理を行った後に、マゼンタ発色濃度が0.18 を与える相対露光量の逆数(E)を求め、これを各試料のマゼンタ発色感度とした。マゼンタ発色濃度は試料201において、主に乳剤Gがもたらすことを確認しており、具体的には試料302の感度を100とした相対値で示した。また、試料302のマゼンタ発色最大濃度を基準として、その値からの低下濃度を求めた。便宜的にこの低下濃度を各試料のかぶりとみなすことができる。一般的にマゼンタ発色最大濃度が低下すると、かぶりは増加する。保存中におけるかぶり変化の評価は、試料を45℃、55%の環境で7日間保存した試料と保存経時を経なかった試料のマゼンタ発色最大濃度の差を試料302の場合の基準値と比較して行った。試料の詳細および結果を表7に示す。

[0352]

【表9】

|    |                                           | 比較例     | 比較例     | 本発明      | 本発明        | 比較例            | 比較例          | 本発明          | 本発明                      |
|----|-------------------------------------------|---------|---------|----------|------------|----------------|--------------|--------------|--------------------------|
|    | 45°C、55%で<br>7日間保存後の<br>マゼンタ発色最<br>大濃度の変化 | 舼       | 20      | -0.06    | 0.7        | 0.8            | 2 5          | 0.7          | 0 8                      |
|    | 45°C、55%で<br>7日間保存後の<br>マゼンタ発色最<br>大濃度の変化 | 素奢      | -0.20   | -0       | -0.07      | -0.08          | -0.25        | -0.07        | -0.08                    |
|    | マゼンタ発色<br>最大濃度                            | 基準      | -0.06   | -0.04    | -0.06      | +0.05          | -0.08        | -0.04        | -0.06                    |
|    | - A だい 機 大 機 大                            | 坤制      | 0       | 0        | 0          | 0+             | -0           | -0           | -0.                      |
|    | マゼンタ濃度<br>0.18 での<br>相対感度                 | 100     | 155     | 205      | 208        | 9<br>9         | 162          | 225          | 232                      |
| 表7 | 有機電子供与化合物                                 |         | A-1     | -        | 19         |                | A-1          |              | 19                       |
|    | ( <b>層</b> の                              | 6, 7    | 6, 7    | 6, 7     | 5, 7       | 5, 7           | 5, 7         | 5, 7         | 5, 7                     |
|    | 層、第1(カプラー                                 |         |         | 5, 6     | 5, 6       | 13,            | 13,          | 13, 6        | 13,                      |
|    | 第9層、第10層の<br>カブラー                         | C-4, 5, | C-4, 5, | C-4, 5,  | C-4, 5, 6, | C-12, 13, 6, 7 | C-12, 13, 6, | C-12, 13, 6, | C-12,                    |
|    | 乳剤                                        | Em-(x)  | Em-(xi) | Em-(xii) | Em-(xiii)  | Em-(x)         | Em-(xi)      | Em-(xii)     | Em-(xiii) C-12, 13, 6, 7 |
|    | 塗布試料                                      | 302     | 303     | 304      | 305        | 306            | 307          | 308          | 309                      |

[0353]

表7から緑感性乳剤において本発明の有機電子供与化合物が従来知られているものよりも高感度、低かぶりでかつ保存後のかぶり程度が小さく、特定の構造を

有するカプラー(C-12、C-13)との組み合わせでその効果が増大するとの予想しなかった結果が得られた。

[0354]

この結果は下記一般式MC-Iで表されるマゼンタカプラーで顕著に再現した

[0355]

【化48】

#### 一般式(MC-I)

$$\begin{array}{c|c}
R_1 & X \\
N & N \\
N & NH \\
G_1^2 & G_2 \\
R_2
\end{array}$$

[0356]

一般式(MC-I)の式中、 $R_1$ は水素原子または置換基を表し、 $G_1$ 、 $G_2$ はいずれか一方が炭素原子、もう一方が窒素原子を表し、 $R_2$ は置換基を表し、 $G_1$ 、 $G_2$ のうち炭素原子であるほうに置換する。 $R_1$ または $R_2$ は更に置換基を有していても良く、また $R_1$ 、 $R_2$ を介して一般式(MC-I)の多量体を形成していても良く、 $R_1$ または $R_2$ を介して高分子鎖に結合していても良い。 Xは、水素原子または芳香族第 1 級アミンカラー現像主薬の酸化体とのカップリング反応により離脱する基を表す。

[0357]

実施例2および3では以下に示す現像処理工程(現像処理A)を施した。

なお処理に際しては、試料201の未露光のものと、完全に爆光したものを1:1の比率で、補充量がタンク容量の4倍になるまでランニング処理した後に評価用の処理を行った。

[0358]

| 処理工程 | 時間 | 温度  | タンク容量 | 補充量                                      |
|------|----|-----|-------|------------------------------------------|
| 第一現像 | 6分 | 38℃ | 12 L  | $2200 \mathrm{m}\mathrm{L}\mathrm{/m}^2$ |

| 第一水洗  | 2分 | 38℃ | 4 L  | $7500 \mathrm{m}\mathrm{L}\diagup\mathrm{m}^2$ |
|-------|----|-----|------|------------------------------------------------|
| 反 転   | 2分 | 38℃ | 4 L  | $1100 \mathrm{m}\mathrm{L}\diagup\mathrm{m}^2$ |
| 発色現像  | 6分 | 38℃ | 12 L | $2200\mathrm{m}\mathrm{L}\diagup\mathrm{m}^2$  |
| 前漂白   | 2分 | 38℃ | 4 L  | $1100 \mathrm{m}\mathrm{L}\mathrm{/m}^2$       |
| 漂 白   | 6分 | 38℃ | 12 L | $220 \mathrm{m}\mathrm{L}\diagup\mathrm{m}^2$  |
| 定着    | 4分 | 38℃ | 8 L  | $1100 \mathrm{m}\mathrm{L}\diagup\mathrm{m}^2$ |
| 第二水洗  | 4分 | 38℃ | 8 L  | $7500 \mathrm{m}\mathrm{L}\diagup\mathrm{m}^2$ |
| 最終リンス | 1分 | 25℃ | 2 L  | $1100 \mathrm{m}\mathrm{L}\mathrm{/m}^2$       |

各処理液の組成は以下の通りであり、第一現像の亜硫酸ナトリウムが多く含まれており、溶解物理現像が起こる現像液とみなすことができる。

[0359]

| 〔第一現像液〕                 | 〔タンク液〕  | 〔補充液〕        |
|-------------------------|---------|--------------|
| ニトリローN, N, Nートリメチレンホスホ  | ン酸      |              |
| ・5ナトリウム塩                | 1.5 g   | 1.5 g        |
| ジエチレントリアミン五酢酸・5ナトリウム    | 塩 2.0 g | 2.0 g        |
| 亜硫酸ナトリウム                | 30 g    | 30 g         |
| ハイドロキノン・モノスルホン酸カリウム     | 20 g    | 20 g         |
| 炭酸カリウム                  | 15 g    | 20 g         |
| 重炭酸カリウム                 | 12 g    | 15 g         |
| 1 -フェニル-4 -メチル-4 -ヒドロキシ | メチル     |              |
| - 3 - ピラゾリドン            | 2.5 g   | 3.0g         |
| 臭化カリウム                  | 2.5 g   | 1.4 g        |
| チオシアン酸カリウム              | 1.2 g   | 1.2 g        |
| 沃化カリウム                  | 2.0 mg  | <del>-</del> |
| ジエチレングリコール              | 13 g    | 15 g         |
| 水を加えて                   | 1000mL  | 1000mL       |
| рН                      | 9.60    | 9.60         |
|                         |         |              |

p H は硫酸又は水酸化カリウムで調整した。

[0360]

| 〔反転液〕                     | 〔タンク液〕          | 〔補充液〕          |
|---------------------------|-----------------|----------------|
| ニトリローN, N, N-トリメチレンホスホン酸  |                 | タンク液           |
| ・5ナトリウム塩                  | 3.0 g           | に同じ            |
| 塩化第一スズ・2水塩                | 1.0 g           |                |
| pーアミノフェノール                | 0.1 g           |                |
| 水酸化ナトリウム                  | 8 g             |                |
| <b>氷酢酸</b>                | 15mL            |                |
| 水を加えて                     | 1000 <b>m</b> L |                |
| рН                        | 6.00            |                |
| p Hは酢酸又は水酸化ナトリウムで調整した。    | 3               |                |
| [0361]                    |                 |                |
| 〔発色現像液〕                   | 〔タンク液〕          | 〔補充液〕          |
| ニトリローN, N, Nートリメチレンホスホン酸  |                 |                |
| ・5 ナトリウム塩                 | 2.0 g           | 2.0 g          |
| 亜硫酸ナトリウム                  | 7.0 g           | 7.0 g          |
| リン酸3ナトリウム・12水塩            | 36 g            | 36 g           |
| 臭化カリウム                    | 1.0 g           | _              |
| 沃化カリウム                    | 90 mg           | . <del>-</del> |
| 水酸化ナトリウム                  | 8.0 g           | 8.0 g          |
| シトラジン酸                    | 0.5 g           | 0.5 g          |
| $N-x+N-N-(\beta-x+\beta)$ | チル)             |                |
| -3-メチル-4-アミノアニリン・3/2      | 硫酸・1 水塩         |                |
|                           | 10 g            | 10 g           |
| 3, 6-ジチアオクタン-1, 8-ジオール    | 1.0 g           | 1.0 g          |
| 水を加えて                     | 1000mL          | 1000mL         |
| рН                        | 11.80           | 12.00          |
| pHは硫酸又は水酸化カリウムで調整した。      | •               |                |
| [0362]                    |                 |                |
| 〔前漂白〕                     | 〔タンク液           | 〕 〔補充液〕        |

| エチレンジアミン4酢酸・2ナトリウム塩・2水塩      | 8.0 g   | 8.0 g  |
|------------------------------|---------|--------|
| 亜硫酸ナトリウム                     | 6.0g    | 8.0 g  |
| 1 -チオグリセロール                  | 0.4 g   | 0.4g   |
| ホルムアルデヒド重亜硫酸ナトリウム付加物         | 30 g    | 35 g   |
| 水を加えて                        | 1000mL  | 1000mL |
| рН                           | 6.30    | 6.10   |
| p Hは酢酸又は水酸化ナトリウムで調整した。       |         |        |
| [0363]                       |         |        |
| 〔漂白液〕                        | 〔タンク液〕  | 〔補充液〕  |
| エチレンジアミン4酢酸・2ナトリウム塩・2水塩      | 2.0 g   | 4.0 g  |
| エチレンジアミン 4 酢酸・Fe(III)・アンモニウム |         |        |
| ・2 水塩                        | 120 g   | 240 g  |
| 臭化カリウム                       | 100 g   | 200 g  |
| 硝酸アンモニウム                     | 10 g    | 20 g   |
| 水を加えて                        | 1000mL  | 1000mL |
| рН                           | 5.70    | 5.50   |
| p Hは硝酸又は水酸化ナトリウムで調整した。       |         |        |
| [0364]                       |         |        |
| 〔定着液〕                        | [タンク液]  | 〔補充液〕  |
| チオ硫酸アンモニウム                   | 80g タンク | ケ液に同じ  |
| 亜硫酸ナトリウム                     | 5.0 g   | "      |
| 重亜硫酸ナトリウム                    | 5.0 g   | "      |
| 水を加えて                        | 1000mL  | "      |
| рН                           | 6.60    |        |
| p Hは酢酸又はアンモニア水で調整した。         |         |        |
| [0365]                       |         |        |
| 〔安定液〕                        | 〔タンク液〕  | 〔補充液〕  |
| 1, 2-ベンゾイソチアゾリン-3-オン         | 0.02 g  | 0.03 g |
| ポリオキシエチレンーpーモノノニルフェニルエー      | テル      |        |
|                              |         |        |

| (平均重合度10)            | 0.3g   | 0.3g   |
|----------------------|--------|--------|
| ポリマレイン酸 (平均分子量2,000) | 0.1 g  | 0.15 g |
| 水を加えて                | 1000mL | 1000mL |
| рН                   | 7.0    | 7.0.   |

[0366]

なお、上記現像処理工程では、各浴は連続的に液を循環させ攪拌し、更に各タンクの下面には直径0.3 mmの小孔を1 c m間隔であけた発泡管を配置し、連続的に窒素ガスを発泡させて攪拌した。

【書類名】

要約書

【要約】

【課題】 溶解物理現像が起こる現像液による処理を必要とするハロゲン化銀写 真感光材料の感度を向上させ、かつ保存性を改良する処理方法を提供すること。

【解決手段】 下記タイプ1~4から選ばれる化合物を一種以上含有するハロゲン 化銀写真感光材料を溶解物理現像が起こる現像液で処理する工程を含むことを特 徴とするハロゲン化銀写真感光材料の処理方法。タイプ1)1電子酸化されて生成する1電子酸化体が引き続く結合開裂反応を伴ってさらに2電子以上の電子を放出し得る化合物;タイプ2)1電子酸化されて生成する1電子酸化体が引き続くC-C結合開裂反応を伴ってさらにもう1電子を放出し得る化合物でかつ同じ分子内にハロゲン化銀への吸着性基を2つ以上有する化合物;タイプ3)1電子酸化されて生成する1電子酸化体が引き続く結合形成過程を経た後にさらに1電子以上の電子を放出し得る化合物;タイプ4:1電子酸化されて生成する1電子酸化体が引き続く分子内の環開裂反応を経た後にさらに1電子以上の電子を放出し得る化合物。

【選択図】 なし

#### 出願人履歴情報

識別番号

[000005201]

1. 変更年月日 1990年 8月14日

[変更理由] 新規登録

住 所

神奈川県南足柄市中沼210番地

氏 名 富士写真フィルム株式会社