Approximating likelihood ratios with calibrated classifiers

Gilles Louppe
ATLAS ML workshop

March 31, 2016

Joint work with

Kyle Cranmer New York University

Juan Pavez
Federico Santa María University

See paper (Cranmer et al., 2015) for full details.

Likelihood-free setup

- Complex simulator p parameterized by θ ;
- Samples $\mathbf{x} \sim p$ can be generated on-demand;
- ... but the likelihood $p(\mathbf{x}|\theta)$ cannot be evaluated!

Simple hypothesis testing

- Assume some observed data $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$;
- Test a null $\theta = \theta_0$ against an alternative $\theta = \theta_1$;
- The Neyman-Pearson lemma states that the most powerful test statistic is

$$\lambda(\mathcal{D}; \theta_0, \theta_1) = \prod_{\mathbf{x} \in \mathcal{D}} \frac{\rho_{\mathbf{X}}(\mathbf{x}|\theta_0)}{\rho_{\mathbf{X}}(\mathbf{x}|\theta_1)}.$$

• ... but neither $p_{\mathbf{X}}(\mathbf{x}|\theta_0)$ nor $p_{\mathbf{X}}(\mathbf{x}|\theta_1)$ can be evaluated!

Straight approximation

- 1. Approximate $p_{\mathbf{X}}(\mathbf{x}|\theta_0)$ and $p_{\mathbf{X}}(\mathbf{x}|\theta_1)$ individually, using density estimation algorithms;
- 2. Evaluate their ratio $r(\mathbf{x}; \theta_0, \theta_1)$.

Works fine for low-dimensional data, but because of the curse of dimensionality, this is in general too difficult a problem!

$$\frac{p_{\mathbf{x}}(\mathbf{x}|\theta_0)}{p_{\mathbf{x}}(\mathbf{x}|\theta_1)} = r(\mathbf{x};\theta_0,\theta_1)$$

When solving a problem of interest, do not solve a more general problem as an intermediate step. – Vladimir Vapnik

Approximating likelihood ratios with classifiers

• Theorem: The likelihood ratio is invariant under the change of variable $\mathbf{U} = s(\mathbf{X})$, provided $s(\mathbf{x})$ is monotonic with $r(\mathbf{x})$.

$$r(\mathbf{x}; \theta_0, \theta_1) = \frac{p_{\mathbf{X}}(\mathbf{x}|\theta_0)}{p_{\mathbf{X}}(\mathbf{x}|\theta_1)} = \frac{p_{\mathbf{U}}(s(\mathbf{x})|\theta_0)}{p_{\mathbf{U}}(s(\mathbf{x})|\theta_1)}$$

- Well, a classifier trained to distinguish $\mathbf{x} \sim p_0$ from $\mathbf{x} \sim p_1$ yields a decision function $s(\mathbf{x})$ which is monotonic with $r(\mathbf{x})$.
- Estimating $p(s(\mathbf{x})|\theta)$ is now easy, since the change of variable $s(\mathbf{x})$ projects \mathbf{x} in a 1D space, where only the informative content of the ratio is preserved.
- Disentangle training from calibration.

Inference and composite hypothesis testing

Approximated likelihood ratios can be used for inference, since

$$\begin{split} \hat{\theta} &= \arg\max_{\theta} p(\mathcal{D}|\theta) \\ &= \arg\max_{\theta} \prod_{\mathbf{x} \in \mathcal{D}} \frac{p(\mathbf{x}|\theta)}{p(\mathbf{x}|\theta_1)} \\ &= \arg\max_{\theta} \prod_{\mathbf{x} \in \mathcal{D}} \frac{p(s(\mathbf{x};\theta,\theta_1)|\theta)}{p(s(\mathbf{x};\theta,\theta_1)|\theta_1)} \end{split} \tag{1}$$

where θ_1 is fixed and $s(\mathbf{x}; \theta, \theta_1)$ is a family of classifiers parameterized by (θ, θ_1) .

Accordingly, generalized (or profile) likelihood ratio tests can be evaluated in the same way.

Parameterized learning

For inference, we need to build a family $s(\mathbf{x}; \theta, \theta_1)$ of classifiers.

- One could build a classifier s independently for all θ, θ_1 . But this is computationally expensive and would not guarantee a smooth evolution of $s(\mathbf{x}; \theta, \theta_1)$ as θ varies.
- Solution: build a single parameterized classifier instead, where parameters are additional input features (Baldi et al., 2016).

```
 \begin{split} \mathcal{T} &:= \{\}; \\ \text{while } & \operatorname{size}(\mathcal{T}) < \textit{N} \  \  \, \text{do} \\ & \operatorname{Draw} \  \, \theta_0 \sim \pi_{\Theta_0}; \\ & \operatorname{Draw} \  \, \mathbf{x} \sim p(\mathbf{x}|\theta_0); \\ & \mathcal{T} := \mathcal{T} \cup \{((\mathbf{x},\theta_0,\theta_1),y=0)\}; \\ & \operatorname{Draw} \  \, \theta_1 \sim \pi_{\Theta_1}; \\ & \operatorname{Draw} \  \, \mathbf{x} \sim p(\mathbf{x}|\theta_1); \\ & \mathcal{T} := \mathcal{T} \cup \{((\mathbf{x},\theta_0,\theta_1),y=1)\}; \\ & \text{end while} \\ & \operatorname{Learn a single classifier} \  \, \mathbf{s}(\mathbf{x};\theta_0,\theta_1) \  \, \text{from } \mathcal{T}. \end{split}
```

Example: Inference from multidimensional data

Let assume 5D data x generated from the following process p_0 :

- 1. $\mathbf{z} := (z_0, z_1, z_2, z_3, z_4)$, such that $z_0 \sim \mathcal{N}(\mu = \alpha, \sigma = 1)$, $z_1 \sim \mathcal{N}(\mu = \beta, \sigma = 3)$, $z_2 \sim \mathsf{Mixture}(\frac{1}{2}\,\mathcal{N}(\mu = -2, \sigma = 1), \frac{1}{2}\,\mathcal{N}(\mu = 2, \sigma = 0.5))$, $z_3 \sim \mathsf{Exponential}(\lambda = 3)$, and $z_4 \sim \mathsf{Exponential}(\lambda = 0.5)$;
- x := Rz, where R is a fixed semi-positive definite 5 × 5 matrix defining a fixed projection of z into the observed space.

Our goal is to infer the values α and β based on \mathcal{D} .

Observed data $\mathcal D$

• Check out (Louppe et al., 2016) to reproduce this example.

Example: Inference from multidimensional data

Recipe:

- 1. Build a single parameterized classifier $s(\mathbf{x}; \theta_0, \theta_1)$, in this case a 2-layer NN trained on 5+2 features, with the alternative fixed to $\theta_1 = (\alpha = 0, \beta = 0)$.
- 2. Find the approximated MLE $\hat{\alpha}, \hat{\beta}$ by solving Eqn. 1.
 - Solve Eqn. 1 using likelihood scans or through optimization.
 - Since the generator is inexpensive, $p(s(\mathbf{x}; \theta_0, \theta_1)|\theta)$ can be calibrated on-the-fly, for every candidate (α, β) , e.g. using histograms.
- 3. Construct the log-likelihood ratio (LLR) statistic

$$-2\log\Lambda(\alpha,\beta) = -2\log\frac{p(\mathcal{D}|\alpha,\beta)}{p(\mathcal{D}|\hat{\alpha},\hat{\beta})}$$

Summary

- We proposed an approach for approximating LR in the likelihood-free setup.
- Evaluating likelihood ratios reduces to supervised learning.
 Both problems are deeply connected.
- Alternative to Approximate Bayesian Computation, without the need to define a prior over parameters.

References

- Baldi, P., Cranmer, K., Faucett, T., Sadowski, P., and Whiteson, D. (2016). Parameterized Machine Learning for High-Energy Physics. arXiv preprint arXiv:1601.07913
- Cranmer, K., Pavez, J., and Louppe, G. (2015). Approximating likelihood ratios with calibrated discriminative classifiers. arXiv preprint arXiv:1506.02169.
- Louppe, G., Cranmer, K., and Pavez, J. (2016). carl: a likelihood-free inference toolbox. http://dx.doi.org/10.5281/zenodo.47798, https://github.com/diana-hep/carl.

Likelihood ratio of mixtures

For models defined as known mixtures of several components, i.e. when $p(\mathbf{x}|\theta)$ can be written as

$$p(\mathbf{x}|\theta) = \sum_{c} w_{c}(\theta) p_{c}(\mathbf{x}|\theta),$$

the target likelihood ratio can be formulated in terms of pairwise approximations of likelihood ratios. Specifically, we can write

$$\begin{split} \frac{\rho(\mathbf{x}|\theta_0)}{\rho(\mathbf{x}|\theta_1)} &= \frac{\sum_c w_c(\theta_0) p_c(\mathbf{x}|\theta_0)}{\sum_{c'} w_{c'}(\theta_1) p_{c'}(\mathbf{x}|\theta_1)} \\ &= \sum_c \left[\sum_{c'} \frac{w_{c'}(\theta_1)}{w_c(\theta_0)} \frac{p_{c'}(\mathbf{x}|\theta_1)}{p_c(\mathbf{x}|\theta_0)} \right]^{-1} \\ &= \sum_c \left[\sum_{c'} \frac{w_{c'}(\theta_1)}{w_c(\theta_0)} \frac{p_{c'}(\mathbf{s}_{c,c'}(\mathbf{x};\theta_0,\theta_1)|\theta_1)}{p_c(\mathbf{s}_{c,c'}(\mathbf{x};\theta_0,\theta_1)|\theta_0)} \right]^{-1}. \end{split}$$

This allows to focus the capacity of the classifiers on simpler problems, resulting in better approximations.

Diagnostics

In practice $\hat{r}(\hat{s}(\mathbf{x}; \theta_0, \theta_1))$ will not be exact. Diagnostic procedures are needed to assess the quality of this approximation.

- 1. For inference, the value of the MLE $\hat{\theta}$ should be independent of the value of θ_1 used in the denominator of the ratio.
- 2. Train a classifier to distinguish between unweighted samples from $p(\mathbf{x}|\theta_0)$ and samples from $p(\mathbf{x}|\theta_1)$ weighted by $\hat{r}(\hat{s}(\mathbf{x};\theta_0,\theta_1))$.

Applications in High Energy Physics