n = total sample size

Summarizing data for a quantitative variable: 1. Choose # of non-overlapping classes. 2. Determine class width. Class Width=largest class value minus smallest value divided by # classes. 3. Pick class limits based on class width.

Quantitative value (SAT Scores)	Frequency	Relative Frequency	Percent Frequency
800-999	4	4/14 = .29	29%
1000-1199	8	8/14 = .57	57%
1200-1399	2	2/14 = .14	14%
TOTAL	14	14/14 = 1	100%
Quantitative value (SAT Scores)	Cumulative Frequency	Cumulative Relative Frequency	Cumulative Percent Frequency
<= 999	4	4/14 = .29	29%
<= 1199	12	12/14 = .86	86%
<= 1399	14	14/14 = 1	100%

Cumulative # of values <= upper class limit

Sample Mean	Weighted Mean	Location of pth Percentile	Interquartile range	Sample Variance
$\overline{x} = rac{\sum x_i}{n}$	$\overline{x} = rac{\sum w_i x_i}{\sum w_i}$	$L_p = \frac{p}{100}(n+1)$	$IQR = Q_3 - Q_1$	$s^2 = \frac{\sum (x_i - \overline{x})^2}{n - 1}$
$\frac{\text{Coefficient of Variation}}{\left(\frac{\text{Standard deviation}}{\text{Mean}} \times 100\right)\%}$	$z_i = rac{z ext{-Score}}{s}$	$s_{xy} = rac{ ext{Sample Covariance}}{n-1}$	$\begin{array}{c} \underline{Quartiles} \\ Q1 = 25^{th} \ percentile \\ Q3 = 75^{th} \ percentile \end{array}$	Range Largest value - smallest value
Standard Deviation	Chebyshev	Five Number Summary	Sample Correlation Coefficient	(correlation coefficient) where
$s=\sqrt{s^2}$	$1-\frac{1}{z^2}$	Min Q1 Median Q3 Max	$r_{xy} = rac{s_{xy}}{s_x s_y}$	$egin{aligned} r_{xy} &= ext{sample correlation coefficient} \ s_{xy} &= ext{sample covariance} \ s_x &= ext{sample standard deviation of } x \ s_y &= ext{sample standard deviation of } y \end{aligned}$

Find location of percentiles:

- 1. Order the data values ascending.
- 2. Assign a position number to each value, starting with 1, moving left to right.
- 3. Find location (L_p) in data set.
- Find position of value:
 Position of percentile in data set = Small value + decimal part from L_p* (Large value small value)

Skewness:

For data skewed to the left, the skewness is negative; for data skewed to the right, the skewness is positive. If the data are symmetric, the skewness is zero.

Chebyshev:

- 1. Calculate z-score for lower and upper values. (z-score must be greater than 1 to be applicable)
- 2. Calculate Chebyshev formula. Convert to %.

Detecting Outliers:

- 1. Lower limit = Q1 1.5(IQR) \leftarrow note the minus
- 2. Upper limit = Q3 + 1.5(IQR) \leftarrow note the plus

Box Plot:

- Plot Q1, the median, and Q3 using a small vertical line. Draw a box around the lines with Q1 and Q3 on the ends.
- 2. Calculate upper and lower limits for outliers.
- 3. Extend whiskers from the box to min and max within limits.
- 4. Plot any outliers.

Areas Under the Curve for Any Normal Distribution

