

JAP20 Rec'd PCT/PTO 17 MAY 2006

SEQUENCE LISTING

<110> Harada, Shun-ichi
Kasparcova, Viera
Glantschnig, Helmut

<120> RHESUS MONKEY DICKKOPF-1, NUCLEOTIDES
ENCODING SAME, AND USES THEREOF

<130> 21350YP

<150> PCT/US2004/038489
<151> 2004-11-12

<150> 60/520,705
<151> 2003-11-17

<160> 22

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 801
<212> DNA
<213> Macaca mulatta

<400> 1
atgatggctc tgggcgcagc aggagctgcc cgggtcttgg tcgcgcgtt agcggcggt 60
cttggcgcc accctctgct gggagtgagc gccaccttga actcggttct caattccaac 120
gcgatcaaga acctgcccc accgctggc ggcgcgtgcgg ggcaccagg ctctgcagtc 180
agcgccgcgc caggaattct gtacccgggc gggataagt accagaccat tgacaactac 240
cagccgtacc cgtgcgcaga ggtgaggag tgccggactg atgagtaactg cgcttagtccc 300
acccgcggag gggacgcggg cgtgcaaatac tgtctcgct gcaggaagcg ccgaaaacgc 360
tgcgtgcgtc acgctatgtc ctgccccggg aattactgca aaaatggaat atgtgtgtct 420
tctgatcaaa ataattccg agggaaatt gagaaacca ttactgaaag ctttggtaat 480

gatcatagca ctttggatgg gtattccaga agaacaacat tgtcttcaa aatgtatcac 540
 agcaaaggac aagaagggtc tgtgtgtctc cggtcatcag actgtgccac aggactgtgt 600
 tgtgctagac acttctggtc caagatctgt aaacctgtcc tcaaagaagg tcaagtgtgt 660
 accaagcata gaagaaaagg ctctcatggg ctagaaatat tccagcggtt tactgcgga 720
 gaaggtctgt cttgccggat acagaaagat caccatcaag ccagtaattc ttctaggctt 780
 cacacttgtc agagacacta a

801

<210> 2
 <211> 266
 <212> PRT
 <213> Macaca mulatta

<400> 2

Met	Met	Ala	Leu	Gly	Ala	Ala	Gly	Ala	Ala	Arg	Val	Leu	Val	Ala	Leu	
1								10						15		
Val	Ala	Ala	Ala	Leu	Gly	Gly	His	Pro	Leu	Leu	Gly	Val	Ser	Ala	Thr	
								20					25		30	
Leu	Asn	Ser	Val	Leu	Asn	Ser	Asn	Ala	Ile	Lys	Asn	Leu	Pro	Pro	Pro	
								35					40		45	
Leu	Gly	Gly	Ala	Ala	Gly	His	Pro	Gly	Ser	Ala	Val	Ser	Ala	Ala	Pro	
								50					55		60	
Gly	Ile	Leu	Tyr	Pro	Gly	Gly	Asn	Lys	Tyr	Gln	Thr	Ile	Asp	Asn	Tyr	
	65								70				75		80	
Gln	Pro	Tyr	Pro	Cys	Ala	Glu	Asp	Glu	Glu	Cys	Gly	Thr	Asp	Glu	Tyr	
								85				90		95		
Cys	Ala	Ser	Pro	Thr	Arg	Gly	Gly	Asp	Ala	Gly	Val	Gln	Ile	Cys	Leu	
								100				105		110		
Ala	Cys	Arg	Lys	Arg	Arg	Lys	Arg	Cys	Met	Arg	His	Ala	Met	Cys	Cys	
								115				120		125		
Pro	Gly	Asn	Tyr	Cys	Lys	Asn	Gly	Ile	Cys	Val	Ser	Ser	Asp	Gln	Asn	
								130				135		140		
Asn	Phe	Arg	Gly	Glu	Ile	Glu	Glu	Thr	Ile	Thr	Glu	Ser	Phe	Gly	Asn	
	145								150				155		160	
Asp	His	Ser	Thr	Leu	Asp	Gly	Tyr	Ser	Arg	Arg	Thr	Thr	Leu	Ser	Ser	
								165				170		175		
Lys	Met	Tyr	His	Ser	Lys	Gly	Gln	Glu	Gly	Ser	Val	Cys	Leu	Arg	Ser	
								180				185		190		

Ser Asp Cys Ala Thr Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys
 195 200 205
 Ile Cys Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg
 210 215 220
 Arg Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly
 225 230 235 240
 Glu Gly Leu Ser Cys Arg Ile Gln Lys Asp His His Gln Ala Ser Asn
 245 250 255
 Ser Ser Arg Leu His Thr Cys Gln Arg His
 260 265

<210> 3
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Rat Dkk-1 forward primer

<400> 3
 ggtctggctt gcaggataca g 21

<210> 4
 <211> 23
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Rat Dkk-1 reverse primer

<400> 4
 tggttttagt gtctctggca ggt 23

<210> 5
 <211> 26
 <212> DNA

<213> Artificial Sequence

<220>

<223> Rat Dkk-1 Probe

<400> 5

ccatcaaacc agcaattctt ccaggc

26

<210> 6

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Human Dkk-1 forward primer

<400> 6

agtaccagac cattgacaac taccag

26

<210> 7

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Human Dkk-1 reverse primer

<400> 7

gggactagcg cagtactcat cag

23

<210> 8

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Human Dkk-1 probe

.....

<400> 8
tacccgtgcg cagaggacga gg 22

<210> 9
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Rhesus Monkey Dkk-1 forward primer

<400> 9
gaaggtcaag tgtgtaccaa gcata 26

<210> 10
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Rhesus Monkey Dkk-1 reverse primer

<400> 10
aagtgtgaag cctagaagaa ttactgg 27

<210> 11
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Rhesus Monkey Dkk-1 probe

<400> 11
ttgatggta tctttctgta tccggcaag 29

.

.

.

<210> 12

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> 5'h Dkk-1 Forward

<400> 12

tctccctctt gagtccttct gagatg 26

<210> 13

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> 5'h Dkk-1 Reverse

<400> 13

cgttggatt gagaaccgag ttca 24

<210> 14

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> 3'h Dkk-1 Forward

<400> 14

gtcatcagac tgtgccttag gattg 25

<210> 15

<211> 26

<212> DNA

<213> Artificial Sequence

<220>
<223> 3'h Dkk-1 Reverse

<400> 15
gagttcactg catttggata gctgggt 26

<210> 16
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> h Dkk-1 R3

<400> 16
gcactgatga gtactgcgct agtc 24

<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> h Dkk-1 F3

<400> 17
cacatagcgt gacgcattca 20

<210> 18
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> rh Dkk-1 Eco RI-F

.
 .
 .

 <400> 18
 cggaattcac catgatggct ctgggcgcag cagga 35

 <210> 19
 <211> 38
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> h Dkk-1 Eco RI-R

 <400> 19
 cggaattcgt gtctctgaca agtgtgaagc ctagaaga 38

 <210> 20
 <211> 801
 <212> DNA
 <213> Homo sapiens

 <400> 20
 atgatggctc tgggcgcagc gggagctacc cgggtcttg tcgcgatgg 60
 ctccggcgcc accctctgct gggagtgagc gccaccttga actcggtct caattccaac 120
 gctatcaaga acctgcccc accgctggc ggcgtgcgg ggcaccagg ctctgcagtc 180
 agcgccgcgc cgggaatcct gtacccggc gggataagt accagaccat tgacaactac 240
 cagccgtacc cgtgcgcaga ggacgaggag tgcggcactg atgagtactg cgctagtc 300
 acccgcggag gggacgcggc cgtcacaatc tgtctcgct gcaggaagcg ccgaaaacgc 360
 tgcgtgcgtc acgttatgtc ctgccccggg aattactgca aaaatggaat atgtgtgtct 420
 tctgtatcaa atcatttccg aggagaaatt gagaaacca tcactgaaag ctttggtaat 480
 gatcatagca ctttggatgg gtattccaga agaaccacct tgtcttcaaa aatgtatcac 540
 accaaaggac aagaagggttc ttttgcgtc cggcatcag actgtgcctc aggattgtgt 600
 tttgttagac acttctggtc caagatctgt aaacctgtcc tggaaagg tcaagtgtgt 660
 accaaggata ggagaaaagg ctctcatgga ctagaaatat tccagcggtt ttactgtgga 720
 gaaggtctgt cttgccggat acagaaagat caccatcaag ccagtaattc ttctaggc 780
 cacacttgc aagacacta a 801

 <210> 21
 <211> 265

<212> PRT

<213> Homo sapiens

<400> 21

Met Met Ala Leu Gly Ala Ala Gly Ala Arg Val Phe Val Ala Met Val
1 5 10 15
Ala Ala Ala Leu Gly Gly His Pro Leu Leu Gly Val Ser Ala Thr Leu
20 25 30
Asn Ser Val Leu Asn Ser Asn Ala Ile Lys Asn Leu Pro Pro Pro Leu
35 40 45
Gly Gly Ala Ala Gly His Pro Gly Ser Ala Val Ser Ala Ala Pro Gly
50 55 60
Ile Leu Tyr Pro Gly Gly Asn Lys Tyr Gln Thr Ile Asp Asn Tyr Gln
65 70 75 80
Pro Tyr Pro Cys Ala Glu Asp Glu Glu Cys Gly Thr Asp Glu Tyr Cys
85 90 95
Ala Ser Pro Thr Arg Gly Gly Asp Ala Gly Val Gln Ile Cys Leu Ala
100 105 110
Cys Arg Lys Arg Arg Lys Arg Cys Met Arg His Ala Met Cys Cys Pro
115 120 125
Gly Asn Tyr Cys Lys Asn Gly Ile Cys Val Ser Ser Asp Gln Asn His
130 135 140
Phe Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp
145 150 155 160
His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser Lys
165 170 175
Met Tyr His Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser Ser
180 185 190
Asp Cys Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys Ile
195 200 205
Cys Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg Arg
210 215 220
Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly Glu
225 230 235 240
Gly Leu Ser Cys Arg Ile Gln Lys Asp His His Gln Ala Ser Asn Ser
245 250 255
Ser Arg Leu His Thr Cys Gln Arg His

260

265

<210> 22

<211> 272

<212> PRT

<213> Mus musculus

<400> 22

Met	Met	Val	Val	Cys	Ala	Pro	Ala	Ala	Val	Arg	Phe	Leu	Ala	Val	Phe
1		5							10						15
Thr	Met	Met	Ala	Leu	Cys	Ser	Leu	Pro	Leu	Leu	Gly	Ala	Ser	Ala	Thr
	20							25							30
Leu	Asn	Ser	Val	Leu	Ile	Asn	Ser	Asn	Ala	Ile	Lys	Asn	Leu	Pro	Pro
	35					40					45				
Pro	Leu	Gly	Gly	Ala	Gly	Gly	Gln	Pro	Gly	Ser	Ala	Val	Ser	Val	Ala
	50				55					60					
Pro	Gly	Val	Leu	Tyr	Glu	Gly	Gly	Asn	Lys	Tyr	Gln	Thr	Leu	Asp	Asn
	65				70				75						80
Tyr	Gln	Pro	Tyr	Pro	Cys	Ala	Glu	Asp	Glu	Glu	Cys	Gly	Ser	Asp	Glu
	85						90								95
Tyr	Cys	Ser	Ser	Pro	Ser	Arg	Gly	Ala	Ala	Gly	Val	Gly	Gly	Val	Gln
	100					105					110				
Ile	Cys	Leu	Ala	Cys	Arg	Lys	Arg	Arg	Lys	Arg	Cys	Met	Thr	His	Ala
	115					120					125				
Met	Cys	Cys	Pro	Gly	Asn	Tyr	Cys	Lys	Asn	Gly	Ile	Cys	Met	Pro	Ser
	130					135					140				
Asp	His	Ser	His	Phe	Pro	Arg	Gly	Glu	Ile	Glu	Glu	Ser	Ile	Ile	Glu
	145					150				155					160
Asn	Leu	Gly	Asn	Asp	His	Asn	Ala	Ala	Gly	Asp	Gly	Tyr	Pro	Arg	
	165							170				175			
Arg	Thr	Thr	Leu	Thr	Ser	Lys	Ile	Tyr	His	Thr	Lys	Gly	Gln	Glu	Gly
	180						185				190				
Ser	Val	Cys	Leu	Arg	Ser	Ser	Asp	Cys	Ala	Ala	Gly	Leu	Cys	Cys	Ala
	195						200				205				
Arg	His	Phe	Trp	Ser	Lys	Ile	Cys	Lys	Pro	Val	Leu	Lys	Glu	Gly	Gln
	210						215				220				

Val Cys Thr Lys His Lys Arg Lys Gly Ser His Gly Leu Glu Ile Phe
225 230 235 240
Gln Arg Cys Tyr Cys Gly Glu Gly Leu Ala Cys Arg Ile Gln Lys Asp
245 250 255
His His Gln Ala Ser Asn Ser Ser Arg Leu His Thr Cys Gln Arg His
260 265 270