Equilibres Acido Basiques Définitions/Rappels

Concept de Brönsted et Lowry:

- Un acide est capable de perdre un H+
- Une base est capable de capter un H+

 $pH = - log [H_3O^+]$ (mesuré par un pH mètre) pH=7 (neutre) pH<7 (acide) pH>7 (basique)

Auto	protoly	vse d	le l'eau
/ tate	P. O.O.	, 00 0	o i ouu

Comportement ampholyte de l'eau

 $2H_2O = H_3O^+ + OH^-$

 $Ke = [H_3O^+][OH^-] = 10^{-14}$

Eau pure: pH=7; $[H_3O^+]=[OH^-]=10^{-7} \text{ mol/l}$

Remarque:

Eau en contact avec l'air légèrement acide (présence de

 H_2CO_3)

Eau du robinet légèrement basique (présence de CO₃²⁻)

Exemples d'acides et de bases

Acide fort: HCl $HCl + H_2O \rightarrow H_3O^+ + Cl^-$

Acide faible: CH₃COOH
Base conjuguée faible CH₃COO

 $CH_3COOH + H_2O = CH_3COO^- + H_3O^+$

Base forte: NaOH NaOH -> Na++ OH-Base faible: NH₃

Acide conjugué faible NH_4^+ $NH_3 + H_3O^+ = NH_4^+ + H_2O$

Ka et pKa

Ka est défini pour un couple acido basique faible AH/A- AH + ${\rm H_2O}$ = A- + ${\rm H_3O^+}$

Ka= [A⁻] [H₃O⁺] / [AH] **pKa= - log Ka**

Plus le pKa est grand (Ka petit), plus l'acide est faible

Exemples:

 CH_3COOH/CH_3COO^- pKa= 4.75 NH_4^+/NH_3 pKa= 9.2

Kb et pKb

Pour une base faible, on peut définir Kb $A^- + H_3O^+ = AH + H_2O$

Kb= [AH]/[A⁻] [H₃O⁺] **pKb= - log Kb**

On se base le plus généralement sur le Ka et pKa $Ka \times Kb = 1$

Echelle pKa, pH

Ka= $\log [A^{-}] [H_3O^{+}] / [AH]$

On en déduit:

pH = pKa + log([A-]/[AH])

 $\begin{array}{c|c} [AH] & [AH] = [A-] & [A^-] \\ \hline & & \\ \hline & pKa & \\ acide & basique \end{array}$

Echelle de prédominance des espèces

Calcul du pH – Acide Fort pH d'un Acide Fort (A _F), exemple HCl pH = - log CA _F Démonstration:	
Calcul du pH – Base Forte pH d'un Base Forte (B _F), exemple NaOH pH = 14 + log CB _F Démonstration:	
Calcul du pH – Acide faible pH d'un Acide faible (A _f), pH = ½ pKa – ½ log CA _f Exemple: CH ₃ COOH/CH ₃ COO ⁻ pKa= 4.75 CH ₃ COOH + H ₂ O = CH ₃ COO ⁻ + H ₃ O ⁺	

Calcul du pH - Base faible

pH d'un Base faible (B_f),

 $pH = 7 + \frac{1}{2} pKa + \frac{1}{2} log CB_f$

Exemple:

 NH_4^+/NH_3 pKa= 9.2

 $NH_3 + H_3O^+ = NH_4^+ + H_2O$ Kb $NH_4^+ + H_2O = NH_3 + H_3O^+$ Ka

Calcul du pH - Solution ampholyte

Exemple d'un diacide H2S

 $H_2S + H_2O = HS^- + H_3O^+$ **pKa1** $HS^- + H_2O = S^{2-} + H_3O^+$ **pKa2**

HS⁻ est une espèce ampholyte ou amphotère car elle se comporte à la fois comme une base et comme un acide

pH d'une solution ampholyte

 $pH = \frac{1}{2} pKa1 + \frac{1}{2} pKa2$

Calcul du pH – Solution tampon

C'est une solution dont le <u>pH varie peu</u>, même après addition d'un peu d'acide ou de base

pH d'une solution tampon pH = pKa + log ([A-] / [AH])

Exemples:

Mélange d'acide faible et de sa base conjuguée à des concentrations voisines

(NH₃) base faible/acide conjugué, sel (NH₄Cl)

(CH₃COOH) acide faible/ base conjuguée, sel (CH₃COONa)

Dosage ou titration Lors d'un dosage acido basique, on utilise des indicateurs colorés $InH = In^- + H^+$ Couple acide/base coloration différente pour chaque espèce (zone de virage) Exemple Phénolphtaléine: incolore/rose, virage 8.2-10 Remarque: Le papier pH est imprégné d'indicateur universel, il indique qualitativement le pH. Normalité et concentration Molarité = Concentration C, notée [] Unités en mol/l ou M Normalité = basée sur le nombre de H+ Unités en eq g/l ou N $N = \alpha C$ **Exemples** Monoacide même valeur pour C et N Diacide N = 2CTriacide N=3C Attaque acide des métaux Exemple de l'attaque du Zn par HCl (acide chlorhydrique) Zn + 2H+ + 2Cl- --> Zn2+ + 2Cl- + H2 Les métaux Zn, Pb sont attaqués par HCl et par l'acide nitrique (HNO₃) Les métaux Cu, Ag sont attaqués par ${\rm HNO_3}$ mais pas par ${\rm HCl}$ L'or (Au) n'est attaqué ni par ${\rm HCl}$ ni par ${\rm HNO_3}$ Les attaques acides des métaux ne relèvent pas des équilibres acido basiques. Il seront traités dans le cours d'oxydo réduction