Lecture 03

1. Autonomous Robots

- **Definition**: Robots that sense, compute, communicate, and act on their own! $\diamondsuit \rightarrow \blacksquare \rightarrow \diamondsuit \rightarrow \rlap{/}{\bullet}$
- Key Abilities:
 - Locomotion: Moving themselves (e.g., drones flying 💇, robots walking 🤰).
 - Manipulation: Moving objects (e.g., robot arms picking items \(\);

2. Locomotion

- **Types**: Rolling (wheels ⊛), walking (humanoid robots 🤰), sliding (snake robots 🥨), jumping (hopper bots 🦘), climbing (spider bots 💥).
- Key Idea: Different locomotion = different design challenges (e.g., balance for bipedal robots!).

3. Pose

- Relative Pose: Always measured relative to a reference frame (e.g., "the cup is 2m in front of the robot").

4. Coordinate Frames

- What: A 3D "map" with X, Y, Z axes ■.
- Example:
 - World Frame {W}: Fixed to the room (e.g., origin = corner of the lab).
 - Robot Frame {R}: Fixed to the robot (e.g., origin = its center •).
- Key Takeaway: All poses are relative! There's no "absolute" pose.

5. Orientation Representations

Euler Angles

- Roll, Pitch, Yaw (like an airplane X):
 - Roll: Tilting side-to-side (ヾ).
 - Pitch: Nose up/down ().
 - Yaw: Turning left/right ().
- Pros: Intuitive!
- Cons: Discontinuous (small changes → big jumps in angles).

Axis-Angle

- What: A single rotation around a custom axis (e.g., spinning a pen / around your finger).
- **Formula**: Orientation = [axis vector, rotation angle].

Rotation Matrices

- What: 3x3 matrix that rotates points in space 🗟.
- Pros: Mathematically powerful (combine rotations, apply to points).
- Cons: Redundant (9 numbers for 3 DOF).

6. Relative Pose & Transformations

- **Rigid-Body Transformation**: Moving an object *without changing its shape* (e.g., sliding a book on a table $\square \rightarrow \square$).
- Example:
 - Teapot Pose: Relative to camera → camera pose relative to robot → robot pose in room.
 - Chain of Frames: Pose A → B → C = Multiply transformations!

7. Key Takeaways

- Autonomous Robots = Sense + Actuate (locomotion/manipulation).
- **Pose** = Where + How oriented (relative to a frame).
- Euler Angles = Roll-Pitch-Yaw (easy but jumpy).
- Rotation Matrices = Math-friendly but redundant.

Cheat Sheet

Term	Definition	Example
Locomotion	Robot moves itself	Drone flying 💇
Manipulation	Robot moves objects	Arm picking a box 🌾
Euler Angles	Roll, pitch, yaw	Airplane maneuvering 🛪
Axis-Angle	Rotation around a custom axis	Spinning a globe
Rotation Matrix	3x3 matrix for rotations	Rotating a 3D model 星

إِنَّ اللَّهَ وَمَلَائِكَتُهُ يُصِلُّونَ عَلَى النَّبِيِّ عَلَى النَّبِيِّ عَلَى النَّبِيِّ عَلَى اللَّهِ الدِّينَ آمَنُوا صَلُّوا عَلَيْهِ وَسَلِّمُوا تَسْلِيمًا (56)

1. 3D Rotation Matrices

- Purpose: Represent orientations in 3D space using 3×3 matrices.
- Key Rotations:

• X-axis:
$$R_x(\theta) = egin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$
• Y-axis: $R_y(\theta) = egin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$
• Z-axis: $R_z(\theta) = egin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$

• Use Case: Combine rotations (e.g., robot arm joints) by multiplying matrices.

2. Configuration Space (C-space)

- **Definition**: All possible robot configurations defined by **generalized coordinates** (e.g., joint angles for a robot arm).
- Holonomic vs. Non-Holonomic:
 - Holonomic: Full control over all DOF (e.g., drone \mathscr{Q}).
 - Non-Holonomic: Fewer controllable DOF than total DOF (e.g., car 🚜 can't move sideways).
- **Example**: A car's C-space includes (x, y, θ) , but motion is constrained by steering.

3. Workspace vs. Task Space

- Workspace: Physical area a robot can reach (e.g., robot arm's reachable volume 🖃).
- Task Space: Poses required for a task, even if unachievable (e.g., inserting a peg into a hole requires precise orientation ...).

4. Robotic Components

- Effectors: Limbs for movement (arms, legs, wheels).
- Perception: Sensors (cameras), LiDAR, touch).
- Control: "Brain" algorithms (planning, decision-making <a>>).
- Power: Energy source (batteries 🔋).
- Communication: Data transfer (Wi-Fi, Bluetooth 🙎).

5. Intelligent Robots & Al

- Agent: Perceives environment, acts to maximize success (e.g., self-driving car 🚚).
- Al Areas: Planning, learning, vision, NLP (e.g., robot learns to avoid obstacles <a>>).

6. Robot Paradigms

Paradigm	Structure	Pros	Cons
Hierarchical	SENSE→PLAN→ACT	Structured, global planning	Slow (planning bottleneck 🌘)
Reactive	SENSE→ACT	Fast, real-time responses 🔸	No long-term planning 峰 ♂
Hybrid	PLAN→(SENSE→ACT)	Balances planning + reactivity	Complex integration 🛠

7. Behaviors

- Definition: Sensor → Action mappings (e.g., "avoid obstacle" when near a wall
- Releaser: Trigger (e.g., detecting light ight activates "seek light" behavior).
- Guide: Sensor data directs action (e.g., proximity sensors steer around obstacles).

8. Degrees of Freedom (DOF)

- **DOF**: Independent movements (e.g., 6 DOF arm: x, y, z + roll, pitch, yaw &).
- Redundant Robots: More DOF than needed (e.g., human arm with 7 DOF

9. Key Examples

- Holonomic Robot: Omnidirectional drone (moves freely in 3D 💇).
- Non-Holonomic Robot: Car (steering limits motion 🚚).
- Hybrid Paradigm: Delivery robot plans route (mission planning) + reacts to obstacles (reactive behavior 6).

Cheat Sheet

Term	Key Idea
Rotation Matrices	Math for 3D rotations (combine with multiplication 😉).

Term	Key Idea	
C-space	All possible robot configurations (joint angles, poses 📜).	
Reactive Paradigm	Fast, no planning (e.g., Roomba avoiding furniture 🖌).	
Behavior	"If sensor X, do action Y" (e.g., follow light 💡).	

إِنَّ اللَّهَ وَمَلَائِكَتَهُ يُصَلُّونَ عَلَى النَّبِيِّ عَيَا أَيُّهَا الَّذِينَ آمَنُوا صَلُّوا عَلَيْهِ وَسَلِّمُوا تَسْلِيمًا (56)