Name: Student ID:

Laboratory 2

Data types, variables, and arithmetic expressions

0. A test program

- 1. Double click on the icon "Visual Studio 2017" on the desktop (or the Start Menu).
- 2. To create a new project, click File -> New -> Project.
- 3. In the New Project window, choose "Visual C++ -> Windows Desktop". Then choose "Windows Desktop Wizard" as the project type.
- 4. Choose Console Application (.exe) as the application type, and check the Empty Project check box. Then click the OK button.
- 5. Type **TestProgram** in the Name text box, then click the OK button.
- 6. In the Solution Explorer, right-click at the project **TestProgram**. Then choose Add -> New Item.
- 7. In the Add New Item TestProgram window, choose C++ File (.cpp).
- 8. Type Main.c in the name text box, then click the Add button.
- 9. Type the following code into **Main.c**:

```
#define _CRT_SECURE_NO_WARNINGS // for visual studio only
#include <stdio.h>

int main()
{
    const float PI = 3.141593;
    int a,b,c,r,s,t;
    float i,j,k,l,m,n;
    double p;
    char x;

// type your code here!

return 0;
}
```

10. Edit the program and use it to solve Problem 1.

1. Expression evaluation

1.1 Given a = 65, p = 66 and x = 67. The variable **a** is of type int, **p** is of type double, and **x** is of type char. Execute the following **printf()** statements and observe the output.

Statements	Output
<pre>printf("a = %d\n", a);</pre>	
<pre>printf("a = %c\n", a);</pre>	
<pre>printf("a = %f\n", a);</pre>	
<pre>printf("p = %d\n", p);</pre>	
<pre>printf("p = %c\n", p);</pre>	
<pre>printf("p = %f\n", p);</pre>	
<pre>printf("x = %d\n", x);</pre>	
<pre>printf("x = %c\n", x);</pre>	
<pre>printf("x = %f\n", x);</pre>	

Conclusion:	

1.2 Determine the data type of the following expressions. Then write proper printf() statements to evaluate them. The variable a is of type int, k is of type float, and p is of type double.

Expressions	Data type	Values
(2 / 5) * 5;		
(2.0 / 5) * 5;		
a = (2 / 5.0) * 5;		
k = (2.0 / 5.0) * 5;		
p = (2 / 5) * 5.0;		

Conclusion:		

1.3 Given a = 10, b = 6, i = 10.5, j = 12.0, k = 8.5, write proper printf() statements to determine the value of the sub-expression on the right-hand side of '=' and the value stored in the variable of the left-hand side of '='. The variables r, s, and t are of type int and l, m and n are of type float.

Expressions	Computed values (right-hand side of =)	Stored values (left-hand side of =)
	(fight-hand side of =)	(tert-rialid side of =)
r = a - b * 5 - i / 2 + j;		
s = a * i + b - j / 2;		
t = a / 2 + i + j;		
1 = a * 5 + b / 2 + i - j + k;		
m = i + a / 2 + b - j * 5;		
n = 2 * PI * a;		

Conclusion:		

1.4 Given a = 4, b = 5, i = 3.5 and j = 2.0, determine the corresponding algebraic equation, and write proper printf() statements determine the value of the sub-expression on the right-hand side of '=' and the value stored in the variable of the left-hand side of '='.

Expressions	Algebraic expression	Computed values	Stored values
		(right-hand side of =)	(left-hand side of
			=)
c = (i + j) / (a + b)			
c = j + i / (a + b)			
k = (j + i) / a + b			
p = j + i / a + b			

Conclusion:	
	Instructor's signature

2. Average of three numbers

Problem: Write a C program to calculate the average of three integers 1, 4, and 2, then output the numbers and the average.

Output: x = 1 y = 4 z = 2 average = 2.333333

Instructor's signature

3. Slope of a straight line

Problem: Write a C program to calculate the slope of a line, given the data for coordinates of the end points of the line

Method: The slope of a line is given by the formula $m=\frac{y_2-y_1}{x_2-x_1}$

Data: Input four real numbers representing: x_1, y_1, x_2 and y_2

Input/Output:

Input the Coordinate Points of the Line:

3.00 4.00 16.00 18.00

Coordinates of Point1: x1 = 3.00 y1 = 4.00Coordinates of Point2: x2 = 16.00 y2 = 18.00

Slope of the Line: 1.08

Instructor's signature

4. Volume of a sphere

Problem: Write a C program to compute the volume of a sphere of radius r.

Data: Radius r.

Method: Given the radius r, the volume of the sphere is computed from the formula Volume = $4/3\pi r^3$ Input and output:

Input a real value for the radius:

4.0

The radius of the sphere is: 4.00 cm

The volume of the sphere is: 268.08 cubic cm.

Instructor's signature

5. Set of simultaneous equations

Problem: Write a C program to solve a set of simultaneous equations:

$$ax + by = c$$
$$dx + ey = f$$

where a, b, c, d, e, and f are the input values

Data: Six real numbers

Method: The formulas for the solution are:

$$x = \frac{ce - bf}{ae - bd}$$
; $y = \frac{af - cd}{ae - bd}$

Input and output:

Input the values for the constants:

2.5 1.6 3.2 5.4 6.2 4.6

Given:
$$a = 2.50$$
 b = 1.60 c = 3.20 d = 5.40 e = 6.20 f = 4.60 $x = 1.82$ y = -0.84

Instructor's signature