Запускаем программу RHINOCEROS.

При запуске появляется окно с выбором рабочего поля.

Выбираем маленькое в миллиметрах

Далее идем в настройки Tools-Options-Grid и меняем шаг сетки на 0.1 мм

Открываем даташит в нашем случае это конденсатор K73-17 220n на 400в. Делаем разметку будущей модели.(верхний 2-й значок справа - линейка)

Выбираем Вох и рисуем прямоугольник по разметке.

Что-бы список развернулся кратковременно нажать правую кн.мышки или нажать и удерживать левую.

Закругляем грани

Для этого выбираем кубик с круглой фаской Variable Radius Fillet (Левой Кн. Мышки)

Жмем (CurrentRadius=1): и вводим 3 - жмем Enter

Выделяем нужные грани

Жмем два раза Enter

Повторяем предыдущее, только радиус 1 мм и другие грани

Жмем два раза Enter

Меняем настройки Shade (до получения как на картинке)

Зададим свежеиспеченному кондеру цвет корпуса. Для этого его выделяем – присваиваем слой 01 и в свойствах задаем цвет

Должно получиться как то так

Добавим маркировку. Для этого выбираем Text Objectи и набираем K73-17 Настройки текста Жирный Поверхность Сгруппировать Высота 2 мм

Размещаем маркировку на фронтальной поверхности

Добавляем остальное

Выделяем все надписи и группируем .

Далее делаем разметку для выводов и с помощью фигуры цилиндр (там-же где и кубик) — лелаем их.

Выводам назначаем третий слой и красим белым.

ЗЫ: Забыл сдвинуть надписи.

Надписи надо вытащить на поверхность для этого их выделяем снимаем привязку к сетке

Snap и перетаскиваем за край корпуса на чуть-чуть.

Далее тексту назначаем второй слой и черный цвет. В принципе уже готово, но как-то не то. Добавим приливы (краски - компаунда) у выводов Для этого рисуем сферу у одного из выводов

Далее ее растягиваем

И полученное копируем на другую сторону

Получаем плюшки у выводов.

Теперь надо снять фаски в месте стыковки. Для этого выделяем корпус, плюшки и делаем операцию объединения

Объединенный корпус станет серым - вернем ему первый слой. Далее выбираем круглую фаску 1мм и выделяем место стыковки

Забыл добавить про управление

 ${\rm C}$ правой кнопкой мышки - вертеть фигуру , Shift c правой кнопкой двигать Колесико – масштаб.

С левой кнопкой в этом окне лучше ничего не делать!

Проделываем тоже самое с другой стороны и получаем

Чтобы в будущем модель встала на свое посадочное место надо совместить начало координат с первым выводом и приподнять модель на глаз (или по даташиту). Первым делом удалим все разметки

Далее все выделить и сгруппировать, чтобы все составные перемещались вместе.

Перетащим первый вывод на перекрестье координат и немного приподнимем . Лишнюю длину выводов можно обрезать или задвинуть в корпус.

Мы задвинем.

Отмерим вниз от начала координат приблизительно 3 мм

Разгруппируем модель и задвинем в корпус лишнюю длину.

Длина вывода которая будет торчать из платы = наши 3мм минус толщина платы.

.

Перед сохранением проверяем не осталось ли чего лишнего, все выделяем, группируем и жмем *сохранить как*

Выбираем *.3ds. именуем файл, куда сохранить и жмем *Сохранить*

Появится окно с выбором качества (количество полигонов и тд. и тп.)

Ставим как на рисунке и жмем ОК.

Далее открываем файл в DeepExploration.

Правой кнопкой мышки на папке 3D Objects List – Select All Все объекты выделились

Жмем опять правую кнопку мышки на папке и появляется меню, что с выделенными делать

дальше – выбираем Tools – Collapse Herarchy

Далее переименовываем собранный объект в *model* и сохраняем в папке LIBRARY Протеуса или папке проекта где эта модель используется.

Делаем заготовку футпринта по даташиту.

Не забываем про маркер на первой ноге (к нему привяжутся 00 координат нашей модели).

Все выделяем и жмем значок *Make Package*
Прописываем имя, в какую библиотеку, приблизительно как-то так

В закладке 3D следующее

TYPE=model

FILE=имя модели.3ds

NAME=model

SCALE=1mm (не обязательно, если в РИНО делали 1:1)

Кстати если делать в РИНО модель 10:1 или 1:1, то размеры файлов будут одинаковы. Если уменьшить при сохранении кол-во полигонов, то размер файла уменьшится, но появляется повышенная угловатость (многогранность), что хорошо видно на родных 3d — шных протеусовских моделях (имеется в виду не примитивы, а библиотеки *.vml).

Видим (если нет ошибок) как в окне предв. просмотра появляется наш кондер Жмем ОК.

В списке компонентов появится 220N400V.

Шлепаем свеженький кондер на поле (предварительно удалив разметку заготовки), обводим контур платы и наслаждаемся в 3D вьювере полученным результатом.

Конечно в вышеизложенном много чего нет, для этого есть учебники. Но в принципе все просто.

В одной сделал, в другой собрал, в третьей использовал.

УДАЧИ!!!