Laboratorium napędu elektrycznego

Modelowanie układu sterowania prędkością trójfazowego silnika indukcyjnego zasilanego z falownika napięcia o modulacji sinusoidalnej przy zachowaniu ilorazu U/f=const (sterowanie skalarne) w programie Plecs

1. Usunąć trójfazowe obciążenie RL i zastąpić je uprzednio zamodelowanym silnikiem indukcyjnym wraz z obciążeniem mechanicznym i pomiarem prędkości.

Dobrać amplitudę i częstotliwość sygnałów modulujących tak, aby stojan silnika indukcyjnego był zasilany napięciem o znamionowej częstotliwości i amplitudzie. Obciążyć maszynę znamionowym momentem na wale po ustaleniu się prędkości biegu jałowego.

2. Zbudować układ sterowania prędkością silnika indukcyjnego z zastosowaniem stałości ilorazu napięcia zasilania przez częstotliwość napięcia *U/f=const* (sterowanie skalarne).

Zmienić prędkość zadaną o charakterystyce skoku do połowy prędkości znamionowej nie zmieniając momentu obciążenia.

3. Jak zmieni się częstotliwość napięcia stojana f_s , wartość skuteczna napięcia stojana U_s^{RMS} , prędkość obrotowa n oraz wartość skuteczna prądu stojana I_s^{RMS} przy sterowaniu skalarnym wskutek zmiany momentu obciążenia T_L ?

nenta obenquena 1 L.		
Parametr	T_L rośnie	T_L maleje
f_s		
U_s^{RMS}		
n		
I_s^{RMS}		

4. Prędkość referencyjną n_ref zadać za pomocą źródła sygnału liniowo zmiennego.

5. Zbudować układ kompensacji poślizgu maszyny indukcyjnej w układzie sterowania prędkością silnika indukcyjnego z zastosowaniem stałości ilorazu napięcia zasilania przez częstotliwość napięcia *U/f=const* (sterowanie skalarne).

W celu doboru nastaw regulatora prędkości należy początkowo zablokować akcję całkującą, tj. przyjąć dużą wartość czasu zdwojenia T_i . Następnie należy zmieniać wartość wzmocnienia regulatora k_p tak, aby wskutek obciążenia wału maszyny znamionowym momentem obciążenia prędkość obrotowa n_meas była mniejsza o 1,5÷2 prędkości poślizgu znamionowego od prędkości referencyjnej n_meas Kolejnym krokiem jest modyfikacja czasu zdwojenia, który można uznać za poprawnie dobrany, gdy wskutek obciążenia wału maszyny znamionowym momentem, prędkość obrotowa n_meas wraca do wartości referencyjnej n_meas w czasie $20\div40\%$ τ_m :

$$\tau_m = \frac{J}{F}$$

gdzie J jest momentem bezwładności mas wirujących, a F współczynnikiem tarcia wiskotycznego.

Podany sposób doboru nastaw regulatora prędkości został zaproponowany w celu skrócenia poszukiwań tychże niewiadomych i nie powinien być używany do doboru nastaw regulatora dla innych obiektów!

6. Jak zmieni się częstotliwość napięcia stojana f_s , wartość skuteczna napięcia stojana U_s^{RMS} , prędkość obrotowa n oraz wartość skuteczna prądu stojana I_s^{RMS} przy sterowaniu skalarnym z kompensacją poślizgu wskutek zmiany momentu obciążenia T_L ?

Parametr	T_L rośnie	T_L maleje
f_s		
U_s^{RMS}		
n		
I_s^{RMS}		

7. Zbudować układ regulacji prędkości maszyny indukcyjnej w układzie sterowania prędkością silnika indukcyjnego z zastosowaniem stałości ilorazu napięcia zasilania przez częstotliwość napięcia *U/f=const* (sterowanie skalarne).

Dobór nastaw regulatora prędkości dokonać metodą prób i błędów.

