Linear Algebra – MAT 2610

Section 1.8 (Introduction to Linear Transformations)

Dr. Jay Adamsson

jay@aorweb.ca

<u>jadamsson@upei.ca</u>

Definitions

Definition: A function (or transformation) $f: A \to B$ is a rule that assigns every element in a set A to an element in set B. (Note that A and B are not matrices here, but sets).

Set A is called the **domain** of f and B is called the **co-domain** of f

Definition: The **range** of a function $f: A \to B$ is the set of all possible values f(a) where $a \in A$

Example

Suppose $A = \{1,2,3,4,5\}$ and $B = \{red, green, blue\}$ and $f: A \rightarrow B$ is defined by:

$$f(n) = \begin{cases} red \ if \ n \ is \ odd \\ blue \ if \ n \ is \ even \end{cases}$$

Note that we can define f(n) for any n in A (such as f(2) or f(5)). But not every element of B is obtained.

Domain of *f* : {1,2,3,4,5}

Co-Domain of f: {red, green, blue}

Range of f: {red, blue}

We can define functions $f: S_1 \to S_2$ where S_1 and S_2 are sets of vectors.

Example: Suppose
$$f: R_2 \to R_2$$
 is defined as $f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 3x + y \\ x - 2y \end{bmatrix}$

Find
$$f\left(\begin{bmatrix} 2\\-1\end{bmatrix}\right)$$

Example: Suppose $f: R_5 \to R_3$ is defined as $f\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}\right) = \begin{bmatrix} 3x_1 + x_2 \\ x_3 + x_4 \\ x_2 - x_3 + 2x_5 \end{bmatrix}$

Find
$$f$$
 $\begin{pmatrix} \begin{bmatrix} 1\\2\\-3\\4\\-5 \end{bmatrix} \end{pmatrix}$

Matrix Transformation

If A is and $m \times n$ matrix, then if x is any vector in \mathbb{R}^n , let

$$T(x) = Ax$$

Observe that this takes any vector in \mathbb{R}^n and "transforms" it into a vector in \mathbb{R}^m . This is a **matrix transformation** denoted by $x \mapsto Ax$

Matrix Transformation Example

$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 defined by $T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2 & 2 & -3 \\ 3 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

Matrix Transformation Example

Is
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 in the range of $T: R^2 \to R^3$ defined by $T \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} 2 & 2 \\ 3 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Linear Transformation

Definition: A **linear transformation** $T: \mathbb{R}^n \to \mathbb{R}^m$ is a function where the following holds for any vectors $u, v \in \mathbb{R}^n$ and c any scalar:

1.
$$T(u+v) = T(u) + T(v)$$

2.
$$T(cu) = cT(u)$$

Note that every matrix transformation is a linear transformation.

Example: Is $T: R^3 \to R^2$ defined by $T\begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 2 & 2 & -3 \\ 3 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ a linear

transformation?

For any linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ the following are true:

- 1. T(0) = 0
- 2. T(-u) = -T(u) for all $u \in \mathbb{R}^n$
- 3. T(u-v) = T(u) T(v) for all $u, v \in \mathbb{R}^n$
- 4. T(au + bv) = aT(u) + bT(v) for all $u, v \in \mathbb{R}^n$ and scalars a, b

Note: this means that

$$T(a_1u_1 + \dots + a_nu_n) = a_1T(u_1) + \dots + a_nT(u_n)$$

Linear Algebra – MAT 2610

Section 1.8 (Introduction to Linear Transformations)

Dr. Jay Adamsson

jay@aorweb.ca

<u>jadamsson@upei.ca</u>