Homework 4

4.1

$$\text{d) } \delta \left(q_{i,j}\right) = \left\{ \begin{matrix} 1 & if \ N(i,j) = 3 \ or \ q_{i,j} = 1 \ and \ N(i,j) = 2 \\ 0 \ otherwise \end{matrix} \right\}$$

(a) 2 pts Complete the output $\lambda(q)$ and state transition $\delta(q, x)$ values in the **transition/output table** below (*not a state trajectory table*) for a JK flip-flop.

x(t)		q(t)	$\lambda(q)$	$\delta(q,x)$	
j(t)	<i>k</i> (<i>t</i>)	•			
0	0	0	0	0	
0	0	1	1	1	
0	1	0	0	0	
0	1	1	1	Ο	
1	0	0	0	1	
1	0	1	1	1	
1	1	0	0	1	
1	1	1	1	Ο	

(b) 3 pts Simulate the **state and output trajectories** q(t) and y(t) for the following input trajectory x(t) = (j(t), k(t)) for $0 \le t \le 9$ with initial state q(0) = 0.

t:	0	1	2	3	4	5	6	7	8	9
<i>j</i> (<i>t</i>):	0	1	0	1	1	0	0	1	0	0
<i>k</i> (<i>t</i>):	1	0	1	1	1	0	1	0	1	0
<i>q(t)</i> :	0	0	1	1	1	1	0	0	1	1
<i>y</i> (<i>t</i>):	0	0	1	1	1	1	0	0	1	1

4.3

a)

$$\delta\left(S, \frac{dS}{dt} \ delta(t)\right) = S(t) + \Delta t * dS/dt$$

$$\delta\left(I, \frac{dI}{dt} \ delta(t)\right) = I(t) + \Delta t * dI/dt$$

$$\delta\left(R, \frac{dR}{dt} \ delta(t)\right) = R(t) + \Delta t^* dR/dt$$

- d) Maximum Infected People are: 484.783 at 41.2 days
- e) Total Removed is approximately 1506 so 2% of that is **30.1 people dead**

iii) Day 73 was the peak day of infections and 247 people where infected.

iv) 25.5 people died

I pledge my honor that I've abided by the Stevens Honor System.