GAUGE AND HIGGS BOSONS

 γ (photon)

$$I(J^{PC}) = 0.1(1^{-})$$

Mass $m < 1 \times 10^{-18}$ eV Charge $q < 1 \times 10^{-35}$ e Mean life $\tau =$ Stable

g or gluon

$$I(J^P) = 0(1^-)$$

Mass m = 0 [a] SU(3) color octet

graviton

$$J=2$$

Mass $m < 6 \times 10^{-32}$ eV

W

$$J = 1$$

Charge
$$= \pm 1~e$$
 Mass $m = 80.385 \pm 0.015~{\rm GeV}$ W/Z mass ratio $= 0.88153 \pm 0.00017$ $m_Z - m_W = 10.803 \pm 0.015~{\rm GeV}$ $m_{W^+} - m_{W^-} = -0.2 \pm 0.6~{\rm GeV}$ Full width $\Gamma = 2.085 \pm 0.042~{\rm GeV}$ $\langle N_{\pi^\pm} \rangle = 15.70 \pm 0.35$ $\langle N_{K^\pm} \rangle = 2.20 \pm 0.19$ $\langle N_p \rangle = 0.92 \pm 0.14$ $\langle N_{\rm charged} \rangle = 19.39 \pm 0.08$

 W^- modes are charge conjugates of the modes below.

W ⁺ DECAY MODES	F	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\ell^+ \nu$	[<i>b</i>]	(10.86± 0.09) %		_
$e^+ \nu$		$(10.71 \pm 0.16) \%$		40192
$\mu^+ \nu \ \tau^+ \nu$		$(10.63 \pm \ 0.15) \%$		40192
$\tau^+ \nu$		$(11.38 \pm \ 0.21) \%$		40173
hadrons		$(67.41 \pm 0.27) \%$		_

HTTP://PDG.LBL.GOV

Page 1

$\pi^+ \gamma$	< 7	\times 10 ⁻⁶	95%	40192
$D_s^+ \gamma$	< 1.3	$\times 10^{-3}$	95%	40168
cX	(33.3 ± 2.6)) %		_
c s	$(31 \begin{array}{cc} +13 \\ -11 \end{array}$) %		_
invisible	[c] (1.4 \pm 2.9) %		_

Z

$$J = 1$$

Charge = 0 Mass
$$m = 91.1876 \pm 0.0021$$
 GeV $[d]$ Full width $\Gamma = 2.4952 \pm 0.0023$ GeV $\Gamma(\ell^+\ell^-) = 83.984 \pm 0.086$ MeV $[b]$ $\Gamma(\text{invisible}) = 499.0 \pm 1.5$ MeV $[e]$ $\Gamma(\text{hadrons}) = 1744.4 \pm 2.0$ MeV $\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-) = 1.0009 \pm 0.0028$ $\Gamma(\tau^+\tau^-)/\Gamma(e^+e^-) = 1.0019 \pm 0.0032$ $[f]$

Average charged multiplicity

$$\langle N_{charged} \rangle = 20.76 \pm 0.16 \quad (S = 2.1)$$

Couplings to quarks and leptons

$$g_V^\ell = -0.03783 \pm 0.00041$$
 $g_V^u = 0.18 \pm 0.05$
 $g_V^d = -0.35_{-0.06}^{+0.05}$
 $g_A^\ell = -0.50123 \pm 0.00026$
 $g_A^u = 0.50_{-0.05}^{+0.04}$
 $g_A^d = -0.514_{-0.029}^{+0.050}$
 $g_A^{\nu\ell} = 0.5008 \pm 0.0008$
 $g_A^{\nu\ell} = 0.53 \pm 0.09$
 $g_A^{\nu\mu} = 0.502 \pm 0.017$

Asymmetry parameters [g]

$$A_e = 0.1515 \pm 0.0019$$
 $A_\mu = 0.142 \pm 0.015$
 $A_\tau = 0.143 \pm 0.004$
 $A_s = 0.90 \pm 0.09$
 $A_c = 0.670 \pm 0.027$
 $A_b = 0.923 \pm 0.020$

Charge asymmetry (%) at Z pole

$$A_{FB}^{(0\ell)} = 1.71 \pm 0.10$$

 $A_{FB}^{(0u)} = 4 \pm 7$

$$A_{FB}^{(0s)} = 9.8 \pm 1.1$$

 $A_{FB}^{(0c)} = 7.07 \pm 0.35$
 $A_{FB}^{(0b)} = 9.92 \pm 0.16$

Z DECAY MODES	Fraction (Γ_i/Γ)			(Scale factor/ Confidence level		
e^+e^-		(3.363	± 0.004) %			45594
$\mu^+\mu^-$		(3.366	± 0.007) %			45594
$ au^+ au^-$		(3.370	± 0.008) %			45559
$\ell^+\ell^-$	[<i>b</i>]	(3.365	8 ± 0.002	3) %			_
$\ell^+\ell^-\ell^+\ell^-$	[<i>h</i>]	(3.5	± 0.4) × 1	₋₀ -6	S=1.7	45594
invisible		(20.00	± 0.06) %			_
hadrons		(69.91	± 0.06) %			_
$(u\overline{u}+c\overline{c})/2$		(11.6	± 0.6) %			_
$(dd+s\overline{s}+bb)/3$		(15.6	± 0.4) %			_
c <u>c</u>		(12.03	±0.21) %			_
$b\overline{b}$ _		(15.12	±0.05) %	_		_
$b\overline{b}b\overline{b}$		(3.6	±1.3) × 1	L0 ⁻⁴		_
ggg		< 1.1		%	_	CL=95%	_
$\pi^0 \gamma$		< 2.01				CL=95%	45594
$\eta\gamma$		< 5.1				CL=95%	45592
$\omega\gamma$		< 6.5				CL=95%	45590
$\eta'(958)\gamma$		< 4.2				CL=95%	45589
$\phi\gamma$		< 8.3				CL=95%	45588
$\gamma \gamma$		< 1.46				CL=95%	45594
$\pi^0\pi^0$		< 1.52				CL=95%	45594
$\gamma \gamma \gamma$		< 2.2				CL=95%	45594
$\pi^{\pm}W^{\mp}$		< 7				CL=95%	10162
$ ho^\pm W^\mp$	[<i>i</i>]	< 8.3		\times 1	_{[0} -5	CL=95%	10136
$J/\psi(1S)X$		(3.51	+0.23 -0.25	,	LO ⁻³	S=1.1	_
$J/\psi(1S)\gamma$		< 2.6				CL=95%	45541
$\psi(2S)X$		(1.60	± 0.29) × 1	_		_
$\chi_{c1}(1P)X$		(2.9	± 0.7) × 1			_
$\chi_{c2}(1P)X$		< 3.2				CL=90%	_
$\varUpsilon(1S) \; X + \varUpsilon(2S) \; X \ + \varUpsilon(3S) \; X$		(1.0	± 0.5) × 1	L0 ⁻⁴		_
$\Upsilon(1\hat{S})X$		< 3.4		\times 1	-6	CL=95%	_
$\Upsilon(2S)X$		< 6.5		\times 1	-6	CL=95%	_
$\Upsilon(3S)X$		< 5.4		× 1	-6	CL=95%	_
$(D^0 / \overline{D}{}^0) \times$			± 2.0				_
$D^{\pm}X$		`	±1.7	,			_
$D^*(2010)^{\pm} X$	[<i>i</i>]		± 1.3				_
$D_{s1}(2536)^{\pm}X$			±0.8		₋₀ -3		-

Created: 5/30/2017 17:13

HTTP://PDG.LBL.GOV Page 3

D_{sJ} (2573) $^\pm$ X		(5.	8 ±2.2	$) \times 10^{-3}$		_
$D^{*\prime}(2629)^{\pm}X$		searched for				
B^+X		[j] (6.	08 ± 0.13) %		_
$B_s^0 X$		[j] (1.	± 0.13) %		_
$B_c^+ X$		search	ed for			_
Λ ⁺ X		(1.	54 ±0.33) %		_
$B_c^+ X$ $A_c^+ X$ $\Xi_c^0 X$		see	n			_
$\Xi_b X$		see	n			_
<i>b</i> -baryon X		[j] (1.	38 ± 0.22) %		_
anomalous $\gamma+$ hadrons		[k] < 3.	2	_	CL=95%	_
$e^+e^-\gamma$		[k] < 5.	2		CL=95%	45594
$\mu^+\mu^-\gamma$		[k] < 5.	6		CL=95%	45594
$\tau^+\tau^-\gamma$		[k] < 7.	3		CL=95%	45559
$\ell^+\ell^-\gamma\gamma$		[I] < 6.	8		CL=95%	_
$q \overline{q} \gamma \gamma$		[I] < 5.	5		CL=95%	_
$ u \overline{\nu} \gamma \gamma$		[I] < 3.	1	$\times 10^{-6}$	CL=95%	45594
$e^{\pm}\mu^{\mp}$	LF	[i] < 7.	5	$\times 10^{-7}$	CL=95%	45594
$e^{\pm} au^{\mp}$	LF	[i] < 9.	8	$\times 10^{-6}$	CL=95%	45576
$\mu^{\pm} au^{\mp}$	LF	[i] < 1.	2	$\times 10^{-5}$	CL=95%	45576
pe	L,B	< 1.	8	$\times 10^{-6}$	CL=95%	45589
$p\mu$	L,B	< 1.	8	× 10 ⁻⁶	CL=95%	45589

*H*⁰

$$J = 0$$

Mass
$$m=125.09\pm0.24~{\rm GeV}$$

Full width $\Gamma~<~0.013~{\rm GeV},~{\rm CL}=95\%$

H^0 Signal Strengths in Different Channels

See Listings for the latest unpublished results.

Combined Final States =
$$1.10 \pm 0.11$$
 $WW^* = 1.08^{+0.18}_{-0.16}$ $ZZ^* = 1.29^{+0.26}_{-0.23}$ $\gamma\gamma = 1.16 \pm 0.18$ $b\,\overline{b} = 0.82 \pm 0.30$ (S = 1.1) $\mu^+\mu^- = 0.1 \pm 2.5$ $\tau^+\tau^- = 1.12 \pm 0.23$ $Z\gamma < 9.5$, CL = 95% $t\,\overline{t}\,H^0$ Production = $2.3^{+0.7}_{-0.6}$

H ⁰ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
e^+e^-	$< 1.9 \times 10^{-3}$	95%	62545
$J/\psi \gamma$	$< 1.5 \times 10^{-3}$	95%	62507
Υ (1S) γ	$< 1.3 \times 10^{-3}$	95%	62187
$\Upsilon(2S)\gamma$	$< 1.9 \times 10^{-3}$	95%	62143
Υ (3 S) γ	$< 1.3 \times 10^{-3}$	95%	62116
ϕ (1020) γ	$< 1.4 \times 10^{-3}$	95%	62541
$e\mu$	$< 3.5 \times 10^{-4}$	95%	62545
e au	$< 6.9 \times 10^{-3}$	95%	62532
μau	< 1.51 %	95%	62532
invisible	<28 %	95%	_

Neutral Higgs Bosons, Searches for

Searches for a Higgs Boson with Standard Model Couplings

Mass m > 122 and none 128–1000 GeV, CL = 95%

The limits for H_1^0 and A^0 in supersymmetric models refer to the $m_h^{\rm max}$ benchmark scenario for the supersymmetric parameters.

$$H_1^0$$
 in Supersymmetric Models $(m_{H_1^0} < m_{H_2^0})$

Mass m > 92.8 GeV, CL = 95%

 A^0 Pseudoscalar Higgs Boson in Supersymmetric Models $^{[n]}$

Mass m > 93.4 GeV, $CL = 95\% \quad \tan\beta > 0.4$

Charged Higgs Bosons (H^{\pm} and $H^{\pm\pm}$), Searches for

 H^{\pm} Mass m > 80 GeV, CL = 95%

New Heavy Bosons (W', Z', leptoquarks, etc.), Searches for

Additional W Bosons

W' with standard couplings

Mass $m > 4.070 \times 10^3$ GeV, CL = 95% (pp direct search) W_R (Right-handed W Boson)

Created: 5/30/2017 17:13

Mass m > 715 GeV, CL = 90% (electroweak fit)

Additional Z Bosons

```
Z'_{\text{SM}} with standard couplings Mass m>3.360\times 10^3 GeV, CL = 95% (pp direct search) Z_{LR} of SU(2)_L\timesSU(2)_R\timesU(1) (with g_L=g_R) Mass m>630 GeV, CL = 95% (p\overline{p} direct search) Mass m>1162 GeV, CL = 95% (electroweak fit) Z_\chi of SO(10) \to SU(5)\timesU(1)_\chi (with g_\chi=e/\cos\theta_W) Mass m>3.050\times 10^3 GeV, CL = 95% (pp direct search) Z_\psi of E_6\to SO(10)\times U(1)_\psi (with g_\psi=e/\cos\theta_W) Mass m>2.740\times 10^3 GeV, CL = 95% (pp direct search) Z_\eta of E_6\to SU(3)\times SU(2)\times U(1)\times U(1)_\eta (with g_\eta=e/\cos\theta_W) Mass m>2.810\times 10^3 GeV, CL = 95% (pp direct search)
```

Scalar Leptoquarks

```
Mass m>1050 GeV, CL = 95% (1st generation, pair prod.)
Mass m>1755 GeV, CL = 95% (1st generation, single prod.)
Mass m>1000 GeV, CL = 95% (2nd generation, pair prod.)
Mass m>660 GeV, CL = 95% (2nd generation, single prod.)
Mass m>740 GeV, CL = 95% (3rd generation, pair prod.)
(See the Particle Listings for assumptions on leptoquark quantum numbers and branching fractions.)
```

Diquarks

Mass
$$m > 6000$$
 GeV, $CL = 95\%$ (E_6 diquark)

Axigluon

Mass m > 5100 GeV, CL = 95%

Axions (A^0) and Other Very Light Bosons, Searches for

The standard Peccei-Quinn axion is ruled out. Variants with reduced couplings or much smaller masses are constrained by various data. The Particle Listings in the full *Review* contain a Note discussing axion searches.

The best limit for the half-life of neutrinoless double beta decay with Majoron emission is $> 7.2 \times 10^{24}$ years (CL = 90%).

NOTES

- [a] Theoretical value. A mass as large as a few MeV may not be precluded.
- [b] ℓ indicates each type of lepton $(e, \mu, \text{ and } \tau)$, not sum over them.
- [c] This represents the width for the decay of the W boson into a charged particle with momentum below detectability, p< 200 MeV.
- [d] The Z-boson mass listed here corresponds to a Breit-Wigner resonance parameter. It lies approximately 34 MeV above the real part of the position of the pole (in the energy-squared plane) in the Z-boson propagator.
- [e] This partial width takes into account Z decays into $\nu \overline{\nu}$ and any other possible undetected modes.
- [f] This ratio has not been corrected for the τ mass.
- [g] Here $A \equiv 2g_V g_A / (g_V^2 + g_A^2)$.
- [h] Here ℓ indicates e or μ .
- [i] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [j] This value is updated using the product of (i) the $Z \rightarrow b \overline{b}$ fraction from this listing and (ii) the b-hadron fraction in an unbiased sample of weakly decaying b-hadrons produced in Z-decays provided by the Heavy Flavor Averaging Group (HFLAV, http://www.slac.stanford.edu/xorg/hflav/osc/PDG_2009/#FRACZ).
- [k] See the Z Particle Listings for the γ energy range used in this measurement.
- [/] For $m_{\gamma\gamma}=(60\pm5)~{
 m GeV}.$
- [n] The limits assume no invisible decays.