

DESCENSO GRADIENTE

ALAN REYES-FIGUEROA MÉTODOS NUMÉRICOS II

(AULA 18) 19.SEPTIEMBRE.2022

Algoritmos para minimización sin restricciones:

Algoritmos para minimización sin restricciones:

Los algoritmos para minimización sin restricciones son métodos iterativos que encuentran una solución aproximada.

Algoritmos para minimización sin restricciones:

Los algoritmos para minimización sin restricciones son métodos iterativos que encuentran una solución aproximada.

Todos los algoritmos para minimización sin restricciones requieren que el usuario proporcione un punto de partida $\mathbf{x}_0 \in \mathbb{R}^n$.

Algoritmos para minimización sin restricciones:

Los algoritmos para minimización sin restricciones son métodos iterativos que encuentran una solución aproximada.

Todos los algoritmos para minimización sin restricciones requieren que el usuario proporcione un punto de partida $\mathbf{x}_0 \in \mathbb{R}^n$. El usuario con conocimiento sobre la función o el conjunto de datos *input* puede estar en una buena posición para elegir \mathbf{x}_0 como una estimación razonable de la solución.

Algoritmos para minimización sin restricciones:

Los algoritmos para minimización sin restricciones son métodos iterativos que encuentran una solución aproximada.

Todos los algoritmos para minimización sin restricciones requieren que el usuario proporcione un punto de partida $\mathbf{x}_0 \in \mathbb{R}^n$. El usuario con conocimiento sobre la función o el conjunto de datos *input* puede estar en una buena posición para elegir \mathbf{x}_0 como una estimación razonable de la solución.

De lo contrario, el punto inicial \mathbf{x}_0 debe ser elegido por el algoritmo, ya sea mediante un enfoque sistemático o de alguna manera arbitraria (aleatorio dentro de cierto dominio).

Algoritmos para minimización sin restricciones:

Los algoritmos para minimización sin restricciones son métodos iterativos que encuentran una solución aproximada.

Todos los algoritmos para minimización sin restricciones requieren que el usuario proporcione un punto de partida $\mathbf{x}_0 \in \mathbb{R}^n$. El usuario con conocimiento sobre la función o el conjunto de datos *input* puede estar en una buena posición para elegir \mathbf{x}_0 como una estimación razonable de la solución.

De lo contrario, el punto inicial \mathbf{x}_0 debe ser elegido por el algoritmo, ya sea mediante un enfoque sistemático o de alguna manera arbitraria (aleatorio dentro de cierto dominio).

- A partir de \mathbf{x}_o , se genera una secuencia $\{\mathbf{x}_k\}_{k\geq o}$ de aproximaciones.
- Para pasar de una iteración \mathbf{x}_k a la siguiente, los algoritmos usan información sobre la función f en \mathbf{x}_k , y posiblemente también información de iteraciones anteriores.
- Con esta información, se espera hallar una nueva iteración \mathbf{x}_{k+1} , usualmente con la propiedad $f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$.

• Sin embargo, existen algoritmos no monótonos en los que f no disminuye en cada paso, pero f debería disminuir después de algún número m de iteraciones es decir, $f(\mathbf{x}_{k+1}) < f(\mathbf{x}_{k-j})$ para algún $j \in \{0, 1, \dots, m\}$.

• Sin embargo, existen algoritmos no monótonos en los que f no disminuye en cada paso, pero f debería disminuir después de algún número m de iteraciones es decir, $f(\mathbf{x}_{k+1}) < f(\mathbf{x}_{k-j})$ para algún $j \in \{0, 1, \dots, m\}$.

Por ejemplo, seleccione

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \, \mathbf{d}_k, \qquad ext{donde } \mathbf{d}_k = -rac{
abla f(\mathbf{x}_k)}{||
abla f(\mathbf{x}_k)||}$$

si

$$f(\mathbf{x}_k + \alpha \, \mathbf{d}_k) < \max_{0 < i < m} f(\mathbf{x}_{k-j}) + \gamma \alpha \nabla f(\mathbf{x}_k)^\mathsf{T} \mathbf{d}_k.$$

• Sin embargo, existen algoritmos no monótonos en los que f no disminuye en cada paso, pero f debería disminuir después de algún número m de iteraciones es decir, $f(\mathbf{x}_{k+1}) < f(\mathbf{x}_{k-j})$ para algún $j \in \{0, 1, \dots, m\}$.

Por ejemplo, seleccione

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \, \mathbf{d}_k, \qquad ext{donde } \mathbf{d}_k = - rac{
abla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$$

si

$$f(\mathbf{x}_k + \alpha \, \mathbf{d}_k) < \max_{0 \leq j \leq m} f(\mathbf{x}_{k-j}) + \gamma \alpha \nabla f(\mathbf{x}_k)^\mathsf{T} \mathbf{d}_k.$$

Framework general:

- Elegir x_o,
- Hallar o establecer un criterio de paro,
- Definir cómo actualizar \mathbf{x}_k .

¿Cómo actualizar x_k ?:

La idea es elegir una dirección \mathbf{d}_k y buscar a lo largo del semirrayo en esta dirección, $\mathbf{x}_{k+1} = \mathbf{x}_k + t\mathbf{d}_k$, para una nueva iteración \mathbf{x}_{k+1} donde la función reduzca su valor.

¿Cómo actualizar x_k ?:

La idea es elegir una dirección \mathbf{d}_k y buscar a lo largo del semirrayo en esta dirección, $\mathbf{x}_{k+1} = \mathbf{x}_k + t\mathbf{d}_k$, para una nueva iteración \mathbf{x}_{k+1} donde la función reduzca su valor.

Definición

Dada $f: \mathbb{R}^n \to \mathbb{R}$ diferenciable, y un punto $\mathbf{x}_k \in \mathbb{R}^n$, una **dirección de descenso** para f en \mathbf{x}_k es cualquier vector $\mathbf{d} \in \mathbb{R}^n$, tal que

$$f(\mathbf{x}_k + t\mathbf{d}) < f(\mathbf{x}_k), \quad \text{para todo } t \in (0, T).$$
 (1)

¿Cómo actualizar x_k ?:

La idea es elegir una dirección \mathbf{d}_k y buscar a lo largo del semirrayo en esta dirección, $\mathbf{x}_{k+1} = \mathbf{x}_k + t\mathbf{d}_k$, para una nueva iteración \mathbf{x}_{k+1} donde la función reduzca su valor.

Definición

Dada $f: \mathbb{R}^n \to \mathbb{R}$ diferenciable, y un punto $\mathbf{x}_k \in \mathbb{R}^n$, una **dirección de descenso** para f en \mathbf{x}_k es cualquier vector $\mathbf{d} \in \mathbb{R}^n$, tal que

$$f(\mathbf{x}_k + t\mathbf{d}) < f(\mathbf{x}_k), \quad \text{para todo } t \in (0, T).$$
 (1)

En el contexto de optimización, una dirección de descenso en \mathbf{x}_k mueve el punto \mathbf{x}_k un poco más cerca de un mínimo local.

Muchos de los métodos de optimización basan su estrategia en hallar una dirección de descenso, por ejemplo: el método de descenso gradiente, el método de grdiente conjugado, ...

Ejemplo: La dirección de descenso más común para una función es $\mathbf{u} = -\frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$.

Ejemplo: La dirección de descenso más común para una función es $\mathbf{u} = -\frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$. Ya hemos mencionado que $-\frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$ indica la dirección en la cual f decrece lo más rápido posible en el punto \mathbf{x}_k .

Ejemplo: La dirección de descenso más común para una función es $\mathbf{u} = -\frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$. Ya hemos mencionado que $-\frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$ indica la dirección en la cual f decrece lo más rápido posible en el punto \mathbf{x}_k . En particular, del Teorema de Taylor, tenemos

$$f(\mathbf{x}_k + t\mathbf{u}) = f(\mathbf{x}_k) + t\nabla f(\mathbf{x}_k)^\mathsf{T}\mathbf{u} + o(||\mathbf{u}||) \approx f(\mathbf{x}_k) - t\nabla f(\mathbf{x}_k)^\mathsf{T} \frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$$

Ejemplo: La dirección de descenso más común para una función es $\mathbf{u} = -\frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$. Ya hemos mencionado que $-\frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$ indica la dirección en la cual f decrece lo más rápido posible en el punto \mathbf{x}_k . En particular, del Teorema de Taylor, tenemos

$$f(\mathbf{x}_k + t\mathbf{u}) = f(\mathbf{x}_k) + t\nabla f(\mathbf{x}_k)^\mathsf{T}\mathbf{u} + o(||\mathbf{u}||) \approx f(\mathbf{x}_k) - t\nabla f(\mathbf{x}_k)^\mathsf{T} \frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$$
$$\approx f(\mathbf{x}_k) - t||\nabla f(\mathbf{x}_k)||$$

Ejemplo: La dirección de descenso más común para una función es $\mathbf{u} = -\frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$. Ya hemos mencionado que $-\frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$ indica la dirección en la cual f decrece lo más rápido posible en el punto \mathbf{x}_k . En particular, del Teorema de Taylor, tenemos

$$f(\mathbf{x}_k + t\mathbf{u}) = f(\mathbf{x}_k) + t\nabla f(\mathbf{x}_k)^\mathsf{T}\mathbf{u} + o(||\mathbf{u}||) \approx f(\mathbf{x}_k) - t\nabla f(\mathbf{x}_k)^\mathsf{T} \frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$$

$$\approx f(\mathbf{x}_k) - t||\nabla f(\mathbf{x}_k)|| < f(\mathbf{x}_k).$$
(2)

Ejemplo: La dirección de descenso más común para una función es $\mathbf{u} = -\frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$. Ya hemos mencionado que $-\frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$ indica la dirección en la cual f decrece lo más rápido posible en el punto \mathbf{x}_k . En particular, del Teorema de Taylor, tenemos

$$f(\mathbf{x}_k + t\mathbf{u}) = f(\mathbf{x}_k) + t\nabla f(\mathbf{x}_k)^{\mathsf{T}}\mathbf{u} + o(||\mathbf{u}||) \approx f(\mathbf{x}_k) - t\nabla f(\mathbf{x}_k)^{\mathsf{T}} \frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$$

$$\approx f(\mathbf{x}_k) - t||\nabla f(\mathbf{x}_k)|| < f(\mathbf{x}_k).$$
(2)

Luego, $f(\mathbf{x}_k + t\mathbf{u}) < f(\mathbf{x}_k)$, para $t \in (0,1)$ y $\mathbf{u} = -\frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$ es una dirección de descenso.

Ejemplo: La dirección de descenso más común para una función es $\mathbf{u} = -\frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$. Ya hemos mencionado que $-\frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$ indica la dirección en la cual f decrece lo más rápido posible en el punto \mathbf{x}_k . En particular, del Teorema de Taylor, tenemos

$$f(\mathbf{x}_k + t\mathbf{u}) = f(\mathbf{x}_k) + t\nabla f(\mathbf{x}_k)^\mathsf{T}\mathbf{u} + o(||\mathbf{u}||) \approx f(\mathbf{x}_k) - t\nabla f(\mathbf{x}_k)^\mathsf{T} \frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$$

$$\approx f(\mathbf{x}_k) - t||\nabla f(\mathbf{x}_k)|| < f(\mathbf{x}_k).$$
(2)

Luego, $f(\mathbf{x}_k + t\mathbf{u}) < f(\mathbf{x}_k)$, para $t \in (0,1)$ y $\mathbf{u} = -\frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$ es una dirección de descenso. general, lo anterior vale para cualquier vector \mathbf{d} tal que $\nabla f(\mathbf{x}_k)^T \mathbf{d} < \mathbf{o}$.

Proposición

Dada $f: \mathbb{R}^n \to \mathbb{R}$ de clase C^1 , y $\mathbf{x}_k \in \mathbb{R}^n$. Entonces, $\mathbf{d} \in \mathbb{R}^n$ es una dirección de descenso para f en \mathbf{x}_k , si y sólo si, $\nabla f(\mathbf{x}_k)^T \mathbf{d} < \mathbf{o}$.

Ejemplo: La dirección de descenso más común para una función es $\mathbf{u} = -\frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$. Ya hemos mencionado que $-\frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$ indica la dirección en la cual f decrece lo más rápido posible en el punto \mathbf{x}_k . En particular, del Teorema de Taylor, tenemos

$$f(\mathbf{x}_k + t\mathbf{u}) = f(\mathbf{x}_k) + t\nabla f(\mathbf{x}_k)^\mathsf{T}\mathbf{u} + o(||\mathbf{u}||) \approx f(\mathbf{x}_k) - t\nabla f(\mathbf{x}_k)^\mathsf{T} \frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$$

$$\approx f(\mathbf{x}_k) - t||\nabla f(\mathbf{x}_k)|| < f(\mathbf{x}_k).$$
(2)

Luego, $f(\mathbf{x}_k + t\mathbf{u}) < f(\mathbf{x}_k)$, para $t \in (0,1)$ y $\mathbf{u} = -\frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$ es una dirección de descenso. general, lo anterior vale para cualquier vector \mathbf{d} tal que $\nabla f(\mathbf{x}_k)^T \mathbf{d} < \mathbf{o}$.

Proposición

Dada $f: \mathbb{R}^n \to \mathbb{R}$ de clase C^1 , y $\mathbf{x}_k \in \mathbb{R}^n$. Entonces, $\mathbf{d} \in \mathbb{R}^n$ es una dirección de descenso para f en \mathbf{x}_k , si y sólo si, $\nabla f(\mathbf{x}_k)^\mathsf{T} \mathbf{d} < o$.

<u>Prueba</u>: (\Leftarrow) Se deduce directamente de la aproximación de Taylor de $f(\mathbf{x}_k + t\mathbf{d})$.

$$f(\mathbf{x}_k + t\mathbf{d}) = f(\mathbf{x}_k) + t\nabla f(\mathbf{x}_k)^\mathsf{T}\mathbf{d} + o(||\mathbf{d}||) \approx f(\mathbf{x}_k) + t\underbrace{\nabla f(\mathbf{x}_k)^\mathsf{T}\mathbf{d}}_{$$

para $t \in (0,1)$, y **d** es dirección de descenso.

$$f(\mathbf{x}_k + t\mathbf{d}) = f(\mathbf{x}_k) + t\nabla f(\mathbf{x}_k)^\mathsf{T}\mathbf{d} + o(||\mathbf{d}||) \approx f(\mathbf{x}_k) + t\underbrace{\nabla f(\mathbf{x}_k)^\mathsf{T}\mathbf{d}}_{$$

para $t \in (0,1)$, y **d** es dirección de descenso.

(⇒) Si **d** es dirección de descenso de f en \mathbf{x}_k , entonces existe $t_0 \in (0, T)$, tal que $f(\mathbf{x}_k + t_0 \mathbf{d}) < f(\mathbf{x}_k)$.

$$f(\mathbf{x}_k + t\mathbf{d}) = f(\mathbf{x}_k) + t\nabla f(\mathbf{x}_k)^\mathsf{T}\mathbf{d} + o(||\mathbf{d}||) \approx f(\mathbf{x}_k) + t\underbrace{\nabla f(\mathbf{x}_k)^\mathsf{T}\mathbf{d}}_{$$

para $t \in (0,1)$, y **d** es dirección de descenso.

(⇒) Si **d** es dirección de descenso de f en \mathbf{x}_k , entonces existe $t_0 \in (0, T)$, tal que $f(\mathbf{x}_k + t_0 \mathbf{d}) < f(\mathbf{x}_k)$.

Luego, por continuidad de ∇f y la preservación de signo, se tiene que $\nabla f(\mathbf{x}_k + t\mathbf{d})^T\mathbf{d} < 0$, para todo $t \in (0, t_0)$.

$$f(\mathbf{x}_k + t\mathbf{d}) = f(\mathbf{x}_k) + t\nabla f(\mathbf{x}_k)^\mathsf{T}\mathbf{d} + o(||\mathbf{d}||) \approx f(\mathbf{x}_k) + t\underbrace{\nabla f(\mathbf{x}_k)^\mathsf{T}\mathbf{d}}_{$$

para $t \in (0,1)$, y **d** es dirección de descenso.

(⇒) Si **d** es dirección de descenso de f en \mathbf{x}_k , entonces existe $t_0 \in (0, T)$, tal que $f(\mathbf{x}_k + t_0 \mathbf{d}) < f(\mathbf{x}_k)$.

Luego, por continuidad de ∇f y la preservación de signo, se tiene que $\nabla f(\mathbf{x}_k + t\mathbf{d})^T\mathbf{d} < 0$, para todo $t \in (0, t_0)$. Usando Taylor, existe $h \in (0, 1)$ tal que

$$f(\mathbf{x}_k + t\mathbf{d}) = f(\mathbf{x}_k) + t\nabla f(\mathbf{x}_k + ht\mathbf{d})^\mathsf{T}\mathbf{d}.$$

$$f(\mathbf{x}_k + t\mathbf{d}) = f(\mathbf{x}_k) + t\nabla f(\mathbf{x}_k)^\mathsf{T}\mathbf{d} + o(||\mathbf{d}||) \approx f(\mathbf{x}_k) + t\underbrace{\nabla f(\mathbf{x}_k)^\mathsf{T}\mathbf{d}}_{$$

para $t \in (0,1)$, y **d** es dirección de descenso.

(⇒) Si **d** es dirección de descenso de f en \mathbf{x}_k , entonces existe $t_0 \in (0, T)$, tal que $f(\mathbf{x}_k + t_0 \mathbf{d}) < f(\mathbf{x}_k)$.

Luego, por continuidad de ∇f y la preservación de signo, se tiene que $\nabla f(\mathbf{x}_k + t\mathbf{d})^T\mathbf{d} < 0$, para todo $t \in (0, t_0)$. Usando Taylor, existe $h \in (0, 1)$ tal que

$$f(\mathbf{x}_k + t\mathbf{d}) = f(\mathbf{x}_k) + t\nabla f(\mathbf{x}_k + ht\mathbf{d})^\mathsf{T}\mathbf{d}.$$

Como O < $ht < t < t_0$, entonces $\nabla f(\mathbf{x}_k + ht\mathbf{d})^T\mathbf{d} < 0$, para todo $h \in (0,1)$ y por lo tanto, $f(\mathbf{x}_k + ht\mathbf{d}) < f(\mathbf{x}_k)$, $\forall ht \in (0,t)$.

$$f(\mathbf{x}_k + t\mathbf{d}) = f(\mathbf{x}_k) + t\nabla f(\mathbf{x}_k)^\mathsf{T}\mathbf{d} + o(||\mathbf{d}||) \approx f(\mathbf{x}_k) + t\underbrace{\nabla f(\mathbf{x}_k)^\mathsf{T}\mathbf{d}}_{$$

para $t \in (0,1)$, y **d** es dirección de descenso.

(⇒) Si **d** es dirección de descenso de f en \mathbf{x}_k , entonces existe $t_0 \in (0, T)$, tal que $f(\mathbf{x}_k + t_0 \mathbf{d}) < f(\mathbf{x}_k)$.

Luego, por continuidad de ∇f y la preservación de signo, se tiene que $\nabla f(\mathbf{x}_k + t\mathbf{d})^T\mathbf{d} < 0$, para todo $t \in (0, t_0)$. Usando Taylor, existe $h \in (0, 1)$ tal que

$$f(\mathbf{x}_k + t\mathbf{d}) = f(\mathbf{x}_k) + t\nabla f(\mathbf{x}_k + ht\mathbf{d})^\mathsf{T}\mathbf{d}.$$

Como O < $ht < t < t_0$, entonces $\nabla f(\mathbf{x}_k + ht\mathbf{d})^T\mathbf{d} <$ O, para todo $h \in (0,1)$ y por lo tanto, $f(\mathbf{x}_k + ht\mathbf{d}) < f(\mathbf{x}_k)$, $\forall ht \in (0,t)$. Esto muestra que \mathbf{d} es una dirección de descenso. \Box

$$f(\mathbf{x}_k + t\mathbf{d}) = f(\mathbf{x}_k) + t\nabla f(\mathbf{x}_k)^\mathsf{T}\mathbf{d} + o(||\mathbf{d}||) \approx f(\mathbf{x}_k) + t\underbrace{\nabla f(\mathbf{x}_k)^\mathsf{T}\mathbf{d}}_{$$

para $t \in (0,1)$, y **d** es dirección de descenso.

(⇒) Si **d** es dirección de descenso de f en \mathbf{x}_k , entonces existe $\mathbf{t}_0 \in (0, T)$, tal que $f(\mathbf{x}_k + \mathbf{t}_0 \mathbf{d}) < f(\mathbf{x}_k)$.

Luego, por continuidad de ∇f y la preservación de signo, se tiene que $\nabla f(\mathbf{x}_k + t\mathbf{d})^T\mathbf{d} < 0$, para todo $t \in (0, t_0)$. Usando Taylor, existe $h \in (0, 1)$ tal que

$$f(\mathbf{x}_k + t\mathbf{d}) = f(\mathbf{x}_k) + t\nabla f(\mathbf{x}_k + ht\mathbf{d})^\mathsf{T}\mathbf{d}.$$

Como O $< ht < t < t_0$, entonces $\nabla f(\mathbf{x}_k + ht\mathbf{d})^T\mathbf{d} <$ O, para todo $h \in (0,1)$ y por lo tanto, $f(\mathbf{x}_k + ht\mathbf{d}) < f(\mathbf{x}_k)$, $\forall ht \in (0,t)$. Esto muestra que \mathbf{d} es una dirección de descenso. \Box

La estrategia anterior ya nos da un algoritmo básico de optimización.

```
Algoritmo: (Descenso gradiente, versión naïve) 

Inputs: f: \mathbb{R}^n \to \mathbb{R} función de clase C^1, \mathbf{x}_0 \in \mathbb{R}^n, \alpha > 0 tamaño de paso. 

Outputs: \mathbf{x} punto crítico de f. 

For k = 0, 1, 2, \ldots hasta que se cumpla un criterio de paro: 

Compute \mathbf{d}_k a descent direction 

(for example, any \mathbf{d}_k such that \angle(-\nabla f(\mathbf{x}_k), \mathbf{d}_k) < |\frac{\pi}{2}|). 

Set \mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \, \mathbf{d}_k. 

Return \mathbf{x}_{k+1}.
```

```
Algoritmo: (Descenso gradiente, versión naïve) 

Inputs: f: \mathbb{R}^n \to \mathbb{R} función de clase C^1, \mathbf{x}_0 \in \mathbb{R}^n, \alpha > 0 tamaño de paso. 

Outputs: \mathbf{x} punto crítico de f. 

For \mathbf{k} = \mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots hasta que se cumpla un criterio de paro: 

Compute \mathbf{d}_k a descent direction 

(for example, any \mathbf{d}_k such that \angle(-\nabla f(\mathbf{x}_k), \mathbf{d}_k) < |\frac{\pi}{2}|). 

Set \mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \, \mathbf{d}_k. 

Return \mathbf{x}_{k+1}. 

En el caso en que \mathbf{d}_k = -\nabla f(\mathbf{x}_k), tenemos
```

```
Algoritmo: (Descenso gradiente, versión naïve)
```

Inputs: $f: \mathbb{R}^n \to \mathbb{R}$ función de clase C^1 , $\mathbf{x}_0 \in \mathbb{R}^n$, $\alpha > 0$ tamaño de paso.

Outputs: \mathbf{x} punto crítico de f.

For k = 0,1,2,... hasta que se cumpla un criterio de paro:

Compute \mathbf{d}_k a descent direction

(for example, any \mathbf{d}_k such that $\angle(-\nabla f(\mathbf{x}_k),\mathbf{d}_k)<|\frac{\pi}{2}|$).

Set $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \, \mathbf{d}_k$.

Return \mathbf{x}_{k+1} .

En el caso en que $\mathbf{d}_k = -\nabla f(\mathbf{x}_k)$, tenemos

Algoritmo: (Steepest descent, versión naïve)

Inputs: $f:\mathbb{R}^n o \mathbb{R}$ función de clase C^1 , $\mathbf{x}_0 \in \mathbb{R}^n$, lpha > 0 tamaño de paso.

Outputs: \mathbf{x} punto crítico de f.

For k = 0,1,2,... hasta que se cumpla un criterio de paro:

Set
$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \, \nabla f(\mathbf{x}_k)$$
.

Return \mathbf{x}_{k+1} .

A la constante $\alpha_k > 0$ se le llama el **tamaño de paso**.

A la constante $\alpha_k > 0$ se le llama el **tamaño de paso**. Usualmente este tamaño de paso α_k cambia en cada iteración, y se elige en función de la iteración y del punto, α_k .

A la constante $\alpha_k > 0$ se le llama el **tamaño de paso**. Usualmente este tamaño de paso α_k cambia en cada iteración, y se elige en función de la iteración y del punto, α_k . El caso más simple se da al elegir $\alpha_k = \alpha$ constante, como en los algoritmos naïve anteriores.

A la constante $\alpha_k > 0$ se le llama el **tamaño de paso**. Usualmente este tamaño de paso α_k cambia en cada iteración, y se elige en función de la iteración y del punto, α_k . El caso más simple se da al elegir $\alpha_k = \alpha$ constante, como en los algoritmos naïve anteriores.

Elegir el tamaño de paso adecuado es crucial. Si α_k es demasiado grande, es posible que el algoritmos no detecte las regiones donde de encuentra el mínimo local.

Ejemplo: Considere la función $f: \mathbb{R} \to \mathbb{R}$, $f(\mathbf{x}) = \mathbf{x}^2$.

Ejemplo: Considere la función $f: \mathbb{R} \to \mathbb{R}$, $f(\mathbf{x}) = \mathbf{x}^2$. f es diferenciable y $\nabla f(\mathbf{x}) = 2\mathbf{x}$.

Ejemplo: Considere la función $f: \mathbb{R} \to \mathbb{R}$, $f(\mathbf{x}) = \mathbf{x}^2$. f es diferenciable y $\nabla f(\mathbf{x}) = 2\mathbf{x}$.

• Tomando $\alpha =$ 1, obtenemos la iteración de descenso máximo

$$\mathbf{X}_{k+1} = \mathbf{X}_k - \nabla f(\mathbf{X}) = \mathbf{X}_k - 2\mathbf{X}_k = -\mathbf{X}_k,$$

la cual es una secuencia alternante $\mathbf{x}_0, -\mathbf{x}_0, \mathbf{x}_0, -\mathbf{x}_0, \ldots$, no convergente.

Ejemplo: Considere la función $f: \mathbb{R} \to \mathbb{R}$, $f(\mathbf{x}) = \mathbf{x}^2$. f es diferenciable y $\nabla f(\mathbf{x}) = 2\mathbf{x}$.

• Tomando $\alpha=$ 1, obtenemos la iteración de descenso máximo

$$\mathbf{X}_{k+1} = \mathbf{X}_k - \nabla f(\mathbf{X}) = \mathbf{X}_k - 2\mathbf{X}_k = -\mathbf{X}_k,$$

la cual es una secuencia alternante $\mathbf{x}_0, -\mathbf{x}_0, \mathbf{x}_0, -\mathbf{x}_0, \dots$, no convergente.

• Tomando $\alpha = \frac{1}{4}$, obtenemos la iteración de descenso máximo

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \frac{1}{4} \nabla f(\mathbf{x}) = \mathbf{x}_k - \frac{2}{4} \mathbf{x}_k = \frac{1}{2} \mathbf{x}_k.$$

Esta es una secuencia geométrica convergente $\mathbf{x}_0, \frac{1}{2}\mathbf{x}_0, \frac{1}{4}\mathbf{x}_0, \frac{1}{8}\mathbf{x}_0, \dots$

Ejemplo: Considere la función $f: \mathbb{R} \to \mathbb{R}$, $f(\mathbf{x}) = \mathbf{x}^2$. f es diferenciable y $\nabla f(\mathbf{x}) = 2\mathbf{x}$.

• Tomando $\alpha = 1$, obtenemos la iteración de descenso máximo

$$\mathbf{X}_{k+1} = \mathbf{X}_k - \nabla f(\mathbf{X}) = \mathbf{X}_k - 2\mathbf{X}_k = -\mathbf{X}_k,$$

la cual es una secuencia alternante $\mathbf{x}_0, -\mathbf{x}_0, \mathbf{x}_0, -\mathbf{x}_0, \ldots$, no convergente.

• Tomando $\alpha = \frac{1}{4}$, obtenemos la iteración de descenso máximo

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \frac{1}{4} \nabla f(\mathbf{x}) = \mathbf{x}_k - \frac{2}{4} \mathbf{x}_k = \frac{1}{2} \mathbf{x}_k.$$

Esta es una secuencia geométrica convergente $\mathbf{x}_0, \frac{1}{2}\mathbf{x}_0, \frac{1}{4}\mathbf{x}_0, \frac{1}{8}\mathbf{x}_0, \dots$

Una estrategia empírica muy simple, pero bastante útil, para elgir α es comenzar con un valor pequeño (e.g. α = 0.1).

Ejemplo: Considere la función $f: \mathbb{R} \to \mathbb{R}$, $f(\mathbf{x}) = \mathbf{x}^2$. f es diferenciable y $\nabla f(\mathbf{x}) = 2\mathbf{x}$.

• Tomando $\alpha = 1$, obtenemos la iteración de descenso máximo

$$\mathbf{X}_{k+1} = \mathbf{X}_k - \nabla f(\mathbf{X}) = \mathbf{X}_k - 2\mathbf{X}_k = -\mathbf{X}_k,$$

la cual es una secuencia alternante $\mathbf{x}_0, -\mathbf{x}_0, \mathbf{x}_0, -\mathbf{x}_0, \ldots$, no convergente.

• Tomando $\alpha = \frac{1}{4}$, obtenemos la iteración de descenso máximo

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \frac{1}{4} \nabla f(\mathbf{x}) = \mathbf{x}_k - \frac{2}{4} \mathbf{x}_k = \frac{1}{2} \mathbf{x}_k.$$

Esta es una secuencia geométrica convergente $\mathbf{x}_0, \frac{1}{2}\mathbf{x}_0, \frac{1}{4}\mathbf{x}_0, \frac{1}{8}\mathbf{x}_0, \dots$

Una estrategia empírica muy simple, pero bastante útil, para elgir α es comenzar con un valor pequeño (e.g. $\alpha=$ 0.1). Si con este valor de α no se observa convergencia del método de descenso gradiente, se prueban valores usando una escala potencial:

- $\alpha =$ 0.01, $\alpha =$ 0.001; $\alpha =$ 0.0001, . . .
- $\alpha=\rho^1\alpha_0$, $\alpha=\rho^2\alpha_0$, $\alpha=\rho^3\alpha_0,\ldots$, donde $0<\rho<1$ (por ejemplo: $\rho=\frac{1}{2},\frac{1}{4}$ ó $\rho=\frac{1}{10}$)

Criterios de paro: Existen muchos criterios de paro que pueden usarse para deterner los algoritmos de optimización numérica.

• <u>Error absoluto de iteraciones</u>: Se mide el error absoluto entre dos iteraciones consecutivas

$$||\mathbf{x}_{k+1} - \mathbf{x}_k||_{norm} < tol.$$

Criterios de paro: Existen muchos criterios de paro que pueden usarse para deterner los algoritmos de optimización numérica.

 Error absoluto de iteraciones: Se mide el error absoluto entre dos iteraciones consecutivas

$$||\mathbf{x}_{k+1} - \mathbf{x}_k||_{norm} < tol.$$

• Error relativo de iteraciones: Se compara el error relativo entre dos iteraciones consecutivas \mathbf{x}_b y \mathbf{x}_{b+1}

$$\frac{||\mathbf{x}_{k+1} - \mathbf{x}_k||_{norm}}{||\mathbf{x}_k||_{norm}} < tol.$$

• Error abs/rel del valor de la función: Se mide el error entre dos valores de $f(\mathbf{x}_k)$ en iteraciones consecutivas. Así

$$|f(\mathbf{x}_{k+1}) - f(\mathbf{x}_k)| < \text{tol.}$$

• Norma del gradiente: En un mínimo local, sabemos que $\nabla f(\mathbf{x}) = \mathbf{0}$. Se busca entonces que las normas del gradiente sean suficientemente pequeñas

Varios métodos gradiente aplicados a una función cuadrática: (a) Descenso gradiente con dirección de descenso con ángulo constante φ con $\nabla f(\mathbf{x}_k)$; (b) Descenso máximo; (c) Descenso gradiente con dirección de descenso aleatoria.

Otra estrategia más adecuada para elegir el tamaño de paso es el llamado **esquema de Cauchy**.

Otra estrategia más adecuada para elegir el tamaño de paso es el llamado **esquema de Cauchy**.

Este consiste en lo siguiente: Dado $\mathbf{x}_k \in \mathbb{R}^n$, luego de elegir la dirección de búsqueda \mathbf{d}_k , buscamos cuál es el valor de $\alpha_k > 0$ que minimiza la función f, restricta a la recta $\mathbf{x}_k + t\mathbf{d}_k$, t > 0.

Otra estrategia más adecuada para elegir el tamaño de paso es el llamado **esquema de Cauchy**.

Este consiste en lo siguiente: Dado $\mathbf{x}_k \in \mathbb{R}^n$, luego de elegir la dirección de búsqueda \mathbf{d}_k , buscamos cuál es el valor de $\alpha_k > 0$ que minimiza la función f, restricta a la recta $\mathbf{x}_k + t\mathbf{d}_k$, t > 0. Esto es, definimos

$$\alpha_k = \operatorname{argmin}_{t \in \mathbb{R}} f(\mathbf{x}_k + t\mathbf{d}_k).$$
 (3)

Otra estrategia más adecuada para elegir el tamaño de paso es el llamado **esquema de Cauchy**.

Este consiste en lo siguiente: Dado $\mathbf{x}_k \in \mathbb{R}^n$, luego de elegir la dirección de búsqueda \mathbf{d}_k , buscamos cuál es el valor de $\alpha_k > 0$ que minimiza la función f, restricta a la recta $\mathbf{x}_k + t\mathbf{d}_k$, t > 0. Esto es, definimos

$$\alpha_k = \operatorname{argmin}_{t \in \mathbb{R}} f(\mathbf{x}_k + t\mathbf{d}_k).$$
 (3)

Observe que (3) corresponde a un problema de minimización 1-dimensional.

Otra estrategia más adecuada para elegir el tamaño de paso es el llamado **esquema de Cauchy**.

Este consiste en lo siguiente: Dado $\mathbf{x}_k \in \mathbb{R}^n$, luego de elegir la dirección de búsqueda \mathbf{d}_k , buscamos cuál es el valor de $\alpha_k > 0$ que minimiza la función f, restricta a la recta $\mathbf{x}_k + t\mathbf{d}_k$, t > 0. Esto es, definimos

$$\alpha_k = \operatorname{argmin}_{t \in \mathbb{R}} f(\mathbf{x}_k + t\mathbf{d}_k).$$
 (3)

Observe que (3) corresponde a un problema de minimización 1-dimensional. Es posible aplicar aquí las técnicas de optimización que aprendieron en Métodos Numéricos I.

- Método de búsqueda de Fibonacci (Fibonacci search),
- Método de la razon aúrea (golden ration search),
- Interpolación parabólica (quadratic interpolation),
- Método de Newton,
- . . .

Optimización 1-dimensional: (a) Golden-search, (b) interpolación parabólica.

Ver https://web2.qatar.cmu.edu/~gdicaro/15382/additional/
one-dimensional-search-methods.pdf

Algoritmo: (Descenso gradiente, versión esquema de Cauchy) Inputs: $f: \mathbb{R}^n \to \mathbb{R}$ función de clase C^1 . $\mathbf{x}_0 \in \mathbb{R}^n$.

Outputs: **x** punto crítico de f.

For k = 0,1,2,... hasta que se cumpla un criterio de paro:

Define $\mathbf{d}_k = -\nabla f(\mathbf{x}_k)$, or any other descent direction.

Compute α_k such that

$$lpha_k = \operatorname{argmin}_{t \in \mathbb{R}} f(\mathbf{x}_k + t\mathbf{d}_k),$$

by any 1-dimensional optimization method, Set $\mathbf{x}_{b+1} = \mathbf{x}_b + \alpha_b \mathbf{d}_b$.

Return $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{u}_k$

Otra dirección de búsqueda importante es la dirección de Newton.

Otra dirección de búsqueda importante es la **dirección de Newton**. Ésta se deriva de la aproximación de Taylor de segundo orden

$$f(\mathbf{x}_k + \mathbf{d}) = f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^\mathsf{T} \mathbf{d} + \frac{1}{2} \mathbf{d}^\mathsf{T} D^2 f(\mathbf{x}_k) \mathbf{d} + o(||\mathbf{d}||^2).$$

Otra dirección de búsqueda importante es la **dirección de Newton**. Ésta se deriva de la aproximación de Taylor de segundo orden

$$f(\mathbf{x}_{k} + \mathbf{d}) = f(\mathbf{x}_{k}) + \nabla f(\mathbf{x}_{k})^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} D^{2} f(\mathbf{x}_{k}) \mathbf{d} + o(||\mathbf{d}||^{2}).$$

$$\approx \underbrace{f(\mathbf{x}_{k}) + \nabla f(\mathbf{x}_{k})^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} D^{2} f(\mathbf{x}_{k}) \mathbf{d}}_{m_{k}(\mathbf{d})}.$$
(4)

Otra dirección de búsqueda importante es la **dirección de Newton**. Ésta se deriva de la aproximación de Taylor de segundo orden

$$f(\mathbf{x}_{k} + \mathbf{d}) = f(\mathbf{x}_{k}) + \nabla f(\mathbf{x}_{k})^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} D^{2} f(\mathbf{x}_{k}) \mathbf{d} + o(||\mathbf{d}||^{2}).$$

$$\approx \underbrace{f(\mathbf{x}_{k}) + \nabla f(\mathbf{x}_{k})^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} D^{2} f(\mathbf{x}_{k}) \mathbf{d}}_{m_{k}(\mathbf{d})}.$$
(4)

Observe que $m_k(\mathbf{d})$ es una función cuadrática en \mathbb{R}^n .

Otra dirección de búsqueda importante es la **dirección de Newton**. Ésta se deriva de la aproximación de Taylor de segundo orden

$$f(\mathbf{x}_{k} + \mathbf{d}) = f(\mathbf{x}_{k}) + \nabla f(\mathbf{x}_{k})^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} D^{2} f(\mathbf{x}_{k}) \mathbf{d} + o(||\mathbf{d}||^{2}).$$

$$\approx \underbrace{f(\mathbf{x}_{k}) + \nabla f(\mathbf{x}_{k})^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} D^{2} f(\mathbf{x}_{k}) \mathbf{d}}_{m_{k}(\mathbf{d})}.$$
(4)

Otra dirección de búsqueda importante es la **dirección de Newton**. Ésta se deriva de la aproximación de Taylor de segundo orden

$$f(\mathbf{x}_{k} + \mathbf{d}) = f(\mathbf{x}_{k}) + \nabla f(\mathbf{x}_{k})^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} D^{2} f(\mathbf{x}_{k}) \mathbf{d} + o(||\mathbf{d}||^{2}).$$

$$\approx \underbrace{f(\mathbf{x}_{k}) + \nabla f(\mathbf{x}_{k})^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} D^{2} f(\mathbf{x}_{k}) \mathbf{d}}_{m_{k}(\mathbf{d})}.$$
(4)

$$\nabla m_k(\mathbf{d}) =$$

Otra dirección de búsqueda importante es la **dirección de Newton**. Ésta se deriva de la aproximación de Taylor de segundo orden

$$f(\mathbf{x}_{k} + \mathbf{d}) = f(\mathbf{x}_{k}) + \nabla f(\mathbf{x}_{k})^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} D^{2} f(\mathbf{x}_{k}) \mathbf{d} + o(||\mathbf{d}||^{2}).$$

$$\approx \underbrace{f(\mathbf{x}_{k}) + \nabla f(\mathbf{x}_{k})^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} D^{2} f(\mathbf{x}_{k}) \mathbf{d}}_{m_{k}(\mathbf{d})}.$$
(4)

$$abla m_k(\mathbf{d}) =
abla f(\mathbf{x}_k) + D^2 f(\mathbf{x}_k) \, \mathbf{d} = \mathbf{o}$$

Otra dirección de búsqueda importante es la **dirección de Newton**. Ésta se deriva de la aproximación de Taylor de segundo orden

$$f(\mathbf{x}_{k} + \mathbf{d}) = f(\mathbf{x}_{k}) + \nabla f(\mathbf{x}_{k})^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} D^{2} f(\mathbf{x}_{k}) \mathbf{d} + o(||\mathbf{d}||^{2}).$$

$$\approx \underbrace{f(\mathbf{x}_{k}) + \nabla f(\mathbf{x}_{k})^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} D^{2} f(\mathbf{x}_{k}) \mathbf{d}}_{m_{k}(\mathbf{d})}.$$
(4)

$$\nabla m_k(\mathbf{d}) = \nabla f(\mathbf{x}_k) + D^2 f(\mathbf{x}_k) \, \mathbf{d} = \mathbf{o} \quad \Longrightarrow \quad \mathbf{d}_{Newton} = - \left(D^2 f(\mathbf{x}_k) \right)^{-1} \nabla f(\mathbf{x}_k).$$

Otra dirección de búsqueda importante es la **dirección de Newton**. Ésta se deriva de la aproximación de Taylor de segundo orden

$$f(\mathbf{x}_{k} + \mathbf{d}) = f(\mathbf{x}_{k}) + \nabla f(\mathbf{x}_{k})^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} D^{2} f(\mathbf{x}_{k}) \mathbf{d} + o(||\mathbf{d}||^{2}).$$

$$\approx \underbrace{f(\mathbf{x}_{k}) + \nabla f(\mathbf{x}_{k})^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} D^{2} f(\mathbf{x}_{k}) \mathbf{d}}_{m_{k}(\mathbf{d})}.$$
(4)

Observe que $m_k(\mathbf{d})$ es una función cuadrática en \mathbb{R}^n . Si $D^2 f(\mathbf{x}_k)$ es positiva definida, entonces m_k es convexa, y encontramos la dirección de Newton hallando el vector $\mathbf{d} \in \mathbb{R}^n$ como el mínimo global de esta función cuadrática. Esto es

$$\nabla m_k(\mathbf{d}) = \nabla f(\mathbf{x}_k) + D^2 f(\mathbf{x}_k) \, \mathbf{d} = \mathbf{o} \quad \Longrightarrow \quad \mathbf{d}_{Newton} = - \left(D^2 f(\mathbf{x}_k) \right)^{-1} \nabla f(\mathbf{x}_k).$$

• Podemos usar la dirección de Newton en un método de descenso gradiente siempre que $D^2f\succ$ o.

Otra dirección de búsqueda importante es la **dirección de Newton**. Ésta se deriva de la aproximación de Taylor de segundo orden

$$f(\mathbf{x}_{k} + \mathbf{d}) = f(\mathbf{x}_{k}) + \nabla f(\mathbf{x}_{k})^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} D^{2} f(\mathbf{x}_{k}) \mathbf{d} + o(||\mathbf{d}||^{2}).$$

$$\approx \underbrace{f(\mathbf{x}_{k}) + \nabla f(\mathbf{x}_{k})^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} D^{2} f(\mathbf{x}_{k}) \mathbf{d}}_{m_{k}(\mathbf{d})}.$$
(4)

$$\nabla m_k(\mathbf{d}) = \nabla f(\mathbf{x}_k) + D^2 f(\mathbf{x}_k) \, \mathbf{d} = \mathbf{o} \quad \Longrightarrow \quad \mathbf{d}_{Newton} = - \left(D^2 f(\mathbf{x}_k) \right)^{-1} \nabla f(\mathbf{x}_k).$$

- Podemos usar la dirección de Newton en un método de descenso gradiente siempre que $D^2f \succ$ o.
- Usamos tamaño de paso $\alpha=$ 1 con la dirección de Newton. Sin embargo, α puede ajustarse cuando los resultados no son satisfactorios.

Algoritmo: (Descenso gradiente, versión Newton)

Inputs: $f: \mathbb{R}^n \to \mathbb{R}$ función de clase C^2 , con Hessiana D^2f positiva definida en cada punto; $\mathbf{x}_0 \in \mathbb{R}^n$, $\alpha_k > 0$ tamaño de paso (usualmente $\alpha_k = 1$).

Outputs: \mathbf{x} punto crítico de f.

For k = 0,1,2,... hasta que se cumpla un criterio de paro:

Define
$$\mathbf{d}_k = - \left(D^2 f(\mathbf{x}_k) \right)^{-1} \nabla f(\mathbf{x}_k)$$
,
Set $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$.

Return $\mathbf{x}_{k+1} - \mathbf{x}_k + \alpha_k \mathbf{u}_k$.

Algoritmo: (Descenso gradiente, versión Newton)

Inputs: $f: \mathbb{R}^n \to \mathbb{R}$ función de clase C^2 , con Hessiana D^2f positiva definida en cada punto; $\mathbf{x}_0 \in \mathbb{R}^n$, $\alpha_k > 0$ tamaño de paso (usualmente $\alpha_k = 1$).

Outputs: \mathbf{x} punto crítico de f.

For k = 0,1,2,... hasta que se cumpla un criterio de paro:

Define
$$\mathbf{d}_k = - \left(D^2 f(\mathbf{x}_k) \right)^{-1} \nabla f(\mathbf{x}_k)$$
,
Set $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$.

Return \mathbf{x}_{k+1} .

Obs:

• Cuando $D^2f(\mathbf{x}_k)$ no es positiva definida en alguno de los puntos iterados \mathbf{x}_k , el método aún se pude utilizar. En este caso, se reemplaza el hessiano por su aproximación simétrica $A \in \mathbb{R}^{n \times n}$, más cercana, que sea positiva definida.

Algoritmo: (Descenso gradiente, versión Newton)

Inputs: $f: \mathbb{R}^n \to \mathbb{R}$ función de clase C^2 , con Hessiana D^2f positiva definida en cada punto; $\mathbf{x}_0 \in \mathbb{R}^n$, $\alpha_k > 0$ tamaño de paso (usualmente $\alpha_k = 1$). Outputs: \mathbf{x} punto crítico de f.

For k = 0,1,2,... hasta que se cumpla un criterio de paro: Define $\mathbf{d}_{k} = -(D^{2}f(\mathbf{x}_{k}))^{-1}\nabla f(\mathbf{x}_{k})$.

Set $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$.

Return \mathbf{x}_{k+1} .

Obs:

- Cuando $D^2f(\mathbf{x}_k)$ no es positiva definida en alguno de los puntos iterados \mathbf{x}_k , el método aún se pude utilizar. En este caso, se reemplaza el hessiano por su aproximación simétrica $A \in \mathbb{R}^{n \times n}$, más cercana, que sea positiva definida.
- Esto puede hacerse hallando la descomposición espectral $D^2 f(\mathbf{x}_k) = U \wedge U^\mathsf{T}$, y reemplazando todos los autovalores negativos de Λ por $\varepsilon > 0$; $A = U \wedge_{\varepsilon} U^\mathsf{T}$.

• El cálculo de la hessiana $D^2 f(\mathbf{x}_k)$ en cada iteración, consume mucho costo computacional (sobretodo en altas dimensiones).

• El cálculo de la hessiana $D^2 f(\mathbf{x}_k)$ en cada iteración, consume mucho costo computacional (sobretodo en altas dimensiones).

Existen otros métodos de tipo gradiente que, en lugar de calcular exactamente el hessiano $D^2 f(\mathbf{x}_k)$, utilizan una aproximación B_k , que se actualiza en cada paso.

• El cálculo de la hessiana $D^2 f(\mathbf{x}_k)$ en cada iteración, consume mucho costo computacional (sobretodo en altas dimensiones).

Existen otros métodos de tipo gradiente que, en lugar de calcular exactamente el hessiano $D^2 f(\mathbf{x}_k)$, utilizan una aproximación B_k , que se actualiza en cada paso.

De la aproximación de Taylor

$$\nabla f(\mathbf{x}_k + \mathbf{d}) = \nabla f(\mathbf{x}_k) + \int_0^1 D^2 f(\mathbf{x}_k + t\mathbf{d}) \, \mathbf{d} \, dt$$

$$= \nabla f(\mathbf{x}_k) + D^2 f(\mathbf{x}_k) \, \mathbf{d} + \underbrace{\int_0^1 \left[D^2 f(\mathbf{x}_k + t\mathbf{d}) - D^2 f(\mathbf{x}_k) \right] \mathbf{d} \, dt}_{o(||\mathbf{d}||)}.$$

• El cálculo de la hessiana $D^2 f(\mathbf{x}_k)$ en cada iteración, consume mucho costo computacional (sobretodo en altas dimensiones).

Existen otros métodos de tipo gradiente que, en lugar de calcular exactamente el hessiano $D^2 f(\mathbf{x}_k)$, utilizan una aproximación B_k , que se actualiza en cada paso.

De la aproximación de Taylor

$$\nabla f(\mathbf{x}_k + \mathbf{d}) = \nabla f(\mathbf{x}_k) + \int_0^1 D^2 f(\mathbf{x}_k + t\mathbf{d}) \, \mathbf{d} \, dt$$

$$= \nabla f(\mathbf{x}_k) + D^2 f(\mathbf{x}_k) \, \mathbf{d} + \underbrace{\int_0^1 \left[D^2 f(\mathbf{x}_k + t\mathbf{d}) - D^2 f(\mathbf{x}_k) \right] \mathbf{d} \, dt}_{o(||\mathbf{d}||)}.$$

Haciendo
$$\mathbf{d} = \mathbf{x}_{k+1} - \mathbf{x}_k$$
, $\Rightarrow \nabla f(\mathbf{x}_{k+1}) = \nabla f(\mathbf{x}_k) + D^2 f(\mathbf{x}_k) (\mathbf{x}_{k+1} - \mathbf{x}_k) + o(||\mathbf{d}||)$.

• El cálculo de la hessiana $D^2 f(\mathbf{x}_k)$ en cada iteración, consume mucho costo computacional (sobretodo en altas dimensiones).

Existen otros métodos de tipo gradiente que, en lugar de calcular exactamente el hessiano $D^2 f(\mathbf{x}_k)$, utilizan una aproximación B_k , que se actualiza en cada paso.

De la aproximación de Taylor

$$\nabla f(\mathbf{x}_k + \mathbf{d}) = \nabla f(\mathbf{x}_k) + \int_0^1 D^2 f(\mathbf{x}_k + t\mathbf{d}) \, \mathbf{d} \, dt$$

$$= \nabla f(\mathbf{x}_k) + D^2 f(\mathbf{x}_k) \, \mathbf{d} + \underbrace{\int_0^1 \left[D^2 f(\mathbf{x}_k + t\mathbf{d}) - D^2 f(\mathbf{x}_k) \right] \mathbf{d} \, dt}_{o(||\mathbf{d}||)}.$$

Haciendo $\mathbf{d} = \mathbf{x}_{k+1} - \mathbf{x}_k$, $\Rightarrow \nabla f(\mathbf{x}_{k+1}) = \nabla f(\mathbf{x}_k) + D^2 f(\mathbf{x}_k) (\mathbf{x}_{k+1} - \mathbf{x}_k) + o(||\mathbf{d}||)$. Cuando \mathbf{x}_k , \mathbf{x}_{k+1} están en una región cercana al mínimo \mathbf{x}^* , donde $D^2 f(\mathbf{x}_k) \succ o$, resulta

$$D^2 f(\mathbf{x}_k) \mathbf{d} \approx \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k).$$

Así, elegimos la aproximación de B_{k+1} de modo que imite la propiedad (5) anterior.

Así, elegimos la aproximación de B_{k+1} de modo que imite la propiedad (5) anterior. Así, requerimos que B_{k+1} cumpla la **ecuación secante**:

$$B_{k+1}\mathbf{s}_k=\mathbf{y}_k, \tag{6}$$

donde
$$\mathbf{s}_k = \mathbf{x}_{k+1} - \mathbf{x}_k$$
, y $\mathbf{y}_k = \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k)$.

Así, elegimos la aproximación de B_{k+1} de modo que imite la propiedad (5) anterior. Así, requerimos que B_{k+1} cumpla la **ecuación secante**:

$$B_{k+1}\mathbf{s}_k=\mathbf{y}_k,\tag{6}$$

donde $\mathbf{s}_k = \mathbf{x}_{k+1} - \mathbf{x}_k$, y $\mathbf{y}_k = \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k)$. Además, requerimos que B_{k+1} sea simétrica, y que la diferencia $B_{k+1} - B_k$ sea de bajo rango.

Así, elegimos la aproximación de B_{k+1} de modo que imite la propiedad (5) anterior. Así, requerimos que B_{k+1} cumpla la **ecuación secante**:

$$B_{k+1}\mathbf{s}_k=\mathbf{y}_k,\tag{6}$$

donde $\mathbf{s}_k = \mathbf{x}_{k+1} - \mathbf{x}_k$, y $\mathbf{y}_k = \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k)$. Además, requerimos que B_{k+1} sea simétrica, y que la diferencia $B_{k+1} - B_k$ sea de bajo rango.

Estos son los métodos llamados **métodos quasi-Newton**.

Así, elegimos la aproximación de B_{k+1} de modo que imite la propiedad (5) anterior. Así, requerimos que B_{k+1} cumpla la **ecuación secante**:

$$B_{k+1}\mathbf{s}_k=\mathbf{y}_k, \tag{6}$$

donde $\mathbf{s}_k = \mathbf{x}_{k+1} - \mathbf{x}_k$, y $\mathbf{y}_k = \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k)$. Además, requerimos que B_{k+1} sea simétrica, y que la diferencia $B_{k+1} - B_k$ sea de bajo rango.

Estos son los métodos llamados **métodos quasi-Newton**. Dos de las fórmulas más populares para actualizar el hessiano son

• el método simétrico de rango 1 (SR1):

$$B_{k+1} = B_k + \frac{(\mathbf{y}_k - B_k \mathbf{s}_k)(\mathbf{y}_k - B_k \mathbf{s}_k)^T}{(\mathbf{y}_k - B_k \mathbf{s}_k)^T \mathbf{s}_k}.$$

Así, elegimos la aproximación de B_{k+1} de modo que imite la propiedad (5) anterior. Así, requerimos que B_{k+1} cumpla la **ecuación secante**:

$$B_{k+1}\mathbf{s}_k=\mathbf{y}_k,\tag{6}$$

donde $\mathbf{s}_k = \mathbf{x}_{k+1} - \mathbf{x}_k$, y $\mathbf{y}_k = \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k)$. Además, requerimos que B_{k+1} sea simétrica, y que la diferencia $B_{k+1} - B_k$ sea de bajo rango.

Estos son los métodos llamados **métodos quasi-Newton**. Dos de las fórmulas más populares para actualizar el hessiano son

• el método simétrico de rango 1 (SR1):

$$B_{k+1} = B_k + \frac{(\mathbf{y}_k - B_k \mathbf{s}_k)(\mathbf{y}_k - B_k \mathbf{s}_k)^T}{(\mathbf{y}_k - B_k \mathbf{s}_k)^T \mathbf{s}_k}.$$

• el método BFGS (Broyden-Fletcher-Goldfarb-Shanno):

$$B_{k+1} = B_k - \frac{B_k \mathbf{s}_k \mathbf{s}_k^\mathsf{T} B_k^\mathsf{T}}{\mathbf{s}_k^\mathsf{T} B_k \mathbf{s}_k} + \frac{\mathbf{y}_k \mathbf{y}_k^\mathsf{T}}{\mathbf{y}_k^\mathsf{T} \mathbf{s}_k}.$$

