3D Vision 2

Week 8

Single-view Geometry: Camera Calibration

Single-view Geometry: Resectioning and Camera Pose

Announcements

- Assignment 2 due Friday (11:59pm Friday 26 April)
 - This includes a one week extension that has already been applied
 - **Zero** marks if either report or code submitted late (unless extension)
 - Submit early; you can always resubmit an updated version later
 - Depending on your internet connection and load on the TurnItIn servers, uploading can sometimes be slow, so please factor this into your submission schedule
 - Submit your report (PDF) and code (ZIP file) separately under the correct tab in the submission box
 - Follow the instructions under Submission Requirements

Announcements

- Public Holiday on Thursday 25 April:
 - Thursday lab rescheduled to 13:00-15:00 Tuesday Rm 109 CSIT Building

Weekly Study Plan: Overview

Wk	Starting	Lecture	Lab	Assessment
1	19 Feb	Introduction	Х	
2	26 Feb	Low-level Vision 1	1	
3	4 Mar	Low-level Vision 2	1	
4	11 Mar	Mid-level Vision 1 Mid-level Vision 2	1	CLab1 report due Friday
5 6	18 Mar	High-level Vision 1 High-level Vision 2 High-level Vision 3 ¹	2 2	
O	25 Mar 1 Apr	Teaching break	X	
	8 Apr	Teaching break	X	
7	15 Apr	3D Vision 1	2	CLab2 report due Friday
8	22 Apr	3D Vision 2	3	
9	29 Apr	3D Vision 3	3	
10	6 May	3D Vision 4	3	
		Mid-level Vision 3		
11	13 May	High-level Vision 4	X	CLab3 report due Friday
12	20 May	Course Review	X	

Weekly Study Plan: Part B

Wk	Starting	Lecture	Ву
7	15 Apr	3D vision: introduction, camera model, single-view geometry	Dylan
8	22 Apr	3D vision: camera calibration, two-view geometry (homography)	Dylan
9	29 Apr	3D vision: two-view geometry (epipolar geometry, triangulation, stereo)	Dylan
10	6 May	3D vision: multiple-view geometry	Weijian
		Mid-level vision: optical flow, shape-from-X	Dylan
11	13 May	High-level vision: self-supervised learning, detection, segmentation	Dylan
12	20 May	Course review	Dylan

Outline

- 1. Single-view Geometry: Camera Calibration
- 2. Single-view Geometry: Resectioning and Absolute Camera Pose
- 3. Two-view Geometry: Homography Estimation

Vector Operations (Review)

Vectors

$$\bullet \mathbf{x} = (x_1, x_2, x_3, \dots, x_n)$$

- Magnitude: $\|\mathbf{x}\| = (x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2)^{\frac{1}{2}}$
- Unit vector (magnitude is one): $\hat{\mathbf{x}} = \frac{\mathbf{x}}{\|\mathbf{x}\|}$
- Orientation (for a 2D vector): $\theta = \tan^{-1} \frac{x_2}{x_1}$
- Homogeneous vectors (in P^n): $\tilde{\mathbf{x}}$
 - One fewer degrees-of-freedom than the number of dimensions
 - Known up to scale: only the ratios between coordinates are significant x_1 : x_2 : x_3 : ...
 - $\tilde{\mathbf{x}} = k\tilde{\mathbf{x}}$

Inner (Dot) Product

$$\bullet \mathbf{x} = (x_1, x_2, x_3, \dots, x_n)$$

•
$$\mathbf{y} = (y_1, y_2, y_3, ..., y_n)$$

•
$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + x_3 y_3 + \dots + x_n y_n \rightarrow \text{scalar}$$

•
$$\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$$

• If
$$\mathbf{x} \perp \mathbf{y}$$
, $\mathbf{x} \cdot \mathbf{y} = 0$

Vector (Cross) Product

$$\bullet \mathbf{x} = (x_1, x_2, x_3, \dots, x_n)$$

•
$$\mathbf{y} = (y_1, y_2, y_3, ..., y_n)$$

- $z = x \times y \rightarrow \text{vector}$
- Magnitude: $\|\mathbf{z}\| = \|\mathbf{x}\| \|\mathbf{y}\| \sin \theta$
- Orientation:

•
$$\mathbf{z} \perp \mathbf{x} \Rightarrow \mathbf{x} \cdot \mathbf{z} = \mathbf{x} \cdot (\mathbf{x} \times \mathbf{y}) = 0$$

•
$$\mathbf{z} \perp \mathbf{y} \Rightarrow \mathbf{y} \cdot \mathbf{z} = \mathbf{y} \cdot (\mathbf{x} \times \mathbf{y}) = 0$$

• If
$$x \| y, z = 0$$

Vector (Cross) Product: Computation (3D)

$$\bullet \mathbf{x} = (x_1, x_2, x_3)$$

$$\bullet \mathbf{y} = (y_1, y_2, y_3)$$

•
$$\hat{\mathbf{i}} = \hat{\mathbf{j}} \times \hat{\mathbf{k}}, \hat{\mathbf{j}} = \hat{\mathbf{k}} \times \hat{\mathbf{i}}, \hat{\mathbf{k}} = \hat{\mathbf{i}} \times \hat{\mathbf{j}}$$

•
$$\mathbf{z} = (x_2y_3 - x_3y_2)\hat{\mathbf{i}} + (x_3y_1 - x_1y_3)\hat{\mathbf{j}} + (x_1y_2 - x_2y_1)\hat{\mathbf{k}}$$

Vector (Cross) Product: Alternative Notation

$$\bullet \mathbf{x} = (x_1, x_2, x_3)$$

$$\bullet \mathbf{y} = (y_1, y_2, y_3)$$

•
$$\mathbf{x} \times \mathbf{y} = [\mathbf{x}]_{\times} \mathbf{y} = -[\mathbf{y}]_{\times} \mathbf{x}$$

•
$$[\mathbf{x}]_{\times} = \begin{pmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{pmatrix}$$

• Anti-symmetric: $A = -A^{T}$

Camera Calibration

Recovering the Projection Matrix

Objectives

- To calibrate a perspective camera:
 - To estimate the camera matrix P = K[R|t]
 - To estimate the camera calibration (intrinsics) matrix K
 - To estimate the camera extrinsic parameters R, t/C
- To understand the Direct Linear Transformation (DLT) algorithm

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \propto \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$P_{\{3\times 4\}}$$

Image Projection

- Project world point X = (x, y, z) to image point x = (u, v)
- Assuming a pinhole camera model

Image Projection

- How many parameters?
 - 11 total:
 - 5 intrinsic $(\alpha, \beta, \gamma, u_0, v_0)$
 - 6 extrinsic (*R*, *t*)
- How to compute?
 - Camera calibration!
- But what about scale?
 - Inherent ambiguity between the focal length and the magnitude of the translation vector

Two Approaches to Calibration

- 1. Calibrate to a meaningful fixed world coordinate system
 - Solve for *P* directly
 - Good for a fixed camera, specific applications
 - E.g., tracking vehicles on a highway, a mobile robot on the ground plane
 - But gives no insight into internal calibration parameters
 - If camera—world relationship changes, calibration must start from scratch
- 2. Compute internal and external parameters separately:
 - P = K[R|t]
 - Internal parameters turn camera into a metric device
 - Can now be used for computing 3D rays in Euclidean space
 - Necessary for SFM

Camera Calibration

- Determine the camera parameters from known 3D points or a calibration object(s)
 - Internal or intrinsic parameters (i.e., focal length, principal point, aspect ratio)
 - 2. External or extrinsic (pose) parameters (i.e., position and orientation of the camera)
- 3D points cannot all be on the same plane

Basic Procedure

- 1. Prepare a calibration target/object
 - E.g., 2 orthogonal planes with a checkerboard pattern
 - Important: 3D point coordinates are known
- 2. Position camera in front of target
 - Capture image of the calibration target
- 3. Find corners of the target in the image
 - Obtain 2D–3D correspondences
- 4. Derive constraints on camera matrix
 - Estimate the intrinsic and extrinsic parameters

Basic Procedure: (3) Find Corners in Image

1. Option 1:

- 1. Detect edges with Canny detector
- 2. Fit straight lines to detected linked edges (Hough)
- 3. Intersect lines to obtain 2D image coordinates
- 4. Match image corners & 3D target checkerboard corners
 - E.g., count corners along the line and find corresponding edge in target
- 5. Result: 2D–3D correspondences

2. Option 2:

Apply a corner detector directly (Harris, Susan, FAST)

Camera Projection Matrix

- Fold intrinsic calibration matrix K and extrinsic pose parameters
 (R,t) together into a camera matrix P
- P = K [R | t]

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \sim \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

- Put 1 in the lower right corner to remove a degree of freedom (DoF)
 - 11 DoFs

Inhomogeneous Projection Equation

- Directly estimate 11 unknowns in the M matrix using known 3D points (X_i, Y_i, Z_i) and measured feature positions (u_i, v_i)
 - Nonlinear equations

$$u_{i} = \frac{m_{00}X_{i} + m_{01}Y_{i} + m_{02}Z_{i} + m_{03}}{m_{20}X_{i} + m_{21}Y_{i} + m_{22}Z_{i} + 1}$$

$$v_{i} = \frac{m_{10}X_{i} + m_{11}Y_{i} + m_{12}Z_{i} + m_{13}}{m_{20}X_{i} + m_{21}Y_{i} + m_{22}Z_{i} + 1}$$

Linear Regression

- 1. Bring denominator over to the LHS
- 2. Solve set of (over-determined) linear equations for m_{ij}
 - How? Least squares (pseudo-inverse)

$$u_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + 1) = m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}$$

$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + 1) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

- Cross-product trick:
 - When an equation is only known up to scale, take the cross product of the LHS with both sides of the equation – no loss of information
 - $\mathbf{x}_i = k\mathbf{P}\mathbf{X}_i \Rightarrow \mathbf{x}_i \times \mathbf{P}\mathbf{X}_i = \mathbf{0}$ [Why?] (\mathbf{x}_i : image coords; \mathbf{X}_i : world coords)

$$[\mathbf{x}_i]_{\times} \mathbf{P} \mathbf{X}_i = \begin{pmatrix} y_i \mathbf{p}_3^{\top} \mathbf{X}_i - w_i \mathbf{p}_2^{\top} \mathbf{X}_i \\ w_i \mathbf{p}_1^{\top} \mathbf{X}_i - x_i \mathbf{p}_3^{\top} \mathbf{X}_i \\ x_i \mathbf{p}_2^{\top} \mathbf{X}_i - y_i \mathbf{p}_1^{\top} \mathbf{X}_i \end{pmatrix} = \begin{bmatrix} \mathbf{0}^{\top} & -w_i \mathbf{X}_i^{\top} & y_i \mathbf{X}_i^{\top} \\ w_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} & -x_i \mathbf{X}_i^{\top} \\ -y_i \mathbf{X}_i^{\top} & x_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{pmatrix} = \mathbf{A}_i' \mathbf{p} = \mathbf{0}$$

where
$$\mathbf{x}_i = (x_i, y_i, w_i)^{\mathsf{T}}$$
 and $\mathbf{P} = \begin{bmatrix} \mathbf{p}_1^{\mathsf{T}} \\ \mathbf{p}_2^{\mathsf{T}} \\ \mathbf{p}_3^{\mathsf{T}} \end{bmatrix}$; $\mathbf{p}_i \in \mathbb{R}^{4 \times 1}$

Only 2 out of 3 equations are linearly independent, so pick two

$$\begin{bmatrix} \mathbf{0}^{\mathsf{T}} & -w_i \mathbf{X}_i^{\mathsf{T}} & y_i \mathbf{X}_i^{\mathsf{T}} \\ w_i \mathbf{X}_i^{\mathsf{T}} & \mathbf{0}^{\mathsf{T}} & -x_i \mathbf{X}_i^{\mathsf{T}} \end{bmatrix} \begin{pmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{pmatrix} = \mathbf{A}_i \mathbf{p} = \mathbf{0}$$

- Camera matrix has 11 DoF:
 - 12 parameters defined up to scale
 - Linear solution requires at least 6 points (in fact, 5½)

• Using 6 points to solve for **P**:

$$\mathbf{A}\mathbf{p} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_6 \end{bmatrix} \mathbf{p} = \mathbf{0}$$

- $\mathbf{A} \in \mathbb{R}^{12 \times 12}$ but $rank(\mathbf{A}) = 11$
- So use the first 11 rows: $\mathbb{R}^{11\times 12}$
- How to solve?
 - The trivial solution $\mathbf{p} = \mathbf{0}$ is not interesting
 - Compute the 1D null-space (e.g., via SVD)
 - Fix norm of \mathbf{p} afterwards (e.g., set $\|\mathbf{p}\| = 1$)

• Using n points to solve for P: the over-determined case

$$\mathbf{A}\mathbf{p} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_n \end{bmatrix} \mathbf{p} = \mathbf{0}$$

- How to solve?
 - No exact non-trivial solution due to inexact measurements (e.g., noise)
 - Ap = 0 is not possible, so minimise ||Ap|| subject to ||p|| = 1
 - 1. Take the singular value decomposition (SVD) of A
 - $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$
 - 2. Take the rightmost column of V [why?]
 - The right-singular vector of \mathbf{A} , corresponding to the smallest singular value (arranged in decreasing singular value order)

• Objective:

• Given $n \ge 6$ 2D–3D point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{X}_i\}$, determine the 3×4 projection matrix \mathbf{P} such that $\mathbf{x}_i \approx \mathbf{P}\mathbf{X}_i$

• Algorithm:

- 1. For each correspondence $\{\mathbf{x}_i \leftrightarrow \mathbf{X}_i\}$ compute \mathbf{A}_i , taking only the first two rows
- 2. Assemble the $n \times 12$ \mathbf{A}_i matrices into a single $2n \times 12$ matrix \mathbf{A}
- 3. Compute the SVD of **A**: $\mathbf{U}\Sigma\mathbf{V}^{\mathsf{T}}$
- 4. Take the last column of \mathbf{V} as the solution for \mathbf{p}
- 5. Rearrange **p** to obtain **P**

Importance of Normalisation

$$\begin{bmatrix} 0 & 0 & 0 & 0 & -w_i X_1 & -w_i X_2 & -w_i X_3 & -w_i & y_i X_1 & y_i X_2 & y_i X_3 & y_i \\ w_i X_1 & w_i X_2 & w_i X_3 & w_i & 0 & 0 & 0 & -x_i X_1 & -x_i X_2 & -x_i X_3 & -x_i \end{bmatrix} \begin{pmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{pmatrix}$$

$$\sim 10^2 \sim 10^2 \sim 10^2 \quad 1 \quad \sim 10^2 \quad \sim 10^2 \quad \sim 10^2 \quad 1 \quad \sim 10^4 \quad \sim 10^4 \quad \sim 10^4 \quad \sim 10^2$$

Orders of magnitude difference!

Objective:

• Given $n \ge 6$ 2D–3D point correspondences $\{\mathbf{x}_i \longleftrightarrow \mathbf{X}_i\}$, determine the 3×4 projection matrix \mathbf{P} such that $\mathbf{x}_i \approx \mathbf{P}\mathbf{X}_i$

• Algorithm:

- 1. Normalise 2D and 3D points: $\tilde{\mathbf{x}}_i = \mathbf{T}\mathbf{x}_i$, $\tilde{\mathbf{X}}_i = \mathbf{S}\mathbf{X}_i$
- 2. Apply the DLT algorithm to $\{\tilde{\mathbf{x}}_i \longleftrightarrow \tilde{\mathbf{X}}_i\}$
- 3. Denormalise the recovered solution $\tilde{\mathbf{P}}$ using $\mathbf{P} = \mathbf{T}^{-1}\tilde{\mathbf{P}}\mathbf{S}$

Example normalisation matrices:

$$\mathbf{T} = \begin{bmatrix} w+h & 0 & w/2 \\ 0 & w+h & h/2 \\ 0 & 0 & 1 \end{bmatrix}^{-1}; \quad \mathbf{S} = \begin{bmatrix} \mathbf{V} \operatorname{diag}(\lambda_1^{-1}, \lambda_2^{-1}, \lambda_3^{-1}) \mathbf{V}^{-1} & -\mathbf{V} \operatorname{diag}(\lambda_1^{-1}, \lambda_2^{-1}, \lambda_3^{-1}) \mathbf{V}^{-1} \boldsymbol{\mu}_{\mathbf{x}_i} \\ 0 & 1 \end{bmatrix}$$

$$\mathbf{V} \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3) \mathbf{V}^{-1} = \operatorname{eig}\left(\sum_i \left(\mathbf{X}_{i, \text{inhom}} - \boldsymbol{\mu}_{\mathbf{x}_i}\right) \left(\mathbf{X}_{i, \text{inhom}} - \boldsymbol{\mu}_{\mathbf{x}_i}\right)^{\mathsf{T}}\right)$$

Camera Calibration

Recovering the Camera Intrinsics

Camera Matrix Decomposition: Computing the Camera Centre **C**

- $P = K[R \mid -RC] = [p_1 \quad p_2 \quad p_3 \quad p_4]$
 - Careful! These \mathbf{p}_i are now column vectors of \mathbf{P}
- 1. It is the right null-space vector of **P** (Hartley & Zisserman p. 163):
 - Take last column of **V** where $\mathbf{P} = \mathbf{U} \Sigma \mathbf{V}^{\mathsf{T}}$ is the SVD of **P**
 - Why? Observe that $\mathbf{PC} = \mathbf{KR}\begin{bmatrix} 1 & & -X_C \\ & 1 & -Y_C \\ & & 1 & -Z_C \end{bmatrix} \begin{vmatrix} X_C \\ Y_C \\ Z_C \\ 1 \end{vmatrix} = \mathbf{0}$
- 2. Or, algebraic derivation (Hartley & Zisserman p. 163):

•
$$C = \begin{bmatrix} X \\ Y \\ Z \\ T \end{bmatrix} = \begin{bmatrix} \det([\mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4]) \\ -\det([\mathbf{p}_1, \mathbf{p}_3, \mathbf{p}_4]) \\ \det([\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_4]) \\ -\det([\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3]) \end{bmatrix}$$

Camera Matrix Decomposition: Computing the Intrinsics **K** and Rotation **R**

- $P = K[R \mid -RC] = [M \mid -MC]$
- 1. RQ decomposition of M:
 - $(\mathbf{R}_{\Delta}, \mathbf{Q}) = \mathrm{RQ}(\mathbf{M})$
 - $\mathbf{K} = \mathbf{R}_{\Delta}$: upper triangular matrix (Δ is just to distinguish it from rotation)
 - $\mathbf{R} = \mathbf{Q}$: orthonormal matrix
- 2. Algebraic derivation:
 - See next slide

Camera Matrix Decomposition: Computing the Intrinsics **K** and Rotation **R**

- $P = K[R \mid -RC] = [M \mid -MC]$
- 2. Algebraic derivation:

• Givens rotations:
$$\mathbf{R}_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c \end{bmatrix} \mathbf{R}_{y} = \begin{bmatrix} c' & 0 & s' \\ 0 & 1 & 0 \\ -s' & 0 & c' \end{bmatrix} \mathbf{R}_{z} = \begin{bmatrix} c'' & -s'' & 0 \\ s'' & c'' & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
•
$$c = -\frac{m_{33}}{\sqrt{m_{32}^{2} + m_{33}^{2}}} s = \frac{m_{32}}{\sqrt{m_{32}^{2} + m_{33}^{2}}}$$

- 1. Multiply **M** by \mathbf{R}_{x} : the resulting term at (3,2) will be 0 because of the values selected for c and s
- 2. Multiply resulting matrix by \mathbf{R}_y such that resulting term at (3,1) is zero (select c' and s' accordingly)
- 3. Multiply resulting matrix by \mathbf{R}_z such that resulting term at (2,1) is zero (select c'' and s'' accordingly)

Camera Matrix Decomposition: Computing the Intrinsics **K** and Rotation **R**

•
$$P = K[R \mid -RC] = [M \mid -MC]$$

2. Algebraic derivation:

• Givens rotations:
$$\mathbf{R}_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c \end{bmatrix} \mathbf{R}_{y} = \begin{bmatrix} c' & 0 & s' \\ 0 & 1 & 0 \\ -s' & 0 & c' \end{bmatrix} \mathbf{R}_{z} = \begin{bmatrix} c'' & -s'' & 0 \\ s'' & c'' & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
•
$$c = -\frac{m_{33}}{\sqrt{m_{32}^{2} + m_{33}^{2}}} s = \frac{m_{32}}{\sqrt{m_{32}^{2} + m_{33}^{2}}}$$

• Then,

•
$$K = MR_x R_y R_z$$

•
$$\mathbf{M} = \mathbf{K} \mathbf{R}_{z}^{\mathsf{T}} \mathbf{R}_{y}^{\mathsf{T}} \mathbf{R}_{x}^{\mathsf{T}} \Rightarrow \mathbf{R} = \mathbf{R}_{z}^{\mathsf{T}} \mathbf{R}_{y}^{\mathsf{T}} \mathbf{R}_{x}^{\mathsf{T}}$$

Camera Calibration

Geometric Solvers for Recovering the Projection Matrix

Camera Calibration with Geometric Solvers

- So far, minimisation of an algebraic error criterion
 - Advantage: linear solutions
 - Disadvantage: no explicit geometric meaning
- Refinement:
 - Nonlinear minimisation of a geometric error

Camera Calibration with Geometric Solvers

• Minimise objective function over **P**:

$$\begin{aligned} \min_{\mathbf{P}} \sum_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i})^{2} \\ &= \min_{\mathbf{P}} \sum_{i} d(\mathbf{x}_{i}, \mathbf{P} \mathbf{X}_{i})^{2} \\ &= \min_{\mathbf{P}} \sum_{i} \left(\frac{x_{i}}{w_{i}} - \frac{\mathbf{p}_{1}^{\mathsf{T}} \mathbf{X}_{i}}{\mathbf{p}_{3}^{\mathsf{T}} \mathbf{X}_{i}} \right)^{2} + \left(\frac{y_{i}}{w_{i}} - \frac{\mathbf{p}_{2}^{\mathsf{T}} \mathbf{X}_{i}}{\mathbf{p}_{3}^{\mathsf{T}} \mathbf{X}_{i}} \right)^{2} \\ \text{for } \mathbf{x}_{i} &= (x_{i}, y_{i}, w_{i})^{\mathsf{T}} \text{ and } \mathbf{P} = \begin{bmatrix} \mathbf{p}_{1}^{\mathsf{T}} \\ \mathbf{p}_{2}^{\mathsf{T}} \\ \mathbf{p}_{3}^{\mathsf{T}} \end{bmatrix} \end{aligned}$$

Nonlinear optimisation, so going to be slow

"Gold Standard" Algorithm for Camera Calibration

- 1. Compute an initial solution using the normalised DLT algorithm
- 2. Refine the normalised solution using iterative minimisation of a geometric error
 - Use a nonlinear solver, like Isquonlin in Matlab
- 3. Denormalise solution

Summary: DLT Camera Calibration

- Advantages:
 - Very simple to formulate and solve
 - Can recover K, R, C from P using RQ decomposition [Golub & VanLoan 96]
- Disadvantages:
 - Does not compute internal parameters explicitly
 - Sometimes involves more unknowns than true degrees of freedom
 - Need a separate camera matrix for each new view

Practical / Popular Camera Calibration Algorithms

Practical Camera Calibration

- 1. Load images into a calibration toolbox
- 2. Calibrate
- Example toolboxes:
 - C++: OpenCV
 - Matlab: Calibration toolbox by Jean-Yves Bouguet <u>http://www.vision.caltech.edu/bouguetj/calib_docl</u>

Multi-plane Calibration

Multi-plane Calibration: Zhang's Method

- Use several images of a planar target held at unknown poses [Zhang PAMI 99]
- 1. Compute plane homographies:

$$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} \sim \mathbf{K}[\mathbf{r}_1 \quad \mathbf{r}_2 \quad \mathbf{t}] \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} \sim \mathbf{H} \mathbf{X}$$

- 2. Solve for $\mathbf{K}^{-\mathsf{T}}\mathbf{K}^{-1}$ from \mathbf{H}_k 's
 - 1 plane if only *f* unknown
 - 2 planes if (f, u_c, v_c) unknown
 - 3+ planes for full **K**
- Code available on OpenCV

Camera Resectioning

Absolute Camera Pose

Overview

- Objective:
 - Given 2D–3D point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{X}_i\}$ & the camera intrinsics \mathbf{K} , estimate the position \mathbf{C} and orientation \mathbf{R} of the camera
- Synonyms:
 - Camera resectioning
 - Absolute camera pose estimation
 - Perspective-n-point problem

Motivation

- If we have an existing reconstruction and a calibrated camera, and we just want to know where our camera is right now
 - Offline: calibration, e.g., with the DLT algorithm
 - Online: absolute pose, relative pose, triangulation
 - Unless there is mechanical change, **K** will remain constant [why might it change?]
- But didn't we just work out how to recover R and C?
 - Recovering from the camera matrix involves estimating 11 DoFs
 - This is many more degrees-of-freedom than we need

Perspective-n-Point Problem

Perspective-n-Point Problem

- Degrees-of-freedom:
 - 6: 3 (translation) + 3 (rotation)
- Minimal solution:
 - 3 point correspondences
 - Perspective-3-point (P3P) problem

Perspective-n-Point Problem

- One solution
 - Haralick et al., IJCV 1994
- Variable elimination leads to a 4th order polynomial
 - 4 solutions
 - Use a fourth point correspondence to disambiguate

$$\begin{array}{lll} s_2^2 + s_3^2 - 2 s_2 s_3 \cos \alpha = a^2 \\ \\ s_1^2 + s_3^2 - 2 s_1 s_3 \cos \beta = b^2 & \text{Cosine rule} \\ \\ s_1^2 + s_2^2 - 2 s_1 s_2 \cos \gamma = c^2 \end{array}$$

Next Lecture

- Two-view geometry:
 - Homographies
 - Homography estimation
 - Epipolar geometry