

1

- **栈的存取规则**是"后进先出"(LIFO, Last In, First Out)。这意味着最后压入栈的元素将最先被弹出。
- **队列的存取规则**是"先进先出"(FIFO, First In, First Out)。这意味着最先进入队列的元素将最先被移出。

2

命题公式是一种逻辑表达式,包含命题变量和逻辑运算符(如与、或、非等),用于表达逻辑命题之间的关系。

两个命题公式等价是指它们在所有可能的真值组合下,结果都相同。判断两个命题公式是否等价的方法包括以下几种:

- 1. **真值表法**:通过构造两个公式的真值表,比较每个输入情况下的输出结果是否一致。如果真值表完全相同,则两个命题公式等价。
- 2. 逻辑推理法:通过逻辑推理、公式转换和化简,证明一个公式可以通过一系列逻辑等式变换成另一个公式。如果能够转换,则这两个公式等价。

3. C

4

A	В	С	ABC	$\overline{A}BC$	$AB\overline{C}$	F
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	1	0	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0

Α	В	С	ABC	$\overline{A}BC$	$AB\overline{C}$	F
1	1	0	0	0	1	1
1	1	1	1	0	0	1

5(a)
$$AB+\overline{A}B=(A+\overline{B})(\overline{A}+B)$$

A	В	AB	\overline{A}	$\overline{A}B$	$rac{AB+}{\overline{A}B}$	\overline{B}	$rac{A+}{\overline{B}}$	$\overline{A} + B$	$(A+\overline{B})(\overline{A}+\ B)$
0	0	0	1	0	0	1	1	1	1
0	1	0	1	1	1	0	0	1	1
1	0	0	0	0	0	1	1	0	0
1	1	1	0	0	1	0	1	1	1

5(b)
$$\overline{A}B+A\overline{B}=A\oplus B$$

Α	В	\overline{A}	\overline{B}	$\overline{A}B$	$A\overline{B}$	$\overline{A}B+A\overline{B}$	$A\oplus B$
0	0	1	1	0	0	0	0
0	1	1	0	1	0	1	1
1	0	0	1	0	1	1	1
1	1	0	0	0	0	0	0

6(a)
$$A+\overline{A}B=A+B$$

- 1. 左边的表达式是 $A + \overline{A}B$ 。
- 2. 使用分配律和吸收律来简化:
 - 根据**吸收律**,我们可以看出: $A + \overline{A} = 1$,所以:

$$A + \overline{A}B = A + B$$

3. 左右同时乘以(A+B)

因此, $A + \overline{A}B = A + B$ 成立。

6(b)
$$A(\overline{A}+B)=AB$$

证明:

- 左边的表达式是 $A(\overline{A} + B)$ 。
- 使用分配律,可以展开:

$$A(\overline{A} + B) = A \cdot \overline{A} + A \cdot B$$

・ 根据**对合律**, $A \cdot \overline{A} = 0$, 因此:

$$A \cdot \overline{A} + A \cdot B = 0 + A \cdot B = AB$$

因此, $A(\overline{A} + B) = AB$ 成立。

6(c)
$$(A+B)(B+C)(C+D) = AC + BC + BD$$

证明:

• 左边的表达式是 (A + B)(B + C)(C + D)。

• 首先,使用分配律展开前两个括号:

$$(A+B)(B+C) = AB + AC + BB + BC$$

由于 BB = B, 所以得到:

$$AB + AC + B + BC$$

• 接下来,继续分配 (AB + AC + B + BC) 与 (C + D):

$$(AB + AC + B + BC)(C + D)$$

使用分配律展开所有项:

$$= ABC + ABD + ACC + ACD + BC + BD$$

由于 ABC 和 ACC 中有重叠项, 所以最后简化为:

$$AC + BC + BD$$

因此, (A+B)(B+C)(C+D) = AC + BC + BD 成立。