О дискретных аппроксимациях непрерывных вероятностных распределений

Фрей Александр Ильич

Московский физико-технический институт (Государственный университет) Факультет Управления и Прикладной Математики Кафедра «Интеллектуальные Системы» (ВЦ РАН)

Научный руководитель: к.ф.-м.н. Воронцов Константин Вячеславович

18 июня 2008

Основные определения

- Выборка набор из L чисел: $X^L = \{x_1, x_2, \dots, x_L\} \in \mathbb{R}^L$
- $X^L = X_n^k \cup X_n^\ell$, где $n \in {1, \dots, N}; N = C_L^k$ всевозможные разбиения на наблюдаемую и скрытую подвыборки.
- Отклонение средних в двух подвыборках —

$$D(X^k, X^\ell) = \frac{1}{k} \sum_{x \in X^k} x - \frac{1}{\ell} \sum_{x \in X^\ell} x$$

• Вероятность больших уклонений —

$$Q(X^{L},\varepsilon) = \frac{1}{N} \sum_{n=1}^{N} \left[D(X_{n}^{k}, X_{n}^{\ell}) \geq \varepsilon \right],$$

Цели исследования

Цели исследования:

- получить оценку $Q(X^L, \varepsilon) \leq Q(Y^L, \varepsilon)$, где Y^L выборка из дискретного множества (например, $\{0, 1\}$).
- исследовать непрерывные распределения комбинаторными методами

Классические верхние оценки

Пусть X_1, \dots, X_n — независимые случайные величины. Обозначим $S_n = \frac{1}{n} \sum_{i=1}^n X_i, \ \sigma_n^2 = \frac{1}{n} \sum_{i=1}^n \mathsf{D} \left(X_i \right).$

• Неравенство Чебышева:

$$P(|S_n - E(S_n)| \ge \varepsilon) \le \frac{\sigma_n^2}{n\varepsilon^2}$$

• Неравенство Чебышева-Кантелли

$$\mathsf{P}(S_n - \mathsf{E}(S_n) \ge \varepsilon) \le \frac{\sigma_n^2}{\sigma_n^2 + n\varepsilon^2}$$

Неравенство Хёфдинга

$$\mathsf{P}(S_n - \mathsf{E}(S_n) \ge \varepsilon) \le e^{-2n\varepsilon^2}$$

• Неравенство Бернштейна

$$\mathsf{P}(S_n - \mathsf{E}(S_n) \ge \varepsilon) \le \exp\left(-\frac{2n\varepsilon^2}{4\sigma_n^2 + \varepsilon}\right)$$

Результаты в слабой вероятностной аксиоматики

ullet Для выборки $Y_m^L \in \{0,1\}^L$, состоящей из нулей и единиц, выполнена точная оценка

$$Q(Y_m^L,\varepsilon)=\sum_{t=s_0}^{s_1}h({}^{\ell\,t}_{L\,m}),$$

где m - число единиц в выборке, $s_0=\max(0,m-k)$, $s_1=\lfloor(m-\varepsilon k)\frac{\ell}{L}\rfloor$, $h({\ell t \atop Lm})=\frac{C_{L-m}^{\ell-t}C_m^t}{C_{\ell}^{\ell}}$.

Теорема (А. Бадзян)

При $k=\ell$ $\ orall X^L\in [0,1]^L, \ orall arepsilon>0$ $\ \exists m\in \{0,\dots,L\}$, такое что $Q(X^L,arepsilon)\leq Q(Y_m^L,arepsilon).$

$\mathsf{T}\mathsf{p}\mathsf{e}\mathsf{x}\mathsf{c}\mathsf{t}\mathsf{y}\mathsf{n}\mathsf{e}\mathsf{h}\mathsf{v}\mathsf{a}\mathsf{t}\mathsf{a}\mathsf{f}\mathsf{a}\mathsf{g}\mathsf{b}\mathsf{b}\mathsf{f}\mathsf{o}\mathsf{p}\mathsf{k}\mathsf{a}$

ullet Выборка Z^L из $\{0,q,1\}$, число значений $n_0+n_q+n_1=L$.

Теорема (Вероятность больших уклонений для выборки \mathcal{Z}^L)

$$Q(Z^{L},\varepsilon) = \frac{1}{N} \sum_{\ell_{q}=0}^{n_{q}} C_{n_{q}}^{\ell_{q}} \sum_{\ell_{1}=0}^{s_{1}} C_{L-n_{q}-n_{1}}^{\ell-\ell_{q}-\ell_{1}} C_{n_{1}}^{\ell_{1}}, \tag{1}$$

где
$$\mathit{s}_1 = \left\lfloor \frac{\ell(\mathit{q} \mathit{n}_q + \mathit{n}_1) - k\ell\varepsilon}{L} - \ell_q q \right\rfloor$$
 .

Метод моментов. Теорема адекватности

- Первые моменты: $\mu_1 = \sum x_i$, $\mu_2 = \sum x_i^2$, $\mu_3 = \sum x_i^3$.
- ullet Метод моментов: для выбора параметров $q,\; n_q,\; n_1$ приравняем первые три момента выборки X^L и Z^L

Теорема (Адекватности)

Решение уравнений метода моментов имеет вид

$$\begin{cases} q = \frac{\mu_2 - \mu_3}{\mu_1 - \mu_2} \\ n_q^* = \frac{(\mu_1 - \mu_2)^3}{(\mu_2 - \mu_3)(\mu_1 - 2\mu_2 + \mu_3)} \\ n_1^* = \frac{\mu_1 \mu_3 - \mu_2^2}{\mu_1 - 2\mu_2 + \mu_3} \end{cases}$$

и удовлетворяет естественным условиям

$$0 \le q \le 1, \ n_0^* \ge 0, \ n_q^* \ge 0, \ n_1^* \ge 0.$$

Тонкости округления

- Введем параметр r размер окрестности округления.
- Окрестность округления $B_r(n_0^*,n_q^*,n_1^*)$ все тройки неотрицательных целых чисел (n_0,n_q,n_1) , получаемые из (n_0^*,n_q^*,n_1^*) изменением каждой координаты не более чем на r, при условии $n_0+n_q+n_1=L$.

Теорема (О количестве точек в окрестности округления)

Пусть r является целым числом, и все параметры задачи (n_0^*, n_q^*, n_1^*) далеко (т.е. не менее чем на r) отстоят от граничных значений 0 и L и не являются целыми. Тогда размер окрестности простым образом выражается через ее радиус:

$$|B_r|=3r^2.$$

Контрпримеры

- Существуют контрпримеры, показывающие что даже при округлении по окрестности радиуса r=2 оценка не является верхней.
- Предлагается усреднить выражение $Q(Z^L, \varepsilon)$ по всем $(n_0, n_q, n_1) \in B_r(n_0^*, n_q^*, n_1^*).$

Численные результаты - сравнение оценок

Основные результаты и направления исследований

- Получены комбинаторные оценки для непрерывных распределений
- Получено явное выражение для вероятности больших уклонений трехступенчатой выборки Z^L
- Предложен метод моментов для вычисления параметров выборки и доказана его корректность
- Изучены тонкости округления, присущие данной задаче
- Вычислено количество точек, приближающих решение метода моментов

Направления дальнейших исследований:

- ullet Улучшение оценки $Q(X^L,arepsilon) \leq Q(Y^L_m,arepsilon)$ выбором числа m
- ullet Получение строгой верхней оценки $Q(X^L,arepsilon) \leq Q(Z^L,arepsilon)$
- Получение асимптотических результатов при больших L и оценка скорости сходимости