### Course handouts

## **Robots Trajectory Planning**

Jindong Tan
Electrical and Computer Engineering
Michigan Technological University
jitan@mtu.edu

#### distinguista.

## What is trajectory planning

- Path Profile
- Velocity Profile
- Acceleration Profile

#### Miletipus Rech

#### **Constraints**

- Initial Position
  - Position (given)
  - Velocity (given, normally zero)
  - Acceleration (given, normally zero)
- Final Position
  - Position (given)
  - Velocity (given, normally zero)
  - Acceleration (given, normally zero)



#### **Constraints**

- Intermediate position
  - set-down position (given)
  - set-down position (continuous with previous trajectory segment)
  - Velocity (continuous with previous trajectory segment)
  - Acceleration (continuous with previous trajectory segment)



#### **Constraints**

- Intermediate position
  - Lift-off position (given)
  - Lift-off position (continuous with previous trajectory segment)
  - Velocity (continuous with previous trajectory segment)
  - Acceleration (continuous with previous trajectory segment)

# **Trajectory Planning**

13-th order polynomial

$$a_{13}t^{13} + \dots + a_2t^2 + a_1t + a_0 = 0$$

4-3-4 trajectory

$$h_1(t) = a_{14}t^4 + a_{13}t^3 + a_{12}t^2 + a_{12}t + a_{10}$$
  
$$h_2(t) = a_{23}t^3 + a_{22}t^2 + a_{21}t + a_{20}$$

$$h_n(t) = a_{n4}t^4 + a_{n3}t^3 + a_{n2}t^2 + a_{n2}t + a_{n0}$$

3-5-3 trajectory

# The boundary conditions

- Initial position
- Initial velocityInitial acceleration
- Lift-off position

- Continuity in position at t<sub>1</sub>
  Continuity in velocity at t<sub>1</sub>
  Continuity in acceleration at t<sub>1</sub>
- Set-down position
- Continuity in position at  $t_2$
- Continuity in position at t<sub>2</sub>
   Continuity in velocity at t<sub>2</sub>
   Continuity in acceleration at t<sub>2</sub>
   Final position
   Final velocity
   Final acceleration

# **How to solve the parameters**

Handout in the class