	Class Test - 1 Date Date
	Anish Sachdwa Process
	Dr0/420/19C/15
(i (10	(d) None
(i)	(a) xlabel()
,	
iii)	(b) Matrix Laboratory
īV	(b) clear
v\	(b) h
(2)	Pgrogram For Linear Fit for given data?
·	
	% Filting a linear curve using polyfit
	J 1 30 J
	clc;
	clear;
	close all;
	1/0 Creating The discrete data X = [-10:20]
	X = [-10:20]
	y = x.^2;
	1/2 wing The polypit function to fit a Linear 1/2. where to the data
	1. arre to the data
	[theta,] = polyf;t(x, y, 1);
	1. Greating a Linear Function Using Points
	1. Ustamed
	Syms f(t);
	Syms f(t); XX = theta(1) xx t thata(2);
	1(t) = theta(1) *t + theta(2);

	Tage No.
	% Plotting the Function
	pl = folot(f):
	pl = fplot(f); title("Linear (urve Fitted To Data"); xlabel("x").
	xlabel ("x").
	ylabel ("Filted Curve; y'(x)");
	1/0 Plotting The Osiginal Discrete data
	hold on:
	p2 = plot(X,y '-o');
	p2 = plot(X, y '-o'); legend (Ep1, p2), Fitted (urve', 'Original) wha');
03)	Write a program for ODE?
	% Solving the Non-linear ODE for Hooke's Law
	clc;
	clear;
	dose all;
	1. (reating the function
	syms x(t);
	1. Declaring the mass and spring constant
	m = 1/16;
	K = 4;
	'/ No. 4.2 \ 1
	1. De claring the second order non-linear ODE

$D_{i} = di+f(X)$
$D_{y} = diff(x);$ ode = $m * diff(x, t, 2) + k * 2c == 0;$
7. Providing initial value conditions condition $1 = x(0) = = 0$; Condition $2 = Dy(0) = = 1$;
is we golve the equation and odd the initial
x(t) = dsolvelode, [condition 2, condition 2];
Jelot (x); title! 'object attached at End of Spring.
 title l'object attached at End of Spring Obeying Mooke's Law!); xlabel ("Time: t"); ylabel ("Possition of Object: "+ String (x));
 legend;
· · · · · · · · · · · · · · · · · · ·