

Analysis of Phase Jump Occurrence in IGS Station Data

Zijun Liu and Brian Breitsch Email: zili5742@colorado.edu

Introduction

I had a chance to work with graduate mentor for research project at the spring semester of 2019. It was such a great opportunity to practice with solving practical problems with everything that I have learned.

After discussed with graduate mentor, we decided to focus on what factors that casuse TEC line jump points The reason that I chose this topic, because it's basic for aerospace area and it can be used for Machine Learning to collect the data and analyze why it causes these jump points. About what is TEC is Total Electror Context. Why we want to do this, because the global positional system is a wide applied tool and it investigates the earth's ionosphere. That's why we want to do this.

As for the Figure 1, this is the TEC line jump point picture from Sep 1st, 2018 in G02 satellite. As for x-axis is the Time, y-axis is the TEC. As seen from the Figure, the orange scattered point is the TEC line jump point at the end of the the line.

Research Objectives

My research topic is Analysis of Phase Jump Occurrence in IGS Station Data. I'm going to focus on factors about why jump point occurred. As seen from Figure 1, I used the difference between Pseudorange for dual

Equations

Method

For this research, there are four subsections for this research.
First, I called it as Plot Jump Point.
The first part is about plot the TEC line and check what is be the reasons cause it. I use the difference between dual frequency signal from satellite receiver and use the equation above to plot it. Here is the

example of the plot. The left one is satellite G01 from Sep 3rd, 2018 (see Figure 2). The right one satellite G05 from Sep 3rd, 2018 (see Figure 3).

The second part is about auto download the data and plot the data. In this research project, I have to Inc second part is one auto download are dart and pot the data. In this research project, I nave to check many data for the similarity. For example, I go through the data from satellite GO2 about 1 or 2 year's data. It will take long if I plot each data manually, so that's why we work on how to auto download the data from the website to get the observation data and how to auto plot it. After that, I will automatically save it in my laptop as picture. And then, I will check for difference and similarity.

The next step is that I have to check how many jump point occurring at each satellite in whole year. I called this step as **count for How many Jump point**. The same problem is that I have to check the data as much as possible. It could automatically do the calculation on what I will work on it. I use threshold to compare with each data and then export it as .csv file. It's very important because we have to use these data to find out the Azimuth and elevation to make sky plot. Here is the example about how the table in

A	В	
Name_of_Satellite_Stati	o Number_of_Jump_Point	
20170821_G10	7	
20170821_G13	10	
20170821_G15	7	
20170821_G16	6	
20170821_G18	5	
20170821_G20	2	
20170821_G21	1	
20170821_G24	10	
20170821_G27	11	
20170821_G29	2	
20170821_G32	1	
20170821_G08	8	
20170821_G14	15	
20170821_G11	18	
20170821_G31	2	
20170821_G01	15	
20170821_G25	10	
20170821_G22	3	
20170821_G12	3	
20170821_G03	8	
20170821_G26	5	
20170821_G23	0	
20170821_G09	5	

(see Figure 4)

In the third step, I'm going to use Azimuth and Elevation to get the sky Plot. I called it as **Sky Plot by Azimuth and Elevation**. I'm going to get the Azimuth and Elevation for each station and export it in the

A	8	c	D		
date_str	station_id	satellite_id	azimuth	elevation	
20170801	nist	601	-82.11344601	40.31870634	(see Figure 5)
20170601	nist	G01	-130.5054476	15.09977074	
20170801	nist	G01	-132.0046807	13.4566465	
20170801	nist	G01	-132.4480758	12.96539411	
20170801		G01	-132.7421779		
20170801	nist	G01	-133.0351353	12.31192551	
20170801	nist	601	-133.1811982	12.14885878	
20170601	nist	601	-133.6177884	11.66044162	
20170801	nist	G01	-134.6278479	10.52585338	
20170801	nist	G01	-135.0573582	10.04200552	
20170801	nist	G01	-135.7692146	9.239154641	
20170801	nist	G01	-135.9110309	9.079150033	
20170801		601	-136.6176024	8.282141334	
20170801	nist	601	37.30568197	6.174084087	
20170601	nist	G03	-54.52626504	7.077193841	
20170801	nist	G03	-54.00587228	8.141795886	
20170801	nist	G03	-53.58448261	9.035815362	
20170801		G03	-53.0138667	10.29793155	
20170801		G03	-52.69821366	11.02464144	
20170801	nist	603	-52.23937367	12.12220806	
20170601		603	-51.65583811	13.59961487	
20170801	nist	G03	-51.03968045	15.28072659	
20170801	nist	G03	-49.18531427	21.61365644	
20170801		G03	-49.05151087	22.20212638	
20170801		G03	-48.92403879	22.79263748	
20170801		603	-169.9708051	5.614171974	
20170801	nist	603	-170.3331587	4.891932846	
20170601	nist	603	33.31032092	5.750732988	
20170801		G05	62.6161067	5.088237382	
20170801		G05	-48.62137304	9.095059696	
20170801	nist	G05	-53.6371151	9.398497836	

And then, I'm going to use it to make sky plot to show the jump point in the sky plot. It can directly show where jump occurrence in the universe (see Figure 6). This figure is for station yell, which located on Yellowknife city in Canada, for 2017 whole year. We can see the jump point occur in the similarity on the

