Modern Analysis 1 Lecture 3

Jim Liu

August 31, 2023

Contents

1	Minimal	1
2	Least vs Minimal	2
3	Compatibility	2
4	Negative Elements	3
5	Disjoint Union	4
1	Minimal	
	• \mathbb{D} B is an ordered set, say $\alpha \in B$ is minimal iff $\forall x \in B, (x \leq \alpha \Rightarrow x \alpha)$.	v =
	• Claim: Let B be the set of all upper bds for $A\subseteq S$. For $\alpha\in B,$ following are equivalent.	the
	1. α is minimal; 2. $\forall x (x < \alpha \Rightarrow x \notin B)$ This is Rudins $\mathbb D$ of least UB.	
	• Proof of the Claim: We want to show that $x < \alpha \Rightarrow x \notin B$ is equivalent to α is minimise. $x < \alpha \Rightarrow x \notin B \equiv x \in B \Rightarrow (x \le \alpha \Rightarrow x = \alpha)$ From right to left: $x \in B \Rightarrow (x \le \alpha \Rightarrow x = \alpha) \equiv (x \in B \land x \le \alpha) \Rightarrow x = \alpha$ $\equiv (x \le \alpha \land x \in B) \Rightarrow x = \alpha$ $\equiv x \le \alpha \Rightarrow (x \in B \Rightarrow x = \alpha)$ $\equiv x \le \alpha \Rightarrow (x \ne \alpha \Rightarrow x \notin B)$	nal,

$$\equiv x \le \alpha \bigwedge x \ne \alpha \Rightarrow x \notin B$$
$$\equiv x < \alpha \Rightarrow x \notin B$$

2 Least vs Minimal

- THM: Least \Rightarrow Minimal. In a total ordered set, Least \Leftrightarrow Minimal.
 - M For partially ordered set S, if $s \in S$ is the least element, then it is also a minimal element. In a total order set S, if $s \in S$ is a minimal element, then it is also a least element and vice versa.
 - \mathbb{M} For a poset, if there exists a least element, then it is unique. Set $\{0,0,1\}$ is not a counterexample becaues according to the \mathbb{D} of set, "In mathematics, a set is defined as a collection of **distinct**, well-defined objects forming a group.", $\{0,0,1\} \equiv \{0,1\}$. Hence, the least element is still unique!
 - -M in a poset, minimal element may not unique. For example:

In this case, if we define set S s.t. S contains all sets above A. Then B1 and B2 are the minimal elements of set S. Here, $A \leq B = A \subseteq B$.

3 Compatibility

- $\mathbb D$ Let F be a field. The total strict order > on F is compatible iff $\forall a,b,c\in F,$
 - 1. $a > b, c \Rightarrow a + c > b + c$
 - 2. $a > 0, b > 0 \Rightarrow ab > 0$
- Remarks

1.
$$a > 0 \Rightarrow -a < 0$$

Proof:

$$a+(-a)>0+(-a)\Rightarrow 0>-a\equiv -a<0$$

$$2. \ a \neq 0 \Rightarrow a^2 > 0$$

Proof:

$$a \neq 0 \Rightarrow a > 0 \bigvee a < 0$$

– case 1:
$$a > 0$$
. Replace b = a of the 2 in \mathbb{D} , i.e. $a > 0, a > 0 \Rightarrow aa > 0 \equiv a^2 > 0$

- case 2:
$$a < 0$$
. It implies that $-a > 0$. Again, by replacing $b = -a$ of the 2 in \mathbb{D} , then 2 becomes $-a > 0, -a > 0 \Rightarrow (-a)(-a) > 0$.

But,
$$(-a)(-a) = a \cdot a$$

Proof this "But":

* Option 1:

First, a(-a) + (-a)(-a) = (a + (-a))(-a) = 0(-a) = 0. This implies that (-a)(-a) is the additive inverse of a(-a).

Second, $a(-a) + aa = a(-a + a) = a \cdot 0 = 0 \Rightarrow a \cdot a$ is also the additive inverse of a(-a).

But the additive inverse is unique.

Thus,
$$(-a)(-a) = a \cdot a = a^2$$

* Option 2:

First, prove (-1)a = -a.

 \cdot \mathbb{E} Prove the above statement.

Then,
$$(-a)(-a) = (-1)a(-1)a = a^2$$
.

4 Negative Elements

- \mathbb{D} $P = \{x \in F | x > 0\}$ the positive elements of F. Then, $-P = \{-x | x \in P\} = \{x \in F | x < 0\}.$
- Claim: $F = P \cup \{0\} \cup -P$. In other words, F can be written as a disjoint union and P, the set of all positive elements of F, is closed under + and \cdot .

Proof:

1. P is closed under addition, i.e. $a > 0, b > 0 \Rightarrow a + b > 0$

$$a > 0 \Rightarrow a + b > 0 + b$$

and
$$b > 0 \Rightarrow 0 + b > 0 + 0$$

$$\Rightarrow a + b > 0$$

Thus, P is closed under addition.

- 2. P is closed under multiplication. According to the second property of the \mathbb{D} of compatibility, it is closed.
- THM: (No Order) Let $F = P \cup \{0\} \cup -P$ be a disjoint union in which P is closed under "+" and "·".

Then, the rule, $a > b := a - b \in P$, defines a compatible total (strict) order on F.

- Proof: We must show > satisfies trichotomy, transitivity, and the compatibility. Note: trichotomy + transitivity \equiv totality!
 - 1. Trichotomy:

let
$$a, b \in F$$
, then $a - b \in P \cup \{0\} \cup -P$

$$a - b \in P \Rightarrow a > b$$

$$a - b \in \{0\} \Rightarrow a = b$$

$$a - b \in -P \Rightarrow a < b$$

Thus, trichotomy is satisfied.

2. Transitivity:

$$a > b, b > c \Rightarrow a - b, b - c \in P$$

Then, the summation $(a - b) + (b - c) = a - c \in P$ since P is closed under addition. Thus $a - c \in P \Rightarrow a > c$, i.e. transitivity is satisfied.

3. Compatibility:

Coming next lecture!

5 Disjoint Union

- \mathbb{D} Formally, let $\{A_i : i \in I\}$ be a family of sets indexed by I. The **disjoint union** is of this family is the set $\bigsqcup_{i \in I} A_i = \bigcup_{i \in I} \{(x,i) : x \in A_i\}$.
- M In this disjoint set, all elements have the format as (x, i). Therefore, this union is generated to be disjoint since even if A_i and A_j are not disjoint, the index element will make the resultant element disjoint.