Analysis

1. Review of the Brin-Page model for Page-Ranking (distribution).

Let $A \ge 0$ and $B \ge 0$ be of the same size and column stochastic. Let $C(\beta) = \beta A + (1 - \beta)B \ge 0$ with the Bernoulli probability $\beta \in (0, 1)$.

(a) [M/T/F]

Matrix $C(\beta)$ is column stochastic, with $\rho(C) = 1$. If both A and B are irreducible, then $C(\beta)$ is irreducible; and vice versa.

Let $B = be^{T}$ with b > 0 and $e^{T}b = 1$. Then, B is irreducible, so is $C(\beta)$.

(b) Let B be specified as in the previous problem. Let $x_p = x_p(b, \beta)$ be the Perron-Frobeneous vector of $C(\beta)$. Which one of the following is a correct description or representation of x_p , and make a correction if incorrect:

$$C(\beta)x_p = x_p \tag{1}$$

$$x_p = \lim_{k \to \infty} C^k(\beta) x_0, \quad x_0 > 0, \quad e^{\mathrm{T}} x_0 = 1.$$
 (2)

$$(I - \beta A)x_p = (1 - \beta)b \tag{3}$$

$$x_p = (1 - \beta) \sum_{k=1}^{\infty} \beta^k A^k b \tag{4}$$

- (c) Find a way to prefix the distribution x_p .
- (d) Describe a simple iterative procedure in a finite number of steps to get an approximate \hat{x}_p to x_p .
- (e) Provided a solution \hat{x}_p , suggest at least three criteria to assess the expected properties and accuracy.
- 2. [M/T/F]

Use of the Neumann expansion for determining pair-wise reachability

$$R_n = I + A + A^2 + \dots + A^{n-1} \tag{5}$$

That is, i can be reached by j if and only if $R_n(i,j) > 0$.

Let $\alpha > 0$ be a scalar so that $\alpha ||A|| < 1$. Then $R(\alpha) = \sum_{k=0}^{\infty} (\alpha A)^k$ is well defined as the series converges. Then $R(\alpha)(i,j) > 0$ if and only if $R_n(i,j) > 0$.

Furthermore, $R(\alpha)$ can be computed as the inverse of $I - \alpha A$.

Remark: the inverse can be obtained by an LU factorization in $O(n^3)$ operations, the same order as one matrix-matrix product.

3. Provide a brief summary within 300 words on how to use a random-walk approach for node-to-vertex encoding and embedding, discussion with teammates, classmates and ChatGPT is encouraged.

4. Review: what we know of the symmetric eigenvalue problem (as the base for graph spectral analysis)

Let A be an $n \times n$ real-valued symmetric matrix, $A^{H} = A^{T} = A$. Let $Ax_{j} = \lambda_{j}x_{j}$ be the eigen-pairs, $\lambda_{j} \in \mathbb{C}$ and $0 \neq x_{j} \in \mathbb{C}^{n \times 1}$.

- (a) [M/T/F] $\lambda_j \in \mathbb{R}$ because $x_j H A x_j = \lambda_j x_j^H x_j$ One can index the eigenvalues in non-descending order, $\lambda_{\min} = \lambda_1 \leq \lambda_j \leq \lambda_n = \lambda_{\max}$.
- (b) [M/T/F] $Areal(x_j) = \lambda_j real(x_j)$ and $Aimag(x_j) = \lambda_j imag(x_j)$ therefore, the eigenvectors of A can be made real-valued.
- (c) Prove or disprove the following statement: If $\lambda_i \neq \lambda_j$, then $x_i^T x_j = 0$.
- (d) [M/T/F] If the dimension of the invariant subspace of A associated with λ_j is greater than 1. Assume Q_j be the set of orthonormal vectors spanning the subspace, then $AQ_j = \lambda_j Q_j$.
- (e) Optional. [M/T/F] For every eigenvalue λ_j , its geometric multiplicity is equal to its algebraic multiplicity. This implies that A has a complete eigenvector system.
- (f) [M/T/F] An EVD of A can be expressed as follows, $A = Q\Lambda Q^{T}$ where Λ diagonal and real-valued and Q is orthogonal.
- (g) [M/T/F] $||A||_F^2 = \sum_{ij} A^2(i,j) = \sum_j \lambda_j^2$ and $||A||_2 = \max\{ |\lambda_{\max}|, |\lambda_{\min}| \}$, Consequently, $||A||_2 = \lambda_{\max}$ if and only if A is semi-positive definite.
- (h) [M/T/F] Assume in addition that $A \ge 0$ elementwise, with d = Ae > 0. Then the random-walk matrix $A_{\mathbf{w}} = AD^{-1}$ is symmetric if and only of d is constant. Nonetheless, $\lambda_i(A_w) \in \mathbb{R}$.
- 5. The normalized graph Laplacians to edge weighted graphs: spectral structures & applications

Let G(V, E, E) be a graph with non-negative edge weights, where W is the weight function, $W: E \to \mathbb{R}_+$. Let A be the adjacency matrix (with edge weights). Let B be the incidence matrix without edge weights. Define

$$B_w \triangleq BD_e^{1/2}, \qquad L_w \triangleq B_w B_w^{\mathrm{T}}, \quad D_e = \mathrm{diag}(W).$$
 (6)

All the Laplacians, above or below, are defined as the gram product of a weighted incidence matrix.

- (a) [M/T/F] For any x, $x^{T}L_{w}x \geq 0$, i.e., L_{w} is semi-positive definite, and $L_{w}e = 0$, i.e., L_{w} has zero eigenvalue(s), not positive definite.
- (b) [M/T/F] $L_w = D - A$, where A is the weighted adjacency matrix and D = diag(Ae).
- (c) [M/T/F]Graph G is connected if and only if the Fiedler value is positive. Consequently, the Fiedler value of L (unweighted) is nonzero if and only if the Fiedler value of L_w is nonzero).

- (d) Let $B_w = BD_e^{1/2}$. Describe the vertex scaling matrix D_v so that $\widehat{B}_w = D_v^{-1/2}BD_e^{1/2}$ is normalized in rows.
- (e) [M/T/F]Let $\hat{L}_w = \hat{B}_w \hat{B}_w^T$. Then, $\hat{L}_w = I - \hat{A}$, where $\hat{A} = D_v^{-1/2} A D_v^{-1/2}$. Furthermore, $\lambda_j(\hat{A})$ is real and within [-1.1],
- (f) [M/T/F]Let B_+ be the incidence matrix with $B(:,\ell) = e_i + e_j$ for $\ell = (i,j) \in E$. Let $B_{+,w} = BD_e^{1/2}$. Then, $\widehat{B}_{+,w} = D_v^{-1/2}BD_e^{1/2}$ is normalized in rows by the same vertex scaling. Then, $\widehat{L}_{+,w} = I + \widehat{A}$, where $\widehat{L}_{+,w}$ is the Laplacian as the gram product of $\widehat{B}_{+,w}$.
- (g) Give a brief interpretation of element $\hat{L}_{+}(i,j)$ in terms of neighborhood similarities.
- (h) Verify (in brief expressions) the following equalities and inequalities

$$\lambda_{j}(\widehat{A}) \in [-1.1], \quad j = 1 : n$$

$$\widehat{A} = Q \widehat{\Lambda} Q^{\mathrm{T}}, \quad \Lambda = \operatorname{diag}(\lambda_{j}), \quad Q^{\mathrm{T}}Q = I_{n}$$

$$\widehat{L}_{w} = Q(I - \widehat{\Lambda})Q^{\mathrm{T}}$$

$$\widehat{L}_{+,w} = Q(I + \widehat{\Lambda})Q^{\mathrm{T}}$$
(7)

(i) [M/T/F]

Let G be connected. Let d=Ae be the degree vector. Then, $d^{1/2}$ is the null eigenvector of \widehat{L}_w and the Perron vector of $\widehat{L}_{+,w}$. The Fiedler vector of \widehat{L} is the eigenvector associated with the second largest eigenvalue of $\widehat{L}_{+,w}$. In any spectral approximation of graph G to preserve the neighborhood similarity, it is necessary to preserve at least the two principle eigenvectors of $\widehat{L}_{+,w}$.

6. In data-driven, evidence-based research, a frequent issue is to identify a random phenomenon and/or the deviation from it. List at least three types of random graphs.

The following are to initiate more of mental and analytical exercise for class projects.

- 7. Optional. Describe briefly the (matching) model used in **isoMap** for mapping graph nodes to vectors in a metric space.
- 8. Optional. Describe briefly the (matching) model used in t-SNE for a point cloud in a high-dimensional space to a point cloud in 2D/3D space. Then use this model to construct a graph.
- 9. Optional. Describe briefly approach extending the analysis of static graphs to time-varying graphs.
- 10. Optional. Describe briefly how to measure the similarity between two neighborhood in a digraph and how to extend the Laplacian spectral analysis of an undirected graph to a digraph.