Machine Learning

Part I

Bases du Machine Learning

1 Notations

- \mathcal{X} : espace des entrées.
- \mathcal{Y} : espace des sorties (exemples : $\{-1,1\}, \mathbb{R}$).
- $S = \{(x_i, y_i)\}_{1 \le i \le m}$.
- $h: \mathcal{X} \longrightarrow \mathcal{Y}$: modèle de prédiction.
- \mathcal{H} : ensemble des modèles de prédiction.
- $L: \mathcal{H} \times (\mathcal{X} \times \mathcal{Y}) \longrightarrow \mathbb{R}$: fonction de perte.
- $R_D: \mathcal{H} \longrightarrow \mathbb{R}$ risque empirique $h \longmapsto \mathbb{E}_{(x,y)\sim D}[L(h(x),y)]$

Exemples:

- $L(h(x), y) = \mathbb{1}_{h(x) \neq y}, R_D(h) = \mathbb{P}_{(x,y) \sim D}[h(x) \neq y].$
- $L(h(x), y) = (h(x) y)^2$, $R_D(h) = \mathbb{E}_{(x,y) \sim D}[(h(x) y)^2]$.

$$h_S = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \hat{R}_S(h)$$
 avec $\hat{R}_S(h)$ estimateur de $R_D(h)$ (1)

Comment analyser $R_D(\hat{h}_S)$?

2 Courbes ROC

- h_S : seuil score.
- score : $\mathcal{X} \longrightarrow \mathbb{R}$.
- seuil: $\mathbb{R} \longrightarrow \mathcal{Y}$ $x \longmapsto \begin{cases} 1 & \text{si } x < \mu \\ -1 & \text{si } x \ge \mu \end{cases}$

Félix de Brandois

Exemple:

X	x_1	x_2	x_3	x_4	x_5	x_6
У	1	-1	1	1	-1	-1
score(x)	0.99	0.95	0.51	0.45	0.10	0.01

Définition - Sensibilité et spécificité

On pose : $\mathcal{T}^+ = \{(x_i, y_i) \in S \text{ tels que } y_i = 1\}$ et : $\mathcal{T}^- = \{(x_i, y_i) \in S \text{ tels que } y_i = -1\}$

Sensibilité : $\frac{1}{|\mathcal{T}^+|} \sum_{(x_i, y_i) \in \mathcal{T}^+} \mathbb{1}_{h_S(x_i) = 1}$ Spécificité : $\frac{1}{|\mathcal{T}^-|} \sum_{(x_i, y_i) \in \mathcal{T}^-} \mathbb{1}_{h_S(x_i) = -1}$

Remarque:

• Sensibilité : taux de vrais positifs.

• Spécificité : taux de vrais négatifs.

Remarque:

Anti-spécificité (ou taux de faux positifs) : $\frac{1}{|\mathcal{T}^-|} \sum_{(x_i,y_i) \in \mathcal{T}^-} \mathbbm{1}_{h_S(x_i)=1}$

Exemple:

μ	> 0.99]0.95, 0.99]]0.51, 0.95]]0.45, 0.51]]0.10, 0.45]]0.01, 0.10]
Sensibilité	0	1/3	1/3	2/3	1	1
Anti-spécificité	0	0	1/3	1/3	1/3	2/3

Aire sous la courbe :

- $AUC_{classifieur\ parfait} = 1$.
- $AUC_{classifieur\ al\acute{e}atoire} = 0.5$.
- $AUC_{h_S} = 7/9$.

Félix de Brandois