Survey of DNN Hardware

MICRO Tutorial (2016)

Website: http://eyeriss.mit.edu/tutorial.html

CPUs Are Targeting Deep Learning

Intel Knights Landing (2016)

- 7 TFLOPS FP32
- 16GB MCDRAM

 400 GB/s
- 245W TDP
- 29 GFLOPS/W (FP32)
- 14nm process

Knights Mill: next gen Xeon Phi "optimized for deep learning"

Intel announced the addition of new vector instructions for deep learning (AVX512-4VNNIW and AVX512-4FMAPS), October 2016

GPUs Are Targeting Deep Learning

Nvidia PASCAL GP100 (2016)

- 10/20 TFLOPS FP32/FP16
- 16GB HBM 750 GB/s
- 300W TDP
- 67 GFLOPS/W (FP16)
- 16nm process
- 160GB/s NV Link

Source: Nvidia

Systems for Deep Learning

Nvidia DGX-1 (2016)

- 170 TFLOPS
- 8× Tesla P100, Dual Xeon
- NVLink Hybrid Cube Mesh
- Optimized DL Software
- 7 TB SSD Cache
- Dual 10GbE, Quad IB 100Gb
- 3RU 3200W

Source: Nvidia

Cloud Systems for Deep Learning

Facebook's Deep Learning Machine

- Open Rack Compliant
- Powered by 8 Tesla M40 GPUs
- 2x Faster Training for Faster Deployment
- 2x Larger Networks for Higher Accuracy

SOCs for Deep Learning Inference

Nvidia Tegra - Parker

- GPU: 1.5 TeraFLOPS FP16
- 4GB LPDDR4 @ 25.6 GB/s
- 15 W TDP
 (1W idle, <10W typical)</p>
- 100 GFLOPS/W (FP16)
- 16nm process

Xavier: next gen Tegra to be an "Al supercomputer"

Source: Nvidia

Mobile SOCs for Deep Learning

Samsung Exynos (ARM Mali)

Exynos 8 Octa 8890

- GPU: 0.26 TFLOPS
- LPDDR4 @ 28.7 GB/s
- 14nm process

FPGAs for Deep Learning

Intel/Altera Stratix 10

- 10 TFLOPS FP32
- HBM2 integrated
- Up to 1 GHz
- 14nm process
- 80 GFLOPS/W

Xilinx Virtex UltraSCALE+

- DSP: up to 21.2 TMACS
- DSP: up to 890 MHz
- Up to 500Mb On-Chip Memory
- 16nm process

Kernel Computation

Fully-Connected (FC) Layer

- Matrix–Vector Multiply:
 - Multiply all inputs in all channels by a weight and sum

Fully-Connected (FC) Layer

Batching (N) turns operation into a Matrix-Matrix multiply

Fully-Connected (FC) Layer

- Implementation: Matrix Multiplication (GEMM)
 - CPU: OpenBLAS, Intel MKL, etc
 - GPU: cuBLAS, cuDNN, etc
- Optimized by tiling to storage hierarchy

Convert to matrix mult. using the Toeplitz Matrix

Convert to matrix mult. using the Toeplitz Matrix

Data is repeated

Multiple Channels and Filters

Multiple Channels and Filters

Computational Transforms

Computation Transformations

- Goal: Bitwise same result, but reduce number of operations
- Focuses mostly on compute

Gauss's Multiplication Algorithm

$$(a+bi)(c+di)=(ac-bd)+(bc+ad)i.$$
4 multiplications + 3 additions

$$k_1 = c \cdot (a + b)$$

$$k_2 = a \cdot (d - c)$$

$$k_3 = b \cdot (c + d)$$

Real part = $k_1 - k_3$

Imaginary part = $k_1 + k_2$.

3 multiplications + 5 additions

Strassen

8 multiplications + 4 additions

$$\begin{array}{lll} P1 = a(f-h) & P5 = (a+d)(e+h) \\ P2 = (a+b)h & P6 = (b-d)(g+h) \\ P3 = (c+d)e & P7 = (a-c)(e+f) \end{array} \quad AB = \begin{bmatrix} & & & & & \\ & P5 + P4 - P2 + P6 & & \\ & P1 + P2 & & \\ & P3 + P4 & & P1 + P5 - P3 - P7 \end{bmatrix}$$

7 multiplications + 18 additions

7 multiplications + 13 additions (for constant B matrix – weights)

Strassen

- Reduce the complexity of matrix multiplication from Θ(N³) to Θ(N².807) by reducing multiplications
- Comes at the price of reduced numerical stability and requires significantly more memory

Winograd 1D - F(2,3)

- Targeting convolutions instead of matrix multiply
- Notation: F(size of output, filter size)

$$F(2,3) = egin{bmatrix} d_0 & d_1 & d_2 \ d_1 & d_2 & d_3 \end{bmatrix} egin{bmatrix} g_0 \ g_1 \ g_2 \end{bmatrix}$$

6 multiplications + 4 additions

$$m_1 = (d_0 - d_2)g_0 \qquad m_2 = (d_1 + d_2) rac{g_0 + g_1 + g_2}{2} \ m_4 = (d_1 - d_3)g_2 \qquad m_3 = (d_2 - d_1) rac{g_0 - g_1 + g_2}{2}$$

4 multiplications + 12 additions + 2 shifts

4 multiplications + 8 additions (for constant weights)

Winograd 2D - F(2x2, 3x3)

1D Winograd is nested to make 2D Winograd

Filter

 g_{01}

g₁₁

 g_{21}

 g_{02}

g₁₂

 g_{22}

 g_{00}

 g_{10}

 g_{20}

*

Input Fmap

d ₀₀	d ₀₁	d ₀₂	d ₀₃
d ₁₀	d ₁₁	d ₁₂	d ₁₃
d ₂₀	d ₂₁	d ₂₂	d ₂₃
d ₃₀	d ₃₁	d ₃₂	d ₃₃

Output Fmap

y₀₀ y₀₁ y₁₀ y₁₁

Original: 36 multiplications

Winograd: 16 multiplications → 2.25 times reduction

Winograd Halos

 Winograd works on a small region of output at a time, and therefore uses inputs repeatedly

Filter

9₀₀ 9₀₁ 9₀₂

9₁₀ 9₁₁ 9₁₂

9₂₀ 9₂₁ 9₂₂

Output Fmap

y ₀₀	y ₀₁	y ₀₂	y ₀₃	
y ₁₀	y ₁₁	y ₁₂	y ₁₂	

Winograd Performance Varies

Optimal convolution algorithm depends on convolution layer dimensions

Winograd speedup over GEMM-based convolution (VGG-E layers, N=1)

Meta-parameters (data layouts, texture memory) afford higher performance

Using texture memory for convolutions: 13% inference speedup (GoogLeNet, batch size 1)

Winograd Summary

Winograd is an optimized computation for convolutions

- It can significantly reduce multiplies
 - For example, for 3x3 filter by 2.5X
- But, each filter size is a different computation.

Winograd as a Transform

$$B^{T} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

$$G = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & -1 \end{bmatrix}$$

$$filter \quad g = \begin{bmatrix} g_{0} & g_{1} & g_{2} \end{bmatrix}^{T}$$

$$input \quad d = \begin{bmatrix} d_{0} & d_{1} & d_{2} & d_{3} \end{bmatrix}^{T}$$

GgG^T can be precomputed

FFT Flow

FFT Overview

 Convert filter and input to frequency domain to make convolution a simple multiply then convert back to time domain.

 Convert direct convolution O(N_o²N_f²) computation to O(N_o²log₂N_o)

 So note that computational benefit of FFT decreases with decreasing size of filter

FFT Costs

- Input and Filter matrices are '0-completed',
 - i.e., expanded to size E+R-1 x F+S-1
- Frequency domain matrices are same dimensions as input, but complex.
- FFT often reduces computation, but requires much more memory space and bandwidth

Optimization opportunities

- FFT of real matrix is symmetric allowing one to save ½ the computes
- Filters can be pre-computed and stored, but convolutional filter in frequency domain is much larger than in time domain
- Can reuse frequency domain version of input for creating different output channels to avoid FFT re-computations

cuDNN: Speed up with Transformations

60x Faster Training in 3 Years

AlexNet training throughput on:

CPU: 1x E5-2680v3 12 Core 2.5GHz. 128GB System Memory, Ubuntu 14.04

M40 bar: 8x M40 GPUs in a node, P100: 8x P100 NVLink-enabled

GPU/CPU Benchmarking

- Industry performance website
- https://github.com/jcjohnson/cnn-benchmarks

 Profile layer by layer (Dense Matrix Multiplication, Convolutions, Recurrent Layer, All-Reduce)

GPU/CPU Benchmarking

- Minibatch = 16
- Image size 224x224
- cuDNN 5.0 or 5.1
- Torch

Speed (ms)

Platform	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50
Pascal Titan X (F+B)	14.56	128.62	39.14	103.58
Pascal Titan X (F)	5.04	41.59	11.94	35.03
GTX 1080 (F)	7.00	59.37	16.08	50.64
Maxwell Titan X	7.09	62.30	19.27	55.75
Dual Xeon E5-2630 v3	n/a	3101.76	n/a	2477.61

DeepBench

- Profile layer by layer
 - Dense Matrix Multiplication, Convolutions,
 Recurrent Layer, All-Reduce (communication)

3.2. Convolution Results

Input Size			Padding (h, w)		Application		Fwd TeraFLOPS	Processor
W = 700, H =	-	32	0, 0	2, 2	Speech	2.98	6.63	TitanX
161, C = 1, N = 32	S = 20				Recognition			Pascal
W = 54, H =		64	1, 1	1, 1	Face	0.63	10.55	TitanX
54, C = 64, N = 8	S = 3				Recognition			Pascal
W = 224, H =		64	1, 1	1, 1	Computer	3.99	3.6	TitanX
224, C = 3, N = 16	S = 3				Vision			Pascal
W = 7, H = 7,	-	512	1, 1	1, 1	Computer	2.93	5.88	TitanX
C = 512, N = 16	S = 3				Vision			Pascal
W = 28, H =		32	2, 2	1, 1	Computer	1.57	6.59	TitanX
28, C = 192, N = 16	S = 5				Vision			Pascal

