I Restitution du cours

- 1 Énoncer le théorème de comparaison par équivalents pour les séries à termes positifs ainsi que le développement limité à l'ordre 4 de $\frac{1}{1+x}$ et $\ln(1+x)$ avec le domaine de validité.
- 2 Énoncer le théorème de comparaison par inégalités pour les séries à termes positifs et donner le développement limité à l'ordre 4 de e^x et $\cos(x)$ avec le domaine de validité.
- 3 Donner la définition de la somme partielle et du reste d'ordre n d'une série ainsi que la nature des séries de Riemann en distinguant les cas.

II Questions de cours

- 1 Montrer que si une série est convergente, alors ses sommes partielles vérifient : $\lim_{n \to +\infty} (S_{2n} S_n) = 0$. Dans le cas de la série harmonique, montrer que $\lim_{n \to +\infty} (S_{2n} S_n) \ge \frac{1}{2}$ et conclure.
- 2 Montrer que la série géométrique $\sum_{n\geq 0}q^n$ est convergente si, et seulement si, |q|<1. En cas de convergence, donner l'expression de sa somme partielle S_n et de son reste R_n .
- 3 Montrer par une comparaison série-intégrale que la série harmonique est divergente et donner un équivalent de ses sommes partielles.

III Exercices d'entraînement

Exercice 1 :

Déterminer la nature de la série $\sum_{n>1} \ln\left(1+\frac{1}{n}\right)$.

Exercice 2:

Montrer la convergence et calculer la somme de la série $\sum_{n>1} \frac{2}{n(n+2)}$.

Exercice 3.

Soient $\sum u_n$ et $\sum v_n$ deux séries à termes généraux positifs.

Montrer que la série de terme général $\max(u_n, v_n)$ converge si, et seulement si, les séries $\sum u_n$ et $\sum v_n$ sont convergentes.

Exercice 4:

Soient $\sum u_n$ et $\sum v_n$ deux séries convergentes à termes généraux positifs.

Montrer que la série de terme général $\sqrt{u_n v_n}$ est convergente.

Exercice 5:

À l'aide d'une comparaison série-intégrale, montrer la divergence de la série $\sum_{n\geq 2} \frac{1}{n\ln(n)}$ et donner un équivalent de ses sommes partielles.

Exercice 6:

Montrer que la série $\sum_{n>1} \frac{\ln(n)}{n}$ diverge et donner un équivalent simple de $\sum_{k=1}^{n} \frac{\ln(k)}{k}$.

IV Exercices d'approfondissement

Exercice 7:

Soit $\theta \in]0; \pi[$.

Justifier l'existence et calculer : $\sum_{n=0}^{+\infty} \cos(n\theta) \cos^n(\theta) \text{ et } \sum_{n=0}^{+\infty} \sin(n\theta) \cos^n(\theta).$

Exercice 8:

Soit $\sum u_n$ une série à termes positifs convergente.

Montrer que la série $\sum u_n^2$ est également convergente.