Selected topics of lattice gauge theory

CHRISTIAN HÖLBLING, LUKAS VARNHORST Sheet 9 in WiSe 19/20

https://moodle.uni-wuppertal.de/course/view.php?id=18653

1. Solutions to fermionic path integrals

The path integrals for fermions discussed in the lecture have euclidean action that are quadratic in the fermion fields. Therefore, they can be written as

$$Z = \int \left\{ \prod_{k=0}^{N} d\bar{\psi}_k d\psi_k \right\} \exp(-\bar{\Psi}M\Psi)$$
 (1)

where $\bar{\Psi}$ and Ψ are vectors containing all the $\bar{\psi}_k$ and ψ_k . Proove that

$$\int \left\{ \prod_{k=0}^{N} d\bar{\psi}_k d\psi_k \right\} \exp(-\bar{\Psi}M\Psi + \bar{\eta}\Psi + \bar{\Psi}\eta) = (-1)^N \det M \exp(\bar{\eta}M^{-1}\eta)$$
(2)

where $\bar{\eta}$ and η are Grassmann-vectors of the same dimensions that $\bar{\Psi}$ and Ψ .

Hint: First find a trnasformation rule for a linear change of Grassmann variables. Use this rule to simplify your integral.