第一节 电路基本概念与定律

知识梳理

一 电路基本物理量

- 1. 电位 将单位正电荷从某点移至参考点,电场力所做的功 φ_{Λ} 与电场中的位置 A ——对应
 - · 电位是相对的, 因此要规定参考点(任意选择, 规定参考点电位为 0)
- 2. 电压 单位正电荷从 A 点移至 B 点,电场力所做的功 A 、B 间电位差 $U_{AB}=arphi_{A}-arphi_{B}=-U_{BA}$
 - · 方向: 在电路图中两点标"+ -",表示正方向由高电位(+)指向低电位(-)
- 3. 电流 电路中带电粒子在电源作用下的规则运动
 - · 方向: 正电荷运动方向, 电路图中在导线上画箭头表示 电压与电流是绝对的, 为代数量, 有正负, 与参考方向相关

参考方向 解题前给每个电压和电流**预先假定的正方向**,然后用这些方向去列式子解题

计算得到的值为正 → 实际方向与参考方向一致

计算得到的值为负 → 实际方向与参考方向相反

4. 功率 元件两端电压与通过电流的乘积

关联参考方向 某元件的电压与电流的参考方向相同,称为关联参考方向 某元件的电压与电流的参考方向相反,称为非关联参考方向

* 总结(直流量用大写字母表示,交流量用小写字母表示)

名称	符号	单位	方向	>0 的意义	<0 的意义
电位	φ	V		高于参考点	低于参考点
电压	U	V	高电位 → 低电位	方向与参考方向相同	方向与参考方向相反
电流	I/i	A	正电荷运动的方向	方向与参考方向相同	方向与参考方向相反
功率	P/p	W		关联:消耗功率 非关联:产生功率	关联:产生功率 非关联:消耗功率

二 电路元件的基本特性

1. 电阻、电感、电容

					*		
	名称	符号	单位	元件符号	电压电流关系	直流特性	特点
	电阻	R	Ω		u = Ri	低于参考点	
	电感	L	Н		$u = L \frac{\mathrm{d}i}{\mathrm{d}t}$	视为短路	通直流、阻高频交流 具有记忆与储能作用
	电容	C	F	$\dashv\vdash$	$i = C \frac{\mathrm{d}u}{\mathrm{d}t}$	视为开路	隔直流、通高频交流 具有记忆与储能作用

2. 独立源和受控源

采用非关联参考方向

名称	符号	元件符号	电压	电流	置零	注意事项
独立电压源	U_{S}	- +	自身决定	由外电路决定	短接导线	禁止短路
独立电流源	I_{S}	—	由外电路决定	自身决定	断开导线	禁止开路
受控电压源		- +	由控制支路决定	由外电路决定		
受控电流源	_	\longrightarrow	由外电路决定	由控制支路决定		

· 受控源用于分析半导体器件等新式元件, 其电流/电压由控制支路的电流/电压决定, 有以下 4 种类别

* 受控源边上要写出控制量与受控量间的关系

三 电路基本定律

1. 电路结构基本概念

拓展: 电路中任意封闭面上电流代数和为 0 (广义 KCL)

3. 基尔霍夫电压定律(KVL)

考点解析

一 电源功率状态判断

例1 图示电路(左图)中,已知 $U_s=2V$, $I_s=2A$,则输出电功率的是

A.电压源

C. 电压源和电流源

D. 电流源

解 ① 标注参考方向(如图所示)

- ② 电压源电流 $I_{U_S}=-I_S=-2A$,由 $U_S=2V$,得 $p=-2A\times 2V=-4W$ 因为使用非关联参考方向,因此 p<0 代表电压源消耗功率
- ③ 将右边的两个电阻并联,得到 $R'=0.5\Omega$, $I'=I_{\rm S}=2{\rm A}$, $U'=1{\rm V}$ 因此由 $-U_{\rm I_S}+U_{\rm S}+U'=0$ 得到电流源电压 $U_{\rm I_S}=3{\rm V}$, $p=2{\rm A}\times3{\rm V}=6{\rm W}$ 因为使用非关联参考方向,因此 p>0 代表电流源输出功率,选 D

本题考查 参考方向、独立源的特性、功率的定义与意义、串并联变换、基尔霍夫电压定律

关于参考方向

1.求解电路的第一步就要规定参考方向

养成电阻、电感、电容上的电压、电流规定为关联参考方向,电源上的电压、电流规定为非关 联参考方向的习惯。这样在规定时,只需要标出电流,无需标出电压的正负号,让电路图简洁

- 2. 在运用基尔霍夫定律及其它定理列方程时,一定要根据规定的参考方向确定正负号 比如是 $I+I_2+I_3=0$ 还是 $I_1+I_2-I_3=0$,和规定的参考方向有关
- 3.前两步严格执行后,才能根据算出来的正负号确定电压电流的实际方向以及功率情况