

Ministério da Educação Universidade Federal do ABC

Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas

Disciplina: ESTS018-17 - TRANSF. DE CALOR APLICADA A SIST. AEROESPACIAIS - 2022-02

Prof. Dr. Alexandre Alves - Avaliação - 11/08/2022

Aluno:	RA:
	INSTRUÇÕES:
A)	A interpretação faz parte da prova;
B)	Identifique <u>todas</u> as folhas de resolução da prova com o seu nome e as numere na sequência em que as questões forem respondidas, digitalize suas respostas e as envie por meio de correio eletrônico para o seguinte endereço: <u>a.alves@ufabc.edu.br</u> ;
C)	A prova foi disponibilizada no SIGAA dia 11/08/2022 as 19 horas e estará disponível para download até dia 15/08/2022 as 22 horas;
D)	Até o dia 15/08/2022 as 22:00 hs <u>todos</u> os alunos deverão entregar a prova, não serão aceitas provas entregues após este dia e horário;
E)	A solução das questões deverá ser lógica e apresentada passo a passo. Resultados <u>não</u> <u>justificados</u> serão considerados errados ;
F)	A reprodução gráfica ou divulgação online, parcial ou integral desta, sem autorização

prévia e expressa do professor, constitui ofensa aos seus direitos autorais, conforme art.

29 da lei 9.610/98, que dispõe sobre direitos autorais.

Ministério da Educação Universidade Federal do ABC

Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas

Disciplina: ESTS018-17 - TRANSF. DE CALOR APLICADA A SIST. AEROESPACIAIS - 2022-02

Prof. Dr. Alexandre Alves - Avaliação - 11/08/2022

Aluno:	RA:

- 1. Um engenheiro aeroespacial trabalha em uma indústria fabricante de motores aeronáuticos e atua no projeto de desenvolvimento da câmara de combustão para um novo turbofan. Durante a fase de caracterização experimental em laboratório, as paredes da câmara de combustão foram substituídas por visores de quartzo, permitindo assim a visualização dos processos envolvidos e também a utilização de técnicas de diagnósticos ópticos. Sabendo que a transmissividade do visor é zero com exceção do comprimento de onda que encontra entre o intervalo de 0,3 µm e 0,8 µm, onde seu valor é de 0,32. Considerando que a radiação da câmara de combustão pode ser aproximada a radiação de um corpo negro a 2200 K e as informações apresentadas na tabela abaixo, calcule:
 - (a) a fração de radiação emitida que é transmitida através do quartzo; (2,5)
 - (b) a energia de radiação emitida que é transmitida através do quartzo. (2,5)

λΤ	$f_{0-\lambda}$	λT	$f_{0-\lambda}$	λΤ	$f_{0-\lambda}$	λΤ	$f_{0-\lambda}$
(µm-K)		(µm-K)		(µm-K)		(µm-K)	
400	0,0000	3800	0,4434	7200	0,8192	14500	0,9661
600	0,0000	4000	0,4809	7400	0,8295	15000	0,9689
800	0,000016	4200	0,5160	7600	0,8480	16000	0,9738
1000	0,00032	4400	0,5488	7800	0,8480	17000	0,9776
1200	0,00213	4600	0,5793	8000	0,8563	18000	0,9808
1400	0,0078	4800	0,6075	8500	0,8746	19000	0,9834
1600	0,0197	5000	0,6337	9000	0,8900	20000	0,9855
1800	0,0393	5200	0,6590	9500	0,9031	25000	0,9922
2000	0,0667	5400	0,6804	10000	0,9142	30000	0,9953
2200	0,1009	5600	0,7010	10500	0,9237	35000	0,9969
2400	0,1403	5800	0,7201	11000	0,9319	40000	0,9979
2600	0,1831	6000	0,7378	11500	0,9399	45000	0,9985
2800	0,2279	6200	0,7541	12000	0,9451	50000	0,9989
3000	0,2731	6400	0,7962	12500	0,9505	75000	0,9997
3200	0,3181	6600	0,7832	13000	0,9551	100000	0,9999
3400	0,3617	6800	0,7961	13500	0,9592	∞	1,0000
3600	0,4036	7000	0,8081	14000	0,9628	-	-

Ministério da Educação Universidade Federal do ABC

Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas

Disciplina: ESTS018-17 - TRANSF. DE CALOR APLICADA A SIST. AEROESPACIAIS - 2022-02

Prof. Dr. Alexandre Alves	- Avaliação -	11/08/2022
---------------------------	---------------	------------

Aluno:	RA:

- **2.** Em uma turbina a gás utilizada como míssil de cruzeiro, os gases quentes deixam a câmara de combustão a 1250 K e são direcionados pelo estator para as pás da turbina, fabricada em IN738 e sem resfriamento, em um ângulo ideal para maximizar a conversão de energia do fluido em trabalho de eixo. Essas pás são fixadas no disco, formando uma única peça. Assumindo a temperatura na base das pás constante em 720 K, k = 17W/m.K, h = 538 W/m² e cada pá com 5,3 cm de comprimento, 11 cm de perímetro e 5,13 cm² de área de seção transversal, determine:
 - (a) a taxa de transferência de calor para uma pá de turbina; (2,5)
 - (b) a temperatura no topo da pá. (2,5)