

: A Programming Model for Composable Accelerator Design

Hongzheng Chen*, Niansong Zhang*, Shaojie Xiang, Zhichen Zeng†, Mengjia Dai†, Zhiru Zhang

Cornell University

†University of Science and Technology of China

PLDI'24

Complexity in Specialized Accelerator Design

Accelerator design is different from programming on general processors


```
void systolic_tile(int8_t A_tile[2][768],
 int8_t B_tile[768][2],
 int8_t C_tile[2][2]) {
 #pragma dataflow
 hls::stream<int8_t> A_fifo[2][3], B_fifo[2][3];
 #pragma stream variable=A/B fifo depth=3
 #pragma partition variable=A/B/C_tile complete dim=1
 for (int k4 = 0; k4 < 768; k4++) {
  for (int m = 0: m < 2: m++) {
  int8_t v105 = A_{tile[m][k4]};
  A fifo[m][0].write(v105);}
  // ... write B fifo
 for (int Ti = 0; Ti < 2; ++Ti) {
 #pragma HLS unroll
                                                                  Compute
 for (int Tj = 0; Tj < 2; ++Tj) {
 #pragma HLS unroll
                                                                  Customization
  PE_kernel(A_in, A_out, B_in, B_out, C, Ti, Tj);
void matmul(int8_t A[512][768], int8_t B[768][768],
int8 t C[512][768]
int8_t local_A[2][768], local_B[768][2], local_C[2][2];
 for (int mi = 0; mi < 256; mi++) {
 for (int ni = 0; ni < 384; ni++) {
  // ... load A. B
 systolic_tile(local_A, local_B, local_C);
```

Vanilla Matmul (1% theoretical peak perf.)

- + Compute customization (~30% peak)
 - + Loop tiling
 - + Loop unrolling
 - + Loop & function pipelining


```
void systolic_tile(int8_t A_tile[2][768],
int8_t B_tile[768][2],
int8_t C_tile[2][2]) {
#pragma dataflow
hls::stream<int8_t> A_fifo[2][3], B_fifo[2][3];
 #pragma stream variable=A/B fifo depth=3
#pragma partition variable=A/B/C_tile complete dim=1
 for (int k4 = 0; k4 < 768; k4++) {
                                                                Memory
 for (int m = 0; m < 2; m++) {
  int8_t v105 = A_tile[m][k4];
  A fifo[m][0].write(v105);}
                                                                Customization
  // ... write B fifo
 for (int Ti = 0; Ti < 2; ++Ti) {
#pragma HLS unroll
                                                                Compute
 for (int Tj = 0; Tj < 2; ++Tj) {
 #pragma HLS unroll
                                                                Customization
  PE_kernel(A_in, A_out, B_in, B_out, C, Ti, Tj);
void matmul(int8_t A[512][768], int8_t B[768][768],
int8 t C[512][768]
int8_t local_A[2][768], local_B[768][2], local_C[2][2];
for (int mi = 0; mi < 256; mi++) {
 for (int ni = 0; ni < 384; ni++) {
 // ... load A. B
 systolic_tile(local_A, local_B, local_C);
```

Vanilla Matmul (1% theoretical peak perf.)

- + Compute customization (~30% peak)
 - + Loop tiling
 - + Loop unrolling
 - + Loop & function pipelining
- + Custom memory hierarchy (~50% peak)
 - + Tiling & data reuse buffers
 - + Memory banking/partitioning


```
void systolic_tile(int8_t A_tile[2][768],
int8_t B_tile[768][2],
int8_t C_tile[2][2]) {
                                                              Communication
#pragma dataflow
hls::stream<int8_t> A_fifo[2][3], B_fifo[2][3];
                                                              Customization
#pragma stream variable=A/B fifo depth=3
#pragma partition variable=A/B/C_tile complete dim=1
for (int k4 = 0; k4 < 768; k4++) {
                                                               Memory
 for (int m = 0: m < 2: m++) {
  int8_t v105 = A_tile[m][k4];
  A fifo[m][0].write(v105);}
                                                               Customization
  // ... write B fifo
for (int Ti = 0; Ti < 2; ++Ti) {
#pragma HLS unroll
                                                               Compute
 for (int Tj = 0; Tj < 2; ++Tj) {
 #pragma HLS unroll
                                                               Customization
  PE_kernel(A_in, A_out, B_in, B_out, C, Ti, Tj);
void matmul(int8_t A[512][768], int8_t B[768][768],
int8 t C[512][768]
int8_t local_A[2][768], local_B[768][2], local_C[2][2];
for (int mi = 0; mi < 256; mi++) {
 for (int ni = 0; ni < 384; ni++) {
 // ... load A. B
 systolic_tile(local_A, local_B, local C);
```


Vanilla Matmul (1% theoretical peak perf.)

- + Compute customization (~30% peak)
 - + Loop tiling
 - + Loop unrolling
 - + Loop & function pipelining
- + Custom memory hierarchy (~50% peak)
 - + Tiling & data reuse buffers
 - + Memory banking/partitioning
- + Data movement optimization (~95% peak)
 - + Data streaming
 - + Data packing (vectorization)
 - + Memory coalescing
 - + Systolic communication

```
void systolic_tile(int8_t A_tile[2][768],
int8_t B_tile[768][2],
int8_t C_tile[2][2]) {
                                                              Communication
#pragma dataflow
hls::stream<int8_t> A_fifo[2][3], B_fifo[2][3];
                                                              Customization
#pragma stream variable=A/B fifo depth=3
#pragma partition variable=A/B/C_tile complete dim=1
for (int k4 = 0; k4 < 768; k4++) {
                                                              Memory
 for (int m = 0; m < 2; m++) {
  int8_t v105 = A_tile[m][k4];
  A fifo[m][0].write(v105);}
                                                              Customization
  // ... write B fifo
for (int Ti = 0; Ti < 2; ++Ti) {
#pragma HLS unroll
                                                              Compute
 for (int Tj = 0; Tj < 2; ++Tj) {
 #pragma HLS unroll
                                                              Customization
  PE_kernel(A_in, A_out, B_in, B_out, C, Ti, Tj);
void matmul(int8_t A[512][768], int8_t B[768][768],
int8 t C[512][768]
int8_t local_A[2][768], local_B[768][2], local_C[2][2];
for (int mi = 0; mi < 256; mi++) {
 for (int ni = 0; ni < 384; ni++) {
 // ... load A. B
 systolic_tile(local_A, local_B, local_C);
```

Accelerator PE PE PE PE Accelerator

Vanilla Matmul (1% theoretical peak perf.)

- + Compute customization (~30% peak)
 - + Loop tiling Existing HLS compiler
 - + Loop unrolling e.g., ScaleHLS [HPCA'22]
 - + Loop & function pipelining
- + Custom memory hierarchy (~50% peak)
 - + Tiling & data reuse buffers
 - + Memory banking/partitioning
- + Data movement optimization (~95% peak)
 - + Data streaming
 - + Data packing (vectorization)
 - + Memory coalescing
 - + Systolic communication

~500 lines of HLS code for a small systolic array vendor-specific, hard to maintain & reuse

Allo Accelerator Design Language (ADL) and Compiler

Pythonic: No need to learn a new DSL!

Framework	Input	Paradigm
Spatial [PLDI'18]	Scala	Imperative
TVM TE [OSDI'18]	Python	Declarative
Allo	Python	Imperative

Allo Accelerator Design Language (ADL) and Compiler

Pythonic: No need to learn a new DSL!

Decoupled customization

Framework	Input	Paradigm	Decoupled Cust.
Spatial [PLDI'18]	Scala	Imperative	X
TVM TE [OSDI'18]	Python	Declarative	\checkmark
Allo	Python	Imperative	√

Allo Accelerator Design Language (ADL) and Compiler

Stepwise verifiable rewrites

```
s = allo.customize(gemm)
s.reorder("k", "j")
print(s.module)
s.buffer at(s.C, axis="i")
print(s.module)
                                             MLIR
s.pipeline("j")
print(s.module)
module {
func.func @gemm(%arg0, %arg1) -> memref<1024x1024xf32> {
%alloc = memref.alloc() {name = "C"} : memref<1024x1024xf32>
affine.for %arg2 = 0 to 1024 {
 affine.for %arg3 = 0 to 1024 {
  affine.for %arg4 = 0 to 1024 {
 } {loop_name = "j", pipeline}
} {loop_name = "k", op_name = "S_k_0", reduction}
} {loop_name = "i", op_name = "S_i_j_0"}
return %alloc : memref<1024x1024xf32>
```

```
module {
  func.func @gemm(%arg0: memref<1024x1024xf32>, %arg1:
  memref<1024x1024xf32>) -> memref<1024x1024xf32> {
  %alloc = memref.alloc() {name = "C"} : memref<1024x1024xf32>
  affine.for %arg2 = 0 to 1024 {
   affine.for %arg3 = 0 to 1024 {
   affine.for %arg4 = 0 to 1024 {
        ...
    } {loop_name = "k"}
    } {loop_name = "j"}
    } {loop_name = "i", op_name = "S_i_j_0"}
    return %alloc : memref<1024x1024xf32>
}}
```

```
module {
func.func @gemm(%arg0: memref<1024x1024xf32>, %arg1:
memref<1024x1024xf32>) -> memref<1024x1024xf32> {
%alloc = memref.alloc() {name = "C"} : memref<1024x1024xf32>
affine.for %arg2 = 0 to 1024 {
 %alloc 0 = memref.alloc() : memref<1024xf32>
 affine.for %arg3 = 0 to 1024 {
 } {buffer, loop_name = "j_init", pipeline_ii = 1 : i32}
 affine.for %arg3 = 0 to 1024 {
  affine.for %arg4 = 0 to 1024 {
  } {loop name = "j"}
 } {loop_name = "k", op_name = "S_k_0", reduction}
 affine.for %arg3 = 0 to 1024 {
 } {buffer, loop_name = "j_back", pipeline_ii = 1 : i32}
} {loop name = "i", op name = "S i j 0"}
return %alloc : memref<1024x1024xf32>
```

Framework	Input	Paradigm		Verified Rewrite
Spatial [PLDI'18]	Scala	Imperative	X	X
TVM TE [OSDI'18]	Python	Declarative	\checkmark	X
Allo	Python	Imperative	✓	\checkmark

```
→ Schedule construction
```

```
s = allo.customize(matmul)
```


^{*} Schedule: A sequence of customization primitives

^{&#}x27;Schedule: A sequence of customization primitives

→ Schedule construction


```
→ Formal Verification [FPGA'24 Best Paper*]

mod = s.verify()

Vanilla
Schedule

Optimized
Schedule

Optimized
HLS C++
```

- A formal equivalence checker of source-to-source HLS transformations via symbolic execution
 - Support statically interpretable control-flow (SICF)
- Verification in time/space linear w.r.t. OPs executed
 - ~500K Ops/sec in verification throughput
 - A complex 64x64 systolic array verified in 16 minutes

First FFN layer in BERT-base (512, 768)x(768, 3072) w/ 16x16 SA

	Latency (ms)	BRAM	DSP	FF	LUT
Allo	15.73	0 (0%)	128 (1%)	79969 (3%)	244439 (18%)
AutoSA	15.71	514 (12%)	256 (2%)	100138 (3%)	244032 (18%)

Same level of performance but much lower resource usage

13

→ Spatial loop: i, j s = allo.customize(matmul) buf A = s.buffer at(s.A, "j") buf B = s.buffer at(s.B, "j") pe = s.unfold("PE", axis=[0, 1], factor=[M, N]) s.partition(s.A, dim=0) s.partition(s.B, dim=1) s.partition(s.C, dim=[0, 1]) s.relay(buf_A, pe, axis=0, depth=M + 1) s.relay(buf B, pe, axis=1, depth=N + 1) B_1 fifo B fifo B PE PE

```
→ Spatial loop: k, j
 s = allo.customize(matmul)
 s.reorder("k", "j", "i")
 buf A = s.buffer at(s.A, "j")
buf C = s.buffer at(s.C, "j")
 pe = s.unfold("PE", axis=[0, 1],
                     factor=[K, N])
 s.partition(s.A, dim=0)
 s.partition(s.B, dim=[0, 1])
 s.partition(s.C, dim=1)
 s.relay(buf A, pe, axis=0)
 s.relay(buf B, pe, axis=1)
                 fifo C
                          fifo C
                  PE
                           PE
                  PE
```

```
→ Spatial loop: j
s = allo.customize(matmul)
buf A = s.buffer at(s.A, "j")
buf B = s.buffer at(s.B, "j")
pe = s.unfold("PE", axis=1,
                     factor=M)
s.partition(s.B, dim=1)
s.partition(s.C, dim=1)
s.relay(buf A, pe, axis=0)
s.relay(buf B, pe, axis=1)
                  Bο
                           B_1
                 fifo B
                          fifo_B
                  PE
                           PE
```

Realize different dataflows with minimal schedule code

How to Compose Optimized Kernels into Complete Accelerator?

Optimized Kernels

High-performance Accelerator

→ Given different optimized kernel implementations

→ Schedule composition

```
# Previous customizations for matmul
s_matmul = allo.customize(matmul)
# ...

s_top = allo.customize(top)
s_top.compose(s_matmul)
```

→ Algorithm specification (Hierarchical)


```
→ Algorithm specification (Hierarchical)
def top(X: int8[M, K], W_A: int8[K, N],
        W_B: int8[N, K], Y: int8[M, K]):
  Y: int8[M, N] = 0
  Z: int8[M, K] = 0
  matmul(X, W A, Y)
  matmul(Y, W_B, Z)
  return Z
                  mat-
                  mul
                           mat-
                           mul
   Need to ensure
interface consistency
```


Hierarchical dataflow graph

```
→ Algorithm specification (Hierarchical)
def top(X: int8[M, K], W_A: int8[K, N],
        W_B: int8[N, K], Y: int8[M, K]):
  Y: int8[M, N] = 0
  7: int8[M_K] = 0
  matmul(X, W A, Y)
                       ← Caller definition
  matmul(Y, W B, Z)
  return Z
→ Callee definition
def matmul(A: int8[M, K],
           B: int8[K, N],
           C: int16[M, N])
```

Need to ensure interface consistency

Hierarchical dataflow graph

Key idea: Model data layout as a type to ensure the kernel interfaces are consistent

Subtyping relation forms a **lattice**!

Intuition:

We can supply more read/write parallelism, but not less!

- Key idea: Model data layout as a type to ensure the kernel interfaces are consistent
- Lattice-based subtyping relation permits linear-time layout inference through Worklist algorithm

 $(\mathsf{T}, \mathcal{C}_{16})$ Proof in supplementary material

Hierarchical dataflow graph

Single-Kernel Evaluation

- Benchmarks from PolyBench; Target hardware: AMD U280 FPGA
- Normalized against AMD VitisHLS-auto (pragmas automatically inserted)
- Other baselines
 - ADLs: HeteroCL [FPGA'19], Dahlia [PLDI'20], PyLog [TC'21]
 - Automated DSE for HLS: ScaleHLS [HPCA'22], Merlin [TRETS'22]

Allo achieves (much) higher performance by optimizing data placement with a custom memory hierarchy

Single-Kernel Evaluation

- Compared to ScaleHLS [HPCA'22], Allo achieves
 - Lower latency with much more effective use of compute resources
 - Higher post place-and-route frequency due to better pipelining

	Allo				ScaleHLS						
Benchmark	Latency	TT	DSP	PnR	Lines of	Compile	Latency	тт	DSP	PnR	Compile
	(cycles)	ш	Usage	Freq. (MHz)	Allo Custm.	Time (s)	(cycles)	п	Usage	Freq. (MHz)	Time (s)
atax	4.9K (↓ 3.9×)	1	403 († 2.9×)	411	9	1.0	19.4K	4	141	329	36.1
correlation	498.7K (↓ 290.5×)	1	4168 († 38.2×)	362	19	0.8	144.9M	667	109	305	638.8
jacobi-2d	58.8K (↓ 183.1×)	1	3968 († 72.1×)	411	17	0.9	10.8M	28	55	308	47.9
symm	405.7K (↓ 427.4×)	1	1208 († 201.3×)	402	15	1.0	182.4M	13	6	397	3.5
trmm	492.6K (↓ 78.0×)	1	101 († 14.4×)	414	12	0.8	38.4M	4	7	382	1.4

Allo achieves (much) higher performance by optimizing data placement with a custom memory hierarchy

Multi-Kernel Evaluation: A Complete LLM Accelerator

- GPT2 model (the only open-source LLM in the GPT family)
 - 355M parameters, 24 hidden layers, 16 heads
 - W4A8 quantization

Compose all the schedules together s = allo.customize(GPT_layer) s.compose([s_qkv, ..., s_gelu])

LLM Accelerator Evaluation

- GPT2: single-batch, low-latency, generative inference settings
 - AMD U280 FPGA (16nm), 250MHz
 - 2.2x speedup in prefill stage compared to DFX [MICRO'22] (an FPGA-based overlay)
 - 1.9x speedup for long output sequences and
 5.7x more energy-efficient vs. NVIDIA A100 GPU (7nm)
 - Fewer than 50 lines of schedule code in Allo

	Allo	DFX
Device	U280	U280
Freq.	250MHz	200MHz
Quant.	W4A8	fp16
BRAM	384 (19.0%)	1192 (59.1%)
DSP	1780 (19.73%)	3533 (39.2%)
FF	652K (25.0%)	1107K (42.5%)
LUT	508K (39.0%)	520K (39.9%)

H. Chen et al., "Understanding the Potential of FPGA-Based Spatial Acceleration for Large Language Model Inference", ACM TRETS (FCCM Journal Track), 2024.

High-Level PyTorch Frontend

- Predefined schedules for commonly used NN operators
- Can directly import model from PyTorch and build optimized xcel design
 - Through TorchDynamo and torch.fx

```
import torch
import allo
import numpy as np
from transformers import AutoConfig
from transformers.models.gpt2.modeling_gpt2 import GPT2Model
bs, seq, hs = 1, 512, 1024
example_inputs = [torch.rand(bs, seq, hs)]
config = AutoConfig.from_pretrained("gpt2")
module = GPT2Model(config).eval()
mlir_mod = allo.frontend.from_pytorch(
 module,
  example inputs=example inputs,
```

Summary

- Features of Allo ADL
 - Pythonic
 - Decoupled & verifiable customizations
 - Composability

https://github.com/cornell-zhang/allo

- Ongoing work
 - ASIC & other programmable accelerators
 - NPUs (e.g., AMD AIE)
 - Processing-in-memory (PIM)
 - Automatic generation of highperformance schedules
 - Sparsity support
 - Integration with UniSparse [OOPSLA'24]

