

Development of two crossed actively stabilized Fabry-Perot cavities for dual color X-ray generation through Compton scattering for the MariX project

Relatore:

Prof. Cialdi Simone

Correlatore:

Dr. Giannotti Dario

Candidato:

Forni Tommaso

matr. 902503

The MariX project: two X-ray sources

Free Electron Laser:

- 10⁻¹⁸ s pulses at 1 MHz
- 10¹⁷ photons/s
- 200 eV 8 keV
- Femto-second linear spectroscopy

Inverse Compton Scattering:

- 10⁻¹² s pulses at 100 MHz
- 10¹³ photons/s
- 20 keV 180 keV
- Medical diagnostic and radiotherapy

Application: K-edge subtraction imaging (KES)

- Use of a contrast agent (iodine)
- Radiographies with two different X-rays energies (under and above the K-edge energy, 33 keV)

- Logarithmic subtraction of two images
- Example: coronary angiography for cancer detection

Inverse Compton Scattering (ICS)

Upshifted energy:

$$E_{ph} = rac{2E_L \gamma^2 \left(1 + \cos lpha_0
ight)}{1 + \gamma^2 \theta^2} egin{array}{c} E_L = ext{laser photons energy} \ E_{ph} = ext{scattered photons energy} \ \gamma = ext{Lorentz factor} \end{array}$$

1.2 eV 20-180 keV = Lorentz factor 60-200

- By changing the incidence angle α_0 we can obtain the two X-ray energies for KES
- Radiation confined in a small angle $\theta_{M} \sim 1/\gamma$
- High monochromaticity ($\Delta E/E = 0.01$) by controlling the acceptance angle θ

Inverse Compton Scattering (ICS)

Inverse Compton

Effect of the impact angle in Inverse Compton scattering

for iodine KES:

- Energies 34 and 32 keV
- Angles 7° and 30°
- y = 86

Inverse Compton Scattering (ICS)

Inverse Compton

e
a e-

Photon flux:

$$N = \frac{\sigma_T f_{\text{rep}} N_{ph} N_e}{2\pi \sqrt{\sigma_{Ly}^2 + \sigma_y^2} \sqrt{\sigma_{Lx}^2 + \sigma_x^2 + (\sigma_{Lz}^2 + \sigma_z^2) \tan^2(\frac{\alpha}{2})}}$$

$$\sigma_{
m T}pprox 6.652 imes 10^{-29} {
m m}^2 \hspace{1cm} I_e=20\,{
m mA}
onumber \ N=10^{13} {
m ph/s} \hspace{1cm} P=500\,{
m kW}$$

Power out of reach of doped fiber amplifiers, an enhancement optical cavity is needed

Fabry-Perot cavity: temporal domain

- In the cavity the laser pulses overlap, resulting in an increase of the optical power
- The power gain is given by the cavity Finesse, which depends on the mirror reflectivities
- Gain 5000, Finesse 8000
- Mirror reflectivities 99.999%
- Input coupler reflectivity 99.9%

Laser pulses must overlap in phase: cavity length is fixed by the laser repetition rate

$$f_{
m rep} = 100\,{
m MHz}
ightarrow T_{
m rt} = 10\,{
m ns}
ightarrow L = 3\,{
m m}$$

Fabry-Perot cavity: frequency domain

laser spectral comb

- Only precise frequencies can resonate inside the cavity
- Cavity linewidth is given by the Finesse (mirror reflectivities)
- Cavity and laser spectral comb must overlap
- Both are subjected to noise
- Need for a stabilization system for the cavity length (<< 150 pm)

Reflected field power: symmetric signal

Reflected field phase: asymmetric signal

- Pound-Drever-Hall technique to generate the error signal
- Length is corrected using a piezo

- Pound-Drever-Hall technique to generate the error signal
- Length is corrected using a piezo
- Signal is linear and asymmetric around resonance

- Pound-Drever-Hall technique to generate the error signal
- Length is corrected using a piezo
- Signal is linear and asymmetric around resonance
 - Feedback system

Implementation: crossed Fabry-Perot cavities

Features:

- Dual color X-ray generation
- Same electrons energy
- Same electrons trajectory

For Iodine KES:

- electron energy ~43 MeV
- incidence angles at 7° and 30°

Implementation: tilting mirrors

- 2 Piezo-driven moving mirrors can move the laser beam in and out of the interaction point
- Movement needed is about 100 μm
- Fast switch-time (~100 ms, compatible with patient/sample movement)
- Cavity must remain stabilized during movement
- Coupling with external laser must not change

Implementation: tilting mirrors

Theoretical prediction:

- Distance of 110 μm is reached for an inclination of 150 μrad
- Spatial coupling with the laser source changes less than 1%

Challenges

High power effects due to mirrors deformation:

- Change in beam size due to change in mirror curvature
- Degenerate mode coupling can lead to additional losses (as in LIGO)

Proposed solution:

- Change the distance between curved mirrors to compensate for mirror deformation
- Restore cavity length by moving flat mirrors
- ~0.5 mm at 500 kW

Experimental setup: two stabilized cavities

Experimental result: cavity Finesse

- The Finesse is the ratio between the FSR (100 MHz) and the cavity linewidth
- We are developing a new method to measure F for higher Finesse cavities (3000)

Experimental result: laser-cavity frequency noise

- RMS frequency noise is about **3500 Hz**, giving a relative noise of 10⁻¹¹.
- RMS length variation is **35 pm**.

Experimental result: laser-cavity frequency noise

- RMS frequency noise is about **3500 Hz**, giving a relative noise of 10⁻¹¹.
- RMS length variation is 35 pm.

- Low frequency peaks: mechanical oscillators, air turbolence
- High frequency peaks: Feedback auto-oscillations

Experimental result: cavity focus movement

Experimental result: cavity focus movement

- Measured movement of 36 μm
- Accordance with theoretical predictions
- Cavity remains stabilized during movement

Conclusions

- We built two crossed Fabry-Perot cavities and frequency stabilized them against a laser source
- We characterized their noise and spectral properties
- We developed and tested the method to switch between two X-ray energies
- We developed a method to compensate high power effects

Next steps

- Further reduce cavity-laser frequency noise
 - o goal: under 2000 Hz for the final cavity at Finesse 8000
- Amplification system
 - o goal: 100 W incident on the cavity
- Quantification of high power effects
 - Mode coupling losses
 - Test of compensation method
- New moving mountings with bigger stroke
 - goal: over 100 μm movement