Problem 1

Let A and B be two events.

1. Show that

$$\mathsf{P}(A) + \mathsf{P}(B) - 1 \le \mathsf{P}(A \cap B) \le \mathsf{P}(A \cup B) \le \mathsf{P}(A) + \mathsf{P}(B).$$

2. The difference $B \setminus A$ is defined to be the set of all elements of B that are not in A. Show that, if $A \subseteq B$, then

$$\mathsf{P}(B \setminus A) = \mathsf{P}(B) - \mathsf{P}(A).$$

3. The symmetric difference $A \triangle B = (A \setminus B) \cup (B \setminus A)$ is defined to be the set of all elements that are in A or B but not both. Show that

$$P(A \triangle B) = P(A) + P(B) - 2P(A \cap B).$$

Problem 2

Show that, if A and B are independent events, then

$$P(A \cup B) = P(A) + P(B) - P(A)P(B) = 1 - P(A^c)P(B^c).$$

Problem 3

Show that $P(A \mid B) \le P(A)$ implies $P(A \mid B^c) \ge P(A)$.

Problem 4

Show that if P(A) = 1, then $P(A \mid B) = 1$ for any B with P(B) > 0.

Problem 5

Show that if A and B are independent and $C = A \cup B$, then A and B are conditionally dependent (that is, A and B are not conditionally independent) given C (as long as $P(A \cap B) > 0$ and $P(A \cup B) < 1$), with

$$P(A \mid B, C) < P(A \mid C)$$
.