Banca d'Italia - depositi e impieghi

```
import sqlite3
import pandas as pd
conn = sqlite3.connect("D:/files/Bankit.sqlite")
cursor = conn.cursor()

query = "SELECT * FROM TFR10194"
TFR10194 = pd.read_sql_query(query, conn)

TFR10194.query('PRV_SPORT == "ITC4D" \
and DATA_OSS == "2017-12-31 00:00:00.000000" \
and LOC_SPORT == 9999997 \
and FENEC == "1041810"')
```

	DATA_OSS	DIVISA1	DURORI	ENTE_SEGN	FENEC	LOC_SPORT	PRV
94225	2017-12-31 00:00:00.000000	1000	9	1100010	1041810	9999997	ITC4

Prestiti (esclusi PCT), depositi (esclusi PCT) e numero sportelli - per comune dello sportello [TFR10194]

- contiene depositi impeghi e sportelli per comune
- ha frequenza annuale
- è fermo al 2023 : al 31/12 gli impieghi (1041810) Italia (IT) erano **1546906651** Mln€
- Nella nota pubblicata dal Comune di Monza si legge che a fine 2017 i depositi bancari nel territorio ammontano a 19.076,556 milioni di euro, con un incremento del 7,4% rispetto al 2016, mentre gli impieghi scendono nello stesso periodo del 1,4%. Il deposito medio per abitante è di 21.883 euro e la città con deposito pro-capite più elevato è Monza, con con 46.945 euro, seguita da Vimercate con 34.389 euro.

```
tabella = "TFR10194"
query_sql = f"SELECT * FROM {tabella};"
df = pd.read_sql_query(query_sql, conn)
```

```
DATA_OSS = ["2017-12-31 00:00:00.000000", "2023-12-31 00:00:00.000000"]

LOC_SPORT = [9999997, 8888888] # Più valori numerici

FENEC = ["1041810"] # Lista con più valori

TFR10194.query("PRV_SPORT in @PRV_SPORT and DATA_OSS in @DATA_OSS and LOC_SPORT in @LOC_SPORT
```

Trk10194.query(rkv_Sroki in erkv_Sroki and Daia_055 in eDaia_055 and Loc_Sroki in eLoc_Srok

	DATA_OSS	DIVISA1	DURORI	ENTE_SEGN	FENEC	LOC_SPORT	PRV
8480	2023-12-31 00:00:00.000000	1000	9	1100010	1041810	9999997	IT
96837	2017-12-31 00:00:00.000000	1000	9	1100010	1041810	9999997	IT

```
# oppure
df["DATA_OSS"] = pd.to_datetime(df["DATA_OSS"], errors='coerce')
PRV_SPORT = ["ITH51"]  # Lista di valori
LOC_SPORT = [9999997]  # Lista numerica
FENEC = ["1041810", "1077778"]  # Lista di valori
fine_trimestre = ["03-31", "06-30", "09-30", "12-31"]
df_filtered = df[
    (df["PRV_SPORT"].isin(PRV_SPORT)) &
    (df["LOC_SPORT"].isin(LOC_SPORT)) &
    (df["FENEC"].isin(FENEC)) &
    (df["DATA_OSS"].dt.strftime("%m-%d").isin(fine_trimestre))]
df_filtered.query("DATA_OSS == @pd.to_datetime('2016-12-31')")  # df_filtered.query('DATA_OSS)
```

 DATA_OSS	DIVISA1	DURORI	ENTE_SEGN	FENEC	LOC_SPORT	PRV_SPORT	R
 2016-12-31 2016-12-31	1000 1000	9 9	1100010 1100010	1077778 1041810	9999997 9999997	ITH51 ITH51	I'I

con query sqlite

tabella = "TFR10194" # Nome della tabella da interrogare PRV_SPORT = ["IT"] # Lista di valori LOC_SPORT = [9999997, 8888888] # Lista numerica FENEC = ["1041810"] # Lista di valori fine_trimestre = ["03-31", "06-30", "09-30", "12-31"] query_sql = f" " " SELECT * FROM {tabella} WHERE PRV_SPORT IN ({','.join(f" '{v}' " for v in PRV_SPORT)}) AND LOC_SPORT IN ({','.join(str(v) for v in LOC_SPORT)}) AND FENEC IN ({','.join(f" '{v}' " selection of the property of

for v in FENEC)}) ORDER BY DATA_OSS DESC;""" df = pd.read_sql_query(query_sql, conn) df["DATA_OSS"] = pd.to_datetime(df["DATA_OSS"], errors='coerce') df_filtered = df[df["DATA_OSS"].dt.strftime("%m-%d").isin(fine_trimestre)] df_filtered.query('DATA_OSS == "2023-12-31")

TFR20232

```
# finanziamenti solo imprese
tabella = "TFR20232"
set_ctp_values = ["SBI25", "S11", "S14BI2", "SBI42", "SBI59", "600"] # Se ci sono più valori, p
date_fine_trimestre = ['03-31', '06-30', '09-30', '12-31']
loc_ctp_values = ['IT', 'ITC', 'ITF', 'ITF1', 'ITF2', 'ITF3', 'ITF4', 'ITF5', 'ITF6', 'ITG',
ateco_ctp_values = ["1004999","1005009"]
query = f"""
    SELECT DATA_OSS, LOC_CTP, SET_CTP, VALORE
    FROM {tabella}
    WHERE SET_CTP IN ({','.join(f"'{v}'" for v in set_ctp_values)})
    AND strftime('%m-%d', DATA_OSS) IN ({','.join(f"'{v}'" for v in date_fine_trimestre)})
    AND LOC_CTP IN ({','.join(f"'{v}'" for v in loc_ctp_values)})
    AND ATECO_CTP IN ({','.join(f"'{v}'" for v in ateco_ctp_values)})
    ORDER BY 1 DESC;
    11 11 11
TFR20232 = pd.read_sql_query(query, conn)
TFR20232
```

	DATA_OSS	LOC_CTP	SET_CTP	VALORE
0	2024-09-30 00:00:00.000000	ITF1	SBI25	9652667
1	2024-09-30 00:00:00.000000	ITF	SBI42	176194639
2	2024-09-30 00:00:00.000000	ITG	SBI42	81214528
3	2024-09-30 00:00:00.000000	ITH	S14BI2	17783796
4	2024-09-30 00:00:00.000000	ITG1	SBI25	18072535
		•••		
3061	2011-03-31 00:00:00.000000	ITC	S14BI2	29642694
3062	2011-03-31 00:00:00.000000	ITG2	S11	11042336
3063	2011-03-31 00:00:00.000000	ITF4	S11	23060255
3064	2011-03-31 00:00:00.000000	ITF3	SBI25	39392164
3065	2011-03-31 00:00:00.000000	ITF6	SBI25	9455253