BRACE²: Bridge Rapid Assessment Center for Extreme Events

Principal Investigator: Khalid M. Mosalam, UC Berkeley
Student Investigators: Claudio Perez & Chrystal Chern, Researchers, UC Berkeley
University of California Berkeley

objective: invert the conventional analysis problem

val, vec = eigid(inputs, outputs)

Two Approaches

Idea: Fit an ideal continuous system to the discrete response in the time domain.

- Ho-Kalman/Eigensystem Realization Algorithm
- Subspace Identification
- Least Squares Methods

Idea: Represent the system in the frequency domain.

- Fourier Spectrum
- Response Spectrum

Limitations

Identification methods must be scalable such that they can be applied to a growing and changing network of bridges.

High complexity systems

Frequency domain methods are ill-suited for identifying higher modes, and are limited to single-input, single-output, or **SISO** signals.

SVD

The singular value decomposition is heavily used in subspace and least squares methods. It is notoriously numerically intensive.

Solution

SRIM

State space system identification techniques such as System Realization with Information Matrix reveal the underlying fundamental dynamic system for a multi-input, multi-output, or **MIMO** signal.

$$\dot{\mathbf{x}} = \mathbf{A}_{c}\mathbf{x} + \mathbf{B}_{c}\mathbf{u}$$

$$\begin{bmatrix} \dot{\mathbf{u}}_{f}(t) \\ \ddot{\mathbf{u}}_{f}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{M}^{-1}\mathbf{K} & -\mathbf{M}^{-1}\mathbf{Z} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{f}(t) \\ \dot{\mathbf{u}}_{f}(t) \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ -\mathbf{\iota} \end{bmatrix} \ddot{\mathbf{u}}_{g}(t)$$

$$\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$$

$$\ddot{\mathbf{u}}_{f}(t) = [-\mathbf{M}^{-1}\mathbf{K} & -\mathbf{M}^{-1}\mathbf{Z}] \begin{bmatrix} \mathbf{u}_{f}(t) \\ \dot{\mathbf{u}}_{f}(t) \end{bmatrix} + [-\mathbf{\iota}] \ddot{\mathbf{u}}_{g}(t)$$

Optimizations

- A new, optimized algorithm has been developed that leverages shared memory parallelism to drastically reduce the computational demands of estimating a state space model.
- Memory use has been optimized to efficiently leverage caching.

Package

All methods are accessible through the python *lilo* package.

pip install peer-lilo

Capistrano Beach-I5/Via California Bridge

Corona - I15/Hwy 91 Interchange Bridge

This project was made possible with support from: