# 近代物理实验报告 1.3: $\gamma$ 射线的吸收

xy 学号 匡亚明学院

2019年2月29日

### 1 引言

 $\gamma$  射线在穿透物质时,会被物质吸收,吸收作用的大小用吸收系数来表示。物质的吸收系数的值与  $\gamma$  射线的能量有关,也与物质本身的性质有关。正确测定物质的吸收系数,在核技术的应用与辐射防护设计中具有十分重要的意义。例如工业上广泛应用的料位计、密度计、厚度计,医学上的  $\gamma$  照相技术等都是根据这一原理研究设计的。

### 2 实验目的

- 1. 了解 $\gamma$ 射线在物质中的吸收规律。
- 2. 掌握测量 γ 吸收系数的基本方法。

### 3 实验仪器

γ源、单道分析器等。

# 4 实验原理

#### 4.1 窄束 $\gamma$ 射线在物质中的吸收规律

射线在穿过物质时,会与物质发生多种作用,主要有光电效应,康普顿效应和电子对效应,作用的结果使  $\gamma$  射线的强度减弱。

准直成平行束的  $\gamma$  射线称为窄束  $\gamma$  射线,单能窄束  $\gamma$  射线在穿过物质时,其强度的减弱服从指数衰减规律,即:

$$I_x = I_0 e^{-\mu x} \tag{1}$$

其中  $I_0$  为入射  $\gamma$  射线强度, $I_x$  为透射  $\gamma$  射线强度,x 为  $\gamma$  射线穿透的样品厚度, $\mu$  为线性吸收系数。用实验的方法测得透射率  $T=I_x/I_0$  与厚度 x 的关系曲线,便可根据 (1) 式求得线性吸收系数  $\mu$  值。

为了减小测量误差,提高测量结果精度,实验上常先测得多组  $I_x$  与 x 的值,再用曲线拟合来求解。即:

$$ln(I_x) = ln(I_0) - \mu x \tag{2}$$

由于  $\gamma$  射线与物质主要发生三种相互作用,三种相互作用对线性吸收系数  $\mu$  都有贡献,可得:

$$\mu = \mu_{ph} + \mu_c + \mu_p \tag{3}$$

式中  $\mu_{ph}$  为光电效应的贡献, $\mu_c$  为康普顿效应的贡献, $\mu_p$  为电子对效应的贡献。它们的值不但与  $\gamma$  光子的能量  $E_\gamma$  有关,而且还与材料的原子序数、原子密度或分子密度有关。对于能量相同的  $\gamma$  射线不同的材料、 $\mu$  也有不同的值。图 (1) 表示铅、锡、铜、铝材料对  $\gamma$  射线的线性吸收系数  $\mu$  随能量  $E_\gamma$  变化关系。



图 1: Pb、Sn、Cu、Al 对  $\gamma$  射线的吸收系数和能量的关系

图中横座标以  $\gamma$  光子的能量  $h\nu$  与电子静止能量  $m_ec^2$  的比值为单位,由图可见,对于铅低能  $\gamma$  射线只有光电效应和康普顿效应,对高能  $\gamma$  射线,以电子对效应为主。

为了使用上的方便,定义  $\mu_m = \mu/\rho$  为质量吸收系数, $\rho$  为材料的质量密度。则 (1) 式可改写成如下的形式:

$$I_x = I_0 e^{-\mu_m x_m} \tag{4}$$

式中  $x_m = x\rho$  称为质量厚度,单位是  $g/cm^2$ 。



图 2: 半吸收厚度和  $\gamma$  射线能量的关系

#### 4.2 半吸收厚度

物质对  $\gamma$  射线的吸收能力也常用半吸收厚度来表示,其定义为使入射  $\gamma$  射线强度减弱到一半所需要吸收物质的厚度。由 (1) 式可得

$$x_{\frac{1}{2}} = \frac{\ln 2}{\mu} \tag{5}$$

显然,半吸收厚度  $x_{\frac{1}{2}}$  与材料的性质和  $\gamma$  射线的能量都有关。图 (2) 表示铝、铅的半吸收厚度 与  $E_{\gamma}$  的关系。若用实验方法测得  $I_x$  与 x 的变化关系,则可根据 (3) 式求得材料的线性吸收系数  $\mu$  值,从而由 (5) 式求得  $x_{\frac{1}{2}}$ 。

测量装置如图 (3) 所示。



图 3: 测量装置

### 5 实验内容

- 1. 按图 (3) 检查测量装置,调整探测器位置,使放射源、准直孔、探测器具有同一条水平线上。
- 2. 打开系统电源, 预热适当时间。
- 3. 选择合适的高压值,放大倍数,和计数时间并保持不变。
- 4. 测量不同吸收片厚度 x 时的计数  $I_x$ 。
- 5. 取出放射源,在相同条件下,测量本底计数  $I_b$ 。
- 6. 把高压降至最低值,关断电源。
- 7. 用最小二乘法求出  $\gamma$  吸收系数  $\mu$  及半吸收厚度  $d_{\frac{1}{8}}$ 。

### 6 注意事项

测量前必须认真阅读 BH1224 微机多道  $\gamma$  谱仪使用说明书。

### 7 实验数据

### 7.1 数据

所用 <sup>137</sup>Cs 放射源编号: 26;

强度:  $S = 66.6 \times 10^3$ Bq;

能量:  $E_r = 0.66 \text{MeV}$ ;

计数时间: 60s。

下列数据均为平均值。本底计数  $I_B = 3563$ 。

### 7.1.1 Pb 样品

| 编号                      | 1    | 1+2  | 1+2+3 | 1+2+3+4 | 1+2+3+4+5 |
|-------------------------|------|------|-------|---------|-----------|
| 厚度 x/mm                 | 2.07 | 4.79 | 6.75  | 9.21    | 11.34     |
| 平均计数 $I_x$ /次           | 6864 | 6208 | 5700  | 5235    | 4833      |
| 减去本底的计数 $I_x/\text{mm}$ | 3301 | 2645 | 2137  | 1672    | 1270      |

表 1: Pb 的实验数据

#### 7.1.2 Cu 样品

| 编号                      | 1     | 2     | 3    | 4    | 1+4   |
|-------------------------|-------|-------|------|------|-------|
| 厚度 $x/mm$               | 10.08 | 14.56 | 20   | 24.2 | 34.42 |
| 平均计数 $I_x$ /次           | 7774  | 5505  | 5075 | 4622 | 4038  |
| 减去本底的计数 $I_x/\text{mm}$ | 4211  | 1942  | 1512 | 1059 | 475   |

表 2: Cu 的实验数据

### 7.1.3 Al 样品

| 编号                      | 1    | 2    | 3     | 4     | 1+4  |
|-------------------------|------|------|-------|-------|------|
| 厚度 $x/mm$               | 10.3 | 14.8 | 19.58 | 24.58 | 34.9 |
| 平均计数 $I_x$ /次           | 7008 | 6922 | 6652  | 6448  | 5918 |
| 减去本底的计数 $I_x/\text{mm}$ | 3445 | 3359 | 3089  | 2885  | 2355 |

表 3: Al 的实验数据

### 7.2 处理

将表  $(1)\sim(3)$  中的厚度 x 作为横坐标,减去本底的计数  $I_x$  的自然对数作为纵坐标,画图,并用最小二乘法进行线性拟合,求出拟合系数,如图 (4) 所示:

从图 (4) 中可以得出各样品的  $\gamma$  吸收系数和半吸收厚度  $d_{\frac{1}{2}}$ ,罗列如下:

1. 
$$\mu_{\rm Pb} = 0.103 {\rm mm}^{-1} = 1.03 {\rm cm}^{-1}; \ d_{\frac{1}{2}}({\rm Pb}) = 6.74 {\rm mm}.$$



图 4: 数据及拟合曲线

2. 
$$\mu_{\mathrm{Cu}} = 0.084 \mathrm{mm}^{-1} = 0.84 \mathrm{cm}^{-1}; \ d_{\frac{1}{2}}(\mathrm{Cu}) = 8.24 \mathrm{mm}_{\,\circ}$$

3. 
$$\mu_{\rm Al} = 0.016 {\rm mm}^{-1} = 0.16 {\rm cm}^{-1}; \ d_{\frac{1}{2}}({\rm Al}) = 43.67 {\rm mm}_{\,\circ}$$

作为参考,查阅网络资料  $^{[1]}$  得知 3 种材料对  $^{137}\mathrm{Cs}$  的  $^{660}\mathrm{keV}$  的  $^{\gamma}$  光子的吸收系数 (及计算得到的半吸收厚度) 的文献值分别为:

1. 
$$\mu_{\rm Pb} = 1.19 {\rm cm}^{-1}; \ d_{\frac{1}{2}}({\rm Pb}) = 5.82 {\rm mm}_{\,\circ}$$

2. 
$$\mu_{\text{Cu}} = 0.94 \text{cm}^{-1}$$
;  $d_{\frac{1}{2}}(\text{Cu}) = 7.37 \text{mm}$ .

3. 
$$\mu_{\rm Al} = 0.28 {\rm cm}^{-1}; \ d_{\frac{1}{2}}({\rm Al}) = 24.76 {\rm mm}_{\,\circ}$$

# 8 误差分析

- 9 思考题
- 9.1 设铅的  $\mu = 1.0/\mathbf{cm}$ , 铝的  $\mu = 0.2/\mathbf{cm}$ , 为了使  $\gamma$  辐射强度将为原来的 1/10, 所需防护层厚度各为多少厘米?
- 9.2 待测的  $\gamma$  光子的能量与入射光子的能量是否相同?为什么?
- 9.3 实验布置中,为什么要把放射源、准直孔、探测器的中心保持在同一直线上?
- 9.4 何为半吸收厚度? 其值与哪些因素有关?
- 9.5 为何铜、铝的吸收系数测量结果误差较大?

# 参考文献

- $[1] \ \mathtt{http://pleclair.ua.edu/PH255/templates/formal/formal.pdf}.$
- [2] 黄润生. 近代物理实验. 南京大学出版社, 2 edition, 2008.