Quantum Problems

- 1. Consider a particle of mass M moving in the spherically symmetric potential $V(r) = -A \alpha / \ell n (1 + \alpha r)$ in three spatial dimensions $(A, \alpha > 0)$.
- (a) Prove that the ground state energy of the system is strictly less than the corresponding ground state energy for the potential $V_c(r) = -A/r$ (for any $A, \alpha > 0$).
- (b) Assuming α to be "small", expand V(r) in a power series in α and calculate the ground state energy complete to order α^2 .
- **2.** Consider a particle moving in the potential V(x) in one spatial dimension, and let Π be the parity operator.
- (a) Assume that the time-evolving state of the system is such that $\langle \Pi \rangle (t_1) \neq \langle \Pi \rangle (t_2)$ for some times t_1 and t_2 . Show that V(x) is not a symmetric potential.
- (b) Assume instead that V(x) is symmetric and that $\langle \Pi \rangle (t) = 1$. If a measurement of the energy is performed at time t, show that the probability of finding the system in the first excited state is equal to zero.
- **3.** Consider a quantum system with a two-dimensional Hilbert space \mathcal{H} . Let $\{|1\rangle, |2\rangle\}$ be an orthonormal basis for \mathcal{H} , and let the time-dependent Hamiltonian operator for the system be given by $(\lambda > 0)$

$$H(t) = \lambda \left[\cos(\theta(t)) |1\rangle \langle 1| + \sin(\theta(t)) |1\rangle \langle 2| + \sin(\theta(t)) |2\rangle \langle 1| - \cos(\theta(t)) |2\rangle \langle 2| \right].$$

- (a) Assume that $\theta(t < 0) = 0$ and $\theta(t > 0) = \pi/2$. If the system is in the ground state at time $t = 0^-$, what is the probability that it will be found in the ground state upon an energy measurement at time $t = 0^+$?
- (b) Assume instead that $\theta(t)$ is "slowly-varying", and that $\theta(t_1) = 0$ and $\theta(t_2) = \pi/2$. If the system is in the state $|2\rangle$ at time t_1 , what is the state at time t_2 ?
- **4.** Let A and B be two Hermitian operators on a finite-dimensional Hilbert space \mathcal{H} .
- (a) Assume that A and B do not commute. Prove that the operator $C \equiv i[A, B]$ has (at least) one eigenvalue which is real and negative, and (at least) one eigenvalue which is real and positive. Is this result still true if \mathcal{H} is infinite-dimensional?
- (b) Assume instead that A and B commute. Prove that the operator AB has a zero eigenvalue if and only if either A or B has a zero eigenvalue. Is this result still true if \mathcal{H} is infinite-dimensional?
- **5.** The total angular momentum operator $\vec{J} = \vec{S}_1 + \vec{S}_2 + \vec{L}$ for a hydrogen atom has contributions from the spin of the electron (\vec{S}_1) , the spin of the proton (\vec{S}_2) , and the relative orbital angular between the electron and proton (\vec{L}) .
- (a) How many linearly independent states of the system are there with total angular momentum quantum number j? (Ignore radial excitations.)
- (b) Write down a maximal set of linearly independent states with j=0, each expressed as a linear combination of the states $|s_1, m_{s_1}\rangle \otimes |s_2, m_{s_2}\rangle \otimes |\ell, m_{\ell}\rangle$.