CS5489 - Machine Learning

Lecture 4c - Classification Summary

Prof. Antoni B. Chan

Dept. of Computer Science, City University of Hong Kong

Outline

- 1. Nonlinear classifiers
- 2. Kernel trick and kernel SVM
- 3. Ensemble Methods Boosting, Random Forests
- 4. Classification Summary

Feature Pre-processing

- Some classifiers, such as SVM and LR, are sensitive to the scale of the feature values.
 - feature dimensions with larger values may dominate the objective function.
- Common practice is to standardize or normalize each feature dimension before learning the classifier.
 - Two Methods...
- Method 1: scale each feature dimension so the mean is 0 and variance is 1.
 - $\tilde{x}_d = \frac{1}{8}(x_d m)$
 - s is the standard deviation of feature values.
 - m is the mean of the feature values.
- NOTE: the parameters for scaling the features should be estimated from the training set!
 - same scaling is applied to the test set.

```
In [5]: # using the iris data
    scaler = preprocessing.StandardScaler() # make scaling object
    trainXn = scaler.fit_transform(trainX) # use training data to fit scaling parameters
    testXn = scaler.transform(testX) # apply scaling to test data
```

In [7]: nfig1

- Method 2: scale features to a fixed range, -1 to 1.
 - ullet $ilde{x}_d=2*(x_d-min)/(max-min)-1$
 - max and min are the maximum and minimum features values.

```
In [8]: # using the iris data
           scaler = preprocessing.MinMaxScaler(feature range=(-1,1))
                                                                               # make scaling object
           trainXn = scaler.fit transform(trainX) # use training data to fit scaling parameters
           testXn = scaler.transform(testX)
                                                          # apply scaling to test data
In [10]: nfig2
                       unnormalized features
                                                            normalized features [-1,1]
Out[10]:
             4.5
                                                   1.00
                                                   0.75
             4 0
                                                   0.50
             3.5
                                                   0.25
           width
             3.0
                                                   0.00
             2.5
                                                  -0.25
             2.0
                                                   -0.50
                                                  -0.75
             1.5
                                                   1.00
                                                        -1.0
                                                                      0.0
                                                                                    1.0
                            petal length
                                                                   petal length
```

Data Representation and Feature Engineering

- How to represent data as a vector of numbers?
 - the encoding of the data into a feature vector should make sense
 - inner-products or distances calculated between feature vectors should be meaningful in terms of the data.
- · Categorical variables
 - Example: x has 3 possible category labels: cat, dog, horse
 - We could encode this as: x = 0, x = 1, and x = 2.
 - Suppose we have two data points: x = cat, x' = horse.
 - What is the meaning of x * x' = 2?

One-hot encoding

- encode a categorical variable as a vector of ones and zeros
 - if there are K categories, then the vector is K dimensions.
- Example:
 - x=cat → x=[1 0 0]
 - $x=dog \rightarrow x=[0\ 1\ 0]$
 - $x=horse \rightarrow x=[0\ 0\ 1]$

Binning

- encode a real value as a vector of ones and zeros
 - assign each feature value to a bin, and then use one-hot-encoding

Data transformations - polynomials

- · Represent interactions between features using polynomials
- Example:
 - 2nd-degree polynomial models pair-wise interactions

$$[x_1,x_2] o [x_1^2,x_1x_2,x_2^2]$$

Combine with other degrees:

```
egin{aligned} \circ \ [x_1,x_2] 
ightarrow [1,x_1,x_2,x_1^2,x_1x_2,x_2^2] \end{aligned}
```

Data transformations - univariate

- Apply a non-linear transformation to the feature
 - e.g., $x \rightarrow \log(x)$
 - useful if the dynamic range of x is very large

Unbalanced Data

- For some classification tasks that data will be unbalanced
 - many more examples in one class than the other.
- Example: detecting credit card fraud
 - credit card fraud is rare
 - o 50 examples of fraud, 5000 examples of legitimate transactions.

```
In [15]: udatafig
```


- Unbalanced data can cause problems when training the classifier
 - classifier will focus more on the class with more points.
 - decision boundary is pushed away from class with more points

In [17]: udatafig1

- Solution: apply weights on the classes during training.
 - weights are inversely proportional to the class size.

```
In [18]: clfw = svm.SVC(kernel='linear', C=10, class_weight='balanced')
clfw.fit(X, Y)

print("class weights =", clfw.class_weight_)

class weights = [0.55 5.5 ]
```

In [20]: udatafig2

Classifier Imbalance

• In some tasks, errors on certain classes cannot be tolerated.

- Example: detecting spam vs non-spam
 - non-spam should *definitely not* be marked as spam
 - o okay to mark some spam as non-spam

In [22]: udatafig3

Out[22]:

...

- Class weighting can be used to make the classifier focus on certain classes
 - e.g., weight non-spam class higher than spam class
 - classifier will try to correctly classify all non-spam samples, at the expense of making errors on spam samples.

In [25]: udatafig4

Out[25]:

•••

Classification Summary

- Classification task
 - Observation \mathbf{x} : typically a real vector of feature values, $\mathbf{x} \in \mathbb{R}^d$.
 - ullet Class y: from a set of possible classes, e.g., $\mathcal{Y}=\{0,1\}$
 - **Goal:** given an observation \mathbf{x} , predict its class y.

Name	Туре	Classes	Decision function	Training	Advantages	Disadvantages
Bayes' classifier	generative	multi- class	non-linear	estimate class-conditional densities $p(x y)$ by maximizing likelihood of data.	- works well with small amounts of data. - multi-class.	- depends on the data correctly fitting the class-conditional.

					 minimum probability of error if probability models are correct. 	
logistic regression	discriminative	binary	linear	maximize likelihood of data in $p(y x)$.	well-calibrated probabilities.efficient to learn.	- linear decision boundary sensitive to ${\cal C}$ parameter.
support vector machine (SVM)	discriminative	binary	linear	maximize the margin (distance between decision surface and closest point).	- works well in high-dimension. - good generalization.	- linear decision boundary sensitive to ${\cal C}$ parameter.
kernel SVM	discriminative	binary	non-linear (kernel function)	maximize the margin.	- non-linear decision boundary. - can be applied to non-vector data using appropriate kernel.	- sensitive to kernel function and hyperparameters. - high memory usage for large datasets
AdaBoost	discriminative	binary	non-linear (ensemble of weak learners)	train successive weak learners to focus on misclassified points.	non-linear decision boundary.can do feature selection.good generalization.	- sensitive to outliers.
XGBoost	discriminative	binary	non-linear (ensemble of decision trees)	train successive learners to focus on gradient of the loss.	- non-linear decision boundary. - good generalization.	- sensitive to outliers.
Random Forest	discriminative	multi-	non-linear (ensemble of	aggregate predictions over several decision trees, trained using different	- non-linear decision boundary. can do feature selection.	- sensitive to outliers.

Loss functions

- The classifiers differ in their loss functions, which influence how they work.
 - $z_i = y_i f(\mathbf{x}_i)$

In [27]: lossfig

Out[27]:

Regularization and Overfitting

- Some models have terms to prevent overfitting the training data.
 - this can improve *generalization* to new data.
- There is a parameter to control the regularization effect.
 - select this parameter using cross-validation on the training set.

In [29]: ofig

Out[29]:

Structural Risk Minimization

• A general framework for balancing data fit and model complexity.

• Many learning problems can be written as a combination of data-fit and regularization term:

$$f^* = \operatorname*{argmin}_f \sum_i L(y_i, f(\mathbf{x}_i)) + \lambda \Omega(f)$$

- assume f within some class of funcitions, e.g., linear functions $f(\mathbf{x}) = \mathbf{w}^T\mathbf{x} + b$.
- ullet L is the loss function, e.g., logistic loss.
- Ω is the regularization function on f, e.g., $||\mathbf{w}||^2$
- λ is the tradeoff parameter, e.g., 1/C.

Other things

- Multiclass classification
 - can use binary classifiers to do multi-class using 1-vs-rest formulation.
- · Feature normalization
 - normalize each feature dimension so that some feature dimensions with larger ranges do not dominate the optimization process.
- Unbalanced data
 - if more data in one class, then apply weights to each class to balance objectives.
- Class imbalance
 - mistakes on some classes are more critical.
 - reweight class to focus classifier on correctly predicting one class at the expense of others.

Applications

- · Web document classification, spam classification
- Face gender recognition, face detection, digit classification

Features

- · Choice of features is important!
 - using uninformative features may confuse the classifier.
 - use domain knowledge to pick the best features to extract from the data.

Which classifier is best?

• "No Free Lunch" Theorem (Wolpert and Macready)

"If an algorithm performs well on a certain class of problems then it necessarily pays for that with degraded performance on the set of all remaining problems."

• In other words, there is no best classifier for all tasks. The best classifier depends on the particular problem.