# 机器学习

第1次实验: 单变量线性回归

# 实验目的



02 使用线性回归模型进行预测

**03** 对预测结果进行评价

#### 实验内容

假设某披萨店的披萨价格和披萨直径之间有下列数据关系: 训练数据:

| 训练样本 | 直径 (英寸) | 价格 (美元) |
|------|---------|---------|
| 1    | 6       | 7       |
| 2    | 8       | 9       |
| 3    | 10      | 13      |
| 4    | 14      | 17.5    |
| 5    | 18      | 18      |

根据上面的训练数据,预测12英寸的披萨的可能售价。

### 实验内容

题目1: 直径为自变量X, 价格为因变量y, 画出二者的散点图, 并给出结论。

题目2: 根据现有的训练数据求线性回归模型,并画出拟合直线。:

可以使用sklearn库中的sklearn.linear model.LinearRegression对 象来

进行线性拟合,给出拟合直线方程

步骤:准备训练数据

创建模型对象

拟合

求线性方程的截距和斜率

画拟合直线

## 实验内容

题目3: 预测12英寸披萨的价格。(使用predict函数)

题目4:评价模型的准确率,分析模型预测结果。

测试数据:

| 测试数据 | 直径 (英寸) | 价格 (美元) |
|------|---------|---------|
| 1    | 8       | 8.5     |
| 2    | 9       | 11      |
| 3    | 11      | 12      |
| 4    | 12      | 15      |
| 5    | 16      | 18      |

## 模型准确率计算方法

#### A.手动计算方法:

假设hpyTrain代表针对训练数据的预测y值,hpyTest代表针对测试数据的预测y值

- / 训练数据残差平方和: ssResTrain = sum((hpyTrain yTrain) \*\* 2)
- ✓ 测试数据残差平方和: ssResTest = sum((hpyTest yTest) \*\* 2)
- √ 测试数据偏差平方和: ssTotTest = sum((yTest np.mean(yTest)) \*\* 2)
- R方: Rsquare = 1 ssResTest / ssTotTest

#### B. Python的LinearRegression对象提供的方法:

- / 训练数据残差平方和: model.\_residues
- R方: model.score(xTest, yTest)

#### 结果图



