0.1 Vektorer i rommet

I TM1 har vi sett på todimensjonale vektorer beskrevet ved hjelp av en x- og en y-akse. Når vi skal beskrive en **tredimensjonal vektor**, innfører vi i tillegg en z-akse som står normalt på de to andre aksene.

Figure 1: $\vec{u} = [2, 3, 4]$

0.1 Vektoren mellom to punkt

En vektor \vec{v} med startpunkt $A = (x_1, y_1, z_1)$ og endepunkt $B = (x_2, y_2, z_2)$ er gitt som

$$\vec{u} = [x_2 - x_1, y_2 - y_1, z_2 - z_1] \tag{1}$$

Eksempel

Finn vektoren \vec{u} mellom punktet A=(1,2,0) og B=(3,0,1).

Svar

$$\vec{u} = [3 - 1, 0 - 2, 1 - 0]$$

= $[2, -2, 1]$

Merk

Seksjon 0.2-0.4 handler om visse egenskaper og regneregler for tredimensjonale vektorer. Det er mange likheter ved todimensjonale og tredimensjonale vektorer, så i tilfeller hvor en regel mangler forklaring, er det fordi forklaringen for det todimensjonale tilfellet (som du finner i TM1) enkelt kan generaliseres til det tredimensjonale tilfellet.

0.2 Lengden til en vektor

La oss prøve å finne lengden til en vektor $\vec{u} = [x_1, y_1, z_1]$, som skissert i figur 2. Grafisk er lengden avstanden fra den butte enden til pilspissen.

Figure 2

Vi kan alltid lage en rettvinklet trekant med sidelengder $|\vec{u}|$, z_1 og $\hat{u} = \sqrt{x_1^2 + y_1^2}$. Av Pytagoras' setning har vi da at

$$\begin{aligned} |\vec{u}| &= \sqrt{\hat{u}^2 + z_1^2} \\ &= \sqrt{x_1^2 + y_1^2 + z_1^2} \end{aligned}$$

0.2 lengden til en vektor

Lengden $|\vec{u}|$ av en vektor $\vec{u} = [x_1, y_1, z_1]$ er gitt som

$$|\vec{u}| = \sqrt{x_1^2 + y_1^2 + z_1^2} \tag{2}$$

Eksempel

Finn lengden til vektoren $\vec{u} = [-2, 4, 1].$

Svar

$$|\vec{u}| = \sqrt{(-2)^2 + 4^2 + 1^2}$$
$$= \sqrt{4 + 16 + 1}$$
$$= \sqrt{21}$$

Finn lengden til vektoren $\vec{a} = [-9, 18, 27].$

Svar

Ved å bruke (6) sparer vi oss for kvadrater av store tall:

$$[-9, 18, 27] = 9[-1, 2, 3]$$

Lengden blir da (se oppgave ??)

$$|\vec{a}| = 9\sqrt{(-1)^2 + 2^2 + 3^2}$$
$$= 9\sqrt{14}$$

0.3 Regneregler og skalarprodukt

0.3 Regneregler for vektorer

Gitt vektorene $\vec{u} = [x_1, y_1, z_1]$ og $\vec{v} = [x_2, y_2, z_2]$, punktet $A = (x_0, y_0, z_0)$ og en konstant t. Da er

$$A + \vec{u} = (x_0 + x_1, y_0 + y_1, z_0 + z_1) \tag{3}$$

$$\vec{u} + \vec{v} = [x_1 + x_2, y_1 + y_2, z_1 + z_2] \tag{4}$$

$$\vec{u} - \vec{v} = [x_1 - x_2, y_1 - y_2, z_1 - z_2] \tag{5}$$

Summen eller differansen av \vec{u} og \vec{v} kan vi tegne slik:

0.4 Regneregler for vektorer

For vektorene \vec{u} , \vec{v} og \vec{w} , og et tall t, har vi at

$$t\vec{u} = [tx_1, ty_1, tz_1] \tag{6}$$

$$t(\vec{u} + \vec{v}) = t\vec{u} + t\vec{v} \tag{7}$$

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$
 (8)

$$\vec{u} - (\vec{v} + \vec{w}) = \vec{u} - \vec{v} - \vec{w}$$
 (9)

Et parallellogram er tegnet inn i figuren under.

Vis at midpunktet M til diagonalen AG også er midtpunktet til diagonalen CE.

Svar

Vektoren \overrightarrow{AG} er gitt som

$$\overrightarrow{AG} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

Dette betyr at

$$\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AG}$$

$$= \frac{1}{2}(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})$$

Vi kaller midpunktet til CE for M_1 . Da har vi at

$$\overrightarrow{CM_1} = \frac{1}{2}\overrightarrow{CE}$$
$$= \frac{1}{2}(\vec{c} - \vec{a} - \vec{b})$$

Videre er

$$\overrightarrow{AM_1} = \vec{a} + \vec{b} + \overrightarrow{CM_1}$$

$$= \vec{a} + \vec{b} + \frac{1}{2}(\vec{c} - \vec{a} - \vec{b})$$

$$= \frac{1}{2}(\vec{a} + \vec{b} + \vec{c})$$

$$= \overrightarrow{AM}$$

Dette må bety at $M = M_1$.

0.5 Skalarproduktet I

Skalar produktet av to vektorer $\vec{u} = [x_1, y_1, z_1]$ og $\vec{v} = [x_2, y_2, z_2]$ kan skrives som

$$\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2 + z_1 z_2 \tag{10}$$

For særtilfellet $\vec{u} \cdot \vec{u}$ er

$$\vec{u} \cdot \vec{u} = \vec{u}^2 \tag{11}$$

Eksempel

Finn skalar produktet av vektorene $\vec{a} = [1, 2, 3]$ og $\vec{b} = [4, -3, -2]$.

Svar

$$\vec{a} \cdot \vec{b} = 1 \cdot 4 + 2 \cdot (-3) + 3 \cdot (-2)$$

= -8

0.6 Skalarproduktet II

Skalarproduktet av to vektorer \vec{u} og \vec{v} er gitt som

$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos\theta \tag{12}$$

hvor $\theta = \angle(\vec{u}, \vec{v})$.

Eksempel 1

En vektor \vec{a} har lengde 3 og en vektor \vec{b} har lengde 2. De utspenner vinkelen 45°. Finn skalarproduktet $\vec{a} \cdot \vec{b}$.

Svar

$$\vec{a} \cdot \vec{b} = 3 \cdot 2\cos(45^\circ)$$
$$= 6 \cdot \frac{\sqrt{2}}{2}$$
$$= 3\sqrt{2}$$

Finn vinkelen v utspent av vektorene $\vec{a} = [-5, 4, -3]$ og $\vec{b} = [-2, 5, -5].$

Svar

Vi starter med å finne lengdene og skalarproduktene av vektorene:

$$|\vec{a}| = \sqrt{(-5)^2 + 4^2 + (-3)^2}$$

$$= \sqrt{50}$$

$$= 5\sqrt{2}$$

$$|\vec{b}| = \sqrt{(-2)^2 + 5^2 + (-5)^2}$$

$$= \sqrt{54}$$

$$= 3\sqrt{6}$$

$$\vec{a} \cdot \vec{b} = (-5) \cdot (-2) + 5 \cdot 4 + (-3) \cdot (-5)$$

$$= 45$$

Videre har vi at

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos v$$

$$45 = 5\sqrt{2} \cdot 3\sqrt{6} \cos v$$

$$\cos v = \frac{5 \cdot 9}{5 \cdot 3\sqrt{12}}$$

$$= \frac{5 \cdot 9}{4 \cdot 3 \cdot 2\sqrt{3}}$$

$$= \frac{3}{2\sqrt{3}}$$

$$= \frac{3}{2\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}$$

$$= \frac{\sqrt{3}}{2}$$

Siden $\cos v = \frac{\sqrt{3}}{2}$, er $v = 30^{\circ}$.

0.7 Regneregler for skalarproduktet

For vektorene \vec{u} , \vec{v} og \vec{w} har vi at

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$
$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$
$$(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2$$

Eksempel

Forkort uttrykket

$$\vec{b} \cdot (\vec{a} + \vec{c}) + \vec{a} \cdot (\vec{a} + \vec{b}) + \vec{b}^2$$

når du vet at $\vec{b} \cdot \vec{c} = 0$.

Svar

$$\begin{split} \vec{b} \cdot (\vec{a} + \vec{c}) + \vec{a} \cdot (\vec{a} + \vec{b}) + \vec{b}^2 &= \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{c} + \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b}^2 \\ &= \vec{a}^2 + 2\vec{a} \cdot \vec{b} + \vec{b}^2 \\ &= \left(\vec{a} + \vec{b}\right)^2 \end{split}$$

0.4 Vinkelrette og parallelle vektorer

0.8 Vinkelrette vektorer

To vektorer \vec{u} og \vec{v} står vinkelrett på hverandre hvis skalarproduktet av dem er null:

$$\vec{u} \cdot \vec{v} = 0 \iff \vec{u} \perp \vec{v} \tag{13}$$

Eksempel 1

Sjekk om vektorene $\vec{a} = [5, -3, 2]$ og $\vec{b} = [2, 4, 1]$ er ortogonale.

Svar

$$\vec{a} \cdot \vec{b} = [5, -3, 2] \cdot [2, 4, 1]$$

= 10 - 12 + 2
= 0

Altså er $\vec{a} \perp \vec{b}$.

0.9 Parallelle vektorer

To vektorer $\vec{u} = [x_1, y_1, z_1]$ og $\vec{v} = [x_2, y_2, z_2]$ har vi at

$$\frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2} \iff \vec{u} \parallel \vec{v} \tag{14}$$

Alternativt, for et tall t har vi at

$$\vec{u} = t\vec{v} \iff \vec{u} \parallel \vec{v} \tag{15}$$

Gitt vektorene $\vec{u} = [1, 2, 3]$ og $\vec{v} = [3, 2(1 - t), 11 + t]$, finn t slik at \vec{u} og \vec{v} er parallelle.

Svar

Vi starter med å kreve at forholdet mellom korresponderende komponenter er likt. Vi dividerer x- og y-komponenten i \vec{v} med henholdsvis x- og y-komponenten i \vec{u} :

$$\frac{3}{1} = \frac{2(1-t)}{2}$$
$$3 = 1-t$$
$$t = -2$$

Siden forholdet mellom de to x-komponentene og de to y-koordinatene er 3, må dette også stemme for z-koordinatene for at \vec{u} og \vec{v} skal være parallelle:

$$\frac{11+t}{3} = \frac{11+(-2)}{3}$$
$$= 3$$

Altså er $\vec{u} \parallel \vec{v}$ hvis t = -2.

Eksempel 2

Finn s og t slik at vektorene $\vec{u} = [-1, 2s, 4]$ og $\vec{v} = [3, 18, 4t + 4]$ er parallelle.

Svar

Vi observerer at forholdet mellom x-komponeten i \vec{v} og \vec{u} er $\frac{3}{-1} = -3$. Hvis $\vec{u} \parallel \vec{v}$, er altså $\vec{v} = -3\vec{u}$. Vi kan derfor sette opp følgende ligning for s:

$$18 = -3(2s)$$
$$s = -3$$

Videre må vi ha at

$$4t + 4 = -3(4)$$
$$t = -4$$

0.5 Determinanter

0.103×3 determinanter

Determinanten $\det(\vec{u}, \vec{v}, \vec{w})$ av tre vektorer $\vec{u} = [a, b, c]$, $\vec{v} = [d, e, f]$ og $\vec{w} = [g, h, i]$ er gitt som

$$\det(\vec{u}, \vec{v}, \vec{w}) = \begin{vmatrix} a & b & c \\ d & e & f \\ h & i & j \end{vmatrix}$$

$$= a \begin{vmatrix} e & f \\ i & j \end{vmatrix} - b \begin{vmatrix} d & f \\ h & j \end{vmatrix} + c \begin{vmatrix} d & e \\ h & i \end{vmatrix}$$

$$= a(ej - fi) - b(dj - fh) + c(di - eh) \tag{17}$$

Eksempel

Finn $\det(\vec{a}, \vec{b}, \vec{c})$ til vektorene $\vec{a} = [1, -2, 2], \vec{b} = [2, 2, -3]$ og $\vec{c} = [4, -1, 2].$

Svar

Vi skal altså regne ut følgende:

$$\begin{vmatrix} 1 & -2 & 2 \\ 2 & 2 & -3 \\ 4 & -1 & 2 \end{vmatrix}$$

Å gå rundt å huske (17) er ikke bare bare, så vi skal her bruke et triks som gjør det enklere for oss å komme fram til høyresiden i (16).

Vi starter med å finne tallet i første rad og kolonne, i vårt tilfelle 1. Deretter danner vi en 2×2 determinant ved å utelukke raden og kolonnen dette tallet tilhører:

Når vi
 ganger 1 med denne determinanten, har vi funnet det

første leddet fra (16):

$$1 \cdot \begin{vmatrix} 2 & -3 \\ -1 & 2 \end{vmatrix}$$

Vi går så over til tallet i første rad og andre kolonne, altså -2, og finner den tilhørende 2×2 determinanten:

Når vi setter et minustegn foran -2 ganger denne determinanten, har vi funnet andre ledd fra (16):

$$-(-2) \cdot \begin{vmatrix} 2 & -3 \\ 4 & 2 \end{vmatrix}$$

Vi avslutter med determinanten vi får ved å utelukke første rad og tredje kolonne:

Ganger vi denne med tallet som står i både raden og kolonnen som er utelatt, altså 2, får vi siste ledd i (16):

$$2 \cdot \begin{vmatrix} 2 & 2 \\ 4 & -1 \end{vmatrix}$$

Vi har nå funnet alle ledd vi trenger og kan da skrive

$$\det(\vec{a}, \vec{b}, \vec{c}) = 1 \cdot \begin{vmatrix} 2 & -3 \\ -1 & 2 \end{vmatrix} - (-2) \cdot \begin{vmatrix} 2 & -3 \\ 4 & 2 \end{vmatrix} + 2 \cdot \begin{vmatrix} 2 & 2 \\ 4 & -1 \end{vmatrix}$$
$$= 2 \cdot 2 - (-3) \cdot (-1) + 2(2 \cdot 2 - (-3) \cdot 4) + 2(2 \cdot (-1) - 2 \cdot 4)$$
$$= 13$$

0.6 Vektorproduktet

Vi har sett hvordan vi ved skalarproduktet kan sjekke om to vektorer \vec{u} og \vec{v} står normalt på hverandre, men ofte kan vi isteden være interessert i å finne en vektor som står normalt på begge disse. En slik vektor får vi ved **vektorproduktet** av \vec{u} og \vec{v} , som vi skriver som $\vec{u} \times \vec{v}$.

0.11 Vektorproduktet

Vektorpruduktet av vektorene $\vec{u} = [a, b, c]$ og $\vec{v} = [d, e, f]$ er gitt som

$$\vec{u} \times \vec{v} = [bf - ce, -(af - cd), ae - bd] \tag{18}$$

Eventuelt kan man skrive

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ a & b & c \\ d & e & f \end{vmatrix}$$
 (19)

hvor $\vec{e}_x = [1, 0, 0], \vec{e}_y = [0, 1, 0]$ og $\vec{e}_z = [0, 0, 1].$

Videre har vi at¹

$$\vec{u} \times \vec{v} \cdot \vec{u} = 0 \tag{20}$$

$$\vec{u} \times \vec{v} \cdot \vec{v} = 0 \tag{21}$$

$$|\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}|\sin\angle(\vec{u}, \vec{v}) \tag{22}$$

Språkboksen

Et vektorprodukt kalles også et kryssprodukt.

Merk

For skalarproduktet får vi en skalar (et tall), mens vi for vektorproduktet får en vektor. Det er derfor veldig viktig å skille symbolet \cdot fra \times .

¹Kryssprodukt må regnes ut før skalarprodukt.

Gitt vektorene $\vec{a} = [-3, 2, 3]$ og $\vec{b} = [2, -2, 1]$.

- a) Finn $\vec{a} \times \vec{b}$.
- b) Vis at vektoren du fant i a) står normalt på både \vec{a} og \vec{b} .

Svar

a) Vi bruker uttrykket fra (19), og regner ut følgende 3×3 determinant:

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ -3 & 2 & 3 \\ 2 & -2 & 1 \end{vmatrix}$$

Vi får da at (se gjerne tilbake til eksempelet på side 12)

$$\begin{aligned} \vec{a} \times \vec{b} &= \vec{e}_x \begin{vmatrix} 2 & 3 \\ -2 & -1 \end{vmatrix} - \vec{e}_y \begin{vmatrix} -3 & 3 \\ 2 & 1 \end{vmatrix} + \vec{e}_z \begin{vmatrix} -3 & 2 \\ 2 & -2 \end{vmatrix} \\ &= \vec{e}_x (2 \cdot 1 - 3 \cdot (-2)) - \vec{e}_y (-3 \cdot 1 - 3 \cdot 2) + \vec{e}_z (-3 \cdot (-2) - 2 \cdot 2) \\ &= 8\vec{e}_x + 9\vec{e}_y + 2\vec{e}_z \\ &= [8, 9, 2] \end{aligned}$$

b) To vektorer står normalt på hverandre dersom skalarproduktet av dem er 0:

$$[8, 9, 2] \cdot [-3, 2, 3] = -24 + 18 + 6 = 0$$

$$[8,9,2]\cdot[2,-2,\!1]=16-18+2=0$$

0.12 Regneregler for vektorproduktet

For vektorene \vec{u}, \vec{v} og
 \vec{w} og en konstant thar vi at

$$\vec{u} \times \vec{v} = -\vec{v} \times \vec{u} \tag{23}$$

$$\vec{u} \times (t\vec{v}) = t(\vec{u} \times \vec{v}) \tag{24}$$

$$\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w} \tag{25}$$

$$\vec{u} \times \vec{v} \cdot \vec{w} = \vec{w} \times \vec{u} \cdot \vec{v} \tag{26}$$

0.6.1 Vektorprodukt som areal og volum

En anvendelse av vektorproduktet (og skalarproduktet) er å finne arealet og volumet av noen geometriske former som kan sies å være utspent av vektorer. Med dette mener vi at to eller tre vektorer som starter i samme utgangspunkt, utgjør grunnlaget for en trekant, et parallellogram, et parallellepiped, en pyramide eller et tetraeder.

Figure 3: Geometriske former utspent av vektorene \vec{u} , \vec{v} og \vec{w} .

0.13 Vektorproduktet som areal og volum

Arealet Aav et parallellogram utspent av vektorene \vec{u} og \vec{v} er gitt som

$$A = |\vec{u} \times \vec{v}| \tag{27}$$

Arealet Aav en trekant utspent av vektorene \vec{u} og \vec{v} er gitt som

$$A = \frac{1}{2}|\vec{u} \times \vec{v}|\tag{28}$$

Volumet V av parallellepipedet utspent av vektorene $\vec{u},\,\vec{v}$ og \vec{w} er gitt som

$$V = |\vec{u} \times \vec{v} \cdot \vec{w}| \tag{29}$$

Volumet V av pyramiden utspent av vektorene $\vec{u},\,\vec{v}$ og \vec{w} er gitt som

$$V = \frac{1}{3} |\vec{u} \times \vec{v} \cdot \vec{w}| \tag{30}$$

Volumet V til tetraedet utspent av vektorene $\vec{u},\,\vec{v}$ og \vec{w} er gitt som

$$V = \frac{1}{6} |\vec{u} \times \vec{v} \cdot \vec{w}| \tag{31}$$

Forklaringer

0.9 Parallelle vektorer (forklaring)

Ligning (27) forteller oss at $|\vec{u} \times \vec{v}|$ tilsvarer arealet av parallellogramet utspent av \vec{u} og \vec{v} . Dette arealet kan bare ha verdien 0 hvis \vec{u} og \vec{v} er parallelle, og den eneste vektoren med lengde 0 er nullvektoren [0, 0, 0]. Kombinerer vi dette kravet med (0.11), får vi at

$$[y_1z_2 - z_1y_2, -(x_1z_2 - z_1x_2), x_1y_2 - y_1x_2] = [0, 0, 0]$$

Uttrykket over gir oss tre ligninger

$$y_1 z_2 - z_1 y_2 = 0$$

$$x_1 z_2 - z_1 x_2 = 0$$

$$x_1 y_2 - y_1 x_2 = 0$$

som vi kan omskrive til

$$\frac{y_1}{y_2} = \frac{z_1}{z_2}$$

$$\frac{x_1}{x_2} = \frac{z_1}{z_2}$$

$$\frac{y_1}{y_2} = \frac{z_1}{z_2}$$
 $\frac{x_1}{x_2} = \frac{z_1}{z_2}$ $\frac{x_1}{x_2} = \frac{y_1}{y_2}$

Til slutt kan vi samle alle tre til én ligning:

$$\frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2}$$

0.11 Vektorproduktet (forklaring)

Hensikten med vektorproduktet er å innføre en regneoperasjon som gir oss en vektor $\vec{w} = [x, y, z]$ som står normalt på to andre vektorer $\vec{u} = [a, b, c]$ og $\vec{v} = [d, e, f]$. For at dette skal være sant, vet vi av (13) at

$$\vec{u} \cdot \vec{w} = 0$$

$$ax + by + cz = 0$$

$$ax + by = -cz$$
(32)

$$\vec{v} \cdot \vec{w} = 0$$

$$dx + ey + fz = 0$$

$$dx + ey = -fz$$
(33)

Vi har altså to forskjellige ligninger som kan hjelpe oss med å finne de tre ukjente størrelsene x, y og z. Dette kalles at man har en ligning med én fri variabel. Hvis vi velger z som fri variabel betyr dette kort fortalt at vi kan finne et uttrykk for x og y som vil oppfylle (32) og (33) for et hvilket som helst valg av z.

Vi starter med å finne et uttrykk for x. Først multipliserer vi (33) med $\frac{b}{e}$, og subtraherer deretter venstre- og høyresiden fra denne ligningen med henholdsvis venstre- og høyresiden fra ligning (32):

$$ax + by - \left(\frac{bdx}{e} + by\right) = -cz - \left(-\frac{bfz}{e}\right)$$
$$ax - \frac{bdx}{e} = -cz - \left(-\frac{bfz}{e}\right)$$

Hvis vi videre multipliserer med e, og deretter antar at $ae-bd \neq 0$, får vi at

$$aex - bdx = bfz - cez$$

$$(ae - bd)x = (bf - ce)z$$

$$x = \frac{bf - ce}{ae - bd}z$$
(34)

Med omtrent samme framgangsmåte og identisk antakelse finner vi et uttrykk for y:

$$ax + by - \left(ax + \frac{aey}{d}\right) = -cz - \left(-\frac{afz}{d}\right)$$

$$(bd - ae)y = (af - cd)z$$

$$y = \frac{af - cd}{bd - ae}z$$
(35)

Som nevnt kan z velges fritt, og vi ser av (34) og (35) at valget z = ae - bd gir oss følgende fine uttrykk:

$$x = bf - ce$$

$$y = -(af - cd)$$

$$z = ae - bd$$

Dette samsvarer med (0.11).

For å komme fram til likhetene over har vi antatt at $z = ae - bd \neq 0$, men det er fristende å sjekke om uttrykkene vi nettopp har funnet oppfyller (32) og (33) også når z = ae - bd = 0:

$$ax + by = 0$$

$$a(bf - ce) + -b(af - cd) = 0$$

$$-(ae - bd)c = 0$$

$$0 = 0$$

$$dx + ey = 0$$

$$d(bf - ce) - e(af - cd) = 0$$

$$-(ae - db)f = 0$$

$$0 = 0$$

Med z som fri variabel er altså (32) og (33) oppfylt for alle z = ae - bd, dermed har vi funnet et uttrykk som alltid vil gi oss en vektor \vec{w} som er ortogonal med både \vec{u} og \vec{v} .

Så lenge man bruker uttrykkene fra (34) og (35), vil \vec{w} være parallell med vektoren gitt ved (0.11), uansett valg av z. I tillegg kan vi få uttrykket fra (0.11) også om vi velger x eller y som fri variabel (det får bli opp til leseren å konstatere disse to påstandene). Av dette kan vi konkludere med at alle vektorer som står ortogonalt på både \vec{u} og \vec{v} er parallelle med vektoren gitt ved (0.11).

Lengden til vektorproduktet

For å komme fram til det vi ønsker, skal vi benytte oss av Lagranges identitet¹. Denne sier at vi for to vektorer \vec{v} og \vec{u} har at

$$|\vec{v}\times\vec{u}|^2=|\vec{v}|^2|\vec{u}|^2-(\vec{v}\cdot\vec{u}\,)^2$$
 (Lagranges identitet)

Ved å anvende (12) og (??) kan vi skrive

$$\begin{aligned} |\vec{v} \times \vec{u}|^2 &= |\vec{v}|^2 |\vec{u}|^2 - |\vec{v}|^2 |\vec{u}|^2 \cos^2 \theta \\ |\vec{v} \times \vec{u}|^2 &= |\vec{v}|^2 |\vec{u}|^2 (1 - \cos^2 \theta) \\ |\vec{v} \times \vec{u}| &= |\vec{v}| |\vec{u}| \sin \theta \end{aligned}$$

¹Den spesielt interesserte finner utledningen for identieten i vedlegg ??

0.13 Vektorproduktet som areal og volum (forklaring)

Figure 4: Parallellogram med grunnlinje $|\vec{u}|$ og høyde $|\vec{v}|\sin\theta$.

Arealet av et paralellogram er gitt som grunnlinja ganger høyden. For et parallellogram utspent av vektorene \vec{u} og \vec{v} , tilsvarer dette produktet $|\vec{u}||\vec{v}|\sin\theta$, som er det samme som lengden $|\vec{u}\times\vec{v}|$. Arealet av trekanten utspent av \vec{u} og \vec{v} er halvparten av arealet av parallellogrammet.

Vektorproduktet som volum

Figure 5

Volumet V av et parallellepidet tilsvarer grunnflaten A ganger høyden h:

I figur 5 er grunnflaten A utspent av vektorene \vec{v} og \vec{v} , og vi vet fra (27) at

$$A = |\vec{u} \times \vec{v}| \tag{37}$$

La θ være vinkelen mellom $\vec{u} \times \vec{v}$ og \vec{w} . Hvis $90^{\circ} \ge \theta \ge 0$, får vi en figur som skissert i figur 6a. Da er høyden h gitt som

$$h = |\vec{w}| \cos \theta$$

Er derimot 180° $\geq \theta > 90^{\circ},$ får vi en figur som skissert i figur 6b. Da er

$$h = -|\vec{w}|\cos\theta$$

For alle $\theta \in [0^{\circ}, 180^{\circ}]$ kan vi derfor skrive

$$h = \left| |\vec{w}| \cos \theta \right| \tag{38}$$

Av (12), (36), (37) og (38), og har vi derfor at

$$\begin{aligned} |\vec{u} \times \vec{v} \cdot \vec{w}| &= ||\vec{u} \times \vec{v}||\vec{v}| \cos \theta| \\ &= Ah \\ &= V \end{aligned}$$

Av klassisk geometri har vi videre at

- volumet av pyramiden utspent av \vec{u} og \vec{v} er $\frac{1}{3}$ av volumet av parallellepipedet.
- volumet av tetraedet utspent av \vec{u} og \vec{v} er $\frac{1}{6}$ av volumet av parallellepipedet.