

Contents

- The characteristics of mobile communications
- CDMA migration from 2G to 3G
- **CDMA** spectrum usage
- **CDMA Codes**
- **CDMA Channels**
- The advantage of CDMA
- cdma2000 -1x

Characteristics of Mobile Communication

- Mobility:
 - flexible and convenient , global personal communication
- Poor environment and conditions :
 - Co-channel interference, multi-path(space and time)shadow effect and delay, power change and other noise
- Multiple MS and channels :
 - Interference, near and far effect
- Limit of frequency resources
- Reliability is important
 - registration, handoff, switching

Communications System

2G		3G Digital cellular	
Digital co	ellular		
Voice /data		Vioce / high speed data	
CDMA	1XRtt	CDMA2000	
GSM	GPRS	W_CDMA	
1992	1999	2001 2003	
	Digital co	CDMA 1XRtt GSM GPRS	

AMPS: Advanced Mobile Phone System

TACS: Total Access Communication System

GPRS: General Packet Radio Services

CDMA Evolution Paths

CDMA-Its History & Status

- 1993, the first CDMA standard IS-95 was issued;
- ➤ In 1995, CDMA technology was put into commercialization in Hong Kong and America on large scale;
- ➤ In April, 2001, China Unicom began to construct CDMA networks—the largest in the world (about 70Million line now);
- ➤ At present, CDMA commercial networks are established in about 40 countries or area, almost 20% of all users in the world.

CDMA Subscriber Growth History: Sept.1997 through Sept.2003

CDMA 800 MHz Cellular Spectrum Usage

- All CDMA RF carriers are 1.25 MHz. wide
 - Can serve ~20 users /8 kb vocoder

CDMA PCS 1900 MHz Spectrum Usage

Multiple Access

Since the beginning of telephony and radio, system operators have tried to squeeze the maximum amount of traffic over each circuit.

- Types of Media -- Examples:
 - Twisted pair copper
 - Coaxial cable
 - Fiber optic cable
 - Air interface (radio signals)
- Advantages of Multiple Access
 - -Increased capacity: serve more users
 - -fewer media can carry the trafficReduced capital requirements since
 - –Decreased per-user expense
 - Easier to manage and administer

Each pair of users enjoys a dedicated, private circuit through the transmission medium, unaware that the other users exist

Multiple Access Schemes

FDMA Frequency Division Multiple Access

- Each user on a different frequency
- A channel is a frequency
- TDMA Time Division Multiple Access
 - Each user on a different window period in time ("time slot")
 - A channel is a specific time slot on a specific frequency
- CDMA Code Division Multiple Access
 - A channel is a unique code pattern
 - Each user uses the same frequency all the time, but mixed with different distinguishing code patterns

Frequency Reuse

CDMA (IS-95) frequency reuse = 1

TDMA (IS-136) frequency reuse = 7

Terms & Definitions

DMA Channel or CDMA Carrier or CDMA Frequency

- Duplex channel made of two 1.25 MHz-wide bands of electromagnetic spectrum, one for Base Station to Mobile Station communication (called the <u>FORWARD LINK</u> or the <u>DOWNLINK</u>) and another for Mobile Station to Base Station communication (called the <u>REVERSE LINK</u> or the <u>UPLINK</u>)
- In 800 Cellular these two simplex 1.25 MHz bands are 45 MHz apart
- In 1900 MHz PCS they are 80 MHz apart

CDMA Forward & Reverse Channel

1.25 MHz Forward / Reverse Link

CDMA Code Channel

- Each individual stream of 0's and 1's contained in either the CDMA Forward Channel or in the CDMA Reverse Channel
- Code Channels are characterized (made unique) by mathematical codes
- Code channels in the forward link: Pilot, Sync, Paging and Forward Traffic channels
- Code channels in the reverse link: Access and Reverse Traffic channels

Walsh Codes

- 64 Sequences, each 64 chips long
 - A chip is a binary digit (0 or 1)
- Each Walsh Code is Orthogonal to all other Walsh Codes
 - This means that it is possible to recognize and therefore extract a particular Walsh code from a mixture of other Walsh codes which are "filtered out" in the process
 - Two same-length binary strings are orthogonal if the result of XORing them has the same number of 0s as 1s

Short PN Sequences

The two Short PN Sequences, I and Q, are 32,768 chips long

- Together, they can be considered a two-dimensional binary "vector" with distinct I and Q component sequences, each 32,768 chips long
- Each Short PN Sequence (and, as a matter of fact, any sequence) correlates with itself perfectly if compared at a timing offset of 0 chips
- Each Short PN Sequence is special: Orthogonal to a copy of itself that has been offset by any number of chips (other than 0)

The Long PN Sequence

Modulo-2 Addition

- Each mobile station uses a unique User Long Code Sequence generated by applying a mask, based on its 32-bit ESN, to the 42-bit Long Code Generator which was synchronized with the CDMA system during the mobile station initialization.
- Generated at 1.2288 Mcps, this sequence requires 41 days, 10 hours, 12 minutes and 19.4 seconds to complete.

Coding Process on CDMA Forward Channels

CDMA Code Summary

Type of Sequence	How Many	Length	Special Properties	Forward Link Function	Reverse Link Function
Walsh Codes	64	64 chips 1/19,200 sec.	Mutually Orthogonal	User identity within cell's signal	Orthogonal Modulation (information carrier)
Short PN Sequences	2	32,768 chips 26-2/3 ms 75x in 2 sec.	Orthogonal with itself at anytime shift value except 0	Distinguish Cells & Sectors	Quadrature Spreading (Zero offset)
Long PN Sequences	1	2 ⁴² chips ~41 days	near-orthogonal if shifted	Data Scrambling to avoid strings of 1's or 0's	Distinguish users

CDMA Advantages

Spread Spectrum

- Soft & Softer Handoff
- Rake Receiver
- Variable Rate Vocoder
- High quality voice
- Power Control
- Coverage
- Simple Network Planning
- Green Handset
- Smooth migration to 3G and the operator's benefit is protected at the most

Spread Spectrum (1)

After despreading

Before despreading

Spread Spectrum(2)

Spreading Spectrum (3) "Principle of Using Multiple Codes"

DESTINATION

Spread-Spectrum Chip Streams

Spreading Spreading Spreading Sequence Sequence

À

В

C

Spreading Spreading Spreading Sequence Sequence Sequence

C

8

1

Spread Spectrum (4)

Advantages of Spread Spectrum

- ✓ Avoid interference arising from jamming signal or multi-path effects.
- ✓ Covert operation:Difficult to detect
- ✓ Achieve Privacy: Difficult to demodulate, Noise like signal.
- ✓ Impossible to Eavesdrops on the signal expect using the same PN sequence

Soft & Softer Handoff

Connection first and disconnection afterwards in handoff.
High quality of service and effective reduction of call drops.

Soft handoff: adjacent cells of the same frequency.

Softer handoff: same BS & frequency, between different sectors.

Rake Receiver (1)

Rake Receiver (2)

Rake receiver can isolate multipath spaced > 1 chip length.

Rake Receiver (3)

- Handset uses combined outputs of the three traffic correlators—rake fingers
- Each finger can independently recover a particular PN offset and Walsh code
- Fingers can targeted on delayed multipath reflections, or even on different BTSs
- Searcher continuously checks pilots

Intelligent Vocoder

Variable Rate Vocoding & Multiplexing

- Vocoders compress speech, reduce bit rate, greatly increasing capacity
- CDMA uses a superior Variable Rate Vocoder
 - full rate during speech
 - low rates in speech pauses
 - increased capacity
 - more natural sound
- Voice, signaling, and user secondary data may be mixed in CDMA frames

Messaging)

data)

activation, etc)

High Quality Voice(1)

Voice quality

High Quality Voice(2)

Spread spectrum

Voice activity Technology

High quality Voice??

Rake receiver control,

Echo Cancellation

Power Control

✓ Autonomous power control

On the **Uplink** tells the MS to vary it's transmitted power inversely with the power level it receive from the BS.

✓ Direct power control

On the **Uplink** measures Eb/No at the base station and sends power Control Bits over the Downlink to the MS to instruct the MS to either increase or decrease its transmit power.

✓ Downlink power control

Attempts to use minimum power needed to meet to a Frame Error Rate (FER) threshold at the MS s.

Coverage

The coverage radius is 2 times of standard GSM.

- Coverage of 1000 km²: GSM
 needs 200 BTS 's, while CDMA
 requires only 50.
- Under the same coverage conditions, the number of BTS 's is greatly decreased

Simple project design & convenient capacity expansion

Green Handset

Low transmission power:

Accurate power control, handoff control, voice activation

	Mean	Max
Systems	transmission	transmission
	power	power
GSM	125 mW	2W
CDMA	2 mW	200mW

Functions of the CDMA Reverse Channels

There are two types of CDMA Reverse Channels:

- TRAFFIC CHANNELS are used by individual users during their actual calls to transmit traffic to the BTS.
- ACCESS CHANNELS are used by mobile stations not yet in a call to transmit registration requests, call setup requests, page responses, order responses, and other signaling information

Coding Process on CDMA Reverse Channels

Each mobile is uniquely identified by the User Long Code, which it generates internally.

- All mobile stations transmit simultaneously on the same 1.25 MHz wide frequency band.
- Any nearby BTS can dedicate a channel element to the mobile station and successfully extract its signal.
- Mobile stations also use the other CDMA spreading sequences, but not for channel-identifying purposes.
- Short PN Sequences are used to achieve phase modulation.
- Walsh Codes are used as Orthogonal Modulation to give ultra-reliable communications recovery at the BTS.

- Increased mobile standby battery life (via Quick Paging Channel)
- Total backward compatibility to reuse switch and call processing features
- 2-3 dB better coverage
- High speed 153.6 kbps packet data capabilities
- cdma2000 1x = 1.25 MHz Radio Transmission Technology

IS-95 mobiles are supported in the IS-2000 standard for 1xRTT:

- No need to change any RF infrastructure
- Capacity improvements will not be realized until most IS-95 subscribers disappear

Channel List: 1xRTT vs. IS-95

IS-95B built on the IS-95A channels, and introduced two new channels

- Fundamental channel was the same as IS-9A traffic channel
- Supplemental code channels assigned to support rates above 14.4Kbps
- IS-2000 1xRTT continue to build on the IS-95 channels
 - IS-95 channels continue to be supported in IS-2000 to support IS-95 mobiles

138	Forward	Reverse
1000	Pilot channel	
IS-95A	Sync channel	
10-33A	Paging channel	Access channel
	Forward Traffic Channel	Reverse Traffic Channel
IS- 95B	Fundamental channel	Fundamental channel
13-93D	Supplemental Code channel (F-SCCH)	Supplemental Code channel (R-SCCH)
	Supplemental channel (F-SCH)	Supplemental channel (R-SCH)
1xRTT	Quick Paging channel (F-QPCH)	Reverse Pilot channel (R-PICH)

Discriminating Among Forward Code Channels

- A Mobile Station receives a Forward Channel from a sector in a Base Station.
- The Forward Channel carries a composite signal of up to 64 forward code channels.
- Some code channels are traffic channels and others are overhead channels.
- A set of 64 mathematical codes is needed to differentiate the 64 possible forward code channels.
 - The codes in this set are called "Walsh Cod

Discriminating Among Base Station

Up to 64 Code Channels

- A mobile Station is surrounded by Base Stations, all of them transmitting on the same CDMA Frequency.
- Each Sector in each Base Station is transmitting a Forward Traffic Channel containing up to 64 forward code channels.
- A Mobile Station must be able to discriminate between different Sectors of different Base Stations.
- Two binary digit sequences called the I and Q Short PN Sequences (or Short PN Codes) are defined for the purpose of identifying sectors of different base stations.
- These Short PN Sequences can be used in 512 different ways in a CDMA system. Each one of them constitutes a mathematical code which can be used to identify a particular sector.

Example of cdma2000 1x Network

HLR Home Location Register (subscriber database)

