

DTIC FILE COPY

(2)

TECHNICAL REPORT BRL-TR-3097

BRL

AD-A222 590

NEW PRESSURE GRADIENT EQUATIONS FOR
LUMPED-PARAMETER INTERIOR BALLISTIC CODES

FREDERICK W. ROBBINS
RONALD D. ANDERSON
PAUL S. GOUGH

MAY 1990

DTIC
ELECTED
JUN 12 1990
S B D
Co

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

90 06 11 059

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0108

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0108), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
	May 1990	Final Jan 86-Jan 90	
4. TITLE AND SUBTITLE		5. FUNDING NUMBERS	
New Pressure Gradient Equations for Lumped-Parameter Interior Ballistic Codes		PR: 1L161102AH43	
6. AUTHOR(S)			
Frederick W. Robbins, Ronald D. Anderson and Paul S. Gough			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING AGENCY REPORT NUMBER	
USA Ballistic Research Laboratory ATTN: SLCBR-DD-T Aberdeen Proving Ground, MD 21005-5066		BRL-TR-3097	
11. SUPPLEMENTARY NOTES The authors wish to thank T.S. Raab and K.A. Cieslewicz for performing the many required computer runs and the preparation of many plots. We also acknowledge the assistance of G. Wren and Dr. W. Morrison of the Ballistic Research Laboratory, and Dr. R. Heiser of Fraunhofer-Institut für Kurzzeitdynamik Ernst-Mach-Institut, Weil am Rhein, West Germany, for their excellent reviews.			
12a. DISTRIBUTION / AVAILABILITY STATEMENT		12b. DISTRIBUTION CODE	
Approved for public release; distribution is unlimited.			
13. ABSTRACT (Maximum 200 words) Lumped-parameter models of interior ballistics require a relation between the space mean pressure and the pressure at the base of the projectile. Typically, this is furnished using the closed form analyses of Lagrange or of Pidduck and Kent. These relations do not take into account the non-uniform cross-sectional area of the chamber of the gun and the two-phase structure of the flow propellant grains and their products of combustion. In the present report we describe analytical relations which reflect first the variation in cross-sectional area, second the two-phase structure of the flow and third, the combination of both variable area and two-phase flow. These three sets of relations are programmed into a lumped-parameter code the results of which are compared with those from a quasi-one-dimensional two-phase flow code. Significant improvements in predictive capacity are observed relative to the traditional Lagrange formula when high performance charges are considered.			
14. SUBJECT TERMS Gradients, Gradient Equations, Interior Ballistics, Lumped-Parameter, Chamberage, Two-Phase Flow, RGA, IBRGA		15. NUMBER OF PAGES 156	
		16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED	20. LIMITATION OF ABSTRACT SAR

INTENTIONALLY LEFT BLANK.

TABLE OF CONTENTS

	<u>Page</u>
LIST OF FIGURES	v
LIST OF TABLES	vii
ACKNOWLEDGMENTS	ix
1. INTRODUCTION	1
1.1 Models	1
1.2 Influence of Chambrage	1
1.3 Influence of Propellant Velocity Lag	3
1.4 Combined Influence of Chambrage and Propellant Velocity Lag	9
2. CALCULATIONS	14
3. RESULTS	15
3.1 Chambrage	15
3.2 Multiphase Flow	17
3.3 Combined	21
4. CONCLUSIONS	21
5. REFERENCES	25
6. LIST OF SYMBOLS	27
APPENDIX 1: INFLUENCE OF CHAMBRAGE	29
APPENDIX 2: INFLUENCE OF PROPELLANT VELOCITY LAG	39
APPENDIX 3: COMBINED INFLUENCE OF CHAMBRAGE AND PROPELLANT VELOCITY LAG	61
APPENDIX 4: INPUT DESCRIPTION FOR IBRGA	87
APPENDIX 5: FORTRAN LISTING OF IBRGA	93
APPENDIX 6: INPUT DATA FOR IBRGA TEST	121
APPENDIX 7: OUTPUT FROM IBRGA	125
APPENDIX 8: INPUT DATA FOR XKTC	133
DISTRIBUTION LIST	137

Justification _____	
By _____	
Distribution/ _____	
Availability Codes _____	
Dist	Avail and/or Special
A-1	_____

INTENTIONALLY LEFT BLANK.

LIST OF FIGURES

<u>Figure</u>	<u>Page</u>
1 XKTC Calculation With Large Volume, c/m of 0.25, 345 MPa and 76.2 mm of Chambrage	18
2 XKTC Calculation With Large Volume, c/m of 1.0, 345 MPa and 76.2 mm of Chambrage	18
3 XKTC Calculation With Large Volume, c/m of 4.0, 345 MPa and 76.2 mm of Chambrage	18
4 IBRGA Calculation With Chambrage Gradient With Figure 1 Values	18
5 IBRGA Calculation With Chambrage Gradient With Figure 2 Values	18
6 IBRGA Calculation With Chambrage Gradient With Figure 3 Values	18
7 XKTC Calculation With Large Volume, c/m of 0.25, 345 MPa and No Chambrage	20
8 XKTC Calculation With Large Volume, c/m of 1.0, 345 MPa and No Chambrage	20
9 XKTC Calculation With Large Volume, c/m of 4.0, 345 MPa and No Chambrage	20
10 IBRGA Calculation With Two-Phase Gradient With Figure 7 Values	20
11 IBRGA Calculation With Two-Phase Gradient With Figure 8 Values	20
12 IBRGA Calculation With Two-Phase Gradient With Figure 9 Values	20
13 XKTC Calculation With Large Volume, c/m of 0.25, 345 MPa and 76.2 mm of Chambrage	23
14 XKTC Calculation With Large Volume, c/m of 1.0, 345 MPa and 76.2 mm of Chambrage	23
15 XKTC Calculation With Large Volume, c/m of 4.0, 345 MPa and 76.2 mm of Chambrage	23
16 IBRGA Calculation With RGA Gradient With Figure 13 Values	23
17 IBRGA Calculation With RGA Gradient With Figure 14 Values	23
18 IBRGA Calculation With RGA Gradient With Figure 15 Values	23

INTENTIONALLY LEFT BLANK.

LIST OF TABLES

<u>Table</u>		<u>Page</u>
1	Chambrage Calculations	16
2	Two-Phase Calculations	19
3	RGA Calculations	22

INTENTIONALLY LEFT BLANK.

ACKNOWLEDGMENTS

The authors wish to thank T.S. Raab and K.A. Cieslewicz for performing the many required computer runs and the preparation of many plots. We also acknowledge the assistance of G. Wren and Dr. W. Morrison of the Ballistic Research Laboratory, and Dr. R. Heiser of Fraunhofer-Institut für Kurzzeitdynamik Ernst-Mach-Institut, Weil am Rhein, West Germany, for their excellent reviews.

INTENTIONALLY LEFT BLANK.

1. INTRODUCTION

During the analysis of 120-mm gun firings, designed to look at the interior ballistic characteristics of combustible cartridge cases (Robbins, Koszoru, and Minor 1986), XNOVAKTC (XKTC) (Gough 1980) was noted to be in agreement with measured pressure-time curves as well as with pressure-difference curves, while IBHVG2 (Anderson and Fickie, 1987) gave a calculated maximum breech pressure which was 42 MPa higher than measured. Parametric studies were performed using XKTC to attempt to attribute this disparity to the various processes omitted from IBHVG2. The boattail instrusion was calculated to account for 14 MPa, with effects of flamespreading and intergranular stress accounting for 3 MPa each. Subsequent calculations (Robbins 1986) indicated chambrage, propellant packaging, wave dynamics, and multiphase effects (the solid propellant velocity lag and concomitant formation of an ullage region between the projectile base and the propellant bed) as contributors to the differences between the lumped-parameter and two-phase interior ballistic codes. In this report, we show that the influence of chambrage and propellant velocity lag on the pressure gradient may be represented in analytical form. We compare the analytical pressure gradient with that predicted by XKTC and assess the extent to which the effects of chambrage and propellant velocity lag account for the differences in ballistic predictions.

The NOVA codes, of which XKTC is the latest version, have been used with uncompromised data bases to model gun systems with much success (Robbins, Koszoru, and Minor 1986; Robbins 1983; Robbins and Horst 1984). Since XKTC calculates the pressure gradient from first principles and agrees with gun firings, XKTC is assumed correct. Accordingly, all the lumped-parameter computer runs, with different gradient equations, are compared with equivalent XKTC computer runs.

1.1 Models. Gradient equations have been developed by Gough (Gough, no date) to look at (1) the effects of chambrage, (2) the effects of propellant velocity lag, and (3) both effects at the same time. The governing partial differential equations, assumptions, and definitions are given for each effect followed by the resultant gradient equations and an equation for the total kinetic energy of the propellant and gas. The details of the solution technique and mathematical procedure are documented in Appendices 1-3.

1.2 Influence of Chambrage. For the chambrage gradient equation, the propellant is assumed to be uniformly distributed between the breech and the base of the projectile, and the variation in area is assumed to be confined to the chamber. The basic results presented in this section have been previously derived (Vinti 1942) and, more recently, in a somewhat different context, (Morrison and Wren 1988).

The continuity and momentum equations for unsteady flow of a homogeneous inviscid substance are

$$\frac{\partial p}{\partial t} + \frac{1}{A} \frac{\partial p A u}{\partial z} = 0 \quad (C.01)$$

and

$$\rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial z} + g_o \frac{\partial p}{\partial z} = 0. \quad (C.02)$$

Making the Lagrange assumption

$$\frac{\partial p}{\partial z} = 0 \quad (C.03)$$

and using

$$\rho = \frac{C}{V(z_p)} \quad (C.04)$$

results in the pressure distribution

$$p(z) = p(0) + a(t)J_1(z) + b(t)J_2(z), \quad (C.05)$$

where

$$a(t) = \frac{CA_B}{g_o V^2(z_p)} \left[\frac{A_B V_p^2}{V(z_p)} - \dot{V}_p \right], \quad (C.06)$$

$$b(t) = - \frac{C V_p^2 A_B}{2 g_o V^3(z_p)}, \quad (C.07)$$

$$J_1(z) = \int_0^z \frac{V(z) dz}{A(z)}, \quad (C.08)$$

and

$$J_2(z) = \frac{V^2(z)}{A^2(z)}. \quad (C.09)$$

Substituting the projectile acceleration \dot{V}_p given by

$$\dot{V}_p = \frac{g_o A_B}{M_p} [P_B - P_{re}] \quad (C.10)$$

into (C.05) results in a pressure distribution in terms of the pressure at the base of the projectile P_B

$$p(z) = p(0) + a_1(t)J_1(z) + a_2(t)J_1(z)P_B + b(t)J_2(z), \quad (C.11)$$

where

$$a_1(t) = \frac{CA_B}{g_o V^2(z_p)} \left[\frac{A_B V_p^2}{V(z_p)} + \frac{g_o A_B}{M_p} P_{re} \right] \quad (C.12)$$

and

$$a_2(t) = - \frac{CA_B^2}{M_p V^2(z_p)}. \quad (C.13)$$

With the mean pressure P_m defined as

$$P_m = \frac{\int_0^{z_p} P(z)A(z)dz}{\int_0^{z_p} A(z)dz} \quad (C.14)$$

and using (C.11) and identifying $P(0)$ with P_{Br} , then the base and breech pressures are given in terms of the mean pressure by

$$P_m + a_1(t)J_1(z_p) + b(t)J_2(z_p) - \frac{a_1(t)J_3(z_p)}{V(z_p)} - \frac{b(t)J_4(z_p)}{V(z_p)} \\ P_B = \frac{1 - a_2(t)J_1(z_p) + \frac{a_2(t)J_3(z_p)}{V(z_p)}}{(C.15)}$$

and

$$P_{Br} = (1 - a_2(t)J_1(z_p)) P_B - a_1(t)J_1(z_p) - b(t)J_2(z_p), \quad (C.16)$$

where

$$J_3(z_p) = \int_0^{z_p} A(z)J_1(z)dz \quad (C.17)$$

and

$$J_4(z_p) = \int_0^{z_p} A(z)J_2(z)dz. \quad (C.18)$$

The kinetic energy of the gas/solid mixture is

$$KE = \frac{A_B^2 V_p^2 C J_4(z_p)}{2 g_o V^3(z_p)}. \quad (C.19)$$

1.3 Influence of Propellant Velocity Lag. For the two-phase gradient equation developed in this section, the chamber and tube are assumed to have the same, uniform diameter. The coupling of the two-phase effects with chambrage is addressed in the next section. The propellant is assumed to be uniformly distributed between the breech face and the leading edge of the bed with the leading edge of the bed being initially at the base of the projectile. However, once the projectile begins to move, the leading edge of the propellant bed is not assumed to remain in contact with the base of the projectile. Instead, the motion of the leading edge of the bed is explicitly modeled by reference to the equation of motion of the solid phase which includes the influence of both pressure gradient (buoyancy force) and interphase drag. The existence of a region of

ullage between the propellant bed and the base of the projectile is also recognized explicitly. The requirement that the gas-phase density be everywhere uniform causes the gas velocity at the leading edge of the propellant bed (U_g) to have a much more complex time dependence than that in the simple Lagrange analysis. Instead of being a fixed fraction of the projectile velocity at all times, the value of U_g may be significantly greater than the projectile velocity during the pressurization phase since the ullage requires a net compression to maintain equilibrium with the conditions in the mixture region where combustion is occurring. The complex time dependence of U_g will be seen to have important repercussions in respect to the behavior of the pressure gradient. It is believed that this is the first time that these effects have been modeled analytically.

The continuity equations for the mixture region are

$$\frac{\partial \rho}{\partial t} + \frac{\partial \epsilon \rho u}{\partial z} = \dot{m}(t) \quad (L.1)$$

$$\rho_p \frac{\partial \epsilon}{\partial t} - \frac{\partial [(1-\epsilon)\rho_p u_p]}{\partial z} = \dot{m}(t). \quad (L.2)$$

Making assumptions analogous to the Lagrange assumption

$$\frac{\partial \rho}{\partial z} = 0 \quad (\text{gas density constant throughout the tube}) \quad (L.3)$$

$$\frac{\partial \epsilon}{\partial z} = 0 \quad (\text{porosity constant throughout the mixture region}) \quad (L.4)$$

and noting the assumption $\dot{m}(t)$ is only a function of time, then

$$u_p = U_p \left[\frac{z}{z_b} \right] \quad (L.5)$$

and

$$u = U_g \left[\frac{z}{z_b} \right]. \quad (L.6)$$

At the internal boundary defined by the leading edge of the propellant bed we may write the macroscopic balance of mass in the following form

$$\epsilon (U_g - U_p) = U_{g+} - U_p.$$

This result includes the assumption that the density jump across the boundary is negligible, as will always be the case if the Mach number is small compared with unity, and which is in any case consistent with the present assumption L.3.

Consider the momentum equation for the mixture region,

$$\frac{\partial \varepsilon \rho u}{\partial t} + \frac{\partial \varepsilon \rho u^2}{\partial z} + \varepsilon g_o \frac{\partial P}{\partial z} = - f_s + \dot{m} u_p \quad (L.7)$$

and

$$\frac{\partial(1-\varepsilon)\rho_p u_p}{\partial t} + \frac{\partial(1-\varepsilon)\rho_p u_p^2}{\partial z} + (1-\varepsilon)g_o \frac{\partial P}{\partial z} = f_s - \dot{m} u_p, \quad (L.8)$$

where

$$f_s = \frac{(1-\varepsilon)}{D_p} \rho(u - u_p)^2 f_{sc}, \quad (L.9)$$

and for

$$REN = \frac{\rho D_p |U_s - U_p|}{\mu}$$

$$\lambda = \left[\frac{0.5 + \frac{C}{GD}}{\left(1.5 \frac{C}{GD} \right)^{2/3}} \right]^{2/17}$$

$$\varepsilon_o = 1 - \frac{C}{\rho_p V(z_{p_o})}.$$

Then

$$f_{sc} = \begin{cases} \frac{2.5\lambda}{REN^{0.081}} f_{so} & \varepsilon < \varepsilon_o \\ \frac{2.5\lambda}{REN^{0.081}} \left(\frac{(1-\varepsilon)}{(1-\varepsilon_o)} \frac{\varepsilon_o}{\varepsilon} \right)^{0.45} f_{so}, & \varepsilon \geq \varepsilon_o. \end{cases} \quad (L.10)$$

$$\text{Defining } \phi_s = \phi - \rho A_B L / C, \quad (L.11)$$

and

$$\frac{d^2 \ln \rho}{dt^2} = c_1(t) - \frac{g_o A_B^2 P_B}{V_F M_p} + \frac{g_o A_B^2 P_{re}}{V_F M_p},$$

where

$$c_1(t) = \dot{m} \left(\frac{1}{m} - \frac{1}{\rho_p V_F} \right) + \frac{\dot{V}_F^2}{V_F^2} - \frac{\dot{m}^2}{m^2},$$

and

$$V_F = V_o + A_B(z_p - z_{po}) - \frac{c}{\rho_p} + \frac{m}{\rho_p},$$

$$\dot{m} = \rho_p S \frac{dx}{dt}, \quad (L.12)$$

$$\ddot{m} = \rho_p S \frac{dx}{dt} + \rho_p S \frac{d^2x}{dt^2}$$

$$= \rho_p \frac{dS}{dx} \left(\frac{dx}{dt} \right)^2 + \rho_p S \frac{d^2x}{dt^2}, \quad (L.13)$$

with

$$\frac{dx}{dt} = aP_m^n \quad (L.14)$$

and

$$\frac{d^2x}{dt^2} = anP_m^{n-1} \frac{dP_m}{dt}, \quad (L.15)$$

where dP_m/dt is determined numerically, or from

$$\frac{dP_m}{dt} = \frac{\frac{\mu RT}{mw} - P_m \dot{V} + \frac{T R m}{mw}}{V}$$

and

$$\dot{V}_p = \frac{g_o A_B}{M_p} (P_B - P_{ref}). \quad (L.16)$$

Then

$$P(z) = P_{B_r} - \frac{(k_{11}P_B + k_{12})}{2} z^2, \quad (L.17)$$

where

$$k_{11} = \frac{C \frac{\Phi}{\epsilon} \left(1 - \frac{L A_B}{V_F} \right) \frac{A_B}{M_p} k_2}{z_b V(z_b)} \quad (L.18)$$

and

$$k_2 = \frac{1}{1 - \frac{\Phi C}{\rho_p V(z_b)}} \quad (L.19)$$

and

$$k_{12} = \frac{\phi_1' C k_2}{g_o z_b V(z_b)} - k_{11} P_{res}, \quad (L.20)$$

$$\begin{aligned} \phi_1' &= \dot{\phi} U_g - \dot{\phi} U_p - \frac{\dot{\phi} \epsilon}{\epsilon^2} \left(V_p + L \frac{d \ln \rho}{dt} - U_p \right) \\ &+ \frac{\dot{\phi} L}{\epsilon} \frac{d \ln \rho}{dt} + \frac{2 \dot{\phi} U_g}{z_b} (U_g - U_p) \\ &+ \phi_2 \frac{\rho}{D_p \rho_p} (U_g - U_p)^2 f_{sc} + \frac{L \phi C_1(t)}{\epsilon}, \end{aligned} \quad (L.21)$$

and

$$\phi_2 = 1 - \phi - \phi_* \frac{(1-\epsilon)}{\epsilon}. \quad (L.22)$$

For the ullage region, the momentum equation for the gas is

$$\frac{\partial P}{\partial z} = - \frac{\rho}{g_o} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial z} \right), \quad (L.23)$$

and, therefore, the pressure in the ullage region is

$$P(z) = P(z_b) - \frac{\rho}{g_o} \left[(\dot{V}_p + z_p \Delta) (z - z_b) - (z^2 - z_b^2) \frac{\Delta}{2} \right], \quad (L.24)$$

where

$$\Delta = \frac{d^2 \ln \rho}{dt^2} - \left(\frac{d \ln \rho}{dt} \right)^2.$$

Defining

$$P_m = \frac{\int_o^{z_p} P(z) A(z) dz}{\int_o^{z_p} A(z) dz}, \quad (L.25)$$

then

$$P_B = \frac{P_m - D}{G} \quad (L.26)$$

and

$$P_{Br} = AP_B + B, \quad (L.27)$$

where

$$\begin{aligned} D &= \frac{k_{12}z_b^2}{2} - \frac{\rho L A_B P_{res}}{M_p} - \frac{k_{12}z_b^2}{2z_p} \left(\frac{z_b}{3} + L \right) + \frac{\rho L^2 A_B P_{res}}{2z_p M_p} \\ &+ \frac{\rho L^2}{2g_o} \left(1 - \frac{2L}{3z_p} \right) \left(c_1(t) - \left(\frac{d \ln \rho}{dt} \right)^2 \right) \\ &+ \frac{A_B^2 \rho L^2}{2M_p V_F} \left(1 - \frac{2L}{3z_p} \right) P_{res}, \end{aligned} \quad (L.28)$$

$$\begin{aligned} G &= 1 + \frac{k_{11}z_b^2}{2} + \frac{\rho L A_B}{M_p} - \frac{A_B^2 \rho L^2}{2V_F M_p} \left(1 - \frac{2L}{3z_p} \right) - \frac{k_{11}z_b^3}{6z_p} \\ &- \frac{k_{11}Lz_b^2}{2z_p} - \frac{\rho L^2 A_B}{2z_p M_p}, \end{aligned} \quad (L.29)$$

$$A = 1 + \frac{k_{11}z_b^2}{2} + \frac{\rho L A_B}{M_p} - \frac{A_B^2 \rho L^2}{2V_F M_p}, \quad (L.30)$$

and

$$\begin{aligned} B &= \frac{k_{12}z_b^2}{2} - \frac{\rho L A_B}{M_p} P_{res} \\ &+ \frac{\rho L^2}{2g_o} \left(c_1(t) - \left(\frac{d \ln \rho}{dt} \right)^2 \right) + \frac{A_B^2 \rho L^2}{2V_F M_p} P_{res}. \end{aligned} \quad (L.31)$$

The kinetic energy of the propellant and gases is

$$\begin{aligned} KE &= \frac{A_B z_b}{6g_o} [\epsilon \rho U_g^2 + (1-\epsilon) \rho_p U_p^2] \\ &+ \frac{\rho A_B L}{6g_o} \left(3V_p^2 + 3V_p L \frac{d \ln \rho}{dt} + L^2 \left(\frac{d \ln \rho}{dt} \right)^2 \right). \end{aligned}$$

The mean pressure over the mixture region is

$$P_{mix} = P_{Br} - \left(\frac{k_{11}P_B + k_{12}}{6} \right) z_b^2.$$

1.4 Combined Influence of Chambrage and Propellant Velocity Lag. The Robbins-Gough-Anderson (RGA) gradient equation, which combines the influences of chambrage and multiphase flow, assumes that the variation in area is confined to the propellant chamber and that the propellant initially fills the chamber. The cross-sectional area within the ullage is accordingly uniform and equal to A_B at all points. Nomenclature is as in the previous gradient equations.

The continuity equations for the mixture region are

$$\frac{\partial \rho}{\partial t} + \frac{1}{A} \frac{\partial \rho u A}{\partial z} = \dot{m}(t) \quad (R.1)$$

$$\rho_p \frac{\partial \epsilon}{\partial t} - \frac{1}{A} \frac{\partial (1-\epsilon) \rho_p u_p A}{\partial z} = \dot{m}(t). \quad (R.2)$$

Making assumptions analogous to the Lagrange assumption, namely

$$\frac{\partial \rho}{\partial z} = \frac{\partial \epsilon}{\partial z} = 0 \quad \text{in the mixture region} \quad (R.3)$$

and

$$\frac{\partial \rho}{\partial z} = 0 \quad \text{in the ullage region} \quad (R.4)$$

and noting the assumption $\dot{m}(t)$ is only a function of time, then

$$u_p = \frac{U_p A_B V(z)}{V(z_b) A(z)} \quad (R.5)$$

and

$$u = \frac{U_s A_B V(z)}{V(z_b) A(z)}. \quad (R.6)$$

At the internal boundary defined by the leading edge of the propellant bed we may write the macroscopic balance of mass in the following form

$$\epsilon (U_s - U_p) = U_{s+} - U_p$$

This result includes the assumption that the density jump across the boundary is negligible, as will always be the case if the Mach number is small compared with unity, and which is in any case consistent with the present assumption R.3.

Consider the momentum equations for the mixture region,

$$\frac{1}{A} \left[\frac{\partial A \varepsilon \rho u}{\partial t} + \frac{\partial A \varepsilon \rho u^2}{\partial z} \right] + \varepsilon g_o \frac{\partial P}{\partial z} = -f_s + \dot{m} u_p \quad (R.7)$$

and

$$\frac{1}{A} \left[\frac{\partial A(1-\varepsilon)\rho_p u_p}{\partial t} + \frac{\partial A(1-\varepsilon)\rho_p u_p^2}{\partial z} \right] + (1-\varepsilon)g_o \frac{\partial P}{\partial z} = f_s - \dot{m} u_p, \quad (R.8)$$

where

$$f_s = \frac{(1-\varepsilon)}{D_p} \rho (u - u_p)^2 f_{sc} \quad (R.9)$$

and for

$$REN = \frac{\rho D_p [U_s - U_p]}{\mu}$$

and for

$$\lambda = \left[\frac{0.5 + \frac{C}{\mu D}}{\left(1.5 \frac{C}{\mu D} \right)^{2/3}} \right]^{2/17}$$

and with ε_o the initial porosity

$$\varepsilon_o = 1 - \frac{C}{\rho_p V(z_{p_o})}$$

Then

$$f_{sc} = \begin{cases} \frac{2.5\lambda}{REN^{0.081}} f_{so} & \varepsilon < \varepsilon_o \\ \frac{2.5\lambda}{REN^{0.081}} \left(\frac{(1-\varepsilon)}{(1-\varepsilon_o)} \frac{\varepsilon_o}{\varepsilon} \right)^{0.45} f_{so} & \varepsilon \geq \varepsilon_o. \end{cases}$$

Defining

$$\phi_* = \phi - \rho A_B L / C \quad (R.10)$$

and

$$\frac{d^2 \ln \rho}{dt^2} = C_1(t) - \frac{g_o A_B^2 P_B}{V_F M_p} + \frac{g_o A_B^2 P_{res}}{M_p V_F}, \quad (R.11)$$

where

$$C_1(t) = \ddot{m} \left(\frac{1}{m} - \frac{1}{\rho_p V_p} \right) + \frac{\dot{V}_p^2}{V_p^2} - \frac{\dot{m}^2}{m^2} \quad (R.12)$$

and

$$V_p = V_o + A_B (z_p - z_{po}) - \frac{C}{\rho_p} + \frac{m}{\rho_p},$$

$$\dot{m} = \rho_p S \frac{dx}{dt},$$

$$\ddot{m} = \rho_p S \frac{dx}{dt} + \rho_p S \frac{d^2x}{dt^2}, \quad (R.13)$$

or

$$\ddot{m} = \rho_p \frac{dS}{dx} \left(\frac{dx}{dt} \right)^2 + \rho_p S \frac{d^2x}{dt^2}$$

with

$$\frac{dx}{dt} = a P_m^n \quad (R.14)$$

and

$$\frac{d^2x}{dt^2} = a n P_m^{n-1} \frac{dP_m}{dt} \quad (R.15)$$

where dP_m/dt is determined numerically, or from

$$\frac{dP_m}{dt} = \frac{\frac{mRT}{mw} - P_m \dot{V}}{V} + \frac{\frac{mRT}{mw}}{V}$$

and

$$\dot{V}_p = \frac{g_o A_B}{M_p} (P_B - P_{rea}). \quad (R.16)$$

Then

$$P(z) = P_{Br} + (a_1(t) + a_2(t)P_B) J_1(z) + b(t) J_2(z) \quad (R.17)$$

in the mixture region, where

$$a_1(t) = \frac{CA_B}{g_o V^2(z_b)} \left(\frac{\phi_2 A}{V(z_b)} - \frac{\phi'_1 + D - \frac{E \phi_2 A_B}{\rho_p V(z_b)} P_{rea}}{1 - \frac{\phi_2 C}{\rho_p V(z_b)}} \right) \quad (R.18)$$

and

$$a_2(t) = \frac{-\frac{CE\phi_a A_B^2 P_B}{V^2(z_b) \epsilon M_p}}{1 - \frac{\phi_2 C}{\rho_p V(z_b)}} \quad (R.19)$$

and

$$b(t) = -\frac{C\phi_2 A_B^2}{2g_o V^3(z_b)}, \quad (R.20)$$

$$J_1(z) = \int_0^z \frac{V(z)}{A(z)} dz, \quad (R.21)$$

$$\begin{aligned} J_2(z) &= \frac{V^2(z)}{A^2(z)}, \\ \phi'_1 &= \phi_* U_s - \phi U_p - \frac{\phi \dot{\epsilon}}{\epsilon^2} \left[V_p + L \frac{d \ln \rho}{dt} - U_p \right] + \frac{L \phi_*}{\epsilon} \frac{d \ln \rho}{dt} \\ &+ \frac{2A_B \phi_* U_s}{V(z_b)} [U_s - U_p] + \phi_2 \frac{\rho}{\rho_p D_p} (U_s - U_p)^2 f_{sc}, \end{aligned} \quad (R.21a)$$

and

$$\begin{aligned} \phi_2 &= 1 - \phi - \phi_* \frac{(1-\epsilon)}{\epsilon}, \\ \phi_3 &= \phi_* U_s^2 + (1-\phi) U_p^2, \\ D &= \frac{L \phi_*}{\epsilon} C_1(t), \\ E &= 1 - \frac{L A_B}{V_F}. \end{aligned} \quad (R.22)$$

Also in the ullage region

$$\frac{\partial P}{\partial z} = - \frac{\rho}{g_o} \left[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial z} \right] \quad (R.23)$$

and

$$P(z) = P(z_b) - \frac{\rho}{g_o} \left[(\dot{V}_p + z_p \Delta) (z - z_b) - (z^2 - z_b^2) \frac{\Delta}{2} \right], \quad (R.24)$$

where

$$\Delta = \frac{d^2 \ln \rho}{dt^2} - \left(\frac{d \ln \rho}{dt} \right)^2.$$

Defining the mean pressure as

$$P_m = \frac{\int_0^{z_p} P(z) A(z) dz}{\int_0^{z_p} A(z) dz} \quad (R.25)$$

and substituting for \dot{V}_p and $d^2 \ln \rho / dt^2$,

then

$$\begin{aligned} P_{br} &= P_B \left(1 - a_2(t) J_1(z_b) + \frac{\rho L A_B}{M_p} - \frac{\rho L^2 A_B^2}{2 V_F M_p} \right) \\ &+ \frac{\rho L^2}{2 g_o} \left(C_1(t) - \left(\frac{d \ln \rho}{dt} \right)^2 + \frac{g_o A_B^2 P_{res}}{M_p V_F} \right) \\ &- a_1(t) J_1(z_b) - b(t) J_2(z_b) - \frac{A_B \rho L P_{res}}{M_p} \end{aligned} \quad (R.26)$$

and

$$\begin{aligned} P_B &= \left[P_m - \frac{\rho L^2}{2 g_o} \left(C_1(t) - \left(\frac{d \ln \rho}{dt} \right)^2 + \frac{g_o A_B^2 P_{res}}{M_p V_F} \right) \right. \\ &- \frac{\rho A_B L^3}{3 g_o V(z_p)} \left(C_1(t) + \frac{g_o A_B^2 P_{res}}{M_p V_F} - \left(\frac{d \ln \rho}{dt} \right)^2 \right) + \frac{a_1(t) J_3(z_b)}{V(z_p)} \\ &+ \frac{b(t) J_4(z_b)}{V(z_p)} + \frac{A_B L a_1(t) J_1(z_b)}{V(z_p)} + \frac{A_B L b(t) J_2(z_b)}{V(z_p)} + \frac{\rho A_B^2 L^2 P_{res}}{2 V(z_p) M_p} \\ &\left. - a_1(t) J_1(z_b) - b(t) J_2(z_b) - \frac{A_B \rho L P_{res}}{M_p} \right] / \\ &\left(1 + \frac{A_B L a_2(t) J_1(z_b)}{V(z_p)} - \frac{\rho A_B^2 L^2}{2 V(z_p) M_p} + \frac{a_2(t) J_3(z_b)}{V(z_p)} - a_2(t) J_1(z_b) \right. \\ &\left. + \frac{\rho L A_B}{M_p} - \frac{\rho L^2 A_B^2}{2 V_F M_p} + \frac{\rho A_B L^3 A_B^2}{3 V(z_p) V_F M_p} \right), \end{aligned} \quad (R.27)$$

where

$$J_3(z_b) = \int_0^{z_b} A(z) J_1(z) dz \quad (R.28)$$

and

$$J_4(z_b) = \int_0^{z_b} \frac{V^2(z)}{A^2(z)} dz. \quad (R.29)$$

The kinetic energy is

$$\begin{aligned} KE &= \left(\frac{1-\varepsilon}{2g_o} \right) \frac{U_p^2 A_B^2 \rho_p J_4(z_b)}{V(z_b)^2} + \frac{\varepsilon}{2g_o} \frac{U_s^2 A_B^2 \rho J_4(z_b)}{V(z_b)^2} \\ &+ \frac{\rho A_B L}{6g_o} \left(3V_p^2 + 3V_p \rho L \frac{d \ln \rho}{dt} + L^2 \left(\frac{d \ln \rho}{dt} \right)^2 \right). \end{aligned} \quad (R.30)$$

The mean pressure over the mixture region is

$$P_{mix} = P_{Br} + \frac{(a_1(t) + a_2(t)P_B)}{V(z_b)} J_3(z_b) + \frac{b(t)J_4(z_b)}{V(z_b)}. \quad (R.31)$$

2. CALCULATIONS

A number of propellant charges were simulated with XKTC to probe the influence of chamberage and velocity lag. The same charges were simulated with IBRGA (input description and listing given in Appendices 4 and 5) using data bases as consistent with those of XKTC as the physical scope of the lumped-parameter model would permit, and using each of the various pressure gradient models. The resultant maximum breech pressures, velocities, and histories of pressure-time and mean-pressure-to-base-pressure curves are compared.

The calculations performed with XKTC involved data bases with evenly distributed seven-perforated propellant having an initial porosity of 0.4, zero barrel resistance, and with all the propellant ignited at the initial instant. All calculations were performed for a flat-based projectile and nominal heat loss.

The parameters used in the computer codes were:

Large chamber simulations:

Bore diameter	127 mm
Volume	9,832.2 cm ³
Travel	4.572 m
Propellant mass	9.8 kg
Projectile mass	2.45, 9.8, 39.2 kg

Small chamber simulations:

Bore diameter	28.65 mm
Volume	98.322 cm ³
Travel	1.880 m
Propellant mass	.098 kg
Projectile mass	.0245, .098, .392 kg

Propellant characteristics:

Impetus	1,136 J/g
Covolume	.976 cm ³ /g
Gamma	1.23
Flame temperature	3,141 K
Molecular weight	23.0 g/gmole
Density	1.66 g/cm ³
Burning rate	$1.10519p^{1.0}$ mm/s (p is in MPa)

Three maximum breech pressures were studied, nominally 517 MPa, 345 MPa, and 172 MPa. The maximum pressures were achieved by allowing the web to vary, with the grain length kept between two to three times the outer diameter. Calculations were performed for both bore diameter chambers and right circular cylindrical chambers with a larger diameter than the bore. Chambrage (defined as the distance over which the chamber tapers down to the bore area) was 76.2 mm for the large volume chamber, with the chamber length being changed from 776.22 mm (straight chamber) to 541.02 mm. For the smaller volume chamber, we had 25.4 mm of chambrage with the chamber length being changed from 152.4 mm (straight chamber) to 101.6 mm.

3. RESULTS

3.1 Chambrage. The effect of chambrage was assessed at a nominal pressure of 345 MPa using XKTC. Calculations were performed for a straight chamber to determine grain dimensions corresponding to a maximum breech pressure of 345 MPa. These grain dimensions were then used with a chamber with the same volume but having chambrage. The presence of chambrage was found to reduce the maximum breech pressure substantially. Finally, XKTC was run with chambrage and the dimensions of the grains changed to restore the maximum breech pressure to 345 MPa. These sets of grain dimensions were then used with a version of IBRGA into which the chambrage gradient equation had been encoded. Equivalent computer runs on IBRGA with the Lagrange gradient are also given in Table 1.

Adding chambrage to the gradient equation in the lumped-parameter code captures the large drop in maximum breech pressure and the concomitant drop in muzzle velocity seen when chambrage is added to XKTC. The gradient equation with chambrage also gives the proper amount of increase in maximum breech pressure and muzzle velocity, as seen in XKTC calculations, when the grain dimensions are changed to

TABLE 1. Chambrage Calculations.

Chamber volume, cm ³	c/m	Chambrage, mm	XKTC		Chambrage gradient		Lagrange gradient	
			Maximum breech pressure, MPa	Muzzle velocity, m/s	Maximum breech pressure, MPa	Muzzle velocity, m/s	Maximum breech pressure, MPa	Muzzle velocity, m/s
9,832.2	0.25	none	345	769	349	775	350	775
9,832.2	0.25	76.2	336	764	337	766		
9,832.2	0.25	76.2	345	774	346	776	358	784
9,832.2	1.0	none	345	1,352	347	1,363	347	1,363
9,832.2	1.0	76.2	310	1,303	307	1,308		
9,832.2	1.0	76.2	345	1,376	339	1,375	384	1,429
9,832.2	4.0	none	345	1,964	360	1,962	360	1,962
9,832.2	4.0	76.2	268	1,764	273	1,771		
9,832.2	4.0	76.2	345	1,964	339	1,990	452	2,184
98.322	0.25	none	345	895	348	880	348	880
98.322	0.25	25.4	337	895	334	872		
98.322	0.25	25.4	345	901	341	879	355	886
98.322	1.0	none	345	1,560	347	1,517	347	1,517
98.322	1.0	25.4	308	1,526	305	1,469		
98.322	1.0	25.4	345	1,595	340	1,536	387	1,582
98.322	4.0	none	345	2,298	371	2,198	371	2,198
98.322	4.0	25.4	275	2,149	280	2,028		
98.322	4.0	25.4	345	2,354	342	2,230	457	2,389

restore the maximum breech pressure to 345 MPa. If the Lagrange gradient equation were to be used, a difference from XKTC of approximately 10% at a charge mass to projectile mass ratio (c/m) of one and approximately 30% at a c/m of four would occur in the predicted values of maximum breech pressure.

The chambrage gradient equation gives calculated maximum breech pressures, which are as much as 7% high and muzzle velocities low by 3 to 4% when compared to XKTC calculations. The resultant gradient structure is illustrated, in Figures 1-6, with representative plots of the ratio of the mean pressure to the base pressure for both XKTC and the analytic chambrage gradient equation. The figures also include histories of breech and base pressure.

3.2 Multiphase Flow. The effects of multiphase flow were examined using XKTC. Calculations were based on a straight chamber; nominal maximum breech pressures of 172 MPa, 345 MPa, and 517 MPa; large and small chamber volumes; and values of c/m equal to .25, 1, and 4. The grain dimensions from the XKTC calculations were used to define equivalent data bases for IBRGA into which the two-phase gradient equation had been encoded.

The pressure at which the propellant burns is taken as the mean pressure over the mixture region instead of the mean pressure over the entire volume behind the projectile, as is conventionally assumed. Comparable Lagrange gradient calculations are also supplied in Table 2.

The calculated maximum breech pressures and velocities for both the two-phase and Lagrange gradient for c/m of .25 are in very close agreement with XKTC at all pressures. For calculations at c/m's of 1 and 4, the Lagrange and two phase gradients tend to give close maximum breech pressures, at worst about 6% different from XKTC.

The history of the ratio of space mean to base pressures for representative two-phase gradient calculations and for corresponding XKTC calculations is plotted in Figures 7-12, together with associated breech-pressure and base-pressure histories. The Lagrange gradient would be a straight line with a ratio value of 1.083 for a c/m of 0.25; 1.333 for a c/m of 1; and 2.333 for a c/m of 4. The two-phase gradient equation has the same shape and magnitude of the first peak in the mean pressure to base pressure ratio as XKTC, with the maximum occurring earlier in the analytic two-phase gradient calculations and the recovery to the Lagrange ratio value not being as fast as XKTC. The comparison of shape and magnitude of the pressure ratio histories strongly suggests that the dominant physical processes are captured by the two-phase gradient equation. In particular, the undulatory character of the curve is seen to be attributable, at least in part, to the two-phase aspects of the flow, rather than being due to transient or wave propagation phenomena as might at first be thought.

Figure 1. XKTC Calculation With Large Volume, c/m of 0.25, 345 MPa and 76.2 mm of Chambrage.

Figure 4. IBRGA Calculation With Chambrage Gradient With Figure 1 Values.

Figure 2. XKTC Calculation With Large Volume, c/m of 1.0, 345 MPa and 76.2 mm of Chambrage.

Figure 5. IBRGA Calculation With Chambrage Gradient With Figure 2 Values.

Figure 3. XKTC Calculation With Large Volume, c/m of 4.0, 345 MPa and 76.2 mm of Chambrage.

Figure 6. IBRGA Calculation With Chambrage Gradient With Figure 3 Values.

TABLE 2. Two-Phase Calculations.

Chamber volume, cm ³	c/m	XKTC		Two-Phase gradient		Lagrange gradient	
		Maximum breech pressure, MPa	Muzzle velocity, m/s	Maximum breech pressure, MPa	Muzzle velocity, m/s	Maximum breech pressure, MPa	Muzzle velocity, m/s
9,832.2	0.25	174	549	177	557	179	557
9,832.2	0.25	345	769	348	773	350	775
9,832.2	0.25	518	887	521	891	519	891
9,832.2	1.0	173	957	177	970	184	966
9,832.2	1.0	345	1,352	343	1,355	347	1,363
9,832.2	1.0	516	1,593	498	1,556	497	1,560
9,832.2	4.0	172	1,389	172	1,380	184	1,354
9,832.2	4.0	345	1,964	351	1,930	360	1,962
9,823.2	4.0	518	2,391	524	2,290	528	2,306
98.322	0.25	172	641	177	632	179	630
98.322	0.25	345	895	346	880	348	880
98.322	0.25	518	987	514	974	513	974
98.322	1.0	172	1,130	180	1,107	186	1,094
98.322	1.0	345	1,560	343	1,516	347	1,517
98.322	1.0	516	1,756	510	1,703	512	1,705
98.322	4.0	172	1,682	174	1,581	185	1,524
98.322	4.0	345	2,298	360	2,188	371	2,198
98.322	4.0	518	2,685	545	2,516	552	2,527

Figure 7. XKTC Calculation With Large Volume, c/m of 0.25, 345 MPa and No Chambrage.

Figure 8. XKTC Calculation With Large Volume, c/m of 1.0, 345 MPa and No Chambrage.

Figure 9. XKTC Calculation With Large Volume, c/m of 4.0, 345 MPa and No Chambrage.

Figure 10. IBRGA Calculation With Two-Phase Gradient With Figure 7 Values.

Figure 11. IBRGA Calculation With Two-Phase Gradient With Figure 8 Values.

Figure 12. IBRGA Calculation With Two-Phase Gradient With Figure 9 Values.

The drop off of the pressure ratio at the slivering event seen in IBRGA calculations may cause numerical problems. (This event is smoothed over in XKTC since all the grains do not sliver at the same time because of the different pressure fields seen by the grains, as well as the finite time required for the transfer of information.) This problem is not felt to affect the calculated velocity significantly, but a smoothing routine has been incorporated into IBRGA to circumvent any difficulty.

The two-phase gradient equation also has, as input, a multiplier to the friction factor. By making this value small, an approximation to stick propellant behavior can be captured.

3.3 Combined. Table 1 is reproduced in Table 3 with the chambrage gradient equation replaced by the RGA gradient equation with the appropriate kinetic energy term. As with the two-phase gradient equation, the burning rate is calculated from mean pressure over the mixture region.

The shapes of the ratio and pressure-time plots, Figures 13-18, are qualitatively similar to those produced by XKTC. This reinforces the idea that both two phase and chambrage effects are important factors in respect to the time-dependent behavior of the pressure gradient. The result of the RGA gradient equation calculations are in general slightly better, when compared to XKTC, than the corresponding calculations with the chambrage gradient equation.

One of the RGA gradient equation inputs is a multiplier to the friction factor. By making this value small, an approximation to stick propellant behavior can be captured.

4. CONCLUSIONS

It is concluded that incorporating chambrage into a gradient equation is important and can make as much as a 20 to 30% difference in predicted maximum breech pressure at c/m of 4. The inclusion of two-phase effects into the gradient equation seems to be well motivated in that a large portion of the structure of the gradient history is captured.

At low c/m's (0.25), any of the gradient equations will give good results; but as the c/m gets larger (>1), the correction for chambrage is required.

The use of the RGA gradient equation offers a natural way to account for stick propellant phenomena having to do with stick propellant motion and the pressure history in which it burns.

The use of the proper kinetic energy term for the gradient equation, as well as the calculation of the mean pressure over the mixture region, should be included in any gradient model when applicable.

TABLE 3. RGA Calculations.

Chamber volume, cm ³	Chamber c/m	Chamberage, mm	XKTC		RGA gradient		Lagrange gradient	
			Maximum breech pressure, MPa	Muzzle velocity, m/s	Maximum breech pressure, MPa	Muzzle velocity, m/s	Maximum breech pressure, MPa	Muzzle velocity, m/s
9,832.2	0.25	none	345	769	348	773	350	775
9,832.2	0.25	76.2	336	764	336	766		
9,832.2	0.25	76.2	345	774	345	775	358	784
9,832.2	1.0	none	345	1,352	343	1,355	347	1,363
9,832.2	1.0	76.2	310	1,303	304	1,300		
9,832.2	1.0	76.2	345	1,376	337	1,369	384	1,429
9,832.2	4.0	none	345	1,964	351	1,930	360	1,961
9,832.2	4.0	76.2	268	1,764	266	1,747		
9,832.2	4.0	76.2	345	1,964	334	1,964	452	2,183
98.322	0.25	none	345	895	346	879	348	880
98.322	0.25	25.4	337	895	332	872		
98.322	0.25	25.4	345	901	340	878	355	886
98.322	1.0	none	345	1,560	342	1,515	347	1,517
98.322	1.0	25.4	308	1,526	302	1,468		
98.322	1.0	25.4	345	1,595	337	1,535	387	1,582
98.322	4.0	none	345	2,298	361	2,190	371	2,198
98.322	4.0	25.4	275	2,149	272	2,023		
98.322	4.0	25.4	345	2,354	336	2,222	457	2,389

Figure 13. XKTC Calculation With Large Volume, c/m of 0.25, 345 MPa and 76.2 mm of Chambrage.

Figure 16. IBRGA Calculation With RGA Gradient With Figure 13 Values.

Figure 14. XKTC Calculation With Large Volume, c/m of 1.0, 345 MPa and 76.2 mm of Chambrage.

Figure 17. IBRGA Calculation With RGA Gradient With Figure 14 Values.

Figure 15. XKTC Calculation With Large Volume, c/m of 4.0, 345 MPa and 76.2 mm of Chambrage.

Figure 18. IBRGA Calculation With RGA Gradient With Figure 15 Values.

INTENTIONALLY LEFT BLANK.

5. REFERENCES

Anderson, R.D., and K.D. Fickie, "IBHVG2 -- A User's Guide," BRL-TR-2829, USA ARRADCOM, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, July 1987.

Gough, P.S. Contractor Report, DAAK11-85-D-0002, in preparation.

Gough, P.S. "The NOVA Code: A User's Manual." Indian Head Contract Report IHCR80-8, Naval Ordnance Station, Indian Head, MD, 1980.

Morrison, W.F., and G.P. Wren. "A Lumped Parameter Description of Liquid Injection in a Regenerative Liquid Propellant Gun." Proceedings of the 23rd JANNAF Combustion Meeting, CPIA Publication 457, Vol. 2, p. 464-489, October 1988.

Robbins, F.W. "Comparison of TDNOVA results with an Analytic Solution." ARBRL-MR-03299, USA ARRADCOM, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, July 1983.

Robbins, F.W. "Studies Supporting Development of a Modified Gradient Equation for Lumped Parameter Interior Ballistic Codes." Proceedings of the 12th Meeting of The Technical Cooperation Program, Vol. 5, October 1986.

Robbins, F.W., and A.W. Horst. "Detailed Characterization of the Interior Ballistics of Slotted Stick Propellant." BRL-TR-2591, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, September 1984.

Robbins, F.W., A.A. Koszoru, and T.C. Minor. "A Theoretical and Experimental Interior Ballistic Characterization of Combustible Cases." Proceedings of the 9th International Symposium on Ballistics, Part 1, p. 21-28, April 1986.

Vinti, J.P. "The Equations of Interior Ballistics." BRL Report 307, Ballistic Research Laboratories, Aberdeen Proving Ground, MD, October 1942.

INTENTIONALLY LEFT BLANK.

6. LIST OF SYMBOLS

ε ,	porosity defined as the volume of gas/total volume
λ ,	particle shape factor for gas flow resistance
μ ,	viscosity of gas
ρ ,	density
ρ_p ,	propellant density
ϕ ,	mass fraction burned
$A(z)$,	area at position z
A_B ,	tube area
C ,	total charge mass
D_p ,	effective diameter of the propellant grain, i.e., 6^* volume of propellant grain/surface area of a propellant grain
f_s ,	interphase drag
f_{so} ,	baseline friction factor
f_{sc} ,	dimensionless friction factor, a function of Reynolds number and particle shape
GD,	grain diameter
GL,	grain length
g_0 ,	a constant to reconcile dimensions
L ,	the distance between the leading edge of the propellant bed and the base of the projectile, i.e., $L = (z_p - z_b)$
$\dot{m}(t)$,	rate of combustion of propellant
m ,	mass of propellant burned
M_p ,	mass of projectile
m_w ,	molecular weight of propellant gas
P ,	pressure
P_B ,	projectile base pressure
P_{Br} ,	breech pressure
P_m ,	mean pressure
P_{res} ,	resistive pressure
R ,	universal gas constant
REN,	particle reynolds number
S ,	surface area of the propellant
T ,	gas temperature
t ,	time
u ,	velocity

U_g ,	gas velocity on the mixture side at the leading edge of the propellant bed, i.e., $u(z_b)$
U_g'' ,	gas velocity on the ullage side of the leading edge of the propellant bed
u_p ,	propellant velocity
U_p ,	velocity of the leading edge of the propellant bed, i.e., $u_p(z_b)$
$V(z)$,	volume between the breech face and position z
V_f ,	free volume for gases to expand into
V_0 ,	initial empty volume of chamber
V_p ,	velocity of the projectile
x ,	distance burned into the propellant
z ,	axial position measured from the breech face
z_b ,	position of the leading edge of the propellant bed
z_p ,	position of the base of the projectile
z_{po} ,	initial position of the base of the projectile
',	derivative with respect to time
''	second derivative with respect to time

APPENDIX 1:
INFLUENCE OF CHAMBRAGE

INTENTIONALLY LEFT BLANK.

The following, is work by Gough (Gough, in preparation) with modifications and elaborations by Robbins.

Influence of Chambrage. For the effects of chambrage on the form of the gradient equation, the propellant is assumed to be uniformly distributed between the breech and the base of the projectile, and all variations in tube area are confined to the chamber.

The continuity and momentum equations for unsteady flow of a homogeneous inviscid substance through a tube with variable area are

$$\frac{\partial p}{\partial t} + \frac{1}{A} \left(\frac{\partial p A u}{\partial z} \right) = 0 \quad (C.1)$$

$$p \frac{\partial u}{\partial t} + p u \frac{\partial u}{\partial x} + g_0 \frac{\partial p}{\partial z} = 0. \quad (C.2)$$

Making the Lagrange assumption

$$\frac{\partial p}{\partial z} = 0, \quad (C.3)$$

then C.1 becomes

$$\frac{\partial p}{\partial t} = - \frac{p}{A} \left(\frac{\partial A u}{\partial z} \right). \quad (C.4)$$

The density may be written as

$$p = \frac{C}{V(z_p)}. \quad (C.5)$$

Differentiating (C.5), we get

$$\frac{dp}{dt} = - \left(\frac{C}{V^2(z_p)} \right) \left(\frac{dV(z_p)}{dt} \right). \quad (C.6)$$

But,

$$V(z_p) = V(z_{po}) + (z_p - z_{po}) A_B, \quad (C.7)$$

and

$$\frac{dV(z_p)}{dt} = A_B \dot{z}_p = A_B V_p, \quad (C.8)$$

therefore,

$$\frac{d\rho}{dt} = - \frac{CA_B V_p}{V^2(z_p)}. \quad (C.9)$$

But,

$$\rho = \frac{C}{V(z_p)},$$

therefore,

$$\frac{d\rho}{dt} = - \frac{A_B \rho V_p}{V(z_p)}. \quad (C.10)$$

Substituting (C.10) into (C.4), we get

$$- \frac{A_B \rho V_p}{V(z_p)} = - \frac{\rho}{A} \left(\frac{\partial A u}{\partial z} \right) \quad (C.11)$$

or

$$\frac{A_B A V_p}{V(z_p)} = \frac{\partial A u}{\partial z}. \quad (C.12)$$

Integrating (C.12) with $u(0) = 0$ and noting that V_p and $V(z_p)$ are functions of time only,

$$A(z)u(z) = A u = \frac{A_B V_p}{V(z_p)} \int_0^z A(z) dz = \frac{A_B V_p V(z)}{V(z_p)}. \quad (C.13)$$

Therefore, the velocity u at a given time is given by:

$$u = \left(\frac{A_B V_p}{V(z_p)} \right) \left(\frac{V(z)}{A(z)} \right). \quad (C.14)$$

Note that if $A = A_B$, then $V(z) = A_B z$, then $u = (z/z_p) V_p$ as for the Lagrange gradient. (C.15)

The pressure distribution follows from the momentum equation (C.2)

$$g_o \frac{\partial P}{\partial z} = - \rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial z} \right). \quad (C.16)$$

Differentiating (C.14), we get $\partial u / \partial t$ and $\partial u / \partial z$ for substitution into (C.16).

To get $\partial u / \partial t$ we differentiate (C.14), noting that only V_p and $V(z_p)$ are functions of time and

$$\frac{\partial V(z_p)}{\partial t} = \frac{\partial(V(z_{po}) + (z_p - z_{po}) A_B)}{\partial t} = A_B \dot{z}_p = A_B V_p, \quad (C.17)$$

then

$$\begin{aligned} \frac{\partial u}{\partial t} &= \frac{A_B \dot{V}_p V(z)}{A(z)V(z_p)} - \left(\frac{A_B V_p V(z)}{A(z)V^2(z_p)} \right) \left(\frac{\partial V(z_p)}{\partial t} \right) \\ &= \frac{A_B \dot{V}_p V(z)}{A(z)V(z_p)} - \frac{A_B^2 V_p^2 V(z)}{A(z)V^2(z_p)}. \end{aligned} \quad (C.18)$$

To get $\partial u / \partial z$, we differentiate (C.14), noting that only $V(z)$ and $A(z)$ are functions of z and

$$\frac{\partial V(z)}{\partial z} = \frac{\partial \int_0^z A(z) dz}{\partial z} = A(z), \quad (C.19)$$

then

$$\begin{aligned} \frac{\partial u}{\partial z} &= \frac{A_B V_p A(z)}{V(z_p) A(z)} - \left(\frac{A_B V_p V(z)}{A^2(z)V(z_p)} \right) \left(\frac{dA}{dz} \right) \\ &= \frac{A_B V_p}{V(z_p)} - \left(\frac{A_B V_p V(z)}{A^2(z)V(z_p)} \right) \left(\frac{dA}{dz} \right). \end{aligned} \quad (C.20)$$

Substituting (C.5), (C.14), (C.18), and (C.20) into (C.16) yields

$$g_o \frac{\partial P}{\partial z} = - \frac{C A_B V(z) \dot{V}_p}{A(z)V^2(z_p)} + \left(\frac{C V^2(z) V_p^2 A_B^2}{A^3(z)V^3(z_p)} \right) \left(\frac{\partial A}{\partial z} \right). \quad (C.21)$$

Integrating (C.21), and noting \dot{V}_p and $V(z_p)$ are functions only of time, then

$$\begin{aligned} g_o \int_0^z \frac{\partial P}{\partial z} dz &= g_o (P(z) - P(0)) \\ &= - \frac{C A_B \dot{V}_p}{V^2(z_p)} \int_0^z \frac{V(z) dz}{A(z)} \\ &\quad + \frac{C V_p^2 A_B^2}{V^3(z_p)} \int_0^z \left(\frac{V^2(z)}{A^3(z)} \right) \left(\frac{\partial A}{\partial z} \right) dz. \end{aligned} \quad (C.22)$$

Noting

$$\int_o^z \left(\frac{V^2(z)}{A^3(z)} \right) \left(\frac{\partial A}{\partial z} \right) dz = \int_o^z \frac{V(z)}{A(z)} dz - \frac{V^2(z)}{2A^2(z)}$$

(from integration by parts), then (C.22), the pressure distribution behind the projectile is

$$\begin{aligned} g_o (P(z) - P(0)) &= \left(\frac{CA_B^2 V_p^2}{V^3(z_p)} - \frac{CA_B \dot{V}_p}{V^2(z_p)} \right) J_1(z) \\ &\quad - \frac{CV_p^2 A_B^2}{2V^3(z_p)} J_2(z), \end{aligned} \quad (C.23)$$

where

$$J_1(z) = \int_o^z \frac{V(z)}{A(z)} dz, \quad (C.24)$$

which can be evaluated algebraically or numerically if $V(z)$ and $A(z)$ are known, and

$$J_2(z) = \frac{V^2(z)}{A^2(z)}. \quad (C.25)$$

Rewriting (C.23) in the form

$$P(z) = P(0) + a(t)J_1(z) + b(t)J_2(z) \quad (C.26)$$

gives

$$a(t) = \frac{1}{g_o} \left(\frac{CA_B^2 V_p^2}{V^3(z_p)} - \frac{CA_B \dot{V}_p}{V^2(z_p)} \right) \quad (C.27)$$

and

$$b(t) = - \frac{CV_p^2 A_B^2}{2g_o V^3(z_p)}. \quad (C.28)$$

Defining the mean pressure in the chamber to be

$$P_m = \frac{\int_o^{z_p} P(z) A(z) dz}{\int_o^{z_p} A(z) dz}, \quad (C.29)$$

then using (C.26),

$$P_m = \frac{\int_0^{z_p} [P(0) + a(t)J_1(z) + b(t)J_2(z)] A(z)dz}{\int_0^{z_p} A(z)dz} \quad (C.30)$$

$$\begin{aligned} P_m &= \frac{P(0) \int_0^{z_p} A(z)dz}{V(z_p)} \\ &+ \frac{a(t) \int_0^{z_p} J_1(z)A(z)dz}{V(z_p)} \\ &+ \frac{b(t) \int_0^{z_p} J_2(z)A(z)dz}{V(z_p)} \end{aligned} \quad (C.31)$$

or

$$P_m = P(0) + \frac{a(t)}{V(z_p)} J_3(z_p) + \frac{b(t)}{V(z_p)} J_4(z_p) \quad (C.32)$$

where

$$\begin{aligned} J_3(z_p) &= \int_0^{z_p} A(z)J_1(z)dz \\ &= \int_0^{z_p} \left(\int_0^z \frac{V(x)}{A(x)} dx \right) A(z)dz \end{aligned} \quad (C.33)$$

and

$$\begin{aligned} J_4(z_p) &= \int_0^{z_p} A(z)J_2(z)dz \\ &= \int_0^{z_p} \frac{V^2(z)}{A(z)} dz, \end{aligned} \quad (C.34)$$

and where, if $A(z)$ and $V(z)$ are known, $J_3(z_p)$ and $J_4(z_p)$ may be evaluated algebraically or numerically. The acceleration of the projectile is given by

$$\dot{V}_p = \frac{g_o A_p}{M_p} [P_B - P_{ref}] \quad (C.35)$$

Substitution into (C.27) gives

$$a(t) = a_1(t) + a_2(t)P_B \quad (C.36)$$

where

$$a_1(t) = \frac{CA_B}{g_o V^2(z_p)} \left(\frac{A_B V_p^2}{V(z_p)} + \frac{g_o A_B P_{rec}}{M_p} \right) \quad (C.37)$$

and

$$a_2(t) = - \frac{CA_B^2}{M_p V^2(z_p)} \quad . \quad (C.38)$$

Substituting (C.36) into (C.26) and (C.32) and noting $P_{Br} = P(0)$,

then

$$P_{Br} = [1 - a_2(t)J_1(z_p)]P_B - a_1(t)J_1(z_p) - b(t)J_2(z_p) \quad (C.39)$$

and

$$P_m = P_{Br} + \frac{[a_1(t) + a_2(t)P_B]}{V(z_p)} J_3(z_p) + \frac{b(t)}{V(z_p)} J_4(z_p). \quad (C.40)$$

Substituting (C.39) into (C.40) and rearranging terms,

$$\begin{aligned} P_m &= \left(1 - a_2(t)J_1(z_p) + \frac{a_2(t)J_3(z_p)}{V(z_p)} \right) P_B - a_1(t)J_1(z_p) \\ &\quad - b(t)J_2(z_p) + \frac{a_1(t)J_3(z_p)}{V(z_p)} + \frac{b(t)J_4(z_p)}{V(z_p)}. \end{aligned} \quad (C.41)$$

Solving (C.41), we get P_B in terms of P_m

$$\begin{aligned} P_m + a_1(t)J_1(z_p) + b(t)J_2(z_p) - \frac{a_1(t)J_3(z_p)}{V(z_p)} - \frac{b(t)J_4(z_p)}{V(z_p)} \\ P_B = \frac{1 - a_2(t)J_1(z_p) + \frac{a_2(t)J_3(z_p)}{V(z_p)}}{1 - a_2(t)J_1(z_p) + \frac{a_2(t)J_3(z_p)}{V(z_p)}}. \end{aligned} \quad (C.42)$$

Therefore, assuming the mean pressure, P_m , can be calculated from an equation of state, then (C.42) will give the projectile base pressure, P_B . The breech pressure, P_{Br} , is calculated from (C.39) knowing P_B . The pressure distribution is given by (C.26).

The evaluation of $J_1(z_p)$, $J_2(z_p)$, $J_3(z_p)$, and $J_4(z_p)$ can be simplified by noting that the variation in area is confined to the chamber and, therefore,

$$V(z) = V(z_{po}) + A_B(z - z_{po}), \text{ for } z \geq z_{po}, \quad (C.43)$$

and

$$\begin{aligned} J_1(z_p) &= \int_0^{z_p} \frac{V(z)}{A(z)} dz = \int_0^{z_{po}} \frac{V(z)}{A(z)} dz + \int_{z_{po}}^{z_p} \frac{V(z)}{A(z)} dz \\ &= J_1(z_{po}) + \int_{z_{po}}^{z_p} \frac{V(z_{po}) + A_B(z - z_{po})}{A_B} dz \\ &= J_1(z_{po}) + \frac{1}{A_B} \left(V(z_{po})(z_p - z_{po}) + \frac{A_B(z_p - z_{po})^2}{2} \right) \end{aligned} \quad (C.44)$$

$$J_2(z_p) = \frac{V^2(z)}{A^2(z)} \Big|_{z_p} = \frac{[V(z_{po}) + A_B(z_p - z_{po})]^2}{A_B^2}, \quad (C.45)$$

$$\begin{aligned} J_3(z_p) &= \int_0^{z_p} \left(\int_0^z \frac{V(x)}{A(x)} dx \right) A(z) dz \\ &= \int_0^{z_{po}} \left(\int_0^z \frac{V(x)}{A(x)} dx \right) A(z) dz + \int_{z_{po}}^{z_p} \left(\int_0^z \frac{V(x)}{A(x)} dx \right) A_B dz \\ &= J_3(z_{po}) + \int_{z_{po}}^{z_p} \left(J_1(z_{po}) + \frac{1}{A_B} \left(V(z_{po})(z - z_{po}) + \frac{A_B}{2}(z - z_{po})^2 \right) \right) A_B dz \\ &= J_3(z_{po}) + A_B J_1(z_{po})(z_p - z_{po}) + \frac{V(z_{po})(z_p - z_{po})^2}{2} \\ &\quad + \frac{A_B}{6}(z_p - z_{po})^3, \end{aligned} \quad (C.46)$$

$$\begin{aligned} J_4(z_p) &= \int_0^{z_p} \frac{V^2(z)}{A(z)} dz = \int_0^{z_{po}} \frac{V^2(z)}{A(z)} dz + \int_{z_{po}}^{z_p} \frac{[V(z_{po}) + A_B(z - z_{po})]^2}{A_B} dz \\ &= J_4(z_{po}) + \frac{[V(z_{po}) + A_B(z_p - z_{po})]^3 - V^3(z_{po})}{3A_B^2}. \end{aligned} \quad (C.47)$$

Equations (C.44) - (C.47) require the evaluation of the integrals $J_1(z_{po}) - J_4(z_{po})$ only once.

The kinetic energy (KE) of the gas/solid mixture will be required, and since $\rho dV = dm$ and $dV = A(z) dz$, then

$$g_o KE = \frac{1}{2} \int_o^{z_p} u^2 dm = \frac{1}{2} \int_o^{z_p} u^2 \rho dV = \frac{1}{2} \int_o^{z_p} u^2 \rho A(z) dz \quad (C.48)$$

and from (C.5),

$$\rho = \frac{C}{V(z_p)},$$

and from (C.14)

$$u = \frac{A_B V_p V(z)}{V(z_p) A(z)},$$

therefore,

$$\begin{aligned} g_o KE &= \frac{1}{2} \int_o^{z_p} \frac{C A_B^2 V_p^2 V^2(z)}{A(z) V^3(z_p)} dz \\ &= \frac{C A_B^2 V_p^2}{2 V^3(z_p)} \left(\int_o^{z_p} \frac{V^2(z)}{A(z)} dz \right), \end{aligned}$$

or

$$KE = \frac{C A_B^2 V_p^2}{2 g_o V^3(z_p)} J_4(z_p). \quad (C.49)$$

**APPENDIX 2:
INFLUENCE OF PROPELLANT VELOCITY LAG**

INTENTIONALLY LEFT BLANK.

The following, is work by Gough (Gough, in preparation) with modifications and elaborations by Robbins.

Influence of Propellant Velocity Lag. For the effects of the propellant velocity lag on the form of the gradient equation, the propellant is assumed to be uniformly distributed between the breech face and the leading edge of the bed, with the leading edge of the bed being initially at the base of the projectile. The tube diameter is the same as the bore diameter.

The continuity equations for each of the phases in the mixture region are

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial z} = \dot{m}(t). \quad (L.1)$$

$$\rho_p \frac{\partial \epsilon}{\partial t} - \frac{\partial [(1-\epsilon) \rho_p u_p]}{\partial z} = \dot{m}(t). \quad (L.2)$$

Making assumptions analogous to the Lagrange assumption,

$$\frac{\partial \rho}{\partial z} = 0 \quad (\text{gas density constant throughout the tube}) \quad (L.3)$$

$$\frac{\partial \epsilon}{\partial z} = 0 \quad (\text{porosity constant throughout the mixture region}) \quad (L.4)$$

and noting the assumption that $\dot{m}(t)$ is only a function of time, then from (L.2),

$$\rho_p \frac{\partial \epsilon}{\partial t} - u_p \frac{\partial (1-\epsilon) \rho_p}{\partial z} - (1-\epsilon) \rho_p \frac{\partial u_p}{\partial z} = \dot{m}(t). \quad (L.5)$$

Noting (L.4), then

$$u_p \frac{\partial (1-\epsilon) \rho_p}{\partial z} = 0. \quad (L.6)$$

Therefore,

$$(1-\epsilon) \rho_p \frac{\partial u_p}{\partial z} = \rho_p \frac{\partial \epsilon}{\partial t} - \dot{m}(t) = f(t) \quad (L.7)$$

and

$$u_p(z) = \int \partial u_p = \frac{\rho_p \frac{de}{dt} - \dot{m}(t)}{(1-\epsilon) \rho_p} z + f_1(t). \quad (L.8)$$

Since $u_p(0) = 0$, then $f_1(t) = 0$, and

$$u_p(z_b) = U_p = \frac{\rho_p \frac{de}{dt} - \dot{m}(t)}{(1-\epsilon) \rho_p} z_b,$$

or

$$\frac{U_p}{z_b} = \frac{\rho_p \frac{de}{dt} - \dot{m}(t)}{(1-\epsilon) \rho_p}. \quad (L.9)$$

Substituting (L.9) into (L.8) gives

$$u_p(z) = \frac{U_p}{z_b} z. \quad (L.10)$$

From (L.1),

$$\frac{\partial \epsilon \rho}{\partial t} + u \left(\rho \frac{\partial \epsilon}{\partial z} + \epsilon \frac{\partial \rho}{\partial z} \right) + \epsilon \rho \frac{\partial u}{\partial z} = \dot{m}(t),$$

and using (L.3) and (L.4), then

$$\frac{\partial u}{\partial z} = - \frac{\frac{\partial \epsilon \rho}{\partial t} + \dot{m}(t)}{\epsilon \rho} \quad (\text{a function of time only}). \quad (L.11)$$

Integrating (L.11) gives

$$u(z) = \int \partial u = - \frac{\frac{\partial \epsilon \rho}{\partial t} + \dot{m}(t)}{\epsilon \rho} z + f_2(t). \quad (L.12)$$

Since $u(0) = 0$, then $f_2(t) = 0$, and

$$u(z_b) = U_t = - \frac{\frac{\partial \epsilon \rho}{\partial t} + \dot{m}(t)}{\epsilon \rho} z_b$$

or

$$\frac{U_t}{z_b} = - \frac{\frac{\partial \epsilon \rho}{\partial t} + \dot{m}(t)}{\epsilon \rho}. \quad (L.13)$$

Substituting (L.13) into (L.12) gives

$$u(z) = \frac{U_s}{z_b} z. \quad (L.14)$$

At the internal boundary defined by the leading edge of the propellant bed we may write the macroscopic balance of mass in the following form

$$\epsilon (U_s - U_p) = U_{s+} - U_p. \quad (L.15)$$

This result includes the assumption that the density jump across the boundary is negligible, as will always be the case if the Mach number is small compared with unity, and which is in any case consistent with the present assumption L.3.

Also, in the ullage region, the continuity equation is given by

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial z} = 0. \quad (L.16)$$

Using (L.3), we get

$$\frac{\partial u}{\partial z} = - \frac{1}{\rho} \left(\frac{\partial \rho}{\partial t} \right) \quad (\text{a function of time only}). \quad (L.17)$$

Integrating (L.17) we get

$$u(z) = - \frac{1}{\rho} \left(\frac{d\rho}{dt} \right) z + f_3(t). \quad (L.18)$$

Using the boundary condition

$$u(z_p) = V_p \quad (L.19)$$

gives

$$u(z) = V_p + (z_p - z) \frac{d \ln \rho}{dt}. \quad (L.20)$$

Evaluating (L.20) at z_b gives

$$U_{s+} = V_p + \frac{L}{\rho} \left(\frac{d \rho}{dt} \right) = V_p + L \frac{d \ln \rho}{dt}. \quad (L.21)$$

Eliminating U_{s+} from (L.15) with (L.21) gives

$$\epsilon (U_s - U_p) = V_p + L \frac{d \ln \rho}{dt} - U_p \quad (L.22)$$

or

$$U_g = U_p + \frac{1}{\epsilon} \left(V_p + L \frac{d \ln \rho}{dt} - U_p \right). \quad (L.23)$$

Differentiating (L.23) yields

$$\begin{aligned} \dot{U}_g &= - \dot{U}_p \left(\frac{1-\epsilon}{\epsilon} \right) - \frac{\dot{\epsilon}}{\epsilon^2} \left(V_p + L \frac{d \ln \rho}{dt} - U_p \right) \\ &\quad + \frac{\dot{V}_p}{\epsilon} + \frac{L}{\epsilon} \left(\frac{d^2 \ln \rho}{dt^2} \right) + \frac{L}{\epsilon} \left(\frac{d \ln \rho}{dt} \right). \end{aligned} \quad (L.24)$$

We anticipate the need to factor out the base pressure P_B dependence of both \dot{V}_p and $d^2 \ln \rho / dt^2$.

The projectile acceleration is given by

$$\dot{V}_p = \frac{g_o A_B P_B}{M_p} - \frac{g_o A_B P_{re}}{M_p}. \quad (L.25)$$

To get the base pressure P_B dependence associated with $d^2 \ln \rho / dt^2$, we start with the definition of the gas density

$$\rho = \frac{m}{V_F} \quad (L.26)$$

where m = mass of gas burned and V_F = free volume. Therefore,

$$V_F = V_o + A_B (z_p - z_{po}) - \frac{C}{\rho_p} + \frac{m}{\rho_p} \quad (L.27)$$

and

$$\dot{V}_F = A_B \dot{z}_p + \frac{\dot{m}}{\rho_p} = A_B V_p + \frac{\dot{m}}{\rho_p} \quad (L.28)$$

and

$$\ddot{V}_F = A_B \dot{V}_p + \frac{\ddot{m}}{\rho_p} \quad (L.29)$$

where it is understood that m/ρ_p , \dot{m}/ρ_p , and \ddot{m}/ρ_p may be in the form $\sum \frac{m_i}{\rho_{p_i}}$, $\sum \frac{\dot{m}_i}{\rho_{p_i}}$, $\sum \frac{\ddot{m}_i}{\rho_{p_i}}$, where the i

index refers to different propellants.

From (L.26) we get

$$\ln \rho = \ln m - \ln V_F, \quad (L.30)$$

and

$$\frac{d \ln \rho}{dt} = \frac{\dot{m}}{m} - \frac{\dot{V}_F}{V_F} \quad (L.31)$$

and

$$\frac{d^2 \ln \rho}{dt^2} = \frac{\ddot{m}}{m} - \frac{\dot{m}^2}{m^2} - \frac{\ddot{V}_F}{V_F} + \frac{\dot{V}_F^2}{V_F^2}. \quad (L.32)$$

Substituting (L.29) and (L.25), we get

$$\frac{d^2 \ln \rho}{dt^2} = c_1(t) - \frac{g_o A_B^2 P_B}{V_F M_p} + \frac{g_o A_B^2 P_{res}}{V_F M_p}, \quad (L.33)$$

where

$$c_1(t) = \ddot{m} \left(\frac{1}{m} - \frac{1}{\rho_p V_F} \right) + \frac{\dot{V}_F^2}{V_F^2} - \frac{\dot{m}^2}{m^2}.$$

We still require \ddot{m} , which we get from

$$\dot{m} = \rho_p S \frac{dx}{dt} \quad (L.34)$$

where S is the surface area of the propellant and dx/dt is the burning rate of the propellant, where dx/dt is of the form

$$\frac{dx}{dt} = a P_m^n. \quad (L.35)$$

Therefore, from (L.34),

$$\begin{aligned} \ddot{m} &= \rho_p S \frac{dx}{dt} + \rho_p S \frac{d^2 x}{dt^2} \\ &= \rho_p \frac{dS}{dx} \left(\frac{dx}{dt} \right)^2 + \rho_p S \frac{d^2 x}{dt^2}, \end{aligned} \quad (L.36)$$

and from (L.35),

$$\frac{d^2 x}{dt^2} = a n P_m^{n-1} \frac{d P_m}{dt} \quad (L.37)$$

where dP_m/dt is determined numerically or from

$$\frac{dP_m}{dt} = \frac{\frac{mRT}{m_w} - P_m \dot{V} + \frac{mRT}{m_w}}{V}.$$

Also defining ϕ as the mass fraction of propellant burned, then

$$\rho = \frac{\phi C - \rho A_B L}{\varepsilon V(z_b)} = \frac{\phi C}{\varepsilon V(z_b)} \quad (L.38)$$

where

$$\phi_* = \phi - \frac{\rho A_B L}{C} \quad (L.39)$$

and

$$\rho_p = \frac{(1-\phi)C}{(1-\varepsilon)V(z_b)}. \quad (L.40)$$

Differentiating (L.39), we get

$$\dot{\phi}_* = \dot{\phi} - \frac{\rho A_B}{C} \left(L + L \frac{d \ln \rho}{dt} \right). \quad (L.41)$$

Solving (L.40) for ε , we get

$$\varepsilon = 1 - \frac{(1-\phi)C}{\rho_p V(z_b)}. \quad (L.42)$$

Differentiating (L.42) and noting that

$$V(z_b) = V(z_{po}) + (z_b - z_{po}) A_B \quad (L.43)$$

and, therefore,

$$\dot{V}(z_b) = z_b A_B = U_p A_B, \quad (L.44)$$

then

$$\dot{\varepsilon} = \frac{\dot{\phi} C}{\rho_p V(z_b)} + \frac{(1-\phi) C \dot{V}(z_b)}{\rho_p V^2(z_b)} = \frac{\dot{\phi} C}{\rho_p V(z_b)} + \frac{(1-\phi) C U_p A_B}{\rho_p V^2(z_b)}. \quad (L.45)$$

We now have the quantities which are required for the solution of the momentum equation from which we get the pressure distribution in the mixture region.

Consider the momentum equations for each phase

$$\frac{\partial \epsilon \rho u}{\partial t} + \frac{\partial \epsilon \rho u^2}{\partial z} + \epsilon g_o \frac{\partial P}{\partial z} = - f_s + \dot{m} u_p \quad (L.46)$$

$$\frac{\partial (1-\epsilon) \rho_p u_p}{\partial t} + \frac{\partial (1-\epsilon) \rho_p u_p^2}{\partial z} + (1-\epsilon) g_o \frac{\partial P}{\partial z} = f_s - \dot{m} u_p \quad (L.47)$$

where

$$f_s = \frac{(1-\epsilon)}{D_p} \rho (u - u_p)^2 f_{sc} \quad (L.48)$$

and

$$f_{sc} = \begin{cases} \frac{2.5\lambda}{REN^{0.081}} f_{so} & \epsilon < \epsilon_o \\ \frac{2.5\lambda}{REN^{0.081}} \left(\frac{(1-\epsilon)}{(1-\epsilon_o)} \frac{\epsilon_o}{\epsilon} \right)^{0.45} f_{so}, & \epsilon \geq \epsilon_o \end{cases} \quad (L.49)$$

where

$$\lambda = \left(\frac{0.5 + \frac{GL}{GD}}{\left(1.5 \frac{GL}{GD} \right)^{2/3}} \right)^{2.17} \quad (L.50)$$

and

$$REN = \rho D_p |U_s - U_p| / \mu$$

Adding (L.46) and (L.47), we get

$$g_o \frac{\partial P}{\partial z} = - \frac{\partial \epsilon \rho u}{\partial t} - \frac{\partial (1-\epsilon) \rho_p u_p}{\partial t} - \frac{\partial \epsilon \rho u^2}{\partial z} - \frac{\partial (1-\epsilon) \rho_p u_p^2}{\partial z} \quad (L.51)$$

or

$$g_o \frac{\partial P}{\partial z} = - \frac{\partial}{\partial t} [\epsilon \rho u + (1-\epsilon) \rho_p u_p] - \frac{\partial}{\partial z} [\epsilon \rho u^2 + (1-\epsilon) \rho_p u_p^2]. \quad (L.52)$$

From (L.10) we get $u_p(z) = U_p[z/z_b]$, from (L.14) we get $u(z) = U_s[z/z_b]$, from (L.38) we get

$$\epsilon \rho = \frac{\phi C - \rho A_B L}{V(z_b)} = \frac{\phi \cdot C}{V(z_b)},$$

and from (L.40) we get

$$(1 - \epsilon) \rho_p = \frac{(1 - \phi) C}{V(z_b)},$$

which, when substituted into (L.52), yields

$$\begin{aligned} g_o \frac{\partial P}{\partial z} &= - \frac{\partial}{\partial t} \left(\frac{\phi \cdot C U_s z}{V(z_b) z_b} + \frac{(1 - \phi) C U_p z}{V(z_b) z_b} \right) \\ &\quad - \frac{\partial}{\partial z} \left(\frac{\phi \cdot C U_s^2 z^2}{V(z_b) z_b^2} + \frac{(1 - \phi) C U_p^2 z^2}{V(z_b) z_b^2} \right). \end{aligned} \quad (L.53)$$

Differentiating (L.53) and noting z_b , $V(z_b)$, ϕ , $\phi \cdot C$, U_s , and U_p are functions of time only and that $\dot{z}_b = U_p$, $\dot{V}(z_b) = A_B U_p$, and $V(z_b) = A_B z_b$, we get

$$\begin{aligned} g_o \frac{\partial P}{\partial z} &= - z C \left(\frac{\phi \cdot \dot{U}_s + \dot{\phi} \cdot U_s + (1 - \phi) \dot{U}_p - \dot{\phi} U_p}{z_b V(z_b)} \right) \\ &\quad + \frac{z C [\phi \cdot U_s + (1 - \phi) U_p] \dot{z}_b}{z_b^2 V(z_b)} \\ &\quad + \frac{z C [\phi \cdot U_s + (1 - \phi) U_p] \dot{V}(z_b)}{z_b V^2(z_b)} \\ &\quad - \frac{2 z C [\phi \cdot U_s^2 + (1 - \phi) U_p^2]}{z_b^2 V(z_b)} \end{aligned} \quad (L.54)$$

or

$$\begin{aligned} \epsilon_o \frac{\partial P}{\partial z} &= - \frac{z C}{z_b V(z_b)} \left(\phi \cdot \dot{U}_s + \dot{\phi} \cdot U_s + (1 - \phi) \dot{U}_p - \dot{\phi} U_p \right. \\ &\quad \left. - \frac{[\phi \cdot U_s + (1 - \phi) U_p] U_p}{z_b} - \frac{[\phi \cdot U_s + (1 - \phi) U_p] U_p}{z_b} \right. \\ &\quad \left. + 2 \frac{[\phi \cdot U_s^2 + (1 - \phi) U_p^2]}{z_b} \right) \end{aligned} \quad (L.55)$$

or

$$g_o \frac{\partial P}{\partial z} = - \frac{zC}{z_b V(z_b)} \left(\phi_s \dot{U}_s + \dot{\phi}_s U_s + (1-\phi) \dot{U}_p - \dot{\phi} U_p + \frac{2\phi_s U_s (U_s - U_p)}{z_b} \right). \quad (L.56)$$

To get \dot{U}_p for substitution into (L.56), we use another form of the solid phase momentum equation

$$\frac{\partial u_p}{\partial t} + u_p \frac{\partial u_p}{\partial z} + \frac{g_o}{\rho_p} \frac{\partial P}{\partial z} = \frac{f_s}{(1-\varepsilon)\rho_p}, \quad (L.57)$$

and noting that at $z = z_b$, $\partial u_p(z_b)/\partial t = \dot{U}_p$, and that $\partial U_p/\partial z = 0$ (since U_p is a function of time only), then

$$\dot{U}_p + \frac{g_o}{\rho_p} \frac{\partial P}{\partial z} |_{z_b} = \frac{f_s}{(1-\varepsilon)\rho_p}. \quad (L.58)$$

Substituting (L.48) for f_s in (L.58), we get

$$\dot{U}_p = \frac{\rho}{D_p \rho_p} \frac{(U_s - U_p)^2}{f_{sc}} - \frac{g_o}{\rho_p} \frac{\partial P}{\partial z} |_{z_b}. \quad (L.59)$$

Substituting (L.24) into (L.56), we get

$$\begin{aligned} g_o \frac{\partial P}{\partial z} = & - \frac{zC}{z_b V(z_b)} \left(\phi_s \frac{\dot{V}_p}{\varepsilon} - \frac{(1-\varepsilon)}{\varepsilon} \dot{U}_p \phi_s \right) \\ & - \frac{\dot{\varepsilon}}{\varepsilon^2} \phi_s \left(V_p + L \frac{d \ln \rho}{dt} - U_p \right) + \frac{L \phi_s}{\varepsilon} \frac{d^2 \ln \rho}{dt^2} \\ & + \frac{\phi_s L}{\varepsilon} \frac{d \ln \rho}{dt} + \dot{\phi}_s U_s + (1-\phi) \dot{U}_p - \dot{\phi} U_p \\ & + \frac{2\phi_s U_s}{z_b} (U_s - U_p). \end{aligned} \quad (L.60)$$

Substituting (L.58) into (L.60), we get

$$\begin{aligned}
 g_o \frac{\partial P}{\partial z} = & - \frac{zC}{z_b V(z_b)} \left(\phi_* \frac{\dot{V}_p}{\varepsilon} + \dot{\phi}_* U_s - \dot{\phi}_* U_p \right. \\
 & - \frac{\dot{\varepsilon} \phi_*}{\varepsilon^2} \left(V_p + L \frac{d \ln \rho}{dt} - U_p \right) + \frac{\phi_* L}{\varepsilon} \frac{d^2 \ln \rho}{dt^2} \\
 & + \frac{\phi_* L}{\varepsilon} \frac{d \ln \rho}{dt} + \frac{2\phi_* U_s}{z_b} (U_s - U_p) + \frac{\phi_* \rho}{D_p \rho_p} (U_s - U_p)^2 f_{sc} \\
 & \left. - \frac{\phi_2 g_o}{\rho_p} \frac{\partial P}{\partial z} \Big|_{z_b} \right) \quad (L.61)
 \end{aligned}$$

or

$$g_o \frac{\partial P}{\partial z} = - \frac{zC}{z_b V(z_b)} \left(\phi_1 - \frac{\phi_2 g_o}{\rho_p} \frac{\partial P}{\partial z} \Big|_{z_b} \right) \quad (L.62)$$

where

$$\phi_1 = \phi_1' + \frac{\phi_* \dot{V}_p}{\varepsilon} + \frac{L \phi_*}{\varepsilon} \frac{d^2 \ln \rho}{dt^2} \quad (L.63)$$

and

$$\begin{aligned}
 \phi_1' = & \dot{\phi}_* U_s - \dot{\phi}_* U_p - \frac{\dot{\phi}_* \varepsilon}{\varepsilon^2} \left(V_p + L \frac{d \ln \rho}{dt} - U_p \right) \\
 & + \frac{\phi_* L}{\varepsilon} \frac{d \ln \rho}{dt} + \frac{2\phi_* U_s}{z_b} (U_s - U_p) + \frac{\phi_* \rho}{D_p \rho_p} (U_s - U_p)^2 f_{sc} \quad (L.64a)
 \end{aligned}$$

and

$$\phi_2 = 1 - \phi - \phi_* \frac{(1 - \varepsilon)}{\varepsilon}. \quad (L.64b)$$

To get $\frac{\partial P}{\partial z} \Big|_{z_b}$ for elimination from (L.62), we evaluate (L.62) at z_b and solve for $\frac{\partial P}{\partial z} \Big|_{z_b}$. (L.62) evaluated at z_b is

$$g_o \frac{\partial P}{\partial z} \Big|_{z_b} = - \frac{z_b C}{z_b V(z_b)} \left(\phi_1 - \phi_2 \frac{g_o}{\rho_p} \frac{\partial P}{\partial z} \Big|_{z_b} \right) \quad (L.65)$$

or

$$\frac{\partial P}{\partial z} \Big|_{z_b} = - \frac{C \phi_1}{g_o V(z_b) \left(1 - \frac{\phi_2 C}{\rho_p V(z_b)} \right)}. \quad (L.66)$$

Substituting (L.66) back into (L.62), we get

$$g_o \frac{\partial P}{\partial z} = - \frac{zC}{z_b V(z_b)} \left(\phi_1 + \frac{\phi_2 g_o C \phi_1}{\rho_p g_o V(z_b) \left(1 - \frac{\phi_2 C}{\rho_p V(z_b)} \right)} \right) \quad (L.67)$$

or

$$\frac{\partial P}{\partial z} = - \frac{zC}{g_o z_b V(z_b)} \left(\frac{\phi_1}{1 - \frac{\phi_2 C}{\rho_p V(z_b)}} \right) \quad (L.68)$$

or

$$\frac{\partial P}{\partial z} = - k_1(t) z \quad (L.69)$$

where

$$k_1(t) = k_1 = \frac{C}{g_o z_b V(z_b)} \left(\frac{\phi_1}{1 - \frac{\phi_2 C}{\rho_p V(z_b)}} \right). \quad (L.70)$$

k_1 depends upon the base pressure $P_B = P(z_p)$ (one of the values we wish to solve for) through \dot{V}_p (the acceleration of the projectile) and also through $(d^2 \ln \rho) / (dt^2)$.

Substituting (L.25),

$$\dot{V}_p = \frac{g_o A_B P_B}{M_p} - \frac{g_o A_B P_{res}}{M_p}$$

and (L.33) into (L.70), we get

$$k_1 = \frac{C}{g_o z_b V(z_b)} \frac{\phi_1' + D - EP_{res} + EP_B}{\left(1 - \frac{\phi_2 C}{\rho_p V(z_b)} \right)} \quad (L.71)$$

where

$$D = \frac{L \phi_1 c_1(t)}{\epsilon} \quad (L.72)$$

and

$$E = \frac{\phi_1}{\epsilon} \left(1 - \frac{L A_B}{V_F} \right) \frac{g_o A_B}{M_p} \quad (L.73)$$

or

$$k_1 = k_{11}P_B + k_{12} \quad (L.74)$$

where

$$k_{11} = \frac{CEk_2}{g_o z_b V(z_b)} \quad (L.75)$$

$$k_2 = \frac{1}{1 - \frac{\rho_p C}{\rho_p V(z_b)}} \quad (L.76)$$

and

$$k_{12} = \frac{(\phi_1' + D) C k_2}{g_o z_b V(z_b)} - k_{11} P_{rea.} \quad (L.77)$$

Therefore, (L.69) becomes

$$\frac{\partial P}{\partial z} = - (k_{11}P_B + k_{12}) z. \quad (L.78)$$

Integrating (L.78) gives us the pressure distribution in the mixture $0 < z < z_b$

$$P(z) = P(0) - \frac{k_{11}P_B + k_{12}}{2} z^2. \quad (L.79)$$

We now need the pressure distribution in the ullage region. For the ullage region, the momentum equation for the gas is

$$\frac{\partial P}{\partial z} = - \frac{\rho}{g_o} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial z} \right). \quad (L.80)$$

The equation of continuity in the ullage region is

$$\frac{\partial u}{\partial z} = - \frac{1}{\rho} \frac{d\rho}{dt} = - \frac{d \ln \rho}{dt}. \quad (L.81)$$

Integrating (L.81) and noting $(d \ln \rho)/dt$ is a function of time only, we get

$$u(z) = - \frac{d \ln \rho}{dt} z + f(t) \quad (L.82)$$

with the boundary condition,

$$u(z_p) = V_p = -z_p \frac{d \ln \rho}{dt} + f(t) \quad (L.83)$$

Therefore

$$f(t) = V_p + z_p \frac{d \ln \rho}{dt} \quad (L.84)$$

and

$$u(z) = -\frac{d \ln \rho}{dt} z + V_p + z_p \frac{d \ln \rho}{dt} = V_p + (z_p - z) \frac{d \ln \rho}{dt}. \quad (L.85)$$

Differentiating (L.85) gives

$$\frac{\partial u}{\partial t} = \dot{V}_p + (z_p - z) \frac{d^2 \ln \rho}{dt^2} + \dot{z}_p \frac{d \ln \rho}{dt} \quad (L.86)$$

or

$$\frac{\partial u}{\partial t} = \dot{V}_p + (z_p - z) \frac{d^2 \ln \rho}{dt^2} + V_p \frac{d \ln \rho}{dt}. \quad (L.87)$$

Substituting (L.81), (L.85), and (L.87) into (L.80), we get

$$\begin{aligned} \frac{\partial P}{\partial z} &= -\frac{\rho}{g_o} \left(\dot{V}_p + (z_p - z) \frac{d^2 \ln \rho}{dt^2} + V_p \frac{d \ln \rho}{dt} \right. \\ &\quad \left. - \left(V_p + (z_p - z) \frac{d \ln \rho}{dt} \right) \left(\frac{d \ln \rho}{dt} \right) \right) \end{aligned} \quad (L.88)$$

or

$$\frac{\partial P}{\partial z} = -\frac{\rho}{g_o} \left(\dot{V}_p + (z_p - z) \frac{d^2 \ln \rho}{dt^2} - (z_p - z) \left(\frac{d \ln \rho}{dt} \right)^2 \right). \quad (L.89)$$

Integrating (L.89) from z_b to z and noting z_p , \dot{V}_p , and $\ln \rho$ are functions of time only, we get

$$\begin{aligned} P(z) &= P(z_b) - \frac{\rho}{g_o} \left(\dot{V}_p z - \frac{(z_p - z)^2}{2} \left(\frac{d^2 \ln \rho}{dt^2} \right) \right. \\ &\quad \left. + \frac{(z_p - z)^2}{2} \left(\frac{d \ln \rho}{dt} \right)^2 \right) \Big|_{z_b}^z \end{aligned} \quad (L.90)$$

$$P(z) = P(z_b) - \frac{\rho}{g_o} \left(\dot{V}_p z - \frac{(z_p - z)^2}{2} \Delta \right) \Big|_{z_b}^z \quad (L.91)$$

where

$$\Delta = \frac{d^2 \ln \rho}{dt^2} - \left(\frac{d \ln \rho}{dt} \right)^2. \quad (L.92)$$

Therefore, we get the pressure distribution in the ullage region as

$$P(z) = P(z_b) - \frac{\rho}{g_o} \left(\dot{V}_p (z - z_b) + [(z_p - z_b)^2 - (z_p - z)^2] \frac{\Delta}{2} \right) \quad (L.93)$$

or

$$P(z) = P(z_b) - \frac{\rho}{g_o} \left((\dot{V}_p + z_p \Delta) (z - z_b) - (z^2 - z_b^2) \frac{\Delta}{2} \right). \quad (L.94)$$

Defining the mean pressure P_m to be

$$P_m = \frac{\int_0^{z_p} P(z) A(z) dz}{\int_0^{z_p} A(z) dz} \quad (L.95)$$

and, since $A(z) = A_B$ is a constant, then

$$P_m = \frac{\int_0^{z_p} P(z) dz + \int_{z_p}^{z_p} P(z) dz}{z_p}. \quad (L.96)$$

Substituting the pressure distribution in the mixture region (L.79) and the pressure distribution in the ullage region (L.94) into (L.96) to get the mean pressure, and noting that $P(0) = P_B$ (the pressure at the breech) we get

$$\begin{aligned} P_m &= \frac{1}{z_p} \left(\int_0^{z_p} \left(P_B - \frac{(k_{11}P_B + K_{12})}{2} z^2 \right) dz \right. \\ &\quad \left. + \int_{z_p}^{z_p} \left(P(z_b) - \frac{\rho}{g_o} \left[(\dot{V}_p + z_p \Delta) (z - z_b) - (z^2 - z_b^2) \frac{\Delta}{2} \right] \right) dz \right) \end{aligned} \quad (L.97)$$

or

$$\begin{aligned}
 P_m &= \left[P_{Br} z_b - \frac{(k_{11}P_b + k_{12})}{6} z_b^3 + P(z_b) (z_p - z_b) \right. \\
 &\quad - \frac{\rho}{2g_o} \left((\dot{V}_p + z_p \Delta) (z_p - z_b)^2 \right. \\
 &\quad \left. \left. - \frac{\Delta}{3} (z_p^3 - z_b^3) + z_b^2 \Delta (z_p - z_b) \right) \right] / z_p
 \end{aligned} \tag{L.98}$$

or, since $L = z_p - z_b$,

$$\begin{aligned}
 P_m &= P_{Br} \frac{z_b}{z_p} - \frac{k_{11}P_b z_b^3}{6z_p} - \frac{k_{12}z_b^3}{6z_p} + \frac{P(z_b)L}{z_p} \\
 &\quad - \frac{\rho L^2}{2g_o z_p} \left(\dot{V}_p + \frac{2}{3} \Delta L \right).
 \end{aligned} \tag{L.99}$$

We need to substitute for $P(z_b)$. To get $P(z_b)$, we evaluate (L.79) at z_b and get

$$P(z_b) = P_{Br} - \frac{k_{11}z_b^2 P_b}{2} - \frac{k_{12}z_b^2}{2}. \tag{L.100}$$

Substituting (L.100) into (L.99), we get

$$\begin{aligned}
 P_m &= P_{Br} \frac{z_b}{z_p} - \frac{k_{11}z_b^3 P_b}{6z_p} - \frac{k_{12}z_b^3}{6z_p} \\
 &\quad + \frac{L}{z_p} \left(P_{Br} - \frac{k_{11}z_b^2 P_b}{2} - \frac{k_{12}z_b^2}{2} \right) - \frac{\rho L^2 \dot{V}_p}{2g_o z_p} - \frac{\rho L^3 \Delta}{3g_o z_p}.
 \end{aligned} \tag{L.101}$$

Substituting (L.25) for \dot{V}_p and combining terms, we get

$$\begin{aligned}
 P_m &= P_{Br} + P_b \left(-\frac{k_{11}z_b^3}{6z_p} - \frac{Lk_{11}z_b^2}{2z_p} - \frac{\rho L^2 A_b}{2z_p M_p} \right) \\
 &\quad + \frac{\rho L^2 A_b P_{ra}}{2z_p M_p} - \frac{k_{12}z_b^3}{6z_p} - \frac{Lk_{12}z_b^2}{2z_p} - \frac{\rho L^3 \Delta}{3g_o z_p}.
 \end{aligned} \tag{L.102}$$

Evaluating (L.94) at z_p , we get

$$P(z_p) = P(z_b) - \frac{\rho}{g_o} \left[(\dot{V}_p + z_p \Delta) (z_p - z_b) - (z_p^2 - z_b^2) \frac{\Delta}{2} \right], \tag{L.103}$$

and substituting (L.100) into (L.103) and noting $L = z_p - z_b$, we get

$$\begin{aligned} P(z_p) &= P_B = P_{Br} - \frac{k_{11}z_b^2 P_b}{2} - \frac{k_{12}z_b^2}{2} - \frac{\rho L \dot{V}_p}{g_o} - \frac{\rho L z_p \Delta}{g_o} \\ &+ \frac{\rho}{g_o} (z_p^2 - z_b^2) \frac{\Delta}{2}. \end{aligned} \quad (L.104)$$

Substituting (L.25) for \dot{V}_p , and collecting P_B terms for (L.104), we get

$$\begin{aligned} 0 &= P_{Br} + P_B \left(-1 - \frac{k_{11}z_b^2}{2} - \frac{\rho L A_B}{M_p} \right) - \frac{k_{12}z_b^2}{2} + \frac{\rho L A_B P_{res}}{M_p} \\ &- \frac{\rho L z_p \Delta}{g_o} + \frac{\rho \Delta}{2g_o} (z_p^2 - z_b^2) \end{aligned} \quad (L.105)$$

or

$$\begin{aligned} 0 &= P_{Br} + P_B \left(-1 - \frac{k_{11}z_b^2}{2} - \frac{\rho L A_B}{M_p} \right) - \frac{k_{12}z_b^2}{2} + \frac{\rho L A_B P_{res}}{M_p} \\ &- \frac{\rho L^2 \Delta}{2g_o}. \end{aligned} \quad (L.106)$$

Subtracting (L.106) from (L.102) to eliminate $P_{p,c}$ and get P_B in terms of P_m , we get

$$\begin{aligned} P_m &= P_B \left(-\frac{k_{11}z_b^3}{6z_p} - \frac{Lk_{11}z_b^2}{2z_p} - \frac{\rho L^2 A_B}{2z_p M_p} + 1 + \frac{k_{11}z_b^2}{2} + \frac{\rho L A_B}{M_p} \right) \\ &+ \frac{\rho L^2 A_B P_{res}}{2z_p M_p} - \frac{k_{12}z_b^3}{6z_p} - \frac{Lk_{12}z_b^2}{2z_p} + \frac{k_{12}z_b^2}{2} \\ &- \frac{\rho L A_B P_{res}}{M_p} + \frac{\rho L^2 \Delta}{2g_o} \left(1 - \frac{2L}{3z_p} \right). \end{aligned} \quad (L.107)$$

Noting the dependence of P_B in Δ , we use (L.92)

$$\Delta = \frac{d^2 \ln \rho}{dt^2} - \left(\frac{d \ln \rho}{dt} \right)^2$$

or, substituting for

$$\frac{d^2 \ln \rho}{dt^2}$$

from (L.33) and eliminating \dot{V}_p with (L.25), we get

$$\Delta = c_1(t) - \frac{g_o A_B^2 P_B}{V_F M_p} + \frac{g_o A_B P_{res}}{M_p V_F} - \left(\frac{d \ln \rho}{dt} \right)^2. \quad (L.108)$$

Substituting (L.108) into (L.107) and collecting P_B terms, we get

$$\begin{aligned} P_m &= P_B \left[-\frac{k_{11} z_b^3}{6 z_p} - \frac{L k_{11} z_b^2}{2 z_p} - \frac{\rho L^2 A_B}{2 z_p M_p} + 1 + \frac{k_{11} z_b^2}{2} + \frac{\rho L A_B}{M_p} \right. \\ &\quad \left. - \frac{A_B^2 \rho L^2}{2 V_F M_p} \left(1 - \frac{2L}{3 z_p} \right) \right] + \frac{k_{12} z_b^2}{2} - \frac{\rho L A_B P_{res}}{M_p} - \frac{k_{12} z_b^2}{2 z_p} \left(\frac{z_b}{3} + L \right) \\ &\quad + \frac{\rho L^2 A_B P_{res}}{2 z_p M_p} + \frac{\rho L^2}{2 g_o} \left(1 - \frac{2L}{3 z_p} \right) \left(c_1(t) - \left(\frac{d \ln \rho}{dt} \right)^2 \right) \\ &\quad + \frac{A_B^2 \rho L^2}{2 M_p V_F} \left(1 - \frac{2L}{3 z_p} \right) P_{res}. \end{aligned} \quad (L.109)$$

Substituting (L.108) into (L.106) and collecting P_B terms, we get

$$\begin{aligned} P_{Br} &= P_B \left(1 + \frac{k_{11} z_b^2}{2} + \frac{\rho L A_B}{M_p} - \frac{A_B^2 \rho L^2}{2 V_F M_p} \right) + \frac{k_{12} z_b^2}{2} - \frac{\rho L A_B P_{res}}{M_p} \\ &\quad + \frac{\rho L^2}{2 g_o} \left(c_1(t) - \left(\frac{d \ln \rho}{dt} \right)^2 \right) + \frac{A_B^2 \rho L^2}{2 V_F M_p} P_{res}. \end{aligned} \quad (L.110)$$

Equation (L.109) gives P_B in terms of P_m (which is determined using an equation of state) and then (L.110) gives P_{Br} in terms of P_B .

The kinetic energy (KE) of the gas and solid will be required. The kinetic energy is given by

$$g_o KE = \frac{1}{2} \int_o^{z_p} u^2 dm \quad (L.111)$$

where u is the velocity and dm is the differential of mass; and since $\rho dV = dm$ and $dV = A(z) dz = A_B dz$, then

$$g_o KE = \frac{1}{2} \int_0^{z_b} u^2 dm + \frac{1}{2} \int_{z_b}^{z_p} u^2 dm$$

or

$$\begin{aligned} g_o KE &= \frac{1}{2} (1-\varepsilon) \int_0^{z_b} u_p^2 \rho_p A_B dz + \frac{1}{2} \varepsilon \int_0^{z_b} u^2 \rho A_B dz \\ &+ \frac{1}{2} \int_{z_b}^{z_p} u^2 \rho A_B dz. \end{aligned} \quad (L.112)$$

Substituting (L.10) for u_p , and (L.14) for u in the mixture region, and (L.20) for u in the ullage region, we get

$$\begin{aligned} g_o KE &= \frac{1}{2} (1-\varepsilon) \rho_p A_B \frac{U_p^2}{z_b^2} \int_0^{z_b} z^2 dz + \frac{\varepsilon}{2} \frac{\rho A_B U_s^2}{z_b^2} \int_0^{z_b} z^2 dz \\ &+ \frac{\rho A_B}{2} \int_{z_b}^{z_p} \left(V_p + (z_p - z) \frac{d \ln \rho}{dt} \right)^2 dz, \end{aligned} \quad (L.113)$$

or

$$\begin{aligned} g_o KE &= \frac{A_B z_b}{6} [\varepsilon \rho U_s^2 + (1-\varepsilon) \rho_p U_p^2] \\ &- \frac{\rho A_B}{6 \frac{d \ln \rho}{dt}} \left(V_p + (z_p - z) \frac{d \ln \rho}{dt} \right)^3 \Big|_{z_b}^{z_p} \end{aligned} \quad (L.114)$$

or

$$\begin{aligned} KE &= \frac{A_B z_b}{6 g_o} [\varepsilon \rho U_s^2 + (1-\varepsilon) \rho_p U_p^2] \\ &+ \frac{\rho A_B L}{6 g_o} \left[3V_p^2 + 3V_p L \frac{d \ln \rho}{dt} + L^2 \left(\frac{d \ln \rho}{dt} \right)^2 \right]. \end{aligned} \quad (L.115)$$

It would appear that the pressure used in evaluating the burning rate should be the mean pressure over the region occupied by the propellant.

The mean pressure over the mixture region is

$$P_{mix} = \frac{\int_0^{z_b} P(z) A(z) dz}{\int_0^{z_b} A(z) dz}, \quad (L.116)$$

and since $A(z) = A_B$ and using the pressure distribution in the mixture region given by (L.79), then

$$P_{mix} = \frac{A_B \int_0^{z_b} \left(P_{Br} - \left(\frac{k_{11}P_B + k_{12}}{2} \right) z^2 \right) dz}{A_B \int_0^{z_b} dz} \quad (L.117)$$

or

$$P_{mix} = P_{Br} - \frac{(k_{11}P_B + k_{12})}{6} z_b^2. \quad (L.118)$$

INTENTIONALLY LEFT BLANK.

**APPENDIX 3:
COMBINED INFLUENCE OF CHAMBRAGE AND
PROPELLANT VELOCITY LAG**

INTENTIONALLY LEFT BLANK.

The following, is work by Gough (Gough, in preparation) with modifications and elaborations by Robbins.

For the effects of the propellant velocity lag and chambrage on the form of the gradient equation, the variation in area is assumed confined to the chamber of the gun and the propellant initially uniformly fills the chamber.

The continuity equations for each of the phases in the mixture region are

$$\frac{\partial \epsilon \rho}{\partial t} + \frac{1}{A} \frac{\partial \epsilon \rho u A}{\partial z} = \dot{m}(t) \quad (R.1)$$

$$\rho_p \frac{\partial \epsilon}{\partial t} - \frac{1}{A} \frac{\partial (1-\epsilon) \rho_p u_p A}{\partial z} = \dot{m}(t). \quad (R.2)$$

Making assumptions analogous to the Lagrange assumption,

$$\frac{\partial \rho}{\partial z} = 0 \quad (\text{gas density constant throughout the tube}) \quad (R.3)$$

$$\frac{\partial \epsilon}{\partial z} = 0 \quad (\text{porosity constant throughout the mixture region}) \quad (R.4)$$

and noting the assumption that $\dot{m}(t)$ is a function of time, then (R.1) becomes,

$$\frac{\partial \epsilon \rho}{\partial t} + \frac{\epsilon \rho}{A} \frac{\partial u A}{\partial z} = \dot{m}(t), \quad (R.4a)$$

or

$$\frac{\partial u A}{\partial z} = \frac{(\dot{m}(t) - \frac{\partial \epsilon \rho}{\partial t}) A}{\epsilon \rho}. \quad (R.5)$$

Integrating R.5 and noting that the right side is a function of time only except for A which is a function of z only, we get

$$uA = f(t) \int A dz + k(t) = f(t) V(z) + k(t). \quad (R.6)$$

Applying the boundary condition $u(0) = 0$ implies that $k(t) = 0$ since $V(0) = 0$.

Also $u(z_b) = U_p$ implies that

$$f(t) = \frac{U_p A(z_b)}{V(z_b)}, \quad (R.7)$$

and, since $A(z_b) = A_B$,

$$u(z) = \frac{U_p A_B V(z)}{A(z) V(z_b)}. \quad (R.8)$$

Also (R.2) becomes after using (R.3) and (R.4)

$$\rho_p \frac{\partial \epsilon}{\partial t} - \frac{(1-\epsilon) \rho_p}{A} \frac{\partial u_p A}{\partial z} = \dot{m}(t) \quad (R.9)$$

or

$$\frac{\partial u_p A}{\partial z} = \frac{\dot{m}(t) - \rho_p \frac{\partial \epsilon}{\partial t}}{(1-\epsilon) \rho_p} A. \quad (R.10)$$

Since the right side of (R.10) is a function of time only except for A , which is a function of z only, on integrating, we get

$$u_p A = f_1(t) \int A dz + k_1(t) = f_1(t) V(z) + k_1(t). \quad (R.11)$$

Applying the boundary condition, $u_p(0) = 0$ implies that $k_1(t) = 0$ since $V(0) = 0$.

Also $u_p(z_b) = U_p$ implies that

$$f_1(t) = \frac{U_p A(z_b)}{V(z_b)}, \quad (R.12)$$

and since $A(z_b) = A_B$,

$$u_p(z) = \frac{U_p A_B V(z)}{A(z) V(z_b)}. \quad (R.13)$$

At the internal boundary defined by the leading edge of the propellant bed we may write the macroscopic balance of mass in the following form

$$\epsilon (U_s - U_p) = U_{s+} - U_p \quad (R.14)$$

This result includes the assumption that the density jump across the boundary is negligible, as will always be the case if the Mach number is small compared with unity, and which is in any case consistent with the present assumption R.3.

As with the velocity lag derivation, the ullage region is the same.

That is the continuity equation given by

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial z} = 0, \quad (R.15)$$

and using (R.3),

$$\frac{\partial u}{\partial z} = - \frac{1}{\rho} \frac{d\rho}{dt} \quad (R.16)$$

where the right side of (R.16) is a function of time only.

Therefore,

$$u = - \frac{1}{\rho} \frac{d\rho}{dt} z + f_3(t). \quad (R.17)$$

Since $u(z_b) = U_{b+}$, then

$$U_{b+} = - \frac{1}{\rho} \frac{d\rho}{dt} z_b + f_3(t), \quad (R.18)$$

and since $u(z_p) = V_p$, then

$$V_p = - \frac{1}{\rho} \frac{d\rho}{dt} z_p + f_3(t). \quad (R.19)$$

Subtracting (R.18) from (R.19) and noting

$$\frac{1}{\rho} \frac{d\rho}{dt} = \frac{d \ln \rho}{dt}$$

we get

$$U_{b+} = \frac{d \ln \rho}{dt} (z_p - z_b) + V_p. \quad (R.20)$$

Also solving (R.19) for $f_3(t)$ and substituting into (R.17), we get

$$u(z) = V_p + (z_p - z) \frac{d \ln \rho}{dt}. \quad (R.21)$$

Eliminating U_{g+} from (R.14) with (R.20) gives

$$\epsilon (U_g - U_p) = V_p + L \frac{d \ln \rho}{dt} - U_p \quad (R.22)$$

or

$$U_g = U_p + \frac{1}{\epsilon} \left(V_p + L \frac{d \ln \rho}{dt} - U_p \right). \quad (R.23)$$

Differentiating (R.23) yields

$$\begin{aligned} \dot{U}_g &= - \dot{U}_p \left(\frac{1-\epsilon}{\epsilon} \right) - \frac{\dot{\epsilon}}{\epsilon^2} \left(V_p + L \frac{d \ln \rho}{dt} - U_p \right) \\ &\quad + \frac{\dot{V}_p}{\epsilon} + \frac{L}{\epsilon} \frac{d^2 \ln \rho}{dt^2} + \frac{L}{\epsilon} \frac{d \ln \rho}{dt}. \end{aligned} \quad (R.24)$$

We anticipate the need to factor out the base pressure P_B dependence of both \dot{V}_p and $d^2 \ln \rho / dt^2$.

The projectile acceleration is given by

$$\dot{V}_p = \frac{g_o A_B P_B}{M_p} - \frac{g_o A_B P_{re}}{M_p}. \quad (R.25)$$

To get the base pressure P_B dependence associated with $d^2 \ln \rho / dt^2$ we start with the definition of the gas density

$$\rho = \frac{m}{V_F} \quad (R.26)$$

where m = mass of gas burnt and V_F = free volume.

Therefore

$$V_F = V_o + A_B (z_p - z_{po}) - \frac{C}{\rho_p} + \frac{m}{\rho_p} \quad (R.27)$$

and

$$\dot{V}_F = A_B \dot{z}_p + \frac{\dot{m}}{\rho_p} = A_B V_p + \frac{\dot{m}}{\rho_p} \quad (R.28)$$

and

$$\dot{V}_F = A_B \dot{V}_p + \frac{\dot{m}}{\rho_p} \quad (R.29)$$

where it is understood that

$$\frac{m}{\rho_p}, \quad \frac{\dot{m}}{\rho_p}, \quad \text{and} \quad \frac{\dot{m}}{\rho_p}$$

may be in the form

$$\sum \frac{m_i}{\rho_{p_i}}, \quad \sum \frac{\dot{m}_i}{\rho_{p_i}}, \quad \text{and} \quad \sum \frac{\dot{m}_i}{\rho_{p_i}}$$

where the i index refers to different propellants.

From (R.26) we get

$$\ln \rho = \ln m - \ln V_F \quad (R.30)$$

and

$$\frac{d \ln \rho}{dt} = \frac{\dot{m}}{m} - \frac{\dot{V}_F}{V_F} \quad (R.31)$$

and

$$\frac{d^2 \ln \rho}{dt^2} = \frac{\ddot{m}}{m} - \frac{\dot{m}^2}{m^2} - \frac{\dot{V}_F^2}{V_F^2} + \frac{\dot{V}_F^2}{V_F^2} \quad (R.32)$$

Substituting (R.29) and then (R.25), we get

$$\frac{d^2 \ln \rho}{dt^2} = C_1(t) - \frac{g_o A_B^2 P_B}{V_F M_p} + \frac{g_o A_B^2 P_{res}}{M_p V_F} \quad (R.33)$$

where

$$C_1(t) = \ddot{m} \left(\frac{1}{m} - \frac{1}{\rho_p V_F} \right) + \frac{\dot{V}_F^2}{V_F^2} - \frac{\dot{m}^2}{m^2}$$

We still require \ddot{m} , which we get from

$$\dot{m} = \rho_p S \frac{dx}{dt} \quad (R.34)$$

where S is the surface area of the propellant and dx/dt is the burning rate of the propellant where dx/dt is of the form

$$\frac{dx}{dt} = aP_m^n. \quad (R.35)$$

Therefore, from (R.34) we get

$$\begin{aligned} \ddot{m} &= \rho_p S \frac{dx}{dt} + \rho_p S \frac{d^2x}{dt^2} \\ &= \rho_p \frac{dS}{dx} \left(\frac{dx}{dt} \right)^2 + \rho_p S \frac{d^2x}{dt^2} \end{aligned} \quad (R.36)$$

and from (R.35) we get

$$\frac{d^2x}{dt^2} = an P_m^{n-1} \frac{dP_m}{dt} \quad (R.37)$$

where dP_m/dt is determined numerically or from

$$\frac{dP_m}{dt} = \frac{\frac{nRT}{m_w} + \frac{T\dot{m}}{m_w} - P_m \dot{V}}{V}.$$

Also, defining ϕ as the mass fraction of propellant burned, then

$$\epsilon \rho = \frac{\phi c - \rho A_B L}{V(z_b)} = \frac{\phi \cdot C}{V(z_b)} \quad (R.38)$$

where

$$\phi_* = \phi - \frac{\rho A_B L}{C} \quad (R.39)$$

and

$$(1-\epsilon) \rho_p = \frac{(1-\phi) C}{V(z_b)}. \quad (R.40)$$

Differentiating (R.39), we get

$$\dot{\phi}_* = \dot{\phi} - \frac{\rho A_B}{C} \left[L + L \frac{d \ln \rho}{dt} \right]. \quad (R.41)$$

Solving (R.40) for ϵ , we get

$$\epsilon = 1 - \frac{(1-\phi)C}{\rho_p V(z_b)}. \quad (R.42)$$

Differentiating (R.42) and noting that

$$V(z_b) = V(z_{po}) + (z_b - z_{po}) A_B \quad (R.43)$$

and therefore

$$\dot{V}(z_b) = z_b A_B = U_p A_B, \quad (R.44)$$

then

$$\dot{\epsilon} = \frac{\dot{\phi}C}{\rho_p V(z_b)} + \frac{(1-\phi)C\dot{V}(z_b)}{\rho_p V^2(z_b)} = \frac{\dot{\phi}C}{\rho_p V(z_b)} + \frac{(1-\phi)C U_p A_B}{\rho_p V^2(z_b)}. \quad (R.45)$$

We now have the quantities which are required for the solution of the momentum equation from which we get the pressure distribution in the mixture region.

Consider the momentum equations for each phase

$$\frac{1}{A} \left[\frac{\partial A \epsilon \rho u}{\partial t} + \frac{\partial A \epsilon \rho u^2}{\partial z} \right] + \epsilon g_o \frac{\partial P}{\partial z} = - f_s + \dot{m} u_p \quad (R.46)$$

$$\frac{1}{A} \left[\frac{\partial A (1-\epsilon) \rho_p u_p}{\partial t} + \frac{\partial A (1-\epsilon) \rho_p u_p^2}{\partial z} \right] + (1-\epsilon) g_o \frac{\partial P}{\partial z} = f_s - \dot{m} u_p \quad (R.47)$$

where

$$f_s = \frac{(1-\epsilon)}{D_p} \rho (u - u_p)^2 f_{sc} \quad (R.48)$$

and

$$f_{sc} = \begin{cases} \frac{2.5\lambda}{REN^{0.081}} f_{so}, & \epsilon < \epsilon_o \\ \frac{2.5\lambda}{REN^{0.081}} \left(\frac{(1-\epsilon)}{(1-\epsilon_o)} \frac{\epsilon_o}{\epsilon} \right)^{0.45} f_{so}, & \epsilon \geq \epsilon_o \end{cases} \quad (R.49)$$

where

$$\lambda = \left(\frac{0.5 + \frac{GL}{GD}}{\left(1.5 - \frac{GL}{GD} \right)^{2/3}} \right)^{2/17} \quad (R.50)$$

and

$$REN = \rho D_p |U_s - U_p| / \mu.$$

Adding (R.46) and (R.47) we get

$$\begin{aligned} g_o \frac{\partial P}{\partial z} &= - \frac{1}{A} \frac{\partial}{\partial t} [A \epsilon \rho u + A(1-\epsilon) \rho_p u_p] \\ &\quad - \frac{1}{A} \frac{\partial}{\partial z} [A \epsilon \rho u^2 + A(1-\epsilon) \rho_p u_p^2]. \end{aligned} \quad (R.51)$$

From (R.8) we get

$$u(z) = \frac{U_s A_B V(z)}{A(z) V(z_b)},$$

from (R.13) we get

$$u_p(z) = \frac{U_p A_B V(z)}{A(z) V(z_b)},$$

from (R.38) we get

$$\epsilon \rho = \frac{\phi C}{V(z_b)},$$

and from (R.40) we get

$$(1-\epsilon) \rho_p = \frac{(1-\phi)C}{V(z_b)}$$

which, when substituted into (R.51), yields

$$\begin{aligned} g_o \frac{\partial P}{\partial z} &= - \frac{1}{A} \frac{\partial}{\partial t} \left[\frac{\phi C U_s A_B V(z)}{V^2(z_b)} + \frac{(1-\phi) C U_p A_B V(z)}{V^2(z_b)} \right] \\ &\quad - \frac{1}{A} \frac{\partial}{\partial z} \left[\frac{\phi C U_s^2 A_B^2 V^2(z)}{V^3(z_b) A(z)} + \frac{(1-\phi) C U_p^2 A_B^2 V^2(z)}{V^3(z_b) A(z)} \right], \end{aligned} \quad (R.52)$$

or

$$g_o \frac{\partial P}{\partial t} = - \frac{CA_B V(z)}{A(z)} \frac{\partial}{\partial t} \left[\frac{\phi \cdot U_s}{V^2(z_b)} + \frac{(1-\phi)U_p}{V^2(z_b)} \right] - \frac{CA_B^2}{A(z)V^3(z_b)} \frac{\partial}{\partial z} \left[\frac{\phi \cdot U_s^2 V^2(z)}{A(z)} + \frac{(1-\phi)U_p^2 V^2(z)}{A(z)} \right]. \quad (R.53)$$

Performing the indicated differentiation in (R.53), we get

$$g_o \frac{\partial P}{\partial z} = - \frac{CA_B V(z)}{A(z)} \left[\frac{\dot{\phi} \cdot U_s}{V^2(z_b)} + \frac{\phi \cdot \dot{U}_s}{V^2(z_b)} - 2 \frac{\phi \cdot U_s \dot{V}(z_b)}{V^3(z_b)} - \frac{\dot{\phi} U_p}{V^2(z_b)} \right. \\ \left. + \frac{(1-\phi)\dot{U}_p}{V^2(z_b)} - 2 \frac{(1-\phi)U_p \dot{V}(z_b)}{V^3(z_b)} \right] - \frac{CA_B^2}{A(z)V^3(z_b)} [\phi \cdot U_s^2 + (1-\phi)U_p^2] \frac{\partial}{\partial z} \left(\frac{V^2(z)}{A(z)} \right). \quad (R.54)$$

Noting that, since

$$V(z_b) = V(z_{bo}) + A_B (z_b - z_{bo}), \quad (R.55)$$

and therefore

$$\dot{V}(z_b) = A_B \dot{z}_b = A_B U_p, \quad (R.56)$$

and since $\partial V(z)/\partial z = A(z)$, and $A(z)$ and $V(z)$ are function of z only,

$$\frac{\partial}{\partial z} \left(\frac{V^2(z)}{A(z)} \right) = 2V(z) - \frac{V^2(z)}{A^2(z)} \frac{dA(z)}{dz}, \quad (R.57)$$

then

$$g_o \frac{\partial P}{\partial z} = - \frac{CA_B V(z)}{A(z)V^2(z_b)} \left[\phi \cdot U_s + \phi \cdot \dot{U}_s - 2 \frac{\phi \cdot U_s A_B U_p}{V(z_b)} - \dot{\phi} U_p \right. \\ \left. + (1-\phi)\dot{U}_p - 2 \frac{(1-\phi)U_p^2 A_B}{V(z_b)} + \frac{2A_B}{V(z_b)} (\phi \cdot U_s^2 + (1-\phi)U_p^2) \right. \\ \left. - \frac{A_B V(z)}{A^2(z)V(z_b)} (\phi \cdot U_s^2 + (1-\phi)U_p^2) \frac{\partial A(z)}{\partial z} \right] \quad (R.58)$$

or

$$\begin{aligned}
 g_o \frac{\partial P}{\partial z} = & - \frac{CA_B V(z)}{A(z)V^2(z_b)} \left[\phi \cdot \dot{U}_s + (1-\phi) \dot{U}_p + \phi \cdot U_s - \phi U_p \right. \\
 & + 2 \frac{A_B \phi \cdot U_s}{V(z_b)} (U_s - U_p) \\
 & \left. - \frac{A_B V(z)}{A^2(z)V(z_b)} (\phi \cdot U_s^2 + (1-\phi) U_p^2) \frac{\partial A(z)}{\partial z} \right]. \tag{R.59}
 \end{aligned}$$

Eliminating \dot{U}_s from (R.59) by using (R.24), we get

$$\begin{aligned}
 g_o \frac{\partial P}{\partial z} = & - \frac{CA_B V(z)}{V^2(z_b)A(z)} \left[\frac{\phi \cdot \dot{V}_p}{\varepsilon} + \frac{L\phi \cdot}{\varepsilon} \frac{d^2 \ln \rho}{dt^2} \right] \\
 & + \dot{U}_p \left(1 - \phi - \frac{\phi(1-\varepsilon)}{\varepsilon} \right) - \phi \cdot \frac{\dot{\varepsilon}}{\varepsilon^2} \left(V_p + L \frac{d \ln \rho}{dt} - U_p \right) \\
 & + \phi \cdot \frac{L}{\varepsilon} \frac{d \ln \rho}{dt} + \phi \cdot U_s - \phi U_p + \frac{2A_B \phi \cdot U_s}{V(z_b)} (U_s - U_p) \\
 & - \frac{A_B V(z)}{V(z_b)A^2(z)} (\phi \cdot U_s^2 + (1-\phi) U_p^2) \frac{\partial A(z)}{\partial z}. \tag{R.60}
 \end{aligned}$$

We need to eliminate \dot{U}_p .

From (R.2) we get, by multiplying by u_p ,

$$u_p \rho_p \frac{\partial \varepsilon}{\partial t} - \frac{u_p}{A} \frac{\partial}{\partial z} \frac{(1-\varepsilon) \rho_p u_p A}{\partial z} = \dot{m}(t) u_p \tag{R.61}$$

which, when substituted into (R.47), gives

$$\begin{aligned}
 \frac{1}{A} \frac{\partial A(1-\varepsilon) \rho_p u_p}{\partial t} + \frac{1}{A} \frac{\partial A(1-\varepsilon) \rho_p u_p^2}{\partial z} + (1-\varepsilon) g_o \frac{\partial P}{\partial z} \\
 = f_s - u_p \rho_p \frac{\partial \varepsilon}{\partial t} + \frac{u_p}{A} \frac{\partial (1-\varepsilon) \rho_p u_p A}{\partial z} \tag{R.62}
 \end{aligned}$$

or

$$\begin{aligned}
 (1-\varepsilon)\rho_p \frac{\partial u_p}{\partial t} + \frac{(1-\varepsilon)\rho_p u_p}{A} \frac{\partial A}{\partial t} + 2(1-\varepsilon)\rho_p \frac{\partial u_p}{\partial z} \\
 + \frac{(1-\varepsilon)\rho_p u_p^2}{A} \frac{\partial A}{\partial z} + (1-\varepsilon)g_o \frac{\partial P}{\partial z} \\
 = f_x + u_p (1-\varepsilon)\rho_p \frac{\partial u_p}{\partial z} + \frac{u_p(1-\varepsilon)\rho_p u_p}{A} \frac{\partial A}{\partial z}. \quad (R.63)
 \end{aligned}$$

Evaluating R.63 at z_b and noting $\partial A/\partial t = 0$,

$$\frac{\partial U_p}{\partial z}|_{z_b} = 0$$

and

$$\frac{\partial A}{\partial z}|_{z_b} = 0 \quad \text{for } z_b \geq z_{po},$$

then

$$(1-\varepsilon) g_o \frac{\partial P}{\partial z} + (1-\varepsilon)\rho_p \dot{U}_p = f_x. \quad (R.63a)$$

Using (R.48) with (R.63a), we get

$$\dot{U}_p = \frac{\rho(U_t - U_p)^2 f_{sc}}{\rho_p D_p} - \frac{g_o}{\rho_p} \frac{\partial P}{\partial z}|_{z_b}. \quad (R.64)$$

Substituting (R.64) into (R.60) gives

$$\begin{aligned}
 g_o \frac{\partial P}{\partial z} = & - \frac{CA_B V(z)}{V^2(z_b) A(z)} \left[\frac{\phi \dot{V}_p}{\varepsilon} + L \frac{\phi}{\varepsilon} \frac{d^2 \ln \rho}{dt^2} \right. \\
 & + \left(1 - \phi - \frac{\phi(1-\varepsilon)}{\varepsilon} \right) \frac{\rho(U_s - U_p)^2}{\rho_p D_p} f_{sc} \\
 & - \left(1 - \phi - \frac{\phi(1-\varepsilon)}{\varepsilon} \right) \frac{g_o}{\rho_p} \frac{\partial P}{\partial z} \Big|_{z_b} \\
 & - \frac{\dot{\varepsilon} \phi}{\varepsilon^2} \left(V_p + L \frac{d \ln \rho}{dt} - U_p \right) + \frac{L \phi}{\varepsilon} \frac{d \ln \rho}{dt} \\
 & + \phi \cdot U_s - \phi U_p + \frac{2A_B \phi U_s}{V(z_b)} (U_s - U_p) \\
 & \left. - \frac{A_B V(z)}{V(z_b) A^2(z)} \left(\frac{\partial A}{\partial z} \right) \Big|_{z_b} (\phi \cdot U_s^2 + (1-\phi) U_p^2) \right] \quad (R.65)
 \end{aligned}$$

or

$$\begin{aligned}
 g_o \frac{\partial P}{\partial z} = & - \frac{V(z)}{A(z)} \frac{CA_B}{V^2(z_b)} \left[\phi_1 - \phi_2 \frac{g_o}{\rho_p} \frac{\partial P}{\partial z} \Big|_{z_b} \right. \\
 & \left. - \frac{\phi_2 A_B V(z)}{V(z_b) A^2(z)} \frac{\partial A(z)}{\partial z} \right] \quad (R.66)
 \end{aligned}$$

and

$$\phi_1' = \phi_1' + \frac{L \phi}{\varepsilon} \frac{d^2 \ln \rho}{dt^2} + \frac{\phi \dot{V}_p}{\varepsilon} \quad (R.67)$$

and

$$\begin{aligned}
 \phi_1' = & \phi \cdot U_s - \phi U_p - \frac{\phi \dot{\varepsilon}}{\varepsilon^2} \left(V_p + L \frac{d \ln \rho}{dt} - U_p \right) + \frac{L \phi}{\varepsilon} \frac{d \ln \rho}{dt} \\
 & + \frac{2A_B \phi U_s (U_s - U_p)}{V(z_b)} + \phi_2 \frac{\rho (U_s - U_p)^2 f_{sc}}{\rho_p D_p} \quad (R.68)
 \end{aligned}$$

and

$$\phi_2 = 1 - \phi - \frac{\phi(1-\varepsilon)}{\varepsilon} \quad (R.69)$$

and

$$\phi_3 = \phi_o U_s^2 + (1-\phi) U_p^2. \quad (R.70)$$

To get

$$\frac{\partial P}{\partial z} \Big|_{z_b}$$

for elimination from (R.66), we evaluate (R.66) at z_b and solve for

$$\frac{\partial P}{\partial z} \Big|_{z_b}.$$

With (R.66) evaluated at z_b and noting

$$\frac{\partial A}{\partial z} \Big|_{z_b} = 0$$

and $A(z_b) = A_B$, we get

$$g_o \frac{\partial P}{\partial z} \Big|_{z_b} = - \frac{C}{V(z_b)} \left[\phi_1 - \phi_2 \frac{g_o}{\rho_p} \frac{\partial P}{\partial z} \Big|_{z_b} \right] \quad (R.71)$$

or

$$\frac{\partial P}{\partial z} \Big|_{z_b} = - \frac{C\phi_1}{g_o V(z_b) \left(1 - \frac{\phi_2 C}{\rho_p V(z_b)} \right)} . \quad (R.72)$$

Substituting (R.72) back into (R.66), we get

$$g_o \frac{\partial P}{\partial z} = - \frac{V(z)}{A(z)} \frac{C A_B}{V^2(z_b)} \left[\phi_1 + \frac{\phi_2 g_o C \phi_1}{\rho_p g_o V(z_b) \left(1 - \frac{\phi_2 C}{\rho_p V(z_b)} \right)} \right. \\ \left. - \frac{\phi_3 A_B V(z)}{V(z_b) A^2(z)} \frac{\partial A(z)}{\partial z} \right] \quad (R.73)$$

or

$$g_o \frac{\partial P}{\partial z} = - \frac{V(z)}{A(z)} \frac{C A_B}{V^2(z_b)} \left[\frac{\phi_1}{1 - \frac{\phi_2 C}{\rho_p V(z_b)}} - \frac{\phi_3 A_B V(z)}{V(z_b) A^2(z)} \frac{\partial A(z)}{\partial z} \right]. \quad (R.74)$$

ϕ_1 depends upon the base pressure $P_B = P(z_p)$ (one of the values we wish to solve for) through \dot{V}_p (the acceleration of the projectile) and also through $d^2 \ln \rho / dt^2$.

Substituting (R.33) into (R.67), we get

$$\phi_1 = \phi_1' + \frac{L\phi_* C_1(t)}{\epsilon} - \frac{L\phi_* A_B}{\epsilon V_F} \dot{V}_p + \frac{\phi_*}{\epsilon} \dot{V}_p \quad (R.75)$$

or

$$\phi_1 = \phi_1' + D + \frac{E\phi_*}{\epsilon} \dot{V}_p \quad (R.76)$$

where

$$D = \frac{L\phi_* C_1(t)}{\epsilon} \quad (R.77)$$

and

$$E = \left(1 - \frac{LA_B}{V_F} \right). \quad (R.78)$$

Substituting (R.25) into (R.76), we get

$$\phi_1 = \phi_1' + D + \frac{E\phi_*}{\epsilon} \left(\frac{g_o A_B P_B}{M_p} - \frac{g_o A_B P_{res}}{M_p} \right) \quad (R.79)$$

or

$$\phi_1 = \phi_1' + D - \frac{E\phi_* g_o A_B P_{res}}{\epsilon M_p} + \frac{E\phi_* g_o A_B P_B}{\epsilon M_p}. \quad (R.80)$$

Substituting (R.80) into (R.74), we get

$$\begin{aligned} \frac{\partial P}{\partial z} &= - \frac{V(z) C A_B}{A(z) g_o V^2(z_b)} \left[\frac{\phi_1' + D - \frac{E\phi_* g_o A_B P_{res}}{\epsilon M_p} + \frac{E\phi_* g_o A_B P_B}{\epsilon M_p}}{1 - \frac{\phi_2 C}{\rho_p V(z_b)}} \right. \\ &\quad \left. - \frac{\phi_3 A_B V(z)}{V(z_b) A^2(z)} \frac{\partial A}{\partial z} \right] \end{aligned} \quad (R.81)$$

or

$$\frac{\partial P}{\partial z} = \frac{CA_B}{g_o V^2(z_b)} \left[- \frac{\phi_1' + D - \frac{E\phi_1 g_o A_B P_{ext}}{eM_p} + \frac{E\phi_1 g_o A_B P_B}{eM_p}}{1 - \frac{\phi_2 C}{p_p V(z_b)}} \frac{V(z)}{A(z)} \right. \\ \left. + \frac{\phi_3 A_B V^2(z)}{V(z_b) A^3(z)} \frac{\partial A(z)}{\partial z} \right]. \quad (R.82)$$

Integrating (R.82) and noting that $A(z)$ and $V(z)$ are functions of z and only of z and that

$$\int \frac{V^2(z)}{A^3(z)} \frac{\partial A}{\partial z} dz$$

(by parts) can be written

$$- \frac{V^2(z)}{2A^2(z)} + \int \frac{V(z)}{A(z)} dz$$

we get

$$P(z) - P(0) = \frac{CA_B}{g_o V^2(z_b)} \left[- \frac{\phi_1' + D - \frac{E\phi_1 g_o A_B P_{ext}}{eM_p} + \frac{E\phi_1 g_o A_B P_B}{eM_p}}{1 - \frac{\phi_2 C}{p_p V(z_b)}} \int \frac{V(z)}{A(z)} dz \right. \\ \left. - \frac{\phi_3 A_B V^2(z)}{2V(z_b) A^2(z)} + \frac{\phi_3 A_B}{V(z_b)} \int \frac{V(z)}{A(z)} dz \right]. \quad (R.83)$$

Noting $P(0) = P_{Br}$ and collecting terms, we get

$$P(z) = P_{Br} + \left[\frac{CA_B}{g_o V^2(z_b)} \left(\frac{\phi_3 A_B}{V(z_b)} - \frac{\phi_1' + D - \frac{E \phi_3 g_o A_B P_{ref}}{\epsilon M_p}}{1 - \frac{\phi_2 C}{\rho_p V(z_b)}} \right) - \frac{\frac{CE \phi_3 A_B^2 P_{ref}}{V^2(z_b) \epsilon M_p}}{1 - \frac{\phi_2 C}{\rho_p V(z_b)}} \right] \int \frac{V(z)}{A(z)} dz - \frac{\phi_3 C A_B^2 V^2(z)}{2 g_o V^3(z_b) A^2(z)} \quad (R.83a)$$

or

$$P(z) = P_{Br} + (a_1(t) + a_2(t) P_B) J_1(z) + b(t) J_2(z) \quad (R.84)$$

where

$$a_1(t) = \frac{CA_B}{g_o V^2(z_b)} \left(\frac{\phi_3 A_B}{V(z_b)} - \frac{\phi_1' + D - \frac{E \phi_3 g_o A_B P_{ref}}{\epsilon M_p}}{1 - \frac{\phi_2 C}{\rho_p V(z_b)}} \right) \quad (R.85)$$

and

$$a_2(t) = - \frac{\frac{CE \phi_3 A_B^2}{V^2(z_b) \epsilon M_p}}{1 - \frac{\phi_2 C}{\rho_p V(z_b)}} \quad (R.86)$$

and

$$b(t) = - \frac{C \phi_3 A_B^2}{2 g_o V^3(z_b)} \quad (R.87)$$

and

$$J_1(z) = \int_0^z \frac{V(z)}{A(z)} dz \quad (R.88)$$

and

$$J_2(z) = \frac{V^2(z)}{A^2(z)} \quad (R.89)$$

(R.84) is the equation for the pressure distribution in the mixture region. To complete the pressure distribution description, we require the distribution in the ullage region which should be identical to the description in the velocity lag derivation that is in the ullage region. The momentum equation for the gas is

$$\frac{\partial P}{\partial z} = - \frac{\rho}{g_o} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial z} \right) \quad (R.90)$$

The equation of continuity in the ullage region is

$$\frac{\partial u}{\partial z} = - \frac{1}{\rho} \frac{dp}{dt} = - \frac{d \ln \rho}{dt} \quad (R.91)$$

Integrating (R.91) and noting $d \ln \rho / dt$ is a function of time only we get

$$u(z) = - \frac{d \ln \rho}{dt} z + f(t). \quad (R.92)$$

With the boundary condition $u(z_p) = V_p$ we get

$$V_p = - z_p \frac{d \ln \rho}{dt} + f(t) \quad (R.93)$$

and therefore,

$$f(t) = V_p + z_p \frac{d \ln \rho}{dt} \quad (R.94)$$

and

$$u(z) = V_p + (z_p - z) \frac{d \ln \rho}{dt}. \quad (R.95)$$

Differentiating (R.95) and noting $\dot{z}_p = V_p$ gives

$$\frac{\partial u}{\partial t} = \dot{V}_p + (z_p - z) \frac{d^2 \ln \rho}{dt^2} + V_p \frac{d \ln \rho}{dt}. \quad (R.96)$$

Substituting (R.91), (R.95), and (R.96) into (R.90), we get

$$\begin{aligned} \frac{\partial P}{\partial z} &= - \frac{\rho}{g_o} \left[\dot{V}_p + (z_p - z) \frac{d^2 \ln \rho}{dt^2} + V_p \frac{d \ln \rho}{dt} \right. \\ &\quad \left. + \left(V_p + (z_p - z) \frac{d \ln \rho}{dt} \right) \left(- \frac{d \ln \rho}{dt} \right) \right] \end{aligned} \quad (R.97)$$

or

$$\frac{\partial P}{\partial z} = - \frac{\rho}{g_o} \left[\dot{V}_p + (z_p - z) \frac{d^2 \ln \rho}{dt^2} - (z_p - z) \left(\frac{d \ln \rho}{dt} \right)^2 \right]. \quad (R.98)$$

Integrating (R.98) from z_b to z and noting z_p , \dot{V}_p , and $\ln \rho$ are functions of time only, we get

$$\begin{aligned} P(z) &= P(z_b) - \frac{\rho}{g_o} \left[\dot{V}_p z - \frac{(z_p - z)^2}{2} \frac{d^2 \ln \rho}{dt^2} \right. \\ &\quad \left. + \frac{(z_p - z)^2}{2} \left(\frac{d \ln \rho}{dt} \right)^2 \right]_{z_b}^z \end{aligned} \quad (R.99)$$

or

$$P(z) = P(z_b) - \frac{\rho}{g_o} \left[\dot{V}_p z - \frac{(z_p - z)^2}{2} \Delta \right] \Big|_{z_b}^z \quad (R.100)$$

where

$$\Delta = \frac{d^2 \ln \rho}{dt^2} - \left(\frac{d \ln \rho}{dt} \right)^2. \quad (R.101)$$

Therefore, we get the pressure distribution in the ullage region as

$$P(z) = P(z_b) - \frac{\rho}{g_o} \left[\dot{V}_p (z - z_b) + ((z_p - z_b)^2 - (z_p - z)^2) \frac{\Delta}{2} \right] \quad (R.102)$$

or

$$P(z) = P(z_b) - \frac{\rho}{g_o} \left[(\dot{V}_p + z_p \Delta) (z - z_b) - (z^2 - z_b^2) \frac{\Delta}{2} \right]. \quad (R.103)$$

Defining the mean pressure P_m to be

$$P_m = \frac{\int_0^{z_p} P(z) A(z) dz}{\int_0^{z_p} A(z) dz} \quad (R.104)$$

and since $\int_0^{z_p} A(z) dz = V(z_p)$ and using (R.84) and (R.103)

$$P_m = \frac{\int_0^{z_b} (P_{Br} + a_1(t) J_1(z) + a_2(t) P_B J_1(z) + b(t) J_2(z)) A(z) dz}{V(z_p)} \\ + \frac{\int_{z_b}^{z_p} \left(P(z_b) - \frac{\rho}{g_o} \left[(\dot{V}_p + z_p \Delta) (z - z_b) - (z^2 - z_b^2) \frac{\Delta}{2} \right] \right) A(z) dz}{V(z_p)} \quad (R.105)$$

or

$$P_m = \frac{P_{Br} V(z_b) + a_1(t) J_3(z_b) + a_2(t) P_B J_3(z_b) + b(t) J_4(z_b)}{V(z_b)} \\ + \frac{A_B L P(z_b)}{V(z_p)} - \frac{A_B \rho}{g_o} \left[\frac{\frac{(\dot{V}_p + z_p \Delta) (z_p - z_b)^2}{2} - \frac{\Delta}{6} (z_p^3 - z_b^3)}{V(z_p)} \right. \\ \left. + \frac{\frac{z_p^2 \Delta (z_p - z_b)}{2}}{V(z_p)} \right] \quad (R.106)$$

or

$$\begin{aligned}
 P_m &= P_{Br} \frac{V(z_b)}{V(z_p)} + \frac{a_1(t) J_3(z_b)}{V(z_p)} + \frac{a_2(t) P_B J_3(z_b)}{V(z_p)} + \frac{b(t) J_4(z_b)}{V(z_p)} \\
 &+ \frac{A_B L P(z_b)}{V(z_p)} - \frac{\rho A_B}{g_o} \left[\dot{V}_p + \frac{2L\Delta}{3} \right] \frac{L^2}{2V(z_p)}
 \end{aligned} \quad (R.107)$$

where

$$J_3(z_b) = \int_0^{z_b} A(z) J_1(z) dz \quad (R.108)$$

and

$$J_4(z_b) = \int_0^{z_b} \frac{V^2(z)}{A(z)} dz. \quad (R.109)$$

Substituting in for \dot{V}_p from (R.25) into (R.107), we get

$$\begin{aligned}
 P_m &= P_{Br} \frac{V(z_b)}{V(z_p)} + \frac{a_1(t) J_3(z_b)}{V(z_p)} + \frac{a_2(t) J_3(z_b) P_B}{V(z_p)} + \frac{b(t) J_4(z_b)}{V(z_p)} \\
 &+ \frac{A_B L P(z_b)}{V(z_p)} - \frac{\rho A_B^2 L^2 P_B}{2V(z_p) M_p} + \frac{\rho A_B^2 L^2 P_{res}}{2V(z_p) M_p} - \frac{\rho A_B L^3 \Delta}{3g_o V(z_p)}.
 \end{aligned} \quad (R.110)$$

To eliminate $P(z_b)$, we evaluate (R.84) at z_b and get

$$P(z_b) = P_{Br} + (a_1(t) + a_2(t) P_B) J_1(z_b) + b(t) J_2(z_b) \quad (R.111)$$

and substitute into (R.110) to get

$$\begin{aligned}
 P_m &= P_{Br} + \frac{a_1(t) J_3(z_b)}{V(z_p)} + \frac{a_2(t) J_3(z_b) P_B}{V(z_p)} + \frac{b(t) J_4(z_b)}{V(z_p)} \\
 &+ \frac{A_B L a_1(t) J_1(z_b)}{V(z_p)} + \frac{A_B L a_2(t) J_1(z_b) P_B}{V(z_p)} + \frac{A_B L b(t) J_2(z_b)}{V(z_p)} \\
 &- \frac{\rho A_B^2 L^2 P_B}{2V(z_p) M_p} + \frac{\rho A_B^2 L^2 P_{res}}{2V(z_p) M_p} - \frac{\rho A_B L^3 \Delta}{3g_o V(z_p)}
 \end{aligned} \quad (R.112)$$

or

$$\begin{aligned}
 P_m &= P_{Br} + P_B \left(\frac{A_B L a_2(t) J_1(z_b)}{V(z_p)} - \frac{\rho A_B^2 L^2}{2V(z_p) M_p} + \frac{a_2(t) J_3(z_b)}{V(z_p)} \right) \\
 &+ \frac{a_1(t) J_3(z_b)}{V(z_p)} + \frac{b(t) J_4(z_b)}{V(z_p)} + \frac{A_B L a_1(t) J_1(z_b)}{V(z_p)} \\
 &+ \frac{A_B L b(t) J_2(z_b)}{V(z_p)} + \frac{\rho A_B^2 L^2 P_{res}}{2V(z_p) M_p} - \frac{\rho A_B L^3 \Delta}{3g_o V(z_p)}.
 \end{aligned} \quad (R.113)$$

We now need P_{Br} in terms of P_B to eliminate P_{Br} from (R.113) and give us an equation for P_B .

Evaluating (R.103) at z_p , we get

$$P(z_p) = P_B = P(z_b) - \frac{\rho}{g_o} \left[(\dot{V}_p + z_p \Delta) L - (z_p^2 - z_b^2) \frac{\Delta}{2} \right] \quad (R.114)$$

or, since $z_p^2 - z_b^2 = L(z_p + z_b)$,

$$P_B = P(z_b) - \frac{\rho L}{g_o} \left(\dot{V}_p + \frac{L \Delta}{2} \right), \quad (R.115)$$

and substituting (R.25) for \dot{V}_p , we get

$$P_B = P(z_b) - \frac{\rho L A_B P_B}{M_p} + \frac{A_B \rho L P_{re}}{M_p} - \frac{\rho L^2 \Delta}{2 g_o}. \quad (R.116)$$

Substituting (R.111) for $P(z_b)$ into (R.116) and collecting terms, we get

$$\begin{aligned} 0 &= P_{Br} + P_B \left(-1 + a_2(t) J_1(z_b) - \frac{\rho L A_B}{M_p} \right) + a_1(t) J_1(z_b) \\ &+ b(t) J_2(z_b) + \frac{A_B \rho L P_{re}}{M_p} - \frac{\rho L^2 \Delta}{2 g_o}. \end{aligned} \quad (R.117)$$

Subtracting (R.117) from (R.113) eliminates P_{Br} and gives P_B in terms of P_m or

$$\begin{aligned} P_m &= P_B \left[1 - a_2(t) J_1(z_b) + \frac{\rho L A_B}{M_p} + \frac{A_B L a_2(t) J_1(z_b)}{V(z_p)} \right. \\ &- \frac{\rho A_B^2 L^2}{2 V(z_p) M_p} + \frac{a_2(t) J_3(z_b)}{V(z_p)} \left. \right] + \frac{a_1(t) J_3(z_b)}{V(z_p)} + \frac{b(t) J_4(z_b)}{V(z_p)} \\ &+ \frac{A_B L a_1(t) J_1(z_b)}{V(z_p)} + \frac{A_B L b(t) J_2(z_b)}{V(z_p)} + \frac{\rho A_B^2 L^2 P_{re}}{2 V(z_p) M_p} - \frac{\rho A_B L^3 \Delta}{3 g_o V(z_p)} \\ &- a_1(t) J_1(z_b) - b(t) J_2(z_b) - \frac{A_B \rho L P_{re}}{M_p} + \frac{\rho L^2 \Delta}{2 g_o}. \end{aligned} \quad (R.118)$$

Since Δ has a dependence on P_B through $d^2 \ln \rho / dt^2$ using (R.33) with (R.117), we get

$$\begin{aligned}
 P_{Br} &= P_B \left(1 - a_2(t)J_1(z_b) + \frac{\rho L A_B}{M_p} - \frac{\rho L^2 A_B^2}{2V_F M_p} \right) \\
 &+ \frac{\rho L^2}{2g_o} \left(C_1(t) - \left(\frac{d \ln \rho}{dt} \right)^2 + \frac{g_o A_B^2 P_{res}}{M_p V_F} \right) - a_1(t)J_1(z_b) \\
 &- b(t)J_2(z_b) - \frac{A_B \rho L P_{res}}{M_p},
 \end{aligned} \tag{R.119}$$

and using (R.33) with (R.118), we get

$$\begin{aligned}
 P_m &= P_B \left[1 + \frac{A_B L a_2(t) J_1(z_b)}{V(z_p)} - \frac{\rho A_B^2 L^2}{2V(z_p) M_p} + \frac{a_2(t) J_3(z_b)}{V(z_p)} \right. \\
 &- a_2(t) J_1(z_b) + \frac{\rho L A_B}{M_p} - \frac{\rho L^2 A_B^2}{2V_F M_p} + \frac{\rho A_B^3 L^3}{3V(z_p) V_F M_p} \\
 &+ \frac{\rho L^3}{2g_o} \left(C_1(t) - \left(\frac{d \ln \rho}{dt} \right)^2 + \frac{g_o A_B^2 P_{res}}{M_p V_F} \right) \left(1 - \frac{2A_B L}{3V(z_p)} \right) \\
 &+ \frac{a_1(t) J_3(z_b)}{V(z_p)} + \frac{b(t) J_4(z_b)}{V(z_p)} + \frac{A_B L a_1(t) J_1(z_b)}{V(z_p)} \\
 &+ \frac{A_B L b(t) J_2(z_b)}{V(z_p)} + \frac{\rho A_B^2 L^2 P_{res}}{2V(z_p) M_p} \\
 &- a_1(t) J_1(z_b) - b(t) J_2(z_b) - \frac{A_B \rho L P_{res}}{M_p}.
 \end{aligned} \tag{R.120}$$

Equation (R.120) gives P_B in terms of P_m (which is determined using an equation of state) and then (R.119) gives P_{Br} from P_B .

The evaluation of $J_1(z_b)$, $J_2(z_b)$, $J_3(z_b)$, and $J_4(z_b)$ can be simplified by noting that the variation in area is confined to the chamber and, therefore,

$$V(z) = V(z_{bo}) + A_B(z - z_{bo}), \text{ for } z \geq z_{bo}, \tag{R.121}$$

and

$$\begin{aligned}
 J_1(z_b) &= \int_0^{z_b} \frac{V(z)}{A(z)} dz = \int_0^{z_{bo}} \frac{V(z)}{A(z)} dz + \int_{z_{bo}}^{z_b} \frac{V(z)}{A(z)} dz \\
 &= J_1(z_{bo}) + \int_{z_{bo}}^{z_b} \frac{V(z_{bo}) + A_B(z - z_{bo})}{A_B} dz \\
 &= J_1(z_{bo}) + \frac{1}{A_B} \left(V(z_{bo}) (z_b - z_{bo}) + \frac{A_B (z_b - z_{bo})^2}{2} \right)
 \end{aligned} \tag{R.122}$$

$$J_2(z_b) = \frac{V^2(z)}{A^2(z)}|_{z_b} = \frac{[V(z_{bo}) + A_B(z_b - z_{bo})]^2}{A_B^2}, \quad (R.123)$$

$$\begin{aligned}
J_3(z_b) &= \int_0^{z_b} \left(\int_0^z \frac{V(x)}{A(x)} dx \right) A(z) dz \\
&= \int_0^{z_{bo}} \left(\int_0^z \frac{V(x)}{A(x)} dx \right) A(z) dz + \int_{z_{bo}}^{z_b} \left(\int_0^z \frac{V(x)}{A(x)} dx \right) A_B dz \\
&= J_3(z_{bo}) + \int_{z_{bo}}^{z_b} \left(J_1(z_{bo}) + \frac{1}{A_B} \left[V(z_{bo}) (z - z_{bo}) + \frac{A_B}{2} (z - z_{bo})^2 \right] \right) A_B dz \\
&= J_3(z_{bo}) + A_B J_1(z_{bo}) (z_b - z_{bo}) + \frac{V(z_{bo}) (z_b - z_{bo})^2}{2} \\
&\quad + \frac{A_B}{6} (z_b - z_{bo})^3, \quad (R.124)
\end{aligned}$$

$$\begin{aligned}
J_4(z_b) &= \int_0^{z_b} \frac{V^2(z)}{A(z)} dz = \int_0^{z_{bo}} \frac{V^2(z)}{A(z)} dz + \int_{z_{bo}}^{z_b} \frac{[V(z_{bo}) + A_B(z - z_{bo})]^2}{A_B} dz \\
&= J_4(z_{bo}) + \frac{[V(z_{bo}) + A_B(z_b - z_{bo})]^3 - V^3(z_{bo})}{3A_B^2}. \quad (R.125)
\end{aligned}$$

Equations (R.122) - (R.125) require the evaluation of the integrals $J_1(z_{bo})$ - $J_4(z_{bo})$ only once.

The kinetic energy (KE) of the gas and solid will be required. The kinetic energy is given by

$$g_o KE = \frac{1}{2} \int_0^{z_b} u^2 dm$$

where u is the velocity and dm is the differential of mass, and since $\rho dV = dm$ and $dV = A(z)dz$, then

$$\begin{aligned}
g_o KE &= \frac{1}{2} (1 - \varepsilon) \int_0^{z_b} u_p^2 \rho_p A(z) dz \\
&\quad + \frac{1}{2} \varepsilon \int_0^{z_b} u^2 \rho A(z) dz + \frac{1}{2} \int_{z_b}^{z_b} u^2 \rho A_B dz. \quad (R.126)
\end{aligned}$$

We get u in the mixture region from (R.8) and u_p from (R.13) and u in the ullage region from (R.21), and therefore

$$\begin{aligned}
 g_o \ KE &= \frac{1}{2} (1-\varepsilon) \int_o^{z_b} \frac{U_p^2 A_B^2 \rho_p V^2(z)}{V^2(z_b) A(z)} dz \\
 &+ \frac{1}{2} \varepsilon \int_o^{z_b} \frac{U_s^2 A_B^2 \rho_p V^2(z)}{V^2(z_b) A(z)} dz \\
 &+ \frac{\rho A_B}{2} \int_{z_b}^{z_p} \left(V_p + \frac{d \ln \rho}{dt} (z_p - z) \right)^2 dz
 \end{aligned} \quad (R.127)$$

or

$$\begin{aligned}
 KE &= \frac{(1-\varepsilon) U_p^2 A_B^2 \rho_p J_4(z_b)}{2 g_o V^2(z_b)} + \frac{\varepsilon U_s^2 A_B^2 \rho J_4(z_b)}{2 g_o V^2(z_b)} \\
 &+ \frac{\rho A_B L}{6 g_o} \left[3 V_p^2 + 3 V_p L \frac{d \ln \rho}{dt} + L^2 \left(\frac{d \ln \rho}{dt} \right)^2 \right].
 \end{aligned} \quad (R.128)$$

It would appear that the pressure used in evaluating the burning rate should be the mean pressure over the region occupied by the propellant.

The mean pressure over the mixture region is

$$P_{mix} = \frac{\int_o^{z_b} P(z) A(z) dz}{\int_o^{z_b} A(z) dz} \quad (R.129)$$

and using (R.84), we get

$$P_{mix} = \frac{\int_o^{z_b} [P_{Br} + (a_1(t) + a_2(t)P_B) J_1(z) + b(t)J_2(z)] A(z) dz}{V(z_b)} \quad (R.130)$$

or

$$P_{mix} = P_{Br} + \frac{(a_1(t) + a_2(t)P_B)}{V(z_b)} J_3(z_b) + \frac{b(t)}{V(z_b)} J_4(z_b). \quad (R.131)$$

INTENTIONALLY LEFT BLANK.

APPENDIX 4:
INPUT DESCRIPTION FOR IBRGA

INTENTIONALLY LEFT BLANK.

USER'S MANUAL FOR IBRGA

IBRGA relies on an input data base consisting of all numerical parameters essential for running the code. All values are in metric units. Below is a compilation of a typical data base showing the name and location of each parameter. The names for the numerical values are prefixed with an alphabetical designator corresponding to the position at which the data are to appear, that is, from left to right. The data may be separated by blanks or commas. The units are shown to the right of each input.

A B C D E F G H I J K

record 1

- A. - chamber volume (cm³)
- B. - groove diameter (cm)
- C. - land diameter (cm)
- D. - groove/land ratio (none)
(land, groove, and groove/land ratio used to calculate the projectile bore area)
- E. - twist (turns/caliber)
- F. - projectile travel (cm)
- G. - gradient switch (none)
(integer value designating the gradient equation to use
1 = Lagrange, 2 = Chambrage, 3 = Two-phase, 4 = RGA)
- H. - friction factor (none)
(normally 1 for granular, 0.01 for stick, and 0.1 for partially cut propellant, only used with the two-phase and RGA gradient)

record 1a (Read if and only if gradient switch = 2 or 4)

- A. - number of pairs of points to describe chamber geometry, integer I <= 5 (none)
- B. - initial distance from breech (cm)
(must be 0.0)
- C. - diameter at initial distance (cm)

- .. - Ith distance from breech (cm)
(initial position of the base of the projectile)
- .. - Ith diameter at Ith distance (cm)
(used to calculate bore area overriding record 1 groove and land diameter specifications)
(note chamber geometry is used to calculate the chamber volume overriding record 1 chamber volume description)

record 2

- A. - projectile mass (kg)
- B. - switch to calculate energy lost to air resistance, integer (none) (0 = no loss, 1= loss)
- C. - fraction of bore resistance work used to heat the tube (none) (>= 0.0, <=1.0)
- D. - gas pressure in front of the projectile (Pa)

record 3

- A. - number of pairs of barrel resistance points (none)
(integer $J \leq 10$)
- B. - bore resistance (MPa)
- C. - travel (cm)
- .
- .
- .
- .
- J th bore resistance (MPa)
- J th travel (cm)

record 4

- A. - mass of recoiling parts (kg)
- B. - number of recoil point pairs (none) (must be an integer = 2)
- C. - recoil force (N) (force to overcome before start of recoil - rod preload)
- D. - time of rod preload (s) (must be 0.0)
- E. - recoil force (N) (constant resistive force after rise time)
- F. - rise time (s) (time to go from start of recoil to constant resistive recoil force)

record 5

- A. - free convective heat transfer coefficient (W/cm²-K)
- B. - chamber wall thickness (cm) (wall depth which is heated uniformly)
- C. - heat capacity of chamber wall (J/g-K)
- D. - initial temperature of chamber wall (K)
- E. - heat loss coefficient (none) (usually 1, but may be set to 0.0 to eliminate heat loss)
- F. - density of chamber wall (g/cm³)

record 6

- A. - impetus of igniter (J/g)
- B. - covolume of igniter (cm³/g)
- C. - adiabatic flame temperature of igniter (K)
- D. - mass of igniter (kg)
- E. - ratio of specific heats of igniter (none)

record 7

A. - number of propellants (none) (integer <= 10)

record 8

- A. - impetus of propellant (J/g)
- B. - adiabatic flame temperature of propellant (K)
- C. - covolume of propellant (cm³/g)
- D. - mass of propellant (kg)
- E. - density of propellant (g/cm³)
- F. - ratio of specific heats of propellant (none)
- G. - propellant form function indicator (none)
(integer, may be
0, zero perforated cylindrical grain
1, one perforated cylindrical grain
7, seven perforated cylindrical grain
15, nineteen perforated hexagonal grain
19, nineteen perforated cylindrical grain)
- H. - length of propellant grain (cm)
- I. - diameter of perforations in the propellant grains (cm) (value ignored if not required
but must be present)

J. - outside diameter of propellant grain (cm)
(for the hexagonal grain, it is the distance between rounded corners)

record 8 repeated for each propellant

record 9

record 9 repeated for each propellant

record 10

- A. - integration time increment (ms)
- B. - print increment (ms)
- C. - upper limit on integration time to stop calculation (ms)

INTENTIONALLY LEFT BLANK.

APPENDIX 5:
FORTRAN LISTING OF IBRGA

INTENTIONALLY LEFT BLANK.

```

program ibrga
common ns11,kpr,fracs1(10),dsdxs1(10),surfs1(10),
& ns1p(10),ts1(10),pbrch,pbase,pmean,bbr(10),abr(10),
& deltat,y(20),igrad
character outfil*10
character bdf1*10
dimension br(10),trav(10),rp(10),tr(10),forcp(10),tempp(10),covp(
&10)
dimension chwp(10),rhop(10),gamap(10),nperfs(10),glenp(10),pdp(10
&),gdiap(10),alpha(10,10),beta(10,10),pres(10,10)
dimension a(4),b(4),ak(4),d(20),p(20),z(20),frac(10),surf(10
&),volp(10),dsdx(10),nbr(10),ibo(10),tbo(10),d2xdt2(10),tng(10)
real lambda,j1zp,j2zp,j3zp,j4zp,j1zb,j2zb,j3zb,j4zb
dimension chdist(5),chdiam(5),bint(4)
dimension ns1(10),surfo(10),dsdxn(10)
c call gettim(ihr,imin,ise,ihuns)
pi=3.14159
write(*,15)
15 format(' input name of data file to be used as input ')
read(*,10)bdf1
10 format(a10)
open(unit=2,err=999,file=bdf1,status='old',iostat=ios)
rewind 2
write(*,25)
25 format(' input name of output file ')
read(*,10)outfil
open(unit=6,err=998,file=outfil)
write(6,16)bdf1
16 format(' the input file is ',a10)
do 9 i=1,20
p(i)=0.
y(i)=0.
z(i)=0.
d(i)=0.
9 continue
read(2,*,end=20,err=30)cham,grvc,aland,glr,twst,travp,igrad
&,fs0
if(igrad.gt.1)go to 51
write(6,55)
55 format(1x,'using Lagrange pressure gradient')
igrad=1
go to 52
c define chambrage assumes nchpts=number of points to define
c chamber > or = 2 < or = 5 (?) chdiam(I) defines chamber diameter
c at chdist (I) chamber distance. chdiam(nchpts) is assumed to be
c the bore diameter and chdist(i) is assumed to be 0, i.e. at the
c breech. Assumes truncated cones.
51 if(igrad.eq.3)go to 401
if(igrad.eq.4)go to 434
write(6,47,err=30)

47 format(1x,'Using chambrage pressure gradient')
go to 436

```

```

434 write(6,437)
437 format(1x,'using rga gradient')
go to 436

436 read(2,*,end=20,err=30)nchpts,(chdist(I),chdiam(I),I=1,nchpts)
write(6,53,err=30)(chdist(I),chdiam(I),I=1,nchpts)
53 format(//,' chamber distance cm  chamber diameter cm'/(5x,e14
&.6,5x,e14.6))
do 54 I=1,nchpts
chdist(I)=0.01*chdist(I)
54 chdiam(I)=0.01*chdiam(I)
c calculate chamber integrals and volume
if(nchpts.gt.5) write(6,44,err=30)
44 format(1x,'use first 5 points')
if(nchpts.gt.5)nchpts=5
bore=chdiam(nchpts)
if(chdist(1).ne.0.0)write(6,45,err=30)
45 format(1x,' # points ? ')
chdist(1)=0.0
pi3=pi/3.0
b1=0.0
b2=0.0
b3=0.0
b4=0.0
points=25.0
56 points=points+points
step=chdist(nchpts)/points
zz=0.0
bint(1)=0.0
bint(3)=0.0
bint(4)=0.0
bvol=0.0
r2=0.5*chdiam(1)
k=1
j=int(points+0.5)
do 57 I=1,j
zz=zz+step
if(k.eq.nchpts-1)go to 46
do 58 I1=k,nchpts-1
if(zz.gt.chdist(I1).and. zz.lt.chdist(I1+1))go to 59
58 continue
I1=nchpts-1
59 k=I1
46 diam=(zz-chdist(k))/(chdist(k+1)-chdist(k))
diam=chdiam(k)+diam*(chdiam(k+1)-chdiam(k))
r1=0.5*diam
area=pi*(r1+r2)*(r1+r2)/4.
bvol=bvol+step*pi3*(r1*r1+r1*r2+r2*r2)
bint(1)=bint(1)+step*bvol/area
bint(3)=bint(3)+step*area*bint(1)
bint(4)=bint(4)+step*bvol*bvol/area
57 r2=r1
temp=abs(1.0-b1/bint(1))
if(abs(1.0-b3/bint(3)).gt.temp)temp=abs(1.0-b3/bint(3))

```

```

if(abs(1.0-b4/bint(4)).gt.temp)temp=abs(1.0-b4/bint(4))
if(temp.le.0.001)go to 41
b1=bint(1)
b3=bint(3)
b4=bint(4)
go to 56
41  cham=bvol*1.e6
c   write(6,47,err=30)bint(1),bint(3),bint(4)
c   format(1x,'bint 1 = ',e14.6,' bint 3 = ',e14.6,' bint 4 = ',e14.
c   &6)
      chmlen=chdist(nchpts)
      go to 52
401 write(6,402)
402 format(1x,'using 2 phase gradient equation')
      goto 52
52  write(6,40,err=30)cham,grve,aland,glr,twst,travp,igrad,fs0
40  format(1x,'chamber volume cm**3',e14.6,' groove diam cm',e14.6,
      &' land diam cm',e14.6,' groove/land ratio',e14.6,' twist turns
      &/caliber ',e14.6,' projectile travel cm',e14.6
      &/' gradient # ',i3,' friction factor ',e14.6//)
      cham=cham*1.e-6
      grve=grve*1.e-2
      aland=aland*1.e-2
      travp=travp*1.e-2
      read(2,*,end=20,err=30)prv,t,iair,htfr,pgas
      write(6,50,err=30)prv-t,iair,htfr,pgas
50  format(1x,'projectile mass kg',e14.6,' switch to calculate energ
      &y lost to air resistance J',i2,' fraction of work against bore u
      &sed to heat the tube',e14.6/1x,' gas pressure Pa',e14.6)
      read(2,*,end=20,err=30)npts,(br(:,trav(i),i=1,npts)
      write(6,60,err=30)npts,(br(i),trav(i),i=1,npts)
60  format(1x,'number barrel resistance points',i2,' bore resistance
      & MPa - travel cm',(1x,e14.6,e14.6))
      write(6,65)
      do 62 i=1,npts
      br(i)=br(i)*1.e6
      trav(i)=trav(i)*1.e-2
62  continue
65  format(1x)
      read(2,*,end=20,err=30)rcwt,nrp,(rp(i),tr(i),i=1,nrp)
      write(6,70,err=30)rcwt,nrp,(rp(i),tr(i),i=1,nrp)
70  format(1x,' mass of recoiling parts kg',e14.6,' number of recoi
      &l point pairs',i2,' recoil force N', recoil time sec',(1x,e14
      &.6,3x,e14.6))
      write(6,65)
      read(2,*,end=20,err=30)ho,tshl,cshl,twal,hl,rhocs
      write(6,75,err=30)ho,tshl,cshl,twal,hl,rhocs
75  format(1x,' free convective heat transfer coefficient w/cm**2 K',
      &e14.6,' chamber wall thickness cm',e14.6,' heat capacity of st
      &eel of chamber wall J/g K',e14.6,' initial temperature of chambe
      &r wall K',e14.6,' heat loss coefficient',e14.6,' density of ch
      &amber wall steel g/cm**3',e14.6//)
      ho=ho/1.e-4
      tshl=tshl*1.e-2

```

```

cshl=cshl*1.e+3
rhocs=rhocs*1.e-3/1.e-6
read(2,*,end=20,err=30)forcig,covi,tempi,chwi,gamai
write(6,85,err=30)forcig,covi,tempi,chwi,gamai
85  format(1x,' impetus of igniter propellant J/g',e14.6,' covolume
& of igniter cm**3/g',e14.6,' adiabatic flame temperature of igni
&ter propellant K',e14.6,' initial mass of igniter kg',e14.6,' r
&atio of specific heats for igniter',e14.6//)
forcig=forcig*1.e+3
covi=covi*1.e-6/1.e-3
read(2,*)nprop
write(6,98)nprop
98  format(' there are ',i2,' propellants')
read(2,*,end=20,err=30)(forcp(i),tempp(i),covp(i),chwp(i),
&rhop(i),gamap(i),nperfs(i),glenp(i),pdp(i),gdiap(i),i=1,nprop)
write(6,95,err=30)(i,forcp(i),tempp(i),covp(i),chwp(i),
&rhop(i),gamap(i),nperfs(i),glenp(i),pdp(i),gdiap(i),i=1,nprop)
95  format(' for propellant number',i2,' impetus of propellant J/g
&',e14.6,' adiabatic temperature of propellant K',e14.6,' covol
&ume of propellant cm**3/g',e14.6,' initial mass of propellant kg'
&,e14.6,' density of propellant g/cm**3',e14.6,' ratio of specifi
&c heats for propellant',e14.6,' number of perforations of propell
&ant',i2,' length of propellant grain cm',e14.6,' diameter of per
&foration in propellant grains cm',e14.6,' outside diameter of pro
&pellant grain cm',e14.6//)
tmpi=0.0
do 96 i=1,nprop
forcp(i)=forcp(i)*1.e+3
covp(i)=covp(i)*1.e-6/1.e-3
rhop(i)=rhop(i)*1.e-3/1.e-6
glenp(i)=glenp(i)*0.01
pdp(i)=pdp(i)*0.01
gdiap(i)=gdiap(i)*0.01
tmpi=tmpi+chwp(i)
kpr=i
call prf710(pdp(i),gdiap(i),glenp(i),nperfs(i),0.,
& frac(i),volp(i),surf(i),dsdx(i))
tng(i)=chwp(i)/rhop(i)/volp(i)
surfo(i)=surf(i)
write(6,408)i,tng(i)
408  format(' for propellant ',i2,' the total number of grains'
& ' is ',e14.6)
96  continue
tmpi=tmpi+chwi
do 97 j=1,nprop
read(2,*,end=20,err=30)nbr(j),(alpha(j,i),beta(j,i),pres(j,i),
&i=1,nbr(j))
write(6,110,err=30)nbr(j),(alpha(j,i),beta(j,i),pres(j,i),
&i=1,nbr(j))
110  format(1x,'number of burning rate points',i2/3x,' exponent',8x,'
& coefficient',10x,' pressure',5x,'-',15x,'cm/sec-MPa**ai',10x,'MP
&a',/(1x,e14.6,5x,e14.6,15x,e14.6))
do 112 i=1,nbr(j)
beta(j,i)=beta(j,i)*1.e-2

```

```

112 pres(j,i)=pres(j,i)*1.e6
97  continue
      continue
      write(6,65)
      read(2,*,end=20,err=30)deltat,deltap,tstop
      write(6,120,err=30)deltat,deltap,tstop
120  format(1x,'time increment msec',e14.6,' print increment msec',e14
     & .6/1x,'time to stop calculation msec ',e14.6)
      write(*,130)
      deltat=deltat*0.001
      deltap=deltap*0.001
      tstop=tstop*.001
130  format(1x,'end input data -- I.B. calculation start')
      if(igrad.eq.2.or.igrad.eq.4)go to 131
      bore=(glr*grve*grve+aland*aland)/(glr+1.)
      bore=sqrt(bore)
131  areab=pi*bore*bore/4.
      lambda=1./((13.2+4.*log10(100.*bore))**2)
      iplot=0
      pltdt=deltat
      pltt=0.
      pmaxm=0.0
      pmaxbr=0.0
      pmaxba=0.0
      tpmxam=0.0
      tpmxbr=0.0
      tpmxba=0.0
      tpmmax=0.0
      a(1)=0.5
      a(2)=1.-sqrt(2.)/2.
      a(3)=1.+sqrt(2.)/2.
      a(4)=1./6.
      b(1)=2.
      b(2)=1.
      b(3)=1.
      b(4)=2.
      ak(1)=0.5
      ak(2)=a(2)
      ak(3)=a(3)
      ak(4)=0.5
      vp0=0.0
      tr0=0.0
      tcw=0.0
      if(igrad.eq.3)chmlen=cham/areab
      zb=chmlen
      zp=chmlen
      grlen=0.
      grdiam=0.
      egama=0.
      do 5 i=1,nprop
      grlen=grlen+chwp(i)*glenp(i)
      grdiam=grdiam+chwp(i)*gdiap(i)
      ibo(i)=0
      egama=egama+chwp(i)*gamap(i)

```

```

nsl(i)=0
5  vp0=chwp(i)/rhop(i)+vp0
  volgi=cham-vp0-chwi*covi
  grlen=grlen/(tmpi-chwi)
  grdiam=grdiam/(tmpi-chwi)
  egama=(egama+chwi*gamai)/tmpi
  ism=0
  odlnr=0.
  vf0=cham-vp0
  eps0=1.-vp0/cham
  eps=eps0
  gasden=chwi/vf0
  prden=tmpi/vp0
  ug=0.
  up=0.
  pmean=forcig*chwi/volgi
  pbase=pmean
  pbrch=pmean
  opbase=pmean
  volg=volgi
  volgi=volgi+vp0
  wallt=twall
  tgas=tempi
  told=0.
  tgaso=tgas
  dtgaso=0.
  cov1=covi
  t=0.
  ptime=0.0
  ibrp=10
  z(3)=1.
  nde=ibrp+nprop
  write(6,132)areab,pmean,vp0,volgi
132  format(1x,'area bore m^2 ',e16.6,' pressure from ign pa',e16.6,'/ 
&,' volume of unburnt prop m^3 ',e16.6,'/ 
&,' init cham vol-cov ign m^3 ',e16.6)
  write(6,6)
6   format(1x,' time      acc      vel      dis      mpress
& pbase      pbrch    ')
  iswl=0
19  continue
  do 11 J=1,4
c   FIND BARREL RESISTANCE
  do 201 k=2,npts
  if(y(2)+y(7).ge.trav(k))go to 201
  go to 203
201 continue
  k=npts
203  resp=(trav(k)-y(2)-y(7))/(trav(k)-trav(k-1))
  resp=br(k)-resp*(br(k)-br(k-1))
c   FIND MASS FRACTION BURNED
  do 211 k=1,nprop
  kpr=k
  if(ibo(k).eq.1)goto211

```

```

ns11=0
call prf710(pdp(k),gdiap(k),glenp(k),nperfs(k),y(ibrp+k)
&,frac(k),volp(k),surf(k),dsdx(k))
ns1(k)=ns11
if(ns1(k).eq.0)goto 212
if(ns1p(k).eq.1)go to 212
write(6,2213)k
2213 format(' propellant',i2,' has slivered')
ns1p(k)=1
tsl(k)=y(3)
ism=1
212 continue
if(frac(k).lt..9999) go to 211
frac(k)=1.
tbo(k)=y(3)
ibo(k)=1
ism=1
write(6,456)k
456 format(' propellant',i2,' has burned out')
211 continue
c ENERGY LOSS TO PROJECTILE TRANSLATION
elpt=prwt*y(1)*y(1)/2.
epdot=prwt*y(1)*z(1)
c ENERGY LOSS DUE TO PROJECTILE ROTATION
elpr=pi*pi*prwt*y(1)*y(1)/4.*twst*twst
eprdot=pi*pi*prwt*y(1)*z(1)/2.*twst*twst
c ENERGY LOSS DUE TO GAS AND PROPELLANT MOTION
if(igrad.eq.1)go to 214
if(igrad.eq.3)goto 217
if(igrad.eq.4)go to 438
pt=y(2)+y(7)
vzp=bvol+areab*pt
j4zp=bint(4)+((bvol+areab*pt)**3-bvol**3)/3./areab/areab
elgpm=tmpi*y(1)*y(1)*areab*areab*j4zp/2./vzp/vzp/vzp
go to 216
438 pb=y(7)+y(10)
vzb=bvol+areab*pb
j4zb=bint(4)+((vzb**3-bvol**3)/3./areab/areab
elgpm=(1.-eps)*up*up*areab**2*prden*j4zb+
& eps*ug*ug*areab**2*gasden*j4zb
elgpm=elgpm/2./vzb/vzb+gasden*areab*ullen/6.-
& (3.*y(1)*y(1)+3.*y(1)*ullen*dlnrho+ullen**2*dlnrho**2)
c approximate epdot
epdot=tmpi*y(1)*z(1)/3.
go to 216
214 elgpm=tmpi*y(1)*y(1)/6.
go to 216
217 elgpm=areab*zb/6.*(eps*gasden*ug*ug+(1.-eps)*prden*up*up)
elgpm=elgpm+gasden*areab*ullen/6.*(3.*y(1)*y(1)+
& 3.*y(1)*ullen*dlnrho+ullen**2*dlnrho**2)
c approximate epdot
epdot=tmpi*y(1)*z(1)/3.
c ENERGY LOSS FROM BORE RESISTANCE
216 elbr=y(4)

```

```

z(4)=areab*resp*y(1)
ebrdot=z(4)
c ENERGY LOSS DUE TO RECOIL
elrc=rcwt*y(6)*y(6)/2.
erdot=rcwt*y(6)*z(6)
c ENERGY LOSS DUE TO HEAT LOSS
areaw=cham/areab*pi*bore+2.*areab+pi*bore*(y(2)+y(7))
avden=0.0
avc=0.0
avcp=0.0
z18=0
z19=0
do 213 k=1,nprop
z18=forcp(k)*gamap(k)*chwp(k)*frac(k)/(gamap(k)-1.)/tempp(k)+z18
z19=chwp(k)*frac(k)+z19
avden=avden+chwp(k)*frac(k)
213 continue
avcp=(z18+forcig*gamai*chwi/(gamai-1.)/tempi)/(z19+chwi)
avden=(avden+chwi)/(volg+cov1)
avvel=.5*y(1)
htns=lambda*avcp*avden*avvel+ho
z(5)=areaw*htns*(tgas-wallt)*hl
elht=y(5)
ehdot=z(5)
wallt=(elht+htfr*elbr)/cshl/rhocs/areaw/tshl+twal
c write(6,*)lambda,avcp,avden,avvel,ho,areaw,htns,tgas,wallt,hl,z(5)
c &,elht
c ENERGY LOSS DUE TO AIR RESISTANCE
air=iair
z(8)=y(1)*pgas*air
elar=areab*y(8)
eddot=z(8)*areab
c RECOIL
z(6)=0.0
if(pbrch.le.rp(1)/areab)go to 221
rfor=rp(2)
if(y(3)-tr0.ge.tr(2))go to 222
rfor=(tr(2)-(y(3)-tr0))/(tr(2)-tr(1))
rfor=rp(2)-rfor*(rp(2)-rp(1))
222 z(6)=areab/rcwt*(pbrch-rfor/areab-resp)
if(y(6).lt.0.0)y(6)=0.0
z(7)=y(6)
goto 223
221 tr0=y(3)
223 continue
c CALCULATE GAS TEMPERATURE
eprop=0.0
rprop=0.0
dmfogt=0.0
dmfog=0.0
do 231 k=1,nprop
eprop=eprop+forcp(k)*chwp(k)*frac(k)/(gamap(k)-1.)
rprop=rprop+forcp(k)*chwp(k)*frac(k)/(gamap(k)-1.)/tempp(k)
dmfogt=dmfogt+forcp(k)*rhop(k)*tng(k)*surf(k)*z(ibrp+k)/

```

```

& ((gamap(k)-1.)*tempp(k))
dmfog=dmfog+forcp(k)*rhop(k)*tng(k)*surf(k)*z(ibrp+k)/
& (gamap(k)-1.)
231 continue
tenerg=elpt+elpr+elgpm+elbr+elrc+elht+elar
tgas=(cprop+forcig*chwi/(gamai-1.)-elpt-elpr-elgpm-elbr-elrc-elht
&-elar)/(rprop+forcig*chwi/(gamai-1.)/tempi)
tedot=epdot+eprdot+eddot+ebrdot+erdot+ehdot+eptdot
dtgas=(dmfog-tedot-tgas*dmfogt)/(rprop+forcig*chwi/
& (gamai-1.)/tempi)
c FIND FREE VOLUME
v1=0.0
cov1=0.0
do 241 k=1,nprop
v1=chwp(k)*(1.-frac(k))/rhop(k)+v1
cov1=cov1+chwp(k)*covp(k)*frac(k)
241 continue
volg=volgi+areab*(y(2)+y(7))-v1-cov1
c CALCULATE MEAN PRESSURE
r1=0.0
do 251 k=1,nprop
r1=r1+forcp(k)*chwp(k)*frac(k)/tempp(k)
251 continue
pmean=tgas/volg*(r1+forcig*chwi/tempi)
259 resp=resp+pgas*air
if(igrad.eq.1)go to 252
if(igrad.eq.2)goto 403
if(igrad.eq.3)go to 404
if(igrad.eq.4)go to 441
403 if(isw1.ne.0)go to 253
pbase=pmean
pbrch=pmean
if(pbase.gt.resp+1.)isw1=1
go to 257
c USE CHAMBRAGE PRESSURE GRADIENT EQUATION
253 j1zp=bint(1)+(bvol*pt+areab/2.*pt*pt)/areab
j2zp=(bvol+areab*pt)**2/areab/areab
j3zp=bint(3)+areab*bint(1)*pt+bvol*pt*pt/2.+areab*pt*pt*pt/6.
a2t=-tmpi*areab*area0/prwt/vzp/vzp
alf=1.-a2t*j1zp
a1t=tmpi*areab*(areab*y(1)*y(1)/vzp+areab*resp/prwt)/vzp/vzp
bt=-tmpi*y(1)*y(1)*areab*areab/2./vzp/vzp/vzp
bata=-a1t*j1zp-bt*j2zp
gamma=alf+a2t*j3zp/vzp
delta=bata+a1t*j3zp/vzp+bt*j4zp/vzp
c calculate base pressure
pbase=(pmean-delta)/gamma
c calculate breech pressure
pbrch=alf*pbase+bata
go to 254
c USE 2 PHASE GRADIENT EQUATION
404 IF(ISW1.NE.0)GOTO 407
pbase=pmean
pbrch=pmean

```

```

if(pbase.gt.resp+1)isw1=1
go to 257
407 if(isw1.eq.2)go to 411
vzp=cham+areab*(y(2)+y(7))
vzb=cham+areab*(y(10)+y(7))
phi=0.
phidot=0.
dmorho=0.
dmcov=0.
dmromw=0.
rmomw=0.
vfree=vzp-v1
do 405 k=1,nprop
rmomw=rmomw+chwp(k)*frac(k)*forcp(k)/tempp(k;
phi=chwp(k)*frac(k)+phi
if(ibo(k).eq.1)go to 405
dmorho=dmorho+tng(k)*surf(k)*z(ibrp+k)
phidot=rhop(k)*tng(k)*surf(k)*z(ibrp+k)+phidot
dmcov=rhop(k)*tng(k)*surf(k)*z(ibrp+k)*covp(k)+dmcov
dmromw=dmromw+rhop(k)*tng(k)*surf(k)*z(ibrp+k)*
& forcp(k)/tempp(k)
405 continue
rmomw=rmomw+chwi*forcig/tempi
gasmas=phi+chwi
gasden=gasmas/vfree
phi=(phi+chwi)/tmpi
if (phi.gt.0.999) then
isw1=2
rbm=pbase/pmean
rbrm=pbrch/pmean
if(phi.ge.1.)go to 411
endif
dmdt=phidot
phidot=phidot/tmpi
vdotov=(dmorho+areab*y(1))/vfree
dlnrho=dmdt/gasmas-vdotov
dvoldt=dmorho+areab*y(1)-dmcov
c GET TIME DERIVATIVE OF MEAN PRESSURE
dpmdt=(dmromw*tgas-pmean*dvoldt+dtgas*rmomw)/volg
volprp=0.
effdia=0.
dmdmdt=0.
dmdmor=0.
avelen=0.
avedia=0.
do 406 k=1,nprop
if(ibo(k).eq.1)go to 406
volprp=volprp+(1.-frac(k))*chwp(k)/rhop(k)
dmdmdt=dmdmdt+rhop(k)*tng(k)*dsdx(k)*z(ibrp+k)*z(ibrp+k)
dmdmdt=dmdmdt+rhop(k)*tng(k)*surf(k)*d2xdt2(k)
dmdmor=dmdmor+(dsdx(k)*z(ibrp+k)**2+surf(k)*d2xdt2(k))*tng(k)
effdia=effdia+6.*volp(k)/surf(k)*(1.-frac(k))*chwp(k)
406 continue
c1t=dmdmdt/gasmas-dmdmor/vfree+vdotov**2-(dmdt/gasmas)**2

```

```

d2lnr=c1t-areab**2*pbase/vfree/prwt
d2lnr=d2lnr+areab*areab*resp/vfree/prwt
zp=chmlen+y(2)+y(7)
zb=chmlen+y(10)+y(7)
ullen=zp-zb
cnow=tmpi-gasmas
vp=y(1)
effdia=effdia/cnow
prden=cnow/volprp
up=y(9)
phistr=phi-gasden*areab*ullen/tmpi
ulldot=vp-up
dphist=phidot-gasden*areab/tmpi*(ulldot+ullen*dlnrho)
eps=1.-(1.-phi)*tmpi/prden/vzb
epsdot=phidot*tmpi/prden/vzb+(1.-phi)*tmpi*up*areab/
& prden/vzb/vzb
ug=up+(vp+ullen*dlnrho-up)/eps
alam=(1.5*grlen/grdiam)**.666666667
alam=(0.5+grlen/grdiam)/alam
alam=alam**2.17
c
VIS kg/s/m
vis=.00007
ren=gasden/vis*effdia*abs(ug-up)
if(ren.lt.1.)ren=1.
fsrg=2.5*alam/ren**.081*((1.-eps)/(1.-eps0)*eps0/eps)**.45
fsc=fsrg*fs0
phi2=1.-phi-phistr*(1.-eps)/eps
phi1p=dphist*ug-phidot*up-phistr*epsdot/eps/eps
& *(vp+ullen*dlnrho-up)+phistr*ulldot*dlnrho/eps
& +2.*phistr*ug/zb*(ug-up)
phi1p=phi1p+phi2*gasden/effdia/prden*(ug-up)**2*fsc
ak2=1.-(1.-phi2*tmpi/prden/vzb)
phi1=phi1p+phistr*z(1)/eps+ullen*phistr*d2lnr/eps
c
ACCELERATION OF FORWARD BOUNDARY OF PROPELLANT BED
z(9)=gasden*(ug-up)**2*fsc/prden/effdia+tmpi*phi1*ak2
&/vzb/prden
z(10)=y(9)
e=phistr/eps*(1.-ullen*areab/vfree)*areab/prwt
dd=ullen*phistr*c1t/eps
ak11=tmpi*e*ak2/zb/vzb
ak12=tmpi*ak2*(phi1p+dd)/zb/vzb-ak11*resp
pbase=pmean-ak12*zb*zb/2.+gasden*ullen*resp*areab/prwt
pbase=pbase+ak12*zb*zb*(zb/3.+ullen)/2./zp
pbase=pbase-gasden*ullen**2*areab*resp/2./zp/prwt
pbase=pbase-gasden*ullen**2/2.*(1.-2.*ullen/3./zp)*
& (c1t-dlnrho**2)
pbase=pbase-areab**2*gasden*ullen**2*
&(1.-2.*ullen/3./zp)*resp/prwt/vfree/2.
deno=-ak11*zb**3/6./zp-ullen*ak11*zb*zb/2./zp
deno=deno+gasden*ullen*areab/prwt-areab**2*gasden*ullen**2
&*(1.-2.*ullen/3./zp)/2./vfree/prwt
deno=deno-gasden*ullen**2*areab/2./zp/prwt+1.+ak11*zb*zb/2.
pbase=pbase/deno
if(ism.eq.0)goto453

```

```

if(ism.eq.1)goto451
goto452
451  ism=2
tss=sqrt(egama*rmomw/gasmas*tgas)
write(6,*)tss
tss=ullen/(ullen*odlnr+tss)
tso=y(3)
write(6,*)tss,tso
452  coefbp=(tss+tso-y(3)-deltat)/tss
if(coefbp.gt.1.)coefbp=1.
if(coefbp.le.0.)then
coefbp=0.
ism=0
endif
pbase=coefbp*opbase+(1.-coefbp)*pbase
write(6,*)coefbp,opbase,pbase,ism
453  odlnr=dlnrho
opbase=pbase
pbrch=pbase*(1.+ak11*zb*zb/2.+gasden*ullen*areab/prwt
& -areab**2*gasden*ullen**2/2./vfree/prwt)
pbrch=pbrch+ak12*zb*zb/2.-gasden*ullen*areab*resp/prwt
pbrch=pbrch+gasden*ullen**2/2.*(c1t-dlnrho**2)
pbrch=pbrch+areab**2*gasden*ullen**2*resp/2./vfree/prwt
go to 254
C  USING RGA GRADIENT
441  if(isw1.ne.0)go to 444
pbase=pmean
pbrch=pmean
if(pbase.gt.resp+1.)isw1=1
go to 257
444  if(isw1.eq.2)go to 411
vzp=cham+areab*(y(2)+y(7))
vzb=cham+areab*(y(10)+y(7))
j1zb=bint(1)+(bvol*pb+areab/2.*pb*pb)/areab
j2zb=(bvol+areab*pb)**2/areab/areab
j3zb=bint(3)+areab*bint(1)*pb+bvol*pb*pb/2.+areab/6.*pb**3
phi=0.
phidot=0.
dmorho=0.
dmcov=0.
dmromw=0.
rmomw=0.
vfree=vzp-v1
do 442 k=1,nprop
rmomw=rmomw+chwp(k)*frac(k)*forcp(k)/tempp(k)
phi=chwp(k)*frac(k)+phi
if(ibto(k).eq.1)go to 442
dmorho=dmorho+tng(k)*surf(k)*z(ibrp+k)
phidot=rhop(k)*tng(k)*surf(k)*z(ibrp+k)+phidot
dmcov=rhop(k)*tng(k)*surf(k)*z(ibrp+k)*covp(k)+dmcov
dmromw=dmromw+rhop(k)*tng(k)*surf(k)*z(ibrp+k)*
& forcp(k)/tempp(k)
442  continue
mmomw=rmomw+chwi*forcig/tempi

```

```

gasmas=phi+chwi
gasden=gasmas/vfree
phi=(phi+chwi)/tmpi
if (phi.gt.0.99) then
  isw1=2
  rbm=pbbase/pmean
  rbrm=pbrch/pmean
  if(phi.ge.1.)go to 411
  endif
  dmdt=phidot
  phidot=phidot/tmpi
  vdoto=(dmorho+areab*y(1))/vfree
  dlnrho=dmdt/gasmas-vdoto
  dvoldt=dmorho+areab*y(1)-dmcov
c  get time derivative of mean pressure
  dpmdt=(dmromw*tgas-pmean*dvoldt+dtgas*rmomw)/volg
  volprp=0.
  effdia=0.
  dmdmdt=0.
  dmdmor=0.
  avelen=0.
  avedia=0.
  do 443 k=1,nprop
  if(ib0(k).eq.1)go to 443
  volprp=volprp+(1.-frac(k))*chwp(k)/rhop(k)
  dmdmdt=dmdmdt+rhop(k)*tng(k)*dsdx(k)*z(ibrp+k)*z(ibrp+k)
  dmdmdt=dmdmdt+rhop(k)*tng(k)*surf(k)*d2xdt2(k)
  dmdmor=dmdmor+(dsdx(k)*z(ibrp+k)**2+surf(k)*d2xdt2(k))*tng(k)
  effdia=effdia+6.*volp(k)/surf(k)*(1.-frac(k))*chwp(k)
443  continue
  c1t=dmdmdt/gasmas-dmdmor/vfree+vdoto**2-(dmdt/gasmas)**2
  d2lnr=c1t-areab**2*pbbase/vfree/prwt
  d2lnr=d2lnr+areab*areab*resp/vfree/prwt
  zp=chmlen+y(2)+y(7)
  zb=chmlen+y(10)+y(7)
  ullen=zp-zb
  cnnow=tmpi-gasmas
  vp=y(1)
  effdia=effdia/cnnow
  prden=cnnow/volprp
  up=y(9)
  phistr=phi-gasden*areab*ullen/tmpi
  ulldot=vp-up
  dphist=phidot-gasden*areab/tmpi*(ulldot+ullen*dlnrho)
  eps=1.-(1.-phi)*tmpi/prden/vzb
  epsdot=phidot*tmpi/prden/vzb+(1.-phi)*tmpi*up*areab/
  & prden/vzb/vzb
  ug=up+(vp+ullen*dlnrho-up)/eps
  alam=(1.5*grlen/grdiam)**.666666667
  alam=(0.5+grlen/grdiam)/alam
  alam=alam**2.17
c  VIS kg/s/m
  vis=.00007
  ren=gasden/vis*effdia*abs(ug-up)

```

```

if(ren.lt.1.)ren=1.
fsrg=2.5*alam/ren**.081*((1.-cps)/(1.-eps0)*cps0/eps)**.45
fsc=fsrg*fs0
phi2=1.-phi-phistr*(1.-eps)/eps
phi1p=dphist*ug-phidot*up-phistr*epsdot/eps/eps
& *(vp+ullen*dlnrho-up)+phistr*ullen*dlnrho/eps
& +2.*areab*phistr*ug/vzb*(ug-up)
phi1p=phi1p+phi2*gasden/effdia/prden*(ug-up)**2*fsc
ak2=1./(1.-phi2*tmpi/prden/vzb)
phi1=phi1p+phistr*z(1)/eps+ullen*phistr*d2lnr/eps
c ACCELERATION OF FORWARD BOUNDARY OF PROPELLANT BED
z(9)=gasden*(ug-up)**2*fsc/prden/effdia+tmpi*phi1*ak2
&/vzb/prden
z(10)=y(9)
phi3=phistr*ug*ug+(1.-phi)*up*up
e=1.-ullen*areab/vfree
dd=ullen*phistr*c1t/eps
a1t=tmpi*areab/vzb/vzb*(phi3*areab/vzb-(phi1p+dd-e
& *phistr*areab*resp/eps/prwt)*ak2)
a2t=(-tmpi*e*phistr*areab**2/vzb/vzb/eps/prwt)*ak2
bt=-tmpi*phi3*areab**2/2./vzb/vzb/vzb
pbase=pmean-gasden*ullen**2/2.*(c1t-dlnrho**2
$ +areab**2*resp/prwt/vfree)*(1.-2.*areab*ullen/3./vzp)
pbase=pbase-a1t*j3zb/vzp-bt*j4zb/vzp-areab*ullen*a1t*j1zb/vzp
pbase=pbase-areab*bt*ullen*j2zb/vzp-gasden*areab**2*ullen**2
&*resp/2./vzp/prwt+a1t*j1zb+bt*j2zb+areab*gasden*ullen*resp/prwt
deno=1.+areab*ullen*a2t*j1zb/vzp-gasden*areab**2*ullen**2
& /2./vzp/prwt+a2t*j3zb/vzp-a2t*j1zb+gasden*ullen*areab/prwt
deno=deno-gasden*ullen**2*areab**2/2./vfree/prwt
& +gasden*areab**3*ullen**3/3./vzp/vfree/prwt
pbase=pbase/deno
pbrch=pbase*(1.-a2t*j1zb+gasden*ullen*areab/prwt
& -gasden*ullen**2*areab**2/2./vfree/prwt)
&+gasden*ullen**2/2.*(c1t-dlnrho**2+areab**2*resp/prwt/vfree)
& -a1t*j1zb-bt*j2zb-areab*gasden*ullen*resp/prwt
go to 254
411 pbase=rbm*pmean
pbrch=rbrm*pmean
go to 254
c USE LAGRANGE PRESSURE GRADIENT EQUATION
252 if(isw1.ne.0)go to 256
if(pmean.lt.resp)resp=pmean
c CALCULATE BASE PRESSURE
256 pbase=(pmean+tmpi*resp/3./prwt)/(1.+tmpi/3./prwt)
if(pbase.gt.resp+1.)isw1=1
c CALCULATE BREECH PESSURE
pbrch=pbase+tmpi/2./prwt*(pbase-resp)
c CALCULATE PROJECTILE ACCELERATION
254 z(1)=areab*(pbase-resp)/prwt
if(z(1).lt.0.0)go to 257
go to 258
257 if(isw1.eq.0)z(1)=0.0
258 if(y(1).lt.0.0)y(1)=0.0
z(2)=y(1)

```

```

c  GET BURNING RATE
do 264 m=1,nprop
z(ibrp+m)=0.0
d2xdt2(m)=0.0
if(ibo(m).eq.1) goto 264
do 262 k=1,nbr(m)
if(pmean.gt.pres(m,k))go to 262
go to 263
262  continue
k=nbr(m)
263  pmix=pmean
if(igrad.eq.3)pmix=pbrch-(ak11*pbase+ak12)/6.*zb*zb
if(igrad.eq.4)pmix=pbrch+(a1t+a2t*pbase)*j3zb/vzb+b1t*j4zb/vzb
if(pmix.lt.99*pmean)pmix=pmean
z(ibrp+m)=beta(m,k)*(pmix*1.e-6)**alpha(m,k)
abr(m)=alpha(m,k)
bbr(m)=beta(m,k)
d2xdt2(m)=beta(m,k)*alpha(m,k)*(pmix*1.e-6)
& **(alpha(m,k)-1.)*dpmdt*1.e-6
264  continue
do 21 i=1,nde
d(i)=(z(i)-b(j)*p(i))*a(j)
y(i)=deltat*d(i)+y(i)
p(i)=3.*d(i)-ak(j)*z(i)+p(i)
21  continue
11  continue
t=t+deltat
told=y(3)
if(pmaxm.gt.pmean)go to 281
pmaxm=pmean
tpmaxm=y(3)
281  if(pmaxba.gt.pbase)go to 282
pmaxba=pbase
tpmaxba=y(3)
282  if(pmaxbr.gt.pbrch)go to 283
pmaxbr=pbrch
tpmaxbr=y(3)
283  continue
if(y(3).lt.ptime)go to 272
ptime=ptime+deltap
pj=yp(2)+y(7)
write(6,7)y(3),z(1),y(1),pj,ptime,pmean,pbase,pbrch
7  format(1x,7e11.4)
if(igrad.gt.2)then
pj=yp(2)+y(7)
prt=yp(10)+y(7)
write(6,427)prt,pj
427  format(1x,'prop travel',e11.4,'proj travel',e11.4)
endif
272  continue
if(t.gt.tstop)goto 200
if(y(2)+y(7).gt.travp)go to 200
tmvelo=y(1)
tmvelo=y(3)

```

```

disto=y(2)+y(7)
go to 19
200 write(6,311)t,y(3)
311 format(1x,' deltat t', e14.6, ' intg t',e14.6)
write(6,312)pmaxm,tpmaxm
312 format(1x,'PMAXMEAN Pa ',e14.6,' time at PMAXMEAN sec ',e14.6)
write(6,313)pmaxba,tpmxba
313 format(1x,'PMAXBASE Pa ',e14.6,' time at PMAXBASE sec ',e14.6)
write(6,314)pmaxbr,tpmxbr
314 format(1x,'PMAXBREECH Pa ',e14.6,' time at PMAXBREECH sec ',e14.6)
if(y(2)+y(7).le.travp)go to 303
dfract=(travp-disto)/(y(2)+y(7)-disto)
rmvel=(y(1)-rmvelo)*dfract+rmvelo
tmvel=(y(3)-tmvelo)*dfract+tmvelo
write(6,318)rmvel,tmvel
318 format(1x,'muzzle VELOCITY m/s ',e14.6,' time of muzzle velocity s
&ec ',e14.6)
goto 319
303 write(6,327)y(1),y(3)
327 format(1x,'velocity of projectile m/s ',e14.6,' at this time msec
&',e14.6)
319 efi=chwi*forcig/(gamai-1.)
efp=0.0
do 315 i=1,nprop
efp=efp+chwp(i)*forcp(i)/(gamap(i)-1.0)
315 continue
tenerg=efi+efp
write(6,317)tenerg
317 format(1x,'total initial energy available J = ',e14.6)
tengas=chwi*forcig*tgas/(gamai-1.)/tempi
do 135 i=1,nprop
tengas=(frac(i)*chwp(i)*forcp(i)*tgas/tempp(i)/(gamap(i)-1.))+teng
&as
write(6,328)i,frac(i),tbo(i)
328 format(' FOR PROPELLANT ',i2,' MASSFRACT BURNT IS ',e14.6
&,' at time in sec ',e14.6)
135 continue
write(6,136)tengas
136 format(1x,'total energy remaining in gas J= ',e14.6)
write(6,320)elpt
320 format(1x,'energy loss from projectile translation J= ',e14.6)
write(6,321)elpr
321 format(1x,'energy loss from projectile rotation J= ',e14.6)
write(6,322)elgpm
322 format(1x,'energy lost to gas and propellant motion J= ',e14.6)
write(6,323)elbr
323 format(1x,'energy lost to bore resistance J= ',e14.6)
write(6,324)elrc
324 format(1x,'energy lost to recoil J= ',e14.6)
write(6,325)elht
325 format(1x,'energy loss from heat transfer J= ',e14.6)
write(6,326)elar
326 format(1x,'energy lost to air resistance J= ',e14.6)
stop

```

```

20  write(*,140)
140  format(1x,'end of file encounter')
stop
30  write(*,150)
999  continue
998  continue
150  format(1x,'read or write error')
stop
end
subroutine prf710(pd,gd,gl,np,x,frac,vol,surf,dsdx)
common nsl,kpr,fracs1(10),dsdxs1(10),surfs1(10),
& nspl(10),tsl(10),pbrch,pbase,pmean,bbr(10),abr(10),
& deltat,yar(20) igrad
dimension ts(10),coef(10)
pi=3.141593
nsl=0
C
C pd=perforation diameter
C gd=OUTER DIA
C gl=GRAIN LENGTH
C NP=NUMBER OF PERFS
C
C SURF=OUTPUT SURFACE AREA
C frac=OUTPUT MASS FRACTION OF PROPELLANT BURNED
C
C w = web = distance between perforation edges
C = distance between outside perf edge and edge of grain
C
C p = distance between perforation centers
C
C x1 = distance to inner sliver burnout
C
C x2 = distance to outer sliver burnout (frac=1)
C
if(np.eq.0) go to 2000
IF(NP.EQ.1)GO TO 3000
IF(NF.eq.7)GO TO 61
if(np.eq.19)go to 4000
if(np.eq.15)go to 5000
60 WRITE(6,90)
90 FORMAT(1X,'UNACCEPTABLE GRANULATION')
STOP
61  w=(gd-3.*pd)/4.
d=w+pd
sqr3=sqrt(3.)
x1=d/sqr3-pd/2.
x2=(14.-3.*sqr3)*d/13.-pd/2.
v0=pi/4.*gl*(gd*gd-7.*pd*pd)
s0=2.*v0/gl+pi*gl*(gd+7.*pd)
if (x.gt.w/2.+0.0000001) goto 20
vol=pi/4.*(gl-2.*x)*((gd-2.*x)**2-7.*((pd+2.*x)**2)
surf=2.*vol/(gl-2.*x)+pi*(gl-2.*x)*((gd-2.*x)+
& 7.*((pd+2.*x)))
frac=1.-vol/v0

```

```

dsdx=-4*pi*(gd+7.*pd-3.*gl+18.*x)
dsdxsl(kpr)=dsdx
fracsl(kpr)=frac
surfsl(kpr)=surf
return
20  ns1=1
coef(kpr)=0.
if(igrad.eq.1.or.igrad.eq.2)go to 726
if(nsdp(kpr).eq.1)goto 26
tsl(kpr)=yar(3)
ts(kpr)=w/2.*(-1.+(pbrch/pmean)**abr(kpr))/.
& (bbk(kpr)*(pbase*1.e-6)**abr(kpr))
26  continue
coef(kpr)=(ts(kpr)+tsl(kpr)-(deltat+yar(3)))/ts(kpr)
if(coef(kpr).gt.1.)coef(kpr)=1.
if(coef(kpr).lt.0.)coef(kpr)=0.
726  if(x.ge.x2)goto 30
s1=0.
s2=0.
v1=0.
v2=0.
ds1dx=0.
ds2dx=0.
y=sqrt((pd+2.*x)**2-d*d)
theta=atan(y/d)
a1=theta/4.*((pd+2.*x)**2-d/4.*y
if(x.ge.x1)goto 25
v1=3./4.*((gl-2.*x)
v1=v1*(2.*sqrt3*d*d-pi*(pd+2.*x)**2+24.*a1)
s1=2.*v1/(gl-2.*x)
s1=s1+3.*((gl-2.*x)*(pi-6.*theta)*(pd+2.*x)
25  y1=sqrt((gd-2.*x)**2-(5.*d-2.*((pd+2.*x)))**2)
chi=atan(y1/(5.*d-2.*((pd+2.*x))))
y2=sqrt((pd+2.*x)**2-(3.*d-2.*((pd+2.*x)))**2)
phi=atan(y2/(3.*d-2.*((pd+2.*x))))
a2=phi*(pd+2.*x)**2-chi*(gd-2.*x)**2
a2=(a2+2.*sqrt3*d*sqrt((3.*d-pd-2.*x)*(3.*d-gd+2.*x)))/8.
v2=pi*(gd-2.*x)**2-6.*sqrt3*d*d-4.*pi*(pd+2.*x)**2
v2=(v2+24.*((a1+2.*a2)*(gl-2.*x))/4.
s2=2.*v2/(gl-2.*x)
s2=s2+((gl-2.*x)*((pi-6.*chi)*(gd-2.*x)+2.*((2.*pi-3.*phi-3.*theta
& )*(pd+2.*x)))
vol=v1+v2
surf=s1+s2
frac=1.-vol/v0
dsdx=-surf/(x2-x)
dsdxsl(kpr)=dsdx
frac=coef(kpr)*fracsl(kpr)+(1.-coef(kpr))*frac
fracsl(kpr)=frac
surf=coef(kpr)*surfsl(kpr)+(1.-coef(kpr))*surf
surfsl(kpr)=surf
return
30  vol=0.

```

```

surf=0.
frac=fracs1(kpr)*coef(kpr)+1.-coef(kpr)
fracs1(kpr)=frac
if(frac.gt..9999) frac=1.
if(frac.gt..9999) return
dsdx=0.
dsdx=dsdxs1(kpr)*coef(kpr)
dsdxs1(kpr)=dsdx
if(abs(dsdx).lt.1.)dsdx=0.
surf=surfs1(kpr)*coef(kpr)
surfs1(kpr)=surf
return

C
C ZERO PERF CALCULATIONS START HERE.
C
2000 if(gd-2.*x.le.0.0) go to 2001
v0=pi*gd*gd/4.*gl
vol=pi*(gd-2.*x)**2/4.*(gl-2.*x)
frac=1.-vol/v0
surf=pi/2.*((gd-2.*x)**2+pi*(gd-2.*x)*(gl-2.*x))
dsdx=-2.*pi*(gd+gl-6.*x)
return
2001 surf=0.
frac=1.0
vol=0.
dsdx=0.
nsl=1
return

C
c      one perf calculation starts here
c
3000 if(gd-pd-4.*x.le.0.0) goto 3001
v0=pi/4.*((gd*gd-pd*pd)*gl
vol=pi/4.*((gd-2.*x)**2-(pd+2.*x)**2)*(gl-2.*x)
frac=1.-vol/v0
surf=pi/2.*((gd-2.*x)**2-(pd+2.*x)**2)
surf=surf+pi*(gd-2.*x)*(gl-2.*x)
surf=surf+pi*(pd+2.*x)*(gl-2.*x)
dsdx=-4.*pi*(gd+pd)
return
3001 surf=0.
frac=1.0
vol=0.
dsdx=0.
nsl=1
return

C
C Below is the calculation for the cylindrical 19 perf grain.
C
C      INPUT
C
C      P = PERF DIAMETER
C      D = GRAIN DIAMETER
C      GL = GRAIN LENGTH

```

```

C X = DISTANCE BURNT
C
C OUTPUT
C
C VOL = THE VOLUME OF ONE GRAIN AT X.
C SURF = THE SURFACE AREA OF ONE GRAIN AT X.
C FRAC = THE FRACTION OF GRAIN BURNT AT X.
C
C W=WEB
C
4000 p=pd
d=gd
W=(D-5.*P)/6.
PI=3.141592654
SQRT3=SQRT(3.)
SQRT5=SQRT(5.)
SQRT6=SQRT(6.)
SQRT10=SQRT(10.)
C
C INITIAL VOLUME AND SURFACE AREA
C
C V0=PI/4.*GL*(D*D-19.*P*P)
C S0=2.*V0/GL+PI*GL*(D+19.*P)
C
C X1 = DISTANCE TO INNER SLIVER BURNOUT
C X2 = DISTANCE TO OUTER SLIVER BURNOUT
C DBC = DISTANCE BETWEEN PERFORATION CENTERS
C ASSUMES BURNOUT DOES NOT OCCUR IN LONGITUDINAL DIRECTION
C W1 = SECONDARY WEB
C
DBC=W+P
W1=0.5*(D-P-2.*SQRT3*DBC)
X1=DBC/SQRT3-P/2.
X2=0.25*(DBC*(6.-SQRT10)-2.*P)
IF(X.GT.W/2.)GO TO 110
C
C NOT SLIVERED YET
C
C VOL=PI/4.*(GL-2.*X)*((D-2.*X)**2-19.*(P+2.*X)**2)
C SURF=2.*VOL/(GL-2.*X)+PI*(GL-2.*X)*(D-2.*X+19.*(P+2.*X))
C dsdx=pi*(-4*D+36*GL-76*P-216*x)
C FRAC=1.-VOL/V0
C dsdxsl(kpr)=dsdx
C fracs1(kpr)=frac
C surfs1(kpr)=surf
C RETURN
C
C V1=TOTAL VOLUME OF INNER SLIVER, V2=TOTAL VOLUME OF OUTER SLIVER
C S1=TOTAL SURFACE AREA OF INNER SLIVERS, S2=TOTAL SURFACE AREA OF
C     OUTER SLIVERS
C
110 V1=0.
V2=0.
S1=0.

```

```

S2=0.
DELTA=0.
CHI=0.
NSL=1
coef(kpr)=0.
if(igrad.eq.1.or.igrad.eq.2)go to 727
if(nsip(kpr).eq.1)goto 728
tsl(kpr)=yar(3)
ts(kpr)=w/2.*(-1.+(pbrch/pmean)**abr(kpr))/.
& (bbr(kpr)*(pbase*1.e-6)**abr(kpr))
728    continue
coef(kpr)=(ts(kpr)+tsl(kpr)-(deltat+yar(3)))/ts(kpr)
if(coef(kpr).gt.1.)coef(kpr)=1.
if(coef(kpr).lt.0.)coef(kpr)=0.
727    A3=0.
IF(X.GE.X2)GO TO 130
THETA=ACOS(DBC/(P+2.*X))
A1=THETA/4.*(P+2.*X)**2-DBC/4.*SQRT((P+2.*X)**2-DBC*DBC)
IF(X.GT.X1)GO TO 120
V1=3.*(GL-2.*X)*(2.*SQRT3*DBC*DBC-PI*(P+2.*X)**2+24*A1)
S1=2.*V1/(GL-2.*X)+12.*(GL-2.*X)*(PI-6.*THETA)*(P+2.*X)
120  PHI=ACOS((5.*D-13.*P-36.*X)/(12.*(P+2.*X)))
XI=ACOS((13.*D-5.*P-36.*X)/(12.*(D-2.*X)))
IF(X.LE.W1/2.)GO TO 125
DELTA=ACOS((2.*D-P-6.*X)/(SQRT3*(D-2.*X)))
CHI=ACOS((D-2.*P-6.*X)/(SQRT3*(P+2.*X)))
A3=.125*(CHI*(P+2.*X)**2-DELTA*(D-2.*X)**2
& +2.*SQRT6*DBC*SQRT(6.*DBC*(P+2.*X-DBC)-(P+2.*X)**2))
125  A2=.125*(PHI*(P+2.*X)**2-XI*(D-2.*X)**2
& +2.*SQRT5*DBC*SQRT((5.*DBC-P-2.*X)*(5.*DBC-D+2.*X)))
V2=.25*(GL-2.*X)*(PI*(D-2.*X)**2-7.*PI*(P+2.*X)**2
& -24.*SQRT3*DBC*DBC+48.*((A1+A2+A3))
S2=2.*V2/(GL-2.*X)+(GL-2.*X)*((D-2.*X)*(PI-6.*(XI+DELTA))
& +(P+2.*X)*(7.*PI-6.*(2.*THETA+CHI+PHI)))
VOL=V1+V2
SURF=S1+S2
DSDX=-SURF/(X2-X)
FRAC=1.-VOL/V0
dsdx=coef(kpr)*dsdxsl(kpr)+(1.-coef(kpr))*dsdx
dsdxsl(kpr)=dsdx
frac=coef(kpr)*fracsl(kpr)+(1.-coef(kpr))*frac
fracsl(kpr)=frac
surf=coef(kpr)*surfsl(kpr)+(1.-coef(kpr))*surf
surfsl(kpr)=surf
RETURN
130  VOL=0.
SURF=0.
frac=fracsl(kpr)*coef(kpr)+1.-coef(kpr)
fracsl(kpr)=frac
if(frac.gt..9999) frac=1.
if(frac.gt..9999) return
dsdx=0.
dsdx=dsdxsl(kpr)*coef(kpr)
dsdxsl(kpr)=dsdx

```

```

if(abs(dsdx).lt.1.)dsdx=0.
surf=surfsl(kpr)*coef(kpr)
surfsl(kpr)=surf
RETURN
C
C Below is the calculation for the 19 perf hex grain.
C
C
C Translation of the input values.
C   p= perf diameter
C   d= grain diameter
C   gl= grain length
C   x= distance burnt
C
C Translation of the output values.
C   vol= volume of one grain at x.
C   surf= surface area of one grain at x.
C   frac= mass fraction of the grain burnt at x.
C
C Assignment statement for pi.
5000 pi=3.141592654
      sqrt3=sqrt(3.)
      p=pd
      d=gd
C
C   d=6w + 5p is the statement for the grain diameter which will be
C used to calculate the web.
C
C To calculate the web.
      w= (d-5.*p)/6.
C
C Below is the equation to calculate the distance between the perf cen-
C ters.
      dpc= p + w
C To calculate the grain diameter between the flats.
      f= 2.*sqrt3*dpc + p/2. + w
C
C To calculate the distance burnt.
      X1=dpc/sqrt3-p/2.
      X2= 0.125*(5.*dpc-4.*p)
C
C To calculate the area.
      A=sqrt3/3.*((w+p/2.)**2)-pi/6.*((w+p/2.)**2)
C To calculate the initial volume of the sharp corner grain.
      Vs=g1/4.*((2.*sqrt3*f**2-19.*pi*p**2))
C
C To calculate the volume that will be removed from the grain.
      Vr=6.*A*gl
C
C To calculate the initial volume for the 19hex grain with rounded
C corners.
      Vo= Vs - Vr
C
C To calculate the initial surface area of the sharp corner grain.

```

```

Ss=2.*Vs/gl+gl*(2.*sqrt3*f+19.*pi*p)
C
C To calculate the surface area that will be removed from the grain.
Sr=12.*A+gl*(w+p/2.)*(4.*sqrt3-2.*pi)
C
C To calculate the initial surface area for the 19hex grain with rounded
C corners.
So= Ss-Sr
C
C To calculate the unknowns of the grain under the condition x.le.5*w.
if(0.le.x.and.x.le.w/2.) then
A=sqrt3/3.*((w-2.*x)+(p+2.*x)/2.)**2-pi/6. *
&((w-2.*x)+(p+2.*x)/2.)**2
C To calculate the volume that will be removed from the sharp corner grain.
Vr=6.*A*(gl-2.*x)
C To calculate the volume for the sharp corner grain at some distance burnt.
Vn=.25*(gl-2.*x)*(2.*sqrt3*(f-2.*x)**2.
& -19.*pi*(p+2.*x)**2.)
C
C To calculate the volume for the 19hex grain with rounded corners.
V= Vn-Vr
C
C To calculate the surface area that will be removed from the sharp
C corner grain.
Sr=12.*A+(gl-2.*x)*(w-2*x+(p+2.*x)/2.)*(4.*sqrt3-2.*pi)
C To calculate the surface area for the sharp corner grain.
Sn=2.*V/(gl-2.*x)+(gl-2.*x)*(2.*sqrt3*(f-2.*x)+
& 19.*pi*(p+2.*x))
C
C To calculate the surface area for 19hex grain with rounded corners.
S= Sn-Sr
C To calculate the mass fraction.
frac= 1-V/Vo
dsdx=-8.*sqrt3*(f-2.*x)-76.*pi*(p+2.*x)+(gl-2.*x)*(-4.*sqrt3+38.
& *pi)+16.*sqrt3*(w+p/2.-x)-8.*pi*(w+p/2.-x)+(gl-2.*x)*
& (4.*sqrt3-2.*pi)
surf=S
vol=V
dsdxsl(kpr)=dsdx
fracsl(kpr)=frac
surfsl(kpr)=surf
return
endif
C
C Due to the cross section at the sliver point x=.5*w there will be 24
C identical inner slivers, 12 identical side slivers. After slivering the
C surface area and the volume function become more complex. Each type of
C sliver will be treated separately and later the volumes will be combined
C to complete the function.
C
C To calculate the 12 identical side slivers for the grain x=.5/w.
nsl=1
coef(kpr)=0.
if(igrad.eq.1.or.igrad.eq.2)go to 729

```

```

if(nsdp(kpr).eq.1)goto 730
tsl(kpr)=yar(3)
ts(kpr)=w/2.*(-1.+(pbrch/pmean)**abr(kpr))/  

& (bbr(kpr)*(pbase*1.e-6)**abr(kpr))
730  continue
coef(kpr)=(ts(kpr)+tsl(kpr)-(deltat+yar(3)))/ts(kpr)
if(coef(kpr).gt.1.)coef(kpr)=1.
if(coef(kpr).lt.0.)coef(kpr)=0.
729  if(w/2.lt.x.and.x.lt.X1.and.x.lt.X2) then
C
C To calculate the areas of the grain.
A=sqrt3/3.*(w-2.*x+(p+2.*x)/2.)**2-pi/6.*  

&(w-2.*x+(p+2.*x)/2.)**2
theta=acos(dpc/(p+2.*x))
A1=theta/4.*(p+2.*x)**2-dpc/4.*sqrt((p+2.*x)**2-dpc**2)
omega=acos(2.*dpc/(p+2.*x)-1.)
A2=0.125*(p+2.*x)*((p+2.*x)*(omega+sin(omega))-2.*dpc*sin(omega))
C To calculate the volumes of the grain.
V1=3.*((gl-2.*x)*(2.*sqrt3*dpc**2-pi*(p+2.*x)**2+24.*A1)
V2=6.*((gl-2.*x)*(2.*dpc**2-dpc*(p+2.*x)-pi/4.*(p+2.*x)**2  

&+2.*A1+4.*A2)
C To calculate the surface areas of the grain.
S1=2.*V1/(gl-2.*x)+12.*((gl-2.*x)*(pi-6.*theta)*(p+2.*x)
S2=2.*V2/(gl-2.*x)+12.*((gl-2.*x)*(dpc+(p+2.*x)*(pi/2.-omega  

&-theta-sin(omega)))
C To calculate the total volume and total surface area.
Vf=V1+V2
Sf=S1+S2
C To calculate the mass fraction.
frac=1.-Vf/Vo
surf=Sf
dsdx=-surf/(x2-x)
vol=Vf
dsdx=coef(kpr)*dsdxsl(kpr)+(1.-coef(kpr))*dsdx
dsdxsl(kpr)=dsdx
frac=coef(kpr)*fracsl(kpr)+(1.-coef(kpr))*frac
fracsl(kpr)=frac
surf=coef(kpr)*surfsl(kpr)+(1.-coef(kpr))*surf
surfsl(kpr)=surf
return
endif
if(x.gt.X1.and.x.lt.X2)then
C To calculate the area of the grain.
A=sqrt3/3.*(w-2.*x+(p+2.*x)/2.)**2-pi/6.*  

&(w-2.*x+(p+2.*x)/2.)**2
theta=acos(dpc/(p+2.*x))
A1=theta/4.*(p+2.*x)**2-dpc/4.*sqrt((p+2.*x)**2-dpc**2)
omega=acos(2.*dpc/(p+2.*x)-1.)
A2=0.125*(p+2.*x)*((p+2.*x)*(omega+sin(omega))-2.*dpc*sin(omega))
C To calculate the volume of the grain.
V2=6.*((gl-2.*x)*(2.*dpc**2-dpc*(p+2.*x)-pi/4.*(p+2.*x)**2  

&+2.*A1+4.*A2)
C To calculate the surface area of the grain.
S2=2.*V2/(gl-2.*x)+12.*((gl-2.*x)*(dpc+(p+2.*x)*(pi/2.-omega

```

```

&theta-sin(omega)))
C To calculate the volume and the surface area.
Vf=V2
Sf=S2
C To calculate the the mass fraction.
frac=1-Vf/Vo
surf=Sf
dsdx=-surf/(x2-x)
vol=Vf
dsdx=coef(kpr)*dsdxsl(kpr)+(1.-coef(kpr))*dsdx
dsdxsl(kpr)=dsdx
frac=coef(kpr)*fracsl(kpr)+(1.-coef(kpr))*frac
fracsl(kpr)=frac
surf=coef(kpr)*surfsl(kpr)+(1.-coef(kpr))*surf
surfsl(kpr)=surf
return
endif
if(x.gt.X2)then
dsdx=0.
surf=0.
vol=0.
frac=fracsl(kpr)*coef(kpr)+1.-coef(kpr)
fracsl(kpr)=frac
if(frac.gt..9999) frac=1.
if(frac.gt..9999) return
dsdx=0.
dsdx=dsdxsl(kpr)*coef(kpr)
dsdxsl(kpr)=dsdx
if(abs(dsdx).lt.1.)dsdx=0.
surf=surfsl(kpr)*coef(kpr)
surfsl(kpr)=surf
return
endif
end

```

INTENTIONALLY LEFT BLANK.

**APPENDIX 6:
INPUT DATA FOR IBRGA TEST**

INTENTIONALLY LEFT BLANK.

9832.2384 12.7 12.7 1.0 0.0 457.2 4 1.00
3 0. 15.381732 46.482 15.381732 54.102 12.7
9.796 0 0.0 0.0
5 0.0 0.0 0.0 .6 0.0 1.3 0.0 300. 0. 457.
1.e20 2 3.0e+4 0.0 8.0e+5 0.2
.001135 .01143 .46028 273. 1. 7.8612
106.34 .9755 294. .004712 1.4
1
1135.84 3142.75 .97544 9.7959 1.6605 1.23 7 3.175 .0508 1.23063
1 1.0 .1105187 689.476
.01 .1 30.

INTENTIONALLY LEFT BLANK.

**APPENDIX 7:
OUTPUT FROM IBRGA**

INTENTIONALLY LEFT BLANK.

the input file is i6315a
using rga gradient

chamber distance cm chamber diameter cm
0.000000E+00 0.153817E+02
0.464820E+02 0.153817E+02
0.541020E+02 0.127000E+02
chamber volume cm**3 0.982089E+04
groove diam cm 0.127000E+02
land diam cm 0.127000E+02
groove/land ratio 0.100000E+01
twist turns/caliber 0.000000E+00
projectile travel cm 0.457200E+03
gradient # 4
friction factor 0.100000E+01

projectile mass kg 0.979600E+01
switch to calculate energy lost to air resistance J 0
fraction of work against bore used to heat the tube 0.000000E+00
gas pressure Pa 0.000000E+00
number barrel resistance points 5
bore resistance MPa - travel cm
0.000000E+00 0.000000E+00
0.000000E+00 0.600000E+00
0.000000E+00 0.130000E+01
0.000000E+00 0.300000E+03
0.000000E+00 0.457000E+03

mass of recoiling parts kg 0.100000E+21
number of recoil point pairs 2
recoil force N recoil time sec
0.300000E+05 0.000000E+00
0.800000E+06 0.200000E+00

free convective heat transfer coefficient w/cm**2 K 0.113500E-02
chamber wall thickness cm 0.114300E-01
heat capacity of steel of chamber wall J/g K 0.460280E+00
initial temperature of chamber wall K 0.273000E+03
heat loss coefficient 0.100000E+01
density of chamber wall steel g/cm**3 0.786120E+01

impetus of igniter propellant J/g 0.106340E+03
covolume of igniter cm**3/g 0.975500E+00
adiabatic flame temperature of igniter propellant K 0.294000E+03
initial mass of igniter kg 0.471200E-02
ratio of specific heats for igniter 0.140000E+01
there are 1 propellants
for propellant number 1
impetus of propellant J/g 0.113584E+04

adiabatic temperature of propellant K 0.314275E+04
 covolume of propellant cm**3/g 0.975440E+00
 initial mass of propellant kg 0.979590E+01
 density of propellant g/cm**3 0.166050E+01
 ratio of specific heats for propellant 0.123000E+01
 number of perforations of propellant 7
 length of propellant grain cm 0.317500E+01
 diameter of perforation in propellant grains cm 0.508000E-01
 outside diameter of propellant grain cm 0.123063E+01

for propellant 1 the total number of grains is 0.158099E+04
 number of burning rate points 1

exponent	coefficient	pressure
-	cm/sec-MPa**ai	MPa
0.100000E+01	0.110519E+00	0.689476E+03

time increment msec 0.100000E-01 print increment msec 0.100000E+00

time to stop calculation msec 0.300000E+02

area bore m^2 0.126677E-01

pressure from ign pa 0.127925E+06

volume of unburnt prop m^3 0.589937E-02

init cham vol-cov ign m^3 0.981629E-02

time	acc	vel	dis	impress	pbase	pbrch
0.1000E-04	0.1696E+03	0.1399E-02	0.5582E-08	0.1312E+06	0.1312E+06	0.1313E+06
prop travel	0.8638E-11	proj travel	0.5582E-08			
0.1100E-03	0.2182E+03	0.2070E-01	0.1070E-05	0.1688E+06	0.1688E+06	0.1689E+06
prop travel	0.1936E-08	proj travel	0.1070E-05			
0.2100E-03	0.2790E+03	0.4545E-01	0.4327E-05	0.2159E+06	0.2158E+06	0.2160E+06
prop travel	0.8074E-08	proj travel	0.4327E-05			
0.3100E-03	0.3543E+03	0.7699E-01	0.1039E-04	0.2742E+06	0.2740E+06	0.2743E+06
prop travel	0.2001E-07	proj travel	0.1039E-04			
0.4100E-03	0.4464E+03	0.1169E+00	0.2000E-04	0.3454E+06	0.3452E+06	0.3455E+06
prop travel	0.4001E-07	proj travel	0.2000E-04			
0.5100E-03	0.5576E+03	0.1669E+00	0.3410E-04	0.4315E+06	0.4312E+06	0.4317E+06
prop travel	0.7140E-07	proj travel	0.3410E-04			
0.6100E-03	0.6904E+03	0.2291E+00	0.5379E-04	0.5344E+06	0.5339E+06	0.5346E+06
prop travel	0.1190E-06	proj travel	0.5379E-04			
0.7100E-03	0.8474E+03	0.3058E+00	0.8040E-04	0.6560E+06	0.6553E+06	0.6563E+06
prop travel	0.1898E-06	proj travel	0.8040E-04			
0.8100E-03	0.1031E+04	0.3995E+00	0.1155E-03	0.7986E+06	0.7975E+06	0.7990E+06
prop travel	0.2943E-06	proj travel	0.1155E-03			
0.9100E-03	0.1245E+04	0.5130E+00	0.1610E-03	0.9646E+06	0.9631E+06	0.9653E+06
prop travel	0.4479E-06	proj travel	0.1610E-03			
0.1010E-02	0.1493E+04	0.6497E+00	0.2189E-03	0.1157E+07	0.1155E+07	0.1158E+07
prop travel	0.6734E-06	proj travel	0.2189E-03			
0.1110E-02	0.1780E+04	0.8130E+00	0.2918E-03	0.1380E+07	0.1376E+07	0.1381E+07
prop travel	0.1005E-05	proj travel	0.2918E-03			
0.1210E-02	0.2110E+04	0.1007E+01	0.3825E-03	0.1637E+07	0.1632E+07	0.1639E+07
prop travel	0.1494E-05	proj travel	0.3825E-03			
0.1310E-02	0.2492E+04	0.1237E+01	0.4944E-03	0.1934E+07	0.1927E+07	0.1936E+07
prop travel	0.2217E-05	proj travel	0.4944E-03			
0.1410E-02	0.2931E+04	0.1507E+01	0.6312E-03	0.2276E+07	0.2266E+07	0.2281E+07

prop travel 0.3292E-05proj travel 0.6312E-03
 0.1510E-02 0.3437E+04 0.1825E+01 0.7974E-03 0.2673E+07 0.2658E+07 0.2679E+07
 prop travel 0.4893E-05proj travel 0.7974E-03
 0.1610E-02 0.4021E+04 0.2197E+01 0.9981E-03 0.3131E+07 0.3110E+07 0.3141E+07
 prop travel 0.7289E-05proj travel 0.9981E-03
 0.1710E-02 0.4694E+04 0.2632E+01 0.1239E-02 0.3662E+07 0.3630E+07 0.3676E+07
 prop travel 0.1089E-04proj travel 0.1239E-02
 0.1810E-02 0.5470E+04 0.3140E+01 0.1527E-02 0.4277E+07 0.4230E+07 0.4298E+07
 prop travel 0.1630E-04proj travel 0.1527E-02
 0.1910E-02 0.6361E+04 0.3730E+01 0.1870E-02 0.4989E+07 0.4919E+07 0.5020E+07
 prop travel 0.2447E-04proj travel 0.1870E-02
 0.2010E-02 0.7384E+04 0.4416E+01 0.2276E-02 0.5814E+07 0.5710E+07 0.5859E+07
 prop travel 0.3681E-04proj travel 0.2276E-02
 0.2110E-02 0.8556E+04 0.5212E+01 0.2757E-02 0.6769E+07 0.6616E+07 0.6836E+07
 prop travel 0.5544E-04proj travel 0.2757E-02
 0.2210E-02 0.9892E+04 0.6133E+01 0.3323E-02 0.7874E+07 0.7650E+07 0.7974E+07
 prop travel 0.8353E-04proj travel 0.3323E-02
 0.2310E-02 0.1141E+05 0.7196E+01 0.3988E-02 0.9153E+07 0.8825E+07 0.9300E+07
 prop travel 0.1258E-03proj travel 0.3988E-02
 0.2410E-02 0.1313E+05 0.8421E+01 0.4767E-02 0.1063E+08 0.1015E+08 0.1085E+08
 prop travel 0.1891E-03proj travel 0.4767E-02
 0.2510E-02 0.1507E+05 0.9829E+01 0.5678E-02 0.1234E+08 0.1165E+08 0.1265E+08
 prop travel 0.2835E-03proj travel 0.5678E-02
 0.2610E-02 0.1724E+05 0.1144E+02 0.6740E-02 0.1431E+08 0.1333E+08 0.1475E+08
 prop travel 0.4232E-03proj travel 0.6740E-02
 0.2710E-02 0.1967E+05 0.1328E+02 0.7974E-02 0.1658E+08 0.1521E+08 0.1719E+08
 prop travel 0.6278E-03proj travel 0.7974E-02
 0.2810E-02 0.2238E+05 0.1538E+02 0.9405E-02 0.1918E+08 0.1731E+08 0.2003E+08
 prop travel 0.9242E-03proj travel 0.9405E-02
 0.2910E-02 0.2541E+05 0.1777E+02 0.1106E-01 0.2217E+08 0.1965E+08 0.2332E+08
 prop travel 0.1348E-02proj travel 0.1106E-01
 0.3010E-02 0.2882E+05 0.2047E+02 0.1297E-01 0.2560E+08 0.2229E+08 0.2710E+08
 prop travel 0.1943E-02proj travel 0.1297E-01
 0.3110E-02 0.3268E+05 0.2354E+02 0.1517E-01 0.2951E+08 0.2527E+08 0.3144E+08
 prop travel 0.2765E-02proj travel 0.1517E-01
 0.3210E-02 0.3709E+05 0.2702E+02 0.1769E-01 0.3397E+08 0.2869E+08 0.3637E+08
 prop travel 0.3877E-02proj travel 0.1769E-01
 0.3310E-02 0.4217E+05 0.3098E+02 0.2059E-01 0.3903E+08 0.3261E+08 0.4194E+08
 prop travel 0.5351E-02proj travel 0.2059E-01
 0.3410E-02 0.4802E+05 0.3548E+02 0.2391E-01 0.4475E+08 0.3714E+08 0.4820E+08
 prop travel 0.7263E-02proj travel 0.2391E-01
 0.3510E-02 0.5475E+05 0.4060E+02 0.2770E-01 0.5119E+08 0.4234E+08 0.5518E+08
 prop travel 0.9691E-02proj travel 0.2770E-01
 0.3610E-02 0.6243E+05 0.4644E+02 0.3205E-01 0.5841E+08 0.4828E+08 0.6294E+08
 prop travel 0.1271E-01proj travel 0.3205E-01
 0.3710E-02 0.7109E+05 0.5310E+02 0.3702E-01 0.6645E+08 0.5497E+08 0.7153E+08
 prop travel 0.1641E-01proj travel 0.3702E-01
 0.3810E-02 0.8072E+05 0.6068E+02 0.4270E-01 0.7536E+08 0.6242E+08 0.8100E+08
 prop travel 0.2085E-01proj travel 0.4270E-01
 0.3910E-02 0.9131E+05 0.6926E+02 0.4919E-01 0.8514E+08 0.7061E+08 0.9139E+08
 prop travel 0.2611E-01proj travel 0.4919E-01
 0.4010E-02 0.1028E+06 0.7895E+02 0.5659E-01 0.9580E+08 0.7948E+08 0.1027E+09
 prop travel 0.3228E-01proj travel 0.5659E-01
 0.4110E-02 0.1151E+06 0.8983E+02 0.6502E-01 0.1073E+09 0.8898E+08 0.1150E+09

prop travel 0.3944E-01proj travel 0.6502E-01
 0.4210E-02 0.1280E+06 0.1020E+03 0.7460E-01 0.1197E+09 0.9901E+08 0.1282E+09
 prop travel 0.4767E-01proj travel 0.7460E-01
 0.4310E-02 0.1416E+06 0.1154E+03 0.8546E-01 0.1327E+09 0.1095E+09 0.1421E+09
 prop travel 0.5707E-01proj travel 0.8546E-01
 0.4410E-02 0.1555E+06 0.1303E+03 0.9773E-01 0.1464E+09 0.1203E+09 0.1568E+09
 prop travel 0.6774E-01proj travel 0.9773E-01
 0.4510E-02 0.1697E+06 0.1465E+03 0.1116E+00 0.1605E+09 0.1313E+09 0.1721E+09
 prop travel 0.7980E-01proj travel 0.1116E+00
 0.4610E-02 0.1840E+06 0.1642E+03 0.1271E+00 0.1748E+09 0.1423E+09 0.1877E+09
 prop travel 0.9336E-01proj travel 0.1271E+00
 0.4710E-02 0.1981E+06 0.1833E+03 0.1444E+00 0.1893E+09 0.1532E+09 0.2035E+09
 prop travel 0.1085E+00proj travel 0.1444E+00
 0.4810E-02 0.2118E+06 0.2038E+03 0.1638E+00 0.2036E+09 0.1638E+09 0.2192E+09
 prop travel 0.1254E+00proj travel 0.1638E+00
 0.4910E-02 0.2249E+06 0.2256E+03 0.1852E+00 0.2175E+09 0.1739E+09 0.2347E+09
 prop travel 0.1442E+00proj travel 0.1852E+00
 0.5010E-02 0.2372E+06 0.2487E+03 0.2089E+00 0.2308E+09 0.1834E+09 0.2496E+09
 prop travel 0.1648E+00proj travel 0.2089E+00
 0.5110E-02 0.2485E+06 0.2730E+03 0.2350E+00 0.2433E+09 0.1922E+09 0.2637E+09
 prop travel 0.1876E+00proj travel 0.2350E+00
 0.5210E-02 0.2587E+06 0.2983E+03 0.2636E+00 0.2547E+09 0.2001E+09 0.2769E+09
 prop travel 0.2124E+00proj travel 0.2636E+00
 0.5310E-02 0.2677E+06 0.3247E+03 0.2947E+00 0.2651E+09 0.2070E+09 0.2889E+09
 prop travel 0.2395E+00proj travel 0.2947E+00
 0.5410E-02 0.2754E+06 0.3518E+03 0.3285E+00 0.2741E+09 0.2129E+09 0.2998E+09
 prop travel 0.2689E+00proj travel 0.3285E+00
 0.5510E-02 0.2817E+06 0.3797E+03 0.3651E+00 0.2819E+09 0.2178E+09 0.3092E+09
 prop travel 0.3006E+00proj travel 0.3651E+00
 0.5610E-02 0.2867E+06 0.4081E+03 0.4045E+00 0.2883E+09 0.2217E+09 0.3172E+09
 prop travel 0.3348E+00proj travel 0.4045E+00
 0.5710E-02 0.2903E+06 0.4370E+03 0.4467E+00 0.2933E+09 0.2245E+09 0.3239E+09
 prop travel 0.3714E+00proj travel 0.4467E+00
 0.5810E-02 0.2928E+06 0.4661E+03 0.4919E+00 0.2970E+09 0.2264E+09 0.3291E+09
 prop travel 0.4105E+00proj travel 0.4919E+00
 0.5910E-02 0.2940E+06 0.4955E+03 0.5400E+00 0.2995E+09 0.2274E+09 0.3329E+09
 prop travel 0.4520E+00proj travel 0.5400E+00
 0.6010E-02 0.2942E+06 0.5249E+03 0.5910E+00 0.3008E+09 0.2275E+09 0.3355E+09
 prop travel 0.4961E+00proj travel 0.5910E+00
 0.6110E-02 0.2934E+06 0.5543E+03 0.6449E+00 0.3010E+09 0.2269E+09 0.3369E+09
 prop travel 0.5428E+00proj travel 0.6449E+00
 0.6210E-02 0.2918E+06 0.5835E+03 0.7018E+00 0.3003E+09 0.2257E+09 0.3371E+09
 prop travel 0.5919E+00proj travel 0.7018E+00
 0.6310E-02 0.2894E+06 0.6126E+03 0.7616E+00 0.2988E+09 0.2238E+09 0.3364E+09
 prop travel 0.6435E+00proj travel 0.7616E+00
 0.6410E-02 0.2864E+06 0.6414E+03 0.8243E+00 0.2965E+09 0.2215E+09 0.3348E+09
 prop travel 0.6976E+00proj travel 0.8243E+00
 0.6510E-02 0.2828E+06 0.6699E+03 0.8899E+00 0.2936E+09 0.2187E+09 0.3323E+09
 prop travel 0.7542E+00proj travel 0.8899E+00
 0.6610E-02 0.2788E+06 0.6979E+03 0.9583E+00 0.2901E+09 0.2156E+09 0.3293E+09
 prop travel 0.8132E+00proj travel 0.9583E+00
 0.6710E-02 0.2744E+06 0.7256E+03 0.1029E+01 0.2862E+09 0.2122E+09 0.3256E+09
 prop travel 0.8746E+00proj travel 0.1029E+01
 0.6810E-02 0.2697E+06 0.7528E+03 0.1103E+01 0.2820E+09 0.2085E+09 0.3214E+09

prop travel 0.9384E+00 proj travel 0.1103E+01
 0.6910E-02 0.2647E+06 0.7795E+03 0.1180E+01 0.2774E+09 0.2047E+09 0.3169E+09
 prop travel 0.1005E+01 proj travel 0.1180E+01
 0.7010E-02 0.2596E+06 0.8058E+03 0.1259E+01 0.2727E+09 0.2008E+09 0.3120E+09
 prop travel 0.1073E+01 proj travel 0.1259E+01
 0.7110E-02 0.2544E+06 0.8315E+03 0.1341E+01 0.2677E+09 0.1968E+09 0.3069E+09
 prop travel 0.1144E+01 proj travel 0.1341E+01
 0.7210E-02 0.2492E+06 0.8566E+03 0.1426E+01 0.2627E+09 0.1927E+09 0.3016E+09
 prop travel 0.1217E+01 proj travel 0.1426E+01
 0.7310E-02 0.2439E+06 0.8813E+03 0.1512E+01 0.2576E+09 0.1886E+09 0.2961E+09
 prop travel 0.1292E+01 proj travel 0.1512E+01
 0.7410E-02 0.2385E+06 0.9054E+03 0.1602E+01 0.2525E+09 0.1845E+09 0.2905E+09
 prop travel 0.1369E+01 proj travel 0.1602E+01
 0.7510E-02 0.2333E+06 0.9290E+03 0.1694E+01 0.2473E+09 0.1804E+09 0.2849E+09
 prop travel 0.1449E+01 proj travel 0.1694E+01
 0.7610E-02 0.2281E+06 0.9521E+03 0.1788E+01 0.2422E+09 0.1764E+09 0.2793E+09
 prop travel 0.1530E+01 proj travel 0.1788E+01
 0.7710E-02 0.2229E+06 0.9746E+03 0.1884E+01 0.2372E+09 0.1724E+09 0.2737E+09
 prop travel 0.1614E+01 proj travel 0.1884E+01
 0.7810E-02 0.2179E+06 0.9967E+03 0.1983E+01 0.2322E+09 0.1685E+09 0.2681E+09
 prop travel 0.1700E+01 proj travel 0.1983E+01
 0.7910E-02 0.2129E+06 0.1018E+04 0.2083E+01 0.2272E+09 0.1646E+09 0.2625E+09
 prop travel 0.1787E+01 proj travel 0.2083E+01
 0.8010E-02 0.2081E+06 0.1039E+04 0.2186E+01 0.2224E+09 0.1609E+09 0.2570E+09
 prop travel 0.1877E+01 proj travel 0.2186E+01
 0.8110E-02 0.2033E+06 0.1060E+04 0.2291E+01 0.2176E+09 0.1572E+09 0.2516E+09
 prop travel 0.1969E+01 proj travel 0.2291E+01
 0.8210E-02 0.1987E+06 0.1080E+04 0.2398E+01 0.2130E+09 0.1537E+09 0.2463E+09
 prop travel 0.2062E+01 proj travel 0.2398E+01
 0.8310E-02 0.1943E+06 0.1100E+04 0.2507E+01 0.2084E+09 0.1502E+09 0.2411E+09
 prop travel 0.2158E+01 proj travel 0.2507E+01
 0.8410E-02 0.1899E+06 0.1119E+04 0.2618E+01 0.2040E+09 0.1469E+09 0.2360E+09
 prop travel 0.2255E+01 proj travel 0.2618E+01
 0.8510E-02 0.1857E+06 0.1138E+04 0.2731E+01 0.1997E+09 0.1436E+09 0.2310E+09
 prop travel 0.2354E+01 proj travel 0.2731E+01
 0.8610E-02 0.1817E+06 0.1156E+04 0.2845E+01 0.1954E+09 0.1405E+09 0.2261E+09
 prop travel 0.2455E+01 proj travel 0.2845E+01
 0.8710E-02 0.1777E+06 0.1174E+04 0.2962E+01 0.1913E+09 0.1374E+09 0.2213E+09
 prop travel 0.2558E+01 proj travel 0.2962E+01
 propellant 1 has slivered
 0.8810E-02 0.1772E+06 0.1192E+04 0.3080E+01 0.1852E+09 0.1370E+09 0.2116E+09
 prop travel 0.2662E+01 proj travel 0.3080E+01
 0.8910E-02 0.1773E+06 0.1209E+04 0.3200E+01 0.1814E+09 0.1371E+09 0.2052E+09
 prop travel 0.2768E+01 proj travel 0.3200E+01
 0.9010E-02 0.1726E+06 0.1227E+04 0.3322E+01 0.1765E+09 0.1335E+09 0.1997E+09
 prop travel 0.2875E+01 proj travel 0.3322E+01
 0.9110E-02 0.1674E+06 0.1244E+04 0.3446E+01 0.1714E+09 0.1294E+09 0.1938E+09
 prop travel 0.2982E+01 proj travel 0.3446E+01
 0.9210E-02 0.1621E+06 0.1260E+04 0.3571E+01 0.1662E+09 0.1254E+09 0.1879E+09
 prop travel 0.3091E+01 proj travel 0.3571E+01
 0.9310E-02 0.1570E+06 0.1276E+04 0.3698E+01 0.1610E+09 0.1214E+09 0.1821E+09
 prop travel 0.3200E+01 proj travel 0.3698E+01
 0.9410E-02 0.1519E+06 0.1292E+04 0.3826E+01 0.1559E+09 0.1175E+09 0.1763E+09
 prop travel 0.3310E+01 proj travel 0.3826E+01

0.9510E-02 0.1470E+06 0.1307E+04 0.3956E+01 0.1509E+09 0.1137E+09 0.1707E+09
prop travel 0.3421E+01 proj travel 0.3956E+01
0.9610E-02 0.1422E+06 0.1321E+04 0.4087E+01 0.1461E+09 0.1100E+09 0.1652E+09
prop travel 0.3533E+01 proj travel 0.4087E+01
0.9710E-02 0.1376E+06 0.1335E+04 0.4220E+01 0.1414E+09 0.1064E+09 0.1599E+09
prop travel 0.3646E+01 proj travel 0.4220E+01
0.9810E-02 0.1332E+06 0.1349E+04 0.4354E+01 0.1368E+09 0.1030E+09 0.1548E+09
prop travel 0.3759E+01 proj travel 0.4354E+01
0.9910E-02 0.1289E+06 0.1362E+04 0.4490E+01 0.1325E+09 0.9970E+08 0.1498E+09
prop travel 0.3873E+01 proj travel 0.4490E+01
deltat t 0.998000E-02 intg t 0.998000E-02
PMAXMEAN Pa 0.301051E+09 time at PMAXMEAN sec 0.608000E-02
PMAXBASE Pa 0.227560E+09 time at PMAXBASE sec 0.598000E-02
PMAXBREECH Pa 0.337155E+09 time at PMAXBREECH sec 0.618000E-02
muzzle VELOCITY m/s 0.136949E+04 time of muzzle velocity sec 0.997004E-02
total initial energy available J = 0.483777E+08
FOR PROPELLANT 1 MASSFRACT BURNT IS 0.966455E+00 at time in sec 0.000000E+00
total energy remaining in gas J= 0.329127E+08
energy loss from projectile translation J= 0.920305E+07
energy loss from projectile rotation J= 0.000000E+00
energy lost to gas and propellant motion J= 0.311553E+07
energy lost to bore resistance J= 0.000000E+00
energy lost to recoil J= 0.188116E-11
energy loss from heat transfer J= 0.152361E+07
energy lost to air resistance J= 0.000000E+00

**APPENDIX 8:
INPUT DATA FOR XKTC**

INTENTIONALLY LEFT BLANK.

GRADIENT TESTS 600 IN~ X6315A

TFFFTTT		1 1 0	00						
25	-3	0	3500						
10.0		180.0	0.0001	2.0	0.05	0.01	0.0001	0.0001	
300	100	1100	100	1500	100				
6	0	0	5	0	0	1	2	0	0
0									8
529.		14.7		28.896		1.4			0
529.0									
JA2 7PF LOT RH2-5		0.0		21.3		21.6		.06	
7	.4845	0.020		1.25		7.			
15000.	1.0	41754.			.5				
8000.	.00030	1.000		100000.	.000300	1.000		0.0	520.
19826000.	23.0000	1.2300		27.00					
0.0	3.0279	18.3		3.0279	21.3	2.5		21.9	2.5
23.37	2.5	210.56		2.5					
6.0	0.	6.25		0.	7.2	00.		7.8	0.
210.56		0.							
7.77		0.0228		0.7					
21.3		21.6		44.0		0.000			
0.0		3.		12.		30.		40.	50.
									80.
									30.

INTENTIONALLY LEFT BLANK.

<u>No of Copies</u>	<u>Organization</u>	<u>No of Copies</u>	<u>Organization</u>
1	Office of the Secretary of Defense OUSD(A) Director, Live Fire Testing ATTN: James F. O'Bryon Washington, DC 20301-3110	1	Director US Army Aviation Research and Technology Activity Ames Research Center Moffett Field, CA 94035-1099
2	Administrator Defense Technical Info Center ATTN: DTIC-DDA Cameron Station Alexandria, VA 22304-6145	1	Commander US Army Missile Command ATTN: AMSMI-RD-CS-R (DOC) Redstone Arsenal, AL 35898-5010
1	HQDA (SARD-TR) WASH DC 20310-0001	1	Commander US Army Tank-Automotive Command ATTN: AMSTA-TSL (Technical Library) Warren, MI 48397-5000
1	Commander US Army Materiel Command ATTN: AMCDRA-ST 5001 Eisenhower Avenue Alexandria, VA 22333-0001	1	Director US Army TRADOC Analysis Command ATTN: ATAA-SL White Sands Missile Range, NM 88002-5502
1	Commander US Army Laboratory Command ATTN: AMSLC-DL Adelphi, MD 20783-1145	(Class. only) 1	Commandant US Army Infantry School ATTN: ATSH-CD (Security Mgr.) Fort Benning, GA 31905-5660
2	Commander US Army, ARDEC ATTN: SMCAR-IMI-I Picatinny Arsenal, NJ 07806-5000	(Unclass. only) 1	Commandant US Army Infantry School ATTN: ATSH-CD-CSO-OR Fort Benning, GA 31905-5660
2	Commander US Army, ARDEC ATTN: SMCAR-TDC Picatinny Arsenal, NJ 07806-5000	1	Air Force Armament Laboratory ATTN: AFATL/DLODL Eglin AFB, FL 32542-5000
1	Director Benet Weapons Laboratory US Army, ARDEC ATTN: SMCAR-CCB-TL Watervliet, NY 12189-4050	2	<u>Aberdeen Proving Ground</u> Dir, USAMSA ATTN: AMXSY-D AMXSY-MP, H. Cohen
1	Commander US Army Armament, Munitions and Chemical Command ATTN: SMCAR-ESP-L Rock Island, IL 61299-5000	1	Cdr, USATECOM ATTN: AMSTE-TD
1	Commander US Army Aviation Systems Command ATTN: AMSAV-DACL 4300 Goodfellow Blvd. St. Louis, MO 63120-1798	3	Cdr, CRDEC, AMCCOM ATTN: SMCCR-RSP-A SMCCR-MU SMCCR-MSI
		1	Dir, VLAMO ATTN: AMSLC-VL-D

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander USA Concepts Analysis Agency ATTN: D. Hardison 8120 Woodmont Avenue Bethesda, MD 20014-2797	3	PEO-Armaments Project Manager Tank Main Armament Systems ATTN: AMCPM-TMA, K. Russell AMCPM-TMA-105 AMCPM-TMA-120 Picatinny Arsenal, NJ 07806-5000
1	C.I.A. 01R/DB/Standard Washington, DC 20505	1	Commander Armament RD&E Center US Army AMCCOM ATTN: SMCAR-AEE Picatinny Arsenal, NJ 07806-5000
1	US Army Ballistic Missile Defense Systems Command Advanced Technology Center P.O. Box 1500 Huntsville, AL 35807-3801	8	Commander Armament RD&E Center US Army AMCCOM ATTN: SMCAR-AEE-B A. Beardell B. Brodman D. Downs S. Einstein S. Westley S. Bernstein C. Roller J. Rutkowski Picatinny Arsenal, NJ 07806-5000
1	Chairman DoD Explosives Safety Board Room 856-C Hoffman Bldg. 1 2461 Eisenhower Avenue Alexandria, VA 22331-0600	2	Commander US Army ARDEC ATTN: SMCAR-AES, S. Kaplowitz; D. Spring Picatinny Arsenal, NJ 07806-5000
1	Commander US Army Material Command ATTN: AMCPM-GCM-WF 5001 Eisenhower Avenue Alexandria, VA 22333-5001	2	Commander Armament RD&E Center US Army AMCCOM ATTN: SMCAR-HFM, E. Barrieres SMCAR-CCH-V, C. Mandala Picatinny Arsenal, NJ 07806-5000
4	Project Manager Autonomous Precision-Guided Munition (APGM) Armament RD&E Center US Army AMCCOM ATTN: AMCPM-CW AMCPM-CWW AMCPM-CWS, M. Fisette AMCPM-CWA-S, R. DeKleine Picatinny Arsenal, NJ 07806-5000	1	Commander Armament RD&E Center US Army AMCCOM ATTN: SMCAR-FSA-T, M. Salsbury Picatinny Arsenal, NJ 07806-5000
2	Project Manager Production Base Modernization Agency ATTN: AMSMC-PBM, A. Siklosi AMSMC-PBM-E, L. Laibson Picatinny Arsenal, NJ 07806-5000	1	Commander, USACECOM CECOM R&D Technical Library ATTN: ASQNC-ELC-I-T, Myer Center Fort Monmouth, NJ 07703-5301

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander US Army Harry Diamond Laboratories ATTN: SLCHD-TA-L 2800 Powder Mill Rd Adelphi, MD 20783-1145	1	Commander US Army Belvoir Research and Development Center ATTN: STRBE-WC Fort Belvoir, VA 22060-5006
1	Commandant US Army Aviation School ATTN: Aviation Agency Fort Rucker, AL 36360	1	Director US Army TRAC-Ft Lee ATTN: ATRC-L, (Mr. Cameron) Fort Lee, VA 23801-6140
1	Project Manager US Army Tank-Automotive Command Improved TOW Vehicle ATTN: AMCPM-ITV Warren, MI 48397-5000	1	Commandant US Army Command and General Staff College Fort Leavenworth, KS 66027
2	Program Manager US Army Tank-Automotive Command ATTN: AMCPM-ABMS, T. Dean Warren, MI 48092-2498	1	Commandant US Army Special Warfare School ATTN: Rev and Tng Lit Div Fort Bragg, NC 28307
1	Project Manager US Army Tank-Automotive Command Fighting Vehicle Systems ATTN: AMCPM-BFVS Warren, MI 48092-2498	3	Commander Radford Army Ammunition Plant ATTN: SMCAR-QA/HI LIB Radford, VA 24141-0298
1	President US Army Armor and Engineer Board ATTN: ATZK-AD-S Fort Knox, KY 40121-5200	1	Commander US Army Foreign Science and Technology Center ATTN: AMXST-MC-3 220 Seventh Street, NE Charlottesville, VA 22901-5396
1	Project Manager US Army Tank-Automotive Command M-60 Tank Development ATTN: AMCPM-ABMS (PM Abrams) Warren, MI 48092-2498	2	Commander Naval Sea Systems Command ATTN: SEA 62R SEA 64 Washington, DC 20362-5101
1	Commander US Army Training and Doctrine Command ATTN: ATCD-MA, MAJ Williams Fort Monroe, VA 23651	1	Commander Naval Air Systems Command ATTN: AIR-954-Technical Library Washington, DC 20360
2	Director US Army Materials Technology Laboratory ATTN: SLCMT-ATL Watertown, MA 02172-0001	1	Assistant Secretary of the Navy (R, E, and S) ATTN: R. Reichenbach Room 5E787 Pentagon Bldg Washington, DC 20375
1	Commander US Army Research Office ATTN: Technical Library P. O. Box 12211 Research Triangle Park, NC 27709-2211		

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Naval Research Laboratory Technical Library Washington, DC 20375	3	Commander Naval Weapons Center ATTN: Code 388, C. F. Price Code 3895, T. Parr Information Science Division China Lake, CA 93555-6001
1	Commandant US Army Command and General Staff College Fort Leavenworth, KS 66027	1	Program Manager AFOSR Directorate of Aerospace Sciences ATTN: L. H. Caveny Bolling AFB Washington, DC 20332-0001
2	Commandant US Army Field Artillery Center and School ATTN: ATSF-CO-MW, B. Willis Ft. Sill, OK 73503-5600	5	Commander Naval Ordnance Station ATTN: L. Torreyson T. C. Smith D. Brooks W. Vienna Technical Library Indian Head, MD 20640-5000
1	Office of Naval Research ATTN: Code 473, R. S. Miller 800 N. Quincy Street Arlington, VA 22217-9999	1	AL/TSTL (Technical Library) ATTN: J. Lamb Edwards AFB, CA 93523-5000
3	Commandant US Army Armor School ATTN: ATZK-CD-MS, M. Falkovitch Armor Agency Fort Knox, KY 40121-5215	1	AFSC/SDOA Andrews AFB, MD 20334
2	Commander US Naval Surface Warfare Center ATTN: J. P. Consaga C. Gotzmer Indian Head, MD 20640-5000	1	AFATL/DLYV Eglin AFB, FL 32542-5000
4	Commander Naval Surface Warfare Center ATTN: Code 240, S. Jacobs Code 730 Code R-13, K. Kim R. Bernecker Silver Spring, MD 20903-5000	1	AFATL/DLXP Eglin AFB, FL 32542-5000
2	Commanding Officer Naval Underwater Systems Center ATTN: Code 5B331, R. S. Lazar Technical Library Newport, RI 02840	1	AFATL/DLJE Eglin AFB, FL 32542-5000
5	Commander Naval Surface Warfare Center ATTN: Code G33, J. L. East W. Burrell J. Johndrow Code G23, D. McClure Code DX-21 Technical Library Dahlgren, VA 22448-5000	1	NASA/Lyndon B. Johnson Space Center ATTN: NHS-22 Library Section Houston, TX 77054
		1	AFELM, The Rand Corporation ATTN: Library D 1700 Main Street Santa Monica, CA 90401-3297
		3	AAI Corporation ATTN: J. Herbert J. Frankle D. Cleveland P. O. Box 126 Hunt Valley, MD 21030-0126

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Aerojet Ordnance Company ATTN: D. Thatcher 2521 Michelle Drive Tustin, CA 92680-7014	3	Lawrence Livermore National Laboratory ATTN: L-355, A. Buckingham M. Finger L-324, M. Constantino P. O. Box 808 Livermore CA 94550-0622
1	Aerojet Solid Propulsion Company ATTN: P. Micheli Sacramento, CA 96813	1	Olin Corporation Badger Army Ammunition Plant ATTN: R. J. Thiede Baraboo, WI 53913
1	Atlantic Research Corporation ATTN: M. King 5390 Cherokee Avenue Alexandria, VA 22312-2302	1	Olin Corporation Smokeless Powder Operation ATTN: D. C. Mann P. O. Box 222 St. Marks, FL 32355-0222
4	AL/LSCF ATTN: J. Levine L. Quinn D. Williams T. Edwards Edwards AFB, CA 93523-5000	1	Paul Gough Associates, Inc. ATTN: P. S. Gough P. O. Box 164 1048 South Street Portsmouth, NH 03801-1614
1	AVCO Everett Research Laboratory ATTN: D. Stickler 2385 Revere Beach Parkway Everett, MA 02149-5936	1	Physics International Company ATTN: Library, H. Wayne Wampler 2700 Merced Street San Leandro, CA 9457-5602
2	Calspan Corporation ATTN: C. Murphy P. O. Box 400 Buffalo, NY 14225-0400	1	Princeton Combustion Research Laboratory, Inc. ATTN: M. Summerfield 475 US Highway One Monmouth Junction, NJ 08852-9650
1	General Electric Company Armament Systems Department ATTN: M. J. Bulman 128 Lakeside Avenue Burlington, VT 05401-4985	2	Rockwell International Rocketdyne Division ATTN: BA08, J. E. Flanagan J. Gray 6633 Canoga Avenue Canoga Park, CA 91303-2703
1	IITRI ATTN: M. J. Klein 10 W. 35th Street Chicago, IL 60616-3799	3	Thiokol Corporation Huntsville Division ATTN: D. Flanagan Dr. John Deur Technical Library Huntsville, AL 35807
1	Hercules, Inc. Allegheny Ballistics Laboratory ATTN: William B. Walkup P. O. Box 210 Rocket Center, WV 26726		
1	Hercules, Inc. Radford Army Ammunition Plant ATTN: J. Pierce Radford, VA 24141-0299		

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
2	Thiokol Corporation Elkton Division ATTN: R. Biddle Technical Library P. O. Box 241 Elkton, MD 21921-0241	1	University of Minnesota Department of Mechanical Engineering ATTN: E. Fletcher Minneapolis, MN 55414-3368
1	Veritay Technology, Inc. ATTN: E. Fisher 4845 Millersport Highway East Amherst, NY 14501-0305	1	Case Western Reserve University Division of Aerospace Sciences ATTN: J. Tien Cleveland, OH 44135
1	Universal Propulsion Company ATTN: H. J. McSpadden Black Canyon Stage 1 Box 1140 Phoenix, AZ 84029	3	Georgia Institute of Technology School of Aerospace Engineering ATTN: B.T. Zim E. Price W.C. Strahle Atlanta, GA 30332
1	Battelle Memorial Institute ATTN: Technical Library 505 King Avenue Columbus, OH 43201-2693	1	Institute of Gas Technology ATTN: D. Gidaspow 3424 S. State Street Chicago, IL 60616-3896
1	Brigham Young University Department of Chemical Engineering ATTN: M. Beckstead Provo, UT 84601	1	Johns Hopkins University Applied Physics Laboratory Chemical Propulsion Information Agency ATTN: T. Christian Johns Hopkins Road Laurel, MD 20707-0690
1	California Institute of Technology 204 Karman Laboratory Main Stop 301-46 ATTN: F.E.C. Culick 1201 E. California Street Pasadena, CA 91109	1	Massachusetts Institute of Technology Department of Mechanical Engineering ATTN: T. Toong 77 Massachusetts Avenue Cambridge, MA 02139-4307
1	California Institute of Technology Jet Propulsion Laboratory ATTN: L. D. Strand, MS 512/102 4800 Oak Grove Drive Pasadena, CA 91109-8099	1	Pennsylvania State University Applied Research Laboratory ATTN: G.M. Faeth University Park, PA 16802-7501
1	University of Illinois Department of Mechanical/Industrial Engineering ATTN: H. Krier 144 MEB; 1206 N. Green Street Urbana, IL 61801-2978	1	Pennsylvania State University Department of Mechanical Engineering ATTN: K. Kuo University Park, PA 16802-7501
1	University of Massachusetts Department of Mechanical Engineering ATTN: K. Jakus Amherst, MA 01002-0014	1	Purdue University School of Mechanical Engineering ATTN: J. R. Osborn TSPC Chaffee Hall West Lafayette, IN 47907-1199

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	SRI International Propulsion Sciences Division ATTN: Technical Library 333 Ravenwood Avenue Menlo Park, CA 94025-3493	1	Washington State University Department of Mechanical Engineering ATTN: C. T. Crowe Pullman, WA 99163-5201
1	Rensselaer Polytechnic Institute Department of Mathematics Troy, NY 12181	1	Honeywell, Inc. ATTN: R. E. Tompkins MN38-3300 10400 Yellow Circle Drive Minnetonka, MN 55343
2	Director Los Alamos Scientific Laboratory ATTN: T3, D. Butler M. Division, B. Craig P. O. Box 1663 Los Alamos, NM 87544	1	Science Applications, Inc. ATTN: R. B. Edelman 23146 Cumorah Crest Drive Woodland Hills, CA 91364-3710
1	General Applied Sciences Laboratory ATTN: J. Erdos 77 Raynor Avenue Ronkonkoma, NY 11779-6649		<u>Aberdeen Proving Ground</u>
1	Battelle PNL ATTN: Mr. Mark Garnich P. O. Box 999 Richland, WA 99352		Cdr, CSTA ATTN: STECS-LI, R. Hendrickson
1	Stevens Institute of Technology Davidson Laboratory ATTN: R. McAlevy, III Castle Point Station Hoboken, NJ 07030-5907		
1	Rutgers University Department of Mechanical and Aerospace Engineering ATTN: S. Temkin University Heights Campus New Brunswick, NJ 08903		
1	University of Southern California Mechanical Engineering Department ATTN: OHE200, M. Gerstein Los Angeles, CA 90089-5199		
2	University of Utah Department of Chemical Engineering ATTN: A. Baer G. Flandro Salt Lake City, UT 84112-1194		

INTENTIONALLY LEFT BLANK.