Just Enough Spectral Theory for Machine Learning

Ng Yen Kaow

Notations (Important)

- A vector is by default a column
 - For vectors x and y, their inner (or dot) product, $\langle x, y \rangle = x^{T}y$
 - Beware: some texts use row vectors and $\langle x, y \rangle = xy^T$
- For a matrix an example is a row
 - An example (or datapoint) is a row x_i while each feature is a columns
 - Features are like fixed columns in a spreadsheet
 - For matrices X and Y, $\langle X, Y \rangle = XY^{\mathrm{T}}$ or $\sum_{i} (x_{i}y_{i}^{\mathrm{T}})$
 - Beware: some texts use column for examples and let $\langle X, Y \rangle = X^{T}Y$
- \square So it's x^Tx , x^TMx , but XX^T and $Q\Lambda Q^T$

What about outer product?

The outer product of two vectors is a matrix

$$\begin{pmatrix} a \\ b \end{pmatrix} (c \quad d) = \begin{pmatrix} ac & ad \\ bc & bd \end{pmatrix}$$

- The outer product (or Kronecker product)
 of two matrices is a tensor
- We don't deal with outer products yet

Python call for inner product

- Inner products are performed with np. dot()
 - When called on two arrays, the arrays are
 automatically oriented to perform inner product
 Note that [[1], [1]] is a 1 × 2 matrix
 - When called on an array x and a matrix X, the array is automatically read as a row for np. dot(x, X), and column for np. dot(X, x) to perform inner product
 - When called on two matrices, make sure that the matrices are oriented correctly, or you will get X^TX when you want XX^T
 - Impossible to get outer product with np. dot()
- If you write x*y or X*Y, what you get is an element-wise multiplication

Eigenvectors and eigenvalues

- Only concerned with square matrices
 - Most matrices we consider are furthermore symmetric (and of only real values)
- \square A eigenvector for a square matrix M is vector u where $Mu = \lambda u$
 - u is invariant under transformation M
 - The scaling factor λ is called a eigenvalue

Eigendecomposition

□ A eigendecomposition of matrix M is $M = O\Lambda O^{-1}$

where Λ is diagonal, and Q contains (not necessarily orthogonal) eigenvectors of M

- Any normal M can be eigendecomposed
- The set of eigenvalues for M is unique
- There can be different eigenvectors of the same eigenvalue (hence not unique)
 - For real symmetric M, eigenvectors that correspond to distinct eigenvalues are orthogonal
- \square For an orthogonal matrix Q, $Q^{-1} = Q^{\mathrm{T}}$
- \square Only consider real symmetric $M \Rightarrow M = Q \Lambda Q^{\mathrm{T}}$

Eigenspace

- □ The eigenspace of a matrix M is the set of all the vectors u that fulfills $Mu = \lambda u$
 - The rank of M is its number of non-zero λ
 - Any feature vector v_k in M can be written as a linear combination of the eigenspace, i.e. $v_k = \sum_i \langle v_k, u_i \rangle u_i$
 - Any eigenvector u_k of M can be written as a linear combination of the feature vectors v_i in M, by solving the system of equations $v_i = \sum_j \langle v_i, u_j \rangle u_j$ to obtain u_k entirely in terms of v_i
- □ A eigenbasis of a $n \times n$ matrix M is a set of n orthogonal eigenvectors of M (including those with zero eigenvalues)

Rayleigh Quotient

- \square Consider an $n \times n$ real symmetric M
- \square $M = Q\Lambda Q^T$, where Λ is diagonal, and Q is the eigenbasis of M
- □ Denote the eigenvalues $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$.
 - Then, for all unit vector u

Min-max Theorem

$$\max_{\|u\|=1} \frac{u^{\mathrm{T}} M u}{u^{\mathrm{T}} u} = \lambda_1$$

Similarly, λ_n is the minimum of the Rayleigh Quotient

 \square And for all orthogonal matrix P and $k \le n$

$$\max_{P \in \mathbb{R}^{k \times n}, P^{\mathsf{T}}P = I} \operatorname{tr}(P^{\mathsf{T}}MP) = \lambda_1 + \dots + \lambda_k$$

Similarly,
$$\min_{P \in \mathbb{R}^{k \times n}, P^{\mathrm{T}}P = I} \operatorname{tr}(P^{\mathrm{T}}MP) = \lambda_{n-k+1} + \dots + \lambda_n$$

Eigendecomposition applications

- Matrix inverse
- Matrix approximation
- Matrix factorization
 - Multidimensional Scaling
- Minimization or maximization through the Rayleigh Quotient
 - PCA
 - Max of covariance matrix
 - Spectral clustering
 - Min of graph Laplacian

Singular Value Decomposition

- Any matrix can be singular value decomposed
- \square $M = U\Sigma V^*$
 - lacksquare M is $m \times n$ matrix
 - lacksquare U is an $m \times m$ unitary (orthogonal) matrix
 - lacksquare Σ is an $m \times n$ diagonal matrix
 - lacksquare V is an $n \times n$ unitary matrix
- \square For a real $M, V^* = V^{\mathrm{T}}$ (and $U = U^{\mathrm{T}}$) hence $M = U\Sigma V^{\mathrm{T}}$

SVD applications

- Solving linear equations
- □ Linear regression
- Pseudoinverse
- Kabsch algorithm
- Matrix approximation
- As a eigendecomposition (see next slide)

SVD and eigendecomposition

- □ SVD is a eigendecomposition but not of *M*
 - Given an SVD of $M = U\Sigma V^*$
 - Then, clearly
 - $\square M^*M = V\Sigma^*U^*U\Sigma V^* = V(\Sigma^*\Sigma)V^*$
 - $\square MM^* = U\Sigma V^*V\Sigma^*U^* = U(\Sigma^*\Sigma)U^*$
 - Hence V is the eigenbasis of M^*M and U is the eigenbasis of MM^* respectively
 - That is, *U* and *V* are eigenbases of the squared matrices of *M*
 - However the eigenbasis of M*M and MM* are in general not the eigenbasis of M