# Филогенетические деревья



## Пример





http://epidemic.bio.ed.ac.uk/how\_to\_read\_a\_phylogeny





## Пример



#### Гипотеза молекулярных часов

мутации во всех ветвях дерева накапливаются с одинаковой скоростью => общий предок будет равноудален от каждого из листьев

#### **Ultrametricity**

All tips are an equal distance from the root.



#### **Additivity**

Distance between any two tips equals the total branch length between them.



#### **WPGMA**

- weighted pair group method with arithmetic mean
- строит укорененное ультраметрическое дерево
- жадно выбирает две ближайшие вершины и объединяет их в новый кластер
- новое расстояние среднее арифметическое двух старых

$$d_{(i\cup j),k} = \frac{d_{i,k} + d_{j,k}}{2}$$

#### **WPGMA**

|   | а  | b  | C  | d  | е  |
|---|----|----|----|----|----|
| а | 0  | 17 | 21 | 31 | 23 |
| b | 17 | 0  | 30 | 34 | 21 |
| С | 21 | 30 | 0  | 28 | 39 |
| d | 31 | 34 | 28 | 0  | 43 |
| е | 23 | 21 | 39 | 43 | 0  |

|   |      | (a,b) | C    | d    | е  |
|---|------|-------|------|------|----|
| ( | a,b) | 0     | 25.5 | 32.5 | 22 |
|   | С    | 25.5  | 0    | 28   | 39 |
|   | d    | 32.5  | 28   | 0    | 43 |
|   | е    | 22    | 39   | 43   | 0  |

|           | ((a,b),e) | С     | d     |
|-----------|-----------|-------|-------|
| ((a,b),e) | 0         | 32.25 | 37.75 |
| C         | 32.25     | 0     | 28    |
| d         | 37.75     | 28    | 0     |

|           | ((a,b),e) | (c,d) |
|-----------|-----------|-------|
| ((a,b),e) | 0         | 35    |
| (c,d)     | 35        | 0     |



#### **UPGMA**

- unweighted pair group method with arithmetic mean
- строит укорененное ультраметрическое дерево
- жадно выбирает две ближайшие вершины и объединяет их в новый кластер
- новое расстояние учитывает размер объединяемых кластеров

$$d_{(A \cup B),k} = \frac{|A| \cdot d_{A,k} + |B| \cdot d_{B,k}}{|A| + |B|}$$

## **UPGMA**

|   | а  | b  | С  | d  | е  |
|---|----|----|----|----|----|
| а | 0  | 17 | 21 | 31 | 23 |
| b | 17 | 0  | 30 | 34 | 21 |
| С | 21 | 30 | 0  | 28 | 39 |
| d | 31 | 34 | 28 | 0  | 43 |
| е | 23 | 21 | 39 | 43 | 0  |

|       | (a,b) | C    | d    | е  |
|-------|-------|------|------|----|
| (a,b) | 0     | 25.5 | 32.5 | 22 |
| C     | 25.5  | 0    | 28   | 39 |
| d     | 32.5  | 28   | 0    | 43 |
| е     | 22    | 39   | 43   | 0  |

|           | ((a,b),e) | С  | d  |
|-----------|-----------|----|----|
| ((a,b),e) | 0         | 30 | 36 |
| С         | 30        | 0  | 28 |
| d         | 36        | 28 | 0  |

|           | ((a,b),e) | (c,d) |
|-----------|-----------|-------|
| ((a,b),e) | 0         | 33    |
| (c,d)     | 33        | 0     |



### Neighbor joining

- метод ближайших соседей
- требует выполнения аддитивности
- если гипотеза не работает
- выбираем пару, которая еще и далека от остальных
- результат неукоренённое дерево



## Neighbor joining

1. Рассмотрим все пары и выберем ту, для которой  $\min(D(A,B)-M(A)-M(B))$ 



Расстояние из матрицы

Суммарное расстояние от вершины до всех остальных

2. Объединяем (A, B) = U. Пересчитываем расстояния по формулам:

$$D(U, A) = 0.5 \cdot (D(A, B) + M(A) - M(B))$$
  

$$D(U, B) = 0.5 \cdot (D(A, B) + M(B) - M(A))$$
  

$$D(U, X) = 0.5 \cdot (D(A, X) + D(B, X) - D(A, B))$$

## Neighbor joining

|   | а | b  | С  | d  | е |
|---|---|----|----|----|---|
| а | 0 | 5  | 9  | 9  | 8 |
| b | 5 | 0  | 10 | 10 | 9 |
| С | 9 | 10 | 0  | 8  | 7 |
| d | 9 | 10 | 8  | 0  | 3 |
| е | 8 | 9  | 7  | 3  | 0 |

|   | * |   |   |   |
|---|---|---|---|---|
|   | u | С | d | е |
| u | 0 | 7 | 7 | 6 |
| С | 7 | 0 | 8 | 7 |
| d | 7 | 8 | 0 | 3 |
| е | 6 | 7 | 3 | 0 |

|   | ٧ | d | е |  |
|---|---|---|---|--|
| v | 0 | 4 | 3 |  |
| d | 4 | 0 | 3 |  |
| е | 3 | 3 | 0 |  |



#### **Newick format**



Newick: (A:0.1, (B:0.2, (C:0.3, D:0.4) 100:0.5) 95:0.55);