# Lecture 2

**Asymptotic Notations** 

#### Big--Oh: English Definition

• Let T(n) = function on n = 1,2,3,... [usually, the worst--case running time of an algorithm]

Q: When is T(n) = O(f(n))?

A: if eventually (for all sufficiently large n), T(n) is bounded above by a constant multiple of f(n)

#### Big O Notation

 The running time grows at most this much, but it could grow more slowly

• If a running time is O(f(n)), then for large enough n the running time is at most  $k \cdot f(n)$  for some constant k.

 We use big-O notation for asymptotic upper bounds, since it bounds the growth of the running time from above for large enough input sizes.

#### Big O Notation

T(n) = O(f(n)) if an only if there exist constants k and  $n_0$  such that T(n) < k.f(n) for all



#### Theta Notation Θ(n)

• Once n gets large enough, the running time is at least  $k_1$ .n and at most  $k_2$ ·n for some constants  $k_1$  and  $k_2$ 

# Theta Notation $\Theta(n)$

 $T(n) = \Theta(f(n))$  if an only if there exist constants  $k_1$ ,  $k_2$  and  $n_0$  such that  $k_1$ .  $f(n) \le T(n) \le k_2$ . f(n) for all  $n > n_0$ 



# Theta Notation Θ(n)



#### Theta Notation Θ(n)

- asymptotically tight bound on the running time.
- "Asymptotically" because it matters for only large values of n
- "Tight bound" because we've nailed the running time to within a constant factor above and below.

#### Big- $\Omega$ (Big-Omega) notation

 $T(n) = \Omega(f(n))$  if an only if there exist constants k and  $n_0$  such that  $T(n) \ge k.f(n)$  for all  $n > n_0$ 





- Chicken grows slower than turkey, or chicken size is in O(turkey size).
   What it really means:
- Baby chicken might be larger than baby turkey at the beginning.
- But after certain "breakpoint", the chicken size will be surpassed by the turkey size.
- From the **breakpoint on**, the chicken size will **always** be smaller than the turkey size.

#### Definition of big-Oh

Function f(n) = O(g(n)) ("f is big oh of g") iff

- (i) There is some positive  $n_0 \in N$
- (ii) There is some positive  $c \in R$

such that

$$\forall n \geq n_0, f(n) \leq cg(n)$$

Beyond the **breakpoint**  $n_0$ , f(n) is **upper-bounded** by cg(n), where c is some wisely chosen constant multiplier.



#### Asymptotic Notations

- Big-Oh, Big-Omega, Big-Theta4
- O(f(n)): The set of functions that grows no faster than f(n)
  - asymptotic upper-bound on growth rate
- $\Omega(f(n))$ : The set of functions that grows no slower than f(n)
  - asymptotic lower-bound on growth rate
- O(f(n)): The set of functions that grows no faster and no slower than f(n)
  - asymptotic tight-bound on growth rate

#### Asymptotic Notations

- All three (Omega, O, Theta) give only asymptotic information ("for large input"):
  - Big O gives upper bound
  - Big Omega gives lower bound and
  - Big Theta gives both lower and upper bounds
- Note that this notation is **not** related to the best, worst and average cases analysis of algorithms. Each one of these can be applied to each analysis.

# Knowing the definition, now we can write proofs for big-Oh. The key is finding n₀ and c

Asymptotic Analysis
Big--Oh: Basic Examples

Let  $T(n) = \frac{1}{2}n^2 + 3n$ Which of the following statements are true? Check all that apply.

- a) T(n) = O(n)
- b)  $T(n) = \Omega(n)$
- c)  $T(n) = \Theta(n^2)$
- d)  $T(n) = O(n^3)$

Let  $T(n) = \frac{1}{2}n^2 + 3n$ . Which of the following statements are true? Check all that apply.

- a) T(n) = O(n)
- b)  $T(n) = \Omega(n)$ ,  $[n_0 = 1, c = 1/2]$
- c)  $T(n) = \Theta(n^2)$ ,  $[n_0 = 1, c_1 = 1/2, c_2 = 4]$
- d)  $T(n) = O(n^3)$ ,  $[n_0 = 1, c = 4]$

#### b, c, d are correct

Let  $T(n) = \frac{1}{2}n^2 + 3n$ . Which of the following statements are true?

(a) 
$$T(n) = O(n)$$

$$\frac{1}{2}n^2 + 3n \le c.n$$

 $\frac{1}{2}n+3 \le c$  which is not possible because input n cannot be bounded above by a constant (input can be of any length)

So (a) is not correct

Let  $T(n) = \frac{1}{2}n^2 + 3n$ . Which of the following statements are true?

(b) 
$$T(n) = \Omega(n)$$

$$\frac{1}{2}n^2 + 3n \ge c.n$$
 
$$\frac{1}{2}n + 3 \ge c \text{ This holds for c = 1/2 and } n \ge n_0 \text{ , } n_0 = 1$$

Let  $T(n) = \frac{1}{2}n^2 + 3n$ . Which of the following statements are true?

(c) 
$$T(n) = \Theta(n^2)$$

$$c_1n \leq \frac{1}{2}n^2 + 3n \leq c_2n$$
 
$$c_1 \leq \frac{1}{2}n + 3 \leq c_2 \text{ This holds for } c_1 = 1/2 \text{ , } c_2 = 4 \text{ and } n \geq n_0 \text{ , } n_0 = 1$$

Which of the following is correct?

- a)  $\log_2 n$  is  $\Theta(\log_8 n)$
- b)  $\log_2 n$  is O  $(\log_8 n)$
- c)  $\log_2 n$  is  $\Omega$  ( $\log_8 n$ )

$$\log_8 n = \log_2 n / \log_2 8 = \frac{\log_2 n}{3}$$

#### Change-of-Base Formula:

$$\log_b(x) = rac{\log_d(x)}{\log_d(b)}$$

Which of the following is correct?

a)  $\log_2 n$  is  $\Theta (\log_8 n)$ 

$$c_1 \log_8 n \le \log_2 n \le c_2 \log_8 n$$

$$c_1 \frac{\log_2 n}{3} \le \log_2 n \le c_2 \frac{\log_2 n}{3}$$

$$\frac{c_1}{3} \le 1 \le \frac{c_2}{3}$$

It holds for  $c_1 = 2$  and  $c_2 = 4$ 

Which of the following is correct?

- a)  $\log_2 n$  is  $\Theta (\log_8 n)$
- b)  $\log_2 n$  is O  $(\log_8 n)$
- c)  $\log_2 n$  is  $\Omega$  ( $\log_8 n$ )

a, b, c are correct

Which of the following is correct?

- a)  $n^3 \log_2 n$  is  $\Theta$  ( $3n \log_8 n$ )
- b)  $n^3 \log_2 n$  is O  $(3n \log_8 n)$
- c)  $n^3 \log_2 n$  is  $\Omega$  (3 $n \log_8 n$ )

Which of the following is correct?

- a)  $n^3 \log_2 n$  is  $\Theta$  ( $3n \log_8 n$ )
- b)  $n^3 \log_2 n$  is O  $(3n \log_8 n)$
- c)  $n^3 \log_2 n$  is  $\Omega$  (3 $n \log_8 n$ )

C is correct

Which of the following is correct?

- a)  $8^n$  is  $\Theta(4^n)$
- b)  $8^n$  is O  $(4^n)$
- c)  $8^n$  is  $\Omega(4^n)$

Which of the following is correct?

- a)  $8^n$  is  $\Theta(4^n)$
- b)  $8^n$  is O  $(4^n)$
- c)  $8^n$  is  $\Omega(4^n)$

(b) 
$$8^n = 2^{3n} = 2^{2n+n}$$
  
 $2^{2n+n} \le c2^{2n}$   
 $2^{2n}2^n \le c2^{2n}$   
 $2^n \le c$ 

Which is a contradiction

Option c is correct for constant c = 1 and  $n_0$  =1  $2^n \ge c$ 

Claim 
$$2^{n+10} = O(2^n)$$

**Proof:** we need to pick constants c,  $n_0$  such that

$$2^{n+10} \le c.2^n$$
  $n \ge n_0$   
Note  $2^{n+10} = 2^n \times 2^{10} = 2^n \times 1024$   
So if we choose  $n_0$ = 1, c = 1024, claim holds

Claim 
$$2^{10n} \neq 0 \ (2^n)$$

**Proof:** By contradiction. If  $2^{10n} = O(2^n)$  then there exist constants  $c, n_0 > 0$  such that

$$2^{10n} \le c. 2^n$$
  $n \ge n_0$ 

But then cancelling  $2^n$ 
 $2^{9n} \le c$   $\forall n \ge n_0$ 

Which is certainly false

Prove T(n) = 
$$2n^3 - 7n + 1 = \Omega(n^3)$$

$$2n^3 - 7n + 1 \ge kn^3$$

$$2 - 7/n^2 + 1/n^3 \ge k$$

The above inequality does not hold for  $n_0 = 1$  and 2 as L.H.S becomes negative and k has to be positive

Lets try  $n_0 = 3$  and k = 1

$$2 - 7/9 + 1/27 \ge 1$$
, this is true

What happens when n gets large?

When n gets large  $7/n^2$  will become small and the L.H.S will become greater so the inequality holds for  $n \ge n_0$ , where  $n_0 = 3$ 

#### Example 7 (Alternative Solution)

Prove T(n) = 
$$2n^3 - 7n + 1 = \Omega(n^3)$$

$$2n^{3} - 7n + 1$$

$$= n^{3} + (n^{3} - 7n) + 1$$

$$\geq n^{3} + 1 \qquad \text{for } n \geq 3 \text{ since } n^{3} - 7n \text{ is positive for } n \geq 3$$

$$\geq n^{3}$$

$$= k n^{3} \text{ for } k = 1$$

We can conclude that  $2n^3 - 7n + 1 \ge kn^3$  for k = 1 and  $n_0 = 3$ , where  $n \ge n_0$ 

Prove T(n) = 
$$2n^3 - 7n + 1 = O(n^3)$$

$$2n^3 - 7n + 1 \le kn^3$$

Let k = 2

$$2n^3 - 7n + 1 \le 2n^3$$

 $n_0 = 1, k = 2$  since 7n will be greater than 1 for  $n \ge 1$