Research Article

Expediting H₂ Evolution over MAPbI₃ with a Nonnoble Metal Cocatalyst Mo₂C under Visible Light

Jinxing Yu and Xiaoxiang Xu

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China

Correspondence should be addressed to Xiaoxiang Xu; xxxu@tongji.edu.cn

Received 12 March 2022; Accepted 7 May 2022; Published 28 May 2022

Copyright © 2022 Jinxing Yu and Xiaoxiang Xu. Exclusive Licensee Beijing Institute of Technology Press. Distributed under a Creative Commons Attribution License (CC BY 4.0).

Halide perovskites have been emerging as promising photocatalytic materials for H_2 evolution from water due to their outstanding photoelectric properties. However, the lack of proper surface reactive sites greatly hinders the photocatalytic potential of these fascinating compounds. Here, Mo_2C nanoparticles have been anchored onto methylammonium lead iodide (MAPbI₃) as a nonnoble metal cocatalyst to promote H_2 evolution reactions. The Mo_2C nanoparticles have opposite zeta potential with MAPbI₃ thereby electrostatically assembled onto the MAPbI₃ surface, i.e., $Mo_2C@MAPbI_3$. Our results show that the anchored Mo_2C nanoparticles have a strong interplay with MAPbI₃ substrate so that photogenerated electrons of MAPbI₃ can be rapidly separated and transferred into Mo_2C for further H_2 evolution reactions. Under optimal conditions, $Mo_2C@MAPbI_3$ delivers exceptionally high photocatalytic performance for visible light-driven H_2 evolution that clearly outperforms pristine MAPbI₃ and Pt-deposited MAPbI₃. An apparent quantum efficiency as high as 12.65% at 600 ± 40 nm has been attained for H_2 evolution, surpassing most of the MAPbI₃-based photocatalyst reported. These results signify the usefulness and applicability of Mo_2C as a new nonnoble metal-based cocatalyst in solar water splitting.

1. Introduction

Hydrogen is an ideal substitute for traditional fossil fuels because of its zero-carbon emissions and high energy density [1, 2]. Photocatalytic water splitting has been considered as a promising route to store solar energy into hydrogen energy [3]. Ever since photocatalysis over TiO₂ was reported [4], numerous photocatalysts have been explored for H₂ production from water, including SrTiO₃ [5], ZnIn₂S₄ [6], g-C₃N₄ [7], MOFs [8], and COFs [9] [10-16]. Recently, halide perovskites with chemical formula ABX₃ (A = Cs or organic cation, $B = Pb^{2+}$ or Sn^{2+} , and $X = Cl^{-}$, Br^{-} , or l^{-}) have gained great interest as photocatalysts for H2 evolution reactions [17, 18]. This has been ascribed to their superior visible light absorption and high charge mobility which are strongly desired for photocatalytic reactions [19, 20]. The latter is extremely useful to inhibit charge recombination which is commonly encountered by conventional semiconductors. Although halide perovskites own many promising photoelectric properties, they are normally deficient in surface reactive sites where photocarriers cannot be promptly transferred for surface redox reactions [21]. In addition, the extremely acidic environment that needed to stabilize halide perovskites in an aqueous solution restrains the choices of H₂ evolution cocatalyst that can be deposited. In this regard, the noble metal cocatalyst Pt has been introduced to promote H₂ evolution reactions but is still unsatisfactory probably due to the poor Pt/halide perovskite interfaces. Lately, some nonnoble metal-based cocatalysts have gained serious attention as alternatives to noble metal cocatalyst such as NiCoB [22], MoC [23], Ni₃C [24], MoS₂ [25, 26], BP [27], and CoP [28]. However, their connections with halide perovskites are generally very weak due to structural mismatch thereby preventing fast charge collections from halide perovskites to these cocatalysts.

 Mo_2C , a promising low-cost electrocatalyst for H_2 evolution reaction, exhibits excellent electrocatalytic activity over a wide pH range thereby serving as a potential candidate cocatalyst for photocatalytic H_2 evolution [29–31]. More importantly, Mo_2C is one of the few compounds that are stable in strong acids, rendering it an excellent alternative cocatalyst

for halide perovskites which are stabilized in strong acid during photocatalytic reactions, e.g., HBr and HI aqueous solution [32–36].

Here, take methylammonium lead iodide (MAPbI₃) as an example; we deposit Mo₂C onto MAPbI₃ as a nonnoble metal cocatalyst for photocatalytic water reduction into H₂. The opposite zeta potentials between Mo₂C and MAPbI₃ ensure firm interconnections between these two materials that favor fast charge dissociation and transfer. It is shown that the photocatalytic activities of MAPbI₃ are significantly boosted upon deposition of Mo₂C nanoparticles with an optimal H₂ evolution rate as high as 1.05 mmol h⁻¹ g⁻¹, being almost 66 times higher than pristine MAPbI₃.

2. Experimental

2.1. Material Synthesis. Synthesis of Mo₂C NPs: 1.0000 g of (NH₄)₆Mo₇O₂₄·4H₂O (Aladdin, 99.0%) and 2.9154 g of glucose (Aladdin, 99.5%) were dispersed into deionized water (c.a. 80 mL) under magnetic stirring. The so-formed admixtures were sealed into a stainless autoclave (Teflon-lined, 100 mL) for hydrothermal reaction at 453 K for 12 h. A solid power precursor can be collected after centrifugation and dried in a vacuum oven. The precursor was then calcined in 5% H₂/Ar at 1123 K for 3 h. The resultant product was rinsed with deionized water and desiccated for further analysis.

Synthesis of MAPbI $_3$ and MAPbI $_3$ -saturated HI/H $_3$ PO $_2$ solution: 4.6146 g PbI $_2$ (Aladdin, 99.9%) was dissolved in 25 mL HI/H $_3$ PO $_2$ (volume ratio = 4 : 1) aqueous solution. After being heated to 373 K, 1.6221 g MAI (Aladdin, 98%) was added. The so-formed solution was cooled naturally to ambient temperature as a saturation solution for MAPbI $_3$. Black MAPbI $_3$ precipitates appeared gradually and were centrifuged and dried in a vacuum oven overnight. The saturation solution was stored for further use.

Synthesis of Mo₂C@MAPbI₃ composites: the Mo₂C@MAPbI₃ composites were prepared by electrostatic self-assembling: in brief, 100 mg of MAPbI₃ and proper amounts of Mo₂C NPs (5, 10, 15, 20, and 25 mg) were added into 10 mL MAPbI₃-saturated HI/H₃PO₂ solution, respectively. The so-formed suspensions were heated to 373 K under magnetic stirring for 30 min and cooled naturally. The precipitants obtained were denoted according to the amounts of Mo₂C relative to MAPbI₃ as 5% Mo₂C@MAPbI₃, 10% Mo₂C@MAPbI₃, 15% Mo₂C@MAPbI₃, 20% Mo₂C@MAPbI₃, and 25% Mo₂C@MAPbI₃, respectively.

ynthesis of Pt/MAPbI₃: appropriate amounts of H_2PtCl_6 and $20\,\text{mg}$ MAPbI₃ were added into the MAPbI₃-saturated HI/H₃PO₂ solution under magnetic stirring. The suspensions were subsequently irradiated under visible light illumination (Perfect Light, PLX-SXE300, $\lambda \geq 420\,\text{nm}$) for 30 min. The precipitants were centrifuged and collected for further analysis.

2.2. Material Characterization. All sample powders were analyzed by X-ray powder diffraction (XRD) techniques (Bruker D8 Focus diffractometer) for phase identifications. The morphologies of sample particles were inspected using a field-emission scanning electron microscope (FE-SEM, Hitachi S4800) and transmission electron microscope

(TEM, JEOL JEM-2100). UV-vis diffuse reflectance spectra of sample powders were acquired using a UV-vis spectrophotometer (JASCO-V750). Photoluminescence (PL) spectra were acquired on a Hitachi F-7000 fluorescence spectrometer (excitation wavelength: 520 nm). X-ray photoelectron spectroscopy (XPS) data was collected on Thermo Escalab 250. Brunauer-Emmett-Teller (BET) surface areas were analyzed using TriStar 3020. Zeta potentials were measured with a Litesizer 500 Particle Analyzer.

2.3. Photocatalytic Activity. The photocatalytic hydrogen evolution reactions of prepared samples were assessed in a Labsolar-6A system (Perfect Light, China) at 293 K. Typically, 20 mg as-prepared catalyst was dispersed in 20 mL MAPbI₃-saturated HI/H₃PO₂ solution. The suspensions were sealed and evacuated (100 Pa) for 60 minutes before light illumination. A 300 W Xenon lamp coupled with a UV cutoff filter ($\lambda \ge 420$ nm) (Perfect Light, PLX-SXE300) was used as a light source. The gas evolution during photocatalytic reaction was monitored by an online gas chromatograph (TECHCOMP, GC7900). The carrier gas is ultrapure Ar (99.999%). The photon flux of the light source was analyzed by a quantum meter (Apogee MP-300) for the determination of the apparent quantum efficiency (AQE) according to the following equation:

$$AQE = \frac{2 \times \text{mol of hydrogen production per hour}}{\text{moles of photon flux per hour}} \times 100\%.$$
(1)

2.4. Photoelectrochemical Measurements. Photoelectrodes of MAPbI₃ and 10% Mo₂C@MAPbI₃ were prepared by a dropcasting method [24]. 10 mg of catalysts was dispersed into 10 mL absolute diethyl ether under magnetic stirring to form suspensions. The suspensions were then dropped onto fluorine-doped tin oxide (FTO) glass and dried naturally. The deposited FTO glass was calcined at 353 K for 30 min under N₂ atmosphere to improve the adhesion between sample powders and glass. The so-formed electrode was used as the working electrode. Photoelectrochemical (PEC) measurements were carried out in a three-electrode configuration which was controlled by a Zahner electrochemical workstation. The counter and reference electrodes were Pt foil and Ag/AgCl electrodes, respectively. MAPbI₃-saturated aqueous HI/H₃PO₂ solution was used as the electrolyte which was degassed with nitrogen atmosphere for 30 min before the use. The light source was the same as photocatalytic experiment.

3. Results and Discussion

3.1. Phase Compositions. The as-prepared Mo₂C, MAPbI₃, and Mo₂C@MAPbI₃ powders were analyzed by XRD as shown in Figure 1(a). The as-prepared Mo₂C and MAPbI₃ powders have identical XRD patterns with those of standard ones, indicating the successful formation of single-phase compounds [26, 33]. The Mo₂C@MAPbI₃ powders contain both reflections from Mo₂C and MAPbI₃, suggesting the coexistence of both compounds. For instance, the main reflection of Mo₂C around 39° can be easily identified for Mo₂C@MAPbI₃ powders whose intensity monotonically increased with the amounts of Mo₂C

FIGURE 1: (a) XRD patterns of the synthesized Mo₂C, MAPbI₃, and Mo₂C@MAPbI₃ composites. (b) Zeta potentials of MAPbI₃ and Mo₂C.

introduced. The facile formation of Mo₂C@MAPbI₃ composites can be rationalized by the opposite zeta potentials of Mo₂C and MAPbI₃ [37], as shown in Figure 1(b). The strong coulombic force between Mo₂C and MAPbI₃ would enable firm interconnections among their particles which are further investigated by microscopic analysis.

3.2. Microstructures. The FE-SEM images of Mo₂C, MAPbI₃, and Mo₂C@MAPbI₃ are displayed in Figure S1, Figure S2, and Figure 2. As shown in Figure S1, the as-prepared Mo₂C comprises spherical nanoparticles with a size of about 50 nm. The pristine MAPbI₃, however, is composed of bulky particles of 10~20 micrometers with a smooth surface (Figure S2). Further loading Mo₂C onto MAPbI₃ results in intriguing microstructures where small Mo₂C granules adhere tightly to the surface of MAPbI₃ (Figures 2(a) and 2(b)). The dispersion of Mo₂C at the surface of MAPbI₃ is homogeneous as indicated by EDS elemental mapping analysis (Figure 2(c)). These observations are fully consistent with previous deductions that there are strong interconnections between Mo₂C and MAPbI₃. Such a strong interplay is highly beneficial for charge migration across the interfaces and highly desired for photocatalytic reactions [38, 39]. The corresponding EDS spectra of 10% Mo₂C@MAPbI₃ composites are shown in Figure S3 in which the content of Pb, I, and Mo is consistent with nominal compositions (Table S1). The Mo₂C@MAPbI₃ composites were further inspected under TEM conditions. Figure S4a illustrates the TEM image of the 10% Mo₂C@MAPbI₃ composites. Unlike MAPbI₃ which normally has a smooth surface, 10% Mo₂C@MAPbI₃ clearly has small nanoparticles on its surfaces. HRTEM image suggests that these nanoparticles belong to Mo₂C according to the lattice fringe of 0.228 nm, which correspond well with the (101) planes of hexagonal Mo₂C (Figure S4b) [40]. It is worth noting that Mo₂C nanoparticles attached to MAPbI₃ in a face-to-face manner, confirming the strong linkage between Mo₂C and MAPbI₃ [41, 42]. Thereby, we have successfully fabricated Mo₂C@MAPbI₃ composites with intimate contact between different moieties. As a result, the specific surface area of $Mo_2C@MAPbI_3$ composites is much higher than that of pristine $MAPbI_3$ (0.1 m²/g) due to the presence of Mo_2C nanoparticles with high specific surface area (12.11 m²/g) (Figure S5, Table S2) [43].

3.3. UV-vis DRS Spectra. The light absorption properties of pristine Mo₂C, MAPbI₃, and Mo₂C@MAPbI₃ composites were further studied by the UV-vis diffuse reflectance spectra (UV-vis DRS). As shown in Figure 3, bare Mo₂C nanoparticles demonstrate excellent light absorption capacity from 200 to 900 nm, being consistent with the black color of Mo₂C [44]. MAPbI₃ also maintains significant visible light absorption with a sharp absorption edge approaching 840 nm. Thanks to the optical properties of Mo₂C and MAPbI₃, Mo₂C@MAPbI₃ composites all have intense absorption in the visible light region (400 nm~800 nm). Their absorption tails above 850 nm increase along with the content of Mo₂C in the samples, as frequently observed in semiconductor composites [45].

3.4. XPS Spectra. To further explore the interplay between Mo₂C and MAPbI₃, the surface state of Mo₂C@MAPbI₃ composites was investigated by XPS technique and was compared with pristine Mo₂C and MAPbI₃. Figure 4(a) shows the survey scan of all samples in which signals of constituent elements of I, Pb, Mo, and C can be clearly identified. The Pb 4f state of pristine MAPbI₃ contains two peaks around $142.34\,\mathrm{eV}$ and $137.44\,\mathrm{eV}$, corresponding to Pb $4f_{5/2}$ and Pb $4f_{7/2}$ state of Pb²⁺ species, respectively (Figure 4(b)) [46]. These peaks, however, are clearly shifted to higher binding energy when attaching Mo₂C to MAPbI₃, suggesting MAPbI₃ loses electron after Mo₂C anchorage. A similar phenomenon is also observed in the I 3d state where spin-orbital pair of I species blue shifts approximately 0.31 eV after the formation of Mo₂C@MAPbI₃ composites (Figure 4(c)). In contrast, the Mo 3d state of Mo₂C@MAPbI₃ composites red shifts about 0.45 eV compared with pristine Mo₂C (Figure 4(d)). These results consistently suggest that there

FIGURE 2: (a, b) SEM images of 10% Mo₂C@MAPbI₃. (c) The corresponding EDS elemental mapping of 10% Mo₂C@MAPbI₃.

Figure 3: UV-vis DRS spectra of Mo_2C , $MAPbI_3$, and $Mo_2C@MAPbI_3$ composites.

are strong interconnections between Mo₂C and MAPbI₃, and Mo₂C can accept electrons from MAPbI₃ [47]. It is noteworthy that the Mo 3d state contains two distinct spin-orbital pairs. The pair at a higher binding energy side, i.e., 233.04 and 235.95 eV, is assignable to Mo 3d_{5/2} and Mo 3d_{3/2} states of Mo⁶⁺ in MoO₃ while the one at the lower binding energy side belongs to Mo²⁺ of Mo₂C. These results imply that Mo₂C is slightly oxidized at the surface which is also noticed in the previous reports [48, 49].

3.5. Photocatalytic Properties. The photocatalytic activity of as-prepared samples was evaluated by comparing their H₂ evolution in MAPbI₃-saturated HI/H₃PO₂ solution under visible light illumination ($\lambda \ge 420 \text{ nm}$). The system for the experiments was examined first by removing one of the following components including photocatalyst, light, and water during photocatalytic experiments. No H2 signal can be detected under these circumstances; therefore, the system is free of spontaneous H₂ evolution reactions. However, H₂ evolution was recorded upon illuminating sample powders with MAPbI₃-saturated HI/H₃PO₂ solution, affirming true photocatalytic processes. The H₂ evolution of all samples as a function of illumination time is summarized in Figure 5(a). Pristine MAPbI₃ is characterized by a poor H₂ evolution activity and produces only 40.14 µmol/g H₂ for 2.5 h. This can be rationalized by the lack of proper surface reaction sites so that photogenerated electrons cannot be promptly transferred at the surface for water reduction reactions [50]. Strikingly, H₂ evolution is considerably boosted when Mo₂C nanoparticles are loaded onto MAPbI₃. Among all Mo₂C@MAPbI₃ composites, 10% Mo₂C@MAPbI₃ exhibited the highest H_2 evolution activity (1054 μ mol g⁻¹ h⁻¹), nearly 66-fold higher than that of pristine MAPbI₃ $(16 \,\mu\text{mol g}^{-1}\,\text{h}^{-1})$. It is worth noting that pristine Mo₂C is completely inactive for H2 evolution under identical conditions, indicating that Mo₂C is a cocatalyst to promote water reduction reactions [51]. The average H₂ evolution rates of all samples are illustrated in Figure 5(b). A volcano-type profile can be noticed for the H₂ evolution rates vs. Mo₂C content in the Mo₂C@MAPbI₃ composites. This can be attributed to the aggregation of Mo₂C that decreases the active surface sites and/or blocks light penetration [52]. The optimal Mo₂C content is found to be 10% and is adopted for the measurement of apparent quantum efficiency (AQE). The AQE of 10% Mo₂C@MAPbI₃ is summarized in Figure 5(c). It can be seen from Figure 5(c) that

FIGURE 4: XPS spectra of Mo₂C, MAPbI₃, and 10% Mo₂C@MAPbI₃: (a) survey spectrum and high-resolution XPS spectra of (b) Pb 4f, (c) I 3d, and (d) Mo 3d.

10% Mo₂C@MAPbI₃ maintains a high AQE (>10%) at all measurement points, verifying the exceptionally high photocatalytic activity for H₂ evolution from water. On the other hand, the superior performance of Mo₂C@MAPbI₃ composites can also be realized by comparing their H₂ evolution activity with those of Pt-deposited MAPbI₃ (Figure S6). It can be seen from Figure S6 that the Pt-deposited MAPbI₃ has a much lower H₂ evolution activity than Mo₂C@MAPbI₃ even though the Pt content has been optimized. In addition, Mo₂C@MAPbI₃ composites also deliver a much better H₂ evolution activity than most of the MAPbI₃-based photocatalysts reported in the literatures as summarized in Table S3. After continuous six cycles of usage, Mo₂C@MAPbI₃ can still maintain most of its initial activity, indicative of good stability (Figure 5(d)). Besides, XRD analysis suggests that the crystal structure and the compositions of Mo₂C@MAPbI₃ composites have no discernable change before and after photocatalytic experiments, confirming again its good stability (Figure S7).

3.6. Photoluminescence Spectra and Photoelectrochemical Analysis. Given the superior photocatalytic activity of Mo₂C@MAPbI₃ composites, the charge separation conditions of MAPbI₃ in response to Mo₂C loading have been investigated. Firstly, the steady-state photoluminescence (PL) spectra of 10% Mo₂C@MAPbI₃ and MAPbI₃ have been collected. Both samples show an intense PL signal around 790 nm, corresponding to the band edge emission of radiative-type charge recombination [24]. It is clear from Figure 6(a) that this PL signal is considerably reduced when loading Mo₂C onto MAPbI₃, indicating reduced radiativetype charge recombination in the composites [53-55]. In addition, photocurrent measurements suggest that 10% Mo₂C@MAPbI₃ owns a much higher photocurrent than pristine MAPbI₃ under the same electric bias, confirming the ameliorated charge separation conditions in Mo₂C@-MAPbI₃ composites (Figure 6(b)) [56]. On the other hand, electrochemical impedance spectra (EIS) suggest that the

FIGURE 5: (a) Temporal photocatalytic hydrogen evolution of Mo_2C , $MAPbI_3$, and $Mo_2C@MAPbI_3$ composites under visible light ($\lambda \ge 420 \text{ nm}$) illumination; (b) average hydrogen production rate for different samples; (c) action spectra of 10% $Mo_2C@MAPbI_3$; (d) cycling usage of 10% $Mo_2C@MAPbI_3$ for H_2 evolution, the system was evacuated for every 2.5 h.

interfacial charge transfer resistance is significantly reduced after loading Mo₂C onto MAPbI₃, verifying the role of Mo₂C as a cocatalyst to expedite interfacial charge transfer (Figure 6(c)) [57, 58]. These results consistently suggest that Mo₂C serves as a good cocatalyst for MAPbI₃ which not only accelerates charge separation in the bulk of MAPbI₃ but also promotes interfacial charge transfer at the surface of MAPbI₃. The flat-band potential of MAPbI₃ is determined to be $-0.48\,\mathrm{V}$ (vs. NHE) via a Mott-Schottky analysis (Figure S8b) [59, 60]. Combining the bandgap value (~1.51 eV) from Tauc plot analysis of MAPbI₃ (Figure S8a), the band edge positions of MAPbI₃ can be roughly deduced. Figure 6(d)

schematically illustrates the charge migration and reaction pathways in $Mo_2C@MAPbI_3$ composites. $MAPbI_3$ can be facilely excited by visible light photons to generate electronhole pairs [61, 62]. The presence of Mo_2C at the surface of $MAPbI_3$ promotes the dissociation of electronhole pairs and collects electrons from $MAPbI_3$ [63, 64]. The spatially separated charges can then participate in the surface redox reactions, i.e., water reduction into H_2 over Mo_2C and I^- oxidation into I_3^- over $MAPbI_3$. The detailed mechanism of how charges are separated and transferred can be explored by theoretical calculations (e.g., DFT) and will be our future work.

FIGURE 6: (a) Steady-state PL spectra of 10% $Mo_2C@MAPbI_3$ and $MAPbI_3$; (b) transient photocurrent responses of 10% $Mo_2C@MAPbI_3$ and $MAPbI_3$ under visible light ($\lambda \ge 420$ nm) irradiation; (c) Nyquist plot of 10% $Mo_2C@MAPbI_3$ and $MAPbI_3$ photoelectrodes at open-circuit voltage under visible light irradiation conditions with a frequency range from $100 \, \text{kHz}$ to $0.1 \, \text{Hz}$ at $10 \, \text{mV}$, the equivalent circuit diagram is shown as inset; (d) mechanistic illustration of band alignments of $Mo_2C@MAPbI_3$.

4. Conclusions

We have successfully loaded Mo₂C nanoparticles onto MAPbI₃ by an electrostatic assembly method to fabricate Mo₂C@MAPbI₃ composites. The Mo₂C nanoparticles are homogeneously and tightly anchored at the surface of MAPbI₃. Thanks to the strong interconnections between Mo₂C and MAPbI₃, Mo₂C@MAPbI₃ composites exhibit superior photocatalytic activity for H₂ evolution from water which clearly surpasses pristine MAPbI₃ and Pt-deposited MAPbI₃ under the same testing conditions. Under optimal conditions, Mo₂C@MAPbI₃ composites achieve a high AQE for H₂ evolution (>10%) from 420 nm to 600 nm. Further analysis suggests that Mo₂C nanoparticles not only facilitate charge separation in MAPbI₃ but also substantially

expedite interfacial charge transfer for water reduction reactions. These findings justify the Mo_2C as an efficient nonnoble metal cocatalyst for halide perovskite photocatalysts that work under a highly acidic environment.

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Authors' Contributions

J.Y. conducted the experiments and analyzed the data. X.X. wrote the manuscript and supervised the project.

Acknowledgments

We are grateful for the financial support from the National Natural Science Foundation of China (Grant Nos. 51972233 and 52172225), the Natural Science Foundation of Shanghai (Grant No. 19ZR1459200), the Science and Technology Commission of Shanghai Municipality (19DZ2271500), and the Fundamental Research Funds for the Central Universities.

Supplementary Materials

SEM images of Mo_2C and $MAPbI_3$; EDX spectrum of 10% $Mo_2C@MAPbI_3$; TEM and HRTEM image of 10% $Mo_2C@MAPbI_3$; nitrogen adsorption-desorption isotherm and pore size distribution of as-prepared samples; temporal photocatalytic hydrogen evolution for $MAPbI_3$ loaded with different amounts of Pt under visible light ($\lambda \geq 420$ nm) illumination; XRD patterns of 10% $Mo_2C@MAPbI_3$ before and after the photocatalytic cyclic test; the EDS results of Mo, Pb, and I in the 10% $Mo_2C@MAPbI_3$; BET surface area of asprepared samples; the comparison of photocatalytic H_2 evolution performances over recently reported metal halide perovskite. (Supplementary Materials)

References

- [1] Y. X. Zhao, S. Zhang, R. Shi, G. I. N. Waterhouse, J. W. Tang, and T. R. Zhang, "Two-dimensional photocatalyst design: a critical review of recent experimental and computational advances," *Materials Today*, vol. 34, pp. 78–91, 2020.
- [2] Z. Zhu, C. T. Kao, B. H. Tang, W. C. Chang, and R. J. Wu, "Efficient hydrogen production by photocatalytic watersplitting using Pt-doped TiO₂ hollow spheres under visible light," *Ceramics International*, vol. 42, no. 6, pp. 6749–6754, 2016
- [3] Q. Wang, L. X. Zhang, B. Li, H. M. Zhu, and J. L. Shi, "3D interconnected nanoporous Ta₃N₅ films for photoelectro-chemical water splitting: thickness-controlled synthesis and insights into stability," *Science China Materials*, vol. 64, no. 8, pp. 1876–1888, 2021.
- [4] A. Kudo and Y. Miseki, "Heterogeneous photocatalyst materials for water splitting," *Chemical Society Reviews*, vol. 38, no. 1, pp. 253–278, 2009.
- [5] H. Nishiyama, T. Yamada, M. Nakabayashi et al., "Photocatalytic solar hydrogen production from water on a 100-m² scale," *Nature*, vol. 598, no. 7880, pp. 304–307, 2021.
- [6] G. C. Zuo, Y. T. Wang, W. L. Teo et al., "Ultrathin ZnIn2S4Nanosheets anchored on Ti₃C₂T_X MXene for photocatalytic H₂ Evolution," Angewandte Chemie International Edition, vol. 132, no. 28, pp. 11383–11388, 2020.
- [7] Y. P. Xing, X. K. Wang, S. H. Hao et al., "Recent advances in the improvement of g-C₃N₄ based photocatalytic materials," *Chinese Chemical Letters*, vol. 32, no. 1, pp. 13–20, 2021.
- [8] Y. Shi, A. F. Yang, C. S. Cao, and B. Zhao, "Applications of MOFs: recent advances in photocatalytic hydrogen production

- from water," Coordination Chemistry Reviews, vol. 390, pp. 50–75, 2019.
- [9] L. Stegbauer, K. Schwinghammer, and B. V. Lotsch, "A hydrazone-based covalent organic framework for photocatalytic hydrogen production," *Chemical Science*, vol. 5, no. 7, pp. 2789–2793, 2014.
- [10] J. Guo, Y. Wan, Y. F. Zhu, M. T. Zhao, and Z. Y. Tang, "Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites," *Nano Research*, vol. 14, no. 7, pp. 2037–2052, 2021.
- [11] J. J. Foo, S. F. Ng, and W. J. Ong, "Dimensional heterojunction design: the rising star of 2D bismuth-based nanostructured photocatalysts for solar-to-chemical conversion," *Nano Research*, pp. 1–54, 2022.
- [12] Q. Zhong, Y. Li, and G. K. Zhang, "Two-dimensional MXene-based and MXene-derived photocatalysts: recent developments and perspectives," *Chemical Engineering Journal*, vol. 409, article 128099, 2021.
- [13] S. F. Ng, J. J. Foo, and W. J. Ong, "Solar-powered chemistry: engineering low-dimensional carbon nitride-based nanostructures for selective CO₂ conversion to C₁-C₂ products," *Info*, vol. 4, article e12279, 2022.
- [14] P. Niu, J. J. Dai, X. J. Zhi, Z. H. Xia, S. L. Wang, and L. Li, "Photocatalytic overall water splitting by graphitic carbon nitride," *Info*, vol. 3, no. 9, pp. 931–961, 2021.
- [15] Z. S. Zhang, X. Ding, X. G. Yang, W. G. Tu, L. Wang, and Z. G. Zou, "Shedding light on CO₂: catalytic synthesis of solar methanol," *EcoMat*, vol. 3, no. 1, article e12078, 2021.
- [16] W. J. Zhang, D. Ma, J. Pérez-Ramírez, and Z. P. Chen, "Recent progress in materials exploration for thermocatalytic, photocatalytic, and integrated photothermocatalytic CO₂-to-fuel conversion," Advanced Energy and Sustainability Research, vol. 3, no. 2, article 2100169, 2022.
- [17] S. Park, S. Choi, S. Kim, and K. T. Nam, "Metal halide perovskites for solar fuel production and photoreactions," *Journal* of *Physical Chemistry Letters*, vol. 12, no. 34, pp. 8292–8301, 2021.
- [18] J. Q. Luo, W. W. Zhang, H. B. Yang et al., "Halide perovskite composites for photocatalysis: a mini review," *EcoMat*, vol. 3, no. 1, article e12079, 2021.
- [19] Y. X. Zhang, Y. C. Liu, Z. Yang, and S. Z. Liu, "High-quality perovskite MAPbI₃ single crystals for broad-spectrum and rapid response integrate photodetector," *Journal of Energy Chemistry*, vol. 27, no. 3, pp. 722–727, 2018.
- [20] S. Park, W. J. Chang, C. W. Lee, S. Park, H. Y. Ahn, and K. T. Nam, "Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution," *Nature Energy*, vol. 2, no. 1, pp. 1–8, 2017.
- [21] M. Y. Wang, Y. P. Zuo, J. L. Wang et al., "Remarkably enhanced hydrogen generation of organolead halide perovskites via piezocatalysis and photocatalysis," *Advanced Energy Materials*, vol. 9, no. 37, article 1901801, 2019.
- [22] L. X. Jiang, Y. M. Guo, S. P. Qi et al., "Amorphous NiCoB-coupled MAPbI₃ for efficient photocatalytic hydrogen evolution," *Dalton Transactions*, vol. 50, no. 48, pp. 17960–17966, 2021
- [23] T. T. Zhang, J. F. Yu, J. Y. Huang, S. N. Lan, Y. B. Lou, and J. X. Chen, "MoC/MAPbI₃ hybrid composites for efficient photocatalytic hydrogen evolution," *Dalton Transactions*, vol. 50, no. 31, pp. 10860–10866, 2021.

- [24] Z. J. Zhao, J. J. Wu, Y. Z. Zheng, N. Li, X. T. Li, and X. Tao, "Ni3C-decorated MAPbI₃ as visible-light photocatalyst for $\rm H_2$ evolution from HI splitting," *ACS Catalysis*, vol. 9, no. 9, pp. 8144–8152, 2019.
- [25] F. Wang, X. Y. Liu, Z. G. Zhang, and S. X. Min, "A noble-metal-free MoS2 nanosheet-coupled MAPbI₃ photocatalyst for efficient and stable visible-light-driven hydrogen evolution," *Chemical Communications*, vol. 56, no. 22, pp. 3281–3284, 2020.
- [26] W. H. Guan, Y. Li, Q. X. Zhong et al., "Fabricating MAPbI₃/ MoS₂ composites for improved photocatalytic performance," *Nano Letters*, vol. 21, no. 1, pp. 597–604, 2021.
- [27] R. Li, X. T. Li, J. J. Wu et al., "Few-layer black phosphorus-on-MAPbI₃ for superb visible- light photocatalytic hydrogen evolution from HI splitting," *Applied Catalysis B: Environmental*, vol. 259, article 118075, 2019.
- [28] C. Cai, Y. Teng, J. H. Wu et al., "In situ photosynthesis of an MAPbI₃/CoP hybrid heterojunction for efficient photocatalytic hydrogen evolution," *Advanced Functional Materials*, vol. 30, no. 35, article 2001478, 2020.
- [29] S. S. Yang, Y. W. Wang, H. J. Zhang et al., "Unique three-dimensional Mo₂₂ heterojunction nanostructure with S vacancies as outstanding all-pH range electrocatalyst for hydrogen evolution," *Journal of Catalysis*, vol. 371, pp. 20–26, 2019.
- [30] Y. Qiu, Z. L. Wen, C. R. Jiang et al., "Rational design of atomic layers of Pt anchored on Mo₂C nanorods for efficient hydrogen evolution over a wide pH range," *Small*, vol. 15, no. 14, article 1900014, 2019.
- [31] M. C. Weidman, D. V. Esposito, Y. C. Hsu, and J. G. Chen, "Comparison of electrochemical stability of transition metal carbides (WC, W₂C, Mo₂C) over a wide pH range," *Journal* of *Power Sources*, vol. 202, pp. 11–17, 2012.
- [32] D. M. Ruan, M. Fujitsuka, and T. Majima, "Exfoliated Mo₂C nanosheets hybridized on CdS with fast electron transfer for efficient photocatalytic H₂ production under visible light irradiation," *Applied Catalysis B: Environmental*, vol. 264, article 118541, 2020.
- [33] X. Z. Yue, S. S. Yi, R. W. Wang, Z. T. Zhang, and S. L. Qiu, "A novel architecture of dandelion-like Mo₂C/TiO₂heterojunction photocatalysts towards high-performance photocatalytic hydrogen production from water splitting," *Journal of Mate*rials Chemistry A, vol. 5, no. 21, pp. 10591–10598, 2017.
- [34] X. H. Ma, C. J. Ren, H. D. Li et al., "A novel noble-metal-free Mo₂C-In₂S₃ heterojunction photocatalyst with efficient charge separation for enhanced photocatalytic H₂ evolution under visible light," *Journal of Colloid and Interface Science*, vol. 582, pp. 488–495, 2021.
- [35] Z. W. Fang, D. Fernandez, N. N. Wang, Z. C. Bai, and G. H. Yu, "Mo₂C@3D ultrathin macroporous carbon realizing efficient and stable nitrogen fixation," *Science China Chemistry*, vol. 63, no. 11, pp. 1570–1577, 2020.
- [36] R. G. Ma, Y. Zhou, Y. F. Chen, P. X. Li, Q. Liu, and J. C. Wang, "Ultrafine molybdenum carbide nanoparticles composited with carbon as a highly active hydrogen-evolution electrocatalyst," *Angewandte Chemie International Editiont*, vol. 127, no. 49, pp. 14936–14940, 2015.
- [37] Y. Jiang, H. Y. Chen, J. Y. Li et al., "Z-scheme 2D/2D heterojunction of CsPbBr₃/Bi₂WO₆ for improved photocatalytic CO₂ reduction," *Advanced Functional Materials*, vol. 30, no. 50, article 2004293, 2020.

- [38] J. F. Liu, P. Wang, J. J. Fan, H. G. Yu, and J. G. Yu, "In situ synthesis of Mo₂C nanoparticles on graphene nanosheets for enhanced photocatalytic H₂-production activity of TiO₂," ACS Sustainable Chemistry & Engineering, vol. 9, no. 10, pp. 3821–3830, 2021.
- [39] L. Wang, Y. K. Li, C. Wu, X. Li, G. S. Shao, and P. Zhang, "Tracking charge transfer pathways in SrTiO₃/CoP/Mo₂C nanofibers for enhanced photocatalytic solar fuel production," *Chinese Journal of Catalysis*, vol. 43, no. 2, pp. 507– 518, 2022.
- [40] C. S. Lei, W. Zhou, Q. G. Feng et al., "Charge engineering of Mo₂C@defect-rich N-doped carbon nanosheets for efficient electrocatalytic H₂ evolution," *Nano-Micro Letters*, vol. 11, no. 1, pp. 1–10, 2019.
- [41] J. F. Wang, L. L. Zhao, M. C. Wang, and S. C. Lin, "Molecular insights into early nuclei and interfacial mismatch during vapor deposition of hybrid perovskites on titanium dioxide substrate," *Crystal Growth & Design*, vol. 17, no. 12, pp. 6201–6211, 2017.
- [42] Z. Fan, H. Xiao, Y. L. Wang et al., "Layer-by-layer degradation of methylammonium lead tri-iodide perovskite microplates," *Joule*, vol. 1, no. 3, pp. 548–562, 2017.
- [43] X. W. Shi, M. Fujitsuka, S. Kim, and T. Majima, "Faster electron injection and more active sites for efficient photocatalytic H₂ evolution in g-C₃N₄/MoS₂ hybrid," *Small*, vol. 14, no. 11, article 1703277, 2018.
- [44] X. Z. Yue, S. S. Yi, R. W. Wang, Z. T. Zhang, and S. L. Qiu, "Well-controlled SrTiO₃@Mo₂C core- shell nanofiber photocatalyst: boosted photo-generated charge carriers transportation and enhanced catalytic performance for water reduction," *Nano Energy*, vol. 47, pp. 463–473, 2018.
- [45] C. Aprile, A. Corma, and H. Garcia, "Enhancement of the photocatalytic activity of TiO₂ through spatial structuring and particle size control: from subnanometric to submillimetric length scale," *Physical Chemistry Chemical Physics*, vol. 10, no. 6, pp. 769–783, 2008.
- [46] Y. Kumar, K. C. Sanal, T. D. Perez, N. R. Mathews, and X. Mathew, "Band offset studies in MAPbI₃ perovskite solar cells using X-ray photoelectron spectroscopy," *Optical Materials*, vol. 92, pp. 425–431, 2019.
- [47] E. S. Thibau, A. Llanos, and Z. H. Lu, "Disruptive and reactive interface formation of molybdenum trioxide on organometal trihalide perovskite," *Applied Physics Letters*, vol. 110, no. 8, article 081604, 2017.
- [48] S. Jin, Z. H. Shi, H. J. Jing et al., "Mo₂C-MXene/CdS heterostructures as visible-light photocatalysts with an ultrahigh hydrogen production rate," ACS Applied Energy Materials, vol. 4, no. 11, pp. 12754–12766, 2021.
- [49] W. Cui, N. Y. Cheng, Q. Liu, C. J. Ge, A. M. Asiri, and X. P. Sun, "Mo₂C nanoparticles decorated graphitic carbon sheets: biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation," ACS Catalysis, vol. 4, no. 8, pp. 2658–2661, 2014.
- [50] H. W. Huang, B. Pradhan, J. Hofkens, M. B. J. Roeffaers, and J. A. Steele, "Solar-driven metal halide perovskite photocatalysis: design, stability, and performance," ACS Energy Letters, vol. 5, no. 4, pp. 1107–1123, 2020.
- [51] B. J. Ma, H. J. Xu, K. Y. Lin et al., "Mo₂C as non-noble metal co-catalyst in Mo₂C/CdS composite for enhanced photocatalytic H₂ evolution under visible light irradiation," *Chem-SusChem*, vol. 9, no. 8, pp. 820–824, 2016.

- [52] Y. Yang, X. B. Xu, and X. Wang, "Synthesis of Mo-based nanostructures from organic-inorganic hybrid with enhanced electrochemical for water splitting," *Science China Materials*, vol. 58, no. 10, pp. 775–784, 2015.
- [53] J. W. Fang, H. Q. Fan, Y. Ma, Z. Wang, and Q. Chang, "Surface defects control for ZnO nanorods synthesized by quenching and their anti-recombination in photocatalysis," *Applied Surface Science*, vol. 332, pp. 47–54, 2015.
- [54] B. C. Qiu, Q. H. Zhu, M. M. Du, L. G. Fan, M. Y. Xing, and J. L. Zhang, "Efficient solar light harvesting CdS/Co₉S₈ hollow cubes for Z-scheme photocatalytic water splitting," *Angewandte Chemie International Edition*, vol. 56, no. 10, pp. 2684–2688, 2017.
- [55] S. Nayak, L. Mohapatra, and K. Parida, "Visible light-driven novel g-C₃N₄/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction," *Journal of Materials Chemistry A*, vol. 3, no. 36, pp. 18622–18635, 2015.
- [56] B. Ma, J. P. Zhao, Z. H. Ge, Y. T. Chen, and Z. H. Yuan, "5 nm NiCoP nanoparticles coupled with g-C₃N₄ as highperformance photocatalyst for hydrogen evolution," *Science China Materials*, vol. 63, no. 2, pp. 258–266, 2020.
- [57] H. W. Huang, L. Y. Liu, Y. H. Zhang, and N. Tian, "One pot hydrothermal synthesis of a novel BiIO₄/Bi₂MoO₆ heterojunction photocatalyst with enhanced visible-light-driven photocatalytic activity for rhodamine B degradation and photocurrent generation," *Journal of Alloys and Compounds*, vol. 619, pp. 807–811, 2015.
- [58] D. D. Ma, J. W. Shi, L. Sun et al., "Knack behind the high performance CdS/ZnS-NiS nanocomposites: optimizing synergistic effect between cocatalyst and heterostructure for boosting hydrogen evolution," *Chemical Engineering Journal*, vol. 431, article 133446, 2022.
- [59] G. T. Sun, J. W. Shi, S. M. Mao et al., "Dodecylamine coordinated tri-arm CdS nanorod wrapped in intermittent ZnS shell for greatly improved photocatalytic H₂ evolution," *Chemical Engineering Journal*, vol. 429, article 132382, 2022.
- [60] S. M. Mao, J. W. Shi, G. T. Sun et al., "Cu (II) decorated thiolfunctionalized MOF as an efficient transfer medium of charge carriers promoting photocatalytic hydrogen evolution," *Chemical Engineering Journal*, vol. 404, article 126533, 2021.
- [61] L. L. Deng, H. J. Yang, R. H. Pan et al., "Achieving 20% photovoltaic efficiency by manganese doped methylammonium lead halide perovskites," *Journal of Energy Chemistry*, vol. 60, pp. 376–383, 2021.
- [62] Z. S. Hu, Z. H. Lin, J. Su, J. C. Zhang, J. J. Chang, and Y. Hao, "A review on energy band-gap engineering for perovskite photovoltaics," *Solar RRL*, vol. 3, no. 12, article 1900304, 2019.
- [63] M. X. Li, Y. Zhu, H. Y. Wang, C. Wang, N. Pinna, and X. F. Lu, "Ni strongly coupled with Mo₂C encapsulated in nitrogendoped carbon nanofibers as robust bifunctional catalyst for overall water splitting," *Advanced Energy Materials*, vol. 9, no. 10, article 1803185, 2019.
- [64] S. J. Li, Z. Y. Zhang, C. Xu et al., "Magnetic doping induced superconductivity-to-incommensurate density waves transition in a 2D ultrathin Cr-doped Mo₂C crystal," ACS Nano, vol. 15, no. 9, pp. 14938–14946, 2021.