[PO]MDP in practice

The tiger problem

Outcomes

State -100 + 10 + 10 -1 -1

Observations

Transitions

POMDP toolbox

- Download from
 - Official www.pomp.org http://cs.brown.edu/research/ai/pomdp/ Github https://github.com/lionel-rigoux/CPC-pomdp
- Compile the C code
- Edit the POMDP description file
- Run the executable or the helper script

POMDP solution

alpha vectors (.alpha file)

```
// action

// v_1 v_2 v_3 ...

// ...

b = [p(s=s_1) p(s=s_2) p(s=s_3) ...], sum to 1

V(action, b) = v1 p(s=s_1) + v2 p(s=s_2) + v3 p(s=s_3)
```


Some actions can have multiple alpha vectors, some none!

POMDP simulation

internalized world

T(s'|s,a), O(o|s,a), R(a,s)

real world

T(s'|s,a), O(o|s,a), R(a,s)

INITIALIZE

- a. find optimal policy
- b. pick initial belief

a. pick initial state

ITERATE

- 1. chose best action given current belief
- 5. update belief following given action,

observation and internal model

- 2. change state depending on action
- 3. get reward depending on state and action
- 4. get observation depending on state and action

POMDP summary

The toolbox allows to:

- Compute the optimal policy for a given representation of the world
- Compute the utility/value associated with beliefs and actions
- Simulate the effect of a false representation of the world on complex decision making and belief updating

It can not:

- capture how we learn the policy
- capture how representation of the world are learned
- be used to fit experimental data (infer on hidden representations)

Questions?

POMDP solution

belief MDP (.pg file)

 $p(o_{TL} | listen, TL) = 0.99$

 $p(o_{TL} | listen, TL) = 0.75$

Resolution

immediate reward

future value
$$V(b') = \sum V(b'|o)p(o|b)$$

belief value $V(b) = r(b) + \gamma V(b')$

