Searching

Organizing and retrieving information is at the heart of most computer applications

- Searching is a very frequently performed task
- Search process:
 - ☐ Abstract view: Determine if an element with a particular value is a member of a particular set
 - ☐ Common view: Try to find the record with a record collection that has a particular key value.
- Some of the techniques presented here require material from chapter 8.
 - \square Assigned reading: Chapter 8, section 8.3 and all of Chapter 9

Buffers and Buffer Pools (sec 8.3)

The general idea is to use a RAM buffer to hide latency.

- Caching or buffering: the act of storing in RAM a piece of data from a faster or slower device
 - allows the faster device to do something else while the slower device reads from or writes to the buffer
- Examples
 - ☐ CPU cache is a buffer for RAM
 - ☐ RAM is a buffer for disks of various types
 - ☐ Disk can buffer for tape
- Associated concepts:
 - ☐ **Buffer pool**: a set of multiple buffers
 - ☐ **Page**: a piece of memory large enough to fill a buffer

CSC 375-Turner, Page 2

Buffer Pools

An example is virtual memory.

- A hard disk is used to simulate a very large RAM memory
- System RAM is the buffer pool
- A page is a block of memory (usually some multiple of 512 bytes)
 - ☐ Address space of a process can be broken into multiple pages
 - ☐ At any given time, some pages may be on disk and some in RAM
 - Requesting a memory address currently on disk causes a page fault
 - \square Two options for page fault:
 - Find an "empty" page in RAM and transfer the page from disk
 - No empty pages in RAM: follow a page replacement strategy
 - ☐ Page replacement strategies:
 - o FIFO
 - LFU
 - LRU

Searching

- Formal definition:
 - \square Suppose k_1 , k_2 , ... k_n are distinct keys
 - $\ \square$ Given a collection C of n records of the form

$$(k_1, I_1), (k_2, I_2), \ldots, (k_n, I_n)$$

- \square I_j is information associated with key k_j for $1 \leq j \leq n.$
- Search problem: given key value K, locate the record (k_j, I_j) in C such that $k_j = K$
- \square **successful** search: record with $k_j=K$ is found
 - \square unsuccessful search: no record with $k_i=K$ is found
- Queries:
 - ☐ Exact-match query: search for a record whose key matches a specific key value
 - ☐ Range query: search for all records whose key values fall within a specified range

Searching Categorization

- Three general approaches
 - ☐ Sequential and list methods
 - Works well for sequences (duplicate keys allowed)
 - o Appropriate for data stored in RAM
 - ☐ Direct access by key value (hashing)
 - o Doesn't work well for sequences
 - o Works well for data on disk or in RAM
 - ☐ Tree indexing methods (chapter 10, not covered)

CSC 375-Turner, Page 5

Searching Sorted Arrays

- Sequential search
 - \square $\Theta(n)$, average and worst case
 - ☐ Unacceptable for large data sets
- Binary search
 - \square $\Theta(\log n)$, average and worst case
 - \square Works only for previously sorted data
- Dictionary search
 - □ a "computed" binary search
 - □ based on knowledge about key distribution
 - □ also called interpolation search

CSC 375-Turner, Page 6

Lists Ordered by Frequency

Instead of ordering by key value, a list may be ordered by frequency of access.

- Lists ordered by frequency: the expected frequency of occurrence determines ordering strategy
 - $\hfill \square$ A sequential search is performed
 - \circ Cost to access i^{th} record is i
 - \circ Order in decreasing order of probability: p_i is the probability that record i will be accessed
 - o That is,

$$p_1 \geq p_2 \geq \dots p_n$$
 (Note: $\sum_{i=1}^n p_i = 1$ must be true)

- The cost to access each element is (position of element) x (probability of element)
- o Then the overall expected search cost is

$$\overline{C_n} = 1p_1 + 2p_2 + \dots + np_n$$

Lists Ordered by Frequency (cont.)

- Example: all records have equal probability
 - \square $p_i = 1/n$
 - \square Then

$$\overline{C_n} = 1 \times 1/n + 2 \times 1/n + \dots + n \times 1/n$$

$$= \sum_{i=1}^{n} i/n = \frac{1}{n} \sum_{i=1}^{n} i$$

$$=\frac{1}{n}\times\frac{n(n+1)}{2}=\frac{n+1}{2}$$

- Example: exponential frequency
 - ☐ Probabilities:

$$p_i = egin{cases} 1/2^i & ext{if } 1 \leq i \leq n-1 \ \\ 1/2^{n-1} & ext{if } i = n \end{cases}$$

☐ Thus,

$$\overline{C_n} pprox \sum_{i=1}^n \frac{i}{2^i} pprox 2$$

The 80/20 Rule

Many real access patterns follow this rule of thumb.

- The 80/20 rule: 80
 - □ 80 and 20 are estimates (applications have their own values)
 - ☐ This behavior justifies caching techniques
 - ☐ When the rule applies, then reasonable search performance can be expected
- Example: Zipf distribution
 - ☐ A pattern followed by some naturally occurring distributions, including:
 - o Distribution for frequency of word usage
 - o Distribution for city populations
 - ☐ Related to the Harmonic series (chapter 2) as follows:
 - \circ Zipf frequency for item i is $1/i\mathcal{H}_n$
 - (here $\mathcal{H}_n = \sum_{i=1}^n 1/i \approx \log_e n$)
 - o Then

$$\overline{C_n} = \sum_{i=1}^n i/i\mathcal{H}_n$$

$$= n/\mathcal{H}_n$$

$$\approx n/\log_e n$$

CSC 375-Turner, Page 9

Self-Organizing Lists

This is why we studied the section on buffer pools.

- A self organizing list is a list that starts out unordered, but the access policy includes procedures to impose an order based on actual pattern of record access
 - ☐ Use rules called **heuristics** to determine how to reorder the list
 - ☐ The heuristics are similar to the buffer pool management strategies (buffer pools are like a form of self-organizing list)
 - ☐ Heuristics:
 - Count: Count the frequency of access.
 When a record is found, increment its count and move it up if the count is greater than preceding record(s)
 - Move-to-front: when a record is found, move it to the front of the list
 - Transpose: when a record is found, swap it with the record ahead of it

CSC 375-Turner, Page 10

Self-Organizing Lists, Examples

- Initial list is A, B, C, D, E, F, G, H
- Access pattern is F D F G E G F A D F G E
 - ☐ Count heuristic:
 - ☐ Move-to-front heuristic:
 - ☐ Transpose heuristic:

Self-Organizing Lists, Examples

- Application: text compression
 - ☐ Keep a table of words previously seen
 - ☐ Use the move-to-front heuristic
 - $\ \ \square$ If a word is not yet seen, then send the word
 - ☐ If a word has been seen, then send its current table index
 - ☐ Example: The car on the left hit the car I left
 - □ becomes: The car on 3 left hit 3 5 I 5
 - ☐ Similar in spirit to Ziv-Lempel coding

Searching in Sets

Determining whether a value is a member of a set is a special case of searching for keys in a sequence of records.

- Any of the prior search methods can be used
- This problem allows us to speed up the process:
 - \square **Bit vector** or **bitmap** representation: use an array of n bits corresponding to n potential set members
 - \circ i = 1 means that member i is present
 - o i = 0 means that member i is not present
 - Application: document retrieval: find all documents in a set containing certain keywords
 - For each keyword, the system stores a bit vector (one bit for each document)
 - A '1' means that the document contains the keyword
 - Searching for three words is a logical AND of 3 bit vectors.

CSC 375-Turner, Page 13

Hashing

A completely different approach in which search is by direct access based on the key value.

- Hashing is the process of accessing a record by mapping a key value to a position in a table.
- The mapping process requires a (normally $\Theta(1)$) mathematical function called the **hash** function, denoted by **h**
- The Hash table is an array that stores all of the records, denoted HT
- A record's position in the hash table is its slot
- The number of slots is denoted by M, numbering is from 0 to M-1
- The mapping function h must work as follows:
 - \square For any value K in the key range, h(K) = i, $0 \le i < M$ such that $\ker(\mathbf{HT}(i)) = K$

CSC 375-Turner, Page 14

Hashing (cont.)

Hashing answers the specific question "what record, if any, has key value K?"

- Works well for sets (no duplicates)
- Not suitable for range queries
- Works well for in-memory and disk-based applications
- Example:
 - $\ \square$ Store the n records with key values in the range 0 to n-1
 - \square Hash function h(K) = K
 - ☐ This is not a practical example (Why?)
- Example:
 - ☐ Store about 1000 records having keys in the range 0 to 16,383
 - ☐ Impractical to keep a hash table with 16,383 slots
 - ☐ We need a hash function that maps the key range to a smaller table

Collisions

- Given a hash function h(k) and keys k_1 and k_2 :
 - \square If $h(k_1) = h(k_2) = \beta$, then k_1 and k_2 have a collision at β under h.
- Collisions are inevitable in most applications
 - $\ \square$ Example: birthday sharing
- Minimizing collisions requires good hash functions
- Finding a record (or a place in which to insert) requires a two-step procedure:
 - 1. Compute table location h(k)
 - 2. Starting with slot h(k), search for the record containing key k (or an empty location where it may be inserted)
- The search procedure is the collision resolution technique. There are two major classes:
 - Open hashing, also called Separate chaining
 - ☐ Closed hashing, also called Open addressing

CSC 375-Turner, Page 16

Hash Functions

- Requirement:
 - \square A hash function must compute a slot index within the hash table's range; thus, it computes (some value) $\mod M$
- · Goals:
 - A practical hash function evenly distributes the records stored among the hash table slots
 - ☐ Ideally, the even distribution is to all slots with equal probability
 - Success at this depends on the data's distribution
 - $\hfill \square$ It should also be fast (probably the easiest goal to accomplish)
- Two situations normally faced:
 - ☐ We know nothing about the incoming key distribution: attempt to evenly distribute the key range over the hash table, trying to avoid clustering
 - ☐ We know something about the incoming key distribution: use a distribution-dependent hash function.

CSC 375-Turner, Page 17

it computes (some value) mod M

int h (int x) {
 return (x % 16);
}

• A Simple hash function:

Examples

- ☐ The mod 16 operation makes the function dependent on the lower 4 bits of the key
- Mid-square method: square the key value, taking the middle r bits from the result for a hash table having 2^r slots
- ullet Folding method: sum the ASCII values of all letters, taking the result $\mod M$:

```
int h(char *x) {
   int i = 0; int sum = 0;
   while (x[i] != NULL) {
      sum += (int) x[i];
      i++;
   }
   return (sum % M);
}
```

CSC 375-Turner, Page 18

Examples

 Executable and Linking Format (ELF) hash, Unix Sys/V Release 4:

```
int ELFhash(char *key) {
  unsigned long h = 0;
  while (*key) {
    h = (h << 4) + *key++;
    unsigned long g = h & 0xF0000000L;
    if (g) h ^= g >> 24;
    h &= ~g;
  }
  return h % M;
}
```

- ☐ Works well with short and long strings
- ☐ Every letter of the string has equal effect
- ☐ Even distribution into hash table slots is very likely

Open Hashing

This is also called **separate chaining**.

- A collision resolution technique, in which:
 - ☐ The hash table is not an array of records; rather, it is an array of pointers
 - ☐ Each slot is treated as a bin so that collisions do not really occur
 - \square For a given record with key k and $h(k) = \beta$:
 - \circ hash table slot β is the head of a linked list
 - \circ Insert into slot β becomes a linked list insert

Closed Hashing

This is also called open addressing

- All records are stored directly in the hash table
 - \square Each record i has a **home position** defined by $h(k_i)$
 - o If record i is inserted and another record already occupies i's home position, then another slot must be found to store i.
 - The search procedure to find a new slot is the collision resolution policy

CSC 375-Turner, Page 21

Bucket Hashing

One implementation of closed hashing in which the extra list space is stored in the table.

- Divide the hash table into buckets
 - \square M slots are divided into B buckets, with M>>B
 - ☐ Include overflow bucket with large capacity
 - ☐ Records hash to the first slot of the bucket, then fill it sequentially
 - ☐ Overflow is used if a given bucket is full
 - ☐ Search: check bucket then check overflow (using linear search in both)

CSC 375-Turner, Page 22

Collision Resolution Policies

- Goal is to find a free slot in the table
- Search proceeds by following a probe sequence: the series of slots visited during insert/search after a collision occurs
 - ☐ Whether inserting or searching, the probe sequence must be the same every time
 - ☐ Basic idea: follow probe sequence until one of the following is true:
 - \circ record with key = k is found
 - an empty slot is found (no record with key k exists in the hash table)
 - ☐ Insert with Probing:

```
void insert(item R) {
  int home, pos, i;
  home = h(key(R));
  if (Table[home] == EMPTY)
    Table[home] = R;
  else {
    for (i = 1; Table[pos] != EMPTY; i++) {
      pos = (home + probe(key(R),i)) % M;
      if (key(T[pos]) == key(R)) ERROR;
    }
    Table[pos] = R;
}
```

Linear Probing

From a given position, linear probing searches the next available slot in the table.

Probe function:

int probe(int Key, int i) { return i; }

- ☐ If the end of the table is reached, it wraps around to the top (see code on previous page)
- ☐ At least one slot must always be empty in the table. Why?
- Linear probing suffers from primary clustering:
 - ☐ "Clusters" of occupied cells form
 - Any key hashing into a cluster requires several attempts to resolve the collision and then will add to the cluster

Primary Clustering

- Probabilities for which slot to use next are not the same
 - $\Box h(k) = k \mod 11$
 - \square 1003 mod 11 = 2, 1924 mod 11 = 10, 3071 mod 11 = 2, 2071 mod 11 = 3, 4752 mod 11 = 0

Insert in the following order: 1003, 1924, 3071, 2071, 4752

CSC 375-Turner, Page 25

Better Linear Probing

- Use a constant c to skip by, instead of going to the next slot on every probe
 - \square probe $(h(k), i) = h(k) + c \times i$
 - \square M and c should be relatively prime (Why?)
- Clustering can still exist
 - \Box Example: c = 3, $h(k_1) = 3$, $h(k_2) = 9$
 - $\ \square$ Probe sequences for k_1 and k_2 are linked together

CSC 375-Turner, Page 26

Pseudo Random Probing

An ideal probe function selects the next slot in the probe sequence at $\ensuremath{\mathsf{random}}$

- Why can a real probe function not act randomly?
- Pseudo random probing:
 - \square Select a random permutation of the numbers from 1 to M-1: $r_1, r_2, \ldots, r_{M-1}$
 - ☐ All searches and insertions use the same permutation:
 - \square p(K,i) = Perm[i-1]
 - $\hfill\Box$ that is, the i^{th} value in the probe sequence is $(h(k)+r_i) \mod M$
- Example:
 - \square M = 101
 - $\Box r_1 = 2, r_2 = 5, r_3 = 32$
 - $\Box h(k_1) = 30, h(k_2) = 28$
 - \square Probe sequence for k_1 :
 - \square Probe sequence for k_2 :

Quadratic Probing

- ullet The i^{th} probe sequence function is i^2
- ullet That is, the ith value in the probe sequence is $(h(k)+i^2) \mod M$
- Example:
 - \square M = 101
 - $\Box \ h(k_1) = 23, h(k_2) = 24$
 - \square Probe sequence for k_1 :
 - \square Probe sequence for k_2 :

Double Hashing

Prior probing methods can reduce or eliminate primary clustering.

- Secondary clustering occurs when two keys hash to the same slot, thus following the exact same probe sequence
- Desirable: the probe sequence is a function of both the key and the home position
- Double hashing adds a second hash function to the probe sequence:
 - \square $p(k,i) = i \times h_2(k)$ for $0 \le i \le M-1$
 - \square Poor choice of $h_2(k)$ results in poor ("disastrous") performance
 - $\hfill \square$ Make sure all cells can be probed by ensuring that all probe sequence constants are relatively prime to M
 - \circ One method: make M prime
 - o Another method: set $M=2^m$ and make h_2 return an odd value between 1 and 2^m

CSC 375-Turner, Page 29

Analysis of Closed Hashing

- Visualizing the expected performance of hashing based on load factor
- \bullet Load factor $\alpha = N/M$ where N is the number of records stored

Note: "random probe" is only a theoretical measure

CSC 375-Turner, Page 30

Rehashing

- Consequences of a hash table that is too full:
 - ☐ Running time for operations start to take too long
 - ☐ Insertions might fail for certain collision resolution strategies
- Solution: build a bigger table
 - \Box Find a prime number at least twice as large as current value of M
 - ☐ Allocate a new hash table (array)
 - ☐ Scan through the old hash table, inserting all elements into the new hash table
 - ☐ Delete the old hash table
- Operation is expensive but occurs relatively infrequently
- Strategies:
 - ☐ Rehash when the table is half full
 - ☐ Rehash when an insertion fails
 - ☐ Rehash when the table reaches a certain load factor

Deletion

Deletion is tricky with hashing for the following reasons:

- Deleting a record must not hinder later searches (an empty slot means "stop the search"
- Positions should also not be made unusable due to deletions (avoid a "zombie slot?")
- Solution:
 - Add a special mark in place of the deleted record.
 - ☐ Mark is called the **tombstone**
 - ☐ Tombstones do not stop search but do add to average search time
 - ☐ Solutions to that added time:
 - o Local reorganizations to try to shorten it
 - o Periodically rehash the table