Aspects Fondamentaux du Calcul: les Relations

Paysage syntaxique: les relations

- 1 omniprésent en informatique
- 2 à la base de la réécriture
- des propriétés importantes et nécessaires

Paysage syntaxique : les relations

Relations d'ordre

- Une relation binaire R sur un ensemble A est une partie de $A \times A$
- On notera $(a, b) \in R$ ou bien aRb
- Une relation $R \subseteq A \times A$ est réflexive ssi $\forall a \in A, aRa$
- Une relation $R \subseteq A \times A$ est irréflexive ssi $\forall a \in A, a \ Ra$
- Une relation $R \subseteq A \times A$ est symétrique ssi $\forall (a, b) \in A \times A, aRb \Rightarrow bRa$
- Une relation $R \subseteq A \times A$ est antisymétrique ssi $\forall a, b \in A, aRb \Rightarrow b$ $\not Ra$
- Une relation $R \subseteq A \times A$ est transitive ssi $\forall a, b, c \in A, aRb$ et $bRc \Rightarrow aRc$

Relations d'ordre

- Une relation R est un préordre si elle est réflexive et transitive
- Une relation *R* est un ordre strict si elle irréflexive, antisymétrique et transitive
- Une relation R est un ordre si elle réflexive, antisymétrique et transitive
- Une relation *R* est une relation d'équivalence si elle est réflexive, symétrique et transitive

Ensembles ordonnés

Definition

Un ensemble ordonné (E, \leq) est un ensemble muni d'une relation d'ordre \leq .

- Un même E peut être muni de plusieurs relations d'ordre:
 ⇒ ensembles ordonnés différents.
- \mathbb{N} peut-être muni de l'ordre naturel ou de l'ordre de divisibilité (i.e., $a \leq_{div} b$ ssi il existe c tq b = a.c).

Applications monotones

Definition

Soient (E_1, \leq_1) et (E_2, \leq_2) deux ensembles ordonnés. Une application f de E_1 dans E_2 est monotone si:

$$\forall x, y \in E_1, x \leq_1 y \Rightarrow f(x) \leq_2 f(y)$$

- f est un homomorphisme de (E_1, \leq_1) dans (E_2, \leq_2)
- (E_1, \leq_1) et (E_2, \leq_2) sont isomorphes s'il existe une bijection b entre E_1 et E_2 telle que b et b^- soient monotones.
- bijection+monotone $\not\Rightarrow$ isomorphisme. Ex: identité de (\mathbb{N}, \leq_{div}) dans (\mathbb{N}, \leq) est bijective monotone mais pas isomorphisme.

Ensembles totalement ordonnés et produits

Definition

Un ensemble ordonné (E, \leq) est totalement ordonné si \leq est un ordre total, c-à-d, $\forall x, y, x \neq y \Rightarrow x \leq y$ ou $y \leq x$.

Il est partiellement ordonné sinon, c-à-d, $\exists x, y, x \neq y, x \nleq y$ et $y \nleq x$.

Definition

Soient (E_1, \leq_1) et (E_2, \leq_2) deux ensembles ordonnés.

Le produit direct de ces 2 ensembles ordonnés est $(E_1 \times E_2, \leq)$ avec \leq définie par $(x_1, x_2) \leq (y_1, y_2)$ ssi $x_1 \leq_1 y_1$ et $x_2 \leq_2 y_2$.

On peut définir d'autres relations d'ordre sur $E_1 \times E_2$. Ex:

$$(x_1, x_2) \le (y_1, y_2)$$
 ssi $y_1 \le_1 x_1$ et $x_2 \le_2 y_2$.

Majorants et minorants

Definition

Soit E' une partie d'un ensemble ordonné (E, \leq) . Un élément x de E est un majorant de E' (resp. minorant) si $\forall y \in E', y \leq x$ (resp. $x \leq y$).

- x pas nécessairement dans E'
- Maj(E') l'ensemble des majorants de E', et Min(E') des minorants.
- $Maj(E') \cap E'$ potentiellement vide Ex: $E' = \{\{1\}, \{2\}, \{3\}\}, E = E' \cup \{\{1, 2, 3\}\}, \text{ ordre } \subseteq$
- $Maj(\emptyset) = Min(\emptyset) = E$
- Proposition: $Maj(E') \cap E'$ et $Min(E') \cap E'$ ont au plus 1 élément.
- Soit $E' \subseteq E$ et z de E. Les 3 conditions sont équivalentes:
 - z est le maximum de E'
 - $z \in E'$ et $\forall x \in E', x \leq z$
 - $z \in E'$ et z est le minimum de Maj(E')

Majorants et minorants

- E' ⊆ E. Un élément x de E' est dit maximal dans E' si ∀y ∈ E', y ≥ x ⇒ y = x (Ou y ≠ x ⇒ y ≥ x).
 Si E' a un maximum, c'est son unique élément maximal, mais la réciproque est fausse.
- N a un élément minimal qui est son minimum (0) mais n'a pas d'élément maximal.

Borne supérieure/inférieure

Definition

Un élément x est la borne supérieure d'une partie E' (sup(E')) d'un ensemble ordonné E si:

$$(\forall y \in E', y \le x)$$
 et $(\forall z \in E, ((\forall y \in E', y \le z) \Rightarrow x \le z))$

De même, x est la borne inférieure (inf(E'))si:

$$(\forall y \in E', x \le y)$$
 et $(\forall z \in E, ((\forall y \in E', z \le y) \Rightarrow z \le x))$

- "la" borne sup. ou inf. car il y en a au plus une
- la définition de la borne sup. d'une partie E' de E n'est rien d'autre que celle du minimum de Maj(E')
- \Rightarrow la borne sup. d'une partie de E' est donc un majorant de E' qui est plus petit que tous les autres majorants de E'.
- ullet \Rightarrow la borne sup. de E' est le plus petit des majorants de E'

Borne supérieure/inférieure

- proposition: Soit E' une partie de E.
 - si z est le maximum de E', alors $z = \sup(E')$
 - si $sup(E') \in E'$, alors sup(E') est le maximum de E'.
- Ex: soit \mathbb{N} ordonné par \leq_{div} . Pour \leq_{div} la borne inf. d'un ensemble de 2 entiers existe toujours et c'est le PGCD de ces 2 entiers. Idem pour la borne sup. qui est le PPCM.
- Ex: $E = \{a, b, c, d\}$ ordonné par $a \le c$, $a \le d$, $b \le c$, $b \le d$. Alors $\{a, b\}$ n'a ni borne sup. ni borne inf.. idem pour $\{c, d\}$ (voir schema $\Rightarrow c$ et d pas comparables).
- Soit un ensemble E, et $\mathcal{P}(E)$ ordonné par l'inclusion. Soit E_i pour $i \in I$ une famille de parties de E. La borne sup de cette famille est $\bigcup_{i \in I} E_i$ et sa borne inf est $\bigcap_{i \in I} E_i$.

Ensembles/Relations bien fondées

Notion fondamentale en informatique.

Un raisonnement n'est pas bien fondé si la preuve d'une assertion a nécessite une infinité de prémisses a_1, \ldots Si on ordonne la structure du raisonnement cela correspondrait à une suite infinie ordonnée de prémisses.

Definition

Une relation binaire \leq sur E est bien fondée (ou noethærienne) si toute partie non vide A de E contient un élément minimal $a_0 \in A$, i.e., tel que $\forall a \in A, a \neq a_0, a \not\leq a_0$

Une autre caractérisation commune consiste à dire qu'il n'existe pas de suite infinie décroissante $\cdots < a_n < \cdots < a_1 < a_0$

Exemples de relations bien fondées

- l'ordre strict < sur $\mathbb N$ (mais pas sur $\mathbb Z$)
- L'ordre produit \leq sur \mathbb{N}^2 est bien fondé. (Tout élément de \mathbb{N}^2 à un nombre fini de minorants, donc pas de suite infinie strictement décroissante).
- ullet la relation de sous terme immédiat sur T_{Σ}
- un bon ordre sur \mathbb{Z} :
 - $\forall n > 0, \forall m > 0, n \prec m \Leftrightarrow n < m \text{ (comme sur } \mathbb{N}\text{)}$
 - $\forall n < 0, \forall m \ge 0, n \prec m$ (les négatifs sont plus petits que les positifs)
 - $\forall n < 0, \forall m < 0, n \prec m \Leftrightarrow m < n$ (ordre inverses sur les négatifs)

Un ordre \prec sur E est total ssi $\forall e_1, e_2 \in E, e_1 \prec e_2$ ou $e_2 \prec e_1$

Ensembles bien fondés

Théorème: Soit \leq un ordre bien fondé sur un ensemble E et P une proposition dépendant d'un élément x de E. Si la propriété suivante est vérifiée:

$$\forall x \in E, ((\forall y < x, P(y)) \Rightarrow P(x))$$

alors $\forall x \in E, P(x)$.

Notion d'ordinal

Un bon ordre est un ordre total bien fondé

Un ordinal permet de classifier les bons ordres. C'est un ensemble bien ordonné par la relation \in et transitif (tout élément de l'ensemble est une partie de l'ensemble

Construction:

- $\bullet \ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} \dots$
- On les note 0, 1 = {0}, 2 = {0,1}, 3 = {0,1,2}..., avec 0 \in 1 \in 2 \in 3 \cdots
- On construit l'ensemble de tous les ordinaux finis par l'opération successeur $\alpha\mapsto \alpha+1=\alpha\cup\{\alpha\}$
- On note ω l'ensemble de tous les ordinaux finis. ω n'est pas un successeur, c'est le premier ordinal limite

Treillis

Definition

Un ensemble ordonné (E, \leq) est un treillis si tout (x, y) de E^2 admet une borne sup. et une borne inf. (noté souvent $x \sqcup y$ et $x \sqcap y$).

Exemples:

- Soit un ensemble E. $\mathcal{P}(E)$ ordonné par l'inclusion est un treillis. Les opérations binaires \sqcup et \sqcap sont \cup et \cap .
- \mathbb{N} muni de \leq_{div} est un treillis
 - □ est le ppcm,
 - □ le pgcd,
 - \perp est 1 (1 divise tout nombre, n.1 = n),
 - et \top est 0 (tout nombre divise 0, n.0 = 0).

Treillis complets

Definition

Un ensemble ordonné (E, \leq) est un treillis complet si toute partie de E admet une borne sup. et une borne inf.

Exemples:

• Soit un ensemble E. $\mathcal{P}(E)$ ordonné par l'inclusion est un treillis complet avec $sup(\{E_i|i\in I\}) = \bigcup_{i\in I} E_i$ et $inf(\{E_i|i\in I\}) = \bigcap_{i\in I} E_i$

Si E treillis complet, alors la borne inf. de E est majorée par tous les éléments de E; un treillis complet contient donc un élément minimum \bot . De même, un élément maximum \top .

Treillis complets

Proposition: Un ensemble ordonné (E, \leq) est un treillis complet si et seulement si tout sous-ensemble de E a une borne sup.

Proposition: Soit (E, \leq) un treillis (complet). Si $E_1 \subseteq E_2 \subseteq E$ alors $inf(E_2) \leq inf(E_1) \leq sup(E_1) \leq sup(E_2)$.

Fonctions continues

Definition

Une application f d'un ensemble ordonné (E_1, \leq_1) dans un ensemble ordonné (E_2, \leq_2) est dite continue (ou sup-continue) si elle préserve les bornes sup des parties non-vides: si la partie $E' \neq \emptyset$ a une borne sup. $e = \sup(E')$, alors $f(E') = \{f(x) | x \in E'\}$ a aussi une borne sup. qui est f(e).

Treillis complets:

• dans un treillis complet les bornes sup. existent toujours, donc la continuité d'une application s'exprime par:

$$f(sup(E)) = sup(f(E))$$

Points fixes

Point fixe: Soit f une application de E dans lui-même. Un point fixe de f est un élément x de E tel que f(x) = x.

- Si *E* est un ensemble ordonné, l'ensemble des points fixes de *f* est un sous-ensemble ordonné de *E*, éventuellement vide.
- de plus, si ce sous-ensemble admet un élément minimum (maximum), on l'appelle le plus petit point fixe de f (plus grand point fixe de f)

Théorème: Si f est une application monotone d'un treillis complet dans lui-même, alors f a un plus grand point fixe et un plus petit point fixe.

Points fixes

Théorème: Si f est une application continue d'un treillis complet dans lui-même, alors le plus petit point fixe de f est égal à:

$$sup(\{f^n(\bot)|n\in\mathbb{N}\})$$

pas vrai en général pour le plus grand point fixe car f est continue (sup-continue) et pas forcemment inf-continue.

Théorème: Si E est un ensemble ordonné fini admettant un élément minimim \bot , pour toute fonction monotone f de E dans lui-même il existe $k \le card(E)$ tel que le plus petit point fixe de f est $f^k(\bot)$.