CARDIAC (Cardboard Illustrative Aid to Computing)

CARDIAC is a very simple computer, consisting of a small CPU, 100 memory cells, an input device and an output device. The CPU consists of just a 4-digit accumulator, and instruction decoder and a program counter. Operations are performed between memory and accumulator.

Instructions are 3-digit long, the first one indicating the operation to be executed, and the other to the memory cell to obtain the data. Instructions and operands are mixed in the same memory, and they are distinguished only by the number pointed by the program counter.

Op Code	Instruction	Example	Meaning	
0	Input	012	memory[12] = input	
1	Load	1 23	acc = memory[23]	
2	Add	205	acc = acc + memory[5]	
3	Branch if Less than Zero	312	If acc < 0 Then pc = 12	
4	Shift	421	acc = shift left (acc , 2) + shift right(acc , 1)	
5	Output	512	output = memory[12]	
6	Store	623	memory[23] = acc	
7	Subtraction	705	acc = acc - memory[5]	
8	Jump	812	pc = 12	
9	Stop	900	pc = 00, stop	

CARDIAC Computational Model Architecture

CARDIAC Assembly Language

Op Code	Mnemonic	Instruction	Example				
			Machine code	Assembly code	Meaning	Comment	
0	INP	Input	0 <u>12</u>	INP 12	memory[12] = input	Get any input and place it in memory address #12). Discard value at the input section.	
1	LDA	Load	1 <u>23</u>	LDA 23	acc = memory[23]	Replace the value in the accumulator with the number inside memory address #23.	
2	ADD	Add	2 05	ADD 5	acc = acc + memory[5]	Increase the content of the accumulator by the amount inside memory address #5.	
3	BLZ	Branch if Less than Zero	3 <u>12</u>	BLZ 12	If acc < 0 Then pc = 12	If the number in the accumulator is negative jump to the instruction in memory address #12, otherwise continue with the next instruction.	
4	SHF	Shift	4 <u>21</u>	SHT 21	acc = shift left (acc , 2), then acc = shift right(acc , 1)	Move the accumulator's content 2 positions to the left (filling with zeros the empty places and dropping the digits beyond the fourth position), then shift it one position to the right.	
5	OUT	Output	5 <u>12</u>	OUT 12	output = memory[12]	Copy content of memory location #12 and placed it into output section.	
6	STO	Store	6 23	STO 23	memory[23] = acc	Copy accumulator's content and place into memory location #23.	
7	SUB	Subtraction	7 <u>05</u>	SUB 5	acc = acc - memory[5]	Decrease the content of the accumulator by the amount inside memory address #5.	
8	JMP	Jump	8 <u>12</u>	JMP 12	pc = 12	Continue the program from memory location #12.	
9	HLT	Halt	9 00	HLT 00	pc = 00, stop	Stop program execution.	

Note: The first digit of the machine code instruction it is the opcode, the last two digits indicate the memory cell to be used. (Except for instruction 4.)

CARDIAC Assembly Language Main Functional Blocks of CARDIAC's Hardware

Note: The first digit of the machine code instruction it is the opcode, the last two digits indicate the memory cell to be used. (Except for instruction 4.)

CARDIAC machine code exercises

The following programs were written in the CARDIAC machine language. Each one is presented in the form *memory address*: *instruction*. For each one, write the equivalent assembly code and then, handtrace the program to figure its purpose out.

Program 1	Program 2	Program 3	Program 4	Program 5	Program 6
17 : 034 18 : 035 19 : 134 20 : 235 21 : 636 22 : 536 23 : 900	20 : 100 21 : 603 22 : 503 23 : 200 24 : 603 25 : 503 26 : 200 27 : 603 28 : 503 29 : 200 30 : 603 31 : 503 32 : 200 33 : 603 34 : 503	21 : 100 22 : 603 23 : 503 24 : 200 25 : 822 26 : 900	(variables) 00 : 001 19 : -004 (program) 20 : 119 21 : 200 22 : 618 23 : 518 24 : 321 25 : 900	07 : 068 08 : 404 09 : 669 10 : 070 11 : 170 12 : 700 13 : 670 14 : 319 15 : 169 16 : 268 17 : 669 18 : 811 19 : 569 20 : 900	15 : 039 16 : 139 17 : 431 18 : 640 19 : 139 20 : 413 21 : 240 22 : 640 23 : 139 24 : 423 25 : 410 26 : 240 27 : 640 28 : 540 29 : 900