

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI

WORK INTEGRATED LEARNING PROGRAMMES

COURSE HANDOUT

Part A: Content Design

Course Title	Mathematical Foundations for Data Science
Course No(s)	
Credit Units	4
Course Author	G Venkiteswaran
Version No	2
Date	15.09.2019

Course Description

Vector and matrix algebra, systems of linear algebraic equations and their solutions; eigenvalues, eigenvectors and diagonalization of matrices; graphs and digraphs; trees, lists and their uses; partially ordered sets and lattices; Boolean algebras and Boolean expressions;

Course Objectives

No	Objective- The course aims to
CO1	Introduce concepts in linear algebra and to use it as a platform to model physical problems.
CO2	Provide techniques for analytical and numerical solutions of linear equations and introduce the concept of convergence.
CO3	Utilize concepts of linear algebra and calculus in solving optimization problems.
CO4	Introduce some of the mathematical structures, concepts and notations used in discrete mathematics.
CO5	Introduce some concepts from graph theory, partially ordered sets, Boolean algebras.

Text Book(s)

No	Author(s), Title, Edition, Publishing House
T1	Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India, 9 th Edition, 2011
T2	Kenneth H. Rosen, Discrete Mathematics and its Applications, Tata McGraw Hill, 7th Ed.,
	2011.

Reference Book(s) & other resources

No	Author(s), Title, Edition, Publishing House
R1	K Hoffman and R Kunze, Linear Algebra, Pearson Education, 2 nd Edition, 2005.

R2	Kolman, Busby, Ross and Rehman, Discrete Mathematical Structures for Computer Science,
	Pearson Education, 6th Edition, 2017

Content Structure

No	Title of the module	References
M1	1. Matrices, System of equations, determinants and inverse of a matrix	T1: Sec 7.1 –
		7.3, 7.5, 7.8
	1.1. Matrix Algebra-Row-reduced echelon form of a matrix, inverse of a matrix	
	1.2. System of linear equations, Consistency and inconsistency of system of linear	
	equations	
M2	2. Vector spaces and Linear transformations	T1: Sec 7.4,
		7.9, R1: Sec 3.2
	2.1 Vector space, subspace and span of a set, Linear dependence and	
	independence of a set of vectors, basis and dimension	
	2.2. Linear transformation, rank and nullity	
M3	3. Eigenvalues, Eigenvectors and singular values	T1: Sec 8.2, 8.3
1,12	5. Eigenvalues, Eigenvectors and singular values	and class notes
	3.1. Eigenvalues	
	3.2. Eigenvectors	
	3.3. Singular value decomposition	
M4	4. Numerical linear algebra	T1: Sec 20.1
171-	4. Numerical inical algebra	11. Sec 20.1
	4.1. Gauss elimination with partial pivoting and scaling	
	4.2. Iterative methods for solving linear system of equations	
M5	5. Matrix Eigenvalue Problems	T1: Sec 20.3, 20.8
	5.1. Eigenvalue problems in linear system of equations	20.8
	5.2. Power method for finding the dominant eigenvalue	
M6	6. Linear and non-linear optimization	Class notes
	6.1 Basics of calculus	
	6.2 Linear optimization using simplex method and sensitivity	
	6.3 Non-linear optimization	
M7	6. Sets, Functions and Relations, Boolean Algebra	T2: Sec 2.1,
		2.2, 2.3, 7.1 –
	6.1 Introduction to set theory, set relations, set operators, cardinality of sets,	7.6, 10.1, 10.2
	Cartesian product of sets	
	6.2 Fundamentals of functions – range, domain, injection, surjection, bijection of	
	functions 6.3 Fundamentals of relations, reflexive, symmetric and transitive properties in	
	relations, representing relations, applications of relations, equivalence relations,	
	partial order relations, lattices.	
	6.4 Boolean functions, representing Boolean functions	
M8	7. Graph Theory	T2: Sec 8.1-8.5
1010	7. Graph Theory	12. 500 0.1-0.3
	7.1 Introduction to graph theory, directed and undirected graphs, handshaking	
l .	1 Supplies Automating	i

theorem, special graph structures, graph representations and isomorphism of graphs,	
connectedness, components, Euler, Hamilton paths and cycles	

Learning Outcomes:

	Outcomes
No	Learning Outcomes
LO1	Students will be able to effectively use matrix algebra tools to analyse and solve systems of linear equations.
LO2	Students will be able to use some numerical methods to solve linear systems of equations
LO3	Students would be able to use methods in linear algebra to solve linear programming problems and methods in calculus to solve non-linear optimization problems.
LO4	Students will be able to work with some of the mathematical structures, concepts and notations used in discrete mathematics
LO5	Students will be able to apply the concepts of sets, functions, relations and graph theoretic concepts to problems in computer science

Part B: Contact Session Plan

Academic Term	I semester 2018-2019
Course Title	Mathematical Foundations for Data Science
Course No	
Lead Instructor	

Course Contents

Contact Hours	List of Topic Title	Text/Ref Book/external resource
1	Introduction to matrices, row-reduced echelon form of a matrix, Consistency of linear systems and matrix inversion	T1: Sec 7.1 – 7.3, 7.5, 7.8
2	Vector space, subspace and span, Linear dependence and independence, basis and dimension, Linear transformation, rank and nullity and the rank nullity theorem	T1: Sec 7.4, 7.9 R1: Sec 3.2
3	Eigenvalues and eigenvectors of a matrix with applications	T1: Sec 8.2 – 8.4

4	Singular value decomposition with examples (using MATLAB) and applications (Face recognition with SVD)	Class notes
5	Gauss elimination with scaling and partial pivoting; LU factorization and related methods	T1: Sec 20.1, 20.2
6	Iterative methods of solving linear systems; Matrix eigenvalue problems and Power method for finding the dominant eigenvalue	T1: Sec 20.3, 20.8
7 -8	Application of linear algebra in optimization. Modelling linear programming problem and the basics of Simplex algorithm and sensitivity analysis.	Class notes
9	Calculus of one and several variables; Limits, continuity and differentiability; Maxima and minima of functions; Steepest gradient method for finding the maximum. Constrained optimization (Lagrange multipliers)	Class notes
10	Introduction to set theory, set relations, set operators, cardinality of sets, Cartesian product of sets	T2: Sec 2.1, 2.2
11	Fundamentals of functions – range, domain, injection, surjection, bijection of functions	T2: Sec 2.3
12	Fundamentals of relations, reflexive, symmetric and transitive properties in relations, representing relations and applications	T2: Sec 7.1, 7.2, 7.3
13	Representing relations, applications of relations, equivalence relations, partial order relations, lattices.	T2: Sec 7.4, 7.5, 7.6
14	Introduction to graph theory, directed and undirected graphs, handshaking theorem, special graph structures, graph representations	T2: Sec 8.1, 8.2
15	Isomorphism of graphs, connectedness, components, Euler, Hamilton paths and cycles	T2: Sec 8.3, 8.4, 8.5
16	Boolean Algebra- Boolean Functions, Representing Boolean functions and functional completeness	T2: Sec 10.1, 10.2

[#] The above contact hours and topics can be adapted for non-specific and specific WILP programs depending on the requirements and class interests.

Lab Details

Title	Access URL
Lab Setup Instructions	Not applicable
Lab Capsules	Not applicable

|--|

Select Topics and Case Studies from business for experiential learning

Topic No.	Select Topics in Syllabus for experiential learning	Access URL
1	Assignment - linear algebra topics	
2	Assignment- discrete structures topics	

Evaluation Scheme

Legend: EC = Evaluation Component

No	Name	Туре	Duration	Weig ht	Day, Date, Session, Time

Note - Evaluation components can be tailored depending on the proposed model.

Important Information

Syllabus for Mid-Semester Test (Open Book): Topics in Weeks 1-8

Syllabus for Comprehensive Exam (Open Book): All topics given in plan of study

Evaluation Guidelines:

- 1. EC-1 consists of either two Assignments or three Quizzes. Announcements regarding the same will be made in a timely manner.
- 2. For Closed Book tests: No books or reference material of any kind will be permitted. Laptops/Mobiles of any kind are not allowed. Exchange of any material is not allowed.
- 3. For Open Book exams: Use of prescribed and reference text books, in original (not photocopies) is permitted. Class notes/slides as reference material in filed or bound form is permitted. However, loose sheets of paper will not be allowed. Use of calculators is permitted in all exams. Laptops/Mobiles of any kind are not allowed. Exchange of any material is not allowed.
- 4. If a student is unable to appear for the Regular Test/Exam due to genuine exigencies, the student should follow the procedure to apply for the Make-Up Test/Exam. The genuineness of the reason for absence in the Regular Exam shall be assessed prior to giving permission to appear for the Make-up Exam. Make-Up Test/Exam will be conducted only at selected exam centres on the dates to be announced later.

It shall be the responsibility of the individual student to be regular in maintaining the self-study schedule as given in the course handout, attend the lectures, and take all the prescribed evaluation components such as Assignment/Quiz, Mid-Semester Test and Comprehensive Exam according to the evaluation scheme provided in the handout.