RELAZIONE: Tetris Arduino

Enrico Ferraiolo 0001191698

Laurea Magistrale in Informatica

Corso: Laboratorio di Making a.a. 2024-2025

Indice

1	Introduzione	3		
2	Componenti Hardware			
	2.1 Microcontrollore	4		
	2.2 Display a matrice LED - Campo di Gioco	4		
	2.3 Display LCD - Informazioni di Gioco	4		
	2.4 Controlli	4		
	2.4.1 Controlli Infrarossi	4		
	2.4.2 Encoder Rotativo	5		
3	Il Gioco	5		
	3.1 Tetramini	5		
4	Ambienti di Sviluppo	6		

1 Introduzione

Il gioco Tetris è uno dei puzzle game più celebri di sempre: l'utente deve ruotare e spostare pezzi geometrici ("tetramini") che cadono, completando linee orizzontali per ottenere punti.

L'obiettivo di questo progetto è realizzare una versione giocabile su Arduino di Tetris, utilizzando un display a matrice LED 8x8 (MAX7219) per il campo di gioco, un display LCD 16x2 per visualizzare punteggio e stato, mentre i controlli sono gestiti tramite telecomando IR e encoder rotativo.

Lo scopo del progetto è quello di realizzare una versione del gioco Tetris su Arduino totalmente funzionante con diversi moduli di input e output.

2 Componenti Hardware

2.1 Microcontrollore

Il microcontrollore utilizzato è il **Elegoo UNO R3**, esso è un'alternativa compatibile all'Arduino UNO.

2.2 Display a matrice LED - Campo di Gioco

Il display a matrice LED è un modulo **MAX7219**, nel caso specifico del progetto in questione è stato utilizzato un modulo 8x8. Ogni LED della matrice può essere acceso o spento in modo indipendente, permettendo di visualizzare il campo di gioco e i tetramini.

Ogni LED rappresenta una cella del campo di gioco.

2.3 Display LCD - Informazioni di Gioco

Il display LCD è un modulo 16x2, esso è utilizzato per visualizzare il punteggio e lo stato del gioco.

È stato utilizzato il modulo LCD 1602. A schermo vengono visualizzati:

- Punteggio: il punteggio attuale del giocatore
- Stato: lo stato del gioco (in corso, in pausa, finito)
- Velocità: la velocità attuale del gioco
- Istruzioni ausiliarie: istruzioni per il giocatore

2.4 Controlli

Il progetto prevede l'utilizzo di un telecomando IR e di un encoder rotativo per il controllo del gioco.

2.4.1 Controlli Infrarossi

Il telecomando IR è un dispositivo che consente di inviare segnali preimpostati a distanza tramite infrarossi.

Sono stati utilizzati un telecomando IR e un ricevitore IR compatibili.

Il telecomando IR è dotato di diversi tasti, ognuno dei quali invia un codice univoco quando premuto.

I tasti utilizzati nel progetto sono:

- POWER: per accendere e spegnere il gioco
- FAST BACK: per muovere il tetramino a sinistra
- FAST FORWARD: per muovere il tetramino a destra
- PAUSE: per mettere in pausa il gioco
- VOL+: per aumentare la velocità del gioco
- VOL-: per diminuire la velocità del gioco

2.4.2 Encoder Rotativo

L'encoder rotativo è utilizzato per il controllo della direzione e della velocità del gioco.

- Rotazione in senso orario: aumenta la velocità del gioco
- Rotazione in senso antiorario: diminuisce la velocità del gioco

3 Il Gioco

Il gioco Tetris è un puzzle game in cui il giocatore deve ruotare e spostare tetramini che cadono dall'alto, quest'ultimi sono composti da 4 celle e possono essere ruotati e spostati a sinistra o a destra nel campo di gioco.

Il giocatore deve completare linee orizzontali per ottenere punti e quando una linea è completata, essa scompare e il punteggio aumenta.

Il gioco termina quando i tetramini raggiungono la parte superiore del campo di gioco e non c'è quindi più spazio per far cadere nuovi tetramini.

3.1 Tetramini

Tra i tetramini presenti nel gioco implementato in questo progetto troviamo le seguenti forme:

Tabella 1: Rappresentazione dei tetramini

Pezzo	Codici binari	$W \times H$	Forma
I	0b1111 0b0000 0b0000 0b0000	4×1	••••
J	0b0111 0b0100	3×2	
L	0b1110 0b0010	3×2	
Ο	0b0110 0b0110	2×2	
S	0b0111 0b0010	3×2	
${f T}$	0b1100 0b0110	3×2	
Z	0b1110 0b1000	3×2	

4 Ambienti di Sviluppo

Il progetto è stato sviluppato per essere eseguito su:

- Hardware fisico: scheda compatibile e moduli connessi
- **Simulatore**: per testare il codice senza hardware fisico su un simulatore software

Per cambiare ambiente di sviluppo è sufficiente cambiare la variabile PRODUCTION in nel file sorgente: PRODUCTION = true per l'hardware fisico e PRODUCTION = false per il simulatore.

Questo serve perché i codici infrarossi inviati dal telecomando IR sono diversi a seconda dell'ambiente di sviluppo.