Digitale Bildverarbeitung und Mustererkennung

Course overview

Deep Learning Foundations

Classification & Object Detection and Transfer Learning

Segmentation Networks

Deep Reinforcement Learning

Generative Adversarial Networks

Recurrent Neural Networks

Neural Network Object Detection – Single Shot Detector with VGG-16 Backbone

Offsets of coordinates for current bounding box

Kernel Size

Amount of Kernels in Layer = Depth of subsequent Feature Map

Width & Height of Feature Map

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016, October). SSD: Single shot multibox detector. In European conference on computer vision (pp. 21-37). Springer, Cham. (https://arxiv.org/pdf/1512.02325.pdf)

Neural Network Object Detection - Basic structure

SSD: Single Shot MultiBox Detector

SSD: Single Shot MultiBox Detector

Discretization of the input image into a SxS grid of different sizes.

Fully Convolutional Network predicts class scores and box offsets for given default bounding boxes per size.

Final detections are chosen with non-maximum suppression.

Wei Liu¹, Dragomir Anguelov², Dumitru Erhan³, Christian Szegedy³, Scott Reed⁴, Cheng-Yang Fu¹, Alexander C. Berg¹

¹UNC Chapel Hill ²Zoox Inc. ³Google Inc. ⁴University of Michigan, Ann-Arbor wliu@cs.unc.edu, ²drago@zoox.com, ³{dumitru, szegedy}@google.com, 4reedscot@umich.edu, 1{cyfu,aberg}@cs.unc.edu

(a) Image with GT boxes (b) 8×8 feature map

(c) 4×4 feature map

https://arxiv.org/abs/1512.02325

Neural Network Object Detection - Basic structure

RFCN: Region-based Fully Convolutional Network

Two stage object detection.

First stage is Fully Convolutional Network, such as ResNet-101 for region proposals

Second stage does classification on the max-pooled proposed regions

R-FCN: Object Detection via Region-based Fully Convolutional Networks

https://arxiv.org/abs/1605.06409

Object Detection with neural networks

TensorFlow Model Zoo

Collection of detection models pre-trained on different object detection datasets.

Model name	Speed (ms)	COCO mAP	Outputs
SSD MobileNet v2 320x320	19	20.2	Boxes
SSD MobileNet V1 FPN 640x640	48	29.1	Boxes
SSD MobileNet V2 FPNLite 320x320	22	22.2	Boxes
SSD MobileNet V2 FPNLite 640x640	39	28.2	Boxes
SSD ResNet50 V1 FPN 640x640 (RetinaNet50)	46	34.3	Boxes
SSD ResNet50 V1 FPN 1024x1024 (RetinaNet50)	87	38.3	Boxes
SSD ResNet101 V1 FPN 640x640 (RetinaNet101)	57	35.6	Boxes
SSD ResNet101 V1 FPN 1024x1024 (RetinaNet101)	104	39.5	Boxes
SSD ResNet152 V1 FPN 640x640 (RetinaNet152)	80	35.4	Boxes
SSD ResNet152 V1 FPN 1024x1024 (RetinaNet152)	111	39.6	Boxes
Faster R-CNN ResNet50 V1 640x640	53	29.3	Boxes
Faster R-CNN ResNet50 V1 1024x1024	65	31.0	Boxes
Faster R-CNN ResNet50 V1 800x1333	65	31.6	Boxes
Faster R-CNN ResNet101 V1 640x640	55	31.8	Boxes
Faster R-CNN ResNet101 V1 1024x1024	72	37.1	Boxes
Faster R-CNN ResNet101 V1 800x1333	77	36.6	Boxes
Faster R-CNN ResNet152 V1 640x640	64	32.4	Boxes
Faster R-CNN ResNet152 V1 1024x1024	85	37.6	Boxes
Faster R-CNN ResNet152 V1 800x1333	101	37.4	Boxes
Faster R-CNN Inception ResNet V2 640x640	206	37.7	Boxes
Faster R-CNN Inception ResNet V2 1024x1024	236	38.7	Boxes
Mask R-CNN Inception ResNet V2 1024x1024	301	39.0/34.6	Boxes/Masks

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md

References

- [2] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look once: Unified, real-time object detection. CoRR, abs/1506.02640, 2015.
- [3] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C. Berg. Ssd: Single shot multibox detector. 14th european conference on computer vision, pages 21–37, 2016.
- [4] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-FCN: object detection via region-based fully convolutional networks. *CoRR*, abs/1605.06409, 2016.
- [5] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. *CoRR*, abs/1405.0312, 2014.

- [6] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman. The pascal visual object classes (voc) challenge. *International Journal of Computer Vision*, 88(2):303–338, Jun 2010.
- [7] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In Conference on Computer Vision and Pattern Recognition (CVPR), 2012.
- [8] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In *Proceedings of the 23rd International Conference on Machine Learning*, ICML '06, pages 233–240, New York, NY, USA, 2006. ACM.
- [9] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman. The pascal visual object classes (voc) challenge. *International Journal of Computer Vision*, 88(2):303–338, Jun 2010.

This lecture in one slide

Object Detection with neural networks

Transfer Learning with neural networks

Fine Tuning Freezing Weights

Transfer Learning with Neural Networks

The intuition behind transfer learning is that if a model trained on a large and general enough dataset, this model will effectively serve as a **generic model of the visual world**.

Transfer Learning with Neural Networks

The intuition behind transfer learning is that if a model trained on a large and general enough dataset, this model will effectively serve as a generic model of the visual world.

You can then take advantage of these learned features without having to start from scratch training a large model on a large dataset.

A **Pre-trained model** is a model that is trained on the source domain for a source task.

Pre-trained model

A **Pre-trained model** is a model that is trained on source domain for a source task.

Think **Object Detection Model Zoo**

Pre-trained model

Car

12

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md

Digitale Bildverarbeitung und Mustererkennung [2, 7]

A **Pre-trained model** is a model that is trained on the source domain for a source task.

The source domain is usually a **large dataset**.

Pre-trained model

A **Pre-trained model** is a model that is trained on the source domain for a source task.

The source domain is usually a large dataset.

Think COCO, ImageNet, PASCAL VOC

Pre-trained model

You either use a **pre-trained model as it is**.

Pre-trained model

You either use a pre-trained model as it is.

- No additional training
- Usually performance average or low

Pre-trained model

You can **fine-tune** a **pre-trained model** by retraining on additional data.

17

- Additional work to set up retraining pipeline
- Usually performance drops in the source domain
- **Performance improvement** in the target domain

Transfer Learning with Neural Networks - Feature Extraction

You can **repurpose** the **pre-trained layers** as feature extraction layers for low level features.

And adding layers that learn the required high level features on the new data.

Transfer Learning with Neural Networks - Feature Extraction

You can repurpose the pre-trained layers as feature extraction layers for low level features.

And adding layers that learn the required high level features on the new data.

- Additional work to assemble layer structure
- Regularization effects
- Performance improvement in the target domain
- Output layer becomes adjustable (such as for adding a class)

Digitale Bildverarbeitung und Mustererkennung [2, 7]

20

So how do we evaluate correctness of a detection?

Define when a detection is correct and when it is not. A prediction will usually not overlap perfectly with the ground truth.

So how do we evaluate correctness of a detection?

Define when a detection is correct, a true positive and when it is not. A prediction will usually not overlap perfectly with the ground truth.

A correct detection is based on **Intersection over Union (IoU)** with the ground truth

$$IoU(A,B) = \frac{A \cap B}{A \cup B}$$

$$IoU \ge p$$
, $p \in (0,1)$

Precision

$$P = \frac{TP}{TP + FP}$$

$$TP = True \ Positives$$
 $FP = False \ Positives$
 $P = Precision$

Correct detections over the number of predicted detections.

Recall

$$R = \frac{TP}{TP + FN}$$

$$FN = False Negatives$$

 $R = Recall$

Correct detections over the number of real Object Instances.

F1 Score

$$F1 = 2 \cdot \frac{P \cdot R}{P + R}$$

Harmonic mean of precision and recall.

Precision Recall Curve

By moving the probability threshold of the outputs of the model we can fill in precision recall curve. When deploying a model you would need to set exactly <u>one</u> threshold.

Box	Prob.	Correct
Α	0.95	True
В	0.85	True
С	0.7	False
D	0.5	True
E	0.3	False
F	0.2	False

TP	FP	FN	Prec.	Rec.
1	0	2	1	0.33
2	0	1	1	0.66
2	1	1	0.66	0.66
3	1	0	0.75	1
3	2	0	0.6	1
3	3	0	0.5	1

Precision Recall Curve

By moving the probability threshold of the outputs of the model we can fill in precision recall curve. When deploying a model you would need to set exactly <u>one</u> threshold.

Average Precision (AP)

AP is the area under the curve of the Precision Recall Curve.

$$AP = \sum_{n=1}^{N} (R_n - R_{n-1}) P_n$$

 $R_n = Recall at threshold step n$

 $P_n = Precision$ at threshold step n

Rec.	
0.33	
0.66	
0.66	
1	
1	
1	

$$AP = 0.33 + 0.33 + 0 + 0.26 + 0 + 0 = 0.92$$

Digitale Bildverarbeitung und Mustererkennung [2, 7]

Precision Recall Curve

By moving the probability threshold of the outputs of the model we can fill in precision recall curve. When deploying a model you would need to set exactly <u>one</u> threshold.

Average Precision (AP)

AP is the area under the curve of the Precision Recall Curve.

$$AP = \sum_{n=1}^{N} (R_n - R_{n-1})P_n$$
 $R_n = Recall \ at \ threshold \ step \ n$ $P_n = Precision \ at \ threshold \ step \ n$

mean Average Precision (mAP)

Average Precision over different classes.

$$mAP = \frac{1}{N} \sum_{c}^{N} AP_{c}$$

 $c = current\ class$

N = amount of classes

mAP@[0.5:0.05:0.95]

COCO mAP.

Average of Mean Average Precision over a set of IoU levels (0.5, 0.55, 0.6,..., 0.95).

Digitale Bildverarbeitung und Mustererkennung [2, 7]

Course overview

Deep Learning Foundations

Classification & Object Detection and Transfer Learning

Segmentation Networks

Deep Reinforcement Learning

Generative Adversarial Networks

Recurrent Neural Networks

Introduction – Segmentation a problem statement

Segmentation is classification on pixel-level, which results in super-pixels or segments or groups of pixels based on some criteria.

Semantic Segmentation

Instance Segmentation

Introduction – Applications for segmentation

Autonomous Driving

- Scene understanding
- Understanding of shapes
- Free space detection

Geo Analytics Medical Imaging

https://www.cityscapes-dataset.com/

Introduction – Applications for segmentation

Autonomous Driving

Geo Analytics

- Building structures
- Road network analysis
- Wildfire detection
- Water supply tracking
- Real time crisis management
- Weather prediction

https://github.com/mapbox/robosat

Medical Imaging

Introduction – Applications for segmentation

Autonomous Driving Geo Analytics

Medical Imaging

- Tissue localization and analysis
- Volume approximations
- Surgery planning
- Temporal tumor or tissue development
- Tooling for drug testing

https://osf.io/snb6p/

Introduction – Conventional segmentation approaches

In order to design neural networks it is a good thing to really understand the task at hand.

Thresholding
Edge detection
Clustering

Introduction – Conventional segmentation approaches

Thresholding

The simplest method of image segmentation is thresholding.

This method is based on a threshold value to turn a gray-scale image into a binary image (mask).

Usually this is just one step of many.

Edge detection Clustering Region growing

Thresholding on Zebrafish for eye segmentation

Lena Test image

Lena, the 'hello world!' of image processing. 330x330

Cover photo of 1972 Playboy magazine of the Swedish model Lena Söderberg.

Since then Lena was a guest at several IEEE conferences. The image also sparked discussions on gender-equality in the male-dominated field of engineering.

It is a good test image because of its detail, flat regions, shading, and texture.

https://en.wikipedia.org/wiki/Lenna

Introduction – Conventional segmentation approaches

Thresholding

Edge detection

Segment boundaries and edges are closely related.

Since there is often a large gradient at the segment boundaries.

Clustering

Canny Edge Detection (mutli-step approach)

$$L_x = egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix}\! L \quad ext{and} \quad L_y = egin{bmatrix} +1 & +2 & +1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix}\! L.$$

Sobel Operators for Edge Detection

Introduction – Conventional segmentation approaches

Thresholding Edge detection

Clustering (Color quantization)

K-means with 3 features (R,G,B) and K centroids.

The centroids are iteratively adjusted until convergence.

After the clustering, the centroid values are applied to the pixels in their cluster.

Clustering for K=4 (top) and K=8 (bottom)

References

- [1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org.
- [2] Andrej Karpathy. Cs231n: Convolutional neural networks for visual recognition. http://cs231n.github.io/neural-networks-3/, 2018. Zugriff: 20.01.2018.
- [3] Schutera, Mark, Steffen Just, Jakob Gierten, Ralf Mikut, Markus Reischl, and Christian Pylatiuk. 2019. "Machine Learning Methods for Automated Quantification of Ventricular Dimensions." OSF. March 28. osf.io/snb6p.
- [4] Mark Schutera, Thomas Dickmeis, Marina Mione, Ravindra Peravali, Daniel Marcato, Markus Reischl, Ralf Mikut, and Christian Pylatiuk. Automated phenotype pattern recognition of zebrafish for high-throughput screening. *Bioengineered*, 7(4):261–265, 2016.
- [5] Canny, J., A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.

This lecture in one slide

Introduction to segmentation

Deep dive U-Net

Segmentation with neural networks Basic structure Overview state-of-the-art Datasets and benchmarking

Why classical segmentation approaches

- Interpretability
- Only a few samples needed
- No labeling needed
- No training needed
- Usually better runtime during inference

Why not?

Why classical segmentation approaches

Why segmentation by neural networks?

- Do generalize better
- Feature engineering has a limited capacity to capture semantics
- Feature engineering is expensive and time consuming

Feature Representation by Convolution

Idea is to classify each pixel of an input image by representation learning

Downsampling
Upsampling
Parameter sharing

Feature Representation by Convolution

0	0	0	0	0	0	0
0	1	2	0	0	0	0
0	2	2	0	0	0	0
0	2	2	2	1	0	0
0	1	0	0	2	0	0
0	1	1	0	1	0	0
0	0	0	0	0	0	0

Zero-Padding is adding zero-valued pixel to the image border (gray area).

Downsampling
Upsampling
Parameter sharing

Feature Representation by Convolution

0	0	0	0	0	0	0
0	1	2	0	0	0	0
0	2	2	0	0	0	0
0	2	2	2	1	0	0
0	1	0	0	2	0	0
0	1	1	0	1	0	0
0	0	0	0	0	0	0

	0	0	-1	
	-1	0	0	
	-1	-1	-1	Filte
i		<u> </u>		

Bias

-4	-4	0	
-3	-4	ကု	
0	-3	-1	Output

Zero-padded image

Downsampling
Upsampling
Parameter sharing

Feature Representation by Convolution

0	0	0	0	0	0	0
0	1	2	0	0	0	0
0	2	2	0	0	0	0
0	2	2	2	1	0	0
0	1	0	0	2	0	0
0	1	1	0	1	0	0
0	0	0	0	0	0	0

0	0	-1	
-1	0	0	
-1	-1	-1	Filter
0	Bia	IS	

Downsampling
Upsampling
Parameter sharing

Amount of filters or convolution depth: 1 Filter step size or Stride: 2 Zero-padded image

Feature Representation by Convolution

0	0	0	0	0	0	0
0	1	2	0	0	0	0
0	2	2	0	0	0	0
0	2	2	2	1	0	0
0	1	0	0	2	0	0
0	1	1	0	1	0	0
0	0	0	0	0	0	0

Downsampling
Upsampling
Parameter sharing

Review edge detector:

Similar idea, now the parameters of the filters are learned. We want a lot of filters!

$$L_x = egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix}\! L \quad ext{and} \quad L_y = egin{bmatrix} +1 & +2 & +1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix}\! L.$$

Feature Representation by Convolution

0	0	0	0	0	0	0
0	1	2	0	0	0	0
0	2	2	0	0	0	0
0	2	2	2	1	0	0
0	1	0	0	2	0	0
0	1	1	0	1	0	0
0	0	0	0	0	0	0

Downsampling
Upsampling
Parameter sharing

Review edge detector:

Similar idea, now the parameters of the filters are learned. And we want to go deep!

Convolutions

Downsampling

Convolutions at original image resolution are computational expensive: Filter dimensions x image dimensions x number of filters x number of input channels.

Motivating a convolutional encoder-decoder structure and Downsampling.

Upsampling Parameter sharing

Convolutions

Downsampling

Convolutions at original image resolution are computational expensive: Filter dimensions x image dimensions x number of filters x number of input channels.

Motivating a convolutional encoder-decoder structure and Downsampling.

Upsampling Parameter sharing

http://cs231n.github.io/

Convolutions

Downsampling

Strided convolutions

Filter 3x3x1

Zero-padded image

Convolutions

Downsampling

Strided convolutions

Filter 3x3x1

Upsampling Parameter sharing

Zero-padded image

Stride 1

Convolutions

Downsampling

Strided convolutions

Filter 3x3x1

Upsampling Parameter sharing

Zero-padded image

Stride 2

Convolutions

Downsampling

Strided convolutions

Filter 3x3x1

Upsampling Parameter sharing

Stride 1

Convolutions

Downsampling

Max Pooling

Max Pooling 3x3 Stride 3

Upsampling Parameter sharing

Convolutions

Downsampling

Max Pooling

Intuition is to decrease the resolution while keeping the strongest features of each channel.

Upsampling Parameter sharing

https://selfdrivingcars.mit.edu/

Convolutions Downsampling

Upsampling

Classification needs to happen in original image resolution

Motivating Upsampling inside the network structure.

Convolutions Downsampling

Upsampling

Nearest neighbor

3x3 Stride 3

6	6	6	7	7	7
6	6	6	7	7	7
6	6	6	7	7	7
9	9	9	8	8	8
9	9	9	8	8	8
9	9	9	8	8	8

Convolutions Downsampling

Upsampling

Bed of Nails

3x3 Stride 3

6	0	0	7	0	0
0	0	0	0	0	0
0	0	0	0	0	0
9	0	0	8	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Convolutions Downsampling

Upsampling

Transpose convolution

Learnable Upsampling, also known as: Upconvolution, or Deconvolution

Stride: 3

Padding: 1

Convolutions
Downsampling
Upsampling

Skip connections

Trade-off between classification and localization

- High level features from later in the network, enable high classification performance, since they are more discriminative and contain more useful semantic information.
- On the other hand, those deep features have low resolution and, thus pose a problem for localization performance.
- Problem of vanishing gradients was solved with skip connections.

Convolutions
Downsampling
Upsampling

Skip connections

Combining low-level features, which have high localization accuracy

With the high-level features, which have are descriptive but low-resolution.

http://cs231n.github.io/

Last layer

Last Layer results in a tensor with $\mbox{\bf H} \times \mbox{\bf W}$ image resolution and a depth of

C: Number of classes to segment.

The last layer should encode the values into a range of values of (0;1).

Usually either with softmax or sigmoid function.

Cross-entropy
Dice-coefficient

http://cs231n.github.io/

Neural Network Activation Functions - Review

Sigmoid

Binary classification only.

The probability for different classes does not need to sum to one.

Simply take the highest class probability.

class	model out (x_i)	prob out (\hat{y}_i)
cow	2.0	0.88
grass	1.0	0.73
background	-3.0	0.47

$$\hat{y}_i = 1 - \frac{1}{1 + e^{-x_i}}$$

http://cs231n.github.io/neural-networks-1/

Neural Network Activation Functions - Review

Softmax

Normalized exponential function

Often used for multi-class segmentation.

Probability sum will be 1.

û	_	e^{x}	i
y_i	_	$\overline{\sum_{j=1}^n}$	e^{x_j}

class	model out (x_i)	prob out (\hat{y}_i)
COW	2.0	0.72
grass	1.0	0.27
oackground	0.1	0.01

Last layer

Binary Cross-entropy

Dice-coefficient

$$L = -\frac{1}{n} \sum_{i=1}^{n} (\widetilde{y}_i \cdot \log(\widehat{y}_i) + (1 - \widetilde{y}_i) \cdot \log(1 - \widehat{y}_i))$$

 $\tilde{y}_i = expected pixel class (boolean)$

 $\hat{y}_i = predicted pixel class, \hat{y}_i \in (0,1)$

Last layer

Binary Cross-entropy

Dice-coefficient

$$L = -\frac{1}{n} \sum_{i=1}^{n} (\widetilde{y}_i \cdot \log(\widehat{y}_i) + (1 - \widetilde{y}_i) \cdot \log(1 - \widehat{y}_i))$$

 $\tilde{y}_i = expected pixel class (boolean)$

 $\hat{y}_i = predicted pixel class, \hat{y}_i \in (0,1)$

 $\widetilde{y_i} \cdot \log(\widehat{y_i}) = error from positive class$

 $(1 - \tilde{y_i}) \cdot \log(1 - \hat{y_i}) = error from negative class$

Last layer

$$L = -\frac{1}{n} \sum_{i=1}^{n} (\widetilde{y}_i \cdot \log(\widehat{y}_i) + (1 - \widetilde{y}_i) \cdot \log(1 - \widehat{y}_i))$$

Binary Cross-entropy

Heavily penalizes opposing predictions.

And gives rise to the problem of imbalanced classes.

Dice-coefficient

Last layer Binary Cross-entropy

Dice-coefficient

Similar to the IoU (Intersection over union), and thus easy to interpret.

More robust with respect to imbalanced classes.

$$L = 1 - \frac{2\sum_{i}^{n} \tilde{y}_{i} \cdot \hat{y}_{i}}{\sum_{i}^{n} \tilde{y}_{i}^{2} + \sum_{i}^{n} \hat{y}_{i}^{2}}$$

 $\tilde{y}_i = expected pixel class (boolean)$

 $\hat{y}_i = predicted pixel class, \hat{y}_i \in (0,1)$

Last layer Binary Cross-entropy

Dice-coefficient

Similar to the IoU (Intersection over union), and thus better interpretability.

More robust with respect to imbalanced classes.

$$L = 1 - \frac{2\sum_{i}^{n} \tilde{y}_{i} \cdot \hat{y}_{i}}{\sum_{i}^{n} \tilde{y}_{i}^{2} + \sum_{i}^{n} \hat{y}_{i}^{2}}$$

error 0.38

Neural Network Segmentation - Imbalanced classes

Thought experiment (at home)

Assumption:

The maximum number of class 1 pixels in a single sample is 1.

This simulates an extreme class imbalance ratio of 1 to 8.

ground truth

Neural Network Segmentation - Imbalanced classes

Thought experiment (at home)

Assumption:

The maximum number of class 1 pixels in a single sample is 1

What is the expected error if the model tries to predict a single pixel of class 1 and fails?

Neural Network Segmentation - Imbalanced classes

Thought experiment (at home)

Assumption:

The maximum number of class 1 pixels in a single sample is 1

What is the expected error if the model tries to predict a single pixel of class 1 and fails?

BCE 0.22 DL 0.66

Thought experiment (at home)

Assumption:

The maximum number of class 1 pixels in a single sample is 1

What is the expected error if the model tries to predict a single class 1?

What is the maximal expected error if the model predicts class 2 only?

Thought experiment (at home)

Assumption:

The maximum number of class 1 pixels in a single sample is 1

What is the expected error if the model tries to predict a single class 1?

What is the maximal expected error if the model predicts class 2 only?

BCE 0.11 DL 0.5

Thought experiment (at home)

How high is the pressure to get locked in a local minimum if predictions are initially random?

Thought experiment (at home)

How high is the pressure to get locked in a local minimum if predictions are initially random?

Thought experiment (at home)

How high is the pressure to get locked in a local minimum if predictions are initially random?

How to deal with imbalanced classes

Choose dice-loss over cross-entropy.

How to deal with imbalanced classes

Choose dice-loss over cross-entropy.

Balance your cross-entropy according to the class imbalance.

In our case
$$\beta = 7/8$$

$$ext{BCE}\left(p,\hat{p}
ight) = -\left(eta p \log(\hat{p}) + (1-eta)(1-p) \log(1-\hat{p})
ight)$$

Neural Network Segmentation - Datasets and benchmarking

PASCAL Visual Object Classes

Pixel-wise segmentation of objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects).

Annotations

Person, animals, vehicles, indoor.

Number of samples

6929 Pixel-wise instance level annotations.

Metric

Mean Intersection over Union.

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html

Neural Network Segmentation - Datasets and benchmarking

Common Objects in Context

COCO-Stuff augments 164K images with pixel-level stuff annotations for semantic segmentation.

Annotations

91 stuff classes (wall, grass, etc.) and 80 thing classes (person, elephant, etc.), as well as captions.

Number of samples

164000 dense pixel-level annotations and instance level annotations for things.

Metric

Mean Intersection over Union.

https://github.com/nightrome/cocostuff

Neural Network Segmentation - Datasets and benchmarking

Cityscapes

The Cityscapes Dataset focuses on semantic understanding of urban street scenes.

Annotations

City scene semantic and instance-wise pixel annotations (road, person, pole, etc.).

Number of samples

30 classes in 5000 fine and 20000 coarse annotated images.

Metric

Mean Intersection over Union and Instance Intersection over Union.

https://www.cityscapes-dataset.com/

Neural Network Segmentation - Overview state-of-the-art

Architectures over time

Fully Convolutional Network	2015
ParseNet	2015
Convolutional and Deconvolutional Networks	2015
U-Net	2015
Feature Pyramid Network	2016
Mask R-CNN	2017
DeepLab	2017

Neural Network Segmentation - Overview state-of-the-art

Fully Convolutional Network

First end-to-end trained Fully Convolutional Network fc image segmentation.

Transfer Learning approach, modifying well known architectures (such as VGG16).

Ending with an upsampling layer with one channel per class.

Fully Convolutional Networks for Semantic Segmentation

Jonathan Long* Evan Shelhamer* Trevor Darrell UC Berkeley
{jonlong, shelhamer, trevor}@cs.berkeley.edu

https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf

Neural Network Segmentation - Overview state-of

Convolutional and Deconvolutional Networks

Introducing a encoder-decoder architecture.

From the convolutional encoding, the deconvolution branch generates a dense pixel-wise class probability map, by successive:

Unpooling, deconvolutions, and rectifications.

https://arxiv.org/pdf/1505.04366.pdf

Neural Network Segmentation - Deep Dive U-Net

Deep Dive U-Net

The U-Net is a symmetric, deep convolutional neural network.

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

Data Igmentation

Train segmentation network

> Ventricular dimension estimation

Neural Network Segmentation - Overview state-of-the-art

DeepLabv3

Combining Atrous Convolutions (dilated convolutions) with a pyramidal architecture.

https://arxiv.org/pdf/1706.05587.pdf

Neural Network Segmentation - Basic structure

Atrous Convolution

Introducing an additional parameter, called the dilation rate.

Defining a spacing between the values in a filter map.

Neural Network Segmentation - Basic structure

Atrous Convolution

Introducing an additional parameter, called the dilation rate.

Defining a spacing between the values in a filter map.

Filter 3x3

Dilation rate: 2

Stride: 1

Padding: 1

Neural Network Segmentation - Basic structure

Atrous Convolution

Introducing an additional parameter, called the dilation rate.

Defining a spacing between the values in a filter map.

This enhances the field of view while keeping the computational cost low.

