Amendment to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (currently amended) A method of embedding digital watermark information
b₁ - bn (2 ≤ n) in image data, comprising steps of:

dividing the image data into a plurality of areas S each consisting of M \times N (1 \leq M, N) pixels;

defining a plurality of areas G each consisting of $P \times Q$ (1 $\leq P$, Q) of the areas S:

allocating each of the areas S constituting each area G to some one of: areas T_1 - T_n which said digital watermark information b_1 - b_n , a bit value of the digital watermark information being 0 or 1, is respectively embedded and areas H_1 - H_m (1 \leq m) in which any of bit information 0 and 1 is not embedded;

locating areas T_1 - T_n and areas H_1 - H_m in a predetermined same arrangement in each area G; and

locating one or more areas T and one or more areas H in a predetermined arrangement in each area G; and

locating the plurality of areas G in a predetermined rule.

2. (currently amended) A method of embedding digital watermark information $b_1 - b_n (2 \le n)$ in image data, comprising steps of:

dividing the image data\into a plurality of areas S each consisting of M × N (1 ≤ M, N) pixels;

defining a plurality of areas G each consisting of $P \times Q$ (1 $\leq P$, Q) of the areas

allocating each of the areas S constituting each area G to some one of: areas T_1 - T_n in which said digital watermark information b_1 - b_n , a bit value of the digital watermark information being 0 or 1, is respectively embedded, areas J_1 - J_k (1 \leq k) in which information p_1 - p_k (1 \leq k) specifying an embedding format for embedding said digital watermark information b_1 - b_n in said areas T_1 - T_n , and areas H_1 - H_m (1 \leq m) in which any of bit information 0 and 1 is not embedded;

locating areas T_1 - T_n , areas J_1 - J_k and areas H_1 - H_m in a predetermined same arrangement in each area G; and

locating one or more areas T, one or more areas H in a predetermined arrangement in each area G; and

locating the plurality of areas G in a predetermined rule.

3. (original) The method of embedding digital watermark information according to Claim 2, wherein:

said digital watermark information b_1 - b_n is embedded by increasing or decreasing pixel data values in the corresponding areas T_1 - T_n according to a bit value (0, 1) of each bit of the digital watermark information b_1 - b_n ; and

said information p_1 - p_k specifying said embedding format is embedded such that said information indicates a pattern of respective increasing/decreasing

directions in the area T_1 - T_n for a bit value of the digital watermark information, in each area G to which the areas J_1 - J_k embedded with said information p_1 - p_k belong.

4. (currently amended) The method of embedding digital watermark information according to Claim 1, wherein;

each of said areas G includes a plurality of said said areas H that have been allocated $\underline{H_1}$ - $\underline{H_m}$ which have been predetermined in a location so as to be asymmetric in vertical and horizontal directions in the area G in question.

5. (currently amended) A method of extracting digital watermark information, for extracting the digital watermark information $b_1 - b_n \ (2 \le n)$, a bit value of the digital watermark information being 0 or 1, from image data in which said digital watermark information is embedded, comprising steps of:

dividing the image data into a plurality of areas S each consisting of M × N (1 ≤ M, N) pixels;

detecting areas H_1 - H_m (1 \leq m) in which any of bit information 0 and 1 is not embedded, from said plurality of areas S; and

recognizing a plurality of areas G each consisting of $P \times Q$ ($\uparrow \leq P$, Q) of the areas S, said plurality of areas G being located on said image data, and said recognition being carried out based on locations of said detected areas $H_1 - H_m$ ($1 \leq m$) on said image data by comparing locations of said detected areas $H_1 - H_m$ on said image data and locations of predetermined areas $H_1 - H_m$ in the areas S.

6. (currently amended) A method of extracting digital watermark information, for extracting the digital watermark information $b_1 - b_n$ ($2 \le n$), a bit value of the digital watermark information being 0 or 1, from image data in which said digital watermark information is embedded, comprising steps of:

dividing the image data into a plurality of areas S each consisting of M × N (1 \leq M, N) pixels; detecting areas H₁ - H_m (1 \leq m) in which any of bit information 0 and 1 is not embedded, from said plurality of areas S;

recognizing a plurality of areas G each consisting of $P \times Q$ (1 $\leq P$, Q) of the areas S, said plurality of areas G being located on said image data, and said recognition being carried out by comparing locations of said detected areas $H_1 - H_m$ on said image data and locations of predetermined areas $H_1 - H_m$ in the areas Sbased on locations of said detected areas $H_1 - H_m$ (1 $\leq m$) on said image data;

in each of the plurality of areas G recognized, extracting information $p_1 - p_k$ (1 \leq k) from areas $J_1 - J_k$ in which said information $p_1 - p_k$ (1 \leq k) in which said information $p_1 - p_k$ (1 \leq k) should be embedded, said information $p_1 - p_k$ specifying an embedding format for embedding said digital watermark information $b_1 - b_n$ respectively in said areas $T_1 - T_n$;

recognizing the embedding format of the digital watermark information b_1 - b_n in the areas T_1 - T_n in the area G in question; and

extracting the digital watermark information b_1 - b_n from the areas T_1 - \sqrt{n} , according to the recognized embedding format.

7. (original) The method of extracting digital watermark Information according to Claim 6, wherein:

for each of the plurality of groups G recognized, the information $p_1 - p_k$ "embedded in the areas $J_1 - J_k$ is extracted to recognize a pattern of increasing/decreasing directions of pixel data values for a bit value of the digital watermark information, in the area G in question; and

each bit value of the digital watermark information b_1 - b_n embedded in the areas T_1 - T_n is detected according to the recognized pattern of increasing/decreasing directions.

8. (currently amended) The method of extracting digital watermark information according to Claim 5, wherein a plurality of areas H are detected from each of the areas G;

the detected areas H are compared with an a predetermined location in the areas H₁ - H_m, embedding pattern for the areas H, said predetermined location embedding pattern being determined in advance such that the areas H become asymmetric in vertical and horizontal directions in the area G in question; and contents of image processing carried out on the image data are judged.

9. (currently amended) A program product for making a computer execute a method of embedding digital watermark information $b_1 - b_n$ ($2 \le n$), a bit value of the digital watermark information being 0 or 1, in image data, comprising:

codes for dividing the image data into a plurality of areas S each consisting of $M \times N$ (1 $\leq M$, N) pixels;

codes for defining a plurality of areas G each consisting of $P \times Q$ (1 $\leq P$, Q) of the areas S;

codes for allocating each of the area S constituting each area G to some one of: areas T_1 - T_n in which said digital watermark information b_1 - b_n is respectively embedded and areas H_1 - H_m (1 \leq m) in which any of bit information 0 and 1 is not embedded;

codes for locating one or more areas $\frac{1}{T}$ and one or more areas $\frac{1}{T_1}$. $\frac{1}{T_N}$ and one or more areas $\frac{1}{T_1}$. $\frac{1}{T_1}$ and one or more areas $\frac{1}{T_1}$. $\frac{1}{T_1}$ and one or more areas $\frac{1}{T_1}$ and one or more areas $\frac{1}{T_1}$. $\frac{1}{T_1}$ and one or more areas $\frac{1}{T_1}$ and $\frac{1}{T_1}$ and one or more areas $\frac{1}{T_1}$ and one or more areas $\frac{1}{T_1}$ and $\frac{1}{T_1}$ and one or more areas $\frac{1}{T_1}$ and $\frac{1}{T_1}$ and one or more areas $\frac{1}{T_1}$ and $\frac{1}{T_1}$ and one or more areas $\frac{1}{T_1}$ and one or mor

10. (currently amended) A program product for making a computer execute a method of embedding digital watermark information $b_1 - b_n$ (2 $\leq n$) in image data, comprising:

codes for dividing the image data into a plurality of areas S each consisting of $M \times N \ (1 \le M, N)$ pixels;

codes for defining a plurality of areas G each consisting of $P \times Q$ (1 $\leq P$, Q) of the areas S;

codes for allocating each of the areas S constituting each area G to some one of: areas T_1 - T_n in which said digital watermark information b_1 - b_n is respectively embedded, areas J_1 - J_k (1 \leq k) in which information p_1 - p_k (1 \leq k) specifying an

embedding format for embedding said digital watermark information b_1 - b_n , a bit value of the digital watermark information being 0 or 1, in said areas T_1 - T_n , and areas H_1 - H_m (1 \leq m) in which any of bit information 0 and 1 is not embedded;

codes for locating one or more areas \overline{T} , one or more areas \overline{J} , and one or more areas \overline{H} , and areas $\overline{J}_1 - \overline{J}_k$ in a predetermined same arrangement in each area \overline{G} ;

codes for locating the plurality of areas G in a predetermined rule; and a computer readable storage medium for holding the codes.

11. (original) The program product according to Claim 10, further comprising: codes for embedding said digital watermark information b₁ - b_n by increasing or decreasing pixel data values in the corresponding areas T₁ - T_n according to a bit value (0, 1) of each bit of the digital watermark information b₁ - b_n; and

codes for embedding said information p_1 - p_k specifying said embedding format such that said information indicates a pattern of respective increasing/decreasing directions in the areas T_1 - T_n for a bit value of the digital watermark information, in each area G to which the areas J_1 - J_k embedded with said information p_1 - p_k belong.

12. (currently amended) The program product according to Claim 9, wherein: each of said areas G includes a plurality of said areas H that have been allocated H₁ - H_m which have been predetermined in a location so as to be asymmetric in vertical and horizontal directions in the area G in question.

13. (currently amended) A program product for making a computer execute a method of extracting digital watermark information $b_1 - b_n$ ($2 \le n$), a bit value of the digital watermark information being 0 or 1, from image data in which said digital watermark information is embedded, comprising:

codes for dividing the image data into a plurality of areas S each consisting of $M \times N \ (1 \le M, N)$ pixels;

codes for detecting areas H_1 - H_m (1 \leq m)\in which any of bit information 0 and 1 is not embedded, from said plurality of areas S;

codes for recognizing a plurality of areas G each consisting of P × Q (1 \leq P, Q) of the areas S, said plurality of areas G being located on said image data, and said recognition being carried out by comparing locations of said detected areas H₁ - H_m on said image data and locations of predetermined areas H₁ - H_m in the areas S based on locations of said detected areas H₁ - H_m (1 \leq m) on said image data; and a computer readable storage medium for holding the codes.

14. (currently amended) A program product for making a computer execute a method of extracting digital watermark information $b_1 - b_n$ (2 \leq n), a bit value of the digital watermark information being 0 or 1, from image data in which said digital watermark information is embedded, comprising:

codes for dividing the image data into a plurality of areas S each consisting of M × N (1 ≤ M, N) pixels;

codes for detecting areas H₁ - Hm (2 ≤ m) in which any of bit information 0

and 1 is not embedded, from said plurality of areas S codes for recognizing a plurality of areas G each consisting of P × Q (1 \leq P, Q) of the areas S. said plurality of areas G being located on said image data, and said recognition being carried out by comparing locations of said detected areas H_1 - H_m on said image data and locations of predetermined areas H_1 - H_m in the areas S based on locations of said detected areas H_1 - H_m in the areas S based on locations of said detected areas H_1 - H_m (1 \leq m) on said image data;

codes for extracting, in each of the plurality of areas G recognized, information $p_1 - p_k$ (1 \leq k) from areas $J_1 - J_k$ in which said information $p_1 - p_k$ (1 \leq k) should be embedded, said information $p_1 - p_k$ specifying an embedding format for embedding said digital watermark information $b_1 - b_n$ respectively in said areas $T_1 - T_n$;

codes for recognizing the embedding format of the digital watermark information b_1 - b_n in the areas T_1 - T_n in the area G in question;

codes for extracting the digital watermark information b_1 - b_n from the areas T_1 - T_n , according to the recognized embedding format; and a computer readable storage medium for holding the codes.

15. (original) The program product according to Claim 14, further comprising: codes for extracting, for each of the plurality of groups G recognized, the information p_1 - p_k embedded in the areas J_1 - J_k , to recognize a pattern of increasing/decreasing directions of pixel data values for a bit value of the digital watermark information, in the area G in question, and to detect each bit value of the digital watermark information b_1 - b_n embedded in the areas T_1 - T_n according to the

recognized pattern of increasing/decreasing directions.

16. (original) The program product according to Claim 13, further comprising: codes for detecting a plurality of areas H from each of the areas G;

codes for comparing the detected areas H with an embedding pattern for the areas H, said embedding pattern being determined in advance such that the areas H become asymmetric in vertical and horizontal directions in the area G in question; and

codes for judging contents of image processing carried out on the image data.

17. (currently amended) An apparatus for embedding digital watermark information $b_1 - b_n \ (2 \le n)$ in image data, comprising:

a processing part for dividing the image data into a plurality of areas S each consisting of M × N (1 \leq M, N) pixels;

a processing part for defining a plurality of areas G each consisting of $P \times Q$ (1 $\leq P$, Q) of the areas S;

a processing part for allocating each of the areas S constituting each area G to some one of: areas T_1 - T_n in which said digital watermark information b_1 - b_n , a bit value of the digital watermark information being 0 or 1, is respectively embedded and areas H_1 - H_m (1 \leq m) in which any of bit information 0 and 1 is not embedded;

a processing part for locating one or more areas \overline{T} and one or more areas \overline{H} and one or more areas \overline{H}_1 - \overline{H}_m in a predetermined same arrangement in each area \overline{G} ; and

a processing part for locating the plurality of areas G in a predetermined rule.

18. (currently amended) An apparatus for embedding digital watermark information $b_1 - b_n$ (2 $\leq n$) in image data, comprising:

a processing part for dividing the image data into a plurality of areas S each consisting of M × N (1 \leq M, N) pixels;

a processing part for defining a plurality of areas G each consisting of $P \times Q$ (1 $\leq P$, Q) of the areas S;

a processing part for allocating each of the areas S constituting each area G to some one of: areas T_1 - T_n in which said digital watermark information b_1 - b_n , a bit value of the digital watermark information being 0 or 1, is respectively embedded, areas J_1 - J_k (1 \leq k) in which information p_1 - p_k (1 \leq k) specifying an embedding format for embedding said digital watermark information b_1 - b_n in said areas T_1 - T_n , and areas H_1 - H_m (1 \leq m) in which any of bit information 0 and 1 is not embedded;

a processing part for locating one or more areas \overline{T}_n one or more areas \overline{J}_1 - \overline{J}_k and one or more areas \overline{H}_1 - \overline{H}_m in a predetermined same arrangement in each area \overline{G} ; and

a processing part for locating the plurality of areas G in a predetermined rule.

19. (original) The apparatus for embedding digital watermark information according to Claim 18, further comprising:

a processing part for embedding said digital watermark information b_1 - b_n by increasing or decreasing pixel data values in the corresponding areas T_1 , T_n

according to a bit value (0, 1) of each bit of the digital watermark information $b_1 - b_n$; and

a processing part for embedding said information p_1 - p_k specifying said embedding format such that said information indicates a pattern of respective increasing/decreasing directions in the area T_1 - T_n for a bit value of the digital watermark information, in each area G to which the areas J_1 - J_k embedded with said information p_1 - p_k belong.

20. (currently amended) The apparatus for embedding digital watermark information according to Claim 17, wherein:

each of said areas G includes a plurality of said areas H that have been allocated H₁ - H_m which have been predetermined in a location so as to be asymmetric in vertical and horizontal directions in the area G in question.

21. (currently amended) An apparatus for extracting digital watermark information $b_1 - b_n$ ($2 \le n$), a bit value of the digital watermark information being 0 or 1, from image data in which said digital watermark information is embedded, comprising:

a processing part for dividing the image data into a plurality of areas S each consisting of M \times N (1 \leq M, N) pixels;

a processing part for detecting areas H_1 - H_m (1 \leq m) in which any of bit information 0 and 1 is not embedded, from said plurality of areas S; and a processing part for recognizing a plurality of areas G each consisting of P \times

Q (1 \leq P, Q) of the areas S, said plurality of areas G being located on said image data, and said recognition being carried out based on locations of said detected areas $H_1 - H_m$ (1 \leq m) on said image data by comparing locations of said detected areas $H_1 - H_m$ on said image data and locations of predetermined areas $H_1 - H_m$ in the areas S.

22. (currently amended) An apparatus for extracting digital watermark information $b_1 - b_n$ ($2 \le n$), a bit value of the digital watermark information being 0 or 1, from image data In which said digital watermark information is embedded, comprising:

a processing part dividing the image data into a plurality of areas S each consisting of M \times N (1 \leq M, N) pixels;

a processing part for detecting areas H_1 - H_m (1 $\stackrel{\backprime}{\succeq}$ m) in which any of bit information 0 and 1 is not embedded, from said plurality of areas S;

a processing part for recognizing a plurality of areas G each consisting of P × Q (1 \leq P, Q) of the areas S, said plurality of areas G being located on said image data, and said recognition being carried out by comparing locations of said detected areas H₁ - H_m on said image data and locations of predetermined areas H₁ - H_m in the areas S based on locations of said detected areas H₁ - H_m (1 \leq m) on said image data; a processing part for extracting, in each of the plurality of areas G recognized, information p₁ - p_k (1 \leq k) from areas J₁ - J_k in which said information p₁ - p_k (1 \leq k) should be embedded, said information p₁ - p_k specifying an embedding format for embedding said digital watermark information b₁ - b_n respectively in said areas T₁ -

 T_n ;

a processing part for recognizing the embedding format of the digital watermark information b_1 - b_n in the areas T_1 - T_n in the area G in question; and a processing part for extracting the digital watermark information b_1 - b_n from the areas T_1 - T_n , according to the recognized embedding format.

23. (original) The apparatus for extracting digital watermark information according to Claim 22, further comprising:

a processing part for extracting, for each of the plurality of groups G recognized, the information p_1 - p_k embedded in the areas J_1 - J_k , to recognize a pattern of increasing/decreasing directions of pixel data values for a bit value of the digital watermark information, in the area G in question, and to detect each bit value of the digital watermark information b_1 - b_n embedded in the areas T_1 - T_n , according to the recognized pattern of increasing/decreasing directions.

24. (currently amended) The apparatus for extracting digital watermark information according to Claim 21, further comprising:

a processing part for detecting a plurality of areas H from each of the areas G;

a processing part for comparing the detected areas H with an embedding pattern for the areas H_a predetermined location in the areas H_1 - H_m , said predetermined location embedding pattern being determined in advance such that the areas H become asymmetric in vertical and horizontal directions in the area G in

question; ahd

a processing part for judging contents of image processing carried out on the image data.

25. (currently amended) An apparatus for embedding digital watermark information b_1 - b_n (2 \leq n) in image data, comprising:

a processor; and

a storage unit for storing codes for making the processor execute a method of embedding the digital watermark information; wherein:

said codes comprises:

codes for dividing the image data into a plurality of areas S each consisting of $M \times N \ (1 \le M, N)$ pixels;

codes for defining a plurality of areas G each consisting of $P \times Q$ (1 $\leq P$, Q) of the areas S;

codes for allocating each of the areas S constituting each area G to some one of: areas T_1 - T_n in which said digital watermark information b_1 - b_n , a bit value of the digital watermark information being 0 or 1, is respectively embedded, areas J_1 - J_k , (1 \leq k) in which information P_1 - P_k (1 \leq k) specifying a embedding format for embedding said digital watermark information b_1 - b_n in said areas T_1 - T_n , and areas H_1 - H_m (1 \leq m) in which any of bit information 0 and 1 is not embedded;

codes for locating one or more areas $\overline{J_1}$, one or more areas $\overline{J_1}$, and one or more areas $\overline{J_1}$, and one or more areas $\overline{J_1}$. In predetermined same arrangement in each area $\overline{G_1}$; and

codes for locating the plurality of areas G in a predetermined rule.

26. (currently amended) An apparatus for extracting digital watermark information $b_1 - b_n$ ($2 \le n$), a bit value of the digital watermark information being 0 or 1, from image data in which said digital watermark information is embedded, comprising:

a processor; and

a storage unit for storing codes for making the processor execute a method of extracting the digital watermark information; wherein:

said codes comprises:

codes for dividing the image data into a plurality of areas S each consisting of $M \times N \ (1 \le M, N)$ pixels;

codes for detecting areas H_1 - H_m (1 \leq m) in which any of bit information 0 and 1 is not embedded, from said plurality of areas S;

codes for recognizing a plurality of areas G each consisting of $P \times Q$ (1 $\leq P$, Q) of the areas S, said plurality of areas G being located on said image data, and said recognition being carried out based on locations of said detected areas H_1 - Hm (1 \leq m) on said image data by comparing locations of said detected areas H_1 - H_m on said image data and locations of predetermined areas H_1 - H_m in the areas S; and codes for extracting, in each of the plurality of areas G recognized, information p_1 - p_k (1 \leq k) from areas J_1 - J_k in which said information p_1 - p_k (1 \leq k) should be embedded, said information p_1 - p_k specifying an embedding format for embedding said digital watermark information p_1 - p_n respectively in said areas T_1 - T_n .