Discrete Geometry - Second Assignment

\$1. CONVEXITY

PROBLEM 1. Show that Helly's Theorem does not hold if we have infinitely many convex sets.

LEMMA 1. Let $I_n = (0, 1/n)$. Then

$$\bigcap_{n\in\mathbb{Z}^+}I_n=\emptyset.$$

PROOF OF LEMMA 1. Assume towards a contradiction that the claim is false. It follows that there exists an element $i \in \bigcap_{n \in \mathbb{Z}^+} I_n$. That is 0 < i < 1/n for every $n \in \mathbb{Z}^+$. Therefore n < 1/i, for every $n \in \mathbb{Z}^+$. A contradiction to the Archimedean property for \mathbb{R} .

SOLUTION FOR PROBLEM 1. We give a counter-example. Consider the following convex set $I := \{(0, 1/n) : n \in \mathbb{Z}^+\} \subseteq \mathbb{R}$. Note that every two sets $I_1 = (0, 1/n_1)$, $I_2 = (0, 1/n_2)$, for some $n_1, n_2 \in \mathbb{Z}^+$, satisfies that $I_1 \cap I_2 \neq \emptyset$. Indeed, let $n_{\min} = \min(n_1, n_2)$ and notice that $1/(2n_{\min}) \in I_1 \cap I_2$. As the premise holds and Lemma 1 asserts that the consequence doesn't hold the claim follows.

§2. POINTS IN CONVEX POSITION

PROBLEM 2. How many steps are sufficient by the PHP?

SOLUTION FOR PROBLEM 2. We split the answer into cases:

- 1. If $m \ge k$, then one iteration is enough.
- 2. Otherwise, N iteration are enough where N is the minimum natural number that satisfies $\lceil N/c \rceil \ge k$, and c is the number of colours. That is $N = c \cdot (k-1) + 1$.

SOLUTION FOR PROBLEM 3. The Happy-Ending Theorem implies that any 5 points in general position form 4 points in convex position. Therefore as $k \ge 5$ it follows that P' must be in convex position.

§3. Incidences

PROBLEM 4. Let $a, b \in \mathbb{R}_{\geq 0}$. Prove $a + b = \Theta(\max\{a, b\})$.

SOLUTION FOR PROBLEM 4. Without loss of generality assume that $a \ge b$. It the follows that:

$$a \le a + b \le 2a$$
.

PROBLEM 5. In the class we proved the Crossing Lemma for the case that $e \ge 4v$. Here you asked to prove the Crossing Lemma for the case that $e \le 4v$.

SOLUTION FOR PROBLEM 5. The claim is vacuously valid as the lemma asserts that the crossing number is at least

$$\frac{e^3}{64v^2} - v \le \frac{64v^3}{64v^2} - v = v - v = 0.$$

Put in other words, the crossing number is at least zero, which is a vacuous truth.

PROBLEM 6. Prove that $\sqrt[3]{a+b} = \Theta\left(\sqrt[3]{a} + \sqrt[3]{b}\right)$.

SOLUTION FOR PROBLEM 6. Problem 4 asserts that is suffice to show that $\sqrt[3]{a+b} = \Theta\left(\max\left\{\sqrt[3]{a}, \sqrt[3]{b}\right\}\right)$. Therefore, assume without loss of generality that $a \ge b \ge 0$, and observe that

$$\sqrt[3]{a} \le \sqrt[3]{a+b} \le \sqrt[3]{2a} \le \sqrt[3]{2} \cdot \sqrt[3]{a}.$$

The claim follows.

§4. POLYTOPES AND DUALITY

PROBLEM 7. Express the cube and octahedron as H-polytopes.

SOLUTION FOR PROBLEM 7. We start with the octahedron. We embrace the notation that $\mathbf{x} := (x, y, z)^T \in \mathbb{R}^3$ is a vector, while x is an element in the vector. Trivially,

$$\begin{cases} \boldsymbol{x} := (x, y, z) \in \mathbb{R}^3 \colon y \ge 0, y \le 1 \\ z \ge 0, z \le 1 \end{cases} = \begin{cases} \boldsymbol{x} \in \mathbb{R}^3 \colon (0, 1, 0)^T \, \boldsymbol{x} \ge 1, (1, 0, 0)^T \, \boldsymbol{x} \le 1 \\ \boldsymbol{x} \in \mathbb{R}^3 \colon (0, 1, 0)^T \, \boldsymbol{x} \ge 1, (0, 1, 0)^T \, \boldsymbol{x} \le 1 \end{cases}$$

$$= \begin{cases} \boldsymbol{x} \in \mathbb{R}^3 \colon (0, 1, 0)^T \, \boldsymbol{x} \ge 1, (0, 1, 0)^T \, \boldsymbol{x} \le 1 \\ (0, 0, 1)^T \, \boldsymbol{x} \ge 1, (0, 1, 0)^T \, \boldsymbol{x} \ge -1 \\ \boldsymbol{x} \in \mathbb{R}^3 \colon (0, 1, 0)^T \, \boldsymbol{x} \ge 1, (0, -1, 0)^T \, \boldsymbol{x} \ge -1 \\ (0, 0, 1)^T \, \boldsymbol{x} \ge 1, (0, 0, -1)^T \, \boldsymbol{x} \ge -1 \end{cases}.$$

As the development of the equation is taught in high school and is pretty clear.

$$\left\{ \boldsymbol{x} := (x, y, z) \in \mathbb{R}^3 : \begin{array}{ll} -1 \leq x + y + z \leq 1 \\ -1 \leq x - y + z \leq 1 \\ -1 \leq x + y - z \leq 1 \\ -1 \leq x - y - z \leq 1 \end{array} \right\} = \left\{ \begin{array}{ll} (1, 1, 1)^T & \boldsymbol{x} \geq -1 \\ -(1, 1, 1)^T & \boldsymbol{x} \geq 1 \\ (1, -1, 1)^T & \boldsymbol{x} \geq -1 \\ (1, -1, 1)^T & \boldsymbol{x} \geq 1 \end{array} \right\}.$$

$$\left\{ \boldsymbol{x} := (x, y, z) \in \mathbb{R}^3 : \begin{array}{ll} -1 \leq x + y - z \leq 1 \\ -1 \leq x - y - z \leq 1 \end{array} \right\} = \left\{ \begin{array}{ll} (1, 1, 1)^T & \boldsymbol{x} \geq -1 \\ (1, -1, 1)^T & \boldsymbol{x} \geq 1 \\ (1, -1, -1)^T & \boldsymbol{x} \geq 1 \end{array} \right\}.$$

2

DEFINITION 1. A convex curve in \mathbb{R}^d is a curve that intersects every hyperplane in at most d points.

PROBLEM 8. The *moment curve* is given by

$$\gamma = \left\{ \left(t, t^2, t^3, ..., t^d\right) : t \in \mathbb{R} \right\}.$$

Prove that the moment curve is a convex curve.

PROOF OF PROBLEM 8. Let h be an hyper-plane in \mathbb{R}^d such that $\langle x, a \rangle = b$. Put another way, $a_1x_1 + \ldots, a_dx_d = b$. We consider how many $x \in \gamma$ satisfies the aforementioned equality. That is how many solution does the following equation has

$$a_1t + a_2t^2 + \dots + a_dt^d = b \iff a_1t + a_2t^2 + \dots + a_dt^d - b = 0.$$

As the fundamental theorem of algebra asserts that every polynomial of degree d has at most d roots the claim follows.

PROBLEM 9. Conclude that the number of facets of the cyclic polytope is

$$\begin{cases} \binom{n-d/2}{d/2} + \binom{n-d/2-1}{d/2-1} & \text{, if } 2|d, \\ \\ 2 \cdot \binom{n-\lfloor d/2\rfloor-1}{\lfloor d/2\rfloor-1} & \text{, otherwise.} \end{cases}$$

SOLUTION FOR PROBLEM 9. We write $p_1 \rightarrow p_2$ to denote that p_1 and p_2 are consecutive. We split the proof into cases:

d is even. As explained in class two configurations are possibles.

- 1. $p_1 \rightarrow p_2, p_3 \rightarrow p_4, \ldots, p_{d-1} \rightarrow p_d$. Therefore we gather every $p_{2k-1} \rightarrow p_{2k}$ to an element and considering the number of ways to order n-d points and d/2 bars in a raw when ordering between bins (two bars) is not counted. From discrete mathematics it follows that the result is $\binom{(n-d)+(d/2-1)}{d/2-1} = \binom{n-d/2-1}{d/2-1}$
- 2. $p_2 \rightarrow p_3, p_4 \rightarrow p_5, \dots, p_{d-1} \rightarrow p_d$. Here we have d/2 + 1 "bars", therefore, the result is $\binom{(n-d)+(d/2)}{d/2} = \binom{n-d/2}{d/2}$.

The claim follows as this is two complementary cases.

d is odd. As explained in class two configurations are possibles.

- 1. $p_1 \rightarrow p_2, p_3 \rightarrow p_4, \dots, p_{d-2} \rightarrow p_{d-1}$.
- 2. $p_2 \rightarrow p_3, p_4 \rightarrow p_5, ..., p_{d-1} \rightarrow p_d$.

Assume d=2k+1. In both cases the number of regions ("bars") is $\lfloor d/2 \rfloor +1=k+1$ and therefore totally there are $2 \cdot \binom{(n-2k-1)+k}{k} = 2 \cdot \binom{n-k-1}{k} = 2\binom{n-\lfloor d/2 \rfloor-1}{\lfloor d/2 \rfloor}$

REFERENCES

[1] J. Matoušek. *Lectures on discrete geometry*, volume 212 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 2002.