## Introduction to Search Relevance Ranking-Session III – Knowledge Distillation

Tutorial Link: <a href="https://dlranking.github.io/dlrr/">https://dlranking.github.io/dlrr/</a>

Data source: <a href="https://huggingface.co/datasets/xglue">https://huggingface.co/datasets/xglue</a>

XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation)

Presenters: Xue Li, Keng-hao Chang @ Microsoft Ads

Date: August 14th, 2022

## Agenda

- Knowledge distillation
- Case study in DistilBert
- Case study in Microsoft Ads for Ranking
- The colab

### **Pre-train and fine-tune**

- Natural Language Processing
- Pre-train on unsupervised tasks, e.g., Language Modeling
- Fine-tune on downstream NLP tasks, e.g., Question Answering, search relevance

 Large & powerful NLP models, even beat human!



### Pre-train

cheap large data on related domain

## Fine-tune

Expensive well-labeled data on downstream task

GLUE – General Language Understanding Evaluation

### **GLUE Scores (Top 8)**



## How large are pre-trained NLP models? (and distilled)





Learning semantic representations using convolutional neural networks for web search | Proceedings of the 23rd International Conference on World Wide Web (acm.org) (CDSSM)

TwinBERT | Proceedings of the 29th ACM International Conference on Information & Knowledge Management

## **Call outs**

### Will cover

- Knowledge distillation
- Practices of knowledge distillation

### Will not cover

- Other lighter BERT model techniques (Albert, Electra)
- All research directions of knowledge distillation

[2006.05525] Knowledge Distillation: A Survey (arxiv.org)

# Response level knowledge distillation

- Distil by learning softmax from teacher on a transfer set
  - i.e., soft label, dark knowledge\*
  - KL divergence
  - Vs. Logits

- $L_{ResD}(z_t, z_s) = \mathcal{L}_R(z_t, z_s) , \qquad (1)$
- $p(z_i, T) = \frac{\exp(z_i/T)}{\sum_j \exp(z_j/T)} , \qquad (2)$
- $L_{ResD}(p(z_t,T),p(z_s,T)) = \mathcal{L}_R(p(z_t,T),p(z_s,T)) . \quad (3)$



### [1503.02531] Distilling the Knowledge in a Neural Network (arxiv.org), Hinton

\*BERT-base's predictions for a masked token in "I think this is the beginning of a beautiful [MASK]" comprise two high probability tokens (day and life) and a long tail of valid predictions (future, story, world. . . ).

## Feature-based knowledge distillation

- Learning feature maps of the intermediate layers from teacher to student models
  - L2-norm distance, L1-norm distance, cosine loss etc.
  - Due to the significant differences between sizes of hint and guided layers, how to properly match feature representations of teacher and student also needs to be explored.

$$L_{FeaD}(f_t(x), f_s(x)) = \mathcal{L}_F(\Phi_t(f_t(x)), \Phi_s(f_s(x))), \quad (4)$$

 $f_t(x)$  and  $f_s(x)$  are the feature maps of

The transformation functions,  $\Phi_t(f_t(x))$ 

$$\Phi_s(f_s(x)),$$
 :

#### Feature-Based Knowledge Distillation



# Case study: distillBert



- 3 losses (for both response & feature)
  - Distillation loss
  - Training loss
  - Cosine loss

 $\mathcal{L}_{cos} = 1 - \cos(h_T, h_S)$ 

- Architecture
  - the number of layers is reduced by a factor of 2.
  - Initialize by teacher every other layer
- DistillBERT model retains almost 97% of the original BERT-base model's language understanding when evaluated on GLUE benchmarks. In addition to this, it is 40% smaller and 60% faster at inference.
- General-purpose pre-training distillation rather than a task-specific distillation

[1910.01108] DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter (arxiv.org)

## Case study: distillBert & distillation variant from Internal Representations

- (1) KL divergence loss across the self attention probabilities of all the transformer heads
- (2) the cosine similarity loss between the [CLS] activation vectors for the given layers



Figure 1: Knowledge distillation from internal representations. We show the internal layers that the teacher (left) distills into the student (right).



Figure 2: Performance vs. parameters trade-off. The points along the lines denote the number of layers used in BERT, which is reflected by the number of parameters in the x-axis.

[1910.03723] Knowledge Distillation from Internal Representations (arxiv.org)

# **Variants of Knowledge Distillation**

### Offline distillation

 Two steps: Pretrain teacher then distill student; one way; capacity gap

### Online distillation

- Both teacher and student are updated simultaneously
- E.g., multi-branch architecture, in which each branch indicates a student model and different branches share the same backbone network.
- E.g., Any one network can be the student model and other models can be the teacher during the training process.

### Self distillation

 the same networks are used for the teacher and the student model Teacher-Student Architecture



Fig. 9 Relationship of the teacher and student models.

- Adversarial Distillation
- Multi-Teacher Distillation
- Data-Free Distillation

# Case study: search relevance ranking at Microsoft Ads

- Point-wise relevance score by against human labels
- Used as externality in ranking
  - pDefect = 1-Relevance
  - RankScore = Bid \* pClick w\*pDefect



### Choice of student model

- Two tower
  - CDSSM, TwinBert
  - Doc embedding is offline computed
- BERT-like
  - cannot support fast compute, latency prohibitive.





## **Knowledge distillation for search Relevance**



### **Teacher Training**

 Narrow the gap between pre-trained models and target tasks

### **Inference Data**

• Score both labeled / unlabeled data

- Train a deployable student model
- Using scored unlabeled data

#### Student Fine-tuning

- Fine-tune student model
- Using scored labeled data

# Recipe of AdsBERT Distillation



**Initialization** 

Pre-trained BERT 340M params



**Pretrain** 

MLM/NSP 400M Ads data



Finetune

8 ad tasks 40M samples



Inference

Vast amount Proper distribution



**Distillation** 

CDSSM keep 70%

AUC gain

# **Case study: TwinBert**

- Two tower Bert
- Pooling & crossing layer

Table 2: ROC-AUC of TwinBERT models comparing with C-DSSM, BERT $_3$  and BERT $_{12}$  on two test sets

| Model                   | AUC <sub>1</sub> | AUC <sub>2</sub> |
|-------------------------|------------------|------------------|
| C-DSSM                  | 0.8713           | 0.8571           |
| BERT <sub>3</sub>       | 0.8995           | 0.9107           |
| TwinBERT <sub>cos</sub> | 0.8883           | 0.8743           |
| TwinBERT <sub>res</sub> | 0.9010           | 0.9113           |
| $BERT_{12}$             | 0.9011           | 0.9137           |

Table 3: Density differences of all 4 labels by comparing top 5 results from TwinBERT<sub>cos</sub> and C-DSSM

| bad   | fair  | good | excellent |
|-------|-------|------|-----------|
| -7.4% | -2.6% | 1.9% | 18.8%     |



Figure 3: nDCGs of TwinBERT<sub>cos</sub> and C-DSSM



Figure 1: TwinBERT Architecture

TwinBERT | Proceedings of the 29th ACM International Conference on Information & Knowledge Management

## Colab

• QADSM task in <u>xGLUE</u> dataset, which is extracted from real Bing Ads traffic.