Partie A - Exemples

- 1. Montrer que tout point fixe d'une application $f : [a, b] \rightarrow [a, b]$ est un point fixe de f^n pour n > 0.
- 2. Donner un exemple d'application continue $f : [a, b] \rightarrow [a, b]$ qui admet un 2-cycle.
- 3. Donner un exemple d'application continue $f : [a, b] \rightarrow [a, b]$ qui n'admet pas de 2-cycle.
- 4. Déterminer, selon la valeur de $\lambda \in]0,4]$, les points fixes et les 2-cycles de l'application

$$f: \left\{ \begin{array}{ccc} [0,1] & \to & [0,1] \\ x & \mapsto & \lambda x(1-x) \end{array} \right.$$

Partie B - Résultats d'existence

- 1. Montrer que toute application continue $f:[a,b] \rightarrow [a,b]$ admet un point fixe.
- 2. Soit un segment $[c,d] \subset [a,b]$ et une application continue $f:[a,b] \to [a,b]$ telle que

$$[c,d] \subset f([c,d]).$$

Montrer que f admet un point fixe dans [c,d].

Indication: on pourra introduire des antécédents de c et d par f dans [c,d].

3. Soit un segment $[c,d] \subset [a,b]$ et une application continue $f:[a,b] \to [a,b]$ telle que

$$[c,d]\subset f([a,b]).$$

Montrer qu'il existe un intervalle $[c', d'] \subset [a, b]$ tel que [c, d] = f([c', d']).