#### Class 4 8/30/17 **Mendelian Genetics**

- Announcements
- Class administration
- Check iLearn for suggested problems
- Office hours HH668C:
  - Mon 2 4pm
  - Will reschedule next week, check iLearn

#### i>clicker



or



- ☐ Did you bring your clicker remote today? GREAT!!
- ☐ Please check iLearn for your clicker score in gradebook (ignore any letter grades in gradebook)
- ☐ If your clicker score is missing, please e-mail me your clicker remote ID.

Tuesday, 9/5/17

HH 543, 2:10pm

## Biol 572/872 Ecology, **Evolution, & Conservation Biology Colloquium**

http://biology.sfsu.edu/content/EEC



#### Justen Whittall Santa Clara University

Intercontinental flower color enigma - evolution & ecology of the scarlet (& blue) pimpernel in California, Spain and Chile



#### **Romberg Tiburon Center Seminar Series**

http://rtc.sfsu.edu/seminar/index.htm

Wednesday, 9/6/17 **Bay Conference Center, 3:30PM** 



#### Cassia Pianca **Romberg Tiburon Center**

Coastal Geomorphology Evolution from Hours to Decades: Lessons from Video Remote Sensing



# Biol 871 Colloquium in Microbiology, Cell & Molecular Biology

http://biology.sfsu.edu/content/MCMB



#### Ben Blackman UC Berkeley

Evolving timekeepers: the genetics of natural variation in diurnal and seasonal biological rhythms

https://nature.berkeley.edu/blackmanlab/Blackman\_Lab/Welcome.html

## Mendel monitored 7 traits



- Seven pairs of contrasting traits that were true-breeding
- Mendel
  - determined that discrete units of inheritance exist and
  - predicted their behavior during the formation of gametes

Figure 2-3

#### Inheritance of seven contrasting traits

Table 2-1 Results of All Mendel's Crosses in Which Parents Differed in One Character

| Parental phenotype |                        | F <sub>1</sub> | F <sub>2</sub>            | F <sub>2</sub> ratio |
|--------------------|------------------------|----------------|---------------------------|----------------------|
| 1.                 | Round×wrinkled seeds   | All round      | 5474 round; 1850 wrinkled | 2.96:1               |
| 2.                 | Yellow×green seeds     | All yellow     | 6022 yellow; 2001 green   | 3.01:1               |
| 3.                 | Purple×white petals    | All purple     | 705 purple; 224 white     | 3.15:1               |
| 4.                 | Inflated×pinched pods  | All inflated   | 882 inflated; 299 pinched | 2.95:1               |
| 5.                 | Green×yellow pods      | All green      | 428 green; 152 yellow     | 2.82:1               |
| 6.                 | Axial×terminal flowers | All axial      | 651 axial; 207 terminal   | 3.14:1               |
| 7.                 | Long×short stems       | All long       | 787 long; 277 short       | 2.84:1               |

- For each trait, which allele is dominant and which is recessive?
- Which phenotype was observed in the F1 progeny?
- What is the F2 phenotypic ratio?

#### 7 Table 2-1

#### PRACTICE CLICKER QUESTION

 If the green pea pod allele (G) is dominant to the yellow allele (g), a cross between two heterozygous plants would be expected to produce \_\_\_\_\_.

A. all green

**B.** 1/4 green and 3/4 yellow

C. 1/2 green and 1/2 yellow

D. 3/4 green and 1/4 yellow

E. all yellow



The cross is expected to produce offspring in the genotypic proportions of 1/4 GG, 2/4 Gg, and 1/4 gg. Since G is dominant to g, 1/4 GG and 2/4 Gg =  $\frac{3}{4}$  green and  $\frac{1}{4}$  gg is yellow.

## Mendel proposed three postulates of inheritance

- Unit factors exist in pairs
  - Mendel proposed the existence of "particulate unit factors" (now called "genes") for each trait.
  - True-breeding plant has two copies of the unit factor
- Dominance/Recessiveness
  - In the pair of unit factors for a single characteristic in an individual, one unit factor is dominant and the other is recessive.
    - Dwarf characteristic reappeared in F2 generation
- Segregation of unit factors (Principle of Segregation)
  - The paired unit factors segregate (separate) independently during gamete formation.

## Genetic terminology

Tall plant allele = D and dwarf plant allele = d

- The **genotype** is the genetic makeup of an individual
- The **phenotype** is the physical expression of the genetic makeup.
- When the alleles (alternative forms of a single gene) for a trait in an individual are the same, the individual is **homozygous**.
  - DD genotype exhibits the tall plant phenotype
  - dd genotype exhibits the dwarf plant phenotype
- If the alleles differ, the individual is **heterozygous** 
  - Dd genotype exhibits the tall plant phenotype

10

## Monohybrid cross with Punnett Square-1

- Each parent is true-breeding for trait
  - Dominant trait Tall is D
  - Recessive trait Dwarf is d
  - DD x dd = P1 cross
- Each parent generates haploid gametes
  - − DD --> D
  - dd --> d
- The first filial generation hybrid cross (F1)
  - genotype Dd
  - phenotype is Tall
- Allow the F1 to self-fertilize
  - Gametes: D or d



11

Figure 3.3

Monohybrid cross with Punnett Square-2

Allow the F1 to self-fertilize

- Gametes: D or d

• 4 possible gamete combinations for F2

- Genotype
  - 1DD:2Dd:1dd
- Phenotype
  - 3 tall:1 dwarf



Figure 3.3

## Practice Clicker Question

• You are walking in a meadow and find a **tall pea plant**...is it homozygous or heterozygous for the plant height trait?



Figure 3.4