Risk Management : 2/5 - Mesure du risque

Matthieu Garcin

26 février 2019

- A zoo of risk measures
 - Mathematical foundations of risk measures
 - Value at risk
 - Expected shortfall
 - Moments of a distribution
 - Mesures de risque entropiques
 - Definition
 - Risk aversion
- 2 Aspects empiriques
 - Simulation Monte Carlo
 - Bootstrap
 - Backtesting
 - Stress tests

2/33

- A zoo of risk measures
 - Mathematical foundations of risk measures
 - Value at risk
 - Expected shortfall
 - Moments of a distribution
 - Mesures de risque entropiques
- Aspects empiriques

How to define a risk measure?

- $X: \Omega \longrightarrow \mathbb{R}$ is a random **loss**.
- We focus on finite losses, that is the set \mathcal{X} of random variables X such that $||X||_{\infty} < \infty$, where $||X||_{\infty} = \sup |X(\omega)|$.
- $\rho: \mathcal{X} \longrightarrow \mathbb{R}$ will be a capital requirement (or risk measure) associated to the random loss X
- $F(x) = \mathbb{P}(X \le x)$ is the cumulative distribution function of X.
- F is not necessarily invertible. Why? We will use its generalized inverse:

$$F^{-1}(r) = \inf\{x \in \mathbb{R}, F(x) \ge r\}.$$

 $F^{-1}(r)$ is the quantile of X of probability r.

Définition

 ρ is a monetary risk measure if:

- 1 it is monotonic: $X < Y \Rightarrow \rho(X) < \rho(Y)$,
- ② it is invariant by translation : $\forall m \in \mathbb{R}$, $\rho(X+m) = \rho(X) + m$.

Volatility is **not** a monetary risk measure.

What are the properties of a risk measure?

Proposition

If ρ is a monetary risk measure, it is Lipschitz :

$$|\rho(X)-\rho(Y)|\leq ||X-Y||_{\infty}.$$

Proof:

- By definition of an infinite norm : $X Y \le ||X Y||_{\infty}$.
- By monotony, we get $\rho(X) \leq \rho(Y + ||X Y||_{\infty})$.
- By invariance by translation, it becomes $\rho(X) \leq \rho(Y) + \|X Y\|_{\infty}$.
- So, $\rho(X) \rho(Y) \le \|X Y\|_{\infty}$ and, by symmetry in X and Y, we also have $\rho(Y) \rho(X) \le \|X Y\|_{\infty}$.

The financial intuition behind

- The difference of risk measure between two assets is lower than the maximal difference of loss the two assets can simultaneously encounter.
- For example, if stock 1 has a VaR of 1% and stock 2 a VaR of 0.8%, the maximal loss of a portfolio composed of stock 1 (long) minus stock 2 (short) is above 0.2%.
- What about the risk measure of the portfolio, $\rho(X-Y)$, compared to $\rho(X) \rho(Y)$?

Matthieu Garcin

Coherent risk measure

Définition

The risk measure μ is **coherent** if it satisfies all the following properties :

- Normality : $\mu(0) = 0$ (particular case of positive homogeneity).
- Monotonicity : if profits $X_1 \leq X_2$ almost surely, then $\mu(X_1) \geq \mu(X_2)$.
- Sub-additivity (diversification principle) : $\mu(X_1 + X_2) \le \mu(X_1) + \mu(X_2)$.
- Positive homogeneity : if $\lambda \geq 0$, then $\mu(\lambda X) = \lambda \mu(X)$.
- Invariance by translation : If p is a deterministic profit, then $\mu(X+p)=\mu(X)-p$.
- In other words, a coherent risk measure is a monetary risk measure with sub-additivity and positive homogeneity.
- The notion of coherence may be soften by the introduction of convexity instead of sub-additivity and positive homogeneity : if $\lambda \in [0,1]$, then $\mu(\lambda X_1 + (1-\lambda)X_2) \le \lambda \mu(X_1) + (1-\lambda)\mu(X_2)$.
- In particular, if μ is monetary and positively homogeneous, then μ convex $\Leftrightarrow \mu$ sub-additive.

4D>4A>4B>4B> B 990

Spectral risk measure

Rationale: A spectral risk measure is a weighted average of the possible payoffs of a portfolio, with a larger weight for less favourable payoffs. Thereafter, the weight is ϕ .

Définition

Let X be the payoff of a portfolio and F_X its cdf. A spectral measure M_{ϕ} is a function in \mathbb{R} such that there exists a function $\phi:[0,1] o [0,1]$ such that :

$$M_{\phi}(X) = -\int_{0}^{1} \phi(p) F_{X}^{-1}(p) dp,$$

where

- \bullet is non-increasing,
- ϕ is right-continuous,
- \bullet is integrable and $\int_0^1 \phi(p) dp = 1$
- We interpret ϕ as a weight due to assumption 3, overweighting bad outcomes due to assumption 1.
- The VaR is not spectral due to assumption 2 (see its distortion measure, in next slides).

イロト イ御ト イヨト イヨト 7/33

Spectral risk measure

- If we consider the distribution of the losses, F_{-X} , which is such that $F_X^{-1}(p) = -F_{-X}^{-1}(1-p)$, then $M_\phi(X) = \int_0^1 \phi(1-p)F_{-X}^{-1}(p)dp$, after a change of variable.
- The expected value is a spectral risk measure, with $\phi = 1$.

Proposition

Every spectral measure is monetary, sub-additive and positively homogeneous. In other words, it is a coherent risk measure.

For discrete observations of price returns, where each outcome is considered as equiprobable, we define a spectral measure as

$$M_{\phi}(X) = -\frac{1}{N} \sum_{s=1}^{N} \phi_s X_{s:N},$$

where

- $X_{1:N} \leq ... \leq X_{N:N}$ are the order statistics,
- $\forall s, \phi_s \geq 0$,
- $\sum_{s=1}^{N} \phi_s = 1$,
- ϕ_s is non-increasing.

◆ロト ◆問ト ◆ヨト ◆ヨト ヨ めの○

8/33

Distortion risk measure

A distortion risk measure is a risk measure defined as a weighted sum of payoffs (or returns) of a portfolio, whatever the weight. In particular, a spectral risk measure is a distortion risk measure.

Définition

Let μ be a distortion function : $\mu:[0,1]\to [0,1]$ and μ is non-decreasing and surjective, so that $\mu(0)=0$ and $\mu(1)=1$.

The corresponding distortion risk measure, for gains X of cdf F_X is $R_\mu(X) = \int_0^1 F_{-X}^{-1}(1-p)d\mu(p) = -\int_0^1 F_X^{-1}(p)d\mu(p)$.

Proposition

Let M_{ϕ} be a spectral risk measure and R_{μ} a distortion risk measure, with μ differentiable. Then :

$$M_{\phi} = R_{\mu} \Leftrightarrow \phi = \mu'$$
.

In such a case and if ϕ is differentiable, then $\mu'' \leq 0$.

Théorème

The distortion μ is concave (overweight of greater losses) \Leftrightarrow R_{μ} is a coherent risk measure.

Matthieu Garcin

Distortion risk measure

Usual risk measures:

- Value at risk with confidence α : distortion $\mu(x) = \mathbbm{1}_{[1-\alpha,1]}(x)$, not differentiable, not concave : not spectral.
- Expected shortfall with confidence α : distortion $\mu(x) = \mathbbm{1}_{[1-\alpha,1]}(x) + \mathbbm{1}_{[0,1-\alpha)}(x) \frac{x}{1-\alpha}$, not differentiable but concave : coherent, and even spectral.
- **Expected loss**: distortion $\mu(x) = x$, so that $\mu' = 1 > 0$: spectral.

What about the properties of usual risk measures?

The VaR:

- is monetary,
- is positively homogeneous,
- is **not** necessarily convex : take losses X and Y iid Bernoulli(p); then

$$VaR_{\alpha}\left(rac{X+Y}{2}
ight) = \left\{ egin{array}{ll} 1 & ext{if } lpha \geq 1-p^2 \ 0 & ext{if } lpha \leq (1-p)^2 \ 1/2 & ext{else,} \end{array}
ight.$$

whereas

$$\frac{1}{2}\left(VaR_{\alpha}(X)+VaR_{\alpha}(Y)\right)=\left\{\begin{array}{ll}1 & \text{if }\alpha\geq p\\0 & \text{else.}\end{array}\right.$$

• is therefore neither sub-additive nor coherent.

Expected shortfall

The expected shortfall is coherent and even spectral. That is why the regulator finally prefers this risk measure.

◆□▶◆圖▶◆臺▶◆臺▶

- A zoo of risk measures
 - Mathematical foundations of risk measures
 - Value at risk
 - Expected shortfall
 - Moments of a distribution
 - Mesures de risque entropiques
- 2 Aspects empiriques

Inverse distribution function

Définition

Let X be a random variable (say a price return) and F be its cumulative distribution function : $F(x) = \mathbb{P}(X \le x)$. The **generalized inverse** of F is

$$F^{-1}(p) = \inf\{x \in \mathbb{R}, F(x) \ge p\}.$$

- The generalized inverse is also called the quantile.
- If F is continuous and strictly increasing, the generalized inverse is the standard inverse.
- \bullet F^{-1} is nondecreasing.
- $F^{-1}(F(x)) \le x$ and $F(F^{-1}(p)) \ge p$.
- If a random variable U is uniform in [0,1], then $F^{-1}(U)$ is distributed according to F. This is used to generate pseudo-random numbers in F.

◆ロト ◆母ト ◆恵ト ◆恵ト ・恵 ・ 夕久で

Value at risk

Définition

Let X be a random variable depicting a gain. Then, the value at risk with confidence α is :

$$VaR_{\alpha}(X) = -F_X^{-1}(1-\alpha).$$

Alternatively, if Y is a loss (Y = -X), $VaR_{\alpha}(Y) = F_{\nu}^{-1}(\alpha)$.

- In other words, the VaR at 99% is the quantile at 99% of the losses or the opposite of the quantile at 1% of the gains.
- The VaR is the maximum expected loss for a given confidence level.
- For successive gains $X_1, ..., X_n$, we can either assume that they are identically distributed (and even independent) or not, for example with conditional cdf $F(X_i|X_{i-1},...,X_{i-d})$ or with any model of dynamic.

Estimating Value at risk (1/2)

Several notions of VaR depending on their estimation method.

- Historical VaR: based directly on past values (not used for estimating, but simulation directly in this past dataset). Drawbacks: equal weight to each observation and static (possibility to weight data to have something more dynamic with more weight on recent observations), often iid assumption.
 - Empirical VaR: empirical quantile, but need big amount of data (should have a number of observations $>> 1/(1-\alpha)$).
 - VaR based on empirical distribution : estimation of the whole distribution. when less data than needed for empirical quantiles (e.g., 100 data for $\alpha = 99.9\%$), and then quantile on the empirical distribution. Empirical distribution could be parametric or non-parametric (would be better), like a kernel-based distribution.
 - EVT VaR: much more accurate for tail behaviour than a Kernel approach, it leverages on the fact that the distribution of extreme events should be close to a known parametrized distribution, whatever the distribution of the returns (restricts the difficulty of the problem).

Estimating Value at risk (2/2)

- Monte-Carlo VaR: based on a dynamic, a model estimated on historical data.
 - parametric VaR : parametric model such as
 - iid Gaussian (or other) returns : sounds arbitrary, not that efficient and does not need Monte-Carlo (closed formulas). But could be used to model factors (and then Monte-Carlo approach useful). Difficulty to identify factors (econometric approach).
 - parametric dynamic, such as GARCH, which is more accurate.
 - non-parametric VaR: already proposed non-parametric models, here Monte Carlo is a method and not a model, it can then use any non-parametric model.

Non-parametric distribution

An estimator \hat{f} of a density should check : $\forall x \in \mathbb{R}$, $\hat{f}(x) \geq 0$, and $\int_{-\infty}^{+\infty} \hat{f}(x) dx = 1$. From a series of observed price returns $X_1,...,X_n$, the probability density could be estimated by :

• A histogram (not continuous, not invariant by translation), with a discretization $a_1 < ... < a_m$: if $x \in [a_i, a_{i+1})$, then

$$\hat{f}(x) = \frac{1}{n(a_{i+1} - a_i)} \sum_{j=1}^{n} \mathbb{1}_{[a_i, a_{i+1})}(X_j).$$

• A **kernel density**, where the Kernel K, a density with cdf K can be, for example, $K(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$, with a smoothing parameter h > 0 indicating the smoothness/robustness:

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - X_i}{h}\right) \text{ and } \hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} K\left(\frac{x - X_i}{h}\right).$$

Drawback: fixed-size resolution (h), thus spurious effects for tails and smoothing of essential elements in the main part of the distribution.

An adaptive (or variable) kernel density :

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h d_{i,k}} K\left(\frac{x-X_i}{h d_{i,k}}\right) \text{ and } \hat{F}(x) = \frac{1}{n} \sum_{i=1}^n \mathcal{K}\left(\frac{x-X_i}{h d_{i,k}}\right),$$

where $d_{i,k}$ is the Euclidean distance between X_i and its k-th nearest neighbour among the n-1 other observations, $X_1,...,X_{i-1},X_{i+1},...,X_n$.

Matthieu Garcin

Non-parametric distribution

FIGURE – Kernel density of historical daily price returns (Natixis, 2015-2016) for h = 0.01 (smooth one), h = 0.003, and h = 0.001 (most erratic one).

Critiques de la VaR

La VaR est plus robuste que la volatilité et est un standard de marché, mais :

- En général la VaR n'est pas une mesure de risque cohérente car elle n'est pas sous-additive (ne reflète pas bien la diversification). Cela peut pousser une banque à des astuces comptables : supposons que le superviseur d'une banque impose d'immobiliser du capital par trading desk, correspondant à la VaR à 95% de chaque desk. Comment la banque définit-elle ses desks pour minimiser le capital immobilisé sachant qu'il existe des pairs de desks pour lesquelles $VaR_{\alpha}(Y_1 + Y_2)$ peut être plus grand que $VaR_{\alpha}(Y_1) + VaR_{\alpha}(Y_2)$?
- La VaR ne donne aucune indication sur la taille potentielle de la perte au-dessus d'elle (ce n'est qu'une quantile); une solution consiste à observer plusieurs quantiles (VaR spectrale).

L'expected shortfall n'a pas ces deux inconvénients (avec hypothèse de distribution de pertes absolument continue pour ce qui concerne la cohérence).

- A zoo of risk measures
 - Mathematical foundations of risk measures
 - Value at risk
 - Expected shortfall
 - Moments of a distribution
 - Mesures de risque entropiques
- 2 Aspects empiriques

Expected shortfall

Let X be the gain of the portfolio, $\alpha \in [0,1]$ a confidence level. We define several risk measures depicting the average of the $1-\alpha$ worst losses :

- the worst conditional expectation : $WCE_{\alpha}(X) = \sup\{\mathbb{E}[-X|A], \mathbb{P}(A) \geq 1 \alpha\},$
- the tail conditional expectation : $TCE_{\alpha} = \mathbb{E}[-X|X < -VaR_{\alpha}(X)]$.
- the average VaR (AVaR), or expected shortfall (ES), or conditional VaR: $ES_{\alpha}(X) = \frac{1}{1-r} \int_{-r}^{1} VaR_{r}(X) dr = \frac{1}{1-r} \int_{-r}^{1} F_{-r}^{-1}(r) dr$

Théorème

We have : $AVaR_{\alpha}(X) > WCE_{\alpha}(X) > TCE_{\alpha}(X) > VaR_{\alpha}(X)$. Moreover, if the distribution of X is without atoms $(\forall \varepsilon > 0, \exists (A_i), a \text{ finite partition of the set } \Omega \text{ such }$ that $\mathbb{P}(A_i) < \varepsilon$): $AVaR_{\alpha}(X) = WCE_{\alpha}(X) = TCE_{\alpha}(X)$.

Théorème

If $(\Omega, \mathcal{F}, \mathbb{P})$ is without atoms, then ES_{α} is the smallest coherent risk measure, continuous by below (that is for $X_n \nearrow X$, $\rho(X_n) \to \rho(X)$), and invariant by the distribution (ρ is invariant by distribution if $\rho(X) = \rho(Y)$ when X and Y have the same distribution), which dominates VaR_{α} .

4 □ → 4 □ → 4 □ →

- A zoo of risk measures
 - Mathematical foundations of risk measures
 - Value at risk
 - Expected shortfall
 - Moments of a distribution
 - Mesures de risque entropiques

Risk measures based on moments

- Variance and volatility (square root of variance) are not monetary risk measures because they are neither monotonic (X uniform in [0,1], Y constant equal to 2, then X < Y but $\rho(X) > \rho(Y)$) nor invariant by translation $(vol(X+1) = vol(X) \neq vol(X) + 1)$.
- Nevertheless, massively used to monitor the risk of a portfolio.
- Could use other moments too for asymmetry (skewness) or tail behaviour (kurtosis).

About cumulative volatility

We want to know the contribution of one asset to the global volatility, with a linear combination.

- Var(X + Y) = Var(X) + Var(Y) if zero correlation (not independence), but not linear for volatility $Vol(X + Y) = \sqrt{Vol(X)^2 + Vol(Y)^2}$.
- In general, if we note $Vol_X = \sigma_X$ and ρ the correlation, $\sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2 + 2\rho\sigma_X\sigma_Y$ and thus $\sigma_{X+Y} = \frac{\sigma_X^2 + \rho\sigma_X\sigma_Y}{\sigma_{X+Y}} + \frac{\sigma_Y^2 + \rho\sigma_X\sigma_Y}{\sigma_{X+Y}}$.
- For n assets, $\sigma^2_{\sum_{i=1}^n X_i} = \sum_{i=1}^n \sigma^2_{X_i} + \sum_{i \neq j} \rho_{i,j} \sigma_{X_i} \sigma_{X_j}$. Therefore the volatility can be written as a linear combination of n volatilities relative to each asset : $\sigma_{\sum_{i=1}^n X_i} = \sum_{i=1}^n \left[\frac{\sigma^2_{X_i} + \sum_{j \neq i} \rho_{i,j} \sigma_{X_j} \sigma_{X_j}}{\sigma_{\sum_{i=1}^n X_i}} \right].$

Deviation risk measure

A generalization of volatility, quantifies deviation and not downside risk (differences with coherent risk measure, in addition to monetary and monotonicity, which disappears, are in bold):

- **①** Normality : $\mu(0) = 0$ (particular case of positive homogeneity).
- **2** Positivity : $\mu(X) > 0$ is X is not constant, $\mu(X) = 0$ else.
- **3** Sub-additivity (diversification principle) : $\mu(X_1 + X_2) \le \mu(X_1) + \mu(X_2)$.
- **1** Positive homogeneity : if $\lambda \geq 0$, then $\mu(\lambda X) = \lambda \mu(X)$.
- **1** Invariance by translation: If p is a deterministic profit, then $\mu(X + p) = \mu(X)$.

Examples:

- volatility (standard deviation) : $\sqrt{\mathbb{E}[(X \mathbb{E}[X])^2]}$,
- lower and upper semi-deviation : $\sigma_-(X) = \sqrt{E[(X EX)_-^2]}$ and $\sigma_+(X) = \sqrt{E[(X EX)_+^2]}$, where $[X]_- = \max\{0, -X\}$ and $[X]_+ = \max\{0, X\}$,
- mean absolute deviation : MAD(X) = E(|X EX|).

- A zoo of risk measures
 - Mathematical foundations of risk measures
 - Value at risk
 - Expected shortfall
 - Moments of a distribution
 - Mesures de risque entropiques
 - Definition
 - Risk aversion
- 2 Aspects empiriques

Defining the entropic risk measure

The exponential or entropic risk measure $e_{\gamma}(X)$, for a risk aversion $\gamma>0$ and for a given random variable X representing a profit, say a price return of a financial asset between two dates, is defined by :

$$e_{\gamma}(X) = \frac{1}{\gamma} \ln \mathbb{E}[e^{-\gamma X}] = \frac{1}{\gamma} \ln M_X(-\gamma), \tag{1}$$

where M_X is the moment-generating function of X. Symmetrically, if a random variable Y represents a risk, say a loss, the corresponding profit X is equal to -Y and the corresponding entropic risk measure is $e_{\gamma}(-Y)$.

The entropic risk measure $e_{\gamma}(Y)$ of a random variable Y representing a risk is also the insurance premium against the risk Y in an exponential utility framework. For the risk Y and a utility function u, the premium P is the capital required such that the risk Y is properly hedged, that is to say the expected utility of the risk hedged by its premium is zero:

$$\mathbb{E}[u(P-Y)]=0.$$

In the case of the entropic risk measure, $e_{\gamma}(-Y)$ is the premium for an exponential utility function of risk aversion γ :

$$u: \mathsf{x} \mapsto \frac{1}{\gamma} \left(1 - \mathsf{e}^{-\gamma \mathsf{x}}\right).$$

Properties of the entropic risk measure

- Since the entropic risk measure is related to the moment-generating function of the profits, it is based on all its moments. This is an evident advantage over the simplistic volatility as a risk measure.
- ② The entropic risk measure is convex. This implies that diversification does not increase the risk: when two portfolios are merged, the resulting risk is not higher than the sum of the risk of each portfolio. Other popular risk measures, like the value-at-risk (VaR), do not have this important property.
- ② Neither the entropic risk measure nor the VaR are coherent risk measures. In particular, the entropic risk measure lacks positive homogeneity. A risk measure ρ is positively homogeneous if $\forall \lambda \geq 0, \rho(\lambda X) = \lambda \rho(X)$. The VaR and the expected shortfall, which is convex as well and thus coherent, are positively homogeneous. The example of a Gaussian profit X of mean μ and variance σ^2 shows that the entropy is not positively homogeneous. Indeed, the entropic risk measure is then equal to $-\mu + \sigma^2 \gamma/2$. But if the variable X is doubled, the entropy is not doubled since it is equal to $-2\mu + 2\sigma^2 \gamma$. However, positive homogeneity of risk measures is not a realistic property since in practice the risk of a position is often non-linearly related to the held amount, due to liquidity risk.

Coherent risk measure

The risk measure μ is coherent if it satisfies all the following properties :

- Normality : $\mu(0) = 0$.
- Monotonicity : if profits $X_1 \leq X_2$ almost surely, then $\mu(X_1) \geq \mu(X_2)$.
- Sub-additivity (diversification principle) : $\mu(X_1 + X_2) \le \mu(X_1) + \mu(X_2)$.
- Positive homogeneity : if $\lambda \geq 0$, then $\mu(\lambda X) = \lambda \mu(X)$.
- Invariance by translation : If p is a deterministic profit, then $\mu(X+p)=\mu(X)-p$.

The notion of coherence may be soften by the introduction of convexity instead of sub-additivity and positive homogeneity : if $\lambda \in [0,1]$, then $\mu(\lambda X_1 + (1-\lambda)X_2) \leq \lambda \mu(X_1) + (1-\lambda)\mu(X_2)$.

Scaling rule of the entropic risk measure

- Scaling rule (when horizon multiplied by t) of the VaR for i.i.d. Gaussian returns : \sqrt{t} .
- ullet Alternative example of dependent Gaussian : scaling in t^H for a H-fractional Brownian motion.
- Alternative example of i.i.d. non-Gaussian : scaling in t for Cauchy process.

Instead of that, the entropic risk measure has a unique scaling rule for i.i.d. returns, whether they are Gaussian or not : the log-return until time t is the sum of t i.i.d. returns of horizon 1, $X_1,...,X_t$, and $e_{\gamma}\left(\sum_{i=1}^t X_i\right) = \sum_{i=1}^t e_{\gamma}\left(X_i\right) = te_{\gamma}\left(X_1\right)$, so that the scaling factor is t.

26 février 2019

Risk aversion

The risk measure is increasing with the risk aversion γ . However, determining the risk aversion of an agent may seem as arbitrary as choosing a confidence level α for a VaR. In fact, both parameters can be linked. For example, assuming Gaussian price returns X of mean μ and variance σ^2 , the corresponding entropic risk measure and VaR are respectively $-\mu + \sigma^2 \gamma/2$ and $-\mu + \sigma G^{-1}(1-\alpha)$. Both are equal if $\gamma = 2G^{-1}(1-\alpha)/\sigma$. We can therefore define a risk aversion for a type of asset. For instance, concerning a stock market for which we assume a long-term annual volatility of 20%, values of the VaR parameter α equal to 5%, 1% and 0.01% are respectively associated to a risk aversion γ equal to 16.45, 23.26 and 30.90.

Estimating the risk aversion

- Price of a stock is discounted sum of future dividends: does not take into account variations of preference over different horizons. On the opposite, options exist for different horizons: they are well-suited to estimate risk aversion.
- Estimate mean of a distribution on stocks and all the density on options :

$$q(S_T) = e^{r(T-t)} \left. \frac{\partial^2 C(t, S_t, K, T)}{\partial K^2} \right|_{K=S_T}.$$

- This distribution is estimated at a single date, not on historical data: it is therefore much more responsive to changing market expectations.
- ...

Estimating the risk aversion

- ...
- Unfortunately, the option-implied density is risk-neutral, which may not be consistent with the actual forecast of the most representative investor (the market). The difference between risk-neutral (q) and physical (p) distributions is due to risk aversion (λ) for representative utility function (d) or equivalently to the **stochastic discount factor** (aka **pricing kernel** : $\zeta(S_T)$) :

$$\frac{p(S_T)}{q(S_T)} = \lambda \frac{U'(S_T)}{U'(S_t)} = \zeta(S_T).$$

- If two among p, q, U are known, the third one is inferred. In practice, only q is known. Solutions: assume stationarity of p or stationarity of U (parametric function, depending on λ , which in this case is constant).
- ullet The risk aversion is then the λ maximizing the forecast ability over historical data.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ >

Stochastic discount factor

- For assets $i \in \{1,...,n\}$ of pay-off π_i , initial price p_i and return $R_i = \pi_i/p_i$, the stochastic discount factor ζ is such that, $\forall i \in \{1,...,n\}, \mathbb{E}(\zeta \pi_i) = p_i$, in which \mathbb{E} is expressed in the risk-neutral distribution.
- As a consequence $\forall i, j, \mathbb{E}[\zeta(R_i R_j)] = 0$.
- In the risk-neutral distribution, the risk-free rate R_f is deterministic. Therefore, $\mathbb{E}(\zeta) = 1/R_f$.
- As $cov(X, Y) = \mathbb{E}[X, Y] \mathbb{E}[X]\mathbb{E}[Y]$, we have $1 = cov(\zeta, R_i) + \mathbb{E}(\zeta)\mathbb{E}(R_i)$. In particular :

$$\mathbb{E}(R_i) - R_f = -R_f \operatorname{cov}(\zeta, R_i),$$

which is the risk premium of asset i.

33 / 33

Bibliographie

• Bliss, Panigirtzoglou (2004), Option-implied risk aversion estimates