

ÁLGEBRA RELACIONAL

Eduardo Ogasawara eogasawara@ieee.org https://eic.cefet-rj.br/~eogasawara

Álgebra relacional

- Álgebra relacional:
 - Conjunto básico de operações para o modelo relacional
- Expressão da álgebra relacional:
 - Sequência de operações da álgebra relacional
- O objetivo da álgebra relacional é permitir o cálculo de consultas declaradas com linguagens de nível mais alto no modelo relacional

Álgebra relacional

- Linguagem procedural
- Operadores básicos:
 - seleção: σ
 - projeção: π
 - união: U
 - diferença de conjuntos: —
 - produto cartesiano: ×
 - junção: ⋈
 - agregação: Γ
 - divisão: ÷
 - renomeação: ρ
- Os operadores usam uma ou duas relações como entrada e produzem uma nova relação como resultado

Esquema de exemplo usado

- agencia (nomeAgencia, cidadeAgencia, ativo)
- cliente (nomeCliente, ruaCliente, cidadeCliente)
- conta (numeroConta, nomeAgencia, saldo)
- emprestimo (numeroEmprestimo, nomeAgencia, quantia)
- depositante (nomeCliente, numeroConta)
- tomador (nomeCliente, numeroEmprestimo)

Operação seleção – Exemplo

■ Relação *R*

A	В	С	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

 $\sigma_{A=B\wedge D>5}(R)$

Α	В	С	D
α	α	1	7
β	β	23	10

Operação seleção

- Notação: $\sigma_p(R)$
- p é chamado o predicado de seleção e R é o nome de uma relação
- Definida como:

$$\sigma_p(R) = \{t \mid t \in R \land p(t)\}\$$

■ Onde p é uma fórmula em cálculo proposicional consistindo em termos conectados por: \land (and), \lor (or), \neg (not) Cada termo pode ser:

```
<atributo> op <atributo> ou <constante> onde op pode ser: =, \neq, >, \geq, <, \leq
```

- Exemplo:
 - Trazer todas as informações das contas da agência Perryridge $\sigma_{nomeAgencia="Perryridge"}(conta)$

Operação projeção – Exemplo

■ Relação R:

A	В	С
α	10	1
α	20	1
β	30	1
β	40	2

• $\pi_{A,C}(R)$

Α	С
α	1
β	1
β	2

Operação projeção

Notação:

```
\pi_{A_1,A_2,\cdots,A_k}(R)
onde A_1,A_2,\cdots,A_k são nomes de atributo
e R é um nome de uma relação
```

- lacktriangle O resultado é definido como a relação de k colunas obtidas excluindo-se as colunas que não estão listadas
- Linhas duplicadas são removidas do resultado, de modo que as relações sejam conjuntos
- Exemplo:
 - Trazer todos os números de conta e seus respectivos saldos $\pi_{numeroConta,saldo}(conta)$

Operação união – Exemplo

■ Relações *R*, *S*:

A	В	A	В
α	1	α	2
α	2	β	3
β	1		S
	R		

 \blacksquare $R \cup S$

Operação união

- Notação: R U S
- Definida como:

$$R \cup S = \{t \mid t \in R \lor t \in S\}$$

- Para que *R* U *S* seja válido:
 - R e S precisam ser da mesma aridade (o mesmo número de atributos)
 - Os domínios de atributo precisam ser compatíveis (exemplo: 2a coluna de R lida com o mesmo tipo de valores que a 2a coluna de S)
- Exemplo:
 - Encontre todos os clientes com uma conta ou um empréstimo $\pi_{nomeCliente}(depositante) \cup \pi_{nomeCliente}(tomador)$

Operação interseção – Exemplo

■ Relação R, S:

		\sim
D I	\cap	C
		O

A	В
α	1
α	2
β	1
F	?

Operação de interseção

- Notação: R ∩ S
- Definida como:

$$R \cap S = \{ t \mid t \in R \land t \in S \}$$

- A interseção de conjuntos precisa de relações compatíveis
 - R e S precisam ter a mesma aridade
 - os domínios de atributo de R e S precisam ser compatíveis

Operação de diferença – Exemplo

■ Relações *R*, *S*:

	$\boldsymbol{\mathcal{D}}$	C
<u> </u>	<i>[</i>]	

A	В	
α	1	
α	2	
β	1	
R		

Operação de diferença

- Notação R S
- Definida como:

$$R - S = \{t \mid t \in R \land t \notin S\}$$

- A diferença de conjuntos precisam de relações compatíveis
 - R e S precisam ter a mesma aridade
 - os domínios de atributo de R e S precisam ser compatíveis

Operação de produto cartesiano – Exemplo

■ Relações R, S

A	В	С	D	Ε
$egin{array}{c} lpha \ eta \end{array}$	1 2	$egin{array}{c} lpha \ eta \ eta \end{array}$	10 10 20	a a b
1	R	γ	10	b
			S	

 \blacksquare $R \times S$

A	В	С	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Operação de produto cartesiano

- Notação *R* × *S*
- Definida como:

$$R \times S = \{t \mid q \mid t \in R \land q \in S\}$$

- Considere que os atributos de $R(\mathcal{R})$ e $S(\mathcal{S})$ sejam disjuntos
 - $\mathcal{R} \cap \mathcal{S} = \emptyset$
- Se os atributos de $R(\mathcal{R})$ e $S(\mathcal{S})$ não forem disjuntos, então, o restante precisa ser usado

Composição das operações

 Pode construir expressões usando várias operações

A	В	С	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

• $\sigma_{A=C}(R \times S)$

A	В	С	D	E
$egin{array}{c} lpha \ eta \ eta \end{array}$	1 2 2	$egin{array}{c} lpha \ eta \ eta \end{array}$	10 10 20	a a b

- Encontre todos os empréstimos de mais de US\$ 1200
 - emprestimo (numeroEmprestimo, nomeAgencia, quantia)

 $\sigma_{quantia} > 1200 \ (emprestimo)$

- Encontre o número de empréstimo para aqueles com quantia maior que US\$ 1200
 - emprestimo (numeroEmprestimo, nomeAgencia, quantia)

 $\overline{\pi_{numeroEmprestimo}}(\sigma_{quantia} > 1200 (emprestimo))$

- Encontre os nomes de todos os clientes que têm um empréstimo, uma conta, ou ambos, do banco
 - depositante (nomeCliente, numeroConta)
 - tomador (nomeCliente, numeroEmprestimo)

 $\pi_{nomeCliente}(tomador) \cup \pi_{nomeCliente}(depositante)$

- Encontre os nomes de todos os clientes que têm um empréstimo e uma conta no banco
 - depositante (nomeCliente, numeroConta)
 - tomador (nomeCliente, numeroEmprestimo)

 $\pi_{nomeCliente}(tomador) \cap \pi_{nomeCliente}(depositante)$

Expressão Algébrica: definição formal

- Uma expressão básica na álgebra relacional consiste em qualquer um dos seguintes:
 - Uma relação no banco de dados
 - Uma relação constante
- Seja E_1 e E_2 expressões de álgebra relacional; todas as expressões a seguir são de álgebra relacional:
 - *E*₁ ∪ *E*₂
 - $E_1 E_2$
 - $E_1 \times E_2$
 - $\sigma_p(E_1)$, p é um predicado nos atributos em E_1
 - $\pi_s(E_1)$, S é uma lista consistindo em alguns dos atributos em E_1

Operação atribuição

- A operação atribuição (←) fornece uma maneira conveniente de expressar consultas complexas
- Escreva consulta como um programa sequencial consistindo em
 - uma série de atribuições
 - seguidas de uma expressão cujo valor é exibido como resultado da consulta
 - A atribuição precisa sempre ser feita para uma variável de relação temporária
- Exemplo:
 - \blacksquare $R \leftarrow (tomador \times emprestimo)$
 - $S \leftarrow \sigma_{tomador.numeroEmprestimo} = emprestimo.numeroEmprestimo (R)$

- Encontre os nomes de todos os clientes que têm um empréstimo na agência Perryridge
 - emprestimo (numeroEmprestimo, nomeAgencia, quantia)
 - tomador (nomeCliente, numeroEmprestimo)

$$R \leftarrow (tomador \times emprestimo)$$

$$S \leftarrow \sigma_{tomador.numeroEmprestimo=emprestimo.numeroEmprestimo}(R)$$

$$T \leftarrow \pi_{nomeCliente}(\sigma_{nomeAgencia} = "Perryridge"(S))$$

- Encontre os nomes de todos os clientes que têm um empréstimo na agência Perryridge mas não têm uma conta em qualquer agência do banco
 - emprestimo (numeroEmprestimo, nomeAgencia, quantia)
 - tomador (nomeCliente, numeroEmprestimo)
 - depositante (nomeCliente, numeroConta)

```
R \leftarrow (tomador \times emprestimo)
S \leftarrow \sigma_{tomador.numeroEmprestimo=emprestimo.numeroEmprestimo}(R)
T \leftarrow \pi_{nomeCliente}(\sigma_{nome\_agência="Perryridge"}(S))
U \leftarrow T - \pi_{nomeCliente}(depositante)
```

Operação junção natural

- Notação: R ⋈ S
- Sejam R e S relações nos esquemas R e S respectivamente. Então, $R\bowtie S$ é uma relação no esquema $R\cup S$ obtida desta forma:
 - Considere cada par de tuplas tr de R e ts de S.
 - Se tr e ts possuem o mesmo valor em cada um dos atributos em $\mathcal{R} \cap \mathcal{S}$, acrescente uma tupla t ao resultado, onde
 - lacktriangledown t possui o mesmo valor de tr em R
 - t possui o mesmo valor de ts em S
- Exemplo:
 - $\blacksquare R(\mathcal{R}) = (A, B, C, D)$
 - $\bullet S(S) = (E, B, D)$
 - esquema $(R \bowtie S) = (A, B, C, D, E)$
 - $R \bowtie S$ é definido como:

$$\pi_{r.A,r.B,r.C,r.D,s.E} \left(\sigma_{r.B=s.B \land r.D=s.D} \left(R \times S \right) \right)$$

Operação junção natural – Exemplo

■ Relações *R*, *S*:

A	В	С	D	В	D	E
α	1	α	a	1	а	α
β	2	γ	a	3	a	β
γ	4	β	b	1	a	γ
α	1	γ	a	2	b	$ \delta $
δ	2	β	b	3	b	ϵ
R			S			

 \blacksquare $R \bowtie S$

В	С	D	E
1	α	a	α
1	α	a	γ
1	γ	a	α
1	γ	a	γ
2	β	b	δ
	1 1 1 1	1 α 1 α 1 γ 1 γ	$\begin{array}{c cccc} 1 & \alpha & a \\ 1 & \alpha & a \\ 1 & \gamma & a \\ 1 & \gamma & a \end{array}$

- Encontre o nome de todos os clientes que têm um empréstimo e uma conta no banco
 - depositante (nomeCliente, numeroConta)
 - tomador (nomeCliente, numeroEmprestimo)

 $\pi_{nomeCliente}(tomador) \bowtie \pi_{nomeCliente}(depositante)$

- Encontre o nome de todos os clientes que têm um empréstimo no banco e descubra a quantia do empréstimo
 - emprestimo (numeroEmprestimo, nomeAgencia, quantia)
 - tomador (nomeCliente, numeroEmprestimo)

 $\pi_{nomeCliente,numeroEmprestimo,qunatia}(tomador \bowtie emprestimo)$

Projeção generalizada

 Estende a operação projeção permitindo que funções aritméticas sejam usadas na lista de projeção

$$\pi_{F_1,F_2,\ldots,F_n}(E)$$

- *E* é qualquer expressão de álgebra relacional
- Cada $F_1, F_2, ..., F_n$ é uma expressão aritmética envolvendo constantes e atributos no esquema de E

Dada a relação infoCredito(nomeCliente, limite, saldoCredito), descubra quanto mais cada pessoa pode gastar:

 $\pi_{nomeCliente,limite-saldoCredito}(infoCredito)$

Funções e operações agregadas

- As funções agregadas tomam uma coleção de valores e retornam um único valor como resultado
- avg: valor médio
- min: valor mínimo
- max: valor máximo
- sum: soma dos valores
- count: número de valores
- Operação agregada na álgebra relacional
- $G_1, G_2, \dots, G_n \Gamma_{F_1(a_1), F_2(a_2), \dots, F_m(a_m)}(E)$
- *E* é qualquer expressão de álgebra relacional
 - $G_1, G_2, ..., G_n$ uma lista de atributos em que agrupar (pode ser vazia)
 - Cada F_i é uma função agregada
 - Cada a_i é um nome de atributo

Operação agregada – Exemplo

Relação R:

A	В	С
α	α	7
α	β	7
β	β	3
β	β	10

• $\Gamma_{sum(c)}(R)$

sum(*c*)

27

Operação agregada – Exemplo

Relação conta agrupada por nomeAgencia:

• $nomeAgencia\Gamma_{sum(saldo)}(conta)$

nomeAgencia	numeroConta	soma
Perryridge	A-102	400
Perryridge	A-201	900
Brighton	A-217	750
Brighton	A-215	750
Redwood	A-222	700

nomeAgencia	sum(saldo)
Perryridge	1300
Brighton	1500
Redwood	700

Funções agregadas (cont.)

- O resultado da agregação não possui um nome
 - Pode usar a operação renomeação para fornecer-lhe um nome
 - Para conveniência, permitimos a renomeação como parte da operação agregada
 - $nomeAgencia\Gamma_{sum(saldo)}$ as saldoSoma (conta)

Junção externa

- Uma extensão da operação junção que evita a perda de informações
- Calcula a junção e acrescenta ao resultado as tuplas de uma relação que não correspondem às tuplas na outra relação
- Usa valores nulos:
 - nulo significa que o valor é desconhecido ou inexistente
 - Todas as comparações envolvendo valores nulos são (grosseiramente falando) falsas por definição
 - Estudaremos o significado exato das comparações com nulos mais adiante

Junção interna

Relação R

а	b
L-170	Red
L-230	Green
L-160	Blue

Relação S

b	С	d
Red	3000	Jones
Green	4000	Smith
Yellow	1000	Suzan

 \blacksquare $R \bowtie S$

а	b	С	d
	Red	3000	Jones
	Green	4000	Smith

Junção externa esquerda

Relação R

а	b
L-170	Red
L-230	Green
L-160	Blue

■ Relação *S*

b	C	d
Red	3000	Jones
Green	4000	Smith
Yellow	1000	Suzan

\blacksquare $R\bowtie S$

а	b	С	d
L-170	Red		Jones
L-230	Green	4000	Smith
L-160	Blue	null	null

Junção externa direita

Relação R

а	b
L-170	Red
L-230	Green
L-160	Blue

■ Relação *S*

b	C	d
Red	3000	Jones
Green	4000	Smith
Yellow	1000	Suzan

$\blacksquare R \bowtie S$

а	b	C	d
L-170	Red	3000	Jones
L-230	Green	4000	Smith
null	Yellow	1000	Suzan

Junção externa integral

Relação R

а	b
L-170	Red
L-230	Green
L-160	Blue

Relação S

b	C	d
Red	3000	Jones
Green	4000	Smith
Yellow	1000	Suzan

\blacksquare $R \bowtie S$

а	b	С	d
L-170	Red	3000	Jones
L-230	Green	4000	Smith
L-260	Blue	null	null
null	Yellow	1000	Suzan

- Encontre o nome de todos os clientes que têm um empréstimo e uma conta no banco
 - depositante (nomeCliente, numeroConta)
 - tomador (nomeCliente, numeroEmprestimo)

 $\pi_{nomeCliente}$ (tomador) $\bowtie \pi_{nomeCliente}$ (depositante)

- Encontre o nome de todos os clientes que têm um empréstimo no banco e descubra a quantia do empréstimo
 - emprestimo (numeroEmprestimo, nomeAgencia, quantia)
 - tomador (nomeCliente, numeroEmprestimo)

 $\pi_{nomeCliente,numeroEmprestimo,quantia}$ (tomador \bowtie emprestimo)

- Encontre todos os clientes que possuem uma conta em ambas agências "Downtown" e Uptown"
 - conta (numeroConta, nomeAgencia, saldo)
 - depositante (nomeCliente, numeroConta)

$$\pi_{nomeCliente}\left(\sigma_{nome_{ag\hat{e}ncia} = "Downtown"}depositante \bowtie conta
ight)$$

$$\cap \pi_{nomeCliente}\left(\sigma_{nome_{ag\hat{e}ncia} = "Uptown"}depositante \bowtie conta
ight)$$

Operação divisão

- Notação: R ÷ S
- Adequado para consultas que incluem a frase "para todo",
- Sejam R e S relações nos esquemas \mathcal{R} e S respectivamente, onde
 - $\mathcal{R} = (A_1 \dots, A_m, B_1, \dots, B_n)$
 - $S = (B_1, \dots, B_n)$
 - O resultado de $R \div S$ é uma relação no esquema
 - $\blacksquare R S = (A_1 \dots, A_m)$
 - $\blacksquare R \div S = \{ t \mid t \in \pi_{\mathcal{R}-\mathcal{S}}(R) \land \forall u \in S (tu \in R) \}$
 - Onde tu significa a concatenação das tuplas $t \in u$ para produzir uma única tupla

Operação divisão – Exemplo

Relações R, S:

_	
D	
П	 .

B 1 2

Αα
β

Outro exemplo de divisão

Relações R, S:

K	÷	5
		<u> </u>

A	В	С	D	E
α	a	α	а	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	a	γ	a	1
$egin{array}{c} lpha \ eta \ eta \end{array}$	a	γ	b	1
β	a	γ	a	1
β	a	γ	b	3 1
γ	a	γ	a	1
$\gamma \ \gamma$	a	γ	b	1
γ	a	β	b	1
		D		

A	В	С
$\alpha \gamma$	a a	γ γ

- Encontre todos os clientes que têm uma conta em todas as agências localizadas na cidade de Brooklyn
 - agencia (nomeAgencia, cidadeAgencia, ativo)
 - conta (numeroConta, nomeAgencia, saldo)
 - depositante (nomeCliente, numeroConta)

```
\pi_{nomeCliente,nomeAgencia}(depositante \bowtie conta) \bowtie \pi_{nomeAgencia}(\sigma_{cidadeAgencia} = "Brooklyn"(agencia))
```

Modificação do banco de dados

- O conteúdo do banco de dados pode ser modificado usando as seguintes operações:
 - Exclusão
 - Inserção
 - Atualização
- Todas essas operações são expressas usando o operador de atribuição

Exclusão

- Uma requisição de exclusão é expressa semelhantemente a uma consulta, exceto que, em vez de exibir tuplas ao usuário, as tuplas selecionadas são removidas do banco de dados
- Pode excluir apenas tuplas inteiras; não pode excluir valores em atributos específicos
- Na álgebra relacional, uma exclusão é expressa por:

$$R \leftarrow R - E$$

• onde R é uma relação e E é uma consulta de álgebra relacional

- Exclua todos os registros de conta na agência Perryridge
 - conta (numeroConta, nomeAgencia, saldo)

$$conta \leftarrow conta - \sigma_{nomeAgencia = "Perryridge"} (conta)$$

- Exclua todos os empréstimos com quantia na faixa de 0 a 50
 - emprestimo (numeroEmprestimo, nomeAgencia, quantia)

 $emprestimo \leftarrow emprestimo - \sigma_{quantia \ge 0 \land quantia \le 50}(emprestimo)$

- Exclua todas as contas em agências localizadas no Brooklyn
 - agencia (nomeAgencia, cidadeAgencia, ativo)
 - conta (numeroConta, nomeAgencia, saldo)
 - depositante (nomeCliente, numeroConta)

```
R_1 \leftarrow \sigma_{cidadeAgencia = "Brooklyn"}(conta) \bowtie agencia)
R_2 \leftarrow \pi_{nomeAgencia,numeroConta,saldo}(R_1)
R_3 \leftarrow \pi_{nomeCliente,numeroConta}(R_2 \bowtie depositante)
depositante \leftarrow depositante - R_3
conta \leftarrow conta - R_2
```

Inserção

- Para inserir dados em uma relação:
 - especificamos uma tupla a ser inserida
 - escrevemos uma consulta cujo resultado é um conjunto de tuplas a serem inseridas
- Na álgebra relacional, uma inserção é expressa por:

$$R \leftarrow R \cup E$$

- onde R é uma relação e E é uma expressão de álgebra relacional
- A inserção de uma única tupla é expressa fazendo E ser uma relação constante contendo uma tupla

- Insira informações no banco de dados especificando que Smith possui
 US\$ 1200 na conta A-973 na agência Perryridge
 - conta (numeroConta, nomeAgencia, saldo)

```
conta \leftarrow conta \cup \{(A - 973, "Perryridge", 1200)\}
 depositante \leftarrow depositante \cup \{("Smith", A - 973)\}
```

- Forneça, como um presente a todos os clientes de empréstimo da agência
 Perryridge, uma conta de poupança de US\$200. Deixe o número de empréstimo servir como o número de conta para a conta de poupança
 - conta (numeroConta, nomeAgencia, saldo)
 - emprestimo (numeroEmprestimo, nomeAgencia, quantia)
 - depositante (nomeCliente, numeroConta)
 - tomador (nomeCliente, numeroEmprestimo)

```
R_1 \leftarrow (\sigma_{nome\_ag\hat{e}ncia} = "Perryridge" \ (tomador \bowtie empréstimo))
conta \leftarrow conta \cup \pi_{nome\_ag\hat{e}ncia,n\acute{u}mero\_empr\acute{e}stimo,200} \ (R_1)
depositante \leftarrow depositante \cup \pi_{nome\_cliente,n\acute{u}mero\_empr\acute{e}stimo}(R_1)
```

- Faça pagamentos de juros acrescendo todos os saldos de 5 por cento
 - conta (numeroConta, nomeAgencia, saldo)

 $conta \leftarrow \pi_{n\'umero_conta,nome_ag\^encia,saldo*1,05}(conta)$

- Pague 5 por cento de juros a todas as contas com saldos acima de US\$10.000
 - conta (numeroConta, nomeAgencia, saldo)

$$R \leftarrow \sigma_{saldo > 10000}(conta)$$

$$conta \leftarrow (conta - R) \ U \ \pi_{n\'umero_conta,nome_ag\^encia,saldo * 1,05}(R)$$

Referências

