Nome:

Pesquisa Operacional - ELE082

Prof. Eduardo Gontijo Carrano

Qυ	uestão 1	%
	Para o grafo da Fig. 1, encontre o caminho mínimo entre os vértices 1 e 6. Assuma que os números acima da	ıs
	arestas representam os seus custos.	

Figura 1: Grafo das questões 1, 2, 3 e 6

ara o grafo da Fig. 1, encontre o ca restas representam os seus custos.	aminno maximo en	itre os vertices I e	6. Assuma que	os numeros acima

Questão 3
(a) Encontre, passo a passo, a árvore geradora mínima utilizando o algoritmo de Kruskal.
(b) Encontre, passo a passo, a árvore geradora mínima utilizando o algoritmo de Prim.

Considere o grafo de 7 vértices descrito pela Tab. 1.

 ${\bf Tabela~1:}~{\bf Especificação~dos~arcos~da~questão~4}$

Arco	Capacidade	1
(1,2)	6	(
(1,3)	7	(
(2,4)	3	(
(3,6)	5	(
(4,5)	3	(
(5.7)	7	(

Arco	Capacidade
(2,5)	4
(2,3)	1
(3,4)	2
(4,6)	2
(6,5)	2
(6,7)	4

- (a) Esboce a rede correspondente.
- (b) Determine a matriz de incidência nó-arco associada a esta rede.
- (c) Ache o fluxo máximo do nó 1 ao nó 7 da rede.

iest $ ilde{ ilde{a}}$ o $ ilde{ ilde{b}}$ 0)%
--	----

Suponha que uma empresa transportadora de cargas possui três caminhões que estão atualmente nas posições 1 e 2 da rede rodoviária de uma cidade esquematizada na Fig. 1. No nó 1 estão dois caminhões da empresa e no nó 2 está o terceiro caminhão. Um novo pedido de frete foi solicitado na localidade 6. Para este pedido, são necessários três caminhões. Além disso, a carga precisa ser retirada dentro de 50 minutos, devido a restrições de transito. Determine se a empresa transportadora poderá atender a este pedido. Neste caso, o número acima de cada aresta representa o número de minutos necessários para o caminhão percorrer o respectivo arco.

Para o grafo da Fig. 2, encontre o caminho mínimo entre os vértices A e G. Assuma que os números acima das arestas representam os seus custos.

Figura 2: Grafo das questões 6, 7 e 8

Questão 7
(a) Encontre, passo a passo, a árvore geradora mínima utilizando o algoritmo de Kruskal.
(b) Encontre, passo a passo, a árvore geradora mínima utilizando o algoritmo de Prim.

epresentam suas respe	•		

Questão 90%

Sobre os algoritmos de Branch and Bound and Branch and Cut, responda:

- (a) Por que estes métodos não são adequados para grandes instâncias de alguns problemas PLI?
- (b) Qual a principal diferença do algoritmo de Branch and Cut quando comparado ao Branch and Bound? Em geral, qual deles é mais eficiente?
- (c) Suponha que o algoritmo Branch and Bound seja aplicado para resolver o problema PLI apresentado nas equações (1) e (2), onde P(i) e S(i) são os conjuntos de predecessores e sucessores do vértice i, respectivamente. Quantos problemas relaxados de programação linear deverão ser resolvidos pelo algoritmo Branch and Bound até que ele alcance a solução ótima?

$$\min \sum_{i=1}^{n} \sum_{j \in S(i)} c_{ij} x_{ij} \tag{1}$$

sujeito a:
$$\begin{cases} \sum_{j \in S(1)} x_{1j} = 1 \\ \sum_{i \in P(n)} x_{in} = 1 \\ \sum_{i \in P(j)} x_{ij} = \sum_{k \in S(j)} x_{jk} & \forall j \in \{2, \dots, n-1\} \\ x_{ij} \in \{0, 1\} & \forall i \in \{1, \dots, n\} , \ \forall j \in \{1, \dots, n\} \end{cases}$$
 (2)

uestão 10
(a) A respeito da representação de árvores por listas de adjacências responda:
(1) Qual a complexidade de armazenamento em memória da árvore?
(2) Qual a complexidade de se identificar se dois vértices i e j são adjacentes?
(3) Qual a complexidade de ser recuperar a lista completa de vértices adjacentes a um dado vértice i ?
(b) A respeito da representação de árvores por matriz de adjacências responda:
(1) Qual a complexidade de armazenamento em memória da árvore?
(2) Qual a complexidade de se identificar se dois vértices i e j são adjacentes?

(3) Qual a complexidade de ser recuperar a lista completa de vértices adjacentes a um dado vértice i?