- In the previous lecture, we learned the fixed point method.
- There still remains two unresolved issues:
 - a) How to choose x_0 to start the iteration?
 - b) Which form of g(x) is convergent?
- Both are answered by the ``Contraction Mapping Theorem".
- For simplicity, we are NOT going to prove the theorem and then apply.
- Instead, we will go back to the examples in the previous lecture, and try to understand the behavior of the function g(x).
- \circ From these analysis, we will be able to apply the Theorem, and finally find the fixed point under g(x).

o For the function, $f(x) = x^2 - 2x - 3$, we found that g(x) can be written in many ways.

BRAC UNIVERSITY

Inspiring Excellence

For this function, we already have:

$$g(x) = \begin{cases} \sqrt{2x+3} \\ x^2 - x - 3 \\ \frac{(x^2+3)}{2x-2} \end{cases}$$

• We computed the iteration formula, $x_{k+1} = g(x_k)$, starting with $x_0 = 0$. Now, we will recalculate the same starting with $x_0 = 42$.

• We copy from the previous lecture for $g(x) = \sqrt{2x + 3}$ and upto 3 significant figures:

$$g(0) = 1.73$$
 | $g(1.73) = 2.54$ | $g(1.73) = 2.54$ | $g(2.54) = 2.84$ | $g(2.54) = 2.95$ | $g(2.95) = 2.98$ | $g(2.98) = 2.99$ | $g(2.99) = 3.00$ | $g(3.02) = 3.01$ | $g(3.02) = 3.00$ | $g(3.01) = 3.00$

- For both values of x_0 , the function g(x) converges to a root 3.00.
- Note that even though $x_0=0$ is nearer to the root -1, the iteration converge to 3, NOT -1. The reason is that the ratio λ is less than 1 requires that x>-1 .

o For the second case, $g(x) = x^2 - x - 3$, we get:

$$g(0) = -3.00$$
 $g(42) = 1.72 \times 10^{3}$ $g(9) = 69.0$ $g(1.72 \times 10^{3}) = 2.95 \times 10^{6}$ $g(69) = 4.69 \times 10^{3}$ $g(2.95 \times 10^{6}) = 8.72 \times 10^{12}$

- \circ For both choices for x_0 , g(x) diverges very rapidly.
- O Note that even though g(-1) = -1 and g(3) = 3, the ratio is getting bigger and bigger.
- Therefore, it is not possible to obtain a fixed point in this case.

- Let's take the 3rd expression: $g(x) = \frac{x^2+3}{2x-2}$.
- Starting from $x_0 = 0$ and 42 and also upto 3 sig. fig., we get:

$$g(42) = 21.6$$
 $g(21.6) = 11.4$
 $g(21.6) = 11.4$
 $g(21.6) = 6.39$
 $g(-1.50) = -1.05$
 $g(3.9) = 4.07$
 $g(3.19) = 3.01$
 $g(3.01) = 3.00$
 $g(3.01) = 3.00$

- Now g(x) converges to the other fixed point.
- \triangleleft Note that $x_0 = 0$ converges to the nearest root which is -1, and $x_0 = 42$ converges to 3 because it is closer to 3 than from -1.

- The above numerical analysis suggest that if g(x) is convergent, then it converges to the nearest fixed point from x_0 .
- \circ For the convergent g(x), the difference between the successive iterated values are decreasing.

This suggest that
$$\left|\frac{\Delta g(x_k)}{\Delta x}\right| \equiv \left|\frac{g(x_{k+1}) - g(x_k)}{x_{k+1} - x_k}\right| < 1.$$

- \circ This also suggest that, x_0 may not be chosen arbitrarily. It has a certain region (or subinterval) to be chosen from.
- These brings about the `Contraction Mapping Theorem'.

- If g is a contraction mapping on L = [a, b], then
 - 1. There exists a unique fixed point $x_{\star} \in L$ with $g(x_{\star}) = x_{\star}$.
 - 2. For any $x_0 \in L$, the iteration $x_{k+1} = g(x_k)$ will converge to x_{\star} as $k \to \infty$.
- To understand the theorem, let's take two points $x, y \in L$, and consider their mapping from L to L.
- Since to obtain a fixed point, the mapping g has to be converging, the distance between the points on L must be decreasing.

• Diagrammatically, it looks like:

- The distance before the mapping = |y x|.
- The distance after the mapping = |g(y) g(x)|.
- Since *g* is converging, we must have:

$$|g(y) - g(x)| < |y - x|.$$

 $|g(y) - g(x)| = \lambda |y - x|.$

- Here λ is real number and less than one (fraction).
- After *k*-th iteration, we have:

$$|g(y_k) - g(x_k)| = \lambda^{k+1}|y - x| \to 0 \text{ as } k \to \infty.$$

- It should be noted that if both x, y are fixed point, then $\lambda = 1$. The length will not decrease.
- If any one or both point are not fixed points, $\lambda < 1$.

Now rewriting, we have:

$$\frac{|g(y) - g(x)|}{|y - x|} < 1$$

• Now, Let x is a fixed point and y a point near to x. Since as $k \to \infty$, the distance $|y - x| \to 0$, we can write,

$$\lambda = \lim_{y \to x} \frac{|g(y) - g(x)|}{|y - x|} = |g'(x)| < 1.$$

- The above result shows that if the derivative of g is less than one at the fixed point, then the iteration starting at any point near to the fixed point will converge to the fixed point.
- The parameter, λ , is called the rate or ratio.
- In summary, if g is a contraction mapping and the iteration start at x_0 , the iteration will converge to the nearest fixed point from x_0 .

- Let's apply this to different forms of g(x):
 - 1. For $g(x) = \sqrt{2x + 3}$, we find:

$$\lambda = \left| \frac{dg}{dx} \right| = \left| \left(\frac{1}{2} \right) \left(\frac{2}{\sqrt{2x+3}} \right) \right| = \left| \frac{1}{\sqrt{2x+3}} \right|.$$

Clearly, $\lambda|_{x=3} = \frac{1}{3} < 1$. Also, for x > -1, $\lambda < 1$. That's why this converging to 3 for both values of x_0 .

2. For $g(x) = x^2 - x - 3$, we find:

$$\lambda = \left| \frac{dg}{dx} \right| = |2x - 1|.$$

Clearly, $\lambda|_{x=3} = 5 > 1$, and $\lambda|_{x=-1} = 3 > 1$. So this diverges.

$$\lambda = \left| \frac{d}{dx} \left(\frac{x^2 + 3}{2x - 2} \right) \right| = \left| \frac{x^2 - 2x - 3}{2(x - 1)^2} \right|.$$

$$\therefore \lambda \Big|_{x=-1} = 0 < 1 \quad \text{and} \quad \lambda \Big|_{x=3} = 0 < 1.$$

Note that since $x_0 = 0$ is closer to -1, the iteration converged to -1, and similarly, since $x_0 = 42$ is closer to 3, the iteration converges to 3.

