Digital Clock Implementation using Arduino with Multiplexing and Editing Features

Dhawal

Department of Electrical Engineering Indian Institute of Technology Hyderabad Email: ee24btech11015@iith.ac.in

Electrical Engineering Department Indian Institute of Technology, Hyderabad

Outline

- Introduction
- Components
- Circuit Connections
- Multiplexing Technique
- Digit Editing Logic
- Conclusion

Introduction

- Digital clock system with editing capabilities using Arduino microcontroller
- Key features:
 - Multiplexing technique for six 7-segment displays
 - Minimal I/O pin usage
 - Pause/play functionality
 - Digit-by-digit editing with increment/decrement buttons
- Comprehensive Boolean logic for time constraints

Components

Component	Value	Quantity
Arduino Uno		1
USB Cable	Type B	1
Seven Segment Display	Common Cathode	6
Push Buttons		4
IC 7447		1
Jumper Wires	M-M	16
Breadboard		1
Resistors	220Ω	7
Resistors	$10k\Omega$	4

Table: Components List

Arduino Pin Connections

Item	Arduino Pin	Function	
Button 1	A0 (PC0)	Edit Mode Toggle	
Button 2	A1 (PC1)	Next Digit Selection	
Button 3	A2 (PC2)	Increment Digit	
Button 4	A3 (PC3)	Decrement Digit	
IC 7447 Pin 7	D2	BCD Bit 0 (LSB)	
IC 7447 Pin 1	D3	BCD Bit 1	
IC 7447 Pin 2	D4	BCD Bit 2	
IC 7447 Pin 6	D5	BCD Bit 3 (MSB)	
Display 1	D6	Hours Tens Digit	
Display 2	D7	Hours Units Digit	
Display 3	D8	Minutes Tens Digit	
Display 4	D9	Minutes Units Digit	
Display 5	D10	Seconds Tens Digit	
Display 6	D11	Seconds Units Digit	

Multiplexing Technique

- All segment inputs connected to single BCD decoder
- Digital pins control common cathode of each display
- Selective activation of displays
- 2ms time gap between display switching
- Creates illusion of simultaneous operation
- Minimal I/O pin usage (only 6 pins for displays)

Editing System Overview

- Button 1: Toggles between run mode and edit mode
- Button 2: Cycles through six digits in edit mode
- 3 Button 3: Increments selected digit with rollover constraints
- Button 4: Decrements selected digit with rollunder constraints

Different constraints based on digit position:

- Units digits: 0-9
- Tens of minutes/seconds: 0-5
- Tens of hours: 0-2

Increment Logic - Units Digits (0-9)

D	С	В	Α	D_1	C_1	B_1	A_1
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0

$$A_1 = A'$$

$$B_1 = A + B$$

$$C_1 = AB + C$$

$$D_1 = ABC + D$$

Increment Logic - Tens of Minutes/Seconds (0-5)

D	С	В	Α	D_1	C_1	B_1	A_1
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	0	0	0

$$A_1 = A'B'C' + AB'C$$

$$B_1 = A'BC' + AB'C'$$

$$C_1 = A'BC + AB'C$$

$$D_1 = 0$$

Increment Logic - Tens of Hours (0-2)

D	С	В	Α	D_1	C_1	B_1	A_1
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0

$$A_1 = A'B'$$

$$B_1 = AB'$$

$$C_1 = 0$$

$$D_1 = 0$$

Decrement Logic - Units Digits (0-9)

D	С	В	Α	D_1	C_1	B_1	A ₁
0	0	0	0	1	0	0	1
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	1
0	0	1	1	0	0	1	0
0	1	0	0	0	0	1	1
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	1
0	1	1	1	0	1	1	0
1	0	0	0	0	1	1	1
1	0	0	1	1	0	0	0

$$A_1 = A$$
 $B_1 = A' + B$
 $C_1 = A'B' + C$
 $D_1 = A'B'C' + D$

Decrement Logic - Tens of Minutes/Seconds (0-5)

D	С	В	Α	D_1	C_1	B_1	A_1
0	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	1
0	0	1	3	0	0	1	0
0	1	0	0	0	0	1	1
0	1	0	1	0	1	0	0

$$A_1 = A'B'C + AB'C'$$

$$B_1 = A'BC' + AB'C'$$

$$C_1 = A'B'C' + ABC'$$

$$D_1 = 0$$

Decrement Logic - Tens of Hours (0-2)

D	С	В	Α	D_1	C_1	B_1	A_1
0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	1

$$A_1 = BA'$$

$$B_1 = B'A'$$

$$C_1 = 0$$

$$D_1 = 0$$

Hardware Build

- Connect seven-segment displays to breadboard
- Connect all segment outputs together (through resistors)
- Make connections to IC7447
- Connect IC7447 and buttons to Arduino
- Add current-limiting resistors for LEDs
- Add pull-down resistors for buttons

Final Arduino-based Clock Implementation

Tinkercad Simulation

Tinkercad Simulation of the

Digital Clock

Summary

- Successfully implemented digital clock with editing features
- Key achievements:
 - Efficient multiplexing technique
 - Comprehensive editing system
 - Boolean logic implementation
 - Minimal I/O pin usage
- Complete documentation and source code available

Acknowledgment

The complete source code and documentation can be found at:

https://github.com/Dhawal24112006/projects.git

Thank You!