

UNCLASSIFIED

AD 407 594

DEFENSE DOCUMENTATION CENTER

**FOR
SCIENTIFIC AND TECHNICAL INFORMATION**

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

63-4-1

GIIID

CATALOGED BY DDC
AS AD No. 407594

GENERAL DYNAMICS | CONVAIR

Report No. 8926-163

Material - Aluminum - 7178-T6

Effect of Interrupted Aging Treatments on Mechanical
Properties

P. W. Bergstedt., H. C. Turner, W. M. Sutherland

29 January 1957

Published and Distributed
under
Contract AF33(600)-8926

X 1.10

Post Office Box 1950, San Diego 12, California 296-6611
Material Post Office Box 2071 273-8000 | Accounting Post Office Box 510

MODEL
DATE

PAGE
REPORT NO.

Report No. 8926-163

Material - Aluminum - 7178-T6

Effect of Interrupted Aging Treatments on Mechanical
Properties

Abstract:

Bare 0.064" thick 7178-O sheet, clad 0.064" thick 7178-T6 sheet, and 0.125" thick 1-1/4" by 1-1/4" extruded 7178-O angle was solution heat treated at 870°F for 30 minutes (0.064" thick), or 40 minutes (0.125" thick), quenched in cold water and aged with a variety of interrupted aging treatments which consisted of two steps; an initial nucleation treatment and a final growth treatment. The nucleation treatments used were 212°F for 4 hours and 230°F for 3 hours. The growth treatments used with the nucleation treatments included 325°F for 1, 2, 3, 4 and 5 hours. Most of the aging treatments produced excellent yield strengths, but ultimate strength and elongation losses were experienced in varying degree, although in all cases military specification minima were exceeded. The aging treatment consisting of 250°F for 3 hours plus 300°F for 4 hours produced the best and most consistent mechanical properties among those observed.

Reference: Bergstedt, P. W., Turner, H. C., Sutherland, W. M., "X7178-T6 Materials - Interrupted Aging Treatments," General Dynamics/Convair Report MP 56-239, San Diego, California, 29 January 1957. (Reference attached).

CONVAIR
A DIVISION OF GENERAL DYNAMICS CORPORATION
SAN DIEGO

ENGINEERING TEST LABORATORIES

REPORT 56-239
DATE 1-29-57
MODEL F-106

TITLE

REPORT NO. 56-239

X7178-T6 MATERIALS -

INTERRUPTED ARTIFICIAL AGING

TREATMENTS

MODEL F-106

PREPARED BY P. W. Bergstedt
P. W. Bergstedt

GROUP MATERIALS & PROCESSES LAB.

CHECKED BY H. G. Turner

WADC Tech. Report

REFERENCE 54-119

Lab. Record Book

No. 910

BY Z. H. COOPER

CHECKED BY W.M.Sutherland

APPROVED BY *E. M. Sargent*

E. F. Strong

Chief, Engineering

Test Laboratories

- 2 -

NO. OF PAGES 6

NO. OF DIAGRAMS 4

REVISIONS

ANALYSIS

PREPARED BY Bergstedt/Turner
CHECKED BY W. M. Sutherland
REVISED BY

C O N V A I R
A DIVISION OF GENERAL DYNAMICS CORPORATION
SAN DIEGO

PAGE 1
REPORT NO. 56-239
MODEL F-106
DATE 1-29-57

REPORT NO. 56-239
X7178-T6 MATERIALS
INTERRUPTED ARTIFICIAL AGING
TREATMENTS

OBJECT:

1. To determine the tensile properties of X7178 aluminum alloy materials subjected to various interrupted-aging cycles after standard solution heat treatment.
2. To select a short term aging treatment which most nearly duplicates the mechanical properties obtained by standard aging practice.

CONCLUSIONS:

1. The minimum requirements of the respective military specifications were surpassed in all cases involving bare and extruded X7178 materials. The poor results obtained from the clad sheet cannot be attributed to short-time-aging effects. Most of the interrupted-aging treatments produced excellent yield strengths, but losses of varying degree were suffered in ultimate strength and ductility.
2. The best and most consistent results were obtained from the materials which were aged for 3 hours @ 250°F. plus 4 hours@ 300°F. The WADC recommendation of a 4 hour-4 hour treatment at these temperatures is in accord with these findings. The additional hour at the lower temperature does not appear to cause any significant changes in the tensile properties.

TEST PROCEDURE:

Three forms of X7178 aluminum alloy were involved in the interrupted-aging investigation:

1. Bare 0.064" X7178-O sheet
2. Clad 0.064" X7178-T6 sheet
3. 0.125" X7178-O Extruded 1 1/4" x 1 1/4" angle

Standard tensile specimens, prepared in accordance with QQ-M-151, were used throughout the test. Only longitudinal samplings were made, and the specimens were machined in the as-received conditions noted above.

Solution heat treatment was effected according to standard practice - 30 minutes at 870°F. for the 0.064" materials, and 40 minutes at 870°F. for the samples from the 0.125" extrusion.

After a water quench at room temperature, duplicate specimens were subjected to the various artificial aging treatments which appear in Tables I, II, and III.

ANALYSTS

PREPARED BY Bergstedt/Turner
CHECKED BY W. M. Sutherland
REVISED BY

C O N V A I R
A DIVISION OF GENERAL DYNAMICS CORPORATION
SAN DIEGO

PAGE 2
REPORT NO. 56-239
MODEL F-106
DATE 1-29-57

TEST PROCEDURE: (Cont'd.)

The first tests were run on the bare sheet samples. After examination of the tensile test results from these specimens, the 1-hour treatment at the second aging temperature was dropped. Otherwise, the clad and extruded materials were aged according to the same schedule which was used for the bare sheet.

Laboratory circulating-air furnaces were used for both solution treatment and artificial aging. The tensile tests were performed on the 12,000 lb. Tinius-Olsen Testing Machine and in accordance with Federal Specification QQ-M-151. The tensile yield strength was taken at 0.2% offset, and the elongation was measured from a standard two-inch gauge section.

Before the test work had been completed, WADC Technical Report 54-119 was received at Convair. Since the interrupted-aging treatment considered best by WADC was not included in our work, additional specimens were prepared and heat treated per the WADC recommendation. These samples are noted in the tabulated data.

TEST RESULTS:

The tensile properties resulting from the various aging treatments of bare, clad, and extruded X7178 alloy are listed in Tables I, II, and III, respectively. Since the clad material was uniformly marginal with regard to specification minimums, no attempt was made to determine the cause of the low results. The significance of the various step-aging methods was ascertained by a comparison of results, short-time aging vs. standard aging. This was true of all the materials even though the bare and extruded X7178 yielded above-specification results in every instance.

To allow a rapid appraisal of the test data, Figure 1 was inserted in the report. Average values were used in all cases.

NOTE: The data from which this report was prepared are recorded in Laboratory Record Book No. 910.

TABLE I.
EFFECT OF VARIOUS INTERRUPTED-AGING TREATMENTS ON THE MECHANICAL PROPERTIES OF 0.064" BARE X7178 SHEET.

Sample No.	Interrupted Aging Treatment	Mechanical Properties	Tensile Strength		Elongation		Mechanical Properties	
			Sample No.	Aging Temperature	Yield Strength	Ultimate Strength	Impact Test	Yield Strength
3	None	75,100	85,700	12.5	2.3	75,400	85,900	12.0
4	@ 325°F	75,200	85,630	13.5	24	75,200	85,000	12.5
Avg.		75,650	85,550	13.0		75,350	85,450	12.8
5	None	80,900	85,930	10.5	25	80,200	85,530	11.0
6	@ 325°F	79,620	85,600	10.0	26	79,200	85,600	12.0
Avg.		80,000	85,750	10.3		79,800	85,250	11.5
7	None	79,300	85,550	11.0	27	80,300	85,700	11.5
8	@ 325°F	79,300	85,520	10.0	28	79,400	85,600	12.0
Avg.		79,300	85,510	10.5		79,700	85,750	11.8
9	None	80,900	86,000	11.0	29	80,400	86,100	12.0
10	@ 325°F	79,700	85,850	11.0	30	80,500	87,200	12.0
Avg.		80,350	85,920	11.0		80,550	87,550	12.0
11	None	78,900	85,300	10.5	31	80,500	87,300	10.5
12	@ 325°F	78,100	85,300	11.0	32	81,100	87,500	10.5
Avg.		79,000	85,300	10.8		80,900	87,400	10.5
13	None	77,200	85,200	13.0	33	78,200	86,200	14.0
14	@ 325°F	75,200	85,600	13.5	34	76,000	85,300	13.0
Avg.		76,950	85,400	12.3		78,100	85,400	13.5
15	None	78,200	85,500	12.5	35	80,200	86,500	12.5
16	@ 325°F	78,100	85,600	12.0	36	80,300	86,500	12.5
Avg.		78,150	85,550	12.0		80,250	86,500	12.5
17	None	79,900	86,500	11.5	37	80,300	86,600	11.5
18	@ 325°F	78,200	85,500	10.0	38	80,500	86,700	11.0
Avg.		78,550	86,300	10.7		80,350	86,800	11.3
19	None	78,700	85,500	12.0	39	81,000	87,200	11.0
20	@ 325°F	76,700	85,500	11.0	40	80,300	86,800	10.5
Avg.		78,200	85,500	11.2		80,450	87,100	11.0
21	None	80,700	85,700	10.5	41	80,400	86,500	11.0
22	@ 325°F	77,200	86,000	10.0	42	82,300	87,400	11.0
Avg.		78,250	85,650	10.3		80,350	87,700	11.3

TABLE II.
EFFECT OF VARIOUS INTERRUPTED AGING TREATMENTS ON THE MECHANICAL PROPERTIES OF 9064" C1AD X7718 SHEET.

Sample No.	Interrupted Aging Treatment	Mechanical Properties		Sample No.	Temperature during Treatment °F.	Mechanical Properties		Sample No.	Temperature during Treatment °F.	Mechanical Properties		
		No.	U.T.S. lb/in. ²			No.	U.T.S. lb/in. ²			No.	U.T.S. lb/in. ²	
3	Avg. 2 min. @ 325°F.	19	66,185	72,920	10.5	Avg. 2 min. @ 325°F.	66,965	72,920	14.5	35	67,715	72,920
4	@ 325°F.	20	68,320	72,850	12.0	@ 325°F.	65,845	72,715	15.0	36	62,075	72,310
Avg.	62,210	62,925	11.3	Avg.	-	65,925	72,220	14.8	37	62,450	72,730	
5	Avg. 3 min. @ 325°F.	21	66,770	72,245	11.5	Avg. 3 min. @ 325°F.	67,150	72,375	12.5	38	62,490	72,975
6	2 hr @ 325°F.	22	67,290	72,580	10.0	2 hr @ 325°F.	69,280	72,220	13.0	Avg.	62,940	72,065
Avg.	67,330	72,960	10.8	Avg.	-	68,215	72,580	12.8	39	66,695	73,470	
7	Avg. 4 min. @ 325°F.	23	70,270	78,640	11.5	Avg. 4 min. @ 325°F.	66,215	78,620	13.0	40	62,025	72,310
8	@ 325°F.	24	68,500	72,110	10.5	@ 325°F.	68,355	72,220	12.0	41	62,450	72,730
Avg.	69,315	72,570	11.0	Avg.	-	67,375	72,220	12.5	42	62,655	72,610	
9	Avg. 5 min. @ 325°F.	25	67,870	72,220	10.5	Avg. 5 min. @ 325°F.	66,300	72,850	14.5	Avg.	68,695	72,940
10	@ 325°F.	26	66,770	76,630	10.5	@ 325°F.	68,565	76,635	12.5	-	-	-
Avg.	67,305	76,930	10.5	Avg.	-	67,930	72,225	13.5	-	-	-	
11	Avg. 2 min. @ 325°F.	27	69,360	72,930	12.0	Avg. 2 min. @ 325°F.	66,020	72,525	12.0	-	-	-
12	@ 325°F.	28	66,925	72,545	12.0	@ 325°F.	67,040	72,220	12.5	-	-	-
Avg.	67,900	72,790	12.0	Avg.	-	66,565	72,380	12.3	-	-	-	
13	Avg. 3 min. @ 325°F.	29	70,115	78,060	11.5	Avg. 3 min. @ 325°F.	69,930	72,515	11.0	1	28 min. @ 2-3°F.	62,390
14	@ 325°F.	30	68,660	72,690	12.0	@ 325°F.	68,345	72,690	11.5	2	"	71,265
Avg.	69,350	72,850	11.8	Avg.	-	65,930	72,790	11.3	3	"	62,040	
15	Avg. 4 min. @ 325°F.	31	69,120	72,740	10.5	Avg. 4 min. @ 325°F.	68,610	72,740	11.0	4	"	68,390
16	@ 325°F.	32	68,045	72,520	11.0	@ 325°F.	67,532	72,520	10.5	5	"	71,675
Avg.	68,370	72,610	10.8	Avg.	-	69,160	72,550	10.8	6	"	67,560	
17	Avg. 5 min. @ 325°F.	33	67,740	72,320	10.0	Avg. 5 min. @ 325°F.	68,010	72,440	10.0	7	"	68,280
18	@ 325°F.	34	68,065	72,580	10.5	@ 325°F.	62,600	76,585	12.0	8	"	71,040
Avg.	68,290	72,935	10.3	Avg.	-	67,805	76,360	11.0	9	"	-	

TABLE III. PROPERTIES OF 0.125" X 7/16" EXTRUDED 125 X 125° ANGLE.

No.	Sample No.	Mechanical Properties T.Y.S. in. x in. x in.	Interrupted-Aging Treatment	Sample No.	Interrupted-Aging Treatment		Mechanical Properties T.Y.S. in. x in. x in.	Sample No.	Interrupted-Aging Treatment		Mechanical Properties T.Y.S. in. x in. x in.
					1	2			3	4	
11	Ave.	86.200 94.095	86.200 94.095	12.5	2.7	2.6	86.200 94.095	95.715	10.0	1	96.310 12.5
12	Ave.	87.290 96.970	87.290 96.970	10.0	2.9	2.6	87.290 96.970	95.715	10.5	2	96.250 10.5
13	Ave.	87.795 95.510	87.795 95.510	11.3	3.0	2.9	87.795 95.510	95.715	9.0	2	96.250 10.3
14	Ave.	86.625 93.100	86.625 93.100	11.0	3.0	2.9	86.625 93.100	95.715	9.5	1	96.310 12.5
15	Ave.	86.320 95.715	86.320 95.715	10.0	3.0	2.9	86.320 95.715	95.715	9.0	1	96.310 12.5
16	Ave.	87.970 94.410	87.970 94.410	10.5	3.0	2.9	87.970 94.410	95.715	10.0	2	96.250 10.5
17	Ave.	87.223 91.973	87.223 91.973	11.5	3.3	3.4	87.223 91.973	91.660	11.0	1	96.310 12.5
18	Ave.	85.000 92.180	85.000 92.180	10.0	3.4	3.4	85.000 92.180	92.810	11.5	2	96.250 10.5
		84.610 93.530	84.610 93.530	10.8	Ave.	Ave.	84.610 93.530	92.810	11.3		

