Практическое занятие № 3

Тема: Расчет СМО М/М/n/r.

Цель: Приобретение практических навыков расчета показателей оперативности обработки данных с помощью системы массового обслуживания M/M/n/r.

Язык программирования, ПО и библиотеки: python 3.х, установленный пакет библиотек Anaconda.

Порядок выполнения практического занятия

- 1. Создайте новый проект. Скопируйте файл *pz3.py* в свою локальную папку.
- 2. Добавьте файлы с библиотекой генерации случайных величин $(rand_destribution.py)$ и имитационной моделью $(smo_im.py)$ в директорию с файлом pz3.py.
- 3. Для моделирования СМО М/М/n/r необходимо задать интенсивности поступления заявок λ и обслуживания μ , размер буфера (максимальной длины очереди) r и число каналов обслуживания n. Определите значения количества каналов n и максимальную длину очереди r по номеру по журналу группы с помощью таблицы 1.

Таблица 1. Выбор варианта выполнения практического задания

Номер по журналу	n	r	Номер по журналу	n	r
1	1	10	13	1	30
2	3	15	14	3	35
3	5	10	15	5	30
4	7	15	16	7	35
5	9	10	17	9	30
6	11	15	18	11	35
7	1	20	19	1	40
8	3	25	20	3	45
9	5	20	21	5	40
10	7	25	22	7	45
11	9	20	23	9	40
12	11	25	24	11	45

4. Для системы M/M/n/r осталось задать интенсивности входящего потока λ и обслуживания μ . Для дальнейших расчетов зададим $\lambda = 1.0$. Интенсивность обслуживания μ будем пересчитывать для различных коэффициентов загрузки системы, которые определяются по формуле

$$\rho_{cmo} = \frac{\lambda b_1}{n},$$

где для рассматриваемой системы $b_1 = 1/\mu$.

5. Требуется сравнить оценку среднего времени ожидания заявок в очереди, полученную для имитационной модели (ИМ), со значением, рассчитанным по формуле:

$$w = Q/\lambda$$
,

где Q – средняя длина очереди:

$$Q = p_n \sum_{i=1}^r i \left(\frac{\rho}{n}\right)^i, \tag{1}$$

$$p_{i} = \begin{cases} \frac{\rho^{i}}{i!} p_{0}, i < n \\ \frac{\rho^{i}}{n! n^{i-n}} p_{0}, i \ge n \end{cases}$$

$$(2)$$

$$p_{0} = \left[\sum_{i=0}^{n-1} \frac{\rho^{i}}{i!} + \frac{\rho^{n}}{n!} \cdot \frac{1 - \left(\frac{\rho}{n}\right)^{r+1}}{1 - \frac{\rho}{n}} \right]^{-1}.$$

Примечание: для приведенных формул необходимо принять $\rho = \frac{\lambda}{\mu}$.

Сравнение необходимо производить для коэффициента загрузки системы $\rho_{\text{смо}}$ в диапазоне 0.1-0.95.

6. Откройте файл *pz3.py*. Обратите внимание на следующий код:

```
if __name__ == "__main__":
    n = 1
    r = 50
    l = 1.0

jobs_count = 100000
```

Данный код будет выполнен только в случае, если вы вызываете файл pz3.py непосредственно, а не используете его в качестве сторонней библиотеки. Здесь необходимо заменить значения переменных n и r на соответствующие вашему варианту. Далее задаются интенсивность входного потока λ и число заявок $jobs_count$, которые будут обслужены в ходе ИМ.

Весь код, необходимый для запуска расчета и ИМ уже готов. Вам осталось дописать функцию расчета средней длины очереди. Заготовка для нее есть в коде файла pz3.py и выглядит вот так:

```
def getQ(1, mu, n, r):
    """
    Pacчет средней длины очереди
    """
    p_mass = get_p(1, mu, n, r)

# !!! добавьте свой код здесь
    Q = 0
    return Q
```

Внутри функции вызывается $get_p()$, которая реализует формулу (2) и возвращает массив вероятностей состояний СМО. Под i-м состоянием системы понимается вероятность того, что в произвольный момент времени в СМО будет ровно i заявок. Вам нужно написать код внутри getQ(), который реализует формулу (1).

Вы можете отладить эти функции отдельно, создав еще один файл с расширением .py. После завершения написания кода, запустите его на выполнение. В зависимости от выбранного варианта должны получиться графики, похожие на представленные на рисунке 1.

Рисунок 1. Результаты ИМ и математического расчета СМО M/M/n/r

В конце моделирования исследуется эффект дробления производительности, который заключается в увеличении числа каналов за счет соответствующего кратного уменьшения производительности (в нашем случае интенсивности обслуживания µ) отдельного канала.

Отчет по практическому занятию должен содержать:

- 1) график с зависимостью среднего времени ожидания в СМО от коэффициента загрузки для имитационной модели $w_{\rm UM}$ и теоретически рассчитанных значений $w_{\rm Teop}$;
- 2) график с зависимостью односильной ошибки оценки среднего времени ожидания в СМО от коэффициента загрузки системы;
- 3) график среднего времени пребывания и среднего времени ожидания заявок в системе от числа каналов с учетом дробления производительности.

Будьте готовы ответить на **контрольные вопросы** по практическому занятию:

- 1) Каким образом устроена нотация Кендалла?
- 2) Какую модель СМО вы исследовали?

- 3) Как зависит среднее время ожидания заявок в системе от коэффициента загрузки?
- 4) Как зависит точность оценок, полученных с помощью ИМ, от числа обработанных заявок?
 - 5) Как зависит точность оценок от коэффициента загрузки системы?
- 6) Как проявляется эффект дробления производительности? Какие советы вы бы дали проектировщику многоканальных систем?
- 7) Каким образом рассчитывалось среднее время ожидания в СМО? Приведите форму Литтла.
- 8) Что такое вероятность состояния системы? Как по найденным вероятностям получить среднюю длины очереди для исследуемой СМО?
- 9) Приведите формулу расчета коэффициента загрузки исследуемой СМО.