Belt drive simulation

February 28, 2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860124.

Table 1: Main parameters for the belt drive.

Parameter	Value	Units	Description
\overline{r}	0.09995	m	pulley radius
d	0.1π	m	distance between two pulleys
h_b	0.0001	m	belt height
w_b	0.08	m	belt width
\overline{l}_b	0.38π	m	stress-free belt length
l_b	0.4π	m	initial, deformed belt length
ε_{ref}	-0.05	_	added reference axial strain of the belt
u_0	0.	m	horizontal displacement (used only in original model [1])
EA	8000	Nm	axial stiffness
EI	$\frac{4}{3} \cdot 10^{-3}$	${ m Nm^2}$	bending stiffness
ho	1036	${ m kg/m^3}$	beam density
dEA	1	N/ms^2	strain proportional damping
ω_{P1}	12	$\rm rad~s^{-1}$	angular velocity of driving pulley
d_{P2}	2	Nm/s	angular velocity proportional damping at pulley P_2
t_0	0.05	s	driving start time
t_1	0.60	\mathbf{s}	driving end time
$t_{ au0}$	1.0	s	torque τ_{P2} raised at pulley P_2
$t_{ au 1}$	1.5	s	torque τ_{P2} at pulley P_2 reaches nominal value
I_p	0.25	$ m kgm^{-2}$	moment of inertia of pulleys
g	9.81	${ m ms^{-2}}$	gravity

1 Methods

A brief description of cable element, normal and tangential contact model will be added here.

2 Description of numerical example

The belt drive has two pulleys P_1 and P_2 with identical radius and inertia, see the geometrical setup in Figure 1. This numerical example is similar to the one developed in [1] with some modifications which attempt to eliminate the vibrations in the beginning of the simulation and allow the system to reach the steady state. The angular velocity of pulley P_1 is prescribed by means of an algebraic constraint, while some resistance torque over time is added to pulley P_2 , see the description hereafter. The belt is modelled as Bernoulli-Euler beam with bending stiffness

Figure 1: Belt drive with two pulleys, displaced from initial position by u_0 .

EI, axial stiffness EA, rectangular cross section with height h_b and width w_b , as well as stretch proportional damping, density, and further parameters given in Table 1. A constant acceleration is prescribed to pulley P_1 between t_0 and t_1 :

$$\omega_{P1}(t) = \begin{cases}
0 \frac{\text{rad}}{\text{s}}, & \text{if } t < t_0 \\
\omega_{P1} \frac{t - t_0}{t_0 - t_1} & \text{if } t_0 < t < t_1 \\
12 & \text{else}.
\end{cases} \tag{1}$$

Table 2: Parameters for ObjectANCFCable2D

Parameter	Value
physicsMassPerLength	ρA
physicsBendingStiffness	EI
physics Axial Stiffness	EA
physicsBendingDamping	dEI
physicsAxialDamping	dEA
physics Reference Axial Strain	$arepsilon_{ref}$
physicsReferenceCurvature	0
use Reduced Order Integration	2
strain Is Relative To Reference	False
visualization	(to be added)

A torque proportional to the angular velocity is applied to the pulley P_2 which represents damping of rotational motion:

$$\tau_{P2}(t) = \begin{cases} 0 \text{ Nm}, & \text{if } t < 1\\ 25 (0.5 - 0.5 \cdot \cos(2(t - 1)\pi)) \text{ Nm} & \text{if } 1 < t < 1.5\\ 25 \text{ Nm} & \text{else} \,. \end{cases}$$
 (2)

As compared to [1], we use a much smaller belt height h_b in order to exclude bending effects, a higher pre-tension (due to pre-stretch), while keeping the axial stiffness EA the same. Furthermore, the bending stiffness is lowered by a factor of 50, which reduces bending effects, as it would lead to significant deviations from an analytical solution otherwise. The support of pulley P_1 is not displaced during the first 0.05 s of the simulation, but the pre-stretch ε_{ref} is applied before running a static computation, which defines a static equilibrium for the dynamic simulation hereafter. The contact stiffness, as shown later by the nominal simulation parameters, has been increased by a factor of 40 and a tangential stiffness (bristle) model has been included in order to retrieve highly accurate contact behavior.

3 Description of code

For simulating the system we are using the multibody dynamics code Exudyn [2]. For the ANCF beam elements modeling the belt we are using ObjectANCFCable2D, see the documentation of Exudyn¹, theDoc. Parameters used for ObjectANCFCable2D are defined in Table 2.

For modeling the pulley we are using ...

For the parameter variation ...

4 Instructions for running the example

References

- [1] A. Pechstein and J. Gerstmayr, "A Lagrange-Eulerian formulation of an axially moving beam based on the absolute nodal coordinate formulation," *Multibody System Dynamics*, vol. 30, no. 3, pp. 343–358, 2013.
- [2] J. Gerstmayr, "Exudyn A C++ based Python package for flexible multibody systems," in the proceedings of the 6th Joint International Conference on Multibody System Dynamics and the 10th Asian Conference on Multibody System Dynamics, (New Delhi, India), 2022, submitted.

¹EXUDYN V1.3.86.dev1; https://github.com/jgerstmayr/EXUDYN