GRAPH:

DS +9+ is a non-linear data stouctury.

(35) * In tore, there is a relationship: pasent -> child.

* In grouph the orlationship is loss restricted.

GRAPH TERMINOLOGIES

1) Graph G = (V, E) consists of two sets

i) V: is the set of verdices

ii) E! is the ext of edges

 $V = \{ V_1, V_2, V_3, V_4 \}$ $V = \begin{cases} V_1, V_2, V_3, V_4 \end{cases}$ $V = \begin{cases} (V_1, V_2, V_3), (V_3, V_4), (V_4, V_1) \end{cases}$ $V = \begin{cases} (V_1, V_2), (V_2, V_3), (V_3, V_4), (V_4, V_1) \end{cases}$ $V = \begin{cases} (V_1, V_2), (V_2, V_3), (V_3, V_4), (V_4, V_1) \end{cases}$

2) Digrouph: It is a directed grouph 2.t G=(V, E) Where V is the set of all vertices and E is the set of ordised

paire of veretices from V.

 $V = \{V_1, V_2, V_3, V_4\}$ $E = \{ (V_1, V_2), (V_2, V_3), (V_3, V_4), (V_1, V_4), (V_2, V_4) \}$

ie in a digraph (Vi, Vi) ± (Vj, Vi)

3) WEIGHTED GRAPH

A graph (on diagraph) is termed as weighted graph it all the edges in it was labeled with some weights.

V1.

4) Adja cent Veretices:

Two vertices Vi and Vi are adjacent to each other it I an edge $e_{ij}: V_i \rightarrow V_j$ $e_{ij} = (V_i, V_j)$

5) Selt Loop:

If there is an edge whose start and end vertices are some that is (vi, vi) is an edge, then it is called a <u>set book</u>

(on simply a loop).

Here loop is at

It there the exist two or more edge between two vestices then those edge are parallel edgle.

Note: A graph which has either self hop or parallel edges are both is called a MULTIGRAPH.

A graph/diagraph having no self look and parallel edges is called a simple graph/diagraph

8) Complete Graph:

A graph/diagraph G is said to be complite it each vertex vi is adjacent to every other vertex vi in G. ice I edges from any veretex to all veretices.

It a graph/diagraph does not have any cycle then it is called acyclic month. acyclic goaph. Eg: Tou.

A venter Vi of a grouph Gi is said to be isolated it there is no edge which connects any vertex of 6, to Vi on vice-versor

Degree of (Vi) = No. of edges connected with the vention. 11) Degree of a Veotex Indegree (Vi) = not edges incident into vi (in ording at Vi) Outdegree (V_i) = not edges constraining from V_i : (Edges beginning at V_i)

A verten V_i is ferdant if indepen $(V_i) = 1$, and authorse $(V_i) = 0$. Egi Leatrade in a toll.

Connected Grouph;

In a graph G, two vertices Vi and V; are said to be connected if there is a path in G from V; to V; on V; > V; A grouph is said to be connected it there is at least one path for every pair of distinct vertices vi, v; in 5. * Strongly Connected: A greaph/diagreaph is strongly connected it

7 path Vi > Vi and Vi > Vi, V i=1 ton in G.

* Weakly Connected: It a diagraph is not strongly connected but underlying goaph is connected => the Goath is weatly

Scanned with CamScanner

-	
-	Representation of Grouphs:
	The subsequent a group h orce
the sales of the latest and the late	1) Sequential on Jumora 12
STATISTICS IN THE OWNER, NAME AND ADDRESS OF	2) Linked List Representation.
AND REAL PROPERTY AND REAL PROPERTY.	ALD MOTRIX REPRESENTATION OF A

___ii \ Im cidence Matrin.

#i Adjacency Matrial

Adjacency Matrial

A = [aij] = { 0, it there is no edge between Vi and V; V2

V, V2 Eg: Satellite Network
Cellulose Metwork

WSN WiFi Metwork

Note: Adjacincy materia does not olipered on the ordering of the vertices of a graph G. We can obtain some matrix by interchanging rooms and columns.

2) If grouph G is undirected then the adjacency

matoin of G will be symmetric.

i.e [aij] = [aji] for every i and j.

3) No. of 1's in an adjacency materix = No. of edges in the grouph. 4) This matrin is called a bet matrin on Boolean Matrin

$$\begin{bmatrix}
 i,j \end{bmatrix} = \begin{cases}
 -1, \\
 0, \\
 1
 \end{cases}$$

 9^{MP} if $V_i \rightsquigarrow V_j \implies K$ the column has the value = 1, in the saw = -1, in jth saw = -1, in jth saw

Consider the powers A, A², A³, ... of the adjacincy matrix A & G.

$$A^{2} = A \cdot A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 2 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 2 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A^{3} = A^{2} \cdot A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 2 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$A^{4} = A^{3} \cdot A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 2 & 0 & 2 & 3 \\ 1 & 0 & 1 & 2 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 & 1 \\ 2 & 0 & 2 & 3 \\ 1 & 0 & 1 & 2 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 & 1 \\ 2 & 0 & 2 & 3 \\ 1 & 0 & 1 & 2 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

and
$$B_K = A + A^2 + A^3 + \cdots + A^K$$

$$b(ij) = m \cdot ie \text{ there over } m \text{ numbers } t \text{ paths } t$$

$$length k'' \text{ ore less from rade } v_i \xrightarrow{to} v_j \cdot$$

(iii) PATH MATRIX

dut G: be a simple disacted grouph with n-nodes $v_1, v_2, v_3, \dots v_n$. The path matrix on recochability matrix $P = P_{ij}$ is defined as $P_{ij} = P_{ij}$ is defined as

Now from the above diagram, we have
$$B_{4} = A + A^{2} + A^{3} + A^{9}$$

$$= \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 2 & 2 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 2 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 2 & 3 \\ 5 & 0 & 6 & 8 \\ 3 & 0 & 3 & 5 \\ 2 & 0 & 3 & 3 \end{bmatrix}$$

$$= \begin{cases} 1 & 0 & 2 & 3 \\ 3 & 0 & 3 & 5 \\ 2 & 0 & 3 & 3 \end{cases}$$

$$= \begin{cases} 2 & 0 & 3 & 3 \\ 2 & 0 & 3 & 3 \end{cases}$$

$$= \begin{cases} 2 & 0 & 3 & 3 \\ 2 & 0 & 3 & 3 \end{cases}$$

$$= \begin{cases} 2 & 0 & 3 & 3 \\ 2 & 0 & 3 & 3 \end{cases}$$

$$= \begin{cases} 2 & 0 & 3 & 3 \\ 2 & 0 & 3 & 3 \end{cases}$$

$$= \begin{cases} 2 & 0 & 3 & 3 \\ 2 & 0 & 3 & 3 \end{cases}$$

$$= \begin{cases} 2 & 0 & 3 & 3 \\ 2 & 0 & 3 & 3 \end{cases}$$

$$= \begin{cases} 2 & 0 & 3 & 3 \\ 2 & 0 & 3 & 3 \\ 2 & 0 & 1 & 1 \\ 2 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 \\ 2 & 0 &$$

SHORTEST PATH ALGORITHM

G: Directed graph with n-vertices, v., v., v.

Wasshall's algorithm is more officient than calculating the powers of

dut us define n-square logical matrices Po, Pr, Pa, Po as follows

Let PR[II] = (i,i)th entry of the materia Pr is $P_{K}[i][i] = \begin{cases} 1 & \text{if there is a path few } V_{i} \rightarrow V_{j} \text{ which doors} \\ 0 & \text{otherwise} \end{cases}$

Po Cillis = 1, it there is an early from $v_i \rightarrow y$. (direct) P_1 [ii] = 1, there is a path from les -> V; which about pus

P_1 [iii] = 1, through any other note oscipt note vs.

P2[iJu] = 1, if there is a path li ~ Vi

P_K[i][i] = 1 can occur only it one of the following two cases occurs.

There is a path from node Vi -> Vi Case-i which obesnot we any other notes except possibly VI, V2, V3, ..., VE-1; hence P_{k-1} [[[]] = 1

There is a path from $V_i \rightarrow V_k$ and $V_k \rightarrow V_j$. Cose-ii Where each path obesn't we any other notes except possibly VI, R, ..., VK-1 i. Pratite = 1 & Pr. (E) = 1

Scanned with CamScanner

```
i e Elements of matrix Pr can be computed as:

Privilled V (Privilled No. 1)

Privilled Privilled V (Privilled No. 1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                   → logical AND

Logical OR
 WARSHALL'S ALGORITHM (TO FIND PATH MATRIX)
                                                                                                                                                                                                                                                                                                                                                                                                 Initializing path matrix P.
   1) for i = 0 to n-1
                                                                                                                                       ip (a [i][i] ===0)
P[i][i]=0;
P[i][i]=1;
     3)
     4>
     5)
     6>
   7) for k= 0 to n-1
   \begin{cases}
6 & \text{for } i = 0 \text{ for } n-1 \\
6 & \text{for } j = 0 \text{ for } n-1
\end{cases}
                                                                                                              (CDENG V EDED) V COLED = LOLED - LOLED
   11) Enuit
     WARSHALL'S SHORTEST-PATH PROBLEM
     Let G be a directed weighted grouph with n notes: V1, V2, ... Vn.
  w(e) > 0: is the weight of an edge "e".
  Weight of the grouph G is W = [Wij]
Weight of the grouph G is W = [Wij]
where Wij = \{w(e), \text{ it there is no edge from } v_i \rightarrow v_j \text{ where } w_i = \{v_i, \text{ it there is no edge from } v_i \rightarrow v_j \text{ or } v_i \neq v_j \text{ or } v_
```

Scanned with CamScanner

Let D: is the distance materia responsenting shortest paths between the rado.

$$o = [dij]$$

 $dij = lingth of a shortest path from <math>V_i \rightarrow V_j$

Now we can define sequence of matrices Dr., Dr., Dz., Dr., Pr

whose entries are obtined as tollows:

we can alpha be entries over obtained as follows:

Que entries over obtained as follows:

Que entries over obtained as follows:

Elength of poeceding paths from

Elength of poeceding paths from

$$V_i \rightarrow V_k + V_k \rightarrow V_j$$

 D_{k} [i][i] = Mi^{n} (D_{k-1} [i][i], D_{k-1} [i][i]

The initial matrial Do = W (where each "o" < to (very beg)

The Final matrix "In will be the decircol matrix D.

The final matrix
$$D_n$$
 will be the final Marxithm

Example: (Wasshall's Algorithm) / Floyd-Wasshall Algorithm |

 $W = \begin{bmatrix} 7500 \\ 7002 \end{bmatrix}$

$$W = \begin{bmatrix} 7500 \\ 7002 \\ 0300 \\ 4010 \end{bmatrix}$$

$$D_0 = \begin{bmatrix} 75 & 8 & 8 \\ 78 & 8 & 2 \\ 83 & 88 & 8 \\ 48 & 18 \end{bmatrix}$$

 $D_0 = \begin{bmatrix} 7 & 5 & \infty & \infty \\ 7 & 5 & \infty & \infty \end{bmatrix} \text{ No intermediate verdex between any two }$ $\begin{array}{c} \text{Verdicos} \\ \text{Verdicos} \end{array}$

$$D_{0} = \begin{cases} 7 & 5 & 60 & 60 \\ 7 & 80 & 60 & 2 \\ 8 & 3 & 60 & 60 \end{cases}$$

$$V_{1}V_{1} & V_{1}V_{2} = -$$

$$V_{2}V_{1} = W_{1}(D_{0}[2][2], D_{0}[2][1] + D_{0}[2][2]) = W_{1}(D_{0}(D_{0}, Y_{1})) = 12$$

$$D_{1}[2][2] = W_{1}(D_{0}[2][2], D_{0}[2][2]) = W_{1}(D_{0}(D_{0}, Y_{1})) = 12$$

$$D_{1} = \begin{cases} 7 & 5 & 60 & 60 \\ 7 & 12 & 60 & 2 \\ 7 & 12 & 60 & 2 \\ 8 & 3 & 80 & 80 \end{cases}$$

$$V_{1}V_{1} = V_{2}V_{1}V_{2} = -$$

$$V_{2}V_{1} = V_{3}V_{2} = -$$

$$V_{1}V_{1} = V_{2}V_{2} = -$$

$$V_{1}V_{1} = V_{2}V_{2} = -$$

$$V_{1}V_{2} = V_{2}V_{3} = -$$

$$V_{2}V_{3} = -$$

$$V_{3}V_{2} = -$$

$$V_{1}V_{2} = -$$

$$V_{2}V_{3} = -$$

$$V_{3}V_{2} = -$$

$$V_{4}V_{1} = -$$

$$V_{4}V_{2} = -$$

$$V_{4}V_{1} = -$$

$$V_{4}V_{2} = -$$

$$V_{4}V_{4} = -$$

$$V_{4}$$

$$D_{2} = \begin{bmatrix} 7 & 5 & 897 \\ 7 & 12 & 80 & 2 \\ 0 & 3 & 8 & 3 \\ 4 & 9 & 1 & 1 \end{bmatrix}$$

$$D_{3} = \begin{bmatrix} 7 & 5 & 8 & 7 \\ 7 & 12 & 8 & 2 \\ 10 & 3 & 8 & 5 \\ 9 & 9 & 1 & 6 \end{bmatrix}$$

$$D_{4} = \begin{bmatrix} 7 & 5 & 3 & 7 \\ 6 & 6 & 3 & 2 \\ 9 & 3 & 6 & 5 \\ 4 & 4 & 1 & 6 \end{bmatrix}$$

$$D_{y} = \begin{bmatrix} 7 & 5 & @ & 7 \\ \hline 6 & @ & 3 & 2 \\ \hline 9 & 3 & @ & 5 \\ \hline 4 & 4 & 1 & 6 \end{bmatrix} = \begin{bmatrix} v_{1}v_{1} & v_{1}v_{2} & v_{1}v_{2}v_{4}v_{3} & v_{1}v_{2}v_{4} \\ v_{2}v_{4}v_{1} & v_{2}v_{4}v_{3}v_{2} & v_{2}v_{4}v_{3} & v_{2}v_{4} \\ v_{3}v_{2}v_{4}v_{1} & v_{2}v_{4}v_{3}v_{2} & v_{3}v_{2}v_{4}v_{3} & v_{2}v_{2}v_{4} \\ v_{4}v_{1} & v_{4}v_{3}v_{2} & v_{4}v_{3}v_{2}v_{4}v_{3} & v_{4}v_{3}v_{2}v_{4} \\ v_{4}v_{1} & v_{4}v_{3}v_{2} & v_{4}v_{3}v_{2}v_{4} \end{bmatrix}$$

Warrshall's All-Paires Shordort Path Algoreithm O(n3).

dut W: Weight matorial.

G: goaph

on: No. of order in the graph. of D: is a material to refreezent shortest path from $V_i \rightarrow V_j$

1. for i=0; i = n-1; i++

for j=0 to n-1) then

it (Will) ==0) then

owij=wiji e/2l 5. 6.

7. for K=0 to n-1

L'L DUIGI = Min (DUIGI)

11. Exit.

Problem:

SINGLE - SOURCE SHORTEST PATH

1) In all-pairs shorted forth problem there is a reastriction of

moving though certain ventices. Hence shortest between two pairs (via) restricted ventices may not be shortest.

Theree may could shadere path than this.

& Example:

#1) book book book wight

3 + 1 + 4 + 1 = 9. 3 + 1 + 4 + 1 = 9. 3 + 1 + 4 + 1 = 9. 4 + 2i 4

When there exist negative edge weights this weighted edge when there exist negative edge weights this weighted edge for finding shortest path does not about property.

i>dmt:d>a>c>e>t weight (d ~> t) = 4, light(dob)=4 weight $(d \rightarrow t) = 5$ $lingth (d \rightarrow b) = 1 hap.$

Note: -1) Shoretest path problem is not defined fore graphs
that contain negative cost cycles. 2) However I solu for graphs that contain both

positive and regative edge alignes

DIJKSTRN'S ALGORITHM (Single Source Shoretext Path /x Mon-negative weights */ Input: -Output: -For each ventex V, Dijkstoa's algorithm keeps toack of those pieces of information, Ku, du, and fu. Ku: False/Tou: shordest path to le is not known/known. Ku < fake V v eV initially. du: Length of shortest path from V -> Destination Visters. du < to, Y v & V is. + V = Vs where du=0 Pu: Preedicesson of vertex V on the shortest path Vs -> V ie {1/8, ..., tu, v? Initially Pu is unknown for all VEV. 7 pro 1=1 to IVI 1. Initialize Ku = fake V v eV Algarithm =1 to VI 2. Select a veretier V having the smallest terretive distanceda) Set Ku = Jone For each vertex w adjacent to be fore which Kow Flore it (dw > du+c(v,w)) thed dw = dut c(v,w) set $p_{\omega} = V$ 8. Enit

		D	
Init	i	al	
IM	7	OUT	

	al	b	c	d	e	5
Ku	P	P	F	F	F	F
du	00	0	N	60	180	,eo
Pu	-	_	_	_	-	,

P098-	10	b	C	10	0	15	
Ku	T	T	Т	T	F	F	
du	3	0	4	6	8	11	
pu	6	-	a	C	C	d	

Paus-1

	/a 1	b	c	d	2	5	
Ku	F	T	F	F	F	F	
	3	0	5	5	61	8	
Pa	b	_	b		<i>-</i>	1	

Pars -3

	a	b	C	d	e	5
ku!	T	T	F		F	F
-	3	0	4	6.	8	₩
pu	b	_	a		_	_
100				*.		

Pass 5 a b C	10	1e/t	
Ka T T T	17	TT	
dn 3 0 4	6	8 (9)	
pu/b/- /a	С	l e l e	

Pars -3

No -	a	16	C	d	2	15
Ku	T	T		F		
du	3		4			⋈
pn	b	_	a	c	c/	

Pass	6 a		C	d	e	5
Ku	T	T	T	7	T	T
du	3	0	4	6	8	9
þn	b	-]	a	C	c	e

AN)

Objective: Systematically examine the radio and edges of a graph G.

Methods: - Two standard methods are:

-1> Depth First Search (DFS) - 9t uses STACK to hold radio for truture procuring

- 2) Boladth First Slavech (BFS) L) 9t uses QUEVE as an avoiliony stanture to hold nools for future poocessing

Each rode "n" of G will be in one of the 3-states, tag=1: (Ready State): The initial state of the rode "n". Hag = 2: (Waiting State): The rock "o" is in STACK PRUEUE
waiting to be processed.

tlag = 3: (Processed State): The rode "n" has been processed.

Algarithm (DFS)

1) Set [Hag=1] for all nochs // Initialize all rades to Redy State

2) Push (mode 1 into the stack)

3) Set blag = 2 for vale 1 // change the status of real to Waiting

while (stack != NULL)

 $\alpha = Pop()$

Process (d)

Set flag = 3 for reall of //charge states to poscess state

for all y = Adj(o1) 8) if (Hag(y) = = 1) then

| Push(y) into the stack ___ Hag = 2 for y. 11)

12) Eouit

Example (DFS):

Node	Adjacent 4Rt
1 -	2,3,4
2 -	3
3 -	_
\ 4 -	3,5
5 -	3

Status. 1) Ready State 1

Push(1) onto the Stack

