

Figure 1

Figure 2

Figure 3
No. 2

Seq. ID

1 CGGATCCACT AGTAACGGCC GCCAGTGTGG TGGAATCCAT
CCTTCTATGT

51 AACAGGAAAG AGCTGTTCTT AGGCCAGAGA GGAGGGCACC
GTACGCCCTGC

101 AGGAGCAGCT GGGTAGAGGA CACAGGAGAG CGATGGAGAC
AATATTTAAC

151 AGAAACAAAG AAGAGCATCC AGAGCCCATA AAAGCTGAGG
TGCAAGGTCA

201 GTTGCCTCACT TGGTTGCAAG GGGTACTTCT CCGAAATGGC
CCAGGGATGC

251 ACACAATAGG GGACACTAAA TACAACCCT GGTTTGATGG
CTTGGCTCTG

301 CTGCACAGCT TCACGTTAA AAATGGTCAA GTTTACTACA
GAAGTAAGTA

351 CCTCCGAAGT GACACATACA ACTGCAATAT AGAAGCAAAC
CGAATCGTGG

401 TGTCTGAGTT TGGAACCATG GCTTATCCGG ATCCATGCAA
AACATATTT

451 GCCAAGGCAT TCTCATACTT ATCTCACACC ATTCCCTGAGT
TCACGGACAA

501 CTGCCTGATC AACATTATGA AAACCTGGGA TGATTATTAT
GCTACCAGTG

551 AGACTAACTT CATCAGAAAA ATTGATCCAC AGACTCTGGA
GACACTAGAT

601 AAGGTAGACT ACAGCAAATA TGTAGCTGTA AACTTGGCAA
CTTCTCACCC

651 ACACATGAC AGTGCTGGAA ATATTCTCAA CATGGGTACT
TCAATTGTTG

701 ATAAAGGGAG AACAAAATAT GTTCTCTTA AGATCCCTTC
CTCTGTACCA

751 GAAAAAGAAA AGAAGAAATC TTGTTTTAAA CAACCTGGAAG
TAGTATGCTC

801 CATCCCTTCT CGCTCCCTGC TCCAACCAAG CTACTACCAC
AGCTTGGAA

851 TCACAGAAAA TTATATTGTG TTCATAGAGC AGCCATTAA
ACTGGATATT

901 GTCAAACCTGG CAACTGCCTA CATCCGAGGT GTGAACCTGGG
CTTCCTGCCT

951 TTCCTTTCAT AAGGAGGATA AGACGTGGTT TCACCTTGTA
GACAGAAAGA

1001 CGAAAAAAAGA AGTATCCACC AAGTTTTACA CTGATGCTTT
GGTGCTTTAT

1051 CACCACATAA ATGCTTACGA AGAAGATGGC CACGTTGTTT
TTGATATCGT

1101 TGCCTACAGA GACAATAGCT TGTACGATAT GTTTTACTTA
AAAAAAACTGG

1151 ACAAAAGACTT TGAAGTGAAC AACAAAGCTTA CCTCCATCCC
AACCTGCAAG

1201 CGCTTGTG TGCGCTCTGCA GTATGACAAG GATGCAGAAG
TAGGTTCTAA

1251 TTTAGTCAAA CTTCCAACCTT CCGCAACTGC TGTAAAAGAA
AAAGATGGCA

1301 GCATCTATTG TCAACCTGAA ATATTATGTG AAGGGATAGA
ACTGCCTCGT

1351 GTCAACTATG ACTACAATGG CAAAAAAATAC AAGTATGTCT
ATGCAACAGA

1401 AGTCCAGTGG AGCCCAGTTC CTACAAAGAT TGCAAAACTG
AATGTCCAAA

1451 CAAAGGAAGT ACTGCACTGG GGAGAAGACC ACTGCTGGCC
CTCAGAGCCC

1501 ATCTTGTTC CCAGCCCCGA TGCAAGAGAA GAGGATGAAG
GTGTTGTTT

1551 GACCTGTGTT GTGGTGTCTG AGCCAAATAA AGCACCCCTTC
CTACTCATCT

1601 TGGATGCTAA AACATTCAA GAATTGGGCC GAGCCACAGT
TAACGTAGAA

1651 ATGCATCTGG ACCTGCATGG GATGTTTATA CCACAGAATG
ATTTGGGGC

1701 TGAGACGGAA TAAAACGCTA TTGATCCGAC TACACAAACT
GAGACAAACTT

1751 TCTACTGAAC ATGAGTTAAT ATCCCTTTA CCATTCAAGA
ACAACCATAT

1801 AACGACACAA AATGACTATG TATAATCTCT TAAATAATAG
ATATAATCCT

1851 TTTAAGGCAC AGCGATGAGT TTTACTACAG GTAACGATAT
GCACAACTGG

1901 CATATAACTA TTCCAAAAGA AGAAGAACGA TCAGTGT
AGAAGTGCTA

1951 ATGTTGTACA TAACGGCGGC AGAGGGAAACA GGAGAGAAAG
GTAACGGGAA

2001 TATTTAATAG AATATAGATT TCTGAGCAAA TGAAGTGCAG
TATTATGGT

2051 GTGATGCATG GCATGAGTCA CATAGGTCTG CAGCTCATGT
ATCTTTAGA

2101 GATCGTTCA AGATTGCAGC TTGTGATGCA AGTTTCTCC
AGCCAGAAAA

2151 CCTCATTTA AACCATCTGC TACTGGTAAT TCATACCAAT
GCATTTCTT

2201 GGTGCTCGAT TTACACTATA ACCAAAGTTA AGTATTACAT
TCAGGTGCTA

2251 CAACTTTCTA ATTTACAACC GAAACAAACA AGCAAACAGC
ACTTGCTTG

2301 CTAATAACCC CATGGTGTAT TTTCCFTTT TATGATGACA
AAACCAAGTA

2351 CATATGGTTT TATGTAGCAT TCAATTATAC TTCAGTGCTA
TTCCATCCTA

2401 ATGTTATAAG CAATTTGTAT TAAATCAGT TTTCCTTGAG
AATATCTGAC

2451 ATAACATTGTT GTGTAATGAG ATGACTATGT TGTCTAAAGA
TGAACAGGAA

2501 TGTATCTTT ATTAGTATTG TTAATTGTGT TACTAATACT
ATGCATATGA

2551 ATGAGAGCAA TGTATTCTA GGAGAACTCA GATATACATT
CAACAATTTC

2601 TGTAGGTGAA AATGCATTAA CTGATGAAAG TTGAATCGTT
AATGAGGGAG

2651 AAAACTGGGT ATCCATCCAT CCAACTATGT TAGGTGTTCA
CCTGGTCTGT

2701 ATGTGACACC ACGCTGTTG GGTATCTCTC ACTTCACAT
ACCTGTTCTC

2751 ATGGTTCTG CTACTCACTG TATTTGCAG GAGAGAAACA
AAATGAAATC

2801 ACTGTCACCT ACTATGCC CATCACATAA GAACAATGGG
GCTTTGGTGA

2851 CTTGTTCATG ATTACATAAG ATGTTGCAG CAGAGCAGCA
ATAGAACCAA

2901 CACCATCCAC AGTTCTTGCT TGCTCTGTTA TGACTCCCTT
TGCTGTCTTT

2951 ATGGTTGCA TGTATGAAGA ATACACTGCC TAATTCTAAT
GTTAAAAAGT

3001 CACTGGGGTC AGATCTAGAG CTTAAGTAAG CAGTCTGGGG
TTTCAAATG

3051 TTTATATGTT CCATAAAATG GAAATAAACCA CCTCCATAAT
AAAAAAAAAAA

3101 AAAAAAAAAA A

Figure 4
No. 1

Seq. ID

1 METIFNRNKE EHPEPIKAEV QGQLPTWLQG VLLRNGPGMH
TIGDTKYNHW

51 FDGLALLHSF TFKNGEVYYR SKYLRSDTYN CNIeanrivv
SEFGTMAYPD

101 PCKNIFAKAF SYLSHTIPEF TDNCLINIMK TGDDYYATSE
TNFIRKIDPQ

151 TLETLDKVVDY SKYVAVNLAT SHPHYDSAGN ILNMGTTSIVD
KGRTKYVLFK

201 IPSSVPEKEK KKSCFKHLEV VCSIPSRSLL QPSYYHSFGI
TENYIVFIEQ

251 PFKLDIVKLA TAYIRGVNWA SCLSFHKEDK TWFHFVDRKT
KKEVSTKFYT

301 DALVLYHHIN AYEEDGHVVF DIVAYRDNSL YDMFYLKLLD
KDFEVNNKLT

351 SIPTCKRFVV PLQYDKDAEV GSNLVKLPTS ATAVKEKDGS
IYCQPEILCE

401 GIELPRVNYD YNGKKYKYVY ATEVQWSPVP TKIAKLNQQT
KEVLHWGEDH

451 CWPSEPIFVP SPDAREEDEG VVLTCVVVSE PNKAPFLLIL
DAKTFKELGR

501 ATVNVEMHLD LHGMFIPQND LGAETE

Figure 5

Seq ID No. 4 and Seq ID No. 5

437 NVQTKEVLH..WGEDHCWPSEPIFVPSPDAREEDEGVVLTCVVVSEPNKA
484 ||.||| | | :||||||| ||| |||:|||.|| .
465 NVKTKETWFTVWQEPDSYPSEPIFVSHPDALEEDDGVVLSVVSPGAGQK
514
485 P.FLLILDAKTFKELGRA.TVNVEMHLDLHGMF 515
| :|||||.|||.||| || : . . ||:|
515 PAYLLILNAKDLSEVARAEFTVEINIPVTFHGLF 548

Fig. 6 shows a 10% polyacrylamide gel with E.coli expressed β,β -carotene 15,15'-monooxygenase after affinity tag purification; lane 1 and lane 2: 2 fractions from the Co^{2+} -chelate column showing the main band at 60 kD; lane 3: low range molecular weight marker (Bio Rad).

Fig. 7 shows an HPLC profile of the reaction mixture at the end of an activity assay for the β,β -carotene 15,15'-monooxygenase following the procedure in example 1. The first peak in the chromatogram represents the internal standard, while the second peak corresponds to retinal as the only product formed during the central cleavage with β -carotene as substrate.

Fig. 8 confirms that the product peak in Fig. 7 is indeed retinal. A sample which was positive in the activity assay (green (upper) chromatogram) was spiked with retinal and analysed in second HPLC run (red (lower) chromatogram). The chromatograms of the two runs were then overlayed.