

Tribuo

an introduction to a Java ML Library

Mani Sarkar @theNeomatrix369

Use Hashtag: #makeitconf2020

Get the slide deck, it is live at

https://bit.ly/intro-to-tribuo-slides

Download the PDF for clickable links in the slides

About me

Mani Sarkar

More about me

Freelance Software, Data, ML Engineer

Java / JVM

Cloud / Infra / DevOps

Polyglot developer

LJC, Devoxx, developer communities

Code quality, testing, performance, DevOps, deep affinity for AI/ML/DL/NLP, NN...

Strengthening teams and helping them accelerate

JCP member, F/OSS projects:
@adoptopenjdk @graalvm
@truffleruby

Java Champion, Oracle Groundbreaker Ambassador, Software Crafter, Blogger, Speaker

Disclaimer

- Sharing my ideas, but YMMV
- Possibly missed one or more things or made mistakes, I ask for forgiveness
- Not clear for some, my apologies
- Lots of info and resources, but we *skipped* a lot
- Lots of takeaway, please go home and do some more research
- Please contribute and share, please tweet!

Citation

The respective authors and creators are, and remain the true <u>owners of the images and other artifacts</u> used in this presentation.

Thank you for your creations!

Agenda

Introduction **Features** Demo: Resources walk-thru Summary

Get Started

Learn

Thank you!

Urban, his team and *YOU*!

Use Hashtag: #makeitconf2020

Celebrating 25 years of Java

Lots of apps we all want to know about...

"The 25 greatest Java apps ever written" blog post by **Alexa Weber Morales**

Introduction

Fun facts about the name "Tribuo"

Inception

Tried and tested since 2016
-- like many other libraries in this space

Another event

Get Started

Fork/clone the repo

git clone https://github.com/oracle/tribuo.git

also **Watch** and **Star** the repo

Maven

```
<dependency>
   <groupId>org.tribuo</groupId>
   <artifactId>tribuo-all</artifactId>
   <version>4.0.1
   <type>pom</type>
</dependency>
```

Gradle

```
dependencies {
    implementation ("org.tribuo:tribuo-all:4.0.1@pom") {
          // --- for Groovy uncomment below line
          // transitive = true
          // --- for Kotlin uncomment below line
          // isTransitive = true
```

Learn

Documentation

- Features
- Architecture
- Package overview
- Security considerations
- JavaDocs

Tutorial

- Classification
- Regression
- Clustering
- Anomaly detection
- Configuration

FAQ: Frequently Asked Questions

- Project Overview
- General

Features

General Predictors

- Native (Tribuo)
 - Bagging
 - Random Forest
 - K-NN (k Nearest Neighbourhood)
- Neural Networks via Tensorflow

Classification

Support Vector Machine

- Native (Tribuo)
 - Linear models
 - CART
 - SVM-SGD
 - Adaboost.SAMME
 - Multinomial Naive Bayes
- SVM via <u>LibSVM</u>
- Gradient Boosted Decision Trees via <u>XGBoost</u>
- Regularised Linear Models via <u>LibLinear</u>

Stochastic Gradient
Descent

Regression

- Native (Tribuo)
 - CART
 - Linear models
 - Lasso
 - ElasticNet
- Gradient Boosted Decision Trees via <u>XGBoost</u>
- SVM via <u>LibSVM</u>
- Regularised Linear Models via <u>LibLinear</u>

Clustering

- Native (Tribuo)
 - K-Means

Anomaly Detection

One-class SVM via <u>LibSVM</u>

Demo: walk-thru

About the demo

Code on GitHub (example):
 https://github.com/neomatrix369/awesome-ai-ml-dl/tree/master/examples/tribuo

 (follow steps in the README)

- Classification notebook on GitHub: https://github.com/oracle/tribuo/blob/main/tutorials/irises-tribuo-v4.ipynb
- Other Notebooks on GitHub: https://github.com/oracle/tribuo/blob/main/tutorials/
- Tribuo docker image: <u>https://hub.docker.com/r/neomatrix369/tribuo</u>

A bit more about the demo environment

What is a "notebook"? Best of both worlds!

(<u>video</u>) Notebook

(Code + Rich text and Visualisations as narrations + Output)

Run single cell, all cell outputs ARE saved as part of the document

REPL (Read Evaluate Print Loop)

Run single command at a time, output CAN BE saved

Code+Build+Run

(only Code and Output, NO Rich Text or Visualisation as narrations)

Run whole program, output NOT saved

Running the IJava Jupyter notebook

Running the IJava Jupyter notebook

```
JDK_TO_USE=GRAALVM
openidk version "11.0.5" 2019-10-15
OpenJDK Runtime Environment (build 11.0.5+10-jymci-19.3-b05-LTS)
OpenJDK 64-Bit GraalVM CE 19.3.0 (build 11.0.5+10-jvmci-19.3-b05-LTS
                                                                 mixed mode, sharing
                                                                                     Things to know and
******************
                                                                                         remember
Attaching back to container, with ID 8770a9178eee
Use below command to connect to the running container via a new session/shell:
               docker exec -it 8770a9178eee /bin/bash
The example Tribuo notebooks can be found in the tribuo/tuturials folder
****************
You can terminate your Jupyter session with a Ctrl-C
[I 13:26:39.744 NotebookApp] JupyterLab extension loaded from /opt/conda/lib/python3.7/site-packages/jupyterlab
[I 13:26:39.745 NotebookApp] JupyterLab application directory is /opt/conda/share/jupyter/lab
[I 13:26:45.785 NotebookApp] Serving notebooks from local directory: /home/jovyan
[I 13:26:45.785 NotebookApp] The Jupyter Notebook is running at:
[I 13:26:45.787 NotebookApp] http://8770a9178eee:8888/
[I 13:26:45.790 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation
```


(Demo)

```
var evaluator = new LabelEvaluator();
var evaluation = evaluator.evaluate(irisModel,
testingDataset);
System.out.println(evaluation.toString());
```

Classification metrics

 \mathbf{n} = number of observations per class | \mathbf{tp} = True Positive | \mathbf{fn} = False Negative | \mathbf{fp} = False Positive

Class	n	tp	fn	fp	recall	prec	f1
Iris-versicolor	16	15	1	0	0.938	1.000	0.968
Iris-virginica	15	15	0	1	1.000	0.938	0.968
Iris-setosa	14	14	0	0	1.000	1.000	1.000
Total	45	44	1	1			
Accuracy					0.978		
Micro Average					0.978	0.978	0.978
Macro Average					0.979	0.979	0.978
Balanced Error Rate					0.021		

Accuracy scores

For more details

```
var evaluator = new LabelEvaluator();
var evaluation = evaluator.evaluate(irisModel,
testingDataset);
System.out.println(evaluation.toString());
```

Classification metrics

n = number of observations per class | **tp** = True Positive | **fn** = False Negative | **fp** = False Positive

Class	n	tp	fn	fp	recall	prec	f1
Iris-versicolor	16	15	1	0	0.938	1.000	0.968
Iris-virginica	15	15	0	1	1.000	0.938	0.968
Iris-setosa	14	14	0	0	1.000	1.000	1.000
Total	45	44	1	1			
Accuracy					0.978		
Micro Average					0.978	0.978	0.978
Macro Average					0.979	0.979	0.978
Balanced Error Rate					0.021		

```
recall = tp / (tp + fn)
prec (precision) = tp / (tp + fp)
f1 (F1 Score) = 2 * ((precision / recall) / (precision + recall))
```

For more details

As Java CLI app

Go to this link:

Tribuo Classification example: as a Java CLI app

And please perform the steps mentioned there.

You should see an output like **this**.

- Build and run JAR from CLI
- Build and run GraalVM native-image from CLI

Puzzles: Tribuo

- Yay! I love solving puzzles!
- What can we do to make it better?
- What more features do we want to see in it?
- Any other ideas come to mind?
- What else can we do with Tribuo?
- Ideas about integrating with ...?
- Can we recreate a model using provenance data?
- Can we recreate a <u>e2e flow</u> using provenance data?

Tribuo example code

Please share and contribute...

Run a docker container with Tribuo (a ML Library, written in Java), running under the traditional Java 11 (from OpenJDK or another source) or GraalVM.

Table of contents

- Goals
- Scripts provided
- Usage
 - o Help
 - Run the Tribuo docker container
 - Other methods to run the container
- · Build the docker container
- Push built Tribuo docker image to Docker hub
- Docker image on Docker Hub
- Contributing

https://github.com/neomatrix369/awesome-ai-ml-dl/tree/master/examples/tribuo#tribuo---

Other libraries

talk later today

There is another

- There are a few AI/ML Java libraries out there
- Eyal's recent presentation on AI/ML Java libraries
- Zoran's blog posts on AI/ML libraries: [1] [2]
- My <u>Previous talks</u> on related topics
- Other AI/ML Java talks at this event

Release & License

Tribuo library

Latest Release

tag/v4.0.1

Apache 2.0

Developer and community friendly License

Community

Community

- Oracle Labs
- Oracle Labs: Machine Learning Research Group
- Discussion List: <u>Archive</u> | <u>Subscribe</u>
- <u>Issues</u> | <u>Pull Requests</u> on GitHub
- Contribution Guidelines
- Security Reporting Guidelines

Resources

Resources

- Tribuo GitHub
- Java on Awesome AI/ML/DL
- Awesome AI/ML/DL
- Awesome Graal
- Awesome Java | Awesome JVM

See Appendix: Learning by example

- DL4J example
- NLP example
- Jupyter Notebook example
- Apache Zeppelin example
- grCuda example
- grPython examples

12+ months worth of coding work

Summary

- Unique approach to Machine Learning
- Produces predictions (types instead of floating-point arrays)
- Focus on provenance (tracks metadata)
 - For posterity
 - First step to explainability
 - Recreate model
 - Recreate end-to-end flow

Summary

- Focus on security unlike many other libraries and packages
- Tried and tested for a long time
- Community friendly license
- We just scraped the surface, lots of resources to learn from and neat documentation to get started with

Thank you!

Urban, his team and *YOU*!

Use Hashtag: #makeitconf2020

Social media links

- twitter: @theNeomatrix369
- medium: https://medium.com/@neomatrix369
- github: https://github.com/neomatrix369/
- linkedin: https://uk.linkedin.com/pub/mani-sarkar/71/a77/39b
- slideshare: https://www.slideshare.net/neomatrix369/
- youtube: My Channel | Videos playlist

Use Hashtag: #makeitconf2020

Questions & feedback

Use Hashtag: #makeitconf2020

Please share your questions and feedback at

@theNeomatrix369

or on the video stream

Keep in mind...

It's your turn next to share and inspire!!!

Appendix

Freebies!

Get \$500 worth of free cloud credits on Oracle Cloud

People doing some great work with AI & Java

Eyal Wirsansky, Zoran Sevarac, Suyash Joshi, Adam Pocock, Frank Greco, Johan Vos and many more...

(please share more names and examples with me so I can add them here)

Java and AI/ML/DL

Machine Learning Best Practices

O

Top 5 machine learning libraries for Java

O

10 Popular Java Machine Learning Tools & Libraries

0

What are machine learning libraries in Java?

Previous talks

- I recently gave a talk: <u>NLP Profiler</u>: A simple profiler, to profile textual datasets
- From backend development to machine learning
- "nn" things every Java developer should know about AI/ML/DL
- Naturally, getting productive, my journey with Grakn and Graql
- Do we know our data as well as our tools?
- Java N.n: What to know? How to learn?
- Some of my other talks a can be found <u>here</u> and <u>here</u> (and others on <u>Slideshare</u>)

Learning by example

DL4J example

- Github
- Blog post

NLP examples

- Example 1
 - Github
 - Blog post
- Example 2
 - Blog post
- Example 3
 - Blog post
- Better NLP

Jupyter Notebook example

- Example 1
 - Github
 - Blog: <u>Exploring NLP concepts using Apache OpenNLP</u> <u>inside a Jupyter notebook</u>
- Example 2
 - Blog post
- Example 3
 - Github
 - Blog post

Apache Zeppelin example

- Github
- Blog posts
 - Apache Zeppelin: stairway to notes* haven!
 - Running Apache Zeppelin on Oracle Cloud Infrastructure

grCuda example

Blog posts

- grCUDA: A Polyglot Language Binding for CUDA in GraalVM.
 NVIDIA Developer Blog, November 2019.
- grCUDA: A Polyglot Language Binding. Presentation at Oracle CodeOne 2019, September 2019.
- Simplifying GPU Access. Presentation at NVIDIA GTC 2020, March 2020
- Optimizing Machine Learning Performance at Netsuite with GraalVM and NVIDIA GPUs

Github

graalPython examples

- Blog posts
 - Introduction to the Python implementation for GraalVM
 - Moving from Jython to GraalVM
 - Running Python on GraalVM
- Github