获得的答案

Decidability of the language

Given: In this a language $A_{\varepsilon CFG}$ is given.

Proof: For showing that the language A_{sCFG} is decidable, build a Turing machine T for deciding the language A_{sCFG} . For all Context free grammars G

- If the grammar G derives arepsilon then Tig(ig< Gig) accepts
- If the grammar G does not derive \in then $T(\langle G \rangle)$ rejects.

Constructions

For proofing the decidability of $A_{\mathcal{E}CFG}$ firstly convert the context free grammar G into an equivalent G' in CNF. If $S \to \mathcal{E}$ is the rule in the CFG G' then it means that G' derives \mathcal{E} .

If the CFG G' derives ε then G also derives it as L(G) = L(G'). As G' is in CNF so only possible ε -rule in G' is $S \to \varepsilon$. If G' contains $S \to \varepsilon$ in production rules then $\varepsilon \in L(G')$. If G' does not contains the rule $S \to \varepsilon$ then $\varepsilon \notin L(G')$.

Turing machine T = on input(G) where G is a context free grammar

- ullet Convert the grammar G in CFG G'.
- If G contains the production rule $S \to \varepsilon$ then accept it.
- Otherwise reject it.

Conclusion:

From the above construction it is clear that $\langle G \rangle \in A_{\varepsilon CFG}$ iff $\langle G, \varepsilon \rangle$ is also belongs to the A_{CFG} . So the above construction is correct. Hence the language $A_{\varepsilon CFG}$ is decidable.