Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2023-24

Ιεραρχίες Μνήμης (Ι)

(τεχνολογίες κύριας μνήμης και εισαγωγή στις κρυφές μνήμες)

http://mixstef.github.io/courses/comparch/

Μ.Στεφανιδάκης

Τεχνολογίες Κύριας Μνήμης

- Στους πρώτους υπολογιστές
 - Ιστορικά, η κατασκευή κύριας μνήμης ήταν πολύ πιο δύσκολη από την κατασκευή των πρώτων υπολογιστικών κυκλωμάτων
- Αρχικές τεχνολογίες
 - Flip-flop με λυχνίες κενού
 - Γραμμές καθυστέρησης υδραργύρου κ.ο.κ
- Μαγνητικές μνήμες (core memories 1950)
 - Η πρώτη αξιόπιστη και σχετικά φθηνή τεχνολογία RAM
 - Κυριάρχησε για 20 περίπου χρόνια
- Ημιαγωγικές μνήμες (Intel 1970)
 - Η αρχή: 1Kbit DRAM ("core killer")

Το μοντέλο της Μνήμης Τυχαίας Προσπέλασης

- Random Access Memory (RAM)
 - Λέξη μνήμης (word) με εύρος M bits
 - Διεύθυνση (address) επιλογής λέξης, N bits
 - Μέγεθος (χωρητικότητα) μνήμης **2^NxM** bits

Η λέξη είναι η μικρότερη προσπελάσιμη ομάδα bits (π.χ. ένα byte ή πολλαπλάσιά του).

Διευθυνσιοδότηση μνήμης RAM

Byte addressing

- Οι διαδοχικές διευθύνσεις μνήμης αυξάνονται ανά byte
- Ακόμα κι όταν η λέξη μνήμης έχει πολλαπλάσιο εύρος
- Επεξεργαστές γενικού σκοπού

• Εναλλακτικά: word addressing

- Οι διευθύνσεις αυξάνονται ανά λέξη
- Υπερυπολογιστές ή ειδικοί επεξεργαστές ψηφιακών σημάτων εδώ η προσπέλαση ανά byte είναι σπάνια

Οργάνωση Μνήμης Τυχαίας Προσπέλασης (RAM)

• Οι τρέχουσες μνήμες RAM διαθέτουν πολλαπλές (π.χ. 8) συστοιχίες κυττάρων μνήμης (banks)

Ταχύτητα Προσπέλασης RAM

- Access Time (χρόνος προσπέλασης)
 - Ο απαιτούμενος χρόνος για την ολοκλήρωση μιας αίτησης
 προς τη μνήμη RAM
 - Συχνά διαφορετικός για Ανάγνωση Εγγραφή
- Cycle Time (χρόνος κύκλου προσπέλασης)
 - Ο ελάχιστος απαιτούμενος χρόνος μεταξύ διαδοχικών αιτήσεων προς τη μνήμη RAM
 - Προσθήκη χρόνου για ενδιάμεσες λειτουργίες (προετοιμασία για την επόμενη προσπέλαση)

Τύποι Μνήμης Τυχαίας Προσπέλασης

- Στατική Μνήμη RAM (SRAM)
 - Κάθε bit αποθηκεύεται σε κύτταρο ("cell") 6 τρανζίστορ
 - Διατήρηση bit όσο υπάρχει τροφοδοσία της μνήμης
- Η προσπέλαση είναι γρήγορη
 - Ο χρόνος προσπέλασης μιας μνήμης SRAM βρίσκεται μεταξύ 0,5 και 5 ns
- Αλλά:
 - Πολυπλοκότερο κύκλωμα
 - Δεν επιτρέπει μεγάλη ολοκλήρωση
 - Μεγαλύτερη κατανάλωση ενέργειας
- Χρησιμοποιείται στις κρυφές μνήμες (caches)

Τύποι Μνήμης Τυχαίας Προσπέλασης

- Δυναμική Μνήμη RAM (DRAM)
 - Κάθε bit αποθηκεύεται ως φορτίο
 - Διατήρηση μόνο με συχνή ανανέωση του φορτίου (κάθε 16 έως 128 ms)
- Απλούστερο κύκλωμα μεγάλη ολοκλήρωση
 - Πολύ μεγάλες χωρητικότητες (1Gbit/chip και μεγαλύτερες)
 - Η προσπέλαση είναι αργή
 - Ο χρόνος προσπέλασης μιας μνήμης DRAM βρίσκεται μεταξύ 50 και 70 ns
 - Αρχιτεκτονικές βελτιώσεις για την αύξηση του ρυθμού μεταφοράς
 δεδομένων
- Χρησιμοποιείται για τη συγκρότηση της κύριας μνήμης

Βασικές λειτουργίες DRAM

ACTIVATE

 Επιλογή γραμμής (row) για ανάγνωση ή εγγραφή μέσω μέρους της διεύθυνσης

READ/WRITE

Επιλογή στηλών (column) για ανάγνωση ή εγγραφή μέσω της υπόλοιπης διεύθυνσης

PRECHARGE

- Επιλογή συστοιχίας (bank) για προφόρτιση πριν την επόμενη ανάγνωση ή εγγραφή
- Λοιπές λειτουργίες
 - Refresh, ρυθμίσεις (μέγεθος μεταφοράς, αρχικοποίηση σημάτων κλπ)

Επικοινωνία με τη μνήμη DRAM

- Η βασική λειτουργία της μνήμης είναι ασύγχρονη
 - Η ανάγνωση και εγγραφή ολοκληρώνεται μετά από συγκεκριμένο χρόνο ανάλογα με την τεχνολογία της μνήμης
- Προσθήκη σημάτων ρολογιού για συγχρονισμό μεταφοράς δεδομένων
 - CLK : συγχρονίζει τα σήματα ελέγχου και διεύθυνσης (από ελεγκτή μνήμης)
 - Ξεχωριστό σήμα (strobe) DQS συγχρονίζει τη μεταφορά των δεδομένων (DQ)
 - Οδηγείται από τον ελεγκτή μνήμης (εγγραφή) ή τη μνήμη (ανάγνωση)
 - Μνήμες DDR: μεταφορά και στις δύο ακμές DQS (double-data rate)
- Πρότυπα
 - DDRx (x = 3,4,5...) για επικοινωνία με ξεχωριστά modules μνήμης
 - ΗΒΜ για μνήμες που βρίσκονται μέσα στο τσιπ του επεξεργαστή

Παράδειγμα ανάγνωσης από DRAM

Απαιτήσεις από το σύστημα μνήμης

- Παράδειγμα: ένας επεξεργαστικός πυρήνας
 - με ρολόι 3 GHz
 - και έναρξη εκτέλεσης έως και 8 εντολών ανά κύκλο
 - απαιτεί από τη μνήμη 24G εντολές/sec
 - Τι συμβαίνει σε συστήματα με πολλούς πυρήνες;
- Η «ιδανική μνήμη» θα έπρεπε να είναι
 - Πολύ γρήγορη
 - Πολύ φθηνή
 - Με πολύ μεγάλη χωρητικότητα
 - Ιδιαίτερα χρήσιμη στις σημερινές εφαρμογές ΑΙ

Ιεραρχίες Μνήμης

- Προσέγγιση της ιδανικής μνήμης
 - Ο επεξεργαστής να βλέπει "μνήμη" με την ταχύτητα του υψηλότερου επιπέδου και το μέγεθος του χαμηλότερου επιπέδου
- · Η ιεραρχία μνήμης εκμεταλλεύεται την αρχή της τοπικότητας

Για να γεφυρώσει το χάσμα απόδοσης μεταξύ επεξεργαστών

Ιεραρχία μνήμης και τοπικότητα

• Χρονική Τοπικότητα

- Εάν προσπελαστεί μια θέση μνήμης, είναι πολύ πιθανό να προσπελαστεί ξανά στο άμεσο μέλλον
 - Παράδειγμα: οι εντολές ενός βρόχου (loop)

Εφαρμογή:

- Δεδομένα και εντολές που χρησιμοποιήθηκαν πρόσφατα βρίσκονται ήδη κοντύτερα στον επεξεργαστή (π.χ. στην κρυφή μνήμη)
 - θα προσπελαστούν πολύ γρηγορότερα την επόμενη φορά

Ιεραρχία μνήμης και τοπικότητα

• Χωρική Τοπικότητα

- Εάν προσπελαστεί μια θέση μνήμης, είναι πολύ πιθανό να προσπελαστούν και οι γειτονικές θέσεις στο άμεσο μέλλον
 - Εντολές προγραμμάτων, δεδομένα σε πίνακες κλπ

• Εφαρμογή:

- Όταν προσπελαστεί μια θέση μνήμης, μεταφέρονται και οι διπλανές της λέξεις στην κρυφή μνήμη
 - Γρηγορότερη προσπέλαση όταν θα ζητηθούν και αυτές

Κρυφές μνήμες

- Σημαντικό τμήμα στην ιεραρχία μνήμης
- Εξέλιξη συστημάτων κρυφής μνήμης
 - 1962: οι πρώτες ιεραρχίες μνήμης (Atlas computer)
 - Όχι όμως κρυφή μνήμη
 - 1965: η πρώτη περιγραφή κρυφής μνήμης (Wilkes)
 - Ο πρώτος υπολογιστής με κρυφή μνήμη (IBM 360/85)
 - 1968: η πρώτη χρησιμοποίηση του όρου "cache memory"
 - Στη συνέχεια:
 - Πολλαπλά επίπεδα κρυφής μνήμης (L1, L2, L3...)
 - Βελτιωμένες αρχιτεκτονικές κρυφής μνήμης

Απλό μοντέλο ιεραρχίας μνήμης

Οι αρχές λειτουργίας της απλής ιεραρχίας μπορούν να
 επεκταθούν σε πολλαπλά επίπεδα (κρυφή μνήμη L1, L2, L3...)

Αποθήκευση δεδομένων στην Ιεραρχία Μνήμης

• Αποθήκευση δεδομένων

- Τα υψηλότερα επίπεδα της ιεραρχίας μνήμης (πιο κοντά στις ΚΜΕ) είναι υποσύνολα των χαμηλότερων
- Όλα τα δεδομένα αποθηκεύονται τελικά στο χαμηλότερο επίπεδο (κύρια μνήμη)

• Μεταφορά δεδομένων

- Αντιγραφή από επίπεδο σε επίπεδο
- Το ελάχιστο σύνολο δεδομένων που μεταφέρεται μεταξύ δύο επιπέδων ονομάζεται μπλοκ
 - Πολλαπλά bytes (πολλές λέξεις μαζί)

Μπλοκ (γραμμές) κρυφής μνήμης

- •Για την εκμετάλλευση της χωρικής τοπικότητας
- •Όταν πρέπει να μεταφερθεί μια λέξη, μεταφέρεται το μπλοκ που την περιέχει
- •Το σύστημα κύριας μνήμης έχει βελτιστοποιηθεί αρχιτεκτονικά για μεταφορές μπλοκ
- •Οι σημερινοί επεξεργαστές διαθέτουν κρυφές μνήμες με μέγεθος μπλοκ ίσο με 64 bytes

Αναζήτηση δεδομένων στην Ιεραρχία Μνήμης

• Αναζήτηση δεδομένων

- Η μονάδα επεξεργασίας ζητά πάντοτε τα δεδομένα/εντολές από το κοντινότερο σε αυτήν επίπεδο (κρυφή μνήμη)
- Τα δεδομένα υπάρχουν στην κρυφή μνήμη: hit
 - Τα δεδομένα επιστρέφονται γρήγορα στη μονάδα επεξεργασίας
- Τα δεδομένα δεν βρίσκονται στην κρυφή μνήμη: miss
 - Η αίτηση προωθείται στο επόμενο (χαμηλότερο) επίπεδο (κύρια μνήμη)
 - Το μπλοκ που περιέχει τα δεδομένα αντιγράφεται στην κρυφή μνήμη
 - Και τα δεδομένα που ζητήθηκαν επιστρέφονται στη μονάδα επεξεργασίας

Τι δημιουργεί cache misses;

- Η πρώτη φορά προσπέλασης ενός μπλοκ
 - Όταν ζητούνται από τη μονάδα επεξεργασίας μπλοκ που δεν βρέθηκαν ποτέ μέχρι τώρα στην κρυφή μνήμη
- Λόγω της πεπερασμένης χωρητικότητας της κρυφής μνήμης
 - Η κρυφή μνήμη δεν χωράει όλα τα μπλοκ ταυτόχρονα
 - Μπλοκ που τοποθετούνται στην ίδια θέση στην κρυφή μνήμη,
 συναγωνίζονται για τη θέση αυτή
 - Ένα νέο μπλοκ όταν τοποθετηθεί στην κρυφή μνήμη εκτοπίζει ένα προηγούμενο διαφορετικό μπλοκ που βρισκόταν στην ίδια θέση

Θέματα κρυφών μνημών

- Πού αποθηκεύεται ένα μπλοκ στην κρυφή μνήμη;
- Πώς εντοπίζεται ένα μπλοκ στην κρυφή μνήμη;
- Ποιο μπλοκ θα αντικατασταθεί όταν χρειαστεί;
- Τι συμβαίνει στην εγγραφή νέων δεδομένων;
- Πώς υπολογίζεται η απόδοση της ιεραρχίας μνήμης;

(στο επόμενο μάθημα..)