07/04/2022

Combining Mechanistic Modelling, Nonlinear Control, and Neuronal Learning for Road Traffic Optimization

Physics-enhanced Machine Learning methods in Engineering practice seminar @ The Alan Turing Institute

Dr. Cristian Axenie
Intelligent Cloud Technologies Laboratory
Munich Research Center

Agenda

- Huawei TrafficGO Solution
- Real Time Traffic Control at District Level
- Exploiting the physics of traffic
- System design: modelling, control, and learning
- Evaluation
- Conclusions

TrafficGO Solution

Traffic Intelligent Twins (TrafficGO)

Inclusive AI, making urban transportation safer while yielding new levels of energy-efficiency

Lamport Lab

Real-Time Traffic Signal Scheduling

Formulates the first security communication interface standards for intelligence-infused traffic management and signal control systems.

District-wide Coordination

Maximizes traffic volume and minimizes vehicle wait time.
Coordinates travel requirements of vehicles and pedestrians for smooth traffic.

Deep Data Mining

Integrates the Internet with big data for traffic control to deepen data mining efforts.

plans routes in advance.

OBELISC

Oscillator-Based Efficient Learning In phase offset State Control

Real Time Traffic Control at District Level

Real Time Traffic Control at District Level

Real Time Traffic Control at District Level

Exploiting the Physics of Road Traffic

System design

System design: modelling

$$\frac{d\theta_i(t)}{dt} = \underbrace{\omega_i(t)}_{j=1} + \underbrace{k_i(t) \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))}_{\text{Coupling strength}} + \underbrace{F_i sin(\theta^*(t) - \theta_i(t))}_{\text{Variability}}$$

where:

 θ_i - the amount of green time of traffic light i

 ω_i - the frequency of traffic light i oscillator

 k_i - the flow of cars passing through the direction controlled by traffic light i oscillator

 A_{ij} - the static spatial adjacency coupling between oscillator i and oscillator j

 F_i - the coupling of external perturbations (e.g. maximum cycle time per phase imposed by law)

 θ^* - the external perturbation (e.g. the upper limit of green time)

System design: modelling

System design: modelling

System design: control

Oscillator dynamics

Regularizing control law

$$\frac{d\theta_i(t)}{dt} = \left[\omega_i(t) + k_i(t) \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t)) + F_i sin(\theta^*(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t)) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t)) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t)) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t))\right] + \left[u_i(t) + \frac{1}{N} \sum_{j=1}^{N} A_{ij} sin(\theta_j(t) - \theta_i(t)\right]$$

with

$$\begin{aligned} u_i(t) &= \epsilon_1 \int_0^t \hat{s_i}(\tau) d\tau \\ \frac{\hat{s_i}(t)}{dt} &= \epsilon_2 (\sum_{i,j} (\hat{s_j}(t) - \hat{s_i}(t)) + s_i(t)) \\ \frac{s_i(t)}{dt} &= \epsilon_3 \sum_j (s_j(t) - \frac{\hat{s_i}(t)}{dt}) - sign(\hat{s_i}(t)) \frac{d^2\theta_i(t)}{dt^2} \\ 0 &< \epsilon_1 < \epsilon_2 < \epsilon_3 < 1 \end{aligned}$$

Initial conditions

| | | | Energy surplus (uncertainty, disruption)

where:

 $s_i(t)$ - the surplus energy of traffic light i oscillator

 $\hat{s}_i(t)$ - the estimated surplus energy of traffic light i oscillator

System design: learning

System design: learning

Evaluation

Evaluation

Real road network layout

1 oscillator per direction 5 crosses with 4 directions 3 crosses with 3 directions

Traffic profile in the road network

Evaluation

Performance

Run-time

Model	Single cross Region (8 crosses				
MILP	0.0510	0.3930			
OSCILLATOR	0.0568	0.4544			
OBELISC ODE	0.0489	0.4534			
OBELISC NEF	0.0071	0.0426			

Conclusions

- modelling is a fundamental dimension for control
- network of oscillators capturing the spatial and temporal interactions among different crosses in a traffic network
- adaptively cope with unexpected traffic flow disruptions
- sliding mode controller that extends the adaptation capabilities of the model towards handling high-magnitude high-frequency disruptions
- lightweight learning system using spiking neural networks exploiting the coupling interactions among the different controlled oscillators
- overcoming state-of-the-art approaches

Full evaluation

5 crosses with 4 directions 3 crosses with 3 directions

Model	Single cross Region (8 crosses)			
MILP	0.0510	0.3930		
OSCILLATOR	0.0568	0.4544		
OBELISC ODE	0.0489	0.4534		
OBELISC NEF	0.0071	0.0426		

-			
- 5	vst	en	m

Disruption level	normal flow	1.1	1.2	1.3	1.4	1.5
Average trip duration(s)						
BASELINE	1688.057	1812.174	2033.401	3096.471	2655.146	2701.367
MILP	1512.481	1532.351	2033.201	3096.751	2230.817	2574.464
OSCILLATOR	1314.648	1618.713	2123.501	3056.571	1997.297	4971.24
OBELISC (ODE)	1318.425	2701.767	1310.277	1512.481	3096.271	1342.357
OBELISC (NEF)	1553.055	1557.982	1535.124	2002.165	1993.757	2169.219
Robust OBELISC (ODE)	1535.524	1535.924	1556.024	1595.874	2002.565	2200.408
Robust OBELISC (NEF)	1412.581	1513.681	1531.401	1310.618	1366.307	1310.477
Average time loss(s)						
BASELINE	102.535	114.600	136.229	241.383	197.399	202.113
MILP	151.281	153.781	203.301	309.671	223.017	257.464
OSCILLATOR	131.468	161.871	203.301	309.671	199.797	497.124
OBELISC (ODE)	131.825	270.167	131.077	151.281	309.671	134.257
OBELISC (NEF)	135.355	155.782	153.524	200.265	199.357	216.919
Robust OBELISC (ODE)	133.524	143.904	147.524	153.524	200.265	220.008
Robust OBELISC (NEF)	85.726	88.326	89.726	84.165	89.889	84.291
Average speed(km/h)						
BASELINE	58.15	56.78	54.68	50.26	49.38	47.50
MILP	59.78	58.78	54.68	50.26	49.28	46.18
OSCILLATOR	59.48	58.13	54.68	50.26	52.97	45.54
OBELISC (ODE)	59.78	47.50	51.49	52.21	50.26	51.12
OBELISC (NEF)	58.99	59.09	59.80	52.91	53.16	51.05
Robust OBELISC (ODE)	59.80	59.10	58.80	59.70	52.91	50.49
Robust OBELISC (NEF)	59.78	59.78	59.41	51.79	50.70	51.49
Average route length (km)*a						
BASELINE	7.5	8.2	9.0	9.1	10.5	11.2
MILP	7.4	7.5	9.0	9.1	10.3	11.1
OSCILLATOR	6.7	8.2	9.0	9.2	10.4	9.2
OBELISC (ODE)	5.6	11.2	5.8	7.5	9.1	5.5
OBELISC (NEF)	6.4	7.4	7.5	10.3	10.4	11.1
Robust OBELISC (ODE)	7.5	7.7	7.6	7.8	10.3	11.1
Robust OBELISC (NEF)	7.4	7.4	7.5	5.7	5.6	5.6
Waiting time(s)*						
BASELINE	164.5	185.3	222.8	294.5	325.9	351.3
MILP	148.7	148.7	212.8	234.5	293.2	372.9
OSCILLATOR	115.7	142.2	215.8	286.5	208.5	418.3
OBELISC (ODE)	160.3	351.3	158.7	148.7	294.5	161.2
OBELISC (NEF)	137.1	137.6	139.4	216.0	204.2	236.3
Robust OBELISC (ODE)	139.4	141.4	149.4	169.8	216.8	252.5
Robust OBELISC (NEF)	128.7	145.7	148.8	159.2	162.4	158.7