Graph Databases

•••

Jose Andrés Campos Castro Roberto Gutiérrez Sánchez

Agenda

- Graphs
- Types of graphs.
- History of Graph Databases.
- DBMS Examples.
- Graph Databases in Neo4j.
- Example.

Graphs

Types of Graphs

Types of Graphs

Directed vs. undirected

Directed (Edges have directions)

Weighted vs. unweighted

Unweighted (Edges have no cost/weight)

Weighted (Edges have associated cost/weight)

History of Graph Databases

70's \rightarrow Tabular Databases

80's → Relational Databases

90's \rightarrow NoSQL.

BASE	ACID
Basic Availability	Atomic: Everything in a transaction succeeds or the entire transaction is rolled back.
Soft-state	Consistent: A transaction cannot leave the database in an inconsistent state.
Eventual consistency	Isolated: Transactions cannot interfere with each other.
	Durable: Completed transactions persist, even when servers restart etc.

DBMS Examples.

© neo4j	Cypher	Most famous graph database, Cypher O(1) access using fixed-size array
DSE Graph	Gremlin	Distributed graph system based on Cassandra
@ Arango DB	AQL	Multi-model database (Document + Graph)
Örient DB'	OQL	Multi-model database (Document + Graph)

Nodes

- Most basic entity
- Can have labels
- Represent objects
- Labels for roles

Labels

- Group nodes
- More efficient
- Used in entities
- Normally used for objects
- CamelCase practice

Relationships

- Connection between nodes
- Source and target
- Directed and not-directed
- Represent actions/verbs

Properties

- Attributes
- Key and Value
- Used in nodes and relations
- Store information
- int, float, string, etc

Example

https://github.com/campos-97/GraphDBExample

https://neo4j.com/download/

Bibliography

- "History of Databases and Graph Database Bitnine Global Inc.", Bitnine Global Inc [Online]. Available: https://bitnine.net/blog-graph-database/history-of-databases-and-graph-database/. [Accessed: 7- Oct- 2018].
- "Impossible Is Nothing: The History (& Future) of Graph Data [GraphConnect Recap] Neo4j Graph Database Platform", Neo4j Graph Database Platform. [Online]. Available: https://neo4j.com/blog/history-and-future-of-graph-data/. [Accessed: 7- Oct- 2018].
- "Relational Databases vs. Graph Databases: A Comparison", Neo4j Graph Database Platform .[Online]. Available: https://neo4j.com/developer/graph-db-vs-rdbms/. [Accessed: 7- Oct- 2018].
- J. Cook, "ACID versus BASE for database transactions", Johndcook.com. [Online]. Available: https://www.johndcook.com/blog/2009/07/06/brewer-cap-theorem-base/. [Accessed: 7- Oct- 2018].