Proj PNAS

November 18, 2023

1 Sentiment of ECB speeches and the perceived effect on Inflation.

In the followin Notebook we are going to lay the foundation for our research regarding the impact that the speeches of the ECB might play in the market and the sentiment regard inflation. #### Import the libraries we need:

```
[]: import pandas as pd
from tqdm.notebook import tqdm
import os
import nltk
from nltk.tokenize import word_tokenize
```

```
[nltk_data] Downloading package names to
[nltk_data]
                C:\Users\Utente\AppData\Roaming\nltk_data...
[nltk data]
              Package names is already up-to-date!
[nltk_data] Downloading package stopwords to
[nltk data]
                C:\Users\Utente\AppData\Roaming\nltk_data...
[nltk_data]
              Unzipping corpora\stopwords.zip.
[nltk_data] Downloading package state_union to
[nltk_data]
                C:\Users\Utente\AppData\Roaming\nltk_data...
[nltk_data]
              Package state_union is already up-to-date!
[nltk_data] Downloading package twitter_samples to
[nltk_data]
                C:\Users\Utente\AppData\Roaming\nltk_data...
              Package twitter_samples is already up-to-date!
[nltk_data]
[nltk_data] Downloading package movie_reviews to
[nltk_data]
                C:\Users\Utente\AppData\Roaming\nltk_data...
[nltk_data]
              Package movie_reviews is already up-to-date!
[nltk_data] Downloading package averaged_perceptron_tagger to
```

```
C:\Users\Utente\AppData\Roaming\nltk_data...
    [nltk_data]
    [nltk_data]
                   Package averaged_perceptron_tagger is already up-to-
    [nltk_data]
                       date!
    [nltk_data] Downloading package vader_lexicon to
    [nltk data]
                     C:\Users\Utente\AppData\Roaming\nltk data...
    [nltk_data]
                   Package vader_lexicon is already up-to-date!
    [nltk data] Downloading package punkt to
                     C:\Users\Utente\AppData\Roaming\nltk_data...
    [nltk_data]
    [nltk_data]
                  Unzipping tokenizers\punkt.zip.
[ ]: True
```

Import the Data we need: in the following section of our notebook we will introduce the Data scraped from the ECB up until 2023

```
[]: main_ds = pd.read_csv("Inputs//all_ECB_speeches.csv", sep="|") #if the file has⊔

→ to be changed, be careful with the sep option.

main_ds.head()
```

```
[]:
             date
                             speakers \
       2023-10-30
                     Luis de Guindos
    1 2023-10-25 Christine Lagarde
    2 2023-10-17
                     Luis de Guindos
    3 2023-10-14 Christine Lagarde
    4 2023-10-04
                    Luis de Guindos
                                                    title \
    O The euro area economy and our monetary policy ...
    1 Remarks delivered at the Bank of Greece on the...
    2 Macroprudential policy and research: learning ...
    3
                                           IMFC Statement
      The inflation outlook and monetary policy in t...
```

subtitle \

- O Remarks by Luis de Guindos, Vice-President of $\boldsymbol{\ldots}$
- 1 Speech by Christine Lagarde, President of the ...
- 2 Dinner speech by Luis de Guindos, Vice-Preside...
- 3 Statement by Christine Lagarde, President of t...
- 4 Keynote speech by Luis de Guindos, Vice-Presid...

contents

O SPEECH The euro area economy and our moneta...

SPEECH Remarks delivered at the Bank of G...

SPEECH Macroprudential policy and researc...

SPEECH IMFC Statement Statement by Christ...

SPEECH The inflation outlook and monetary p...

```
[]: # we need to combine the speeches uniting title, subtitle and contents
     main_ds["speech_merged"] = main_ds["title"] + "\n" + main_ds["subtitle"] + "\n"_
     →+ main_ds["contents"]
     main_ds = main_ds.drop(columns=["title", "subtitle", "contents"])
[]: import nltk
     from nltk.tokenize import word_tokenize
     from tqdm import tqdm
     # Ensure that the necessary NLTK resources have been downloaded
     nltk.download('punkt')
     nltk.download('stopwords')
     def preprocessing_df(ds_input):
         # Load stopwords once, outside the loop
         stopwords = nltk.corpus.stopwords.words("english")
         # Define a preprocessing routine
         def preprocess_text(speech):
             tokens = word_tokenize(speech)
             tokens = [w.lower() for w in tokens if w.isalpha() or w.isdigit() and w.
      →lower() not in stopwords]
             return ' '.join(tokens)
         # Use tqdm with apply to display a progress bar
         tqdm.pandas(desc="Processing rows")
         ds_input['speech_merged'] = ds_input['speech_merged'].astype(str).
      →progress_apply(preprocess_text)
         return ds_input
     # Apply this function to your DataFrame
     # ds_prep = preprocessing_df(your_dataframe)
    [nltk_data] Downloading package punkt to
    [nltk data]
                    C:\Users\Utente\AppData\Roaming\nltk_data...
                  Package punkt is already up-to-date!
    [nltk_data]
    [nltk_data] Downloading package stopwords to
                    C:\Users\Utente\AppData\Roaming\nltk_data...
    [nltk_data]
                  Package stopwords is already up-to-date!
    [nltk_data]
[]: ds_prep = preprocessing_df(main_ds)
     ds_prep.to_excel("Outputs//Intermediate//prep_new.xlsx", index=False)
                                    | 0/2736 [00:00<?, ?it/s]Processing rows:
    Processing rows:
                       0%1
    100%|
              | 2736/2736 [00:55<00:00, 49.65it/s]
```

```
[]: import pandas as pd
from tqdm.notebook import tqdm
import os
import nltk
from nltk.tokenize import word_tokenize
import numpy as np
```

Analysis of the Sentiment Here below, after having done the pre-processing of our file, we use the VADER algorithm to establish the sentiment score of each speech

```
[]: ds_prep = pd.read_excel("Outputs//Intermediate//prep_new.xlsx")
[]: from nltk.sentiment import SentimentIntensityAnalyzer
    sia = SentimentIntensityAnalyzer()
    scores = []
    for sentence in tqdm(ds_prep["speech_merged"]):
         score = sia.polarity_scores(str(sentence))
         scores.append(score)
    neg_scores = [score['neg'] for score in scores]
    neu scores = [score['neu'] for score in scores]
    pos_scores = [score['pos'] for score in scores]
    compound_scores = [score['compound'] for score in scores]
    ds_prep['neg_score'] = neg_scores
    ds_prep['neu_score'] = neu_scores
    ds_prep['pos_score'] = pos_scores
    ds_prep['compound_score'] = compound_scores
      0%1
                   | 0/2736 [00:00<?, ?it/s]
[]: import numpy as np
    import matplotlib.pyplot as plt
    ds_prep['tanh_normalized_compound'] = np.
     →tanh(ds_prep['pos_score']-ds_prep["neg_score"])
    data = np.tanh(ds_prep['tanh_normalized_compound'])
    fig = plt.figure(); ax = plt.axes( xlabel= "Sentiment compound score of each_
     ⇔speech", ylabel= "count")
    ax.hist(data, bins=100)
[]: (array([ 1.,
                    0.,
                          1.,
                                1.,
                                       3.,
                                            5.,
                                                   6.,
                                                         2.,
                                                               5.,
                                                                     6.,
                                                                           2.,
                                                                     0.,
             11.,
                     5.,
                          5.,
                                5.,
                                      6.,
                                            7.,
                                                  3.,
                                                         2.,
                                                               4.,
                                                                           2.,
                                            0.,
                                                  3.,
               2.,
                    1.,
                          0.,
                                1.,
                                      1.,
                                                         0.,
                                                               0.,
                                                                     0.,
                                                                           0.,
                                                               9.,
               0.,
                     2.,
                          2.,
                                0.,
                                      3.,
                                            5.,
                                                  6.,
                                                        9.,
                                                                     9.,
               8.,
                   21.,
                         23.,
                               28., 121., 35., 47., 43., 62.,
                                                                    42.,
                   65.,
                         73.,
                               93.,
                                     99., 112., 108., 97., 103.,
                                                                   99., 111.,
                         98., 109., 81., 73., 76., 64., 56.,
             101., 109.,
                                                                   53., 51.,
                         31., 18., 19., 16., 14., 12.,
             49., 16.,
                                                              7.,
```

```
2., 0., 2., 0., 0., 0., 0., 0.,
        1.]),
array([-0.21319687, -0.20881531, -0.20443375, -0.2000522 , -0.19567064,
      -0.19128908, -0.18690753, -0.18252597, -0.17814441, -0.17376286,
      -0.1693813, -0.16499974, -0.16061819, -0.15623663, -0.15185507,
      -0.14747352, -0.14309196, -0.1387104, -0.13432885, -0.12994729,
      -0.12556573, -0.12118418, -0.11680262, -0.11242106, -0.10803951,
      -0.10365795, -0.09927639, -0.09489484, -0.09051328, -0.08613172,
      -0.08175017, -0.07736861, -0.07298705, -0.0686055, -0.06422394,
      -0.05984238, -0.05546083, -0.05107927, -0.04669771, -0.04231616,
      -0.0379346, -0.03355304, -0.02917149, -0.02478993, -0.02040837,
      -0.01602682, -0.01164526, -0.0072637, -0.00288215, 0.00149941,
       0.00588097, 0.01026252, 0.01464408, 0.01902564,
                                                          0.02340719,
       0.02778875,
                                             0.04093342,
                    0.03217031,
                                0.03655186,
                                                          0.04531498,
       0.04969653, 0.05407809, 0.05845965, 0.0628412,
                                                          0.06722276,
                    0.07598587,
       0.07160432,
                                0.08036743,
                                             0.08474899,
                                                          0.08913054,
                                             0.10665677,
       0.0935121 , 0.09789366,
                                0.10227521,
                                                          0.11103833,
       0.11541988, 0.11980144,
                                0.124183 ,
                                             0.12856455,
                                                          0.13294611,
       0.13732767, 0.14170922,
                                0.14609078,
                                             0.15047234,
                                                          0.15485389,
       0.15923545, 0.16361701,
                                0.16799856,
                                             0.17238012,
                                                          0.17676168,
       0.18114323,
                    0.18552479,
                                0.18990634,
                                             0.1942879 ,
                                                          0.19866946,
       0.20305101, 0.20743257, 0.21181413,
                                             0.21619568,
                                                          0.22057724,
       0.2249588]),
```



```
[]: ds_prep.to_excel("Outputs//Intermediate//sentiment.xlsx")
```

1.1 ECONOMETRIC ANALYSIS

```
[]: import pandas as pd
from tqdm.notebook import tqdm
import os
import nltk
from nltk.tokenize import word_tokenize
import numpy as np
```

```
[]: ds_prep = pd.read_excel("Outputs//Intermediate//sentiment.xlsx")
```

We now plot and do some descriptive analysis:

```
[]: import matplotlib.pyplot as plt

plt.style.use("seaborn-whitegrid")
fig = plt.figure()
ax = plt.axes(xlabel="Score", ylabel="Count")

x1 = ds_prep["neg_score"]
x2 = ds_prep["pos_score"]
x3 = ds_prep["neu_score"]

kwargs = dict(histtype="stepfilled", alpha=0.3, density=True, bins=20)
ax.hist(x1, label="negative", **kwargs)
ax.hist(x2,label="positive", **kwargs)
ax.hist(x3,label="neutral", **kwargs)

plt.legend()
plt.show()
```


We create now the Timeseries for our compound Score

```
[]:
      year_month tanh_normalized_compound
          1997-02
                                   0.058932
     1
          1997-03
                                   0.044970
     2
          1997-04
                                   0.068392
     3
          1997-05
                                   0.063913
          1997-06
                                   0.092728
     4
```

We now import our other variables

```
[]: ds2 = pd.read_excel("Inputs\INFYOY 1990-2023.xlsx")
     ds2['Date'] = pd.to_datetime(ds2['Date'])
     ds2['year_month'] = ds2['Date'].dt.to_period('M')
     ds2.drop(columns="Date")
[]:
          M3 YOY MON
                       HICP_YOY_MON
                                      Interbank3
                                                   M1_YOY_MON year_month
                                                        -3.654
                  3.8
                                 1.8
                                         4.430000
                                                                   1997-02
                  3.6
                                                        -2.444
     1
                                 1.6
                                         4.500000
                                                                   1997-03
     2
                  3.5
                                 1.3
                                         4.390000
                                                        -4.117
                                                                   1997-04
     3
                  4.0
                                 1.4
                                         4.300000
                                                        -2.415
                                                                   1997-05
     4
                  4.4
                                 1.4
                                         4.290000
                                                        -3.739
                                                                   1997-06
                  •••
     317
                 -0.4
                                 5.3
                                         3.671810
                                                        -2.375
                                                                   2023-07
                 -1.3
                                 5.2
     318
                                         3.780304
                                                        -3.440
                                                                   2023-08
     319
                 -1.2
                                 4.3
                                         3.880048
                                                        -2.851
                                                                   2023-09
     320
                  NaN
                                 2.9
                                         3.967636
                                                           NaN
                                                                   2023-10
     321
                  NaN
                                                           NaN
                                 NaN
                                              NaN
                                                                   2023-11
     [322 rows x 5 columns]
[]: merged = pd.merge(ds2,monthly_avg_tanh_compound, on='year_month', how='outer')
     merged.drop(columns='Date')
[]:
          M3_YOY_MON
                       HICP_YOY_MON
                                      Interbank3
                                                   M1_YOY_MON year_month
                                         4.430000
                                                        -3.654
     0
                  3.8
                                 1.8
                                                                   1997-02
                                                        -2.444
     1
                  3.6
                                 1.6
                                         4.500000
                                                                   1997-03
     2
                  3.5
                                 1.3
                                         4.390000
                                                        -4.117
                                                                   1997-04
     3
                  4.0
                                 1.4
                                         4.300000
                                                        -2.415
                                                                   1997-05
     4
                  4.4
                                 1.4
                                         4.290000
                                                        -3.739
                                                                   1997-06
     . .
                  •••
                                          •••
     317
                 -0.4
                                 5.3
                                         3.671810
                                                        -2.375
                                                                   2023-07
                 -1.3
                                 5.2
                                                        -3.440
     318
                                         3.780304
                                                                   2023-08
     319
                 -1.2
                                 4.3
                                         3.880048
                                                        -2.851
                                                                   2023-09
                                                                   2023-10
     320
                  NaN
                                 2.9
                                         3.967636
                                                           NaN
     321
                                                           NaN
                  NaN
                                 {\tt NaN}
                                              NaN
                                                                   2023-11
          tanh_normalized_compound
     0
                            0.058932
     1
                            0.044970
     2
                            0.068392
     3
                            0.063913
     4
                            0.092728
     . .
     317
                            0.061241
     318
                            0.011663
     319
                            0.034852
```

```
320
                       0.055033
321
                             NaN
```

[322 rows x 6 columns]

now do the Test the Dynamic Linear Model: https://pydlm.github.io/discounting.html

```
1.2 We
[]: merged.to_excel("Outputs//Intermediate//merged.xlsx")
[]:|!pip install pydlm
    Requirement already satisfied: pydlm in w:\programmi\anaconda\lib\site-packages
    (0.1.1.12)
    Requirement already satisfied: matplotlib in w:\programmi\anaconda\lib\site-
    packages (from pydlm) (3.4.2)
    Requirement already satisfied: numpy in w:\programmi\anaconda\lib\site-packages
    (from pydlm) (1.20.3)
    Requirement already satisfied: pillow>=6.2.0 in w:\programmi\anaconda\lib\site-
    packages (from matplotlib->pydlm) (8.2.0)
    Requirement already satisfied: cycler>=0.10 in w:\programmi\anaconda\lib\site-
    packages (from matplotlib->pydlm) (0.10.0)
    Requirement already satisfied: pyparsing>=2.2.1 in
    w:\programmi\anaconda\lib\site-packages (from matplotlib->pydlm) (2.4.7)
    Requirement already satisfied: python-dateutil>=2.7 in
    w:\programmi\anaconda\lib\site-packages (from matplotlib->pydlm) (2.8.1)
    Requirement already satisfied: kiwisolver>=1.0.1 in
    w:\programmi\anaconda\lib\site-packages (from matplotlib->pydlm) (1.3.1)
    Requirement already satisfied: six in w:\programmi\anaconda\lib\site-packages
    (from cycler>=0.10->matplotlib->pydlm) (1.16.0)
[]: from pydlm import dlm, trend, seasonality, dynamic
     # Extracting the required time series from the data
     time_series_data = merged[['HICP_YOY_MON', 'M1_YOY_MON_lag_12',_
      \hookrightarrow 'M1_YOY_MON_lag_24',
                                  'tanh_normalized_compound_lag_12', ___
      →'tanh_normalized_compound_lag_24']]
     # The target variable
     target = time_series_data['HICP_YOY_MON']
     time_series_data.dropna(inplace=True)
     # The features (lagged variables)
```

features = time_series_data[['M1_YOY_MON_lag_12', 'M1_YOY_MON_lag_24',

```
'tanh_normalized_compound_lag_12',

→'tanh_normalized_compound_lag_24']].values

# Creating the Dynamic Linear Model
myDLM = dlm(target) + dynamic(features, name='dynamic', discount=0.9)

# Fitting the model
myDLM.fit()

# Summary of the fitted model
myDLM.plot()
```

```
KevError
                                          Traceback (most recent call last)
<ipython-input-94-3dabba55eccb> in <module>
      3 # Extracting the required time series from the data
----> 4 time_series_data = merged[['HICP_YOY_MON', 'M1_YOY_MON_lag_12',_

    'M1_YOY_MON_lag_24',
      5
                                      'tanh_normalized_compound_lag_12', __
→'tanh_normalized_compound_lag_24']]
w:\Programmi\Anaconda\lib\site-packages\pandas\core\frame.py in_

    getitem__(self, key)

                    if is iterator(key):
   3028
   3029
                        key = list(key)
-> 3030
                    indexer = self.loc._get_listlike_indexer(key, axis=1,__
→raise_missing=True)[1]
   3031
   3032
                # take() does not accept boolean indexers
w:\Programmi\Anaconda\lib\site-packages\pandas\core\indexing.py in_
 → get_listlike_indexer(self, key, axis, raise_missing)
   1264
                    keyarr, indexer, new_indexer = ax._reindex_non_unique(keyar)
   1265
-> 1266
                self._validate_read_indexer(keyarr, indexer, axis,_
 →raise_missing=raise_missing)
   1267
                return keyarr, indexer
   1268
w:\Programmi\Anaconda\lib\site-packages\pandas\core\indexing.py in_
→_validate_read_indexer(self, key, indexer, axis, raise_missing)
  1314
                    if raise_missing:
                        not_found = list(set(key) - set(ax))
   1315
-> 1316
                        raise KeyError(f"{not_found} not in index")
   1317
```

```
not_found = key[missing_mask]

KeyError: "['tanh_normalized_compound_lag_24',

→'tanh_normalized_compound_lag_12'] not in index"
```

1.3 We now do the VAR

```
[]: merged.to_excel("Outputs//Intermediate//merged.xlsx")
```

```
[]: from statsmodels.tsa.api import VAR
    import statsmodels.api as sm
    import pandas as pd
    from tqdm.notebook import tqdm
    import os
    import nltk
    from nltk.tokenize import word_tokenize
    import numpy as np
    merged = pd.read excel("Outputs//Intermediate//merged.xlsx")
    # Set the 'Date' column as the index
    merged.set_index('year_month', inplace=True)
    # Drop unnecessary columns
    merged.drop(columns=[ 'M3_YOY_MON', 'Interbank3'], inplace=True)
    # Assuming monthly data, create 1 and 2 years lags (12 and 24 months)
    merged['HICP_YOY_MON_lag_12'] = merged['HICP_YOY_MON'].shift(12)
    merged['M1 YOY MON lag 12'] = merged['M1 YOY MON'].shift(12)
    merged['tanh_normalized_compound_lag_1'] = merged['tanh_normalized_compound'].
     ⇒shift(1)
    merged['HICP_YOY_MON_lag_24'] = merged['HICP_YOY_MON'].shift(24)
    merged['M1_YOY_MON_lag_24'] = merged['M1_YOY_MON'].shift(24)
    merged['tanh normalized_compound lag 2'] = merged['tanh normalized_compound'].
     ⇒shift(2)
    # Drop any rows with NaN values resulting from the lag
    merged.dropna(inplace=True)
    selected_columns = ['HICP_YOY_MON', 'M1_YOY_MON', 'tanh_normalized_compound',
                        'HICP_YOY_MON_lag_12', 'M1_YOY_MON_lag_12', u
     'HICP_YOY_MON_lag_24', 'M1_YOY_MON_lag_24', u
     data_selected = merged[selected_columns]
```

```
# Fit the VAR model
model = VAR(data_selected)
results = model.fit()  # Using 'aic' to select the optimal lag order up to 24

# Summary of the results
results_summary = results.summary()
results_summary
```

w:\Programmi\Anaconda\lib\site-packages\statsmodels\tsa\base\tsa_model.py:581: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

warnings.warn('A date index has been provided, but it has no'

[]: Summary of Regression Results

=====		=====	
			VAR
			OLS
Sat,	18,	Nov,	2023
		10:4	47:12
	Sat,	Sat, 18,	Sat, 18, Nov,

 No. of Equations:
 9.00000
 BIC:
 -38.4984

 Nobs:
 289.000
 HQIC:
 -39.1827

 Log likelihood:
 2127.35
 FPE:
 6.08949e-18

 AIC:
 -39.6402
 Det(Omega_mle):
 4.48354e-18

Results for equation HICP_YOY_MON

		coefficient	std. error	
t-stat	prob			
const		0.112394	0.075904	
1.481	0.139			
L1.HICP_YOY_MO	ON	1.017599	0.013059	
77.922	0.000			
L1.M1_YOY_MON		0.004346	0.001748	
2.487	0.013			
L1.tanh_normal	Lized_compound	-0.373099	0.716800	
-0.521	0.603			
L1.HICP_YOY_MO	DN_lag_12	-0.082096	0.016635	
-4.935	0.000			
L1.M1_YOY_MON_	_lag_12	0.001885	0.001885	
1.000	0.317			
L1.tanh_normalized_compound_lag_1		-0.198598	0.731134	
-0.272	0.786			

L1.HICP_YOY_MON_lag_24	-0.013602	0.023226		
-0.586 0.558	0.000030	0.001701		
L1.M1_YOY_MON_lag_24 -0.524	-0.000938	0.001791		
L1.tanh_normalized_compound_lag_2	0.353799	0.722056		
0.490 0.624				
			====	
Results for equation M1_YOY_MON				
			====	
	coefficient	std. error		
t-stat prob				
const	1.660609	1.013155		
1.639 0.101	1.00000	1.010100		
L1.HICP_YOY_MON	-0.542851	0.174314		
-3.114 0.002				
L1.M1_YOY_MON	0.920823	0.023327		
39.475 0.000 L1.tanh_normalized_compound	-15.290463	9.567800		
-1.598 0.110	10.230100	3.001000		
L1.HICP_YOY_MON_lag_12	0.635522	0.222045		
2.862 0.004				
L1.M1_YOY_MON_lag_12	0.032336	0.025162		
1.285 0.199 L1.tanh_normalized_compound_lag_1	11.743320	9.759134		
1.203 0.229	11.740020	3.103101		
L1.HICP_YOY_MON_lag_24	-0.406964	0.310014		
-1.313 0.189				
L1.M1_YOY_MON_lag_24	-0.014651	0.023902		
-0.613 0.540 L1.tanh_normalized_compound_lag_2	-6.569927	9.637954		
-0.682 0.495	0.000021	0.001001		
			====	
Results for equation tanh_normalized_compound				
			====	
=======================================	coefficient	std. error		
t-stat prob	300111010110	204. 01101		
const	0.030553	0.006192		
const	0.00000	0.000132		

4.935	0.000		
L1.HICP_YOY_MON		-0.001435	0.001065
-1.347	0.178		
L1.M1_YOY_MON		0.000159	0.000143
1.118	0.264		
L1.tanh_normali	zed_compound	0.188967	0.058471
3.232	0.001		
L1.HICP_YOY_MON	_lag_12	0.000401	0.001357
0.295	0.768		
L1.M1_YOY_MON_1	ag_12	0.000204	0.000154
1.329	0.184		
L1.tanh_normali	zed_compound_lag_1	0.083218	0.059640
1.395	0.163		
L1.HICP_YOY_MON	_lag_24	-0.001521	0.001895
-0.803	0.422		
L1.M1_YOY_MON_1	ag_24	0.000083	0.000146
0.569	0.569		
L1.tanh_normali	zed_compound_lag_2	0.209996	0.058900
3.565	0.000		
==========			

Results for equation HICP_YOY_MON_lag_12

		coefficient	std. error	
t-stat	prob			
const		0.010866	0.063939	
0.170	0.865			
L1.HICP_YOY_MON		0.065509	0.011001	
5.955	0.000			
L1.M1_YOY_MON		-0.003643	0.001472	
-2.475	0.013			
L1.tanh_normalized_compound		0.197821	0.603809	
0.328	0.743			
L1.HICP_YOY_MON	_lag_12	0.995372	0.014013	
71.032	0.000			
L1.M1_YOY_MON_1	ag_12	0.000935	0.001588	
0.589	0.556			
L1.tanh_normali	zed_compound_lag_1	-0.340429	0.615883	
-0.553	0.580			
L1.HICP_YOY_MON	_lag_24	-0.011196	0.019565	
-0.572	0.567			
L1.M1_YOY_MON_1	ag_24	-0.000772	0.001508	
-0.512	0.609			

L1.tanh_normalized_compound_lag_2 -1.507 0.132	-0.916911	0.608236	
Results for equation M1_YOY_MON_lag_	19		
======================================			
=======================================		. 1	
t-stat prob	coefficient	std. error	
const	-1.263971	1.021872	
-1.237 0.216			
L1.HICP_YOY_MON	0.363951	0.175814	
2.070 0.038 L1.M1_YOY_MON	0.082699	0.023528	
3.515 0.000	0.002099	0.023320	
L1.tanh_normalized_compound	11.937629	9.650122	
1.237 0.216			
L1.HICP_YOY_MON_lag_12 -3.096 0.002	-0.693442	0.223956	
-5.096 0.002 L1.M1_YOY_MON_lag_12	0.886365	0.025379	
34.926 0.000			
L1.tanh_normalized_compound_lag_1	8.377730	9.843103	
0.851 0.395	0.007774	0.240600	
L1.HICP_YOY_MON_lag_24 2.232 0.026	0.697771	0.312682	
L1.M1_YOY_MON_lag_24	0.005928	0.024108	
0.246 0.806			
L1.tanh_normalized_compound_lag_2	-5.235076	9.720880	
-0.539			
Results for equation tanh_normalized	_compound_lag_1		
=======================================		===========	
=======================================	coefficient	std error	
t-stat prob	coefficient	Std. ellol	
const	-0.000102	0.000143	
-0.709 0.478	0.000102	0.000143	
L1.HICP_YOY_MON	-0.000001	0.000025	
-0.038 0.970			
L1.M1_YOY_MON	0.000001	0.000003	

==========			
0.102	0.919		
L1.tanh_normali	.zed_compound_lag_2	0.000139	0.001363
-0.852	0.394		
L1.M1_YOY_MON_1	.ag_24	-0.000003	0.000003
0.149	0.882		
L1.HICP_YOY_MON	I_lag_24	0.00007	0.000044
1.155	0.248		
L1.tanh_normali	.zed_compound_lag_1	0.001595	0.001380
0.272	0.786		
L1.M1_YOY_MON_1	.ag_12	0.00001	0.000004
0.007	0.994		
L1.HICP_YOY_MON	I_lag_12	0.00000	0.000031
738.336	0.000		
L1.tanh_normali	zed_compound	0.999157	0.001353
0.356	0.722		

Results for equation $\mbox{HICP_YOY_MON_lag_24}$

=======================================				
		coefficient	std. error	
t-stat	prob			
		0 022204	0.050151	
const	0 570	-0.033394	0.059151	
-0.565	0.572			
L1.HICP_YOY_MON		-0.014471	0.010177	
-1.422	0.155			
L1.M1_YOY_MON		0.001507	0.001362	
1.106	0.269			
L1.tanh_normaliz	ed_compound	-0.159193	0.558592	
-0.285	0.776			
L1.HICP_YOY_MON_	lag_12	0.071921	0.012964	
5.548	0.000			
L1.M1_YOY_MON_la	g_12	-0.002665	0.001469	
-1.814	0.070			
L1.tanh_normaliz	ed_compound_lag_1	0.186730	0.569762	
0.328	0.743			
L1.HICP_YOY_MON_	lag_24	0.938637	0.018099	
51.860	0.000			
L1.M1_YOY_MON_lag_24		0.001844	0.001395	
	0.186			
L1.tanh_normaliz	ed_compound_lag_2	0.554265	0.562688	
-	0.325			

Results for equation M1_YOY_MON_lag_24

=======================================			
	coefficient	std. error	
t-stat prob			
const	0.188308	1.001686	
0.188 0.851			
L1.HICP_YOY_MON	0.031014	0.172340	
0.180 0.857			
L1.M1_YOY_MON	0.012138	0.023063	
0.526 0.599			
L1.tanh_normalized_compound	2.544015	9.459487	
0.269 0.788			
L1.HICP_YOY_MON_lag_12	0.209821	0.219532	
0.956 0.339			
L1.M1_YOY_MON_lag_12	0.097187	0.024877	
3.907 0.000	0.00.20.	0.02.20	
L1.tanh_normalized_compound_lag_1	-4.839571	9.648656	
-0.502 0.616	21000012	0.002000	
L1.HICP_YOY_MON_lag_24	-0.571532	0.306505	
-1.865 0.062	0.011002	0.00000	
L1.M1_YOY_MON_lag_24	0.916882	0.023632	
38.799 0.000	0.010002	0.020002	
L1.tanh_normalized_compound_lag_2	3.572182	9.528848	
0.375 0.708	0.012102	0.020010	
=======================================			
=======================================			
Results for equation tanh_normalized	compound lag 2		
======================================	-		
=======================================			
	coefficient	std. error	
t-stat prob	coefficient	Stu. ellol	
const	-0.000028	0.000082	
-0.336 0.737	-0.000028	0.000082	
L1.HICP_YOY_MON	0.000003	0.000014	
	0.000003	0.000014	
	-0.000000	0 000000	
L1.M1_YOY_MON -0.019 0.985	-0.00000	0.000002	
	0.000604	0 000776	
L1.tanh_normalized_compound	0.000621	0.000776	
0.800 0.424	0 000004	0.000040	
L1.HICP_YOY_MON_lag_12	-0.000001	0.000018	

-0.069 0.945				
L1.M1_YOY_MON_lag_12		0.000000	0.000002	
0.102 0.919				
L1.tanh_normalized_com	pound_lag_1	0.999680	0.000792	
1262.523 0.0	00			
L1.HICP_YOY_MON_lag_24	:	0.000007	0.000025	
0.281 0.778				
L1.M1_YOY_MON_lag_24		0.000002	0.000002	
0.841 0.400				
L1.tanh_normalized_com	pound_lag_2	0.000101	0.000782	
0.130 0.897				
	=========	==========		

Correlation matrix of residuals

		HICP_YOY_MON M1_YOY_MON	
tanh_normalized	_compound HICP_	YOY_MON_lag_12 M1_YOY_MON_lag_12	
tanh_normalized	_compound_lag_1	HICP_YOY_MON_lag_24 M1_YOY_MON_lag_24	
tanh_normalized	_compound_lag_2		
HICP_YOY_MON		1.000000 -0.038982	
0.030954	-0.405101	0.010862	0.079943
-0.088193	-0.036342	-0.115433	
M1_YOY_MON		-0.038982 1.000000	
-0.016059	0.004663	-0.509273	
0.035903	0.060184	0.004365	0.050389
tanh_normalized	_compound	0.030954 -0.016059	
1.000000	0.041384	0.078988	-0.012267
0.045930	-0.057383	0.016035	
HICP_YOY_MON_lag	g_12	-0.405101 0.004663	
0.041384	1.000000	0.006153	-0.112895
-0.372172	0.004520	0.086142	
M1_YOY_MON_lag_:	12	0.010862 -0.509273	
0.078988	0.006153	1.000000	-0.091501
0.046486	-0.540554	-0.090499	
tanh_normalized		0.079943 0.035903	
-0.012267	-0.112895	-0.091501	
1.000000	-0.123498	0.012373	-0.831044
HICP_YOY_MON_lag	g_24	-0.088193 0.060184	
0.045930	-0.372172	0.046486	-0.123498
1.000000	-0.050110	0.049742	
M1_YOY_MON_lag_	24	-0.036342 0.004365	
-0.057383	0.004520	-0.540554	
0.012373	-0.050110	1.000000	0.031372
tanh_normalized	_compound_lag_2	-0.115433 0.050389	
0.016035	0.086142	-0.090499	-0.831044
0.049742	0.031372	1.000000	

1.4 We now use the distributed lag model

```
[]: import statsmodels.api as sm
    merged = pd.read_excel("Outputs//Intermediate//merged.xlsx")
    # Define the dependent and independent variables
    dependent_var = merged['HICP_YOY_MON']
    independent_vars = merged[['M1_YOY_MON', 'tanh_normalized_compound',
                             'M1_YOY_MON_lag_12', 'tanh_normalized_compound_lag_12',
                             'M1_YOY_MON_lag_24',u
     # Add a constant to the independent variables
    independent_vars = sm.add_constant(independent_vars)
    # Create the model
    model = sm.OLS(dependent_var, independent_vars)
    # Fit the model
    results = model.fit()
    # Summary of the results
    results_summary = results.summary()
    results_summary
[]: <class 'statsmodels.iolib.summary.Summary'>
                               OLS Regression Results
```

OLD Wedlession Wesuits					
Dep. Variable:	HICP_YOY_MON	R-squared:		0.137	
Model:	OLS	Adj. R-squared:		0.118	
Method:	Least Squares	F-statistic:		7.090	
Date:	Sat, 18 Nov 2023	<pre>Prob (F-statistic):</pre>		5.05e-07	
Time:	02:36:08	Log-Likelihood:		-531.75	
No. Observations:	275	AIC:		1077.	
Df Residuals:	268	BIC:		1103.	
Df Model:	6				
Covariance Type:	nonrobust				
		coef std err	t	P> t	
[0.025 0.975]					
const	2.3	3100 0.351	6.590	0.000	

1.620	3.000					
M1_YOY_MON		-0.0	284 0.	.010	-2.964	0.003
-0.047	-0.010					
tanh_normalized_compound		-5.4	811 3.	.828	-1.432	0.153
-13.017	2.055					
M1_YOY_MON_lag_12		0.0	368 0.	.010	3.855	0.000
0.018	0.056					
tanh_normal	lized_compound_lag_	_12 -5.2	398 3.	.879	-1.351	0.178
-12.876	2.397					
M1_YOY_MON_	_lag_24	0.0	0.	.010	3.428	0.001
0.014	0.051					
tanh_normalized_compound_lag_24		_24 -0.8	8862 3.	.953	-0.224	0.823
-8.670	6.897					
========			========		========	======
Omnibus:		115.526	Durbin-Wat			0.080
Prob(Omnibu	ıs):	0.000	Jarque-Ber	ca (JB):		435.901
Skew:		1.791	Prob(JB):			2.21e-95
Kurtosis:		8.021	Cond. No.			793.
========			========		========	=======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

1.5 Distributed Lag but differet lags

```
import statsmodels.api as sm
merged = pd.read_excel("Outputs//Intermediate//merged.xlsx")

# Assuming 'merged' is your DataFrame
# Create the lagged variable
merged['tanh_normalized_compound_lag_1'] = merged['tanh_normalized_compound'].
--shift(1)

merged['M1_YOY_MON_lag_12'] = merged['M1_YOY_MON'].shift(12)
merged['M1_YOY_MON_lag_24'] = merged['M1_YOY_MON'].shift(24)
merged.dropna(inplace=True)

# Define the dependent variable after dropping NaN values
dependent_var = merged['HICP_YOY_MON']

# Define the independent variables
independent_vars = merged[['tanh_normalized_compound', 'M1_YOY_MON_lag_12',
```

```
'tanh_normalized_compound_lag_1', __
     →'M1 YOY MON lag 24']]
    merged.set_index('year_month', inplace=True)
    # Add a constant to the independent variables
    independent_vars = sm.add_constant(independent_vars)
    # Create the model
    model = sm.OLS(dependent_var, independent_vars)
    # Fit the model
    results = model.fit()
    # Summary of the results
    results_summary = results.summary()
    results_summary
[]: <class 'statsmodels.iolib.summary.Summary'>
                           OLS Regression Results
    ______
    Dep. Variable:
                       HICP_YOY_MON R-squared:
                                                                  0.103
    Model:
                                OLS Adj. R-squared:
                                                                  0.091
    Method:
                       Least Squares F-statistic:
                                                                  8.250
                                                             2.60e-06
    Date:
                    Sat, 18 Nov 2023 Prob (F-statistic):
    Time:
                                                               -578.55
                            10:50:39 Log-Likelihood:
    No. Observations:
                                292 AIC:
                                                                 1167.
    Df Residuals:
                                 287 BTC:
                                                                  1185.
    Df Model:
    Covariance Type:
                          nonrobust
                                   coef std err t
                                                              P>|t|
    [0.025 \quad 0.975]
    const
                                 2.3679 0.299 7.921
                                                              0.000
    1.780 2.956
    tanh_normalized_compound -7.5744
                                           3.965 -1.911
                                                              0.057
             0.229
    -15.378
    M1_YOY_MON_lag_12
                                0.0299
                                            0.010 3.065
                                                              0.002
    0.011
              0.049
    tanh_normalized_compound_lag_1 -7.9915
                                            3.961
                                                  -2.017
                                                              0.045
    -15.789 -0.194
```

0.0401

0.009 4.251

0.000

M1_YOY_MON_lag_24

0.022

0.059

Omnibus:	116.298	Durbin-Watson:	0.067
Prob(Omnibus):	0.000	Jarque-Bera (JB):	389.295
Skew:	1.760	Prob(JB):	2.92e-85
Kurtosis:	7.428	Cond. No.	711.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11