Álgebra relacional

Bases de Datos

Curso 2018-2019

Jesús Correas – jcorreas@ucm.es

Departamento de Sistemas Informáticos y Computación Universidad Complutense de Madrid

Bibliografía

- Bibliografía básica:
 - R. Elmasri, S.B. Navathe. Fundamentals of Database Systems (6a Ed). Addison-Wesley, 2010. (en español: Fundamentos de Sistemas de Bases de Datos (5a Ed). Addison-Wesley, 2007).
 Capítulo 6 (5ª ed. en español). Capítulo 6 (6ª ed.).
- Bibliografía complementaria:
 - A. Silberschatz , H. F. Korth, S. Sudarshan. Fundamentos de bases de datos (5a Ed), McGraw-Hill, 2006.
 Capítulo 2.

Lenguajes de consulta de BD relacionales

- Los lenguajes de consulta permiten obtener información de una BD relacional.
 - No permiten modificar datos de la BD, lo veremos más adelante en SQL.
- Hay dos tipos de lenguajes de consulta:
 - Procedimentales: El lenguaje indica al sistema una serie de operaciones que debe realizar para obtener el resultado.
 - ▶ No procedimentales: Se describe la información deseada sin dar un procedimiento concreto para obtener la información.
- Hay diversos lenguajes formales para realizar consultas sobre una BD relacional:
 - ► Procedimentales: álgebra relacional.
 - ▶ No procedimentales: Cálculo relacional de tuplas y de dominios.
- Veremos el álgebra relacional, que es la base de la parte de consultas del lenguaje SQL.

El álgebra relacional

- Es un lenguaje formal de consulta basado en el álgebra de conjuntos de la teoría matemática de conjuntos:
 - no incluye operaciones de modificación de datos.
 - ► Cada operación genera **una nueva relación** del MR que se puede manipular a su vez utilizando otras operaciones del álgebra.
- Las consultas se definen mediante la aplicación de una serie de operaciones sobre relaciones de BD:
 - ▶ Operaciones de teoría de conjuntos: unión ∪, intersección ∩, diferencia \ y producto cartesiano ×.
 - **Renombramiento** ρ .
 - ▶ Selección σ .
 - ▶ Proyección π .
 - ► Reunión (join) ⋈.
 - ▶ División ÷.
- Además se considera la asignación (←) sobre relaciones temporales para dar un nombre a resultados intermedios.

Operaciones de conjuntos

- Son: unión, intersección, diferencia y producto cartesiano.
- Son operaciones binarias.
- En las tres primeras, los dos operandos deben ser instancias de esquemas de relación con el mismo número de atributos, con igual dominio y en el mismo orden:

$$R(A_1,\ldots,A_n), S(B_1,\ldots,B_n), Dom(A_i) = Dom(B_i)(\forall i \leq n)$$

- Unión: R ∪ S produce una relación con todas las tuplas que están en R o en S. Las tuplas duplicadas se eliminan.
- Intersección: $(R \cap S)(A_1, ..., A_n)$ produce un esquema de relación con tuplas válidas aquellas que son válidas en R y en S.
- **Diferencia:** $(R \setminus S)(A_1, ..., A_n)$ produce un esquema de relación con instancias válidas aquellas que son válidas **en** R **pero no en** S.
- El producto cartesiano lo veremos un poco más adelante.

Operaciones - Renombramiento

- En algunas operaciones del álgebra relacional son relevantes los nombres de los atributos y de las relaciones, por lo que es conveniente tener una operación para renombrarlos.
- Dado $R(A_1, \ldots, A_n)$, la operación de **renombramiento** $\rho_{S(B_1, \ldots, B_n)}(R)$ produce el siguiente esquema de relación:
 - ▶ El **nombre** del esquema es *S*.
 - ▶ Atributos del esquema: $B_1, ..., B_n$.
 - ▶ Instancia de la relación: las tuplas válidas son las mismas que en R.
- **Ejemplos:** Dado el esquema EMPL(<u>DNI</u>, Nombre, Ap1, Ap2, Salario):
 - Renombrar el atributo DNI:

```
\rho_{\text{EMPL}}(\text{COD}, \text{Nombre}, \text{Ap1}, \text{Ap2}, \text{Salario}) \stackrel{\text{(EMPL)}}{}
```

Renombrar todos los atributos:

```
\rho_{\mathtt{EMPL}}(\mathtt{COD}, \mathtt{N}, \mathtt{A1}, \mathtt{A2}, \mathtt{S})(\mathtt{EMPL})
```

Renombrar el nombre del esquema a empleados, pero no los atributos:

```
\rho_{\texttt{empleados}}(\texttt{EMPL})
```

Operaciones - Selección

- La operación de selección permite seleccionar las tuplas de una relación que cumplen determinada condición de selección definida como una expresión booleana.
- Dado un esquema de relación $R(A_1, ..., A_n)$ y una condición C sobre los atributos de R, $\sigma_C(R)$ produce un esquema de relación con las siguientes características:
 - ► Atributos del esquema: Los mismos que *R*.
 - ▶ Instancia de la relación: Las tuplas de *R* que hacen cierta la condición *C*.
- Las condiciones son expresiones lógicas de la siguiente forma:
 - $C \rightarrow atributo$ **OP** atributo
 - $C \rightarrow atributo \ \mathbf{OP} \ constante$
 - $C \rightarrow C \wedge C$
 - $C \rightarrow C \lor C$
 - $C \rightarrow \neg C$

- ▶ *atributo* es un atributo de *R*.
- constante es un valor constante.
- ► **OP** es un operador de comparación:

$$\{<,>,\leq,\geq,=,\neq\}.$$

Operaciones - Selección

- La operación de selección realiza una "partición horizontal" de la relación, quedándose con las tuplas (completas) que cumplen la condición.
- **Ejemplos:** Dado el esquema EMPL(<u>DNI</u>, Nombre, Ap1, Ap2, Salario):
 - Seleccionar el empleado con DNI '27347234T':

 σ_{DNT='} 27347234T' (EMPL)
 - Seleccionar los empleados con salario entre 1200 y 1500 euros:
 σ (salario>1200) Λ (salario<1500) (EMPL)
 - ► Empleados que se apellidan García o ganan menos de 1000 euros: $\sigma (ap1 = 'García') \lor (salario<1000) (EMPL)$
 - ► La relación de entrada puede ser otra expresión del álgebra relacional. Cuál es el significado de la siguiente expresión? $\sigma_{\tt ap1} = {}^{\prime}_{\tt García'}(\sigma_{\tt salario<1000}(\tt EMPL))$

Operaciones - Proyección

- La operación de **proyección** permite **extraer columnas** (valores de atributos) de una relación.
- Dado un esquema de relación $R(A_1, ..., A_n)$ y un subconjunto de atributos $\{B_1, ..., B_k\} \subseteq \{A_1, ..., A_n\}$, la operación $\pi_{(B_1, ..., B_k)}(R)$ produce una relación con las siguientes características:
 - ▶ Atributos del esquema: $\{B_1, \ldots, B_k\}$.
 - ▶ Instancia de la relación: Las tuplas formadas por los valores de B_1, \ldots, B_k en las tuplas válidas de R.
- La relación resultante **puede tener menos tuplas que la relación** *R* si la clave no forma parte del subconjunto de atributos.
 - El resultado de la proyección es un conjunto de tuplas: no permite repetir tuplas.
- La operación de proyección realiza una "partición vertical" de la relación, quedándose con las columnas seleccionadas.

Operaciones - Proyección

- Ejemplos: Dado el esquema EMPL (DNI, Nombre, Ap1, Ap2, Salario):
 - Obtener DNI y salario de los empleados:

$$\pi$$
 (DNI, salario) (EMPL)

▶ DNI de los empleados con salario superior a 1200 euros:

$$\pi_{(\mathtt{DNI})}(\sigma_{(\mathtt{salario}>\mathtt{1200})}(\mathtt{EMPL}))$$

También se pueden utilizar nombres de relación temporales para los cálculos intermedios:

```
\begin{array}{l} \texttt{Emp1} \leftarrow \sigma_{\texttt{(salario} > \texttt{1200)}}(\texttt{EMPL}) \\ \texttt{Emp2} \leftarrow \pi_{\texttt{(DNI)}}(\texttt{Emp1}) \end{array}
```

- El producto cartesiano permite combinar los valores de dos relaciones.
- Dados $R(A_1, ..., A_m)$ y $S(B_1, ..., B_n)$, el **producto cartesiano** produce un esquema $R \times S$ con:
 - ▶ Atributos del esquema: m + n atributos: $A_1, \ldots, A_m, B_1, \ldots, B_n$
 - Si dos atributos A_i y B_j tienen el mismo nombre, se renombran a R.A_i y S.B_j.
 - ▶ **Instancia de la relación:** Las tuplas válidas son las del producto cartesiando de los conjuntos de tuplas *R* y *S*.
- Se puede evitar el renombrado automático de atributos realizando una operación de renombrado antes de aplicar el producto cartesiano.
 - Si no se hace así, siempre se pueden utilizar nombres de atributos precedidos por el nombre de la relación en las condiciones booleanas. Por ejemplo: EMPL.DNI = DPTO.DNI

• Ejemplo: Dados los esquemas de relación:

```
EMPL(<u>DNI</u>, Nombre, Ap1, Ap2, Salario)
PROYECTO(<u>CodPr</u>, Descripcion, DNIDir)
```

 Obtención de los nombres de los empleados que dirigen algún proyecto:

• Ejemplo: Dados los esquemas de relación:

```
EMPL(<u>DNI</u>, Nombre, Ap1, Ap2, Salario)
PROYECTO(<u>CodPr</u>, Descripcion, DNIDir)
```

- Obtención de los nombres de los empleados que dirigen algún proyecto:
 - ▶ Podemos combinar las dos tablas mediante el producto cartesiano: Jefes1 ← EMPL×PROYECTO
 Así obtenemos todas las combinaciones posibles de empleados con proyectos.

• Ejemplo: Dados los esquemas de relación:

```
EMPL(DNI, Nombre, Ap1, Ap2, Salario)
PROYECTO(CodPr, Descripcion, DNIDir)
```

- Obtención de los nombres de los empleados que dirigen algún proyecto:
 - ► Podemos combinar las dos tablas mediante el **producto cartesiano**:

 Jefes1 ← EMPL × PROYECTO
 - Así obtenemos todas las combinaciones posibles de empleados con proyectos.
 - Después seleccionamos aquellas tuplas en las que el DNI del empleado coincide con el director del proyecto:

```
\texttt{Jefes2} \leftarrow \sigma_{\texttt{(DNI=DNIDir)}}(\texttt{Jefes1})
```

• Ejemplo: Dados los esquemas de relación:

```
EMPL(<u>DNI</u>, Nombre, Ap1, Ap2, Salario)
PROYECTO(<u>CodPr</u>, Descripcion, DNIDir)
```

- Obtención de los nombres de los empleados que dirigen algún proyecto:
 - ▶ Podemos combinar las dos tablas mediante el producto cartesiano:
 Jefes1 ←EMPL×PROYECTO

Así obtenemos todas las combinaciones posibles de empleados con proyectos.

Después seleccionamos aquellas tuplas en las que el DNI del empleado coincide con el director del proyecto:

```
\texttt{Jefes2} \leftarrow \sigma_{\texttt{(DNI=DNIDir)}}(\texttt{Jefes1})
```

▶ Por último, **proyectamos** el nombre de los directores:

```
Jefes \leftarrow \pi_{(Nombre,Ap1,Ap2)}(Jefes2)
```

- Cada director aparece una vez aunque dirija varios proyectos.
- Otra forma: $\pi_{(Nombre,Ap1,Ap2)}(\sigma_{(DNI=DNIDir)}(EMPL\times PROYECTO))$

• Otro ejemplo: Dados los esquemas de relación:

```
EMPL(<u>DNI</u>, Nombre, Ap1, Ap2, Salario)
PROYECTO(<u>CodPr</u>, Descripcion, DNIDir)
DEDICACION(<u>CodPr</u>, DNIEmpl, Horas)
```

• Obtención de los nombres de los empleados que trabajan en un proyecto más de 10 horas:

• Otro ejemplo: Dados los esquemas de relación:

```
EMPL(<u>DNI</u>, Nombre, Ap1, Ap2, Salario)
PROYECTO(<u>CodPr</u>, Descripcion, DNIDir)
DEDICACION(<u>CodPr</u>, DNIEmpl, Horas)
```

- Obtención de los nombres de los empleados que trabajan en un proyecto más de 10 horas:
 - Primero seleccionamos los proyectos en los que se trabaja más de 10 horas:

```
Proy10 \leftarrow \sigma_{\text{Horas}>10}(\text{DEDICACION})
```

• Otro ejemplo: Dados los esquemas de relación:

```
EMPL(DNI, Nombre, Ap1, Ap2, Salario)
PROYECTO(CodPr, Descripcion, DNIDir)
DEDICACION(CodPr, DNIEmpl, Horas)
```

- Obtención de los nombres de los empleados que trabajan en un proyecto más de 10 horas:
 - Primero seleccionamos los proyectos en los que se trabaja más de 10 horas:

```
Proy10 \leftarrow \sigma_{\text{Horas}>10}(\text{DEDICACION})
```

Después combinamos estos proyectos con los empleados para seleccionar los empleados que realizan ese trabajo:

```
Empl10 \leftarrow \sigma_{(DNI=DNIEmpl)}(Proy10 \times EMPL)
```

• Otro ejemplo: Dados los esquemas de relación:

```
EMPL(<u>DNI</u>, Nombre, Ap1, Ap2, Salario)
PROYECTO(<u>CodPr</u>, Descripcion, DNIDir)
DEDICACION(<u>CodPr</u>, <u>DNIEmpl</u>, Horas)
```

- Obtención de los nombres de los empleados que trabajan en un proyecto más de 10 horas:
 - Primero seleccionamos los proyectos en los que se trabaja más de 10 horas:

```
Proy10 \leftarrow \sigma_{\text{Horas}>10}(\text{DEDICACION})
```

Después combinamos estos proyectos con los empleados para seleccionar los empleados que realizan ese trabajo:

```
Empl10 \leftarrow \sigma_{(DNI=DNIEmpl)}(Proy10 \times EMPL)
```

▶ Por último, **proyectamos** el nombre de los empleados:

```
Resultado \leftarrow \pi_{(Nombre,Ap1,Ap2)}(Emp110)
```

O también:

```
\pi_{\text{(Nombre,Ap1,Ap2)}}(\sigma_{\text{(DNI=DNIEmp1)}}(\sigma_{\text{Horas}>10}(\text{DEDICACION})\times \text{EMPL}))
```

• Otro ejemplo más: Dados los esquemas de relación:

```
EMPL(<u>DNI</u>, Nombre, Ap1, Ap2, Salario)
PROYECTO(<u>CodPr</u>, Descripcion, DNIDir)
DEDICACION(<u>CodPr</u>, DNIEmpl, Horas)
```

 Obtención del DNI de los empleados que trabajan en al menos dos proyectos:

• Otro ejemplo más: Dados los esquemas de relación:

```
EMPL (DNI, Nombre, Ap1, Ap2, Salario)
PROYECTO (CodPr, Descripcion, DNIDir)
DEDICACION (CodPr, DNIEmpl, Horas)
```

- Obtención del DNI de los empleados que trabajan en al menos dos proyectos:
 - Primero renombramos la relacion DEDICACION:

 DEDR $\leftarrow \rho_{\text{DEDR}}$ (CodR, DNIR, HR) (DEDICACION)

• Otro ejemplo más: Dados los esquemas de relación:

```
EMPL(<u>DNI</u>,Nombre,Ap1,Ap2,Salario)
PROYECTO(<u>CodPr</u>,Descripcion,DNIDir)
DEDICACION(<u>CodPr</u>,DNIEmpl,Horas)
```

- Obtención del DNI de los empleados que trabajan en al menos dos proyectos:
 - Primero renombramos la relacion DEDICACION:

 DEDR $\leftarrow \rho_{\text{DEDR}}$ (CodR, DNIR, HR) (DEDICACION)
 - Después combinamos esta relacion con la relacion DEDICACION de la que procede y seleccionamos las tuplas que coinciden en el DNI pero no en el proyecto:

```
\texttt{En2} \leftarrow \sigma_{\texttt{(DNIEmpl=DNIR} \ \land \ \texttt{CodPr} \neq \texttt{CodR)}}(\texttt{DEDR} \times \texttt{DEDICACION})
```

• Otro ejemplo más: Dados los esquemas de relación:

```
EMPL (<u>DNI</u>, Nombre, Ap1, Ap2, Salario)
PROYECTO (<u>CodPr</u>, Descripcion, DNIDir)
DEDICACION (<u>CodPr</u>, DNIEmpl, Horas)
```

- Obtención del DNI de los empleados que trabajan en al menos dos proyectos:
 - Primero renombramos la relacion DEDICACION:

 DEDR $\leftarrow \rho_{\text{DEDR}}$ (CodR, DNIR, HR) (DEDICACION)
 - Después combinamos esta relacion con la relacion DEDICACION de la que procede y seleccionamos las tuplas que coinciden en el DNI pero no en el proyecto:

```
\texttt{En2} \leftarrow \sigma_{\texttt{(DNIEmpl=DNIR} \ \land \ \texttt{CodPr} \neq \texttt{CodR)}}(\texttt{DEDR} \times \texttt{DEDICACION})
```

- Por último, **proyectamos** el DNI de los empleados:
- $\texttt{Resultado} \leftarrow \pi_{\mathsf{DNIEmpl}}(\texttt{En2})$
- ▶ **Nota:** Este tipo de consultas se resuelve de forma diferente en SQL.

Operaciones - Reunión (Join)

- La operación de reunión (join) condicional corresponde a la combinación de un producto cartesiano y una selección.
- Dados $R(A_1, ..., A_m)$ y $S(B_1, ..., B_n)$, la **reunión condicional** de R y S se define como:

$$R \bowtie_{\mathcal{C}} S = \sigma_{\mathcal{C}}(R \times S)$$

- Aunque es una operación derivada de σ y \times , tiene su propio operador porque es **una de las operaciones más utilizadas.**
 - Simplifica las consultas, que pueden ser muy complejas.
- Si la condición C no se cumple para ninguna tupla, produce el conjunto vacío como resultado.
- Si alguna tupla tiene valor **NULO** en algún atributo que aparece en la condición, no se incluye en el resultado.

Operaciones - Reunión (Join)

• Ejemplos: Dados los esquemas de relación:

```
EMPL(DNI, Nombre, Ap1, Ap2, Salario)
PROYECTO(CodPr, Descripcion, DNIDir)
DEDICACION(CodPr, DNIEmpl, Horas)
```

Nombres de los empleados que dirigen algún proyecto:

```
\pi_{\text{(Nombre,Ap1,Ap2)}}(\text{EMPL} \bowtie_{\text{(DNI=DNIDir)}} \text{PROYECTO})
```

 Nombres de los empleados que trabajan en un proyecto más de 10 horas:

```
\pi_{(Nombre,Ap1,Ap2)}(DEDICACION \bowtie (DNI=DNIEmp1 \land Horas>10) EMPL)
```

 Obtención del DNI de los empleados que trabajan en al menos dos proyectos:

```
DEDR \leftarrow \rho_{\text{DEDR}(\text{CodR}, \text{DNIR}, \text{HR})} (DEDICACION)

Res \leftarrow \pi_{\text{DNIEmpl}} (DEDR \bowtie (DNIEmpl=DNIR\landCodPr\neqCodR) DEDICACION)

(Esta consulta se resuelve de forma diferente en SQL, con una función de agregación.)
```

- Un caso particular de reunión condicional muy común es aquella en la que la condición es una conjunción de igualdades de los atributos con el mismo nombre en ambas relaciones.
- Ejemplo: Dados los esquemas de relación:

```
EMPL(DNI, Nombre, Ap1, Ap2, Salario)
PROYECTO(CodPr, Descripcion, DNIDir)
DEDICACION(CodPr, DNI, Horas)
```

- ▶ Nombre de los empleados que trabajan en algún proyecto $\pi_{\text{(Nombre,Ap1,Ap2)}}(\text{DEDICACION} \bowtie_{\text{(DEDICACION.DNI=EMPL.DNI)}} \text{EMPL})$
- En el resultado se repiten los atributos incluidos en la condición con exactamente igual valor y nombre (de distintas relaciones).
- Para evitar esto se utiliza la operación de Reunión natural (natural join).

- Una reunión natural es como una reunión condicional en la que la condición está formada por todos los atributos con el mismo nombre en ambos operandos.
- Por esto, la condición se omite del operador ⋈.
- Además, en el resultado se eliminan los atributos repetidos con el mismo valor.
- Dados $R(A_1, ..., A_m)$ y $S(B_1, ..., B_n)$ con atributos comunes $C_1, ..., C_j$ la **reunión natural** $R \bowtie S$ produce un esquema con:
 - ▶ Atributos del esquema: $\{A_1, ..., A_m\} \cup \{B_1, ..., B_n\}$ (no se repiten atributos con el mismo nombre).
 - ▶ Instancia de la relación: Las tuplas válidas son la combinación de tuplas válidas de R y S que coinciden en los valores de C_1, \ldots, C_i .
- Si no hay atributos comunes, funciona como el producto cartesiano.

• **Ejemplos:** Dados los esquemas de relación:

```
EMPL(DNI, Nombre, Ap1, Ap2, Salario)
PROYECTO(CodPr, Descripcion, DNIDir, CodDpto)
DEPARTAMENTO(CodDpto, Nombre)
```

 Lista de los proyectos con el nombre del departamento al que pertenecen:

• Ejemplos: Dados los esquemas de relación:

```
EMPL (<u>DNI</u>, Nombre, Ap1, Ap2, Salario)

PROYECTO (<u>CodPr</u>, Descripcion, DNIDir, CodDpto)

DEPARTAMENTO (CodDpto, Nombre)
```

 Lista de los proyectos con el nombre del departamento al que pertenecen:

```
\pi_{\text{(Descripcion, Nombre)}}(\text{PROYECTO} \bowtie \text{DEPARTAMENTO})
```

• ¿Qué devuelve la siguiente consulta?: EMPL ⋈DEPARTAMENTO

• Ejemplos: Dados los esquemas de relación:

```
EMPL(DNI, Nombre, Ap1, Ap2, Salario)
PROYECTO(CodPr, Descripcion, DNIDir, CodDpto)
DEPARTAMENTO(CodDpto, Nombre)
```

 Lista de los proyectos con el nombre del departamento al que pertenecen:

```
\pi(Descripcion, Nombre) (PROYECTO \bowtie DEPARTAMENTO)
```

- ¿Qué devuelve la siguiente consulta?: EMPL ⋈DEPARTAMENTO
- Lista de los empleados que dirigen proyectos y los departamentos a los que pertenecen:

• Ejemplos: Dados los esquemas de relación:

```
EMPL(DNI, Nombre, Ap1, Ap2, Salario)
PROYECTO(CodPr, Descripcion, DNIDir, CodDpto)
DEPARTAMENTO(CodDpto, Nombre)
```

 Lista de los proyectos con el nombre del departamento al que pertenecen:

```
\pi_{\text{(Descripcion, Nombre)}}(\text{PROYECTO} \bowtie \text{DEPARTAMENTO})
```

- ¿Qué devuelve la siguiente consulta?: EMPL ⋈DEPARTAMENTO
- Lista de los empleados que dirigen proyectos y los departamentos a los que pertenecen:

```
\begin{array}{l} \mathtt{Dirs} \leftarrow \rho_{\mathtt{EMPL}\,(\mathtt{DNIDir},\,\mathtt{NombreDir},\,\mathtt{Ap1},\,\mathtt{Ap2},\,\mathtt{Salario})} \, \big(\mathtt{EMPL}\big) \\ \mathtt{Result} \leftarrow \pi_{\big(\mathtt{NombreDir},\,\mathtt{Nombre}\big)} \big( \big(\mathtt{Dirs}\,\, \boxtimes\,\mathtt{PROYECTO}\big) \,\, \boxtimes\,\mathtt{DEPARTAMENTO}\big) \end{array}
```

Extensión del álgebra relacional

- Se han propuesto múltiples operadores para extender el álgebra relacional para facilitar las consultas complejas.
- Casi todas las operaciones se pueden implementar con un conjunto básico: $\{\cup, \setminus, \times, \sigma, \pi, \rho\}$, pero las consultas resultantes son **muy complejas.**
- Por ejemplo, la intersección se debería implementar como:

$$R \cap S = R \setminus (R \setminus S)$$
.

- Por otra parte, los **operadores de reunión** $R \bowtie_{[C]} S$ solo incluyen las combinaciones de tuplas **que efectivamente coinciden en** R **y** S.
 - ► Las tuplas de *R* que no coinciden con ninguna de *S* no aparecen en el resultado, y viceversa.
 - Las reuniones que preservan todas las tuplas de alguno de los operandos se denominan reuniones externas (outer joins).

- Reunión exterior izquierda (left outer join) $R \bowtie S$ es una reunión natural en la que se incluyen todas las tuplas de R combinadas con las que coincidan de S.
 - ► Las tuplas de *R* que no coincidan con ninguna de *S* se rellenan con nulos en los atributos de *S*.
- Del mismo modo se define la reunión exterior derecha (right outer join) R ⋈ S, que incluye todas las tuplas del operando de la derecha, combinadas con las que coincidan del operando de la izquierda.
- Por último, una reunión exterior completa (full outer join) R

 S contiene todas las tuplas de las dos relaciones, combinadas con las tuplas coincidentes de la otra relación, o rellenando con nulos aquellas tuplas de cada relación que no coincidan con ninguna tupla de la otra relación.

Ejemplo:

		\mathtt{EMPL}				PROYECTO	
DNI	Nombre	Ap1	Ap2	Salario	CodPr	Descr.	DNI
37X	Juan	Sánchez	Martín	1500	4	Contabilidad	24Y
24Y	Adela	García	Sanz	2300	7	Marketing	55Z

Ejemplo:

EMPL						PROYECTO	
DNI	Nombre	Ap1	Ap2	Salario	CodPr	Descr.	DNI
37X	Juan	Sánchez	Martín	1500	4	Contabilidad	24Y
24Y	Adela	García	Sanz	2300	7	Marketing	55Z

EMPL MPROYECTO

DNI	Nombre	Ap1	Ap2	Salario	CodPr	Descr.
24Y	Adela	García	Sanz	2300	4	Contabilidad

Ejemplo:

		EMPL				PROYECTO	
DNI	Nombre	Ap1	Ap2	Salario	CodPr	Descr.	DNI
37X	Juan	Sánchez	Martín	1500	4	Contabilidad	24Y
24Y	Adela	García	Sanz	2300	7	Marketing	55Z

EMPL ⋈ PROYECTO

DNI	Nombre	Ap1	Ap2	Salario	CodPr	Descr.
24Y	Adela	García	Sanz	2300	4	Contabilidad

DNI	Nombre	Ap1	Ap2	Salario	CodPr	Descr.
37X	Juan	Sánchez	Martín	1500	NULO	NULO
24Y	Adela	García	Sanz	2300	4	Contabilidad

Ejemplo:

	EMPL					
DNI	Nombre	Ap1	Ap2	Salario		
37X	Juan	Sánchez	Martín	1500		
24Y	Adela	García	Sanz	2300		

	PROYECTO					
CodPr	Descr.	DNI				
4	Contabilidad	24Y				
7	Marketing	55Z				

EMPL MPROYECTO

DNI	Nombre	Ap1	Ap2	Salario	CodPr	Descr.
24Y	Adela	García	Sanz	2300	4	Contabilidad

DNI	Nombre	Ap1	Ap2	Salario	CodPr	Descr.
37X	Juan	Sánchez	Martín	1500	NULO	NULO
24Y	Adela	García	Sanz	2300	4	Contabilidad

EMPL ⋈ PROYECTO

DNI	Nombre	Ap1	Ap2	Salario	CodPr	Descr.
24Y	Adela	García	Sanz	2300	4	Contabilidad
55Z	NULO	NULO	NULO	NULO	7	Marketing

Ejemplo:

EMPL					
DNI	Nombre	Ap1	Ap2	Salario	
37X	Juan	Sánchez	Martín	1500	
24Y	Adela	García	Sanz	2300	

PROYECTO					
CodPr	DNI				
4	Contabilidad	24Y			
7	Marketing	55Z			

DNI	Nombre	Ap1	Ap2	Salario	CodPr	Descr.
37X	Juan	Sánchez	Martín	1500	NULO	NULO
24Y	Adela	García	Sanz	2300	4	Contabilidad
55Z	NULO	NULO	NULO	NULO	7	Marketing

Operaciones - División

- La operación de división es útil para determinadas consultas a BD.
- Permite obtener las tuplas de una relación que verifican que para algunos atributos toman todos los valores que aparecen en otra relación.
- Dados $R(A_1, \ldots, A_m)$ y $S(B_1, \ldots, B_n)$ con atributos tales que $\{B_1, \ldots, B_n\} \subset \{A_1, \ldots, A_m\}$, la operación $R \div S$ produce un esquema con:
 - ▶ Atributos del esquema: $\{C_1, \ldots, C_j\} = \{A_1, \ldots, A_m\} \setminus \{B_1, \ldots, B_n\}.$
 - ▶ Instancia de la relación: Una tupla t está en $T = R \div S$ si $\{t\} \times S$ está contenido en R.
 - Informalmente, para que una tupla t esté en T, t debe aparecer combinado con todos los valores de S en R.
- Esta operación permite realizar consultas con cuantificación universal. Los SGBD no suelen implementar directamente esta operación.
- Lo vemos con un ejemplo:

Operaciones - División

• Ejemplo: Dados los esquemas de relación:

```
EMPL(DNI, Nombre, Ap1, Ap2, Salario)
DEDICACION(CodPr, DNI, Horas)
```

- Datos personales de todos los empleados que trabajan en todos los proyectos en los que trabaja el empleado con DNI nº 8967866R:
 - Primero se seleccionan los proyectos en los que trabaja este empleado: ProyEmp←π_{CodPr}(σ (DNI=' 8667866R') (DEDICACION))
 - ► A continuación se seleccionan los DNI de los empleados que trabajan en cada proyecto:

```
\mathtt{DNIProyectos} \leftarrow \pi_{\mathtt{(CodPr,DNI)}}(\mathtt{DEDICACION})
```

Después se obtienen los DNI de los empleados buscados mediante la operación de división:

```
{\tt DNIBuscados} {\leftarrow} {\tt DNIProyectos} \; \begin{array}{l} \boldsymbol{\div} \; {\tt ProyEmp} \end{array}
```

▶ Por último, se obtienen los datos personales de los empleados:

```
Resultado←DNIBuscados ⋈EMPL
```

Tratamiento de valores nulos

- Cualquier comparación $(<,>,\leq,\geq,=,\neq)$ con un valor NULO produce un resultado desconocido.
- Cualquier operación lógica con un valor desconocido produce un resultado desconocido.
- Por tanto, las condiciones lógicas pueden devolver tres valores posibles: cierto, falso, o desconocido.
- Las operaciones del álgebra se comportan de la siguiente forma:
- **Selección** $\sigma_C(R)$: Solo se seleccionan las tuplas de R para las que la condición C es **cierta** (si el resultado es desconocido no se incluyen).
- Proyección, unión, intersección, diferencia: Los valores nulos se tratan como cualquier otro valor para eliminar duplicados.

Tratamiento de valores nulos

- Reunión condicional, reunión natural: Se utiliza la equivalencia: $R \bowtie_C S = \sigma_C(R \times S)$.
 - Las tuplas con valor nulo en el atributo de conexión (o atributo común si es reunión natural) no coinciden y por tanto no aparecen en el resultado.

Reuniones externas:

- Funcionan de forma similar para las tuplas que cumplen las condiciones de reunión.
- ▶ Para las que **no lo cumplen**, se incluyen en el resultado (dependiendo del tipo de reunión externa) rellenando con valores nulos.