

Mark Scheme (Results) January 2007

GCE

GCE Mathematics

Core Mathematics C4 (6666)

January 2007 6666 Core Mathematics C4 Mark Scheme

			1
Question Number	Scheme		Marks
1.	** represents a constant $f(x) = (2 - 5x)^{-2} = (2)^{-2} \left(1 - \frac{5x}{2}\right)^{-2} = \frac{1}{4} \left(1 - \frac{5x}{2}\right)^{-2}$	Takes 2 outside the bracket to give any of $(2)^{-2}$ or $\frac{1}{4}$.	B1
	$=\frac{1}{4}\left\{\frac{1+(-2)(^{**}x);+\frac{(-2)(-3)}{2!}(^{**}x)^{2}+\frac{(-2)(-3)(-4)}{3!}(^{**}x)^{3}+\ldots\right\}$	Expands $(1+**x)^{-2}$ to give an unsimplified 1+(-2)(**x); A correct unsimplified $\{\}$ expansion with candidate's (**x)	M1
	$= \frac{1}{4} \left\{ \frac{1 + (-2)(\frac{-5x}{2})}{2!}; + \frac{(-2)(-3)}{2!}(\frac{-5x}{2})^2 + \frac{(-2)(-3)(-4)}{3!}(\frac{-5x}{2})^3 + \dots \right\}$ $= \frac{1}{4} \left\{ 1 + 5x; + \frac{75x^2}{4} + \frac{125x^3}{2} + \dots \right\}$		
	$= \frac{1}{4} + \frac{5x}{4}; + \frac{75x^2}{16} + \frac{125x^3}{8} + \dots$	Anything that cancels to $\frac{1}{4} + \frac{5x}{4}$; Simplified $\frac{75x^2}{16} + \frac{125x^3}{8}$	A1; A1
	$= \frac{1}{4} + 1\frac{1}{4}x; + 4\frac{11}{16}x^2 + 15\frac{5}{8}x^3 + \dots$		[5] 5 marks

Question Number	Scheme	Marks
Aliter 1.	$f(x) = (2 - 5x)^{-2}$	
Way 2	$\frac{1}{4} \text{ or } (2)^{-2}$ Expands $(2-5x)^{-2}$ to give an	B1 M1
	$= \begin{cases} (2)^{-2} + (-2)(2)^{-3}(**x); + \frac{(-2)(-3)}{2!}(2)^{-4}(**x)^{2} \\ + \frac{(-2)(-3)(-4)}{3!}(2)^{-5}(**x)^{3} + \dots \end{cases}$ unsimplified $(2)^{-2} + (-2)(2)^{-3}(**x);$ A correct unsimplified	
	{} expansion with candidate's (* * x)	A1
	$= \left\{ \begin{aligned} &(2)^{-2} + (-2)(2)^{-3}(-5x); + \frac{(-2)(-3)}{2!}(2)^{-4}(-5x)^2 \\ &+ \frac{(-2)(-3)(-4)}{3!}(2)^{-5}(-5x)^3 + \dots \end{aligned} \right\}$	
	$= \begin{cases} \frac{1}{4} + (-2)(\frac{1}{8})(-5x); + (3)(\frac{1}{16})(25x^2) \\ + (-4)(\frac{1}{16})(-125x^3) + \dots \end{cases}$	
	Anything that $= \frac{1}{4} + \frac{5x}{4}; + \frac{75x^2}{16} + \frac{125x^3}{8} + \dots$ Anything that $\frac{1}{4} + \frac{5x}{4};$ Simplified $\frac{75x^2}{16} + \frac{125x^3}{8}$	A1;
	$= \frac{1}{4} + 1\frac{1}{4}x; + 4\frac{11}{16}x^2 + 15\frac{5}{8}x^3 + \dots$	[5]
		5 marks

Attempts using Maclaurin expansions need to be referred to your team leader.

2. (a) Volume = $\pi \int_{\frac{1}{2}}^{\frac{1}{2}} \left(\frac{1}{3(1+2x)}\right)^2 dx = \frac{\pi}{9} \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{(1+2x)^2} dx$ Can be implied. Ignore limits. $= \left(\frac{\pi}{9}\right) \int_{\frac{1}{2}}^{\frac{1}{2}} (1+2x)^2 dx$ Moving their power to the top. (Do not allow power of -1.) Can be implied. Ignore limits and $\frac{\pi}{9}$ Integrating to give $\frac{1}{2}(1+2x)^{-1}$ $= \left(\frac{\pi}{9}\right) \left[\frac{(1+2x)^{-1}}{(-1)(2)}\right]_{-\frac{1}{2}}^{\frac{1}{2}}$ $= \left(\frac{\pi}{9}\right) \left[\frac{-\frac{1}{2}(1+2x)^{-1}}{2(\frac{1}{2})}\right]_{-\frac{1}{2}}^{\frac{1}{2}}$ $= \left(\frac{\pi}{9}\right) \left[\frac{-1}{4}(-1)\right]$ $= \frac{\pi}{12}$ Use of limits to give exact values of $\frac{\pi}{12}$ or $\frac{3\pi}{3\pi}$ or $\frac{3\pi}{2\pi}$ or \frac	Question Number	Scheme		Marks
$= \left(\frac{\pi}{9}\right) \int_{\frac{\pi}{4}}^{3} (1+2x)^{-2} dx$ $= \left(\frac{\pi}{9}\right) \int_{\frac{\pi}{4}}^{3} (1+2x)^{-2} dx$ $= \left(\frac{\pi}{9}\right) \left[\frac{(1+2x)^{-1}}{(-1)(2)} \right]_{\frac{\pi}{4}}^{\frac{\pi}{4}}$ $= \left(\frac{\pi}{9}\right) \left[\frac{(1+2x)^{-1}}{(-1)(2)} \right]_{\frac{\pi}{4}}^{\frac{\pi}{4}}$ $= \left(\frac{\pi}{9}\right) \left[-\frac{1}{2}(1+2x)^{-1} \right]_{-\frac{\pi}{4}}^{\frac{\pi}{4}}$ $= \left(\frac{\pi}{9}\right) \left[-\frac{1}{2}(1+2x)^{-1} \right]_{-\frac{\pi}{4}}^{\frac{\pi}{4}}$ $= \left(\frac{\pi}{9}\right) \left[-\frac{1}{2}(-1) \right]$ $= \left(\frac{\pi}{9}\right) \left[-\frac{1}{4} - (-1) \right]$ $= \frac{\pi}{12}$ Use of limits to give exact values of $\frac{\pi}{12}$ or $\frac{3\pi}{36}$ or $\frac{2\pi}{36}$ or $\frac{2\pi}{36}$ or and $\frac{2\pi}{36}$ or and then scale factor $\frac{\pi}{4}$ and $\frac{\pi}{4}$ in the scale factor $\frac{\pi}{4}$ i	2. (a)	Volume = $\pi \int_{\frac{-1}{4}}^{\frac{1}{2}} \left(\frac{1}{3(1+2x)} \right)^2 dx = \frac{\pi}{9} \int_{\frac{-1}{4}}^{\frac{1}{2}} \frac{1}{(1+2x)^2} dx$		B1
$= \left(\frac{\pi}{9}\right) \left[-\frac{1}{2}(1+2x)^{-1}\right]_{-\frac{1}{4}}^{\frac{1}{2}}$ $= \left(\frac{\pi}{9}\right) \left[\left(\frac{-1}{2(2)}\right) - \left(\frac{-1}{2(\frac{1}{2})}\right)\right]$ $= \left(\frac{\pi}{9}\right) \left[-\frac{1}{4} - (-1)\right]$ Use of limits to give exact values of $\frac{\pi}{12}$ or $\frac{3\pi}{36}$ or $\frac{2\pi}{24}$ or aef (b) From Fig.1, AB = $\frac{1}{2} - \left(-\frac{1}{4}\right) = \frac{3}{4}$ units As $\frac{3}{4}$ units = 3cm then scale factor $k = \frac{3}{\left(\frac{3}{4}\right)} = 4$. Hence Volume of paperweight = $(4)^3 \left(\frac{\pi}{12}\right)$ (4) ³ × (their answer to part (a)) $V = \frac{16\pi}{3} \text{ cm}^3 = 16.75516 \text{ cm}^3$ A1 A1 [2]		$= \left(\frac{\pi}{9}\right) \int_{-\frac{1}{4}}^{\frac{1}{2}} \left(1 + 2x\right)^{-2} dx$	(Do not allow power of -1.) Can be implied.	M1
$= \left(\frac{\pi}{9}\right) \left[\left(\frac{-1}{2(2)}\right) - \left(\frac{-1}{2(\frac{1}{2})}\right)\right]$ $= \left(\frac{\pi}{9}\right) \left[-\frac{1}{4} - (-1)\right]$ Use of limits to give exact values of $\frac{\pi}{12}$ or $\frac{3\pi}{36}$ or $\frac{2\pi}{24}$ or aef (b) From Fig.1, AB = $\frac{1}{2} - \left(-\frac{1}{4}\right) = \frac{3}{4}$ units As $\frac{3}{4}$ units = 3cm then scale factor k = $\frac{3}{\left(\frac{3}{4}\right)}$ = 4. Hence Volume of paperweight = $(4)^3 \left(\frac{\pi}{12}\right)$ (4) ³ × (their answer to part (a)) $V = \frac{16\pi}{3} \text{ cm}^3 = 16.75516 \text{ cm}^3$ A1 A1 [2]		$= \left(\frac{\pi}{9}\right) \left[\frac{(1+2x)^{-1}}{(-1)(2)}\right]_{-\frac{1}{4}}^{\frac{1}{2}}$		
$= \frac{\pi}{12}$ Use of limits to give exact values of $\frac{\pi}{12}$ or $\frac{3\pi}{36}$ or $\frac{2\pi}{24}$ or aef (b) From Fig.1, AB = $\frac{1}{2} - \left(-\frac{1}{4}\right) = \frac{3}{4}$ units As $\frac{3}{4}$ units = 3cm then scale factor $k = \frac{3}{\left(\frac{3}{4}\right)} = 4$. Hence Volume of paperweight = $(4)^3 \left(\frac{\pi}{12}\right)$ $V = \frac{16\pi}{3}$ cm ³ = 16.75516 cm ³ Use of limits to give exact values of $\frac{\pi}{12}$ or aef [5] A1 aef [7]		$= \left(\frac{\pi}{9}\right) \left[-\frac{1}{2} (1+2x)^{-1} \right]_{-\frac{1}{4}}^{\frac{1}{2}}$		
Use of limits to give exact values of $\frac{\pi}{12}$ or $\frac{3\pi}{36}$ or $\frac{2\pi}{24}$ or aef [5] (b) From Fig.1, AB = $\frac{1}{2} - \left(-\frac{1}{4}\right) = \frac{3}{4}$ units As $\frac{3}{4}$ units = 3cm then scale factor k = $\frac{3}{\left(\frac{3}{4}\right)} = 4$. Hence Volume of paperweight = $(4)^3 \left(\frac{\pi}{12}\right)$ (4) ³ × (their answer to part (a)) V = $\frac{16\pi}{3}$ cm ³ = 16.75516 cm ³ $\frac{16\pi}{3}$ or awrt 16.8 or $\frac{64\pi}{12}$ or aef		$= \left(\frac{\pi}{9}\right) \left[\left(\frac{-1}{2(2)}\right) - \left(\frac{-1}{2(\frac{1}{2})}\right) \right]$		
$=\frac{\pi}{12}$ values of $\frac{\pi}{12}$ or $\frac{3\pi}{36}$ or $\frac{2\pi}{24}$ or aef [5] (b) From Fig.1, AB = $\frac{1}{2} - \left(-\frac{1}{4}\right) = \frac{3}{4}$ units As $\frac{3}{4}$ units = 3cm then scale factor $k = \frac{3}{\left(\frac{3}{4}\right)} = 4$. Hence Volume of paperweight = $(4)^3 \left(\frac{\pi}{12}\right)$ (4) ³ × (their answer to part (a)) $V = \frac{16\pi}{3}$ cm ³ = 16.75516 cm ³ $\frac{16\pi}{3}$ or awrt 16.8 or $\frac{64\pi}{12}$ or aef [2]		$= \left(\frac{\pi}{9}\right) \left[-\frac{1}{4} - (-1)\right]$		
(b) From Fig.1, $AB = \frac{1}{2} - \left(-\frac{1}{4}\right) = \frac{3}{4}$ units $As \frac{3}{4} \text{ units} \equiv 3 \text{ cm}$ then scale factor $k = \frac{3}{\left(\frac{3}{4}\right)} = 4$. Hence Volume of paperweight = $(4)^3 \left(\frac{\pi}{12}\right)$		$=\frac{\pi}{12}$	values of	
then scale factor $k = \frac{3}{\left(\frac{3}{4}\right)} = 4$. Hence Volume of paperweight = $\left(4\right)^3 \left(\frac{\pi}{12}\right)$	(b)	From Fig.1, AB = $\frac{1}{2} - \left(-\frac{1}{4}\right) = \frac{3}{4}$ units		[5]
Hence Volume of paperweight = $(4)^3 \left(\frac{\pi}{12}\right)$ $(4)^3 \times \text{(their answer to part (a))}$		As $\frac{3}{4}$ units \equiv 3cm		
$V = \frac{16\pi}{3} \text{ cm}^3 = 16.75516 \text{ cm}^3$ $\frac{\frac{16\pi}{3} \text{ or awrt } 16.8}{\text{ or } \frac{64\pi}{12} \text{ or aef}}$ [2]		then scale factor $k = \frac{3}{\left(\frac{3}{4}\right)} = 4$.		
$ \begin{array}{c c} \hline 3 & \text{or } \frac{64\pi}{12} \text{ or aef} \\ \hline $		Hence Volume of paperweight = $(4)^3 \left(\frac{\pi}{12}\right)$	$(4)^3 \times (\text{their answer to part (a)})$	M1
		$V = \frac{16\pi}{3} \text{ cm}^3 = 16.75516 \text{ cm}^3$		
· 				

Note: $\frac{\pi}{9}$ (or implied) is not needed for the middle three marks of question 2(a).

Question Number	Scheme		Marks
Aliter 2. (a)	Volume = $\pi \int_{\frac{1}{4}}^{\frac{1}{2}} \left(\frac{1}{3(1+2x)} \right)^2 dx = \pi \int_{\frac{1}{4}}^{\frac{1}{2}} \frac{1}{(3+6x)^2} dx$	Use of $V = \pi \int y^2 dx$. Can be implied. Ignore limits.	B1
Way 2	$= (\pi) \int_{\frac{1}{4}}^{\frac{1}{2}} (3+6x)^{-2} dx$	Moving their power to the top. (Do not allow power of -1.) Can be implied. Ignore limits and π	M1
	$= \left(\pi\right) \left[\frac{(3+6x)^{-1}}{(-1)(6)}\right]_{-\frac{1}{4}}^{\frac{1}{2}}$	Integrating to give $\frac{\pm p(3+6x)^{-1}}{-\frac{1}{6}(3+6x)^{-1}}$	M1 A1
	$= (\pi) \left[\begin{array}{c} -\frac{1}{6} (3+6x)^{-1} \end{array} \right]_{-\frac{1}{4}}^{\frac{1}{2}}$		
	$= \left(\pi\right) \left[\left(\frac{-1}{6(6)}\right) - \left(\frac{-1}{6(\frac{3}{2})}\right) \right]$		
	$= \left(\pi\right) \left[-\frac{1}{36} - \left(-\frac{1}{9}\right)\right]$		
	$=\frac{\pi}{12}$	Use of limits to give exact values of $\frac{\pi}{12}$ or $\frac{3\pi}{36}$ or $\frac{2\pi}{24}$ or aef	A1 aef
			[5]

Note: π is not needed for the middle three marks of question 2(a).

Question Number	Scheme		Marks
3. (a)	$x = 7\cos t - \cos 7t$, $y = 7\sin t - \sin 7t$,		
	$\frac{dx}{dt} = -7\sin t + 7\sin 7t, \frac{dy}{dt} = 7\cos t - 7\cos 7t$	Attempt to differentiate x and y with respect to t to give $\frac{dx}{dt}$ in the form $\pm A \sin t \pm B \sin 7t$ $\frac{dy}{dt}$ in the form $\pm C \cos t \pm D \cos 7t$ Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	M1
	$\therefore \frac{dy}{dx} = \frac{7\cos t - 7\cos 7t}{-7\sin t + 7\sin 7t}$	Candidate's $\frac{\frac{dy}{dt}}{\frac{dx}{dt}}$	B1 √ [3]
(b)	When $t = \frac{\pi}{6}$, $m(T) = \frac{dy}{dx} = \frac{7\cos\frac{\pi}{6} - 7\cos\frac{7\pi}{6}}{-7\sin\frac{\pi}{6} + 7\sin\frac{7\pi}{6}}$;	Substitutes $t = \frac{\pi}{6}$ or 30° into their $\frac{dy}{dx}$ expression;	M1
	$= \frac{\frac{7\sqrt{3}}{2} - \left(-\frac{7\sqrt{3}}{2}\right)}{\frac{-\frac{7}{2} - \frac{7}{2}}{2}} = \frac{7\sqrt{3}}{\frac{-7}{2}} = \frac{-\sqrt{3}}{2} = \underbrace{-\sqrt{3}}_{a} = \underbrace{-\sqrt{3}}_{$	to give any of the four underlined expressions oe (must be correct solution only)	A1 cso
	Hence $m(\mathbf{N}) = \frac{-1}{-\sqrt{3}}$ or $\frac{1}{\sqrt{3}}$ = awrt 0.58	Uses m(T) to 'correctly' find m(N). Can be ft from "their tangent gradient".	A1√ oe.
	When $t = \frac{\pi}{6}$, $x = 7\cos\frac{\pi}{6} - \cos\frac{7\pi}{6} = \frac{7\sqrt{3}}{2} - \left(-\frac{\sqrt{3}}{2}\right) = \frac{8\sqrt{3}}{2} = 4\sqrt{3}$ $y = 7\sin\frac{\pi}{6} - \sin\frac{7\pi}{6} = \frac{7}{2} - \left(-\frac{1}{2}\right) = \frac{8}{2} = 4$	The point $(4\sqrt{3}, 4)$ or $(awrt 6.9, 4)$	B1
	N : $y-4=\frac{1}{\sqrt{3}}(x-4\sqrt{3})$	Finding an equation of a normal with their point and their normal gradient or finds c by using y = (their gradient)x + "c".	M1
	N: $\underline{y = \frac{1}{\sqrt{3}}x}$ or $\underline{y = \frac{\sqrt{3}}{3}x}$ or $\underline{3y = \sqrt{3}x}$	Correct simplified EXACT equation of <u>normal</u> . This is dependent on candidate using correct $(4\sqrt{3}, 4)$	<u>A1</u> oe
	or $4 = \frac{1}{\sqrt{3}} (4\sqrt{3}) + c \implies c = 4 - 4 = 0$		
	Hence N: $y = \frac{1}{\sqrt{3}}x$ or $y = \frac{\sqrt{3}}{3}x$ or $y = \frac{\sqrt{3}}{3}x$		
			[6] 9 marks

Question Number	Scheme		Marks
Aliter 3. (a)	$x = 7 \cos t - \cos 7t$, $y = 7 \sin t - \sin 7t$,		
Way 2	$\frac{dx}{dt} = -7\sin t + 7\sin 7t, \frac{dy}{dt} = 7\cos t - 7\cos 7t$	Attempt to differentiate x and y with respect to t to give $\frac{dx}{dt}$ in the form $\pm A \sin t \pm B \sin 7t$	M1
		$\frac{dy}{dt}$ in the form $\pm C \cos t \pm D \cos 7t$ Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	A1
	$\frac{dy}{dx} = \frac{7\cos t - 7\cos 7t}{-7\sin t + 7\sin 7t} = \frac{-7(-2\sin 4t\sin 3t)}{-7(2\cos 4t\sin 3t)} = \tan 4t$	Candidate's $\frac{\frac{dy}{dt}}{\frac{dx}{dt}}$	
			[3]
(b)	When $t = \frac{\pi}{6}$, $m(T) = \frac{dy}{dx} = \tan \frac{4\pi}{6}$;	Substitutes $t = \frac{\pi}{6}$ or 30° into their $\frac{dy}{dx}$ expression;	M1
	$= \frac{2\left(\frac{\sqrt{3}}{2}\right)(1)}{2\left(-\frac{1}{2}\right)(1)} = \frac{-\sqrt{3}}{2} = \frac{2}{2} = \frac{2}{2$	to give any of the three underlined expressions oe (must be correct solution only)	A1 cso
	Hence $m(\mathbf{N}) = \frac{-1}{-\sqrt{3}}$ or $\frac{1}{\sqrt{3}} = \text{awrt } 0.58$	Uses m(T) to 'correctly' find m(N). Can be ft from "their tangent gradient".	A1√ oe.
	When $t = \frac{\pi}{6}$, $x = 7\cos\frac{\pi}{6} - \cos\frac{7\pi}{6} = \frac{7\sqrt{3}}{2} - \left(-\frac{\sqrt{3}}{2}\right) = \frac{8\sqrt{3}}{2} = 4\sqrt{3}$ $y = 7\sin\frac{\pi}{6} - \sin\frac{7\pi}{6} = \frac{7}{2} - \left(-\frac{1}{2}\right) = \frac{8}{2} = 4$	The point $(4\sqrt{3}, 4)$ or $(awrt 6.9, 4)$	B1
	N : $y-4 = \frac{1}{\sqrt{3}} (x-4\sqrt{3})$	Finding an equation of a normal with their point and their normal gradient or finds c by using y = (their gradient)x + "c".	M1
	N: $\underline{y = \frac{1}{\sqrt{3}}x}$ or $\underline{y = \frac{\sqrt{3}}{3}x}$ or $\underline{3y = \sqrt{3}x}$	Correct simplified EXACT equation of <u>normal</u> . This is dependent on candidate using correct $(4\sqrt{3}, 4)$	<u>A1</u> oe
	or $4 = \frac{1}{\sqrt{3}} (4\sqrt{3}) + c \implies c = 4 - 4 = 0$		
	Hence N: $\underline{y = \frac{1}{\sqrt{3}} x}$ or $\underline{y = \frac{\sqrt{3}}{3} x}$ or $\underline{3y = \sqrt{3}x}$		
			[6] 9 marks

PhysicsAndMathsTutor.com

Beware: A candidate finding an m(T)=0 can obtain A1ft for $m(N)\to\infty$, but obtains M0 if they write $y-4=\infty(x-4\sqrt{3})$. If they write, however, N: $x=4\sqrt{3}$, then they can score M1.

Beware: A candidate finding an $m(T) = \infty$ can obtain A1ft for m(N) = 0, and also obtains M1 if they write $y - 4 = 0(x - 4\sqrt{3})$ or y = 4.

Question Number	Scheme		Marks
4. (a)	$\frac{2x-1}{(x-1)(2x-3)} \equiv \frac{A}{(x-1)} + \frac{B}{(2x-3)}$		
	$2x-1 \equiv A(2x-3) + B(x-1)$	Forming this identity. NB : A & B are not assigned in this question	M1
	Let $x = \frac{3}{2}$, $2 = B(\frac{1}{2}) \Rightarrow B = 4$		
	Let $x = 1$, $1 = A(-1) \Rightarrow A = -1$	either one of $A = -1$ or $B = 4$. both correct for their A, B.	A1 A1
	giving $\frac{-1}{(x-1)} + \frac{4}{(2x-3)}$		
	(1) (21 0)		[3]
(b) & (c)	$\int \frac{dy}{y} = \int \frac{(2x-1)}{(2x-3)(x-1)} dx$	Separates variables as shown Can be implied	B1
	$= \int \frac{-1}{(x-1)} + \frac{4}{(2x-3)} dx$	Replaces RHS with their partial fraction to be integrated.	M1√
	$\therefore \ln y = -\ln(x-1) + 2\ln(2x-3) + c$	At least two terms in ln's At least two ln terms correct All three terms correct and '+ c'	M1 A1 √ A1 [5]
	$y = 10, x = 2$ gives $c = \ln 10$	c = In10	B1
	$\therefore \ln y = -\ln(x-1) + 2\ln(2x-3) + \ln 10$		
	$ln y = -ln(x-1) + ln(2x-3)^2 + ln10$	Using the power law for logarithms	M1
	$\ln y = \ln \left(\frac{(2x-3)^2}{(x-1)} \right) + \ln 10 \text{ or}$	Using the product and/or quotient laws for logarithms to obtain a single RHS logarithmic term	M1
	$\ln y = \ln \left(\frac{10(2x-3)^2}{(x-1)} \right)$	with/without constant c.	
	$y = \frac{10(2x-3)^2}{(x-1)}$	$y = \frac{10(2x-3)^2}{(x-1)}$ or aef. isw	
			[4]
			12 marks

Question Number	Scheme		Marks
4. (b) & (c) Way 2	$\int \frac{dy}{y} = \int \frac{(2x-1)}{(2x-3)(x-1)} dx$	Separates variables as shown Can be implied	B1
way 2	$= \int \frac{-1}{(x-1)} + \frac{4}{(2x-3)} dx$	Replaces RHS with their partial fraction to be integrated.	M1√
	$\therefore \ln y = -\ln(x-1) + 2\ln(2x-3) + c$	At least two terms in ln's At least two ln terms correct All three terms correct and '+ c'	M1 A1√ A1
	See below for the award of B1	decide to award B1 here!!	B1
	$ln y = -ln(x-1) + ln(2x-3)^2 + c$	Using the power law for logarithms	M1
	$\ln y = \ln \left(\frac{(2x-3)^2}{x-1} \right) + c$	Using the product and/or quotient laws for logarithms to obtain a single RHS logarithmic term with/without constant c.	M1
	$ln y = ln \left(\frac{A(2x-3)^2}{x-1} \right) \qquad \text{where } c = ln A$		
	or $e^{lny} = e^{ln\left(\frac{(2x-3)^2}{x-1}\right) + c} = e^{ln\left(\frac{(2x-3)^2}{x-1}\right)} e^c$		
	$y = \frac{A(2x-3)^2}{(x-1)}$		
	y = 10, x = 2 gives $A = 10$	A = 10 for $B1$	award above
	$y = \frac{10(2x-3)^2}{(x-1)}$	$y = \frac{10(2x-3)^2}{(x-1)}$ or aef & isw	A1 aef [5] & [4]

Note: The B1 mark (part (c)) should be awarded in the same place on ePEN as in the Way 1 approach.

Question Number	Scheme		Marks
	$\int \frac{dy}{y} = \int \frac{(2x-1)}{(2x-3)(x-1)} dx$	Separates variables as shown Can be implied	B1
Way 3	$= \int \frac{-1}{(x-1)} + \frac{2}{(x-\frac{3}{2})} dx$	Replaces RHS with their partial fraction to be integrated.	M1√
	$\therefore \ln y = -\ln(x-1) + 2\ln(x-\frac{3}{2}) + c$	At least two terms in ln's At least two ln terms correct All three terms correct and '+ c'	M1 A1 √ A1 [5]
	y = 10, x = 2 gives $c = \frac{\ln 10 - 2\ln(\frac{1}{2})}{\ln 40}$	$c = \ln 10 - 2 \ln \left(\frac{1}{2}\right) \text{ or } c = \ln 40$	B1 oe
	$\therefore \ln y = -\ln(x-1) + 2\ln(x-\frac{3}{2}) + \ln 40$		
	$\ln y = -\ln(x-1) + \ln(x-\frac{3}{2})^2 + \ln 10$	Using the power law for logarithms	M1
	$\ln y = \ln \left(\frac{(x - \frac{3}{2})^2}{(x - 1)} \right) + \ln 40 \text{ or}$ $\ln y = \ln \left(\frac{40 (x - \frac{3}{2})^2}{(x - 1)} \right)$	Using the product and/or quotient laws for logarithms to obtain a single RHS logarithmic term with/without constant c.	M1
	$y = \frac{40(x - \frac{3}{2})^2}{(x - 1)}$	$y = \frac{40(x - \frac{3}{2})^2}{(x - 1)}$ or aef. isw	A1 aef [4]

Note: Please mark parts (b) and (c) together for any of the three ways.

Question Number	Scheme		Marks
5. (a)	$\sin x + \cos y = 0.5$ (eqn *)		
	$\left\{\frac{\cancel{x}\cancel{x}}{\cancel{x}\cancel{x}} \times \right\} \cos x - \sin y \frac{dy}{dx} = 0 (eqn \#)$	Differentiates implicitly to include $\pm \sin y \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$.)	M1
	$\frac{dy}{dx} = \frac{\cos x}{\sin y}$	cos x sin y	A1 cso [2]
(b)	$\frac{dy}{dx} = 0 \implies \frac{\cos x}{\sin y} = 0 \implies \cos x = 0$	Candidate realises that they need to solve 'their numerator' = 0or candidate sets $\frac{dy}{dx} = 0$ in their (eqn #) and attempts to solve the resulting equation.	M1√
	giving $\underline{X = -\frac{\pi}{2}}$ or $\underline{X = \frac{\pi}{2}}$	both $\underline{x = -\frac{\pi}{2}, \frac{\pi}{2}}$ or $\underline{x = \pm 90^{\circ}}$ or awrt $\underline{x = \pm 1.57}$ required here	A1
	When $x = -\frac{\pi}{2}$, $\sin(-\frac{\pi}{2}) + \cos y = 0.5$ When $x = \frac{\pi}{2}$, $\sin(\frac{\pi}{2}) + \cos y = 0.5$	Substitutes either their $X = \frac{\pi}{2}$ or $X = -\frac{\pi}{2}$ into eqn *	M1
	⇒ $\cos y = 1.5$ ⇒ y has no solutions ⇒ $\cos y = -0.5$ ⇒ $y = \frac{2\pi}{3}$ or $-\frac{2\pi}{3}$	Only one of $y = \frac{2\pi}{3}$ or $\frac{-2\pi}{3}$ or $\frac{120^{\circ}}{}$ or $\frac{-120^{\circ}}{}$ or awrt $\frac{-2.09}{}$ or awrt $\frac{2.09}{}$	A1
	In specified range $(x, y) = \underline{\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)}$ and $\underline{\left(\frac{\pi}{2}, -\frac{2\pi}{3}\right)}$	Only exact coordinates of $\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$ and $\left(\frac{\pi}{2}, -\frac{2\pi}{3}\right)$ Do not award this mark if	A1
		candidate states other coordinates inside the required range.	
		uie requirea range.	[5]
			7 marks

Question Number	Scheme		Ma	ırks
6.	$y = 2^x = e^{x \ln 2}$			
(a) Way 1	$\frac{dy}{dx} = \ln 2 \cdot e^{x \ln 2}$ $\frac{dy}{dx} = \ln 2 \cdot e^{x \ln 2}$	2.e ^{xln2}	M1	
	Hence $\frac{dy}{dx} = \ln 2 \cdot (2^x) = 2^x \ln 2$ AG	In2 AG	A 1	cso [2]
Aliter (a) Way 2	$ln y = ln(2^x)$ leads to $ln y = x ln 2$ Takes logs of both sides, the power law of logar	rithms	3.54	
Way 2	$\frac{1}{y} \frac{dy}{dx} = \ln 2$ and differentiates implied to give $\frac{1}{y}$.		M1	
	Hence $\frac{dy}{dx} = y \ln 2 = 2^x \ln 2$ AG	In2 AG	A 1	cso [2]
(b)	dv	2 ^(x²) .ln2	M1 A1	[-]
	When $x = 2$, $\frac{dy}{dx} = 2(2)2^4 \ln 2$ Substitutes $x = 2$ into the substitutes $x = 2$ into the form of $x = 2$, $x = 2$ into the form of $x = 2$, $x = 2$ into the form of $x = 2$, $x = 2$ into the form of $x = 2$, $x = 2$ into the form of $x = 2$, $x = 2$ into the form of $x = 2$, $x = 2$ into the form of $x = 2$, $x = 2$ into the form of $x = 2$, $x = 2$ into the form of $x = 2$.		M1	
	$\frac{dy}{dx} = \frac{64 \ln 2}{100} = 44.3614$ 64 ln 2 or a	wrt 44.4	A1	[4]
			6 m	arks

Physics And Maths Tutor.com

Question Number	Scheme		Marks
Aliter 6. (b)	$ln y = ln(2^{x^2})$ leads to $ln y = x^2 ln 2$		
Way 2	$\frac{1}{y} \frac{dy}{dx} = 2x.\ln 2$ $\frac{1}{y} \frac{dy}{dx} = 4$ $\frac{1}{y} \frac{dy}{dx} = 2$		M1 A1
	When $x = 2$, $\frac{dy}{dx} = 2(2)2^4 \ln 2$ Substitutes $x = 2$ into the which is of the form \pm or A		M1
	$\frac{dy}{dx} = \frac{64 \ln 2}{1} = 44.3614$ 64 or aw	rt 44.4	A1 [4]

Question Number	Scheme	Marks
	$\mathbf{a} = \overrightarrow{OA} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k} \Rightarrow \overrightarrow{OA} = 3$ $\mathbf{b} = \overrightarrow{OB} = \mathbf{i} + \mathbf{j} - 4\mathbf{k} \Rightarrow \overrightarrow{OB} = \sqrt{18}$ $\overrightarrow{BC} = \pm (2\mathbf{i} + 2\mathbf{j} + \mathbf{k}) \Rightarrow \overrightarrow{BC} = 3$ $\overrightarrow{AC} = \pm (\mathbf{i} + \mathbf{j} - 4\mathbf{k}) \Rightarrow \overrightarrow{AC} = \sqrt{18}$ $\mathbf{c} = \overrightarrow{OC} = 3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}$ $\overrightarrow{OA} \bullet \overrightarrow{OB} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 1 \\ -4 \end{pmatrix} = \underbrace{2 + 2 - 4} = 0 \text{or}$ $\overrightarrow{BO} \bullet \overrightarrow{BC} = \begin{pmatrix} -1 \\ -1 \\ 4 \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = \underbrace{-2 - 2 + 4} = 0 \text{or}$ $\overrightarrow{An} \text{ attempt to take the dot product between either } \overrightarrow{OA} \text{ and } \overrightarrow{OB} $ $\overrightarrow{OA} \text{ and } \overrightarrow{AC} , \overrightarrow{AC} \text{ and } \overrightarrow{BC}$ $\overrightarrow{AC} \bullet \overrightarrow{BC} = \begin{pmatrix} 1 \\ 1 \\ -4 \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = \underbrace{2 + 2 - 4} = 0 \text{or}$ Showing the result is equal to zero.	B1 cao [1] M1 A1
	$\overrightarrow{AO} \bullet \overrightarrow{AC} = \begin{pmatrix} -2 \\ -2 \\ -1 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 1 \\ -4 \end{pmatrix} = \underline{-2 - 2 + 4} = 0$	
	and therefore OA is perpendicular to OB and hence OACB is a rectangle. perpendicular and OACB is a rectangle	A1 cso
	Using distance formula to find either the correct height or width.	M1
	Area = $3 \times \sqrt{18} = 3\sqrt{18} = 9\sqrt{2}$ Multiplying the rectangle's height by its width.	M1
	exact value of $3\sqrt{18}$, $9\sqrt{2}$, $\sqrt{162}$ or aef	A1
		[6]
(c)	$\overrightarrow{OD} = \mathbf{d} = \frac{1}{2} (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k})$ $\frac{1}{2} (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k})$	B1 [1]

Question Number	Scheme		Marks				
(d) Way 1	using dot product formula $\overrightarrow{DA} = \pm \left(\frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \frac{5}{2}\mathbf{k}\right) & \overrightarrow{DC} = \pm \left(\frac{3}{2}\mathbf{i} + \frac{3}{2}\mathbf{j} - \frac{3}{2}\mathbf{k}\right)$ or $\overrightarrow{BA} = \pm \left(\mathbf{i} + \mathbf{j} + 5\mathbf{k}\right) & \overrightarrow{OC} = \pm \left(3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}\right)$ Identifies a set of two relevant vectors $\overrightarrow{COC} = \pm \left(3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}\right)$ Correct vectors \pm						
Way I	$\cos D = (\pm) \frac{\begin{pmatrix} 0.5 \\ 0.5 \\ 2.5 \end{pmatrix} \bullet \begin{pmatrix} 1.5 \\ 1.5 \\ -1.5 \end{pmatrix}}{\frac{\sqrt{27}}{2} \cdot \frac{\sqrt{27}}{2}} = (\pm) \frac{\frac{3}{4} + \frac{3}{4} - \frac{15}{4}}{\frac{27}{4}} = (\pm) \frac{\frac{1}{3}}{\frac{27}{4}}$	Applies dot product formula on multiples of these vectors. Correct ft. application of dot product formula					
	$D = \cos^{-1}\left(-\frac{1}{3}\right)$	Attempts to find the correct angle D rather than $180^{\circ} - D$.	ddM1√				
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1				
Aliter (d) Way 2	using dot product formula and direction vectors $d\overrightarrow{BA} = \pm (\mathbf{i} + \mathbf{j} + 5\mathbf{k}) \qquad \& d\overrightarrow{OC} = \pm (\mathbf{i} + \mathbf{j} - \mathbf{k})$	Identifies a set of two direction vectors Correct vectors ±	[6] M1 A1				
	$\cos D = (\pm) \frac{\begin{pmatrix} 1\\1\\-1 \end{pmatrix} \bullet \begin{pmatrix} 1\\1\\5 \end{pmatrix}}{\sqrt{3} \cdot \sqrt{27}} = \underline{(\pm) \frac{1+1-5}{\sqrt{3} \cdot \sqrt{27}}} = \underline{(\pm) \frac{1}{3}}$	Applies dot product formula on multiples of these vectors. <u>Correct ft.</u> <u>application of dot product formula.</u>	dM1				
	$D = \cos^{-1}\left(-\frac{1}{3}\right)$	Attempts to find the correct angle D rather than 180° – D.	ddM1√				
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]				

Question Number	Scheme		Marks				
Aliter	using dot product formula and similar triangles						
(d)	$d\overrightarrow{OA} = (2\mathbf{i} + 2\mathbf{j} + \mathbf{k})$ & $d\overrightarrow{OC} = (\mathbf{i} + \mathbf{j} - \mathbf{k})$	Identifies a set of two direction vectors	M1 A1				
Way 3	Correct vectors						
way 3	$\cos\left(\frac{1}{2}D\right) = \frac{\begin{pmatrix} 2\\2\\1 \end{pmatrix} \bullet \begin{pmatrix} 1\\1\\-1 \end{pmatrix}}{\sqrt{9} \cdot \sqrt{3}} = \frac{2+2-1}{\sqrt{9} \cdot \sqrt{3}} = \frac{1}{\sqrt{3}}$	Applies dot product formula on multiples of these vectors. <u>Correct ft.</u> <u>application of dot</u>	dM1				
		product formula.					
	$D = 2 \cos^{-1} \left(\frac{1}{\sqrt{3}} \right)$	Attempts to find the correct angle D by doubling their angle for $\frac{1}{2}D$.	ddM1√				
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]				
Aliter (d) Way 4	$ \overrightarrow{DA} = \frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \frac{5}{2}\mathbf{k} , \overrightarrow{DC} = \frac{3}{2}\mathbf{i} + \frac{3}{2}\mathbf{j} - \frac{3}{2}\mathbf{k} , \overrightarrow{AC} = \mathbf{i} + \mathbf{j} - 4\mathbf{k} $						
Way 4	$\left \overline{DA} \right = \frac{\sqrt{27}}{2} \; , \; \; \left \overline{DC} \right = \frac{\sqrt{27}}{2} \; , \; \; \left \overline{AC} \right = \sqrt{18}$	Attempts to find all the lengths of all three edges of \triangle ADC	M1				
		All Correct	A1				
	$\cos D = \frac{\left(\frac{\sqrt{27}}{2}\right)^2 + \left(\frac{\sqrt{27}}{2}\right)^2 - \left(\sqrt{18}\right)^2}{2\left(\frac{\sqrt{27}}{2}\right)\left(\frac{\sqrt{27}}{2}\right)} = -\frac{1}{3}$	Using the cosine rule formula with correct 'subtraction'. Correct ft application	dM1				
	$\frac{2\left(\frac{\sqrt{27}}{2}\right)\left(\frac{\sqrt{27}}{2}\right)}{2}$	of the cosine rule formula	A1√				
	$D = \cos^{-1}\left(-\frac{1}{3}\right)$	Attempts to find the correct angle D rather than 180° – D.	ddM1√				
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]				

Question	Scheme		Marks			
Number Aliter	using trigonometry on a right angled triangle					
(d)	$\overrightarrow{DA} = \frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \frac{5}{2}\mathbf{k}$ $\overrightarrow{OA} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ $\overrightarrow{AC} = \mathbf{i} + \mathbf{j} - 4\mathbf{k}$					
Way 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
J	Let X be the midpoint of AC $\left \overline{DA} \right = \frac{\sqrt{27}}{2} , \left \overline{DX} \right = \frac{1}{2} \left \overline{OA} \right = \frac{3}{2}, \left \overline{AX} \right = \frac{1}{2} \left \overline{AC} \right = \frac{1}{2} \sqrt{18}$	Attempts to find two out of the three lengths in \triangle ADX	M1			
	(hypotenuse), (adjacent) , (opposite)	Any two correct	A1			
	$\sin(\frac{1}{2}D) = \frac{\frac{\sqrt{18}}{2}}{\frac{\sqrt{27}}{2}}$, $\cos(\frac{1}{2}D) = \frac{\frac{3}{2}}{\frac{\sqrt{27}}{2}}$ or $\tan(\frac{1}{2}D) = \frac{\frac{\sqrt{18}}{2}}{\frac{3}{2}}$	Uses correct sohcahtoa to find $\frac{1}{2}D$ Correct ft application	dM1			
	-	of sohcahtoa	ΑIV			
	eg. $D = 2 \tan^{-1} \left(\frac{\frac{\sqrt{18}}{2}}{\frac{3}{2}} \right)$	Attempts to find the correct angle D by doubling their angle for $\frac{1}{2}D$.	ddM1√			
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]			
Aliter	using trigonometry on a right angled similar triangle OAC					
(d)	$\overrightarrow{OC} = 3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}$ $\overrightarrow{OA} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ $\overrightarrow{AC} = \mathbf{i} + \mathbf{j} - 4\mathbf{k}$					
Way 6		Attempts to find two				
	$\left \overrightarrow{OC} \right = \sqrt{27} , \left \overrightarrow{OA} \right = 3, \left \overrightarrow{AC} \right = \sqrt{18}$	out of the three lengths in $\triangle OAC$	M1			
	(hypotenuse), (adjacent), (opposite)	ionguis in A O/10				
		Any two correct	A1			
	$\sin(\frac{1}{2}D) = \frac{\sqrt{18}}{\sqrt{27}}$, $\cos(\frac{1}{2}D) = \frac{3}{\sqrt{27}}$ or $\tan(\frac{1}{2}D) = \frac{\sqrt{18}}{3}$	Uses correct sohcahtoa to find ½D	dM1			
		Correct ft application of sohcahtoa	A1√			
	eg. $D = 2 \tan^{-1} \left(\frac{\sqrt{18}}{3} \right)$	Attempts to find the correct angle D by doubling their angle for $\frac{1}{2}D$.	ddM1√			
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]			

Question Number	Scheme		Marks
Aliter 7. (b) (i)	$\mathbf{c} = \overline{OC} = \pm (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k})$ $\overline{AB} = \pm (-\mathbf{i} - \mathbf{j} - 5\mathbf{k})$		
Way 2	$ \overrightarrow{OC} = \sqrt{(3)^2 + (3)^2 + (-3)^2} = \sqrt{(1)^2 + (1)^2 + (-5)^2} = \overrightarrow{AB} $	A complete method of proving that the diagonals are equal.	M1
	$\begin{vmatrix} As \end{vmatrix} \overrightarrow{OC} = \overrightarrow{AB} = \sqrt{27}$	Correct result.	A1
	then the diagonals are equal, and OACB is a rectangle.	diagonals are equal and OACB is a rectangle	A1 cso
Aliter 7. (b) (i)	$\mathbf{a} = \overrightarrow{OA} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k} \qquad \Rightarrow \overrightarrow{OA} = 3$ $\mathbf{b} = \overrightarrow{OB} = \mathbf{i} + \mathbf{j} - 4\mathbf{k} \qquad \Rightarrow \overrightarrow{OB} = \sqrt{18}$ $\overrightarrow{BC} = \pm (2\mathbf{i} + 2\mathbf{j} + \mathbf{k}) \Rightarrow \overrightarrow{BC} = 3$ $\overrightarrow{AC} = \pm (\mathbf{i} + \mathbf{j} - 4\mathbf{k}) \Rightarrow \overrightarrow{AC} = \sqrt{18}$ $\mathbf{c} = \overrightarrow{OC} = \pm (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}) \Rightarrow \overrightarrow{OC} = \sqrt{27}$ $\overrightarrow{AB} = \pm (-\mathbf{i} - \mathbf{j} - 5\mathbf{k}) \Rightarrow \overrightarrow{AB} = \sqrt{27}$ $(OA)^{2} + (AC)^{2} = (OC)^{2}$ or $(BC)^{2} + (OB)^{2} = (OC)^{2}$ or $(OA)^{2} + (OB)^{2} = (AB)^{2}$ or $(BC)^{2} + (AC)^{2} = (AB)^{2}$ or equivalent		
Way 3	$\Rightarrow \ \underline{(3)^2 + (\sqrt{18})^2 = \left(\sqrt{27}\right)^2}$	A complete method of proving that Pythagoras holds using their values. Correct result	M1
	and therefore OA is perpendicular to OB or AC is perpendicular to BC and hence OACB is a rectangle.	perpendicular and OACB is a rectangle	A1 cso [3] 14marks

Question Number			Scheme					Marks
8. (a)								
	X	0	1	2	3	4	5	
	y	e ¹	e^2	$\mathrm{e}^{\sqrt{7}}$	${\sf e}^{\sqrt{10}}$	$\mathrm{e}^{\sqrt{13}}$	e^4	
	or y	2.71828	7.38906	14.09403	23.62434	36.80197	54.59815	
						Either $e^{\sqrt{7}}$, $e^{\sqrt{10}}$ and $e^{\sqrt{13}}$	
						or awrt 14	.1, 23.6 and 36.8	
							r e to the power	
							2.65, 3.16, 3.61	
					(01		ecimals and e's)	D.1
							east two correct	B1
						F	All three correct	B1 [2]
								[4]
(b)							1 .	
	1	(, ()	[] [40	(42)		Outside	brackets $\frac{1}{2} \times 1$	B1;
	I ≈ <u>÷</u> ×1	$; \times e^1 + 2(e^2)$	$+ e^{\sqrt{10}} + e^{\sqrt{10}}$	$+ e^{\sqrt{13}} + e^4$		For structu	re of trapezium	_
	_			<u>_</u>			rule {};	M1√
	<u> </u>							
							A1	
	$ = - \times 221.1352227 = 110.5676113 = 110.6 (481)$					cao		
								[3]
								F- 3

Beware: In part (b) candidates can add up the individual trapezia:

$$(b) I \approx \tfrac{1}{2}.1 \Big(\underline{e^1 + e^2}\Big) + \tfrac{1}{2}.1 \Big(\underline{e^2 + e^{\sqrt{7}}}\Big) + \tfrac{1}{2}.1 \Big(\underline{e^{\sqrt{7}} + e^{\sqrt{10}}}\Big) + \tfrac{1}{2}.1 \Big(\underline{e^{\sqrt{10}} + e^{\sqrt{13}}}\Big) + \tfrac{1}{2}.1 \Big(\underline{e^{\sqrt{13}} + e^4}\Big)$$

Question Number	Scheme		Marks
	$t = (3x+1)^{\frac{1}{2}} \implies \frac{dt}{dx} = \frac{1}{2} \cdot 3 \cdot (3x+1)^{-\frac{1}{2}}$	$A(3x+1)^{-\frac{1}{2}} \text{ or } t \frac{dt}{dx} = A$	M1
(c)	or $t^2 = 3x + 1 \Rightarrow 2t \frac{dt}{dx} = 3$	A(3x+1) ^{-1/2} or $t \frac{dt}{dx} = A$ $\frac{3}{2}(3x+1)^{-1/2}$ or $2t \frac{dt}{dx} = 3$	A1
	so $\frac{dt}{dx} = \frac{3}{2.(3x+1)^{\frac{1}{2}}} = \frac{3}{2t} \implies \frac{dx}{dt} = \frac{2t}{3}$	Candidate obtains either $\frac{dt}{dx}$ or $\frac{dx}{dt}$ in terms of t	
	$\therefore I = \int e^{\sqrt{(3x+1)}} dx = \int e^t \frac{dx}{dt} . dt = \int e^t . \frac{2t}{3} . dt$	and moves on to substitute this into I to convert an integral wrt x to an integral wrt t.	dM1
	$\therefore I = \int \frac{2}{3} t e^t dt$	$\int \frac{2}{3} t e^t$	A1
	change limits: when $x = 0$, $t = 1$ & when $x = 5$, $t = 4$	changes limits $x \to t$ so that $0 \to 1$ and $5 \to 4$	B1
	Hence $I = \int_{1}^{4} \frac{2}{3} te^{t} dt$; where $a = 1$, $b = 4$, $k = \frac{2}{3}$		
(d)	$\begin{cases} u = t & \Rightarrow & \frac{du}{dt} = 1 \\ \frac{dv}{dt} = e^t & \Rightarrow & v = e^t \end{cases}$	Let k be any constant for the first three marks of this part.	[5]
	$k \int t e^{t} dt = k \left(t e^{t} - \int e^{t} .1 dt \right)$	Use of 'integration by parts' formula in the correct direction.	M1
	J (J)	Correct expression with a constant factor k.	A1
	$= k \Big(\underline{t e^t - e^t}\Big) + c$	Correct integration with/without a constant factor k	A1
	$\therefore \int_{1}^{4} \frac{2}{3} t e^{t} dt = \frac{2}{3} \left\{ \left(4e^{4} - e^{4} \right) - \left(e^{1} - e^{1} \right) \right\}$	Substitutes their changed limits into the integrand and subtracts oe.	dM1 oe
	$=\frac{2}{3}(3e^4)=\underline{2e^4}=109.1963$	either 2e ⁴ or awrt 109.2	A1 [5]
			15 marks

- Note: dM1 denotes a method mark which is dependent upon the award of the previous method mark
- ddM1 denotes a method mark which is dependent upon the award of the previous two method marks.