DSCI 551 Final Project

A tool to analyze people's personal information and MRI image and predict the chances of getting Alzheimer's

Group 35

Xinyue Yu (Communication Data Science, M.S.) vuxinyue@usc.edu

Yishan Li (Applied Data Science, M.S.) liyishan@usc.edu

Project Introduction

We aim to identify and distinguish features in the MRI image and the text data of doing the MRI procedure that we collect using deep learning to determine the category of a patient's Alzheimer's disease level.

Raw Text Data Exploration

AG-Grid: An interactive grid which allows user to sort, filter through rows.

Raw Image Data Exploration

Data processing and Data storage

Data Source:

- Text data (Open Access Series of Imaging Studies (OASIS))
- Non-text data (https://www.kaggle.com/legendahmed/alzheimermridataset)

Data Processing and Feature Extraction for Text Data

Libraries we used: pyspark, pandas, sklearn, json, requests


```
sc = SparkContext.getOrCreate()
spark = SparkSession(sc)
#read the file
oslong_df = spark.read.option("header","true").csv("oasis_longitudinal.csv")
#drop the column
oslong_df = oslong_df.drop('Subject ID', 'MRI ID', 'Visit', 'MR Delay', 'Hand')
#rename the column
oslong_df = oslong_df.withColumnRenamed("M/F","gender")
#change gender when male to 0, when female to 1
oslong_df = oslong_df.withColumn('gender', when(col('gender') == 'M', '0').otherwise('1'))
```

```
imp = IterativeImputer(max_iter=10, random_state=57)
imp_data = imp.fit_transform(impt)
impt_data = pd.DataFrame(imp_data, columns = impt.columns)
impt_data['Group'] = data['Group']
```

Data Storage for Text Data - Firebase Realtime Database

The text data are converted to json format, splitted into train and test set, and uploaded to Firebase Realtime Database

Data Storage for Non Text data - Firebase Storage (cloud data storage)

The image data are divided into train and test set and then stored in separate folder based on their class.

Retrieve Data from Firebase

Text data Non-text data

Library: requests Library: pyrebase

```
response = requests.get(test_url)
text_test = response.json()
test_t = pd.DataFrame.from_dict(text_test, orient='columns')
ase.storage()
```

```
storage.child(train_md_path_ls[i]).download(train_mddl_path_ls[i])
storage.child(train_nd_path_ls[i]).download(train_nddl_path_ls[i])
```

Machine Learning and The Results

Text data

Classification

- Random Forest Classification
- Naive Bayes Classification

Results

- Result are pushed to Firebase Realtime

Database on real time

Non-Text data

Classification

- Library: Tensorflow, Sequential model

Results

- Result are pushed to Firebase Realtime

Thanks for watching

Move on to our website