Sistemi - Modulo di Sistemi a Eventi Discreti

Laurea Magistrale in Ingegneria e Scienze Informatiche Tiziano Villa

21 Giugno 2019

Nome e Cognome:

Matricola:

Posta elettronica:

problema	punti massimi	i tuoi punti
problema 1	18	
problema 2	6	
problema 3	6	
totale	30	

1. (a) Si presenti l'algoritmo di minimizzazione di macchine a stati finiti deterministiche.

Traccia di risposta.

Si veda Lez. 13, p. 20, p. 22.

(b) Si presenti un algoritmo per verificare se due macchine a stati finiti deterministiche sono equivalenti, se ne giustifichi la correttezza (enunciando il teorema su cui si basa) e se ne discuta la complessita'.

Traccia di risposta.

Si utilizzano i seguenti teoremi

- Due macchine a stati finiti deterministiche M_1 e M_2 sono equivalenti se e solo se c'e' una bisimulazione tra M_1 e M_2 .
- C'e' una bisimulazione tra due macchine a stati finiti deterministiche M₁ e M₂ se e solo se c'e' un isomorfismo tra min(M₁) e min(M₂).
 [Si noti che min(M) produce la macchina unica con meno stati bisimile a M]

Ne risulta l'algoritmo:

- i. Minimizzare M_1 ottenendo $min(M_1)$;
- ii. Minimizzare M_2 ottenendo $min(M_2)$;
- iii. Verificare se $min(M_1)$ e $min(M_2)$ sono identiche a meno di ridenominazione degli stati (versione semplificate dell'isomorfismo tra grafi perche' ci sono stati iniziali e etichette sui lati che guidano la verifica dell'isomorfismo).

La complessita' della minimizzazione degli stati di una macchina a stati finiti e' quadratica nel numero degli stati (l'algoritmo piu' efficiente e' dell'ordine $O(n \log n)$) e lineare nella cardinalita' dell'insieme degl'ingressi |I|. Questa versione ristretta dell'isomorfismo tra grafi e' lineare nel numero degli stati (si noti che e' necessario che $min(M_1)$ e $min(M_2)$ abbiano lo stesso numero di stati affinche' siano isomorfe).

[La procedura comunemente presentata nei libri di testo di reti logiche per minimizzare macchine completamente specificate usando una tabella a scala ha complessita' $O(n^4|I|)$: la costruzione della tabella iniziale richiede $O(n^2|I|)$ operazioni (confronto di (n-1)n/2 coppie di stati ciascuna per |I| ingressi), ogni iterazione richiede $O(n^2|I|)$ operazioni (esame di (n-1)n/2 caselle che contengono al piu' |I| condizioni) e ci sono al piu' $O(n^2)$ iterazioni ((n-1)n/2) iterazioni se l'unica croce contenuta nella casella iniziale si propaga a tutte le altre caselle un passo per iterazione). Analisi di Luccio-Pagli]

(c) Si considerino le due macchine a stati finiti seguenti:

Macchina M':

- stati: $s'_a, s'_b, s'_c, s'_d, s'_e \cos s'_a$ stato iniziale;
- transizione da s'_a a s'_b : •/0,

transizione da s'_a a s'_c : •/0,

transizione da s'_b a s'_d : •/0,

transizione da s'_c a s'_e : •/1,

transizione da s'_d a s'_d : $\bullet/0$,

transizione da s'_e a s'_e : •/0.

Macchina M'':

- stati: $s_x^{"}, s_y^{"}, s_z^{"}, s_u^{"}$ con $s_x^{"}$ stato iniziale;
- transizione da s_x'' a s_y'' : •/0,

transizione da s_y'' a s_z'' : $\bullet/0$, transizione da s_y'' a s_u'' : $\bullet/1$, transizione da s_z'' a s_z'' : $\bullet/0$,

transizione da s_u'' a s_u'' : $\bullet/0$.

Si risponda in ordine alle seguenti domande (si indichi sempre il numerale romano in ogni risposta):

- i. Si disegnino i diagrammi di transizione delle due macchine.
- ii. Si classifichino le macchine rispetto al determinismo.

Traccia di risposta.

 $M^{'}$ e' nondeterministica, ma non pseudo-nondeterministica.

 $M^{''}$ e' pseudo-nondeterministica.

iii. Si derivino i comportamenti (successioni d'ingressi/successioni d'uscite) prodotti dalle due macchine e li si confrontino.

Traccia di risposta.

Per descrivere i comportamenti si possono usare le espressioni regolari.

Comportamenti(M') = $(\bullet 0)^* + (\bullet 0)(\bullet 1)(\bullet 0)^*$.

Comportamenti(M'') = $(\bullet 0)((\bullet 0)^* + (\bullet 1)(\bullet 0)^*)$.

Dall'algebra delle espressioni regolari si vede che

Comportamenti(M') = Comportamenti(M'').

iv. Si trovi una simulazione di M' da parte di M'', se esiste.

Traccia di risposta.

 $M^{'}$ e' simulata da $M^{''}$ come mostrato dalla relazione

$$R_{M'-M''} = \{(s'_a, s''_x), (s'_b, s''_y), (s'_c, s''_y), (s'_d, s''_z), (s'_e, s''_u)\}.$$

v. Si trovi una simulazione di M'' da parte di M', se esiste. Traccia di risposta.

M'' non e' simulata da M' perche' s_x'' dovrebbe essere simulato da s_a' e quindi a sua volta ci dovrebbe essere uno stato di M' che simula s_y' , ma tale stato non esiste (ne' s_b' , ne' s_c' simulano s_y' perche' nessuno dei due ha sia una transizione con uscita 1 sia una transizione con uscita 0).

vi. Si trovi una bisimulazione tra le due macchine, se esiste.

Traccia di risposta.

Poiche' $M^{''}$ non e' simulata da $M^{'}$ non ci puo' essere una bisimulazione tra le due macchine.

vii. Si commentino i risultati precedenti.

Traccia di risposta.

Le due macchine $M^{'}$ e $M^{''}$ sono un esempio di macchine a stati finiti nondeterministiche equivalenti e ciascuna minimizzata (nella classe delle macchine bisimili), ma non isomorfe; in altri termini, esse mostrano che non esiste un'unica macchina a stati finita nondeterministica che realizza il sistema originale con il minimo numero di stati.

Si ricordi che se $M^{'}$ e' simulata da $M^{''}$ allora $M^{'}$ raffina $M^{''}$. In generale non vale il viceversa, cioe' per $M^{'}$ e $M^{''}$ nondeterministiche il fatto che $M^{''}$ raffini $M^{'}$ non implica che ci sia una simulazione di $M^{''}$ da parte di $M^{'}$ (ad es. nel nostro caso non c'e'). Ma se $M^{'}$ nondeterministica raffina $M^{''}$ pseudo-nondeterministica allora esiste una simulazione di $M^{'}$ da parte di $M^{''}$ (e infatti nel nostro caso c'e').

2. Una rete di Petri marcata e' specificata da una quintupla: $\{P, T, A, w, x\}$, dove P sono i posti, T le transizioni, A gli archi, w la funzione di peso sugli archi, e x il vettore di marcamento (numero di gettoni per posto). $I(t_i)$ indica l'insieme dei posti in ingresso alla transizione t_i , $O(t_j)$ indica l'insieme dei posti in uscita dalla transizione t_j .

Si consideri la rete di Petri P_{svinc} definita da:

- $P = \{p_1, p_2\}$
- $T = \{t_1, t_2\}$
- $A = \{(p_1, t_1), (p_2, t_2), (t_1, p_2), (t_2, p_1)\}$
- $\forall i, j \ w(p_i, t_i) = 1$
- $\forall i, j \ w(t_i, p_j) = 1$

Sia $x_0 = [2, 0]$ la marcatura iniziale.

(a) Si disegni il grafo della rete di Petri P_{svinc} .

(b) Si modifichi la rete di Petri P_{svinc} per ottenerne una "rete controllata" P_{vinc} che soddisfa il vincolo $x(p_2) \leq x(p_1)$, per tutte le marcature raggiungibili da quella iniziale (cioe' deve valere sempre che il numero di gettoni in p_2 e' \leq del numero di gettoni in p_1).

Suggerimento.

Si aggiunga un solo posto.

Traccia di soluzione.

Si consideri la rete di Petri P_{vinc} definita da:

- $P = \{p_1, p_2, p_3\}$
- $T = \{t_1, t_2\}$
- $A = \{(p_1, t_1), (p_2, t_2), (p_3, t_1), (t_1, p_2), (t_2, p_1), (t_2, p_3)\}$
- $\forall i, j \ w(p_i, t_j) = 1$
- $\forall i, j \ w(t_i, p_j) = 1$

Sia $x_0 = [2, 0, 1]$ la marcatura iniziale.

(c) Si costruisca il grafo di raggiungibilità della rete di Petri iniziale e di quella modificata, verificando che il primo non soddisfa il vincolo, mentre il secondo lo soddisfa.

Traccia di soluzione.

La rete non controllata evolve dalla marcatura iniziale [2.0] a [1,1] e da qui a [0,2] e [2,0], e da [0.2] a [1.1] e poi ripetendo i nodi gia' visti. La marcatura [0,2] non soddisfa il vincolo.

La rete controllata soddisfa il vincolo evolvendo da [2,0,1] a [1,1,0] e da qui a [2,0.1] e poi ripetendo.

La soluzione in questo caso semplice si ottiene agevolmente modificando ad hoc la rete data. Esiste un metodo sistematico per ottenerla in generale, non presentato in classe.

Figure 1: La palla che rimbalza

- 3. Si consideri l'automa ibrido mostrato nella Fig. 1 che modella un oggetto elastico di posizione $x_1(t)$ e velocita' $x_2(t)$ che cade al suolo per la legge di gravitazione e rimbalza con coefficiente di elasticita' c. Si assuma che sia c=0,5.
 - (a) Si descriva formalmente tale automa seconda la notazione usata in classe. Traccia di soluzione.
 - locazioni: $Q = \{l_1\}$, dove l_1 e' la locazione iniziale con condizioni iniziali $x_1(t) \ge 0$;
 - dinamica della locazione l_1 : $\dot{x_1}(t) = x_2(t), \dot{x_2}(t) = -g$, invariante della locazione l_1 : $x_1(t) \ge 0$
 - transizione da l_1 a l_1 : $A/assente, x_2'(t) := -0, 5x_2$, dove $A = \{(x_1(t), x_2(t), u(t)) \mid x_1(t) \leq 0 \land x_2(t) \leq 0 \land u(t) = assente\}$,

(la sintassi delle annotazioni di una transizione e' guardia/uscita, azione);

- ingresso $u(t) \in \{assente\};$
- uscita $y(t) \in \{assente\}.$

(b) Si descriva il funzionamento del sistema in base alla semantica dell'automa ibrido che lo rappresenta.

Si descrivano qualitativamente le traiettorie descritte dalle variabili continue x_1 e x_2 . Per fissare le idee, si assumano i valori iniziali $x_1=5$ e $x_2=0$.

Traccia di soluzione.

Per una descrizione del comportamente e disegni di traiettorie della posizione e della velocita' si consulti il materiale di testo (Lee-Varaiya o Lee-Seshia).