

A New MRAM-based Process In-Memory Accelerator for Efficient Neural Network Training with Floating Point Precision

Hongjie Wang*, Yang Zhao*, Chaojian Li, Yue Wang, and Yingyan Lin

Department of Electrical and Computer Engineering, Rice University

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Outline

- Background and Motivation
- The Proposed Accelerator: Overview
- The Proposed Accelerator: Computing Methodology
- Evaluation of the Proposed Accelerator
- Conclusion

Growing Demand for Efficient DNN Training

Powerful DNNs require training with big data + big computers

Growing Demand for Efficient DNN Training

Powerful DNNs require training with big data + big computers

- DNN training challenges:
 - Prohibitive computational and time cost (e.g., 10^{18} FLOPs for training ResNet50 \sim 14 days using a NVIDIA M40 GPU)
 - Increasing environmental concern
 (e.g., carbon emission of training a DNN ≈ one car's lifetime emission)

Process In-Memory for DNN Acceleration

Efficiency

Access

Powerful DNNs require training with big data + big computers

 High density non-volatile memory for huge number of parameters

Memory Density

Process In-Memory for DNN Acceleration

Powerful DNNs require training with big data + big computers

- High density non-volatile memory for huge number of parameters
- Decrease costly data movements in Von Neumann Architecture

^{*} measured from a commercial 65nm process [Chen, ISCA'16]

Existing PIM Accelerators for DNN Training

- Existing PIM Accelerators for Deep Neural Network
- Support only inference with low precision [Shafiee, ISCA'16] [Chi, ISCA'16] [Patil, ISCAS'19]
- Costly writing for widely used ReRAM based accelerator [Imani, ISCA'19] [Song, HPCA'17]
- High computational complexity caused by limited available Boolean functions
 [Imani, ISCA'19]

Our Proposed PIM Accelerator

- Supports both inference and training with floating point precision
- **Low writing current** thanks to SOT-MRAM based implementation
- More efficient computing caused by plentiful available Boolean functions

Outline

- Background and Motivation
- The Proposed Accelerator: Overview
- The Proposed Accelerator: Computing Methodology
- Evaluation of the Proposed Accelerator
- Conclusion

Floating Point Computation: Intra-Array Level Data Transfer

1-Bit Full Addition: Cell Level Data Transfer

Read and Write: Cell Design

4 steps to perform 1-bit full addition

Addition and multiplication design

Training and Inference: the Proposed Accelerator

Floating Point Computation: Intra-Array Level Data Transfer

1-Bit Full Addition: Cell Level Data Transfer

Read and Write: Cell Design

4 steps to perform 1-bit full addition

Addition and multiplication design

Outline

- Background and Motivation
- The Proposed Accelerator: Overview
- The Proposed Accelerator: Computing Methodology
- Evaluation of the Proposed Accelerator
- Conclusion

Complexity of the Proposed Full Adder Over SOTA One

Compare Complexity in Terms of Required Clock Cycles and Memory Cells

PIM Implementation	Read and Write Clock Cycles	Extra Memory Cells
The Proposed Method	4	3
FloatPIM [Imani, ISCA'19]	13	10

Reduced by:

69.2%↓

70.0%↓

Available Boolean Function vs. Computational Complexity

FloatPIM [Imani, ISCA'19]

$$S(R) = \overline{\overline{X} + \overline{Y} + \overline{Z}} + \overline{\overline{X} + \overline{Y} + \overline{Z}} + \overline{\overline{X} + \overline{Y} + \overline{X} + \overline{X} + \overline{Y} + \overline{Z}}$$

$$S(R) = X \oplus Y \oplus Z$$
$$Z' = XY + Z(X \oplus Y)$$

$$Z' = \overline{X + Y} + \overline{X + Z} + \overline{Y + Z}$$

Floating Point Addition: $A_i + B_i$

$$A_0 A_1 A_2 A_3 \dots B_0 B_1 B_2 B_3 \dots$$

$$A_0 A_1 A_2 A_3 \dots B_0 B_1 B_2 B_3 \dots$$

Column wise parallelism

 $A_0 A_1 A_2 A_3 \dots B_0 B_1 B_2 B_3 \dots$

Column wise parallelism

(for same exp' or exp'')

XOR between sign bits exponents addition mantissas multiplication

Target Buffer in a Ping-Pong Manner

Target Buffer in a Ping-Pong Manner

Target Buffer in a Ping-Pong Manner mantissa A mantissa B #0 $B_i=0$ #0 copy & shift buffer for $B_i=1$ #0 multiplication target buffer add & shift

Target Buffer in a Ping-Pong Manner mantissa A

Target Buffer in a Ping-Pong Manner mantissa A mantissa B #0 $B_{i+2}=0$ copy & shift buffer for $B_{i+2}=1$ #0 multiplication target buffer add & shift

The Proposed Over SOTA Floating Point Computation

Compare with state-of-the-art work FloatPIM [Imani, ISCA'19]

- Addition: # of read and write clock cycles reduced by 80.5% \downarrow , from $O(N^2)$ to O(N)
- Multiplication: # of read and write clock cycles reduced by $81.1\% \downarrow$, # of memory cells requirement reduced by $77.4\% \downarrow$

for 32-bit floating point numbers

Outline

- Background and Motivation
- The Proposed Accelerator: Overview
- The Proposed Accelerator: Computing Methodology
- Evaluation of the Proposed Accelerator
- Conclusion

Evaluation Setting of the Proposed Accelerator

Evaluation setup

- Two levels evaluation
 - Floating point computation level
 - DNN training level
- Comparison baseline: FloatPIM [Imani, ISCA'19]
- DNN model: LeNet-5 @ MNIST

SOT-MRAM cell document [Zhang, T-ED'17]

current sense amplifier [Bashir, VDAT'15]

Evaluation Results on MAC

Multiplication and Accumulation Calculation (MAC) performance comparison

This work

For 32-bit floating point numbers:

- Cell switch dominates overhead
- Latency efficiency: ↑1.8x
- Energy efficiency: **↑3.3x**

Evaluation Results on MAC

Multiplication and Accumulation Calculation (MAC) performance comparison

Benefits from:

- Fewer clock cycles required due to improved full addition and floating point computation design
- Low write current due to SOT-MRAM based memory cell design

For 32-bit floating point numbers:

- Cell switch dominates overhead
- Latency efficiency: 1.8x
- Energy efficiency: **↑3.3x**

Evaluation Results on Neural Network Training

Benefits from:

- Fewer extra cells required to store intermediate results due to improved full addition and floating point computation design
- High flexibility memory
 assignment to maximize cells
 reuse due to SOT-MRAM based
 1T-1R cell design
- The improvement of MAC

LeNet-5 @ MNIST

- Area efficiency: **^2.5**x
- Latency efficiency: ↑1.8x
 - Energy efficiency: **↑3.3**x

Outline

- Background and Motivation
- The Proposed Accelerator: Overview
- The Proposed Accelerator: Computing Methodology
- Evaluation of the Proposed Accelerator
- Conclusion

Conclusion

- The Proposed Accelerator: A new SOT-MRAM based Process In-Memory accelerator for efficient training with floating point precision
 - New memory cell design which features an improved balance between computation flexibility and memory density
 - New full addition design that improves computation efficiency
 - New floating point computation design for efficient training
- Achieve 3.3×, 1.8×, and 2.5× improvement in terms of energy, latency, and area, respectively, compared with a state-of-the-art PIM based DNN training accelerator

MRAM based PIM Accelerator for NN Training

Hongjie Wang*, Yang Zhao*, Chaojian Li, Yue Wang, and Yingyan Lin

Questions?

*the first two authors contribute equally