

Trees and Graphs

Trees, Binary Search Trees, Balanced Trees, Graphs

Svetlin Nakov

Telerik Corporation www.telerik.com

Table of Contents

- 1. Tree-like Data Structures
- 2. Trees and Related Terminology
- 3. Implementing Trees
- 4. Traversing Trees
- 5. Balanced Trees
- 6. Graphs

Tree-like Data Structures

Trees, Balanced Trees, Graphs, Networks

Tree-like Data Structures

- Tree-like data structures are
 - Branched recursive data structures
 - Consisting of nodes
 - Each node can be connected to other nodes
- Examples of tree-like structures
 - Trees: binary / other degree, balanced, etc.
 - Graphs: directed / undirected, weighted, etc.
 - Networks

Tree-like Data Structures

Trees and Related Terminology

Node, Edge, Root, Children, Parent, Leaf, Binary Search Tree, Balanced Tree

Trees

- Tree data structure terminology
 - Node, edge, root, child, children, siblings, parent, ancestor, descendant, predecessor, successor, internal node, leaf, depth, height, subtree

Binary Trees

- Binary trees: most widespread form
 - Each node has at most 2 children

Binary Search Trees

- Binary search trees are ordered
 - For each node x in the tree
 - All the elements of the left subtree of x are $\leq x$
 - All the elements of the right subtree of x are > x
- Binary search trees can be balanced
 - Balanced trees have height of ~ log₂(x)
 - Balanced trees have for each node nearly equal number of nodes in its subtrees

Binary Search Trees (2)

Example of balanced binary search tree

 If the tree is balanced, add / search / delete operations take approximately log(n) steps

Implementing Trees

Recursive Tree Data Structure

Recursive Tree Definition

- The recursive definition for tree data structure:
 - A single node is tree
 - Tree nodes can have zero or multiple children that are also trees
- Tree node definition in C#

type

TreeNode<int>Structure

Implementing TreeNode<T>

```
public TreeNode(T value)
  this.value = value;
  this.children = new List<TreeNode<T>>();
public T Value
  get { return this.value; }
  set { this.value = value; }
public void AddChild(TreeNode<T> child)
  child.hasParent = true;
  this.children.Add(child);
public TreeNode<T> GetChild(int index)
  return this.children[index];
```


Implementing Tree<T>

The class Tree<T> keeps tree's root node

```
public class Tree<T>
  private TreeNode<T> root;
 public Tree(T value, params Tree<T>[] children): this(value)
    foreach (Tree<T> child in children)
                                          Flexible constructor
     this.root.AddChild(child.root);
                                            for building trees
  public TreeNode<T> Root
    get { return this.root; }
```

Building a Tree

Constructing tree by nested constructors:

```
Tree<int> tree =
   new Tree<int>(7,
      new Tree<int>(19,
         new Tree<int>(1),
         new Tree<int>(12),
                                      19
                                                      14
         new Tree<int>(31)),
      new Tree<int>(21),
      new Tree<int>(14,
         new Tree<int>(23),
                                            31
         new Tree<int>(6))
```


Tree Traversals

DFS and BFS Traversals

Tree Traversal Algorithms

- Traversing a tree means to visit each of its nodes exactly one in particular order
 - Many traversal algorithms are known
 - Depth-First Search (DFS)
 - Visit node's successors first
 - Usually implemented by recursion
 - Breadth-First Search (BFS)
 - Nearest nodes visited first
 - Implemented by a queue

Depth-First Search (DFS)

 Depth-First Search first visits all descendants of given node recursively, finally visits the node itself

DFS algorithm pseudo code

```
DFS(node)
{
   for each child c of node
    DFS(c);
   print the current node;
}
```


DFS in Action (Step 1)

- Stack:
- Output: (حسولی)

DFS in Action (Step 2)

- Stack: 7, ___
- Output: (cmpty)

DFS in Action (Step 3)

- Stack: 7, 19, 1
- Output: (empty)

DFS in Action (Step 4)

- Stack: 7, 19
- Output: __

DFS in Action (Step 5)

- Stack: 7, 19
- Output: 1

DFS in Action (Step 6)

- Stack: 7, 19 '
- Output: 1, 12

DFS in Action (Step 7)

- Stack: 7, 19,
- Output: 1, 12

DFS in Action (Step 8)

- Stack: 7, 19
- Output: 1, 12, =

DFS in Action (Step 9)

- Stack: 7
- Output: 1, 12, 31, 19

DFS in Action (Step 10)

- Stack: 7, 21
- Output: 1, 12, 31, 19

DFS in Action (Step 11)

- Stack: 7
- Output: 1, 12, 31, 19, 21

DFS in Action (Step 12)

- Stack: 7, 14
- Output: 1, 12, 31, 19, 21

DFS in Action (Step 13)

- Stack: 7, 14, 23
- Output: 1, 12, 31, 19, 21

DFS in Action (Step 14)

- Stack: 7, 14
- Output: 1, 12, 31, 19, 21, 23

DFS in Action (Step 15)

- Stack: 7, 14, 6
- Output: 1, 12, 31, 19, 21, 23

DFS in Action (Step 16)

- Stack: 7, 14
- Output: 1, 12, 31, 19, 21, 23, 6

DFS in Action (Step 17)

- Stack: 7
- Output: 1, 12, 31, 19, 21, 23, 6, 14

DFS in Action (Step 18)

- Stack: (empty)
- Output: 1, 12, 31, 19, 21, 23, 6, 14, 7

Breadth-First Search (BFS)

- Breadth-First Search first visits the neighbor nodes, later their neighbors, etc.
- BFS algorithm pseudo code

```
BFS(node)
  queue ← node
  while queue not empty
    v ← queue
    print v
    for each child c of v
      queue \leftarrow c
```


BFS in Action (Step 1)

- Queue: 7
- Output: 7

BFS in Action (Step 2)

- Queue: 7, 19
- Output: 7

BFS in Action (Step 3)

- Queue: 7, 19, 21
- Output: 7

BFS in Action (Step 4)

- Queue: 7, 19, 21, 14
- Output: 7

BFS in Action (Step 5)

- Queue: > 19, 21, 14
- Output: 7, 19

BFS in Action (Step 6)

- Queue: 19, 21, 14, 1
- Output: 7, 19

BFS in Action (Step 7)

- Queue: 19, 21, 14, 1, 12
- Output: 7, 19

BFS in Action (Step 8)

- Queue: X
 21, 14, 1, 12, 31
- Output: 7, 19

BFS in Action (Step 9)

- Queue: 1/2, 21, 14, 1, 12, 31
- Output: 7, 19, 21

BFS in Action (Step 10)

- Queue: 1/2, 2/2, 14, 1, 12, 31
- Output: 7, 19, 21, 14

BFS in Action (Step 11)

- Queue: 🔀 🎉, 🎉, 14, 1, 12, 31, 23
- Output: 7, 19, 21, 14

BFS in Action (Step 12)

- Queue: 🔀 🎎, 🎎, 14, 1, 12, 31, 23, 6
- Output: 7, 19, 21, 14

BFS in Action (Step 13)

- Queue: 🔀 🎎, 🎎, 1, 12, 31, 23, 6
- Output: 7, 19, 21, 14, 1

BFS in Action (Step 14)

- Queue: 🔀 🎎, 🎎, 🎉 12, 31, 23, 6
- Output: 7, 19, 21, 14, 1, 12

BFS in Action (Step 15)

- Queue: 1/2 24, 24, 1/4 1/4, 31, 23, 6
- Output: 7, 19, 21, 14, 1, 12, 31

BFS in Action (Step 16)

- * Queue: ※ 2%, 2%, 2%, 3%, 3%, 23, 6
- Output: 7, 19, 21, 14, 1, 12, 31, 23

BFS in Action (Step 16)

- Queue: ※ 24, 24, 24, 34, 34, 24, 6
- Output: 7, 19, 21, 14, 1, 12, 31, 23, 6

BFS in Action (Step 17)

- * Queue: ※ 2%, 2%, 2%, 3%, 3%, 2%, 5<
- Output: 7, 19, 21, 14, 1, 12, 31, 23, 6

The queue is empty → stop

Binary Trees DFS Traversals

 DFS traversal of binary trees can be done in preorder, in-order and post-order

- Pre-order: left, root, right -> 6, 9, 12, 17, 19, 25
- In-order: root, left, right -> 17, 9, 6, 12, 19, 25
- Post-order: left, right, root → 6, 12, 9, 25, 19, 17

Iterative DFS and BFS

- What will happen if in the Breadth-First Search (BFS) algorithm a stack is used instead of queue?
 - An iterative Depth-First Search (DFS) in-order

```
BFS(node)
  queue 🗲 node
  while queue not empty
    v \leftarrow queue
    print v
    for each child c of v
       queue \leftarrow c
```

```
DFS(node)
  stack ← node
  while stack not empty
    ν ← stack
    print v
    for each child c of v
      stack \leftarrow c
```

∜telerik

Trees and Traversals

Live Demo

%telerik

Balanced Search Trees

AVL Trees, B-Trees, Red-Black Trees, AA-Trees

Balanced Binary Search Trees

- Ordered Binary Trees (Binary Search Trees)
 - For each node x the left subtree has values ≤ x and the right subtree has values > x
- Balanced Trees
 - For each node its subtrees contain nearly equal number of nodes → nearly the same height
- Balanced Binary Search Trees
 - Ordered binary search trees that have height of log₂(n) where n is the number of their nodes
 - Searching costs about log₂(n) comparisons

%telerik

Balanced Binary Search Tree – Example

%telerik

Balanced Binary Search Trees

- Balanced binary search trees are hard to implement
 - Rebalancing the tree after insert / delete is complex
- Well known implementations of balanced binary search trees
 - AVL trees ideally balanced, very complex
 - Red-black trees roughly balanced, more simple
 - AA-Trees relatively simple to implement
- Find / insert / delete operations need log,(n) steps

- B-trees are generalization of the concept of ordered binary search trees
 - B-tree of order d has between d and 2*d keys in a node and between d+1 and 2*d+1 child nodes
 - The keys in each node are ordered increasingly
 - All keys in a child node have values between their left and right parent keys
- If the b-tree is balanced, its search / insert / add operations take about log(n) steps
- B-trees can be efficiently stored on the disk

B-Tree – Example

B-Tree of order 2, also known as 2-3-4-tree:

Balanced Trees in .NET

- NET Framework has several built-in implementations of balanced search trees:
 - SortedDictionary<K,V>
 - Red-black tree based map of key-value pairs
 - OrderedSet<T>
 - Red-black tree based set of elements
- External libraries like "Wintellect Power Collections for .NET" are more flexible
 - http://powercollections.codeplex.com

Graphs

Definitions, Representation, Traversal Algorithms

%telerik

Graph Data Structure

- Set of nodes with many-to-many relationship between them is called graph
 - Each node has multiple predecessors

%telerik

Graph Definitions

- Node (vertex)
 - Element of graph
 - Can have name or value
 - Keeps a list of adjacent nodes
- Edge
 - Connection between two nodes
 - Can be directed / undirected
 - Can be weighted / unweighted
 - Can have name / value

Graph Definitions (2)

- Directed graph
 - Edges have direction

- Undirected graph
 - Undirected edges

Graph Definitions (3)

- Weighted graph
 - Weight (cost) is associated with each edge

Graph Definitions (4)

- Path (in undirected graph)
 - Sequence of nodes $n_1, n_2, ... n_k$
 - Edge exists between each pair of nodes n_i, n_{i+1}
 - Examples:
 - A, B, C is a path
 - H, K, C is not a path

Graph Definitions (5)

- Path (in directed graph)
 - Sequence of nodes n₁, n₂, ... n_k
 - Directed edge exists between each pair of nodes n_i, n_{i+1}
 - Examples:
 - A, B, C is a path
 - A, G, K is not a path

Graph Definitions (6)

- Cycle
 - Path that ends back at the starting node
 - Example:
 - A, B, C, G, A
- Simple path
 - No cycles in path
- Acyclic graph
 - Graph with no cycles
 - Acyclic undirected graphs are trees

Graph Definitions (8)

- Two nodes are reachable if
 - Path exists between them
- Connected graph

Unconnected graph with two connected components

Every node is reachable from any other node

Connected graph

Graphs and Their Applications

- Graphs have many real-world applications
 - Modeling a computer network like Internet
 - Routes are simple paths in the network
 - Modeling a city map
 - Streets are edges, crossings are vertices
 - Social networks
 - People are nodes and their connections are edges
 - State machines
 - States are nodes, transitions are edges

Representing Graphs

- Adjacency list
 - Each node holds a list of its neighbors
- $\begin{array}{cccc}
 1 & \to & \{2, \\
 4 \} \\
 2 & \to & \{3\} \\
 3 & \to & \{1\} \\
 4 & \to & \{2\}
 \end{array}$

- Adjacency matrix
 - Each cell keeps
 whether and how two
 nodes are connected

Set of edges

{1,2} {1,4} {2,3} {3,1} {4,2}

Representing Graphs in C#

```
public class Graph
{
  int[][] childNodes;
  public Graph(int[][] nodes)
  {
    this.childNodes = nodes;
  }
}
```



```
Graph g = new Graph(new int[][] {
   new int[] {3, 6}, // successors of vertice 0
   new int[] {2, 3, 4, 5, 6}, // successors of vertice 1
   new int[] {1, 4, 5}, // successors of vertice 2
   new int[] {0, 1, 5}, // successors of vertice 3
   new int[] {1, 2, 6}, // successors of vertice 4
   new int[] {1, 2, 3}, // successors of vertice 5
   new int[] {0, 1, 4} // successors of vertice 6
});
```

Graph Traversal Algorithms

- Depth-First Search (DFS) and Breadth-First Search (BFS) can traverse graphs
 - Each vertex should be is visited at most once

```
BFS(node)
  queue ← node
  visited[node] = true
  while queue not empty
    v \leftarrow queue
    print v
    for each child c of v
      if not visited[c]
         queue \leftarrow c
         visited[c] = true
```

```
DFS(node)
  stack ← node
  visited[node] = true
  while stack not empty
    v ← stack
    print v
    for each child c of v
      if not visited[c]
        stack \leftarrow c
        visited[c] = true
```

*telerik Recursive DFS Graph Traversal

```
void TraverseDFSRecursive(node)
{
  if (not visited[node])
    visited[node] = true
    print node
    foreach child node c of node
       TraverseDFSRecursive(c);
vois Main()
  TraverseDFS(firstNode);
```


Graphs and Traversals

Live Demo

Summary

- Trees are recursive data structure node with set of children which are also nodes
- Binary Search Trees are ordered binary trees
- Balanced trees have weight of log(n)
- Graphs are sets of nodes with many-to-many relationship between them
 - Can be directed/undirected, weighted / unweighted, connected / not connected, etc.
- Tree / graph traversals can be done by Depth-First Search (DFS) and Breadth-First Search (BFS)

Trees and Graphs

Exercises

- Write a program to traverse the directory C:\WINDOWS and all its subdirectories recursively and to display all files matching the mask *.exe. Use the class System.IO.Directory.
- Define classes File { string name, int size } and Folder { string name, File[] files, Folder[] childFolders } and using them build a tree keeping all files and folders on the hard drive starting from C:\WINDOWS. Implement a method that calculates the sum of the file sizes in given subtree of the tree and test it accordingly. Use recursive DFS traversal.

Exercises (2)

- Implement the recursive Depth-First-Search (DFS) traversal algorithm. Test it with the sample graph from the demonstrations.
- Implement the queue-based Breath-First-Search (BFS) traversal algorithm. Test it with the sample graph from the demonstrations.
- Write a program for finding all cycles in given undirected graph using recursive DFS.
- 4. Write a program for finding all connected components of given undirected graph. Use a sequence of DFS traversals.

- Write a program for finding the shortest path between two vertices in a weighted directed graph. Hint: Use the Dijkstra's algorithm.
- We are given a set of N tasks that should be executed in a sequence. Some of the tasks depend on other tasks. We are given a list of tasks { t_i, t_i} where ti depends on the result of ti and should be executed after it. Write a program that arranges the tasks in a sequence so that each task depending on another task is executed after it. If such arrangement is impossible indicate this fact.

Example: $\{1, 2\}, \{2, 5\}, \{2, 4\}, \{3, 1\} \rightarrow 3, 1, 2, 5, 4$