TRE FACŒ DELLA COMPATTEZZA ~ Nuove interpretorsioni
di Weierstrass

Def. (già vista) Un sottoinsième A = R si dice COMPATTO se é

Dimitato + chinso.

Def. (compatteria per successioni) Ou sottoinsieme A CIR si dice compatto PER SUCCESSIONI se ogni successione a valori in A ammette una sisucci convergente ad un elemento di A. Detto più formalmente: per ogni succ x con x e A per ogni n e N esistono naturali nx strett. Cresc ed esiste x e A t.c.

Def (Ricoprimento) Dorto un sottoinsieme A & R si dice RICOPRIMENTO di A une qualunque famiglia di sottoinsiemi di R che

rudichiamo con {li}ieI tale

×m, -> ×∞

A S U Mi (OO A OO)

(gli lli possous sorrapporsi tra di loro)

Def. (Compatterso per nicoprimenti) Un sotto insieme à EIR si dice compatto PER RICOPRIMENTI se equi nicoprimento aperto di A ammette un sottoricoprimento finito, cioè per equi nicoprimento finito, cioè per equi nicoprimento finito, de la conficiente del conficiente della conficiente della

A = U lli (ne pasta un numero Pinoto)

Meta di	m di weie	votrass] (da	uolo per bewui	i terement i
Preudic	mo f : A	→ R cou	A compatto.	
2 Dai	to succ. 2	appiams ch	e f(A) è opt	
wax	/ win	'		sith ammettous
		0 _	- 0 -	iu.
Dia teo	(i) (x)	(11)		
(i) =>			uso + Diruitato cc. cu A acucu	ette 5 succ. Cour.
ogui &	ıcc, ×m €	A ammette	$\times_{n_k} \longrightarrow \times_{\infty}$	che A è Divuitato E R. Visto che A
		Aa ×∞ ∈ A		
(6) =>		: A è cph : A è Di	witato + deiu	30
	che à è	<u>Dimitato</u> S	uppouiamo pe	rassurab che uou
		Jaed t.	a ≤ M c. a > M	regarione
Me Sou	gioco cou	M = M E	N e trous	
	ou ∈ À	t-c.	an > ~	
			cour. ank -	$\Rightarrow a_{\infty} \in A$ avrei $ a_{nk} > n_k$ $\Rightarrow +\infty$

