mlcourse.ai - Open Machine Learning Course

Author: <u>Yury Kashnitsky</u>. This material is subject to the terms and conditions of the <u>Creative Commons CC BY-NC-SA 4.0</u> license. Free use is permitted for any non-commercial purpose.

Topic 1. Exploratory data analysis with Pandas

Practice. Analyzing "Titanic" passengers. Solution

Fill in the missing code ("Your code here") and choose answers in a web-form.

```
In [1]:
```

```
import numpy as np
import pandas as pd
pd.set_option("display.precision", 2)
from matplotlib import pyplot as plt
# Graphics in SVG format are more sharp and legible
%config InlineBackend.figure_format = 'svg'
```

Read data into a Pandas DataFrame

```
In [2]:
```

First 5 rows

```
In [3]:
```

```
data.head(5)
```

Out[3]:

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
Passengerld											
1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.25	NaN	s
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.28	C85	С
3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.92	NaN	s
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.10	C123	s
5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.05	NaN	s

```
In [4]:
```

```
data.describe()
```

Out[4]:

	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.00	891.00	714.00	891.00	891.00	891.00
mean	0.38	2.31	29.70	0.52	0.38	32.20
std	0.49	0.84	14.53	1.10	0.81	49.69

min	Surviy.ed	Pcle39	892	Sib Sig	Par.ob	6969
25%	0.00	2.00	20.12	0.00	0.00	7.91
50%	0.00	3.00	28.00	0.00	0.00	14.45
75%	1.00	3.00	38.00	1.00	0.00	31.00
max	1.00	3.00	80.00	8.00	6.00	512.33

Let's select those passengers who embarked in Cherbourg (Embarked=C) and paid > 200 pounds for their ticker (fare > 200).

Make sure you understand how actually this construction works.

```
In [5]:
```

```
data[(data['Embarked'] == 'C') & (data.Fare > 200)].head()
```

Out[5]:

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
Passengerld											
119	0	1	Baxter, Mr. Quigg Edmond	male	24.0	0	1	PC 17558	247.52	B58 B60	С
259	1	1	Ward, Miss. Anna	female	35.0	0	0	PC 17755	512.33	NaN	С
300	1	1	Baxter, Mrs. James (Helene DeLaudeniere Chaput)	female	50.0	0	1	PC 17558	247.52	B58 B60	С
312	1	1	Ryerson, Miss. Emily Borie	female	18.0	2	2	PC 17608	262.38	B57 B59 B63 B66	С
378	0	1	Widener, Mr. Harry Elkins	male	27.0	0	2	113503	211.50	C82	С

We can sort these people by Fare in descending order.

```
In [6]:
```

Out[6]:

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
Passengerld											
259	1	1	Ward, Miss. Anna	female	35.0	0	0	PC 17755	512.33	NaN	С
680	1	1	Cardeza, Mr. Thomas Drake Martinez	male	36.0	0	1	PC 17755	512.33	B51 B53 B55	С
738	1	1	Lesurer, Mr. Gustave J	male	35.0	0	0	PC 17755	512.33	B101	С
312	1	1	Ryerson, Miss. Emily Borie	female	18.0	2	2	PC 17608	262.38	B57 B59 B63 B66	С
743	1	1	Ryerson, Miss. Susan Parker "Suzette"	female	21.0	2	2	PC 17608	262.38	B57 B59 B63 B66	С

Let's create a new feature.

```
In [7]:
```

```
def age_category(age):
```

```
111
    < 30 -> 1
    >= 30, <55 -> 2
    >= 55 -> 3
    , , ,
    if age < 30:
       return 1
    elif age < 55:
       return 2
    elif age >= 55:
       return 3
In [8]:
age_categories = [age_category(age) for age in data.Age]
data['Age category'] = age categories
Another way is to do it with apply.
In [9]:
data['Age_category'] = data['Age'].apply(age_category)
1. How many men/women were there onboard?

    412 men and 479 women

 • 314 men и 577 women
 • 479 men и 412 women
 • 577 men и 314 women [+]
In [10]:
(data['Sex'] == 'male').sum(), (data['Sex'] == 'female').sum()
Out[10]:
(577, 314)
Easier:
In [11]:
data['Sex'].value counts()
Out[11]:
         577
male
female
         314
Name: Sex, dtype: int64
2. Print the distribution of the Pclass feature. Then the same, but for men and women separately. How many men
from second class were there onboard?
 • 104
 • 108 [+]
 112
 125
```

In [12]:

Out[12]:

Pclass

Sex female male All

pd.crosstab(data['Pclass'], data['Sex'], margins=True)

```
        Sex
        female
        male
        2Afi

        Pclass
        76
        108
        184

        3
        144
        347
        491

        All
        314
        577
        891
```

We can plot a picture as well, though it's not necessary here.

```
In [13]:
```

3. What are median and standard deviation of Fare ?. Round to two decimals.

- median is 14.45, standard deviation is 49.69 [+]
- median is 15.1, standard deviation is 12.15
- median is 13.15, standard deviation is 35.3
- median is 17.43, standard deviation is 39.1

In [14]:

```
print("Median fare: ", round(data['Fare'].median(), 2))
print("Fare std: ", round(data['Fare'].std(), 2))

Median fare: 14.45
Fare std: 49.69
```

4. Is that true that the mean age of survived people is higher than that of passengers who eventually died?

- Yes
- No [+]

In [15]:

In [16]:

```
#!pip install seaborn
import seaborn as sns
sns.set()
```

```
In [17]:
```

```
sns.boxplot(data['Survived'], data['Age']);
```

Can't see the difference through eye-balling only. Let's calculate.

```
In [18]:
data.groupby('Survived')['Age'].mean()
Out[18]:
Survived
0    30.63
1    28.34
Name: Age, dtype: float64
```

5. Is that true that passengers younger than 30 y.o. survived more frequently than those older than 60 y.o.? What are shares of survived people among young and old people?

- 22.7% among young and 40.6% among old
- 40.6% among young and 22.7% among old [+]
- 35.3% among young and 27.4% among old
- 27.4% among young and 35.3% among old

```
In [19]:
```

```
young_survived = data.loc[data['Age'] < 30, 'Survived']
old_survived = data.loc[data['Age'] > 60, 'Survived']

print("Shares of survived people: \n\t among young {}%, \n\t among old {}%.".format(
    round(100 * young_survived.mean(), 1),
        round(100 * old_survived.mean(), 1)))
Shares of survived people:
```

```
Shares of survived people:
among young 40.6%,
among old 22.7%.
```

6. Is that true that women survived more frequently than men? What are shares of survived people among men and women?

- 30.2% among men and 46.2% among women
- 35.7% among men and 74.2% among women
- 21.1% among men and 46.2% among women
- 18.9% among men and 74.2% among women [+]

In [20]:

```
male_survived = data[data['Sex'] == 'male']['Survived']
female_survived = data[data['Sex'] == 'female']['Survived']

print("Shares of survived people: \n\t among women {}%, \n\t among men {}%".format(
    round(100 * female_survived.mean(), 1), round(100 * male_survived.mean(), 1)))
Shares of survived people:
```

```
Shares of survived people:
among women 74.2%,
among men 18.9%
```

7. What's the most popular first name among male passengers?

- Charles
- Thomas
- William [+]
- John

In [21]:

```
data['Name'].head()
```

```
Out[21]:
PassengerId
1
                                 Braund, Mr. Owen Harris
2
     Cumings, Mrs. John Bradley (Florence Briggs Th...
3
                                  Heikkinen, Miss. Laina
4
          Futrelle, Mrs. Jacques Heath (Lily May Peel)
5
                                Allen, Mr. William Henry
Name: Name, dtype: object
In [22]:
data.loc[1, 'Name'].split(',')[1].split()[1]
Out[22]:
'Owen'
In [23]:
first names = data.loc[data['Sex'] == 'male', 'Name'].apply(lambda
                                                                 full name:
                 full name.split(',')[1].split()[1])
first names.value counts().head()
Out[23]:
William
           35
John
           25
           14
George
Thomas
           13
Charles
           13
Name: Name, dtype: int64
8. How is average age for men/women dependent on Pclass? Choose all correct statements:
 • On average, men of 1 class are older than 40 [+]

    On average, women of 1 class are older than 40

    Men of all classes are on average older than women of the same class [+]
```

On average, passengers of the first class are older than those of the 2nd class who are older than passengers
of the 3rd class [+]

Nicer:

```
In [25]:
```

Average age for female and class 3: 21.75 Average age for male and class 3: 26.51

And even nicer:

Useful resources

- The same notebook as an interactive web-based Kaggle Kernel
- Topic 1 "Exploratory Data Analysis with Pandas" as a Kaggle Kernel
- Main course site, course repo, and YouTube channel