수학 I : 01 지수

2022년 1월 10일

차 례

례	1
복습	2
제곱근	4
거듭제곱근	6
거듭제곱근의 성질	11
자연수 지수	12
정수 지수	13
유리수 지수	16
실수 지수	18
답	22
요약	24
	복습

1 복습

문제 1) 다음 식을 전개하시오.

- (1) (a+b)(a-b)
- (2) (a+bi)(a-bi)
- (3) $(a-b)(a^2+ab+b^2)$

문제 2) 다음 식을 인수분해하시오.

- (1) $a^3 + b^3$
- (2) $x^3 27$
- $(3) x^2 1$
- $(4) x^2 5$
- $(5) x^2 + 9$
- (6) $x^4 16$

기본적인 인수분해 공식

- (1) $a^2 b^2 = (a+b)(a-b)$
- (2) $a^3 + b^3 = (a+b)(a^2 ab + b^2)$
- (3) $a^3 b^3 = (a b)(a^2 + ab + b^2)$

문제 3) 다음 이차방정식을 푸시오.

(1)
$$x^2 = 4$$

(2)
$$x^2 = 0$$

(3)
$$x^2 = -4$$

(4)
$$x^2 - x - 2 = 0$$

(5)
$$x^2 - x - 1 = 0$$

(1)
$$x^2 = 4$$
 (2) $x^2 = 0$ (3) $x^2 = -4$ (4) $x^2 - x - 2 = 0$ (5) $x^2 - x - 1 = 0$ (6) $x^2 + 2x + 2 = 0$

(2)
$$x =$$

(3)
$$x =$$

(4)
$$x =$$
 (5) $x =$

(5)
$$x =$$

(6)
$$x =$$

이차방정식의 풀이

(1) 이차방정식 $x^2 = A$ 의 근은

$$x = \pm \sqrt{A}$$

(2) 이차방정식 $ax^2 + bx + c = 0$ 의 근은

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(3) b가 짝수이면 (b = 2b')

$$x = \frac{-b' \pm \sqrt{b'^2 - ac}}{a}$$

2 제곱근

정의 4) a의 제곱근

제곱해서 a가 되는 수를 A의 제곱근 이라고 한다.

예시 5) 9의 제곱근을 구하여라.

 $x^2 = 9$ 를 만족시키는 수 x를 구하면 된다.

$$x^2 - 9 = 0$$

$$(x+3)(x-3) = 0$$

이므로 x=3 또는 x=-3 이다.

답: 3, -3

예시 6) -9의 제곱근을 구하여라.

 $x^2 = -9$ 를 만족시키는 수 x를 구하면 된다.

$$x^2 + 9 = 0$$

$$(x+3i)(x-3i) = 0$$

이므로 x = 3i 또는 x = -3i 이다.

답: 3i, -3i

문제 7) 다음 수들의 제곱근을 각각 구하여라.

 $(1) \ 4$

 $(2) \ 0$

(3) -25

정의 8) \sqrt{a}

a가 $\boxed{$ 양수]일 때, a의 제곱근 중 $\boxed{$ 양수]인 것을 '제곱근 a' 또는 \sqrt{a} 라고 한다.

예시 9)

예시 5)에서 9의 제곱근 중 양수인 것은 3이므로 제곱근 9는 3이다. 즉

$$\sqrt{9} = 3$$

이다.

문제 10) 다음을 간단히 하여라.

- $(1) \sqrt{16}$
- (2) $\sqrt{36}$

정의 11) 제곱근의 성질

a > 0, b > 0일 때,

- $(1) \ \sqrt{ab} = \sqrt{a}\sqrt{b}$
- $(2) \ \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

예시 12) $\sqrt{12}$ 를 간단히 하여라.

$$\sqrt{12} = \sqrt{4 \cdot 3} \stackrel{(1)}{=} \sqrt{4}\sqrt{3} = 2\sqrt{3}$$

문제 13) 다음을 간단히 하여라.

- (1) $\sqrt{54}$
- (2) $\sqrt{80}$
- (3) $\sqrt{\frac{2}{3}}$

3 거듭제곱근

정의 14) a의 세제곱근

세제곱해서 a가 되는 수를 a의 |세제곱근 이라고 한다.

예시 15) 27의 세제곱근을 구하여라.

 $x^3 = 27$ 를 만족시키는 수 x를 구하면 된다.

$$x^3 - 27 = 0$$
$$(x - 3)(x^2 + 3x + 9) = 0$$

이므로 x=3 또는 $x^2+3x+9=0$ 이다. 즉 x=3 또는 $x=\frac{-3\pm3\sqrt{3}i}{2}$ 이다.

답: 3, $\frac{-3+3\sqrt{3}i}{2}$, $\frac{-3-3\sqrt{3}i}{2}$

예시 16) -27의 세제곱근을 구하여라.

 $x^3 = -27$ 를 만족시키는 수 x를 구하면 된다.

$$x^{3} + 27 = 0$$
$$(x+3)(x^{2} - 3x + 9) = 0$$

이므로 x=-3 또는 $x^2-3x+9=0$ 이다. 즉 x=-3 또는 $x=\frac{3\pm 3\sqrt{3}i}{2}$ 이다.

답: $-3, \frac{3+3\sqrt{3}i}{2}, \frac{3-3\sqrt{3}i}{2}$

문제 17) 다음 수들의 세제곱근을 각각 구하여라.

- (1) 8
- (2) -8
- (3) 1
- (4) -1

정의 18) ∛a

a가 $\boxed{9}$ 일 때, a의 세제곱근 중 $\boxed{9}$ 인 것을 '세제곱근 a' 또는 $\sqrt[3]{a}$ 라고 한다.

예시 19)

(1) 예시 15)에서 27의 세제곱근 중 실수인 것은 3이므로 세제곱근 27는 3이다. 즉

$$\sqrt[3]{27} = 3$$

이다.

(2) 예시 16)에서 -27의 세제곱근 중 실수인 것은 -3이므로 세제곱근 -27는 -3이다. 즉

$$\sqrt[3]{-27} = -3$$

이다.

문제 20) 다음을 간단히 하여라.

- $(1) \sqrt[3]{8}$
- (2) $\sqrt[3]{-8}$
- $(3) \sqrt[3]{1}$
- $(4) \sqrt[3]{-1}$

예시 21) 81의 네제곱근을 구하여라.

 $x^4 = 81$ 를 만족시키는 수 x를 구하면 된다.

$$x^{4} - 81 = 0$$
$$(x^{2} - 9)(x^{2} + 9) = 0$$
$$(x + 3)(x - 3)(x + 3i)(x - 3i) = 0$$

이므로 $x = \pm 3$, $x = \pm 3i$ 이다.

답: 3, -3, 3i, -3i

문제 22) 다음 수들의 네제곱근을 각각 구하여라.

 $(1) \ 0$

(2) 16

(3) 4

정의 23) ∜a

a가 $\boxed{$ 양수 $\boxed{}$ 일 때, a의 네제곱근 중 $\boxed{}$ 양수 $\boxed{}$ 인 것을 '네제곱근 a' 또는 $\sqrt[4]{a}$ 라고 한다.

예시 24)

예시 21)에서 81의 네제곱근 중 양수인 것은 3이므로 네제곱근 81은 3이다. 따라서

$$\sqrt[4]{81} = 3$$

이다.

문제 25) 다음을 간단히 하여라.

- $(1) \sqrt[4]{16}$
- $(2) \sqrt[4]{4}$

정리 8), 18), 23)을 잘 살펴보면, n제곱근 a는 n이 짝수인지 홀수인지에 따라 정의가 달라진다는 것을 볼 수 있다.

정의 26) √a

i) n이 짝수이면, a가 <mark>양수</mark>일 때

 $\sqrt[n]{a} = a$ 의 n제곱근 중 $\boxed{$ 양수 $\boxed{}$ 인 것

ii) n이 홀수이면, a가 실수 일 때

 $\sqrt[n]{a} = a$ 의 n제곱근 중 실수 인 것

만약 n=2이면 $\sqrt[2]{a}$ 의 2를 생략해 \sqrt{a} 로 쓴다.

예시 27)

- (1) $\sqrt{64} = 64$ 의 제곱근 중에 당수 인 것 = 8
- (2) $\sqrt{-64}$ \implies -64가 음수이므로 $\sqrt{-64}$ 는 생각하지 않는다. 1
- (3) $\sqrt[3]{64} = 64$ 의 세제곱근 중에 실수 인 것 = 4
- (4) $\sqrt[3]{-64} = -64$ 의 세제곱근 중에 $\boxed{4}$ 인 것 = -4
- (5) $\sqrt[4]{64} = 64$ 의 네제곱근 중에 당수 인 것 = $2\sqrt{2}$
- (6) $\sqrt[4]{-64}$ \implies -64가 음수이므로 $\sqrt{-64}$ 는 생각하지 않는다.

$$\sqrt{-64} = \sqrt{64}i = 8i$$

가 되어 허수가 나온다.

 $^{^{1}}$ 굳이 $\sqrt{-64}$ 를 구하면

참고 28)

(1) n이 짝수이면, 함수 $y = x^n$ 의 그래프는 y축에 대해서 대칭인 그래프이다(우함수). 따라서 a가 양수이면 $y = x^n$ 의 그래프와 y = a의 그래프의 교점은 두 개이며, 그중 x가 양수인 것은 단 하나 존재한다.

즉, a가 | 양수 | 이면, $x^n = a$ 를 만족시키는 | 양수 | x는 단 하나 존재한다.

(2) n이 홀수이면, 함수 $y = x^n$ 의 그래프는 원점에 대해서 대칭인 그래프이다(기함수). 따라서 a가 양수이건 음수이건 상관없이 $y = x^n$ 의 그래프와 y = a의 그래프의 교점은 한 개이다.

즉, a가 $\boxed{ 실수 }$ 이면, $x^n=a$ 를 만족시키는 $\boxed{ 실수 }$ x는 단 하나 존재한다.

예시 29) 다음 값을 구하여라.

- $(1) \sqrt[3]{-27}$

- (2) $\sqrt[5]{100000}$ (3) $\sqrt[4]{\frac{16}{81}}$ (4) $-\sqrt[4]{0.0625}$
- (1) (-3)³ = -27이므로 √3-27 = -3이다.
- (2) $10^5 = 100000$ 이므로 $\sqrt[5]{100000} = 10$ 이다.
- (3) $\left(\frac{2}{3}\right)^4 = \frac{16}{81}$ 이므로 $\sqrt[4]{\frac{16}{81}} = \frac{2}{3}$ 이다.
- (4) $0.5^4 = 0.0625$ 이므로 $\sqrt[4]{0.0625} = 0.5$ 이다. 따라서 $-\sqrt[4]{0.0625} = -0.5$

답: (1) -3 (2) 10 (3) $\frac{2}{3}$ (4) -0.5

문제 30) 다음 값을 구하여라.

- $(1) \sqrt[5]{32}$
- $(2) \sqrt[4]{0.0016}$
- (3) $-\sqrt[3]{-0.125}$ (4) $\sqrt[4]{\frac{1}{256}}$

4 거듭제곱근의 성질

예시 31) $\sqrt[3]{8} \times \sqrt[3]{27}$ 과 $\sqrt[3]{8 \times 27}$ 을 각각 계산해보면

$$\sqrt[3]{8} \times \sqrt[3]{27} = 2 \times 3 = 6$$

$$\sqrt[3]{8 \times 27} = \sqrt[3]{216} = 6$$

이다. 따라서

$$\sqrt[3]{8} \times \sqrt[3]{27} = \sqrt[3]{8 \times 27}$$

이다. a > 0, b > 0에 대하여

$$\sqrt{a}\sqrt{b} = \sqrt{ab}$$

가 성립하듯

$$\sqrt[n]{a}\sqrt[n]{b} = \sqrt[n]{ab}$$

도 성립할 것이다.

정리 32) a > 0, b > 0이고 m, n이 2이상의 정수일 때,

(a)
$$\sqrt[n]{a}\sqrt[n]{b} = \sqrt[n]{ab}$$

(b)
$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

(c)
$$(\sqrt[n]{a})^m = \sqrt[n]{a^m}$$

(d)
$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$$

예시 33) (a)를 증명하여라.

좌변을 n제곱하면

$$\left(\sqrt[n]{a}\sqrt[n]{b}\right)^n = \left(\sqrt[n]{a}\right)^n \left(\sqrt[n]{b}\right)^n = ab$$

이다. 이때, $\sqrt[n]{a}\sqrt[n]{b}>0$ 이므로 $\sqrt[n]{a}\sqrt[n]{b}$ 는 ab의 양의 n제곱근인 $\sqrt[n]{ab}$ 와 같다. 따라서 (a)가 성립한다.

문제 34) 다음은 (b), (c), (d)를 증명하는 과정이다. 빈칸에 알맞은 것을 써넣어라.

(b) 좌변을 *n*제곱하면

$$\left(\frac{\sqrt[n]{a}}{\sqrt[n]{b}}\right)^n = \frac{\left(\boxed{}\right)^n}{\left(\boxed{}\right)^n} = \boxed{}$$

이때, $\frac{\sqrt[n]{a}}{\sqrt[n]{b}}>0$ 이므로 $\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ 는 $\boxed{\quad}$ 의 양의 n제곱근인 $\sqrt[n]{\quad}$ 와 같다. 따라서 (b)가 성립한다.

(c) 좌변을 n제곱하면

이때, $(\sqrt[n]{a})^m > 0$ 이므로 $(\sqrt[n]{a})^m$ 은 의 양의 n제곱근인 $\sqrt[n]{}$ 과 같다. 따라서 (c)가 성립한다.

(d) 좌변을 *mn*제곱하면

$$\left(\sqrt[m]{\sqrt[n]{a}}\right)^{mn} = \left\{ \left(\sqrt[m]{\sqrt[n]{a}}\right)^m \right\}^n = \left(\boxed{}\right)^n = \boxed{}$$

이때, $\sqrt[m]{\sqrt[n]{a}} > 0$ 이므로 $\sqrt[m]{\sqrt[n]{a}}$ 는 __의 양의 mn제곱근인 $\sqrt[mn]{}$ 와 같다. 따라서 (d)가 성립한다.

문제 35) 다음 식을 간단히 하시오.

- (1) $\sqrt[3]{4} \times \sqrt[3]{2}$
- (2) $\frac{\sqrt[3]{54}}{\sqrt[3]{2}}$
- (3) $(\sqrt[3]{3})^6$
- (4) $\sqrt[3]{\sqrt[4]{5^{24}}}$

5 자연수 지수

 a^x 와 같이 생긴 것을 $\boxed{$ 거듭제곱 이라고 부른다. 이때 a를 $\boxed{}$ 및, x를 $\boxed{}$ 지수 라고 부른다.

문제 36) 다음을 계산하여라.

$$(1) 5^2$$

$$(2) 3^4$$

$$(3) 2^7$$

정의 37) 자연수 지수

a가 실수이고 n이 자연수일 때,

$$a^n = \underbrace{a \times a \times \dots \times a}_{n \text{ iff}}$$

문제 38) 다음 □에 알맞은 수를 써넣으시오.

(1)
$$5^3 \times 5^4 = 5^{\square}$$

(2)
$$8^2 \times 4^2 = 2^{\square}$$

(1)
$$5^3 \times 5^4 = 5^{\square}$$
 (2) $8^2 \times 4^2 = 2^{\square}$ (3) $6^5 \div 6^2 = 6^{\square}$

자연수 지수에 대해 다음 성질들이 성립한다.

정리 39) 지수법칙 - 자연수 지수

a, b가 실수이고 m, n이 자연수일 때,

$$(1) \ a^m \times a^n = a^{m+n}$$

(2)
$$a^m \div a^n = \begin{cases} a^{m-n} & (m > n) \\ 1 & (m = n) \\ \frac{1}{a^{n-m}} & (m < n) \end{cases}$$

$$(3) (a^m)^n = a^{mn}$$

$$(4) (ab)^m = a^m b^m$$

6 정수 지수

예시 40) 다음 □에 들어갈 수를 유추해보자.

$$2^3 = 8$$

$$2^2 = 4$$

$$2^1=2$$

$$2^0 =$$

$$2^{-1} =$$

$$2^{-2} =$$

지수가 정수일 때, 거듭제곱을 다음과 같이 정의한다.

정의 41) 정수 지수

 $a \neq 0$ 이고 n이 자연수이면

(1)
$$a^0 = 1$$

(2)
$$a^{-n} = \frac{1}{a^n}$$

이때, 0^0 , 0^{-1} , 0^{-2} 등은 정의하지 않는다.

예시 42)

- (1) $2^0 = 1$
- $(2) \ (-3)^0 = 1$

(3)
$$3^{-3} = \frac{1}{3^3} = \frac{1}{27}$$

문제 43) 다음 값을 구하여라.

- $(1) \ (\sqrt{3})^0 \qquad \qquad (2) \ 4^{-3} \qquad \qquad (3) \ (-2)^{-3}$
- $(4) \left(\frac{1}{2}\right)^{-4}$

문제 44) 다음 □에 알맞은 수를 써넣으시오.

(1)
$$3^2 \times 3^{-3} = 3^{\square}$$

(2)
$$5^3 \div 5^5 = 5^{\square}$$

$$(3) \ \left(2^{-2}\right)^{-3} = 2^{\square}$$

(4)
$$15^{-1} = 3^{\square} \times 5^{\square}$$

따라서 정수 지수에 대해 다음 성질들이 성립한다.

정리 45) 지수법칙 - 정수 지수

 $a \neq 0, b \neq 0$ 이고 m, n이 정수일 때,

$$(1) \ a^m \times a^n = a^{m+n}$$

$$(2) \ a^m \div a^n = a^{m-n}$$

$$(3) (a^m)^n = a^{mn}$$

$$(4) (ab)^m = a^m b^m$$

문제 46) 다음 식을 간단히 하시오.(단, $a \neq 0, b \neq 0$)

(1)
$$2^4 \times 3^{-2} \div 6^{-3}$$

$$(2) (3^3 \times 9^{-2})^{-1}$$

$$(3) \ a^3 \div (a^2)^{-1}$$

$$(4) (a^3b^{-2})^{-2}$$

7 유리수 지수

예시 47) 다음 □에 들어갈 수를 유추해보자.

$$2^{0} = 1$$

$$2^{\frac{1}{2}} = \boxed{ }$$

$$2^{1} = 2$$

$$2^{\frac{3}{2}} = \boxed{ }$$

지수가 유리수일 때, 거듭제곱을 다음과 같이 정의한다.

 $2^2 = 4$

정의 48) 유리수 지수

a>0이고 $m,\ n(n\geq 2)$ 이 정수이면

$$(1) \ a^{\frac{1}{n}} = \sqrt[n]{a}$$

$$(2) \ a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

a가 음수이면, n이 짝수일 때 $a^{\frac{1}{n}}$ 이 정의되지 않는다. 또 a=0이면 m<0일 때, a^m 이 정의되지 않는다. 따라서 a를 양수로 제한한다.

예시 49)

$$(1) \ 10^{\frac{1}{3}} = \sqrt[3]{10}$$

(2)
$$2^{\frac{4}{3}} = \sqrt[3]{2^4} = \sqrt[3]{16}$$

(3)
$$3^{-\frac{2}{5}} = \sqrt[5]{3^{-2}} = \sqrt[5]{\frac{1}{9}}$$

문제 50) 다음을 근호를 사용하여 나타내어라.

$$(1) 6^{\frac{1}{4}}$$

$$(2) 3^{1.5}$$

$$(3) 2^{1.2}$$

$$(4) 5^{-\frac{3}{2}}$$

문제 51) 다음을 $a^{\frac{m}{n}}$ 의 꼴로 나타내어라.

$$(1) \sqrt{6^3}$$

$$(2) \sqrt[4]{3^{-3}}$$

(3)
$$\sqrt[5]{\sqrt[3]{2}}$$

예시 52) 거듭제곱근의 성질[정리 32)]을 사용하여 다음 계산을 할 수 있다.

(1)
$$3^{\frac{4}{5}} \times 3^{\frac{2}{5}} = \sqrt[5]{3^4} \times \sqrt[5]{3^2} \stackrel{(a)}{=} \sqrt[5]{3^4 \times 3^2} = \sqrt[5]{3^6} = 3^{\frac{6}{5}}$$

$$(2) \ (10^{\frac{1}{5}})^{\frac{2}{3}} = \left(\sqrt[5]{10}\right)^{\frac{2}{3}} = \left(\sqrt[5]{\sqrt[3]{10}}\right)^2 \stackrel{(d)}{=} \left(\sqrt[15]{10}\right)^2 \stackrel{(c)}{=} \sqrt[15]{10^2} = 10^{\frac{2}{15}}$$

문제 53) 다음 빈 칸에 알맞은 수를 써넣고 정리 32)의 어떤 성질들이 쓰였는지 말하여라.

$$(1) \ 5^{\frac{7}{3}} \div 5^{\frac{5}{3}} = 5^{\square}$$

(2)
$$(15)^{\frac{3}{2}} = 3^{\square} \times 5^{\square}$$

예시 52)와 문제 53)의 결과를 요약하면

$$3^{\frac{4}{5}} \times 3^{\frac{2}{5}} = 3^{\frac{4}{5} + \frac{2}{5}}$$

$$\left(10^{\frac{1}{5}}\right)^{\frac{2}{3}} = 10^{\frac{1}{5} \times \frac{2}{3}}$$

$$5^{\frac{7}{3}} \div 5^{\frac{5}{3}} = 5^{\frac{7}{3} - \frac{5}{3}}$$

$$(3 \times 5)^{\frac{3}{2}} = 3^{\frac{3}{2}} \times 5^{\frac{3}{2}}$$

이다. 따라서 유리수 지수에 대해 다음 성질들이 성립한다.

정리 54) 지수법칙 - 유리수 지수

a > 0, b > 0이고 r, s이 유리수일 때,

$$(1) \ a^r \times a^s = a^{r+s}$$

$$(2) \ a^r \div a^s = a^{r-s}$$

$$(3) \ (a^r)^s = a^{rs}$$

$$(4) (ab)^r = a^r b^r$$

문제 55) 다음 식을 간단히 하시오.(단, $a \neq 0, b \neq 0$)

(1)
$$3^{\frac{1}{2}} \times 3^{-\frac{5}{8}}$$

$$(2) \ 5^{-\frac{1}{3}} \div 5^{-2}$$

$$(3) (a^{\frac{2}{3}})^{\frac{3}{5}}$$

$$(4) (a^{\frac{1}{2}}b^{\frac{1}{4}})^4$$

8 실수 지수

지금까지 지수를 유리수까지 확장하였다. 이제 실수 지수에 대해 생각해보자. a^x 에서 x가 무리수인 경우를 고려하자.

예시 56) $3^{\sqrt{2}}$

 $\sqrt{2}$ 는 무리수, 즉 순환하지 않는 무한소수이다.

$$\sqrt{2}=1.41421\cdots$$

이제 $3^1, 3^{1.4}, 3^{1.41}, 3^{1.414}, 3^{1.4142}, 3^{1.41421}, \cdots$ 을 차례로 계산하면 이 숫자들은 일정한 수 $4.72880\cdots$ 에 점점 가까워진다.

$$3^{1} = 3$$

$$3^{1.4} = 4.65553 \cdots$$

$$3^{1.41} = 4.70696 \cdots$$

$$3^{1.414} = 4.72769 \cdots$$

$$3^{1.4142} = 4.72873 \cdots$$

$$3^{1.41421} = 4.72878 \cdots$$

$$\vdots$$

$$3^{\sqrt{2}} = 4.72880 \cdots$$

이 일정한 수 $4.72880\cdots$ 를 $3^{\sqrt{2}}$ 로 정한다.

이와 같은 방식으로 a > 0이고 x가 실수일 때, a^x 를 정의할 수 있다.

실수 지수에 대해서도 지수법칙이 성립함이 알려져 있다.

정리 57) 지수법칙 - 실수 지수

 $a>0,\;b>0$ 이고 $x,\;y$ 이 실수일 때,

- $(1) \ a^x \times a^y = a^{x+y}$
- $(2) \ a^x \div a^y = a^{x-y}$
- $(3) (a^x)^y = a^{xy}$
- $(4) (ab)^x = a^x b^x$

예시 58) 다음 식을 간단히 하시오.

(1)
$$9^{\sqrt{2}} \times 3^{\sqrt{2}} = (3^2)^{\sqrt{2}} \times 3^{\sqrt{2}} = 3^{2\sqrt{2}} \times 3^{\sqrt{2}} = 3^{2\sqrt{2}+\sqrt{2}} = 3^{3\sqrt{2}}$$

(2)
$$(2^{\frac{1}{\sqrt{3}}} \times 3)^{\sqrt{3}} \div 3^{-\sqrt{3}} = 2 \times 3^{\sqrt{3}} \div 3^{-\sqrt{3}} = 2 \times 3^{2\sqrt{3}}$$

문제 59) 다음 식을 간단히 하시오.

- (1) $5^{-2\sqrt{2}} \times 5^{3\sqrt{2}}$
- (2) $10^{\sqrt{27}} \times 10^{\sqrt{3}}$
- $(3) (2^{\sqrt{3}})^{-\sqrt{3}}$
- $(4) \ 9^{\sqrt{2}} \times \left(\frac{1}{3}\right)^{\sqrt{2}}$

답

문제 1)

- (1) $a^2 b^2$
- (2) $a^2 + b^2$
- (3) $a^3 b^3$

문제 2)

- (1) $(a+b)(a^2-ab+b^2)$
- (2) $(x-3)(x^2+3x+9)$
- (3) (x+1)(x-1)
- (4) $(x+\sqrt{5})(x-\sqrt{5})$
- (5) (x+3i)(x-3i)
- (6) $(x+2)(x-2)(x^2+4)$ 혹은 (x+2)(x-2)(x+2i)(x-2i)

문제 3)

- (1) x = 2, -2
- (2) x = 0
- (3) x = 2i, -2i
- (4) x = -1, 2
- (5) $x = \frac{1 \pm \sqrt{5}}{2}$
- (6) $x = -1 \pm i$

문제 7)

- (1) 2, -2

 - $(2) \ 0 \quad (3) \ 5i, \ -5i$

문제 10)

- (1) 4
- (2) 6

문제 13)

- $(1) \ 3\sqrt{6}$
- (2) $4\sqrt{5}$ (3) $\frac{\sqrt{6}}{3}$

문제 17)

- (1) $2, -1 + \sqrt{3}i, -1 \sqrt{3}i$
- (2) -2, $1+\sqrt{3}i$, $1-\sqrt{3}i$
- (3) $1, \frac{-1+\sqrt{3}i}{2}, \frac{-1-\sqrt{3}i}{2}$
- $(4) -1, \frac{1+\sqrt{3}i}{2}, \frac{1-\sqrt{3}i}{2}$

문제 20)

- $(1) 2 \qquad (2) -2 \qquad (3) 1 \qquad (4) -1$

문제 22)

- (1) 0
- (2) 2, -2, 2i, -2i
- (3) $\sqrt{2}$, $-\sqrt{2}$, $\sqrt{2}i$, $-\sqrt{2}i$

문제 25)

- (1) 2
- (2) $\sqrt{2}$

문제 30)

(1) 2 (2) -0.2 (3) -0.5 (4) $\frac{1}{4}$

문제 34)

- (b) $\sqrt[n]{a}$, $\sqrt[n]{b}$, $\frac{a}{b}$, $\frac{a}{b}$, $\frac{a}{b}$
- (c) a^m , a^m , a^m

(d) $\sqrt[n]{a}$, a, a, a

문제 35)

(1) 2 (2) 3 (3) 9 (4) 25

문제 36)

(1) 25 (2) 81 (3) 128

문제 38)

(1) 7 (2) 10 (3) 3

문제 43)

(1) 1 (2) $\frac{1}{64}$ (3) $-\frac{1}{8}$ (4) 16

문제 44)

(1) 5 (2) -2 (3) 6 (4) -1, -1

문제 46)

- (1) $2^7 \times 3$
- $(2) \ 3$
- (3) a^5
- $(4) a^{-6}b^4$

문제 50)

(1) $\sqrt[4]{6}$ (2) $\sqrt{3^3}$ (3) $\sqrt[5]{2^6}$ (4) $\sqrt{\frac{1}{5^3}}$

문제 51)

 $(1) 6^{\frac{3}{2}} (2) 3^{-\frac{3}{4}} (3) 2^{\frac{1}{15}}$

문제 53)

(1) $\frac{2}{3}$, (b) (2) $\frac{3}{2}$, $\frac{3}{2}$, (a)

문제 55)

 $(1) \ 3^{-\frac{1}{8}}$

- $(2) 5^{\frac{5}{3}}$
- (3) $a^{\frac{2}{5}}$
- $(4) a^2b$

문제 59)

- (1) $5^{\sqrt{2}}$
- (2) $10^{4\sqrt{3}}$
- $(3) \frac{1}{8}$
- $(4) \ 3^{\sqrt{2}}$

요약

1. 거듭제곱근

-8의 세제곱근	81의 네제곱근
$\Rightarrow x^3 = -8$ 의 근	$\Rightarrow x^4 = 81$ 의 근
$\Rightarrow -2, 1+\sqrt{3}i, 1-\sqrt{3}i$	$\Rightarrow 3, -3, 3i, -3i$
3√−8	√81
⇒ −8의 세제곱근 중 실수	⇒ 81의 네제곱근 중 양수
\Rightarrow -2	$\Rightarrow 3$

2. 지수의 확장

- $5^0 = 1$
- $5^{-1} = \frac{1}{5}$
- $\bullet \ 5^{-3} = \frac{1}{5^3} = \frac{1}{125}$
- $5^{\frac{1}{2}} = \sqrt{5}$
- $5^{\frac{1}{3}} = \sqrt[3]{5}$
- $5^{\frac{2}{3}} = \sqrt[3]{5^2} = \sqrt[3]{25}$

3. 지수법칙

- $\bullet \ a^x \times a^y = a^{x+y}$
- $\bullet \ a^x \div a^y = a^{x-y}$
- $\bullet \ (a^x)^y = a^{xy}$
- $\bullet \ (ab)^x = a^x b^x$