Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Домашняя работа № 5
По Дискретной Математике
Изоморфные графы

Вариант № 20

Выполнил:

Карташев Владимир Р3131

Преподаватель:

Поляков Владимир Иванович

Исходная таблица соединений R:

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0		3	3		5	1		1			
e2		0				2	1					
e3	3		0				5	2	4			3
e4	3			0	1		3					
e5				1	0	4				3		
e6	5	2			4	0	2	3	2			
e7	1	1	5	3		2	0		2		1	
e8			2			3		0	4	5		
e9	1		4			2	2	4	0	5	4	
e10					3			5	5	0		1
e11							1		4		0	
e12			3							1		0

 $R(G_1)$:

	$e_{_{1}}$	e_{2}	e_{3}	$e_{_4}$	$e_{_{5}}$	e ₆	$e_{_{7}}$	e_8	e_9	e_{10}	<i>e</i> ₁₁	<i>e</i> ₁₂	p(E)
$e_{_1}$	0	0	1	1	0	1	1	0	1	0	0	0	5
$e_{_2}$	0	0	0	0	0	1	1	0	0	0	0	0	2
$e_{_3}$	1	0	0	0	0	0	1	1	1	0	0	1	5
$e_{_4}$	1	0	0	0	1	0	1	0	0	0	0	0	3
$e_{_{5}}$	0	0	0	1	0	1	0	0	0	1	0	0	3
$e_{6}^{}$	1	1	0	0	1	0	1	1	1	0	0	0	6
$e_{_{7}}$	1	1	1	1	0	1	0	0	1	0	1	0	7
e_8	0	0	1	0	0	1	0	0	1	1	0	0	4
e_9	1	0	1	0	0	1	1	1	0	1	1	0	7
e ₁₀	0	0	0	0	1	0	0	1	1	0	0	1	4
e ₁₁	0	0	0	0	0	0	1	0	1	0	0	0	2
e ₁₂	0	0	1	0	0	0	0	0	0	1	0	0	2

 $R(G_2)$:

	x_{1}	x_2	x_3	x_4	x_{5}	x_6	x_{7}	x_8	x_9	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂	p(X)
x_{1}	0	1	1	1	1	0	0	1	0	1	1	0	7
x_2	1	0	1	1	1	1	1	0	0	0	1	0	7
x_3	1	1	0	1	0	1	1	0	1	1	0	0	6
x_{4}	1	1	1	0	1	0	0	1	0	0	0	0	5
x_{5}	1	1	0	1	0	1	0	0	0	0	0	1	5
x_6	0	1	1	0	1	0	1	0	0	0	0	0	4
x_7	0	1	1	0	0	1	0	0	1	0	0	1	4
x_8	1	0	0	1	0	0	0	0	1	0	0	0	3
x_9	0	0	1	0	0	0	1	1	0	0	0	0	3
<i>x</i> ₁₀	1	0	1	0	0	0	0	0	0	0	0	0	2
<i>x</i> ₁₁	1	1	0	0	0	0	0	0	0	0	0	0	2
<i>x</i> ₁₂	0	0	0	0	1	0	1	0	0	0	0	0	2

Для графа $G_1 \sum p(E) = 50$. Множество $p(E) = \{7,7,6,5,5,4,4,3,3,2,2,2\}$ Для графа $G_2 \sum p(E) = 50$. Множество $p(E) = \{7,7,6,5,5,4,4,3,3,2,2,2\}$

Разобьем вершины графов на классы по их степеням:

	p(e) = p(x) = 7	p(e) = p(x) = 6	p(e) = p(x) = 5	p(e) = p(x) = 4	p(e) = p(x) = 3	p(e) = p(x) = 2
Е	e ₇ , e ₉	e_{6}	<i>e</i> ₁ , <i>e</i> ₃	e ₈ , e ₁₀	e ₄ , e ₅	e ₂ , e ₁₁ , e ₁₂
X	<i>x</i> ₁ , <i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄ , <i>x</i> ₅	x_{6}, x_{7}	x ₈ , x ₉	<i>x</i> ₁₀ , <i>x</i> ₁₁ , <i>x</i> ₁₂

Для определения вершин с p(e) = p(x) = 2 попробуем связать вершины из классов с p(e) = p(x) = 6 с неустановленными вершинами:

Анализ вершин показал, что вершины $e_2^{} - x_{10}^{}$ соответствуют.

Продолжим процесс для p(e) = p(x) = 3

Анализ вершин показал, что вершины $e_{_{5}}-x_{_{9}}$ соответствуют.

Продолжим процесс для p(e) = p(x) = 4

Анализ вершин показал, что вершины $e_4^{}-x_8^{}$ соответствуют, так как они из имеют одну степень. Соответственно, соответствуют и вершины $e_8^{}-x_6^{},$ $e_{10}^{}-x_7^{}$

Продолжим процесс для p(e) = p(x) = 5

Анализ вершин показал, что вершины $e_1^{}-x_4^{}$ и $e_3^{}-x_5^{}$ соответствуют.

Продолжим процесс для p(e) = p(x) = 7

Анализ вершин показал, что вершины $e_{12}-x_{12}, e_7-x_1, e_9-x_2$ соответствуют. Соответственно, соответствуют и вершины $e_{11}-x_{11}$.

Е	X
e ₇	<i>x</i> ₁
e ₉	x_2
e_{6}	x_3
e_1	x_4
e_3	x_{5}
e_8	x_6
e_{10}	x_7
e_4	<i>x</i> ₈
e_{5}	x_9
e_2	<i>x</i> ₁₀
e ₁₁	<i>x</i> ₁₁
e ₁₂	<i>x</i> ₁₂

Делаем вывод, что графы G_1 и G_2 – изоморфны!