Statistical inference Practice 6

Exercises are extracted from the book: Rencher, A. C., & Schaalje, G. B. (2008). *Linear models in statistics*. John Wiley & Sons.

Available on the website:

https://www.utstat.toronto.edu/~brunner/books/LinearModelsInStatistics.pdf

Exercise from chapter 3 (page 83)

- 3.10 Show that $E[(y \mu)(y \mu)'] = E(yy') \mu \mu'$ as in (3.25).
- **3.20** Let $\mathbf{y} = (y_1, y_2, y_3)'$ be a random vector with mean vector and covariance matrix

$$\mu = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 3 \\ 0 & 3 & 10 \end{pmatrix}.$$

- (a) Let $z = 2y_1 3y_2 + y_3$. Find E(z) and var(z).
- (b) Let $z_1 = y_1 + y_2 + y_3$ and $z_2 = 3y_1 + y_2 2y_3$. Find $E(\mathbf{z})$ and $cov(\mathbf{z})$, where $\mathbf{z} = (z_1, z_2)'$.

Exercise from chapter 4 (page 101)

- **4.2** Obtain (4.8) from (4.7); that is, show that $|\mathbf{\Sigma}^{-1/2}| = |\mathbf{\Sigma}|^{-1/2}$.
- **4.9** Assuming that \mathbf{y} is $N_p(\boldsymbol{\mu}, \sigma^2 \mathbf{I})$ and \mathbf{C} is an <u>orthogonal</u> matrix, show that $\mathbf{C}\mathbf{y}$ is $N_p(\mathbf{C}\boldsymbol{\mu}, \sigma^2 \mathbf{I})$.
- **4.16** Suppose that y is $N_4(\mu, \Sigma)$, where

$$\boldsymbol{\mu} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ -2 \end{pmatrix}, \quad \boldsymbol{\Sigma} = \begin{pmatrix} 4 & 2 & -1 & 2 \\ 2 & 6 & 3 & -2 \\ -1 & 3 & 5 & -4 \\ 2 & -2 & -4 & 4 \end{pmatrix}.$$

- (a) The joint marginal distribution of y_1 and y_3
- (b) The marginal distribution of y_2
- (c) The distribution of $z = y_1 + 2y_2 y_3 + 3y_4$
- (d) The joint distribution of $z_1 = y_1 + y_2 y_3 y_4$ and $z_2 = -3y_1 + y_2 + y_3 + y_4 + y_4 + y_5 + y_5 + y_5 + y_5 + y_6 + y_6$ $2y_3 - 2y_4$
- (g) ρ_{13}
- **4.18** If y is $N_3(\mu, \Sigma)$, where

$$\mathbf{\Sigma} = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 4 & 0 \\ -1 & 0 & 3 \end{pmatrix},$$

which variables are independent? (See Corollary 1 to Theorem 4.4a)

If y is $N_4(\mu, \Sigma)$, where 4.19

$$\mathbf{\Sigma} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & -4 \\ 0 & 0 & -4 & 6 \end{pmatrix},$$

which variables are independent?

Exercises from chapter 5 (page 122)

y is
$$N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

5.16 (a) Show that if $t = z/\sqrt{u/p}$ is t(p) as in (5.33), then t^2 is F(1, p).

y is $N_p(\mu, \Sigma)$.

and z and u are independent

- Show that $\Sigma^{-1/2}(\mathbf{y}-\boldsymbol{\mu})$ is $N_n(\mathbf{0},\mathbf{I})$, as used in the illustration at the beginning
- **5.19** If **y** is $N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, verify that $(\mathbf{y} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{y} \boldsymbol{\mu})$ is $\chi^2(n)$,

As a reminder
$$\Sigma^{-\frac{1}{2}} = \Sigma^{-1}$$
 and $\Sigma^{\frac{1}{2}} = \Sigma^{-1}$

- Suppose that y_1, y_2, \ldots, y_n is a random sample from $N(\mu, \sigma^2)$ so that $\mathbf{y} = (y_1, y_2, \dots, y_n)'$ is $N_n(\mu \mathbf{j}, \sigma^2 \mathbf{I})$. It was shown in Example 5.5 that $(n-1)s^2/\sigma^2 = \sum_{i=1}^n (y_i - \bar{y})^2/\sigma^2$ is $\chi^2(n-1)$. In Example 5.6a, it was demonstrated that \bar{y} and $s^2 = \sum_{i=1}^n (y_i - \bar{y})^2/(n-1)$ are independent.
 - (a) Show that \bar{y} is $N(\mu, \sigma^2/n)$.

(b) Show that $t = (\bar{y} - \mu)/(s/\sqrt{n})$ is distributed as t (n - 1).

Hint: $t = \sqrt{(\bar{y} - \mu)}/(s/\sqrt{n})$ is distributed as t (n - 1).

Let denote $w = (m-1)s^2 \rightarrow \chi^2$ (m-1) (

y = (i) is the column vector of dimension I

- 5.32 rank p < n.
 - (a) Show that $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ and $\mathbf{I} \mathbf{H} = \mathbf{I} \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ are idempotent, and find the rank of each.
 - (b) Assuming μ is a linear combination of the columns of X, that is $\mu = Xb$ for some **b** [see (2.37)], find E(y'Hy) and E[y'(I-H)y], where **H** is as defined in part (a).
 - (c) Find the distributions of $y'Hy/\sigma^2$ and $y'(I-H)y/\sigma^2$.
 - (d) Show that y'Hy and y'(I H)y are independent.
 - (e) Find the distribution of

$$\frac{\mathbf{y}'\mathbf{H}\mathbf{y}/p}{\mathbf{y}'(\mathbf{I}-\mathbf{H})\mathbf{y}/(n-p)}.$$