Árvores Binárias de Busca

1. Um breve comentário sobre os algoritmos de busca em tabelas

De uma maneira geral, são realizadas operações de busca, inserção e remoção de elementos numa tabela.

A busca sequencial tradicional é O(N). Não é eficiente, mas permite inserções e remoções rápidas. A inserção pode ser feita no final da tabela, pois a ordem não precisa ser preservada. A remoção de um elemento deveria ser seguida de uma compactação da tabela que é demorada. Podemos simplesmente marcar o elemento removido, substituindo-o por um valor especial que nunca fará parte da tabela. A remoção fica mais simples, mas não diminuímos o tamanho da tabela.

A busca binária é O(logN). É muito eficiente, mas a tabela deve estar em ordem crescente ou decrescente. Portanto inserções e remoções são muito ineficientes. Para inserir ou remover mantendo a ordem, é necessário deslocar parte da tabela.

A busca em tabela hash sequencial depende da função de hash e da variedade dos dados. Uma vantagem é que permite inserção de novos elementos. A remoção não é permitida, pois altera a estrutura da tabela. Entretanto podemos simplesmente marcar o elemento removido como na busca sequencial acima. Ele permanece na tabela, mas com status de removido.

No caso geral, pouco se pode afirmar sobre a eficiência do hash em tabela sequencial. Depende da função de hash e dos dados. No pior caso é O(N). Outro inconveniente é que no hash a tabela ocupa mais espaço.

No caso do hash com lista ligada, inserção e remoção são facilitadas com a ocupação ideal de memória. Entretanto no pior caso, a busca continua sendo O(N).

A situação ideal seria um algoritmo que tivesse a eficiência da busca binária O(logN), permitisse inserções e remoções rápidas e que a tabela ocupasse somente o espaço necessário.

Algoritmo	Busca	Inserção	Remoção
Sequencial	O(n)	O(1)	O(1) – [1]
			O(n) - [2]
Binária	O(log n)	O(n) - [3]	O(1) - [1]
			O(n) - [2]
Hash	O(1) - [4]	O(1) - [4]	O(1) - [1]
	O(n) - [5]	O(n) - [5]	O(n) - [6]
Hash com Lista	O(1) - [4]	O(1) - [7]	O(1) - [4]
Ligada	O(n) - [5]	O(n) - [8]	O(n) - [5]
Ideal	O(log n)	Melhor que O(n)	Melhor que O(n)
		_	

Observações:

- [1] Marcando o elemento. Sem compactar a tabela
- [2] Compactando a tabela
- [3] Para manter a classificação, tem que colocar o elemento em sua devida posição
- [4] Se for possível uma função de hash que garanta uma boa distribuição de forma a limitar a quantidade elementos por sub-lista
- [5] O pior caso ocorre quando os elementos estão todos contíguos
- [6] Ao remover um elemento é necessário verificar os seguintes para manter a estrutura da tabela
- [7] Se a inserção for no primeiro elemento
- [8] Se a inserção for no final e eventualmente todos estão na mesma lista

A situação ideal é conseguida quando a tabela tem uma estrutura em árvore de busca.

Dentre os vários tipos de árvores de busca, as mais simples são as árvores binárias de busca que veremos a seguir.

2. Árvores binárias

Chamamos de Árvores Binárias (AB), um conjunto finito T de nós ou vértices, onde existe um nó especial chamado **raiz** e os restantes podem ser divididos em dois subconjuntos disjuntos, chamados de sub-árvores esquerda e direita que também são Árvores Binárias. Em particular T pode ser vazio.

Cada nó numa AB pode ter então 0, 1 ou 2 filhos. Portanto, existe uma hierarquia entre os nós. Com exceção da raiz, todo nó tem um nó pai.

Dizemos que o nível da raiz é 1 e que o nível de um nó é o nível de seu pai mais 1. A altura de uma AB é o maior dos níveis de seus nós.

Dizemos que um nó é folha da AB se não tem filhos.

3. Árvores binárias de busca

Seja T uma AB. Se v é um nó de T, chamamos de info(v) a informação armazenada em v.

Chamamos T de Árvore Binária de Busca (ABB) quando:

Se v1 pertencente à sub-árvore esquerda de v então info(v1) < info(v).

Se v2 pertencente à sub-árvore direita de v então info(v2) > info(v).

Os exemplos acima mostram que podemos ter várias ABBs com os mesmos elementos. Conforme veremos à frente o objetivo é sempre termos uma ABB de menor altura. Nesse sentido a primeira ABB acima é melhor que a segunda.

Um exemplo de AB de muitos níveis e poucos elementos:

O exemplo abaixo <u>não é ABB</u>. O 2 está à direita do 4.

Uma ABB pode ter elementos repetidos. Podemos colocá-los na sub-árvore esquerda ou direita. Nos algoritmos abaixo vamos considerá-los sempre à direita. Dessa forma, os algoritmos para procurar um determinado elemento caso ele apareça mais vezes ficam mais simples.

4. Árvores binárias como listas ligadas

Podemos representar uma ABB com uma lista ligada, onde cada elemento tem os seguintes campos:


```
info - campo de informaçãoeprox - apontador para a sub-árvore esquerdadprox - apontador para a sub-árvore direita
```

Portanto, podemos representar uma ABB como um nó que é a raiz e duas referências para as respectivas sub-árvore esquerda e direita:

class ABB:

```
def __init__ (self, raiz):
    ''' cria uma nova ABB com esta raiz e sem filhos.'''
    self._info = raiz
    self._eprox = None
    self. dprox = None
```

Podemos agora escrever os seus métodos principais. Em vez disso, vamos escrever os algoritmos como funções independentes.

5. Algoritmos de busca

Função que procura elementos com info igual a v numa ABB h. A versão abaixo é recursiva e devolve o primeiro nó encontrado com info igual a v ou None se não encontrou:

```
# Procura elemento com info igual a v na ABB h
# Versão recursiva
def busca(h, v):
    if h is None: return None
    t = h._info
    if t == v: return h
    if v < t:
        return busca(h._eprox, v) # procura à esquerda
    else:
        return busca(h. dprox, v) # procura à direita</pre>
```

Complexidade da busca

No pior caso, o número de comparações é igual ao número de nós da árvore, no caso em que a árvore tem tantos níveis quanto o número de elementos. Portanto a complexidade é O(N).

A complexidade é a altura da árvore, portanto é conveniente que a árvore tenha sempre altura mínima.

A árvore que possui tal propriedade é uma AB dita **completa** (todos os nós com filhos vazios estão no último ou penúltimo nível). Neste caso a complexidade é O(log N) ou seja: Se T é uma AB completa com N>0 nós então T possui altura H mínima e H=1+log₂ N (considerando o valor de log₂ N truncado).

O lema a seguir dá a relação entre altura e número de nós de uma AB completa:

Lema:

```
Seja T uma AB completa com N nós e altura H. Então 2^{(H-1)} \le N \le 2^H - 1.
```

Prova:

Se a AB completa possui apenas 1 nó no seu nível inferior então $N = 2^{(H-1)}$. Se a AB completa está cheia $N = 2^H - 1$.

A2

Vejamos agora a versão não recursiva para a busca. A chamada buscaNR(r, x) procura elemento com info igual a x na ABB r. Devolve o primeiro nó encontrado com info = x ou None caso não encontre:

```
# Procura elemento com info igual a v na ABB h
# Versão não recursiva
def buscaNR(h, v):
    p = h
    while p is not None:
        t = p._info
        if v == t: return p # encontrou
        if v < t: p = p._eprox # à esquerda
        else: p = p._dprox # à direita
# se chegou aqui é porque não encontrou
    return None</pre>
```

6. Outros algoritmos

A função a seguir conta o número de nós de uma AB com determinado valor de info. A chamada conta (r, x) devolve o número de elementos iguais a x da AB r.

```
# conta elementos com info igual a v na ABB h
def conta(h, v):
    if h is None: return 0
    # verifica se conta este nó
    if v == h._info: a = 1
    else: a = 0
    # conta esta nó mais as ABBs esquerda e direita
    return a + conta(h. eprox, v) + conta(h. dprox, v)
```

Estamos supondo neste caso que os elementos iguais podem estar à direita ou à esquerda. O algoritmo acima percorre toda a ABB.

Exercícios:

- 1) Refaça, supondo que elementos iguais, estarão sempre à direita.
- 2) Refaça novamente usando algoritmo não recursivo. Nas duas formas, recursivo ou não recursivo.

A4

Transformar um vetor de n elementos, já ordenado, numa ABB mais ou menos equilibrada. A idéia é sempre pegar um elemento médio como raiz da sub-árvore. Para facilitar as chamadas recursivas vamos fazer a função de modo que a mesma se aplique a qualquer trecho contíguo do vetor. Assim, a chamada raiz = monta (a, 0, n-1) faz a montagem da árvore com os elementos a [0] até a [n-1], devolvendo uma referência para a raiz da árvore. A chamada raiz = monta (a, n1, n2) faz o mesmo para os elementos a [n1] até a [n2].

```
# Monta uma ABB a partir de uma lista já classificada
# Elementos repetidos podem ficar tanto a esquerda quanto a
direita
def montaABB(a, iesq, idir):
    # verifica se há elementos na lista
    if iesq > idir: return None
    m = (iesq + idir) // 2 # element médio
    abb = ABB(a[m])
    abb_esq = montaABB(a, iesq, m - 1)
    abb_dir = montaABB(a, m + 1, idir)
    abb._eprox = abb_esq
    abb._dprox = abb_dir
    return abb
```

O trecho abaixo cria duas ABBs a partir de listas classificadas.

```
lista = [0, 1, 2, 3, 4, 5, 6]
outralista = [0,1,1,2,2,2,3,3,3,3,4,4,4,5,5,6,7,8,9]
mabb = montaABB(lista, 0, 6)
moabb = montaABB(outralista, 0, 18)
```

Exercícios:

1) Desenhe a ABB construída pelo algoritmo acima para as listas:

```
[0, 1, 2, 3, 4, 5, 6]
[0, 1, 1, 3, 4, 4, 5, 6, 6]
```

2) Refaça a função montaABB acima usando sub-listas do Python. A função terá então um só parâmetro montaABB(a).

A5

Função que conta o número de nós de uma AB. A chamada conta (r), devolve o número de nós da AB apontada por r.

```
# Conta o número de nós de uma ABB h
def contaNN(h):
    if h is None: return 0
    return 1 + contaNN(h. eprox) + contaNN(h. dprox)
```

Exercícios

Baseado na solução acima escreva as seguintes funções:

- 1. Função contal (h) que conta o número de folhas de uma AB h.
- 2. Função conta2 (h) que conta o número de nós que tenham pelo menos um filho de uma AB h.
- 3. Função conta3 (h, x) que conta número de elementos com info >= x de uma ABB h.
- 4. Idem ao problema A4 acima, considerando uma ABB onde elementos iguais ficam à direita.

A6

Função que devolve uma lista com todos os campos de informação (info) dos nós de certo nível da ABB. A chamada **listaniveis** (h, lista, 3, 0) lista todos os nós de nível 3 da ABB h. Vamos convencionar que a raiz tem nível zero. O último parâmetro é usado apenas para controle e na chamada inicial tem que ser igual ao nível da raiz.

```
# Devolve lista com todos os nós de um certo nivel niv
def listaniveis(h, listnos, niv, niv_atual):
    if niv == niv_atual:
        if h is not None: listnos.append(h._info)
        else: listnos.append(None)
        return
    # ainda não chegou neste nível
    if h is not None:
        listaniveis(h. eprox, listnos, niv, niv atual + 1)
```

```
listaniveis(h._dprox, listnos, niv, niv_atual + 1)
else:
    listaniveis(None, listnos, niv, niv_atual + 1)
    listaniveis(None, listnos, niv, niv atual + 1)
```

O trecho abaixo lista todos os níveis de uma ABB:

```
# lista cada um dos níveis da ABB mabb
k = 0
while True:
    ln = []
    listaniveis(mabb, ln, k, 0)
    if ln.count(None) == 2 ** k: break
    print("nivel ", k,":", ln)
    k = k + 1
print("Esta ABB tem", k, "níveis")
```

A7

Transformando o trecho acima numa função:

```
def ImprimeNiveisABB(h, nomeABB):
    print("\n\nLista a ABB:", nomeABB, "nível a nível")
    k = 0
    while True:
        ln = []
        listaniveis(h, ln, k, 0)
        if ln.count(None) == 2 ** k: break
        print("nivel ", k,":", ln)
        k = k + 1
    print("ABB", nomeABB, "com", k, "níveis")
```

A8

Função que percorre a ABB, visitando a sub-árvore esquerda, a raiz e a sub-árvore direita. Nesta ordem, os nós serão visitados em ordem crescente do campo info.

```
def ImprimeABB(h):
    if h is None: return
    ImprimeABB(h._eprox)
    print(h._info)
    ImprimeABB(h. dprox)
```

Exercícios:

- 1) Idem visitando primeiro a raiz, sub-árvore esquerda e direita (ordem pré-fixa)
- 2) Idem visitando primeiro a sub-árvore esquerda, a direita e a raiz (ordem pós-fixa)

7. Algoritmos de inserção numa ABB

Um novo elemento é inserido sempre como uma folha de uma ABB. É necessário descer na ABB até encontrar o nó que será o pai deste novo nó.

A9

Uma versão não recursiva para a inserção numa ABB. A função insere(h, x), insere elemento com info igual a x em seu devido lugar dentro da ABB h. Se o parâmetro h for None, a ABB não existe ainda e este é o primeiro elemento. Se x já estiver em algum nó da ABB, a inserção será à direita.

```
# Insere elemento com info x na ABB h
# Elementos iquais sempre a direita
def insere(h, x):
    # verifica se será o primeiro
    if h is None:
       h = ABB(x)
        return h
    # procura o lugar para inserir x
    # percorre a ABB até achar um nó com o filho None
   p, q = h, h
    while q is not None:
       v = q. info
       p = q
        # à esquerda ou à direita
        if x < v: q = q. eprox # esquerda
                               # direita
        else: q = q. dprox
    # Neste ponto, p é o pai do nó a ser inserido
    # Verificar novamente se é a esquerda ou direita
    q = ABB(x)
    if x < p. info: p. eprox = q
    else: p. dprox = q
    return h
```

O trecho abaixo constrói uma ABB por inserções sucessivas:

```
abb = None
for k in [4, 7, 85, 98, 4, 5, 6]: abb = insere(abb, k)
```

Exercício:

- 1) A versão acima usa duas referências (p e q) para percorrer a ABB. Refaça usando apenas uma referência.
- 2) Escreva uma versão recursiva da inserção

Complexidade da construção de uma ABB por inserções sucessivas

Para inserir elemento é necessário achar o seu lugar. Portanto a complexidade é a mesma da busca.

Usando-se o algoritmo acima e inserindo-se um a um, podemos no pior caso (ABB com um só elemento por nível - tudo à esquerda, tudo à direita ou ziguezague) chegar a: 1+2+3+...+n = n. (n+1)/2 acessos para construir toda a árvore. Portanto $O(n^2)$.

Se os elementos a serem inseridos estiverem ordenados, usando o algoritmo A4, a complexidade é O(N). Observe que não é necessário percorrer a ABB no algoritmo A4. Porém, seria necessário ordenar antes a lista de elementos a serem inseridos.

Complexidade da inserção em uma ABB

No pior caso é O(n).

No melhor caso, supondo a **árvore completa** (folha da árvore) teremos que percorrer os níveis como na busca. Portanto 1+log n. Temos então um algoritmo $O(\log n)$.

8. Algoritmo de remoção numa ABB

A remoção é um pouco mais complexa que a busca ou inserção. O problema da remoção física de um nó é que é necessário encontrar outro nó para substituir o removido, caso o nó a ser removido tenha filhos.

Dois casos a considerar:

1) O nó a ser removido não tem filhos esquerdo e/ou direito.

É só alterar o ponteiro para o nó a substituir e remover fisicamente o nó. Se não há filhos, basta mudar o ponteiro do pai para NULL.

2) O nó a ser removido tem filhos direito e esquerdo:

Os candidatos a substituto são obtidos percorrendo-se a ABB:

Um à esquerda e tudo a direita até achar nó com dprox NULL . Ou um a direita e tudo à esquerda até achar nó com eprox NULL. Determinado o candidato a substituir, é preciso então:

- a) Substituir o conteúdo (campo info) do nó a ser substituído pelo do candidato.
- b) Como o candidato pode ter filhos (apenas esquerdo ou apenas direito), esses filhos serão herdados pelo pai do candidato. Basta então mudar o ponteiro desse nó pai do candidato para o seu filho.

Essas são as linhas gerais para os algoritmos de remoção mas não vamos detalhá-los.

9. Árvores Binárias de Busca Completas

Já vimos que o problema das ABB é que ela pode ficar desbalanceada com a inserção e remoção de novos elementos. A situação ideal em uma ABB é que ela se já **completa** (como o menor número possível de níveis).

Como seria possível mantê-la **completa**?

Isso pode ser feito de 2 maneiras:

Árvores Binárias de Busca MAC122 - Marcilio

- 1) Toda vez que um elemento é inserido ou removido, rearranja-se a ABB para a mesma continue **completa**.
- 2) Inserir e remover elementos da maneira usual e de tempos em tempos executar um algoritmo que reconstrói a ABB deixando-a **completa**.

Existem vários algoritmos com esses objetivos. **Não serão vistos neste curso**. Apenas citamos 2 tipos mais comuns abaixo. Nessas ABBs, os algoritmos de inserção e remoção já o fazem deixando a ABB completa ou balanceada.

Com uma ABB **completa**, chegamos a situação ideal de busca, pois temos uma algoritmo equivalente ao da busca binária O(log N), em uma tabela que permite inserções rápidas (O(log N)) e remoções tão rápidas quanto possível (O(N) no pior caso). Além disso, só usa a quantidade de memória necessária.

10. Outras Árvores Binárias

Apenas citando os tipos mais importantes:

10.1 Árvores Binárias de Busca AVL (Adelson-Vesky e Landis (1962))

Cada nó mantém uma informação adicional, chamada fator de balanceamento que indica a diferença de altura entre as sub-árvores esquerda e direita.

As operações de inserção e remoção mantém o fator de balanceamento entre -1 e +1.

10.2 Árvores Binárias de Busca Rubro-Negras

É uma ABB com as seguintes propriedades:

- 1. Todo nó é vermelho ou preto.
- 2. Toda folha é preta.
- 3. Se um nó é vermelho então seus filhos são pretos.
- 4. Todo caminho da raiz até qualquer folha tem sempre o mesmo número de nós pretos.

Com essas propriedades, é possível manter a ABB mais ou menos balanceada após inserções e remoções.

11. Outras Árvores de Busca

Árvores de Busca, não precisam ser necessariamente binárias. Podemos construir árvores com vários elementos em cada nó (n-árias). Cada elemento possui um ramo esquerdo (menores) e um ramo direito (maiores ou iguais).

Este é o caso das chamadas **B-Árvores**. Também **não serão vistos neste curso.** São usadas principalmente para arquivos em banco de dados.

Árvores Binárias de Busca MAC122 – Marcilio – Revisão 02/11/2019

No caso de arquivos interessa muito diminuir a quantidade de acessos a disco. Assim, a cada leitura, vários nós estarão disponíveis na memória. A quantidade de níveis da árvore diminui e, portanto a quantidade de acessos para se procurar um elemento.