Exercice I

Voici la courbe représentative d'une fonction.

Conjecturer les limites suivantes :

a)
$$\lim_{x \to -\infty} f(x)$$

b)
$$\lim_{x \to +\infty} f(x)$$

c)
$$\lim_{\substack{x \to -2 \\ x < -2}} f(x)$$

d)
$$\lim_{\substack{x \to -2 \\ r > -2}} f(x)$$

e)
$$\lim_{\substack{x \to 3 \\ x < 3}} f(x)$$

f)
$$\lim_{\substack{x \to 3 \\ x > 3}} f(x)$$

Exercice II

On considere la fonction définie sur $\mathbb R$ par $f(x) = \frac{ax^2 + bx + c}{x^2 + 1}$, où a, b et c sont trois réels. La courbe $\mathscr C_f$ est donnée ci-dessous.

- 1. (a) Calculer les limites en $-\infty$ et $+\infty$ de f(x).
 - (b) En déduire, à partir du graphique, la valeur de *a*.
- 2. Déterminer, à partir du graphique, les valeurs de *c* puis *b*.

Exercice III

Voici la courbe représentative d'une fonction f définie sur $\mathbb R$:

Cette fonction est-elle continue?

Exercice IV

Même question avec la fonction suivante :

Exercice V

On considère la fonction définie sur \mathbb{R} par :

$$f(x) = \begin{cases} 2x - 1 & \text{si } x \le 1\\ x^2 & \text{si } > 1 \end{cases}$$

- 1. Représenter graphiquement cette fonction.
- 2. f est-elle continue sur \mathbb{R} ? Justifier par un calcul.

Exercice VI

On considère la fonction définie sur ℝ par :

$$f(x) = \begin{cases} e^x \text{ si } x \le 0\\ x + 2 \text{ si } > 0 \end{cases}$$

- 1. Représenter graphiquement cette fonction.
- 2. f est-elle continue sur \mathbb{R} ? Justifier par un calcul.

Exercice VII

On considère la fonction définie sur \mathbb{R} par :

$$f(x) = \begin{cases} x^2 - 2x + 3 & \text{si } x \le 3 \\ m & \text{si } > 32 \end{cases}$$

- 1. Pour quelle(s) valeur(s) de m la fonction f est-elle continue sur \mathbb{R} ?
- 2. Représenter alors graphiquement la courbe représentative de f pour la ou les valeur(s) de m trouvée(s) précédemment.