Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z laboratorium nr 3

Sobolewski Konrad, Różański Antoni, Giełdowski Daniel

Spis treści

1.	Opis	obiektu 2
2.	Zada	nie 1: Punkt pracy
3.	Zada	nie 2: Odpowiedzi skokowe
	3.2.	Skrośnie odpowiedzi skokowe
4.	Zada	nie 3: Znormalizowane odpowiedzi skokowe
5.	Zada	nie 4: Algorytmy PID i DMC
		Cyfrowy algorytm PID
6.	Zada	nie 5: Strojenie regulatora PID i DMC
		Regulator PID
		Regulator DMC 21 6.2.1. Początkowe nastawy 21
	6.3. 6.4.	Korekta parametru Nu
	6.5.	Podsumowanie

1. Opis obiektu

Obiektem używanym na laboratorium było stanowisko grzejąco-chłodzące przedstawione schematycznie na poniższym rysunku 1.1. Stanowisko składa się z 4 wentylatorów (W), 2 grzałek (G), 5 czujników temperatury (T), pomiaru prądu (P1) oraz napięcia (P2). Nie korzystaliśmy jednak w tym ćwiczeniu ze wszystkich elementów stanowiska. Przez cały czas trwania ćwiczenia uruchomione były wentylatoray W1 oraz W2, które ustawione na stałe 50% mocy symulowały stałe niemierzalne zakłócenie. Stanowisko grzewcze było doskonale symetryczne, tj. grzałki G1 i G2 były identyczne, czujniki T1 i T3 również były identyczne, a szkielet stanowiska był jednorodny i jednakowej grubości w każdym punkcie. Symulowany był obiekt o dwóch wejściach i dwóch wyjściach - sterowaniami naszego obiektu były grzałki G1 oraz G2. Jako wyjśca zostały przyjęte czujniki temperatury T1 oraz T3. Nie odczytywaliśmy wartości z pozostałych czujników; nie były one istotne dla naszego eksperymentu. Ze względu na to, że mierzonym medium była temperatura, obiekt był narażony na różnego rodzaju szumy i zakłócenia. Jego położenie także nie sprzyjało dokładnym pomiarom (otwarte drzwi). Z tych powodów pomiary z niego otrzymane mogły zawierać odchylenia od wartości właściwej.

Rys. 1.1. Schemat stanowiska grzejąco-chłodzącego

2. Zadanie 1: Punkt pracy

Pierwszym poleceniem było sprawdzenie możliwości sterowania i pomiaru w komunikacji ze stanowiskiem oraz określenie wartości wyjść obiektu Y_{1pp} (pomiaru T1) oraz Y_{2pp} (pomiaru T3) w punkcie pracy $U_{1pp}=25+nz$ oraz $U_{2pp}=30+nz$, gdzie dla naszego zespołu nz=11. Obiekt zachowywał się prawidłowo - umożliwiał zarówno sterowanie temperaturą jak i jej odczyt. Następnie przeszliśmy do badania zachowania obiektu w punkcie pracy: ustawiliśmy wartość sterowania (moc grzania grzałek G1 i G3) na U_{1pp} i U_{2pp} i odczekaliśmy znaczną ilość czasu (powyżej 8 minut). Wyjścia ustabilizowały się w pobliżu wartości $Y_{1pp}=39$ oraz $Y_{2pp}=41.31$ (czasami występowały niewielkie skoki spowodowane prawdopodobnie zakłóceniami z otoczenia). Ostatecznie zdecydowaliśmy się zachować te wartości.

Rys. 2.1. Wykresy Y(k) w punktach pracy Upp

3. Zadanie 2: Odpowiedzi skokowe

3.1. Skrośnie odpowiedzi skokowe

Kolejnym zadaniem było wyznaczenie trzech skrośnych odpowiedzi skokowych obiektu. Wykonaliśmy skoki na grzałce G1, rozpoczynające się w puncie pracy i zmierzyliśmy wyjście obiektu na czuniku T3 (tj. odpowiedż skoką w torze $y_2(u_1)$. Wyniki tego eksperymentu znajdują się na rysunku 3.1. Kolejno były wykomywame skoki sygnałem sterującym mocą grzałki o 5%, 10% i 15%. Dla przedstawionych odpowiedzi skok sterowania następował w chwili k=10, co oznacza, że dopiero od k=11 wykresy przedstawiają właściwe odpowiedzi skokowe. Ponieważ obiekt był doskonale symetryczny, nie było potrzeby wykonywania drugiej skrośnej odpowiedzi skokowej $y_1(u_2)$ - jest ona identyczna.

Z wykresu można także odczytać, jak w trakcie trwania ćwiczenia przesuwał się punkt pracy w górę. Było to zapewne konsekwencją wzrastającej temperatury w laboratorium.

Rys. 3.1. Wykresy $S_2(k)$ dla różnych skoków sterowania z $U_{1pp}=36$ o dU

3.2. Właściwości statyczne obiektu

Trudności sprawiło nam określenie, czy właściwości statyczne posiadanego obiektu są liniowe. Biorąc dosłownie końcowe wartości wyjścia skriośnych odpowiedzi skokowych należałoby stwierdzić, że nie są. Należy jednak pamiętać o następujących faktach:

- 1. W okolicy obiektu występowały nieuchronne zakłócenia, które w znaczący sposób wpłynęły na odczyty;
- 2. Analizowane są odpowiedzi skrośne, które mają stosunkowo małe wzmocnienie i szum będzie na nie z tego powodu mocniej wpływał;
- 3. W trakcie trwania laboratorium punkt pracy przesuwał się w górę, co rówież utrudnia poprawną interpretację wyniku;
- 4. Doświadczenia z poprzednich laboratoriów na tym obiekcie wskazują, że jest to obiekt liniowy.

Mając na uwadze powyższe fakty, można zauważyć w przebiegach pewne prawidłowości. Przy skoku sterowania o 5% temperatura podniosła się o około 0,4 stopnia, a przy skoku o 15% o około 1,2 stopnia. Jak można zauważyć, wyjście wzrosło o około 3 razy większą wartość przy 3 razy większym skoku, więc zachowało się liniowo. Gdyby założyć, że przy skoku o 10% nastąpiły większe zakłócenia niż przy innych i odczyt jest zbyt duży, to można by stwierdzić, że charakterystyka statyczna obiektu jest w przybliżeniu liniowa, a jej wzmocnienie statyczne toru $y_2(u_1)$ wynosi około 0,4/5=0,08.

Liniowy charakter obiektu potwierdzają także wykresy odpowiedzi skokowej nieskrośnej - na 3.2 zostały przedstawione charakterystyki $y_1(u_1)$ przesunięte do wspólnego punktu pracy:

Rys. 3.2. Przesunięte do wspólnego punktu pracy wykresy $S_1(k)$ dla różnych skoków sterowania z $U_{1pp}=36$ o dU

Widać na nich statytyczny charakter przebiegów - odległości między wartościami końcowymi poszczególnych skoków są bliskie tej samej wartości. Odczytujemy z niej wzmocnienie statyczne toru $y_1(u_1)$, które wynosi około 2, 85/10 = 0, 285. Jak można wnioskować z tych wartości, wyjście y_1 na zmianę u_1 powinno reagować w przybliżeniu 2.5x mocniej, niż wyjście y_2 .

Ponieważ obiekt jest idealnie symetryczny a obie grzałki mają takie same właściwości, tory $y_1(u_2)$ i $y_2(u_2)$ będą lustrzanym odbiciem torów dla wejścia nr 1. Tak więc: wzmocnienie statyczne toru $y_1(u_2) = 0,08$, a wzmocnienie statyczne toru $y_2(u_2) = 0,285$.

3.3. Charakterystyki statyczne procesu T1(G1,G2), T3(G1,G2)

Z powodu ograniczonego czasu na laboratorium, nie byliśmy w stanie zebrać odpowiedzi dla różnych kombinacji obu wejść. Posiadając jednak wartości opisane w poprzednim podpunkcie, możemy bez problemu utworzyć trójwymiarowe wykresy obrazujące wyjście obu wyjść w zależności od obu wejść. Tworzymy je w oparciu o dwa fakty: stanowisko jest symetryczne - właściwości odpowiednich torów $(y_1(u_1) \text{ i } y_2(u_2) \text{ oraz } y_1(u_2) \text{ i } y_2(u_1))$ są identyczne oraz zachowane są właściwości liniowe, możemy więc skorzystać z zasady superpozycji: przykładowo, wyjście y_1 w stanie ustalonym dla skoku sterowania $du_1 = 10 \text{ i } du_2 = 15 \text{ będzie wynikiem sumy: wartości } y_1$ w punkcie pracy, różnicy między wartością końcową i początkową odpowiedzi skokowej $y_1(u_1)$ dla skoku $du_1 = 10$ oraz różnicy między wartością końcową i początkową odpowiedzi skokowej $y_2(u_1)$ dla skoku $du_1 = 15$. Zbiór punktów utworzonych w ten sposób pozwala na utworzenie płaszczyzny.

Kompletne charakterystyki przedstawiają poniższe wykresy 3.3 i 3.4.

Rys. 3.3. $y_1(u_1, u_2)$

Rys. 3.4. $y_2(u_1, u_2)$

8

Należy zaznaczyć, że nie tworzą one idealnych płaszczyzn - wynika to z istoty rzeczywistego obiektu, jakim jest stanowisko grzewcze oraz zakłóceń otoczenia, których obecność powoduje obarczenie odczytów nieuchronnym błędem.

4. Zadanie 3: Znormalizowane odpowiedzi skokowe

Kolejnym poleceniem było wyznaczyć znormalizowane odpowiedzi skokowe (takie jakie wymagane są do algorytmu DMC) i zaproksymować je, używając w tym celu członu inercyjnego drugiego rzędu z opóźnieniem. Człon posiada 4 parametry: T_1 , T_2 , K (dalej oznaczane jako K_p) i T_d (w dalszej części sprawozdania oznaczane jako TD). Nazwy zostały zmienione, by nie mylić ich z parametrami algorytmu PID. Człon jest opisany wzorami powstałymi po przekształceniu jego transmitancji:

$$\alpha_1 = e^{-\frac{1}{T_1}} \tag{4.1}$$

$$\alpha_2 = e^{-\frac{1}{T_2}} \tag{4.2}$$

$$a_1 = -\alpha_1 - \alpha_2 \tag{4.3}$$

$$a_1 = \alpha_1 \alpha_2 \tag{4.4}$$

$$b_1 = \frac{K_p}{T_1 - T_2} [T_1(1 - \alpha_1) - T_2(1 - \alpha_2)]$$
(4.5)

$$b_1 = \frac{K_p}{T_1 - T_2} [\alpha_1 T_2 (1 - \alpha_2) - \alpha_2 T_1 (1 - \alpha_1)]$$
(4.6)

$$y(k) = b_1 u(k - TD - 1) + b_2 u(k - TD - 2) - a_1 y(k - 1) - a_2 y(k - 2)$$

$$(4.7)$$

W celu doboru parametrów członu wykorzystano funkcję fmincon. Jako początkowe wartości dobieranych parametrów wybraliśmy [11, 10, 1, 10], 11 i 10 dla T_1 i T_2 żeby nie były takie same, 1 dla K_p , bo przy dotychczas zebranych przebiegach nie spodziewaliśmy się dużego wzmocnienia dla tego obiektu i 10 dla TD, bo z obserwacji wynika, że opóźnienie obiektu jest bliskie tej wartości. Od dołu ograniczyliśmy wszystkie parametry zerami. Od góry ograniczyliśmy je wartościami [1000, 1000, 20, 30], tak, by każdy parametr miał przedział dostosowany do swoich potrzeb (duże zmiany dla T_1 i T_2 , małe zmiany dla K_p , TD sądząc po wykresach nie powinno przekroczyć 30). Jako odpowiedź do znormalizowania wybraliśmy tą dla skoku o 15, jako najmniej zaszumioną. W wyniku normalizacji przekształciliśmy ją do odpowiedzi jaką mielibyśmy po skoku jednostkowym (odjęliśmy od każdej zebranej próbki wartość w punkcie pracy dla danego wyjścia i podzieliliśmy otrzymane wartości przez skok). Następnie po wykonaniu aproksymacji otrzymaliśmy parametry członu równe $T_1=60,41746,\,T_2=9,98566,\,K_p=0,26426$ i Td=13 przy błędzie optymalizacji e = 0,0066 dla toru $y_1(u_1)$ (analogicznie $y_2(u_2)$) oraz $T_1 = 56,48782, T_2 = 56,99066,$ $K_p = 0,08764$ i Td = 22 przy błędzie optymalizacji e = 0,0030 dla toru $y_2(u_1)$ (analogicznie $y_1(u_2)$). Znormalizowane odpowiedi i jej aproksymacje przedstawiliśmy na poniższych wykresach 4.1, 4.2, 4.4, 4.3.

Rys. 4.1. Wykres znormalizowanej odpowiedzi skokowej i jej aproksymacji toru $y_1(u_1)$

Rys. 4.2. Wykres znormalizowanej odpowiedzi skokowej i jej aproksymacji toru $y_1(u_2)$

Rys. 4.3. Wykres znormalizowanej odpowiedzi skokowej i jej aproksymacji toru $y_2(u_2)$

Rys. 4.4. Wykres znormalizowanej odpowiedzi skokowej i jej aproksymacji toru $y_2(u_1)$

5. Zadanie 4: Algorytmy PID i DMC

5.1. Cyfrowy algorytm PID

W projekcie został wykorzystany regulator cyfrowy PID, którego parametry są opisane poniższymi wzorami, gdzie K - wzmocnienie członu P, T_p - czas próbkowania, T_i - czas zdwojenia członu całkującego I, T_d - czas wyprzedzenia członu różniczkującego D, j - numer toru.

$$r_0^j = K^j * (1 + T_p/(2 * T_i^j) + T_d^j/T_p)$$
(5.1)

$$r_1^{j} = K^j * (T_p/(2 * T_i^{j}) - 2 * T_d^{j}/T_p - 1)$$
(5.2)

$$r_2{}^j = K * T_d{}^j / T_p (5.3)$$

W każdej iteracji pętli sterowania jest obliczany uchyb danego wyjścia obiektu i wartości zadanej tego wyjścia.

$$e(k)^j = Y^{\text{zad}}(k)^j - Y(k)^j \tag{5.4}$$

Sterowanie regulatora zostaje wyliczone na bieżącą chwile przy użyciu wzoru:

$$U(k)^{j} = r_{2}^{j} * e(k-2)^{j} + r_{1}^{j} * e(k-1)^{j} + r_{0}^{j} * e(k)^{j} + U(k-1)^{j}$$
(5.5)

Na końcu zotają nałożone na to sterowanie ograniczenia:

$$0 \leqslant G1(k) \leqslant 100 \tag{5.6}$$

$$0 \leqslant G2(k) \leqslant 100 \tag{5.7}$$

5.2. Analityczny algorytm DMC

Do obliczeń wykorzystujemy następujące wzory:

$$\boldsymbol{y}^{\mathrm{zad}}(k) = \begin{bmatrix} y_1^{\mathrm{zad}}(k) \\ \vdots \\ y_{ny}^{\mathrm{zad}}(k) \end{bmatrix}_{n_{\mathrm{v}} \times 1}$$
 (5.8)

$$\mathbf{y}(k) = \begin{bmatrix} y_1(k) \\ \vdots \\ y_{ny}(k) \end{bmatrix}_{\mathbf{n}_{y} \times 1}$$
 (5.9)

$$\boldsymbol{u}(k) = \begin{bmatrix} u_1(k) \\ \vdots \\ u_{n_u}(k) \end{bmatrix}_{\mathbf{n}_{1} \times 1}$$
 (5.10)

$$\Delta \boldsymbol{u}(k) = \begin{bmatrix} \Delta u_1(k) \\ \vdots \\ \Delta u_{n_u}(k) \end{bmatrix}_{n_u \times 1}$$
(5.11)

$$\mathbf{Y}^{\text{zad}}(k) = \begin{bmatrix} y^{\text{zad}}(k|k) \\ \vdots \\ y^{\text{zad}}(k|k) \end{bmatrix}_{\text{Nxn}_{\text{v}}}$$
(5.12)

$$\Delta \boldsymbol{U}(k) = \begin{bmatrix} \Delta u_1(k|k) \\ \vdots \\ \Delta u_{n_u}(k+N_u-1|k) \end{bmatrix}_{\text{Nxn}_v}$$
 (5.13)

$$\Delta \boldsymbol{U}^{\boldsymbol{P}}(k) = \begin{bmatrix} \Delta u(k-1) \\ \vdots \\ \Delta u(k-(D-1)) \end{bmatrix}_{(D-1)xn_{u}}$$
(5.14)

$$S_{l} = \begin{bmatrix} s_{l}^{11} & s_{l}^{12} & \dots & s_{l}^{1n_{u}} \\ s_{l}^{21} & s_{l}^{22} & \dots & s_{l}^{2n_{u}} \\ \vdots & \vdots & \ddots & \vdots \\ s_{l}^{n_{y}1} & s_{l}^{n_{y}2} & \dots & s_{l}^{n_{y}n_{u}} \end{bmatrix}_{n,y,y,u},$$

$$, l = 1, \dots, D.$$

$$(5.15)$$

$$\mathbf{M} = \begin{bmatrix} S_1 & 0 & \dots & 0 \\ S_2 & S_1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ S_N & S_{N-1} & \dots & S_{N-N_{\mathrm{u}}+1} \end{bmatrix}_{(Nxn_{\mathrm{v}})x(N_{\mathrm{u}}Xn_{\mathrm{u}})}$$
(5.16)

$$\mathbf{M}^{P} = \begin{bmatrix} S_{2} - S_{1} & S_{3} - S_{2} & \dots & S_{D} - S_{D-1} \\ S_{3} - S_{1} & S_{4} - S_{2} & \dots & S_{D+1} - S_{D-1} \\ \vdots & \vdots & \ddots & \vdots \\ S_{N+1} - S_{1} & S_{N+2} - S_{2} & \dots & S_{N+D-1} - S_{D-1} \end{bmatrix}_{(Nxn, x)x((D-1)Xn, y)}$$
(5.17)

$$Y^{0}(k) = Y(k) + M^{P} \triangle U^{P}(k)$$
 (5.18)

$$K = (M^T M + \lambda * I)^{-1} M^T$$
(5.19)

$$\Delta U(k) = K(Y^{zad}(k) - Y^{0}(k)) \tag{5.20}$$

W naszej regulacji potrzebujemy wyznaczyć tylko pierwszy element macierzy $\triangle U(k)$ czyli $\triangle u(k|k)$. W tym celu rozwijamy wzór do postaci:

$$\Delta u(k|k) = k_e e(k) - k_u \Delta U^P \tag{5.21}$$

gdzie:

$$e(k) = Y^{zad}(k) - Y(k)$$

$$(5.22)$$

$$k_e^j = \sum_{i=n_u}^{N*n_y} K(1:n_u, i)$$
 (5.23)

$$\mathbf{k}_{e} = \begin{bmatrix} k_{e}^{1} & k_{e}^{2} \\ k_{e}^{3} & k_{e}^{4} \end{bmatrix}$$
 (5.24)

$$k_u = kM^P (5.25)$$

k to oznaczenie pierwszego wiersza macierzy K. Aktualne sterowanie otrzymujemy poprzez zsumowanie poprzedniego sterowania i aktualnie wyliczonego $\triangle u(k|k)$.

Na końcu zotają nałożone na sterowania ograniczenia:

$$0 \leqslant G1(k) \leqslant 100 \tag{5.26}$$

$$0 \leqslant G2(k) \leqslant 100 \tag{5.27}$$

6. Zadanie 5: Strojenie regulatora PID i DMC

Strojenie regulata
ora odbyło się na podstawie oceny regulacji dla zaproponowaej trajektorii zmian sygnałów zadanych składającej się z trzech skoków. Podczas strojenia, jeden z regulatorów jest zawsze wyłączony - ma wzmocnienie $K_p=0$. Dobieramy dla drugiego niego odpowiednie nastawy, kierując się zarówno oceną jakościową (charakter przebiegów sterowania i wyjścia) jak i ilościową - wielkością błędu e. Po dostrojeniu pierwszego regulatora, powinnien nastąpić proces doboru nastaw
 dla drugiego, jednak dla stanowiska grzewczego w laboratorium, sterowalne obiekty (grzałki) są identyczne - ich regulatory więc również powinny być takie same, nie występuje zatem potrzeba ponownego strojenia. Gdy zostaną znalezione nastawy pierwszego regulatora, należy uruchomić drugi z takimi samymi, i wtedy, jeśli zajdzie taka konieczność, końcowo skorygować nastawy obu naraz.

6.1. Regulator PID

6.1.1. Początkowe nastawy

Nastawy regulatora PID zostały dobrane eksperymentalnie. Jako wartości początkowe przyjęliśmy nastawy otrzymane jako optymalne na poprzednich laboratoriach na stanowisku grzewczym, tj: $K_p = 4, T_i = 80, T_d = 3$. Drugi regulator, jak wspomniane zostało we wstępie, został wyłączony. Na rys. 6.1 można obserwować pracę regulatora z takimi nastawami. Jak widać, nie są to nastawy optymalne; regulator jest bardzo powolny oraz występuje uchyb ustalony. Błąd wyjścia Y_1 wyniósł: E = 582,3934.

Rys. 6.1. Działanie algorytmu PID przy początkowych nastawach $K_p=4, T_i=80, T_d=3$ sterującego wejściem ${\cal U}_1$

6.1.2. Korygowanie nastaw

Aby wyeliminować uchyb ustalony, zwiększyliśmy K_p o 2. Aby układ szybciej osiągał wartość zadaną, zwiększyliśmy również wpływ członu całkującego, zmniejszając parametr T_i o 20. Również postanowiliśmy zmniejszyć wpływ członu różniczkującego T_d - wyhamowanie narastania wartości wayjściowej w okolicach k=150 mogło wynikać ze zbyt dużej wartości tego parametru. Tak więc nowe nastawy to: $K_p=6, T_i=60, T_d=1$. Dla takich nastaw osiągnęliśmy przebiegi jak na 6.2.

Rys. 6.2. Działanie algorytmu PID przy skorygowanych nastawach $K_p=6, T_i=60, T_d=1$ sterującego wejściem U_1

Otrzymany regulator zapewnia znacznie lepszą jakość regulacji - nie dość, ze regulator jest szybszy, to osiąga wartość zadaną w zadawalającym czasie a sterowanie się poprawiło. Wartość błędu również uległa znacznemu pomniejszeniu: błąd wyjścia Y_1 wyniósł: E=426,5754.

6.1.3. Finalne nastawy

Z powodu presji czasu na laboratorium, nie byliśmy w stanie przeprowadzić kolejnych eksperymentów, aby poprawić jakość regulacji. Postanowiliśmy uruchomić oba regulatory z tymi nastawami, korygując delikatnie parametr T_i w górę - odnieślimy wrażenie, że przebiegi zaczynają mieć oscylacyjny charakter spowodowany zbyt mocnym całkowaniem. Nowa wartość: $T_i=65$. Na poniższych wykresach można zaobserwować działanie gotowego dwuwymiarowego regulatora PID, z nastawami regulatorów podłączonych do obu wejść równymi: $K_p=6$, $T_i=65$, $T_d=1$.

Rys. 6.3. Działanie dwuwymiarowego regulatora PID o nastawach $K_p=6, T_i=65, T_d=1$

Jakość regulacji jest zadowalająca. Oba wyjścia stosunkowo szybko osiągają wartość zadaną, a błąd nie jest duży. Podczas pierwszego, największego skoku wartości zadanej Y_1^{zad} ($dY_1^{zad}=3$) wyjście Y_2 zdaje się wpadać w oscylacje. Trudno nam określić, czy nie są to chwilowe zewnętrzne zakłócenia, gdyż dla następnych skoków wartości zadanej taka sytuacja nie występuje. Należałoby przeprowadzić więcej eksperymentów i ewentualnie zmniejszyć jeszcze wpływ całkowania. Błędy osiągnęły wartości: błąd wyjścia Y_1 wyniósł: $E_1=464,1920$, natomiast błąd wyjścia Y_2 wyniósł: $E_2=446,9870$. Błąd sumaryczny: E=911,1790. Mimo że wartość błędu na wyjściu Y_1 zwiększyła się, należy pamiętać, że zjawisko to jest oczekiwane, gdyż teraz działają oba regulatory, które mogą sobie wzajemnie przeszkadzać.

6.2. Regulator DMC

6.2.1. Początkowe nastawy

Nastawy regulatora DMC zostały dobrane eksperymentalnie. Jako wartości początkowe przyjęliśmy nastawy $N=300,\ Nu=300,\ \lambda=1.$ Wartość 300 wynika z obserwacji obiektu bezpiecznie założyliśmy, że tyle wynosi jego horyzont dynamiki. Obiekt ten nie jest wrażliwy na nagłe zmiany sterowań, ale wartość $\lambda=1$ również założyliśmy bezpiecznie dosyć dużą. Na rys. 6.4 można obserwować pracę regulatora z takimi nastawami. Regulator działa poprawnie, ale nie są to nastawy optymalne; regulator powinien działać szybciej i z mniejszym błedem. Błąd wyjść wyniósł: dla Y_1 : $E_1=482,4677,$ dla Y_2 : $E_2=459,5991.$ Łączny: E=942,0668.

Rys. 6.4. Działanie dwuwymiarowego regulatora DMC o nastawach $N=300, Nu=300, \lambda=1$

6.3. Korekta parametru Nu

Następnie przystąpiliśmy do zmian nastaw: parametr N pozostawiliśmy bez zmian, jako że zarówno teoria jak i nasza praktyka wskazywały, że jego zmniejszanie, jeśli w ogóle, prowadziło do minimalnych zysków w jakości sterowania. Gdyby był to obiekt szybszy lub działający w wymagającym środowisku, można by rozważyć skrócenie tej wartości w celu zmniejszenia złożoności obliczeniowej, jednak dla okresu próbkowania Tp=1 nie jest to konieczne. Wykonaliśmy dwukrotnie eksperyment kolejno dla wartości Nu=150 (rys. 6.5) oraz Nu=100 (rys. 6.6). Błędy w pierwszym eksperymencie osiągnęły wartości: dla Y_1 : $E_1=454,2170,$ dla Y_2 : $E_2=439,2227.$ Łączny: E=893,4397.

Natomiast za drugim razem: dla Y_1 : $E_1 = 375,6482,$ dla Y_2 : $E_2 = 431,5992.$ Łączny: E = 807,2474.

Rys. 6.5. Działanie dwuwymiarowego regulatora DMC o nastawach $N=300, Nu=150, \lambda=1$

Rys. 6.6. Działanie dwuwymiarowego regulatora DMC o nastawach $N=300, Nu=100, \lambda=1$

6.4. Korekta parametru λ

Jako ostatni zmieniony został parametr λ . W celu poprawy szybkości sterowania zmiejszyliśmy jego wartość o połowę (rys. 6.7). Finalnie, błędy osiągnęły wartości: dla Y_1 : $E_1=311,0436$, dla Y_2 : $E_2=407,5791$. Łączny: E=718,6227.

Rys. 6.7. Działanie dwuwymiarowego regulatora DMC o nastawach $N=300, Nu=100, \lambda=0.5$

6.5. Podsumowanie

Tak jak należało się spodziewać, regulator DMC w stosunku do regulatora PID zapewnia lepszą regulację. Zarówno wskaźnik jakości regulacji (dla DMC: E=718,6227, dla PID: E=911,1790) jak i wizualna ocena przebiegów wyjść i sterowania jednoznacznie wskazują algorytm DMC jako lepszy regulator obiektu grzewczego w laboratorium o dwóch wejściach i dwóch wyjściach.