AI4D Africa's Anglophone Research Lab Tanzania Tourism Classification Challenge

By le k-rismatheux

NDINGUE NYA
Fredy Yann
Data Scientist
University of Yaoundé I
yannfredy97@gmail.com
yann.ndingue@fac-sciences-uy1.cm

Project description

The objective of this project is to develop a machine learning model capable of classifying the range of expenditures that a tourist makes in Tanzania. The model can be used by different travelers and the Tanzania Tourism Board to automatically help tourists around the world to estimate their expenses before visiting Tanzania. For more details, see: https://zindi.africa/competitions/ai4d-lab-tanzania-tourism-classification-challenge.

PART I : Exploratory Data Analysis

The first step in any data science project is exploratory data analysis. This makes it possible to understand the data in depth and to extract useful information for the modeling/learning phase. In this project, we followed the following steps for data analysis:

1. Descriptive univariate analysis

Descriptive data analysis provides an understanding of the characteristics of each attribute in the dataset.

Dataset informations

Attributes per type		
Float64	02	
Int64	02	
String	17	
Missing values		
Travel_with	1075	
Totale_female	06	
Total_male	02	

• Attributes distribution

See notebook eda.ipynb

By looking the distribution of the target attribute ('cost category'), we observe class imbalance.

2. Correlations analysis

Here we have mainly used two (02) methods:

- The Chi square test to test the dependence between categorical attributes and the target attribute.
- Countplot to study the dependence between the attributes

We eventually collected the following informations:

- ✓ all categorical attributes seem useful for prediction
- ✓ tourists who subscribe to a package pay more (tour_arrangement vs cost_category)
- ✓ attributes package_accomodation and package_food have a same distribution
- ✓ attributes package_transport_int and package_transport_tz have same distribution
- ✓ attributes package_sightseeing et package_guided_tour have same distribution

3. Feature engineering

After the observations resulting from the data analysis, the following measures were taken:

Attributes	To do
Country	Replace each value with the corresponding continent
age_group	Concat ranges -18, 18-24 with 25-44, and range 45-64 with 65+
travel_with	Replace missing by 'Alone'
total_male,	Replace missing by 1 and create attribute 'total_persons'
total_female	
main_activity	Rename 'Widlife Tourism' by 'Wildlife Tourism' (input error
	when saving data)
package_accomodation	Combine both in 'package_acc_food'
package_food	
package_transport_int	Combine both in 'package_transport'
package_transport_tz	
package_sightseeing	Combine both in 'package_sight_tour'
package_guided_tour	

Categorical encoding: Mean Estimate Encoding / CatBoost

PARTIE II: Modeling

For the learning phase, we opted for the XGBoost model, which has proven itself in recent years in numerous competitions on tabular data. We used a search grid with cross-validation (CV=5) to find the optimal parameters of the model :

- 1. Initialize the model and find the best value of the parameter $n_{estimators}$
- 2. Tune max_depth and min_child_weight
- 3. Tune gamma
- 4. Recalibrate *n* estimators using previous values
- 5. Tune *subsample* et *col_sample_bytree*
- 6. Recalibrate *n_estimators*

Conclusion and further work

This interesting project allowed us to apply the pipeline of a classic data science project from start to end. We were ultimately able to measure the impact of good exploratory data analysis on the results of the prediction model. The final score obtained ($\log_{loss} = 1.045$), although below the best score of the competition (1.032) remains above the score we obtained when the competition closed (1.0497), which proves our progress. To improve, we are considering the option of combining all package_ attributes into one and testing other models or approaches.

Source code:

- ❖ EDA:
 - $\frac{https://colab.research.google.com/drive/1_1oKKLD54RvXWFaBdZc2o0kX4rsKQND}{m?usp=sharing}$
- **❖** Modeling :

 $\frac{https://colab.research.google.com/drive/1cNZNWqA915ZiI0A2T1yp2ZPjEjPNJu47?usp=sharing}{}$