ДОМАШНЕЕ ЗАДАНИЕ №1 ПО КУРСУ "ДИСКРЕТНАЯ МАТЕМАТИКА"

Модуль 1 — Множества и отношения Для специальностей ИУ5, 2 курс, 4 семестр и ГУИМЦ 5,8, 3 курс, 5 семестр

Задача 1

Для заданного теоретико-множественного тождества:

- а) проиллюстрировать тождество диаграммой Эйлера Венна;
- б) проверить тождество методом эквивалентных преобразований и методом характеристических функций.

№ вар.	Тождество	№ вар.	Тождество
1	$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$	16	$(A \cup (A \triangle B) \cup (A \triangle C)) \setminus ((B \cup C) \cap \overline{A}) = A$
2	$A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$	17	$(A \setminus B) \cap (A \setminus C) = (A \triangle (B \cup C)) \setminus (B \cup C)$
3	$(A \backslash B) \backslash C = (A \backslash C) \backslash (B \backslash C)$	18	$(A \cap B \cap \overline{C}) \triangle (A \cap B \cap C) = A \cap B$
4	$A \cap (B \setminus C) = (A \cap B) \setminus C$	19	$(A \setminus B) \triangle (A \setminus C) = (A \cap \overline{B} \cap C) \cup (A \cap \overline{C} \cap B)$
5	$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$	20	$(A \cup B) \triangle (A \cup C) = \overline{A} \cap ((B \cap \overline{C}) \cup (\overline{B} \cap C))$
6	$A \setminus (A \setminus B) = A \cap B$	21	$(A \triangle B) \setminus (A \cup C) = B \cap \overline{A} \cap \overline{C}$
7	$A \cup (B \setminus C) = (A \cup B) \cap (A \cup \overline{C})$	22	$(A \cup B) \triangle (A \cap B) = A \triangle B$
8	$A \setminus (B \cup C) = (A \setminus B) \setminus C$	23	$(A \setminus B) \triangle (B \setminus C) = (A \cup B) \setminus (B \cap C)$
9	$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$	24	$((A \setminus B) \setminus C) \triangle (B \cup C) = A \cap \overline{B} \cap \overline{C} \cup (B \cup C)$
10	$(A \cap B) \setminus (A \cap C) = ((\overline{A \triangle B}) \setminus C) \cap A$	25	$((A \triangle B) \cup (A \triangle C)) \setminus (B \cup C) = (A \setminus B) \setminus C$
11	$A \cup B = A \triangle B \triangle (A \cap B)$	26	$(A \triangle B) \cap (B \triangle C) = (A \cap \overline{B} \cap C) \cup (\overline{A} \cap B \cap \overline{C})$
12	$(A \cap B) \cup (A \cap \overline{B}) = (A \cup B) \cap (A \cup \overline{B})$	27	$(A \cup B) \triangle (A \setminus B) = B$
13	$(((A \cap B) \triangle A) \setminus A) \cup (C \triangle B) = (C \cup B) \setminus (C \cap B)$	28	$(A \setminus B) \triangle (A \cap B) = A$
14	$(A \cap B \cap C) \triangle (A \cup B) = ((A \cup B) \setminus C) \cup (A \triangle B)$	29	$(A \triangle B) \triangle (B \triangle C) = A \triangle C$
15	$(A \cap \overline{B} \cap C) \cup (\overline{A} \cap \overline{B} \cap C) \cup (B \cap C) = C$	30	$A \cup B = (A \triangle B) \cup (A \cap B)$

Задача 2

Для заданных на множестве $A = \{1, 2, 3, 4, 5\}$ бинарных отношений ρ и τ :

- а) записать матрицы и построить графики;
- б) матричным методом найти композицию $\rho \circ \tau$, построить график отношения;
- в) исследовать свойства отношений ρ , τ и $\rho \circ \tau$ (рефлексивность, иррефлексивность, симметричность, антисимметричность, транзитивность).

№		
вар.	ρ	au
		$\{(x, y): -1 \leqslant x - y < 0\}$
2	$\{(x, y): (x - y) = 0 \pmod{2}\}$	$\{(x, y): 2 \leqslant x \leqslant y - 1\}$
3	$\{(x, y): (2x + 2y) \neq 0 \pmod{3}\}$	$\{(x, y): 2x - 1 < y\}$
4	$\{(x, y): xy \leqslant 8\}$	$\{(x, y): x - y \leqslant 1\}$
5	$\{(x, y): x(6-y) \le 8\}$	$\{(x, y): x - y > 2\}$
6	$\{(x, y): x(3-y) \le 3\}$	$\{(x, y): x = 0 \pmod{y}\}$
7	$\{(x, y): (3-x)(3-y) \le 1\}$	$\{(x, y): x + y < 5\}$
8	$\{(x, y): (x-2)(y-2) \le 1\}$	$\{(x, y) \colon 2x \geqslant 3y\}$
9	$\{(x, y): 5 \leqslant x + y \leqslant 8\}$	$\{(x, y): 4 \leqslant xy \leqslant 6\}$
10	$\{(x, y): x - y < 2\}$	$\{(x, y): 2 < x + y \le 5\}$
11	$\{(x, y): 2 \le x - 2y \le 4\}$	$\{(x, y): (x+y+1) = 0 \pmod{2}\}$
12	$\{(x, y): (7x - 2y) \neq 0 \pmod{4}\}$	$\{(x, y): x - y \geqslant 2\}$
13	$\{(x, y): (4-x)(2-y) \le 1\}$	$\{(x, y): 1 \leqslant (x-2)y < 8\}$
14	$\{(x, y): x \geqslant y+1\}$	$\{(x, y): (4-x)(4-y) \le 1\}$
15	$\{(x, y): y > x + 1\}$	$\{(x, y): x - y \leqslant 1\}$
16	$\{(x, y) \colon (x+y) \neq 0 \pmod{2}\}$	$\{(x, y) \colon 6 \leqslant xy \leqslant 12\}$
17	$\{(x, y): (x + y) = 0 \pmod{2}\}$	$\{(x, y): 2 \leqslant y \leqslant x - 1\}$
18	$\{(x, y): x - y < 0\}$	$\{(x, y) \colon 4 \leqslant xy \leqslant 9\}$
19	$\{(x, y) \colon x - y \leqslant 1\}$	$\{(x, y): x(y-2) \leqslant 3, x \neq y\}$
20	$\{(x, y) \colon x - y \geqslant 2\}$	$\{(x, y): x(6-y) \le 8, x \ne y\}$
21	$\{(x, y) \colon y = 0 \pmod{x}\}$	$\{(x, y): (5-x)(5-y) \leqslant 5\}$
22	$\{(x, y): x + y \leqslant 7\}$	$\{(x, y): (x-3)(5-y) \le 1\}$
23	$\{(x, y): 3x \leqslant 2y\}$	$\{(x, y): 1 \leqslant (2-x)(2-y) \leqslant 3\}$
24	$\{(x, y): 2 \leqslant xy \leqslant 5\}$	$\{(x, y): 2 \leqslant x \leqslant y^2 - 3\}$
25	$\{(x, y): 3 < x + y < 6\}$	$\{(x, y): x - y^2 \le 2\}$
26	$\{(x, y): x + y + 2 = 0 \pmod{3}\}$	$\{(x, y): 3 \leqslant x^2 - y \leqslant 5\}$
27	$\{(x, y): x - y + 1 = 0 \pmod{3}\}$	$\{(x, y): 0 \leqslant x^2 - xy \leqslant 9\}$
28	$\{(x, y): 0 \leqslant xy \leqslant 8\}$	$\{(x, y): (5-x)(y^2-3) \geqslant 14\}$
29	$\{(x, y): 0 \leqslant (2-x)(2-y) \leqslant 9\}$	$\{(x, y): 1.5x - y \le 0\}$
30	$\{(x, y): 2 \leqslant (x-1)(y-1) \leqslant 6\}$	$\{(x, y): 0.5y - x \le -3\}$