TD n°2: Dérivation et intégration

Cours:

- 1. Rappeler la définition du nombre dérivé et de la fonction dérivée.
- 2. Rappeler la formule permettant de calculer la tangente à une courbe
- 3. Rappeler la définition d'une primitive et la signification d'une intégrale.

Exercice 1:

Déterminer le sens de variation des fonctions suivantes :

- 1. f définie sur \Re par $f(x) = -3x^2 + 12x 5$ 2. g définie sur \Re par $g(x) = x^3 9x^2 21x + 4$
- 3. $h \text{ définie sur }]-\infty$; 1[\cup]1; + ∞ [par $h(x) = \frac{5x-3}{x-1}$
- 4. (Travail personnel) i définie sur $]-\infty$; $0[\cup]0$; $+\infty[$ par $i(x)=\frac{x^3-2x-1}{x^3}$
- 5. (Travail personnel) j définie sur $[0; +\infty[$ par $j(x) = \frac{\sqrt{x}}{x+1}$

Exercice 2:

On considère la fonction définie sur]0; $+\infty$ [par $f(x) = x + \frac{1}{x}$

Démontrer que cette fonction admet un minimum que l'on précisera.

Exercice 3:

- 1. On considère la fonction définie sur]0; $+\infty$ [par $f(x) = 2x 1 + \frac{3}{x}$ On note C sa courbe représentative dans le plan rapporté à un repère orthogonal. Déterminer une équation de la tangente T à la courbe C au point d'abscisse 1, puis étudier la position de la courbe C par rapport à T.
- 2. On considère la fonction définie sur \Re par $f(x) = x^3 5x^2 + 3x + 1$ On note C sa courbe représentative dans le plan rapporté à un repère orthogonal. Déterminer une équation de la tangente T à la courbe C au point d'abscisse 0, puis étudier la position de la courbe C par rapport à T.

Exercice 4:

- 1. Calculer la primitive en 0 de la fonction a(x) = 10 sachant que A(x = 0) = 2
- 2. Calculer la primitive en 0 de la fonction v(x) = A(x) sachant que V(x = 0) = 3
- 3. Réitérer les opérations précédentes pour a(x) = a; $A(x = 0) = v_0$; $V(x = 0) = x_0$ L'équation ainsi obtenue à une forme très courante en mécanique et permet de modéliser des mouvements uniformément accélérés.
- 4. Quelle est la forme de l'équation précédente si a = 0? Cette forme d'équation est très courante en mécanique et décrit un mouvement uniforme.

Fonction	Dérivée	Ensemble de dérivabilité
$k \ (k \in \mathbb{R})$	0	\mathbb{R}
x	1	\mathbb{R}
$x^n \; (n \in \mathbb{N})$	nx^{n-1}	\mathbb{R}
$rac{1}{x^n} \ (n \in \mathbb{N})$	$-rac{n}{x^{n+1}}$	$\mathbb{R}-\{0\}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$]0;+\infty [$

Fonction	Dérivée
u+v	u'+v'
$ku \; (k \in \mathbb{R})$	ku'
$\frac{1}{u}$ (avec $u(x) \neq 0$ sur I)	$-rac{u'}{u^2}$
uv	u'v+uv'
$\frac{u}{v}$ (avec $v(x) \neq 0$ sur I)	$rac{u'v-uv'}{v^2}$
\sqrt{u} (avec $u\geqslant 0$ sur I)	$rac{u'}{2\sqrt{u}}$ lorsque $u>0$

Fonction	Primitives	Domaine
$x^n, n \in \mathbb{N}$	$\frac{x^{n+1}}{n+1} + C, \ C \in \mathbb{R}$	\mathbb{R}
$\frac{1}{x^n}$, $n \in \mathbb{N} \setminus \{0, 1\}$	$-\frac{1}{(n-1)x^{n-1}}+C,\ C\in\mathbb{R}$	$]-\infty,0[\text{ ou }]0,+\infty[$
$\frac{1}{x}$	$\ln(x)+C,\ C\in\mathbb{R}$]0,+∞[
$x^n, n \in \mathbb{Z} \setminus \{-1\}$	$\frac{x^{n+1}}{n+1} + C, \ C \in \mathbb{R}$	