Komputerowe systemy rozpoznawania

2018/2019

Prowadzący: dr inż. Marcin Kacprowicz

poniedziałek, 14:10

Data oddania:	Ocena:
Data oqqailla:	Ocena:

Justyna Hubert 210200 Karol Podlewski 210294

Zadanie 2: Podsumowania lingwistyczne*

1. Cel

Celem zadania było zaprojektowanie aplikacji desktopowej, która posiada charakter doradczy, generujący pewną ilość podsumowań lingwistycznych dla podanej bazy, a następnie przedstawia użytkownikowu wybrane - według zastosowanych miar jakości wyniki, czyli podsumowania lingwistyczne.

2. Wprowadzenie

Zagadnieniem jakim zajmowaliśmy się w ramach projektu była analiza działania lingwistycznych podsumowań baz danych na zbiorach rozmytych. Zbiór rozmyty jest podstawowym pojęciem wykorzystywanym przy naszym zadaniu, zatem przytoczmy jego definicję:

Definicja 1. Niech \mathcal{X} będzie zbiorem, którego elementy interesują nas w sposób bezpośredni, czyli jest zbiorem klasycznym znanym z teorii mnogości (dany element przynależy do zbioru lub nie przynależy). Wówczas *zbiorem rozmytym opisanym w przestrzeni rozważań* \mathcal{X} nazywamy każdy zbiór A postaci:

$$A = \bigcup_{x \in \mathcal{X}} \{ (x, \mu_A(x)) \},$$

gdzie $\mu_A(x): \mathcal{X} \to [0,1]$ nazywamy funkcją przynależności do zbioru rozmytego A.

^{*} GitHub: https://github.com/hubjust/KSR

Funkcja przynależności określa w jakim stopniu dany element przynależy do zbioru. W zbiorach rozmytych zakres wartości jakie może ona przyjmować jest rozszerzony do przedziału [0,1]. W naszym projekcie skorzystaliśmy z funkcji przynależności trójkątnej oraz trapezoidalnej. Przytoczmy ich definicje:

Definicja 2 (Zbiór rozmyty o trójkątnej funkcji przynależności). Zbiór rozmyty A typu I na uniwersum \mathbb{R} jest liczbą rozmytą trójkątną o parametrach a, b, c wtedy i tylko wtedy, gdy $a \leq b \leq c$ oraz:

$$\mu_A(x) = \begin{cases} 0 & \text{gdy } x \in (-\infty, a], \\ (x - a)/(b - a) & \text{gdy } x \in (a, b), \\ 1 & \text{gdy } x = b, \\ (c - x)/(c - b) & \text{gdy } x \in (b, c), \\ 0 & \text{gdy } x \in [c, +\infty). \end{cases}$$

Definicja 3 (Zbiór rozmyty o trapezoidalnej funkcji przynależności). Zbiór rozmyty A typu I na uniwersum \mathbb{R} jest liczba rozmyta trapezoidalna o parametrach a,b,c,d wtedy i tylko wtedy, gdy $a \leq b \leq c \leq d$ oraz:

$$\mu_A(x) = \begin{cases} 0 & \text{gdy } x \in (-\infty, a], \\ (x - a)/(b - a) & \text{gdy } x \in (a, b), \\ 1 & \text{gdy } x \in [b, c], \\ (d - x)/(d - c) & \text{gdy } x \in (c, d), \\ 0 & \text{gdy } x \in [d, +\infty). \end{cases}$$

Rysunek 1. Przykład funkcji przynależności - trójkatnej oraz trapezoidalnej [3]

Wyjaśnijmy także, czym jest lingwistyczne podsumowanie. Niech \mathcal{D} będzie bazą danych składającą się z m krotek opisujących poszczególne rekordy. Przyjmijmy, że każda kolumna opisuje cechę pewnego typu. Taką cechę możemy nazwać zmienną lingwistyczną. Może ona przyjmować konkretne wartości liczbowe lub rozmyte (np. mało/trochę/dużo/sporo). Zdefiniujmy także P. Niech P będzie podmiotem podsumowania lingwistycznego (np. mężczyźni, kobiety, samochody, zawodnicy). Bardzo ważnym elementem, wykorzystywanym we wszystkich rodzajach podsumowań lingwistycznych, jest kwantyfikator oznaczany jako Q. Przykładami kwantyfikatorów mogą być: "około 10", "ponad 70" (kwantyfikatory absolutne - zbiory rozmyte na uniwersum R) lub "większość", "znikoma część" (kwantyfikatory relatywne - zbiory rozmyte na uniwersum [0,1]). Istotny dla nas będzie stopień przynależności Pdo Q. Zdefiniujmy także sumaryzator S_i . Jest to zbiór rozmyty na zbiorze wartości przyjmowanych przez j-tą kolumnę bazy danych. Np. gdyby krotki dotyczyły różnych pojazdów, a jedną ze zmiennych lingwistycznych była ich prędkość, to sumaryzatory mogłyby mieć postać "jeździ szybko", "jeździ ponad 200km/h" itp.

Wykorzystując powyższe elementy można skonstruować **lingwistyczne** podsumowanie bazy danych, czyli:

$$Q P \text{ jest/są } S_j [T]$$
,

gdzie T to stopień prawdziwości podsumowania.

Przykład : *Dużo studentów zarabia średnią krajową [0.64]*, gdzie: "dużo" to kwantyfikator, "studentów" to podmit lingwistyczny, "zarabia średnią krajową" to sumaryztaor, a "[0,64]" to stopień prawdziwości podsumowania.

W celu rozszerzenie podsumowania lingwistycznego należy skorzystać ze złożonego sumaryztora. Sumę sumaryzatorów można w podsumowaniu lingwistycznym zapisać za pomocą słowa "lub", zaś iloczyn za pomocą słowa "i". W rezultacie **podsumowanie ze złożonym sumaryzatorem** może mieć postać:

$$Q P \text{ jest/sq } S_1 \text{ i/lub } S_2 \text{ i/lub } \dots \text{ i/lub } S_n [T]$$
.

Przykład: Dużo studentów zarabia średnią krajową i/lub nosi okulary [0.44].

Innym sposobem rozszerzenia pojęcia podsumowań jest zastosowanie kwalifikatora. Kwalifikator W jest zbiorem rozmytym na \mathcal{D} , który opisuje jakąś dodatkową właściwość. Typowe przykłady to "[osoby] które są bezrobotne", "[osoby] które są dziećmi". **Podsumowanie z kwalifikatorem** ma postać:

$$Q$$
 P mających własność W ma własność $S_{j} \ [T]$.

Przykład: Studenci, którzy mają blond włosy zarabiają średnią krajową [028].

Aby określić jakość naszych podsumowaniań zaimplementowaliśmy poniższe miary jakości:

2.1. T₁ – stopień prawdziwości

Stopień prawdziwości jest najbardziej naturalną miarą jakości podsumowania. Określa ona sumę przynależności wszystkich rozważanych krotek do sumaryzatora S_i :

$$r = \sum_{i=1}^{m} \mu_{\operatorname{ce}(S_j)}(d_i) ,$$

gdzie $ce(S_j)$ jest rozszerzeniem cylindrycznym sumaryzatora S_j , m liczba wszystkich krotek, a d_i . Dla kwantyfikatorów relatywnych stopnień prawdziwości możemy zapisać jako

$$T_1 = \mu_Q(\frac{r}{m}),$$

zaś dla kwantyfikatorów absolutnych jako

$$T_1 = \mu_Q(r),$$

gdzie r jest kardynalnością.

2.2. T_2 – stopień nieprecyzyjności

Dla podsumowania z n sumaryzatorami $S_1 \dots S_n$ możemy określić stopień nieprecyzyjności, definiowany następującym wzorem:

$$T_2 = 1 - \left(\prod_{j=1}^n \inf(S_j)\right)^{1/n}$$
.

Wyrażenie $\left(\prod_{j=1}^n\operatorname{in}(S_j)\right)^{1/n}$ to określa średnią geometryczna ze stopni rozmycia wykorzystanych sumaryzatorów, czyli w jakim stopniu precyzyjny jest sumaryzator. Im mniejszy nośnik zbioru rozmytego, tym wyższa jest jego precyzja.

2.3. T_3 – stopień pokrycia

Stopień pokrycia T_3 jest zdefiniowany dla podsumowań z kwalifikatorami. Stopień pokrycia T_3 Dla każdego $i=1\ldots m$ (związanego z krotką d_i z bazy danych) możemy zdefiniować (z kwalifikatorem):

$$t_i = \begin{cases} 1 & \text{gdy } \mu_{\text{ce}(S_j)}(d_i) > 0 \ \land \ \mu_W(d_i) > 0 \\ 0 & \text{w przeciwnym wypadku.} \end{cases}$$

$$h_i = \begin{cases} 1 & \text{gdy } \mu_W(d_i) > 0 \\ 0 & \text{w przeciwnym wypadku.} \end{cases}$$

Bez kwalifikatora:

$$t_i = \begin{cases} 1 & \text{gdy } \mu_{\text{ce}(S_j)}(d_i) > 0 \\ 0 & \text{w przeciwnym wypadku.} \end{cases}$$
$$h_1 = 1$$

Przy powyższych oznaczeniach:

$$T_3 = \frac{\sum_{i=1}^m t_i}{\sum_{i=1}^m h_i} \ .$$

Reprezentuje stopień w jakim nośnik sumaryzatora pokrywa się z nośnikiem kwalifikatora.

2.4. T_4 – stopień trafności

Dla podsumowania z n sumaryzatorami $S_1 \dots S_n$ oraz m krotkami w bazie danych możemy wprowadzić oznaczenia:

$$g_{ij} = \begin{cases} 1 & \text{gdy } \mu_{\text{ce}(S_j)}(d_i) > 0 \\ 0 & \text{w przeciwnym wypadku.} \end{cases}$$

oraz

$$r_j = \frac{\sum_{i=1}^m g_{ij}}{m} \ .$$

Wówczas możemy zapisać:

$$T_4 = \left| \prod_{j=1}^n r_j - T_3 \right| .$$

Określa jak wiele krotek przynależy do sumaryzatora, czyli czy dane podsumowanie jest właściwe dla zestawu danych.

2.5. T₅ – długość podsumowania

Dla podsumowania z n sumaryzatorami $S_1 \dots S_n$ miarę długości podsumowania definiujemy jako:

$$T_5 = 2\left(\frac{1}{2}\right)^{|s|} .$$

Gdzie |s| jest ilością zbiorów rozmytych, z których skomponowany jest sumaryzator. Określa jakość podsumowania na podstawie złożoności sumaryzatora, czyli im więcej składowych sumaryzatora złożonego, tym niższa wartość tej miary.

2.6. T_6 – stopień nieprecyzyjności kwantyfikatora

 $T_6,$ czyli stopień nieprecyzyjności kwantyfikatora możemy zdefiniować jako:

$$T_6 = 1 - \operatorname{in}(Q) .$$

Reprezentuje w jakim stopniu precyzyjny jest kwantyfikator. Im mniejszy nośnik zbioru rozmytego tym wyższa jest jego precyzja.

2.7. T₇ – stopień liczności kwantyfikatora

W przeciwieństwie do T_6 , zamiast zliczać elementy z nośnika Q, policzymy moc zbioru rozmytego:

$$T_7 = 1 - \frac{|Q|}{|\mathcal{X}_Q|} \ .$$

Opisuje stopień precyzji kwantyfikatora, im mniejsza kardynalność kwantyfikatora tym jest on bardziej precyzyjny.

2.8. T_8 – stopień liczności sumaryzatora

W przypadku zastosowania sumaryzatora złożonego, podobnie jak przy poprzednich miarach, stosujemy średnią geometryczną. Dla podsumowania z n sumaryzatorami $S_1 \ldots S_n$:

$$T_8 = 1 - \left(\prod_{j=1}^n \frac{|S_j|}{|\mathcal{X}_j|}\right)^{\frac{1}{n}}.$$

Opisuje stopień precyzji sumaryzatora, im mniejsza kardynalność kwantyfikatora tym jest on bardziej precyzyjny.

2.9. T_9 – stopień nieprecyzyjności kwalifikatora

Stopień precyzji kwalifikatora T_9 jest oparty na drugiej formie podsumowań tzn.: Q obiektów będących/mających W jest/ma S, gdzie W jest reprezentowane przez zbiór rozmyty i jest kwalifikatorem. Definicja tej miary jest następująca:

$$T_9 = 1 - \text{in}(W)$$
.

Określa w jakim stopniu precyzyjny jest kwalifikator. Im szerszy nośnik zbioru rozmytego tym niższa jest jego precyzja, gdyż bierze pod uwagę większy zakres wartości.

2.10. T_{10} – stopień liczności kwalifikatora

Stopień kardynalności kwalifikatora T_{10} definiujemy jako:

$$T_{10} = 1 - \frac{|W|}{|\mathcal{X}_g|}$$
.

Opisuje stopień precyzji kwalifikatora, im większa jest kardynalność kwalifikator tym jest on mniej precyzyjny.

2.11. T_{11} – długość kwalifikatora

Długość kwalifikatora T_{11} definiujemy następująco:

$$T_{11} = 2\left(\frac{1}{2}\right)^{|W|}$$
.

Wyznacza jakość podsumowania na podstawie złożoności kwalifikatora, Im bardziej złożony kwalifikator tym jakość podsumowania gorsza.

3. Opis implementacji

Program został stworzony w języku C#. Graficzny interfejs użytkownika został stworzony przy wykorzystaniu Windows Presentation Foundation. Logika aplikacji została odseparowana od GUI. W związku z tym, zaimplementowaliśmy trzy projekty: Logic, ViewModel oraz GUI.

3.1. Logic

W tym projekcie zawarta została cała logika aplikacji. Odzworowany został model naszej bazy danych (FifaPlayer.cs), zaimplementowane zostały: funkcje przynależności trójkątna (TriangularFunction.cs) oraz trapezoidalna (TrapezoidFunction), zmienna lingwistyczna (LinguisticVariable.cs), kwantyfikator (Quantifier.cs), zmienna, która "na sztywno" określa nasz kwantyfikator (np. słaby, przeciętny, dobry) w zależności od podanych danych (Variable.cs), sumaryzator "i" (And.cs), a także sumaryzator "lub" (Or.cs). W projekcie logic znajduje się takża klasa (Measures.cs), gdzie zawarliśmy wszystkie 11 miar jakości podsumowań.

3.2. ViewModel

Klasa MainViewModel przyjmuje dane wejściowe od użytkownika i reaguje na jego poczynania wywołując wybrane akcje z logiki programu oraz odpowiada za odświeżanie widoków w interfejsie graficznym.

3.3. GUI

Projekt GUI (graphical user interface) implementuje przejrzysty oraz łatwy w obsłudze graficzny interfejs użytkownika.

4. Materiały i metody

4.1. Baza danych

Do przeprowadzenia badań i generowania konkretnych podsumowań wykorzystaliśmy bazę danych dotyczącą przechowującą statystyki piłkarzy z gry Fifa 2019 [4].Składa się ona z 15397 krotek znajdujących się w tabeli z 20 różnymi kolumnami - w ramach naszego projektu skorzystaliśmy z 13. Przedstawiamy je poniżej:

- Wiek wartości z przedziału [17-45]
- Wzrost (cm) wartości z przedziału [155-205]
- Waga (kg) wartości z przedziału [50-11]
- Tempo wartości z przedziału [0-97]
- Przyspieszenie wartości z przedziału [13-98]

- Prędkość wartości z przedziału [12-97]
- Dribbling wartości z przedziału [0-97]
- Zręczność wartości z przedziału [14-98]
- Balans wartości z przedziału [16-99]
- Reakcje wartości z przedziału [30-96]
- Kontrola piłki wartości z przedziału [3-97]
- Opanowanie wartości z przedziału [3-97]
- Precyzja wartości z przedziału [0-93]
- Ustawienie się wartości z przedziału [2-95]

Każda z ww. kolumn jest typem całkowitym.

4.2. Sumaryzatory i kwalifikatory

Poniżej zaprezentowaliśmy poszczególne sumaryzatory oraz kwalifikatory wykorzystane w naszym programie.

Etykieta	a	b	c	d
Bardzo młody	17	17	18	20
Młody	19	21	24	29
Dorosły	28	30	35	37
Dojrzały	36	40	45	45

Tabela 1. Przyporządkowane parametry funkcji trapezoidalnej dla wieku.

Etykieta	a	b	c	d
Bardzo niski	155	155	160	162
Niski	161	165	168	170
Przeciętny	169	172	176	180
Wysoki	179	182	186	192
Bardzo wysoki	191	196	205	205

Tabela 2. Przyporządkowane parametry funkcji trapezoidalnej dla wzrostu.

Etykieta	a	b	\mathbf{c}	d
Niska	50	59	66	73
Standardowa	72	77	79	84
Postawna	83	86	89	91
Ciężka	90	98	110	110

Tabela 3. Przyporządkowane parametry funkcji trapezoidalnej dla wzrostu.

Etykieta	a	b	c	d
Niskie	0	15	27	35
Średnie	33	46	58	66
Wysokie	65	79	88	97

Tabela 4. Przyporządkowane parametry funkcji trapezoidalnej dla tempa.

Etykieta	a	b	c	d
Słabe	13	25	29	35
Przeciętne	33	46	58	66
Dobre	65	79	88	98

Tabela 5. Przyporządkowane parametry funkcji trapezoidalnej dla przyspieszenia.

Etykieta	a	b	c	d
Słaba	12	25	29	35
Przeciętna	33	46	58	69
Dobra	65	79	88	97

Tabela 6. Przyporządkowane parametry funkcji trapezoidalnej dla prędkości.

Etykieta	a	b	\mathbf{c}	d
Słaby	0	15	27	37
Przeciętny	36	46	58	66
Dobry	67	79	88	97

Tabela 7. Przyporządkowane parametry funkcji trapezoidalnej dla dribblingu.

Etykieta	a	b	c	d
Słaba	14	21	27	35
Przeciętna	33	46	58	69
Dobra	67	79	88	98

Tabela 8. Przyporządkowane parametry funkcji trapezoidalnej dla zręczności.

Etykieta	a	b	c	d
Słaby	16	21	29	35
Przeciętny	38	46	58	72
Dobry	71	79	88	99

Tabela 9. Przyporządkowane parametry funkcji trapezoidalnej dla balansu.

Etykieta	a	b	c	d
Słabe	30	37	43	47
Przeciętne	46	59	66	72
Szybkie	71	79	88	96

Tabela 10. Przyporządkowane parametry funkcji trapezoidalnej dla reakcji.

Etykieta	a	b	С	d
Słaba	3	14	23	26
Przeciętna	25	39	48	57
Dobra	56	63	69	75
Bardzo dobra	74	81	88	99

Tabela 11. Przyporządkowane parametry funkcji trapezoidalnej dla kontroli piłki.

Etykieta	a	b	c	d
Słabe	3	15	24	32
Zadowalające	31	44	57	66
Bardzo dobre	65	75	88	97

Tabela 12. Przyporządkowane parametry funkcji trapezoidalnej dla opanowania.

Etykieta	a	b	С	d
Słaba	3	15	24	32
Przeciętna	31	44	57	66
Dobra	65	75	88	97

Tabela 13. Przyporządkowane parametry funkcji trapezoidalnej dla celności.

Etykieta	a	b	c	d
Słabe	3	15	24	32
Przeciętne	31	44	57	66
Dobre	65	75	88	97

Tabela 14. Przyporządkowane parametry funkcji trapezoidalnej dla ustawiania się.

4.3. Kwantyfikatory

Kwantyfikatory podzieliliśmy na względne i absolutne . Przedstawiamy je poniżej:

Etykieta	Funkcja przynależności	a	b	c	d
Żaden	Trójkątna	0	0	0.1	-
Mniej niż ćwierć	Trapezoidalna	0	0	0.25	0.35
Około jedna trzecia	Trójkątna	0.23	0.33	0.43	-
Około połowa	Trójkątna	0.4	0.5	0.6	-
Około dwie trzecie	Trójkątna	0.56	0.66	0.76	-
Większość	Trójkątna	0.73	0.83	0.93	-
Prawie każdy	Trójkątna	0.85	0.9	1.05	-

Tabela 15. Przyporządkowane parametry dla kwantyfikatora względnego.

Etykieta	Funkcja przynależności	a	b	c	d
Mniej niż 100	Trapezoidalna	0	0	99	150
Około 250	Trójkątna	150	250	350	-
Około 500	Trójkątna	400	500	600	-
Około 750	Trójkątna	650	750	850	-
Więcej niż 100	Trapezoidalna	950	1000	15397	15397

Tabela 16. Przyporządkowane parametry dla kwantyfikatora absolutnego.

5. Badania

Postanowiliśmy podzielić nasze badania na 3 części:

- 1. W pierwszym badaniu sprawdzaliśmy jakie wartości przybiorą miary podsumowań dla różnych kwantyfikatorów.
- 2. W drugim teście porównywaliśmy podsumowania z oraz bez kwalifikatora.
- 3. W trzecim badaniu naszym celem było porównanie podsumowań z jednym sumaryzatorem oraz ich połączeń spójnikami ORAZ i LUB.

5.1. Pierwszy eksperyment

W tym badaniu wygenerowaliśmy 3 komunikaty, dotyczące odpowiednio zależności pomiędzy:

- 1. Dobrą Celnością a Przeciętnym Ustawianiem się,
- 2. Słabą Prędkością a Zadowalającym Opanowaniem,
- 3. Młodym Wiekiem a Dobrą Prędkością.

Miary $T_2 - T_5$ oraz $T_8 - T_{10}$ były stałe, dlatego nie umieszczaliśmy ich w tabeli oraz na wykresie, gdyż kwantyfikator nie miał wpływu na ich wartość. Zamieściliśmy ich wartości pod tabelą porównującą wartości miar T_1 , T_6 i T_7 .

5.1.1. Eksperyment 1.1

Rysunek 2. Wykres przedstawiający wyniki Eksperymentu 1.1

Kwantyfikator	T_1	T_6	T_7
Żaden	0.468	0.9	0.95
Mniej niż $1/4$	1	0.65	0.7
Około $1/3$	0	0.8	0.9
Około $1/2$	0	0.8	0.9
Około $2/3$	0	0.8	0.9
Większość	0	0.8	0.9
Prawie każdy	0	0.8	0.9
Mniej niż 100	1	0.99	0.992
Około 250	0	0.987	0.994
Około 500	0	0.987	0.994
Około 750	0	0.987	0.994
Więcej niż 1000	0	0.987	0.063

Tabela 17. Tabela przedstawiający wyniki Eksperymentu 1.1

Uzyskane miary, które były jednakowe dla każdego kwantyfikatora: $T_2=0.431,\ T_3=0.151,\ T_4=0.263,\ T_5=1,\ T_8=0.998,\ T_9=0.827,\ T_{10}=0.999,\ T_{10}=1.$

5.1.2. Eksperyment 1.2

Rysunek 3. Wykres przedstawiający wyniki Eksperymentu 1.2

Kwantyfikator	T_1	T_6	T_7
Żaden	0	0.9	0.95
Mniej niż $1/4$	0	0.65	0.7
Około $1/3$	0	0.8	0.9
Około $1/2$	0.238	0.8	0.9
Około $2/3$	0.162	0.8	0.9
Większość	0	0.8	0.9
Prawie każdy	0	0.8	0.9
Mniej niż 100	0	0.99	0.992
Około 250	0.292	0.987	0.994
Około 500	0	0.987	0.994
Około 750	0	0.987	0.994
Więcej niż 1000	0	0.062	0.063

Tabela 18. Tabela przedstawiający wyniki Eksperymentu 1.2

Uzyskane miary, które były jednakowe dla każdego kwantyfikatora: $T_2=0.318,\ T_3=0.718,\ T_4=0.211,\ T_6=1,\ T_8=0.998,\ T_9=0.939,\ T_{10}=0.999,\ T_{10}=1.$

5.1.3. Eksperyment 1.3

Rysunek 4. Wykres przedstawiający wyniki Eksperymentu 1.3

Kwantyfikator	T_1	T_6	T_7
Żaden	0	0.9	0.95
Mniej niż $1/4$	0	0.65	0.7
Około $1/3$	0.344	0.8	0.9
Około $1/2$	0	0.8	0.9
Około $2/3$	0	0.8	0.9
Większość	0	0.8	0.9
Prawie każdy	0	0.8	0.9
Mniej niż 100	0	0.99	0.992
Około 250	0	0.987	0.994
Około 500	0	0.987	0.994
Około 750	0	0.987	0.994
Więcej niż 1000	1	0.987	0.063

Tabela 19. Tabela przedstawiający wyniki Eksperymentu 1.3

Uzyskane miary, które były jednakowe dla każdego kwantyfikatora: $T_2=0.499,\ T_3=0.565,\ T_4=0.254,\ T_6=1,\ T_8=0.999,\ T_9=0.347,\ T_{10}=1,\ T_{10}=1.$

5.2. Drugi eksperyment

W tym badaniu wygenerowaliśmy 2 komunikaty, które skupiały się na:

- 1. Przeciętnych Reakcjach,
- 2. Standardowej Wadze.

Porównywaliśmy wpływ obecności kwalifikatora (odpowiednio Słabego Bilansu oraz Niskiego Wzrostu) lub jego braku na wartości miar. Porównywaliśmy zarówno jednakowe jak i różniące się kwantyfikatory, tak, by miara T_1 nie wynosiła 0.

5.2.1. Eksperyment 2.1

Rysunek 5. Wykres przedstawiający wyniki Eksperymentu 2.1 - kwantyfikator względny

Miara	Słaby balans	Brak kwalifikatora
$\overline{T_1}$	0.584	0.537
T_2	0.194	0.194
T_3	0.776	0.806
T_4	0.163	0.192
T_5	1	1
T_6	0.8	0.8
T_7	0.9	0.9
T_8	0.999	0.999

Tabela 20. Tabela przedstawiająca wyniki Eksperymentu 2.1 - kwantyfikator względny (około 2/3 piłkarzy)

Rysunek 6. Wykres przedstawiający wyniki Eksperymentu 2.1 - kwantyfikator bezwzględny

	Słaby balans	Brak kwalifikatora
Miara	Około 500	Więcej niż 1000
$\overline{T_1}$	0.537	1
T_2	0.194	0.194
T_3	0.776	0.806
T_4	0.163	0.192
T_5	1	1
T_6	0.987	0.062
T_7	0.994	0.063
T_8	0.999	0.999

Tabela 21. Tabela przedstawiająca wyniki Eksperymentu 2.1 - kwantyfikator bezwzględny

5.2.2. Eksperyment 2.2

Rysunek 7. Wykres przedstawiający wyniki Eksperymentu 2.2 - kwantyfikator względny

	Niski Wzrost	Brak kwalifikatora	Brak kwalifikatora
Miara	Mniej niż 1/4	Mniej niż 1/4	1/3
$\overline{T_1}$	1	0.094	0.894
T_2	0.482	0.482	0.482
T_3	0.048	0.518	0.518
T_4	0.293	0.178	0.178
T_5	1	1	1
T_6	0.65	0.65	0.8
T_7	0.7	0.7	0.9
T_8	1	1	1

Tabela 22. Tabela przedstawiająca wyniki Eksperymentu 2.2 - kwantyfikator względny

Rysunek 8. Wykres przedstawiający wyniki Eksperymentu 2.2 - kwantyfikator bezwzględny

	Niski Wzrost	Brak kwalifikatora
Miara	Mniej niż 100	Więcej niż 1000
$\overline{T_1}$	1	1
T_2	0.482	0.482
T_3	0.048	0.518
T_4	0.293	0.178
T_5	1	1
T_6	0.99	0.062
T_7	0.992	0.063
T_8	1	1

Tabela 23. Tabela przedstawiająca wyniki Eksperymentu 2.2 - kwantyfikator bezwzględny

5.3. Trzeci eksperyment

W tym badaniu wygenerowaliśmy komunikaty dotyczących wysokich piłkarzy, którzy mają:

- 1. Słabą Kontrolę,
- 2. Słaba Celność,
- 3. Słabą Kontrolę ORAZ Słabą Celność,
- 4. Słabą Kontrolę LUB Słabą Celność.

Porównywaliśmy zarówno jednakowe, jak i różniące się kwantyfikatory, dla których miara T_1 była różna od 0.

Rysunek 9. Wykres przedstawiający wyniki Eksperymentu 3 - kwantyfikator względny

Miara	Słaba Kontrola	Słaba Celność	ORAZ	LUB
$\overline{T_1}$	1	1	1	1
T_2	0.904	0.916	0.91	0.91
T_3	0.125	0.108	0	0.233
T_4	0.038	0.058	0.04	0.027
T_5	1	1	0.5	0.5
T_6	0.065	0.065	0.65	0.65
T_7	0.7	0.7	0.7	0.7
T_8	0.999	0.999	0.999	0.999
T_9	0.445	0.445	0.445	0.445
T_{10}	0.999	0.999	0.999	0.999
T_{11}	1	1	1	1

Tabela 24. Tabela przedstawiająca wyniki Eksperymentu 3 - kwantyfikator względny (mniej niż 1/4 piłkarzy)

Rysunek 10. Wykres przedstawiający wyniki Eksperymentu 3 - kwantyfikator bezwzględny

	Słaba Kontrola	Słaba Celność	ORAZ	LUB
Miara	Około 700	Około 500	Mniej niż 100	Więcej niż 1000
$\overline{T_1}$	0.416	0.586	1	1
T_2	0.904	0.916	0.91	0.91
T_3	0.125	0.108	0	0.233
T_4	0.038	0.058	0.04	0.027
T_5	1	1	0.5	0.5
T_6	0.987	0.987	0.99	0.062
T_7	0.994	0.994	0.992	0.063
T_8	0.999	0.999	0.999	0.999
T_9	0.445	0.445	0.445	0.445
T_{10}	0.999	0.999	0.999	0.999
T_{11}	1	1	1	1

Tabela 25. Tabela przedstawiająca wyniki Eksperymentu 3 - kwantyfikator bezwzględny

6. Dyskusja

6.1. Wpływ kwantyfikatora na miary

Miara T_1 obrazująca prawdziwość danego podsumowania, zmieniała się wraz z rozważanym kwantyfikatorem - dla większości będąc równa 0. Obrazuje ona nie tylko jak dużo piłkarzy spełnia dane kryterium, ale pozwala też szacować jak duża jest grupa, która podsumowanej cechy nie spełnia. Dla eksperymentu 1.1 widać jak mało jest piłkarzy którzy posiadając Dobrą Celność, cechują się też Przeciętnym Ustawianiem się. Piłkarze cechujący się Słabą Prędkością w dużej części posiadają Zadowalające Opanowanie - T_1 jest niskie dla miar około 1/2 oraz około 2/3, dzięki czemu wiemy, że właściwa grupa byłaby opisana kwantyfikatorem zawierającym się w przedziale $(\frac{1}{2}, \frac{2}{3})$.

Liczba ta oscyluje wokół 250 piłkarzy. Sprawa wygląda inaczej dla Młodych piłkarzy - około 1/3 z nich ma Dobrą Prędkość, jednak tym razem jest to ponad 1000 piłkarzy.

Miary T_6 i T_7 opisują sam kwantyfikator, a dokładnie jego precyzyjność. Wyraźnie widać, że miara mniej niż 1/4 opisuje większy zbiór niż reszta zaproponowanych przez nas kwantyfikatorów względnych. Bardzo nieprecyzyjny jest kwantyfikator bezwzględny więcej niż 1000. Wartości tych miar są identyczne dla wszystkich podsumowań i zależą tylko od kwantyfikatora.

Miary $T_2 - T_5$ oraz $T_8 - T_{11}$ nie zmieniały swoich wartości w zależności od użytego kwantyfikatora, co nie jest zaskakujące, mając na uwadze braku wykorzystania kwantyfikatora w tych wzorach.

6.2. Wpływ kwalifikatora na miary

Ciężko jest porównać miarę T_1 dla kwalifikatora lub jego braku - pracujemy wtedy na innych zbiorach. Wartości dla kwantyfikatorów względnych mogą się zmienić nieznacznie bądź drastycznie. Prawie na pewno zmienią się wartości dla kwantyfikatorów bezwzględnych (zakładając, że są odpowiednio zdefiniowane). Porównując wyniki skupiliśmy się tylko na tych, gdzie wartości miary T_1 były większe od zera, przez co miary T_6 i T_7 potrafią się różnić, co jednak nie ma nic wspólnego z kwalifikatorem.

Miara T_3 mówi nam o tym, jak bardzo nośnik kwalifikatora pokrywają się z nośnikiem sumaryzatora. Im wyższa wartość jest tej cechy, tym kwalifikator i sumaryzator są ze sobą mniej powiązane. Zarówno Słaby Balans jak i brak kwalifikatora są mocno powiązane z Przeciętnymi Reakcjami, nie można jednak tego powiedzieć o Standardowej Wadze oraz braku kwalifikatora. Prawie w ogóle nie są ze sobą powiązane Niski Wzrost oraz Standardowa Waga (o czym także mówi kwantyfikator mniej niż 100, dla którego miara T_1 jest równa 1). Im wyższa jest ta wartość, tym większy jest kwantyfikator.

Miara T_4 mówi o tym, jak wiele krotek przynależy do sumaryzatora. Ze względu na T_3 we wzorze, jej wartość się zmienia, jednak wpływie tej wartości przyjrzymy się w następnej części omówienia eksperymentów.

Miary T_2, T_5 oraz T_8 nie zmieniały swoich wartości w obrębie jednego eksperymentu, gdyż zależą od sumaryzatora, a nie kwalifikatora.

6.3. Wpływ sumaryzatora na miary

Miara T_2 która opisuje stopień nieprecyzyjności sumaryzatora. Nie zależy ona od typu połączenia, przez co dla obu złożonych podsumowań wartość miary jest średnią dla wartości miar z pojedynczym sumaryzatorem. Mając na uwadze nie tylko ten eksperyment, ale i wszystkie poprzednie, można powiedzieć, że miara ta jest tym większa, im bardziej precyzyjny jest użyty sumaryzator. Na przykład Standardowa Waga nie jest tak precyzyjnym su-

maryzatorem jak Słaba Kontrola czy Słaba Celność.

Miara T_3 pokazuje, że dla połączonych spójnikiem "lub" sumaryzatorów powiązanie z kwalifikatorem jest większa, zaś dla spójnika "i" wartość ta w przypadku tego podsumowania spada do 0.

Miara T_4

Miara T_5 zależy od ilości sumaryzatorów. Dla jednego sumaryzatora osiąga wartość 1, zaś dla dwóch - wartość 0.5. Wartość tej miary wraz z zwiększeniem liczby sumaryzatorów wciąż by malała.

Miara T_8 opisująca precyzyjność sumaryzatora dla wszystkich przeprowadzonych przez nas eksperymentów uzyskiwała wartości bardzo bliskie bądź równe 1.

6.4. Inne wnioski

Miara T_9 opisująca precyzyjność kwalifikatora mówi o tym jak precyzyjny jest kwalifikator. Dla wysokich wartości tej miary, kwantyfikatory są niskie (zakładając, że kwantyfikatory te osiągają wartość większą niż 0 dla T_1).

Miara T_{10} opisująca stopień precyzji kwalifikatora dla wszystkich przeprowadzonych przez nas eksperymentów uzyskiwała wartości bardzo bliskie bądź równe 1, podobnie jak miara T_8 .

Z racji zastosowania pojedynczego kwalifikatora, miara T_{11} zawsze osiągała wartość 1. W przypadku naszego programu, nie wnosi ona żadnej informacji. Miary T_5, T_8 i T_{10} także nie wnoszą istotnych informacji.

7. Wnioski

- Należy dobierać precyzyjnie wartości przy funkcjach przynależności, aby uzyskać miarodajne wyniki.
- Parametry dla kwantyfikatora absolutnego muszą być precyzyjnie dobrane do typu i rodzaju bazy - baza składająca się z dużej liczby elementów i dużej liczby atrybutów może potrzebować małych wartości bezwzględnych.
- Miara T_1 jest najważniejsza, pozostałe miary pomagają jedynie ustalić jak dobre jest to podsumowanie.
- Dla bardzo precyzyjnych podsumowań, wartości miar T_2, T_6, T_7 oraz T_9 powinny być jak najwyższe.
- Miary T_5 oraz T_{10} są bardzo proste w analizie im więcej sumaryzatorów/kwalifikatorów, tym wartość takiej miary jest mniejsza. Sprawia to, że nie zawsze są miarodajne.
- Miary T_8 i T_{10} nie sprawdzają się przy analizie dla zapytań z małą liczbą sumaryzatorów oraz kwalifikatorów.

Literatura

- [1] Methods for the linguistic summarization of data aplications of fuzzy sets and their extensions, Adam Niewiadomski, Akademicka Oficyna Wydawnicza EXIT, Warszawa 2008
- [2] http://www.cs.put.poznan.pl/amichalski/si.dzienne/AI7.new.fuzzy.b&w.pdf
- [3] http://home.agh.edu.pl/mrzyglod/iw/iw_pliki/iw-is-L2-2017-2018.pdf
- [4] https://www.kaggle.com/aishwarya1992/fifa-19-player-database