Clase-2.R *WINDOWS 10* 2019-08-06

```
# Erick Perez Silva
# 06/08/2019
# Clase 2
# Importar datos -----
vivero <- read.csv("C:/MCF202_2019/Datos/Tvivero.csv", header = T)</pre>
summary(vivero)
##
                                Tratamiento
      planta
                     IE
## Min. : 1.00 Min. :0.5500 Ctrl:21
## 1st Qu.:11.25 1st Qu.:0.7025
                               Fert:21
## Median :21.50 Median :0.7950
## Mean :21.50 Mean :0.8371
## 3rd Qu.:31.75 3rd Qu.:0.9375
## Max. :42.00 Max. :1.1600
# Prueba de t de una muesta -----
par(mfrow=c(1,1))
boxplot(vivero$IE)
```



```
t.test(vivero$IE, mu = 0.85)
##
   One Sample t-test
##
##
## data: vivero$IE
## t = -0.5049, df = 41, p-value = 0.6163
## alternative hypothesis: true mean is not equal to 0.85
## 95 percent confidence interval:
## 0.7857153 0.8885704
## sample estimates:
## mean of x
## 0.8371429
\#La medaia observada no es diferente estadisticamente ya que el valor de p
\#es mayor que el alfa establecido (0.05). Ademas la media teoretica se encuentra dentro
#del rango de los valores de intervalos de confianza.
t.test(vivero$IE, mu = 0.90)
##
   One Sample t-test
##
##
## data: vivero$IE
## t = -2.4684, df = 41, p-value = 0.01783
## alternative hypothesis: true mean is not equal to 0.9
## 95 percent confidence interval:
```

```
## 0.7857153 0.8885704
## sample estimates:
## mean of x
## 0.8371429

#La media observada es difernte a la media teoretica, por la cual aceptamos la H1.
#valor de p (0.01) es menor que el valor de alfa establecido (0.05).

# Prueba de t muestras independientes
boxplot(vivero$IE ~ vivero$Tratamiento, col= "blue", xlab= "tratamiento", ylab= "IE")
```


shapiro.test(vivero\$IE) ## ## Shapiro-Wilk normality test ## ## data: vivero\$IE ## W = 0.96225, p-value = 0.1777 var.test(vivero\$IE ~ vivero\$Tratamiento) ## ## F test to compare two variances ## ## data: vivero\$IE by vivero\$Tratamiento ## F = 0.41068, num df = 20, denom df = 20, p-value = 0.05304

```
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1666376 1.0121038
## sample estimates:
## ratio of variances
##
           0.4106757
#Las varianzas de ambos tratamientos son iguales asi lo pureba el valor de p
#obtenido mediante una prueba de varianza (var.test).
t.test(vivero$IE ~ vivero$Tratamiento, var.equal = T)
##
##
   Two Sample t-test
##
## data: vivero$IE by vivero$Tratamiento
## t = -2.9813, df = 40, p-value = 0.004868
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.23331192 -0.04478332
## sample estimates:
## mean in group Ctrl mean in group Fert
            0.7676190
                               0.9066667
#Existe una diferancia significativa ante el IE de las plantulas fertilizadas
#El valor de p (0.004) comprueba nuestra hipotesis de que el fertilizante "power"
#mejora el IE
t.test(vivero$IE ~ vivero$Tratamiento)
##
  Welch Two Sample t-test
## data: vivero$IE by vivero$Tratamiento
## t = -2.9813, df = 34.056, p-value = 0.00527
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.23382707 -0.04426816
## sample estimates:
## mean in group Ctrl mean in group Fert
            0.7676190
                               0.9066667
# Prueba de t muestras dependientes -----
t.test(vivero$IE ~ vivero$Tratamiento, paired = T)
##
## Paired t-test
## data: vivero$IE by vivero$Tratamiento
## t = -3.0736, df = 20, p-value = 0.005993
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.23341577 -0.04467947
```

```
## sample estimates:
## mean of the differences
                -0.1390476
# Ejercicio de produccion ---
inventario <- read.csv("C:/MCF202_2019/Datos/produccion.csv", header = T)</pre>
summary(inventario)
      Tiempo
                   Kgsem
                                    BioRama
                                                      Germ
##
   T2012:50
                                Min.
##
                      : 1.220
                                        :44.54
                                                        :16.49
               Min.
                                                 Min.
   T2013:50
               1st Qu.: 8.492
##
                                1st Qu.:49.84
                                                 1st Qu.:35.61
               Median :10.245
                                Median :53.96
                                                 Median :47.85
##
##
               Mean
                     :10.501
                                Mean
                                        :54.91
                                                 Mean
                                                        :45.83
##
               3rd Qu.:12.955
                                3rd Qu.:60.64
                                                 3rd Qu.:56.30
##
               Max.
                     :16.540
                                Max.
                                        :65.24
                                                 Max.
                                                        :65.02
##
          Н6
##
   Min.
          :-0.07
##
   1st Qu.:14.16
##
  Median :16.56
          :16.94
##
  Mean
## 3rd Qu.:21.24
## Max.
           :29.71
```


boxplot(inventario\$Kgsem ~ inventario\$Tiempo)

```
t.test(inventario$Kgsem ~ inventario$Tiempo, paired= T)
```


t.test(inventario\$Germ ~ inventario\$Tiempo, paired = T)

```
##
## Paired t-test
##
## data: inventario$Germ by inventario$Tiempo
## t = -16.678, df = 49, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -23.14844 -18.16996
## sample estimates:
## mean of the differences
## -20.6592</pre>
```

```
tapply(inventario$Germ, inventario$Tiempo, mean)
    T2012
           T2013
## 35.5036 56.1628
t.test(inventario$Germ ~ inventario$Tiempo, paried= T)
##
## Welch Two Sample t-test
##
## data: inventario$Germ by inventario$Tiempo
## t = -16.947, df = 79.317, p-value < 2.2e-16
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -23.08545 -18.23295
## sample estimates:
## mean in group T2012 mean in group T2013
##
              35.5036
                                56.1628
```