Formulario de dieléctricos y condensadores

Polarización: $\vec{P}=\chi\cdot \varepsilon_0\cdot \vec{E}\;\;\chi$ es una constante adimensional dependiente del medio, es la susceptibilidad eléctrica.

Campo entre dos láminas sin dieléctrico: $E_0=rac{\sigma}{arepsilon_0}$; Campo creado por el dieléctrico:

$$E_i = \frac{\sigma_i}{\varepsilon_0}$$

Campo total: $E = E_0 - E_i = \frac{\sigma}{\varepsilon}$; ε es la constante dieléctrica relativa o permitividad.

$$\varepsilon = 1 + \chi$$

Vector Desplazamiento eléctrico o Inducción eléctrica: $\vec{D} = k \cdot \varepsilon_0 \cdot \vec{E}$

Capacidad: $Q = C \cdot V$ Esfera conductora: $C = 4\pi\varepsilon \cdot R$

Energía de un conductor cargado: $E_p = \frac{1}{2}Q \cdot V = \frac{1}{2}C \cdot V^2 = \frac{1}{2}\frac{Q^2}{C}$

Condensadores:

Plano o de láminas paralelas: $C = \varepsilon \cdot \frac{s}{d}$, siendo S la superficie y d la distancia entre láminas.

Esférico: $C = 4\pi\varepsilon \frac{R_1R_2}{R_2-R_1}$;

Cilíndrico: $C = \frac{2\pi\varepsilon \cdot l}{\log \frac{R_2}{R}}$, Siendo I la longitud del condensador y el logaritmo es neperiano.

Asociación de Condensadores:

En serie: $Q=Q_i$ $V=\sum V_i$ $\frac{1}{c}=\sum \frac{1}{c_i}$ En paralelo: $Q=\sum Q_i$ $V=V_i$ $\mathrm{C}=\sum C_i$