Tutorial computer- and robot-assisted surgery

NATIONALES CENTRUM FÜR TUMORERKRANKUNGEN PARTNERSTANDORT DRESDEN UNIVERSITÄTS KREBSCENTRUM UCC

getragen von:

Deutsches Krebsforschungszentrum Universitätsklinikum Carl Gustav Carus Dresden Medizinische Fakultät Carl Gustav Carus, TU Dresden Helmholtz-Zentrum Dresden-Rossendorf

Sebastian Bodenstedt Translational Surgical Oncology

Any questions from the lecture?

Review Fourier Transform

Fourier Transform – Change in basis

$$M * f(x) = F(v)$$

Fourier Transform – Change in basis

$$\mathsf{M}^{\text{-}1} * F(\upsilon) = f(x)$$

2D Fourier Transform

Fourier Transform

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \cdot e^{-2\pi i (ux + vy)} dxdy$$

Inverse Fourier Transform

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) \cdot e^{2\pi i (ux + vy)} du dv$$

Low-pass filter

Original image

FFT of original image

Low-pass filter

Let the low frequencies pass and eliminating the high frequencies.

Low-pass image

FFT of low-pass image

Generates image with overall shading, but not much detail

High-pass filter

Original image

FFT of original image

High-pass filter

Lets through the high frequencies (the detail), but eliminates the low frequencies (the overall shape). It acts like an edge enhancer.

High-pass image

FFT of high-pass image

Boosting high frequencies

Original image

FFT of original image

High-boost filter

High boosted image

FFT of high boosted image

Discrete Fourier Transform

Fourier Transform

$$\begin{array}{ll} {\bf 1D} & F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) \cdot e^{\frac{-2\pi i u x}{N}} \\ \\ {\bf 2D} & F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \cdot e^{-2\pi i (\frac{u x}{M} + \frac{v y}{N})} \\ \\ {\bf Inverse Fourier Transform} \end{array}$$

1D
$$f(x) = \frac{1}{N} \sum_{u=0}^{N-1} F(u) \cdot e^{\frac{2\pi i u x}{N}}$$

2D $f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) \cdot e^{2\pi i (\frac{u x}{M} + \frac{v y}{N})}$

Bi-linear Interpolation

4 known data points (Q₁₁, Q₁₂, Q₂₁, Q₂₂): find value at f(x,y)

$$f(x,y_1) = rac{x_2 - x}{x_2 - x_1} f(Q_{11}) + rac{x - x_1}{x_2 - x_1} f(Q_{21}), \ f(x,y_2) = rac{x_2 - x}{x_2 - x_1} f(Q_{12}) + rac{x - x_1}{x_2 - x_1} f(Q_{22}).$$
 $f(x,y) = rac{y_2 - y}{y_2 - y_1} f(x,y_1) + rac{y - y_1}{y_2 - y_1} f(x,y_2)$

Reminder Fourier Reconstruction

Fourier Slice Theorem

Fourier Slice Theorem (general angle θ)

