In addition, $(\lambda-A)$ is surjective: For $g\in E$ there exists $\hat{f}\in E_{/}$ such that $(\lambda-A_{/})\hat{f}=\hat{g}$, i.e. there exists $h\in N$ such that $(\lambda-A)f-g=h=(\lambda-A)k$ for some $k\in D(A_{|})$. Therefore we obtain $(\lambda-A)(f-k)=g$.

(iii) The integral representation of the resolvent for $\lambda > \omega(T)$ (see A-I, Prop.1.11) shows that $R(\lambda,A)N \subseteq N$. By the power series expansion for holomorphic functions this extends to all $\lambda \in \rho_+(A)$. Therefore the restriction $R(\lambda,A)$ coincides with the resolvent $R(\lambda,A)$. On the other hand $R(\lambda,A)$ is well defined on E and satisfies

$$R(\lambda,A)/(f+N) = R(\lambda,A)f + N$$

(use again the integral representation). This proves that

$$R(\lambda,A) / = R(\lambda,A)$$
.

Corollary 4.3. Under the above assumptions take a point $\,\mu\,$ in the closure of $\,\rho_{+}\left(A\right)$. Then

- (i) $\mu \in \sigma(A)$ if and only if $\mu \in \sigma(A_{||})$ or $\mu \in \sigma(A_{||})$.
- (ii) μ is a pole of $R(\cdot,A)$ if and only if μ is a pole of $R(\cdot,A_{|})$ and of $R(\cdot,A_{/})$. In that case, $\max(k_{|},k_{/}) \leq k \leq k_{|} + k_{/}$

for the respective pole orders.

<u>Proof.</u> (i) follows from Prop.4.2, inclusions (ii) and (iii). (ii) By the previous assertion we may assume that for some $\delta > 0$ the pointed disc

$$\{\lambda \in \mathbb{C} : 0 < |\lambda - \mu| < \delta\}$$

is contained in $\rho(A)$ \cap $\rho(A_{|})$ \cap $\rho(A_{|})$. Call U_n the coefficients of the Laurent expansion of $R(\cdot,A)$. Since N is $R(\lambda,A)$ -invariant for $\lambda \in \rho_+(A)$ the same holds for each U_n . With the obvious notations we have