ДОМАШНЕЕ ЗАДАНИЕ №1 ПО КУРСУ "ДИСКРЕТНАЯ МАТЕМАТИКА" 2 образование, специальности ИУ 3, 5, 6

Задача 1

Для заданного теоретико-множественного тождества:

- а) проиллюстрировать тождество диаграммой Эйлера Венна;
- б) проверить тождество методом эквивалентных преобразований или методом характеристических функций.

№ вар.	Тождество	№ вар.	Тождество
1	$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$	16	$(A \cup (A \triangle B) \cup (A \triangle C)) \setminus ((B \cup C) \cap \overline{A}) = A$
2	$A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$	17	$(A \setminus B) \cap (A \setminus C) = (A \triangle (B \cup C)) \setminus (B \cup C)$
3	$(A \backslash B) \backslash C = (A \backslash C) \backslash (B \backslash C)$	18	$(A \cap B \cap \overline{C}) \triangle (A \cap B \cap C) = A \cap B$
4	$A \cap (B \setminus C) = (A \cap B) \setminus C$	19	$(A \setminus B) \triangle (A \setminus C) = (A \cap \overline{B} \cap C) \cup (A \cap \overline{C} \cap B)$
5	$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$	20	$(A \cup B) \triangle (A \cup C) = \overline{A} \cap ((B \cap \overline{C}) \cup (\overline{B} \cap C))$
6	$A \setminus (A \setminus B) = A \cap B$	21	$(A \triangle B) \setminus (A \cup C) = B \cap \overline{A} \cap \overline{C}$
7	$A \cup (B \setminus C) = (A \cup B) \cap (A \cup \overline{C})$	22	$(A \cup B) \triangle (A \cap B) = A \triangle B$
8	$A \setminus (B \cup C) = (A \setminus B) \setminus C$	23	$(A \setminus B) \triangle (B \setminus C) = (A \cap \overline{B} \cup (\overline{A} \cap B \cap \overline{C})$
9	$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$	24	$((A \setminus B) \setminus C) \triangle (B \cup C) = A \cap \overline{B} \cap \overline{C} \cup (B \cup C)$
10	$(A \cap B) \setminus (A \cap C) = (A \setminus B) \setminus C$	25	$((A \triangle B) \cup (A \triangle C)) \setminus (B \cup C) = (A \setminus B) \setminus C$
11	$A \cup B = A \triangle B \triangle (A \cap B)$	26	$(A \triangle B) \cap (B \triangle C) = (A \cap \overline{B} \cap C) \cup (\overline{A} \cap B \cap \overline{C})$
12	$(A \cap B) \cup (A \cap \overline{B}) = (A \cup B) \cap (A \cup \overline{B})$	27	$(A \cup B) \triangle (A \setminus B) = B$
13	$(((A \cap B) \triangle A) \setminus A) \cup (C \triangle B) = (C \cup B) \setminus (C \cap B)$	28	$(A \setminus B) \triangle (A \cap B) = A$
14	$(A \cap B \cap C) \triangle (A \cup B) = ((A \cup B) \setminus C) \cup (A \triangle B)$	29	$(A \triangle B) \triangle (B \triangle C) = A \triangle C$
15	$(A \cap \overline{B} \cap C) \cup (\overline{A} \cap \overline{B} \cap C) \cup (B \cap C) = C$	30	$A \cup B = (A \triangle B) \cup (A \cap B)$

Для заданных на множестве $A = \{1, 2, 3, 4, 5\}$ бинарных отношений ρ и τ :

- а) записать матрицы и построить графики;
- б) найти композицию $\rho \circ \tau$;
- в) исследовать свойства отношений ρ , τ и $\rho \circ \tau$ (рефлексивность, иррефлексивность, симметричность, антисимметричность, транзитивность).

Nº		
вар.	ρ	au
1	$\{(x, y): (x+y) \neq 0 \pmod{2}\}$	$\{(x, y): -1 \leqslant x - y < 0\}$
2	$\{(x, y): (x - y) = 0 \pmod{2}\}$	$\{(x, y): 2 \leqslant x \leqslant y - 1\}$
3	$\{(x, y): (2x + 2y) \neq 0 \pmod{3}\}$	$\{(x, y): 2x - 1 < y\}$
4	$\{(x, y): xy \leqslant 8\}$	$\{(x, y): x - y \leqslant 1\}$
5	$\{(x, y): x(6-y) \le 8\}$	$\{(x, y): x - y > 2\}$
6	$\{(x, y): x(3-y) \le 3\}$	$\{(x, y): x = 0 \pmod{y}\}$
7	$\{(x, y): (3-x)(3-y) \le 1\}$	$\{(x, y): x + y < 5\}$
8	$\{(x, y): (x-2)(y-2) \le 1\}$	$\{(x, y) \colon 2x \geqslant 3y\}$
9	$\{(x, y): 5 \le x + y \le 8\}$	$\{(x, y) \colon 4 \leqslant xy \leqslant 6\}$
10	$\{(x, y): x - y < 2\}$	$\{(x, y): 2 < x + y \le 5\}$
11	$\{(x, y): 2 \le x - 2y \le 4\}$	$\{(x, y): (x+y+1) = 0 \pmod{2}\}$
12	$\{(x, y): (7x - 2y) \neq 0 \pmod{4}\}$	$\{(x, y): x - y \geqslant 2\}$
13	$\{(x, y): (4-x)(2-y) \le 1\}$	$\{(x, y): 1 \le (x-2)y < 8\}$
14	$\{(x, y): x \geqslant y + 1\}$	$\{(x, y): (4-x)(4-y) \le 1\}$
15	$\{(x, y): y > x + 1\}$	$\{(x, y): x - y \le 1\}$
16	$\{(x, y): (x+y) \neq 0 \pmod{2}\}$	$\{(x, y): 6 \leqslant xy \leqslant 12\}$
17	$\{(x, y): (x+y) = 0 \pmod{2}\}$	$\{(x, y): 2 \leqslant y \leqslant x - 1\}$
18	$\{(x, y): x - y < 0\}$	$\{(x, y) \colon 4 \leqslant xy \leqslant 9\}$
19	$\{(x, y): x - y \leqslant 1\}$	$\{(x, y): x(y-2) \le 3, x \ne y\}$
20	$\{(x, y): x - y \geqslant 2\}$	$\{(x, y): x(6-y) \le 8, x \ne y\}$
21	$\{(x, y): y = 0 \pmod{x}\}$	$\{(x, y): (5-x)(5-y) \leqslant 5\}$
22	$\{(x, y): x + y \leqslant 7\}$	$\{(x, y): (x-3)(5-y) \le 1\}$
23	$\{(x, y): 3x \leqslant 2y\}$	$\{(x, y): 1 \le (2-x)(2-y) \le 3\}$
24	$\{(x, y): 2 \leqslant xy \leqslant 5\}$	$\{(x, y): 2 \leqslant x \leqslant y^2 - 3\}$
25	$\{(x, y): 3 < x + y < 6\}$	$\{(x, y): x - y^2 \le 2\}$
26	$\{(x, y): x + y + 2 = 0 \pmod{3}\}$	$\{(x, y): 3 \leqslant x^2 - y \leqslant 5\}$
27	$\{(x, y): x - y + 1 = 0 \pmod{3}\}$	$\{(x, y): 0 \leqslant x^2 - xy \leqslant 9\}$
28	$\{(x, y): 0 \leqslant xy \leqslant 8\}$	$\{(x, y): (5-x)(y^2-3) \ge 14\}$
29	$\{(x, y): 0 \leqslant (2-x)(2-y) \leqslant 9\}$	$\{(x, y): 1.5x - y \leq 0\}$
30	$\{(x, y): 2 \leqslant (x-1)(y-1) \leqslant 6\}$	$\{(x, y): 0.5y - x \leqslant -3\}$

Пусть H — подгруппа, порожденная элементом b в мультипликативной группе z_p^{\odot} вычетов по модулю p, а gH — класс смежности группы z_p^{\odot} по подгруппе H с представителем g.

- а) Вычислить подгруппу H и смежный класс gH.
- б) Каждый элемент класса gH представить в виде двоичного числа длины 7.
- в) На множестве полученных векторов построить диаграмму Хассе для отношения порядка

$$(\alpha_1, \ldots, \alpha_n) \preceq (\beta_1, \ldots, \beta_n) \Leftrightarrow (\alpha_1 \leq \beta_1) \wedge \ldots \wedge (\alpha_n \leq \beta_n).$$

Выписать любые три максимальные цепи и антицепи и указать их на диаграмме Хассе.

Вариант 1. p = 97, b = 8, g = 2.

Вариант 2. p = 97, b = 8, g = 3.

Вариант 3. p = 97, b = 8, g = 4.

Вариант 4. p = 97, b = 8, g = 5.

Вариант 5. p = 97, b = 8, g = 6.

Вариант 6. p = 97, b = 8, g = 7.

Вариант 7. p = 97, b = 8, q = 8.

Вариант 8. p = 97, b = 8, g = 9.

Вариант 9. p = 97, b = 8, g = 10.

Вариант 10. p = 97, b = 8, g = 11.

Вариант 11. p = 79, b = 18, g = 11.

Вариант 12. p = 79, b = 18, q = 2.

Вариант 13. p = 79, b = 18, g = 3.

Вариант 14. p = 79, b = 18, q = 4.

Вариант 15. p = 79, b = 18, q = 5.

Вариант 16. p = 79, b = 18, q = 6.

Вариант 17. p = 79, b = 18, q = 7.

Вариант 18. p = 79, b = 18, g = 8.

Вариант 19. p = 79, b = 18, q = 9.

Вариант 20. p = 79, b = 18, g = 10.

Вариант 21. p = 71, b = 51, q = 2.

Вариант 22. p = 71, b = 51, g = 3.

Вариант 23. p = 71, b = 51, q = 4.

Вариант 24. p = 71, b = 51, g = 5.

Вариант 25. p = 71, b = 51, q = 6.

Вариант 26. p = 71, b = 51, q = 7.

Вариант 27. p = 97, b = 8, g = 17.

Вариант 28. p = 97, b = 51, g = 18.

Вариант 29. p = 97, b = 51, q = 19.

Вариант 30. p = 97, b = 51, q = 12.

Проверив аксиомы, установить, является ли заданная алгебра с двумя бинарными операциями полукольцом или кольцом. При этом:

- а) для полукольца (не являющегося кольцом), проверить, является ли полукольцо коммутативным, идемпотентным, замкнутым;
- б) для кольца проверить, будет ли оно булевым, есть ли в нем делители нуля, является ли кольцо полем.

Вариант 1. Множество матриц вида $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, где $a,b,c,d \in \{0,1\}$, с операциями сложения и умножения матриц, причем операции сложения и умножения элементов выполняются в поле \mathbf{Z}_2 вычетов по модулю 2.

Вариант 2. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1\}$, с операциями сложения и умножения упорядоченных пар, определенных по следующим правилам:

$$(a, b) + (c, d) = (a + c, b + d);$$
 $(a, b) \cdot (c, d) = (ac, bd),$

причем операции сложения и умножения элементов выполняются в поле ${\bf Z}_2$ вычетов по модулю 2.

Вариант 3. Множество матриц вида $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, где $a,b,c,d \in \{0,1,2\}$, с операциями сложения и умножения матриц, причем операции сложения и умножения элементов выполняются в поле ${\bf Z}_3$ вычетов по модулю 3.

Вариант 4. Множество матриц вида $\binom{a}{c}\binom{a}{d}$, где $a,b,c\in 2^{\{0,1\}}$, с операциями сложения и умножения матриц, причем операции сложения и умножения элементов выполняются в полукольце $(2^{\{0,1\}},\,\cup,\,\cap)$.

Вариант 5. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1, 2\}$, с операциями сложения и умножения упорядоченных пар, определенных по следующим правилам:

$$(a, b) + (c, d) = (a + c, b + d);$$
 $(a, b) + (c, d) = (ac, bd),$

причем операции сложения и умножения элементов выполняются в поле ${\bf Z}_3$ вычетов по модулю 3.

Вариант 6. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ \mathbb{O} & b \end{pmatrix}$, где $a,b \in 2^{\{0,1\}}$, с операциями сложения и умножения матриц, причем операции сложения и умножения элементов выполняются в кольце $(2^{\{0,1\}}, \triangle, \cap)$.

Вариант 7. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1\}$, с операциями сложения и умножения упорядоченных пар, определенных по следующим правилам:

$$(a, b) + (c, d) = (a + c, b + d);$$
 $(a, b) \cdot (c, d) = (ac, bd),$

причем операции сложения и умножения элементов выполняются в полукольце \mathcal{B} .

Вариант 8. Множество упорядоченных пар (x, y), где $x, y \in 2^{\{0,1\}}$, с операциями сложения и умножения упорядоченных пар, определенных по следующим правилам:

$$(a, b) + (c, d) = (a + c, b + d);$$
 $(a, b) \cdot (c, d) = (ac, bd),$

причем операции сложения и умножения элементов выполняются в полукольце $(2^{\{0,1\}},\ \cup,\ \cap)$.

Проверив аксиомы, установить, является ли заданная алгебра с двумя бинарными операциями полукольцом или кольцом. При этом:

- а) для полукольца (не являющегося кольцом), проверить, является ли полукольцо коммутативным, идемпотентным, замкнутым;
- б) для кольца проверить, будет ли оно булевым, есть ли в нем делители нуля, является ли кольцо полем.

Вариант 9. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ \mathbb{O} & b \end{pmatrix}$, где $a,b \in 2^{\{0,1\}}$, с операциями сложения и умножения матриц, причем операции сложения и умножения элементов выполняются в полукольце $(2^{\{0,1\}}, \, \cup, \, \cap)$.

Вариант 10. Множество упорядоченных пар (x, y), где $x, y \in 2^M$ (M — некоторое множество), с операциями сложения и умножения упорядоченных пар, определенных по следующим правилам:

$$(a, b) + (c, d) = (a + c, b + d);$$
 $(a, b) \cdot (c, d) = (ac, bd),$

причем операции сложения и умножения элементов выполняются в кольце $(2^M, \triangle, \cap)$.

Вариант 11. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ \mathbb{O} & b \end{pmatrix}$, где $a,b \in \{0,1\}$, с операциями сложения и умножения матриц, причем операции сложения и умножения элементов выполняются в полукольце \mathcal{B} .

Вариант 12. Множество чисел вида $x+\sqrt{2}y$, где x и y — рациональные числа, с обычными операциями сложения и умножения чисел.

Вариант 13. Множество матриц вида $\begin{pmatrix} a & b \\ \mathbb{O} & c \end{pmatrix}$, где $a,b,c \in \{0,1\}$ с операциями сложения и умножения матриц, причем операции сложения и умножения элементов выполняются в полукольце ($\{0,1\}$, min, max).

Вариант 14. Множество матриц вида $\binom{a}{b}\binom{0}{c}$, где $a,b,c\in 2^{\{0,1\}}$, с операциями сложения и умножения матриц, причем операции сложения и умножения элементов выполняются в полукольце $(2^{\{0,1\}},\ \cap,\ \cup)$.

Вариант 15. Множество чисел вида $x+\sqrt{3}y$, где x и y — рациональные числа, с обычными операциями сложения и умножения чисел.

Вариант 16. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1\}$, с операциями сложения и умножения, определенных по следующим правилам:

$$(a, b) + (c, d) = (a + c, b + d);$$
 $(a, b) + (c, d) = (ac, bd),$

причем операции сложения и умножения элементов выполняются в полукольце ($\{0,1\}$, max, min).

Вариант 17. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1, 2, 3\}$, с операциями сложения и умножения упорядоченных пар, определенных по следующим правилам:

$$(a, b) + (c, d) = (a + c, b + d);$$
 $(a, b) \cdot (c, d) = (ac, bd),$

причем операции сложения и умножения элементов выполняются в кольце ${\bf Z}_4$ вычетов по модулю 4.

Вариант 18. Множество матриц вида $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, где $a,b,c,d \in \{0,1,2,3\}$, с операциями сложения и умножения матриц, причем операции сложения и умножения элементов выполняются в кольце \mathbf{Z}_4 вычетов по модулю 4.

Проверив аксиомы, установить, является ли заданная алгебра с двумя бинарными операциями полукольцом или кольцом. При этом:

- а) для полукольца (не являющегося кольцом), проверить, является ли полукольцо коммутативным, идемпотентным, замкнутым;
- б) для кольца проверить, будет ли оно булевым, есть ли в нем делители нуля, является ли кольцо полем.

Вариант 19. Множество всех многочленов произвольной степени над полем действительных чисел с обычными операциями сложения и умножения многочленов.

Вариант 20. Множество многочленов степени не выше n над полем действительных чисел с операциями сложения и умножения многочленов, определенных по следующим правилам:

$$\sum_{i=0}^{n} a_i x^i + \sum_{i=0}^{n} b_i x^i = \sum_{i=0}^{n} (a_i + b_i) x^i, \qquad \sum_{i=0}^{n} a_i x^i \cdot \sum_{i=0}^{n} b_i x^i = \sum_{i=0}^{n} (a_i \cdot b_i) x^i.$$

Вариант 21. Множество матриц вида $\binom{a}{c}\binom{b}{d}$, где $a,b,c\in 2^{\{0,1,2\}}$, с операциями сложения и умножения матриц, причем операции сложения и умножения элементов выполняются в полукольце $(2^{\{0,1,3\}}, \cup, \cap)$.

Вариант 22. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1, 2\}$, с операциями сложения и умножения упорядоченных пар, определенных по следующим правилам:

$$(a, b) + (c, d) = (a + c, b + d);$$
 $(a, b) + (c, d) = (ac, bd),$

причем операции сложения и умножения элементов выполняются в поле ${\bf Z}_5$ вычетов по модулю 5.

Вариант 23. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ \mathbb{O} & b \end{pmatrix}$, где $a,b \in 2^{\{0,1,2\}}$, с операциями сложения и умножения матриц, причем операции сложения и умножения элементов выполняются в кольце $(2^{\{0,1,2\}}, \triangle, \cap)$.

Вариант 24. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ \mathbb{O} & b \end{pmatrix}$, где $a,b \in \{0,1\}$, с операциями сложения и умножения матриц, причем операции сложения и умножения выполняются в полукольце $(\{0,1\}, \min, \max)$.

Вариант 25. Множество чисел вида $x+\sqrt{5}y$, где x и y — рациональные числа, с обычными операциями сложения и умножения чисел.

Вариант 26. Множество упорядоченных пар (x, y), где $x, y \in 2^M$ (M — некоторое множество), с операциями сложения и умножения упорядоченных пар, определенных по следующим правилам:

$$(a, b) + (c, d) = (a + c, b + d);$$
 $(a, b) \cdot (c, d) = (ac, bd),$

причем операции сложения и умножения элементов выполняются в полукольце \mathcal{B} .

Вариант 27. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ b & c \end{pmatrix}$, где $a,b,c \in 2^{\{0,1,2\}}$, с операциями сложения и умножения матриц, причем операции сложения и умножения элементов выполняются в полукольце $(2^{\{0,1,2\}},\ \cap,\ \cup)$.

Вариант 28. Множество всех многочленов произвольной степени над полем рациональных чисел с обычными операциями сложения и умножения многочленов.

Проверив аксиомы, установить, является ли заданная алгебра с двумя бинарными операциями полукольцом или кольцом. При этом:

- а) для полукольца (не являющегося кольцом), проверить, является ли полукольцо коммутативным, идемпотентным, замкнутым;
- б) для кольца проверить, будет ли оно булевым, есть ли в нем делители нуля, является ли кольцо полем.

Вариант 29. Множество матриц вида $\begin{pmatrix} a & \mathbb{O} \\ \mathbb{O} & b \end{pmatrix}$, где $a,b \in 2^{\{0,1\}}$, с операциями сложения и умножения матриц, причем операции сложения и умножения выполняются в полукольце $(2^{\{0,1\}},\ \cap,\ \cup)$.

Вариант 30. Множество упорядоченных пар (x, y), где $x, y \in \{0, 1, 2\}$, с операциями сложения и умножения, определенных по следующим правилам:

$$(a, b) + (c, d) = (a + c, b + d);$$
 $(a, b) + (c, d) = (ac, bd),$

причем операции сложения и умножения элементов выполняются в полукольце ($\{0,1,2\}$, max, min).