

United International University (UIU)

Dept. of Computer Science & Engineering (CSE)

Final-Term Exam: Trimester: Spring 2024

Course Code: EEE 2123; Course Title: Electronics Total Marks: 40; Duration: 2 hours

Any examinee found adopting unfair means would be expelled from the trimester/ program as per UIU disciplinary rules.

There are six(6) questions in this paper. Answer all of them.

Q1(a). The threshold voltage of each MOSFET in the following figure is $V_{tn} = 1 \text{ V}$. Determine the region of operation of the MOSFET in each circuit.

Fig 1: Circuit diagram for Q1(a)

Q1(b). For the circuit in Fig 2, find the value of **R** that results in $V_D = 0.7$ V. The MOSFET has $V_{tn} = 0.4$ V, $\mu_n C_{ox} = 0.5$ mA/V^2 , W/L = 4. [5]

Fig 2: Circuit diagram for Q1(b)

[4]

Q2. Design the circuit in Fig. 3 to obtain $I = 1 \mu A$, $I_D = 0.5 mA$, $V_S = 2 V$, and $V_D = 5 V$. The NMOS transistor has $V_{tn} = 0.5 V$, $k'_{n}(W/L) = 4 mA/V^2$. [6]

Fig 3: Circuit diagram for Q2

Q3. Determine the voltages at all nodes and current through all branches of circuit in Fig. 4. Given, the current gain, $\beta = 110$. [5]

Fig 4: Circuit diagram for Q3

Q4. Find all node voltages and branch currents in the following circuit in Fig. 5. Assume, $R_{B1} = R_{B2} = 50 \text{ k}\Omega$ and $\beta = 100$.

Fig 5: Circuit diagram for Q4

Q5(a). Write the expressions of V_1 and V_0 in terms of A and B in the following diagram in Fig. 6. If A = 0 and B = 1 what will be the values of V_1 and V_0 . Clearly show which mosfets will be on and which will remain off. [4]

Fig 6: Circuit diagram for Q5(a)

[6]

Q5(b). Implement the following logic function "f" in single stage and draw the corresponding circuit diagram:

[4]

$$f = (\overline{AB} C + B \overline{CD})$$

Q6. Design an amplifier circuit that can generate the following outputs: [3+3]

(a)
$$v_0 = -7v_i + 5 \frac{dv_i}{dt} - \frac{1}{3} \int v_i dt$$

(b)
$$v_0 = 3v_1$$
 - $2v_2$ - $8v_3$ (Here v_1 , v_2 and v_3 are three different inputs)

Clearly mention the values of all circuit parameters. Assume that the feedback resistor is 1 $k\Omega$ in all cases.