Úvod

Poznámka (Organizační úvod)

K ukončení předmětu je třeba pouze udělat zkoušku: 2 příklady na definice, 2 věta-důkaz.

Literatura:

- L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992.
- W. Rudin, Analýza v reálném a komplexním oboru, Academia, 2003.

1 Differentiation of measures

1.1 Covering theorems

Definice 1.1 (Vitali cover)

Let $A \subset \mathbb{R}^n$ we say that a system \mathcal{V} consisting of closed balls from \mathbb{R}^n forms Vitali cover of A, if

 $\forall x \in A \ \forall \varepsilon > 0 \exists B \in \mathcal{V} : x \in B \land \operatorname{diam} B < \varepsilon.$

Definice 1.2 (Notation)

 λ_n is Lebesgue measure on \mathbb{R}^n . λ_n^* is outer Lebesgue measure on \mathbb{R}^n . If $B \subset \mathbb{R}^n$ is a ball and $\alpha > 0$, then $\alpha \cdot B$ stands for the ball, which is concentric with B and with α -times greater radius than B.

Věta 1.1 (Vitali)

Let $A \subset \mathbb{R}^n$ and \mathcal{V} be a system of closed balls forming a Vitali cover of A. Then there exists a countable disjoint subsystem $\mathcal{A} \subseteq \mathcal{V}$ such that $\lambda_n(A \setminus \bigcup \mathcal{A}) = 0$.

 $D\mathring{u}kaz$

First assume that A is bounded. Take an open bounded set $G \subset \mathbb{R}^n$ with $A \subset G$. We set

$$\mathcal{V}^* = \{ B \in \mathcal{V} | V \subset G \} .$$

Then \mathcal{V}^* is a Vitali cover of A. If there exists a finite disjoint subsystem of \mathcal{V}^* covering A, we are done. So Assume that there is no such subsystem. Mathematical induction:

First step: We set $s_1 = \sup \{ \operatorname{diam} B | B \in \mathcal{V}^* \}$. We choose a ball $B_1 \in \mathcal{V}^*$ such that $B_1 > \frac{1}{2}s_1$.

k-th step: Suppose that we have already constructed balls $B_1, B_2, \ldots, B_{k-1}$. We set

$$s_k = \sup \left\{ \operatorname{diam} B | B \in \mathcal{V}^* \wedge B \cap \bigcup_{i=1}^{k-1} B_i = \emptyset \right\}.$$

We find $B_k \in \mathcal{V}^*$ such that diam $B_k > \frac{1}{2}s_k > 0$, $B_k \cap \bigcup_{i=1}^{k-1} B_i = \emptyset$.

Let $\mathcal{A} = \{B_k | k \in \mathbb{N}\}$. It is disjoint, it is countable, it holds $\lambda_n(A \setminus \bigcup \mathcal{A}) = 0$:

$$\sum_{i=1}^{\infty} \lambda_n(B_i) = \lambda_n(\bigcup_{i=1}^{\infty} B_i) \leqslant \lambda_n(G) < \infty \implies$$

$$\implies \lim_{i \to \infty} 0 \implies \lim_{i \to \infty} \operatorname{diam}(B_i) = 0 \implies \lim_{i \to \infty} s_i = 0.$$

We show that

$$\forall x \in A \setminus \bigcup \mathcal{A} \ \forall i \in \mathbb{N} \exists j \in \mathbb{N}, j > i : x \in 5 \cdot B_j$$
$$\Leftrightarrow A \setminus \bigcup \mathcal{A} \subseteq \bigcup_{j=i+1}^{\infty} 5 \cdot B_j$$

Take $x \in A \setminus \bigcup A$ and $i \in \mathbb{N}$. Denote $\delta = \operatorname{dist}(x, \bigcup_{k=1}^{i} B_k) > 0$. There exists $B \in \mathcal{V}^*$ such that $x \in B$ and $\operatorname{diam} B < \delta \implies B \cap \bigcup_{k=1}^{i} B_k = \emptyset$. Then we have $\operatorname{diam} B > s_p$ for some $p \in \mathbb{N}$.

Therefore there exists j > i with $B_j \cap B \neq \emptyset$. Let j be the smallest number with this property. Then we have $s_j \geqslant \operatorname{diam} B$ since $B \cap \bigcup_{l=1}^{j-1} B_l = \emptyset$. Further we have $\operatorname{diam} B_j > \frac{1}{2}\operatorname{diam} B \implies 2\operatorname{diam} B$ This implies that $x \in B \subset 5 \cdot B_j$.

$$\lambda_n^*(A \setminus \bigcup A) \leqslant \lambda_n \left(\bigcup_{j=i+1}^{\infty} 5 \cdot B_j \right) \leqslant \sum_{j=i+1}^{\infty} \lambda_n(5 \cdot B_j) = \sum_{j=i+1}^{\infty} 5^n \lambda_n(B_j) = 5^n \cdot \sum_{j=i+1}^{\infty} \lambda_n(B_j) \to 0 \implies \lambda_n(A \setminus \bigcup A)$$

General case (A not bounded): Let $(G_j)_{j=1}^{\infty}$ be a sequence of disjoint open sets such that $\lambda_n(\mathbb{R}^n \setminus \bigcup_{j=1}^{\infty} G_j) = 0$. We define $\mathcal{V}_j = \{B \in \mathcal{V}_i, B \subseteq G_j\}$. \mathcal{V}_j is a Vitali cover of $A \cap G_j \implies \exists \mathcal{A}_j \subseteq \mathcal{V}_j$ countable disjoint and $\lambda_n(A \cap G_j \setminus \bigcup A_j) = 0$. We set $\mathcal{A} = \bigcup_{j=1}^{\infty} \mathcal{A}_j$. \mathcal{A} is countable, disjoint and $\lambda_n(A \setminus \bigcup \mathcal{A}) = 0$.

Definice 1.3

We say that a measure μ on \mathbb{R}^n satisfies Vitali theorem, if for every Vitaly cover \mathcal{V} of $M \subseteq \mathbb{R}^n$ there exists a disjoint countable $\mathcal{A} \subset \mathcal{V}$ with $\mu(M \setminus \bigcup \mathcal{A}) = 0$.

Poznámka

If μ satisfies Vitali theorem and $\nu \ll \mu$, then ν satisfies Vitali theorem.

Věta 1.2

Set $E \subset \mathbb{R}^n$ be Lebesgue measurable and S be a finite system of closed balls covering E. Then there exists a disjoint system $\mathcal{L} \subset \mathbb{S}$ such that $\lambda_n(E) \leq 3^n \cdot \sum_{B \in \mathcal{L}} \lambda_n(B)$.

 $D\mathring{u}kaz$

WLOG $S \neq \emptyset$. SUppose $B_1 \in S$ with maximal radius among balls from S.

Suppose that we have already constructed $B_1, \ldots, B_{k-1} \in \mathcal{S}$. If possible, choose $B_k \in \mathcal{S}$ disjoint with $\bigcup_{j < k} B_j$ and with maximal radius among balls satisfying this property.

We set $\mathcal{L} = \{B_1, \dots, B_N\}$. We show $E \subseteq \bigcup_{B \in \mathcal{L}} 3 * B = \bigcup_{i=1}^N 3 * B_i$. $x \in E$. Find $B \in \mathcal{S}$ with $x \in B$. Find smallest k with $B \cap B_k \neq \emptyset$. This means $\operatorname{rad}(B) \leqslant \operatorname{rad}(B_k) \Longrightarrow x \in B \subseteq 3 * B_k$.

Now
$$\lambda_n(E) \leqslant \lambda_n\left(\bigcup_{i=1}^N 3 * B_i\right) \leqslant \sum_{i=1}^N \lambda_n(3 * B_i) = 3^n \sum_{i=1}^N \lambda_n(B_i).$$

Věta 1.3 (Besicovitch theorem)

For each $n \in \mathbb{N}$ there exists $N \in \mathbb{N}$ with the following property:

If $A \subset \mathbb{R}^n$ and $\Delta : A \to (0, \infty)$ is a bounded function, then there exist sets $A_1, ..., A_N \subseteq A$ such that

- $\{\overline{B}(x,\Delta x)|x\in A_j\}$ is disjoint for every $j\in[N]$;
- $A \subset \bigcup \left\{ \overline{B}(x, \Delta x) | \in \bigcup_{i=1}^{N} A_i \right\}.$

 $D\mathring{u}kaz$ (Case A is bounded)

Let $R := \sup_A \Delta$. Choose $B_1 := \overline{B}(a_1, \Delta(a_1))$ such that $a_1 \in A$ and $r_1 := \Delta(a_1) > \frac{3}{4}R$.

Assume that we already constructed $B_1, \ldots, B_{j-1}, j \ge 2$. $B_{j-1} = \overline{B}(a_{j-1}, \Delta(a_{j-1})) = \overline{B}(a_{j-1}, r_{j-1})$. Let $F_j := A \setminus \bigcup_{i=1}^{j-1} B_i$. If $F_j = \emptyset$ we set J := j. If not $B_j := \overline{B}(a_j, \Delta(a_j)) = \overline{B}(a_j, r_j)$, $a_j \in F_j$ and $r_j > \frac{3}{4} \sup_{F_j} \Delta$.

If $F_j \neq \emptyset$ for every $j \in \mathbb{N}$, then we set $J := \infty$. So we have $(B_j)_{j < J}$. If $J < \infty$, then we covered A. "If $J = \infty$, then $A \subset \bigcup_{j < J} B_j$ ":

 $\lim_{i\to\infty} r_i = 0$ ": because A is bounded

$$||a_i - a_j|| \geqslant r_i = \frac{1}{3}r_i + \frac{2}{3}r_i > \frac{1}{3}r_i + \frac{1}{2}r_j > \frac{1}{3}r_i + \frac{1}{3}r_j = \frac{1}{3}(r_i + r_j) \implies \frac{1}{3} * B_i \cap \frac{1}{3} * B_j = \emptyset.$$

 $\left\{\frac{1}{3}B_j|j < J\right\}$ is a disjoint family $\implies \sum_{j=1}^{\infty} \lambda_n(\frac{1}{3}*B_j) < \infty$.

If $A \in A \setminus \bigcup_{j=1}^{\infty} B_j$, then $a \in \bigcap_{j=1}^{\infty} F_j$. We find $j_0 \in \mathbb{N}$ with $r_{j_0} \leq \frac{3}{4}\Delta(a)$. 4.

Fix k < J. We set $I = \{i < k | B_i \cap B_k \neq \emptyset\}$, $I_1 = \{i < k_i | B_i \cap B_k \neq \emptyset \land r_i < 10r_k\}$, $I_2 = \{i < k_i | B_i \cap B_k \land r_i \geqslant 10r_k\}$. The estimate of I_1 : "We have $\frac{1}{3}B_i \subseteq 15 * B_k$ for every $i \in I_1$ ": Take $x \in \frac{1}{3} * B_i$. Then

$$||x - a_k|| \le ||x - a_j|| + ||a_i - a_k|| \le \frac{1}{3}r_i + r_i + r_k \le \frac{10}{3}r_k + 10r_k + r_k \le 15r_k$$

$$\lambda_n(\frac{1}{3}*B_i) = \lambda(\overline{B}(0,1)) \cdot (\frac{1}{3}r_i)^n \geqslant \lambda_n(\overline{B}(0,1)) \cdot (\frac{1}{3} \cdot \frac{3}{4}r_k)^n = \lambda_n(\overline{B}(0,1)) \cdot \frac{1}{4^n}r_k^n = \frac{1}{6O^n}\lambda_n(15*B_k) \implies |I_1| \leqslant \frac{1}{3} \cdot \frac{1}{4}r_k^n = \frac{1}{6O^n}\lambda_n(15*B_k)$$