

Backtracking

Ausgewählte Kapitel aus "The Art of Computer Programming"

Hardware-Software-Co-Design, Friedrich-Alexander-Universität Erlangen-Nürnberg

Outline

Einführung

n Queens

Listings

Einführung

Sequenzen $x_1, x_2, x_3 \dots x_n$ für welche die Bedingung $P_n(x_1, x_2, x_3 \dots x_n)$ gilt.

P hat dabei folgende Eigenschaften:

- $P_l(x_1, x_2, x_3 \dots x_l)$ gilt nur, wenn $P_{l-1}(x_1, x_2, x_3 \dots x_{l-1})$ gilt
- wenn $P_l(x_1, x_2, x_3 \dots x_l)$ gilt, ist $P_{l+1}(x_1, x_2, x_3 \dots x_{l+1})$ einfach zu testen
- P_0 () gilt immer

Sequenzen $x_1, x_2, x_3 \dots x_n$ für welche die Bedingung $P_n(x_1, x_2, x_3 \dots x_n)$ gilt.

P hat dabei folgende Eigenschaften:

• $P_l(x_1, x_2, x_3 \dots x_l)$ gilt nur, wenn $P_{l-1}(x_1, x_2, x_3 \dots x_{l-1})$ gilt

Backtracking

- wenn $P_I(x_1, x_2, x_3 \dots x_I)$ gilt, ist $P_{I+1}(x_1, x_2, x_3 \dots x_{I+1})$ einfach zu testen
- P_0 () gilt immer

Sequenzen $x_1, x_2, x_3 \dots x_n$ für welche die Bedingung $P_n(x_1, x_2, x_3 \dots x_n)$ gilt.

P hat dabei folgende Eigenschaften:

• $P_{l}(x_{1}, x_{2}, x_{3} \dots x_{l})$ gilt nur, wenn $P_{l-1}(x_{1}, x_{2}, x_{3} \dots x_{l-1})$ gilt

Backtracking

- wenn $P_l(x_1, x_2, x_3 \dots x_l)$ gilt, ist $P_{l+1}(x_1, x_2, x_3 \dots x_{l+1})$ einfach zu testen
- P_0 () gilt immer

Sequenzen $x_1, x_2, x_3 \dots x_n$ für welche die Bedingung $P_n(x_1, x_2, x_3 \dots x_n)$ gilt.

P hat dabei folgende Eigenschaften:

• $P_l(x_1, x_2, x_3 \dots x_l)$ gilt nur, wenn $P_{l-1}(x_1, x_2, x_3 \dots x_{l-1})$ gilt

Backtracking

- wenn $P_l(x_1, x_2, x_3 \dots x_l)$ gilt, ist $P_{l+1}(x_1, x_2, x_3 \dots x_{l+1})$ einfach zu testen
- P₀() gilt immer

Algorithmus

```
/// A required set of methods needed for the generic backtracking algorithms.
pub trait Sequence {
    type Step;
    type Steps: IntoIterator<Item = Self::Step>;
    /// Checks if this sequence satisfy its condition.
    111
    /// This function can assume that the parent of `self` satisfied this condition.
    fn satisfies condition(&self) -> bool:
    /// generates all possible next steps at this current state.
    fn next_steps(&self) -> Self::Steps;
    /// applies a `step` to `self`, returning the resulting sequence.
    111
    /// this function will only be called if `self.satisfies condition() == true`.
    fn apply step(&self, step: Self::Step) -> Self:
}
```


Algorithmus

```
pub fn b<T: Sequence>(initial: T, n: usize) -> Vec<T> {
    let mut results = Vec::new():
    let mut states = Vec::new():
    let steps = initial.next_steps().into_iter();
    states.push((initial, steps));
    while let Some((state, steps)) = states.last_mut() {
        if let Some(step) = steps.next() {
            let next_state = state.apply_step(step);
            if next state.satisfies condition() {
                if states.len() < n {</pre>
                    let next_steps = next_state.next_steps().into_iter();
                    states.push((next state, next steps)):
                } else {
                    results.push(next_state);
        } else {
            states.pop();
    results
```


n	Queens				

Damenproblem

Wie viele Möglichkeiten gibt es n Damen auf einem n*n Schachbrett aufzustellen, dass sich keine zwei Damen schlagen können. Also keine 2 Damen in der selben Zeile, Reihe oder Diagonalen stehen.

(a) Richtig

(b) Falsch

Listings

Listings

empty

Thanks for listening.

Any questions?

References

References I