PHYSICS

MOTION IN A PLANE

- 1. Scalars and vectors
- 2. Multiplication of vectors by real numbers
- 3. Addition and subtraction of vectors
- 4. Resolution of vectors
- 5. Motion in a plane with constant acceleration
- 6. Projectile motion and Uniform circular motion

SUMMARY

- 1. Scalar quantities have only magnitude. Examples are distance, speed, mass and temperature.
- 2. Vector quantities have both magnitude and direction. Examples are displacement, velocity and acceleration. They obey special rules of vector algebra.
- 3. A vector 'A' multiplied by a real number ' λ ' is also a vector, whose magnitude is ' λ ' times the magnitude of the vector 'A' and whose direction is the same or opposite depending upon whether ' λ ' is positive or negative.
- 4. Two vectors A and B can be added graphically by using head-to-tail method or parallelogram method.
- 5. Vector addition obeys commutative law i.e, A + B = B + A

It also obeys the associative law i.e, (A + B) + C = A + (B + C)

6. A null or zero vector is a vector with zero magnitude. Since the magnitude is zero, we don't have to specify its direction.

It has the properties:

$$A+0 = A$$

$$\lambda$$
.0 =0

$$0.A = 0$$

- 7. The subtraction of vector B from A is defined as the sum of 'A' and 'negative B' i.e A-B=A + (-B)
- 8. A vector A can be resolved into component along two given vectors 'a' and 'b' lying in the same plane i.e, $A = \lambda a + \mu b$ where λ and μ are real numbers.
- 9. A unit vector associated with a vector 'A' has magnitude '1' and is along the vector A: $\widehat{n}=\frac{A}{|A|}$

The unit vectors \hat{i} , \hat{j} , \hat{k} are vectors of unit magnitude and points in the direction of the x-, y-, and z-axes respectively in a right-handed coordinate system.

10.A vector **A** can be expressed as $\mathbf{A=}\mathbf{A}_{x}\hat{i}=\mathbf{A}_{y}\hat{j}$

Where A_x A_y are its components along x-, and y-axes. If vector **A** makes an angle θ with the x-axis, then A_x =A $\cos\theta$, A_y =A $\sin\theta$ and $|A|=\sqrt{A_x^2+A_y^2}$ and direction is given by $\tan=\frac{A_y}{A_x}$

- 11. Vectors can be conveniently added using analytical method. If sum of two vectors A and B, that lie in x-y plane, is R, then: R=A+B
- 12. The position vector of an object in x-y plane is given by $\mathbf{r}=\mathbf{x}\hat{i}+\mathbf{y}\hat{j}$ and the displacement from position r to position r i' is given by $\triangle r=r'-r=(x'-x)\hat{i}+(y'-y)\hat{j}$ $=\triangle x\hat{i}+\triangle y\hat{j}$

13. If an object undergoes a displacement Δr in time Δt , its average velocity is given by $v=rac{\Delta r}{\Delta t}$. The velocity of an object at time t is the limiting value of the average velocity

As
$$\Delta t$$
 tends to zero: $v=\lim_{\Delta t \to o} \frac{\Delta r}{\Delta t} = \frac{dr}{dt}$
$$\nu_x = \frac{dx}{dt}, \nu_Z = \frac{dz}{dt}$$
 It can be written in unit vector notation as $v=v_x\hat{i} + vy\hat{j} + v_z\hat{k}$

When position of an object is plotted on a coordinate system, v is always tangent to the curve representing the path of the object.

14. If the velocity of an object changes from v to v' in time Δt , then its average acceleration is given by: $\overline{a}=\frac{v-v^1}{\Delta t}=\frac{\Delta v}{\Delta t}$

The acceleration a at any time t is the limiting value $\,\overline{a}\,$ $\,$ as $\,$ $\Delta t
ightarrow 0$

$$a=\lim_{x
ightarrow\infty}rac{\Delta v}{\Delta t}=rac{dv}{dt}$$
 In component form, we have

15. If an object is moving in a plane with constant acceleration $a \ |a| \sqrt{a_x^2 \ a_y^2}$ and its position vector at time $\mathbf{t} = 0$ is r_o then at any other time \mathbf{t} , it will be at a point given by $r-r_o = v_o t + \frac{1}{2} a t^2$ and its velocity is given by $v = v_o + a t$

When v_o is the velocity at time t=0

In component form

$$x-x_o=v_{ox}t+rac{1}{2}a_xt^2$$
 $y-y_o=v_{ox}t+rac{1}{2}a_yt^2$
 $u_x=
u_{ax}+a_xt$
 $u_y=
u_{ay}+a_yt$

Motion in a plane can be treated as superposition of two separate simultaneous onedimensional motions along two perpendicular directions 16. An object that is in flight after being projected is called a projectile. If an object is projected with initial velocity v_o making an angle θ_o with x-axis and if we assume its initial position to coincide with the origin of the coordinate system, then the position and velocity of the projectile at time t are given by:

$$\mathbf{x} = (\mathbf{v}_o \cos \theta_o) \mathbf{t}$$

 $\mathbf{y} = (\mathbf{v}_o \sin \theta_o) \mathbf{t} - (1/2) \mathbf{g} \mathbf{t}^2$
 $\mathbf{v} \mathbf{x} = \mathbf{v}_{ox} = \mathbf{v}_o \cos \theta_o$
 $\mathbf{v}_y = \mathbf{v}_o \sin \theta_o - \mathbf{g} \mathbf{t}$

The path of a projectile is parabolic and is given by $an_o \ x - rac{gx^2}{2 \ v_o ext{cos}_o^2}$

The maximum height that a projectile attains is $h_m = rac{(
u_o \sin q_o)}{2g}$

The time taken to reach this height is: $t_m = rac{
u_o \sin heta_o}{q}$

The horizontal distance travelled by a projectile from its initial position to the position it passes y = 0 during its fall is called the range, R of the projectile. It is: $R = \frac{\nu_0^2}{g} \sin 2$.

17. When an object follows a circular path at constant speed, the motion of the object is called uniform circular motion. The magnitude of its acceleration is $a_2=v^2/R$. The direction of a_c is always onwards the centre of the circle.

The angular speed ω , is the rate of change of angular distance. It is related to velocity v by v = ω R. The acceleration is $a_c = \omega^2 R$. If T is the time period of revolution of the object in circular motion and v is its frequency, we have

$$\omega = 2\pi\nu, v = 2\pi\nu R, ac = 4\pi^2\nu^2 R$$