MTL101: Major Exam, Semester I, 2016-17 November 21, 2016

Max Marks: 40

Max Time: 2 Hrs

You can do questions in any order but must do both parts of a question together at one place.

1 (a) Let $V = \mathbb{R}_+$ be a set of all positive real numbers. For $x, y \in V$, $\lambda \in \mathbb{R}$, define the following three

$$x \oplus y = xy$$
, $\lambda \odot x = x^{\lambda}$, $\lambda \otimes x = \lambda^{x}$.

State weather the following statements are TRUE or FALSE with correct justification.

- ∴ The operator ⊙ distributes over ⊕.
- ার্না) The operator \otimes distributes over \oplus .
- (ff) Closure property holds in V with respect to \otimes .
- (iv) There exists $v \in V$ such that $V = \text{span}\{v\}$ with respect to \odot .

(b) Let $V = M_{3\times 3}(\mathbb{R})$, the vector space of 3×3 real matrices over the field of reals. Let

$$W = \left\{ A = [a_{ij}] \in V \mid \sum_{i=1}^{3} a_{ij} = 0, \ j = 1, 2, 3 \right\}.$$

Prove that W is a subspace of V. Construct a basis of W.

[4+4]

- 2. (a) In vector space \mathbb{R}^8 over the field \mathbb{R} , prove that the intersection of any three subspaces, each subspace of dimension 6, can not be the zero subspace.
 - (b) Let A be an $n \times n$ real matrix and I be the identity matrix of order n.
 - (i) Prove that $N(A) \subseteq Range(I A)$.
 - (ii) Is $Range(I A) \subseteq N(A)$?
 - (iii) Suppose $A^2 = A$. Is $Range(A) \cap Range(I A) = \{0\}$?

Here, N(M) and Range(M) denote the null space and the range space of a matrix M, respectively.

3. (a) Let V and W be two finite dimensional vector spaces over the same field, and $T:V\to W$ be a linear transformation. Prove that

$$\dim(V) = \operatorname{rank}(T) + \operatorname{nullity}(T).$$

comparison T from \mathbb{R}^5 to \mathbb{R}^2 whose null space equation

Does there exist a linear transformation T from \mathbb{R}^5 to \mathbb{R}^2 whose null space equals $\{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 \mid x_1 = 3x_2, \ x_3 = x_4 = x_5\}.$ Give reason.

4. (a) Let V be a 2-dimensional vector space and $T:V\to V$ be a linear transformation. If $B=\{v_1,v_2\}$ and $B_1 = \{u_1, u_2\}$ are any given ordered bases in V such that $v_1 = u_1 + u_2$ and $v_2 = u_1 + 2u_2$ and $[T]_{B_1} = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$, then find $[T]_B$. $[T]_{B_1} = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}, \text{ then find } [T]_B.$ $T_{U_1} = 2 \cup_1 + 3 \cup_2 \qquad T_{V_1} = 3 \cup_1 + 7 \cup_2 \qquad T_{V_2} = 3 \cup_1 + 11 \cup_2 \qquad T_{V_3} = 3 \cup_1 + 11 \cup_2 \qquad T_{V_4} = 3 \cup_1 + 11$

$$T_1(x_1, x_2, x_3, x_4, \ldots) = (2x_2, 3x_3, 4x_4, \ldots), \quad T_2(x_1, x_2, x_3, x_4, \ldots) = (0, x_1, \frac{x_2}{2}, \frac{x_3}{3}, \frac{x_4}{4}, \ldots)$$

 $T_1(x_1, x_2, x_3, x_4 \dots) = (2x_2, 3x_3, 4x_4, \dots), \quad T_2(x_1, x_2, x_3, x_4 \dots) = (0, x_1, \frac{x_2}{2}, \frac{x_3}{3}, \frac{x_4}{4} \dots).$ Is T_1 one one? Are the two compositions $T_1 \circ T_2$ and $T_2 \circ T_1$ bijections? Justify your [4+4]answers.

- 5. (a) Let $A = \begin{pmatrix} 1 & 3 & -1 \\ 9 & 2 & 1 \\ 7 & 1 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 5 \\ 7 \\ 13 \end{pmatrix}$. Show that the system Ax = b is inconsistent. Find the set
 - (b) Let x, y and z be positive real numbers. Use Cauchy-Schwarz inequality to prove that

$$\frac{x^2}{y+z} + \frac{y^2}{z+x} + \frac{z^2}{x+y} \ge \frac{x+y+z}{2}.$$

No marks will be awarded if the result is proved without using Cauchy Schwarz inequality.

[5+3]