Lab 5

Panya Sukphranee¹

Cal Poly Pomona

(Dated: 16 March 2018)

The Nevada test site is found to have the following isotopes $U^{238}, U^{235}, Th^{232}, K^{40}$ and Cs^{137} with activities: 280.023, 177.762, 260.824, 265.366, and 255.271 $\frac{decay}{s}$ respectively. The Ge detector we used has an efficiency obeying the power law in the ≈ 300 -1200keV region according to $\epsilon(E) = .0235E^{-0.587}$. The resolution of the detector was calculated to be FWHM = .00194 at 662keV.

I. INTRODUCTION

In this experiment, we use data from a high resolution Germanium Scintillation Detector to analyze a soil sample from a nuclear test site in Nevada to determine what isotopes exist there. Isotopes on earth can come from natural events like cosmic rays bombarding the atmosphere and nuclei excited at the beginning of earth's formation or from man made events such as nuclear bomb detonation. Two isotopes with long half-life's that were produced during earth's formation are ^{232}Th and ^{238}U . They decay into various daughter nuclei emitting photons in the process. Daughter nuclei can continue to decay into other nuclei until it reaches a steady energy state.

Isotopes like U^{238} have long half-lives on the order of billions of years so there are decays going on all around us. We analyze a soil sample from a Nevada site to see what kind of radioactive isotopes exist in the soil. We begin by calibrating our detector with known isotopes. Then analyze photopeaks emitted from the soil sample to determine isotopes and their activities.

II. THEORY

A. Calibration

Calibration of the Ge detector can be broken down into two parts. The easy part is calibration of the horizontal axis. We use photopeaks from Cs^{137} , Bi^{207} , Na^{22} , Co^{60} and their known energies to find a channel number to energy relationship. The photopeak energy used for Bi^{207} comes from the NaI experiment. We keep an eye on the σ for photopeak curves to make sure that they're consistent with other readings. Otherwise, we could be looking at two overlapping curves.

To calibrate the vertical axis, we start off by considering the following relationship between count rate, activity, yield, and efficiency.

$$\frac{counts}{time} = A \times Y \times \epsilon(E) \tag{1}$$

where, A is activity, Y is the yield of the particular gamma energy from a decay, and $\epsilon(E)$ is the efficiency of a particular energy. Y can be found from literature⁴ so the above

Soil Sample Analysis

equation becomes

$$\frac{counts}{time} \times \frac{1}{Y} = A \times \epsilon(E) \tag{2}$$

By choosing to analyze radiation from the ^{232}Th and ^{238}U series, we are able to hold A constant since the series is in secular equilibrium, meaning A is the same for all isotopes in the series. We can see this from equation 11 of Natural Radiation⁴:

$$\frac{Act_B}{Act_A} = \frac{\tau_A}{\tau_A - \tau_B} \left(1 - \left(\frac{1}{2}\right)^{\left(\frac{\tau_A - \tau_B}{\tau_A \tau_B}\right)t}\right)$$

Referring to the ^{232}Th and ^{238}U tables in Natural Radiation⁴, we can see that the parent half-life's of ^{232}Th and ^{238}U are much larger than their daughter nuclei, $(\tau_A >> \tau_B)$. Moreover, t equals the life of earth so the $\frac{1}{2}$ term goes to zero. Therefore, the activity of the isotopes within each series is the same.

Now we have the efficiency as a function of energy. This obeys a power law for a certain region⁶,

$$\epsilon \propto \beta E^b$$
 (3)

The last step is to calculate the coefficient β in Eqn 3. Eqn 1 can be written as

$$\frac{counts}{time} = A \times Y \times \beta E^b \tag{4}$$

We examine the 1460keV emission data for a sample of 3117g of KCl and compare it to the theoretical decay to approximate β . In particular, K^{40} decaying via electron capture to Ar^{40m} emits the 1460keV photon. Electron capture is likely to happen 10.72% of the time, and decays into Ar^{40m} 99.53%. Therefore, the yield for the 1460keV emission is 10.67%. The 1460keV emission falls into the power law region for efficiency, so we calculate the theoretical value for this emission to determine β .

III. MATERIALS AND METHODS

A. Calibrating the Horizontal Axis

We use the Ge curve fitting program¹ to extract photopeaks of Cs^{137} , Bi^{207} , Na^{22} , and Co^{60} from the file CsNaCoBi.cnf. Photopeaks are extracted starting from the right by panning all the way to the 7000 channel range. We gather photopeak data for the first 7

Soil Sample Analysis

peaks going from right to left (Table II). We plot the data in Excel and use it's best fit line feature to get an equation (Fig 1).

B. Calibrating the Vertical Axis

We used Ge fit to extract as many photopeaks as possible and tabulate them in Table I. Bold entries are used for plotting in an attempt to get a power law relationship. Excel's best fit curve for these two series' are just for comparison. The exponential factor, b, we use is from the Decay Fit program³, Fig 4. We use the same boldfaced entries for the Decay Fit program.

Peak Center	Sigma	Area	Predicted [keV]	Known [keV]	Isotope	Yield	Series
381.6125	3.172	7330.939	85.486	84.40	Th-228	0.0122	Th-232
1153.8538	2.623	3624.135	239.316	238.00	Pb-212	0.436	Th-232
1652.9528	3.128	778.065	338.737	338.30	Ac-228	0.113	Th-232
2521.6646	6.745	1965.584	511.784	510.77	Tl-208	0.226	Th-232
2884.9977	3.546	1392.149	584.160	583.20	Tl-208	0.845	Th-232
4532.9687	4.213	966.993	912.436	911.20	Ac-228	0.266	Th-232
1438.3123	2.743	1117.279	295.980	295.20	Pb-214	0.184	U-238
1723.0536	3.139	1823.679	352.701	351.90	Pb-214	0.356	U-238
3016.1414	3.737	1583.410	610.284	609.30	Bi-214	0.455	U-238
5583.7487	4.963	439.729	1121.751	1120.30	Bi-214	0.149	U-238

TABLE I: ^{232}Th and ^{238}U Series

1. Finding β , the power law coefficient

The number of K nuclei is given by

$$N_K = \frac{M_{KCl}}{mm_{KCl}} \times 6.022 \times 10^{23}$$

where mm_{KCl} , M_{KCl} are the molar mass and mass of KCl sample, respectively. The number of K^{40} nuclei is given by

Soil Sample Analysis

$$N_{K^{40}} = 0.0117\% \times N_k$$

then the 1460keV emission per unit time is given by

$$N_{1460keV} = 10.67\% \times N_{K^{40}}$$

So,

$$\beta = N_{K^{40}} \times \lambda_{K^{40}}$$

Then

$$\beta = \frac{area_{1460}}{time} \cdot \frac{1}{N_{K^{40}} \cdot \lambda_{K40} \cdot Y \cdot E^b}$$

IV. DATA

The last row of Table II seems to relatively high σ so we use the double peak script and tabulate it in Table III. The difference is less than the resolution of the detector so we just keep that row.

Peak Center	Sigma	Area	Energy [keV]	FWHM
6649.4897	5.289	1824.9013	1332.50	0.001324
6358.2231	5.075	2478.1556	1274.00	0.001329
5849.6236	5.139	2191.6451	1173.24	0.001462
5299.1994	5.043	3869.9517	1071.03	0.001584
3279.2123	4.217	5042.0238	661.64	0.002141
2817.1452	3.817	10220.4344	570.41	0.002256
2522.0904	7.940 *	12480.4547	511.00	0.005242

TABLE II: Calibration Cs, Na, Co, Bi

Peak Cente	er	Sigma	Area	Energy	FWHM
2518.78	75	3.199	4848.637	511.21	0.002115
2525.325	51	3.2022	5029.032	512.51	0.002111

TABLE III: Potential Double Peak

Figure 1 shows us a linear relationship between energy and channel number given by E=0.1992C+9.4685.

FIG. 1: Energy vs Channel Number

FIG. 2: Thorium Series - Efficiency

FIG. 3: Uranium Series - Efficiency

The coefficient b for Eqn 3 is taken to be -0.587. This is comparable to the ^{238}U curve fit exponent. The theoretical decay rate is $N_{K^{40}} \times \lambda_{K^{40}}$, $\lambda_{K^{40}}$ is the decay constant at 1460keV. Fig 5 shows us that the counts over the 20hr reading is 13,932.0174 arbitrary units. Eqn 4 applied to $K_{1460keV}^{40}$ becomes

$$\begin{split} \frac{counts}{time} &= A \times Y \times \beta E^b \\ \frac{13932.0174}{72,000s} &= \frac{3117g \cdot KCl}{74.55 \frac{g}{mol}} \times 6.022 \cdot 10^{23} \frac{nuclei}{mol} \\ &\times 0.000117 \times 0.1067 \times \beta \times (1460 keV)^{-0.587} \\ \beta &= 0.0237 \end{split}$$

$$\frac{cts}{time} = AY(0.0237)E^{-0.587}$$
 (5)

FIG. 4: Power Law Curve Fitting

dav/pid-3838874-dt-content-rid-15637517 2/courses/18W CSCI PHY432L.11/Ge%20Fit%208.htm

FIG. 5: K^{40} counts - 20hr = 72,000s

Peak Center	Sigma	Area	Energy	Possible Isotopes	Series
344.1055	2.1449	8768.9555	78.0143	Fr-223	U-235
382.2728	3.6043	5331.4764	85.6172	Th-231	U-235 *
382.2728	3.6043	5331.4764	85.6172	Th-228	Th-232 *
408.6803	3.2080	2936.2836	90.8776	Th-234	U-238
423.5025	4.2673	3431.5779	93.8302	Th-234	U-238
890.6261	3.2947	2208.0552	186.8812	Ra-226	U-238
1007.0778	2.5151	1167.1069	210.0784	Ac-228	Th-232
1154.9585	2.5022	11786.2713	239.5362	Pb-212	Th-232
1313.5772	3.8468	1037.4833	271.1331	Rn-219	U-235
1350.1210	2.7037	552.5240	278.4126	Tl-208	Th-232
1439.1945	2.8223	3795.7228	296.1560	Tl-210	U-238
1463.5441	3.0137	808.3647	301.0065	Pb-212	Th-232 *
1463.5441	3.0137	808.3647	301.0065	Th-227	U-235 *
1463.5441	3.0137	808.3647	301.0065	Pa-231	U-235 *
1655.6881	2.9422	2215.2375	339.2816	Ac-228	Th-232 *
1655.6881	2.9422	2215.2375	339.2816	Ra-223	U-235 *
1724.1006	2.9724	6006.4568	352.9093	Pb-214	U-238
2282.3853	2.8223	617.7095	464.1197	Ac-228	Th-232
2522.4890	5.3114	2474.1463	511.9483	Tl-208	Th-232
2886.2345	3.4950	3449.4313	584.4064	Tl-208	Th-232
3017.4613	3.5878	4517.2772	610.5468	Bi-214	U-238
3280.4704	3.8073	1131.8285	662.9382	Cs-137	Cs-137
3610.0568	4.1149	782.8170	728.5918	Bi-212	Th-232
3950.2833	3.7207	356.3178	796.3649	Ac-228	Th-232 *
3950.2833	3.7207	356.3178	796.3649	Tl-210	U-238 *
4280.1291	4.4788	400.4585	862.0702	Tl-208	Th-232
4534.1427	4.4974	2203.4469	912.6697	Ac-228	Th-232
4824.3210	4.2630	1245.1981	970.4732	Ac-228	Th-232
5584.9348	4.8569	1004.4748	1121.9875	Bi-214	U-238
6176.6017	4.9094	400.4168	1239.8476	Bi-214	U-238
6877.7241	5.6587	264.8774	1379.5111	Bi-214	U-238
7294.8791	5.4441	10642.5367	1462.6084	K-40	K-40

V. CALCULATIONS

A. Energy vs Channel Uncertainty

I took the uncertainty to be the average of the absolute value difference between the predicted and known energies.

$$\Delta_{rel} = \frac{|E_{known} - E_{predicted}|}{E_{known}}$$

Take the average of the absolute uncertainties to be our uncertainty for energy vs channel. $\bar{\Delta}=1.8083$

Pea	k Center	Sigma	Area	Energy Known	Predicted	Relative Uncertainty
	6649.4897	5.2887	1824.9013	1,332.5	1334.0	1.5468
	6358.2231	5.0748	2478.1556	1,274.5	1276.0	1.5265
	5849.6236	5.1389	2191.6451	1,173.2	1174.7	1.4735
	5299.1994	5.043	3869.9517	1,071.0	1065.1	5.9610
	3279.2123	4.2165	5042.0238	661.6	662.7	1.0476
	2817.1452	3.817	10220.4344	570.4	570.6	0.2338
	2522.0904	7.9403	12480.4547	511.0	511.9	0.8689

TABLE V: Uncertainty of Channel vs Energy

B. FWHM of 662keV

$$FWHM = 2\sqrt{ln(2)} \frac{\sigma}{C_0}$$

$$= 2\sqrt{ln(2)} \frac{3.817}{2817.1452}$$

$$= 0.00194$$

C. Activity in the Soil

Table IV is a tabulation of photopeaks extracted from the soil matched up with the possible isotopes from the lab manual⁴. The peaks are consolidated into ^{238}U , ^{235}U , and ^{232}Th series in the last pages attached. The first table is scratchwork and the second table deletes the values from small peaks that I have doubts about. The series activities are taken to be the averages of the last column because the decay is assumed to be in secular equilibrium.

$$U^{238} = 280.023 \frac{decay}{s}$$

$$Th^{232} = 260.824 \frac{decay}{s}$$

$$U^{235} = 177.762 \frac{decay}{s}$$

Using Eqn 5, the activites of K^{40} and Cs^{137} are tabulated:

Peak Center Sigma Area [counts 20hr] Energy [keV] Isotope Yield Activity [decay/sec]

7294.8791 5.4441 10642.5367 1462.6084 K-40 0.1067 265.3654

3280.4704 3.8073 1131.8285 662.9382 Cs-137 0.0634 255.2713

TABLE VI: Activity: K-40 and Cs-137

VI. CONCLUSION

I didn't like how I needed to throw out some data points in the power law curve fitting part. The photopeaks were pretty clear but deviated from the curve significantly. When I was looking at the activity data in the last part, I decided to throw away data points in the 400 channel range and under because these were probably backscatter peaks. The decay series energies for some isotopes were so close together that it was difficult to tell which decay it belonged to. For example, Pb-212, Th-227, and Pa-231 all have decays in the 300keV range. Based on the tabulated activity value in the last part, I just deleted values that were much off from the other ones. I would like to understand how the curve fitting software works so a better decision can be made for throwing out data points.

ak Center	U-238	Area	Energy	Yield	Activity	
3017.4613	3.5878	4517.2772	610.5468 Bi-214	0.455	<mark>251.1895</mark> -	
5584.9348	4.8569	1004.4748	1121.9875 Bi-214	0.149	<mark>243.7894</mark> -	
6176.6017	4.9094	400.4168	1239.8476 Bi-214	0.058	<mark>263.3723</mark> -	
6877.7241	5.6587	264.8774	1379.5111 Bi-214	0.040	<mark>271.0253</mark> -	
1724.1006	2.9724	6006.4568	352.9093 Pb-214	0.356	<mark>309.4324</mark> -	
890.6261	3.2947	2208.0552	186.8812 Ra-226	0.036	776.6828 **	
408.6803	3.2080	2936.2836	90.8776 Th-234	0.021	1140.123 *	400
423.5025	4.2673	3431.5779	93.8302 Th-234	0.021	1377.079 -	400 ו
1439.1945	2.8223	3795.7228	296.1560 Pb-214	0.184	<mark>341.3331</mark> -	
3950.2833	3.7207	356.3178	796.3649 Tl -210	1.000	10.53682 **	Smal
ak Center	Th-232	Area	Energy	Yield		
1007.0778	2.5151	1167.1069	210.0784 Ac-228	0.039	406.8515 **	Smal
1655.6881	2.9422	2215.2375	339.2816 Ac-228	0.113	351.3176 *	
2282.3853	2.8223	617.7095	464.1197 Ac-228	0.044	<mark>299.6624</mark> -	
3950.2833	3.7207	356.3178	796.3649 Ac-228	0.044	241.6701 **	Smal
1534.1427	4.4974	2203.4469	912.6697 Ac-228	0.266	<mark>265.3654</mark> -	
1824.3210	4.2630	1245.1981	970.4732 Ac-228	0.162	<mark>255.2713</mark> -	
3610.0568	4.1149	782.8170	728.5918 Bi-212	0.067	330.397 *	
L154.9585	2.5022	11786.2713	239.5362 Pb-212	0.436	394.9117 -	
1463.5441	3.0137	808.3647	301.0065 Pb-212	0.033	404.3003 **	Smal
382.2728	3.6043	5331.4764	85.6172 Th-228	0.012	3489.958 -	400
350.1210	2.7037	552.5240	278.4126 TI-208	0.063	139.7247 **	Smal
2522.4890	5.3114	2474.1463	511.9483 Tl-208	0.226	<mark>249.7766</mark> -	
886.2345	3.4950	3449.4313	584.4064 Tl-208	0.845	100.6634 *	
280.1291	4.4788	400.4585	862.0702 TI-208	0.124	100.0503 -	
ak Center	U-235	Area	Energy	Yield		
344.1055	2.1449	8768.9555	78.0143 Fr-223	0.091	728.6718 -	
463.5441	3.0137	808.3647	301.0065 Pa-231		546.7057 *	
.655.6881	2.9422	2215.2375	339.2816 Ra-223	0.028	1397.848 *	
.313.5772	3.8468	1037.4833	271.1331 Rn-219	0.108	150.9227 -	
L463.5441	3.0137	808.3647	301.0065 Th-227	0.066	204.6005 *	
382.2728	3.6043	5331.4764	85.6172 Th-231	0.030	1419.25 *	400

Peak Center	U-238	Area	Energy	Yield	Activity
3017.4613	3.5878	4517.2772	610.5468 Bi-214	0.455	251.1895 280.02368
5584.9348	4.8569	1004.4748	1121.9875 Bi-214	0.149	243.7894
6176.6017	4.9094	400.4168	1239.8476 Bi-214	0.058	263.3723
6877.7241	5.6587	264.8774	1379.5111 Bi-214	0.040	271.0253
1724.1006	2.9724	6006.4568	352.9093 Pb-214	0.356	309.4324
1439.1945	2.8223	3795.7228	296.1560 Pb-214	0.184	341.3331
Peak Center	Th-232	Area	Energy	Yield	260.824
1154.9585	2.5022	11786.2713	239.5362 Pb-212	0.436	394.9117
1655.6881	2.9422	2215.2375	339.2816 Ac-228	0.113	351.3176 *
2282.3853	2.8223	617.7095	464.1197 Ac-228	0.044	299.6624
2522.4890	5.3114	2474.1463	511.9483 Tl-208	0.226	249.7766
2886.2345	3.4950	3449.4313	584.4064 TI-208	0.845	100.6634
3610.0568	4.1149	782.8170	728.5918 Bi-212	0.067	330.397
4280.1291	4.4788	400.4585	862.0702 TI-208	0.124	100.0503
4534.1427	4.4974	2203.4469	912.6697 Ac-228	0.266	265.3654
4824.3210	4.2630	1245.1981	970.4732 Ac-228	0.162	255.2713
Peak Center	U-235	Area	Energy	Yield	
1313.5772	3.8468	1037.4833	271.1331 Rn-219	0.108	150.9227
1463.5441	3.0137	808.3647	301.0065 Th-227	0.066	204.6005 *

REFERENCES

- ¹Peter Seigel, Germanium Curve Fit Program, https://www.cpp.edu/~pbsiegel/javascript/gefit8.html
- ²Peter Seigel, Lab Manual, *Experiment 5* https://www.cpp.edu/~pbsiegel/phy432/labman/exp5w16.pdf
- ³Peter Seigel, Lab Manual, *Decay Fit* http://www.cpp.edu/~pbsiegel/javascript/soilfit.html
- ⁴Peter Seigel, Lab Manual, *Natural Radiation* https://www.cpp.edu/~pbsiegel/phy432/labman/natrad.pdf
- ⁵Los Alamos National Laboratory, Passive Nondestructive Assay Manual PANDA, Gamma Ray Detectors http://www.lanl.gov/orgs/n/n1/panda/00326398.pdf
- ⁶Los Alamos National Laboratory, Passive Nondestructive Assay Manual PANDA, *Attenuation Techniques* http://www.lanl.gov/orgs/n/n1/panda/00326401.pdf