DNA Sequencing and Data Analysis

Prof Noam Shomron Amit Levon

Lecture 4, May 8, 2025

DNA Sequencing and Data Analysis

Sequence Mapping and Alignment SAM & BAM File Formats

Thursday 18:30 to 21:00 C.L03

nshomron@gmail.com amit.levon@post.runi.ac.il

Why Do We Need Sequence Mapping?

Determine the origin of an unknown sequence

Find homologous sequences

Determine genomic position of a sequence

Identify genomic variants between samples (variant calling)

Determine the function of a sequence (annotation)

Two Stages of Sequence Mapping

1. SEARCH -

Roughly find the position of the query in the DB

ACCTGAGGATCGTATACAAGTTA

GTGTACAG

1. ALIGN -

Find the exact pairwise alignment of the query and the DB sequences

G	Т	G	Т	Α	С	Α	_	G
G	Т	Α	Т	Α	С	Α	Α	G

Hemoglobin Homologous

Hemoglobin Homologous

The Hamming Distance

Hamming distance is the number of symbols or positions of two strings at which their corresponding characters are different

```
def hamming_distance(string1, string2):
    if (len(string1) != len(string2)):
        raise Exception('Strings must be of equal length.')
    dist_counter = 0
    for n in range(len(string1)):
        if string1[n] != string2[n]:
            dist_counter += 1
    return dist_counter / len(string1)
```

The Hamming distance between r1 and q1 is: 0.1690 The Hamming distance between r2 and q1 is: 0.3169

The Hamming Distance

```
# NCBI Reference Sequence: XP 028905054.1 (platypus hemoglobin subunit A);
q2 = skbio.Protein("MLTDAEKKEVTALWGKAAGHGEEYGAEALERLFQAFPTTKTYFSHFDLSHGSAQIKAHGKKVADA\
LSTAAGHFDDMDSALSALSDLHAHKLRVDPVNFKLLAHCILVVLARHCPGEFTPSAHAAMDKFLSKVATVLTSKYR")
q2
Protein
Stats:
    length: (141
    has gaps: False
    has degenerates: False
    has definites: True
    has stops: False
   MLTDAEKKEV TALWGKAAGH GEEYGAEALE RLFQAFPTTK TYFSHFDLSH GSAQIKAHGK
   KVADALSTAA GHFDDMDSAL SALSDLHAHK LRVDPVNFKL LAHCILVVLA RHCPGEFTPS
120 AHAAMDKELS KVATVLTSKY R
```

q2 = skbio.Protein("MLTDAEKKEVTALWGKAAGHGEEYGAEALERLFQAFPTTKTYFSHFDLSHGSAQIKAHGKKVADA\LSTAAGHFDDMDSALSALSDLHAHKLRVDPVNFKLLAHCILVVLARHCPGEFTPSAHAAMDKFLSKVATVLTSKYK-")

The Hamming Distance

The Hamming distance between r1 and q2 is: 0.90845

The Hamming distance between r2 and q2 is: 0.92254

MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDP\
M-LTDAEKKEVTALWGKAAGHGEEYGAEALERLFQAFPTTKTYFSHFDLSHGSAQIKAHGKKVADALSTAAGHFDDMDSALSALSDLHAHKLRVDP\

The Hamming distance between r1 and q2_aligned is: 0.27465

The Hamming distance between r2 and q2_aligned is: 0.34507

What Is Sequence Alignment?

Mutations:

Substitutions, where one DNA base is replaced with another

Insertions, where one or more contiguous DNA bases are inserted into a sequence

Deletions, where one or more contiguous DNA bases are deleted from a sequence.

ACCATGTTT

CCAAGTT

ACCATGTTT

-CCAAGTT -

ACCA--TGTTT

-CCAAG- - -TT

$$S = -1+1+1-1+1+1-1=4$$

$$S = -1+1+1+1-1-1-1-1-1+1+1=-1$$

Too Simplistic

The Sodium-Potassium Exchange Pump

Too Simplistic

The values for amino acid substitutions were obtained from Henikoff S & Henikoff JG (1992) Amino acid substitutions matrices from protein blocks. *Proc. Natl. Acad. Sci.* **89**: 10915-10919.

Third letter

Local vs. Global Alignment

Global alignment - try to match entire sequences

Useful for closely-related sequences of similar size

Local alignment - allow partial matching

Useful for sequences expected to contain some similarity regions

Global Alignment

Local Alignment

Search

Imagine we have a big book...

... and we want to search it for a specific sentence

It would be 66 so nice if something made sense for a Lewis Carroll change.

Alice in Wonderland

Search

- How can we do it in a timely manner?
 - Brute force
 - Indexing
- Do we allow slight changes?
 - e.g.: "it could be so nice if something made sense"
- Do we allow insertions and deletions?
 - e.g.: "it would be so nice if something made a little sense"
- What if the sentence is repeated in several places in the book?

It would be
66 so nice if
something
made sense
for a

Lewis Carroll
Alice in Wonderland change.

Sequence Mapping Challenges

Large DBs - millions to billions of nucleotides/AAs

Repetition - biological sequences tend to repeat

Noisy - sequencing errors and real biological variants

BLAST - Basic Local Alignment Search Tool

The most popular alignment tool

BLAST finds regions of similarity between biological sequences.

Compares nucleotide or protein sequences to sequence databases

Calculates the statistical significance of DB hits

Allows searching for **imperfect** sequence matches

Uses a **heuristic** algorithm to improve efficiency

BLAST - Algorithm

- 1. Index the DB
- 2. Generate query words
- 3. compute neighbour words
- 4. Search the DB for exact word matches seeds
- 5. Elongate and combine seeds to get final alignment
- 6. Score alignment

Basic Local Alignment Search Tool

BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance.

Learn more

Mon, 17 Mar 2025

Improvements include upgrading to GCP Artifact Registry and better handling of job completion status in kubernetes version 1.30+.

ElasticBLAST 1.4.0 is now available!

More BLAST news...

Web BLAST

blastx

translated nucleotide ▶ protein

tblastn

protein ▶ translated nucleotide

BLAST Genomes

Enter organism common name, scientific name, or tax id

Search

Human

Mouse

Rat

Microbes

Scale and Speed

We need to map millions to hundreds of millions of reads

Can we use Blast?

Blastn - ~100 reads / sec

Human genome - ~ 3Gb

Assume 100bp reads

How long to map x10 data to the human genome?

Hint: how many reads do we need?

Can We Use Blast in NGS?

Blastn - ~100 reads / sec

Human genome - ~ 3Gb

Assume 100bp reads

How long to map x10 data to the human genome?

Data required:

3 Gb x 10 = 30 Gb

Reads required:

30 Gb / 100 = 300 M reads

Time to map:

300 M reads / (100 reads/sec) = 3M sec = ~35 days

BWA - Burrows-Wheeler Aligner

Specifically designed for mapping of short reads

Maps ~2,200 reads / sec (one CPU)

Allows parallel computing

Contains three algorithms - the most useful is **BWA-MEM**

BWA - Limitations

Only works for nucleotides (usually DNA, not RNA)

Less effective when:

- Queries are very long
- Reads are highly diverged from the reference
- Reads contain lots of sequencing errors

Usually offers a good accuracy-speed balance

BWA - Algorithm Overview

Step 1: Index the reference genome

Step 2: Search for reads

Indexing is based on the Burrows-Wheeler's transformation

Index allows easy searching:

- Quick
- Memory efficient

BWA - The Burrows Wheeler Transform

1. Create index of reference genome:

Input: reference in fasta format

\$ bwa index genome.fasta

1. Map reads to reference:

Input: reads file or pair (for PE data) in fastq format

\$ bwa mem genome.fasta reads_R1.fq reads_R2.fq -o aln.sam

Aligners Comparison

<u>Aligner</u>	<u>Index</u>	Applications	Availability
BWA-mem	Burrows-Wheeler	DNA, SE, PE	open-source
Bowtie2	Burrows-Wheeler	DNA, SE, PE	open-source
Novoalign	Hash-Based	DNA, SE, PE	propriety
TopHat	Burrows-Wheeler	RNA-seq	open-source
STAR	Hash-Based (reads)	RNA-seq	open-source
GSNAP	Hash-Based (reads)	RNA-seq	open-source

Aligners Comparison

BWA-MEM Workflow

This takes a long time, but you do it once

Create BWT of reference genome.

\$ bwa index grch38.fa

Output is in SAM format.

Use multiple threads if you have a computer with multiple CPUs.

Align paired-end FASTQ to BWT index.

\$ bwa mem -t 16 grch38.fa 1.fq 2.fq > sample.sam

FASTQ to SAM

Sequence Alignment and Mapping (SAM)

BIOINFORMATICS APPLICATIONS NOTE

Vol. 25 no. 16 2009, pages 2078–2079 doi:10.1093/bioinformatics/btp352

Sequence analysis

The Sequence Alignment/Map format and SAMtools

Heng Li^{1,†}, Bob Handsaker^{2,†}, Alec Wysoker², Tim Fennell², Jue Ruan³, Nils Homer⁴, Gabor Marth⁵, Goncalo Abecasis⁶, Richard Durbin^{1,*} and 1000 Genome Project Data Processing Subgroup⁷

¹Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK, ²Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA, ³Beijing Institute of Genomics, Chinese Academy of Science, Beijing 100029, China, ⁴Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095, ⁵Department of Biology, Boston College, Chestnut Hill, MA 02467, ⁶Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA and ⁷http://1000genomes.org

Received on April 28, 2009; revised on May 28, 2009; accepted on May 30, 2009

Advance Access publication June 8, 2009

Associate Editor: Alfonso Valencia

Table 1. Mandatory fields in the SAM format

No.	Name	Description	
1	QNAME	Query NAME of the read or the read pair	
2	FLAG	Bitwise FLAG (pairing, strand, mate strand, etc.)	
3	RNAME	Reference sequence NAME	
4	POS	1-Based leftmost POSition of clipped alignment	
5	MAPQ	MAPping Quality (Phred-scaled)	
6	CIGAR	Extended CIGAR string (operations: MIDNSHP)	
7	MRNM	Mate Reference NaMe ('=' if same as RNAME)	
8	MPOS	1-Based leftmost Mate POSition	
9	ISIZE	Inferred Insert SIZE	
10	SEQ	Query SEQuence on the same strand as the reference	
11	QUAL	Query QUALity (ASCII-33=Phred base quality)	

Sequence Alignment and Mapping (SAM)

What critical information do we need for sequence alignments?

SAM Format

Col#	Name	Meaning	Example	
1	QNAME	Read or Pair name	HWI:ST156_1:278:1:1058:4544:0	
2	FLAG	Bitwise FLAG	soon!	
3	RNAME	Reference sequence name	chr1	
4	POS	1-based alignment start coordinate	8,724,005	
5	MAPQ	Mapping quality	soon!	
6	CIGAR	Extended CIGAR string	soon!	
7	MRNM	If paired, the mate's reference seq.	chr1	
8	MPOS	If paired, the mate's alignment start	8,724,505	
9	ISIZE	If paired, the insert size	562	
10	SEQ	The sequence of the query/mate	ACAAATTCAG	
11	QUAL	The quality string for the query/mate	HHH\$^^%\$\$	
12	OPT	Optional Tags	XA:i:2, MD:Z:0T34G15	

SAM Format

MAPQ

MAPQ - mapping quality

Definition: -10 log₁₀Pr{mapping position is wrong}

The higher - the better

Usually between 0 and 60

Calculation of MAPQ is differ between aligners

It considers alignment score, Phred score and alternative mappings

As a rule of thumb:

- MAPQ > 30 is considered a good mapping
- MAPQ 0 usually means ambiguous mapping

base2	base10	base16	Meaning	Applies to:
0000000001	1	0x0001	The read originated from a paired sequencing molecule	Both
0000000010	2	0x0002	The read is mapped in a proper pair	Pairs only
0000000100	4	0x0004	The query sequence itself is unmapped	Both
0000001000	8	0x0008	The query's mate is unmapped	Pairs only
0000010000	16	0x0010	Strand of the query (0 for forward; 1 for reverse strand)	Both
00000100000	32	0x0020	Strand of the query's mate	Pairs only
00001000000	64	0x0040	The query is the first read in the pair	Pairs only
00010000000	128	0x0080	The read is the second read in the pair	Pairs only
00100000000	256	0x0100	The alignment is not primary	Both
0100000000	512	0x0200	The read fails platform/vendor quality checks	Both
1000000000	1024	0x0400	The read is either a PCR duplicate or an optical duplicate	Both

ST-E00223:32:H5J57CCXX:4:1220:14651:8868 99 1 10086

base2	base10	base16	Meaning	Applies to:
0000000001	1	0x0001	The read originated from a paired sequencing molecule	Both
0000000010	2	0x0002	The read is mapped in a proper pair	Pairs only
0000000100	4	0x0004	The query sequence itself is unmapped	Both
0000001000	8	0x0008	The query's mate is unmapped	Pairs only
0000010000	16	0x0010	Strand of the query (0 for forward; 1 for reverse strand)	Both
00000100000	32	0x0020	Strand of the query's mate	Pairs only
00001000000	64	0x0040	The query is the first read in the pair	Pairs only
00010000000	128	0x0080	The read is the second read in the pair	Pairs only
00100000000	256	0x0100	The alignment is not primary	Both
0100000000	512	0x0200	The read fails platform/vendor quality checks	Both
1000000000	1024	0x0400	The read is either a RCR duplicate or an optical duplicate	Both

$$00001100011$$
 $2^{6}+2^{5}+2^{1}+2^{0} = 64+32+2+1 = 99$

Concise Idiosyncratic Gapped Alignment Report (CIGAR)

Encoding the details of the alignment

Operation	Meaning
M	Match*
D	Deletion w.r.t. reference
l	Insertion w.r.t. reference
N	Split or spliced alignment
S	Soft-clipping
Н	Hard-clipping
Р	Padding

Reference: ACCTGTC - - TACCTTACG

Experimental: ACCT-TCCATACTTTATC

4M 1D 2M 2l 7M 2S

CIGAR string: 4M1D2M2I7M2S

LENGTH/OPERATION

CIGAR Extended

Operation	Meaning
=	Exact match
Х	Mismatch
D	Deletion w.r.t. reference
I	Insertion w.r.t. reference
N	Split or spliced alignment
S	Soft-clipping
Н	Hard-clipping
Р	Padding

Reference: ACCTGTC - - TACCTTACG

Experimental: ACCT-TCCATACTTTATC

4= 1D 2= 2l 3= 1X 3= 2S

CIGAR string: 4=1D2=2I3=1X3=2S

SAM to BAM

Do it once

Create BWT of reference genome.

\$ bwa index grch38.fa

Output is in SAM format

Align paired-end FASTQ to BWT index.

\$ bwa mem -t 16 grch38.fa 1.fq 2.fq > sample.sam

Output is in BAM format.

Unsorted!
random genomic order as
reads are randomly
placed in FASTQ by
sequencer.

Convert SAM to BAM

\$ samtools view -b sample.sam > sample.bam