NOMBRE: PAUTA

Rol:

Responda las siguientes preguntas de forma personal. Tiempo Máximo: 25 minutos.

1. [30 puntos] Considere la matriz A, con valores propios $\lambda_1 = 3$ y $\lambda_2 = -1$:

 $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \times \text{cov} \geq A$

- (a) [10 puntos] ¿Qué valor/es propio/s obtendrá si utiliza Power Iteration sobre la matriz A?
- (b) [10 puntos] Considere I, la matriz identidad de 2×2 . ¿Qué valor/es propio/s obtendrá si utiliza Power Iteration sobre la matriz A 5I?
- (c) [10 puntos] Considere I, la matriz identidad de 2×2 . ¿Qué valor/es propio/s obtendrá si utiliza Power Iteration sobre la matriz $(A^{-1} + 5I)^{-1}$?
- 2. [70 puntos] Considere A una matriz de $n \times n$, con entradas reales, simétrica y con ceros en la diagonal principal. Los valores propios de esta matriz no se repiten y satisfacen $\lambda_1 > \lambda_2 > \ldots > \lambda_n$.

Obtener numéricamente el valor propio λ_1 de A con Power Iteration no es factible, debido a que este valor no es necesariamente el valor propio dominante. Tal vez, si se usa Power Iteration sobre la matriz A desplazada en un shift conventiente sea más efectivo, ya que los valores propios quedarán ordenados por magnitud al ser todos positivos o todos negativos, pero el valor propio dominante de esta nueva matriz no será exactamente el valor propio λ_1 que se requiere determinar.

Construya un algoritmo que haga uso del Teorema del Círculo de Gerschgorin para encontrar un shift conveniente sobre la matriz A y que obtenga numéricamente el valor propio λ_1 .

Hint: Teorema: Sea A una matriz de $n \times n$ con entradas a_{ij} , $1 \le i \le n$, $1 \le j \le n$. Cada valor propio λ de A pertenece por lo menos a uno de los discos $|\lambda - a_{ii}| \le \sum_{j \ne i} |a_{ij}|$.

- 1) a) * La matriz A tiene valores propios 1=3 y 12=-1

 * Power Iteration obtendrá 1=3 | A| + 1
 - b) * La matriz A-5I tiene valores propios 1=-2 y 12=-6 * Power Iteration obtendrá 12=-6
 - c) * La matriz $(A^{-1} + 5I)^{-1}$ tiene valores propios $\lambda_1 = (\frac{1}{3} + 5) = (\frac{16}{3})^{-1}$ y $\lambda_2 = (-1 + \frac{3}{4})^{-1}$ $\lambda_3 = \frac{3}{16}$ $\lambda_4 = \frac{3}{4}$
- 2) Cada valor propio pertenece a por lo menos uno de los discos:

En este caso Qii = 0 $\forall i$, por lo tanto $|\lambda| \leq \sum_{i \neq i} |a_{ij}|$

Desarrollando el valor absoluto, según la definición:

$$-\sum_{j\neq i} |a_{ij}| \leq \lambda \leq \sum_{j\neq i} |a_{ij}|$$

Considerar max [laij el radio más grande de un disco, el cual puede ser obtenido calculando la norma infinita de A (solo en este caso porque aii=0). Entonces, TODO valor propio queda acotado por

$$-\max_{i} \sum_{j \neq i} |a_{ij}| \leq \lambda \leq \max_{i} \sum_{j \neq i} |a_{ij}|$$

 $-\|A\|_{\infty} \leq \lambda \leq \|A\|_{\infty}$

Sumando IIAllos a la desigualdad:

 $0 \le \lambda \le 2 \|A\|_{\infty}$

Luego todos los valores propios son positivos y están ordenados por magnitud. $\hat{\lambda}$ es valor propio de la matriz $(A + IIAII \infty In)$ y satisface $\hat{\lambda}_i = \hat{\lambda}_i + IIAII \infty$, con $\hat{\lambda}_1 > \hat{\lambda}_2 > ... > \hat{\lambda}_n$.

Usando Power Iteration se obtiene λ_1 , el valor propio dominante de esta matriz. Al restarle IIAllo se obtiene numericamente λ_1 . $\lambda_1 = \lambda_1 + ||A||_{\infty}$

b) * La matria A-5I tione valored AII-1X = 1X = -6

0 * La motrie (A"+5I)" tiene voluis propres 1/1-(3+5)(3)