The stress tensor in the APW based methods and its implementation in the WIEN2k code.

Institute for Materials Chemistry Vienna University of Technology Vienna, Austria

K. Belbase

December 20, 2021

Outline

- Stress tensor and its importance
- Theoretical explanation
- Results
- Discussion and Outlook

Why is stress $(\sigma_{\alpha\beta})$ so important for solid state DFT?

• Stress tensor: derivative of E with respect to strain

$$\Omega \sigma_{\alpha\beta} \equiv \frac{\partial E}{\partial \epsilon_{\alpha\beta}} \Big|_{\epsilon=0}$$
 $\alpha, \beta = 1, 2, 3$

Structure optimization:

- **cubic** solid \Rightarrow only Ω -dependence \Rightarrow easy.
- * perform DFT calculations for a number of volumes V_i
- * fit resulting energies $E_i(\Omega_i)$ to EOS(Murnaghan, Birch Murnaghan, Vinet, ...)

- **tetragonal** solid ⇒ expensive but still feasible.
 - ① for each volume Ω_i : perform a series of DFT calculations to determine the c_i/a_i for which E_i is minimal
 - ② fit resulting E_i and Ω_i to EOS
 - ullet perform final volume optimization for resulting volume $\Omega(P)$ at prescribed pressure P.
- symmetry lower than tetragonal, hexagonal or rhombohedral: possible variations in all six independent components of $\epsilon_{\alpha\beta}$ must be considered \Rightarrow extremely tedious, computationally expensive or even impossible.

Determining the equilibrium state from DFT

- Solid need to relax not only forces $(F^a = -\frac{dE}{dR_a})$ but also determine equilibrium **lattice vectors** at a prescribed external stress $\sigma_{\alpha\beta}$.
- We are looking for the specific unit cell dimensions for which

$$\Omega \sigma_{\alpha\beta} \equiv \frac{\partial E}{\partial \epsilon_{\alpha\beta}}\Big|_{\epsilon=0} \qquad \alpha, \beta = 1, 2, 3$$

In most practical cases stress will be hydrostatic, so we search for a unit cell geometry for which

$$-3\Omega P \delta_{\alpha\beta} \equiv \frac{\partial E}{\partial \epsilon_{\alpha\beta}} \Big|_{\epsilon=0}$$

Review of previous attempts

• For plane wave based methods stress tensor implementation is already available(o. H. Nielsen & R.M. Martin Phys. Rev. Lett. 50 (1983) 697)

many attempts on the full-potential linearized augmented plane-wave (LAPW)

- Thonhauser, Singh & Draxl [1]
 - + only LDA for simple cubic systems
 - missing GGA, APW+lo, and semi core local orbitals.
- Nagasako & Oguchi [2]
 - + LDA and GGA
 - no LOs, no follow-up papers
 - applies to Solar-William LAPW only and can not be applied to the standard LAPW.
- Klüppelberg & Blügel [3]
 - + extensive analytical calculations are presented
 - calculation has a huge error and the source is untraceable
 - only LDA, no LOs, GGA, APW+lo

```
1 Solid state comm. 124, 275 (2002)
```

³ diploma thesis, Jülich (2012)

² J. Phys. Soc. Jpn. **80**, 024701 (2011)

Basis function in the APW based methods

• Unit cell is divided into the atomic spheres and the interstitial region.

Basis functions in the augmented plane wave (APW) method [Slater 1937].

$$\phi_{kK}^{APW}(\mathbf{r}) = \begin{cases} \frac{1}{\sqrt{\Omega}} e^{i(\mathbf{k} + \mathbf{K}) \cdot \mathbf{r}} & \mathbf{r} \in IS \\ \sum_{lm} a_{lm}^{akK} u_l^a(\mathbf{r}, E) Y_{lm}(\hat{\mathbf{r}}) & \mathbf{r} \in R_a \end{cases}$$

- $u_i^a(r, E)$ is the numerical solution of the radial Schrödinger equation with the spherically symmetric potential (V_{00}) at the eigenenergy E
- This leads to a non-linear eigenvalue problem and a computationally very expensive process.
- Energy dependency of $u_i^a(r, E)$ needs to be linearized

Basis function: LAPW and APW+lo

 Linearization inside the atomic sphere is introduced by choosing a linear combination of $u_i^a(r, E_i^a)$ at a fixed energy E_i^a and it's energy derivative $\dot{u}_{I}^{a}(r, E_{I}^{a})$ in linearized augmented plane wave (LAPW)[Anderson 1975].

$$\phi_{\mathbf{k}\mathbf{K}}^{LAPW}(\mathbf{r}) = \begin{cases} \frac{1}{\sqrt{\Omega}} e^{i(\mathbf{k} + \mathbf{K}) \cdot \mathbf{r}} & \mathbf{r} \in IS \\ \sum_{lm} \left[a_{lm}^{a\mathbf{k}\mathbf{K}} u_{l}^{a}(\mathbf{r}, E_{l}^{a}) + b_{lm}^{a\mathbf{k}\mathbf{K}} \dot{u}_{l}^{a}(\mathbf{r}, E_{l}^{a}) \right] Y_{lm}(\hat{\mathbf{r}}) & \mathbf{r} \in R_{a} \end{cases}$$

- a_{lm}^{akK} and b_{lm}^{akK} ensure the continuity of the value and slope of the basis functions.
- Another linearization scheme: the APW plus local orbital (APW+lo) method [E. Sjöstedt et. al 2000], where an APW basis is defined at a fixed energy E_i and the energy dependency is linearized by a set of local orbitals (lo).

$$\phi_{lo}^{a}(\mathbf{r}) = \begin{cases} 0 & \mathbf{r} \in \mathit{IS} \\ \left[a_{l,lo}^{a} u_{l,lo}^{a}(r, E_{l}^{a}) + b_{l,lo}^{a} \dot{u}_{l,lo}^{a}(r, E_{l}^{a}) \right] Y_{L}(\hat{\mathbf{r}}), & \mathbf{r} \in R_{a} \end{cases}$$

 Additional basis, the so-called LOs, only to chemically important I are added to describe the semi core states ($E_{l,LO}^a$) [Singh 1991].

Total energy in Kohn-Sham DFT

ullet One-electron Kohn-Sham equation is solved with $V_{ ext{eff}}(m{r}) = V_{ ext{C}}(m{r}) + \mu_{ ext{xc}}(m{r})$

$$[-\frac{1}{2}\nabla^2 + V_{\text{eff}}(\mathbf{r})]\psi_{\upsilon\mathbf{k}}(\mathbf{r}) = \epsilon_{\upsilon\mathbf{k}}\psi_{\upsilon\mathbf{k}}(\mathbf{r})$$

• For a given the charge density $\rho(r)$, the total energy per unit cell volume is

$$E = E_{kin} + E_{es} + E_{xc}$$

$$= \sum_{vk} n_{vk} \epsilon_{vk} - \int_{\Omega} d^3 r \ \rho(\mathbf{r}) V_{eff}(\mathbf{r}) + \frac{1}{2} \int_{\Omega} d^3 r \ \rho(\mathbf{r}) V_{C}(\mathbf{r}) - \frac{1}{2} \sum_{a \in \Omega} Z_a V_M^a(\tau_a)$$

$$+ \int_{\Omega} d^3 r \rho(\mathbf{r}) \epsilon_{xc}(\mathbf{r})$$

* $\mu_{xc}(\mathbf{r}) \stackrel{\mathsf{LDA}}{=} \frac{d}{d\rho} [\rho \epsilon_{xc}(\mathbf{r})]$ and for GGA, $\epsilon_{xc}(\mathbf{r}) \equiv \epsilon_{xc}(\rho, \nabla \rho)$

Effect of strain in the total energy

- A system is in an initial state with the total energy E_0 and the volume Ω_0 .
- An infinitesimal amount of strain $\underline{\epsilon}$ is applied, so that it is no longer in its initial state (E_0,Ω_0) .
- Total energy of the deformed system, $E[\underline{\epsilon}]$, is expanded around the initial state E_0 with a Taylor series expansion.

$$E[\underline{\underline{\epsilon}}] = E_0 + \Omega_0 \sum_{lpha,eta=1}^3 \sigma_{lphaeta}\epsilon_{lphaeta} + \mathcal{O}(\epsilon^2)$$

- $\bullet \ \, \text{Stress tensor} \,\, \sigma_{\alpha\beta} = \frac{1}{\Omega_0} \frac{\partial {\it E}[\underline{\bf e}]}{\partial \epsilon_{\alpha\beta}} \bigg|_{\underline{\underline{\bf e}}=0}$
- $E[\underline{\epsilon}] = \sum_{\mathbf{v}\mathbf{k}} n_{\mathbf{v}\mathbf{k}}[\underline{\epsilon}] \epsilon_{\mathbf{v}\mathbf{k}}[\underline{\epsilon}] \int_{\Omega[\underline{\epsilon}]} d^3 r_{\epsilon} \ \rho[\underline{\epsilon}](\mathbf{r}[\underline{\epsilon}]) V_{eff}[\underline{\epsilon}](\mathbf{r}[\underline{\epsilon}]) + \frac{1}{2} \int_{\Omega[\underline{\epsilon}]} d^3 r_{\epsilon} \ \rho[\underline{\epsilon}](\mathbf{r}[\underline{\epsilon}]) V_{C}[\underline{\epsilon}](\mathbf{r}[\underline{\epsilon}]) \frac{1}{2} \sum_{a \in \Omega} Z_a V_M^a[\underline{\epsilon}](\tau_a[\underline{\epsilon}]) + \int_{\Omega[\underline{\epsilon}]} d^3 r_{\epsilon} \rho[\underline{\epsilon}](\mathbf{r}[\underline{\epsilon}]) \epsilon_{xc}[\underline{\epsilon}](\mathbf{r}[\underline{\epsilon}])$

Frequently used mathematical relationship

- Strain derivative of vectors and volume
 - * A vector r changes as $r \to r[\underline{\epsilon}] = (\underline{1} \pm \underline{\epsilon})r$; + or is for the direct or the reciprocal lattice and the unit cell volume changes as $\Omega \to \Omega[\underline{\epsilon}] = \det(\underline{1} + \underline{\epsilon})\Omega$.

$$\frac{d\mathbf{r}[\underline{\underline{\epsilon}}]}{d\epsilon_{\alpha\beta}}\Big|_{\underline{\underline{\epsilon}}=0} = \pm \frac{r}{2}(\widehat{\mathbf{r}}_{\alpha}\widehat{\mathbf{e}}_{\beta} + \widehat{\mathbf{r}}_{\beta}\widehat{\mathbf{e}}_{\alpha}) = \pm r\widehat{\mathbf{r}}_{\alpha}\widehat{\mathbf{r}}_{\beta}$$

$$\frac{d\Omega[\underline{\underline{\epsilon}}]}{d\epsilon_{\alpha\beta}}\Big|_{\underline{\epsilon}=0} = \delta_{\alpha\beta}\Omega$$

- * The unit vector component \hat{r}_{α} along Cartesian direction α can be expanded as $\hat{r}_{\alpha} = \sum_{t=-1}^{1} c_{\alpha t} Y_{1t}(\hat{r})$.
- * The product of two spherical harmonics is expanded into Gaunt numbers times another spherical harmonics i.e.

$$Y_{1t}(\hat{r})Y_{lm}(\hat{r}) = \sum_{s,\nu} G_{s,1,l}^{\nu,t,m} Y_{s,\nu}(\hat{r})$$

• The gradient component of the spherical harmonics, $\partial_{\alpha} Y_{lm}(\hat{r})$, in the atomic spheres is computed as

$$\partial_{\alpha} Y_{lm}(\hat{\boldsymbol{r}}) = \frac{1}{r} \sum_{s=+1}^{r} \sum_{t=-1}^{1} c_{\alpha}^{st}(l,m) Y_{l+s,m+t}(\hat{\boldsymbol{r}})$$

Strain variation of the total integration

- Strain derivative of integrals over the unit cell volume
 - **1** A generic integral over the unit cell $\int_{\Omega} d^3 r F(r)$ of an arbitrary function F(r), which in practice is the charge density times potential or some other real quantity. In stress calculation

$$\frac{d}{d\epsilon_{\alpha\beta}} \left| \underline{\underline{\epsilon}} = 0 \int_{\Omega[\underline{\underline{\epsilon}}]} d^3 r_{\epsilon} F[\underline{\underline{\epsilon}}](r_{\epsilon}) = \frac{d}{d\epsilon_{\alpha\beta}} \left| \underline{\underline{\epsilon}} = 0 \det(\underline{\underline{1}} + \underline{\underline{\epsilon}}) \int_{\Omega} d^3 r F[\underline{\underline{\epsilon}}](r[\underline{\underline{\epsilon}}]) = \delta_{\alpha\beta} \int_{\Omega} d^3 r F(r) + \int_{\Omega} d^3 r \frac{dF[\underline{\underline{\epsilon}}](r[\underline{\underline{\epsilon}}])}{d\epsilon_{\alpha\beta}} \right| \underline{\underline{\epsilon}} = 0$$

smeared argument $r[\underline{\epsilon}]$,

$$\frac{dF[\underline{e}](r[\underline{e}])}{d\epsilon_{\alpha\beta}}\bigg|_{\underline{\underline{e}}=0} = \frac{dF[\underline{e}](r)}{d\epsilon_{\alpha\beta}}\bigg|_{\underline{\underline{e}}=0} + \frac{dr[\underline{e}]}{d\epsilon_{\alpha\beta}}\bigg|_{\underline{\underline{e}}=0} \cdot \nabla F(r)$$

With these relationship, the strain variation of an integral over the unit cell volume becomes

$$\frac{d}{d\epsilon_{\alpha\beta}}\Big|_{\stackrel{\epsilon}{=}0} \int_{\Omega[\epsilon]} d^3r_{\epsilon} F[\underline{\epsilon}](r_{\epsilon}) = \delta_{\alpha\beta} \int_{\Omega} d^3r F(r) + \int_{\Omega} d^3r \frac{dF[\underline{\epsilon}](r)}{d\epsilon_{\alpha\beta}}\Big|_{\stackrel{\epsilon}{=}0} + \frac{1}{2} \int_{\Omega} d^3r (r_{\beta} \partial_{\alpha} + r_{\alpha} \partial_{\beta}) F(r)$$

Total stress tensor in the APW based methods

$$\sigma_{\alpha\beta} = \frac{1}{\Omega} \frac{dE[\underline{\epsilon}]}{d\epsilon_{\alpha\beta}} \Big|_{\underline{\epsilon}=0} \\
= \sigma_{\alpha\beta}^{\text{val},kin} + \delta_{APW} \sigma_{\alpha\beta}^{APW} + \sigma_{\alpha\beta}^{\text{val},corr} + \sigma_{\alpha\beta}^{\text{core},corr} + \sigma_{\alpha\beta}^{\text{es}} + \sigma_{\alpha\beta}^{\text{xc}}$$

$$\bullet \quad \sigma_{\alpha\beta}^{\mathit{val},kin} = \frac{1}{2} \sum\nolimits_{\upsilon\mathbf{k}} {^{n}}_{\upsilon\mathbf{k}} \int_{\Omega} {^{d^{3}}} r \psi_{\upsilon\mathbf{k}}^{*}(\mathbf{r}) \bigg(\partial_{\alpha}\partial_{\beta} + \partial_{\beta}\partial_{\alpha} \bigg) \psi_{\upsilon\mathbf{k}}(\mathbf{r})$$

$$\bullet \quad \sigma_{\alpha\beta}^{APW} = \frac{1}{\Omega} \oint dS \frac{d}{d\epsilon_{\alpha\beta}} \left(\psi_{\nu k}^* \stackrel{a}{\underline{\ell}} [\underline{\underline{\ell}}] \frac{\partial \psi_{\nu k}^* [\underline{\underline{\ell}}]}{\partial r_a} - \psi_{\nu k}^* [\underline{\underline{\ell}}] \frac{\partial \psi_{\nu k}^{VS} [\underline{\underline{\ell}}]}{\partial r_a} \right)$$

$$\bullet \quad \sigma_{\alpha\beta}^{\mathit{val},\mathit{corr}} = \frac{2}{\Omega} \sum\nolimits_{\mathit{vk}} {n_{\mathit{vk}}} \Re \left\langle \frac{d\psi_{\mathit{vk}}[\underline{e}][\underline{e}](r[\underline{e}])}{d\epsilon_{\alpha\beta}} \right|_{\underline{e}=0} |\widehat{H}_{\mathit{eff}}(r) - \epsilon_{\mathit{vk}}|\psi_{\mathit{vk}}(r) \right\rangle$$

$$\bullet \quad \sigma_{\alpha\beta}^{\text{core,corr}} = -\frac{1}{2\Omega} \sum\nolimits_{a \in \Omega} \int_{R_{a}} d^{3}\mathbf{r}_{a}\rho_{c}^{a}(\mathbf{r}_{a}) \left(\mathbf{r}_{a\alpha}\,\partial_{\beta} + \mathbf{r}_{a\beta}\,\partial_{\alpha}\right) V_{\text{eff}}^{a}(\mathbf{r}_{a})$$

$$\bullet \quad \sigma_{\alpha\beta}^{\text{es}} = -\frac{\delta_{\alpha\beta}}{\Omega} \int_{\Omega} d^{3}\mathbf{r} \rho(\mathbf{r}) V_{C}(\mathbf{r}) + \frac{1}{2\Omega} \frac{d}{d\epsilon_{\alpha\beta}} \left| \underbrace{\underline{\underline{\epsilon}}}_{\underline{\underline{\epsilon}} = 0} \int_{\Omega[\underline{\underline{\epsilon}}]} d^{3}\mathbf{r}_{\epsilon} \rho((\underbrace{\underline{1}}_{\underline{\underline{\epsilon}}} - \underline{\underline{\epsilon}})\mathbf{r}_{\epsilon}) V_{C}[\underline{\underline{\epsilon}}](\mathbf{r}_{\epsilon}) - \frac{1}{2\Omega} \sum_{a \in \Omega} Z_{a} \frac{d}{d\epsilon_{\alpha\beta}} \left| \underbrace{\underline{V}_{a}^{a}[\underline{\underline{\epsilon}}](\mathbf{r}_{a}[\underline{\underline{\epsilon}}])}_{\underline{\underline{\epsilon}} = 0} V_{\underline{A}}^{a}[\underline{\underline{\epsilon}}](\mathbf{r}_{a}[\underline{\underline{\epsilon}}]) \right|$$

$$\bullet \ \ \sigma^{\mathrm{xc}}_{\alpha\beta} = \frac{\delta_{\alpha\beta}}{\Omega} \int_{\Omega} d^3r \rho(\mathbf{r}) \bigg(\epsilon_{\mathrm{xc}}(\rho(\mathbf{r})) - \mu_{\mathrm{xc}}(\rho(\mathbf{r})) \bigg) \\ - \frac{2\delta_{GGA}}{\Omega} \int_{\Omega} d^3r \rho(\mathbf{r}) \partial_{\alpha} \rho(\mathbf{r}) \partial_{\beta} \rho(\mathbf{r}) \frac{\partial \epsilon_{\mathrm{xc}}}{\partial \sigma} \bigg) d^3r \rho(\mathbf{r}) \partial_{\alpha} \rho(\mathbf{r}) \partial_{\beta} \rho(\mathbf{r}) \partial_{\beta}$$

Results

 The results of the stress tensor are compared with the least square fit of total energy vs volume using the Birch-Murnaghan (BM) equation of state.

$$\textit{E}_{\textit{BM}}(\Omega) = \textit{E}_0 + \frac{9\Omega_0\textit{B}_0}{16} \Bigg(\Big[\Big(\frac{\Omega}{\Omega_0}\Big)^{\frac{2}{3}} - 1 \Big]^{3} \textit{B}_0' + \Big[\Big(\frac{\Omega}{\Omega_0}\Big)^{\frac{2}{3}} - 1 \Big]^{2} \Big[6 - 4 \Big(\frac{\Omega}{\Omega_0}\Big)^{\frac{2}{3}} \Big] \Bigg)$$

• With $E_{BM}(\Omega)$ we define the numerical pressure $P^{(E)}$

$$P^{(E)}(\Omega) = -\frac{\partial E_{BM}(\Omega)}{\partial \Omega}$$

• $P^{(E)}(\Omega)$ is compared to one third of the negative trace of the full stress tensor $P^{(\sigma)}(\Omega)$

$$P^{(\sigma)}(\Omega) = -rac{1}{3}\sum_{lpha}\sigma_{lphalpha} = -rac{1}{3}\Big(\sigma_{11}+\sigma_{22}+\sigma_{33}\Big).$$

• The difference $P^{(E)}(\Omega)$ - $P^{(\sigma)}(\Omega)$ gives the accuracy of our stress tensor formalism.

Convergence of the trace of $\sigma_{\alpha\beta}$ with R_aK_{max} for W

• (a) Energy-Volume curve as well as $P^{(E)}$, (b) $P^{(\sigma)}$ and (c) and (d) are $P^{(E)}-P^{(\sigma)}$

• $P^{(E)} - P^{(\sigma)}$ exhibits the same behavior in the tetrahedron method (d) as in the FD method (c).

Stress tensor with the FD and tetrahedron method.

- Left panel: for W. $P^{(E)}$ $P^{(\sigma)}$ for the FD and tetrahedron method is in the same order. With $R_a K_{max} = 10$, $a_0 = 6.143$ (σ , FD), 6.143 (E, FD), 6.145 (σ , Tetra) and 6.144 (E, Tetra).
- Right panel: for Al, $P^{(E)}$ $P^{(\sigma)}$ is larger in the tetrahedron method than in the FD method. With $R_a K_{max} = 10$, $a_0 = 7.633$ (σ , FD), 7.634 (E, FD), 7.626 (σ , Tetra) and 7.635 (E, Tetra).

Importance of the surface term in APW+lo

In the APW+lo method

- Basis functions are continuous but not the slope.
 - * This gives an additional surface term in the kinetic energy when calculating the total energy. $s = \oint ds \left(\psi_{vk}^{*\,a} \frac{\partial \psi_{vk}^{a}}{\partial r_{a}} \psi_{vk}^{*\,lS} \frac{\partial \psi_{vk}^{lS}}{\partial r_{a}} \right)$
 - * In stress calculation, \mathcal{S} is defined in the deformed system and differentiated with respect to strain. $\sigma_{\alpha\beta}^{APW} = \frac{1}{\Omega} \oint ds \frac{d}{d\epsilon_{\alpha\beta}} \left(\psi_{vk}^{*\,a} \underbrace{\stackrel{\partial}{\epsilon}_{\underline{l}}}_{\underline{l}} \psi_{vk}^{*\,l} \underbrace{\stackrel{\partial}{\epsilon}_{\underline{l}}}_{\underline{l}} \psi_{vk}^{*\,l} \underbrace{\stackrel{\partial}{\epsilon}_{\underline{l}}}_{\underline{l}} \right)$

• σ_{11}^{APW} for APW+lo \sim -38 kbar and for LAPW = 0 kbar. $a_0^{(E)}=6.143$ Bohr, $a_0^{(\sigma)}=6.143$ Bohr (red curve) and 6.174 Bohr (blue curve)

Comparison between LDA and GGA for W

- Difference between $P^{(E)}$ and $P^{(\sigma)}$ is just 1-2 kbar.
- $p(E) p(\sigma)$ is smaller for GGA than LDA.
- $lackbox{0} a_0^{(\sigma)} = a_0^{(E)}$ for LDA and GGA up to three decimal place.

The additional GGA contribution is $\sigma_{\alpha\beta}^{xc,GGA} = -\frac{2\delta_{GGA}}{\Omega} \int_{\Omega} d^3r \rho(r) \partial_{\alpha} \rho(r) \partial_{\beta} \rho(r) \frac{\partial \epsilon_{XC}}{\partial \sigma}$

- $P_{tot}^{(\mathrm{xc,GGA})}$ is negative trace of $\sigma_{\alpha\beta}^{\mathrm{xc,GGA}}$.
- $P_{tot}^{(xc,GGA)} = P_{R_a}^{(xc,GGA)} + P_{IS}^{(xc,GGA)}$
- R_a and IS denote the atomic sphere and the interstitial region.
- $P_{R_a}^{(xc,GGA)}$ is the major constituent and $P_{IS}^{(xc,GGA)}$ is within the error limit of the calculation.

J. Phys. Soc. Jap. 82, 044701 (2013)

Comparison of convergences in APW+lo and LAPW

• Convergence of σ_{11} (left panel) and the lattice parameter (right panel) with basis set size $(R_a K_{max})$ for W.

- With APW+lo $R_a K_{max} = 8$ already gives an acceptable result, but for LAPW $R_a K_{max} = 10$ or more is required.
- Both the stress tensor and the lattice parameter in the APW+lo method converge much faster than two different LAPW cases.

Individual contributions of the stress tensor

Stress tensor

$$\sigma_{\alpha\beta} = \sigma_{\alpha\beta}^{\textit{val},\textit{kin}} + \delta_{\textit{APW}} \sigma_{\alpha\beta}^{\textit{APW}} + \sigma_{\alpha\beta}^{\textit{val},\textit{corr}} + \sigma_{\alpha\beta}^{\textit{core},\textit{corr}} + \sigma_{\alpha\beta}^{\textit{es}} + \sigma_{\alpha\beta}^{\textit{xc}}$$

• σ_{11} component of various stress tensor contributions at $\Omega = 115.94 \; Bohr^3$.

stress	APW+lo (kbar)	LAPW (kbar)
$\sigma_{11}^{\mathit{val},\mathit{kin}}$	1102905.56	1102971.88
σ_{11}^{APW}	-37.96	0.00
$\sigma_{11}^{\mathit{val},\mathit{corr}}$	45.09	20.50
$\sigma_{11}^{core,corr}$	24760504.93	24760437.09
σ^{es}_{11}	-25607153.70	-25607170.14
$\sigma_{11}^{xc,LDA}$	-241699.29	-241699.56
$\sigma_{11}^{GGA,corr}$	-14564.88	-14564.78
total	-0.25	-5.01

• Conversion from the *energy per unit volume* to *kbar* for the given volume Ω is achieved by $1\frac{Ry}{Rohr^3} = 147105.16$ kbar.

Importance of non-spherical potential in core correction

Core correction stress tensor

$$\sigma_{\alpha\beta}^{core,corr} = -\frac{1}{\Omega} \sum_{a \in \Omega} \int_{R_a} d^3 r_a \rho_c^a(\mathbf{r}_a) \frac{1}{2} (\mathbf{r}_{a\alpha} \partial_\beta + \mathbf{r}_{a\beta} \partial_\alpha) V_{eff}^a(\mathbf{r}_a)$$
(1)

- $V_{eff}^{a} \equiv V_{tot}^{c} = V_{00}^{c} + V_{2m}^{c}$
- V_{2m}^c is missing in Thonhauser *et al.* (2002)
- Effects due to the non-spherical component (I=2) in the potential exist only in non-cubic crystal structure.
- ullet For the stress tensor, its importance is confirmed with results for anatase TiO $_2$ in body center tetragonal structure.

	a ₀ (Bohr)	c ₀ (Bohr)
energy	7.181	18.309
stress with $V_{\scriptscriptstyle tot}^{\scriptscriptstyle c}$	7.181	18.307
stress with V_{00}^c	7.163	18.404

 The symmetry between the equivalent atoms has been addressed correctly and the code works also for a non-symmorphic space group.

Accuracy of individual components of the stress tensor

- Cubic silicon in the diamond structure at the equilibrium volume (pressure = 0 and $a_0 = 10.209$ Bohr).
- Lattice parameters a_0 and $b_0 = a_0 = 10.209$ Bohr are fixed but only c_0 lattice parameter varies such that $c = c_0(1+\epsilon_{33})$.
- Using a family of tetragonal deformations without volume conserving, the stress component $\sigma_{33}^{(E)}$ is calculated using $\sigma_{33}^{(E)} = \frac{1}{\Omega_0} \frac{\partial E(\epsilon_{33})}{\partial \epsilon_{33}}$ with $\epsilon_{33} = \frac{c}{c_0}$ 1 and compared with $\sigma_{33}^{(\sigma)}$

€33	$\sigma_{33}^{(E)}$	$\sigma_{33}^{(\sigma)}$
-0.020	33.12	34.28
-0.013	21.95	22.63
-0.007	10.90	11.17
0.000	0.00	0.00
0.007	-10.74	-10.99
0.013	-21.29	-21.70
0.020	-31.65	-32.16

Discussion and Outlook

- Stress tensor formalism for LAPW, APW+lo, LDA and GGA has been derived and implemented in the WIEN2k code.
- Stress tensor is accurate enough to be used for structure optimization.
- A bit larger basis set for stress calculations is needed than for total energy calculations.
- With APW+lo compared to LAPW, the stress tensor converges faster and requires a smaller value of $R_a K_{max}$.
- For metallic systems, calculations using the FD method converge faster
- Formalism and the implementation needs to be extended to the scalar relativistic kinetic energy and spin-orbit coupling.
- An automatic optimization of the lattice parameter using the stress tensor can be implemented in a similar way as the automatic optimization with force (L. D. Marks J. Chem. Theory Comput. (2021)).

Acknowledgment

- I would like to express my sincere gratitude to my supervisors, Prof. Peter Blaha and Dr. Andreas Tröster for the continuous support and guidance throughout my PhD study and research.
- I would like to thank Dr. Fabien Tran
- I would also like to thank Prof. Georg Madsen and Prof. Josef Redinger for agreeing to review my thesis.
- I thank all of my colleagues.
- I acknowledge support by the Austrian Science Fund (FWF) Project P27738-N28 and WIEN2k.

Thank you

Non linear eigenvalue problem in the APW method

Figure 2.3: The APW determinant $\det \widetilde{T}(E) + V(E) - EC(E)$, must be evaluated for a number of energies E, in order to find the solutions to the secular equation in Eqn. (2.14). The circles indicate the eigeneregies of the valence electrons in riobium, at $\mathbf{k} = \frac{g_E}{\pi}(0.5, 0.25, 0.33)$, for a=6.236 a.u.

Why the Fermi-Dirac smearing method is better for calculating stresses

• For a system with partial occupation, the total energy discussed above is no longer variational. In such a case, the total energy must be replaced by a more general expression as given in Eq. (2). This argument is based on the force calculation and we assume that the same argument is valid for the stress tensor calculation.

$$F = E - \sum_{vk} n_{vk} \sigma S \tag{2}$$

• The derivative of the occupation number with respect to strain will be canceled with a similar expression from the entropy-like term (second term in Eq. (2)).

Linearization in the LAPW method

• Energy dependent radial function $u_l(r, E)$ of APW is expanded in LAPW.

$$u_{l}(r, E) = u_{l}(r, E_{l}^{a} + (E - E_{l}^{a}))$$

= $u_{l}(r, E_{l}^{a}) + (E - E_{l}^{a})\dot{u}_{l}(r, E_{l}^{a}) + \mathcal{O}((E - E_{l}^{a})^{2})$

- All higher order terms are neglected by assuming that the difference $E-E_i^a$ is very small.
- Linearization scheme of LAPW is able to solve the non-linear eigenvalue problem of APW but optimal shape of the basis function inside the atomic spheres is sacrificed.

Total wave function and charge density

• The linear combination of the basis functions $\phi_{\mathbf{k}\mathbf{K}}(\mathbf{r})$ are used to define the total wave function $\psi_{v\mathbf{k}}(\mathbf{r})$ for the band v and given \mathbf{k} vector

$$\psi_{v\mathbf{k}}(\mathbf{r}) = \sum_{\mathbf{K}} c_{v\mathbf{k}\mathbf{K}} \phi_{\mathbf{k}\mathbf{K}}^{(L)APW}(\mathbf{r}) + \sum_{lo} c_{v\mathbf{k},lo} \phi_{lo}^{a}(\mathbf{r}) + \sum_{LO} c_{v\mathbf{k},LO} \phi_{LO}^{a}(\mathbf{r})$$

- c_{vkK} are expansion coefficients and K is the reciprocal lattice vector such that $|K| \leq K_{\text{max}}$.
- $\psi_{vk}(r)$ are used to define the charge density as

$$\rho(\mathbf{r}) = \sum_{\mathbf{v}\mathbf{k}} n_{\mathbf{v}\mathbf{k}} \psi_{\mathbf{v}\mathbf{k}}^*(\mathbf{r}) \psi_{\mathbf{v}\mathbf{k}}(\mathbf{r})$$

ullet After simplification, $ho({m r})$ in the APW based methods can be expressed as follow

$$\rho(\mathbf{r}) = \begin{cases} \sum_{\mathbf{G}}^{G_{\text{max}}} \rho(\mathbf{G}) e^{i\mathbf{G} \cdot \mathbf{r}} & \mathbf{r} \in IR \\ \sum_{\text{LM}} \rho_{\text{LM}}(\mathbf{r}) Y_{\text{LM}}(\hat{\mathbf{r}}_{a}) & \mathbf{r} \in R_{a}, \end{cases}$$

• G_{\max} must be at least $2K_{\max}$. The total potential V(r) is expanded similar to $\rho(r)$.