

Ţ <u>Help</u>

sandipan_dey ~

Next >

<u>Syllabus</u> laff routines **Community Discussion** <u>Outline</u> <u>Course</u> <u>Progress</u> <u>Dates</u>

★ Course / Week 3: Matrix-Vector Operations / 3.3 Operations with Matrices

(

3.3.2 Adding matrices

☐ Bookmark this page

Previous

■ Calculator

Week 3 due Oct 18, 2023 06:12 IST

3.3.2 Adding matrices

Matrix operations for matrices that don't represent linear transformations

If I understand everything correctly, we found the definition of matrix addition by proving that if La and Lb are both linear transformations, then t...

Homework 3.3.2.7 Alternative Proof?

homework 3.3.2.12

I am confused about items 1 and 4 on homework 3.3.2.12. If A and B are lower triangle matrices that have a corresponding element of the same...

I don't understand Homework 3.3.2.10

Can you clarify why this is always true? I looked back at the past similar proofs and still don't understand.

Finding an error in the pdf materials

Hi: I find a typo in the page 105. The 3rd question of Homewoek 3.3.2.12 should be "If A and B are unit lower triangular matrices then A-B is unit I....

2

Homework 3.3.2.1

1/1 point (graded)

The sum of two linear transformations is a linear transformation. More formally: Let $L_A:\mathbb{R}^n \to \mathbb{R}^m$ and $L_B:\mathbb{R}^n \to \mathbb{R}^m$ both be linear transformations and , for all $x \in \mathbb{R}^n$, define the function $L_C:\mathbb{R}^n \to \mathbb{R}^m$ by $L_C(x) = L_A(x) + L_B(x)$. $L_C(x)$ is a linear transformation.

Always ✓ Answer: Always

Explanation

Let $x,y\in\mathbb{R}^n$ and $lpha\in\mathbb{R}$ and $L_C=L_A+L_B$. Then

$$egin{aligned} L_{C}\left(lpha x
ight) &= lpha L_{C}\left(x
ight): \ L_{C}\left(lpha x
ight) &= L_{A}\left(lpha x
ight) + L_{B}\left(lpha x
ight) = lpha L_{A}\left(x
ight) + lpha L_{B}\left(x
ight) \ &= lpha \left(L_{A}\left(x
ight) + L_{B}\left(x
ight)
ight) = lpha L_{C}\left(x
ight). \ L_{C}\left(x+y
ight) &= L_{C}\left(x
ight) + L_{C}\left(y
ight): \ L_{C}\left(x+y
ight) &= L_{A}\left(x+y
ight) + L_{B}\left(x+y
ight) \ &= L_{A}\left(x
ight) + L_{A}\left(y
ight) + L_{B}\left(y
ight) = L_{A}\left(x
ight) + L_{B}\left(y
ight) + L_{B}\left(y
ight) \ &= L_{C}\left(x
ight) + L_{C}\left(y
ight). \end{aligned}$$

Submit

• Answers are displayed within the problem

Homework 3.3.2.2

1/1 point (graded)

Algorithm: $[A] := ADD_MATRICES_ALTERNATIVE(A, B)$

Partition
$$A \to \left(\begin{array}{c} A_T \\ \hline A_B \end{array}\right)$$
, $B \to \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right)$

where A_T has 0 rows, B_T has 0 rows

while $m(A_T) < m(A)$ do

Repartition

$$\left(\begin{array}{c} A_T \\ \hline A_B \end{array}\right) \rightarrow \left(\begin{array}{c} A_0 \\ \hline a_1^T \\ \hline A_2 \end{array}\right), \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \rightarrow \left(\begin{array}{c} B_0 \\ \hline b_1^T \\ \hline B_2 \end{array}\right)$$

where a_1 has 1 row, b_1 has 1 row

Continue with

$$\left(\begin{array}{c} A_T \\ \hline A_B \end{array}\right) \leftarrow \left(\begin{array}{c} A_0 \\ \hline a_1^T \\ \hline A_2 \end{array}\right) , \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \leftarrow \left(\begin{array}{c} B_0 \\ \hline b_1^T \\ \hline B_2 \end{array}\right)$$

endwhile

What update will add $oldsymbol{B}$ to $oldsymbol{A}$ one row at a time, overwriting $oldsymbol{A}$ with the result?

- $a_1 := 0$
- $a_1 := a_1 + b_1$
- $b_1 := a_1 + b_1$
- $igcap a_1^T := a_1^T + b_1^T$
- $igcup b_1^T := a_1^T + b_1^T$

[explanation]

Answer: $a_1^T := a_1^T + b_1^T$

Submit

Answers are displayed within the problem

Homework 3.3.2.3

1/1 point (graded)

Let $A,B\in\mathbb{R}^{m imes n}$. A+B=B+A.

Always Answer: Always

Explanation

Transcripted in final section of this week

Scanned solution from video

Robert's explanation

Proof 1: Let C = A + B and D = B + A. We need to show that C = D. But

$$\gamma_{i,j} = \alpha_{i,j} + \beta_{i,j} = \beta_{i,j} + \alpha_{i,j} = \delta_{i,j}.$$

Hence C = D.

Proof 2:

$$A + B = \begin{pmatrix} \alpha_{0,0} & \alpha_{0,1} & \cdots & \alpha_{0,n-1} \\ \alpha_{1,0} & \alpha_{1,1} & \cdots & \alpha_{1,n-1} \\ \vdots & \vdots & & \vdots \\ \alpha_{m-1,0} & \alpha_{m-1,1} & \cdots & \alpha_{m-1,n-1} \end{pmatrix} + \begin{pmatrix} \beta_{0,0} & \beta_{0,1} & \cdots & \beta_{0,n-1} \\ \beta_{1,0} & \beta_{1,1} & \cdots & \beta_{1,n-1} \\ \vdots & \vdots & & \vdots \\ \beta_{m-1,0} & \beta_{m-1,1} & \cdots & \beta_{m-1,n-1} \end{pmatrix}$$

$$= \begin{pmatrix} \alpha_{0,0} + \beta_{0,0} & \alpha_{0,1} + \beta_{0,1} & \cdots & \alpha_{0,n-1} + \beta_{0,n-1} \\ \alpha_{1,0} + \beta_{1,0} & \alpha_{1,1} + \beta_{1,1} & \cdots & \alpha_{1,n-1} + \beta_{1,n-1} \\ \vdots & & \vdots & & \vdots \\ \alpha_{m-1,0} + \beta_{m-1,0} & \alpha_{m-1,1} + \beta_{m-1,1} & \cdots & \alpha_{m-1,n-1} + \beta_{m-1,n-1} \end{pmatrix}$$

$$= \begin{pmatrix} \beta_{0,0} + \alpha_{0,0} & \beta_{0,1} + \alpha_{0,1} & \cdots & \beta_{0,n-1} + \alpha_{0,n-1} \\ \beta_{1,0} + \alpha_{1,0} & \beta_{1,1} + \alpha_{1,1} & \cdots & \beta_{1,n-1} + \alpha_{1,n-1} \\ \vdots & & \vdots & & \vdots \\ \beta_{m-1,0} + \alpha_{m-1,0} & \beta_{m-1,1} + \alpha_{m-1,1} & \cdots & \beta_{m-1,n-1} + \alpha_{m-1,n-1} \end{pmatrix}$$

$$= \begin{pmatrix} \beta_{0,0} & \beta_{0,1} & \cdots & \beta_{0,n-1} \\ \beta_{1,0} & \beta_{1,1} & \cdots & \beta_{1,n-1} \\ \vdots & \vdots & & \vdots \\ \beta_{m-1,0} & \beta_{m-1,1} & \cdots & \beta_{m-1,n-1} \end{pmatrix}$$

$$= \begin{pmatrix} \beta_{0,0} & \beta_{0,1} & \cdots & \beta_{0,n-1} \\ \beta_{1,0} & \beta_{1,1} & \cdots & \beta_{1,n-1} \\ \vdots & \vdots & & \vdots \\ \beta_{m-1,0} & \beta_{m-1,1} & \cdots & \beta_{m-1,n-1} \end{pmatrix}$$

$$= \begin{pmatrix} \beta_{0,0} & \beta_{0,1} & \cdots & \beta_{0,n-1} \\ \beta_{1,0} & \beta_{1,1} & \cdots & \beta_{1,n-1} \\ \vdots & \vdots & & \vdots \\ \beta_{m-1,0} & \beta_{m-1,1} & \cdots & \beta_{m-1,n-1} \end{pmatrix}$$

$$= \begin{pmatrix} \beta_{0,0} & \beta_{0,1} & \cdots & \beta_{0,n-1} \\ \beta_{1,0} & \beta_{1,1} & \cdots & \beta_{1,n-1} \\ \vdots & \vdots & & \vdots \\ \beta_{m-1,0} & \beta_{m-1,1} & \cdots & \beta_{m-1,n-1} \end{pmatrix}$$

$$= \begin{pmatrix} \beta_{0,0} & \beta_{0,1} & \cdots & \beta_{0,n-1} \\ \beta_{1,0} & \beta_{1,1} & \cdots & \beta_{1,n-1} \\ \vdots & \vdots & & \vdots \\ \beta_{m-1,0} & \beta_{m-1,1} & \cdots & \beta_{m-1,n-1} \end{pmatrix}$$

Submit

1 Answers are displayed within the problem

Homework 3.3.2.4

1/1 point (graded)

Let $A,B,C\in\mathbb{R}^{m imes n}$. (A+B)+C=A+(B+C)

Always 🗸 🗸 Answer: Always

Explanation

Answer: Always

Let's introduce the notation $(A)_{i,j}$ for the i,j element of A. Then

$$((A+B)+C)_{i,j} = (A+B)_{i,j} + (C)_{i,j} = ((A)_{i,j} + (B)_{i,j}) + (C)_{i,j} = (A)_{i,j} + ((B)_{i,j} + (C)_{i,j})$$
$$= (A)_{i,j} + (B+C)_{i,j} = (A+(B+C))_{i,j}.$$

Hence (A + B) + C = A + (B + C).

• Answers are displayed within the problem

Homework 3.3.2.5

1/1 point (graded)

Let $A,B\in\mathbb{R}^{m imes n}$ and $\gamma\in\mathbb{R}$. $\gamma\left(A+B
ight)=\gamma A+\gamma B$.

Always

Answer: Always

Explanation

Answer: Always

(Using the notation from the last proof.)

$$(\gamma(A+B))_{i,j} = \gamma(A+B)_{i,j} = \gamma((A)_{i,j} + (B)_{i,j}) = \gamma(A)_{i,j} + \gamma(B)_{i,j} = (\gamma A + \gamma B)_{i,j}$$

Hence, the i, j element of $\gamma(A+B)$ equals the i, j element of $\gamma A + \gamma B$, establishing the desired result.

Submit

Answers are displayed within the problem

Homework 3.3.2.6

1/1 point (graded)

Let $A,B\in\mathbb{R}^{m imes n}$ and $eta,\gamma\in\mathbb{R}$. $(eta+\gamma)\,A=eta A+\gamma A.$

Always ~

Answer: Always

Explanation

Answer: Always

(Using the notation from the last proof.)

$$((\beta + \gamma)A)_{i,j} = (\beta + \gamma)(A)_{i,j} = \beta(A)_{i,j} + \gamma(A)_{i,j} = (\beta A)_{i,j} + (\gamma A)_{i,j}.$$

Hence, the i, j element of $(\beta + \gamma)A$ equals the i, j element of $\beta A + \gamma A$, establishing the desired result.

Submit

Answers are displayed within the problem

Homework 3.3.2.7

1/1 point (graded)

Let $A,B \in \mathbb{R}^{m imes n}$. $(A+B)^T = A^T + B^T$.

Always ~

✓ Answer: Always

Explanation

Answer: Always

$$(A+B)^T = \begin{bmatrix} \alpha_{1,0} & \alpha_{1,1} & \cdots & \alpha_{1,n-1} \\ \vdots & \vdots & & \vdots \\ \alpha_{m-1,0} & \alpha_{m-1,1} & \cdots & \alpha_{m-1,n-1} \end{bmatrix} + \begin{bmatrix} \beta_{1,0} & \beta_{1,1} & \cdots & \beta_{1,n-1} \\ \vdots & \vdots & & \vdots \\ \beta_{m-1,0} & \beta_{m-1,1} & \cdots & \beta_{m-1,n-1} \end{bmatrix}^T$$

$$= \begin{bmatrix} \alpha_{0,0} + \beta_{0,0} & \alpha_{0,1} + \beta_{0,1} & \cdots & \alpha_{0,n-1} + \beta_{0,n-1} \\ \alpha_{1,0} + \beta_{1,0} & \alpha_{1,1} + \beta_{1,1} & \cdots & \alpha_{1,n-1} + \beta_{1,n-1} \\ \vdots & & \vdots & & \vdots \\ \alpha_{m-1,0} + \beta_{m-1,0} & \alpha_{m-1,1} + \beta_{m-1,1} & \cdots & \alpha_{m-1,n-1} + \beta_{m-1,n-1} \end{bmatrix}^T$$

$$= \begin{bmatrix} \alpha_{0,0} + \beta_{0,0} & \alpha_{1,0} + \beta_{1,0} & \cdots & \alpha_{m-1,0} + \beta_{m-1,0} \\ \alpha_{0,1} + \beta_{0,1} & \alpha_{1,1} + \beta_{1,1} & \cdots & \alpha_{m-1,1} + \beta_{m-1,1} \\ \vdots & \vdots & & \vdots \\ \alpha_{0,n-1} + \beta_{0,n-1} & \alpha_{1,n-1} + \beta_{1,n-1} & \cdots & \alpha_{m-1,n-1} + \beta_{m-1,n-1} \end{bmatrix}^T$$

$$= \begin{bmatrix} \alpha_{0,0} & \alpha_{1,0} & \cdots & \alpha_{m-1,0} \\ \alpha_{0,1} & \alpha_{1,1} & \cdots & \alpha_{m-1,0} \\ \alpha_{0,1} & \alpha_{1,1} & \cdots & \alpha_{m-1,n-1} \\ \vdots & \vdots & & \vdots \\ \alpha_{0,n-1} & \alpha_{1,n-1} & \cdots & \alpha_{0,n-1} \\ \vdots & \vdots & & \vdots \\ \beta_{0,n-1} & \beta_{1,1} & \cdots & \beta_{0,n-1} \\ \beta_{1,0} & \beta_{1,1} & \cdots & \beta_{0,n-1} \\ \vdots & \vdots & & \vdots \\ \beta_{m-1,0} & \beta_{m-1,1} & \cdots & \beta_{m-1,n-1} \end{bmatrix}^T$$

$$= \begin{bmatrix} \alpha_{0,0} & \alpha_{0,1} & \cdots & \alpha_{0,n-1} \\ \alpha_{1,0} & \alpha_{1,1} & \cdots & \alpha_{1,n-1} \\ \vdots & \vdots & & \vdots \\ \alpha_{m-1,0} & \alpha_{m-1,1} & \cdots & \alpha_{m-1,n-1} \end{bmatrix}^T$$

$$= A^T + B^T$$

Submit

Answers are displayed within the problem

Homework 3.3.2.8

1/1 point (graded)

Let $A,B\in\mathbb{R}^{n imes n}$ be symmetric matrices. A+B is symmetric.

Always 🗸 🗸 Answer: Always

Explanation

Answer: Always

Let C = A + B. We need to show that $\gamma_{j,i} = \gamma_{i,j}$.

$$\gamma_{j,i}$$
= < Definition of matrix addition >
 $\alpha_{j,i} + \beta_{j,i}$
= < A and B are symmetric >
 $\alpha_{i,j} + \beta_{i,j}$
= < Definition of matrix addition >
 $\gamma_{i,j}$

Submit

Answers are displayed within the problem

Homework 3.3.2.9

1/1 point (graded)

Let $A, B \in \mathbb{R}^{n \times n}$ be symmetric matrices. A - B is symmetric.

Always ~

✓ Answer: Always

Explanation

Answer: Always

Let C = A - B. We need to show that $\gamma_{j,i} = \gamma_{i,j}$.

$$|\gamma_{j,i}|$$

= $<$ Definition of matrix addition $>$
 $\alpha_{j,i} - \beta_{j,i}$

= $<$ A and B are symmetric $>$
 $\alpha_{i,j} - \beta_{i,j}$

= $<$ Definition of matrix addition $>$
 $\gamma_{i,j}$

Submit

Answers are displayed within the problem

Homework 3.3.2.10

1/1 point (graded)

Let $A,B\in\mathbb{R}^{n imes n}$ be symmetric matrices and $eta,\gamma\in\mathbb{R}$. $eta A+\gamma B$ is symmetric.

Always ~

✓ Answer: Always

Explanation

Answer: Always

Let $C = \alpha A + \beta B$. We need to show that $\gamma_{j,i} = \gamma_{i,j}$. The proof is similar to many proofs we have seen.

Submit

Answers are displayed within the problem

Homework 3.3.2.11

6/6 points (graded)

If $m{A}$ and $m{B}$ are lower triangular matrices then $m{A}+m{B}$ is lower triangular.

TRUE ~

✓ Answer: TRUE

If A and B are strictly lower triangular matrices then A+B is strictly lower triangular.

■ Calculator

TRUE	✓ Answer: TRUE
If $m{A}$ and $m{B}$ are (unit lower triangular matrices then $oldsymbol{A}+oldsymbol{B}$ is unit lower triangular.
FALSE	✓ Answer: FALSE
If $m{A}$ and $m{B}$ are ι	upper triangular matrices then $oldsymbol{A}+oldsymbol{B}$ is upper triangular.
TRUE	✓ ✓ Answer: TRUE
If $m{A}$ and $m{B}$ are s	strictly upper triangular matrices then $oldsymbol{A}+oldsymbol{B}$ is strictly upper triangular.
TRUE	✓ ✓ Answer: TRUE
If $m{A}$ and $m{B}$ are (unit upper triangular matrices then $oldsymbol{A}+oldsymbol{B}$ is unit upper triangular.
FALSE	✓ ✓ Answer: FALSE
Submit	
Answers ar	re displayed within the problem
i ioillework :	3.3.2.12
6/6 points (graded	
6/6 points (graded	
6/6 points (graded If $m{A}$ and $m{B}$ are lo	ower triangular matrices then $oldsymbol{A}-oldsymbol{B}$ is lower triangular.
6/6 points (graded If $m{A}$ and $m{B}$ are lo	ower triangular matrices then $m{A}-m{B}$ is lower triangular. $ ightharpoonup m{arphi}$ Answer: TRUE
6/6 points (graded If $m{A}$ and $m{B}$ are In $m{T}$ RUE	ower triangular matrices then $A-B$ is lower triangular. Answer: TRUE strictly lower triangular matrices then $A-B$ is strictly lower triangular.
6/6 points (graded If $m{A}$ and $m{B}$ are In $m{T}$ RUE	ower triangular matrices then $A-B$ is lower triangular. Answer: TRUE strictly lower triangular matrices then $A-B$ is strictly lower triangular. Answer: TRUE
6/6 points (graded of $m{A}$ and $m{B}$ are less than the second of $m{A}$ and $m{B}$ are second of $m{A}$ and $m{A}$ and $m{B}$ are second of $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ are second of $m{A}$ and $m{A}$ and $m{A}$ are second of $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ are second of $m{A}$ and $m{A}$ and $m{A}$ are second of $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ are second of $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ are second of $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ are second of $m{A}$ and $m{A}$ a	ower triangular matrices then $A-B$ is lower triangular. Answer: TRUE Strictly lower triangular matrices then $A-B$ is strictly lower triangular. Answer: TRUE unit lower triangular matrices then $A-B$ is unit lower triangular.
6/6 points (graded of $m{A}$ and $m{B}$ are less than the second of $m{A}$ and $m{B}$ are second of $m{A}$ and $m{A}$ and $m{B}$ are second of $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ are second of $m{A}$ and $m{A}$ and $m{A}$ are second of $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ are second of $m{A}$ and $m{A}$ and $m{A}$ are second of $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ are second of $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ are second of $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ are second of $m{A}$ and $m{A}$ a	ower triangular matrices then $A-B$ is lower triangular. Answer: TRUE strictly lower triangular matrices then $A-B$ is strictly lower triangular. Answer: TRUE unit lower triangular matrices then $A-B$ is unit lower triangular. Answer: FALSE
$^{6/6}$ points (graded If $m{A}$ and $m{B}$ are solutions of $m{A}$ and $m{B}$ are solutions.	ower triangular matrices then $A-B$ is lower triangular. Answer: TRUE Strictly lower triangular matrices then $A-B$ is strictly lower triangular. Answer: TRUE unit lower triangular matrices then $A-B$ is unit lower triangular. Answer: FALSE upper triangular matrices then $A-B$ is upper triangular.
$^{6/6}$ points (graded If $m{A}$ and $m{B}$ are solutions of $m{A}$ and $m{B}$ are solutions.	ower triangular matrices then $A-B$ is lower triangular. Answer: TRUE strictly lower triangular matrices then $A-B$ is strictly lower triangular. Answer: TRUE unit lower triangular matrices then $A-B$ is unit lower triangular. Answer: FALSE upper triangular matrices then $A-B$ is upper triangular. Answer: TRUE
$6/6$ points (graded of $m{A}$ and $m{B}$ are so that $m{A}$ and $m{A}$ $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ are so that $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ are so that $m{A}$ and $m{A$	ower triangular matrices then $A-B$ is lower triangular. Answer: TRUE strictly lower triangular matrices then $A-B$ is strictly lower triangular. Answer: TRUE unit lower triangular matrices then $A-B$ is unit lower triangular. Answer: FALSE upper triangular matrices then $A-B$ is upper triangular. Answer: TRUE strictly upper triangular matrices then $A-B$ is strictly upper triangular.
$6/6$ points (graded of $m{A}$ and $m{B}$ are so that $m{A}$ and $m{A}$ $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ are so that $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ and $m{A}$ are so that $m{A}$ and $m{A$	ower triangular matrices then $A-B$ is lower triangular. Answer: TRUE strictly lower triangular matrices then $A-B$ is strictly lower triangular. Answer: TRUE unit lower triangular matrices then $A-B$ is unit lower triangular. Answer: FALSE upper triangular matrices then $A-B$ is upper triangular. Answer: TRUE strictly upper triangular matrices then $A-B$ is strictly upper triangular. Answer: TRUE
$rac{1}{2} eta A ext{ and } oldsymbol{B} ext{ are bound} \ oldsymbol{TRUE} \ olds$	ower triangular matrices then $A-B$ is lower triangular. Answer: TRUE strictly lower triangular matrices then $A-B$ is strictly lower triangular. Answer: TRUE unit lower triangular matrices then $A-B$ is unit lower triangular. Answer: FALSE upper triangular matrices then $A-B$ is upper triangular. Answer: TRUE strictly upper triangular matrices then $A-B$ is strictly upper triangular. Answer: TRUE strictly upper triangular matrices then $A-B$ is strictly upper triangular.

 $https://learning.edx.org/course/course-v1:UTAustinX+UT.5.05x+1T2022/block-v1:UTAustinX+UT.5.05x+1T2022+type@sequential+block@9f3a56a18bcc4f43b6eb162eb0777fa9/block-v1:UTAustinX+UT.5.05x+1T20...\\ 9/10$

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

<u>Careers</u>

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>