WHAT IS CLAIMED IS:

1	 A pseudolite comprising:
2	a reference frequency oscillator;
3	multiple signal generators, communicatively coupled to and
4	under the control of the reference frequency oscillator, for
5	generating respective coherent signals at different frequencies; and
6	a transmitter antenna, communicatively coupled to the
7	multiple signal generators, for transmitting the two signals at two or
8	more distinct frequencies.
1	2. The pseudolite of claim 1 , wherein the signals are C/A
2	code signals.
1	3. The pseudolite of claim 1 , wherein the signals are from
2	the same family of 1023 codes as GPS satellite signals.
_	The same farmly of 1025 codes as of 5 safetime signals.
1	4. The pseudolite of claim 1 , wherein the signals are from
2	the same family of 1023 codes as GPS satellite signals and are not L1
3	frequencies.
1	5. A multi-frequency receiver comprising:
2	an oscillator, defining a clock; and
3	multiple GPS receivers, communicatively coupled to and
4	clocked by the oscillator, for receiving L1 (1575.42MHz) GPS C/A
5	code signals and signals from the same family of 1023 codes as the
6	GPS satellite signals are drawn from.
1	6. A receiver comprising:
2	multiple frequency translators, for converting signals received

1

2

3

3	on respective different multiple frequencies that are not a
4	predetermined frequency to the predetermined frequency; and
5	multiple GPS receivers, communicatively coupled to
6	respective ones of the multiple frequency translators

- 7. The receiver of claim **5**, wherein the predetermined frequency is the GPS L1 frequency (1575.42MHz).
- 1 A bank of N-channel GPS receivers and attached 8. 2 frequency converters with antennae located at a fixed and precisely 3 known (surveyed) location, called a "Reference Receiver", that measures 4 all of the code and carrier phase relationships between all of the signals 5 transmitted by all of the pseudolites in view, one or more Mobile Receivers 6 electronically configured the same as a Reference Receiver, and a data 7 link connecting the Mobile Receivers to the phase data collected by the 8 Reference Receiver.
 - 9. A reference receiver joined with each pseudolite, data broadcast over RF ranging signal, no requirement for separate reference receiver and radio communications link.
- 1 10. A computational process for determining the carrier 2 phase integer ambiguities for each received pseudolite signal that is based 3 on the preserved and observed time and phase alignment between the 4 code and carrier portions of the transmitted multi-frequency pseudolite 5 signals.