Pontificia Universidad Católica de Chile Facultad de Matemáticas 2° semestre 2020

Ayudantía 08

16 de Octubre MAT2225 - Teoría de Números

1) Se encriptan las letras del alfabeto usando la siguiente tabla:

A	В	С	D	Е	F	G	Н	I	J	K	L	M
65	66	67	68	69	70	71	72	73	74	75	76	77
N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
78	79	80	81	82	83	84	85	86	87	88	89	90

Tambien se eligen los primos p = 11, q = 17 y el exponente e = 107.

a) Calcule $\varphi(pq)$ y $d = e^{-1} \pmod{\varphi(pq)}$

Solución. Tenemos que

$$\varphi(pq) = \varphi(p)\varphi(q) = (p-1)(q-1) = 160.$$

Por otra parte, notar que $107 \cdot 3 = 321 = 160 \cdot 2 + 1$, por lo que d = 3 funciona.

Solución. [Solución 2] Tenemos que

$$\varphi(pq) = \varphi(p)\varphi(q) = (p-1)(q-1) = 160.$$

Ahora, usando algoritmo de la división, se tiene

$$160 = 107 \cdot 1 + 53$$
$$107 = 53 \cdot 2 + 1$$

Devolviendonos, tenemos

$$1 = 107 - 53 \cdot 2 = 107 - (160 - 107) \cdot 2 = 107 \cdot 3 - 160 \cdot 2$$

Tomando módulo 160, se tiene que 3 es el inverso de 107.

A	В	С	D	E	F	G	Н	I	J	K	L	M
65	66	67	68	69	70	71	72	73	74	75	76	77
N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
78	79	80	81	82	83	84	85	86	87	88	89	90

b) Suponga que quiere enviar las letras de la palabra "HOLA" por separado. ¿Qué números se necesitan enviar?

Solución. Basta calcular 72^{107} , 79^{107} , 76^{107} y 65^{107} , lo que da 30, 29, 87 y 10.

- c) Llega el mensaje codificado 108, 86, 146, 51, 28. ¿Qué dice?
 - Solución. Basta calcular 108^3 , 86^3 , 146^3 , 51^3 y 28^3 , lo que genera los números 80, 69, 82, 68 y 73, o la palabra "PERDI".
- d) ¿Qué letras podrían presentar problemas al intentar codificarlas? ¿Por qué?
 - Solución. el teorema de Euler pide que (x,n)=1. En este caso, $n=11\cdot 17$, por lo que pueden fallar los múltiplos de 11 y/o 17, que serían las letras {B, D, M, U, X}.
- e) ¿Cuál es el módulo más pequeño en el que se pueden enviar todas las letras con esta codificación sin problemas?

Solución. Basta buscar los dos primos p, q más pequeños tales que ninguna letra de arriba sea divisible por p o q. Por inspección, se tiene que $\{p, q\} = \{31, 47\}$.

Bonus: Un hacker empieza a recolectar claves, y encuentra los siguientes productos de primos:

1065023, 1916927, 2060969, 3301453.

El hacker usando esta lista descubre que hay dos claves vulnerables. Encuéntrelas.

Hint: Revise si hay claves con factores primos en común.

Solución. Haciendo algoritmo de Euclides entre todos los pares, se tiene que (2060969, 1065023) = 1031. Así, se tiene que $1065023 = 1031 \cdot 1033$ y $2060969 = 1031 \cdot 1999$.