### Heat equation

## One-dimensional homogeneous heat equation

Statement of the problem:



# One-dimensional homogeneous heat equation

The main equation:

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

The finite difference approximation:

$$\frac{\partial u}{\partial t} \sim \frac{u_i^{n+1} - u_i^n}{\tau}$$

$$\frac{\partial^2 u}{\partial x^2} \sim \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{h^2}$$

$$\frac{u_i^{n+1} - u_i^n}{\tau} = k \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{h^2}$$

## One-dimensional homogeneous heat equation

Finally:

$$u_i^{n+1} = u_i^n + \frac{k\tau}{h^2} \left( u_{i+1}^n - 2u_i^n + u_{i-1}^n \right)$$

Where:

k - thermal diffusivity coefficient,

au - time step,

h - step on the x-coordinate





How does the process 0 get the value of the point  $u_{i+1}^n$  ?

The process 1 have to send the message, i.e. the value of  $u_{i+1}^n$ !



belongs to the prosses 0

belongs to the prosses 1

How does the process 1 get the value of the point  $u_{i-1}^n$  ?

The process 0 have to send the message, i.e. the value of  $u_{i-1}^n$ !



belongs to the prosses 0

| 1 2 | 3 | 4 | 5 | 6 |
|-----|---|---|---|---|
|-----|---|---|---|---|

belongs to the prosses 1

| 7 8 | 9 | 10 | 11 |
|-----|---|----|----|
|-----|---|----|----|

belongs to the prosses 0

dummy cells

belongs to the prosses 1

dummy cells

boundary condition on the left

boundary condition on the right