离散数学(2) 第四次作业讲解

2024 秋季学期

- 1.设集合 $P=\{x_1, x_2, x_3, x_4, x_5\}$ 上的偏序 R的哈斯图如右图所示。
- a) 求P的最小元、最大元、极小元和极大元(如果存在的话);
- b) 求 $\{x_2, x_3, x_4\}$ 、 $\{x_3, x_4, x_5\}$ 和 $\{x_1, x_2, x_3\}$ 的上界、下界、上确界和下确界(如果存在的话)。

偏序 R⊆A×A	严格偏序		
自反的、反对称的和传递的	反自反的、反对称的和传递的		
表示为"≤",用 <a,≤>表示偏序结构</a,≤>	表示为"<",用 <a,<>表示严格偏序结构</a,<>		
$x,y \in A, x \leq y$ 读作 x 小于或等于 y	$x,y \in A, x < y$ 读作 x 小于 y		
R	$R-I_A$		
$R \cup I_A$			

- 1.设集合 $P = \{x_1, x_2, x_3, x_4, x_5\}$ 上的偏序 R的哈斯图如右图所示。
- a) 求P的最小元、最大元、极小元和极大元(如果存在的话);
- b) 求 $\{x_2, x_3, x_4\}$ 、 $\{x_3, x_4, x_5\}$ 和 $\{x_1, x_2, x_3\}$ 的上界、下界、上确界和下确界(如果存在的话)。

- 设偏序结构<A, $\le>$ 是一个偏序结构,
 - ▶ 对于任意两个元素 $x, y \in A$,如果 x < y 且不存在任何其它元素 $z \in A$,使得 x < z 且 z < y,则称 y 为 x关于 \leq 的覆盖(或遮盖),简称为 y 为 x的覆盖.
 - ▶ 其哈斯图是一个无向图H_<,满足
 - (1) 集合A的每一个元素为H<中一个点,且
 - (2) 对于任意 $x, y \in A$,
 - (a) 如果 x < y ,则点 x 画在点 y 之下,且
 - (b) 如果y覆盖x,则x和y之间存在一条无向边.

- 1.设集合 $P = \{x_1, x_2, x_3, x_4, x_5\}$ 上的偏序 R的哈斯图如右图所示。
- a) 求P的最小元、最大元、极小元和极大元(如果存在的话);
- b) 求 $\{x_2, x_3, x_4\}$ 、 $\{x_3, x_4, x_5\}$ 和 $\{x_1, x_2, x_3\}$ 的上界、下界、上确界和下确界(如果存在的话)。

- 设<A, $\le>$ 是偏序结构,并且 $S\subseteq A$, $S\neq\emptyset$,则

 - b 是 S 的 极大元 $\Leftrightarrow b \in S \land \forall x (x \in S \land b \leq x \rightarrow x = b)$

 - > b 是 S 的 极小元 $\Leftrightarrow b \in S \land \forall x (x \in S \land x \leq b \rightarrow x = b)$

- 1.设集合 $P = \{x_1, x_2, x_3, x_4, x_5\}$ 上的偏序 R的哈斯图如右图所示。
- a) 求P的最小元、最大元、极小元和极大元(如果存在的话);
- b) 求 $\{x_2, x_3, x_4\}$ 、 $\{x_3, x_4, x_5\}$ 和 $\{x_1, x_2, x_3\}$ 的上界、下界、上确界和下确界(如果存在的话)。

- 设<A, \leq >是偏序结构,并且 $S \subseteq A$, $S \neq \emptyset$, 则

- 1.设集合 $P = \{x_1, x_2, x_3, x_4, x_5\}$ 上的偏序 R的哈斯图如右图所示。
- a) 求P的最小元、最大元、极小元和极大元(如果存在的话);
- b) 求 $\{x_2, x_3, x_4\}$ 、 $\{x_3, x_4, x_5\}$ 和 $\{x_1, x_2, x_3\}$ 的上界、下界、上确界和下确界(如果存在的话)。

解: a) 最小元: 无, 最大元: x_1 极小元: x_4 , x_5 , 极大元: x_1

b) $\{x_2, x_3, x_4\}$ 的上界为 x_1 ,下界为 x_4 上确界为 $x_{1,1}$ 下确界为 x_4

 $\{x_3, x_4, x_5\}$ 的 上界为 x_1, x_3 ,无下界上确界为 x_3 ,无下确界

 $\{x_1, x_2, x_3\}$ 的上界为 x_1 ,下界为 x_4 上确界为 x_1 ,下确界为 x_4

2.设R为集合S上的全序关系。证明:R和 R^{-1} 同时为S上的良序当且仅当S为有限集。

知识点:全序关系、良序

- 设<A,≤>是一个偏序结构,
 - ▶ 如果对于任意 $x,y \in A$,或者 $x \le y$,或者 $y \le x$,即 $x \ne y$ 可比,则称 \le 为 A上的全序(或线序),并称 <A, \le 为全序结构或链,即
 - $(\forall xy) (x \in A \land y \in A \rightarrow x \leq y \lor y \leq x)$
 - 》如果 A 的每一个非空子集都有一个最小元,则称 \leq 为良序关系, < A , \leq >为良序结构。
- 偏序结构 <A, ≤>是良序结构的充要条件
 - > \leq 为A上的全序关系,且 A 的每个非空子集都有极小元.
 - ▶ ≤为A上的全序关系,且不存在 A 中元素的无穷序列 a_0 , a_1 , a_2 , ... ,使得对每个 $i \in \mathbb{N}$,皆有 $a_{i+1} < a_i$,即不存在 A 中元素的无穷递降序列。

2.设R为集合S上的全序关系。证明:R和 R^{-1} 同时为S上的良序当且仅当S为有限集。

证明: (充分性)

(反证法) 若S为有限集,假设R与R⁻¹中至少有一个不是良序。

假设 R不是良序,

则必存在S的一个非空子集有关于R的无限递降序列。

与 S 为有限集矛盾。

假设 R^{-1} 不是良序时,同理可证

因此假设不成立,即R和 R^{-1} 均为S的良序。

2.设R为集合S上的全序关系。证明:R和 R^{-1} 同时为S上的良序当且仅当S为有限集。

证明: (必要性)反证法: 假设 S 是无限集。

由于R为S上的良序,则S必有关系R下的最小元,记为 a_1 。

考虑集合 $S_1=S-\{a_1\}$,则 S_1 也为无限集。

同样,由R为S上的良序,得 S_1 也有关系R下的最小元 a_2 ,且 $a_1 \neq a_2$, $a_1 R a_2$ 。

一直继续下去,令 $S_n = S_{n-1} - \{a_n\}$,则 S_n 也有关系R下的最小元 a_{n+1} ,

此时,有S中元素构成的序列: $a_1, a_2, \ldots a_{n+1}$, 满足

 $a_i \neq a_{i+1}, a_i R a_{i+1}, i=1, 2, ..., n$

因此,由于S为无限集,如上可得S关于关系R的无穷递增序列:

 $a_1, a_2, ..., a_n, ...$

显然,该序列为S在关系 R-1下的无穷递降序列。

由于R是全序,则对任意 $x,y \in S$,有xRy 或 yRx,即 $yR^{-1}x$ 或 $xR^{-1}y$,得 R^{-1} 也是全序。

由上可得R-1不是良序,矛盾。

故假设不成立,即S是有限集。

3.设<A, $\le>$ 为偏序结构,证明 A 的每个非空有限子集都至少有一个极小元和极大元。

知识点:极小元、极大元

- 设<A, \le >是偏序结构,并且 $S\subseteq A$, $S\neq\emptyset$,则
 - - ⇔S中大于或等于b的元素只有b.
- S中可能有元素与b 不可比
- > b 是 S 的 极小元 $\Leftrightarrow b \in S \land \forall x (x \in S \land x \leq b \rightarrow x = b)$
 - ⇔ S中小于或等于 b的元素只有b.

S中所有元素均与b可比

3.设<A, $\le>$ 为偏序结构,证明 A 的每个非空有限子集都至少有一个极小元和极大元。

证明: (反证法)

假设 S 为A的一个非空有限子集,且 S 没有极小元。

令 a_0 ∈S,由于S没有极小元,则一定存在 a_1 ∈S,使得 a_1 < a_0 ;

否则,对S中任意元素 b,必有 $a_0 < b$ 或 $a_0 = b$,即 a_0 是S的极小元。

同样,由于S 没有极小元,则一定存在 $a_2 \in S$,使得 $a_2 < a_1$;否则 $a_1 \not\in S$ 的极小元。

归纳可证,对任意的 $n \in I_+$,若存在 $a_0, a_1, ..., a_n \in S$,满足

$$a_n < a_{n-1} < \dots < a_1 < a_0$$

由于 S 没有极小元,则一定存在 $a_{n+1} \in S$,使得 $a_{n+1} < a_n$ 。

因此,S中一定存在一个无限递降序列 $a_0, a_1, \ldots, a_n, \ldots$,与S为有限集矛盾.

故,假设不成立,即A的每个非空有限子集都至少有一个极小元。

同理可证,S一定有一个极大元.

- $1) r(R_1 R_2)$
- 2) $R_1 \circ R_2$
- 3) $t(R_1 \cup R_2)$

知识点: 二元关系在运算下是否仍然保持自反性、对称性和传递性

R, S	$R \cap S$	RUS	R-S	$R \oplus S$	~ R	$R \circ S$
自反	$\sqrt{}$	✓		-	-	$\sqrt{}$
反自反	V	V	V	V	-	-
对称	V	V	$\sqrt{}$	V	V	-
反对称	V	-	\	1	-	-
传递	V	_		ı	-	-

- $1) r(R_1 R_2)$
- 2) $R_1 \circ R_2$
- 3) *t*(*R*₁U*R*₂) 解: 1) 不一定是。

例如: $\diamondsuit A = \{1, 2, 3\}, R_1 = \{<1, 1>, <2, 2>, <3, 3>, <1, 2>, <2, 1>\}, R_2 = \{<1, 1>, <2, 2>, <3, 3>\},$

显然, R_1 与 R_2 都是A上的等价关系。

 $R_1 - R_2 = \{<1, 2>, <2, 1>\}, r(R_1 - R_2) = R_1$ 仍为等价关系。

$$R_1 = \{<1, 1>, <2, 2>, <3, 3>, <1, 2>, <2, 3>, <1, 3>, <2, 1>, <3, 2>, <3, 1>\},$$
 $R_2 = \{<1, 1>, <2, 2>, <3, 3>, <1, 3>, <3, 1>\}.$

显然, R_1 与 R_2 都是A上的等价关系。

但 $R_1 - R_2 = \{ <1, 2>, <2, 3>, <2, 1>, <3, 2> \}$

 $r(R_1-R_2)=\{<1,1>,<2,2>,<3,3>,<1,2>,<2,3>,<2,1>,<3,2>\}不满足传递性,不是等价的。$

- 1) $r(R_1 R_2)$
- 2) $R_1 \circ R_2$

3) *t*(*R*₁U*R*₂) 解: 2) 不一定是。

例如: $\diamondsuit A = \{1, 2, 3\}, R_1 = \{<1, 1>, <2, 2>, <3, 3>, <1, 2>, <2, 1>\}, R_2 = \{<1, 1>, <2, 2>, <3, 3>\},$

显然, R_1 与 R_2 都是A上的等价关系。

 $R_1 \circ R_2 = \{<1, 1>, <2, 2>, <3, 3>, <1, 2>, <2, 1>\}$ 仍为等价关系。

例如: $\Diamond A = \{1, 2, 3, 4\},$

$$R_1 = \{<1, 1>, <2, 2>, <3, 3>, <1, 2>, <2, 1>\},$$

$$R_2 = \{<1, 1>, <2, 2>, <3, 3>, <2, 3>, <3, 2>\}$$

显然, R_1 与 R_2 都是A上的等价关系。

但 $R_1 \circ R_2 = \{<1, 1>, <2, 2>, <3, 3>, <1, 2>, <1, 3>, <2, 1>\}$,显然不满足传递性,不是等价的。

- $1) r(R_1 R_2)$
- 2) $R_1 \circ R_2$
- 3) $t(R_1 \cup R_2)$

解: 3) $t(R_1 \cup R_2)$ 是等价关系。

由于 R_1 与 R_2 是等价关系,因此是自反的,对称的和传递的。

可证 $R_1 \cup R_2$ 仍然是自反和对称的(证明请补充),

而传递闭包保持自反性和对称性,

因此,得 $t(R_1 \cup R_2)$ 是自反、对称、传递的,即为等价关系。

- 5. 试判断下列定义在二维欧氏空间 $R \times R$ 上的二元关系T是否为 $R \times R$ 上的偏序、严格偏序、全序和良序?
- a) 若 $x_1, x_2, y_1, y_2 \in \mathbb{R}$,则 $< x_1, y_1 > T < x_2, y_2 >$ 当且仅当 $x_1 \le x_2$ 且 $y_1 \le y_2$;
- b) 若 $x_1, x_2, y_1, y_2 \in \mathbb{R}$,则< $x_1, y_1 > T < x_2, y_2 >$ 当且仅当 $x_1 < x_2$,或者 $x_1 = x_2$ 且 $y_1 \le y_2$ 。

解: a) ① 对任意 $\langle x, y \rangle \in \mathbb{R} \times \mathbb{R}$,

由于 $x \le x$ 且 $y \le y$,因此,有 $\langle x, y \rangle T \langle x, y \rangle$,得T是自反的。

②对任意 $<x_1, y_1>, <x_2, y_2>\in \mathbb{R}\times\mathbb{R}$,若 $<x_1, y_1>T<x_2, y_2>$ 且 $<x_2, y_2>$ 且 $<x_2, y_2>$ T $<x_1, y_1>$,

则有 $x_1 \le x_2$, $y_1 \le y_2$, $x_2 \le x_1$ 且 $y_2 \le y_1$, 得 $x_1 = x_2$ 且 $y_1 = y_2$, 从而 $\langle x_1, y_1 \rangle = \langle x_2, y_2 \rangle$ 。

因此,T是反对称的。

③ 对任意 $\langle x_1, y_1 \rangle$, $\langle x_2, y_2 \rangle$, $\langle x_3, y_3 \rangle \in \mathbb{R} \times \mathbb{R}$, 若 $\langle x_1, y_1 \rangle T \langle x_2, y_2 \rangle$, $\langle x_2, y_2 \rangle T \langle x_3, y_3 \rangle$,

则有 $x_1 \le x_2$, $y_1 \le y_2$, $x_2 \le x_3$ 且 $y_2 \le y_3$, 得 $x_1 \le x_3$ 且 $y_1 \le y_3$,

因此, $\langle x_1, y_1 \rangle T \langle x_3, y_3 \rangle$,即 T 是传递的。

综上,T是偏序关系,但不是严格偏序关系。

对于 <2,3>, <3,2> \in R×R,显然<2,3> \overline{T} <3,2>,因此,T 不是全序关系。

令 S 为大于0且小于1 的实数集合,即S为开区间(0,1),则 $S \times S$ 为 $R \times R$ 的一个非空子集,显然, $S \times S$ 关于偏序T 没有最小元。因此,T不是良序。

- 5. 试判断下列定义在二维欧氏空间 $R \times R$ 上的二元关系T是否为 $R \times R$ 上的偏序、严格偏序、全序和良序?
- a) 若 $x_1, x_2, y_1, y_2 \in \mathbb{R}$,则 $< x_1, y_1 > T < x_2, y_2 >$ 当且仅当 $x_1 \le x_2$ 且 $y_1 \le y_2$;

解: b) ① 对任意 $\langle x, y \rangle \in \mathbb{R} \times \mathbb{R}$,

由于x = x 且 $y \le y$, 因此,有 $\langle x, y \rangle T \langle x, y \rangle$, 得T是自反的。

- ② 对任意 $<x_1, y_1>, <x_2, y_2>\in \mathbb{R}\times\mathbb{R}$,若 $<x_1, y_1>T<x_2, y_2>$ 且 $<x_2, y_2>$ 且 $<x_2, y_2>$ T $<x_1, y_1>$,
- 则必须满足 $x_1 = x_2$, $y_1 \le y_2$ 且 $y_2 \le y_1$,得 $x_1 = x_2$ 且 $y_1 = y_2$,从而 $\langle x_1, y_1 \rangle = \langle x_2, y_2 \rangle$ 。

因此,T是反对称的。

- ③ 对任意 $<x_1, y_1>$, $<x_2, y_2>$, $<x_3, y_3>\in R\times R$, 若 $<x_1, y_1>T<x_2, y_2>$, $<x_2, y_2>T<x_3, y_3>$,
- 若 $x_1 = x_2$ 且 $y_1 \le y_2$: 若 $x_2 < x_3$ 则有 $x_1 < x_3$; 若 $x_2 = x_3$ 且 $y_2 \le y_3$, 则有 $x_1 = x_3$ 且 $y_1 \le y_3$ 。因此, $< x_1, y_1 > T < x_3, y_3 > ;$

因此,T是传递的。

综上, T是偏序关系, 但不是严格偏序关系。

- 5. 试判断下列定义在二维欧氏空间 $R \times R$ 上的二元关系T是否为 $R \times R$ 上的偏序、严格偏序、全序和良序?

解: b)由上面可知, T是偏序关系。

对任意 $\langle x_1, y_1 \rangle$, $\langle x_2, y_2 \rangle \in \mathbb{R} \times \mathbb{R}$,

- 若 $x_1 = x_2$, 则一定有 $y_1 \le y_2$ 或 $y_2 \le y_1$, 因此一定有 $\langle x_1, y_1 \rangle T \langle x_2, y_2 \rangle$ 或 $\langle x_2, y_2 \rangle T \langle x_1, y_1 \rangle$
- 若 $x_1 \neq x_2$,则一定有 $x_1 < x_2$ 或 $x_2 < x_1$,因此一定有 $< x_1, y_1 > T < x_2, y_2 >$ 或 $< x_2, y_2 > T < x_1, y_1 >$ 在偏序关系T上, $< x_1, y_1 >$, $< x_2, y_2 >$ 始终可比,因此T 是全序关系。

令 S 为大于0且小于1 的实数集合,即S为开区间(0,1),则 $S \times S$ 为 $R \times R$ 的一个非空子集,显然, $S \times S$ 关于偏序T 没有最小元。因此,T不是良序。

6. 如果集合A上的二元关系R满足 < x, y>, $< y, z> \in R$,则 $< z, x> \in R$,就称R是循环的。证明:集合A上的二元关系R是A上的等价关系,当且仅当R是自反的和循环的。

证明: (必要性)

设R是A上的等价关系,则R是自反的、对称的和传递的,只需证明R是循环的。

对任意 $\langle x, y \rangle$, $\langle y, z \rangle R$,

由 R是传递的,得 $\langle x, z \rangle \in R$ 。

又由于R是对称的,得<z,x> $\in \mathbb{R}$ 。

因此,R是循环的。

6. 如果集合A上的二元关系R满足 < x, y>, $< y, z> \in R$,则 $< z, x> \in R$,就称R是循环的。证明:集合A上的二元关系R是A上的等价关系,当且仅当R是自反的和循环的。

证明: (充分性)

若R是自反的和循环的,则只需证明R是对称的和传递的。

(a)对任意 <x, y>∈R,

由于R是自反的,因此有 $< x, x> \in R$ 。

又由于R 是循环的,因此,由 $< x, x>, < x, y> \in R$ 得 $< y, x> \in R$. 所以R是对称的。

(b)对任意 $\langle x, y \rangle$, $\langle y, z \rangle \in R$, 由于R是循环的,因此, $\langle z, x \rangle \in R$ 。

由(a)知R是对称的,因此, $\langle x, z \rangle \in R$.

所以,R是<u>传递的</u>。

综上,R是等价关系。

7. 设集合A上的二元关系R是自反的。证明R为等价关系的充要条件是: 若<a,b>,<a,c> $\in R$, 则<b,c> $\in R$ 。

证明: (必要性)

假设R为等价关系,则R是自反的、对称的和传递的。

若 < a, b >, $< a, c > \in R$, 由于R为对称的,则 $< b, a > \in R$,

由于R是传递的,因此由 $< b, a> \in R$, $< a, c> \in R$ 得 $< b, c> \in R$ 。

(充分性) 只需证明 R是对称的和传递的。

a) 对任意 $\langle x, y \rangle \in R$,

由于R是自反的,则 $< x, x > \in R$,故有 $< y, x > \in R$,

因此,R 是<u>对称的</u>。

b) 对任意 <*x*, *y*>, <*y*, *z*>∈*R*,

由于R是对称的,因此 $\langle v, x \rangle \in R$,再由 $\langle v, z \rangle \in R$,

得<x,z> $\in R$ 。

因此,R是传递的。

综上,得 R是等价关系。