Big Data I - présentation de projet Construction d'un modèle de prédiction

Rémy Decocq Sam Boosko Dimitri Waelkens

Faculté des Sciences Université de Mons

20 mai 2019

- Introduction
 - Ensemble de données
 - Sélection du type de modèle
- 2 Analyse et preprocessing du dataset
 - Analyse du dataset
 - Preprocessing du dataset
 - Sélection des prédicteurs
- Résultats du modèle
- Cross-Validation de la procédure
- Conclusion

Introduction

Ensemble de données

 Les données se présentent sous la forme d'un tableau contenant des informations relatives à un individu.

	Age	job	marital	 у
1	56	housemaid	married	 0
2	57	services	married	 0
3	37	services	married	 0
30436	61	retired	married	 0

FIGURE - Dataset Dtrain.csv

Où la variable y vaut
 1 si cet individu a ouvert un compte en banque
 0 sinon

Introduction

Sélection du type de modèle

- Au vu des données et de la prédiction recherchée, nous pouvons en déduire qu'il s'agit d'un problème de classification.
- 2 méthodes de classifications vues au cours testées :
 - Logistic Regression
 - 2 Linear Discriminant Analysis (LDA)
- LDA est plus stable quand les prédicteurs suivent une distribution gaussienne. Or, les données n'ont pas cette distribution.
- Donnant de meilleurs résultats, la régression logistique a été retenue.

Analyse et preprocessing du dataset

Analyse du dataset

- L'analyse des données montre :
 - **1** seulement **3** observations de **default** valent *yes* sur **30436**.
 - $oxed{2}$ le nombre de $oxed{1}$ n'est pas proportionnel au nombre de $oxed{0}$
 - 3 il y a 1316 observations où

$$pdays = 999 \land previous \ge 1$$

dont 108 se rapportent à y = 1

yes	no	unknown
3	7532	22901

FIGURE – table of people\$default

1	0	total
2342	28094	30436

FIGURE - table of people\$y

Analyse et preprocessing du dataset

Sélection des observations pour le training et la validation

img/a/pastedf.PNG

Introduction

Conclusion

Analyse et preprocessing du dataset

Preprocessing du dataset

Catégorisation des valeurs des variables **job** et **pdays**.

pdays: 999 = never, > 5 = late, < 5 = recent

Sélection des prédicteurs

Analyse de la signification des variables avec stepwise selection.

```
Df Deviance Resid. Df Resid. Dev
                                               Pr(>Chi)
NULL
                             12647
                                        11397
iob
                  83.49
                            12645
                                        11314 < 2.2e-16
marital
                  18.01
                            12642
                                        11296 0.0004371
contact
                 108.98
                            12641
                                        11187 < 2.2e-16
month
                 475.58
                            12633
                                        10711 < 2.2e-16
dav of week
                  17.93
                            12629
                                        10693 0.0012730
campaign
                   9.31
                           12628
                                        10684 0.0022823
pdays
                  24.83
                           12627
                                        10659 6.269e-07
previous
                            12626
                  19.05
                                        10640 1.271e-05
default.
                  3.37
                            12624
                                        10637 0.1858031
loan
                   0.06
                            12622
                                        10637 0.9694916
housing
                   0.18
                            12621
                                        10637 0.6728589
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

- 3 variables ne sont pas significatives :
 - default
 - loan
 - housing

Résultats du modèle

- Les résultats ont été obtenus sur des ensembles donnés par SepDataSet(prop_ok, balance) avec les paramètres :
 - prop_ok = 10
 - balance = 5

img/balance_both.PNG

Résultats du modèle

Ce modèle fait l'hypothèse que la relation avec la variable expliquée y est linéaire.

Résultats du modèle

- Calcul des prédictions sur :
 - les données du **training set** (sujet à de l'overfitting)

```
[1] "Predictions on TRAINING give logloss: 0.42057297823954 and prop y wrongly predicted as 0: 0.900853889943074"
0 10442 1899
```

FIGURE - Training Set Confusion Matrix

les données du validation set

```
[1] "Predictions on VALIDATION give logloss: 0.909976484720567 and prop y wrongly predicted as 0: 0.897435897435897
0 231 210
1 3 24
```

FIGURE - Validation Set Confusion Matrix

Cette classification a été effectuée considérant un seuil de 0.5.

Résultats du modèle

Introduction

img/pred_distrib.PNG

Conclusion

Cross-Validation de la procédure

- La procédure de cross-validation va permettre :
 - d'estimer l'erreur de test.
 - de mettre en évidence la stabilité du modèle.

img/cv2.PNG

Conclusion

- Un modèle de classification a été sélectionné, la régression logistique.
- Une procédure, **paramétrée** avec prop ok = 10 et balance = 5, de sélection des observations a été effectuée afin d'avoir une meilleure proportion d'observations où y = 0 par rapport au nombre d'observations où y = 1.
- Sélection des variables significatives par la méthode stepwise **selection** (forward et backward)
- Logloss de 0.55 à 0.52 sur le dataset en ligne sur kaggle.com .