Speech Recognition Project Presentation: POS Tagging with WFSTs

Jose Cambronero

05/13/2015

Agenda

- ▶ Brief intro to POS tagging and approaches
- ► FSTs in POS tagging in literature: some interesting examples
- Our setup and approach
- Results
- Possible improvements

Brief Intro to POS tagging

- ▶ DET, N, V, ADJ ...
- ▶ We want a tagger F, s.t. F(this is an example) \rightarrow DT BEZ AT NN
- ▶ Succinct definition provided by Jurafsky: $argmax_{t_0^n}P(t_0^n|w_0^n)$, where t_i corresponds to tag at position i, w_i corresponds to word at position i in sentence, and n is the last index in our sentence.
- ▶ Variety of approaches: generative vs. discriminative

Tzoukermann and Radev: Use of Weighted Finite State Transducers in Part of Speech Tagging (1997)

- One of earliest papers on use of FSTs for POS tagging
- Cascade of FSTs: tokenization, morphological analysis, linguistic disambiguation, statistical disambiguation
- Use of unknown tag at every stage to avoid failures in composition, simply associates highest penalty with it, so only used if nothing else available
- Concept of genotypes: possible POS tags, words mapped into genotypes and distributions calculated over the latter
- Incorporates linguistic information directly through negative constraint transducers: works by increasing the cost of a given path
- trained on 76162 tokens and tested on a separate 2200 tokens
- ► Results: 92.1% 1-grams, 93.4% 2-gram extension and 96% when extending with negative constraints and 3-grams

Kempe: Part-of-Speech Tagging with Two Sequential Transducers (2001)

- ▶ ambiguity classes (similar to Tzoukermann/Radev's genotypes): c_i , r_i , and tags t_i
- ▶ ambiguity class mapper/guesser + 2 sequential transducers T_1 , T_2
 - ▶ $T_1: c_i \rightarrow r_i$ (left to right)
 - ▶ $T_2: r_i \rightarrow t_i$ (right to left)
- Construction of FSTs reflects probabilities, but FSTs themselves have no weights
- Accuracy: 96.67% (tags 45600 words per second)

Silfverberg and Lindén: Part-of-Speech Tagging using Parallel Weighted Finite-State Transducers (2010)

- ▶ 4 WFSTs: weighted lexicon (word to lemma and POS) and guesser in first stage (provide 5 best possible POS tags for each word), Q_o and Q_e in second (rescoring) stage
 - ▶ POS guesser for unknown words:assigns POS distribution P from the set of known words W, where each $w \in W$ is a word that has the longest common suffix with the unknown word.
 - $ightharpoonup Q_o$: bigram model applied at odd positions
 - $ightharpoonup Q_e$: bigram model applied at even positions
- ► Weighted intersecting composition: simulates intersecting with larger *Q* but more performant
- includes word lemmas in bigram models
- ► Europarl corpus: 98.29% accuracy for English using bigrams
 - Europarl is more homogeneous than other corpora (as per authors)

Our approach and setup

- ▶ An HMM approach: $P(w_i \mid t_i) * P(t_i \mid h)$ with a variety of differing history orders
- OOV strategy
 - Frequency threshold based
 - simple vs clustering
- Unseen tag sequences
 - interpolated smoothing approaches

Our approach and setup (continued)

T: a WFST from token to possible POS

- H: a WFST n-gram rescoring model
- ightharpoonup All probabilities mapped to -log space to convert to penalties
- ▶ Predicted POS tag sequence corresponds to: shortestPath($(S \circ T) \circ H$))

An Example

▶ FST of our sentence *this is an example*

 \triangleright $S \circ T$

An Example (continued)

 $(S \circ T) \circ H$ over which we can calculate the shortest path to obtain the optimal tag sequence

Mind your compositions!

Mind your compositions!

- ▶ composition is associative so $(S \circ T) \circ H \equiv S \circ (T \circ H)$
- ► The latter will blow up and your tagging will be non-performant ... if it finishes!

N-gram order	$(S \circ T) \circ H$	$S \circ (T \circ H)$	
2	0.02	0.35	
3	0.03	6.36	
4	0.07	$T \circ H$ didn't terminate	
		in reasonable time	

Figure 1: Seconds to tag this is an example

Data

- ▶ Brown corpus
- ▶ Train on 80%, test on remaining

Results: Simple OOV strategy

Model		TH 6	TH 3
		Accuracy	Accuracy
2-gram	Katz	90.85%	92.06%
2-gram	Kneser Ney	91.03%	92.23%
2-gram	Witten Bell	91.02%	92.23%
3-gram	Katz	91.59%	92.71%
3-gram	Kneser Ney	91.90%	92.97%
3-gram	Witten Bell	91.86%	92.91%
4-gram	Katz	91.00%	92.26%
4-gram	Kneser Ney	91.62%	92.68%
4-gram	Witten Bell	91.50%	92.58%

Figure 2: Test accuracy using simple OOV strategy

Clusters in OOV clustering strategy

Unknown cluster	criteria
<unk-num></unk-num>	has a digit
<unk-ion></unk-ion>	ends in <i>ion</i>
<unk-ic></unk-ic>	ends in <i>ic</i>
<unk-ly></unk-ly>	ends in <i>ly</i>
<unk-eding></unk-eding>	ends in <i>ed</i> or <i>ing</i>
<unk-allcaps></unk-allcaps>	all capitalized
<unk-firstcaps></unk-firstcaps>	first letter is capitalized
<unk-s></unk-s>	ends in s
<unk-specchar></unk-specchar>	contains non-alphanumeric character
<unk-ion></unk-ion>	catch-all class for remaining unknown tokens

Figure 3: Clusters for OOV in clustering strategy

Results: Clustering OOV strategy

Model		TH 6	TH 3
		Accuracy	Accuracy
2-gram	Katz	92.44%	93.18%
2-gram	Kneser Ney	92.62%	93.33%
2-gram	Witten Bell	92.61%	93.32%
3-gram	Katz	93.21%	93.85%
3-gram	Kneser Ney	93.36%	94.00%
3-gram	Witten Bell	93.33%	93.96%
4-gram	Katz	92.72%	93.42%
4-gram	Kneser Ney	93.00%	93.68%
4-gram	Witten Bell	92.85%	93.54%

Figure 4: Test accuracy using clustering OOV strategy

Improvements

- Clearly we are not close to state of the art test performance
- OOV frequency threshold needs to be set based on performance
- OOV clustering should also be done so
- Pruning of n-gram rescoring models
- Including additional information like word lemmas

Questions?

References

- W. Nelson Francis, Henry Kucera A Standard Corpus of Present-Day Edited American English, for use with Digital Computers. Brown University. 1979.
- Robert Bley-Vroman http://www.sls.hawaii.edu/bley-vroman/brown_corpus.html
- Daniel Jurafsky, James H. Martin Speech and Language Processing: An Introduction to Natural Language processing, Computational Linguistics, and Speech Recognition.

 Prentice-Hall. 2009.
- Evelyne Tzoukermann, Dragomir Radev. Use of Weighted Finite State Transducers in Part of Speech Tagging.
 Cambridge University Press. February 1997.
- André Kempe *Part-of-Speech Tagging with Two Sequential Transducers* Xerox Research Centre Europe. 2000.

References

- Miikka Silfverberg, Krister Lindén *Part-of-Speech Tagging* using *Parallel Weighted Finite-State Transducers*. University of Helsinki. 2010.
- Mehryar Mohri, Fernando Pereira, Michael Riley. Weighted Automata in Text and Speech Processing. AT&T Research. 1996.
- Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut and Mehryar Morhi. *OpenFST: A General and Efficient Weighted Finite-State Transducer Llbrary* Proceedings of the Ninth International Conference on Implementation and Application of Automata, (CIAA 2007), volume 4783 of Lecture Notes in Computer Science, pages 11-23. Springer, 2007. http://www.openfst.org

References

- Brian Roark, Richard Sproat, Cyril Allauzen, Michael Riley, Jeffrey Sorensen and Terry Tai. 2012. *The OpenGRM open0source finite-state grammar software libraries*. In Proceedings of the ACL 2012 System Demonstrations, pp. 61-66. http://www.opengrm.org
- Eric Brill. A Simple Rule-Based Part of Speech Tagger. In ANLC'92 Proceedings of the third conference on Applied natural language processing. University of Pennsylvania. 1992.
- Mehryar Mohri, Fernando Pereira, Michael Riley. Speech Recognition with Weighted Finite-State Transducers Spring Handbook on Speech Processing and Speech Communication. 2008.