Mathematics Department

Integral Calculus: Practice Problem

Integration By Parts

Evaluate each of the following indefinite integrals using Integration by Parts

1.
$$\int x^6 \cos 3x \, dx$$

$$2. \int e^{2x} \cos \frac{1}{4} x \ dx$$

$$3. \int e^{\frac{1}{3}x} (5x+2) dx$$

4.
$$\int x^7 \sin 2x^4 dx$$

5.
$$\int 6Arctan \frac{8}{x} dx$$

Problem:
$$\int_{\mathcal{X}^k} \cos(3x) \, \mathrm{d}x$$
 Integrate by parts: $\int f g' = f g - f f' g$
$$f = x^k, \ g' = \cos(3x)$$

$$\downarrow \text{ times } \quad \text$$

```
\int x \sin(3x) dx
                                                                   Integrate by parts: \int\!\!\mathbf{f}\mathbf{g}'=\mathbf{f}\mathbf{g}-\int\!\!\mathbf{f}'\mathbf{g}
                                                                          f = x, g' = \sin(3x)
\downarrow \underline{\text{steps}} \downarrow \underline{\text{steps}}
                                                                           f' = 1, g = -\frac{\cos(3x)}{2}:
                                                                  = -\frac{x\cos(3x)}{3} - \int -\frac{\cos(3x)}{3} \,\mathrm{d}x
                                                                Substitute u=3x \longrightarrow \mathrm{d} u = 3\,\mathrm{d} x (steps):
                                                                            = -\frac{1}{9} \int \cos(u) \, \mathrm{d}u
                                                                                   \int \cos(u) du
                                                                           This is a standard integral
                                                                             Plug in solved integrals
                                                                                 =-\frac{\sin(u)}{a}
                                                                           Undo substitution u=3x
                                                                       \frac{x\cos(3x)}{3} - \int -\frac{\cos(3x)}{3} \, \mathrm{d}x
                                                                           =\frac{\sin(3x)}{9}-\frac{x\cos(3x)}{3}
                                                                                \frac{2}{3} \int x \sin(3x) \, \mathrm{d}x
                                                                         =\frac{2\sin(3x)}{27}-\frac{2x\cos(3x)}{9}
                                                                      \frac{x^2\sin(3x)}{3} - \int \frac{2x\sin(3x)}{3} \,\mathrm{d}x
                                                                              -\int \! x^2 \cos(3x) \, \mathrm{d}x
                                                            =-\frac{x^2\sin(3x)}{3}+\frac{2\sin(3x)}{37}-\frac{2x\cos(3x)}{9}
                                                                  -\frac{x^3\cos(3x)}{3}-\int -x^2\cos(3x)\,\mathrm{d}x
                                                 =\frac{x^2\sin(3x)}{3}-\frac{2\sin(3x)}{27}-\frac{x^3\cos(3x)}{3}+\frac{2x\cos(3x)}{9}
                                                                             \frac{4}{3} \int x^3 \sin(3x) \, \mathrm{d}x
                                               =rac{4x^2\sin(3x)}{9}-rac{8\sin(3x)}{91}-rac{4x^3\cos(3x)}{91}+rac{8x\cos(3x)}{97}
                                     =\frac{x^4\sin(3x)}{3}-\frac{4x^2\sin(3x)}{9}+\frac{8\sin(3x)}{81}+\frac{4x^3\cos(3x)}{9}-\frac{8x\cos(3x)}{27}
                                                                            -\frac{5}{3}\int \! x^4 \cos(3x) \,\mathrm{d}x
                                   \frac{5x^4\sin(3x)}{9} + \frac{20x^2\sin(3x)}{27} - \frac{40\sin(3x)}{243} - \frac{20x^3\cos(3x)}{27} + \frac{40x\cos(3x)}{81}
                                                                            Plug in solved integrals
                                                                   \frac{x^5\cos(3x)}{3} - \int -\frac{5x^4\cos(3x)}{3} \,\mathrm{d}x
                    \frac{5x^4\sin(3x)}{\alpha} - \frac{20x^2\sin(3x)}{27} + \frac{40\sin(3x)}{243} - \frac{x^5\cos(3x)}{3} + \frac{20x^3\cos(3x)}{27} - \frac{40x\cos(3x)}{81}
                                                                            2\int\! x^5\sin(3x)\,\mathrm{d}x
               = \frac{10x^4\sin(3x)}{9} - \frac{40x^2\sin(3x)}{27} + \frac{80\sin(3x)}{243} - \frac{2x^5\cos(3x)}{3} + \frac{40x^3\cos(3x)}{27} - \frac{80x\cos(3x)}{81}
Plug in solved integrals:
                                                                    \frac{x^6\sin(3x)}{3}-\int\!2x^5\sin(3x)\,\mathrm{d}x
   =\frac{x^{6} \sin(3x)}{3}-\frac{10 x^{4} \sin(3x)}{9}+\frac{40 x^{2} \sin(3x)}{27}-\frac{80 \sin(3x)}{243}+\frac{2 x^{5} \cos(3x)}{3}-\frac{40 x^{3} \cos(3x)}{27}+\frac{80 x \cos(3x)}{81} The problem is solved:
                                                                               \int \! x^6 \cos(3x) \, \mathrm{d}x
=\frac{x^6\sin(3x)}{3}-\frac{10x^4\sin(3x)}{9}+\frac{40x^2\sin(3x)}{27}-\frac{80\sin(3x)}{242}+\frac{2x^5\cos(3x)}{3}-\frac{40x^3\cos(3x)}{27}+\frac{80x\cos(3x)}{91}+C
                                                                        243

Rewrite/simplify:
                         =\frac{\left(81x^{6}-270x^{4}+360x^{2}-80\right)\sin(3x)+\left(162x^{5}-360x^{3}+240x\right)\cos(3x)}{243}+C
```

Problem: $\int \cos\left(\frac{x}{4}\right) e^{2x} dx$

We will integrate by parts twice in a row: $\int fg' = fg - \int f'g$.

First time:

$$egin{aligned} \mathbf{f} &= \mathrm{e}^{2x}, & \mathsf{g}' &= \cos\left(rac{x}{4}
ight) \ &\downarrow_{\mathtt{Steps}} &\downarrow_{\mathtt{Steps}} \ \mathbf{f}' &= \boxed{2\mathrm{e}^{2x}}, \mathbf{g} &= \boxed{4\sin\left(rac{x}{4}
ight)} \end{aligned}$$

$$=4\sin\Bigl(rac{x}{4}\Bigr)\,\mathrm{e}^{2x}-\int\!8\sin\Bigl(rac{x}{4}\Bigr)\,\mathrm{e}^{2x}\,\mathrm{d}x$$

Second time:

$$extsf{f} = \boxed{2 ext{e}^{2x}}, extsf{g}' = \boxed{4\sin\left(rac{x}{4}
ight)}$$
 $\downarrow ext{steps}$ $\downarrow ext{steps}$ $ext{f}' = 4 ext{e}^{2x}, ext{g} = -16\cos\left(rac{x}{4}
ight)$:

$$=4\sin\!\left(rac{x}{4}
ight)\mathrm{e}^{2x}-\left(-32\cos\!\left(rac{x}{4}
ight)\mathrm{e}^{2x}-\int\!-64\cos\!\left(rac{x}{4}
ight)\mathrm{e}^{2x}\,\mathrm{d}x$$

Apply linearity:

$$=4\sin\Bigl(rac{x}{4}\Bigr)\,\mathrm{e}^{2x}-\left(-32\cos\Bigl(rac{x}{4}\Bigr)\,\mathrm{e}^{2x}+64\!\int\cos\Bigl(rac{x}{4}\Bigr)\,\mathrm{e}^{2x}\,\mathrm{d}x
ight)$$

 $\int \cos\left(rac{x}{4}
ight) \mathrm{e}^{2x}\,\mathrm{d}x$ appears again on the right side of the equation, we

$$= -\frac{16\left(-\frac{\sin\left(\frac{x}{4}\right)e^{2x}}{4} - 2\cos\left(\frac{x}{4}\right)e^{2x}\right)}{65}$$

The problem is solved:

$$\int \cos\left(\frac{x}{4}\right) \mathrm{e}^{2x} \, \mathrm{d}x$$

$$= -\frac{16\left(-\frac{\sin\left(\frac{x}{4}\right) \mathrm{e}^{2x}}{4} - 2\cos\left(\frac{x}{4}\right) \mathrm{e}^{2x}\right)}{65} + C$$
 Rewrite/simplify:

$$=rac{4\left(\sin\left(rac{x}{4}
ight)+8\cos\left(rac{x}{4}
ight)
ight)\mathrm{e}^{2x}}{65}+C$$

Problem:

$$\int (5x+2) \, \mathrm{e}^{\frac{x}{3}} \, \mathrm{d}x$$

Integrate by parts: $\int\!\!\mathbf{f}\mathbf{g}'=\mathbf{f}\mathbf{g}-\int\!\!\mathbf{f}'\mathbf{g}$

$$\mathbf{f} = 5x + 2$$
, $\mathbf{g}' = \mathrm{e}^{\frac{x}{3}}$
 $\downarrow \underline{\mathsf{steps}}$ $\downarrow \underline{\mathsf{steps}}$
 $\mathbf{f}' = 5$, $\mathbf{g} = 3\mathrm{e}^{\frac{x}{3}}$:

$$=3\,(5x+2)\,\mathrm{e}^{rac{x}{3}}-\int\!15\mathrm{e}^{rac{x}{3}}\,\mathrm{d}x$$

Now solving:

$$\int 15e^{\frac{x}{3}} dx$$

Substitute
$$u=rac{x}{3}\longrightarrow \mathrm{d}u=rac{1}{3}\,\mathrm{d}x$$
 (steps): $=45\int\!\mathrm{e}^u\,\mathrm{d}u$

Now solving:

$$\int e^u du$$

Apply exponential rule:

$$\int \! \mathbf{a}^u \, \mathrm{d}u = rac{\mathbf{a}^u}{\ln(\mathbf{a})}$$
 with $\mathbf{a} = \mathbf{e}$: $= \mathbf{e}^u$

Plug in solved integrals:

$$45 \int e^u du$$
$$= 45e^u$$

Undo substitution $u=rac{x}{3}$: $=45 \mathrm{e}^{rac{x}{3}}$

Plug in solved integrals:

$$3 (5x + 2) e^{\frac{x}{3}} - \int 15 e^{\frac{x}{3}} dx$$

= $3 (5x + 2) e^{\frac{x}{3}} - 45 e^{\frac{x}{3}}$

The problem is solved:

$$\int (5x+2) e^{\frac{x}{3}} dx$$

$$=3\left(5x+2
ight){
m e}^{rac{x}{3}}-45{
m e}^{rac{x}{3}}+C$$

Rewrite/simplify:

$$= (15x - 39) e^{\frac{x}{3}} + C$$

$\int \! x^7 \sin(2x^4) \mathrm{d}x$ Substitute $u=x^4 \longrightarrow \mathrm{d}u = 4x^3 \mathrm{d}x$ (<u>steps</u>): $= rac{1}{4} \int \! u \sin(2u) \mathrm{d}u$ Now solving: $\int \! u \sin(2u) \mathrm{d}u$
$=rac{1}{4}\int\!u\sin(2u)\mathrm{d}u$ Now solving:
$=rac{1}{4}\int\!u\sin(2u)\mathrm{d}u$ Now solving:
$\int\!u\sin(2u)\mathrm{d}u$
Integrate by parts: $\int\!\!\mathbf{f}\mathbf{g}'=\mathbf{f}\mathbf{g}-\int\!\!\mathbf{f}'\mathbf{g}$
$\mathtt{f} \ = u, \ \ \mathtt{g}' = \sin(2u)$
↓ steps ↓ steps
extstyle ext
$=-rac{u\cos(2u)}{2}-\int-rac{\cos(2u)}{2}\mathrm{d}u$
Now solving:
$\int -rac{\cos(2u)}{2} \ \mathrm{d}u$
_
Substitute $v=2u\longrightarrow \mathrm{d} v=2\mathrm{d} u$ (steps):
$=-rac{1}{4}\int\cos(v)\mathrm{d}v$
Now solving:
$\int \cos(v) \mathrm{d}v$
This is a standard integral:
$=\sin(v)$
Plug in solved integrals:
$-rac{1}{4}\int\cos(v)\mathrm{d}v$
$=-\frac{\sin(v)}{4}$
Undo substitution $v=2u$:
$=-\frac{\sin(2u)}{4}$
Plug in solved integrals:
$-rac{u\cos(2u)}{2}-\int-rac{\cos(2u)}{2}\mathrm{d}u$
$=rac{\sin(2u)}{4}-rac{u\cos(2u)}{2}$
Plug in solved integrals:
$\frac{1}{4} \int u \sin(2u) du$
- 0
$=\frac{\sin(2u)}{16}-\frac{u\cos(2u)}{8}$
Undo substitution $u=x^4$:
$\sin(2x^4)$ $x^4\cos(2x^4)$
The problem is solved:
$\int\! x^7 \sin\left(2x^4 ight) \mathrm{d} x$
$=rac{\sin \left(2x^{4} ight) }{16}-rac{x^{4}\cos \left(2x^{4} ight) }{8}+C$
10 0
Rewrite/simplify: $\sin(2\pi^4) = 2\pi^4 \cos(2\pi^4)$
$=\frac{\sin\bigl(2x^4\bigr)-2x^4\cos\bigl(2x^4\bigr)}{16}+C$

Problem: $\int 6 \arctan\left(\frac{8}{x}\right) dx$ $=6\int\arctan\left(\frac{8}{x}\right)\mathrm{d}x$ Now solving: $\int \arctan\left(\frac{8}{x}\right) dx$ Integrate by parts: $\int \mathbf{f} \mathbf{g}' = \mathbf{f} \mathbf{g} - \int \mathbf{f}' \mathbf{g}$ $f = \arctan\left(\frac{8}{x}\right), g' = 1$ $lagtarrow rac{ ext{steps}}{x^2+64}$, $rac{ ext{$\downarrow$ step}}{ ext{g}} = x$: $= \arctan\!\left(rac{8}{x}
ight)x - \int\!-rac{8x}{x^2+64}\,\mathrm{d}x$ $\int -\frac{8x}{x^2+64} \, \mathrm{d}x$ Substitute $u=x^2+64 \longrightarrow \mathrm{d} u=2x\,\mathrm{d} x$ (steps): $=-4\int \frac{1}{u}\,\mathrm{d}u$ Now solving: This is a standard integral: $= \ln(u)$ Plug in solved integrals: $-4\int \frac{1}{u} du$ $=-4\ln(u)$ Undo substitution $u = x^2 + 64$: $=-4\ln(x^2+64)$ Plug in solved integrals: $\arctan\left(\frac{8}{x}\right)x - \int -\frac{8x}{x^2 + 64} dx$ $=4\ln \left(x^{2}+64
ight) +rctan \left(rac{8}{x}
ight) x$ Plug in solved integrals: $6\int \arctan\left(\frac{8}{x}\right) dx$ $=24\ln\left(x^2+64\right)+6\arctan\left(rac{8}{x}
ight)x$ The problem is solved: $\int 6 \arctan\left(\frac{8}{x}\right) dx$

 $=24\ln\left(x^2+64\right)+6\arctan\left(rac{8}{x}
ight)x+C$

Algebraic Substitution

Evaluate each of the following indefinite integrals using Algebraic Substitution

$$1. \int \frac{(8x+1)}{\sqrt{4x-3}} dx$$

$$2. \int x^3 \sqrt{2x^2 + 1} \, dx$$

3.
$$\int \frac{x^3}{(x^2+1)^3} dx$$

4.
$$\int \frac{x}{\sqrt[4]{2x+1}} dx$$

5.
$$\int \frac{(6x-1)}{(2x+1)^{3/2}} dx$$

$$\int \frac{8x+1}{\sqrt{4x-3}} \, \mathrm{d}x$$

Substitute $u=4x-3 \longrightarrow \mathrm{d} u=4\,\mathrm{d} x$ (steps):

$$=\frac{1}{4}\int\!\frac{2u+7}{\sqrt{u}}\,\mathrm{d}u$$

Now solving:

$$\int \frac{2u+7}{\sqrt{u}} \, \mathrm{d}u$$

Expand:

$$=\int \left(2\sqrt{u}+rac{7}{\sqrt{u}}
ight)\mathrm{d}u$$

Apply linearity:

$$=2\int\!\sqrt{u}\,\mathrm{d}u+7\int\!rac{1}{\sqrt{u}}\,\mathrm{d}u$$

Now solving:

$$\int \sqrt{u} \, \mathrm{d}u$$

Apply power rule:

$$\int\!u^{ ext{n}}\,\mathrm{d}u=rac{u^{ ext{n}+1}}{ ext{n}+1}$$
 with $ext{n}=rac{1}{2}$: $=rac{2u^{rac{3}{2}}}{3}$

Now solving:

$$\int \frac{1}{\sqrt{u}} \, \mathrm{d}u$$

Apply power rule with ${\tt n}=-rac{1}{2}$:

$$=2\sqrt{u}$$

Plug in solved integrals:

$$2\int\!\sqrt{u}\,\mathrm{d}u + 7\int\!rac{1}{\sqrt{u}}\,\mathrm{d}u
onumber \ = rac{4u^{rac{3}{2}}}{3} + 14\sqrt{u}$$

Plug in solved integrals:

$$\frac{1}{4} \int \frac{2u+7}{\sqrt{u}} \, \mathrm{d}u$$
$$= \frac{u^{\frac{3}{2}}}{3} + \frac{7\sqrt{u}}{2}$$

Undo substitution u=4x-3

$$=\frac{(4x-3)^{\frac{3}{2}}}{3}+\frac{7\sqrt{4x-3}}{2}$$

The problem is solved:

$$\int rac{8x+1}{\sqrt{4x-3}}\,\mathrm{d}x$$
 $=rac{(4x-3)^{rac{3}{2}}}{3}+rac{7\sqrt{4x-3}}{2}+C$ Rewrite/simplify:

$$=\frac{\sqrt{4x-3}\left(8x+15\right)}{6}+C$$

Problem: $\int x^3 \sqrt{2x^2 + 1} \mathrm{d}x$ Prepare for substitution: $= \int 2x \cdot \frac{x^2 \sqrt{2x^2 + 1}}{2} \mathrm{d}x$ Substitute $u = x^2 \longrightarrow \mathrm{d}u = 2x \mathrm{d}x$ (steps): $= \frac{1}{2} \int u \sqrt{2u + 1} \mathrm{d}u$ Now solving: $\int u \sqrt{2u + 1} \mathrm{d}u$ Substitute $v = 2u + 1 \longrightarrow \mathrm{d}v = 2 \mathrm{d}u$ (steps): $= \frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v$ Now solving: $\int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v$ Apply linearity: $= \int v^{\frac{3}{2}} \mathrm{d}v - \int \sqrt{v} \mathrm{d}v$ Apply power rule: $\int v^n \mathrm{d}v = \frac{v^{n+1}}{n+1} \text{ with } n = \frac{3}{2} :$ $= \frac{2v^{\frac{5}{2}}}{5}$ Now solving: $\int \sqrt{v} \mathrm{d}v$ Apply power rule with $n = \frac{1}{2}$: $= \frac{2v^{\frac{3}{2}}}{5}$ Plug in solved integrals: $\int v^{\frac{3}{2}} \mathrm{d}v - \int \sqrt{v} \mathrm{d}v$ $= \frac{2v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v$ $= \frac{v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v$ $= \frac{v^{\frac{5}{2}}}{6} - \frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v = 2u + 1$: $= \frac{(2u + 1)^{\frac{5}{2}}}{6} - \frac{(2u + 1)^{\frac{3}{2}}}{6}$ Undo substitution $v = 2u + 1$: $= \frac{(2u + 1)^{\frac{5}{2}}}{20} - \frac{(2u + 1)^{\frac{3}{2}}}{12}$ Undo substitution $u = x^2$: $= \frac{(2x^2 + 1)^{\frac{5}{2}}}{20} - \frac{(2x^2 + 1)^{\frac{3}{2}}}{12}$ The problem is solved: $\int x^3 \sqrt{2x^2 + 1} \mathrm{d}x$	
Prepare for substitution: $= \int 2x \cdot \frac{x^2 \sqrt{2x^2 + 1}}{2} \mathrm{d}x$ Substitute $u = x^2 \longrightarrow \mathrm{d}u = 2x \mathrm{d}x$ (steps): $= \frac{1}{2} \int u \sqrt{2u + 1} \mathrm{d}u$ Now solving: $\int u \sqrt{2u + 1} \mathrm{d}u$ Substitute $v = 2u + 1 \longrightarrow \mathrm{d}v = 2 \mathrm{d}u$ (steps): $= \frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v$ Now solving: $\int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v$ Apply linearity: $= \int v^{\frac{3}{2}} \mathrm{d}v - \int \sqrt{v} \mathrm{d}v$ Now solving: $\int v^{\frac{3}{2}} \mathrm{d}v$ Apply power rule: $\int v^{\mathrm{n}} \mathrm{d}v = \frac{v^{\mathrm{n}+1}}{\mathrm{n}+1} \text{ with } \mathrm{n} = \frac{3}{2} :$ $= \frac{2v^{\frac{3}{2}}}{5}$ Now solving: $\int \sqrt{v} \mathrm{d}v$ Apply power rule with $\mathrm{n} = \frac{1}{2} :$ $= \frac{2v^{\frac{3}{2}}}{5}$ Plug in solved integrals: $\int v^{\frac{3}{2}} \mathrm{d}v - \int \sqrt{v} \mathrm{d}v$ $= \frac{2v^{\frac{3}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v$ $= \frac{v^{\frac{3}{2}}}{10} - \frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v = 2u + 1$: $= \frac{(2u + 1)^{\frac{3}{2}}}{10} - \frac{(2u + 1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2} \int u \sqrt{2u + 1} \mathrm{d}u$ $= \frac{(2u + 1)^{\frac{3}{2}}}{20} - \frac{(2u + 1)^{\frac{3}{2}}}{12}$ Undo substitution $u = x^2$: $= \frac{(2x^2 + 1)^{\frac{3}{2}}}{20} - \frac{(2x^2 + 1)^{\frac{3}{2}}}{12}$ The problem is solved: $\frac{1}{2} \int u \sqrt{2u + 1} \mathrm{d}u$	Problem:
$=\int 2x\cdot\frac{x^2\sqrt{2x^2+1}}{2}\mathrm{d}x$ Substitute $u=x^2\longrightarrow\mathrm{d}u=2x\mathrm{d}x$ (steps): $=\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ Now solving: $\int u\sqrt{2u+1}\mathrm{d}u$ Substitute $v=2u+1\longrightarrow\mathrm{d}v=2\mathrm{d}u$ (steps): $=\frac{1}{4}\int \left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ Now solving: $\int \left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ Apply linearity: $=\int v^{\frac{3}{2}}\mathrm{d}v-\int \sqrt{v}\mathrm{d}v$ Now solving: $\int v^{\frac{3}{2}}\mathrm{d}v$ Apply power rule: $\int v^n\mathrm{d}v=\frac{v^{n+1}}{n+1} \text{ with } n=\frac{3}{2}:$ $=\frac{2v^{\frac{5}{2}}}{5}$ Now solving: $\int \sqrt{v}\mathrm{d}v$ Apply power rule with $n=\frac{1}{2}:$ $=\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}}\mathrm{d}v-\int \sqrt{v}\mathrm{d}v$ $=\frac{2v^{\frac{5}{2}}}{5}-\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4}\int \left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ $=\frac{v^{\frac{5}{2}}}{10}-\frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v=2u+1:$ $=\frac{(2u+1)^{\frac{3}{2}}}{10}-\frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ $=\frac{(2u+1)^{\frac{3}{2}}}{20}-\frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^2:$ $=\frac{(2x^2+1)^{\frac{3}{2}}}{20}-\frac{(2x^2+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^2:$ $=\frac{(2x^2+1)^{\frac{3}{2}}}{20}-\frac{(2x^2+1)^{\frac{3}{2}}}{12}$ The problem is solved:	$\int \! x^3 \sqrt{2x^2+1} \mathrm{d}x$
Substitute $u=x^2\longrightarrow \mathrm{d}u=2x\mathrm{d}x\mathrm{(steps)}$: $=\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ Now solving: $\int u\sqrt{2u+1}\mathrm{d}u$ Substitute $v=2u+1\longrightarrow \mathrm{d}v=2\mathrm{d}u\mathrm{(steps)}$: $=\frac{1}{4}\int \left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ Now solving: $\int \left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ Apply linearity: $=\int v^{\frac{3}{2}}\mathrm{d}v-\int \sqrt{v}\mathrm{d}v$ Now solving: $\int v^{\frac{3}{2}}\mathrm{d}v$ Apply power rule: $\int v^{\mathrm{n}}\mathrm{d}v=\frac{v^{\mathrm{n}+1}}{\mathrm{n}+1}\mathrm{with}\mathrm{n}=\frac{3}{2}$: $=\frac{2v^{\frac{5}{2}}}{5}$ Now solving: $\int \sqrt{v}\mathrm{d}v$ Apply power rule with $\mathrm{n}=\frac{1}{2}$: $=\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}}\mathrm{d}v-\int \sqrt{v}\mathrm{d}v$ $=\frac{2v^{\frac{3}{2}}}{5}-\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4}\int \left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ $=\frac{v^{\frac{5}{2}}}{10}-\frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v=2u+1$: $=\frac{(2u+1)^{\frac{5}{2}}}{10}-\frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ $=\frac{(2u+1)^{\frac{5}{2}}}{20}-\frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^2$: $=\frac{(2x^2+1)^{\frac{5}{2}}}{20}-\frac{(2x^2+1)^{\frac{3}{2}}}{12}$ The problem is solved:	Prepare for substitution:
Substitute $u=x^2\longrightarrow \mathrm{d}u=2x\mathrm{d}x\mathrm{(steps)}$: $=\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ Now solving: $\int u\sqrt{2u+1}\mathrm{d}u$ Substitute $v=2u+1\longrightarrow \mathrm{d}v=2\mathrm{d}u\mathrm{(steps)}$: $=\frac{1}{4}\int \left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ Now solving: $\int \left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ Apply linearity: $=\int v^{\frac{3}{2}}\mathrm{d}v-\int \sqrt{v}\mathrm{d}v$ Now solving: $\int v^{\frac{3}{2}}\mathrm{d}v$ Apply power rule: $\int v^{\mathrm{n}}\mathrm{d}v=\frac{v^{\mathrm{n}+1}}{\mathrm{n}+1}\mathrm{with}\mathrm{n}=\frac{3}{2}$: $=\frac{2v^{\frac{5}{2}}}{5}$ Now solving: $\int \sqrt{v}\mathrm{d}v$ Apply power rule with $\mathrm{n}=\frac{1}{2}$: $=\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}}\mathrm{d}v-\int \sqrt{v}\mathrm{d}v$ $=\frac{2v^{\frac{3}{2}}}{5}-\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4}\int \left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ $=\frac{v^{\frac{5}{2}}}{10}-\frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v=2u+1$: $=\frac{(2u+1)^{\frac{5}{2}}}{10}-\frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ $=\frac{(2u+1)^{\frac{5}{2}}}{20}-\frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^2$: $=\frac{(2x^2+1)^{\frac{5}{2}}}{20}-\frac{(2x^2+1)^{\frac{3}{2}}}{12}$ The problem is solved:	$-\int_{2x} \frac{x^2\sqrt{2x^2+1}}{x^2} dx$
$=\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ Now solving: $\int u\sqrt{2u+1}\mathrm{d}u$ Substitute $v=2u+1\longrightarrow \mathrm{d}v=2\mathrm{d}u$ (steps): $=\frac{1}{4}\int \left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ Now solving: $\int \left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ Apply linearity: $=\int v^{\frac{1}{2}}\mathrm{d}v-\int \sqrt{v}\mathrm{d}v$ Now solving: $\int v^{\frac{3}{2}}\mathrm{d}v$ Apply power rule: $\int v^n\mathrm{d}v=\frac{v^{n+1}}{n+1} \text{ with } n=\frac{3}{2}:$ $=\frac{2v^{\frac{5}{2}}}{5}$ Now solving: $\int \sqrt{v}\mathrm{d}v$ Apply power rule with $n=\frac{1}{2}:$ $=\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}}\mathrm{d}v-\int \sqrt{v}\mathrm{d}v$ $=\frac{2v^{\frac{5}{2}}}{5}-\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4}\int \left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ $=\frac{v^{\frac{5}{2}}}{5}-\frac{v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4}\int \left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ $=\frac{v^{\frac{5}{2}}}{6}-\frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v=2u+1$: $=\frac{(2u+1)^{\frac{5}{2}}}{10}-\frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ $=\frac{(2u+1)^{\frac{5}{2}}}{20}-\frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^2$: $=\frac{(2x^2+1)^{\frac{5}{2}}}{20}-\frac{(2x^2+1)^{\frac{3}{2}}}{12}$ The problem is solved:	<i>y</i> –
Now solving: $\int u\sqrt{2u+1}\mathrm{d}u$ Substitute $v=2u+1\longrightarrow \mathrm{d}v=2\mathrm{d}u$ (steps): $=\frac{1}{4}\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ Now solving: $\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ Apply linearity: $=\int v^{\frac{3}{2}}\mathrm{d}v-\int\sqrt{v}\mathrm{d}v$ Now solving: $\int v^{\frac{3}{2}}\mathrm{d}v$ Apply power rule: $\int v^{\mathrm{n}}\mathrm{d}v=\frac{v^{\mathrm{n}+1}}{\mathrm{n}+1}\text{ with }\mathrm{n}=\frac{3}{2}\text{:}$ $=\frac{2v^{\frac{5}{2}}}{5}$ Now solving: $\int\sqrt{v}\mathrm{d}v$ Apply power rule with $\mathrm{n}=\frac{1}{2}$: $=\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}}\mathrm{d}v-\int\sqrt{v}\mathrm{d}v$ $=\frac{2v^{\frac{5}{2}}}{5}-\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4}\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ $=\frac{v^{\frac{5}{2}}}{5}-\frac{2v^{\frac{3}{2}}}{6}$ Undo substitution $v=2u+1$: $=\frac{(2u+1)^{\frac{5}{2}}}{10}-\frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ $=\frac{(2u+1)^{\frac{5}{2}}}{20}-\frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^2$: $=\frac{(2x^2+1)^{\frac{5}{2}}}{20}-\frac{(2x^2+1)^{\frac{3}{2}}}{12}$ The problem is solved:	1 0
Substitute $v=2u+1\longrightarrow dv=2du$ (steps): $=\frac{1}{4}\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)dv$ Now solving: $\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)dv$ Apply linearity: $=\int v^{\frac{3}{2}}dv-\int\sqrt{v}dv$ Now solving: $\int v^{\frac{3}{2}}dv$ Apply power rule: $\int v^{n}dv=\frac{v^{n+1}}{n+1}\text{with }n=\frac{3}{2}:$ $=\frac{2v^{\frac{5}{2}}}{5}$ Now solving: $\int\sqrt{v}dv$ Apply power rule with $n=\frac{1}{2}:$ $=\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}}dv-\int\sqrt{v}dv$ $=\frac{2v^{\frac{5}{2}}}{5}-\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4}\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)dv$ $=\frac{v^{\frac{5}{2}}}{5}-\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4}\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)dv$ $=\frac{v^{\frac{5}{2}}}{10}-\frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v=2u+1$: $=\frac{(2u+1)^{\frac{5}{2}}}{10}-\frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2}\int u\sqrt{2u+1}du$ $=\frac{(2u+1)^{\frac{5}{2}}}{20}-\frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^{2}$: $=\frac{(2x^{2}+1)^{\frac{5}{2}}}{20}-\frac{(2x^{2}+1)^{\frac{3}{2}}}{12}$ The problem is solved:	$=rac{1}{2}\int\! u\sqrt{2u+1}\mathrm{d}u$
Substitute $v=2u+1\longrightarrow dv=2du$ (steps): $=\frac{1}{4}\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)dv$ Now solving: $\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)dv$ Apply linearity: $=\int v^{\frac{3}{2}}dv-\int\sqrt{v}dv$ Now solving: $\int v^{\frac{3}{2}}dv$ Apply power rule: $\int v^{n}dv=\frac{v^{n+1}}{n+1}\text{with }n=\frac{3}{2}:$ $=\frac{2v^{\frac{5}{2}}}{5}$ Now solving: $\int\sqrt{v}dv$ Apply power rule with $n=\frac{1}{2}:$ $=\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}}dv-\int\sqrt{v}dv$ $=\frac{2v^{\frac{5}{2}}}{5}-\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4}\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)dv$ $=\frac{v^{\frac{5}{2}}}{5}-\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4}\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)dv$ $=\frac{v^{\frac{5}{2}}}{10}-\frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v=2u+1$: $=\frac{(2u+1)^{\frac{5}{2}}}{10}-\frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2}\int u\sqrt{2u+1}du$ $=\frac{(2u+1)^{\frac{5}{2}}}{20}-\frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^{2}$: $=\frac{(2x^{2}+1)^{\frac{5}{2}}}{20}-\frac{(2x^{2}+1)^{\frac{3}{2}}}{12}$ The problem is solved:	Now solving:
Substitute $v=2u+1\longrightarrow \mathrm{d} v=2\mathrm{d} u$ (steps): $=\frac{1}{4}\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d} v$ Now solving: $\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d} v$ Apply linearity: $=\int v^{\frac{3}{2}}\mathrm{d} v-\int\sqrt{v}\mathrm{d} v$ Now solving: $\int v^{\frac{3}{2}}\mathrm{d} v$ Apply power rule: $\int v^n\mathrm{d} v=\frac{v^{n+1}}{n+1}\mathrm{with}n=\frac{3}{2}:$ $=\frac{2v^{\frac{5}{2}}}{5}$ Now solving: $\int\sqrt{v}\mathrm{d} v$ Apply power rule with $n=\frac{1}{2}:$ $=\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}}\mathrm{d} v-\int\sqrt{v}\mathrm{d} v$ $=\frac{2v^{\frac{5}{2}}}{5}-\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4}\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d} v$ $=\frac{v^{\frac{5}{2}}}{5}-\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4}\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d} v$ $=\frac{v^{\frac{5}{2}}}{10}-\frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v=2u+1:$ $=\frac{(2u+1)^{\frac{5}{2}}}{10}-\frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d} u$ $=\frac{(2u+1)^{\frac{5}{2}}}{20}-\frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^2:$ $=\frac{(2x^2+1)^{\frac{5}{2}}}{20}-\frac{(2x^2+1)^{\frac{3}{2}}}{12}$ The problem is solved:	
$=\frac{1}{4}\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ Now solving: $\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ Apply linearity: $=\int v^{\frac{3}{2}}\mathrm{d}v-\int\sqrt{v}\mathrm{d}v$ Now solving: $\int v^{\frac{3}{2}}\mathrm{d}v$ Apply power rule: $\int v^{n}\mathrm{d}v=\frac{v^{n+1}}{n+1} \text{ with } n=\frac{3}{2}:$ $=\frac{2v^{\frac{5}{2}}}{5}$ Now solving: $\int\sqrt{v}\mathrm{d}v$ Apply power rule with $n=\frac{1}{2}:$ $=\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}}\mathrm{d}v-\int\sqrt{v}\mathrm{d}v$ $=\frac{2v^{\frac{5}{2}}}{5}-\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4}\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ $=\frac{v^{\frac{5}{2}}}{5}-\frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v=2u+1:$ $=\frac{(2u+1)^{\frac{5}{2}}}{10}-\frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ $=\frac{(2u+1)^{\frac{5}{2}}}{20}-\frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^{2}:$ $=\frac{(2x^{2}+1)^{\frac{5}{2}}}{20}-\frac{(2x^{2}+1)^{\frac{3}{2}}}{12}$ The problem is solved:	J
Now solving: $\int \left(v^{\frac{3}{2}} - \sqrt{v}\right) dv$ Apply linearity: $= \int v^{\frac{3}{2}} dv - \int \sqrt{v} dv$ Now solving: $\int v^{\frac{3}{2}} dv$ Apply power rule: $\int v^{n} dv = \frac{v^{n+1}}{n+1} \text{ with } n = \frac{3}{2} :$ $= \frac{2v^{\frac{5}{2}}}{5}$ Now solving: $\int \sqrt{v} dv$ Apply power rule with $n = \frac{1}{2}$: $= \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}} dv - \int \sqrt{v} dv$ $= \frac{2v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) dv$ $= \frac{v^{\frac{5}{2}}}{10} - \frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v = 2u + 1$: $= \frac{(2u + 1)^{\frac{5}{2}}}{10} - \frac{(2u + 1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2} \int u\sqrt{2u + 1} du$ $= \frac{(2u + 1)^{\frac{5}{2}}}{20} - \frac{(2u + 1)^{\frac{3}{2}}}{12}$ Undo substitution $u = x^{2}$: $= \frac{(2x^{2} + 1)^{\frac{5}{2}}}{20} - \frac{(2x^{2} + 1)^{\frac{3}{2}}}{12}$ The problem is solved:	2 727
Now solving: $\int \left(v^{\frac{3}{2}} - \sqrt{v}\right) dv$ Apply linearity: $= \int v^{\frac{3}{2}} dv - \int \sqrt{v} dv$ Now solving: $\int v^{\frac{3}{2}} dv$ Apply power rule: $\int v^{n} dv = \frac{v^{n+1}}{n+1} \text{ with } n = \frac{3}{2} :$ $= \frac{2v^{\frac{5}{2}}}{5}$ Now solving: $\int \sqrt{v} dv$ Apply power rule with $n = \frac{1}{2}$: $= \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}} dv - \int \sqrt{v} dv$ $= \frac{2v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) dv$ $= \frac{v^{\frac{5}{2}}}{10} - \frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v = 2u + 1$: $= \frac{(2u + 1)^{\frac{5}{2}}}{10} - \frac{(2u + 1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2} \int u\sqrt{2u + 1} du$ $= \frac{(2u + 1)^{\frac{5}{2}}}{20} - \frac{(2u + 1)^{\frac{3}{2}}}{12}$ Undo substitution $u = x^{2}$: $= \frac{(2x^{2} + 1)^{\frac{5}{2}}}{20} - \frac{(2x^{2} + 1)^{\frac{3}{2}}}{12}$ The problem is solved:	$=rac{1}{4}\int\left(v^{rac{3}{2}}-\sqrt{v} ight)\mathrm{d}v$
$\int \left(v^{\frac{3}{2}} - \sqrt{v}\right) dv$ Apply linearity: $= \int v^{\frac{3}{2}} dv - \int \sqrt{v} dv$ Now solving: $\int v^{\frac{3}{2}} dv$ Apply power rule: $\int v^{n} dv = \frac{v^{n+1}}{n+1} \text{ with } n = \frac{3}{2}$: $= \frac{2v^{\frac{5}{2}}}{5}$ Now solving: $\int \sqrt{v} dv$ Apply power rule with $n = \frac{1}{2}$: $= \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}} dv - \int \sqrt{v} dv$ $= \frac{2v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) dv$ $= \frac{v^{\frac{5}{2}}}{10} - \frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v = 2u + 1$: $= \frac{(2u + 1)^{\frac{5}{2}}}{10} - \frac{(2u + 1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2} \int u \sqrt{2u + 1} du$ $= \frac{(2u + 1)^{\frac{5}{2}}}{20} - \frac{(2u + 1)^{\frac{3}{2}}}{12}$ Undo substitution $u = x^{2}$: $= \frac{(2x^{2} + 1)^{\frac{5}{2}}}{20} - \frac{(2x^{2} + 1)^{\frac{3}{2}}}{12}$ The problem is solved:	
Apply linearity: $= \int v^{\frac{3}{2}} \mathrm{d}v - \int \sqrt{v} \mathrm{d}v$ Now solving: $\int v^{\frac{3}{2}} \mathrm{d}v$ Apply power rule: $\int v^{\mathrm{n}} \mathrm{d}v = \frac{v^{\mathrm{n}+1}}{\mathrm{n}+1} \text{ with } \mathrm{n} = \frac{3}{2} \text{:}$ $= \frac{2v^{\frac{5}{2}}}{5}$ Now solving: $\int \sqrt{v} \mathrm{d}v$ Apply power rule with $\mathrm{n} = \frac{1}{2}$: $= \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}} \mathrm{d}v - \int \sqrt{v} \mathrm{d}v$ $= \frac{2v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v$ $= \frac{v^{\frac{5}{2}}}{10} - \frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v = 2u + 1$: $= \frac{(2u + 1)^{\frac{5}{2}}}{10} - \frac{(2u + 1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2} \int u \sqrt{2u + 1} \mathrm{d}u$ $= \frac{(2u + 1)^{\frac{5}{2}}}{20} - \frac{(2u + 1)^{\frac{3}{2}}}{12}$ Undo substitution $u = x^2$: $= \frac{(2x^2 + 1)^{\frac{5}{2}}}{20} - \frac{(2x^2 + 1)^{\frac{3}{2}}}{12}$ The problem is solved:	c
$=\int v^{\frac{3}{2}}\mathrm{d}v - \int \sqrt{v}\mathrm{d}v$ Now solving: $\int v^{\frac{3}{2}}\mathrm{d}v$ Apply power rule: $\int v^{\mathrm{n}}\mathrm{d}v = \frac{v^{\mathrm{n}+1}}{\mathrm{n}+1} \text{ with } \mathrm{n} = \frac{3}{2} :$ $= \frac{2v^{\frac{5}{2}}}{5}$ Now solving: $\int \sqrt{v}\mathrm{d}v$ Apply power rule with $\mathrm{n} = \frac{1}{2} :$ $= \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}}\mathrm{d}v - \int \sqrt{v}\mathrm{d}v$ $= \frac{2v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4}\int \left(v^{\frac{3}{2}} - \sqrt{v}\right)\mathrm{d}v$ $= \frac{v^{\frac{5}{2}}}{10} - \frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v = 2u + 1$: $= \frac{(2u+1)^{\frac{5}{2}}}{10} - \frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ $= \frac{(2u+1)^{\frac{5}{2}}}{20} - \frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u = x^2$: $= \frac{(2x^2+1)^{\frac{5}{2}}}{20} - \frac{(2x^2+1)^{\frac{3}{2}}}{12}$ The problem is solved:	J ` '
Now solving: $\int v^{\frac{3}{2}} \mathrm{d}v$ Apply power rule: $\int v^n \mathrm{d}v = \frac{v^{n+1}}{n+1} \text{ with } n = \frac{3}{2}$: $= \frac{2v^{\frac{5}{2}}}{5}$ Now solving: $\int \sqrt{v} \mathrm{d}v$ Apply power rule with $n = \frac{1}{2}$: $= \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}} \mathrm{d}v - \int \sqrt{v} \mathrm{d}v$ $= \frac{2v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v$ $= \frac{v^{\frac{5}{2}}}{10} - \frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v = 2u + 1$: $= \frac{(2u + 1)^{\frac{5}{2}}}{10} - \frac{(2u + 1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2} \int u \sqrt{2u + 1} \mathrm{d}u$ $= \frac{(2u + 1)^{\frac{5}{2}}}{20} - \frac{(2u + 1)^{\frac{3}{2}}}{12}$ Undo substitution $u = x^2$: $= \frac{(2x^2 + 1)^{\frac{5}{2}}}{20} - \frac{(2x^2 + 1)^{\frac{3}{2}}}{12}$ The problem is solved:	Apply linearity:
Now solving: $\int v^{\frac{3}{2}} \mathrm{d}v$ Apply power rule: $\int v^n \mathrm{d}v = \frac{v^{n+1}}{n+1} \text{ with } n = \frac{3}{2}$: $= \frac{2v^{\frac{5}{2}}}{5}$ Now solving: $\int \sqrt{v} \mathrm{d}v$ Apply power rule with $n = \frac{1}{2}$: $= \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}} \mathrm{d}v - \int \sqrt{v} \mathrm{d}v$ $= \frac{2v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v$ $= \frac{v^{\frac{5}{2}}}{10} - \frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v = 2u + 1$: $= \frac{(2u + 1)^{\frac{5}{2}}}{10} - \frac{(2u + 1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2} \int u \sqrt{2u + 1} \mathrm{d}u$ $= \frac{(2u + 1)^{\frac{5}{2}}}{20} - \frac{(2u + 1)^{\frac{3}{2}}}{12}$ Undo substitution $u = x^2$: $= \frac{(2x^2 + 1)^{\frac{5}{2}}}{20} - \frac{(2x^2 + 1)^{\frac{3}{2}}}{12}$ The problem is solved:	$=\int\!v^{rac{3}{2}}\mathrm{d}v-\int\!\sqrt{v}\mathrm{d}v$
$\int v^{\frac{3}{2}} \mathrm{d}v$ Apply power rule: $\int v^{\mathrm{n}} \mathrm{d}v = \frac{v^{\mathrm{n}+1}}{\mathrm{n}+1} \text{ with } \mathrm{n} = \frac{3}{2} :$ $= \frac{2v^{\frac{5}{2}}}{5}$ Now solving: $\int \sqrt{v} \mathrm{d}v$ Apply power rule with $\mathrm{n} = \frac{1}{2} :$ $= \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}} \mathrm{d}v - \int \sqrt{v} \mathrm{d}v$ $= \frac{2v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v$ $= \frac{v^{\frac{5}{2}}}{10} - \frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v = 2u + 1$: $= \frac{(2u + 1)^{\frac{5}{2}}}{10} - \frac{(2u + 1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2} \int u\sqrt{2u + 1} \mathrm{d}u$ $= \frac{(2u + 1)^{\frac{5}{2}}}{20} - \frac{(2u + 1)^{\frac{3}{2}}}{12}$ Undo substitution $u = x^2$: $= \frac{(2x^2 + 1)^{\frac{5}{2}}}{20} - \frac{(2x^2 + 1)^{\frac{3}{2}}}{12}$ The problem is solved:	, ,
Apply power rule: $\int v^{n} \mathrm{d}v = \frac{v^{n+1}}{n+1} \text{ with } \mathbf{n} = \frac{3}{2} :$ $= \frac{2v^{\frac{5}{2}}}{5}$ Now solving: $\int \sqrt{v} \mathrm{d}v$ Apply power rule with $\mathbf{n} = \frac{1}{2} :$ $= \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}} \mathrm{d}v - \int \sqrt{v} \mathrm{d}v$ $= \frac{2v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v$ $= \frac{v^{\frac{5}{2}}}{10} - \frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v = 2u + 1$: $= \frac{(2u + 1)^{\frac{5}{2}}}{10} - \frac{(2u + 1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2} \int u\sqrt{2u + 1} \mathrm{d}u$ $= \frac{(2u + 1)^{\frac{5}{2}}}{20} - \frac{(2u + 1)^{\frac{3}{2}}}{12}$ Undo substitution $u = x^{2}$: $= \frac{(2x^{2} + 1)^{\frac{5}{2}}}{20} - \frac{(2x^{2} + 1)^{\frac{3}{2}}}{12}$ The problem is solved:	
$\int v^{\mathrm{n}} \mathrm{d}v = \frac{v^{\mathrm{n}+1}}{\mathrm{n}+1} \text{ with } \mathrm{n} = \frac{3}{2} \colon$ $= \frac{2v^{\frac{5}{2}}}{5}$ Now solving: $\int \sqrt{v} \mathrm{d}v$ Apply power rule with $\mathrm{n} = \frac{1}{2} \colon$ $= \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}} \mathrm{d}v - \int \sqrt{v} \mathrm{d}v$ $= \frac{2v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v$ $= \frac{v^{\frac{5}{2}}}{10} - \frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v = 2u + 1$: $= \frac{(2u + 1)^{\frac{5}{2}}}{10} - \frac{(2u + 1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2} \int u\sqrt{2u + 1} \mathrm{d}u$ $= \frac{(2u + 1)^{\frac{5}{2}}}{20} - \frac{(2u + 1)^{\frac{3}{2}}}{12}$ Undo substitution $u = x^2$: $= \frac{(2x^2 + 1)^{\frac{5}{2}}}{20} - \frac{(2x^2 + 1)^{\frac{3}{2}}}{12}$ The problem is solved:	$\int v^{\overline{2}} dv$
Now solving: $\int \sqrt{v} \mathrm{d}v$ Apply power rule with $\mathbf{n} = \frac{1}{2}$: $= \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}} \mathrm{d}v - \int \sqrt{v} \mathrm{d}v$ $= \frac{2v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v$ $= \frac{v^{\frac{5}{2}}}{10} - \frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v = 2u + 1$: $= \frac{(2u + 1)^{\frac{5}{2}}}{10} - \frac{(2u + 1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2} \int u\sqrt{2u + 1} \mathrm{d}u$ $= \frac{(2u + 1)^{\frac{5}{2}}}{20} - \frac{(2u + 1)^{\frac{3}{2}}}{12}$ Undo substitution $u = x^2$: $= \frac{(2x^2 + 1)^{\frac{5}{2}}}{20} - \frac{(2x^2 + 1)^{\frac{3}{2}}}{12}$ The problem is solved:	
Now solving: $\int \sqrt{v} \mathrm{d}v$ Apply power rule with $\mathbf{n} = \frac{1}{2}$: $= \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}} \mathrm{d}v - \int \sqrt{v} \mathrm{d}v$ $= \frac{2v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v$ $= \frac{v^{\frac{5}{2}}}{10} - \frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v = 2u + 1$: $= \frac{(2u + 1)^{\frac{5}{2}}}{10} - \frac{(2u + 1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2} \int u\sqrt{2u + 1} \mathrm{d}u$ $= \frac{(2u + 1)^{\frac{5}{2}}}{20} - \frac{(2u + 1)^{\frac{3}{2}}}{12}$ Undo substitution $u = x^2$: $= \frac{(2x^2 + 1)^{\frac{5}{2}}}{20} - \frac{(2x^2 + 1)^{\frac{3}{2}}}{12}$ The problem is solved:	$\int v^{\mathbf{n}} dv = \frac{v^{\mathbf{n}+1}}{1}$ with $\mathbf{n} = \frac{3}{2}$:
Now solving: $\int \sqrt{v} \mathrm{d}v$ $Apply power rule with \mathbf{n} = \frac{1}{2}: = \frac{2v^{\frac{3}{2}}}{3} Plug in solved integrals: \int v^{\frac{3}{2}} \mathrm{d}v - \int \sqrt{v} \mathrm{d}v = \frac{2v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3} Plug in solved integrals: \frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v = \frac{v^{\frac{5}{2}}}{10} - \frac{v^{\frac{3}{2}}}{6} Undo substitution v = 2u + 1: = \frac{(2u + 1)^{\frac{5}{2}}}{10} - \frac{(2u + 1)^{\frac{3}{2}}}{6} Plug in solved integrals: \frac{1}{2} \int u\sqrt{2u + 1} \mathrm{d}u = \frac{(2u + 1)^{\frac{5}{2}}}{20} - \frac{(2u + 1)^{\frac{3}{2}}}{12} Undo substitution u = x^2: = \frac{(2x^2 + 1)^{\frac{5}{2}}}{20} - \frac{(2x^2 + 1)^{\frac{3}{2}}}{12} The problem is solved:$	J 41 4 2
$\int \sqrt{v} \mathrm{d}v$ Apply power rule with $\mathbf{n} = \frac{1}{2}$: $= \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}} \mathrm{d}v - \int \sqrt{v} \mathrm{d}v$ $= \frac{2v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v$ $= \frac{v^{\frac{5}{2}}}{10} - \frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v = 2u + 1$: $= \frac{(2u + 1)^{\frac{5}{2}}}{10} - \frac{(2u + 1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2} \int u\sqrt{2u + 1} \mathrm{d}u$ $= \frac{(2u + 1)^{\frac{5}{2}}}{20} - \frac{(2u + 1)^{\frac{3}{2}}}{12}$ Undo substitution $u = x^2$: $= \frac{(2x^2 + 1)^{\frac{5}{2}}}{20} - \frac{(2x^2 + 1)^{\frac{3}{2}}}{12}$ The problem is solved:	$=\frac{2v^{\frac{\gamma}{2}}}{5}$
$\int \sqrt{v} \mathrm{d}v$ Apply power rule with $\mathbf{n} = \frac{1}{2}$: $= \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}} \mathrm{d}v - \int \sqrt{v} \mathrm{d}v$ $= \frac{2v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v$ $= \frac{v^{\frac{5}{2}}}{10} - \frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v = 2u + 1$: $= \frac{(2u + 1)^{\frac{5}{2}}}{10} - \frac{(2u + 1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2} \int u\sqrt{2u + 1} \mathrm{d}u$ $= \frac{(2u + 1)^{\frac{5}{2}}}{20} - \frac{(2u + 1)^{\frac{3}{2}}}{12}$ Undo substitution $u = x^2$: $= \frac{(2x^2 + 1)^{\frac{5}{2}}}{20} - \frac{(2x^2 + 1)^{\frac{3}{2}}}{12}$ The problem is solved:	Now solving:
Apply power rule with $\mathbf{n}=\frac{1}{2}$: $=\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}}\mathrm{d}v - \int \sqrt{v}\mathrm{d}v$ $=\frac{2v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4}\int \left(v^{\frac{3}{2}} - \sqrt{v}\right)\mathrm{d}v$ $=\frac{v^{\frac{5}{2}}}{10} - \frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v=2u+1$: $=\frac{(2u+1)^{\frac{5}{2}}}{10} - \frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ $=\frac{(2u+1)^{\frac{5}{2}}}{20} - \frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^2$: $=\frac{(2x^2+1)^{\frac{5}{2}}}{20} - \frac{(2x^2+1)^{\frac{3}{2}}}{12}$ The problem is solved:	
$=\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}} \mathrm{d}v - \int \sqrt{v} \mathrm{d}v$ $=\frac{2v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v$ $=\frac{v^{\frac{5}{2}}}{10} - \frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v = 2u + 1$: $=\frac{(2u+1)^{\frac{5}{2}}}{10} - \frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2} \int u\sqrt{2u+1} \mathrm{d}u$ $=\frac{(2u+1)^{\frac{5}{2}}}{20} - \frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u = x^2$: $=\frac{(2x^2+1)^{\frac{5}{2}}}{20} - \frac{(2x^2+1)^{\frac{3}{2}}}{12}$ The problem is solved:	$\int \sqrt{v}\mathrm{d}v$
$=\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\int v^{\frac{3}{2}} \mathrm{d}v - \int \sqrt{v} \mathrm{d}v$ $=\frac{2v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v$ $=\frac{v^{\frac{5}{2}}}{10} - \frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v = 2u + 1$: $=\frac{(2u+1)^{\frac{5}{2}}}{10} - \frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2} \int u\sqrt{2u+1} \mathrm{d}u$ $=\frac{(2u+1)^{\frac{5}{2}}}{20} - \frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u = x^2$: $=\frac{(2x^2+1)^{\frac{5}{2}}}{20} - \frac{(2x^2+1)^{\frac{3}{2}}}{12}$ The problem is solved:	Apply power rule with $\mathbf{n} = \frac{1}{2}$:
Plug in solved integrals: $\int v^{\frac{3}{2}} \mathrm{d}v - \int \sqrt{v} \mathrm{d}v$ $= \frac{2v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v$ $= \frac{v^{\frac{5}{2}}}{10} - \frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v = 2u + 1$: $= \frac{(2u+1)^{\frac{5}{2}}}{10} - \frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2} \int u \sqrt{2u+1} \mathrm{d}u$ $= \frac{(2u+1)^{\frac{5}{2}}}{20} - \frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u = x^2$: $= \frac{(2x^2+1)^{\frac{5}{2}}}{20} - \frac{(2x^2+1)^{\frac{3}{2}}}{12}$ The problem is solved:	
$\int v^{\frac{3}{2}} \mathrm{d}v - \int \sqrt{v} \mathrm{d}v$ $= \frac{2v^{\frac{5}{2}}}{5} - \frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4} \int \left(v^{\frac{3}{2}} - \sqrt{v}\right) \mathrm{d}v$ $= \frac{v^{\frac{5}{2}}}{10} - \frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v = 2u + 1$: $= \frac{(2u + 1)^{\frac{5}{2}}}{10} - \frac{(2u + 1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2} \int u\sqrt{2u + 1} \mathrm{d}u$ $= \frac{(2u + 1)^{\frac{5}{2}}}{20} - \frac{(2u + 1)^{\frac{3}{2}}}{12}$ Undo substitution $u = x^2$: $= \frac{(2x^2 + 1)^{\frac{5}{2}}}{20} - \frac{(2x^2 + 1)^{\frac{3}{2}}}{12}$ The problem is solved:	$=\frac{20^2}{3}$
$=\frac{2v^{\frac{5}{2}}}{5}-\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4}\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ $=\frac{v^{\frac{5}{2}}}{10}-\frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v=2u+1$: $=\frac{(2u+1)^{\frac{5}{2}}}{10}-\frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ $=\frac{(2u+1)^{\frac{5}{2}}}{20}-\frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^2$: $=\frac{(2x^2+1)^{\frac{5}{2}}}{20}-\frac{(2x^2+1)^{\frac{3}{2}}}{12}$ The problem is solved:	Plug in solved integrals:
$=\frac{2v^{\frac{5}{2}}}{5}-\frac{2v^{\frac{3}{2}}}{3}$ Plug in solved integrals: $\frac{1}{4}\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ $=\frac{v^{\frac{5}{2}}}{10}-\frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v=2u+1$: $=\frac{(2u+1)^{\frac{5}{2}}}{10}-\frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ $=\frac{(2u+1)^{\frac{5}{2}}}{20}-\frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^2$: $=\frac{(2x^2+1)^{\frac{5}{2}}}{20}-\frac{(2x^2+1)^{\frac{3}{2}}}{12}$ The problem is solved:	$\int v^{\frac{3}{2}} dv - \int \sqrt{v} dv$
Plug in solved integrals: $\frac{1}{4}\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ $=\frac{v^{\frac{5}{2}}}{10}-\frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v=2u+1$: $=\frac{(2u+1)^{\frac{5}{2}}}{10}-\frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ $=\frac{(2u+1)^{\frac{5}{2}}}{20}-\frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^2$: $=\frac{\left(2x^2+1\right)^{\frac{5}{2}}}{20}-\frac{\left(2x^2+1\right)^{\frac{3}{2}}}{12}$ The problem is solved:	J
Plug in solved integrals: $\frac{1}{4}\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ $=\frac{v^{\frac{5}{2}}}{10}-\frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v=2u+1$: $=\frac{(2u+1)^{\frac{5}{2}}}{10}-\frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ $=\frac{(2u+1)^{\frac{5}{2}}}{20}-\frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^2$: $=\frac{\left(2x^2+1\right)^{\frac{5}{2}}}{20}-\frac{\left(2x^2+1\right)^{\frac{3}{2}}}{12}$ The problem is solved:	$=rac{2v^{rac{z}{2}}}{z}-rac{2v^{rac{z}{2}}}{2}$
$\frac{1}{4}\int\left(v^{\frac{3}{2}}-\sqrt{v}\right)\mathrm{d}v$ $=\frac{v^{\frac{5}{2}}}{10}-\frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v=2u+1$: $=\frac{(2u+1)^{\frac{5}{2}}}{10}-\frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ $=\frac{(2u+1)^{\frac{5}{2}}}{20}-\frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^2$: $=\frac{(2x^2+1)^{\frac{5}{2}}}{20}-\frac{(2x^2+1)^{\frac{3}{2}}}{12}$ The problem is solved:	3 3
$=\frac{v^{\frac{5}{2}}}{10}-\frac{v^{\frac{3}{2}}}{6}$ Undo substitution $v=2u+1$: $=\frac{(2u+1)^{\frac{5}{2}}}{10}-\frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2}\int\!\!u\sqrt{2u+1}\mathrm{d}u$ $=\frac{(2u+1)^{\frac{5}{2}}}{20}-\frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^2$: $=\frac{(2x^2+1)^{\frac{5}{2}}}{20}-\frac{(2x^2+1)^{\frac{3}{2}}}{12}$ The problem is solved:	
Undo substitution $v=2u+1$: $=\frac{(2u+1)^{\frac{5}{2}}}{10}-\frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ $=\frac{(2u+1)^{\frac{5}{2}}}{20}-\frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^2$: $=\frac{\left(2x^2+1\right)^{\frac{5}{2}}}{20}-\frac{\left(2x^2+1\right)^{\frac{3}{2}}}{12}$ The problem is solved:	$-rac{1}{4}\int \left(v^{rac{\gamma}{2}}-\sqrt{v} ight)\mathrm{d}v$
Undo substitution $v=2u+1$: $=\frac{(2u+1)^{\frac{5}{2}}}{10}-\frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ $=\frac{(2u+1)^{\frac{5}{2}}}{20}-\frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^2$: $=\frac{\left(2x^2+1\right)^{\frac{5}{2}}}{20}-\frac{\left(2x^2+1\right)^{\frac{3}{2}}}{12}$ The problem is solved:	$v^{\frac{5}{2}}$ $v^{\frac{3}{2}}$
$=\frac{(2u+1)^{\frac{5}{2}}}{10}-\frac{(2u+1)^{\frac{3}{2}}}{6}$ Plug in solved integrals: $\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ $=\frac{(2u+1)^{\frac{5}{2}}}{20}-\frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^2$: $=\frac{(2x^2+1)^{\frac{5}{2}}}{20}-\frac{(2x^2+1)^{\frac{3}{2}}}{12}$ The problem is solved:	10 0
Plug in solved integrals: $\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ $=\frac{(2u+1)^{\frac{5}{2}}}{20}-\frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^2$: $=\frac{\left(2x^2+1\right)^{\frac{5}{2}}}{20}-\frac{\left(2x^2+1\right)^{\frac{3}{2}}}{12}$ The problem is solved:	
Plug in solved integrals: $\frac{1}{2}\int u\sqrt{2u+1}\mathrm{d}u$ $=\frac{(2u+1)^{\frac{5}{2}}}{20}-\frac{(2u+1)^{\frac{3}{2}}}{12}$ Undo substitution $u=x^2$: $=\frac{\left(2x^2+1\right)^{\frac{5}{2}}}{20}-\frac{\left(2x^2+1\right)^{\frac{3}{2}}}{12}$ The problem is solved:	$=\frac{(2u+1)^2}{10}-\frac{(2u+1)^{\frac{1}{2}}}{6}$
$rac{1}{2}\int\!u\sqrt{2u+1}\mathrm{d}u$ = $rac{(2u+1)^{rac{5}{2}}}{20}-rac{(2u+1)^{rac{3}{2}}}{12}$ Undo substitution $u=x^2$: = $rac{\left(2x^2+1 ight)^{rac{5}{2}}}{20}-rac{\left(2x^2+1 ight)^{rac{3}{2}}}{12}$ The problem is solved:	10 0
$=rac{(2u+1)^{rac{5}{2}}}{20}-rac{(2u+1)^{rac{3}{2}}}{12}$ Undo substitution $u=x^2$: $=rac{\left(2x^2+1 ight)^{rac{5}{2}}}{20}-rac{\left(2x^2+1 ight)^{rac{3}{2}}}{12}$ The problem is solved:	
Undo substitution $u=x^2$: $=\frac{\left(2x^2+1\right)^{\frac{5}{2}}}{20}-\frac{\left(2x^2+1\right)^{\frac{3}{2}}}{12}$ The problem is solved:	$\frac{1}{2}\int u\sqrt{2}u+1\mathrm{d}u$
Undo substitution $u=x^2$: $=\frac{\left(2x^2+1\right)^{\frac{5}{2}}}{20}-\frac{\left(2x^2+1\right)^{\frac{3}{2}}}{12}$ The problem is solved:	$(2u+1)^{\frac{5}{2}} \hspace{0.2in} (2u+1)^{\frac{3}{2}}$
$=rac{\left(2x^2+1 ight)^{rac{5}{2}}}{20}-rac{\left(2x^2+1 ight)^{rac{3}{2}}}{12}$ The problem is solved:	20 12
The problem is solved:	
The problem is solved:	$=rac{\left(2x^2+1 ight)^{rac{ ilde{z}}{2}}}{-rac{\left(2x^2+1 ight)^{rac{ ilde{z}}{2}}}{}}$
c	355
$\int\! x^3 \sqrt{2x^2+1}\mathrm{d}x$	
	$\int x^3 \sqrt{2x^2+1}\mathrm{d}x$
$(2x^2+1)^{\frac{5}{2}}$ $(2x^2+1)^{\frac{3}{2}}$	$(2x^2 \pm 1)^{\frac{5}{2}}$ $(2x^2 \pm 1)^{\frac{3}{2}}$
$=rac{\left(2x^2+1 ight)^{rac{3}{2}}}{20}-rac{\left(2x^2+1 ight)^{rac{3}{2}}}{12}+C$	$=\frac{(2a+1)}{20}-\frac{(2a+1)^2}{12}+C$
Rewrite/simplify:	Rewrite/simplify:
$\left(2x^{2}+1\right)^{\frac{3}{2}}\left(3x^{2}-1\right)$	$\left(2x^{2}+1\right)^{\frac{3}{2}}\left(3x^{2}-1\right)$
$=rac{\left(2x^2+1 ight)^{rac{3}{2}}\left(3x^2-1 ight)}{30}+C$	$=\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$

Problem: $\int \frac{x^3}{\left(x^2+1\right)^3} \, \mathrm{d}x$ Substitute $u=x^2+1 \longrightarrow \mathrm{d} u=2x\,\mathrm{d} x$ (steps): $=rac{1}{2}\int\!rac{u-1}{u^3}\,\mathrm{d}u$... or choose an alternative: Substitute x^2 Don't substitute Now solving: $\int \frac{u-1}{u^3} \, \mathrm{d}u$ $=\int\left(rac{1}{u^2}-rac{1}{u^3}
ight)\mathrm{d}u$ $=\int\!rac{1}{u^2}\,\mathrm{d}u-\int\!rac{1}{u^3}\,\mathrm{d}u$ Now solving: $\int \frac{1}{u^2} du$ $\int \! u^{\mathbf{n}} \, \mathrm{d} u = rac{u^{\mathbf{n}+1}}{\mathbf{n}+1}$ with $\mathbf{n} = -2$: $=-rac{1}{u}$ Now solving: $\int \frac{1}{u^3} \, \mathrm{d}u$ Apply power rule with ${f n}=-3$: Plug in solved integrals: $\int \frac{1}{u^2} \, \mathrm{d}u - \int \frac{1}{u^3} \, \mathrm{d}u$ $\frac{1}{2}\int \frac{u-1}{u^3}\,\mathrm{d}u$ $=\frac{1}{4u^2}-\frac{1}{2u}$ Undo substitution $u=x^2+1$: $=rac{1}{4{{\left({{x}^{2}}+1
ight)}^{2}}}-rac{1}{2\left({{x}^{2}}+1
ight)}$ The problem is solved: $\int \frac{x^3}{\left(x^2+1\right)^3} \, \mathrm{d}x$ $=rac{1}{4{{\left({{x}^{2}}+1
ight)}^{2}}}-rac{1}{2\left({{x}^{2}}+1
ight)}+C$

 $=-rac{2x^2+1}{4{(x^2+1)}^2}+C$

Problem:
$$\int \frac{x}{\sqrt[4]{2x+1}} \, \mathrm{d}x$$

 $ightarrow \mathrm{d} u = 2\,\mathrm{d} x$ (steps):

$$=rac{1}{4}\int rac{u-1}{\sqrt[4]{u}}\,\mathrm{d}u$$

$$\int \frac{u-1}{\sqrt[4]{u}} \, \mathrm{d}u$$

$$= \int \left(u^{\frac{3}{4}} - \frac{1}{\sqrt[4]{u}} \right) \mathrm{d}u$$

$$= \int \! u^{\frac{3}{4}} \, \mathrm{d} u - \int \! \frac{1}{\sqrt[4]{u}} \, \mathrm{d} u$$

$$\int u^{\frac{3}{4}} \, \mathrm{d}u$$

$$\int \! u^{\mathbf{n}} \, \mathrm{d}u = rac{u^{\mathbf{n}+1}}{\mathbf{n}+1} ext{ with } \mathbf{n} = rac{3}{4} : = rac{4u^{rac{7}{4}}}{7}$$

$$\int \frac{1}{\sqrt[4]{u}} \, \mathrm{d}u$$

Apply power rule with $\mathbf{n} = -\frac{1}{4}$:

$$=\frac{4u^{\frac{3}{4}}}{3}$$

Plug in solved integrals:

$$\int \! u^{rac{3}{4}} \, \mathrm{d}u - \int \! rac{1}{\sqrt[4]{u}} \, \mathrm{d}u
onumber \ = rac{4u^{rac{7}{4}}}{7} - rac{4u^{rac{3}{4}}}{3}$$

$$\frac{1}{4} \int \frac{u-1}{\sqrt[4]{u}} \, \mathrm{d}u$$
$$= \frac{u^{\frac{7}{4}}}{7} - \frac{u^{\frac{3}{4}}}{3}$$

Undo substitution u=2x+1:

$$=rac{{{{\left({2x + 1}
ight)}^{rac{7}{4}}}}}{7} - rac{{{{\left({2x + 1}
ight)}^{rac{3}{4}}}}}{3}$$

$$\int rac{x}{\sqrt[4]{2x+1}}\,\mathrm{d}x$$
 $=rac{(2x+1)^{rac{7}{4}}}{7}-rac{(2x+1)^{rac{3}{4}}}{3}+C$ Rewrite/simplify:

$$=rac{2(2x+1)^{rac{3}{4}}\left(3x-2
ight)}{21}+C$$

$$\int \frac{6x-1}{(2x+1)^{\frac{3}{2}}} \, \mathrm{d}x$$

Substitute $u=2x+1 \longrightarrow \mathrm{d} u = 2\,\mathrm{d} x$ (steps)

$$=rac{1}{2}\intrac{3u-4}{u^{rac{3}{2}}}\,\mathrm{d}u$$

$$\int \frac{3u-4}{u^{\frac{3}{2}}} \, \mathrm{d}u$$

$$=\int\left(rac{3}{\sqrt{u}}-rac{4}{u^{rac{3}{2}}}
ight)\mathrm{d}u$$

$$=3\!\int\!\frac{1}{\sqrt{u}}\,\mathrm{d}u-4\!\int\!\frac{1}{u^{\frac{3}{2}}}\,\mathrm{d}u$$

$$\int \frac{1}{\sqrt{u}} \, \mathrm{d}u$$

$$\int\! u^{\mathbf{n}}\,\mathrm{d}u = rac{u^{\mathbf{n}+1}}{\mathbf{n}+1}$$
 with $\mathbf{n}=-rac{1}{2}$: $=2\sqrt{u}$

Now solving:

$$\int \frac{1}{u^{\frac{3}{2}}} \, \mathrm{d} u$$

Apply power rule with $n = -\frac{3}{2}$:

$$=-rac{2}{\sqrt{u}}$$

Plug in solved integrals:

$$3\int \frac{1}{\sqrt{u}} du - 4\int \frac{1}{u^{\frac{3}{2}}} du$$
$$= 6\sqrt{u} + \frac{8}{\sqrt{u}}$$

Plug in solved integrals:

$$\frac{1}{2} \int \frac{3u - 4}{u^{\frac{3}{2}}} du$$
$$= 3\sqrt{u} + \frac{4}{\sqrt{u}}$$

Undo substitution u=2x+1:

$$=3\sqrt{2x+1}+\frac{4}{\sqrt{2x+1}}$$

The problem is solved:

$$\int \frac{6x-1}{(2x+1)^{\frac{3}{2}}} \, \mathrm{d}x$$

$$= 3\sqrt{2x+1} + \frac{4}{\sqrt{2x+1}} + C$$
Rewrite/simplify

$$=\frac{6x+7}{\sqrt{2x+1}}+C$$

Trigonometric Substitution

Evaluate each of the following indefinite integrals using Algebraic Substitution

$$1. \int \frac{\sqrt{x^{2+16}}}{x^4} dx$$

2.
$$\int x^3 (3x^2 - 4)^{5/2} dx$$

3.
$$\int \frac{2}{x^4 \sqrt{x^2 - 25}} dx$$

4.
$$\int 2x^5 \sqrt{9x^2 + 2} \, dx$$

5.
$$\int \frac{(x+3)^5}{(40-6x-x^2)^{3/2}} dx$$

Simplification:

1. Simplify the integrand:

$$\frac{\sqrt{x^{18}}}{x^4} = \frac{x^9}{x^4} = x^{9-4} = x^5$$

2. Integrate the simplified function:

$$\int x^5 dx$$

3. Apply the power rule for integration:

The power rule for integration is $\int x^n\,dx = rac{x^{n+1}}{n+1} + C$

So, for n=5:

$$\int x^5\,dx=rac{x^6}{6}+C$$

Conclusion:

Thus, the integral $\int rac{\sqrt{x^{18}}}{x^4}\,dx$ simplifies to:

$$\int x^5\,dx=rac{x^6}{6}+C$$

Simplification using substitution:

1. Substitute $u=3x^2-4$:

Then $du=6x\,dx$ or $\frac{du}{6}=x\,dx$.

2. Rewrite the integral:

Notice that $x^3=x\cdot x^2$, and from the substitution $u=3x^2-4$, we have $x^2=\frac{u+4}{3}$. So, we can rewrite the integral in terms of u.

$$\int x^3 (3x^2-4)^{5/2} \, dx = \int x \cdot x^2 (3x^2-4)^{5/2} \, dx = \int x \cdot rac{u+4}{3} \cdot u^{5/2} \, dx$$

3. Substitute $x\,dx$ with $\frac{du}{6}$

$$x dx = \frac{du}{6}$$

So the integral becomes:

$$\int \frac{u+4}{3} \cdot u^{5/2} \cdot \frac{du}{6}$$

Simplify the constants:

$$\int \frac{1}{18} (u+4) \cdot u^{5/2} du$$

Distribute $u^{5/2}$:

$$\int \frac{1}{18} (u^{7/2} + 4u^{5/2}) \, du$$

4. Apply linearity of the integral

$$\frac{1}{18} \left(\int u^{7/2} \, du + 4 \int u^{5/2} \, du \right)$$

5. Apply the power rule for integration:

The power rule for integration is $\int u^n\,du=rac{u^{n+1}}{n+1}+C.$

For n=7/2:

$$\int u^{7/2} \, du = rac{u^{9/2}}{9/2} = rac{2}{9} u^{9/2}$$

For n=5/2:

$$\int u^{5/2}\,du = rac{u^{7/2}}{7/2} = rac{2}{7}u^{7/2}$$

6. Combine the results:

$$\begin{split} &\frac{1}{18} \left(\frac{2}{9} u^{9/2} + 4 \cdot \frac{2}{7} u^{7/2} \right) \\ &= \frac{1}{18} \left(\frac{2}{9} u^{9/2} + \frac{8}{7} u^{7/2} \right) \\ &= \frac{2}{18 \cdot 9} u^{9/2} + \frac{8}{18 \cdot 7} u^{7/2} \\ &= \frac{1}{81} u^{9/2} + \frac{4}{63} u^{7/2} \end{split}$$

7. Substitute back $u=3x^2-4$:

$$=rac{1}{81}(3x^2-4)^{9/2}+rac{4}{63}(3x^2-4)^{7/2}+C$$

Conclusion:

So, the integral $\int x^3 \cdot (3x^2-4)^{5/2}\,dx$ simplifies to:

$$\frac{1}{81}(3x^2-4)^{9/2}+\frac{4}{63}(3x^2-4)^{7/2}+C$$

	Problem:
	$\int \frac{2}{x^4 \sqrt{x^2 - 25}} \mathrm{d}x$
	Apply linearity:
	$=2\int\!rac{1}{x^4\sqrt{x^2-25}}\mathrm{d}x$
	Now solving:
	$\int \frac{1}{x^4 \sqrt{x^2 - 25}} dx$
	$J \ x^4 \sqrt{x^2 - 25}$ Perform trigonometric substitution:
Substitute $x=$	$5\sec(u) \longrightarrow u = \operatorname{arcsec}\left(rac{x}{5} ight), \mathrm{d}x = 5\sec(u)\tan(u)\mathrm{d}u ext{(steps)}$:
	$=\int\!\frac{\tan(u)}{125\sec^3(u)\sqrt{25\sec^2(u)-25}}\mathrm{d}u$
	Simplify using $25\sec^2(u)-25=25\tan^2(u)$:
	$=rac{1}{625}\intrac{1}{\sec^3(u)}\mathrm{d}u$
	or choose an alternative: Perform hyperbolic substitution
	Now solving:
	$\int \frac{1}{\sec^3(u)} \mathrm{d}u$
	· · · · · · · · · · · · · · · · · · ·
Re	write/simplify using trigonometric/hyperbolic identities:
	$=\int \cos^3(u)\mathrm{d}u$ Prepare for substitution:
	$= \int \cos(u) \left(1 - \sin^2(u)\right) \mathrm{d}u$
	$=\int \cos(u) \ (1-\sin(u)) \ du$ Substitute $v=\sin(u) \longrightarrow dv=\cos(u) \ du$ (steps):
	$=\int \left(1-v^2 ight)\mathrm{d}v$ Apply linearity:
	$=\int\!1\mathrm{d}v-\int\!v^2\mathrm{d}v$
	J J
	Now solving:
	$\int\! 1\mathrm{d}v$
	Apply constant rule: $= v$
	Now solving:
	$\int\! v^2\mathrm{d}v$
	Apply power rule:
	$\int v^{\mathbf{n}} \mathrm{d}v = \frac{v^{\mathbf{n}+1}}{\mathbf{n}+1} \text{ with } \mathbf{n} = 2:$
	$=\frac{v^3}{3}$
	•
	Plug in solved integrals:
	$\int\! 1\mathrm{d}v - \int\! v^2\mathrm{d}v$
	$=v-rac{v^3}{3}$
	Undo substitution $v=\sin(u)$:
	$=\sin(u)-rac{\sin^3(u)}{3}$
	Plug in solved integrals:
	$\frac{1}{625} \int \frac{1}{\sec^3(u)} du$
	0 (-)
	$=\frac{\sin(u)}{625}-\frac{\sin^3(u)}{1875}$
	Undo substitution $u= \operatorname{arcsec}\left(\frac{x}{5}\right)$, use:
	$\sin\Bigl(\mathrm{arcsec}\Bigl(rac{x}{5}\Bigr)\Bigr) = rac{5\sqrt{rac{x^2}{25}}-1}{x}$
	$=rac{\sqrt{rac{x^2}{25}-1}}{125x}-rac{\left(rac{x^2}{25}-1 ight)^{rac{3}{2}}}{15x^3}$
	Plug in solved integrals:
	$2\int \frac{1}{x^4\sqrt{x^2-25}} \mathrm{d}x$
	$=rac{2\sqrt{rac{x^2}{25}-1}}{125x}-rac{2\left(rac{x^2}{25}-1 ight)^{rac{3}{2}}}{15x^3}$
	The problem is solved: $\int \frac{2}{1-x^2} dx$
	$\int \frac{2}{x^4 \sqrt{x^2 - 25}} \mathrm{d}x$
	$=rac{2\sqrt{rac{x^2}{25}-1}}{125x}-rac{2\left(rac{x^2}{25}-1 ight)^{rac{3}{2}}}{15x^3}+C$
	Rewrite/simplify: $\sqrt{x^2-25}\left(4x^2+50\right)$
	$=\frac{\sqrt{x^2-25}\left(4x^2+50\right)}{1875x^3}+C$

Pro	olem:
$\int 2x^5\sqrt{9}$	$\partial x^2 + 2 \mathrm{d}x$
J	inearity:
	$\sqrt{9x^2+2}\mathrm{d}x$
,	solving:
	$\overline{x^2+2}\mathrm{d}x$
J	
Substitute $u=9x^2+2-$	$ ightarrow \mathrm{d} u = \frac{18}{18} x \mathrm{d} x$ (steps), use:
	01
$=\frac{1}{1458}\int ($	$(u-2)^2 \sqrt{u} \mathrm{d} u$
	an alternative:
	ubstitute
	solving:
J	$(2)^2 \sqrt{u} \mathrm{d}u$
	pand:
,	$u^{rac{3}{2}}+4\sqrt{u}\Big)\mathrm{d}u$
	linearity:
$= \int u^{\frac{3}{2}} \mathrm{d}u - 4 \int$	$u^{rac{3}{2}}\mathrm{d}u + 4\!\int\!\sqrt{u}\mathrm{d}u$
Now	solving:
$\int u$	$ u^{\frac{5}{2}} \mathrm{d} u$
Apply p	ower rule:
$\int u^{\mathrm{n}} \mathrm{d}u = \frac{u^{\mathrm{n}}}{u^{\mathrm{n}}}$	$\frac{n+1}{n+1}$ with $n=\frac{5}{2}$:
	Walk Walk
-	$\frac{2u^{\frac{7}{2}}}{7}$
Now	solving:
$\int u$	$^{rac{3}{2}}\mathrm{d}u$
Apply power re	ule with $\mathtt{n}=rac{3}{2}$:
	$\frac{2u^{\frac{5}{2}}}{5}$
Now	solving:
$\int_{\mathcal{N}}$	$\sqrt{u}\mathrm{d}u$
Apply power re	Lile with $n = \frac{1}{2}$:
	$\frac{2u^{\frac{3}{2}}}{2}$
	3
	ved integrals:
$\int\!u^{rac{5}{2}}\mathrm{d}u-4\!\int\!u$	$rac{3}{2}\mathrm{d}u + 4\!\int\!\sqrt{u}\mathrm{d}u$
$-2u^{\frac{7}{2}}$	$\frac{8u^{\frac{5}{2}}}{5} + \frac{8u^{\frac{3}{2}}}{3}$
	red integrals:
	$(-2)^2 \sqrt{u} \mathrm{d}u$
$=\frac{u^{\frac{7}{2}}}{5102}-\frac{1}{2}$	$rac{4u^{rac{5}{2}}}{3645} + rac{4u^{rac{3}{2}}}{2187}$
	on $u=9x^2+2$:
	${{{(9x^2+2)}^{rac{5}{2}}}\over {645}}+{{4(9x^2+2)^{rac{3}{2}}}\over {2187}}$
5103	645 + 2187
	red integrals:
$2\int x^5\sqrt{9}$	$2x^2+2\mathrm{d}x$
$=\frac{2\big(9x^2+2\big)^{\frac{7}{2}}}{5103}-\frac{8\big(9x^2+2\big)^{\frac{7}{2}}}{3x^2+3}$	$(x^2+2)^{\frac{5}{2}} - 8(9x^2+2)^{\frac{3}{2}}$
	m is solved:
9	$\mathrm{d}x^2+2\mathrm{d}x$
$2(9x^2+2)^{\frac{7}{2}}$ $8(9x^2+2)^{\frac{7}{2}}$	$rac{\left(+2 ight)^{rac{5}{2}}}{45}+rac{8 \left(9 x^2+2 ight)^{rac{3}{2}}}{2187}+C$
	45 + 2187 + C /simplify:
= 765	$\left. rac{x^4 - 216x^2 + 32 ight)}{45} + C$

$$\frac{(x+3)^5}{(-x^2-6x+40)^{\frac{3}{2}}}$$

Note: Your input has been rewritten/simplified.

Simplify/rewrite:

$$\frac{\left(x+3\right)^{5}}{\left(-\left(x-4\right)\left(x+10\right)\right)^{\frac{3}{2}}}$$

$$\int \frac{(x+3)^5}{(-x^2-6x+40)^3} \, \mathrm{d}x$$
Substitute $u = (x+3)^3 - \mathrm{d}u = 2 \, (x+3) \, \mathrm{d}x$ (used):
$$= \frac{1}{2} \int \frac{u^2}{(49-u)^3} \, \mathrm{d}u$$

$$= 0 \text{ or choose an alternative.}$$

$$\boxed{\text{Don't substitute}}$$
Now solving:
$$\int \frac{u^2}{(49-u)^3} \, \mathrm{d}u$$
Substitute $v = 49 - u \to dv = -du$ (uses), use:
$$v = (40 - v)^2 \, \mathrm{d}v$$

$$= -\int \frac{(v-49)^2}{v^3} \, \mathrm{d}v$$
Now solving:
$$\int \frac{(v-49)^2}{\sqrt{v} \, \mathrm{d}v} \, \mathrm{d}v$$

$$= \int \sqrt{v} \, \mathrm{d}v - 98 \int \frac{1}{v^3} \, \mathrm{d}v + 2401 \int \frac{1}{v^3} \, \mathrm{d}v$$
Apply power rule:
$$\int v^3 \, \mathrm{d}v = \frac{v^{3+1}}{v^3} \, \mathrm{with} \, \mathrm{n} = \frac{1}{2}:$$

$$= \frac{2v^2}{3}$$
Now solving:
$$\int \frac{1}{v} \, \mathrm{d}v$$
Apply power rule with $n = \frac{1}{2}:$

$$= \frac{2v^2}{3}$$
Now solving:
$$\int \frac{1}{v^3} \, \mathrm{d}v$$
Apply power rule with $n = -\frac{1}{2}:$

$$= -\frac{2\sqrt{v}}{v^3}$$
Now solving:
$$\int \frac{1}{\sqrt{v}} \, \mathrm{d}v$$
Apply power rule with $n = -\frac{1}{2}:$

$$= -\frac{2v^2}{3}$$
Now solving:
$$\int \frac{1}{\sqrt{v}} \, \mathrm{d}v$$
Apply power rule with $n = -\frac{1}{2}:$

$$= -\frac{2v^2}{3}$$
Plug in solved integrals:
$$\int \sqrt{v} \, \mathrm{d}v - 98 \int \frac{1}{\sqrt{v}} \, \mathrm{d}v + 2401 \int \frac{1}{v^3} \, \mathrm{d}v$$

$$= \frac{2v^3}{3} - 196\sqrt{v} - \frac{4802}{\sqrt{v}}$$
Plug in solved integrals:
$$\int \frac{(v-49)^3}{3} \, \mathrm{d}v$$

$$= -\frac{2v^2}{3} - 196\sqrt{v} - \frac{490z}{\sqrt{v}}$$
Undoe substitution $v = 49 - v$:
$$= -\frac{2(49 - u)^{\frac{3}{2}}}{3} + 196\sqrt{49 - u} + \frac{4802}{\sqrt{49 - u}}$$
Plug in solved integrals:
$$\frac{1}{2} \int \frac{u^2}{(49 - u)^{\frac{3}{2}}} \, \mathrm{d}u$$

$$= -\frac{(49 - (x+3)^2)^{\frac{3}{2}}}{3} + 98\sqrt{49 - (x+3)^2} + \frac{2401}{\sqrt{49 - u}}$$
The problem is solved:
$$\int \frac{(x+3)^5}{(-x^2-6x+40)^3} \, \mathrm{d}x$$

$$= -\frac{(49 - (x+3)^2)^{\frac{3}{2}}}{3} + 98\sqrt{49 - (x+3)^2} + \frac{2401}{\sqrt{49 - (x+3)^2}} + C$$
Rewrite/simplify:
$$= -\frac{x^4 + 12x^3 + 250x^2 + 1284x - 17363}{3\sqrt{-(x-4)(x+10)}} \, \mathrm{d}x$$

$$= -\frac{(49 - (x+3)^2)^{\frac{3}{2}}}{3} + 98\sqrt{49 - (x+3)^2} + \frac{2401}{\sqrt{49 - (x+3)^2}} + C$$