Soit f la fonction définie sur l'intervalle $[0; +\infty[$ par :

$$f(x) = 3 - \frac{2}{x+1}.$$

Le but de cet exercice est d'étudier des suites (u_n) définies par un premier terme positif ou nul u_0 et vérifiant pour tout entier naturel n:

$$u_{n+1} = f\left(u_n\right).$$

- 1. Étude de propriétés de la fonction f
 - (a) Démontrer que la fonction f est strictement sur l'intervalle $[0; +\infty[$.
 - (b) Résoudre dans l'intervalle $[0; +\infty[$ l'équation f(x) = x. On note α la solution.
 - (c) Montrer que si x appartient à l'intervalle $[\alpha; 6]$, alors f(x) appartient à l'intervalle $[\alpha; 6]$.
- 2. Étude de la suite (u_n) pour $u_0 = 6$.

Dans cette question, on considère la suite (u_n) définie par $u_0 = 6$ et pour tout entier naturel n:

$$u_{n+1} = f(u_n) = 3 - \frac{2}{u_n + 1}.$$

(a) Sur le graphique représenté en page 2, sont représentées les courbes d'équations y=x et y=f(x).

Placer le point A_0 de coordonnées $(u_0; 0)$, et, en utilisant ces courbes, construire à partir de A_0 les points A_1 , A_2 , A_3 et A_4 d'ordonnée nulle et d'abscisses respectives u_1 , u_2 , u_3 et u_4 .

Quelles conjectures peut-on émettre quant au sens de variation et à la convergence de la suite (u_n) ?

- (b) Démontrer, par récurrence, que, pour tout entier naturel $n, \alpha \leq u_{n+1} \leq u_n \leq 6$.
- (c) En déduire que la suite (u_n) est convergente.
- (d) Soit ℓ la limite de la suite (u_n) . Démontrer que $f(\ell) = \ell$ puis en déduire la valeur de ℓ .

12/11/2020 **2**