UGA CSCI 4150/6150 Caleb Ashmore Adams

1 Generally Useful Maths

Trig Properties

$$\sin^2 x + \cos^2 x = 1 \qquad \frac{d}{dx} \sin x = \cos x$$

$$\tan x = \frac{\sin x}{\cos x} \qquad \frac{d}{dx} \cos x = -\sin x$$

$$\frac{d}{dx} \tan x = \sec^2 x \qquad \frac{d}{dx} \cot x = -\csc^2 x$$

$$\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx} \arccos x = \frac{-1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx} \arctan x = \frac{1}{1 + x^2}$$

Log & Exp Properties

$$\frac{x}{dx}b^{x} = b^{x} \ln x \qquad \log(\frac{1}{x}) = -\log x$$

$$\log_{a} x = \frac{\log_{b} x}{\log_{a} x} \qquad \frac{d}{dx}e^{ax} = ae^{ax}$$

$$\frac{d}{dx}a^{x} = a^{x} \ln a \qquad \frac{d}{dx} \ln x = \frac{1}{x}$$

$$x^{0} = 1 \qquad x^{n} \cdot x^{m} = x^{n+m} \qquad x^{-n} = \frac{1}{x^{n}}$$

$$\log_{a} x^{n} = n\log_{a} x \qquad \frac{e^{-nx}}{e^{x}} = e^{-(n+1)x}$$

$$\log_{a}(\frac{x}{y}) = \log_{a} x - \log_{a} y$$

$$\log_{a}(xy) = \log_{a} x + \log_{a} y$$

Useful Series

$$r^0 + r^1 + r^2 + r^3 = \frac{r^{n} - 1}{r - 1}$$

for an alternating series the following will work to start: $\sum_{n=0}^{\infty} (-1)^n \text{ or } \sum_{n=0}^{\infty} (-1)^{n+1}$

$$\sum_{n=0}^{\infty} (-1)^n$$
 or $\sum_{n=0}^{\infty} (-1)^{n+1}$

In Class Terminology

the relative error formula: $\frac{|x-\hat{x}|}{x}$ these were represed strangely in class:

$$x' = f(t,x)$$
 $x(2) = 1 \rightarrow t = 2, x = 1$
If $x'' = xx'$ then $x''' = xx'' + x'x'$

When adding small number, it was mentioned in class that a >= or <= is preferable to a == when checking for values in a

2 Base Conversion

Decimal to Binary

For this simply find the place of the largest binary number that (of the form 2^n) that is within the number. Successivley subtract these numbers while keeping track of their place to generate the binary number.

Binary to Decimal

For this notice that each place in the decimal number has a corresponding power of 2. If the decimal number has a floating point then the power is negative counting from zero. This generates a sum of the form: $2^n + \dots + 2^2 + 2^1 + 2^{-1} + 2^{-2} + \dots + 2^{-m}$

Where n is the most significant digit and m is the least. The 2^{-1} term is the beginning of the floating point numbers.

Binary to Octal

Simply follow the table: $000 \rightarrow$ $0 \quad 0\overline{01} \rightarrow 1 \quad 002 \rightarrow 2 \quad 003 \rightarrow 3$

$004 \rightarrow 4 \quad 005 \rightarrow 5 \quad 006 \rightarrow 6 \quad 007 \rightarrow 7$

Binary to Hex

This identical to the Octal method, the The Taylor series is a sum of derivatives Hex symbols range from 0 to F and binary from 0000 to 1111. Simply count up un binary and there is a simple conversi-

One & Two's Complement

The one's complement of a bitstring is, simply, the inverse of that bitstring. i.e. all 1s become 0s and vice versa. The two's complement of a bitstring is the one's complement +1 at the end, so that (sometimes) there is a cascade of digit flips

3 IEEE Floating Points

Definitions

s =signed bit, c =based exponent, F =fraction. The general form for this is $(-1)^{s} \cdot 2^{c-127} \cdot 1.F$, for both |s| = 1For single precision: |c| = 8, |F| = 23For double precision: |c| = 11, |F| = 52

IEEE Format

recall the above formula:

 $(-1)^{s} \cdot 2^{c-127} \cdot 1.F$

A number will have the form $D_n \dots D_1 D_0 . F_0 F_1 \dots F_m$, to start we need to shift the values left (normalize) so that the number is now of the form: $D_n.F_0F_1...F_{m+(n-1)} \cdot 10^{n-1}$. note that the c term is, by definition, solved from $2^{c-127} = 2^{n-1}$

4 Loss of Significance

Loss of Precision Theorem

The general form of the theorem is as

x and y are floating point numbers such that x > y > 0, the theorem states that given: $2^{-p} \le 1 - \frac{y}{x} \le 2^{-q}$

there are at most p and at least q digits lost in the subtraction x - y.

practically speaking, we view the equation as: E(x) = f(x) - g(x). If we notice this approaches 0 we have a concern of loss of precision at that point. to find that point we typically view the max loss acceptable as 1, so we set the euqation to $=\frac{1}{2}$. We find the x=z values that

cause the $\frac{1}{2}$ flip and use a Taylor method there and use the normal formula elsewhere. We're just avoiding the loss of precision as $x \to z$.

Rationalizing Numerators

In some cases we want to rationalize a numerator to avoid a loss of significance. The general form for radicals in a demonitor is:

$$\sqrt[k]{x^n + r} + c \cdot \sqrt[k]{\frac{\sqrt[k]{x^n + r} - c}{\sqrt[k]{c}}} = \frac{x^n + r - 2c}{\sqrt[k]{c}}$$

5 Taylor, Maclaurin, & Euler **Taylor Series**

of increasing order that equate to a function. The formula for the Taylor series of f(x) evaluated at a is:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!} (x - a)^2 + \frac{f'''(a)}{3!} (x - a)^3$$

Taylor's Method for ODEs

This method takes advantage of the previously mentioned series. here this is some step size h that we take from some f(x) value. This is the Initial Value Problem (IVP).

$$f(x+h) = f(x) + f'(x)h + \frac{1}{2!}f''(x)h^2 + \frac{1}{3!}f'''(x)h^3 + \dots$$

Maclaurin Series

The Maclaurin series is just the Taylor series at the special case where x = 0. This gives the following:

$$f(x) = f(0) + f'(0) + \frac{x^2}{2!}f'''(0) + \frac{x^3}{3!}f'''(0) + \frac{x^4}{4!}f''''(0) + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n$$

Euler's Method for ODEs

This method is just a Taylor series of order 1 with the same step term h, though many steps can be taken:

$$f(x+h) = f(x) + f'(x)h$$

Error Terms

We note that Taylor's theorem in terms

$$f(x+h) = \sum_{k=0}^{n} \frac{f^k(x)}{k!} h^k + E_{n+1}$$

Thus, error terms are of the form:

$$E_{n+1} = \frac{f^{n+1}(\xi)}{(n+1)!} h^{n+1}$$

It pays off to look at the term more specifically for the problem. A lot of times

the error term takes the form
$$\frac{(n+1)^2}{(n+1)!}$$
 or

It is important to note that we only care about the $0.5 \cdot 10^n$ if our desired accuracy is to the nth decimal. Thus we set $E_{n+1} < 0.5 \cdot 10^n$ the n+1 portion of this is **very important!** To reiterate:

$$E_{n+1} = \frac{f^{n+1}(\xi)}{(n+1)!} h^{n+1}$$
 or $E_{n+1} = \frac{x^{n+1}}{(n+1)!}$

6 Runge-Kutta Methods

RK4

This is the 4th order (RK4) Runge-Kutta method for the Initial Value Problem

$$x(t+h) = x(t)\frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4)$$

where the following are values of K_n : $K_1 = hf(t,x)$ $K_2 = hf(t + \frac{1}{2}h, x + \frac{1}{2}K_1)$ $K_3 = hf(t + \frac{1}{2}h, x + \frac{1}{2}K_2)$ $K_4 = hf(t + \tilde{h}, x + K_3)$ first, the K_n values are calculated in succession. They the K_n values are filled into

the first formula above.