CS2109S

AY22/23 Sem 2

github.com/jasonqiu212

01. Introduction

- Agent Anything that can perceive its environment through sensors and acting upon that env. through actuators
- Agent Function Maps from percept histories to actions
- Rational Agent Chooses an action that is expected to maximize its performance measure, given by percept sequence and built-in knowledge
- Autonomous Agent If behavior is determined by its own expereince

Performance Measure of Function

- Motivation: For an agent to do the right thing, need a measure of goodness
- Performance vs. Cost
- 1. Best for whom?
- 2. What are we optimizing?
- 3. What information is available?
- 4. What are the side effects and costs?

Defining the Problem: PEAS

- 1. Performance measure
- 2. Environment
- 3. Actuators
- 4. Sensors

Characterizing the Environment

- Fully observable (vs. Partially) Agent's sensors can access complete state of env. all the time
- Deterministic (vs. Stochastic) Next state of env. is determined by current state and action executed by agent
 - Strategic If env. is deterministic except for actions of other agents
- Episodic (vs. Sequential) Agent's experience is divided into atomic episodes, where each episode includes perceiving and an action, and action depends on episode itself
- 4. Static (vs. Dynamic) Env. is unchanged while agent is deciding
 - Semi Time does not affect env., but affects performance score
- 5. Discrete (vs. Continuous) Discrete num. of percepts and actions
- 6. Single Agent (vs. Multi-agent) Agent operating by itself in an env.

Implementing Agents (in ascending complexity)

- 1. Simple Reflex Agents Fixed conditional rules
- Model-based Reflex Agents Stores percept history to make decisions about internal model of world with conditional rules. Eg. Roomba
- 3. Goal-based Agents Keep in mind a goal and action aims to achieve it
- 4. Utility-based Agents Find best way to achieve goal
- 5. Learning Agents Learn from previous experiences

Exploitation vs. Exploration

- Exploitation Maximize expected utility using current knowledge of world
- Exploration Learn more about the world to improve future gains. May not always maximize performance measure.

02. Uninformed Search

- Deterministic, fully observable
- Tree Search Can revisit nodes
- **Graph Search** Tracks visited (Tree Search + Memoization)
- Uninformed Search Uses only information available in problem definition

Formulating the Problem

- 1. How to represent state in problem?
- 2. Initial state
- 3. Actions: Successor function
- 4. Goal test
- 5. Path cost
- Abstraction Function Maps abstracted representation to real world state
- Representation Invariant $I(c) = \text{True} \rightarrow \exists a \text{ s.t. } AF(c) = a$

Breadth-first Search

- Idea: Expand shallowest unexpanded node using queue
- Given: b: Branching factor and d: Depth of optimal solution
- Complete: Yes (if tree is finite)
- Time: $O(b^{d+1})$
- Space: $O(b^d)$
- Optimal: Yes (if cost = 1)
- BFS is Uniform-cost Search with same cost

Uniform-cost Search

- Idea: Expand least-cost unexpanded node using priority queue (Dijkstra's)
- Given: C*: Cost of optimal solution
- Complete: Yes (if step cost $\geq \epsilon$ where $\epsilon \geq 0$)
- Time: $O(b^{(C^*/\epsilon)})$ (C^*/ϵ is approx. number of layers)
- Space: $O(b^{(C^*/\epsilon)})$
- Optimal: Yes

Depth-first Search

- Idea: Expand deepest unexpanded node using stack
- Given: m: Maximum depth of tree
- Complete: No (fails with infinite depth or loops)
- Time: $O(b^m)$
- Space: O(bm) (better than BFS)
- Optimal: No

Depth-limited Search

- Motivation: How to handle infinite depth for DFS?
- ullet Idea: DFS with depth limit I where nodes at depth I have no children
- Time: $b^0 + b^1 + ... + b^{(d-1)} + b^d = O(b^d)$

Iterative Deepening Search

- Motivation: How to determine depth limit? We don't.
- Idea: Try different depths for depth-limited search
- BFS pretending to be DFS to save space
- Complete: Yes
- ullet Time: $(d+1)b^0+db^1+\ldots+b^d=O(b^d)$ (More overhead than DLS)
- Space: O(bd)

Summary

	BFS	Uniform Cost	DFS	DLS	IDS
Complete	Yes	Yes	No	No	Yes
Time	$O(b^d)$	$O(b^{C^*/\epsilon})$	$O(b^m)$	$O(b^l)$	$O(b^d)$
Space	$O(b^d)$	$O(b^{C^*/\epsilon})$	O(bm)	O(bl)	O(bd)
Optimal	Yes	Yes	No	No	No

Bidirectional Search

- Idea: Search both forwards from initial state and backwards from goal state.
 Stop when searches meet.
- \bullet Time: $O(2b^{d/2})$
- Operators must be reversible
- Can have many goal states
- How to check if node intersects with other half?

03. Informed Search

Heuristic

- **Heuristic** Estimated cost from n to goal
- Admissible h(n) is admissible if, for every node n, $h(n) \le h^*(n)$ where h^* is the true cost
- if h is admissible, then A* using tree search is optimal
- Consistent h(n) is consistent if, for every node n and every successor n' of n generated by action $a, h(n) \le c(n, a, n') + h(n')$
- Triangle inequality
- If h is consistent, f(n) is non-decreasing along any path $(f(n') \ge f(n))$
- If h is consistent, then h is admissible
- if h is admissible, then A* using graph search is optimal

Dominance

- If $h_2(n) \ge h_1(n)$ for all n, then h_2 dominates h_1
- If h_2 dominates h_1 and both are admissible, then h_2 is better for search

How to invent admissible heuristic?

- Set fewer restrictions on actions
- E.g. Number of misplaced tiles, Total manhattan distance

Best-first Search

- Idea: Expand most desirable node using priority queue
- Evaluation Function: f(n) = h(n)
- Complete: No. Possible to be stuck in loop
- Time and space: $O(b^m)$
- Optimal: No

A* Search

- Idea: Take note of cost so far and heuristic
- Evaluation Function: f(n) = g(n) + h(n) where g(n) is cost to reach n
- Complete: Yes, unless non-increasing, since cost is factored in
- Time and space: Same as BFS
- Yes, depending on the heuristic

Iterative Deepening A* Search (IDA*)

- Motivation: How can we save space?
- \bullet Idea: Have a cutoff for f and remember the best f that exceeds cutoff
- Similar to IDS. Linear space complexity.
- Optimal and complete

Simplified Memory A* Search (SMA*)

- Motivation: How can we save space?
- Idea: Do normal A*. If memory is full, drop node with worst f.
- Lose completeness

Local Search

- Motivation: What if the goal state is the solution? The path is irrelevant.
- Idea: Keep single current state and try improving it
- Formulating the problem:
 - 1. Initial state
 - 2. Actions: Successor function
 - 3. Good heuristic
 - 4. Goal test

Hill-climbing

- Idea: Generate successors from current and pick the best using heuristic
- What if stuck into local minima?
- Introduce randomness
- Simulated Annealing Search decrease frequency

 Allow some bad moves and gradually decrease frequency
- Why only keep 1 best state?
- Beam Search Perform k hill-climbing searches in parallel
- How to generate successors?
- Genetic Algorithms Successsor is generated by combining 2 parents

04. Adversial Search

- Assumption: Opponents reacts rationally
- Needs:
- Initial state
- Successor function
- Terminal test
- Utility function: Measures how good the move is for a player

Minimax

• Idea: Choose move that yields highest minimax value

05. Introduction to Machine Learning

A machine learns if it improves performance P on task T based on experience E. Where T must be fixed, P must be measurable, E must exist

Types of Feedback

- Supervised Correct answer given for each example
- Regression Predict results within continuous output
- Classification Predict results in discrete output
- Unsupervised No answers given
- Weakly supervised Answer given, but not precise
- Reinforcement Occasional rewards given

Decision Trees

- DT can express any function of input attributes, if data is consistent
- Goal: Make DT compact. How?

Information Theory

- Idea: Choose attribute that splits examples into subsets that are ideally 'all positive' or 'all negative'
- Entropy Measure of randomness in set of data

$$I(P(v_1), ..., P(v_n)) = -\sum_{i=1}^{n} P(v_i) \log_2 P(v_i)$$

ullet For data with p positive examples and n negative examples:

$$I(\frac{p}{p+n}, \frac{n}{p+n}) = -\frac{p}{p+n} \log_2 \frac{p}{p+n} - \frac{n}{p+n} \log_2 \frac{n}{p+n}$$

- Information Gain (IG) Reduction in entropy from attribute test
- Goal: Choose attribute with largest information gain
- Intuition: IG = Entropy of this node Entropy of children nodes
- Given chosen attribute A with v distinct values:

$$\mathsf{remainder}(A) = \sum_{i=1}^v \frac{p_i + n_i}{p + n} I(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i})$$

$$IG(A) = I(\frac{p}{p+n}, \frac{n}{p+n}) - \mathsf{remainder}(A)$$

- Decision Tree Learning Recursively choose attributes with highest IG
- IG is not the only way. Can use whatever objective function that achieves the criteria we want.

Performance Measurement

- Correctness Correct if $\hat{y} = y$
- Accuracy $\frac{1}{m}\sum_{j=1}^{m}(\hat{y_j}=y_j)$
- Confusion Matrix:

		Actual Label		
		+ve	-ve	
Predicted Label	+ve	TP True Positive	FP False Positive	
	-ve	FN False Negative	TN True Negative	

- Accuracy = $\frac{TP+TN}{TP+FN+FP+TN}$
- Precision $\frac{TP}{TP+FP}$ Recall $\frac{TP}{TP+FN}$
- Type I Error: FP Type II Error: FN
- FP Rate = $\frac{FP}{FP+TN}$ TP Rate = $\frac{TP}{TP+FN}$

Pruning

- Motivation: DT overfits to training set, but performs poorly on test set
- Occam's Razor: Simple hypothesis preferred
- Pruning Ignores outliers, which reduces overfitting
- E.g. Min-sample, Max-depth

06. Linear Regression

Notation

- \bullet m =Number of training examples
- n = Number of features
- $x_i^{(i)} =$ Input feature j of ith training example
- y = Output variables

Hypothesis

$$h_w(x): w_0 + w_1 x$$

Cost Function (Square Error Function)

$$J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)})^2$$

- Goal: Minimize cost function. Thus, hypothesis is close to training samples
- Why squared error? Convenience, since we need to differentiate later

Gradient Descent

- Start at some (w_0, w_1) . Pick nearby point that reduces $J(w_0, w_1)$.
- Algorithm: Repeat until convergence:

$$w_j := w_j - \alpha \frac{dJ(w_0, w_1, \dots)}{dw_i}$$

- All updates done at end
- ullet How to do $rac{dJ(w_0,w_1)}{dw_i}$? Partial derivative: Hold everything else constant

$$\bullet \frac{dJ(w_0, w_1)}{dw_i} = \frac{d}{dw_i} \left(\frac{1}{2m} \sum_{i=1}^m (w_0 + w_1 x^{(i)} - y^{(i)})^2 \right)$$

- $\bullet \frac{dJ(w_0, w_1)}{dw_0} = \frac{1}{m} \sum_{i=1}^m (w_0 + w_1 x^{(i)} y^{(i)})$ (Note: Chain rule)
- $\frac{dJ(w_0, w_1)}{dw_1} = \frac{1}{m} \sum_{i=1}^m (w_0 + w_1 x^{(i)} y^{(i)}) x^{(i)}$
- Time complexity: O(kmn) where k is number of iterations

Learning Rate

- ullet If α too small, then descent is too slow. If α too big, then might overshoot.
- ullet Given constant lpha, descent will grow smaller as we approach minimum

Variants of Gradient Descent

- Batch gradient descent: Consider all training examples when updating
- Stoichastic gradient descent: Consider 1 random data point at a time (Cheaper and more randomness)
- Mini-batch gradient descent

Using Matrices

$$\bullet \text{ Given: } w = \begin{pmatrix} w_0 \\ \vdots \\ w_n \end{pmatrix} \text{ and } x = \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 1 \\ \vdots \\ x_n \end{pmatrix}$$

 $\bullet \ h_w(x): w^T x$

Feature Scaling

- Motivation: Gradient descent does not work well if features have different scales
- Mean Normalization $x_i \leftarrow \frac{x_i \mu_i}{\sigma_i}$

Normal Equation

$$w = (X^T X)^{-1} X^T Y$$

- ullet No need to choose lpha and feature scaling
- X^TX needs to be invertible
- Time complexity: $O(n^3)$. Slow if n is big

07. Logistic Regression