Elektronik 2

FS 24 Guido Keel (Michael Lehmann) Autoren:

Authors

Version: 1.0.20240430

 $\underline{https:/\!/github.com/P4ntomime/elektronik-2}$

Inhaltsverzeichnis

1	Feldeffekt-Transistoren	2	9 S	pannungswandler mit Ladungspumpen	5
	1.1 FET-Typen und Symbole		9.	.1 Grundprinzip Switched-Capacitor-Schaltungen (SC)	5
	1.2 Sperrschicht-FET / Junction FET (JFET)	2	9.		
	1.3 MOS-FETs		9.		
	1.4 Verstärkerschaltungen mit FETs	2	9.	· ·	
	1.5 MOS-FET als (Leistungs-)Schalter	2	9.		
	1.6 Transmission Gate	2		.6 Dickson Charge Pump (Spannungsvervielfacher)	
2	Transistor-Transistor-Logik	2			
	2.1 Resistor Transistor Logik (RTL)	2		chaltregler	5
	2.2 Dioden-Transistor-Logik (DTL)	3		0.1 Spannungswandler mit Spulen	
	2.3 Transistor-Transistor-Logik (TTL)	3		0.2 Energien in den Komponenten	
,	CMOS-Logik	3		0.3 Aufwärtswandler (Boost, Step-Up Converter)	
,	3.1 Grundgatter in CMOS-Logik	3	10	0.4 Aufwärtswandler: Lückender Betrieb	6
	3.2 Dualität NMOS – PMOS	3	10	0.5 Abwärtswandler (Buck, Step-Down Converter)	6
	3.3 Verlustleistung bei CMOS-Logik	3	10	0.6 Invertierender Wandler (Buck-Boost Converter)	6
	3.4 Verzögerungszeit	- 1	10	0.7 Flyback (Sperrwandler)	6
			10	0.8 Power Fail Control (PFC)	6
4	Schmitt-Trigger	3	10	0.9 Aufbau Modernes Netzteil	6
	4.1 Aufbau nichtinvertierender digitaler Schmitt-Trigger	3	10	0.10Fazit Spannungswandler SMPS	6
	4.2 Aufbau invertierender digitaler Schmitt-Trigger	3			
	4.3 Schmitt-Trigger vs. CMOS-Logik	3		naloge Filter	6
5	Signalübertragung	3	1	1.1 Tiefpassfilter 1. Ordnung	6
	5.1 Leitungstheorie	3		1.2 Bodeplot Tiefpassfilter 1. und 2. Ordnung	
	5.2 Einfluss / Relevanz von Refelxionen	3	1	1.3 Filter 2. Ordnung	6
			1	1.4 Filter höherer Ordnung	7
6	High-Speed-Logik	3	1	1.5 Zeitverhalten: Schrittantwort	7
	6.1 Emitter Coupled Logic (ECL)	3	1	1.6 Schrittantworten verschiedener Polgüten	7
	6.2 Current Mode Logic (CML)	4	1	1.7 Filter 2. Ordnung	7
7	Spannungsreferenzen	4		1.8 Sallen-Key-Filter (Einfachmitkopplung)	
	7.1 Spanungsteiler	4	1	1.9 Multiple-Feedback-Struktur	7
	7.2 Diodenreferenz	4	1	1.10Sallen-Key vs. Multiple-Feedback Struktur	7
	7.3 Spannungsreferenz mit mehreren Dioden	4		1.11 Vorgehen: UTF aus OPV-Filterschaltung ermitteln	
	7.4 Spannungsreferenz mit Zenerdioden (Shunt-Regler)	4		1.12Zustandsvariablen-Filter (Biquad-Filter)	
	7.5 Bootstrap-Referenz (VD Stromquelle)	4		1.13 Analyse von Filterschaltungen mit Signalflussdiagrammen	
	7.6 Proportional To Absolute Temperature (PTAT)	4		1.14Regel von Mason (vereinfacht)	
	7.7 Bandgap-Spannungsreferenz	4		1.15Switched-Capacitor-Verstärker	
8	Lineare Spannungsregler	4		1.16RC- / SC-Filter	
	8.1 Spannungsstabilisierung mit Z-Diode und BJT	4		1.17Fazit Filter	
	8.2 Linearer Spannungsregler				
	8.3 Low-Dropout-Regler mit pnp-Längstransistor (LDO)		12 A	nhang	8
	8.4 Einstellbarer Serie-Spannungsregler	5	12	2.1 Temperaturabhängigkeit von Widerständen	8

1 Feldeffekt-Transistoren

1.1 FET-Typen und Symbole

1.1.1 Anschlüsse eines FET

Kanal von Drain zu Source (Stromfluss), gesteuert von Gate (und Bulk)

1.2 Sperrschicht-FET / Junction FET (JFET)

1.2.1 Kennlinien

1.2.2 Linearer Bereich (gesteuerter Widerstand)

- Für kleinen Spannung-Unterschied V_{DS}
- V_{GS} ändert Dicke der Raumladungszone (Kanal)
- \bullet n-Kanal JFET: Je negativer V_{GS} , desto weniger Strom fliesst bzw. desto enger der Kanal

$$I_D = \frac{2 \cdot I_{DSS}}{V_p^2} (V_{GS} - V_p - \frac{V_{DS}}{2}) V_{DS}$$

1.2.3 Sättigungs-Bereich (Stromquelle)

- Für hohes V_{DS} wird leitender Kanal abgeschürt
- → Strom kann nicht weiter steigen (Stromquelle)
- ullet Übergang gest. Widerstand zu Stromquelle @ V_{DSP} $\rightarrow V_{DSP} = V_{GS} - V_p (V_p = \text{Pinch-Off-Spannung})$

$$I_D = \frac{I_{DSS}}{V_p^2} \cdot (V_{GS} - V_p)^2$$

Verstärkungsmass Transkonduktanz:

$$g_m = \frac{2 \cdot I_{DSS}}{V_p^2} \cdot (V_{GS} - V_p) = \frac{2}{|V_p|} \cdot \sqrt{I_{DSS} \cdot I_D} \qquad [g_m] = S$$

1.3 MOS-FETs

1.3.1 Aufbau

- L Länge des Transistors
- Breite des Transistors
- N-Kanal FET: Drain und Source sind n-dotiert
- Kanal ist p-dotiert

1.3.2 Kennlinien

1.3.3 Bereiche

- Sperrbereich: $V_{GS} < V_{TH}$
- Linearer (Widerstands-)Bereich / Anlaufbereich: $V_{GS} > V_{TH}$
- Sättigungsbereich (Stromquelle): $V_{DS} > V_{GS} V_{TH}$

Anlaufbereich (Linearer Bereich)

Sättigungsbereich (Stromquelle)

$$I_{D,lin} = \beta \cdot (V_{GS} - V_{TH} - \frac{V_{DS}}{2}) \cdot V_{DS} \qquad I_{D,sat} = \frac{\beta}{2} \cdot (V_{GS} - V_{TH})^2$$

1.3.4 Kleinsignal-Ersatzschaltung (MOS-FET)

1.3.5 Temperaturabhängigkeit der Übrtragungskennlinie

Für den n-Kanal FET gilt:

- Threshold-Spannung V_{TH} sinkt mit 1-2 $\frac{\mu V}{V}$
- β sinkt mit steigender Temperatur
- Im Kompensationspunkt bleibt I_D für fixes V_{GS} konstant

1.4 Verstärkerschaltungen mit FETs

1.4.1 Source-Schaltung mit Lastwiderstand

Um den Arbeitspunkt der Schaltung zu bestimmen, wird die Lastgerade von R_L in das Ausgangskennlinienfeld eingezeichnet:

1.4.2 Push-Pull / Digitaler Inverter

- V_{in} geht auf NMOS und PMOS
- Ermöglicht grössere Verstärkung

Für
$$V_{\rm in} \approx \frac{V_{\rm DD}}{2}$$
 gilt:

$$A_{V0} = -(g_{m1} + g_{m2}) \cdot (r_{DS1} || r_{DS2})$$

1.5 MOS-FET als (Leistungs-)Schalter

Wenn der FET als Schalter eingesetzt wird, so arbeitet er im linearen Bereich $(V_{\text{GS}} > V_{\text{TH}}, \text{d.h. } V_{\text{out}} < V_{\text{DD}} - V_{\text{TH}})$

$$I_{\text{D,lin}} = \beta \cdot (V_{\text{GS}} - V_{\text{TH}} - \frac{V_{\text{DS}}}{2}) \cdot V_{\text{DS}}$$
 $r_{\text{DS}} = \frac{\text{d}V_{\text{DS}}}{\text{d}I_D} = \frac{1}{\beta \cdot (V_{\text{GS}} - V_{\text{TH}})}$

$$r_{\text{DS}} = \frac{\text{d}V_{\text{DS}}}{\text{d}I_D} = \frac{1}{\beta \cdot (V_{\text{GS}} - V_{\text{TH}})}$$

Schalter geschlossen: $R_{\text{FET}} = R_{\text{DS(on)}}$

Schalter offen: $R_{\text{FET}} = \infty$

1.5.1 Verlustleistung / Erwärmung

$$P_V = R_{\rm DS} * I_{\rm DS}^2 = 0 \,\mathrm{W}$$

$$\Delta T = R_{\rm th} \cdot P_V$$

1.6 Transmission Gate

Im Bild links gilt: $V_{DD} = 5 \text{ V}$, $V_{SS} = 0 \text{ V}$

- NMOS (oben) leitet für $V_{\rm in} < V_{\rm DD} T_{\rm TH,n}$ PMOS (unten) leitet für $V_{\rm in} > V_{\rm SS} T_{\rm TH,p}$
- Source und Drain austauschbar
 - → Strom kann in beide Richtungen fliessen

Transistor-Transistor-Logik

- · Meist statischer Stromverbrauch
- Asymmetrische Schaltschwellen (weniger Marge als CMOS-Logik)

2.1 Resistor Transistor Logik (RTL)

- Ausgangsspannung $V_{\rm out} = V_+$ oder $V_{\rm out} = V_{\rm CE,sat}$ Fan-Out ist begrenzt (Werden zu viele weitere Gatter an den Ausgang gehängt, so reicht der Strom nicht mehr, um diese zu treiben → Spannungslevel stimmen nicht mehr, um Transisoren durchzusteuern)

2.2 Dioden-Transistor-Logik (DTL)

Bild: NAND-Gate

- Fan-Out grösser, da Transistor aktiv nach '0' zieht
- R₂ muss keine Gatter treiben (kein grosser Stromfluss)
- • Nachteile: Sehr tiefer Störabstand; Transistor leitet schon bei Spannungen, welche kaum $> 0\,\mathrm{V}$ sind

2.3 Transistor-Transistor-Logik (TTL)

- Schaltschwelle am Eingang wird durch Dioden V₃ und V₄ um 1.4 V erhöht
- Dioden V₁ und V₃ bilden npn-Struktur
 ⇒ npn-Transistor

3 CMOS-Logik

- Entweder leitender Pfad nach V_{SS} (NMOS) oder V_{DD} (PMOS)
- · Kein statischer Stromverbrauch
- Langsamer als Bipolar
- Symmetrische Schaltschwellen bei ca. $\frac{V_{\text{DD}}}{2}$ (Übertragungskennlinie)
- Output-Level $V_{\rm ol}$, $V_{\rm oh}$ näher bei Speisung als Input Level $V_{\rm il}$, $V_{\rm ih}$ \Rightarrow mehr Marge
- Höhere Speisespannung → weniger propagation delay
- Nicht geeignet zur Datenübertragung über längere Strecken (kein 50 Ω Abschluss)

3.1 Grundgatter in CMOS-Logik

3.2 Dualität NMOS – PMOS

3.3 Verlustleistung bei CMOS-Logik

 $P_V = C \cdot V_{\rm CC}^2 \cdot f$

C Kapazität (aus Datenblatt)

f Frequenz

3.4 Verzögerungszeit

Linearer Bereich

$$t_{\rm pHL} = 0.69 \cdot R_{\rm on} \cdot C_L$$

→ Exponentielle Entladung!

Sättigung (Stromquellen-Bereich)

$$t_{\text{pHL}} = \frac{C_L \cdot \frac{V_{\text{swing}}}{2}}{I_{\text{sat}}} \approx \frac{C_L}{k_n \cdot V_{\text{DD}}}$$

→ Lineare Entladung!

4 Schmitt-Trigger

- Schaltschwellen müssen nicht sehr genau sein
- Schmitt-Trigger garantieren auch bei verrauschten Signalen saubere (einmalige) Schaltschwellen, dank der Hysterese

4.1 Aufbau nichtinvertierender digitaler Schmitt-Trigger

- M_1, M_2 : Digitale Inverter
- M₃, M₄: gesteuerte Widerstände
- Für $V_{\text{out}} = 0$: M_4 leitet, M_3 sperrt
- Für $V_{\text{out}} = 1$: M_3 leitet, M_4 sperrt
- M_3, M_4 verschieben Schaltschwellen abhängig von $V_{\text{out}} \Rightarrow \text{Hysterese}$

4.2 Aufbau invertierender digitaler Schmitt-Trigger

- Ohne M_5 , M_6 : Normaler Inverter mit je 2 Serie-Transistoren
- Für $V_{\text{out}} = 1$: Durch M_5 fliesst Strom in M_1
- V_{in} muss höher sein, um Strom der PMOS aufzunehmen
 → Höhere Schaltschwelle für High-Log-Übergang
- 'Inverses' gilt für M_6 und M_4

4.3 Schmitt-Trigger vs. CMOS-Logik

5 Signalübertragung

5.1 Leitungstheorie

- Leitungen haben Widerstände, Kapazitäten und Induktivitäten → RLC-Netzwerke
- Fortpflanzungsgeschwindigkeit Signal: v = 10 20 cm/ns(Lichtgeschwindigkeit: c = 0 cm/ns)
- • Ev. Impedanzanpassungen zur Verhinderung von Reflexionen nötig (meisten
s $50\,\Omega)$
- CMOS-Logik: tiefen Quellenwiderstand, hohen Eingangswiderstand
 Nicht geeignet zur Datenübertragung über 'längere Strecken'

5.2 Einfluss / Relevanz von Refelxionen

5.2.1 Keine Reflexionen

Wenn nichts anderes bekannt gilt: $T_r = \frac{1}{10} \cdot T$

$$T_d < \frac{1}{2} \cdot T_r$$

 $T_r = T_f$ Anstiegs- / bzw. Abfallzeit des Signals

 T_d Laufzeit des Signals T Periodendauer

5.2.2 Reflexionen

max Maximal enthaltene Frequenz im Signal

l Länge der Leitung

6 High-Speed-Logik

- Sättigung verhindern, da langsam (bei Bipolar-Transistoren)
- Reduzierter Spannungshub
- Stromsteuerung, da Ströme schneller geschaltet werden als Spannungen

6.1 Emitter Coupled Logic (ECL)

- 2 Familien: 10k (langsamer) und 100k (schneller)
- Positive Speisung: $V_{CC} = 0 \text{ V}$
- Negative Speisung: $V_{\text{EE}} = -4.5 \text{ V} / V_{\text{EE}} = -5.2 \text{ V}$
- ICs werden warm (40 mW pro Gatter)

- \bullet Eingangssignal $V_{\rm I}$ wird mit fixer Referenz $V_{\rm R}$ verglichen
- Von $V_{\rm R}$ 100 mV bis $V_{\rm R}$ + 100 mV **kippt Ausgangsspannung** von $V_{\rm CC}$ auf $V_{\rm CC}$ $R_{\rm C}$ · $I_{\rm C}$
- **Differentieller Spannungshub** der Ausgänge:
- $V_{\mathrm{diff}} = \pm R_{\mathrm{C}} \cdot I_{\mathrm{C}}$

6.1.1 Positive Emitter Coupled Logic PECL

- Positive Speisung: $V_{\text{CC}} = 5 \text{ V}$
- Negative Speisung: $V_{\text{EE}} = 0 \text{ V}$
- Ausgangsbeschaltung mit 50 Ω Abschluss zu V_{CC} − 2 V
 ⇒ Reduktion der Reflexionen!
- Spannungspegel sind kompatibel zu CMOS / TTL

6.1.2 Low Voltage Positive ECL (LVPECL)

- Speisespannungen: $V_{\text{CC}} = 3.3 \text{ V}$; $V_{\text{EE}} = 0 \text{ V}$
- Weniger Leistung als 5 V Logik; leichter anpassbar an 3.3 V Logik

6.2 Current Mode Logic (CML)

- Terminierung am Eingang der Folgestufe gegen $V_{\rm CC}$
- Äquivalenter Widerstand: $R_{\text{C}_{\text{eq}}} = 50 \,\Omega \parallel 50 \,\Omega = 25 \,\Omega$

Differentielle Spannung: $V_{\text{diff}} = \pm R_{\text{Ceq}} \cdot I_q$

6.2.1 CML vs. ECL

CML

- Diff-Amp mit Transistor-Buffer; Ausgang am Emitter
- Single-ended Input (2. Eingang auf fixer Spannung)
- Single-ended Output (z.T. auch differentiell)
- Ausgang direkt vom Diff-Amp
- · Differentieller Input und differentieller Output
- Impedanzanpassung zur Reduktion von Reflexionen (50 Ω)

6.2.2 Vorteile / Nachteile von CML gegenüber CMOS-Logik

- + high Speed
- konstanter Strom (kaum Speisungseinbrüche)
- + differentiell: wenig Störung
- + kann Kabel treiben

- hoher statischer Stromverbrauch
- differentiell: benötigt doppelt so viele Leitungen
- aufwändiges PCB-Layout wegen angepassten Leistungsimpedanzen nötig

7 Spannungsreferenzen

- Referenzspannungsquellen liefern idealerweise Ausgangsspannungen, welche unabhängig von Temperatur, Speisespannung und Last sind
- 2 Hauptprinzipien: Zenerdioden (meistens mit $V_Z = 5.6 \,\mathrm{V}$) und Bandgap-Quellen mit $V_{\text{out}} = 1.25 \text{ V}$

7.1 Spanungsteiler

VPOS REF

Speisespannungsabhängigkeit

Spannungsänderung:

$$\Delta V_{\text{ref}} = \Delta V_{\text{POS}} \frac{R_2}{R_1 + R_2}$$

$$V_{\text{ref}} S = \frac{\Delta V_{\text{ref}}}{\Delta V_{\text{POS}}} = 1 \implies \text{schlecht}$$

Sensitivität:

Temperaturabhängigkeit

Da die Widerstände gleiche Temperaturkoeffizienten haben ändert sich der Strom durch R₁ und R₂, jedoch nicht das Widerstandsverhältnis $\Rightarrow V_{\text{ref}}$ bleibt **konstant** \Rightarrow gut

Spannungsänderung bei Lastwechsel

Ersatzschaltung der Referenzquelle durch Thévenin-Äquivalent mit

 $R_P = R_1 || R_2 \implies$ sehr lastabhängig, da R_P gross

7.2 Diodenreferenz

$V_{\text{ref}} = V_D = n \cdot V_T \cdot \ln\left(\frac{I}{I_c}\right) \quad \text{mit } V_T = \frac{kT}{a} \approx 25 \,\text{mA}$

Speisespannungsabhängigkeit

Sensitivität:

$$\frac{V_{\text{ref}}}{S} = \frac{1}{\ln\left(\frac{I}{I_S}\right)} = 0.065 \implies \text{gut}$$

Temperaturabhängigkeit

Diode hat einen Temperaturkoeffizient von $-2\frac{\text{mV}}{\text{K}}$, d.h. V_{ref} ändert ebenfalls mit $-2\frac{mV}{K}$ \Rightarrow schlecht

Spannungsänderung bei Lastwechsel

Diode durch Kleinsignal-Ersatzschaltung ersetzen und Ersatzschaltung der Referenzquelle durch Thévenin-Äquivalent mit

 $R_{\rm P} = R_1 \| r_D$ \Rightarrow weniger lastabhängig, da $r_D = \frac{n \cdot V_T}{I_D} \approx 7 \,\Omega$

7.3 Spannungsreferenz mit mehreren Dioden

- m = Anzahl Dioden in Serie (links: m = 4)
- Strom durch Dioden muss ≥ 0 A sein, damit $V_D \approx 0.7$ V
- Spannung über m Dioden: $V_{\text{out}} = m \cdot V_D$
- Max. Ausgangsstrom: $I_{\text{out,max}} = \frac{V_{\text{pos}} V_{\text{out}}}{R_1}$
- Temperaturabhängigkeit: $TK_{\text{tot}} = m \cdot -2 \frac{\text{mV}}{V}$

7.4 Spannungsreferenz mit Zenerdioden (Shunt-Regler)

Shunt-Regler: Überflüssiger Strom wird durch ein Element abgeführt → Je nach Last wird mehr oder weniger Strom in Z-Diode verheizt

- V_{REF} entspricht Zener-Spannung der Z-Diode
- Häufigste Zener-Spannung: $5.6 \text{ V} \implies \text{TK} = 0 \frac{\text{mV}}{\text{K}}$
- Strom $I = \frac{V_{\text{POS}} V_{\text{REF}}}{R_1}$ fliesst entweder durch Diode oder durch Last $I_{\text{out}} < I_{\text{out}, \max} = \frac{V_{\text{POS}} V_{\text{REF}}}{R_1}$

7.5 Bootstrap-Referenz (V_D Stromquelle)

- Stromspiegel M₃ und M₄ ⇒ I₁ = I₂
 Stromspiegel M₁ und M₂ ⇒ V_{GS1} = V_{GS1} da I₁ = I₂
- Da Temperaturkoeffizient von $V_{D1} \approx -2 \frac{\text{mV}}{\text{K}}$ nimmt I_{out} mit steigender Temperatur ab → schlechte Referenz
- Schaltung hat zwei mögliche Arbeitspunkte $(AP I_1 = I_2 = 0 \text{ ist unerwünscht!})$

$$V_{D1} = I_2 \cdot R_2 = V_{R2}$$
 $I_{REF} = I_1 = I_2$

$$I_{\text{REF}} = I_1 = I_2$$

7.6 Proportional To Absolute Temperature (PTAT)

$$\begin{split} V_D &= n \cdot \frac{kT}{q} \cdot \ln \left(\frac{I_D}{I_S} \right) & V_D N = n \cdot \frac{kT}{q} \cdot \ln \left(\frac{I_D}{N \cdot I_S} \right) \\ \\ \Delta V_D &= V_D - V_D N = n \cdot \frac{kT}{q} \cdot \ln(N) = TK \cdot T \end{split}$$

 $\Rightarrow \Delta V_T$ ist Proportional zur absoluten Temperatur T

7.7 Bandgap-Spannungsreferenz

$$V_{\text{REF}} = K \cdot V_{\text{PTAT}} + V_D$$

- Der positive Temperaturkoeffizient von V_{PTAT} wird mit dem Faktor K verstärkt, sodass $K \cdot TK_{\text{PTAT}} = +2 \frac{\text{mV}}{\text{K}}$
- Der nun positive Temperaturkoeffizient wird mit einer Diodenquelle mit $TK_{Diode} = -2\frac{mV}{K}$ kompensiert
- Der gesamte Temperaturkoeffizient $TK_{\text{bandgap}} = 0 \frac{\text{mV}}{\text{K}}$
- V_{REF} buffern, damit der Ausgang belastet werden darf

Beispiel: LM4041 Shunt Voltage Bandgap Reference

- $V_{\text{out}} = V_Z = V_{\text{REF}} \left(1 + \frac{R_2}{R_1} \right)$
- Einstellbare Referenzspannung $V_Z = V_{\text{out}}$
- Interne Referenz: $V_{REF} = 1.25 \text{ V}$ (Bandgap-Referenz)

8 Lineare Spannungsregler

8.1 Spannungsstabilisierung mit Z-Diode und BJT

$$V_{\rm out} = V_Z - V_{\rm BE}$$

- Ausgang kann viel Strom liefern
- Ausgangsspannung sinkt um ca. 20 mV bei Verdoppelung des Stroms
- Ausgangsspannung sinkt um $-2\frac{\text{mV}}{\text{K}}$
- Keine Regelung der Ausgangsspannung
- · Schnell und stabil, aber nicht genau

8.2 Linearer Spannungsregler

$$V_{\rm a} = V_{\rm ref} \Big(1 + \frac{R_1}{R_2} \Big) \bigg|$$

$$P_{\rm V} = V_{\rm CE} \cdot I$$

- OpAmp Ausgang ändert so lange, bis für die Spannungen $V_{R2} = V_{\text{ref}} (= 1.25 \text{ V}) \text{ gilt}$
- Minimaler Spannungsabfall V_{CE} über Regler: bis 2.5 V
- Regler kann sehr warm werden \Rightarrow Verlustleistung P_V

8.3 Low-Dropout-Regler mit pnp-Längstransistor (LDO)

- Feedback auf positiven OpAmp-Eingang!
- Ansteuerung Längstransistor mit Basisspannung < Vout
- Kleiner minimaler Spannungsabfall V_{CE} über Regler ($V_{\text{CE,sat}}$)
- Auch erhältlich mit PMOS-Transistor statt pnp-Transistor → Dropout-Spannung über Regler (PMOS) ist dann abhängig vom Laststrom (PMOS = gesteuerter Widerstand)

8.4 Einstellbarer Serie-Spannungsregler

$$V_{\rm a} = V_{\rm ref} \cdot \left(1 + \frac{R_2}{R_1}\right) + I_{\rm adj} \cdot R_2$$

- Widerstände R_1 und R_2 sind **extern** beschaltet!
- Interne Referenz: $V_{\text{ref}} = 1.25 \text{ V}$ (Bandgap)
- OpAmp regelt, damit $V_{R_1} = V_{\text{ref}}$
- Damit wird $V_{R2} = V_{\text{ref}} \cdot \frac{R_2}{R_1} + I_{\text{adj}} \cdot R_2$

9 Spannungswandler mit Ladungspumpen

- · Ladung kann nicht springen und nicht vernichtet werden
 - → Ladung wird umverteilt!
- Ladungspumpen sind billige, effiziente Spannungswandler (Wirkungsgrad > 99 % möglich)

 $Q = C \cdot V$

9.1 Grundprinzip Switched-Capacitor-Schaltungen (SC)

Hinweis: R_S entspricht dem Schalter-Widerstand Weiter gilt: $t^* = t - \frac{T}{2}$

venter gift.
$$i = i - \frac{1}{2}$$

Phase PH1 (S1 geschl.)
$$I_{\text{in}} = I_{\text{C}} = \frac{V_{\text{in}}}{R_{\text{S}}} \cdot e^{\frac{T}{R_{\text{S}}} \cdot C}$$

$$I_C = -I_{\text{out}} = -\frac{V_{\text{in}}}{R_{\text{S}}} \cdot e^{\frac{I}{R_{\text{S}}} \cdot e}$$

$$I_{\text{out}} = \frac{\Delta Q}{R_{\text{S}}} = \frac{C}{R_{\text{S}}} \cdot V_{\text{in}}$$

Phase PH2 (S2 geschl.) $I_C = -I_{\text{out}} = -\frac{V_{\text{in}}}{R_{\text{S}}} \cdot e^{\frac{f^*}{R_{\text{S}} \cdot C}}$ Durchschnittl. Strom $\overline{I_{\text{out}}} = \frac{\Delta Q}{T} = \frac{C}{T} \cdot V_{\text{in}}$ Der 'switched capacitor' C hat einen **äquivalenten Wider**-

9.2 Grundprinzip Ladungspumpen

Ausgangsspannung V_{out} nähert sich schrittweise exponentiell der Eingangsspannung

Im ersten Zyklus ist $V_{\text{out}} = 0 \text{ V}$

Phase PH1 Kapazität C_1 wird auf V_{in} geladen

$$Q_1 = C_1 \cdot V_{\text{in}} \text{ und } Q_2 = C_2 \cdot V_{\text{out}}$$

Phase PH2 Ladung verschiebt sich von C_1 auf C_2 , bis beide Kapazitäten dieselbe Spannung aufweisen

$$Q_{\text{tot}} = Q_1 + Q_2 = C_1 \cdot V_{\text{in}} + C_2 \cdot V_{\text{out}}$$

 \rightarrow Neue Ausgangsspannung: $V_{\text{out}} = \frac{Q_{\text{tot}}}{C_1 + C_2}$

9.3 Allgemeine Funktionsweise geschaltete Kapazitäten

Switched Capacitor C1

Ersatzschaltung mit Req

- Strom fliesst in 'Paketen': $\Delta Q = C_1 \cdot \Delta V$
- Durchschnittlicher Strom proportional zu C_1 , ΔV und Schaltfrequenz f
- Durchschnittlicher Strom proportional zu ΔV und $\frac{1}{R}$ • Geschaltetes C_1 bildet äquivalenten
- Widerstand $R_{eq} = \frac{1}{f \cdot C_1} = \frac{T}{C}$

Für beide Schaltungen gilt, dass der finale Wert der Ausgangsspannung $V_{\text{out}} = V_2$ durch den **Spannungsteiler** von R_L und R_{eq} bestimmt wird:

$$V_{\text{out}} = V_{\text{in}} \cdot \frac{R_L}{R_{\text{eq}} + R_L}$$

$$I = \frac{V_1 - V_2}{R_{\text{eq}}}$$

9.4 Spannungsinversion mit Switched Capacitors

Ausgangsspannung V_{out} nähert sich schrittweise exponentiell $-V_{\text{SRC}}$ an! Im ersten Zyklus ist $V_{\text{out}} = 0 \text{ V}$

Phase PH1 Kapazität C_1 wird auf V_{SRC} geladen

$$Q_1 = C_1 \cdot V_{SRC}$$
 und $Q_2 = C_2 \cdot V_{out}$

Positiver Anschluss von C_1 wird mit GND verbunden Phase PH2

$$\rightarrow$$
 Negativer Anschluss von C_1 auf Potential $-V_{SRC}$

$$Q_{\text{tot}} = Q_2 - Q_1 = C_2 \cdot V_{\text{out}} - C_1 \cdot V_{\text{SRC}}$$

 \Rightarrow Neue Ausgangsspannung: $V_{\text{out}} = \frac{Q_{\text{tot}}}{C_1 + C_2}$

Für $C_1 = C_2$ ändert sich die Ausgangsspannung V_{out} folgendermassen:

$$V_{\text{out}} = \left(-\frac{1}{2}, -\frac{3}{4}, -\frac{7}{8} \cdots - 1\right) \cdot V_{\text{SRC}}$$

9.5 Spanungsverdoppler mit Switched Capacitors

- PH1: C_1 wird auf Eingangsspannung V_{in} aufgeladen
- PH2: Negativer Anschluss CAPN wird mit V_{SRC} verbunden
- → Positiver Anschluss C₁ springt auf 2 · V_{SRC}
- Ladung teilt sich zwischen C_1 und C_2 auf, sodass V_{out} schrittweise ansteigt

9.6 Dickson Charge Pump (Spannungsvervielfacher)

- · Mehrstufige Spannungsvervielfacher (hier: einstufig)
- Anzahl Dioden n
- Kaskadierung möglich

$$V_{\text{out}} = n \cdot (V_{\text{SRC}} - V_D)$$

9.6.1 Mehrstufige Dickson Charge Pump

• Mehrstufige Spannungsvervielfacher

$$V_{\text{out}} = n \cdot (V_{\text{SRC}} - V_D)$$

10 Schaltregler

SMPS (switched-mode-power-supply) sind getaktete Systeme, deren übliche Schaltfrequenzen im Bereich von 20 kHz bis zu einigen MHz liegen.

10.1 Spannungswandler mit Spulen

- Grundprinzip
 - Energie wird aus einer (Spannungs-)Quelle bezogen, in verlustarmen Elementen (Spulen, Kondensatoren) zwischengespeichert, auf die gewünschte Spannung gebracht und stabilisiert.
- Gemeinsamkeiten aller aufgeführten Spannungswandler mit Spulen
 - Energie wird in Magnetfeld gespeichert $E_L = \frac{1}{2}L \cdot i_L^2$
 - Spannung über Spule bewirkt Änderung des Stroms
 - $V_L = L \cdot \frac{\mathrm{d}i_L}{\mathrm{d}t}$ oder $I_L = \frac{1}{L} \int V_L(t) \, \mathrm{d}t + I_0 = \frac{V_L}{L} \cdot t + I_0$ Zur Stabilisierung der Spannung werden Kondensatoren benötigt (potentieller LC-Schwingkreis!)
 - Für die meisten Rechnungen kann man annehmen, dass:
 - * $V_{\rm in}$ und $V_{\rm out}$ konstant sind
 - * Die Schalter ideal sind (kein Schaltwiderstand)
 - * Die Dioden keinen Spannungsabfall haben

Hinweis: Zur Steigerung der Effizienz werden Dioden manchmal durch MOS-FETs ersetzt ('nur' R_{DS,on} statt grosser Spannungsabfall). Die Schalter werden in der Praxis ebenfalls mit einem FET realisiert.

10.2 Energien in den Komponenten

 $E_L = \frac{1}{2} \cdot L \cdot i_L^2$ $E_C = \frac{1}{2} \cdot C \cdot V_C^2$ Energie in Spule Energie in Kondensator

Energie in Last (pro Periode) $E_{\text{load}} = \frac{1}{2} P_{\text{load}} \cdot T_{\text{clk}} = \frac{1}{2} \cdot \frac{V_{\text{out}}^2}{R_{\text{load}}} \cdot T_{\text{clk}}$

10.3 Aufwärtswandler (Boost, Step-Up Converter)

- 1. Phase Energie in Spule speichern | 2. Phase Entmagnetisierung
- · Schalter geschlossen
- $V_L = V_{in}$ liegt an Spule an
- i_L muss nicht bei $I_0 = 0$ starten!
- Strom sinkt, wenn $V_{\text{out}} > V_{\text{in}}$
- Eingeschwungener Zustand: $i_L = I_0$

In beiden Phasen gelten die folgenden Formeln:

Ladephase $\Delta I_{L_{\rm on}} = \frac{1}{L} \cdot V_{\rm in} \cdot t_{\rm on}$

 $I_{L_{\text{on}}} = \frac{1}{L} \cdot V_{\text{in}} \cdot t_{\text{on}} + I_0$

· Schalter offen

 $\Delta I_{L_{\mathrm{off}}} = \frac{1}{L} \cdot (V_{\mathrm{in}} - V_{\mathrm{out}}) \cdot t_{\mathrm{off}}$

 $I_{L_{\text{off}}} = \frac{1}{L} \cdot (V_{\text{in}} - V_{\text{out}}) \cdot t_{\text{off}} + I_{0}$ $\Delta I_{L_{\text{on}}} = -\Delta I_{L_{\text{off}}}$ Gleichgewicht (eingeschwungen)

 $V_{\text{out}} = V_{\text{in}} \cdot \left(1 + \frac{t_{\text{on}}}{t_{\text{or}}}\right)$

Entladephase

Ausgangsspannung

Die Ausgangsspannung V_{out} ist abhängig von der Last \Rightarrow Bei hochohmiger Last kann 10.7 Flyback (Sperrwandler) die Ausgangsspannung sehr gross werden!

10.3.1 Synchronous Boost Converter

- Diode ersetzt durch Schalter SW2
- Entweder SW1 oder SW2 geschlossen
- VSW somit immer leitend verbunden, entweder mit GND oder mit V_{out}
 - → In Spule fliesst immer ein Strom

Achtung: Bei kleinen Lasten fliesst Strom in die Quelle zurück und die Verlustleistung in der Spule ist grösser (Drahtwiderstand)

10.4 Aufwärtswandler: Lückender Betrieb

- Es existiert ein 3. Zustand, in welchem kein Strom durch Spule fliesst
- Aus $i_L = 0$ folgt $V_L = 0$
- Schalter SW offen, damit Spannung am Knoten SW = $V_{\rm in}$ wird \Rightarrow Diode sperrt
- Control schliesst Schalter, nachdem $V_{\text{out}} < V_{\text{out,soll}}$ ist \Rightarrow **Regelung** von V_{out}

10.4.1 Regelung der Ausgangsspannung: voltage-mode control

- Verstärker mit Verstäkung A0
- Komparator vergleicht V_{ERROR} mit V_{RAMP}
- $V_{\text{OUT}} V_{\text{REF}} \uparrow \uparrow$, $V_{\text{ERROR}} \uparrow \uparrow$, Schalter muss länger geschlossen bleiben
 - \Rightarrow grösserer Duty Cycle $\Rightarrow V_{\text{OUT}} \uparrow \uparrow$

10.4.2 Regelung der Ausgangsspannung: current-mode control

- · Strom wird mit Shunt-Widerstand durch Spannung V_{SENSE} gemessen
- Verstärker mit Verstäkung A0
- Komparator resetted Flip-Flop
 - → Schalter (FET) öffnet
- Häufiger zur Regelung verwendet als vorherige Schaltung

10.5 Abwärtswandler (Buck, Step-Down Converter)

Vereinfachungen: Vout konstant, kein Spannungsabfall über Diode und Schalter Formeln gelten nur, wenn immer ein Strom in der Spule fliesst

Ladephase

 $\Delta I_{L_{\text{on}}} = \frac{1}{L} \cdot (V_{\text{in}} - V_{\text{out}}) \cdot t_{\text{on}}$ $I_{L_{\text{on}}} = \frac{1}{L} \cdot (V_{\text{in}} - V_{\text{out}}) \cdot t_{\text{on}} + I_0$
$$\begin{split} & \Delta I_{\text{Loff}} = -\frac{1}{L} \cdot V_{\text{out}} \cdot t_{\text{off}} \\ & \Delta I_{\text{Loff}} = -\frac{1}{L} \cdot V_{\text{out}} \cdot t_{\text{off}} \\ & I_{\text{Loff}} = -\frac{1}{L} \cdot V_{\text{out}} \cdot t_{\text{off}} + I_0 \\ & \Delta I_{\text{Loff}} = -\Delta I_{\text{Loff}} \end{split}$$

Entladephase

Gleichgewicht (eingeschwungen) Ausgangsspannung

 $V_{\text{out}} = V_{\text{in}} \cdot \frac{t_{\text{on}}}{T}$

10.6 Invertierender Wandler (Buck-Boost Converter)

Der Converter kann im buck-mode oder boost-mode betrieben werden buck-mode: Duty Cycle $\frac{t_{\rm on}}{T} < 0.5$; boost-mode: Duty Cycle $\frac{t_{\rm on}}{T} > 0.5$

Entladephase $(V_{\text{out}} < 0)$ Gleichgewicht (eingeschwungen) Ausgangsspannung

 $\Delta I_{L_{\rm on}} = \frac{1}{L} \cdot V_{\rm in} \cdot t_{\rm on}$ $\Delta I_{L_{\rm off}} = \frac{1}{L} \cdot V_{\rm out} \cdot t_{\rm off}$ $\Delta I_{L_{\rm on}} = -\Delta I_{L_{\rm off}}$ $V_{\rm out} = -V_{\rm in} \cdot \frac{I_{\rm on}}{I_{\rm off}}$

- Ermöglicht galvanische Trennung zwischen Ein- und Ausgang
- Transformator mit grosser Induktivität nötig zur Energiespeicherung (mit Luftspalt)
- Phase 1 (Schalter geschlossen)
 - Linear steigender Strom auf Primärseite; Energie wird im Magnetfeld gespeichert
- Phase 2 (Schalter offen)
 - Linear sinkender Strom auf Sekundärseite; Magnetfeld baut sich über Sekundärspule ab
- Phase 3 (LC-Schwingkreis)
 - C parallel zu Schalter auf Primärseite wird wirksam

10.8 Power Fail Control (PFC)

- Strom fliesst nur wenn $V_{\rm in} > V_C$ (nur bei Spannungsmaximum)
 - → erzeugt Oberwellen (Blindleistung)
- Strom soll möglichst sinusförmig fliessen, nicht nur beim Spannungsmaximum
- Lösung: 1. Stufe mit Boost Converter

10.9 Aufbau Modernes Netzteil

- 1. Stufe: Gleichrichtung und Boost Converter mit PFC
- 2. Stufe: Reduktion auf Systemspannung (Bus voltage) mit Flyback-Converter
- 3. Stufe: Buck Converter (ev. mehrere)

10.10 Fazit Spannungswandler SMPS

- · Geschaltete Spannungsregler generieren weniger Verlustleistung als Linearregler
- Ausgangsspannung geschalteter Spannungsregler hat Rippel der Schaltfrequenz → Muss ev. mit Linearregler zusätzlich stabilisiert werden

11 Analoge Filter

Cut-Off-Frequency, Corner-Frequency $f_{3 \, dB}$

Dämpfung von 3 dB (d.h. Amplitude wird mit $\frac{1}{\sqrt{2}}$ 'verstärkt'), Phase: -45°

Sampling-Frequenz (ADC, digitale Filter) f_S

 \rightarrow Alle Frequenzen über $\frac{f_S}{2}$ müssen unterdrückt werden

UTF Übertragungsfunktion G(s)

11.1 Tiefpassfilter 1. Ordnung

$$G(s) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{1}{1 + s \cdot \underbrace{R \cdot C}_{T}}$$

Hinweis: Die Zeitkonstante T entspricht immer dem Parameter vor dem s. Beim Tiefpass 1. Ordnung entspricht dies $T = R \cdot C$

11.2 Bodeplot Tiefpassfilter 1. und 2. Ordnung

1. Ordnung

2. Ordnung

- Abfall von −20 dB / Dekade
- Phasenschiebung von maximal -90° (bei $f_g = -45^{\circ}$)
- Abfall von -40 dB / Dekade
- Phasenschiebung von maximal −180° (bei $f_g = -90^{\circ}$)

11.3 Filter 2. Ordnung

11.3.1 Kaskadierung von zwei gleichen Filtern

$$G_{11}(s) = \frac{1}{1 + s \cdot \underbrace{R \cdot C}_{T_2}} \cdot \frac{1}{1 + s \cdot \underbrace{R \cdot C}_{T_2}}$$

$$T_2 = \frac{\sqrt{\sqrt{2} - 1}}{2\pi f_{3 \, \text{dB}}} \approx 0.64 \cdot T_1$$

Daraus folgt, dass bei 2 identischen Stufen die Grenzfrequenz $f_{3\,\mathrm{dB}}$ der einzelnen Stufen $\frac{1}{0.64}$ = 1.56 mal **höher** gewählt werden muss als bei einem Filter 1. Ordnung.

11.3.2 Filter 2. Ordnung mit komplexen Polen

$$G(s) = \frac{A_0 \cdot p_1 \cdot p_2}{(p_1 + s) \cdot (p_2 + s)} = \frac{A_0 \cdot \omega_0^2}{s^2 + \frac{\omega_0}{Q} s + \omega_0^2}$$
$$p_{1,2} = \frac{\omega_0}{2Q} (1 \pm \sqrt{1 - 4Q^2})$$

Polstellen komplex für $Q > \frac{1}{2}$

0 Polgüte / Filtergüte Polfrequenz ω_0

11.4 Filter höherer Ordnung

- Systeme höherer Ordnung können in kaskadierte Teilsysteme 1. & 2. Ordnung aufge teilt werden
- Höhere Ordnung und komplexe Pole ermöglichen steileren Übergang zwischen Durchlass- und Sperrbereich

Folgende Filter erzielen durch unterschiedliche Polverteilungen untersch. Verhalten:

- Butterworth: Konstant im Durchlassbereich der UTF
- Bessel: Beste Rechteckübertragung, kein Überschwingen
- Tschebyscheff: Steilster Abfall im Sperrbereich der UTF

11.5 Zeitverhalten: Schrittantwort

- 1. Frenqenzbereich: Multiplikation der UTF mit $\frac{1}{s}$
- 2. Rücktransformation in den Zeitbereich, um $t_{\text{step}}(t)$ zu erhalten

11.5.1 Tiefpass 1. Ordnung

$$t_{\text{step},1}(t) = 1 - e^{-\frac{t}{T_1}}$$

11.5.2 Tiefpass 2. Ordnung

$$t_{\text{step2a}}(t) = 1 - e^{-\frac{t}{T_1}} \cdot \left(1 + \frac{t}{T_1}\right)$$
$$t_{\text{step2b}}(t) = 1 - \left(\frac{T_1 \cdot e^{-\frac{t}{T_1}} - T_2 \cdot e^{-\frac{t}{T_2}}}{T_1 - T_2}\right)$$

11.6 Schrittantworten verschiedener Polgüten

Komplexe Pole (Q > 0) führt zu Über-

Bei einer Polgüte von $Q = \frac{1}{\sqrt{2}} \approx 0.7$ (grüne Kruve) schwingt das System am schnells-

11.7 Filter 2. Ordnung

Tiefpass

$G(s) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{A_0}{\frac{1}{\omega_0^2} s^2 + \frac{1}{\omega_0 \cdot Q} s + 1}$

Hochpass

$$G(s) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{A_0 \cdot \frac{1}{\omega_0^2} \cdot s^2}{\frac{1}{\omega_0^2} s^2 + \frac{\omega_0}{Q} s + \omega_0^2}$$

$$G(s) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{A \cdot \frac{\omega_0}{Q} \cdot s}{s^2 + \frac{1}{\omega_0 \cdot Q} s + 1}$$

Aufbau Nenner

- · Alle Terme positiv
- s²-Term definiert Grenzfrequenz
- Im s-Term ist Dämpfung enthalten
- s-Term gross → grosse Dämpfung
 - s-Term = 0 → Oszillator!

Passive RC-Filter können maximal Güte 0.5 haben (entkoppelte reelle Pole). Filter höherer Güte benötigen entweder Spulen oder Verstärker.

Beispiel: UTF Tiefpass 2. Ordnung

n3
$$A_0 = 1$$
 $\omega_0 = \frac{1}{\sqrt{C_1 C_2 R_1 R_2}}$ C1 $Q = \frac{\sqrt{C_1 C_2 R_1 R_2}}{C_1 R_1 + C_2 R_1 + C_2 R_2}$

$$G(s) = \frac{v_{\text{out}}}{V_{\text{in}}} = \frac{1}{1 + (C_1R_1 + C_2R_1 + C_2R_2) \cdot s + C_1C_2R_1R_2 \cdot s^2}$$

11.8 Sallen-Key-Filter (Einfachmitkopplung)

Stromgleichungen:

V2:
$$0 = (V_2 - V_{\text{in}}) \frac{1}{R_1} + (V_2 - V_3) \frac{1}{R_2} + (V_2 - V_{\text{out}}) \cdot s \cdot C_1$$

V3: $0 = (V_3 - V_2) \frac{1}{R_2} + V_3 \cdot s \cdot C_2$

11.8.1 Sallen-Key-Filter bei hohen Frequenzen

$$\frac{V_{\text{out}}}{V_{\text{in}}} = \approx \frac{r_{\text{OL}}}{R_1 + r_{\text{OL}}}$$

r_{OL} ist der OpAmp open-loop Ausgangswiderstand (bei hohen Frequenzen $\approx 100 \,\Omega$)

• Dämpfung ist limitiert auf obigen Spannungsteiler → Sallen-Key-Filter sind nicht geeignet für Systeme mit hohen Frequenzanteilen z.B. PWM-DAC

11.9 Multiple-Feedback-Struktur

Stromgleichungen:

V2:
$$0 = (V_2 - V_{in}) \frac{1}{R_1} + (V_2 - V_{out}) \frac{1}{R_2} + (V_2 - V_3) \frac{1}{R_3} + V_2 \cdot s \cdot C_1$$

V3: $0 = (V_3 - V_2) \frac{1}{R_3} + (V_3 - V_{out}) \cdot s \cdot C_2$

11.10 Sallen-Key vs. Multiple-Feedback Struktur

Sallen-Key

Multiple-Feedback

- · Nicht-invertierend
- Q sensitiver auf Toleranzen
- Vorwärtspfad für hohe Frequenzen
- Noise-Gain: A
- Eher für
 - Hochpass
 - kleine Verstärkungen
- Invertierend
- f_g sensitiver auf Toleranzen
- Noise-Gain: A + 1
- Eher für
 - Tiefpass, Bandpass
 - grössere Verstärkungen

11.11 Vorgehen: UTF aus OPV-Filterschaltung ermitteln

- Stromgleichungen (Knotengleichungen) aufstellen
- Gleichungen ineinander einsetzen
- Umformen nach $G(s) = \frac{V_{\text{out}}}{V_{\text{in}}}$

11.12 Zustandsvariablen-Filter (Biquad-Filter)

Mit dieser Topologie sind alle drei Parameter f_0 , Q und A_0 frei

An Vout herrscht >└──── Tiefpass-Verhalten.

$$G(s) = \frac{-\frac{R_{\rm fb}}{R_{\rm in}}}{s^2 \cdot C_{i1} C_{i2} R_{\rm fb} R_{i2} \frac{R_1}{R_2} + s \cdot C_{\rm fb} R_{\rm fb} + 1}$$

$$f_0 = \frac{1}{2\pi \sqrt{C_{i1} C_{i2} R_{\rm fb} R_{i2} \frac{R_1}{R_2}}} \qquad Q = \frac{1}{C_{\rm fb}} \sqrt{C_{i1} C_{i2} \frac{R_1}{R_2 R_{\rm fb}}} \qquad A_0 = -\frac{R_{\rm fb}}{R_{\rm in}}$$

11.12.1 Allgemein: Filter mit mehreren OpAmps

Mit der Filter-Struktur aus Abschnitt 11.12 können auch Bandpass- und Hochpass-Filter gebildet werden:

- **Tiefpass:** Abgriff beim 3. OpAmp (Vout gemäss Abschnitt 11.12)
- Bandpass: Abgriff beim 2. OpAmp (an Knoten V2)
- Hochpass: Abgriff beim 2. OpAmp, Einspeisung am neg. Eingang des 2. OpAmps

11.13 Analyse von Filterschaltungen mit Signalflussdiagrammen

Aktive Filterschaltungen (mit OpAmps) können mittels Signalflussdiagrammen (SFDs) analysiert werden. Dazu wird die gesamte Schaltung in einzelne Komponenten aufgeteilt. Diese Komponenten werden dann mit Impedanz- bzw. Admittanzfunktionen abgebildet. Um die Übertragungsfunktion (UTF) der gesamten Schaltung zu erhalten, muss die Regel von Mason angewendet werden.

11.13.1 Eingangsadmittanzen / (Eingangsimpedanzen)

Hinweis: Es wird normalerweise mit Eingangs**admittanzen** gearbeitet!

Komponente	Admittanz Y	$(Impedanz\; Z)$	
Widerstand R	$Y_{\text{res}} = \frac{1}{R}$	$(Z_{\rm res}=R)$	
Kapazität C	$Y_{\text{cap}} = s \cdot C$	$(Z_{\text{cap}} = \frac{1}{s \cdot C})$	
Induktivität L	$Y_{\text{ind}} = \frac{1}{s \cdot L}$	$(Z_{\text{ind}} = s \cdot L)$	

11.13.2 OpAmp Impedanzfunktionen

Hinweis: Es geht um negatives Feedback bzw. Gegenkopplung

Schaltung (Feedback)	Impedanz Z
Widerstand R_f im Feedback	$Z_{\rm op} = -R_f$
Kapazität C_f im Feedback	$Z_{\rm op} = -\frac{1}{s \cdot C_f}$
$R_f C_f$ (parallel) im Feedback	$Z_{\rm op} = -\frac{R_f}{1 + s \cdot C_f \cdot R_f}$

Beispiel: Summierender Verstärker

Beispiel: Aktiver Tiefpass 1. Ordnung

11.14 Regel von Mason (vereinfacht)

UTF:
$$G(s) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{\text{Produkt der Transmittanzen im Vorwärtspfad}}{1 - \text{Summe aller Schleifentransmittanzen}}$$

Beispiel: Analyse Bandpass mittels SFD und Regel von Mason

11.15 Switched-Capacitor-Verstärker

- 11.15.1 Invertierender Verstärker
- 11.15.2 Nicht-invertierender Verstärker
- 11.15.3 (Invertierender) SC-Integrator
- 11.15.4 Nicht-invertierender SC-Integrator

11.16 RC- / SC-Filter

11.17 Fazit Filter

12 Anhang

12.1 Temperaturabhängigkeit von Widerständen

$R_{\vartheta} = R_{20} + \Delta R$	$R_{artheta} \ R_{20}$	Widerstand bei Temperatur ϑ Widerstand bei 20 °C	$[R_{\vartheta}] = \Omega$ $[R_{20}] = \Omega$
	α	Temperaturkoeffizient	$[\alpha] = \frac{1}{K}$
$\Delta R = R_{20} \cdot \alpha \cdot \Delta \vartheta$	$\Delta \vartheta$	Temperaturdifferenz ϑ – 20 °C	$[\Delta \vartheta] = {}^{\circ}C$