


**STP80N03L-06**
**N - CHANNEL ENHANCEMENT MODE  
"ULTRA HIGH DENSITY" POWER MOS TRANSISTOR**
**TENTATIVE DATA**

| TYPE         | V <sub>DSS</sub> | R <sub>DS(on)</sub> | I <sub>D</sub> |
|--------------|------------------|---------------------|----------------|
| STP80N03L-06 | 30 V             | < 0.006 Ω           | 80 A (*)       |

- TYPICAL R<sub>DS(on)</sub> = 0.005 Ω
- AVALANCHE RUGGED TECHNOLOGY
- 100% AVALANCHE TESTED
- REPETITIVE AVALANCHE DATA AT 100°C
- HIGH CURRENT CAPABILITY
- 175°C OPERATING TEMPERATURE
- HIGH dV/dt RUGGEDNESS
- APPLICATION ORIENTED CHARACTERIZATION

**APPLICATIONS**

- HIGH CURRENT, HIGH SPEED SWITCHING
- POWER MOTOR CONTROL
- DC-DC & DC-AC CONVERTERS
- SYNCRONOUS RECTIFICATION



TO-220

**INTERNAL SCHEMATIC DIAGRAM**


SC06140

**ABSOLUTE MAXIMUM RATINGS**

| Symbol               | Parameter                                             | Value      | Unit |
|----------------------|-------------------------------------------------------|------------|------|
| V <sub>DS</sub>      | Drain-source Voltage (V <sub>GS</sub> = 0)            | 30         | V    |
| V <sub>DGR</sub>     | Drain-gate Voltage (R <sub>GS</sub> = 20 kΩ)          | 30         | V    |
| V <sub>GS</sub>      | Gate-source Voltage                                   | ± 15       | V    |
| I <sub>D</sub>       | Drain Current (continuous) at T <sub>c</sub> = 25 °C  | 80         | A    |
| I <sub>D</sub>       | Drain Current (continuous) at T <sub>c</sub> = 100 °C | 60         | A    |
| I <sub>DM(•)</sub>   | Drain Current (pulsed)                                | 320        | A    |
| P <sub>tot</sub>     | Total Dissipation at T <sub>c</sub> = 25 °C           | 150        | W    |
|                      | Derating Factor                                       | 1          | W/°C |
| dV/dt <sub>(1)</sub> | Peak Diode Recovery voltage slope                     | 5          | V/ns |
| T <sub>stg</sub>     | Storage Temperature                                   | -65 to 175 | °C   |
| T <sub>j</sub>       | Max. Operating Junction Temperature                   | 175        | °C   |

(•) Pulse width limited by safe operating area

## STP80N03L-06

### THERMAL DATA

|                       |                                                |     |      |      |
|-----------------------|------------------------------------------------|-----|------|------|
| R <sub>thj-case</sub> | Thermal Resistance Junction-case               | Max | 1    | °C/W |
| R <sub>thj-amb</sub>  | Thermal Resistance Junction-ambient            | Max | 62.5 | °C/W |
| R <sub>thc-sink</sub> | Thermal Resistance Case-sink                   | Typ | 0.5  | °C/W |
| T <sub>I</sub>        | Maximum Lead Temperature For Soldering Purpose |     | 300  | °C   |

### AVALANCHE CHARACTERISTICS

| Symbol          | Parameter                                                                                                                    | Max Value | Unit |
|-----------------|------------------------------------------------------------------------------------------------------------------------------|-----------|------|
| I <sub>AR</sub> | Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T <sub>j</sub> max, δ < 1%)                          | 60        | A    |
| E <sub>AS</sub> | Single Pulse Avalanche Energy (starting T <sub>j</sub> = 25 °C, I <sub>D</sub> = I <sub>AR</sub> , V <sub>DD</sub> = 25 V)   | 600       | mJ   |
| E <sub>AR</sub> | Repetitive Avalanche Energy (pulse width limited by T <sub>j</sub> max, δ < 1%)                                              | 150       | mJ   |
| I <sub>AR</sub> | Avalanche Current, Repetitive or Not-Repetitive (T <sub>c</sub> = 100 °C, pulse width limited by T <sub>j</sub> max, δ < 1%) | 60        | A    |

### ELECTRICAL CHARACTERISTICS (T<sub>case</sub> = 25 °C unless otherwise specified) OFF

| Symbol               | Parameter                                             | Test Conditions                                                                            | Min. | Typ. | Max.        | Unit     |
|----------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------|------|------|-------------|----------|
| V <sub>(BR)DSS</sub> | Drain-source Breakdown Voltage                        | I <sub>D</sub> = 250 μA V <sub>GS</sub> = 0                                                | 30   |      |             | V        |
| I <sub>DSS</sub>     | Zero Gate Voltage Drain Current (V <sub>GS</sub> = 0) | V <sub>DS</sub> = Max Rating<br>V <sub>DS</sub> = Max Rating x 0.8 T <sub>c</sub> = 125 °C |      |      | 250<br>1000 | μA<br>μA |
| I <sub>GSS</sub>     | Gate-body Leakage Current (V <sub>DS</sub> = 0)       | V <sub>GS</sub> = ± 15 V                                                                   |      |      | ± 100       | nA       |

### ON (\*)

| Symbol              | Parameter                         | Test Conditions                                                                                                                                                                                                                      | Min. | Typ.           | Max.           | Unit   |
|---------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|----------------|--------|
| V <sub>GS(th)</sub> | Gate Threshold Voltage            | V <sub>DS</sub> = V <sub>GS</sub> I <sub>D</sub> = 250 μA                                                                                                                                                                            | 1    |                | 2.5            | V      |
| R <sub>D(on)</sub>  | Static Drain-source On Resistance | V <sub>GS</sub> = 10V I <sub>D</sub> = 40 A<br>V <sub>GS</sub> = 10V I <sub>D</sub> = 40 A T <sub>c</sub> = 100°C<br>V <sub>GS</sub> = 5V I <sub>D</sub> = 40 A<br>V <sub>GS</sub> = 5V I <sub>D</sub> = 40 A T <sub>c</sub> = 100°C |      | 0.005<br>0.006 | 0.006<br>0.009 | Ω<br>Ω |
| I <sub>D(on)</sub>  | On State Drain Current            | V <sub>DS</sub> > I <sub>D(on)</sub> x R <sub>D(on)max</sub><br>V <sub>GS</sub> = 10 V                                                                                                                                               | 80   |                |                | A      |

### DYNAMIC

| Symbol                                                   | Parameter                                                               | Test Conditions                                                                    | Min. | Typ.                | Max. | Unit           |
|----------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------|------|---------------------|------|----------------|
| g <sub>fs</sub> (*)                                      | Forward Transconductance                                                | V <sub>DS</sub> > I <sub>D(on)</sub> x R <sub>D(on)max</sub> I <sub>D</sub> = 10 A |      | 35                  |      | S              |
| C <sub>iss</sub><br>C <sub>oss</sub><br>C <sub>rss</sub> | Input Capacitance<br>Output Capacitance<br>Reverse Transfer Capacitance | V <sub>DS</sub> = 25 V f = 1 MHz V <sub>GS</sub> = 0                               |      | 6000<br>1000<br>250 |      | pF<br>pF<br>pF |

**ELECTRICAL CHARACTERISTICS** (continued)

## SWITCHING ON

| <b>Symbol</b>                 | <b>Parameter</b>                                             | <b>Test Conditions</b>                                                                | <b>Min.</b> | <b>Typ.</b> | <b>Max.</b> | <b>Unit</b>    |
|-------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------|-------------|-------------|----------------|
| $t_{d(on)}$<br>$t_r$          | Turn-on Time<br>Rise Time                                    | $V_{DD} = V$ $I_D = A$<br>$R_G = \Omega$ $V_{GS} = V$<br>(see test circuit, figure 3) |             |             |             | ns<br>ns       |
| $(di/dt)_{on}$                | Turn-on Current Slope                                        | $V_{DD} = V$ $I_D = A$<br>$R_G = \Omega$ $V_{GS} = V$<br>(see test circuit, figure 5) |             |             |             | A/ $\mu$ s     |
| $Q_g$<br>$Q_{gs}$<br>$Q_{gd}$ | Total Gate Charge<br>Gate-Source Charge<br>Gate-Drain Charge | $V_{DD} = V$ $I_D = A$ $V_{GS} = V$                                                   |             |             |             | nC<br>nC<br>nC |

## SWITCHING OFF

| <b>Symbol</b>                      | <b>Parameter</b>                                      | <b>Test Conditions</b>                                                                | <b>Min.</b> | <b>Typ.</b> | <b>Max.</b> | <b>Unit</b>    |
|------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------|-------------|-------------|-------------|----------------|
| $t_{r(V_{off})}$<br>$t_f$<br>$t_c$ | Off-voltage Rise Time<br>Fall Time<br>Cross-over Time | $V_{DD} = V$ $I_D = A$<br>$R_G = \Omega$ $V_{GS} = V$<br>(see test circuit, figure 5) |             |             |             | ns<br>ns<br>ns |

## SOURCE DRAIN DIODE

| <b>Symbol</b>                     | <b>Parameter</b>                                                             | <b>Test Conditions</b>                                                                            | <b>Min.</b> | <b>Typ.</b> | <b>Max.</b> | <b>Unit</b>        |
|-----------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------|-------------|-------------|--------------------|
| $I_{SD}$<br>$I_{SDM}(\bullet)$    | Source-drain Current<br>Source-drain Current (pulsed)                        |                                                                                                   |             |             | 80<br>320   | A<br>A             |
| $V_{SD}$ (*)                      | Forward On Voltage                                                           | $I_{SD} = A$ $V_{GS} = 0$                                                                         |             |             | 1.5         | V                  |
| $t_{rr}$<br>$Q_{rr}$<br>$I_{RRM}$ | Reverse Recovery Time<br>Reverse Recovery Charge<br>Reverse Recovery Current | $I_{SD} = A$ $di/dt = A/\mu$ s<br>$V_{DD} = V$ $T_j = {}^\circ$ C<br>(see test circuit, figure 5) |             |             |             | ns<br>$\mu$ C<br>A |

(\*) Pulsed: Pulse duration = 300  $\mu$ s, duty cycle 1.5 %

(\*) Pulse width limited by safe operating area

(1)  $I_{SD} \leq 60$  A,  $di/dt \leq 200$  A/ $\mu$ s,  $V_{DD} \leq V_{(BR)DSS}$ ,  $T_j \leq T_{JMAX}$

## TO-220 MECHANICAL DATA

| DIM. | mm    |      |       | inch  |       |       |
|------|-------|------|-------|-------|-------|-------|
|      | MIN.  | TYP. | MAX.  | MIN.  | TYP.  | MAX.  |
| A    | 4.40  |      | 4.60  | 0.173 |       | 0.181 |
| C    | 1.23  |      | 1.32  | 0.048 |       | 0.051 |
| D    | 2.40  |      | 2.72  | 0.094 |       | 0.107 |
| D1   |       | 1.27 |       |       | 0.050 |       |
| E    | 0.49  |      | 0.70  | 0.019 |       | 0.027 |
| F    | 0.61  |      | 0.88  | 0.024 |       | 0.034 |
| F1   | 1.14  |      | 1.70  | 0.044 |       | 0.067 |
| F2   | 1.14  |      | 1.70  | 0.044 |       | 0.067 |
| G    | 4.95  |      | 5.15  | 0.194 |       | 0.203 |
| G1   | 2.4   |      | 2.7   | 0.094 |       | 0.106 |
| H2   | 10.0  |      | 10.40 | 0.393 |       | 0.409 |
| L2   |       | 16.4 |       |       | 0.645 |       |
| L4   | 13.0  |      | 14.0  | 0.511 |       | 0.551 |
| L5   | 2.65  |      | 2.95  | 0.104 |       | 0.116 |
| L6   | 15.25 |      | 15.75 | 0.600 |       | 0.620 |
| L7   | 6.2   |      | 6.6   | 0.244 |       | 0.260 |
| L9   | 3.5   |      | 3.93  | 0.137 |       | 0.154 |
| DIA. | 3.75  |      | 3.85  | 0.147 |       | 0.151 |



---

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -  
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

...