现代循环神经网络

门控循环单元 GRU

- 1. 引言 关注一个序列
 - 不是每个观察值都是同等重要

- 想只记住相关的观察需要:
 - a) 能关注的机制(更新门)
 - b) 能遗忘的机制 (重置门)

2. 具体结构

2.1 门

σ

FC layer with activation fuction

Сору С

-

Concatenate

$$R_t = \sigma(X_t W_{xr} + H_{t-1} W_{hr} + b_r),$$

$$Z_t = \sigma(X_t W_{xz} + H_{t-1} W_{hz} + b_z)$$

其中, R_t 和 Z_t 与 H_{t-1} 形状一致

2.2 候隐藏状态

$$\tilde{\boldsymbol{H}}_{t} = \tanh(\boldsymbol{X}_{t}\boldsymbol{W}_{xh} + (\boldsymbol{R}_{t} \odot \boldsymbol{H}_{t-1}) \boldsymbol{W}_{hh} + \boldsymbol{b}_{h})$$

其中, ⊙表示**按元素乘法**

所谓重置:

假设激活函数采用 SoftMax,则 R_t 中元素值的表示范围在 $0 \sim 1$ 之间,所以利用元素乘法可以将 H_{t-1} 中元素进行置 0 操作,例如极端情况下, R_t 为一个全零矩阵。

2.3 隐状态

$$\boldsymbol{H}_{t} = \boldsymbol{Z}_{t} \odot \boldsymbol{H}_{t-1} + (1 - \boldsymbol{Z}_{t}) \odot \tilde{\boldsymbol{H}}_{t}$$

长短期记忆网络 LSTM

1. 引言

• 忘记门: 将值朝 0 减少

• 输入门: 决定是不是忽略掉输入数据

• 输出门:决定是不是使用隐状态

2. 具体结构

2.1 门

$$I_{t} = \sigma(X_{t}W_{xi} + H_{t-1}W_{hi} + b_{i})$$

$$F_{t} = \sigma(X_{t}W_{xf} + H_{t-1}W_{hf} + b_{f})$$

$$O_{t} = \sigma(X_{t}W_{xo} + H_{t-1}W_{ho} + b_{o})$$

2.2 候选记忆单元

$$\tilde{\boldsymbol{C}}_t = \tanh(\boldsymbol{X}_t \boldsymbol{W}_{xc} + \boldsymbol{H}_{t-1} \boldsymbol{W}_{hc} + \boldsymbol{b}_c)$$

2.3 记忆单元

$$\boldsymbol{C}_t = \boldsymbol{F}_t \odot \boldsymbol{C}_{t-1} + \boldsymbol{I}_t \odot \tilde{\boldsymbol{C}}_t$$

2.4 隐状态

$$H_t = O_t \odot \tanh(C_t)$$

深度循环神经网络

- 方式: 深度循环神经网使用更多的隐藏层来获得更多的非线性
 - ·浅RNN
 - 输入
 - 隐层
 - 输出
 - ・深 RNN
 - 输入
 - ・ 隐层
 - 隐层
 - ...
 - 输出

$$\begin{split} \boldsymbol{H}_{t}^{1} &= f_{1}(\boldsymbol{H}_{t-1}^{1}, \boldsymbol{X}_{t}) \\ \boldsymbol{H}_{t}^{j} &= f_{j}(\boldsymbol{H}_{t-1}^{j}, \boldsymbol{H}_{t-1}^{j-1}) \\ \boldsymbol{O}_{t} &= g(\boldsymbol{H}_{t}^{L}) \end{split}$$

双向循环神经网络

1. 引言 - '未来很重要'

```
I am _____
I am _____ very hungry,
I am _____ very hungry, I could eat half a pig
I am happy.
I am not very hungry,
I am very very hungry, I could eat half a pig
```

- 取决于过去和未来的上下文,可以填写很不一样的词
- 目前为止, RNN 只看过去
- 在填空的时候,也看未来

2. 双向 RNN

- 一个前向的 RNN 隐层
- 一个反向的 RNN 隐层
- 合并两个隐状态得到输出

3. 推理

• 训练:

• 推理:

- 很难进行推理,因为既需要看到之前的信息,也需要看到之后的信息。
- 双向 RNN 主要是对句子进行特征提取,例如翻译/改写,能看见句子的全部信息,或者是语音输入,听见一个完整的句子。

4. 总结

- 双向循环神经网络通过反向更新的隐藏层来利用方向时间信息
- 通常用来对序列抽取特征、填空,而不是预测未来

编码器-解码器结构

1. 重新考察 CNN

• 编码器:将输入编程成中间表达形式(特征)

• 解码器: 将中间表达解码成输出

2. 重新考察 RNN

编码器:将文本表示成向量

• 解码器: 向量表示输出

3. 编码器-解码器架构

- 一个模型被分为两块
 - a) 编码器处理输入
 - b) 解码器生成输出

序列到序列学习 seq2seq

1. 机器翻译

- 给定一个源语言的句子, 自动翻译成目标语言
- 这两个句子可以有不同的长度

2. seq2seq

- 编码器是一个 RNN, 读取输入句子 (可以是双向)
- 解码器使用另外一个 RNN 来输出

2.1 细节

- 编码器是没有输出的 RNN
- 编码器最后时间步的隐状态用作解码器的初始隐状态

2.2 训练

• 训练时解码器使用目标句子作为输入

2.3 推理

3. 衡量生成序列好坏的 BLEU

- • p_n 是预测中所有 n-gram 的精度
 - ・ 标签序列ABCDEF和预测序列ABBCD,有 $p_1 = 4/5, p_2 = 3/4, p_3 = 1/3, p_4 = 0$
- BLEU定义

$$\exp\left(\min\left(0,1-\frac{\mathrm{len}_{|abel}}{\mathrm{len}_{\mathrm{pred}}}\right)\right)\prod_{n=1}^{k}p_{n}^{1/2^{n}}$$

惩罚过短的预测 长匹配有高权重

4. 总结

- Seq2seq 从一个句子生成另一个句子
- 编码器和解码器都是 RNN
- 将编码器最后时间隐状态来初始解码器隐状态来完成信息传递
- 常用 BLEU 来衡量生成序列的好坏

束搜索

1. 贪心搜索

- 在 seq2seq 中我们使用了贪心搜索来预测序列 将当前时刻预测概率最大的词输出
- 但贪心很可能不是最优的

在每个时间步,贪心搜索选择具有最高条件概率的词元

在时间步2,选择具有第二高条件概率的词元"C"(而非最高条件概率的词元)

上图 1 中, 预测输出序列"A"、"B"、"C"和"<eos>"。 这个输出序列的条件概率是

$$0.5 \times 0.4 \times 0.4 \times 0.6 = 0.048$$

上图 2 中, 输出序列 "A"、"C"、"B"和"<eos>"的条件概率为

$$0.5 \times 0.3 \times 0.6 \times 0.6 = 0.054$$

说明贪心搜索存在的问题如下:

现实中,最优序列(optimal sequence)应该是最大化值的输出序列,这是基于输入 序列生成输出序列的条件概率。 然而,贪心搜索无法保证得到最优序列。

2. 穷举搜索

- 最优算法: 对所有可能的序列, 计算它的概率, 然后选取最好的那个
- 如果输出字典的大小为n,序列最长为T,那么需要考察 n^T 个序列

$$n = 1000, \qquad T = 10, \qquad n^T = 10^{10}$$

在计算上不可行

3. 束搜索

- 保存最好的*k*个选项
- 在每个时刻,对每个候选新加一项 (*n*种可能),在*kn*个选项中选出最好的*k*个

3.1 复杂度

- ・时间复杂度 O(knT)
 - k = 5, n = 10000, T = 10: $knT = 5 \times 10^5$
- 每个候选的最终分数是:

$$\frac{1}{L^{\alpha}}logp(y_{1},...,y_{L}) = \frac{1}{L^{\alpha}}\sum_{t'}^{L}(logp(y_{t'}|y_{1},...,y_{t'-1}))$$

4. 总结

- · 束搜索在每次搜索时保存 k 个最好的候选
 - k = 1 时是贪心搜索
 - k = n 时是穷举搜索