Analyse2 | CM: 3

Par Lorenzo

06 février 2025

Démonstration 0.1.

Si $f: I \to f(I)$ est continue et bijective, alors elle est stricement monotone.

L'application $f: I \to f(I)$ est surjective par définition, il suffit de montrer que f est injective.

Par l'absurde on suppose qu'il existe $x_1, x_2 \in I$ vérifiant $f(x_1) = f(x_2)$ et $x_1 \neq x_2$. Ainsi $x_1 < x_2 \lor x_2 < x_1$ qui veut dire $\exists c \in]x_1, x_2[, f'(c) = 0$ par le théorème de Rolle mais par hypothèse f' ne s'annule pas sur I. Il y a donc contradiction, D'ou f est injective.

Donc f est bijective.

Démonstration 0.2.

Si f est constante, il est clair que f est dérivable de dérivée nulle.

Maintenant supposons que f est de dérivée nulle. Par l'inégalité des accroissements finis avec k=0, on a pour tout $x,y\in I, |f(x)-f(y)|\leq 0\times |x-y|=0$ et donc f(x)=f(y). D'où f est constante sur I.

Démonstration 0.3.

Supposons que $f: I \to \mathbb{R}$ est k-lipschitzienne pour $k \geq 0$.

- $Si \ k = 0$ alors f est constante donc continue.
- Supposons que k > 0.

Soit $a \in I$, on va montrer que f est continue en a:

 $\begin{array}{l} \textit{Soit $\varepsilon > 0$. En posant $\eta = \frac{\varepsilon}{k}$ on a pour tout $x \in I: |x-a| < \eta \implies |f(x)-f(a)| \leq k|x-a| \leq k\eta = k\frac{\varepsilon}{k} = \varepsilon. \end{array}$