

Session 15

PERFORMANCE EN FINANCEMENT DE L'INNOVATION

GNN layers

- $\tilde{A} = A + I$ add self-loop
- Sum pooling $H^{(l)} = \sigma(\tilde{A}H^{(l-1)}W^{(l)})$
- Mean pooling $H^{(l)} = \sigma(\widetilde{D}^{-1}\widetilde{A}H^{(l-1)}W^{(l)})$
- $H^{(l)} = \sigma(\widetilde{D}^{-1/2}\widetilde{A}\widetilde{D}^{-1/2}H^{(l-1)}W^{(l)})$ GCN

Neigborhood aggregation (Sum, Mean, MAX, LSTM)

On pytorch geometric

```
from torch_geometric.nn import GCNConv, GATConv, SAGEConv
gcn = GCNConv(in channels, out channels) # graph conv
gat = GCNConv(in channels, out channels) # graph attention
sage = SAGEConv(in channels, out channels, aggr='max') # graphSage
```


Motivation

Task· map nodes into an embedding space

- Similarity of embeddings between nodes indicates their similarity in the graph
- Encode graph information
- Use for many downstream tasks. Node classification, Link prediction, Visualization/clustering

Shallow encoding

- Encoder-decoder approach
 - Encoder is an embedding lookup (pytorch encoder = nn.Embedding(num_nodes, emb_dim))
 - Decoder maps from embeddings to similarity scores (ex. dot product)
 - z_u and z_v are respectively the embedding for node u and v
 - $decoder(\mathbf{z}_u, \mathbf{z}_v) = \mathbf{z}_u^T \mathbf{z}_v$ (In practice $decoder(\mathbf{z}_u, \mathbf{z}_v) = \sigma(\mathbf{z}_u^T \mathbf{z}_v)$ to keep in the range 0 and 1)
 - Goal· optimize encoder s.t $decoder(\mathbf{z}_{\mathbf{u}}, \mathbf{z}_{\mathbf{v}}) \approx sim(\mathbf{u}, \mathbf{v})$
 - How to define similarity?
 - Use adjacency matrix
 - $sim(\mathbf{u}, \mathbf{v}) = A_{\mathbf{u}\mathbf{v}}$ (or $sim(\mathbf{u}, \mathbf{v}) = 1$ if $(\mathbf{u}, \mathbf{v}) \in E$, 0 otherwise)
 - Instead of simply using the direct neighborhood, use k-hop neighborhood (use A^k instead of A)
 - Random Walk to define similarity (DeepWalk, Node2Vec)

Pytorch session 1

- Shallow encoder with pytorch
- Shallow encoder with pytorch geometric

Limitation of shallow embeddings

- No parameter sharing between nodes in the encoder, since the encoder directly optimizes a
 unique embedding vector for each node.
- Do not leverage node features in the encoder.
- Shallow embedding methods are inherently "transductive" (do not work for unseen nodes)
- Solution. Use GNN layers as encoder

Graph Auto-encoder with GCNs

- Same as before but use a GCN layer as encoder (GAT, GraphSage can work aswell)
- Dot-product as decoder
- Objective-
 - reconstruct the adjacency matrix i.e optimize node embeddings such that $decoder(\mathbf{z}_u, \mathbf{z}_v) \approx A_{uv}$
- "A randomly initialized graph convolutional network may already extract highly useful features and represents a strong baseline" => strong inductive bias (Velickovic et al., 2018)
- Can also use Variational auto-encoder to improve performance to downstream tasks

Method	Cora		
	AUC	AP	
SC [5]	84.6 ± 0.01	88.5 ± 0.00	
DW [6]	83.1 ± 0.01	85.0 ± 0.00	
GAE*	84.3 ± 0.02	88.1 ± 0.01	
VGAE*	84.0 ± 0.02	87.7 ± 0.01	
GAE	91.0 ± 0.02	92.0 ± 0.03	
VGAE	91.4 ± 0.01	92.6 ± 0.01	

Pytorch session 2

- Graph Autoencoder
- Graph Variational Autoencoder

Random walk

• Given a starting node u in a graph G, we randomly walk to one of its neighbors. We repeat this process from the node until T (walk length) nodes are visited.

Next node probability
$$p(v|u) = \begin{cases} \frac{1}{d(u)} & \text{if } v \in N(u) \\ 0 & \text{otherwise} \end{cases}$$

• Random walk generation $Random Walk(G, u^{(0)}, T) = (u^{(0)}, ..., u^{(T-1)})$

DeepWalk

- Idea. Nodes are considered similar to each other if they tend to co-occur in random walks.
 - Generate γ random walks of length T per nodes
 - Train skipgram + Negative samplings
 - Use generated walks as positive walks
 - Generate negative walks by random sampling
 - Loss function for one walk
 - $\mathcal{L}(u, P, N) = -\sum_{v \in P} \log(\sigma(z_u^T z_v)) \sum_{w \in N} \log(1 \sigma(z_u^T z_w))$
 - Intuition maximize score of positive pairs while minimizing score of negative pairs (exactly the same of optimization as Skipgram-Negative sampling)

Node2Vec

Same training as DeepWalk but use a "biased" random walk

Walker came over edge (S_1, W) and is at W. Where to go next?

- BFS-like walk. Low value of ρ ("return" parameter)
- DFS-like walk. Low value of q ("walk away" parameter)

Unnormalized transition prob. segmented based on distance from S_1

Node2Vec

- BFS-like walk. Low value of ρ ("return" parameter)
- DFS-like walk. Low value of q ("walk away" parameter)

Pytorch session 3

DeepWalk and Node2Vec

Algorithm	Dataset		
	BlogCatalog	PPI	Wikipedia
Spectral Clustering	0.0405	0.0681	0.0395
DeepWalk	0.2110	0.1768	0.1274
LINE	0.0784	0.1447	0.1164
node2vec	0.2581	0.1791	0.1552
node2vec settings (p,q)	0.25, 0.25	4, 1	4, 0.5
Gain of node2vec [%]	22.3	1.3	21.8

Table 2: Macro- F_1 scores for multilabel classification on BlogCatalog, PPI (Homo sapiens) and Wikipedia word cooccurrence networks with 50% of the nodes labeled for training.

How to use embedding z_u of nodes?

- Clustering/community detection cluster points z_u (ex. Kmeans, ...)
- Node classification predict label of node i based on z_u
- Link prediction Predict edge (u, v) based on (z_u, z_v)
 - Concat $f(z_u, z_v) = g([z_u, z_v])$
 - Element-wise (Hadamard) product $f(z_u, z_v) = g(z_u \odot z_v)$ (best result in Node2vec paper)
 - Sum/Mean· $f(z_u, z_v) = g(z_u + z_v)$
 - Distance $f(z_u, z_v) = g(||z_u z_v||_2)$
- Graph classification compute graph embedding z_G via aggregating node embeddings (Sum, AVG, MAX). Use z_G to predict label (ex. predict with MLP)

Heterogeneous graph. each node and each edge are associated with a type

Figure 2.6 A heterogeneous academic graph

• Bipartite graph its nodes V can be divided in two disjoint subsets V_1 and V_2 where every edges in E connects a node in V_1 and a node in V_2

Figure 2.7 An e-commerce bipartite graph

Definition 2.36 (Bipartite Graph) Given a graph $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$, it is bipartite if and only if $\mathcal{V} = \mathcal{V}_1 \cup \mathcal{V}_2$, $\mathcal{V}_1 \cap \mathcal{V}_2 = \emptyset$ and $v_e^1 \in \mathcal{V}_1$ while $v_e^2 \in \mathcal{V}_2$ for all $e = (v_e^1, v_e^2) \in \mathcal{E}$.

• Signed graph contain both positive and negative edges

Figure 2.8 An illustrative signed graph

- Multi-dimensional graph- many edge types
 - A Multi-dimensional graph can be represented by D adjacency matrix $A^{(1)}$... $A^{(D)}$ where each $A^{(d)} \in \mathbb{R}^{N \times N}$

- Dynamic graph each node and/or each edge is associated with a timestamp indicating the time it emerged => two mapping functions ϕ_v and ϕ_e mapping each node and each edge to their emerging timestamps.
- Discrete Dynamic graph consists of T graph snapshots $\{G_1, ..., G_T\}$
- Hypergraph-

An example of an undirected hypergraph, with $X=\{v_1,v_2,v_3,v_4,v_5,v_6,v_7\}$ and $E=\{e_1,e_2,e_3,e_4\}=\{\{v_1,v_2,v_3\},\{v_2,v_3\},\{v_3,v_5,v_6\},\{v_4\}\}$. This hypergraph has order 7 and size 4. Here, edges do not just connect two vertices but several, and are represented by colors.

• Hypergraph a graph in which an edge can join any number of nodes.

An example of an undirected hypergraph, with $X = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$ and $E = \{e_1, e_2, e_3, e_4\} = \{\{v_1, v_2, v_3\}, \{v_3, v_5, v_6\}, \{v_4\}\}$. This hypergraph has order 7 and size 4. Here, edges do not just connect two vertices but several, and are represented by colors.

Next session

- Graph-level classification
 - Mini-batching
 - Global pooling (Global average pooling, Global max pooling)
 - Hierarchical pooling.
 - diffPool https://arxiv.org/abs/1806.08804
 - topkPool https://openreview.net/forum?id=HJePRoAct7
 - sagPool https://arxiv.org/abs/1904.08082

Graph ML useful links

- Graph Representation Learning, William Hamilton 2020 https://www.cs.mcgill.ca/~wlh/grl_book/
- Deep Learning on Graphs, Ma & Tang 2021 https://cse.msu.edu/~mayao4/dlg_book/
- <u>cs224W</u> stanford lecture 2020 and 2021,
- Michael Bronstein <u>Blogposts</u>
- Michael Bronstein keynote @ ICLR 2021 « Geometric Deep Learning »
- Pytorch Geometric tutorial series, Antonio Longa et al., 2021 on Youtube
- Graph Ml workshops: <u>GRL@ICML</u>, <u>GNNSys21@MLSys</u>, <u>DiffGeo4DL@NIPS</u>, <u>GNN&Beyond@ICML</u>