PH-291 Physics Lab Professor Corn-Agostini Fall 2022

Lab # 2: Index of Refraction

Your Name: Perla Berkovitz
Your Lab Section:PH-291-E
Your Lab Instructor: Professor Corn-Agostini
Your Lab Partner's Name: Sharon Sitt
Read and sign Academic Integrity Statement:
I hereby attest that I have not given or received any unauthorized assistance on this assignment.

Sign here

Grading Rubric

SECTION	POINTS	GRADE	COMMENTS
Purpose	1		
Data	3		
Explanation of Errors	3		
Calculations	3		
Results	2		
Conclusion	1		
Answers	2		
Total	15		

Contents

1	Purpose	2
2	Data	3
3	Calculations	5

1 Purpose

In this lab, Pfund's Method and Snell's Law will be used to determine the index of refraction of an unknown liquid. Two methods will be used to find this index of refraction, the first utilizing Pfund's Method, while the second uses Snell's Law. The index of refraction of the glass petri dish is determined via Pfund's Method. This then allows us to proceed with both methods. As light is refracted through a medium, a small circular region is observed, surrounded by a darker region with a radius that can be used to calculate the unknown index of refraction via Pfund's Law. In the second method, the incident and reflected angles of the light are measured and plugged into Snell's Law. We can compare the two calculated values to determine the unknown substance.

2 Data

Measurement	Thickness (mm)
1	1.695
2	1.995
3	1.990
4	2.095
5	1.930
6	1.995

Instrumental Error: 0.005 mmRandom Error: 0.055 mmThickness: $1.950 \pm 0.055 \text{ mm}$

Table 1: Petri Dish Thickness

Measurement	Thickness (mm)	
1	7.98	
2	8.86	
3	8.24	
4	7.60	
5	8.16	
6	7.66	
Instrumental Error: 0.02 mm		

Random Error: 0.19 mm

Thickness: $8.08 \pm 0.19 \text{ mm}$

Table 2: Ring Diameter Without Liquid

Measurement	Diameter (mm)
1	19.68
2	19.60
3	19.58
4	19.58
5	19.56
6	19.62

Instrumental Error: 0.02 mm

Random Error: 0.017 mm

Thickness: $19.60 \pm 0.02 \text{ mm}$

Table 3: Ring Diameter With Liquid

Measurement	Incident Angle	Refracted Angle			
1	50.0°	28.0°			
2	28.0°	38.0°			
3	36.0°	20.0°			
4	17.0°	40.0°			
5	43.0°	27.0°			
6	28.0°	39.0°			
Instrumental Error: 0.5°					

Table 4: Snell's Law

3 Calculations

inser there