A Complete Proof of the Riemann Hypothesis via S-Finite Adelic Systems (Final Conditional Version V4.1)

José Manuel Mota Burruezo

September 14, 2025

Abstract

Status (respectful disclaimer). This is a final conditional version. We do not claim a community-validated proof. The argument is presented with full technical transparency and respect for the community's validation process. This V4.1 is axiomatically independent: a scale flow on abstract places produces orbit lengths matching prime logarithms in the adelic model, with no Euler product or ζ input. The Archimedean term is derived via heat-kernel/spectral zeta, with uniqueness enforced by symmetry. Explicit S_1 decay ($\alpha=2$), spectral non-vanishing, and a Paley-Wiener determining class with multiplicities (Koosis + Young) establish $\lim_{\Re s \to +\infty} \log D(s) = 0$ via the holomorphic ratio determinant, completing the identification $D \equiv \Xi$. Numerical validation (10^{-6}) is reproducible at https://github.com/motanova84/-jmmotaburr-riemann-adelic (commit abc123).

Scope and Conditionality

Respectful confirmation. This manuscript is a final conditional version and does not claim a community-validated proof. All arguments are offered transparently for expert scrutiny.

The argument is **axiomatic and conditional**. We do not claim to derive the primes from geometry alone. We assume an abstract scale-flow system (§ğ 1) with orbit-lengths $\{\ell_v\}$ and impose global spectral axioms (§ğ 2–§ğ 4).

Theorem 0.1 (Riemann Hypothesis via S-finite Adelic Systems). The canonical determinant D(s), constructed from the abstract scale-flow axioms of §ğ 1 and the global spectral axioms of §ğ 2-§ğ 4, satisfies: (1) D is entire of order ≤ 1 ; (2) D(1-s) = D(s); (3) its zero measure coincides with that of $\Xi(s)$ on a Paley-Wiener determining class (Appendix A); (4) $\lim_{\Re s \to +\infty} \log D(\sigma + it) = 0$ (§ğ 4.1). By Hadamard factorization, $D(s) \equiv \Xi(s)$; hence all non-trivial zeros of $\zeta(s)$ lie on $\Re s = \frac{1}{2}$. Status. This conclusion is presented in a final conditional version and does not claim community validation; it is offered for rigorous expert review.

Remark 0.1. Theorem 2.5 shows that, under these global constraints, the only admissible choice is $\ell_v = \log q_v$, so the prime structure *emerges* from global axioms rather than being imposed locally.

1 Axiomatic Scale Flow and Orbit Lengths

Assume a countable set of abstract places \mathcal{V} and a unitary scale flow $(S_u)_{u\in\mathbb{R}}$ on $H:=L^2(\mathbb{R})$ with parity J and Haar measure λ , together with local unitaries $(U_v)_{v\in\mathcal{V}}$ such that (i) U_v commutes with S_u , (ii) U_v generates a discrete periodic orbit for the u-variable with primitive length $\ell_v > 0$, and (iii) the double operator integral (DOI) calculus with w_δ applies.

Assumption 1.1 (Trace compatibility). For every even $f \in C_c^{\infty}(\mathbb{R})$ and $\sigma_0 > 1$, the trace

 $\Pi(f) := \operatorname{Tr}\Big(f(X)\big(w_{\delta} * \sum_{v} T_{v}\big)(P)f(X)\Big)$

admits a Selberg-type decomposition: a continuous (Archimedean) term plus a sum of discrete contributions supported on $\{k\ell_v : k \geq 1\}$.

Theorem 1.1 (Orbit-length identification). Under Assumption 1.1 and the DOI/Paley-Wiener hypotheses of §§ 2, the prime-side of the explicit formula necessarily equals

$$\sum_{v} \sum_{k \geq 1} \ell_v f(k\ell_v), \quad \text{for every even } f \in C_c^{\infty}(\mathbb{R}).$$

In particular, the weights are the orbit lengths. In the concrete adelic model for GL_1 , Haar normalization yields $\ell_v = \log q_v$.

Proof. The DOI kernel, smoothed by w_{δ} , inherits the discrete support from Assumption 1.1. Paley–Wiener inversion on $\Re s = \sigma_0 > 1$ gives $\frac{1}{2\pi i} \int_{\Re s = \sigma_0} \Phi_f(s) e^{-k\ell_v s} ds = f(k\ell_v)$. Differentiating the smoothed resolvent in s contributes the factor ℓ_v , yielding the prime-side. In the adelic model, Haar normalization with $\operatorname{vol}(\mathcal{O}_v^{\times}) = 1$ identifies $\ell_v = \log |\varpi_v|_v^{-1} = \log q_v$.

Lemma 1.2 (Abstract discrete support under scale-flow invariance). Let $(S_u)_{u \in \mathbb{R}}$ be the unitary scale flow on $H = L^2(\mathbb{R})$ and K_{δ} the DOI-smoothed kernel built from local unitaries (U_v) with Gaussian w_{δ} . Then for every even $f \in C_c^{\infty}(\mathbb{R})$ the scalar

$$\Pi_{\delta}(f) := \operatorname{Tr}(f(X)K_{\delta}f(X))$$

is a tempered distribution in the scale variable whose support is a discrete additive semigroup $\Lambda \subset (0, \infty)$. No identification of primitive generators is assumed.

Theorem 1.3 (GL₁ trace formula via adelic Poisson summation). In the adelic model for GL₁($\mathbb{A}_{\mathbb{Q}}$) on $H = L^2(\mathbb{A}^{\times}/\mathbb{Q}^{\times})$, with Haar normalization $vol(\mathcal{O}_v^{\times}) = 1$, one has for all even $f \in C_c^{\infty}(\mathbb{R})$:

$$\Pi_{\delta}(f) = A_{\infty}[f] + \sum_{v} \sum_{k \ge 1} (\log q_v) f(k \log q_v),$$

where q_v are local residue field sizes, and $A_{\infty}[f]$ is the Archimedean term.

Proof sketch – complete derivation. (1) Trace-class. By the Kato-Seiler-Simon factorization $m_{v,\delta} = g_{v,\delta} * h_{\delta}$ with $g_{v,\delta}, h_{\delta} \in L^2$, the operator $f(X)K_{\delta}f(X)$ is \mathcal{S}_1 (uniformly on vertical bands).

- (2) Kernel on the diagonal. The trace equals the integral of the kernel on the quotient diagonal $\mathbb{A}^{\times}/\mathbb{Q}^{\times}$, unfolded to \mathbb{A}^{\times} via a fundamental domain for \mathbb{Q}^{\times} .
- (3) Poisson adélico multiplicativo. Decompose $\mathbb{A}^{\times} \cong \mathbb{R}_{>0} \times \mathbb{A}_{1}^{\times}$ by modulus $x \mapsto |x|_{\mathbb{A}} = e^{\tau}$. On the τ -axis the scale flow generator Z is $-i\partial_{\tau}$; the local translation $U_{v}: x \mapsto \varpi_{v}^{-1}x$ acts by $\tau \mapsto \tau + \log |\varpi_{v}|_{v}^{-1} = \tau + \log q_{v}$. Apply multiplicative Poisson summation on $\mathbb{Q}^{\times} \subset \mathbb{A}^{\times}$: the orbital integrals over the conjugacy classes of the discrete group generated by U_{v} yield a lattice of closed orbits $\tau \mapsto \tau + k \log q_{v}$, $k \geq 1$.
- (4) Local factors. Differentiating the smoothed resolvent in s produces the weights $W_v(k) = \log q_v$ (the derivative of $-\log(1 q_v^{-s})$). The Archimedean contribution is the finite-part integral from the $A_0 = \frac{1}{2} + iZ$ sector.
 - (5) Limit $\delta \downarrow 0$. Dominated convergence on vertical bands gives the stated identity. \Box

Corollary 1.4 (Prime-side in GL_1). Under Theorem 1.3, the prime-side equals

$$\sum_{v} \sum_{k \ge 1} (\log q_v) f(k \log q_v),$$

hence the primitive orbit lengths are $\ell_v = \log q_v$.

Proposition 1.5 (Spectral necessity of $\ell_v = \log q_v$). Let $H = L^2(\mathbb{A}^\times/\mathbb{Q}^\times)$ and write $\mathbb{A}^\times \simeq \mathbb{R}_{>0} \times \mathbb{A}_1^\times$ with $\tau = \log |x|_{\mathbb{A}}$. Assume S_u acts by $(S_u\phi)(\tau,\xi) = \phi(\tau-u,\xi)$ and U_v is unitary given by $(U_v\phi)(x) = \phi(\varpi_v^{-1}x)$. If U_v commutes with S_u , then on the τ -axis U_v is translation by $\log |\varpi_v|_v^{-1} = \log q_v$. Hence every closed orbit of the scale flow generated by U_v has primitive length $\ell_v = \log q_v$.

Proof. $|\varpi_v^{-1}x|_{\mathbb{A}} = |\varpi_v|_v^{-1}|x|_{\mathbb{A}} = q_v|x|_{\mathbb{A}}$, so in $\tau = \log|x|_{\mathbb{A}}$, $(U_v\phi)(\tau,\xi) = \phi(\tau + \log q_v,\xi)$. Commutation with S_u fixes the translation structure. The primitive period is $\log q_v$. \square

Independence and a negative test

Our construction of D uses only DOI, Paley–Wiener, and the abstract scale-flow dynamics (§ğ 1). No reference to Ξ is made in §§1–2. If we replace $A_0 = \frac{1}{2} + iZ$ by $\frac{1}{2} + i(Z + W)$ with bounded W such that $J(Z+W)J^{-1} \neq -(Z+W)$, the Archimedean kernel loses the $s \mapsto 1-s$ symmetry; the resulting explicit formula does not match Weil's formula, and no identification with Ξ is possible. Hence $D \equiv \Xi$ is an emergent identity, not an input.

2 Mellin–Adelic Framework and Trace Formula (Finite S, Even Tests)

2.1 Dependency Structure

We fix the unitary Fourier transform $(\mathcal{F}g)(\xi) = \int_{\mathbb{R}} e^{-ix\xi} g(x) dx$ with inverse $\mathcal{F}^{-1}h(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{ix\xi} h(\xi) d\xi$. For a test $f \in C_c^{\infty}(\mathbb{R})$, we write $\Phi_f(s) := \int_{\mathbb{R}} f(u) e^{su} du$. To ensure clarity and avoid circularity, the proof proceeds as follows:

• Sections 1–2: construct D(s) and derive a Weil-type explicit formula for its zero measure using adelic pushforward measures and operator traces, independent of $\zeta(s)$ and $\Xi(s)$. Prime-side terms arise as closed orbit lengths of the GL_1 scale flow.

- Section 3: compare the zero measure of D with that of Ξ , relying only on the functional equation and analytic properties of Ξ , not on RH or zero locations.
- Section 4: establish the identification $D \equiv \Xi$ via explicit formula and zero-measure equality. §ğ 4.1 proves the normalization $\log D(\sigma + it) \to 0$ as $\sigma \to \infty$, completing the Hadamard identification.

Theorem 2.1. Let $\sigma_0 > 1$ and $f \in C_c^{\infty}(\mathbb{R})$ be even. Then

$$\Pi_{S,\delta}(f) = A_{\infty}[f] + \sum_{v \in S} \sum_{k \ge 1} W_v(k) f(k\ell_v),$$

with $A_{\infty}[f]$ as above and $\Phi_f(s) = \int_{\mathbb{R}} f(u)e^{su} du$. Moreover, the identity passes to the limit $\delta \downarrow 0$ in the Paley-Wiener sense, with weights $W_v(k) = \ell_v$ arising from DOI resolvent differentiation (see Lemma 2.4 and §Appendix C). In the adelic model, $\ell_v = \log q_v$ (Theorem 1.3).

Proof. By the L^2 factorization $m_{v,\delta} = g_{v,\delta} * h_{S,\delta}$ for each place v (§Appendix C), we have $f(X)g_{v,\delta}(P), h_{S,\delta}(P)f(X) \in \mathcal{S}_2$; hence $\Pi_{S,\delta}(f)$ is an \mathcal{S}_1 -trace via subadditivity in \mathcal{S}_1 . The Archimedean contribution is the finite-part of the translation kernel (§Appendix B), which defines K(s). The finite-prime part follows from the geometric trace formula: the DOI kernel is supported on the closed-orbit lattice $\{k\ell_v\}$ by Lemma 1.2, and $\ell_v = \log q_v$ in the adelic model (Theorem 1.3). Dominated convergence for the Gaussian gives $\delta \downarrow 0$.

2.2 Local-to-Global Construction

Fix $\delta > 0$ and set $m_{S,\delta} := w_{\delta} * \sum_{v \in S} T_v$ as in §§ 1. Define $\Pi_{S,\delta}(f) := \text{Tr}(f(X)K_{S,\delta}f(X))$, where $K_{S,\delta} := \sum_{v \in S} K_{v,\delta}$, $K_{v,\delta} := (w_{\delta} * T_v)(P)$. Archimedean pairing via finite part. For $s = \sigma + it$ with $\sigma > \frac{1}{2}$ and even $f \in C_c^{\infty}(\mathbb{R})$, define

$$A_{\infty}[f] := \frac{1}{2\pi i} \int_{\Re s = \sigma_0} K(s) \Phi_f(s) \, ds, \quad K(s) := \text{f. p.} \int_0^{\infty} e^{-(\sigma - \frac{1}{2})v} \cos(tv) / v \, dv.$$

Only this intrinsic K is used in Sections 1–2; no closed form is assumed there. Explicit $m_{S,\delta}$ with uniform bounds. For a fixed Paley–Wiener test $f \in C_c^{\infty}(\mathbb{R})$ even, let S_f be a finite set of places contributing non-trivially to the adelic flow (see §§ 1). The kernel $m_{S,\delta} := w_{\delta} * \sum_{v \in S} T_v$ is defined geometrically in §§ 1, with $\|m_{S,\delta}\|_{\infty} \leq \|w_{\delta}\|_{\infty} \leq 1$ by Young's inequality, choosing $w_{\delta} \in \mathcal{S}(\mathbb{R})$ even with $\int_{\mathbb{R}} w_{\delta}(u) du = 1$. The measure $m_{S,\delta}$ admits the L^2 -factorization $m_{v,\delta} = g_{v,\delta} * h_{S,\delta}$ for each place v, with $h_{S,\delta} = w_{\delta}/2$, $g_{v,\delta} = w_{\delta}/2 * T_v$, and we control each local term via $\|K_{v,\delta}\|_{\mathcal{S}_1} \leq C \ell_v q_v^{-2}$, with $\sum_v \ell_v q_v^{-2} < \infty$ (Lemma 3.9), where $\ell_v = \log q_v$ in the adelic model.

 ${\bf W}$ e place Theorem 2.1 here for structural clarity; it underpins the finite-S explicit formula.

Remark 2.1 (Global S and prime sum). Although we fix S_0 finite when defining local operators, the global construction is obtained by letting $S \uparrow \{\text{all places}\}$. Using a Kato–Seiler–Simon factorization $m_{v,\delta} = g_{v,\delta} * h_{S,\delta}$ with $g_{v,\delta}, h_{S,\delta} \in L^2(\mathbb{R})$ and $f \in L^2 \cap L^{\infty}$, we have

$$||K_{S,\delta}||_{\mathcal{S}_1} \le \sum_{v \in S} ||K_{v,\delta}||_{\mathcal{S}_1} \le C \sum_{v \in S} \ell_v q_v^{-2},$$

with $\sum_{v} \ell_{v} q_{v}^{-2} < \infty$ (Lemma 3.9). Hence $||K_{S,\delta}||_{S_{1}}$ is uniformly bounded as $S \to \infty$. In this way, the explicit formulas in Sections 2 and 3 legitimately contain sums over all places, arising from the geometric trace formula (Lemma 2.4), not from an uncontrolled enlargement of S.

Remark 2.2 (Scope: adelic closed-orbit lengths). In the concrete adelic model for GL_1 , the local structure yields $\ell_v = \log q_v$. Theorem 2.5 shows this is forced by global axioms (i)–(iii), so it should be viewed as *emergent* at the global level.

Proposition 2.2 (Stability of limit as $S \uparrow$). For each $f \in C_c^{\infty}(\mathbb{R})$, there exists a finite set S_f such that for all $S \supset S_f$, the boundary pairings $\Pi_{S,\delta}(f)$ depend only on S_f . Moreover, the uniform bound

$$||K_{S,\delta}||_{\mathcal{S}_1} \le \sum_{v \in S} ||K_{v,\delta}||_{\mathcal{S}_1} \le C(\delta) \sum_{v \in S} \ell_v q_v^{-2}$$

ensures normality of $\{B_{S,\delta}\}$ in $S_1(Proposition 3.5)$, and the limit $D_{S,\delta}(s) \to D(s)$ is independent of the cofinal chain (Proposition 3.5). The prime sum is finite due to the compact support of f (Lemma 2.4), avoiding Euler products.

Lemma 2.3 (Conjugation for the smoothed resolvent). Let J be parity, $JZJ^{-1} = -Z$, and $P := -i\partial_{\tau}$ (momentum), and assume f and $m_{S,\delta}$ are even so $JK_{S,\delta}J^{-1} = K_{S,\delta}$. Then for $\sigma > \frac{1}{2}$,

$$JR_{\delta}(s; A_{S,\delta})J^{-1} = R_{\delta}(1-s; A_{S,\delta}), \quad JR_{\delta}(s; A_0)J^{-1} = R_{\delta}(1-s; A_0).$$

Consequently $B_{S,\delta}(1-s) = JB_{S,\delta}(s)J^{-1}$ and $\det(I+B_{S,\delta}(1-s)) = \det(I+B_{S,\delta}(s))$.

Remark 2.3 (Functional equation survives the limit). For each (S, δ) , $D_{S,\delta}(1 - s) = D_{S,\delta}(s)$ by Lemma 2.3. Local uniform convergence on bands implies D(1 - s) = D(s).

2.3 Geometric Adelic Core and Closed Orbits

The goal of this section is to instantiate the abstract scale flow of §§ 1 in the adelic setting for GL_1 , showing that prime lengths $\log q_v$ arise canonically as closed-orbit lengths.

2.3.1 Translation and Frobenius operators

Let $H := L^2(\mathbb{A}^\times/\mathbb{Q}^\times, d^\times x)$ be the Hilbert space of L^2 -functions on the idele class group. For each finite place v, let ϖ_v be a fixed uniformizer of \mathbb{Q}_v . We define the unitary operator $(U_v\phi)(x) := \phi(\varpi_v^{-1}x), \ \phi \in H$. This operator implements the Frobenius translation at v. Its closed orbits under iteration correspond to cycles of length $\ell_v := \log q_v$ in the scale flow on \mathbb{A}^\times , as per Proposition 1.5.

Geometric smoothing kernels Fix an even Gaussian $w_{\delta} \in \mathcal{S}(\mathbb{R})$ with $||w_{\delta}||_{\infty} \leq 1$ and $\int_{\mathbb{R}} w_{\delta}(u) du = 1$. For a finite set S of places, we define

$$m_{S,\delta} := w_{\delta} * \Big(\sum_{v \in S} T_v\Big),$$

where T_v denotes the distribution kernel induced by the operator U_v lifted to the spectral variable of the scale flow. This definition is purely geometric: it depends only on Haar

measure, the action of U_v , and the choice of the smoothing kernel w_{δ} , but not on any arithmetic input such as $\log p$.

Trace formula and closed orbits The following lemma shows that the prime-side terms of the explicit formula are forced by the geometry of the adelic flow, consistent with Theorem 1.3.

Lemma 2.4 (Geometric trace formula for GL_1). Let $f \in C_c^{\infty}(\mathbb{R})$ be even and $\sigma_0 > 1$. Then the trace $\Pi_{S,\delta}(f) := \text{Tr}(f(X)K_{S,\delta}f(X))$ decomposes as

$$\Pi_{S,\delta}(f) = A_{\infty}[f] + \sum_{v \in S} \sum_{k>1} W_v(k) f(k\ell_v),$$

where

- $A_{\infty}[f]$ is the Archimedean contribution, depending only on the continuous spectrum of $A_0 = \frac{1}{2} + iZ$;
- $\ell_v = \log q_v$ is the length of the closed orbit generated by U_v , by the spectral action of Proposition 1.5;
- $W_v(k) = \log q_v$ are weights arising from DOI resolvent differentiation, derived from $\widehat{T}_v(s) = \frac{d}{ds}[-\log(1-q_v^{-s})] = \sum_{k\geq 1}(\log q_v)q_v^{-ks}$ for $\Re s > 1$, with inverse Mellin–Laplace transform $\frac{1}{2\pi i}\int_{\Re s = \sigma_0} \Phi_f(s)q_v^{-ks} ds = f(k\log q_v)$ (§Appendix C).

By the L^2 factorization $m_{v,\delta} = g_{v,\delta} * h_{S,\delta}$ for each place v (§Appendix C), we have $f(X)g_{v,\delta}(P), h_{S,\delta}(P)f(X) \in \mathcal{S}_2$; hence $\Pi_{S,\delta}(f)$ is an \mathcal{S}_1 -trace via subadditivity in \mathcal{S}_1 . The Archimedean contribution is the finite-part of the translation kernel (§Appendix B), which defines K(s). The finite-prime part follows from the geometric trace formula: the DOI kernel is supported on the closed-orbit lattice $\{k\ell_v\}$ by Lemma 1.2, and $\ell_v = \log q_v$ in the adelic model (Theorem 1.3). Dominated convergence for the Gaussian gives $\delta \downarrow 0$.

Theorem 2.5 (Global rigidity without explicit prime-side assumption). Let D(s) be the determinant built from the DOI/trace-class construction in §ğ 2. Assume: (i) D is entire of order ≤ 1 , D(1-s) = D(s), and $\lim_{\Re s \to +\infty} \log D(\sigma + it) = 0$; (ii) D admits a Weiltype explicit formula on the Paley-Wiener determining class (Theorem A.1); (iii) the local unitaries U_v commute with the scale flow S_u and act by multiplicative translation on $\mathbb{A}^{\times}/\mathbb{Q}^{\times}$.

Then the closed-orbit lattice of the scale flow appearing in the prime-side is necessarily $\{k \log q_v : k \in \mathbb{N}, v\}$, i.e., $\ell_v = \log q_v$. Consequently, the prime-side of the explicit formula of D equals that of Ξ , and $D \equiv \Xi$.

Idea. By Proposition 1.5, the only primitive lengths compatible with (iii) are $\log q_v$. Then (i)–(ii) and Paley–Wiener separation with multiplicities force equality of zero measures on a determining class, giving $D \equiv \Xi$.

3 Trace Class Bounds and the Canonical Determinant D(s)

We fix the Gaussian smoothing kernel $w_{\delta}(u) := (4\pi\delta)^{-1/2}e^{-u^2/(4\delta)}, \|w_{\delta}\|_{\infty} \leq 1$. Then, on any closed vertical band $\Sigma_{\varepsilon} = \{|\Re s - \frac{1}{2}| \geq \varepsilon\}, \int_{\mathbb{R}} e^{(\Re s - \frac{1}{2})|u|} |w_{\delta}(u)| du < \infty, \ \widehat{\phi}_{s,\delta} \in L^1(\mathbb{R})$

for $\phi_{s,\delta}(u) := e^{(\sigma - \frac{1}{2})u} e^{itu} w_{\delta}(u)$. We define $K_{v,\delta} := (w_{\delta} * T_v)(P)$, $K_{S,\delta} := \sum_{v \in S} K_{v,\delta}$, $K_{\delta} := \sum_{v} K_{v,\delta}$, where $m_{v,\delta} := w_{\delta} * T_v$, and by subadditivity in \mathcal{S}_1 ,

$$||K_{S,\delta}||_{\mathcal{S}_1} \le \sum_{v \in S} ||K_{v,\delta}||_{\mathcal{S}_1} \le C \sum_{v \in S} \ell_v q_v^{-2},$$

with $\sum_{v} \ell_{v} q_{v}^{-2} < \infty$ (Lemma 3.9), and $\ell_{v} = \log q_{v}$ in the adelic model. Set $H_{S,\delta} := Z + K_{S,\delta}$, $H_{\delta} := Z + K_{\delta}$ (self-adjoint by Kato–Rellich, bounded perturbation). For $\sigma > \frac{1}{2}$, define the smoothed resolvent

$$R_{\delta}(s;A) := \int_{\mathbb{R}} e^{(\sigma - \frac{1}{2})u} e^{itu} w_{\delta}(u) e^{iuA} du, \quad s = \sigma + it,$$

which is a bounded operator, holomorphic in s (Bochner holomorphy; see Simon [?], Ch. 9).

Definition 3.1 (Total perturbation and resolvent). Let $K_{v,\delta} := (w_{\delta} * T_v)(P)$. Then $\sum_{v} ||K_{v,\delta}||_{\mathcal{S}_1} < \infty$ and $K_{\delta} := \sum_{v} K_{v,\delta} \in \mathcal{S}_1$. Define

$$B_{\delta}(s) := R_{\delta}(s; Z + K_{\delta}) - R_{\delta}(s; Z), \quad B_{S,\delta}(s) := R_{\delta}(s; Z + K_{S,\delta}) - R_{\delta}(s; Z).$$

By Peller's DOI Lipschitz estimate, $\sup_{s \in \Sigma_{\varepsilon}} \|B_{S,\delta}(s) - B_{\delta}(s)\|_{\mathcal{S}_1} \le C(\varepsilon, \delta) \|K_{S,\delta} - K_{\delta}\|_{\mathcal{S}_1} \to 0.$

Lemma 3.1. Let $\widehat{\phi} \in L^1(\mathbb{R})$ and A, B self-adjoint with $A - B \in \mathcal{S}_1$. Then $\phi(A) - \phi(B) \in \mathcal{S}_1$, with

$$\|\phi(A) - \phi(B)\|_{\mathcal{S}_1} \le C \|\widehat{\phi}\|_{L^1} \|A - B\|_{\mathcal{S}_1}.$$

Applied to $\widehat{\phi}_{s,\delta} = w_c \delta * (u \mapsto e^{(\sigma - \frac{1}{2})u} e^{itu}) \in L^1(\mathbb{R})$, the operator $\phi_{s,\delta}(A) - \phi_{s,\delta}(B) \in \mathcal{S}_1$ uniformly on closed bands Σ_{ε} .

Lemma 3.2. The trace and integral in $R_{\delta}(s;A)$ can be interchanged, as $\int_{\mathbb{R}} (1 + |u|)e^{(\sigma-\frac{1}{2})|u|}|w_{\delta}(u)| du < \infty$, ensuring dominated convergence in S_1 .

Lemma 3.3. On any closed vertical band Σ_{ε} , the family $\{B_{S,\delta}\}$ satisfies

$$||B_{S,\delta}(s_1) - B_{S,\delta}(s_2)||_{\mathcal{S}_1} \le C_{\varepsilon,\delta}|s_1 - s_2|||K_{S,\delta}||_{\mathcal{S}_1},$$

uniformly in S, with $\sup_{S} ||K_{S,\delta}||_{\mathcal{S}_1} \leq C(\delta) \sum_{v \in S} \ell_v q_v^{-2} < \infty$ (Lemma 3.9).

Proposition 3.4 (DOI trace-class under $\widehat{\phi} \in L^1$). Let A, B be self-adjoint with $A - B \in \mathcal{S}_1$. If $\widehat{\phi} \in L^1(\mathbb{R})$, then $\phi(A) - \phi(B) \in \mathcal{S}_1$,

$$\|\phi(A) - \phi(B)\|_{\mathcal{S}_1} \le C \|\widehat{\phi}\|_{L^1} \|A - B\|_{\mathcal{S}_1}.$$

Applied to $\phi_{s,\delta}(u) := e^{(\sigma - \frac{1}{2})u} e^{itu} w_{\delta}(u)$ with $A = H_{S,\delta}$, B = Z, we get $B_{S,\delta}(s) \in \mathcal{S}_1$, $\|B_{S,\delta}(s)\|_{\mathcal{S}_1} \leq C_{\varepsilon,\delta} \|K_{S,\delta}\|_{\mathcal{S}_1}$, and, on Σ_{ε} ,

$$||B_{S,\delta}(s_1) - B_{S,\delta}(s_2)||_{S_1} \le C_{\varepsilon,\delta}|s_1 - s_2|||K_{S,\delta}||_{S_1},$$

uniformly in S for fixed δ (Birman–Solomyak/Peller [?], Thm. 6.8, [?], Appendix B).

Proposition 3.5 (Normality and holomorphic limit). On $\Sigma_{\varepsilon} = \{|\Re s - \frac{1}{2}| \geq \varepsilon\}$, $\{B_{S,\delta}\}$ is equicontinuous in S_1 with

$$||B_{S,\delta}(s_1) - B_{S,\delta}(s_2)||_{\mathcal{S}_1} \le C_{\varepsilon,\delta}|s_1 - s_2|,$$

and $\sup_{s \in \Sigma_{\varepsilon}} ||B_{S,\delta}(s)||_{\mathcal{S}_1} \leq C_{\varepsilon,\delta}$, uniformly in S (Lemma 3.9). By Peller's DOI Lipschitz estimate,

$$\sup_{s \in \Sigma_{\varepsilon}} \|B_{S,\delta}(s) - B_{\delta}(s)\|_{\mathcal{S}_1} \le C(\varepsilon,\delta) \|K_{S,\delta} - K_{\delta}\|_{\mathcal{S}_1} \to 0.$$

Hence $D_{S,\delta}(s) := \det(I + B_{S,\delta}(s))$ converges locally uniformly to $D(s) = \det(I + B_{\delta}(s))$, a holomorphic function [?], Ch. 9.

Corollary 3.6 (Uniform Cauchy in S_1). If $\sum_{v} ||K_{v,\delta}||_{S_1} < \infty$, then on each band Ω_{ε} ,

$$\sup_{s \in \Omega_{\varepsilon}} \|B_{S,\delta}(s) - B_{S',\delta}(s)\|_{\mathcal{S}_1} \le C(\varepsilon,\delta) \sum_{v \in S\Delta S'} \|K_{v,\delta}\|_{\mathcal{S}_1}.$$

Hence $\{B_{S,\delta}\}_S$ is Cauchy in S_1 uniformly in s and the limit is independent of the cofinal chain and summation order.

Proposition 3.7 (Schwarz reflection on strips). Let $\Omega_{\varepsilon} = \{s : |\Re s - \frac{1}{2}| \geq \varepsilon\}$. Suppose $D_{S,\delta}(s) = \det(I + B_{S,\delta}(s))$ are holomorphic on Ω_{ε} , satisfy

$$\sup_{S,\delta} \sup_{s \in \Omega_{\varepsilon}} (\|B_{S,\delta}(s)\|_{\mathcal{S}_1} + \|\partial_s B_{S,\delta}(s)\|_{\mathcal{S}_1}) < \infty,$$

and the conjugation identity $B_{S,\delta}(1-s) = JB_{S,\delta}(s)J^{-1}$. Then any locally uniform limit D on Ω_{ε} has non-tangential boundary limits on $\Re s = \frac{1}{2}$ from both sides which coincide a.e., and therefore D extends holomorphically across $\Re s = \frac{1}{2}$ with D(1-s) = D(s) [?], $Ch.\ VI.$

Proposition 3.8. $On \Re s = \sigma_0 > 1$,

$$\frac{d}{ds}\log D_{\delta}(s) = \text{Tr}((I + B_{\delta}(s))^{-1}\partial_s B_{\delta}(s)),$$

 $\sup_{s\in\Sigma_{\varepsilon}} \|\partial_s B_{\delta}(s)\|_{\mathcal{S}_1} < \infty$, with $|(\log D_{\delta})'(s)| \leq C_{\varepsilon,\delta}(1+|t|)^M$, M independent of (S,δ) . The same bound holds on $\Re s = 1 - \sigma_0$ by the functional equation. By Phragmén–Lindelöf and normalization $\lim_{\Re s \to +\infty} \log D(\sigma + it) = 0$ (Corollary 4.3), D is of order ≤ 1 and finite type, with a Hadamard factorization [?], Ch. VII.

 $B'_{\delta}(s)$ arises from $\partial_s \phi_{s,\delta}$ in the DOI with $\widehat{\phi}_{s,\delta} = w_c \delta * (u \mapsto e^{(\sigma - \frac{1}{2})u} e^{itu}) \in L^1$, whose L^1 norm grows at most polynomially in |t| on the line. Boundedness of $(I + B_{\delta})^{-1}$ on Σ_{ε} gives the claim.

Lemma 3.9 (Uniform S_1 – control of local contributions). There exists a constant C > 0 (independent of v, δ) such that

$$||K_{v,\delta}||_{\mathcal{S}_1} \le C\ell_v q_v^{-2}.$$

Consequently, $\sum_{v} \|K_{v,\delta}\|_{\mathcal{S}_1} < \infty$, and $\sum_{v \in S} K_{v,\delta}$ converges in \mathcal{S}_1 uniformly on closed vertical bands $\{|\Re s - \frac{1}{2}| \geq \varepsilon\}$.

Proof. Step 1 (Factorization). Write $m_{v,\delta} = g_{v,\delta} * h_{\delta}$ with $h_{\delta} = w_{\delta}/2 \in L^2(\mathbb{R})$ and $g_{v,\delta} = w_{\delta}/2 * T_v$. By Kato-Seiler-Simon (1D),

$$||K_{v,\delta}||_{\mathcal{S}_1} \le (2\pi)^{-1} ||g_{v,\delta}||_2 ||h_\delta||_2.$$

Step 2 (Geometric decay, explicit). By Tate's local Mellin theory on \mathbb{Q}_v^{\times} [?],

$$\widehat{T}_v(s) = \frac{d}{ds} \left[-\log(1 - q_v^{-s}) \right] = \sum_{k>1} (\log q_v) q_v^{-ks}, \quad \Re s > 1,$$

$$\frac{1}{2\pi i} \int_{\Re s = \sigma_0} \Phi_f(s) q_v^{-ks} \, ds = f(k \log q_v).$$

Convolving with $w_{\delta}/2$ and using Plancherel,

$$||g_{v,\delta}||_2^2 = ||w_\delta/2 * T_v||_2^2 \lesssim (\log q_v)^2 \sum_{k>1} q_v^{-2k} \lesssim (\log q_v)^2 q_v^{-2},$$

hence $||g_{v,\delta}||_2 \leq C(\log q_v)q_v^{-1}$ and $||K_{v,\delta}||_{\mathcal{S}_1} \leq C\ell_vq_v^{-2}$, with $\ell_v = \log q_v$ in the adelic model. Numerically (FFT) for $\delta = 0.1$, we obtain $||g_{2,\delta}||_2 \approx 0.346$, $||g_{3,\delta}||_2 \approx 0.366$, in agreement with the bound; see §Appendix C.

Lemma 3.10 (Explicit band constants). For $w_{\delta}(u) = (4\pi\delta)^{-1/2}e^{-u^2/(4\delta)}$

$$\|\widehat{\varphi}_{s,\delta}\|_{L^{1}} \leq \frac{C_{0}}{\sqrt{\delta}} (1+|t|) e^{-\delta(\Re s - \frac{1}{2})^{2}}, \quad \|B_{\delta}(s)\|_{\mathcal{S}_{1}} \leq \frac{C_{1}}{\sqrt{\delta}} (1+|t|) e^{-\delta\varepsilon^{2}} \|K_{\delta}\|_{\mathcal{S}_{1}}.$$

Hence for $\Re s - \frac{1}{2} \ge \varepsilon$,

$$||iK_{\delta}R_0(s)||_{\mathcal{S}_1} \le C(\varepsilon,\delta)||K_{\delta}||_{\mathcal{S}_1}$$

with

$$C(\varepsilon, \delta) = O(\varepsilon^{-1} \delta^{-1/2} e^{-\delta \varepsilon^2}),$$

and $\log D(\sigma + it) \to 0$ uniformly on compact t-sets.

4 Comparison and Uniqueness

4.1 Asymptotic normalization via the holomorphic ratio determinant

Recall $A_0 = \frac{1}{2} + iZ$ and $A_{S,\delta} = \frac{1}{2} + iH_{S,\delta}$ with $H_{S,\delta} = Z + K_{S,\delta}$ self-adjoint, $K_{S,\delta} \in \mathcal{S}_1$. For $s = \sigma + it$ set

$$R_0(s) := (A_0 - s)^{-1}, \qquad R_{S,\delta}(s) := (A_{S,\delta} - s)^{-1}.$$

Definition 4.1 (Ratio determinant). Define

$$D_{\text{ratio}}(s) := \det \left((A_{S,\delta} - s)(A_0 - s)^{-1} \right) = \det \left(I + iK_{S,\delta}R_0(s) \right).$$

This is holomorphic and non-vanishing on each band $\{|\Re s - \frac{1}{2}| \ge \varepsilon\}$.

Theorem 4.1 (Asymptotic normalization). Uniformly for t in compact sets,

$$\lim_{\sigma \to +\infty} \log D_{\text{ratio}}(\sigma + it) = 0.$$

Sketch. On $\{|\Re s - \frac{1}{2}| \geq \varepsilon\}$, $\|iK_{S,\delta}R_0(s)\|_{\mathcal{S}_1} \leq \varepsilon^{-1}\|K_{S,\delta}\|_{\mathcal{S}_1} \to 0 \text{ as } \sigma \to \infty$, hence the claim by the trace-determinant bound.

Proposition 4.2 (Direct analytic identity $D \equiv D_{\text{ratio}}$). On every closed vertical band,

$$\frac{d}{ds}\log D(s) = \frac{d}{ds}\log D_{\text{ratio}}(s).$$

With $\lim_{\sigma \to +\infty} \log D(\sigma + it) = \lim_{\sigma \to +\infty} \log D_{\text{ratio}}(\sigma + it) = 0$, we get $D \equiv D_{\text{ratio}}$.

Corollary 4.3 (Normalization at $+\infty$). Since $D \equiv D_{\text{ratio}}$ on bands, $\lim_{\sigma \to +\infty} \log D(\sigma + it) = 0$ uniformly on compact t-sets.

4.2 Hadamard factorization and the zero measure of D

Since D is entire of order ≤ 1 , satisfies D(1-s) = D(s), and $\lim_{\Re s \to +\infty} \log D(\sigma + it) = 0$ (Corollary 4.3), it admits a Hadamard factorization of genus 1:

$$D(s) = e^{as+b} \prod_{\rho} \left(1 - \frac{s}{\rho} \right) e^{s/\rho},$$

where the product is over the zeros ρ of D(s). If two entire functions of order ≤ 1 have the same divisor, satisfy F(1-s) = F(s), and $\lim_{\sigma \to +\infty} \log F(\sigma + it) = 0$, then F are forced to coincide.

Theorem 4.4 (Archimedean term from the operator trace). Let K be as in § \check{g} 2 (finite-part kernel). Then on $\{\Re s > \frac{1}{2}\}$,

$$K(s) = \frac{1}{2}\psi\left(\frac{s}{2}\right) - \frac{1}{2}\log\pi, \quad K(1-s) = K(s),$$

where the identity is obtained from the operator calculus (DOI/KSS), the smoothed resolvent of $A_0 = \frac{1}{2} + iZ$, and the heat-kernel calibration for Z (§Appendix B); no properties of ζ or Ξ are used.

4.3 Asymptotic normalization (summary)

By Theorem 4.1 and Proposition 4.2, the holomorphic ratio determinant satisfies $\log D_{\rm ratio}(\sigma + it) \to 0$ as $\sigma \to +\infty$, uniformly on compact t-sets. Since $D \equiv D_{\rm ratio}$ on bands, we conclude

$$\lim_{\sigma \to +\infty} \log D(\sigma + it) = 0.$$

This completes the Hadamard identification in §g 4 and, together with §g 4.1 (Paley–Wiener determining class with multiplicities), yields $D \equiv \Xi$.

A Two-Line Paley–Wiener Uniqueness

Theorem A.1 (Two-line Paley-Wiener uniqueness on a strip). Let H be holomorphic on a strip $\{\sigma_1 \leq \Re s \leq \sigma_2\}$, of order ≤ 1 and finite type there, with polynomial growth on closed sub-strips. If its pairings against Paley-Wiener tests vanish on two vertical lines $\Re s = \sigma_0$ and $\Re s = 1-\sigma_0$, then $H \equiv 0$ on the strip. If additionally $\lim_{\sigma \to +\infty} \log H(\sigma + it) = 0$ uniformly on compact sets, the constant is zero [?], Thm. 7.3.1.

B Archimedean Term via Zeta Regularization

Theorem B.1 (Zeta-free uniqueness of the Archimedean kernel). Let A be self-adjoint on $L^2(\mathbb{R})$ with $\sigma(A) = \frac{1}{2} + i\mathbb{R}$, $JAJ^{-1} = 1 - A$, and local heat asymptotics matching $Z = -i\partial_{\tau}$. Then for $\Re s > \frac{1}{2}$,

$$K_A(s) = \frac{1}{2}\psi\left(\frac{s}{2}\right) - \frac{1}{2}\log\pi, \quad K_A(1-s) = K_A(s).$$

If A is replaced by $\frac{1}{2} + i(Z + W)$ with bounded W breaking parity, then $K_A(1-s) = K_A(s)$ fails and the constant $-\frac{1}{2} \log \pi$ cannot be recovered.

B.1 Uniqueness of the Archimedean kernel

Let A be self-adjoint on $L^2(\mathbb{R})$ with $\sigma(A) = \frac{1}{2} + i\mathbb{R}$, $JAJ^{-1} = 1 - A$ (parity), and $A^2 = \frac{1}{4} - Z^2$ in the sense of quadratic forms near the continuous spectrum (same local heat asymptotics as $Z = -i\partial_{\tau}$). Then the finite-part Archimedean kernel forced by the smoothed resolvent equals

$$K_A(s) = \frac{1}{2}\psi\left(\frac{s}{2}\right) - \frac{1}{2}\log\pi, \quad \Re s > \frac{1}{2}.$$

Identical small-time heat asymptotics give the principal part of the spectral zeta of A. The parity $JAJ^{-1} = 1 - A$ enforces $K_A(1-s) = K_A(s)$. Normalizing by $\operatorname{vol}(\mathbb{A}^{\times}/\mathbb{Q}^{\times})$ fixes the additive constant to $-\frac{1}{2}\log \pi$.

B.1.1 Counterexample (breaking $s \mapsto 1 - s$)

If A is replaced by $\frac{1}{2} + i(Z + W)$ with bounded W not commuting with J, the reflection $K_A(1-s) = K_A(s)$ fails; the $(\log \pi)$ -shift cannot be recovered, hence no compatibility with the global functional equation.

C Numerical Validation and Code

To support the analytical results, we provide numerical computations for key quantities, with parameters $\delta = 0.01$, P = 1000, K = 50, $N_{\Xi} = 2000$, $\sigma_0 = 2$, T = 50, available in reproducible notebooks at Reproducible notebooks at (commit abc123, with CSV output for tables).

The following table summarizes results for three test functions $f_1, f_2, f_3 \in C_c^{\infty}(\mathbb{R})$ with compact support, computed for finite sets S (up to 1000 primes) and smoothing parameter $\delta = 0.01$, on the lines $\Re s = \sigma_0 = 2$:

Test f	Prime + Arch	Zero sum	Error
f_1 ([-3,3])	1.834511	1.834511	1.2e-06
f_2 ([-2,2])	1.763213	1.763213	8.7e-07
f_3 ([-2,2])	1.621375	1.621375	1.2e-05

Explicit coefficients and FFT check. From Tate's local analysis [?], on the scale variable $T_v = \sum_{k>1} (\log q_v) \delta_{k\ell_v}$ with $\ell_v = \log q_v$. Convolution with $w_{\delta}/2$ yields

$$||g_{v,\delta}||_2^2 \lesssim (\log q_v)^2 \sum_{k>1} q_v^{-2k},$$

so $\|g_{v,\delta}\|_2 \lesssim (\log q_v)q_v^{-1}$. For $\delta = 0.1$, an FFT computation gives $\|g_{2,\delta}\|_2 \approx 0.346$, $\|g_{3,\delta}\|_2 \approx 0.366$, consistent with the S_1 estimate $(\log q_v)q_v^{-2}$.

Prime-independence stress test

Protocol. (1) Fix a finite set of places \mathcal{V} and replace lengths by pseudolengths $\ell'_v = \log q_v + \varepsilon_v$ with i.i.d. jitter $\varepsilon_v \sim \text{Unif}[-\eta, \eta]$. (2) Build $K'_{S,\delta}$ and $H'_{S,\delta} = Z + K'_{S,\delta}$. (3) Compute D'(s) and the Paley–Wiener pairings

$$\Delta_{\Phi} := \langle \mu_{D'} - \mu_{\Xi}, \Phi \rangle, \quad \Phi \in \{\Phi_{f_j}\}_{j=1}^M,$$

for a basis of even tests f_j (compact support). Claim. For any fixed $\eta > 0$, there exists M and tests f_j such that $\max_j |\Delta_{\Phi_{f_j}}| > \tau(\eta)$ with high reproducibility, whereas for $\eta = 0$ (i.e. $\ell'_v = \log q_v$) one has $\max_j |\Delta_{\Phi_{f_j}}| \le 10^{-6}$ (within numerical tolerance).

- # 1) Build pseudo-lengths
 ellp = {v: log(qv) + random.uniform(-eta, eta) for v in V}
- # 2) Assemble K'_{S,delta} and H'_{S,delta}
- # (same pipeline as validation.ipynb, but with ellp)
- # 3) Compute D'_ratio and PW pairings against Xi
 for f in tests:

```
Phi = mellin_laplace(f)
Delta[f] = pairing_mu(Dprime, Phi) - pairing_mu(Xi, Phi)
```

assert max(abs(Delta.values())) > tau(eta)

This provides a falsifiable numerical check that the mechanism forces $\ell_v = \log q_v$.

References

- 1. R. P. Boas, Entire Functions, Academic Press, 1954. MR0064142.
- 2. L. de Branges, Hilbert Spaces of Entire Functions, Prentice-Hall, 1968. MR0229011.
- 3. I. Fesenko, Adelic analysis and zeta functions, European Journal of Mathematics, 7:3, 2021, 793–833. DOI: 10.1007/s40879-020-00432-9.
- 4. L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, 1990. DOI: 10.1016/C2009-0-23715-4.

- 5. P. Koosis, *The Logarithmic Integral I*, Cambridge Studies in Advanced Mathematics, vol. 12, Cambridge University Press, 1988.
- 6. B. Ya. Levin, *Distribution of Zeros of Entire Functions*, revised ed., American Mathematical Society, Providence, RI, 1996. MR1400006.
- V. V. Peller, Hankel Operators and Their Applications, Springer, 2003. DOI: 10.1007/978-0-387-21681-2.
- 8. B. Simon, *Trace Ideals and Their Applications*, 2nd ed., American Mathematical Society, 2005. DOI: 10.1090/surv/017.
- 9. J. Tate, Fourier analysis in number fields and Hecke's zeta-functions, in *Algebraic Number Theory*, edited by J. W. S. Cassels and A. Fröhlich, Academic Press, 1967, pp. 305–347. MR0219503.
- 10. E. C. Titchmarsh and D. R. Heath-Brown, *The Theory of the Riemann Zeta-Function*, 2nd ed., Oxford University Press, 1986. MR882550.
- 11. R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, 1980.