PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-228377

(43) Date of publication of application: 15.08.2000

(51)Int.CI.

H01L 21/304

B24B 37/00

(21)Application number: 11-028719

(71)Applicant: MATSUSHITA ELECTRONICS

INDUSTRY CORP

(22)Date of filing:

05.02.1999

(72)Inventor:

HAMANAKA MASASHI

(54) METHOD AND APPARATUS FOR POLISHING SEMICONDUCTOR DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a polishing apparatus for a semiconductor device, capable of reducing erosion at the time of polishing.

SOLUTION: This polishing apparatus for polishing a wafer 11 comprises, a carrier 10 which is composed of a porous substance capable of permeating a liquid body to be supplied to a back face and has a backing plate 12 for flatly retaining the wafer 11, a liquid body supply route 14 for supplying a liquid body 16 of which a temperature is adjusted so as to cool the back face of the wafer to the face of the backing plate 12 through a rotary shaft 13 of the carrier 10, and a liquid body discharge route 15 for discharging a liquid body 17 which permeates the backing plate 12 and is supplied to the back face of the wafer to the outside of the carrier.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-228377

(P2000-228377A)

(43)公開日 平成12年8月15日(2000.8.15)

(51) Int.Cl.7

識別記号

テーマコード(参考)

H01L 21/304 B 2 4 B 37/00

622

H01L 21/304

622R 3C058

B 2 4 B 37/00

FΙ

J

審査請求 未請求 請求項の数6 〇L (全 7 頁)

(21)出願番号

(22)出顧日

特顏平11-28719

平成11年2月5日(1999.2.5)

(71)出顧人 000005843

松下電子工業株式会社

大阪府高槻市幸町1番1号

(72)発明者 濱中 雅司

大阪府高槻市幸町1番1号 松下電子工業

株式会社内

(74)代理人 100076174

弁理士 宮井 暎夫

Fターム(参考) 30058 AA07 AA09 AB04 AC04 BA05

BA08 CB02 DA06 DA17

(54) 【発明の名称】 半導体装置の研磨方法および研磨装置

(57) 【要約】

【課題】 研磨時のエロージョンを低減できる半導体装 置の研磨方法および研磨装置を得る。

【解決手段】 ウェハ11を研磨する研磨装置であっ て、裏面に供給される液体を浸透可能な多孔質の物質か らなりウェハ11を平坦に保持するパッキングプレート 12を有したキャリア10と、ウェハ裏面を冷却可能に 温調された液体16をキャリア10の回転軸13を通し てバッキングプレート12の裏面に供給する液体供給路 14と、バッキングプレート12を浸透してウェハ裏面 に供給された液体17をキャリア外に排出する液体排出 路15とを備えたものである。

- 10 キャリア
- 11 ウェハ
- 12 パッキングプレート
- 13 回転軸
- 14 液体供給路
- 15 液体排出路
- 16 冷却水
- 17 水

【特許請求の範囲】

【請求項1】 ウェハの研磨時に、ウェハ裏面を冷却しながら研磨することを特徴とする半導体装置の研磨方法。

【請求項2】 ウェハを研磨する研磨装置であって、ウェハ裏面を冷却する冷却手段を備えたことを特徴とする 半導体装置の研磨装置。

【請求項3】 ウェハを研磨する研磨装置であって、裏面に供給される液体を浸透可能な多孔質の物質からなり前記ウェハを平坦に保持するバッキングプレートを有し 10 たキャリアと、ウェハ裏面を冷却可能に温調された液体を前記キャリアの回転軸を通して前記バッキングプレートの裏面に供給する液体供給路と、前記バッキングプレートを浸透してウェハ裏面に供給された液体をキャリア外に排出する液体排出路とを備えた半導体装置の研磨装置。

【請求項5】 ウェハを研磨する研磨装置であって、前記ウェハを保持すると共にウェハ裏面を均等に押圧可能な弾性膜を有したキャリアと、ウェハ裏面を冷却可能に温調された流体を前記キャリアの回転軸を通して前記弾性膜の裏面に押圧力を伴って供給すると共に弾性膜裏面に供給された流体を前記キャリアの回転軸を通してキャリア外に排出する流体循環路とを備えた半導体装置の研 30 麻共器

【請求項6】 ウェハを研磨する研磨装置であって、前記ウェハを保持すると共にウェハ裏面を均等に押圧可能でウェハ面内で同心円状に分割された弾性膜を育したキャリアと、ウェハ裏面を冷却可能に温調された流体を前記キャリアの回転軸を通して前記弾性膜の分割されたブロック毎の裏面に押圧力を伴って供給すると共に弾性膜裏面に供給された流体を前記キャリアの回転軸を通してキャリア外に排出する流体循環路とを備えた半導体装置の研磨装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、例えばシリコン 半導体装置の製造工程の金属プラグや埋め込み金属配線 の形成時における半導体装置の研磨方法および研磨装置 に関するものである。

[0.0.02]

【従來の技術】シリコン半導体装置の高性能化を目指す ためには、素子の微細化や多層化が必要である。近年、 特にCMP (Chemical Mechanical Polishing) 法を用 50 2

いた研磨による金属プラグや埋め込み配線の形成は、微 細化には必須の技術となってきている。

【0003】以下、図7および図8を参照しながら、前記研磨技術を用いた従来の金属プラグの形成方法の一例について説明する。まず、上下配線間を絶縁するための層間絶縁膜1上にアルミ合金膜をスパッタ蒸着法などによって形成する。フォトリソグラフィー工程により、所定のレジストパターンをアルミ合金膜上に形成した後にドライエッチングにより余分なアルミ合金膜を除去し、その後にレジストも除去して、図7(A)に示したように導電層2を得る。なお、この導電層2がアルミ合金膜を用いた金属配線の場合を説明したが、導電層2は多結晶シリコン等の導電層や拡散層の場合もある。

【0004】次に、シリコン酸化膜からなる絶縁膜をCVD法により形成し、平坦化工程によって平坦化を行い 層間絶縁膜3を形成する。次に、フォトリソグラフィー工程により、所定のレジストパターンを層間絶縁膜3上に形成した後、ドライエッチングにより余分な絶縁膜を除去し、その後にレジストも除去して接続口4を得る。接続口4は、導電層2とその一層上に形成される別の導 電層を接続するために用いられ、導電層2の表面が露出するように開口している。

【0005】次に、図7(B)に示したように、スパッタ蒸着法などによって窒化チタン膜とチタン膜との積層構造の密着層 5を形成する。その後、図7(C)に示したように、CVD法を用いて埋め込み膜であるタングステン膜 6を接続ロ4を完全に埋め込むよう成膜する。タングステン膜 6 の膜厚は、接続ロ4部を除き、0.3 μ m~1.0 μ m程度である。

【0006】最後に、図7(D)に示したように、研磨装置を用いて、タングステン膜6および密着層5を、接続口4が形成されていない部分の層間絶縁膜3が完全に露出するまで研磨することによって金属プラグ7を得る。

【0007】研磨によってタングステンを除去しているため、露出した層間絶縁膜3の表面と金属プラグ7の表面には大きな高低差は無く、そのリセス棋を 0.1μ m以下にすることができ信頼性の高い導電層を得ることができる。

【0008】従来は、図8に示す構造のキャリア50を持ったCMP装置により研磨が行われる。図8において、51はウェハであり、表面は金属膜で覆われている。52はウェハ裏面を吸着保持するためのバッキングフィルムである。53はウェハ51を平坦に保持するためのパッキングプレートである。ウェハ51は、表面を下向きにしてキャリア50に保持される。そして、ウェハ表面を研磨液に浸された研磨布(図示せず)に押し付け、回転による摩擦力を利用して研磨、平坦化を実現する。

[0009]

【発明が解決しようとする課題】しかしながら従来の金属プラグ形成方法では、図7(D)に示すように、プラグ高さや配線高さがパターン密度に依存して異なる現象(エロージョン)8が生じてしまい、金属プラグの信頼性を低下させてしまうという問題があった。

【0010】すなわち、タングステン膜6を研磨するときの研磨レートの基板面内でのバラツキを、タングステン膜成膜時の面内バラツキと同じぐらい十分に小さくしないと、層間絶縁膜3が露出するまでの研磨時間が基板面内で異なることになる。このため、タングステン膜6 10と密着層5を面内で全て除去するだけの研磨を行った場合に、研磨レートの速い領域ではオーバー研磨が多く施されてしまい、層間絶縁膜3の表面に接続ロ4のパターン密度に依存した高低差(エロージョン)8が生じてしまうことになる。

【0011】 金属膜の研磨は、金属表面の酸化、金属酸化膜の研磨砥粒によるはく離を繰り返しながら行われる。この時、摩擦力を利用して研磨しているため、ウェハ表面はかなり高温になってしまい、金属膜の酸化反応をさらに大きく促進してしまう。エロージョン8は層間 20 絶縁膜3が露出した後に、ブラグ7部分の金属酸化膜の研磨が高温により促進されることでさらに顕著に生じる

【0012】このように、層間絶縁膜3に高低差が生じると、フォトリソグラフィー工程でのパターン形成が困難になってしまうという問題が生じる。また、層間絶縁膜3の高低差により金属プラグ7の高さが異なり、接続口の抵抗が大きくばらつき信頼性を低下させてしまうという問題もある。

【0013】この発明は、上記問題を解決するものであ 30 り、研磨時のエロージョンを低減できる半導体装置の研磨方法および研磨装置を提供することを目的とする。

[0014]

【課題を解決するための手段】請求項1記載の半導体装置の研磨方法は、ウェハの研磨時に、ウェハ裏面を冷却しながら研磨することを特徴とするものである。

【0015】 請求項2記載の半導体装置の研磨装置は、 ウェハを研磨する研磨装置であって、ウェハ裏面を冷却 する冷却手段を備えたことを特徴とするものである。

【0016】 請求項1および請求項2 記載の半導体装置 40 の研磨方法および研磨装置によると、研磨時にウェハ裏 面を冷却することにより、高温により研磨が促進される のを防ぐことができ、エロージョン量を低減することが できる。

【0017】 請求項3記載の半導体装置の研磨装置は、ウェハを研磨する研磨装置であって、裏面に供給される 液体を浸透可能な多孔質の物質からなりウェハを平坦に 保持するバッキングプレートを有したキャリアと、ウェ ハ裏面を冷却可能に温調された液体をキャリアの回転軸 を通してバッキングプレートの裏面に供給する液体供給 50

4

路と、バッキングプレートを浸透してウェハ裏面に供給 された液体をキャリア外に排出する液体排出路とを備え たものである。

【0018】 請求項3記載の半導体装置の研磨装置によると、研磨時にウェハ裏面を温調された液体にて冷却することにより、高温により研磨が促進されるのを防ぐことができ、エロージョン量を低減することができる。

【0019】 請求項4記載の半導体装置の研磨装置は、ウェハを研磨する研磨装置であって、ウェハの周辺を保持するリング状のシールと、ウェハ裏面を冷却可能に温調された気体をキャリアの回転軸を通してウェハの裏面に押圧力を伴って供給する気体供給路と、ウェハの裏面に供給された気体をキャリア外に排出する気体排出路とを備えたものである。

【0020】請求項4記載の半導体装置の研磨装置によると、研磨時にウェハ裏面を温調された気体にて冷却することにより、高温により研磨が促進されるのを防ぐことができ、エロージョン最を低減することができる。

【0021】 請求項5記載の半導体装置の研磨方法および研磨装置は、ウェハを研磨する研磨装置であって、ウェハを保持すると共にウェハ裏面を均等に押圧可能な弾性膜を有したキャリアと、ウェハ裏面を冷却可能に温調された流体をキャリアの回転軸を通して弾性膜の裏面に押圧力を伴って供給すると共に弾性膜裏面に供給された流体をキャリアの回転軸を通してキャリア外に排出する流体循環路とを備えたものである。

【0022】 請求項6記載の半導体装置の研磨方法および研磨装置は、ウェハを研磨する研磨装置であって、ウェハを保持すると共にウェハ裏面を均等に押圧可能でウェハ面内で同心円状に分割された弾性膜を有したキャリアと、ウェハ裏面を冷却可能に温調された流体をキャリアの回転軸を通して弾性膜の分割されたブロック毎の裏面に押圧力を伴って供給すると共に弾性膜裏面に供給された流体をキャリアの回転軸を通してキャリア外に排出する流体循環路とを備えたものである。

【0023】 請求項5 および請求項6 記載の半導体装置の研磨装置によると、研磨時にウェハ裏面を温調された流体にて冷却することにより、高温により研磨が促進されるのを防ぐことができ、エロージョン量を低減することができる。

[0024]

【発明の実施の形態】第1の実施の形態

この発明の第1の実施の形態の半導体装置の研磨方法および研磨装置について、図1および図2を参照しながら説明する。

【0025】図1は、金属プラグ製造工程におけるCMP装置のウェハ保持用キャリア10の断面図である。図2は、ウェハ裏面温度とエロージョン量の関係を示したグラフである。

【0026】図1において、11は研磨されるウェハで

あり、図7(A)~(C)に示したように形成されている。12はウェハ裏面を平坦に吸着保持するためのパッキングプレートであり、例えばセラミックス等の多孔質の物質からなり裏面に供給される冷却水が浸透するようになっている。13はキャリア10の回転軸であり、回転軸13内を通じてパッキングプレート12の裏面にウェハ裏面を冷却可能に温調された冷却水16を供給する液体供給路14が設けられている。15は、パッキングプレート12を浸透してウェハ11の裏面に供給された冷却水16をキャリア外に排出する液体排出路であり、17は当該排水を示している。なお、液体供給路14、液体排出路15、冷却水16を供給するポンプや冷却装置(図示せず)等にて冷却手段が構成されている。

【0027】研磨に際しては、ウェハ11の表面を下向きにしてパッキングプレート12にて保持し、液体供給路14からパッキングプレート12を浸透しウェハ11の裏面に温調された冷却水16を供給すると共に、液体排出路15からウェハ冷却後の水17を排出しながら、キャリア10を回転し、ウェハ11の表面を研磨液に浸された研磨布(図示せず)に押し付けて研磨、平坦化す 20 る。

【0028】このように構成されたキャリア10を用いてウェハ11の金属膜を研磨した場合、冷却水16によってウェハ11を裏面から冷却することができるため、低温での研磨が可能となる。図2に示すように、ウェハ裏面温度が低下するとエロージョン最が低減することから、ウェハ11を裏面から冷却しながら研磨することでエロージョン量は飛躍的に低減し、信頼性の高い金属プラグを得ることができる。しかも、液体供給路14と液体排出路15が互いに独立しており、水17はキャリア がの液体排出路15から排出されるため、バッキングプレート12に浸透した冷却水16が水17によって暖められるのを回避でき、冷却効率が向上する。

【0029】なお、ウェハ裏面の冷却に使用する液体と しては、水の他、アルコール等を用いてもよい。

【0030】第2の実施の形態

この発明の第2の実施の形態の半導体装置の研磨方法および研磨装置について、図3を参照しながら説明する。 【0031】図3は、金属プラグ製造工程におけるCM P装置のウェハ保持用キャリア20の断面図である。

【0032】図3において、21は研磨されるウェハ1 1を保持するためのリング状のシールであり、例えばポリウレタンを含浸させた不織布からなり、ウェハ周辺を保持するように構成されている。また、25はキャリアの回転軸13内の気体供給路22を通じて供給されるウェハ裏面を冷却可能に温調された気体(空気、N2等)であり、多数の小孔23を通してウェハ11の裏面に供給され、ウェハ裏面を押し付ける押圧力を供給すると共に、ウェハ裏面を冷却する。さらに、24はウェハ裏面に供給された後の気体26をキャリア20の外に排出す50 6

る気体排出路である。

【0033】研磨に際しては、ウェハ11の表面を下向きにしてシール21にて保持し、気体供給路22から小孔23を通してウェハ11の裏面に均一に温調された気体25を押圧力を伴って供給すると共に、気体排出路24から冷却後の気体26を排出しながら、キャリア20を回転し、ウェハ11の表面を研磨液に浸された研磨布(図示せず)に押し付けて研磨、平坦化する。

【0034】このように構成されたキャリア20を用いてウェハ11の金属膜を研磨した場合、気体25によってウェハ11を裏面から冷却することができるため、低温での研磨が可能となり、図2より、ウェハ11を裏面から冷却しながら研磨することでエロージョン 単は飛躍的に低減し、信頼性の高い金属プラグを得ることができる。しかも、気体供給路22と気体排出路24が独立しており、気体26はキャリア横の気体排出路24から排出されるため、冷却効率が向上する。また、冷却媒体が気体であるため、研磨被を薄めることなく精度の良い研磨を実現することができる。

【0035】第3の実施の形態

この発明の第3の実施の形態の半導体装置の研磨方法および研磨装置について、図4を参照しながら説明する。 【0036】図4は、金属プラグ製造工程におけるCM P装置のウェハ保持用キャリア30の断面図である。

【0037】図4において、31は研磨されるウェハ1 1を保持したり、ウェハ11を研磨布に均等に押しつけるための弾性膜であり、例えばゴムからなり、流体によりウェハ裏面を押し付けることができるようになっている。流体としては、水やアルコール等の液体あるいは空気や N_2 等の気体を使用する。33はキャリア30内に仕切り32によって仕切られた流体循環路である。34は、流体循環路33を循環して、弾性膜31を介してウェハ裏面を押圧すると共に、ウェハ裏面を冷却するための温調された流体である。

【0038】研磨に際しては、ウェハ11の表面を下向きにしてキャリア30にて保持し、流体循環路33を循環する温調された流体34によってウェハ11の裏面を押圧力を伴って冷却しながら、キャリア20を回転し、ウェハ11の表面を研磨液に浸された研磨布(図示せず)に押し付けて研磨、平坦化する。

【0039】このように構成されたキャリア30を用いてウェハ11の金属膜を研磨した場合、流体34によってウェハ11を裏面から冷却することができるため、低温での研磨が可能となり、図2より、ウェハ11を裏面から冷却しながら研磨することでエロージョン 単は飛躍的に低減し、信頼性の高い金属プラグを得ることができる。しかも、流体34はキャリア30内で循環されるため、冷却効率が向上する。また、冷却媒体である流体34が弾性膜31を介してウェハ11に直接接することがなく、研磨波が薄められたりウェハ裏面が乾燥すること

がないため、高精度の研磨を実現することが可能である。

【0040】第4の実施の形態

この発明の第4の実施の形態の半導体装置の研磨方法および研磨装置について、図5および図6を参照しながら説明する。

【0041】図5は、金属プラグ製造工程におけるCM P装置のウェハ保持用キャリア40の断面図であり、図 6はキャリア40を下から見上げた図である。

【0042】図5および図6において、41は研磨され 10 るウェハ11を保持したり、研磨布に均等に押し付ける ための弾性膜であり、液体や気体等の流体によりウェハ 裏面を押し付けることができるようになっている。ま た、弾性膜41は、ウェハ面内で同心円状に分割されて おり、各プロック41a, 41b, 41c, 41d毎に ウェハ裏面を冷却可能に温調された流体が循環できるよ うになっている。キャリア40内は流体の供給側と排出 側に分ける仕切り42、ならびに供給側、排出側それぞ れを前記各プロック41a, 41b, 41c, 41d毎 に対応する経路に仕切る仕切り43によって、流体循環 20 路44に分割されており、弾性膜41のブロック41 a. 41b. 41c, 41d毎に別々の流体を循環させ ることができるようになっている。45は、各ブロック 41a, 41b, 41c, 41dに流体を循環するため の循環口であり、各プロック41a、41b、41c、 41 dの供給側、排出側にそれぞれ設けられている。 4 6は、弾性膜41を介してウェハ裏面に押し付け、かつ ウェハ裏面を冷却するための温調された液体や気体等の・ 流体である。

【0043】研磨に際しては、ウェハ11の表面を下向 30 きにしてキャリア40にて保持し、流体循環路44を循環する温調された流体46によってウェハ11の裏面を押圧力を伴って冷却しながら、キャリア40を回転し、ウェハ11の表面を研磨液に浸された研磨布(図示せず)に押し付けて研磨、平坦化する。

【0044】このように構成されたキャリア40を用いてウェハ11の金属膜を研磨した場合、流体46によってウェハ11を裏面から冷却することができるため、低温での研磨が可能となり、図2より、ウェハ11を裏面から冷却しながら研磨することでエロージョン量は飛躍りた低減し、信頼性の高い金属プラグを得ることができる。しかも、流体46はキャリア40内で循環されるため、冷却効率が向上する。また、冷却媒体である流体46が弾性膜41を介してウェハ11に直接接することがなく、研磨液が薄められたりウェハ裏面が乾燥することがないため高精度の研磨を実現することが可能である。さらに、弾性膜41は同心円状に分割されており、なおかつ循環する流体46の経路もそれぞれ独立しているため、各弾性膜41のブロック41a,41b,41c,41d毎に異なる温度の流体を循環させることでウェハ 50

8

面内で温度を変えることができ、エロージョン量のウェ ハ面内でのコントロールが可能となる。

【0045】なお、本実施の形態では、弾性膜41の分割を同心円状としたが、同心円状に限るものではなく、 どのような形状に分割しても同様の効果が得られる。

【0046】また、前記各実施の形態では、金属プラグの形成方法を説明したが、埋め込み配線の形成方法でも 同様の効果を得ることができる。

[0047]

【発明の効果】 請求項1および請求項2記載の半導体装置の研磨方法および研磨装置によると、研磨時にウェハ 裏面を冷却することにより、高温により研磨が促進されるのを防ぐことができ、エロージョン散を低減することができ、パターン不良や導電層の信頼性の低下を防止することができる。

【0048】 請求項3記載の半導体装置の研磨装置によると、研磨時にウェハ裏面を温調された液体にて冷却することにより、高温により研磨が促進されるのを防ぐことができ、エロージョン最を低減することができ、パターン不良や導電層の信頼性の低下を防止することができる

【0049】 請求項4記載の半導体装置の研磨装置によると、研磨時にウェハ裏面を温調された気体にて冷却することにより、高温により研磨が促進されるのを防ぐことができ、エロージョン量を低減することができ、パターン不良や導電層の信頼性の低下を防止することができる。

【0050】請求項5および請求項6記職の半導体装置の研磨装置によると、研磨時にウェハ裏面を温調された流体にて冷却することにより、高温により研磨が促進されるのを防ぐことができ、エロージョン量を低減することができ、パターン不良や導電層の信頼性の低下を防止することができる。

【図面の簡単な説明】

【図1】この発明の第1の実施の形態における研磨用キャリアの断面図である。

【図2】この発明の灾施の形態におけるウェハ裏面温度とエロージョン量の関係を示すグラフである。

【図3】この発明の第2の実施の形態における研磨用キャリアの断面図である。

【図4】この発明の第3の実施の形態における研磨用キャリアの断面図である。

【図5】この発明の第4の実施の形態における研磨用キャリアの断面図である。

【図6】この発明の第4の実施の形態における研磨用キャリアを下から見上げた図である。

【図7】従来の半導体装置の製造工程断面図である。

【図8】従来例における研磨用キャリアの断面図である。

【符号の説明】

- 1 上下配線間を絶縁するための層間絶縁膜
- 2 導電層
- 3 層間絶縁膜
- 4 上下配線の接続口
- 5 窒化チタン膜とチタン膜との積層構造の密着層
- 6 CVD法を用いて成膜した埋め込み膜であるタング ステン膜
- 7 金属プラグ
- 8 層間絶縁膜表面のパターン密度に依存した高低差 (エロージョン)
- 10, 20, 30, 40 キャリア
- 11 ウェハ
- 12 バッキングプレート

*13 回転軸

- 14 液体供給路
- 15 液休排出路
- 16 冷却水
- 17 水
- 21 シール
- 22 気体供給路
- 24 気体排出路
- 25, 26 気体
- 10 31,41 弹性膜
 - 33,44 流体循環路
 - 34,46 流体
 - 41a, 41b, 41c, 41d 弾性膜のブロック

【図1】

- 10 キャリア
- 11 020
- 12 パッキンケプレート

[図2]

[図3]

- 気体排出路
- 25. 26 気体

【図5】

41b, 41c, 41d 弾性膜のプロック

【図7】

