16

1. Justifier que le tableau ci-dessous peut définir la loi de probabilité d'une variable aléatoire Y.

y_i	-3	0	2	4
$P(Y=y_i)$	0,2	0,3	0,4	0,1

2. Quelles sont les valeurs prises par Y?

17

On lance un dé rouge à 4 faces numérotées de 1 à 4 et un autre dé identique bleu. On note X la variable aléatoire égale à la somme des deux nombres obtenus.

- 1. Quelles sont les valeurs prises par X?
- 2. Donner la loi de probabilité de *X* sous forme de tableau.

18

Un artiste organise une tombola permettant d'acquérir certaines de ses œuvres. Parmi les 7000 tickets vendus au prix de 1000 euros, voilà la répartition des prix :

Montant de l'œuvre	Nombre de tickets
1 500 000 €	1
1 000 000 €	1
700 000 €	3
500 000 €	4
50 000 €	10

Soit X la variable aléatoire associée au gain algébrique des participants à cette tombola.

- 1. Donner les différentes valeurs prises par X.
- 2. Donner la loi de probabilité de X.

19

Chaque jour, un magasin de vêtements enregistre le nombre de clients qui effectuent un achat. On note X la variable aléatoire égale au nombre de clients qui effectuent un achat par jour. La loi de probabilité de X est donnée par le tableau cidessous :

x_i	$P(X=x_i)$
0	0,10
1	0,20
2	0,30
3	0,25
4	0,10
5	0,05

- 1. Interpréter par une phrase le résultat de la colonne grisée.
- 2. Calculer $P(X \leq 2)$.
- 3. Calculer la probabilité qu'au moins 3 clients effectuent un achat.

20

Chaque jour, un centre de loisirs enregistre le nombre d'enfants participant aux activités.

On note X la variable aléatoire égale au nombre d'enfants participant aux activités par jour. La loi de probabilité de X est donnée par le tableau ci-dessous :

x_i	$P(X=x_i)$
0	0,05
1	0,10
2	0,20
3	0,30
4	0,25
5	0,10

- 1. Interpréter par une phrase le résultat de la ligne grisée.
- 2. Calculer $P(X \leq 2)$.
- 3. Calculer la probabilité qu'au moins 3 enfants participent aux activités.

Espérance

21

On donne la loi de probabilité d'une variable aléatoire X. Calculer l'espérance E(X).

x_i	-1	2	4	6
$P(X=x_i)$	0,5	0,1	0,25	0,15

22

On donne la loi de probabilité d'une variable aléatoire Y. Calculer l'espérance E(Y).

y_i	-1	2	4	6
$P(Y=y_i)$	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{1}{5}$	$\frac{1}{5}$

23

Pour chacune des lois de probabilités donnée cidessous, calculer l'espérance de la variable aléatoire X:

$X = x_i$	$P(X=x_i)$
1	0,41
2	0,24
3	0,11
4	0,04
5	0,1

$X = x_i$	$P(X=x_i)$
15	0,32
45	0,33
72	0,2
100	0,24
120	0,01

$X = x_i$	$P(X=x_i)$
1 000	0,25
5 000	0,15
6 500	0,3
8 000	0,17
10 000	0,13

24

On donne la loi de probabilité d'une variable aléatoire W. Calculer le nombre b sachant que E(W)=1.5.

w_i	0	3	b
$P(W=w_i)$	0,5	0,3	0,2

25

On donne la loi de probabilité d'une variable aléatoire V. Calculer le nombre c sachant que E(V)=3.2.

v_i	1	4	c
$P(V=v_i)$	0,3	0,4	0,3

26

Un jeu consiste à tirer une carte d'un jeu standard de 52 cartes.

Un joueur mise une certaine somme M sur l'une des cartes. Si la carte tirée correspond à celle sur laquelle il a misé, on lui rembourse 51 fois sa mise, sinon il perd sa mise. Déterminer l'espérance de gain et interpréter ce résultat.

27

Un jeu consiste à lancer une fléchette sur une cible circulaire divisée en 20 secteurs égaux numérotés de 1 à 20.

Un joueur mise une certaine somme M sur l'un des secteurs. Si la fléchette se plante dans le secteur sur lequel il a misé, il gagne 19 fois sa mise, sinon il perd sa mise. Déterminer l'espérance de gain et interpréter ce résultat.

28

On lance un dé à 6 faces. Si le dé tombe sur un nombre pair, on gagne 1€. Si le dé tombe sur le 3, on gagne 3€. Dans le reste des cas on perd 2€.

- 1. Soit X la variable aléatoire associée au gain algébrique après le lancé d'un dé. Quelles sont les valeurs prises par X.
- 2. Soit Y la variable aléatoire associée au gain algébrique après deux lancés du dé. Quelles sont les valeurs prises par Y.