

DATA STRUCTURES & ALGORITHMS

Lecture 6: TREES - Part 3

B-trees, 2-3 trees, 2-3-4 trees

Lecturer: Dr. Nguyen Hai Minh

OUTLINE

- Balanced Search Tree
 - B-tree
 - **2-3** tree
 - **2-3-4** tree
- Comparing trees

- Definition
- Example
- Traversal, Search, Insert, Delete
- Advantage of B-trees

Motivation of B-trees

- So far, we have assumed that we can store an entire data structure in *main memory*
- What if we have so much data that it won't fit?
 - Storing it on disk requires different approach to efficiency
 - Assuming that a disk spins at 7200 RPM, one revolution occurs in 8.33ms
 - Crudely speaking, one disk access takes about the same time as 100,000 instructions

Motivation of B-trees

- Assume that we use an AVL tree to store about 20 million records
 - We end up with a very deep binary tree with lots of different disk accesses; log₂20,000,000 ≈ 24, so this takes about 0.2 seconds
- □ We know we can't improve on the log_2n lower bound on search for a binary tree
- □ But, the solution is to use more branches and thus reduce the height of the tree!
 - → As branching increases, depth decreases
 - → B-tree: 1970 by Rudolf Bayer & Edward M. McCreight

Definition of a B-tree

- \square A B-tree of order m is an m-way tree (i.e., a tree where each node may have up to m children) in which:
 - 1. The number of keys in each non-leaf node is one less than the number of its children and these keys partition the keys in the children in the fashion of a search tree
 - 2. All leaves are on the same level
 - 3. All non-leaf nodes except the root have at least $t = \left| \frac{m}{2} \right|$ children
 - 4. The root is either a leaf node, or it has from 2 to m children
 - 5. Every nodes except the root has $\left\lceil \frac{m}{2} \right\rceil 1$ to m 1 keys
- \square The number m is usually odd

An Example B-tree

- → Each internal nodes (except root) has at least 3 children
- → Each node has 2-4 keys

An Example B-tree

□ Why?

B-tree Example

- Draw a B-tree of order 3 and height = 3 containing as many keys/data items as possible.
 - How many nodes are there?
 - How many keys does your tree have?

Height of B-tree

- \square Let h be the height, n is the total keys on a B-tree
- \Box t: minimum degree of m-way B-tree
- Minimum keys on a B-tree:

B-tree's height

Minimum keys on a B-tree:

$$n \ge 1 + 2(t - 1) + 2t(t - 1) + \dots + 2t^{h-1}(t - 1)$$

$$n \ge 1 + 2(t - 1) \sum_{i=1}^{h} t^{i-1} = 1 + 2(t - 1) \left(\frac{t^{h-1}}{t - 1}\right)$$

$$n \ge 2t^h - 1$$

Theorem: If $n \ge 1$, then for any n-keys B-tree of height h and minimum degree $t \ge 2$,

$$h \le \log_t \frac{n+1}{2}$$

$$\rightarrow h = O(\log_t n)$$

B-tree's maximum nodes

The maximum number of keys in a B-tree of order m and height *h*:

```
root m-1
level 1 m(m-1)
level 2 m^2(m-1)
level h m^h(m-1)
```

So, the total number of keys is:

Traversal and Search in B-tree

- □ Traversal in B-tree:
 - Similar to *In-Order Traversal* of Binary Tree.
- ☐ Search in B-tree:
 - Similar to searching in a Binary Search Tree, except that instead of making a binary, or "twoway," branching decision at each node, we make a multiway branching decision according to the number of the node's children.

B-tree-SEARCH

B-tree-SEARCH(x,k)

$$O(th) = O(t \log_t n)$$

//x: pointer to the root node of a subtree, k: key to be searched

- $1 \quad i = 0$
- while i < x.n and k > x.key;
- 3 i = i + 1

O(t)

- 4 if i < x.n and $k == x.key_i$
- 5 return (x,i)
- 6 elseif x.leaf
- 7 return NULL
- 8 else DISK-READ(x.c;)
- 9 return B-tree-SEARCH(x.c_i,k) \leftarrow O(h)

14

Inserting into a B-tree

$O(t \log_t n)$

(1) fit@hcmus

- Attempt to insert the new key into a leaf
- If leaf becomes too big,
 - Split the leaf into two
 - Promoting the middle key to the leaf's parent
- ☐ If the parent becomes too big
 - Split the parent into two
 - Promoting the middle key
- This strategy might have to be repeated all the way to the top.
- If necessary, the root is split in two and the middle key is promoted to a new root, making the tree one level higher

- Suppose we start with an empty B-tree and keys arrive in the following order:
- 1 12 8 2 25 5 14 28 17 7 52 16 48 68 3 26 29 53 55 45
- We want to construct a B-tree of order 5

1 12 8 2

1 2 8 12

> 1 12 8 2 **25**

1 12 8 2 25 5 14 28

1 12 8 2 25 5 14 28 17

1 12 8 2 25 5 14 28 17 7 52 16 48

1 12 8 2 25 5 14 28 17 7 52 16 48 68

1 12 8 2 25 5 14 28 17 7 52 16 48 68 3

> 1 12 8 2 25 5 14 28 17 7 52 16 48 68 3 **26 29 53 55**

1 12 8 2 25 5 14 28 17 7 52 16 48 68 3 26 29 53 55 45

Insert 45

> 1 12 8 2 25 5 14 28 17 7 52 16 48 68 3 26 29 53 55 **45**

Removal from a B-tree

□ Remove a key k

- 1. If *k* is in a leaf node, and removing it doesn't cause that leaf node to have too few keys, then simply remove *k*.
- 2. If *k* is NOT in a leaf then it is guaranteed (by the nature of a B-tree) that its predecessor or successor will be in a leaf -- in this case we can delete *k* and promote the predecessor or successor of *k* to *k*'s position.

Removal from a B-tree (2)

- □ (1) & (2) may lead to a leaf node L has less than min. number of keys
- Look at the siblings immediately adjacent to the leaf
 - 3: if one of them has more than the min. number of keys then we can promote one of its keys to the parent and take the parent key into L
 - 4: otherwise, combine L and one of its neighbours with their shared parent, repeat the process up to the root, if required

 $O(t \log_t n)$

Type #1: Simple leaf deletion

Delete 2: Since there are enough keys in the node, just delete it

Type #2: Simple non-leaf deletion

Type #4: Too few keys in node and its siblings

Too few keys!

Type #4: Too few keys in node and its siblings

Type #3: Enough siblings

Type #3: Enough siblings

Exercise in B-tree

- ☐ Given 5-way B-tree created by these data:
- 3, 7, 9, 23, 45, 1, 5, 14, 25, 24, 13, 11, 8, 19, 4, 31, 35, 56
- ☐ Add these further keys: 2, 6,12
- Delete these keys: 4, 5, 7, 3, 14

Reasons for using B-trees

- When searching tables held on disc, the cost of each disc transfer is high but doesn't depend much on the amount of data transferred, especially if consecutive items are transferred
 - If we use a B-tree of order 101, say, we can transfer each node in one disc read operation
 - A B-tree of order 101 and height 3 can hold 101⁴ 1 items (approximately 100 million) and any item can be accessed with 3 disc reads (assuming we hold the root in memory)
 - B-trees are always balanced (since the leaves are all at the same level) → smallest height is guarantee

Definition of 2-3 tree

- □ For B-tree, if we take m = 3, we get a 2-3 tree, in which non-leaf nodes have two or three children (i.e., one or two keys)
- Definition: A 2-3 tree is a B-tree in which:
 - Each internal node has either 2 or 3 children.
 - ☐ A node with 2 children is called a 2-node.
 - ☐ A node with 3 children is called a 3-node.
 - All leaves are at the same level (leaf contains 1 or 2 keys)

2-3 tree – Example

Leaves

Height of a 2-3 tree

- A 2-3 tree is not a binary tree.
 - If a 2-3 tree contains only 2 nodes, it is likely a perfect binary tree $\rightarrow n = 2^{h+1} 1$
 - If, on the other hand, some of the internal nodes of a 2-3 tree do have 3 children, the tree will contain more nodes than a perfect binary tree of the same height → n > 2^{h+1} - 1
- ☐ Therefore, height of a 2-3 tree is:

$$h \le \lceil \log_2(n+1) - 1 \rceil$$

 $O(\log_2 n)$

Traversing a 2-3 tree

You can traverse a 2-3 tree in sorted order by performing the analogue of an in-order traversal on a binary tree

Searching a 2-3 tree

- The ordering of keys in a 2-3 tree is analogous to the ordering for a BST
 - Searching on a 2-3 tree is efficient & quite similar to a BST
- □ The same efficiency:
 - A BST with n nodes cannot be shorter than $\lceil \log_2(n+1) 1 \rceil$
 - A 2-3 tree with n nodes cannot be taller than $\lceil \log_2(n+1) 1 \rceil$
 - A node in a 2-3 tree has at most 2 keys.
- ☐ Then, why should we use 2-3 tree?

A balanced BST and a 2-3 tree with the same keys

■ Now, insert 39, 38, ..., 32 to these trees

- □ Now, insert 39, 38, ...,32 to these trees
- □ Binary Search Tree
 - Quickly loose its balance

- □ Now, insert 39, 38, ...,32 to these trees
- □ 2-3 tree:

Retains its structure

(b)

□ Insert 39

☐ Insert 35, 34, 33

□ Delete 70:

□ Delete 70:

□ Delete 70:

Delete value from leaf

Merge nodes by deleting empty leaf and moving 80 down

7/18/2023

Result tree

nhminh@FIT-HCMUS

□ Delete 70, 100, 80:

Again, Why 2-3 tree?

- Searching: sometimes you have to make 2 comparisons to get pass a 3-node.
 - However, it is still $O(\log n)$ running time
- Insertion/Deletion needs extra work: split nodes, merge nodes.
 - However, this extra work is not a real concern
 - It is easier to keep the tree balanced than a normal BST.

Definition of 2-3-4 tree

- If a 2-3 tree is good, are trees with more than 3 children better?
- Definition: A 2-3-4 tree is a B-tree in which:
 - Each internal node has either 2, 3 or 4 children.
 - ☐ 2-node: node contains 1 key
 - ☐ 3-node: node contains 2 keys
 - ☐ 4-node: node contains 3 keys

Different with 2-3 tree

All leaves are at the same level, each contains 1 to 3 keys

Example of 2-3-4 tree

2-3-4 tree of the same data as <u>the previous 2-3</u> tree

Searching and Traversing a 2-3-4 tree

- Traversing & Searching are the same as in Btree (or 2-3 tree)
- Example:
 - Search for 31 on the Example 2-3-4 tree:
 - ☐ Search the left subtree since 31 < 37
 - □ Search the middle subtree of the node <30 35> since 31> 30 and 31 < 35</p>
 - □ Terminate the search at the left child pointer of <32 33 34> since 31 < 32</p>
 - Result: 31 is not in the tree.

- □ For inserting a key to a 2-3 tree, the search algorithm traces a path from the root to a leaf and then backs up from the leaf as it splits nodes.
- □ For a 2-3-4 tree: splits 4-node as soon as it encounters them on the way down from the root to the leaf. → Avoid return path
 - Each 4-node either:
 - Be the root, or
 - 2. Have a 2-node parent, or
 - 3. Have a 3-node parent

Splitting a 4-node in 2-3-4 tree

1. The 4-node is the root

Splitting a 4-node in 2-3-4 tree

- 2. The 4-node has a 2-node parent:
 - 4-node is left child:

4 node is right child?

Splitting a 4-node in 2-3-4 tree

- 3. The 4-node has a 3-node parent
 - 4-node is left child:

- 4-node is middle child?
- 4-node is right child?

Insert 20 into a one-node 2-3-4 tree

□ This is a 4-node → split it

☐ Then, insert to the leaf node

Insert 50, 40 do not require split nodes

□ Insert 70 → split the <40 50 60> node, then insert

7/18/2023

nhminh@FIT-HCMUS

Insert 80, 15 do not require split nodes

□ Insert 90 → split the <60 70 80> node, then insert

7/18/2023

nhminh@FIT-HCMUS

Insert 100 → split the <30 50 70> node, then insert

7/18/2023

nhminh@FIT-HCMUS

- ☐ Similar to deleting a key from a 2-3 tree:
 - Locate the node i that contains the key k to remove
 - Find k's successor (at leaves) and swap with k
 - Ensure that k doesn't occur in a 2-node so that we can perform one pass removal (unlike removal from a 2-3 tree)
- → Transform each 2-node that we encounter during the search for k into a 3-node or 4-node
- Detail of deleting from a 2-3-4 are left as exercises

Conclusion

Pros:

- A 2-3-4 is balanced
- Its insertion and removal operations use only one pass from root to leaf.

☐ Cons:

- Requires more storage than a binary search tree that contains the same data
- → Red-black tree can represent a 2-3-4 tree that retains the advantages of a 2-3-4 tree without the storage overhead.

Comparing Trees

- Binary search tree can become unbalanced and lose their good time complexity
- □ A 2-3 tree and a 2-3-4 tree are variants of a BST that keeps the tree balanced easily.
- □ A Red-black tree is a binary tree representation of a 2-3-4 tree that requires less storage than a 2-3-4 tree. Insertions and removals in RB tree are more efficient than 2-3-4 tree.
- AVL tree is strict binary trees that overcome the balance problem
- B-tree is balanced search tree designed to work well on disk drivers or other direct-access secondary storage devices

What's next?

- After today:
 - Reading
 - ✓ B-tree: Textbook 1 chap 18 (page 655~)
 - √ 2-3 tree: Textbook 2 sec 19.2 (page 569~)
 - √ 2-3-4 tree: Textbook 2 sec 19.3 (page 585~)
 - ✓ 2-3-4 tree to Red-black tree: Textbook 2 sec 19.4 (page 592~)
 - Do homework 6.2
- □ Next class (August 2nd):
 - Individual Assignment 4
 - Lecture 7: Graphs

