

KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

2019—2020 BİTİRME PROJESİ POSTER SUNUMU

Samet ARSLANTÜRK

Arş. Gör. Dr. Ali Can KARACA

Elektronik ve Haberleşme Mühendisliği Bölümü

2019 IEEE DATA FUSION YARIŞMASINDA KULLANILAN VERİ SETLERİ ÜZERİNDEN NOKTA BULUTU ŞEKLİNDEKİ 3B YAPILARIN SINIFLANDIRILMASI

ÖZET

kapsamında günümüzde gitgide Bu tez popülerleşen makine öğrenmesi ile lidar veri setlerinde sınıflandırma işlemi üzerine çalışmalar yapılmıştır. Bu amaçla Matlab yazılımı kullanılarak, IEEE veri setleri üzerinden belli analizler yapılarak, 3B nokta bulutu yapıların sınıflandırılması iyileştirilmiştir. Bu işlemler yapılırken SVM ve KNN yöntemlerinin dışında hiperspektral sınıflandırmada da sıkça kullanılan SaCR yöntemi lidar veri setine göre konfügüre edilerek uygulanmış ve sınıflandırma başarım oranları arttırılmıştır.

GİRİŞ

Lidar temel olarak ölçme işlemi için lazer veya ışık kullanan optik bir uzaktan algılama sistemidir. Açılımı "Light Dedection and Ranging" olan lidar sistemi özetle bir sinyal gönderildiği ve geri beklendiği anlamına gelmektedir. Yayılan sinyalin özniteliklerine göre görselleştirme yapılmıştır. sensöre ne kadar sürede vardığı üzerinden işlem yapılarak konumlandırma işlemi yapılmaktadır.

Kullanılan veri setleri internet üzerinden IEEE Data Fusion Yarışması'na kayıt yapılarak ulaşılmıştır. Data Fusion yarışması genel olarak 4 track'ten oluşmaktadır. Bu tez, yarışmanın 4. track'i olan "3D Point Cloud Classification" veri setleri üzerinden gerçekleştirilmiştir.

Şekil 1. Data fusion yarışma kategorileri

YÖNTEM

Kullanılan veri setleri sayısal veri setleridir ve bu sayısal veri setleri bazı özelliklere göre sınıflandırma işlemine tabi tutularak işlemlere sokulmaktadırlar. Sayısal sınıflandırma kodlarına Tablo 1'den ulaşabilirisiniz.

Oluşturulan lidar lazer nokta bulutu x, y, z konum gibi bir çok bilgiyi ile saklanmaktadır. Bu bilgilerin birçoğu sınıflandırma işlemi sırasında kullanılması gereken önemli bilgilerdir.

TEŞEKKÜRLER

Kullanılmış olan veri setlerini bize sağlamış olduğu için Johns Hopkins Üniversitesi Uygulamalı Fizik Laboratuvarı-IARPA'ya ve Veri Füzyon Yarışması düzenleyen IEEE GRSS Görüntü Analizi ve Veri Füzyon Teknik Komitesi'ne ve çok değerli danışman hocam Arş. Gör. Dr. Ali Can KARACA'ya teşekkürlerimi sunarım.

Tablo1. Sınıflandırma kodları

SINIFLANDIRMA KODU	SINIFLANDIRMA SONUCU			
0	Sınıflandırılmamış			
1	Atanmayanlar			
2	Zemin			
3	Düşük Bitki Örtüsü			
4	Orta Bitki Örtüsü			
5	Yüksek Bitki Örtüsü			
6	Binan			
7	Düşük Nokta			
8	Ayrılmış			
9	Su			
10	Demiryolu			
11	Yol Düzeyi			
12	Ayrılmış			
13	Tel Koruma			
14	Tel İletken			
15	İletim Kulesi			
16	Tel Yapı Konnektorü			
17	Köprü Güverte			
18	Yüksek Gürültü			
19-63	Ayrılmış			
64-255	Kullanıcı Tanımlı			

Yapılan çalışmalarda ilk olarak x, y, z ve ışıklılık Ardından sadece ışıklılık değeri görselleştirilmiştir.

Şekil 2. Lidar veri setinin görselleştirilmesi

Şekil 3. Lidar ışıklılık değerinin görselleştirilmes

SONUÇLAR

Yapılan görselleştirmelerin ardından SVM ve KNN yöntemleri kullanılarak sınıflandırma başarım sonuçları analiz edilmiştir. SVM ve KNN için 6 öznitelikte elde edilen başarım sonuçlarına Tablo 2'den ulaşılabilir.

sınıflandırma Yapılan işleminden sonra confision matris eklenerek sınıflandırmada ki başarım oranları hakkında bilgilere basitçe ulaşılmıştır. Oluşturulan confision matrise Şekil 4'den ulaşılabilir.

Tablo2. Sınıflandırma başarım oranları

TDR	Linear	Gaussian	KNN	Cosine	Cubic
	SVM	SVM		KNN	KNN
1: 1000	85.6493	88.2719	68.7607	72.1578	67.8988
1:500	89.7629	89.1613	72.0056	72.6031	70.5863
1:250	91.5398	90.4712	79.3380	77.6199	78.2597
1:100	92.0786	92.3294	84.6451	82.3970	83.8442

Şekil 4. Confision matris

işlemlerin hiperspektral ardından sınıflandırma yöntemi olan SaCR, lidar veri setine entegre edilerek başarım oranları arttırılmıştır. Bu işlem yapılmadan önce SaCR parametreleri lidar veri seti için optimal seviyeye getirilmiştir (c=2.35, $lambda=10^{(-7)}$, SaCR yönteminin gamma=0.95). entegre işleminden sonra yöntem SVM ve KNN ile 3 ayrı veri seti üzerinden karşılaştırılmıştır.

Tablo3. JAX280 için sınıflandırma başarım oranları

TDR	Linear	Gaussian	KNN	Cosine	Cubic	SaCR
	SVM	SVM		KNN	KNN	
1:1000	78.4128	76.8830	65.5402	69.6790	66.4884	71.0699
1:500	80.4564	80.7282	74.2826	73.4148	76.8349	84.8711
1:250	80.2499	82.8087	79.3265	77.0013	83.0493	87.2392
1:150	81.1754	83.3654	80.0654	79.0353	84.7141	86.6103
1:100	81.6754	83.8032	80.7143	79.3041	84.6627	92.8345
1:50	81.2313	84.7802	82.5857	82.1878	89.4320	94.2495

Ayrıca 3 veri seti için elde edilen test başarım oranları sonuçlarının ortalaması alınarak hazırlanmış bar grafiğine Şekil 4'den ulaşılabilir.

Şekil 5. 3 veri seti için elde edilen başarımların ortalama sonuçları