R-package gofCopula

Ostap Okhrin, Simon Trimborn Qian M. Zhou, Shulin Zhang

Technische Universität Dresden
Humboldt-Universität zu Berlin
Simon Fraser University
Southwestern University of Finance and
Economics

https://tu-dresden.de/bu/verkehr/ivw/osv

http://lvb.wiwi.hu-berlin.de

http://stat.sfu.ca/

http://csr.swufe.edu.cn

Motivation — 1-1

Applications

- 1. medicine (Vandenhende (2003))
- 2. hydrology (Genest and Favre (2006))
- 3. biometrics (Wang and Wells (2000, JASA), Chen and Fan (2006, CanJoS))
- 4 economics
 - portfolio selection (Patton (2004, JoFE), Xu (2004, PhD thesis), Hennessy and Lapan (2002, MathFin))
 - time series (Chen and Fan (2006a, 2006b, JoE), Fermanian and Scaillet (2003, JoR), Lee and Long (2005, JoE))
 - risk management (Junker and May (2002, EJ), Breyman et.al. (2003, QF))

How to be sure, that we use a proper copula?

Motivation 1-2

Different tests ⇒ Different outcomes

Figure 1: Sample from Gauss copula with N(0,1) margins, $\theta=0.71$, N=250 and residuals transformed to standard normal for Citygroup/BoA for 2004.

Visually - Gaussian copula

Test 1: Gumbel, Test 2: Gauss, Test 3: Gauss

Motivation — 1-3

Different tests ⇒ Different outcomes

Figure 2: Sample from *t*-copula with N(0,1) margins, $\theta = 0.6$, N = 250 and residuals transformed to standard normal for Citygroup/BoA for 2006.

Visually - t-copula

Test 1: t-copula, Test 2: Gauss, Test 3: t-copula

Motivation — 1-4

Different tests ⇒ Different outcomes

Figure 3: Sample from Gumbel copula with N(0,1) margins, $\theta=2$, N=250 and residuals transformed to standard normal for Citygroup/BoA for 2009.

Visually - Gumbel copula

Test 1: Gumbel, Test 2: Gumbel, Test 3: Gauss

Goodness-of-Fit Tests

$$\mathcal{H}_0: C_0 \in \mathcal{C}$$
 vs. $\mathcal{H}_1: C_0 \not\in \mathcal{C}$

where $C = \{C(\cdot; \theta) : \theta \in \Theta\}$.

- $X_1 = (X_{11}, \dots, X_{1d})^{\top}, \dots, X_n = (X_{n1}, \dots, X_{nd})^{\top}$ random sample of size n drawn from multivariate distribution $H(x) = H(x_1, x_2, \dots, x_d)$
- $oxed{\Box}$ Continuous marginal cdf $F(x) = \{F_1(x_1), \dots, F_d(x_d)\}$

$$H(x_1, x_2, ..., x_d) = C_0\{F(x)\} = C_0\{F_1(x_1), ..., F_d(x_d)\}.$$

Motivation ---

Goodness-of-Fit tests for copulae

- Several tests available
- Different hypothesis
- Overall optimal test missing (for blanket tests)
- Computationally demanding

Outline

- 1 Motivation ✓
- 2. gofCopula
- 3. Application
- 4. Appendix
- 5. Bibliography

R-Paket gofCopula

- Goodness of Fit tests for copulae
 - Most tests in one package
 - Several margin structures
 - Most tests at least 3 dim
 - Automatized parallelization
- Hybrid test
 - p-value:

$$p_n^{hybrid} = \min \left(q \cdot \min \left(p_n^{(1)}, \dots, p_n^{(q)} \right), 1 \right)$$

with q tests and $p_n^{(i)}$ p-value of test i

Covered single tests

- gofRosenblattSnC ▶ Details

 ▶ Genest et al (2009)

- gofPIOSRn
 Details
- - ➤ Zhang et al (2015)
- ▶ General Definitions

gof Copula ----

- gofKendallCvM ▶ Details
- - → Genest et al (2006)
- - ► Genest (2008)
- - ▶ Scaillet (2007)
- - ► Huang and Prokhorov (2011)

Single tests - computation

Provided dataset

```
data(IndexReturns)
x = IndexReturns[c(1:100),c(1:2)]
```

Cramer-von Mises test for normality

```
gofRosenblattSnB("normal", x, M = 1000)
```

Computation time

```
[1] "The computation will take approximately 0 d, 0 h, 1 min and 36 sec."
```


gof Copula — 2-4

Single tests - result

```
Parametric bootstrap goodness-of-fit test with
RosenblattSnB test and normal copula
Tests results:
p.value test statistic rho.1
RosenblattSnB 0.626 0.3300644 0.6265811
```

Automatic margins estimation

```
Warning message:
In .gofRosenblattSnB(copula = copula, x = x, M = M, param = param, :
The observations are not in [0,1]. The margins will be estimated by the ranks of the observations.
```

Hybrid test - computation

Hybrid test for normality with 4 tests

```
gofHybrid("normal", x, testset = c("gofRosenblattSnB
    ", "gofRosenblattSnC", "gofSn", "gofPIOSRn"), M =
    1000)
```

Computation time

```
[1] "The computation will take approximately 0 d, 0 h, 4 min and 0 sec."
```


gof Copula — 2-6

Hybrid test - result

```
Parametric bootstrap goodness-of-fit test with hybrid test and normal
     copula
   Tests results:
                       p. value
                               test statistic rho 1
   RosenblattSnB
                         0.651
                                      0.33006438 0.6265811
   RosenblattSnC
                         0.590
                                     0.49268271 0.6265811
   Sn
                         0.998
                                     0.02592004 0.6265811
  PIOSRn
                         0.006
                                     0 73877935 0 6265811
   hvbrid (1. 2)
                       1.000
                                              NA 0 6265811
10 hybrid (1, 3)
                         1.000
                                              NA 0 6265811
   hybrid (2, 3)
                       1.000
                                              NA 0.6265811
11
12 hybrid (1, 2, 3)
                      1 000
                                              NA 0.6265811
13 hybrid (1, 4)
                       0.012
                                             NA 0.6265811
14 hybrid (2. 4)
                         0.012
                                             NA 0 6265811
   hybrid (1, 2, 4)
                         0 018
                                             NA 0 6265811
16 hybrid (3, 4)
                         0.012
                                              NA 0 6265811
17 hybrid (1, 3, 4)
                         0.018
                                              NA 0 6265811
18 hybrid (2, 3, 4)
                         0.018
                                              NA 0.6265811
19 hybrid (1, 2, 3, 4)
                         0.024
                                              NA 0.6265811
```


Parallelization

```
gofHybrid("normal", x, testset = c("
   gofRosenblattSnB", "gofRosenblattSnC", "gofSn"
, "gofPIOSRn"), M = 1000, processes = 4)
```

Computation time

```
[1] "The computation will take approximately 0 d, 0 h, 2 min and 34 sec."
```


Tests for copulae

Available tests for normal copula?

```
gofWhich("normal", d = 2)
[1] "gofHybrid" "gofRosenblattSnB" "gofRosenblattSnC"

[4] "gofRosenblattChisq" "gofRosenblattGamma"

[6] "gofSn" "gofKendallCvM" "gofKendallKS"

[9] "gofKernel" "gofWhite"
[11] "gofPIOSRn" "gofPIOSTn"
```

Use all for hybrid test

```
gofHybrid("normal", x, testset = gofWhich("normal",
    d = 2)[-1], M = 1000)
[1] "The computation will take approximately 0 d, 2
    h, 20 min and 15 sec."
```

Flexible testing structure

Adjust margins

```
margins = "norm"
gofHybrid("normal", x, testset = c("gofRosenblattSnB", "gofRosenblattSnC"), M = 10, margins = margins)
```

```
parameter = 0.2
gofHybrid("normal", x, testset = c("gofRosenblattSnB", "gofRosenblattSnC"), M = 10, param.est = F,
param = parameter)
```

#

Copulae for tests

Available copulae for test?

```
gofWhichCopula("gofRosenblattSnB")
[1] "normal" "t" "clayton" "frank" "gumbel"

gofWhichCopula("gofWhite")
[1] "normal" "clayton" "frank" "gumbel"
```


Copulae for tests

Use all tests with all copulae

```
copulae = gofWhichCopula("gofRosenblattSnB")
for (i in copulae){
print(gofHybrid(i, x, testset = gofWhich(i, d = 2)
        [-1], M = 10))
}
```

OR

```
gof(x, priority = "tests", M = 10)
```


gof

- Options of gof
 - ▶ priority ∈ {"tests", "copula"}
 - "tests": all tests for their shared copulae
 - "copula": all tests which support {"normal", "t", "gumbel", "clayton", "frank"}
 - copula: which copulae to use
 - tests: which tests to use
- priority just in effect if copula = tests = NULL

Interface to copula package

- Connection to copula package
- Usage of both packages may be desirable

Application — 3-1

Computation time

	normal	t	clayton	gumbel	frank
gofKendallCvM	21.81	31.21	40.88	58.90	39.02
gofKenda KS	20.80	30.60	31.18	54.60	27.38
gofKernel	17325.72	22556.60	17407.40	32082.61	14245.62
gofPIOSRn	21.73	33.65	19.24	43.90	13.90
gofPIOSTn	32.25	3170.06	2177.93	2550.00	1847.61
${\sf gofRosenblattChisq}$	19.70	29.14	18.94	45.35	13.20
${\sf gofRosenblattGamma}$	19.26	28.50	18.98	45.10	13.53
${\sf gofRosenblattSnB}$	99.57	107.94	101.28	123.73	95.27
${\sf gofRosenblattSnC}$	32.98	41.53	33.15	59.95	27.27
gofSn	48.64	59.16	19.57	30.09	13.77
gofWhit e	26.41		26.67	56.73	21.18

Table 1: The table shows the estimated computation time in seconds with the function gofCheckTime for every available test and copula for the mean over 50 iterations for simulated 2 dimensional normally distributed data with 100 observations.

gof Copula

Real data - cryptocurrencies

- Market index CRIX
- Bitcoin
- Data period: 2014-08-02 2016-07-24
- Variance correction with GARCH(1,1) model

Result

	normal	t	gumbel	clayton	frank
RosenblattSnC	0.30	0.51	0.55	0.35	0.61
KendallCvM	0.78	0.14	0.82	0.82	0.75
KendallKS	0.70	0.12	0.99	0.89	1.00
Sn	0.91	0.28	0.94	0.31	0.64
hybrid(1, 2, 3, 4)	1.00	0.37	1.00	1.00	1.00

Table 2: The table shows the p-values for 4 test and the hybrid test for 5 copula for CRIX and Bitcoin data.

R-package gofCopula

Ostap Okhrin, Simon Trimborn Qian M. Zhou, Shulin Zhang

Technische Universität Dresden
Humboldt-Universität zu Berlin
Simon Fraser University
Southwestern University of Finance and
Economics

https://tu-dresden.de/bu/verkehr/ivw/osv http://lvb.wiwi.hu-berlin.de http://stat.sfu.ca/ **SFU**

Definitions

- $oxed{\Box}$ Pseudo observations U_{ij} , $i=1,\ldots,n$, $j=1,\ldots,d$
- $oxed{\Box}$ Empirical copula: $C_n(\mathbf{u}) = \frac{1}{n} \sum_{i=1}^n \mathsf{I}(U_{i1} \leq u_1, \dots, U_{id} \leq u_d)$
- \Box Test statistic from bootstrapping round b: T_b
- oxdot Unknown parameter vector: heta
- \Box Estimate of θ : θ_n

→ Back

Appendix — 4-2

gofRosenblattSnB

- $oxed{\Box}$ Hypothesis: $C \in \mathcal{C}_0$
- Rosenblatt probability integral transform:

$$E_1 = \mathcal{R}(U_1), \dots, E_n = \mathcal{R}(U_n)$$

 $oxed{oxed}$ Mapping for vector ${f u}$ with $e_1=u_1$:

$$e_i = \frac{\partial^{i-1} C(u_1, \dots, u_i, 1, \dots, 1)}{\partial u_1 \cdots \partial u_{i-1}} / \frac{\partial^{i-1} C(u_1, \dots, u_{i-1}, 1, \dots, 1)}{\partial u_1 \cdots \partial u_{i-1}}$$

Test statistic T with $C_{\perp}(\mathbf{u}) = u_1 \cdot \dots \cdot u_d$ and $D_n(\mathbf{u}) = \frac{1}{n} \sum_{i=1}^n \mathsf{I}(E_i \leq \mathbf{u})$

$$T = n \int_{[0,1]^d} \{D_n(\mathbf{u}) - C_{\perp}(\mathbf{u})\}^2 d(\mathbf{u})$$

 \mathbf{p} -value: $\frac{1}{M} \sum_{b=1}^{M} \mathsf{I}(T_b \ge T)$

Appendix — 4-3

gofRosenblattSnC

- $oxed{\Box}$ Hypothesis: $C \in \mathcal{C}_0$
- Rosenblatt probability integral transform:

$$E_1 = \mathcal{R}(U_1), \ldots, E_n = \mathcal{R}(U_n)$$

■ Mapping for vector \mathbf{u} with $e_1 = u_1$:

$$e_i = \frac{\partial^{i-1} C(u_1, \dots, u_i, 1, \dots, 1)}{\partial u_1 \cdots \partial u_{i-1}} / \frac{\partial^{i-1} C(u_1, \dots, u_{i-1}, 1, \dots, 1)}{\partial u_1 \cdots \partial u_{i-1}}$$

Test statistic T with $C_{\perp}(\mathbf{u}) = u_1 \cdot \dots \cdot u_d$ and $D_n(\mathbf{u}) = \frac{1}{n} \sum_{i=1}^n \mathsf{I}(E_i \leq \mathbf{u})$

$$T = n \int_{[0,1]^d} \{D_n(\mathbf{u}) - C_{\perp}(\mathbf{u})\}^2 dD_n(\mathbf{u})$$

p-value: $\frac{1}{M} \sum_{b=1}^{M} I(T_b \ge T)$

gofKendallCvM

- $oxed{\Box}$ Rescaled pseudo observations: $V_1 = C_n(U_1), \ldots, V_n = C_n(U_n)$
- $oxed{\Box}$ Empirical distribution function K: $K_n(v) = \frac{1}{n} \sum_{i=1}^n \mathsf{I}(V_i \leq v)$

$$T = n \int_0^1 (K_n(v) - K_{\theta_n})^2 dK_{\theta_n}(v)$$

- Note: for bivariate Archimedean copulae H_0 and H_0'' are equivalent

Appendix —————————————————4-5

gofKendallKS

- $oxed{\Box}$ Rescaled pseudo observations: $V_1 = C_n(U_1), \dots, V_n = C_n(U_n)$
- $oxed{\Box}$ Empirical distribution function $K\colon K_n(v)=rac{1}{n}\sum_{i=1}^n \mathsf{I}(V_i\leq v)$
- Test statistic:

$$T = \sqrt{n} \sup_{[0,1]} |(K_n(v) - K_{\theta_n})| dK_{\theta_n}(v)$$

- o p-value: $frac{1}{M} \sum_{b=1}^{M} \mathsf{I}(T_b \geq T)$
- oxdots Note: for bivariate Archimedean copulae H_0 and H_0'' are equivalent

gofPIOSRn

- oxdot Hypothesis: $H_0: C_0 \in \mathcal{C}$
- Define

$$S(\theta) = -E_0 \left[\frac{\partial^2}{\partial \theta \partial \theta^{\top}} I\{U_1; \theta\} \right]$$
$$V(\theta) = -E_0 \left[\frac{\partial}{\partial \theta} I\{U_1; \theta\} I^{\top}\{U_1; \theta\} \right]$$

with / the likelihood.

$$T = tr\{S(\theta^*)^{-1} - V(\theta^*)\}$$

gofPIOSTn

- oxdot Hypothesis: $H_0:C_0\in\mathcal{C}$
- With I the likelihood, define

$$heta_n = rg \min_{ heta} \sum_{i=1}^n I(U_i; heta)$$
 $heta_n^{-b} = rg \min_{ heta} \sum_{b'
eq b}^M \sum_{i=1}^m I(U_i^{b'}; heta), b = 1, \dots, M$

Test statistic:

$$T = \sum_{b=1}^{M} \sum_{i=1}^{m} [I\{U_i^b; \theta_n\} - I\{U_i^b; \theta_n^{-b}\}]$$

p-value: $p = \frac{1}{M} \sum_{b=1}^{M} I(|T_b| \geq T)$

Appendix — 4-8

gofRosenblattChisq

- $oxed{\Box}$ Hypothesis: $C \in \mathcal{C}_0$
- Rosenblatt transformation, see pofRosenblattSnB
- Use Anderson-Darling test statistic: $G(x_i) = \chi_d^2(x_i)$ with $x_i = \sum_{i=1}^d (\Phi^{-1}(e_{ij}))^2$
- $oxdot \chi^2_d$ Chi-Squared distribution with d degrees of freedom and $\Phi \sim \mathcal{N}(0,1)$
- Test statistic:

$$T = -n - \sum_{i=1}^{n} \frac{2i-1}{n} [\log(G(x_i)) + \log(1 - G(x_{n+1-i}))]$$

 \odot p-value: $p = \frac{1}{M} \sum_{b=1}^{M} \mathsf{I}(|T_b| \geq T)$

Appendix ————————————————4-9

gofRosenblattGamma

- $oxed{\Box}$ Hypothesis: $C \in \mathcal{C}_0$
- Rosenblatt transformation, see pofRosenblattSnB
- Use Anderson-Darling test statistic: $G(x_i) = Γ_d(x_i)$ with $x_i = \sum_{i=1}^{d} (-\log e_{ij})$
- $\ \ \ \ \Gamma_d()$ Gamma distribution with shape parameter d and 1
- Test statistic:

$$T = -n - \sum_{i=1}^{n} \frac{2i-1}{n} [\log(G(x_i)) + \log(1 - G(x_{n+1-i}))]$$

 $oxed{oxed}$ p-value: $p=rac{1}{M}\sum_{b=1}^{M} \mathsf{I}(|T_b|\geq T)$

gofSn

- $oxed{\Box}$ Hypothesis: $C \in \mathcal{C}_0$

$$T = n \int_{[0,1]^d} \{C_n(\mathbf{u}) - C_{\theta_n}(\mathbf{u})\}^2 dC_n(\mathbf{u})$$

 \square p-value: $p = \frac{1}{M} \sum_{b=1}^{M} \mathsf{I}(|T_b| \geq T)$

Appendix — 4-11

gofKernel

- $oxed{\Box}$ Hypothesis: $C \in \mathcal{C}_0$
- Copula density kernel estimator:

$$c_n(\mathbf{u}) = \frac{1}{n} \sum_{i=1}^n K_H[\mathbf{u} - (U_{i1}, \dots, U_{id})^\top]$$

- \blacksquare $H=2.6073 n^{-1/6} \hat{\Sigma}^{1/2}$ with $\hat{\Sigma}$ sample covariance matrix
- Test statistic:

$$T = \int_{[0,1]^d} \{c_n(\mathbf{u}) - K_H * c(\mathbf{u}, \theta_n)\} \omega(\mathbf{u}) d\mathbf{u}$$

with * convolution operator and $\omega(\mathbf{u})$ a weight function.

p-value:
$$p = \frac{1}{M} \sum_{b=1}^{M} I(|T_b| \ge T)$$
gof Copula

gofWhite I

- Hypothesis: H_0 : $H(\theta) + S(\theta) = 0$ with $H(\theta)$ the Hessian matrix and $S(\theta)$ the outer product of the score function
- With

$$\begin{split} \bar{d}(\theta_n) &= \frac{1}{n} \sum_{i=1}^n vech(\mathsf{H}_n(\theta_n|\mathbf{u}) + \mathsf{S}_n(\theta_n|\mathbf{u})) \\ d(\theta_n) &= vech(\mathsf{H}_n(\theta_n|\mathbf{u}) + \mathsf{S}_n(\theta_n|\mathbf{u})) \\ V_{\theta_n} &= \frac{1}{n} \sum_{i=1}^n (d(\theta_n) - D_{\theta_n} \mathsf{H}_n(\theta_n)^{-1} \delta I(\theta_n)) (d(\theta_n)) \\ &- D_{\theta_n} \mathsf{H}_n(\theta_n)^{-1} \delta I(\theta_n))^\top \end{split}$$

gofWhite II

Further define

$$D_{\theta_n} = \frac{1}{n} \sum_{i=1}^{n} [\delta_{\theta_k} d_l(\theta_n)]_{l=1,...,\frac{\rho(p+1)}{2},k=1,...,p}$$

with $I(\theta_n)$ log likelihood function and p length of θ

Test statistic:

$$T_n = n(\bar{d}(\theta_n))^{\top} V_{\theta_n}^{-1} \bar{d}(\theta_n)$$

 \Box p-value: $T > (1-\alpha)(\chi^2_{p(p+1)/2})^{-1}$

Bibliography

Shulin Zhang, Ostap Okhrin, Qian M. Zhou and Peter Song (2015)

Goodness-of-Fit test for specification of semiparametric copula dependence models

SFB 649 Discussion Paper

Christian Genest, Bruno Rémillard and David Beaudoin (2007) Goodness-of-Fit tests for copulas: A review and a power study Insurance: Mathematics and Economics

5-2

Bibliography

Jun Yan (2007)

Enjoy the Joy of Copulas: With a Package copula

Journal of Statistical Software

