Jack Lanchantin CS 6501 HW2

1.1

$$J(\beta) = (y - X\beta)^2 + \lambda \beta \beta$$

= $(y - X\beta)^T (y - X\beta) + \beta^T (\lambda I)\beta$
= $y^T y - 2yX\beta + X^T X\beta^T \beta + \beta^T (\lambda I)\beta$

$$\nabla_{\beta} J(\beta) = -2y^T X + 2X^T X \beta + 2\lambda I \beta$$
$$0 = -2y^T X + \beta (2X^T X + 2\lambda I)$$
$$2y^T X = \beta (2X^T X + 2\lambda I)$$
$$\beta = (X^T X + \lambda I)^{-1} y^T X$$

1.2

$$X = \begin{bmatrix} 1 & 2 \\ 3 & 6 \\ 5 & 10 \end{bmatrix}, Y = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T$$

$$\theta = (X^T X)^{-1} X^T y$$

$$X^TX = \begin{bmatrix} 5 & 15 & 25 \\ 15 & 45 & 75 \\ 25 & 75 & 125 \end{bmatrix} \longrightarrow non\ invertable$$

- => Cannot be solved by linear regression because X^TX is non-invertable
- 1.3 Lasso Regression should be used because it can generate a sparse β vector
- 1.4 See graphs at end of document
- 1.5 Ridge regression performs better on this data set. This is probably due to the fact that after running linear regression between x_1 and x_2 , I found that $\theta \approx 2$. This means that the features are not linearly independent $(x_2 \approx 2x_1)$, and thus the X^TX matrix is non invertable, so using λ I in the ridge regression to regularize the function makes it so that the X^TX matrix is guaranteed to be invertable, resulting in a more accurate β .

2.3 Table of Kernels and Parameters

Degree	Gamma	Test Accuracy	Train Accuracy
3	0	84.8683%	84.6414%
3	0	78.0783%	78.2669%
) 3	0	84.7457%	84.5816%
) 4	0	82.3718%	82.5099%
00 3	0	85.2595%	84.8605%
3	0	84.9976%	84.7343%
) 3	0	86.1381%	85.2988%
) 3	0.1	91.708%	
)			
	3 3 3 0 3 0 4 00 3 3 0 3 3 3 3 3 3 3	3 0 3 0 0 3 0 0 4 0 00 3 0 3 0 0 3 0 0 3 0	3 0 84.8683% 3 0 78.0783% 0 3 0 84.7457% 0 4 0 82.3718% 00 3 0 85.2595% 3 0 84.9976% 0 3 0 86.1381% 0 3 0.1 91.708%