#### Part C: Panel Data Methods

### C1: Linear Panel Data Methods Recap

Kirill Borusyak

ARE 213 Applied Econometrics

UC Berkeley, Fall 2024

#### Panel data methods: Outline

1. Recap of linear panel data methods

2. Canonical DiD and event studies

3. DiD with staggered adoption

4. Synthetic control methods and factor models

#### C1 outline

1 Linear panels: Estimation, inference, efficiency

2 Some extensions

3 Application: The AKM model

#### Motivation

- Selection on observables is rarely convincing in cross-sectional data
  - ► Self-selection is complex, too many unknown confounders
- To allow for selection on (some) unobservables, leverage repeated observations for the same unit over time — panel data
  - How do outcomes change when treatment changes?
  - ► This doesn't resolve the fundamental problem of causal inference but helps controls for unobserved confounders that are time-invariant
- Panel data are also helpful to evaluate effect dynamics

### Linear panel model

• For i = 1, ..., I and t = 1, ..., T, consider a constant-effects model

$$Y_{it} = \beta' X_{it} + \alpha_i + \varepsilon_{it}$$

where  $\beta$  is of interest;  $\alpha_i$  is additive "unobserved heterogeneity"

- Denote  $\mathbf{X}_i = (X_{i1}, \dots, X_{iT})$ ,  $\mathbf{Y}_i = (Y_{i1}, \dots, Y_{iT})$ ,  $\boldsymbol{\varepsilon}_i = (\varepsilon_{i1}, \dots, \varepsilon_{iT})$
- Every (i, t) is observed  $\Longrightarrow$  balanced panel; with missing data: unbalanced panel
- Strict exogeneity:  $\mathbb{E}\left[\varepsilon_{it} \mid X_{i1}, \dots, X_{iT}, \alpha_i\right] = 0$  no time-varying confounders
  - ▶ Precludes  $X_{it} \equiv Y_{i,t-1}$  as one of the RHS variables see "dynamic panel" models

#### Random and fixed effects

- If selection on  $\alpha_i$  is allowed,  $\mathbb{E}\left[\alpha_i \mid \mathbf{X}_i\right] \neq const$ ,  $\alpha_i$  is called **fixed effect** 
  - ▶ If  $\mathbb{E}\left[\alpha_i \mid \mathbf{X}_i\right] = const$  (no selection on unobservables)  $\Longrightarrow \alpha_i$  is a **random effect**
  - ► These labels are not about whether  $\alpha_i$  is stochastic (think random sample of  $(\alpha_i, \mathbf{X}_i, \varepsilon_i, \mathbf{Y}_i)_{i=1}^N$ )
- To estimate  $\beta$  in the FE model, remove  $\alpha_i$  in different ways:
  - ► "FE regression": Dummy variable regression = within transformation
  - First differences
  - Long differences
- Note: random effect model allows for more estimation methods
  - ▶ "Pooled OLS" regression of  $Y_{it}$  on  $X_{it}$  across i, t identifies  $\beta$
  - "Random effects" Generalized Least Squares estimator

# Estimation by dummy variables (FE) regression

• View  $\{\alpha_i\}$  as a set of nuisance parameters multiplying dummies for each unit:

$$Y_{it} = \beta' X_{it} + \sum_{i=1}^{I} \alpha_j W_{ji} + \varepsilon_{it}, \qquad W_{ji} \equiv \mathbf{1} [i = j]$$
 (\*)

- ▶ *Note*: don't write e.g.  $Y_{it} = \beta' X_{it} + \sum_{j} \alpha_j + \varepsilon_{it}$ ,
- By FWL, OLS estimation of (\*) is identical to OLS after within transformation:

$$\dot{Y}_{it} = eta' \dot{X}_{it} + \dot{arepsilon}_{it}, \qquad \dot{V}_{it} \equiv V_{it} - \bar{V}_{i} = V_{it} - \frac{1}{T} \sum_{t=1}^{T} V_{is}$$

- Exercise: prove this
- By strict exogeneity,  $\mathbb{E}\left[\dot{X}_{it}\dot{\varepsilon}_{it}\right] = \mathbb{E}\left[\left(X_{it} \frac{1}{T}\sum_{s=1}^{T}X_{is}\right)\left(\varepsilon_{it} \frac{1}{T}\sum_{s=1}^{T}\varepsilon_{is}\right)\right] = 0$   $\Longrightarrow$  estimation is consistent for  $\beta$
- ▶ This is much faster than using I dummies! Use reghdfe in Stata, fixest in R

## Estimation by differencing

• The FE model also implies the first-difference (FD) specification:

$$\Delta Y_{it} = \beta' \Delta X_{it} + \Delta \varepsilon_{it}, \qquad \Delta V_{it} \equiv V_{it} - V_{i,t-1}, \quad t = 2, \dots, T$$

with  $\mathbb{E}\left[\Delta X_{it} \cdot \Delta \varepsilon_{it}\right] = 0$  by strict exogeneity

- ▶ Exercise: with T = 2, OLS estimators of FE and FD equations are identical, even in unbalanced panels
- And a long-difference specification: for h > 1,

$$Y_{it} - Y_{i,t-h} = \beta' (X_{it} - X_{i,t-h}) + (\varepsilon_{it} - \varepsilon_{i,t-h}), \qquad t = h+1,\ldots,T$$

with 
$$\mathbb{E}\left[\left(X_{it}-X_{i,t-h}\right)\cdot\left(\varepsilon_{it}-\varepsilon_{i,t-h}\right)\right]=0$$

### Asymptotic sequences

- Conventional asymptotic: short panel
  - A growing sample of I units for a fixed number of periods, T
  - Note: number of parameters in the FE regression is  $\propto$  sample size. Not a catastrophe but one needs to be careful
- Alternative asymptotic: long panel
  - ▶ The sample grows by increasing both I and T (at the same or different rates)
  - ▶ More appropriate when  $I \approx T$

#### Inference

Heteroskedasticity-robust SEs in cross-sectional regressions rely on

$$\operatorname{Var}\left[\sum_{it}X_{it}\varepsilon_{it}\right] = \mathbb{E}\left[\sum_{it}X_{it}X_{it}'\varepsilon_{it}^{2}\right], \quad \text{as } \mathbb{E}\left[X_{it}X_{js}'\varepsilon_{it}\varepsilon_{js}\right] = 0 \text{ for } it \neq js$$

- In FE regressions, need  $\mathbb{E}\left[\dot{X}_{it}\dot{X}_{js}\dot{\varepsilon}_{it}\dot{\varepsilon}_{js}\right]=0$  for  $it\neq js$ , which tends to fail:
  - $ightharpoonup arepsilon_{it}$  are often serially correlated
  - ▶ In short panels,  $\dot{\varepsilon}_{it}$  are serially correlated even if  $\varepsilon_{it}$  are not
- In FD regressions, need  $\mathbb{E}\left[\Delta X_{it}\Delta X'_{js}\Delta \varepsilon_{it}\Delta \varepsilon_{js}\right]=0$  for  $it\neq js$ 
  - ▶ But  $\Delta \varepsilon_{it}$  is correlated with  $\Delta \varepsilon_{i,t-1}$ , unless  $\varepsilon_{it}$  follows a random walk
- Solution: cluster-robust ("clustered") SEs (e.g. Bertrand, Duflo, Mullainathan (2004))

## Cluster-robust inference (1)

For pooled OLS of  $Y_{it}$  on  $X_{it}$  without FEs:

$$\hat{\beta} = \left(\sum_{i} \sum_{t} X_{it} X_{it}^{\prime}\right)^{-1} \left(\sum_{i} \sum_{t} X_{it} Y_{it}^{\prime}\right)$$

$$\sqrt{I} \cdot \left(\hat{\beta} - \beta\right) = \underbrace{\left(\frac{1}{I} \sum_{i} \left(\sum_{t} X_{it} X_{it}^{\prime}\right)\right)^{-1} \cdot \left(\frac{1}{\sqrt{I}} \sum_{i} \left(\sum_{t} X_{it} \varepsilon_{it}\right)\right)}_{\stackrel{\mathcal{D}}{\to} \mathcal{N}\left(0, \operatorname{Var}\left[\sum_{t} X_{it} \varepsilon_{it}\right]\right)}$$

$$I \cdot \widehat{Var} \left[\hat{\beta}\right] = \left(\frac{1}{I} \mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \cdot \left(\frac{1}{I - \dim(X)} \sum_{i} \left(\sum_{t} X_{it} \hat{\varepsilon}_{it}\right) \left(\sum_{t} X_{it} \hat{\varepsilon}_{it}\right)^{\prime}\right) \cdot \left(\frac{1}{I} \mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$$

### Cluster-robust inference (2)

• Alternative derivation for the "sandwich meat":

$$\operatorname{Var}\left[\sum_{i}\left(\sum_{t}X_{it}\varepsilon_{it}\right)\right] = \sum_{it}\sum_{js}\mathbb{E}\left[X_{it}X_{js}'\varepsilon_{it}\varepsilon_{js}\right] = \sum_{i}\sum_{t,s=1}^{T}\mathbb{E}\left[X_{it}X_{is}'\varepsilon_{it}\varepsilon_{is}\right]$$

because all terms with  $i \neq j$  are zero

• Warning: the approximation requires I to be large. Not enough to have large IT

### Choosing between estimators

- Efficiency:
  - ▶ FE estimator is efficient when  $\varepsilon_{it}$  are serially uncorrelated
  - ▶ FD estimator is efficient when  $\varepsilon_{it}$  follow a random walk
  - It's not about persistence in the outcome (which could come from  $\alpha_i$ ) but about differential persistence of observations close in time
- Robustness to model misspecification:
  - $\triangleright$  E.g. violations of strict exogeneity, measurement error in  $X_{it}$
- Fads: FE estimation is more popular; it appears that you've controlled for more
  - ► False, plus FD & long-diffs are more transparent (especially in more complex situations)
  - If you use a FE specification, always rewrite it in FD



Your honor, those are my emotional support fixed effects.

#### Outline

1 Linear panels: Estimation, inference, efficiency

2 Some extensions

3 Application: The AKM model

#### Some extensions

1. Two-way fixed effects

2. Effect dynamics

3. Nonlinear panel models

4. Fixed effects beyond panel data

# Two-way fixed effects (TWFE)

• Besides  $\alpha_i$ , we may want to include (additive) period effects  $\gamma_t$  to capture shocks that affect all units:

$$Y_{it} = \beta' X_{it} + \alpha_i + \gamma_t + \varepsilon_{it} \tag{\#}$$

- Unlike  $\alpha_i$ , period FEs are non-stochastic parameters (on period dummies)
- (#) requires an innocuous normalization on  $\{\alpha_i\}$  or  $\{\gamma_t\}$
- FE estimator: in balanced panels, OLS from double-differenced specification:

$$\ddot{Y}_{it} = eta' \ddot{X}_{it} + \ddot{arepsilon}_{it}, \qquad \ddot{V}_{it} \equiv \left(V_{it} - \bar{V}_i\right) - \left(\bar{V}_t - \bar{V}\right)$$

- ▶ Follows from FWL, because unit and period dummies are exactly orthogonal
- FD estimator: OLS from  $\Delta Y_{it} = \beta' \Delta X_{it} + \Delta \gamma_t + \Delta \varepsilon_{it}$  with period FEs  $\Delta \gamma_t$

### Modeling effect dynamics

• **Distributed lags** model can be accommodated with no change:

$$Y_{it} = \beta_0' X_{it} + \beta_1' X_{i,t-1} + \dots \beta_L' X_{i,t-L} + \alpha_i + \varepsilon_{it}$$

Lagged dependent variable on the RHS: dynamic panel model

$$Y_{it} = \rho Y_{i,t-1} + \beta' X_{it} + \alpha_i + \varepsilon_{it}$$

- ullet Violates strict exogeneity:  $arepsilon_{it}$  can't be mean-independent of  $Y_{i,s-1}$  for s=t+1
- ▶ FE estimation is not consistent in short panels: "Nickell bias"
- Can use Arellano-Bond GMM estimator

## Nonlinear panel data models

Nonlinear models with fixed effects are much more complicated. Consider binary choice models:

$$Pr(Y_{it} = 1 \mid X_{it}, \alpha_i) = F(\beta' X_{it} + \alpha_i), \qquad F = \text{probit or logistic}$$

- Likelihood estimation of  $\beta$  along with  $\{\alpha_i\}$  results in the **incidental parameter problem**:  $\hat{\beta}$  is inconsistent in short panels
  - lacktriangle The problem doesn't arise with linear F because the within transformation kills  $lpha_i$
- For logistic regression (but not probit), a different estimator is consistent for  $\beta$ : "conditional logit"
  - But not for average partial effects which depend on  $\alpha_i$
- More progress with long panels; see Fernández-Val and Weidner (Annual Review of Economics, 2018)

### FEs beyond panel data

There are other types of data with repeated observations:

- 1. Twin studies = repeated observations in the same family
  - ▶ E.g. Ashenfelter and Rouse (1998) estimate returns to schooling for twins
    - ★  $X_i$  = years of schooling
    - ★ Family FEs control for genetic differences
  - Warning: why does education vary between twins?
    - ★ Need to explain why confounders are the same between the twins while  $X_{it}$  is not
    - ★ Bound and Solon (1999): first-borns have higher weight, IQ, schooling

# FEs beyond panel data (2)

There are other types of data with repeated observations:

- 2. County-level cross-section = repeated observations for the same state
  - State FEs control for additive state-level unobservables
- 3. In a county-level panel, can include state-by-year FEs:

$$Y_{it} = \beta' X_{it} + \alpha_i + \gamma_{s(i),t} + \varepsilon_{it}$$

- ▶ Including  $\gamma_{s(i),t}$  demeans  $Y_{it}$  and  $X_{it}$  by state-year-specific means
- ▶ *Note*:  $\sum_{s',t'} \gamma_{s't'} \mathbf{1}[s(i) = s'] \times \mathbf{1}[t = t']$  is correct notation;  $\gamma_{s(i)} \times \delta_t$  is wrong

# FEs beyond panel data (3)

There are other types of data with repeated observations:

- 4. Repeated cross-sections: in each year a new random sample from each state
  - Can't control for individual heterogeneity
  - But state FEs control for additive state-level unobservables
  - Cluster at the state-level if X<sub>it</sub> only varies by state
- 5. Dyadic data: e.g. how does distance  $X_{ij}$  between exporting country i and importing country j affect log trade flow  $Y_{ij}$ ? (Gravity equation)
  - Exercise: Which fixed effects would you include? How would you cluster standard errors?

#### Outline

1 Linear panels: Estimation, inference, efficiency

Some extensions

3 Application: The AKM model

### Application: Are there good firms?

- Abowd, Kramarz, Margolis (1999): Are there good firms that pay higher wages to the same workers?
  - ► How much variation in wages is explained by worker characteristics? By firm characteristics?
  - ▶ Do "better" workers tend to work for "better" firms?
- Use employer-employee matched data for France
  - A panel of workers i: observe employer ID j(it), experience, wages

#### AKM model

Model of log-wages  $Y_{it}$ :

$$Y_{it} = \beta' X_{it} + \alpha_i + \gamma_{j(it)} + \varepsilon_{it}$$

- $X_{it}$  are time-varying observables, e.g. experience **not** of interest
- $\{\alpha_i\}$  are worker FEs;  $\{\gamma_i\}$  are firm FEs
- $\varepsilon_{it}$  captures match-specific wage premium
- Relative firm FEs are identified by movers:

$$\Delta Y_{it} = \beta' \Delta X_{it} + (\gamma_{j(it)} - \gamma_{j(i,t-1)}) + \Delta \varepsilon_{it}$$

- (actual estimation via dummy variable regression, not in first-differences)
- Requires **exogenous mobility**  $\mathbb{E}\left[\varepsilon_{it} \mid X_{it}, \alpha_i, \mathbf{\textit{j}}(it)\right] = 0$ : matching of firms and workers can depend on FEs but not on match quality  $\varepsilon_{it}$

# Testing exogenous mobility (Card, Heining, Kline 2013)

Do movers from high- $\gamma$  to low- $\gamma$  firms lose *less* than movers from low- $\gamma$  to high- $\gamma$  gain?



 $F_{\rm IGURE}\ V$  (use quartiles of average wages paid to other workers; German employer-employee data)

#### Estimation issues

- Abowd et al. (1999) compute:
  - Variances of  $\hat{\alpha}_i$  and  $\hat{\gamma}_{j(it)}$  as worker and firm contributions to wage inequality
  - Covariance of  $\hat{\alpha}_i$  and  $\hat{\gamma}_{j(it)}$  as a measure of sorting
- But FEs are not estimated consistently!
  - ▶ For all workers, at most 8 wage observations  $\Rightarrow \operatorname{Var}\left[\hat{\alpha}_{i}\right]$  biased  $\uparrow$
  - ► For many firms, there are only a few movers  $\Rightarrow \operatorname{Var}\left[\hat{\gamma}_{j(it)}\right]$  biased  $\uparrow$  and  $\operatorname{Cov}\left[\hat{\alpha}_{i},\hat{\gamma}_{j(it)}\right]$  biased  $\downarrow$
- Kline, Saggio, Solvsten (2020) provide a bias correction
  - ▶ Consistent estimates of  $\operatorname{Var}\left[\alpha_{i}\right], \operatorname{Var}\left[\gamma_{j(it)}\right], \operatorname{Cov}\left[\alpha_{i}, \gamma_{j(it)}\right]$  without consistent estimates of the FEs

# Kline et al. findings (for Veneto region in Italy)

TABLE II VARIANCE DECOMPOSITION<sup>a</sup>

|                                     | Pooled | Younger Workers | Older Workers |
|-------------------------------------|--------|-----------------|---------------|
| Variance of Firm Effects            |        |                 |               |
| Plug in (PI)                        | 0.0358 | 0.0368          | 0.0415        |
| Homoscedasticity Only (HO)          | 0.0295 | 0.0270          | 0.0350        |
| Leave Out (KSS)                     | 0.0240 | 0.0218          | 0.0204        |
| Variance of Person Effects          |        |                 |               |
| Plug in (PI)                        | 0.1321 | 0.0843          | 0.2180        |
| Homoscedasticity Only (HO)          | 0.1173 | 0.0647          | 0.2046        |
| Leave Out (KSS)                     | 0.1119 | 0.0596          | 0.1910        |
| Covariance of Firm, Person Effects  |        |                 |               |
| Plug in (PI)                        | 0.0039 | -0.0058         | -0.0032       |
| Homoscedasticity Only (HO)          | 0.0097 | 0.0030          | 0.0040        |
| Leave Out (KSS)                     | 0.0147 | 0.0075          | 0.0171        |
| Correlation of Firm, Person Effects |        |                 |               |
| Plug in (PI)                        | 0.0565 | -0.1040         | -0.0334       |
| Homoscedasticity Only (HO)          | 0.1649 | 0.0726          | 0.0475        |
| Leave Out (KSS)                     | 0.2830 | 0.2092          | 0.2744        |
| Coefficient of Determination (R2)   |        |                 |               |
| Plug in (PI)                        | 0.9546 | 0.9183          | 0.9774        |
| Homoscedasticity Only (HO)          | 0.9029 | 0.8184          | 0.9524        |
| Leave Out (KSS)                     | 0.8976 | 0.8091          | 0.9489        |

#### **Extensions**

AKM-style models have also been applied in other settings:

Wages depend on worker FE and city FE (Glaeser and Mare 2001)

 Changes in credit depends on bank FE and client firm FE (in a cross-section; Amiti and Weinstein 2018)