INDEX

Symbols and Numbers	abstraction, 2	brick texture example, 56,
2D antialiasing, 176	a-buffer rendering algorithm,	57
2D slices of noise functions, 74	205	cyberspace and, 622
2D texture mapping	additive cascades, multiplicative	defined, 52
for clouds, 267	cascades vs., 440	fractal octaves and, 585
limitations of, 10	Advanced RenderMan, 102,	image textures vs. proce-
methods, 197-199	129	dural textures and,
3D Nature's World Construc-	Adventures of André & Wally	15
tion Set, 580	B, The, 259, 260	index aliasing, 158-166
3D tables for controlling anima-	aerial perspective, 529-530	maximum frequency and,
tion, 244-254	aesthetic n-space model,	53, 54
accessing table entries,	548-549, 559	MojoWorld function frac-
245	air currents. See wind	tals and, 602–604
breeze effect using attrac-	Air Force One, 473, 525	Nyquist frequency and,
tor, 247, 248,	algorithms	53–54
252–253, 254	a-buffer rendering algo-	planetary rings example,
combinations of functions,	rithm, 205	163–166
251–254	for cumulus clouds, 272,	in procedural textures,
common dimensions for,	274	55–56
245	explicit noise algorithms,	sampling rate and, 53, 54
flow into hole in wall,	82–83	in signal processing, 53–54
253-254, 255	genetic algorithms vs. ge-	signal processing concepts,
functional flow field func-	netic programming,	52–56
tions, 246–251	558-559	smoothstep function for
functional flow field tables,	multipass pixel shader im-	avoiding, 31
245, 246	plementation of noise	sources of, 158–160
nonuniform spacing be-	function, 423–425	supersampling and, 54
tween entries,	QAEB, 513-514	temporal, 175
244–245	real-time procedural solid	white noise and, 68
overview, 244–245	texturing, 413–416	Alias's Maya animation system.
vector field tables, 245	REYES (PRMan),	See Maya animation
wind effects, 252-254	103–106	system
3D textures, converting to im-	ridge algorithm for bump	ambient function (RenderMan),
age maps, 197–199	mapping, 187	21
4D cellular texturing, 149	shadow table algorithm,	amplification
4D noise functions, 84, 181	207–208	data amplification algo-
	volume-rendering algo-	rithms for procedural
	rithm for gases, 206	geometry, 305,
abs function (RenderMan),	Alias Dynamation, 524	312–314
29–30	aliasing. See also antialiasing	database amplification, 2
		

amplification (continued)	animating volumetric proce-	alternatives to low-pass fil-
by fractals, 436	dural clouds,	tering, 66–67
intermediate representa-	279–283	analytic prefiltering tech-
tion and, 313	implicit primitive anima-	niques, 56-57, 61-66
proceduralism and, 549	tion, 280–283	blending between texture
amplitude of fractals, 433	procedural animation,	versions for, 66
analytic prefiltering	279–280	blur effects for, 175-176
box filter for, 61-62,	animation	blurring color map for,
64–65	aliasing problems	175
brick texture example,	magnified by, 157	box filter for, 61–62,
64–66	cellular texturing for, 149	64–65
filters with negative lobes,	clip animation, 391	brick texture example,
62	ease-in and ease-out proce-	64–66
integrals for, 3-4, 65	dures, 229	bump mapping and, 59
overview, 56–57	flame shader, noise-based	clamping method, 56,
smoothstep function for,	procedural, 124-129	59–61
62	paths for, 228–229	edges that result from con-
summed-area table	of real-time effects, 291	ditionals, 369–376
method, 63–64	textural limb animation,	efficiency issues, 157
Animatek's World Builder, 580	387, 391–395	emergency alternatives,
animating gaseous volumes,	texture for facial move-	175–176
235–243	ment, 395–409	exaggerating spot size for,
helical path effects,	textures for, 196–197	175
236–243	time-animated fractal	filters with negative lobes
rolling fog, 238–239	noise, 181	for, 62
smoke rising, 239–243	anisotropic1 shader, 114-115	fractal octave reduction
steam rising from teacup,	anisotropic2 shader, 115-116	for, 585
236–238	anisotropic shading models	high-contrast filter for,
animating hypertextures,	development of, 8	371–372, 373–374
254–256	Heidrich/Banks model,	if functions vs. step func-
animating solid spaces, 227–261	112–116	tions for, 28
animating solid spaces, 227–201 animation paths, 228–229	antialiased rendering of proce-	image textures vs. proce-
approaches, 227–228	dural textures,	dural textures and, 15
changing solid space over	369–376	importance of, 157
time, 227, 229–232	background, 370	index antialiasing,
ease-in and ease-out proce-	basic idea, 370–372	160–166
dures, 229	detailed description,	integrals for, 63–64, 65
	372–373	low-pass filtering, 54
hypertextures, 254–256		
marble procedure for ex-	examples, 374–376	methods for procedural
amples, 229	high-contrast filter,	textures, 56–67
moving screen space point	371–372, 373–374	modeling input distribu-
through solid space,	ifpos pseudofunction for,	tion, 161–162
227, 228, 232–233,	371, 372–373	object space vs. screen
235–243	nested conditionals and,	space shading and,
solid textured transpar-	369	106
ency, 233–235	overview, 369, 376	optimization and verifica-
three-dimensional tables	antialiasing, 52–67, 157–176,	tion, 173–175
for controlling ani-	369–376. See also	PhotoRealistic RenderMan
mation, 244–254	aliasing	scheme, 55

planetary rings example,	rotation matrices for hid-	minimal Rayleigh scatter-
163–166	ing, 180, 181	ing approximation,
in QAEB tracing, 516	seam artifacts, avoiding,	536, 539
reference image for, 174	419–421	numerical quadrature with bounded error for ra-
by renderers, 55–56	terrain creases as, 498 ArtMatic, 557	
rendering procedural tex-		dial GADDs, 542–544
tures, 369–376	assembly language, for shading,	optical depth, 531
rendering texture as 2D	high-level language	optical paths, 531, 534
image, 176	vs., 100–101 atlas	physical models vs., 530
sampling and bumping, 170–173		radially symmetric plane-
	area-weighted mesh atlas, 417–418	tary atmosphere, 534–536
sampling rate determina-		
tion, 57–59	based on clusters of proxi-	scattering models for, 529,
smoothstep function for,	mate triangles, 418, 419	530, 536, 539
62		terminology, 531
spot size calculation, 166–170	defined, 416	trapezoidal quadrature for
	length-weighted atlas, 418	radial GADDs, 539–542
stochastic sampling, 55, 67	for real-time procedural	
sum table for, 162–163	solid texturing, 416–419	atmospheric perspective, 529
summed-area table		attractors
method, 63–64	to support MIP mapping, 418–419	combinations of functions,
supersampling, 10–13, 54,		251–254
66–67, 157	uniform meshed atlas, 416–417	creating repulsors from, 246
temporal, 175		•
test scene design, 174 by texture instead of ren-	atmosphere, fractal properties of, 570	extensions of spherical at- tractors, 249
derer, 170–173	atmospheric dispersion effects	overview, 247
two-dimensional, 176	for gaseous phenom-	spherical, 247–249
API routines	ena, 205	Avatars, 391
interface between shaders	atmospheric models, 529–544.	axioms in L-system, 308
and applications,	See also color per-	axioms in L-system, 500
118–121	spective; GADDs	
OpenGL, 118	(geometric atmo-	banded color, sine function for,
in Stanford shading lan-	spheric density distri-	230
guage, 118–120	bution models)	band-limited fractals, 434
Apollo 13, 473	aerial perspective, 529–530	bandwidth
applytexture program,	Beer's law and homoge-	memory bandwidth and
111–112	nous fog, 531–532	performance tuning,
architectexture, 359–362	curved, 569–570	110
area-weighted mesh atlas,	dispersion effects for gas-	in signal processing, 52
417–418	eous phenomena, 205	basic_gas function
art, computer's role in, 482	elements involved in, 529,	overview, 214–215
artifacts	530	patchy fog using, 216
frequency multiplier and	exponential mist, 532, 534	power function effects on,
lattice artifacts, 88–89	extinction, 531–532	215–216
grid-oriented artifacts, re-	global context for land-	sine function effects on,
ducing, 348	scape, 530	215, 216
from noise algorithms,	integration schemes for,	steam rising from teacup
88–89, 180–181, 348	529, 534–544	using, 216–219, 220
·		= -

basis functions of fractals	Blue Moon Rendering Tools	brick mortar example,
defined, 582	(BRMT), 102	44–45
manipulating for variety,	blurring	brick texture example,
450	blur effects for	41–46
MojoWorld, 450, 582, 583, 590–597	antialiasing, 175–176 color map for antialiasing,	cellular textures, 140, 141, 142
overview, 432–433	175	correct vs. incorrect,
for random fractals, 583	bombing, random placement pat-	171–173
visual effects for homoge-	terns based on, 91–94	geometry of, 42
nous fBm terrain	bounding volumes for proce-	impressive textures' use of
models, 497–498	dural geometry,	183
basketball, texture baking ex-	330–332	methods, 183–187
ample for, 198–199	box filter for antialiasing,	overview, 9, 41–43
Beer's law, atmospheric models	61–62, 64–65	ridge algorithm for,
and, 531–532	boxstep function (RenderMan)	183–187
bevel for bump mapping. See ridge for bump	analytic prefiltering using, 61–62	rotation matrices for hid- ing artifacts, 180
mapping	brick texture antialiasing	texture spaces and, 45-46
bias function	example, 64–65	for water ripples, 461, 463
gain function and, 39	brick textures	"Bursting," 17
for gamma correction,	aliasing in, 56, 57	bushes, L-system for modeling,
37–38	antialiased example, 64-66	318-320
biasb function	bump-mapped brick,	
defined, 339	41–46	
for tuning fuzzy regions,	bump-mapped mortar,	C language, translating
339, 340	44–45	RenderMan shading
bicubic patch modeling with L-	determining whether point	language into, 19
system, 311	is in brick or mortar,	calc_noise function, 212-213
bilinear filtering, seam artifacts	41	calculatenormal function, de-
and, 420–421	images rendered using, 42,	scribed, 44
billboards	46, 66	calc_vortex procedure,
for cloud modeling, 268	offsetting alternate rows,	250–251
for gases, 209	41	camera space (RenderMan)
billowing clouds, 523–524	perturbed, 89–90	current space and, 24
binding	procedural texture genera-	solid textures and, 24–25
early vs. late, performance	tor, 39–41	Carefree Gum, "Bursting," 17
and, 117–118	pulses generating brick	Carmack, John, 130
of shaders, program re-	shape, 41	cascades, multiplicative vs. addi
sponsibility for, 120	scoord and tcoord texture	tive, 440
Stanford shading language	coordinates, 40	ceil function (RenderMan), 33
early-binding model,	BRMT (Blue Moon Rendering	ceilf function (ANSI C imple-
118	Tools), 102	mentation), macro al-
black-body radiators, 461	Bryce software, 580	ternative to, 33
black-box textures, future of,	bump mapping. See also dis-	cellular texturing, 135–155
200–201	placement mapping	2D and 4D variants, 149
blending capability of GPUs,	adding to basic texture, 183	basis functions, 136-140
290	antialiasing and, 59,	density of feature points
blinking, 405. See also texture	170–173	in, 144–145,
for facial movement	bevel for three-dimensional	146–147, 149
blobby molecules, 3	appearance, 183, 184	distance metric for, 147–149

extensions and alterna-	Cirrus procedure, 275–276	fBm-valued distortion for,
tives, 147-149	clamp function (RenderMan),	454-456
feature points defined,	28–29	forces shaping, 263, 266
136	clamping	fractal solid textures for,
fractal combinations,	closeness to texture pattern	448–460
138–140, 141	and, 60–61	functional composition for
implementation strategy,	described, 56	modeling, 453-454
140–149	fade-out for sampling rate	hardware acceleration for,
isotropic property of, 142,	changes, 60	298–301
143, 145–147	limitations of, 61	illumination models,
linear combinations of	spectral synthesis	266–267
functions <i>F</i> , 137–138,	antialiasing using,	for interactive applica-
139	59-61, 86-87	tions, 267–268
"Manhattan" distance	for turbulence function,	interactive models,
metric, 148	86–87	283–284, 285
mapping function values	clip animation, 391	jet stream warping,
onto colors and	clipping planes in QAEB trac-	279–280
bumps, 137	ing, 514–515	MojoWorld for, 611
modifying the algorithm,	cloth, hypertexture example,	ontogenetic modeling of
136, 140–141	357, 359, 360, 361	hurricane, 456-458
neighbor testing, 144-145	cloudplane shader, 50	previous approaches to
noise compared to,	clouds. See also fog; gases; volu-	modeling, 267–268
135–136	metric cloud model-	psychedelic, 525, 526
nonlinear combinations of	ing and rendering	puffy, 448–449
polynomial products,	altitude and types of, 266	QAEB-traced hyper-
140	animating volumetric pro-	textures for,
partitioning space into cel-	cedural clouds,	520–525, 526
lular regions,	279–283	real-time, 298–301
136–137, 142–144	atmospheric dispersion ef-	spectral synthesis for simu-
Poisson distribution of fea-	fects, 267	lating, 50-51
ture points, 145–147	basics, 263, 266-267	stratus cloud models, 276,
population table for,	billowing, 523-524	277–278, 282, 283
145–147	challenge of, 448	surface-based modeling ap-
properties of functions <i>F</i> ,	cirrus cloud models,	proaches, 267-268
137	275–276, 277, 282,	on Venus, 458–460
random number generator	283, 453–458	visual characteristics, 266
for, 143	cloud creatures, 273, 278	volume perturbation for
sample code, 149–155	commercial packages for	modeling, 299–301
speed vs. isotropy in,	rendering, 284, 285	volumetric modeling,
146–147	Coriolis effect, 458–460	268–272
Cg language (NVIDIA), 111, 292–296	cumulus cloud models, 272–274, 282	volumetric rendering, 272–279
checkerboard basis function	difficulties modeling, 263,	weather forecasting and, 266
(MojoWorld),	267	color. See also RGB color
596–597	distorted noise function	black-body radiators, 461
checkerboard pattern genera-	for, 450–453	blurring color map for
tion, 39	ellipsoid surfaces for mod-	antialiasing, 175
cirrus cloud models, 275-276,	eling, 195, 267	color mappings, 181-182
277, 282, 283,	example photographs,	color splines, 182,
453–458	264–265	189–192

color (soutimed)	mand fam 190 193	
color (continued) color table equalization,	need for, 189, 192 normalization plot, 190,	convolution noise lattice, 78–80
189, 190–192	191	sparse, 80–82
fBm coloring, 477–478	complexity	coordinate systems in
for fire, 461	fractal vs. nonfractal, 431	RenderMan, 24. See
	fractal vs. nonfractal, 431	
GIT texturing system, 478–480		also texture spaces Coriolis effect, 458-460
index aliasing, 158–163	plexity, 429, 506, 567–571	cosf function (ANSI C imple-
		=
layering texture patterns, 25–26	hyperspace in MojoWorld and, 588–589	mentation), RenderMan cos func-
L-system specification,	realism and, 434–435	tion vs., 31
311–312	as work, 434	cosine function
for marble using NVIDIA's	composition. See functional	
Cg language, 293–294	composition. See functional	graph of, 32 overview, 31
"multicolor" texture,		
482–485	computational precision issues	for rotation on helical
	for GPUs, 288	path, 228
normalizing noise levels	compute_color function for	CPUs 100 102 100
for, 189–192	raymarcher renderer,	GPUs vs., 100, 102, 109
plastic shader output, 21	350, 351	migrating procedural tech-
random coloring methods,	computer graphics research	niques to GPUs from,
477–485	community, 576,	287–289
sine function for banding, 230	578–579	real-time procedural solid
	"Computer Rendering of Sto-	texturing on, 421
solid color texture, 196	chastic Models," 576 computer's role in art, 482	virtualization supported
spline function for map-	compute_shading function for	by, 109 crop circles, PGI for modeling,
ping, 36 usage in this book, 182	raymarcher renderer,	326
color perspective. See also atmo-	350	crossover scales
spheric models	conditional functions	of fractals, 434
in <i>Carolina</i> , 534	abs (RenderMan), 30	in MojoWorld, 606–607
defined, 529	antialised rendering of	cubic Catmull-Rom spline inter-
in <i>Himalayas</i> , 537	edges resulting from,	polation for value
in planetary atmosphere,	369–376	noise, 71–72
538	clamp (RenderMan),	cumulus cloud models,
raw form, 538	28–29	272–274, 282
Rayleigh scattering and,	max (RenderMan), 28–29	cumulus procedure, 272, 274
536	min (RenderMan), 28–29	current space, described, 24
color splines	smoothstep (RenderMan),	cyberspace
color table equalization,	30–31	aliasing and, 622
189, 190–192	step (RenderMan), 27–28	as context for information
normalizing noise levels,	conferencing, electronic, 391	content, 621, 622, 623
189–192	conservation of angular momen-	defined, 617
overview, 182	tum, spiral vortex	features of "natural"
color table equalization	functions based on,	
histogram of noise values,	251	cyberspace, 619–620
190, 191	constant density medium for	fractal geometry of, 620–622
mapping percentage levels	modeling gases, 204	MojoWorld photorealistic
to noise values,	convective cloud modeling, 268	renderer and,
190–192	convolution kernel. 595	617–618
170-172	convolution Reffiel, 373	01/-010

social aspects of, 621-622	implicit density functions	overview, 9
vision of, 618–620	for cloud modeling,	scanline rendering vs. ray
cyclic scene graphs, 320, 321	270–271	tracing and, 511
cyclone procedure, 456–458	power function and gas	for water ripples, 461–463
	density, 215–216	distorted fractal functions in
	raymarcher renderer user-	MojoWorld, 606
dance	defined functions,	distorted noise (DistNoise)
bias and gain controls for,	350–352	function, 450–453
397	scaling vector returned by	for altering fractal basis
emotional gestures in, 391	functional flow field	function, 450
Dark Tree, 447	functions, 246–247	C++ version, 450
data amplification algorithms	smoke density function,	RenderMan version,
for procedural geom-	367–368	452–453
etry, 312–314	spherical attenuation to	terse version, 452
described, 305	confine steam within	undistorted noise function
intermediate representa-	cup radius, 216–218	vs., 451–452
tion and, 313	turbulence-based, for	VecNoise function in,
in L-system, 312–314	cloud modeling, 271	450–451
for particle systems, 313–314	density_function for	domain distortion
data types, GPU support for,	raymarcher renderer, 350	for cirrus cloud modeling, 453–454
108–109	depth buffer renderers, implicit	
database amplification, 2	vs. explicit proce-	DistNoise function based
"Death Star" surface, 148	dures in, 13	on, 450–453 in MojoWorld, 604–606
debugging, image textures vs.	depth-of-field effects, object	domain function dimensions in
procedural textures	space vs. screen space	MojoWorld, 587–588
and, 14	shading and,	dot product capability of GPUs,
declarative components of pro-	105–106	290
cedural techniques,	derivative discontinuities in	Dr. Mutatis program
12	turbulence function,	demise of, 550
deep shadow map for gases, 208	86	images generated by,
degrees of freedom in n-spaces,	diffuse function (RenderMan),	558–563
548	21	DTED (digital terrain elevation
DEM (digital elevation map)	diffuse model, 7–8	data) format, 494
format, 494	digital elevation map (DEM)	Du and Dv functions
density	format, 494	(RenderMan), 58-59
constant, for modeling	digital terrain elevation data	du and dv variables
gases, 204	(DTED) format, 494	(RenderMan), 58
of feature points in cellular	dilation symmetry	dynamic bounding volumes, 331
texturing, 144–145,	in fractal geometry, 621	
146–147, 149	fractals as, 431, 573-574	
function for hypertexture	dimension, 588	earth textures. See also
explosion example,	Direct3D, OpenGL vs., 102	MojoWorld; proce-
355	displacement mapping. See also	dural fractal terrains
height attenuation for ris-	height fields	fractal solid textures for
ing steam, 218–219	in MojoWorld, 610–611	earth textures,
height attenuation for	object space vs. screen	466–477
smoke dispersion,	space shading and,	Gaea (Earth-like planet),
220	104, 105–106	467–472

earth textures (continued)	faceforward function	flexibility
sedimentary rock strata,	(RenderMan), 21	GPU issues, 288-289
466–467, 468	Facial Action Coding System	procedural techniques and
Selene (Moon), 473-477	(FACS), 396	2
ease-in and ease-out procedures, 229	facial expressions. See texture for facial movement	floor function (RenderMan), 32–33
edge events, 370. See also	fade in, solid color texture for,	floorf function (ANSI C imple-
antialiased rendering	196	mentation), macro al
of procedural	fast Fourier transform (FFT),	ternative to, 33
textures	spectral synthesis	flow field functions. See func-
egg shape	and, 49	tional flow field
for creating hypertextures,	fBm. See fractional Brownian	functions
354	motion (fBm)	flow noise, 384–387
explosion inside, 355, 356,	feature points in cellular	example flow textures,
357	texturing	387, 388–389
electronic conferencing, 391	defined, 136	need for, 384–385
emittance, volume rendering	density of, 144–145,	pseudoadvection in,
with surface textures	146–147, 149	386–387
and, 196	isotropic distribution of,	rotation gradients for,
emotive gesturing. See textural	142, 143, 145–147	385–386
limb animation	precomputed, 149	fog. See also gases; volumetric
environment function	testing regions of space for,	procedural modeling
(RenderMan), 22	142–145	and texturing
environment mapping, 9	feature spaces for textures	animating solid textured
E-on Software's Vue d'Esprit,	overview, 25	transparency,
580	star texture, 46	233–235
Euclidean geometry, fractal ge-	FFT (fast Fourier transform),	Beer's law and homoge-
ometry vs., 620–621	spectral synthesis	nous fog, 531–532
exact self-similarity, statistical	and, 49	exponential mist, 532,
self-similarity vs.,	filtering capability of GPUs, 290	534
435, 575	fire. See also volumetric proce-	hardware acceleration for
explicit procedures	dural modeling and	space-filling fog,
defined, 12	texturing	297–298
implicit procedures vs.,	colors for, 461	patchy fog modeling, 216
12–14	fBm-valued distortion for,	rolling fog animation,
explosions	460-461, 462	238–240
hypertexture example,	fractal solid textures for,	fog procedure, 233–234
354–356	460–461	described, 233
inside an egg, 355, 356,	noise-based procedural	helical path for, 233
357	flame shader,	values for, 235
pyroclastic flow, 523-524	124–129	Fourier synthesis
expression trees, 553–556	particle system for wall of	basis function for, 497
extinction in atmospheric mod-	fire, 257, 258	for cloud modeling, 267
els, 531–532	pyroclastic flow, 523-524	for controlling transpar-
	QAEB-rendered fireballs,	ency, 204
_, , , , , , , , , , , , , , , , , , ,	525	point evaluation vs., 490
F (turtle graphics symbol), 308	flagstone texture, 140, 142	Fourier transform
fabs function with turbulence	flame. See fire	domain change from, 49
functions, 369	flame procedure, 460–461	inverse, 49

signal processing and,	complexity of, 431,	octaves in, 433–434, 444,
52–53	434–435	583, 584–585
for spectral synthesis, 49–51	computer graphics and, 429	ontogenetic modeling and, 442–444
frac macro, 65	defined, 431, 571	poem about, 435
fractal dimension	difficulties for understand-	as primary building blocks,
amplitude scaling and, 89	ing, 430	430
defined, 582–583	as dilation symmetry, 431,	procedural fBm, 436–438,
for homogenous fBm ter-	573–574	440
rain models, 495–497	distribution of fractal func-	procedural fractal terrains,
overview, 432–433	tions, 190	489–506
for random fractals,	fractal dimension property,	proceduralism and, 436
583–584	89, 432–433, 444,	random, 574-575,
roughness of surface and,	495–497	582–586, 611, 613
444, 495–496,	fractal forgeries, 567-568	self-similarity in, 496-497,
583–584	fractal increment, 432	572-573
fractal geometry of cyberspace,	fractional Brownian mo-	simplicity of, 435
620-622	tion (fBm) and, 433	software, history of,
Fractal Geometry of Nature,	further information, 429	579–580
The, 575, 576	heuristic approach to, 431	space-filling hypertexture
fractal noise. See noise func-	history of fractal terrains,	example, 357,
tions; Perlin's noise	575–582	358–359
function	lacunarity of, 433, 444,	spatial frequency of basis
Fractal Planetrise, 576	583, 585–586	function, 433
fractal planets. See MojoWorld	as language of visual com-	statistical self-similarity vs.
fractal solid textures, 447-487	plexity, 429, 506, 567	exact self-similarity,
clouds, 448–460	level of detail (LOD) in,	435
earth, 466–477	433-434, 437-438,	for synthesizing cloud im-
fire, 460–461, 462	511	ages, 267
iterative design of,	literature on, 579	turbulence and, 435–436
447–448	local dimensionality in,	in turbulence function
planetary rings, 485–487	432	power spectrum, 85
random coloring methods,	lower crossover scale, 434	upper crossover scale,
477–485	mathematical history of	434
water, 461–465	fractal terrains,	uses for, 434–436, 506,
fractal sum of pulses. See sparse	575–576	608–611
convolution noise	mathematical imaging of	visual complexity and, 567–571
fractals, 429–445. See also	fractal terrains, 576	fractal sum function
MojoWorld;	misunderstanding of, 430–431	power spectrum of, 86, 87
multifractals; proce- dural fractal terrains	for modeling gases, 204	turbulence function vs.,
	monofractal graphics, 445	86
amplification by, 436		fractional Brownian motion
amplitude, 433 band-limited, 434	multifractals, 438, 440–442, 569	(fBm)
	,	approximating, 89
basis function, 432–433,	"naturalness" of, 485	basis function effects,
450, 497–498, 582, 583	in nature, 567–568, 572–573	497–498
cellular texture combina-	nonfractal complexity vs.,	for color perturbation, 470
	431	described, 599–600
tions, 138–140, 141	'1 31	described, 377–600

fractional Brownian motion (continued)	density_scaling parameter, 246–247	homogenous and isotropic, 531–532
DistNoise function based	direction parameter, 246,	local vs. global, 350
on, 450–453	247	numerical quadrature with
fBm-valued distortion for	extensions of spherical at-	bounded error for ra-
clouds, 454-456	tractors, 249	dial GADDs,
fBm-valued distortion for	for flow into hole in wall,	542-544
fire, 460–461, 462	253–254, 255	overview, 530
fractals and, 433	information returned by,	for radially symmetric
homogenous fBm terrain	246–247	planetary atmo-
models, 495–498	overview, 246-247	sphere, 534–536
level of detail and,	percent_to_use parame-	with Rayleigh scattering
437–438	ter, 246, 247	approximation, 539
monofractals using,	repulsors, 246	trapezoidal quadrature for
599–600	spherical attractor func-	radial GADDs,
multiplicative-cascade	tion, 248–249	539-542
multifractal variation,	spiral vortex functions,	Gaea (Earth-like planet) model,
440–441	249–251	467–472
in PGI, 327–329, 330	velocity parameter, 246,	climactic zones, 468–469
power spectrum of, 433	247	coastline, 469
procedural, 436–438, 440	wind effects using,	continents and oceans,
random fBm coloring,	252–253	467–468
477–478	functional flow field tables	deserts, 469, 470
as weighting function in	accessing table entries, 245	fractals in, 467
windywave proce-	combinations of functions,	terran procedure,
dure, 465	251–254	470–472
fragment processing in GPUs,	functions, 246–251	gain function
287, 289	overview, 245, 246	bias function and, 39
frequency of fractal basis func-	functional programming, 26	remapping unit interval
tion, 433	fur, volume perturbation for,	with, 38–39
function fractals in MojoWorld,	301, 302	gaing function
602-604	fuzzy blobbies for modeling	defined, 340
functional composition	gases, 204	for tuning fuzzy regions,
for cirrus cloud modeling,	fuzzy regions	339–340
453–454	for biasb function for tun-	gamma correction functions
defined, 453	ing, 339, 340	bias, 37-38
in DistNoise function,	combining solid textures	for CRT display systems,
453	with, 338	37, 38
expression trees and,	defined, 338	gamma correction texture, 196
553–554	gaing function for tuning,	gases. See also animating solid
for texture pattern genera-	339–340	spaces; clouds; fire;
tion, 26	337-310	volumetric proce-
functional flow field functions		dural modeling and
attractors, 247–249	GADDs (geometric atmospheric	texturing
	density distribution	animating gaseous vol-
breeze effect using attrac-	models). See also at-	umes, 235–243
tor, 247, 248,	models). See also at-	animating solid textured
252–253, 254		<u> </u>
combinations of functions,	for exponential mist, 532,	transparency,
251–254	534	233–235

basic gas shaping, 214–224	genetic algorithms, genetic programming vs.,	root node interpretation, 555–556
breeze effect using attrac-	558–559	genomes, 551
tor, 247, 248,	genetic programming. See also	genotypes, 551
252–253, 254	genetic textures	geometric atmospheric density
flow into hole in wall,	biological analogy for,	distribution models.
253–254, 255	550–552	See GADDs
geometry of, 211–224	DNA and, 551–552	(geometric
hardware acceleration for	examples, 557–558	atmospheric density distribution
smoke and fog.	expression trees, 553–556	models)
297–298	further information, 558	geometric modeling
helical path for, 228	future directions, 560–562	advanced techniques, 2–3
historical overview of	genes, 551, 552–555	bump map geometry, 42
modeling approaches,	genetic algorithms vs.,	evolution of, 2–3
204–205	558–559	star geometry, 47
illumination model for,	genomes, 551	geometric normal, GPU support
207	genotypes, 551	lacking for, 106
noise and turbulence func-	implementation, 555	geometrical calculations, 7
tions for, 211–214	mutation, 551, 554	geometry mapping with PGI,
particle systems for, 209	parameter proliferation	326–327
patchy fog modeling, 216	problem and, 548	geometry of gases, 211–224
power and function effects	phenotypes, 551, 554	geometry, procedural synthesis
on, 214–216	sexual reproduction, 551,	of. See procedural
rolling fog animation,	554	synthesis of geometry
238–240	unnatural selection in,	gesturing. See textural limb
self-shadowing, 207-208	552	animation
sine function effects on,	genetic textures, 547-563. See	GIT (generalized Impressionistic
215, 216	also genetic	texture) texturing sys-
smoke column examples,	programming	tem, 478–480
219–224, 239–243	aesthetic n-space model,	Impressionistic image pro-
solid spaces framework for	548-549	cessing filter,
modeling, 209–211	basis vectors, 556	479–480
steam rising from teacup	control vs. automaticity,	mathematical model un-
examples, 216-219,	549–550	derlying, 478–479
220, 236–238	evolutionary biological	overview, 478–479
three-dimensional tables	model, 550–555	global shading models, 8
for controlling ani-	expression trees for,	gnoise function. See gradient
mation, 244-254	553–556	noise
turbulence for simulating	future directions, 560–562	goal determination module
air currents, 238	genetic programming and	(GDM), 394–395
usage in this book, 203	genetic art examples,	GPUs. See also hardware accel-
GDM (goal determination mod-	557–558	eration of procedural
ule), 394–395	genetic programming vs.	techniques
generalized Impressionistic tex-	genetic algorithms,	assembly languages for,
ture. See GIT (gener-	558–559	100–101
alized Impressionistic	library of genetic bases,	blending capability, 290
texture) texturing		
,	556–557	commercially supported
system genes, 551, 552–555	556-557 parameter proliferation problem, 547-548	commercially supported programming lan- guages, 111

CDAT (t)	4	1 1
GPUs (continued)	gradient noise	dummy geometry and
computational precision is-	2D slice of, 74	depth culling, 290
sues, 288	flow noise, 384–387	example accelerated/real-
CPUs vs., 100, 102, 109	generating value for single	time textures and
data types, 108–109	integer lattice point,	models, 291–301
dot product capability, 290	76 1	general issues, 287–289
filtering capability, 290	graph of, 73	marble texture, 292–297
flexibility issues, 288–289	initializing table of	migrating procedural tech-
fragment processing in,	pseudorandom gradi-	niques from CPUs to
287, 289	ent vectors, 73–75	GPUs, 287–289
future hardware and pro-	lattice noise, 69–70	multilevel procedural mod-
gramming languages,	lookup table for, 181	els, 290–291
130–131, 410	overview, 72–77	noise functions, 291
interpolation capability,	Perlin's function, 69, 73,	precomputation for,
290	75–76, 340–348	289–290
language interface, 288	for perturbed regular pat-	real-time clouds and proce-
levels of operation in the	terns, 89–90	dural detail,
pipeline, 289	power spectrum of, 75, 77	298–301, 302
limitations and restric-	trilinear interpolation,	real-time procedural solid
tions, 102–103,	76–77	texturing, 416,
106–110	value-gradient noise, 77–78	421–425
memory bandwidth and	Graphics Gems III, 180	smoke and fog, 297–298
performance tuning, 110	graphics processors. See GPUs; hardware accelera-	tasks beyond designers' in-
		tentions, 290
migrating procedural tech-	tion of procedural	texture mapping, 208,
niques from CPUs to, 287–289	techniques grass modeling	209
		turbulence functions, 291–292
parallelism in, 102, 103, 106–108	bounding volumes for, 331 geometry mapping for,	hardware texture mapping
real-time procedural solid	326–327	for modeling and render-
texturing on,	iterative instancing for,	ing gases, 209
421–425	322–323	for shadowing gases, 208
real-time procedural tech-	meadows, 327–329	hashing in lattice noise genera-
niques and, 1	PGI for, 322–323,	tion, 69–70
resource limits, 109	326–329, 331	Heidrich/Banks anisotropic
REYES shading contrasted	grid tracing, height fields and,	shader
with, 103–106	494	example using explicit
separation of surface and	GUI for textures. See user inter-	computations,
light properties and,	face for textures	113–115, 116
117	face for textures	example using implicit
SIMD computation model		computations,
in, 107–108	hardware acceleration of proce-	115–116
SPMD computation model	dural techniques,	explicit vs. implicit ver-
in, 108	287–302. See also	sion, 116
storage issues, 103, 289	GPUs	overview, 112–113
vertex processing in, 287,	animated real-time effects,	height fields
289	291	defined, 491
virtualization support lack-	common acceleration tech-	as displacement maps, 511
ing in, 109	niques, 289–291	file formats, 494–495
1115 111, 107	inques, 207 271	me rormato, 171 175

for light diffusion effects simulation, 204	hybrid multifractal terrain, 502–505	texture for facial move- ment, 395–409
post spacing side effects, 509	multiplicative multifractal terrains, 505–506	hurricane, ontogenetic modeling of, 456–458
in QAEB tracing, 511,	real landscapes and, 498, 500	hybrid multifractal terrains, 502–505
516–517 ray tracing and, 494	smooth valleys at all alti-	HybridMultifractal pro-
single altitude value per	tudes, 502–505	cedure, 502–504
grid point in, 493	smoother low-lying areas,	RidgedMultifractal pro-
speedup scheme for, 513,	500-502	cedure, 504–505
516–517	statistics by altitude,	hyperspace in MojoWorld,
as storage scheme for ter-	500-502	588–590
rains, 491	Hetero_Terrain procedure,	complexity and, 588-589
helical paths	500-501	defined, 588
for animating gaseous vol-	hierarchy of surflets, 381–382	dimension defined, 588
umes, 228, 236–243	high frequencies. See also	Parametric Hyperspace,
for fog animation as solid	aliasing; antialiasing;	589–590
textured transpar-	Nyquist frequency	hypertextures
ency, 233	aliasing and, 53, 54, 370	animating, 254–256
for marble animation, 232–233	edge events as sources of, 370	architexture, 359–362, 363 defined, 338
for rolling fog animation,	if function generation of,	editing levels for, 352–353
238–239	47	egg shape for, 354
for smoke rising anima-	non-edge high-frequency	explosions example,
tion, 239–243	events, 370	354–356
for smoke simulation, still	step function generation	interaction with, 352-353
image, 220, 222-224	of, 54, 57	life forms example, 355,
for space-filling fog, 298	high-albedo reflection models	356, 357
for steam rising from tea-	for clouds, 266	liquid flowing through
cup animation,	low-albedo models vs., 205	hole in wall, 254–255
236–238	high-contrast filter for	methods of combining
Henyey-Greenstein functions for	antialiasing,	fuzzy shapes with
illumination of gas-	371–372, 373–374	solid textures, 338
eous phenomena, 207	HighEnd3D Web site, 284	NYU torch example, 362,
Hermite blending functions for	homogenous, defined, 438	364
bump mapping ridge, 186	homogenous fBm terrain mod-	QAEB-traced, 520–525, 526
Hermite noise	els, 495–498 basis function effects,	raymarcher renderer for,
2D slice of, 74	497–498	348–352
described, 78	fractal dimension, 495–497	smoke examples, 364–368
graph of, 73	homogenous procedural fBm,	solid textures as precursor
power spectrum of, 75, 78	438	to, 337–338
Hermite spline interpolation in	HSV color, transforming RGB	space-filling fractals exam-
noise functions, 490,	to, texture for, 196	ple, 357, 358–359
498	Human Genome Project, 551	sphere shape for, 353-354
heterofractal function in	humanlike figures	surflets for storing,
MojoWorld, 601, 602	textural limb animation	376–384
heterogeneous terrain models, 498–506	for emotive gesturing, 387, 391–395	volumetric marble formation, 255–256

hypertextures (continued) woven cloth example, 357, 359, 360, 361 z-slicing, 35	planetary rings example, 163–166 reducing, 160–163 sources of, 158–159 sum table for, 162–163 transformation of scalar	domain change from, 49 noise generation using, 82–83 for spectral synthesis, 49–51 irregular procedural textures,
if function (RenderMan) antialiasing and, 28 high frequencies generated by, 47 replacing with step function, 28–29	functions and, 159–160 inductive instancing, 322–323 init_density_function for raymarcher renderer, 350	67–94 noise functions for, 67–83 perturbed image textures, 90–91 perturbed regular patterns. 89–90
ifpos pseudofunction, 371, 372–373 illumination models. See shading models	instances defined, 315 inductive instancing, 322–323	pseudorandom number generation and, 67–68 random placement pat- terns, 91–94
image maps converting 3D textures to, 197–199 textures vs., 196–197	parameter passing and, 321–322 of scene graphs, 315	RenderMan noise functions for, 83–85 spectral synthesis, 85–89
"Image Synthesizer, An," 590 image textures perturbed, 90–91	integrals, antialiasing using, 63–64, 65 integration schemes numerical quadrature with	time-dependent textures, 84 white noise and, 67–68 isocurves, 13
PhotoRealistic RenderMan antialiasing for, 56 procedural textures vs.,	bounded error for ra- dial GADDs, 542–544	isosurfaces defined, 3 implicit models, 10
14–15 implicit functions for cloud modeling, 269, 270–272	as requirement for atmospheric models, 529, 530 trapezoidal quadrature for	overview, 13 surflets and, 383 isotropic property of cellular texturing func-
implicit models, 10 implicit primitive animation for clouds, 280–283	radial GADDs, 539–542 intelligent textures, 200	tion, 142, 143, 145-147 of noise function, 68, 180
implicit procedures defined, 12–13 explicit procedures vs., 12–14 in RenderMan shading	interactivity cloud modeling approaches for, 267–268 for hypertextures,	of procedural fBm, 438 iterated function systems, 320 iteration in fractal solid texture design, 447–448
language, 15 implicit surfaces, 3 imposters	352–353 in previewer for textures, 194	iterative instancing, 322–323 in scientific discovery,
for cloud modeling, 268–269 defined, 268 for gases, 209	real-time vs. offline shad- ing and, 98, 99, 100 intermediate representation, 313	447–448 in shader development process, 99, 130
index aliasing defined, 159 modeling input distribu-	interpolation capability of GPUs, 290 inverse Fourier transform	jaggies. <i>See</i> aliasing; antialiasing Java, procedural geometric

jet stream warping for clouds,	PRNs for, 69	liquid. See also water
279–280	value noise, 70–72	flow into hole in wall,
	value-gradient noise,	253–254, 255
	77–78	flow noise for, 384-387,
Kelvin-Helmholtz shearing in	laughing, 407-408. See also tex-	388–389
clouds, 266	ture for facial	volumetric marble forma-
KISS (Keep it simple, stupid)	movement	tion, 255–256
principle, 443	layering	LISP, functional composition in.
knot values in spline function	RGBA textures and, 26	26
(RenderMan), 34	for texture pattern genera-	Listerine (RenderMan exam-
Koch snowflake. See von Koch	tion, 25–26	ples), 18–19
snowflake	lazy evaluation algorithms for procedural geometry	local dimensionality in fractals, 432
	client-server relationship	local shading models, 8
labels in L-system, 312	and, 314	LOD (level of detail)
lacunarity	described, 305, 314	in fractals, 433-434,
defined, 89, 583	L-system and, 315	437–438, 511
of fractals, 433, 444, 583,	for spatial coherence data	procedural fBm and,
585-586	structures, 314–315	437–438
noise artifacts and, 180	LED display, texture for,	low-albedo reflection models
Lambertian (diffuse) model, 708	196–197	for clouds, 266
landscapes. See atmospheric	length-weighted atlas, 418	high-albedo models vs.,
models; earth tex-	lerping	205
tures; MojoWorld;	layering texture patterns	lower crossover scale
plant modeling; pro-	and, 26	of fractals, 434
cedural fractal	LERP function in	in MojoWorld, 607
terrains	antialiasing, 371,	low-pass filtering
language interface, CPUs vs.	373	analytic prefiltering tech-
GPUs, 288	in rasterization phase for	niques, 56–57, 61–66
lapped textures, 11	real-time procedural	antialiasing and, 54
lattice convolution noise	solid texturing, 414	clamping, 56, 59–61
2D slice of, 74	level of detail. See LOD (level of	defined, 54
graph of, 73	detail)	in lattice noise generation,
implementation of, 78–80	life forms hypertexture example,	69
power spectrum of, 75, 80 lattice noises, 69–80	355, 356, 357 light properties, 116–117	sampling rate determina- tion, 57–59
artifacts, 180	light shaders, surface shaders	of white noise, 68
frequency multiplier and	vs., 117	L-system, 307–312. See also
lattice artifacts,	lighting	procedural geometric
88–89	photographic texture im-	instancing (PGI);
gradient noise, 72–77	ages and, 22–23	scene graphs
hashing technique, 69–70	surflets for, 376–377	axioms, 308
integer lattice, 69	lighting models. See shading	bicubic patch modeling,
lattice convolution noise,	models	311
78-80	limb animation. See textural	bush modeling, 318-320
for modeling gases,	limb animation	color and texture specifica-
211–214	linear basis function	tion, 311–312
optimizing, 214	(MojoWorld), 596	context-free and context-
overview, 69–70	linear interpolation. See lerping	sensitive aspects, 308
	- *	- '

T / T)	6 2 6 1 11	
L-system (continued)	formation from banded	min function (RenderMan),
data amplification para-	rock, 229–232	28-29
digm in, 312–314	frequency multiplier for,	MIP mapping, atlases support-
described, 305	88–89	ing, 418–419
development of, 307	hardware acceleration for,	mist, exponential, 532, 534
intermediate representa-	292–297	mix function (RenderMan), 25
tion in, 313	NVIDIA Cg language im-	mod function (RenderMan),
labels for debugging or an-	plementation,	31–33
notation, 312	292–296	MojoWorld, 565–615
lazy evaluation and, 315	for solid texture anima-	aliasing from function
operating system com-	tion, 229–232	fractals, 604
mand execution, 312	spectral synthesis for,	basis functions, 450, 582,
for particle systems,	87–89	583, 590–597
313–314	marble_color function, 88, 229	building a virtual universe,
PGI compared to, 329–330	marble_forming procedure,	571
PGI enhancements,	230–231	checkerboard basis func-
321–330	marble_forming2 procedure,	tion, 596–597
for plant modeling,	231–232	for clouds, 611
308–310, 311, 313	Marble_Vertex.cg shader,	crossover scales, 606–607
polygon modeling, 311	294–296	dimensions of domain and
productions, 307, 308	master, defined, 315	range functions,
scene graphs, 315–321	matte shading model, plastic	587–588
shortcomings of, 305–306	shader and, 21	displacement maps,
turtle graphics symbols in,	max function (RenderMan),	610–611
305, 306, 308–312	28–29	distorted fractal functions,
von Koch snowflake mod-	Maya animation system	606
eling, 308, 310–311	cloud modeling in, 267,	domain distortion, 604–606
luminosity, volume rendering	284, 285	driving function parame-
with surface textures	MEL scripts, 284, 285	ters with functions, 607
and, 196	volumeGas plug-in, 284,	
luna procedure, 474–476	285	ease of, 447
	Web sites, 284	experimenting with, 613–614
Mandallandandandan	meadows, PGI for modeling, 327–329	
Mandelbrot set, texture using, 197		fractal dimension and, 582–584
"Manhattan" distance metric in	memory CPU 100	fractals and visual com-
	GPU resource limits, 109	
cellular texturing, 148	GPU restrictions on access,	plexity, 567–571
mapping from unit interval to	107	fractals overview, 571–575
itself, 37–39	performance tuning and	function fractals, 602–604
marble function, 229, 292	bandwidth, 110	future work, 581–582,
marble texture	meta-balls, 3	614-615
animated volumetric marble	MetaCreations Skunk Works,	Graph Editor, 606, 607
formation, 255–256	493	heterofractal function,
animating by changing	metal shading model, plastic	601, 602
solid space over time,	shader and, 21–22	history of fractal terrains,
229–232	"Methods for Realistic Land-	575–582
animating by moving	scape Imaging," 576	hyperspace, 588–590
through solid space,	Mie scattering, aerial perspec-	lacunarity of fractals, 583,
232–233	tive and, 530	585–586

linear basis function, 596	Monte Carlo sampling method	Navier-Stokes solutions for
MojoWorld Generator,	in Perlin's noise function,	modeling gases, 204
590	342	nearest-neighbor filter, seam ar-
MojoWorld Texture Edi-	in volume-rendering algo-	tifacts and, 420
tor, 589, 590, 604	rithm, 206	nebulae, MojoWorld for model-
monofractals, 599–600	Moon texture. See Selene	ing, 611, 612
mountain building,	(Moon) texture	Ng variable, RenderMan vs.
567–568	motion blur, object space vs.	real-time hardware
multifractals, 600-602,	screen space shading	rendering and, 106
603	and, 105-106	noise function (RenderMan),
for nebulae, 611, 612	mouse abdomen visualization,	83–84
octaves of fractals and,	122	noise functions, 67–83. See also
583, 584–585	moving_marble procedure,	cellular texturing;
Perlin basis function,	232–233, 236	Perlin's noise function
590-591, 592, 593,	"multicolor" texture, 482-485	for 2D cloud textures,
594	goal of, 482–483	267–268
photorealistic renderer,	multicolor shader code,	2D slices of, 74
585, 617–618	484	4D functions, 84, 181
planet building, 568-570,	"naturalness" of, 485	artifacts from, 180–181
611, 612	steps for, 483–484	cellular texturing com-
Pro UI, 566–567, 606	multifractals, 438, 440-442. See	pared to, 135-136
random fractals, 582-586	also MojoWorld; pro-	in cloud modeling, 270,
real-time renderer, 585, 617	cedural fractal	298–299
reason for inclusion in this	terrains	color splines and, 189
book, 565-566	defined, 440	distorted (DistNoise),
ridged basis function,	described, 569	450–453
590-591, 593, 594	fBm variation, 440-441	enhancements and modi-
seed tables, 597-599	hybrid multifractal terrain,	fications, 179-182
SIGGRAPH 2001 presen-	502-505	explicit noise algorithms,
tation of, 200	MojoWorld, 600-602, 603	82–83
sine wave basis function,	multiplicative cascades	flame shader based on,
596	and, 440	124–129
sparse convolution basis	multiplicative multifractal	flow noise, 384–387
function, 593, 595	terrains, 505-506	Fourier spectral synthesis,
steps basis function, 596,	procedural textures and,	82–83
597	442	for gases, 211–214
surface textures, 589,	realism and, 438, 440	generating, 67–68
608–609	terrain patch example,	gradient noise, 72–77
for terrains, 609–610	441	graphs of, 73
texture engine, 589	multipass pixel shader imple-	hardware acceleration for,
transporter coordinates, 589	mentation of noise	291
Voronoi basis function,	function, 422–425	Hermite spline interpola-
591, 593, 594, 597,	multiplicative cascades, additive	tion in, 490, 498
599	cascades vs., 440	lacunarity, 89, 180
MojoWorlds, 467	mutation, 551, 554	lattice convolution noise,
molten_marble procedure,		78–80
255–256		lattice noises, 69–70
monofractals in MojoWorld,	Natural Graphics' Natural	in layering facial move-
599–600	Scene Designer, 580	ment, 405–408

noise functions (continued)	Ward's Hermite noise func-	ontogenetic modeling
lookup table for, 181	tion, 73, 74, 75	defined, 442
for marble texture, 87–89	white noise and, 67-68	fractals and, 442-444
multipass pixel shader im-	noise textures, development of,	of hurricane, 456–458
plementation,	.11	Occam's Razor and, 443
422–425	nonprocedural textures, proce-	realism and, 444
need for, 67	dural vs., 12	semblance in, 443
noise value range and dis- tribution for, 85	normal vectors, transforming between texture	teleological modeling vs., 442
normalizing noise levels,	spaces, 46	opacity
189–190	normalizing noise levels,	plastic shader output,
performance issues,	189–190	21
194–195	n-space model, 548-549, 559	solid textured transpar-
for perturbed image tex-	ntransform function	ency, 233–235
tures, 90-91	(RenderMan),	in volume-rendering algo-
for perturbed regular pat-	transform function	rithm for gases, 206
terns, 89-90	vs., 46	OpenGL
with PGI, 327	NVIDIA's Cg language, 111,	Direct3D vs., 102
as pink noise, 68	292–296	lighting model, 118
power spectra of, 75	Nyquist frequency	pixel texture extension,
properties of ideal func-	aliasing and, 53-54	422
tion, 68	clamping and, 60	for real-time cloud render-
random placement pat-	defined, 53	ing, 267
terns using, 91–94	MojoWorld function frac-	OpenGL Programming Guide,
Rayshade implementation,	tals and, 602-603	102
422–425	PhotoRealistic RenderMan	OpenGL Shader project, 131
in real-time procedural	antialiasing scheme	operands in GPUs, precision of,
solid texturing,	and, 56	288
421–425	QAEB tracing and, 511,	optical depth, 531
RenderMan functions,	512	optical paths, 531, 534
83–85	white noise and, 68	optimizing. See also
rotation matrices for hid-	NYU torch hypertexture exam-	performance
ing artifacts, 180, 181	ple, 362, 364	hypertexture smoke, 367–368
for smoke and fog, 297,		lattice noises, 214
298	object space	spot size, 173–175
sparse convolution noise,	described, 24	outscattering
80–82	screen space vs., for shad-	defined, 531
spectral synthesis with,	ing, 103–106	Rayleigh, 536
85–89	transformation to world	oversampling. See
as surflet, 379	space with PGI,	supersampling
value noise, 70-72	323–324	
value-gradient noise,	Occam's Razor, 443, 530	
77–78	octaves in fractals, 433–434,	parallelism
vector-valued (VecNoise),	444, 583, 584–585	CPUs vs. GPUs and, 102
450-451	offline programmable shading,	GPU restrictions due to,
versatility of, 135	real-time programma-	103, 106–108
for volumetric cloud mod-	ble shading vs.,	parameter passing in PGI,
eling, 270	98–100	321–322

parameter proliferation prob-	primitive functions as	target hardware and, 130
lem, 547–548	building blocks,	texture size and, 110
parametric control, 2, 14	27–51	periodic functions (RenderMan)
Parametric Hyperspace,	random placement pat-	ceil, 33
589–590	terns, 91–94	cos, 31, 32
parametric patches, 8	spectral synthesis tech-	floor, 32–33
	nique, 48–51, 85–89	lacunarity and, 180
particle systems	star texture example,	making other functions pe-
animation using, 257–261	46–48, 49	riodic, 32
attributes of particles, 257	writing procedural genera-	mod, 31–32
for cloud modeling, 269, 282–283	tors, 23–24	sin, 31, 32
	,	Perlin basis function
initial shape, 257–258	pelting, described, 10–11	
L-system for, 313–314	penumbra, self-shadowing with, 382–383	(MojoWorld),
movement of particles,		590–591, 592, 593, 594
258	percentage closer filtering, de-	Perlin's noise function
overview, 3	scribed, 9	
particle creation proce-	performance. See also hardware	construction of, 340–347
dure, 257	acceleration of proce-	DistNoise function based
probabilistic rendering,	dural techniques;	on, 450
259, 260	optimizing	finding current cubical
processes for each time	antialiasing efficiency is-	"cel" location, 341
step, 257	sues, 157	finding the pseudorandom
rendering problems, 259,	assembly language vs.	wavelet at each cel
261	high-level language	vertex, 341–342
structured, 257, 258–259,	for shading and, 101	folding function, 343
260	in cellular texturing, speed	as fractal basis function,
uses for, 209, 257, 259	vs. isotropy, 146–147	432–433
for wall of fire, 257, 258	as critical for real-time	gradient distribution, 348
pattern generation	shading, 98, 99-100	gradient table, 342–343
advantages of procedural	early vs. late binding and,	interpolation polynomial
generation, 23	117–118	improvement, 347
brick texture example,	hardware improvements	in MojoWorld basis func-
39-41	and, 97	tion, 590–591, 592,
bump-mapped brick exam-	height field speedup	594
ple, 41–46	scheme, 513,	nonbiased index of G ,
checkerboard pattern, 39	516–517	343–344
defined, 20	memory bandwidth and	overview, 340-341
functional composition	performance tuning,	performance improve-
technique, 26	110	ments, 348
hiding regularity and peri-	procedural texture ef-	point evaluation in,
odicity, 51	ficiency issues,	489–490
irregular patterns, 83–94	194–195	procedural fBm and, 437
layering technique, 25-26	of QAEB tracing, 510,	pseudorandom permuta-
perturbed image textures,	511, 518, 520	tion table, 343
90–91	of ray-traced self-shadow-	in QAEB-traced
perturbed regular patterns,	ing, 207-208	hypertextures, 521
89–90	real-time procedural solid	in real-time procedural
photographic texture im-	texturing issues,	solid texturing,
ages for, 22-23	425–426	421–423

Deulie de maior formation		-1:
Perlin's noise function	planetary rings antialiasing ex-	object space vs. screen
(continued) reducing grid-oriented arti-	ample, 163-166 planetclouds procedure,	space shading and, 104–105
facts, 348	453–455	post spacing of height fields,
as seminal function, 69, 73	plant modeling. See also	509
steps in computation, 341	MojoWorld	power functions
uniformly distributed unit	bounding volumes for,	gas shape and, 215–216
gradients generated	331–332	for tuning procedural tex-
by, 75–76	bushes, 318–320	tures, 339
wavelet coefficients,	crop circles, 326	power spectra
342–344	grass, 322–323, 326–329,	of fractional Brownian
wavelet evaluation,	331	motion (fBm), 433
344–347	L-system for, 308–310,	of noise functions, 75
wavelet properties, 342	311, 313, 318–320	precomputation for procedural
perm array in lattice noise gen-	meadows, 327-329	techniques, 289–290
eration, 69–70	PGI for, 322–323,	previewer for textures, 194
perturbance	324–329, 331–332	Primitive Itch's ShaderLab2
perturbed image textures,	trees, 309-310, 324, 325,	package, 130
90–91	331–332	PRMan. See PhotoRealistic
perturbed regular patterns,	tropism, 324–326	RenderMan
89–90	plastic shader, 20–22	PRNs (pseudorandom numbers)
texture for, 197	plateau width parameter for	in cellular texturing, 143
volume perturbation for	bump mapping ridge,	for lattice noises, 69
cloud modeling,	184	table for noise functions,
299–301	pnoise function (RenderMan),	69
PGI. See procedural geometric	84–85	for value noise, 70–71
instancing (PGI)	point evaluation	for white noise, 67–68
phenotypes, 551, 554	context-independence of,	Pro UI of MojoWorld, 566–567,
photographic texture images, 22–23	490	606
== ==	Fourier synthesis vs., 490	procedural, defined, 12
PhotoRealistic RenderMan	in Perlin noise-based pro-	procedural city technique, 200
antialiasing in, 55–56 REYES algorithm, 103	cedural fractal con- struction, 489–490	procedural cloud animation, 279–280
sampling interval changes	polygon subdivision vs.,	procedural evaluation phase for
in, 59	490	real-time procedural
screen space use by, 103	rounded terrain capabili-	solid texturing, 414,
pink noise, 68	ties of, 490–491	425
pipelines	Poisson distribution in cellular	procedural fBm, 436–438, 440
computational precision is-	texturing, 145–147	procedural fractal terrains,
sues, 288	polygon subdivision	489–506. See also
levels of operation in, 289	basis function for, 497	earth textures;
REYES (PRMan) vs. real-	for mountain modeling,	MojoWorld
time graphics hard-	489	advantages of point evalu-
ware, 103-104	point evaluation vs., 490	ation, 489-491
PixelFlow project, 131	terrain creases as artifacts,	basis function effects,
planetary atmosphere. See at-	498	497–499
mospheric models	polygons	fractal dimension,
planetary rings, fractal solid tex-	cloud modeling using, 268	495–497
tures for, 485-487	L-system modeling of, 311	height fields, 491–495

heterogeneous terrain models, 498–506	bounding volumes, 330–332	explicit vs. implicit methods, 12–14
homogenous fBm terrain models, 495–498	data amplification algorithms, 305,	functional composition technique, 26
hybrid multifractal terrain,	312–314	hiding regularity and peri-
502-505	flow of data, 312	odicity, 51
multiplicative multifractal	future work, 333–334	historical overview, 11-12
terrains, 505-506	lazy evaluation algorithms,	image texture vs., 14-15
rounded terrain capabili-	305, 314–315	irregular, 67–94
ties, 490-491, 498	L-system, 305–306,	isocurve or isosurface
statistics by altitude,	307–312	method, 13
500-502	overview, 332–333	layering technique, 25-26
procedural geometric instancing	paradigms governing,	multifractal models, 442
(PGI), 321–330	312-315	nonprocedural vs., 12
accessing world coordi-	procedural geometric	pattern generation, 20,
nates, 323-324	instancing (PGI),	22-24, 25-26
bounding volumes,	321–330	primitive functions as
330-332	scene graphs, 307,	building blocks,
crop circles example, 326	315–321	27–51
described, 321	Web and, 333	renderer antialiasing
fractional Brownian mo-	procedural techniques. See also	schemes and, 55
tion, 327–329	specific techniques	shading models, 20-22
front-to-back ordering,	defined, 1	spectral synthesis tech-
330	implicit vs. explicit, 12-14	nique, 48-51
geometry mapping exam-	migrating from CPUs to	star texture example,
ple, 326–327	GPUs, 287–289	46–48, 49
inductive instancing exam-	overview, 1–2	texture spaces, 24-25
ple, 322–323	precomputation for,	volume rendering with sur-
levels of detail, 329	289–290	face textures,
L-systems compared to,	procedural textures (overview).	195–196
329–330	See also texture de-	productions in L-system, 307,
meadows example,	sign methods; volu-	308
327–329	metric procedural	pseudoadvection in flow noise
noise function with, 327	modeling and	function, 386–387
parameter passing,	texturing	pseudorandom numbers. See
321–322	advantages of, 14	PRNs
random number function,	aliasing in, 55-56	(pseudorandom
327	antialiasing methods,	numbers)
trees example, 331-332	56–67	psychedelic clouds, 525, 526
tropism example, 324-326	antialised rendering of,	puffyclouds procedure,
procedural modeling of gases.	369–376	448-449
See volumetric proce-	brick texture example,	pyroclastic flow, 523-524
dural modeling and	39-41	
texturing	bump-mapped brick exam-	
procedural shape synthesis, 387,	ple, 41–46	QAEB rendering for procedural
390	checkerboard pattern, 39	models, 509-526
procedural synthesis of geome-	defining characteristics, 12	antialiasing, 516
try, 305-334	disadvantages of, 14-15	C code implementation,
applications, 305	efficiency issues, 194-195	625–626

QAEB rendering for procedural	radiosity as global shading	ray tracing. See also QAEB ren-
models (continued)	model, 8	dering for procedural
clouds, 520–525, 526	random coloring methods,	models
error in the algorithm,	477–485	antialiasing by stochastic
513–514	fBm coloring, 477–478	ray tracer, 55
		as global shading model, 8
fireballs, 525	GIT texturing system,	
implicit models and, 510	478–480	height fields and, 494
intersection point calcula-	"multicolor" texture,	implicit geometric models
tion, 515	482–485	in, 13
meaning and pronuncia-	random fractals	implicit vs. explicit proce-
tion of acronym, 510,	basis function, 582, 583	dures in, 13
511	constructing, 582–586	raymarcher renderer,
near and far clipping	expressive vocabulary of,	348–352
planes, 514-515	611, 613	ray-surface intersection
Nyquist limit and, 511,	fractal dimension, 582-584	point calculation,
512	lacunarity of, 585-586,	515
performance, 510, 511,	593	reflection mapping as, 9
518, 520	octaves, 583, 584-585	scanline rendering vs., 511
prior art, 512-513	overview, 574–575	for self-shadowing of
problem statement,	random placement patterns	gases, 207-208
511–512	defined, 91	in surflets, 379–380,
pyroclastic flow, 523-524	noise function for, 91–94	382–383
QAEB algorithm, 513–514	one-star-per-cell version,	for volume rendering of
QAEB tracing overview,	92–93	gases, 205-206
510–511	storing bomb positions in	Rayleigh scattering
QAEB-traced	table, 91	aerial perspective and, 530
hypertextures,	version improving clipping	color perspective due to,
520–523	and randomness,	529
reflection and refraction,	93–94	in Fractal Mandala, 533
517–518	randomness. See also noise	minimal approximation,
shadows, 517	functions; PRNs	536, 539
speedup scheme for height	(pseudorandom	raymarcher renderer, 348–352
fields, 513, 516–517	numbers)	overview, 348–349
stride length, 521–522	deterministic nature of	system code, 349–350
		•
surface normal construc-	computers and, 574	user-defined functions,
tion, 516	MojoWorld seed tables for,	350–352
quad tree spatial subdivision,	597–599	Rayshade implementation of
height fields and, 494	PGI functions, 327	noise function,
Quake III game engine, 131	in setting texture parame-	422–425
quasi-analytic error-bounded	ters, 193	reaction-diffusion textures, in-
ray tracing. See	true vs.	telligent, 200
QAEB rendering for	pseudorandomness,	realism
procedural models	67, 574–575	complexity and, 434-435
	range function dimensions in MojoWorld, 587	heterogeneous terrains for, 498, 500
radar texture, 197	rasterization phase for real-time	multifractal functions and,
radial coordinate distance met-	procedural solid tex-	438, 440
ric in cellular textur-	turing, 414, 416,	"naturalness" of fractals,
ing, 148	419, 425–426	485
mg, 1 10	717, 723-720	T0 <i>3</i>

1.1	CDUL I	a .:
ontogenetic modeling and, 444	future GPU hardware and	reflection mapping, 9
• • • •	programming lan-	reflection models. See shading
real-time clouds, 298–301	guages, 130–131	models
real-time procedural solid tex-	GPU architecture, 102–103	refraction, QAEB tracing and, 517–518
turing, 413–427	hardware data types,	* - : *
algorithm, 413–416	108–109	renderers
applications, 425–426	Heidrich/Banks	antialiasing schemes and
area-weighted mesh atlas,	anisotropic shader,	procedural textures,
417–418	112–116	55
atlas based on clusters of	high-level shading lan-	flow of data and, 312
proximate triangles,	guage advantages,	image display while ren-
418, 419	100–101	dering, 194
atlas construction for,	interactivity and, 98, 99,	raymarcher, 348–352
416-419, 425	100	spot size calculation by,
bilinear filtering, 420–421	interface between shaders	166–167
hardware acceleration,	and applications,	rendering
416, 421–425	118–121	antialised rendering of pro-
implementing, 421–425	iterative nature of develop-	cedural textures, 369–376
length-weighted atlas, 418	ment process, 99, 130	
multipass pixel shader im-	knowledge required for the reader, 101–102	efficiency issues, 194–195
plementation of noise	literature review, 131	image display during, 194 particle systems, 259, 261
function, 422–425	memory bandwidth and	previews, 194
nearest-neighbor filter, 420	•	
noise functions in, 421–425	performance tuning, 110	texture as 2D image, 176 volume, 121–124,
		195–196
parameterization, 413 performance issues,	object space shading vs.	volumetric rendering sys-
425–426	screen space shading, 103–106	tem, 205–208
		RenderMan
procedural evaluation phase, 414, 425	offline programmable shading vs., 98–100	development of, 1
rasterization phase, 414,	parallelism, 106–108	PhotoRealistic, 55–56, 59,
416, 419, 425–426	performance as critical is-	103
scaling component of dis-	sue for, 98, 99	RenderMan Companion, The,
tortion, 416	resource limits, 109	102
seam artifacts, avoiding,	simple examples, 111–116	RenderMan shading language.
419–421	Stanford shading language	See also specific
solid texture coordinates,	example, 111–112	functions
413–414	strategies for developing	brick texture example,
spatial coordinates, 413	shaders, 129–130	39–41
texture filtering, 419–421	surface and light shaders,	bump-mapped brick tex-
texture mapping phase,	116–118	ture example, 43–46
415–416	volume-rendering shader,	cloud simulation using
uniform meshed atlas,	121–124	spectral synthesis,
416–417	rectangular pulse, step function	50–51
view independence, 425	for, 28, 29	conditional functions,
real-time programmable shad-	recurrent iterated function sys-	27–31
ing, 97–132	tems, 320	du and dv variables, 58
flame shader, noise-based	reflection, QAEB tracing and,	ease of, 447
procedural, 124–129	517–518	examples using, 16–19
protouring 12 1 127		

RenderMan shading language	algorithm, 187	clamping and changes in,
(continued)	bevel shape parameters,	60
further information, 15,	184–186	defined, 52
102	Hermite blending func-	for low-pass filtering, de-
multiplying colors in, 26	tions, 186	termining, 57–59
noise functions, 83–85	non-geometric applica-	Nyquist frequency and, 53
OpenGL lighting model	tions, 187	as sampling interval recip-
and, 118	plateau width parameter,	rocal, 57–58
overview, 15-16, 19	184	supersampling or
periodic functions, 31-33	ridge shapes for different	oversampling, 54
plastic shader in, 20-22	slope controls, 185	sampling theorem, 52
real-time shading and,	ridge width parameter,	Saturn's rings, 485-487
101–102	183–184	scanline rendering, ray tracing
star texture example,	simple ridge, 183, 184	vs., 511
47–48	ridged basis function	scattering, 531
surface and light properties	(MojoWorld),	scattering models
separated in, 117	590–591, 593, 594	aerial perspective and, 530
texture spaces, 24-25	RidgedMultifractal proce-	color perspective and, 529
translating into C code,	dure, 504–505	Rayleigh scattering, 529,
	Rings procedure, 485, 487	530, 533, 536, 539
reptile hide texture, 139	ripples procedure, 462-463	scene description modules
repulsors, 246	rising_smoke_stream proce-	(SDMs), 393–394
resolution	dure, 239–243	scene graphs, 315-321. See also
image textures vs. proce-	rotation along helical path, 228	procedural geometric
dural textures and, 14	rotation matrices, noise artifacts	instancing (PGI)
	and, 180, 181	benefits of, 307
low-resolution previews, 194	roughness. See fractal dimension	cyclic, 320, 321 defined, 315
surflet hierarchy, 381–382	RTSL. See Stanford shading	instances, 315
resource limits in GPUs, 109	language	iterated function systems,
REYES algorithm (PRMan),	language	320
103–106		libraries and languages for,
RGB color. See also color	sample point, shading, 15	315
multiplying colors to-	sampling	limitations of, 307, 321
gether, 26	defined, 52	L-system with additional
random fBm coloring,	Monte Carlo method, 206	iteration, 318–320
477–478	stochastic, 55–56, 67	named node syntax,
in RenderMan shading	supersampling, 54	315–316
language, 118	sampling interval	overview, 307
transforming to HSV using	clamping and, 60	PGI augmentations,
a texture, 196	defined, 57–58	321–330
RGBA color	Du and Dv functions for de-	single-production L-system
layering texture patterns	termining, 58–59	implementation,
and, 26	du and dv variables for de-	317–318
in OpenGL lighting model,	termining, 58	terminology, 315
118	variations in	tree-structured, 320-321
in Stanford shading lan-	PhotoRealistic	science
guage, 118	RenderMan, 59	computer graphics vs., 448
ridge for bump mapping,	sampling rate	iterative method in,
183–187	aliasing and, 53, 54	447–448

Science of Fractal Images, The,	procedural techniques and,	procedural shape synthesis,
429, 433, 438, 489,	1 1 1 554 554	387, 390
575, 579	sexual reproduction, 551, 554	sign function (RenderMan),
schoise function. See sparse	"shade trees" system, 11	step function vs., 48
convolution noise	shader space (RenderMan)	signal processing
screen space	described, 24	aliasing in, 53–54
mapping for 3D tables for	for solid textures, 25	Fourier analysis in, 52–53
controlling anima-	ShaderLab2 package (Primitive	further information, 52
tion, 245	Itch), 130	Nyquist frequency, 53–54
moving point through	shading, 7	sampling theorem, 52
solid space, 227, 228,	shading models. See also specific	SIMD (single instruction, multi-
232–233, 235–243	types	ple data) computa-
object space shading vs.,	anisotropic, 8	tion model, in GPUs,
for shading, 103–106	for clouds, 266–267	107–108
relating texture space to,	defined, 20	simple_light shader, 115
168	diffuse, 7–8	sine function
SDMs (scene description mod-	for gaseous phenomena,	as band-limited, 57
ules), 393–394	205, 207	gas shape and, 215, 216
sea surface texture, 140, 141	historical overview, 7–8	graph of, 32
sedimentary rock strata,	local vs. global, 8	overview, 31
466–467, 468	low-albedo vs. high-	for rotation on helical
seed tables for MojoWorld,	albedo, 205	path, 228
597–599	object space vs. screen	sine wave basis function
Selene (Moon) texture, 473–477	space, 103-106	(MojoWorld), 596
highlands/maria, 473	plastic shader, 20-22	sinf function (ANSI C imple-
Tuna procedure, 474–476	for procedural textures,	mentation),
rayed crater, 473-474	20–22	RenderMan sin func-
self-shadowing. See also	separation of surface and	tion vs., 31
shadowing	light properties, 117	single program, multiple data
of clouds, 267	simplifying assumptions in,	(SPMD) computation
of gases, 207–208	,	model in GPUs, 108
of particle systems, 259	specular reflection, 8	sintegral macro, 65
with penumbra, 382–383	shading sample, 15	size (area)
surflets for, 376, 382–383	shading sample point, 15	fractal complexity and,
self-similarity	shadowing. See also self-	. 431
defined, 572	shadowing	image textures vs. proce-
in fractal geometry, 621	cloud shadowing, 267	dural textures and,
fractal terminology and,	in gases, 207–208	14
496–497	hardware acceleration for,	photographic texture im-
in fractals and nature,	208	age problems, 23
572–573	in particle systems, 259	spot size, 166–170
statistical vs. exact, 435,	in QAEB tracing, 517	size (storage)
575	self-shadowing, 207–208,	of image textures vs. pro-
semblance	259, 267, 376	cedural textures, 14
in ontogenetic modeling,	volumetric, 207–208	texture size and perfor-
443	shape	mance, 110
veracity vs., 448	Boolean characteristic	smoke. See also fog; gases; volu-
serendipity	function for, 337–338	metric procedural
image textures vs. proce-	continuous function for,	modeling and
dural textures and, 15	338	texturing

smoke (continued)	mathematical description	and for the liberty of the second
column, animated,	mathematical description of framework,	as fractal basis function, 450, 497
239–243	210–211	graph of, 73
column, hypertexture ex-	moving screen space point	implementation of, 80–82
amples, 364–368	through, 227, 228,	power spectrum of, 75, 82
column, still image,	232–233, 235–243	spatial frequency of fractal basis
219–224	overview, 210	function, 433
drifting, 365, 366	three-dimensional tables	spectral synthesis
hardware acceleration for	for controlling ani-	± 7
space-filling smoke,	mation, 244–254	clamping method for
297–298	uses for framework, 210	antialiasing, 56, 59–61, 86–87
optimizing, 367–368	solid textures. See also animat-	cloud simulation, 50–51
rings, 365, 366–367	ing solid spaces;	inverse Fourier transform
Smoke function, 297–298	fractal solid textures;	for, 49
smoke_density_function for	real-time procedural	irregular pattern genera-
hypertextures,	solid texturing	
367–368	for clouds in Maya anima-	tion using, 85–89 marble synthesis using,
smoke_stream procedure,	tion system, 267	87–89
220–224	color texture, 196	for modeling gases, 204
described, 220	defined, 337	noise generation using,
helical path for smoke,	described, 209	82–83
220, 222–224	fractal, 447–487	overview, 48–51
parameters, 224	fuzzy shapes combined	turbulence function,
rising_smoke_stream	with, 338	85–87
procedure and, 243	as hypertexture precursor,	specular function
smoothstep function	337–338	(RenderMan), 21
(RenderMan)	overview, 10	specular reflection models, 8
aliasing and, 57	real-time procedural solid	specular reflection models, o
analytic prefiltering with, 62	texturing, 413–427	plastic shader, 21,
C implementation, 30	solid spaces framework for	22
graph of, 31	modeling gases,	sphere
overview, 30–31	209–211	for hypertexture creation,
step function vs., 31	solid textured transpar-	353–354
snoise function	ency, 233–235	for hypertexture explosion
marble texture using,	as space-filling functions,	example, 354
87–89	337–338	implicit formulation of, 270
perturbed image textures	transparency, 233–235	spherical attractors, 247–249
using, 90–91	wood-grain example, 10	animating center of attrac-
perturbed regular patterns	space-filling fractals,	tion, 249
using, 89–90	hypertexture exam-	breeze effect using, 247,
soft objects, 3	ple, 357, 358–359	248, 252–253, 254
solid spaces. See also animating	spaces. See coordinate systems;	effect of increasing over
solid spaces; volumet-	texture spaces; spe-	time, 247
ric procedural model-	cific spaces	effect over time, 247
ing and texturing	sparse convolution basis func-	extensions of, 249
changing over time, 227,	tion (MojoWorld),	flow field function,
229–232	593, 595	248–249
development of frame-	sparse convolution noise	geometry of attraction,
work, 209-210	2D slice of, 74, 82	249
*	, ,	

CD111CC 044		1
SPHIGS, 322	Stanford shading language	breeze effect using attrac-
spiral paths. See helical paths	API calls for one face of a	tor, 247, 248,
spiral vortex functions,	cube, 119–120	252–253, 254
249–251	API routines, 118–119	rising from teacup, ani-
based on 2D polar coordi-	as current sole choice for	mated, 236-238
nate function, 250	GPUs, 288	rising from teacup, still im-
based on conservation of	development of, 131	age, 216-219, 220
angular momentum,	early-binding model in,	steam_moving procedure
251	118	breeze effect using attrac-
based on frame number	Heidrich/Banks	tor, 247, 248,
and distance from	anisotropic shader,	252–253, 254
center, 250-251	112–116	for steam rising from tea-
example of effects, 252	noise-based procedural	cup, 236–238
vortex simulation vs., 249	flame shader,	steam_slab1 procedure
spline functions	124–129	basic slab of steam, 216
C implementation, 34–35	OpenGL API and, 118	confining steam within cup
as color map or color ta-	OpenGL lighting model	radius, 216–218
ble, 36	and, 118	ramping off gas density for
for colors or points, 35–36	separation of surface and	rising steam,
	light properties in,	218–219
graph of, 35		
knot values, 34	118	steam_moving procedure
overview, 34–37	vertex/fragment program-	and, 238
reflection texture example,	ming model,	variables, 219
37	111–112	step function (RenderMan)
for tuning procedural tex-	volume-rendering shader,	antialiasing and, 28, 61–62
tures, 339	121–124	box-filtering, 61–62,
for value noise interpola-	star shader, 47–48	64–65
tion, 71–72	star texture	C implementation, 27
SPMD (single program, multiple	feature space for, 46	graph of, 27
data) computation	geometry of star, 46-47	high frequencies generated
model in GPUs, 108	image rendered using, 49	by, 54, 57
spot noise, 80	procedural texture genera-	overview, 27
spot size	tor, 46–48	for rectangular pulse, 28,
calculating, 167-170	random placement pattern	29
"correct" bump mapping	using, 92–94	rewriting if functions us-
using, 171–173	testing whether point is in-	ing, 27–28
correcting renderer calcu-	side star, 48	sign function vs., 48
lations, 167	Star Trek II: The Wrath of	smoothstep function vs.,
defined, 166	Khan, 257, 258, 578	31
exaggerating to reduce	static bounding volumes, 331	steps basis function
aliasing, 175	stationary property of noise	(MojoWorld), 596,
optimization and verifica-	function, 68	597
tion, 173–175	statistical self-similarity, exact	stochastic control of gesture,
renderer calculation of,	self-similarity vs.,	387, 392–393
166–167	435, 575	stochastic models vs. fractal
stretched spots and,	steam. See also fog; gases; volu-	models, 495–497
169–170	metric procedural	stochastic procedures
square waves as fractal basis	modeling and	for particle creation,
-	texturing	257–258
function, 497	texturing	25/-250

stochastic procedures	procedural shape synthesis,	MojoWorld; proce-
(continued)	387, 390	dural fractal terrains
for particle movement,	volume rendering with,	terran procedure, 470–472
258	195–196	textural limb animation, 387,
in structured particle sys-	surflets, 376–384	391–395
tems, 258–259	advantages over surface-	basic notions, 392
stochastic sampling	based techniques,	examples, 394, 395
for antialiasing, 55–56, 67	383–384	goal determination module
defined, 55	defined, 376, 378	(GDM), 394–395
by renderers, 55–56	finding visible surfaces,	limb motion, 391
storage	379–380	overview, 387
GPU issues, 103, 289	generator for, 381	related work, 392
height fields for terrains,	hierarchical model,	scene description modules
491, 493–495	381–382	(SDMs), 393–394
surflets for storing	noise function as, 379	stochastic control of ges-
hypertextures,	ray tracing in, 379–380,	ture, 387, 392–393
376–384	382–383	system for, 393–395
store-to-memory instruction,	selective surface re-	textural gesture defined,
GPU lack of, 103	finement, 380–381	393
strata procedure, 466–467	self-shadow with penum-	uses for, 391
stratus cloud models, 276,	bra example,	texture. See also procedural tex-
277–278, 282, 283	382–383	tures (overview)
stream processors, GPUs as, 110	shading by, 380	historical overview, 8–11
structured particle systems, 257,	singularities and, 381	L-system specification,
258–259	steps for generating, 379	311–312
subsumption architecture, 397	surflet model, 377–378	texture baking, 197–199
sum table, antialiasing using,	uses for, 376–377, 384	texture design methods,
162–163	wavelet integration with,	179–201. See also
summed-area table method of	384	user interface for
antialiasing, 63–64	as wavelets, 378–379	textures
supersampling	symmetry, dilation, 431,	2D mapping methods,
as antialiasing strategy, 54,	573–574	197–199
66–67, 157	"Synthesis and Rendering of	bump-mapping methods, 183–187
in procedural textures,	Eroded Fractal Ter-	
66–67	rains, The," 575–576	color mappings, 181–182
stochastic, 55, 67		efficiency issues, 194–195
by texture instead of ren-	synthetic texture models, 11	future of, 199–202
derer, 170–173		hiding noise artifacts, 179–182
surface normal construction for	. 11 1 11/00	
QAEB tracing, 516	talking in different moods,	toolbox functions,
surface properties	408–409. See also	179–187
defined, 116	texture for facial	user interface, 187–194
GPUs and, 117	movement	utility textures, 196–197
separating from light prop-	teleological modeling, 442	volume rendering with sur-
erties, 116–117	temporal antialiasing, verifying,	face textures,
surface shaders vs. light shaders,	175	195–196
117	Terragen software, 580	texture filtering for real-time
surface textures	terrains. See atmospheric mod-	procedural solid tex-
MojoWorld, 589, 608–609	els; earth textures;	turing, 419-421

functional flow field tables,

245, 246

hypertextures, 521

viscous dumping and, 606

416-419

for clouds, 267

turbulence functions	operating system com-	value noise
for air current simulation,	mand execution, 312	2D slice of, 74
238	parameterized, 310-311	graph of, 73
clamping version, 86-87	for plant modeling,	interpolation schemes,
in cloud modeling, 270,	308–310, 311	71–72
271, 281	for polygon modeling, 311	lookup table for, 181
derivative discontinuities	query command, 326	overview, 70–72
in, 86	for von Koch snowflake	power spectrum of, 72, 75
fabs function with, 369	modeling, 310–311	PRN table initialization,
in flame shader, 129	type promotion in Stanford	70–71
fractal sum function vs.,	shading language, 112	value-gradient noise, 77–78
86	<u> </u>	Wiener interpolation, 72
for gases, 211, 214		value-gradient noise
hardware acceleration for,	uniform meshed atlas, 416-417	2D slice of, 74, 78
291–292	unit interval, remapping, 37-39	graph of, 73
for marble formation from	upper crossover scale	overview, 77–78
banded rock,	of fractals, 434	power spectrum of, 75
230–232	in MojoWorld, 607	Ward's Hermite noise, 73,
overview, 368–369	user interface for cloud model-	74, 75, 78
with particle systems, 261	ing, 278–279	venotise function. See lattice
power spectrum of, 85, 86,	user interface for textures,	convolution noise
87	187–194	vector-valued noise (VecNoise)
for rolling fog animation,	adding parameter range	function, 450–451
238	suggestions, 188	Venus, Coriolis effect in model-
sine function effects on,	color table equalization,	ing, 458–460
215, 216	189, 190–192	venus procedure, 458–460
for smoke and fog, 297,	difficulties in manipulating	vfBm procedure, 454–455
298	parameters, 192–193	Virtual Reality Modeling Lan-
for smoke stream model-	importance of, 187–188	guage (VRML), 333
ing, 220, 223	library of settings, 192, 193	virtual reality (VR), 581–582,
for transparency control,	normalizing noise levels,	615
234	189–190	virtualization, CPUs vs. GPUs
for volumetric cloud mod-	parameter proliferation	and, 109
eling, 270	problem, 547–548	viscous dumping, 606
turtle graphics symbols in L-	polishing the texture, 193	visibility function in deep
system	previews (low-resolution),	shadow map, 208
for bicubic patch model-	194	Vistapro software, 580
	= -	vnoise function. See value noise
ing, 311	random method for parameter settings, 193	volume density functions for
for color and texture speci-		
fication, 311–312	remapping nonintuitive pa-	modeling gases, 204
described, 305	rameter ranges, 188	volume perturbation for cloud
difficulties for human pro-	tracking previous settings,	modeling, 299–301
cessing, 306	192	volume rendering
geometric meanings of,	user preset functionality,	algorithm for gases, 206
308	193	QAEB-traced
labels for debugging or an-	user-defined functions for	hypertextures,
notation, 312	raymarcher renderer,	520–525, 526
multicharacter symbols,	350–352	ray tracing for gases,
311	UV mapping, 197–199	205–206

shader for, 121-124 volumetric implicit functions, volumetric_procedural_ surface textures for, for cloud modeling, implicit_function 195-196 269, 270–272 for simple cloud model, 271 volume_fog_animation procevolumetric procedural modeling von Koch snowflake dure, 238-239 and texturing, volumeGas plug-in, 284, 285 203-224. See also exact self-similarity in, volumetric cloud modeling and gases; volumetric 435 rendering. See also cloud modeling and as locally Euclidean, 621 clouds rendering L-system modeling of, 308, 310-311 animating volumetric proa-buffer rendering algocedural clouds, rithm, 205 as simple fractal, 571–572 Voronoi basis function 279-283 alternative rendering and cirrus cloud models, modeling approaches, (MojoWorld), 591, 275-276, 277, 282, 208-209 593, 594, 597, 599 basic gas shaping, vortex functions 214-224 based on 2D polar coordicloud creatures, 273, 278 commercial packages, 284, constant density medium nate function, 250 2.85 for, 204 based on conservation of cumulus cloud models, geometry of gases, angular momentum, 272-274, 282 211-224 251 dynamics and physicshistorical overview, based on frame number 204-205 based simulations in, and distance from 281-282 marble formation animacenter, 250-251 hardware acceleration for, tion, 255-256 example of effects, 252 298-301 noise and turbulence funcontogenetic model of hurhistorical overview. tions, 211-214 ricane, 456-458 268-269 patchy fog example, 216 spiral, 249-251 implicit functions for. power function effects on vortex simulation vs., 249 270-272 gas shape, 215-216 voxel automata algorithm, interactive cloud models, ray tracing for volume ren-283-284, 285 359-360 dering, 205-206 jet stream warping, rendering system, VR (virtual reality), 581-582, 279-280 205-208 615 microstructure and sine function effects on gas VRML (Virtual Reality macrostructure, 270 shape, 215, 216 Modeling Language), modeling system, 269-272 smoke column example, 333 particle system for, 269, 219-224 vtransform function, 36 282-283 Vue d'Esprit software, 580 solid spaces procedural physics-based approach, framework, 209-211 limitations of, steam rising from teacup 269-270 example, 216-219, wallpaper shader, 92-94 rendering, 272-279 220 water. See also liquid; volumetsimple cloud model, 271 stochastic functions used ric procedural modelstratus cloud models, 276, for, 203 ing and texturing 277-278, 282, 283 uses for, 203 flow into hole in wall, turbulence and noise volume-rendering algo-253-254, 255 functions in, 270 rithm, 206 fractal solid textures for, user specification and convolumetric shadowing, 461-465 207-208 trol, 278-279 noise ripples, 461-463

water (continued)	for this book, 149, 484, 524	world space
sea surface texture, 140,	white noise	changing to texture space,
141	aliasing and, 68	168
wind-blown, 463–465	defined, 67	changing world coordinate
Wavefront's Maya animation	irregular procedural tex-	to image coordinate,
•	tures and, 67	168
system. See Maya ani-	,	- · ·
mation system	physical generation of, 67	current space and, 24
wavelets. See also surflets	repeatable, from PRNs,	described, 24
defined, 341, 378	67–68	moving screen space point
as fractal basis functions,	Wiener interpolation for value	through solid space
450, 497	noise, 72	and, 228
in Perlin's noise function,	wind	PGI for object-to-world
340-347	breeze effect using attrac-	transformation,
surflet integration with,	tor, 247, 248,	323–324
384	252–253, 254	placement of model into
surflets as, 378-379	Coriolis effect, 458–460	scene and, 315
weathering, texture for, 197	jet stream warping for	solid textures and, 25
Web sites	clouds, 279–280	World Wide Web. See also Web
for cellular texturing infor-	ontogenetic modeling of	sites
mation, 149	hurricane, 456-458	procedural geometric mod-
cloud rendering, 284	turbulence for simulating	eling and, 333
facial movement examples,	air currents, 238	woven cloth, hypertexture ex-
408	wind-blown waters,	ample, 357, 359,
genetic programming and	463–465	360, 361
genetic art, 557–558	windywave procedure, 464-465	write_noise function, 212
HighEnd3D, 284	winking, 408. See also texture	, .
Musgrave, F. Kenton, 492,	for facial movement	
522, 557, 579, 611	World Builder software, 580	xfrog plant modeling program,
Rooke, Steven, 557	World Construction Set soft-	306
Sims, Karl, 557	ware, 580	z-slicing hypertextures, 35
Jillis, Kari, JJ/	waic, 500	2 sheing hypertextures, 33