Análise sintática

Função, interação com o compilador Análise descendente e ascendente Especificação e reconhecimento de cadeias de tokens válidas Implementação Tratamento de erros

Prof. Thiago A. S. Pardo taspardo@icmc.usp.br

1

Análise sintática ascendente

- Parte-se dos símbolos terminais em direção ao símbolo inicial da gramática
- Derivação mais à direita

- Redução: operação de substituição do lado direito de uma produção pelo não-terminal correspondente do lado esquerdo
 - □ Para a regra A → α, α pode ser reduzido em A
- Analisadores sintáticos ascendentes
 - □ Analisadores de empilha-reduz (*shift-reduce*)

3

Análise sintática ascendente

- Componentes do analisador ascendente
 - Pilha, onde os símbolos a serem reduzidos são empilhados
 - Tabela sintática que guia o processo de empilhamento e redução
- Processo de <u>reconhecimento de uma sentença</u>
 - Empilhar símbolos da cadeia de entrada
 - Quando um lado direito apropriado de uma produção aparece, ele é reduzido (substituído) pelo lado esquerdo da produção
 - Se a análise tiver sucesso, esse processo ocorre até que os símbolos da cadeia de entrada sejam todos consumidos e a pilha fique apenas com o símbolo inicial da gramática

Exemplo

	Pilha	Cadeia	Regra
<s> ::= [<l>] a <l> ::= <l>;<s> <s></s></s></l></l></l></s>	\$	[a;a]\$	
Reconhecer a cadeia [a;a]			

5

Análise sintática ascendente

Exemplo

	Piina	Cadela	negra
0 [] 1 -	\$	[a;a]\$	empilha [
<s> ::= [<l>] a</l></s>	\$[a;a]\$	empilha a
<l> ::= <l>;<s> <s></s></s></l></l>	\$[a	;a]\$	reduz S→a
	\$[S	;a]\$	reduz L→S
Reconhecer a cadeia [a;a]	\$[L	;a]\$	empilha ;
	\$[L;	a]\$	empilha a
	\$[L;a]\$	reduz S→a
	\$[L;S]\$	reduz L→L;S
	\$[L]\$	empilha]
	\$[L]	\$	reduz S→[L]
	\$S	\$	SUCESSO

- O analisador empilha símbolos até ter na pilha uma seqüência de símbolos que corresponde à definição de um não terminal
 - Seqüência de símbolos: lado direito da produção
 - Não terminal: lado esquerdo da produção

Handle

- Produção cujo lado direito está na pilha
- Operação de redução: substituição do lado direito do handle pelo seu lado esquerdo
 - O uso da seqüência correta de handles no processo de análise leva ao símbolo inicial da gramática
 - Derivação mais a direita para a cadeia de entrada

Análise sintática ascendente

Exemplo

	Pilha	Cadeia	Regra
0 [1]	\$	[a;a]\$	empilha [
<s> ::= [<l>] a</l></s>	\$[a;a]\$	empilha a
<l> ::= <l>;<s> <s></s></s></l></l>	\$[a	;a]\$	reduz S→a
	\$[S	;a]\$	reduz L→S
	\$[L	;a]\$	empilha ;
Haveria outras opções	\$[L;	a]\$	empilha a
de handles?	\$[L;a]\$	reduz S→a
	\$[L;S]\$	reduz L→L;S
	\$[L]\$	empilha]
	\$[L]	\$	reduz S→[L]
	\$S	\$	SUCESSO

Exemplo

	Piina	Cadela	Regra
0 []]]	\$	[a;a]\$	empilha [
<s> ::= [<l>] a</l></s>	\$[a;a]\$	empilha a
<l> ::= <l>;<s> <s></s></s></l></l>	\$[a	;a]\$	reduz S→a
	\$[S	;a]\$	reduz L→S
	\$[L	;a]\$	empilha ;
Haveria outras opções	\$[L;	a]\$	empilha a
de handles?	\$[L;a]\$	reduz S→a
■ L→S	\$[L;S]\$	reduz L→L;S
O que aconteceria?	\$[L]\$	empilha]
	\$[L]	\$	reduz S→[L]
	\$S	\$	SUCESSO

9

Análise sintática ascendente

- Operações durante a análise
 - Empilha: coloca-se no topo da pilha o primeiro símbolo da cadeia de entrada
 - Reduz: substitui-se a lado direito do handle pelo seu lado esquerdo
 - Aceita: a cadeia de entrada é reconhecida
 - □ Erro: a cadeia de entrada não é reconhecida

- Bottom-up, ascendente ou redutiva
 - Analisadores de precedência de operadores
 - Analisadores LR
 - SLR: Simple LR
 - LR Canônico
 - Look Ahead LR: LALR

11

ASA: precedência de operadores

- Simples e eficiente
- Aplicada, principalmente, para o <u>reconhecimento de</u> <u>expressões</u>
- Subclasse de gramáticas
 - □ Gramáticas de (precedência de) operadores
 - Não há símbolos não terminais adjacentes
 - Não há produções que derivam a cadeia nula

 Exemplo: a gramática abaixo não é de precedência de operadores

Transformando-a em gramática de operadores:

$$::= + | - | () | id$$

13

ASA: precedência de operadores

 Para identificar os handles, utilizam-se relações de precedência existentes entre os símbolos terminais (operandos e operadores) em uma tabela sintática (ou de precedência)

```
□ <, > e =
```

- Considere os terminais a e b
 - a<b significa que a tem precedência menor do que b
 - a=b significa que a e b têm a mesma precedência
 - a>b significa que a tem precedência maior do que b
- Durante a análise ascendente, na pilha:
 - < identifica o limite esquerdo do lado direito do handle</p>
 - □ = indica que os terminais envolvidos pertencem ao mesmo handle
 - > identifica o limite direito do lado direito do handle

Tabela sintática

- Matriz quadrada que relaciona todos os terminais da gramática e o símbolo delimitador utilizado (\$)
 - Primeira linha da tabela: terminais da cadeia sendo analisada
 - Primeira coluna da tabela: terminais do topo da pilha

Poucos terminais são operadores

Onde estão os não terminais?

ASA: precedência de operadores

Uso da tabela sintática

- Seja a o terminal mais ao topo da pilha (os não terminais são ignorados) e b o primeiro terminal da cadeia sendo analisada
 - Se a<b ou a=b, então se empilha b
 - Se a>b, então se procura o lado direito do handle na pilha e o substitui pelo seu lado esquerdo
 - O lado direito do handle estará delimitado na pilha pelos símbolos
 - Os n\u00e3o terminais n\u00e3o precisam aparecer, mas se deve saber que foram produzidos e que seus derivados correspondentes foram consumidos

Exemplo: expressões lógicas

<e> ::= <e>/<t> <t></t></t></e></e>
<t> ::= <t>&<f> <f></f></f></t></t>
<f> ::= (<e>) id</e></f>

Tabela sintática

	id	/	&	()	\$
id		۸	>		۸	>
/	<	>	<	<	>	>
&	<	>	>	<	>	>
(<	<	<	<	=	
)		^	>		^	>
\$	<	'	<	<		

Pilha	Cadeia	Regra
\$	id&id/id\$	

ASA: precedência de operadores

Exemplo: expressões lógicas

<E> ::= <E>/<T> | <T><T> ::= <T>&<F> | <F> <F> ::= (<E>) | id

Tabela sintática

	id	/	&	()	\$
id		۸	>		۸	۸
/	٧	۸	<	٧	۸	۸
&	٧	۸	>	٧	۸	۸
(<	<	<	<	=	
)		^	>		^	۸
\$	<	<	<	<		

Pilha	Cadeia	Regra
\$<	id&id/id\$	empilha
\$ <id>></id>	&id/id\$	reduz
\$<	&id/id\$	empilha
\$<&<	id/id\$	empilha
\$<& <id>></id>	/id\$	reduz
\$<&>	\$<&> /id\$	
\$<	/id\$	empilha
\$ <</td <td>id\$</td> <td>empilha</td>	id\$	empilha
\$ <id	\$	reduz
\$	\$	reduz
\$E	\$	SUCESSO

Exercício: reconheça a expressão (id)

 $\langle F \rangle ::= (\langle E \rangle) \mid id$

Tabela sintática

	id	/	&	()	\$
id		۸	>		۸	>
/	<	۸	<	٧	۸	>
&	<	^	>	<	^	>
(<	<	<	<	=	
)		>	>		>	>
\$	<	<	<	<		

Pilha	Cadeia	Regra
\$	(id)\$	
		•

19

ASA: precedência de operadores

Exercício: reconheça a expressão (id)

<F> ::= (<E>) | id

Tabela sintática

	id	/	&	()	\$
id		۸	>		۸	>
/	<	۸	<	٧	۸	>
&	<	۸	>	٧	۸	>
(<	<	<	<	=	
)		^	>		^	>
\$	<	<	<	<		

Cadeia	Regra
(id)\$	empilha
id)\$	empilha
)\$	reduz
)\$	empilha
\$	reduz
\$	SUCESSO
	(id)\$ id)\$)\$)\$

Algorimo do ASA de precedência de operadores

Seja S o símbolo inicial da gramática, a o símbolo terminal mais ao topo da pilha e b o primeiro símbolo da cadeia de entrada

repita

se (\$S é o topo da pilha e \$ é o primeiro símbolo da cadeia) então SUCESSO senão se (a
b ou a=b) então empilha b senão se (a>b) então

desempilha até haver < entre o terminal do topo e o último desempilhado senão ERRO

21

ASA: precedência de operadores

- 2 métodos para construção da tabela sintática
 - Intuitivo: baseado no conhecimento da precedência e associatividade dos operadores
 - Mecânico: obtem-se a tabela diretamente da gramática

Método intuitivo

- Para 2 operadores quaisquer x e y
 - Se x tem maior precedência do que y, então tem-se x (na pilha) > y (na cadeia) e y (na pilha) < x (na cadeia)
 - Exemplo: como * tem maior precedência que +, então *>+ e +<*</p>
 - 2. Se x e y têm precedência igual (ou são iguais) e são associativos à esquerda, então tem-se x>y e y>x; se são associativos à direita, então tem-se x<y e y<x
 - Exemplo: como * e / têm a mesma precedência e são associativos à esquerda, tem-se *>/ e />*; como o operador de exponenciação ** é associativo à direita, temse **<**</p>

23

ASA: precedência de operadores

- 3. As relações entre os operadores e os demais símbolos terminais (operandos e delimitadores) são fixas
 - Para qualquer operador x, tem-se x>\$, \$<x, x<id, id>x, x<(, (<x, x>) e)>x
- 4. As relações entre os operandos também são fixas
 - (<(,)>), id>), \$<(, (=),)>\$, id>\$, \$<id, (<id

Exemplo: construir a tabela sintática para a gramática abaixo

$$<$$
E> ::= $<$ E>+ $<$ E> | $<$ E>* $<$ E> | $<$ E>** $<$ E> | ($<$ E>) | id

sabendo-se que: ** tem maior precedência e é associativo à direita; * tem precedência intermediária e é associativo à esquerda; + tem menor precedência e é associativo à esquerda

	+	*	**	()	id	\$
+							
*							
**							
(
)							
id							
\$							

25

ASA: precedência de operadores

Exemplo: construir a tabela sintática para a gramática abaixo

$$::= + | * | ** | () | id$$

sabendo-se que: ** tem maior precedência e é associativo à direita; * tem precedência intermediária e é associativo à esquerda; + tem menor precedência e é associativo à esquerda

	+	*	**	()	id	\$
+	>	<	<	<	>	<	>
*	>	>	<	<	>	<	>
**	>	>	<	<	>	<	>
(<	<	<	<	=	<	
)	^	^	^		>		>
id	>	>	>		>		>
\$	<	<	<	<		<	OK

- Método mecânico: aplicável para gramáticas não ambíguas
 - Para os terminais a e b
 - a=b se αaβby é lado direito de produção e β é λ ou um único símbolo não terminal
 - 2. a<b se αaXβ é lado direito de produção e X produz γbδ e γ é</p>
 λ ou um único símbolo não terminal
 - \$<b se S produz γbδ e γ é λ ou um único símbolo não terminal
 - 4. a>b se $\alpha Xb\beta$ é lado direito de produção e X produz $\gamma a\delta$ e δ é λ ou um único símbolo não terminal
 - a>\$ se S produz γaδ e δ é λ ou um único símbolo não terminal

27

ASA: precedência de operadores

- Em outras palavras
 - Um terminal a seguido imediatamente de um não terminal X tem precedência menor do que os primeiros símbolos terminais deriváveis a partir de X (precedidos de λ ou um não terminal)
 - Todos os últimos terminais que podem ser derivados a partir de um não terminal X (seguidos de λ ou um não terminal) têm precedência maior do que um terminal que segue imediatamente a X

Exemplo: construir a tabela sintática para a gramática abaixo

$$::= + | * | ** | () | id$$

Inicialmente, deve-se eliminar a ambiguidade da gramática (mantendo a precedência e a associatividade dos operadores)

29

ASA: precedência de operadores

Determinam-se, para cada não terminal, os primeiros e últimos terminais possíveis de ocorrerem em uma cadeia derivada a partir do não terminal

	Primeiros	Últimos
Е	+ * ** (id	+ * **) id
T	* ** (id	* **) id
F	** (id	**) id
Р	id (id)

Para computar <, procurar pares aX nos lados direitos de produção; tem-se que a tem menor precedência do que qualquer primeiro terminal derivado a partir de X

31

ASA: precedência de operadores

Para computar >, procurar pares Xb nos lados direitos de produção; tem-se que qualquer último terminal derivado de X tem precedência maior do que b

```
Pares: E+ T* P** E)

Relações: \{+,*,**,),id\} > + \{*,**,),id\} > * \{),id\} > ** \{+,*,**,),id\} > )
```

Para computar =, procurar a β b nos lados direitos das produções, onde β é λ ou um não terminal, e fazer a=b

Dada o lado direito (E), tem-se (=)

\$ tem precedência menor do que todos os primeiros terminais deriváveis a partir do símbolo inicial da gramática

Todos os últimos terminais derivados a partir do símbolo inicial da gramática têm precedência maior do que \$

$$\{+,^*,^{**},),id\} > \$$$

33

Exercício

 Construir a tabela sintática para a gramática abaixo pelo método mecânico

$$S \rightarrow (SOS)|a|b$$

 $O \rightarrow +|*$

Exercício

 Utilizando a tabela construída anteriormente, reconheça a cadeia (a*b)