IN THE MATTER OF PATENT APPLICATION

CERTIFICATE

I, Shuichi KITA, residing at 3-7-17, Nishiimagawa, Higashisumiyoshiku, Osaka-shi, Osaka 546-0042 Japan, hereby certify that I am well acquainted with the English and Japanese languages and that the document attached hereto is a translation made by me of the Japanese Patent Application Number 2001-354315 and certify that it is a true translation to the best of my knowledge and belief.

Dated this 16th day of March, 2006

Signature

Shuichi KITA

(TRANSLATION)

[Name of Document]

Application for Patent

[Reference Number]

SS01129A

[Filing Date]

November 20, 2001

[Destination]

Commissioner

[International Patent Classification]

H01F 1/08

HO1F 1/147

B22F 3/00

C22C 38/00

C22C 45/02

[Inventor]

[Address] C/O Yamazaki Works, Sumitomo Special Metals Co.,

Ltd., 2-15-17, Egawa, Shimamoto-cho, Mishima
qun Osaka

[Name]

Takeshi NISHIUCHI

[Inventor]

[Address] C/O Yamazaki Works, Sumitomo Special Metals Co.,

Ltd., 2-15-17, Egawa, Shimamoto-cho, Mishimagun Osaka

[Name]

Hirokazu KANEKIYO

[Inventor]

[Address] C/O Yamazaki Works, Sumitomo Special Metals Co.,

Ltd., 2-15-17, Egawa, Shimamoto-cho, Mishimagun Osaka

```
Satoshi HIROSAWA
[Applicant for Patent]
  [Identification Number] 000183417
  [Name]
            Sumitomo Special Metals Co., Ltd.
[Agent]
  [Identification Number] 100101683
  [Attorney]
  [Name] Seiji OKUDA
[Indication of Fee]
  [Deposit Account Number]
                                         082969
                                          21,000
  [Amount of Payment]
[List of Accompanying Documents]
  [Name thereof]
                        Specification
  [Name thereof]
                        Drawings
  [Name thereof]
                        Abstract
  [Number of General Power of Attorney] 9908800
[Need of Proof]
                        Yes
```

[Name of the Document] SPECIFICATION

[Title of the Invention] Compound for rare-earth bonded magnet and bonded magnet using the compound [Claims]

[Claim 1] A compound for a rare-earth bonded magnet, the compound comprising a rare-earth alloy powder and a binder,

wherein the rare-earth alloy powder includes at least 2 mass % of Ti-containing nanocomposite magnet powder particles, and

wherein the Ti-containing nanocomposite magnet powder particles have a composition represented by the general formula:

 $(Pe_{1-n}T_n)_{100-x-v-x}Q_xR_vM_x$

where T is at least one element selected from the group consisting of Co and Ni; Q is at least one element selected from the group consisting of B and C and always includes B; R is at least one rare-earth element substantially excluding La and Ce; M is at least one metal element selected from the group consisting of Ti, Zr and Hf and always includes Ti; and

the mole fractions x, y, z and m satisfy the inequalities of: $10 \text{ at} \$ \le x \le 20 \text{ at} \$; \text{ 6 at} \$ \le y \le 10 \text{ at} \$; \text{ 0.1 at} \$ \le x \le 12 \text{ at} \$; \text{ and 0}$ $\le m \le 0.5, \text{ respectively, and}$

wherein the Ti-containing nanocomposite magnet powder particles include at least two ferromagnetic crystalline phases, in which hard magnetic phases have an average crystal grain size of 10 nm to 200 nm and soft magnetic phases have an average crystal grain size of 1 nm to 100 nm.

[Claim 2] The rare-earth bonded magnet compound of claim 1, wherein the Ti-containing nanocomposite magnet powder particles have aspect ratios of 0.3 to 1.0.

[Claim 3] The rare-earth bonded magnet compound of claim 1 or 2, wherein the rare-earth alloy powder includes at least 10 mass % of the Ti-containing nanocomposite magnet powder particles with particle sizes of 53 μ m or less.

[Claim 4] The rare-earth bonded magnet compound of one of claims 1 to 3, wherein the rare-earth alloy powder includes at least 8 mass % of the Ti-containing nanocomposite magnet powder particles with particle sizes of 38 μm or less.

[Claim 5] The rare-earth bonded magnet compound of one

of claims 1 to 4, wherein the rare-earth alloy powder includes at least 70 mass % of the Ti-containing nanocomposite magnet powder particles.

[Claim 6] The rare-earth bonded magnet compound of one of claims 1 to 5, wherein the rare-earth alloy powder consists essentially of the Ti-containing nanocomposite magnet powder particles.

[Claim 7] The rare-earth bonded magnet compound of one of claims 1 to 6, wherein the rare-earth alloy powder has an oxygen content of less than 0.24 mass % when left in the air for an hour at a heating temperature of 300 °C to 350 °C.

[Claim 8] The rare-earth bonded magnet compound of one of claims i to 7, wherein when left in the air at 400 °C for 10 minutes, the compound increases its mass by less than 0.26 mass % due to oxidation.

[Claim 9] The rare-earth bonded magnet compound of one of claims I to 8, wherein the binder includes a thermoplastic resin.

[Claim 10] The rare-earth bonded magnet compound of claim 9, wherein the thermoplastic resin has a softening

point of 180 °C or more.

(Claim 11) The rare-earth bonded magnet compound of one of claims 1 to 9, wherein the compound includes the rare-earth alloy powder at 60 mass % to 99 mass % with respect to the sum of the rare-earth alloy powder and the binder.

(Claim 12) The rare-earth bonded magnet compound of one of claims 1 to 11, wherein the rare-earth alloy powder is made up of powder particles obtained by pulverizing a rapidly solidified alloy with a thickness of 60 μ m to 300 μ m.

[Claim 13] The rare-earth bonded magnet compound of one of claims 1 to 12, wherein the rare-earth allow powder is made up of powder particles obtained by pulverizing a rapidly solidified allow that has been formed by a strip casting process.

[Claim 14] The rare-earth bonded magnet compound of one of claims 1 to 13, further comprising a coupling agent.

[Claim 15] A bonded magnet made of the rare-earth bonded magnet compound of one of claims 1 to 14.

[Claim 16] The bonded magnet of claim 15, wherein the magnet is made by an injection molding process.

Application Number: 2001-354315

[Claim 17] The bonded magnet of claim 16, wherein the rare-earth alloy powder is loaded to at least 60 vol%.

[Detailed Description of the Invention]

[0001]

[Field of the Invention]

The present invention relates to a compound for a rare-earth bonded magnet using the compound.

[0002]

[Prior Art]

A bonded magnet is currently used in various types of electric equipment including motors, actuators, loudspeakers, meters and focus convergence rings. A bonded magnet is a magnet produced by mixing together an alloy powder for a magnet (i.e., a magnet powder) and a binder (such as a resin or a low-melting metal) and then compacting and setting the mixture.

[0003]

In the prior art, an Fe-R-B based magnet powder

[0004]

A conventional allow powder for a bonded magnet such as the MQ powder is made by rapidly quenching and solidifying a molten material alloy (i.e., "molten alloy"). As such a melt quenching process, a single roller method (typically a melt spinning process) is often used. The single roller method is a method of quenching and solidifying a molten alloy by bringing the alloy into contact with a rotating chill roller. In this method, the resultant rapidly solidified alloy has the shape of a thin strip (or ribbon), which is elongated in

the surface velocity direction of the chill roller. The thin-strip rapidly solidified alloy obtained in this manner is thermally treated and then pulverized to a mean particle size of 300 μ m or less (or typically about 150 μ m) to be a rare-earth alloy powder for a permanent magnet. In the following description, the rare-earth alloy powder made by such a melt quenching process will be simply referred to herein as a "conventional rapidly solidified magnet powder", which will not include the nanocomposite magnet powder to be described later.

[0005]

By mixing the conventional rapidly solidified magnet powder with a resin (which will include herein rubber or elastomer), a compound for a bonded magnet (which will be simply referred to herein as a "compound") is prepared. An additive such as a lubricant or a coupling agent is sometimes mixed with this compound.

[0006]

Thereafter, by compacting this compound into a desired

shape by a compression, extrusion or injection molding process, for example, a bonded magnet is obtained as a compact for a permanent magnet (which will be sometimes referred to herein as a "permanent magnet body"). Also, the bonded magnet to be made by the compression or extrusion process includes the binder at a relatively low percentage, and may be further subjected to a surface treatment to protect the magnet powder from corrosion.

100071

Meanwhile, an iron-based rare-earth alloy (e.g., Fe-R-B based, in particular) nanocomposite magnet (which is sometimes called an "exchange spring magnet") powder has recently been used more and more often as a magnet powder for a bonded magnet because such a magnet powder is relatively cost effective. The Fe-R-B based nanocomposite magnet is an iron-based alloy permanent magnet in which nanometer-scale crystals of iron-based borides (e.g., Fe₃B, Fe₂₃B, and other soft magnetic phases) and those of an R₂Fe₁₄B phase as a hard magnetic phase are distributed uniformly within the same metal structure and are magnetically coupled together via exchange

interactions (see, for example, Japanese Patent Applications Nos. 11-362103 and 2000-371788, which were filed by the applicant of the present application).

[0008]

The nanocomposite magnet includes soft magnetic phases and yet exhibits excellent magnetic properties due to the magnetic coupling (i.e., the exchange interactions) between the soft and hard magnetic phases. Also, since there are those soft magnetic phases including no rare-earth elements R such as Nd, the total percentage of the rare-earth elements R can be relatively low (a typical R mole fraction is 4.5 at%). This is advantageous for the purposes of reducing the manufacturing cost of magnets and supplying the magnets constantly. Furthermore, since R, which is active to oxygen, is included at a low percentage, the magnet also excels in anticorrosiveness. The nanocomposite magnet may also be made by a melt quenching process. Then, the nanocomposite magnet ìs pulverized by a predetermined method to nanocomposite magnet powder.

[0009]

[Problems to be Solved by the Invention]

However, the conventional compound for a rare-earth bonded magnet, made of the alloy powder (or magnet powder) described above, has the following drawbacks.

[0010]

Firstly, to form a uniform microcrystalline structure, which contributes to expressing excellent magnetic properties, for the conventional rapidly solidified magnet powder (e.g., the MQ powder), the molten alloy needs to be rapidly quenched and solidified at a relatively high rate. For example, when the conventional rapidly solidified magnet powder is made by a single roller method, the roller should have a surface velocity of 20 m/s or more to obtain a rapidly solidified alloy (typically in a thin strip shape) with a thickness of 50 μ m or less (typically 20 μ m to 40 μ m).

[0011]

However, when the rapidly solidified alloy obtained in this manner is pulverized, the resultant powder will mostly consist of particles with aspect ratios of less than 0.3. If

a compound for a rare-earth bonded magnet (which will be simply referred to herein as a "compound") is made by mixing the powder of such a shape and a binder together, the compound will exhibit poor flowability during an injection molding Thus, such a compound may need to be process, for example. compacted at a higher temperature and/or at a higher pressure. the types and applications of resins to be used may be limited, or the content of the magnet powder may be limited to ensure sufficient flowability. Also, it has been difficult to form a bonded magnet in a complex shape or a bonded magnet to fill a small gap (e.g., with a width of 2 mm) as in an IPM (interior permanent magnet) type motor including a magnet embedded rotor as disclosed in Japanese Laid-Open Publication No. 11-206075. As used herein, the "aspect ratio" means the ratio of the minor-axis size of a particle to the major-axis size thereof.

[0012]

Furthermore, in a compound including the conventional rapidly solidified magnet powder (e.g., the MQ powder), the magnet powder is easily oxidized in the air, the properties of

the magnet powder itself deteriorate due to the heat during an injection molding process, and the resultant bonded magnet may exhibit insufficient magnetic properties. The present inventors discovered via experiments that such oxidation was particularly noticeable when the conventional rapidly solidified magnet powder included particles with particle sizes of 53 μ m or less.

[0013]

Accordingly, when a bonded magnet is made of a compound including the conventional rapidly solidified magnet powder, the compacting temperature is limited to minimize the oxidation to be caused by the heat during the molding process. As a result, the compactibility, including the flowability, must be sacrificed.

[0014]

Furthermore, as for a compound to be subjected to an injection molding process or an extrusion process, the compound being prepared is exposed to the heat that is applied to melt a thermoplastic resin as a binder. Thus, during the

manufacturing process, the magnet powder in the compound may be oxidized and the resultant magnetic properties may deteriorate.

[0015]

Besides, when the injection-molded body is cut off from the runner portion, the magnet powder will be exposed on the resin surface on the cross section of the molded body. Also, the magnet powder itself may be exposed on the cross section. When the magnet powder is exposed in some areas in this manner, corrosion easily advances from those areas. This problem is particularly noticeable when the wettability between the resin and the magnet powder is poor. depends not only on a particular material combination but also on how the process step of mixing the resin and magnet powder material is carried out. Specifically, the conventional rapidly solidified magnet powder has a small aspect ratio, and is hard to mix uniformly in the compound preparing process step. Thus, in the resultant compound, the wettability between the resin and the magnet powder may sometimes be not Furthermore, since the magnet powder has a large enough.

aspect ratio, the magnet powder is crushed by shear force applied in the mixing process step to newly expose other cross sections easily. As a result, the magnet powder in the resultant compound is easily oxidizable.

[0016]

On the other hand, the conventional Fe-R-B nanocomposite magnet powder includes the rare-earth elements at a relatively low mole fraction and typically includes 30 vol% or less of hard magnetic phases. Thus, the magnetic properties (e.g., coercivity Heg) thereof are inferior to those of the conventional rapidly solidified magnet powder (such as the MQ powder). Accordingly, it is difficult to make a bonded magnet with sufficient magnetic properties from a compound including only the nanocomposite magnet powder as its magnet powder. For example, a bonded magnet for use in a motor for a hard disk drive (HDD) could not be made from such nanocomposite magnet powder. For that conventional nanocomposite magnet powder described above needs to be mixed with the conventional rapidly solidified magnet powder. Consequently, it has been difficult so far to totally

overcome the problems of the compound including the conventional rapidly solidified magnet powder.

100171

In order to overcome the problems described above, an object of the present invention is to provide a compound for a rare-earth bonded magnet, which can minimize the deterioration in magnetic properties due to the heat applied to form a bonded magnet by a compaction process, can improve the compactibility including flowability, and can make a rare-earth bonded magnet with excellent magnetic properties and anticorrosiveness.

[0018]

(Means for Solving the Problems)

A compound for a rare-earth bonded magnet according to the present invention includes a rare-earth alloy powder and a binder. The rare-earth alloy powder includes at least 2 mass % of Ti-containing nanocomposite magnet powder particles. The Ti-containing nanocomposite magnet powder particles have a composition represented by the general formula: $\{Fe_{i-n}T_n\}_{i=0-x-y-1}$ $Q_xR_yM_z$, where T is at least one element selected from the

group consisting of Co and Ni; Q is at least one element selected from the group consisting of B and C and always includes B; R is at least one rare-earth element substantially excluding La and Ce; M is at least one metal element selected from the group consisting of Ti, Zr and Hf and always includes Ti; and the mole fractions x, y, z and m satisfy the inequalities of: 10 ati<x \leq 20 ati; 6 ati<y \leq 10 ati; 0.1 ati \leq z \leq 12 at%; and 0 \leq z \leq 0.5, respectively. The Ti-containing nanocomposite magnet powder particles include at least two ferromagnetic crystalline phases, in which hard magnetic phases have an average crystal grain size of 10 nm to 200 nm and soft magnetic phases have an average crystal grain size of 1 nm to 100 nm.

[0019]

The Ti-containing nanocomposite magnet powder particles preferably have aspect ratios of 0.3 to 1.0.

[0020]

The rare-earth alloy powder preferably includes at least 10 mass % of the Ti-containing nanocomposite magnet powder particles with particle sizes of 53 μm or less.

[0021]

The rare-earth alloy powder preferably includes at least 8 mass % of the Ti-containing nanocomposite magnet powder particles with particle sizes of 38 μm or less.

[0022]

The rare-earth alloy powder preferably includes at least 70 mass % of the Ti-containing nanocomposite magnet powder particles.

[0023]

The rare-earth alloy powder preferably consists essentially of the Ti-containing nanocomposite magnet powder particles.

[0024]

The rare-earth alloy powder preferably has an oxygen content of less than 0.24 mass % when left in the air for an hour at a heating temperature of 300 $^{\circ}$ C to 350 $^{\circ}$ C.

[0025]

When left in the air at 400 °C for 10 minutes, the compound preferably increases its mass by less than 0.26 mass % due to oxidation.

[0026]

The binder may be a thermoplastic resin.

[0027]

The thermoplastic resin preferably has a softening point of 180 $^{\circ}$ C or more.

[0028]

The compound preferably includes the rare-earth alloy powder at 60 mass % to 99 mass % with respect to the sum of the rare-earth alloy powder and the binder.

[0029]

The rare-earth alloy powder is preferably made up of powder particles obtained by pulverizing a rapidly solidified alloy with a thickness of 60 μm to 300 μm .

[0030]

The rare-earth alloy powder is preferably made up of powder particles obtained by pulverizing a rapidly solidified alloy that has been formed by a strip casting process.

[0031]

The compound preferably further includes a coupling agent.

[0032]

A rare-earth bonded magnet according to the present invention is made of a rare-earth bonded magnet compound according to any of the preferred embodiments of the present invention described above. A rare-earth bonded magnet according to a preferred embodiment is made by an injection molding process. In that case, the rare-earth allow powder is preferably loaded to at least 60 vol*.

[0033]

[Embodiments of the Invention]

In a compound for a rare-earth bonded magnet according to the present invention, the rare-earth alloy powder included therein (which will be referred to herein as a "magnet powder" simply) includes at least 2 mass % of Ti-containing powder for a nanocomposite magnet (which will be referred to herein as a "Ti-containing nanocomposite magnet powder").

[0034]

The Ti-containing nanocomposite magnet powder has a composition represented by the general formula: $(Fe_{1-m}T_m)_{100-x-y}$. $Q_pR_pM_z$, where T is at least one element selected from the

group consisting of Co and Ni; Q is at least one element selected from the group consisting of B and C and always includes B; R is at least one rare-earth element substantially excluding La and Ce; M is at least one metal element selected from the group consisting of Ti, Zr and Hf and always includes Ti; and the mole fractions x, y, z and m satisfy the inequalities of: 10 at $\$ \le x \le 20$ at\$; 6 at $\$ \le y \le 10$ at\$; 0.1 at\$ \leq z \leq 12 at%; and 0 \leq m \leq 0.5, respectively. The Ti-containing nanocomposite magnet powder includes at least ferromagnetic crystalline phases, in which hard magnetic phases have an average crystal grain size of 10 nm to 200 nm and soft magnetic phases have an average crystal grain size of 1 nm to 100 nm. In the general formula representing the composition of the Ti-containing nanocomposite magnet powder. the mole fractions x, y, z and m preferably satisfy the inequalities of 10 at $\$< ext{x}<$ 17 at\$, 7 at $\$\leq ext{y}\leq$ 9.3 at\$ and 0.5 at% $\leq z \leq 6$ at%, respectively. More preferably, $8 \leq y \leq 9.0$ is satisfied. It should be noted that if 15 at $8 < x \le 20$ at 8. then 3.0 at $\leq z \leq 12$ at ϵ is preferably satisfied.

[0035]

The Ti-containing nanocomposite magnet powder included in the compound of the present invention has the composition and structure described above. Accordingly, in the Ticontaining nanocomposite magnet powder, the hard and soft magnetic phases thereof are coupled together through magnetic exchange interactions. Thus, although the magnet powder includes a rare-earth element at a relatively low mole fraction, the magnet powder still exhibits excellent magnetic properties that are at least comparable to, or even better those of a conventional rapidly solidified magnet powder. Furthermore, the magnet powder has superior magnetic properties (of which the coercivity $H_{c,i}$ is particularly high) to those of a conventional nanocomposite magnet powder including an Fe3B phase as a main phase. Specifically, the Ti-containing nanocomposite magnet powder included in the compound of the present invention achieves a maximum energy product (BH) max of at least 70 kJ/m2, a coercivity How of at least 700 kA/m and a remanence $B_{\rm r}$ of at least 0.7 T, and may have a maximum energy product $(BH)_{max}$ of 90 kJ/m 3 or more, a coercivity H_{cl} of 800 kA/m or more and a remanence B_{r} of 0.8 T

or more (see Table 3 to be described later).

[0036]

described above, the Ti-containing nanocomposite magnet powder exhibits magnetic properties that are at least comparable to, or even better than, those of the conventional rapidly solidified magnet powder. Thus, a compound including the Ti-containing nanocomposite magnet powder instead of the conventional rapidly solidified magnet powder (e.g., powder) can exhibit magnetic properties that are at least comparable to, or even better than, those of the conventional compound. Naturally, the compound may include, as its magnet powder, either the Ti-containing nanocomposite magnet powder alone or a mixture also including the conventional rapidly solidified magnet powder and/or the conventional nanocomposite magnet powder. As will be described later by way illustrative examples, the compound of the present invention includes at least 2 mass% of Ti-containing nanocomposite magnet powder in the overall magnet powder, thus exhibiting excellent compactibility and flowability in an injection molding or extrusion molding process. As a result, a bonded

magnet with excellent magnetic properties can be produced relatively easily, and other effects are also achieved. More preferably, at least 5 mass % of the magnet powder in the compound is the Ti-containing nanocomposite magnet powder.

[0037]

As will be described in detail later, due to the action of Ti, the Ti-containing nanocomposite magnet powder included in the compound of the present invention may also be made by quenching a molten alloy at a quenching rate (of 10 2 $^\circ$ C/s to 10^6 $^{\circ}$ C/s) that is lower than that of the conventional rapidly solidified magnet powder. For example, even when the roller surface velocity is 15 m/s or less, an alloy with excellent magnetic properties can also be obtained. Accordingly, even if a (thin-strip) rapidly solidified alloy is formed thicker (e.g., to a thickness of 60 µm or more) than the conventional one by a strip casting process, the metal structure described above can also be formed. The strip casting process promises good mass productivity. Thus, a Ti-containing nanocomposite magnet powder exhibiting stabilized magnetic properties can be manufactured at a relatively low cost.

[0038]

If a rapidly solidified alloy with a thickness of 60 \(\mu\) m to 300 μ m, for example, is formed by a strip casting process and then pulverized by a pin disk mill, for example, such that the magnet powder has a mean particle size of 70 μ m, then a powder, consisting of particles with aspect ratios of 0.3 to 1.0, can be obtained relatively easily. Also, the rapidly solidified alloy for the Ti-containing nanocomposite magnet powder is made up of smaller crystal grains than conventional rapidly solidified alloy. Thus, the former rapidly solidified alloy is easily divided ln orientations, thus making powder particles having an isometric shape (i.e., having an aspect ratio close to one) relatively easily. Accordingly, by controlling the conditions of the pulverization process, a powder consisting of particles with aspect ratios of at least 0.4 can also be obtained easily.

[0039]

Compared to a compound including the conventional rapidly solidified magnet powder with aspect ratios of less than 0.3, the compound including the Ti-containing nanocomposite magnet

powder, consisting of particles with aspect ratios of at least 0.3 (more preferably, at least 0.4), exhibits superior compactibility and flowability. By mixing at least 2 mass % of Ti-containing nanocomposite magnet powder, having aspect ratios of 0.3 to 1.0, with respect to the overall magnet powder in the compound, the flowability is improvable. To further improve the flowability, the magnet powder in the compound preferably includes at least 5 mass % of Ti-containing nanocomposite magnet powder with aspect ratios of 0.3 or more.

[0040]

In the Ti-containing nanocomposite magnet powder, the rare-earth element R is included at a relatively low mole fraction, small boride phases are dispersed so as to surround the R₂Fe₁₄B phase, and those boride phases include a greater amount of Ti than any other phase, because Ti exhibits high affinity for boron. Thus, the Ti-containing nanocomposite magnet powder is superior to the conventional rapidly solidified magnet powder or conventional nanocomposite magnet powder in oxidation resistance.

[0041]

The Ti-containing nanocomposite magnet powder exhibits excellent oxidation resistance, and is not oxidized easily even at a temperature at which the compound is compacted (e.g., 300 $^{\circ}$) as will be described in detail later with reference to Table 1. Also, even in the process step of preparing the compound including the Ti-containing nanocomposite magnet powder, the compound is not affected by the oxidation of the magnet powder easily. Instead, the compound maintains the excellent magnetic properties of the Ti-containing nanocomposite magnet powder. In addition, as will be described later for specific examples, the compound itself also exhibits excellent oxidation resistance. When the Ti-containing nanocomposite magnet powder and the conventional rapidly solidified magnet powder and/or the conventional nanocomposite magnet powder are used as a mixture, the compound is preferably prepared using a magnet powder, which has had its mixing ratio adjusted so as to have an oxygen content of less than 0.24 mass% when left in the air for one hour at a heating temperature of 300 $^{\circ}$ C to 350 $^{\circ}$ C.

[0042]

Furthermore, since the Ti-containing nanocomposite magnet powder exhibits excellent oxidation resistance, resins with high melting or softening points (e.g., polyimides, liquid crystal polymers and high-molecular-weight-grade resins), which are hard to use in the prior art, and metals having higher melting points than the conventional ones may also be used as binders. For example, even when a thermoplastic resin having a softening point of 180 °C or more (or even 250 °C or more as in polyphenylene sulfide resin) is used, a compound to be injection molded, exhibiting excellent magnetic properties and compactibility, can be obtained. It should be noted that the softening point of a resin is herein known by a Vicat softening point test (described in JIS K6870, for example) no matter whether the resin is crystalline or amorphous. even when a thermosetting resin is used, the resin can be cured at a higher setting temperature than the conventional one. Furthermore, since the magnet powder itself exhibits excellent anticorrosiveness, the magnet performance deteriorates extremely slightly even when the thermosetting

process is carried out in the air. That is to say, there is no need to carry out the thermosetting process in an inert atmosphere, and therefore, the process cost can be cut down. Furthermore, since such heat-resistant resins can be adopted, a heating/degassing process, which is carried out to minimize the emission of an unwanted gas in an HDD, can be performed at a higher temperature. Thus, a bonded magnet that can be used more effectively in an HDD, for example, can be obtained.

[0043]

By using such a resin having a higher softening point or a higher setting temperature than the conventional one, the properties of the bonded magnet (e.g., heat resistance and mechanical properties) can be improved. To ensure sufficient thermal oxidation resistance, when the mixture of the Ticontaining nanocomposite magnet powder and the conventional rapidly solidified magnet powder and/or the conventional nanocomposite magnet powder is used, the preferably prepared so as to increase its mass due. to oxidation by no greater than 0.26 mass% when left in the air for 10 minutes at 400 °C.

[0044]

The conventional rapidly solidified magnet powder includes the rare-earth element R at a relatively high mole fraction, and is oxidizable relatively easily. Thus, the smaller the particle size, the more significantly the magnetic properties are deteriorated due to the oxidation of surface of the powder particles. In contrast, in the Ticontaining nanocomposite magnet powder, the magnetic properties thereof are deteriorated due to oxidation to a much lesser degree, and even relatively small particles (e.g., with particle sizes of 53 μ m or less) show almost no deterioration in magnetic properties due to oxidation. Accordingly, in the magnet powder included in the compound, the powder particles having particle sizes of 53 μ m or less are preferably those of the Ti-containing nanocomposite magnet powder.

[0045]

Also, considering the loadability of the magnet powder, the magnet powder preferably includes those powder particles with particle sizes of at most 53 μm at 10 mass% or more, and more preferably at 20 mass% or more. Furthermore, a compound

for use to make a high-density compact preferably includes a magnet powder including at least 8 mass% of powder particles with particle sizes of 38 μ m or less. Even when powder particles with particle sizes of 53 μ m or less are included at 20 mass% or more in the Ti-containing nanocomposite magnet powder, the magnet powder for a bonded magnet never exhibits deteriorated magnetic properties. Compared with a magnet powder for a bonded magnet pitch a bonded magnet powder of conventional rapidly solidified magnet powder with particle sizes of 53 μ m or less, the magnetic properties are rather improved.

[0046]

A magnet powder for a bonded magnet is normally made up of particles with a maximum particle size of 500 μ m or less (typically 300 μ m or less). To improve the loadability, the magnet powder preferably includes a rather high percentage of particles with particle sizes of 53 μ m or less (or 38 μ m or less, in particular). In the conventional rapidly solidified magnet powder, however, particles with relatively small particle sizes exhibit inferior magnetic properties as

described above. Thus, to improve the magnetic properties, the loadability has to be sacrificed. Conversely, to improve the loadability, the magnetic properties have to be sacrificed.

[0047]

In contrast, in the Ti-containing nanocomposite magnet powder, even particles with small particle sizes also exhibit excellent magnetic properties. Thus, even when the magnet powder prepared includes small particles (e.g., with particle sizes of 53 µm or less) at a relatively high percentage, the magnetic properties do not deteriorate. For example, even if a magnet powder having a particle size distribution disclosed in Japanese Laid-Open Publication No. 63-155601 is prepared, there is no need to sacrifice the properties. It should be noted that the particle size distribution may be controlled by classifying the 71containing nanocomposite magnet powder, made by the method described above, depending on the necessity.

[0048]

When a compound is prepared by using a magnet powder

including the Ti-containing nanocomposite magnet powder, not only the compactibility but also the magnetic properties of the resultant bonded magnet can be improved effectively (this is also true even when the Ti-containing nanocomposite magnet powder is mixed with the conventional rapidly solidified magnet powder). This effect is achieved not just because of the difference ž.n magnetic properties between edd containing nanocomposite magnet powder and the conventional rapidly solidified magnet powder but also because deterioration in magnetic properties; which is usually caused due to the exidation of the conventional rapidly solidified magnet powder in the compound, can be minimized by using the Ti-containing nanocomposite magnet powder. Specifically, the deterioration is minimized because the compound preparing process step and compacting process step can be carried out at lower temperatures when the Ti-containing nanocomposite magnet powder is used. That is to say, in the compound of the present invention, the Ti-containing nanocomposite powder itself does exhibit excellent oxidation resistance. addition, the unwanted oxidation of the conventional rapidly

solidified magnet powder, which is used in combination with the Ti-containing nanocomposite magnet powder during the manufacturing process of the bonded magnet and which exhibits inferior oxidation resistance, can also be minimized.

[0049]

Furthermore, the compound including the Ti-containing nanocomposite magnet powder exhibits excellent compactibility and flowability. Thus, the load on an apparatus for use in a kneading process (such as a kneader) can be lightened. result, the productivity of the compound increases and the manufacturing cost decreases. Furthermore, the resin and the magnet powder can be kneaded (or mixed) together well enough. Thus, a compound with good anticorrosiveness, in which the surface of the magnet powder particles is well coated with the resin, can be obtained. Also, the amount of impurities to enter the compound during the kneading process can be decreased as well. To further improve the wettability, kneadability and bond strength between the resin and the magnet powder, a coupling agent is preferably added. The coupling agent may be added either in advance to the surface

of the magnet powder or during the process step of mixing the magnet powder with the resin. By adding the coupling agent, the kneading torque can be decreased and the effects of the present invention are achieved more fully.

[0050]

To make full use of the excellent magnetic properties, oxidation resistance, and improved compactibility and flowability of the Ti-containing nanocomposite magnet powder at the same time, at least 70 mass* of the overall magnet powder is preferably the Ti-containing nanocomposite magnet powder. Most preferably, only the Ti-containing nanocomposite magnet powder should be used.

[0051]

The compound of the present invention exhibits good compactibility. Thus, the gap percentage of the compact can be reduced and a bonded magnet with an increased magnet powder loadability can be obtained. Also, when a thermosetting resin is used as the resin binder and when the mixture is compacted by a compression process, a bonded magnet with a magnet powder loadability of 80 vol% or more can be obtained easily. On the

other hand, when a thermoplastic resin is used as the resin binder and when the mixture is compacted by an injection molding process, a bonded magnet with a magnet powder loadability of 60 vol% or more can be obtained easily. In this manner, a bonded magnet with a higher loadability can be obtained. As a result, a bonded magnet, exhibiting magnetic properties superior to the conventional ones, is provided.

[0052]

Hereinafter, a compound for a rare-earth bonded magnet according to the present invention will be described in further detail.

[0053]

(Ti-containing nanocomposite magnet powder)

The Ti-containing nanocomposite magnet powder to be included as at least portion of the compound for a rare-earth bonded magnet according to the present invention is formed by rapidly quenching and solidifying a melt of an Fe-R-B alloy containing Ti. This rapidly solidified alloy includes crystalline phases. However, if necessary, the alloy is heated and further crystallized.

[0054]

The present inventors discovered that when Ti was added to an iron-based rare-earth alloy with a composition defined by a particular combination of mole fraction ranges, the nucleation and growth of an α -Fe phase, often observed while the melt is quenched and obstructing the expression of excellent magnetic properties (e.g., high coercivity and good loop squareness of the demagnetization curve among other things), could be minimized and the crystal growth of an $R_2Fe_{14}B$ compound phase, contributing to hard magnetic properties, could be advanced preferentially and uniformly.

[0055]

Unless Ti is added, the α -Fe phase easily nucleates and grows faster and earlier than an $Nd_2Fe_{14}B$ phase. Accordingly, when the rapidly solidified alloy is thermally treated to be crystallized, the α -Fe phase with soft magnetic properties will have grown excessively and no excellent magnetic properties (e.g., H_{e3} and loop squareness, in particular) will be achieved.

[0056]

In contrast, where Ti is added, the nucleation and growth kinetics of the α -Fe phase would be slowed down, i.e., it would take a longer time for the α -Fe phase to nucleate and grow. Thus, the present inventors believe that the $\mathrm{Nd}_2\mathrm{Fe}_{14}\mathrm{B}$ phase would start to nucleate and grow before the α -Fe phase has nucleated and grown coarsely. For that reason, the $\mathrm{Nd}_2\mathrm{Fe}_{14}\mathrm{B}$ phase can be grown sufficiently and distributed uniformly before the α -Fe phase grows too much. Furthermore, it is believed that Ti is hardly included in the $\mathrm{Nd}_2\mathrm{Fe}_{14}\mathrm{B}$ phase, but present profusely in the iron-based boride or in the interface between the $\mathrm{Nd}_2\mathrm{Fe}_{14}\mathrm{B}$ phase and the iron-based boride phase, thus stabilizing the iron-based boride.

[0057]

That is to say, the Ti-containing nanocomposite magnet powder for use in the compound of the present invention can have a nanocomposite structure in which Ti contributes to significant reduction in grain size of the soft magnetic phases (including the iron-based boride and a-Fe phases), uniform distribution of the Nd₂Fe₁₄B phase and increase in volume percentage of the Nd₂Fe₁₄B phase. As a result, compared

to the situation where no Ti is added, the coercivity and magnetization (or remanence) increase and the loop squareness of the demagnetization curve improves, thus contributing to achieving excellent magnetic properties in the resultant bonded magnet.

[0058]

Hereinafter, the Ti-containing nanocomposite magnet powder for use in the compound of the present invention will be described in further detail.

[0059]

The Ti-containing nanocomposite magnet powder included at least in the compound of the present invention is preferably represented by the general formula: $(Fe_{1-n}T_n)_{120-x-y}$, $Q_xR_yM_z$, where T is at least one element selected from the group consisting of Co and Ni; Q is at least one element selected from the group consisting of B (boron) and C (carbon) and always includes B; R is at least one rare-earth element substantially excluding La and Ce; and M is at least one metal element selected from the group consisting of Ti, Zr and Hf and always includes Ti.

[0060]

The mole fractions x, y, z and m preferably satisfy the inequalities of: 10 at%<x \leq 20 at%; 6 at%<y<10 at%; 0.1 at% \leq 2 \leq 12 at%; and 0 \leq m \leq 0.5, respectively.

[0061]

The Ti-containing nanocomposite magnet powder includes a rare-earth element at as small a mole fraction as less than 10 at%. However, since Ti has been added, the magnet powder achieves the unexpected effects of keeping, or even increasing, the magnetization (remanence) Br and improving the loop squareness of the demagnetization curve thereof compared to the situation where no Ti is added.

[0062]

In the Ti-containing nanocomposite magnet powder, the soft magnetic phases have a very small grain size. Accordingly, the respective constituent phases are coupled together through exchange interactions. For that reason, even though soft magnetic phases such as iron-based boride and α -Fe phases are present along with the hard magnetic $R_2Fe_{14}B$ compound phase, the alloy as a whole can exhibit

excellent squareness at the demagnetization curve thereof.

[0063]

The Ti-containing nanocomposite magnet powder preferably includes iron-based borides and α -Fe phases with a saturation magnetization equal to, or even higher than, that of the R₂Fe₁₄B compound phase. Examples of those iron-based borides include Fe₃B (with a saturation magnetization of 1.5 T) and Fe₂₃B₆ (with a saturation magnetization of 1.6 T). In this case, the R₂Fe₁₄B phase has a saturation magnetization of about 1.6 T when R is Nd, and the α -Fe phase has a saturation magnetization of 2.1 T.

[0064]

Normally, where the mole fraction x of B is greater than 10 at% and the mole fraction y of the rare-earth element R is 5 at% to 8 at%, R₂Fe₂₃B₃ is produced. However, even when a material alloy with such a composition is used, the addition of Ti as is done in the present invention can produce R₂Fe₁₄B phase and soft magnetic iron-based boride phases such as Fe₂₂B₄ and Fe₂B, instead of the unwanted R₂Fe₂₃B₃ phase. That is to say, when Ti is added, the percentage of the R₂Fe₁₄B phase can

be increased and the iron-based boride phases produced contribute to increasing the magnetization.

[0065]

The present inventors discovered via experiments that only when Ti was added, the magnetization did not decrease but rather increased as opposed to any other metal element additive such as V, Cr, Mn, Nb or Mo. Also, when Ti was added, the loop squareness of the demagnetization curve was much better than that realized by adding any of these elements.

[0066]

Furthermore, these effects achieved by the additive Ti are particularly significant where the concentration of B is greater than 10 at%. Hereinafter, this point will be described with reference to FIG. 1.

[0067]

FIG. 1 is a graph showing a relationship between the maximum energy product $(BH)_{\rm max}$ and the concentration of B in an Nd-Fe-B magnet alloy to which no Ti is added. In FIG. 1, the white bars represent data about samples containing 10 at%

to 14 at% of Nd, while the black bars represent data about samples containing 8 at% to less than 10 at% of Nd. On the other hand, FIG. 2 is a graph showing a relationship between the maximum energy product (BH)_{max} and the concentration of B in an Nd-Fe-B magnet alloy to which Ti is added. In FIG. 2, the white bars represent data about samples containing 10 at% to 14 at% of Nd, while the black bars represent data about samples containing 8 at% to less than 10 at% of Nd.

[0068]

As can be seen from FIG. 1, once the concentration of B exceeds 10 at%, the samples including no Ti exhibit decreased maximum energy products (BH)_{max} no matter how much Nd is contained therein. Where the content of Nd is 8 at% to 10 at%, this decrease is particularly noticeable. This tendency has been well known in the art and it has been widely believed that any magnet alloy, including an Nd₂Fe₁₄B phase as its main phase, should not contain more than 16 at% of B. For instance, United States Patent No. 4,836,868 discloses a working example in which B has a concentration of 5 at% to 9.5 at%. This patent teaches that the concentration of B is preferably 4 at%

to less than 12 at%, more preferably 4 at% to 10 at%.

[0069]

In contrast, as can be seen from FIG. 2, the samples including the additive Ti show increased maximum energy products (BH)_{max} in a certain range where the B concentration is greater than 10 at%. This increase is particularly remarkable where the Nd content is 8 at% to 10 at%.

[0070]

Thus, the present invention can reverse the conventional misbelief that a B concentration of greater than 10 at% degrades the magnetic properties and can achieve the unexpected effects just by adding Ti. As a result, a magnet powder, contributing to advantageous features of the compound of the present invention described above, can be obtained.

[0071]

Next, a method of making the Ti-containing nanocomposite magnet powder, at least included in the compound for a rare-earth bonded magnet of the present invention, will be described.

[0072]

(Rapidly solidified alloy for Ti-containing nanocomposite magnet powder)

A melt of the iron-based alloy with the composition represented by the general formula: $(Fe_{1.m}T_n)_{100-x-y-x}Q_xR_yM_x$ (where x, y, z and m satisfy 10 at%<x \leq 20 at%, 6 at%<y<10 at%, 0.1 at% \leq x \leq 12 at% and 0 \leq m \leq 0.5, respectively) is rapidly quenched within an inert atmosphere, thereby preparing a rapidly solidified alloy including an $R_xFe_{1x}B$ compound phase at 60 volume % or more. The average crystal grain size of the $R_xFe_{1x}B$ compound phase in the rapidly solidified alloy can be 80 nm or less, for example. If necessary, this rapidly solidified alloy may be heat-treated. Then, the amorphous phases remaining in the rapidly solidified alloy can be crystallized.

[0073]

In an embodiment in which a melt spinning process or a strip casting process is carried out by using a chill roller, the molten alloy is rapidly quenched within an atmosphere baving a pressure of 1.3 kPa or more. Then, the molten alloy is not just rapidly quenched through the contact with the

chill roller but also further cooled appropriately due to the secondary cooling effects caused by the atmospheric gas even after the solidified alloy has left the chill roller.

[0074]

According to the results of experiments the present inventors carried out, while the rapid quenching process is performed, the atmospheric gas should have its pressure controlled preferably at 1.3 kPa or more but the atmospheric pressure (=101.3 kPa) or less, more preferably 10 kPa to 90 kPa, and even more preferably 20 kPa to 60 kPa.

[0075]

Where the atmospheric gas has a pressure falling within any of these preferred ranges, the surface velocity of the chill roller is preferably 4 m/s to 50 m/s. This is because if the roller surface velocity is lower than 4 m/s, then the $R_2Fe_{14}B$ compound phase, included in the rapidly solidified alloy, will have excessively large crystal grains. In that case, the $R_2Fe_{14}B$ compound phase will further increase its grain size when thermally treated, thus possibly deteriorating the resultant magnetic properties.

[0076]

According to the results of the experiments carried out by the present inventors, the roller surface velocity is more preferably 5 m/s to 30 m/s, even more preferably 5 m/s to 20 m/s.

[0077]

When a material alloy having the composition of the Ticontaining nanocomposite magnet powder included the compound of the present invention is rapidly quenched and solidified, the resultant rapidly solidified alloy has either a structure in which almost no G-Fe phase with an excessively large grain size precipitates but a microcrystalline $R_2 Fe_{14} B$ compound phase exists instead or a structure in which the microcrystalline R2Fe1AB compound phase and an amorphous phase coexist. Accordingly, when such a rapidly solidified alloy is thermally treated, a high-performance nanocomposite magnet, in which soft magnetic phases such as iron-based boride phases are dispersed finely or distributed uniformly on the grain boundary between the hard magnetic phases, will be obtained. As used herein, the "amorphous phase" means not only a phase in which the atomic arrangement is sufficiently disordered but also a phase including embryos for crystallization, extremely small crystalline regions (with a size of several nanometers or less), and/or atomic clusters. More specifically, the "amorphous phase" herein means any phase of which the crystal structure cannot be defined by an X-ray diffraction analysis or a TEM observation.

[0078]

In the prior art, even when one tries to make a rapidly solidified alloy including 60 volume % or more of $R_2Fe_{14}B$ compound phase by rapidly quenching a molten alloy with a composition that is similar to that of the Ti-containing nanocomposite magnet powder included in the compound of the present invention but that includes no Ti, the resultant alloy will have a structure in which a lot of α -Fe phase has grown coarsely. Thus, when the alloy is heated and crystallized after that, the α -Fe phase will increase its grain size excessively. Once soft magnetic phases such as the α -Fe phase have grown too much, the magnetic properties of the alloy deteriorate significantly, thus making it virtually

impossible to produce a quality bonded magnet out of such an alloy.

[0079]

Particularly with a material alloy containing B at a Ti-containing like the relatively high percentage nanocomposite magnet powder included in the compound of the present invention, even if the molten alloy is quenched at a low rate, crystalline phases cannot be produced so easily according to the conventional method. This is because the Brich molten alloy highly likely creates an amorphous phase. For that reason, in the prior art, even if one tries to make a rapidly solidified alloy including 60 volume % or more of R2Fe14B compound phase by decreasing the quenching rate of the melt sufficiently, not only the R2Fe14B compound phase but also the a -Fe phase or its precursor will precipitate a lot. Thus, when that alloy is heated and crystallized after that, the 0-Fe phase will further grow to deteriorate the magnetic properties of the alloy seriously.

[0080]

Thus, it was widely believed that the best way of

increasing the coercivity of a material alloy for a nanocomposite magnet powder was quenching a melt at an increased rate to amorphize most of the rapidly solidified alloy first and then forming a highly fine and uniform structure by heating and crystallizing the amorphous phases. This is because in conventional methods, it was taken for granted that there was no other alternative but crystallizing the amorphous phases through an easily controllable heat treatment process to make a nanocomposite magnet having an alloy structure in which crystalline phases of very small sizes are dispersed.

[0081]

Based on this popular belief, W. C. Chan et al., reported a technique of making Nd₂Fe₁₄B and @-Fe phases with grain sizes on the order of several tens nm. According to Chan's technique, La, which excels in producing the amorphous phases, is added to a material alloy. Next, the material alloy is melt quenched to make a rapidly solidified alloy mainly composed of the amorphous phases. And then the alloy is heated and crystallized. See W. C. Chan et al., "The Effects

of Refractory Metals on the Magnetic Properties of α - Fe/R₂Fe₁₄B-type Nanocomposites", IEEE Trans. Magn. No. 5. INTERMAG. 99. Kyongiu, Korea. pp. 3265-3267, 1999. This article also teaches that adding a refractory metal element such as Ti in a very small amount (e.g., 2 at%) improves the magnetic properties and that the mole fraction of Nd, rare-earth element, is preferably increased from 9.5 at% to 11.0 at% to reduce the grain sizes of the Nd₂Fe₁₄B and α -Fe phases. The refractory metal is added to prevent borides such as R₂Fe₂₃B₃ and Fe₃B from being produced and to make a material alloy for a magnet powder consisting essentially of Nd₂Fe₁₄B and α -Fe phases only.

[0082]

In contrast, in the Ti-containing nanocomposite magnet powder included in the compound of the present invention, the additive Ti minimizes the nucleation of the α -Fe phase during the rapid solidification process. In addition, the additive Ti also produces soft magnetic phases such as iron-based borides and yet minimizes the grain growth thereof during the heat treatment process for crystallization. As a result, a

magnet powder having excellent magnetic properties can be obtained.

[0083]

That is to say, even though the material alloy includes a rare-earth element at a relatively low percentage (i.e., 9 at or less), a magnet powder, exhibiting high magnetization (or remanence) and coercivity and showing excellent loop squareness at its demagnetization curve, can be obtained.

[0084]

As described above, the coercivity of the material alloy for the Ti-containing nanocomposite magnet powder is increased by making the Nd₂Fe₁₄B phase nucleate and grow faster and earlier in the quenching process so that the Nd₂Fe₁₄B phase increases its volume percentage and yet by minimizing the grain coarsening of the soft magnetic phases. Also, the magnetization thereof increases because the additive Ti can produce a boride phase (e.g., ferromagnetic iron-based borides) from the B-rich non-magnetic amorphous phases existing in the rapidly solidified alloy and can increase the volume percentage of the ferromagnetic phases in the heated

and crystallized alloy.

[0085]

The material alloy obtained in this manner is preferably heated and crystallized depending on the necessity to form a structure with three or more crystalline phases including $\mathtt{R}_{2}\mathtt{Fe}_{14}\mathtt{B}$ compound, boride and lpha - \mathtt{Fe} phases. The heat treatment is preferably conducted with its temperature and duration controlled in such a manner that the RoFe14B compound phase will have an average crystal grain size of 10 nm to 200 nm and that the boride and O - Fe phases will have an average crystal grain size of 1 nm to 100 nm. The $R_7 Fe_{14} B$ compound phase normally has an average crystal grain size of 30 nm or more, which may be 50 nm or more depending on the conditions. the other hand, the soft magnetic phases, such as boride and 0 - Fe phases, often have an average crystal grain size of 30 nm or less and typically several nanometers at most.

[0086]

In the material alloy for the Ti-containing nanocomposite magnet powder, the $R_2 Pe_{14} B$ compound phase has a greater average crystal grain size than α -Fe phase. FIG. 3

schematically illustrates the metal structure of this material alloy. As shown in FIG. 3, fine soft magnetic phases are distributed between relatively large R₂Fe₁₄B compound phases. Even though the R₂Fe₁₄B compound phase has a relatively large average crystal grain size, the soft magnetic phases have a sufficiently small average crystal grain size because the crystal growth thereof has been minimized. Accordingly, these constituent phases are magnetically coupled together through exchange interactions and the magnetization directions of the soft magnetic phases are constrained by the hard magnetic phase. Consequently, the alloy as a whole can exhibit excellent loop squareness at its demagnetization curve.

[0087]

In the manufacturing process described above, borides are easily produced. The reason is believed to be as follows. When a solidified alloy, mostly composed of the R₂Fe₁₄B compound phase, is made, the amorphous phases existing in the rapidly solidified alloy should contain an excessive amount of B. Accordingly, when the alloy is heated and crystallized, that B will bond to other elements easily, thus nucleating and

growing in profusion. However, if that B bonds to other elements and produces compounds with low magnetization, then the alloy as a whole will have decreased magnetization.

[0088]

The present inventors discovered and confirmed via experiments that only when Ti was added, the magnetization did not decrease but rather increased as opposed to any other metal element additive such as V, Cr, Mn, Nb or Mo. additive M (Ti, in particular) improved the loop squareness of the demagnetization curve far better than any of the elements cited above did. Accordingly, the present inventors believe that Ti plays a key role in minimizing the production of borides with low magnetization. Farticularly when relatively small amounts of B and Ti are included in the material alloy for use to prepare the Ti-containing nanocomposite magnet powder, iron-based boride phases with ferromagnetic properties will easily grow while the alloy is heat-treated. In that case, B included in the non-magnetic amorphous phases would be absorbed into the iron-based borides. As a result, the non-magnetic amorphous phases,

remaining even in the alloy that has been heated and crystallized. decrease their volume percentage but the ferromagnetic crystalline phase increases its volume percentage instead, thus increasing the remanence $B_{\rm r}$.

[0089]

Hereinafter, this point will be further discussed with reference to FIG. 4.

[0090]

FIG. 4 schematically illustrates how rapidly solidified alloys change their microstructures during the crystallization processes thereof in a situation where Ti is added and in situations where Nb or another metal element is added instead of Ti. Where Ti is added, the grain growth of the respective constituent phases is minimized even in a temperature range exceeding the temperature at which the α -Fe phase grows rapidly. As a result, excellent hard magnetic properties can be maintained. In contrast, where any of the other metal elements (e.g., Nb, V, Cr, etc.) is added, the grain growth of the respective constituent phases advances remarkably and the exchange interactions among those phases weakens in the

relatively high temperature range in which the α -Fe phase grows rapidly. As a result, the resultant demagnetization curves have decreased loop equareness.

[0091]

First, the situation where Nb, Mo or W is added will be described. In this case, if the alloy is thermally treated in a relatively low temperature range where no a -Fe phase precipitates, then good hard magnetic properties, including superior loop squareness of the demagnetization curve, are achievable. In an alloy that was heat-treated at such a low temperature, however, R2Fe14B microcrystalline phases would be dispersed in the non-magnetic amorphous phases, and the alloy does not have the nanocomposite magnet structure and would not exhibit high magnetization. Also, if the alloy is heattreated at a higher temperature, then the α -Fe phase nucleates and grows out of the amorphous phases. Unlike the situation where Ti is added, the @-Fe phase grows rapidly and increases its grain size excessively. As a result, exchange interactions among the constituent phases weaken and the loop squareness of the demagnetization curve deteriorates

significantly.

[0092]

On the other hand, where Ti is added, a nanocomposite structure, including microcrystalline $R_2Fe_{14}B$, iron-based boride, α -Fe and amorphous phases, can be formed by heat-treating the alloy, and the respective constituent phases are dispersed finely and uniformly. Also, the addition of Ti minimizes the grain growth of the α -Fe phase.

[0093]

Where V or Cr is added, any of these additive metal elements is coupled anti-ferromagnetically with Fe to form a solid solution, thus decreasing the magnetization significantly. The additive V or Cr cannot minimize the heat-treatment-induced grain growth sufficiently, either, and deteriorates the loop squareness of the demagnetization curve.

[0094]

Thus, only when Ti is added, the grain coarsening of the G -Fe phase can be minimized appropriately and iron-based borides with ferromagnetic properties can be obtained. Furthermore, Ti, as well as B and C, plays an important role as an element that delays the crystallization of Fe initial crystals (i.e., γ-Fe that will be transformed into α-Fe) during the melt quenching process and thereby facilitates the production of a supercooled liquid. Accordingly, even if the melt of the alloy is rapidly quenched and solidified at a relatively low quenching rate of about 10² C/s to about 10⁵ C/s, a rapidly solidified alloy, in which the α-Fe phase has not precipitated too much and the microcrystalline R₂Fe₁₄B and amorphous phases coexist, can be obtained. This greatly contributes to cost reduction because this means that a strip casting process, particularly suitable for mass production, can be selected from various melt quenching techniques.

[0095]

The strip casting process is a highly productive and cost-effective method for making a material alloy by rapidly quenching a molten alloy. This is because in the strip casting process, the flow rate of the melt does not have to be controlled using a nozzle or orifice but the melt may be poured directly from a tundish onto a chill roller. To amorphize the melt of an R-Fe-B rare earth alloy in a

quenching rate range achievable even by the strip casting process, normally B should be added at 10 at% or more. In the prior art, if B is added that much, then not just non-magnetic amorphous phases but also an @ -Fe phase and/or a soft magnetic Nd₂Fe₂₃B₃ phase will grow preferentially to have excessively large grain sizes after the rapidly solidified alloy has been thermally treated and crystallized. Then, no uniform microcrystalline structure can be formed. As a result, the volume percentage of ferromagnetic phases decreases, the magnetization drops, and the volume percentage of the Nd2Fe14B phase also decreases. Consequently, the coercivity decreases noticeably. However, if Ti is added, then the excessive grain growth of the a-Fe phase is minimized as described above. a result, the magnetization increases more than expected.

[0096]

It should be noted that a rapidly solidified alloy, including the Nd₂Fe₁₄B phase at a high volume percentage, could improve the resultant magnetic properties more easily than a rapidly solidified alloy including the amorphous phases at a high volume percentage. Accordingly, the volume percentage of

the Nd₂Fe₁₄B phase to the overall rapidly solidified alloy is preferably 50 volume % or more, more specifically 60 volume % or more, which value was calculated by Mössbauer spectroscopy.

[0097]

Hereinafter, an embodiment, in which a melt spinning process or a strip casting process (which is one of roller methods) is adopted to prepare an alloy for a Ti-containing nanocomposite magnet powder according to the present invention, will be described more specifically.

[0098]

(Melt quenching machine)

In this embodiment, a material alloy is prepared by using a melt quenching machine such as that shown in FIGS. 5. The alloy preparation process is performed within an inert atmosphere to prevent the material alloy, which includes rare-earth element R and Fe that are easily oxidizable, from being oxidized. The inert gas may be either a rare gas of helium or argon, for example, or nitrogen. The rare gas of helium or argon is preferred to nitrogen, because nitrogen reacts with the rare-earth element R relatively easily.

[0099]

The machine shown in FIG. 5 includes material alloy melting and quenching chambers 1 and 2, in which a vacuum or an inert atmosphere is maintained at an adjustable pressure. Specifically, FIG. 5(a) illustrates an overall arrangement of the machine, while FIG. 5(b) illustrates a portion of the machine on a larger scale.

[0100]

As shown in FIG. 5(a), the melting chamber 1 includes: a melt crucible 3 to melt, at an elevated temperature, a material 20 that has been mixed to have a desired magnet alloy composition; a reservoir 4 with a teeming nozzle 5 at the bottom; and a mixed material feeder 8 to supply the mixed material into the melt crucible 3 while maintaining an airtight condition. The reservoir 4 stores the melt 21 of the material alloy therein and is provided with a heater (not shown) to maintain the temperature of the melt teemed therefrom at a predetermined level.

[0101]

The quenching chamber 2 includes a rotating chill roller

7 for rapidly quenching and solidifying the melt 21 that has been dripped through the teeming nozzle 5.

[0102]

In this machine, the atmosphere and pressure inside the melting and quenching chambers 1 and 2 are controllable within prescribed ranges. For that purpose, atmospheric gas inlet ports 1b, 2b and 8b and outlet ports 1a, 2a and 8a are provided at appropriate positions of the machine. In particular, the gas outlet port 2a is connected to a pump to control the absolute pressure inside the quenching chamber 2 within a range of 30 kPa to the normal pressure (i.e., atmospheric pressure).

[0103]

The melt crucible 3 may define a desired tilt angle to pour the melt 21 through a funnel 6 into the reservoir 4. The melt 21 is heated in the reservoir 4 by the heater (not shown).

[0104]

The teeming nozzle 5 of the reservoir 4 is positioned on the boundary wall between the melting and quenching chambers

1 and 2 to drip the melt 21 in the reservoir 4 onto the surface of the chill roller 7, which is located under the nozzle 5. The orifice diameter of the teeming nozzle 5 may be 0.5 mm to 2.0 mm, for example. If the viscosity of the melt 21 is high, then the melt 21 cannot flow through the teeming nozzle 5 easily. In this embodiment, however, the pressure inside the quenching chamber 2 is kept lower than the pressure inside the melting chamber 1. Accordingly, an appropriate pressure difference is created between the melting and quenching chambers 1 and 2, and the melt 21 can be teemed smoothly.

[0105]

To achieve a good thermal conductivity, the chill roller 7 may be made of Al alloy, Cu alloy, carbon steel, brass, W, Mo or bronze. However, the roller 7 is preferably made of Cu, Fe or an alloy including Cu or Fe, because such a material realizes a sufficient mechanical strength at a reasonable cost. Also, if the chill roller is made of a material other than Cu or Fe, the resultant rapidly solidified alloy cannot peel off the chill roller easily and might be wound around

the roller. The chill roller 7 may have a diameter of 300 mm to 500 mm, for instance. The water-cooling capability of a water cooler provided inside the chill roller 7 is calculated and adjusted based on the latent heat of solidification and the volume of the melt teemed per unit time.

[0106]

The machine shown in FIGS. 5(a) and 5(b) can rapidly solidify 10 kg of material alloy in 10 to 20 minutes, for example. The rapidly solidified alloy obtained in this manner is in the form of an alloy thin strip (or alloy ribbon) 22 with a thickness of 10 μ m to 300 μ m and a width of 2 mm to 3 mm, for example.

[0107]

In this process step, the alloy thin strip has its thickness adjusted at 60 μ m to 300 μ m. Next, the rapidly solidified alloy is thermally treated and crystallized if necessary, and then pulverized, thereby making a powder including at least 70 mass % of particles with aspect ratios (1.e., the ratio of the minor axis size to the major axis size) of 0.3 to 1.0 and at least 10 mass % of particles with

particle sizes of 53 μ m or less with respect to the overall powder particles. By adjusting the thickness of the alloy thin strip and pulverizing it in this manner, almost all of the powder particles can have aspect ratios of 0.3 to 1.0. It should be noted that the particle size is herein measured by classifying the powder with a standard sieve JISZ 8801.

[0108]

(Melt quenching process)

First, the melt 21 of the material alloy, which is represented by the general formula described above, is prepared and stored in the reservoir 4 of the melting chamber 1 shown in FIG. 5(a). Next, the melt 21 is dripped through the teeming nozzle 5 onto the water-cooled roller 7 to contact with, and be rapidly quenched and solidified by, the chill roller 7 within a low-pressure Ar atmosphere. In this case, an appropriate rapid solidification technique, making the quenching rate controllable precisely, should be adopted.

[0109]

In this embodiment, the melt 21 is preferably quenched and solidified at a rate of $1\times10^2~{\rm C/s}$ to $1\times10^8~{\rm C/s},$ more

preferably $1 imes 10^4$ C/s to $1 imes 10^6$ C/s.

[0110]

A period of time during which the melt 21 is quenched by the chill roller 7 is equivalent to an interval between a point in time the alloy contacts with the outer circumference of the rotating chill roller 7 and a point in time the alloy leaves the roller 7. In this period of time, the alloy has its temperature decreased to be a supercooled Thereafter, the supercooled alloy leaves the chill roller 7 and travels within the inert atmosphere. While the thin-strip alloy is traveling, the alloy has its heat dissipated into the atmospheric gas. As a result, the temperature of the alloy In this embodiment, the pressure of the further drops. atmospheric gas is 30 kPa to the atmospheric pressure. the heat of the alloy can be dissipated into the atmospheric gas even more effectively, and the Nd:Fe; B compound can nucleate and grow finely and uniformly in the alloy. should be noted that unless an appropriate amount of element M such as Ti has been added to the material alloy, then the α -Fe phase nucleates and grows faster and earlier in the rapidly solidified alloy, thus deteriorating the resultant magnetic properties.

[0111]

In this embodiment, the surface velocity of the roller is adjusted to fall within the range of 10 m/s to 30 m/s and the pressure of the atmospheric gas is set to 30 kPa or more to increase the secondary cooling effects caused by the atmospheric gas. In this manner, a rapidly solidified alloy, including at least 60 volume % of R₂Fe₁₄B compound phase with an average crystal grain size of as small as about 80 nm or less, is prepared.

[0112]

A melt spinning process, in which the flow rate of the molten alloy to be supplied onto the surface of the chill roller is controlled by using the nozzle or orifice, is adopted as an exemplary melt quenching process to make the Ticontaining nanocomposite magnet powder for use in the compound of the present invention. Alternatively, a strip casting process using no nozzle or orifice or any of various methods may also be used. Also, the single roller method described

above may be replaced with a twin roller method that uses a pair of chill rollers.

[0113]

Among these rapid quenching techniques, the strip casting method results in a relatively low quenching rate, i.e., $10^2~\mathrm{C}$ /s to 105 C/s. In this embodiment, by adding an appropriate volume of Ti to the material alloy, a rapidly solidified alloy, most of which has a structure including no Fe initial crystals. can be made even by the strip casting process. The process cost of the strip casting method is about half or less of any other melt quenching process. Accordingly, to prepare a large quantity of rapidly solidified alloy, the strip casting method is much more effective than the melt spinning method, and is suitably applicable to mass production. However, if no element M is added to the material alloy or if Cr, V, Mn, Mo, Ta and/or W are/is added thereto instead of element Ti, then a metal structure including a lot of Fe initial crystals will be produced even in the rapidly solidified alloy prepared by the strip casting process. Consequently, the desired metal structure cannot be formed.

[0114]

Also, in the melt spinning or strip casting process, the thickness of the resultant alloy is controllable by adjusting the surface velocity of the roller. If an alloy having a thickness of 60 μ m to 300 μ m is prepared by adjusting the surface velocity of the roller, then the alloy has the nanocrystalline structure described above, and can be easily divided into powder particles having various orientations through a pulyerization process. As a result, powder particles having an isometric shape (i.e., having an aspect ratio close to one) can be obtained easily. That is to say, the powder particles obtained will not be elongated in a particular orientation but will have an isometric (or quasispherical) shape.

[0115]

On the other hand, if the alloy is made thinner than 60 μ m by increasing the surface velocity of the roller, then the metal structure of the alloy tends to be aligned perpendicularly to the roller contact surface as in the conventional rapidly solidified magnet. In that case, the

particles made by the pulverization process are likely elongated parallel to the surface of the alloy. As a result, powder particles having an aspect ratio of less than 0.3 are obtained often.

[0116]

FIG. 6(a) schematically illustrates an alloy 10 that is yet to be subjected to a pulverization process and powder particles 11 made by the pulverization process in a method of making a magnet powder according to this embodiment. On the other hand, FIG. 6(b) schematically illustrates an alloy thin strip 12 that is yet to be subjected to a pulverization process and powder particles 13 made by the pulverization process in a conventional method of making a rapidly solidified magnet powder.

[0117]

As shown in FIG. 6(a), in this embodiment, the alloy 10 yet to be subjected to the pulverization process is made up of isometric crystals with small crystal grain sizes, and is likely divided in random orientations to produce isometric

powder particles 11 easily. On the other hand, the conventional rapidly solidified alloy is likely divided substantially perpendicularly to the surface of the alloy thin strip 12 as shown in FIG. 6(b), thus producing flat and elongated particles 13.

[0118]

In this manner, by controlling the roller surface velocity within the range of 2 m/s to 20 m/s (more preferably 8 m/s to 15 m/s) and by adjusting the thickness of the alloy thin strip within the range of 60 μ m to 300 μ m, a powder having an aspect ratio of at least 0.3 (preferably 0.4 to 1.0) can be obtained.

[0119]

(Heat treatment)

In this embodiment, the rapidly solidified alloy is thermally treated within an argon atmosphere. Preferably, the alloy is heated at a temperature rise rate of 0.08 % /s to 20 %/s, retained at a temperature of 550 % to 850 % for 30 seconds to 20 minutes, and then cooled to room temperature. This heat treatment results in nucleation and/or crystal

growth of metastable phases in a remaining amorphous phase, thus forming a nanocomposite microcrystalline structure. According to this embodiment, the microcrystalline Nd₂Fe₁₄B phase already accounts for at least 60 volume % of the as-cast alloy that has just started being thermally treated. Thus, G.-Fe and other crystalline phases will not increase their sizes too much and the respective constituent phases other than the microcrystalline Nd₂Fe₁₄B phase (i.e., soft magnetic phases) will be dispersed finely and uniformly.

[0120]

If the heat treatment temperature is lower than 550 \mathbb{C} , then a lot of amorphous phases may remain even after the heat treatment and the resultant coercivity may not reach the desired level depending on the conditions of the rapid quenching process. On the other hand, if the heat treatment temperature exceeds 850 \mathbb{C} , the grain growth of the respective constituent phases will advance too much, thus decreasing the remanence B, and deteriorating the loop squareness of the demagnetization curve. For these reasons, the heat treatment temperature is preferably 550 \mathbb{C} to 850 \mathbb{C} , more preferably

570 °C to 820 °C.

[0121]

In this embodiment, the atmospheric gas causes secondary cooling effects so that a sufficient amount of Nd2Fe14B compound phase crystallizes uniformly and finely in the rapidly solidified alloy. Accordingly, even if the rapidly solidified alloy is not heat-treated for crystallization purposes, the rapidly solidified alloy itself can exhibit sufficient magnetic properties. That is to say, the heat treatment for crystallization is not an indispensable process. However, to further improve the magnetic properties, the heat treatment is preferably conducted. In addition, even though the heat treatment is carried out at lower temperatures than the conventional process, the magnetic properties are still improvable sufficiently.

[0122]

To prevent the alloy from being oxidized, the heat treatment is preferably conducted within an inert atmosphere. The heat treatment may also be performed within a vacuum of 0.1 kPa or less.

[0123]

It should be noted that when carbon is added to the material alloy, the oxidation resistance of the magnet powder further increases. If a sufficient amount of C has been added thereto, then the rapidly solidified alloy may be heat-treated in the air.

[0124]

The rapidly solidified alloy yet to be heat-treated may include metastable phases such as Fe₃B, Fe₂₃B, and R₂Fe₂₃B₃ phases in addition to the R₂Fe₁₄B compound and amorphous phases. In that case, when the heat treatment is finished, the R₂Fe₂₄B₃ phase will have disappeared due to the action of the additive Ti. Instead, crystal grains of an iron-based boride (e.g., Fe₂₃B₄), exhibiting a saturation magnetization that is equal to, or even higher than, that of the R₂Fe₂₄B phase, or α -Fe phase can be grown.

[0125]

Even though the Ti-containing nanocomposite magnet powder included in the compound of the present invention includes soft magnetic phases such as the G-Fe phase, the grain growth

of the soft magnetic phases has been minimized by the additive Ti and the magnet has the desired nanocrystalline structure. Accordingly, the soft and hard magnetic phases are magnetically coupled together through exchange interactions and the magnet powder can exhibit excellent magnetic properties.

[0126]

After the heat treatment, the RyFezyB compound phase needs to have an average crystal grain size of less than 300 nm. which is a single magnetic domain size. The R₂Fe₁₄B compound phase preferably has an average crystal grain size of 10 nm to 200 nm, more preferably 20 nm to 150 nm and even more preferably 20 nm to 100 nm. On the other hand, if the boride and G-Fe phases have an average crystal grain size of more 100 then the exchange interactions among respective constituent phases weaken, thus deteriorating the loop squareness of the demagnetization curve and decreasing Nevertheless, if the average crystal grain size of $(BH)_{\max}$. these phases is less than 1 nm, then a high coercivity cannot be achieved. In view of these considerations, the soft

magnetic phases, such as the boride and 0 - Fe phases. preferably have an average crystal grain size of 1 nm to 100 nm, more preferably 50 nm or less, and even more preferably 30 nm or less.

[0127]

It should be noted that the thin strip of the rapidly solidified alloy may be coarsely cut or coarsely pulverized before subjected to the heat treatment. When the heat treatment is finished, the resultant alloy coarse powder (or thin strip) is further pulverized to make a magnet powder. In this manner, the Ti-containing nanocomposite magnet powder can be prepared.

[0128]

(Description of pulverization process)

A rare-earth alloy powder with a maximum particle size of 500 μ m or less, more particularly 300 μ m or less, is preferably used to make a compound for a rare-earth bonded magnet according to the present invention. When the powder is compacted, the powder preferably has a mean particle size of 50 μ m to 200 μ m, more preferably 100 μ m to 150 μ m.

[0129]

What we seek the second services and a second

The aspect ratio of the magnet powder influences the flowability of the compound. The Ti-containing nanocomposite magnet powder to be included at 2 mass% or more in the compound of the present invention preferably has an aspect ratio of 0.3 to 1.0. It is naturally possible to mix the magnet powder with another Ti-containing nanocomposite magnet powder with an aspect ratio of less than 0.3. To make a compound with even better flowability, at least 70% of the magnet powder preferably has an aspect ratio of 0.3 to 1.0. More preferably, the compound should be prepared with a magnet powder, of which 70 mass % or more is the Ti-containing nanocomposite magnet powder with an aspect ratio of 0.3 to 1.0. It is naturally possible to mix the magnet powder with another magnet powder, such as an MQ powder, of which the powder particles have an aspect ratio of less than 0.3.

[0130]

The Ti-containing nanocomposite magnet powder having such an aspect ratio can be made by getting an alloy thin strip with a thickness of 60 //m to 300 //m pulverized by a pin disk

mill such as that shown in FIG. 7, for example. FIG. 7 is a cross-sectional view illustrating an exemplary pin mill for use in this embodiment. This pin mill 40 is a pin disk mill. The mill 40 includes two disks 42a and 42b that are arranged so as to face each other. On one side of each of these disks 42a and 42b, multiple pins 41 are arranged so as not to collide against each other. At least one of these disks 42a and 42b rotate(s) at a high velocity. In the example illustrated in FIG. 7, the disk 42a rotates around a shaft 43. FIG. 8 illustrates a front view of the disk 42a that is supposed to rotate. On the disk 42a shown in FIG. 8, the pins 41 are arranged to form a plurality of concentric circles. The pins 41 are also arranged in a similar concentric pattern on the fixed disk 42b.

[0131]

A workpiece to be pulverized by the pin disk mill is loaded through an inlet port 44 into the space between the two disks, collides against the pins 41 on the rotating and fixed disks 42a and 42b and is pulverized due to the impact. A powder, formed by this pulverization, is blown off in the

direction indicated by the arrows A and then collected to a predetermined position finally.

[0132]

In the pin mill 40 of this embodiment, the disks 42a and 42b, supporting the pins 41 thereon, are made of a stainless steel, for example, while the pins 41 are made of a cemented carbide material such as carbon steel, a ceramic, or sintered tungsten carbide (WC). Examples of other preferred cemented carbide materials include TiC, MoC, NbC, TaC and Cr₃C₂. Each of these cemented carbide materials is a sintered body made by combining a carbide powder of a Group IVa, Va or VIa metal element with Fe, Co, Ni, Mo, Cu, Pb or Sn or an alloy thereof.

[0133]

By performing the pulverization process with this pin mill under such conditions that the mean particle size becomes 100 μ m or less, a powder of which the particles have an aspect ratio of 0.3 to 1.0 can be obtained. Also, powder particles with particle sizes of 53 μ m or less or 38 μ m or less can be obtained by classifying them.

[0134]

The more finely the material alloy is pulverized, the closer to 1.0 the aspect ratio tends to be. And the closer to 1.0 the aspect ratio becomes, the more significantly the fill density improves. Thus, the aspect ratio is preferably 0.4 to 1.0, more preferably 0.5 to 1.0, and most preferably 0.6 to 1.0.

[0135]

The pin mill that can be used effectively in this embodiment is not limited to the pin disk mill in which the pins are arranged on the disks. Alternatively, the pin mill may also have its pins arranged on cylinders. When a pin mill is used, a powder having a particle size distribution that is close to the normal distribution can be obtained, the mean particle size can be adjusted easily, and high mass productivity is achieved advantageously.

[0136]

(Why this composition is preferred)

The Ti-containing nanocomposite magnet powder for use in the compound of the present invention has a composition represented by the general formula: $(Fe_{1-n}T_n)_{100-n-1}Q_nR_nM_n$, where

T is at least one element selected from the group consisting of Co and Ni; Q is at least one element selected from the group consisting of B and C and always includes B; R is at least one rare-earth element substantially excluding La and Ce; M is at least one metal element selected from the group consisting of Ti, Zr and Hf and always includes Ti; and the mole fractions x, y, z and m satisfy the inequalities of: 10 at $< x \le 20$ at

[0137]

Q is either B (boron) only or a combination of B and C (carbon). The atomic percentage ratio of C to Q is preferably 0.25 or less.

[0138]

If the mole fraction x of Q is 10 at $^{\circ}$ or less and if the rapid quenching rate is as low as about 10^2 $^{\circ}$ C/s to about 10° $^{\circ}$ C/s, then it is difficult to make a rapidly solidified alloy in which the R_2 Fe₁₄B crystalline phase and amorphous phase coexist. In that case, H_{c2} will not reach 700 kA/m even when the resultant rapidly solidified alloy is thermally treated

thereafter. Thus, it is difficult to make a magnet powder having an aspect ratio of 0.3 to 1.0 and exhibiting excellent magnetic properties by adopting a relatively low roller surface velocity in a melt spinning process or a strip casting process. In addition, a strip casting process or atomization process cannot be adopted in that case, even though these processes count among most cost-effective techniques in various melt quenching processes. As a result, manufacturing cost magnet powder the O£ the unintentionally. On the other hand, if the mole fraction x of Q exceeds 20 at%, then the volume percentage of the amorphous phases, remaining even in the alloy that has been heated and crystallized, increases. Meanwhile, the percentage of the 0-Fe phase, which has a higher saturation magnetization than any other constituent phase, decreases and the remanence $B_{\rm r}$ drops. In view of these considerations, the mole fraction x of Q is preferably greater than 10 at% but 20 at% or less, more preferably greater than 10 at% but 17 at% or less. Even more preferably, x is greater than 10 at% but 14 at% or less, because the iron-based boride phase can be nucleated efficiently and $B_{\rm r}$ can be increased in that range. It should be noted that if 15 at < x \leq 20 at $^{\circ}$, then 3.0 at $^{\circ}$ < z < 12 at $^{\circ}$ is preferably satisfied.

[0139]

R is at least one element to be selected from the group consisting of the rare-earth elements (including Y). Preferably, R includes substantially no La and substantially no Ce, because the presence of La or Ce decreases the coercivity and the loop squareness of the demagnetization curve. However, there is no problem of degrading the magnetic properties if very small amounts (i.e., 0.5 at% or less) of La and Ce are included as inevitable impurities. Therefore, the term "substantially no La (Ce)" or "substantially excluding La (Ce)" means that the content of La (Ce) is 0.5 at% or less.

[0140]

More particularly, R preferably includes Pr or Nd as an indispensable element, a portion of which may be replaced with Dy and/or Tb. If the mole fraction y of R is less than 6 at%, then compound phases having the microcrystalline $R_z Fe_{14} B$ structure, which contribute to expressing coercivity, do not

crystallize sufficiently and a coercivity H_{cl} of 700 kA/m or more cannot be realized. On the other hand, if the mole fraction y of R is equal to or greater than 10 at%, then the percentages of the iron-based borides and 3 -Fe with ferromagnetic properties both decrease. At the same time, the anticorrosiveness and oxidation resistance of the magnet powder also decrease, thus diminishing the effects to be achieved by the present invention. For these reasons, the mole fraction y of the rare earth element R is preferably 6 at% to less than 10 at% (e.g., 6 at% to 9.5 at%), more preferably 7 at% to 9.3 at%, and even more preferably 8 at% to 9.0 at%.

[0141]

The additive metal element M includes Ti as an indispensable element, and may further include Zr and/or Hf. To achieve the above-described effects, Ti is indispensable. The additive Ti increases the coercivity $H_{\rm cJ}$, remanence $B_{\rm r}$ and maximum energy product $(BH)_{\rm sax}$ and improves the loop squareness of the demagnetization curve.

[0142]

If the mole fraction z of the metal element M were less than 0.5 at%, then the above effects would not be achieved fully even though Ti is added. Nevertheless, if the mole fraction z of the metal element M exceeded 12 at%, then the volume percentage of the amorphous phases, remaining even in the alloy that has been heated and crystallized, would increase and the remanence B, should drop easily. In view of these considerations, the mole fraction z of the metal element M is preferably 0.5 at% to 12 at%. The lower limit of a more preferable z range is 1.0 at% and the upper limit thereof is 8.0 at%. The upper limit of an even more preferable z range is 6.0 at%.

[0143]

A Company of the Comp

Also, the higher the mole fraction x of Q, the more likely the amorphous phases including Q (e.g., B) are formed. For that reason, the mole fraction z of the metal element M is preferably set relatively high. Then, soft magnetic iron-based borides with high magnetization can be nucleated and the grain growth of the iron-based borides produced can be minimized. More particularly, the respective mole fractions

are preferably adjusted so as to satisfy $z/x \ge 0.1$, more preferably $z/x \ge 0.15$.

[0144]

It should be noted that the metal element M always includes Ti as an indispensable element because Ti performs particularly beneficial actions. In this case, the (atomic) ratio of Ti to the overall metal elements M is preferably at least 70%, more preferably 90% or more.

[0145]

The balance of the material alloy, other than the elements described above, may be Fe alone. Alternatively, at least one transition metal element T, selected from the group consisting of Co and Ni, may be substituted for a portion of Fe, because the desired hard magnetic properties are achievable in that case also. However, if more than 50% of Fe is replaced with T (i.e., m>0.5), then a high remanence B_r of 0.7 T or more cannot be realized. For that reason, the percentage of Fe replaced is preferably from 0% to 50% (i.e., $0 \le m \le 0.5$). Also, by substituting Co for a portion of Fe, the loop squareness of the demagnetization curve improves and the

Curie temperature of the R₂Fe₁₄B phase increases, thus increasing the thermal resistance. The percentage of Fe that is replaceable with Co is preferably 0.5% to 40%. Also, the magnetic properties are not affected even when Al. Si. Cu. Ga. Ag. Pt. Au. Pb. V. Cr. Mn. Nb. Mo and/or W are included at a small volume percentage. However, its mole fraction is preferably 2 at% or less.

[0146]

(Oxidation resistance of magnet powder)

Hereinafter, the oxidation resistance of the Ticontaining nanocomposite magnet powder for use in the compound
for a rare-earth bonded magnet according to the present
invention will be described in comparison with a conventional
rapidly solidified magnet powder.

[0147]

In the following description, the Ti-containing nanocomposite magnet powder will be compared with conventional rapidly solidified magnet powders MQP-B and MQP-O (each of which is available from Magnequench Inc. (MQI) and has a maximum particle size of 300 μ m or less). A sample of the

Ti-containing nanocomposite magnet powder was prepared in the following manner.

[0148]

First, a rapidly solidified alloy (including 9 at% of Nd. 11 att of B. 3 att of Ti. 2 att of Co and Fe as the balance and having an average thickness of 70 μ m and a standard deviation σ of 13 μ m) that had been made as in Example 1 to be described later was pulverized to 850 $\mu \mathrm{m}$ or less. Then, the resultant powder was fed at a rate of 20 g/min into a hoop belt furnace having a soaking zone with a length of about 500 mm and running at a belt feeding speed of 100 mm/min within an argon atmosphere that had a temperature maintained at 680 °C. In this manner, the powder was thermally treated to make a magnet powder. Then, the magnet powder was pulverized using the pin disk mill described above so as to have a particle size distribution in which powder particles with aspect ratios of 0.4 to 1.0 were included at about 30 volume percent. A Ticontaining nanocomposite magnet powder sample NCP-0 was obtained in this manner.

[0149]

a consequences of a second of the contract of the consequences

Table 1 shows the contents of oxygen and the magnetic properties of the respective magnet powders that were left in the air for an hour at various temperatures (i.e., 23 $^{\circ}$ C, 300 $^{\circ}$ C and 350 $^{\circ}$ C). The magnetic properties were measured using a vibrating magnetometer. The results shown in Table 1 were obtained not only at 23 $^{\circ}$ C but also after the powders had been left in the air for an hour at 300 $^{\circ}$ C and 350 $^{\circ}$ C, respectively.

[0150]

As shown in Table 1, when MQP-B was left in the air for an hour at 300 °C, the oxygen contained therein increased to 0.67 mass %. If the powder MQP-B was left in the air for an hour at 350 °C, the oxygen content reached 1.93 mass %. On the other hand, when MQP-O was left in the air for an hour at 300 °C, the oxygen contained therein increased to 0.24 mass %. And if the powder MQP-O was left in the air for an hour at 350 °C, the oxygen content reached 0.59 mass %.

[0151]

In contrast, even if the Ti-containing nanocomposite

magnet powder NCP-0 was left in the air for an hour at 300 °C, the oxygen contained therein was as low as 0.10 mass %. Also, even if the powder NCP-0 was left in the air for an hour at 350 °C, the oxygen content barely reached 0.20 mass %. Thus, it can be seen that the nanocomposite magnet powder is superior in oxidation resistance to the conventional rapidly solidified magnet powders.

[0152]

FIG. 9 shows the mass increase percentages of the respective magnet powders that were measured with a thermobalance. These powders were heated in the air at a heating rate of 10 °C/min. As can be seen from FIG. 9, even when heated in the air and oxidized, the Ti-containing nanocomposite magnet powder NCP-0 increased its mass far less than MQP-B or MQP-O did. Thus, the nanocomposite magnet powder NCP-O has excellent oxidation resistance.

[0153]

Next, looking at the magnetic properties shown in Table 1, it can be seen that MQP-B exhibited significantly deteriorated

magnetic properties when oxidized. For example, when the magnet powder MQP-B was left in the air for an hour at 300 $^\circ\mathrm{C}$, (BH) max thereof decreased to about 65% of that of the powder that had been left in the air for an hour at 23 $^{\circ}$ C. And after the magnet powder MQP-B had been left in the air for an hour at 350 \mathbb{C} , $(\mathrm{BH})_{\mathrm{max}}$ thereof decreased to about 30%. As for the magnet powder MQP-O, when it was left in the air for an hour at 350 $^{\circ}$ C, $(BH)_{max}$ thereof decreased to less than about 80% of that of the powder that had been left in the air for an hour at 23 °C. In contrast, even if the Ti-containing nanocomposite magnet powder NCP-0 was left in the air for an hour at 350 $^{\circ}\mathrm{C}_{+}$ (BH) max thereof decreased to about 90% of that of the powder that had been left in the air for an hour at 23 $^{\circ}\mathrm{C}$.

[0154]

As can be seen, the Ti-containing nanocomposite magnet powder exhibits excellent oxidation resistance. Thus, even while a bonded magnet is produced from this magnet powder (e.g., while a compound is being prepared and/or thermally cured), the magnet powder is not oxidized easily. Accordingly, the anticorrosion treatment, which is necessary for

conventional rapidly solidified magnet powder (e.g., MQP-B, in particular) to prevent the magnet powder from being oxidized, can be simplified or even omitted for the Ti-containing nanocomposite magnet powder. Also, when the conventional rapidly solidified magnet powder is used, the magnet powder should be heated and cured within a vacuum or an inert gas atmosphere (e.g., Ar gas) so as not to be oxidized. However, this Ti-containing nanocomposite magnet powder may be heated and cured even in the air. That is to say, by using the Ticontaining nanocomposite magnet powder, the manufacturing process of a bonded magnet can be simplified and manufacturing cost thereof can be cut down. Furthermore, the conventional rapidly solidified magnet powder has too low exidation resistance to be applied to making an injectionmolded bonded magnet by performing the process step of compounding the powder with a resin binder or molding the mixture at a temperature of about 250 $^{\circ}$ C to about 300 $^{\circ}$ C. contrast, by using this Ti-containing nanocomposite magnet powder, a bonded magnet can be formed by performing an injection molding process on a compound including the magnet

powder. When the mixture of the Ti-containing nanocomposite magnet powder and the conventional rapidly solidified magnet powder and/or the conventional nanocomposite magnet powder is used, the magnet powder preferably has its mixing ratio adjusted in such a manner as to have an oxygen content of less than 0.24 mass % even after the powder has been left in the air for an hour at a temperature of 300 °C to 350 °C to fully achieve the beneficial effects brought about by the excellent oxidation resistance of this Ti-containing nanocomposite magnet powder. More preferably, the magnet powder should be prepared to have an oxygen content of 0.2 mass % or less in such a situation. Considering the magnetic properties required for bonded magnets for various types of rotating machines or actuators, for example, the magnetic properties of a magnet powder suitably applicable to these compounds for bonded magnets preferably include $B_{
m r}$ of 0.7 T or more, ${
m (BH)_{max}}$ of 80 kJ/m 3 or more and $H_{c,i}$ of 600 kA/m or more in the end. If the magnet powder with this oxidation resistance is used. these magnetic properties are realizable even though the magnet powder is slightly oxidized while a compound and a

bonded magnet are being produced.

[0155]

[Table 1]

Powder	Temperature	(BH) _{max}	₿,	HoJ	O ₂
	(©)	(kJ/m^3)	(T)	(kA/m)	(%)
NCP-0	23	107.0	0.802	1009.7	0.02
	300	103.1	0.790	989.3	0.10
	350	96.1	0.774	1006.8	0.20
MQP-B	23	122.0	0.899	732.6	0.04
	300	79.3	0.762	686.8	0.67
	350	38.2	0.546	635.8	1.93
MOP-O	23	113.0	0.818	1007.6	0.04
	300	105.7	0.802	999.0	0.24
	350	88.5	0.744	977.4	0.59

[0156]

The Ti-containing nanocomposite magnet powder for use in the compound of the present invention is characterized in that the magnetic properties thereof lightly depend on the particle size due to its composition and structural features. The Ti-containing nanocomposite magnet powder includes a rare-earth element R at a relatively low mole fraction and has no R-rich grain boundary phases. In addition, fine crystal grains of a boride phase are dispersed around an R₂Fe₁₂B phase.

Furthermore, since Ti has a high affinity for boron, the boride phase includes a greater amount of Ti than any other phase. Consequently, the Ti-containing nanocomposite magnet powder is superior in oxidation resistance to conventional rapidly solidified magnet powders.

[0157]

conventional rapidly solidified magnet The includes a relatively large amount of rare-earth element R and is easily oxidizable. Thus, the smaller the size of powder particles, the more significantly the magnetic properties thereof deteriorate due to the oxidation of the powder particles at the surface. For example, in MQP-B (with a maximum particle size of 300 μ m or less), powder particles with sizes of 75 μ m or less (or 53 μ m or less, in particular) exhibited deteriorated magnetic properties as shown in Table 2. For example, the remanence B_r (0.79 T) of powder particles with sizes of 53 μ m or less was less than 90% of the highest remanence $B_{\rm r}$ (0.90 T) of powder particles with sizes of greater than 125 μ m and equal to or smaller than 150 μ m. As for $(8H)_{max}$, the average $(8H)_{max}$ of powder

particles with sizes of 53 μ m or less (i.e., a simple average between (SH)_{max} of powder particles with sizes of 38 μ m or less and that of powder particles with sizes of greater than 38 μ m and equal to or smaller than 53 μ m) was 85.5 kJ/m³. This value was less than 75% of the average (BH)_{max} (114.6 kJ/m³) of powder particles with sizes of greater than 150 μ m and equal to or smaller than 212 μ m (i.e., a simple average between (SH)_{max} of powder particles with sizes of greater than 150 μ m and equal to or smaller than 180 μ m and that of powder particles with sizes of greater than 150 μ m and equal to or smaller than 180 μ m and equal to or smaller than 180 μ m and equal

[0158]

In contrast, the magnetic properties of the Ti-containing nanocomposite magnet powder deteriorate to a lesser degree due to oxidation and do not depend on the particle size so heavily. For example, in the nanocomposite magnet powder NCP-0 (with a maximum particle size of 300 μm or less), the magnetic properties hardly depend on the particle size and are generally excellent as shown in Table 3. For example, the remanence B_r (about 0.829 T) of powder particles with sizes of

53 $\mu\mathrm{m}$ or less was 98% or more of the highest remanence B_{r} (0.845 T) of powder particles with sizes of greater than 106 μ m and equal to or smaller than 125 μ m. As for (BH)_{max}, the average $(BH)_{\rm max}$ of powder particles with sizes of 53 μ m or less was $104.6 \, \mathrm{kJ/m^3}$. This value was 98% or more of the average (BH) max (106.6 kJ/m3) of powder particles with sizes of greater than 150 μm and equal to or smaller than 212 μm . Ti-containing nanocomposite magnet powders with various compositions had their magnetic properties evaluated in a similar manner. As a result, in most of the compositions, the average (BH) max of nanocomposite magnet powder particles with sizes of 53 μm or less was 90% or more of the average (BH) $_{max}$ of powder particles with sizes of greater than 150 μm and equal to or smaller than 212 μ m. And in many of compositions, the former $(BH)_{\rm max}$ was 95% or more of the latter (BH) wax. The particle size distribution of the magnet powder was estimated using a standard sieve compliant with JIS 8801.

[0159]

[Table 2]

Particle size (//m)	(BH) _{max} (kJ/m³)	H _{os} (kA/m)	B. (T)	
≦38	83.7	744	0.79	
38<, ≦53	87.2	752	0.79	
53<, ≦ 75	94.2	739	0.82	
75<, ≦106	108.3	748	0.84	
106<, ≦125	111.5	754	0.86	
129<, ≦ 150	116.8	741	0.90	
150<, ≦180	115.7	750	0.88	
180<, ≦212	113.4	763	0.85	
212<, ≦250	110.1	755	0.87	
250<	112.9	752	0.88	

[0160]

the second control of the second control of the second control of

[Table 3]

Particle	NCP~0					
Size	Massi	(BH) _{max}	BH)max H _{CJ}			
(µm)		(kJ/m ³)	(XA/m)	(T)		
≦38	9.36	104.5	854.66	0.830		
38<, ≦53	6.83	104.77	844.00	0.829		
53<, ≦75	12.34	107.16	853.39	0.831		
75<, ≦106	19.76	110.67	859.75	0.837		
106<, ≦125	12.23	112.64	866.12	0.845		
125<, ≦150	15.24	111.63	864.21	0.843		
150<. ≦180	9.42	105.64	896.30	0.820		
180<, ≦212	8,89	107.61	849.41	0.831		
212<, ≦250	4.27	99.67	851.16	0.814		
250<	1.65	88.44	844.64	0.800		

[0161]

As can be seen, the Ti-containing nanocomposite magnet powder exhibits magnetic properties that are at least comparable to, or even better than, those of the conventional rapidly solidified magnet powders. Thus, this nanocomposite magnet powder may be used as a magnet powder of a compound for a rare-earth bonded magnet instead of the conventional rapidly solidified magnet powder (e.g., MQ powder). Furthermore, various compounds with excellent properties described above can be made by using the Ti-containing nanocomposite magnet

powder. Naturally, a magnet powder for a bonded magnet may consist essentially of the Ti-containing nanocomposite magnet powder alone. However, significant effects are also achievable even when not all of the MQ powder but only powder particles with sizes of 53 μ m or less are replaced with the Ti-containing nanocomposite magnet powder.

[0162]

Hereinafter, it will be described by way of the experimental results how the fill density is improved by mixing fine powder particles with sizes of 53 μ m or less or with sizes of 38 μ m or less.

[0163]

First, nanocomposite magnet powder samples NCP-1 through NCP-5 with various particle size distributions as shown in Table 4 were prepared. The magnet powder NCP-1 was made by getting the material alloy thereof pulverized by a power mill using a 0.5 mm ϕ screen, while the other magnet powders NCP-2 through NCP-5 were made by rotating the pin mill at 3,000 rpm, 4,000 rpm and 5,000 rpm, respectively. The tap densities of

these magnet powder samples NCP-1 through NCP-5 as measured with a tap denser are shown in Table 5. in which the mass percentage of powder particles with sizes of 53 μ m or less and the mass percentage of powder particles with sizes of greater than 250 μ m are also shown for each of the magnet powder samples.

[0164]

As can be seen from the results shown in Table 5, the samples NCP3, NCP4 and NCP5 including particles with sizes of 53 μ m or less at about 10 mass % or more (more exactly 9.5 mass % or more) have tap densities of 4.3 g/cm3 or more. Thus, these magnet powder samples show excellent fill densities. Generally speaking, the fill density of a magnet powder as evaluated by the tap density thereof correlates to the fill density of a compound powder for a bonded magnet. That is to say, if a compound powder is prepared using a magnet powder with a high fill density, then the compound powder also has a high fill density. Accordingly, when a magnet powder, including 10 mass % or more of nanocomposite magnet powder particles with sizes of 53 μm or less, is used, a compound

powder for a bonded magnet exhibits improved fill density and flowability. As a result, a compact of quality is obtained.

[0165]

[Table 4]

Particle	Mass %					
Size (µm)	NCP-1	NCP-2	NCP-3	NCP-4	NCP-5	
\$38	2.37	2.05	4,86	8.88	17.99	
38<, ≦53	1.91	2.54	4.64	7.42	20.90	
\$3<, ≦ 75	4.90	5.17	11.80	16.36	26.92	
75<, ≦106	11.57	13.87	23.08	26.30	23.60	
106<, ≦125	7.30	11.11	13.49	12.56	5.59	
125<, <u>\$150</u>	12.29	14.10	16.26	13.40	3.37	
150<, ≦180	13.47	17.53	10.67	7.90	1.15	
180(, ≦212	17.37	17.64	9.08	4.09	0.37	
212<, ≦250	16.84	8.80	3.49	1.76	0.09	
250<, ≦300	9.26	4.34	1.56	0.77	0.03	
300<	2.72	2.87	1.03	0.50	0.00	

[0166]

[Table 5]

Sample	(mass %)	(mass %)	(g/cm³)
No.	≦53µm	250 µm<	Tap
(4m)			density
NCP-1	4.30	12.00	4.01
NCP-2	4.59	7.21	4.12
NCP-3	9,50	2.59	4.28
NCP-4	16.30	1.27	4.25
NCP-5	38.90	0.00	4.33

[0167]

Furthermore, to increase the compact density, the magnet powder preferably includes powder particles with sizes of 38 µm or less. Ti-containing nanocomposite magnet powders NCP-11 through NCP-16 having the particle size distributions shown in Table 6 were prepared and then mixed with 2 mass % of epoxy resin to make respective compounds. Then, the respective compounds were pressed and compacted at a compaction pressure of 980 MPa (=10 t/cm²), thereby forming compacts for a bonded magnet. The densities of the respective compacts for a bonded magnet and the mass percentages of powder particle with sizes of 38 µm or less in the magnet powders for the respective compounds are shown in

FIG. 10.

[0168]

[Table 6]

Particle	NCP						
Size (um)	-11	-12	~13	-14	-15	-16	
≨38	2.1	4.9	9.4	11.6	15.0	18.0	
38<. ≦53	2.5	4.6	6.8	11.0	23.2	20.9	
53<, ≦75	5.2	11.8	12.3	14.4	26.0	26.9	
75<, ≦106	13.9	23.1	19.8	20.3	22.4	23.6	
106<, ≦125	11.1	13.5	12.2	13.5	6.1	5.6	
125<, ≦150	14.1	16.3	15.2	10.4	2.9	3.4	
150<, ≦180	17.5	10.7	9.4	9.0	2.2	1.2	
180<, ≦212	17.6	9.1	8.9	6.9	1.7	0.4	
<u>212<, ≦250</u>	8.8	3.5	4.3	2.1	0.5	0.1	
250<, ≦300	4.3	1.6	1.7	0.8	0.1	0.0	
300<	2.2	1.0	0.0	0.1	0.0	0.0	

[0169]

As can be seen from FIG. 10, the density of a compact decreases when the mass percentage of powder particles with sizes of 38 μ m or less is too low or too high. The present inventors discovered and confirmed via experiments that a magnet powder, including powder particles with sizes of 38 μ m or less at about 8 mass * or more, is preferably used to

achieve a sufficiently high compact density. It should be noted, however, that if a magnet powder used includes powder particles with sizes of 38 μm or less at more than about 16 mass *, then the compactibility thereof decreases. That is to say, a quality compact of a high density cannot be obtained.

[0170]

The relationship between the particle size of a magnet powder and the compactibility has been described with respect to a compound to be compacted. However, the same statement is also applicable to a compound to be compacted by any other technique such as injection molding or extrusion molding.

[0171]

(Methods for producing compound and magnetic body)

A magnet powder for a bonded magnet, including the Ticontaining nanocomposite magnet powder described above, is compounded with a binder of a resin, for example, thereby producing a compound for a bonded magnet.

[0172]

A compound to be injection molded is produced by

compounding the magnet powder with a thermoplastic resinusing a known kneading machine such as a kneader or an extruder. On the other hand, a compound to be compacted is produced by mixing the magnet powder with a thermosetting resin, which has been diluted with a solvent, and then removing the solvent from the mixture. If necessary, the resultant magnet powder-resin mixture is disintegrated to a predetermined particle size. By adjusting the disintegrating and other conditions, the mixture may be formed into granulated powder. Also, the powder material made by the pulverization process may be granulated, too.

[0173]

To improve the anticorrosiveness of the magnet powder, the magnet powder may have its surface treated by a known process (e.g., conversion coating process) in advance. Also, to further improve the anticorrosiveness of the magnet powder, the wettability of the magnet powder with the resin and the compactibility of the compound, any of various coupling agents, including silane, titanate, aluminate and zirconate agents, is preferably used. Also, ceramic ultra-fine

particles of colloidal silica or a lubricant such as zinc stearate or calcium stearate may be used. Furthermore, thermal stabilizer, fire retardant or plasticizer may also be used.

[0174]

A compound for a magnet may be molded by any of various molding methods and may be used in any of numerous applications. Thus, depending on the intended application, the type of the resin binder and the compounding ratio of the magnet powder may be determined appropriately. Examples of usable resins include thermosetting resins such as epoxy, phenol and melamine resins, thermoplastic resins such as polyamides (including nylon 66, nylon 6 and nylon 12), polyethylene, polypropylene, polyvinyl chloride, polyester and polyphenylene sulfide, rubbers or elastomers and denatured, copolymers and mixtures thereof. In particular, compounds can be made relatively easily by using high-melting resins with softening points of 180 °C or more (e.g., nylon 6 and polyphenylene sulfide), which have been difficult to use at an industrial scale.

[0175]

Furthermore, when the Ti-containing nanocomposite magnet used, the compactibility and flowability powder is Accordingly, high-viscosity resins, which have improvable. been difficult to use in the prior art, may also be used. Furthermore, the magnet powder is not oxidizable easily. high-temperature resins (e.g., polyimides, Thus. liquid crystal polymers and high-molecular-weight-grade polymers), which cannot be used in the prior art due to their high melting or softening points, may also be used. As a result, the properties of the resultant bonded magnet (e.g., thermal resistance thereof) improve. Also, a thermosetting resin that cures at a higher temperature than the prior art may be used, too.

[0176]

Examples of preferred forming techniques include compacting, rolling, calendaring, extruding and injection molding. Among these forming techniques, the compound can be formed only in a relatively simple shape according to the

compacting, rolling or extruding technique. In techniques, however, the compound does not have to show so high a flowability during the forming process. Thus, the magnet powder can be included in the compound at a higher Since the compound of the present invention percentage. includes the Ti-containing nanocomposite magnet powder, the magnet powder percentage can be increased to more than 80%, for example, which is much higher than that achieved by a conventional technique, and can also reach as high as about 90% at the maximum. However, if the magnet powder percentage is increased excessively, then the resin binder for binding the magnet powder particles together tightly enough might be in an insufficient amount, thus possibly decreasing the mechanical strength of the resultant bonded magnet or dropping the magnet powder particles during the use of the magnet. For these reasons, the magnet powder percentage is preferably at most 85%. Also, where the compound of the present invention is compacted, the total volume of voids formed on the surface of the resultant compact can be reduced. As a result, a coating to be formed on the surface of the compact if

necessary is not seriously affected.

[0177]

The present invention provides a compound with good flowability. Accordingly, such a compound can be injectionmolded effectively enough. Also, the compound can be molded into a complex shape, which has been difficult to realize when a compound including the conventional rapidly solidified Also, the magnet powder can be magnet powder is used. compounded at a higher percentage (e.g., greater than 65%) than the conventional compound, thus improving the magnetic properties of the resultant magnet body. Furthermore, the Ticontaining nanocomposite magnet powder included in compound present invention excellent ΟĔ the has anticorrosiveness. For that reason, even if the compound is injection-molded at a relatively high temperature with a thermoplastic resin or elastomer with a relatively high softening point, the resultant magnetic properties will not deteriorate. It should be noted that depending on the intended application, the surface of the bonded magnet is preferably covered with a coating by a resin coating or a

plating technique.

[0178]

[Applications of bonded magnet]

As described above, the inventive compound for a bonded magnet has higher fill density (or compactibility) and thermal resistance as compared to a compound including a conventional rapidly solidified magnet powder (e.g., MOP-B produced by Magnequench Inc.). Thus, when the compound of the present invention is used, a bonded magnet, exhibiting excellent magnetic properties that are at least comparable to, or even better than, those of a bonded magnet made from the conventional rapidly solidified magnet powder, can be formed. Accordingly, the bonded magnet of the present invention can find various applications effectively.

[0179]

Hereinafter, an application of the bonded magnet to a stepping motor will be described with reference to FIG. 11.

FIG. 11 is an exploded perspective view schematically illustrating the construction of a stepping motor 100

including a permanent magnet rotor. The stepping motor 100 includes a rotor 101 and a stator portion 102 that surrounds the rotor 101. The rotor 101 includes bonded magnets that have been uniformly magnetized at 10 poles around its outer circumference with an outer diameter of 8 mm. The stator portion 102 includes: outer yokes 102a and 102b; two inner yokes 103 that have been bonded to the backs of the outer yokes 102a and 102b, respectively; and magnetizing coils 104a and 104b interposed between the inner yokes 103. This stepping motor 100 is a so-called "PM-type pulse motor", in which the rotor 101 is displaced by one step angle by the magnetomotive force of the magnetizing coils 104a and 104b that corresponds to one pulse current.

Secretary of the second section of the second

[0180]

The bonded magnets included in the rotor 101 are formed by using the compound of the present invention with the excellent fill density (or compactibility). Thus, the bonded magnets exhibit excellent magnetic properties that are at least comparable to, or even better than, those of bonded magnets made from the conventional rapidly solidified magnet

powder. In addition, these bonded magnets also excel in mechanical properties (e.g., much less likely chip), thus ensuring sufficient reliability. Furthermore, these bonded magnets also have good thermal resistance.

[0181]

A stepping motor including such bonded magnets made from the compound of the present invention is a high-performance motor of a small size that can ensure sufficient reliability.

Thus, such a stepping motor can be used effectively in an office automation appliance such as a printer or a disc drive, a camera, or an audiovisual appliance including a camcorder.

[0182]

The rotor 101 may be produced by any of various methods. For example, the rotor 101 may be formed by compacting a compound including a thermosetting resin or by injection-molding or extruding a compound including a thermoplastic resin. Hereinafter, a method for producing the rotor 101 will be described with reference to FIG. 12.

[0183]

For example, where a compound including a thermosetting resin as a binder is used, the rotor 200 shown in FIG. 12(d). including a bonded magnet as its integral part, can be produced through the compacting process steps shown in FIGS. 12(a) through 12(c).

The rotor 200 shown in FIG. 12(d) includes a rotor shaft 205, a yoke 208 surrounding the shaft 205, and a bonded magnet 210. The bonded magnet 210 is adhered to the surface 212 of the yoke 208.

(0185) På 1855 the die 204. The equilibry employ 201 to easily

The rotor 200 may be produced by the manufacturing process steps shown in FIGS. 12(a) through 12(c).

First, as shown in FIG. 12(a), while a feeder box 203 containing a powder compound 201 is being slid on the upper surface of a die 204, a cavity 202 is filled with the compound 201. The yoke 208, including the rotor shaft 205 fitted in tightly at the center thereof, has been inserted into the die

increase the bonding strength at the interface 212 between the yoke 208 and bonded magnet 210, the compound is cured at a predetermined temperature. The curing temperature and time may be determined appropriately according to the type of the resin used.

[0190]

The compound of the present invention includes the magnet powder with excellent thermal resistance, and can be cured effectively at a higher temperature than the conventional compound. Accordingly, the bonded magnet 210 produced in this manner exhibits much better thermal resistance, mechanical properties and adhesive strength than the conventional ones. Furthermore, in the compound of the present invention, the magnet powder itself has excellent anticorrosiveness. Thus, even if the thermosetting process is carried out in the air, the resultant magnet properties deteriorate only slightly. That is to say, there is no need to carry out the thermosetting process in an inert atmosphere, thus cutting down the process cost advantageously.

[0191]

According to this compacting method, while the ring-shaped bonded magnet 210 is being formed, the bonded magnet 210 can be bonded with the yoke 208 and rotor shaft 205 together. Thus, the rotor 200 can be produced at a high productivity.

[0192]

In the example described above, the powder compact is cured after having been unloaded from the die 204. Alternatively, the compact may be cured in the die 204 by providing a heating mechanism for the die 204. That is to say, the compound may be cured while being preseed. Furthermore, the bonded-magnet-integrated rotor does not have to be formed by the compacting process but may also be formed by an injection-molding process.

[0193]

Also, the compound of the present invention exhibits a higher fill density (i.e., compactibility and/or flowability) than a compound including the conventional rapidly solidified magnet powder. Thus, even a small gap (with a width of about

2 mm, for example) can also be filled with the compound just as intended. Consequently, the compound of the present invention is effective to produce a magnet-embedded rotor 300 (see FIG. 13) for use in an IPM (interior permanent magnet) type motor.

[0194]

The magnet-embedded rotor 300 shown in FIG. 13 includes an iron core 301 (with a diameter of 80 mm and a thickness of 50 mm, for example), a rotating shaft slot 302 provided at the center of the iron core 301, and a plurality of arced magnet slots 304 arranged along the outer circumference of the iron In the illustrated example, eight arced magnet core 301. slots 304 are provided. Each of these slots 304 has a twolayer structure consisting of a first slot 304a with a width of 3.5 mm, for example, and a second slot 304b with a width of 1.8 mm, for example. These slots 304a and 304b are filled with the compound of the present invention, thereby forming bonded magnets. By combining this rotor 300 with a stator (not shown) in which S and N poles are arranged alternately so as to face the magnet slots 304 of the rotor 300, an IPM type

motor can be produced.

[0195]

The bonded magnets may be formed by any of various For example, where a compound including a techniques. thermosetting resin is used, an in-slot compaction technique (see Japanese Laid-Open Publication No. 63-98108, for example) including b⊜ adopted. Also, where ð. compound may thermoplastic resin is used, an extrusion or injection molding technique may be adopted. According to any of these techniques, the slots 304a and 304b can be filled with the compound of the present invention just as intended because the compound achieves a good fill density. Thus, bonded magnets, exhibiting excellent mechanical properties and thermal resistance and showing magnetic properties that are at least comparable to, or even better than, those of the conventional magnets, can be produces. As a result, a higher-performance, higher-reliability IPM type motor of a smaller size can be produced.

[0196]

The compound of the present invention is also effective to form bonded magnets for the angle sensor (or rotary encoder) 400 shown in FIG. 14(a).

[0197]

The rotary encoder 411 shown in FIG. 14(a) includes a rotating shaft 413, a rotating drum 416 coupled to the rotating shaft 413, a rotor 414 that has been bonded to the outer circumference of the rotating drum 416 and includes a plurality of bonded magnets 415, and a sensor 417 attached to the outer circumference of the rotor 414. The sensor 417 may be of any type as long as the sensor 417 can detect variation in magnetic flux produced from the rotor 414. For example, the sensor 417 may be Hall device, magnetoresistance device or magnetoimpedance effect device. The rotating shaft 413 is also coupled to a motor 412. The sensor 417 is connected to an instrument (not shown).

[0198]

The bonded magnets 415, made of the compound of the present invention, may have a cylindrical shape as shown in

PIG. 14(b). Also, the bonded magnets 415 are arranged around the outer circumference of the rotating drum 416 so that the N and S poles thereof alternate with each other. The bonded magnets 415 may be bonded to the rotating drum 416 with an adhesive, for example. The rotating drum 416 may be made of a metal material, for example, and does not have to be made of a magnetic material.

[0199]

This rotary encoder 400 operates in the following manner. As the rotating shaft 413 of the motor 412 rotates, the rotor 414 also rotates. In the meantime, the magnetic flux, produced from the bonded magnets 415 arranged around the outer circumference of the rotor 414 and then sensed by the sensor 417, changes its direction as the rotor 414 rotates. In response, the sensor 417 generates a signal representing such a variation in the direction of the magnetic flux (e.g., a variation in voltage or current) and outputs the signal to the instrument (not shown). In this manner, the magnitude (i.e., the angle) of rotation of the motor 412 is measured.

[0200]

The compound of the present invention achieves a good fill density (i.e., compactibility or flowability). Thus, bonded magnets, exhibiting excellent magnetic properties that are at least comparable to, or even better than, those of the conventional magnets and improved mechanical properties and be made of the compound. thermal resistance, can Consequently, a high-performance, high-reliability angle sensor of a small size can be obtained. The magnet of a rotary encoder does not have to be a number of magnets that are arranged as shown in FIGS. 14(a) and 14(b) but may also be a multipolar magnetized ring magnet provided along the outer circumference of the rotating drum 416.

[0201]

Furthermore, the compound of the present invention is also effective to make a bonded magnet for the magnetic roller illustrated in FIGS. 15(a) and 15(b).

[0202]

FIG. 15(a) is a cross-sectional view schematically illustrating the structure of an electrophotograph process

cartridge 501. The cartridge 501 includes a photosensitive drum 510 driven in the direction indicated by the arrow A, a charging roller 502 for charging the drum 510, a developer 511, and a cleaner 512. These members 510, 502, 511 and 512 are combined together within a single housing.

[0203]

The developer 511 includes a developing container 509 in which toner 513 is stored. A developing sleeve 506 is provided in a rotatable state inside the opening of the developing container 509 so as to face the photosensitive drum 510. The developer 511 further includes an elastic blade 514, which contacts with the developing sleeve 506, thereby controlling the thickness of the toner 513 that is being deposited on, and transported by, the developing sleeve 506.

[0204]

FIG. 15(b) is a cross-sectional view schematically illustrating the configuration of the developer 511 included in the process cartridge 501.

[0205]

The developing sleeve **506** is made of a non-magnetic material and supported in a rotatable state by the developing container **509** via a bearing. A magnetic roller **507** with a diameter of 8.5 mm, for example, is provided inside of the developing sleeve **506** with a diameter of 10 mm, for example. The shaft **507a** of the magnetic roller **507** has a notch **507a-1**, which engages with the developing container **509** to secure the magnetic roller **507** to the container **509**. The magnetic roller **507** has a developing pole **S1** in front of the photosensitive drum **510** and three more poles **S2**, **N1** and **N2** at other positions.

[0206]

A magnet 508 is provided so as to surround the developing sleeve 506 and forms a magnetic curtain in the gap g between the developing sleeve 506 and the magnet 508. The magnetic curtain retains the toner in the gap, thereby preventing the toner leakage.

[0207]

The magnetic roller 507 is made of the compound of the

present invention, and exhibits excellent magnetic properties that are at least comparable to, or even better than, those of the conventional magnet. The roller 507 also excels in mechanical properties and thermal resistance. Accordingly, the magnetic roller 507 and developing sleeve 506 can be of smaller sizes than the conventional ones, and yet can exhibit improved performance. The magnetic roller made of the compound of the present invention is also applicable for use in a developer or developing cartridge for a photocopier or laser beam printer.

[0208]

Hereinafter, examples of the present invention will be described.

[0209]

(Examples Nos. 1 to 3 and Comparative Example No. 1)

<How to prepare magnet powder>

A material, which had been mixed to have an alloy composition including 8.9 at of Nd, 12.6 at of B, 3.0 at of Ti, 1.4 at of C, 1.0 at of Nb and Fe as the balance and a

weight of about 5 kg, was introduced into a crucible and then inductively heated within an Ar atmosphere having a pressure maintained at about 50 kPa, thereby making a molten alloy.

[0210]

A rapidly solidified alloy was made from the molten alloy by a strip casting process. More specifically, the crucible was tilted to directly feed the molten alloy onto a pure copper chill roller, having a diameter of 250 mm and rotating at a surface velocity of 14 m/s, by way of a shoot, thereby rapidly quenching and solidifying the molten alloy. In feeding the melt onto the roller, the melt was branched into two flows on the shoot and the melt feeding rate was controlled to 1.3 kg/min per melt flow by adjusting the tilt angle of the crucible.

[0211]

As for the rapidly solidified alloys obtained in this manner, the thicknesses of 100 cast flakes were measured with a micro meter. As a result, the rapidly solidified alloys had an average thickness of 85 μ m with a standard deviation σ of 13 μ m. Thereafter, the rapidly solidified alloy that had

been made in this manner was pulverized to a size of 850 μ m or less and then was loaded at a feeding rate of 20 g/min into a hoop belt furnace, running at a belt feeding speed of 100 mm/min and having a soaking zone with a length of about 500 mm, within an argon atmosphere that had a temperature retained at 780 °C. In this manner, the powder was thermally treated to make a magnet powder.

[0212]

The crystal structure of the resultant magnet powder was identified by a powder XRD analysis. As a result, the magnet powder turned out to be a Ti-containing nanocomposite magnet powder including an Ne₂Fe₁₄B phase, an Fe₂₃B₆ phase and an α -Fe phase.

[0213]

Thereafter, the resultant magnet powder was pulverized with a pin disk mill as already described with reference to PIGS. 7 and 8 to make a magnet powder having the particle size distribution shown in the following Table 7. It should be noted that the particle size distribution was calculated by classifying 50 g of the powder with a standard sieve complying

with JIS 8801 and plotting the masses of powder particles with respective sizes.

[0214]

[Table 7]

Particle size	Mass
≦38	10.40
38<,≦53	22.74
53<, ≦75	27.47
75<, ≦106	30.17
106<, ≦125	8.39
125<, ≦150	0.55
150<	0.28

[0215]

The aspect ratios of the resultant 100 magnet powder particles were calculated with a scanning electron microscope.

As a result, all of those particles had aspect ratios of 0.3 to 1.0.

[0216]

(How to prepare compound)

The Ti-containing nanocomposite magnet powder (with a true density of 7.5 $\rm g/cm^3$) and an MQP-O powder on the market

(with a true density of 7.5 g/cm3), of which the particle size distribution had been almost equalized with that shown in Table 7 through classification, were mixed together at the volume percentages shown in the following Table 8. resultant mixtures were used as magnet powders for bonded magnets. These magnet powders for bonded magnets and Nylon 66 (with a true density of 1.1 g/cm2) were kneaded together with a biaxial kneader, for example, thereby obtaining compounds for rare-earth bonded magnets as Examples Nos. 1 to 3 and Comparative Example No. 1. The volume percentage of the magnet powder in the resultant compound (i.e., the magnet powder percentage), which was calculated based on the true density (of 5.0 g/cm3) of the resultant compound, was 61%.

[0217]

[Table 8]

	Ti-containing nanocomposite magnet powder	MQP-O
Example 1	100%	-in-
Example 2		
Example 3	2%	98%
Cmp. Ex. 1		100%

[0218]

<Evaluations>

The compounds representing these examples and comparative example were subjected to the following evaluations.

[0219]

(Evaluation of flowability)

The melt flow rates (MFR) of the compounds representing Examples Nos. 1 to 3 and Comparative Example No. 1 were evaluated with a melt indexer. The evaluation conditions included a nozzle diameter of 2.095 mm, an extrusion load of 5 kgf/cm³, and melting temperatures of 240 °C, 260 °C and 280 °C. It should be noted that the higher the MFR value of a compound, the better the flowability of the compound. The results are shown in the following Table 9.

[0220]

(Evaluation of oxidation resistance)

Increases in mass due to oxidation (i.e., increase due to oxidation) were measured on about 5 g of compounds representing Examples Nos. 1 to 3 and Comparative Example No. 1, which had been left in the air for 10 minutes at 400 $^{\circ}$ C. The increase due to oxidation is represented herein as a

percentage calculated by (mass after leaving — mass before leaving)/ (mass before leaving). The smaller the increase due to the oxidation of a compound, the better the oxidation resistance of the compound. The results are also shown in the following Table 9:

[0221]

[Table 9]

	MFR value (g/10 min.)			Increase (%)	
	240 C	260 °C	280 C	Due to oxidation	
Example 1	136	220	365	0.152	
Example 2	150	255	350	0.180	
Example 3	114	190	320	0.254	
Cmp. Ex. 1	67	115	190	0.261	

[0222]

(Property evaluation of injection-molded body)

Example No. 1 were injection-molded using a cavity with cross-sectional sizes of 2 mm × 10 mm and a height (or depth) of 60 mm, thereby producing bonded magnets having a flat and elongated shape. It should be noted that this cavity shape was adopted to replicate the slot shape of a rotor for use in

the IPM motor described above.

[0223]

Each of these bonded magnets was equally divided into three in the cavity depth direction to make three magnet pieces with dimensions of 2 mm × 10 mm × 20 mm. These three magnet pieces will be referred to herein as "magnet pieces A, B and C", which are the closest to, the next closest to, and the least close to, the injection molding gate, respectively. A pulsed magnetic field of 3.2 MA/m or more was applied to these magnet pieces parallel to the shorter side (i.e., the 2 mm side) thereof, thereby magnetizing them. Thereafter, the magnetic properties thereof were measured with a BH tracer. The results are shown in the following Table 11.

[0224]

[Table 10]

	Injection	Magnet	B_x	$\mathbf{H}_{c\beta}$	{BH} _{max}
	Temperature (♡)	Piece	(T)	(kA/m)	(kJ/m²)
		A	0.500	994.2	49.4
	260	В	0.496	994.0	48.4
Example		С	0.497	997.5	48.9
No. 1		A	0.495	989.7	47.0
	350	В	0.493	990.3	47.1
		C	0.496	990.4	47.5
		A	0.481	987.2	47.2
Cmp.	260	B	0.472	992.6	42.8
Example		С	0.465	989.9	40.3
No. 1		A	0.433	993.1	40.7
	350	8	0.425	984.2	37.8
		C	0.414	988.8	35.1
Lainean ann an t-		.i	<u> </u>		<u> </u>

[0225]

As can be seen from the results shown in Table 9, the compound representing Example No. 3, including 2 mass of Ticontaining nanocomposite magnet powder, exhibited better flowability than the compound representing Comparative Example No. 1 including only the conventional MQP-O powder. Also, when the percentage of the Ti-containing nanocomposite magnet powder was increased to 70%, the increase due to oxidation

dropped to less than 0.2 mass%. That is to say, the oxidation resistance was improved.

[0226]

As can be seen from the results shown in Table 10, the compound representing Example No. 1, including the Ticontaining nanocomposite magnet powder, showed constant magnetic properties and excellent flowability and oxidation resistance, no matter how close to the gate the magnet piece was. That is to say, the injection molding process could be carried out constantly even with a narrow cavity. In addition, even when the molding process was performed at 350 °C, no deterioration in magnetic properties due to the oxidation of the resultant bonded magnet were observed.

[0227]

On the other hand, the compound representing Comparative Example No. 1 showed a lower flowability and a relatively high increase due to oxidation of more than 2.6 mass% (i.e., inferior oxidation resistance). As also can be seen from the results shown in Table 10, the more distant from the gate the magnet piece was, the lower the magnetic properties thereof

(i.e., the lower the fill density of the compound in the cavity). Furthermore, the magnet piece that was injection-molded at 350 $^\circ$ C exhibited apparently lower magnetic properties than the magnet piece that was molded at 260 $^\circ$ C. Thus, it can be seen that the magnetic properties deteriorated due to the oxidation of the magnet powder.

[0228]

(Example No. 4 and Comparative Examples Nos. 2 and 3)

<How to prepare compound>

A compound representing Example No. 4 was prepared using only the Ti-containing nanocomposite magnet powder (with a true density of 7.5 g/cm², see Table 7 for particle size distribution) that was used in the Examples Nos. 1 to 3 described above. On the other hand, compounds representing Comparative Examples Nos. 2 and 3 were prepared using a MQP-B powder (available from MQI Inc. and with a true density of 7.6 g/cm³) and a MQP-O powder (available from MQI Inc. and with a true density of 7.5 g/cm³), respectively.

[0229]

More specifically, each of these magnet powders was mixed

with 2 mass? of epoxy resin, which had a true density of 1.2 g/cm3 and which had been diluted with methyl ethyl ketone (where the mass percentage was calculated with respect to the resultant compound). Thereafter, the mixture was kneaded within an Ar atmosphere while the methyl ethyl ketone was being vaporized, thereby making compounds for rare-earth bonded magnets representing Example No. 4 and Comparative Examples Nos. 2 and 3. The volume percentages of the rareearth alloy powders in the compounds, which were calculated based on the true density (of 6.9 g/cm3) thereof, were 90% in the compounds representing Example No. 4 and Comparative Example No. 3 and 89% in the compound representing Comparative Example No. 2, respectively.

- <How to make bonded magnet>

Compressed bonded magnets, each having a diameter of 10 mm and a height of 7 mm, were made of the compounds representing Example No. 4 and Comparative Examples Nos. 2 and 3 with the compacting pressure adjusted such that each of the resultant magnets would have a density of 5.9 g/cm³. Thereafter, the magnets were thermally treated at 150 °C for

one hour within an Ar gas atmosphere.

(Evaluation)

The anticorrosiveness of those bonded magnets, which had been made of the compounds representing Example No. 4 and Comparative Examples Nos. 2 and 3, was evaluated. specifically, the bonded magnets, which had been magnetized with a pulsed magnetic field of 3.2 MA/m or more (where n=3in each of the example and comparative examples), were left in high-temperature high-himidity environment with temperature of 80 °C and a relative humidity of 90%, thereby calculating mass increase percentages due to oxidation (i.e., ((mass after leaving - mass before leaving) + (weight before leaving)}imes100) and variations in magnetic flux (Φ open) (i.e., {(magnetic flux after leaving - magnetic flux before leaving} \div (magnetic flux before leaving)) \times 100). FIGS. 16(a) and 16(b) are graphs plotting the results obtained (where each set of data was averages at n = 3) with respect to the time in which the magnet was left.

[0230]

As a result of these experiments, it was discovered that

the bonded magnet using the compound of the present invention (as represented by Example No. 4) showed oxidation or deterioration in magnetic properties much slowly even under the high-temperature high-humidity environment than the bonded magnets using the compounds representing Comparative Examples Nos. 2 and 3 that included the conventional rapidly solidified alloy magnet powders such as the MQP-8 and MQP-0.

[0231]

[Effects of the Invention]

The present invention provides a compound for a rareearth bonded magnet, which can minimize the deterioration in
magnetic properties due to the heat applied to form a bonded
magnet by a compaction process, can improve the compactibility
including flowability, and can make a rare-earth bonded magnet
with excellent magnetic properties and anticorrosiveness.

[0232]

The compound of the present invention has excellent flowability, and can be used particularly effectively as a compound to be injection molded.

(Brief Description of the Drawings)

[FIG. 1]

A graph showing a relationship between the maximum energy product (BH) sex and the concentration of boron in an Nd-Fe-B nanocomposite magnet including no additive Ti. in which the white bars represent data about samples containing 10 at% to 14 at% of Nd, while the black bars represent data about samples containing 8 at% to 10 at% of Nd.

[FIG. 2]

A graph showing a relationship between the maximum energy product $(BH)_{max}$ and the concentration of boron in an Nd-Fe-B nanocomposite magnet including additive Ti, in which the white bars represent data about samples containing 10 at% to 14 at% of Nd, while the black bars represent data about samples containing 8 at% to 10 at% of Nd.

[FIG. 3]

Schematically illustrates an $R_2 Fe_{14} B$ compound phase and an (Fe, Ti)-B phase in the magnet of the present invention.

(FIG. 4)

Schematically illustrates how rapidly solidified alloys change their microstructures during the crystallization

processes thereof in a situation where Ti is added and in situations where Nb or another metal element is added instead of Ti.

[FIG. 5]

5(a) is a cross-sectional view illustrating an overall arrangement of a machine for use to make a rapidly solidified alloy for the iron-based rare-earth alloy magnet of the present invention and 5(b) illustrates a portion of the machine, where a melt is rapidly quenched and solidified, on a larger scale.

(FIG. 6)

6(a) is a perspective view schematically illustrating an allow yet to be pulverized and pulverized powder particles for the present invention and 6(b) is a perspective view schematically illustrating an allow yet to be pulverized and pulverized powder particles for the prior art.

[FIG. 7]

A view illustrating a configuration for a pin mill for use in an embodiment of the present invention.

[FIG. 8]

A view showing the arrangement of pins in the pin mill shown in FIG. 7.

[FIG. 9]

A graph showing the mass increase percentages of a Ticontaining nanocomposite magnet powder according to the
present invention and conventional rapidly solidified magnet
powders with the heat applied thereto.

[FIG. 10]

A graph showing the densities of compacts for a bonded magnet, which were made of Ti-containing nanocomposite magnet powders with mutually different particle size distributions.

[FIG. 11]

An exploded perspective view schematically illustrating the construction of a stepping motor 100 including a permanent magnet rotor as an embodiment of the present invention.

[FIG. 12]

(a) through (d) are views showing a bonded-magnet-integrated rotor 200 and a compacting process thereof in accordance with an embodiment of the present invention.

Application Number: 2001-354315

(FIG. 13)

A schematic representation illustrating the configuration of a magnet-embedded rotor 300 as another embodiment of the present invention.

[FIG. 14]

(a) and (b) are views schematically illustrating the structure of a rotary encoder 411 as still another embodiment of the present invention.

[FIG. 15]

(a) and (b) are cross-sectional views schematically illustrating the structure of an electrophotograph process cartridge 501, including a magnetic roller 507, as yet another embodiment of the present invention.

[FIG. 16]

Graphs showing the evaluated anticorrosiveness of bonded magnets made of compounds of Example No. 4 of the present invention and Comparative Examples Nos. 2 and 3 when those magnets were left in a high-temperature, high-humidity environment with a relative humidity of 90%, wherein: (a) is a

Application Number: 2001-354315

graph plotting the mass increase percentage with respect to the time in which the magnet was left; and (b) is a graph plotting the variation in magnetic flux (Φ) open) with respect to the time in which the magnet was left.

[Description of the Reference Numerals]

- 1b, 2b, 8b and 9b atmospheric gas inlet port
- la, 2a, 8a and 9a gas outlet port
- 1 melting chamber
- 2 quenching chamber
- 3 melt crucible
- 4 reservoir
- 5 teeming nozzle
- 6 funnel
- 7 rotating chill roller
- 21 melt
- 22 alloy

[Name of Document] Drawings

[Fig.1]

[Fig.2]

[Fig.3]

[Fig.4]

[Fig.5]

[Fig.6]

[Fig.7]

[Fig.8]

[Fig.9]

(Fig.10)

[Fig.11]

[Fig.12]

[Fig.13]

[Fig.14]

[Fig.15]

[Fig.16]

[Name of the Document] ABSTRACT

[Abstract]

[Problem] To provide a compound for a rare-earth bonded magnet, which minimizes deterioration in magnetic properties due to the heat applied to form a bonded magnet by compaction, improves compactibility including flowability, and makes a rare-earth bonded magnet with excellent magnetic properties and anticorrosiveness.

[Means for Solving the Problem] A compound for a rare-earth bonded magnet includes a rare-earth alloy powder and a binder. The powder includes at least 2 mass % of Ti-containing nanocomposite magnet powder particles represented by $(Fe_{1-m}T_m)_{100-x-y-x}Q_xR_yM_x$, where T is Co and/or Ni; O is B with or without C; R is at least one of the rare-earth elements substantially excluding La and Ce; M is at least one metal element including Ti with or without Zr and/or Hf; and x, y, z and m satisfy $10 \le x \le 20$ at%; $6 \le y \le 10$ at%, $6.1 \le z \le 12$ at% and $0 \le m \le 0.5$, respectively. The particles include at least two ferromagnetic crystalline phases, where hard and soft magnetic phases have an average crystal grain size of 10 nm to 200 nm and an average crystal grain size of 1 nm to 100 nm.

[Selected Figure] none