5. (12 points) The location of a particle moving in the plane at time t seconds is given by these parametric equations:

$$x = (t-2)^2$$
 $y = (t-2)^3 - 3(t-2).$

The path is graphed below for $0 \le t \le 4$.

(a) Find all of the times when the particle crosses the x axis.

(b) Find the equation of the tangent line to the path the first time the particle crosses the x axis.

(c) Find the equation of the tangent line to the path the last time the particle crosses the x axis.

6. (12 points) Consider the curve in the plane defined by the equation

$$y^3 - 2y^2 - x^2 + 3xy = 0.$$

(a) How many points on the curve have x-coordinate 0? Show that (0,2) is one of them.

(b) Find $\frac{dy}{dx}$ in terms of x and y.

(c) Find the equation of the tangent line to the curve at (0,2).

5. (12 points)

The curve defined implicitly by

$$(x^2 - 2x + y^2)^2 = x^2 + y^2$$

is called a $limaçon\ trisectrix$. This curve is pictured below, along with the y-intercepts, labeled A and B.

Find the coordinates of the point where the tangent lines at A and B intersect.

- 8. (12 points) A particle moves through the plane along the curve C defined by the parametric equations $x(t) = 3t^2 4t$, $y(t) = t^2 + 4t + 4$, where $t \ge 0$. Let P(t) = (x(t), y(t)) be the location of the particle at time t.
 - (a) [6pts] Find the equation of the tangent line to the curve C at time t=1.

(b) [6pts] Find the time(s) when a tangent line to the curve at P(t) passes through the point (2,0).

4. (10 points) Consider the curve defined by the parametric equations

$$x = \frac{1}{3}t^3 - \ln t$$
, $y = \frac{81}{2}t^2 + \frac{8}{t^2} + 3$,

where t > 0.

(a) Find all the horizontal tangent lines to the curve.

(b) Find all the vertical tangent lines to the curve.

5. (10 points) The graph of the equation $x^2 - xy + 2y^2 = 4$ is a tilted ellipse, as pictured below.

(a) Find a formula for the implicit derivative $\frac{dy}{dx}$.

(b) Find the coordinates of a point on the ellipse where the tangent line is parallel to the line with equation y=x+4. (Note: there are two correct answers; either will be accepted.) Give your answer in exact form.