LoRA: Low-Rank Adaptation of Large Language Models 논문 리뷰

1. Introduction

- 최근의 NLP: **하나**의 pre-trained model → 여러 개의 downstream application에 적용
- fine-tuning: pre-trained model의 '모든' 파라미터를 특정 작업에 맞게 업데이트
 - → 기존 모델의 파라미터 개수만큼의 훈련이 필요
- 파라미터의 <u>일부만</u> adapt하거나, <u>external module</u>을 활용하는 방법에 대한 연구들이 이루어지고 있음
 [장점]
 - 1. task-specific한 파라미터만 필요로 함
- 1. inference latency 발생

2. efficiency 향상

- 2. model이 사용 가능한 sequence length ↓
- LoRA(Low-Rank Adaption)의 등장

- chang in wieghts는 'low intrinsic rank'를 가진다고 가정 (reside on a low intrinsic dimension)
 : 가중치 변화량은 높은 차원을 가진 행렬이지만, 모델 학습을 위해 필요한 핵심적인(실질적인) 정보는 낮은 차원으로 압축될 수 있음
- pre-trained weights는 고정하고, rank decomposition matrices(A, B)만 최적화하는 방식
- 。 LoRA의 장점
 - 1. 그림에서의 행렬 A, B만 바꿔가면서 서로 다른 task를 위한 LoRA module 쉽게 설계 가능
 - 2. 효율적이며 하드웨어 장벽을 낮추는 학습 방식
 - 3. simple한 linear design으로, inference latency 도입 x
 - 4. 기존 방법(ex. prefix-tuning)들과 orthogonal → 독립적으로 결합 가능

2. Problem Statement

[Language Modeling Problem의 정의]

- pre-trained language model $P_{\Phi}(y \mid x)$ 가 주어짐
- full fine-tuning의 objective:

- $\circ \; \max_{\Phi} \sum_{(x,y) \in \mathcal{Z}} \sum_{t=1}^{|y|} \log ig(P_{\Phi}(y_t \mid x, y_{< t}) ig)$
- \circ Φ_0 (pre-trained 모델의 파라미터)에서 시작하여, $\Phi_0 + \Delta \Phi$ 로 업데이트
- \circ 이 때, $|\Phi_0|=|\Delta\Phi|$ 라는 한계가 존재
- LoRA의 objectvie:
 - $\circ \; \max_{\Theta} \sum_{(x,y) \in \mathcal{Z}} \sum_{t=1}^{|y|} \; \log \, p_{\Phi_0 + \Delta\Phi(\Theta)}ig(y_t \mid x, y_{< t}ig)$
 - \circ Φ_0 는 고정, $\Delta\Phi=\Delta\Phi(\Theta)$ 는 Θ 를 학습함으로써 계산됨
 - \circ 이 때, $|\Theta| \ll |\Phi_0|$ 로, **much smaller-sized** set of parameters만 사용됨

3. Aren't Existing Solutions Good Enough?

: 기존의 efficient fine-tuning 방법들과 그들의 한계

- 1. Adater Layer를 추가하는 방식
 - Transformer block마다 특정 개수의 adapter layer를 추가해서 이것들만 학습시키는 방식
 - adapter layer는 few parameter를 가지지만, 'sequentially' processed 되어야 함
 - large neural network는 하드웨어 병렬 처리에 의존하지만, adapter layer는 **불가능 → inference** latency 발생

Batch Size	32	16	1	
Sequence Length	512	256	128	
$ \Theta $	0.5M	11M	11M	
Fine-Tune/LoRA	1449.4 ± 0.8	338.0 ± 0.6	19.8 ± 2.7	
Adapter ^L	1482.0±1.0 (+2.2%)	354.8±0.5 (+5.0%)	23.9±2.1 (+20.7%)	
Adapter ^H	1492.2±1.0 (+3.0%)	366.3±0.5 (+8.4%)	25.8±2.2 (+30.3%)	

2. Prefix Tuning

- adaptation을 위한 sequence length를 필요로 함
- 따라서, downstream task를 위해 사용 가능한 sequence length 감소
- 이로 인해, prompt를 tuning하는 것은 less performant

4. Method

4.1 Low-Rank-Parametrized Update Matrices

☑ 알려진 사실: pre-trained language models have a low instrisic dimension

💡 가정: the updates to the weights also have a **low intrinsic rank** during adaptation

$$h = W_0 x + \Delta W \ x = W_0 x + BA x \ W_0 \in \mathbb{R}^{d imes k}, \ B \in \mathbb{R}^{d imes r}, \ A \in \mathbb{R}^{r imes k}$$

ullet rank $r \ll min(d,k)
ightarrow$ low-rank decomposition: $\Delta W = BA$ 로 계산

- A는 random Gaussian 분포로 초기화, B는 0으로 초기화 ightarrow 초기 BA는 0으로 시작
- W_0 와 BA 각각에 동일한 input x를 곱함 o coordinate-wise sum으로 최종 h 계산

[A Generalization of Full Fine-tuning]

- LoRA: rank r을 increase 할수록 ightarrow full fine-tuning의 성능에 수렴함
- 기존 adapter-based 방법: MLP의 성능에 수렴
- prefix-based 방법: 길이가 긴 input sequence를 받을 수 없는 모델에 수렴

[No Additional Inference Latency]

- $W=W_0+BA$ 로 계산되므로, BA를 빼서 W_0 복원 가능
- ullet 그 후, 다른 decomposition인 B'A'을 더하는 간단하고 빠른 방법으로 다른 downstream task로 전환
- 따라서 memory 차지도 적으며, 어떠한 additional inference latency도 추가되지 않음

4.2 Applying LoRA to Transformer

- LoRA는 신경망의 weight matrices의 어떤 subset이든 적용 가능
- Transformer의 경우, 아래와 같이 downstream task에 적용
 - ∘ MLP module은 고정 → simplicity & efficiency
 - \circ attention weights(W_q or W_k or W_v)에만 LoRA 적용
- 이를 통해, 기존에 175B 개의 파라미터를 가진 GPT-3에 대해, VRAM 소비량이 1.2TB에서 350GB로 감소

5. Empirical Experiments

- LoRA 적용 모델: RoBERAa(base, large), DeBERTa(XXL), GPT-2(medium, large), GPT-3 175B
- 실험 결과

Model & Method	# Trainable									
	Parameters	MNLI	SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
RoB _{base} (FT)*	125.0M	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
RoB _{base} (BitFit)*	0.1M	84.7	93.7	92.7	62.0	91.8	84.0	81.5	90.8	85.2
RoB _{base} (Adpt ^D)*	0.3M	87.1±.0	$94.2_{\pm.1}$	$88.5_{\pm 1.1}$	$60.8_{\pm .4}$	$93.1_{\pm .1}$	$90.2_{\pm .0}$	$71.5_{\pm 2.7}$	$89.7_{\pm .3}$	84.4
RoB _{base} (Adpt ^D)*	0.9M	87.3±.1	$94.7_{\pm .3}$	$88.4_{\pm.1}$	$62.6_{\pm .9}$	$93.0_{\pm .2}$	$90.6_{\pm.0}$	$75.9_{\pm 2.2}$	$90.3_{\pm,1}$	85.4
RoB _{base} (LoRA)	0.3M	87.5±.3	$95.1_{\pm .2}$	$89.7_{\pm .7}$	$63.4_{\pm 1.2}$	$93.3_{\pm .3}$	$90.8_{\pm.1}$	$\textbf{86.6} \scriptstyle{\pm.7}$	$91.5_{\pm .2}$	87.2
RoB _{large} (FT)*	355.0M	90.2	96.4	90.9	68.0	94.7	92.2	86.6	92.4	88.9
RoB _{large} (LoRA)	0.8M	90.6±.2	$96.2 \scriptstyle{\pm .5}$	$90.9_{\pm 1.2}$	$68.2_{\pm 1.9}$	$94.9_{\pm .3}$	$91.6_{\pm.1}$	$87.4_{\pm 2.5}$	$92.6_{\pm .2}$	89.0
RoB _{large} (Adpt ^P)†	3.0M	90.2±.3	96.1±.3	90.2±.7	68.3 _{±1.0}	94.8 _{±.2}	91.9 _{±.1}	83.8 _{±2.9}	92.1 _{±.7}	88.4
RoB _{large} (Adpt ^P)†	0.8M	90.5±.3	$96.6_{\pm .2}$	$89.7_{\pm 1.2}$	$67.8_{\pm 2.5}$	$94.8_{\pm .3}$	$91.7_{\pm .2}$	$80.1_{\pm 2.9}$	$91.9_{\pm .4}$	87.9
RoB _{large} (Adpt ^H)†	6.0M	89.9 _{±.5}	$96.2_{\pm .3}$	$88.7_{\pm 2.9}$	$66.5_{\pm 4.4}$	$94.7_{\pm .2}$	$92.1_{\pm.1}$	$83.4_{\pm 1.1}$	$91.0_{\pm 1.7}$	87.8
RoB _{large} (Adpt ^H)†	0.8M	90.3±.3	$96.3_{\pm .5}$	$87.7_{\pm 1.7}$	$66.3_{\pm 2.0}$	$94.7_{\pm .2}$	$91.5_{\pm.1}$	$72.9_{\pm 2.9}$	$91.5_{\pm .5}$	86.4
RoB _{large} (LoRA)†	0.8M	90.6 _{±.2}	$96.2_{\pm.5}$	$90.2_{\pm 1.0}$	$68.2_{\pm 1.9}$	$94.8_{\pm .3}$	$91.6_{\pm .2}$	$\textbf{85.2}_{\pm 1.1}$	$92.3_{\pm .5}$	88.6
DeB _{XXL} (FT)*	1500.0M	91.8	97.2	92.0	72.0	96.0	92.7	93.9	92.9	91.1
DeB _{XXL} (LoRA)	4.7M	91.9 _{±.2}	$96.9_{\pm.2}$	$\textbf{92.6}_{\pm.6}$	$\textbf{72.4}_{\pm 1.1}$	$\textbf{96.0}_{\pm.1}$	$\textbf{92.9}_{\pm.1}$	$\textbf{94.9}_{\pm.4}$	$\textbf{93.0}_{\pm.2}$	91.3

Model & Method	# Trainable						
	Parameters	BLEU	NIST	MET	ROUGE-L	CIDEr	
GPT-2 M (FT)*	354.92M	68.2	8.62	46.2	71.0	2.47	
GPT-2 M (Adapter ^L)*	0.37M	66.3	8.41	45.0	69.8	2.40	
GPT-2 M (Adapter ^L)*	11.09M	68.9	8.71	46.1	71.3	2.47	
GPT-2 M (Adapter ^H)	11.09M	67.3 _{±.6}	$8.50_{\pm .07}$	$46.0_{\pm .2}$	$70.7_{\pm .2}$	$2.44_{\pm.01}$	
GPT-2 M (FTTop2)*	25.19M	68.1	8.59	46.0	70.8	2.41	
GPT-2 M (PreLayer)*	0.35M	69.7	8.81	46.1	71.4	2.49	
GPT-2 M (LoRA)	0.35M	$70.4_{\pm .1}$	$\pmb{8.85}_{\pm.02}$	$\textbf{46.8}_{\pm.2}$	$71.8_{\pm .1}$	$2.53_{\pm.02}$	
GPT-2 L (FT)*	774.03M	68.5	8.78	46.0	69.9	2.45	
GPT-2 L (Adapter ^L)	0.88M	69.1 _{±.1}	$8.68_{\pm .03}$	$46.3_{\pm.0}$	$71.4_{\pm .2}$	$2.49_{\pm .0}$	
GPT-2 L (Adapter ^L)	23.00M	68.9 _{±.3}	$8.70_{\pm .04}$	$46.1_{\pm.1}$	$71.3_{\pm .2}$	$2.45_{\pm.02}$	
GPT-2 L (PreLayer)*	0.77M	70.3	8.85	46.2	71.7	2.47	
GPT-2 L (LoRA)	0.77M	$70.4_{\pm .1}$	$\pmb{8.89}_{\pm.02}$	$46.8_{\pm .2}$	$72.0_{\pm .2}$	$2.47_{\pm .02}$	

Model&Method	# Trainable Parameters	WikiSQL Acc. (%)	MNLI-m Acc. (%)	SAMSum R1/R2/RL
GPT-3 (FT)	175,255.8M	73.8	89.5	52.0/28.0/44.5
GPT-3 (BitFit)	14.2M	71.3	91.0	51.3/27.4/43.5
GPT-3 (PreEmbed)	3.2M	63.1	88.6	48.3/24.2/40.5
GPT-3 (PreLayer)	20.2M	70.1	89.5	50.8/27.3/43.5
GPT-3 (Adapter ^H)	7.1M	71.9	89.8	53.0/28.9/44.8
GPT-3 (Adapter ^H)	40.1M	73.2	91.5	53.2/29.0/45.1
GPT-3 (LoRA)	4.7M	73.4	91.7	53.8/29.8/45.9
GPT-3 (LoRA)	37.7M	74.0	91.6	53.4/29.2/45.1

• 대부분의 task에서 더 적은 개수의 trainable parameter만으로도 LoRA가 높은 성능을 보임

- 심지어, 많은 경우에 Full Fine-tuning(FT)보다 좋은 성능을 보임
- 특히 GPT-3에서 LoRA를 이용했을 때 accuracy가 다른 method들에 비해 훨씬 높고 안정적이었음

6. Related Works

- Transformer Language Models
- · Prompt Engineering and Fine-Tuning
- Parameter-Efficient Adaptation
- · Low-Rank Structures in Deep Learning

7. Understanding the Low-Rank Updates

7.1 Which weight matrices in Transformer should we apply LoRA to?

			# (of Train	able Param	eters = 18N	Л
Weight Type Rank r	$\left \begin{array}{c}W_q\\8\end{array}\right $	W_k 8	$\frac{W_v}{8}$	W_o 8	W_q, W_k 4	W_q, W_v 4	W_q, W_k, W_v, W_o
WikiSQL ($\pm 0.5\%$) MultiNLI ($\pm 0.1\%$)	1				71.4 91.3	73.7 91.3	73.7 91.7

- ullet W_q 와 W_v 에 같이 LoRA를 적용할 때 업데이트 할 가중치를 최소화하면서도 가장 좋은 성능을 보였음
- weight matrix 중 한 가지에만 LoRA를 적용하는 것보다 여러 개에 동시에 적용하는 것이 성능이 더 좋음

7.2 What is the optimal rank r for LoRA?

	Weight Type	r = 1	r = 2	r = 4	r = 8	r = 64
WikiSQL(±0.5%)	W_q	68.8	69.6	70.5	70.4	70.0
WIKISQL($\pm 0.5\%$)	W_q, W_v	73.4	73.3	73.7	73.8	73.5
	W_q, W_k, W_v, W_o	74.1	73.7	74.0	74.0	73.9
	W_q	90.7	90.9	91.1	90.7	90.7
MultiNLI ($\pm 0.1\%$)	W_q, \dot{W}_v	91.3	91.4	91.3	91.6	91.4
	W_q, W_k, W_v, W_o	91.2	91.7	91.7	91.5	91.4

- 매우 작은 r(1 or 2)에서도 좋은 성능을 보임
 - ightarrow ' ΔW 가 very small intrinsic rank를 가질 수 있음'을 시사
- r을 증가시킨다고 해서 항상 더 많은 meaningful subspace를 cover할 수 있는 것은 아님!
 - → low-rank adaptation matrix만으로도 충분함

7.3 How does the adaptation matrix ΔW compare to W?

		r=4	:	$\begin{array}{ccc} & r = 64 \\ \Delta W_q & W_q & \text{Random} \end{array}$		
	ΔW_q	W_q	Random	ΔW_q	W_q	Random
$ U^{\top}W_qV^{\top} _F =$	0.32	21.67	0.02	1.90	37.71	0.33
$ W_q _F = 61.95$	_	$ W_q _F$ =	= 6.91	_	$ W_q _F$ =	= 3.57

- ullet random matrix와 비교했을 때, ΔW 가 W와 더 강한 상관관계를 지님
 - $ightarrow \Delta W$ 가 W의 feature 일부를 증폭시킴
- ΔW 는 W에서 강조(설명)되지 않은 방향을 향하고 있음
- ΔW 의 amplification factor 값은 매우 큼

8. Conclusion and Future Work

- LoRA 정리
 - o efficient한 adaptation strategy
 - ∘ inference latency를 도입하지 않음
 - input sequence length가 감소하지 않음
 - 。 서로 다른 각각의 downstream task에 맞게 빠른 switch 가능