Университет ИТМО, факультет программной инженерии и компьютерной техники Двухнедельная отчётная работа по «Информатике»: аннотация к статье

Номер прошедшей лекции: №2

дага прог	педшен лекции. <u>27.09.23</u>	помер прошедшен лекции. <u>-</u>	<u> 1-2</u>	на с да ни. <u>11</u>	.10.25
Выполнил(а)	Васильев Н. А	. , № группы	P3108	3, оценка	
· / -	Фамилия И.О. стулен	Ta Ta		 -	не заполнять

Методы защиты серверов от космического излучения					
ФИО автора статьи (или e-mail)	Дата публикации	Размер статьи			
FirstJohn	(не старше 2020 года)	(от 400 слов)			
	"4" июля 2022 г.	1144 слов			

Прямая полная ссылка на источник или сокращённая ссылка (bit.ly, tr.im и т.п.)

https://habr.com/ru/companies/first/articles/673582/

Теги, ключевые слова или словосочетания

Лата прошеншей пекции: 27 09 23

Одиночные сбои, битфлип, контроль ошибок, бит чётности, помехоустойчивый код, контроллеры памяти, физическая защита

Перечень фактов, упомянутых в статье (минимум три пункта)

- 1. Одиночные сбои происходят на компьютерах, смартфонах, серверах и т.д. из-за бомбардировок высокоэнергетическими частицами
- 2. Вероятность сбоя примерно 1 битфлип на 256 МБ оперативной памяти в месяц
- 3. Для борьбы со сбоями используется код коррекции ошибок, первый из которых был изобретён Ричардом Хэммингом в 1950 году
- 4. В современных компьютерах коррекцию ошибок в памяти выполняют контроллеры памяти
- 5. Помимо кода Хэмминга используют коды Бозе Чёдхури Хокуингхема или коды Рида Соломона, в основном, во многих технологиях типа CD, DVD, QR-кодов и др.
- 6. Не вся оперативная память в компьютере поддерживает корректирующие коды
- 7. Самые опасные ошибки неисправимые ошибки, приводящие к сбоям, и повреждение данных.
- 8. Существует физическая защита серверов, заключающаяся в вертикальном расположении модулей памяти

Позитивные следствия и/или достоинства описанной в статье технологии (минимум три пункта)

- 1. Корректирующие коды повышают надёжность передачи данных.
- 2. Помехоустойчивый код позволяет использовать пропускную способность канала более эффективно, так как меньше времени тратится на повторную передачу испорченных пакетов.
- 3. При наиболее оптимальном варианте расположения модулей оперативной памяти уменьшается площадь поверхности и соответственно количество сбоев.

Негативные следствия и/или недостатки описанной в статье технологии (минимум три пункта)

- 1. Не вся оперативная память в компьютерах поддерживает корректирующие коды.
- 2. Уменьшение размеров компонентов ведёт к увеличению частоты сбоев.
- 3. При исправлении тройных ошибок декодер может принять их за одинарные и поменять на неверное значение.

Ваши замечания, пожелания преподавателю или анекдот о программистах