HOME CHAPTERS LOGIN

24. State Plane Coordinate System

Shown below in Figure 2.25.1 is the southwest corner of a 1:24,000-scale topographic map published by the United States Geological Survey (USGS). Note that the geographic coordinates (40 45' N latitude, 77° 52' 30" W longitude) of the corner are specified. Also shown, however, are ticks and labels representing two plane coordinate systems, the Universal Transverse Mercator (UTM) system and the State Plane Coordinate (SPC) system. The tick labeled "1 970 000 FEET" represents a SPC grid line that runs perpendicular to the equator and 1,970,000 feet east of the origin of the Pennsylvania North zone. The origin lies far to the west of this map sheet. Other SPC grid lines, called "northings" (not shown in the illustration), run parallel to the equator and perpendicular to SPC eastings at increments of 10,000 feet. Unlike longitude lines, SPC eastings and northings are straight and do not converge upon the Earth's poles.

The SPC grid is a widely-used type of geospatial plane coordinate system in which positions are specified as eastings (distances east of an origin) and northings (distances north of an origin). You can tell that the SPC grid referred to in the map illustrated above is the older 1927 version of the SPC grid system because (a) eastings and northings are specified in feet and (b) grids are based upon the North American Datum of 1927 (NAD27). The 124 zones that make up the State Plane Coordinates system of 1983 are based upon NAD 83, and generally use the metric system to specify eastings and northings.

and labels for three different coordinate systems, including the SPC

coordinate system.

Credit: USGS. "State College Quadrangle, Pennsylvania"

State Plane Coordinates are frequently used to georeference large scale (small area) surveying and mapping projects because plane coordinates are easier to use than latitudes and longitudes for calculating distances and areas. And because SPC zones extend over relatively smaller areas, less error accrues to

The Nature of Geographic Information

Chapters

- ► Chapter 1: Data and Information
- ▼ Chapter 2: Scales and

Transformations

- 1. Overview
- 2. Scale
- 3. Scale as Scope
- 4. Map and Photo Scale
- 5. Graphic Map Scales
- 6. Map Scale and Accuracy
- 7. Scale as a Verb
- 8. Geospatial Measurement Scales
- 9. Coordinate Systems
- 10. Geographic Coordinate System
- 11. Geographic Coordinate Formats
- 12. Horizontal Datums
- 13. Geoids
- 14. Ellipsoids
- 15. Control Points and Datum Shifts
- 16. Coordinate Transformations
- 17. Plane Coordinate Transformations

positions, distances, and areas calculated with State Plane Coordinates than with UTM coordinates.

In this section you will learn to:

- 1. describe the characteristics of the SPC system, including map projection on which it is based; and
- 2. convert geographic coordinates to SPC coordinates.
- < 23. National Grids
- up
- 25. The SPC Grid and Map Projections >

- 18. Datum
 Transformations
- 19. Map Projections
- 20. UTM Coordinate System
- 21. The UTM Grid and Transverse Mercator Projection
- 22. UTM Zone Characteristics
- 23. National Grids
- 24. State Plane Coordinate System
- 25. The SPC Grid and Map Projections
- 26. SPC Zone Characteristics
- 27. Map Projections
- 28. Geometric Properties Preserved and Distorted
- 29. Classifying Projection Methods
- 30. Summary
- 31. Bibliography
- Chapter 3: Census Data and Thematic Maps
- ► Chapter 4: TIGER, Topology and Geocoding
- Chapter 5: Land Surveying and GPS
- ► Chapter 6: National Spatial Data Infrastructure I
- Chapter 7: National Spatial Data Infrastructure II
- ► Chapter 8: Remotely Sensed Image Data
- ► Chapter 9: Integrating Geographic Data

Navigation

• login

Author: David DiBiase, Senior Lecturer, John A. Dutton e-Education Institute, and Director of Education, Industry Solutions, Esri. Instructors and contributors: Jim Sloan, Senior Lecturer, John A. Dutton e-Education Institute; Ryan Baxter, Senior Research Assistant, John A. Dutton e-Education Institute, Beth King, Senior Lecturer, John A. Dutton e-Education Institute and Assistant Program Manager for Online Geospatial Education, and Adrienne Goldsberry, Senior Lecturer, John A. Dutton e-Education Institute; College of Earth and Mineral Sciences, The Pennsylvania State University.

Penn State Professional Masters Degree in GIS: Winner of the 2009 Sloan Consortium award for Most Outstanding Online Program

This courseware module is offered as part of the Repository of Open and Affordable Materials at Penn State.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The College of Earth and Mineral Sciences is committed to making its websites accessible to all users, and welcomes comments or suggestions on access improvements. Please send comments or suggestions on accessibility to the site editor. The site editor may also be contacted with questions or comments about this Open Educational Resource.

Navigation

- Home
- News
- About
- Contact Us
- People
- Resources
- Services
- Login

EMS

- College of Earth and Mineral Sciences
- Department of Energy and Mineral Engineering
- Department of Geography
- Department of Geosciences
- Department of Materials Science and Engineering
- Department of Meteorology and Atmospheric Science
- Earth and Environmental Systems Institute
- Earth and Mineral Sciences Energy Institute

Programs

- Online Geospatial Education Programs
- iMPS in Renewable Energy and Sustainability Policy Program Office
- BA in Energy and Sustainability Policy Program Office

Related Links

- Penn State
 Digital
 Learning
 Cooperative
- CooperativePenn StateWorld Campus
- Web Learning
 @ Penn State

The John A. Dutton Institute for Teaching and Learning Excellence is the learning design unit of the College of Earth and Mineral Sciences at The Pennsylvania State University.

2217 Earth and Engineering Sciences Building, University Park, Pennsylvania, 16802

Privacy & Legal Statements | Copyright Information
The Pennsylvania State University © 2023