

EXAMEN DE FIN D'ÉTUDES SECONDAIRES **2018**

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE	
Mathématiques I	В	Durée de l'épreuve :	3 heures
		Date de l'épreuve :	17 septembre 2018

Question I (10+5 = 15 points)

- 1) Soit $P(z) = z^3 + a z^2 + b z + 15 15i$ avec a et b complexes.
- a) Déterminer a et b sachant que 3i est une racine de P(z) et que le reste de la division de P(z) par z + 1 est 10 10i.
- **b**) Résoudre ensuite P(z) = 0 en remplaçant a et b par les valeurs trouvées dans **a**).
- c) Dans le plan complexe rapporté à un repère orthonormé représenter les points A, B et C dont les affixes sont les solutions de l'équation P(z) = 0. Déterminer la nature du triangle ABC. Justifier la réponse.
- 2) Soient α et β des nombres réels. Dans le plan de Gauss, on donne les points A(-2-2i) et B(4). Soit h une homothétie de centre O et de rapport α et r une rotation de centre O et d'angle β . Déterminer toutes les possibilités pour α et β tels que $(r \circ h)(A) = B$.

Question II (5+5+5=15 points)

- 1) Dans un jeu de 32 cartes, on choisit au hasard une main de 13 cartes. Calculer la probabilité des événements suivants :
- a) A: obtenir une main comprenant exactement un as et 4 piques.
- **b**) B : obtenir une main comprenant 5 cartes d'une première couleur, 4 cartes d'une deuxième couleur, 3 cartes d'une troisième couleur et une carte de la couleur restante.
- 2) Soit *n* un entier naturel non nul.
- a) Démontrer que $C_{n-1}^{n-1} + C_{n-1}^{n-2} + \dots + C_{n-1}^1 + C_{n-1}^0 = 2^{n-1}$.
- **b**) Calculer $C_n^{n-1}+2C_n^{n-2}+3C_n^{n-3}+\cdots+(n-1)C_n^1+nC_n^0$. (On pourra utiliser **a**)).
- 3) Un joueur lance une paire de dés discernables bien équilibrés. Il gagne $3 \in s$ 'il obtient 2 chiffres pairs, il gagne $1 \in s$ 'il obtient 1 chiffre pair et il perd $5 \in s$ 'il n'obtient aucun chiffre pair. Il répète le lancer de la paire de dés deux fois. Soit X le gain du joueur.
- a) Déterminer la loi de probabilité de X.
- **b**) Calculer l'espérance mathématique de X pour conclure si ce jeu est équilibré, favorable ou défavorable au joueur.

Question III (4+11 = 15 points)

- 1) Identifier la courbe C d'équation $y = 2 \frac{3}{2}\sqrt{x+1}$ et tracer-la dans un repère orthonormé du plan (unité : 1 cm).
- 2) Soit Γ la conique d'équation cartésienne $9x^2 + 4y^2 36x + 8y + 4 = 0$ dans un repère orthonormé R.
- a) Déterminer sa nature, son équation cartésienne réduite, son centre, ses sommets, ses foyers et une équation cartésienne de ses directrices dans R.
- **b**) Déterminer une équation des tangentes à Γ passant par A(-1, -1).

Question IV (6+9 = 15 points)

1) Soit C la courbe définie par :
$$\begin{cases} x = \frac{2}{\cos t}, t \in \left] -\frac{\pi}{4}, \frac{5\pi}{6} \right[-\left\{ \frac{\pi}{2} \right\}. \end{cases}$$

Identifier C et représenter graphiquement C dans un repère orthonormé.

- 2) a) On considère un rectangle dont la largeur vaut les $\frac{2}{3}$ de sa longueur. Déterminer et analyser le lieu L_k des points dont la somme des carrés des distances aux quatre côtés de ce rectangle est une constante k donnée.
- **b**) Déterminer *k* pour que le lieu passe par les quatre sommets du rectangle. Quel est le lieu dans ce cas ?