Homework Due 10/12/17: (13 problems) Section 4.2 pages 177 - 178; 1, 2, 4, 5(a)(c)(e)(g)(i)(k), 9, 10, 17, 18 (for 5(i) define to be 1 over sm, and then show that 1 over sm goes to 0)

Corollary 4.2.5

If $\{\mathbf t_n\}$ converges to $\mathbf t$ and $\mathbf t_n\geq 0\ \forall\ \mathbf n\in\mathbb N$, then $\mathbf t\geq 0$

Example 4.2.6

If $\{t_n\}$ converges to t and $t_n \geq 0 \ \forall \ n \in \mathbb{N}$, then

$$\lim_{n \to \infty} \sqrt{t_n} = \sqrt{t}$$

Proof.

-Side Note-

For
$$\epsilon > 0$$
, $\exists N \in \mathbb{N}$ st $|\sqrt{t_n} - \sqrt{t}| < \epsilon \ \forall \ m \ge N$

Notice that $\lim_{n\to\infty} t_n = t$, $t \ge 0$ Case (i):

$$|\sqrt{t_n} - \sqrt{t}| = \frac{|(\sqrt{t_n} - \sqrt{t})(\sqrt{t_n} + \sqrt{t})|}{|\sqrt{t_n} + \sqrt{t}|}$$

$$= \frac{|t_n - t|}{\sqrt{t_n} + \sqrt{t}}$$

$$\leq \frac{|t_n - t|}{\sqrt{t}}$$

$$= (\frac{1}{\sqrt{t}})|t_n - t|$$

For $\epsilon > 0$, $\exists N \in \mathbb{N}$ st $|t_n - t| < \sqrt{t} \times \epsilon$, $\forall n \ge N$ (2)

Side Note

$$\sqrt{t} + \sqrt{t_n} \ge \sqrt{t}$$

$$\frac{1}{\sqrt{t} + \sqrt{t_n}} \le \frac{1}{\sqrt{t}}$$

$$\sqrt{t_n} \ge 0$$

$$\sqrt{t} > 0$$

So, $\sqrt{t_n} + \sqrt{t} > 0 \ \forall \ \mathbf{n} \in \mathbb{N}$

From (1) and (2),

$$|\sqrt{t_n} - \sqrt{t}| \leq \frac{|t_n - t|}{\sqrt{t}} < \frac{\sqrt{t} \times \epsilon}{\sqrt{t}} = \epsilon$$
, \forall n \geq N

Hence, result in this case.

Side Note

If $|\mathbf{s}_n - \mathbf{s}| \le \mathbf{k}|\mathbf{a}_n| \ \forall \ \mathbf{n} \ge \mathbf{N}$ and if

 $\lim_{n \to \infty} \mathbf{a}_n = 0,$ then $\lim_{n\to\infty} s_n = s$

Case (ii): t = 0Then, for $\epsilon > 0$, $\exists N \in \mathbb{N}$ st $t_n = |t_n - 0| < \epsilon^2, \forall n \ge N$ Thus, $\sqrt{t_n} < \epsilon$, \forall n \geq N In other words, $|\sqrt{t_n} - 0| < \epsilon, \forall n \ge N$ So, $\lim_{n \to \infty} \sqrt{t_n} = 0 = \sqrt{t}$ Hence, result.

Theorem 4.2.7 - "The Ratio Test"

Suppose that $\{s_n\}$ is a sequence of **positive** terms (i.e. $s_n > 0$, $\forall n \in \mathbb{N}$) and $\lim_{n \to \infty} \frac{s_{n+1}}{s_n} = L$. If L < 1, then $\lim_{n\to\infty} s_n = 0$

Proof.

For $\epsilon = \frac{1-L}{2} > 0$,

 $\left|\frac{s_{n+1}}{s_n} - \mathcal{L}\right| < \frac{1-L}{2}, \, \forall \, \, \mathbf{n} \geq \mathcal{N}$

 $\frac{s_{n+1}}{s_n} = |\frac{s_{n+1}}{s_n}| = |(\frac{s_{n+1}}{s_n} - \mathbf{L}) + \mathbf{L}| \le |\frac{s_{n+1}}{s_n} - \mathbf{L}| + |\mathbf{L}| < (\frac{1-L}{2}) + \mathbf{L} = \frac{1+L}{2} = \frac{1}{2} + \frac{L}{2} < \frac{1}{2} + \frac{1}{2} \text{ (which is 1)}$ Define c = $\frac{1+L}{2}$

 $\begin{array}{l} s_n \times \frac{s_{n+1}}{s_n} < \subset s_n, \ \forall \ n \geq N \ \text{where} \ c < 1 \\ So, \, s_{n+1} < \subset s_n, \ \forall \ n \geq N \end{array}$

Now

 $s_{N+1} < c^1 s_N$

 $s_{N+2} < cN_{N+1} < c^2 s_N$

 $s_{N+3} < cs_{N+2} < c^3 s_N$, etc.

So,

 $\mathbf{s}_{N+K} \le \mathbf{c}^k \mathbf{s}_N, \, \forall \, \mathbf{k} \in \mathbb{N} \cup \{0\}$

Thus,

 $\mathbf{s}_m \leq \mathbf{c}^{m-N} \mathbf{s}_N \; \forall \; \mathbf{m} \geq \mathbf{N}$

 $s_m \le c^m \frac{s_N}{c^N} \ \forall \ m \ge N$

N + k = m

k = m - N

2

$$|s_m - 0| = (\frac{s_N}{c^N})$$
 (1)

Side Note

Theorem 4.1.8

If $|\mathbf{s}_m - \mathbf{s}| \leq \mathbf{k}|\mathbf{a}_m|$ and

 $\lim_{m \to \infty} a_m = 0$

then $\lim s_m = s$

Also, recall HW 5 7(f): If |x| < 1, then $\lim_{n \to \infty} (x^n) = 0$

From (1), it follows by Example 7(f) pg 170 and Theorem 4.1.8, that $\lim_{n \to \infty} s_n = 0$

Example 5(g): $s_n = \frac{1-n}{2^n} = \frac{1}{2^n} - \frac{n}{2^n}$ (or, $v_n - u_n$) Suppose $u_n = \frac{n}{2^n} > 0 \ \forall \ n \in \mathbb{N}$,

$$\frac{t_{n+1}}{t_n} = \frac{n+1}{2^{n+1}} \times \frac{2^n}{n} = \frac{1}{2} \frac{n(1+\frac{1}{n}}{n} = \frac{1}{2} \frac{1+\frac{1}{n}}{1} = \frac{1+\frac{1}{n}}{2} = \frac{1}{2} + \frac{1}{2n}$$
 Which approaches $\frac{1}{2}$ as $n \longrightarrow \infty$

Definition 4.2.9

Infinite Limits:

A sequence $\{s_n\}$ is said to **diverge** to ∞ , written as $\lim_{n\to\infty} s_n = \infty$, provided that

 $\forall M \in \mathbb{R}, \exists N \in \mathbb{N} \text{ st}$

 $s_n > M, \forall n \geq N$

(i.e. $s_n = (-1)^n$

Similarly, $\{s_n\}$ diverges to $-\infty$, written as $\lim_{n\to\infty} s_n = -\infty$, if, provided that

for every $M \in \mathbb{R}$, $\exists N(M) \in \mathbb{N}$ st

 $s_n < M, \forall n \ge N$

Theorem 4.2.12

Suppose that $\{s_n\}$, $\{t_n\}$ are sequences st $s_n \leq t_n \ \forall \ n \in \mathbb{N}$

a. If
$$\lim_{n\to\infty} s_n = \infty$$
, then $\lim_{n\to\infty} t_n = \infty$

b. If
$$\lim_{n\to\infty} s_n = -\infty$$
, then $\lim_{n\to\infty} t_n = -\infty$

On the homework, the proof, using the definition, about "one comment away" from being done.

Theorem 4.2.13

Let: $\{s_n\}$ be a sequence of **positive** numbers

Then
$$\lim_{n\to\infty} s_n = \infty$$

iff $\lim_{n\to\infty} \frac{1}{s_n} = 0$
Proof:

Suppose that $\lim_{n\to\infty} s_n = \infty$

Want to show: $\lim_{n\to\infty} \frac{1}{s_n} = 0$

Side Note

 $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st}$

$$\left| \frac{1}{s_n} - 0 \right| = \frac{1}{s_n} < \epsilon$$

 $\begin{aligned} |\frac{1}{s_n} - 0| &= \frac{1}{s_n} < \epsilon \\ \text{(which implies that } \mathbf{s}_n > \frac{1}{\epsilon}) \end{aligned}$

$\forall \ n \geq N$

 $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ st}$ $s_n > \frac{1}{\epsilon}, \forall n \geq N$ Hence, $\begin{aligned} &|\frac{1}{s_n} - 0| = \frac{1}{s_n} < \epsilon \text{ , } \forall \text{ n} \ge \mathbf{N} \\ &\text{Which shows that } \lim_{n \to \infty} \frac{1}{s_n} = 0 \end{aligned}$

Conversely, assume that $\lim_{n\to\infty}\frac{1}{s_n}=0$ Want to show: $\lim_{n\to\infty}\mathbf{s}_n=\infty$

-Side Note-

For $M\in\mathbb{R}$, $\exists\ N\in\mathbb{N}$ st

 $\begin{array}{l} \frac{1}{s_n} < \frac{1}{M} \\ \mathbf{s}_n > \mathbf{M} \end{array}$

 $\forall \ n \geq N$

Let: $M \in \mathbb{R} , M > 0$ Then $\exists N(M) \in \mathbb{N}$ st $\begin{array}{l} \frac{1}{s_n} = |\frac{1}{s_n} - 0| < \frac{1}{M} \ \forall \ n \geq N \\ \text{Hence, s}_n > M, \forall \ n \geq N. \end{array}$

Hence, result.