实现思路

笔记本: 我的第一个笔记本

创建时间: 2023/10/24 18:18 **更新时间**: 2023/10/24 21:19

作者: 3446994995@qq.com

实现思路

1. 读取数据,数据是'.csv'文件,用使用pd. read_csv("H:\\data\\train_data .csv") 用来读取数据,然后查看数据情况

```
sample_id feature0 feature1 ... feature105 feature106 label
            0 51.567250 288358.4 ... -5.256075 180.977310
            1 63.804874 288358.4 ... 16.505952 314.783263
            2 49.138527 288358.4 ... 64.707581 183.304610
                    NaN 288358.4 ... -9.662399 212.302670
           4 76.520831 288358.4 ... 59.733069 135.541233
9995
         9995 66.948837 288358.4 ... -1.625234
                                                       NaN
9996
         9996
                    NaN 288358.4 ... 11.018358 250.312228
9997
         9997 42.208350 288358.4 ... 75.537477 241.702576
         9998 26.797447 288358.4 ... -10.481948 113.104089
9998
9999
         9999 63.908598 288358.4 ... -3.776887 101.844761
[10000 rows x 109 columns]
```

- 2. 对数据进行归一化处理
- 3.用train_data.iloc[:, 2:-1] and train_data.iloc[:, -1] 两行代码对数据进行划分,划分出特征和标签
- 4. 对缺失数据进行补充, 我分别采用了0补充、均值补充、向前补充、向后补充
- 5. 随后调用模型,进行训练。这里我用了Tree模型、KNN模型、NN模型、逻辑回归模型,最后还是Tree模型效果最好。

Train:Classification Report for Decision Tree:					
	precision	recall	f1-score	support	
0	1.00	1.00	1.00	5144	
1	1.00	1.00	1.00	1062	
2	1.00	1.00	1.00	1613	
3	1.00	1.00	1.00	884	
4	1.00	1.00	1.00	554	
5	1.00	1.00	1.00	743	
accuracy			1.00	10000	
macro avg	1.00	1.00	1.00	10000	
weighted avg	1.00	1.00	1.00	10000	
Test:Classification Report for Decision Tree:					
Test.Classifi					
	precision	recall	f1-score	support	
•	0.00	0.0/	0.07	45/	
0	0.28	0.26	0.27	176	
1	0.51	0.43	0.47	166	
2	0.29	0.28	0.29	171	
3	0.97	0.92	0.95	169	
4	0.72	0.98	0.83	156	
5	0.94	0.93	0.93	162	
accuracy			0.62	1000	
macro avg	0.62	0.63	0.62	1000	
weighted avg	0.61	0.62	0.61	1000	