| a)
$$\int 3x^2 + kx + 7 dx$$
 B| $y = x^3 + \frac{1}{2}kx^2 + 7x + C$ MA3 (inc $y = ...$)

 $-9 = -1 + \frac{1}{2}k - 7 + C$ ETHER H MI

Sowly THE EPVATIONS MI

 $k = -10$ $c = 4$ az $y = 2x^2 - 5x^2 + 7x + 4$ AI AI

2. a) ATTMPT AT GRADINGT
$$\frac{8-0}{10-6}$$
 MI
 $y = 2(x-c)$ or $y-8 = 2(x-10)$ MI
 $y = 2x-12$ c.a.o AI
 $y = 2x-12$ c.a.o AI

3.
$$\frac{3}{2} + \frac{9 - \sqrt{17} + 9 + \sqrt{17}}{4} = \frac{3}{2} + \frac{18}{4}$$
 MI
ANSWER = 6 AI
 $81 - 17$ BI
 $\frac{3}{2} \times \frac{64}{16}$ MI
CONVINGLY OBTIONS 6 AI

4. a)
$$10^{2x}$$
 or y^{2} B(
$$\frac{1}{10} \times 10^{2} \text{ or } \frac{1}{10}y + 100 = 0 \text{ or } y^{2} - \frac{10001}{10}y + 100 = 0 \text{ MA}$$

Give $6y^{2} - 10001y + 1000 = 0$ At Atomobert on this MI)

b) $(10y-1)(y-100)$ MI

$$y = \sqrt{\frac{1}{10}} \text{ Poth AI}$$
 $x = -1$
 $x = 3$

At A

5 a) VARTICAL STRETCH OR IPPLIENTAL STRETCH AT SCHOOL AT SCHOOL AND SCHOOL AN

BI

RENAUZE ANY OF THESE

ASYMPTOTIS 2=0 OR Y AXU BI

6. a)
$$1+\phi=1+P+10$$
 MI BOTH LHS & RHX OF ETHER EQUATION

(OR $4+q=4P+20$) MI APPEARANGE +S AN EQUATION

 $d=P+10$ MAI BOTH EQUATIONS

 $d=4P+22$) MAI SOUTHON

 $P=-+$ At $d=6$ AI

 $d=6$ AI

7.
$$u_{n+1} = 2 + 4(n+1)$$
 BI
 $u_{n+1} = 2 \times 2 + 4n + 4$ MI
 $u_{n+1} = 2u_n - 4n + 4 + 4$ MI
 $u_{n+1} = 2u_n - 4n + 4$ AI
 $u_1 = 6$ Must Appeal BI

8.
$$(V=)$$
 $p^2-2pqt+q^2+2$ BI
 $(\frac{dV}{dt}=)$ $\frac{-2pq}{2pq}+2q^2t$ MI MI
 $(P-q)^2=q$ or $q=p^2-2pq+q^2$ MI
 $P-q=\pm 3$ AI
 $(P-q)^2=q$ MI
 $(P-q)^2=q$ MI
 $(P-q)^2=q$ MI

AT LEAST ONE OF THEM

MI STRUCTURE

Al Au Werto

SOWH FOR M

MI

41

MI STENCTURE

CONVINCINGLY & COLLEGRY APRILLS AT

THE ANSWER THEN 25 + 1250 MAI

 $|0\rangle = 2.5 = 4 - \frac{1}{4}(x-4)^2$

MI

 $(2-4)^2 = 6$ or $2^2 - 82 - 10$ My

2-4=±6 OR COMPLETER SPUREL AGAIN! OR QUADRATIC PARMULA

M

4 ± 16 Al

2 N6 C.9.0 (ACCEPT NZ4) A1