# LEBESGUE OLCUMU VE INTEGRAL KURAMI

Prof. Dr. Bilal ÇEKİÇ

Uzaktan Eğitim

23-27 Mart 2021

 $E \subset \mathbb{R}$  bir ölçülebilir küme olmak üzere  $f: E \to \mathbb{R}$  fonksiyonu verilsin.  $\forall \alpha \in \mathbb{R}$  için  $f^{-1}((\alpha, \infty)) = \{x \in E: f(x) > \alpha\}$  kümesi ölçülebilir ise f fonksiyonuna E üzerinde Lebesgue ölçülebilir fonksiyon ya da kısaca E üzerinde ölcülebilir fonksiyon denir.

 $E \subset \mathbb{R}$  bir ölçülebilir küme olmak üzere  $f: E \to \mathbb{R}$  fonksiyonu verilsin.  $\forall \alpha \in \mathbb{R}$  için  $f^{-1}((\alpha, \infty)) = \{x \in E: f(x) > \alpha\}$  kümesi ölçülebilir ise f fonksiyonuna E üzerinde Lebesgue ölçülebilir fonksiyon ya da kısaca E üzerinde ölçülebilir fonksiyon denir.

# Teorem (1)

(a) 
$$\forall \alpha \in \mathbb{R}$$
 için  $A_{\alpha} = f^{-1}((\alpha, \infty)) = \{x \in E : f(x) > \alpha\} \in \mathcal{M}$ 

 $E \subset \mathbb{R}$  bir ölçülebilir küme olmak üzere  $f: E \to \mathbb{R}$  fonksiyonu verilsin.  $\forall \alpha \in \mathbb{R}$  için  $f^{-1}((\alpha, \infty)) = \{x \in E: f(x) > \alpha\}$  kümesi ölçülebilir ise f fonksiyonuna E üzerinde Lebesgue ölçülebilir fonksiyon ya da kısaca E üzerinde ölçülebilir fonksiyon denir.

# Teorem (1)

- (a)  $\forall \alpha \in \mathbb{R} \text{ için } A_{\alpha} = f^{-1}\left((\alpha, \infty)\right) = \{x \in E : f(x) > \alpha\} \in \mathcal{M}$
- (b)  $\forall \alpha \in \mathbb{R} \text{ için } B_{\alpha} = f^{-1}\left((-\infty, \alpha]\right) = \{x \in E : f(x) \leq \alpha\} \in \mathcal{M}$

 $E \subset \mathbb{R}$  bir ölçülebilir küme olmak üzere  $f: E \to \mathbb{R}$  fonksiyonu verilsin.  $\forall \alpha \in \mathbb{R}$  için  $f^{-1}((\alpha, \infty)) = \{x \in E: f(x) > \alpha\}$  kümesi ölçülebilir ise f fonksiyonuna E üzerinde Lebesgue ölçülebilir fonksiyon ya da kısaca E üzerinde ölçülebilir fonksiyon denir.

## Teorem (1)

- (a)  $\forall \alpha \in \mathbb{R} \text{ için } A_{\alpha} = f^{-1}\left((\alpha, \infty)\right) = \{x \in E : f(x) > \alpha\} \in \mathcal{M}$
- (b)  $\forall \alpha \in \mathbb{R} \text{ için } B_{\alpha} = f^{-1}\left((-\infty, \alpha]\right) = \{x \in E : f(x) \leq \alpha\} \in \mathcal{M}$
- (c)  $\forall \alpha \in \mathbb{R}$  için  $C_{\alpha} = f^{-1}([\alpha, \infty)) = \{x \in E : f(x) \ge \alpha\} \in \mathcal{M}$

 $E \subset \mathbb{R}$  bir ölçülebilir küme olmak üzere  $f: E \to \mathbb{R}$  fonksiyonu verilsin.  $\forall \alpha \in \mathbb{R}$  için  $f^{-1}((\alpha, \infty)) = \{x \in E: f(x) > \alpha\}$  kümesi ölçülebilir ise f fonksiyonuna E üzerinde Lebesgue ölçülebilir fonksiyon ya da kısaca E üzerinde ölçülebilir fonksiyon denir.

# Teorem (1)

- (a)  $\forall \alpha \in \mathbb{R} \text{ için } A_{\alpha} = f^{-1}\left((\alpha, \infty)\right) = \{x \in E : f(x) > \alpha\} \in \mathcal{M}$
- (b)  $\forall \alpha \in \mathbb{R} \text{ için } B_{\alpha} = f^{-1}\left((-\infty, \alpha]\right) = \{x \in E : f(x) \leq \alpha\} \in \mathcal{M}$
- (c)  $\forall \alpha \in \mathbb{R} \text{ için } C_{\alpha} = f^{-1}([\alpha, \infty)) = \{x \in E : f(x) \geq \alpha\} \in \mathcal{M}$
- (d)  $\forall \alpha \in \mathbb{R}$  için  $D_{\alpha} = f^{-1}((-\infty, \alpha)) = \{x \in E : f(x) < \alpha\} \in \mathcal{M}$

### İspat:

 $A_{\alpha}$  kümesi  $B_{\alpha}$  kümesinin tümleyeni olduğundan biri ölçülebilir ise diğeri de ölçülebilirdir. Dolayısıyla (a) ve (b) seçenekleri denktir. Benzer şekilde (c) ve (d) seçenekleri de denktir. Bu yüzden  $(a) \Leftrightarrow (c)$  olduğunu göstermek yeterlidir.

### İspat:

 $A_{\alpha}$  kümesi  $B_{\alpha}$  kümesinin tümleyeni olduğundan biri ölçülebilir ise diğeri de ölçülebilirdir. Dolayısıyla (a) ve (b) seçenekleri denktir. Benzer şekilde (c) ve (d) seçenekleri de denktir. Bu yüzden  $(a) \Leftrightarrow (c)$  olduğunu göstermek yeterlidir.

$$(a) \Rightarrow (c)$$

 $orall lpha \in \mathbb{R}$  için  $A_lpha \in \mathcal{M}$  olsun. Bu durumda herhangi  $n \in \mathbb{N}$  için  $A_{\alpha-\frac{1}{n}} = \left\{x \in E : f(x) > \alpha - \frac{1}{n} \right\} \in \mathcal{M}$  olur.

$$\bigcap_{n=1}^{\infty} A_{\alpha - \frac{1}{n}} = \bigcap_{n=1}^{\infty} f^{-1} \left( \left( \alpha - \frac{1}{n}, \infty \right) \right)$$

$$= f^{-1} \left( \bigcap_{n=1}^{\infty} \left( \alpha - \frac{1}{n}, \infty \right) \right)$$

$$= f^{-1} \left( [\alpha, \infty) \right)$$

$$= C_{\alpha}$$

olduğundan  $C_{\alpha} \in \mathcal{M}$  elde edilir.

### İspatın Devamı:

$$(c) \Rightarrow (a)$$

 $\forall \alpha \in \mathbb{R}$  için  $C_{\alpha} \in \mathcal{M}$  olsun. Bu durumda herhangi  $n \in \mathbb{N}$  için  $C_{\alpha+\frac{1}{n}} = \left\{x \in E : f(x) \geq \alpha + \frac{1}{n}\right\} \in \mathcal{M}$  olur.

$$C_{\alpha+\frac{1}{n}} = \bigcup_{n=1}^{\infty} f^{-1} \left( \left[ \alpha + \frac{1}{n}, \infty \right) \right)$$

$$= f^{-1} \left( \bigcup_{n=1}^{\infty} \left[ \alpha + \frac{1}{n}, \infty \right) \right)$$

$$= f^{-1} \left( \left( \alpha + \frac{1}{n}, \infty \right) \right)$$

$$= A_{\alpha}$$

olduğundan  $A_{\alpha} \in \mathcal{M}$  elde edilir.

# Örnek

Bir ölçülebilir küme üzerinde tanımlı herhangi bir sabit fonksiyon ölçülebilirdir.

### Örnek

Bir ölçülebilir küme üzerinde tanımlı herhangi bir sabit fonksiyon ölçülebilirdir.

# Çözüm

 $E \in \mathcal{M}$  olmak üzere  $f : E \to \mathbb{R}$  foksiyonu c bir sabit olmak üzere f(x) = c olarak tanımlansın.

$$\alpha \geq c \text{ ise } f^{-1}((\alpha, \infty)) = \{x \in E : f(x) > \alpha\} = \emptyset \in \mathcal{M}$$
  
 $\alpha < c \text{ ise } f^{-1}((\alpha, \infty)) = \{x \in E : f(x) > \alpha\} = E \in \mathcal{M}$ 

olduğundan f fonksiyonu bir ölçülebilir fonksiyondur.

 $E\subset\mathbb{R}$  için

$$\chi_E(x) = \left\{ \begin{array}{ll} 1 & ; & x \in E \\ 0 & ; & x \notin E \end{array} \right.$$

şeklinde tanımlanan  $\chi_E$  fonksiyonuna E kümesinin karekteristik fonksiyonu veya E kümesinin belirteç fonksiyonu denir.

 $E \subset \mathbb{R}$  için

$$\chi_E(x) = \left\{ \begin{array}{ll} 1 & ; & x \in E \\ 0 & ; & x \notin E \end{array} \right.$$

şeklinde tanımlanan  $\chi_E$  fonksiyonuna E kümesinin karekteristik fonksiyonu veya E kümesinin belirteç fonksiyonu denir.

### Örnek

 $E \in \mathcal{M}$  ise  $\chi_E$  fonksiyonu ölçülebilirdir. Aksi durumda ölçülebilir değildir.

 $E \subset \mathbb{R}$  için

$$\chi_E(x) = \left\{ \begin{array}{ll} 1 & ; & x \in E \\ 0 & ; & x \notin E \end{array} \right.$$

şeklinde tanımlanan  $\chi_E$  fonksiyonuna E kümesinin karekteristik fonksiyonu veya E kümesinin belirteç fonksiyonu denir.

### Örnek

 $E \in \mathcal{M}$  ise  $\chi_E$  fonksiyonu ölçülebilirdir. Aksi durumda ölçülebilir değildir.

### Cözüm

$$f^{-1}\left((lpha,\infty)
ight) = \left\{ egin{array}{ll} \mathbb{R} & ; & lpha < 0 \ E & ; & 0 \leq lpha < 1 \ arnothing & ; & lpha \geq 1 \end{array} 
ight.$$

olduğundan istenen elde edilir.

### Örnek

$$f: \mathbb{R} \to \mathbb{R} \text{ fonksiyonu } f(x) = \left\{ \begin{array}{ccc} x^2 & ; & x < 1 \\ 2 & ; & x = 1 \\ 2 - x & ; & x > 1 \end{array} \right.$$
 fonksiyonunun ölçülebilir olduğunu gösteriniz.

### Örnek

$$f: \mathbb{R} \to \mathbb{R} \text{ fonksiyonu } f(x) = \left\{ \begin{array}{ccc} x^2 & ; & x < 1 \\ 2 & ; & x = 1 \\ 2 - x & ; & x > 1 \end{array} \right.$$

fonksiyonunun ölçülebilir olduğunu gösteriniz.

### Çözüm

$$f^{-1}\left((\alpha,\infty)\right) = \left\{ \begin{array}{ll} \left(-\infty,2-\alpha\right) & ; & \alpha<0 \\ \left(-\infty,-\sqrt{\alpha}\right) \cup \left(\sqrt{\alpha},2-\alpha\right) & ; & 0\leq\alpha<1 \\ \left(-\infty,-\sqrt{\alpha}\right) \cup \left\{1\right\} & ; & 1\leq\alpha<2 \\ \left(-\infty,-\sqrt{\alpha}\right) & ; & 2\leq\alpha \end{array} \right.$$

 $\forall \alpha \in \mathbb{R}$  için  $f^{-1}((\alpha, \infty)) \in \mathcal{M}$  olduğundan f fonksiyonu ölçülebilirdir.

#### Teorem

 $E \subset \mathbb{R}$  bir ölçülebilir küme olmak üzere  $f: E \to \mathbb{R}$  fonksiyonu verilsin. f fonksiyonunun ölçülebilir olması için gerek ve yeter koşul  $\mathbb{R}$  de her bir G açık kümesi için  $f^{-1}(G)$  ters görüntüsünün ölçülebilir küme olmasıdır.

#### Teorem

 $E \subset \mathbb{R}$  bir ölçülebilir küme olmak üzere  $f: E \to \mathbb{R}$  fonksiyonu verilsin. f fonksiyonunun ölçülebilir olması için gerek ve yeter koşul  $\mathbb{R}$  de her bir G açık kümesi için  $f^{-1}(G)$  ters görüntüsünün ölçülebilir küme olmasıdır.

### İspat:

 $\Rightarrow$  f fonksiyonunun ölçülebilir olduğunu kabul edelim. G,  $\mathbb{R}$  de herhangi bir açık küme olsun. Bu durumda g kümesi ayrık açık aralıkların sayılabilir birleşimi olarak yazılabilir.  $I_n = (a_n, b_n)$  olmak üzere

$$G = \bigcup_{n=1}^{\infty} I_n$$

olsun.

### İspatın Devamı:

#### Bu durumda

$$f^{-1}(G) = \bigcup_{\substack{n=1 \\ \infty}}^{\infty} \{x \in E : f(x) \in I_n\}$$
  
= 
$$\bigcup_{n=1}^{\infty} [\{x \in E : f(x) > a_n\} \cap \{x \in E : f(x) < b_n\}]$$

elde edilir. f nin ölçülebilir olması  $f^{-1}\left(G\right)$  kümesinin ölçülebilir olmasını gerektirir.

 $\Leftarrow$ :  $\mathbb{R}$  de herhngi bir G açık kümesi için  $f^{-1}(G)$  kümesi ölçülebilir olsun.  $\alpha$  keyfi bir reel sayı olmak üzere  $G = (\alpha, \infty)$  olarak alalım.

$$f^{-1}(G) = \{x \in E : f(x) > \alpha\}$$

olduğundan f bir ölçülebilir fonksiyondur.



### <u>Teorem</u>

 $E \subset \mathbb{R}$  bir ölçülebilir küme olmak üzere  $f: E \to \mathbb{R}$  fonksiyonu verilsin. f fonksiyonu E üzerinde sürekli ise f fonksiyonu E üzerinde ölçülebilirdir.

#### Teorem

 $E \subset \mathbb{R}$  bir ölçülebilir küme olmak üzere  $f: E \to \mathbb{R}$  fonksiyonu verilsin. f fonksiyonu E üzerinde sürekli ise f fonksiyonu E üzerinde ölçülebilirdir.

## İspat:

f fonksiyonu E üzerinde sürekli olsun. Bu durumda her  $lpha \in \mathbb{R}$  için

$$\{x \in E : f(x) > \alpha\} = f^{-1}\left((\alpha, \infty)\right)$$

kümesi  $\mathbb R$  de bir açık kümedir. Her açık küme ölçülebilir olduğundan f fonksiyonu ölçülebilirdir.

#### Teorem

 $E \subset \mathbb{R}$  bir ölçülebilir küme olmak üzere  $f: E \to \mathbb{R}$  fonksiyonu verilsin. f fonksiyonu E üzerinde sürekli ise f fonksiyonu E üzerinde ölçülebilirdir.

## İspat:

f fonksiyonu E üzerinde sürekli olsun. Bu durumda her  $lpha \in \mathbb{R}$  için

$$\{x \in E : f(x) > \alpha\} = f^{-1}\left((\alpha, \infty)\right)$$

kümesi  $\mathbb R$  de bir açık kümedir. Her açık küme ölçülebilir olduğundan f fonksiyonu ölçülebilirdir.

Uyarı: Teoremin tersi doğru değildir.

Bir P önermesi bir E kümesinde doğru olmadığı noktalar kümesinin ölçüsü sıfır ise P önermesi E üzerinde hemen hemen her yerde (h.h.h.y.) doğrudur denir.

Bir P önermesi bir E kümesinde doğru olmadığı noktalar kümesinin ölçüsü sıfır ise P önermesi E üzerinde hemen hemen her yerde (h.h.h.y.) doğrudur denir.

### Örnek

Bir E kümesi üzerinde tanımlı bir f fonksiyonunun süreksizlik noktalarının kümesi sıfır ölçülü ise f fonksiyonu E kümesi üzerinde h.h.h.y. süreklidir denir.

Bir P önermesi bir E kümesinde doğru olmadığı noktalar kümesinin ölçüsü sıfır ise P önermesi E üzerinde hemen hemen her yerde (h.h.h.y.) doğrudur denir.

## Örnek

Bir E kümesi üzerinde tanımlı bir f fonksiyonunun süreksizlik noktalarının kümesi sıfır ölçülü ise f fonksiyonu E kümesi üzerinde h.h.h.y. süreklidir denir.

### Örnek

f ve g fonksiyonları ölçüsü sıfır olan küme dışında eşit ise bu iki fonksiyon h.h.h.y. eşittir denir.

Bir P önermesi bir E kümesinde doğru olmadığı noktalar kümesinin ölçüsü sıfır ise P önermesi E üzerinde hemen hemen her yerde (h.h.h.y.) doğrudur denir.

## Örnek

Bir E kümesi üzerinde tanımlı bir f fonksiyonunun süreksizlik noktalarının kümesi sıfır ölçülü ise f fonksiyonu E kümesi üzerinde h.h.h.y. süreklidir denir.

## Örnek

f ve g fonksiyonları ölçüsü sıfır olan küme dışında eşit ise bu iki fonksiyon h.h.h.y. eşittir denir.

### Örnek

 $\mathbb{R}$  de tanımlı  $f(x) = \begin{cases} 1 & ; & x \in \mathbb{Q} \\ 0 & ; & x \in \mathbb{R} - \mathbb{Q} \end{cases}$  ile tanımlı f fonksiyonu verilsin. Bu durumda h.h.h.y. f(x) = 0 dır.

#### Teorem

Ölçülebilir bir E kümesi üzerinde tanımlı f ve g fonksiyonları h.h.h.y. eşit ve f fonksiyonu E kümesi üzerinde ölçülebilir ise bu durumda g fonksiyonu da E kümesi üzerinde ölçülebilirdir.

#### Teorem

Ölçülebilir bir E kümesi üzerinde tanımlı f ve g fonksiyonları h.h.h.y. eşit ve f fonksiyonu E kümesi üzerinde ölçülebilir ise bu durumda g fonksiyonu da E kümesi üzerinde ölçülebilirdir.

# İspat:

 $E_1=\{x\in E: f(x)=g(x)\}$  ve  $E_2=\{x\in E: f(x)\neq g(x)\}$  olsun. Bu durumda  $E=E_1\cup E_2$  ve  $m(E_2)=0$  dır.  $\alpha$  herhangi bir reel sayı olsun.

$$A = \{x \in E : f(x) > \alpha\}$$

kümesini ele alalım.  $A\cap E_2\subset E_2$  olduğundan  $m\left(A\cap E_2\right)=0$  dır. Ayrıca

$$A \cap E_1 = \{x \in E : g(x) > \alpha\} \cap E_1$$

olduğundan  $A \cap E_1$  ölçülebilirdir.  $A = (A \cap E_1) \cup (A \cap E_2) \in \mathcal{M}$  olduğundan f ölçülebilirdir.

- (ロ) (部) (注) (注) 注 り(

### Sonuç

Ölçülebilir bir E kümesi üzerinde tanımlı f fonksiyonu E kümesi üzerinde h.h.h.y. sürekli ise bu durumda f fonksiyonu E üzerinde ölçülebilirdir.

# Sonuç

Ölçülebilir bir E kümesi üzerinde tanımlı f fonksiyonu E kümesi üzerinde h.h.h.y. sürekli ise bu durumda f fonksiyonu E üzerinde ölçülebilirdir.

# İspat:

f fonksiyonunun süreksiz olduğu noktalar kümesi  $E_1$  olsun. f fonksiyonu E kümesi üzerinde h.h.h.y. sürekli ise  $m(E_1)=0$  dır.  $\alpha$  herhangi bir reel sayı olsun.

$$A = \{x \in E : f(x) > \alpha\}$$

kümesini ele alalım.  $A\cap E_1\subset E_1$  olduğundan  $m\left(A\cap E_1\right)=0$  dır. f fonksiyonu  $E-E_1$  üzerinde sürekli olduğundan

$$A - E_1 = \{x \in E : f(x) > \alpha\} - E_1$$
  
=  $\{x \in E - E_1 : f(x) > \alpha\}$ 

kümesi ölçülebilirdir.  $A=(A\cap E_1)\cup (A-E_1)\in \mathcal{M}$  olduğundan f ölçülebilirdir.

# Sonuç

Ölçülebilir bir E kümesi üzerinde tanımlı f fonksiyonu E kümesi üzerinde h.h.h.y. sürekli ise bu durumda f fonksiyonu E üzerinde ölçülebilirdir.

# İspat:

f fonksiyonunun süreksiz olduğu noktalar kümesi  $E_1$  olsun. f fonksiyonu E kümesi üzerinde h.h.h.y. sürekli ise  $m(E_1)=0$  dır.  $\alpha$  herhangi bir reel sayı olsun.

$$A = \{x \in E : f(x) > \alpha\}$$

kümesini ele alalım.  $A\cap E_1\subset E_1$  olduğundan  $m\left(A\cap E_1\right)=0$  dır. f fonksiyonu  $E-E_1$  üzerinde sürekli olduğundan

$$A - E_1 = \{x \in E : f(x) > \alpha\} - E_1$$
  
=  $\{x \in E - E_1 : f(x) > \alpha\}$ 

kümesi ölçülebilirdir.  $A=(A\cap E_1)\cup (A-E_1)\in \mathcal{M}$  olduğundan f ölçülebilirdir.

#### **Tanım**

 $E \subset \mathbb{R}$  bir ölçülebilir küme olmak üzere  $f: E \to \overline{\mathbb{R}}$  fonksiyonu verilsin.  $\forall \alpha \in \mathbb{R}$  için  $f^{-1}((\alpha, \infty]) = \{x \in E : f(x) > \alpha\}$  kümesi ölçülebilir ise f fonksiyonuna E üzerinde ölçülebilir fonksiyon denir.

### **Tanım**

 $E\subset\mathbb{R}$  bir ölçülebilir küme olmak üzere  $f:E\to\overline{\mathbb{R}}$  fonksiyonu verilsin.  $\forall \alpha\in\mathbb{R}$  için  $f^{-1}\left((\alpha,\infty]\right)=\{x\in E:f(x)>\alpha\}$  kümesi ölçülebilir ise f fonksiyonuna E üzerinde ölçülebilir fonksiyon denir.

### Teorem

(a) 
$$\forall \alpha \in \mathbb{R}$$
 için  $A_{\alpha} = f^{-1}((\alpha, \infty]) = \{x \in E : f(x) > \alpha\} \in \mathcal{M}$ 

### Tanım

 $E\subset\mathbb{R}$  bir ölçülebilir küme olmak üzere  $f:E\to\overline{\mathbb{R}}$  fonksiyonu verilsin.  $\forall \alpha\in\mathbb{R}$  için  $f^{-1}\left((\alpha,\infty]\right)=\{x\in E:f(x)>\alpha\}$  kümesi ölçülebilir ise f fonksiyonuna E üzerinde ölçülebilir fonksiyon denir.

### Teorem

- (a)  $\forall \alpha \in \mathbb{R} \text{ için } A_{\alpha} = f^{-1}\left((\alpha, \infty]\right) = \{x \in E : f(x) > \alpha\} \in \mathcal{M}$
- (b)  $\forall \alpha \in \mathbb{R} \text{ için } B_{\alpha} = f^{-1}\left([-\infty, \alpha]\right) = \{x \in E : f(x) \leq \alpha\} \in \mathcal{M}$

#### Tanım

 $E\subset\mathbb{R}$  bir ölçülebilir küme olmak üzere  $f:E\to\overline{\mathbb{R}}$  fonksiyonu verilsin.  $\forall \alpha\in\mathbb{R}$  için  $f^{-1}\left((\alpha,\infty]\right)=\{x\in E:f(x)>\alpha\}$  kümesi ölçülebilir ise f fonksiyonuna E üzerinde ölçülebilir fonksiyon denir.

### Teorem

- (a)  $\forall \alpha \in \mathbb{R} \text{ için } A_{\alpha} = f^{-1}\left((\alpha, \infty]\right) = \{x \in E : f(x) > \alpha\} \in \mathcal{M}$
- (b)  $\forall \alpha \in \mathbb{R} \text{ için } B_{\alpha} = f^{-1}([-\infty, \alpha]) = \{x \in E : f(x) \leq \alpha\} \in \mathcal{M}$
- (c)  $\forall \alpha \in \mathbb{R}$  için  $C_{\alpha} = f^{-1}([\alpha, \infty]) = \{x \in E : f(x) \ge \alpha\} \in \mathcal{M}$

Ölçülebilir fonksiyonların tanımı benzer olarak genişletilmiş reel değerli fonksiyonlar için de verilebilir.

### Tanım

 $E\subset\mathbb{R}$  bir ölçülebilir küme olmak üzere  $f:E\to\overline{\mathbb{R}}$  fonksiyonu verilsin.  $\forall \alpha\in\mathbb{R}$  için  $f^{-1}\left((\alpha,\infty]\right)=\{x\in E:f(x)>\alpha\}$  kümesi ölçülebilir ise f fonksiyonuna E üzerinde ölçülebilir fonksiyon denir.

### Teorem

 $E \subset \mathbb{R}$  bir ölçülebilir küme olmak üzere  $f: E \to \overline{\mathbb{R}}$  fonksiyonu için aşağıdaki ifadeler denktir.

- (a)  $\forall \alpha \in \mathbb{R} \text{ için } A_{\alpha} = f^{-1}\left((\alpha, \infty]\right) = \{x \in E : f(x) > \alpha\} \in \mathcal{M}$
- (b)  $\forall \alpha \in \mathbb{R} \text{ için } B_{\alpha} = f^{-1}([-\infty, \alpha]) = \{x \in E : f(x) \leq \alpha\} \in \mathcal{M}$
- (c)  $\forall \alpha \in \mathbb{R} \text{ için } C_{\alpha} = f^{-1}([\alpha, \infty]) = \{x \in E : f(x) \ge \alpha\} \in \mathcal{M}$
- (d)  $\forall \alpha \in \mathbb{R}$  için  $D_{\alpha} = f^{-1}([-\infty, \alpha)) = \{x \in E : f(x) < \alpha\} \in \mathcal{M}$

 $E \subset \mathbb{R}$  bir ölçülebilir küme olmak üzere  $f: E \to \overline{\mathbb{R}}$  fonksiyonu verilsin. f fonksiyonunun ölçülebilir olması için gerek ve yeter koşul

$$E_1 = \{x \in E : f(x) = \infty\}, E_2 = \{x \in E : f(x) = -\infty\}$$

kümelerinin ölçülebilir ve

$$f_1(x) = \begin{cases} f(x) & ; & x \notin E_1 \cup E_2 \\ 0 & ; & x \in E_1 \cup E_2 \end{cases}$$

şeklinde tanımlı reel değerli f1 fonksiyonunun ölçülebilir olmasıdır.

# Ispat:

:⇒ f fonksiyonu ölçülebilir bir fonksiyon olsun.

$$E_1 = \{x \in E : f(x) = \infty\} = \bigcap_{n=1}^{\infty} \{x \in E : f(x) > n\}$$

$$E_2 = \{x \in E : f(x) = -\infty\} = \bigcap_{n=1} \{x \in E : f(x) \le -n\}$$

olduğundan  $E_1$  ve  $E_2$  kümeleri ölçülebilirdir.  $lpha \geq 0$  ise

$$\{x \in E : f_1(x) > \alpha\} = \{x \in E : f(x) > \alpha\} - E_1$$

ve  $\alpha < 0$  ise

$$\{x \in E : f_1(x) > \alpha\} = \{x \in E : f(x) > \alpha\} \cup E_2$$

yazılabilir. Her iki durumda da sağdaki iki küme ölçülebilir olduğundan  $\{x\in E: f_1(x)>\alpha\}\in \mathcal{M}$  dir. Dolayısıyla  $f_1$  fonksiyonu ölçülebilirdir.

### İspatın Devamı:

 $\Leftarrow$ :  $E_1$  ve  $E_2$  kümeleri ölçülebilir ve  $f_1$  fonksiyonu ölçülebilir fonksiyon olsun.  $\alpha \geq 0$  ise

$$\{x \in E : f(x) > \alpha\} = \{x \in E : f_1(x) > \alpha\} \cup E_1$$

ve  $\alpha < 0$  ise

$$\{x \in E : f(x) > \alpha\} = \{x \in E : f_1(x) > \alpha\} - E_2$$

olduğundan f fonksiyonu ölçülebilirdir.

# Ölçülebilir Fonksiyonlar ile ilgili Teoremler

### Teorem

Eğer f fonksiyonu E kümesi üzerinde ölçülebilir ise bu durumda  $\forall \alpha \in \overline{\mathbb{R}}$  için  $f^{-1}(\alpha) = \{x \in E : f(x) = \alpha\}$  kümesi ölçülebilirdir.

# Ölçülebilir Fonksiyonlar ile ilgili Teoremler

### Teorem

Eğer f fonksiyonu E kümesi üzerinde ölçülebilir ise bu durumda  $\forall \alpha \in \overline{\mathbb{R}}$  için  $f^{-1}(\alpha) = \{x \in E : f(x) = \alpha\}$  kümesi ölçülebilirdir.

Uyarı: Teoremin tersi doğru değildir.

# Ölçülebilir Fonksiyonlar ile ilgili Teoremler

### Teorem

Eğer f fonksiyonu E kümesi üzerinde ölçülebilir ise bu durumda  $\forall \alpha \in \overline{\mathbb{R}}$  için  $f^{-1}(\alpha) = \{x \in E : f(x) = \alpha\}$  kümesi ölçülebilirdir.

Uyarı: Teoremin tersi doğru değildir.

# İspat:

Herhangi  $\alpha \in \mathbb{R}$  için

$$f^{-1}(\alpha) = \{x \in E : f(x) = \alpha\}$$
  
=  $\{x \in E : f(x) \ge \alpha\} \cap \{x \in E : f(x) \le \alpha\}$ 

olduğundan f fonksiyonu E kümesi üzerinde ölçülebilir ise  $f^{-1}\left(\alpha\right)=\left\{ x\in E:f(x)=\alpha\right\}$  kümesi ölçülebilirdir.

### İspatın Devamı:

 $\alpha = \infty$  ise

$$\{x \in E : f(x) = \infty\} = \bigcap_{n=1}^{\infty} \{x \in E : f(x) > n\}$$

ve  $\alpha = -\infty$  ise

$$\{x \in E : f(x) = -\infty\} = \bigcap_{n=1}^{\infty} \{x \in E : f(x) \le -n\}$$

yazılabilir. Ölçülebilir kümelerin sayılabilir arakesiti ölçülebilir olduğundan soldaki kümeler ölçülebilirdir.

### Örnek

$$E\subset (0,1)$$
 ve  $E\notin \mathcal{M}$  olsun.  $f:(0,1)\to \mathbb{R}$  fonksiyonu  $f(x)=\left\{egin{array}{ll} x^2 & ; & x\in E \\ -x^2 & ; & x\in (0,1)-E \end{array}
ight.$  şeklinde tanımlansın.  $orall \alpha\in \mathbb{R}$  için  $f^{-1}\left(lpha
ight)=\left\{x\in E:f(x)=lpha
ight\}\in \mathcal{M}$  olduğunu gösteriniz.  $f$  fonksiyonu ölcülebilir değildir. Neden?

### Örnek

$$\begin{split} E \subset (0,1) \text{ ve } E \notin \mathcal{M} \text{ olsun. } f:(0,1) \to \mathbb{R} \text{ fonksiyonu} \\ f(x) &= \left\{ \begin{array}{ll} x^2 & ; & x \in E \\ -x^2 & ; & x \in (0,1) - E \end{array} \right. \text{ șeklinde tanımlansın. } \forall \alpha \in \mathbb{R} \text{ için} \\ f^{-1}(\alpha) &= \left\{ x \in E : f(x) = \alpha \right\} \in \mathcal{M} \text{ olduğunu gösteriniz. } f \text{ fonksiyonu ölçülebilir değildir. Neden?} \end{split}$$

### Çözüm

Her  $\alpha \in \mathbb{R}$  için

$$f^{-1}(\alpha) = \{x \in E : f(x) = \alpha\}$$

en fazla bir eleman içerir, bu nedenle ölçülebilirdir. Ancak,

$$f^{-1}(0) = \{x \in E : f(x) > 0\} = E$$

olduğundan f fonksiyonu ölçülebilir değildir.

 $E \subset \mathbb{R}$  ölçülebilir bir küme olsun.  $f: E \to \mathbb{R}$  fonksiyonunun Lebesgue ölçülebilir olması için gerek ve yeter koşul her bir  $\alpha$  ve  $\beta$  farklı reel sayıları için  $f^{-1}((\alpha,\beta)) = \{x \in E: \alpha < f(x) < \beta\} \in \mathcal{M}$  olmasıdır.

 $E \subset \mathbb{R}$  ölçülebilir bir küme olsun.  $f: E \to \mathbb{R}$  fonksiyonunun Lebesgue ölçülebilir olması için gerek ve yeter koşul her bir  $\alpha$  ve  $\beta$  farklı reel sayıları için  $f^{-1}((\alpha,\beta))=\{x\in E: \alpha< f(x)<\beta\}\in \mathcal{M}$  olmasıdır. Küçük sembolü veya sembolleri yerine küçük eşit kullanılabilir.

 $E \subset \mathbb{R}$  ölçülebilir bir küme olsun.  $f: E \to \mathbb{R}$  fonksiyonunun Lebesgue ölçülebilir olması için gerek ve yeter koşul her bir  $\alpha$  ve  $\beta$  farklı reel sayıları için  $f^{-1}\left((\alpha,\beta)\right)=\{x\in E: \alpha< f(x)<\beta\}\in \mathcal{M}$  olmasıdır. Küçük sembolü veya sembolleri yerine küçük eşit kullanılabilir.

### İspat:

 $\Rightarrow$  f fonksiyonu ölçülebilir olsun. Herhangi lpha ve eta farklı reel sayıları için

$$f^{-1}((\alpha, \beta)) = \{x \in E : \alpha < f(x) < \beta\}$$
  
= \{x \in E : \alpha < f(x)\} \cap \{x \in E : f(x) < \beta\}

olduğundan  $f^{-1}\left((\alpha,\beta)\right) = \{x \in E : \alpha < f(x) < \beta\} \in \mathcal{M}$  dir.

 $E \subset \mathbb{R}$  ölçülebilir bir küme olsun.  $f: E \to \mathbb{R}$  fonksiyonunun Lebesgue ölçülebilir olması için gerek ve yeter koşul her bir  $\alpha$  ve  $\beta$  farklı reel sayıları için  $f^{-1}\left((\alpha,\beta)\right)=\{x\in E: \alpha< f(x)<\beta\}\in \mathcal{M}$  olmasıdır. Küçük sembolü veya sembolleri yerine küçük eşit kullanılabilir.

### İspat:

 $\Rightarrow$  f fonksiyonu ölçülebilir olsun. Herhangi lpha ve eta farklı reel sayıları için

$$f^{-1}((\alpha, \beta)) = \{x \in E : \alpha < f(x) < \beta\}$$
  
= \{x \in E : \alpha < f(x)\} \cap \{x \in E : f(x) < \beta\}

olduğundan  $f^{-1}\left((\alpha,\beta)\right) = \{x \in E : \alpha < f(x) < \beta\} \in \mathcal{M}$  dir.  $\Leftarrow$ : Her bir  $\alpha$  ve  $\beta$  farklı reel sayıları için  $f^{-1}\left((\alpha,\beta)\right) = \{x \in E : \alpha < f(x) < \beta\} \in \mathcal{M}$  olsun. Bu durumda ölçülebilir fonksiyonun tanımı gereği f fonksiyonu ölçübilirdir.

◆ロ > ◆母 > ◆き > ◆き > き め Q

Her bir  $r \in \mathbb{Q}$  için  $\{x \in E : f(x) > r\} \in \mathcal{M}$  ise f fonksiyonu E kümesi üzerinde ölçülebilirdir.

Her bir  $r \in \mathbb{Q}$  için  $\{x \in E : f(x) > r\} \in \mathcal{M}$  ise f fonksiyonu E kümesi üzerinde ölçülebilirdir.

## İspat:

 $\alpha$  herhangi bir reel sayı ve  $(r_n)$  dizisi  $\alpha$  sayısına yakınsayan azalan bir dizi olsun.

$$\{x \in E : f(x) > \alpha\} = \bigcup_{n=1}^{\infty} \{x \in E : f(x) > r_n\}$$

yazılabilir. Her bir  $n \in \mathbb{N}$  için  $\{x \in E : f(x) > r_n\}$  ölçülebilir olduğundan  $\{x \in E : f(x) > \alpha\}$  kümesi ölçülebilirdir. Bu yüzden f fonksiyonu ölçülebilirdir.

f fonksiyonu bir  $E_1$  kümesi üzerinde ölçülebilir ve  $E_2 \subset E_1$  kümesi ölçülebilir ise bu durumda f fonksiyonu  $E_2$  kümesi üzerinde de ölçülebilirdir.

f fonksiyonu bir  $E_1$  kümesi üzerinde ölçülebilir ve  $E_2 \subset E_1$  kümesi ölçülebilir ise bu durumda f fonksiyonu  $E_2$  kümesi üzerinde de ölçülebilirdir.

# İspat:

 $\alpha$  herhangi bir reel sayı olsun.

$$\{x \in E_2 : f(x) > \alpha\} = \{x \in E_1 : f(x) > \alpha\} \cap E_2$$

yazılabilir. f fonksiyonu  $E_1$  üzerinde ölçülebilir ve  $E_2 \in \mathcal{M}$  olduğundan sağ taraf ölçülebilirdir. Bu yüzden f fonksiyonu  $E_2$  kümesi üzerinde de ölçülebilirdir.

 $i \neq j$  için  $E_i \cap E_j = \emptyset$  olmak üzere f fonksiyonu  $\forall n \in \mathbb{N}$  için  $E_n$  üzerinde ölçülebilir ise bu durumda f fonksiyonu  $E = \bigcup_{k=1}^{\infty} E_k$  kümesi üzerinde de ölçülebilirdir.

 $i \neq j$  için  $E_i \cap E_j = \emptyset$  olmak üzere f fonksiyonu  $\forall n \in \mathbb{N}$  için  $E_n$  üzerinde ölçülebilir ise bu durumda f fonksiyonu  $E = \bigcup_{k=1}^{\infty} E_k$  kümesi üzerinde de ölçülebilirdir.

### İspat:

 $\alpha$  herhangi bir reel sayı olsun.

$$\{x \in E : f(x) > \alpha\} = \bigcup_{n=1}^{\infty} \{x \in E_n : f(x) > \alpha\}$$

yazılabilir. Hipotez gereği sağ taraf ölçülebilir olduğundan f fonksiyonu E kümesi üzerinde ölçülebilirdir.

 $i \neq j$  için  $E_i \cap E_j = \emptyset$  olmak üzere f fonksiyonu  $\forall n \in \mathbb{N}$  için  $E_n$  üzerinde ölçülebilir ise bu durumda f fonksiyonu  $E = \bigcup_{k=1}^{\infty} E_k$  kümesi üzerinde de ölçülebilirdir.

### İspat:

 $\alpha$  herhangi bir reel sayı olsun.

$$\{x \in E : f(x) > \alpha\} = \bigcup_{n=1}^{\infty} \{x \in E_n : f(x) > \alpha\}$$

yazılabilir. Hipotez gereği sağ taraf ölçülebilir olduğundan f fonksiyonu E kümesi üzerinde ölçülebilirdir.

 $f_1$  ve  $f_2$  fonksiyonları E kümesi üzerinde ölçülebilir ise  $\{x \in E: f_1(x) < f_2(x)\}$  kümesi ölçülebilirdir.

 $f_1$  ve  $f_2$  fonksiyonları E kümesi üzerinde ölçülebilir ise  $\{x \in E: f_1(x) < f_2(x)\}$  kümesi ölçülebilirdir.

### İspat:

 $f_1(x) < f_2(x)$  eşitsizliğinin sağlanması için g.v.y.k.  $f_1(x) < r < f_2(x)$  olacak şekilde bir  $r \in \mathbb{Q}$  sayısının var olmasıdır. Buna göre

$$\{x \in E : f_1(x) < f_2(x)\} = \bigcup_{r \in \mathbb{Q}} \{x \in E : f_1(x) < r\} \cap \{x \in E : f_2(x) > r\}$$

yazılabilir.  $\{x \in E: f_1(x) < r\}$  ve  $\{x \in E: f_2(x) > r\}$  kümeleri ölçülebilir olduğundan istenen sonuç elde edilir.

f fonksiyonu E kümesi üzerinde ölçülebilir ise bu durumda c bir sabit olmak üzere f+c ve cf fonksiyonları da E kümesi üzerinde ölçülebilirdir.

f fonksiyonu E kümesi üzerinde ölçülebilir ise bu durumda c bir sabit olmak üzere f+c ve cf fonksiyonları da E kümesi üzerinde ölçülebilirdir.

## İspat:

lpha herhangi bir reel sayı olsun. f fonksiyonu ölçülebilir ve

$${x \in E : f(x) + c > \alpha} = {x \in E : f(x) > \alpha - c}$$

olduğundan f + c fonksiyonu ölçülebilirdir.

c=0 olması durumunda cf fonksiyonu sabit fonksiyon olduğundan ölçülebilirdir.  $c \neq 0$  olduğunu varsayalım. f fonksiyonu ölçülebilir ve

$$\{x \in E : cf(x) > \alpha\} = \left\{ \begin{array}{l} \left\{x \in E : f(x) > \frac{\alpha}{c} \right\} & ; \quad c > 0 \\ \left\{x \in E : f(x) < \frac{\alpha}{c} \right\} & ; \quad c < 0 \end{array} \right.$$

olduğundan cf fonksiyonu ölçülebilirdir.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q

### <u>Teorem</u>

f fonksiyonu E kümesi üzerinde ölçülebilir ise bu durumda  $f^2$  fonksiyonu da E kümesi üzerinde ölçülebilirdir.

f fonksiyonu E kümesi üzerinde ölçülebilir ise bu durumda  $f^2$  fonksiyonu da E kümesi üzerinde ölçülebilirdir.

# İspat:

 $\alpha < 0$  ise

$$\{x \in E : f^2(x) > \alpha\} = E \in \mathcal{M}$$

dir.  $\alpha \geq 0$  ise

$$\{x \in E : f^2(x) > \alpha\} = \{x \in E : f(x) > \sqrt{\alpha}\} \cup \{x \in E : f(x) < -\sqrt{\alpha}\}$$

olur. f ölçülebilir olduğundan sağdaki iki küme ölçülebilirdir. Bunların birleşimleri de ölçülebilir olduğundan  $f^2$  fonksiyonu E kümesi üzerinde ölçülebilirdir.

f ve g fonksiyonları E kümesi üzerinde ölçülebilir reel değerli fonksiyonlar olsun. Bu durumda f+g, f-g, fg ve E kümesi üzerinde  $g(x)\neq 0$  olmak üzere  $\frac{f}{g}$  fonksiyonları E kümesi üzerinde ölçülebilirdir.

f ve g fonksiyonları E kümesi üzerinde ölçülebilir reel değerli fonksiyonlar olsun. Bu durumda f+g, f-g, fg ve E kümesi üzerinde  $g(x)\neq 0$  olmak üzere  $\frac{f}{g}$  fonksiyonları E kümesi üzerinde ölçülebilirdir.

# İspat:

lpha herhangi bir reel sayı olsun. (f+g)(x)>lpha olması için g.v.y.k. f(x)>r ve g(x)>lpha-r olacak şekilde bir  $r\in\mathbb{Q}$  sayısının var olmasıdır. Böylece  $\{x\in E: (f+g)(x)>lpha\}$  kümesi

$$\bigcup_{r \in \mathbb{Q}} \{x \in E : f(x) > r\} \cap \{x \in E : g(x) > \alpha - r\}$$

şeklinde yazılabilir. f ve g fonksiyonları E üzerinde ölçülebilir olduğundan bu küme ölçülebilirdir. Dolayısıyla f+g fonksiyonu ölçülebilirdir.  $(-1)\,g=-g$  olduğundan -g fonksiyonu ölçülebilirdir. Dolayısıyla f+(-g)=f-g fonksiyonu E kümesi üzerinde ölçülebilirdir.

### İspatın Devamı:

$$fg = \frac{1}{4} \left\lfloor (f+g)^2 - (f-g)^2 \right\rfloor \text{ olduğu dikkate alınırsa } (f+g)^2 \text{ ve } (f-g)^2$$
 fonksiyonlarının ölçülebilirliğinden  $fg$  nin ölçülebilir olduğuğu görülür.  $E$  kümesi üzerinde  $g(x) \neq 0$  olmak üzere  $\frac{f}{g}$  fonksiyonunun  $E$  kümesi üzerinde ölçülebilir olduğunu göstermek için  $g(x) \neq 0$  olmak üzere  $\frac{1}{g}$  fonksiyonunun  $E$  kümesi üzerinde ölçülebilir olduğunu göstermek yeterlidir.  $A = \{x \in E : g(x) > 0\}$  ve  $B = \{x \in E : g(x) < 0\}$  olmak üzere  $\alpha = 0$  ise  $\left\{x \in E : \frac{1}{g(x)} > \alpha\right\} = A \cap \left\{x \in E : g(x) < \frac{1}{\alpha}\right\}$  ve  $\alpha < 0$  ise 
$$\left\{x \in E : \frac{1}{g(x)} > \alpha\right\} = A \cap \left\{x \in E : g(x) < \frac{1}{\alpha}\right\}$$
 ve  $\alpha < 0$  ise

olduğundan  $\frac{1}{g}$  fonksiyonu ölçülebilirdir.

4 D > 4 D > 4 B > 4 B > B 9 Q C

f fonksiyonu E kümesi üzerinde ölçülebilir ise bu durumda |f| fonksiyonu da E kümesi üzerinde ölçülebilirdir.

f fonksiyonu E kümesi üzerinde ölçülebilir ise bu durumda |f| fonksiyonu da E kümesi üzerinde ölçülebilirdir.

# İspat:

 $\alpha$  herhangi bir reel sayı olsun.  $\alpha < 0$  ise  $\{x \in E : |f(x)| > \alpha\} = E \in \mathcal{M}$  ve  $\alpha > 0$  ise

$$\{x \in E : |f(x)| > \alpha\} = \{x \in E : f(x) > \alpha\} \cup \{x \in E : f(x) < -\alpha\} \in \mathcal{M}$$

olduğundan |f| fonksiyonu E kümesi üzerinde ölçülebilirdir.

f fonksiyonu E kümesi üzerinde ölçülebilir ise bu durumda |f| fonksiyonu da E kümesi üzerinde ölçülebilirdir.

## İspat:

 $\alpha$  herhangi bir reel sayı olsun.  $\alpha < 0$  ise  $\{x \in E : |f(x)| > \alpha\} = E \in \mathcal{M}$  ve  $\alpha > 0$  ise

$$\{x \in E : |f(x)| > \alpha\} = \{x \in E : f(x) > \alpha\} \cup \{x \in E : f(x) < -\alpha\} \in \mathcal{M}$$

olduğundan |f| fonksiyonu E kümesi üzerinde ölçülebilirdir.

Uyarı : Teoremin tersi doğru olmayabilir. Ters örnek veriniz.

f, bir E kümesi üzerinde reel değerli ölçülebilir bir fonksiyon ve g fonksiyonuda f nin görüntü kümesi üzerinde tanımlı sürekli fonksiyon ise g o f fonksiyonu E üzerinde ölçülebilirdir. Diğer bir deyişle bir ölçülebilir fonksiyonun sürekli fonksiyonu ölçülebilirdir. Bununla birlikte bir sürekli fonksiyonun ölcülebilir fonksiyonu ölcülebilir olmak zorunda değildir.

f, bir E kümesi üzerinde reel değerli ölçülebilir bir fonksiyon ve g fonksiyonuda f nin görüntü kümesi üzerinde tanımlı sürekli fonksiyon ise g o f fonksiyonu E üzerinde ölçülebilirdir. Diğer bir deyişle bir ölçülebilir fonksiyonun sürekli fonksiyonu ölçülebilirdir. Bununla birlikte bir sürekli fonksiyonun ölçülebilir fonksiyonu ölçülebilir olmak zorunda değildir.

# İspat:

 $\alpha$  herhangi bir reel sayı olsun.

 $\{x \in E: (g \circ f)(x) > \alpha\} = \{x \in E: g(f(x)) > \alpha\}$  kümesinin ölçülebilir olduğunu göstermeliyiz. g fonksiyonu f nin görüntü kümesi üzerinde tanımlı sürekli fonksiyon olduğundan  $G = \{u: g(u) > \alpha\}$  kümesi bir açık kümedir.

$${x \in E : (g \circ f)(x) > \alpha} = {x \in E : f(x) \in G}$$

ve sağ taraftaki küme ölçülebilir olduğundan  $g\circ f$  fonksiyonu E üzerinde ölçülebilirdir.

 $f_1$  ve  $f_2$  fonksiyonları E kümesi üzerinde ölçülebilir fonksiyonlar ise bu durumda  $f_1$  ve  $f_2$  fonksiyonlarının maksimum ve minimumları da ölçülebilirdir, yani  $\max \{f_1(x), f_2(x)\}$  ve  $\min \{f_1(x), f_2(x)\}$  fonksiyonları da ölçülebilirdir.

 $f_1$  ve  $f_2$  fonksiyonları E kümesi üzerinde ölçülebilir fonksiyonlar ise bu durumda  $f_1$  ve  $f_2$  fonksiyonlarının maksimum ve minimumları da ölçülebilirdir, yani  $\max \left\{ f_1(x), f_2(x) \right\}$  ve  $\min \left\{ f_1(x), f_2(x) \right\}$  fonksiyonları da ölçülebilirdir.

#### İspat:

lpha herhangi bir reel sayı olsun.  $f^*(x)=\max\{f_1(x),f_2(x)\}$  ve  $f_*(x)=\min\{f_1(x),f_2(x)\}$  ile gösterelim. Bu durumda

$$\{x \in E : f^*(x) > \alpha\} = \{x \in E : f_1(x) > \alpha\} \cup \{x \in E : f_2(x) > \alpha\},$$
  
$$\{x \in E : f_*(x) > \alpha\} = \{x \in E : f_1(x) > \alpha\} \cap \{x \in E : f_2(x) > \alpha\}.$$

 $f_1$  ve  $f_2$  fonksiyonları E kümesi üzerinde ölçülebilir fonksiyonlar olduğundan sağdaki kümeler ölçülebilirdir. Bu yüzden  $f^*$  ve  $f_*$  fonksiyonları E üzerinde ölçülebilirdir.

 $(f_n)$ , E kümesi üzerinde ölçülebilir fonksiyonların bir dizisi olsun. Bu durumda  $F(x) = \sup_{n \in \mathbb{N}} f_n(x)$  ve  $G(x) = \inf_{n \in \mathbb{N}} f_n(x)$  fonksiyonları da E kümesi üzerinde ölçülebilirdir.

 $(f_n)$ , E kümesi üzerinde ölçülebilir fonksiyonların bir dizisi olsun. Bu durumda  $F(x) = \sup_{n \in \mathbb{N}} f_n(x)$  ve  $G(x) = \inf_{n \in \mathbb{N}} f_n(x)$  fonksiyonları da E kümesi üzerinde ölçülebilirdir.

# İspat:

 $\alpha$  herhangi bir reel sayı olsun.

$$\left\{x \in E : \sup_{n \in \mathbb{N}} f_n(x) \le \alpha \right\} = \left\{x \in E : f_1(x) \le \alpha, \ f_2(x) \le \alpha, \dots \right\}$$

$$= \left\{x \in E : f_1(x) \le \alpha \right\} \cap \left\{x \in E : f_2(x) \le \alpha \right\} \cap \dots$$

$$= \bigcap_{n=1}^{\infty} \left\{x \in E : f_n(x) \le \alpha \right\}$$

yazılabilir.

 $(f_n)$ , E kümesi üzerinde ölçülebilir fonksiyonların bir dizisi olsun. Bu durumda  $\overline{\lim} f_n(x)$  ve  $\underline{\lim} f_n(x)$  E üzerinde ölçülebilirdir.

 $(f_n)$ , E kümesi üzerinde ölçülebilir fonksiyonların bir dizisi olsun. Bu durumda  $\overline{\lim} f_n(x)$  ve  $\underline{\lim} f_n(x)$  E üzerinde ölçülebilirdir.

# İspat:

$$\overline{\lim} f_n(x) = \inf_{m \in \mathbb{N}} \left( \sup_{n \geq m} f_n(x) \right) \text{ ve } \underline{\lim} f_n(x) = \sup_{m \in \mathbb{N}} \left( \inf_{n \geq m} f_n(x) \right) \text{ olduğunu biliyoruz. Herbir } m \in \mathbb{N} \text{ için}$$

$$g_m(x) = \sup_{n \ge m} f_n(x)$$
 ve  $h_m(x) = \inf_{n \ge m} f_n(x)$ 

dersek, bir önceki teoremden herbir  $g_m$  ve  $h_m$  ölçülebilirdir. Yine bir önceki teoremden inf  $g_m(x)$  ve sup  $h_m(x)$  ölçülebilirdir.  $\overline{\lim} f_n(x) = \inf g_m(x)$  ve  $\underline{\lim} f_n(x) = \sup h_m(x)$  olduğundan  $\overline{\lim} f_n(x)$  ve  $\underline{\lim} f_n(x)$  E üzerinde ölçülebilirdir.

 $(f_n)$ , E kümesi üzerinde  $\lim_{n\to\infty} f_n(x) = f(x)$  olacak şekilde ölçülebilir fonksiyonların bir dizisi olsun. Bu durumda f fonksiyonu E kümesi üzerinde ölcülebilirdir.

 $(f_n)$ , E kümesi üzerinde  $\lim_{n\to\infty} f_n(x) = f(x)$  olacak şekilde ölçülebilir fonksiyonların bir dizisi olsun. Bu durumda f fonksiyonu E kümesi üzerinde ölçülebilirdir.

## İspat:

Bir önceki teoremden dolayı  $\overline{\lim} f_n(x)$  ve  $\underline{\lim} f_n(x)$  E kümesi üzerinde ölçülebilirdir.  $\lim_{n\to\infty} f_n(x) = f(x)$  ise bu durumda

$$f(x) = \overline{\lim} f_n(x) = \underline{\lim} f_n(x)$$

ve bu yüzden f fonksiyonu E kümesi üzerinde ölçülebilirdir.

#### **Tanım**

 $(f_n)$ , E kümesi üzerinde tanımlı bir fonksiyon dizisi olsun.  $E_1 \subset E$  ve  $m^*(E_1) = 0$  olmak üzere her  $x \in E - E_1$  için

$$\lim_{n\to\infty} f_n(x) = f(x)$$

ise  $(f_n)$  fonksiyon dizisi f fonksiyonuna h.h.h.y. yakınsaktır denir.

#### Tanım

 $(f_n)$ , E kümesi üzerinde tanımlı bir fonksiyon dizisi olsun.  $E_1 \subset E$  ve  $m^*(E_1) = 0$  olmak üzere her  $x \in E - E_1$  için

$$\lim_{n\to\infty} f_n(x) = f(x)$$

ise  $(f_n)$  fonksiyon dizisi f fonksiyonuna h.h.h.y. yakınsaktır denir.

## Örnek

E=[0,1] üzerinde  $f_n(x)=(-1)^n\,x^n$  ile tanınlı  $(f_n)$  fonksiyon dizisi verilsin.  $(f_n)$  fonksiyon dizisi . f(x)=0 fonksiyonuna h.h.h.y. yakınsaktır.

#### Tanım

 $(f_n)$ , E kümesi üzerinde tanımlı bir fonksiyon dizisi olsun.  $E_1 \subset E$  ve  $m^*(E_1) = 0$  olmak üzere her  $x \in E - E_1$  için

$$\lim_{n\to\infty} f_n(x) = f(x)$$

ise  $(f_n)$  fonksiyon dizisi f fonksiyonuna h.h.h.y. yakınsaktır denir.

### Örnek

E = [0, 1] üzerinde  $f_n(x) = (-1)^n x^n$  ile tanınlı  $(f_n)$  fonksiyon dizisi verilsin.  $(f_n)$  fonksiyon dizisi . f(x) = 0 fonksiyonuna h.h.h.y. yakınsaktır.

### Alıştırma

Ölçülebilir fonksiyonların bir  $(f_n)$  dizisi bir f fonksiyonuna h.h.h.y. yakınsak ise f fonksiyonunun ölçülebilir olduğunu gösteriniz.

# Borel Ölçülebilir Fonksiyonlar

Lebesgue ölçülebilir fonksiyonun tanımına benzer şekilde Borel ölçülebilir fonksiyon aşağıdaki gibi tanımlanır.

#### Tanım

Bir E Borel kümesi üzerinde tanımlı f fonksiyonu verildiğinde, her  $\alpha$  reel sayısı için

$$f^{-1}\left((\alpha,\infty)\right) = \left\{x \in E : f(x) > \alpha\right\}$$

kümesi bir Borel kümesi oluyorsa bu fonksiyona  $\it E$  üzerinde Borel ölçülebilir fonksiyon denir.

# Borel Ölçülebilir Fonksiyonlar

Lebesgue ölçülebilir fonksiyonun tanımına benzer şekilde Borel ölçülebilir fonksiyon aşağıdaki gibi tanımlanır.

### Tanım

Bir E Borel kümesi üzerinde tanımlı f fonksiyonu verildiğinde, her  $\alpha$  reel sayısı için

$$f^{-1}\left((\alpha,\infty)\right) = \left\{x \in E : f(x) > \alpha\right\}$$

kümesi bir Borel kümesi oluyorsa bu fonksiyona E üzerinde Borel ölçülebilir fonksiyon denir.

Tanımdan hemen şu sonucu çıkarabiliriz: Her bir Borel ölçülebilir fonksiyon Lebesgue ölçülebilirdir fakat Lebesgue ölçülebilir her fonksiyon Borel ölçülebilir değildir.

f, bir E Borel kümesi üzerinde tanımlı, genişletilmiş reel değerli fonksiyon olsun. Bu durumda aşağıdakilerin denk olduğunu gösteriniz.

- (a) Her  $\alpha \in \mathbb{R}$  için  $\{x \in E : f(x) > \alpha\}$  bir Borel kümesidir.
- (b) Her  $\alpha \in \mathbb{R}$  için  $\{x \in E : f(x) \ge \alpha\}$  bir Borel kümesidir.
- (c) Her  $\alpha \in \mathbb{R}$  için  $\{x \in E : f(x) < \alpha\}$  bir Borel kümesidir.
- (d) Her  $\alpha \in \mathbb{R}$  için  $\{x \in E : f(x) \le \alpha\}$  bir Borel kümesidir.

f ve g fonksiyonları E üzerinde tanımlı Borel ölçülebilir fonksiyonlar ve c herhangi bir sabit olsun. Bu durumda aşağıdaki fonksiyonların her birinin E üzerinde Borel ölçülebilir olduğunu gösteriniz.

- 0 f + c
- 2 cf
- $\bullet$   $f \pm g$
- 4 | f |
- $\circ$   $f^2$
- fg

- 1. Bir Borel kümesi üzerinde tanımlı sürekli fonksiyonun Borel ölçülebilir olduğunu gösteriniz.
- f bir Borel ölçülebilir fonksiyon, B bir Borel kümesi ise f<sup>-1</sup> (B) nin bir Borel kümesi olduğunu gösteriniz.
- 3. f bir Lebesgue ölçülebilir fonksiyon ve B bir Borel kümesi ise  $f^{-1}\left(B\right)$  nin bir Lebesgue ölçülebilir küme olduğunu gösteriniz.
- 4. f ve g fonksiyonları Borel ölçülebilir ise  $f \circ g$  nin de Borel ölçülebilir olduğunu gösteriniz.
- 5. f bir Borel ölçülebilir fonksiyon ve g bir Lebesgue ölçülebilir fonksiyon ise  $f \circ g$  nin bir Lebesgue ölçülebilir fonksiyon olduğunu gösteriniz.

- 6. f,  $\mathbb{R}$  de artan bir fonksiyon ise f nin Borel ölçülebilir olduğunu gösteriniz.
- 7.  $f:[0,1] \to \mathbb{R}, \ f(x) = \left\{ \begin{array}{l} \frac{1}{x} \ ; \ 0 < x < 1 \\ 5 \ ; \ x = 0 \end{array} \right.$  ile tanımlı f fonksiyonunun ölçülebilir olduğunu gösteriniz.
- 8. f ve g fonksiyonları bir E kümesi üzerinde ölçülebilir fonksiyonlar ise  $\{x \in E : f(x) \le g(x)\}$  ve  $\{x \in E : f(x) = g(x)\}$  kümelerinin ölçülebilir olduğunu gösteriniz.
- 9.  $E_1$  ve  $E_2$  ölçülebilir kümeler olmak üzere f fonksiyonu  $E_1 \cup E_2$  üzerinde tanımlı bir fonksiyon olsun. f fonksiyonun  $E_1 \cup E_2$  üzerinde ölçülebilir olması için gerek ve yeter koşul f nin  $E_1$  ve  $E_2$  kümelerine kısıtlanışının ölçülebilir olmasıdır. Gösteriniz.

10.  $E \in \mathcal{M}$  olmak üzere f, E üzerinde tanımlı bir fonksiyon olsun. f fonksiyonun ölçülebilir olması için g.v.y.k.

$$g(x) = \begin{cases} f(x) & ; & x \in E \\ 0 & ; & x \notin E \end{cases}$$

ile tanımlı g fonksiyonunun ölçülebilir olmasıdır. Gösteriniz.

- 11. Sıfır ölçülü küme üzerinde tanımlı her fonksiyonun ölçülebilir olduğunu gösteriniz.
- f ölçülebilir ise f nin herhangi bir doğal sayı kuvvetinin ölçülebilir olduğunu gösteriniz.
- 13.  $E \subset [0,1]$  bir Lebesgue ölçülemeyen küme olsun.  $f: \mathbb{R} \to \mathbb{R}$  fonksiyonu  $f(x) = \left\{ \begin{array}{ccc} x & ; & x \in E \\ 2 + e^x & ; & x \notin E \end{array} \right.$  biçiminde tanımlanıyor.  $a \in \mathbb{R}$  için  $f^{-1}\left(\{a\}\right)$  kümesinin ölçülebilir olduğunu gösteriniz. f fonksiyonu ölçülebilir midir?

14.  $E \in \mathcal{M}$  olmak üzere f fonksiyonu E kümesi üzerinde ölçülebilir fonksiyon olsun.

$$f^{-1}([c,d)) = \{x \in E : c \le f(x) < d\}$$

$$f^{-1}((c,d)) = \{x \in E : c < f(x) \le d\}$$

$$f^{-1}((c,d)) = \{x \in E : c < f(x) < d\}$$

$$f^{-1}(\{c\}) = \{x \in E : f(x) = c\}$$

kümelerinin ölçülebilir olduğunu gösteriniz.

- 15.  $f: \mathbb{R} \to \mathbb{R}$ ,  $f(x) = \begin{cases} x^2 & ; & x < 1 \\ 2 & ; & x = 1 \\ 2 x & ; & x > 1 \end{cases}$  ölçülebilir olduğunu gösteriniz.
- 16.  $f:(0,1)\to\mathbb{R}, \ f(x)=\frac{1}{x}$  ile tanımlı f fonksiyonunun ölçülebilir olduğunu gösteriniz.

- 17.  $f:[0,1] \to \mathbb{R}$ ,  $f(x) = \begin{cases} \frac{1}{x} & \text{; } 0 < x \le 1 \\ 0 & \text{; } x = 0 \end{cases}$  ile tanımlı f fonksiyonunun ölçülebilir olduğunu gösteriniz.
- 18.  $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}, f(x) = \begin{cases} \tan x & ; & -\frac{\pi}{2} < x < \frac{\pi}{2} \\ \infty & ; & x = \pm \frac{\pi}{2} \end{cases}$  ile tanımlı f fonksiyonunun ölçülebilir olduğunu gösteriniz.
- 19.  $f:[0,1] \to \mathbb{R}, f(x) = \begin{cases} 1 & ; x \in [0,1] \cap \mathbb{Q} \\ 0 & ; x \in [0,1] \cap \mathbb{Q}^c \end{cases}$  ile tanımlı f fonksiyonunun ölçülebilir olduğunu gösteriniz.
- 20.  $E \in \mathcal{M}$  olmak üzere f fonksiyonu E kümesi üzerinde ölçülebilir fonksiyon olsun.  $f^+ := \max\{f,0\}$  ve  $f^- = \min\{-f,0\}$  ile tanımlı fonksiyonların ölçülebilir olduğunu gösteriniz.

Alıştırmalar daha sonra güncellenecektir.