Claims

5

10

15

1. Cyclic polycarbonates or copolycarbonates of the general formulae (1a) and (1b),

in which the group O-D-O or O-E-O stands for any diphenolate groups, in which –D- and –E- is an aromatic group having 6 to 40 C atoms, which contains one or more aromatic or condensed aromatic nuclei, optionally containing heteroatoms and which is optionally substituted with C₁-C₁₂-alkyl groups or halogen, and may contain aliphatic groups, cycloaliphatic groups, aromatic nuclei or heteroatoms as bridging links, wherein k stands for an integer from 1 to 4000 and m, n and o each independently of the other, stand for numbers from 1 to 4000.

2. Cyclic polycarbonates and copolycarbonates according to claim 1, characterised in that they the general formula (2) [sic]

in which

R1 and R2 independently of each other stand for H, linear or branched C₁-C₁₈ alkyl- or alkoxy-, halogen such as Cl or Br or for an optionally substituted aryl- or aralkyl group, X stands for a single bond,

a C₁- to C₆-alkylene, C₂- to C₅-alkylidene-, C₅- to C₆-cycloalkylidene group, which may be substituted by C₁- to C₋₆-alkyl, or a C₆- to C₁₂-arylene group, which may optionally be condensed with aromatic rings containing other heteroatoms, and p stands for an integer from 1 to 4000.

5

10

- 3. Process for the production of the polycarbonates and copolycarbonates according to claims 1 and 2, characterised in that diphenols are dissolved in aqueous alkaline solution and added drop-by-drop, whilst stirring, at the same time as a carbonate source optionally dissolved in a solvent, to a two-phase mixture of an aqueous alkaline solution, an organic solvent and a catalyst.
- 4. Use of the polycarbonates according to claims 1 and 2 for the production of products by the extrusion and injection moulding processes.
 - 5. Products containing the polycarbonates according to claims 1 and 2.