DRAM

256 K x 16 DRAM EDO PAGE MODE

FEATURES

- X16 organization
- · EDO (Extended Data-Output) access mode
- 2 CAS Byte/Word Read/Write operation
- Single 5V (± 10%) power supply
- TTL-compatible inputs and outputs
- 512-cycle refresh in 8ms
- Refresh modes: RAS only, CAS BEFORE RAS (CBR) and HIDDEN
- JEDEC standard pinout
- · Key AC Parameter

	trac	tcac	trc	t PC
-25	25	8	43	10
-35	35	10	65	14

ORDERING INFORMATION - PACKAGE

40-pin 400mil SOJ 44 / 40-pin 400mil TSOP (TypeII)

PRODUCT NO.	PACKING TYPE	COMMENTS
M11B416256A-25JP	SOJ	Pb-free
M11B416256A-35TG	TSOPII	Pb-free

GENERAL DESCRIPTION

The M11B416256A is a randomly accessed solid state memory, organized as 262,144 x 16 bits device. It offers Extended Data-Output, $5V(\pm 10\%)$ single power supply. Access time (-25,-35) and package type (SOJ, TSOP II) are optional features of this family. All these family have \overline{CAS} - before - \overline{RAS} , \overline{RAS} -only refresh and Hidden refresh capabilities.

Two access modes are supported by this device : Byte access and Word access. Use only one of the two \overline{CAS} and leave the other staying high will result in a BYTE access. WORD access happens when two \overline{CAS} (\overline{CASL} , \overline{CASH}) are used. \overline{CASL} transiting low during READ or WRITE cycle will output or input data into the lower byte (IO0~IO7), and \overline{CASH} transiting low will output or input data into the upper byte (IO8~15).

PIN ASSIGNMENT

V

Vcc 🗆	1 🔾	40	□ Vss
1/00 🗆	2	39	□ I/O15
1/01 🗆	3	38	□ I/O14
1/02	4	37	□ I/O13
1/03 🗖	5	36	□ I/O12
Vcc 🗆	6	35	□ Vss
1/04 🗖	7	34	□ I/O11
1/05 🗆	8	33	□ I/O10
1/06 🗖	9	32	□ I/O9
1/07 🗖	10	31	□ I/O8
ис 🗆	11	30	□NC
ис 🗆	12	29	☐ CASL
WE 🗆	13	28	□ CASH
RAS 🗆	14	27	□ ŌĒ
NC 🗆	15	26	□ A8
A0 🗆	16	25	□ A7
A1 🗖	17	24	□ A6
A2 🗆	18	23	□ A5
А3 🗆	19	22	□ A4
Vcc 🗆	20	21	□ Vss
			1

TSOP (TypeII) Top View

Vcc 💷	1 🔾	40	ш	Vss
I/O0	2	39	ш	I/O15
I/01 💷	3	38	ш	I/O14
I/O2	4	37	ш	I/O13
I/O3	5	36	ш	1/012
Vcc 🗆	6	35	ш	Vss
I/O4	7	34	ш	1/011
I/O5	8	33	ш	I/O10
I/06	9	32	ш	1/09
1/07	10	31	ш	I/O8
NC	11	30	ш	NC
NC III	12	00	-	CASL
	12	29		0,102
WE I	13	28	Ш	CASH
WE III				
	13	28		CASH
RAS 💷	13 14	28 27		CASH OE
RAS III	13 14 15	28 27 26		CASH OE A8
RAS III	13 14 15 16 17	28 27 26 25		CASH OE A8 A7
RAS III NC III A0 III	13 14 15 16 17 18	28 27 26 25 24		CASH OE A8 A7 A6
RAS	13 14 15 16 17	28 27 26 25 24 23		CASH OE A8 A7 A6 A5

Elite Memory Technology Inc

Publication Date: Jun. 2006 Revision: 2.1 1/15 **EliteMT**

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

PIN NO.	PIN NAME	TYPE	DESCRIPTION
16~19,22~26	A0~A8	Input	Address Input Row Address : A0~A8 Column Address : A0~A8
14	RAS	Input	Row Address Strobe
28	CASH	Input	Column Address Strobe / Upper Byte Control
29	CASL	Input	Column Address Strobe / Lower Byte Control
13	WE	Input	Write Enable
27	ŌĒ	Input	Output Enable
2~5,7~10,31~34,36~39	I/O0 ~ I/O15	Input / Output	Data Input / Output
1,6,20	Vcc	Supply	Power, 5V
21,35,40	Vss	Ground	Ground
11,12,15,30	NC	-	No Connect

Publication Date: Jun. 2006

Revision: 2.1 **2/15**

ABSOLUTE MAXIMUM RATINGS

Permanent device damage may occur if "Absolute Maximum Ratings" are exceeded. This is a stress rating only, and functional operation of the device above those conditions indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED

OPERATING CONDITIONS (0 °C \leq TA \leq 70 °C ; Vcc = 5V \pm 10% unless otherwise noted)

PARAMETER	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	4.5	5.5	V	1
Supply Voltage		Vss	0	0	٧	
Input High Voltage		ViH	2.4	Vcc +0.3	٧	1
Input Low Voltage		VIL	-0.3	0.8	٧	1
Input Leakage Current	$0V \le V_{IN} \le V_{IH} (max)$	lu	-10	10	μΑ	
Output Leakage Current	OV ≤ Vouт ≤ Vcc Output(s) disable	lLO	-10	10	μΑ	2
Output High Voltage	Iон = -5 mA	Vон	2.4	-	V	
Output Low Voltage	IoL = 4.2 mA	Vol	-	0.4	V	

Note: 1.All Voltages referenced to Vss

2. $0V \le V_{OUT} \le 5.0V$, $VCC \le 5.0V$

PARAMETER	CONDITIONS	CONDITIONS SYMBOL MAX		AX	UNITS	NOTES
FARAMETER	CONDITIONS	STWIBOL	-25	-35		
Operating Current	RAS, CAS cycling, tRc =min	Icc1	210	150	mA	1,2
Standby Current	TTL interface , \overline{RAS} , \overline{CAS} = V _{IH} , D _{OUT} =High-Z	Icc2	4	4	mA	
	CMOS interface, \overline{RAS} , $\overline{CAS} \ge Vcc-0.2V$		2	2	2 mA	
RAS only refresh Current	trc = min	Іссз	210	150	mA	2
EDO Page Mode Current	tpc = min	Icc4	210	150	mA	1,3
Standby Current	RAS =VIH, CAS = VIL	Icc5	5	5	mA	1
CAS Before RAS Refresh Current	trc = min	Icc6	210	150	mA	

Note: 1. ICC max is specified at the output open condition.

- 2. Address can be changed twice or less while RAS =VIL.
- 3. Address can be changed once or less while $\overline{CAS} = V_{IH}$.

Publication Date : Jun. 2006 Revision : 2.1 **3/15**

CAPACITANCE (Ta = $25 \, ^{\circ}\text{C}$, Vcc = $5V \pm 10\%$)

PARAMETER	SYMBOL	TYP	MAX	UNIT
Input Capacitance (address)	C _{l1}	-	5	pF
Input Capacitance (RAS , CASH , CASL , WE , OE)	C ₁₂	-	7	pF
Output capacitance (I/O0~I/O15)	Cı/o	-	10	pF

AC ELECTRICAL CHARACTERISTICS (Ta = 0 to 70 $^{\circ}$ C , Vcc =5V \pm 10%, Vss = 0V) (note 14)

Test Conditions

Input timing reference levels : 0V, 3V Output reference level : Vol=0.8V, Voh=2.0V

Output Load: 2TTL gate + CL (50pF)

A	SS	iu	П	e	u	lΤ	=	۷۱	ıs	

PARAMETER	SYMBOL	-2	25	-3	35	LINIT	Notes
TAKAMETEK	OTHIBOL	MIN	MAX	MIN	MAX	Oitii	140103
Read or Write Cycle Time	t RC	43		65		ns	
Read Write Cycle Time	trwc	65		95		ns	
EDO-Page-Mode Read or Write Cycle Time	t PC	10		14		ns	22
EDO-Page-Mode Read-Write Cycle Time	tрсм	32		42		ns	22
Access Time From RAS	trac		25		35	ns	4
Access Time From CAS	tcac		8		10	ns	5,20
Access Time From \overline{OE}	toac		8		10	ns	13,20
Access Time From Column Address	taa		12		18	ns	
Access Time From CAS Precharge	t ACP		14		20	ns	20
RAS Pulse Width	tras	25	10K	35	10K	ns	
RAS Pulse Width (EDO Page Mode)	t RASC	25	100K	35	100K	ns	
RAS Hold Time	t RSH	8		10		ns	25
RAS Precharge Time	t RP	15		25		ns	
CAS Pulse Width	tcas	4	10K	5	10K	ns	24
CAS Hold Time	tсsн	21		30		ns	19
CAS Precharge Time	t CP	4		5		ns	6,23
RAS to CAS Delay Time	trcd	10	17	10	25	ns	7,18
CAS to RAS Precharge Time	tcrp	5		5		ns	19
Row Address Setup Time	t asr	0		0		ns	
Row Address Hold Time	t RAH	5		5		ns	
RAS to Column Address Delay Time	t RAD	8	13	8	17	ns	8
Column Address Setup Time	tasc	0		0		ns	18
Column Address Hold Time	t CAH	5		5		ns	18
Column Address Hold Time (Reference to RAS)	t ar	22		30		ns	
Column Address to RAS Lead Time	t RAL	12		18		ns	

Publication Date: Jun. 2006 Revision: 2.1 4/15

(Continued)

		-25		-:			
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	UNIT	Notes
Read Command Setup Time	trcs	0		0		ns	15,18
Read Command Hold Time Reference to CAS	tпсн	0		0		ns	9,15,19
Read Command Hold Time Reference to RAS	t rrh	0		0		ns	9
CAS to Output in Low-Z	tclz	3		3		ns	20
Output Buffer Turn-off Delay From $\overline{\text{CAS}}$ or $\overline{\text{RAS}}$	toff1	3	15	3	15	ns	10,17,2 0
Output Buffer Turn-off to $\overline{\sf OE}$	toff2		6		8	ns	17,26
Write Command Setup Time	twcs	0		0		ns	11,15,1 8
Write Command Hold Time	t wcH	5		5		ns	15,25
Write Command Hold Time (Reference to \overline{RAS})	twcr	22		30		ns	15
Write Command Pulse Width	twp	5		5		ns	15
Write Command to RAS Lead Time	trwl	7		9		ns	15
Write Command to CAS Lead Time	tcwL	5		7		ns	15,19
Data-in Setup Time	tos	0		0		ns	12,20
Data-in Hold Time	tон	5		5		ns	12,20
Data-in Hold Time (Reference to \overline{RAS})	t DHR	22		30		ns	
RAS to WE Delay Time	trwd	34		51		ns	11
Column Address to WE Delay Time	tawd	21		34		ns	11
CAS to WE Delay Time	tcwd	17		26		ns	11,18
Transition Time (rise or fall)	t⊤	1.5	50	2.5	50	ns	2,3
Refresh Period (512 cycles)	tref		8		8	ms	
RAS to CAS Precharge Time	t RPC	10		10		ns	
CAS Setup Time(CBR REFRESH)	tcsr	5		10		ns	1,18
CAS Hold Time(CBR REFRESH)	tchr	7		10		ns	1,19
OE Hold Time From WE During Read-Mode-Write Cycle	tоен	4		4		ns	16
OE Low to CAS High Setup Time	toes	4		4		ns	
OE High Hold Time From CAS High	t OEHC	2		2		ns	
OE Precharge Time	t OEP	2		2		ns	
OE Setup Prior to RAS During Hidden Refresh Cycle	tord	0		0		ns	
Last \overline{CAS} Going Low to First \overline{CAS} Returning High	tclch	4		5		ns	21
Data Output Hold After CAS Returning Low	tсон	3		3		ns	
Output Disable Delay From WE	t wHz	3	7	3	7	ns	

Publication Date: Jun. 2006 Revision: 2.1 5/15

Notes:

- 1. Enables on-chip refresh and address counters.
- V_{IH}(min) and V_{IL}(max) are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} and V_{IL}.
- In addition to meet the transition rate specification, all input signals must transit between V_{IH} and V_{IL} in a monotonic manner.
- 4. Assume that trod < trod(max). If trod is greater than the maximum recommended value shown in this table, trac will increase by the amount that trod exceeds the value shown.
- 5. Assume that $t_{RCD} \ge t_{RCD} (max)$
- If CAS is low at the falling edge of RAS, data-out will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS and RAS must be pulsed high.
- Operation within the tRCD limit ensures that tRCD (max) can be met, tRCD (max) is specified as a reference point only; if tRCD is greater than the specified tRCD (max) limit, access time is controlled by tCAC.
- 8. Operation within the trad limit ensures that trad(max) can be met. trad(max) is specified as a reference point only; if trad is greater than the specified trad (max) limit, access time is controlled by trad.
- Either trch or trrh must be satisfied for a READ cycle.
- 10. toff1(max) defines the time at which the output achieves the open circuit condition; it is not a reference to Voh or Vol.
- 11. twcs, trwb, tawb and tcwb are restrictive operating parameters in LATE WRITE and READ-MODIFY-WRITE cycle only. If twcs ≥ twcs(min), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If trwb ≥ trwb(min), tawb ≥ tawb(min) and tcwb ≥ tcwb(min), the cycle is READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of I/O (at access time and until CAS and RAS or OE go

- back to V_{IH}) is indeterminate. \overline{OE} held high and \overline{WE} taken low after \overline{CAS} goes low result in a LATE WRITE (\overline{OE} -controlled) cycle.
- 12. Those parameters are referenced to $\overline{\text{CAS}}$ leading edge in EARLY WRITE cycles and $\overline{\text{WE}}$ leading edge in LATE WRITE or READ-MODIFY- WRITE cycles.
- 13. During a READ cycle, if \overline{OE} is low then taken HIGH before \overline{CAS} goes high, I/O goes open, if \overline{OE} is tied permanently low, a LATE WRITE or READ-MODIFY-WRITE operation is not possible.
- 14. An initial pause of 200µs is required after power-up followed by eight RAS refresh cycles (RAS only or CBR) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the tree refresh requirement is exceeded.
- 15. WRITE command is defined as $\overline{\text{WE}}$ going low.
- 16. LATE WRITE and READ-MODIFY-WRITE cycles must have both tOFF2 and toeh met (\overline{OE} high during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycles.
- 17. The I/Os open during READ cycles once toff1 or toff2 occur.
- 18. Referenced to the earlier $\overline{\text{CAS}}$ falling edge.
- 19. Referenced to the latter $\overline{\text{CAS}}$ rising edge.
- 20. Output parameter (I/O) is referenced to corresponding $\overline{\text{CAS}}$ input, IO0~7 by $\overline{\text{CASL}}$ and IO8~15 by $\overline{\text{CASH}}$.
- 21. Last falling \overline{CAS} edge to first rising \overline{CAS} edge.
- 22. Last rising $\overline{\text{CAS}}$ edge to next cycle's last rising $\overline{\text{CAS}}$ edge.
- 23. Last rising $\overline{\text{CAS}}$ edge to first falling $\overline{\text{CAS}}$ edge.
- 24. Each CAS must meet minimum pulse width.
- 25. Referenced to the latter CAS falling edge.
- 26. All IOs controlled by $\overline{\text{OE}}$, regardless $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$.

Publication Date: Jun. 2006 Revision: 2.1 6/15

TRUTH TABLE

FUNCTION		RAS	CASL	CASH	WE	ŌĒ	ADDRESSES		DQs	NOTES
		KAS	CASL				ROW	COL	DQS	NOTES
Standby		Н	н→х	H→X	Х	Х	Х	Х	High-Z	
Read : Word		L	L	L	Н	L	ROW	COL	Data-Out	
Read : Lower Byte		L	L	Н	Н	L	ROW	COL	Lower Byte, Data-Out	
Read : Upper Byte	Read : Upper Byte		Н	L	Н	L	ROW	COL	Upper Byte, Data-Out	
Write : Word (Early Write)		L	L	L	L	Х	ROW	COL	Data-In	
Write : Lower Byte (Early)		L	L	н	L	X	ROW	COL	Lower Byte, Data-In , Upper Byte, High-Z	
Write : Upper Byte (Early)		L	Н	L	L	x	ROW	COL	Lower Byte, High-Z , Upper Byte, Data-In	
Read-Write		L	L	L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2
	1st Cycle	L	H→L	H→L	Н	L	ROW	COL	Data-Out	2
EDO-Page-Mode Read	2nd Cycle	L	H→L	H→L	Н	L		COL	Data-Out	2
	Any Cycle	L	L→H	L→H	Н	L			Data-Out	2
EDO-Page-Mode	1st Cycle	L	H→L	H→L	L	Х	ROW	COL	Data-In	1
Write	2nd Cycle	L	H→L	H→L	L	Х		COL	Data-In	1
EDO-Page-Mode	1st Cycle	L	H→L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2
Read-Write	2nd Cycle	L	H→L	H→L	H→L	L→H		COL	Data-Out, Data-In	1, 2
Hidden Refresh	Hidden Refresh		L	L	Н	L	ROW	COL	Data-Out	2
RAS -Only Refresh		L	Н	Н	Х	Х	ROW		High-Z	
CBR Refresh		H→L	L	L	Н	Х	Х	Х	High-Z	3

^{*}Note: 1. These WRITE cycles may also be BYTE WRITE cycles (either $\overline{\text{CASL}}$ or $\overline{\text{CASH}}$ active).

Publication Date: Jun. 2006 Revision: 2.1 7/15

^{2.} These READ cycles may also be BYTE READ cycles (either $\overline{\text{CASL}}$ or $\overline{\text{CASH}}$ active).

^{3.} Only one \overline{CAS} must be active (\overline{CASL} or \overline{CASH}).

READ CYCLE

EARLY WRITE CYCLE

Note: 1. toff1 is referenced from the rising edge of \overline{RAS} or \overline{CAS} , whichever occurs last.

Publication Date: Jun. 2006 Revision: 2.1 8/15

READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE CYCLES)

EDO-PAGE-MODE READ CYCLE

*NOTE : 1. toff1 is referenced from the rising edge of \overline{RAS} or \overline{CAS} , whichever occurs last.

2. the can be measured from falling edge of \overline{CAS} to falling edge of \overline{CAS} , or from rising edge of \overline{CAS} to rising edge of \overline{CAS} . Both measurements must meet the tree specification.

Publication Date: Jun. 2006 Revision: 2.1 9/15

RAS VIH tpc (NOTE1) trsh tcas,tclch tcas,tclch trco tсР CASL, CASH VIH trad tranj tasc tcan tasc | tcah ${\tt ADDR} \ \, {\overset{{\tt Vih}}{{\tt Vil}}}$ COLUMN COLUMN tcwl tcwL twcs twch **t**wcн twcн twp twp twp. twcr trwL tohr tон tos tos tos. tон VALID DATA VALID DATA VALID DATA

EDO-PAGE-MODE EARLY-WRITE CYCLE

EDO-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE CYCLES)

Note: 1. tpc can be measured from falling edge to falling edge of $\overline{\text{CAS}}$, or from rising edge to rising edge of $\overline{\text{CAS}}$. Both measurements must meet the tpc specification.

Elite Memory Technology Inc Publication Date: Jun. 2006 Revision: 2.1 10/15

EDO-PAGE-MODE READ-EARLY-WRITE CYCLE (Psuedo READ-MODIFY-WRITE)

\overline{RAS} ONLY REFRESH CYCLE (ADDR = A0~A8; \overline{OE} , \overline{WE} = DON'T CARE)

Publication Date: Jun. 2006 Revision: 2.1 11/15

CBR REFRESH CYCLE (A0~A8; OE = DON'T CARE)

HIDDEN REFRESH CYCLE (WE = HIGH; OE = LOW)

Note : 1. to_{FF1} is reference from the rising edge of \overline{RAS} or \overline{CAS} , whichever occurs last.

Publication Date: Jun. 2006 Revision: 2.1 12/15 **EliteMT**

M11B416256A

PACKING DIMENSIONS

40-LEAD SOJ(400mil)

SECTION I

SECTION II

Symbol	Dimension in mm		Dimension in inch			Symbol	Dimension in mm			Dimension in inch			
	Min	Norm	Max	Min	Norm	Max		Min	Norm	Max	Min	Norm	Max
Α	3.250	3.510	3.760	0.128	0.138	0.148	E	10.920	11.176	11.430	0.430	0.440	0.450
A 1	2.080			0.082			E 1	10.030	10.160	10.290	0.395	0.400	0.405
A 2	2.790 REF		0.110 REF			E 2	9.40 BSC			0.370 BSC			
b	0.380	0.460	0.560	0.015	0.018	0.022	R 1	0.760	0.890	1.020	0.030	0.035	0.040
b ₂	0.	0.635 REF 0.025 F		.025 RE	F	θ 1	0°		10°	0°		10°	
С	0.180	0.250	0.360	0.007	0.010	0.014	D	25.91	26.040	26.290	1.02	1.025	1.035
е	1.270 BSC		0.050 BSC										

Elite Memory Technology Inc

Publication Date: Jun. 2006 Revision: 2.1 13/15

PACKING DIMENSIONS

40 / 44-LEAD TSOP(II) DRAM(400mil)

Symbol	Din	ension in	mm	Dimension in inch				
	Min	Norm	Max	Min	Norm	Max		
Α			1.20			0.047		
A 1	0.05		0.15	0.002		0.006		
A2	0.95	1.00	1.05	0.037	0.039	0.042		
b	0.30		0.45	0.012		0.018		
b1	0.30	0.35	0.40	0.012	0.014	0.016		
С	0.12		0.21	0.005		0.008		
с1	0.10		0.16	0.004		0.006		
D	18.28	18.41	18.54	0.720	0.725	0.730		
ZD	(0.805 RE	F	0.0317 REF				
E	11.56	11.76	11.96	0.455	0.463	0.471		
E1	10.03	10.16	10.29	0.395	0.400	0.4		
L	0.40	0.59	0.69	0.016	0.023	0.027		
L1		0.80 REF	•	0.031 REF				
е		0.80 BSC	;	0.0315 BSC				
θ	0	° ~ 7° R	EF	F 0° ~ 7° REF				

Publication Date: Jun. 2006 Revision: 2.1 14/15

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of EliteMT.

The contents contained in this document are believed to be accurate at the time of publication. EliteMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by EliteMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of EliteMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

EliteMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.

Publication Date: Jun. 2006 Revision: 2.1 15/15