

Partha Pratim Das

Week Recap

Objectives & Outline

Features of Good Relational Design

Redundancy and Anomaly

Atomic Domains and First Normal Form

Module Summary

Database Management Systems

Module 21: Relational Database Design/1

Partha Pratim Das

Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

Partha Pratio

Week Recap

Objectives Outline

Features of Good Relational Design Redundancy and Anomaly Decomposition

Atomic Domains and First Normal Form

- Discussed relational algebra with examples
- Introduced tuple relational and domain relational calculus
- Illustrated equivalence of algebra and calculus
- Introduced the Design Process for Database Systems
- Elucidated the E-R Model for real world representation with entities, entity sets, attributes, and relationships
- Illustrated ER Diagram notation for ER Models
- Discussed translation of ER Models to Relational Schema and extended features of ER Model
- Deliberated on various design issues

Module Objectives

Module 21

Partha Pratii Das

Week Reca

Objectives & Outline

Features of Good Relational Design Redundancy and

Decomposition

Atomic Domain

- To identify the features of good relational design
- To familiarize with the First Normal Form

Module Outline

Module 21

Partha Pratii Das

Week Reca

Objectives & Outline

Features of Good Relational Design Redundancy and

Atomic Domains and First Normal

- Features of Good Relational Design
- Atomic Domains and First Normal Form

Partha Pratim

Week Recap

Objectives & Outline

Features of Good Relational Design

Anomaly

Decomposition

Atomic Domains and First Normal Form

Module Summary

Features of Good Relational Design

Database Management Systems Partha Pratim Das 21.5

Good Relational Design

Module 21

Partha Pratin Das

Week Reca

Outline

Features of Good Relational Design Redundancy and Anomaly

Atomic Domains and First Normal Form

- Reflects *real-world structure* of the problem
- Can represent all expected data over time
- Avoids *redundant storage* of data items
- Provides efficient access to data
- Supports the maintenance of data integrity over time
- Clean, consistent, and easy to understand
- Note: These objectives are sometimes contradictory!

What is a Good Schema?

Module 21

Partha Pratir Das

Week Recap
Objectives &
Outline

Features of Good Relational Design

Redundancy and Anomaly Decomposition

Atomic Domains and First Normal Form

Module Summar

instructor_with_department

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

- ID: Key
- building, budget: Redundant Information
- name, salary, dept_name: No Redundant Information

instructor

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

department

	dept_name	building	budget
	Biology	Watson	90000
	Comp. Sci.	Taylor	100000
	Elec. Eng.	Taylor	85000
	Finance	Painter	120000
	History	Painter	50000
	Music	Packard	80000
s	Physics	Watson	70000

Database Management Systems

Partha Pratim Das

21.7

What is a Good Schema? (2)

Module 21

Partha Pratin Das

Week Reca

Objectives Outline

Features of Good Relational Design

Redundancy and Anomaly Decomposition

Atomic Domains and First Normal Form

Module Summary

- Consider combining relations
 - sec_class(<u>sec_id</u>, building, room_number) and
 - o section(course_id, sec_id, semester, year)

into one relation

- section(<u>course_id</u>, <u>sec_id</u>, <u>semester</u>, <u>year</u>, <u>building</u>, <u>room_number</u>)
- No repetition in this case

Redundancy and Anomaly

Module 21

Partha Pratin Das

Objectives & Outline

Features of Good Relational Design Redundancy and Anomaly Decomposition

Atomic Domains and First Normal Form

Aodule Summai

- Redundancy: having multiple copies of same data in the database.
 - o This problem arises when a database is not normalized
 - It leads to anomalies
- Anomaly: inconsistencies that can arise due to data changes in a database with insertion, deletion, and update
 - These problems occur in poorly planned, un-normalised databases where all the data is stored in one table (a flat-file database)

There can be three kinds of anomalies

- Insertions Anomaly
- Deletion Anomaly
- Update Anomaly

Redundancy and Anomaly (2)

Module 21

Partha Pratin Das

Week Recar Objectives of Outline

Features of Good Relational Design Redundancy and Anomaly Decomposition

Atomic Domains and First Normal Form

Module Sum

Insertions Anomaly

- When the insertion of a data record is not possible without adding some additional unrelated data to the record
- We cannot add an Instructor in *instructor_with_department* if the *department* does not have a *building* or *budget*

Deletion Anomaly

- When deletion of a data record results in losing some unrelated information that was stored as part of the record that was deleted from a table
- We delete the last Instructor of a Department from *instructor_with_department*, we lose *building* and *budget* information

• Update Anomaly

- When a data is changed, which could involve many records having to be changed, leading to the possibility of some changes being made incorrectly
- When the budget changes for a Department having large number of Instructors in instructor_with_department application may miss some of them

Redundancy and Anomaly (3)

Module 21

Partha Pratir Das

Outline

Features of Goo
Relational Desig

Redundancy and
Anomaly

Atomic Domains and First Normal Form

Nodule Summai

- We have observed the following:
 - Redundancy ⇒ Anomaly
 - Relations instructor and department is better than instructor_with_department
- What causes redundancy?
 - Dependency ⇒ Redundancy
 - dept_name uniquely decides building and budget. A department cannot have two
 different budget or building. So building and budget depends on dept_name
- How to remove, or at least minimize, redundancy?
 - Decompose (partition) the relation into smaller relations
 - instructor_with_department can be decomposed into instructor and department
 - $\circ \ \, \textbf{Good Decomposition} \, \Rightarrow \, \textbf{Minimization of Dependency}$
- Is every decomposition good?
 - No. It needs to preserve information, honour the dependencies, be efficient etc.
 - Various schemes of normalization ensure good decomposition
 - Normalization ⇒ Good Decomposition

Database Management Systems Partha Pratim Das 21.11

Decomposition

Module 21

Partha Pratin Das

Week Recap
Objectives &
Outline

Features of Good Relational Design Redundancy and Anomaly Decomposition

Atomic Domains and First Normal Form

Aodule Summai

- Suppose we had started with *inst_dept*. How would we know to split up (**decompose**) it into *instructor* and *department*?
- Write a rule "if there were a schema (dept_name, building, budget), then dept_name would be a candidate key"
- Denote as a functional dependency: dept_name → building, budget
- In inst_dept, because dept_name is not a candidate key, the building and budget of a
 department may have to be repeated.
 - This indicates the need to decompose inst_dept

Decomposition (2)

Module 21

Partha Pratin Das

Week Recap

Features of Good Relational Design Redundancy and

Decomposition

Atomic Domains and First Normal Form

- Not all decompositions are good
- Suppose we decompose employee(ID, name, street, city, salary) into employee1 (<u>ID</u>, name) employee2 (name, street, city, salary)
- Note that if *name* can be duplicate, then *employee*2 is a weak entity set and cannot exist without an identifying relationship
- Consequently, this decomposition cannot preserve the information
- The next slide shows how we lose information we cannot reconstruct the *original employee* relation and so, this is a **lossy decomposition**.

Decomposition (3): Lossy Decomposition

Module 21

Partha Pratir Das

Week Reca

Objectives Outline

Relational Design

Decomposition

and First Normal

Decomposition (4): Lossless-Join Decomposition

Module 21

Partha Pratim Das

Week Reca

Objectives Outline

Features of Good Relational Design Redundancy and

Decomposition

Atomic Domains and First Normal Form

- Lossless Join Decomposition
- Decomposition of R = (A, B, C) $R_1 = (A, B), R_2 = (B, C)$

Α	В
a B	1
Пд	, _B (r)

$$\prod_{\mathsf{A},\mathsf{B}}(\mathsf{r})\bowtie\prod_{\mathsf{B},\mathsf{C}}(\mathsf{r})$$

Decomposition (5): Lossless-Join Decomposition

Module 21

Partha Pratim Das

Week Reca

Features of Good Relational Design

Decomposition

Atomic Domains and First Normal Form

Nodule Summar

• Lossless Join Decomposition is a decomposition of a relation R into relations R_1 , R_2 such that if we perform natural join of two smaller relations it will return the original relation

$$R_1 \cup R_2 = R, R_1 \cap R_2 \neq \phi$$

 $\forall r \in R, r_1 = \sqcap_{R_1}(r), r_2 = \sqcap_{R_2}(r)$
 $r_1 \bowtie r_2 = r$

- This is effective in removing redundancy from databases while preserving the original data
- In other words by lossless decomposition it becomes feasible to reconstruct the relation R from decomposed tables R_1 and R_2 by using Joins

Partha Pratim

Week Recap

Objectives & Outline

Relational Designation Redundancy and Anomaly

Atomic Domains

Form

Module Summary

Atomic Domains and First Normal Form

Database Management Systems Partha Pratim Das 21.17

Partha Pratii Das

Week Reca Objectives Outline

Features of Good Relational Desigr Redundancy and Anomaly Decomposition

Atomic Domains and First Normal Form

- A domain is atomic if its elements are considered to be indivisible units
 - Examples of non-atomic domains:
 - ▷ Set of names, composite attributes
 - ▷ Identification numbers like CS101 that can be broken up into parts
- A relational schema R is in First Normal Form (INF) if
 - the domains of all attributes of R are *atomic*
 - o the value of each attribute contains only a single value from that domain
- Non-atomic values complicate storage and encourage redundant (repeated) storage of data
 - Example: Set of accounts stored with each customer, and set of owners stored with each account
 - We assume all relations are in first normal form

First Normal Form (2)

Module 21

Partha Pratim Das

Week Reca

Objectives &

Relational Design
Redundancy and
Anomaly
Decomposition

Atomic Domains and First Normal Form

- Atomicity is actually a property of how the elements of the domain are used
 - o Strings would normally be considered indivisible
 - Suppose that students are given roll numbers which are strings of the form CS0012 or EE1127
 - If the first two characters are extracted to find the department, the domain of roll numbers is not atomic
 - Doing so is a bad idea
 - Leads to encoding of information in application program rather than in the database

Partha Pratir Das

Week Reca

Objectives of Outline

Relational Design Redundancy and Anomaly

Atomic Domains and First Normal Form

Module Summar

• The following is not in 1NF

Customer

Customer ID	First Name	Surname	Telephone Number
123	Pooja	Singh	555-861-2025, 192-122-1111
456	San	Zhang	(555) 403-1659 Ext. 53; 182-929-2929
789	John	Doe	555-808-9633

- o A telephone number is composite
- o Telephone number is multi-valued

Partha Pratii Das

Week Reca

Objectives Outline

Features of Goo Relational Desig Redundancy and Anomaly

Atomic Domains and First Normal Form

Module Summary

• Consider:

Customer

Customer ID	First Name	Surname	Telephone Number1	Telephone Number2
123	Pooja	Singh	555-861-2025	192-122-1111
456	San	Zhang	(555) 403-1659 Ext. 53	182-929-2929
789	John	Doe	555-808-9633	

- o is in 1NF if telephone number is not considered composite
- However, conceptually, we have two attributes for the same concept
 - ▶ Arbitrary and meaningless ordering of attributes

 - ▶ Why only two numbers?

First Normal Form (5)

Module 21

Partha Pratir Das

Week Reca

Objectives Outline

Features of Good Relational Design Redundancy and Anomaly

Atomic Domains and First Normal Form

∕lodule Summary

• Is the following in 1NF?

Customer

Customer ID	First Name	Surname	Telephone Number
123	Pooja	Singh	555-861-2025
123	Pooja	Singh	192-122-1111
456	San	Zhang	182-929-2929
456	San	Zhang	(555) 403-1659 Ext. 53
789	John	Doe	555-808-9633

- Duplicated information
- o ID is no more the key. Key is (ID, Telephone Number)

Partha Pratii Das

Week Reca

Objectives Outline

Redundancy and Anomaly

Atomic Domains and First Normal Form

Aodule Summary

• Better to have 2 relations:

Customer Name			Customer Telephone Number		
Customer ID First Name Surname		Customer ID	Telephone Number		
123	Pooja	Singh	123	555-861-2025	
456	San	Zhang	123	192-122-1111	
789	John	Doe	456	(555) 403-1659 Ext. 53	
			456	182-929-2929	
			789	555-808-9633	

- One-to-Many relationship between parent and child relations
- o Incidentally, satisfies 2NF and 3NF
- Decomposition helps to attain 1NF for the embedded one-to-many relationship

Module Summary

Module 21

Partha Pratin Das

Week Reca

Objectives Outline

Features of Good Relational Design Redundancy and Anomaly

Atomic Domains and First Norma

Module Summary

• Identified the features of good relational design

• Familiarized with the First Normal Form

Slides used in this presentation are borrowed from http://db-book.com/ with kind permission of the authors.

Edited and new slides are marked with "PPD".

Partha Pratim Das

Objectives of Outline

D<mark>ependencies</mark> Armstrong's Axioms

Module Summar

Database Management Systems

Module 22: Relational Database Design/2

Partha Pratim Das

Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

Database Management Systems Partha Pratim Das 22.1

Module Recap

Module 22

Partha Pratii Das

Objectives & Outline

Functional
Dependencies
Armstrong's Axiom

- Identified the features of good relational design
- Familiarized with the First Normal Form

Module Objectives

Module 22

Partha Pratin Das

Objectives & Outline

Dependencies

Armstrong's Axion

Module Summa

• To Introduce Functional Dependencies

Module Outline

Module 22

Partha Pratim Das

Objectives & Outline

Dependencies

Armstrong's Axion

Module Summar

• Functional Dependencies

Partha Pratim Das

Objectives of Outline

Functional Dependencies

Armstrong's Axiom

Module Summary

Functional Dependencies

Database Management Systems Partha Pratim Das 22.5

Goal: Devise a Theory for Good Relations

Module 22

Partha Pratin Das

Objectives Outline

Functional Dependencies Armstrong's Axiom

Armstrong's Axioms Closure of FDs

Closure of FDs

Module Summai

- Decide whether a particular relation R is in "good" form.
- In the case that a relation R is not in "good" form, decompose it into a set of relations $\{R_1, R_2, \ldots, R_n\}$ such that
 - o each relation is in good form
 - o the decomposition is a lossless-join decomposition
- The theory is based on:
 - Functional dependencies
 - Multivalued dependencies
 - o Other dependencies

Functional Dependencies

Module 22

Partha Pratin Das

Objectives Outline

Functional Dependencies

Armstrong's Axiom

Module Summai

- Constraints on the set of legal relations
- Require that the value for a certain set of attributes determines uniquely the value for another set of attributes
- A functional dependency is a generalization of the notion of a key

Database Management Systems Partha Pratim Das 22.7

Functional Dependencies (2)

Module 22

Partha Pratin Das

Objectives Outline

Functional
Dependencies
Armstrong's Axioms

Module Summa

ullet Let R be a relation schema

$$\alpha \subseteq R \text{ and } \beta \subseteq R$$

The functional dependency or FD

$$\alpha \to \beta$$

holds on R if and only if for any legal relations r(R), whenever any two tuples t_1 and t_2 of r agree on the attributes α , they also agree on the attributes β . That is,

$$t_1[\alpha] = t_2[\alpha] \Rightarrow t_1[\beta] = t_2[\beta]$$

• Example: Consider r(A, B) with the following instance of r.

Α	В
1	4
1	5
3	7

• On this instance, $A \to B$ does **NOT** hold, but $B \to A$ does hold. So we cannot have tuples like (2, 4), or (3, 5), or (4, 7) added to the current instance.

Partha Pratim Das

Functional Dependencies (3)

Module 22

Partha Pratim Das

Objectives Outline

Functional Dependencies

Armstrong's Axioms

Module Summar

- ullet K is a superkey for relation schema R if and only if K o R
- K is a candidate key for R if and only if
 - \circ $K \rightarrow R$ and
 - \circ for no $\alpha \subset K$, $\alpha \to R$
- Functional dependencies allow us to express constraints that cannot be expressed using superkeys. Consider the schema:

inst_dept(<u>ID</u>, name, salary, dept_name, building, budget)

• We expect these functional dependencies to hold:

dept_name → building

 $dept_name \rightarrow budget$

ID o budget

but would not expect the following to hold:

 $dept_name \rightarrow salary$

Functional Dependencies (4)

Module 22

Partha Pratim Das

Objectives Outline Functional

Dependencies Armstrong's Axioms

Closure of FDs

• We use functional dependencies to:

- o test relations to see if they are legal under a given set of functional dependencies.
 - ▶ If a relation r is legal under a set F of functional dependencies, we say that r satisfies F
- o specify constraints on the set of legal relations
 - ▶ We say that F holds on R if all legal relations on R satisfy the set of functional dependencies F
- **Note**: A specific instance of a relation schema may satisfy a functional dependency even if the functional dependency does not hold on all legal instances
 - \circ For example, a specific instance of instructor may, by chance, satisfy $name
 ightarrow \mathit{ID}$
 - \circ In such cases we do not say that F holds on R

Functional Dependencies (5)

Module 22

Partha Pratim Das

Objectives of Outline

Functional Dependencies

Armstrong's Axioms

Module Summa

• A functional dependency is trivial if it is satisfied by all instances of a relation

o Example:

 \triangleright *ID*, name \rightarrow *ID*

hd name
ightarrow name

• In general, $\alpha \to \beta$ is trivial if $\beta \subseteq \alpha$.

Functional Dependencies (6)

Module 22

Partha Pratir Das

Objectives Outline Functional

Dependencies

Armstrong's Axioms

Closure of FDs

Module Summary

• Functional dependencies are:

StudentID Semester		Lecture	TA
1234	6	Numerical Methods	John
1221	4	Numerical Methods	Smith
1234	6	Visual Computing	Bob
1201	2	Numerical Methods	Peter
1201	2	Physics II	Simon

 \circ StudentID \rightarrow Semester StudentID, Lecture \rightarrow TA $\{StudentID, Lecture\} \rightarrow \{TA, Semester\}$

Functional Dependencies (7)

Module 22

Partha Pratir Das

Objectives Outline

Functional Dependencies

Armstrong's Axioms

Module Summar

• Functional dependencies are:

Employee ID	Employee Name	Department ID	Department Name
0001	John Doe	1	Human Resources
0002	Jane Doe	2	Marketing
0003	John Smith	1	Human Resources
0004	Jane Goodall	3	Sales

 \circ EmployeeID \rightarrow EmployeeName

EmployeeID
ightarrow DepartmentID

 $DepartmentID \rightarrow DepartmentName$

Functional Dependencies (8): Armstrong's Axioms

Module 22

Partha Pratim Das

Objectives Outline

Functional
Dependencies

Armstrong's Axioms

Module Summai

- Given a set of Functional Dependencies *F*, we can infer new dependencies by the **Armstrong's Axioms**:
 - \circ **Reflexivity**: if $\beta \subseteq \alpha$, then $\alpha \to \beta$
 - **Augmentation**: if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
 - \circ Transitivity: if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- ullet These axioms can be repeatedly applied to generate new FDs and added to F
- A new FD obtained by applying the axioms is said to the logically implied by F
- The process of generations of FDs terminate after finite number of steps and we call it the **Closure Set** F⁺ for FDs F. This is the set of **all** FDs logically implied by F
- Clearly, $F \subseteq F^+$
- These axioms are
 - o Sound (generate only functional dependencies that actually hold), and
 - Complete (eventually generate all functional dependencies that hold)
- Prove the axioms from definitions of FDs
- Prove the soundness and completeness of the axioms
 Partha Pratim Das

Functional Dependencies (9): Closure of a Set of FDs

Module 22

Partha Pratir Das

Objectives Outline

Functional
Dependencies
Armstrong's Axiom

Module Summai

- $F = \{A \rightarrow B, B \rightarrow C\}$
- $F^+ = \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$

Module Summary

Module 22

Module Summary

• Introduced the notion of Functional Dependencies

Slides used in this presentation are borrowed from http://db-book.com/ with kind permission of the authors. Edited and new slides are marked with "PPD".

Database Management Systems 22 16 Partha Pratim Das

Module 23

Partha Pratim Das

Objectives & Outline

FD Theory

Armstrong's Axioms

Closure of Attribute

Decomposition using FDs BCNF 3NF

Normalization

Module Summary

Database Management Systems

Module 23: Relational Database Design/3

Partha Pratim Das

Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

Module Recap

Module 23

Partha Pratir Das

Objectives & Outline

FD Theory
Armstrong's Axior
Closure of FDs
Closure of Attribu

Decomposition using FDs
BCNF

Normalization

Module Summar

• Introduced the notion of Functional Dependencies

Module Objectives

Module 23

Partha Pratii Das

Objectives & Outline

Armstrong's Axioms
Closure of FDs

Decompositio using FDs BCNF 3NF

Module Summar

- To develop the theory of functional dependencies
- To understand how a schema can be decomposed for a 'good' design using functional dependencies

Module Outline

Module 23

Partha Pratii Das

Objectives & Outline

FD Theory
Armstrong's Axioms
Closure of FDs
Closure of Attribute

Decomposition using FDs
BCNF
3NF

Module Summary

- Functional Dependency Theory
- Decomposition Using Functional Dependencies

Module 23

artha Prati Das

Objectives Outline

FD Theory

Closure of FDs

Closure of Attribut

Decompositio using FDs BCNF

3NF Normalizatio

Module Summar

Functional Dependency Theory

Database Management Systems Partha Pratim Das 23.5

Functional Dependencies: Armstrong's Axioms

Module 23

Partha Pratin Das

Objectives Outline

Armstrong's Axioms
Closure of FDs
Closure of Attributes

using FDs
BCNF
3NF

Normalization

• Given a set of Functional Dependencies *F*, we can infer new dependencies by the **Armstrong's Axioms**:

- \circ **Reflexivity**: if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- \circ **Augmentation**: if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- \circ Transitivity: if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- These axioms can be repeatedly applied to generate new FDs and added to F
- A new FD obtained by applying the axioms is said to the logically implied by F
- The process of generations of FDs terminate after finite number of steps and we call it the Closure Set F⁺ for FDs F. This is the set of all FDs logically implied by F
- Clearly, $F \subseteq F^+$
- These axioms are
 - Sound (generate only functional dependencies that actually hold), and
 - Complete (eventually generate all functional dependencies that hold)
- Prove the axioms from definitions of FDs
- Prove the soundness and completeness of the axioms
 Partha Pratim Das

Functional Dependencies (2): Closure of a Set FDs

Module 23

Partha Pratir Das

Objectives Outline

FD Theory
Armstrong's Axion

Closure of FDs

Closure of Attributes

D------

using FDs

BCNF

Normalization

Module Summary

• $F = \{A \rightarrow B, B \rightarrow C\}$

•
$$F^+ = \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$$

Database Management Systems Partha Pratim Das 23.7

Functional Dependencies (3): Closure of a Set FDs

Module 23

Partha Pratin Das

Objectives Outline

FD Theory

Armstrong's Axioms

Closure of FDs

Closure of Attributes

Decomposition using FDs
BCNF
3NF

Normalization

Module Summa

• R = (A, B, C, G, H, I) $F = \{A \rightarrow B\}$ $A \rightarrow C$ $CG \rightarrow H$ $CG \rightarrow I$

• Some members of *F*⁺

 $B \rightarrow H$

- \circ $A \rightarrow H$
 - \triangleright by transitivity from $A \rightarrow B$ and $B \rightarrow H$
- \circ $AG \rightarrow I$
 - \triangleright by augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$ and then transitivity with $CG \rightarrow I$
- \circ $CG \rightarrow HI$
 - ightharpoonup by augmenting CG o I with CG to infer CG o CGI, and augmenting CG o H with I to infer CGI o HI, and then transitivity

Functional Dependencies (4): Closure of a Set FDs: Computing F^+

Module 23

Partha Pratin Das

Objectives Outline

Armstrong's Axioms
Closure of FDs

Decomposition using FDs BCNF

3NF Normalization

Module Summai

```
• To compute the closure of a set of functional dependencies F: F^+ \leftarrow F repeat
```

```
for each functional dependency f in F^+ apply reflexivity and augmentation rules on f add the resulting functional dependencies to F^+ for each pair of functional dependencies f_1 and f_2 in F^+ if f_1 and f_2 can be combined using transitivity

then add the resulting functional dependency to F^+
```

until F^+ does not change any further

• Note: We shall see an alternative procedure for this task later

Functional Dependencies (5): Armstrong's Axioms: Derived Rules

Module 23

Partha Pratim Das

Objectives Outline

Armstrong's Axioms

Closure of FDs

Closure of Attributes

Decomposition using FDs BCNF 3NF

Normalization

Additional Derived Rules:

- \circ Union: if $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds, then $\alpha \to \beta \gamma$ holds
- \circ **Decomposition**: if $\alpha \to \beta \gamma$ holds, then $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds
- \circ **Pseudotransitivity**: if $\alpha \to \beta$ holds and $\gamma\beta \to \delta$ holds, then $\alpha\gamma \to \delta$ holds
- The above rules can be inferred from basic Armstrong's axioms (and hence are not included in the basic set). They can be proven independently too
 - \circ **Reflexivity**: if $\beta \subseteq \alpha$, then $\alpha \to \beta$
 - **Augmentation**: if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
 - \circ Transitivity: if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- Prove the Rules from:
 - o Basic Axioms
 - The definitions of FDs

Functional Dependencies (6): Closure of Attribute Sets

Module 23

Partha Pratim Das

Objectives Outline

FD Theory

Armstrong's Axioms

Closure of FDs

Closure of Attributes

Decomposition using FDs BCNF 3NF

Module Summar

• Given a set of attributes α , define the closure of α under F (denoted by α^+) as the set of attributes that are functionally determined by α under F

```
• Algorithm to compute \alpha^+, the closure of \alpha under F result \leftarrow \alpha while (changes to result) do for each \beta \rightarrow \gamma in F do begin if \beta \subseteq \text{result} then result \leftarrow \text{result} \cup \gamma end
```


Functional Dependencies (7): Closure of Attribute Sets: Example

Module 23

Partha Pratin Das

Objectives Outline

FD Theory
Armstrong's Axioms
Closure of FDs

Closure of Attributes

Decomposition using FDs

BCNF

Normalization

Module Summar

• R = (A, B, C, G, H, I)

• $F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$

• (AG)+

a) result = AG

b) result = ABCG ($A \rightarrow C$ and $A \rightarrow B$)

c) result = ABCGH ($CG \rightarrow H$ and $CG \subseteq AGBC$)

d) result = ABCGHI ($CG \rightarrow I$ and $CG \subseteq AGBCH$)

• Is AG a candidate key?

a) Is AG a super key?

i) Does $AG \rightarrow R? == ls (AG)^+ \supseteq R$

b) Is any subset of AG a superkey?

i) Does $A \rightarrow R$? == Is $(A)^+ \supseteq R$

ii) Does $G \rightarrow R? == \operatorname{ls} (G)^{+} \supset R$

Functional Dependencies (7): Closure of Attribute Sets: Use

Module 23

Partha Pratir Das

Objectives Outline

Armstrong's Axioms
Closure of FDs
Closure of Attributes

Decomposition using FDs
BCNF
3NF

Module Sum

There are several uses of the attribute closure algorithm:

- Testing for superkey:
 - \circ To test if α is a superkey, we compute $\alpha^+,$ and check if α^+ contains all attributes of R.
- Testing functional dependencies
 - To check if a functional dependency $\alpha \to \beta$ holds (or, in other words, is in F^+), just check if $\beta \subseteq \alpha^+$
 - \circ That is, we compute α^+ by using attribute closure, and then check if it contains β .
 - o Is a simple and cheap test, and very useful
- Computing closure of *F*
 - For each $\gamma \subseteq R$, we find the closure γ^+ , and for each $S \subseteq \gamma^+$, we output a functional dependency $\gamma \to S$.

Decomposition using Functional Dependencies

Module 23

artha Prati Das

Objectives Outline

> FD Theory Armstrong's Axion Closure of FDs

Decomposition

using FDs BCNF

3NF Normalization

Module Summ

Decomposition using Functional Dependencies

Database Management Systems Partha Pratim Das 23.14

BCNF: Boyce-Codd Normal Form

Module 23

Partha Pratin Das

Objectives Outline

FD Theory

Armstrong's Axioms

Closure of FDs

Decomposition using FDs
BCNF
3NF

Normalization

 A relation schema R is in BCNF with respect to a set F of FDs if for all FDs in F⁺ of the form

 $\alpha \to \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$ at least one of the following holds:

- $\circ \ \alpha \to \beta$ is trivial (that is, $\beta \subseteq \alpha$)
- $\circ \alpha$ is a superkey for R
- Example schema not in BCNF: instr_dept (<u>ID</u>, name, salary, <u>dept_name</u>, building, budget)
- because the non-trivial dependency dept_name → building, budget holds on instr_dept, but dept_name is not a superkey

BCNF (2): Decomposition

Module 23

Partha Pratin Das

Objectives Outline

> FD Theory Armstrong's Axioms Closure of FDs Closure of Attributes

Decomposition using FDs

3NF

Normalizati

Module Sumi

• If in schema R and a non-trivial dependency $\alpha \to \beta$ causes a violation of BCNF, we decompose R into:

$$\circ \ \alpha \cup \beta$$

$$\circ (R - (\beta - \alpha))$$

In our example,

$$\circ \ \alpha = dept_name$$

$$\circ \ \beta = \textit{building}, \textit{budget}$$

$$\circ$$
 dept_name \to building, budget

inst_dept is replaced by

$$\circ$$
 $(\alpha \cup \beta) = (dept_name, building, budget)$

$$\circ (R - (\beta - \alpha)) = (ID, name, salary, dept_name)$$

$$\triangleright$$
 ID \rightarrow name, salary, dept_name

BCNF (3): Lossless Join

Module 23

Partha Pratin Das

Objectives Outline

FD Theory

Armstrong's Axioms

Closure of FDs

Closure of Attributes

Decomposition using FDs
BCNF
3NF

Module Summai

- If we decompose a relation R into relations R_1 and R_2 :
 - ∘ Decomposition is lossy if $R_1 \bowtie R_2 \supset R$
 - ∘ Decomposition is lossless if $R_1 \bowtie R_2 = R$
- To check for lossless join decomposition using FD set, following must hold:
 - \circ Union of Attributes of R_1 and R_2 must be equal to attribute of R

$$R_1 \cup R_2 = R$$

 \circ Intersection of Attributes of R_1 and R_2 must not be NULL

$$R_1 \cap R_2 \neq \Phi$$

 \circ Common attribute must be a key for at least one relation (R_1 or R_2)

$$R_1\cap R_2 \to R_1 \text{ or } R_1\cap R_2 \to R_2$$

• Prove that BCNF ensures Lossless Join

BCNF (4): Dependency Preservation

Module 23

Partha Pratir Das

Objectives Outline

FD Theory
Armstrong's Axioms
Closure of FDs
Closure of Attribute

Decomposition using FDs

BCNF

3NF

Normalization

- Constraints, including FDs, are costly to check in practice unless they pertain to only one relation
- If it is sufficient to test only those dependencies on each individual relation of a decomposition in order to ensure that *all* functional dependencies hold, then that decomposition is *dependency preserving*.
- It is not always possible to achieve both BCNF and dependency preservation. Consider:

$$\circ R = \mathit{CSZ}, F = \{\mathit{CS} \rightarrow \mathit{Z}, \mathit{Z} \rightarrow \mathit{C}\}$$

- \circ Key = CS
- \circ $CS \rightarrow Z$ satisfies BCNF, but $Z \rightarrow C$ violates
- Decompose as: $R_1 = ZC, R_2 = CSZ (C Z) = SZ$
- \circ $R_1 \cup R_2 = \mathit{CSZ} = R$, $R_1 \cap R_2 = Z \neq \Phi$, and $R_1 \cap R_2 = Z \rightarrow \mathit{ZC} = R_1$. So it has lossless join
- \circ However, we cannot check $CS \to Z$ without doing a join. Hence it is not dependency preserving
- We consider a weaker normal form, known as Third Normal Form (3NF)

3NF: Third Normal Form

Module 23

Partha Pratim Das

Objectives Outline

Armstrong's Axioms
Closure of FDs

Decomposition using FDs BCNF 3NF

Normalization

• A relation schema *R* is in **third normal form (3NF)** if for all:

$$\alpha \to \beta \in F^+$$

at least one of the following holds:

- $\circ \ \alpha \to \beta$ is trivial (that is, $\beta \subseteq \alpha$)
- $\circ \ \alpha$ is a superkey for R
- Each attribute A in $\beta-\alpha$ is contained in a candidate key for R (Nore: Each attribute may be in a different candidate key)
- If a relation is in BCNF it is in 3NF (since in BCNF one of the first two conditions above must hold)
- Third condition is a minimal relaxation of BCNF to ensure dependency preservation (will see why later)

Goals of Normalization

Module 23

Partha Pratim Das

Objectives Outline

Armstrong's Axioms
Closure of FDs
Closure of Attributes

Decomposition using FDs BCNF 3NF

Normalization

Module Summai

- Let R be a relation scheme with a set F of functional dependencies
- Decide whether a relation scheme R is in "good" form
- In the case that a relation scheme R is not in "good" form, decompose it into a set of relation scheme $\{R_1, R_2, ..., R_n\}$ such that
 - o each relation scheme is in good form
 - the decomposition is a lossless-join decomposition
 - o Preferably, the decomposition should be dependency preserving

Problems with Decomposition

Module 23

Partha Pratir Das

Objectives Outline

Armstrong's Axioms
Closure of FDs
Closure of Attributes

Decomposition using FDs
BCNF
3NF

Normalization

Module Summai

There are three potential problems to consider:

- May be impossible to reconstruct the original relation! (Lossiness)
- Dependency checking may require joins
- Some queries become more expensive
 - What is the building for an instructor?

Tradeoff: Must consider these issues vs. redundancy

How good is BCNF?

Module 23

Partha Pratin Das

Objectives Outline

FD Theory

Armstrong's Axioms

Closure of FDs

Closure of Attributes

Decomposition using FDs
BCNF
3NF

Normalization

Module Summar

- There are database schemas in BCNF that do not seem to be sufficiently normalized
- Consider a relation

inst_info (ID, child_name, phone)

o where an instructor may have more than one phone and can have multiple children

ID	child_name	phone
99999 99999 99999	David David William Willian	512-555-1234 512-555-4321 512-555-1234 512-555-4321

inst_info

Database Management Systems Partha Pratim Das 23.22

How good is BCNF? (2)

Module 23

Partha Pratin Das

Objectives Outline

FD Theory

Armstrong's Axioms

Closure of FDs

Closure of Attributes

Decomposition using FDs BCNF 3NF

Normalization

Module Summa

- There are no non-trivial functional dependencies and therefore the relation is in BCNF
- Insertion anomalies that is, if we add a phone 981-992-3443 to 99999, we need to add two tuples

(99999, David, 981-992-3443) (99999, William, 981-992-3443)

How good is BCNF? (3)

Module 23

Partha Pratin Das

Objectives Outline

Armstrong's Axioms
Closure of FDs
Closure of Attributes

Decomposition using FDs BCNF 3NF

Normalization

Module Summary

• Therefore, it is better to decompose *inst_info* into:

inst_child

msc_cma			
ID	child_name		
99999 99999	David William		

inst_phone

ID	phone	
99999	512-555-1234	
99999	512-555-4321	

• This suggests the need for higher normal forms, such as the Fourth Normal Form (4NF)

Module Summary

Module 23

Partha Pratir Das

Objectives Outline

FD Theory

Armstrong's Axioms

Closure of FDs

Closure of Attributes

Decomposition using FDs
BCNF
3NF

Module Summary

• Introduced the theory of functional dependencies

• Discussed issues in "good" design in the context of functional dependencies

Slides used in this presentation are borrowed from http://db-book.com/ with kind permission of the authors.

Edited and new slides are marked with "PPD".

Module 24

Partha Pratim Das

Objectives & Outline

Algorithms for FDs

Attribute Set Closure Extraneous

Equivalence of FD

Canonical Cover of FDs

Practice Problems

Module Summar

Database Management Systems

Module 24: Relational Database Design/4

Partha Pratim Das

Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

Database Management Systems Partha Pratim Das 24.1

Module Recap

Module 24

Partha Pratir Das

Objectives & Outline

Algorithms f

Attribute Set Closure

Equivalence of Fl

FDs

Module Summa

- Introduced the theory of functional dependencies
- Discussed issues in "good" design in the context of functional dependencies

Module Objectives

Module 24

Objectives & Outline

• To Learn Algorithms for Properties of Functional Dependencies

Module Outline

Module 24

Partha Pratim Das

Objectives & Outline

Algorithms f

Attribute Set Closure Extraneous

Equivalence of FI

Canonical Cover

Practice Problem

Module Summa

Algorithms for Functional Dependencies

Algorithms for Functional Dependencies

Module 24

Partha Prati Das

Objectives Outline

Algorithms for FDs

Attribute Set Closure Extraneous

Equivalence of Fl

Canonical Cover of FDs

Practice Problem

nmary Alg

Algorithms for Functional Dependencies

Database Management Systems Partha Pratim Das 24.5

Attribute Set Closure

Module 24

Partha Pratin Das

Objectives Outline

Algorithms fo FDs

Attribute Set Closure Extraneous

Equivalence of FD Sets

Canonical Cover of FDs

Module Summa

•
$$R = (A, B, C, G, H, I)$$

•
$$F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$$

- (AG)⁺
 - a) result = AG
 - b) result = ABCG $(A \rightarrow C \text{ and } A \rightarrow B)$
 - c) result = ABCGH ($CG \rightarrow H$ and $CG \subseteq AGBC$)
 - d) result = ABCGHI ($CG \rightarrow I$ and $CG \subseteq AGBCH$)
- Is AG a candidate key?
 - a) Is AG a super key?
 - i) Does $AG \rightarrow R? == \text{Is } (AG)^+ \supseteq R$
 - b) Is any subset of AG a superkey?
 - i) Does $A \rightarrow R? == \text{Is } (A)^+ \supseteq R$
 - ii) Does $G \to R$? == Is $(G)^+ \supseteq R$

Attribute Set Closure: Uses

Module 24

Partha Pratir Das

Objectives a

Algorithms for FDs

Attribute Set Closure
Extraneous

Equivalence of FD Sets Canonical Cover of FDs

Madula Summa

There are several uses of the attribute closure algorithm:

- Testing for superkey:
 - \circ To test if α is a superkey, we compute $\alpha^+,$ and check if α^+ contains all attributes of R.
- Testing functional dependencies
 - To check if a functional dependency $\alpha \to \beta$ holds (or, in other words, is in F^+), just check if $\beta \subseteq \alpha^+$.
 - \circ That is, we compute α^+ by using attribute closure, and then check if it contains β .
 - o Is a simple and cheap test, and very useful
- Computing closure of F
 - For each $\gamma \subseteq R$, we find the closure γ^+ , and for each $S \subseteq \gamma^+$, we output a functional dependency $\gamma \to S$.

Extraneous Attributes

Module 24

Partha Pratin Das

Objectives Outline

Algorithms for FDs

Attribute Set Closure
Extraneous

Equivalence of FD Sets Canonical Cover of FDs Practice Problems

Module Summ

- Consider a set F of FDs and the FD $\alpha \to \beta$ in F.
 - Attribute A is extraneous in α if $A \in \alpha$ and F logically implies $(F \{\alpha \to \beta\}) \cup \{(\alpha A) \to \beta\}.$
 - Attribute A is extraneous in β if $A \in \beta$ and the set of FDs $(F \{\alpha \to \beta\}) \cup \{\alpha \to (\beta A)\}$ logically implies F.
- *Note:* Implication in the opposite direction is trivial in each of the cases above, since a "stronger" functional dependency always implies a weaker one
- Example: Given $F = \{A \rightarrow C, AB \rightarrow C\}$
 - ∘ B is extraneous in $AB \to C$ because $\{A \to C, AB \to C\}$ logically implies $A \to C$ (that is, the result of dropping B from $AB \to C$).
 - $\circ A^+ = AC \text{ in } \{A \rightarrow C, AB \rightarrow C\}$
- Example: Given $F = \{A \rightarrow C, AB \rightarrow CD\}$
 - \circ C is extraneous in $AB \to CD$ since $AB \to C$ can be inferred even after deleting C
 - \circ $AB^+ = ABCD$ in $\{A \rightarrow C, AB \rightarrow D\}$

Extraneous Attributes (2): Tests

Module 24

Partha Pratin Das

Outline

Algorithms for FDs

Attribute Set Closure
Extraneous
Attributes

Sets
Canonical Cover of
FDs

Nodule Summa

• Consider a set F of functional dependencies and the functional dependency $\alpha \to \beta$ in F.

- To test if attribute $A \in \alpha$ is extraneous in α
 - a) Compute $(\{\alpha\} A)^+$ using the dependencies in F
 - b) Check that $(\{\alpha\} A)^+$ contains β ; if it does, A is extraneous in α
- To test if attribute $A \in \beta$ is extraneous in β
 - a) Compute α^+ using only the dependencies in

$$F' = (F - \{\alpha \to \beta\}) \cup \{\alpha \to (\beta - A)\},\$$

b) Check that α^+ contains A; if it does, A is extraneous in β

Equivalence of Sets of Functional Dependencies

Module 24

Partha Prati Das

Objectives Outline

FDs

Attribute Set Closur

Equivalence of FD Sets Canonical Cover of FDs

Practice Problems

Let F & G are two functional dependency sets.

- These two sets F & G are equivalent if $F^+ = G^+$. That is: $(F^+ = G^+) \Leftrightarrow (F^+ \Rightarrow G \text{ and } G^+ \Rightarrow F)$
- \circ Equivalence means that every functional dependency in F can be inferred from G, and every functional dependency in G an be inferred from F
- F and G are equal only if
 - ∘ F covers G: Means that all functional dependency of G are logically numbers of functional dependency set $F \Rightarrow F^+ \supseteq G$.
 - ∘ *G* covers *F*: Means that all functional dependency of *F* are logically members of functional dependency set $G \Rightarrow G^+ \supseteq F$.

Condition							
F Covers G	True	True	False	False			
G Covers F	True	False	True	False			
Result	F=G	F⊃G	G⊃F	No Comparison			

Canonical Cover

Module 24

Partha Pratin Das

Objectives Outline

FDs
Attribute Set Clo

Attributes
Equivalence of FD
Sets

Canonical Cover of FDs
Practice Problems

Module Summa

- Sets of FDs may have redundant dependencies that can be inferred from the others
- Can we have some kind of "optimal" or "minimal" set of FDs wto work with?
- A Canonical Cover for F is a set of dependencies F_c such that ALL the following properties are satisfied:
 - \circ $F^+ = F_c^+$. Or,
 - \triangleright F logically implies all dependencies in F_c
 - \triangleright F_c logically implies all dependencies in F
 - \circ No functional dependency in F_c contains an extraneous attribute
 - Each left side of functional dependency in F_c is unique. That is, there are no two dependencies $\alpha_1 \to \beta_1$ and $\alpha_2 \to \beta_2$ in such that $\alpha_1 \to \alpha_2$
- Intuitively, a Canonical cover of F is a minimal set of FDs
 - Equivalent to F
 - Having no redundant FDs
 - No redundant parts of FDs
- Minimal / Irreducible Set of Functional Dependencies

Canonical Cover (2): Example

Module 24

Partha Pration Das

Outline

FDs

Attribute Set Closure Extraneous Attributes

Equivalence of FD Sets

Canonical Cover of FDs Practice Problems • For example: $A \to C$ is redundant in: $\{A \to B, B \to C, A \to C\}$

- Parts of a functional dependency may be redundant
 - For example: on RHS: $\{A \to B, B \to C, A \to CD\}$ can be simplified to $\{A \to B, B \to C, A \to D\}$
 - In the forward: (1) $A \rightarrow CD \Rightarrow A \rightarrow C$ and $A \rightarrow D$ (2) $A \rightarrow B$, $B \rightarrow C \Rightarrow A \rightarrow C$
 - In the reverse: (1) $A \rightarrow B, B \rightarrow C \Rightarrow A \rightarrow C$ (2) $A \rightarrow C, A \rightarrow D \Rightarrow A \rightarrow CD$
 - For example: on LHS: $\{A \to B, B \to C, AC \to D\}$ can be simplified to $\{A \to B, B \to C, A \to D\}$
 - In the forward: (1) $A \rightarrow B$, $B \rightarrow C \Rightarrow A \rightarrow C \Rightarrow A \rightarrow AC$
 - (2) $A \rightarrow AC, AC \rightarrow D \Rightarrow A \rightarrow D$
 - − In the reverse: $A \rightarrow D \Rightarrow AC \rightarrow D$

Canonical Cover (3): RHS

Module 24

Partha Pratin Das

Objectives Outline

Algorithms for FDs

Attribute Set Closure Extraneous

Equivalence of FD Sets

FDs

Practice Problems

• $\{A \rightarrow B, B \rightarrow C, A \rightarrow CD\} \Rightarrow \{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$

- \circ (1) $\textit{A} \rightarrow \textit{CD} \Rightarrow \textit{A} \rightarrow \textit{C}$ and $\textit{A} \rightarrow \textit{D}$
 - (2) $A \rightarrow B, B \rightarrow C \Rightarrow A \rightarrow C$
- $\circ A^{+} = ABCD$

• $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\} \Rightarrow \{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$

- $\circ \ A \to B, B \to C \Rightarrow A \to C$
- $\circ \ A \to C, A \to D \Rightarrow A \to CD$
- $\circ A^+ = ABCD$

Canonical Cover (4): LHS

Module 24

Partha Pratin Das

Objectives Outline

Algorithms for FDs

Attribute Set Closure Extraneous

Equivalence of FD Sets

FDs

.

•
$$\{A \rightarrow B, B \rightarrow C, AC \rightarrow D\} \Rightarrow \{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$$

$$\circ \ A \to B, B \to C \Rightarrow A \to C \Rightarrow A \to AC$$

$$\circ$$
 $A \rightarrow AC, AC \rightarrow D \Rightarrow A \rightarrow D$

$$\circ A^+ = ABCD$$

•
$$\{A \rightarrow B, B \rightarrow C, A \rightarrow D\} \Rightarrow \{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$$

$$\circ A \rightarrow D \Rightarrow AC \rightarrow D$$

$$\circ AC^+ = ABCD$$

Canonical Cover (5)

Module 24

Partha Pratir Das

Objectives Outline

FDs

Attribute Set Closu

Attribute Set Closure Extraneous Attributes

Equivalence of FD Sets

Canonical Cover of FDs
Practice Problems

Practice Problems

```
    To compute a canonical cover for F:
    repeat
```

```
Use the union rule to replace any dependencies in F \alpha_1 \to \beta_1 and \alpha_1 \to \beta_2 with \alpha_1 \to \beta_1\beta_2 Find a functional dependency \alpha \to \beta with an extraneous attribute either in \alpha or in \beta /* Note: test for extraneous attributes done using F_c, not F */ If an extraneous attribute is found, delete it from \alpha \to \beta until F does not change
```

 Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied

Canonical Cover (6): Example

Module 24

Partha Pratin Das

Objectives Outline

Algorithms for FDs

Extraneous Attributes Equivalence of FD

Sets
Canonical Cover of

Practice Problems

Module Summa

- R = (A, B, C) $F = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$
- Combine $A \rightarrow BC$ and $A \rightarrow B$ into $A \rightarrow BC$
 - \circ Set is now $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- A is extraneous in $AB \rightarrow C$
 - $\circ~$ Check if the result of deleting A from $AB \rightarrow \mathit{C}$ is implied by the other dependencies
 - \triangleright Yes: in fact, $B \rightarrow C$ is already present!
 - ∘ Set is now $\{A \rightarrow BC, B \rightarrow C\}$
- C is extraneous in $A \rightarrow BC$
 - \circ Check if $A \to C$ is logically implied by $A \to B$ and the other dependencies
 - \triangleright Yes: using transitivity on $A \rightarrow B$ and $B \rightarrow C$.
 - Can use attribute closure of A in more complex cases
- The canonical cover is: $A \rightarrow B$, $B \rightarrow C$

Practice Problems on Functional Dependencies

Module 24

Partha Pratii Das

Objectives Outline

FDs
Attribute Set Closs

Attributes
Equivalence of FD
Sets
Canonical Cover of
FDs

Practice Problems

 Find if a given functional dependency is implied from a set of Functional Dependencies:

a) For: $A \rightarrow BC, CD \rightarrow E, E \rightarrow C, D \rightarrow AEH, ABH \rightarrow BD, DH \rightarrow BC$

i) Check: $BCD \rightarrow H$

ii) Check: $AED \rightarrow C$

b) For: $AB \rightarrow CD, AF \rightarrow D, DE \rightarrow F, C \rightarrow G, F \rightarrow E, G \rightarrow A$

i) Check: $CF \rightarrow DF$

ii) Check: $BG \rightarrow E$

iii) Check: $AF \rightarrow G$

iv) Check: $AB \rightarrow EF$

c) For: $A \rightarrow BC, B \rightarrow E, CD \rightarrow EF$

i) Check: $AD \rightarrow F$

Practice Problems on Functional Dependencies (2)

Module 24

Partha Pratin Das

Objectives Outline

Algorithms for FDs

Attribute Set Closure Extraneous

Equivalence of FD Sets

Practice Problems

Module Summa

• Find Super Key using Functional Dependencies:

- a) Relational Schema R(ABCDE). Functional dependencies: $AB \rightarrow C$, $DE \rightarrow B$, $CD \rightarrow E$
- b) Relational Schema R(ABCDE). Functional dependencies: $AB \rightarrow C$, $C \rightarrow D$, $B \rightarrow EA$

Practice Problems on Functional Dependencies (3)

Module 24

Partha Pratin Das

Objectives Outline

Algorithms for FDs

Attribute Set Closure Extraneous

Equivalence of FD Sets

Practice Problems

Module Summa

• Find Candidate Key using Functional Dependencies:

- a) Relational Schema R(ABCDE). Functional dependencies: $AB \rightarrow C$, $DE \rightarrow B$, $CD \rightarrow E$
- b) Relational Schema R(ABCDE). Functional dependencies: $AB \rightarrow C$, $C \rightarrow D$, $B \rightarrow EA$

Practice Problems on Functional Dependencies (4)

Module 24

Partha Pratii Das

Objectives Outline

Algorithms for FDs Attribute Set Closure Extraneous Attributes

Sets
Canonical Cover o

Practice Problems

Module Summar

• Find Prime and Non Prime Attributes using Functional Dependencies:

- a) R(ABCDEF) having FDs $\{AB \rightarrow C, C \rightarrow D, D \rightarrow E, F \rightarrow B, E \rightarrow F\}$
- b) R(ABCDEF) having FDs $\{AB \rightarrow C, C \rightarrow DE, E \rightarrow F, C \rightarrow B\}$
- c) R(ABCDEFGHIJ) having FDs $\{AB \rightarrow C, A \rightarrow DE, B \rightarrow F, F \rightarrow GH, D \rightarrow IJ\}$
- d) R(ABDLPT) having FDs $\{B \rightarrow PT, A \rightarrow D, T \rightarrow L\}$
- e) R(ABCDEFGH) having FDs

$$\{E \rightarrow G, AB \rightarrow C, AC \rightarrow B, AD \rightarrow E, B \rightarrow D, BC \rightarrow A\}$$

- f) R(ABCDE) having FDs $\{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}$
- g) R(ABCDEH) having FDs $\{A \rightarrow B, BC \rightarrow D, E \rightarrow C, D \rightarrow A\}$
- Prime Attributes: Attribute set that belongs to any candidate key are called Prime Attributes
 - It is union of all the candidate key attribute: $\{CK_1 \cup CK_2 \cup CK_3 \cup \cdots\}$
 - o If Prime attribute determined by other attribute set, then more than one candidate key is possible.
 - \circ For example, If A is Candidate Key, and $X \to A$, then, X is also Candidate Key.
- Non Prime Attribute: Attribute set does not belong to any candidate key are called Non Prime Attributes

Practice Problems on Functional Dependencies (5)

Module 24

Partha Pratii Das

Objectives Outline

Algorithms fo FDs

Attribute Set Closure Extraneous Attributes

Equivalence of FD Sets

FDs

Practice Problems

• Check the Equivalence of a Pair of Sets of Functional Dependencies:

a) Consider the two sets F and G with their FDs as below:

- i) $F: A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H$
- ii) $G: A \rightarrow CD. E \rightarrow AH$
- b) Consider the two sets P and Q with their FDs as below :
 - i) $P: A \rightarrow B, AB \rightarrow C, D \rightarrow ACE$
 - ii) $Q: A \rightarrow BC, D \rightarrow AE$

Practice Problems on Functional Dependencies (6)

Module 24

Partha Pratir Das

Objectives Outline

Algorithms for FDs

Attribute Set Closure Extraneous

Equivalence of FD Sets

Practice Problems

Fractice Frobien

 Find the Minimal Cover or Irreducible Sets or Canonical Cover of a Set of Functional Dependencies:

- a) $AB \rightarrow CD, BC \rightarrow D$
- b) $ABCD \rightarrow E, E \rightarrow D, AC \rightarrow D, A \rightarrow B$

Module Summary

Module 24

Partha Pratin Das

Objectives Outline

Algorithms for FDs

Attribute Set Closure Extraneous

Equivalence of FD

Sets Canonical Cover o

FDs Practice Problems

Module Summary

• Studied Algorithms for Properties of Functional Dependencies

Slides used in this presentation are borrowed from http://db-book.com/ with kind permission of the authors.

Edited and new slides are marked with "PPD".

Module 25

Partha Pratim Das

Objectives 8
Outline

Decomposition

Dependency Preservation

Practice Problems

Madula Summer

Database Management Systems

Module 25: Relational Database Design/5

Partha Pratim Das

Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

Database Management Systems Partha Pratim Das 25.1

Module Recap

Module 25

Partha Pratin Das

Objectives & Outline

Lossiess Join
Decomposition
Practice Problems

Dependency
Preservation
Practice Problem

Module Summai

• Studied Algorithms for Properties of Functional Dependencies

Module Objectives

Module 25

Partha Pratir Das

Objectives & Outline

Lossless Join
Decomposition
Practice Problem

Dependency Preservation Practice Problem

Module Summa

- To Understand the Characterizations for Lossless Join Decomposition
- To Understand the Characterizations for Dependency Preservation

Module Outline

Module 25

Partha Pratir Das

Objectives & Outline

Decomposition
Practice Problems

Dependency Preservation Practice Problem

Module Summar

- Lossless Join Decomposition
- Dependency Preservation

Module 25

Partha Pratio

Objectives Outline

Lossless Join Decomposition

Dependency Preservation

Module Summar

Lossless Join Decomposition

Database Management Systems Partha Pratim Das 25.5

Lossless Join Decomposition

Module 25

Partha Pratir Das

Objectives Outline

Lossless Join Decomposition Practice Problems

Dependency Preservation Practice Problems • For the case of $R = (R_1, R_2)$, we require that for all possible relations r on schema R

$$r = \pi_{R_1}(r) \bowtie \pi_{R_2}(r)$$

- A decomposition of R into R_1 and R_2 is lossless join if at least one of the following dependencies is in F^+ :
 - $\circ R_1 \cap R_2 \to R_1$
 - $\circ R_1 \cap R_2 \to R_2$
- The above functional dependencies are a sufficient condition for lossless join decomposition; the dependencies are a necessary condition only if all constraints are functional dependencies

To Identify whether a decomposition is lossy or lossless, it must satisfy the following conditions:

- $\bullet \ R_1 \cup R_2 = R$
- $R_1 \cap R_2 \neq \phi$ and
- $R_1 \cap R_2 \rightarrow R_1$ or $R_1 \cap R_2 \rightarrow R_2$

Lossless Join Decomposition (2): Example

Module 25

Partha Prati Das

Objectives Outline

Lossless Join Decomposition Practice Problems

Preservation
Practice Problems

- Consider Supplier_Parts schema: Supplier_Parts(S#, Sname, City, P#, Qty)
- ullet Having dependencies: S# o Sname, S# o City, (S#, P#) o Qty
- Decompose as: Supplier(S#, Sname, City, Qty): Parts(P#, Qty)
- Take Natural Join to reconstruct: Supplier ⋈ Parts

S#	Sname	City	P #	Qty	S#	Sname	City	Qty	Р#	Qty	S#	Sname	City	P #	Qty
3	Smith	London	301	20	3	Smith	London	20	301	20	3	Smith	London	301	20
5	Nick	NY	500	50	5	Nick	NY	50	500	50	5	Nick	NY	500	50
2	Steve	Boston	20	10	2	Steve	Boston	10	20	10	5	Nick	NY	20	10
5	Nick	NY	400	40	5	Nick	NY	40	400	40	2	Steve	Boston	20	10
5	Nick	NY	301	10	5	Nick	NY	10	301	10	5	Nick	NY	400	40
							5	Nick	NY	301	10				
											2	Steve	Boston	301	10

- We get extra tuples! Join is Lossy!
- Common attribute Qty is not a superkey in Supplier or in Parts
- Does not preserve (S#, P#) → Qty

Lossless Join Decomposition (3): Example

Module 25

Partha Prati Das

Objectives Outline

Lossless Join Decomposition Practice Problems

Dependency Preservation Practice Problems Module Summar Consider Supplier_Parts schema: Supplier_Parts(S#, Sname, City, P#, Qty)

• Having dependencies: S# \rightarrow Sname, S# \rightarrow City, (S#, P#) \rightarrow Qty

• Decompose as: Supplier(S#, Sname, City): Parts(S#, P#, Qty)

• Take Natural Join to reconstruct: **Supplier** ⋈ **Parts**

S #	Sname	City	P #	Qty	S #	Sname	City	S #	P #	Qty	S #	Sname	City	P #	Qty
3	Smith	London	301	20	3	Smith	London	3	301	20	3	Smith	London	301	20
5	Nick	NY	500	50	5	Nick	NY	5	500	50	5	Nick	NY	500	50
2	Steve	Boston	20	10	2	Steve	Boston	2	20	10	2	Steve	Boston	20	10
5	Nick	NY	400	40	5	Nick	NY	5	400	40	5	Nick	NY	400	40
5	Nick	NY	301	10	5	Nick	NY	5	301	10	5	Nick	NY	301	10

- We get back the original relation. **Join is Lossless**.
- Common attribute S# is a superkey in Supplier
- Preserves all dependencies

Lossless Join Decomposition (4): Example

Module 25

Lossless Join Decomposition

•
$$R = (A, B, C)$$

 $F = \{A \rightarrow B, B \rightarrow C\}$

- Can be decomposed in two different ways
- $R_1 = (A, B), R_2 = (B, C)$
 - Lossless-join decomposition: $R_1 \cap R_2 = \{B\} \text{ and } B \to BC$
 - Dependency preserving
- $R_1 = (A, B), R_2 = (A, C)$
 - Lossless-join decomposition:
 - $R_1 \cap R_2 = \{A\} \text{ and } A \to AB$
 - Not dependency preserving (cannot check $B \to C$ without computing $R_1 \bowtie R_2$)

Module 25

Partha Pratio

Objectives Outline

Lossless Join Decomposition Practice Problems

Preservation
Practice Problems

• Check if the decomposition of R into D is lossless:

- a) $R(ABC) : F = \{A \to B, A \to C\}. D = R_1(AB), R_2(BC)$
- b) $R(ABCDEF): F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, E \rightarrow F\}.$ $D = R_1(AB), R_2(BCD), R_3(DEF)$
- c) $R(ABCDEF): F = \{A \rightarrow B, C \rightarrow DE, AC \rightarrow F\}. D = R_1(BE), R_2(ACDEF)$
- d) $R(ABCDEG): F = \{AB \rightarrow C, AC \rightarrow B, AD \rightarrow E, B \rightarrow D, BC \rightarrow A, E \rightarrow G\}$
 - i) $D1 = R_1(AB), R_2(BC), R_3(ABDE), R_4(EG)$
 - ii) $D2 = R_1(ABC), R_2(ACDE), R_3(ADG)$
- e) $R(ABCDEFGHIJ): F = \{AB \rightarrow C, B \rightarrow F, D \rightarrow IJ, A \rightarrow DE, F \rightarrow GH\}$
 - i) $D1 = R_1(ABC), R_2(ADE), R_3(BF), R_4(FGH), R_5(DIJ)$
 - ii) $D2 = R_1(ABCDE), R_2(BFGH), R_3(DIJ)$
 - iii) $D3 = R_1(ABCD), R_2(DE), R_3(BF), R_4(FGH), R_5(DIJ)$

Database Management Systems Partha Pratim Das 25.10

Module 25

Partha Pratii Das

Objectives Outline

Lossless Join Decomposition Practice Probler

Dependency Preservation

Module Summa

Dependency Preservation

Database Management Systems Partha Pratim Das 25.11

Dependency Preservation

Module 25

Partha Pratin Das

Objectives Outline

Lossless Join Decomposition Practice Problem

Dependency Preservation Practice Problems • Let F_i be the set of dependencies F^+ that include only attributes in R_i

o A decomposition is dependency preserving, if

$$(F_1 \cup F_2 \cup \cdots \cup F_n)^+ = F^+$$

• If it is not, then checking updates for violation of functional dependencies may require computing joins, which is expensive

Let R be the original relational schema having FD set F. Let R_1 and R_2 having FD set F_1 and F_2 respectively, are the decomposed sub-relations of R. The decomposition of R is said to be preserving if

- $F_1 \cup F_2 \equiv F$ {Decomposition Preserving Dependency}
- If $F_1 \cup F_2 \subset F$ {Decomposition NOT Preserving Dependency} and
- $F_1 \cup F_2 \supset F$ {this is not possible}

Dependency Preservation (2): Testing

Module 25

Dependency Preservation

```
• To check if a dependency \alpha \to \beta is preserved in a decomposition of R into D = \{R_1, R_2, \dots, R_n\} we
  apply the following test (with attribute closure done with respect to F)
```

• The **restriction** of F^+ to R_i is the set of all functional dependencies in F^+ that include only attributes of R_i .

```
\circ compute F^+:
   for each schema R_i in D do
      begin
         F_i = the restriction of F^+ to R_i:
      end
   F' = \phi
   for each restriction F<sub>i</sub> do
      begin
         F' = F' \cup F_i
      end
   compute F'^+:
   if (F'^+ = F^+) then return (true)
                    else return (false):
```

• The procedure for checking dependency preservation takes exponential time to compute F⁺ and $(F_1 \cup F_2 \cup \cdots \cup F_n)^+$

Dependency Preservation (3): Example

Module 25

Preservation

Dependency

• R (A, B, C, D, E, F) $\mathbf{F} = \{A \rightarrow BCD, A \rightarrow EF, BC \rightarrow AD, BC \rightarrow E, BC \rightarrow F, B \rightarrow F, D \rightarrow E\}$

- Decomposition: **R1**(A, B, C, D) **R2**(B, F) **R3**(D, E)
 - \circ $A \rightarrow BCD, BC \rightarrow AD$ are preserved on table R1
 - \circ $B \to F$ is preserved on table R2
 - \circ D \rightarrow E is preserved on table R3
 - \circ We have to check whether the remaining FDs: $A \rightarrow E$, $A \rightarrow F$, $BC \rightarrow E$, $BC \rightarrow F$ are preserved or not.

R1	R2	R3
	$F_2 = \{B \rightarrow BF, F \rightarrow F\}$	$F_3 = \{ D \rightarrow DE, E \rightarrow E \}$

- $\circ F' = F_1 \cup F_2 \cup F_3.$
- \circ Checking for: $\mathbf{A} \to E$. $\mathbf{A} \to F$ in F'^+
 - $\triangleright A \rightarrow D$ (from R1), $D \rightarrow E$ (from R3) : $A \rightarrow E$ (By Transitivity)
 - \triangleright $A \rightarrow B$ (from R1), $B \rightarrow F$ (from R2) : $A \rightarrow F$ (By Transitivity)
- O Checking for: $BC \rightarrow E$, $BC \rightarrow F$ in F'^+
 - \triangleright BC \rightarrow D (from R1), D \rightarrow E (from R3) : BC \rightarrow E (By Transitivity)

 $\triangleright B \rightarrow F$ (from R2): BC $\rightarrow F$ (By Augmentation) Hence all dependencies are preserved.

Dependency Preservation (4): Example

Module 25

Partha Pratin Das

Objectives Outline

Lossless Join Decomposition Practice Probler

Dependency Preservation Practice Problems • \mathbf{R} (A, B, C, D) $\mathbf{F} = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow A\}$

• Decomposition: **R1**(A, B) **R2**(B, C) **R3**(C, D)

- \circ $A \rightarrow B$ is preserved on table R1
- \circ $B \rightarrow C$ is preserved on table R2
- \circ $C \rightarrow D$ is preserved on table R3
- \circ We have to check whether the one remaining FD: $D \rightarrow A$ is preserved or not.

R1	R2	R3
$F_1 = \{ \mathbf{A} \to AB, \ \mathbf{B} \to BA \}$	$F_2 = \{ \mathbf{B} \to BC, \ \mathbf{C} \to CB \}$	$F_3 = \{ \mathbf{C} \to CD, \ \mathbf{D} \to DC \}$

- $\circ F' = F_1 \cup F_2 \cup F_3.$
- Checking for: $\mathbf{D} \rightarrow A$ in \mathbf{F}'^+
 - $ho D \to C$ (from R3), $C \to B$ (from R2), $B \to A$ (from R1) : $D \to A$ (By Transitivity) Hence all dependencies are preserved.

Dependency Preservation (5): Testing

Module 25

Partha Pratir Das

Objectives Outline

Lossless Join Decompositio Practice Probler

Preservation
Practice Problems

• To check if a dependency $\alpha \to \beta$ is preserved in a decomposition of R into R_1, R_2, \dots, R_n we apply the following test (with attribute closure done with respect to F)

```
o result = \alpha

while (changes to result) do

for each R_i in the decomposition

t = (result \cap R_i)^+ \cap Ri

result = result \cup t
```

- o If result contains all attributes in β , then the functional dependency $\alpha \to \beta$ is preserved.
- We apply the test on all dependencies in F to check if a decomposition is dependency preserving
- This procedure takes polynomial time, instead of the exponential time required to compute F^+ and $(F_1 \cup F_2 \cup \cdots \cup F_n)^+$

Dependency Preservation (6): Example

Module 25

Partha Prat Das

Objectives Outline

Lossless Join Decomposition Practice Proble

Dependency Preservation Practice Problems Module Summar

- R(ABCDEF):. $F = \{A \rightarrow BCD, A \rightarrow EF, BC \rightarrow AD, BC \rightarrow E, BC \rightarrow F, B \rightarrow F, D \rightarrow E\}$
- $Decomp = \{ABCD, BF, DE\}$
- On projections:

ABCD (R1)	BF (R2)	DE (R3)
$\begin{array}{c} A \to BCD \\ BC \to AD \end{array}$	$B\toF$	$D\toE$

- Need to check for: $A \rightarrow BCD$, $A \rightarrow EF$, $BC \rightarrow AD$, $BC \rightarrow E$, $BC \rightarrow F$, $B \rightarrow F$, $D \rightarrow E$
- (BC) + /F1 = ABCD. (ABCD) + /F2 = ABCDF. (ABCDF) + /F3 = ABCDEF. Preserves $BC \rightarrow E$, $BC \rightarrow F$ $BC \rightarrow AD$ (R1), $AD \rightarrow E$ (R3) implies $BC \rightarrow E$ $B \rightarrow F$ (R2) implies $BC \rightarrow F$
- (A) + /F1 = ABCD. (ABCD) + /F2 = ABCDF. (ABCDF) + /F3 = ABCDEF. Preserves $A \rightarrow EF$ $A \rightarrow B$ (R1), $B \rightarrow F$ (R2) implies $A \rightarrow F$ $A \rightarrow D$ (R1), $D \rightarrow E$ (R3) implies $A \rightarrow E$

Module 25

Dependency Preservation • $R(ABCDEF): F = \{A \rightarrow BCD, A \rightarrow EF, BC \rightarrow AD, BC \rightarrow E, BC \rightarrow F, B \rightarrow F, D \rightarrow E\}.$ Decomp $\{ABCD, BF, DE\}$

On projections:

ABCD (R1)	BF (R2)	DE (R3)
$A \to B, A \to C, A \to D, BC \to A, BC \to D$	$B\toF$	$D\toE$

- Infer reverse FD's:
 - \circ B + /F = BF : B \rightarrow A cannot be inferred
 - \circ $C + /F = C : C \rightarrow A$ cannot be inferred
 - \circ D + /F = DE : D \rightarrow A and D \rightarrow BC cannot be inferred
 - \circ A + /F = ABCDEF : A \rightarrow BC can be inferred, but it is equal to A \rightarrow B and A \rightarrow C
 - \circ $F + /F = F : F \rightarrow B$ cannot be inferred
 - \circ E + /F = E : E \rightarrow D cannot be inferred
- Need to check for: $A \rightarrow BCD$, $A \rightarrow EF$, $BC \rightarrow AD$, $BC \rightarrow E$, $BC \rightarrow F$. $B \rightarrow F$. $D \rightarrow E$
 - \circ (BC) + /F = ABCDEF. Preserves BC \rightarrow E, BC \rightarrow F
 - \circ (A) + /F = ABCDEF. Preserves $A \rightarrow EF$

Partha Pratim Das 25 18

Practice Problems on Dependency Preservation

Module 25

Partha Prati Das

Objectives Outline

Lossless Join Decomposition Practice Proble

Dependency Preservation Practice Problems

Module Summai

• Check whether the decomposition of R into D is preserving dependency:

- a) $R(ABCD): F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow A\}. D = \{AB, BC, CD\}$
- b) $R(ABCDEF): F = \{AB \rightarrow CD, C \rightarrow D, D \rightarrow E, E \rightarrow F\}. D = \{AB, CDE, EF\}$
- c) $R(ABCDEG): F = \{AB \rightarrow C, AC \rightarrow B, BC \rightarrow A, AD \rightarrow E, B \rightarrow D, E \rightarrow G\}. D = \{ABC, ACDE, ADG\}$
- d) $R(ABCD): F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow B\}. D = \{AB, BC, BD\}$
- e) $R(ABCDE): F = \{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}. D = \{ABCE, BD\}$

Module Summary

Module 25

Partha Pratir Das

Objectives Outline

Lossless Join Decomposition

Preservation

Practice Problems

Module Summary

- Understood the Characterization for and Determination of Lossless Join
- Understood the Characterization for and Determination of Dependency Preservation

Slides used in this presentation are borrowed from http://db-book.com/ with kind permission of the authors.

Edited and new slides are marked with "PPD".