1

Problem 12.13.1.10

EE22BTECH11010 - Aryan Bubna

question: A black and a red dice are rolled.

- (a) find the conditional probability of obtaining a sum greater than 9, given that the black dice resulted in a 5.
- (b) find the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4.

Solution: Let X_1 denotes the outcome of black die, X_2 denote the outcome of red die

(a)We need to get the conditional probability of obtaining a sum greater than 9 and given that black dice resulted in a 5,i.e $Pr(X_1 + X_2 > 9 \mid X_1 = 5)$

The sum of X_1 and X_2 is greater than 9 such that $X_1 = 5$ is for only two cases,i.e (5,6),(5,5) respectively. Therefore

$$Pr((X_1 + X_2 > 9), (X_1 = 5)) = \frac{2}{36}$$
 (1)
= $\frac{1}{18}$ (2)

We know that $Pr(X_1 = 5) = \frac{1}{6}$ Hence

$$\Pr(X_1 + X_2 > 9 \mid X_1 = 5) = \frac{\Pr((X_1 + X_2 > 9), (X_1 = 5))}{\Pr(X_1 = 5)}$$

$$= \frac{\Pr((X_2 > 4), (X_1 = 5))}{\Pr(X_1 = 5)}$$

$$\frac{1}{19}$$
(4)

$$=\frac{\frac{1}{18}}{\frac{1}{6}}$$
 (5)
=\frac{1}{3} (6)

(b)We need to get the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4, i.e $Pr(X_1 + X_2 = 8 \mid X_2 < 4)$.

The sum of $X_1+X_2 = 8$ such that $X_2 < 4$ is possible for two cases (5,3),(6,2) out of 36 cases.

Therefore

$$Pr((X_1 + X_2 = 8), (X_2 < 4)) = \frac{2}{36}$$
 (7)
= $\frac{1}{18}$ (8)

We know that $Pr(X_2 < 4) = \frac{1}{2}$ Hence

$$\Pr(X_1 + X_2 = 8 \mid X_2 < 4) = \frac{\Pr((X_1 + X_2 = 8), (X_2 < 4))}{\Pr(X_2 < 4)}$$

$$=\frac{\frac{1}{18}}{\frac{1}{2}}\tag{10}$$

$$=\frac{1}{9}\tag{11}$$