S3849118 | IVAN ALEGRIA

PART B: DESIGNING THE DATABASE

ER DIAGRAM:

Locations (location, iso code, vaccines, last observation date, source name, source website)

Locations2 (location, iso code, vaccines, last observation date, source name, source website)

Locations3 (iso code, location)

Locations4 (vaccines, vaccine_name)

Locations5 (last observation date, iso code*, source name, source website)

1NF as other non-primary key attributes are not functionally dependent on the composite key

Locations6 (last observation date, iso code*, source_id*, vaccine_desc)

Locations7 (<u>source_id</u>, source_name, source_website)

Locations8 (iso code*, vaccines*)

RESULTS =

LOCATIONS (iso code, location)

3NF as there is only one non-primary key attribute

CURRENT OBSERVATION (last observation date, iso code*, source id*, vaccine desc)

Vaccine_desc displays the vaccine types administered in the observation date therefore is functionally dependent on the entire primary key

VACCINES (vaccine id, vaccine name)

3NF as there is only one non-primary key attribute

SOURCE (source id, source name, source website)

3NF, assuming that there are various links in source_website for 1 source name.

LOCATION_VACCINES (iso code*, vaccine id*)

Vaccinations (location, iso_code, date, total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters, daily_vaccinations_raw, daily_vaccinations, total_vaccinations_per_hundred, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, total_boosters_per_hundred, daily_vaccinations_per_million, daily_people_vaccinated, daily_people_vaccinated_per_hundred)

Vaccinations2 (location, <u>iso code</u>*, <u>date</u>, total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters, daily_vaccinations_raw, daily_vaccinations, total_vaccinations_per_hundred, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, total_boosters_per_hundred, daily_vaccinations_per_million, daily_people_vaccinated, daily_people_vaccinated_per_hundred)

Vaccinations3 (<u>iso_code*</u>, <u>date</u>, total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters, daily_vaccinations_raw, daily_vaccinations, total_vaccinations_per_hundred, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, total_boosters_per_hundred, daily_vaccinations_per_million, daily_people_vaccinated, daily_people_vaccinated_per_hundred)

RESULTS =

TOTAL_VACCINATION (<u>iso_code*</u>, <u>date</u>, total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters, daily_vaccinations_raw, daily_vaccinations, total_vaccinations_per_hundred, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, total_boosters_per_hundred, daily_vaccinations_per_million, daily_people_vaccinated, daily_people_vaccinated_per_hundred)

3NF as other non-primary key attributes cannot be calculated/have a transitive dependency on data not included in the database.

Vaccinations-by-manufacturer (location, date, vaccine, total_vaccinations)

Vaccinations-by-manufacturer2 (location, date, vaccine, total vaccinations)

Vaccinations-by-manufacturer3 (vaccine id, vaccine name)

RESULTS =

VACCINES (vaccine id, vaccine name)

3NF as there is only one non-primary key attribute

Note Decided not include total_vaccinations as the data set were missing data for certain countries such as Australia, China, and England. And it would be difficult to manually input the total_vaccinations by manufacturer for the missing countries as the data specific for countries such as 'Australia' display the vaccines administered as a multi-valued attribute. Therefore, it would not be possibly to figure out how much of a specific vaccine was distributed without a dataset similar to the 'vaccinations-by-manufacturer'.

Vaccinations-by-age-group (location, date, age_group, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, people_with_booster_per_hundred)

Vaccinations-by-age-group2 (location, <u>date</u>, <u>age_group</u>, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, people_with_booster_per_hundred)

Vaccinations-by-age-group3 (<u>iso code*</u>, <u>date</u>, <u>age group</u>, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, people_with_booster_per_hundred)

RESULTS =

VACCINATIONS_BY_AGE (<u>iso_code*</u>, <u>date</u>, <u>age_group</u>, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, people_with_booster_per_hundred)

3NF as other non-primary key attributes cannot be calculated/have a transitive dependency on data not included in the database.

US_state_vaccinations (date location, total_vaccinations, total_distributed, people_vaccinated, people_fully_vaccinated_per_hundred, total_vaccinations_per_hundred, people_fully_vaccinated, people_vaccinated_per_hundred, distributed_per_hundred, daily_vaccinations_raw, daily_vaccinations, daily_vaccinations_per_million, share_doses_used, total_boosters, total_boosters_per_hundred)

US_state_vaccinations2 (<u>date</u>, location, total_vaccinations, total_distributed, people_vaccinated, people_fully_vaccinated_per_hundred, total_vaccinations_per_hundred, people_fully_vaccinated, people_vaccinated_per_hundred, distributed_per_hundred, daily_vaccinations_raw, daily_vaccinations, daily_vaccinations_per_million, share_doses_used, total boosters, total boosters per hundred)

US_state_vaccinations3 (date, total_vaccinations, total_distributed, people_vaccinated, people_fully_vaccinated_per_hundred, total_vaccinations_per_hundred, people_fully_vaccinated, people_vaccinated_per_hundred, distributed_per_hundred, daily_vaccinations_raw, daily_vaccinations, daily_vaccinations_per_million, share_doses_used, total boosters, total boosters per hundred)

US_state_vaccinations4 (State id, iso_code*, state_name)

Created a new relation using the 'locations' data which had the information and names of all states located in the United States.

US_state_vaccinations3 (<u>date</u>, <u>state_id*</u>, total_vaccinations, total_distributed, people_vaccinated, people_fully_vaccinated_per_hundred, total_vaccinations_per_hundred, people_fully_vaccinated, people_vaccinated_per_hundred, distributed_per_hundred, daily_vaccinations_raw, daily_vaccinations, daily_vaccinations_per_million, share_doses_used, total_boosters, total_boosters_per_hundred)

RESULTS =

STATE_TOTAL_VACCINATIONS (observation date, state id*, total_vaccinations, total_distributed, people_vaccinated, people_fully_vaccinated_per_hundred, total_vaccinations_per_hundred, people_fully_vaccinated, people_vaccinated_per_hundred, distributed_per_hundred, daily_vaccinations_raw, daily_vaccinations, daily_vaccinations_per_million, share_doses_used, total_boosters, total_boosters_per_hundred)

STATE (State id, iso code*, state name)

Australia, China, United Stated, and England Data:

Country (location, date, vaccine, source_url, total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters)

Country2 (<u>location</u>, <u>date</u>, vaccine, source_url, total_vaccinations, people_vaccinated, people fully vaccinated, total boosters)

Country3 (<u>location</u>, <u>date</u>, total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters)

Country4 (<u>source_id</u>, source_website, source_name)

Country5 (location, date, source id*, vaccine desc)

RESULTS =

Country3 (<u>iso_code*</u>, <u>observation_date</u>, total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters)

Table above uses the same primary keys as the table 'TOTAL_VACCINATIONS'. Therefore, will be merged to become one table

SOURCE (source id, source website, source name)

OBSERVATION_HISTORY (iso code*, observation date, source_id*, vaccine_desc)

FINAL DATABASE SCHEMA:

LOCATIONS (iso code, location)

CURRENT OBSERVATION (last observation date, iso code*, source id*, vaccine desc)

VACCINES (vaccines, vaccine name)

SOURCE (<u>source_id</u>, source_name, source_website)

TOTAL_VACCINATION (iso code*, observation date, total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters, daily_vaccinations_raw, daily_vaccinations, total_vaccinations_per_hundred, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, total_boosters_per_hundred, daily_vaccinations_per_million, daily_people_vaccinated, daily_people_vaccinated per_hundred)

VACCINATIONS_BY_AGE (<u>iso_code*</u>, <u>date</u>, <u>age_group</u>, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, people_with_booster_per_hundred)

STATE_TOTAL_VACCINATIONS (observation_date, state_id*, total_vaccinations, total_distributed, people_vaccinated, people_fully_vaccinated_per_hundred, total_vaccinations_per_hundred, people_fully_vaccinated, people_vaccinated_per_hundred, distributed_per_hundred, daily_vaccinations_raw, daily_vaccinations, daily_vaccinations_per_million, share_doses_used, total_boosters, total_boosters_per_hundred)

STATE (State id, iso_code*, state_name)

OBSERVATION HISTORY (iso code*, observation date, source id*, vaccine desc)

LOCATION VACCINES (iso code*, vaccine id*)