Composition des bases MRIO de EXIOBASE3

NOM	DESCRIPTION	VALEUR
\mathcal{I}	Nombre de secteurs industriels	163
${\mathcal R}$	Nombre de régions	49
\mathcal{C}	Nombre de composantes de la consommation finale	7
S	Nombre de satellites	1113
$\mathcal M$	Nombre d'impacts	126

Tableau 1 : Description des index issus des bases de données MRIO d'EXIOBASE3.

NOM	UNITE	DIMENSION	DESCRIPTION
Z	Million €	$\mathcal{RI} \times \mathcal{RI}$	Matrice de transaction qui représente les échanges de
			biens et services entre les industries et les régions.
A	Million€	$\mathcal{RI} \times \mathcal{RI}$	Matrice des coefficients qui représente le niveau d'intrants directs nécessaires en Million € pour produire 1 Million € de production dans chaque industrie et région.
Y	Million €	$\mathcal{RI} imes\mathcal{RC}$	Matrice de demande finale qui représente plusieurs composantes de la consommation finale.
X	Million €	$\mathcal{RI} \times 1$	Vecteur de production totale par industries et régions.

Tableau 2: Description des matrices MRIO (hors matrices EE MRIO).

Une matrice de multi-index $\mathcal{RI} \times \mathcal{RI} = (49 \times 163) \times (49 \times 163)$ est de taille 7987 × 7987. Une matrice de multi-index $\mathcal{RI} \times \mathcal{RC} = (49 \times 163) \times (49 \times 7)$ est de taille 7987 × 342. Un vecteur de multi-index $\mathcal{RI} \times 1 = (49 \times 163) \times 1$ est de taille 7987 × 1.

La matrice de Leontief est de la forme $(I-A)^{-1}$ avec I la matrice identité. Cette matrice est de taille $\mathcal{RI}\times\mathcal{RI}$. Cette matrice est composée de coefficients qui représentent le niveau d'intrants directs et indirects nécessaires en Million \in pour produire 1 Million \in de production dans chaque industrie et région.

NOM	UNITE	DIMENSION	DESCRIPTION
D_cba_reg	Unité du satellite	$\mathcal{S} \times \mathcal{R}$	Matrice des satellites associés à la consommation finale dans chaque région (consumption-based account matrix).
D_cba	Unité du satellite	$\mathcal{S} \times \mathcal{RI}$	Matrice des satellites associés à la consommation finale dans chaque industrie (consumption-based account matrix).
D_exp_reg	Unité du satellite	$\mathcal{S} \times \mathcal{R}$	Matrice des satellites associés aux exportations dans chaque région.
D_imp_reg	Unité du satellite	$\mathcal{S} \times \mathcal{R}$	Matrice des satellites associés aux importations dans chaque région.
D_pba_reg	Unité du satellite	$\mathcal{S} \times \mathcal{R}$	Matrice des satellites associés à la production dans chaque région (production-based account matrix).
D_pba	Unité du satellite	$\mathcal{S} imes \mathcal{RI}$	Matrice des satellites associés à la production dans chaque industrie (production-based account matrix).
F_Y	Unité du satellite	$\mathcal{S} \times \mathcal{RC}$	Matrice des satellites associés à la demande finale.
F	Unité du satellite	$\mathcal{S} \times \mathcal{RI}$	Matrice des satellites associés à la production.
M	Unité du satellite/Million €	$\mathcal{S} \times \mathcal{RI}$	Matrice des multiplicateurs qui représente l'effet total sur les satellites d'une augmentation de la production de 1 Million € pour chaque secteur et région.
S_Y	Unité du satellite/Million €	$\mathcal{S} \times \mathcal{RC}$	Matrice des coefficients des satellites pour répondre à la demande finale.
S	Unité du satellite/Million €	$\mathcal{S} \times \mathcal{RI}$	Matrice des coefficients des satellites pour répondre à la production de chaque industrie et région.

Tableau 3: Description des matrices EE MRIO associées aux satellites.

Une matrice d'index $S \times \mathcal{R}$ est de taille 1113 \times 49.

Une matrice de multi-index $S \times \mathcal{RI} = 1113 \times (49 \times 163)$ est de taille 1113×7987 .

Une matrice de multi-index $S \times \mathcal{RC} = 1113 \times (49 \times 7)$ est de taille 1113×342 .

NOM	UNITE	DIMENSION	DESCRIPTION
D_cba_reg	Unité de l'impact	$\mathcal{M} \times \mathcal{R}$	Matrice des impacts associés à la consommation finale dans chaque région (consumption-based account matrix).
D_cba	Unité de l'impact	$\mathcal{M} imes \mathcal{RI}$	Matrice des impacts associés à la consommation finale dans chaque industrie (consumption-based account matrix).
D_exp_reg	Unité de l'impact	$\mathcal{M} \times \mathcal{R}$	Matrice des impacts associés aux exportations dans chaque région.
D_imp_reg	Unité de l'impact	$\mathcal{M} imes \mathcal{R}$	Matrice des impacts associés aux importations dans chaque région.
D_pba_reg	Unité de l'impact	$\mathcal{M} \times \mathcal{R}$	Matrice des impacts associés à la production dans chaque région (production-based account matrix).
D_pba	Unité de l'impact	$\mathcal{M} imes \mathcal{R} \mathcal{I}$	Matrice des impacts associés à la production dans chaque industrie (production-based account matrix).
F_Y	Unité de l'impact	$\mathcal{M} imes \mathcal{RC}$	Matrice des impacts associés à la demande finale.
F	Unité de l'impact	$\mathcal{M} \times \mathcal{RI}$	Matrice des impacts associés à la production.
M	Unité de l'impact /Million €	$\mathcal{M} \times \mathcal{RI}$	Matrice des multiplicateurs qui représente l'effet total sur les impacts d'une augmentation de la production de 1 Million € pour chaque secteur et région.
S_Y	Unité de l'impact /Million €	$\mathcal{M} \times \mathcal{RC}$	Matrice de coefficients d'impacts pour répondre à la demande finale.
S	Unité de l'impact /Million €	$\mathcal{M} imes \mathcal{RI}$	Matrice des coefficients d'impacts pour répondre à la production de chaque industrie et région.

Tableau 4 : Description des matrices EE MRIO associées aux impacts.

Une matrice d'index $\mathcal{M} \times \mathcal{R}$ est de taille 126×49 .

Une matrice de multi-index $\mathcal{M} \times \mathcal{RI} = 126 \times (49 \times 163)$ est de taille 126×7987 .

Une matrice de multi-index $\mathcal{M} \times \mathcal{RC} = 126 \times (49 \times 7)$ est de taille 126×342 .