Туннелирование на сверхвысоких частотах.

Гончаров Марк

23 марта 2021 г.

1 Теория

Проникновение электромагнитных волн в менее плотную среду при полном внутреннем отражении - явление той же природы, что и проникновение частиц в область, где их полная энергия оказывается меньше потенциальной энергии. Это явление изучается в квантовой физике и носит название туннельного эффекта.

Рис. 1: Схема установки

Исследуем этот эффект - проникновение ЭМВ через воздушный зазор между диэлектрическими призмами при полном внутреннем отражении на границе диэлектрик-воздух. Моделирование интерферометра Майкельсона с использованием этого эффекта и измерение длины волны излучения и показателя преломления фторопласта для радиоволн миллиметрового диапазона.

Для измерения показателя преломления матриала призм мы установим пластину толщины h из того же матриала, что и призмы - фторопласта. Имеем тогда приращение длины "оптического пути"

$$\Delta = 2h(n-1).$$

Однако это приращение можно скомпенсировать, передвинув подвижное зеркало на необходимое расстояние δx :

$$\delta x = h(n-1).$$

2 Туннелирование

Сначала мы настроили генератор на $f=36.36\Gamma\Gamma$ ц. Соответсвующая длина волны $\lambda=\frac{C}{\nu}\approx 8.25\pm 0.01$ мм.

Теперь рассматриваем преломление через фторопласт.

Преломление		Отражение	
MM	A, 10^{-5}	MM	A, 10^{-5}
9,34	87	15	87
9,6	85	14,77	85
9,66	84	14,58	83
9,85	83	14,45	82
9,89	81	14,31	81
9,94	80	14,09	79
9,97	79	13,59	77
10,01	78	13,44	74
10,05	77	13,31	73
10,08	75	13,09	71
10,09	74	12,97	68
10,12	73	12,9	67
10,14	72	12,69	64
10,18	70	12,42	62
10,21	69	12,2	59
10,25	68	12,11	57
10,36	66	11,93	56
10,4	64	11,82	53
10,49	63	11,59	52
10,55	60	11,55	50
10,58	58	11,3	47
10,63	56	11,22	45
10,71	55	11,06	44
10,77	53	10,99	41
10,82	51	10,93	39
10,94	48	10,76	36
10,99	47	10,72	34
11,02	45	10,65	30
11,24	42		
11,37	39		
11,51	36		
11,69	34		
11,9	30		

Рис. 2: Измеренные значения

Как видно, соотношение T+R=1 примерно выполняется. Также заметим величину щели 11мм, при которой $T\approx R\approx 0.5$. На этой щели выполним интерференцию Майкельсона.

В задании для определения длины затухания Λ построим график ln(T)=f(z), где z - толщина щели. Из теории мы знаем, что

$$I \propto e^{-\frac{z}{\Lambda}}$$
.

Для нашего случая $\frac{z}{T} = -\Lambda$. Имеем с помощью МНК: $\tan \alpha = -0.57 \pm 0.05$.

Здесь неплохая погрешность получилась при условии неучитывания первых четырёх точек. Они были сделаны некачественно из-за возникшего люфта.

Далее мы знаем, что

$$\Lambda = \frac{1}{4\pi\sqrt{(n\sin\varphi)^2 - 1}}.$$

Тогда

$$n\sin\varphi = \sqrt{1 + \frac{1}{(4\pi\Lambda)^2}} = 1.01 \pm 0.08.$$

Да, последний знак почти ничего не значит, однако оставим пока для конечного результата.

В нашем эксперименте угол падения $\varphi \approx \frac{\pi}{4}$, то есть $\sin \varphi \approx 1.414$. Итог: 1.42 ± 0.1 . Теперь действительно последний знак не имеет значения: $n=1.4 \pm 0.1$.

Табличное значение $n_{\rm tabl} \approx 1.46$, что неплохо сочетается с полученными результатами! Мы молодцы!

3 Майкельсон

Мы подвигали подвижное зеркало и убедились, что действительно наблюдаем интерференцию На втором максимуме поставили пластинку толщины $h\approx 6.2$. Пришлось для того, чтобы опяьт наблюдать второй максимум передвинуть зеркало на $\delta x=1.922\pm 0.001$ мм.

Подвижное зеркало		
X, MM	<u>I</u> , мкА	
0,14	2,0	
0,19	2,5	
0,25	3,0	
0,30	3,5	
0,41	4,0	
0,65	4,5	
1,01	5,0	
1,29	5,5	
1,57	6,0	
2,19	6,6	
3,03	6,2	
3,72	5,0	
4,12	4,0	
5,14	2,0	
6,47	0,1	
6,79	2,0	
7,02	3,3	
7,20	5,1	
8,19	6,8	
9,32	4,9	
9,88	2,5	
10,31	0,5	

Пожвижное зеркало

По формуле $\delta x = h(n-1)$ находим показатель преломления фторопласта:

$$n = 1 + \frac{\delta x}{h} = 1.31 \pm 0.01.$$

Явно дальше от правды... Всё равно мне кажется, что виноваты неровности пластинки.

4 Вывод

Мы рассмотрели эффект туннелирования, рассчитывали длину затухания, нашли коэффициент преломеления фторопласта. Повторили опыт Майкельсона, по результатам которого, увы, получили не самый лучший результат.