参考答案及评分标准

	一、单项选择题(每小题 1分,共	20分)		
1.	系统和输入已知,求	输出并对动态特性进	行研究,称为(C)	
	A. 系统综合	B.系统辨识	C.系统分析	D.系统设计	
2.	惯性环节和积分环节的	的频率特性在 (A)上相等。		
	A. 幅频特性的斜率	B.最小幅值	C.相位变化率	D. 穿越频率	
3.	通过测量输出量,产生	生一个与输出信号存在	在确定函数比例关系值	的元件称为(C)	
	A. 比较元件	B. 给定元件	C.反馈元件	D.放大元件	
4.	从 0 变化到 + 时	,延迟环节频率特 性	E极坐标图为(A)	
	A. 圆	B.半圆	C.椭圆	D.双曲线	
5.	当忽略电动机的电枢 作一个(B)	电感后,以电动机的	转速为输出变量,电枢	电压为输入变量时,电动机可看	
	A. 比例环节	B. 微分环节	C.积分环节	D. 惯性环节	
6.	若系统的开环传 递	B函数为 <u>10</u> s(5s + 2)	,则它的开环增益为((C)	
	A.1	B.2	C.5	D.10	
7.	二阶系统的传递函数	$G(s) = \frac{5}{s^2 + 2s}$	—— ,则该系统是(; +5	В)	
	A. 临界阻尼系统		C.过阻尼系统	D.零阻尼系统	
8.	若保持二阶系统的	不变,提高 n,	则可以(B)		
	A. 提高上升时间和峰位	值时间	B.减少上升时间和峰	值时间	
	C.提高上升时间和调	整时间	D.减少上升时间和超	超调量	
9.	一阶微分环节 G(s)	=1+Ts,当频率	∞ = 1/ ⊤ 时,则相频特	性 ∠G(j [©])为(A)	
			C.90 °		
10).最小相位系统的开环均				
	A. 振荡次数越多		B.稳定裕量越大		
	C.相位变化越小		D.稳态误差越小		
11	.设系统的特征方程为	$D(s)=s^4 +8s^3$	$+17s^2 + 16s + 5 = 0$, 则此系统 (A)	
	A. 稳定	B.临界稳定	C.不稳定	D.稳定性不确定。	
12	2.某单位反馈系统的开	环传递函数为:	$G(s) = \frac{k}{s(s+1)(s+1)}$,当 k=(C)时,闭环系统临界稳 5)	
	定。				
	A.10	B.20	C.30	D.40	
13	A.10 B.20 C.30 D.40 设系统的特征方程为 D(s)=3s ⁴ +10s ³ +5s ² +s+2=0,则此系统中包含正实部特征的个数有 (C)				
	A.0	B.1	C.2	D.3	

```
14.单位反馈系统开环传递函数为 G(s) = \frac{5}{s^2 + 6s + s}, 当输入为单位阶跃时,则其位置误差为 ( C )
 A.2
             B.0.2
                       C.0.5
                                    D.0.05
                       G_c(s) = \frac{s+1}{10s+1},则它是一种( D )
15.若已知某串联校正装置的传递函数为
 A. 反馈校正
                       B.相位超前校正
 C.相位滞后 — 超前校正
                       D.相位滞后校正
16.稳态误差 ess 与误差信号 E(s)的函数关系为(B)
 A. e_{ss} = \lim_{s \to 0} E(s)
                     B. e_{ss} = \lim_{s \to 0} sE(s)
             D. e_{ss} = \lim_{s \to \infty} sE(s)
 C.e_{ss} = \lim_{s \to \infty} E(s)
17.在对控制系统稳态精度无明确要求时,为提高系统的稳定性,最方便的是( A )
 A. 减小增益 B. 超前校正 C. 滞后校正 D. 滞后 -超前
18.相位超前校正装置的奈氏曲线为(B)
            Α. 圆
19.开环传递函数为 G(s)H(s)= K
s<sup>3</sup>(s + 3)
 A.(-3, ) B.(0, ) C.(-, -3) D.(-3, 0)
20.在直流电动机调速系统中,霍尔传感器是用作(B)反馈的传感器。
                 C.位移
       B.电流
 A. 电压
                                   D.速度
   二、填空题(每小题 1分,共 10分)
1.闭环控制系统又称为 ________________________系统。
相同。
3.一阶系统当输入为单位斜坡函数时,其响应的稳态误差恒为
                                      时间常数 T(或常量)
5.对于最小相位系统一般只要知道系统的
                     开环幅频特性  就可以判断其稳定性。
6.一般讲系统的位置误差指输入是 阶跃信号 所引起的输出位置上的误差。
的稳定裕度。
                   __<u>± 45°</u>___ 线上时,对应的阻尼比为
28.二阶系统当共轭复数极点位于
                                         0.707。
29.PID 调节中的" P"指的是 <u>比例</u>控制器。
30.若要求系统的快速性好,则闭环极点应距虚轴越
                             一、填空题(每空 1 分,共 15分)
                              ____给定值___与反馈量的差值进行的。
  1、反馈控制又称偏差控制,其控制作用是通过
  2、复合控制有两种基本形式:即按  <u>__输入</u>___的前馈复合控制和按 <u>__扰动</u>___的前馈复合控制。
  3、两个传递函数分别为 G_1(s)与 G_2(s)的环节,以并联方式连接,其等效传递函数为
                                                   G(s),则
G(s)为 G_1(s)+G_2(s) (用 G_1(s)与 G_2(s) 表示)。
  4、典型二阶系统极点分布如图
                    1 所示 ,
则无阻尼自然频率 \omega_n = \frac{\sqrt{2}}{2} = 0.707 , 则无阻尼自然频率 \omega_n = \frac{\sqrt{2}}{2} = 0.707 ,
```

该系统的特征方程为S2+2S+2=0 ,
该系统的单位阶跃响应曲线为衰减振动。
5、若某系统的单位脉冲响应为 $g(t) = 10e^{0.2t} + 5e^{0.5t}$,
则该系统的传递函数 $G(s)$ 为 $\frac{10}{s+0.2s} + \frac{5}{s+0.5s}$ 。
6、根轨迹起始于开环极点 ,终止于开环零点 _。
7、设某最小相位系统的相频特性为 $\phi(\omega) = tg^{-1}(\tau\omega) - 90^{\circ} - tg^{-1}(T\omega)$,则该系统的开环传递函数
为 $\frac{K(\tau s+1)}{s(Ts+1)}$ 。
$u(t) = K_p[e(t) + \frac{1}{T}\int e(t)dt]$ 8、PI 控制器的输入 - 输出关系的时域表达式是
$K_\mu[1+rac{1}{Ts}]$,由于积分环节的引入,可以改善系统的稳态性能。
二、选择题(每题 2 分,共 20分)
1、采用负反馈形式连接后,则 (D) A 一定能使闭环系统稳定; B 系统动态性能一定会提高; C 一定能使干扰引起的误差逐渐减小,最后完全消除; D 需要调整系统的结构参数,才能改善系统性能。
2、下列哪种措施对提高系统的稳定性没有效果 (A)。
A 增加开环极点; B 、在积分环节外加单位负反馈;
C、增加开环零点; D 、引入串联超前校正装置。
3、系统特征方程为 $D(s) = s^3 + 2s^2 + 3s + 6 = 0$,则系统 (C)
A 稳定; B 、单位阶跃响应曲线为单调指数上升;
C 临界稳定; D 、右半平面闭环极点数 $Z=2$ 。
4、系统在 $r(t) = t^2$ 作用下的稳态误差 $e_{ss} = \infty$, 说明 (A)
A 型别 v < 2; B 、系统不稳定; C 输入幅值过大; D 、闭环传递函数中有一个积分环节。
5、对于以下情况应绘制 0°根轨迹的是 (D)
A 主反馈口符号为" - "; B 、除 K _r 外的其他参数变化时;
C、非单位反馈系统;
6、开环频域性能指标中的相角裕度 γ 对应时域性能指标 (A)。

- A、超调 σ % B、稳态误差 e_{ss} C、调整时间 t_{s} D、峰值时间 t_{p}
- 2 所示 , 则图中不稳定的系统是 (B)。 7、已知开环幅频特性如图

系统

图 2

- A、系统
- B、系统 C、系统
- D、都不稳定
- 8、若某最小相位系统的相角裕度 $\gamma > 0$,则下列说法正确的是 (C)。

A 不稳定; B 、只有当幅值裕度 $k_g > 1$ 时才稳定;

C, 稳定;

- D、不能判用相角裕度判断系统的稳定性。
- 9、若某串联校正装置的传递函数为
- 10s +1 100s +1 , 则该校正装置属于 (B)。

A 超前校正

- B 、滞后校正
- C、滞后 -超前校正 D 、不能判断
- 10、下列串联校正装置的传递函数中,能在 $\omega_c = 1$ 处提供最大相位超前角的是: (B)

- A, $\frac{10s+1}{s+1}$ B, $\frac{10s+1}{0.1s+1}$ C, $\frac{2s+1}{0.5s+1}$

- 1. 如图示系统结构图
- 1,试用结构图化简方法求传递函数
- <u>C(s)</u>。(15分) R(s)

图 1

解:

得传递函数为
$$\frac{C(s)}{R(s)} = \frac{G_1 + G_1G_2G_3}{1 - G_1G_2 + G_1G_2G_3 + G_2G_3 + 1 + G_1}$$

2. 控制系统如图 2 所示,系统单位阶跃响应的峰值时间为 3s、超调量为 20%, 求 K, a 值。(15 分)

解:开环传递函数

$$G(s) = \frac{K(1 + as)}{s^2}$$

闭环传递函数

$$\Phi(s) = \frac{\frac{K}{s^2}}{1 + \frac{K(1 + as)}{s^2}} = \frac{K}{s^2 + Kas + K} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

已知

$$\int_{-\pi}^{\pi} \sigma \% = e^{-\pi \zeta / \sqrt{1 - \zeta^2}} = 0.2$$

$$\int_{-\pi}^{\pi} t_p = \frac{\pi}{\omega_p \sqrt{1 - \zeta^2}} = 3(s)$$

所以

$$\zeta = \sqrt{\frac{(\ln \sigma)^{2}}{\pi^{2} + (\ln \sigma)^{2}}} = \sqrt{\frac{(\ln 0.2)^{2}}{\pi^{2} + (\ln 0.2)^{2}}} = \sqrt{\frac{2.6}{9.87 + 2.6}} = 0.46$$

$$t_{p} \sqrt{1 - \zeta^{2}} = \sqrt{\frac{(\ln 0.2)^{2}}{3\sqrt{1 - 0.46^{2}}}} = \sqrt{\frac{2.6}{9.87 + 2.6}} = 1.18$$

K , a 分别为

$$\begin{cases} K = \omega_n^2 = 1.4 \\ a = \frac{2^{\zeta_{\omega_n}}}{K} = \frac{1.09}{1.4} = 0.78 \end{cases}$$

1. 已知系统特征方程为
$$s^5 + 3s^4 + 12s^3 + 24s^2 + 32s + 48 = 0$$
, 试求系统在 S 右 半平面的根的个数及虚根值。 (10分)

解:列 Routh 表

$$S^5$$
 1 12 32 S^4 3 24 48 S^4 3 $\frac{3 \times 12 - 24}{3} = 4$ $\frac{32 \times 3 - 48}{3} = 16$ 0 S^4 $\frac{4 \times 24 - 3 \times 16}{4} = 12$ 48 S^4 $\frac{12 \times 16 - 4 \times 48}{12} = 0$ 0 辅助方程 $12 S^2 + 48 = 0$, S^4 S^4 S^5 S^6 $S^$

答:系统没有正根。对辅助方程求解,得一对虚根,其值为 $\mathbf{S}_{1,2} = \pm \mathbf{j} \, \mathbf{2}_{0}$

4. 单位负反馈系统的开环传递函数
$$G(s) = \frac{K}{s(0.2s + 1)(0.5s + 1)}$$
,绘制 K 从 0 到

+ 变化时系统的闭环根轨迹图。 (15分)

$$\text{g(s)} = \frac{K}{s(0.2s+1)(0.5s+1)} = \frac{10K}{s(s+5)(s+2)}$$

系统有三个开环极点: $p_1 = 0$, $p_2 = -2$, $p_3 = -5$

分离点:

$$\frac{1}{d} + \frac{1}{d+5} + \frac{1}{d+2} = 0$$

解得:
$$d_1 = -0.88$$
, $d_2 - 3.7863$ (舍去)。

与虚轴的交点:特征方程为

$$D(s) = s^3 + 7s^2 + 10s + 10K = 0$$

$$\Re \left[\text{Re}[D(j\omega)] = -7\omega^2 + 10K = 0 \right]$$

$$\Re \left[\text{Im}[D(j\omega)] = -\omega^3 + 10\omega = 0 \right]$$

解得

与虚轴的交点 $(0, \pm \sqrt{10})$ 。 根轨迹如图示。

 $G(s) = \frac{K(T_2s+1)}{s^2(T_1+1)}$, 试概略绘制系 已知单位负反馈系统开环传递函数 5.

统的概略伯德(Bode)图。(15分) 解:

例 5-2: 设开环频率特性为 $G(j\omega) = \frac{10^{-3} \cdot (1+j100\omega)^2}{(j\omega)^2 (1+j10\omega)(1+j0.125\omega)(1+j0.05\omega)}$ 试绘制其近似的对数幅频特性曲线。

解: (1) 转折频率: $\omega_1 = 0.01$ $\omega_2 = 0.1$ $\omega_3 = \frac{1}{0.125} = 8$ $\omega_4 = 20$

(2) 低频渐近线: $L(\omega) = 20 \lg 10^{-3} - 20 \times 2 \lg \omega$

$$\therefore L(\omega) = -60 - 40 \lg \omega$$

(3) 绘制近似的对数幅频特性曲线

截止频率的计算:

$$\omega_c \in (0.1, 8)$$

令 $L(\omega) = 0$ 得:

$$\mathcal{L}(\omega) = 0$$
 得:

$$20 \lg \frac{10^{-3} \cdot (100\omega)^2}{\omega^2 \cdot 10\omega} = 0$$

$$\therefore \omega_c = 1$$

dB/dec 1/100