802.15.4 Project

The Northernites

Sam Weismuller, SangRyul "Eric" Pae, Jay Cordaro

MAS 2023 Students UC San Diego

Introduction

Design and build WPAN walkie talkies using 802.15.4 on 902-928MHz ISM Band

IEEE 802.15.4

- Simple standard to local-area networks
- Covers 900 MHz and 2.4 GHz ISM bands, among others
- Clause 13 defines Pulse-shaped BPSK and Clause 12 defines OQPSK mode
 - Only Clause 13 BPSK is required in 900 MHz band
- Carrier-Sense Multiple Access with Collision Avoidance

Block Diagram

Subsystems

- 3 subsystems:
 - RF front end
 - o FPGA
 - Microcontroller

Progress

Audio Front End/FPGA:

- Built floating point Matlab model of sigma-delta decimator, checked in
- Captured PDM audio using test jig
- Wrote SystemVerilog code and test benches for SPI and I2S, checked in
- Floating point Matlab model of transmitter blocks, <u>checked in</u>

Microcontroller:

- Implemented Opus source coder demo reading/writing audio data from an SD card, checked in
- Tested different bit error rates and code rates, <u>checked in</u>

RF Front End:

- Decision on RF front end scheme based on what we have.
- Parts search per general 802.15.4 required specification.
 - o comparison required comp. spec vs. reference device`s comp spec vs. available components spec. checked in
- List up affordable parts to order: compromise between cost vs. demo level.

802.15.4 Project

Audio Front End

PDM Microphones

Analog MEMS microphones

- Sound pressure moves a micromechanical plate which causes a change in capacitance

 O Noise sensitive

 - Difficult to route --need analog supply, ferrite bead and short differential trace between microphone and host
 - Lower power
 - Cheaper

Pulse Density Modulation MEMS microphones

- Uses same MEMS sensor but converts analog voltage into digital inside the mic using sigma delta modulation Robust to interference

- Simpler to design-in longer trace possible, beamforming, etc.
 Two microphones on same DAT trace (**single bit dual data rate**)
 High power (recent PDM microphones are much lower power, however)

Sigma Delta Modulation

- Grossly oversample signal and quantize to +/-1
- Feedback error and sum with incoming data
- oversampling and error feedback does noise shaping pushing quantization noise above frequency of interest
- PDM mics use 4th or 5th order SD Modulation (not 1 or 2 like shown here)
- Output of PDM Mics is 1-bit digital data

Sigma Delta Modulation

1-bit 768kHz PDM to 16-bit 16kHz PCM Conversion

Final 16-kHz PCM Output

Overkill for this project...Relaxed filter constraints to save FPGA resources

PDM Filtering and Decimation

- Could brute force it (about 300 Taps)
- CIC Filter followed by 2 stages of half-band filters is typical
- Can do multi-stage half-band, IIR, all kinds of things
- Fred Harris suggested using a polyphase filter. Optimum for FPGAs.

Test Setup

- Don't have an anechoic chamber makes repeatability difficult
- Built a PCB to convert analog audio to PDM using On Semi FAN3852

Audio Test Decimate by 12 using 36 or 48 taps in 1st stage

- 50dB attenuation in 1st stage
 - 36 Taps in 1st stage
- Fewer taps
- quantization noise audible

- 60dB attenuation
 - 48 Taps in 1st stage
- Less quantization noise

Implementation

- One polyphase leg shown with standard FIR structure
- Could certainly implement with this structure in an FPGA
- Note that input vector to filter can be only be 16 values:
 - 0 [1 1 1 1]
 - o [-1 1 1 1]
 - 0 [1-111]
 - 0 ...
 - o [-1 -1 -1 -1]

Polyphase Coefficients

```
poly_hh =
```


- Coefficients in each leg are mirrored and flipped
- Only store ½ the coefficients

High Pass Filter

- After decimation, add a 1st order high pass filter for DC offset
- $\bullet \quad H(z) = \alpha \frac{1 z^{-1}}{1 \alpha z^{-1}}$
- $\alpha = 1 2^{-5}$ gives a filter corner of ~ 80Hz
- human ear doesn't care about nonlinear phase at low freq + cleans up voice quality a little

PSD comparison of Decimated Output With/Without HPF

12S

- I2S is a Philips (now NXP) standard from 1990s.
- Widely used in Audio
- 3 pins:

FPGA will be I2S Target, Teensy will be I2S Controller

Simulink Model of Audio Front End and FPGA Top Level

FPGA

Implements

- SPI interfaces to uC
- PDM decimator, I2s to uC
- BPSK modulation and pulse shaping
- TX to DDS
- input from ADC
- Demodulation
- Demodulated bits to uC

Intel 10M08 EVB

- o 55nm
- 13 pins low-speed I/O
- 18 pins high-speed single ended I/O + 15 differential I/O
- o 24 18x18 DSP blocks
- o **\$50**

Future Work

FPGA:

- Implement Sigma Delta decimator in FPGA. Send out I2S, check waveform
- Implement BPSK modulator in FPGA. Check digital waveform using Logic Analyzer. vector match
- RX Input from ADC
- Demodulator

Integration:

- Connect Microcontroller to FPGA. Read and write FPGA registers via SPI
- Validate I2S from FPGA

802.15.4 Project

Microcontroller

Teensy 4.1

- ARM Cortex-M7 at 600 MHz
- Float point math unit, 64 & 32 bits
- 7936K Flash, 1024K RAM
- 2 I2S, 3 SPI
- SD card slot
- \$30!

Development Environment

- "Teensyduino" plug in for Arduino IDE
- Supports Arduino built-in functions and serial monitor
- Teensy loader application can directly load binaries without the IDE

```
8 winclude Gdire,ho
    11 #include cplay sd opus.h>
    16 Mdefine SAMPLE RATE 16000
    to miefine BITBATE 6000
    22 mdefine MAX PACKET SIZE (3*1276)
        Mdefine MY_MSSERT(cond, message) (my_assert((cond), _LINE_, _FILE_, message))
woid my_assert(bool cond, int line, const char* file, const char* message)
             while(true)
                Serial.printf("Assertion Failed in file %s, line %d: %s\n", file, line, message);
Frame 173 decoded 940 bytes
```

Opus Codec

- Open-source audio source coder used by Skype
- One of the best source coders available
- Encoder input and decoder output is 16-bit Pulse Code Modulation data
- Encoded bit rates as low as 6kbps
- Input sample rates as low as 8kbps

Opus Library for Teensy

- The Arduino-Teensy-Codec-lib has an open-source implementation of the Opus Codec for the Teensy
- It allows you to specify the encoded bit rate and input/output sample rates
- Library is designed for packetization, allowing you specify your desired packet size for each iteration of the encoder

Opus Demo

- Uses Matlab to generate 16-bit PCM binary files from Jay's PDM to PCM demo or from a way file
- Input binary is saved to a SD card and put in Teensy's SD card slot
- Teensy reads the input binary, encodes it, injects bit errors, decodes it, and then saves the output to a new binary file
- Output binary is read by Matlab and converted to wav file
- This allows us to test the quality of the audio at different encoded bit rates and BERs! Frame 177 decoded 960 bytes

```
Frame 177 decoded 960 bytes

Frame 178 decoded 960 bytes

Frame 179 decoded 960 bytes

Operation succeeded...

input file bytes: 345602, output file bytes: 345600, encoded bytes: 7337, added errors: 4
```

Opus Demo Results (Speech)

- 6000 bps:
 - BER 0:
 - BER 1e-4: •

- 12000 bps:
 - BER 0:
- BER 1e-4: •

Opus Demo Results (Music)

- 6000 bps: •
- 12000 bps: •
- 16000 bps: •

- 12000 bps:
 - BER 1e-4: •
 - o BER 1e-3:

Demo Takeaways

- 12000 kbps is suitable for most audio
- Effect of BER is similar at different levels of compression
- The quality for non-speech audio is worse at higher levels of compression than for speech audio

Future Work

- I2S and SPI interface to FGPA, want to get working ASAP
- I2S interface to output speaker, may use the Teensy Audio shield board
- Packetizing opus decoder output into 802.15.4 packets

802.15.4 Project

RF Front End + Mixed signal

Block Diagram

Modulation and Spreading

PHY (MHz)	Frequency band (MHz)	Spreading parameters		Data parameters		
		Chip rate (kchip/s)	Modulation	Bit rate (kb/s)	Symbol rate (ksymbol/s)	Symbols
868/915	868-868.6	300	BPSK	20	20	Binary
	902-928	600	BPSK	40	40	Binary

- no IQ modulator demodulator
- no AGC

TRX

Antenna

- Frequency range: 902-928 MHz (US)
- Gain: typically 2-5 dBi
- Polarization: linear or circular
- Radiation pattern: omnidirectional or directional
- Connector: typically SMA or u.FL

Figure 2 Extended Position, Vertical

Figure 3 Folded Position, Vertical

LNA

SPF5189

RF Low Noise Amplifier

• Freq: 50-4000MHz

• Gain : ~17dB

• NF: 0.6dB

Rx RF BPF

FBP-915s

- Impedance:50 ohms
- Center frequency:915MHz
- Passband:902~928MHz
- Band Insertion Loss:<2.5 dB
- Out-of-band isolation: > 40 dB @ 815 MHz and 1015 MHz
- Maximum load power:300 mW (25 dBm)
- Interface:SMA-M, SMA-F

Mixer + PLL + TCXO

(*alternative option for 2nd unit:) (Mini-Circuits ZAD-2 mixer + SigGen with ref sync) (* UCSD SigGen)

moRFeus

- RF input frequency: 30 MHz 6 GHz
- RF output frequency: 30 MHz 6 GHz
- LO frequency: 85 MHz 5400 MHz
- Fractional-N synthesizer
- LO step size: 1.5 3 Hz*
- Up/Down conversion both are OK

Rx IF filter

SLP100+

• Pass band: DC~98MHz,

• IL:0.58 @900MHz

• 2fo rejection : 48dB,

• 3fo rejection : ~75dB

Low Pass Filter Electrical Specifications

Zon i doo i moi Zioomioai opoomioanono									
PASSBAND (MHz) (loss < 1 dB)	fco (MHz) Nom. (loss 3 dB)		BAND Hz)	VSWR (:1)					
		(loss > 20 dB)	(loss > 40 dB)	Passband Typ.	Stopband Typ.				
DC-98	108	146-189	189-400	1.7	18				

electrical schematic

ADC

AD9226 ADC Module

Signal-to-Noise Ratio: 69 dB @ fIN = 31 MHz

Spurious-Free Dynamic Range: 85 dB @ flN = 31 MHz

Intermodulation Distortion of -75 dBFS @ fIN = 140 MHz

ENOB = 11.1 @ fIN = 10 MHz

Low-Power Dissipation: 475 mW

Differential Nonlinearity Error: 0.6 LSB

Integral Nonlinearity Error: 0.6 LSB

TX

DDS

Figure 1. Low Power Waveform Generator (Simplified Schematic: All Connections and Decoupling Not Shown)

Functional Block Diagram

DDS

EV-ADF4360-6EB1Z

Figure 9. Reference Spurs at 1150 MHz (1 MHz Channel Spacing, 25 kHz Loop Bandwidth)

Mixer + PLL + TCXO

(*alternative option for 2nd unit:)
(Mini-Circuits ZAD-2 mixer + SigGen with ref sync)
(* UCSD SigGen)

moRFeus

- RF input frequency: 30 MHz 6 GHz
- RF output frequency: 30 MHz 6 GHz
- LO frequency: 85 MHz 5400 MHz
- Fractional-N synthesizer
- LO step size: 1.5 3 Hz*
- Up/Down conversion both are OK

PA

ZX60-V63+

• Frequency: 50MHz ~ 6GHz

• P1dB: 18.5dBm

• Gain: 15.4dB

• Noise Figure : 4.3dB

• Voltage - Supply: 4.8V ~ 5.2V

• Current - Supply : 69mA

SMA Connectors

RF Frontend + Mixed signal parts list

Item	Description	Cost	Source	QTY REQ'd	Total Cost	Purchased?	who buy?
AD9226 ADC Module	ADC Module	\$23.50	https://www.ebay.com	3	\$47.00		UCSD-MAS
EV-ADF4360-6EB1Z	DDS development kit(RFout:1200MHz)	\$160.65	https://www.mouser.	2	\$321.30		UCSD-MAS
moFeus	mixer with SigGen	\$159.00	https://www.crowdsu	2	\$318.00		UCSD-MAS
SMA coaxial cables	SMA coaxial cables	\$12.99/5pcs	https://www.amazon	10	\$25.98		UCSD-MAS
6" 0.1" Pitch F-F Jumper Wire	jumper wire f-f	\$3.95	Adafruit	1	\$3.95		UCSD-MAS
6" 0.1" Pitch M-M Jumper Wire	jumper wire m-m	\$3.95	Adafruit	1	\$3.95		UCSD-MAS
6" 0.1" Pitch M-F Jumper Wire	jumper wire m-f	\$3.95	<u>Adafruit</u>	1	\$3.95		UCSD-MAS
				total	\$724.13		
Secretary Secretary							
Teensy 4.1	Teensy 4.1 EVB	\$30.00	Amazon	3	\$90.00	YES	Sam, Eric, Jay
CBPFS-0915	915MHz Saw Filter (SMA)	\$24.17	915MHz (902-928) S	2	\$48.34	YES(ordered	Sam, Eric, Jay
SPF5189	LNA	\$11.16	Taluosi SPF5189 50	2	\$22.32	YES(ordered	Sam, Eric, Jay
EK-10M08E144	Intel MAX10 EVB(FPGA)	\$50.95	Digikey	3	\$152.85		Sam, Eric, Jay

Future work

- Link budget analysis : range vs. BER
- RF Frontend + chanel model with Simulink for timing recovery simulation of baseband.
- Rx/Tx chain integration and performance test.
- Mixed signal part & FPGA interoperability test.
- Troubleshooting for whole system operation.