Tarea por calificar

Pregunta 1: Utilice yfinance para extraer datos bursátiles

Restablezca el índice, guarde y visualice las cinco primeras filas del marco de datos tesla_data utilizando la función head. Suba una captura de pantalla de los resultados y el código del principio de la Pregunta 1 a los resultados de abajo.

- # 1. Instalar la librería yfinance !pip install lxml==4.6.4 # !pip install requests==2.26.0
- # 2. Importar las librerías necesarias import yfinance as yf
- # 3. Extraer los datos bursátiles de Tesla (TSLA) tesla_data = yf.download('TSLA', start='2020-01-01', end='2024-12-01')
- # 4. Restablecer el índice tesla_data.reset_index(inplace=True)
- # 5. Visualizar las primeras 5 filas tesla_data.head()
- Requirement already satisfied: lxml==4.6.4 in /usr/local/lib/python3.10/dist-packages (4.6.4)

Price	Date	Adj Close	Close	High	Low	0pen	Volume	\blacksquare
Ticker		TSLA	TSLA	TSLA	TSLA	TSLA	TSLA	ılı
0	2020-01-02	28.684000	28.684000	28.713333	28.114000	28.299999	142981500	
1	2020-01-03	29.534000	29.534000	30.266666	29.128000	29.366667	266677500	
2	2020-01-06	30.102667	30.102667	30.104000	29.333332	29.364668	151995000	
3	2020-01-07	31.270666	31.270666	31.441999	30.224001	30.760000	268231500	
4	2020-01-08	32.809334	32.809334	33.232666	31.215334	31.580000	467164500	

New interactive sheet

Pregunta 2

```
# 1. Instalar las librerías necesarias
!pip install requests beautifulsoup4 pandas
# 2. Importar las librerías
import requests
from bs4 import BeautifulSoup
import pandas as pd
# 3. Definir la URL de la página con los datos financieros de Tesla
url = 'https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-PY0220EN-SkillsNetwork/labs/project/revenue.htm'
# 4. Realizar la solicitud HTTP a la página
response = requests.get(url)
# 5. Parsear el contenido HTML con BeautifulSoup
soup = BeautifulSoup(response.content, 'html.parser')
# 6. Encontrar la tabla de ingresos de Tesla
table = soup.find_all('table')[0]
# 7. Crear una lista para almacenar las filas de datos
rows = []
# 8. Iterar sobre las filas de la tabla para extraer los datos
for row in table.find all('tr')[1:]: # Omitir la primera fila de encabezado
    cols = row.find all('td')
    cols = [ele.text.strip() for ele in cols]
    rows.append(cols)
# 9. Crear un DataFrame a partir de los datos extraídos
tesla revenue = pd.DataFrame(rows, columns=['Year', 'Revenue'])
# 10. Mostrar las últimas 5 filas del DataFrame usando tail()
tesla revenue.tail()
```

```
Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (2.32.3)
Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.10/dist-packages (4.12.3)
Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (2.2.2)
Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests) (3.4.0)
Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests) (3.10)
Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests) (2.2.3)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from beautifulsoup4) (2.6)
Requirement already satisfied: numpy>=1.22.4 in /usr/local/lib/python3.10/dist-packages (from pandas) (1.26.4)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2024.2)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)

Year Revenue
```

	Year	Revenue				
8	2013	\$2,013	ılı			
9	2012	\$413				
10	2011	\$204				
11	2010	\$117				
12	2009	\$112				

Pregunta 3

```
# Código Pregunta 1
!pip install lxml==4.6.4
# !pip install requests==2.26.0

# Código Pregunta 1
import yfinance as yf

# Desarrollo Pregunta 2
# 1. Extraer los datos bursátiles de GameStop (GME)
gme_data = yf.download('GME', start='2020-01-01', end='2024-12-01')
# 2. Restablecer el índice
gme_data.reset_index(inplace=True)

# 3. Visualizar las primeras 5 filas
gme_data.head()
```


Pasos siguientes:

Ver gráficos recomendados

New interactive sheet

Pregunta 4

- # 1. Definir la URL de la página con los datos financieros de GameStop (GME)
 url = 'https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-PY0220EN-SkillsNetwork/labs/project/stock.html'
- # 2. Realizar la solicitud HTTP a la página response = requests.get(url)
- # 3. Parsear el contenido HTML con BeautifulSoup
 soup = BeautifulSoup(response.content, 'html.parser')
- # 4. Encontrar la tabla de ingresos de GameStop
 table = soup.find('table')
- # 5. Crear una lista para almacenar las filas de datos
 rows = []
- # 6. Iterar sobre las filas de la tabla para extraer los datos
 for row in table.find_all('tr')[1:]: # Omitir la primera fila de encabezado
 cols = row.find_all('td')
 cols = [ele.text.strip() for ele in cols]
 rows.append(cols)
- # 7. Crear un DataFrame a partir de los datos extraídos
 gme_revenue = pd.DataFrame(rows, columns=['Year', 'Revenue'])
- # 8. Mostrar las últimas 5 filas del DataFrame usando tail()
 gme_revenue.tail()

}		Year	Revenue	
	11	2009	\$8,806	ılı
	12	2008	\$7,094	
	13	2007	\$5,319	
	14	2006	\$3,092	
	15	2005	\$1,843	

Pregunta 5

plt.grid(True)
plt.show()

```
# 1. Importar las librerías necesarias
import matplotlib.pyplot as plt

# 2. Crear la función make_graph
def make_graph(data):
    # Crear una gráfica de la columna "Close" (precio de cierre)
    plt.figure(figsize=(10, 6))
    plt.plot(data['Close'], label='Precio de Cierre')
    plt.title('Precio de las Acciones de Tesla (TSLA)', fontsize=16)
    plt.xlabel('Fecha')
    plt.ylabel('Precio de Cierre (USD)')
    plt.legend(loc='upper left')
```

3. Llamar a la función make_graph con los datos de Tesla
make_graph(tesla_data)

2/12/24, 8:55 p.m. Untitled11.ipynb - Colab

Precio de las Acciones de Tesla (TSLA)

1. Crear la función make_graph

```
def make graph(data):
```

plt.show()

```
# Crear una gráfica de la columna "Close" (precio de cierre)
plt.figure(figsize=(10, 6))
plt.plot(data['Close'], label='Precio de Cierre', color='green')
plt.title('Precio de las Acciones de GameStop (GME)', fontsize=16)
plt.xlabel('Fecha')
plt.ylabel('Precio de Cierre (USD)')
plt.legend(loc='upper left')
plt.grid(True)
```

2. Llamar a la función make_graph con los datos de GameStop
make_graph(gme_data)

Precio de las Acciones de GameStop (GME)

