ifbclass/images/ifblogo

Instituto Federal de Brasília Campus Brasília

Curso Superior de Tecnologia em Sistemas para Internet

FERRAMENTA DE DESENVOLVIMENTOS DE SOFTWARE NA WEB PARA APRENDIZAGEM DE ALGORITMOS

Por

NEANDER WENDEL NOBRE TEIXEIRA

Tecnólogo

Neander Wendel Nobre Teixeira

FERRAMENTA DE DESENVOLVIMENTOS DE SOFTWARE NA WEB PARA APRENDIZAGEM DE ALGORITMOS

Trabalho apresentado ao Programa de Curso Superior de Tecnologia em Sistemas para Internet da Instituto Federal de Brasília como requisito parcial para obtenção do grau de Tecnólogo em Sistemas de Internet.

Orientador: Prof.º Alisson Wilker Andrade Silva

Neander Wendel Nobre Teixeira

Ferramenta de Desenvolvimentos de Software na Web para aprendizagem de algoritmos/ Neander Wendel Nobre Teixeira. – BRASÍLIA, 2019-

43~p.:il.~(algumas~color.);30~cm.

Orientador Prof.º Alisson Wilker Andrade Silva

Tecnólogo – Instituto Federal de Brasília, 2019.

1. Palavra-chave1. 2. Palavra-chave2. I. Orientador. II. Universidade xxx. III. Faculdade de xxx. IV. Título

CDU 004

Neander Wendel Nobre Teixeira

Ferramenta de Desenvolvimentos de Software na Web para aprendizagem de algoritmos

Trabalho de conclusão de curso de graduação apresentado a Coordenação do Curso Superior de Tecnologia em Sistemas de Internet do Instituto Federal de Brasília – Campus Brasília, como requisito parcial para a obtenção do título de Tecnólogo em Sistemas de Internet.

Aprovado em: de de	
BANCA EXAMINADORA	
Prof. Prof.º Alisson Wilker Andrade Silva Computação/IFB	
Prof.ª Dr.ª Primeira Membro da Banca Computação/IFB	
Prof. Dr. Segundo Membro da Banca Computação/IFB	
Prof. ^a Dr. ^a Terceira Membro da Banca Computação/IFB	

BRASÍLIA 2019

Agradecimentos

Agradeço ao meu orientador Prof. Dr. Nome do Orientador, pela sabedoria com que me guiou nesta trajetória.

Aos meus colegas de sala.

A Secretaria do Curso, pela cooperação.

Gostaria de deixar registrado também, o meu reconhecimento à minha família, pois acredito que sem o apoio deles seria muito difícil vencer esse desafio.

Enfim, a todos os que por algum motivo contribuíram para a realização desta pesquisa.

Resumo

SOBRENOME, Prenome do Autor do Trabalho. Título do trabalho: subtítulo (se houver). 2018. 65 f. Trabalho de Conclusão de Curso (Graduação) – Tecnólogo em Sistemas para Internet. Instituto Federal de Brasília – Campus Brasília. Brasília/DF, 2018.

Elemento obrigatório, constituído de uma sequência de frases concisas e objetivas, fornecendo uma visão rápida e clara do conteúdo do estudo. O texto deverá conter no máximo 500 palavras e ser antecedido pela referência do estudo, com exceção do resumo inserido no próprio documento. Também, não deve conter citações. O resumo deve ser redigido em parágrafo único, espaçamento simples e seguido das palavras representativas do conteúdo do estudo, isto é, palavras-chave, em número de três a cinco, separadas entre si por ponto e finalizadas também por ponto. Usar o verbo na terceira pessoa do singular, com linguagem impessoal (pronome SE), bem como fazer uso, preferencialmente, da voz ativa.

Palavras-chave: Primeira palavra. Segunda palavra. Terceira palavra. Quarta palavra. Quintapalavra.

Abstract

SOBRENOME, Prenome do Autor do Trabalho. Título do trabalho: subtítulo (se houver). 2018. 65 f. Trabalho de Conclusão de Curso (Graduação) – Tecnólogo em Sistemas para Internet. Instituto Federal de Brasília – Campus Brasília. Brasília/DF, 2018.

Elemento obrigatório, constituído de uma sequência de frases concisas e objetivas, fornecendo uma visão rápida e clara do conteúdo do estudo. O texto deverá conter no máximo 500 palavras e ser antecedido pela referência do estudo, com exceção do resumo inserido no próprio documento. Também, não deve conter citações. O resumo deve ser redigido em parágrafo único, espaçamento simples e seguido das palavras representativas do conteúdo do estudo, isto é, palavras-chave, em número de três a cinco, separadas entre si por ponto e finalizadas também por ponto. Usar o verbo na terceira pessoa do singular, com linguagem impessoal (pronome SE), bem como fazer uso, preferencialmente, da voz ativa.

Keywords: Keyword. Second keyword. Third keyword. Keyword.

Lista de Figuras

Lista de Algoritmos

Lista de Tabelas

2.1	Tabela comparativa entre os trabalhos correlacionados	29
A. 1	List of conferences on which the searches were performed	41
A.2	List of journals in which the searches were performed	42
A.3	Search string per Search Engine	43

Lista de Acrônimos

Sumário

1	Intr	rodução	25
	1.1	Tema	25
	1.2	Problema	25
		1.2.1 Objetivo geral	25
		1.2.2 Objetivos específicos	26
	1.3	Estrutura do TCC	26
		1.3.1 Classificação da Pesquisa	26
2	Tral	balhos correlacionados	27
	2.1	CodePen	27
	2.2	JSFiddle	27
	2.3	Coding Ground	28
	2.4	Fabriki	28
	2.5	The Huxley	28
3	Met	odologia	31
	3.1	Uma seção	31
	3.2	Uma outra seção	31
4	Apr	esentação e Análise dos Resultados	33
5	Con	iclusões e Trabalhos Futuros	35
Re	ferên	ncias	37
Ap	êndi	ce	39
٨	Mar	oning Study's Instruments	11

1

Introdução

A área de Desenvolvimento de Sistemas é uma área relativamente nova, mas que atualmente impacta em toda e qualquer área do conhecimento. Desde pequenos sistemas de gerenciamento de tarefas a grandes redes sociais, os Sistemas de Informação estão em cada momento de nossas vidas e inclusive, na educação.

1.1 Tema

As ferramentas disponíveis na Web estão cada vez mais sofisticadas e completas, e dispensando o uso de papéis ou de programas instalados fisicamente em suas máquinas, além de possuírem armazenamento compartilhado em nuvem. A utilização dessas ferramentas trazem mais praticidade e conforto ao usuário, principalmente para estudantes por manter todos os seus trabalhos, apresentações, anotações salvas na nuvem e acessíveis por qualquer dispositivo.

1.2 Problema

Atualmente, ao iniciar os estudos com uma linguagem de programação, os instrutores utilizam uma pseudo-linguagem para ensinar os básicos de algoritmos. Em geral, os ambientes de desenvolvimento dessas pseudo-linguagens são simples e fáceis de usar, com apenas alguns cliques.

Entretanto, durante a transição para uma linguagem de programação real (como Java, C#, Python, etc...) podem ocorrer problemas na execução do código. Em alguns casos é necessário instalar um Kit de Desenvolvimento, ou um ambiente de desenvolvimento que torna complexo a sua instalação. Por conta disso, alguns alunos se desmotivam a aprender a linguagem ao passarem mais tempo tentando executar o código do que desenvolvendo alguma atividade.

1.2.1 Objetivo geral

Visando facilitar o início da aprendizagem com uma nova linguagem de programação uma ferramenta Web pode ajudar nessa transição para evitar que o estudante desista ainda na ambientação, além de motivá-lo a continuar estudando algoritmos sem precisar ter uma máquina potente ou um ambiente instalado em qualquer lugar.

26 INTRODUÇÃO

1.2.2 Objetivos específicos

Existem diversas ferramentas no mercado que podem satisfazer esses problemas do usuário. Entretanto, são ferramentas separadas que a Program. Acad pretende vincular várias dessas funcionalidades e aperfeiçoá-las. Algumas dessas funcionalidades são:

- Disponibilizar um ambiente gratuito e de fácil acesso para os estudantes.
- Permitir ao usuário escolher a linguagem de programação desejada para resolver os algoritmos.
- Comparar suas estatísticas com a de outros usuários, com o intuito de criar um pequeno ambiente de competição.
- Possibilitar o usuário a desenvolver seus algoritmos sem preocupar-se com a ambientação da linguagem.
- Disponibilizar uma forma de criar um Avatar para sentir-se mais próximo dentro da plataforma.

Com isso, pretende-se melhorar o engajamento de estudantes na área de desenvolvimento e permiti-los aprender na prática.

1.3 Estrutura do TCC

Inicialmente haverá uma breve revisão de sistemas similares disponíveis no mercado e logo após se iniciará a documentação do sistema, com o Documento de Visão, Descrição resumida dos casos de uso, diagrama de caso de uso, descrição detalhada dos casos de uso, protótipos de interfaces do sistema, diagramas de classe, diagramas de sequência e casos de teste. Alguns desses documentos estarão em outros arquivos fora deste, cada seção apresentará um documento diferente.

1.3.1 Classificação da Pesquisa

Esta pesquisa será descritiva, onde procurará identificar os fatores que envolvem os estudantes e a forma como eles aprendem. Também tem como objetivo documentar e explicar como o sistema será desenvolvido. Será desenvolvido um sistema Web, utilizando a tecnologias modernas e atuais que contribuam para o desenvolvimento de um sistema de fácil uso e que satisfaça a expectativa do usuário.

Trabalhos correlacionados

Conforme explorado no capítulo 1, um ambiente de desenvolvimento na Web é essencial para o engajamento de estudantes na área de desenvolvimento de sistemas. Com isso, nossa ferramenta Web de desenvolvimento pretende disponibilizar algoritmos e um ambiente de desenvolvimento on-line, com a possibilidade de salvar os algoritmos na nuvem e permitirá validar eles. Os usuários também poderão analisar onde estão acertando e errando para que possam se auto-avaliar.

A disponibilização de ambientes de desenvolvimento na Web não é novidade. Entretanto, cada ferramenta tem sua especialidade e foco em uma área de desenvolvimento. Neste capítulo serão apresentados sistemas que seguem essa ideia. Após, haverá uma tabela apontando as diferenças entre cada plataforma.

2.1 CodePen

O CodePen é um ambiente de desenvolvimento colaborativo com foco no desenvolvimento de Front-end e de código aberto. O CodePen foi desenvolvido como uma comunidade de compartilhamento de demonstrações e exemplos. Ele permite que os usuários desenvolvam sites através do navegador.

Ele é ideal para expor trabalhos interativos e funcionais FIALA; YEE-KING; GRIERSON (2016). As principais vantagens do CodePen se dão em seu ambiente de desenvolvimento dinâmico em que as alterações aparecem na página logo após editar um arquivo HTML.

Como os dados estão salvos em nuvem, a disponibilização de código fica mais rápida e simples, permitindo que desenvolvedores possam expor portfólios editáveis, ao mesmo tempo que o deixam disponíveis para que outras pessoas possam utilizar essa página como inspiração.

2.2 JSFiddle

O JSFiddle também é um ambiente de desenvolvimento colaborativo. Tal qual o CodePen 2.1, permite manter códigos armazenados e compartilhá-los com outros desenvolvedores. Entre os diferenciais do JSFiddle, está o IntelliSense, que apresenta uma lista de possibilidades de códigos para serem escritos.

O JSFiddle é diferente pois ele também permite a disponibilização de códigos, entretanto não tem um foco em criar uma comunidade de desenvolvedores. Uma das diferenças do JSFiddle é a possibilidade de utilizar *boilerplates*, códigos já prontos com o mínimo de configuração inicial para que seja executado com sucesso.

Essa ferramenta possui a tecnologia do IntelliSense, uma espécie de "autocomplete" que surgere possíveis códigos para que o desenvolvedor complete seu código rapidamente e até mesmo lembre de como uma função ou objeto funciona.

2.3 Coding Ground

O Coding Ground é uma plataforma de desenvolvimento para sites de tutoriais. Ele disponibiliza um pequeno ambiente para que o usuário possa editar códigos e executá-los. Também possui uma vasta biblioteca de linguagens possíveis para utilização, inclusive com frameworks e bibliotecas de Front-End.

O Coding Ground se distancia um pouco das plataformas que serão discutidas nessa seção, pois é uma plataforma para criação de tutoriais, mas que permite a utilização de um ambiente de desenvolvimento que funciona com precisão e velocidade.

Essa ferramenta não é capaz de executar testes unitários e nem possui nenhuma forma de desafios ou algoritmos para serem resolvidos.

2.4 Fabriki

Uma plataforma educacional com foco em ensinar linguagem de programação. Criada para guiar o estudante do iniciante ao avançado. Possui suporte para desenvolvimento Web e algoritmos em Java. A plataforma também possibilita a validação dos algoritmos quando submetidos.

O grande diferencial do Fabrik a outras plataformas é que os algoritmos não ficam presos a apenas métodos ou classes, ele é capaz de executar testes unitários nos códigos enviados que permitem exercícios complexos como algoritmos de Orientação a Objetos complexos e desenvolvimento de Back-End utilizando a linguagem Java.

Além disso, os algoritmos disponíveis ficam separados por turmas e disponibilizados aos alunos aos poucos. Os algoritmos disponíveis são explicativos e podem possuir até mesmo vídeos e dicas de como resolver os algoritmos.

2.5 The Huxley

Uma plataforma competitiva, que possibilita o desenvolvimento direto pelo Browser, com validação de códigos e algoritmos desafiadores. Esta plataforma possui suporte para até 7 linguagens de programação que o usuário pode escolher ao começar. Está disponível gratuitamente.

2.5. THE HUXLEY 29

É uma ótima ferramenta para sala de aula, pois permite criar salas e disponibilizar algoritmos para serem resolvidos, rapidamente e com testes locais e submissão a testes.

Também possui uma tela com estatísticas do algoritmo, onde o pessoal mais acerta, erra, se há erro de compilação, entre outros problemas.

Apesar de bem completo, seu ambiente é um pouco confuso e que pode afastar usuários que não se apeguem à plataforma.

 Tabela 2.1
 Tabela comparativa entre os trabalhos correlacionados

Sistema/Ferramenta	Salva na nuvem	Validação de Código	Colaboração ao Vivo	Compartilhamento
CodePen	Sim	Não	Não	Sim
JSFiddle	Sim	Não	Sim	Sim
Coding Ground	Sim	Não	Não	Sim
Fabriki	Não	Sim	Não	Não
The Huxley	Não	Sim	Não	Não

3

Metodologia

Aqui conterão os métodos e procedimentos adotados no desenvolvimento do trabalho. Esta é uma das sessões mais importantes pois demonstra o poder científico que foi utilizado para a pesquisa. Sem uma boa metodologia a pesquisa pode perder a validade. O pesquisador deve utilizar métodos ou técnicas aceitas pela comunidade científica na busca de provar suas hipóteses.

A metodologia escolhida deve ser aquela que mais se adéqua ao seu objeto de estudo e à abordagem aplicada. Há dois métodos principais: 1) quantitativo, que é o uso de instrumental estatístico, de dados numéricos; e 2) qualitativo, que se caracteriza pela qualificação dos dados coletados, durante a análise do problema.

3.1 Uma seção

Texto.

3.2 Uma outra seção

Texto.

4

Apresentação e Análise dos Resultados

Toda pesquisa deve apresentar uma análise sobre a investigação que foi realizada através da metodologia que foi aplicada. Nesta sessão é interessante inserir tabelas, gráficos, imagens que mostrem os resultados, análise de dados coletados, etc.

É interessante que nessa sessão o autor compare os seus resultados com os resultados de outros trabalhos existentes. Essa comparação aumenta a qualidade do trabalho e demonstra a relevância do mesmo.

Conclusões e Trabalhos Futuros

A conclusão deve conter os principais aspectos e contribuições de forma a finalizar o trabalho apresentado. Deve-se apresentar o que era esperado do trabalho através dos objetivos inseridos inicialmente e mostrar o que foi conseguido.

Não deve-se inserir um novo assunto na conclusão. Aqui o autor apresentará as próprias impressões sobre o trabalho efetuado.

É importante também que sejam identificadas limitações e problemas que surgiram durante o desenvolvimento do trabalho e quais as consequências do mesmo.

Os trabalhos futuros devem conter oportunidades de expansão do trabalho apresentado, bem como, novos projetos que puderam ser vislumbrados a partir do desenvolvimento do trabalho

Referências

FIALA, J.; YEE-KING, M.; GRIERSON, M. Collaborative coding interfaces on the Web. In: INTERNATIONAL CONFERENCE ON LIVE INTERFACES, 2016. **Proceedings...** [S.l.: s.n.], 2016. p.49–58.

\mathbf{A}

Mapping Study's Instruments

Tabela A.1 List of conferences on which the searches were performed.

	Table A.1 List of conferences on which the scarcies were performed.
Acronym	Conference
APSEC	Asia Pacific Software Engineering Conference
ASE	IEEE/ACM International Conference on Automated Software Engineering
CSMR	European Conference on Software Maintenance and Reengineering
ESEC	European Software Engineering Conference
ESEM	International Symposium on Empirical Software Management and Measurement
ICSE	International Conference on Software Engineering
ICSM	International Conference on Software Maintenance
ICST	International Conference on Software Testing
InfoVis	IEEE Information Visualization Conference
KDD	ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
MSR	Working Conference on Mining Software Repositories
OOPSLA	Object-Oriented Programming, Systems, Languages and Applications
QSIC	International Conference On Quality Software
SAC	ACM Symposium on Applied Computing
SEAA	EUROMICRO Conference on Software Engineering and Advanced Applications
SEDE	19th International Conference on Software Engineering and Data Engineering
SEKE	International Conference on Software Engineering and Knowledge Engineering

Tabela A.2 List of journals in which the searches were performed.

Journal title

ACM Transactions on Software Engineering and Methodology

Automated Software Engineering

Elsevier Information and Software Technology

Elsevier Journal of Systems and Software

Empirical Software Engineering

IEEE Software

IEEE Computer

IEEE Transactions on Software Engineering

International Journal of Software Engineering and Knowledge Engineering

Journal of Software: Evolution and Process

Software Quality Journal

Journal of Software

Software Practice and Experience Journal

Tabela A.3 Search string per Search Engine.

Search Engine	Search String
Google Scholar	bug report OR track OR triage "change request" issue track OR request OR software OR "modification request" OR "defect track" OR "software issue" repositories maintenance evolution
ACM Portal	Abstract: "bug report"or Abstract: "change request"or Abstract: "bug track"or Abstract: "issue track"or Abstract: "defect track"or Abstract: "bug triage"or Abstract: "software issue"or Abstract: "issue request"or Abstract: "modification request") and (Abstract:software or Abstract:maintenance or Abstract:repositories or Abstract:repository
IEEExplorer (1)	((((((((((((((((((((((((((((((((((((((
IEEExplorer (2)	((((((((((((((((((((((((((((((((((((((
IEEExplorer (3)	((((((((("("Abstract": "bug report") OR "Abstract": "change request") OR "Abstract": "bug track") OR "Abstract": "software issue") OR "Abstract": "issue request") OR "Abstract": "modification request") OR "Abstract": "issue track") OR "Abstract": "defect track") OR "Abstract": "bug triage") AND "Abstract": repositories)
IEEExplorer	((((((((("("Abstract": "bug report") OR "Abstract": "change request") OR "Abstract": "bug track") OR "Abstract": "software issue") OR "Abstract": "issue request") OR "Abstract": "modification request") OR "Abstract": "issue track") OR "Abstract": "defect track") OR "Abstract": "bug triage") AND "Abstract": repository)
Citeseer Library	(abstract: "bug report"OR abstract: "change request"OR abstract: "bug track"OR abstract: "issue track"OR abstract: "defect track"OR abstract: "bug triage"OR abstract: "software issue"OR abstract: "issue request"OR abstract: "modification request") AND (abstract:software OR abstract:maintenance OR abstract:repositories OR abstract:repository)
Elsevier	("bug report"OR "change request"OR "bug track"OR "issue track"OR "defect track"OR "bug triage"OR "software issue"OR "issue request"OR "modification request") AND (software OR maintenance OR repositories OR repository)
Scirus	("bug report"OR "change request"OR "bug track"OR "issue track"OR "defect track"OR "bug triage"OR "software issue"OR "issue request"OR "modification request") AND (software maintenance OR repositories OR repository) ANDNOT (medical OR aerospace)
ScienceDirect	("bug report"OR "change request"OR "bug track"OR "issue track"OR "defect track"OR "bug triage"OR "issue request"OR "modification request") AND LIMIT-TO(topics, "soft ware")
Scopus	("bug report"OR "change request"OR "bug track"OR "issue track"OR "defect track"OR "bug triage"OR "software issue"OR "issue request"OR "modification request") AND (software maintenance OR repositories OR repository)
Wiley	("bug report"OR "change request"OR "bug track"OR "issue track"OR "defect track"OR "bug triage"OR "software issue"OR "issue request"OR "modification request") AND (software maintenance OR repositories OR repository)
ISI Web of Knowledge	("bug report"OR "change request"OR "bug track"OR "issue track"OR "defect track"OR "bug triage"OR "software issue"OR "issue request"OR "modification request") AND (software maintenance OR repositories OR repository) ANDNOT (medical OR aerospace)
SpringerLink	("bug report"OR "change request"OR "bug track"OR "issue track"OR "defect track"OR "bug triage"OR "software issue"OR "issue request"OR "modification request") AND (software maintenance OR repositories OR repository) ANDNOT (medical OR aerospace)