From	9
глаш	•)

Last Name	First Name	Student ID #

Honor Code: This exam represents only my own work. I did not give or receive help.

Signature:	
\1000 of tire.	

Partial Credit: The most important issue is knowing how to approach a particular problem. Therefore, there will be partial credit for good solution outlines even if not all the mathematical manipulations are completed correctly. Be sure to attempt every problem!

- You have exactly **2 hours** to complete this exam.
- No devices are allowed including no phones and no calculators.
- Unless indicated otherwise, you only need to setup up integrals correctly for full credit, which includes the correct limits and case-by-case conditions.
- You can use the provided formula sheet handouts no extra materials are allowed.
- No form of collaboration is allowed.
- There are 5 problems in total, each worth 20 points.

*** Good Luck! ***

Problem	Points earned	out of	Problem	Points earned	out of
Problem 1		20	Problem 4		20
Problem 2		20	Problem 5		20
Problem 3		20			
			Total		100

(This is a two-page problem with a single scenario.) Consider the following detection problem. $\mathbb{P}[H_0] = 4/5$ and $\mathbb{P}[H_1] = 1/5$. Under H_0 , Y is Exponential (1). Under H_1 , Y is Uniform (0,4).

(a) Determine the ML rule. Simplify your expression as much as you can.

Solution:

We know that
$$f_{Y|H_0}(y) = \begin{cases} e^{-y} & y \ge 0 \\ 0 & y < 0 \end{cases}$$
 and $f_{Y|H_1}(y) = \begin{cases} \frac{1}{4} & 0 \le y \le 4 \\ 0 & \text{otherwise.} \end{cases}$ The likelihood ratio is $\mathcal{L}(y) = \frac{1}{4}e^y$. We see that $\mathcal{L}(y) \ge 1$ if $e^y \ge 4 \implies y \ge \ln(4)$. Therefore, the ML rule is
$$D^{\mathrm{ML}}(y) = \begin{cases} 1 & \ln(4) \le y \le 4 \\ 0 & 0 \le y < \ln(4) \text{ or } y > 4 \end{cases}$$

(b) Sketch the conditional PDFs $f_{Y|H_0}(y)$ and $f_{Y|H_1}(y)$ below. Clearly indicate the regions where the ML rule will decide 0 and where it will decide 1.

(c) Determine the probability of error for the ML rule.

Solution:

Solution:

$$P_{\text{FA}} = \mathbb{P}[D^{\text{ML}}(Y) = 1 | H_0] = \int_{\ln(4)}^4 e^{-y} \, dy = \frac{1}{4} - e^{-4}$$

$$P_{\text{MD}} = \mathbb{P}[D^{\text{ML}}(Y) = 0 | H_1] = \int_0^{\ln(4)} \frac{1}{4} \, dy = \frac{\ln(4)}{4}$$

$$\mathbb{P}[\text{error}_{\text{ML}}] = P_{\text{FA}} \, \mathbb{P}[H_0] + P_{\text{MD}} \, \mathbb{P}[H_1] = \frac{4}{5} \cdot \left(\frac{1}{4} - e^{-4}\right) + \frac{1}{5} \cdot \frac{\ln(4)}{4} = \frac{4 - 16e^{-4} + \ln(4)}{20}.$$

(d) Determine the MAP rule. Simplify your expression as much as you can.

Solution:

We see that $\mathcal{L}(y) \geq \frac{\mathbb{P}[H_0]}{\mathbb{P}[H_1]} = 4$ if $e^y \geq 16 \implies y \geq \ln(16)$. Therefore, the MAP rule is $D^{\text{MAP}}(y) = \begin{cases} 1 & \ln(16) \leq y \leq 4 \\ 0 & 0 \leq y < \ln(16) \text{ or } y > 4 \end{cases}$

(e) Determine the probability of error for the MAP rule.

Solution:
$$P_{\text{FA}} = \mathbb{P}[D^{\text{MAP}}(Y) = 1 | H_0] = \int_{\ln(16)}^4 e^{-y} \, dy = \frac{1}{16} - e^{-4}$$

$$P_{\text{MD}} = \mathbb{P}[D^{\text{MAP}}(Y) = 0 | H_1] = \int_0^{\ln(16)} \frac{1}{4} \, dy = \frac{\ln(16)}{4}$$

$$\mathbb{P}[\text{error}_{\text{MAP}}] = P_{\text{FA}} \, \mathbb{P}[H_0] + P_{\text{MD}} \, \mathbb{P}[H_1] = \frac{4}{5} \cdot \left(\frac{1}{16} - e^{-4}\right) + \frac{1}{5} \cdot \frac{\ln(16)}{4} = \frac{1 - 16e^{-4} + \ln(16)}{20}.$$

(This is a two-page problem with a two different scenarios.)

Scenario 1: Y = X + Z where X and Z are independent random variables with

$$\mathbb{E}[X] = 3$$
 $\mathbb{E}[Z] = 0$ $\operatorname{Var}[X] = 4$ $\operatorname{Var}[Z] = 2$

(a) Determine $\mathbb{E}[Y]$, Var[Y], and Cov[X, Y].

Solution:

$$\begin{split} \mathbb{E}[Y] &= \mathbb{E}[X] + \mathbb{E}[Z] = 3 + 0 = 3 \\ \operatorname{Var}[Y] &= \operatorname{Var}[X] + \operatorname{Var}[Z] + 2\operatorname{Cov}[X,Z] = 4 + 2 + 0 = 6 \\ \operatorname{Cov}[X,Y] &= \operatorname{Cov}[X,X+Z] = \operatorname{Var}[X] + \operatorname{Cov}[X,Z] = 4 + 0 = 4 \end{split}$$

(b) We would like to find a linear estimator of X of the form aY + b that minimizes the mean-squared error. Determine the optimal values of a and b.

Solution:

The optimal estimator is the LLSE estimator

$$\begin{split} \hat{x}_{\mathrm{LLSE}}(Y) &= \mathbb{E}[X] + \frac{\mathsf{Cov}[X,Y]}{\mathsf{Var}[Y}(y - \mathbb{E}[Y]) \\ &= 3 + \frac{4}{6}(y - 3) = \frac{2}{3}y + 1 \implies a = \frac{2}{3}, \ b = 1 \end{split}$$

(c) Determine the mean-squared error of your estimator from part (b).

Solution:

$$\mathsf{MSE}_{\mathrm{LLSE}} = \mathsf{Var}[X] - \frac{\left(\mathsf{Cov}[X,Y]\right)^2}{\mathsf{Var}[Y]} = 4 - \frac{4^2}{6} = \frac{24 - 16}{6} = \frac{8}{6} = \frac{4}{3}$$

Scenario 2: $Y_1 = X_1 + Z_1$ where X_1, X_2, Z_1, Z_2 are independent random variables with $Y_2 = 2X_2 + Z_2$

$$\mathbb{E}[X_1] = \mathbb{E}[X_2] = 0 \qquad \mathbb{E}[Z_1] = \mathbb{E}[Z_2] = 0 \qquad \mathsf{Var}[X_1] = \mathsf{Var}[X_2] = 4 \qquad \mathsf{Var}[Z_1] = \mathsf{Var}[Z_2] = 2$$

(d) Determine $\Sigma_{\underline{Y}} = \begin{bmatrix} \mathsf{Var}[Y_1] & \mathsf{Cov}[Y_1,Y_2] \\ \mathsf{Cov}[Y_2,Y_1] & \mathsf{Var}[Y_2] \end{bmatrix}$ and $\Sigma_{\underline{X},\underline{Y}} = \begin{bmatrix} \mathsf{Cov}[X_1,Y_1] & \mathsf{Cov}[X_1,Y_2] \\ \mathsf{Cov}[X_2,Y_1] & \mathsf{Cov}[X_2,Y_2] \end{bmatrix}$. (Hint: Note that $g(X_1,Z_1)$ and $h(X_2,Z_2)$ are independent for any functions g and h.)

Solution:

Using independence, we have that $Cov[Y_1, Y_2] = 0$, $Cov[X_1, Y_2] = 0$, and $Cov[X_2, Y_1] = 0$. From part (a), we know that $Var[Y_1] = 6$ and $Cov[X_1, Y_1] = 4$. Similarly,

$$\begin{aligned} \operatorname{Var}[Y_2] &= 4 \operatorname{Var}[X_2] + \operatorname{Var}[Z_2] + 2 \cdot 4 \operatorname{Cov}[X_2, Z_2] = 16 + 2 + 0 = 18 \\ \operatorname{Cov}[X_2, Y_2] &= \operatorname{Cov}[X_2, 2X_2 + Z_2] = 2 \operatorname{Var}[X_2] + \operatorname{Cov}[X_2, Z_2] = 8 + 0 = 8 \ . \end{aligned}$$

Therefore,
$$\Sigma_{\underline{Y}} = \begin{bmatrix} \mathsf{Var}[Y_1] & \mathsf{Cov}[Y_1,Y_2] \\ \mathsf{Cov}[Y_2,Y_1] & \mathsf{Var}[Y_2] \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 18 \end{bmatrix}$$
 and $\Sigma_{\underline{X},\underline{Y}} = \begin{bmatrix} \mathsf{Cov}[X_1,Y_1] & \mathsf{Cov}[X_1,Y_2] \\ \mathsf{Cov}[X_2,Y_1] & \mathsf{Cov}[X_2,Y_2] \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 8 \end{bmatrix}$.

(e) We would like to find a linear estimator of $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ of the form $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ that minimizes the mean-squared error. Determine the optimal values of $a_{11}, a_{12}, a_{21}, a_{22}, b_1, b_2$.

Solution:

The optimal estimator of this form is the vector LLSE estimator

$$\underline{\hat{x}}_{\text{LLSE}}(\underline{Y}) = \mathbb{E}[\underline{X}] + \Sigma_{\underline{X},\underline{Y}} \Sigma_{\underline{Y}}^{-1} (\underline{Y} - \mathbb{E}[\underline{Y}]) .$$

Note that both \underline{X} and \underline{Y} are both mean zero. Thus, $b_1 = 0$, $b_2 = 0$. We also have

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 8 \end{bmatrix} \begin{bmatrix} 6 & 0 \\ 0 & 18 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{2}{3} & 0 \\ 0 & \frac{4}{9} \end{bmatrix}$$

Problem 3 (Statistics)

20 points

You have been asked to evaluate the performance of two new stores. The table below summarizes how many online reviews each store received for a given star count (from 1 to 5 stars).

	1 Star	2 Stars	3 Stars	4 Stars	5 Stars
Store A Review Count	0	1	0	1	0
Store B Review Count	0	0	0	2	2

You may find the following table useful. Recall that $F_{T_m}(t)$ is the CDF for a t-distribution with m degrees-of-freedom and $F_{T_m}^{-1}(\beta)$ is its inverse.

$\pm m$ · ·											
	m	1	2	3	4	5	6	7	8	9	10
	$F_{T_m}^{-1}(0.025)$	-12.71	-4.30	-3.18	-2.78	-2.57	-2.45	-2.36	-2.31	-2.62	-2.23
	$F_{T_m}^{-1}(0.05)$	-6.31	-2.92	-2.35	-2.13	-2.02	-1.94	-1.89	-1.86	-1.83	-1.81
	$F_{T_{}}^{-1}(0.1)$	-3.08	-1.89	-1.64	-1.53	-1.48	-1.44	-1.41	-1.40	-1.38	-1.37

(a) Determine the sample mean and sample variance for Store A as well as for Store B.

Solution:
$$M_{n_1}^{(A)} = \frac{1}{2}(2+4) = 3 \qquad V_{n_1}^{(A)} = \frac{1}{2-1} \left((4-3)^2 + (2-3)^2 \right) = 2$$

$$M_{n_2}^{(B)} = \frac{1}{4} (4+4+5+5) = 4.5 \qquad V_{n_2}^{(B)} = \frac{1}{4-1} \left(2 \cdot (5-4.5)^2 + 2 \cdot (4-4.5)^2 \right) = \frac{1}{3}$$

(b) Construct a confidence interval for the Store A average review with confidence level 0.9.

Solution:

The variance is unknown and we have $n_1=2<30$ samples so we use the T-distribution. Here, $1-\alpha=0.9$ so $\alpha/2=0.05$. Our confidence interval is $[M_{n_1}^{(A)}\pm\epsilon]$ with $\epsilon=-\frac{\sqrt{V_n}}{\sqrt{n_1}}F_{T_{n_1-1}}^{-1}(\alpha/2)=-\frac{\sqrt{2}}{\sqrt{2}}F_{T_1}^{-1}(0.05)=6.31$. Equivalently, $[3\pm6.31]$ or [-3.31,9.31].

(c) You have good reason to believe that the review variance is **equal** across stores. Use this new information to calculate the pooled sample variance.

Solution:
$$\hat{\sigma}^2 = \frac{(n_1 - 1)V_{n_1}^{(A)} + (n_2 - 1)V_{n_2}^{(B)}}{n_1 + n_2 - 2} = \frac{(2 - 1) \cdot 2 + (4 - 1) \cdot \frac{1}{3}}{2 + 4 - 2} = \frac{3}{4}$$

(d) You would like to evaluate whether gap between the average review for Store A and Store B is statistically significant. Assuming the review variance is **equal** across stores, what kind of significance test should you use?

Solution:

Since we are comparing the means of two datasets of equal variance (with less than 30 samples), a two-sample T-test is appropriate.

(e) Should we reject the null hypothesis at a significance level of 0.1? Justify your answer.

Solution:
$$T = \frac{(M_{n_1}^{(A)} - M_{n_2}^{(B)})}{\sqrt{\hat{\sigma}^2(\frac{1}{n_1} + \frac{1}{n_2})}} = \frac{3 - 4.5}{\sqrt{\frac{3}{4}(\frac{1}{2} + \frac{1}{4})}} = \frac{-3/2}{3/4} = -2$$

We also have p-value = $2F_{n_1+n_2-2}(-|T|) = 2F_4(-2) > 2F_4(-2.13) = 2 \cdot 0.05 = 0.1$ so we fail to reject the null hypothesis.

6

Problem 4 (Machine Learning)

20 points

You are given the 8 training data points on the figure, denoted by + and - symbols. The ellipses represent a contour plot for a vector Gaussian distribution fit to the entire training dataset. You will use PCA dimensionality reduction to create a one-dimensional version of this training dataset. Each part can be solved mainly with plots and illustrations.

(a) The PCA transform is of the form: $z = a_1x_1 + a_2x_2 + b$ Determine the values of a_1, a_1, b .

Solution:

The mean vector is clearly at the origin, so no recentering is necessary. Thus, b = 0. From the contour plot, we see that the largest eigenvector is in the direction $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Normalizing this to a unit vector, we get $a_1 = a_2 = \frac{1}{\sqrt{2}}$.

- (b) Sketch the reduced one-dimensional dataset on the plot at the bottom of the page. (You do not need to exactly evaluate the one-dimensional coordinates or label your axes, but the relative spacing of the 8 points should be correct.)
- (c) For the reduced one-dimensional dataset, determine the training error rate for the closest average classifier. Justify your answer.

Solution:

Both labels have mean 0 in the reduced space. Thus, the closest average classifier will assign every training point to +1 to break the tie. The training error rate is 0.5 = 50%.

- (d) Using dashed lines, sketch decision boundaries that will result in 0 training errors.
- (e) For this reduced dataset, it turns out the QDA classifier has 0 training errors. Below, sketch the likelihoods of the two Gaussian distributions used to determine these decision boundaries. No calculations are necessary, just an approximate sketch.

Problem 5 (Markov Chains)

20 points

Consider the following discrete-time Markov chain. X_0 is equally likely to be 1, 2, 3, or 4.

(a) List the communicating classes. For each communicating class, determine the period and whether it is transient or recurrent.

Solution:

 $C_1 = \{1\}$ which has period 1 and is transient. $C_2 = \{2, 3, 4\}$ which has period 1 and is recurrent.

(b) Determine $\mathbb{P}[X_2 = 1 | X_0 = 4]$.

Solution:

Since there is no path from state 4 to state 1, this probability is 0.

(c) Determine $\mathbb{P}[X_2 = 1]$.

Solution:

Once we leave state 1, it is impossible to return. Thus, the only valid path is $X_0=1, X_1=1, X_2=1$. The probability of $X_0=1$ is 1/4 and the remaining transitions occur with probability 1/2 each. Thus, $\mathbb{P}[X_4=1]=\frac{1}{4}\cdot\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{16}$.

(d) Does a unique limiting state probability vector $\underline{\pi}$ exist? If so, argue why and solve for it. If not, argue why.

Solution:

Since there is a single recurrent communicating class with period 1, there is a unique limiting state probability vector $\underline{\pi}$. Since state 1 is transient, we first set $\pi_1 = 0$. From the steady-state equation $\mathbf{P}^T\underline{\pi} = \underline{\pi}$,

$$\pi_4 = \pi_3; \qquad \pi_3 = \frac{1}{2}\pi_2 \implies \pi_4 = \frac{1}{2}\pi_2$$

From normalization, $\pi_1 + \pi_2 + \pi_3 + \pi_4 = 0 + \pi_2 + \frac{\pi_2}{2} + \frac{\pi_2}{2} = 2\pi_2 = 1$

$$\implies \pi_1 = 0, \ \pi_2 = \frac{1}{2}, \ \pi_3 = \frac{1}{4}, \ \pi_4 = \frac{1}{4}$$

(e) Given that the Markov chain starts in state 3, find the expected number of steps until it returns to state 3.

Solution:

We can use what we know from Geometric random variables to solve this problem. First, note that after state 3, the chain always jumps to 4 and then 2, for a total of 2 steps. Now, let Y be a Geometric (1/2) random variable that counts the number of steps until the Markov chain jumps from state 2 to state 3. We know that $\mathbb{E}[Y] = 2$. Thus, the expected number of steps is 4.

8