Control-Bounded Conversion for ultrasound applications

Main goal of report:

- Give the reader a thorough understanding of the control-bounded conversion principle, its relation to converters and the relevant ADC architectures introduced by Malmberg
- Present theoretical analysis of SNR improvement by using multi-input Hadamard ADC, based on raw data GE
- Demonstrate simulations (at least with CIADC)
- Present developed python simulation framework

Report structure

- 1. Introduction
 - 1. Background
 - 2. Motivation
 - 3. Report outline
- 2. Theoretical background
 - 1. AD Conversion basics. Limitation of sample centric conversion
 - 2. Conventional oversampling conversion
 - 3. Control-Bounded conversion.
 - 1. Principle of operation
 - 2. Conceptual relation to
 - 3. Brief derivation of performance measures
- 3. ADC architectures
 - 1. Chain-of-integrators ADC
 - Analog system
 - Transfer functions and state space matrices
 - 2. Local digital control
 - Criteria for effective control
 - 3. Digital estimator
 - 4. Briefly mentioning leapfrog extension (complex poles)
 - 2. Hadamard ADC
 - 1. State space matrices (rotated)

- 2. Digital control
- 3. Digital estimator
 - Essentially no different from CIADC
- 4. Over/undercompleteness
- 5. Multiple input
 - SNR gain from having multiple inputs
- 4. Multi-input ADC for ultra sound (What gain could we expect)
 - 1. Assumptions and method
 - 2. Results
- 5. Implementation and simulation
 - 1. CIADC
 - 1. Derivation of desired parameters with multiple input US application in mind
 - 2. Simulation results for CIADC
 - 2. HCl and multiple input if applicable
- 6. Python framework
- 7. Conclusions and outlook