Index

Note: Page Numbers with "f" denote figures; "t" tables

A	Amplitude modulation (AM), 603, 603f
Adaptive filters	Amplitude spectrum
adaptive echo cancellers, 479–480, 479f	DFT, 87, 88f, 97–101
electrocardiography interference cancellation,	Fourier series, 89, 89f
476–478, 477f, 478f	Analog-to-digital conversion (ADC)
least mean square adaptive FIR filters	binary codes, 40, 41f
corrupted signal and noise reference, 455–457, 456f,	2-bit flash ADC unit, 36, 36f
456t	implementation, 35–36
desired signal spectrum, 453, 454f	oversampling, 587, 587f
noise canceller, 454, 454f	benefits of, 586
one-tap FIR filter, 455, 457	continuous vs. regular sampled vs. oversampled signal
linear prediction	amplitudes, 588–589, 591f
line enhancement, 473–475, 473f, 474f, 475f	frequency response, 588–589, 589f
periodic interference cancellation, 476, 476f	in-band frequency range, 587
long-distance telephone circuit, 479, 479f	MATLAB program, 589
noise cancellation, see Noise cancellation	oversampling ratio, definition, 585–586
system modeling, 468, 468f	quantization noise power, 586–588
MATLAB program, 470	regular ADC system, 586–587, 586f
spectrum for, 470, 472f	time vs. frequency domains, 588–589,
unknown system's frequency responses, 469, 470f	590f
waveforms for, 470, 471f	quantization
TMS320C6713 DSK, see TMS320C6713 DSK	bipolar quantizer, 38–40, 39f, 40t
Wiener filter theory	definition, 35, 36f
autocorrelation and cross-correlation, 459	error, 37
LMS algorithm, 461-462	notations and rules, 38
mean square error quadratic function, 457-458,	process, 37
458f	SNR, 47
noise cancellation, 457, 457f	unipolar quantizer, 38, 38f, 39t
statistical expectation, 457-458, 461-462	SDM ADC, see Sigma-delta modulation analog-
steepest descent algorithm, 459, 460f, 461-462	to-digital conversion (SDM ADC)
Adaptive differential pulse code modulation (ADPCM)	Analog filters
decoder, 512-514, 513f	lowpass prototype transformation, 305,
discrete function, 514-515, 515t	306t
encoder, 512–514, 513f	bandpass filter, 305, 306f
FIR filter, 516–517	bandstop filter, 305, 306f
input and output characteristics, 514, 514t	cutoff frequency, 304-305
16-level nonuniform adaptive quantizer, 514	highpass filter, 305, 305f
performance measurement, 518	lowpass filter, 304, 304f
predictor z-transfer function, 516–517	magnitude response, 304–305
scale factor, 514–515	MATLAB function, 307
speech samples, 517–518, 517f	steady-state frequency response, 178
ADC, see Analog-to-digital conversion (ADC)	Analog μ-law companding
Address generators	characteristics, 502, 502f
circular buffering, 409, 410f	compressor, 501, 501f
equivalent FIFO, 410f, 411	expander, 501–502, 501f
FIR filtering, 411	original speech data, 504, 505f
Aliasing level, 28	quantization error, 501

Analog signal processing	В
convolution, 798–799	Bandpass filters
Fourier series	amplitude spectra, 203, 205f
amplitude and phase spectrum, 779	analog lowpass filters, 321, 322f
amplitude-phase form, 776	design specifications, 389
complex exponential form, 776–782, 784t	digital Chebyshev lowpass prototype functions, 321, 322f,
Fourier transform, 786–791, 789t, 790t	331–337
rectangular waveform, 780, 780f	digital fourth-order bandpass Butterworth filter, 203
sine-cosine form, 775, 780, 783t	frequency responses, 203, 203f
Laplace transform	lowpass prototype transformation, 305, 306f
differential equations, 793–794	MATLAB program, 204
and table, 791–793, 791t	normalized filter, 187, 187f
transfer function, 794–795	original and filtered speech plots, 203, 204f
poles, zeros and stability, 795–796	second-order bandpass filter, 352–354, 353f
sinusoidal steady-state response, 799–804	Bandpass signals, undersampling, 603–608, 603f, 604f,
Analog system program, 482	605f, 606f
Analog video	Bandstop filters
"back porch", 748	digital Butterworth lowpass prototype functions,
electrical signal demodulation, 748–750, 749f	331–337
frame via row-wise scanning, 747	digital Chebyshev lowpass prototype functions,
frequency modulation, 751	331–337
interlaced raster scanning, 747, 748f	lowpass prototype transformation, 305, 306f
NTSC TV standard, 750, 751f	normalized filter, 188, 188f
PAL system, 752	Bartlett window, 230, 231f
QAM, 751–752	Bilinear transformation (BLT) design method, 391
SECAM system, 752, 752t	analog filters, lowpass prototype transformation,
vertical synchronization, 749f, 750	305, 306t
video data, retrace and sync layout, 750, 750f	bandpass filter, 305, 306f
video-modulated waveform, 747, 748f	bandstop filter, 305, 306f
Analysis filter	cutoff frequency, 304–305
channel 0, 622, 623f	highpass filter, 305, 305f
channel 1, 622, 623f	lowpass filter, 304, 304f
channel 2, 622-624, 624f	magnitude response, 304–305
channel 3, 624, 625f	MATLAB function, 307
4-channel filter bank, 621-622, 622f	design procedure, 303-304, 303f, 314-318, 316t
Anti-aliasing filter	frequency warping, 312, 313f
aliasing level percentage, 28	digital frequency, 312
Butterworth magnitude frequency response,	digital integration method, 308, 309f
25–26	graphical representation, 313, 314f
Sallen-Key lowpass filter, 26–27, 26f	Laplace transfer function, 309–310
sampled analog signal, 25, 26f	mapping properties, 310, 310f
Anti-image filter	s-plane vs. z-plane, frequency mapping, 312, 312f
DAC unit, 30–31, 30f	z-transform, 309–310
sample-and-hold effect	Bipolar quantizer, 38–40, 39f, 40t
digital equalizer, 32, 33f	Blackman window, 230, 231f
and distortion percentage, 31f, 32	BLT design method, see Bilinear transformation (BLT)
lowpass filtering effect, 30–31, 31f	design method
shaping effect, 32, 33f	Bounded-in and bounded-out (BIBO) stability,
transfer function, 30–31	71–72, 71f
Application-specific integrated circuit (ASIC), 412	Butterworth filters, 338–340, 338t, 339t
Auxiliary register arithmetic units (ARAUs),	see also Digital Butterworth lowpass prototype functions
428–429	Butterworth magnitude frequency response, 25–26

C	eight-point FFT algorithm, 128-129, 130f
Cascade (series) realization method, 192, 195, 196f	eight-point IFFT, 129–131, 131f
Causal system, 66–67	first iteration, 128–129, 130f
CD recording system, see Compact-disc (CD) recording	frequency bins, 128–129
system	second iteration, 128–129, 130f
Chebyshev filters, 388–389	Decomposition, see Two-channel perfect reconstruction
see also Digital Chebyshev lowpass prototype functions	quadrature mirror filter bank
Chebyshev polynomial approximation, 269	Delta modulation (DM), 511
Chrominance channels, 688–689	Denoise, 668, 670f
Circular convolution	DFT, see Discrete Fourier transform (DFT)
forward filter coefficients, 670	Difference equation, 67–68, 79
reversed filter coefficients, 668	DSP system, input and output, 162, 162f
Comité Consultatif International Téléphonique et	filter() function, 165
Télégraphique (CCITT), 754	filtic() function, 165
Compact-disc (CD) recording system	nonzero initial conditions, 165
decoder, 8f, 9	transfer function
encoder, 7–9, 8f	impulse response, 169
Companding	step response, 169
analog μ-law companding, see Analog μ-law companding	system response, 169–172
digital μ-law companding, see Digital μ-law companding	z-transfer function, 166–167, 166f
Component video, 746	zero initial conditions, 165
Composite video, 746	Differential pulse code modulation (DPCM)
Compression, see Discrete cosine transform (DCT)	3-bit quantizer, 509, 510t
see also image compression	direct-current coefficients, 736
Conjugate quadrature filter (CQF), 630	encoder and decoder, 509, 509f
Continuous wavelet transform (CWT), 638, 641	quantization step size, 512
Convolution, 72–80, 798–799	Digital-to-analog conversion (DAC), 47
impulse response, 69	anti-image filter and equalizer, 30-31, 30f
linear, 142–143	process, 40, 41f
Cyclic redundancy check (CRC) code, 526	quantization error, 40–42
D	quantization noise, 42
D	quantized vs. original signal, 44f
DAC, see Digital-to-analog conversion (DAC)	R-2R ladder DAC, 36–37, 37f
DCT, see Discrete cosine transform (DCT)	SNR, 42
Decimation, 556	Digital audio equalizer, 341f
Decimation filter, 581, 581f, 582t	audio spectrum, 343-344, 343f
commutative model, 582–583, 583f	audio test signal, 343-344
filter bank coefficients, 582	filter banks design, 342, 342t
implementation, 582, 582f, 584	magnitude frequency responses, 342, 342f
three-tap decimation filter, 581	MATLAB program, 344
Decimation-in-frequency method	specifications for, 341, 341t
bit reversal process, 126, 127f	Digital Butterworth lowpass prototype functions, 318, 319t
eight-point FFT	magnitude response function, 318, 320f
12 complex multiplications, 124–126, 125f	prototype filter order, 318–320
first iteration, 123–124, 125f	Digital Chebyshev lowpass prototype functions, 318, 319t,
inverse of, 127–128, 127f	320t
second iteration, 124, 125f	analog filter specification conversion, 321, 322t
graphical operations, 123–124, 125f	analog lowpass and bandpass filters, 321, 322f
index mapping for, 126, 126t	lowpass prototype order, 321
inverse FFT, definition, 126	magnitude response function, 320-321, 321f
twiddle factor, 123–124	Digital convolution, 72–80
Decimation-in-time method	Digital crossover design

Digital crossover design (Continued)	compressor and expander, 504, 505f
lowpass and highpass filters	decoding table, 506–508, 507t
impulse responses, 260, 261f	encoding table, 505–506, 507t
magnitude frequency responses, 260, 260f, 261f	Digital signal processing (DSP), 1, 2f
speaker drivers, 258–259, 259f	aliasing distortion, 2
specifications, 259–260	analog input signal, 2
Digital filtering system	audio signals and spectrums, 3, 5f
analog filter steady-state frequency response, 178	digital filtering, 3, 3f, 4f
difference equation, see Difference equation	DS processor, 2
digital filters, see Digital filters	real-world applications, 12, 12t
Euler's formula, 179	CD recording system, 7–9, 8f
FIR and IIR systems, 186	data compressor, 7, 8f
frequency response properties, 180	data expander, 7, 8f
inverse z-transform, 179	digital image enhancement, 9-12, 12f
magnitude frequency response, 178, 181	interference cancellation, electrocardiography,
normalized digital frequency, 178	5–7, 7f
signal enhancement	software audio players, 9
biomedical signals, 199	two-band digital crossover, 5, 6f
ECG signal, notch filtering, 205–206, 206f, 207f, 208f	vibration signature analysis, 9, 10f, 11f
speech signals, see Speech signals	signal frequency (spectrum) analysis, 3, 4f
sinusoidal inputs, system response, 180, 181f	speech samples and spectrum, 4, 6f
steady-state frequency responses, 178, 178f, 180	Digital signal (DS) processor
system transient response, 178, 178f	adder output, 429
types	ASIC, 412
freqz() function, 188	features, 406, 411
normalized bandpass filter, 187, 187f	FIR filter, direct-form I implementation, 430, 430f
normalized bandstop filter, 188, 188f	fixed-point format, 411–412
normalized highpass filter, 187, 187f	3-bit 2's complement number, 412-413, 412t, 413t
normalized lowpass filter, 186f, 187	computational units, 427
passband, stopband and transition band, 186	C program, 445–446, 446t, 447f, 448f
z-plane pole-zero plot, 172f	fractional binary 2's complement system, 414
analog-to-digital conversion, 174	program control unit, 427
bounded-in/bounded-out stability, 175	Q-30 format, 418, 418f
features, 172	Q-format number, 415, 415f, 418
Laplace shift property, 174	TMSC320C54x family architecture, 426–427, 426f
Laplace vs. z-transform, 173, 174f	floating-point format, 411–412, 419, 419f
s-plane vs. z-plane mapping, 175, 175f	advantages, 427
stability rules, 175, 176f	ARAUs, 428–429
Digital filters	C programs, 445, 445f
cascade (series) realization method, 192, 195, 196f	IEEE format, 423–426, 423f, 425f
direct-form II realization method, 192–195, 195f	overflow, 422
direct-form I realization method, 192–193, 194f	rules for, 420
parallel realization method, 192, 196–199, 196f	speech quality applications, 429
sinusoidal steady-state response, 813f	TMS320C3x processor, 427–428, 428f
inverse z-transform, 814	underflow, 423
magnitude and phase response, 814	hardware units
properties of, 815–816	address generators, see Address generators
z-transform output, 813	MAC, 408–409, 409f
Digital μ-law companding	shifters, 409
8-bit compressed PCM code format, 505–506, 506t, 508–	Harvard architecture, 407, 407f
509, 508f	execution cycle, 407, 408f
characteristics, 505, 506f	pipelining operation, 408

IIR filter	scan order, 732, 733t
direct-form II implementation, 432, 432f	image compression
transfer function, 433	2D-DCT, 729-731
linear buffering, see Linear buffering	JPEG image compression, see JPEG image compression
manufactures, 411	lossless/lossy compression, 728
real-time processing	principle of, 729
input and output sample clock, 438, 439f	wavelet transform, see Wavelet transform
program segment, 438, 440f	Discrete Fourier transform (DFT), 625
TMS320C6713 DSK setup, 438, 440f	amplitude spectrum, 87, 88f, 97–101
scale factor, 429	data window time, 97–101
second-order section filters, 434	definition, 88
TMS320C67x DSK, 436f, 437	FFT
C6713 DSK board, 434-436, 435f	applications of, 97, 97f
memory and internal buses, 438	data sequence, 101–102
peripherals, 438	decimation-in-frequency method, see Decimation-in-
registers of, 437, 437f	frequency method
software tool, 438	decimation-in-time method, see Decimation-
Texas Instruments Veloci [™] architecture, 437	in-time method
TMS320C6713 DSK, 438, 439f	digital sequence sample, 123
Von Neumann architecture, 406, 406f	interpolated spectrum, 102–103
applications, 408	zero-padding effect, 102–103, 102f
execution cycles, 407, 408f	fft() and ifft() MATLAB functions, 93, 93t
opcode and operand, 406	formula development, 91, 92f
Digital signals	Fourier series, 132
BIBO stability, 71–72, 71f, 80	see also Fourier series
· · · · · · · · · · · · · · · · · · ·	
causal system, 66–67	amplitude spectral components, 90
difference equation format, 67–68, 79	coefficients, 88–89
digital convolution, 72–80	periodic digital signal, 88, 89f
digital samples, 58, 58f	two-side line amplitude spectrum, 89, 89f
digital sequences, 61, 61f	frequency bin, 95
analog signal function, 62, 79	frequency resolution, 96–101
exponential function, 60, 60f, 61t	inverse of, 93
sampling rate, 61	phase spectrum, 97–101
shifted unit-impulse and unit-step sequences,	power spectrum, 97–101
59, 59f	signal amplitude vs. sampling time instant, 87
sinusoidal function, 60, 60f, 60t	spectral estimation, window functions
unit-impulse sequence, 58–59, 59f	Hamming window, 109–110, 111f
unit-step sequence, 59, 59f, 62	see also Hamming window function
DS processor, 58	Hanning window, 109–110, 111f
impulse response	periodic, continuous and band limited data,
digital convolution sum, 69	107, 107f
FIR system, 69	rectangular window, 109-110, 111f
IIR system, 71	signal samples and spectra, 107-108, 108f
unit-impulse response, 68, 68f	spectral leakage, 108
linear system, 63-65, 64f	triangular window, 109–110, 111f
notation of, 57–58, 58f	window operation, 108-109, 109f, 110f
time-invariant system, 65-66, 65f	twiddle factor, 92–93
Direct-form II realization method, 192-195, 195f	Discrete wavelet transform (DWT)
Direct-form I realization method, 192-193,	discrete time function, 656-657
194f	dwt() function, 671
Discrete cosine transform (DCT), 519-522, 524-525, 525f	dyadic subband coding structure, 657, 658f
coefficients, 731, 732t	IDWT, 656

Discrete wavelet transform (DWT) (Continued)	vertical Sobel edge detector, 716
idwt() function, 671	Electrocardiography (ECG)
lowpass and highpass filter coefficients, 656	60-Hz hum eliminator and heart rate detection, 392
signal amplitude, 657	cascaded frequency responses, 365, 366f
4-tap Daubechies filters, frequency response, 656, 657f	characteristics of, 362, 363f
time-frequency plane, 661–664, 662f	design specifications, 364–365
time-frequency plot, 661–664, 661f	harmonics, 364
wavelet coefficients, 656	heart rate, definition, 367–368
wavelet expansion, 655	MATLAB program, 368
Downsampling, 557f	QRS complex, 362–364
data sequence, 556	signal enhancement system, 364, 364f
definition, 556	signal processing results, 366, 367f
MATLAB program, 559, 609	signal spectrum, 362, 363f
1 6	
normalized stop frequency edge, 556–557	transfer function and difference equation, 365
Nyquist sampling theorem, 556	zero-crossing algorithm, 366–367, 368f
spectral plots, 556–557, 558f	interference cancellation, 476–478, 477f, 478f
TMS320C6713 DSK, 608, 612f	Equalizer, see Anti-image filter
using anti-aliasing filter, spectral plots, 558–559, 560f	Euler's identity, 378–379
without using anti-aliasing filter, spectral plots, 558, 559f	Exponent, floating-point format, 419
z-transform, 556–557	F
DPCM, see Differential pulse code modulation (DPCM)	-
DSP, see Digital signal processing (DSP)	Fast Fourier transform (FFT), 3–4
Dual-tone multifrequency (DTMF) tone generator, 442	applications of, 97, 97f
Goertzel algorithm, 392	data sequence, 101–102
advantages, 380	decimation-in-frequency method, see Decimation-in-
DFT algorithm, 377	frequency method
DFT coefficient, 378–379	decimation-in-time method, see Decimation-in-time
Euler's identity, 378–379	method
MATLAB function, 382	digital sequence sample, 123
modified second-order Goertzel IIR filter,	interpolated spectrum, 102-103
380–381, 381f	zero-padding effect, 102-103, 102f
second-order Goertzel IIR filter, 310-311, 377	Father wavelet, 642, 644f
transfer function, 377	fconv() function, 670
MATLAB program, 377	fft() and ifft() MATLAB functions, 93, 93t
modified Goertzel algorithm, 384f	Finite impulse response (FIR) filter design, 69, 286t, 287
see also Modified Goertzel algorithm	coefficient accuracy effects, 282-285
ASCII code, 385–386	Fourier transform design, 221t, 222, 290
design principles, 383	coefficient symmetry, 220
frequency bins, 383, 384t	desired impulse response, 220, 221f
MATLAB simulation, 385–386, 386f	Fourier coefficients, 219
telephone touch keypads, 373–375, 373f, 376f	Gibbs oscillatory behavior, 224, 229
DWT, see Discrete wavelet transform (DWT)	ideal lowpass filter, 219, 219f
_	ideal lowpass frequency response, 219, 219f
E	linear phase response, 223, 224f, 226–227, 226f, 227f
Echo cancellation, 479–480, 479f	magnitude and phase frequency responses, 224, 225f
Edge detection, 717, 718f	nonlinear phase response, 226, 227f
differential convolution kernel, 715–716	periodic frequency response, 219
grayscale image, 717, 719f	sinusoidal sequence, 225
horizontal Sobel edge detector, 716	symmetric coefficients, 224–225
Laplacian edge detector, 716–717	17-tap FIR lowpass filter coefficients, 224, 225t
Laplacian of Gaussian filter, 717, 719f	z-transfer function, 220
MATLAB functions, 718–721, 720f	frequency sampling, 286, 817-820

design procedure, 263 desired filter frequency response, 262, 262f	speech quality applications, 429 TMS320C3x processor, 427–428, 428f
DFT, 262	underflow, 423
features, 262	Folding frequency, 20, 47
IDFT, 262	Fourier series, 132
magnitude frequency response, 269	amplitude-phase form, 776
input-output relationship, 217	amplitude and phase spectrum, 779
linear phase form, 281, 282f	amplitude spectral components, 90
noise reduction	coefficients, 88–89
clean signal and spectrum, 254, 255f	complex exponential form, 776-782
data acquisition process, 253	waveform signals, 784t
MATLAB program, 255	Fourier transform, 786–791
noise signal and spectrum, 254, 254f	properties, 790t
passband frequency range, 254	waveform signals, 789t
speech noise reduction, 256–257, 256f, 257f	periodic digital signal, 88, 89f
stopband frequency range, 254	rectangular waveform, 780, 780f
vibration signals, 257–258, 258f, 259f	sine-cosine form, 775, 780
optimal design method, 286–287	waveform signals, 783t
see also Parks-McClellan algorithm	two-side line amplitude spectrum, 89, 89f
transfer function, 218	Frequency modulation (FM), 751
transversal form, 280–281, 280f	Frequency resolution, 96–101
two-band digital crossover	Frequency sampling method, 286
impulse responses, lowpass and highpass filters, 260,	design procedure, 263
261f	desired filter frequency response, 262, 262f
magnitude frequency responses, lowpass and highpass	DFT, 262, 817
filters, 260, 260f, 261f	Euler formula, 817
speaker drivers, 258–259, 259f	features, 262
specifications, 259–260	frequency response, 819–820
window method, 285–286	IDFT, 262
see also Window method	L'Hospital's rule, 817
Finite precision, 35, 40–42	magnitude frequency response, 269
First-order IIR filter transfer function, 369–371	Frequency warping effect, 312, 313f
Fixed-point DS processor, 411–412	digital frequency, 312
3-bit 2's complement number, 412, 412t	digital integration method, 308, 309f
fractional representation, 413, 413t	graphical representation, 313, 314f
computational units, 427	Laplace transfer function, 309–310
direct-form II implementation, C code, 445–446, 446t,	mapping properties, 310, 310f
447f, 448f	s-plane vs. z-plane, frequency mapping, 312, 312f
fractional binary 2's complement system, 414	z-transform, 309–310
program control unit, 427	
Q-30 format, 418, 418f	G
Q-format number, 415, 415f, 418	Gaussian filter kernel, 711–712
TMSC320C54x family architecture, 426–427, 426f	Gibbs effect, 224
Floating-point DS processor, 411–412, 419, 419f	Goertzel algorithm, 392
advantages, 427	advantages, 380
ARAUs, 428–429	DFT algorithm, 377
direct-form I implementation, C code, 445, 445f	DFT coefficient, 378–379
IEEE format	Euler's identity, 378–379
double precision format, 425, 425f	MATLAB function, 382
single precision format, 423–424, 423f	modified second-order Goertzel IIR filter, 380-381, 381f
overflow, 422	second-order Goertzel IIR filter, 310-311, 377
rules for, 420	transfer function, 377

Grayscale histogram and equalization	wavelet transform coding, see Wavelet transform coding
equalized grayscale image, human neck, 695, 697f	2D-DFT, 725
new pixel value, 693-695	definition, histogram, 692
original grayscale image, human neck, 695, 696f	edge detection, 717, 718f
pixel value distribution, 692-693	differential convolution kernel, 715-716
Н	grayscale image, 717, 719f horizontal Sobel edge detector, 716
Hamming window function, 230, 231f	Laplacian edge detector, 716–717
ECG data, 118f, 119	Laplacian edge detector, 710–717 Laplacian of Gaussian filter, 717, 719f
seismic data, 116, 118f	MATLAB functions, 718–721, 720f
speech data, 116, 117f	vertical Sobel edge detector, 716
vibration signal, 119, 119f, 121f, 122f	grayscale histogram and equalization
vibration signature analysis, gearbox, 119–120,	equalized grayscale image, human neck, 695, 697f
120f	new pixel value, 693–695
Hanning window, 230, 231f	original grayscale image, human neck, 695, 696f
Harvard architecture, 407, 407f	pixel value distribution, 692–693
execution cycle, 407, 408f	image level adjustment
pipelining operation, 408	display level adjustment, 707
High-definition TV (HDTV) formats, 754, 754t	linear level adjustment, 704–706, 705f, 706f
Highpass filters	MATLAB functions, 707, 708f
coefficients, 656	lowpass noise filtering
digital Butterworth lowpass prototype functions,	average convolution kernel, 709
322–331	Gaussian filter kernel, 711–712
digital Chebyshev lowpass prototype functions,	noisy and enhanced image, 711–712, 711f, 712f,
322–331, 322f	713f
impulse responses, 260, 261f	MATLAB functions, equalization, 702-704, 703f
lowpass prototype transformation, 305, 305f	median filtering
magnitude frequency responses, 260, 260f, 261f	enhanced image, 714, 715f
Histogram equalization, 9–12	"pepper and salt" noise, 714, 715f
Horizontal Sobel edge detector, 716	principle of, 712–714
Huffman coding, 528, 737, 737t	notation and data formats
	8-bit color image, 687, 687f
1	24-bit color image, 686, 686f
IDWT, see Inverse discrete wavelet transform (IDWT)	8-bit grayscale image, 684-685, 685f
IEEE floating-point format	chrominance channels, 688–689
double precision format, 425, 425f	format conversion, 690-691, 691f
single precision format, 423–424, 423f	grayscale image conversion, RGB-to-YIQ
IIR filter design, see Infinite impulse response (IIR) filter	transformation, 690, 690f
design	image pixel notation, 684, 685f
Image processing	intensity image, 688, 688f
24-bit color image equalization, 695, 698f	luminance channel, 688–689
equalized RGB color image, 698, 699f	spatial resolution, 684
histogram equalization method, 698, 699f	transformation and inverse transformation,
original RGB color image, 698, 698f	688–689
RGB channels, equalization effects, 698-699, 700f	pseudo-color generation and detection
8-bit indexed color image equalization, 700–701, 701f,	grayscale to pseudo-color pixel, 722, 722f
702f	MATLAB code, 725
compression, DCT	procedure for, 724f
2D-DCT, 729–731	sine functions, RGB transformations, 722, 723f
JPEG image compression, see JPEG image compression	video sequence creation, 745-746, 746f, 747f
lossless/lossy compression, 728	video signals, see Video signals
principle of, 729	Impulse function, 374

Impulse invariant decian method 345f 380 302	first and an IID filter transfer function 260, 271
Impulse-invariant design method, 345f, 389, 392 filter DC gain, 348	first-order IIR filter transfer function, 369–371 fixed-point system, 432, 432f
inverse Laplace transform, analog impulse function, 345–	format of, 302–303
346	higher order IIR filter design, cascade method, 338–340
rectangular approximation, 346–348	338t, 339t
sampling interval effect, 348, 349f	realization structure, 361–362
scaled magnitude frequency response, 347f, 348	60-Hz hum eliminator and heart rate detection,
second-order filter design, 348–351	electrocardiography, 392
Impulse response system	cascaded frequency responses, 365, 366f
digital convolution sum, 69	characteristics of, 362, 363f
FIR system, 69	design specifications, 364–365
IIR system, 71	harmonics, 364
unit-impulse response, 68, 68f	heart rate, definition, 367–368
Infinite impulse response (IIR) filter design, 71, 389, 390t,	MATLAB program, 368
391f	QRS complex, 362–364
bandpass filter design specifications, 389	signal enhancement system, 364, 364f
BLT design method, 388	signal processing results, 366, 367f
see also Bilinear transformation (BLT) design method	signal spectrum, 362, 363f
C code	transfer function and difference equation, 365
direct-form II implementation, 445-446, 446t, 447f,	zero-crossing algorithm, 366–367, 368f
448f	impulse-invariant design method, 345f, 389, 392
direct-form I structure, 445, 445f	filter DC gain, 348
difference equation, 302–303	inverse Laplace transform, analog impulse function,
digital audio equalizer, 341f	345–346
audio spectrum, 343–344, 343f	rectangular approximation, 346-348
audio test signal, 343–344	sampling interval effect, 348, 349f
filter banks design, 342, 342t	scaled magnitude frequency response, 347f, 348
magnitude frequency responses, 342, 342f	second-order filter design, 348–351
MATLAB program, 344	pole-zero placement method, 389, 392
specifications for, 341, 341t	first-order highpass filter, 357-358, 357f
digital Butterworth lowpass prototype functions, 318, 319t	first-order lowpass filter, 355-357, 355f, 356f
bandpass and bandstop filter, 331-337	magnitude response, 351, 352f
lowpass and highpass filters, 322-331	Nyquist limit, 351–352
magnitude response function, 318, 320f	second-order bandpass filter, 352-354, 353f
prototype filter order, 318–320	second-order bandstop (notch) filter, 354-355, 354f
digital Chebyshev lowpass prototype functions, 318, 319t,	second-order IIR filter transfer function, 369-371
320t	single-tone generator, 374–375, 374f, 375f
analog filter specification conversion, 321, 322t	transfer function, 433
bandpass filters, 321, 322f, 331–337	Infinite precision, 35, 282
bandstop filters, 331–337	Interlaced raster scan, 747, 748f
highpass filters, 322–331, 322f	Interpolation filter, 579, 579t
lowpass filters, 321–331, 322f	commutative model, 580, 580f
lowpass prototype order, 321	filter bank coefficients, 579–580
magnitude response function, 320-321, 321f	four-tap interpolation filter, 578, 578f
direct-form I and direct-form II, realization structure, 358–	implementation, 579, 579f, 584
360	Inverse discrete cosine transform (IDCT), 729
DTMF tone generator	Inverse discrete Fourier transform (IDFT), 262
Goertzel algorithm, see Goertzel algorithm	Inverse discrete wavelet transform (IDWT),
MATLAB program, 377	656, 671
modified Goertzel algorithm, see Modified Goertzel	Inverse fast Fourier transform (IFFT)
algorithm	definition, 126
telephone touch keypads, 373-375, 373f, 376f	eight-point IFFT, 129-131, 131f

Inverse z-transform	Linear buffering
definition, 144	FIR filter, 441–442, 441f
partial fraction expansion method, 144-145	IIR filter, 442, 443f
constant(s) formulas, 145, 146t	coefficient buffer, 444, 444f
MATLAB function residue(), 150-152	digital oscillation, 442
	Linear convolution, 142–143
J	Linear midtread quantizer, 533
JPEG image compression	Linear phase response, 223, 224f, 226–227, 226f, 227f
alternating-current coefficients, 738f	Linear systems, 63, 64f
bit stream, 738	digital amplifier, 64
run-length coding, 736–738	system output, 65
direct-current coefficients	Linear time invariant system
DPCM, 736	difference equation, 67
Huffman coding, 737, 737t	FIR system, 69
encoder, 735, 735f	stability criterion, 71
image blocks, 735	unit-impulse response, 68-69, 68f, 72
lossless entropy coding, 737	Lowpass filters, 304, 304f
quantization, 735–736, 736t	analog filters, 321, 322f
RGB to YIQ transformation, 735	coefficients, 656
two-dimensional grayscale image, 733, 734f	digital Butterworth lowpass prototype functions,
coding error, 733, 734t	322–331
DCT coefficients, 731, 732t	digital Chebyshev lowpass prototype functions,
DCT coefficient scan order, 732, 733t	321–331, 322f
JPEG vector, 732–733	impulse responses, 260, 261f
normalized DCT coefficients, 732, 733t	magnitude frequency responses, 260, 260f, 261f
original image, 731, 732f	Sallen-Key lowpass filter, 26–27, 26f
quality factor, 731, 733t	17-tap FIR lowpass filter coefficients, 224, 225t
recovered image subblock, 733, 734t	Lowpass noise filtering
8×8 subblock, 731, 731t	average convolution kernel, 709
	Gaussian filter kernel, 711–712
K	noisy and enhanced image, 711-712, 711f, 712f, 713f
Kaiser window, 230	Luminance channel, 688–689
Kernel	
average convolution, 709	M
differential convolution, 715–716	MAC, see Multiplier and accumulator (MAC)
Gaussian filter, 711–712	Maclaurin series expansion, 593–595
	Macroblocks, 755, 755f
L	Mathematical formulas
Laplace shift property, 174	complex conjugate, 826
Laplace transform	complex number form, 825–826
differential equations, 793–794	addition and subtraction, 826
and table, 791–793, 791t	division, 826–828
transfer function, 794–795	multiplication, 826
Laplacian edge detector, 716–717	L'Hospital's rule, 828
Laplacian of Gaussian filter, 717, 719f	quadratic equation solution, 828
Least mean square (LMS) algorithm, 461–462	simultaneous equation solution, 828
adaptive FIR filters	simultaneous equation solution, 828
corrupted signal and noise reference, 455–457, 456f,	Matrix Laboratory (MATLAB) programs
456t desired signal spectrum, 453, 454f	ADPCM coding, 539
C 1	decoding, 542
noise canceller, 454, 454f	encoding, 539
one-tap FIR filter, 455, 457	analog filters, lowpass prototype transformation, 307

arrays and indexing, 770–771	uniform quantization decoding, 48
CD audio player, 572	uniform quantization encoding, 48
commands and syntax	upsampling, 564, 611
array operations, 769	wavelet data compression, 667
complex numbers, 768	W-MDCT function, 545
numbers, variables and expressions, 768	inverse function, 545
sum() function, 767	waveform coding, 546
variable names, 768	MDCT, see Modified discrete cosine transform (MDCT)
DCT waveform coding, 546	Mean square error quadratic function, 457–458, 458f
digital audio equalizer, 344	Median filtering
digital μ-law compressor, 537	enhanced image, 714, 715f
digital μ-law encoding and decoding, 537	"pepper and salt" noise, 714, 715f
digital μ-law expander, 538	principle of, 712–714
downsampling, 559, 609	Modified discrete cosine transform (MDCT)
DTMF tone generator, 377	1D-DCT, 522
edge detection, 718–721, 720f	decoding stage, 523
equalization, 702–704, 703f	encoding stage, 523
fft() and ifft() function, 93, 93t	W-MDCT, 522, 522f
FIR filter design	waveform coding, 524–525, 525f
noise reduction, 255	wmdeth() and wimdetf() functions, 523–524
window method, 237–240, 237t, 288	Modified Goertzel algorithm, 384f
first-order SDM, 597	ASCII code, 385–386
Goertzel algorithm, 382	design principles, 383
60-Hz hum eliminator and heart rate detection,	frequency bins, 383, 384t
electrocardiography, 368	MATLAB simulation, 385–386, 386f
image level adjustment, 707, 708f	Mother wavelet, 642, 644, 644f
μ-law companding, 535	Motion estimation, 755–756, 755f
μ-law encoding and decoding, 534	Motion vector, 755
μ-law expanding, 535	MPEG audio
midtread quantizer	audio frame formats, 526, 527f
decoding, 536	data frame types, 526, 526f
encoding, 536	DCT, 519–522, 524–525, 525f
linear, 533	encoder, 527, 528f
modified Goertzel algorithm, 385–386, 386f	Huffman coding, 528
noise cancellation, 466	MDCT, see Modified discrete cosine transform
	(MDCT)
noninteger factor L/M, 568 one-level wavelet transform and compression, 742	Multiplier and accumulator (MAC), 407–409, 409f
<u> </u>	Multirate digital signal processing, 555–556
oversampling, 589	
plot functions, 771–772, 772f	CD audio player
pseudo-color generation and detection, 725	interpolation filter design, 571–572, 573f
residue() function, 150–152	MATLAB program, 572
script files, 164f, 772–773	sample rate conversion, 571, 571f
signal to quantization noise ratio, 48, 537	signal plots, 572, 574f
sign function, 548	multistage decimation, see Multistage decimation approach
speech signals	sampling rate, integer factor, see Sampling rate
bandpass filtering, 204	Multitesolution analysis, 650–651
pre-emphasis of, 201	Multistage decimation approach
sumsub.m function, 773–774	sampling rate conversion, 578
system modeling, adaptive filters, 470	two-stage decimator, 574, 575f
two-channel perfect reconstruction quadrature mirror filter	filter requirements, 576
bank, 633	stopband frequency edge, anti-aliasing filter, 575–576,
two-level wavelet transform and compression, 744	575f

N	Perfect reconstruction, see Two-channel perfect
Noise cancellation	reconstruction quadrature mirror filter bank
MATLAB program, 466	Phase alternative line (PAL) system, 752
MSE function vs. weights, 465, 465f	Plot functions, 771
one-tap adaptive filter, 462, 463f	Pole-zero placement method, 389, 392
specifications, 466	first-order highpass filter, 357–358, 357f
speech waveforms and spectral plots, 466,	first-order lowpass filter, 355–357, 355f, 356f
466f, 467f	magnitude response, 351, 352f
two-tap adaptive filter, 463–465	Nyquist limit, 351–352
Noise reduction systems	second-order bandpass filter, 352–354, 353f
clean signal and spectrum, 254, 255f	second-order bandstop (notch) filter, 354–355, 354
data acquisition process, 253	Pole-zero plot, see Z-plane pole-zero plot
MATLAB program, 255	Polyphase filters
noise signal and spectrum, 254, 254f	direct decimation process, 581, 581f, 582t
passband frequency range, 254	commutative model, 582–583, 583f
speech noise reduction, 256–257, 256f, 257f	filter bank coefficients, 582
stopband frequency range, 254	implementation, 582, 582f, 584
vibration signals, 257–258, 258f, 259f	three-tap decimation filter, 581
Noncausal FIR filter coefficients, 233	direct interpolation filter, 579, 579t
Noncausal sequence, 141, 233	commutative model, 580, 580f
Normalized bandpass filter, 187, 187f	filter bank coefficients, 579–580
Normalized bandstop filter, 188, 188f	four-tap interpolation filter, 578, 578f
Normalized Butterworth function, 805–808	implementation, 579, 579f, 584
Normalized Chebyshev function, 808–812	properties, 581
Normalized highpass filter, 187, 187f	Power spectrum, 97–101
Normalized lowpass filter, 186f, 187	Progressive scan, 754
Notch filter, 354–355, 354f	,
NTSC TV standard, 750, 751f	Q
Nyquist frequency, 20, 47	Quadrature amplitude modulation (QAM), 751–752
Nyquist limit, 351–352, 562–563, 564f	Quantization, 735–736, 736t
0	see also Waveform quantization and compression
	bipolar quantizer, 38–40, 39f, 40t
Optimal design method, 286–287	definition, 35, 36f
see also Parks-McClellan algorithm	error, 37
Overflow, 422	notations and rules, 38
Output digital signal, 2, 592	process, 37
n	SNR, 47
P	unipolar quantizer, 38, 38f, 39t
Parallel realization method, 192, 196–199, 196f	Quantization error
Parks-McClellan algorithm	analog μ-law companding, 501
alternation theorem, 277–278	DAC, 40–42
approximation error, 269	n
Chebyshev polynomial approximation, 269	R
Chebyshev real magnitude function, 277	Radix-2 FFT algorithm, 123
design procedure, 270–279	decimation-in-frequency method, see Decimation-
disadvantages, 279	in-frequency method
magnitude frequency response, 269-270, 270f	decimation-in-time method
minimax filters, 269	eight-point FFT algorithm, 128-129, 130f
Remez exchange algorithm, 269	eight-point IFFT, 129-131, 131f
Partial fraction expansion method, 144–145	first iteration, 128-129, 130f
constant(s) formulas, 145, 146t	frequency bins, 128-129
MATLAB function residue(), 150-152	second iteration, 128-129, 130f

rconv() function, 668	Second-order IIR filter transfer function, 369–371
Realization structure	Séquentiel Couleur á Mémoire (SECAM) system, 752, 752t
direct-form I and direct-form II, 358-360	Sequential search method, 755–756
higher order IIR filter design, cascade method, 361-362	Shannon sampling theorem, 20
Real-time processing	Shaped-in-band noise power, 593–595
input and output sample clock, 438, 439f	Shifters, 409
program segment, 438, 440f	Sigma-delta modulation analog-to-digital conversion (SDM
TMS320C6713 DSK setup, 438, 440f	ADC)
Rectangular window, 230	ADC resolution, 595–596
Reference frame, 755, 755f	CD player, 601–602, 601f, 602f
Remez exchange algorithm, 269	continuous vs. regular sampled vs. oversampled signal
RGB components, 686, 686f	amplitudes, 597, 599f
RGB-to-YIQ transformation, 690, 690f	discrete-time analog filter, 592, 593f
Root mean square (RMS), 42, 499	DSP model, second-order SDM, 595, 596f
Rounded off error, 282	extrapolation method, 592
Run-length coding, 736–738	feedback control system, 592–593
	first-order SDM
\$	DSP model, 592, 593f
Sallen-Key lowpass filter, 26-27, 26f	MATLAB program, 597
Sampling rate	principles, 592, 592f
downsampling, 557f	frequency responses, 597, 597f
data sequence, 556	MAX1402, functional diagram, 600, 600f
definition, 556	noise shaping filter, 592-593, 594f
MATLAB program, 559, 609	shaped-in-band noise power, 593–595
normalized stop frequency edge, 556–557	time vs. frequency domains, 597, 598f
Nyquist sampling theorem, 556	Signal denoising, 668, 670f
spectral plots, 556–557, 558f	Signal-to-noise power ratio, 499
TMS320C6713 DSK, 608, 612f	Signal reconstruction
using anti-aliasing filter, spectral plots, 558–559, 560f	aliasing frequency component, 23–25
without using anti-aliasing filter, spectral plots, 558, 559f	anti-aliasing filtering, 35
z-transform, 556–557	aliasing level percentage, 28
noninteger factor L/M, 570–571	Butterworth magnitude frequency response,
anti-aliasing filter, 568, 569f	25–26
interpolation filter, 567, 568f	Sallen-Key lowpass filter, 26–27, 26f
MATLAB program, 568	sampled analog signal, 25, 26f
sampling rate conversion, 567, 567f	anti-image filter and equalizer, see Anti-image filter and
upsampling	equalizer
definition, 562	signal notations, 21–22, 22f
interpolation filter, 563, 565f	signal spectrum recovery, 22–23, 22f, 23f
MATLAB program, 564, 611	Signal sampling
normalized stop frequency edge, 562–563	ADC
Nyquist limit, 562–563, 564f	see also Analog-to-digital conversion (ADC)
process of, 562, 563f	sample-and-hold analog voltage, 15, 16f
sampling frequency, 562–563	analog (continuous) signal and digital samples vs. time
TMS320C6713 DSK, 611, 612f	instants, 15, 16f
Scaling functions, 649–650, 650f	anti-image filter, 18
multiresolution analysis, 650–651	DAC, see Digital-to-analog conversion (DAC)
SECAM system, see Séquentiel Couleur á; Mémoire	DSP, 15, 16f
(SECAM) system	lowpass reconstruction filter, 20
Second-order bandpass filter, 352–354, 353f	MATLAB function
Second-order bandstop (notch) filter, 354–355, 354f	signal to quantization noise ratio calculation, 48
Second-order Butterworth lowpass filter, 25–26	uniform quantization decoding, 48
•	- · · · · · · · · · · · · · · · · · · ·

Signal sampling (Continued) uniform quantization encoding, 48	two-band filter bank system, signal compression, 635–636, 636f
Nyquist frequency/folding frequency, 20, 47	z-transform, 626
sampling process, 18, 18f, 47	Subplot functions, 771
sampling rate, 16–17	S-video, 746
sampling theorem condition, 17–18, 17f, 20, 47	Synthesis filter
Shannon sampling theorem, 20	channel 0, 622, 623f
signal reconstruction, see Signal reconstruction	channel 1, 622, 623f
spectral analysis, 18–19, 19f	channel 2, 622–624, 624f
Single-tone generator, 374–375, 374f, 375f	channel 3, 624, 625f
Smith-Barnwell PR-CQF filters, 630, 630t	4-channel filter bank, 621–622, 622f
Spectral leakage, 108	, , , .
Speech coding	T
four-band compression, 637, 637f, 638f	17-Tap FIR lowpass filter coefficients, 224, 225t
seismic data, 637, 639f	Target frame, 755, 755f
two-band compression, 636–637, 636f	Time-invariant system, 65–66, 65f
Speech noise reduction, 256–257, 256f, 257f	TMS320C6713 DSK
Speech signals	analog system program, 482
bandpass filtering	downsampling, 608, 612f
amplitude spectra, 203, 205f	system modeling
digital fourth-order bandpass Butterworth filter,	LMS adaptive filter, 480–482, 480f, 482f
203	program segment, 481
frequency responses, 203, 203f	tonal noise cancellation, 483, 483f, 484f
MATLAB program, 204	DSK1 program, 483
original and filtered speech plots, 203, 204f	DSK2 program, 484
pre-emphasis of	upsampling, 611, 612f
amplitude spectral plots, 201, 202f	Transition band, 186
magnitude and phase responses, 200, 200f	Translated function, 642, 643f
MATLAB program, 201	Transversal FIR filter, 280-281, 280f
speech waveforms, 200, 201f	Twiddle factor, 92-93, 123-124
transfer function, 200	Two-band digital crossover design
Stair functions, 771	lowpass and highpass filters
Steepest descent algorithm, 459, 460f,	impulse responses, 260, 261f
461–462	magnitude frequency responses, 260, 260f, 261f
Stem functions, 771	speaker drivers, 258–259, 259f
Step response, 169	specifications, 259–260
Subband coding	Two-channel perfect reconstruction quadrature mirror filter
analysis and synthesis stages	bank, 626, 627f
channel 0, 622, 623f	analysis and synthesis filters, 627
channel 1, 622, 623f	autocorrelation function, 628
channel 2, 622–624, 624f	four-band implementation
channel 3, 624, 625f	binary tree structure, 634f, 635
4-channel filter bank analyzer and synthesizer,	dyadic tree structure, 635, 635f
621–622, 622f	frequency response, 629, 629f
decomposition, see Two-channel perfect reconstruction	lowpass filter equations, 630
quadrature mirror filter bank	MATLAB program, 633
delta function, 624	N-tap FIR filters, 628
discrete Fourier transform, 625	Smith-Barnwell PR-CQF filters, 630, 630t
filter bank system, 621	two-band analysis and synthesis, 632, 633f
impulse train, 625, 626f	Two-dimensional discrete cosine transform (2D-DCT),
signal flow, 624, 625f	729–731
speech coding, see Speech coding	Two-dimensional discrete Fourier transform (2D-DFT), 725

U	characteristics, 502, 502f
Unipolar quantizer, 38, 38f, 39t	compressor, 501, 501f
Unit circle, 175	expander, 501–502, 501f
Unit-impulse sequence, 58–59, 59f	original speech data, 504, 505f
Unit-step sequence, 59, 59f, 62	quantization error, 501
Underflow, 423	digital μ-law companding
Unstable system, 175	8-bit compressed PCM code format, 505–506, 506t,
Upsampling	508–509, 508f
definition, 562	characteristics, 505, 506f
interpolation filter, 563, 565f	compressor and expander, 504, 505f
MATLAB program, 564, 611	decoding table, 506–508, 507t
normalized stop frequency edge, 562–563	encoding table, 505–506, 507t
Nyquist limit, 562–563, 564f	DM, 511
process of, 562, 563f	DPCM
sampling frequency, 562–563	3-bit quantizer, 509, 510t
TMS320C6713 DSK, 611, 612f	encoder and decoder, 509, 509f
V	quantization step size, 512
•	G.721 modulation, see Adaptive differential pulse code
Vertical retrace, 747, 750	modulation (ADPCM)
Vertical Sobel edge detector, 716	linear midtread quantization
Vibration signature analysis, 9, 10f, 11f	characteristics of, 498–499, 498f
Video signals	quantization, definition, 497–498
analog video	quantization error, 500
"back porch", 748	quantized values, 498–499, 498t
electrical signal demodulation, 748–750, 749f	signal-to-noise power ratio, 499
frame via row-wise scanning, 747	speech data plot, 500, 500f
frequency modulation, 751	MATLAB programs, see MATLAB programs
interlaced raster scanning, 747, 748f	MPEG audio
NTSC TV standard, 750, 751f	audio frame formats, 526, 527f
PAL system, 752	data frame types, 526, 526f
QAM, 751–752	DCT, 519–522, 524–525, 525f
SECAM system, 752, 752t	encoder, 527, 528f
vertical synchronization, 749f, 750	Huffman coding, 528
video data, retrace and sync layout, 750, 750f	MDCT, see Modified discrete cosine transform (MDCT)
video-modulated waveform, 747, 748f	TMS320C6713 DSK
component video, 746	digital μ-law encoding and decoding, 530
composite video, 746	encoding and decoding, linear quantization, 528–529
digital video CCIR-601, chroma subsampling, 753, 753f	Wavelet analysis
HDTV formats, 754, 754t	analysis equations, 822–823
specifications, 754, 754t	properties, 821–822
motion estimation, 755–756, 755f	scaled function, 641, 642f, 643f
S-video, 746	synthesis equations, 823–824
Von Neumann architecture, 406, 406f	translated function, 642, 643f
applications, 408	Wavelet transform
execution cycles, 407, 408f	amplitudes, 639–641, 641f
opcode and operand, 406	analysis and synthesis stage, 664
opeode and operand, 100	combined signal and spectrum, 639–641, 640f
W	CWT, 638, 641
Waveform coding, 7	Daubechies-4 filter coefficients, 653, 654t
Waveform quantization and compression	DWT, 638
analog μ-law companding	see also Discrete wavelet transform (DWT)
	,

Wavelet transform (Continued)	Hamming window, 230, 231f
coefficient layout, 664, 665f	Hanning window, 230, 231f
hard threshold, 668, 669f	Kaiser window, 230
signal denoising, 668, 670f	length estimation, 241, 241t
Haar father and mother wavelets, 642, 644, 644f,	magnitude frequency response, 240
652–653	MATLAB function, 237-240, 237t, 288
individual signal components, 639, 640f	passband ripple, 241–242, 241f
mother wavelet, definition, 641	rectangular window, 230
one-level wavelet transform and compression, 741,	stopband attenuation, 241-242, 241f
742f	triangular (Bartlett) window, 230, 231f
MATLAB program, 742	
scaled wavelet function, 641, 642f, 643f	Υ
scaling functions, 649-650, 650f	-
multiresolution analysis, 650-651	YCbCr color space, 753
signal coding, 650, 651f	YIQ, 690, 690f
sinusoidal delaying function, 648, 648f	YUV color model, 752
4-tap Daubechies father wavelet, 654, 654f	_
4-tap Daubechies mother wavelet, 655, 655f	Z
translated wavelet function, 642, 643f	Zero-crossing algorithm, 366–367, 368f
two-dimensional DWT, 738-741, 739f	Zigzag scan, 737
two-level wavelet transform and compression,	Z-plane pole-zero plot, 172f
741–742, 743f	analog-to-digital conversion, 174
MATLAB program, 744	bounded-in/bounded-out stability, 175
types, 638	features, 172
wavelet coefficients, 646–647	Laplace shift property, 174
wavelet data compression	Laplace vs. z-transform, 173, 174f
16-bit ECG data, 668, 669f	s-plane vs. z-plane mapping, 175, 175f
16-bit speech data, 667, 667f	stability rules, 175, 176f
MATLAB program, 667	Z-transform
Wiener filter theory	definition, 137–138
autocorrelation and cross-correlation, 459	difference equations, 152–156
LMS algorithm, 461–462	exponential sequence, 138
mean square error quadratic function, 457-458, 458f	inverse z-transform
noise cancellation, 457, 457f	definition, 144
statistical expectation, 457-458, 461-462	partial fraction expansion method, see Partial fraction
steepest descent algorithm, 459, 460f, 461-462	expansion method
Windowed modified discrete cosine transform (W-MDCT),	lookup table, 156
522–523, 522f, 545	one-sided/unilateral transform, 137-138
inverse function, 545	properties of, 144t
waveform coding, 524-525, 525f, 546	causal sequence, 141-143
Window method	linear convolution, 142–143
Blackman window, 230, 231f	linearity, 140–141
cutoff frequency, 242	time-shifted sequence, 141
design procedure, 233	region of convergence, 138
Gibbs oscillations, 230	sequences for, 138-140, 139t