PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C07K 3/00, 13/00, C07H 21/00 C12P 21/06, 21/02, 21/04 C12N 15/00

(11) International Publication Number:

WO 92/14748

A1

(43) International Publication Date:

3 September 1992 (03.09.92)

(21) International Application Number:

PCT/US92/01300

(22) International Filing Date:

20 February 1992 (20.02.92)

(30) Priority data:

657,236

22 February 1991 (22.02.91)

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on

657,236 (CIP) 22 February 1991 (22.02.91)

(71) Applicant (for all designated States except US): AMERI-CAN CYANAMID COMPANY [US/US]; 1937 West Main Street, P.O. Box 60, Stamford, CT 06904 (US).

(72) Inventors ; and

(75) Inventors/Applicants (for US only): TERMAN, Bruce, Israel [US/US]; 17 Prospect Street, Monroe, NY 10950 (US). CARRION, Miguel, Eduardo [EC/US]; 26 Summit Avenue, Spring Valley, NY 10977 (US).

(74) Agent: GORDON, Alan, M.; American Cyanamid Company, 1937 West Main Street, P.O. Box 60, Stamford, CT 06904 (US).

(81) Designated States: AT (European patent), BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, KR, LU (European patent), MC (European patent), NL (European patent), SE (European patent), US.

Published

With international search report.

(54) Title: IDENTIFICATION OF A NOVEL HUMAN RECEPTOR TYROSINE KINASE GENE

(57) Abstract

ĥ

A DNA sequence encoding a novel human growth factor receptor referred to as a type III receptor tyrosine kinase is described. The amino acid sequence of the receptor is also described. The receptor has a sequence which is similar to that of the kinase domains of known type III receptor tyrosine kinases, but which is unique in its kinase insert domain sequence. The receptor binds specifically to the vascular endothelial cell growth factor.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	Fl	Finland	MI	Malí
AU	Australia	FR	France	MN	Mongolia
BB	Bartsidos	GA	Ciabon	MR	Mauritania
BE	Belgium	GB	United Kingdom	MW	Malawi
8F	Burkina Paso	GN	Gainea	N£.	Netherlands
BG	Bulgaria	GR	Greece	NO	Norway
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	Œ	Ircland	RO	Romania
CA	Canada	ΙT	Italy	RU	Russian Federation
CF	Central African Republic	JP	Japan	SD	Sudan
CG	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korea	SN	Senegal
Ci	Côle d'Ivoire	KR	Republic of Korea	SU	Soviet Union
CM	Cameroon	Li	Liechtenstein	TĐ	Chad
CS	Czechoslovakia	LK	Srî Lanka	TG	Togo
DE	Germany	LU	Luxembourg	us	United States of America
DK	Denmark	MC	Monaco		
ES	Spain	MG	Madagascar		

5

IDENTIFICATION OF A NOVEL HUMAN RECEPTOR TYROSINE KINASE GENE

10

15

20

25

30

35

FIELD OF THE INVENTION

This invention relates to the DNA sequence encoding a novel human growth factor receptor which is a type III receptor tyrosine kinase. The receptor is referred to as Kinase insert Domain containing Receptor (KDR) and binds specifically to the growth factor vascular endothelial cell growth factor (VEGF). This invention also relates to the amino acid sequence of the receptor.

BACKGROUND OF THE INVENTION

Growth factors are small molecules which regulate normal cell growth and development through interaction with cell surface receptors. The receptors for a number of growth factors are referred to as tyrosine kinases; that is, binding of growth factor to the receptor stimulates an increased phosphorylation of tyrosine amino acids within the receptor; this is turn leads to cellular activation (Bibliography 1).

There is increasing evidence that genetic alterations affecting the expression of receptor tyrosine kinases (RTK) can contribute to the altered cell growth associated with cancer. This conclusion is

- 2 -

supported by the frequent identification of RTK as products of the oncogenes for many of the acutely transforming retroviruses (e.g., 2,3,4) and the overexpression of RTK in certain cancers (5). The identification of a novel RTK may lead to a better understanding of cell growth under both normal and transforming circumstances.

5

10

15

20

25

30

35

The amino acid sequence in the catalytic domain of all tyrosine kinases has been conserved (6). Detailed analysis of the amino acid sequences within the catalytic and noncatalytic domains of RTK indicates the existence of distinct structural subtypes. One group of RTK (designated type III) includes the <u>ckit</u> proto-oncogene and the receptors for platelet derived growth factor (PDGF) and colony stimulating factor-1 (CSF-1).

The most unusual feature of this subtype is that its catalytic (kinase) domain is interrupted by a long insertion sequence of 12-102 amino acids (the kinase insert domain) The two peptides constituting the kinase domain are conserved between the receptors, while the sequence of the kinase insert domain is unique for each receptor.

Several approaches have been tried in order to identify novel RTK, including low-stringency screening of cDNA libraries with previously characterized DNA probes (7). More recently, a technique has been developed that is capable of greatly facilitating the identification of novel genes for which some sequence data are known. The polymerase chain reaction (PCR) has been used to identify novel members of several gene families including those of quanine nucleotide regulatory proteins (8) and protein phosphatases (9). PCR has been used to identify novel tyrosine kinase genes (10), though the primers used in

10

15

20

25

30

35

that study were designed from DNA segments contained in all tyrosine kinases, rather than being specifically directed against RTK. It is a continuing goal to identify receptors for growth factors.

The elucidation of the growth factors, as well as their receptors, involved in regulating endothelial cell function is critical for the understanding of how new blood vessels are formed (angiogenesis). Angiogenesis plays a significant role in both normal and pathological events such as embryogenesis, progression of ocular diseases, and wound healing (11). In particular, angiogenesis is an important process for the growth of tumors (11). Angiogenesis is a complex process involving endothelial cell proliferation, migration, and tissue infiltration. These events are stimulated by growth factors which either (i) act directly on endothelial cells (12,13), or (ii) act indirectly by inducing host cells to release specific endothelial cell growth factors (11). One member of the first group is vascular endothelial cell growth factor (VEGF), also known as vascular permeability factor (14-16). Besides its angiogenic activity, VEGF displays the physiological function of increasing the permeability of capillary vessels to different macromolecules (14).

SUMMARY OF THE INVENTION

The present invention relates to novel DNA segments which together comrpise a gene which encodes type III RTK. The type III RTK encoded by the gene is designated the <u>KDR</u> protein (which stands for Kinase insert Domain containing Receptor). The <u>KDR</u> protein binds specifically to the growth factor VEGF (vascular endothelial cell growth factor).

- 4 -

The DNA segments are identified and isolated through the use of PCR technology. The overall strategy is summarized as follows:

PCR is used to amplify the DNA segments corresponding to the kinase insert domains of type III receptor tyrosine kinase genes in an endothelial cell library designated HL10246 (Clontech Laboratories, Inc., Palo Alto, CA). Degenerate oligonucleotide primers are designed which are complementary to conserved tyrosine kinase domains flanking the kinase insert domains of known type III receptor tyrosine kinases. These primers are used in the PCR procedure. DNA probes, designed from the DNA sequence of the PCR product, are then used to identify cDNA clones of the receptor gene from the original cDNA library.

In particular, the present invention relates to specific oligonucleotides which, when used as primers for PCR, allow for the amplification of DNA segments corresponding to the kinase insert domains of type III RTK genes.

In a principal embodiment, the present invention is directed to three overlapping DNA segments (designated BTIII081.8, BTIII129.5 and BTIV169) which comprise the entire coding region of this novel gene, namely, 4,068 nucleotides extending to the 3' end.

These DNA segments are isolated from a human endothelial cell cDNA library and together comprise the gene coding for a novel type III receptor tyrosine kinase. The human gene containing these DNA segments is referred to hereinafter as KDR (which stands for Kinase insert Domain containing Receptor) or, alternatively, as kdp (which stands for Kinase insert Domain containing Protein). The use of the term KDR is intended to include any DNA segments which form the

5

10

15

20

25

30

10

15

20

25

30

35

human gene which encodes the novel type III RTK of this application.

The DNA segments embodied in this invention are isolated from human sources. The present invention comprises DNA segments, and methods for using these DNA segments, which allow for the identification of a closely related gene in mouse DNA. The methods developed in this invention can be readily used by those skilled in the art for the identification and isolation of closely-related homologues in other species. Therefore, the present invention also embodies all DNA segments from species other than human which encode proteins having substantially the same amino acid sequence as that encoded by the kdp gene.

The present invention further relates to methods developed for the detection of mRNA's produced as a result of transcription of the sense strands of the DNA segments of this invention. Messenger RNA prepared from bovine endothelial cells are used in developing these methods. The ability to detect mRNA for a novel RTK may ultimately have medical benefit, especially in light of recent observations that the mRNA for certain RTKs are overexpressed in some cancers (5).

The methods developed in the present invention for detecting mRNA expressed by the kdp gene can be readily used by those of ordinary skill in the art for the detection of mRNA species related to the kdp gene in any cell type and from any species. For this reason, the present invention embodies all mRNA segments which are the result of transcription of the kdp gene.

The present invention relates to methods for expression of the receptor protein, for example, in CMT-3 cells of monkey kidney origin. The receptor

- 6 -

protein, portions thereof, and mutated forms of the receptor protein may be expressed in many other cells by those skilled in the art using methods similar to those described in this application. For this reason, the present invention embodies all proteins encoded by the human <u>KDR</u> gene and proteins encoded by related genes found in other species.

The present invention further relates to methods for studying the interaction of VEGF to the expressed KDR protein. Recent work in the literature (17) indicates that VEGF is one member of a family of related proteins, and the interaction of growth factors similar to VEGF with the KDR protein can readily be studied by those skilled in the art using methods similar to those described in this application. These methods can readily be modified to study the interaction of candidate pharmaceuticals with the KDR protein towards the goal of developing an antagonist or agonist of VEGF action. For this reason, the present invention embodies methods for studying the interaction of VEGF and VEGF-related growth factors with the KDR protein.

BRIEF DESCRIPTION OF THE DRAWINGS

25

5

10

15

20

Figure 1 depicts a schematic representation of three receptor tyrosine kinase subclasses (6). KI is kinase insert domain; PTK is kinase domain; cys is cysteine rich region.

30

35

Figure 2 depicts the two sets of primers used for PCR (SEQ ID No: 1 and 2). The nucleotide sequences in appropriate regions of the four known type III receptor tyrosine kinase cDNAs are aligned and degenerate oligonucleotide primers are designed based upon the consensus sequences.

10

15

20

25

30

35

Figure 3 depicts the amplification of the kinase insert domains using PCR. DNA segments encoding the kinase insert domains of type III receptor tyrosine kinases are amplified by PCR. A sample (5 μ l) is run on a 1.0% agarose gel which is stained with ethidium bromide. DNA size standards (123 bp ladder; Bethesda Research Laboratories, Bethesda, MD) are run as well.

Figure 4 depicts the DNA sequence of the two PCR products (Panel A: 363 bp segment derived from the 420 bp product (SEQ ID NO: 3); Panel B: 251 bp product (SEQ ID NO: 4)). The two products are purified by agarose gel electrophoresis, digested with Sall and EcoRI, and cloned into the plasmid vector pBlueScribe(+) (Strategene; San Diego, CA). The 420 bp PCR product is digested to 363 bp during this procedure. The DNA sequences for the primers used in the amplification are underlined.

Figure 5A depicts a computer assisted comparison of the DNA sequence for the 363 bp DNA segment derived from the 420 bp PCR product with the sequence of a DNA segment of the PDGF receptor (SEQ ID NO: 5) (18). A region of strong homology between the 363 bp segment derived from the 420 bp PCR product and the PDGF receptor is contained in a box. Figure 5B depicts a computer assisted comparison of the DNA sequence for the 251 bp PCR product with the sequence of a DNA segment of the FGF receptor (SEQ ID NO: 6) (7).

Figure 6 depicts the strategy used for sequencing the insert portions of clones BTIII081.8 and BTIII129.5 and BTIV169. The sequencing reaction uses either synthetic oligonucleotides (represented by boxes at the start of an arrow), or the M13 universal primer (no box) to initiate the reaction. In some cases, portions of these DNA segments are isolated using the

5

10

15

20

25

30

35

restriction enzymes indicated in the figure, and subcloned back into the plasmid vector pUCl18, so that the M13 universal primer can be used. The position of the stop codon in BTIII129.5 is indicated. The coding portions of these DNA segments are shown at the bottom of the figure. The relative positions of the 1) membrane spanning portion, 2) kinase domains, and 3) kinase insert domain are indicated. The position of these structural features within the <u>KDR</u> derived DNA segments is compared in relation to their position in the PDGF-receptor ("PDGF-R").

Figure 7 depicts the DNA and predicted amino acid sequence of KDR, plus the stop codon (nucleotides 1-4071 of SEQ ID NO. 7). The sequence of the DNA segment amplified by PCR is underlined (nucleotides 2749-3105 of SEQ ID NO. 7). Cysteine residues in the putative extracellular domain are circled. Potential N-linked glycosylation sites are indicated by an asterisk. The putative membrane spanning region is enclosed in a box (nucleotides 2293-2367 of SEQ ID NO. 7).

Figure 8 depicts a hydropathy plot of the predicted amino acid sequence for the <u>KDR</u> protein.

Figure 9 depicts a comparison of the predicted amino acid sequence in the putative intracellular portion of the <u>KDR</u> protein to the <u>ckit</u> proto-oncogene (SEQ ID No: 8) (3), the CSF-1 receptor (SEQ ID NO: 9) (4), and the PDGF receptor (SEQ ID NO: 10) (18). Exact matches are indicated by an asterisk. Gaps are introduced to achieve maximum alignment. The putative ATP recognition site is indicated by three asterisks.

Figure 10 depicts the identification of kdp receptor mRNA by Northern blot analysis. Five micrograms of bovine aortic endothelial cell polyA+ RNA

are used. A nick-translated [32P] CTP-labelled <u>EcoRI/Bam</u>HI DNA segment (nucleotides 1510-2417 of SEQ ID NO. 7) is used as a probe. Autoradiography is for 36 hours.

5

Figure 11 depicts the kdp gene in human and mouse DNA by Southern blot analysis. A nick translated [\$^{32}P]CTP-labelled EcoRI/BamHI DNA segment (nucleotides 1510-2417 of SEQ ID NO. 7) is used as the probe. The probe is hybridized to Southern blots containing EcoRI digested DNA from human (lane 1), mouse (lane 2), and human-mouse hybrid cells (19) (lanes 3 and 4). The DNA used in lane 3 lacks the kdp locus, while DNA used in lane 4 contains the kdp locus.

15

10

Figure 12 depicts a Western blot analysis of CMT-3 cells which express the KDR protein. Cells are transfected with either the pcDNAltkpASP vector alone (lane 1) or with that vector modified to contain the KDR gene (lane 2). 2 x 10⁵ cells and 1 microgram of DNA are used for each transfection. Forty-eight hours later, Western blot analysis is performed on the samples using the anti-KDR.PS23 polyclonal antibody at a dilution of 1:1000. Detection of reacting proteins is performed using an ECL system (Amersham, Chicago, IL).

25

20

Figure 13 depicts the results of [125I] VEGF binding to CMT-3 cells which express the KDR protein. Cells are transfected with either the vector alone (bars 1 and 2) or with the vector containing the KDR gene (bars 3 and 4). Forty-eight hours later, the samples are washed with phosphate buffered saline (PBS), and incubated with serum-free media containing 50 pM [125I] VEGF (specific activity equal to 4,000 cpm per fmol), for 90 minutes. Nonradioactive VEGF, 5 nM, is added to some samples (bars 2 and 4) to define

30

- 10 -

specific binding sites. The samples are washed with ice cold PBS, and the cells are transferred to gamma-counting tubes using 0.1% lubrol.

Figure 14 depicts the results of affinity cross-linking of [125] VEGF to CMT-3 cells which express the KDR protein. CMT-3 cells are transfected with either the vector alone (lane 1) or with the vector containing the KDR gene (lane 2). Forty-eight hours later, the cells are washed in PBS, and serum free media containing 200 pM [125] VEGF is added. After 90 minutes at room termperature, an affinity cross-linker disuccinimidyl suberate, 0.5 mM, is added for 15 minutes. The samples are then prepared for SDS-PAGE autoradiography.

15

20

25

30

35

10

5

DETAILED DESCRIPTION OF THE INVENTION

The strategy used to discover the DNA segments for the novel type III RTK gene begins with the design of two degenerate oligonucleotide primers based upon their homology to specific regions of the kinase domains of known RTK genes (Fig. 2) (3,4,7,18). In one embodiment, the polymerase chain reaction is then used to amplify DNA segments from a human endothelial cell cDNA library (designated HL 10246). The cDNA products from this step are each cloned into a plasmid vector designated pBlueScribe+ (Strategene, San Diego, CA) and sequenced. Oligonucleotide probes are designed from potentially interesting sequences in order to screen the cDNA library for more full length clones of the novel cDNA.

The strategy just described provides several novel elements: 1) the DNA sequences of the oligonucleotide primers used during PCR; 2) the DNA sequence of the products generated by the polymerase chain

WO 92/14748

reaction; and 3) the DNA sequence of the final cloned DNA segments. Each of these elements of the invention described in this application will now be discussed in detail.

5

Figure 2 shows the rationale for choosing the oligonucleotide primers used in the PCR. The primers are designed to allow for the PCR amplification of the kinase insert domain of type III RTK genes. In order to design the primers, the DNA sequences of known type III RTK genes are aligned in specific regions of their catalytic domains, and a consensus sequence is chosen. The regions of the catalytic domains chosen in designing the primers flank the kinase insert domains of the receptor genes.

15

10

Primer 1 (SEQ ID No: 1) is designed from a region of the kinase domain 5' to the kinase insert domain, and consists of a mixture of four different 21mers. Primer 2 (SEQ ID NO: 2) is designed from a region of the kinase domain 3' to the kinase insert domain, and consists of a mixture of sixteen different 29mers with one inosine, indicated in SEQ ID NO: 2 by "N".

20

25

SalI and EcoRI restriction sites are included at the 5' end of primers 1 and 2, respectively, to facilitate the subcloning of the amplified PCR products into plasmid vectors. Those skilled in the art may use other restriction sites; other minor modifications in the protocol above permits the design of primers without the inclusion of restriction sites.

30

35

The selection of these specific primers constitutes a novel approach towards identifying novel type III RTK genes. It had previously been shown (10) that primers designed from DNA sequences common to all tyrosine kinases allows for the identification of novel proteins. The present invention is the first to

5

10

15

20

25

30

35

- 12 -

contemplate the use of PCR to specifically target type III RTK.

The protocol used for PCR is as follows: Human endothelial cell cDNA (designated HL10246) is denatured by boiling and submitted to 30 cycles of PCR using 1 nmol of both primers in a final volume of 100 μ l. The timing is 1.5 minutes at 92°C, 2 minutes at 50°C, and 2 minutes at 74°C. DNA from 5μ l of sample is separated on a 1% agarose gel and stained with ethidium bromide.

Figure 3 shows the results of the PCR amplification. Two DNA products, with sizes 251 bp (SEQ ID NO: 4) and 420 bp, are visible when a sample of the reaction is electrophoresed on a 1.0% agarose gel and stained with ethidium bromide. The sizes of the two products are within the range expected for type III RTK genes (products derived from the FGF and PDGF receptor genes, which have the smallest and largest known kinase insert domains, would be 230 and 510 bp, respectively (20, 21).

The DNA from four continguous lanes with sizes ranging from 200 to 600 bp is electrophoresed onto DEAE filter paper, eluted from the paper with salt, and ethanol precipitated. The samples are incubated with 5 units of EcoRI and SalI. The restriction enzymes digest the 420 bp DNA segment to a 363 bp DNA segment (SEQ ID NO: 3), due to the presence of an EcoRI site within the 420 bp DNA segment (nucleotide 2749, SEQ ID NO. 7). The restriction enzyme digested PCR products are then subcloned into the plasmid vector pBlueScribe(+). The recombinant clones are analyzed by sequencing using the dideoxy-method (22) using a United States Biochemical (Cleveland, Ohio) Sequenase Version 2.0 sequencing kit. Figure 4 shows the DNA sequences for the 251 bp PCR

10

15

20

25

30

35

product and the 363 bp DNA segment derived from the 420 bp PCR product.

Computer assisted comparison of the DNA sequence for the 363 bp segment of the 420 bp PCR product to databases of known DNA sequences reveals that the sequence is novel, because it shares strong sequence identity with the flanking catalytic domain of known type III RTK genes, but not their kinase insert domains. Figure 5A compares the DNA sequence for the 363 DNA segment with that for the PDGF receptor gene (SEQ ID No: 5). Similar results are obtained using other type III RTK genes.

DNA sequencing of the 251 bp PCR product reveals a novel sequence containing both primers used for the amplification, but the sequence shows little homology to known tyrosine kinases. This is depicted in Figure 5B, which compares the DNA sequence for the 251 bp DNA segment with that for the FGF receptor (SEQ ID NO: 6). For this reason, further analysis of Product 1 is not pursued.

The protocols used during the PCR do not allow for amplification of the kinase insert domains of known receptor tyrosine kinases in the endothelial cell library used because of the low copy number of the message present in the library. There have been many studies on the effect of FGF on endothelial cell function (23,24) although there is evidence that the expression of the FGF receptor is developmentally regulated (7) and it is likely that the library used contains little or no cDNA for the FGF receptor.

An oligonucleotide probe, designed from the DNA sequence of the 363 bp segment, is synthesized (using an ABI 380 DNA Synthesizer) in order to screen the human endothelial cell cDNA library (HL10246) for the isolation of more full length clones containing the

5

10

15

20

25

30

35

- 14 -

363 bp DNA segment. The probe sequence is chosen from the region of the 363 bp DNA segment which shares little sequence homology with known RTK.

The screening of the endothelial cell cDNA library is conducted as follows: Lambda gtll phage, 10^6 , are adsorbed to <u>E</u>. <u>coli</u> LE392 for 15 minutes at 37°C prior to plating onto agar plates at a density of 5×10^5 phage per plate. After allowing the phage plaques to develop at 37°C, plaque lifts are made using nitrocellulose filters, denatured in 0.4 N NaCl for 1 minute, and neutralized in 0.5 M Tris.HCl, pH 7.3, plus The filters are washed with 2 x standard 1.5 M NaCl. saline citrate (SSC) and then baked for 1.5 hour in a vacuum oven at 80°C. The filters are probed with an $[^{32}P]$ ATP end labeled synthetic oligonucleotide, 5' -TTTCCCTTGACGGAATCGTGCCCCTTTGGT-3', which is the reverse complement of a DNA sequence contained in the PCR amplified product (Fig. 3). Hybridization is performed at 50°C in 5 x SSPE (167 mM NaCl, 10 mM sodium phosphate, pH 7.4, 1 mM EDTA), 2.5 x Denhardts, 0.5% sodium dodecyl sulfate (SDS), 100 μ g/ml salmon sperm The filters are washed twice, 20 minutes per wash, with 2 x SSC plus 0.1% SDS at room temperature, followed by washing twice at 50°C with 0.1 X SSC plus 0.1% SDS; 20 minutes per wash. Positive clones are identified, picked and plaque purified.

Three of these positive clones are plaque purified and their phage DNA isolated. Digestion of the DNA with <u>EcoRI</u> and electrophoresis in agarose indicates that one clone, designated BTIII081.8, contains the largest insert, and subsequent analysis indicates that the DNA insert of this clone overlaps that of the inserts contained in other two purified clones (designated BTIII079.11 and BTIII079.47A).

10

15

20

25

30

35

Digestion of the purified phage DNA of the clone designated BTIII081.8 with <u>Eco</u>RI results in DNA segments of 250 bp, 600 bp, and 1000 bp. Each of these three products is subcloned into the plasmid vector pUC118 and sequenced (Figure 6 shows the strategy used for sequencing). The orientation of the three fragments is determined by subcloning from the insert a <u>BglII/BglII</u> fragment into pUC118 and sequencing across the <u>Eco</u>RI junctions using a synthetic oligonucleotide to prime the sequencing reaction.

A restriction map is determined for each fragment (Figure 6). Various restriction site pieces are removed from the plasmids and recloned into pUC118 so that sequencing the resulting plasmids with the universal primer allows for sequencing most of the entire original fragments in both directions. Three oligonucleotide primers are required to sequence the entire cDNA in both directions. For the purposes of this application, this insert contains nucleotides numbered 1510-3406 (SEQ ID NO. 7).

A [³²P]CTP-labelled, nick-translated <u>EcoRI-Bam</u>HI DNA segment derived from clone BTIII081.8 (nucleotides 1510-2417 of SEQ ID NO. 7) is used as a probe to rescreen the original endothelial cell cDNA library for more 5' full length DNA segments of the gene from which the insert portion of BTIII081.8 is derived. The protocols used to isolate the overlapping clones are identical to that used to isolate BTIII081.8.

A synthetic oligonucleotide probe is designed with 29 nucleotides corresponding to part of the DNA sequence of the insert portion of the clone BTIII081.8 (nucleotides 3297-3325 of SEQ ID NO. 7) in order to rescreen the original endothelial cell cDNA library for more full 3' length DNA segments of the gene from which

5

10

15

20

25

30

35

- 16 -

the insert portion of BTIII081.8 is derived. The protocols used to isolate the overlapping clones are identical to that used to isolate BTIII081.8. Several positive clones for each of the 5' and 3' ends are identified and plaque purified.

One of the clones is designated BTIII200.2. The DNA from BTIII200.2 contains a 3.4 kb insert as determined by EcoRI digestion of the isolated phage DNA. EcoRI digestion of BTIII200.2 results in three DNA fragments. One of thse fragments (2.5 kb) is cloned into pucl19 and is designated BTIV006. The clone BTIV006 contains nucleotides numbered 7-2482. As described below, BTIV006 plus nucleotides 1-6 is designated BTIV169. DNA sequencing of the 2.5 kb DNA insert (BTIV169) indicates that it overlaps over one thousand nucleotides of the DNA sequence of the insert portion of the clone BTIII081.8 (Figure 6) at the 5' end.

A second clone isolated from the cDNA library is designated BTIII129.5. The DNA from BTIII129.5 contains a 2.2 kb insert as determined by EcoRI digestion of the isolated phage DNA. DNA sequencing of the 2.2 kb DNA insert indicates that it overlaps over five hundred nucleotides of the DNA sequence of the insert portion of the clone BTIII081.8 (Figure 6). clone BTIII129.5 contains nucleotides numbered 2848-4236 (SEQ ID NO. 7). The DNA sequence for BTIII129.5 contains the stop codon TAA, defining the position of the 3' end of an open reading frame for the novel gene. Except for the first six nucleotides of the gene which are discussed below, these three clones define a gene encoding a growth factor receptor. three clones define a 4,062 nucleotide sequence of the open reading frame of the gene extending to the 3' end, followed by a 168 nucleotide non-coding region (SEQ ID

10

15

20

25

30

35

NO. 7). A sample of a lambda gtll phage harboring the clone BTIII081.8 has been deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852, U.S.A., and has been assigned ATCC accession number 40,931. A sample of a lambda gtll phage harboring the clone BTIII129.5 has been deposited with the American Type Culture Collection and has been assigned ATCC accession number 40,975. For reasons discussed below, a sample of the clone BTIV006 was not deposited.

The aforementioned DNA segments (BTIII081.8, BTIII129.5, and BTIII200.2 (or BTIV006) encode 4062 nucleotides of the coding portion of a novel gene. The cDNA clones are incomplete in that a transcription initiation coding for methionine is missing. After the isolation of these clones, Matthews et al. (25) reported the cloning of a gene homologue of KDR in mouse, which was referred to as Flk-1. Analysis of the nucleic acid and amino acid sequence of Flk-1 indicated that the addition of six nucleotides to the 5' end of the isolated KDR clones would provide for a complete coding region.

fragment of BTIV200.2 is cloned into the plasmid pBlueScript KS (Strategene, La Jolla, CA). The 5' end of the inserted DNA is blunt ended with Klenow polymerase and Mung Bean nuclease. Next, the synthetic oligonucleotide TCGACGCGCG ATG GAG (SEQ ID NO. 11) is cloned into this vector. The oligonucleotide contains the sequence ATG GAG in frame with the downstream DNA insert. These nucleotides (ATG GAG) encode the amino acids methionine and glutamic acid, the first two amino acids encoded by the KDR gene. The resulting plasmid vector is designated BTIV140. This plasmid is purified on a CsCl gradient.

5

10

15

20

25

30

35

The purified plasmid is designated BTIV169. The insert of BTIV169 contains nucleotides 1-2400 (SEQ ID NO. 7) of the KDR gene. A sample of the plasmid pBlueScript KS which contains the clone BTIV169 has been deposited with the American Type Culture Collection and has been assigned ATCC accession number 75200.

Thus, together the clones BTIII081.8, BTIII129.5 and BTIV169 comprise the entire open reading frame of 4,068 nucleotides for the novel <u>KDR</u> gene. As will be discussed below, the <u>KDR</u> gene expresses the novel <u>KDR</u> receptor which binds specifically to the growth factor VEGF.

DNA sequencing of BTIII081.8, BTIII129.5 and BTIV169 (SEQ ID NO. 7) shows that the newly isolated gene is similar to, but distinct from, previously identified type III RTK. The predicted amino acid sequence (SEQ ID NO. 7) contains several structural features which demonstrate that the novel gene is a type III RTK. These structural features are summarized as follows:

- 1) A hydropathy plot of the predicted amino acid sequence indicates a single membrane spanning region (see Figure 8). This is characteristic of a type III RTK (Figure 7).
- 2) The putative amino-terminal 762 amino acid portion of the receptor has structural features of extracellular receptor ligand binding domains (1), including regularly spaced cysteines and 18 potential N-linked glycosylation sites (Figure 7).
- 3) The predicted amino acid sequence of the carboxy-terminal 530 amino acid portion contains an ATP-binding site at lysine 868, 22 amino acids downstream from the consensus ATP recognition sequence Gly-X-Gly-X-Gly (26) (Figure 8).

10

15

20

25

30

35

- 4) Within the kinase domain there is a 55-60% identical match in amino acid sequence to three other type III receptor tyrosine kinases: ckit
 proto-oncogene (SEQ ID NO: 8), CSF-1 (SEQ ID NO: 9) and PDGF (SEQ ID NO: 10) (Figure 9).
- 5) The predicted kinase domain contains a kinase insert domain of approximately 71 amino acids. As indicated in Figure 9, this portion of the amino acid sequence shares little sequence homology with other type III RTK.

The endothelial cell library can be further screened to isolate the 5' untranslated region and genomic clones can be generated so as to isolate the promoter region for the <u>KDR</u> gene.

In addition to the DNA sequence described for the KDR gene (SEQ ID NO. 7), the present invention further comprises DNA sequences which, by virtue of the redundancy of the genetic code, are biologically equivalent to the sequences which encode for the receptor, that is, these other DNA sequences are characterized by nucleotide sequences which differ from those set forth herein, but which encode a receptor having the same amino acid sequences as those encoded by the DNA sequences set forth herein.

In particular, the invention contemplates those DNA sequences which are sufficiently duplicative of the sequence of SEQ ID NO. 7 so as to permit hybridization therewith under standard high stringency southern hybridization conditions, such as those described in Sambrook et al. (27), as well as the biologically active proteins produced thereby.

This invention also comprises DNA sequences which encode amino acid sequences which differ from those of the novel receptor, but which are the biological equivalent to those described for the

5

10

15

20

25

30

35

receptor. Such amino acid sequences may be said to be biologically equivalent to those of the receptor if their sequences differ only by minor deletions from or conservative substitutions to the receptor sequence, such that the tertiary configurations of the sequences are essentially unchanged from those of the receptor.

For example, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, as well as changes based on similarities of residues in their hydropathic index, can also be expected to produce a biologically equivalent product. Nucleotide changes which result in alteration of the N-terminal or C-terminal portions of the protein molecule would also not be expected to alter the activity of the protein. It may also be desirable to eliminate one or more of the cysteines present in the sequence, as the presence of cysteines may result in the undesirable formation of multimers when the protein is produced recombinantly, thereby complicating the purification and crystallization processes. Each of the proposed modifications is well within the routine skill in the art, as is determination of retention of biological activity of the encoded products. Therefore, where the terms "KDR gene" or "KDR protein" are used in either the specification or the claims, each will be understood to encompass all such modifications and variations which result in the production of a biologically equivalent protein.

10

15

20

25

30

35

In addition to the full length gene and protein, the invention encompasses biologically active fragments of each. By "biologically active" is meant a protein fragment which qualitatively retains the receptor activity of the larger KDR protein, or, in the case of a nucleotide sequence, which encodes such a protein fragment. It also refers, for purposes of antibody production, to fragments which are capable of eliciting production of antibodies capable of binding to the receptor protein.

To determine the size of the mRNA transcribed from the kdp gene, Northern blot hybridization experiments are carried out using an EcoRI/BamHI DNA segment (nucleotides 1510-2417, SEQ ID NO. 7) as a hybridization probe. The DNA used for the probe does not contain any portion of the putative kinase domain, and shares little sequence homology to other tyrosine kinases. The Northern blot analysis (Figure 10) shows that a 7 kb band is visualized in cytoplasmic poly(A)+ RNA of ABAE bovine aortic endothelial cells. This transcript differs in size from previously reported transcripts for known type III RTK (7,18).

The isolated cDNA is significant for several reasons. The cDNA encodes a novel type III receptor tyrosine kinase. The homology between the sequence of this cDNA and that of other receptors, as well as structural properties implied by the predicted amino acid sequence confirm the relationship. Receptors for growth factors should have tremendous utility in drug development as they face the outside of the cell and thus are among the best targets for drugs. In addition, the cellular levels of some receptors, in particular the new proto-oncogene, increase during some cancers. This has been taken advantage of in designing diagnostic tests for these cancers.

- 22 -

Southern analysis demonstrates that the kdp gene is present in mouse as well as human DNA. and human (Hela cell) DNA, 15 μg of each, are digested with 10 units of EcoRI and electrophoresed on a 0.7% agarose gel. The DNA is transferred onto nitrocellulose. The filter is hybridized to a [32P]CTP-labelled cDNA probe made by nick translating an EcoRI/BamHI fragment from the 5' end of the kdp cDNA (nucleotides 1510-2417, SEQ ID NO. 7). Hybridization is conducted at 30°C in 5 X SSPE, 50% formamide, 0.1% SDS, plus 150 μ g/ml salmon sperm DNA. The DNA probe hybridizes to Southern blots containing EcoRI digested After 48 hours, the filter is washed at room temperature in 2 X SSC plus 0.1% SDS for 20 minutes, followed by two 20 minute washes at 40°C with 0.1 X SSC plus 0.1% SDS. Autoradiography is then performed for 48 hours. As shown in Figure 11, radioactively labelled DNA is present in both human and mouse This indicates that the kdp gene is present in both species.

An experiment is conducted to ascertain the genetic locus of kdp on human chromosomes. Thirty-eight cell hybrids from 18 unrelated human cell lines and four mouse cell lines are examined (19). A DNA probe hybridizes to Southern blots which contain EcoRI digested DNA from the human-mouse hybrids (using the procedure and DNA probe for human and mouse tissue described in relation to Figure 11). Table I sets forth the results of the segregation of kdp with human chromosomes in EcoRI digested human-mouse somatic cell hybrid DNA:

5

10

15

20

25

30

Table I

					cordant	#
		of H	ybrids	of	Hybrids	
5	Chromosome	(+/+)	(-/-)	(+/-	·) (-/+)	<pre>% Discordancy</pre>
	1	4	19	8	4	34
	2	8	18	5	6	30
	3	11	12	3	9	34
10	4	14	24	0	0	0
	5	7	14	7	10	45
	6	7	19	7	5	32
	7	11	14	3	8	31
	8	8	11	6	13	50
15	9	3	20	10	4	38
	10	12	9	2	14	43
	11	9	13	4	11	41
	12	9	10	5	14	50
	13	7	18	7	6	34
20	14	11	8	3	16	50
	15	9	15	5	8	35
	16	7	19	7	5	32
	17	12	7	2	16	49
	18	11	14	3	10	34
25	19	7	18	7	6	34
	20	9	10	5	14	50
	21	11	9	3	15	47
	22	3	16	10	7	47
	x	8	10	3	8	38
20						

The scoring is determined by the presence (+) or absence (-) of human bands in the hybrids on Southern blots prepared in a similar to those shown in Figure 11. The scoring is compared to the presence or absence of human chromosomes in each hybrid. A 0%

30

5

10

15

20

25

30

35

- 24 -

discordancy indicates a matched segregation of the DNA probe with a chromosome. Three fragments, approximately 6.5 kb, 3.1 kb, and 0.7 kb in size are detected in digests of human DNA (Figure 11), and in all hybrids which had retained human chromosome 4 (Table I). All other chromosomes are excluded in at least 11 discordant hybrids (Table I). The results of Figure 11 and Table I demonstrate that the genetic locus of kdp is on human chromosome 4.

It is noteworthy that both the <u>ckit</u> (3) and the type A PDGF (28) receptor genes map to human chromosome 4. The finding that the genetic locus of kdp is on human chromosome 4 provides further evidence that the novel receptor of this invention is a type III receptor tyrosine kinase.

The next step after identifying the entire coding portion of the kdp gene is to express the receptor protein encoded by that gene. The receptor protein is then utilized so as to identify the growth factor which binds specifically to the receptor.

The receptor protein is expressed using established recombinant DNA methods. Suitable host organisms include bacteria, viruses, yeast, insect or mammalian cell lines, as well as other conventional organisms. For example, CMT-3 monkey kidney cells are transected with a vector containing the complete coding region of the <u>KDR</u> gene.

The complete coding portion of the <u>KDR</u> gene is assembled by sequentially cloning into pUCl19 three DNA fragments derived from BTIII081.8, BTIII129.5, and BTIV169. First, a <u>SmaI-Eco</u>RI fragment of clone BTIII129.5 (nucleotides 3152-4236, SEQ ID NO. 7) is blunt ended with Klenow polymerase and introduced into a <u>SmaI</u> site in pUCl19. Next, a <u>BamHI-SmaI</u> fragment of clone BTIII081.8 (nucleotides 2418-3151, SEQ ID NO. 7)

is introduced at a <u>BamHI-SmaI</u> site. Finally, a <u>SalI-BamHI</u> fragment of clone BTIV169 (nucleotides 1-2417, SEQ ID NO. 7) is introduced at a <u>SalI-BamHI</u> site. Part of the cloning site of pUCl19 is contained in the <u>SalI-BamHI</u> fragment, 5' to the <u>KDR</u> gene. In order to clone the complete coding portion into an expression vector, the assembled DNA (in pUCl19) is digested with <u>SalI</u> and <u>Aspl18</u> and recloned into the eukaryotic expression vector pcDNAltkpASP.

10

5

This vector is a modification of the vector pcDNA1 (Invitrogen; San Diego, CA). Specifically, the ampicillin resistance gene is cloned from pBR322 into pcDNA1. A small SV40 T splice and the SV40 polyadeny-lation signal are then removed and are replaced with a Herpes Simplex Virus-1 polyadenylation signal. Finally, a cytomegalovirus intermediate early splice is inserted 5' to the cloning site to yield pcDNA1tkpASP.

20

15

Transfection of CMT-3 cells is done using DEAE-dextran. Forty-eight hours after transfection, expression of the novel receptor is monitored using Western blot analysis as follows.

25

An antibody is used to assay the expressed receptor protein. The predicted amino acid sequence of the receptor is used to generate peptide-derived antibodies to the receptor by conventional techniques. The presence of the novel receptor protein is confirmed by Western blot hybridization.

30

Specifically, a synthetic peptide with 13 residues is synthesized based on the 12 residues corresponding to amino acids 986-997 of the putative amino acid sequence of the <u>KDR</u> protein (SEQ ID NO. 7), with a cysteine residue linked to the lysine (amino acid 997). The cysteine facilitates coupling of the peptide to a macromolecule which functions as a carrier for the peptide. For example, the peptide is coupled

35

5

10

15

20

25

30

35

- 26 -

to keyhole limpet haemocyanin (KLH) using m-maleimido-benzoyl-N-hydroxysuccinimide ester. Other conventional carriers may be used such as human and bovine serum albumins, myoglobins, β -galactosidase, penicillinase and bacterial toxoids, as well as synthetic molecules such as multi-poly-DL-alanyl-poly-L-lysine and poly-L-lysine.

Rabbits are immunized with the peptide-KLH conjugate to raise polyclonal antibodies. After different periods of time, serum is collected from the rabbits. The IgG fraction of the serum is then purified using a protein A Sepharose column (Pharmacia LKB, Uppsala, Sweden) to obtain the antibody which is designated anti-KDR.PS23.

A sample of the expressed <u>KDR</u> protein is subjected to SDS-PAGE using a 7% acrylamide gel under standard conditions. The protein band is then transferred on to nitrocellulose paper for Western blot analysis and the anti-<u>KDR</u>.PS23 antibody is added at a dilution of 1:1,000 to allow the antibody to react with the protein present. A second antibody, goat anti-rabbit antibody to rabbit IgG, which binds to anti-<u>KDR</u>.PS23, is then added. The detection of proteins which react with the antibodies is performed by autoradiography of bands using an ECL system (Amersham, Chicago, IL). The results are depicted in Figure 12.

Figure 12 shows that a 190 kD protein is present in the cells transfected with the vector containing the <u>KDR</u> gene, but is absent in cells transfected with vector alone. The size of this protein is consistent with it being encoded by the <u>KDR</u> gene, in that the predicted amino acid sequence for the unglycosylated <u>KDR</u> protein is 156 kD, and that sequence contains 18 putative extracellular glycosylation sites

10

15

20

25

30

35

which would account for the balance of the size seen in the 190 kD band.

The expressed receptor is then used to identify the growth factor which interacts with the receptor. In order to test the hypothesis that the KDR protein is a receptor for VEGF, radioligand binding studies are performed. VEGF (provided by D. Gospodarowicz) is radiolabelled with 125I. Cells are transfected with either the vector pcDNAltkpASP alone (bars 1 and 2 of Figure 13) or with the vector containing the KDR gene (bars 3 and 4). Forty-eight hours later, the transfected cell samples are washed with PBS and then incubated for 90 minutes with serum-free media containing 50 pM [125]VEGF (specific activity equal to 4,000 cpm per fmol). Excess nonradioactive VEGF, 5 nM, is added to some samples (bars 2 and 4) to define specific binding sites. samples are washed with ice cold PBS, and the cells are transferred to gamma-counting tubes using a detergent, 0.1% lubrol.

The results of the radioligand binding studies are depicted in Figure 13. Figure 13 shows that CMT-3 cells transfected with vector containing the <u>KDR</u> gene contain specific binding sites for [125]VEGF (compare bars 3 and 4), while cells transfected with vector alone do not (compare bars 1 and 2).

Further evidence that the <u>KDR</u> gene encodes a receptor for VEGF is demonstrated by affinity cross-linking studies (Figure 14). Figure 14 depicts the results of affinity cross-linking of [125]VEGF to CMT-3 cells which express the <u>KDR</u> protein. CMT-3 cells are transfected with either the pcDNAltkpASP vector alone (lane 1 of Figure 14) or with the vector containing the <u>KDR</u> gene (lane 2). Forty-eight hours later, the cells are washed in PBS, and serum free

5

10

15

20

25

30

35

- 28 -

media containing 200 pM [125]VEGF is added. After 90 minutes at room temperature, an affinity cross-linker disuccinimidyl suberate (Pierce Biochemicals, Rockford, IL), 0.5mM, is added for 15 minutes. The samples are then subjected to SDS-PAGE autoradiography.

Three protein bands are seen in SDS-PAGE autoradiograms from samples of CMT-3 cells transfected with the KDR gene and cross-linked to [125]VEGF (lane 1). The size of band 1 (235 kD) is consistent with it being the 190 kD protein seen by Western blot analysis (Figure 12), because a 45 kD [125] VEGF dimer plus 190 kD would migrate in a manner identical to band 1. The origin of band 2 is not clear, but may represent an altered glycosylation form of band 1. Band 3 (22.5 kD) is most likely VEGF itself, and can be seen faintly in cells transfected with vector alone (lane 2).

The novel KDR gene of this invention is significant for several reasons. Studies of the cellular mechanisms by which receptors function in signal transduction have led in the past to a better understanding of how cells grow in both normal and diseased states. Receptor tyrosine kinases, in particular, have received a great deal of attention because of the observation that a number of RTK are the cellular counterparts for viral oncogenes, implying a direct correlation between changes in the expression of RTK and cancer. In view of this, it is likely that pharmaceuticals targeted at RTK will inhibit the changes in cell growth associated with cancer. additon, it is likely that monitoring the levels of expression of RTK will prove valuable in diagnosing the onset of cancer.

The described cDNA is isolated from a human endothelial cell library. Endothelial cells participate in angiogenesis, the formation of new blood

10

15

20

25

30

35

capillaries. Previous work directed towards identifying the growth factors which regulate angiogenesis have primarily focused upon FGF (13), although recent evidence has indicated that other growth factors may be involved as well (12,15,29). This evidence consists of the observations that: 1) FGF does not contain a signal sequence (24) and thus may not be secreted from cells in a manner consistent with the tight regulation of angiogenesis, and 2) endothelial cells synthesize FGF and yet are normally resting (15). Our discovery, then, of a novel growth factor receptor may ultimately clarify these inconsistencies and lead to a better understanding of endothelial cell function.

The teachings of this invention can be readily used by those skilled the art for the purpose of testing pharmaceuticals targeted at the <u>KDR</u> protein. Two examples of approaches which can be used for this purpose are now given.

First, the methods described in this invention for studying the interaction of VEGF with <u>KDR</u> protein can be used to test for pharmaceuticals which will antagonize that interaction. For these studies, cells expressing the <u>KDR</u> protein are incubated with [125]VEGF, together with a candidate pharmaceutical. Inhibition of radioligand binding is tested for; significant inhibition indicates the candidate is an antagonist. Permanent expression of the <u>KDR</u> protein in a cell type such as NIH3T3 cells would make these studies less laborious. This can be easily achieved by those skilled in the art using the described methods.

Second, using the teachings of this invention, those skilled in the art can study structural properties of the <u>KDR</u> protein involved in receptor function. This structural information can

then be used to more rationally design pharmaceuticals which inhibit that function. Mutagenesis of the <u>KDR</u> gene by well established protocols is one approach, crystallization of the receptor binding site is another.

Bibliography

- 1. Yarden Y., and A. Ullrich, <u>Ann. Rev.</u> <u>Biochem.</u>, <u>57</u>, 433-478 (1988).
- Bargmann, C., et al., <u>Nature</u>, <u>319</u>,
 226-230 (1986).
 - 3. Yarden, Y., et al., <u>EMBO J.</u>, <u>6</u>, 3341-3351 (1987).
 - 4. Coussens, L., et al., Nature, 320,
- 10 277-280 (1986).
 - 5. Slamon, D., et al., <u>Science</u>, <u>244</u>, 707-712 (1989).
 - 6. Ullrich, A. and Schlessinger, J., Cell, 61, 203-212 (1990).
- 7. Ruta, M., et al., <u>Oncogene</u>, <u>3</u>, 9-15 (1988).
 - 8. Strathmann, M., et al., <u>Proc. Natl. Acad.</u> Sci., 86, 8698-8702 (1989).
 - 9. Streuli, M., et al., Proc. Natl. Acad.
- 20 <u>Sci., 86</u>, 8698-8702 (1989).
 - 10. Wilkes, A.F., <u>Proc. Natl. Acad. Sci.</u>, <u>86</u>, 1603-1607 (1989).
 - 11. Folkman, J., and Klagsbrun, M., <u>Science</u>, <u>235</u>, 442-445 (1987).
- 25 12. Ishikawa, F., et al., <u>Nature</u>, <u>338</u>, 557-562 (1989).
 - 13. Baird, A., and Bohlen, P., in <u>Peptide</u>
 <u>Growth Factors and Their Receptors</u>, pages 369-418
 (Spron, M.B., and Roberts, A.B., eds. 1990).
- 30 14. Senger, D.R., et al., <u>Science</u>, <u>219</u>, 983-985 (1983).
 - 15. Gospodarowicz, D., et al., <u>Proc. Natl,</u>
 <u>Acad. Sci.</u>, <u>86</u>, 7311-7315 (1989).
 - 16. Leung, D.W., et al., Science, 246,
- 35 1306-1309 (1989).

- 32 -

	17. Maglione, D., et al., Proc. Natl. Acad.
	<u>Sci., 88, 9267-9271 (1991).</u>
	18. Gronwald, R., et al., <u>Proc. Natl. Acad.</u>
	<u>Sci., 85</u> , 3435-3439 (1988).
5	19. Shows, T., et al., Somat. Del. Mol. Gen.,
	<u>10</u> , 315-318 (1984).
	20. Rainer, G., et al., <u>Proc. Natl. Acad.</u>
	<u>Sci.,</u> <u>85</u> , 3435-3439 (1988).
	21. Lee, P. L., et al., <u>Science</u> , <u>245</u> , 57-60
10	(1989).
	22. Sanger, F., et al., Proc. Natl. Acad.
	Sci., 74, 5463-5467 (1977).
	23. Folkman, J., <u>Cancer Res.</u> , <u>46</u> , 467-473
	(1986).
15	24. Burgess, W. and Maciag, T., Ann. Rev.
	Biochem., 58, 575-606 (1989).
	25. Matthews, W., et al., Proc. Natl. Acad.
	<u>Sci., 88, 9026-9030 (1991).</u>
	26. Hannink, M. and Donoghue, D., Proc. Natl.
20	Acad. Sci., 82, 7894-7898 (1985).
	27. Sambrook, J., et al., Molecule Cloning:
	A Laboratory Manual, 2nd ed., Cold Spring Harbor
	Laboratory Press, Cold Spring Harbor, N.Y. (1989).
	28. Matsui, T., et al., <u>Science, 243,</u> 800-804
25	(1989).
	29. Conn, G., et al., Proc. Natl. Acad. Sci.,
	<u>87,</u> 2628-2632 (1990).

SEQUENCE LISTING

(1)	GENERAL	INFORMATION:
-----	---------	--------------

- 5 (i) APPLICANT: Terman, Bruce I Carrion, Miguel E
 - (ii) TITLE OF INVENTION: Identification of a Novel Human Growth Factor Receptor
- 10 (iii) NUMBER OF SEQUENCES: 14
 - (iv) CORRESPONDENCE ADDRESS:
- 15 (A) ADDRESSEE: Alan M. Gordon
 American Cyanamid Company
 - (B) STREET: 1937 West Main Street, P.O. Box 60
- 20 (C) CITY: Stamford
 - (D) STATE: Connecticut
 - (E) COUNTRY: USA

(F) ZIP: 06904

(v) COMPUTER READABLE FORM:

- 30 (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC AT
 - (C) OPERATING SYSTEM: MS-DOS

25

- 34 -

	(D) SOFTWARE: ASCII from IBM DW 4
	(vi) CURRENT APPLICATION DATA:
5	(A) APPLICATION NUMBER:
	(B) FILING DATE:
10	(C) CLASSIFICATION:
	(vii) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER: 07/657,236
15	(B) FILING DATE: February 22, 1991
	(viii) ATTORNEY/AGENT INFORMATION:
20	(A) NAME: Gordon, Alan M.
	(B) REGISTRATION NUMBER: 30,637
	(C) REFERENCE/DOCKET NUMBER: 31,298-01
25	(ix) TELECOMMUNICATION INFORMATION:
	(A) TELEPHONE: 203 321 2719
30	(B) TELEFAX: 203 321 2971
	(C) TELEX:
	(2) INFORMATION FOR SEQ ID NO: 1:
35	(i) SEQUENCE CHARACTERISTICS:

•		(A) LENGTH: 27 base pairs	
•	=	(B) TYPE: nucleic acid	
	5	(C) STRANDEDNESSS: single	
		(D) TOPOLOGY: linear	
	10	(ii) MOLECULE TYPE: DNA (genomic)	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	15	GTCGAC AAY CTG TTG GGR GCC TGC AAC 27	
		(2) INFORMATION FOR SEQ ID NO: 2:	
	20	(i) SEQUENCE CHARACTERISTICS:	
	20	(A) LENGTH: 35 base pairs	
		(B) TYPE: nucleic acid	
	25	(C) STRANDEDNESSS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA (genomic)	
	30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
		GAATTC AG CAC KTT NCT RGC YGC CAG GTC TGY GTC	35
	35		

- 36 -

(2)	IN	FORMATION	FOR	SEQ	ID	NO:	3:
	(i)	SEQUENCE	CHAI	RACTI	ERIS	STICS	3:

(A) LENGTH: 363 base pairs 5

(B) TYPE: nucleic acid

(C) STRANDEDNESSS: single

10

35

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: 15

GAA TTC TGC AAA TTT GGA AAC CTG TCC ACT TAC CTG 36 AGG ACG AAG AGA AAT GAA TTT GTC CCC TAC AAG ACC 72 20 AAA GGG GCA CGA TTC CGT CAA GGG AAA GAC TAC GTT 108 GGA GCA ATC CCT GTG GAT CTG AAA CGG CGC TTG GAC 144 ACG CAT CAC CAG TAG CCA GAG CTC AGC CAG CTC TGG 180 25 ATT TGT GGA GGA GAA GTC CCT CAG TGA TGT AGA AGA 216 AGA GGA AGC TCC TGA AGA TCT GTA TAA GGA CTT CCT 30 GAC CTT GGA GCA TCT CAT CTG TTA CAG TTT CCA AGT GGC TAA GGG CAT GGA GTT CTT GGC ATC GCG AAA GTG TAT CCA CAG AGA CCT GGC AGC CAG GAA CGT GCT GAA 360 WO 92/14748

- 37 -

TTC 363

5	(2) INFORMATION FOR SEQ ID NO: 4:
5	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 251 base pairs
10	(B) TYPE: nucleic acid
	(C) STRANDEDNESSS: single
15	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA (genomic)
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:
20	GTC GAC AAT CTG TTG GGG GCC TGC ACC ATC CCA ACA 36
	TCC TGC TGC TCT ACA ACT ATT TTT ATG ACC GGA GGA 72
25	GGA TCT ACT TGA TTC TAG AGT ATG CCC CCC GCG GAG 108
	CTC TAC AAG GAG CTG CAG AAG AGC TGC ACA TTT GAC 144
	GAG CAG CGA ACA GCC ACG ATC ATG GAG GAG TTG GCA 180
30	GAT GCT CTA ATG TAC TGC CGT GGG AAG AAG GTG ATT 216

CAC AGA GAC CTG GCA GCC AGC AAC GTG CTG AAT TC 251

- 38 -

	(i) SEQUENCE CHARACTERISTICS:	
_	(A) LENGTH: 510 base pairs	
5	(B) TYPE: nucleic acid	
	(C) STRANDEDNESSS: single	
10	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(ix) FEATURE:	
15	(A) NAME/KEY: PDGF Receptor DNA	
	(B) LOCATION: Internal sequence	
20	(x) PUBLICATION INFORMATION:	
	(A) AUTHORS: Gronwald, R., et al.	
25	(B) JOURNAL: Proc. Natl. Acad. Sci.	
	(C) VOLUME: 85	
	(D) PAGES: 3435-3439	
30	(E) DATE: 1988	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
35	AAC CTG TGG GGG CCT GCA CCA AAG GAG GAC CAT CTA	36

		TAT	CAT	CTA	TAT	CAT	CAC	TGA	GTA	CTG	CCG	CTA	CGG	72
		AGA	CCT	GGT	GGA	CTA	CCT	GCA	CCG	CAA	CAA	ACA	CAC	108
	5	CTT	CCT	GCA	GCA	CCA	CTC	CGA	CAA	GCG	CCG	ccc	GCC	144
		CAG	CGC	GGA	GCT	CTA	CAG	CAA	TGC	TCT	GCC	CGT	TGG	180
		GCT	CCC	CCT	GCC	CAG	CCA	TGT	GTC	CTT	GAC	CGG	GGG	216
	10	AGA	GCG	ACG	GTG	GCT	ACA	TGG	ACA	TGA	GCA	AGG	ACG	252
		AGT	CGG	TGG	ACT	ATG	TGC	CCA	TGC	TGG	ACA	TGA	AAG	288
	15	GAG	ACG	TCA	AAT	AGC	AGA	CAT	CGA	GTC	CTC	CAA	CTA	324
		CAT	GGC	CCC	TTA	CGA	TAA	CTA	CGT	TCC	CTC	TGC	CCC	360
	•	TGA	GAG	GAC	CTG	CCG	AGC	AAC	TTT	GAT	CAA	CGA	GTC	396
	20	TCC	AGT	GCT	AAG	CTA	CAT	GGA	CCT	CGT	GGG	CTT	CAG	432
		CTA	CCA	GGT	GGC	CAA	TGG	CAT	GGA	GTT	CTG	GCC	TCC	468
	25	AAG	AAC	TGC	GTC	CAC	AGA	GAC	CTG	GCG	GCT	AGG	AAC	504
		GTC	CTT											510
American	30	(2)	INF	ORMA	MOIT.	FOR	R SEQ	ID	NO:	6:				
			(i)	SEQU	ENCE	СНА	RACT	ERIS	TICS	:				
	35		(A	.) LE	NGTH	! :	255	base	pai	rs				

- (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 255 base pairs

WO 92/14748

PCT/US92/01300

144

- 40 -

(B) TYPE: nucleic acid (C) STRANDEDNESSS: single (D) TOPOLOGY: linear 5 (ii) MOLECULE TYPE: DNA (genomic) (ix) FEATURE: 10 (A) NAME/KEY: FGF Receptor DNA (B) LOCATION: Internal sequence 15 (x) PUBLICATION INFORMATION: (A) AUTHORS: Ruta, M., et al. (B) JOURNAL: Oncogene 20 (C) VOLUME: 3 (D) PAGES: 9-15 25 (E) DATE: 1988 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6: AAC CTG CTG GGG GCC TGC ACG CAG GAT GGT CCC TTG 36 30 72 TAT GTC ATC GTG GAG TAT GCC TCC AAG GGC AAC CTG CGG GAG TAC CTG CAG ACC CGG AGG CCC CCA GGG CTG 108

GAA TAC TGC TAT AAC CCC AGC CAC AAC CCA GAG GAG

	WO 92/14748	8										PC	T/US9	2/01300
								- 4	1 -					
		CAC	OTT C	mcc	THEC	AAG	GAC	CTG	GTG.	TCC	TGC	GCC	TAC	180
		CAG	CIC	100	100	AMG	GAC	010	010	100				
*- 		CAG	GAG	GCC	CGA	GGC	ልጥር	GAG	ጥልጥ	CTG	GCC	тсс	AAG	216
		CAG	GAG	GCC	CGA	900	7110	0.,0		010				
	5	AAG	mcc	አመአ	CAC	CCA	GAC	CTG	GCA	GCC	AGG	ል ልጥ	GTC	252
	5	AAG	TGC	MIM	CAC	CGA	GAC	CIG	GCA	GCC	noo		010	200
		ome												255
		CTG												255
		(2)	TNI	ZODW:	S COTA	N FO	D 677	1 TD	NO.	7.				
	10	(2)	TMI	ORUL	ATTO.	N PO	K DE	2 10	NO.	, ·				
	10		/41	CEO	TENO	E CH	יים גום ג	PPDT:	ロサイへの	2.				
			(1)	SEQ	JENC.	e Cm	nicac.	LEKT	3116	•				
					ewem	H:	122	s ha	ee n	ire				
			(2	1) 11	engi.		423	Da	se p	1119				
	15		/1	ית ני	• שכוע	n	uale	ia s	~1.4					
	15		(1	o, I.	IPE:	111	ucre.	ıc a	o Lu					
			,,	7) 61	א ב סיז	DEDN:	RSS •	e	inal	-				
			()	., s.	L EGELT.	DEDN.	. 000	Δ,	1119.11					
			/1	3) Tr	יוטפר	OGY:	1	inea:	r					
	20		,,	J, 1	J1 01		-		-					
	20	/ 4 4) M/	ነፒ ምረግ	TTE !	TYPE	• 1	ONA	(gene	om i c	,			
		1	,	٠٠٠٠٠	سبر		•		(90	,	,			
		(xi) SI	COUE	NCE :	DESC	RIPT:	ION:	SEO	ID I	NO: '	7:		
		/ ***	,	- - -					*			-		
	25		ATG	GAG	AGC	AAG	GTG	CTG	CTG	GCC	GTC	GCC	CTG	33
													Leu	
			1			- #	5					10		
			_				_							
		TGG	СТС	TGC	GTG	GAG	ACC	CGG	GCC	GCC	TCT	GTG	GGT	69
	30	Trp												
		**P		-7-	15					20				
		TTG	ር ር	λCT	Coun	ம்பெ	Cuhun	САТ	CTG	ccc	AGG	CTC	AGC	105
		Leu												
	35	Ten	25	Der	, u.i			30	~		3		35	
			بع					20						
en de la composition de la composition La composition de la														

- 42 -

	ATA	CAA	AAA	GAC	ATA	CTT	ACA	ATT	AAG	GCT	AAT	ACA	141
	Ile	Gln	Lys	Asp	Ile	Leu	Thr	Ile	Lys	Ala	Asn	Thr	
					40					45			
5	ACT	CTT	CAA	ATT	ACT	TGC	AGG	GGA	CAG	AGG	GAC	TTG	177
	Thr	Leu	Gln	Ile	Thr	Cys	Arg	Gly	Gln	Arg	Asp	Leu	
			50					55					
	GAC	TGG	CTT	TGG	ccc	AAT	AAT	CAG	AGT	GGC	AGT	GAG	213
10	Asp	Trp	Leu	Trp	Pro	Asn	Asn	Gln	Ser	Gly	Ser	Glu	
	60					65					70		
				GAG									249
	Gln	Arg	Val	Glu	Val	Thr	Glu	Cys	Ser	Asp	Gly	Leu	
15				75					80				
				ACA									285
	Phe	Cys	Lys	Thr	Leu	Thr	Ile	Pro	Lys	Val	Ile		
		85					90					95	
20													
				GGA									321
	Asn	Asp	Thr	Gly	Ala	Tyr	Lys	Cys	Phe		Arg	Glu	
					100					105			
												<i>6</i> 3.3	257
25				GCC									357
	Thr	Asp		Ala	Ser	Val	Ile		vaı	TYE	Val	GTII	
			110					115					
									mam	COM	3.00	CAC	393
				TCT									393
30		Tyr	Arg	Ser	Pro		lle	Ala	ser	vai		Asp	
	120					125					130		
						-	2	3.05	~1 ~	***	***	330	420
				GTC									429
	Gln	His	Gly	Val	Val	Tyr	TTE	rnr		ASN	тĀг	ASII	
35				135					140				

		AAA	ACT	GTG	GTG	ATT	CCA	TGT	CTC	GGG	TCC	ATT	TCA	465
		Lys	Thr	Val	Val	Ile	Pro	Cys	Leu	Gly	Ser	Ile	Ser	
			145					150					155	
•														
	5	AAT	CTC	AAC	GTG	TCA	CTT	TGT	GCA	AGA	TAC	CCA	GAA	501
		Asn	Leu	Asn	Val	Ser	Leu	Cys	Ala	Arg	Tyr	Pro	Glu	
						160					165			
		AAG	AGA	TTT	GTT	CCT	GAT	GGT	AAC	AGA	ATT	TCC	TGG	537
	10	Lys	Arg	Phe	Val	Pro	Asp	Gly	Asn	Arg	Ile	Ser	Trp	
				170					175					
		GAC	AGC	AAG	AAG	GGC	TTT	ACT	ATT	CCC	AGC	TAC	ATG	573
		Asp	Ser	Lys	Lys	Gly	Phe	Thr	Ile	Pro	Ser	Tyr	Met	
1. T.	15	180					185					190		
		ATC	AGC	TAT	GCT	GGC	ATG	GTC	TTC	TGT	GAA	GCA	AAA	609
		Ile	Ser	Tyr	Ala	Gly	Met	Val	Phe	Cys	Glu	Ala	Lys	
					195					200				
	20													
		ATT	AAT	GAT	GAA	AGT	TAC	CAG	TCT	ATT	ATG	TAC	ATA	645
		Ile	Asn	Asp	Glu	Ser	Tyr	Gln	Ser	Ile	Met	Tyr	Ile	
			205					210					215	
	25	GTT	GTC	GTT	GTA	GGG	TAT	AGG	ATT	TAT	GAT	GTG	GTT	681
		Val	Val	Val	Val	Gly	Tyr	Arg	Ile	Tyr	Asp	Val	Val	
						220					225			
		CTG	AGT	CCG	TCT	CAT	GGA	ATT	GAA	CTA	TCT	GTT	GGA	717
	30	Leu	Ser	Pro	Ser	His	Gly	Ile	Glu	Leu	Ser	Val	Gly	
				230					235					
		GAA	AAG	CTT	GTC	TTA	AAT	TGT	ACA	GCA	AGA	ACT	GAA	753
		Glu	Lys	Leu	Val	Leu	Asn	Cys	Thr	Ala	Arg	Thr	Glu	
	35	240					245					250		

- 44 -

	CTA AAT	r GTG GG	ATT GA	C TTC AA	C TGG GAZ	A TAC CCT	789
	Leu Ası	ı Val Gly	y Ile Asp	Phe Asi	n Trp Glu	1 Tyr Pro	
		25	5		260		
5						AAC CGA	825
		_	s Gln His		s Leu Val	. Asn Arg	
	265	5		270		275	
	63.6 OTT		3 03 C MOI		በ ሮአሮ አጥሪ	AAG AAA	861
10						Lys Lys	001
10	Asp Leo	г тар тиг	. GIN SEI 280	. Gry ber	. Gi u Met 285		
			200				
	TTT TTG	AGC ACC	TTA ACT	ATA GAT	GGT GTA	ACC CGG	897
						Thr Arg	
15		290		295	;		
	AGT GAC	CAA GGA	TTG TAC	ACC TG1	GCA GCA	TCC AGT	933
	Ser Asp	Gln Gly	Leu Tyr	Thr Cys	Ala Ala	Ser Ser	
	300		305			310	
20							
						GTC AGG	969
	Gly Leu			Asn Ser		Val Arg	
		315			320		
25	ረ ጥር ሮልጥ	CAN ANA	ԵՐ Մ ՄՄՄ	стт сст	TTT GGA	AGT GGC	1005
					Phe Gly		
	325			330	•	335	
	ATG GAA	TCT CTG	GTG GAA	GCC ACG	GTG GGG	GAG CGT	1041
30	Met Glu	Ser Leu	Val Glu	Ala Thr	Val Gly	Glu Arg	
			340		345		
						CCA CCC	1077
	Val Arg	Ile Pro	Ala Lys		Gly Tyr	Pro Pro	
35		350		355			

NR.							٠							
	WO 92/14748											DCT	-/I icoa	/0
												PCI	「/US92	/01300
								- 4!	5					
								•	•					
		CCA	GAA	ATA	AAA	TGG	TAT	AAA	AAT	GGA	ATA	CCC	CTT	1113
•		Pro	Glu	Ile	Lys	Trp	Tyr	Lys	Asn	Gly	Ile	Pro	Leu	
		360					365					370		
•														
	5	GAG	TCC	AAT	CAC	ACA	ATT	AAA	GCG	GGG	CAT	GTA	CTG	1149
												Val		
					375			-		380				
•														
		ACG	Δηνην	АTG	GAA	GTG	AGT	GAA	AGA	GAC	ACA	GGA	AAT	1185
	10											Gly		
			385					390	5			2	395	
		ጥአሮ	እ ርጥ	ር ሞር	አ ሞሮ	Cubtu	ACC	ልልጥ	ccc	Σηνην	тса	AAG	GAG	1221
												Lys	_	
	15	+1+		var		400		•••••			405	-,-		
	20													
		220	CAG	AGC	ሮልሞ	ርጥር	ርጥሮ	фСф	СТС	Curr	GTG	TAT	GTC	1257
4												Tyr		
		ניינים	<u> </u>	410		, 44			415			-2-		
	20													
		CCA	ccc	CAG	Δηνην	ርር ጥ	GAG	AAA	тст	CTA	ATC	TCT	CCT	1293
												Ser		
		420	110			,	425	_1 -				430		
		-120												
	25	GTG	GAT	TCC	TAC	CAG	TAC	GGC	ACC	ACT	CAA	ACG	CTG	1329
												Thr		
		141	11010		435		-3-	4		440				
					•									
		ACA	TGT	ACG	GTC	TAT	GCC	ATT	CCT	ccc	CCG	CAT	CAC	1365
	30											His		
e			445			-4-		450				- 	455	
			777											
•		ልሞር	CAC	ጥሮር	ጥልጥ	ጥሮቡ	CAG	ም ምር	GAG	GAA	GAG	TGC	GCC	1401
												Cys		
	35	TTE	TITE	F	+ <u>7</u> +	460	O-11	_cu	JLU		465	-1 -		
	J J					400					-05			

- 46 -

	AAC	GAG	CCC	AGC	CAA	GCT	GTC	TCA	GTG	ACA	AAC	CCA	1437
	Asn	Glu	Pro	Ser	Gln	Ala	Val	Ser	Val	Thr	Asn	Pro	
			470					475					
5	TAC	CCT	TGT	GAA	GAA	TGG	AGA	AGT	GTG	GAG	GAC	TTC	1473
	Tyr	Pro	Cys	Glu	Glu	Trp	Arg	Ser	Val	Glu	Asp	Phe	
	480					485					490		
													1509
10	Gln	Gly	Gly	Asn	Lys	Ile	Glu	Val	Asn	Lys	Asn	Gln	
				495					500				
												AGT	1545
	Phe	Ala	Leu	Ile	Glu	Gly		Asn	Lys	Thr	Val		
15		505					510					515	
											50 M		3 5 0 3
												TTG	1581
	Thr	Leu	Val	Ile		Ala	Ala	Asn	Val		AIA	Leu	
					520					525			
20					~~~	ama		333	CITIC	ccc	አሮአ	CCA	1617
													1617
	Tyr	Lys		GIU	ATS	vaı	ASI	ьув 535	vai	GIY	Arg	GTÅ	
			530					535					
25	63.6	3.00	cmc	3.III.C	mac.	marc.	CAC	GTG.	ACC	AGG	GGT	CCT	1653
25		Arg											
	540	Arg	Val	TTE	Der	545				5	550		
	540					545							
	CAA	Σሞሞ	ACT	TTG	CAA	CCT	GAC	ATG	CAG	CCC	ACT	GAG	1689
30		Ile											
	GIU			555					560				
	CAG	GAG	AGC	GTG	TCT	TTG	TGG	TGC	ACT	GCA	GAC	AGA	1725
		Glu											
35	·	565			_		570	-			_	575	

	TCT	ACG	TTT	GAG	AAC	CTC	ACA	TGG	TAC	AAG	CTT	GGC	1761
	Ser	Thr	Phe	Glu	Asn	Leu	Thr	Trp	Tyr	Lys	Leu	Gly	
					580					585			
					•								
5	CCA	CAG	CCT	CTG	CCA	ATC	CAT	GTG	GGA	GAG	TTG	CCC	1797
	Pro	Gln	Pro	Leu	Pro	Ile	His	Val	Gly	Glu	Leu	Pro	
			590					595					
	ACA	CCT	GTT	TGC	AAG	AAC	TTG	GAT	ACT	CTT	TGG	AAA	1833
10	Thr	Pro	Val	Cys	Lys	Asn	Leu	Asp	Thr	Leu	Trp	Lys	
	600					605					610		
	TTG	AAT	GCC	ACC	ATG	TTC	TCT	AAT	AGC	ACA	AAT	GAC	1869
	Leu	Asn	Ala	Thr	Met	Phe	Ser	Asn	Ser	Thr	Asn	Asp	
15				615					620				
	ATT	TTG	ATC	ATG	GAG	CTT	AAG	AAT	GCA	TCC	TTG	CAG	1905
	Ile	Leu	Ile	Met	Glu	Leu	Lys	Asn	Ala	Ser	Leu	Gln	
		625					630					635	
20													
	GAC	CAA	GGA	GAC	TAT	GTC	TGC	CTT	GCT	CAA	GAC	AGG	1941
	Asp	Gln	Gly	Asp	Tyr	Val	Cys	Leu	Ala	Gln	Asp	Arg	
					640					645			
25	AAG	ACC	AAG	AAA	AGA	CAT	TGC	GTG	GTC	AGG	CAG	CTC	1977
	Lys	Thr	Lys	Lys	Arg	His	Cys	Val	Val	Arg	Gln	Leu	
			650					655					
	ACA	GTC	CTA	GAG	CGT	GTG	GCA	CCC	ACG	ATC	ACA	GGA	2013
30	Thr	Val	Leu	Glu	Arg	Val	Ala	Pro	Thr	Ile	Thr	Gly	
	660					665					670		
	AAC	CTG	GAG	AAT	CAG	ACG	ACA	AGT	ATT	GGG	GAA	AGC	2049
	Asn	Leu	Glu	Asn	Gln	Thr	Thr	Ser	Ile	Gly	Glu	Ser	
35				675					680				

- 48 -

	ATC	GAA	GTC	TCA	TGC	ACG	GCA	TCT	GGG	AAT	ccc	CCT	2085
	Ile	Glu	Val	Ser	Cys	Thr	Ala	Ser	Gly	Așn	Pro	Pro	
		685			_		690					695	
								-					
5	CCA	CAG	ATC	ATG	TGG	TTT	AAA	GAT	AAT	GAG	ACC	CTT	2121
	Pro	Gln	Ile	Met	Trp	Phe	Lys	Asp	Asn	Glu	Thr	Leu	
					700					705			
	GTA	GAA	GAC	TCA	GGC	ATT	GTA	TTG	AAG	GAT	GGG	AAC	2157
10	Val	Glu	Asp	Ser	Gly	Ile	Val	Leu	Lys	Asp	Gly	Asn	
			710					715					
	CGG	AAC	CTC	ACT	ATC	CGC	AGA	GTG	AGG	AAG	GAG	GAC	2193
	Arg	Asn	Leu	Thr	Ile	Arg	Arg	Val	Arg	Lys	Glu	Asp	
15	720					725					730		
	GAA	GGC	CTC	TAC	ACC	TGC	CAG	GCA	TGC	AGT	GTT	CTT	2229
	Glu	Gly	Leu	Tyr	Thr	Cys	Gln	Ala	Cys	Ser	Val	Leu	
				735					740				
20													
	GGC	TGT	GCA	AAA	GTG	GAG	GCA	TTT	TTC	ATA	ATA	GAA	2265
	Gly	Cys	Ala	Lys	Val	Glu	Ala	Phe	Phe	Ile	Ile	Glu	
		745					750					755	
25	GGT	GCC	CAG	GAA	AAG	ACG	AAC	TTG	GAA	ATC	ATT	TTA	2301
	Gly	Ala	Gln	Glu	Lys	Thr	Asn	Leu	Glu	Ile	Ile	Ile	
					760					765			
	CTA	GTA	GGC	ACG	ACG	GTG	ATT	GCC	ATG	TTC	TTC	TGG	2337
30	Leu	Val	Gly	Thr	Thr	Val	Ile	Ala	Met	Phe	Phe	Trp	
			770					775					
		-											
	CTA	CTT	CTT	GTC	ATC	ATC	CTA	GGG	ACC	GTT	AAG	CGG	2373
	Leu	Leu	Leu	Val	Ile	Ile	Leu	Gly	Thr	Val	Lys	Arg	
35	780					785					790		

- 49 -

		GCC	AAT	GGA	GGG	GAA	CTG	AAG	ACA	GGC	TAC	TTG	TCC	2409
•		Ala	Asn	Gly	Gly	Glu	Leu	Lys	Thr	Gly	Tyr	Leu	Ser	
					795					800				
4														
	5	ATC	GTC	ATG	GAT	CCA	GAT	GAA	CTC	CCA	TTG	GAT	GAA	2445
		Ile	Val	Met	Asp	Pro	Asp	Glu	Leu	Pro	Leu	Asp	Glu	
t in the second			805					810					815	
		CAT	TGT	GAA	CGA	CTG	CCT	TAT	GAT	GCC	AGC	AAA	TGG	2481
	10	His	Cys	Glu	Arg	Leu	Pro	Tyr	Asp	Ala	Ser	Lys	Trp	
						820					825			
		GAA	TTC	CCC	AGA	GAC	CGG	CTG	AAC	CTA	GGT	AAG	CCT	2517
		Glu	Phe	Pro	Arg	Asp	Arg	Leu	Asn	Leu	Gly	Lys	Pro	
 	15			830					835					
		CTT	GGC	CGT	GGT	GCC	TTT	GGC	CAA	GAG	ATT	GAA	GCA	2553
		Leu	Gly	Arg	Gly	Ala	Phe	Gly	Gln	Glu	Ile	Glu	Ala	
		840	:				845					850		
	20													
		GAT	GCC	TTT	GGA	ATT	GAC	AAG	ACA	GCA	ACT	TGC	AGG	2589
		Asp	Ala	Phe	Gly	Ile	Asp	Lys	Thr	Ala	Thr	Cys	Arg	
					855					860				
	25	ACA	GTA	GCA	GTC	AAA	ATG	TTG	AAA	GAA	GGA	GCA	ACA	2625
		Thr	Val	Ala	Val	Lys	Met	Leu	Lys	Glu	Gly	Ala	Thr	
			865					870					875	
		CAC	AGT	GAG	CAT	CGA	GCT	CTC	ATG	TCT	GAA	CTC	AAG	2661
	30	His	Ser	Glu	His	Arg	Ala	Leu	Met	Ser		Leu	Lys	
						880					885			
•														
									CAT					2697
		Ile			His	Ile	Gly	His	His	Leu	Asn	Val	Val	
	35			890					895					

- 50 **-**

	AAC	CTT	CTA	GGT	GCC	TGT	ACC	AAG	CCA	GGA	GGG	CCA	2733
	Asn	Leu	Leu	Gly	Ala	Cys	Thr	Lys	Pro	Gly	Gly	Pro	
	900			_		905					910		
5	CTC	ATG	GTG	ATT	GTG	GAA	TTC	TGC	AAA	TTT	GGA	AAC	2769
	Leu	Met	Val	Ile	Val	Glu	Phe	Cys	Lys	Phe	Gly	Asn	
				915					920				
	CTG	TCC	ACT	TAC	CTG	AGG	AGC	AAG	AGA	AAT	GAA	TTT	2805
10	Leu	Ser	Thr	Tyr	Leu	Arg	Ser	Lys	Arg	Asn	Glu	Phe	
		925					930					935	
	GTC	CCC	TAC	AAG	ACC	AAA	GGG	GCA	CGA	TTC	CGT	CAA	2841
	Val	Pro	Tyr	Lys	Thr	Lys	Gly	Ala	Arg	Phe	Arg	Gln	
15					940					945			
												CTG	2877
	Gly	Lys	Asp	Tyr	Val	Gly	Ala		Pro	Val	Asp	Leu	
			950					955					
20													
												AGC	2913
	_	Arg	Arg	Leu	Asp		Ile	Thr	ser	Ser		ser	
	960					965					970		
									-14		maa	om a	2040
25		GCC											2949
	Ser	Ala	ser		GIĀ	Pne	vaı	GTU		цу	ser	пеп	
				975					980				
	3.00	63 W	CITI X	~ 33	~3.3	CAC	ሮአ አ	COTT	CCT	CAA	СУП	CTG	2985
20		Asp											2505
30	ser	_	val	GIU	GIU	GIU	990	AIG	PLO	GIU		995	
		985					990						
	ms m	AAG	~3. ~	和心心	CITIC	ልሮሮ	ብመር፤	GAG	ሮልጥ	ርጥር	ልሞሮ	ጥርጥ	3021
		AAG Lys											
25	TYT	гÃг	asp	LIIE	1000		Tie: IT	G LU	****	1005		-1 -2	
35					TOOO	•							

	TAC	AGC	TTC	CAA	GTG	GCT	AAG	GGC	ATG	GAG	TTC	TTG	3057
	Tyr	Ser	Phe	Gln	Val	Ala	Lys	Gly	Met	Glu	Phe	Leu	
			101	0				101	5				
5	GCA	TCG	CGA	AAG	TGT	ATC	CAC	AGG	GAC	CTG	GCG	GCA	3093
	Ala	Ser	Arg	Lys	Cys	Ile	His	Arg	Asp	Leu	Ala	Ala	
	102	0				102	5				103	0	
	CGA	AAT	ATC	CTC	TTA	TCG	GAG	AAG	AAC	GTG	GTT	AAA	3129
10	Arg	Asn	Ile	Leu	Leu	Ser	Glu	Lys	Asn	Val	Val	Lys	
				103	5				104	0			
	ATC	TGT	GAC	TTT	GGC	TTG	GCC	CGG	GAT	ATT	TAT	AAA	3165
	Ile	Cys	Asp	Phe	Gly	Leu	Ala	Arg	Asp	Ile	Tyr	Lys	
15		104	5				1050)				1055	
	GAT	CCA	GAT	TAT	GTC	AGA	AAA	GGA	GAT	GCT	CGC	CTC	3201
	qaƙ	Pro	Asp	Tyr	Val	Arg	Lys	Gly	Asp	Ala	Arg	Leu	
					1060)				1069	5		
20													
	CCT	TTG	AAA	TGG	ATG	GCC	CCA	GAA	ACA	ATT	TTT	GAC	3237
	Pro	Leu	-	_	Met	Ala	Pro			Ile	Phe	Asp	
			1070)				1075	5				
25												TTT	3273
	_	Val	Tyr	Thr	Ile			Asp	Val	Trp	Ser	Phe	
	1080)				1085	5				1090)	
20													3309
30	Gly	Val	Leu		-	Glu	Ile	Phe			Gly	Ala	
:				1095	•				1100	l			
													3345
25	ser	Pro	_	Pro	Gly		_		Asp	Glu	Glu		
35		1105					1110					1115	

- 52 -

	TGT AG	G CGA	TTG	AAA	GAA	GGA	ACT	AGA	ATG	AGG	GCC	3381
	Cys Ar											
	-4	-		112					112			
5	CCT GA	TAT T	ACT	ACA	CCA	GAA	ATG	TAC	CAG	ACC	ATG	3417
	Pro As											
	•	 113					113					
	CTG GA	C TGC	TGG	CAC	GGG	GAG	CCC	AGT	CAG	AGA	CCC	3453
10	Leu As											
	1140				114	5				1150	כ	
	ACG TT	r TCA	GAG	TTG	GTG	GAA	CAT	TTG	GGA	AAT	CTC	3489
	Thr Ph	e Ser	Glu	Leu	Val	Glu	His	Leu	Gly	Asn	Leu	
15			115	5				1160	ס			
	TTG CA											3525
	Leu Gl	n Ala	Asn	Ala	Gln	Gln	Asp	Gly	Lys	Asp	Tyr	
	11	65				1170)				1175	
20												
	ATT GT											3561
	Ile Va	l Leu	Pro	Ile	Ser	Glu	Thr	Leu			Glu	
				118	0				1185	5		
25	GAG GA											3597
	Glu As	p Ser	Gly	Leu	Ser	Leu			Ser	Pro	Va⊥	
		119	0				119	5				
	TCC TG											3633
30	Ser Cy	s Met	Glu	Glu	Glu	Glu	Val	Cys	Asp			
	1200				120	5				1210)	
										 -		0.000
	TTC CA											3669
	Phe Hi	s Tyr	Asp	Asn	Thr	Ala	Gly			GIn	Tyr	
35			121	5				1220)			

			٠.											
	WO 92/1474	8										P	CT/US9	2/01300
												_		01000
								_	. ~					
								- 5	3 -					
		CTG	CAG	AAC	AGT	AAG	CGA	AAG	AGC	CGG	CCI	' GTG	AGT	3705
		Leu	Gln	Asn	Ser	. Tàs	Arg	Lys	Ser	Arg	Pro	Val	Ser	
			122	5				123	0				1235	•
•	5	CIDA	333	3.03	mmm	C 3 3	CAM	» mo		mmx	~ 33	C2.2	003	2747
	5												CCA Pro	3741
		Val	БХО	T111	rne	124	_	776	FIO	neu	124		FLO	
							_							
		GAA	GTA	AAA	GTA	ATC	CCA	GAT	GAC	AAC	CAG	ACG	GAC	3777
	10	Glu	Val	Lys	Val	Ile	Pro	Asp	Asp	Asn	Gln	Thr	Asp	
				125	0				125	5				
													ACT	3813
	15	126	_	Met	Val	ьeu	126		GIU	GIU	Leu	Lys 127		
		120	J				120.	,				127	U	
		TTG	GAA	GAC	AGA	ACC	AAA	TTA	TCT	CCA	TCT	TTT	GGT	3849
		Leu	Glu	Asp	Arg	Thr	Lys	Leu	Ser	Pro	Ser	Phe	Gly	
					127	5				128)			
	20													
													GCA	3885
		GTĀ	Met 1289		Pro	ser	ьуs	ser 129	_	GTU	Ser	Val	A1a 1295	
			T20:	,				123	9				1295	
	25	TCT	GAA	GGC	TCA	AAC	CAG	ACA	AGC	GGC	TAC	CAG	TCC	3921
		Ser	Glu	Gly	Ser	Asn	Gln	Thr	Ser	Gly	Tyr	Gln	Ser	
						1300)				130	5		
	20												TAC	3957
	30	Gly	Tyr			Asp	Asp	Thr	_		Thr	Val	Tyr	
				1310	,				1315	,				
.		TCC	AGT	GAG	GAA	GCA	GAA	CTT	TTA	AAG	CTG	ATA	GAG	3993
												Ile		
france (see	35	1320					1325			-		1330		

- 54 -

	ATT GGA GTG CAA ACC GGT AGC ACA GCC CAG ATT CTC	
	Ile Gly Val Gln Thr Gly Ser Thr Ala Gln Ile Leu	
	1335 1340	
		4065
5	CAG CCT GAC ACG GGG ACC ACA CTG AGC TCT CCT	4065
	Gln Pro Asp Thr Gly Thr Thr Leu Ser Ser Pro Pro	
	1345 1350 1355	
	GTT TAAAAGGAAG CATCCACACC CCAACTCCCG GACATCACAT	4108
LO	Val	
LU	1356	
	GAGAGGTCTG CTCAGATTTT GAAGTGTTGT TCTTTCCACC	4148
15	AGCAGGAAGT AGCCGCATTT GATTTTCATT TCGACAACAG	4188
		4000
	AAAAAGGACC TCGGACTGCA GGGAGCCAGC TCTTCTAGGC	4228
	ттаталас 4236	
20	TTGTGACC 4236	
20	(2) INFORMATION FOR SEQ ID NO: 8:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 433 amino acids	
25		
	(A) LENGTH: 433 amino acids	
25 30	(A) LENGTH: 433 amino acids (B) TYPE: amino acid	
	(A) LENGTH: 433 amino acids(B) TYPE: amino acid(C) STRANDEDNESSS:	

	(A) NAME/KEY: <u>ckit</u> proto-oncogene receptor
5	(B) LOCATION: Amino acids 543-975
•	(x) PUBLICATION INFORMATION:
	(A) AUTHORS: Yarden, Y., et al.
10	(B) JOURNAL: EMBO J.
	(C) VOLUME: 6
15	(D) PAGES: 3341-3351
To	(E) DATE: 1987
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:
20	Leu Thr Tyr Lys Tyr Leu Gln Lys Pro Met Tyr Glu Val Gln
	543 545 550 555
	Man Issa No. No. Clu Clu Tie Jan Clu Jan Jan Man Well Man
	Trp Lys Val Val Glu Glu Ile Asn Gly Asn Asn Tyr Val Tyr 560 565 570
25	300 363 570
	Ile Asp Pro Thr Gln Leu Pro Tyr Asp His Lys Trp Glu Phe
	575 580
	Pro Arg Asn Arg Leu Ser Phe Gly Lys Thr Leu Gly Ala Gly
30	585 590 595
	Ala Phe Gly Lys Val Val Ala Glu Thr Ala Tyr Gly Leu Ile
	600 605 610
35	Lys Ser Asp Ala Ala Met Thr Val Ala Val Lys Met Leu Lys

- 56 -

			615					620					625	
	Pro	Ser	Ala	His 630	Leu	Thr	Glu	Àrg	Gl u 635	Ala	Leu	Met	Ser	Glu 640
5	Leu	Lys	Val	Leu	Ser 645	Tyr	Leu	Gly	Asn	His 650	Met	Asn	Ile	Val
10	Asn 655	Leu	Leu	Gly	Ala	Cys 660	Thr	Ile	Gly	Gly	Pro 665	Thr	Leu	Val
	Ile	Thr 670	Glu	Tyr	Cys	Cys	Tyr 675	Gly	Asp	Leu	Leu	Asn 680	Phe	Leu
15	Arg	Arg	Lys 685	Arg	Asp	Ser	Phe	Ile 690	Cys	Ser	Lys	Gln	Glu 695	Asp
	His	Ala	Glu	Ala 700	Ala	Leu	Tyr	Lys	Asn 705	Leu	Leu	His	Ser	Lys 710
20	Glu	Ser	Ser	Сув	Ser 715	Asp	ser	Thr	Asn	Glu 720	Tyr	Met	Asp	Met
25	Lys 725	Pro	Gly	Val	Ser	Tyr 730	Val	Val	Pro	Thr	Lys 735	Ala	Asp	Lys
	Arg	Arg 740	Ser	Val	Arg	Ile	Gly 745	Ser	Tyr	Ile	Glu	Arg 750	Asp	Val
30	Thr	Pro	Ala 755	Ile	Met	Glu	Asp	Asp 760	Glu	Leu	Ala	Leu	Asp 765	Leu
	Glu	Asp	Leu	Leu 770	Ser	Phe	Ser	Tyr	Gln 775	Val	Lys	Gly	Met	Ala 780

	Pne	Leu	Ala	ser	тув 785	ASN	cys	TTE	Hls	790	Asp	Leu	Ala	Ala
5	Arg 795	Asn	Ile	Leu	Leu	Thr 800	His	Gly	Arg	Ile	Thr 805	Lys	Ile	Cys
	Asp	Phe 810	Gly	Leu	Ala	Arg	Asp 815	Ile	Lys	Asn	Asp	Ser 820	Asn	Tyr
10	Val	Val	Lys 825	Gly	Asn	Ala	Arg	Leu 830	Pro	Val	Lys	Val	Met 835	Ala
15	Pro	Glu	Ser	Ile 840	Phe	Asn	Cys	Val	Tyr 845	Thr	Glu	Glu	Ser	A sp 850
	Val	Trp	Ser	Tyr	Gly 855	Ile	Phe	Leu	Trp	Glu 860	Leu	Phe	Ser	Leu
20	Gly 865	Ser	Ser	Pro	Tyr	Pro 870	Gly	Met	Pro	Val	Lys 875	Ser	Lys	Phe
	Tyr	Lys 880	Met	Ile	Lys	Glu	Gly 885	Phe	Arg	Met	Leu	Ser 890	Pro	Glu
25	His	Ala	Pro 895	Ala	Glu	Met	Tyr	As p	Ile	Met	Lys	Thr	Cys 905	Trp
30	Asp	Ala	Asp	Pro 910	Leu	Lys	Arg	Pro	Thr 915	Phe	Lys	Gln	Ile	Val 920
, u	Gln	Leu	Ile	Glu 92	-	Gln	Ile	ser	Glu 93	Ser	Thr	Asn	His	Ile
15	Tyr 935	Ser	Asn	Leu	Ala	Asn 940	Cys	Ser	Pro	Asn	Arg 945	Gln	Lys	Pro

PCT/US92/01300 WO 92/14748

- 58 -

	Val Val Asp His Ser Val Arg Ile Asn Ser Val Gly Ser Thr 950 955 960
5	Ala Ser Ser Ser Gln Pro Leu Leu Val His Asp Asp Val 965 970 975
	(2) INFORMATION FOR SEQ ID NO: 9:
3.0	(i) SEQUENCE CHARACTERISTICS:
10	(A) LENGTH: 437 amino acids
	(B) TYPE: amino acid
15	(C) STRANDEDNESSS:
	(D) TOPOLOGY: linear
20	(ii) MOLECULE TYPE: peptide
20	(ix) FEATURE:
	(A) NAME/KEY: CSF-1 receptor
25	(B) LOCATION: Amino acids 536-972
	(x) PUBLICATION INFORMATION:
30	(A) AUTHORS: Coussens, L., et al.
	(B) JOURNAL: Nature
	(C) VOLUME: 320
35	(D) PAGES: 277-280

(E) DATE: 1986

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
	Leu Leu Tyr Lys Tyr Lys Gln Lys Pro Lys Tyr Gln Val 536 540 545	Arg
10	Trp Lys Ile Ile Glu Ser Tyr Glu Gly Asn Ser Tyr Thr 550 555 560	Phe
15	Ile Asp Pro Thr Gln Leu Pro Tyr Asn Glu Lys Trp Glu 565 570 575	Phe
15	Pro Arg Asn Asn Leu Gln Phe Gly Lys Thr Leu Gly Ala 580 585 590	Gly
20	Ala Phe Gly Lys Val Val Glu Ala Thr Ala Phe Gly Leu 595 600	Gly 605
	Lys Glu Asp Ala Val Leu Lys Val Ala Val Lys Met Leu 610 615	Lys
2 5	Ser Thr Ala His Ala Asp Glu Lys Glu Ala Leu Met Ser	Glu
30	Leu Lys Ile Met Ser His Leu Gly Gln His Glu Asn Ile 635 640 645	Val
30	Asn Leu Leu Gly Ala Cys Thr His Gly Gly Pro Val Leu 650 655 660	Val
35	Ile Thr Glu Tyr Cys Cys Tyr Gly Asp Leu Leu Asn Phe 665 670	Le u 675

- 60 -

	Arg	Arg	Lys	Ala	Glu 680		Met	. Leu	Gly	685		Leu	Ser	Pro
5	Gly 690		Asp	Pro	Glu	Gly 695		Val	Asp	Tyr	Lys 700		Ile	His
	Leu	Glu 705	Lys	Lys	Tyr	Val	Arg 710	Arg	Asp	Ser	Gly	Phe 715	Ser	Ser
10	Gln	Gly	Val 720	Asp	Thr	Tyr	Val	Glu 725	Met	Arg	Pro	Val	Ser 730	Thr
	Ser	Ser	Asn	Asp 735	Ser	Phe	Ser	Glu	Gln 740	Asp	Leu	Asp	Lys	Glu 745
15	Asp	Gly	Arg	Pro	Le u 750	Glu	Leu	Arg	Asp	Leu 755	Leu	His	Phe	Ser
20	Ser 760	Gln	Val	Ala	Gln	Gly 765	Met	Ala	Phe	Leu	Ala 770	Ser	Lys	Asn
	Cys	Ile 775	His	Arg	Asp	Val	Ala 780	Ala	Arg	Asn	Val	Leu 785	Leu	Thr
25	Asn	Gly	His 790	Val	Ala	Lys	Ile	Gly 795	Asp	Phe	Gly	Leu	Ala 800	Arg
20	Asp	Ile	Met	Asn 805	Asp	Ser	Asn	Tyr	Ile 810	Val	Lys	Gly	Asn	A la 815
30	Arg	Leu	Pro	Val	Lys 820	Trp	Met	Ala	Pro	Glu 825	Ser	Ile	Phe	Asp
35	Cys 830	Val	Tyr	Thr		Gln 835	Ser	Asp	Val		Ser 840	Tyr	Gly	Ile

	Leu	Leu 845	Trp	Glu	Ile	Phe	Ser 850	Leu	Gly	Leu	Asn	Pro 855	Tyr	Pro
5	Gly	Ile	Leu 860	Val	Asn	Ser	Lys	Phe 865	Tyr	Lys	Leu	Val	Lys 870	Asp
	Gly	Tyr	Gln	Met 875	Ala	Gln	Pro	Ala	Phe 880	Ala	Pro	Lys	Asn	Ile 885
10	Tyr	Ser	Ile	Met	Gln 890	Ala	Cys	Trp	Ala	Leu 895	Glu	Pro	Thr	His
	Arg	Pro	Thr	Phe	Gln	Gln 905	Ile	Cys	Ser	Phe	Leu 910	Gln	Glu	Gln
15	Ala	Gln 915	Glu	Asp	Arg	Arg	Glu 920	Arg	Asp	Tyr	Thr	Asn 925	Leu	Pro
20	Ser	Ser	Ser 930	Arg	Ser	Gly	Gly	Ser 935	Gly	Ser	Ser	Ser	Ser 940	Glu
	Leu	Glu	Glu	Glu 945	Ser	Ser	Ser	Glu	His 950	Leu	Thr	Cys	Cys	Glu 955
25	Gln	Gly	Asp	Ile	Ala 960	Gln	Pro	Leu	Leu	Gln 965	Pro	Asn	Asn	Tyr
	Gln 970	Phe	Cys											
30	(2)			ATION										
35		•		jenci Engti										
J J		(2	-)	44 -	••	550	*****		~					

- 62 **-**

	(B) TYPE: amino acid
F	(C) STRANDEDNESSS:
5	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
10	(ix) FEATURE:
	(A) NAME/KEY: PDGF receptor
	(B) LOCATION: Amino acids 522-1087
15	(x) PUBLICATION INFORMATION:
	(A) AUTHORS: Gronwald, R., et al.
20	(B) JOURNAL: Proc. Natl. Acad. Sci.
	(C) VOLUME: 85
	(D) PAGES: 3435-3439
25	(E) DATE: 1988
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:
30	Met Leu Trp Gln Lys Lys Pro Arg Tyr Glu Ile Arg Trp Lys 522 525 530 535
	Val Ile Glu Ser Val Ser Ser Asp Gly His Glu Tyr Ile Tyr

540

35

	Va]	Asp	Pro	Val	Gln	Leu	Pro	Tyr	Asp	Ser	Thr	Trp	Glu	Leu
· · · · · · · · · · · · · · · · · · ·	550)				555					560			
	Dwo	\ 7~ ~	, Aan	~ 1 m	Tan	1707	T 011	~1··	- 3 mag	min on	T	~ 3		43
- ∳ *	Pro			GIN	Teu	Val		_	Arg	Thr	,Leu	GIY	ser	Gly
5		565	i				570					575		
	Ala	Phe	Gly	Gln	Val	Val	Glu	Ala	Thr	Ala	His	Glv	Leu	Ser
			580					585				4	590	
			500					303					590	
			_											
10	His	Ser	Gln	Ala	Thr	Met	Lys	Val	Ala	Val	Lys	Met	Leu	Lys
				595					600					605
	Ser	Thr	Ala	Ara	Ser	Ser	Glu	Lvs	Gln	Ser	T.e.11	Met	Ser	Gl n
				5	610			_1_		615				014
15					010					013				
75						_								
	Leu	Lys	Ile	Met	Ser	His	Leu	Gly	Pro	His	Leu	Asn	Val	Val
	620					625					630			
	Asn	Leu	Leu	Glv	Ala	Cvs	Thr	Lvs	Glv	Glv	Pro	Tle	ጥየታታ	Tle
20		635				-4-	640		1	1		645	-1-	
		000					040					043		
				_	_	_		_						
	Ile	Thr	Glu	Tyr	Сув	Arg	Tyr	Gly	Asp	Leu	Val	Asp	Tyr	Leu
			650					655					660	
25	His	Arg	Asn	Lvs	His	Thr	Phe	Leu	Gln	Ara	His	Ser	Asn	Tvs
		-		665					670					-1 - 675
				005					070					6/5
	•													
	His	Cys	Pro	Pro	Ser	Ala	Glu	Leu	Tyr	Ser	Asn	Ala	Leu	Pro
					680					685				
30														
	Val	Glv	Phe	Ser	Leu	Pro	Ser	His	Leu	Asn	Leu	Th∽	Glv	Glu
	690												1	
	090					695					700			
	Ser	Asp	Gly	Gly	Tyr	Met .	Asp :	Met	Ser	Lys .	Asp	Glu	Ser	Ile
35		705					710					715		

	Asj	ту1	720		Met	t Lei	1 Asj	p Met 72!		s Gly	/ Asp) Ile	2 Lys 730	Tyr
5	Ala	a Asp) Ile	e Glu 735		r Pro	Sei	r Tyı	r M et		Pro	Туг	: Asp	Asn 745
	Туг	· Val	. Pro	Ser	750		Glu	ı Arç	J Thr	Tyr 755	_	, Ala	Thr	Leu
10	Ile 760		Asp	Ser	Pro	765		s Ser	Tyr	Thr	Asp 770		. Val	Gly
15	Phe	Ser 775	_	· Gln	Val	Ala	Asn 780	_	Met	Asp	Phe	Leu 785		Ser
	Lys	Asn	Cys 790	Val	His	Arg	Asp	Leu 795		Ala	Arg	Asn	Val 800	Leu
20	Ile	Cys	Glu	Gly 805	Lys	Leu	Val	Lys	Ile 810	Cys	Asp	Phe	Gly	Phe 815
	Ala	Arg	Asp	Ile	Met 820	Arg	Asp	Ser	Asn	Tyr 825	Ile	Ser	Lys	G1y
25	Ser 830	Thr	Tyr	Leu	Pro	Leu 835	Lys	Trp	Met	Ala	Pro 840	Glu	Ser	Ile
30	Phe	Asn 845	Ser	Leu	Tyr	Thr	Thr 850	Leu	Ser	Asp	Val	Trp 855	Ser	Phe
	Gly	Ile	Leu 860	Leu	Trp	Glu	Ile	Phe 865	Thr	Leu	Gly	Gly	Thr 870	Pro
35	Tyr	Pro	Glu	Leu 875	Pro	Met	Asn	Asp	Gln 880	Phe	Tyr	Asn		Ile 885

7.0															
	WO 92/147	748]	PCT/L	J S92/ 0	1300
								- 6	5 -						
•		Lys	Arg	Gly	Tyr	Arg 890		Ala	Gln	Pro	Ala 895		Ala	Ser	Asp
	5	Glu 900	Ile	Tyr	Glu	Ile	Met 905		Lys	Cys	Trp	Glu 910	Glu	Lys	Phe
		Glu	Thr 915	Arg	Pro	Pro	Phe	Ser 920	Gln	Leu	Val	Leu	Leu 925	Leu	Glu
	10	Arg	Leu	Leu 930	Gly	Glu	Gly	Tyr	Lys 935	Lys	Lys	Tyr	Gln	Gln 940	Val
	15	Asp	Glu	Glu	Phe 945	Leu	Arg	Ser	Asp	His 950	Pro	Ala	Ile	Leu	Arg 955
		Ser	Gln	Ala	Arg	Phe 960	Pro	Gly	Ile	His	Ser 965	Leu	Arg	Ser	Pro
	20	Leu 970	Asp	Thr	Ser	Ser	Val 975	Leu	Tyr	Thr	Ala	Val 980	Gln	Pro	Asn
		Glu	Ser 985	qaA	Asn	Asp	Tyr	Ile 990	Ile	Pro	Leu	Pro	Asp 995	Pro	Lys
	25	Pro	Asp	Val 1000		Asp	Glu	Gly	Leu 1005		Glu	Gly	Ser	Pro 1010	
	30	Leu	Ala	Ser	Ser 1015		Leu	Asn	Glu	Val		Thr	Ser		Thr .025
		Ile	Ser	Cys	Asp	Ser 1030		Leu	Glu	Leu	Gln 1035	Glu	Glu	Pro	Gln
	35	Gln 1040		Glu	Pro	Glu	Ala 1045		Leu	Glu	Gln	Pro 1050		Asp	Ser

- 66 -

	Gly Cys Pro Gly Pro Leu Ala Glu Ala Glu Asp Ser Phe Leu 1055 1060 1065
5	Glu Gln Pro Gln Asp Ser Gly Cys Pro Gly Pro Leu Ala Glu 1070 1075 1080
	Ala Glu Asp Ser Phe Leu 1085
10	(2) INFORMATION FOR SEQ ID NO: 11:
	(i) SEQUENCE CHARACTERISTICS:
15	(A) LENGTH: 16 base pairs
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: single
20	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA (genomic)
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:
	TCGACGCGC ATG GAG 16
30	

5

10

15

20

We claim:

- 1. An isolated DNA sequence encoding the Kinase insert Domain containing Receptor.
- 2. The DNA sequence of Claim 1 wherein said sequence is a human gene.
- 3. An isolated DNA sequence comprising a DNA sequence capable of hybridizing with a DNA sequence encoding the amino acid sequence of Figure 7.
- 4. A method for the production of a growth factor receptor which comprises transforming a host cell with the DNA sequence of Claim 3 and culturing the host cell under conditions which result in expression of the gene by an expression vector.
 - 5. The method of Claim 4 wherein the host cell is a bacteria, virus, yeast, insect or mammalian cell line.
 - 6. The method of Claim 5 wherein the host cell is a COS-1 cell, NIH3T3 fibroblast or CMT-3 monkey kidney cell.
 - 7. The method of Claim 5 where the expression vector is pcDNAltkpASP expression vector.
 - 8. A lambda gtll phage harboring the clone BTIII081.8 (ATCC accession number 40,931) or the clone BTIII129.5 (ATCC Accession number 40,975).
 - 9. A plasmid pBlueScript KS which contains the clone BTIV169 (ATCC accession number 75200).
 - 10. An isolated growth factor receptor designated the Kinase insert Domain containing Receptor.
 - 11. The receptor of Claim 10 comprising the amino acid sequence of Figure 7.
 - 12. The receptor of Claim 10 encoded by an isolated DNA sequence comprising a DNA sequence capable

30

25

- 68 -

of hybridizing with a DNA sequence encoding the amino acid sequence of Figure 7.

- 13. A biologically active protein fragment which retains the receptor activity of the receptor of Claim 10.
- 14. An isolated DNA sequence encoding a biologically active protein fragment which retains the receptor activity of an isolated growth factor receptor designated the Kinase insert Domain containing Receptor.
- 15. An oligonucleotide primer consisting of an oligonucleotide primer having 21 bases and having a sequence depicted for Primer 1 in Figure 2.
- 16. An oligonucleotide primer consisting of an oligonucleotide primer having 29 bases and having a sequence depicted for Primer 2 in Figure 2.
- 17. The 363 base pair product having the sequence depicted in Figure 4, or a biological equivalent of said sequence.

20

5

10

15

25

FIG. 1

SUBSTITUTE SHEET

FIG. 2

GAATTC AG CAC GTT ICT AGC CGC CAG GTC TCT GTG
T G T G CAC AGA GAC CTG GCC GCT AGI AAC GTG CT C T C T GTCGAC AAC CTG TTG GGG GCC TGC AAC T A PRIMER 2 RECEPTOR PRIMER 1 PRIMER 2 28년 12년 13년 13년 PDGF CSF FGF

RECEPTOR

FIG. 3

SUBSTITUTE SHEET

```
-04505404-5
        C \rightarrow \neg C \rightarrow 
         D L D D A L L A
           DHHUUUDHHE &
  \Box
  \neg
ACCHCHCACAAA
 マスこくじょじ トこじしょ
040000044-0-6
  -44000004--
       ひし ししし しししし
       CAGGC+CGAAGA
     ADOHODOUHOAA
     A A H H H A A C C C A C
    \triangle
    A C I C I C I C I C I C I
```

FIG.4A

```
O L L O O L O V
ひょうりゅう エタ
A \vdash D \cup D \vdash A \vdash
U - - < U U - U
4 LODAADH
CAHCAHAC
A G A G C C A G
P C C C C C C
A \cap G \cap D \cap A
A A B C C B A A
```

FIG.4B

THE COMMENT			
	WO 92/14748		PCT/US92/01300
		5/28	
	AACCTGTGGGGCCTGCACAAAGGAGGACCATCTATATCATCTATATCATCACTGAGTACTGCCGC TGC TGC TGC TGC TGC TGC A————————————————————————————————————	4 190v 50° 6 70° 6 190v 166cTCCCCCTGCCCAG 160 6 C 1766ATCTGAAACGCCCAG 1 20° 290v 0 290v 66ACATGAAAGGAGACGT 66A 6 AGA 620°	v 390v 400v 410v 420V 430V 440v 450v 460v 460v CARCITIGATCATIGATTCTIGG ATTICTION ACTION ACTIO
	PJGF 360 bp PJGF	360 kp	PDGF 360 bp PDGF 360 bp
		SUESTITUTE SHEET	

	180v icctacca	¥		
.C	70° 170° 166161601606	ال		
80v GGAGTACCTGC A ACC G TTATGACCGGA	60° 160v CAAGGACCTG	CACGATCATG	CTG	: L
60v 70v 80v GCCTCCAAGGGCAACCTGCGGAGTACCTGC	40° 50° 60° 120v 130v 140v 150v 160v 1 CTATAACCCCACAACCAGAGGAGCAGCTCTCCTCCAAGGACCTGG	AGCGAACAGC 150^ 150^ 250.	CAGGAATGTC	GCCAGCAACGTG 230^
60v GCCTCCAAGG CTC A —CTCTA——	40^ 140v CCAGAGGAGC	TTTGACGAGC 140°	ACCTGGCAGC	AGACCTGGCAGC 220^ 2
50v Catcgtggagtat Cgt Cgt	130v CAGCCACAAC	GAGCTGCACA 130^ 220	ATACACCGAG AT CAC GAG	IGATTCACAGAG 210° 2
40V TGTATGTCAT	120v GCTATAACCC	AGCTGCAGAA 120^ 220√	CAAGAAGTGC AAGAAG	GGAAGAGGTG 200^ 2
30v 4 4GGATGGTCCCTTGTA CCT CCCAACATCCTG	30^ 110v CTGGAATACT	CTCTACAAGG 110° 210°	ATCTGGCCTC A	GTACTGCCGTGG
20v Stecacecae Stecac Stecaccato	20° 100v GGCCCCCAGGG	CCCGCGGAGG 100^ 200v	GCATGGAGT/	ATGCTCTAATGT/ 180^ 1
10v 20v 30v 40V 50v 50v 80v ACCTGCTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	10° 20° 30° 70° 40° 50° 50° 50° 70° 70° 90° 90° 100° 110° 120° 130° 140° 150° 150° 170° 180°AGACCCGGAGGCCCCCAGGGCTGGAATACTGCTATAACCCCAGCCAAACCAAGGAGCAGCTCCTCCTCCTCCAAGGACCTGGTGTCCTGCGCCTACCAAAGAAAAAAAA	TCTAGAGTATGCCCCCCGCGGGGCTCTACAAGGAGCTGCAGGAGCTGCACTTTGACGAGCGAG	GGAGGCCCGAGGCATGGAGTATCTGGCCTCCAAGAAGTGCATACACCGAGACCTGGCAGCCAGGAATGTCCTG GGA GGC G T GTA AAGAAG AT CAC GAGACTAGGACCTAG AA GT CT	GGAGTTGGCAGATGCTCTAATGTACTGCCGTGGGAAGAAGGTGATTCACAGAGACCTGGCAGCAGCCAGC
FGF 230 bp	FGFI	230 bp	1 9	230 bp

FIG.5B

SUBSTITUTE SHEET

FIG. 7A Pro Lys Val

WO 92/14748			PCT/US92	2/01300
		8/28		
CGG Arg>	C ATA r Ile>	* AGG Arg> CAA Gln>	270 * ATT Ile>	ACT Thr>
 50 * ACC Thr	AGC Ser	TGC CYS GAG GAG GIU	ACA Thr	GAA GAA
GAG G1u)0 * CTC Leu	ACT Thr 210 * AGT Ser	CTC Leu	CGG
	1C AGG Arg	ATT Ile Ile GGC	260 * ACA Thr	TAC Tyr
40 * TGC Cys	CCC Pro		AAG Lys 0	
40 * CTC TGC GTG Leu Cys Val	CTG	CTT Leu 200 * CAG GIn	TGT A Cys L	
TGG Trp	90 * GAT ASP	ACT Thr 2 * AAT ASD	o * TTC Phe	AAG TGC Lys Cys
CTG	CTT Leu	ACA Thr	250 * CTC T Leu P	TAC
30 * GCC Ala	TCT Ser	S S S S S S S S S S S S S S S S S S S	GGC G1у 300	
GTC	80 * GTT Val	GCT A Ala A 190 TGG C	GAT	GGA Gly
GCC	GT er	AG ys rr eu	240 * AGC Ser	ACT (Thr
יה ה	CCT A Pro S)	TGC Cys	Asp
CTG	0 * TTG Leu	ACA Thr 180 * GAC Asp	GAG TGC Glu Cys 290	* AAT Asn
GTG Val	70 * GTG GGT TTG Val Gly Leu 120	AAA GAC ATA CTT ACA Lys Asp ile Leu Thr 170 180 A CAG AGG GAC TTG GAC Gln Arg Asp Leu Asp		3GA 7
O * AAG Lys	GTG Val	ATA ATA Ile SAC	230 * GAG GTG ACT Glu Val Thr 280	ATC (
10 * AGC A Ser L	Ser	GAC ASP 170 *	3AG G3 31u V2 280	; ;TG / /a1]
3AG 7 31u (60 * GCC 7	AAA GAC ATA Lys Asp 11e 170 * CAG AGG GAC Gln Arg Asp) STG (7a1 (VAA (
10 * ATG GAG AGC AAG GTG CTG Met Glu Ser Lys Val Leu	GCC (Ala A	45	220 230 * AGG GTG GAG GTG ACT Arg Val Glu Val Thr 280	CCA AAA GTG ATC GGA AAT GAC TA Pro Lys Val Ile Gly Asn Asp
* 2	7 7 11		R R	7 P
				, -

SUBSTITUTE SHEET

ATT Ile>	430 * * AAC AAA ASn Lys>	TGT Cys>	540 * * CAC GAC ASP>	GTC Val>	620 630 640 A GAT GAA AGT TAC CAG TCT ATT ATG TAC ATA GTT Asp Glu Ser Tyr Gln Ser Ile Met Tyr Ile Val>
TTT Phe		CTT Leu	TGG		ATA
70 * CCÀ Pro	AAA Lys	480 * TCA Ser	TCC TGG Ser Trp	590 * GGC ATG Gly Met	0 * TAC
370 * AGA TCT CCA Arg Ser Pro	AAC Asn	GTG Val		GCT Ala	640 * ATG TV
AGA	420 * GAG Glu	* AAC Asn	5 AGA Arg		ATT
TAC Tyr	ACT		530 * AAC AGA ATT Asn Arg Ile	580 * AGC TAT Ser Tyr	TCT
360 * GAT ASP	ATT	470 * AAT CTC ASN Leu		ATC	630 * CAG
CAA G1n	410 * TAC TYE	TCA	520 * GAT GGT ASP Gly	570 580 * * TAC ATG ATC AGC TAT Tyr Met Ile Ser Tyr	TAC
GTT Val	GTG Val	460 * TCC ATT Ser ile	CCT	570 * TAC Tyr	AGT Ser
350 * TAT Tyr		460 * TCC A' Ser I	GTT Val	AGC Ser	620 A GAT GAA AGT Asp Glu Ser
350 * TAT GTC TAT Tyr Val Tyr	400 * CAT GGA His Gly	666 G1 y	510 * TTT Phe	CCC AGC Pro Ser	6 GAT Asp
		CTC	aga Arg	560 * ACT ATT Thr Ile	AAT
340 * C ATT 1 11e	CAA	450 * TGT CTC Cys Leu	AAG AGA Lys Arg	ACT Thr	0 * ATT Ile
3. GTC Val	GAC	CCA		TTT Phe	
GCC TCG Ala Ser	390 * AGT Ser	ATT Ile	CCA	6 6 6 6 6 6 6	600 TTC TGT GAA GCA AAA Phe Cys Glu Ala Lys
GCC	390 * TCT GTT AGT Ser Val Ser	440 ACT GTG GTG Thr Val Val	TAC	550 AGC AAG AAG GGC Ser Lys Lys Gly	GAA Glu
330 * GAC TTG Asp Leu	TCT Ser	GTG Val	490 * A AGA a Arg	AAG Lys	600 * TGT Cys
GAC	380 * GCT Ala	ACT	490 * GCA AGA 7 Ala Arg 7	AGC	TTC Phe
	* ***				7B

F16.78

	WO 92/14748				РСТ/	US92/01300
	700 * GGA ATT Gly Ile>	GAA CTA Glu Leu>	810 * CAT AAG His Lys>	860 * 10 AAA TTT & Lys Phe>	TAC ACC Tyr Thr>	970 * AGG GTC Arg Val>
•	CAT His	750 * ACT Thr	CAG G1n	8 AAG Lys	910 * GGA TTG Gly Leu	GTC Val
	0 * G TCT o Ser	A AGA a Arg	800 * G CAT S H1S	G ATG u Met) * TTT " Phe
	690 * AGT CCG Ser Pro	40 ACA GCA Thr Ala	9 TCG AAG Ser Lys	850 * AGT GAG Ser Glu	GAC CAA Asp Gln	960 * 3C ACA 3r Thr
	CTG AC Leu Sc		er er	GGG AC Gly Se	900 * AGT GA Ser AS	* AAC AGC Asn Ser
	680 * GTT (Val 1	* AAT TGT Asn Cys	790 * CCT T	TCT G	CGG A	950 * AAG A Lys A
	GTG Val	730 * C TTA .1 Leu	TAC Tyr	840 * CAG Gln	ACC Thr	AAG Lys
	r Gat r Asp	GT) 5 GAA 5 Glu	A ACC S Thr	890 * r GTA / Val	ACC Thr
	670 * TT TAT 1e Tyr	G CTT	780 * IC TGG IN Trp	'A AAA 'U Lys	t T GGT P G1y	940 * G ATC
	AGG AT Arq Il	720 * GAA AA	TC AP	830 * AC CT sp Le	ra ga le as	3G CT ly Le
	TAT A Tyr A	710 720 * * GAA CTA TCT GTT GGA GAA AAG Glu Leu Ser Val Gly Glu Lys	760 770 * AAT GTG GGG ATT GAC TTC AAC Asn Val Gly Ile Asp Phe Asn	820 * AAA CTT GTA AAC CGA GAC CTA Lys Leu Val Asn Arg Asp Leu	880 * ACC TTA ACT ATA GAT Thr Leu Thr Ile Asp	GT GC
	660 * 666 G1y	GTT (Val (7. ATT (Ile /	:0 AAC (Asn A	TTA A	930 * TCC A Ser S
	50 * GTC GTT GTA Val Val Val	710 * TCT Ser	666 61y	820 * GTA A	ACC Thr	GCA Ala
	C GTT	CTA Leu	760 * T GTG n Val	CTT CEU	870 * AGC	GCA] Ala
	650 * GTC Val	GAP G1v	AAT	AAA Lys	TTG Leu	920 930 940 * TGT GCA GCA TCC AGT GGG CTG ATG Cys Ala Ala Ser Ser Gly Leu Met
						22

SUBSTITUTE SHEET

		- .	980			990			10	1000		Ä	1010		T	1020		
	CAT H1S	GAA Glu	CAT GAA AAA CCT TTT His Glu Lys Pro Phe	CCT Pro	TTT Phe	GTT Val		GCT TTT Ala Phe		GGA AGT Gly Ser		ATG Met	GAA Glu	GGC ATG GAA TCT CTG GTG Gly Met Glu Ser Leu Val	CTG	GTG Val		GAA GCC Glu Ala>
	1030	30 *		1(1040		-	1050			1060	œ*		1(1070		• •	1080
	ACG	GTG	ACG GTG GGG GAG CGT Thr Val Gly Glu Arg	GAG Glu	CGT Arg		GTC AGA ATC CCT GCG AAG TAC Val Arg Ile Pro Ala Lys Tyr	ATC	CCT	GCG	AAG Lys	AAG TAC Lys Tyr		CTT GGT TAC Leu Gly Tyr	TAC Tyr		CCA CCC CCA Pro Pro Pro	CCC CCA Pro Pro>
			1090	06		1.	1100			1110			1120	20		H	1130	
	GAA Glu	ATA Ile	GAA ATA AAA TGG TAT Glu ile Lys Trp Tyr	TGG Trp	TAT Tyr	-	AAA AAT Lys Asn	GGA G1y	ATA Ile	ATA CCC Ile Pro	CTT GAG Leu Glu	GAG Glu	TCC	TCC AAT Ser Asn	CAC His	CAC ACA ATT His Thr Ile	ATT Ile	AAA Lys>
	77	1140			1150	50 *		-	1160			1170			1180	30	>	11/2
	GCG Ala	GCG GGG (Ala Gly F	CAT GTA His Val	GTA Val	CTG	ACG Thr	ATT Ile	ATG Met	GAA Glu	GAA GTG AGT GAA Glu Val Ser Glu	AGT	GAA Glu	AGA Arg	AGA GAC ACA GGA Arg Asp Thr Gly	ACA Thr	ACA GGA Thr Gly	AAT Asn	TAC
-	1190		₹~	1200			1210	10		Ä	1220			1230			1240	40 +
	ACT	GTC Val	GTC ATC CTT Val Ile Leu	CTT	ACC	AAT Asn	CCC	CCC ATT Propries	TCA	TCA AAG GAG AAG CAG AGC CAT GTG GTC TCT Ser Lys Glu Lys Gln Ser His Val Val Ser	GAG	AAG Lys	CAG Gln	AGC	CAT His	GTG Val	GTC Val	rcr Ser>
		1,	1250		T-7	1260			1270	70		Ĥ	1280		, ,	1290		
20	CTG	GTT	CTG GTT GTG TAT Leu Val Val Tyr	TAT Tyr	GTC	CCA	CCA CCC CAG ATT GGT GAG Pro Pro Gln Ile Gly Glu	CAG Gln	ATT Ile	GGT G1y	GAG Glu	AAA Lys	TCT	AAA TCT CTA ATC TCT Lys Ser Leu Ile Ser	ATC Ile	TCT		CCT GTG Pro Val>

WO 92/14748		PCI/US92/01300
1350 * T GCC ATT T Ala 11e>	TGC GCC AAC Cys Ala Asn> 0 * GAA TGG AGA Glu Trp Arg> 1510 AAT CAA TTT A ASN Gln Phe>	560 CAA GCG GCA Gln Ala Ala> 1620 AGA GGA GAG Arg Gly Glu>
1340 * ACG GTC Thr Val	GAA GAG Glu Glu [IGT GAA CYS Glu 500 * AAT AAA ASN LYS	1560 GTT ATC CAA Val 11e Gln 1610 GTC GGG AGA Val Gly Arg
ACA TGT Thr Cys	G TTG n Leu 1440 A TAC O Tyr T GAA e Glu	1550 AGT ACC CTT Ser Thr Leu 1600 A GTC AAC AAA Val Asn Lys
CAA ACG Gln Thr 1380	TAT TYE ACA Thr AAT AAT	40 GTA A Val S GCG G
13 ACC Thr 70 *	CAC TG His Tr TCA GT Ser Va 1480 A GGA GG	1530 15. * * AAA AAC AAA ACT Lys Asn Lys Thr 1590 TAC AAA TGT GAA Tyr Lys Cys Glu
1310 *AC CAG TAC ('yr Gln Tyr (1360 *	GAT CAC ATC His His Ile 1420 CAA GCT GTC Gln Ala Val 1470 GAC TTC CAG A ASP Phe Gln	320 1530 ATT GAA GGA AAA 11e Glu Gly Lys 1580 TCA GCT TTG TAC Ser Ala Leu Tyr
1300 GAT TCC TAC CAG TAC GGC ASP Ser Tyr Gln Tyr Gly 1360	CCT CCC CCG CAT CAC ATC Pro Pro Pro His His Ile 1410 GAG CCC AGC CAA GCT GTC Glu Pro Ser Gln Ala Val 1460 AGT GTG GAG GAC TTC CAG Ser Val Glu Asp Phe Gln	1520 1530 * GCT CTA ATT GAA GGA AAA Ala Leu Ile Glu Gly Lys 1570 1580 * * * AAT GTG TCA GCT TTG TAC ASN Val Ser Ala Leu Tyr
	*	. 7E

					13/2	8		_		
	GAC Asp>	TCT	Ser>	CAT H1s>	,		1890	AAG Lys>		GAC TAT GTC TGC CTT GCT CAA GAC AGG AAG Asp Tyr Val Cys Leu Ala Gln Asp Arg Lys>
1670	TTG CAA CCT Leu Gln Pro	AGA TCT	Ala Asp Arg St 1780	CTG CCA ATC CAT Leu Pro Ile His		ACT CTT TGG AAA TTG Thr Leu Trp Lys Leu	-	GAG CTT AAG	1940	GAC CAA GGA GAC TAT GTC TGC CTT GCT CAA GAC AGG AAG Asp Gln Gly Asp Tyr Val Cys Leu Ala Gln Asp Arg Lys:
Ä	CAA Gln	1710 TCT TTG TGG TGC ACT GCA GAC	Asp	CCA	1830 *	TGG Trp		GAG G1u	i	GAC
	TTG	1720 * GCA G	Ala	CTG	• •	CTT	1880	TCT AAT AGC ACA AAT GAC ATT TTG ATC ATG Ser Asn Ser Thr Asn Asp Ile Leu Ile Met		CAA Gln
09 *	ACT Thr	ACT] Thr 1770	CCT			7	ATC Ile	30 *	GCT
1660	ATT ACT :	TGC	Leu Trp Cys Thr 60 1770 *	AAG CTT GGC CCA CAG CCT Lys Leu Gly Pro Gln Pro	1820	GAT Asp		TTG Leu	1930 *	CTT Leu
	GAA Glu	1710 * TGG	Trp	CCA	16	AAC TTG Asn Leu	70 *	ATT 11e		TGC Cys
	CCT	TTG	r Leu 1760 *	CTT GGC Leu Gly		AAC Asn	1870	GAC Asp		GTC Val
1650	AGG GGT CCT GAA Arg Gly Pro Glu		Ser 1	CTT	10	ACA CCT GTT TGC AAG AAC TTG GAT Thr Pro Val Cys Lys Asn Leu Asp		AAT Asn	1920	TAT Tyr
	ACC AGG Thr Arg	1700 * C GTG	ser val 0 *		1810 *	TGC Cys		ACA Thr	• ,	GAC Asp
		1700 * GAG AGC GTG	ser 50 *	ACA TGG TAC Thr Trp Tyr		GTT Val	1860 *	AGC		GGA Gly
1640	CAC GTG His Val		1750 1750	TGG Trp		CCT	*	AAT Asn	1910	GAC CAA Asp Gln
•	CAC His	90 * CAG	5	ACA	1800	ACA Thr		TCT	- -i	GAC Asp
	TTC	1690 * GAG C	n 75	CTC	•	CCC	1850	TTC Phe		CAG Gln
30 *	AGG GTG ATC TCC TTC Arg Val Ile Ser Phe	1680 1690 * ATG CAG CCC ACT GAG CAG	1740 *	TTT GAG AAC CTC Phe Glu Asn Leu		GTG GGA GAG TTG CCC Val Gly Glu Leu Pro	18	AAT GCC ACC ATG TTC Asn Ala Thr Met Phe	0 *	AAT GCA TCC TTG CAG Asn Ala Ser Leu Gln
1630	ATC Ile	222	OTA .	GAG Glu	1790	GAG Glu		ACC Thr	1900	TCC TTG Ser Leu
	GTG Val	1680 * CAG	1179	TTT Phe	H	GGA G1y	0 *	GCC		GCA Ala
	AGG Arg	ATG	1730	ACG Thr		GTG Val	1840	AAT Asn	*	AAT
			←							با

_ ^	^	. ^ '	14/28	^	^
GCA Ala>	50 * ATC 11e	AAA Lys>	2160 % * : CGG : Arg>	CAG Gln>	GGT G1y>
GTG Val	2050 * AGC A' Ser I	TTI	AAC	2210 * C TGC r Cys	GAA Glu
)0 * CGT Arg	GAA G1u	2100 * TGG Trp	2160 2 4 CGG AAC CGG Gly Asn Arg>	22 ACC Thr	0 * ATA Ile
1990 * GAG C	2050 * GGG GAA AGC ATC Gly Glu Ser Ile>	2100 * ATC ATG TGG Ile Met Trp		2210 * TAC ACC TGC CAG TYE THE CYS GID:	2260 * ATA AY
CTA	2040 * ATT 11e	ATC Ile	2150 * AAG GAT Lys Asp		rrc ?
1970 1980 1990 * * * * * * * CTC ACA GTC CTA GAG CGT GTG GCA GTC ATA GAG CGT GTG GCA GTC CTA GAG CGT GTG GTA GAI Val Val Val Val Val ATA Val ATA	2040 * AGT ATT Ser Ile		TTG	2200 AGG AAG GAC GAA GGC CTC Arg Lys Glu Asp Glu Gly Leu	10 2240 2250 2260 * * * * * * * * * * * * * * * * * * *
1980 * ACA	ACA	2090 * CCA CAG Pro Gln		2190 220 * AGG AAG GAG GAC GAA GGC Arg Lys Glu Asp Glu Gly	2250 * GCA 1 Ala E
TC CTC Leu			21.40 * ATT G	sac (2% SAG (
cAG o	2030 * CAG ACC 31n Th	ccc (214 GGC ATT Gly Ile	2190 * GAG (rrg (
70 * AGG (2020 2030 * * * AAC CTG GAG AAT CAG ACG ASn Leu Glu Asn Gln Thr	2080 * TCT GGG AAT CCC CCT Ser Gly Asn Pro Pro	2140 * TCA GGC ATT GTA Ser Gly Ile Val	21 NAG (10 * AA (
1970 * STC AG	3AG 1	3GG 1		. 1991 1991	2240 * CA AA;
rrg (2020 * CTG GAG Leu Glu	2070 * GCA TCT GGG Ala Ser Gly	2130 * GAA GAC Glu Asp		GT G
), ys (AAC (Asn I	2070 * ; GCA 1	GTA G Val G	2180 * AGA GTG Arg Val	6c 1
1960 ************************************		20 CG 0			(*)
1950 ACC AAG AAA AGA CAT TGC Thr Lys Lys Arg HIS Cys	00 * CCC ACG ATC ACA GGA Pro Thr Ile Thr Gly	2060 * GAA GTC TCA TGC ACG Glu Val Ser Cys Thr	2110 2120 ** GAT AAT GAG ACC CTT Asp Asn Glu Thr Leu	<u>ا</u> و	2220 22 * GCA TGC AGT GTT CTT Ala Cys Ser Val Leu
AA A ys a	20 TC A 1e T	cA T	AG A 1u T	2170 * CT A: hr I:	ST G
50 * AG A	CG A hr I	2060 * rc rc; al Se;	ጽ ልፐ Sn G	ic Ac	% × % × % × % × % × % × % × % × % × % ×
1950 * :C AAG ir Lys	C A(AA G.	2110 +* AT AA1	្សូ ដ	2220 * A TGC a Cys
AC	2000 * CC(<i>8</i>	GP As	* R S	
					92

GCA Ala

	WO 92/14748			
	WO 92/14/48			PCT/US92/01300
			16/28	
	CTC Leu>	2700 * AAC Asn>	TTC Phe> GTC Val>	60 4 GCA Ala> TCA Ser>
*	GCT CTC Ala Leu>	2 GTC Val	2750 * G GAA 1 Glu A TTT u Phe	2860 4 GGA GG Gly A Ser Ser
	2640 * ' CGA	GTG	G * O	2860 TAC GTT GGA GCA Tyr Val Gly Ala> 2910 AGC CAG AGC TCA Ser Gln Ser Ser>
	CAT His	2690 * :C AAT		TAC TYL Ser
	r GAG	26 CAT CTC His Leu	2740 ATG GTG Met Val AAG AGA Lys Arg	2850 GGG AAA GAC Gly Lys Asp 2900 ATC ACC AGT Ile Thr Ser
	2630 * CAC AGT His Ser			16 AAA 2900 C ACC ACC
	20 ACA CAC Thr His	2680 * GGT CAC Gly His	CCA CTC Pro Leu 2790 AGG AGC Arg Ser	340 2850 CAA GGG AAA GAC Gln Gly Lys Asp 2900 AGC ATC ACC AGT Ser 11e Thr Ser
		ATT G		10
	2620 * GGA GCA Gly Ala	CAT A	CTT CTA GGT GCC TGT ACC AAG CCA GGA GGG Leu Leu Gly Ala Cys Thr Lys Pro Gly Gly 2760 2770 2780 TGC AAA TTT GGA AAC CTG TCC ACT TAC CTG Cys Lys Phe Gly Asn Leu Ser Thr Tyr Leu	10
	4 2		CTT CTA GGT GCC TGT ACC AAG CCA GGA Leu Leu Gly Ala Cys Thr Lys Pro Gly 2760 2770 2780 TGC AAA TTT GGA AAC CTG TCC ACT TAC Cys Lys Phe Gly Asn Leu Ser Thr Tyr	CGA T
	2600 2610 * GTA GCA GTC AAA ATG TTG AAA GAA Val Ala Val Lys Met Leu Lys Glu	2650 2660 2670 * * * * ATG TCT GAA CTC AAG ATC CTC ATT Met Ser Glu Leu Lys Ile Leu Ile	2710 2720 CTT CTA GGT GCC TGT ACC AAG CCA Leu Leu Gly Ala Cys Thr Lys Pro 2760 2770 2770 TGC AAA TTT GGA AAC CTG TCC ACT Cys Lys Phe Gly Asn Leu Ser Thr	2830 GCA CG Ala Ar CGG CG Arg Ar
	2610 * TTG Leu	ATC Ile	GT ACC ys Thr 2770 AC CTG sn Leu	GGG G1y 2880 * AAA LLys
	ATG Met	2660 * rc AAG eu Lys	TGT TCYS 27 A AAC	AAA Leu
	C AAA L Lys	2 A CTC u Let	2710 GT GCC Ily Ala TT GGP	2820 * G ACC S Thr S GAT
	2600 * A GTC a Val	T GA	2 A GG A A GG A A GG A A TTT S Ph	T Lys
1	A GC 1 A1	2650 * ATG TC 4et Se	T CTA tu Leu 2760 ti AAA s Lys	o Ty
	GT	2 AT	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2810 * CCC Pro Pro
				_
4.4				<u>C</u>

A	.	•	•		
2970 * GAA Glu>	TAC Tyr>	CAC H1s>	10 * ATC Ile>	AAA Lys>	3240 * AGA Arg>
GAG Glu		ATC	3130 * AAA ATC Lys Ile>	AGA Arg	3240 * GAC AGA ASP Arg>
GAA	30 ATC Ile	0 * TGT Cys		3180 * GTC Val	TTT
2960 * 'A GAA 1 Glu	CTC	3070 * AAG T	GTG	3 TAT Tyr	30 * ATT
29 GTA Val	0 * CAT His	CGA	3120 * AAC Asn	GAT Asp	3240 * * ACA ATT TTT GAC AGA The Ile Phe Asp Arg
GAT	3010 * GAG CZ	TCG	3 AAG Lys	31.70 * T CCA P Pro	GAA 7
oo * AGT Ser	TTG	3060 * GCA Ala	3120 * GAG AAG AAC GTG GTT Glu Lys Asn Val Val	3170 3180 AAA GAT CCA GAT TAT GTC AGA AAA Lys Asp Pro Asp Tyr Val Arg Lys	3220 * GCC CCA GAA Ala Pro Glu
2950 * CTC AC Leu Sc	ACC	TTG Leu	10 * TCG Ser	AAA Lys	3220 * GCC CC
TCC	3000 * CTG Leu	TTC	3110 * TTA TCG Leu Ser	50 * TAT Tyr	ATG Met
2940 2950 2960 2970 * * * * * * * * * * * * * * * * * * *	2990 3000 3010 3020 ** TAT AAG GAC TTC CTG ACC TTG GAG CAT CTC ATC TGT Tyr Lys Asp Phe Leu Thr Leu Glu His Leu Ile Cys	0 3050 3060 3070 * * * * * * * * * * * * * * * * * * *		150 * GCC CGG GAT ATT TAT Ala Arg Asp Ile Tyr	3210 * CCT TTG AAA TGG ATG GCC CCA GAA Pro Leu Lys Trp Met Ala Pro Glu
2940 * GAG	GAC	30 ATG Met	3100 * CGA AAT ATC CTC Arg Asn ile Leu	GAT	3210 * AAA Lys
GAG	2990 * T AAG r Lys	66C G1y	3100 * AAT A' ASN I.	CGG	TrG Leu
GTG	29 TAT Tyr	O * AAG Lys	CGA	3150 * GCC	CCT TTG Pro Leu
2930 * A TTT y Phe	CTG	304 GCT	GCA	3 TTG Leu	3200 * C CTC g Leu
* 2930 * AGC TCT GGA TTT Ser Ser Gly Phe	2980 * CCT GAA GAT CTG Pro Glu Asp Leu	GTG	3090 * GCG Ala	66c 61y	3200 ¢ CGC CTC Arg Leu
TCT	2980 * GAA G	CAA G1n	CTG Leu	31.40 * C TTT p Phe	GCT
2920 2930 * * * * * * * * * * * * * * * * * * *	2980 * GCT CCT GAA GAT CTG Ala Pro Glu Asp Leu	3030 30 * AGC TTC CAA GTG GCT Ser Phe Gln Val Ala	80 * AGG GAC CTG GCG GCA Arg Asp Leu Ala Ala	3140 * TGT GAC TTT GGC TTG Cys Asp Phe Gly Leu	3190 3200 * GGA GAT GCT CGC CTC Gly Asp Ala Arg Leu
2920 * GCC AC Ala Se	GCT	AGC	3080 * AGG Arg	TGT Cys	3190 * GGA G
			30		7

ATG Met

AGC

TTG

GAG G1u

TCA

CCG Pro

CTT Leu

GTT

TAC Tyr

GAC Asp

AAA Lys

GGC G1y

GAT Asp

3290 * G GAA ATA P Glu ile>	TTT TGT Phe Cys>	3400 * CCA GAA Pro Glu>	3450 km m m m m m m m m m m m m m m m m m m	3510 * CAG CAG Gln Gln>	09 09
3290 * CTG TGG GAA Leu Trp Glu	3340 * GAA GAA Glu Glu	ACT ACA Thr Thr	3450 * CAG AGA Gln Arg	GCT	3560
3280 * GTT TTG C Val Leu L		3390 * TAT TYE	AGT Ser	3500 * A GCT AAT n Ala Asn	3550 *
GGT G	3330 * AAG Lys	3 CCT GAT Pro Asp	3440 * GGG GAG CCC AGT Gly Glu Pro Ser	3490 CTC TTG CAA Leu Leu Gln	n
3270 * TGG TCT TTT Trp Ser Phe	i c	3370 3380 * ACT AGA ATG AGG GCC Thr Arg Met Arg Ala	3430 * TGG CAC GGG Trp H1s Gly	34 GGA AAT CTC Gly Asn Leu	3540
GTC Val	3320 * CCA TAT CC; Pro Tyr Pro	3370 ACT AGA A: Thr Arg M	GAC TGC TG ASP Cys T	3480 * CAT TTG G(His Leu G	0 *
32 AGT Ser	10 * TCT Ser	GGA G1y	3420 * CTG Leu	GAA G1u	3530
50 * ATC CA Ile G1		3360 * AAA GA Lys G1	ACC AT Thr Me	3470 * TTG GTG Leu Val	50 *
3250 * GTG TAC ACA ATC CAG Val Tyr Thr Ile Gln		50 * AGG CGA TTG AAA GAA Arg Arg Leu Lys Glu	3410 * ATG TAC CAG ACC ATG Met Tyr Gln Thr Met	3460 3470 * * TTT TCA GAG TTG GTG Phe Ser Glu Leu Val	3520
GTG Val	3300 * TTT TCC Phe Ser	3350 * AGG Arg	ATG Met	3460 * TTT TCA Phe Ser	

F16.7K

9754 N

wo	92/14748				PCT/US92/01300
	GAG GAA Glu Glu>	3670 * TAT CTG Tyr Leu>	GAT ATC Asp Ile>	3780 * :AC AGT & :Sp Ser>**	AAA TTA Lys Leu> GCA TCT Ala Ser>
	3610 * GAG GAG G Glu Glu G	AGT CAG 1 Ser Gln 1		70 * CAG ACG GAC Gln Thr Asp 3830	AGA ACC AAA Arg Thr Lys 3880 TCT GTG GCA Ser Val Ala
		3660 * GGA ATC Gly Ile	ACA Thr	3770 * GAC AAC CAG ASP ASN G1N 3820	GAA GAC A Glu Asp A AGG GAG T Arg Glu S
	3600 , r rcc l ser	GCA Ala 3.	AGT GTA Ser Val	3760 * CCA GAT Pro Asp	ACT TTG Thr Leu 3870 AAA AGC Lys Ser
		GAC AA Asp As	CAG AAC AGT AAG CGA AAG AGC CGG CCT GTG Gln Asn Ser Lys Arg Lys Ser Arg Pro Val	GTA ATC Val Ile	GAG CTG AAA Glu Leu Lys 3860 * GTG CCC AGC Val Pro Ser
	UL	3640 * C CAT TAT e His Tyr 0	A AGC CGC S Ser Arc	3750 A GTA AAA u Val Lys 3800	
	3580 c rcr cr u ser Le	3630 * TGT GAC CCC AAA TTC CAT Cys Asp Pro Lys Phe His 3680 3690	G CGA AAO S Arg Ly	3730 3740 * CCG TTA GAA GAA CCA GAA GTA Pro Leu Glu Glu Pro Glu Val 3790 3800	GGT ATG GTT CTT GCC TCA GAA Gly Met Val Leu Ala Ser Glu 3840 TCT CCA TCT TTT GGT GGA ATG Ser Pro Ser Phe Gly Gly Met
	0 * T GGA CT T Gly Le	3630 * T GAC CCC S ASP Pro 3680	c AGT AA	A GAA GAA u Glu Gl	GGT ATG GTT CTT Gly Met Val Leu 3840 TCT CCA TCT TTT Ser Pro Ser Phe
	3570 * GAT TCT ASP Ser	3620 * GTA TG Val Cy	CAG AA Gln As	3730 * CCG TT Pro Le	GGT ATG Gly Met 3840 TCT CCA Ser Pro
					1

			. •	20/28			
2 +	GAC ACA Asp Thr>		ATT Ile>	4020 *	GGG ACC ACA Gly Thr Thr>		
3940	GAC		GAG Glu	•	ACC Thr		
	GGA TAT CAC TCC GAT GAC Gly Tyr His Ser Asp Asp	3990 *	CTG ATA GAG ATT Leu Ile Glu Ile		GGG G1y		
	TCC	(-)	CTG Leu	4040	ACG Thr		
3930	CAC		AAG	4(GAC A sp		
ריז	TAT Ty <i>r</i>	3980	TTA		CCT GAC ACG (Pro Asp Thr C		
	GGA Gly	39	CTT	∞ *	CAG Gln		
3920 *	TCC		GAA Glu	4030	CTC Leu		
ည်	CAG Gln	0 *	GCA Ala		ATT Ile		
	TAC	3970	GAA Glu		CAG Gln		
○ *	GGC TAC CAG TCC Gly Tyr Gln Ser		GAG GAA GCA GAA CTT TTA Glu Glu Ala Glu Leu Leu	4020	GCC Ala		
3910	ACA AGC (Thr Ser (TCC AGT (Ser Ser (7	AGC ACA GCC CAG ATT CTC CAG Ser Thr Ala Gln Ile Leu Gln	4070	TAA * * *
	ACA Thr	3960	TCC		AGC Ser	40	GTT Val
		t.)		4010	CAA ACC GGT Gln Thr Gly		CCT
3900	GGC TCA AAC CAG Gly Ser Asn Gln		GTG Val	4(ACC Thr	05 *	TCT CCT Ser Pro
רי	TCA	3950	ACC Thr		CAA Gln	4060	TCT Ser
	GGC G1y	39	ACC Thr	00 *	GGA GTG (Gly Val (CTG AGC 1 Leu Ser 8
3830 *	GAA G1u		GAC ACC ACC GTG TAC ASP Thr Thr Val Tyr	4000	GGA G1y		CTG

F | G. 7M

21/28

SUBSTITUTE SHEET

22/28

EDRTKLSPSFGGMVPSKSRESVASEGSNQTSGYQSGYHSDDTDTTVYSSEEA

KDR 1273

PDGF1039

QQAEPEAQLEQPQDSGCPGPLAEA*DSFLEQPQD**CPGPLAEAEDSFL

```
ARLPLKWMAPETIFDRVYTIQSDVWSFGVLLWEIFSLGASPYPGVKIDEEFC
                                                                                                                 RRLKEGTRMRAPDYTTPEMYQTMLDCWHGEPSQRPTFSELVEHLGNLLQANA
                                                                                                                                                                                                                                                                                                                RERDYTNLPSSSRSGG*GSSS*E*EEESSSEHLTCC*QGDIAQPLLQPNNYQ
                                                                                                                                                                                                                                                                                                                                   KKKYQQVDEEFLRSDHPAILR*QARF*GIHSLRSPLDTSSVLYTAVQPNESD
                                                                                                                                                                                                                                                                                                                                                                           <u>KDR</u> 1213 SQYLQNSKRKSRPVSVKTFEDIPLEEPEVKVIPDDNQTDSGMVLASEELKTL
CSF1 966 FC
                                                                                              KMI***F**LS*EHAPA***DI*KT**DAD*LK****KQIVQLIEKQISEST
                                                                                                                                                                                                                  KLV*D*YQ*AQ*AFAPKNI*SI*QA**AL**TH*****QQICSF*QEQAQEDR
                                                                                                                                                                                                                                    NAI*R*Y**AQ*AHASD*I*EI*QK**EEKFET**P**Q**LL*ER**GEGY
                                                                                                                                                                                                                                                                           QQDGKDYIVLP ISETLSMEEDSGLSLPTSPVSCMEEEEVCDPKFHYDNTAGI
                                                                                                                                                                                                                                                                                                                                                                                                                  ND*IIPLPDPKPD*ADEGLPEGSPSLASSTLNEVNTSSTISCDSPL*LQEEP
                                                                                                                                                                                                                                                                                              NHIYSNLANCSPNRQKPVVDHSVRINSVGSTASSSQPLLVHDDV
                  762
                                                                                              828
                                                                            KDR 1065
                                                                                                                  814
                                                                                                                                                                                                                                                                                                932
                                                                                                                                                                                                ckit 880
                                                                                                                                                                            1117
                                                                                                                                                                                                                                                                         <u>KDR</u> 1169
                                                                                                ckit
                                                                                                                   CSF1
                                                                                                                                      PDGF
                                                                                                                                                                                                                  CSF1
                                                                                                                                                                                                                                                                                                ckit
                   CSF1
                                       PDGE
                                                                                                                                                                                                                                                                                                                                     PDGF
```

IDENTIFICATION OF kdp mRNA

FIG. 10

IDENTIFICATION OF kdp GENE BY SOUTHERN ANALYSIS

1 2 3 4

FIG. 11

FIG. 12

SUBSTITUTE SHEET

28/28

FIG. 14

INTERNATIONAL SEARCH REPORT

international Application No. PCT/US\$2/01300

CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ³ According to international Patent Classification (IPC) or to both National Classification and IPC				
IPC (5): C07K 3/00, 13/00; C07H 21/00; C12P 21/06, 21/02, 21/04; C12N 15/00 US CL : 530/387; 536/27; 435/69.1, 70.1, 71.1, 320.1				
	DS SEAR			· · · · · · · · · · · · · · · · · · ·
		Minimum Docu	mentation Searched ⁴	
Classificat	ion System		Classification Symbols	
U.S.	•	530/387; 536/27; 4 35/6	9.1, 70.1, 71.1, 320.1	
			d other than Minimum Documentati Iments are included in the Fields Se	
APS, I search		: type III receptor tyros.	ine kinase	
III. DOC	UMENTS	CONSIDERED TO BE RELEVANT 14		
Category*	Citatio	n of Document, 16 with indication, where ap	propriets, of the relevant passages 17	Relevant to Claim No. 18
Y, P Y X, P	Mathewisolathematolinkag docume Proc. A.F. identireacti Oncoge "Ident recept docume Oncoge novel modula	Natl. Acad. Sci., Volume Wilks, "Two putative profied by applicatin of on", pages 1603-1607, see ne, Volume 6, issued 1993 ification of a new endothe or tyrosine kinase", pages	tyrosine kinase cDNA of enriched primitive biting close genetic 026-9030, see entire 86, Issued March 1989, otein-tyrosine kinases the polymerase chain entire document. 1, B.I. Terman et al., lial cell growth factor is 1677-1683, see entire 8, M. Ruta et al., "A ene whose expression is cell differentiation",	1-17
"Special categories of cited documents: 18 "A" document defining the general state of the art which is not considered to be of perticular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "W. CERTIFICATION Date of the Actual Completion of the International Search 2 13 MAY 1992				
Internation	el Seerchi	ng Authority ¹	Signature of Authorized Office	mie /
ISA	ISA/US Lorraine M. Spector, Ph.D. TOY			

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET				
		1-17		
A Y	Oncogene, volume 5, issued 1990, M. Shibuya et al., "Mucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family", pages 519-524, see entire document.	17		
Y	Proc. Natl. Acad. Sci., Volume 85, Issued May 1988, R.G.K. Gronwald et al., "Cloning and expression of a cDNA coding for the human platelet-derived growth factor receptor: Evidence for more than one receptor class", pages 3435-3439, see entire document.	15		
V. □ 08	SERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE 1			
v 00	stional search report has not been established in respect of certain claims under Article 17(2) (a) for	the following reasons:		
This intern	MODE STATE COURT (NO COLUMN STATE OF ST	ority, namely:		
1. Cla	im numbers _, because they relate to subject matter (1) not required to be searched by this Auth			
	•			
2. 🔲 Clai	m numbers ,, because they relate to parts of the international application that do not comply with the	16 N enerifically:		
bre	m numbers because they reside to parts or the international search can be carried out (1 scribed requirements to such an extent that no meaningful international search can be carried out (1	to chamical i.		
. IT ~ ·	m numbers , because they are dependent claims not drafted in accordance with the second and the	rd sentences		
3, L.I Clair of I	m numbers , because tray are department common for management and an extension of the common for			
V(▼ ~	SSERVATIONS WHERE UNITY OF INVENTION IS LACKING ²			
This lesson	etional Searching Authority found multiple inventions in this international application as follows	. — · —		
I DIS INCOM	ims 1-9 and 14-17, drawn to nucleic acids and expression thereo	f. Class 536,		
subclar II. Cla 387.	ss 27 and Class 435, subclass by 1 sime 10-13, drawn to an isolated growth factor receptor. Class	530, subclass		
	all required additional search fees were timely paid by the applicant, this international search report of the international application. (Telephone Practice)			
2. 🗆 🛵	only some of the required additional search flees were timely paid by the applicant, this international y those claims of the international application for which fees were paid, specifically claims:	CORUN COPAN COPAN		
	,			
3. No rest	required additional search fees were timely paid by the applicant. Consequently, this international s rioted to the invention first mentioned in the claims; it is covered by claim numbers:	serch report is		
4. As a not	all searchable claims could be searched without effort justifying an additional fee, the international S I invite payment of any additional fee.	Search Authority did		
	additional search fees were accompanied by applicant's protest.			
	protest accompanied the payment of additional search feet.			

	DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)					
Category*	Citation of Document, 18 with indication, where appropriate, of the relevant passages 17	Relevant to Claim No.				
Y	Proc. Natl. Acad. Sci., Volume 86, Issued November 1989, M. Streuli et al., "A family of receptor-linked protein tyrosine phosphatases in humans and Drosophila", pages 8698-8702, see entire document.	1-14				
Y.	M.A. Innes et al., PCR Protocols, a guide to methods and applications, published 1990 by Academic Press (N.Y.), see page 10.	15, 16				
	:					