# A General Framework for Updating Belief Distributions (Biss: i et al. (2016))

Standard Bayes: an Approach
General posterior
Validity of General posterior
Calibration
Example

Standard Bayes

 $X_n = x_1 \dots x_n$  fundom sample generated from  $F(x|\theta)$ 

prior = (0)

 $\pi(0) \chi_n) \propto \pi(0) \prod_{i=1}^n f(x_i|0)$ 

Chellinge 1. need to sprcify find

2. We might hand to exclude parameters we're not in corrected in

If there is a framework of using general loss furtions to convey Bayesian inference

# General Posterior

l : loss facture for a parameter A

argmin l(Kail)

 $\pi(0|X_n) \propto \pi(0) \times \exp(-w \ell(X_n,0))$ 

w: m learning rate

Controls the posterior of the uncertainty

W= |

Negative log-likelihard

Open likelihard

Open log-likelihard

where are difference?

Must happen if introduces non-informative profer all the miscuce parameter?

difference with Lasso?

Validity of General Posterior e (. ) 1 (..) explore asymptotics for large n how to update prior belief  $\pi(\theta)$  to get posterior belief  $\pi(\theta|X_n)$ ? V: probabilier measure on space of & TE(O) ~ Wher is the "optimal" posteror D?  $\hat{v} = \text{arg win} L(v-x-x)$ L(v: ~. x): loss furin on the space of probability measures ou & - space  $\pi(\theta) \times \mathcal{I} = \mathcal{I} \times \mathcal{I} \times \mathcal{I} \times \pi(\theta) \mathcal{I}$ 

 $\psi\left[I(\theta,\kappa,), \psi\left(I(\theta,\kappa,),\kappa(\theta)\right)\right] = \psi\left(I(\theta,\kappa,),\tau\left(I(\theta,\kappa,),\kappa(\theta)\right)\right)$ 

L(rite,x) = 
$$h_{i}(v,x) + h_{i}(v,x)$$

coherence represents "fidelity" f. data

proc.

 $h_{i}$ 
 $h_{i$ 

$$\int \int \varrho(0, \star) dF_0(\kappa) Y_1(d0) \subseteq \int \int \varrho(0, \star) dF_0(\kappa) Y_2(d0)$$

prefer V1 to V2

$$h_{1}(r, x_{n}) = \int \varrho(0, x_{n}) r(0) d\theta$$

$$\hat{\gamma}(0) = \frac{e_{r} \gamma(-\ell(0, x_{n})) \pi(0)}{\int e_{r} \gamma(-\ell(0, x_{n})) \pi(0) d\theta}$$

Example: Survival Analysis

In standard Bayesen approach,

$$f(x)c) = \frac{x}{z^{2}} l_{i} f_{j}(x) c_{j}$$

Cj: parameters associated with the jth cluster

$$\mathcal{L}(S, x_{i,i,i}, x_{in}) = w \sum_{C_{k} \in S} \sum_{i \in C_{k}} (x_{ij} - \overline{X}_{C_{k}})^{2}$$

$$p(S|_{x}) \propto \pi(S) \exp \left(-l(S,x)\right)$$

Next week

Types of loss function

Calibration

Illustration

General forms of Information

Why ha - KL?

go over one specific example.

when are de diff (standard Beyer.

Grenzel

@ clustermy

∑ ≤ (x;; - \(\bar{\mathbb{I}}\_{Ca}\))

\(\bar{\mathbb{W}}\_{\mathbb{N}} \mathbb{M}\_{\mathbb{M}} \\ \bar{\mathbb{M}}\_{\mathbb{M}} \\ \mathbb{M}\_{\mathbb{M}} \\ \ma

#### Data

| Co c | de Name        | 0  | 4  | 8  | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | 52 | 56 | 60 | 64 | 68 |
|------|----------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| AL A | Alabama        | 35 | 21 | 24 | 8  | 22 | 31 | 27 | 48 | 14 | 13 | 13 | 18 | 19 | 35 | 39 | 42 | 70 | 14 |
| AR A | Arkansas       | 35 | 40 | 37 | 20 | 28 | 39 | 29 | 39 | 13 | 18 | 21 | 30 | 21 | 44 | 46 | 43 | 44 | 31 |
| DE D | Delaware       | 54 | 54 | 52 | 33 | 50 | 56 | 58 | 65 | 51 | 43 | 45 | 45 | 50 | 52 | 55 | 49 | 39 | 45 |
| FL F | Florida        | 19 | 21 | 22 | 8  | 18 | 31 | 28 | 57 | 25 | 24 | 26 | 30 | 34 | 55 | 57 | 52 | 48 | 41 |
| GA C | Georgia        | 29 | 18 | 31 | 4  | 7  | 29 | 18 | 43 | 8  | 13 | 15 | 18 | 18 | 30 | 33 | 37 | 54 | 30 |
| KY k | Kentucky       | 49 | 47 | 48 | 25 | 47 | 49 | 49 | 59 | 40 | 40 | 42 | 43 | 41 | 50 | 54 | 54 | 36 | 44 |
| LA L | _ouisiana      | 21 | 10 | 12 | 5  | 7  | 31 | 20 | 24 | 7  | 11 | 14 | 19 | 17 | 47 | 53 | 29 | 57 | 23 |
| MD N | Maryland       | 52 | 49 | 49 | 24 | 45 | 55 | 45 | 57 | 36 | 37 | 41 | 48 | 49 | 55 | 60 | 46 | 35 | 42 |
| MS N | Mississippi    | 10 | 5  | 7  | 2  | 5  | 14 | 8  | 18 | 4  | 3  | 4  | 6  | 3  | 40 | 24 | 25 | 87 | 14 |
| MO N | Missouri       | 46 | 50 | 49 | 30 | 47 | 55 | 50 | 56 | 35 | 38 | 48 | 48 | 42 | 51 | 50 | 50 | 36 | 45 |
| NC N | North Carolina | 45 | 40 | 46 | 12 | 42 | 43 | 55 | 29 | 29 | 27 | 26 | 33 | 33 | 46 | 49 | 48 | 44 | 40 |
| SC S | South Carolin  | 7  | 5  | 6  | 1  | 2  | 4  | 2  | 9  | 2  | 1  | 4  | 4  | 4  | 49 | 25 | 49 | 59 | 39 |
| TN T | Гennessee      | 45 | 53 | 46 | 24 | 43 | 51 | 44 | 54 | 32 | 31 | 33 | 39 | 37 | 50 | 49 | 53 | 44 | 38 |
| TX T | Гехаѕ          | 31 | 22 | 22 | 9  | 17 | 24 | 20 | 52 | 11 | 12 | 19 | 17 | 25 | 53 | 55 | 49 | 37 | 40 |
| VA V | /irginia       | 44 | 37 | 38 | 17 | 32 | 38 | 33 | 54 | 30 | 29 | 32 | 37 | 41 | 56 | 55 | 52 | 46 | 43 |
| WV V | West Virginia  | 54 | 55 | 53 | 21 | 49 | 55 | 49 | 58 | 44 | 39 | 43 | 45 | 42 | 48 | 47 | 54 | 32 | 40 |

Figure: Voting of Southern states



**Fig. 4.** Voting of southern states, illustrating the percentage of the Republican vote for Presidential elections every 4 years beginning in 1900: AL, Alabama; AR, Arkansas; DE, Delaware; FL, Florida; GA, Georgia; KY, Kentucky; LA, Louisiana; MD, Maryland; MS, Mississippi; MO, Missouri; NC, North Carolina; SC, South Carolina; TN, Tennessee; TX, Texas; VA, Virginia; WV, West Virginia

Figure: Voting of Southern states

**Table 1.** Average loss of partitions across MCMC samples (and log-posterior probabilities in parentheses)†

| Number of state<br>clusters k <sub>s</sub> | Average loss $\times 10^4$ for the following numbers of change points in time $k_t$ (groups = $k_t + 1$ ) |                                                                  |                                                                  |  |  |  |  |  |  |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                            | $k_t = 0$                                                                                                 | $k_t = 1$                                                        | $k_t = 2$                                                        |  |  |  |  |  |  |  |
| 1<br>2<br>3<br>4                           | 7.98 (-14.49)<br>5.36 (-13.69)<br>5.09 (-13.64)<br>4.99 (-13.91)                                          | 6.82 (-14.34)<br>5.13 (-13.65)<br>3.92 (-13.38)<br>3.32 (-13.50) | 6.72 (-14.73)<br>3.19 (-13.58)<br>2.36 (-13.28)<br>2.02 (-13.41) |  |  |  |  |  |  |  |

†The average loss is  $T^{-1} \sum_{i=1}^{T} l(S_i, x)$  with  $S_i \sim \pi(S|x, k_s, k_t)$ , where  $k_s$  denotes the number of clusters of states and  $k_t$  denotes the number of time series change points. Log-posterior-probabilities are shown in parentheses using a Poisson(3) and Poisson(2) prior on the number of groups and number of time clusters  $k_t + 1$ . The maximum posterior clustering is shown in italics.

• If I use k-means clustering without change points for  $k=1,\ldots,4$  and calculate  $\sum_{C_k \in S} \sum_{ii \in C_k} (x_{ij} - \bar{x}_{C_k})^2$ , I got

```
[,1] [,2] [,3] [,4] k 1.0000000 2.0000000 3.0000000 4.0000000 los_vec 1.245333 7.981199 5.289999 4.854897
```

Figure:



**Fig. 5.** Time change point locations for the two-change-point,  $k_t = 2$ , model and  $k_s = 3$  groups: (a) change point 1; (b) change point 2

#### Figure:



**Fig. 6.** Pairwise co-clustering probabilities across three groups and two time change points: AL, Alabama; AR, Arkansas; DE, Delaware; FL, Florida; GA, Georgia; KY, Kentucky; LA, Louisiana; MD, Maryland; MS, Mississippi; MO, Missouri; NC, North Carolina; SC, South Carolina; TN, Tennessee; TX, Texas; VA, Virginia;

#### References I

 P. G. Bissiri., C. C. Holmes & S. G. Walker (2016). A general framework for updating belief distributions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78(5), 1103-1130.