Specific words can help Predict Internet Sales

Problem Definition:

This project aims to make accurate purchase predictions based on existing known words used in advertising so that marketing methods could reveal top-selling words for sales. Used Machine-learning algorithms to create models that will predict sales. The data for this model consists of Google AdWords. Twenty-five percent of this training dataset was split into a test dataset with corresponding purchases to determine the accuracy and error of the model.

Data Wrangling

	User ID	Age	EstimatedSalary	Purchased
count	4.000000e+02	400.000000	400.000000	400.000000
mean	1.569154e+07	37.655000	69742.500000	0.357500
std	7.165832e+04	10.482877	34096.960282	0.479864
min	1.556669e+07	18.000000	15000.000000	0.000000
25%	1.562676e+07	29.750000	43000.000000	0.000000
50%	1.569434e+07	37.000000	70000.000000	0.000000
75%	1.575036e+07	46.000000	88000.000000	1.000000
max	1.581524e+07	60.000000	150000.000000	1.000000

Explanatory Data Analysis

NOTE:

There are no outliers with a somewhat distributed variable

Exploring relationship between the feature variables and the target

Algorithms and Machine Learning

```
Load Machine Learning Libraries¶
Apply the following 4 ML models

* Logistics Regression
* Decision Tree
* Random Forrest
* KNN

* from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
```

Split the X and y into 75/25 training and testing data subsets

```
#train test split

X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.25, random_state=42)
```

Feature Scaling For Standardization

```
sc_X=StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
```

NOTE:

Using Scaling to improve model performance

Visualizing Training test results

c argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2D array with a single row if you intend to specify the same RGB or RGBA value for all points.

c argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2D array with a single row if you intend to specify the same RGBA value for all points.


```
▶ from matplotlib.colors import ListedColormap
  X_set, y_set = X_test, y_test
  \verb|plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), \\
            alpha = 0.75, cmap = ListedColormap(('red','green')))
  plt.xlim(X1.min(), X1.max())
  plt.ylim(X2.min(), X2.max())
  plt.xlabel('Age')
plt.ylabel('Estimated Salary')
  plt.legend()
  plt.show()
  *c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence
  in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2D array with a single row if you intend to specify the same RGBA value for all points.
  *c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence
  in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2D array with a single row
  if you intend to specify the same RGB or RGBA value for all points.
```


Confusion Matrix Evaluation

```
from sklearn.metrics import confusion_matrix
cm=confusion_matrix(y_test, y_pred)
cm
```

```
11]: array([[61, 2], [12, 25]], dtype=int64)
```

```
#### NOTE: Confusion Matrix Break down

N = 100

TN & FN is the Predicted NO

FP & TP is the Predicted YES

Accuracy:
    (TN+TP)/N
    (61 + 25)/100 = 86%

Misclassification Rate:
    (FP +FN)/N
    (2 + 12)/100 = 14%
```

Training a Random Forrest

```
: Mrfc = RandomForestClassifier(n_estimators=100)
      rfc.fit(X_train, y_train)
113]: RandomForestClassifier()
  M rfc_pred = rfc.predict(X_test)
   print(confusion_matrix(y_test, rfc_pred))
      [[57 6]
       [ 4 33]]
: M from sklearn.metrics import classification_report
      print(classification_report(y_test, rfc_pred))
                   precision recall f1-score support
                       0.93
                                0.90
                0
                                           0.92
                                                      63
                1
                       0.85
                                 0.89
                                           0.87
                                                      37
          accuracy
                                           0.90
                                                     100
                       0.89
                                 0.90
                                                     100
         macro avg
                                           0.89
      weighted avg
                       0.90
                                 0.90
                                           0.90
                                                     100
```

NOTE: Confusion Matrix Break down

N = 100

TN & FN is the Predicted NO $\,$

FP & TP is the Predicted YES

Accuracy:

(TN+TP)/N

(57 + 33)/100 = 90%

Misclassification Rate:

(FP +FN)/N

(6 + 4)/100 = 10%

Training a Decision Tree

```
dtree = DecisionTreeClassifier()
dtree.fit(X_train, y_train)
```

]: DecisionTreeClassifier()

```
dtree_pred = dtree.predict(X_test)
dtree_pred
```

```
print(confusion_matrix(y_test, dtree_pred))
```

```
[[56 7]
[ 9 28]]
```

print(classification_report(y_test, dtree_pred))

	precision	recall	f1-score	support
0	0.86	0.89	0.88	63
1	0.80	0.76	0.78	37
accuracy			0.84	100
macro avg	0.83	0.82	0.83	100
weighted avg	0.84	0.84	0.84	100

NOTE: Confusion Matrix Break down

N = 100

TN & FN is the Predicted NO

FP & TP is the Predicted YES

Accuracy: (TN+TP)/N (56 + 28)/100 = 84%

Misclassification Rate: (FP +FN)/N (9 + 7)/100 = 16%

Training a K Nearest Neighbors

```
: M knn = KNeighborsClassifier(n_neighbors = 6, metric = 'minkowski', p =2)
     knn.fit(X_train, y_train)
L24]: KNeighborsClassifier(n_neighbors=6)
: | knn_pred = knn.predict(X_test)
     knn_pred
L26]: array([1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
            1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,
            0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1,
            1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0,
            0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0], dtype=int64)
: ▶ print(confusion_matrix(y_test, knn_pred))
     [[60 3]
      [ 5 32]]
:  print(classification_report(y_test, knn_pred))
                   precision recall f1-score support
                        0.92
                               0.95
                                           0.94
                                                       63
                1
                        0.91
                                0.86
                                          0.89
                                                       37
                                            0.92
                                                      100
         accuracy
                               0.91
                        9.92
        macro avg
                                           9.91
                                                      100
                        0.92 0.92
     weighted avg
                                           0.92
                                                      100
  NOTE: Confusion Matrix Break down
  N = 100
  TN & FN is the Predicted NO
  FP & TP is the Predicted YES
  Accuracy: (TN+TP)/N (60 + 32)/100 = 92%
```

In Conclusion:

Misclassification Rate: (FP +FN)/N (5 + 3)/100 = 8%

I decided to do different classification techniques to predict internet sales. The purpose was to find the best p erformers: logistic Regression, Decision Trees, Random For rest support vectors to get it done. Engineering offered t he data in 2 different warehouses, Hadoop, and Apache Spar k. I worked with the management and Analyst team to unders tand what information was collected from Google AdWords an d Facebook before extracting data. After running several A lgorithms, Both Random Forrest and K nearest Neighbor provided an accuracy of 92%.