Linear Analysis Homework 4

Michael Nelson

Problem 1

Proposition 0.1. Let \mathcal{H} be a hilbert space and let $T: \mathcal{H} \to \mathcal{H}$ be a bounded operator. Then

1.
$$||T|| = \sup\{||Tx|| \mid ||x|| = 1\};$$

2.
$$||T|| = \sup \left\{ \frac{||Tx||}{||x||} \mid x \in \mathcal{H} \setminus \{0\} \right\}$$
.

Proof.

1. First note that

$$\sup\{||Tx|| \mid ||x|| = 1\} \le \sup\{||Tx|| \mid ||x|| \le 1\}$$
$$= ||T||.$$

We prove the reverse inequality by contradiction. Assume that $||T|| > \sup\{||Tx|| \mid ||x|| = 1\}$. Choose $\varepsilon > 0$ such that

$$||T|| - \varepsilon > \sup\{||Tx|| \mid ||x|| = 1\}$$
 (1)

Next, choose $x \in \mathcal{H}$ such that $||x|| \le 1$ and $||Tx|| \ge ||T|| - \varepsilon$. Then since $||x|| \le 1$ and $\left\| \frac{x}{||x||} \right\| = 1$, we have

$$||T|| \ge \left| \left| T \left(\frac{x}{||x||} \right) \right| \right|$$

$$= \frac{||Tx||}{||x||}$$

$$\ge ||Tx||$$

$$> ||T|| - \varepsilon,$$

and this contradicts (1).

2. We have

$$\sup \left\{ \frac{\|Tx\|}{\|x\|} \mid x \in \mathcal{H} \setminus \{0\} \right\} = \sup \left\{ \left\| T\left(\frac{x}{\|x\|}\right) \right\| \mid x \in \mathcal{H} \setminus \{0\} \right\}$$
$$= \sup \left\{ \|Ty\| \mid \|y\| = 1 \right\}$$
$$= \|T\|,$$

where the last equality follows from 1.

Problem 2

Proposition o.2. *Let* $k \in C[a,b]$. *Then the operator* $T: C[a,b] \to C[a,b]$ *defined by*

$$Tf = kf$$

for all $f \in C[a,b]$ is bounded. It's norm will be explicitly computed in the proof below.

Proof. We first show it is linear. Let $f, g \in C[a, b]$ and let $\lambda, \mu \in \mathbb{C}$. Then we have

$$T(\lambda f + \mu g) = k(\lambda f + \mu g)$$

= $\lambda kf + \mu kg$
= $\lambda T(f) + \mu T(g)$.

Thus, *T* is linear.

Next we show it is bounded. If k = 0, then ||T|| = 0, so assume $k \neq 0$. Since k is continuous on the compact interval [a,b], there exists $c \in [a,b]$ such that $|k(x)| \leq |k(c)|$ for all $x \in [a,b]$. Choose such a $c \in [a,b]$ and let $f \in C[a,b]$ such that $||f|| \leq 1$. Then

$$||Tf|| = ||kf||$$

$$= \sqrt{\int_a^b |k(x)|^2 |f(x)|^2 dx}$$

$$\leq |k(c)| \sqrt{\int_a^b |f(x)|^2 dx}$$

$$\leq |k(c)|.$$

implies $||T|| \le |k(c)|$, and hence T is bounded.

To find the norm of T, let $\varepsilon > 0$ such that $\varepsilon < |k(c)|$. Without loss of generality, assume that c < b (if c = b, then we swap the role of b with a in the argument which follows). Choose $c' \in (c,b)$ such that $|k(x)| \ge |k(c)| - \varepsilon$ for all $x \in (c,c')$ (such a c' must exist since k is continuous) and choose f to be a nonzero continuous function in C[a,b] which vanishes outside the interval (c,c'). Then

$$|k(x)||f(x)| \ge (|k(c)| - \varepsilon)|f(x)|$$

for all $x \in (a, b)$. In particular, this implies

$$||Tf|| = ||kf||$$

$$= \sqrt{\int_a^b |k(x)f(x)|^2 dx}$$

$$\geq \sqrt{\int_a^b (|k(c)| - \varepsilon)|f(x)|^2 dx}$$

$$= (|k(c)| - \varepsilon)\sqrt{\int_a^b |f(x)|^2 dx}$$

$$= (|k(c)| - \varepsilon)||f||.$$

Therefore $||T(f/||f||)|| \ge |k(c)| - \varepsilon$, and this implies

$$||T|| \ge |k(c)| - \varepsilon \tag{2}$$

Since (2) holds for all $\varepsilon > 0$, we must have $||T|| \ge |k(c)|$. Thus ||T|| = |k(c)|.

Problem 3

Proposition 0.3. Let $\{x_n \mid n \in \mathbb{N}\}$ be a linearly independent set of vectors in a Hilbert space \mathcal{H} . Consider the so called Gram-Schmidt process: set $e_1 = \frac{1}{\|x_1\|} x_1$. Proceed inductively. If $e_1, e_2, \ldots, e_{n-1}$ are computed, compute e_n in two steps by

$$f_n := x_n - \sum_{k=1}^{n-1} \langle x_n, e_k \rangle e_k$$
, and then set $e_n := \frac{1}{\|f_n\|} f_n$.

Then

- 1. for every $N \in \mathbb{N}$ we have $span\{x_1, x_2, \dots, x_N\} = span\{e_1, e_2, \dots, e_N\}$;
- 2. the set $\{e_n \mid n \in \mathbb{N}\}$ is an orthonormal set in \mathcal{H} ;
- 3. if $\overline{span}\{x_n \mid n \in \mathbb{N}\} = \mathcal{H}$, then $\{e_n \mid n \in \mathbb{N}\}$ is an orthonormal basis for \mathcal{H} .

Proof.

1. Let $N \in \mathbb{N}$. Then for each $1 \le n \le N$, we have

$$x_n = \sum_{k=1}^{n-1} \langle x_n, e_k \rangle e_k + ||f_n|| e_n.$$

This implies span $\{x_1, x_2, ..., x_N\} \subseteq \text{span}\{e_1, e_2, ..., e_N\}$. We show the reverse inclusion by induction on n such that $1 \le n \le N$. The base case n = 1 being span $\{x_1\} \supseteq \text{span}\{e_1\}$, which holds since $e_1 = \frac{1}{\|x_1\|}x_1$. Now suppose for some n such that $1 \le n < N$ we have

$$\operatorname{span}\{x_1, x_2, \dots, x_k\} \supseteq \operatorname{span}\{e_1, e_2, \dots, e_k\} \tag{3}$$

for all $1 \le k \le n$. Then

$$e_{n+1} = \frac{1}{\|f_n\|} x_n - \sum_{k=1}^n \frac{1}{\|f_n\|} \langle x_n, e_k \rangle e_k \in \operatorname{span}\{x_1, x_2, \dots, x_n\}.$$

where we used the induction step (3) on the e_k 's ($1 \le k \le n$). Therefore

$$span\{x_1, x_2, ..., x_k\} \supseteq span\{e_1, e_2, ..., e_k\}$$

for all $1 \le k \le n + 1$, and this proves our claim.

2. By construction, we have $\langle e_n, e_n \rangle = 1$ for all $n \in \mathbb{N}$. Thus, it remains to show that $\langle e_m, e_n \rangle = 0$ whenever $m \neq n$. We prove by induction on $n \geq 2$ that $\langle e_n, e_m \rangle = 0$ for all m < n. Proving this also give us $\langle e_m, e_n \rangle = 0$ for all m < n, since

$$\langle e_m, e_n \rangle = \overline{\langle e_n, e_m \rangle}$$

$$= \overline{0}$$

$$= 0$$

The base case is

$$\langle e_2, e_1 \rangle = \frac{1}{\|x_1\| \|f_2\|} \left\langle \left(x_2 - \frac{\langle x_2, x_1 \rangle}{\langle x_1, x_1 \rangle} x_1 \right), x_1 \right\rangle$$

$$= \frac{1}{\|x_1\| \|f_2\|} \left(\langle x_2, x_1 \rangle - \langle x_2, x_1 \rangle \right)$$

$$= 0$$

Now suppose that n > 2 and that $\langle e_n, e_m \rangle = 0$ for all m < n. Then

$$\langle e_{n+1}, e_m \rangle = \frac{1}{\|f_{n+1}\|} \langle x_{n+1} - \sum_{k=1}^n \langle x_{n+1}, e_k \rangle e_k, e_m \rangle$$

$$= \frac{1}{\|f_{n+1}\|} \left(\langle x_{n+1}, e_m \rangle - \sum_{k=1}^n \langle x_{n+1}, e_k \rangle \langle e_k, e_m \rangle \right)$$

$$= \frac{1}{\|f_{n+1}\|} \left(\langle x_{n+1}, e_m \rangle - \langle x_{n+1}, e_m \rangle \langle e_m, e_m \rangle \right)$$

$$= \frac{1}{\|f_{n+1}\|} \left(\langle x_{n+1}, e_m \rangle - \langle x_{n+1}, e_m \rangle \right)$$

$$= 0$$

for all m < n + 1, where we used the induction hypothesis to get from the second line to the third line. This proves the induction step, which finishes the proof of part 2 of the proposition.

3. By 2, we know that $\{e_n \mid n \in \mathbb{N}\}$ is an orthonormal set. Thus, it suffices to show that $\{e_n \mid n \in \mathbb{N}\}$ is complete. To do this, we use the criterion that the set $\{e_n \mid n \in \mathbb{N}\}$ is complete if and only if the only $x \in \mathcal{H}$ such that $\langle x, e_n \rangle = 0$ for all $n \in \mathbb{N}$ is x = 0.

Let $x \in \mathcal{H}$ and suppose $\langle x, e_n \rangle = 0$ for all $n \in \mathbb{N}$. Then

$$\langle x, x_n \rangle = \left\langle x, \sum_{k=1}^{n-1} \langle x_n, e_k \rangle e_k + ||f_n|| e_n \right\rangle$$
$$= \sum_{k=1}^{n-1} \langle x_n, e_k \rangle \langle x, e_k \rangle + ||f_n|| \langle x, e_n \rangle$$
$$= 0$$

for all $n \in \mathbb{N}$. Since $\{x_n \mid n \in \mathbb{N}\}$ is complete, this implies x = 0. Therefore $\{e_n \mid n \in \mathbb{N}\}$ is complete.

Problem 4

Example o.1. The first three Legendre polynomials are

$$P_1(x) = 1$$
, $P_2(x) = x$, $P_3(x) = \frac{1}{2}(3x^2 - 1)$.

We apply Gram-Schmidt process to the polynomials $1, x, x^2$ in the space C[-1, 1] to get scalar multiples of the Legendre polynomials above. First we set $f_1(x) = 1$ and then calculate

$$||f_1(x)|| = \sqrt{\int_{-1}^1 dx}$$

= $\sqrt{2}$.

Thus we set $e_1(x) = 1/\sqrt{2}$. Next we calculate

$$f_1(x) = x - \left\langle x, \frac{1}{\sqrt{2}} \right\rangle \frac{1}{\sqrt{2}}$$
$$= x - \frac{1}{2} \int_{-1}^{1} x dx$$
$$= x.$$

Next we calculate

$$||f_1(x)|| = \sqrt{\int_{-1}^1 x^2 dx}$$

= $\sqrt{\frac{2}{3}}$.

Thus we set $e_2(x) = \sqrt{3/2}x$. Next we calculate

$$f_2(x) = x^2 - \left\langle x^2, \sqrt{\frac{3}{2}} x \right\rangle \sqrt{\frac{3}{2}} x - \left\langle x^2, \sqrt{\frac{1}{2}} \right\rangle \sqrt{\frac{1}{2}}$$

$$= x^2 - \frac{3}{2} x \int_{-1}^1 x^3 dx - \frac{1}{2} \int_{-1}^1 x^2 dx$$

$$= x^2 - \frac{1}{3}.$$

Then we finally calculate

$$||f_2(x)|| = \sqrt{\int_{-1}^1 \left(x^2 - \frac{1}{3}\right)^2 dx}$$

$$= \sqrt{\int_{-1}^1 \left(x^4 - \frac{2}{3}x^2 + \frac{1}{9}\right) dx}$$

$$= \sqrt{\int_{-1}^1 x^4 dx - \frac{2}{3} \int_{-1}^1 x^2 dx + \frac{1}{9} \int_{-1}^1 dx}$$

$$= \sqrt{\frac{2}{5} - \frac{4}{9} + \frac{2}{9}}$$

$$= \sqrt{\frac{8}{45}}.$$

Thus we set $e_3(x) = \sqrt{45/8}(x^2 - 1/3)$. Now observe that

$$P_{1}(x) = \sqrt{2}e_{1}(x)$$

$$P_{2}(x) = \sqrt{\frac{2}{3}}e_{2}(x)$$

$$P_{3}(x) = \sqrt{\frac{2}{5}}e_{3}(x)$$

Problem 5

For this problem, we needed to establish some basic results which we proved in the Appendix.

Proposition 0.4. The expression

$$\int_{-1}^{1} |x^3 - a - bx - cx^2|^2 dx. \tag{4}$$

is minimized in $a, b, c \in \mathbb{C}$ if and only if a = 0, b = 3/5, and c = 0.

Proof. Let

$$\mathcal{H} = \{ p(x) \in \mathbb{C}[x] \mid \deg(p(x)) \le 3 \}$$
 and $\mathcal{K} = \{ p(x) \in \mathbb{C}[x] \mid \deg(p(x)) \le 2 \}.$

Then \mathcal{H} and \mathcal{K} are subspaces of C[-1,1], Proposition (0.7) implies they are inner-product spaces with the inner-product inherited from C[-1,1]. Since \mathcal{H} is finite dimensional, Proposition (0.8) implies \mathcal{H} is a separable Hilbert space. Since \mathcal{K} is a finite dimensional subspace of \mathcal{H} , Proposition (0.9) implies \mathcal{K} is closed in \mathcal{H} . Let $\{e_1, e_2, e_3\}$ be the orthonormal basis computed in problem 4. A proposition proved in class implies

$$P_{\mathcal{K}}(x^3) = \langle x^3, e_1 \rangle e_1 + \langle x^3, e_2 \rangle e_2 + \langle x^3, e_3 \rangle e_3$$

$$= \frac{1}{2} \int_{-1}^1 x^3 dx + \frac{3}{2} x \int_{-1}^1 x^4 dx + \frac{45}{8} \left(x^2 - \frac{1}{3} \right) \int_{-1}^1 x^3 \left(x^2 - \frac{1}{3} \right) dx$$

$$= \frac{3}{5} x.$$

where we used the fact that $x^3(x^2 - 1/3)$ is an odd function to get $\int_{-1}^{1} x^3(x^2 - 1/3) dx = 0$. Therefore

$$\int_{-1}^{1} \left| x^{3} - \frac{3}{5}x \right|^{2} dx = \|x^{3} - P_{\mathcal{K}}(x^{3})\|^{2}$$

$$= \inf \left\{ \|x^{3} - (a + bx + cx^{2})\|^{2} \mid a + bx + cx^{2} \in \mathcal{K} \right\}$$

$$= \inf \left\{ \int_{-1}^{1} |x^{3} - a - bx - cx^{2}|^{2} dx \mid a, b, c \in \mathbb{C} \right\}.$$

By uniqueness of $P_{\mathcal{K}}x^3$, (4) is minimized in $a,b,c\in\mathbb{C}$ if and only if a=0,b=3/5, and c=0.

Problem 6

Proposition 0.5. $\ell^2(\mathbb{N})$ is a Hilbert space.

Proof. Let $(a^n)_{n\in\mathbb{N}}$ be a Cauchy sequence in $\ell^2(\mathbb{N})$.

Step 1: We show that for each $k \in \mathbb{N}$, the sequence of kth coordinates $(a_k^n)_{n \in \mathbb{N}}$ is a Cauchy sequence of complex numbers, and hence must converge (as \mathbb{C} is complete). Let $k \in \mathbb{N}$ and let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that $m, n \geq N$ implies $||a^n - a^m|| < \varepsilon^2$. Then $n, m \geq N$ implies

$$|a_k^n - a_k^m|^2 \le \sum_{i=1}^{\infty} |a_i^n - a_i^m|^2$$

$$= ||a^n - a^m||$$

$$< \varepsilon^2,$$

which implies $|a_k^n - a_k^m| < \varepsilon$. Therefore $(a_k^n)_{n \in \mathbb{N}}$ is a Cauchy sequence of complex numbers. In particular, the sequence $(a_k^n)_{n \in \mathbb{N}}$ converges to some element, say $a_k^n \to a_k$.

Step 2: We show that the sequence $(a_k)_{k\in\mathbb{N}}$ defined in step 1 is square summable. Since (a^n) is a Cauchy sequence of elements in $\ell^2(\mathbb{N})$, there exists an M>0 such that $||a^n||< M$ for all $n\in\mathbb{N}$ (see Lemma ((0.1) for a proof of this). Choose such an M>0 and let $\varepsilon>0$. Choose $N\in\mathbb{N}$ such that

$$|a_k|^2 < |a_k^N|^2 + \varepsilon/K$$

for all $1 \le k \le K$. Then

$$\sum_{k=1}^{K} |a_k|^2 < \sum_{k=1}^{K} |a_k^N|^2 + \varepsilon$$

$$\leq ||a^N|| + \varepsilon$$

$$\leq M + \varepsilon.$$

Taking the limit $K \to \infty$, we see that

$$||a|| = \sum_{k=1}^{\infty} |a_k|^2$$

$$\leq M + \varepsilon$$

$$\leq 0.$$

In particular, *a* is square summable.

Step 3: Let a be the sequence $(a_k)_{k\in\mathbb{N}}$ defined in step 1. We show that $a^n\to a$ in the ℓ^2 norm. Let $\varepsilon>0$ and let $K\in\mathbb{N}$. Choose $N\in\mathbb{N}$ such that $m,n\geq N$ implies $\|a^n-a^m\|^2<\varepsilon/2$. Then

$$\sum_{k=1}^{K} |a_k^n - a_k^m|^2 \le \sum_{k=1}^{\infty} |a_k^n - a_k^m|^2$$

$$= \|a^n - a^m\|^2$$

$$< \varepsilon/2$$

for all $n, m \ge N$. Since $a_k^m \to a_k$ as $m \to \infty$ implies

$$\sum_{k=1}^{K} |a_k^n - a_k^m|^2 \to \sum_{k=1}^{K} |a_k^n - a_k|^2$$

as $m \to \infty$, we see that after taking the limit $m \to \infty$, we have

$$\sum_{k=1}^{K} |a_k^n - a_k|^2 \le \varepsilon/2. \tag{5}$$

for all $n \ge N$. Taking the limit $K \to \infty$ in (5) gives us

$$||a^n - a||^2 < \varepsilon$$

for all $n \ge N$. It follows that $a^n \to a$.

Problem 7

Proposition o.6. C[a,b] *is not a Hilbert space.*

Proof. For each $n \in \mathbb{N}$, define $f_n \in C[a,b]$ by

$$f_n(x) = \begin{cases} 0 & x \in [a, c - \frac{1}{n}] \\ nx + 1 - nc & x \in [c - \frac{1}{n}, c] \\ 1 & x \in [c, b], \end{cases}$$

where $c = \frac{a+b}{2}$. We will show that the sequence (f_n) is a Cauchy sequence which is not convergent.

Step 1: We first show that the sequence (f_n) is a Cauchy sequence. Let $\varepsilon > 0$ and let $m, n \in \mathbb{N}$ such that $n \geq m$. Then

$$||f_n - f_m||^2 = \int_{c - \frac{1}{m}}^{c - \frac{1}{n}} |mx + 1 - mc|^2 dx + \int_{c - \frac{1}{n}}^{c} |nx + 1 - nc - (mx + 1 - mc)|^2 dx$$

$$= \int_{c - \frac{1}{m}}^{c - \frac{1}{n}} |m(x - c) + 1|^2 dx + (n - m)^2 \int_{c - \frac{1}{n}}^{c} |x - c|^2 dx$$

$$\leq \left(\frac{1}{m} - \frac{1}{n}\right) \left|1 - \frac{m}{n}\right|^2 + \frac{(n - m)^2}{n^3}$$

$$\leq \frac{1}{m} - \frac{1}{n} + \frac{(n - m)^2}{n^3}.$$

Choose $N \in \mathbb{N}$ such that $n \ge m \ge N$ implies

$$\frac{1}{m}-\frac{1}{n}+\frac{(n-m)^2}{n^3}<\varepsilon^2.$$

Then $n \ge m \ge N$ implies $||f_n - f_m|| < \varepsilon$. Therefore (f_n) is a Cauchy sequence.

Step 2: We show that the sequence (f_n) is not convergent. Assume for a contradiction that $f_n \to f$ where $f \in C[a,b]$. Then

$$||f_n - f||^2 = \int_a^{c - \frac{1}{n}} |f(x)|^2 dx + \int_{c - \frac{1}{n}}^c |f(x) - f_n(x)|^2 dx + \int_c^b |f(x) - 1|^2 dx$$

$$\leq (c - a - \frac{1}{n}) \sup_{x \in [a, c - \frac{1}{n}]} |f(x)|^2 + \int_{c - \frac{1}{n}}^c |f(x) - f_n(x)|^2 dx + (b - c) \sup_{x \in [c, c - \frac{1}{n}]} |f(x) - 1|^2 dx.$$

Since $||f_n - f|| \to 0$ as $n \to \infty$, we see that (after taking the limit $n \to \infty$) we must have

$$f(x) = \begin{cases} 0 & \text{if } x \in [a, c] \\ 1 & \text{if } x \in [c, b] \end{cases}$$

but this is not a continuous function. Thus we obtain a contradiction.

Appendix

Proposition 0.7. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner-product space and let W be a subspace of V. Then $(W, \langle \cdot, \cdot \rangle|_{W \times W})$ is an inner-product space, where $\langle \cdot, \cdot \rangle|_{W \times W}$: $W \times W \to \mathbb{C}$ is the restriction of $\langle \cdot, \cdot \rangle$ to $W \times W$.

Proof. All of the required properties for $\langle \cdot, \cdot \rangle|_{W \times W}$ to be an inner-product are *inherited* by $\langle \cdot, \cdot \rangle$ since W is a subset of V. For instance, let $x, y, z \in V$ and let $\lambda \in \mathbb{C}$. Then

$$\langle x + \lambda y, z \rangle|_{W \times W} = \langle x + \lambda y, z \rangle$$

$$= \langle x, z \rangle + \lambda \langle y, z \rangle$$

$$= \langle x, z \rangle|_{W \times W} + \lambda \langle y, z \rangle|_{W \times W}$$

gives us linearity in the first argument. The other properties follow similarly.

Remark. As long as context is clear, then we denote $\langle \cdot, \cdot \rangle|_{W \times W}$ simply by $\langle \cdot, \cdot \rangle$.

Proposition o.8. Let $(V, \langle \cdot, \cdot \rangle)$ be an n-dimensional inner-product space. Then $(V, \langle \cdot, \cdot \rangle)$ is unitarily equivalent to $(\mathbb{C}^n, \langle \cdot, \cdot \rangle_e)$, where $\langle \cdot, \cdot \rangle_e$ is the standard Euclidean inner-product on \mathbb{C}^n . In particular, $(V, \langle \cdot, \cdot \rangle)$ is a separable Hilbert space.

Proof. Let $\{v_1, \ldots, v_n\}$ be a basis for V. By applying the Gram-Schmidt process to $\{v_1, \ldots, v_n\}$, we can get an orthonormal basis, say $\{u_1, \ldots, u_n\}$, of V. Let $\varphi \colon V \to \mathbb{C}^n$ be the unique linear isomorphism such that

$$\varphi(u_i) = e_i$$

where e_i is the standard ith coordinate vector in \mathbb{C}^n for all $1 \le i \le n$. Then φ is a unitary equivalence. Indeed, it is an isomorphism since it restricts to a bijection on basis sets. Moreover we have

$$\langle u_i, u_i \rangle = \langle \varphi(u_i), \varphi(u_i) \rangle_{e} = \langle e_i, e_i \rangle_{e}$$

for all $1 \le i, j \le n$. This implies

$$\langle x, y \rangle = \langle \varphi(x), \varphi(y) \rangle_{e}$$

for all $x, y \in V$.

Proposition 0.9. Let V be an inner-product space over \mathbb{C} and let W be a finite dimensional subspace of V. Then W is a closed.

Proof. Let $\{w_1, \ldots, w_k\}$ be an orthonormal basis for \mathcal{W} and let (x_n) be a sequence of vectors in \mathcal{W} such that $x_n \to x$ where $x \in \mathcal{V}$. For each $n \in \mathbb{N}$, express x_n in terms of the basis $\{w_1, \ldots, w_k\}$ say as

$$x_n = \lambda_{1n}w_1 + \cdots + \lambda_{kn}w_k,$$

where $\lambda_{1n}, \ldots, \lambda_{kn} \in \mathbb{C}$. Since $x_n \to x$ as $n \to \infty$, the sequence (x_n) is a Cauchy sequence. This implies the sequence $(\lambda_{jn})_{n \in \mathbb{N}}$ of complex numbers is a Cauchy sequence, for each $1 \le j \le k$. Indeed, letting $\varepsilon > 0$, choose $N \in \mathbb{N}$ such that $n, m \ge N$ implies $||x_n - x_m|| < \varepsilon$. Then $n, m \ge N$ implies

$$|\lambda_{jn} - \lambda_{jm}| \leq |\lambda_{1n} - \lambda_{1m}| + \dots + |\lambda_{kn} - \lambda_{km}|$$

$$= \|(\lambda_{1n} - \lambda_{1m})w_1 + \dots + (\lambda_{kn} - \lambda_{km})w_k\|$$

$$= \|x_n - x_m\|$$

$$< \varepsilon$$

for each $1 \le j \le k$. Now since $\mathbb C$ is complete, we must have $\lambda_{jn} \to \lambda_j$ as $n \to \infty$ for some $\lambda_j \in \mathbb C$ for all $1 \le j \le n$. In particular, we have

$$x = \lim_{n \to \infty} x_n$$

$$= \lim_{n \to \infty} (\lambda_{1n} w_1 + \dots + \lambda_{kn} w_k)$$

$$= \lim_{n \to \infty} (\lambda_{1n} w_1) + \dots + \lim_{n \to \infty} (\lambda_{kn} w_k)$$

$$= \lambda_1 w_1 + \dots + \lambda_k w_k,$$

and this implies $x \in \mathcal{W}$, which implies \mathcal{W} is closed.

Lemma 0.1. Let (x_n) be a Cauchy sequence in \mathcal{V} . Then (x_n) is bounded.

Proof. Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that $m, n \geq N$ implies $||x_n - x_m|| < \varepsilon$. Thus, fixing $m \in \mathbb{N}$, we see that $n \geq N$ implies

$$||x_n|| < ||x_m|| + \varepsilon.$$

Now we let

$$M = \max\{\|x_1\|, \|x_2\|, \dots, \|x_m\| + \varepsilon\}.$$

Then M is a bound for (x_n) .

Proposition 0.10. Let (x_n) and (y_n) be Cauchy sequences of vectors in V. Then $(\langle x_n, y_n \rangle)$ is a Cauchy sequence of complex numbers.

Proof. Let $\varepsilon > 0$. Choose M_x and M_y such that $||x_n|| < M_x$ and $||y_n|| < M_y$ for all $n \in \mathbb{N}$. We can do this by Lemma (0.1). Next, choose $N \in \mathbb{N}$ such that $n, m \ge N$ implies $||x_n - x_m|| < \frac{\varepsilon}{2M_y}$ and $||y_n - y_m|| < \frac{\varepsilon}{2M_x}$. Then $n, m \ge M$ implies

$$|\langle x_n, y_n \rangle - \langle x_m, y_m \rangle| = |\langle x_n, y_n \rangle - \langle x_m, y_n \rangle + \langle x_m, y_n \rangle - \langle x_m, y_m \rangle|$$

$$= |\langle x_n - x_m, y_n \rangle + \langle x_m, y_n - y_m \rangle|$$

$$\leq |\langle x_n - x_m, y_n \rangle| + |\langle x_m, y_n - y_m \rangle|$$

$$\leq ||x_n - x_m|| ||y_n|| + ||x_m|| ||y_n - y_m||$$

$$\leq ||x_n - x_m|| M_y + M_x ||y_n - y_m||$$

$$\leq \varepsilon.$$

This implies $(\langle x_n, y_n \rangle)$ is a Cauchy sequence of complex numbers in \mathbb{C} . The latter statement in the proposition follows from the fact that \mathbb{C} is complete.

Homework 2, Problem 5

Proposition 0.11. Let V be an inner-product space, let A be a subspace of V, let $x \in V$, and let $\lambda \in \mathbb{C}$. Then

$$d(\lambda x, \mathcal{A}) = |\lambda| d(x, \mathcal{A}).$$

Proof. Choose a sequence (y_n) of elements in A such that

$$||x - y_n|| < d(x, \mathcal{A}) + \frac{1}{|\lambda n|}$$

for all $n \in \mathbb{N}$. Then since \mathcal{A} is a subspace, we have

$$d(\lambda x, \mathcal{A}) \leq \|\lambda x - \lambda y_n\|$$

$$= |\lambda| \|x - y_n\|$$

$$< |\lambda| \left(d(x, \mathcal{A}) + \frac{1}{|\lambda n|} \right)$$

$$= |\lambda| d(x, \mathcal{A}) + \frac{1}{n}$$

for all $n \in \mathbb{N}$. In particular, this implies $d(\lambda x, A) \leq |\lambda| d(x, A)$. Conversely, choose a sequence (z_n) of elements in A such that

$$\|\lambda x - z_n\| < d(\lambda x, A) + \frac{1}{n}$$

Then since A is a subspace, we have

$$|\lambda|d(x,\mathcal{A}) \le |\lambda| ||x - z_n/|\lambda|||$$

$$= ||\lambda x - z_n||$$

$$< d(\lambda x, \mathcal{A}) + \frac{1}{n}$$

for all $n \in \mathbb{N}$. In particular, this implies $|\lambda| d(x, A) \leq d(\lambda x, A)$.

Proposition 0.12. Let V be an inner-product space, let A be a subspace of V, and let $x, y \in V$. Then

$$d(x + y, A) \le d(x, A) + d(y, A).$$

Proof. Choose a sequences (w_n) and (z_n) of elements in \mathcal{A} such that

$$||x - w_n|| < d(x, A) + \frac{1}{2n}$$
 and $||y - z_n|| < d(y, A) + \frac{1}{2n}$

for all $n \in \mathbb{N}$. Then since \mathcal{A} is a subspace, we have

$$d(x + y, A) \le \|(x + y) - (w_n + z_n)\|$$

$$\le \|x - w_n\| + \|y - z_n\|$$

$$< d(x, A) + \frac{1}{2n} + d(y, A) + \frac{1}{2n}$$

$$= d(x, A) + d(y, A) + \frac{1}{n}$$

for all $n \in \mathbb{N}$. In particular, this implies $d(x + y, A) \leq d(x, A) + d(y, A)$.