WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

31

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C07C 275/36, 323/44, C07D 213/75 //
A61K 31/17, 31/44

(11) International Publication Number:

WO 99/32437

(43) International Publication Date:

1 July 1999 (01.07.99)

(21) International Application Number:

PCT/SK98/00019

A1

(22) International Filing Date:

16 December 1998 (16.12.98)

(30) Priority Data:

PV 1751-97

19 December 1997 (19.12.97) SK

(71) Applicant (for all designated States except US): SLOVAKO-FARMA, A.S. [SK/SK]; Železnična 12, 920 27 Hlohovec (SK).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): OREMUS, Vladimír [SK/SK]; Vysoká 4, 811 06 Bratislava (SK). SMAHOVSKÝ, Vendelín [SK/SK]; Novomeského 18, 902 01 Pezinok (SK). FÁBEROVÁ, Viera [SK/SK]; Račianska 12, 831 04 Bratislava (SK). KAKALÍK, Ivan [SK/SK]; 900 81 Šenkvice (SK). SCHMIDTOVÁ, Ľudmila [SK/SK]; Komenského 10, 900 01 Modra (SK). ZEMÁNEK, Marián [SK/SK]; Zochova 16, 811 03 Bratislava (SK).
- (74) Agent: NEUSCHL, Jozef; Rott, Ružička and Guttmann, Patentová, známková a právna kancelária, v.o.s., Pionierska 15, 831 02 Bratislava (SK).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report. With amended claims.

- (54) Title: 1,3-DISUBSTITUTED UREAS AS ACAT INHIBITORS, AND METHOD OF PREPARING THEREOF
- (57) Abstract

The invention relates to 1,3-disubstituted ureas of general formula (I) where R^1 is an aryl, R^2 is nitro and/or amino, and X is oxygen and/or sulfur, and the method of preparing thereof which consists in treating aromatic amines with isocyanates. Isocyanates may be formed in situ and the reaction carried out in toluene, at 80 °C. If the nitro group is formed, it is reduced

$$\mathbb{R}^{1} \underset{\mathsf{NH}}{ | \mathsf{NH}} \underset{\mathsf{NH}}{ | \mathsf{NH}}$$

with hydrogen in the presence of palladium catalyst to the amino group. The obtained 1,3-disubstituted ureas are inhibitors of the activity of the acyl co-enzyme A: cholesterol acyltransferase (ACAT) enzyme, and may be used to inhibit cholesterol esterification and absorption in hypercholesterolemia.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	8 Z	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin '	Œ	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	ÝU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		•
CN	China	KR	Republic of Korea	PΤ	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 99/32437 PCT/SK98/00019

1,3-Disubstituted Ureas as ACAT Inhibitors, and Method of Preparing Thereof

Technical Field

The invention relates to compounds the principal characteristics of which include inhibition of the acyl-coenzyme A: cholesterol acyltransferase (ACAT) enzyme activity, and to a method for the preparation of such compounds.

Background Art

The acyl-coenzyme A: cholesterol O-acyltransferase (EC 2.3.1.26) (ACAT) enzyme is responsible for the catalysis of the intracellular esterification of cholesterol. ACAT is present in most tissues such as the intestine, liver, and arterial wall. The enzyme is assumed to be involved in numerous processes which underlie the development of atherosclerosis, absorption of dietary cholesterol, accumulation of cholesterol esters, hepatic secretion of cholesterol esters into the blood plasma in the form of VLDL cholesterol.

A number of substances of the urea type have been described to inhibit ACAT. We shall show several more recent examples describing 1,3-disubstituted ureas as ACAT enzyme inhibitors. Patents EP 506532, FR 2674522, JP 93097802, US 5219859 describe ureas containing indole derivatives in their molecules. A combination of aromatic and aliphatic molecules has been described in Patents EP 665216, JP 95258199. Introduction into the molecule of a 1,3-dioxolane ring has been reported in Bioorg. Med. Chem. Lett. 1995, 5(15): 1581.

1,3-Disubstituted ureas of the present invention have not been described in literature.

Disclosure of Invention

1,3-Disubstituted ureas of general formula I,

wherein R¹ is 4-nitrophenyl, 2-fluorophenyl, 4-fluorophenyl, 2,4-difluorophenyl, 2,6-difluorophenyl, 2-chlorophenyl, 4-chlorophenyl, 2,3-2,5-difluorophenyl, dichlorophenyl, 2,4-dichlorophenyl, 2,6-dichlorophenyl, 3,4-dichlorophenyl, 3,5-2,4-dimethylphenyl, 2,6-4-methylphenyl, dichlorophenyl, 2-methylphenyl, dimethylphenyl, 3,5-dimethylphenyl, 2,6-di(methylethyl)phenyl, 2-trifluoromethylphenyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl, 2-pyridyl, 3-pyridyl, 4pyridyl, 1-naphthyl, 2-naphthyl, 1-adamantyl, and R^2 is nitro, and X = O, S; and for R1 being 2,4-difluorophenyl, 2,3-dichlorophenyl, 2,6-dimethylphenyl, 2,6-di-(methylethyl)-phenyl R^2 is amino, and X = O, S.

The method for the preparation of the above compounds according to this invention consists in reacting an isocyanate (as prepared in situ or as commercially available) with amine to give an urea the nitro group of which may subsequently be reduced to the amino group. Ureas prepared in this way show inhibitory effect on acyl-coenzyme A: cholesterol acyltransferase (ACAT).

Examples

Example 1

1-(4-Nitrophenyl)-3-((-4 'nitrophenoxy)-phenyl)-urea

A solution of 4-nitrophenylisocyanate in diethylether (20 ml) is added dropwise to a solution of 4'-nitrophenoxy-aniline (2.30 g, 0.01 mol) in a mixture of diethylether (20 ml) and tetrahydrofurane (20 ml) at laboratory temperature, and the mixture is stirred for 16 hours. The precipitated product is aspirated, washed with diethylether (20 ml). The raw product is purified by chromatography on silica gel eluting with dichloromethane-methanol.

¹H-NMR (CDCl₃): 7.11(d, 2H, H-arom.); 7.17(d, 2H, H-arom.); 7.59(d, 2H, H-arom.); 7.70(d, 2H, H-arom.); 8.20(d, 2H, H-arom.); 7.25(d, 2H, H-arom.); 9.05(s, 1H, NH.); 9.46(s, 1H, NH).

¹³C-NMR (CDCl₃); 116.80(CH-arom.); 117.46(CH-arom.); 120.46(CH-arom.); 121.13(CH-arom.); 125.07(CH-arom.); 126.11(CH-arom.); 136.50, 141.00, 141.96, 146.26, 148.86, 151.95(C-arom.); 163.39(C=0).

Analysis for C₁₉H₁₄N₄O₆

%C(calcd/found)	%Н	%N
57.85/57.73	3.58/3.61	14.21/14.12

Yield: 92% Melting temp.: 231-234°C

Example 2

1-(2-Fluorophenyl)-3-((4'-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 2-fluorophenylisocyanate by an analogous procedure to that described in Example 1.

Analysis for C₁₉H₁₄FN₃O₄

%C(calcd/found)	%Н	%N
62.11/62.09	3.84/3.88	11.44/11.29

Yield: 48% Melting temp.: 253-255°C

Example 3

1-(4-Fluorophenyl)-3-((4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 4-fluorophenylisocyanate by an analogous procedure to that described in Example 1.

Analysis for C₁₈H₁₄FN₃O₄

%C(calcd/found)	%Н	%N
62.11/61.99	3.84/3.85	11.44/11.34

Yield: 59% Melting temp.: 267-269°C

Example 4

1-(2,4-Difluorophenyl)-3-((4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 2,4-difluorophenylisocyanate by an analogous procedure to that described in Example 1.

¹H-NMR (CDCl₃): 6.98-7.18(m, 5H, H-arom.); 7.23-7.37(m, 1H, H-arom.); 7.56(d, 2H, H-arom.); 8.03-8.16(m, 1H, H-arom.); 8.24(d, 2H, H-arom.); 8.50(s, 1H, NH); 9.13(s, 1H, NH).

¹³C-NMR (CDCl₃): 103.72(CH-arom.); 110.96(CH-arom.); 116.73(CH-arom.); 119.88(CH-arom.); 121.18(CH-arom.); 122.02(CH-arom.); 126.09(CH-arom.); 136.94, 141.91, 148.48, 152.27, 154.49, 159.80(C-arom.); 163.46(C = 0).

Analysis for C₁₈H₁₃F₂N₃O₄

%C(calcd/found)	%Н	%N
59.22/59.20	3.40/3.53	10.91/10.89

Yield: 85% Melting temp.: 223-224°C

Example 5

1-(2,5-Difluorophenyl)-3-((4'-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 2,5-diffuorophenylisocyanate by an analogous procedure to that described in Example 1.

 1 H-NMR (CDCl₃): 6.73-6.88(m, 1H, H-arom.); 7.04-7.35(m, 5H, H-arom.); 7.56(d, 2H, H-arom.); 7.98-8.11(m, 1H, H-arom.); 8.22(d, 2H, H-arom.); 8.75-9.30(br.s., 2H, NH).

¹³C-NMR (CDCl₃): 106.56(CH-arom.); 107.75(CH-arom.); 115.67(CH-arom.); 116.74(CH-arom.); 120.03(CH-arom.); 121.21(CH-arom.); 126.08(CH-arom.); 128.82, 136.62, 141.95, 148.73, 151.95, 155.65, 160.38(C-arom.); 163.42(C=0).

Analysis for C₁₉H₁₃F₂N₃O₄

%C(calcd/found)	%Н	%N
59.22/59.07	3.40/3.49	10.91/10.83

Yield: 76% Melting temp.: 207-208°C

Example 6

1-(2,6-Difluorophenyl)-3-((4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 2,6-difluorophenylisocyanate by an analogous procedure to that described in Example 1.

¹H-NMR (CDCl₃): 6.95-7.26(m, 6H, H-arom.); 7.42-7.56(m, 2H, H-arom.); 8.01-8.23(m, 3H, H-arom.); 8.94-9.05(m, 2H, NH).

¹³C-NMR (CDCl₃): 111.77(CH-arom.); 116.82(CH-arom.); 120.06(CH-arom.); 121.18(CH-arom.); 126.19(CH-arom.); 127.11(CH-arom.); 137.31, 141.99, 148.49, 152.61, 155.65, 160.57(C-arom.); 163.61(C = 0).

Analysis for C₁₉H₁₃F₂N₃O₄

%C(calcd/found)	%Н	%N
59.22/59.10	3.40/3.55	10.91/10.78

Yield: 75% Melting temp.: 231-232°C

Example 7

1-(2-Chlorophenyl)-3-((4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 2-chlorophenylisocyanate by an analogous procedure to that described in Example 1.

Analysis for C₁₉H₁₄CIN₃O₄

%C(calcd/found)	%Н	%N	%CI
59.46/59.37	3.68/3.82	10.95/10.78	9.24/8.99

Yield: 63% Melting temp.: 195-197°C

Example 8

1-(4-Chlorophenyl)-3-((4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 4-chlorophenylisocyanate by an analogous procedure to that described in Example 1.

Analysis for C₁₈H₁₄CIN₃O₄

%C(calcd/found)	%Н	%N	%CI
59.46/59.37	3.68/3.77	10.95/10.84	9.24/9.02

Yield: 69% Melting temp.: 234-236°C

Example 9

1-(2,3-Dichlorophenyl)-3-((4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 2,3-dichlorophenylisocyanate by an analogous procedure to that described in Example 1.

Analysis for C₁₉H₁₃Cl₂N₃O₄

%C(calcd/found)	%Н	%N	%CI
54.56/54.50	3.13/3.31	10.05/9.78	16.95/16.91

Yield: 74% Melting temp.: 199-201°C

Example 10

1-(2,4-Dichlorophenyl)-3-((4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 2,4-dichlorophenylisocyanate by an analogous procedure to that described in Example 1.

Analysis for C₁₉H₁₃Cl₂N₃O₄

%C(calcd/found)	%Н	%N	%CI
54.56/54.49	3.13/3.21	10.05/9.80	16.95/16.59

Yield: 71% Melting temp.: 267-269°C

Example 11

1-(2,6-Dichlorophenyl)-3-((4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 2,6-dichlorophenylisocyanate by an analogous procedure to that described in Example 1.

Analysis for C₁₈H₁₃Cl₂N₃O₄

%C(calcd/found)	%Н	%N	%CI
54.56/54.39	3.13/3.20	10.05/9.92	16.95/16.81

Yield: 68% Melting temp.: 195-198°C

1-(3,4-Dichlorophenyl)-3-((4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 3,4-dichlorophenylisocyanate by an analogous procedure to that described in Example 1.

Analysis for C₁₉H₁₃Cl₂N₃O₄

%C(calcd/found)	%Н	%N	%CI
54.56/54.49	3.13/3.23	10.05/9.89	16.95/16.78

Yield: 80% Melting temp.: 179-180°C

Example 13

1-(3,5-Dichlorophenyl)-3-((4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 3,5-dichlorophenylisocyanate by an analogous procedure to that described in Example 1.

Analysis for C₁₉H₁₃Cl₂N₃O₄

%	C(calcd/found)	%Н	%N	%CI
5	4.56/54.48	3.13/3.30	10.05/10.01	16.95/17.24

Yield: 56% Melting temp.: 213-216°C

Example 14

1-(2-Methylphenyl)-3-((4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 2-methylphenylisocyanate by an analogous procedure to that described in Example 1.

Analysis for C₂₀H₁₇N₃O₄

%C(calcd/found)	%Н	%N
60.11/65.96	4.72/4.89	11.56/11.48

Yield: 59% Melting temp.: 112-116°C

Example 15

1-(4-Methylphenyl)-3-((4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 4-methylphenylisocyanate by an analogous procedure to that described in Example 1.

Analysis for C₂₀H₁₇N₃O₄

%C(calcd/found)	%Н	%N
66.11/66.02	4.72/4.87	11.56/11.40

Yield: 64% Melting temp.: 168-170°C

Example 16

1-(2,4-Dimethylphenyl)-3-((4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 2,4-dimethylphenylisocyanate by an analogous procedure to that described in Example 1.

Analysis for C₂₁H₁₉N₃O₄

%C(calcd/found)	%Н	%N
66.83/66.87	5.07/5.10	11.13/11.05

Yield: 73% Melting temp.: 165-169°C

Example 17

1-(2,6-Dimethylphenyl)-3-((4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 2,6-dimethylphenylisocyanate by an analogous procedure to that described in Example 1.

¹H-NMR (CDCl₃): 2.22(s, 6H, CH₃); 7.04-7.17(m, 7H, H-arom.); 7.57(m, 2H, H-arom.); 7.74(s, 1H, NH); 8.23(d, 2H, H-arom.); 8.87(s, 1H, NH).

¹³C-NMR (CDCl₃): $18.19(2x \text{ CH}_3)$; 116.61(CH-arom.); 119.54(CH-arom.); 121.08(CH-arom.); 126.07(CH-arom.); 127.67(CH-arom.); 135.53(CH-arom.); 125.93, 135.51, 137.95, 141.82, 147.87, 153.10(CH-arom.); 163.64(C = O).

Analysis for C21H19N3O4

%C(calcd/found)	%Н	%N
66.83/66.67	5.07/5.18	11.13/10.98

Yield: 68% Melting temp.: 249-250°C

Example 18

1-(3,5-Dimethylphenyl)-3-((4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 3,5-dimethylphenylisocyanate by an analogous procedure to that described in Example 1.

Analysis for C21H19N3O4

PCT/SK98/00019

%C(calcd/found)	%Н	%N
66.83/66.78	5.07/5.22	11.13/11.06

Yield: 58% Melting temp.: 145-147°C

Example 19

1-(2,6-Di-(methylethyl)-phenyl)-3-((4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 2,6-di-(methylethyl)phenylisocyanate by an analogous procedure to that described in Example 1.

¹H-NMR (CDCl₃): 1.18(d, 6H, 2xCH₃); 3.22(hept., 2H, 2xCH); 7.06-7.30(m, 7H, H-arom.); 7.56(d, 2H, H-arom.); 7.63(s, 1H, NH); 8.23(d, 2H, H-arom.); 8.78(s, 1H, NH).

 13 C-NMR (CDCl₃): 23.31(2xCH₃); 27.86(2xCH); 116.58(CH-arom.); 119.44(CH-arom.); 120.86(CH-arom.); 122.72(CH-arom.); 125.87(CH-arom.); 146.53(CH-arom.); 127.08, 132.14, 137.80, 141.83, 147.89, 154.10(C-arom.); 163.46(C=0).

Analysis for C₂₅H₂₇N₃O₄

%C(calcd/found)	%Н	%N
69.27/69.13	6.28/6.34	9.69/9.56

Yield: 88% Melting temp.: 208-210°C

Example 20

1-(2-Trifluoromethylphenyl)-3-((4'-nitrophenoxy)-phenyl)-urea

4'-Nitrophenoxy-aniline (1.0 g, 4.3 mmol), triphosgene (0.43 g, 1.44 mmol), triethylamine (0.6 ml, 4.3 mmol) are heated in toluene (15 ml) in a pressure tube at 80°C for 20 hours. Then, 2-trifluoromethylaniline (0.53 ml, 4.3 mmol) and triethylamine (0.6 ml, 4.3 mmol) in toluene (10 ml) are added. The mixture is heated at 80°C for 4 hours, then it is concentrated, and the product is isolated using chromatography on silica gel eluting with dichloromethane - methanol.

Analysis for C₂₀H₁₄F₃N₃O₄

%C(calcd/found)	%Н	%N
57.56/57.60	3.38/3.44	10.07/9.89

Yield: 67% Melting temp.: 201-203°C

1-(3-Trifluoromethylphenyl)-3-((4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 3-trifluoromethylaniline by an analogous procedure to that described in Example 20.

Analysis for C20H14F3N3O4

%C(calcd/found)	%Н	%N
57.56/57.66	3.38/3.45	10.07/9.96

Yield: 72% Melting temp.: 208-211°C

Example 22

1-(4-Trifluoromethylphenyl)-3-((4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 4-trifluoromethylaniline by an analogous procedure to that described in Example 20.

Analysis for C₂₀H₁₄F₃N₃O₄

%C(calcd/found)	%H	%N
57.56/57.48	3.38/3.41	10.07/10.00

Yield: 45% Melting temp.: 185-189°C

Example 23

1-(2-Pyridyl)-3-(4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 2-pyridylamine by an analogous procedure to that described in Example 20.

Analysis for C₁₈H₁₄N₄O₄

%C(calcd/found)	%Н	%N
61.71/61.67	4.03/4.06	15.99/15.79

Yield: 76% Melting temp.: 143-146°C

Example 24

1-(3-Pyridyl)-3-(4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 3-pyridylamine by an analogous procedure to that described in Example 20.

Analysis for $C_{18}H_{14}N_4O_4$

%C(calcd/found)	%Н	%N
61.71/61.58	4.03/4.21	15.99/15.87

Yield: 69% Melting temp.: 177-179°C

Example 25

1-(4-Pyridyl)-3-(4'-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 4-pyridylamine by an analogous procedure to that described in Example 20.

Analysis for C₁₈H₁₄N₄O₄

%C(calcd/found)	%Н	%N
61.71/61.66	4.03/4.11	15.99/15.87

Yield: 72% Melting temp.: 126-127°C

Example 26

1-(1-Naphthyl)-3-(4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 1-naphthylisocyanate by an analogous procedure to that described in Example 1.

Analysis for C₂₃H₁₇N₃O₄

%C(calcd/found)	%Н	%N
69.17/69.23	4.29/4.41	10.52/10.46

Yield: 82% Melting temp.: 117-119°C

Example 27

1-(2-Naphthyl)-3-(4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 1-naphthylamine by an analogous procedure to that described in Example 20.

Analysis for C23H17N3O4

%C(calcd/found)	%Н	%N
69.17/69.09	4.29/4.36	10.52/10.38

Yield: 69% Melting temp.: 103-106°C

1-(1-Adamantyl)-3-(4 '-nitrophenoxy)-phenyl)-urea

The title compound was prepared from 1-adamantylamine by an analogous procedure to that described in Example 20.

Analysis for C₂₃H₂₅N₃O₄

%C(calcd/found)	%Н	%N
67.80/67.65	6.18/6.23	10.31/10.16

Yield: 61% Melting temp.: 143-146°C

Example 29

1-(4-Nitrophenyl)-3-((4 '-nitrophenylthio)-phenyl)-urea

A solution of 4-nitrophenylisocyanate in diethylether (20 ml) is added dropwise to a solution of 4'-nitrophenylthio-aniline (2.46 g, 0.01 mol) in a mixture of diethyelther (20 ml) and tetrahydrofurane (20 ml) at laboratory temperature, and the mixture is stirred for 16 hours. The resulting product is aspirated, washed with diethylether (20 ml). The crude product is purified by chromatography on silica gel eluting with dichloromethane and methanol.

Analysis for C₁₉H₁₄N₄O₅S

%C(calcd/found)	%Н	%N	S%
55.61/55.52	3.44/3.49	13.65/13.59	7.81/7.67

Yield: 56% Melting temp.: 164-167°C

Example 30

1-(2-Fluorophenyl)-3-((4'-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 2-fluorophenylisocyanate by an analogous procedure to that described in Example 29.

Analysis for C₁₉H₁₄FN₃O₃S

%C(calcd/found)	%Н	%N	S%
59.52/59.41	3.68/3.77	10.96/11.04	8.36/8.41

Yield: 61% Melting temp.: 274-277°C

1-(4-Fluorophenyl)-3-((4 '-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 4-fluorophenylisocyanate by an analogous procedure to that described in Example 29.

Analysis for C₁₉H₁₄FN₃O₃S

%C(calcd/found)	%Н	%N	S%
59.52/59.46	3.68/3.71	10.96/10.87	8.36/8.18

Yield: 59% Melting temp.: 287-290°C

Example 32

1-(2,4-Difluorophenyl)-3-((4'-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 2,4-difluorophenylisocyanate by an analogous procedure to that described in Example 29.

Analysis for C₁₉H₁₃F₂N₃O₃S

%C(calcd/found)	%H	%N	S%
56.86/56.78	3.26/3.39	10.47/10.41	7.99/7.86

Yield: 57% Melting temp.: 268-271°C

Example 33

1-(2,5-Difluorophenyl)-3-((4'-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 2,5-difluorophenylisocyanate by an analogous procedure to that described in Example 29.

Analysis for C₁₈H₁₃F₂N₃O₃S

%C(calcd/found)	%H	%N	S% -
56.86/56.76	3.26/3.37	10.47/10.35	7.99/8.05

Yield: 64% Melting temp.: 259-261°C

Example 34

1-(2,6-Difluorophenyl)-3-((4'-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 2,6-difluorophenylisocyanate by an analogous procedure to that described in Example 29.

Analysis for C₁₉H₁₃F₂N₃O₃S

%C(calcd/found)	%Н	%N	S%
56.86/56.69	3.26/3.34	10.47/10.43	7.99/7.81

Yield: 68% Melting temp.: 263-265°C

Example 35

1-(2-Chlorophenyl)-3-((4 '-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 2-chlorophenylisocyanate by an analogous procedure to that described in Example 29.

Analysis for C₁₉H₁₄CIN₃O₃S

%C(calcd/found)	%Н	%N	%CI	S%
57.07/57.01	3.53/3.62	10.51/11.46	8.87/8.65	8.02/7.95

Yield: 65% Melting temp.: 231-233°C

Example 36

1-(4-Chlorophenyl)-3-((4'-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 4-chlorophenylisocyanate by an analogous procedure to that described in Example 29.

Analysis for C₁₉H₁₄CIN₃O₃S

%C(calcd/found)	%Н	%N	%CI	S%
57.07/56.97	3.53/3.57	10.51/10.45	8.87/8.81	8.02/7.86

Yield: 63% Melting temp.: 206-209°C

Example 37

1-(2,3-Dichlorophenyl)-3-((4'-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 2,3-dichlorophenylisocyanate by an analogous procedure to that described in Example 29.

Analysis for C₁₉H₁₃Cl₂N₃O₃S

%C(calcd/found)	%Н	%N	%CI	S%
52.55/52.46	3.02/3.07	9.68/9.62	16.33/16.27	7.38/7.50

Yield: 75% Melting temp.: 157-159°C

1-(2,4-Dichlorophenyl)-3-((4 '-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 2,4-dichlorophenylisocyanate by an analogous procedure to that described in Example 29.

Analysis for C₁₉H₁₃Cl₂N₃O₃S

%C(calcd/found)	%Н	%N	%CI	S%
52.55/52.57	3.02/3.21	9.68/9.54	16.33/16.35	7.38/7.28

Yield: 57% Melting temp.: 174-178°C

Example 39

1-(2,6-Dichlorophenyl)-3-((4 '-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 2,6-dichlorophenylisocyanate by an analogous procedure to that described in Example 29.

Analysis for C₁₉H₁₃Cl₂N₃O₃S

%C(calcd/found)	%Н	%N	%CI	S%
52.55/52.51	3.02/3.07	9.68/9.73	16.33/16.25	7.38/7.19

Yield: 83% Melting temp.: 164-167°C

Example 40

1-(3,4-Dichlorophenyl)-3-((4 '-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 3,4-dichlorophenylisocyanate by an analogous procedure to that described in Example 29.

Analysis for C₁₉H₁₃Cl₂N₃O₃S

%C(calcd/found)	%Н	%N	%CI	S%
52.55/52.47	3.02/3.14	9.68/9.57	16.33/16.09	7.38/7.24

Yield: 57% Melting temp.: 238-240°C

Example 41

1-(3,5-Dichlorophenyl)-3-((4 '-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 3,5-dichlorophenylisocyanate by an analogous procedure to that described in Example 29.

Analysis for C₁₉H₁₃Cl₂N₃O₃S

%C(calcd/found)	%Н	%N	%CI	S%
52.55/52.47	3.02/3.11	9.68/9.59	16.33/16.21	7.38/7.41

Yield: 67% Melting temp.: 185 - 188°C

Example 42

1-(2-Methylphenyl)-3-((4 '-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 2-methylphenylisocyanate by an analogous procedure to that described in Example 29.

Analysis for $C_{20}H_{17}N_3O_3S$

%C(calcd/found)	%Н	%N	S%
63.31/63.22	4.52/4.66	11.07/10.79	8.45/8.34

Yield: 78% Melting temp.: 229-234°C

Example 43

1-(4-Methylphenyl)-3-((4 '-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 4-methylphenylisocyanate by an analogous procedure to that described in Example 29.

Analysis for C₂₀H₁₇N₃O₃S

%C(calcd/found)	%Н	%N	S%
63.31/63.25	4.52/4.63	11.07/11.12	8.45/8.35

Yieiu: 73% Melting temp.: 163-166°C

Example 44

1-(2,4-Dimethylphenyl)-3-((4 '-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 2,4-dimethylphenylisocyanate by an analogous procedure to that described in Example 29.

Analysis for C21H19N3O3S

%C(calcd/found)	%Н	%N	S%
64.11/64.08	4.87/4.83	10.68/10.59	8.15/7.95

Yield: 65% Melting temp.: 209-213°C

1-(2,6-Dimethylphenyl)-3-((4 '-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 2,6-dimethylphenylisocyanate by an analogous procedure to that described in Example 29.

Analysis for C₂₁H₁₉N₃O₃S

%C(calcd/found)	%Н	%N	S%
64.11/63.97	4.87/4.83	10.68/10.47	8.15/8.01

Yield: 72% Melting temp.: 264-267°C

Example 46

1-(3,5-Dimethylphenyl)-3-((4 '-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 3,5-dimethylphenylisocyanate by an analogous procedure to that described in Example 29.

Analysis for C₂₁H₁₉N₃O₃S

%C(calcd/found)	%Н	%N	S%
64.11/64.04	4.87/4.99	10.68/10.63	8.15/8.01

Yield: 68% Melting temp.: 194-196°C

Example 47

1-(2,6-Dimethylethyl)-phenyl-((4'-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 2,6-(methylethyl)-phenylisocyanate by an analogous procedure to that described in Example 29.

Analysis for C₂₆H₂₇N₃O₃S

%C(calcd/found)	%Н	%N	S%
66.79/66.72	6.06/6.17	9.35/9.27	7.12/6.96

Yield: 72% Melting temp.: 175-177°C

Example 48

1-(2-Trifluoromethylphenyl)-3-((4 '-nitrophenylthio)-phenyl)-urea

4'-Nitrophenylthio-aniline (1.06 g, 4.3 mmol), triphosgene (0.43 g, 1.44 mmol), triethylamine (0.6 g, 4.3 mmol) in toluene (15 ml) are heated in a pressure tube at 80°C for 20 hours. Subsequently, 2-trifluoromethylaniline (0.53 ml, 4.3 mmol)

and triethylamine (0.6 ml, 4.3 mmol) in toluene (10 ml) are added. The mixture is heated at 80°C for 4 hours, then concentrated, and the product is separated by chromatography on silica gel eluting with dichloromethane-methanol.

Analysis for C₂₀H₁₄F₃ N₃O₃S

%C(calcd/found)	%Н	%N	S%
55.43/55.38	3.26/3.39	9.70/9.71	7.40/7.35

Yield: 52% Melting temp.: 257-261°C

Example 49

1-(3-Trifluoromethylphenyl)-3-((4 '-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 3-trifluorophenylisocyanate by an analogous procedure to that described in Example 48.

Analysis for C₂₀H₁₄F₃ N₃O₃S

%C(calcd/found)	%Н	%N	S%
55.43/55.21	3.26/3.38	9.70/9.53	7.40/7.31

Yield: 65% Melting temp.: 241-244°C

Example 50

1-(4-Trifluoromethylphenyl)-3-((4 '-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 4-trifluorophenylisocyanate by an analogous procedure to that described in Example 48.

Analysis for $C_{20}H_{14}F_3N_3O_3S$

%C(calcd/found)	%Н	%N	S%
55.43/55.37	3.26/3.33	9.70/9.81	7.40/7.28

Yield: 51% Melting temp.: 254-257°C

Example 51 -

1-(2-Pyridyl)-3-((4 '-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 2-pyridylamine by an analogous procedure to that described in Example 48.

Analysis for C₁₈H₁₄ N₄O₃S

%C(calcd/found)	%Н	%N	S%
59.01/58.86	3.85/3.91	15.29/15.23	8.75/8.80

Yield: 48% Melting temp.: 278-281°C

Example 52

1-(3-Pyridyl)-3-((4 '-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 3-pyridylamine by an analogous procedure to that described in Example 48.

19

Analysis for C₁₈H₁₄ N₄O₃S

%C(calcd/found)	%Н	%N	S%
59.01/58.99	3.85/3.99	15.29/15.25	8.75/8.49

Yield: 63% Melting temp.: 261-264°C

Example 53

1-(4-Pyridyl)-3-((4 '-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 4-pyridylamine by an analogous procedure to that described in Example 48.

Analysis for $C_{18}H_{14}N_4O_3S$

%C(calcd/found)	%Н	%N	S%
59.01/58.92	3.85/3.76	15.29/15.32	8.75/8.67

Yield: 69% Melting temp.: 190-192°C

Example 54

1-(1-Naphthyl)-3-((4'-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 1-naphthylisocyanate by an analogous procedure to that described in Example 29.

Analysis for C₂₃H₁₇N₃O₃S

%C(calcd/found) %н	%N	S%
66.49/66.53	4.13/4.21	10.12/10.17	7.70/7.54

Yield: 56% Melting temp.: 164-168°C

1-(2-Naphthyl)-3-((4 '-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 2-naphthylamine by an analogous procedure to that described in Example 48.

Analysis for C23H17N3O3S

%C(calcd/found)	%Н	%N	S%
66.49/66.47	4.13/4.25	10.12/10.06	7.70/7.57

Yield: 69% Melting temp.: 142-147°C

Example 56

1-(1-Adamantyl)-3-((4 '-nitrophenylthio)-phenyl)-urea

The title compound was prepared from 1-adamantylamine by an analogous procedure to that described in Example 48.

Analysis for C₂₃H₂₅N₃O₃S

%C(calcd/found)	%Н	%N	S%
65.22/65.17	5.95/6.03	9.93/10.02	7.56/7.38

Yield: 52% Melting temp.: 264-267°C

Example 57

1-(2,4-Difluorophenyl)-3-((4 '-aminophenoxy)-phenyl)-urea

One gram of compound 4 is dissolved in methanol (20 ml) and 0.1 g of 10% palladium on charcoal is added. The mixture is stirred under hydrogen atmosphere (at atmospheric pressure) for 20 hours. Subsequently, 100 ml methanol is added and the catalyst is removed by filtering. The product is then obtained by concentrating the methanolic solution.

Analysis for C₁₉H₁₅F₂N₃O₂

%C(calcd/found)	%Н	%N
64.22/64.09	4.25/4.29	11.83/12.01

Yield: 88% Melting temp.: 248-251°C

Example 58

1-(2,5-Dichlorophenyl)-3-((4 '-aminophenoxy)-phenyl)-urea

The title compound was prepared from compound 9 by an analogous procedure to that described in Example 57.

Analysis for C₁₉H₁₅Cl₂ N₃O₂

%C(calcd/found)	%Н	%N	%CI
58.78/58.45	3.89/3.94	10.82/10.78	18.26/18.11

Yield: 91% Melting temp.: 201-204°C

Example 59

1-(2,6-Dimethylphenyl)-3-((4 '-aminophenoxy)-phenyl)-urea

The title compound was prepared from compound 17 by an analogous procedure to that described in Example 57.

Analysis for C₂₁H₂₁N₃O₂

%C(calcd/found)	%Н	%N
72.60/72.45	6.09/6.13	12.10/12.02

Yield: 85% Melting temp.: 225-227°C

Example 60

1-(2,6-Di(methylethyl)-phenyl)-3-((4 '-aminophenoxy)-phenyl)-urea

The title compound was prepared from compound 19 by an analogous procedure to that described in Example 57.

¹H-NMR (CDCl₃): 1.15(d, 6H, 2xCH₃); 3.15(hept., 2H, 2xCH); 4.86(s, 2H, NH); 6.57(d, 2H, H-arom.); 6.72(d, 2H, H-arom.); 6.81(d, 2H, H-arom.); 7.10-1.28(m, 3H, H-arom.); 7.36(d, 2H, H-arom.); 7.56(s, 1H, HN); 8.58(br.s., 1H, NH).

 13 C-NMR (CDCl₃): 23.43(2xCH₃); 27.93(2xCH); 114.63(CH-arom.); 117.55(CH-arom.); 119.09(CH-arom.); 199.43(CH-arom.); 122.79(CH-arom.); 127.11(CH-arom.); 127.11(CH-arom.); 132.40, 134.86, 144.77, 146.61, 146.89, 152.88(C-arom.); 154.36(C=0).

Analysis for C₂₅H₂₉N₃O₂

%C(calcd/found)	%Н	%N
74.41/74.54	7.24/7.33	10.41/10.34

Yield: 90% Melting temp.: 219-221°C

1-(2,4-Difluorophenyl)-3-((4 '-aminophenylthio)-phenyl)-urea

The title compound was prepared from compound 32 by an analogous procedure to that described in Example 57.

Analysis for C₁₉H₁₅F₂ N₃OS

%C(calcd/found)	%Н	%N	%S
61.44/61.56	4.07/4.18	11.31/11.15	8.63/8.51

Yield: 79% Melting temp.: exceeding 300°C

Example 62

1-(2,3-Dichlorophenyl)-3-((4'-aminophenylthio)-phenyl)-urea

The title compound was prepared from compound 37 by an analogous procedure to that described in Example 57.

Analysis for C₁₉H₁₅Cl₂ N₃OS

%C(calcd/found)	%Н	%N	%CI	%S
56.44/56.35	3.74/3.80	10.39/10.41	17.54/17.57	7.93/7.59

Yield: 88% Melting temp.: 259-261°C

Example 63

1-(2,6-Dimethylphenyl)-3-((4 '-aminophenylthio)-phenyl)-urea

The title compound was prepared from compound 45 by an analogous procedure to that described in Example 57.

Analysis for C₂₁H₂₁N₃OS

%C(calcd/found)	%Н	%N	%S
69.39/69.32	5.82/5.93	11.56/11.49	8.28/8.54

Yield: 94% Melting temp.: 198-202°C

Example 64

1-(2,6-Di-(methylethyl)-phenyl-3-((4 '-aminophenylthio)-phenyl)-urea

The title compound was prepared from compound 47 by an analogous procedure to that described in Example 57.

Analysis for C₂₅H₂₈N₃OS

%C(calcd/found)	%Н ,	%N	%S
71.56/71.55	6.97/6.89	10.01/10.11	7.64/7.58

Yield: 83% Melting temp.: 267-271°C

Tests

The biological activity of the substances was evaluated based on the in vitro inhibition of acylCoa:cholesterol acyltransferase (ACAT) activity. The enzyme was obtained from the microsomal fraction of rat liver cells and rabbit intestinal mucosa of animals fed with cholesterol. The substrates for the enzyme reaction included exogenous oleoyl co-enzyme A and endogenous cholesterol. ¹⁴C-oleoyl co-enzyme A conversion to ¹⁴C-cholesteryl oleate was monitored. From the mixture of extracted lipids, cholesteryl oleate was separated using thin-layer chromatography, and was quantified radiometrically. ACAT specific activity was expressed as the amount of cholesteryl oleate formed per minute per mg microsomal protein.

Table 1 shows percentages of ACAT inhibition in the rat liver and the rabbit intestinal mucosa at various concentrations of the substances tested. Efficiency was calculated as compared to enzyme activity measured in the presence of 1% dimethylsulfoxide used as the solvent to prepare solutions of the substances tested.

Table 1
Inhibitory effect on rat liver and rabbit intestinal mucosa ACAT activity

No	Efficiency	(%)	Concentration	No	Efficiency	(%)	Concentration
	liver	mucosa	(μΜ)	_	liver	mucosa	(μΜ)
1	0	46	2	33	0	16	2
.2	15	32	2	34	11	25	2
3	0	24	2	35	20	26	2
4	37	55	2	36	12	21	2
5	49	58	2	37	0	0	2
6	0	42	2	38	12	16	2
7	0	0	2	39	15	21	2
8	17	13	2	40	0	20	2
9	58	51	2	41	0	0	2
10	10	26	2	42	27	31	2
11	20	25	2	43	21	32	2
12	11	57	2	44	19	31	2
13	0	0	2.	45	23	34	2
14	0	0	2	46	18	27	2
15	0	0	2	47	88	71	2
16	0	0	2	48	25	38	2
17	41	65	2	49	34	45	2
18	0	0	2	50	23	25	2
19	50	67	2	51	48	46	2
20	46	42	2	52	45	36	2
21	38	45	2	53	53	35	2
22	25	18	2	54	24	36	2
23	26	34	2	55	16	31 -	2
24	0	0	2	56	45	56	2
25	11	17.	2	57	53	64	2
26	14	22	2	58	5 5	46	2

27	0	12	2	59	38	62	2
28	43	58	2	60	68	64	2
29	0	34	2	61	22	25	2
30	0	23	2	62	15	26	2
31	25	27	2	63	21	29	2
32	16	23	2	64	56	67	2

Industrial Applicability

The compounds according to the invention and the method of preparing thereof can be used in pharmaceutical production to make preparations with inhibitory effect on the enzyme acyl co-enzyme A and on cholesterol absorption in hypercholesterolemia.

CLAIMS

1. 1,3-Disubstituted ureas of general formula i,

wherein R^1 is 4-nitrophenyl, 2-fluorophenyl, 4-fluorophenyl, 2,4-difluorophenyl, 2,5-difluorophenyl, 2,6-difluorophenyl, 2-chlorophenyl, 4-chlorophenyl, 2,3-dichlorophenyl, 2,4-dichlorophenyl, 3,5-dichlorophenyl, 2-methylphenyl, 4-methylphenyl, 2,4-dimethylphenyl, 2,6-dimethylphenyl, 3,5-dimethylphenyl, 2,6-di(methylethyl)phenyl, 2-trifluoromethylphenyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 1-naphthyl, 2-naphthyl, 1-adamantyl, and R^2 is nitro, and X=0, S; and for R^1 being 2,4-difluorophenyl, 2,3-dichlorophenyl, 2,6-dimethylphenyl, 2,6-di(methylethyl)-phenyl R^2 is amino, and X=0, S.

2. A method of preparing 1,3-disubstituted ureas of general formula I according to claim 1, characterized in that an amine of general formula II,

$$H_2N$$

WO 99/32437 27 PCT/SK98/00019

wherein R² and X have the above defined meanings, is treated with an isocyanate of general formula III,

$$R^1 - N = C = O$$

wherein R¹ has the above defined meaning, said isocyanate optionally being formed in situ from appropriate reactants,

thus giving the above defined urea.

- 3. The method of claim 2, characterized in that when said isocyanate is formed in situ, the reaction is carried out in toluene at about 80°C.
- 4. The method of any of the preceding claims, characterized in that the obtained 1,3-disubstituted urea of general formula I wherein R² means nitro, is treated with hydrogen in the presence of palladium catalyst to reduce the nitro group to the amino group.
- 5. 1,3-Disubstituted ureas of general formula I, according to claim 1 and/or prepared by the method of claim 2 to 4, characterized in that they have inhibitory effect on the acyl co-enzyme A:cholesterol acyltransferase (ACAT) enzyme.

AMENDED CLAIMS

[received by the International Bureau on 08 June 1999 (08.06.99); original claim 1 amended remaining claims unchanged (2 pages)]

1. 1,3-Disubstituted ureas of general formula I,

$$R^1$$
 NH
 NH
 $X=0, S$
 $R^2=NO_2, NH_2$

2,5-difluorophenyl, 2,6-2-fluorophenyl, 2,4-difluorophenyl, wherein R1 is 2,6-dichlorophenyl, 3,5-2-chlorophenyl, 2,3-dichlorophenyl, difluorophenyl, 2,6dichlorophenyl, 2-methylphenyl, 4-methylphenyl, 2,4-dimethylphenyl, dimethylphenyl, 3,5-dimethylphenyl, 2,6-di(methylethyl)phenyl, 2-trifluoromethylphenyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl, 2-pyridyl, 3-pyridyl, 4pyridyl, 1-naphthyl, 2-naphthyl, 1-adamantyl, and R^2 is nitro, and X = O; wherein R¹ is 4-nitrophenyl, 2-fluorophenyl, 4-fluorophenyl, 2,4-difluorophenyl, 2,6-difluorophenyl, 2-chlorophenyl, 4-chlorophenyl, 2.3-2,5-difluorophenyl, dichlorophenyl, 2,4-dichlorophenyl, 2,6-dichlorophenyl, 3,4-dichlorophenyl, 3,5dichlorophenyl, 2-methylphenyl, 4-methylphenyl, 2,4-dimethylphenyl, 2,6dimethylphenyl, 3,5-dimethylphenyl, 2,6-di(methylethyl)phenyl, 2-trifluoromethylphenyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl, 2-pyridyl, 3-pyridyl, 4pyridyl, 1-naphthyl, 2-naphthyl, 1-adamantyl, and R^2 is nitro, and X = S; and for R1 being 2,4-difluorophenyl, 2,3-dichlorophenyl, 2,6-dimethylphenyl, 2,6di(methylethyl)-phenyl R^2 is amino, and X = 0, S.

2. A method of preparing 1,3-disubstituted ureas of general formula I according to claim 1, characterized in that an amine of general formula II,

$$H_2N$$

II

wherein R² and X have the above defined meanings, is treated with an isocyanate of general formula III,

$$R^1 - N = C = O \qquad III$$

wherein R¹ has the above defined meaning, said isocyanate optionally being formed in situ from appropriate reactants,

thus giving the above defined urea.

- 3. The method of claim 2, characterized in that when said isocyanate is formed in situ, the reaction is carried out in toluene at about 80°C.
- 4. The method of any of the preceding claims, characterized in that the obtained 1,3-disubstituted urea of general formula I wherein R² means nitro, is treated with hydrogen in the presence of palladium catalyst to reduce the nitro group to the amino group.
- 5. 1,3-Disubstituted ureas of general formula I, according to claim 1 and/or prepared by the method of claim 2 to 4, characterized in that they have inhibitory effect on the acyl co-enzyme A:cholesterol acyltransferase (ACAT) enzyme.

INTERNATIONAL SEARCH REPORT

h .atlonal Application No

		· · · · · · · · · · · · · · · · · · ·	
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C07C275/36 C07C323/44 C07D213	3/75 //A61K31/17,A61K3	1/44
	International Patent Classification (IPC) or to both national classif	ication and IPC	
Minimum do	cumentation searched (classification system followed by classifical ${\tt C07C-C07D-A61K}$	ation symbols)	
	ion searched other than minimum documentation to the extent that		
Electronic d	ata base consulted during the international search (name of data t	pase and, where practical, search terms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		The fields searched Relevant to claim No. 1, 2 1 1 1 1 1 1 1 1 1 1 1 1 1
Category °	Citation of document, with indication, where appropriate, of the r	elevant passages	Relevant to claim No.
X	US 3 284 433 A (H. J. BECKER ET 8 November 1966 see claims 6,8 see examples	AL)	1,2
Χ .	EP 0 709 225 A (NIPPON PAPER IND CO) 1 May 1996 see page 15, line 35	DUSTRIES	1
Furt	er documents are listed in the continuation of box C.	Patent family members are listed	in annex.
"A" docume consid "E" earlier of liling d "L" docume which citation "O" docume other r "P" docume	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another nor other special reason (as specified) ant referring to an oral disclosure, use, exhibition or	"Y" document of particular relevance; the c carnot be considered to involve an in- document is combined with one or mo	the application but every underlying the laimed invention be considered to cument is taken alone laimed invention ventive step when the ore other such docusts to a person skilled
	actual completion of the international search 1 March 1999	Date of mailing of the international sec	arch report
L	nailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Authorized officer Van Geyt, J	

INTERNATIONAL SEARCH REPORT

information on patent family members

I. lational Application No PCT/SK 98/00019

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 3284433	A	08-11-1966	CH DE	459174 A 1468337 A	28-11-1968
			FR GB	1469459 A 1068887 A	10-05-1967
EP 0709225	Α	01-05-1996	JP JP CA	8118806 A 8156407 A 2161376 A	14-05-1996 18-06-1996 28-04-1996
			DE DE US	69503864 D 69503864 T 5710094 A	10-09-1998 18-03-1999 20-01-1998