Examining the Immunological and Transcriptional Response upon SARS-CoV-2 Infection using scRNA-Seq

Madeline Iseminger, Trevor Kwan, Jackson Moore, Yilin Qiu

Project Outline

- 1. Background: Dynamics and biases of SARS-CoV-2 infection
- 2. Dataset + Aims: scRNA-Sequencing of SARS-CoV-2 infection in 54 patients
- 3. Methods: Our statistical approach
- 4. Results: Immunological and transcriptional responses
- **5.** Considerations: Limitations and future directions
- 6. Conclusion

Background:

- The <u>likelihood</u> and <u>severity</u> of SARS-CoV-2 infection is associated with several different factors:
 - Patient age
 - Comorbidities (obesity, diabetes, hypertension)
 - Socioeconomic inequities
 - Patient Sex
- A study published in the New England Journal of Medicine last year screened nearly 10000 Icelandic individuals for SARS-CoV-2 infection:
 - 16.7% of males tested positive
 - 11% of females tested positive
- Jin et al. in 2020 found that:
 - Males tended to have more serious complications from infection
 - Males accounted for 2.4x more deaths than females in a cohort of patients from China
- Elgendy et al 2020 reports that:
 - The outbreak in Italy saw 1.7x more deaths in males than females

Background:

- Potential explanations for increased morbidity and mortality in males:
 - Higher expression of <u>angiotensin-converting enzyme-2 (ACE2)</u> receptor; entry receptor for SARS-CoV-2
 - <u>Lifestyle & behaviour:</u> studies report that men are less likely to follow preventative and social distancing measures; increased smoking and alcohol consumption in males, etc.
 - <u>Sex-based immmunological differences:</u> immunological features of X and Y chromosomes

Background:

- Sex-based immunological differences that may contribute to SARS-CoV-2 infection rates:
 - Decreased expression of CD200R, a receptor on monocytes and lymphocytes, in turn promotes Type 1 IFN response. Female mice with limited CD200R had reduced mortality upon hepatitis coronavirus infection
 - Sex-based genes implicated in differential immune and humoral responses: Human leucocytes antigen (HLA), IL-4, IL-10, IL-12 receptor
 - Cell-type specific responses to SARS-CoV-2 infection: male mice were found to have more abundant inflammatory cell-types (macrophages and neutrophils) and increased mortality
 - Estrogen receptor signaling associated decreased mortality
 - o <u>Increased humoral response</u> in severe female covid patients

Dataset

scRNA-Seq data:

Bost et al. 2021, <u>Deciphering the State of Immune Silence in Fatal COVID-19 Patients</u>, <u>Nature Communications</u>

54 scRNA-Seq samples from 36 patients

- Separated by: sex, tissue source (blood or lung), COVID-severity
- Limitations of dataset: 9 female patients, 27 male patients. Only 1 female control

Characteristics	Healthy controls	Mild patients	Severe patients (ICU)
	N = 5	N = 10	N = 21
Anagraphic			
Age, yr: median (IQR)*	66 (64-73)	69 (56-80)	67 (58-70)
Male, no. (%)	4 (80)	6 (60)	17 (81)
Coexisting disorder, no.			
(%)			
Any	2 (40)	10 (100)	17 (81)
Obesity	0 (0)	2 (22)	3 (14)
Hypertension	2 (40)	10 (100)	11 (52)
Diabetes	0 (0)	3 (30)	7 (33)
Chronic obstructive	0 (0)	2 (20)	1 (5)
pulmonary disease			
Cardiovascular disease	0 (0)	5 (50)	3 (14)
Chronic kidney disease	0 (0)	2 (20)	1 (5)
Active malignancies	0 (0)	0 (0)	2 (10)

<u>Aims</u>

- 1. Determine the top differentially expressed genes in each immune cell type cluster between male and female patients across SARS-CoV-2 virus status.
 - Subset by disease severity: mild, severe, and healthy
 - Subset by T-cells, B-cells, NK cells, and Neutrophils
- 2. Determine the top differentially expressed genes in each immune cell type cluster between male and female patients across tissue type.
 - Subset by tissue type: Blood and Lavage/BAL (lung)
 - Subset by T-cells, B-cells, NK cells, and Neutrophils
- Examine what immunological pathways may be differentially implicated between sex
 - Perform GO enrichment on DE genes from aim 2

Methods & Workflow

Normalizing and Scaling Data

Normalizing against sequencing depth

Differential Gene Expression

Comparing DE across sex within different tissues and covid severity

Quality Control

Merging samples and filtering low-quality cells via Seurat

Clustering Cell-Types

UMAP/tSNE clustering and cell marker identification

GO Enrichment

Pathway enrichment of genes DE across sex

scRNA Filtering Parameters

Single cell RNA seq technology combines individual cells with barcoded microparticles within small droplets

Need to consider:

- Empty droplets
- Doublets (droplets with more than one cell)
- Dying cells
- Red blood cells

Cell-Level Filtering: Empty droplets

Droplets with no cells are expected to have very low counts/transcripts. We can filter these out by setting:

- The number of transcripts per cell (nUMI) > 500
- The number of expressed genes per cell > 250

Cell-Level Filtering: Dying Cells and Red Blood Cells

Mitochondrial expressed genes are enriched in dying or apoptotic cells.

Can filter these out by removing cells with
20% mitochondrial gene expression

Red blood cells lack a nucleus and dont actively express genes. They should thus have a low gene:count ratio.

Cells < 0.80 log10 Genes per UMI removed

Gene-Level Filtering: Lowly-expressed genes

Genes with low expression can also be removed as they are:

- Unlikely to provide statistically/biologically significant differential gene expression
- Unlikely to provide clustering information for the cell types

We filtered these out by removing genes that were expressed in less than 10 cells per sample

Normalization and Scaling

After filtering, counts were **normalized** using a regular negative binomial model:

- Based off sequencing depth (# of transcripts per cell)
- Log transformed

Then were **scaled** using a linear transformation:

- Shift the expression of each gene to have a mean of 0 across cells and a variance of 1 across cells
- This removes the impact of highly expressed genes washing out the signal of lowly expressed genes and limits variation from technical noise

<u>Finding differentially expressed features (cluster biomarkers)</u>

- Find markers for every cluster compared to all remaining cells
- 5149 biomarkers were identified across 13 clusters

Expression probability distributions across clusters

Visualize gene expression

Expression heatmap for given cells and features

Assigning cell type identity to clusters

Cluster ID	Cell Type
0	Neutrophils (1)
1	Neutrophils (2)
2	Monocytes (1)
3	Macrophages (1)
4	Neutrophils (3)
5	Neutrophils (4)
6	T cells, NK-cells
7	Macrophages (2)
8	Monocytes (2)
9	Neutrophils (5)
10	Neutrophils (6)
11	Neutrophils (7)
12	Epithelial cells
13	B cells

Cell-Type Clustering

Different cell types present in different tissues

• Similar cell types seen in different sexes (bias towards male with cell depth)

<u>Identifying differentially expressed genes across COVID</u> <u>severity</u>

Identify differentially expressed genes between male and female patients across **COVID** severity type (severe vs. mild. healthy) and within cell types.

Clinic status: "Severe COVID", "Mild COVID", "Healthy control"

Cell type: "T_cells_NK_cells", "B_cells"

<u>Identifying differentially expressed genes across tissue</u> <u>type</u>

Identify differentially expressed genes between male and female patients across **tissue type** (lavage fluid vs. blood) and within cell types.

Tissue type: "BAL", "Blood"

Cell type: "T_cells_NK_cells", "B_cells"

Clinic status: Severe Covid

					a .	
	p_val <dbl></dbl>	avg_log2FC <dbl></dbl>	pct.1 <dbl></dbl>	pct.2 <dbl></dbl>	p_val_adj <dbl></dbl>	
RLIM	0.0003237115	0.6233978	0.200	0.000	1	
SLC25A5	0.0013358515	-0.6913124	0.333	0.644	1	
GTF2H5	0.0017815939	-0.5469001	0.000	0.153	1	
GBP4	0.0021245587	0.6011261	0.150	0.000	1	
CHMP4B	0.0021764795	0.5230262	0.250	0.051	1	
MPRIP	0.0023689293	0.5419930	0.283	0.068	1	
HARS	0.0033635147	-0.4115142	0.000	0.136	1	
TTC7A	0.0037524275	-0.5357617	0.017	0.169	1	
SNRPC	0.0038195849	-0.7454215	0.083	0.288	1	
RBMX2	0.0038809497	-0.4987613	0.017	0.169	1	

Clinic status: Mild Covid

	p_val <dbl></dbl>	avg_log2FC <dbl></dbl>	pct.1 <dbl></dbl>	pct.2 <dbl></dbl>	p_val_ad <dbl:< th=""></dbl:<>
DNAJC21	3.405102e-05	0.9330482	0.477	0.070	0.67080
TMED5	9.244106e-04	-0.9471448	0.023	0.279	1.00000
ALG5	1.512698e-03	-0.6946345	0.000	0.209	1.00000
EMP3	1.572057e-03	-0.9141623	0.409	0.721	1.00000
SIK3	1.815888e-03	0.9308566	0.386	0.116	1.00000
DHX29	1.880373e-03	1.0671006	0.250	0.023	1.00000
RHBDF2	2.597366e-03	-0.5720724	0.045	0.302	1.00000
RICTOR	2.667464e-03	1.2391335	0.455	0.186	1.00000
TCF3	2.907652e-03	0.8977589	0.364	0.093	1.00000
QKI	3.080770e-03	0.9121023	0.341	0.093	1.00000

Clinic status: Healthy Patient

					€ &
	p_val <dbl></dbl>	avg_log2FC <dbl></dbl>	pct.1 <dbl></dbl>	pct.2 <dbl></dbl>	p_val_adj <dbl></dbl>
SHC1	0.0003113618	-0.3143295	0.025	0.130	1
DFFA	0.0004455782	0.3086889	0.105	0.012	
HSPB1	0.0005888497	0.7690106	0.204	0.074	
JBE2W	0.0006487893	-0.3169690	0.025	0.123	
ΓHRA	0.0011821624	-0.2784393	0.019	0.105	
TMEM123	0.0017676534	-0.3955096	0.605	0.741	
PTAN1	0.0018814081	-0.4049537	0.117	0.247	
BLOC1S4	0.0020363836	-0.2748959	0.160	0.309	
ZFP36L1	0.0023086794	-0.3404585	0.494	0.636	
DRAP1	0.0023461200	0.3898420	0.451	0.290	

Tissue type: BAL

					# ☆
	p_val <dbl></dbl>	avg_log2FC <dbl></dbl>	pct.1 <dbl></dbl>	pct.2 <dbl></dbl>	p_val_ad <dbl< th=""></dbl<>
IDS	0.01204181	1.8122268	0.667	0.111	
OLD2	0.01395012	-2.0818360	0.000	0.556	
NUP98	0.01395012	-1.6379338	0.000	0.556	
ETS1	0.01395012	-1.5964805	0.000	0.556	
JPR183	0.01395012	-2.3181879	0.000	0.556	
ARPP19	0.01395012	1.4170432	0.556	0.000	
CRL2	0.01395012	1.9451903	0.556	0.000	
IT-ND4	0.01511703	-0.7393468	0.889	0.889	
IDUFA4	0.01715132	1.3138166	0.889	0.444	
STK17A	0.01835339	-1.5427822	0.222	0.778	

Tissue type: Blood

					₽ *
	p_val <dbl></dbl>	avg_log2FC <dbl></dbl>	pct.1 <dbl></dbl>	pct.2 <dbl></dbl>	p_val_ac
CEP57	0.0002512441	-0.4095586	0.105	0.227	
GSPT1	0.0011950166	0.3124394	0.215	0.109	
HEXDC	0.0012531821	-0.2774245	0.094	0.195	
(LF6	0.0023649292	0.4515659	0.730	0.664	
rGIF2	0.0027639563	-0.3381344	0.078	0.164	
(ANSL1	0.0033806592	0.3165460	0.305	0.195	
TAP1	0.0037661920	0.2674972	0.184	0.098	
ATP5C1	0.0048342499	-0.2753629	0.152	0.254	
RNF38	0.0049046539	-0.2689811	0.066	0.141	
ГМЕМ219	0.0049749455	0.2644433	0.359	0.254	

<u>Identifying differentially expressed genes for GO</u> <u>Enrichment</u>

- Identify differentially expressed genes between male and female patients across tissue type (lavage fluid vs. blood) and COVID severity type (severe vs. mild. healthy) for Neutrophils cell type.
- Clinic status: "Severe COVID", "Mild COVID", "Healthy control"
- Tissue type: "BAL", "Blood"
- Cell type: "T_cells_NK_cells", "B_cells"

<u>Differential Expression: Neutrophils Across Clinic</u> <u>Status</u>

Differential Expression: Neutrophils Across Clinic Status

<u>Differential Expression: Neutrophils Across Tissue Type</u>

Limitations

Batch effect:

- It is recommended to "integrate" samples together using a KNN-graphical cluster approach to account for batch effect
- This is both time and memory intensive (more than our computers can handle), and we were forced to only merge datasets together without accounting for batch

Filtering:

 All 54 samples were hard-filtered using same parameters. Ideally each sample would be filtered individually with own parameters

Dataset

- Limited number of female patients
- All lavage/lung samples were from severe covid patients; none for control or mild patients

Conclusions and Future Directions

- Differentially expressed genes were identified
 - Between male and females with the same clinic status and cell type, or tissue type and cell type, some differentially expressed genes were identified.
- More data and higher computational power
 - Utilize datasets with larger patient samples sizes, and gain access to higher computational power for sample-sample integration (remove batch effects)