Zbigniew Michalewicz

Genetic Algorithms + Data Structures = Evolution Programs

Third, Revised and Extended Edition

With 68 Figures and 36 Tables

Table of Contents

In	troduc	tion	1
Pa	art I.	Genetic Algorithms	.1
1	GAs	What Are They?	.3
	1.1	Optimization of a simple function	8
		1.1.1 Representation	9
			20
			20
			21
		1.1.5 Parameters	21
			22
	1.2		22
		1.2.1 Representing a strategy	23
			23
			24
	1.3		25
	1.4		26
	1.5	ŭ. ŭ.	30
2	GAs	: How Do They Work?	33
3	GAs	: Why Do They Work?	45
4	GAs	: Selected Topics	57
	4.1	Sampling mechanism	58
	4.2	Characteristics of the function	65
	4.3	Contractive mapping genetic algorithms	68
	4.4	Genetic algorithms with varying population size	72
	4.5		80
			81
		, = =	82
			84
	4.6		88

Pa	art II	Numerical Optimization
5	Bina	ry or Float?
	5.1	The test case
	5.2	The two implementations
		5.2.1 The binary implementation
		5.2.2 The floating point implementation
	5.3	The experiments
	0.0	5.3.1 Random mutation and crossover
		5.3.2 Non-uniform mutation
		5.3.3 Other operators
	5.4	Time performance
	5.4 - 5.5	
	5.5	Conclusions
6		Local Tuning
	6.1	The test cases
		6.1.1 The linear-quadratic problem 109
		6.1.2 The harvest problem
		6.1.3 The push-cart problem
	6.2	The evolution program for numerical optimization
		6.2.1 The representation
		6.2.2 The specialized operators
	6.3	Experiments and results
	6.4	Evolution program versus other methods
		6.4.1 The linear-quadratic problem
		6.4.2 The harvest problem
		6.4.3 The push-cart problem
		6.4.4 The significance of non-uniform mutation
	6.5	Conclusions
7	Uon	dling Constraints
1	7.1	An evolution program: the GENOCOP system
	1.1	
		<u>.</u>
		7.1.2 Operators
	7.0	7.1.3 Testing GENOCOP
	7.2	Nonlinear optimization: GENOCOP II
	7.3	Other techniques
		7.3.1 Five test cases
	<u>.</u>	7.3.2 Experiments
	7.4	Other possibilities
	7.5	GENOCOP III
8	Evo	lution Strategies and Other Methods
	8.1	Evolution of evolution strategies
	8.2	Comparison of evolution strategies and genetic algorithms 16-

			Table of Contents	XIX
	8.3	Multimodal and multiobjective function optir	nization	168
		8.3.1 Multimodal optimization		168
		8.3.2 Multiobjective optimization		171
	8.4	Other evolution programs		172
		1 0		
Pa	rt II	I. Evolution Programs		179
9	The	${\bf Transportation\ Problem} .\ .\ .\ .\ .\ .\ .$		181
	9.1	The linear transportation problem		181
		9.1.1 Classical genetic algorithms		183
		9.1.2 Incorporating problem-specific knowle		185
		9.1.3 A matrix as a representation structure		188
		9.1.4 Conclusions		194
	9.2	The nonlinear transportation problem		196
		9.2.1 Representation		196
	,	9.2.2 Initialization		196
		9.2.3 Evaluation		196
		9.2.4 Operators		196
		9.2.5 Parameters		198
		9.2.6 Test cases		198
		9.2.7 Experiments and results		201
		9.2.8 Conclusions		206
10	The	Traveling Salesman Problem		209
11	Evol	lution Programs for Various Discrete Problems	1	239
		Scheduling		239
		The timetable problem		246
		Partitioning objects and graphs		247
		Path planning in a mobile robot environment		253
		Remarks		261
12		chine Learning		267
		The Michigan approach		270
	12.2	The Pitt approach		274
	12.3	An evolution program: the GIL system		276
		12.3.1 Data structures		276
		12.3.2 Genetic operators		277
	12.4	Comparison		280
	12.5	REGAL		281
13		lutionary Programming and Genetic Programm	-	283
		Evolutionary programming		283
	13.2	Genetic programming		285

XX Table of Contents

14 A Hierarchy of Evolution Programs	289
15 Evolution Programs and Heuristics	309
15.3 Heuristics for evaluating individuals	
16 Conclusions	329
Appendix A	337
Appendix B	349
Appendix C	353
Appendix D	359
References	363
Index	383