#### Daniela Jiménez Téllez

#### A01654798

# Momento de Retroalimentación: Módulo 2. Implementación de una técnica de aprendizaje máquina sin el uso de un framework.

En esta entrega se resolverá el Week02 Challenge 1.



#### CLASIFICACIÓN

**RETO** 

- † Adapte el código de la regresión lineal desarrollado en clase para que el modelo entrenado corresponda con una regresión logística. Posteriormente, implemente un clasificador que estime si un estudiante aprueba o no el curso:
  - † Considerando solamente la columna 'Attendance'
  - ‡ Considerando solamente la columna 'Homework'
- † Calcule las métricas de desempeño. ¿Cuál es mejor? ¿Le ganan a la referencia?

| Attendance | Homework | Pass | Reference |
|------------|----------|------|-----------|
| 80         | 75       | yes  | yes       |
| 65         | 70       | no   | no        |
| 95         | 85       | yes  | yes       |
| 95         | 100      | yes  | no        |
| 85         | 65       | no   | no        |
| 75         | 55       | no   | no        |
| 90         | 90       | yes  | yes       |
| 65         | 80       | yes  | no        |

$$accuracy = \frac{VP + VN}{VP + VN + FP + FN}$$

$$precision = \frac{VP}{VP + FP}$$

$$recall = \frac{VP}{VP + FN}$$

$$F1 = \frac{2 \cdot precision \cdot recall}{recall}$$



### Importación de librerías

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

## Importación de datos

```
In [2]: data = {
    "Attendance": [80, 65, 95, 95, 85, 75, 90, 65],
    "Homework": [75, 70, 85, 100, 65, 55, 90, 80],
```

```
"Pass": ["yes", "no", "yes", "no", "no", "yes", "yes"]}

df = pd.DataFrame(data)
df["Pass"] = df["Pass"].apply(lambda x: 1 if x == "yes" else 0)
```

In [3]:

Out[3]:

|   | Attendance | Homework | Pass |
|---|------------|----------|------|
| 0 | 80         | 75       | 1    |
| 1 | 65         | 70       | 0    |
| 2 | 95         | 85       | 1    |
| 3 | 95         | 100      | 1    |
| 4 | 85         | 65       | 0    |
| 5 | 75         | 55       | 0    |
| 6 | 90         | 90       | 1    |
| 7 | 65         | 80       | 1    |

1. Programa un algoritmo que permita resolver el problema. Dicho algoritmo debe ser uno de los algoritmos vistos en el módulo (o que tu profesor de módulo autorice), y no puedes usar ninguna biblioteca o framework de aprendizaje máquina, ni de estadística avanzada.

Para poder programar el modelo se utilizarán las siguientes fórmulas vistas en clase:

Función de Hipótesis:

$$h_{ heta}(x) = rac{1}{1 + e^{-x \cdot heta}}$$

• Cálculo de  $\theta$ 's:

$$heta_0 = heta_0 - lpha rac{1}{n} \sum_{i=1}^n \left( h_ heta(x_i) - y_i 
ight)$$

$$heta_k = heta_k - lpha rac{1}{n} \sum_{i=1}^n \left( h_ heta(x_{i,k}) - y_i 
ight) x_{i,k} \quad orall k \in \{1,2,\ldots\}$$

• Función de costo:

$$J_{ heta} = J( heta_0, heta_1) = -rac{1}{n} \sum_{i=1}^n \left( ext{ textcolor} redy_i \ln(h_{ heta}(x_i)) + ext{ textcolor} green(1-y_i) \ln(1-h_{ heta}(x_i)) 
ight)$$

```
In [4]: # Función de hipótesis
        def funcionHipotesis(x, theta_0, theta_1):
             return 1 / (1 + np.exp( - (theta_0 + theta_1 * x)))
        # Función para actualizar theta's
        def theta0Nueva(theta_0, alpha, h, y):
             return theta_0 - alpha * np.sum(h - y) / len(y)
        def theta1Nueva(theta_1, alpha, h, y, x):
             return theta_1 - alpha * np.sum((h - y) * x) / len(y)
        # Función para calcular el costo
        def funcionCosto(h, y):
            epsilon = 1e-10 # Pequeño valor para evitar log(0)
             return - np.mean(y * np.log(h + epsilon) + (1 - y) * np.log(1 - h + epsilon))
        # Función para entrenar el modelo
        def entrenarModelo(x, y, alpha, iteraciones):
            theta_0 = 0
            theta_1 = 0
            for i in range(iteraciones):
                h = funcionHipotesis(x, theta 0, theta 1)
                theta_0 = theta0Nueva(theta_0, alpha, h, y)
                theta_1 = theta1Nueva(theta_1, alpha, h, y, x)
             return theta_0, theta_1
        # Función para predecir resultados
        def predecirResultados(x, theta_0, theta_1):
             return funcionHipotesis(x, theta_0, theta_1) >= 0.5
        # Función para calcular métricas de desempeño
        def calcularMetricas(y_true, y_pred):
             VP = np.sum((y_true == 1) & (y_pred == 1))
             VN = np.sum((y_true == 0) & (y_pred == 0))
             FP = np.sum((y_true == 0) & (y_pred == 1))
             FN = np.sum((y_true == 1) & (y_pred == 0))
             accuracy = (VP + VN) / (VP + VN + FP + FN)
             precision = VP / (VP + FP)
             recall = VP / (VP + FN)
             f1 = 2 * (recall * precision) / (recall + precision)
             return {
                 "Accuracy": accuracy,
                 "Precision": precision,
                 "Recall": recall,
```

```
"F1 Score": f1}
# Función para dividir el dataset

def dividirDataSet(X, y, test_size = 0.3):
    np.random.seed(302)

indices = np.random.permutation(len(X))
    test_set_size = int(len(X) * test_size)
    test_indices = indices[:test_set_size]
    train_indices = indices[test_set_size:]

return X[train_indices], X[test_indices], y[train_indices], y[test_indices]
```

2. Divide el set de datos del problema en dos subconjuntos, uno para entrenamiento y otro para prueba. Entrena tu modelo sobre el primer subconjunto, y por un mínimo de 100 iteraciones. Selecciona valores para la tasa de aprendizaje y para los parámetros iniciales, según tu criterio.

```
In [5]: # Dividiendo Las variables independientes entre Attendance y Homework

X_attendance = df["Attendance"].values
X_homework = df["Homework"].values
y = df["Pass"].values

# Dividiendo entre entrenamiento y prueba

## Attendance
X_train_attendance, X_test_attendance, y_train, y_test = dividirDataSet(X_attendance,
## Homework
X_train_homework, X_test_homework, y_train, y_test = dividirDataSet(X_homework, y)
```

3. Prueba tu implementación. Para ello, utiliza el modelo entrenado para hacer predecir las salidas del subconjunto de prueba, y compara contra los datos reales en una gráfica.

Para el caso de la elección de los hiperparámetros, en la función de arriba se inician los parámetros para  $\theta_1$  y  $\theta_0$  con un valor de 0. Esto es debido a que no hubieron parámetros establecidos inicialmente, entonces de esta manera se van ajustando a lo largo del entrenamiento.

Por otro lado, para el caso de alfa (taza de aprendizaje) se elegirá el valor 0.01 ya que al igual que los  $\theta$ 's, no se especificó algún valor en las instrucciones. Este valor es muy común, además de que permite que el modelo converja de manera estable.

```
In [6]: # Evaluación del modelo
    ## Attendance
    theta_0_attendance, theta_1_attendance = entrenarModelo(X_train_attendance, y_train, a
```

```
predictions attendance = predecirResultados(X test attendance, theta 0 attendance, the
## Homework
theta_0_homework, theta_1_homework = entrenarModelo(X_train_homework, y_train, alpha =
predictions homework = predecirResultados(X test homework, theta 0 homework, theta 1 h
# Métricas de desempeño
## Attendance
metrics attendance = calcularMetricas(y test, predictions attendance)
print("\nMétricas de desempeño para Attendance:")
for metric, value in metrics_attendance.items():
    print(f"{metric}: {value}")
## Homework
metrics_homework = calcularMetricas(y_test, predictions_homework)
print("\nMétricas de desempeño para el modelo Homework:")
for metric, value in metrics_homework.items():
    print(f"{metric}: {value}")
Métricas de desempeño para Attendance:
Accuracy: 0.5
Precision: 0.5
Recall: 1.0
F1 Score: 0.666666666666666
Métricas de desempeño para el modelo Homework:
Accuracy: 0.5
Precision: 0.5
Recall: 1.0
F1 Score: 0.666666666666666
```

# 4. Calcula el valor de la función de costo para el subconjunto de entrenamiento, y para el subconjunto de prueba.

```
In [7]: # Attendance

h_attendance_train = funcionHipotesis(X_train_attendance, theta_0_attendance, theta_1_
    cost_attendance_train = funcionCosto(h_attendance_train, y_train)
    print(f"Costo para el modelo 'Attendance' (entrenamiento): {cost_attendance_train}")

h_attendance_test = funcionHipotesis(X_test_attendance, theta_0_attendance, theta_1_at
    cost_attendance_test = funcionCosto(h_attendance_test, y_test)
    print(f"Costo para el modelo 'Attendance' (prueba): {cost_attendance_test}")

# Homework

h_homework_train = funcionHipotesis(X_train_homework, theta_0_homework, theta_1_homework
    cost_homework_train = funcionCosto(h_homework_train, y_train)
    print(f"Costo para el modelo 'Homework' (entrenamiento): {cost_homework_train}")

h_homework_test = funcionHipotesis(X_test_homework, theta_0_homework, theta_1_homework
    cost_homework_test = funcionCosto(h_homework_test, y_test)
    print(f"Costo para el modelo 'Homework' (prueba): {cost_homework_test}")
```

```
Costo para el modelo 'Attendance' (entrenamiento): 2.9760074649947406
Costo para el modelo 'Attendance' (prueba): 4.4638283332102935
Costo para el modelo 'Homework' (entrenamiento): 7.673237693895658
Costo para el modelo 'Homework' (prueba): 11.228253767737389
```