An Internet-Wide Analysis of Traffic Policing

Tobias Flach, Pavlos Papageorge, Andreas Terzis, Luis Pedrosa, Yuchung Cheng, Tayeb Karim, Ethan Katz-Bassett, Ramesh Govindan

policing-paper@google.com

Traffic Engineering: Policing vs. Shaping

Goal: Enforce a rate limit (maximum throughput)

Solutions:

- a. **Drop** packets once the limit is reached
 - → Traffic Policing

Focus of this talk

- b. Queue packets (and send them out at the maximum rate)
 - → Traffic Shaping

Contribution

Analyze the **prevalence** and **impact** of **traffic policing** on a **global scale**, as well as explore ways to **mitigate** the **impact** of policers.

Outline

- 1. How Policing Works
- 2. Detecting the Effects of Policing in Packet Captures
- 3. A Global-Scale Analysis of Policing in the Internet
- 4. Mitigating the Impact of Policers

How Policing Works

Packet leaves if enough tokens are available

Tokens refreshed at predefined policing rate

How Policing Works

Packet leaves if enough tokens are available

Tokens refreshed at predefined policing rate

Policing can have negative side effects for all parties

Content providers

Excess load on servers forced to retransmit dropped packets
 (global average: 20% retransmissions vs. 2% when not policed)

ISPs

- Transport traffic across the Internet only for it to be dropped by the policer
- Incurs avoidable transit costs

Users

- Can interact badly with TCP-based applications
- \circ We measured degraded video quality of experience (QoE) \rightarrow user dissatisfaction

Analyze the

prevalence and impact of policing on a global scale

Develop a mechanism to detect policing in packet captures

Tie connection performance back to already collected application metrics

Collect packet traces for sampled client connections at most Google frontends

Analysis Pipeline

Find the policing rate

 Use measured throughput between an early and late loss as estimate

Match performance to expected policing behavior

- Everything above the policing rate gets dropped
- (Almost) nothing below the policing rate gets dropped

Avoiding Falsely Labeling Loss as Policing

But: Traffic below policing rate should go through

But: Traffic above policing rate should be dropped

Congestion Looks Similar to Policing!

Packets are usually dropped when a router's buffer is already full

Buffer fills → queuing delay increases

Use inflated latency as signal that loss is not caused by a policer

Validation 1: Lab Setting

- Goal: Approximate the accuracy of our heuristic
- Generated test traces covering common reasons for dropped packets
 - Policing (used a router with support for policing)
 - Congestion
 - Random loss
 - Shaping
- High accuracy for almost all configurations (see paper for details)
 - Policing: 93%
 - All other reasons for loss: > 99%

Validation 2: Live Traffic

- Observed only few policing rates in ISP deep dives
 - ISPs enforce a limited set of data plans
- Confirmed that per ISP policing rates cluster around a few values across the whole dataset
- And: Observed no consistency across flows without policing

Outline

- 1. How Policing Works
- 2. Detecting the Effects of Policing in Packet Captures
- 3. A Global-Scale Analysis of Policing in the Internet
- 4. Mitigating the Impact of Policers

Internet-Wide Analysis of Policing

- Sampled flows collected from most of Google's CDN servers
 - 7-day sampling period (in September 2015)
 - o 277 billion TCP packets
 - 270 TB of data
 - 800 million HTTP queries
 - Clients in over 28,400 ASes
- To tie TCP performance to application performance, we analyzed flows at HTTP request/response ("segment") granularity

#1: Prevalence of Policing

Region	Policed segments (overall)	
Africa	1.3%	
Asia	1.3%	
Australia	0.4%	
Europe	0.7%	
N. America	0.2%	
S. America	0.7%	

#1: Prevalence of Policing

Lossy: 15 losses or more per segment

Up to 7% of lossy segments are policed

Region	Policed segments (overall)	Policed (among lossy)	
Africa	1.3%	6.2%	
Asia	1.3%	6.6%	
Australia	0.4%	2.0%	
Europe	0.7%	5.0%	
N. America	0.2%	2.6%	
S. America	0.7%	4.1%	

#2: Policer-induced Losses

Lossy: 15 losses or more per segment

Up to 7% of lossy segments are policed

Average loss rate increases from 2% to over 20% when policed

Region	Policed segments (overall)	Policed (among lossy)	Loss (policed)	Loss (non-policed)
Africa	1.3%	6.2%	27.5%	4.1%
Asia	1.3%	6.6%	24.9%	2.9%
Australia	0.4%	2.0%	21.0%	1.8%
Europe	0.7%	5.0%	20.4%	1.3%
N. America	0.2%	2.6%	22.5%	1.0%
S. America	0.7%	4.1%	22.8%	2.3%

Sudden Bandwidth Change Induces Heavy Loss

Sudden Bandwidth Change Induces Heavy Loss

#3: Burst Throughput vs. Policing Rate

CDF

90th percentile:
Policing rate is 10x lower than burst throughput

Up to 7% of lossy segments are policed

Average loss rate increases from 2% to over 20% when policed

Policing rate often over 50% lower than burst throughput

Ratio between Burst Throughput and Policing Rate

Quality of Experience Metrics

Rebuffer Time:

Time that a video is paused *after playback started* due to insufficient stream data buffered

Watch Time:

Fraction of the video watched by the user

Rebuffer to Watch Time Ratio:

Goal is zero (no rebuffering delays after playback started).

#4: Impact on Quality of Experience

Up to 7% of lossy segments are policed

Average loss rate increases from 2% to over 20% when policed

Policing rate often over 50% lower than burst throughput

In the tail, policed segments can have up to 200% higher rebuffering times

Mitigating Policer Impact

For content providers

No access to policers and their configurations

But can control transmission patterns to minimize risk of hitting an empty token bucket

For policing ISPs

Access to policers and their configurations

Can deploy alternative traffic management techniques

Mitigating Policer Impact

For content providers

Rate limiting

Pacing

Reducing losses during recovery in Linux

For policing ISPs

Policer optimization

Shaping

Mitigating Policer Impact

For content providers

For policing ISPs

Reducing losses during recovery in Linux

Reducing Losses During Recovery in Linux

Send only one packet per ACK

Solution:

Packet conservation until ACKs indicate no further losses

- Reduces median loss rates by 10 to 20%
- Upstreamed to Linux kernel 4.2

Round trips (one per column)

Conclusion

- ISPs need ways to deal with increasing traffic demands and want to enforce plans → traffic policing is one option
- On a global scale up to 7% of lossy segments are affected by traffic policing
- Policed connections see ...
 - Much higher loss rates
 - Long recovery times when policers allow initial bursts
 - Worse video rebuffering times (QoE)
- Negative effects can be mitigated
 - Content providers: Rate limiting, pacing, prevention of loss during recovery
 - o ISPs: Better policing configurations, shaping

Questions? Email us: policing-paper@google.com
Data: http://usc-nsl.github.io/policing-detection/