













# Improving Robustness of PESTO Pitch Estimation



# **Motivation & Background**

### **Importance**

Pitch estimation is key in music/audio processing

### **PESTO**

lightweight, frame-by-frame self-supervised pitch estimator

### Challenge

sensitive to both low and high-frequency noise

### Goal

maintain clean performance while not increasing model size and not sacrificing real-time property







$$\begin{split} \mathcal{L}(\mathbf{y}, \tilde{\mathbf{y}}, \tilde{\mathbf{y}}^{(k)}, k) &= \lambda_{\text{inv}} \ \mathcal{L}_{\text{inv}}(\mathbf{y}, \tilde{\mathbf{y}}) \\ &+ \lambda_{\text{equiv}} \ \mathcal{L}_{\text{equiv}}(\tilde{\mathbf{y}}, \tilde{\mathbf{y}}^{(k)}, k) \\ &+ \lambda_{\text{SCE}} \ \mathcal{L}_{\text{SCE}}(\tilde{\mathbf{y}}, \tilde{\mathbf{y}}^{(k)}, k) \end{split}$$





Pitch-shift mechanism





 $\mathcal{L}_{\textit{inv}}$ : Invariance (stable under augmentation)\\\\\mathcal{L}\_{\textit{equiv}}: Equivariance (consistent with pitch-shift)\\\\\\mathcal{L}\_{\textit{SCE}}: Classification (guided by pseudo-labels)

$$\begin{split} \mathcal{L}(\mathbf{y}, \tilde{\mathbf{y}}, \tilde{\mathbf{y}}^{(k)}, k) &= \lambda_{\text{inv}} \ \mathcal{L}_{\text{inv}}(\mathbf{y}, \tilde{\mathbf{y}}) \\ &+ \lambda_{\text{equiv}} \ \mathcal{L}_{\text{equiv}}(\tilde{\mathbf{y}}, \tilde{\mathbf{y}}^{(k)}, k) \\ &+ \lambda_{\text{SCE}} \ \mathcal{L}_{\text{SCE}}(\tilde{\mathbf{y}}, \tilde{\mathbf{y}}^{(k)}, k) \end{split}$$



# **Problem Focus**



Spectrogram comparison under white noise



### **Problem Focus**



Spectrogram comparison under blue noise



### **Problem Focus**



Spectrogram comparison under pink noise



# **Design Choices & Constraints**

### **Real-time**

processes each frame independently, without temporal context

### **Constraint**

cannot use smoothing or recurrent refinement (would break real-time property)

### **Feature Choice**

CQT is fixed, since its logarithmic frequency axis naturally matches semitone shifts in PESTO's pitch-shift mechanism

### **Strategy**

design choices focus on noise injection, progressive scheduling, and invariance weighting



# **Multiple Noise Injection**

### **Intuitive Approach**

Training with noise directly improves test-time robustness

### Why Feature-domain Noise?

Adding noise in time-domain makes SNR an external factor → not suitable for dynamic weighting

One-noise-per-utterance reduces diversity; frame-level noise too complex for alignment

Feature-domain injection allows per-batch random noise type & intensity, easy to control inside model



# **Multiple Noise Injection**

### **Noise Modeling**

**Realistic generation**: start from complex Gaussian noise, with spherical sampling for plausibility

Balanced spectrum: apply power normalization, avoid silent bands, enforce spectral correlation

**Beyond amplitude-only**: add phase perturbation and band-wise variations for richer distortion



# **Progressive Noise Scheduling**

### **Start simple**

early epochs use only white noise to stabilize training and avoid collapse

### Increase challenge

gradually introduce low-frequency and stronger noises as training progresses



# **Dynamic Invariance Loss Weighting**

### Frequency-based weighting

smoothly emphasize both very low (<250 Hz) and very high (>2000 Hz) frames





# Dynamic Invariance Loss Weighting

### **SNR-based weighting**

noisier samples weighted higher

### frequency + SNR weights combined and clipped

frequency + SNR weights combined and clipped

$$w = \text{clip}(w_{\text{freq}} \cdot w_{\text{SNR}})$$



# **Experimental Setup**

### **Comparison**

original PESTO vs. improved version with noise robustness

### **Evaluation conditions**

tested under clean speech, white noise, pink noise, and blue noise environments

### Metrics

measured with OA (Overall Accuracy), RCA (Raw Chroma Accuracy), and RPA (Raw Pitch Accuracy)



### Results







# **Ablation Study**







# **Ablation Study**







# **Ablation Study**

### White noise (extreme case)

Robustness improvement mainly from Dynamic Weighting

Multiple Noise Injection contributes, but less significantly

### Low-frequency noise

Improvement primarily from Multiple Noise Injection

Dynamic Weighting alone has little effect

### **High-frequency noise**

Both Dynamic Weighting and Multiple Noise Injection provide substantial gains



### **Conclusion & Future Work**

### Conclusion

Introduced Multiple Noise Injection, Progressive Scheduling, and Dynamic Invariance Weighting Achieved robustness gains without sacrificing clean performance or real-time efficiency

### **Future Work**

Extend to more diverse noise types and real-world datasets

Investigate integration with temporal models without losing real-time property

















# Thank You! Q&A

