## **Data Structures and Algorithms**

(ESO207)

### Lecture 23

- Finding a sink in a directed graph
- Graph Traversal
  - Breadth First Search Traversal and its simple applications

## An interesting problem

(Finding a sink)

**Definition**: A vertex **x** in a given directed graph is said to be a **sink** if

- There is no edge emanating from (leaving) x
- Every other vertex has an edge into x.



## An interesting problem

(Finding a sink)

**Problem**: Given a directed graph G=(V,E) in an adjacency matrix representation, design an O(n) time algorithm to determine if there is any sink in G.



Question: Can we verify efficiently whether any given vertex i is a sink?

Answer: Yes, in O(n) time only  $\odot$ 

Look at *i*th **row** and *i*th **column** of **M**.

## Key idea



## Algorithm to find a sink in a graph

### **Key ideas:**

- Looking at a single entry in M allows us to discard one vertex from being a sink.
- It takes O(n) time to verify if a vertex i is a sink.

Verify if s is a sink and output accordingly.

```
Find-Sink(M) // M is the adjacency matrix of the given directed graph. s \leftarrow 0; For(i=1 to n-1) { If (M[s,i] = ?) ....?...; }
```

(Fill in the details of this pseudo code as a Homework.)

## What is **Graph traversal**?

## **Graph traversal**

#### **Definition:**

A vertex y is said to be reachable from x if there is a path from x to y.



### **Graph traversal from vertex x**:

Starting from a given vertex *x*, the aim is to visit all vertices which are reachable from *x*.

## Non-triviality of graph traversal

### Avoiding loop:

How to avoid visiting a vertex multiple times? (keeping track of vertices already visited)

### Finite number of steps:

The traversal **must stop** in finite number of steps.

### Completeness :

We must visit all vertices reachable from the start vertex x.

### **Breadth First Search traversal**

We shall introduce this traversal technique through an interesting problem.

computing distances from a vertex.

## **Notations and Observations**

Length of a path: the <u>number of edges</u> on the path.



A path of length 6 between x and y

### **Notations and Observations**



#### **Observation:**

If  $\langle x, ..., v, y \rangle$  is a path of length k from x to y, then what is the length of the path  $\langle x, ..., v \rangle$ ?

Answer: k-1

**Question:** What can be the maximum length of any path in a graph?

Answer: n-1

## **Notations and Observations**

**Shortest Path from x to y:** A path from x to y of <u>least length</u>

**Distance** from x to y: the <u>length</u> of the <u>shortest path</u> from x to y.



# **Shortest Paths** in Undirected Graphs



#### **Problem:**

How to compute distance to all vertices **reachable** from **x** in a given undirected graph?

# **Shortest Paths** in Undirected Graphs



# **Shortest Paths** in Undirected Graphs



## An important property of shortest paths



### **Observation:**

If  $\langle x, ..., v, y \rangle$  is a shortest path from x to y,

then  $\langle x, ..., v \rangle$  is also a shortest path.

#### **Proof:**

Suppose  $P = \langle x, ..., v \rangle$  is <u>not</u> a shortest path between x and v.

Then let P' be a shortest path between x and v.

Length(P') < Length(P).

Question: What happens if we concatenate P' with edge (v, y)?

**Answer**: a path between x and y shorter than the shortest-path  $\langle x, ..., v, y \rangle$ .

→ Contradiction.

### An important question



### **Question:**

Let  $(\mathbf{v}, \mathbf{w})$  be an edge. If **Distance** $(\mathbf{x}, \mathbf{v})$  is k,

then what can be Distance(x, w)?

**Answer**: an element from the set  $\{k-1, k, k+1\}$  only.

## Relationship among vertices at different distances from *x*

```
V_0: Vertices at distance {\bf 0} from {\bf x}=\{{\bf x}\} V_1: Vertices at distance {\bf 1} from {\bf x}= Neighbors\ of\ V_0 V_2: Vertices at distance {\bf 2} from {\bf x}= Those\ Neighbors\ of\ V_1\ which \ {\bf do\ not\ belong\ to\ }V_0\ or\ V_1 .
```

 $V_{i+1}$ : Vertices at distance **i+1** from x =

Those Neighbors of  $V_i$  which do not belong to  $V_i - 1$  or  $V_i$ 

How to distinguish the neighbors of  $V_i$  which belong to  $V_{i+1}$  from those which belong to  $V_j$ ,  $j \le i$ ?

## How can we compute $V_{i+1}$ ?

```
Key idea: compute V_i's in increasing order of i.
Initialize Distance[v] \leftarrow \infty of each vertex v in the graph.
Initialize Distance[x] \leftarrow 0.
```

- First compute  $V_0$ .
- Then compute  $V_1$ .
- ..
- Once we have computed  $V_i$ , for every neighbor  $\mathbf{v}$  of a vertex in  $V_i$ , If  $\mathbf{v}$  is in  $V_j$  for some  $j \in \{i, i-1\}$ , then  $\mathbf{Distance}[\mathbf{v}] = \mathbf{v}$  a number  $\mathbf{v}$  and  $\mathbf{v}$  is in  $V_{i+1}$ ,  $\mathbf{Distance}[\mathbf{v}] = \mathbf{v}$



We can thus distinguish the neighbors of  $V_i$  which belong to  $V_{i+1}$  from those which belong to  $V_j$ .

## A neat algorithm for computing distances from **x**



This traversal algorithm is called **BFS** (breadth first search) traversal

## Using a queue for traversing vertices in non-decreasing order of distances

### Compute distance of vertices from x:



### BFS traversal from a vertex

```
BFS(G, x)
  CreateEmptyQueue(Q);
  Distance(x) \leftarrow 0;
  Enqueue(x,Q);
  While(
              Not IsEmptyQueue(Q)
           v ← Dequeue(Q);
           For each neighbor w of v
                     if (Distance(\mathbf{w}) = \infty)
                        Distance(w) ←
                                             Distance(v) +1
                         Enqueue(w, Q);
```

## Running time of BFS traversal

```
BFS(G, x)
  CreateEmptyQueue(Q);
                                                      A vertex can enter queue
  Distance(x) \leftarrow 0;
                                                            at most once.
  Enqueue(x,Q);
                                                        Prove this claim first.
  While(
              Not IsEmptyQueue(Q)
           v ← Dequeue(Q);
           For each neighbor w of v
                     if (Distance(\mathbf{w}) = \infty)
                         Distance(w) ←
                                                                        O(deg(v))
                                              Distance(v) +1
                         Enqueue(w, Q);
```

### **Correctness of BFS traversal**

Question: What do we mean by correctness of **BFS** traversal from vertex x?

#### **Answer:**

- All vertices reachable from x get visited.
- Vertices get visited in the non-decreasing order of their distances from x.
- At the end of the algorithm,

**Distance(v)** is the distance of vertex v from x.

