WHAT IS CLAIMED IS:

- 1. A method for refolding a small, disulfide-rich peptide comprising:
 - (a) adding a peptide which comprises 5-55 amino acid residues containing two or more cysteines which form disulfide bonds to a refolding mixture which comprises
 - (i) a non-ionic detergent and
 - (ii) a redox reagent
 - (b) incubating the resulting mixture to form disulfide bonds in said peptide, whereby a refolded peptide is produced.
- 2. The method of claim 1, wherein said refolding mixture further comprises a cosolvent.
- 3. The method of claim 1, wherein the non-ionic detergent is selected from the group consisting of polyoxyethylenes, polyoxyethylene derivatives, alkyl derivatives of carbohydrates and mixtures thereof.
- The method of claim 3, wherein said polyoxyethylene derviatives are selected from the 4. group consisting of polyoxylethylene sorbitans, polyoxylethylene ethers and polyoxylethylene esters.
- 5. The method of claim 3, wherein said carbohydrate is selected from the group consisting of glucose and maltose.
- 6. The method of claim 2, wherein said cosolvent is selected from the group consisting of 25 (i) methanol, (ii) ethanol, (iii) isopropanol, (iv) acetonitrile, (v) a solvent selected from the group consisting of primary, secondary, tertiary, allylic, benzylic alcohols, ethers, aldehydes, ketones, carboxylic acids, amines, poly- and heterocyclic aromatic compounds, and (vi) mixtures thereof.
- 30 7. The method of claim 1, wherein said redox reagent is selected from the group consisting of oxidized glutathione, reduced glutathione, cystine, cysteine, cystamine, βmercaptoethanol and 2-hydroxyethyl disulfide.

10

5

: zh

- 8. The method of claim 1, wherein said redox reagent comprises an oxidizing agent and a reducing agent.
- 9. The method of claim 7, wherein said redox reagent comprises an oxidizing agent and a reducing agent.

30

- 10. The method of claim 1, wherein the refolding is performed at a temperature in the range of -10 °C to 60 °C.
- 10 11. The method of claim 1, wherein the refolding is performed at a pH in the range of 5 to 12.
 - 12. The method of claim 1, wherein the peptide is immobilized on a solid support.
 - 13. A method for refolding a small, disulfide-rich peptide comprising:

 (a) adding a peptide which comprises 5-55 amino acid residues containing to
 - (a) adding a peptide which comprises 5-55 amino acid residues containing two or more cysteines which form disulfide bonds at a concentration from about $0.1~\mu\text{M}$ to about 100~mM to a refolding mixture which comprises
 - (i) a non-ionic detergent in an amount from about 0.001% to about 90% and
 - (ii) a redox reagent in an amount from about 0.01 mM to about 25 mM
 - (b) incubating the resulting mixture to form disulfide bonds in said peptide, whereby a refolded peptide is produced.
- 14. The method of claim 13, wherein said refolding mixture further comprises a cosolvent in an amount from about 0.1% to about 90%.
 - 15. The method of claim 13, wherein the non-ionic detergent is selected from the group consisting of polyoxyethylenes, polyoxyethylene derivatives, alkyl derivatives of carbohydrates and mixtures thereof.
 - 16. The method of claim 15, wherein said polyoxyethylene derviatives are selected from the group consisting of polyoxylethylene sorbitans, polyoxylethylene ethers and polyoxylethylene esters.

- 17. The method of claim 15, wherein said carbohydrate is selected from the group consisting of glucose and maltose.
- The method of claim 14, wherein said cosolvent is selected from the group consisting of (i) methanol, (ii) ethanol, (iii) isopropanol, (iv) acetonitrile, (v) a solvent selected from the group consisting of primary, secondary, tertiary, allylic, benzylic alcohols, ethers, aldehydes, ketones, carboxylic acids, amines, poly- and heterocyclic aromatic compounds, and (vi) mixtures thereof.
 - 19. The method of claim 13, wherein said redox reagent is selected from the group consisting of oxidized glutathione, reduced glutathione, cystine, cysteine, cysteine, sharp mercaptoethanol and 2-hydroxyethyl disulfide.
 - 20. The method of claim 13, wherein said redox reagent comprises an oxidizing agent and a reducing agent.
 - 21. The method of claim 20, wherein said redox reagent comprises an oxidizing agent and a reducing agent.
 - 22. The method of claim 13, wherein the refolding is performed at a temperature in the range of -10 °C to 60 °C.
- 23. The method of claim 13, wherein the refolding is performed at a pH in the range of 5 to 12.
 - 24. The method of claim 13, wherein the peptide is immobilized on a solid support.
- 25. A method for preparing a small, disulfide rich peptide having a disulfide bridging pattern of a native peptide comprising:
 - (a) synthesizing a peptide which comprises 5-55 amino acid residues containing two or more cysteines which form disulfide bonds;
 - (b) isolating the synthesized peptide;

10

: :=23

- (c) adding the peptide to a refolding mixture which comprises
 - (i) a non-ionic detergent and
 - (ii) a redox reagent
- (d) incubating the resulting mixture to form disulfide bonds in said peptide; and
- (e) isolating the refolded peptide.
- 26. The method of claim 25, wherein the peptide is synthesized by chemical synthesis.
- 27. The method of claim 25, wherein the peptide is synthesized by a recombinant DNA technique.
 - 28. The method of claim 25, wherein said refolding mixture further comprises a cosolvent.
 - 29. The method of claim 25, wherein the non-ionic detergent is selected from the group consisting of polyoxyethylenes, polyoxyethylene derivatives, alkyl derivatives of carbohydrates and mixtures thereof.
 - 30. The method of claim 29, wherein said polyoxyethylene derviatives are selected from the group consisting of polyoxylethylene sorbitans, polyoxylethylene ethers and polyoxylethylene esters.
 - 31. The method of claim 29, wherein said carbohydrate is selected from the group consisting of glucose and maltose.
- 25 32. The method of claim 28, wherein said cosolvent is selected from the group consisting of (i) methanol, (ii) ethanol, (iii) isopropanol, (iv) acetonitrile, (v) a solvent selected from the group consisting of primary, secondary, tertiary, allylic, benzylic alcohols, ethers, aldehydes, ketones, carboxylic acids, amines, poly- and heterocyclic aromatic compounds, and (vi) mixtures thereof.
 - 33. The method of claim 25, wherein said redox reagent is selected from the group consisting of oxidized glutathione, reduced glutathione, cystine, cysteine, cystamine, β-mercaptoethanol and 2-hydroxyethyl disulfide.

5

: : : !

- 34. The method of claim 25, wherein said redox reagent comprises an oxidizing agent and a reducing agent.
- 5 35. The method of claim 33, wherein said redox reagent comprises an oxidizing agent and a reducing agent.
 - 36. The method of claim 25, wherein the refolding is performed at a temperature in the range of -10 °C to 60 °C.
- 37. The method of claim 25, wherein the refolding is performed at a pH in the range of 5 to 12.
 - 38. The method of claim 25, wherein the peptide is immobilized on a solid support.
 - 39. The method of claim 1, wherein a pair of cysteine residues is replaced pairwise with isoteric lactam or ester-thioether replacements
 - 40. The method of claim 39, wherein siad replacement is selected from the group consisting of Ser/(Glu or Asp), Lys/(Glu or Asp), Cys/(Glu or Asp) and Cys/Ala combinations.
 - 41. The method of claim 13, wherein a pair of cysteine residues is replaced pairwise with isoteric lactam or ester-thioether replacements
- 25 42. The method of claim 41, wherein siad replacement is selected from the group consisting of Ser/(Glu or Asp), Lys/(Glu or Asp), Cys/(Glu or Asp) and Cys/Ala combinations.
 - 43. The method of claim 25, wherein a pair of cysteine residues is replaced pairwise with isoteric lactam or ester-thioether replacements
 - 44. The method of claim 43, wherein siad replacement is selected from the group consisting of Ser/(Glu or Asp), Lys/(Glu or Asp), Cys/(Glu or Asp) and Cys/Ala combinations.

6 - 19

30