Math 113: Functional Analysis

Sair Shaikh

May 1, 2025

Problem 30. Suppose that X and Y are normed vector spaces.

1. Show that $\mathcal{L}(X,Y)$ is a normed vector space with respect to the operator norm defined in lecture such that:

$$||T(x)|| \le ||T||||x||$$

2. Show that if $S \in \mathcal{L}(Y, Z)$. Then,

$$||ST|| \le ||S||||T||$$

3. Show that:

$$||T||=\inf\{a\geq 0: ||T(x)||\leq \alpha ||x|| \quad \forall x\in X\}$$

Problem 31. Suppose that X and Y are Banach spaces with $T \in \mathcal{L}(X,Y)$. Suppose that E is a closed proper subspace of X such that $E \subset \ker(T)$. Show that there is a unique operator $\overline{T} \in \mathcal{L}(X/E,Y)$ such that $\overline{T}(q(x)) = T(x)$ for all $x \in X$ where $q: X \to X/E$ is the quotient map. Moreover, $||\overline{T}|| = ||T||$.

Problem 33. Let E and X be Banach spaces with E finite dimensional.

- 1. Show that every linear map $S: E \to X$ is bounded.
- 2. Show that a linear map $T:X\to E$ is bounded if and only if $\ker(T)$ is closed.

Problem 34. Supposed that E and M are closed subspaces of a Banach space X. If E is finite dimensional, show that $E+M=\{x+y:x\in E\ y\in M\}$ is closed.

Problem 35. Suppose that X and Y are Banach spaces for $T \in \mathcal{L}(X,Y)$. Show that T is injective with closed range if and only if:

$$\inf\{||T(x)||:||x||=1\}>0$$

Problem 38. Let X be a normed vector space. A Banach space \tilde{X} is called a completion of X is there is an isometric isomorphism $\iota: X \to \tilde{X}$ onto a dense subspace of \tilde{X} . Show that any two completions $(tildeX_1, \iota_1)$ and (\tilde{X}_2, ι_2) are isometrically isomorphic by an isomorphism:

$$\Phi: \tilde{X}_1 \to \tilde{X}_2$$

such that $\Phi(\iota_1(x)) = \iota_2(x)$ for all $x \in X$.

Problem 39. Lets find a use for a genuine Minkowski functional. In this problem, we'll let $l_{\mathbb{R}}^{\infty}$ be the real Banach space of bounded sequences in \mathbb{R} . Define m on $l_{\mathbb{R}}^{\infty}$:

$$m(x) = \limsup_{n} x_n$$

We clearly have m(tx) = tm(x) if $t \ge 0$ and it is not hard to check that $m(x+y) \le m(x) + m(y)$ for all $x, y \in l_{\mathbb{R}}^{\infty}$. We want to show that there are Banach limits or what I prefer to call a generalized limit on $l_{\mathbb{R}}^{\infty}$. This is we want to show that there is a functional $L \in l_{\mathbb{R}}^{\infty^*}$ such that:

$$L(S(x)) = L(x)$$

where $S \in \mathcal{L}(l_{\mathbb{R}}^{\infty})$ is given by $S(x)_n = x_{n+1}$ and such that $\liminf_n x_n \leq L(x) \leq \limsup_n x_n$. (Hint provided).

Problem 40. Prove the following Lemma from lecture. Let X be a complex vector space. Every real linear functional of X is the real part of a complex linear functional on X. In fact, if $\phi = \Re(\psi)$ then $\psi(x) = \phi(x) - i\phi(ix)$.

Problem 41. Suppose that X is a normed vector space such that X^* is separable. Show that X is separable. (Hint provided).