DM & ML - Final Assignment : การแก้ปัญหา Overfit ในการวิเคราะห์ข้อมูล

ในการแก้ไขปัญหา overfit ครั้งนี้ ผมจะทำการแก้ไขผ่านการเขียน Python จาก Google Colab โดยใช้ชุดข้อมูลที่ชื่อว่า <u>Glass Classification</u> <u>จาก Kaggle</u> ซึ่งประกอบไปด้วย 214 records และ 10 Attributes คือ

1. Id number : ตั้งแต่ 1 – 214 2. RI : Refractive Index หรือ คัชนีการหักเหของแสง 3. Na : Sodium

4. Mg : Magnesium 5. Al : Aluminum 6. Si : Silicon

7. K : Potassium 8. Ca : Calcium 9. Ba : Barium

10. Fe : Iron

11. Type of glass (หรือ ชนิดของแก้ว) ในรูป Class Attribute โดยกำหนดตัวเลขดังต่อไปนี้

-- 1 building windows float processed -- 2 building windows non float processed

-- 3 vehicle_windows_float_processed -- 4 vehicle_windows_non_float_processed (ไม่มีข้อมูลส่วนนี้ในชุดข้อมูลชุดนี้)

-- 5 containers -- 6 tableware

-- 7 headlamps (โดยให้ Attribute ที่ 3-10 อยู่ในหน่วย %wt หรือร้อยละต่อน้ำหนัก)

โดยวัตถุประสงค์ของการวิเคราะห์ข้อมูลชุดนี้ก็เพื่อที่จะสร้างโมเดลในการทำนายชนิดของแก้ว จากค่าพารามิเตอร์ต่าง ๆ ตามที่กำหนด

ในขั้นตอนแรกนั้น เราจะเริ่มจากการสำรวจข้อมูลเบื้องต้น (EDA) กันก่อน

และเราพบว่า สัดส่วนของประเภทต่าง ๆ และการกระจายข้อมูล เป็นไปตามด้านล่าง


```
Overall Data Distribution as below

building_windows_non_float_processed : 76 or 35.51%
building_windows_float_processed : 70 or 32.71%
headlamps : 29 or 13.55%
vehicle_windows_float_processed : 17 or 7.94%
containers : 13 or 6.07%
tableware : 9 or 4.21%
```


โดยหากเราต้องการให้ Model มีประสิทธิภาพดีขึ้นนั้น เราจำเป็นที่จะต้องทำการปรับค่า Hyperparameter ต่าง ๆ เพื่อให้ model สามารถ ทำนาย unseen data ได้แม่นยำขึ้น (ลดปัญหา Overtit) ซึ่งตัวอย่างวิธีการดังกล่าว เป็นไปดังต่อไปนี้

1) Splitting Data by Cross Validation Method

การใช้ cross validation number ที่จำนวนมากขึ้นจนถึงค่าหนึ่ง ก็จะทำให้ได้ค่า Model Cross Validation Accuracy ที่เพิ่มขึ้น ซึ่งนั่นก็ หมายถึงโอกาสที่ข้อมูลจะถูกนำไปใช้ในการเรียนรู้ก็จะครอบคลุมขึ้น ซึ่งนั่นก็หมายถึงว่าโอกาสในการเกิด overfit ก็จะน้อยลง


```
[71] 1 X_train , X_test , y_train , y_test = train_test_split(X,y ,test_size = 0.3 , random_state = 1994 , stratify = y )

[72] 1
2 rfc = RandomForestClassifier(n_estimators = 250, criterion = 'entropy')
3 rfc.fit(X_train,y_train)
4
5 y_pred = rfc.predict(X_test)
6 y_pred

array([1, 1, 7, 7, 1, 1, 1, 2, 1, 2, 2, 1, 2, 7, 1, 7, 1, 7, 1, 6, 2, 2,
2, 1, 2, 1, 2, 2, 1, 5, 1, 6, 7, 1, 2, 2, 7, 2, 7, 1, 1, 1, 2, 1,
1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 1, 5, 1, 3, 1, 6, 2, 1, 1])
```

```
[77] 1 print("using CV = 2",cross_val_score(rfc, X, y, cv=2)*100)
    2 print("using CV = 5",cross_val_score(rfc, X, y, cv=5)*100)
    3 print("using CV = 10",cross_val_score(rfc, X, y, cv=10)*100)
    4

using CV = 2 [59.81308411 56.07476636]
    using CV = 5 [74.41860465 72.09302326 65.11627907 69.76744186 76.19047619]
    using CV = 10 [63.63636364 72.72727273 81.81818182 72.72727273 61.9047619 85.71428571
    90.47619048 57.14285714 80.95238095 85.71428571]
```

```
1 for cv_i in (2,5,7,10,15,20,30,50):
2    accuracies_i_percentage = cross_val_score(rfc, X_train, y_train, cv = cv_i)
3    print(f'Using CV = {cv_i} Accuracy (mean):{accuracies_i_percentage.mean()*100:.2f}')
4
5
C   Using CV = 2 Accuracy (mean):73.80
Using CV = 5 Accuracy (mean):76.51
Using CV = 7 Accuracy (mean):77.12
Using CV = 10 Accuracy (mean):77.11
Using CV = 15 Accuracy (mean):77.11
Using CV = 20 Accuracy (mean):77.59
Using CV = 30 Accuracy (mean):77.17
Using CV = 50 Accuracy (mean):79.33
```

จากภาพ เป็นการเปรียบเทียบผลลัพธ์การใช้ Cross Validation ที่ 2,5,7,10,15,20,30 และ 50-Fold CV ซึ่งจะเห็นได้ชัดว่า Cross Validation Score (Validation Accuracy) มีแนวโน้มดีขึ้นหากใช้ CV ที่เพิ่มขึ้นถึงค่าหนึ่ง หลังจากนั้นอาจคงที่หรือด้อยลง ซึ่งจากผลการันตามภาพนั้น ค่าที่ เหมาะที่สุดคือ cv ในช่วงตั้งแต่ 5-10 เนื่องจาก เป็นการแบ่งที่ได้ score ที่ยอมรับได้ และไม่ได้ใช้เวลาทำงานมากจนเกินไป

2) Removing Layers / Changing number of unit per layers

สำหรับการสร้างโมเคลพยากรณ์จาก Algorithm Neural Network .ในกรณีนี้ ได้กำหนดพารามิเตอร์ตั้งต้นไว้ตามภาพ

```
1 model = Sequential()
                                                                   1 model.compile(optimizer="adam",
2 model.add(Dense(45, activation="relu", input_dim=9))
3 model.add(Dense(30, activation="relu"))
                                                                                    metrics=['accuracy'])
4 model.add(Dense(25, activation="relu"))
5 model.add(Dense(22, activation="relu"))
6 model.add(Dense(18, activation="relu"))
7 model.add(Dense(15, activation="relu"))
                                                                        1 history = model.fit(X_train_ss,y_train,
8 model.add(Dense(10, activation="relu"))
                                                                                                   epochs=300,
9 model.add(Dense(8, activation="relu"))
10 model.add(Dense(6, activation="softmax"))
                                                                                                   batch_size=30
                                                                                                   validation_split=0.3,
                                                                                                   verbose=1)
                                                                       Epoch 272/300
                                         - loss: 3.1162e-05 - accuracy: 1.0000 - val_loss: 7.5539 - val_accuracy: 0.6889
     122/300
                                          · loss: 3.0978e-05 - accuracy: 1.0000 - val loss: 7.5547 - val accuracy: 0.6667
     123/300
                       model accuracy
                                                                              model loss
 1.00
          train
                                                                train
 0.95
                                                                test
 0.90
 0.85
 0.80
                                                        loss
 0.75
 0.70
 0.65
 0.60
                             150
                                           250
```

โดยจากการันจนครบ 300 epochs พบว่า training accuracy อยู่ที่ประมาณ 66.67 %

และเมื่อนำมาทำนายผลลัพธ์ และจะได้ค่าจากการทำนายคือ

```
1 y_pred = y_pred.argmax(axis=1)
2 y_pred

[ array([1, 0, 0, 1, 1, 5, 0, 0, 3, 2, 0, 0, 1, 1, 0, 0, 0, 5, 0, 5, 0, 2,
3, 0, 1, 0, 3, 5, 0, 3, 1, 0, 0, 1, 5, 1, 5, 1, 0, 0, 1, 0, 5, 4,
0, 4, 0, 0, 2, 0, 1, 0, 0, 4, 2, 0, 1, 0, 1, 1, 2, 0, 0, 5, 0])
```

ซึ่งผลลัพธ์จากการทำนายจะได้ความแม่นยำของโมเดลประมาณ 75.38% (difference 8.71%)

```
1 from sklearn.metrics import classification_report
2 print(classification_report(y_test,y_pred))
3 print("accuracy (%): ",round(accuracy_score(y_test,y_pred)*100,2) )
4
5

C* precision recall f1-score support

0 0.67 0.86 0.75 21
1 0.73 0.70 0.71 23
2 1.00 0.20 0.33 5
3 0.80 1.00 0.89 4
4 1.00 0.67 0.80 3
5 1.00 0.89 4
9 accuracy 0.75 65
macro avg 0.87 0.72 0.74 65
weighted avg 0.78 0.75 0.74 65
accuracy (%): 75.38
```

แต่ถ้าเราลองปรับ Hidden layer ก็จะ ได้ผลลัพธ์ดังต่อไปนี้

2.1) Remove 5 Hidden layers

```
1 # code ด้านล่างที่ comment สีเขียว คือ hidden layer ที่ถูกลบไป
2
3 model = Sequential()
4 model.add(Dense(45, activation="relu", input_dim=9))
5 #model.add(Dense(30, activation="relu"))
6 #model.add(Dense(25, activation="relu"))
7 #model.add(Dense(22, activation="relu"))
8 #model.add(Dense(18, activation="relu"))
9 #model.add(Dense(15, activation="relu"))
10 model.add(Dense(10, activation="relu"))
11 model.add(Dense(6, activation="relu"))
12 model.add(Dense(6, activation="softmax"))
```

D	precision	recall	f1-score	support	
0	0.63	0.81	0.71	21	
1	0.71	0.65	0.68	23	
2	0.50	0.20	0.29		
3	1.00	0.75	0.86	4	
4	0.75	1.00	0.86		
5	1.00	0.89	0.94	9	
accuracy			0.72	65	
macro avg	0.77	0.72	0.72	65	
weighted avg	0.73	0.72	0.71	65	
accuracy	(%):	72.31			

จะ ใค้ training accuracy อยู่ที่ 66.67% เท่ากับพารามิเตอร์ ตั้งต้น / testing Accuracy อยู่ที่ 72.31% (difference 5.64%)

2.2) ลดจำนวณ Neuron ในแต่ละ layer ลง 50%

```
1 model = Sequential()
2 model.add(Dense(45, activation="relu", input_dim=9))
3 model.add(Dense(15, activation="relu")) # before adjust - dense = 45
4 model.add(Dense(13, activation="relu")) # before adjust - dense = 30
5 model.add(Dense(11, activation="relu")) # before adjust - dense = 25
6 model.add(Dense(9, activation="relu")) # before adjust - dense = 22
7 model.add(Dense(8, activation="relu")) # before adjust - dense = 18
8 model.add(Dense(5, activation="relu")) # before adjust - dense = 15
9 model.add(Dense(4, activation="relu")) # before adjust - dense = 8
10 model.add(Dense(6, activation="softmax"))
```

```
1 print(classification_report(y_test,y_pred))
 2 print("accuracy(%) : ",round(accuracy_score(y_test,y_pred)*100,2)
              precision
                           recall f1-score
                             0.86
                                       0.75
          0
                   0.67
                   0.75
                             0.39
                                        0.51
                   0.18
                             0.40
                             0.25
                                        0.33
                             1.00
                                        0.86
   accuracy
                                        0.63
  macro avg
                   0.62
                             0.63
                                        0.60
weighted avg
                   0.68
                             0.63
                                        0.63
accuracy(%) : 63.08
```

จะใต้ training accuracy อยู่ที่ 71.11% / testing Accuracy อยู่ที่ 63.08% (difference 8.03%)

ซึ่งจะเห็นว่า ทั้งวิธีการที่ 2.1 และ 2.2 ต่างทำให้ค่า Difference ระหว่าง training และ testing accuracy ลดลงจากวิธีการตั้งต้น หรืออาจกล่าว ได้ว่า การปรับลด node ใน hidden layer หรือแม้กระทั่งการปรับลดจำนวน hidden layer ก็จะทำให้ overfitting ลดลงนั่นเอง

3) Dropout

จากข้อ 2 ทำการแก้ไขพารามิเตอร์เพิ่มเติม โดยเพิ่ม dropout บริเวณแต่ละ hidden layer แต่รายละเอียดอื่น ๆ คงเดิม ดังต่อไปนี้

```
4 model.add(Dense(45, activation="relu", input_dim=9))
5 model.add(Dense(30, activation="relu"))
 1 model = Sequential()
                                                                                      6 model.add(Dropout(0.2))
7 model.add(Dense(25, activation="relu"))
8 model.add(Dropout(0.2))
 2 model.add(Dense(45, activation="relu", input_dim=9))
 3 model.add(Dense(30, activation="relu"))
                                                                                      9 model.add(Dense(22, activation="relu"))
 4 model.add(Dense(25, activation="relu"))
                                                                                     10 model.add(Dropout(0.2))
                                                                                        model.add(Dense(18, activation="relu"))
 5 model.add(Dense(22, activation="relu"))
                                                                                     12 model.add(Dropout(0.2))
13 model.add(Dense(15, activation="relu"))
14 model.add(Dropout(0.2))
 6 model.add(Dense(18, activation="relu"))
 7 model.add(Dense(15, activation="relu"))
                                                                                     15 model.add(Dense(10, activation="relu")
 8 model.add(Dense(10, activation="relu"))
                                                                                     16 model.add<mark>(</mark>Dropout(0.2))
 9 model.add(Dense(8, activation="relu"))
                                                                                     17 model.add(Dense(8, activation="relu"))
                                                                                        model.add(Dropout(0.2))
10 model.add(Dense(6, activation="softmax"))
                                                                                        model.add(Dense(6, activation="softmax"))
```

₽	precision	recall	f1-score	support	
0	0.65	0.81	0.72	21	
1	0.65	0.65	0.65	23	
2	0.00	0.00	0.00		
3	0.17	0.25	0.20	4	
4	0.00	0.00	0.00		
5	0.80	0.89	0.84		
accuracy			0.63	65	
macro avg	0.38	0.43	0.40	65	
weighted avg	0.56	0.63	0.59	65	
accuracy(%) :	63.08				

จะได้ training accuracy อยู่ที่ 62.22% / testing Accuracy อยู่ที่ 63.08% (difference 0.86 %)

ซึ่งจะเห็นว่า วิธีการดังกล่าวนี้ทำให้ค่า Difference ระหว่าง training และ testing accuracy ลดลงจากวิธีการดั้งต้น หรืออาจกล่าวได้ว่า การ dropout หรือการสุ่มตัดนิวรอลบางตัวออกไประหว่างการเรียนรู้ ก็จะทำให้ overtitting ลดลงเช่นเดียวกัน