

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: O'BRIEN, JOHN S.
KISHIMOTO, YASUO

(ii) TITLE OF INVENTION: IDENTIFICATION OF PROSAPOSIN AS A
NEUROTROPHIC FACTOR

(iii) NUMBER OF SEQUENCES: 4

(iv) CORRESPONDENCE ADDRESS:
(A) ADDRESSEE: KNOBBE, MARTENS, OLSON AND BEAR
(B) STREET: 620 NEWPORT CENTER DRIVE SIXTEENTH FLOOR
(C) CITY: NEWPORT BEACH
(D) STATE: CA
(E) COUNTRY: USA
(F) ZIP: 92660

(v) COMPUTER READABLE FORM:
(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.25

(vi) CURRENT APPLICATION DATA:
(A) APPLICATION NUMBER:
(B) FILING DATE:
(C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:
(A) NAME: Israelsen, Ned A.
(B) REGISTRATION NUMBER: 29,655
(C) REFERENCE/DOCKET NUMBER: OBRIEN.002A

(ix) TELECOMMUNICATION INFORMATION:
(A) TELEPHONE: 619-235-8550
(B) TELEFAX: 619-235-0176

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 22 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: internal

(vii) IMMEDIATE SOURCE:

(B) CLONE: 22-MER FRAGMENT

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Cys Glu Phe Leu Val Lys Glu Val Thr Lys Leu Ile Asp Asn Asn Lys
1 5 10 15

Thr Glu Lys Glu Ile Leu
20

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 523 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: N-terminal

(vii) IMMEDIATE SOURCE:

(B) CLONE: PROSAPOSIN

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Tyr Ala Leu Phe Leu Leu Ala Ser Leu Leu Gly Ala Ala Leu Ala
1 5 10 15

Gly Pro Val Leu Gly Leu Lys Glu Cys Thr Arg Gly Ser Ala Val Trp
20 25 30

Cys Gln Asn Val Lys Thr Ala Ser Asp Cys Gly Ala Val Lys His Cys
35 40 45

Leu Gln Thr Val Trp Asn Lys Pro Thr Val Lys Ser Leu Pro Cys Asp
50 55 60

Ile Cys Lys Asp Val Val Thr Ala Ala Gly Asp Met Leu Lys Asp Asn
65 70 75 80

Ala Thr Glu Glu Ile Leu Val Tyr Leu Glu Lys Thr Cys Asp Trp
 85 90 95

Leu Pro Lys Pro Asn Met Ser Ala Ser Cys Lys Glu Ile Val Asp Ser
 100 105 110

Tyr Leu Pro Val Ile Leu Asp Ile Ile Lys Gly Glu Met Ser Arg Pro
 115 120 125

Gly Glu Val Cys Ser Ala Leu Asn Leu Cys Glu Ser Leu Gln Lys His
 130 135 140

Leu Ala Glu Leu Asn His Gln Lys Gln Leu Glu Ser Asn Lys Ile Pro
 145 150 155 160

Glu Leu Asp Met Thr Glu Val Val Ala Pro Phe Met Ala Asn Ile Pro
 165 170 175

Leu Leu Leu Tyr Pro Gln Asp Gly Pro Arg Ser Lys Pro Gln Pro Lys
 180 185 190

Asp Gly Asp Val Cys Gln Asp Cys Ile Gln Met Val Thr Asp Ile Gln
 195 200 205

Thr Ala Val Arg Thr Asn Ser Thr Phe Val Gln Ala Leu Val Glu His
 210 215 220

Val Lys Glu Glu Cys Asp Arg Leu Gly Pro Gly Met Ala Asp Ile Cys
 225 230 235 240

Lys Asn Tyr Ile Ser Gln Tyr Ser Glu Ile Ala Ile Gln Met Met Met
 245 250 255

His Met Gln Pro Lys Glu Ile Cys Ala Leu Val Gly Phe Cys Asp Glu
 260 265 270

Val Lys Glu Met Pro Met Gln Thr Leu Val Pro Ala Lys Val Ala Ser
 275 280 285

Lys Asn Val Ile Pro Ala Leu Asp Leu Val Asp Pro Ile Lys Lys His
 290 295 300

Glu Val Pro Ala Lys Ser Asp Val Tyr Cys Glu Val Cys Glu Phe Leu
 305 310 315 320

Val Lys Glu Val Thr Lys Leu Ile Asp Asn Asn Lys Thr Glu Lys Glu
 325 330 335

Ile Leu Asp Ala Phe Asp Lys Met Cys Ser Lys Leu Pro Lys Ser Leu
 340 345 350

Ser Glu Glu Cys Gln Glu Val Val Asp Thr Tyr Gly Ser Ser Ile Leu
 355 360 365

*Sub
Ex
cont*

Ser Ile Leu Leu Glu Glu Val Ser Pro Glu Leu Val Cys Ser Met Leu
370 375 380

His Leu Cys Ser Gly Thr Arg Leu Pro Ala Leu Thr Val His Val Thr
385 390 395 400

Gln Pro Lys Asp Gly Gly Phe Cys Glu Val Cys Lys Lys Leu Val Gly
405 410 415

Tyr Leu Asp Arg Asn Leu Glu Lys Asn Ser Thr Lys Gln Glu Ile Leu
420 425 430

Ala Ala Leu Glu Lys Gly Cys Ser Phe Leu Pro Asp Pro Tyr Gln Lys
435 440 445

Gln Cys Asp Gln Phe Val Ala Glu Tyr Glu Pro Val Leu Ile Glu Ile
450 455 460

Leu Val Glu Val Met Asp Pro Ser Phe Val Cys Leu Lys Ile Gly Ala
465 470 475 480

Cys Pro Ser Ala His Lys Pro Leu Leu Gly Thr Glu Lys Cys Ile Trp
485 490 495

Gly Pro Ser Tyr Trp Cys Gln Asn Thr Glu Thr Ala Ala Gln Cys Asn
500 505 510

Ala Val Glu His Cys Lys Arg His Val Trp Asn
515 520

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 80 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: internal

(vii) IMMEDIATE SOURCE:

(B) CLONE: SAPOSIN C

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Ser Asp Val Tyr Cys Glu Val Cys Glu Phe Leu Val Lys Glu Val Thr
1 5 10 15

Lys Leu Ile Asp Asn Asn Lys Thr Glu Lys Glu Ile Leu Asp Ala Phe
 20 25 30

Asp Lys Met Cys Ser Lys Leu Pro Lys Ser Leu Ser Glu Glu Cys Gln
 35 40 45

Glu Val Val Asp Thr Tyr Gly Ser Ser Ile Leu Ser Ile Leu Leu Glu
 50 55 60

Glu Val Ser Pro Glu Leu Val Cys Ser Met Leu His Leu Cys Ser Gly
 65 70 75 80

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2740 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: PROSAPOSIN cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

ATGTACGCC	TCTTCCTCCT	GGCCAGCCTC	CTGGGCGCGG	CTCTAGCCGG	CCCGGTCC	TT	60	
GGACTGAAAG	AATGCACCAG	GGGCTCGGCA	GTGTGGTGCC	AGAATGTGAA	GACGGCGTCC		120	
GA	CTGC	GGGG	CAGTGAAGCA	CTGCCTGCAG	ACCGTTGGA	ACAAGCCAAC	AGTGAAATCC	180
CTTCC	CTGCG	ACATATGCAA	AGACGTTGTC	ACCGCAGCTG	GTGATATGCT	GAAGGACAAT		240
GCCACTGAGG	AGGAGATCCT	TGTTTACTTG	GAGAAGACCT	GTGACTGGCT	TCCGAAACCG		300	
AACATGTCTG	CTTCATGCAA	GGAGATA	GTG	ACTG	CTG	GGACATC		360
ATTAAAGGAG	AAATGAGCCG	TCCTGGGGAG	GTGTGCTCTG	CTCTAACCT	CTGCGAGTCT		420	
CTCCAGAACG	ACCTAGCAGA	GCTGAATCAC	CAGAAGCAGC	TGGAGTCCAA	TAAGATCCC		480	
GAGCTGGACA	TGACTGAGGT	GGTGGCCCCC	TTCATGGCCA	ACATCCCTCT	CCTCCTGTAC		540	
CCTCAGGACG	GCC	CCCCGCAG	CAAGCCCCAG	CCAAAGGATA	ATGGGGACGT	TTGCCAGGAC		600

TGCATTCAGA TGGTGACTGA CATCCAGACT GCTGTACGGA CCAACTCCAC CTTTGTCCAG	660
GCCTTGGTGG AACATGTCAA GGAGGGAGTGT GACCGCCTGG GCCCTGCCAT GGCCGACATA	720
TGCAAGAACT ATATCAGCCA GTATTCTGAA ATTGCTATCC AGATGATGAT GCACATGCAA	780
CCCAAGGAGA TCTGTGCGCT GGTTGGGTTG TGTGATGAGG TGAAAGAGAT GCCCATGCAG	840
ACTCTGGTCC CCGCCAAAGT GGCCTCCAAG AATGTCATCC CTGCCCTGGA ACTGGTGGAG	900
CCCATTAAAGA AGCACGAGGT CCCAGCAAAG TCTGATGTTT ACTGTGAGGT GTGTGAATTG	960
CTGGTGAAGG AGGTGACCAA GCTGATTGAC AACAAACAAGA CTGAGAAAGA AATACTCGAC	1020
GCTTTGACA AAATGTGCTC GAAGCTGCCG AAGTCCCTGT CGGAAGAGTG CCAGGAGGTG	1080
GTGGACACGT ACGGCAGCTC CATCCTGTCC ATCCTGCTGG AGGAGGTCAG CCCTGAGCTG	1140
GTGTGCAGCA TGCTGCACCT CTGCTCTGGC ACGCGGCTGC CTGCACTGAC CGTTCACGTG	1200
ACTCAGCCAA AGGACGGTGG CTTCTGCGAA GTGTGCAAGA AGCTGGTGGG TTATTTGGAT	1260
CGCAACCTGG AGAAAAAACAG CACCAAGCAG GAGATCCTGG CTGCTCTTGA GAAAGGCTGC	1320
AGCTTCCTGC CAGACCCTTA CCAGAACGAG TGTGATCAGT TTGTGGCAGA GTACGAGCCC	1380
GTGCTGATCG AGATCCTGGT GGAGGGATG GATCCTTCCT TCGTGTGCTT GAAAATTGGA	1440
GCCTGCCCT CGGCCCATAA GCCCTTGTG GGAAGTGAGA AGTGTATATG GGGCCCAAGC	1500
TACTGGTGCC AGAACACAGA GACAGCAGCC CAGTGCAATG CTGTCGAGCA TTGCAAACGC	1560
CATGTGTGGA ACTAGGAGGA GGAATATTCC ATCTTGGCAG AAACCACAGC ATTGGTTTTT	1620
TTCTACTTGT GTGTCTGGGG GAATGAACGC ACAGATCTGT TTGACTTTGT TATAAAAATA	1680
GGGCTCCCCC ACCTCCCCCA TTTCTGTGTC CTTTATTGTA GCATTGCTGT CTGCAAGGGA	1740
GCCCCTAGCC CCTGGCAGAC ATAGCTGCTT CAGTCCCCCT TTTCTCTCTG CTAGATGGAT	1800
GTTGATGCAC TGGAGGTCTT TTAGCCTGCC CTTGCATGGC GCCTGCTGGA GGAGGGAGAGA	1860
GCTCTGCTGG CATGAGCCAC AGTTTCTTGA CTGGAGGCCA TCAACCCTCT TGGTTGAGGC	1920
CTTGTCTGA GCCCTGACAT GTGCTTGGGC ACTGGTGGGC CTGGGCTTCT GAGGTGGCCT	1980
CCTGCCCTGA TCAGGGACCC TCCCCGCTTT CCTGGGCCTC TCAGTTGAAC AAAGCAGCAA	2040
AACAAAGGCA GTTTTATATG AAAGATTAGA AGCCTGGAAT AATCAGGCTT TTTAAATGAT	2100
GTAATTCCCA CTGTAATAGC ATAGGGATTT TGGAAGCAGC TGCTGGTGGC TTGGGACATC	2160
AGTGGGGCCA AGGGTTCTCT GTCCCTGGTT CAACTGTGAT TTGGCTTCC CGTGTCTTTC	2220

CTGGTGATGC CTTGTTGGG GTTCTGTGGG TTTGGGTGGG AAGAGGGCAA TCTGCCTGAA 2280
TGTAAACCTGC TAGCTCTCCG AAGGCCCTGC GGGCCTGGCT TGTGTGASCAGT 2340
GGTGGCCGCG CTGTGCCTGC TCGTGTGTTGCC TACATGTCCC TGGCTGTTGA GGCGCTGCTT 2400
CAGCCTGCAC CCCTCCCTTG TCTCATAGAT GCTCCTTTG ACCTTTCAA ATAAATATGG 2460
ATGGCGAGCT CCTAGGCCTC TGGCTTCCTG GTAGAGGGCG GCATGCCGAA GGGTCTGCTG 2520
GGTGTGGATT GGATGCTGGG GTGTGGGGGT TGGAAAGCTGT CTGTGGCCCA CTTGGGCACC 2580
CACGCTTCTG TCCACTTCTG GTTGCCAGGA GACAGCAAGC AAAGCCAGCA GGACATGAAG 2640
TTGCTATTAA ATGGACTTCG TGATTTTGT TTTGCACTAA AGTTTCTGTG ATTTAACAAAT 2700
AAAATTCTGT TAGCCAGAAA AAAAAAAA AAAAAAAA 2740

(2) INFORMATION FOR SEQ ID NO:5:

*Ex. 2
comd*

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (iv) ANTISENSE: NO
- (v) FRAGMENT TYPE: internal
- (vi) IMMEDIATE SOURCE:
 - (B) CLONE: 18-MER FRAGMENT

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5

Tyr Lys Glu Val Thr Lys Leu Ile Asp Asn Asn Lys Thr Glu Lys Glu
1 5 10 15

Ile Leu