Última revisión del documento: 10 de enero de 2024

Practica la Unidad 2

Nombre del alumno: Fecha:

Aprendizajes:		Puntuación:
☼ Deduce información acerca de la estre experimentales sobre propiedades at	-	??>7 ??>15 Run LATEX again to produce the table
Representa y diferencia mediante esc mica, elementos y compuestos, así co		
Explica y predice propiedades física modelos submicroscópicos sobre la e iones, y sus interacciones electrostát	structura de átomos, moléculas o	
Ejercicio 1		de ?? puntos
Relaciona cada elemento con las carac	terísticas que le corresponden.	
	A Elemento metaloide del grup	oo III, subgrupo A de la tabla periódica.
a Radón	\bigcirc Elemento metálico con Z =	31.
b Helio	© Elemento metaloide, ubicado	o en el tercer período de la tabla periódica.
c Galio	,	s noble y se encuentra en el período 1 de
dYodo	la tabla periódica.	s nosic y se encuentra en el período i de
e Bismuto	E Elemento con 22 protones y	22 electrones.
f Radio	F Elemento de la familia de los	s Halógenos con 74 neutrones.
9 Silicio	© Elemento de la familia de m	etales alcalino-terreos con 138 neutrones.
h Oro	$\begin{tabular}{l} \hline \end{tabular}$ Elemento no metálico con Z	=83.
i Titanio	① Gas inerte (gas noble) que periódica.	se encuentra en el período 6 de la tabla
j Boro	(J) Metal brillante utilizado en j	joyería.

Ejercicio 2 ____ de ?? puntos

Relaciona la especie química con la cantidad de protones y electrones de valencia.

 \bigcirc Ión de Nitrógeno (N³⁻)

B Ión de Berilio (Be⁻)

 \bigcirc Ión de Flúor (F^-)

 \bigodot Ión de Hierro (Fe³+)

- 2 9 protones y 8 electrones de valencia.
- b _____ 15 protones y 5 electrones de valencia.
- **c** _____ 4 protones y 3 electrones de valencia.
- d _____ 16 protones y 4 electrones de valencia.
- e _____ 7 protones y 8 electrones de valencia.

F Ión de Aluminio (Al³⁺)

(G) Ión de Cloro (Cl⁻)

 $\fill H$ Ión de Azúfre $({\bf S}^{2+})$

(I) Litio (Li)

J Fósforo (P)

- f _____ 17 protones y 8 electrones de valencia.
- 9 _____ 13 protones y 8 electrones de valencia.
- h _____ 19 protones y 8 electrones de valencia.
- i _____ 26 protones y 2 electrones de valencia.
- j _____ 3 protones y 1 electrón de valencia.

Ejercicio 3						do 22 ountos
Ejercicio s						de ?? puntos
Relaciona cada concept o	o con su de	efinición.				
 A Las sustancias a micos y líneas o micos. B Esquema tridin identificar a los C Esquema tridin identificar a los D Las sustancias a atómicos. 	que simboli nensional e enlaces qu nensional e enlaces qu	zan a los en n el que no e nímicos. en el que e nímicos.	laces quí- es posible es posible	a _ b _ c _ d _	Diagrama Fórmula es Fórmula co Diagrama	structural.
Ejercicio 4						de ?? puntos
Ejercicio 5						de ?? puntos
Completa la siguiente tab de masa y número atómic		nando para	cada especie,	el número de	e protones, neutro	ones, electrones, número
	Símbolo	Protones	Neutrones	Electrones	Masa atómica	
Plutonio						
Ión positivo de Estaño						
Niobio						
Uranio						
Ión positivo de Plata						
Tecnesio						
Circonio						
Cobalto						
Curio						

Ejercicio 6	de ?? pu	untos

Escribe el grupo, subgrupo, período y clasificación de los siguientes elementos. Después de realizar este ejercicio, ubica a cada elemento en la tabla periódica que se muestra abajo.

	Grupo	Subgrupo	Período	Tipo de elemento
Oro				
Plata				
Bario				
Talio				
Potasio				
Niquel				
Paladio				
Yodo				
Argón				
Samario				

Ejercicio 7	de ?? puntos
Señala en cada uno de los enunciados si la sentencia es fal	lsa o verdadera.
 □ Los electrones de valencia se encuentran siempre en el último nivel de energía. □ Verdadero □ Falso 	f En una fórmula química, los coeficientes indican el número de moléculas o unidades fórmula; así como también el número de moles presentes de la sustancia.
b Los metales son maleables, dúctiles y buenos conductores del calor y la electricidad.	☐ Verdadero ☐ Falso
☐ Verdadero ☐ Falso	9 El neutrón es una partícula subatómica que se encuentra girando alrededor del núcleo atómico.
C La fórmula H ₂ O expresa que la molécula de agua está constituida por dos átomos de oxígeno y uno	☐ Verdadero ☐ Falso
de hidrógeno. Uerdadero Falso	h La masa de un neutrón es similar a la del protón.□ Verdadero □ Falso
 d En la fórmula de la Taurina, 4C₂H₇NO₃S, el número 4 indica que hay 4 átomos de carbono. □ Verdadero □ Falso 	i El número de masa representa la suma de protones y neutrones.□ Verdadero □ Falso
 Los subíndices expresan el número de átomos de los elementos presentes en una molécula o unidad fórmula. □ Verdadero □ Falso 	j El número total de electrones en un átomo lo determina el grupo al que pertenece. □ Verdadero □ Falso
U verdadero U l'aiso	U verdadero U l'aiso
Ejercicio 8	de ?? puntos
Contesta a las siguientes preguntas, argumentando amplia Contesta a las siguientes preguntas, argumentando amplia Explica bajo qué condiciones el número atómico pe átomo.	amente tu respuesta. ermite deducir el número de electrones presentes en un
	oximadamente 10,000 veces mayor que su núcleo. Si un e su núcleo midiera 2 mm (lo que mide un grano de sal),

Ejercicio 9 de ?? puntos

Señala la opción que responde correctamente a la pregunta de cada uno de los siguientes incisos:

- Qué propiedades periódicas aumentan al recorrer un grupo de arriba hacia abajo en la tabla periódica?
 - A El carácter metálico y la electronegatividad
 - B El potencial de Ionización y el carácter metálico
 - © El carácter no metálico y el potencial de ionización
 - D La electronegatividad y la afinidad electrónica
 - (E) Ninguna de las anteriores
- b ¿Qué propiedades periódicas aumentan al desplazarnos en un período de izquierda a dere- cha en la tabla periódica?
 - A La electronegatividad y el tamaño atómico
 - B El radio atómico y el radio iónico
 - © El carácter metálico y la afinidad electrónica
 - D Potencial de ionización y electronegatividad
 - (E) Ninguna de las anteriores
- c En la tabla periódica, el tamaño atómico tiende a aumentar hacia la:
 - (A) Derecha v hacia arriba
 - B Derecha y hacia abajo
 - C Izquierda y hacia arriba
 - (D) Izquierda y hacia abajo

- d El tamaño de los átomos aumenta cuando:
 - (A) Se incrementa el número de período
 - B Disminuye el número de período
 - © Se incrementa el número de grupo
 - Disminuye el número de bloque
 - (E) Ninguna de las anteriores
- e El radio atómico es la distancia que hay del núcleo de un átomo a su electrón más lejano ¿Cómo varía esta propiedad atómica en los elementos de la tabla periódica?
 - A Disminuye conforme nos desplazamos de izquierda a derecha a lo largo de un período
 - B Aumenta conforme nos desplazamos de arriba hacia abajo a lo largo de un grupo
 - C Aumenta conforme nos desplazamos de derecha a izquierda a lo largo de un período
 - (D) Todos son correctos

Ejercicio 10 ____ de ?? puntos

Completa la siguiente tabla:

Sustancia	a) Tipo de sustancia	b) Fórmula condensada
H H-C-H H-C-H	molecular	CH₄
Cu²+Cu²+ Cu²+Cu²+ Cu²+Cu²+		
Cl· Cl· Mg²+ Mg²- Cl· Cl·		
O ²⁻ Ca ²⁺ O ²⁻ Ca ²⁺		
Ag*Ag* Ag*Ag*_Ag*		
H - C - OH H - OH H - C - OH H -		

18 VIIIA	$\overset{2}{H}\overset{4.0025}{\text{Helio}}$	$\overset{\text{10}}{\overset{\text{20.180}}{\overset{\text{20}}{\overset{\text{1}}}{\overset{\text{1}}{\overset{\text{1}}{\overset{\text{1}}{\overset{\text{1}}{\overset{\text{1}}{\overset{\text{1}}{\overset{\text{1}}{\overset{\text{1}}{\overset{\text{1}}{\overset{\text{1}}{\overset{\text{1}}{\overset{\text{1}}{\overset{\text{1}}}{\overset{\text{1}}{\overset{\text{1}}{\overset{\text{1}}{\overset{\text{1}}}{\overset{\text{1}}{\overset{\text{1}}{\overset{1}}{\overset{\text{1}}}{\overset{\text{1}}}{\overset{\text{1}}{\overset{\text{1}}}{\overset{\text{1}}{\overset{1}}{\overset{\text{1}}}{\overset{\text{1}}}}}}{\overset{\text{1}}{\overset{\text{1}}}{\overset{\text{1}}{\overset{\text{1}}{\overset{1}}{\overset{\text{1}}{\overset{1}}}}}{\overset{\text{1}}{\overset{1}}}}{\overset{\text{1}}}{\overset{\text{1}}{\overset{1}}}}{\overset{\text{1}}{\overset{1}}}{\overset{1}}}}{\overset{1}}}}}}}}}}$	$\bigwedge_{\text{Argón}}^{18 \ 39.948}$	$\overset{36}{K}\overset{83.8}{r}$ Kriptón	$\sum_{Xenón}^{54}$	$\mathop{Rh}\limits^{86}_{\text{Radón}}$	$\underset{\text{Oganesón}}{\underbrace{094}}$	$\overset{71}{\mathbf{L}}$	103 262 Lawrencio	
	17 VIIA	9 18.998 Fluor	17 35.453 Cloro	$\overset{35}{\mathbf{Bromo}}_{Promo}^{79.904}$	53 126.9 I Vodo	$\mathop{\mathrm{At}}_{\mathop{Astato}}^{\mathbf{s5}}$	$\frac{117}{T_{\text{eneso}}}$	$\sum_{\text{Yterbio}}^{70} \sum_{\text{173.04}}$	102 259 Nobelio	
	16 VIA	8 15.999 Oxígeno	16 32.065 S Azúfre	$\overset{34}{\mathrm{Se}}^{78.96}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{Po}\overset{209}{O}$	$\frac{116}{L}$	69 168.93 Tulio	Mendelevio	
	15 VA	7 14.007 Nitrógeno	$\overset{15}{\mathbf{P}}\overset{30.974}{\mathbf{P}}$	${\overset{33}{ ext{A}}}_{ ext{SFnico}}$	$\overset{51}{\mathbf{Sb}}_{\mathbf{b}}^{121.76}$ Antimonio	$\overset{83}{\mathbf{Dis}}$	Moscovio	$\stackrel{\textbf{68}}{\textbf{Erbio}}_{\textbf{167.26}}$	Femio 257	
	14 IVA	$\bigcup_{\text{Carbono}}^{6}$	Si	$\overset{32}{G}\overset{72.64}{e}$	$\mathop{Sn}\limits_{\text{Estaño}}$	\Pr_{Plomo}^{82}	114 289 Flerovio	$\displaystyle \underset{\text{Holmio}}{\text{67}}$	99 252 Einsteinio	
	13 IIIA	5 Ho.811 Boro	$\bigwedge_{\text{Aluminio}}^{13} \bigwedge_{\text{S6.982}}$	$\overset{31}{\mathbf{Galio}}_{\mathbf{a}}^{69.723}$	$\prod_{\text{Indo}}^{\textbf{49}}$	81 204.38	${\displaystyle \sum_{N \text{ Nihonio}}^{113}}$	$\bigcup_{\text{Disprosio}}^{66}$	98 251 Californio	
			12 IIB	$\overset{30}{\mathrm{Zn}}\overset{65.39}{\mathrm{c}}$	$\overset{48}{\text{Cadmio}}_{\text{Cadmio}}$	$\overset{80}{Hg}_{\text{Mercurio}}$	$\overset{112}{\text{Cm}}\overset{285}{\text{Copernicio}}$	$\prod_{Terbio}^{65-158.93}$	$\frac{97}{BK}$ Berkelio	
			11 IB	$\overset{29}{\overset{63.546}{C}}$	$^{47}_{ m Ag}$	$\overset{79}{\mathrm{Au}}_{\mathrm{Oro}}$	Roentgenio	$\overset{64}{Gd}_{dolinio}^{157.25}$	96 247 Curio	
			10 VIIIB	$\sum_{\text{Niquel}}^{\textbf{28}} \overset{58.693}{\text{Niquel}}$	$\overset{46}{P}\overset{106.42}{d}$	$\Pr^{78-195.08}_{\text{Platino}}$	110 281 DS	$\stackrel{63}{=} \overset{151.96}{=}$	$\overset{95}{Am}_{\text{Americio}}$	
			9 VIIIB	$\overset{27}{\overset{58.933}{\mathbf{C0}}}$	$\mathop{Rh}\limits^{45~102.91}_{\text{Rodio}}$	$\frac{77}{\text{Lr}}$	$\underset{\text{Meitnerio}}{109} 268$	$\mathop{\mathrm{Smario}}^{62}$	Plutonio	
		70	8 VIIIB	$\overset{26}{F}\overset{55.845}{e}$	$\overset{44}{Rut}_{\text{noio}}$	$\bigcup_{\text{Osmio}}^{76} S$	$\overline{\mathrm{H}}^{277}_{\mathrm{Hassio}}$	$\overset{\text{61}}{P}\overset{\text{145}}{m}$	Neptunio	
	gía:	Negro: Naturales Gris: Sintéticos	7 VIIB	$\overset{25}{\mathbf{Manganeso}}$	$\prod_{ ext{Tecnecio}}^{43}$	$\mathop{Re}_{\text{Renio}}^{75}$	$\underset{\text{Bohrio}}{\text{Bo}}$	$\overset{60}{\text{Neodimio}}^{144.24}$	92 238.03 Uranio	
	Simbología:	Negro: I Gris: Si	6 VIB	$\overset{24}{\overset{51.996}{\mathbf{\Gamma}}}$	${\overset{42}{\mathrm{No}}}_{\overset{95.94}{\mathrm{O}}}$	$\bigvee_{\text{Tungstenio}}^{74} 183.84$	106 266 S8 Seaborgio	$\sum_{\mathbf{r}=\mathbf{r}}^{59-140.91}$ Praseodymio	$\overset{91}{Pa}$	
	Sin	$\sum_{Sfimbolo}^{\mathbf{Z}} A_r$	5 VB	$\sum_{Vanadio}^{23} 50.942$	$\sum_{\text{Niobio}}^{41} \stackrel{92.906}{\text{Niobio}}$	$\overset{\textbf{73}}{\text{Tantalo}}_{\text{Tantalo}}^{\textbf{73}}$	$\sum_{\text{Dubnio}}^{105} \sum_{\text{Dubnio}}^{262}$	$58 140.12$ \mathbf{Cerio}	90 232.04	
			4 IVB	$\prod_{\text{Titanio}}^{22}$	$\sum_{\mathrm{Circonio}}^{40\ 91.224}$	$\overset{72}{\text{Hafinio}}$	$\overset{104}{R}\overset{261}{\text{Rutherfordio}}$	$\overset{57}{\text{La}}\overset{138.91}{\textbf{a}}$	$\overset{89}{Ac}$	
			3 IIIA	$\overset{21}{\mathrm{SC}}^{44.956}$ Escandio	39 88.906 Yerio	57-71 * Lantánido	: 89-103 : * *	terreos	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	sopu
	2 IIA	$\mathop{Berilio}^{4}$	$\overline{\mathrm{Mg}}^{24.305}$	$\overset{20}{\text{Calcio}}^{40.078}$	$\overset{38}{\mathrm{Sr}}$	$\overset{56}{\mathrm{Bario}}$	$\mathop{Radio}^{88}_{226}$	$\begin{array}{c} \text{Metales Alcalinos} \\ \text{Metales Alcalino-terreos} \\ \text{Metal} \\ \end{array}$	l 1 5 5 5 5 5 6 7 7 7 7 8	Lantánidos/Actinidos
1 IA	1 1.0079	3 6.941 Litio	$\overset{11}{\operatorname{Na}}\overset{22.990}{\operatorname{Sodio}}$	$\sum_{\text{Potasio}}^{19 \ \ 39.098}$	$\mathop{Rubidio}\limits^{37-85.468}$	$\mathbf{\hat{c}}_{\mathbf{S}}$	$\frac{87}{\text{Francio}}$	Metales . Metales . Metal	Metaloide No metal Halógeno Gases Nobles	Lantanıd
	П	7	m	4	S	9	~			