

Prof. Dr. Knut Reinert Sandro Andreotti FB Mathematik und Informatik

Fortgeschrittene Algorithmen in der Bioinformatik (P4): Sequence and Structure Analysis Abschlussklausur SS 08

Name:	Matrikelnummer:							
Viel Erfolg!	}	A1 17	A2 12	A3 14	A4 15	A5 10	A6 22	Σ 90

Aufgabe 1: Ukkonen, Myers Bitvector

6 + 7 + 4 = 17 Punkte

- (a) Beschreiben Sie den Idee von Ukkonen zum Berechnen eines Edit-Distanz alignments mit maximal k Fehlern
- **(b)** Argumentieren Sie, warum in Ukkonens Algorithmus die Aktualisierung des Zählers lact, der auf die letzte aktive Zelle zeigt, amortisiert nur Laufzeit O(n) hat.
- **(c)** Welche Bitvektoren benutzt der Myers Bitvektor-Algorithmus zum Berechnen eines Edit-Distanz alignments?

Aufgabe 2: PEX, Pidgeonhole Principle

3 + 3 + 6 = 12 Punkte

Ein Text T der Länge 1000 enthält ein Vorkommnis Occ eines Patterns P der Länge 50 mit höchstens 5 Fehlern. In wieviele Stücke muss man P zerlegen (also $P = P_1P_2 \dots P_k$), um sicherzustellen, dass ...

- (a) *T* eines der Stücke exakt (ohne Fehler) enthält?
- **(b)** *T* eines der Stücke mit höchstens zwei Fehlern enthält?
- (c) Beweisen sie das Lemma:

Sei Occ ein approximatives Vorkommen eines strings in einem pattern P mit k Fehlern. Sei weiter $P=p^1,\ldots,p^j$ die Konkatenation von Teilen von P sowie a_1,\ldots,a_j nichtnegative, ganze Zahlen so dass $A=\sum_{i=1}^j a_i$. Dann existiert ein $i\in 1,\ldots,j$, so dass es einen substring in Occ gibt der p^i mit $\lfloor a_ik/A\rfloor$ Fehlern matched.

Aufgabe 3: Komparative RNA-Analyse

6 + 3 + 5 = 14 Punkte

In der Vorlesung wurde der LARA-Algorithmus zur komparativen RNA-Analyse besprochen der auf einer ILP Formulierung beruht.

(a) Geben Sie die ILP Formulierung an. Erläutern Sie die Bedeutung der Variablen und Ungleichungen.

- **(b)** Lara verwendet Lagrangian Relaxierung um das ILP zu lösen. Was ist die Idee von Langragian Relaxation?
- (c) Welche Ungleichungen werden bei Lara relaxiert?

Aufgabe 4: Motif Finding, EM-Algorithmus

3 + 12 = 15 Punkte

- (a) Definieren sei das "planted (l, d)-motif" problem.
- **(b)** Führen Sie einen Schritt des EM-Algorithmus so wie in der Vorlesung durch. Gegeben seien die Beobachtungen $x=x_1,x_2,x_3$:

	1	2	3	4	5	6
x_1	A	C	A	G C G	C	A
x_2	A	G	G	C	A	G

Berechnen Sie die fehlenden Startpositioten des verborgenen Motifs und repräsentieren Sie dise durch eine Matrix w wobei w_{ij} die Wahrscheinlichkeit ist, dass das Motif an Position j in Sequenz i anfängt. Gegeben sei dabei das anfängliche Motif:

	0	1	2	3
A	0.25	0.1	0.5	0.2
C	0.25 0.25	0.4	0.2	0.1
G	0.25	0.2	0.1	0.5
T	0.25	0.3	0.2	0.2

Berechnen Sie w.

Aufgabe 5: Suffix arrays

3 + 7 = 10 Punkte

- (a) Definieren sie ein suffix array für einen string und die lcp Tabelle.
- **(b)** Mit der lcp Tabelle kann man in dem Suffix array schnell suche. Allerdings gibt es $O(n^2)$ viele lcp Werte. Erläutern Sie, dass man nicht alle diese Werte braucht. Wieviele braucht man?

Aufgabe 6: Chaining

5 + 7 + 5 + 5 = 22 Punkte

- (a) Welche Operationen unterstützt die beim Chaining-Algorithmus verwendete Datenstruktur? Beschreiben Sie jeweils kurz, was sie bewirken bzw. was ihr Ergebnis ist.
- (b) Beschreiben Sie den Chaining-Algorithmus für L_1 -Gap-Kosten.
- (c) Die L_1 Kosten sind nicht sehr realistisch. In der Vorlesung wurde die "sum-of-pair" Kosten ebenfalls vorgestellt. Wie sind Sie definiert?
- (d) Beschreiben Sie die Idee, wie der Algorithmus die sum-of-pair Kosten mit Hilfe von RMQ berechnet? (Hinweis: Man kann eine RMQ nicht direkt sondern erst nach einer Umformung anwenden).