

Boostede tre-modeller

Fra en enkel tre-modell til en XGBoost-modell

Martin Jullum jullum@nr.no

SSB 9.feb 2021

Tree model
Boosting
Gradient descent
XGBoost

Problem

- \blacktriangleright Anta at vi har et datasett med n observasjoner
 - Respons: y_i
 - Kovariater: $x_i = (x_{i1}, ..., x_{ip})^T$, i = 1, ... n

▶ Ønsker å tilpasse en modell f til disse dataene slik at $f(x_i)$ approksimerer y_i så godt som mulig (på et separat datasett) i form av en tapsfunksjon $L(y_i, f(x_i))$

Tre-modeller (I)

- Verdens enkleste nyttige statistiske modell!
 - Hver forgrening er en IF-THEN regel
 - Fungerer både for kontinuerlig og binær respons, samt klassifisering

Tre-modeller (II)

3 ulike visualiseringer av samme tre-modell

Kan skrives som en vektet sum av indikatorvariable over regionene:

$$f(x) = \sum_{j=1}^{I} \theta_j \, 1_{\{x \in R_j\}}$$

Trening av tre-modeller

$$\sum_{i \in R_j} [L\left(y_i, \hat{y}_{R_{1j}}\right) + L\left(y_i, \hat{y}_{R_{2j}}\right)]$$
where $\hat{y}_{R_{kj}} = \operatorname{argmin}_c \sum_{i \in R_{kj}} L(y_i, c)$

- Beregningsmessig svært tungt å finne optimal regionsoppdeling
- ▶ Bruker en grådig algoritme i stedet (start med roten som den eneste (blad-)noden
 - 1. For hver blad-node og kovariate x_j , finn det splittpunktet som gir lavest tap når man deler regionen i to deler
 - 2. Velg blad-node, kovariat og splittpunkt med størst tapsreduksjon
 - 3. Gjennomfør splitt med mindre stoppekriterium inntreffer
 - 4. Gjenta punkt 1-3

Egenskaper med tre-modeller

Fordeler

- Enkle å tolke
- Enkle å trene
- Invariant til monotone transformasjoner av kovariatene
- Håndterer naturlig kontinuerlige og kategoriske data
- Kan håndtere missing data
- Modellerer ikke-lineariteter og interaksjoner direkte
- Skalerer godt til store datamengder

Ulemper

- Fort gjort å overtilpasse
- Diskrete prediksjoner
- Begrenset prediksjonskraft

Boosting: Prinsippet

- Modell-ensamble teknikk som slår sammen mange enkle «basismodeller» $f_m(x)$, $m=1,\ldots,M$ (weak learners) til en avansert (strong learner) $f_{final}(x)$
- Trener iterativt en og en basismodell, hver og en med mål om å reparere feilene til tidligere trente modeller (og minimere empirisk tap)
- Endelig prediksjon = Sum av prediksjoner fra alle basismodellene

$$f_{final}(x) = f^{(M)}(x) = \sum_{m=1}^{M} f_m(x)$$

$$f_m = arg\min_{h \in \Phi} \sum_{i=1}^n L(y_i, f^{(m-1)}(x_i) + h(x_i))$$

For modellklasse Φ

Eksempel boosting

Egenskaper med boosting

▶ Fordeler

- Arver typisk alle egenskapene til basismodellene, men gir en vilkårlig god prediksjonskraft i tillegg
- Utfordringer
 - Svært viktig å kontrollere overtilpasning for å få en god modell
 - Boosting kan i seg selv ikke parallelliseres
 - Generelt vanskelig å oppdatere med nye modeller via

$$f_m = argmin_{h \in \Phi} \sum_{i=1}^n L(y_i, f^{(m-1)}(x_i) + h(x_i))$$

Gradient boosting

- Gradient descent
 - Iterativ metode for å finne minimum av multivariat funksjon s(z)
 - Tar steg langs den negative gradienten: $z_m = z_{m-1} \rho_m s'(z_{m-1})$

Vi vil minimere

$$f_m = argmin_{h \in \Phi} \sum_{i=1}^{n} L(y_i, f^{(m-1)}(x_i) + h(x_i))$$

- Gradient boosting = Gradient descent for funksjoner/modeller
 - La $s_i(z) = L(y_i, f^{(m-1)}(x_i)), i = 1, ..., n$
 - Bruk gradient descent for hver s_i , kall disse for y_i^*
 - Tilpass modell av klasse Φ med tapsfunksjon $(y_i^* f(x_i))^2$
 - + diverse detaljer om steglengde
 - Dette er den "vanlige" boosting-metoden.
 Brukes f.eks. i gbm-pakka i R
 - For steglengde = $\frac{1}{2}$ og original kvadratisk tap er y_i^* = residualene

2. ordens approksimasjon

Vil fortsatt minimere

$$f_m = argmin_{h \in \Phi} \sum_{i=1}^n L(y_i, f^{(m-1)}(x_i) + h(x_i))$$

Approksimer $s_i(z) = L(y_i, z)$, ved en 2. ordens Taylor ekspansjon: $L(y_i, f^{(m-1)}(x_i) + h(x_i))$

$$\approx s_i \left(f^{(m-1)}(x_i) \right) + s_i' \left(f^{(m-1)}(x_i) \right) h(x_i) + \frac{1}{2} s_i'' \left(\left(f^{(m-1)}(x_i) \right) h(x_i) \right)^2$$

$$= \frac{1}{2}s''(f^{(m-1)}(x_i))\left[-\frac{s'\left(f^{(m-1)}(x_i)\right)}{s''\left(f^{(m-1)}(x_i)\right)} - h(x_i)\right]^2$$

- Bytt ut original tapsfunksjon med kvadratisk approksimasjon og tilpass modell
- ► Brukes av XGBoost og andre moderne boosting-rammeverk, med tremodeller som modellklasse Φ
- Ekvivalent med gradient boosting for kvadratisk tap

XGBoost = eXtreme Gradient Boosting

- Et open souce bibliotek bygget rundt en effektiv implementering av gradient boosting med tre-modeller som basismodeller
 - Utviklet av Tianqi Chen (Uni. Washington) i 2014
- Implementasjon
 - Grensesnitt for mange språk/plattformer: C++, Python, R, Julia, Java, Apache Spark etc.
 - Parallelliserbar trening av trærne, minnegjerrig og skalerbar
 - Kjører både på CPU og GPU
- Metodiske nyvinninger
 - 2.ordens approksimasjon av tapsfunksjonen mer presis/effektiv enn ordinær gradient boosting
 - Legger til regularisering på toppen av original tapsfunksjon
- Praktisk bruk
 - Veldig mange parametere som <u>kan</u> skrus på, må gjøres manuelt
 - Kan ta lang tid å optimalisere/tune, men brukbare defaultparametere
 - «The Kaggle game killer»

Funksjonalitet i XGBoost

- Håndterer både kryssvalidering og ferdigoppdelt trening/validering/testsett
- Kan definere egne tapsfunksjoner og valideringsmål (mange allerede implementert).
- Kan følge valideringsresultater mens modellen kjører (f.eks. AUC på trening, validering og testsett)
- «Early stopping» (stopper å legge til nye trær når valideringsresultater ikke forbedres lenger)
- Mange tilgjengelige måter å håndtere overtilpasning på
- Ingen pre-prosessering/skalering/standardisering nødvendig
- Håndterer manglende data automatisk (lærer default retning i hver splitt)
- ► Effektiviserer trening av trær ved å forhåndsdefinere en begrenset mengde splittpunkter (histogram-metoden)

XGBoost – diverse

- Konkurrenter
 - LightGBM (Microsoft)
 - Har drevet/motivert mye av utviklingen av XGBoost
 - Mye likt, men ikke like modent og mangler noe funksjonalitet
 - Fortsatt noe raskere enn XGBoost?
 - CatBoost (Yandex)
 - Lignende, men håndtere også kategoriske variable direkte
 - Var langt treigere, men har blitt vesentlig bedre
 - Begrenset dokumentasjon
- Jeg har enda til gode å se et eksempel der Random Forest gjør det bedre enn en tunet XGBoost model!
- Hovedutfordringer:
 - Vanskelig/tidkrevende å finne optimal modell
 - Takler kun numerisk input: Ikke så god når det er mange kategoriske variable med mange klasser.

Ressurser

- Didrik Nielsen, Masteroppgave NTNU, 2016: https://brage.bibsys.no/xmlui/handle/11250/2433761
- Chen & Guestrin (2016), XGBoost: A Scalable Tree Boosting System: https://arxiv.org/abs/1603.02754
- ► Hastie et al. (2009), Elements of Statistical Learning, Ch 9.2 + 10
- ► XGBoost GitHub: https://github.com/dmlc/xgboost
- XGBoost dokumentasjon: http://xgboost.readthedocs.io
- ► Slides fra foredrag med Tianqi Chen:

 http://datascience.la/xgboost-workshop-and-meetup-talk-with-tianqi-chen/

