Probabilty

Events

An event is a collection of outcomes of a random experiment

 $S = \{$ collection of all outcomes of the experiment $\}$ $\phi = \{\text{empty set}\}\$

If $A \cap B = \phi$,

then A and B are mutually exclusive events DeMorgan's $(A \cup B) = (\bar{A} \cap \bar{B})$

Axioms and Properties

Axioms

I.
$$P(A) \ge 0$$

II. $P(S) = 1$

III. If
$$(A \cap B) = \phi$$
,

then
$$P(A \cup B) = P(A) + P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \ P(\bar{A}) = 1 - P(A)$$
 Cumulative Independence This was no

If
$$P\{A \cap B\} = P\{A\}P\{B\}$$
, then A and B are independent If $P(A \cap B|C) = P(A|C)P(B|C)$

A and B are conditionally independent given event C**Mutually Exclusivity**

If
$$P\{A \cap B\} = \phi$$
, then A and B are A

then
$$A$$
 and B are M.E. And, in this case $P(A|B) = P(A)$ and $P(B|A) = P(B)$ Conditional Probability

$$P(A|B) = P(A \cap B)/P(B)$$

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

Bayes' rule
$$P(B|A) = P(A|B)P(B)/P(A)$$
,

$$P(B|A) = P(A|B)P(B)/A$$

The Probability Density Function is a function that accepts an outcome and returns the probability of that outcome occuring. Written as: p(x) and $f_x(x)$

PMF and CMF

Are the discrete time versions of the PDF and CDF

The Cumulative Distribution Function. Commonly written $f_x(u) = \frac{1}{\sqrt{2\pi}}e^{-\frac{u^2}{2}}$

P(x) and $F_x(x)$

Is the integral of the PDF. $F_x(x) = \int f_x(x) dx$

Distributions

Binomial

General

X = the number of successes in n trials. This is n trials of **Geometric** a Bernoulli random variable.

Probability Mass Function

$$P\{X=k\}=\binom{n}{k}p^kq^{n-k}$$
, for $k=0,1,2,...,n$, where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$

Mean

 $m_x = np$ Variance

Var(x) = np(1-p)

Uniform

X has equal likeliness of taking any value in the interval $\left[a,b\right]$ Probability Density Function

 $f_x(u) = \frac{1}{b-a}$, for a < u < b, and is 0 elsewhere Cumulative Distribution Function

$$F_x(u) = \begin{cases} 0, & u < a \\ \frac{u-a}{b-a}, & a < u < b \\ 1, & b < u \end{cases}$$

Mean

 $m_x = (a+b)/2$ Variance

 $Var(X) = \frac{(b-a)^2}{2}$ **Triangular**

General

Upon adding two uniform distributions, we get the triangular density function. The function only has value over [2a, 2b]Density

$$f_x(\alpha) = \begin{cases} \frac{\alpha - 2a}{(b - a)^2}, & 2a < \alpha < (a + b) \\ \frac{2b - \alpha}{(b - a)^2}, & (a + b) < \alpha < (2b) \\ 0, & otherwise \end{cases}$$

This was not listed in the summary, and I need to review to understand why.

Exponential

General

X is the time to arrival or time to failure, where arrival

X can also be viewed as departure time with departure

Probability Density Function

 $f_x(t) = \lambda e^{-\lambda t}$, for t > 0, and is 0 elsewhere. **Cumulative Distribution Function**

 $F_x(t) = 1 - e - \lambda t$, for $t \ge 0$, and is 0 elsewhere. Mean and Variance

 $m_x = \sigma_x = 1/\lambda$

Gaussian

General

The normal distribution

Probability Density Function

With mean m and standard deviation σ

$$f_x(u) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(u-m)^2}{2\sigma^2}}$$

 $f_x(u)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(u-m)^2}{2\sigma^2}}$ Unit Gaussian (normal) $\sigma=1,\,m=0$

$$f_x(u) = \frac{1}{\sqrt{2\pi}}e^{-\frac{u}{2}}$$

Unit Gaussian Cumulative Distribution $\phi(u)$

 $\phi(\boldsymbol{u})$ was used to compute the following

 $P\{a < X < b\} = \phi(\frac{b-m}{\sigma}) - \phi(\frac{a-m}{\sigma})$ Mean and Variance

m and σ are the mean and standard deviation σ_x^2 is the variance

X is the number of trials before the first success p is the probability of success

Mass Function

$$P\{X = k\} = p(1-p)^{k-1}$$
, for $k = 1, 2, 3, ...$

 $m_x = 1/p$ Variance 1

 $Var(X) = (1-p)/p^2$

Poisson General

X is the number of arrivals in a time interval t λ is the arrival rate

Mass Function

$$P\{X=k\}=\frac{(\lambda t)^k}{k!}e^{\lambda t},$$
 for $k=0,1,2,3,\dots$
 Mean and Variance

$m_x = Var(X) = \lambda t$ Moments

First

General

Nth Moment

If Y = aX + b,

Expectation

Properties

General

 $E\{q(X)\}$:

Properties

 $E\{C\} = C$

Variance

Covariance

Correlation

Var(X) = Cov(X, X)

 $\mu_x = E\{X\} = \int p(x)xdx$

 $E\{X^n\} = \int p(x)x^n dx$

then $m_y = am_x + b$ and $\sigma_y^2 = a^2 \sigma_x^2$

 $E\{g(X)\} = \int_{-\infty}^{\infty} g(u) f_x(u) du$

case unless using impulse functions

If $g(X) \geq 0$, then $E\{g(X)\} \geq 0$

The first moment is the mean of the distribution. Sometimes refered to as the center of mass.

And applies via a sum for the discrete case.

Where p(x) is the probabilty of the outcome x occurring.

The expectation E of a function q of a random variable x,

A sum can be substituted for the integral in the discrete

 $E\{ag(X) + bh(X)\} = aE\{g(x)\} + bE\{h(X)\}$

 $Cov(X,Y) = \sigma_{XY} \ \sigma_{XY} = E[(X - \mu_x)(Y - \mu_y)]$

 $\sigma_{XY} = E[XY] - E[X]E[Y] cov(X, a) = 0$

 $Var(X) = E[(X - \mu_x)^2] = E[X^2] - \mu_x^2$

 $Var(X) = \sigma^2 = \int (X - \mu_x)^2 f_x(x) dx$

 $Var(X) = \sigma^2 = \sum_{i=1}^{n} p_i (x_i - \mu_x)^2$

cov(X + a, Y + b) = cov(X, Y)

Covariance for RV Vector

$$\begin{split} \sigma_{\vec{X}\vec{Y}} &= E[(\vec{X} - E[\vec{X}])(\vec{Y} - E[\vec{Y}])] \\ \sigma_{\vec{X}\vec{Y}} &= E[\vec{X}\vec{Y}^T] - E[\vec{X}]E[\vec{Y}]^T \end{split}$$

Joint Probability Density Function

$$f_{XY}(u,v) = rac{\delta^2 F_{XY}(u,v)}{\delta u \delta v}$$
Properties
 $f_{XY}(u,v) \geq 0$

 $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(u, v) du \, dv = 1$ $P\{(\widetilde{a} < \widetilde{X} \le b \text{ and } (c < Y \le d)\} =$ $\int_{c}^{d} \int_{a}^{b} f_{XY}(u, v) du \, dv = 1$

 $F_{XY}(b,d) = \int_{-\infty}^d \int_{-\infty}^b f_{XY}(u,v) du \ dv$ Marginal Densities

 $f_X(u) = \int_{-\infty}^{\infty} f_{XY}(u,v) dv$, and $f_Y(v) = \int_{-\infty}^{\infty} f_{XY}(u,v) du$ Independent Random Variables

 $f_{XY}(u,v) = f_X(u)f_Y(u)$ $F_{XY}(u,v) = F_X(u)F_Y(v)$ **Conditional Densities**

 $f_{X|A}(u) = \frac{d}{du} P\{X \le u|A\} = \frac{d}{du} P\{(X \le u) \cap A\} / P\{A\}$ Two Cases

 $A = a < X \le b : f_{X|A}(u|A) = f_x(u)/P\{A\},$ $\begin{array}{l} \text{for } a < u \leq \overline{b}, \text{ and } 0 \text{ elsewhere} \\ A = \{Y = v\}: f_{X|Y}(u|v) = f_{XY}(u,v)/f_y(v) \end{array}$

The second way can be represented in two ways $f_{XY}(u, v) = f_{X|Y}(v|u)f_{Y}(v) = f_{Y|X}(u|v)f_{X}(u)$

Total Probability and Bayes' for Random Vars

 $f_x(u) = \int_{-\infty}^{\infty} f_{X|Y}(u|v) f_Y(v) dv$ $f_{Y|X}(v|u) = f_{X|Y}(u|v)f_Y(v)/f_X(v)$

In the discrete case the integrals can be replaced by sums, and the densities can be replaced by probabilities Jointly Gaussian Rondom Variable

Placeholder

Conditional Densities Placeholder

Functions of Two Random Variables $cov(X,Y) = cov(Y,X) \ cov(X+a,Y+b) = abcov(X,y)$ **Expectations**

 $E\{g(X,Y)\} =$ Discrete Case

 $\sum_{i} \sum_{i} g(a_i, b_j) P\{X = a_i, Y = b_i\}$ Continuous Case $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(u,v) f_{XY}(u,v) du \ dv$

Properties 1. $E\{C\} = C$

2. $E\{ag(X,Y)\} = aE\{g(X,Y)\}$ 3. $E\{q(X,Y)+h(X,Y)\}=E\{q(X,Y)\}+E\{h(X,Y)\}$

4. If $g(X,Y) \ge 0$, then $E\{g(X,Y)\} \ge 0$ 5. IF X and Y are independent, then $E\{g(X)h(Y)\} = E\{g(X)\}E\{h(Y)\}$

Correlation and Covariance

Correlation between X and Y: $R_{XY} = E\{X, Y\}$ Covariance of X and Y: $Cov(X,Y) = C_{XY} =$

 $E\{(X - m_x)(Y - m_y)\} = R_{XY} - m_x m_y$ Correlations Coefficient:

 $\rho_{XY} = C_{XY}/(\sigma_x \sigma_y) - 1 \le \rho_{XY} \le 1$ If $\rho_{XY} = \pm 1$, then X and Y are perfectly correlated

If $\rho_{XY}=\pm 0$, then X and Y are uncorrelated

Linear Approximation

Extimating X from the values of Y:

 $\ddot{X} = m_x + (\rho_{XY}\sigma_x/\sigma_y)(Y-m_y)$ Mean-Squared Error:

 $E\{[\hat{X} - X]^2\} = \sigma_x^2 (1 - \rho_{XY}^2)$ Gaussian random variables:

If X and Y are Gaussian and uncorrelated,

then they are independent

 $p_{XY}(a_i,b_i) = P\{X = a_i, Y = b_i\}$, where X and Y take The linear transformation of Gaussian random variables is also Gaussian

$corr(X,Y) = \rho_{XY}$ $\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$ **Functions of Random Variables**

A Single Random Variable

If Y = g(X), where X is a random variable, then $f_y(v) = P\{Y \le v\} = P\{g(X) \le v\}$ If g(u) is monotonic, then

$f_y(v) = [rac{f_x(u)}{g'(u)}]_{u=g^{-1}(v)}$ Two Random Variables

Joint distribution function of X and Y

 $F_{XY}(u,v) = P\{X \le u, Y \le v\}$ **Properties**

 $P\{(a < X \le b) \ and \ (c < Y \le d)\} =$ $F_{XY}(b,d) - F_{XY}(a,d) - F_{XY}(b,c) + F_{XY}(a,c) \ge 0$ $F_{XY}(-\infty, v) = 0, F_{XY} = (u, -\infty) = 0$

$F_{XY}(\infty,\infty)=1$ Marginal Distributions

 $F_{XY}(u,\infty) = F_X(u)$ $F_{XY}(\infty, v) = F_y(v)$

values $\{a_i\}$ and $\{b_i\}$

Joint Probability Mass Function

Functions of Two RVs Z = g(X, Y) $F_Z(w) = P\{g(X,Y) \le w\}$ Sums of Two RVs Z = X + Y, then $f_Z(w) = \int_{-\infty}^{\infty} f_{XY}(u, w - u) du$ If X and Y are independent: $f_Z(w) = \int_{-\infty}^{\infty} f_Y(w - u) f_x(u) du$ Mean and Variance of a Sum $E\{Z\} = E\{X\} + E\{Y\}$ Var(Z) = Var(X) + Var(Y) + 2Cov(X, Y)For uncorrelated variables, variance of a sum is the sum of the variance. Subjects not yet added Rayleigh Density Estimation Maximum a-posteriori probability (MAP) estimate of XMinimum mean-squared-error estimate Linear Estimate Random Processes General 1st and 2nd order Distributions of a RP $F_{X(t)}(x;t) = P\{X(t) \le x\}$ $F_{X(t)}(x_1, x_2; t_1, t_2) =$ $P\{\overset{.}{X}(t_1)\leq x_1 \ and \ X(t_2)\leq x_2\}$ Mean, autocorrelation, and autocovariance functions $m_x(t) = E[x(t)]$ $R_X(t_1, t_2) = E[X(t_1)X(t_2)]$ $C_X(t_1, t_2) = E[[X(t_1) - m_x(t_1)][X(t_2) - m_x(t_2)]] =$ $R_x(t_1,t_2) - m_x(t_1)m_x(t_2)$ Wide-sense stationary process $m_x = E\{X(t)\}\$ $R_X(\tau) = E\{X(t)X(t+\tau)\}\$ $C_x(\tau) = E\{[X(t) - m_x][X(t+\tau) - m_x]\} = R_x(\tau) - [m_x]^2 \frac{n!}{\ln \pi}$ Cross-correlation function for the general case, $R_{XY}(t_1, t_2) = E\{\dot{X}(t_1)Y(t_2)\}\$ for jointly WSS processes, $R_{XY}(\tau) = E\{X(t)Y(t+\tau)\}$ **Specific Processes Poisson Process** Interpreted as a Counting Process For: N(0) = 0; iid; Independend Increments. $P(N(t) = n) = \frac{(\lambda t)^n}{n!} e^{\lambda t}$ $E[N(t)] = \lambda t, \ \forall \tau \stackrel{n!}{=} \Delta t$ Interarrival Time Approximated Exponential With Expected Interarrivel of $\frac{1}{2}$ **Basic Maths Series and Sequences** Geometric Sequence A series with a constant ration between successive terms. Ex. $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$ Often defined as using arEx. $a + ar + ar^2 + ar^3 + ...$ For $r \neq 1$, the sum of the first n terms is: $\sum_{k=0}^{n-1} ar^k = a(\frac{1-r^n}{1-r})$ And for infinite sequences: $\sum_{k=0}^{\infty} a r^k = \frac{a}{1-r}, \text{ for } |r| < 1$ **Arithmetic Series** A series with a constant difference between successive Ex. 2+5+8+11+...Sum of an arithmetic series with n terms starting with a_1 and ending with a_2 :

 $\sum = rac{n(a_1 + a_2)}{2}$ Power Series

Taylor Series

Logarithms

 $\log_b c = k$

ln(e) = 1

Integrals

 $\int \frac{1}{x} dx = \ln|x|$

Derivatives

Permutations

Combinatorics

k-Permutations of n

Permutations With Repitition

 $P(n,k) = \frac{n!}{(n-k)!}$

Combination

 $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

Binomial Theorem

 $b^k = c$

A series of the form: $\sum_{n=0}^{\infty} = a_n (x - c)^n$ Where often c = 0 $\sum_{n=0}^{\infty} = a_n(x)^n$

 $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$

 $\ln(xy) = \ln(x) + \ln(y)$

 $\ln(x/y) = \ln(x) - \ln(y)$ $ln(x^y) = yln(x)$

 $\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1$

 $\ln(1/x) = -\ln(x)$

 $\int u dv = uv - \int v du$

The power series allows generalization of multiplication, division, subtraction, and addition between like series. It is also possible to integrate or differentiate a power series. The Taylor series of f(x) (a function that is infinetely f differentiable at a number a) is the power series: $f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a) + \dots$ $\int e^{ax} dx = \frac{1}{a} e^{ax} \int x e^{ax} dx = \left(\frac{x}{a} - \frac{1}{a^2}\right) e^{ax}$ Number of ways to order n distinct elements: Ordered arrangements of a k-element subset of an n-set. For a set S of size k, the number of n-tuples over S is. k^n