Wielowymiarowe modele w analizie danych biologicznych

Monika Mokrzycka

Instytut Genetyki Roślin PAN w Poznaniu

Warsztaty, Politechnika Warszawska

Plan

- Wstęp
- Jednowymiarowy model liniowy
- Wielowymiarowy model liniowy
- Zestawy danych
- Identyfikacja macierzy kowariancji
- Struktury kowariancyjne
- Aproksymacja
- Badania symulacyjne

Wstęp

Główne problemy w analizie danych:

- wyznaczenie wartości nieznanych parametrów
 - dane są obciażone błędami pomiarów,
 - dane zawierają niewyjaśnione szumy, zakłócenia,
 - dlatego można wyznaczyć tylko jakieś oszacowania nieznanych parametrów populacji
- testowanie hipotez dotyczących wartości nieznanych parametrów
 - oznacza decydowanie czy dane są zgodne na pewnym poziomie porozumienia z określonym parametrem populacji

Wstęp

Zbierając dane coraz więcej wielkości mierzy się na każdej jednostce próby.

Czasami lepiej byłoby wyizolować każdą cechę w systemie, aby przestudiować ją oddzielnie – prowadzi to do tzw. modelu jednowymiarowego.

Jednak cechy mogą mieć wpływ na siebie nawzajem w takim stopniu, że oddzielna analiza dawałaby słabe informacje o całym systemie - na pierwszy plan wysuwają się modele wielowymiarowe, które badają wszystkie wielkości jednocześnie.

W porównaniu z modelem jednowymiarowym, analiza modeli wielowymiarowych wymaga trudniejszych technik wnioskowania statystycznego.

Wstęp

Modele liniowe

- są głównym narzędziem statystyki stosowanej
- są intensywnie studiowane
- bogata literatura statystyczna dotycząca różnych aspektów modeli liniowych i związanych z nimi metod statystycznych
- zyskały popularność dzięki własnościom oraz wszechstronnością zastosowania

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

 $\mathbf{y} = (y_1, \dots, y_n)'$ wektor obserwacji znana macierz układu (pełnego rzędu) $\boldsymbol{\beta}_{k \times 1}$ wektor nieznanych parametrów (1-ego stopnia), k < n wektor błędów losowych

Założenie:

$$\mathbf{e} \sim N_n(\mathbf{0}, \mathbf{\Omega})$$

 $\mathbf{\Omega}_{n \times n}$ macierz nieznanych parametrów (2-ego stopnia)

Podstawowy problem: wnioskowanie o nieznanych parametrach pierwszego stopnia

Liczba nieznanych parametrów:

$$\left.egin{array}{ccc}eta_{k imes 1} & k & & \\ oldsymbol{\Omega}_{n imes n} & rac{n(n+1)}{2} & \end{array}
ight.
ight.$$
 przeparametryzowany model

Liczba nieznanych parametrów:

$$\beta_{k \times 1}$$
 k

$$\Omega_{n \times n}$$
 1

Struktura macierzy kowariancji:

$$\Omega = \sigma^2 \mathbf{I}$$

lub

$${f \Omega}=\sigma^2{f V}$$
, gdzie ${f V}$ znane

 σ^2 nieznany parametr wariancyjny

Na każdej jednostce próby zwykle mierzona jest jedna charakterystyka.

Uogólnienie:

załóżmy jednowymiarowy model dla p zmiennych zależnych, czyli więcej niż jedna cecha jest mierzona na każdej jednostce próby - należy wziąć pod uwagę zależność pomiarów od tej samej jednostki próby

Przykłady:

- ullet p wyników z egzaminu (z różnych przedmiotów) dla n różnych studentów
- \bullet p charakterystyk mierzonych na n roślinach (np. różnych odmianach)
- p cech pogodowych (np. temperatura, opady, ciśnienie) mierzonych dla n odległych punktów czasowych lub lokalizacji

Wymóg: ta sama macierz układu dla każdej zmiennej zależnej i każda niezależna jednostka próby ma ten sam zestaw zmiennych zależnych

Dla j—tej zmiennej zależnej (cechy) mamy

$$\mathbf{y}_j = \mathbf{X}\boldsymbol{\beta}_j + \boldsymbol{\varepsilon}_j, \qquad j = 1, \dots, p$$

$$\mathsf{E}(arepsilon_j) = \mathbf{0}, \qquad \mathsf{Var}(arepsilon_j) = \omega_{jj}^2 \mathbf{I}_n$$

$$\mathbf{y}_j = (y_{1j}, \dots, y_{nj})'$$
 wektor obserwacji dla j – tej zmiennej znana macierz układu (pełnego rzędu) β_j k – wymiarowy wektor nieznanych parametrów (1-ego stopnia), $k < n$ ε_j n – wymiarowy wektor błędów losowych

Modele są powiązane $\frac{p(p+1)}{2}$ kowariancjami

$$\mathsf{Cov}(\mathbf{y}_i,\mathbf{y}_j) = \omega_{ij}^2 \mathbf{I}_n$$

Dla j—tej zmiennej zależnej (cechy) mamy

$$\mathbf{y}_j = \mathbf{X}\boldsymbol{\beta}_j + \boldsymbol{\varepsilon}_j, \qquad j = 1, \dots, p$$

$$\mathsf{E}(arepsilon_j) = \mathbf{0}, \qquad \mathsf{Var}(arepsilon_j) = \omega_{jj}^2 \mathbf{I}_n$$

Obserwacje

$$\mathbf{y}_j, \qquad j=1,\ldots,p \qquad \Longrightarrow \qquad \mathbf{Y}$$

Nieznane parametry

$$\beta_j, \quad j=1,\ldots,p \quad \Longrightarrow \quad \mathbf{B}$$

Błędy losowe

$$\varepsilon_j, \quad j=1,\ldots,p$$

Standardowy model wielowymiarowy

$$\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{E}$$
 $\mathsf{E}(\mathbf{E}) = \mathbf{0}, \qquad \mathsf{Var}(\mathbf{E}) = \mathbf{\Omega} \otimes \mathbf{I}_n$

$$\mathbf{Y}_{n\times p} = (\mathbf{y}_1, \dots, \mathbf{y}_n)'$$

$$\mathbf{X}_{n\times k}$$

$$\mathbf{B}_{k\times p} = (\beta_1, \dots, \beta_p)$$

$$\mathbf{E}_{n\times p} = (\varepsilon_1, \dots, \varepsilon_p)$$

$$\mathbf{\Omega}_{p\times p} = (\omega_{ij}^2)_{ij}$$

$$\otimes$$

macierz obserwacji znana macierz układu macierz nieznanych parametrów (1-ego stopnia), k < n macierz błędów losowych macierz nieznanych parametrów (2-ego stopnia) iloczyn Kroneckera

Założenia:

- ullet $\mathbf{E} \sim \mathit{N}_{n,p}(\mathbf{0},\mathbf{I}_n,\mathbf{\Omega})$
- $n > p + r(\mathbf{X})$

Model ten można traktować jako próbę n niezależnych obserwacji o p wartościach

ullet oznaczając jako $oldsymbol{y}_i'$ i $oldsymbol{x}_i'$ i-ty wiersz macierzy $oldsymbol{Y}$ i $oldsymbol{X}$ odpowiednio

$$\mathbf{y}_i \sim N_p(\mathbf{B}'\mathbf{x}_i, \mathbf{\Omega}), \quad i = 1, \dots, n$$

Układ (ustawienie) danych

• horyzontalny ("klasyczny") - niezależne p—wartościowe obserwacje są ułożone poziomo jedna pod drugą w wierszach, tworząc $n \times p$ wymiarową macierz obserwacji \mathbf{Y} , zachowując kierunek układania obserwacji jak w jednowymiarowym modelu liniowym

$$\mathbf{Y} = \begin{pmatrix} \mathbf{y}_1' \\ \mathbf{y}_2' \\ \vdots \\ \mathbf{y}_n' \end{pmatrix}, \quad \text{zatem} \quad \mathbf{Y} = \mathbf{X} \mathbf{B} + \mathbf{E} \\ \underset{n \times p}{\mathbf{E}} = \mathbf{X} \mathbf{B} + \mathbf{E}$$

Model ten można traktować jako próbę n niezależnych obserwacji o p wartościach

ullet oznaczając jako $oldsymbol{y}_i'$ i $oldsymbol{x}_i'$ i-ty wiersz macierzy $oldsymbol{Y}$ i $oldsymbol{X}$ odpowiednio

$$\mathbf{y}_i \sim N_p(\mathbf{B}'\mathbf{x}_i, \mathbf{\Omega}), \quad i = 1, \dots, n$$

Układ (ustawienie) danych

• wertykalny - niezależne p—wartościowe obserwacje są ułożone pionowo jedna obok drugiej w kolumnach, tworząc $p \times n$ wymiarową macierz obserwacji \mathbf{Y} - jest to transponowanie poprzedniej aranżacji danych

$$\mathbf{Y}_* = \left(\begin{array}{ccc} \mathbf{y}_1 & \mathbf{y}_2 & \cdots & \mathbf{y}_n \end{array}\right), \quad \text{ zatem } \quad \mathbf{Y}_* = \mathbf{B}_* \, \mathbf{X}_* + \mathbf{E}_* \\ p \times n & p \times k \times n & p \times n \end{array}$$

Dla
$$\mathbf{Y}_* = (\mathbf{y}_1 \ \mathbf{y}_2 \ \cdots \ \mathbf{y}_n)$$

- ullet $\mathsf{E}(\mathbf{Y}_*) = \mathbf{B}'\mathbf{X}'$, ponieważ $\mathbf{B}_* = \mathbf{B}'$ i $\mathbf{X}_* = \mathbf{X}'$
- ullet rozkład vec $old Y_*$ ma postać

$$\mathsf{vec}\, \mathbf{Y}_* = \left(egin{array}{c} \mathbf{y}_1 \ \mathbf{y}_2 \ dots \ \mathbf{y}_n \end{array}
ight) \sim \mathit{N}_{\mathit{pn}}(\mathsf{vec}(\mathbf{B}'\mathbf{X}'), \mathbf{I}_n \otimes \mathbf{\Omega})$$

Zatem Y_{*} ma macierzowy rozkład normalny

$$\mathbf{Y}_* \sim N_{p,n}(\mathbf{B}'\mathbf{X}', \mathbf{\Omega}, \mathbf{I}_n)$$

Ponieważ $\mathbf{Y} = \mathbf{Y}'_*$ to:

$$\bullet \ \mathsf{E}(\mathbf{Y}) = \mathsf{E}(\mathbf{Y}'_*) = \mathbf{X}\mathbf{B}$$

rozkład vec Y ma postać

$$\mathsf{vec}\,\mathbf{Y} = \mathbf{K}_{p,n}\,\mathsf{vec}\,\mathbf{Y}' \sim \mathit{N}_{pn}\Big(\mathbf{K}_{p,n}\,\mathsf{vec}(\mathbf{B}'\mathbf{X}'),\mathbf{K}_{p,n}(\mathbf{I}_n\otimes\mathbf{\Omega})\mathbf{K}_{n,p}\Big),$$

gdzie $\mathbf{K}_{p,n}$ jest macierzą komutacji.

Ponieważ $\mathbf{Y} = \mathbf{Y}'_*$ to:

$$\bullet \ \mathsf{E}(\mathbf{Y}) = \mathsf{E}(\mathbf{Y}'_*) = \mathbf{X}\mathbf{B}$$

rozkład vec Y ma postać

$$\mathsf{vec}\,\mathbf{Y} = \mathbf{K}_{p,n}\mathsf{vec}\,\mathbf{Y}' \sim \mathit{N}_{pn}\Big(\underbrace{\mathbf{K}_{p,n}\mathsf{vec}(\mathbf{B}'\mathbf{X}')}_{=\mathsf{vec}(\mathbf{X}\mathbf{B})},\underbrace{\mathbf{K}_{p,n}(\mathbf{I}_n \otimes \Omega)\mathbf{K}_{n,p}}_{=\Omega \otimes \mathbf{I}_n}\Big),$$

gdzie $\mathbf{K}_{p,n}$ jest macierzą komutacji.

Ponieważ $\mathbf{Y} = \mathbf{Y}'_*$ to:

$$\bullet \ \mathsf{E}(\mathbf{Y}) = \mathsf{E}(\mathbf{Y}'_*) = \mathbf{X}\mathbf{B}$$

rozkład vec Y ma postać

$$\mathsf{vec}\,\mathbf{Y} = \mathbf{K}_{p,n}\,\mathsf{vec}\,\mathbf{Y}' \sim \mathit{N}_{pn}\Big(\,\mathsf{vec}(\mathbf{X}\mathbf{B}),\mathbf{\Omega}\otimes\mathbf{I}_n\Big),$$

gdzie $\mathbf{K}_{p,n}$ jest macierzą komutacji.

Zatem ${f Y}$ ma macierzowy rozkład normalny

$$\mathbf{Y} \sim N_{n,p}(\mathbf{XB}, \mathbf{I}_n, \mathbf{\Omega})$$

Model

$$\mathbf{Y} = \mathbf{XB} + \mathbf{E}$$
 $\mathbf{E} \sim \mathcal{N}_{n,p}(\mathbf{0},\mathbf{I}_n,\mathbf{\Omega})$

jest bardzo ogólny. Obejmuje:

wielowymiarowy model regresji

 ${f X}$ jest macierzą stałych regresji, zazwyczaj ${f 1}_n\in \mathscr{C}({f X})$

MANOVA model

X jest 0-1 macierzą układu

ogólny model średniej

 $\mathbf{X} = \mathbf{1}_n$, czyli $\mathbf{B}' = \mu$ jest p – wymiarowym wektorem

Model

$$\mathbf{Y} = \mathbf{XB} + \mathbf{E}$$
 $\mathbf{E} \sim \mathcal{N}_{n,p}(\mathbf{0},\mathbf{I}_n,\mathbf{\Omega})$

jest bardzo ogólny. Obejmuje:

- uogólniony model MANOVA (nazywany modelem krzywej wzrostu)
 - $oldsymbol{o}$ rozważa $oldsymbol{eta}_i = \mathop{\mathbf{Z}}_{p imes r} \mathop{\mathbf{b}}_i$, $i = 1, \dots, k$
 - modelem krzywej wzrostu

$$\mathbf{Y} = \mathbf{X}\mathbf{B}\mathbf{Z}' + \mathbf{E}, \quad \text{gdzie } \mathbf{B} = \begin{pmatrix} \mathbf{b}_1' \\ \mathbf{b}_2' \\ \vdots \\ \mathbf{b}_k' \end{pmatrix}$$

• redukuje się do standardowego modelu dla $\mathbf{Z} = \mathbf{I}_p$.

- Nowoczesne techniki badawcze pozwalają na zbieranie bardzo dużych wielowymiarowych zestawów danych.
- Wykonuje się eksperymenty, w których wiele cech mierzonych jest w wielu lokalizacjach, na różnych głębokościach albo pomiary powtarzane są tak często jak to tylko możliwe.
- Dane metabolomiczne gazowa lub cieczowa chromatografia ze spektrometrią mas
- Często pomiary wykonywane są z użyciem kamer czy dronów

Dane:

- fenotypowe
- genotypowe
- omiczne

Co to jest fenotypowanie: film

Fenotypowanie buraków: film

Dane omiczne: film

Genotyp a fenotyp: film

Genotyp	Bio	masa całkow	ita	Bio	masa korz		Dł.	Korzenia		l. źd:	žbeł prod		ogóli	na I. źdżbeł		Wyso
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
	1	10,97	21,24	9,25	1,94	2,77	1,39	17	15	15	5	11	4	5	12	4
	2	13,74	7,64	10,18	2,28	1,59	2,17	10	14	14	5	3	5	5	3	5
	3	12,04	9,35	16,29	1,88	1,56	2,1	11	15	15	5	6	8	5	6	8
	4	14,51	6,55	13,2	1,59	1,23	1,91	15	17	19	6	4	6	6	4	6
	5	11,04	7,15	4,2	1,32	0,6	0,5	17	7	9	5	4	2	5	4	2
	6	9,05	11,32	11,4	0,32	0,84	1,66	14	13	15	5	6	5	5	8	5
	7	11,59	12,32	16,85	2,41	2,59	2,76	17	14	13	7	6	10	7	6	10
	8	20,78	9,35	8,82	3,22	1,7	2,48	22	19	12	8	3	4	9	3	4
	9	14,08	8,55	10,91	1,44	1,49	1,64	13	13	14	7	5	5	9	5	5
	10	15,75	9,2	10,55	3,55	2,11	1,3	13,5	14	13	7	4	5	7	5	5
	11	10,72	9	9,51	1,62	1,2	0,69	17	14	13	4	5	5	4	5	5
	12	12,66	15,07	12,12	1,65	2,92	3,24	14	15	19	7	7	4	7	7	4
	13	8,83	7,56	7,69	2,26	0,82	1,34	19	16	13	4	4	4	4	6	4
	14	9,27	6,85	8,98	1,36	1,22	1,48	11	12	11	4	2	5	4	4	6
	15	10,27	6,95	7,2	1,61	1,02	0,89	17	19	14	5	3	4	5	3	5
	16	15,71	14,93	6,38	1,66	2,71	1,78	14	15	13	6	6	2	6	6	3
	17	8,22	13,37	8,55	1,9	1,54	2,01	15	22	17	3	5	3	3	5	3
	18	11,01	8,58	5,93	2,65	1,83	0,78	17	16	17	4	5	3	5	6	3
	19	5,04	9,2	5,63	0,79	1,34	0,71	13	13	14	4	6	3	4	7	3
	20	10,17	4,65	9,92	1,11	0,8	1,45	19	18	17	5	3	5	5	3	5
	21	6,65	8,11	10,66	0,69	1,19	1,85	26	26	22	4	5	6	4	5	6
	22	23,25	8,34	5,58	2,9	1,42	1,2	17	12	16	10	5	3	10	6	3
	23	9,32	10,23	7,35	1,09	1,4	1,33	13	21	20	6	5	5	6	5	5
	24	8,12	8,64	5,43	0,98	1,75	0,99	17	15	13	5	4	4	5	4	4
	25	12,32	8,76	3,3	1,9	1,05	0,55	19	18	15	7	6	3	7	6	3
	26	8,56	8,4	9,24	1,5	1,5	1,86	13	15	14	5	4	5	5	4	6
	27	7,55	13,86	11,04	1,59	4,39	2,72	13,5	16	16	4	7	6	6	8	7
	28	8,04	8,85	9,05	2,64	1,62	2,27	14	15	14,5	4	6	5	4	6	5
	29	5,47	7,94	7,63	0,69	1,52	1,18	14	19	16	3	4	4	3	4	4
	30	15,41	12,02	8,36	1,64	2,42	0,98	17	14	13	6	4	4	6	5	4
	31	8,15	6,16	7,8	0,84	1,14	1,24	18	16	10	5	5	5	8	5	6
	32	8,89	6,32	5,98	1,94	1,96	1,64	15,5	16	15	4	4	3	4	4	4
	33	12,26	7,65	9,37	1,46	0,92	0,77	17	18	19	7	6	6	7	7	6
	34	15,97	12,88	11,61	3,86	2,72	2,27	16	20	19	7	8	7	7	8	7

Arkadia	96	91	98	94	99	96	103	99	6	7,6	6,4	7,7	5,8
Arktis	50	31	98	94	22	50	90	92	4,5	7,5	7,9	7,1	8,7
Artist	102	101	104	102	103	101	104	103	4,3	7,8	7,8	7,5	8,5
Askalon	102	101	90	99	103	101	92	100					
Astoria		0.5	86	87		0.5	92 88		2,5	7,9 7,8	7,7 7,3	7,9 7,6	8,7 8,1
		95 92	88	94		96 94	90	90	3		7,3		
Bamberka								95		7,7		7,2	8,6
Bartosz	0.0	99	96 102	103		100	93 103	103	3,5	8,2	7,7 7,7	7,5	8,4
Belissa	96	97		95	98	100		99	5	8		7,4	7,1
Blyskawica	98	103	96		100	103	101		4	7,9	6,9	8,4	8,7
Bogatka				92				95	5,5	7,8	7,7	7,5	6,7
Bonanza	102	96		106	103	97		103	4	8,2	8,3	8,1	8,1
Comandor	100	102	109		101	102	104		4,5	8,3	7,8	8,3	8,7
Dakar		98	77	101		96	73	100	2	7,9	8,2	8,3	8,6
Delawar	97	99	101		97	97	101		4	8,2	8,2	8,2	8,9
Dolores	99	99	98	101	98	98	96	101	4	7,8	8,1	8,2	8,6
Estivus			91	98			91	98	3	7,9	7,9	8	8,6
Euforia	100	103	112		102	102	107		5,5	8	8,1	8	8,6
Fakir	96	98	98	97	96	96	99	97	4,5	8	8,1	7,9	8,8
Fidelius		98	97	97		97	99	97	4,5	7,7	7,9	7,7	8,5
Florencja			88				88		2	7,8	7,4	8	7,8
Florus		97	88	103		96	87	101	3	7,6	7,9	7,9	8,7
Formacja	99	104	102	99	99	102	101	98	4,5	7,6	7,8	7,9	8,3
Forum				100				100	2	7,2	7,5	7,3	8,8
Franz		98	86	103		97	88	103	3	7,8	8,2	7,9	8,8
Frisky	101	102	98	104	99	101	98	102	3	8,1	8	8,4	8,4
Gimantis		99				100			3,5	7,8	8,3	7,8	8,5
Hondia	98	100	101	96	96	98	101	94	5,5	8,1	8,3	7,9	8,8
Janosch	96	98	94		99	98	95		3	8,3	7	7,9	8,6
Jantarka		96	102	96		96	100	98	5,5	7,6	7,8	7,5	8,3
Kepler				98				98	2,5	8,5	7,7	7,6	8,9
Kometa		99	63	99		96	64	98	2	8,3	8,2	8,2	8,8
Kredo			59	103			63	103	2	8,2	7,8	7,3	8,8
KWS Dacanto			85	106			86	105	2	7,9	7,6	8,1	8,8
KWS Livius		99	90	98		97	92	99	3	7,9	7,6	7,6	8,9
(WS Loft			76	101			78	101	2	7,9	8,1	8,1	7,6
KWS Magic			86	98			86	100	1,5	7,8	7,5	7	7,9
KWS Malibu			80				80		2	8,2	8,2	8,2	8,7
(WS Ozon	94	97	96	101	97	97	97	100	4	7,7	7,8	7,5	8,8
KWS Spencer	98	101	100	101	97	101	100	101	4,5	7,8	7,8	7,9	8,7
Lavantus	50	91	90	97		91	89	97	2	7.4	6.9	7.7	7.7

	-	\leftarrow	-	-	-		-		-	-	-									-	-
rs	alleles			strand	assembl		center	STH_1	STH_2	STH_3	STH_4	STH_5	STH_6	STH_7	STH_8	STH_9	STH_10	STH_11	STH_12	STH_13	STH_
5325144 F 0-9 GC	G/C	NA	NA	NA	_	_ChineseSpring10		CC	NN	CC	CC	CC	CC	CC							
1033260 F 0-26 TC	T/C	chrUn	330012453	, NA	Wheat_0	_ChineseSpring10	DArT	TT	TC	П	П	TT	Π	П	П	П	π	П	TT	П	П
1033260 F 0-44 AG	A/G	chrUn	330012453	, NA	Wheat_0	_ChineseSpring10	DArT	AA	AA	AA	AA	AA									
	T/C	chr5D	326383801		_	_ChineseSpring10		TC	П	TC	TC	TC	π	π	π	TC	TC	TC	П	TC	П
7344639 F 0-14 CA	C/A			NA	_	_ChineseSpring10		CC	CC	CC	CC	CC									
3955947 F 0-15 CT	C/T	chrUn	328699296			_ChineseSpring10		CT	CT	CT	CT	CT	CC	CC	CC	CC	CC	CT	CT	CT	CT
4404786 F 0-21 GT	G/T			NA		_ChineseSpring10		π	GT	П	П	π	Π	π	π	TT	П	П	π	π	П
3936841 F 0-22 GC	G/C	chrUn	361989072		_	_ChineseSpring10		GG	GG	GC	GG	GG	GC	GC	GC	GG	CC	GC	CC	CC	GG
2275611 F 0-25 AG	A/G	chr3B	767917788		_	_ChineseSpring10		GG	AG	GG	GG	GG	AA	GG	GG						
1007201 F 0-42 AG	A/G	chr1A	10132814		_	_ChineseSpring10		GG	GG	GG	GG	AA	AA	AA	AG	GG	GG	AA	GG	GG	AA
1270155 F 0-38 AG	A/G	chr7A	690860873			_ChineseSpring10		AG	AA	AA	GG	AG	GG	GG	NN	AA	AA	AA	AA	GG	AA
4262251 F 0-11 CG	C/G	chr5D	53028568		_	_ChineseSpring10		CG	CC	CC	CC	CG	CG	CG	CC						
1016512 F 0-28 GA	G/A	chr1B	19772673			_ChineseSpring10		GA	NN	AA	GG	GG	GG	AA	GG						
1016148 F 0-25 CG	C/G	chr1D	302264148			_ChineseSpring10		CC	CC	CC	CC	CC									
1019083 F 0-32 GC	G/C	chr5A	674938241		Wheat_0	_ChineseSpring10	DArT	GG	CC	CC	CC	CC	CC	CC	GG	GG	CC	CC	CC	CC	GG
1033127 F 0-8 GC	G/C	NA		NA	Wheat_0	_ChineseSpring10	DArT	GG	NN	GG	CC	CC	GG	GG	GG	GG	GG	CC	CC	GG	CC
3935125 F 0-13 AG	A/G			NA	Wheat_0	_ChineseSpring10	DArT	AA	AA	AA	AA	AA	AA	GG	AA	GG	AA	AG	GG	GG	AA
1049252 F 0-13 GA	G/A	chrUn	42802772			_ChineseSpring10		GG	GA	GG	GG	GG	AA	GG	GG						
1018953 F 0-6 TC	T/C	chr7D	418916798	, NA	Wheat_0	_ChineseSpring10	DArT	CC	CC	TC	TC	CC	CC	CC	CC	CC	TC	TC	CC	TC	TC
1033160 F 0-35 CT	C/T	chr7B	747308026		Wheat_0	_ChineseSpring10	DArT	CC	CC	CC	CC	CC									
1034464 F 0-58 AG	A/G	chr2D	44609696	NA NA	Wheat_0	_ChineseSpring10	DArT	AA	AG	GG	AA	AA									
1162266 F 0-7 GA	G/A	chrUn	334142195		Wheat_0	_ChineseSpring10	DArT	GA	GA	GA	GG	GG	GA	GA	GA	GA	GA	GA	GA	GA	GG
4004790 F 0-9 GA	G/A	NA	NA	NA	Wheat_0	_ChineseSpring10	DArT	NN	GG	NN	AA	AA	NN	NN	AA	NN	NN	GG	AA	AA	NN
3026027 F 0-5 AC	A/C	chr5D	380079708	NA	Wheat_0	_ChineseSpring10	DArT	AA	AA	AC	AA	AA	AC	AA	AA						
1088758 F 0-60 GC	G/C			NA	Wheat_0	_ChineseSpring10	DArT	GG	CC	GG	NN	NN	GG	GG	GG						
1017157 F 0-13 AG	A/G	chr2D	593851647			_ChineseSpring10		AA	AA	GG	AA	AA									
1015856 F 0-37 CG	C/G	chr3B	17613543		_	_ChineseSpring10		CC	NN	NN	NN	CC	CC	CC	CC	NN	CC	GG	GG	NN	NN
1017121 F 0-62 CT	C/T	chrUn	316013593	, NA	Wheat_	_ChineseSpring10	DArT	π	CC	NN	П	π	CC	CC	NN	NN	NN	CC	CC	NN	TT
4261936 F 0-14 TC	T/C	chrUn	384628356) NA	Wheat_	_ChineseSpring10	DArT	CC	CC	CC	CC	CC	NN	NN	π	CC	CC	CC	π	CC	CC
3939551 F 0-15 CG	C/G	chr3B	373696) NA		_ChineseSpring10		CC	CG	GG	GG	CC	GG	GG	CG	CC	CC	CG	GG	CC	GG
1041292 F 0-13 CG	C/G	chr1D	416610556) NA	Wheat_	_ChineseSpring10	DArT	CG	CG	CG	CC	CC	CC	CC	CC						
5367542 F 0-10 CG	C/G	chr3D	426440396) NA	Wheat_	_ChineseSpring10	DArT	CC	CG	CC	CC	CC	CC	CC	CC						
3953491 F 0-8 CG	C/G	chr3D	560942822	: NA	Wheat_	_ChineseSpring10	DArT	CC	CG	CC	CC	CC	CC	CG							
4993437 F 0-7 GT	G/T	NA	NA	NA	Wheat_	_ChineseSpring10	DArT	GG	GT	GT	GT	GG	GG	GT							
4003263 F 0-19 CT	C/T	NA	NA	NA	Wheat_	_ChineseSpring10	DArT	CC	CC	CC	CC	CC									
3934928 F 0-23 GT	G/T	chr2B	15696431	. NA	Wheat_	_ChineseSpring10	DArT	π	GG	GG	GG	GG	π	π	GT	П	GT	GT	GG	GG	GG
4261523 F 0-10 CG	C/G	chr3B	3912019) NA	Wheat_	_ChineseSpring10	DArT	CC	CC	CG	CC	CC	CC	CC	CC						
1034124 F 0-38 GC	G/C	chr7A	112775432	2 NA	Wheat_	_ChineseSpring10	DArT	GG	GG	GG	GC	GC	GG	GG	GG	GG	GG	GG	GG	GG	GG
993225 F 0-27 CT	C/T	chr6B	679285878	i NA	Wheat_/	ChineseSpring10	DArT	CC	TT	CC	CC	CC	П	П	CC	CC	CC	CC	CC	CC	CC
4																					

Wielowymiarowe eksperymenty przeprowadzane są:

- w biologii
- w genetyce
- w rolnictwie
- w obszarach biomedycznych
- w medycynie
- w obszarach związanych z ochroną środowiska
- w naukach inżynieryjnych
- w naukach ekonomicznych

Macierz kowariancji

Identyfikacja macierzy kowariancji:

- pozwala poszerzyć wiedzę o zachowaniu zmiennych
- umożliwia analizę danych przy użyciu precyzyjnego modelu statystycznego o mniejszej liczbie parametrów kowariancyjnych, pozostawiając więcej swobody na estymację interesujących parametrów modelu
- zminiejszenie liczby parametrów umożliwia wnioskowanie statystyczne w sytuacji, gdy pojawia się problem wysokiej wielowymiarowości (ang. high-dimentionality)
- znajomość zależności kowariancyjnych jest istotna w wielu modelach analizy statystycznej, między innymi w analizie składowych głównych, liniowej i kwadratowej analizie dyskryminacyjnej, a analizie regresji czy analizie niezależności zmiennych

Struktury kowariancyjne

Struktury kowariancyjne

Struktury kowariancyjne

Macierz kompletnej symetrii

compound symmetry (CS)

$$oldsymbol{\Gamma}_{CS} = \sigma^2 \left(egin{array}{ccccc} 1 &
ho &
ho &
ho & \ldots &
ho \
ho & 1 &
ho & \ldots &
ho \
ho &
ho & 1 & \ldots &
ho \
ho &
ho & 1 & \ldots &
ho \
ho &
ho &
ho & \ldots & 1 \end{array}
ight) = \sigma^2 (
ho oldsymbol{J}_m + (1-
ho) oldsymbol{I}_m)$$

 Γ_{CS} jest określona dodatnio:

- $\sigma^2 > 0$
- $\rho \in \left(-\frac{1}{m-1}; 1\right)$

Macierz autoregresji pierwszego rzędu

autoregression of order one (AR(1))

$$oldsymbol{\Gamma}_{AR} = \sigma^2 \left(egin{array}{ccccc} 1 &
ho &
ho^2 & \ldots &
ho^{m-1} \
ho & 1 &
ho & \ldots &
ho^{m-2} \
ho^2 &
ho & 1 & \ldots &
ho^{m-3} \ dots & dots & dots & dots & dots \
ho^{m-1} &
ho^{m-2} &
ho^{m-3} & \ldots & 1 \end{array}
ight) = \sigma^2 \sum_{i=0}^{m-1}
ho^i oldsymbol{\mathsf{H}}_i$$

 \mathbf{H}_i - symetryczna macierz stopnia m z elementami na i-tych przekątnych równych 1, pozostałe równe 0

$$\mathbf{H}_0 = \mathbf{I}_m$$

Macierz autoregresji pierwszego rzędu

autoregression of order one (AR(1))

$$oldsymbol{\Gamma}_{AR} = \sigma^2 \left(egin{array}{ccccc} 1 &
ho &
ho^2 &
ho &
ho^2 &
ho &
ho^{m-1} \
ho^2 &
ho & 1 &
ho &
ho^{m-3} \ dots & dots & dots & dots & dots \
ho^{m-1} &
ho^{m-2} &
ho^{m-3} &
ho & 1 \end{array}
ight) = \sigma^2 \sum_{i=0}^{m-1}
ho^i oldsymbol{\mathsf{H}}_i$$

 Γ_{AR} jest określona dodatnio:

- $\sigma^2 > 0$
- $\rho \in (-1;1)$

Wstęgowa macierz Toeplitza

banded symmetric Toeplitz structure ($\mathbf{T}_p, p < m$)

$$\mathbf{\Gamma}_{\mathcal{T}_p} = \sigma^2 \begin{pmatrix} 1 & \rho_1 & \dots & \rho_p & 0 & \dots & 0 \\ \rho_1 & 1 & \rho_1 & \dots & \rho_p & \ddots & \vdots \\ \vdots & \rho_1 & 1 & \rho_1 & & \ddots & 0 \\ \rho_p & & \ddots & \ddots & \ddots & & \rho_p \\ 0 & \ddots & & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & & \ddots & \ddots & \rho_1 \\ 0 & \dots & 0 & \rho_p & \dots & \rho_1 & 1 \end{pmatrix} = \sigma^2 (\mathbf{I}_m + \sum_{i=1}^p \rho_i \mathbf{H}_i)$$

 Γ_{T_1} jest określona dodatnio:

•
$$\sigma^2 > 0$$

$$\begin{array}{l} \bullet \ \sigma^2 > 0 \\ \bullet \ \rho_1 \in \left(-\frac{1}{2\cos\frac{\pi}{m+1}}; \frac{1}{2\cos\frac{\pi}{m+1}} \right) \end{array}$$

Wstęgowa macierz Toeplitza

$$p = m - 1$$

AR

Identyfikacja struktury

Identyfikacja struktury

Metody identyfikacji struktury

Funkcje rozbieżności:

norma Frobeniusa

$$f_F(\Omega, \Gamma) = ||\Omega - \Gamma||_F^2 = \operatorname{tr}\left[(\Omega - \Gamma)(\Omega - \Gamma)'\right]$$
 (1)

• entropijna funcja straty (cf. Stein (1956), Dey and Srinivasan (1985), James and Stein(1961), Lin et al.(2014))

$$f_{E}(\mathbf{\Omega}, \mathbf{\Gamma}) = \operatorname{tr}\left[\mathbf{\Omega}^{-1}\mathbf{\Gamma}\right] - \ln\left|\mathbf{\Omega}^{-1}\mathbf{\Gamma}\right| - pq$$
 (2)

kwadratowa funkcja straty (cf. Anderson(2003))

$$f_Q(\mathbf{\Omega}, \mathbf{\Gamma}) = \operatorname{tr}\left\{ \left[\mathbf{\Omega}^{-1} \mathbf{\Gamma} - \mathbf{I}_{pq} \right]^2 \right\}$$
 (3)

Aproksymacja

Dla zadanej macierzy Ω i $k \in \{F, E, Q\}$ oznaczmy $f_k(\Omega, \Gamma)$ jako $L_{\Omega}^{(k)}(\Gamma)$

Problem

$$\zeta^{(k)} = \min_{\mathbf{\Gamma} \in \mathscr{S}} L_{\Omega}^{(k)}(\mathbf{\Gamma}) = L_{\Omega}^{(k)}(\widehat{\mathbf{\Gamma}})$$

 \mathscr{S} - zbiór rozważanych struktur

Aproksymacja

Problem

$$\min_{\mathbf{\Gamma} \in \mathscr{S}} L_{\Omega}^{(k)}(\mathbf{\Gamma}), \qquad k \in \{F, E, Q\}$$

$$\min f(x) \qquad \frac{df}{dx}$$

$$\min L_{\Omega}^{(k)}(\mathbf{\Gamma}) \qquad \frac{dL}{d\mathbf{\Gamma}}$$

Macierz duplikacji

- ullet macierz kowariancji stopnia m
 - ullet jest symetryczna ($oldsymbol{\mathsf{A}} = oldsymbol{\mathsf{A}}'$)
 - m(m+1)/2 niewiadomych
- powtarzające się elementy można wyeliminować
 - ullet macierz duplikacji $oldsymbol{\mathsf{D}}_m$
 - $\mathbf{D}_m : m^2 \times \frac{1}{2} m(m+1)$
 - $\mathbf{D}_m \cdot \operatorname{vech} \mathbf{A} = \operatorname{vec} \mathbf{A}$

Operatory

 $\mathbf{A}: m \times n$

vecA - układa kolumny macierzy A jedna pod drugą

$$\mathbf{A} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \quad \Rightarrow \quad \text{vec} \mathbf{A} = \begin{pmatrix} d \\ g \\ b \\ e \\ h \\ c \\ f \\ i \end{pmatrix}$$

 $\mathbf{A} \in \operatorname{Sym}(m)$

vech A - układa kolumny macierzy A w wektor bez górnego trójkąta

$$\mathbf{A} = \begin{pmatrix} a & b & c \\ b & e & f \\ c & f & i \end{pmatrix} \quad \Rightarrow \quad \text{vech} \mathbf{A} = \begin{pmatrix} a \\ b \\ c \\ e \\ f \\ i \end{pmatrix}$$

• $\mathbf{D}_m : m^2 \times \frac{1}{2} m(m+1)$ - duplication matrix: \mathbf{D}_m vech $\mathbf{A} = \text{vec}\mathbf{A}$

Lemat

Niech F(A) będzie $k \times I$ wymiarową funkcją macierzową argumentu A.

- (i) Jeśli **A** jest macierzą $m \times n$ wymiarową, to $\partial \operatorname{vec} \mathbf{F}(\mathbf{A})/\partial \operatorname{vec}' \mathbf{A}$ jest macierzą $kl \times mn$ wymiarową taką, że jej (i,j)—ty element jest pochodną i—tej składowej wektora $\operatorname{vec} \mathbf{F}(\mathbf{A})$ ze względu na j—tą składową wektora $\operatorname{vec} \mathbf{A}$.
- (ii) Jeśli $\bf A$ jest symetryczną macierzą stopnia m, to

$$\frac{\partial \operatorname{vec} \mathbf{F}(\mathbf{A})}{\partial \operatorname{vech}' \mathbf{A}} = \frac{\partial \operatorname{vec} \mathbf{F}(\mathbf{A})}{\partial \operatorname{vec}' \mathbf{\bar{A}}} \cdot \frac{\partial \operatorname{vec} \mathbf{\bar{A}}}{\partial \operatorname{vech}' \mathbf{A}} = \frac{\partial \operatorname{vec} \mathbf{F}(\mathbf{A})}{\partial \operatorname{vec}' \mathbf{\bar{A}}} \cdot \mathbf{D}_m,$$

gdzie $\bar{\mathbf{A}}$ jest tym samym co \mathbf{A} lecz z zastosowaniem reguł różniczkowania dla macierzy niesymetrycznych.

Fackler(2005)

Dla $\mathbf{A}: m \times n$, $\mathbf{B}: p \times q$ oraz \mathbf{X} odpowiedniego wymiaru zachodzą następujące zależności:

$$\begin{array}{lll} \frac{d\operatorname{tr}(\mathbf{AX})}{d\mathbf{X}} &=& \operatorname{vec}'\left(\mathbf{A}'\right) \\ \frac{d\ln|\mathbf{A}|}{d\mathbf{A}} &=& \operatorname{vec}'\left[\left(\mathbf{A}^{-1}\right)'\right] \\ \frac{d\mathbf{A}^{-1}}{d\mathbf{A}} &=& -\left[\left(\mathbf{A}^{-1}\right)'\otimes\mathbf{A}^{-1}\right] \\ \frac{d\mathbf{AXB}}{d\mathbf{X}} &=& \mathbf{B}'\otimes\mathbf{A} \\ \frac{d\mathbf{A}\otimes\mathbf{B}}{d\mathbf{A}} &=& (\mathbf{I}_n\otimes\mathbf{K}_{q,m}\otimes\mathbf{I}_p)(\mathbf{I}_{mn}\otimes\operatorname{vec}\mathbf{B}) \\ \frac{d\mathbf{A}\otimes\mathbf{B}}{d\mathbf{B}} &=& (\mathbf{I}_n\otimes\mathbf{K}_{q,m}\otimes\mathbf{I}_p)(\operatorname{vec}\mathbf{A}\otimes\mathbf{I}_{pq}) \\ \frac{d\mathbf{A}'}{d\mathbf{A}} &=& \sum_{j=1}^{i}\left(\mathbf{A}'\right)^{i-j}\otimes\mathbf{A}^{j-1}. \end{array}$$

Reguła łańcuchowa

$$f_Q(\mathbf{\Omega}, \mathbf{\Gamma}) = \operatorname{tr}\left\{\left[\mathbf{\Omega}^{-1}\mathbf{\Gamma} - \mathbf{I}_m\right]^2\right\}$$

różniczkujemy względem **F**

$$\mathbf{Z} = \mathbf{\Omega}^{-1}\mathbf{\Gamma} - \mathbf{I}_m$$

Stosując reguły różniczkowania dla macierzy symetrycznych

$$\frac{\partial f_Q}{\partial \Gamma} = \frac{\partial f_Q}{\partial \mathbf{Z}^2} \cdot \frac{\partial \mathbf{Z}^2}{\partial \mathbf{Z}} \cdot \frac{\partial \mathbf{Z}}{\partial \Gamma}$$

Funkcje rozbieżności: norma Frobeniusa

$$f_{F}(\Omega,\Gamma) = ||\Omega - \Gamma||_{F}^{2} = \operatorname{tr}\left[(\Omega - \Gamma)(\Omega - \Gamma)'
ight]$$

$$\frac{\partial f_F}{\partial \Gamma} =$$

Funkcje rozbieżności: entropijna funcja straty

$$f_{\mathcal{E}}(\mathbf{\Omega}, \mathbf{\Gamma}) = \operatorname{tr}\left[\mathbf{\Omega}^{-1}\mathbf{\Gamma}\right] - \operatorname{ln}\left|\mathbf{\Omega}^{-1}\mathbf{\Gamma}\right| - m$$

$$\frac{\partial f_E}{\partial \Gamma} =$$

Funkcje rozbieżności: kwadratowa funkcja straty

$$f_Q(\mathbf{\Omega}, \mathbf{\Gamma}) = \operatorname{tr} \left\{ \left[\mathbf{\Omega}^{-1} \mathbf{\Gamma} - \mathbf{I}_m \right]^2
ight\}$$

$$rac{\partial f_Q}{\partial \mathbf{\Gamma}} =$$

Struktura:
$$oldsymbol{\Gamma} = oldsymbol{\Gamma}(\sigma^2,
ho)$$

$$\frac{\partial f}{\partial \sigma^2} = \frac{\partial f}{\partial \rho} = \frac{\partial f}{\partial \rho}$$

$$\begin{cases} \frac{\partial f}{\partial \sigma^2} = 0 \\ \frac{\partial f}{\partial \rho} = 0 \end{cases}$$

Funkcje rozbieżności: norma Frobeniusa

$$f_{F}(\mathbf{\Omega}, \mathbf{\Gamma}_{\mathsf{CS}}) = ||\mathbf{\Omega} - \mathbf{\Gamma}_{\mathsf{CS}}||_{F}^{2} = \mathsf{tr}\left[(\mathbf{\Omega} - \mathbf{\Gamma}_{\mathsf{CS}})(\mathbf{\Omega} - \mathbf{\Gamma}_{\mathsf{CS}})'\right]$$

$$oldsymbol{\Gamma}_{CS} = \sigma^2 \left(egin{array}{ccccc} 1 &
ho &
ho &
ho & \ldots &
ho \
ho & 1 &
ho & \ldots &
ho \
ho &
ho & 1 & \ldots &
ho \ dots & dots & dots & dots & dots \
ho &
ho &
ho & \ldots & 1 \end{array}
ight) = \sigma^2 (
ho oldsymbol{J}_m + (1-
ho) oldsymbol{I}_m)$$

$$\frac{\partial f}{\partial \sigma^2} = \frac{\partial f}{\partial \rho} = \frac{\partial f}{\partial \rho}$$

Funkcje rozbieżności: entropijna funcja straty

$$f_E(\Omega, \Gamma_{CS}) = \operatorname{tr}\left[\Omega^{-1}\Gamma_{CS}\right] - \ln\left|\Omega^{-1}\Gamma_{CS}\right| - m$$

$$oldsymbol{\Gamma}_{CS} = \sigma^2 \left(egin{array}{ccccc} 1 &
ho &
ho &
ho & \ldots &
ho \
ho & 1 &
ho & \ldots &
ho \
ho &
ho & 1 & \ldots &
ho \ dots & dots & dots & dots & dots \
ho &
ho &
ho & \ldots & 1 \end{array}
ight) = \sigma^2 (
ho oldsymbol{J}_m + (1-
ho) oldsymbol{I}_m)$$

$$\frac{\partial f}{\partial \sigma^2} = \frac{\partial f}{\partial \rho} = \frac{\partial f}{\partial \rho}$$

Funkcje rozbieżności: kwadratowa funkcja straty

$$f_Q(\mathbf{\Omega}, \mathbf{\Gamma}_{\mathsf{CS}}) = \operatorname{tr} \left\{ \left[\mathbf{\Omega}^{-1} \mathbf{\Gamma}_{\mathsf{CS}} - \mathbf{I}_m \right]^2 \right\}$$

$$oldsymbol{\Gamma}_{CS} = \sigma^2 \left(egin{array}{cccc} 1 &
ho &
ho & \ldots &
ho \\
ho & 1 &
ho & \ldots &
ho \\
ho &
ho & 1 & \ldots &
ho \\ dots & dots & dots & \ddots & dots \\
ho &
ho &
ho & \ldots & 1 \end{array}
ight) = \sigma^2 (
ho oldsymbol{J}_m + (1-
ho) oldsymbol{I}_m)$$

$$\frac{\partial f}{\partial \sigma^2} = \frac{\partial f}{\partial \rho} = \frac{\partial f}{\partial \rho}$$

$$\Gamma = \Gamma_{CS}, \quad \mathscr{S}_{CS} = \{\Gamma_{CS} \in \mathbb{R}_m^{>}\}$$

Twierdzenie [Cui et al. (2016)]

Dla danej symetrycznej, określonej dodatnio macierzy Ω , istnieje symetryczna, określona dodatnio macierz Γ_{CS} , która minimalizuje normę Frobeniusa (1) w zbiorze \mathscr{S}_{CS} i to minimum jest osiągane dla ρ , σ^2 spełniających następujący układ równań

$$\begin{cases} \rho &=& \frac{\delta}{(m-1)\operatorname{tr}(\Omega)} \\ \sigma^2 &=& \frac{\operatorname{tr}(\Omega) + \rho\delta}{m + m(m-1)\rho^2} \end{cases}$$

$$\mathsf{gdzie}\ \delta = \mathsf{tr}[\boldsymbol{\Omega}(\boldsymbol{\mathsf{J}}_m - \boldsymbol{\mathsf{I}}_m)].$$

$$\Gamma = \Gamma_{\mathsf{AR}}, \quad \mathscr{S}_{\mathsf{AR}} = \{\Gamma_{\mathsf{AR}} \in \mathbb{R}_m^>\}$$

Twierdzenie [Cui et al. (2016)]

Dla danej symetrycznej, określonej dodatnio macierzy Ω , istnieje symetryczna, określona dodatnio macierz Γ_{AR} , która minimalizuje normę Frobeniusa (1) w zbiorze \mathscr{S}_{AR} i to minimum jest osiągane dla ρ , σ^2 spełniających następujący układ równań

$$\begin{cases} -\sum_{i=1}^{m-1} i \rho^{i-1} \operatorname{tr}(\mathbf{\Omega} \mathbf{H}_i) + \frac{2 \sum_{i=0}^{m-1} \rho^{i} \operatorname{tr}(\mathbf{\Omega} \mathbf{H}_i) \sum_{i=1}^{m-1} (m-i) i \rho^{2i-1}}{m+2 \sum_{i=1}^{m-1} (m-i) \rho^{2i}} = 0 \\ \sigma^{2} = \frac{\sum_{i=0}^{m-1} \rho^{i} \operatorname{tr}(\mathbf{\Omega} \mathbf{H}_i)}{m+2 \sum_{i=1}^{m-1} (m-i) \rho^{2i}}. \end{cases}$$

$$\mathbf{\Gamma} = \mathbf{\Gamma}_{T_1}, \quad \mathscr{S}_{T_1} = \{\mathbf{\Gamma}_{T_1} \in \mathbb{R}_m^{>}\}$$

Twierdzenie [Cui et al. (2016)]

Dla danej symetrycznej, określonej dodatnio macierzy Ω , istnieje symetryczna macierz Γ_{T_1} , która minimalizuje normę Frobeniusa (1) w zbiorze \mathscr{S}_{T_1} i to minimum jest osiągane dla ρ , σ^2 spełniających następujący układ równań

$$\begin{cases} \sigma^2 &=& \frac{\operatorname{tr}(\Omega)}{m} \\ \rho_1 &=& \frac{m\operatorname{tr}(\Omega H_1)}{2(m-1)\operatorname{tr}(\Omega)} \end{cases}$$

Filipiak et al. (2018)

$$\widehat{\pmb{\Gamma}}_{\mathcal{T}_1} = t\sigma^2 \Big(\pmb{\mathsf{I}}_m + \frac{1}{2\cos\frac{\pi}{m+1}} \pmb{\mathsf{H}}_1 \Big) \quad \mathsf{dla} \quad \rho_1 > 0, \qquad \widehat{\pmb{\Gamma}}_{\mathcal{T}_1} = t\sigma^2 \Big(\pmb{\mathsf{I}}_m - \frac{1}{2\cos\frac{\pi}{m+1}} \pmb{\mathsf{H}}_1 \Big) \quad \mathsf{dla} \quad \rho_1 < 0$$

$$\mathsf{gdzie} \quad t = \Big(m + \frac{\rho_1(m-1)}{\cos\frac{\pi}{m+1}}\Big) \Big/ \Big(m + \frac{m-1}{2(\cos\frac{\pi}{m+1})^2}\Big)$$

$$\boldsymbol{\Gamma} = \boldsymbol{\Gamma}_{T_p}, \ p > 1, \quad \mathcal{S}_{T_p} = \{\boldsymbol{\Gamma}_{T_p} \in \mathbb{R}_m^{>}\}$$

- $\widehat{\Gamma}_{T_p}$ nie jest dany w postaci jawnej
- algorytm Filipiak et al. (2018)

ON PROJECTION OF A POSITIVE DEFINITE MATRIX ON A CONE OF NONNEGATIVE DEFINITE TOEPLITZ MATRICES*

KATARZYNA FILIPIAK[†], AUGUSTYN MARKIEWICZ[‡], ADAM MIELDZIOC[‡], AND ANETA SAWIKOWSKA[‡]§

Abstract. We consider approximation of a given positive definite matrix by nonnegative definite banded Toeplitz matrices. We show that the projection on linear space of Toeplitz matrices does not always preserve nonnegative definiteness. Therefore we characterize a convex cone of nonnegative definite banded Toeplitz matrices which depends on the matrix dimensions, and we show that the condition of positive definiteness given by Parter [Numer. Math. 4, 293–295, 1962] characterizes the asymptotic cone. In this paper we give methodology and numerical algorithm of the projection basing on the properties of a cone of nonnegative definite Toeplitz matrices.

$$\Gamma = \Gamma_{\mathsf{CS}}, \quad \mathscr{S}_{\mathsf{CS}} = \{\Gamma_{\mathsf{CS}} \in \mathbb{R}_{\mathit{m}}^{>}\}$$

Twierdzenie [Lin et al. (2014)]

Dla danej symetrycznej, określonej dodatnio macierzy Ω , istnieje symetryczna, określona dodatnio macierz Γ_{CS} , która minimalizuje entropijną funkcję straty (2) w zbiorze \mathscr{S}_{CS} i to minimum jest osiągane dla ρ , σ^2 spełniających następujący układ równań

$$\begin{cases} \rho &= -\delta / \left[(m-1) \operatorname{tr}(\mathbf{\Omega}^{-1}) + (m-2)\delta \right] \\ \sigma^2 &= m / \left[\operatorname{tr}(\mathbf{\Omega}^{-1}) + \rho \delta \right] \end{cases}$$

$$\text{gdzie } \boldsymbol{\delta} = \operatorname{tr}\left[\boldsymbol{\Omega}^{-1}(\boldsymbol{\mathsf{J}}_{\mathit{m}} - \boldsymbol{\mathsf{I}}_{\mathit{m}})\right].$$

$$\Gamma = \Gamma_{AR}, \quad \mathscr{S}_{AR} = \{\Gamma_{AR} \in \mathbb{R}_m^{>}\}$$

Twierdzenie [Lin et al. (2014)]

Dla danej symetrycznej, określonej dodatnio macierzy Ω , istnieje symetryczna, określona dodatnio macierz Γ_{AR} , która minimalizuje entropijną funkcję straty (2) w zbiorze \mathscr{S}_{AR} i to minimum jest osiągane dla ρ , σ^2 spełniających następujący układ równań

$$\begin{cases} \frac{m\sum\limits_{i=1}^{m-1}i\rho^{i-1}\operatorname{tr}(\mathbf{\Omega}^{-1}\mathbf{H}_i)}{\sum\limits_{i=0}^{m-1}\rho^{i}\operatorname{tr}(\mathbf{\Omega}^{-1}\mathbf{H}_i)} + \frac{2(m-1)\rho}{1-\rho^2} = 0\\ \sigma^2 = m/\sum_{i=0}^{m-1}\rho^{i}\operatorname{tr}(\mathbf{\Omega}^{-1}\mathbf{H}_i) \end{cases}$$

$$\Gamma = \Gamma_{T_1}, \quad \mathscr{S}_{T_1} = \{\Gamma_{T_1} \in \mathbb{R}_m^>\}$$

Twierdzenie [Lin et al. (2014)]

Dla danej symetrycznej, określonej dodatnio macierzy Ω , istnieje symetryczna macierz $\Gamma_{\mathcal{T}_1}$, która minimalizuje entropijną funkcję straty (2) w zbiorze $\mathscr{S}_{\mathcal{T}_1}$ i to minimum jest osiągane dla ρ , σ^2 spełniających następujący układ równań

$$\begin{cases} \sigma^2 = \sum_{j=1}^m \frac{2s_j}{1 + 2\rho_1 s_j} / \text{tr}(\mathbf{\Omega}^{-1} \mathbf{H}_1) \\ \sum_{j=1}^m \frac{2s_j}{1 + 2\rho_1 s_j} - \frac{m \text{tr}(\mathbf{\Omega}^{-1} \mathbf{H}_1)}{\text{tr}(\mathbf{s}^{-1}) + \rho_1 \text{tr}(\mathbf{\Omega}^{-1} \mathbf{H}_1)} = 0 \end{cases}$$

 $gdzie s_j = cos(\pi j/(m+1)).$

$$\boldsymbol{\Gamma} = \boldsymbol{\Gamma}_{T_p}, \ p > 1, \quad \mathcal{S}_{T_p} = \{\boldsymbol{\Gamma}_{T_p} \in \mathbb{R}_m^>\}$$

Mary Control

- ullet $\widehat{\Gamma}_{\mathcal{T}_p}$ nie jest dany w postaci jawnej
- algorytm Lin et al. (2018)

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Covariance structure regularization via entropy loss function

Lijing Lin, Nicholas J. Higham, Jianxin Pan*

 $School\ of\ Mathematics,\ University\ of\ Manchester,\ Manchester\ M13\ 9PL,\ UK$

Struktura iloczynu Kroneckera

Struktura iloczynu Kroneckera

$$\mathscr{S}_{\otimes} = \{ \Psi \otimes \Sigma \in \mathbb{R}_{pq}^{>} : \Psi \in \mathbb{R}_{p}^{>}, \Sigma \in \mathbb{R}_{q}^{>} \}$$

Struktura iloczynu Kroneckera

$$\begin{split} \mathscr{S}_{\otimes} &= \{ \boldsymbol{\Psi} \quad \otimes \boldsymbol{\Sigma} \in \mathbb{R}_{pq}^{>} : \quad \boldsymbol{\Psi} \quad \in \mathbb{R}_{p}^{>}, \; \boldsymbol{\Sigma} \in \mathbb{R}_{q}^{>} \} \\ \mathscr{S}_{\mathrm{CS}\otimes} &= \{ \boldsymbol{\Psi}_{\mathrm{CS}} \otimes \boldsymbol{\Sigma} \in \mathbb{R}_{pq}^{>} : \quad \boldsymbol{\Psi}_{\mathrm{CS}} \in \mathbb{R}_{p}^{>}, \; \boldsymbol{\Sigma} \in \mathbb{R}_{q}^{>} \} \\ \mathscr{S}_{\mathrm{AR}\otimes} &= \{ \boldsymbol{\Psi}_{\mathrm{AR}} \otimes \boldsymbol{\Sigma} \in \mathbb{R}_{pq}^{>} : \quad \boldsymbol{\Psi}_{\mathrm{AR}} \in \mathbb{R}_{p}^{>}, \; \boldsymbol{\Sigma} \in \mathbb{R}_{q}^{>} \} \end{split}$$

gdzie

$$\begin{split} \Psi_{\mathsf{CS}} &= (1-\rho)\mathbf{I}_p + \rho \mathbf{1}_p \mathbf{1}_p' \\ \Psi_{\mathsf{AR}} &= \mathbf{I}_p + \sum_{i=1}^{p-1} \rho^i \mathbf{H}_i \\ \mathsf{dla} \; \mathbf{H} = (h_{ij}), h_{ij} = 1 \; \mathsf{dla} \; |j-i| = 1 \; \mathsf{i} \; \mathsf{0} \; \mathsf{w} \; \mathsf{przeciwnym} \; \mathsf{wypadku}, \; 1 \leqslant i,j \leqslant p. \\ \rho_{\mathsf{CS}} \in \left(-\frac{1}{p-1}, \; 1 \right) \qquad \qquad \rho_{\mathsf{AR}} \in (-1, \, 1) \end{split}$$

Aproksymacja za pomoca normy Frobeniusa w zbiorze \mathscr{S}_{\otimes}

Twierdzenie [Van Loan i Pitsianis, 1992]

Dla danej symetrycznej, określonej dodatnio macierzy Ω , istnieje symetryczna macierz $\Psi \otimes \Sigma$, która minimalizuje normę Frobeniusa (1) w zbiorze \mathscr{S}_{\otimes} oraz minimum to jest osiągane dla Ψ, Σ spełniających następujący układ równań

$$\left\{ \begin{array}{l} \mathsf{vec}\, \pmb{\Psi} = \sqrt{\delta_1} \pmb{\mathsf{u}}_1 \\ \mathsf{vec}\, \pmb{\Sigma} = \sqrt{\delta_1} \pmb{\mathsf{v}}_1 \end{array} \right.$$

gdzie δ_1 jest największą wartością własną oraz \mathbf{u}_1 i \mathbf{v}_1 są odpowiednio lewym i prawy wektorem własnym $p^2 \times q^2$ —wymiarowej macierzy

$$R(\Omega) = (\operatorname{vec}\Omega_{11},\operatorname{vec}\Omega_{21},\ldots,\operatorname{vec}\Omega_{p1},\ldots,\operatorname{vec}\Omega_{pp})'$$
 .

Aproksymacja za pomocą normy Frobeniusa w zbiorze $\mathscr{S}_{\mathsf{CS} \otimes}$

Twierdzenie [Filipiak i Klein, 2018]

Dla danej symetrycznej, określonej dodatnio macierzy Ω , istnieje symetryczna macierz $\Psi_{\text{CS}} \otimes \Sigma$, która minimalizuje normę Frobeniusa (1) w zbiorze $\mathscr{S}_{\text{CS}} \otimes$ oraz minimum to jest osiągane dla ρ , Σ spełniających następujący układ równań

$$\begin{cases} \rho & = \frac{a - (\rho - 1)c + \sqrt{[(\rho - 1)c - a]^2 + 4(\rho - 1)b^2}}{2(\rho - 1)b} \\ \Sigma & = \frac{1}{1 + (\rho - 1)\rho^2} \left[\rho \widetilde{\Omega}_{11} + (1 - \rho)H\right] \end{cases}$$

gdzie

$$\Psi_{\text{CS}} = \mathbf{UGU'}, \quad \mathbf{G} = \operatorname{diag}(1 + (\rho - 1)\rho, 1 - \rho, \dots, 1 - \rho), \quad \mathbf{U} - \text{orthogonal matrix}$$

$$\widetilde{\Omega} = \left(\mathbf{U}' \otimes \mathbf{I}_q \right) \mathbf{\Omega} \left(\mathbf{U} \otimes \mathbf{I}_q \right) = \left(\widetilde{\Omega}_{ij} \right)_{1 \leqslant i,j \leqslant p} \quad \forall_{i,j} : \widetilde{\Omega}_{i,j} \in \mathbb{R}^q$$

$$\mathbf{H} = \frac{1}{p} \sum_{i=1}^{p} \widetilde{\Omega}_{ii}$$

$$a = \operatorname{tr}\left[\left(\widetilde{\Omega}_{11} - \mathbf{H}\right)\left(\widetilde{\Omega}_{11} - \mathbf{H}\right)'\right], \quad b = \operatorname{tr}\left[\left(\widetilde{\Omega}_{11} - \mathbf{H}\right)\mathbf{H}'\right], \quad c = \operatorname{tr}\left[\mathbf{H}\mathbf{H}'\right]$$

Aproksymacja za pomocą normy Frobeniusa w zbiorze $\mathscr{S}_{\mathsf{AR}\otimes}$

Twierdzenie [Filipiak i Klein, 2018]

Dla danej symetrycznej, określonej dodatnio macierzy Ω , istnieje symetryczna macierz $\Psi_{AR} \otimes \Sigma$, która minimalizuje normę Frobeniusa (1) w zbiorze $\mathscr{S}_{AR\otimes}$ oraz minimum to jest osiągane dla ρ , Σ spełniających następujący układ równań

$$\left\{ \begin{array}{l} \operatorname{tr} {\pmb \Psi}_{\mathsf{AR}}^2 \cdot \operatorname{tr} \left[({\pmb F} \otimes {\pmb \Sigma}_1') {\pmb \Omega} \right] - \operatorname{tr} ({\pmb F} {\pmb \Psi}_{\mathsf{AR}}) \cdot \operatorname{tr} \left({\pmb \Sigma}_1 {\pmb \Sigma}_1' \right) = 0 \\ \\ {\pmb \Sigma} = \left[\operatorname{tr} \left({\pmb \Psi}_{\mathsf{AR}}^2 \right) \right]^{-1} {\pmb \Sigma}_1 \end{array} \right.$$

gdzie

$$oldsymbol{\Sigma}_1 = \operatorname{\mathsf{BTr}}_q[(oldsymbol{\Psi}_{\mathsf{AR}} \otimes oldsymbol{\mathsf{I}}_q) oldsymbol{\Omega}]$$
 $oldsymbol{\mathsf{F}} = \sum\limits_{i=1}^{p-1} i oldsymbol{
ho}^{i-1} oldsymbol{\mathsf{H}}_i$

Operatory

 $\mathbf{A} = (\mathbf{A}_{ij}) : mn \times mn$ $\mathbf{A}_{ij} : m \times m$

Operator śladów częściowych

$$\mathsf{PTr}_m \mathbf{A} = (\mathsf{tr} \mathbf{A}_{ij})_{1 \leqslant i,j \leqslant n} : n \times n$$

Operator śladu blokowego

$$\mathsf{BTr}_m \mathbf{A} = \sum_{i=1}^n \mathbf{A}_{ii} : m \times m$$

Aproksymacja macierzą z \mathscr{S}_{\otimes}

Twierdzenie [FKMM, 2021]

Dla danej symetrycznej, określonej dodatnio macierzy Ω , istnieje symetryczna, określona dodatnio macierz $\Psi \otimes \Sigma$, która minimalizuje entropijną funkcję straty (2) w zbiorze \mathscr{S}_{\otimes} i to minimum jest osiągane dla Ψ, Σ spełniających następujący układ równań

$$\left\{ \begin{array}{l} \mathbf{\Psi}^{-1} = \frac{1}{q} \operatorname{PTr}_q \left[(\mathbf{I}_\rho \otimes \mathbf{\Sigma}) \mathbf{\Omega}^{-1} \right] \\ \\ \mathbf{\Sigma}^{-1} = \frac{1}{\rho} \operatorname{BTr}_q \left[(\mathbf{\Psi} \otimes \mathbf{I}_q) \mathbf{\Omega}^{-1} \right]. \end{array} \right.$$

Twierdzenie [FKM, 2023]

Dla danej symetrycznej, określonej dodatnio macierzy Ω , istnieje symetryczna macierz $\Psi \otimes \Sigma$, która minimalizuje kwadratową funkcję straty (3) w zbiorze \mathscr{S}_{\otimes} oraz minimum to jest osiągane dla Ψ, Σ spełniających następujący układ równań

$$\left\{ \begin{array}{lcl} \mathsf{PTr}_q \left[(\mathbf{I}_p \otimes \mathbf{\Sigma}) \mathbf{\Omega}^{-1} (\mathbf{\Psi} \otimes \mathbf{\Sigma}) \mathbf{\Omega}^{-1} \right] & = & \mathsf{PTr}_q \left[(\mathbf{I}_p \otimes \mathbf{\Sigma}) \mathbf{\Omega}^{-1} \right] \\ \mathsf{BTr}_q \left[(\mathbf{\Psi} \otimes \mathbf{I}_q) \mathbf{\Omega}^{-1} (\mathbf{\Psi} \otimes \mathbf{\Sigma}) \mathbf{\Omega}^{-1} \right] & = & \mathsf{BTr}_q \left[(\mathbf{\Psi} \otimes \mathbf{I}_q) \mathbf{\Omega}^{-1} \right]. \end{array} \right.$$

Aproksymacja macierzą z $\mathscr{S}_{\mathsf{CS} \otimes}$

Twierdzenie [FKM, 2018]

Dla danej symetrycznej, określonej dodatnio macierzy Ω , istnieje wyznaczona jednoznacznie symetryczna, określona dodatnio macierz $\Psi_{\text{CS}} \otimes \Sigma$, która minimalizuje entropijną funkcję straty (2) w zbiorze $\mathscr{S}_{\text{CS}} \otimes \Sigma$, przy czym minimum to jest osiągane dla ρ , Σ spełniających następujący układ równań

$$\left\{ \begin{array}{l} \boldsymbol{\rho} = \frac{-(p-2)\alpha - pq(p-1) + \sqrt{((p-2)\alpha + pq(p-1))^2 + 4(p-1)\alpha^2}}{-2(p-1)\alpha} \\ \boldsymbol{\rho} \boldsymbol{\Sigma}^{-1} = \mathsf{BTr}_q \left[(\boldsymbol{\Psi}_{\mathsf{CS}} \otimes \boldsymbol{\mathsf{I}}_q) \boldsymbol{\Omega}^{-1} \right], \end{array} \right.$$

$$\mathsf{gdzie}\ \alpha = \mathsf{tr}\left\{\left[\left(\mathbf{1}_{\rho}\mathbf{1}_{\rho}' - \mathbf{I}_{\rho}\right) \otimes \mathbf{\Sigma}\right] \mathbf{\Omega}^{-1}\right\}.$$

Twierdzenie [FKM, 2023]

Dla danej symetrycznej, określonej dodatnio macierzy Ω , istnieje symetryczna macierz $\Psi_{CS} \otimes \Sigma$, która minimalizuje kwadratową funkcję straty (3) w zbiorze $\mathscr{S}_{CS} \otimes \Gamma$ oraz minimum to jest osiągane dla Ψ_{CS}, Σ spełniających następujący układ równań

$$\left\{ \begin{array}{lcl} \operatorname{tr} \left[\{ (\mathbf{1}_p \mathbf{1}_p' - \mathbf{I}_p) \otimes \boldsymbol{\Sigma} \} \boldsymbol{\Omega}^{-1} (\boldsymbol{\Psi}_{\text{CS}} \otimes \boldsymbol{\Sigma}) \boldsymbol{\Omega}^{-1} \right] & = & \operatorname{tr} \left[\{ (\mathbf{1}_p \mathbf{1}_p' - \mathbf{I}_p) \otimes \boldsymbol{\Sigma} \} \boldsymbol{\Omega}^{-1} \right] \\ \operatorname{BTr}_q \left[(\boldsymbol{\Psi}_{\text{CS}} \otimes \mathbf{I}_q) \boldsymbol{\Omega}^{-1} (\boldsymbol{\Psi}_{\text{CS}} \otimes \boldsymbol{\Sigma}) \boldsymbol{\Omega}^{-1} \right] & = & \operatorname{BTr}_q \left[(\boldsymbol{\Psi}_{\text{CS}} \otimes \mathbf{I}_q) \boldsymbol{\Omega}^{-1} \right]. \end{array} \right.$$

Aproksymacja macierzą z $\mathscr{S}_{\mathsf{AR}\otimes}$

Twierdzenie [FKMM, 2021]

Dla danej symetrycznej, określonej dodatnio macierzy Ω , istnieje symetryczna, określona dodatnio macierz $\Psi_{AR} \otimes \Sigma$ która minimalizuje entropijną funkcję straty postaci (2) w zbiorze $\mathscr{S}_{AR\otimes}$, przy czym minimum to jest osiągane dla ρ , Σ spełniających następujący układ równań

$$\left\{ \begin{array}{l} (1-\boldsymbol{\rho}^2) \cdot \operatorname{tr} \left[(\mathbf{F} \otimes \boldsymbol{\Sigma}) \boldsymbol{\Omega}^{-1} \right] + 2 \boldsymbol{\rho} \, q(\boldsymbol{p}-1) = 0 \\ \\ \boldsymbol{\Sigma}^{-1} = \frac{1}{\boldsymbol{\rho}} \cdot \mathsf{BTr}_q \left[(\boldsymbol{\Psi}_{\mathsf{AR}} \otimes \boldsymbol{\mathsf{I}}_q) \boldsymbol{\Omega}^{-1} \right], \end{array} \right.$$

gdzie
$$\mathbf{F} = \sum_{i=1}^{p-1} i \boldsymbol{\rho}^{i-1} \mathbf{H}_i$$
.

Twierdzenie [FKM, 2023]

Dla danej symetrycznej, określonej dodatnio macierzy Ω , istnieje symetryczna macierz $\Psi_{AR} \otimes \Sigma$, która minimalizuje kwadratową funkcję straty postaci (3) w zbiorze $\mathscr{S}_{AR\otimes}$ oraz minimum to jest osiągane dla Ψ_{AR}, Σ spełniających następujący układ równań

$$\left\{ \begin{array}{lll} \operatorname{tr} \left[(\mathbf{F} \otimes \mathbf{\Sigma}) \mathbf{\Omega}^{-1} (\mathbf{\Psi}_{\mathsf{AR}} \otimes \mathbf{\Sigma}) \mathbf{\Omega}^{-1} \right] & = & \operatorname{tr} \left[(\mathbf{F} \otimes \mathbf{\Sigma}) \mathbf{\Omega}^{-1} \right] \\ \operatorname{BTr}_q \left[(\mathbf{\Psi}_{\mathsf{AR}} \otimes \mathbf{I}_q) \mathbf{\Omega}^{-1} (\mathbf{\Psi}_{\mathsf{AR}} \otimes \mathbf{\Sigma}) \mathbf{\Omega}^{-1} \right] & = & \operatorname{BTr}_q \left[(\mathbf{\Psi}_{\mathsf{AR}} \otimes \mathbf{I}_q) \mathbf{\Omega}^{-1} \right]. \end{array} \right.$$

Aproksymacja za pomocą kwadratowej funkcji straty

$$\Gamma = \Gamma_{\mathsf{CS}}, \quad \mathscr{S}_{\mathsf{CS}} = \{\Gamma_{\mathsf{CS}} \in \mathbb{R}_{\mathit{m}}^{>}\}$$

Twierdzenie [FKM, 2023]

Dla danej symetrycznej, określonej dodatnio macierzy Ω , istnieje symetryczna macierz $\Psi_{CS} \otimes \Sigma$, która minimalizuje kwadratową funkcję straty (3) w zbiorze $\mathscr{S}_{CS \otimes}$ oraz minimum to jest osiągane dla Ψ_{CS}, Σ spełniających następujący układ równań

$$\left\{ \begin{array}{ll} \operatorname{tr} \left[\{ \left(\mathbf{1}_{\rho} \mathbf{1}_{\rho}' - \mathbf{I}_{\rho} \right) \otimes \mathbf{\Sigma} \} \mathbf{\Omega}^{-1} (\mathbf{\Psi}_{\mathsf{CS}} \otimes \mathbf{\Sigma}) \mathbf{\Omega}^{-1} \right] & = & \operatorname{tr} \left[\{ \left(\mathbf{1}_{\rho} \mathbf{1}_{\rho}' - \mathbf{I}_{\rho} \right) \otimes \mathbf{\Sigma} \} \mathbf{\Omega}^{-1} \right] \\ \operatorname{BTr}_{q} \left[\left(\mathbf{\Psi}_{\mathsf{CS}} \otimes \mathbf{I}_{q} \right) \mathbf{\Omega}^{-1} (\mathbf{\Psi}_{\mathsf{CS}} \otimes \mathbf{\Sigma}) \mathbf{\Omega}^{-1} \right] & = & \operatorname{BTr}_{q} \left[\left(\mathbf{\Psi}_{\mathsf{CS}} \otimes \mathbf{I}_{q} \right) \mathbf{\Omega}^{-1} \right]. \end{array} \right.$$

$$q = 1$$

Aproksymacja za pomocą kwadratowej funkcji straty

$$\Gamma = \Gamma_{CS}, \quad \mathscr{S}_{CS} = \{\Gamma_{CS} \in \mathbb{R}_m^>\}$$

Twierdzenie

Dla danej symetrycznej, określonej dodatnio macierzy Ω , istnieje symetryczna macierz $\Psi_{CS}\otimes\sigma^2$, która minimalizuje kwadratową funkcję straty (3) w zbiorze \mathscr{S}_{CS} oraz minimum to jest osiągane dla Ψ_{CS},σ^2 spełniających następujący układ równań

$$\left\{ \begin{array}{ll} \operatorname{tr} \left[\{ \left(\mathbf{1}_{\rho} \mathbf{1}_{\rho}' - \mathbf{I}_{\rho} \right) \otimes \sigma^2 \} \mathbf{\Omega}^{-1} (\mathbf{\Psi}_{\mathsf{CS}} \otimes \sigma^2) \mathbf{\Omega}^{-1} \right] & = & \operatorname{tr} \left[\{ \left(\mathbf{1}_{\rho} \mathbf{1}_{\rho}' - \mathbf{I}_{\rho} \right) \otimes \sigma^2 \} \mathbf{\Omega}^{-1} \right] \\ \operatorname{\mathsf{BTr}}_1 \left[\left(\mathbf{\Psi}_{\mathsf{CS}} \otimes \mathbf{I}_1 \right) \mathbf{\Omega}^{-1} (\mathbf{\Psi}_{\mathsf{CS}} \otimes \sigma^2) \mathbf{\Omega}^{-1} \right] & = & \operatorname{\mathsf{BTr}}_1 \left[\left(\mathbf{\Psi}_{\mathsf{CS}} \otimes \mathbf{I}_1 \right) \mathbf{\Omega}^{-1} \right]. \end{array} \right.$$

Aproksymacja za pomocą kwadratowej funkcji straty

$$\Gamma = \Gamma_{CS}, \quad \mathscr{S}_{CS} = \{\Gamma_{CS} \in \mathbb{R}_m^>\}$$

Twierdzenie

Dla danej symetrycznej, określonej dodatnio macierzy Ω , istnieje symetryczna macierz $\Psi_{CS}\otimes\sigma^2$, która minimalizuje kwadratową funkcję straty (3) w zbiorze \mathscr{S}_{CS} oraz minimum to jest osiągane dla Ψ_{CS},σ^2 spełniających następujący układ równań

$$\left\{ \begin{array}{lll} \operatorname{tr} \left[\left\{ \left(\mathbf{1}_{\rho} \mathbf{1}_{\rho}' - \mathbf{I}_{\rho} \right) \sigma^2 \right\} \Omega^{-1} \mathbf{\Psi}_{\mathsf{CS}} \sigma^2 \Omega^{-1} \right] & = & \operatorname{tr} \left[\left\{ \left(\mathbf{1}_{\rho} \mathbf{1}_{\rho}' - \mathbf{I}_{\rho} \right) \sigma^2 \right\} \Omega^{-1} \right] \\ \operatorname{tr} \left[\mathbf{\Psi}_{\mathsf{CS}} \Omega^{-1} (\mathbf{\Psi}_{\mathsf{CS}} \sigma^2) \Omega^{-1} \right] & = & \operatorname{tr} \left[\mathbf{\Psi}_{\mathsf{CS}} \Omega^{-1} \right]. \end{array} \right.$$

Aproksymacja za pomocą kwadratową funkcji straty

$$\Gamma = \Gamma_{\mathsf{AR}}, \quad \mathscr{S}_{\mathsf{AR}} = \{\Gamma_{\mathsf{AR}} \in \mathbb{R}_m^>\}$$

Twierdzenie [FKM, 2023]

Dla danej symetrycznej, określonej dodatnio macierzy Ω , istnieje symetryczna macierz $\Psi_{AR} \otimes \Sigma$, która minimalizuje kwadratową funkcję straty postaci (3) w zbiorze $\mathscr{S}_{AR\otimes}$ oraz minimum to jest osiągane dla Ψ_{AR}, Σ spełniających następujący układ równań

$$\left\{ \begin{array}{lll} \operatorname{tr} \left[(\mathbf{F} \otimes \mathbf{\Sigma}) \mathbf{\Omega}^{-1} (\mathbf{\Psi}_{\mathsf{AR}} \otimes \mathbf{\Sigma}) \mathbf{\Omega}^{-1} \right] & = & \operatorname{tr} \left[(\mathbf{F} \otimes \mathbf{\Sigma}) \mathbf{\Omega}^{-1} \right] \\ \operatorname{BTr}_q \left[(\mathbf{\Psi}_{\mathsf{AR}} \otimes \mathbf{I}_q) \mathbf{\Omega}^{-1} (\mathbf{\Psi}_{\mathsf{AR}} \otimes \mathbf{\Sigma}) \mathbf{\Omega}^{-1} \right] & = & \operatorname{BTr}_q \left[(\mathbf{\Psi}_{\mathsf{AR}} \otimes \mathbf{I}_q) \mathbf{\Omega}^{-1} \right]. \end{array} \right.$$

$$q = 1$$

Aproksymacja za pomocą kwadratową funkcji straty

$$\Gamma = \Gamma_{AR}, \quad \mathscr{S}_{AR} = \{\Gamma_{AR} \in \mathbb{R}_m^{>}\}$$

Twierdzenie

Dla danej symetrycznej, określonej dodatnio macierzy Ω , istnieje symetryczna macierz $\Psi_{AR} \otimes \Sigma$, która minimalizuje kwadratową funkcję straty postaci (3) w zbiorze $\mathscr{S}_{AR\otimes}$ oraz minimum to jest osiągane dla Ψ_{AR}, Σ spełniających następujący układ równań

$$\left\{ \begin{array}{lcl} \operatorname{tr}\left[\left(\textbf{F}\sigma^{2}\right)\boldsymbol{\Omega}^{-1}(\boldsymbol{\Psi}_{\mathsf{AR}}\sigma^{2})\boldsymbol{\Omega}^{-1}\right] & = & \operatorname{tr}\left[\left(\textbf{F}\sigma^{2}\right)\boldsymbol{\Omega}^{-1}\right] \\ \operatorname{tr}\left[\left(\boldsymbol{\Psi}_{\mathsf{AR}}\right)\boldsymbol{\Omega}^{-1}(\boldsymbol{\Psi}_{\mathsf{AR}}\sigma^{2})\boldsymbol{\Omega}^{-1}\right] & = & \operatorname{tr}\left[\left(\boldsymbol{\Psi}_{\mathsf{AR}}\right)\boldsymbol{\Omega}^{-1}\right]. \end{array} \right.$$

Motywacja

- n liczba obiektów
- *m* liczba charakterystyk
 - **X** macierz obserwacji

Model wielowymiarowy

$$\mathbf{X} \sim N_{m,n}\left(\mu \mathbf{1}_n', \mathbf{\Omega}, \mathbf{I}_n\right)$$

- $\mu \in \mathbb{R}^{m,1}$ wektor średnich
- $\mathbf{\Omega} \in \mathbb{R}^m$ nieznana macierz kowariancji
 - n>m macierz Ω jest estymowalna

Motywacja

- n liczba obiektów
- *m* liczba charakterystyk
 - **X** macierz obserwacji

Model wielowymiarowy

$$\mathbf{X} \sim N_{m,n}\left(\mu \mathbf{1}_n', \mathbf{\Omega}, \mathbf{I}_n\right)$$

- $\mu \in \mathbb{R}^{m,1}$ wektor średnich
- $\mathbf{\Omega} \in \mathbb{R}^m$ nieznana macierz kowariancji

$\mathsf{MLE}(\mathbf{\Omega})$

$$S = \frac{1}{n}XQ_{1_n}X'$$

$$\mathbf{Q}_{1_n} = \mathbf{I}_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n' = \mathbf{I}_n - \frac{1}{n} \mathbf{J}_n$$

- m = 100, n = 1000
- $oldsymbol{\Omega} = oldsymbol{\Gamma}_{\mathsf{CS}} \ \mathsf{lub} \ oldsymbol{\Omega} = oldsymbol{\Gamma}_{\mathcal{T}_1} \ \mathsf{lub} \ oldsymbol{\Omega} = oldsymbol{\Gamma}_{\mathcal{T}_2} \ \mathsf{lub} \ oldsymbol{\Omega} = oldsymbol{\Gamma}_{\mathsf{AR}}$
- ullet $\mathbf{X} \sim N_{m,n}(\mathbf{0}, \mathbf{\Omega}, \mathbf{I}_n)$
- $S = \frac{1}{n}X\left(I_n \frac{1}{n}I_nI_n'\right)X'$

$$\zeta_{\text{CS}}^{(k)} = \min_{\Gamma \in \mathscr{S}_{\text{CS}}} L_S^{(k)}(\Gamma), \quad \zeta_{T_1}^{(k)} = \min_{\Gamma \in \mathscr{S}_{T_1}} L_S^{(k)}(\Gamma), \quad \zeta_{T_2}^{(k)} = \min_{\Gamma \in \mathscr{S}_{T_2}} L_S^{(k)}(\Gamma), \quad \zeta_{\text{AR}}^{(k)} = \min_{\Gamma \in \mathscr{S}_{\text{AR}}} L_S^{(k)}(\Gamma)$$

$$k \in \{F, E\}$$

• *r*=100

$$\zeta_{\text{CS}}^{(k)} = \min_{\Gamma \in \mathscr{S}_{\text{CS}}} L_S^{(k)}(\Gamma), \quad \zeta_{\mathcal{T}_1}^{(k)} = \min_{\Gamma \in \mathscr{S}_{\mathcal{T}_1}} L_S^{(k)}(\Gamma), \quad \zeta_{\mathcal{T}_2}^{(k)} = \min_{\Gamma \in \mathscr{S}_{\mathcal{T}_2}} L_S^{(k)}(\Gamma), \quad \zeta_{\text{AR}}^{(k)} = \min_{\Gamma \in \mathscr{S}_{\text{AR}}} L_S^{(k)}(\Gamma)$$

$$k \in \{F, E\}$$

$$\begin{array}{lll} \bullet \ \Omega = \Gamma_{\text{CS}} & \Longrightarrow & \min\{\zeta_{\text{CS}}^{(k)}, \zeta_{T_{1}}^{(k)}, \zeta_{T_{2}}^{(k)}, \zeta_{\text{AR}}^{(k)}\} = \zeta_{\text{CS}}^{(k)} \\ \bullet \ \Omega = \Gamma_{T_{1}} & \Longrightarrow & \min\{\zeta_{\text{CS}}^{(k)}, \zeta_{T_{1}}^{(k)}, \zeta_{T_{2}}^{(k)}, \zeta_{\text{AR}}^{(k)}\} = \zeta_{T_{1}}^{(k)} \\ \bullet \ \Omega = \Gamma_{T_{2}} & \Longrightarrow & \min\{\zeta_{\text{CS}}^{(k)}, \zeta_{T_{1}}^{(k)}, \zeta_{T_{2}}^{(k)}, \zeta_{\text{AR}}^{(k)}\} = \zeta_{T_{2}}^{(k)} \\ \bullet \ \Omega = \Gamma_{\text{AR}} & \Longrightarrow & \min\{\zeta_{\text{CS}}^{(k)}, \zeta_{T_{1}}^{(k)}, \zeta_{T_{2}}^{(k)}, \zeta_{\text{AR}}^{(k)}\} = \zeta_{\text{AR}}^{(k)} \end{array}$$

- m = 100
- $\sigma^2 = 2$
- $\rho = \rho_1 = 0.25$
- $\rho_2 = 0.1$

True		Set of structures						
structure $oldsymbol{\Omega}$	CS	T_1	T_2	AR				
CS	$\xi_{F} = 1.78$	$\xi_F = 49.25$	$\xi_F = 48.75$	$\xi_F = 14.93$				
	$\xi_{E} = 0.56$	$\xi_{\it E}=3.11$	$\xi_{\it E}=3.10$	$\xi_{\it E}=3.11$				
T_1	$\xi_F = 6.97$	$\xi_{F} = 0.12$	$\xi_{\it F}=0.15$	$\xi_{\it F}=1.61$				
	$\xi_E=7.80$	$\xi_{E} = 0.56$	$\xi_{\it E}=5.63$	$\xi_{\it E}=1.04$				
T_2	$\xi_F = 7.45$	$\xi_F = 2.80$	$\xi_{F} = 0.15$	$\xi_{F}=1.08$				
	$\xi_{E} = 6.37$	$\xi_{\it E}=1.70$	$\xi_{E} = 0.56$	$\xi_{\it E}=0.85$				
AR	$\xi_F=15.74$	$\xi_F = 8.08$	$\xi_F = 4.02$	$\xi_{F} = 0.21$				
	$\xi_E=21.96$	$\xi_E = 5.38$	$\xi_{\it E}=1.72$	$\xi_{E} = 0.56$				

Motywacja

- n liczba obiektów
- p liczba charakterystyk
- q liczba punktów czasowych

 X_i – macierz obserwacji

Model podwójnie wielowymiarowy

$$\mathbf{x}_i = \operatorname{\mathsf{vec}} \mathbf{X}_i \sim N_{pq}(\operatorname{\mathsf{vec}} \mathbf{M}, \mathbf{\Omega})$$

$$\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n) \sim N_{pq,n} (\mathbf{1}'_n \otimes \text{vec} \mathbf{M}, \mathbf{\Omega}, \mathbf{I}_n)$$

 $\mathbf{M} \in \mathbb{R}^{p,q}$ – macierz średnich (taka sama dla każdego i)

 $\mathbf{\Omega} \in \mathbb{R}^{pq}$ – macierz kowariancji, NIEZNANA

n>pq – estymowalna macierz Ω

Aproksymacja

Aproksymacja

Funkcje rozbieżności

$$\Gamma: \quad \Psi \otimes \Sigma \quad \Psi_{CS} \otimes \Sigma \quad \Psi_{AR} \otimes \Sigma$$

- entropijna funkcja straty:

$$f_E(\Omega, \Gamma) = \operatorname{tr}\left(\Omega^{-1}\Gamma\right) - \ln\left|\Omega^{-1}\Gamma\right| - pq$$

- kwadratowa funkcja straty:

$$f_Q(\mathbf{\Omega}, \mathbf{\Gamma}) = \operatorname{tr}\left[\left(\mathbf{\Omega}^{-1}\mathbf{\Gamma} - \mathbf{I}_{pq}\right)^2\right]$$

•
$$(p,q) \in \{(3,3),(10,3),(15,3),(3,5),(10,5),(15,5)\}, n = 100$$

$$\bullet \ \Omega = {\color{red} \psi_{\text{CS}}} \otimes {\color{red} \textbf{I}_q} \ \text{lub} \ \Omega = {\color{red} \psi_{\text{AR}}} \otimes {\color{red} \textbf{I}_q}$$

•
$$\mathbf{X} \sim N_{\mathbf{p}q,n}(\mathbf{0}, \mathbf{\Omega}, \mathbf{I}_n)$$

•
$$S = \frac{1}{n}X\left(I_n - \frac{1}{n}I_nI_n'\right)X'$$

$$\zeta_{\mathsf{UN}\otimes}^{(k)} = \min_{\boldsymbol{\Psi},\boldsymbol{\Sigma}} L_S^{(k)}(\boldsymbol{\Psi}\otimes\boldsymbol{\Sigma}), \quad \zeta_{\mathsf{CS}\otimes}^{(k)} = \min_{\boldsymbol{\rho}_{\mathsf{CS}},\boldsymbol{\Sigma}} L_S^{(k)}(\boldsymbol{\Psi}_{\mathsf{CS}}\otimes\boldsymbol{\Sigma}), \quad \zeta_{\mathsf{AR}\otimes}^{(k)} = \min_{\boldsymbol{\Psi}_{\mathsf{AR}},\boldsymbol{\Sigma}} L_S^{(k)}(\boldsymbol{\Psi}_{\mathsf{AR}}\otimes\boldsymbol{\Sigma})$$

$$k \in \{E,Q\}$$

• *r*=1000

$$\bullet \ \Omega = \Psi_{\mathsf{CS}} \otimes \mathsf{I}_{\mathsf{q}} \quad \Longrightarrow \quad \zeta_{\mathsf{CS} \otimes}{}^{(k)} \leqslant \zeta_{\mathsf{AR} \otimes}{}^{(k)} \ \Omega = \Psi_{\mathsf{AR}} \otimes \mathsf{I}_{\mathsf{q}} \quad \Longrightarrow \quad \zeta_{\mathsf{AR} \otimes}{}^{(k)} \leqslant \zeta_{\mathsf{CS} \otimes}{}^{(k)}$$

ullet proporcja poprawnie zidentyfikowanych struktur $\pi^{(k)}$

		Entropijna funkcja straty			Kwadratowa funkcja straty		
р	ρ	ζ _{UN⊗} (E)	$\overline{\zeta}_{CS\otimes}(E)$	$\overline{\zeta}_{AR\otimes}(E)$	$\overline{\zeta}_{UN\otimes}(Q)$	$\overline{\zeta}_{CS\otimes}(Q)$	$\overline{\zeta}_{AR\otimes}(Q)$
3	-0.1		0.4101	0.4468		0.7384	0.7916
3	0		0.4101	0.4104		0.7457	0.7455
3	0.1		0.4101	0.4352		0.7445	0.7823
3	0.25		0.4101	0.5328		0.7436	0.9293
3	0.5		0.4101	0.7680		0.7405	1.2324
3	0.75		0.4101	1.0243		0.7425	1.5095
3	0.9		0.4101	1.1689		0.7467	1.6168
10	-0.1		5.8713	14.6891		9.2058	16.0191
10	0		5.8713	5.8705		9.1562	9.1570
10	0.1		5.8713	6.3907		9.1748	9.5268
10	0.25		5.8713	7.6288		9.1647	10.0114
10	0.5		5.8713	9.8416		9.1722	10.3823
10	0.75		5.8713	12.6912		9.1837	19.7743
10	0.9		5.8713	15.8255		9.1755	20.6869
15	0		15.3668	15.3673		20.6584	20.6600
15	0.1		15.3668	16.2939		20.7239	21.0452
15	0.25		15.3668	17.9833		20.6057	21.2136
15	0.5		15.3668	20.5370		20.6695	21.9300
15	0.75		15.3668	23.5496		20.6584	35.2353
15	0.9		15.3668	26.7463	4 0 1	20.7239	35.7882

		Entropijna funkcja straty			Kwadratowa funkcja straty		
р	ρ	ζ _{UN⊗} (E)	$\overline{\zeta}_{CS\otimes}(E)$	$\overline{\zeta}_{AR\otimes}^{(E)}$	$\overline{\zeta}_{UN\otimes}(Q)$	$\overline{\zeta}_{CS\otimes}(Q)$	$\overline{\zeta}_{AR\otimes}(Q)$
3	-0.1	0.3673	0.4101	0.4468	0.6656	0.7384	0.7916
3	0	0.3673	0.4101	0.4104	0.6680	0.7457	0.7455
3	0.1	0.3673	0.4101	0.4352	0.6685	0.7445	0.7823
3	0.25	0.3673	0.4101	0.5328	0.6688	0.7436	0.9293
3	0.5	0.3673	0.4101	0.7680	0.6648	0.7405	1.2324
3	0.75	0.3673	0.4101	1.0243	0.6635	0.7425	1.5095
3	0.9	0.3673	0.4101	1.1689	0.6697	0.7467	1.6168
10	-0.1	5.1192	5.8713	14.6891	7.5544	9.2058	16.0191
10	0	5.1192	5.8713	5.8705	7.5186	9.1562	9.1570
10	0.1	5.1192	5.8713	6.3907	7.5397	9.1748	9.5268
10	0.25	5.1192	5.8713	7.6288	7.5262	9.1647	10.0114
10	0.5	5.1192	5.8713	9.8416	7.5396	9.1722	10.3823
10	0.75	5.1192	5.8713	12.6912	7.5441	9.1837	19.7743
10	0.9	5.1192	5.8713	15.8255	7.5224	9.1755	20.6869
15	0	13.2331	15.3668	15.3673	16.1694	20.6584	20.6600
15	0.1	13.2331	15.3668	16.2939	16.1766	20.7239	21.0452
15	0.25	13.2331	15.3668	17.9833	16.1458	20.6057	21.2136
15	0.5	13.2331	15.3668	20.5370	16.1810	20.6695	21.9300
15	0.75	13.2331	15.3668	23.5496	16.1694	20.6584	35.2353
15	0.9	13.2331	15.3668	26.7463	16.1766	20.7239	35.7882

		Entropijna funkcja	straty	Kwadratowa funkcja straty			
р	ρ	$\overline{\zeta}_{UN\otimes}(E)$ $\overline{\zeta}_{CS\otimes}(E)$	$\overline{\zeta}_{AR\otimes}(E)$	$\overline{\zeta}_{UN\otimes}{}^{(Q)}$ $\overline{\zeta}_{CS\otimes}{}^{(Q)}$	$\overline{\zeta}_{AR\otimes}(Q)$		
3	-0.9	5.6723	0.4102	2.9835	0.7385		
3	-0.5	1.2159	0.4105	1.5982	0.7458		
3	-0.1	0.4315	0.4105	0.7764	0.7444		
3	0	0.4101	0.4104	0.7436	0.7441		
3	0.1	0.4283	0.4104	0.7676	0.7406		
3	0.5	0.7327	0.4101	1.1854	0.7424		
3	0.9	1.1618	0.4099	1.6283	0.7465		
10	-0.9	24.7209	5.8707	14.7257	9.2062		
10	-0.5	11.5063	5.8705	12.5526	9.1550		
10	-0.1	6.0907	5.8704	9.3764	9.1783		
10	0	5.8713	5.8705	9.1647	9.1627		
10	0.1	6.0799	5.8706	9.3499	9.1703		
10	0.5	10.1883	5.8714	11.8149	9.1835		
10	0.9	16.3827	5.8715	13.3154	9.1743		
15	-0.9	43.2050	15.3688	25.9321	20.6622		
15	-0.5	24.3583	15.3678	24.0033	20.7219		
15	-0.1	15.7331	15.3673	20.8070	20.6064		
15	0	15.3668	15.3673	20.6695	20.6709		
15	0.1	15.7220	15.3674	20.7976	20.6146		
15	0.5	22.8995	15.3679	23.3561	20.5539		
		24.0544	15.0000		* * * * * * * * * * * * * * * * * * *		

		Entropijna funkcja straty		Kwadratowa funkcja straty			
р	ρ	ζ _{UN⊗} (E)	$\overline{\zeta}_{CS\otimes}(E)$	$\overline{\zeta}_{AR\otimes}(E)$	$\overline{\zeta}_{UN\otimes}(Q)$	$\overline{\zeta}_{CS\otimes}(Q)$	$\overline{\zeta}_{AR\otimes}(Q)$
3	-0.9	0.3673	5.6723	0.4102	0.6656	2.9835	0.7385
3	-0.5	0.3673	1.2159	0.4105	0.6680	1.5982	0.7458
3	-0.1	0.3673	0.4315	0.4105	0.6685	0.7764	0.7444
3	0	0.3673	0.4101	0.4104	0.6688	0.7436	0.7441
3	0.1	0.3673	0.4283	0.4104	0.6648	0.7676	0.7406
3	0.5	0.3673	0.7327	0.4101	0.6635	1.1854	0.7424
3	0.9	0.3673	1.1618	0.4099	0.6697	1.6283	0.7465
10	-0.9	5.1192	24.7209	5.8707	7.5544	14.7257	9.2062
10	-0.5	5.1192	11.5063	5.8705	7.5186	12.5526	9.1550
10	-0.1	5.1192	6.0907	5.8704	7.5397	9.3764	9.1783
10	0	5.1192	5.8713	5.8705	7.5262	9.1647	9.1627
10	0.1	5.1192	6.0799	5.8706	7.5396	9.3499	9.1703
10	0.5	5.1192	10.1883	5.8714	7.5441	11.8149	9.1835
10	0.9	5.1192	16.3827	5.8715	7.5224	13.3154	9.1743
15	-0.9	13.2331	43.2050	15.3688	16.1694	25.9321	20.6622
15	-0.5	13.2331	24.3583	15.3678	16.1766	24.0033	20.7219
15	-0.1	13.2331	15.7331	15.3673	16.1458	20.8070	20.6064
15	0	13.2331	15.3668	15.3673	16.1810	20.6695	20.6709
15	0.1	13.2331	15.7220	15.3674	16.1384	20.7976	20.6146
15	0.5	13.2331	22.8995	15.3679	16.1350	23.3561	20.5539
1.5	0.0	10 0001	24.0544	15.0000	16 1706	04.0543	TO CCE

Ψ	CS	\otimes	lα
•	CS	W	٠3

	p=3		p=10		p=15	
ρ	$\pi^{(E)}$	$\pi^{(Q)}$	$\pi^{(E)}$	$\pi^{(Q)}$	$\pi^{(E)}$	$\pi^{(Q)}$
-0.1	83.3	82.3	100.0	100.0	-	-
0	49.5	49.4	51.3	50.4	48.1	50.9
0.1	79.0	77.3	100.0	98.4	100.0	95.4
0.25	96.0	93.9	100.0	100.0	100.0	99.2
0.5	99.7	99.7	100.0	100.0	100.0	99.7
0.75	100.0	100.0	100.0	100.0	100.0	100.0
0.9	100.0	100.0	100.0	100.0	100.0	100.0

 $\Psi_{\mathsf{AR}} \otimes \mathsf{I_3}$

		p=3				p=15	
	ρ	$\pi^{(E)}$	$\pi^{(Q)}$	$\pi^{(E)}$	$\pi^{(Q)}$	$\pi^{(E)}$	$\pi^{(Q)}$
	-0.9	100.0	100.0	100.0	100.0	100.0	100.0
	-0.5	100.0	100.0	100.0	100.0	100.0	100.0
	-0.1	77.1	75.9	98.8	91.7	99.2	86.9
	0	50.5	48.6	48.7	50.5	51.9	49.5
	0.1	73.1	71.3	98.0	89.7	99.3	86.4
	0.5	99.8	99.4	100.0	100.0	100.0	100.0
_	0.9	100.0	99.9	100.0	100.0	100.0	100.0

Identyfikcja struktury - wnioski

Poprawne wykrywanie struktury kowariancyjnej symulowanych danych

- dla $k \in \{F, E\}$
 - $\bullet \ \ \Omega = \Gamma_{\mathsf{CS}} \quad \Longrightarrow \quad \min\{\zeta_{\mathsf{CS}}^{(k)},\zeta_{T_1}^{(k)},\zeta_{T_2}^{(k)},\zeta_{\mathsf{AR}}^{(k)}\} = \zeta_{\mathsf{CS}}^{(k)}$
 - $\bullet \ \ \boldsymbol{\Omega} = \boldsymbol{\Gamma}_{T_1} \quad \Longrightarrow \quad \min\{\zeta_{\mathsf{CS}}^{(k)}, \zeta_{T_1}^{(k)}, \zeta_{T_2}^{(k)}, \zeta_{\mathsf{AR}}^{(k)}\} = \zeta_{T_1}^{(k)}$
 - $\bullet \ \ \boldsymbol{\Omega} = \boldsymbol{\Gamma}_{T_2} \quad \Longrightarrow \quad \min\{\zeta_{\mathsf{CS}}^{(k)}, \zeta_{T_1}^{(k)}, \zeta_{T_2}^{(k)}, \zeta_{\mathsf{AR}}^{(k)}\} = \zeta_{T_2}^{(k)}$
 - $\bullet \ \ \Omega = \mathbf{\Gamma}_{\mathsf{AR}} \quad \Longrightarrow \quad \min\{\zeta_{\mathsf{CS}}^{(k)}, \zeta_{T_1}^{(k)}, \zeta_{T_2}^{(k)}, \zeta_{\mathsf{AR}}^{(k)}\} = \zeta_{\mathsf{AR}}^{(k)}$
- dla $k \in \{E, Q\}$

$$\Omega \in \mathscr{S}_{\mathsf{CS} \otimes} \implies \zeta_{\mathsf{CS} \otimes}^{(k)} \leqslant \zeta_{\mathsf{AR} \otimes}^{(k)}$$

$$\Omega \in \mathscr{S}_{\mathsf{AR} \otimes} \implies \zeta_{\mathsf{AR} \otimes}^{(k)} \leqslant \zeta_{\mathsf{CS} \otimes}^{(k)}$$

• wartości $\zeta_{\mathsf{UN}\,\otimes}{}^{(k)}$ są zawsze najmniejsze

Literatura

- T.W. Anderson. An Introduction to Multivariate Statistical Analysis. John Wiley & Sons, 2003.
- X. Cui, C. Li, J. Zhao, L. Zeng, D. Zhang, J. Pan. Co-variance structure regularization via Frobenius norm discrepancy. *Linear Algebra Appl.* 510, 124–145, 2016.
- P.L. Fackler. Notes on matrix calculus. http://www4.ncsu.edu/~pfackler/MatCalc.pdf, 2005.
- K. Filipiak, D. Klein. Approximation with a Kronecker product structure with one component as compound symmetry or autoregression. *Linear Algebra Appl.* 559, 11–33, 2018.
- M. Filipiak, D. Klein, A. Markiewicz, M. Mokrzycka. Approximation with a Kronecker product structure with one component as compound symmetry or autoregression via entropy loss function. *Linear Algebra Appl.* 610, 625–646, 2021.
- M. Filipiak, D. Klein, M. Mokrzycka. Estimators comparison of separable covariance structure with one component as compound symmetry matrix. *Electronic J. Linear Algebra* 33, 83–98, 2018.
- K. Filipiak, D. Klein, M. Mokrzycka. Discrepancy between structured matrices in the context of power study. Submitted, 2023.

- M. Filipiak, D. Klein, E. Vojtková. The properties of partial trace and block trace operators of partitioned matrix. *Electron. J. Linear Algebra* 33, 3–15, 2018.
- K. Filipiak, A. Markiewicz, A. Mieldzioc, A. Sawikowska. On projection of a positive definite matrix on a cone of nonnegative definite Toeplitz matrices. *Electronic Journal of Linear Algebra*, 33, 74– 82, 2018.
- L. Lin, N. Higham, J. Pan. Covariance structure regularization via entropy loss function. Comput. Statist. Data Anal. 72, 315–327, 2014.
- J. Magnus, H. Neudecker. Symmetry, 0-1 matrices and Jacobians, a review. *Econom. Theory* 2, 157– 190, 1986.
- C.F. van Loan, N. Pitsianis. Approximation with Kronecker products. In: B.L.R. De Moor, M.S. Moonen, G.H. Golub (Eds.), Linear Algebra for Large Scale and Real-Time Applications (pp. 293–314), Kluwer Publications, Dordrecht, The Netherlands, 1992.