

ОБЗОР БИБЛИОТЕКИ МАШИННОГО ОБУЧЕНИЯ SCIKIT-LEARN

ВЯЧЕСЛАВ МУРАШКИН

ВЯЧЕСЛАВ МУРАШКИН

Разработчик-

исследователь, Яндекс

mvjacheslav@gmail.com

a4tunado_

ЦЕЛИ ЗАНЯТИЯ

В КОНЦЕ ЗАНЯТИЯ ВЫ:

- изучите API библиотеки scikit-learn
- познакомитесь с основными модулями библиотеки scikit-learn
- научитесь применять библиотеку на реальных данных

О ЧЁМ ПОГОВОРИМ И ЧТО СДЕЛАЕМ

- 1. Возможности и ограничения scikit-learn
- 2. Модули библиотеки scikit-learn
- 3. Модель линейной регрессии
- 4. Кросс-валидация и подбор гиперпараметров модели
- 5. Пример применения библиотеки на реальных данных

1. БИБЛИОТЕКА SCIKIT-LEARN

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image

recognition.

Algorithms: SVM, nearest neighbors,

random forest, ... - Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices.
Algorithms: SVR, ridge regression, Lasso, ...

Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation,

Grouping experiment outcomes

Algorithms: k-Means, spectral clustering,

mean-shift, ... — Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms.

Modules: preprocessing feature extraction

ВОЗМОЖНОСТИ SCIKIT-LEARN

- Построение моделей машинного обучения
- Реализованы модели классификации, регрессии и кластеризации
- Для оценки качества моделей и подбора гиперпараметров реализованы алгоритмы предобработки данных, алгоритмы кросс-валидации
- Предоставляет API интерфейс для Python

ОСОБЕННОСТИ SCIKIT-LEARN

- Использует методы оптимизации из библиотеки SciPy
- Для большинства алгоритмов реализована возможность параллельного обучения с использованием библиотеки Joblib
- Для загрузки данных необходимо использовать **внешние библиотеки**, например NumPy или Pandas
- Данные для обучения модели должны быть загружены в оперативную память

2. МОДУЛИ SCIKIT-LEARN

МОДЕЛИ МАШИННОГО ОБУЧЕНИЯ

- sklearn.linear_model линейные модели классификации и регрессии
 - LinearRegression
 - Ridge
 - LogisticRegression
- sklearn.tree дерево решений
 - DecisionTreeClassifier

МОДЕЛИ МАШИННОГО ОБУЧЕНИЯ

- sklearn.ensemble ансамбли решений: бустинг, лес
 - RandomForestClassifier
 - AdaBoostClassifier
 - GradientBoostingClassifier
- sklearn.cluster обучение без учителя
 - KMeans
 - DBSCAN

ОЦЕНКА КАЧЕСТВА

- sklearn.metrics метрики качества алгоритмов
 - classification_report
 - mean_squared_error
- sklearn.feature_selection оценка важности признаков
 - o RFE
- sklearn.model_selection оценка качества и подбор гипер-параметров
 - cross_val_scoreGridSearchCV

ПРЕДОБРАБОТКА ДАННЫХ

- sklearn.preprocessing нормализация, центрирование, бинаризация
 - StandardScaler
- sklearn.feature_extraction предобработка сырых данных
 - HashingVectorizer
 - TfidfTransformer
- sklearn.decomposition разложение матриц и снижение размерности
 - o PCA
 - TruncatedSVD

3. ЛИНЕЙНАЯ РЕГРЕССИЯ

ЗАДАЧА

ОЦЕНКА ПАРАМЕТРОВ

$$Y_i = \beta_0 + \beta_1 X_i \qquad SSE = \sum_i (Y_i - \hat{Y}_i)^2$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} \qquad \hat{\beta}_0 = \overline{y} - \beta_i \overline{x}$$

РЕГУЛЯРИЗАЦИЯ (RIDGE)

$$SSE + \lambda \sum_{j=1}^{k} \beta_j^2$$

$$\sum_{i}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2 + \lambda \sum_{j=1}^{\kappa} \beta_j^2$$

МЕТРИКИ КАЧЕСТВА

1. Среднеквадратичная ошибка

$$MSE = \frac{1}{n} \sum_{i}^{n} (y_i - \hat{y}_i)^2$$

2. Коэффициент детерминации

$$R2 = 1 - \frac{\sum_{i}^{n} (y_i - \hat{y}_i)^2}{\sum_{i}^{n} (y_i - \overline{y})^2}$$

4. КРОСС-ВАЛИДАЦИЯ

ОБОБЩАЮЩАЯ СПОСОБНОСТЬ

- Алгоритм обучения обладает обобщающей способностью, если вероятность ошибки на тестовой выборке не сильно отличается от ошибки на обучающей выборке
- Переобучение нежелательное явление, при котором вероятность ошибки обученного алгоритма на объектах тестовой выборки оказывается существенно выше, чем средняя ошибка на обучающей выборке
- Переобучение связано с **избыточной сложностью** используемой модели

K-FOLD КРОСС-ВАЛИДАЦИЯ

ПОДБОР ГИПЕР-ПАРАМЕТРОВ

ПРАКТИЧЕСКОЕ ЗАДАНИЕ

ЗАДАНИЕ

- 1. Построить регрессионную модель на данных Boston Housing Dataset
- 2. Оценить качество модели на кросс-валидации
- 3. Подобрать гипер-параметры модели
- 4. Сравнить различные алгоритмы регрессии для данной задачи

ЧТО МЫ СЕГОДНЯ УЗНАЛИ

- 1. Познакомились с API библиотеки scikit-learn
- 2. Изучили возможности и особенности библиотеки
- 3. Научились применять scikit-learn для решения практических задач

ПОЛЕЗНЫЕ МАТЕРИАЛЫ

- 1. An introduction to machine learning with scikit-learn
- 2. Scikit_Learn_Cheat_Sheet_Python.pdf
- 3. MachineLearning.ru

Спасибо за внимание!

МКРАШКИН ВЯЧЕСЛАВ

