Geometría Diferencial

Guido Arnone

Ejercicio 5. Muestre que los siguientes espacios son variedades diferenciales y determine sus dimensiones.

(i) $SL(n, \mathbb{C})$ el conjunto de las matrices complejas de tamaño $n \times n$ y determinante 1.

Demostración. Hacemos cada caso por separado.

(i) Afirmamos primero que la función det : $M_n\mathbb{C} \to \mathbb{C}$ es diferenciable. Eso es porque dada una matriz compleja $A = (X_{ij} + iY_{ij})_{ij}$, luego det A es un polinomio con coeficientes en \mathbb{C} en función de cada X_{ij}, Y_{ij} ,

$$det((X_{ij}+iY_{ij})_{i,j}) = \sum_{\sigma \in S_n} sgn(\sigma)(X_{1\sigma(1)}+iY_{1\sigma(1)}) \cdots (X_{n\sigma(n)}+iY_{n\sigma(n)}). \tag{1}$$

Tomando partes reales e imaginarias tenemos que det $A=\mathfrak{R}(\det A)+i\mathfrak{I}(\det A)$ con $\mathfrak{R}(\det)$, $\mathfrak{I}(\det)$ dos polinomios ahora de valores reales. Identificando $\mathsf{M}_n\mathbb{C}\equiv\mathbb{R}^{2n^2}$ y $\mathsf{C}\equiv\mathbb{R}^2$ via homeomorfismos $\Phi:(X_{ij}+iY_{ij})_{i,j}\mapsto (X_1,\ldots,X_{n^2},Y_1,\ldots,Y_{n^2})$ y $\phi:z\mapsto (\mathfrak{R}(z),\mathfrak{I}(z))$ luego (2) nos dice que en el siguiente diagrama,

$$\begin{array}{ccc}
\mathsf{M}_{\mathsf{n}}\mathsf{C} & \xrightarrow{\det} & \mathsf{C} \\
\Phi \downarrow & & \downarrow \varphi \\
\mathbb{R}^{2n^2} & & & \mathbb{R}^2
\end{array}$$

la flecha punteada es diferenciable pues es un polinomio para cada coordenada de \mathbb{R}^2 . A su vez, $\{(M_n\mathbb{C},\Phi)\}$ y $\{(\mathbb{C},\Phi)\}$ son atlas, lo que prueba que det es diferenciable. Ahora bien, por definición es $SL(c,\mathbb{C})=\det^{-1}(\{1\})$ y podemos apelar luego al teorema de valores regulares, viendo que el diferencial de det sea sobreyectivo en cada matriz $A\in SL(n,\mathbb{C})$.

Ejercicio 7. Sean M y N variedades de dimensiones m y n, respectivamente. Probar que:

- (a) El espacio producto $M \times N$ tiene una estructura natural de variedad diferenciable de dimensión m+n y con respecto a esta estructura las proyecciones $p_1: M \times N \to M$ y $p_2: M \times N \to N$ son funciones diferenciables.
- (b) Si P es una variedad y $f: P \to M$ y $g: P \to N$ son funciones diferenciables, entonces existe exactamente una función diferenciable $h: P \to M \times N$ tal que $\mathfrak{p}_1 \circ h = f$ y $\mathfrak{p}_2 \circ h = g$.

Demostración. Hacemos cada inciso por separado:

(a) Dotamos a $M \times N$ de la topología producto. Luego, $M \times N$ es Hausdorff ya que es producto de espacios Hausdorff. Como M y N son variedades, tienen bases numerables \mathcal{B}_M , \mathcal{B}_N respectivamente y entonces el conjunto numerable $\tilde{\mathcal{B}} = \{U \times V : U \in \mathcal{B}_M, V \in \mathcal{B}_N\}$ es base de $M \times N$. En efecto, si $A \subseteq M \times N$ es abierto y $(x,y) \in A$, existe luego un abierto básico $(x,y) \in U \times V \subset A$. Como \mathcal{B}_N y \mathcal{B}_M son bases, tenemos abiertos $x \in U_0 \subseteq U \in \mathcal{B}_M$, $y \in V_0 \subseteq V \in \mathcal{B}_N$. Por lo tanto, $(x,y) \in U_0 \times V_0 \subseteq U \times V \subseteq A$, lo que prueba que $\tilde{\mathcal{B}}$ es base. Ahora veamos que $M \times N$ tiene una estructura diferenciable. Sean $\mathcal{A}_1 = \{(U_i, \phi_i)\}_{i \in I}$ y $\mathcal{A}_2 = \{(V_j, \psi_j)\}_{j \in J}$ los atlas de M y N respectivamente. Para cada $(i,j) \in I \times J$, notamos $\phi_i \times \psi_j$ a $(u,v) \in U_i \times V_j \mapsto (\phi_i(u), \psi_j(v)) \in \phi_i(U_i) \times \psi(V_j)$ y definimos luego

$$\mathcal{A} := \{(U_i \times V_j, \phi_i \times \psi_j)\}_{(i,j) \in I \times J}.$$

Veamos que este es un atlas para $M \times N$. Como la topología en $M \times N$ es la producto cada $U_i \times V_j$ es abierto, y por otro lado, las funciones $\phi_i \times \psi_j$ son homeomorfismos al ser producto de homeomorfismos. Además, dado que los abiertos $(U_i)_{i \in I}$ y $(V_j)_{j \in J}$ cubren M y N respectivamente, es

$$\bigcup_{(i,j)\in I\times J} U_i\times V_j = \bigcup_{i\in I} U_i\times \bigcup_{j\in J} V_j = M\times N.$$

Finalmente, si $\varphi_i \times \psi_j$ y $\varphi_k \times \psi_l$ son cartas de \mathcal{A} , notando

$$W := (U_i \times V_j) \cap (U_k \times V_l) = (U_i \cap U_k) \times (V_j \times V_l)$$

tenemos que la composición

$$(\varphi_{\mathbf{i}} \times \psi_{\mathbf{i}})|_{W} \circ ((\varphi_{\mathbf{k}} \times \psi_{\mathbf{l}})|_{W})^{-1} : (\varphi_{\mathbf{k}} \times \psi_{\mathbf{l}})(W) \mapsto (\varphi_{\mathbf{i}} \times \psi_{\mathbf{i}})(W)$$
(2)

verifica

$$\begin{split} (\phi_{\mathfrak{i}} \times \psi_{\mathfrak{j}})|_{W} \circ ((\phi_{k} \times \psi_{\mathfrak{l}})|_{W})^{-1}(x,y) &= (\phi_{\mathfrak{i}} \times \psi_{\mathfrak{j}}) \circ (\phi_{k}^{-1} \times \psi_{\mathfrak{l}}^{-1})(x,y) \\ &= (\phi_{\mathfrak{i}} \phi_{k}^{-1}(x), \psi_{\mathfrak{j}} \psi_{\mathfrak{l}}^{-1}(y)) \end{split}$$

para cada $(x,y) \in (\phi_k \times \psi_l)(W) = \phi_k(U_i \cap U_k) \times \psi_l(V_j \times V_l)$. Como por hipótesis tanto $\phi_i \phi_k^{-1}$ como $\psi_j \psi_l^{-1}$ son funciones diferenciables entre abiertos euclídeos, es entonces $\phi_i \phi_k^{-1} \times \psi_j \psi_l^{-1}$ diferenciable y a la vez coincide con (2), lo que termina de probar que \mathcal{A} dota a $M \times N$ de una estructura diferenciable. Los abiertos $U_i \times V_j$ son en particular abiertos de \mathbb{R}^{n+m} lo que dice que $\dim M \times N = \dim M + \dim N = m+n$. Ahora veamos que las proyecciones son diferenciables. Fijamos $(x,y) \in M \times N$ y sea $(U_i \times V_j, \phi_i \times \psi_j)$ una carta en con $x \in U_i, y \in V_j$. Luego por construcción de \mathcal{A} sabemos que ϕ_i es carta de M con $x = p_1(x,y) \in p_1(U_i \times V_j) = U_i$ y ψ_j es carta de N con $y = p_2(x,y) \in p_2(U_i \times V_j) = V_j$. Basta entonces con probar que $\phi_i p_1(\phi_i \times \psi_j)^{-1}$ y $\psi_j p_2(\phi_i \times \psi_j)^{-1}$ son diferenciables. Ésta última es exactamente la proyección en la segunda coordenada $\tilde{p}_2: \phi_i(U_i) \times \psi_j(V_j) \to \psi_j(V_j)$, ya que si $(x,y) \in \phi_i(U_i) \times \psi_j(V_j)$ entonces $\psi_j p_2(\phi_i \times \psi_j)^{-1}(x,y) = \phi_i p_2(\phi_i^{-1}(x),\psi_j^{-1}(y)) = \psi_j(\psi_j^{-1}(y)) = y$. Similarmente $\phi_i p_1(\phi_i \times \psi_j)^{-1}$ es la proyección de $\phi_i(U_i) \times \psi_j(V_j)$ en la primera coordenada, y así vemos que ambas proyecciones son diferenciables.

(b) Veamos en primer lugar que existe una tal función. Consideramos

$$h: p \in P \mapsto (f(p), g(p)) \in M \times N$$

que verifica $p_1h(p)=p_1(f(p),g(p))=f(p)$ y $p_2h(p)=g(p)$. Sea $\mathcal{A}'=\{(\mu_k,W_k)\}_{k\in K}$ un atlas maximal de P y fijemos $p\in P$. Tomamos a continuación $W_k\ni p$ y $U_i\times V_j\ni h(p)=(f(p),g(p))$ abiertos de P y $M\times N$ respectivamente, correspondientes a cartas (μ_k,W_k) y $(\phi_i\times\psi_j,U_i\times V_j)$. Ahora, veamos que $(\phi_i\times\psi_j)h\mu_k^{-1}$ es diferenciable. Como punto a punto tenemos que

$$(\phi_i \times \psi_j)h\mu_k^{-1}(z) = (\phi_i \times \psi_j)(f(\mu_k^{-1}(z)), g(\mu_k^{-1}(z))) = (\phi_i f(\mu_k^{-1}(z)), \psi_j g(\mu_k^{-1}(z)))$$

para cada $z\in \mu_k(W_k)$ y tanto $\phi_i f \mu_k^{-1}$ como $\psi_j g \mu_k^{-1}$ son diferenciables pues f y g son diferenciables, consecuentemente $(\phi_i \times \psi_j)h \mu_k^{-1}$ es diferenciable. Con respecto a la unicidad, está dada a un nivel de conjuntos: si $\tilde{h}: P \to M \times N$ cumple $p_1 \tilde{h} = f$ y $p_2 \tilde{h} = g$, luego notando $\tilde{h}(p) = (\tilde{h}_1(p), \tilde{h}(p)_2)$ tenemos que

$$f(p) = p_1 \tilde{h} = \tilde{h}_1(p)$$

y

$$g(p) = p_2 \tilde{h} = \tilde{h}_2(p)$$

así que $\tilde{h}(p) = (f(p), g(p)) = h(p)$, para todo $p \in P$.

