Seminar Advanced Topics in Animation

Matthias Teschner

Outline

- Introduction
- Organization
- Presentation
- Topics
- Summary

Computer Graphics

Rendering

Modeling

Simulation

Computer Graphics

CGI Making of Share a Coke VFX Breakdown by ARMA

Graphics Courses

- Key course
 - Image processing and computer graphics (modeling, rendering, simulation)
- Specialization courses
 - Advanced computer graphics (global illumination)
 - Simulation in computer graphics (deformable and rigid solids, fluids)
- Master project, lab course, Master thesis
 - Simulation track, rendering track

Seminars / Projects / Theses

Semester	Simulation Track	Rendering Track
Winter	Simulation Course	
Summer	Key Course Lab Course - Simple fluid solver Simulation Seminar	Key Course Lab Course - Simple Ray Tracer Rendering Seminar
Winter	Master Project - PPE fluid solver Rendering Seminar	Rendering Course Master Project - Monte Carlo RT Simulation Seminar
Summer	Master Thesis Research-oriented topic	Master Thesis Research-oriented topic

Band et al., Computer Graphics Forum, 2020. Cooperation with FIFTY2 Technology GmbH.

Outline

- Introduction
- Organization
- Presentation
- Topics
- Summary

Requirements

- Oral presentation of an animation topic
 - English / German
 - Slides should be in English
- Written report
 - English / German

Goal

- Familiarize yourself with a topic
- Prepare a comprehensible presentation
- Presentation should be based on a scientific publication
 - Do not just reproduce the manuscript
 - Adapt the organization and the focus of the document in order to get a comprehensible presentation

- Take place at the same time and in the same room as the introduction or per video conference
 - Announced in the course catalog and on our web page https://cg.informatik.uni-freiburg.de/teaching.htm
 - Advanced Topics in Animation
 - Schedule
- Attendance is mandatory

Report and Submissions

- Written report (approx. 10 pages)
- Submission of presentation slides and written report in two separate PDF files
 - YourLastName_report.pdf
 - YourLastName_presentation.pdf
- Per email to Prof. Teschner
- Until the last day of lectures of the semester

Registration

- Check for available topics and dates
 - https://cg.informatik.uni-freiburg.de/teaching.htm
 - Advanced Topics in Animation
 - Schedule / Topics
- Send an email to Prof. Teschner with your registration request stating name, topic, date
- Do not forget to register for the seminar in the campus management system

Outline

- Introduction
- Organization
- Presentation
- Topics
- Summary

- 25 min 35 min per presentation
- 10 min 15 min discussion
 - Technical questions
 - Form of the presentation

Preparation

- Know your topic
 - Examine relevant material thoroughly
 - Do not try to circumvent problems
- Create slides
 - Allow 1 to 2 minutes per slide
 - Slides should be uniform and not too dense
 - Incorporate illustrations, slide titles should be helpful
- Rehearse your presentation
 - Gather feedback, adapt your presentation accordingly

- Introduction
 - Introduce yourself and the title of your presentation
- Overview
 - Give an idea, but not too detailed
- Motivation
 - Illustrate the principle and / or applications
 - Explain the goal of your presentation
 - The audience should be eager to listen your presentation

- Main part
 - Should consist of distinguished sections
 - Separate different sections of the presentation explicitly
 - Each section should be introduced and summarized
- Summary
 - Tell the audience what you have told them
 - Ask for questions

- Check the presentation environment prior to the presentation
- Avoid idiosyncrasies
- Stay in time

Outline

- Introduction
- Organization
- Presentation
- Topics
- Summary

Information

- https://cg.informatik.uni-freiburg.de/
 - Teaching
 - Advanced Topics in Animation
 - Schedule / Topics

Topics - Example

Neighbor Search in SPH Fluids

The neighbor search in SPH simulations is an expensive task. That's why, spatial data structures are investigated to accelerate the search. While the typically employed concept of a uniform grid is simple, its implementation offers some degrees of freedom with significant performance differences ...

Sources:

https://cg.informatik.uni-freiburg.de/intern/seminar/ animation - SPH dataStructures - 2019.pdf https://cg.informatik.uni-freiburg.de/intern/seminar/ animation - SPH survey - 2019.pdf

Topics

Concepts

Smoothed Particle Hydrodynamics, Material Point Method, Grid simulation, Position Based Dynamics, Rigid bodies

Basics

Continuum mechanics, numerical integration

Data Structures

Space subdivision, Bounding volume hierarchies

Particle Simulation

Particles

- Are small parts of solids and fluids with mass m
- Move over time t with changing position $\boldsymbol{x}(t)$ and velocity $\boldsymbol{v}(t)$ due to forces $\boldsymbol{F}(t)$
- Motion governed by $\boldsymbol{F}(t) = m \frac{\mathrm{d}\boldsymbol{v}(t)}{\mathrm{d}t} = m \frac{\mathrm{d}^2\boldsymbol{x}(t)}{\mathrm{d}t^2}$
- Numerical integration to approximate $\boldsymbol{x}(t)$ and $\boldsymbol{v}(t)$

Fluid body

Fluid particles

Particle Simulation

- Which material? What is a deformation?
 - Shear is a deformation of an elastic solid, but not of a fluid.
- How to get forces from deformations?
 - Displacement, strain, stress ⇒ continuum mechanics
- How to compute forces at particles?
 - Consider neighbors ⇒ Smoothed Particle Hydrodynamics

Particle Simulation

- How to find those neighbor particles?
 - Spatial data structures ⇒ space subdivision
- How to move the particles due to forces?
 - Acceleration is the time derivative of velocity is the time derivative of position ⇒ numerical integration

Continuum Mechanics - Example

- Handling of compression at a fluid particle

- Strain $\epsilon = \rho \rho_0$
- Stress $p = k\epsilon$
- Acceleration

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = -\frac{1}{\rho}\nabla p$$

Deviation between actual density and rest density

State equation

Navier-Stokes equation

SPH Fluid Solver

for all particle i do

find neighbors j

Uniform grid (space subdivision)

for all particle i do

$$\rho_i = \sum_j m_j W_{ij}
p_i = k(\rho_i - \rho_0)$$

Density (SPH)

Pressure (continuum mechanics)

for all particle i do

$$egin{aligned} oldsymbol{a}_i^{ ext{nonp}} &=
u
abla^2 oldsymbol{v}_i + oldsymbol{g} \ oldsymbol{a}_i^{ ext{p}} &= -rac{1}{
ho_i}
abla p_i \ oldsymbol{a}_i(t) &= oldsymbol{a}_i^{ ext{nonp}} + oldsymbol{a}_i^{ ext{p}} \end{aligned}$$

Non-pressure accelerations (SPH)

Pressure acceleration (SPH)

for all particle i do

$$\mathbf{v}_i(t + \Delta t) = \mathbf{v}_i(t) + \Delta t \mathbf{a}_i(t)$$
$$\mathbf{x}_i(t + \Delta t) = \mathbf{x}_i(t) + \Delta t \mathbf{v}_i(t + \Delta t)$$

Velocity and position update (Numerical integration, Euler-Cromer)

SPH Discretizations

Density computation

- $\rho_i = \sum_j m_j W_{ij}$
- Pressure acceleration $-\frac{1}{\rho_i}\nabla p_i = -\sum_j m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2}\right)\nabla W_{ij}$
- Viscosity acceleration $\nu \nabla^2 v_i = 2\nu \sum_j \frac{m_j}{\rho_j} \frac{v_{ij} \cdot x_{ij}}{x_{ij} \cdot x_{ij} + 0.01h^2} \nabla W_{ij}$

 Can also be used to compute forces in elastic or elasto-plastic solids

Neighbor Search

Pressure Computation

- State equation (local) $p_i = k(\rho_i \rho_0)$
- Solving a pressure Poisson equation (global)
 - Matrix-free implementation

$$p_i = k(\rho_i - \rho_0)$$

$$\nabla \cdot \mathbf{v}_i^* + \nabla \cdot (-\Delta t \frac{1}{\rho_i^t} \nabla p_i^t) = 0$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} p_1^t \\ p_2^t \\ \vdots \\ p_n^t \end{pmatrix} = \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix}$$

Boundary Handling

Pressure forces preserve sample volumes

Non-uniform sample volumes

Boundary Handling

Numerical Integration

- Functions $oldsymbol{x}^t$ and $oldsymbol{v}^t$ represent the particle motion
- Initial values $oldsymbol{x}^{t_0}$ and $oldsymbol{v}^{t_0}$ are given
- First-order differential equations are given $\frac{\mathrm{d} {m x}^t}{\mathrm{d} t} = {m v}^t$ $\frac{\mathrm{d} {m v}^t}{\mathrm{d} t} = {m a}^t$
- How to estimate \boldsymbol{x}^{t_0+h} and \boldsymbol{v}^{t_0+h} ?

Fluids - SPH vs. MPM vs. FD

 All approaches compute velocity changes at sample positions, either static or advected

Acceleration at advected samples

SPH

MPM

uses static and advected samples

Acceleration at static samples

FD

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = \boldsymbol{g} + \nu \nabla^2 \boldsymbol{v} - \frac{1}{\rho} \nabla p$$

$$\frac{\partial \boldsymbol{v}}{\partial t} = \boldsymbol{g} + \nu \nabla^2 \boldsymbol{v} - \frac{1}{\rho} \nabla p$$
$$-(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}$$

Rigid Bodies

- Particles connected by springs with infinite stiffness
- Entire body described by one position and one orientation
- Forces at particles influence translation and rotation of the entire body
- Mass distribution, orientation, angular velocity, torque

Bounding Volume Hierarchies

- Alternative to space subdivision
- Useful for collision queries

Outline

- Introduction
- Organization
- Presentation
- Topics
- Summary

Summary

- Oral presentation of 25-35 min
- Written report of 10 pages
- Topics overview and presentation dates
 - https://cg.informatik.uni-freiburg.de/teaching.htm
 - Advanced Topics in Animation
 - Schedule / Topics