DAY 9:

World Dataset

Linear Regression

In [1]:

```
#to import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

df=pd.read_csv(r"C:\Users\user\Downloads\18_world-data-2023.csv")[0:50]
df

Out[2]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Ca (
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	
1	Albania	105	AL	43.10%	28,748	9,000	11.78	3
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	2
3	Andorra	164	AD	40.00%	468	NaN	7.20	3
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	2
5	Antigua and Barbuda	223	AG	20.50%	443	0	15.33	
6	Argentina	17	AR	54.30%	2,780,400	105,000	17.02	
7	Armenia	104	AM	58.90%	29,743	49,000	13.99	3
8	Australia	3	AU	48.20%	7,741,220	58,000	12.60	
9	Austria	109	AT	32.40%	83,871	21,000	9.70	
10	Azerbaijan	123	AZ	57.70%	86,600	82,000	14.00	ξ
11	The Bahamas	39	BS	1.40%	13,880	1,000	13.97	
12	Bahrain	2,239	ВН	11.10%	765	19,000	13.99	ξ
13	Bangladesh	1,265	BD	70.60%	148,460	221,000	18.18	8
14	Barbados	668	ВВ	23.30%	430	1,000	10.65	
15	Belarus	47	BY	42.00%	207,600	155,000	9.90	3
16	Belgium	383	BE	44.60%	30,528	32,000	10.30	
17	Belize	17	BZ	7.00%	22,966	2,000	20.79	Ę
18	Benin	108	BJ	33.30%	112,622	12,000	36.22	2
19	Bhutan	20	ВТ	13.60%	38,394	6,000	17.26	ξ
20	Bolivia	11	ВО	34.80%	1,098,581	71,000	21.75	Ę
21	Bosnia and Herzegovina	64	ВА	43.10%	51,197	11,000	8.11	3
22	Botswana	4	BW	45.60%	581,730	9,000	24.82	2
23	Brazil	25	BR	33.90%	8,515,770	730,000	13.92	
24	Brunei	83	BN	2.70%	5,765	8,000	14.90	E
25	Bulgaria	64	BG	46.30%	110,879	31,000	8.90	3
26	Burkina Faso	76	BF	44.20%	274,200	11,000	37.93	2
27	Burundi	463	ВІ	79.20%	27,830	31,000	39.01	2
28	Ivory Coast	83	CI	64.80%	322,463	27,000	35.74	2
29	Cape Verde	138	CV	19.60%	4,033	1,000	19.49	2
30	Cambodia	95	KH	30.90%	181,035	191,000	22.46	8
31	Cameroon	56	СМ	20.60%	475,440	24,000	35.39	2
32	Canada	4	CA	6.90%	9,984,670	72,000	10.10	

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Ca (
33	Central African Republic	8	CF	8.20%	622,984	8,000	35.35	2
34	Chad	13	TD	39.70%	1,284,000	35,000	42.17	2
35	Chile	26	CL	21.20%	756,096	122,000	12.43	
36	China	153	CN	56.20%	9,596,960	2,695,000	10.90	
37	Colombia	46	CO	40.30%	1,138,910	481,000	14.88	
38	Comoros	467	KM	71.50%	2,235	NaN	31.88	2
39	Republic of the Congo	16	NaN	31.10%	342,000	12,000	32.86	2
40	Costa Rica	100	CR	34.50%	51,100	10,000	13.97	٤
41	Croatia	73	HR	27.60%	56,594	18,000	9.00	3
42	Cuba	106	CU	59.90%	110,860	76,000	10.17	
43	Cyprus	131	CY	12.20%	9,251	16,000	10.46	3
44	Czech Republic	139	CZ	45.20%	78,867	23,000	10.70	4
45	Democratic Republic of the Congo	40	CD	11.60%	2,344,858	134,000	41.18	2
46	Denmark	137	DK	62.00%	43,094	15,000	10.60	
47	Djibouti	43	DJ	73.40%	23,200	13,000	21.47	2
48	Dominica	96	DM	33.30%	751	NaN	12.00	
49	Dominican Republic	225	DO	48.70%	48,670	71,000	19.51	

In [3]: 50 rows × 35 columns

df.head()

Out[3]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Callin _t Cod
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	93.
1	Albania	105	AL	43.10%	28,748	9,000	11.78	355.
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	213.
3	Andorra	164	AD	40.00%	468	NaN	7.20	376.
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	244.

5 rows × 35 columns

In [4]:

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 50 entries, 0 to 49 Data columns (total 35 columns): Column Non-Null Count Dtype ----50 non-null 0 Country object 1 Density (P/Km2)50 non-null object 2 Abbreviation 49 non-null object 3 Agricultural Land(%) 50 non-null object 4 Land Area(Km2) 50 non-null object 5 Armed Forces size 47 non-null object 6 Birth Rate 50 non-null float64 7 Calling Code 50 non-null float64 8 Capital/Major City 50 non-null object 9 Co2-Emissions 50 non-null object 10 CPI 47 non-null object object 11 CPI Change (%) 48 non-null 12 Currency-Code 46 non-null object Fertility Rate 13 50 non-null float64 Forested Area (%) 50 non-null object 15 Gasoline Price 48 non-null object 16 GDP 50 non-null object 17 Gross primary education enrollment (%) 49 non-null object Gross tertiary education enrollment (%) 48 non-null object 19 Infant mortality 50 non-null float64 20 Largest city 49 non-null object Life expectancy float64 21 49 non-null 22 Maternal mortality ratio 48 non-null float64 Minimum wage 42 non-null object Official language 50 non-null object Out of pocket health expenditure 49 non-null object Physicians per thousand 26 50 non-null float64 Population object 27 50 non-null Population: Labor force participation (%) 47 non-null object 28 Tax revenue (%) 44 non-null object Total tax rate 30 48 non-null object Unemployment rate 47 non-null object Urban_population 32 50 non-null object Latitude 50 non-null float64 33 34 Longitude 50 non-null float64 dtypes: float64(9), object(26)

memory usage: 13.8+ KB

In [5]:

```
#to display summary of statistics
df.describe()
```

Out[5]:

	Birth Rate	Calling Code	Fertility Rate	Infant mortality	Life expectancy	Maternal mortality ratio	Physicians per thousand	La
cou	nt 50.00000	50.000000	50.00000	50.000000	49.000000	48.000000	50.000000	50.0
mea	n 19.64860	291.820000	2.62600	22.618000	72.312245	174.041667	1.929800	17.6 ⁻
s	d 10.67511	272.353663	1.41232	22.042368	7.988498	248.707549	1.782451	24.0
m	in 7.20000	1.000000	1.27000	1.900000	52.800000	2.000000	0.040000	-38.4
25	% 10.75000	56.250000	1.66000	5.225000	66.600000	13.750000	0.272500	5.0
50	% 14.89000	240.000000	1.94000	11.750000	74.900000	50.000000	1.665000	16.7
75	% 24.68500	375.750000	2.98250	35.375000	78.100000	242.750000	2.972500	39.0
ma	1x 42.17000	994.000000	5.92000	84.500000	82.700000	1140.000000	8.420000	56.2
4								•

In [6]:

```
#to display cloumn heading
df.columns
```

Out[6]:

```
Index(['Country', 'Density\n(P/Km2)', 'Abbreviation', 'Agricultural Land(
%)',
       'Land Area(Km2)', 'Armed Forces size', 'Birth Rate', 'Calling Cod
e',
       'Capital/Major City', 'Co2-Emissions', 'CPI', 'CPI Change (%)',
       'Currency-Code', 'Fertility Rate', 'Forested Area (%)',
       'Gasoline Price', 'GDP', 'Gross primary education enrollment (%)',
       'Gross tertiary education enrollment (%)', 'Infant mortality',
       'Largest city', 'Life expectancy', 'Maternal mortality ratio',
       'Minimum wage', 'Official language', 'Out of pocket health expendit
ure',
       'Physicians per thousand', 'Population',
       'Population: Labor force participation (%)', 'Tax revenue (%)',
       'Total tax rate', 'Unemployment rate', 'Urban_population', 'Latitud
e',
       'Longitude'],
      dtype='object')
```

EDA and VISUALIZATION

```
In [7]:
```

Out[7]:

	Birth Rate	Calling Code	Fertility Rate	Infant mortality	Life expectancy	Maternal mortality ratio	Latitude	Longitude
0	32.49	93.0	4.47	47.9	64.5	638.0	33.939110	67.709953
1	11.78	355.0	1.62	7.8	78.5	15.0	41.153332	20.168331
2	24.28	213.0	3.02	20.1	76.7	112.0	28.033886	1.659626
3	7.20	376.0	1.27	2.7	NaN	NaN	42.506285	1.521801
4	40.73	244.0	5.52	51.6	60.8	241.0	-11.202692	17.873887
5	15.33	1.0	1.99	5.0	76.9	42.0	17.060816	-61.796428
6	17.02	54.0	2.26	8.8	76.5	39.0	-38.416097	-63.616672
7	13.99	374.0	1.76	11.0	74.9	26.0	40.069099	45.038189
8	12.60	61.0	1.74	3.1	82.7	6.0	-25.274398	133.775136
9	9.70	43.0	1.47	2.9	81.6	5.0	47.516231	14.550072
10	14.00	994.0	1.73	19.2	72.9	26.0	40.143105	47.576927
11	13.97	1.0	1.75	8.3	73.8	70.0	25.034280	-77.396280
12	13.99	973.0	1.99	6.1	77.2	14.0	26.066700	50.557700
13	18.18	880.0	2.04	25.1	72.3	173.0	23.684994	90.356331
14	10.65	1.0	1.62	11.3	79.1	27.0	13.193887	-59.543198
15	9.90	375.0	1.45	2.6	74.2	2.0	53.709807	27.953389
16	10.30	32.0	1.62	2.9	81.6	5.0	50.503887	4.469936
17	20.79	501.0	2.31	11.2	74.5	36.0	17.189877	-88.497650
18	36.22	229.0	4.84	60.5	61.5	397.0	9.307690	2.315834
19	17.26	975.0	1.98	24.8	71.5	183.0	27.514162	90.433601
20	21.75	591.0	2.73	21.8	71.2	155.0	-16.290154	-63.588653
21	8.11	387.0	1.27	5.0	77.3	10.0	43.915886	17.679076
22	24.82	267.0	2.87	30.0	69.3	144.0	-22.328474	24.684866
23	13.92	55.0	1.73	12.8	75.7	60.0	-14.235004	-51.925280
24	14.90	673.0	1.85	9.8	75.7	31.0	4.535277	114.727669
25	8.90	359.0	1.56	5.9	74.9	10.0	42.733883	25.485830
26	37.93	226.0	5.19	49.0	61.2	320.0	12.238333	-1.561593
27	39.01	257.0	5.41	41.0	61.2	548.0	-3.373056	29.918886
28	35.74	225.0	4.65	59.4	57.4	617.0	7.539989	-5.547080
29	19.49	238.0	2.27	16.7	72.8	58.0	16.538800	-23.041800
30	22.46	855.0	2.50	24.0	69.6	160.0	12.565679	104.990963
31	35.39	237.0	4.57	50.6	58.9	529.0	7.369722	12.354722
32	10.10	1.0	1.50	4.3	81.9	10.0	56.130366	-106.346771
33	35.35	236.0	4.72	84.5	52.8	829.0	6.611111	20.939444
34	42.17	235.0	5.75	71.4	54.0	1140.0	15.454166	18.732207
35	12.43	56.0	1.65	6.2	80.0	13.0	-35.675147	-71.542969

	Birth Rate	Calling Code	Fertility Rate	Infant mortality	Life expectancy	Maternal mortality ratio	Latitude	Longitude
36	10.90	86.0	1.69	7.4	77.0	29.0	35.861660	104.195397
37	14.88	57.0	1.81	12.2	77.1	83.0	4.570868	-74.297333
38	31.88	269.0	4.21	51.3	64.1	273.0	-11.645500	43.333300
39	32.86	242.0	4.43	36.2	64.3	378.0	-0.228021	15.827659
40	13.97	506.0	1.75	7.6	80.1	27.0	9.748917	-83.753428
41	9.00	385.0	1.47	4.0	78.1	8.0	45.100000	15.200000
42	10.17	53.0	1.62	3.7	78.7	36.0	21.521757	-77.781167
43	10.46	357.0	1.33	1.9	80.8	6.0	35.126413	33.429859
44	10.70	420.0	1.69	2.7	79.0	3.0	49.817492	15.472962
45	41.18	243.0	5.92	68.2	60.4	473.0	-4.038333	21.758664
46	10.60	45.0	1.73	3.6	81.0	4.0	56.263920	9.501785
47	21.47	253.0	2.73	49.8	66.6	248.0	11.825138	42.590275
48 In	8 ^{12.00}	1.0	1.90	32.9	76.6	NaN	15.414999	-61.370976
	19.51 .info()	1.0	2.35	24.1	73.9	95.0	18.735693	-70.162651

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 50 entries, 0 to 49 Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Birth Rate	50 non-null	float64
1	Calling Code	50 non-null	float64
2	Fertility Rate	50 non-null	float64
3	Infant mortality	50 non-null	float64
4	Life expectancy	49 non-null	float64
5	Maternal mortality ratio	48 non-null	float64
6	Latitude	50 non-null	float64
7	Longitude	50 non-null	float64

dtypes: float64(8)
memory usage: 3.2 KB

In [9]:

sns.pairplot(df1)

Out[9]:

<seaborn.axisgrid.PairGrid at 0x21fd3684be0>

In [10]:

```
sns.distplot(df['Longitude'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[10]:

<AxesSubplot:xlabel='Longitude', ylabel='Density'>

In [11]:

Out[11]:

<AxesSubplot:>

to Train the model-Model buliding

we are going to split our data into two variable where x is a independent and y is dependent on x

```
In [12]:
x=data[['Calling Code','Latitude']]
y=data['Longitude']
In [13]:
# to split my dataset into test and train data
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
In [14]:
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
Out[14]:
LinearRegression()
In [15]:
print(lr.intercept_)
-11.770187454909436
In [16]:
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-effecient'])
coeff
Out[16]:
            Co-effecient
```

0.104014

-0.037939

Calling Code

Latitude

```
In [17]:
```

```
prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[17]:

<matplotlib.collections.PathCollection at 0x21fd7c326d0>

In [18]:

```
print(lr.score(x_test,y_test))
```

-0.6146745669577893

In [19]:

```
lr.score(x_train,y_train)
```

Out[19]:

0.32441522905909725

Ridge Regression

In [20]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [21]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
rr.score(x_test,y_test)
```

Out[21]:

-0.6146693807757213

Lasso Regression

```
In [22]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[22]:
Lasso(alpha=10)
In [23]:
la.score(x_test,y_test)
Out[23]:
-0.6100411691130756
In []:
```