Algebraic Topology II - Assignment 3

Matteo Durante, s2303760, Leiden University

3rd April 2019

Exercise 2

Proof. Consider the pointed spaces (A, x_0) , (X, x_0) , (Y, y_0) , the pointed maps $A \xrightarrow{f} X$, $Cf \xrightarrow{g} Y$ and the pointed homotopy $X \times I \xrightarrow{h} Y$. Also, keep in mind the following commutative diagram:

A map $Cf \times I \xrightarrow{H} Y$ extending g and h induces uniquely a map $CA \times I \to Y$, which in turn defines a map $(A \times I) \times I \xrightarrow{k'} Y$.

We will try to define a map $(A \times I) \times I \xrightarrow{k} Y$ which makes the diagram commute and then show that it factors through $CA \times I$.

Calling j the map $A \times I \to Cf$, we see that $gj = k'|_{(A \times I) \times \{0\}}$. Also, we know that $h(f \times \mathrm{Id}_I) = k'(i \times \mathrm{Id}_I)$, hence k' is uniquely defined on $(A \times \{0\}) \times I$.

Furthermore, since under the map $A \times I \to CA$ all of $(A \times \{1\}) \cup (\{x_0\} \times I)$ is identified, since k' maps $(x_0, 0, t)$ to y_0 for every t by our latest observation and the pointedness of h, we have that k' is uniquely defined (constant) on $((A \times \{1\}) \cup (\{x_0\} \times I)) \times I$.

We have shown that a map k' making the desired diagram commute is uniquely defined on $A \times ((I \times \{0\}) \cup (\{0,1\} \times I))$. Let now $k'' := k'|_{A \times (I \times \{0\} \cup \{0,1\} \times I)}$. We will define a map k on all of $(A \times I) \times I$ by extending k''.

To do what we want, we shall define a retract $I \times I \xrightarrow{r} I \times \{0\} \cup \{0,1\} \times I$. This rectract is defined by considering a point in the real plane outside of the square, (1/2,2), and then tracing, for every point in the square, the line passing through the two of them. This line will intersect a unique point in $I \times \{0\} \cup \{0,1\} \times I$, which will then be its image. Notice that points on the border are fixed.

Set now $k := k'(\mathrm{Id}_A \times r)$. We want to show that it factors through $CA \times I$. However, this is trivial, for $k|_{A \times (I \times \{0\} \cup \{0,1\} \times I)} = k'|_{A \times (I \times \{0\} \cup \{0,1\} \times I)}$ and therefore, for any $t, t' \in I$, $k(a, 1, t') = k'|_{A \times (I \times \{0\} \cup \{0,1\} \times I)}$

 $k''(a, r(1, t')) = k''(a, 1, t') = k'(a, 1, t') = y_0$ and, in the same way, $k(x_0, t, t') = k''(x_0, r(t, t')) = k'(x_0, r(t, t')) = y_0$. This also proves that it is pointed.

Let now w be the pointed map induced by k on $CA \times I$. By construction, it makes the following diagram commute:

By [2, p. 50], since Cf is a pushout with respect to $A \xrightarrow{f} X$, $A \to CA$, the space $Cf \times I$ is a pushout with respect to $A \times I \xrightarrow{f \times \operatorname{Id}_I} X \times I$, $A \times I \to CA \times I$, hence from the pair h, w we automatically get a unique continuous map $Cf \times I \xrightarrow{H} Y$ making the diagram commute and therefore, by commutativity and the construction of w, it is s.t. $H|_{Cf \times \{0\}} = g$, $H|_{X \times I} = h$, thus it is also pointed and the thesis follows.

Exercise 5

Proof. (a) We will check the continuity of the induced map on a basis of the topology.

Let $X \xrightarrow{f} Y$ be continuous, Z another topological space. Consider then an open $U \subset Z$ and a compact $K \subset X$. We have then an open $W(K,U) \subset \operatorname{Map}(X,Z)$.

We know that, if $Y \xrightarrow{g} Z$ is continuous, then $f^*(g) := g \circ f$ is too, hence $f^*(g) \in \operatorname{Map}(X, Z)$.

By definition, $(f^*)^{-1}(W(K,U)) = \{g \in \operatorname{Map}(Y,Z) \mid f^*(g)(K) := g(f(K)) \subset U\} \subset \operatorname{Map}(Y,Z)$. Since K is compact and f is continuous, $f(K) \subset Y$ is compact, hence $(f^*)^{-1}(W(K,U)) = W(f(K),U)$ is open in $\operatorname{Map}(Y,Z)$.

We now prove the same result in the same way for $\operatorname{Map}^{\bullet}(Y, Z) \xrightarrow{f^*} \operatorname{Map}^{\bullet}(X, Z)$ assuming that $(X, x_0), (Y, y_0)$ and (Z, z_0) are pointed spaces and f is a pointed map.

Consider again $U \subset Z$ open, $K \subset X$ compact, $W^{\bullet}(K,U) = \{g \in \operatorname{Map}^{\bullet}(X,Z) \mid g(K) \subset U, g(x_0) = z_0\} = W(K,U) \cap \operatorname{Map}^{\bullet}(X,Z) \subset \operatorname{Map}^{\bullet}(X,Z)$ open. Notice that the $W^{\bullet}(K,U)$ define natually a basis for the subspace topology.

By the same argument as before, given a pointed map $Y \xrightarrow{g} Z$, $f^*(g)$ will be continuous. Also, $f^*(g)(x_0) = g(f(x_0)) = g(y_0) = z_0$, hence $f^*(g) \in \operatorname{Map}^{\bullet}(X, Z)$.

By definition, $(f^*)^{-1}(W^{\bullet}(K,U)) = \{g \in \operatorname{Map}^{\bullet}(Y,Z) \mid f^*(g)(K) := g(f(K)) \subset U\} \subset \operatorname{Map}^{\bullet}(Y,Z).$ Since K is compact and f is continuous, $f(K) \subset Y$ is compact, hence $(f^*)^{-1}(W^{\bullet}(K,U)) = W^{\bullet}(f(K),U)$ is open in $\operatorname{Map}^{\bullet}(Y,Z)$.

Proof. (b) We know that, by definition, fixed a point $x_0 \in X$, $\Omega X = [S^1, X]^{\bullet}$ (for S^1 we are fixing the point 1 in the complex plane). The multiplication map $\Omega X \times \Omega X \to \Omega X$ sends a pair (q_1, q_2)

of pointed maps $S^1 \xrightarrow{g_1,g_2} X$ to g defined in the following way:

$$g: S^1 \to X$$

$$z \mapsto \begin{cases} g_1(e^{2i \cdot arg(z)}) & \text{if } Im(z) \ge 0 \\ g_2(e^{2i \cdot arg(z)}) & \text{otherwise} \end{cases}$$

We will prove that the function g is a pointed map. The fact that $g(1) = x_0$ is trivial, for $e^{2i \cdot arg(1)} = e^{2i \cdot 0} = 1$. We still have to check the continuity of g, which is clear because it is the glueing of two functions, its restrictions to the closed subsets $\{z \in S^1 \mid Im(z) \geq 0\}$ and $\{z \in S^1 \mid Im(z) \leq 0\}$, which are continuous because they are obtained by precomposing g_1 and g_2 with two distinct maps, the former sending $z \in \{z \in S^1 \mid Im(z) \geq 0\}$ to $e^{2i \cdot arg(z)}$ and the other one $z \in \{z \in S^1 \mid Im(z) \leq 0\}$ to $e^{2i \cdot arg(z)}$.

We want now to prove that $\Omega X \times \Omega X \cong [S^1 \vee S^1, X]^{\bullet}$ and we will do this by constructing a homeomorphism.

For any pair of pointed maps $(g_1, g_2) \in \Omega X \times \Omega X$, by making use of the property of the coproduct in the category of topological spaces, we get a new map $S_1^1 \coprod S_2^1 \xrightarrow{g'} X$ sending the base points of the two S^1 seen as subspaces of $S_1^1 \coprod S_2^1$ to $x_0 \in X$, hence by identifying these two points we get by the universal property of the quotient a continuous map $S^1 \vee S^1 \xrightarrow{g} X$, which becomes a pointed map by fixing the points we have identified.

Viceversa, fixed the common point of the two S^1 as base point of $S^1 \vee S^1$, any pointed map $S_1^1 \vee S_2^1 \xrightarrow{g} X$ identifies a pair of pointed maps $(g_1, g_2) \in \Omega X \times \Omega X$ by precomposing it with the obvious inclusions $S^1 \xrightarrow{i_1, i_2} S_1^1 \vee S_2^1$. Also, noticing that the two constructions are naturally inverse to each other, we have proved that we have a bijection $\Omega X \times \Omega X \cong [S_1^1 \vee S_2^1, X]^{\bullet}$.

We want to prove that the correspondence hereby defined is a homeomorphism.

The continuity of the function $[S_1^1 \vee S_2^1, X]^{\bullet} \to \Omega X \times \Omega X$ is trivial because it is defined by (i_1^*, i_2^*) and by the previous result i_i^* is continuous.

We will now show that the map is open.

Remembering that $S_1^1 \vee S_2^1$ is compact and therefore the only compact subsets are the closed ones, considered a compact $K \subset S_1^1 \vee S_2^1$ and an open $U \subset X$, observe $W^{\bullet}(K,U)$. We will prove that $(i_1^*, i_2^*)(W^{\bullet}(K,U)) = W^{\bullet}(K \cap S_1^1, U) \times W^{\bullet}(K \cap S_2^1, U)$, where the $K \cap S_j^1$ are closed and hence compact.

Since $S_j^1 \subset S_1^1 \vee S_2^1$ is closed and therefore the same goes for $K \cap S_j^1$, observing that an element $g \in W^{\bullet}(K, U)$ is s.t. $g|_{S_j^1}(K \cap S_j^1) \subset U$, we have that $(i_1^*, i_2^*)(g) \in W^{\bullet}(K \cap S_1^1, U) \times W^{\bullet}(K \cap S_2^1, U)$.

On the other hand, let $(g_1, g_2) \in W^{\bullet}(K \cap S_1^1, U) \times W^{\bullet}(K \cap S_2^1, U)$. Since $g_j(K \cap S_j^1) \subset U$, the induced map g will be s.t. $g(K) = g(K \cap S_1^1) \cup g(K \cap S_2^1) = g_1(K \cap S_1^1) \cup g_2(K \cap S_2^1) \subset U$, thus $g \in W^{\bullet}(K, U)$ and therefore $(g_1, g_2) \in (i_1^*, i_2^*)(W^{\bullet}(K, U))$.

Thanks to this homeomorphism, fixing 1 in S^1 , we only have to consider the pointed map $S^1 \xrightarrow{f} S^1_{/\sim} \cong S^1_1 \vee S^1_2$ given by the relation on S^1 identifying 1 and -1 (by convention, the upper half of the circle is mapped to S^1_1 and the lower one to S^1_2 , always counterclockwise). This induces a pointed map $[S^1_1 \vee S^1_2, X]^{\bullet} \xrightarrow{f^*} [S^1, X]^{\bullet} = \Omega X$ which, as we will show, precomposed with the previously mentioned pointed homeomorphism $\Omega X \times \Omega X \to [S^1_1 \vee S^1_2, X]^{\bullet}$ gives us the multiplication map as desired.

Indeed, consider $(g_1, g_2) \in \Omega X \times \Omega X$, $z \in S^1$. If $Im(z) \geq 0$, then, under our quotient map $S^1 \to S^1_1 \vee S^1_2$, z is mapped to $z' \in S^1_1$, $z' = e^{2i \cdot arg(z)}$. Looking at our homeomorphism, the map

g induced by our pair maps z' to $g_1(z') = g_1(e^{2i \cdot arg(z)})$. In the same way, for Im(z) < 0, we get that z is sent by g precomposed with the quotient map to $g_2(e^{2i \cdot arg(z)})$, hence the glued map we have obtained from (g_1, g_2) under the continuous map we have constructed coincides with the one defined by the multiplication map. It follows that the two maps $\Omega X \times \Omega X \to \Omega X$ we have defined are equal and therefore the multiplication map is continuous.

We will now prove the continuity of the inverse loop map. This is defined by sending $g \in \Omega X$ to i(g) defined as $i(g)(z) = g(\overline{z})$. Since the conjugate map is a pointed automorphism of S^1 , the composition of g with it is trivially continuous by (a) and the thesis follows.

Proof. (c) Let X be a H-space whose multiplication is defined by m and whose base point is $x_0 \in X$. We will begin by describing the operations.

Remember that $\pi_n(X, x_0) = ([S^n, X]^{\bullet}_{/\sim}, *)$, where for any $[f], [g] \in [S^n, X]^{\bullet}$ we have that [f] * [g] = [h], where h is defined up to homotopy in the following way (we are choosing a representation of * since as we know the group structures induced by different choices of i are naturally isomorphic):

$$h: S^{n} \cong I^{n}_{/\sim} \to X$$

$$t \mapsto \begin{cases} f(2t_{1}, t_{2}, \dots, t_{n}) & \text{if } 0 \leq t_{1} \leq 1/2\\ g(2t_{1} - 1, \dots, t_{n}) & \text{if } 1/2 \leq t_{1} \leq 1 \end{cases}$$

On the other hand, we define a new operation \circ on the elements of $[S^n, X]_{/\sim}^{\bullet}$ in the following way: for any $[f], [g] \in [S^n, X]_{/\sim}^{\bullet}$, $[f] \circ [g] = [h]$, where for any $t \in S^n$ we have that h(t) = m(f,g)(t) := m(f(t),g(t)). Since by composing two homotopic functions with another one we get again a pair of homotopic functions and m is pointed with respect to the base point $x_0 \in X$, the aforementioned operation is well defined.

Consider now two pointed maps $S^n \xrightarrow{e_0,f} X$, e_0 constant (that is, $[e_0]$ is the unit of *). Since the composition of homotopic maps is homotopic, we have trivially that $m(e_0(t), f(t)) = m(x_0, f(t)) \cong m(f(t), x_0) = m(f(t), e_0(t)) \cong \mathrm{Id}(f(t)) = f(t)$, hence $[e_0] \circ [f] = [f] = [f] \circ [e_0]$, i.e. $[e_0]$ is also the unit of \circ .

Furthermore, let f, g, h be pointed maps $S^n \to X$. For every $t \in S^n$, remembering again that the composition of homotopic maps with another map is homotopic and m is pointed and associative up to homotopy, we have that:

$$m(f, m(g, h))(t) = m(f(t), m(g, h)(t))$$

$$= m(f(t), m(g(t), h(t)))$$

$$= m(-, m(-, -))(f(t), g(t), h(t))$$

$$\cong m(m(-, -), -)(f(t), g(t), h(t))$$

$$= m(m(f(t), g(t)), h(t))$$

$$= m(m(f, g)(t), h(t))$$

$$= m(m(f, g), h)(t)$$

It follows that $[f] \circ ([g] \circ [h]) = ([f] \circ [g]) \circ [h]$.

We have checked that \circ does define a monoidal operation on $[S^n, X]^{\bullet}_{/\sim}$.

We want to prove that the two operations are commutative and induce the same structure on $[S^n, X]^{\bullet}_{/\sim}$ by showing that the hypothesis of [1, lemma 6.18] are satisfied. One has already been verified.

From now on, we will denote simply * the binary function on the elements of $[S^n, X]^{\bullet}$ we have implicitly defined earlier and which gives rise to the operation of $\pi_n(X, x_0)$.

Let a, b, c, d be pointed maps $S^n \to X$. We see that, setting $([a] * [c]) \circ ([b] * [d]) = [g]$ and $([a] \circ [b]) * ([c] \circ [d]) = [h]$, for $0 \le t_1 \le 1/2$ we have the following:

$$g(t) = m(a * c, b * d)(t)$$

$$= m((a * c)(t), (b * d)(t))$$

$$= m(a(2t_1, t_2, \dots, t_n), b(2t_1, t_2, \dots, t_n))$$

$$= m(a, b)(2t_1, t_2, \dots, t_n)$$

$$= (m(a, b) * m(c, d))(t)$$

$$= h(t)$$

In the same way, for $1/2 \le t_1 \le 1$, we get that:

$$g(t) = m(a * c, b * d)(t)$$

$$= m((a * c)(t), (b * d)(t))$$

$$= m(c(2t_1 - 1, t_2, \dots, t_n), d(2t_1 - 1, t_2, \dots, t_n))$$

$$= m(c, d)(2t_1 - 1, t_2, \dots, t_n)$$

$$= (m(a, b) * m(c, d))(t)$$

$$= h(t)$$

It follows that g = h, hence $* = \circ$ by [1, lemma 6.18].

References

- [1] Heuts Gijs and Meier Lennart. Algebraic Topology II. 2019.
- [2] Sagave Steffen. Algebraic Topology. 2017.