Differential Calculus in \mathbb{R}^n

Continuity in \mathbb{R}^n

Definition Continuity: $U \subseteq \mathbb{R}^n$, $f: U \rightarrow$

1. $x_0 \in U$. f continuous at x_0 if $\forall \epsilon > 0$, $\exists \delta > 0, \forall x \in U$:

$$||x - x_0|| < \delta \Rightarrow ||f(x) - f(x_0)|| < \epsilon$$

2. f continuous on U if cont. $\forall x_0 \in U$

Definition Convergence: $(x_k)_{k\in\mathbb{N}}, x_k \in \mathbb{R}^n$.

$$x_k = (x_{k,1}, ..., x_{k,n})$$

 $y = (y_1, ..., y_n) \in \mathbb{R}^n$. (x_k) converges to y $(k \to +\infty)$ if $\forall \epsilon > 0, \exists N > 1, \forall n > N$

$$||x_k - y|| < \epsilon$$

we usually write $\lim_{n\to\infty} x_n = y$. **Lemma:** (x_k) converges to $y \iff$

- $\forall i, 1 \leq i \leq n$: $(x_{k,i})$ converges to y_i .
- $||x_k y||$ converges to $0 (k \to +\infty)$.

To disprove continuity:

Lemma: $U \subset \mathbb{R}^n$, $f: U \to \mathbb{R}^m$. $x_0 \in U$. f continuous at $x_0 \Leftrightarrow \forall (x_k)_{k\geq 1}$ in U with $\lim_{k\to\infty} x_k = x_0, (f(x_k))_{k\geq 1}$ in \mathbb{R}^m con-

verges to $f(x_0)$ ($\lim_{x\to\infty} f(x_k) = f(x_0)$) **Lemma:** $U \subset \mathbb{R}^n, V \subset \mathbb{R}^m, 1$ $f: U \to V, q: V \to \mathbb{R}^p \text{ continuous} \Rightarrow q \circ f$ continuous.

Proof. Composition with last Lemma.

- $\bullet \lim_{x \to x_0} (f(x) + g(x))$ $\lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$ • $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$
- **Definition** Function Convergence: $U \subseteq \mathbb{R}^n$, $f: U \to \mathbb{R}^m$. $x_0 \in U, y \in \mathbb{R}^m$. f has limit $y(x \to x_0, x \neq x_0)$ if $\forall \epsilon > 0, \exists \delta > 0$, $\forall x \in U, x \neq x_0$

$$||x - x_0|| < \delta \Rightarrow ||f(x) - y|| < \epsilon$$

We write $\lim_{\substack{x\to x_0\\x\neq x_0}} f(x) = y$. $f(x_0)$ has no impact on $\lim_{x\to x_0} f(x)$.

 $x_0 \Leftrightarrow \lim_{\substack{x \to x_0 \ x \neq x_0}} f(x) = f(x_0)$ Lemma Function & Sequence Convergence:

 $U \subset \mathbb{R}^n$, $f: U \to \mathbb{R}^m$. $x_0 \in U$, $y \in \mathbb{R}^m$. $\lim_{x\to x_0} f(x) = y \Leftrightarrow \forall (x_k) \to x_0 \text{ in } U,$ $x_k \neq x_0$, $(f(x_k))$ in \mathbb{R}^m converges to y.

Disprove continuity/convergence with sequence. Prove directly and using comparison if difficult.

Intervals

Definition:

 $(1) \Leftarrow (2)$

- 1. $U \subset \mathbb{R}^n$ bounded if ||x||, $x \in U$ is bounded in \mathbb{R} . \subset \mathbb{R}^n closed if $\forall (x_k)$ in U
- $(\lim_{k\to\infty} x_k = y \in \mathbb{R}^n)$: $y \in X$ 3. $U \subset \mathbb{R}^n$ compact if bounded and closed
- 4. $U \subset \mathbb{R}^n$ open if $\forall x = (x_1, ..., x_n) \in U$, $\exists \delta > 0$ such that

$$\{y = (y_1, ..., y_n) \in \mathbb{R}^n | |x_i - y_i| < \delta\} \subseteq U$$

Lemma: $U \subset \mathbb{R}^n$ open \Leftrightarrow cplmnt. closed. $\mathbb{R} \& \varnothing$ closed & open

Lemma: $f: \mathbb{R}^n \to \mathbb{R}^m$ continuous. Then:

- 1. $U \subseteq \mathbb{R}^m$ open $\Rightarrow f^{-1}(U) \subseteq \mathbb{R}^n$ open
- 2. $U \subset \mathbb{R}^m$ closed $\Rightarrow f^{-1}(U) \subset \mathbb{R}^n$ closed

Proof. U closed. $(x_i) \to y \in \mathbb{R}^n$ in $f^{-1}(U)$. Continuity of $f: f(y) = f(\lim_{k \to \infty} x_k) =$ $\lim_{k\to\infty} f(x_k) \stackrel{U \text{ closed}}{\Rightarrow} \lim_{k\to\infty} f(x_k) \in U \Rightarrow$ $f(y) \in U \Rightarrow y \in f^{-1}(U)$.

Considering images preserves compactness: Theorem: $U \subset \mathbb{R}^n$ non-empty compact set, $= f: U \to \mathbb{R}$ continuous $\Rightarrow \hat{f}$ bounded and achieves maximum&minimum/ $\exists x_{\perp}, x_{-} \in U$

$$f(x_+) = \sup_{x \in U} f(x) \qquad f(x_-) = \inf_{x \in U} f(x)$$

Partial Derivatives **Definition** Partial Derivatives: $U \subset \mathbb{R}^n$ open set. $f:U\to\mathbb{R}^m$. $1\leq i\leq n$. fhas partial derivative on U with respect to *i*-th variable at $x_0 = (x_{0,1}, ..., x_{0,n}) \in U$ if $g(t) = f(x_{0,1},...,x_{0,i-1},t,x_{0,i+1},...,x_{0,n})$

Lemma Continuity & Convergence: $U \subseteq$ is differentiable at $t = x_{0,i}$ $(f_1, f_2, ..., f_m)$ Denote $df(x_0) = Df(x_0) = u$. \mathbb{R}^n , $f:U\to\mathbb{R}^m$. $x_0\in U$. f continuous at component-wise). Derivative at $x_{0,i}$ $g'(x_{0,i})$ is denoted

$$\frac{\partial f}{\partial x_i}(x_0) = \partial_{x_i} f(x_0) = \partial_i f(x_0)$$

f has partial derivative on U with respect to ith variable, if differentiable on U with respect to the *i*-th variable \forall valid $x_0 \in U$. $\forall x \in U, \exists \partial_{x_i} f \Rightarrow \partial_{x_i} f(x) : U \to \mathbb{R}^m \Rightarrow \exists :$

$$\partial_{x_j}\partial_{x_i}f = \partial_{ji}f = \frac{\partial^2 f}{\partial_{x_j}\partial_{x_i}} = f_{x_jx_i}$$

Lemma ∂ Rules: $U \subseteq \mathbb{R}^n$ open, $f, q: U \to$ \mathbb{R}^n , $1 \leq i \leq n$, f, g have i-th $\hat{\partial}$

- $\forall x \in U, g(x) \neq 0 \Rightarrow \partial_i(\frac{f}{g}) =$

Definition Jacobian: $U \subseteq \mathbb{R}^n, f: U \to \mathbb{R}^m$ has partial derivatives on U at $x \in U$:

$$J_f(x) = (\partial_{x_j} f_i(x))_{\substack{1 \le i \le m \\ 1 \le j \le n}}$$

is the **Jacobi matrix** of f at x. **Definition** Gradient: $U \subseteq \mathbb{R}^n$ open, $f: U \to \mathbb{R}^n$

$$\mathbb{R}$$
, all partial derivatives exist at $x_0 \in U$:
$$\left(\partial_{x_1} f(x_0)\right)$$

is the gradient of f at x_0 . **Definition** Divergence: $U \subseteq \mathbb{R}^n$, $f: U \to \mathbb{R}^n$

$$Tr(J_f(x_0)) = \sum_{i=1}^n \partial_{x_i} f_i(x_0) = \text{div} f(x_0)$$

 \mathbb{R}^n , all ∂ exist at $x_0 \in U$. Divergence of f at x_0

The Differential

Definition Differential: $U \subseteq \mathbb{R}^n$ open, f: $U \to \mathbb{R}^m$. $u: \mathbb{R}^n \to \mathbb{R}^m$ linear map, $x_0 \in U$. f differentiable at x_0 with differential u if

f differentiable at every $x_0 \in U \Rightarrow f$ differentiable on U. $df(x_0) = A \Leftrightarrow f$ has "Dreiecksentwicklung"/"Dreigliedentwicklung" $f(x) = f(x_0) + A(x - x_0) + \sigma(||x - x_0||)$ f differentiable at $x_0 \Leftrightarrow \text{all } f_i: U \to \mathbb{R}$ dif-

Use this to show sth. is (not) differentiable: **Lemma**: $U \subseteq \mathbb{R}^n$ open, $f: U \to \mathbb{R}^m$. f has all partial derivatives. partial derivatives of f are continuous on $U \Rightarrow f$ differentiable on U. $df(x_0)$ (canonical basis of \mathbb{R}^n , \mathbb{R}^m) is Jacobi matrix of f at x_0 .

all ∂ continuous \Rightarrow f cont. differentiable

ferentiable at x_0 .

- **Lemma**: $U \subseteq \mathbb{R}^n$ open, $f: U \to \mathbb{R}^m$ differentiable on U. • f is continuous on U
- f admits partial derivatives on X with respect to each variable. • $df(x_0)$ in stand. basis is Jacobi matrix

Lemma: $U \subseteq \mathbb{R}^n$ open, $f, q: U \to \mathbb{R}^m$ dif-

- ferentiable on U. $\begin{array}{l} \bullet \ \ f+g \ \text{differentiable:} \ d(f+g)=df+dg \\ \bullet \ m=1 \Rightarrow fg \ \text{is differentiable} \\ \bullet \ m=1, \ g(x) \neq 0, \forall x \in U \Rightarrow f/g \ \text{dif-} \end{array}$
- ferentiable. **Lemma** Chain Rule: $U \subseteq \mathbb{R}^n$ open, $V \subseteq \mathbb{R}^m$

open, $f: U \to V$ diffbar, $g: V \to \mathbb{R}^p$ diffbar $\Longrightarrow g \circ f: U \to \mathbb{R}^p$ diffbar on $U - \forall x \in U$: $d(q \circ f)(x_0) = dq(f(x_0)) \circ df(x_0)$ $J_{q \circ f}(x_0) = J_q(f(x_0))J_f(x_0)$

 $\nabla f(x_0) = \begin{pmatrix} \partial_{x_1} f(x_0) \\ \vdots \\ \partial_{x_n} f(x_0) \end{pmatrix} = \operatorname{grad} f(x_0) = J_f(x_0) \overline{\operatorname{Lemma Produce Rule:}} \quad f, g : \mathbb{R}^n \to \mathbb{R}$ $\nabla_{fg}(x_0) = \nabla_f(x_0) g(x_0) + \nabla_g(x_0) f(x_0)$ $\nabla_{fq}(x_0) = \nabla_f(x_0)g(x_0) + \nabla_g(x_0)f(x_0)$ $h: \mathbb{R}^n \to \mathbb{R}^2, h(x) = (f(x), g(x))$ and $m: \mathbb{R}^2 \to \mathbb{R}, m(u,v) = u \cdot v$

> **Definition** Tangent Space: $U \subseteq \mathbb{R}^n$ open, $f: U \to \mathbb{R}^m$ differentiable. $x_0 \in U$, $u = df(x_0)$. Graph of affine linear approximat. $q(x) = f(x_0) + u(x - x_0)$

$$g(x) = f(x_0) + u(x - x_0)$$

{ $(x, y) \in \mathbb{R}^n \times \mathbb{R}^m | y = f(x_0) + u(x - x_0)$ }
tangent space at x_0 to the graph of f .

Definition Directional Derivative: $U \subseteq \mathbb{R}^n$ open, $f: U \to \mathbb{R}^m$, $0 \neq v \in \mathbb{R}^n$, $x_0 \in U$. f has directional derivative $w \in \mathbb{R}^m$ in direction v, if $q: \{t \in \mathbb{R} | x_0 + tv \in U\} \to \mathbb{R}^m$

 $g(t) = f(x_0 + tv)$

has derivative w at t = 0.

$$D_v f(x_0) = J_g(0) = \begin{pmatrix} \partial_t g_1(0) \\ \vdots \\ \partial_t g_m(0) \end{pmatrix} \in \mathbb{R}^m$$

For partial derivatives: $\partial_{x_i} f(x_0) = D_{e_i} f(x_0)$ **Lemma**: $U \subseteq \mathbb{R}^n$ open, $f: U \to \mathbb{R}^m$ diffbar. $\forall x \in U, 0 \neq v \in \mathbb{R}^n$: $D_v f(x_0) = df(x_0)(v)$. $D_{v+w}f(x_0) = D_v f(x_0) + D_w f(x_0)$ $h: \mathbb{R}^n \to \mathbb{R}^m$ cont. diffbar. \Leftrightarrow all directional derivatives exist and cont.

Higher Derivatives

Definition: $U \subseteq \mathbb{R}^n$ open, $f: U \to \mathbb{R}^m$. - f is of class C^1 if f is diffbar and all its ∂s cont. (continuously differentiable). $C^1(U, \mathbb{R}^m)$: C^1 functions from U to \mathbb{R}^m .

- $k \geq 2$. f is of class C^k if f is diffbar and all $\partial_{x_i} f: U \to \mathbb{R}^m$ are of class C^{k-1} . $C^k(U,\mathbb{R}^m)$: C^k functions from U to \mathbb{R}^m .

 $f \in C^k(U,\mathbb{R}^m), \ \forall k \geq 1 \Rightarrow f \text{ is of class } C^\infty. \ C^\infty(U,\mathbb{R}^m): \ C^\infty \text{ functiosn from } U \text{ to } f$

 $-C^0 \supset C^k \supset C^\infty$.

 C^k closed under +/-/concatentionation \rightarrow vector space

Definition Multi-dim. Polynomials: Monomial: $\lambda x_1^{a_1} x_2^{a_2} \dots x_n^{a_n}, \lambda \in \mathbb{R}, a_i \in \{0, 1, 2, \dots\}.$ Degree of monomial: $a_1 + a_2 + ... + a_m$.

Polynomial: Sum of Monomials

Definition Hessian: $U \subseteq \mathbb{R}^n$ open, $f: U \to \mathbb{R}^n$ \mathbb{R} is C^2 . $x \in U$: Hessian matrix of f at x:

$$Hess_f(x_0) = H_f(x_0) = \left(\partial_{x_i}\partial_{x_j}f(x_0)\right)_{\substack{1 \le i \le n \\ 1 \le j \le n}}$$

symmetric and square.

Lemma: $k \geq 2$. $U \subseteq \mathbb{R}^n$ open, $f: U \to \mathbb{R}^m$ is C^k . ∂ s order k independent of the order in which the partial derivatives are taken

$$\partial_{x,y}f = \partial_{y,x}f$$

Landau Symbol - little o notation

Definition: $U \subseteq \mathbb{R}^n, g: U \to \mathbb{R}, x_0 \in U$ o(g): set of $f: U \to \mathbb{R}$ with

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \left| \frac{f(x)}{g(x)} \right| = 0$$

 $f = o(g) : \Leftrightarrow f \in o(g).$ $o(f) = o(g) : \Leftrightarrow o(f) \subseteq o(g).$

 $-o(x^a) + o(x^b) = o(x^{\min\{a,b\}})$ $-o(x^a) \cdot o(x^b) = o(x^{a+b})$ $-x^a \cdot o(x^b) = o(x^{a+b})$ $-P = o(||x||^k) \text{ if } \deg P > k$ $- o(P) = o(||x||^k)$ if $\deg P \ge k$ $-P \cdot o(\|x\|^k) = o(\|x\|^{k + \deg P})$ Helpful to combine Taylor Polynomials. **Taylor Polynomials**

$$f(x) = \sum_{i=0}^{k} \frac{1}{j!} f^{(j)}(x_0) (x - x_0)^i + \sigma(|x - x_0|^k)$$
 is a critical point of f . Definition Saddle Point

Definition Taylorpolynomials: $1 \le k \in \mathbb{N}$. $f: U \to \mathbb{R}$ is C^k . k-th Taylor polynomial of f at $x_0 \in U$ is:

$$T_k(f) = \sum_{\substack{m_1, \dots, m_n \ge 0 \\ m_1 + \dots + m_n \le k}} \frac{1}{m_1! m_2! \dots m_n!}$$
$$\partial_1^{m_1} \partial_2^{m_2} \dots \partial_n^{m_n} f(x_0) \cdot y_1^{m_1} \dots y_n^{m_n}$$

(polynomial in n variables of degree $\leq k$) Abbreviated notation (*m* representative for $m_1, ..., m_n$ and its respective enumerations)

$$T_k f(x) = \sum_{|m| \le k} \frac{1}{m!} \partial_x^m f(x_0) (x - x_0)^m$$

 $T_k f(x)$ only polynomial with deg $P \le k$ and

$$\partial_1^{m_1} \dots \partial_2^{m_2} P(x_0) = \partial_1^{m_1} \dots \partial_2^{m_2} f(x_0)$$

for all $m_1, ..., m_n$ mit $m_1 + ... + m_n \le k$. **Theorem** Taylor Approximation: $1 < k \in$ $\mathbb{N}.\ U\subset\mathbb{R}^n$ open, $f:U\to\mathbb{R}$ is C^k . $x_0\in U$:

$$f(x) = T_k f(x_0)(x - x_0) + E_k f(x_0)$$

$$f(x) = T_k f(x)(x - x_0) + o(||y||^k)$$

$$T_2 f(x_0)(x - x_0) = f(x_0) + \langle \nabla_f(x_0), y \rangle + \frac{1}{2} y^{\mathsf{T}} H_f(x_0) y$$

Critical Points

Definition Extrema: $U \subseteq \mathbb{R}^n, f: U \to \mathbb{R}$. $x_0 \in U$ is called...

- local minimum if some $\epsilon > 0$ exists so that $||x-x_0|| < \epsilon, x \in U \Rightarrow f(x_0) \le$
- local maximum if some $\epsilon > 0$ exists so that $||x-x_0|| < \epsilon, x \in U \Rightarrow f(x_0) \ge$ f(x)

or a local maximum.

 $f(x_0) < f(x)$

ullet global maximum if for all $x \in U$: $f(x_0) \ge g(x)$

• global extremum if x_0 is a global minimum or a global maximum

Definition Critial Point: $U \subseteq \mathbb{R}^n$ open, $f: U \to \mathbb{R}$ diffbar. $x_0 \in U$ with $\nabla f(x_0) = 0$

Definition Saddle Point: A saddle point is a critical point, which is not a an extremum. **Lemma**: $U \subseteq \mathbb{R}^n$ open, $f: U \to \mathbb{R}$ diffbar. $x_0 \in U$ is local extremum $\Rightarrow x_0$ is critical

Understand through Taylor Polynomial. In 1D: 2nd derivative may imply local min/max. In mult. dim.: $y^{\top}H_f(x_0)y$ as 2nd. **Definition**: $m \times n$ matrix A is called

- positiv definite $\Leftrightarrow \forall y \neq 0 : y^{\top} Ay > 0$ - negative definite $\Leftrightarrow \forall y \neq 0 : y^{\top} A y < 0$

- indefinite $\Leftrightarrow \exists y, z, y^{\top} A y > 0 \& z^{\top} A z < 0$

Theorem: $U \subseteq \mathbb{R}^n$ open, $f: U \to \mathbb{R}$ is C^2 . x_0 critical point. Then:

- $H_f(x_0)$ positive definite $\Rightarrow x_0$ is a local
- $H_f(x_0)$ negative definite $\Rightarrow x_0$ is a local
- $H_f(x_0)$ indefinite $\Rightarrow x_0$ not a local extremum, but a saddle point

 H_f is symmetric $\Rightarrow H_f$ is diagonalizable.

- H_f positive definite \Leftrightarrow all EV are positive

- H_f negative definite \Leftrightarrow all EV are negative

- H_f indefinite \Leftrightarrow at least one positive and at least one negative EV

Definition: $U \subseteq \mathbb{R}^n$ open, $f: U \to \mathbb{R}$ is C^2 .

Critical point x_0 of f is called - degenerate if det $H_f(x_0) = 0$

- non-degenerate if det $H_f(x_0) \neq 0$

 $H_f(x_0) \neq 0$ /non-degenerate \Rightarrow p.d./n.d./i.d.

For critical points, even degenerate ones:

- H_f has positive EV \Rightarrow not a local maximum - H_f has negative EV \Rightarrow not a local minimum **Theorem** Sylvesters Criteria: Symmetric $A \in \mathbb{R}^{n,n}$ p.s. $\Leftrightarrow \forall i, 1 \leq i \leq n : \det A_{:i:i} > 0$

Lagrange Multipliers

Goal: Find extrema of function on root root set of other function. Idea 1: Parameterize root set→new function

• local extremum if x_0 is a local minimum Lemma: $U \subseteq \mathbb{R}^n$ open, $f, g: U \to \mathbb{R}$ are C^1 . $x_0 \in U$ local extremum of f restricted to ullet global minimum if for all $x\in U$: $Y=\{x\in U|g(x)=0\}$ /local extremum of $f|_{q^{-1}(0)} \Rightarrow \text{either}$ - $\nabla g(x_0) = 0$, or

- $\exists \lambda \in \mathbb{R}$ such that $\begin{cases} \nabla f(x_0) = \lambda \nabla g(x_0) \\ g(x_0) = 0 \end{cases}$

The Inverse and Implicit Function Theorems **Definition** Change of Variable: $U \subseteq \mathbb{R}^n$ open, $f:U\to\mathbb{R}^n$ diffbar vector field. $x_0\in$ U. f is a change of variable around/"lokal invertierbar bei" x_0 if: \exists open set $B, x_0 \in B, f(B) \subseteq \mathbb{R}^n$ open,

and \exists diffbar $g: f(B) \rightarrow B$ with $f \circ q =$ $id_{f(B)}, g \circ f = id_B.$ **Theorem** Inverse Function Theorem: $U \subseteq$ \mathbb{R}^n open, $f:U\to\mathbb{R}^n$ diffbar. If $\exists x_0\in U$ with det $(J_f(x_0)) \neq 0 \Rightarrow f$ is a change of

variable around/"lokal invertierbar bei" x_0 .

$$J_g(f(x_0)) = J_f(x_0)^{-1}$$

g local inverse. f is $C^k \Rightarrow q$ is C^k too. local c.o.v. everywhere \neq globally invertible! Example: $U = \{(r, \Theta) \in \mathbb{R}^2 | r >$ 0} open, $f:U\to\mathbb{R}^2$, $f(r,\Theta)=$ $(r\cos\Theta, r\sin\Theta)$. Locally invertible with $g(x,y) \mapsto \left[\sqrt{x^2 + y^2}, \arctan(\frac{y}{x})\right]$. Not global

Integration in \mathbb{R}^n

Definition: $I = [a, b] \subset \mathbb{R}$ closed, bounded. $f(t) = (f_1(t), ..., f_n(t))$ continuous $I \to \mathbb{R}^n$

$$\int_{a}^{b} f(t)dt = \left(\int_{a}^{b} f_{1}(t)dt, ..., \int_{a}^{b} f_{n}(t)dt\right) \in \mathbb{R}^{n}$$

Line Integrals

 $\overline{\mathbb{R}^n \to \mathbb{R}^n}$ functions. Line integral: integrating functions while walking along path

Definition Parameterized Curve: in \mathbb{R}^n is continuous map $\gamma:[a,b]\to\mathbb{R}^n$: is piecewise $C^1 / \exists k > 1$ and partition

$$a = t_0 < t_1 < \dots < t_{k-1} < t_k = b$$

f on $]t_{i-1}, t_i[$ is C^1 for $1 \leq j \leq k$.

Definition Line Integral: $\gamma:[a,b]\to\mathbb{R}^n$ parameterized curve. $U \subseteq \mathbb{R}^n$ subset containing image of γ , $f:U\to\mathbb{R}^n$ cont. Line integral of f along γ :

$$\int_{\gamma} f(s) \cdot d\mathbf{s} = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) dt \in \mathbb{R}$$

- $-\int_a^b f + q dt = \int_a^b f dt + \int_a^b q dt$
- $-\int_a^b f dt + \int_b^c f dt = \int_a^c f dt$
- $-\int_a^a f dt = -\int_a^b f dt$

Definition Oriented Reparameterization: γ $[a,b] \rightarrow \mathbb{R}^n$ parameterized curve. Oriented reparameterization ("orientierte Umparameterisierung") of γ : parameterized curve σ : $[c,d] \to \mathbb{R}^n, \ \sigma = \gamma \circ \phi, \ \phi : [c,d] \to [a,b]$ cont. map, diffbar on c, d, strictly increasing, $\phi(c) = a$, $\phi(d) = b$. ϕ is bijective.

Image of o.r.s identical. γ also o.r. of σ .

Lemma: γ parameterized curve in \mathbb{R}^n , σ oriented reparameterization. U set containing image of γ/σ , $f:U\to\mathbb{R}^n$ cont. function:

$$\int_{\gamma} f(s) \cdot d\mathbf{s} = \int_{\sigma} f(s) \cdot d\mathbf{s}$$

$$\int_{\gamma} f(s) \cdot d\mathbf{s} = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) dt$$
substitution with $t = \phi(u)$

$$= \int_{\phi^{-1}(a)}^{\phi^{-1}(b)} f(\gamma(\phi(u))) \cdot \gamma'(\phi(u)) \phi'(u) du$$

$$= \int_{c}^{d} f(\sigma(u)) \cdot \sigma'(u) dt = \int_{\sigma} f(s) \cdot d\mathbf{s}$$

 γ, σ param. curve - same but opp. directions

$$\int_{\sigma} f(s) \cdot d\overrightarrow{s} = - \int_{\gamma} f(s) \cdot d\overrightarrow{s}$$

Definition Conservative Vector Field: $U \subseteq$ \mathbb{R}^n , $f:U\to\mathbb{R}^n$ cont.: $\forall x_1, x_2\in U, \gamma$ param. curve from x_1 to x_2 the line integral identical \Rightarrow f is conservative.

Lemma: $C^1 g: U \to \mathbb{R}, f = \nabla_g \Rightarrow f \text{ cons.}$

Proof.

$$\int_{\gamma} f(s) \cdot d\mathbf{s} = \int_{a}^{b} \nabla_{g}(\gamma(t)) \cdot \gamma'(t) dt$$

$$= \int_{a}^{b} dg(\gamma(t))(\gamma'(t)) dt = \int_{a}^{b} \frac{d}{dt} g(\gamma(t)) dt$$

$$= [g(\gamma(t))]_{a}^{b} = g(\gamma(b)) - g(\gamma(a))$$

Definition Closed Curve: $\gamma(a) = \gamma(b) \Rightarrow \gamma(a)$ closed curve. Write \oint_{γ} for \int_{γ} .

Lemma: $f \text{ cons.} \Leftrightarrow \oint_{\gamma} f(s) \cdot d\overrightarrow{s} = 0.$

 $\begin{array}{l} \textit{Proof.} \; \underline{\Longrightarrow} \text{: trivial} \\ \underline{\longleftarrow} \colon \gamma, \bar{\gamma} : [a,b] \to \mathbb{R}^n \\ \bar{\gamma}(a) = \bar{\gamma}(a), \gamma(b) = \bar{\gamma}(b) \end{array}$

$$\sigma(t) = \begin{cases} \gamma(a+(b-a)t), & 0 \le t \le 1 \\ \tilde{\gamma}(a+(b-a)(2-t)), & 1 < t \le 2 \end{cases}$$

$$\Rightarrow \oint_{\sigma} f(s)d\overrightarrow{s} = \int_{\gamma} f(s)d\overrightarrow{s} - \int_{\tilde{\gamma}} f(s)d\overrightarrow{s} = 0$$

Cons. vector fields are combinable.

Definition path-connected: $U \subset \mathbb{R}^n$ is "wegzusammenhängend"/path-connected ⇔ $\forall x, y \in U, \exists \text{ curve } \gamma \text{ from } x \text{ to } y,$ $Image(\gamma) \subseteq U$.

Theorem: $U \subseteq \mathbb{R}^n$ open, f cons. v.f. $\Rightarrow \exists C^1$ function g on \overline{U} , $f = \nabla_a$.

If U path-cnnct. $\Rightarrow q$ unique up to addition of a constant. Unique q is called potential of f. Construct q: Choose arbitrary $x_0 \in U$:

$$g(x) := \int_{\gamma_x} f(s) \cdot d\mathbf{s}$$

Alternative: Integrate coordinates of f, maintain h(y, z) or similar for unknown variables **Lemma** Necessary for conservative: $U \subseteq$ \mathbb{R}^n open, $f:U\to\mathbb{R}^n$ is C^1 . Write f(x)= $(f_1(x),\ldots,f_n(x)).$ f conservative \Rightarrow

$$\frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i}, \quad \forall 1 \le i \ne j \le n$$

Definition star-shaped: $U \subseteq \mathbb{R}^n$ is start shaped/"sternförmig":= $\exists x_0 \in U, \forall x \in U$: line segment joining x_0 to x is contained in U. Then: U is star-shaped around x_0 . Sufficient but not necessary:

Theorem: $U \subseteq \mathbb{R}^n$ s.-s., open. f is C^1 v.f. $\frac{\partial f_i}{\partial x_i} = \frac{\partial f_j}{\partial x_i}, \forall 1 \leq i \neq j \leq n \Rightarrow f \text{ is cons.}$

Definition curl: $U \subseteq \mathbb{R}^3$ open, $f: U \to \mathbb{R}^3$ is C^1 . Curl (continuous):

$$curl(f) = \begin{pmatrix} \partial_y f_3 - \partial_z f_2 \\ \partial_z f_1 - \partial_x f_3 \\ \partial_x f_2 - \partial_y f_1 \end{pmatrix}$$

 $curl\ f = 0 \iff J_f \text{ symmetric}$

The Riemann Integral in \mathbb{R}^n

 $U \subseteq \mathbb{R}^n$ compact, $f: U \to \mathbb{R}$ continuous. **Properties**

Definition Compatibility: n = 1, U = $[a, b], a \le b$: $\int_{[a, b]} f(x) dx = \int_a^b f(x) dx$ **Definition** Linearity: $f, q \text{ cont.}, a, b \in \mathbb{R}$

$$\int_{U} (af(x) + bg(x))dx = a \int_{U} f(x)dx + b \int_{U} g(x)dx$$

Definition Positivity: f < q

$$\int_{U} f(x)dx \le \int_{U} g(x)dx$$

 $f \ge 0$: $\int_U f(x)dx \ge 0$ $V \subseteq U$ compact, $f \ge 0$

$$\int_{V} f(x)dx \le \int_{U} f(x)dx$$

Definition Follows from Positivity:

$$\left| \int_{U} f(x)dx \right| \le \int_{U} |f(x)|dx$$

$$\left| \int_{U} (f(x) + g(x))dx \right| \le \int_{U} |f(x)|dx + \int_{U} |g(x)|dx$$

Definition Volume: f = 1. volume of U $:= \int_U f(x) dx$ - generally: volume of

$$\{(x,y) \in U \times \mathbb{R} | 0 \le y \le f(x)\} \subseteq \mathbb{R}^{n+1}$$

volume of U: $vol(U) = Vol(U) = vol_n(U)$ **Theorem** Fubinis Theorem: $n_1, n_2 \geq 1$, $n = n_1 + n_2$. $x_1 \in \mathbb{R}^{n_1}$: compact V, U_1 :

$$V(x_1) = \{x_2 \in \mathbb{R}^{n_2} | (x_1, x_2) \in U\} \subseteq \mathbb{R}^{n_2}$$
$$U_1 = \{x_1 \in \mathbb{R}^{n_1} | V(x_1) \neq \emptyset\} \subseteq \mathbb{R}^{n_1}$$

$$\implies \int_{U} f(x_1, x_2) dx = \int_{U_1} g(x_1) dx$$
$$= \int_{U_1} \left(\int_{V(x_1)} f(x_1, x_2) dx_2 \right) dx_1$$

Definition Domain Additivity: $U_1, U_2 \subseteq \mathbb{R}^n$ compact, $f: U_1 \cup U_2 \to \mathbb{R}$ continuous

$$\int_{U_1 \cup U_2} f(x) dx = \int_{U_1} f(x) dx + \int_{U_2} f(x) dx$$
$$- \int_{U_1 \cap U_2} f(x) dx$$

Definition parameterized m-set: $1 \le m \le n$. parameterized m-set in \mathbb{R}^n is continuous map

$$f: [a_1, b_1] \times \cdots \times [a_m, b_m] \to \mathbb{R}^n$$

 $C^1 \text{ on } |a_1, b_1| \times \cdots \times |a_m, b_m|$

Definition Neglibibility: $B\subseteq \mathbb{R}^n$ negligible/'vernachlässigbar' if: $\exists \ k\geq 0$ and parameterized m_i -sets $f_i: U_i\to \mathbb{R}^n$, with $1\leq i\leq k$ and $m_i< n$ such that

$$U \subseteq f_1(U_1) \cup \cdots \cup f_k(U_k)$$

Lemma: $U \subseteq \mathbb{R}^n$ compact,negligible. f cont.

$$\int_{U} f(x)dx = 0$$

Improper Integrals

Consider only special improper integral in xD. **Definition**: $I \subseteq \mathbb{R}$ compact interval, $a \in \mathbb{R}$, $f: [a, \infty) \times I \to \mathbb{R}$ continuous.

$$\int_{[a,\infty)\times I} f(x,y) dx dy = \lim_{b\to\infty} \int_{[a,b]\times I} f(x,y) dx dy$$

(if exists)

Fubini \Rightarrow [(*) only if inner integral \exists &cont.]

$$\int_{[a,\infty)\times I} f(x,y) dx dy = \int_a^\infty \int_I f(x,y) dy dx$$

$$\stackrel{(*)}{=} \int_I \int_a^\infty f(x,y) dx dy$$

Definition: If limes on right side \exists :

$$\int_{\mathbb{R}^2} f(x,y) dx dy := \lim_{R \to \infty} \int_{[-R,R]^2} f(x,y) dx dy$$

$$= \lim_{R \to \infty} \int_{B_R(0)} f(x, y) dx dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dy dx$$

Lemma Comparison: $|f| \leq g$, $I \subseteq \mathbb{R}$ bounded interval, $J = [a, \infty), a \in \mathbb{R}$

$$\int_{J\times I} g(x,y) dx dy \text{ or } \int_{\mathbb{R}^2} g(x,y) dx dy$$

$$\Rightarrow \exists$$

$$\int_{J\times I} f(x,y) dx dy \text{ or } \int_{\mathbb{R}^2} f(x,y) dx dy$$

Change of Variable

f cont., g is C^1 on (a, b), g cont. on [a, b]

1D:
$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(y)dy$$

Theorem Change of Variable Formula:

$$\int_{\overline{U}} f(\varphi(x)) \cdot |{\rm det} \ J_{\varphi}(x)| dx = \int_{\overline{V}} f(y) dy$$

holds if:

- \overline{U} is compact and $\overline{U} = U \cup B$, U open, B negligible (understand B as the edge and U as the 'content' of \overline{U})
- \overline{V} is compact and $\overline{V} = V \cup C$, V open, C negligible (understand C as the edge and V as the 'content' of \overline{V})
- $\varphi: \overline{U} \to \overline{V}$ is continuous and C^1 on U
- $\varphi(U) = V$, $\varphi: U \to V$ is bijective (must not be bijective on the border B)
- Some continuous function $\overline{U} \to \mathbb{R}$ exists, which equals $|\det J_{\varphi}|$ if constrained to U.

|det $J_{\varphi}(x)$ | represents integral change under φ . **Polar Coordinates**

$$\varphi: [0, R] \times [-\pi, \pi] \to B_R(0),$$

 $\varphi(r, \Theta) = (r \cos \Theta, r \sin \Theta)$

$$J_{\varphi}(r,\Theta) = \begin{pmatrix} \cos\Theta & -r\sin\Theta\\ \sin\Theta & r\cos\Theta \end{pmatrix}$$

 $\Rightarrow \det |J_{\varphi}(r,\Theta)| = |r\cos^2 \Theta + r\sin^2 \Theta| = r$

$$\Rightarrow$$
 " $dxdy = rdrd\Theta$ "

3D Polar Coordinates

$$\xi : [0, R] \times [0, 2\pi] \times [0, \pi]$$
$$\xi(r, \Theta, \varphi) = \begin{pmatrix} r \sin \varphi \cos \Theta \\ r \sin \varphi \sin \Theta \\ r \cos \varphi \end{pmatrix}$$

- z-axis to the top $(\Theta \text{ rot. around } z, = 0 \leftrightarrow x\text{-axis, clock-wise})$ $(\varphi \text{ deviation from } z)$ - x-axis to the right - y-axis to the front

$$J_{\xi}(r, \Theta, \varphi) = \begin{cases} \sin \varphi \cos \Theta & -r \sin \varphi \sin \Theta & r \cos \varphi \cos \Theta \\ \sin \varphi \sin \Theta & r \sin \varphi \cos \Theta & r \cos \varphi \sin \Theta \\ \cos \varphi & 0 & -r \sin \varphi \end{cases}$$

$$\Rightarrow |\det J_{\xi}(r, \Theta, \varphi)| = |r^{2}(-\sin^{3}\varphi \cos^{2}\Theta - \sin\varphi \cos^{2}\varphi \sin^{2}\Theta)$$

$$= |r^{2}(-\sin^{3}\varphi - \sin\varphi \cos^{2}\varphi)| = |-r^{2}\sin\varphi|$$

$$\Rightarrow "dxdydz = r^2 \sin \varphi dr d\Theta d\varphi"$$

Geometric Applications

Definition center of Gravity: $U \subseteq \mathbb{R}^n$ compact with positive volume. Center of mass/gravity (barycenter) of U is $\overline{x} \in \mathbb{R}^n$, $\overline{x} = (\overline{x}_1, \dots, \overline{x}_n)$ with

$$\overline{x}_i = \frac{1}{vol(U)} \int_U x_i dx$$

Theorem Surface Area: let $f:[a,b] \times [c,d] \to \mathbb{R}$ be C^1 on $(a,b) \times (c,d) \to \mathbb{R}$. Let $\Gamma = \{(x,y,z) \in \mathbb{R}^3 : (x,y) \in [a,b] \times [c,d], z = f(x,y)\} \subset \mathbb{R}^3$ be the graph of f. Intuitively, this is a surface, and it should have an area. This is in fact given by

$$\int_{a}^{b} \int_{c}^{d} \sqrt{1 + (\partial_{x} f(x, y))^{2} + (\partial_{y} f(x, y))^{2}} dxdy$$

Such a result also holds for the graphs of functions defined on other sets, such as discs, provided they are C^1 in the "interior" of the domain.

Theorem Graph Length:

For the length of the graph of a function $f:[a,b]\to\mathbb{R}$ we have

$$\int_{a}^{b} \sqrt{1 + f'(x)^2} dx$$

For length as motion in space of $\phi : \mathbb{R} \to \mathbb{R}^{\text{typicaly} > 1} : \int_a^b |\phi'(t)| dt$

Important Integrals

$$I := \int_{-\infty}^{\infty} e^{-x^2} dx, J := \int_{\mathbb{R}^2} e^{-x^2 - y^2} dx dy$$

$$J = \lim_{R \to \infty} \int_{B_R(0)} e^{-x^2 - y^2} dx dy$$

$$= \lim_{R \to \infty} \int_0^R \int_{-\pi}^{\pi} e^{-r^2} r d\theta dr$$

$$= \lim_{R \to \infty} 2\pi \int_0^R r e^{-r^2} dr$$

$$= \lim_{R \to \infty} 2\pi \left[-\frac{1}{2} e^{-r^2} \right]_0^R$$

$$= \lim_{R \to \infty} 2\pi \left(\frac{1}{2} - \frac{1}{2} e^{-R^2} \right)$$

$$= \pi$$

$$J = \lim_{R \to \infty} \int_{-R}^{R} \int_{-R}^{R} e^{-x^2 - y^2} dx dy$$

$$= \lim_{R \to \infty} \int_{-R}^{R} e^{-y^2} \left[\int_{-R}^{R} e^{-x^2} dx \right] dy$$

$$= \lim_{R \to \infty} \left(\int_{-R}^{R} e^{-x^2} dx \right) \cdot \left(\int_{-R}^{R} e^{-y^2} dy \right)$$

$$= \lim_{R \to \infty} \left(\int_{-R}^{R} e^{-x^2} dx \right)^2$$

$$= \left(\lim_{R \to \infty} \int_{-R}^{R} e^{-x^2} dx \right)^2$$

$$= I^2$$

Ordinary Differential Equations

Funktion f unbekannte - f, f', ... in Formel

ODE: f hat einen Parameter - PDE: mehrere

Definition gewöhnliche Differentialgleichungen: $G(y, y', ..., y^{(k)}, x) = 0, k \ge 1$. y Funktion in einer Variablen x. k: Ordnung.

Lösung: f : $I \rightarrow \mathbb{R}$ mit $G(f(x), f'(x), ..., f^{(k)}(x), x) = 0, \forall x \in I.$

$$y' = g(x) \Rightarrow y = G(x) = \int g(x) dx$$
.

Definition Anfangswertproblem: Ordnung k und $y(x_0) = y_0, y'(x_0) = y_1, ..., y^{(k-1)}(x_0) =$ y_{k-1} bekannt.

Even ODE defined on \mathbb{R} , may only solvable on subset.

Separation of Variable ODE $y' = \frac{1}{a(y)}b(x)$, a, b continuous, $a(y) \neq 0$:

$$y' = \frac{1}{a(y)}b(x) \Leftrightarrow a(y) \cdot y' = b(x)$$

$$\Leftrightarrow \int a(y) \cdot y'(x)dx = \int b(x)dx + c, c \in \mathbb{R}$$

$$\Leftrightarrow A(y) = B(x) + c$$

$$\Rightarrow y = A^{-1}(B(x) + c)$$

Theorem Picard's Existence Theorem (Existenz-&Eindeutigkeitssatz): $(x_0, y_0 \in$ \mathbb{R}). $F: \mathbb{R}^2 \to \mathbb{R}$ continuously differentiable near (x_0, y_0) . Let . ODE y' = F(x, y) has unique solution f defined on a "largest" open interval I containing x_0 such that $f(x_0) = y_0$. I.e., an initial value problem y' = F(y, x)with $y(x_0) = y_0$ with F being continuously differentiable has exactly one maximum solution.

'Maximum': All other solutions $q: J \to \mathbb{R}$: $J\subseteq I, f|_{J}=q.$

Reduce ODE Order from
$$\geq 2$$
 $F(x) = \begin{pmatrix} f_0(x) \\ f_1(x) \\ \vdots \\ f_{k-1}(x) \end{pmatrix}$, $f'_i(x) = f_{i+1}(x)$, $f_0 = y$.
$$\begin{pmatrix} f'_0(x) \\ f'_1(x) \end{pmatrix}$$

Linear Differential Equations

Definition Linear Differential Equations: $I \subset \mathbb{R}$ an open interval, k > 1 integer. An homogenous linear ordinary differen**tial equation** of order k on I:

$$y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_1y' + a_0y = 0$$

 $a_0, ..., a_{k-1}$ complex-valued functions on I.

$$y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_1y' + a_0y = b$$

 $b: I \to \mathbb{C}$, is an inhomogenous linear ODE, associated homogenous equation b=0. Solution is k-times differentiable function f: $I \to \mathbb{C}$ with $f^{(k)}(x) + a_{k-1}f^{(k-1)}(x) + ... +$ $a_0(x)f'(x) = b(x), \forall x \in I. (f'(x) =$ $(\operatorname{Re} f(x))' + i(\operatorname{Im} f(x))'$).

LEADING COEFFICIENT 1!

Theorem: $I \subset \mathbb{R}$ open interval, $k \geq 1$

$$y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_1y' + a_0y = 0$$

be a linear ODE, continuous coefficients.

- 1. Set S of k-times differentiable solutions $f: I \to \mathbb{C}$ is complex vector space, subspace of complex-valued functions on I.
 - a_i real-valued: Set S real-valued solutions is real vector space, subspace of space of real-valued functions on I.
- 2. $\dim S = k$, and for any $x_0 \in I$, any $(y_0,...,y_{k-1}) \in \mathbb{C}^k$: unique $f \in S$ with

 a_i real-valued: dim S = k, and for any $x_0 \in I$, any $(y_0, ..., y_{k-1}) \in \mathbb{R}^k$: unique real-valued f:

$$f(x_0) = y_0, f'(x_0) = y_1, ..., f^{(k-1)}(x_0) = y_{k-1} y^{(k)} + a_{k-1} y^{(k-1)} + ... + a_0 y = b$$

 $a_0, ..., a_{k-1} \in \mathbb{C}, b : I \to \mathbb{C}$

3. b continuous on I. \exists solution f_0 for

$$y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_1y' + a_0y = b$$

solutions $S_b = \{f + f_0 | f \in S\}$, f_0 solut. 4. $x_0 \in I$, $(y_0,.,y_{k-1}) \in \mathbb{C}^k$:unique $f \in S_b$

$$f(x_0) = y_0, f'(x_0) = y_1, ..., f^{(k-1)}(x_0) =$$

b, a_i real-valued $\Rightarrow \exists$ real-valued solution If f_1 , f_2 solutions of homogenous linear ODE $\Rightarrow f = z_1 f_1 + z_2 f_2, z_1, z_2 \in \mathbb{C}$ solutions too. **Definition** Superposition (Superpositionsprinzip): f_1, f_2 solve inhom. linear ODE (right-hand sides b_1, b_2) $\Rightarrow f_1 + f_2$ solves the inhom. linear ODE (right-hand side $b_1 + b_2$)

Solution Strategy Initial Value Problem

- 1. Find basis $f_1, ... f_n$ of the hom. ODE. 2. Find solution f_0 of the inhom. ODE
- ("Partikulärlösung"). General solution: $f_0 + \sum_{j=1}^n \lambda_j f_j, \lambda_j \in \mathbb{C}$
- 3. Solve LSE of general solution with initial values for $\lambda_1, ..., \lambda_k$ (unique)

Linear ODEs of Order 1

y' + ay = b - a, b continuous on I.

Step 1 of Solution Strategy.

Theorem Homog. Sol: Solution has form

$$f(x) = z \exp(-A(x)) = ze^{-A(x)}$$

A primitive of $a, z \in \mathbb{C}$. $f(x_0) = y_0$: unique.

$$f(x) = y_0 \exp(A(x_0) - A(x)) = y_0 e^{A(x_0) - A(x)}$$

Proof. $\exists x_0, f(x_0) = 0 \Rightarrow f = 0$ is solution (only as unique by Picard) Else: separation of variable

Step 2 of Solution Strategy. Guess. Otherwise: "Variation of the constant" - make z a variable: $f(x) = z(x)e^{-A(x)}$

$$(y_0, ..., y_{k-1}) \in \mathbb{C}^n$$
: unique $f \in S$ with $y' + ay = b \Rightarrow f'(x) + a(x)f(x) = b(x)$
 $f(x_0) = y_0, f'(x_0) = y_1, ..., f^{(k-1)}(x_0) = \overrightarrow{y_k} z'(x)e^{-A(x)} = b(x) \Leftrightarrow z'(x) = e^{A(x)}b(x)$

Linear ODEs with Constant Coefficients Same solution strategy

Step 3 of Solution Strategy. Use initial values

$$(y_{k-1} y^{(k)} + a_{k-1} y^{(k-1)} + \dots + a_0 y = a_0, \dots, a_{k-1} \in \mathbb{C}, b : I \to \mathbb{C}$$

Step 1 of Solution Strategy.

 $y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_1y' + a_0y = b$ Characteristic polynomial $P(t) = t^k + t$ $a_{k-1}t^{k-1} + ... + a_0$. α root $\Rightarrow e^{\alpha x}$ solution **Theorem:** P no roots with multiplicity \Rightarrow $\{e^{\alpha x}|\alpha\in\mathbb{C},P(\alpha)=0\}$ is basis of solution space ${}^{+}P^{k}\bar{o}\delta f$. k unique $\alpha \Rightarrow k$ lin. indep. func. \square

> **Theorem:** P roots $\alpha_1, ..., \alpha_l$, multiplicities $v_1, ..., v_l \ge 1 \Rightarrow$ basis of solution space:

$$\{x^j e^{\alpha_i x} | i \in \{1, ..., l\}, j \in \{0, ..., v_i - 1\}$$

Proof. $(xe^{\alpha x})^{(i)} = \alpha^i x e^{\alpha i} + i\alpha^{i-1} e^{\alpha x}$ in ODE \rightarrow sums with factor $P^{(k)}(\alpha)$, are = 0 from multiplicity of α

Can make complex basis real if $a_i \in \mathbb{R}$. $\alpha, \overline{\alpha}$ roots. Replace $e^{\alpha x}$, $e^{\overline{\alpha}x}$ with

$$e^{\alpha x} = e^{\beta x} e^{\gamma i x} = e^{\beta x} (\cos(\gamma x) + i \sin(\gamma x))$$
$$e^{\overline{\alpha} x} = e^{\beta x} (\cos(\gamma x) - i \sin(\gamma x))$$

 \Rightarrow basis:{ $e^{\beta x}\cos(\gamma x), e^{\beta x}\sin(\gamma x)$ }

Step 2 of Solution Strategy. Guess. Or use those 'tricks':

- Superposition Principle
- f_0/q_0 sol. with right-hand side $b/c \Rightarrow$
- $\lambda f_0 + \mu g_0$ sol. with r.-h. side $\lambda b + \mu c$ Method of Underdetermined Coefficients. Idea: f similar to b.

 $b(x) = x^d e^{\beta x}$. Solution: $Q(x)e^{\beta x}$, Q polynomial, $\deg Q \leq d + v$ (v multiplicity of β as root of P)

 $b(x) = x^d \cos(\beta x)$ or b(x) = $x^d \sin(\beta x)$. Solution: $Q_1(x) \cos(\beta x) +$ $Q_2\sin(\beta x)$, Q_1,Q_2 polynomials, $\deg Q_1, \deg Q_2 \leq d + v$ (v multiplicity of βi as root of P)

1. ODE = Q(x)...(approx.), 2. solve factors of approx. by comparing coefficients

Variation of Constants (complex b, non-constant coefficients)

$$y^{(k)} + a_{k-1}y^{(k-1)} + \dots + a_1y' + a_0y = b$$

 $(f_1,...,f_k)$ basis of hom. sys.

$$f(x) = z_1(x)f_1(x) + \dots + z_k(x)f_k(x)$$

$$\begin{cases} z'_1(x)f_1(x) + \dots + z'_kf_k(x) = 0 \\ z'_1(x)f'_1(x) + \dots + z'_kf'_k(x) = 0 \\ \vdots \\ z'_1(x)f_1^{(k-2)}(x) + \dots + z'_kf_k^{(k-2)}(x) = 0 \end{cases}$$

$$\Rightarrow k \text{ equations for } z_i, i \in [k]$$

Insert f into ODE, solve system after simplification as f_i are sol. of hom. sys.

Example: $y'' + a_1 y' + a_0 y = b$

$$\begin{cases} f_0(x) = z_1(x)f_1(x) + z_2(x)f_2(x) \\ z'_1f_1(x) + z'_2f_2(x) = 0 \end{cases}$$

$$\text{derive for use in ODE}$$

$$\left\{ \begin{array}{c} f_0' = z_1 f_1' + z_2 f_2' \\ f_0'' = z_1' f_1' + z_1 f_1'' + z_2' f_2' + z_2 f_2'' \end{array} \right\}$$
 insert into ODE

$$z'_1f'_1 + z_1f''_1 + z'_2f'_2 + z_2f''_2 + a_1z_1f'_1 + a_1z_2f'_2 + a_0z_1f_1 + a_0z_2f_2 = b$$

 f_1 and f_2 solutions of ODE can factor out z_1 and z_2 to get:

$$\begin{aligned} z_1'f_1' + z_2'f_2' &= b \\ \Longrightarrow \\ \left\{ \begin{array}{l} z_1'f_1 + z_2'f_2 &= 0 \\ z_1'f_1' + z_2'f_2' &= b \end{array} \right\} \\ \Leftrightarrow \begin{pmatrix} f_1 & f_2 \\ f_1' & f_2' \end{pmatrix} \begin{pmatrix} z_1' \\ z_2' \end{pmatrix} &= \begin{pmatrix} 0 \\ b \end{pmatrix} \\ \Leftrightarrow \begin{pmatrix} z_1' \\ z_2' \end{pmatrix} &= A^{-1} \begin{pmatrix} 0 \\ b \end{pmatrix} \end{aligned}$$

wichtige ODEs

- $y' = \frac{1}{\cos^2 x} \Rightarrow y = \tan(x) + c$
- $y'' = y \Rightarrow y = c_1 e^x + c_2 e^{-x}$ Harmonic Oscillator: y(x) vertical deviation, my'' = -ky - by'

(Hopefully) Helpful stuff

trigonometrische Funktionen

$$\sin z := \sum_{m=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots
\cos z := \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!} = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots$$

konvergiert absolut $\forall z \in \mathbb{C}$ (Quotientenkritterium), $\rho = \infty$

Theorem 3.8.1: $\sin, \cos \in \mathbb{R}^{\mathbb{R}}$ sind stetig **Theorem** 3.8.2:

- 1. $\exp(iz) = \cos z + i \sin z, \forall z \in \mathbb{C}$ $2. \cos z = \cos(-z) \& \sin(-z)$
- $-\sin z, \forall z \in \mathbb{C}$
- 3. $\sin z = \frac{e^{iz} e^{-iz}}{2i}$, $\cos z = \frac{e^{iz} + e^{-iz}}{2}$
- 4. $\sin(z+w) = \sin z \cos w + \cos z \sin w$ $\cos(z+w) = \cos z \cos w - \sin z \sin w$

5. $\cos^2 z + \sin^2 z = 1, \forall z \in \mathbb{C}$

Corollary 3.8.3: $\sin(2z) = 2\sin z \cos z$ & $\cos(2z) = \cos^2 z - \sin^2 z$

Corollary: $\cos^3 x = \frac{3}{4}\cos x + \frac{1}{4}\cos(3x)$

 $\sin^3 x = \frac{3}{4} \sin x - \frac{1}{4} \sin(3x)$

Useful:

 $\sin^2 x = \frac{1}{2}(1 - \cos(2x))$

 $\cos^2 x = \frac{1}{2}(1 + \cos(2x))$

wichtige Konvergenzen

Grenzwerte

- $\frac{1}{\pi} \to 0$ (direkt von Definition)
- $\frac{1}{2} \rightarrow 0$ (Vergleichsprinzip)
- $\frac{1}{2n} \to 0$ (Vergleichsprinzip)
- $\frac{1}{n!} \rightarrow 0$ (Vergleichsprinzip)
- $\bullet \stackrel{n:}{\underline{\cos(\dots)}} \to 0 \ (|\cos(\dots)| \le 1)$
- $\frac{n+1}{2} = 1 + \frac{1}{2} \to 1$
- $\lim_{n \to \infty} n^a q^n = 0, 0 \le q < 1, a \in \mathbb{Z}$ (fallend + Methode "Grenzwert monotoner Folgen")
- $a_1 = c, a_{n+1} = \frac{1}{2}(a_n + \frac{c}{a_n})$ konvergiert \sqrt{c} (fallend + Methode "Grenzwert monotoner Folgen")
- $\lim_{n\to\infty} n^a q^n = 0$ ($a \in \mathbb{Z}, 0 \le q < 1$) monoton fallend für groß genug n, nach unten beschränkt, Weierstrass
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$ $n \ge 1 \text{ von } (b^n - a^n) = (b - a)(b^{n-1} + a^n)$ $b^{n-2}a + ...$ & $\lim \frac{n}{(1+\epsilon)^n} = 0$

 $\lim a_n = \sqrt{c}$

Da monoton fallend, >0 & Weierstrass

• $\lim_{x\to\infty} \sqrt{x^2+5}$ $\lim_{x \to \infty} \frac{(\sqrt{x^2+5}-x)(\sqrt{x^2+5}+x)}{\sqrt{x^2+5}+x}$ $\lim \frac{x^2+5-x^2}{\sqrt{x^2+5}+x} = \lim \frac{5}{\sqrt{x^2+5}+x} = 0$

- $\lim_{n\to\infty} \sum_{i=1}^n \frac{1}{n^2}$ (konvergiert nach Cauchy Corollary), = $\frac{\pi^2}{6}$ alternativ Vergleich zu $\sum \frac{1}{(k-1)k}$
- $a_n = \sum_{i=1}^n \frac{1}{n^3}$ konvergiert, Grenzwert ?
- $\sum_{i=1}^{n} \frac{1}{i} \to \infty$
- $\sum_{n=1}^{\infty} = \infty$ (increasing + Cauchy (not
- $\frac{1-q^{n+1}}{1-q} \text{ Induktion, } |a_n - \frac{1}{1-q}| \to 0)$ • $\sum \frac{(-1)^k}{k^2}$ konvergiert absolut
- $\sum_{k=1}^{\kappa} (-1)^{k+1} \frac{1}{k}$ konvergiert, aber nicht ab-
- $\sum_{n} \frac{n!}{n!}$ divergiert (Quotientenkriterium)
- $\sum q^n$ konvergiert |q| < 1, divergiert ≥ 1 Quotientenkriterium, besonders für =
- $\sum \frac{z^k}{k!}$ konvergiert
- $\sum a_n$ konvergiert, $a_n = x_0 + \dots + x_n$, $x_n = a_n - a_{n-1} \to 0$
 - $-\sum x_n = \sum (x_{2n+1} + x_{4n+2} + x_{4n+4})$ falls
 - $\sum x_n$ absolut konvergiert
 - $\sum x_n$ konvergiert (nicht absolut). $\forall m \in \mathbb{R}$, Bijektion $j: \mathbb{N} \to \mathbb{N}$ existiert $\sum \frac{(-1)^{j(k)-1}}{i(k)} =$

Doppelte Summation Vertauschung von In-

- funktioniert bei $a_{m,n} = (\frac{1}{2} + \frac{1}{m})^k$
- funktioniert nicht bei $a_{m,n}$ m = n-1, m+1=n

else

0.

Cauchy Produkt

 $\left|\sum_{j=0}^{n} a_{n-j} a_{j}\right|$ $\sum_{j=0}^{n} \frac{1}{\sqrt{(n-j+1)(j+1)}} \ge \sum_{j=0}^{n} \frac{1}{\sqrt{(n+1)^2}} = 1$ Polynome

•
$$a_1 = c > 1, a_{n+1} = \frac{1}{2} \left(a_n + \frac{c}{a_n} \right)$$
: $p(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_0, a_d \neq 0$
 $\lim a_n = \sqrt{c}$ $q(x) = b_c x^c + \dots + b_0, b_c \neq 0$

Betrachtung von $\lim \frac{p(n)}{q(n)}$

- $\frac{a_d}{b_n} > 0 \Rightarrow \lim \frac{p(n)}{q(n)} = +\infty$
- $\frac{a_d}{b_c} < 0 \Rightarrow \lim_{n \to \infty} \frac{p(n)}{p(n)} = -\infty$ $\bullet \ d = c$ $\lim_{n \to \infty} \frac{p(n)}{q(n)} = \frac{a_d}{b_c}$ $\bullet \ d < c$
- $\lim \frac{p(n)}{q(n)} = 0$

 $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$ (konvergiert da fallend mit 2.2.7)

Exponentialfunktion Betrachte $\sum \frac{z^n}{n!}$. Konvergiert $\forall z$ (Qutoentenkriterium). $\exp(z) := \sum \frac{z^n}{n!}$

Mit 2.7.26: $\exp(z + w) = \exp(w) \exp(z)$ $\exp(z) \neq 0$ as inverse $\neq 0$ with $\exp(z-z) =$

 $\exp(1) := e \approx 2.718281828... \Rightarrow \exp(z) =$

 $\exp(1 + ... + 1) = \exp(1)^z = e^z$ **Stetigkeit** Let $x_0 \in \mathbb{R}$. $\exp(x) - \exp(x_0) =$

 $\exp(x_0)(\exp(x-x_0)-1)$ and $\exp(x-x_0)-1$ $1 = \sum_{n=1}^{\infty} \frac{(x-x_0)^n}{n!}$. With the triangle inequality and $\frac{1}{n!} \leq 1$, we get $|\exp(x-x_0)-1| \leq$

 $\sum_{n=1}^{\infty} \frac{|x-x_0|^n}{n!} \le \sum_{n=1}^{\infty} |x-x_0|^n = \frac{1}{1-|x-x_0|} - \frac{1}{1-|x-x_0|}$

 $1 = \frac{|x-x_0|}{1-|x-x_0|}$. Then, for $\epsilon > 0$, let $\delta =$ $\min(\frac{1}{4}, \frac{\epsilon}{4\exp(x_0)})$. With $|x - x_0| < \delta$, we get

 $|\exp(x) - \exp(x_0)| < 2\exp(x_0)\frac{\epsilon}{4\exp(x_0)} =$

 $\lim_{\stackrel{x\to 0}{x<0}}\frac{\text{Grenzwerte von Funktionen}}{\stackrel{1}{x}}\lim(\frac{1}{x}(x-\frac{x^3}{6}+\ldots))=\lim(1-\frac{1}{x}(x-\frac{x^3}{6}+\ldots))$ $\frac{x^2}{6} + \dots) = 1$

- $\lim \frac{x^2+1}{x^2-1} = 1$
- $\lim \tilde{e}^x = \infty$
- $\lim_{x\to-\infty} e^x = 0$
- $\lim \frac{e^x}{r^a} = \infty$
- $\bullet \lim_{x} x^a e^{-x} = 0$

Trigonometry

Corollary 4.2.8: $[0,2\pi] \rightarrow \mathbb{R}^2, t \mapsto$ $(\cos t, \sin t)$ is Bijektion von $[0, 2\pi]$ nach K = $\{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}.$

Proof of existence: Since $x^2 + y^2 = 1$ we get $0 \le x^2 \le 1$ and $-1 \le x \le 1$. This

means that there is a unique $u \in [0, \pi]$ such that $\cos(u) = x$. Then, from $1 = x^2 + y^2 = \cos^2(u) + \sin^2(u) = x^2 + \sin^2(u)$ we get $y^2 = \sin^2(u)$ wo $y = \pm \sin(u)$. Case 1: If $y \ge 0$, then $y = \sin(u)$ since $0 \le u \le \pi$. We take $t = u$. Case 2: If $y < 0$, then $y = -\sin(u) = \sin(2\pi - u)$. But then also	Example $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{\beta}} \text{ konvergiert gdw. } \int_{2}^{\infty} \frac{1}{n(\ln n)^{\beta}} dx$ konvergiert. $b > 2, x = e^{u}, u \in [\ln 2, \ln b].$ $\int_{2}^{b} \frac{1}{x(\ln x)^{\beta}} dx = \int_{\ln 2}^{\ln b} \frac{1}{e^{u}u^{\beta}} e^{u} du = \int_{\ln 2}^{\ln b} \frac{1}{u^{\beta}} du.$ Ableitungen	$\cot x = \frac{\cos x}{\sin x}, \cot' x = -\frac{1}{\sin^2 x}$ $\operatorname{arccot}:] - \infty, \infty[\rightarrow]0, \pi[, \operatorname{arccot}' y = -\frac{1}{1+y^2}]$	And $S(f,P_n)=\ldots=(b-a)a+\frac{(b-a)^2}{2}(\frac{n-1}{n})$ So, $\lim_{n\to\infty}S(f,P_n)=\frac{b^2-a^2}{2}=\lim_{n\to\infty}s(f,P_n)$ Hence, f is integrable with $\int_a^bf(x)dx=\frac{b^2-a^2}{2}.$ (ir)rational - $f(x)=\left\{\begin{smallmatrix} 1,x \text{ rational} \\ 0,x \text{ irrational} \end{smallmatrix}\right.$ nur Lebesgue differ-
$x = \cos(u) = \cos(2\pi - u)$ So we can take $t = 2\pi - u \in [\pi, 2\pi]$. • $\lim_{\substack{x \to 0 \ x > 0}} \frac{1 - \cos(x)}{\sin(x)} = \lim_{\substack{x \to 0 \ x > 0}} \frac{\sin(x)}{\cos(x)} = \frac{0}{1} = 0$	• $\exp' = \exp$ • $\ln'(x) = \frac{1}{x} (4.1.12)$ • $(\log)^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{x^n}$ • $\sin' = \cos, \cos' = -\sin$ • $(x^n)' = nx^{n-1}$	$\frac{1}{\sqrt{1+y^2}}, \tanh' x = \frac{\sqrt{y^2-1}}{\cosh^2 x} > 0, \operatorname{artanh}' y = \frac{1}{1-y^2}$ Stuff	enuierbar Let $f:[0,1] \to \mathbb{R}$ with $f(x)=\{\frac{0}{q},x=\frac{p}{q},p,q$ natural numbers, relatively prime Show $\int_0^1 f(x)dx=0$.
Corollary 4.2.18, Example!: $\sqrt[n]{x_1 \cdots x_n} \le \frac{x_1 + \ldots + x_n}{n}$ We consider $f(x) = -\ln x$ with $f'(x) = -\frac{1}{x}$ and $f''(x) = \frac{1}{x^2}, x \in]0, \infty[$. Hence, f is	• $\tan^f x = \frac{1}{\cos^2 x} = 1 + \tan^2 x$ (4.1.9(3)) • $\cot' x = -\frac{1}{\sin^2 x}$ Notice: $f \text{ even } (f(-x) = f(x)) \Rightarrow f' \text{ uneven } (f(-x) = -f(x)) & f \text{ uneven } \Rightarrow f' \text{ even }$	4.3.4: $\exp, \sin, \cos \sinh, \cosh, \tanh, \dots$ sind glatt auf ganz $\mathbb R$ Polynome sind glatt auf ganz $\mathbb R$ $\frac{\ln \operatorname{ist} \operatorname{glatt}}{\operatorname{Integrals}}$	$\int_{a}^{b} \frac{\sin t}{\cos t} dt \text{ for } -\frac{\pi}{2} < a < b < \frac{\pi}{2}. \text{ We can use substitution: } \int_{a}^{b} \frac{\sin t}{\cos t} dt = -\int_{a}^{b} \frac{\cos' t}{\cos t} dt = -\int_{a}^{b} f(\cos t) \cos' t dt \text{ with } f(y) = \frac{1}{y}. \text{ Using }$
convex. From 4.2.14 with $I =]0, \infty[$ and $\lambda_1 = = \lambda_n = \frac{1}{n}$ we get $-\ln(\frac{1}{n}\sum_{i=1}^n x_i) \le \sum_{i=1}^n -\frac{1}{n}\ln x_i = -\frac{1}{n}\ln(x_1\cdots x_n)$ Now we use that exp is increasing:	$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 \text{ Then } f'(x_0) = 2x_0, \forall x_0 \in \mathbb{R} \text{ Follows from } f(x) - f(x_0) = x^2 - x_0^2 = (x - x_0)(x + x_0) \text{ For } x \neq x_0 \text{ then } \lim \frac{f(x) - f(x_0)}{x - x_0} = \lim x + x_0 = 2x_0$	• $\int e^x dx = e^x$ • $\int \cos(2x) dx = \frac{1}{2} \sin(2x)$ • $\int e^x dx = e^x + C$ • $\int \frac{1}{x} dx = \log x + C, x > 0$	substitution (5.4.6) we then get $\int_a^b \frac{\sin t}{\cos t} dt = -\int_{\cos(a)}^{\cos(b)} \frac{1}{x} dx = -\log(\cos(b)) + \log(\cos(a))$ It follows that an antiderivative of $\tan(t)$ is $-\log(\cos(t))$ for $-\frac{\pi}{2} < t < \frac{\pi}{2}$.
$\exp(\frac{\log x_1}{n} + \dots + \frac{\log x_n}{n}) \le \frac{x_1 + \dots + x_n}{n}$ $\Leftrightarrow \exp(\frac{\log x_1}{n}) \cdot \dots \cdot \exp(\frac{\log x_n}{n}) \le \frac{x_1 + \dots + x_n}{n}$		$ \bullet \int x^s dx = \begin{cases} \frac{x^{s+1}}{s+1} + C, & s \neq -1 \\ \ln x + C, & x > 0 \end{cases} $ $ \bullet \int \sin x dx = -\cos x + C $ $ \bullet \int \sinh x dx = \cosh x + C $ $ \bullet \int \cos x dx = \sin x + C $ $ \bullet \int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C $	$b > 1.$ $\int_0^\infty \frac{1}{1+x^{\alpha}} dx = \int_0^1 \frac{1}{1+x^{\alpha}} dx + \int_1^b \frac{1}{1+x^{\alpha}} dx$
$\Leftrightarrow \sqrt[n]{x_1 \cdots x_n} \leq \frac{x_1 + \dots + x_n}{n}$ $\frac{\textbf{Zeta-Funktion}}{\text{Für } s > 1 \text{ konvergient } \zeta(s) = \sum \frac{1}{n^s}.}$ $S_N = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \dots + \frac{1}{N^s}. \text{ Mit } k \geq 1, N \leq$	sin strikt monoton wachsend auf] $-\frac{\pi}{2}, \frac{\pi}{2}$ [/ $\sin: [-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1]$ Bijektion. arcsin: $[-1, 1] \to [-\frac{\pi}{2}, \frac{\pi}{2}]$ Umkehrfunktion. Differenzierbar] $-1, 1$ [. $\arcsin' y = \frac{1}{\sin' x} = \frac{1}{\cos x} = \frac{1}{\sqrt{1-y^2}}$.	• $\int \cosh x dx = \sinh x + C$ • $\int \frac{1}{\sqrt{1+x^2}} dx = \operatorname{arsinh} x + C$ • $\int \frac{1}{1+x^2} dx = \arctan x + C$ • $\int e^x dx = e^x + C$	$\frac{1}{2x^{\alpha}} \leq \frac{1}{1+x^{\alpha}} \leq \frac{1}{x^{\alpha}}, \forall x \geq 1.$ example $\int \sin^{2}x dx = \int \frac{1}{2}(1-\cos(2x)) dx$ example $\int \frac{1}{\sqrt{e^{x}-e^{2}}} \text{ with } u = e^{x} - e^{2}; \int \frac{1}{\sqrt{u}(u+e^{2})} du$
2^k , dann $S_N \leq S_{2^k}$. $S_{2^k} = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \dots$ $\leq 1 + \frac{1}{2^s} + \frac{1}{2^{s-1}} + \frac{1}{4^{s-1}} + \dots$	With 4.1.12 we know that \arcsin is differentiable on $]-1,1[$ and with $y=\sin x$ get $\arcsin'(y)=\frac{1}{\sin'(x)}=\frac{1}{\cos(x)}$ We can use $\sin^2(x)+\cos^2(x)=1 \Rightarrow y^2=\sin^2(x)=$	• $\int \frac{1}{\sqrt{x^2 - 1}} dx = \operatorname{arcosh} x + C$ • $\int \cos(ax) = \frac{1}{a} \sin(ax)$ $f(x) = x$ Let $f(x) = x$ on $[a, b]$. Let $P_n = \{a + i \cdot h 0 \le a\}$ with $b = b - a$. Then	with $v = \frac{\sqrt{u}}{e}$: $\int \frac{2e^2v}{ve(v^2e^2 + e^2)} dv = \int \frac{2}{v^2e + e} dv = \frac{2}{e} \arctan(v)$ $\mathbf{example}$ $\int \frac{1}{1 + \cos(x)} dx = \int \frac{1}{1 + \cos(x)} \frac{1 - \cos(x)}{1 - \cos(x)} dx = \frac{1}{e^2} \cot(x)$
$= 1 + \frac{1}{2^s} + \frac{1}{2^{s-1}} + \frac{1}{(2^{s-1})^2} + \frac{1}{(2^{s-1})^4} + \dots$ $= 1 + \frac{1}{2^s} + \frac{1}{2^{s-1}} + \frac{1}{(2^{s-1})^2} + \frac{1}{(2^{s-1})^4} + \dots$ Folgt mit Vergleichssatz und geometrischer	$1 - \cos^2(x)$. With $\cos(x) > 0$ (which holds for $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$) we get: $\cos(x) = \sqrt{1 - y^2}$. So, $\forall y \in]-1, 1[$ we get $\arcsin'(y) = \frac{1}{\sqrt{1 - y^2}}$ arccos	$i \leq n$ } with $h = \frac{b-a}{n}$. Then $s(f, P_n) = \sum_{i=1}^n x_{i-1}(x_i - x_{i-1})$	$\int \frac{1}{\sin^2(x)} dx - \int \frac{\cos(x)}{\sin^2(x)} dx = -\cot(x) + \frac{1}{\sin(x)}$
Reihe. Gamma Funktion $ \int_0^b x^n e^{-x} dx = -b^n e^{-b} + n \int_0^b x^{n-1} e^{-x} dx. $ Mit $\lim_{b \to +\infty} b^n e^{-b} = 0$: $\int_0^\infty x^n e^{-x} dx = n \int_0^\infty x^{n-1} e^{-x} dx$. Es folgt: $\int_0^\infty x^n e^{-x} dx = n \int_0^\infty x^n e^{-x} dx = n \int_0^\infty x^n e^{-x} dx$	$\arccos : [-1,1] \rightarrow [0,\pi]. \arccos' y = \frac{-1}{\sqrt{1-y^2}}.$ $\tan' x = \frac{1}{\cos^2 x}$ $\arctan' x = \frac{1}{\cos^2 x}$	$= \frac{b-a}{n} \sum_{i=1}^{n} (a+(i-1)h)$ $= \frac{b-a}{n} \left(na+h\frac{n(n-1)}{2}\right)$	$\tan(x)$ $\operatorname{example}$ $\int_{-e}^{e} \sin(-x^{3}) dx = \int_{-e}^{0} \dots dx + \int_{0}^{e} \dots dx = 0$ $\operatorname{example}$ $\int \tan^{4}(x) dx = \int \tan^{2}(x) \tan^{2}(x) dx = \int \tan^{2}(x) \frac{1}{\cos^{2}(x)} - \tan^{2}(x) dx = 0$
$\frac{n(n-1)1\int_0^\infty e^{-x}dx = n!.}{\text{Konvergenzen}}$	$\tan' x = \frac{1}{\cos^2 x} \Rightarrow \arctan :] - \infty, \infty[\rightarrow] - \frac{\pi}{2}, \frac{\pi}{2}[.\arctan' y = \cos^2 x = \frac{1}{1+y^2}.$	$= (b-a)a + \frac{(b-a)^2}{2}(\frac{n-1}{n})$	$\int \tan^2(x) \frac{1}{\cos^2(x)} dx - \int \frac{1}{\cos^2(x)} dx + \int 1 dx \text{ with}$

```
- Let f:[0,1] \to \mathbb{R} with f(x)=\{ egin{array}{ll} 0,x & \text{irrational or } x=0 \\ rac{1}{q},x=rac{p}{q},p,q & \text{natural numbers, relatively prime} \end{array} 
ight. One can
\frac{1}{\sqrt{2}}, \tanh' x = \frac{1}{\cosh^2 x} > 0, artanh'y =
                                                                                 show \int_0^q f(x)dx = 0.
                             Stuff
     exp, sin, cos sinh, cosh, tanh, ... sind
                                                                                 \int_a^b \frac{\sin t}{\cos t} dt for -\frac{\pi}{2} < a < b < \frac{\pi}{2}. We can use substitution: \int_a^b \frac{\sin t}{\cos t} dt = -\int_a^b \frac{\cos' t}{\cos t} dt =
auf ganz \mathbb{R}
nome sind glatt auf ganz \mathbb{R}
glatt
                                                                                  -\int_a^b f(\cos t) \cos' t \ dt with f(y) = \frac{1}{a}. Using
                          Integrals
                                                                                  substitution (5.4.6) we then get \int_a^b \frac{\sin t}{\cos t} dt =
                                                                                  -\int_{\cos(a)}^{\cos(b)} \frac{1}{x} dx = -\log(\cos(b)) + \log(\cos(a))
\int \cos(2x)dx = \frac{1}{2}\sin(2x)
\int e^x dx = e^x + C
\int \frac{1}{x}dx = \log x + C, x > 0
                                                                                  It follows that an antiderivative of tan(t) is
                                                                                  -\log(\cos(t)) for -\frac{\pi}{2} < t < \frac{\pi}{2}.
\int x^{s} dx = \begin{cases} \frac{x^{s+1}}{s+1} + C, & s \neq -1\\ \ln x + C, & x > 0 \end{cases}
                                                                                  b > 1.
                                                                                  \int_{0}^{\infty} \frac{1}{1 + r^{\alpha}} dx = \int_{0}^{1} \frac{1}{1 + r^{\alpha}} dx + \int_{1}^{b} \frac{1}{1 + r^{\alpha}} dx
    \sinh x dx = \cosh x + C
    \cos x dx = \sin x + C
    \frac{1}{\sqrt{1-x^2}}dx = \arcsin x + C
                                                                                 \frac{1}{2x^{\alpha}} \le \frac{1}{1+x^{\alpha}} \le \frac{1}{x^{\alpha}}, \forall x \ge 1. example
   \int_{-\infty}^{\infty} \frac{1}{\sqrt{1+x^2}} dx = \sinh x + C
\int_{-\infty}^{\infty} \frac{1}{\sqrt{1+x^2}} dx = \operatorname{arsinh} x + C
                                                                                  \int \sin^2 x dx = \int \frac{1}{2} (1 - \cos(2x)) dx
  \int \frac{1}{1+x^2} dx = \arctan x + C
\int e^x dx = e^x + C
                                                                                  \int \frac{1}{\sqrt{e^x - e^2}} with u = e^x - e^2: \int \frac{1}{\sqrt{u(u + e^2)}} du
   \int \frac{1}{\sqrt{x^2-1}} dx = \operatorname{arcosh} x + C
                                                                                  with v = \frac{\sqrt{u}}{e}: \int \frac{2e^2v}{ve(v^2e^2+e^2)} dv = \int \frac{2}{v^2e+e} dv =
 \int \cos(ax) = \frac{1}{2}\sin(ax)
                                                                                  \frac{2}{s} \arctan(v)
\{a\} with h = \frac{b-a}{n}. Then
                                                                                  \int \frac{1}{\sin^2(x)} dx - \int \frac{\cos(x)}{\sin^2(x)} dx = -\cot(x) + \frac{1}{\sin(x)}
                                                                                 \int \frac{1}{\cos^4(x)} dx = \int \frac{1}{\cos^2(x)} \frac{1}{\cos^2(x)} dx \text{ with } u =
 s(f, P_n) = \sum_{i=1}^{n} x_{i-1}(x_i - x_{i-1})
                                                                                  \tan(x) we get \int u^2 + 1 du = \frac{1}{3} \tan^3(x) + \frac{1}{3} \tan^3(x)
                                                                                  tan(x)
       = \frac{b-a}{n} \sum_{i=1}^{n} (a+(i-1)h)
                                                                                 \int_{-e}^{e} \sin(-x^3) dx = \int_{-e}^{0} \dots dx + \int_{0}^{e} \dots dx = 0
      =\frac{b-a}{n}\left(na+h\frac{n(n-1)}{2}\right)
                                                                                  \begin{array}{ccc} & & \textbf{example} \\ \int \tan^4(x) dx & = & \int \tan^2(x) \tan^2(x) dx & = \\ \int \tan^2(x) \frac{1}{\cos^2(x)} & - & \tan^2(x) dx & = \end{array}
  =(b-a)a+\frac{(b-a)^2}{2}(\frac{n-1}{n})
                                                                                  \int \tan^2(x) \frac{1}{\cos^2(x)} dx - \int \frac{1}{\cos^2(x)} dx + \int 1 dx with
```

 $\int (1+2ax^2)e^{ax^2}dx$ $= \int e^{ax^2} dx + 2a \int x^2 e^{ax^2} dx$ $= xe^{ax^2} - 2a \int x^2 e^{ax^2} dx + 2a \int x^2 e^{ax^2} dx$

Area of Half Circle Application 5.4.7 - lecture approach 1

Let r > 0 and $f(x) = \sqrt{r^2 - x^2}$ be defined on [-r, r]. Graphically, this corresponds to the half-circle above the x-axis with radius r. We want to compute a portion of the area of that half circle, i.e., $\int_a^b \sqrt{r^2 - x^2} dx$ with -r < a < b < r. We start by using a trick. That is, to use partial integration, we multiply by function to be integrated by 1, which we consider our g'. Then we have our function as f and q(x) = x. We get

$$\int_{a}^{b} \sqrt{r^{2} - x^{2}} \, dx = \int_{a}^{b} 1 \cdot \sqrt{r^{2} - x^{2}} \, dx =$$

$$= \left[x\sqrt{r^{2} - x^{2}} \right]_{a}^{b} + \int_{a}^{b} \frac{x^{2}}{\sqrt{r^{2} - x^{2}}} \, dx$$

Now, we employ a second trick: $x^2 = x^2$ r + r using that, we get

Now, we consider the special case
$$r = 1$$
 and

Now, we consider the special case r=1 and with $\frac{1}{\sqrt{1-x^2}} = \arcsin'(x)$ get

$$= \left[x\sqrt{1-x^2}\right]_a - \int_a \sqrt{1-x^2} \, dx + \int_a \frac{1}{\sqrt{1-x^2}} \, dx$$

$$\Rightarrow 2\int_a^b \sqrt{1-x^2} \, dx = \left[x\sqrt{1-x^2}\right]_a^b + \left[\arcsin(x)\right]_a^b$$

Thus, one antiderivative of $\sqrt{1-x^2}$ is S(x) = $\frac{1}{2}(x\sqrt{1-x^2}+\arcsin(x)).$

Application 5.4.7 - generalized lecture approach 2

Let r > 0 and $f(x) = \sqrt{r^2 - x^2}$ be defined on [-r,r]. Graphically, this corresponds to the half-circle above the x-axis with radius r. We want to compute the area of that half circle, i.e., $\int_a^b \sqrt{r^2 - x^2} dx$ with $-r \le a < b \le r$. Now let $\phi: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \left[-r, r\right], t \mapsto r \cdot \sin t$ We then also have for the inverse of ϕ^{-1} :

 $u = \tan x$ we get $\int u^2 du - \int 1 du + \int 1 dx = t \mapsto \arcsin(\frac{t}{\pi})$. We get with by using $t \in \text{We can use } 5.4.6$ to get $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \cos t \ge 0$ in the last step

$$\int_{a}^{b} f(x) dx = \int_{\phi(\phi^{-1}(b))}^{\phi(\phi^{-1}(b))} f(x) dx$$

$$= \int_{\phi^{-1}(a)}^{\phi^{-1}(b)} f(\phi(t)) \phi'(t) dt$$

$$= \int_{\phi^{-1}(a)}^{\phi^{-1}(b)} \sqrt{r^{2} - r^{2} \sin^{2} t} \cdot r \cdot \cos t dt$$

$$= r^{2} \int_{\phi^{-1}(a)}^{\phi^{-1}(b)} \cos^{2} t dt$$

 $\int_{a}^{b} \sqrt{r^{2} - x^{2}} \, dx = \int_{a}^{b} 1 \cdot \sqrt{r^{2} - x^{2}} \, dx = \left[x \sqrt{r \frac{2e^{it} + e^{2it}}{2}} \right]_{a}^{b} \cdot - \int_{a}^{b} \frac{\cos^{n} \, dt}{\sqrt{r^{2} - x^{2}}} \, dx \text{ et an use } \cos t = \left[x \sqrt{r \frac{2e^{it} + e^{2it}}{2}} \right]_{a}^{b} \cdot - \int_{a}^{b} \frac{\cos^{n} \, dt}{\sqrt{r^{2} - x^{2}}} \, dx \text{ et an use } \cos t = \left[x \sqrt{r^{2} - x^{2}} \right]_{a}^{b} \cdot - \int_{a}^{b} \frac{\cos^{n} \, dt}{\sqrt{r^{2} - x^{2}}} \, dx \text{ et an use } \cos^{n} t = \left[x \sqrt{r^{2} - x^{2}} \right]_{a}^{b} \cdot + \int_{a}^{b} \frac{x^{2}}{\sqrt{r^{2} - x^{2}}} \, dx \text{ et an use } \cos^{n} t = \left[x \sqrt{r^{2} - x^{2}} \right]_{a}^{b} \cdot + \int_{a}^{b} \frac{x^{2}}{\sqrt{r^{2} - x^{2}}} \, dx$ $= \left[x \sqrt{r^{2} - x^{2}} \right]_{a}^{b} + \int_{a}^{b} \frac{x^{2}}{\sqrt{r^{2} - x^{2}}} \, dx \text{ et an use } \cos^{n} t = \left[x \sqrt{r^{2} - x^{2}} \right]_{a}^{b} \cdot + \left[x \sqrt{r$

$$r+r \text{ using that, we get} \\ = \left[x\sqrt{r^2-x^2}\right]_a^b - \int_a^b \sqrt{r^2-x^2} \ dx + \int_a^b \frac{r\int_\alpha^\beta \cos^2(t) \ dt = \frac{1}{2}\int_\alpha^\beta \cos(2t) \ dt + \frac{1}{2}(\beta-\alpha) \\ = \left[x\sqrt{r^2-x^2}\right]_a^b - \int_a^b \sqrt{r^2-x^2} \ dx + \int_a^b \frac{r\int_\alpha^\beta \cos^2(t) \ dt = \frac{1}{2}\int_\alpha^\beta \cos(2t) \ dt + \frac{1}{2}(\beta-\alpha) \\ = \frac{1}{4}\int_{2\alpha}^{2\beta} \cos(y) \ dy + \frac{\beta-\alpha}{2} \\ = \frac{1}{4}\left[\sin y\right]_{2\alpha}^{2\beta} + \frac{\beta-\alpha}{2}$$
Now, we consider the special case $r=1$ and with $\frac{1}{\sqrt{1-x^2}} = \arcsin'(x)$ get $= \frac{1}{4}\left[\sin y\right]_{2\alpha}^{2\beta} + \frac{\beta-\alpha}{2}$

 $= \left[x\sqrt{1-x^2}\right]_a^b - \int_a^b \sqrt{1-x^2} \, dx + \int_a^b \frac{1}{\sqrt{1-x^2}} \, dx = \frac{1}{4}(\sin(2\beta) - \sin(2\alpha)) + \frac{\beta-\alpha}{2}$

Now, one would only have to substitute α / β with $\phi^{-1}(a)/\phi^{-1}(b)$.

Application 5.4.7

[...] (Some general stuff repeating the meaning of integral as area.) Let r > 0 and f(x) = $\sqrt{r^2-x^2}$ be defined on [-r,r]. Graphically, this corresponds to the half-circle above the x-axis with radius r. We want to compute the area of that half circle, i.e., $\int_{-r}^{r} \sqrt{r^2 - x^2} dx$ Now, let $\phi: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \left[-r, r\right], t \mapsto r \cdot \sin t$

$$\int_{-r}^{r} f(x)dx = \int_{\phi(-\frac{\pi}{2})}^{\phi(\frac{\pi}{2})} f(x)dx$$

$$= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} f(\phi(t))\phi'(t)dt$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{r^2 - r^2 \sin^2 t} r \cos t \, dt$$

$$= r^2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\cos^2 t} \cos t \, dt$$

As $\cos t \ge 0, t \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, we get $\sqrt{\cos^2 t} \cos t$ and $\int_{-r}^{r} \sqrt{r^2 - x^2} dx = r^2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 t \ dt$ So, now we want to compute $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 t \ dt$ for which we use partial integration with f(t) = $\cos t$ and $g'(t) = \cos t$. Then, $g(t) = \sin(t)$. We use 5.4.5 to compute this integral

$$(\cos\frac{\pi}{2}\sin\frac{\pi}{2} - \cos(-\frac{\pi}{2})\sin(-\frac{\pi}{2})) - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (-\sin t)\sin\frac{t}{2}dt \frac{1}{n^{\alpha}} \le \int_{1}^{\infty} \frac{1}{x^{\alpha}}dx \le \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{2}t \, dt = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 - \cos^{2}t) \, dt \frac{1}{n^{\alpha}} \le \int_{1}^{\infty} \frac{1}{x^{\alpha}}dx \le \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$

So we see that $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 t \, dt =$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \ dt - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 t \ dt$ From that follows $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 t \ dt = \frac{\pi}{2}$ Hence: $\int_r^r \sqrt{r^2 - x^2} dx =$

Integration of Converging Series Consider $f(x) = \frac{1}{1-x}, |x| < 1$ which equals

 $=\sum_{n=0}^{\infty} x^n$ with convergence radius $\rho=$ 1. For valid x (|x| < 1): $\int_0^x f(t)dt =$ $\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots$ In the other

direction: $\int_0^x \frac{1}{1-t} dt = \left[-\log(1-t) \right]_0^\infty =$

 $-\log(1-x) - (-\log(1)) = -\log(1-x) =$ $\frac{\log(\frac{1}{1-x}) \text{ So: } \log(\frac{1}{1-x}) = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots}{\text{Approximation von Summen}}$

Beispiel 1 $f(x) = x^a, a \ge 0 \text{ With } \int_1^n f(x) dx = \frac{x^{a+1}-1}{a+1}$

we can approximate a sum $\frac{n^{a+1}-1}{a+1} \le 1^a + \dots +$ $n^a \leq \frac{(n+1)^{a+1}-1}{a+1}$ From that we get $1-\frac{1}{n^{a+1}} \leq$

 $\frac{1^a + \dots + n^a}{\frac{n^{a+1}}{a+1}} \le \frac{(n+1)^{a+1}(a+1)}{(a+1)n^{a+1}} - \frac{(a+1)}{(a+1)n^{a+1}}$ As we have $\rightarrow_{n\rightarrow\infty} 1$ for the lower and upper bound, we get $\lim_{n\to\infty} \frac{1^a + \ldots + n^a}{n^{a+1}} = 1$ So, with a = e, we for instance get $1^e + ... + n^e \approx \frac{n^{e+1}}{e+1}$ Beispiel 2 $f(x) = \log x$, $S_n = \log(n!)$. We have:

$$\int_{1}^{n} \log t \, dt = \left[x \log x - x \right]_{1}^{n}$$

$$= (n \log n - n) - (-1) = n \log n - n + 1$$

$$\Rightarrow n \log n - n + 1 \le \log n!$$

$$\le (n+1) \log(n+1) - (n+1) + 1$$
Receive $n \log n - n + 1$

Because $\frac{n \log n - n + 1}{n \log n - n} \rightarrow_{n \rightarrow \infty} 1$ $\frac{(n+1)\log(n+1)-(n+1)+1}{n\log n-n} \rightarrow_{n\to\infty} 1 \text{ we}$ get $\lim_{n\to\infty} \frac{\log n!}{n\log n-n} = 1$. So, we get $n! \approx$ $\exp(n\log n - n) = (\frac{n}{2})^n$.

$$\sum_{n=2}^{\infty} \frac{1}{n^{\alpha}} \leq \int_{1}^{\infty} \frac{1}{x^{\alpha}} dx \leq \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} dx \leq \sum_{n=1}^{\infty} \frac{1}{n^$$

uneigentliche Integrale

- 1. $f(x) = e^{-cx}, c > 0$ is integrable on $[a, +\infty[$.
- 2. $f(x) = \frac{1}{x^a}$ is integrable on $[1, \infty]$ if a > 1. We have $\int_1^\infty \frac{1}{x^a} dx = \frac{1}{a-1}$.
- 3. $f(x) = \frac{1}{x^a}$ is integrable on [0,1] if a < a1. For example: $\int_x^1 \frac{1}{\sqrt{t}} dt = [2\sqrt{t}]_x^1 =$ $2-2\sqrt{x} \rightarrow_{x\rightarrow 0} 2$

We want to check whether $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^a}$ exists or not. So we consider $\int_2^\infty \frac{1}{t(\log t)^a} dt =$ $\int_{\log 2}^{\log x} \frac{1}{y^a} dy$ with $y = \log t$. From an example above we know that $\int_{\log 2}^{\infty} \frac{1}{y^a} dy$ exists if and only if a > 1.

Differenzierbare Funktionen

Ableitung: Definition +

Definition 4.1.1: f differenzierbar in x_0 falls $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ existiert. Grenzwert: $f'(x_0)$.

Äquivalent/Alt.: $f'(x_0)$ $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ Tangente in x_0 : $f(x) = f'(x)(x - x_0) +$

 $f(x_0)$.

Theorem 4.1.3, Weierstrass: $f \in \mathbb{R}^D, x_0 \in$ D Häufungspunkt von D. Äquivalent:

1. f differenzierbar in x_0

2. $\exists c \in \mathbb{R}, r \in \mathbb{R}^D$ $-f(x) = f(x_0) + c(x-x_0) + r(x)(x-x_0)$ $-r(x_0) = 0$ und r ist stetig in x_0 Dann $c = f'(x_0)$ eindeutig bestimmt.

Theorem 4.1.4: $f \in \mathbb{R}^D$ differenzierbar in $x_0 \Leftrightarrow \exists \phi \in \mathbb{R}^D \text{ stetig in } x_0, f(x) = f(x_0) +$ $\phi(x)(x-x_0)(\forall x\in D)$. Dann $\phi(x_0)=f'(x_0)$.

Corollary 4.1.5: f differenzierbar in $x_0 \Rightarrow$ f stetig in x_0

Definition 4.1.7: $f \in \mathbb{R}^D$ differenzierbar in $D \Leftrightarrow f$ differenzierbar $\forall x_0 \in D$ Häufungspunkt

 $D \subset \mathbb{R}, x_0 \in D$ **Theorem** 4.1.9: Häufungspunkt, $f, g \in \mathbb{R}^D$ differenzierbar in x_0 :

- f + q differenzierbar in x_0 : (f + $g'(x_0) = f'(x_0) + g'(x_0)$
- $f \cdot q$ differenzierbar in x_0 : $(f \cdot q)'(x_0) =$ $f'(x_0)g(x_0) + f(x_0)g'(x_0)$
- $f(x_0) \neq 0$: $\frac{f}{g}$ differenzierbar in x_0 : $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}$

Theorem 4.1.11: $D, E \subset \mathbb{R}, x_0 \in D$ Häufungspunkt von $D. f \in E^D$ differenzierbar in $x_0, y_0 := f(x_0)$ Häufungspunkt von E, $q \in \mathbb{R}^E$ differenzierbar in y_0 . Dann: $q \circ f \in$ \mathbb{R}^D differenzierbar in x_0 mit $(q \circ f)'(x_0) =$ $g'(f(x_0))f'(x_0).$

Corollary 4.1.12: $f \in E^D$ Bijektion differenzierbar in $x_0, x_0 \in D$ Häufungspunkt, $f'(x_0) \neq 0, f^{-1}$ stetig in $y_0 = f(x_0)$. Dann: y_0 Häufungspunkt von E, f^{-1} differenzierbar in $y_0: (f^{-1})'(y_0) = \frac{1}{f'(x_0)}$.

erste Ableitung

Definition 4.2.1: $f \in \mathbb{R}^D, x_0 \in D, D \subset \mathbb{R}$

- 1. f lokales Maximum in $x_0 \Leftrightarrow \exists \delta > 0$: $f(x) \le f(x_0)(\forall x \in]x_0 - \delta, x_0 + \delta[\cap D)$
- 2. f lokales Minimum in $x_0 \Leftrightarrow \exists \delta > 0$: $f(x) \geq f(x_0)(\forall x \in]x_0 - \delta, x_0 + \delta[\cap D)$
- 3. f lokales Extremum in $x_0 \Leftrightarrow lokales$ Minimum oder Maximum in x_0

Theorem 4.2.2: $f:]a, b[\rightarrow \mathbb{R}, x_0 \in]a, b[, f]$ differenzierbar in x_0 .

1. $f'(x_0) > 0$: $\exists \delta > 0$ $-\dot{f}(x) > f(x_0), \forall x \in]x_0, x_0 + \delta[$ $-f(x) < f(x_0), \forall x \in]x_0 - \delta, x_0[$ 2. $f'(x_0) < 0: \exists \delta > 0$

 $-f(x) < f(x_0), \forall x \in]x_0, x_0 + \delta[$ $\begin{array}{c} -f(x) > f(x_0), \forall x \in]x_0 - \delta, x_0[\\ 3. \ f \text{ lokales Extremum in } x_0 \end{array}$

 $f'(x_0) = 0$

Theorem 4.2.3, Rolle 1690: $f:[a,b] \rightarrow$ \mathbb{R} stetig, differenzierbar in [a,b[.] f(a)] = $f(b) \Rightarrow \exists \zeta \in]a, b[, f'(\zeta) = 0$ **Theorem** 4.2.4, Lagrange 1797: $f:[a,b] \rightarrow$ \mathbb{R} stetig, differenzierbar in $]a,b[. \Rightarrow \exists \zeta \in$ |a,b|: $f(b) - f(a) = f'(\zeta)(b-a)$ Corollary 4.2.5: $f, g: [a, b] \to \mathbb{R}$ stetig und differenzierbar in a, b

- 1. $f'(\zeta) = 0, \forall \zeta \in]a, b[\Rightarrow f \text{ konstant }]$
- 2. $f'(\zeta) = g'(\zeta), \forall \zeta \in]a,b[\Rightarrow \exists c \in$ $\mathbb{R}, f(x) = g(x) + c, \forall x \in [a, b]$
- 3. $f'(\zeta) \geq 0, \forall \zeta \in [a, b] \Rightarrow f \text{ monoton}$ wachsend auf [a, b]
- 4. $f'(\zeta) > 0, \forall \zeta \in]a, b[\Rightarrow f \text{ strikt mono-}$ ton wachsend auf [a, b]
- 5. $f'(\zeta) \leq 0, \forall \zeta \in]a, b[\Rightarrow f \text{ monoton fall-}$ end auf [a, b]
- 6. $f'(\zeta) < 0, \forall \zeta \in]a, b[\Rightarrow f \text{ strikt mono-}$ ton fallend auf [a, b]
- 7. $\exists M \geq 0, |f'(\zeta)| \leq M, \forall \zeta \in]a, b[\Rightarrow \forall x_1, x_2 \in [a, b], |f(x_1) f(x_2)| \leq$ $M|x_1-x_2|$.

Theorem 4.2.9, Cauchy: $f, g : [a, b] \rightarrow$ \mathbb{R} stetig, differenzierbar in $[a,b] \Rightarrow \exists \zeta \in$ $[a, b], g'(\zeta)(f(b) - f(a)) = f'(\zeta)(g(b) - g(a)).$ Falls $g'(x) \neq 0, \forall x \in]a, b[: \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\zeta)}{g'(\zeta)}$

Theorem 4.2.10, 1'Hospital: $f, g:]a, b[\rightarrow]$ \mathbb{R} differenzierbar, $g'(x) \neq 0, \forall x \in]a, b[$. Wenn $\lim_{x\to b^-} f(x) = 0$, $\lim_{x\to b^-} g(x) = 0$ 0 und $\lim_{x\to b^-} \frac{f'(x)}{g'(x)} =: \lambda$ existiert \Rightarrow $\lim_{x\to b^-} \frac{f(x)}{g(x)} = \lim_{x\to b^-} \frac{f'(x)}{g'(x)}$. Also with $b = +\infty, \lambda = +\infty, x \to a^+.$

Theorem 4.2.16: $f \in \mathbb{R}^{]a,b[}$ differenzierbar in]a,b[. (streng) konvex $\Leftrightarrow f'$ (streng) monoton wachsend Corollary 4.2.17: $f \in \mathbb{R}^{]a,b[}$ zweimal differenzierbar in]a, b[. f (streng) konvex $\Leftarrow f'' \ge 0 (f'' > 0)$ auf |a|.

Theorem 4.3.3: $n \geq 1, f, g \in \mathbb{R}^D$ n-mal differenzierbar in D

- 1. f + g n-mal differenzierbar: (f + $q^{(n)} = f^{(n)} + q^{(n)}$
- 2. $f \cdot g$ n-mal differenzierbar: $(f \cdot g)^{(n)} =$ $\sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}$

Corollary 4.4.6, Taylor Approximation: $f:[c,d]\to\mathbb{R}$ stetig, (n+1)-mal differenzierbar in c, d. $\forall a \in c, d$, $\forall x \in [c, d], \exists \zeta$ zwischen x, a: $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(\zeta)}{(n+1)!} (x-a)^k$

Means: Taylor polynomial good approximation for f near x_0

 $a)^{n+1}$

Corollary 4.4.7: $n \ge 0, a < x_0 < b, f \in$ $\mathbb{R}^{[a,b]}$ (n+1)-mal differential differential [a,b]. Wenn $f^{(1)} = f^{(2)} = \dots = f^{(n)} = 0$

- 1. n gerade, x_0 lokale Extremstelle \Rightarrow $f^{(n+1)}(x_0) = 0$
- 2. n ungerade, $f^{(n+1)}(x_0) > 0 \Rightarrow x_0$ strikte lokale Minimalstelle
- 3. n ungerade, $f^{(n+1)}(x_0) < 0 \Rightarrow x_0$ strikte lokale Maximalstelle

Corollary 4.4.8: $f:[a,b] \to \mathbb{R}$ stetig, zweimal differenzierbar in a, b. $a < x_0 <$ b. Falls $f'(x_0) = 0$

- 1. $f^{(2)}(x_0) > 0 \Rightarrow x_0$ strikte lokale Minimalstelle
- 2. $f^{(2)}(x_0) < 0 \Rightarrow x_0$ strikte lokale Maximalstelle

Riemann Integral

a < b, I = [a, b]Itegrierbare Funktionen

 $\begin{array}{lll} \textbf{Theorem 5.2.1:} & f,g \in \mathbb{R}^{[a,b]} \text{ beschränkt,} \\ \text{integrierbar,} & \lambda & \in \mathbb{R} & \Rightarrow f+g,\lambda \end{array}$ $f, f \cdot g, |f|, \max(f, g), \min(f, g), \frac{f}{g}(g(x) \neq g)$ $0, \forall x \in [a, b]$).

Corollary 5.2.2: ψ : $[c,d] \rightarrow \mathbb{R}$ beschränkt $\Rightarrow \sup_{x,y \in [a,b]} |\psi(x) - \psi(y)| =$ $\sup_{x \in [c,d]} \psi(x) - \inf_{x \in [c,d]} \psi(x)$

Corollary 5.2.3: P, Q Polynome, [a, b]ohne Q Nullstelle. Dann $[a,b] \to \mathbb{R}, x \mapsto$ $\frac{P(x)}{Q(x)}$ integrierbar.

Definition 5.2.4: $f \in \mathbb{R}^D$ gleichmässig stetig in $D \subset \mathbb{R} \Leftrightarrow \forall \epsilon > 0, \exists \delta > 0, \forall x, y \in D$: $(|x-y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon)$

Theorem 5.2.6, Heine: $f:[a,b] \to \mathbb{R}$ stetig in [a, b]. f gleichmässig stetig in [a, b].

Theorem 5.2.7: $f \in \mathbb{R}^{[a,b]}$ stetig $\Rightarrow f$ integrierbar **Theorem 5.2.8:** $f:[a,b] \to \mathbb{R}$ monoton $\Rightarrow f$ ist integrierbar

Corollary 5.2.9: $a < b < c, f \in \mathbb{R}^{[a,c]}$ beschränkt, $f|_{[a,b]}$ und $f|_{[b,c]}$ integrierbar $\Rightarrow f$ integrierbar mit $\int_a^c f(x)dx = \int_a^b f(dx)dx +$

 $\int_{b}^{c} f(x)dx$. **Definition**: $\int_a^a f(x)dx = 0$ und wenn a < b:

 $\int_{b}^{a} (fx)dx := -\int_{a}^{b} f(x)dx.$

Theorem 5.2.10: $I \subseteq \mathbb{R}$ kompaktes Intervall $[a,b], f_1, f_2 \in \mathbb{R}^I$ beschränkt integrierbar, $\lambda_1, \lambda_2 \in \mathbb{R}$: $\int_a^b (\lambda_1 f_1(x) + \lambda_2 f_2(x)) dx$ $\lambda_1 \int_a^b f_1(x) dx + \lambda_2 \int_a^b f_2(x) dx$

Ungleichungen und der Mittelwertsatz **Theorem 5.3.1:** $f, g: [a, b] \to \mathbb{R}$ beschränkt

integrierbar, $f(x) \leq g(x), \forall x \in [a,b] \Rightarrow$ $\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$ Corollary 5.3.2: $f:[a,b] \to \mathbb{R}$ beschränkt integrierbar $\Rightarrow \left| \int_a^b f(x) dx \right| \leq \int_a^b |f(x) dx| dx$ **Theorem** 5.3.3, Cauchy-Schwarzf,g: $[a,b] \rightarrow \mathbb{R}$

beschränkt integrierbar $\Rightarrow \left| \int_a^b f(x)g(x)dx \right| \le$ $\sqrt{\int_a^b f^2(x)dx} \sqrt{\int_a^b g^2(x)dx}$

Ungleichung:

Theorem 5.3.4, Mittelwertsatz: $f \in \mathbb{R}^{[a,b]}$ stetig $\Rightarrow \exists \zeta \in [a,b], \int_a^b f(x) dx = f(\zeta)(b-a)$ **Theorem 5.3.6:** $f, g \in \mathbb{R}^{[a,b]}, f$ stetig, g beschränkt integrierbar, $g(x) \geq 0, \forall x \in$ $[a,b] \Rightarrow \exists \zeta \in [a,b],$

 $\int_a^b f(x)g(x)dx = f(\zeta) \int_a^b g(x)dx$

Fundamentalsatz der Differentialrechnung

Theorem 5.4.1: $a < b, f : [a, b] \to \mathbb{R}$ stetig. $F(x) = \int_a^x f(t)dt, a \le x \le b$, stetig differenzierbar in [a, b] und $F'(x) = f(x), \forall x \in [a, b]$ **Definition** 5.4.2: $a < b, f \in \mathbb{R}^{[a,b]}$ stetig. $f:[a,b]\to\mathbb{R}$ ist Stammfunktion von $f\Leftrightarrow F$ (stetig) differenzierbar in [a, b], F' = f in [a,b].

Theorem 5.4.3, Fundamentalsatz der Differenzialrechnung: $f:[a,b] \to \mathbb{R}$ stetig $\Rightarrow \exists F \text{ von } f \text{ (eindeutig bis auf additive)}$ Konstante): $\int_a^b f(x)dx = F(b) - F(a)$

Notation: $[f(x)]_a^b := f(b) - f(a)$

Theorem 5.4.5, Partielle Integration: a < $b \in \mathbb{R}, f, g \in \mathbb{R}^{[a,b]}$ stetig differenzierbar $\Rightarrow \int_a^b f(x)g'(x)dx = [f(x)g(x)]_a^b \int_a^b f'(x)g(x)dx$. **Theorem** 5.4.6, Substitution: a < b, $\phi \in \mathbb{R}^{[a,b]}$ stetig differenzierbar, $\phi([a,b]) \subset$ $I \subset \mathbb{R}, I \text{ interval}, f : \mathbb{R}^I \text{ stetig} \Rightarrow$ $\int_{\phi(a)}^{\phi(b)} f(x)dx = \int_{a}^{b} f(\phi(t))\phi'(t)dt$

Corollary 5.4.8: $I \subset \mathbb{R}, f \in \mathbb{R}^I, a, b, c \in \mathbb{R}$ $-[a+c,b+c] \subset I, \int_{a+c}^{b+c} f(x)dx = \int_{a}^{b} f(t+c)dx$ $-c \neq 0, [ac, bc] \subset I, \int_a^b f(ct)dt =$ $\frac{1}{c} \int_{ac}^{bc} f(x) dx$

Integration konvergenter Reihen

 $f_n = \overline{\vdots}$ Theorem 5.5.1: R Folge beschränkter, integrierbarer Funktionen, gleichmässig konvergent zu f: $[a,b] \rightarrow \mathbb{R} \Rightarrow f$ beschränkt integrierbar $\lim_{n\to\infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$.

Corollary 5.5.2: $f_n : [a,b] \rightarrow \mathbb{R}$ Folge beschränkter integrierbarer Funktionen so dass $\sum_{n=0}^{\infty} f_n$ gleichmässig konvergiert auf $[a,b] \Rightarrow \sum_{n=0}^{\infty} \int_{a}^{b} f_{n}(x) dx =$ $\int_{a}^{b} \left(\sum_{n=0}^{\infty} f_{n}(x)\right) dx$

Corollary 5.5.3: $f(x) = \sum_{n=0}^{\infty} c_k x^k$ Potenzreihe mit $\rho > 0 \Rightarrow \forall 0 \leq r < \rho, f$ integrierbar auf $[-r,r], \forall x \in]-\overline{\rho}, \rho[:\int_0^{x'}f(t)dt =$

uneigentliche Integrale

Definition 5.8.1: $f: [a, \infty] \rightarrow \mathbb{R}$ beschränkt und integrierbar auf $[a, b], \forall b > a$. Wenn $\lim_{b\to\infty} \int_a^b f(x)dx$ existiert, bezeichnen $\int_a^\infty f(x)dx$. "f integrierbar auf $[0,\infty[$ ". **Lemma** 5.8.3: $f: [a, \infty] \to \mathbb{R}$ beschränkt, integrierbar $[a, b], \forall b > a$

- 1. $|f(x)| \leq g(x)(\forall x \geq a), g(x)$ integrierbar auf $[a, \infty] \Rightarrow f$ integrierbar auf $|a,\infty|$
- 2. $0 \le g(x) \le f(x)$, $\int_a^\infty g(x) dx$ divergent $\Rightarrow \int_{a}^{\infty} f(x) dx$ divergent

Theorem 5.8.5, McLaurin: $f:[1,\infty[\to [0,\infty[$ monoton fallend. $\sum_{n=1}^{\infty}f(n)$ konvergiert $\Leftrightarrow \int_{1}^{\infty} f(x) dx$ konvergiert

Definition 5.8.8: $f:]a,b] \to \mathbb{R}$ (auf $[a+\epsilon,b], \epsilon>0$, beschränkt und integrierbar) in-Grenzwert: $\int_a^b f(x)dx$

Gamma Funktion in der Vorlesung nicht betrachtet.

unbestimmte Integrale

 $f \in \mathbb{R}^I, I \subset \mathbb{R}.$ f stetig $\Rightarrow \int f(x)dx = \int f(x)dx$ F(x) + C für Stammunktion F.

Theorem Partielle Integration: $\int f \cdot g' =$ $f \cdot g - \int f' \cdot g$ Theorem Substitution: $\int f(\phi(u))\phi'(u)du = F \circ \phi(u)$

Stammfunktionen rationaler Funktio-

 $R(x) = \frac{P(x)}{Q(x)}$: $\int R(x)dx$ lässt sich als elementare Funktion darstellen.

- 1. Reduktion auf deg(P) < deg(Q). Verwende: Euklidischer Algorithmus.
- 2. Zerlegung in Summe von Brüchen bestimmter Formen
 - (a) Einfache Polynome sind bereits bekannt.
 - (b) $\int \frac{a}{bx+c} dx = \frac{a}{b} \int \frac{dy}{y}$ (with $y = \frac{a}{b} \int \frac{dy}{y}$ $bx + c, dy = bdx = \frac{a}{b}(\log(y) +$ C) = $\frac{a}{b}(\log(bx+c)+C)$
 - (c) must have $d^2 4ec < 0, c \neq 0$

$$\int \frac{ax+b}{cx^2+dx+e} dx \qquad \text{(with)}$$

$$y = x + \frac{d}{2c} / x = y - \frac{d}{2c},$$

$$dx = dy, \alpha = \frac{e}{c} - \frac{d^2}{4c^2})$$

$$= \int \frac{a(y - \frac{d}{2c}) + b}{c(y^2) + \alpha} dy \qquad \text{(with)}$$

$$\overline{w} = \frac{y}{\sqrt{\alpha}}, dw = \frac{1}{\sqrt{\alpha}}dy, y = w\sqrt{\alpha}$$

$$= \sqrt{\alpha} \int \frac{a(w\sqrt{\alpha} - \frac{d}{2c}) + b}{c\alpha(w^2 + 1)}dw$$

$$\overline{\text{Mit } \int \frac{w}{\sqrt{\alpha}} = \frac{1}{2} \int \frac{2w}{\sqrt{\alpha}}dw = \frac{1}{2} \int \frac{2w}{\sqrt{$$

Mit $\int \frac{w}{w^2+1} = \frac{1}{2} \int \frac{2w}{w^2+1} dw =$ $\frac{1}{2}\log(w^2+1) \& \int \frac{1}{w^2+1}dw =$ arctan(w) gelöst werden.

3. Integration der Partialbrüche

Example for (b)

 $\int \frac{x^3}{x^2-1}$. First, $\frac{x^3}{x^2-1} = \frac{x \cdot (x^2-1)+x}{x^2-1} = x + \frac{x}{x^2-1}$. tegrierbar $\Leftrightarrow \lim_{\epsilon \to 0^+} \int_{a+\epsilon}^b f(x) dx$ existiert. Then, $\frac{x}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} \right) \Rightarrow \frac{x^3}{x^2-1} = \frac{1}{2} \left(\frac{1}{x-1} + \frac$ $x + \frac{\frac{1}{2}}{x-1} + \frac{1}{2} \frac{1}{x+1}$. Now, we can aply 2 and get: $\int \frac{x^3}{x^2+1} dx = \frac{x^2}{2} + \frac{1}{2} \log(x-1) + \frac{1}{2} \log(x+1)$

Example for (c)

We have $\int \frac{dx}{x^2+x+1}$ This satisfies all require-

Notice that $x^2 + x + 1 = (x + \frac{1}{2})^2 + 1 - \frac{1}{4} = (x + \frac{1}{4})^2 + 1 - \frac{1}{4} = (x$ $(\frac{1}{2})^2 + \frac{3}{4}$ We substitute $y = x + \frac{1}{2}$ and get $\int \frac{dy}{y^2 + \frac{3}{4}}$ Then, we substitute $y = \frac{\sqrt{3}}{2}w, dy = \frac{\sqrt{3}}{2}dw$ and get $\frac{\sqrt{3}}{2} \int \frac{1}{\frac{3}{4}(w^2+1)} dw$ So we get this and resubstitute: $\int \frac{dx}{x^2+x+1} = \frac{\sqrt{3}}{2} \frac{4}{3} \arctan(w) =$ $\frac{2}{\sqrt{3}}\arctan(\frac{2y}{\sqrt{3}}) = \frac{2}{\sqrt{3}}\arctan(\frac{2}{\sqrt{3}}(x+\frac{1}{2}))$ (c) w/o condition example Concept, not entirely correct.

ments regarding the polynomial coefficients.

$$\int \frac{ax+b}{cx^2+dx+e} dx$$

$$= \int \frac{x+1}{x^2+4x+2} dx$$
with $y = x+2, dy = dx$

$$= \int \frac{y-1}{y^2-2} dy$$

$$= -\frac{1}{2} \int \frac{y-1}{1-\frac{y^2}{2}} dy$$
with $\omega = \frac{y}{\sqrt{2}}$

$$= -\frac{1}{\sqrt{2}} \int \frac{\omega\sqrt{2}-1}{1-\omega^2} d\omega$$

$$= -\int \frac{\omega}{1-\omega^2} d\omega + \frac{1}{\sqrt{2}} \int \frac{1}{1-\omega^2} d\omega$$

$$= \frac{1}{2} \int \frac{-2\omega}{1-\omega^2} d\omega + \frac{1}{\sqrt{2}} \tanh^{-1}(\omega)$$

$$= \frac{1}{2} \ln(1-\omega^2) + \frac{1}{\sqrt{2}} \tanh^{-1}(\omega)$$

$$= \frac{1}{2} (\ln(1-\frac{y^2}{2}) + \frac{1}{\sqrt{2}} \tanh^{-1}(\frac{y}{\sqrt{2}})$$

$$= \frac{\ln(1-\frac{(x+2)^2}{2})}{2} + \frac{1}{\sqrt{2}} \tanh^{-1}(\frac{x+2}{\sqrt{2}})$$