

Solid

Properties of Solids

Have a definite mass, volume, and shape.

Particles cannot flow.

Least interparticle distances
in solids as compared to
liquids and gases.

Constituting particles have fixed positions. They can oscillate only about their mean position, i.e., they have vibrational motions only.

Strong interparticle forces of attraction.

6 Rigid and incompressible.

Classifications of Solids

Based on the Arrangement of the Particles

Crystalline Solid

Particle follow a definite regular arrangement.

Amorphous Solid

No particular pattern is followed, and particles are randomly arranged.

Crystalline Solid

Particle follow a definite regular arrangement.

Amorphous Solid

No particular pattern is followed, and particles are randomly arranged.

Crystalline Solid

Long-range order in the arrangement.

Amorphous Solid

Short range order in the arrangement

Crystalline Solid

Produced by slow cooling under controlled condition of liquid. The crystalline structure is also dependent on conditions.

Amorphous Solid

Produced by rapid cooling of the liquid

Crystalline Solid

Have a fixed or sharp melting point and enthalpy of fusion.

Amorphous Solid

Have a range of temperature in which they melts as M.P. and the enthalpy of fusion is not fixed.

Crystalline Solid

Have a fixed or sharp melting point and enthalpy of fusion.

True solids.

Amorphous Solid

Have a range of temperature in which they melts as M.P. and the enthalpy of fusion is not fixed.

Pseudo solids or supercooled liquids.

Crystalline Solid

Anisotropic:

Different values of physical properties in different directions.

AB: Same arrangement DC: Different arrangement

Amorphous Solid

Isotropic:

Same values of physical properties in all different directions due to random arrangement of particles

Crystalline Solid

Example:

Ag, Fe, Cu, NaCl, H₂O(s), diamond, quartz, sucrose (sugar)

Quartz Glass:

Amorphous Solid

Example:

Glass, plastic, amorphous silica, rubber, starch

Rubber:

Polymorphism

Different crystalline structure of the same substance are called its polymorphic forms.

Diamond

Due to the difference in the arrangement of the constituent particles, two types of solids differ in their properties.

Graphite

Amorphous Solids

Amorphous solids have the same structural features as liquids are conveniently regarded as extremely viscous liquids.

Amorphous solids have a tendency to flow (very slowly), hence they are called pseudo solids or supercooled liquids.

Classification of Solids based on the Nature of Intermolecular Force

Ionic Solids

Constituent particles

lons

Electrical conductivity

Force of interaction

Coulombic (electrostatic)

Solid form → Insulator Molten & aqueous form → Conducting

Physical state

Very hard (brittle)

Examples

Melting point

Very high

NaCl, ZnS, CsCl

Constituent particles

Atoms (Nonmetals)

Force of interaction

Covalent bond

Physical state

Very hard (Graphite → soft)

Melting point

Very high

Electrical conductivity

Insulator except graphite

Examples

Diamond, SiC, SiO₂, graphite

They are also called **giant molecules**

Electrical conductivity

Insulator except graphite

Examples

Diamond, SiC, SiO₂, graphite

Diamond

Graphite

Graphite belongs
to covalent solids,
but it is soft and a good
conductor of electricity.

Its exceptional properties are due to its typical structure.

In graphite, carbon atoms are arranged in different layers and each atom is covalently bonded to three of its neighboring atoms in the same layer.

The fourth valence electron of each atom is present between different layers and is free to move about. These free electrons make graphite a good conductor of electricity.

Carbon atoms are arranged in different layers

Different layers can slide over the other making it a soft solid and a good solid lubricant.

Metallic Solids

Constituent particles

Metal ion at fixed locations in the sea of delocalised electrons.

Melting point

Low to high (depending on metallic bond)

Force of interaction

Metallic bond

Electrical conductivity

Good conductor in solid and molten state

Physical state

Soft & hard (depending on metallic bond)

Thermal conductivity

Good conductor in solid and molten state

Example: Cu, Al, Zn, Ag

Molecular Solids

Constituent particles

Molecules

Type of molecules	Force of interaction
Non-polar	Dispersion force or london forces
Polar	Dipole-dipole
	H-bonding

Molecular Solids

Type	Physical state	M.P.
Non-polar	Very soft	Very low
Polar	Soft	Low
H-bonded	Hard	Low

Electrical conductivity

Non-conducting

Examples

I₂, Xe(s), C₆H₆, CCI₄, HCl, H₂O(s), H₃BO₃(s)

Internal Arrangement of Particles in a Crystal

Lattice Point

Each constituent particle (molecule, atom, and ions) will be represented by a dot (.)

Each dot is called a lattice point.

Lattice or Space or Crystal Lattice

2-D Lattice

3-D Lattice

Points to Remember!!

Each lattice point specifies the location of a structural motif (or basis), which may be atoms, molecules, or groups of atoms, molecules, or ions.

Crystal structure is the collection of structural motifs arranged according to the lattice.

Crystal structure

Unit Cell

The space lattice of a crystal can be divided into identical parallelepipeds (a six-sided geometric solid whose faces are all parallelograms) by joining the lattice points with straight lines.

Each such parallelepiped is called a unit cell.

Unit Cell

Unit cell is usually the smallest portion of a lattice which, when repeated in different directions, generates the entire lattice.

Generally, the most symmetrical and smallest volume unit cell is selected.

2-D Unit Cell

3-D Unit Cell

Characteristics of Unit Cell

(1)

Its dimensions along the three edges, a, b, and c may or may not be mutually perpendicular.

(2)

Angles between the edges, a (between b and c), (between a and b).

(3)

Each unit cell has characteristic relation between a, b, and c or α , β , and γ that gives rise to different types of unit cell.

Unit Cells in 2-D

There are 5 types of unit cells possible in 2-D lattice.

Unit cells in 2-D is parallelogram which is described by three parameters i.e., a, b, γ .

Parallelogram

Unit Cells in 2-D

Unit Cell	a, b	γ
Square	a = b	γ = 90°
Rectangle	a≠b	γ = 90°
Hexagonal	a = b	γ = 120°
Rhombic	a = b	γ ≠ 90°, γ ≠ 60° & γ ≠ 120°
Parallelogram	a ≠ b	γ ≠ 90°

3-D Unit Cell

In 3-D lattice to specify any unit cell 6 parameters are required.

3-edge length (a, b, c) and 3-angle between these i.e., α , β , and γ .

In 3-D lattice, 14 different types of unit cells are found and these are also known as Bravais lattice.

These 14 unit cells are grouped in 7 crystal systems depending upon 7 types of primitive unit cells.

Unit Cell

Primitive Unit Cell

Unit cell having lattice point only at the corners.

Primitive/Simple unit cell

Unit cell having lattice point at corners as well as within the unit cell.

Body-centred unit cell

It contains one constituent particle (atom, molecule, or ion) at its body centre besides the particles at its corners. In body centred unit cell, the constituent particles are present at the eight corners of the unit cell and also at the centre of the unit cell as shown below.

Body-centred unit cell

Face-centred unit cell

Such a unit cell contains one constituent particle present at the centre of each face, besides the ones that at its corners. In face centred unit cell, constituent particles are present at the eight corners of the unit cell and also at the centre of six faces of the unit cell as shown below.

End-centred unit cell

In such a unit cell, one constituent particle is present at the centre of any two opposite faces besides the ones present at its corners. In end centred unit cell, constituent particles are present at the eight corners of the unit cell and also at the centre of any two opposite faces of the unit cell as shown below.

Cubic Crystal Lattice

Edge length

$$a = b = c$$

Angle

$$\alpha = \beta = \gamma = 90^{\circ}$$

Unit cell found

Primitive, BC, FC

Examples

NaCl, ZnS, Cu

Cubic

Simple cubic

Face-centred cubic

Body-centred cubic

Tetragonal Crystal Lattice

Edge length

 $a = b \neq c$

Angle

$$\alpha = \beta = \gamma = 90^{\circ}$$

Unit cell found

Primitive, BC

Examples

White tin, SnO₂, TiO₂

Tetragonal

Primitive

Body-centred

Orthorhombic crystal lattice

Edge length

a≠b≠c

Angle

$$\alpha = \beta = \gamma = 90^{\circ}$$

Unit cell found

Primitive, BC, FC, EC

Examples

Rhombic sulphur, KNO₃, BaSO₄

Orthorhombic system

Simple (primitive), end-centred, body-centred, and face-centred unit cells are possible in an orthorhombic crystal system.

Orthorhombic Crystal Lattice

Edge length

a≠b≠c

Angle

$$\alpha = \beta = \gamma = 90^{\circ}$$

Unit cell found

Primitive, BC, FC, EC

Examples

Rhombic sulphur, KNO₃, BaSO₄

Rhombohedral or Trigonal crystal system

Edge length

$$a = b = c$$

Angle

$$\alpha = \beta = \gamma \neq 90^{\circ}$$

Unit cell found

Primitive

Examples

Calcite (CaCO₃), cinnabar (HgS)

Hexagonal

Edge length

Angle

$$\alpha$$
 = β = 90°

$$\gamma = 120^{\circ}$$

Unit cell found

Primitive

Examples

Graphite, ZnO, CdS

Hexagonal

Primitive

Rhombohedral or trigonal

Primitive

Monoclinic crystal system

Edge length

a≠b≠c

Angle

$$\alpha = \gamma = 90^{\circ}$$

 $\beta \neq 120^{\circ}, 90^{\circ}, 60^{\circ}$

Unit cell found

Primitive, EC

Examples

Monoclinic, sulphur, Na₂SO₄.10H₂O

Edge length

a≠b≠c

Angle

 $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

Unit cell found

Primitive

Examples

K₂Cr₂O₇, CuSO₄.5H₂O, H₃BO₃

Primitive

End-centred

Triclinic

Primitive

Crystal system	Edge length	Angles	Unit cell(s) found
Cubic	a = b = c	α = β = γ = 90°	Primitive, BCC, FCC
Tetragonal	a = b ≠ c	α = β = γ = 90°	Primitive, BC
Orthorhombic	a≠b≠c	α = β = γ = 90°	Primitive, BC, FC, EC

Crystal system	Edge length	Angles	Unit cell(s) found
Rhombohedral or Trigonal	a = b = c	<i>α</i> = β = <i>γ</i> ≠ 90°	Primitive
Monoclinic	a≠b≠c	α = γ = 90°, β ≠ 90°	Primitive, EC
Triclinic	a≠b≠c	α ≠ β ≠ γ ≠ 90°	Primitive
Hexagonal	a = b ≠ c	α = β = 90°, γ = 120°	Primitive

Contribution of Corner Particles

A particle at the corner of a unit cell is shared by eight unit cells.

Contributes 1/2 part to the unit cell.

Contribution of Face-Centred Particles

A particle at the face-centre is shared by two unit cells.

Contributes ½ part to the unit cell.

Contribution of Edge-Centred Particles

A particle present at the edge-centre is shared by four unit cells.

Contributes ¼ part to the unit cell.

Contribution of Body-Centred Particles

A particle present at the body-centre wholly belongs to the unit cell in which it is present.

Contributes 1 part (fully) to the unit cell.

Effective number of particles

Primitive Cubic Unit Cell

$$8 \times \frac{1}{8}$$

Simple Cubic Unit Cell

Face of a simple cubic unit cell

Relation between a & r

Corner atoms are touching each other.

- a = Edge length of a SC unit cell
- r = Radius of a particle present in that unit cell

Packing Efficiency

Packing Efficiency (P.E)

For 3-D arrangement

P.E.

Volume occupied by particles in a unit cell

Total volume of the unit cell

Z × Volume of one particle

Total volume of the unit cell

Z = Effective number of atoms in the unit cell

Packing Efficiency (P.E)

$$= 1 \times \frac{4}{3} \pi r^3$$

$$= \frac{1 \times (4/3)\pi r^3}{(2r)^3} \times 100$$

$$=$$
 a^3 $=$ $(2r)^3$

$$=$$
 $\frac{\pi \times 100}{6}$

Body-Centred Cubic Unit Cell

Effective number of particles in a unit cell

$$= 8 \times \frac{1}{8} + (1 \times 1) = 2$$

Body-Centred Cubic Unit Cell

Body-Centred Cubic Unit Cell

Face of a body-centred cubic unit cell

Body-Centred Cubic Unit Cell

Spheres are **not touching** along the **edge**. They are **touching** along the **body diagonal**.

Body-Centred Cubic Unit Cell

Relation between a & r

Along the **body diagonal**

$$\sqrt{3}$$
a \pm 4r

Packing efficiency (P.E)

$$= 2 \times \frac{4}{3} \pi r^3$$

$$\frac{2 \times (4/3)\pi r^3}{(4r/\sqrt{3})^3} \times 100$$

$$=$$
 a^3 $=$ $(4r/\sqrt{3})$ $=$ 3

$$= \frac{\sqrt{3} \pi \times 100}{8}$$

Face-Centred Cubic Unit Cell

Effective number of particles in a unit cell

$$8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$$

Face-Centred Cubic Unit Cell

Relation between a and r

Face of unit cell

2r, r

Spheres are touching along the face diagonal

Packing Efficiency in FCC

P.E. =
$$\frac{4 \times (4/3) \, \pi r^3}{\left(\frac{4r}{\sqrt{2}}\right)^3} \times 100$$

$$= \frac{\pi \times 100}{3\sqrt{2}}$$

Density of a unit cell

Density of a unit cell

Density of the unit cell

Total mass of particles in the unit cell

Volume of the unit cell

Density of the unit cell

Total number of particles in the unit cell × mass of single particle

Volume of the unit cell

Density of a unit cell

Mass of a single particle
$$=$$
 $\frac{\text{Molar mass}}{N_A}$

Density
$$(\varrho)$$
 = Total number of particles in unit cell) × (Molar mass) (Volume of unit cell) × (N_A)

Density
$$(\varrho)$$
 = $\frac{Z \times M}{N_A \times a^3}$

Coordination Number (C.N.)

Number of nearest neighbour particles in a packing is called coordination number.

Coordination Number (C.N.)

Simple cubic unit cell

- Reference particle
- Nearest particle
- Next nearest particle

Nearest Neighbour

Simple cubic unit cell

Number of nearest neighbour is same as coordination number.

Distance of the nearest particle

Number of nearest particles

_

а

6

= 2r

Nearest Neighbour in BCC

- Reference particle
- Nearest particle

Number of nearest particles

=

8

C.N.

Nearest Neighbour in BCC

- Reference particle
- Nearest particle

Distance of nearest particle in BCC

•

Nearest Neighbour in FCC

- Reference particle
- Nearest particle

Distance of nearest particle in FCC

$$\frac{a}{\sqrt{2}}$$
 =

2r

In 1-D, for efficient packing, spheres are arranged in a row and touch each other.

Coordination number (C.N.)

Number of nearest neighbour particles in a packing is called **coordination number**.

Packing in 2-D Lattice

2-D lattice can be considered to be made of 1-D array

Square arrangement

Hexagonal arrangement

Square arrangement in 2-D lattice

Array are arranged such that spheres of one array are exactly above the sphere of another array.

Square arrangement in 2-D lattice

AAA type packing

Square arrangement in 2-D lattice

Square arrangement in 2-D lattice

Square packing in 2-D

Unit cell

Primitive

Non-primitive

Effective number of particles (Z)

1

2

C.N.

4

4

Hexagonal arrangement in **2-D** lattice

1-D array are arranged such that the spheres of one array occupies the depression of other array

Hexagonal arrangement in **2-D** lattice

ABAB type of arrangement

Hexagonal arrangement in **2-D** lattice

Hexagonal packing in 2-D

Unit cell

Primitive

Non-primitive

Effective number of particles (Z)

1

3

C.N.

6

6

Packing in 1D, 2D and 3D

Arrangement of Hexagonal-Packed Sheets

To generate **close packing**, the 2D arrangement **must be hexagonal**.

The sheets are arranged such that **depressions** of one sheet are **occupied** by the **spheres** of the other sheet.

Arrangement of Hexagonal-Packed Sheets

Only 50% depressions of one layer can be occupied by the spheres of another layer (II layer).

Voids

Although the close-packed structures have the maximum packing efficiency, there are **empty spaces** in the arrangements.

These empty spaces are known as **voids or interstitial voids**.

Types of Voids

On placing the second layer in the depressions of the first layer, two types of voids are generated.

Tetrahedral voids

Octahedral voids

Octahedral void

Tetrahedral void

Tetrahedral Void

Octahedral Void

Hexagonal Close Packing (HCP)

Sphere of the third layer occupy those **voids** of the second layer **under** which there are **sphere of the first layer i.e., T.V.**

So, the third layer is **exactly identical** to the first layer. This generates the **ABAB** - - - **AB pattern**.

One type of void always remains unoccupied, i.e., O.V.

Hexagonal Close Packing (HCP)

Unit Cell

Effective Number of Particles in Hexagonal Unit Cell

$$= 12 \times \frac{1}{6}$$

$$2 \times \frac{1}{2}$$

Corner particles of two hexagonal layers

For the centre particles of two hexagonal layers

For the particles of middle layer

$$= 12 \times \frac{1}{6} + 2 \times \frac{1}{2} + 3 \times 1$$

Coordination Number (C.N.)

Cubic Close Packing (CCP)

The spheres of the third layer are placed such that they occupy 50% voids of the second layer, under which there are voids of the first layer, i.e., O.V.

The third layer is **different** from the first layer as well as the second layer. Thus, it has an **ABCABC** type of arrangement.

It is known as **cubical close packing**; the unit cell chosen is **face-centred cubic** (FCC).

Cubic Close Packing (CCP)

ABCABC pattern

FCC unit cell

Coordination Number (C.N.)

C.N. = 12

Each sphere touches

HCP and **CCP** are the **only** closely packed lattices (because of their efficiency, **74%**).

Tetrahedral Voids in FCC Unit Cell

FCC unit cell has **8 tetrahedral voids**

- Tetrahedral void

Tetrahedral Voids in FCC Unit Cell

Each tetrahedral void is present on the body diagonal of the FCC unit cell.

Body diagonal

Each FCC unit cell has 4 body diagonals.

Each body diagonals contains 2 tetrahedral voids.

Number of Tetrahedral Voids in FCC

Each tetrahedral void contributes fully to the unit cell and is **not** shared with other unit cells.

Total tetrahedral voids = 8

For FCC unit cell

= -

T.V. = 8

So, T.V. $= 2 \times Z$

Octahedral Voids in FCC

Present at each **edge centre** and at the **body centre** of the FCC unit cell

Number of Octahedral Voids in FCC or CCP

Number of octahedral voids per unit cell

Note

In general, in close-packed structures (HCP and FCC)

Number of **O.V.**

Number of T.V.

2 2

Effective number of particles in one unit cell

Number of Voids in HCP

Tetrahedral Voids

Octahedral Voids

Effective number of particles per unit cell (Z)

Effective number of particles per unit cell (Z)

Number of tetrahedral voids

2 Z

Number of octahedral voids

Number of tetrahedral voids 2 × 6 = 12

Number of octahedral voids

A	
	R
	V

Unit cell	Z	Tetrahedral void (2Z)	Octahedral void (Z)
FCC	4	8	4
НСР	6	12	6

Ionic Compounds

Larger ions

(Generally anion)

Form the lattice

Smaller ions

(Generally cation)

Occupy the voids

such as T.V., O.V., etc.

Rock Salt (NaCl)

CI forms a cubical closed-packing (**CCP**).

Na⁺ ions occupy all the octahedral voids.

Rock Salt (NaCl)

Effective number of Cl⁻ ions per unit cell

4

Effective number of Na⁺ ions per unit cell

Formula of unit cell: Na₄Cl₄

Formula of ionic compound

NaCl

Effective number of **formula units (Z)**

4

Rock Salt (NaCl)

Coordination number of **cations**

(

Coordination number of **anions**

6

Example: MgO, CaO, SrO, BaO, and all alkali halides, **except** CsCl, CsBr and Csl

Zinc Blende (ZnS)

Experimental ratio,

$$\frac{r_{Zn^{2+}}}{r_{S^{2-}}} = 0.3$$

$$0.225 \leq \frac{r_{Zn^{2+}}}{r_{S^{2-}}} < 0.414$$

Zinc Blende (ZnS)

For S²⁻ anion (placed at the corner)

Distance of nearest (i) cation

Number of nearest

(ii)

Distance of nearest anion

cations

√2

Number of nearest anions

12

Zinc Blende (ZnS)

S²⁻

S²⁻ ions form the hcp lattice

Number of S^{2-} ions = 6

Zn²⁺ ions occupy alternate (non-adjacent) tetrahedral voids.

Number of S^{2-} ions = 6

As total tetrahedral voids = 12

F

F⁻ions occupies all the tetrahedral voids

Number of F⁻ ions = 8

As total tetrahedral voids = 8

Total CaF₂ units in one unit cell = 4

Ratio of Coordination number

8

•

4

Other examples of fluorite structure

2

1

BaF₂, BaCl₂, SrF₂, SrCl₂ etc. So,

General formula

AB₂

$$0.225$$
 $\leq \frac{r_{F^-}}{r_{Ca^{2+}}}$ < 0.414

$$r_{F^-} + r_{Ca^{2+}} = \frac{\sqrt{3a}}{4}$$

For cation, Ca²⁺ (placed at the corner)

(i) Distance of nearest anion

Number of nearest anion

(ii) Distance of nearest cation

Number of nearest cation

√3a 4

8

__a __√2

12

For F⁻ anion,

(i)	Distance of nearest cation	=	√3a 4
	Number of nearest		

cations

(ii) Distance of nearest =
$$\frac{a}{2}$$

Anti-Fluorite Structure (Na,O)

Total Na₂O units in one unit cell <u>= 4</u>

O^{2–} ions form the FCC lattice

Number of O^{2-} ions in each unit cell = 4

Na⁺ ions occupy all tetrahedral voids

Number of Na⁺ ions = 8

As total tetrahedral voids = 8

Anti-Fluorite Structure (Na₂O)

Ratio of Coordination number

4

8

1

•

2

Examples

Alkali metal oxides M₂O (M = Li, Na, K, Rb) crystallize in the anti-fluorite structure. So,

General formula

= A_2B

Caesium Chloride (CsCl)

Cl⁻ions form simple cubic lattice Number of Cl⁻ ions per unit cell = 1

Cs⁺ ions occupy cubical void

Number of Cs⁺ ions = 1

As total cubical void = 1

Total CsCl units per unit cell = 1

Caesium Chloride (CsCl)

Caesium Chloride (CsCl)

Coordination number ratio

8 : 8

1 : 1

So, General = AB

Experimental ratio,

$$\frac{r_{Cs^+}}{r_{Cl^-}}$$
 \simeq

0.93

Other examples of CsCl like structures

CsBr, CsI, CsCN, TiCl, TiBr, TiCN etc.

$$\frac{r_{Cs^+}}{r_{Cl^-}}$$
 > 0.732

Defects

Although crystalline solids have **short-range as well as long-range order** in the arrangement of their constituent particles, crystals are **not perfect**.

Usually, a solid consists of an aggregate of a large number of **small crystals**.

These small crystals have defects in them because crystallisation process occurs at a fast or moderate rate.

Defects

Single crystals are formed when the process of crystallisation occurs at an extremely slow rate.

Even these crystals are not free from defects.

The defects are basically irregularities in the arrangement of the constituent particles.

Defects in Crystals

In a perfect crystal, all atoms would be on their correct lattice positions in the structure.

A perfect crystal can exist only at the absolute zero of temperature, 0 K.

Above 0 K, defects occur in the structure.

Imperfections can be because of:

1 Conditions under which crystals have been developed.

2) Impurities

Temperature (because of thermal conductivity some atoms/ions can get displaced).

Point Defects

Defects will only be at certain lattice positions.

Stoichiometric Defects

The **formula** of a compound remains **unchanged** despite the presence of these defects.

Also known as **thermodynamic** or **intrinsic defects**.

Schottky Defect

Schottky defect consists of ion vacancy in a crystal lattice, but the stoichiometry of the compound (and thus, electrical neutrality) is retained.

Characteristics

In NaCl, there is approximately one Schottky defect per 10¹⁶ ions at room temperature.

Shown by **ionic substances** in which the cation and anion are of almost **similar sizes.**

E.g.: NaCl, KCl, AgBr, and CsCl

(ii)

Schottky defect decreases the density of the substance.

Frenkel Defect

Frenkel

Defect

When ions are displaced from normal lattice positions and are present in some interstitial voids, it is known as Frenkel defect.

Frenkel defect is also known as **dislocation defect**.

Characteristics

(i)

Shown by ionic solids having large difference in size between the positive & negative ions.

E.g. ZnS, AgCl, AgBr, & Agl

(ii)

Density of a solid does not change.

Effect of Schottky & Frenkel Defect on Properties of Crystal

Non-Stoichiometric Defects

Point defects in ionic solids

Stoichiometric defects

Non-stoichiometric defects

Impurity defects

The formula of compound gets **modified** because of the presence of these defects.

Non-Stoichiometric Defects

Metal Excess Defect

Instead of anion, electron occupies the lattice site of anion.

Example:

NaCl and KCl show such defects

Heating of NaCl

When crystals of NaCl are **heated** in an atmosphere of sodium vapour

CI ions diffuse to the surface of the crystal and combine with the Na atoms to give NaCl

This happens due to loss of electron by Na atoms to form Na⁺ ions.

The released electrons diffuse into the crystal and occupy anionic sites.

These anionic sites occupied by unpaired electrons are called **F-centres**.

Zn_{1+x}O

Zinc oxide is white in colour at room temperature.

On heating, it loses some O²⁻ions in the form of O₂ and turns yellow.

$$O^2$$

$$O^2$$

 O^{2-}

O²-

Zn²⁺

 $Zn^{2+} + \frac{1}{2}O_2 + 2e^{-}$ ZnO

electrons

Metal Excess Defect

The electrical property and colour of a solid gets modified.

E.g.: Crystal of NaCl is yellow, KCl is violet or lilac, and LiCl is pink.

The substance becomes paramagnetic

Metal Deficiency Defect

Example,

If a positive charge is absent from its lattice site, the charge can be balanced by an adjacent metal ion with an extra positive charge.

FeO is mostly found with a composition of Fe_{0.93}O to Fe_{0.96}O.

Loss of some Fe²⁺ ions is compensated by the presence of the required number of Fe³⁺ ions.

Metal Deficiency Defect

Impurity Defects

Substitutional Impurity Defects

Defects in ionic crystals, can be introduced by **adding impurities**.

Similar sized cation **substitute** the existing cation of ionic crystal.

Substitutional Impurity Defects

Impurity

Defect

For example:

When molten NaCl is crystallised having a small amount of SrCl₂

Some Na⁺ ions' locations are occupied by Sr²⁺ ions

Each Sr²⁺ replaces two Na⁺ sites by occupying a site of one Na⁺ and other site remaining vacant.

Substitutional Impurity Defects

Number of cationic vacancies generated

=

Number of Sr²⁺ in the crystal

Other example: solid solution of CdCl₂ and AgCl.

Impurity Defects

Interstitial Impurity Defect

When some **small foreign atoms** (like B, C, N, H) are **trapped** in interstitial voids of the lattice without any chemical reaction.

Formula remains the same.

d_{exp} > d_{theoretical}

Point defects in non-ionic compounds

Vacancy Defect

Such defect arises when some of the **lattice sites** in the crystal are **vacant**.

Density of crystal decreases.

Interstitial Defect

Arises when some small foreign atoms (like B, C, N, H) are trapped in interstitial voids of the lattice without any chemical reaction.

Density of crystal **increases**.

Electrical Properties of Solids

Solids exhibit an amazing range of electrical conductivities.

The range of electrical conductivities varies from 10⁻²⁰ to 10⁷ ohm⁻¹ m⁻¹.

Classification of Solids

Electrical Properties of Solids

Type of solid	Conductivity range (ohm ⁻¹ m ⁻¹)	Examples
Conductor	10 ⁴ to 10 ⁷	Metal
Semiconductor	10 ⁻⁶ to 10 ⁴	Germanium (Ge), Silicon (Si) etc.
Insulator	10 ⁻²⁰ to 10 ⁻¹⁰	MnO, CoO; NiO, CuO

Band Theory

Overlap of atomic orbitals in solids gives rise to bands of energy levels.

Overlapping of Bands

Band of Orbital in Crystal of Sodium

Band Gap

Energy difference

between the valence band and the conduction band

Electrical Conductivity

Metals

Semiconductors

On heating

Electron easily jumps from
VB to CB

Magnetic Properties

Every substance has some magnetic properties associated with it. Thorigin of these properties lies in the electrons.

Each electron in an atom behaves like a tiny magnet.

Magnetic moment of an electron originates from two types of motion.

lts **orbital** motion around the nucleus.

(2) Its **spin** around its own axis.

Demonstration of the magnetic moment associated with (a) an orbiting electron and (b) a spinning electron.

Paramagnetic Substances

Substances that are attracted by the external magnetic field

Atoms, ions or molecules containing unpaired electron show this property.

Examples

O₂, Cu²⁺, Fe³⁺ etc. These substances lost their magnetism in the absence of magnetic field.

Diamagnetic Substances

Substances that are repelled by magnetic field

They do not have unpaired electrons.

Examples

 $\mathrm{Cu}^{\scriptscriptstyle +}$, $\mathrm{TiO}_{\mathrm{2}}$, NaCl , and $\mathrm{C}_{\mathrm{6}}\mathrm{H}_{\mathrm{6}}$

Ferromagnetic Substances

Substances that are attracted very strongly by a magnetic field

Substances that show permanent magnetism even in the absence of the magnetic field.

In an unmagnetised piece of a ferromagnetic substance, the domains are randomly oriented and their magnetic moments get cancelled.

When the substance is placed in a magnetic field, all domains get oriented in the direction of the magnetic field and a strong magnetic effect is produced.

Ferromagnetic Substances

This ordering of domains persist even when the magnetic field is removed & the substance becomes a permanent magnet.

Examples

Fe, Ni, Co, and CrO_2

Antiferromagnetic Substances

Substances showing anti-ferromagnetism have domain structure similar to ferromagnetic substance, but their domains are oppositely oriented and cancel out each other's magnetic moment.

Example

MnO

Ferromagnetic Substances

Substances in which the magnetic moments of the domains are aligned in parallel & anti-parallel directions in unequal numbers.

They are **weakly attracted** by magnetic field as compared to ferromagnetic substances.

Examples

 ${\rm Fe_3O_4}$, ferrites like ${\rm MgFe_2O_4}$ and ${\rm ZnFe_2O_4}$

Ferrimagnetic Substances

On heating, ferrimagnetic substance convert into paramagnetic substances.