Dipartimento di Ingegneria dell'Informazione Ricerca Operativa (INFLT, ETELT) Anno accademico 2020/2021

Elaborato sull'utilizzo del risolutore Gurobi - Parte I

Suggerimenti

- 1. Per rispondere ai quesiti proposti, dovete sfruttare le conoscenze teoriche fino ad ora acquisite riguardanti la Programmazione Lineare.
- 2. Relativamente al codice che andrà scritto in Java:
 - 2.1 se lo ritenete opportuno, potete importare librerie Java esterne per rendere più rapido qualche calcolo o procedimento;
 - 2.2 attenzione all'errore di macchina: potrebbe capitare che Gurobi vi calcoli un valore di una variabile pari a 0.999999999; ciò vuol dire che, nella realtà, il valore di quella variabile è pari a 1;
 - 2.3 approssimare ogni valore calcolato alla quarta cifra decimale per arrotondamento.
 - 2.4 come sottolineato a lezione, fare attenzione alle variabili di surplus che Gurobi definisce negative.

Istruzioni

- 1. Ogni risposta ai quesiti deve essere frutto di una o più linee di codice (non è consentito svolgere calcoli "a mente", su carta o tramite altri software e poi semplicemente stampare a video le risposte)
- 2. Potete utilizzare qualsiasi classe e metodo forniti dall'interfaccia Java di Gurobi (cfr. documentazione: https://www.gurobi.com/documentation/9.1/refman/index.html).
- 3. Il codice sorgente prodotto dovrà essere **debitamente commentato**, evidenziando, a grandi linee, le rispettive tre parti di codice che sono servite per rispondere ai tre quesiti.
- 4. Il file eseguibile .jar, rinominato gruppoX.jar, dovrà produrre in output il file risposte_gruppoX.txt con la stampa delle risposte ai tre quesiti, secondo il formato descritto in Pagina 3.
- 5. Allegate infine una descrizione sintetica (non più di mezza pagina) di quanto avete fatto e delle modalità (algoritmi, regole teoriche) utilizzate per risolvere ciascun quesito.
- 6. Non è possibile contattare il docente o gli assistenti per richieste relative alla parte teorica o alla stesura del codice, mentre è possibile chiedere eventuali chiarimenti inerenti alla consegna.

CONSEGNA

La consegna è prevista entro le 23:55 del 18 aprile 2021. Devono essere caricati in Comunità Didattica, tramite l'oggetto "Consegna elaborato Gurobi - Parte I", il codice sorgente Java prodotto, il file esegubile . jar e la descrizione sintetica. L'elaborato del gruppo di chi non avesse caricato tutto il materiale richiesto entro il tempo limite sarà considerato insufficiente.

Testo del problema

Alla fine di ogni giornata lavorativa, la banca di Matriciopoli deve aggiornare gli estratti conto di migliaia di carte di credito. Si stima che ognuna delle h filiali in media debba processare g TB di dati. Il reparto ICT, raccolti tutti i dati di ogni filiale, li invia ad una rete di n calcolatori che possono lavorare in parallelo e deve quindi decidere come suddividere il carico. Ciascun calcolatore i, i = 1, ..., n ha una capacità di elaborazione pari ad α_i GB/s e i dati possono essere inviati ad esso con una velocità di β_i GB/s. La banca vuole che in ogni caso ogni calcolatore elabori almeno l' Ω % e al massimo il Θ % dei dati totali e che le elaborazioni siano terminate entro τ secondi. La banca vuole minimizzare il massimo carico di lavoro assegnato tra tutti i calcolatori.

NB: si intenda il carico di lavoro come quantità reale.

Quesiti

I Elaborare un modello matematico di Programmazione Lineare per il problema fornito. Quindi, implementarlo e risolverlo tramite Gurobi, trovandone la soluzione ottima (valore ottimo delle variabili e il corrispettivo valore della funzione obiettivo).

II Indicare:

- le variabili in base e quelle fuori base all'ottimo
- i coefficienti di costo ridotto all'ottimo
- se la soluzione ottima trovata è multipla e/o degenere
- specificare quali vincoli identificano il vertice ottimo e quali no.

NB: se il problema assegnatovi ha k variabili originali, la (k+i)-esima deve essere la variabile di slack/surplus associata all' i-esimo vincolo.

- III Sia m il numero di vincoli del vostro problema in forma standard. Generare in maniera casuale tre matrici $m \times m$ e affrontare per ciascuna di esse i seguenti quesiti:
 - verificare se la matrice sia di base ed in caso determinarne la rispettiva soluzione di base;
 - verificare se la soluzione di base trovata è ammissibile e ottima;
 - determinare il tableau associato alla soluzione di base trovata.

NB: è necessario scrivere il codice per la verifica e la determinazione del tableau anche nel caso in cui le tre matrici generate casualmente non siano di base.

Esempio di output risposte_gruppoX.txt

```
GRUPPO <numero gruppo>
Componenti: <cognome componente 1> <eventuale cognome componente 2>
QUESITO I:
funzione obiettivo = <valore funzione obiettivo>
soluzione di base ottima: [<valore di x1>, <valore di x2>, ..., <valore di xk>]
QUESITO II:
variabili in base: [<1 se x1 è in base, 0 altrimenti>, ... <1 se xn è in base, 0 altrimenti>]
coefficienti di costo ridotto: [<costo ridotto di x1>, ..., <costo ridotto di xk>]
soluzione ottima multipla: <Si|No>
soluzione ottima degenere: <Sì|No>
vincoli vertice ottimo: <elenco dei nomi dei vincoli>
QUESITO III:
(per ogni matrice generata stampare:)
indici variabili scelte: [a, b, c,...]
base: <SilNo>
(se matrice di base stampare:)
soluzione: [<valore di x1>, <valore di x2>, ..., <valore di xk>]
ammissibile: <Si|No>
ottima: <Si|No>
tableau:
      x_1 \quad x_2 \quad x_3 \quad \dots
 x_i \quad a_{11} \quad a_{12} \quad a_{13} \quad \dots \quad b_i
 x_j a_{21} a_{22} a_{23} \dots b_j
 x_k a_{31} a_{32} a_{33} \dots b_k
                ... ... ...
      r_1
          r_2
                r_3 \dots
```

NB: le risposte non stampate in questo file verranno considerate in bianco e quindi valutate negativamente.