$$\frac{|\chi-6|}{\chi+2} \leq \chi-1 \Rightarrow \frac{(\chi-6)^2}{(\chi+2)^2} = (\chi-6)^2 \leq (\chi-1)^2 \cdot (\chi+2)^2$$

$$= 0 \leq (\chi-1)^2 \cdot (\chi+2)^2 - (\chi-6)^2 \Rightarrow (\chi^2+\chi-2)^2 - (\chi-6)^2$$

$$= (\chi^2+\chi-2+\chi-6) \cdot (\chi^2+\chi-2-\chi+6) = (\chi^2+\chi-8) \cdot (\chi^2+\chi+4)$$

(x2+4) - Sciengre positivo

$$\frac{-2+6}{2} = \frac{4t}{2} = 2$$

$$\frac{-2+6}{2} = \frac{4t}{2} = 2$$

$$\frac{-2+6}{2} = \frac{4t}{2} = 2$$

$$\frac{-2+6}{2} = \frac{-8}{2} = -4$$

	(-60,-4)	(-4,-2)	(-2,2)	(2,∞)	
x2+2x-8	+)	+	
x2+ 4	+	+	+	+	
	+	_	7	+	

$$\frac{f(x)}{|x-6|} \stackrel{g(x)}{\sim} x \neq -2$$

Penvemor a los niembros de la inecuerion como funciones.

Primero que nada veamos el punto de intersección

$$\frac{x-6}{x+2} = x-1 \implies x-6 = (x-1).(x+2) \implies 0 = x^2 + x-2 - x + 6$$

$$\Rightarrow$$
 $\chi^2 + 4 = 0$ \rightarrow No trene voices realer

$$\frac{-(x-6)}{x+2} = x-1 \implies -x+6 = (x-7).(x+2) \implies 0 = x^2+x-2+x-6$$

$$\Rightarrow 0 = \chi^2 + 2\chi - 8 \Rightarrow 0 = (\chi - 2).(\chi + 4) \Rightarrow \chi_1 = 2, \chi_2 = -4$$

· las funcioner se intersevan en X=-4 y X=2

Veamos que funcion es mayor teniendo en cuento sur funtos de intersección y las funtos críticos:

	(-0,-4)	(-4,-2)	(-2, 2)	(2,0)	-5-6 2-5-1=7-11 2-6 ~ No
1x-612 X-1 xt2	No	Si	No	Si	-5+2 3
	•		,	,	1-3-6 2-3-1=> -92-4-eSi
Por ende	1x-61 z x-1	en (-4,-2	$)U(2, \infty)$	$\circ)$	-3+2
, , ,	X+2	,			1-1-6) 2-1-1 => 74-2-6 No
1					-1+2
					13-6 23-1=3 2 2 -6 Si
					3+2

b) Grafique el conjunto de soluciones de la siguiente desigualdad:

$$\frac{|x+4|}{|x-1|} < (x+4)$$

$$\frac{|X+Y|}{|X-1|} \stackrel{\angle}{\angle} X+Y \Rightarrow \frac{|X+Y|}{|X-1|} \stackrel{\angle}{\angle} X+Y, \quad X \neq 1$$

Tonemos a los niembros de la devigualdad como funciones

Primero vezmos donde intervenza:

Control of the contro		/	1	11 .	Ī
(aso 1: $\underline{X+4} \ge 0 \Rightarrow X \in (-\infty, -4] \cup (1, \infty)$		(-8,-4)	(-4,1)	$(1, \infty)$	L
X-1	XtY	1	+	+	
$\chi + y = \chi + y \Rightarrow \chi + y = (\chi + y) \cdot (\chi - 1)$	X-1	-	-	+	
X-1		+	_	+	

$$\Rightarrow 0 = x^2 + 3x - 4 - x - 4 \Rightarrow 0 = x^2 + 2x - 8$$

$$\Rightarrow 0 = (x-2).(x+4) \Rightarrow x_1=2, x_2=-4$$

: lar funcioner intersecan con
$$x=2$$
 y $x=-4$ en el intervalo $(-\infty, -4] \cup (1, \infty)$

Caro 2:
$$\frac{\chi+4}{\chi-1} \stackrel{?}{\sim} 0 \Rightarrow \chi \in (-4,1)$$

$$-\left(\frac{\chi+4}{\chi-1}\right) = \chi+4 \implies -\chi-4 = \chi+4 \implies -\chi-4 = (\chi+4).(\chi-1)$$

$$= X_{1} = 0$$
 , $X_{2} = -8 = -4$

$$=> x_1 = 0 , x_2 = \frac{-8}{2} = -4$$
: Les funciones intervecen con $x = 0$ en el intervelo $(-4, 1)$

Teniendo en wento los pontos de intersección y los pontos críticos, vermos en que intervalos se comple la designal dad $\frac{X+Y}{X-1}$ $= \frac{2}{X+Y}$

	χ	f(x)	9(x)	Resultado
(-0,-4]	-5	1-5+4 = 1 = 1	-5+4 = -1	f(x) > g(x)
		$\begin{vmatrix} -5+4 \\ -5-1 \end{vmatrix} = \begin{vmatrix} 1 \\ 6 \end{vmatrix} = \frac{1}{6}$		
(-4,0)	-3	-3+4 = -1 = <u>1</u> -3-1 4 4	-3+4 = 1	$f(x) \sim g(x)$
		3-1 4 4		(0
(2,∞)	3	3+4 = 7 = 7 3-7 = 2 = 2	3+4=7	f(x) = g(x)

: f(x) < g(x) para los intervalos (-4,0) y (2,00)

Por ende, la devigualdad se comple en el intervalo (-4,0) U (2,∞)

b) Gracique el conjunto de soluciones de la siguiente designation

$$\frac{\chi-2}{\chi+1} \leq |\chi^2-4| \Rightarrow \frac{\chi-2}{\chi+1} \leq \frac{|(\chi+2).(\chi-2)|}{g(\chi)}$$

Veamos en que intervalos el valor absoluto es menos o mayor a cero:

	(-6,-2)	(-2,2)	(2,∞)
X+2	-	+	+
X-2	•	1	+
(x+2).(x-2)	t	1	+

Ahors veemos donde intervolon las funciones:

Caro 1:
$$|\chi^2 - 2^2| \ge 0 \implies \chi \in (-\infty, -2) \cup (2, \infty)$$

$$\frac{x^{2} - 2}{x^{2} + 1} = \frac{x^{2} - 2}{x^{2} + 3x + 1} \cdot (x + 1) = \frac{x^{2} - 2}{x^{3} + 1} \cdot (x + 1) = \frac{x^{2} - 2}{x^{2} + 3x + 1} \cdot (x + 1) = \frac{x^{2} - 2}{x$$

$$\frac{1310}{1310} = 7 x^2 + 3x + 1$$

$$\frac{-3\pm\sqrt{9-4}}{2} = \frac{-3\pm\sqrt{5}}{2}$$

$$=7 \times 15 = \frac{-3 + \sqrt{5}}{2}$$
, $\times_{z} = \frac{-3 - \sqrt{5}}{2}$

Metodo Tradicional

El enterior metodo quede tornerse ensorroso, volvamos al metodo or eginal

$$\frac{|\chi-6|}{X+2} \leftarrow \frac{|\chi-6|}{X+2} - \frac{|\chi-6|}{X+2} - \frac{|\chi-6|-\chi.(\chi+2)+\chi+2}{X+2} \leftarrow 0$$

$$\Rightarrow \frac{|x-6|-x^2-2x+x+2| \leq 0}{x+2} \Rightarrow \frac{|x-6|-x^2-x+2|}{x+2} \leq 0$$

(avo 1: X-6 ≥ 0 ⇒ X ≥ 6

$$\Delta = b^2 - 4.5.c = o^2 - 4.-7.-4 = -16$$

• la curva no corta al eje x

Como hay un cuadrado negativo siendo restado

 $-\chi^2-4$ - - + $-\chi^2-4$ + - $-\chi^2-4$

$$\times \varepsilon (-2, \infty) \cap [6, \infty) \Rightarrow \times \varepsilon [6, \infty)$$

Caro 2: X-6 < 0 ⇒ X < 6

(avo 2: X	,-6 < 0	<i>→</i> > X	< 6			
-(x-6) - X	(2-X+Z)	40 à	> -X.5	$76-\chi^2-\chi$	(+2	$X = 2 \pm \sqrt{36} = 2 \pm 6$
X+				X+2		<u>-1.2</u> -2
\Rightarrow $-\chi^2-2\chi$	(+8 2c) =>-1.	(x+y)	· (x~z)	c 0	$\chi_{1} = \frac{2+6}{-2} = \frac{8}{-2} = -4$
χ+2		, <u> </u>	χ+			-2 -2
	(-0,-4)	(-4,-2)	(-2,2)	(2,00)		12=2-6=4=2
-1	-	_	-	1		-2 - 1
(x+4)	_	+	+	+		
(X-2)	-	_	-	+	* X	[(-42)11/2,00)] n ta

$$\Rightarrow \chi \in (-4,2) \cup (2,\infty) \cap (\infty,6)$$

$$\Rightarrow \chi \in (-4,2) \cup (2,6)$$

b) Grafique el conjunto de soluciones de la siguiente desigualdad:

$$\frac{|x+4|}{|x-1|} < (x+4)$$

$$\frac{|\chi+4|}{|\chi-1|} = \chi+4 \implies \frac{|\chi+4|}{|\chi-1|} = \chi+4 \implies -(\chi+4) = \frac{\chi+4}{|\chi-1|} = \chi+4 \implies 0 = \frac{\chi+4}{|\chi-1|} = \chi+4 \implies 0 = \frac{\chi+4}{|\chi-1|} + \chi+4 \implies \frac{\chi+4}{|\chi-1|} = \chi+4 \implies 0 = \frac{\chi+4}{|\chi-1|} + \chi+4 \implies \chi+4$$

$$\frac{x+4-x-4=0}{x-1} \Rightarrow \frac{x+4-x}{(x-1)-4} = \frac{x+4-x^2+x-4x+4}{x-1} = \frac{x+4-x^2+x-4}{x-1} = \frac{x+4-x^2+x-4x+4}{x-1} = \frac{x+4-x^2+x-4}{x-1} = \frac{x+4-x^2+x-4x+4}{x-1} = \frac{x+4-x^2+x-4x+4}{x-1} = \frac{x+4-x^2+x-4}{x-1} = \frac{x+4-x^2+x-4}{x-1} = \frac{x+4-x^2+x-4}{$$

	(-60,-4)	(-4,1)	(1,2)	(r, ∞)	$\times t \left(-4,1\right) \cup \left(2,\infty\right)$
-1	-	-	_	_	
X+4	-	+	+	+	
X-2		_	1	+	
X-1	==	=	+	+	
-1. (x+4) (x-2)	+	_	+	-	
X-1					

Our ende, le devisualded se comple pare el intervalo [-4,0] u[-4,1] u $[2,\infty)$ = (-4,0) u $[2,\infty)$

6) Grafique el conjunto de soluciones de la significa designation

$$\frac{x-2}{x+1} < |x^2-4|$$
 $\frac{x-2}{x+1} < |x^2-4| > \frac{x-2}{x+1}$
 $\frac{x+1}{x+1} < |x^2-4| > \frac{x-2}{x+1} > \frac{x-2}{x+1}$
 $\frac{x+1}{x+1} < |x^2-4| > \frac{x-2}{x+1} > \frac{x-2}$

$$\frac{\chi^{2}-4}{\chi+1} > \frac{\chi - 2}{\chi+1} > 0 \Rightarrow \frac{\chi - 2}{\chi+1} > 0 \Rightarrow \frac{\chi - 2 - \chi^{3} - \chi^{2} + 4\chi + 4}{\chi+1}$$

$$\Rightarrow -\frac{\chi^{5}-\chi^{2}+5\chi+2}{\chi+1} > 0 \Rightarrow 0 > \frac{(\chi - 2)(-\chi^{2}-3\chi-1)}{\chi-1}$$

$$\frac{-1}{3} - 1 0 \Rightarrow -\chi^{2} - 3\chi - 1$$

$$\frac{-1}{3} - 1 0 \Rightarrow -\chi^{2} - 3\chi - 1$$

$$\frac{\chi - 2}{\chi-1} = \frac{3+\sqrt{5}}{2-7} = \frac{3+\sqrt{5}}{2}$$

$$\frac{\chi - 2}{\chi-1} = \frac{3+\sqrt{5}}{2} = \frac{3-\sqrt{5}}{2} + \frac{3+\sqrt{5}}{2} = \frac{3+\sqrt{5}}{2}$$

	(-0, -3-Js)	$\left(\frac{-3-\sqrt{5}}{2}, -1\right)$	(-1,-3+vs	(-3+15,2)	(\imath, ∞)
X-2	_		_	1	+
-χ²-3χ-1	_	+	+	1	1
X+1	_	-	+	+	+
Resultado	-	+	-	+	1

$$\chi^2 - 4 \leq -\left(\frac{\chi - 2}{\chi + 1}\right) \qquad \chi^2 - 4 > \frac{\chi - 2}{\chi + 1}$$

$$= \left(-\frac{1}{2}\right) \cup \left[\left(-\infty, \frac{-3 - \sqrt{5}}{2}\right) \cup \left(-\frac{3 + \sqrt{5}}{2}\right) \cup \left(2, \infty\right)\right]$$