11/02/2022	exame final	duração: 2h30min
nome:		$ m n^o$ mecanográfico:
declaro que desisto:		_ nº folhas adicionais:
O exame tem 6 questões. Justifiqu	ue detalhadamente as respostas.	

Questão 1 - cotação 3.0

Considere os parâmetros reais
$$\alpha$$
 e β , a matriz $A = \begin{bmatrix} 1 & 6 & 3 & 4 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & \beta & \beta \\ 0 & 0 & 0 & \beta - 1 \end{bmatrix}$ e o vetor $B = \begin{bmatrix} 2 \\ 1 \\ \alpha \\ \alpha - 1 \end{bmatrix}$.

Determine, justificando, para que valores de α e β o sistema AX=B é

- (i) possível e determinado.
- (ii) possível e indeterminado.
- (iii) impossível.

11/02/2022	exame final	duração: 2h30min
nome:		$ m n^{0}$ mecanográfico:
declaro que desisto:		n ^o folhas adicionais:
O exame tem 6 questões.	Justifique detalhadamente as respostas.	

 $\mathbf{Quest ilde{a}o}$ $\mathbf{2}$ - cota ç ilde{a}o 5.0

Seja
$$N = \begin{bmatrix} 1 & 1 & 8 \\ 0 & 2 & 8 \\ 0 & 1 & -k \end{bmatrix}$$
, onde k é um parâmetro real.

- a) Determine os valores de k para os quais a matriz N é invertível.
- b) Considere k=-2. Seja A uma matriz de ordem 3 tal que $\det(A)=4$. Calcule $\det(2A^TN^{-1})$.
- c) Mostre que 1 é valor próprio de N, para qualquer $k \in \mathbb{R}$.
- d) Considere k = 0. Mostre que u = (2, 2, -1) é um vetor próprio de N e determine o valor próprio de N que tem u como vetor próprio.

11/02/2022	exame final	duração: 2h30min
nome:		$ m n^{0}$ mecanográfico:
declaro que desisto:		_ nº folhas adicionais:
O exame tem 6 questões. Justi	fique detalhadamente as respostas.	

Questão 3 - cotação 3.0

Considere a reta \mathcal{R} definida pelas equações cartesianas

$$\begin{cases} x+y-z=2\\ x-y+z=0 \end{cases}$$

e o plano Π que passa no ponto P(4,1,1) e é ortogonal ao vetor u=(1,5,-5). Determine a posição relativa e a distância entre o plano Π e a reta \mathcal{R} .

11/02/2022	exame final	duração: 2h30min
nome:		$ m n^o$ mecanográfico:
declaro que desisto:		nº folhas adicionais:
O exame tem 6 questões	. Justifique detalhadamente as resposta	S.
	Questão 4 - cotação 3.0)
Considere o subespaço S =	$= \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\} \text{ e os v}$	etores $X = (-1, 0, 0)$ e $Y = (0, 1, -1)$.
a) Determine uma base	e para S e a dimensão de S .	
b) Verifique se X e Y	são elementos de S . Em caso afirmativ	vo, indique o vetor de coordenadas na

c) Determine a projeção ortogonal do vetor Z=(2,2,1) no subespaço K gerado por X e Y.

base determinada.

11/02/2022	exame final	duração: 2h30min
nome:		nº mecanográfico:
declaro que desisto		_ nº folhas adicionais:
O exame tem 6 questões. Justifiqu	e detalhadamente as respostas.	

Questão 5 - cotação 3.0

Considere a cónica com equação geral $x^2 + 4y^2 + 4xy + 2x - y + 5 = 0$.

- a) Sendo $X = \begin{bmatrix} x & y \end{bmatrix}^{\top}$, determine as matrizes A e B tais que a equação matricial da cónica apresentada seja dada por $X^TAX + BX + 5 = 0$.
- b) Encontre uma matriz ortogonal P diagonalizante de A.
- c) Obtenha uma equação reduzida da cónica. Classifique a cónica.

11/02/2022	exame final	duração: 2h30min
nome:		$ ho^{0}$ mecanográfico:
declaro que desisto:		nº folhas adicionais:

O exame tem 6 questões. Justifique detalhadamente as respostas.

Questão 6 - cotação 3.0

Seja $\phi \colon \mathbb{R}^4 \to \mathbb{R}^2$ uma aplicação linear tal que $\phi(X) = AX$ com $A = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & -1 & -1 & 3 \end{bmatrix}$. Seja \mathcal{C}_4 a base canónica de \mathbb{R}^4 e $\mathcal{B} = ((1, -1), (1, 2))$ uma base de \mathbb{R}^2 .

- a) Determine o núcleo de ϕ .
- b) ϕ é injetiva? ϕ é sobrejetiva? Justifique.
- c) Determine a matriz de ϕ relativa às bases \mathcal{C}_4 e \mathcal{B} .