

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 1

INFORME DE LABORATORIO

(formato estudiante)

INFORMACIÓN BÁSICA					
ASIGNATURA:	Física Computacional				
TÍTULO DE LA PRÁCTICA:	Laboratorio 2				
NÚMERO DE PRÁCTICA:	02	AÑO LECTIVO:	2024	NRO. SEMESTRE:	II
FECHA DE PRESENTACIÓN	05/05/2024	HORA DE PRESENTACIÓN	12:00		
INTEGRANTE (s):					
Jherald Huren Caceres Apaza				NOTA:	
DOCENTE(s): DANNY GIANCARLO APAZA VELIZ					

SOLUCIÓN Y RESULTADOS

I. SOLUCIÓN DE EJERCICIOS/PROBLEMAS

Introducción

En este laboratorio usaremos la máquina de Atwood para encontrar la tensión de una cuerda y su aceleración de dos objetos. Además usaremos la segunda ley de Newton para encontrar la fuerza en el segundo ejercicio. Además graficamos la variación de velocidad en el tiempo con Matplot en Python

1. Escriba un código donde se emplee *máquina de Atwood* para determinar la magnitud de la aceleración de dos objetos y la tensión en la cuerda sin peso.

Usaremos las formulas dadas en clase:

$$a = \frac{(m_1 - m_2) \cdot g}{m_1 + m_2}$$

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 2

$$T = m_1 \cdot g - m_1 \cdot a$$

De esa manera pediremos la masa de los dos objetos y calcularemos la aceleración y tensión y la imprimimos.

2. Un móvil de masa m recorre una distancia d en un tiempo t, al inicio tiene una velocidad inicial v_i y una velocidad final v_f . Escriba un código que determine la fuerza que describe el móvil al momento de realizar el cambio de velocidad y grafique el proceso.

En este ejercicio usaremos la segunda ley de Newton $F=m\cdot a$, usando la aceleración como

 $a = \frac{v_f - v_i}{t}$ De esa manera se calculará con los parámetros recibidos por el usuario e imprimimos la fuerza resultante y luego imprimimos un gráfico que calcula la velocidad en cada segundo. Se hizo uso de https://matplotlib.org para el gráfico.

```
icaceresap@JheraldPC ~/......./lab02 & main python3 ej2.py
Escribe la masa del objeto (kg): 5
Escribe la distancia recorrida (m): 10
Escribe el tiempo transcurrido (s): 2
Escribe la velocidad inicial (m/s): 0
Escribe la velocidad final (m/s): 40
La fuerza que describe el móvil es: 100.0 N
```


Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 3

https://github.com/JheraldC/fc-lab/tree/main/lab02

II. CONCLUSIONES

Se concluye que aprendí a usar las fórmulas aplicadas en Python junto a las librerías gráficas que importan siendo Matplotlib.

RETROALIMENTACIÓN GENERAL

REFERENCIAS Y BIBLIOGRAFÍA

https://matplotlib.org

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Aprobación: 2022/03/01 Código: GUIA-PRLE-001 Página: 4