YUHAN HELENA LIU

Email: h17582@princeton.edu

Citizenship: Canada (no H-1B sponsorship required)

RESEARCH POSITIONS

ALGEARON COMONG		
Postdoctoral research associate, Princeton University	2024 - present	
Graduate research fellow, University of Washington	2020 - 2024	
Visiting research collaborator, MIT McGovern Institute	2023	
Research intern, Mila – Quebec Al Institute	2021 - 2023	
Visiting scientist, Allen Institute for Brain Science	2020 - 2023	
EDUCATION		
PhD., Applied Mathematics, University of Washington (UW)	2024	
MASc., Electrical and Computer Engineering, University of Toronto (U of	fT) 2019	
BASc., Engineering Science (Electrical and Computer Option), U of T	2017	
Honors and Awards		
Rising Stars in Data Science, Stanford University	2025	
Rising Stars in Engineering in Health, Columbia University	2025	
Rising Stars in EECS, MIT	2024	
Boeing Teaching Award: 300 USD	2024	
FRQNT Postdoctoral Research Fellowship: 90000 CAD (ranked 1st)	2024 - 2026	
Rising Stars in Computational and Data Sciences, UT Austin	2024	
IVADO Postdoctoral Fellowship: 210000 CAD (offered, but declined)	2024	
NSERC Postdoctoral Fellowship: 90000 CAD (offered, but declined)	2024	
Carl E. Pearson Fellowship: 37000 USD*	2023 - 2024	
FRQNT Doctoral Research Fellowship: 25000 CAD	2023 - 2024	
FRQNT Doctoral Research Fellowship Supplement: 1500 CAD**	2023 - 2024	
Weill Neurohub and NeuroTEC Travel Award: 500 USD	2023	
Mitacs Globalink Research Award: 6000 CAD	2023	
NeurIPS Scholar Award: 1748 USD	2022	
NSF AccelNet IN-BIC Exchange Fellowship: 10000 USD	2022	
Boeing Research Award: 500 USD	2021	
NSF AccelNet IN-BIC Exchange Fellowship: 8400 USD	2021	
NSERC Postgraduate Scholarship (PGS D3): 63000 CAD	2020 - 2023	
Queen Elizabeth II Graduate Scholarship: 15000 CAD	2018 - 2019	
Ontario Graduate Scholarship: 15000 CAD	2017 - 2018	
Engineering Science Capstone Design Winner, U of T: 1500 CAD	2017	
Engineering Society Award, U of T: 4200 CAD	2015	
NSERC Undergraduate Summer Research Award: 5600 CAD	2014	
-		

Club for Biomedical Engineering Competition Winner, U of T: 300 CAD

2014

Total amount obtained: about 280,000 CAD

- *= Administered by the UW Applied Mathematics Department and has been awarded to only three individuals in the department's history, including myself, at the NSF GRFP rate (adjusted based on the FRQNT support)
- **= Attributed to the ten eligible applications in the Québec province that received the highest ranking among all committees

SELECTED PUBLICATIONS

- **Liu Y.H.**, Geadah V., Pillow J., "Flexible inference of learning rules from de novo learning data using neural networks". arXiv, 2025. (Oral presentation at SAND 2025.)
- **Liu, Y.H.**, Baratin A., Cornford J., Mihalas S., Shea-Brown E., Lajoie G., "How connectivity structure shapes rich and lazy learning in neural circuits", International Conference on Learning Representations (ICLR), 2024.
- **Liu Y.H.**, Ghosh A., Richards B. A., Shea-Brown E., Lajoie G., "Beyond accuracy: generalization properties of bio-plausible temporal credit assignment rules", Advances in Neural Information Processing Systems (NeurIPS), 2022.
- **Liu Y.H.**, Smith S.J., Mihalas S., Shea-Brown E., Sumbul U., "Biologically-plausible backpropagation through arbitrary timespans via local neuromodulators", NeurIPS, 2022.
- **Liu Y.H.**, Smith S.J., Mihalas S., Shea-Brown E., Sumbul U., "Cell-type-specific neuromodulation guides synaptic credit assignment in a spiking neural network", Proceedings of the National Academy of Sciences (PNAS), 2021.

FULL PEER-REVIEWED PUBLICATIONS LIST

- [P1] Liu Y.H., Yang R.G., Cueva C.J., "Can Biologically Plausible Temporal Credit Assignment Rules Match BPTT for Neural Similarity? E-prop as an Example", International Conference on Machine Learning (ICML), 2025 (accepted).
 - Earlier version appeared as: "Multiple temporal credit assignment rules achieve comparable neural data similarity", NeuroAl at NeurlPS Workshop, 2024.
- [P2] Ghosh M., Habashy K.G., De Santis F., Fiers T., ..., **Liu, Y.H.**, ..., Goodman F., "Spiking neural network models of sound localisation via a massively collaborative process", eNeuro, 2025 (accepted).
- [P3] Liu W., Zhang X., Liu, Y.H., "The Influence of Initial Connectivity on Biologically Plausible Learning", AI to Accelerate Science and Engineering at the Association for the Advancement of Artificial Intelligence (AAAI), 2025.
- [P4] **Liu, Y.H.**, Baratin A., Cornford J., Mihalas S., Shea-Brown E., Lajoie G., "How connectivity structure shapes rich and lazy learning in neural circuits", International Conference on Learning Representations (ICLR), 2024.
- [P5] Ghosh A., **Liu Y.H.**, Lajoie G., Kording K., Richards B. A., "How gradient estimator variance and bias impact learning in neural networks", ICLR, 2023.
- [P6] Liu Y.H., Ghosh A., Richards B. A., Shea-Brown E., Lajoie G., "Beyond accuracy: generalization properties of bio-plausible temporal credit assignment rules", Advances in Neural Information Processing Systems (NeurIPS), 2022.
- [P7] **Liu Y.H.**, Smith S.J., Mihalas S., Shea-Brown E., Sumbul U., "Biologically-plausible backpropagation through arbitrary timespans via local neuromodulators", NeurIPS, 2022.

- [P8] Liu Y.H., Smith S.J., Mihalas S., Shea-Brown E., Sumbul U., "Cell-type-specific neuromodulation guides synaptic credit assignment in a spiking neural network", Proceedings of the National Academy of Sciences (PNAS), 2021.
- [P9] Liu Y., Grigorovsky V., Bardakjian B., "Excitation and inhibition balance underlying epileptiform activity," Institute of Electrical and Electronics Engineers (IEEE) Transaction on Biomedical Engineering, 2020.
- [P10] Jacobs D., **Liu Y.H.**, Hilton T., del Campo M., Carlen P.L., Bardakjian B.L., "Classification of scalp EEG states prior to clinical seizure onset," IEEE Journal of Translational Engineering in Health and Medicine, 2019.
- [P11] Liu Y., Khisti A., Mahajan A., "On privacy in smart metering systems with periodically time-varying input distribution," Proceedings of IEEE Global Conference on Signal and Information Processing, 2017.
- [P12] **Liu Y.H.**, Lee S-H., Khisti A., "Information-theoretic privacy in smart metering systems using cascaded rechargeable batteries," IEEE Signal Processing Letters, 2017.

PREPRINTS

- [P13] **Liu Y.H.**, Geadah V., Pillow J., "Flexible inference of learning rules from de novo learning data using neural networks". arXiv, 2025. (Oral presentation at SAND 2025.)
- [P14] Mastrovito D., **Liu, Y.H.**, Kusmierz L., Shea-Brown E., Koch C., Mihalas S., "Transition to chaos separates learning regimes and relates to measure of consciousness in recurrent neural networks", bioRxiv, 2024.
- [P15] Hazelden J., **Liu, Y.H.**, Shlizerman E., Shea-Brown E., "Evolutionary algorithms as an alternative to backpropagation for supervised training of biophysical neural networks and neural ODEs", arXiv, 2023.

TEACHING, MENTORING, AND CURRICULUM DESIGN

ACHING, IVIENTORING, AND CURRICULUM DESIGN		
Instructor of Record		
 Introduction to Neural Coding and Computation, UW (upper-division, ~70 students) 	01/2024 - 03/2024	
 Applied Linear Algebra and Numerical Analysis, UW (upper-division, ~50 students) 	06/2022 – 08/2022	
Research Mentoring*	04/2023 - present	
Course Design Assistant**, Neuromatch Academy	04/2023 - 07/2023	
Guest Lecturer		
 Mathematical Biology, Whitworth University (Liberal Arts College) 	ege) 01/2024	
Teaching Assistant		
 COSYNE Tutorial on Spiking Neural Networks (graduate/professional audience) 	03/2022	
 Calculus with Analytic Geometry, UW (lower-division, 100+ students) 	09/2019 – 12/2020	
 Fundamentals of Computer Programming, U of T (lower-division, 100+ students) 	01/2019 – 04/2019	
 Linear Algebra, U of T (lower-division, 100+ students) 	09/2018 – 12/2018	
Calculus III, U of T (lower-division, 100+ students)	09/2018 – 12/2018	
Introduction to Computer Programming, U of T	09/2017 – 12/2017	

INVITED TALKS

Center for Statistics and Machine Learning at Princeton University	12/2024
Kempner Institute at Harvard University	12/2023
Neural Theory Group at the University of Oregon	11/2023
The Center for the Physics of Biological Function at Princeton University	11/2023
MetaConscious Group at MIT McGovern Institute	10/2023
Grossman Center at the University of Chicago	10/2023
Pillow Lab at Princeton University	10/2023
NeuralAl reading group at Mila – Quebec Al Institute	10/2022
UW Neural Computation and Engineering Connection	05/2022
International Network for Bio-Inspired Computing	04/2022
Lajoie Group at Mila – Quebec Al Institute	09/2021
Summer Workshop on the Dynamic Brain at the Allen Institute	08/2021

ACCEPTED ORAL PRESENTATIONS

- **Liu, Y.H.**, Geadah V., Pillow J., "Flexible inference of learning rules from de novo learning data using neural networks", Statistical Analysis of Neural Data (SAND), 2025.
- **Liu, Y.H.**, Baratin A., Cornford J., Mihalas S., Shea-Brown E., Lajoie G., "How connectivity structure shapes rich and lazy learning in neural circuits", NeuroAl Montreal, 2023.
- **Liu, Y.H.**, Smith S.J., Mihalas S., Shea-Brown E., Sumbul U., "Biologically-plausible backpropagation through arbitrary timespans via local neuromodulators," Computational and Systems Neuroscience (COSYNE), 2023.
- **Liu, Y.H.**, Ghosh A., Shea-Brown E., Lajoie G., "Beyond accuracy: robustness and generalization properties of biologically plausible learning rules," From Neuroscience to Artificially Intelligent Systems (NAISys), 2022.
- **Liu, Y.H.,** "A Large-Scale Neuro-Glial Network Model of Seizure Termination," U of T Annual Research Conference, 2019.

ACCEPTED POSTER PRESENTATIONS

- Mo H. H., **Liu Y.H.**, Shea-Brown E., Mihalas S., "How spiking vs rate dynamics in neural networks impact rich vs lazy learning regimes", 10th Annual BRAIN Initiative Meeting, 2024.
- **Liu, Y.H.**, Baratin A., Cornford J., Mihalas S., Shea-Brown E., Lajoie G., "How connectivity structure shapes rich and lazy learning in neural circuits", COSYNE, 2024.
- **Liu, Y.H.**, Baratin A., Cornford J., Mihalas S., Shea-Brown E., Lajoie G., "How recurrent network connectivity shapes learning: implications for effective rich and lazy regimes in neuroscience", Lake Conference Neural Coding and Dynamics, 2023.

^{*} Each of my three mentees is preparing their first-authored manuscript under my supervision.

^{**} Designed teaching tools based on **large language models (LLMs)** to provide expanded explanations on course material and to guide students through coding exercises

- **Liu Y.H.**, Ghosh A., Richards B. A., Shea-Brown E., Lajoie G., "Beyond accuracy: generalization properties of bio-plausible temporal credit assignment rules", 9th Annual BRAIN Initiative Meeting, 2023.
- **Liu, Y.H.**, Smith S.J., Mihalas S., Shea-Brown E., Sumbul U., "Biologically-plausible backpropagation through arbitrary timespans via local neuromodulators," NeuroAl in Seattle, 2022.
- **Liu, Y.H.**, Lajoie G., "Beyond accuracy: robustness and generalization properties of biologically plausible learning rules," COSYNE, 2022.
- **Liu, Y.H.**, Smith S.J., Mihalas S., Shea-Brown E., Sumbul U., "A solution to temporal credit assignment using cell-type-specific modulatory signals," COSYNE, 2021.

SERVICE AND OUTREACH

Reviewer, NeurIPS 2025 (reviewed 3 submissions)	06/2025 - 08/2025
Reviewer, ICML 2025 (reviewed 6 submissions)	02/2025 - 04/2025
Reviewer, COSYNE 2025 (reviewed 10 submissions)	11/2024
Reviewer, ICLR 2024 (reviewed 3 submissions)	10/2024 - 12/2024
Co-organizer, COSYNE 2024 Workshop	01/2024 - 03/2024
Reviewer, COSYNE 2024 (reviewed 10 submissions)	12/2023
Secretary, UW Association for Women in Mathematics	09/2023 - 05/2024
Reviewer, NeurIPS 2023 (reviewed 6 submissions)	06/2023 - 08/2023
Session Chair, UW Neural Computation and Engineering Connection	on 05/2023
Outreach Volunteer, SIAM Math Fair at Lockwood Elementary Sch	ool 05/2023
Reviewer, COSYNE 2023 (reviewed 12 submissions)	12/2022
Panelist, UW SIAM Student Chapter	10/2020 - 12/2023
Student Organizer, Fairhall and Shea-Brown Joint Lab Meetings	01/2022 - 06/2022
Student Organizer, UW Theoretical Neuroscience Journal Club	09/2020 - 06/2021
Mentor, UW Amath Student Mentorship Program	07/2020 - 06/2022
Event Director, U of T IEEE Student Chapter	09/2016 — 04/2017
Co-Chair, U of T Engineering Science Education Conference	03/2015 - 02/2016
Executive, U of T Undergrad Engineering Research Day	05/2014 — 08/2014

NEWS COVERAGE

"Complex Wiring in Neural Networks," College of Arts and Sciences, University of Washington, December 2021. Available at: https://tinyurl.com/mr36cvjz

BLOG WRITING

"Generalization properties of bio-plausible temporal credit assignment rules." The Mila Blog (June 2023), URL: https://tinyurl.com/4hz6uvs9

ADDITIONAL TRAINING

Mentoring Best Practices, Princeton Neuroscience Institute 01/2025 – 04/2025

Summer Workshop on the Dynamic Brain, Allen Institute for Brain Science 08/2021

Scientific Writing, Faculty of Applied Science and Engineering, U of T 01/2019 – 04/2019

TECHNICAL SKILLS

Proficiency in Python (NumPy, Matplotlib, TensorFlow, PyTorch), MATLAB, C/C++, shell scripting and working with supercomputers.

Last updated: September 8th, 2025