4. Handlungsschritt (25 Punkte)

aa) 4 Punkte, 4 x 1 Punkt

Formelzeichen	Bezeichnung	Maßeinheit
U	Spannung	Volt
	Stromstärke	Ampere
R	Widerstand	Ohm
Р	Leistung	Watt

ab) 5 Punkte

Das Netzteil bietet mit 600 Watt für die geforderten 520 Watt eine ausreichende Leistung. Rechenweg

1. Berechnung der Gesamtleistung der angeschlossenen Komponenten

Komponenten	Watt	
4 Festplatten	60	(4 * 15)
2 CPU	190	(2 * 95)
1 Mainboard	40	
Übrige Komponenten	100	
Summe:	390	

2. Berechnung der Gesamtleistung mit Leistungsreserve 520 Watt (390 * 100 / (100 – 25))

c) 5 Punkte

3 Punkte, 3 x 1 Punkt für P, Q und W

2 Punkte für t

Angeschlossene Leistung (P)

1.400 W (2 x 700 W)

Ladungsmenge der vier Akkus (Q)

400 Ah (4 x 100 Ah)

Elektrische Energie bei 12 Volt (W)

4.800 Wh

W = Q * U

= 100 Ah/Akku * 4 Akkus * 12 V

Überbrückungszeit in Minuten (t)

3 Std 25 Min

t = W/P

= 4.800 Wh / 1.400 W

= 3,428 h

 $= 60 \text{ min/h}^* 0,428 \text{ h} = 25,68 \sim 25 \text{ min}$

= 3h 25 min

Hinweis für Prüferin/Prüfer:

Das Ergebnis muss abgerundet werden.

bb) 3 Punkte

E = 120 W

U = 12 V

E = U * Q

Q = E/U

Q = 120 Wh / 12 V

Q = 10 Ah

Ersatzlösung:

E = 180 W

U = 12 V

E = U * Q

Q = E/U

Q = 180 Wh / 12 V

Q = 15 Ah

ba) 2 Punkte

P = 120 W

t = 1 h

E = P * t

E = 120 W * 1 h

 $E = 120 \, Wh$