Projeto e Análise de Algoritmos

Lista 7

Questão 1

<u>Força bruta</u>: É uma abordagem que consiste em tentar todas as soluções possíveis para um problema, sem levar em consideração a otimização.

<u>Backtracking</u>: É uma técnica que utiliza a tentativa e erro para resolver problemas. Começa com uma solução parcial e, caso não seja válida, retrocede e tenta outra opção. <u>Branch and bound</u>: É uma técnica de otimização utilizada para problemas de busca exaustiva. Divide o espaço de soluções em branches e utiliza limites para eliminar ramos que não levarão a uma solução ótima.

Questão 2

Qualquer estrutura de dados que suporte função sucessores, função heurística, e teste objetivo.

Questão 3

- Restrições unárias: referem-se a uma variável
- Restrições binárias: referem-se a pares de variáveis
- Restrições de ordem superior: envolvem 3 ou mais variáveis

Questão 4

Forward checking = verificação anterior. A ideia é manter um registro dos valores que podem ser atribuídos a variáveis ainda não atribuídas. E também terminar a procura quando existe pelo menos uma variável à qual não pode ser atribuído nenhum valor.

Questão 5

- <u>Busca em largura</u>: Explora todos os nós de um nível antes de prosseguir para o próximo nível, garantindo que a solução encontrada tenha o menor custo em termos de profundidade.
- <u>Busca em profundidade</u>: Explora um ramo até o nó mais profundo antes de retroceder e explorar outros ramos, sendo útil quando há muitos caminhos possíveis, mas não garante a solução ótima.
- <u>Busca de Custo Uniforme</u>: Expande os nós com menor custo acumulado primeiro, buscando o caminho com o menor custo total.
- <u>Busca com aprofundamento iterativo</u>: Combina a busca em profundidade com uma estratégia de limitar a profundidade máxima, aumentando gradualmente o limite até encontrar a solução.

Questão 6

O algoritmo de busca gulosa seleciona o próximo passo com base na heurística mais promissora, sem considerar possíveis consequências futuras.

Questão 7

O algoritmo A* utiliza a combinação de uma função de custo e uma heurística para encontrar o caminho mais curto entre dois pontos em um grafo ou em um espaço de estados. Ele expande os nós com menor custo total (custo atual + heurística) primeiro, garantindo uma busca eficiente.

Questão 8

c)

i. Busca em largura

ii. Busca em profundidade

iii. Busca Gulosa

iv. A^* A^*

Questão 9

- 1)Caracterizar a solução ótima do problema.
- 2)Definir recursivamente a solução ótima, em função de soluções ótimas de subproblemas.
- 3)Calcular as soluções de todos os subproblemas: "de trás para a frente".
- 4)Calcular as soluções de todos os subproblemas: "memoization".
- 5) Reconstruir a solução ótima, baseada nos cálculos efetuados.

Questão 10

M=M1[5,8] × M2[8,10] × M3[10,4] × M4[4,6]				
	۵	2	3	1 4
1	(M1)	(W1W7)	M1 (NTW3)	(WI(WYWY)) WH
2		(W ⁷)	320 (N7W3)	(M2 M3) M4
3			(m3)	(M5M4) 240
અ				(M4) O
				PÁGINA 4