Spectral Methods for Dimensionality Reduction

Prof. Lawrence Saul

Dept of Computer & Information Science University of Pennsylvania

UCLA IPAM Tutorial, July 11-14, 2005

Dimensionality reduction

Question

How can we detect low dimensional structure in high dimensional data?

- Applications
 - Digital image and speech libraries
 - Neuronal population activities
 - Gene expression microarrays
 - Financial time series

Framework

Data representation

Inputs are real-valued vectors in a high dimensional space.

Linear structure

Does the data live in a low dimensional subspace?

Nonlinear structure

Does the data live on a low dimensional submanifold?

Linear vs nonlinear

What computational price must we pay for nonlinear dimensionality reduction?

Spectral methods

Matrix analysis

Low dimensional structure is revealed by eigenvalues and eigenvectors.

Links to spectral graph theory

Matrices are derived from sparse weighted graphs.

Usefulness

Tractable methods can reveal nonlinear structure.

Notation

Inputs (high dimensional)

$$x_i \in \mathfrak{R}^D$$
 with $i = 1, 2, ..., n$

Outputs (low dimensional)

$$y_i \in \Re^d$$
 where $d \square D$

Goals

Nearby points remain nearby. Distant points remain distant. (Estimate *d*.)

Manifold learning

Given high dimensional data sampled from a low dimensional submanifold, how to compute a faithful embedding?

Image Manifolds

(Seung & Lee, 2000) (Tenenbaum et al, 2000)

Outline

- Day 1 linear, nonlinear, and graph-based methods
- Day 2 sparse matrix methods
- Day 3 semidefinite programming
- Day 4 kernel methods

Questions for today

- How to detect linear structure?
 - principal components analysis
 - metric multidimensional scaling
- How (not) to generalize these methods?
 - neural network autoencoders
 - nonmetric multidimensional scaling
- How to detect nonlinear structure?
 - graphs as discretized manifolds
 - Isomap algorithm

Linear method #1

Principal Components Analysis (PCA)

Principal components analysis

Does the data mostly lie in a subspace? If so, what is its dimensionality?

Maximum variance subspace

Assume inputs are centered:

$$\sum_{i} x_{i} = 0$$

• Project into subspace:
$$y_i = Px_i$$
 with $P^2 = P$

Maximize projected variance:

$$var(y) = \frac{1}{n} \sum_{i} ||Px_{i}||^{2}$$

Matrix diagonalization

Covariance matrix

$$\operatorname{var}(y) = \operatorname{Tr}(PCP^{T}) \text{ with } C = n^{-1} \sum_{i} x_{i} x_{i}^{T}$$

Spectral decomposition

$$C = \sum_{\alpha=1}^{D} \lambda_{\alpha} e_{\alpha}^{\square} e_{\alpha}^{\square} \quad \text{with} \quad \lambda_{1} \geq \square \geq \lambda_{D} \geq 0$$

Maximum variance projection

$$P = \sum_{\alpha=1}^{d} e_{\alpha} e_{\alpha}^{\mathsf{T}}$$

 $P = \sum_{\alpha=0}^{n} \frac{\Box}{e_{\alpha} e_{\alpha}^{T}}$ Projects into subspace spanned by top deigenvectors.

Interpreting PCA

Eigenvectors:

principal axes of maximum variance subspace.

Eigenvalues:

projected variance of inputs along principle axes.

Estimated dimensionality:

number of significant (nonnegative) eigenvalues.

Example of PCA

Eigenvectors and eigenvalues of covariance matrix for n=1600 inputs in d=3 dimensions.

Example: faces

Eigenfaces

from 7562 images:

top left image is linear combination of rest.

Sirovich & Kirby (1987) Turk & Pentland (1991)

Another interpretation of PCA:

Assume inputs are centered:

$$\sum_{i} x_{i} = 0$$

• Project into subspace:
$$y_i = Px_i$$
 with $P^2 = P$

Minimize reconstruction error:

$$\operatorname{err}(y) = n^{-1} \sum_{i} \|x_{i} - Px_{i}\|^{2}$$

Equivalence

Minimum reconstruction error:

$$\operatorname{err}(y) = n^{-1} \sum_{i} \|x_{i} - Px_{i}\|^{2}$$

Maximum variance subspace

$$\operatorname{var}(y) = n^{-1} \sum_{i} \|Px_{i}\|^{2}$$

Both models for linear dimensionality reduction yield the same solution.

PCA as linear autoencoder

Network

Each layer implements a linear transformation.

Minimize reconstruction error through bottleneck:

$$\operatorname{err}(P) = n^{-1} \sum_{i} \|x_{i} - P^{T} P x_{i}\|^{2}$$

Summary of PCA

- 1) Center inputs on origin.
- 2) Compute covariance matrix.
- 3) Diagonalize.
- 4) Project.

Properties of PCA

- Strengths
 - Eigenvector method
 - -No tuning parameters
 - Non-iterative
 - No local optima

- Weaknesses
 - -Limited to second order statistics
 - Limited to linear projections

So far...

- Q: How to detect linear structure?
 - A: Principal components analysis
 - Maximum variance subspace
 - Minimum reconstruction error
 - Linear network autoencoders
- Q: How (not) to generalize for manifolds?

Nonlinear autoencoder

Neural network

Each layer parameterizes a nonlinear transformation.

Cost function

Minimize reconstruction error:

$$err(W) = n^{-1} \sum_{i} \| x_{i} - l_{W}(h_{W}(g_{W}(f_{W}(x_{i}))) \|^{2}$$

Properties of neural network

Strengths

- Parameterizes nonlinear mapping (in both directions).
- -Generalizes to new inputs.

Weaknesses

- Many unspecified choices: network size, parameterization, learning rates.
- Highly nonlinear, iterative optimization with local minima.

Linear vs nonlinear

What computational price must we pay for nonlinear dimensionality reduction?

Linear method #2

Metric Multidimensional Scaling (MDS)

Multidimensional scaling

$$egin{bmatrix} 0 & \Delta_{12} & \Delta_{13} & \Delta_{14} \ \Delta_{12} & 0 & \Delta_{23} & \Delta_{24} \ \Delta_{13} & \Delta_{23} & 0 & \Delta_{34} \ \Delta_{14} & \Delta_{24} & \Delta_{34} & 0 \end{bmatrix}$$

Given n(n-1)/2 pairwise distances Δ_{ij} , find vectors \overrightarrow{y}_i such that $||\overrightarrow{y}_i - \overrightarrow{y}_j|| \approx \Delta_{ij}$.

Metric Multidimensional Scaling

Lemma

If Δ_{ij} denote the Euclidean distances of zero mean vectors, then the inner products are:

$$G_{ij} = \frac{1}{2} \left[\sum_{k} \left(\Delta_{ik}^2 + \Delta_{kj}^2 \right) - \Delta_{ij}^2 - \sum_{kl} \Delta_{kl}^2 \right]$$

Optimization

Preserve dot products (proxy for distances). Choose vectors \vec{y}_i to minimize:

$$\operatorname{err}(y) = \sum_{ij} (G_{ij} - y_i y_j)^2$$

Matrix diagonalization

Gram matrix "matching"

$$\operatorname{err}(y) = \sum_{ij} (G_{ij} - y_i y_j)^2$$

Spectral decomposition

$$G = \sum_{\alpha=1}^{n} \lambda_{\alpha} v_{\alpha} v_{\alpha}^{\top} \quad \text{with} \quad \lambda_{1} \geq \square \geq \lambda_{n} \geq 0$$

Optimal approximation

$$y_{i\alpha} = \sqrt{\lambda_{\alpha}} v_{\alpha i}$$
 for $\alpha = 1, 2, ..., d$ with $d \le n$

(scaled truncated eigenvectors)

Interpreting MDS

$$y_{i\alpha} = \sqrt{\lambda_{\alpha}} v_{\alpha i}$$
 for $\alpha = 1, 2, ..., d$ with $d \square n$

Eigenvectors

Ordered, scaled, and truncated to yield low dimensional embedding.

Eigenvalues

Measure how each dimension contributes to dot products.

Estimated dimensionality

Number of significant (nonnegative) eigenvalues.

Relation to PCA

Dual matrices

$$C_{\alpha\beta} = n^{-1} \sum_{i\alpha} x_{i\alpha} x_{i\beta}$$
 covariance matrix $(D \times D)$
 $G_{ij} = x_i \bullet x_j$ Gram matrix $(n \times n)$

Same eigenvalues

Matrices share nonzero eigenvalues up to constant factor.

• Same results, different computation PCA scales as $O((n+d)D^2)$. MDS scales as $O((D+d)n^2)$.

So far...

Q: How to detect linear structure?

A1: Principal components analysis

A2: Metric multidimensional scaling

 Q: How (not) to generalize for manifolds?

Nonmetric MDS

$$egin{bmatrix} 0 & \Delta_{12} & \Delta_{13} & \Delta_{14} \ \Delta_{12} & 0 & \Delta_{23} & \Delta_{24} \ \Delta_{13} & \Delta_{23} & 0 & \Delta_{34} \ \Delta_{14} & \Delta_{24} & \Delta_{34} & 0 \end{bmatrix}$$

Transform pairwise distances: $\Delta_{ij} \rightarrow g(\Delta_{ij})$. Find vectors \overrightarrow{y}_i such that $||\overrightarrow{y}_i - \overrightarrow{y}_j|| \approx g(\Delta_{ij})$.

Non-Metric MDS

Distance transformation

Nonlinear, but monotonic. Preserves rank order of distances.

Optimization

Preserve transformed distances. Choose vectors \vec{y}_i to minimize:

$$\operatorname{err}(y) = \sum_{ij} \left(g(\Delta_{ij}) - \left\| y_i - y_j \right\| \right)^2$$

Properties of non-metric MDS

- Strengths
 - -Relaxes distance constraints.
 - Yields nonlinear embeddings.
- Weaknesses
 - Highly nonlinear, iterative optimization with local minima.
 - Unclear how to choose distance transformation.

Non-metric MDS for manifolds?

Rank ordering of Euclidean distances is NOT preserved in "manifold learning".

Linear vs nonlinear

What computational price must we pay for nonlinear dimensionality reduction?

Graph-based method #1

Isometric mapping of data manifolds (ISOMAP)

(Tenenbaum, de Silva, & Langford, 2000)

Dimensionality reduction

Inputs

$$x_i \in \mathfrak{R}^D$$
 with $i = 1, 2, ..., n$

Outputs

$$y_i \in \Re^d$$
 where $d \square D$

Goals

Nearby points remain nearby. Distant points remain distant. (Estimate *d*.)

Isomap

Key idea:

Preserve geodesic distances as measured along submanifold.

Algorithm in a nutshell:

Use geodesic instead of (transformed) Euclidean distances in MDS.

Step 1. Build adjacency graph.

Adjacency graph
 Vertices represent inputs.
 Undirected edges connect neighbors.

Neighborhood selection

Many options: k-nearest neighbors, inputs within radius r, prior knowledge.

Graph is discretized approximation of submanifold.

Building the graph

Computation

kNN scales naively as $O(n^2D)$. Faster methods exploit data structures.

- Assumptions
 - 1) Graph is connected.
 - 2) Neighborhoods on graph reflect neighborhoods on manifold.

No "shortcuts" connect different arms of swiss roll.

Step 2. Estimate geodesics.

Dynamic programming

Weight edges by local distances. Compute shortest paths through graph.

Geodesic distances

Estimate by lengths Δ_{ij} of shortest paths: denser sampling = better estimates.

Computation

Djikstra's algorithm for shortest paths scales as $O(n^2 \log n + n^2 k)$.

Step 3. Metric MDS

Embedding

Top d eigenvectors of Gram matrix yield embedding.

Dimensionality

Number of significant eigenvalues yield estimate of dimensionality.

Computation

Top d eigenvectors can be computed in $O(n^2d)$.

Summary

- Algorithm
 - 1) k nearest neighbors
 - 2) shortest paths through graph
 - 3) MDS on geodesic distances
- Impact

Much simpler than earlier algorithms for manifold learning. Does it work?

Examples

Swiss roll

$$n = 1024$$
$$k = 12$$

Wrist images

$$n = 2000$$

$$k = 6$$

$$D = 64^{2}$$

Examples

Face images

$$n = 698$$
$$k = 6$$

Digit images

$$n = 1000$$

$$r = 4.2$$

$$D = 20^{2}$$

Interpolations

A. Faces

B. Wrists

C. Digits

Linear in Isomap feature space.
Nonlinear in pixel space.

Properties of Isomap

Strengths

- Polynomial-time optimizations
- No local minima
- Non-iterative (one pass thru data)
- Non-parametric
- -Only heuristic is neighborhood size.

Weaknesses

- -Sensitive to "shortcuts"
- No out-of-sample extension

Large-scale applications

Problem:

Too expensive to compute all shortest paths and diagonalize full Gram matrix.

Solution:

Only compute shortest paths in green and diagonalize submatrix in red.

Landmark Isomap

Approximation

- -Identify subset of inputs as landmarks.
- -Estimate geodesics to/from landmarks.
- -Apply MDS to landmark distances.
- Embed non-landmarks by triangulation.
- Related to Nystrom approximation.

Computation

- -Reduced by l/n for l < n landmarks.
- Reconstructs large Gram matrix from thin rectangular sub-matrix.

Example

Embedding of sparse music similarity graph

n = 267 K

e = 3.22M

= 400

 $\tau = 6$ minutes

(Platt, 2004)

Theoretical guarantees

Asymptotic convergence

For data sampled from a submanifold that is isometric to a convex subset of Euclidean space, Isomap will recover the subset up to rotation & translation.

(Tenenbaum et al; Donoho & Grimes)

Convexity assumption

Geodesic distances are not estimated correctly for manifolds with holes...

Connected but not convex

2d region with hole

Isomap

Images of 360° rotated teapot

eigenvalues of Isomap

Connected but not convex

Occlusion

Images of two disks, one occluding the other.

Locomotion

Images of periodic gait.

Linear vs nonlinear

What computational price must we pay for nonlinear dimensionality reduction?

Nonlinear dimensionality reduction since 2000...

These strengths and weaknesses are typical of graph-based spectral methods for dimensionality reduction.

Properties of Isomap

- Strengths
 - Polynomial-time optimizations
 - No local minima
 - Non-iterative (one pass thru data)
 - Non-parametric
 - Only heuristic is neighborhood size.
- Weaknesses
 - Sensitive to "shortcuts"
 - No out-of-sample extension

Spectral Methods

- Common framework
 - 1) Derive sparse graph from kNN.
 - 2) Derive matrix from graph weights.
 - 3) Derive embedding from eigenvectors.

Varied solutions

Algorithms differ in step 2.

Types of optimization: shortest paths, least squares fits, semidefinite programming.

Algorithms

2000 Isomap Tenenbaum, de Silva, &

Langford)

2002 Laplacian eigenmaps

(Belkin & Niyogi)

2003 Hessian LLE

(Donoho & Grimes)

2004

Maximum variance unfolding

(Weinberger & Saul)

(Sun, Boyd, Xiao, & Diaconis)

2005

Conformal eigenmaps

(Sha & Saul)

Locally Linear Embedding

(Roweis & Saul)

Looking ahead

Trade-offs

Sparse vs dense eigensystems?
Preserving distances vs angles?
Connected vs convex sets?

Connections

Spectral graph theory Convex optimization Differential geometry

Wednesday

2000 Isomap

(Tenenbaum, de Silva, & Langford)

2002

Laplacian eigenmaps

(Belkin & Niyogi)

2003

Hessian LLE

(Donoho & Grimes)

2004

Maximum variance unfolding

(Weinberger & Saul)

2005

Conformal eigenmaps

(Sha & Saul)

(Sun, Boyd, Xiao, & Diaconis)

Locally Linear Embedding

(Roweis & Saul)

Semidefinite Programming

To be continued...

See you tomorrow.