Contents

1.	The Beginning of Googology	. 2
	1.1. The Simplest Operaion	
	1.1.1. The Positive Integers and The Successor Operation	
	1.1.2. Addition	
	1.1.3. Multiplication	
	1.1.4. Exponentiation	

1. The Beginning of Googology

1.1. The Simplest Operaion

1.1.1. The Positive Integers and The Successor Operation

The set of positive integers N^* are defined to have the following properties:

- 1. If a is a positive integer, then so too is its successor a^+ .
- 2. There exists a positive integer a such that no positive integer's successor is a. Notate this as 1.
- 3. Except for 1, every positive integer is the successor of a positive integer.
- 4. If $1 \in S$, and whenever $a \in S$, $a^+ \in S$ as well; then $S = N^*$.

We could use the phrases "1's successor," "1's successor's successor," etc. But that gets unweildy very quickly, so we use expressions like 1^+ , 1^+ +, etc. instead.

For a long time people used to define things as $1^+ = 2.2^+ = 3.3^+ = 4.4^+ = 5.5^+ = 6.6^+ = 7.7^+ = 8.8^+ = 9.9^+ = 10$. We use two digits in "10" to refer to the successor of 9.

Similarly, $10^+ = 11, 11^+ = 12, ..., 19^+ = 20, ..., 99^+ = 100, ...$ Hence, following this procedure, we can notate any positive integer in theory.

However, this unary operation is only used for counting, and is practically useless. A more useful operation is the following:

1.1.2. Addition

The addition operator is defined as follows, using the addition symbol "+."

1.
$$a+1=a^+$$
.

2.
$$a + b^+ = (a + b)^+$$
.

Very simple! The only problem is that it is too abstract. We can derive a simpler expression: $a + b = a^{+++} \cdots + b$ (with b many +es.) This new definition is very clear.

However, sometimes this is not useful. So, we need...

1.1.3. Multiplication

Multiplication is defined using the multiplication symbol \times .

1.
$$a \times 1 = a$$
.

$$2. \ a \times b^+ = a \times b + a.$$

This is already a very simple definition. A more accessible definition is $a \times b = a + a + a + ...a$ (with b as.)

We can now discover that $10 \times 10 = 100,100 \times 10 = 1000,100...0$ (with n 0s) \times 10 = 100...0 (with n+1 0s.)

1.1.4. Exponentiation

TODO