

Oct 01, 2024 Version 1

MAS-ISO-seq - from 10x Single Cell Gene Expression Libraries V.1

DOI

dx.doi.org/10.17504/protocols.io.kqdg3p5ezl25/v1

Aziz Al'Khafaji1

¹Broad Institute

Aziz Al'Khafaji

Broad Institute

OPEN ACCESS

DOI: dx.doi.org/10.17504/protocols.io.kqdg3p5ezl25/v1

Protocol Citation: Aziz Al'Khafaji 2024. MAS-ISO-seq - from 10x Single Cell Gene Expression Libraries. protocols.io https://dx.doi.org/10.17504/protocols.io.kqdg3p5ezl25/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's

working

Created: December 31, 2021

Last Modified: October 01, 2024

Protocol Integer ID: 56468

Abstract

Method for MAS-ISO-seq from 10x Single Cell Gene Expression Libraries.

Materials

Reagents:

2x Kapa HiFi Uracil+ ReadyMix (Roche #7959079001)

SPRIselect (Beckman Coulter B23318)

Qubit (Thermo #Q32851)

Dynabeads™ kilobaseBINDER™ (Thermo #60101)

Low-EDTA TE (1X), pH 8.0 (VWR 10128-588)

USER® Enzyme (M5505S)

HiFi Taq DNA Ligase (M0647S)

Genomic DNA ScreenTape/Reagent

Primers:

А	В	С
cDNA_amp_primers		
5' Libraries		
Fwd_R1_10x5'_PT_M AS	CTACACGACGCTCTTCCGAT*C*T	AA0272
Rev_10x5_dUbio_PT	/5Biosg/UAUAAGCAGTGGTATCAACGCAG*A* G	AA0273
3' Libraries		
dUbio_venus_PT	/5Biosg/UAUCTACACGACGCTCTTCCGAT*C*	AA0365
mars_PT	AAGCAGTGGTATCAACGCAG*A*G	AA0366

A	В	С
MAS-seq prime r plate		
Well Position	Name	Sequence
A1	*A-Fwd_5'_10x*	AGCTTACTTGTGAAGATCTACACGACGCTCTTCCGATCT
A2	B-Fwd_5'_10x	ACTTGTAAGCUGTCTAUCTACACGACGCTCTTCCGATCT
A3	C-Fwd_5'_10x	ACTCTGUCAGGTCCGAUCTACACGACGCTCTTCCGATCT
A4	D-Fwd_5'_10x	ACCTCCTCCUCCAGAAUCTACACGACGCTCTTCCGATCT
A5	*E*-Fwd_5'_10x	AACCGGACACUTAGUCTACACGACGCTCTTCCGATCT
A6	F-Fwd_5'_10x	AGAGTCCAAUTCGCAGUCTACACGACGCTCTTCCGATCT
A7	G-Fwd_5'_10x	AATCAAGGCUTAACGGUCTACACGACGCTCTTCCGATCT

А	В	С
A8	H-Fwd_5'_10x	ATGTTGAAUCCTAGCGUCTACACGACGCTCTTCCGATCT
A9	I-Fwd_5'_10x	AGTGCGTUGCGAATTGUCTACACGACGCTCTTCCGATCT
A10	J-Fwd_5'_10x	AATTGCGUAGTTGGCCUCTACACGACGCTCTTCCGATCT
A11	K-Fwd_5'_10x	ACACTTGGUCGCAATCUCTACACGACGCTCTTCCGATCT
A12	L-Fwd_5'_10x	AGTAAGCCUTCGTGTCUCTACACGACGCTCTTCCGATCT
B1	M-Fwd_5'_10x	ACCTAGAUCAGAGCCTUCTACACGACGCTCTTCCGATCT
B2	N-Fwd_5'_10x	AGGTAUGCCGGUTAAGUCTACACGACGCTCTTCCGATCT
B3	O-Fwd_5'_10x	AAGUCACCGGCACCUTUCTACACGACGCTCTTCCGATCT
C1	B-Rev_5'_10x	ATAGACAGCUTACAAGUAAGCAGTGGTATCAACGCAGAG
C2	C-Rev_5'_10x	ATCGGACCUGACAGAGUAAGCAGTGGTATCAACGCAGAG
C3	D-Rev_5'_10x	ATTCUGGAGGAGGUAAGCAGTGGTATCAACGCAGAG
C4	*E*-Rev_5'_10x	ACTAAGTGUGTCCGGTUAAGCAGTGGTATCAACGCAGAG
C5	F-Rev_5'_10x	ACTGCGAAUTGGACTCUAAGCAGTGGTATCAACGCAGAG
C6	G-Rev_5'_10x	ACCGTUAAGCCTTGATUAAGCAGTGGTATCAACGCAGAG
C7	H-Rev_5'_10x	ACGCTAGGAUTCAACAUAAGCAGTGGTATCAACGCAGAG
C8	I-Rev_5'_10x	ACAATUCGCAACGCACUAAGCAGTGGTATCAACGCAGAG
C9	J-Rev_5'_10x	AGGCCAACUACGCAATUAAGCAGTGGTATCAACGCAGAG
C10	K-Rev_5'_10x	AGATUGCGACCAAGTGUAAGCAGTGGTATCAACGCAGAG
C11	L-Rev_5'_10x	AGACACGAAGGCUTACUAAGCAGTGGTATCAACGCAGAG
C12	M-Rev_5'_10x	AAGGCTCUGATCTAGGUAAGCAGTGGTATCAACGCAGAG
D1	N-Rev_5'_10x	ACTUAACCGGCAUACCUAAGCAGTGGTATCAACGCAGAG
D2	O-Rev_5'_10x	AAAGGUGCCGGUGACTUAAGCAGTGGTATCAACGCAGAG
D3	*P-Rev_5'_10x*	ATCTCGAGCCACTTCATAAGCAGTGGTATCAACGCAGAG

1 Mix MAS primer pairs:

Order primers reconstituted as 100µM

Mix equal volumes of primer pairs according to the table below to create a $50\mu M$ MAS primer mix plate.

Create a $5\mu M$ working MAS-primer plate by diluting 10-fold in low-TE.

А	В	С
MAS-seq prime gy		
	wells	adapter pairs
1	A1 & C1	*AIB
2	A2 & C2	BIC
3	A3 & C3	CID
4	A4 & C4	DIE
5	A5 & C5	EIF
6	A6 & C6	FIG
7	A7 & C7	GIH
8	A8 & C8	HII
9	A9 & C9	IJJ
10	A10 & C10	JIK
11	A11 & C11	KIL
12	A12 & C12	LIM
13	B1 & D1	MIN
14	B2 & D2	NIO
15	B3 & D3	OIP*

2 WTA amplification:

Set up the following reactions on ice

For 5' libraries:

A	В	С
Reagent	Reaction con c.	μL per. reactio n

A	В	С
Nuclease Free Water		35
Kapa HiFi Ura cil+ ReadyMix (2X)	1X	50
Fwd_R1_10x 5'_PT_MAS AA0272(10u M)	0.5 μΜ	5
Rev_10x5_dU bio_PT AAO 273(10uM)	0.5 μΜ	5
10x 5' cDNA li brary (whole tr anscriptome a mplification); 2-5ng/µL		5
Total		100 μL

For 3' libraries:

А	В	С	D
Reagent	Reaction con c.	μL per. reactio n	
Nuclease Free Water		35	
Kapa HiFi Ura cil+ ReadyMix (2X)	1X	50	
Fwd_R1_10x 5'_PT_MAS AA0365(10u M)	0.5 μΜ	5	
Rev_10x5_dU bio_PT AAO 366(10uM)	0.5 μΜ	5	
10x 3' cDNA li brary (whole tr anscriptome a mplification); 2-5ng/µL		5	
Total		100 μL	

A	В	С	D	E
Step	Temperature	Time	Cycles	

A	В	С	D	E
Initial denatur ation	98 °C	3 min	1x	
Denaturation	98 °C	20 sec	5x	
Annealing	65°C	30 sec		
Elongation	72 °C	8 min		
Final Elongati on	72 °C	10 min	1x	
Hold	4 °C	Hold		

3 Reaction cleanup and quantification

- 1. 0.8x SPRIselect cleanup 80 μL beads in 100 μL PCR reaction from step 2.
- 2. Elute in 46 µL low-TE
- 3. Qubit quantification

4 TSO artifact removal

- 1. Transfer 10 μL (100 μg) resuspended Dynabeads™ kilobaseBINDER™ streptavidin beads to a PCR tube.
- 2. Place the tube on the magnet for 2 min.
- 3. Carefully remove and discard the supernatant while the tube remains on the magnet. Avoid touching the bead pellet with the pipette tip.
- 4. Remove the tube from the magnet. Add 40 μ L Binding Solution along the inside wall of the tube where the beads are collected and gently resuspend by pipetting. Note: the solution may be viscous. Avoid foaming.
- 5. Place the tube on the magnet for 2 min and remove the supernatant.
- 6. Resuspend the beads in 40 µL Binding Solution.
- 7. Add 40 µL of a solution containing the biotinylated DNA-fragments to the resuspended beads. Mix carefully to avoid foaming of the solution.
- 8. Incubate the tube at room temperature for 3 hours on a roller to keep the beads in suspension.
- 9. Place the tube on the magnet and remove the supernatant as in step 3, above.
- 10. Wash the Dynabeads\$/DNA-complex 2x in 80 μL Washing Solution and once in distilled water.
- 11. Resuspend the Dynabeads®/DNA-complex in 40ul Low-TE.
- 12. Add 2ul USER and incubate in a rotator at 37C for 2 hours.
- 13. Place the tube on the magnet and move the supernatant containing the library to a fresh tube.
- 14. Cleanup 0.8x SPRI (32 μL beads in 40 μL library)

- 15. Elute in 46 µL low-TE.
- 16. Qubit quantification

5 **MAS adapter PCR**

Set up all reactions on ice

1. Create the following master mix:

A	В	С	D	E	F
Reagent	Reaction con c.	μL per. reacti on			
Nuclease Fre e Water		618.7			
Kapa HiFi Ura cil+ ReadyMix (2X)	1X	800			
Purified cDN A from step 4		21.3			
Total		1440 µL			

- 2. Distribute 90 µL of Master Mix into each of 15 PCR tubes
- 3. Distribute 10 μ L 5 μ M MAS-seq primer pair mix into each of 15 PCR tubes

Cycling conditions:

A	В	С	D
Step	Temperature	Time	Cycles
Initial denatur ation	98 °C	3 min	1x
Denaturation	98 °C	20 sec	*n*x
Annealing	65°C	30 sec	
Elongation	72 °C	8 min	
Final Elongati on	72 °C	10 min	1x
Hold	4 °C	Hold	

Note - optimal cycle number is a function of amount of input material after TSO artifact removal. See table below for cycle determination

A	В
cDNA concentration (ng/µL)	cycle number

A	В
1 - 2.5	10
2.5 - 5	9
5 - 7.5	8

6 Reaction cleanup

- 1. Pool 15 x 95 μ L reactions in 5ml tube. (Note* attaining equimolar amounts of each adapter PCR is key to efficient array assembly be mindful to add the same amount of each adapter PCR to the pool. To account for handling, 95/100 μ L of the PCR is advised to be pooled from each reaction.)
- 2. SPRIselect cleanup 0.7x (997.5 µL beads in 1425 µL pooled MAS adapter PCR)
- 3. Elute in 450 μ L low TE buffer.
- 4. Qubit quantify
- 5. Move 435 μ L of the library to a 1.5 mL microtube tube and added 15 μ L of USER enzyme. (Note* 10-15 μ g is advised going into this step. Dilute going into this step if sample is too concentrated.)
- 6. Incubate reaction at 37 for 2.5 hours
- 7. Add 51 µL Hifi Ligase buffer and 15ul Hifi ligase to the USER reaction.
- 8. Distribute to 5x PCR tubes and set in thermocycler at 42C for 2 hours.
- 9. Pool reaction into a 1.5 mL microtube using a wide bore tip
- 10. SPRIselect cleanup 0.7x ($361.2~\mu L$ beads in $516~\mu L$ reaction), mix gently with wide bore tip. Set on rotator for 5 min.
- 11. Incubate at 37C for 10min elute in 180 μ L low TE.
- 12. Qubit quantify

7 MAS library quantification

Quantify MAS arrays with Genomic DNA ScreenTape or Femto Pulse.

See example below:

Optional Size Selection

SMRTbell Express Template Prep: Use this as input material for PacBio SMRTbell Express Template Prep Kit 2.0, starting at the "Remove ssDNA Overhangs" step (page 8:

https://www.pacb.com/wp-content/uploads/Procedure-Checklist-Preparing-HiFi-SMRTbell-Libraries-using-SMRTbell-Express-Template-Prep-Kit-2.0.pdf)

Minimum starting material going into the PacBio SMRTbell Express Template Prep Kit 2.0 : 5µg