Combinators for Algebraic Structures (CAS) Version 1

Timothy G. Griffin

July 12, 2016

Abstract

The document presents a small language of combinators for construction semigroups and semirings.

1 Motivation

We assume $2 \leq |S|$ for all carrier sets S.

2 Semigroup Combinators

2.1 Adding an identity

$$AddId(\alpha, (S, \bullet)) \equiv (S \uplus \{\alpha\}, \bullet_{\alpha}^{id})$$

where

$$a \bullet_{\alpha}^{\operatorname{id}} b \ \equiv \ \begin{cases} a & (\operatorname{if} \ b = \operatorname{inr}(\alpha)) \\ b & (\operatorname{if} \ a = \operatorname{inr}(\alpha)) \\ \operatorname{inl}(x \bullet y) & (\operatorname{if} \ a = \operatorname{inl}(x), \ b = \operatorname{inl}(y)) \end{cases}$$

2.2 Adding an annihilator

$$AddAn(\omega, (S, \bullet)) \equiv (S \uplus \{\omega\}, \bullet_{\omega}^{an})$$

where

$$a \bullet_{\omega}^{\mathrm{an}} b \ \equiv \begin{cases} & \mathrm{inr}(\omega) & (\mathrm{if} \ b = \mathrm{inr}(\omega)) \\ & \mathrm{inr}(\omega) & (\mathrm{if} \ a = \mathrm{inr}(\omega)) \\ & \mathrm{inl}(x \bullet y) & (\mathrm{if} \ a = \mathrm{inl}(x), \ b = \mathrm{inl}(y)) \end{cases}$$

2.3 Direct Product

Let (S, \bullet) and (T, \diamond) be semigroups. The direct product is denoted

$$(S, \bullet) \times (T, \diamond) \equiv (S \times T, \star)$$

where

$$\star = \bullet \times \diamond$$

is defined as

$$(s_1, t_1) \star (s_2, t_2) = (s_1 \bullet s_2, t_1 \diamond t_2).$$

2.4 Lexicographic Product

Suppose that semigroup (S, \bullet) is commutative, idempotent, and selective and that (T, \diamond) is a semigroup.

$$(S, \bullet) \stackrel{\checkmark}{\times} (T, \diamond) \equiv (S \times T, \star)$$

where $\star \equiv \bullet \stackrel{\rightarrow}{\times} \diamond$ is defined as

$$(s_1, t_1) \star (s_2, t_2) = \begin{cases} (s_1 \bullet s_2, t_1 \diamond T_2) & s_1 = s_1 \bullet s_2 = s_2 \\ (s_1 \bullet s_2, t_1) & s_1 = s_1 \bullet s_2 \neq s_2 \\ (s_1 \bullet s_2, t_2) & s_1 \neq s_1 \bullet s_2 = s_2 \end{cases}$$

Examples for $(\mathbb{N}, \min) \times (\mathbb{N}, \min)$.

$$\begin{array}{rcl} (1,\ 17) \star (2,3) & = & (1,17) \\ (2,\ 17) \star (2,3) & = & (2,3) \\ (2,\ 3) \star (2,3) & = & (2,3) \end{array}$$

Examples for $(\mathbb{N}, \min) \times (\mathbb{N}, \max)$.

$$(1, 17) \star (2,3) = (1,17)$$

 $(2, 17) \star (2,3) = (2,17)$
 $(2, 3) \star (2,3) = (2,3)$

Examples for $(\mathbb{N}, \max) \times (\mathbb{N}, \min)$.

$$(1, 17) \star (2,3) = (2,3)$$

 $(2, 17) \star (2,3) = (2,3)$
 $(2, 3) \star (2,3) = (2,3)$

2.5 Lifted Product

Assume (S, \bullet) is a semigroup. Let $lift(S, \bullet) \equiv (fin(2^S), \hat{\bullet})$ where

$$X \hat{\bullet} Y = \{ x \bullet y \mid x \in X, \ y \in Y \}.$$

Example.

$$\{1, 3, 17\} + \{1, 3, 17\} = \{2, 4, 6, 18, 20, 34\}$$

2.6 Minimal set union

Let \leq be a partial order on S. For $X \subseteq S$, define

$$\min_{<}(X) \equiv \{x \in X \mid \forall y \in X, \ \neg(y < x)\}.$$

Define

$$\mathcal{P}_{\mathrm{fin}}(S,\ \lesssim) \equiv \{X \subseteq S \mid X \text{ finite and } \min_{\leq}(X) = X\}$$

and

$$A \ \cup_{\min}^{\leq} B \equiv \min_{\leq} (A \cup B)$$

$$\operatorname{MinUnion}(S, \leq) \equiv (\mathcal{P}_{\operatorname{fin}}(S, \leq), \cup_{\min}^{\leq})$$

NOTE: perhaps we can always define \leq in terms of a (S, oplus), and so get rid of the class of structures (S, \leq) .

2.7 Minimal set lift

$$A \; \otimes_{\min}^{\leq} B \equiv \min_{\leq} (\{a \otimes b \mid a \in A, \; b \in B\})$$

$$\operatorname{MinLift}(S, \leq, \otimes) \equiv (\mathcal{P}_{\operatorname{fin}}(S, \leq), \otimes_{\min}^{\leq})$$

NOTE: perhaps we can always define \leq in terms of a (S, oplus), and so get rid of the class of structures (S, \leq) .

3 Pre-order Combinators

4 Pre-order Semigroup Combinators

5 Bi-Semigroup Combinators

5.1 Adding a zero

$$\operatorname{AddZero}(\overline{0},\ (S,\ \oplus,\ \otimes)) \quad \equiv \quad (S \uplus \{\overline{0}\},\ \oplus_{\overline{0}}^{\operatorname{id}},\ \otimes_{\overline{0}}^{\operatorname{an}})$$

5.2 Adding a one

$$\mathrm{AddOne}(\overline{1},\ (S,\ \oplus,\ \otimes)) \quad \equiv \quad (S \uplus \{\overline{1}\},\ \oplus^{\mathrm{an}}_{\overline{1}},\ \otimes^{\mathrm{id}}_{\overline{1}})$$

5.3 Direct Product

$$(S, \oplus_S, \otimes_S) \times (T, \oplus_T, \otimes_T) \equiv (S \times T, \oplus_S \times \oplus_T, \otimes_S \times \otimes_T)$$

5.4 Lexicographic Product

$$(S, \oplus_S, \otimes_S) \times (T, \oplus_T, \otimes_T) \equiv (S \times T, \oplus_S \times \oplus_T, \otimes_S \times \otimes_T)$$

5.5 \mathcal{M} and \mathcal{N}

Suppose $D \in \{L, R\}$. Let $\leq \equiv \leq_{\oplus}^{D}$ and define

$$\mathcal{M}(D, (S, \oplus, \otimes)) \equiv (\mathcal{P}_{fin}(S, \leq), \otimes_{min}^{\leq}, \cup_{min}^{\leq})$$

$$\mathcal{N}(D, \ (S, \ \oplus, \ \otimes)) \ \equiv \ (\mathcal{P}_{\mathrm{fin}}(S, \ \leq), \ \cup_{\mathrm{min}}^{\leq}, \ \otimes_{\mathrm{min}}^{\leq})$$

Recall: $a \leq_{\oplus}^L b \equiv a = a \oplus b$ and $a \leq_{\oplus}^R b \equiv b = a \oplus b$.

6 Properties

 (S, \bullet)

6.0.1 Initial set of semigroup properties

associative identity annihilator commutative selective idempotent
$$\begin{array}{ll} \mathbb{AS} & \equiv & \forall a,b,c \in S, \ a \bullet (b \bullet c) = (a \bullet b) \bullet c \\ \mathbb{ID} & \equiv & \exists \alpha \in S, \ \forall a \in S, \ a = \alpha \bullet a = a \bullet \alpha \\ \mathbb{AN} & \equiv & \exists \omega \in S, \ \forall a \in S, \ \omega = \omega \bullet a = a \bullet \omega \\ \mathbb{CM} & \equiv & \forall a,b \in S, \ a \bullet b = b \bullet a \\ \mathbb{SL} & \equiv & \forall a,b \in S, \ a \bullet b \in \{a,b\} \\ \mathbb{IP} & \equiv & \forall a \in S, \ a \bullet a = a \end{array}$$

6.0.2 Initial set of order properties

 (S, \leq)

6.0.3 Initial set of bi-semigroup properties

 (S, \oplus, \otimes)

where

$$\mathbb{IID}(S, \bullet, \alpha) \equiv \forall a \in S, \ a = \alpha \bullet a = a \bullet \alpha$$

$$\mathbb{IAN}(S, \bullet, \omega) \equiv \forall a \in S, \ \omega = \omega \bullet a = a \bullet \omega$$

6.0.4 Initial set of order semigroup properties

$$(S, \leq, \otimes)$$

left monotonicity
$$\mid \mathbb{LM} \equiv \forall a, b, c \in S, \ a \leq b \Longrightarrow (a \otimes c) \leq (b \otimes c)$$
 right monotonicity $\mid \mathbb{RM} \equiv \forall a, b, c \in S, \ a \leq b \Longrightarrow (c \otimes a) \leq (c \otimes b)$

7 Closure

To close we need extra properties.

For semigroups.

				required for
is right	\mathbb{IR}	=	$\forall s, t \in S, s \bullet t = t$	$\mathbb{SL}(imes)$
is left		\equiv	$\forall s,t \in S, s \bullet t = s$	$\mathbb{SL}(imes)$
left cancellative	LC	\equiv	$\forall a, b, c \in S, \ c \bullet a = c \bullet b \Rightarrow a = b$	$\mathbb{LD}(\vec{\times})$
right cancellative	\mathbb{RC}	=	$\forall a, b, c \in S, \ a \bullet c = b \bullet c \Rightarrow a = b$	$\mathbb{RD}(\vec{\times})$
left constant	LK	=	$\forall a,b,c \in S, \ c \bullet a = c \bullet b$	$\mathbb{L}\mathbb{D}(ec{ imes})$
right constant	$\mathbb{R}\mathbb{K}$	\equiv	$\forall a, b, c \in S, \ a \bullet c = b \bullet c$	$\mathbb{RD}(\vec{\times})$
anti-left	AL	=	$\forall a, b \in S, \ a \bullet b \neq a$	$\mathbb{LC}(AddId), \mathbb{LAB}(\vec{\times}, \times)$
$\operatorname{anti-right}$	\mathbb{AR}	=	$\forall a, b \in S, \ b \bullet a \neq a$	$\mathbb{RC}(AddId), \mathbb{RAB}(\vec{\times}, \times)$

For bi-semigroups (S, \oplus, \otimes)

				required for
left absorption	LAB	=	$\forall a, b \in S, \ a = (b \otimes a) \oplus a = a \oplus (b \otimes a)$	$\mathbb{LD}(AddOne)$
right absorption	$\mathbb{R}\mathbb{A}\mathbb{B}$	\equiv	$\forall a, b \in S, \ a = (a \otimes b) \oplus a = a \oplus (a \otimes b)$	$\mathbb{LD}(AddOne)$

7.1 A few usefull implications

$$\begin{array}{cccc} \mathbb{SL} & \Rightarrow & \mathbb{IP} \\ \mathbb{RAB}(S, \, \oplus, \, \otimes) \wedge \mathbb{ID}(S, \, \oplus) & \Rightarrow & \mathbb{IP}(S, \, \otimes) \\ \mathbb{LAB}(S, \, \oplus, \, \otimes) \wedge \mathbb{ID}(S, \, \oplus) & \Rightarrow & \mathbb{IP}(S, \, \otimes) \\ \mathbb{LD}(S, \, \oplus, \, \otimes) \wedge \mathbb{OA}(S, \, \oplus, \, \otimes) & \Rightarrow & \mathbb{RAB}(S, \, \oplus, \, \otimes) \\ \mathbb{RD}(S, \, \oplus, \, \otimes) \wedge \mathbb{OA}(S, \, \oplus, \, \otimes) & \Rightarrow & \mathbb{LAB}(S, \, \oplus, \, \otimes) \end{array}$$

7.2 AddId

```
\mathbb{AS}(\mathrm{AddId}(\alpha, (S, \bullet)))
                                                                   \mathbb{AS}(S, \bullet)
                                                         \Leftrightarrow
 \mathbb{ID}(\mathrm{AddId}(\alpha, (S, \bullet)))
                                                         \Leftrightarrow
                                                                   TRUE
\mathbb{AN}(\mathrm{AddId}(\alpha, (S, \bullet)))
                                                         \Leftrightarrow
                                                                   \mathbb{AN}(S, \bullet)
\mathbb{CM}(\mathrm{AddId}(\alpha, (S, \bullet)))
                                                                   \mathbb{CM}(S, \bullet)
                                                         \Leftrightarrow
  \mathbb{IP}(AddId(\alpha, (S, \bullet)))
                                                                   \mathbb{IP}(S, \bullet)
                                                         \Leftrightarrow
 SL(AddId(\alpha, (S, \bullet)))
                                                                   \mathbb{SL}(S, \bullet)
                                                         \Leftrightarrow
  \mathbb{IR}(\mathrm{AddId}(\alpha, (S, \bullet)))
                                                                   FALSE
                                                         \Leftrightarrow
  \mathbb{IL}(AddId(\alpha, (S, \bullet)))
                                                                   FALSE
                                                         \Leftrightarrow
\mathbb{LC}(AddId(\alpha, (S, \bullet)))
                                                                   \mathbb{LC}(S, \bullet) \wedge \mathbb{AL}(S, \bullet)
                                                         \Leftrightarrow
\mathbb{RC}(\mathrm{AddId}(\alpha, (S, \bullet)))
                                                         \Leftrightarrow
                                                                   \mathbb{RC}(S, \bullet) \wedge \mathbb{AR}(S, \bullet)
\mathbb{LK}(\mathrm{AddId}(\alpha, (S, \bullet)))
                                                         \Leftrightarrow
                                                                   FALSE
\mathbb{RK}(\mathrm{AddId}(\alpha, (S, \bullet)))
                                                                   FALSE
                                                         \Leftrightarrow
\mathbb{AL}(\mathrm{AddId}(\alpha, (S, \bullet)))
                                                                   FALSE
                                                         \Leftrightarrow
\mathbb{AR}(\mathrm{AddId}(\alpha, (S, \bullet)))
                                                                   FALSE
```

7.3 AddAn

```
\mathbb{AS}(AddAn(\alpha, (S, \bullet)))
                                                             \mathbb{AS}(S, \bullet)
                                                    \Leftrightarrow
  \mathbb{ID}(AddAn(\alpha, (S, \bullet)))
                                                             \mathbb{ID}(S, \bullet)
                                                    \Leftrightarrow
 \mathbb{AN}(\mathrm{AddAn}(\alpha, (S, \bullet)))
                                                             TRUE
                                                    \Leftrightarrow
                                                             \mathbb{CM}(S, \bullet)
\mathbb{CM}(AddAn(\alpha, (S, \bullet)))
                                                    \Leftrightarrow
  \mathbb{IP}(AddAn(\alpha, (S, \bullet)))
                                                    \Leftrightarrow
                                                             \mathbb{IP}(S, \bullet)
 SL(AddAn(\alpha, (S, \bullet)))
                                                             \mathbb{SL}(S, \bullet)
                                                    \Leftrightarrow
  \mathbb{IR}(AddAn(\alpha, (S, \bullet)))
                                                             FALSE
                                                    \Leftrightarrow
  \mathbb{IL}(AddAn(\alpha, (S, \bullet)))
                                                             FALSE
 \mathbb{LC}(AddAn(\alpha, (S, \bullet)))
                                                             FALSE
                                                    \Leftrightarrow
 \mathbb{RC}(\mathrm{AddAn}(\alpha, (S, \bullet)))
                                                             FALSE
                                                    \Leftrightarrow
\mathbb{LK}(AddAn(\alpha, (S, \bullet)))
                                                             FALSE
                                                    \Leftrightarrow
\mathbb{RK}(AddAn(\alpha, (S, \bullet)))
                                                    \Leftrightarrow
                                                             FALSE
 \mathbb{AL}(\mathrm{AddAn}(\alpha, (S, \bullet)))
                                                    \Leftrightarrow
                                                             FALSE
 \mathbb{AR}(\mathrm{AddAn}(\alpha, (S, \bullet)))
                                                             FALSE
```

```
7.4
                \mathbb{AS}((S, \bullet) \times (T, \diamond))
                                                                                     \mathbb{AS}(S, \bullet) \wedge \mathbb{AS}(T, \diamond)
                 \mathbb{ID}((S, \bullet) \times (T, \diamond))
                                                                                     \mathbb{ID}(S, \bullet) \wedge \mathbb{ID}(T, \diamond)
                                                                         \Leftrightarrow
               \mathbb{AN}((S, \bullet) \times (T, \diamond))
                                                                         \Leftrightarrow
                                                                                     \mathbb{AN}(S, \bullet) \wedge \mathbb{AN}(T, \diamond)
              \mathbb{CM}((S, \bullet) \times (T, \diamond))
                                                                                     \mathbb{CM}(S, \bullet) \wedge \mathbb{CM}(T, \diamond)
                                                                         \Leftrightarrow
                 \mathbb{IP}((S, \bullet) \times (T, \diamond))
                                                                         \Leftrightarrow
                                                                                     \mathbb{IP}(S, \bullet) \wedge \mathbb{IP}(T, \diamond)
                \mathbb{SL}((S, \bullet) \times (T, \diamond))
                                                                                      (\mathbb{IR}(S, \bullet) \wedge \mathbb{IR}(T, \diamond)) \vee (\mathbb{IL}(S, \bullet) \wedge \mathbb{IL}(T, \diamond))
                                                                         \Leftrightarrow
                 \mathbb{IR}((S, \bullet) \times (T, \diamond))
                                                                                     \mathbb{IR}(S, \bullet) \wedge \mathbb{IR}(T, \diamond)
                                                                         \Leftrightarrow
                 \mathbb{IL}((S, \bullet) \times (T, \diamond))
                                                                                     \mathbb{IL}(S, \bullet) \wedge \mathbb{IL}(T, \diamond)
                                                                         \Leftrightarrow
                \mathbb{LC}((S, \bullet) \times (T, \diamond))
                                                                         \Leftrightarrow
                                                                                     \mathbb{LC}(S, \bullet) \wedge \mathbb{LC}(T, \diamond)
               \mathbb{RC}((S, \bullet) \times (T, \diamond))
                                                                         \Leftrightarrow
                                                                                     \mathbb{RC}(S, \bullet) \wedge \mathbb{RC}(T, \diamond)
               \mathbb{LK}((S,\bullet)\times (T,\diamond))
                                                                                     \mathbb{LK}(S, \bullet) \wedge \mathbb{LK}(T, \diamond)
                                                                         \Leftrightarrow
               \mathbb{RK}((S, \bullet) \times (T, \diamond))
                                                                                     \mathbb{RK}(S, \bullet) \wedge \mathbb{RK}(T, \diamond)
                                                                         \Leftrightarrow
               \mathbb{AL}((S, \bullet) \times (T, \diamond))
                                                                                     \mathbb{AL}(S, \bullet) \vee \mathbb{AL}(T, \diamond)
               \mathbb{AR}((S, \bullet) \times (T, \diamond))
                                                                         \Leftrightarrow
                                                                                     \mathbb{AR}(S, \bullet) \vee \mathbb{AR}(T, \diamond)
```

7.5 $\vec{\times}$ (semigroup)

Assuming $\mathbb{AS}(S, \bullet)$, $\mathbb{CM}(S, \bullet)$, and $\mathbb{SL}(S, \bullet)$.

```
\mathbb{AS}((S,\bullet)\vec{\times}(T,\diamond))
                                                                 \mathbb{AS}(T,\diamond)
  \mathbb{ID}((S,\bullet)\vec{\times}(T,\diamond))
                                                               \mathbb{ID}(S, \bullet) \wedge \mathbb{ID}(T, \diamond)
                                                      \Leftrightarrow
                                                                   \mathbb{AN}(S,\bullet) \wedge \mathbb{AN}(T,\diamond)
\mathbb{AN}((S, \bullet) \vec{\times} (T, \diamond))
                                                      \Leftrightarrow
\mathbb{CM}((S,\bullet)\vec{\times}(T,\diamond))
                                                      \Leftrightarrow
                                                                   \mathbb{CM}(T,\diamond)
   \mathbb{IP}((S, \bullet) \vec{\times} (T, \diamond))
                                                                   \mathbb{IP}(T, \diamond)
                                                      \Leftrightarrow
  \mathbb{SL}((S, \bullet) \vec{\times} (T, \diamond))
                                                                   SL(T, \diamond)
                                                       \Leftrightarrow
   \mathbb{IR}((S,\bullet)\vec{\times}(T,\diamond))
                                                                   FALSE
   \mathbb{IL}((S, \bullet) \vec{\times} (T, \diamond))
                                                                   FALSE
                                                      \Leftrightarrow
 \mathbb{LC}((S, \bullet) \vec{\times} (T, \diamond))
                                                                   FALSE
                                                       \Leftrightarrow
\mathbb{RC}((S, \bullet) \vec{\times} (T, \diamond))
                                                                   FALSE
\mathbb{LK}((S, \bullet) \vec{\times} (T, \diamond))
                                                                   FALSE
                                                      \Leftrightarrow
\mathbb{RK}((S, \bullet) \overrightarrow{\times} (T, \diamond))
                                                                   FALSE
                                                       \Leftrightarrow
 \mathbb{AL}((S, \bullet) \vec{\times} (T, \diamond))
                                                                   FALSE
                                                      \Leftrightarrow
\mathbb{AR}((S, \bullet) \vec{\times} (T, \diamond))
                                                                   FALSE
                                                      \Leftrightarrow
```

7.6 lift

```
\mathbb{AS}(\operatorname{lift}(S, \bullet))
                                        \Leftrightarrow \mathbb{AS}(S, \bullet)
  \mathbb{ID}(\mathrm{lift}(S, \bullet))
                                        \Leftrightarrow \mathbb{ID}(S, \bullet) \ (\hat{\alpha} = \{\alpha\})
                                                 \mathbb{TR}\mathbb{UE}\ (\omega = \{\})
\mathbb{AN}(\text{lift}(S, \bullet))
                                        \Leftrightarrow
\mathbb{CM}(\operatorname{lift}(S, \bullet))
                                        \Leftrightarrow \mathbb{CM}(S, \bullet)
  \mathbb{SL}(\mathrm{lift}(S,ullet))
                                        \Leftrightarrow \mathbb{IL}(S, \bullet) \vee \mathbb{IR}(S, \bullet) \vee (\mathbb{IP}(S, \bullet) \wedge |S| = 2)
   \mathbb{IP}(\mathrm{lift}(S, \bullet))
                                        \Leftrightarrow
                                                    \mathbb{SL}((S, \bullet))
   \mathbb{IL}(\mathrm{lift}(S, \bullet))
                                                    FALSE
                                         \Leftrightarrow
  \mathbb{IR}(\mathrm{lift}(S, \bullet))
                                         \Leftrightarrow FALSE
 \mathbb{LC}(\mathrm{lift}(S, \bullet))
                                         \Leftrightarrow FALSE
\mathbb{RC}(\mathrm{lift}(S, \bullet))
                                        \Leftrightarrow FALSE
\mathbb{LK}(\operatorname{lift}(S, \bullet))
                                        \Leftrightarrow FALSE
\mathbb{RK}(\mathrm{lift}(S, \bullet))
                                                  FALSE
                                        \Leftrightarrow
\mathbb{AL}(\operatorname{lift}(S, \bullet))
                                                    FALSE
                                         \Leftrightarrow
\mathbb{AR}(\mathrm{lift}(S, \bullet))
                                                    FALSE
```

7.7 MinUnion

Assume $\mathbb{AY}(S, \leq)$. (Seems required for associativity, idempotence, perhaps others.)

```
\mathbb{AS}(MinUnion(S, \leq))
                                           TRUE
                                    \Leftrightarrow
                                           \mathbb{FINITE}(\min_{<}(S)) (WHAT IS THIS REALLY? CLOSE W.R.T. ???)
 \mathbb{ID}(MinUnion(S, \leq))
                                    \Leftrightarrow
\mathbb{AN}(MinUnion(S, \leq))
                                    \Leftrightarrow
                                           TRUE (\omega = \{\})
\mathbb{CM}(\mathrm{MinUnion}(S, \leq))
                                           TRUE
                                    \Leftrightarrow
 SL(MinUnion(S, \leq))
                                           \mathbb{TO}(S, \leq))
                                    \Leftrightarrow
 \mathbb{IP}(\text{MinUnion}(S, \leq))
                                           TRUE
                                     \Leftrightarrow
 \mathbb{IL}(MinUnion(S, \leq))
                                           FALSE
 \mathbb{IR}(\text{MinUnion}(S, \leq))
                                    \Leftrightarrow
                                           FALSE
\mathbb{LC}(MinUnion(S, \leq))
                                           FALSE
                                    \Leftrightarrow
\mathbb{RC}(\mathrm{MinUnion}(S, \leq))
                                           FALSE
                                    \Leftrightarrow
\mathbb{LK}(MinUnion(S, \leq))
                                           FALSE
                                    \Leftrightarrow
\mathbb{RK}(MinUnion(S, \leq))
                                           FALSE
                                    \Leftrightarrow
\mathbb{AL}(MinUnion(S, \leq))
                                           FALSE
                                    \Leftrightarrow
\mathbb{AR}(MinUnion(S, \leq))
                                           FALSE
```

7.8 MinLift

Assume $\mathbb{LM}(S, \leq, \otimes)$, $\mathbb{RM}(S, \leq, \otimes)$, and $\mathbb{AY}(S, \leq)$. (Needed for associativity) **Perhaps others constraints are needed to make progress on** \mathbb{SL} **and** \mathbb{IP} . Lattice Theory to the rescue?

```
AS(MinLift(S, \leq, \otimes))
                                                           \mathbb{AS}(S, \otimes)
                                                  \Leftrightarrow
  \mathbb{ID}(\mathrm{MinLift}(S, \leq, \otimes))
                                                           \mathbb{ID}(S, \otimes)
                                                   \Leftrightarrow
 \mathbb{AN}(\mathrm{MinLift}(S, \leq, \otimes))
                                                  \Leftrightarrow
                                                           TRUE (\omega = \{\})
\mathbb{CM}(\mathrm{MinLift}(S, \leq, \otimes))
                                                           \mathbb{CM}(S, \otimes)
                                                  \Leftrightarrow
                                                           ??? ( SOMEDAY !!!)
 SL(MinLift(S, \leq, \otimes))
                                                   \Leftrightarrow
                                                           ??? ( SOMEDAY !!!)
  \mathbb{IP}(\mathrm{MinLift}(S, \leq, \otimes))
                                                   \Leftrightarrow
                                                           FALSE
  \mathbb{IL}(\mathrm{MinLift}(S, \leq, \otimes))
                                                  \Leftrightarrow
  \mathbb{IR}(\mathrm{MinLift}(S, \leq, \otimes))
                                                  \Leftrightarrow
                                                           FALSE
 \mathbb{LC}(\mathrm{MinLift}(S, \leq, \otimes))
                                                           FALSE
                                                  \Leftrightarrow
 \mathbb{RC}(\mathrm{MinLift}(S, \leq, \otimes))
                                                          FALSE
                                                  \Leftrightarrow
 \mathbb{LK}(\mathrm{MinLift}(S, \leq, \otimes))
                                                  \Leftrightarrow
                                                          FALSE
\mathbb{RK}(\mathrm{MinLift}(S, \leq, \otimes))
                                                           FALSE
                                                  \Leftrightarrow
 \mathbb{AL}(\mathrm{MinLift}(S, \leq, \otimes))
                                                           FALSE
                                                  \Leftrightarrow
 \mathbb{AR}(\mathrm{MinLift}(S, \leq, \otimes))
                                                           FALSE
                                                  \Leftrightarrow
```

7.9 AddZero

7.10 AddOne

```
\mathbb{LD}(AddOne(\overline{1}, (S, \oplus, \otimes))) \Leftrightarrow
                                                                                   \mathbb{LD}(S, \oplus, \otimes) \wedge \mathbb{RAB}(S, \oplus, \otimes) \wedge \mathbb{IP}(S, \oplus)
   \mathbb{RD}(\mathrm{AddOne}(\overline{1}, (S, \oplus, \otimes)))
                                                                                    \mathbb{RD}(S, \oplus, \otimes) \wedge \mathbb{LAB}(S, \oplus, \otimes) \wedge \mathbb{IP}(S, \oplus)
                                                                          \Leftrightarrow
   \mathbb{Z}\mathbb{A}(AddOne(\overline{1}, (S, \oplus, \otimes)))
                                                                                     \mathbb{Z}\mathbb{A}(S, \oplus, \otimes)
                                                                          \Leftrightarrow
   \mathbb{OA}(AddOne(\overline{1}, (S, \oplus, \otimes)))
                                                                          \Leftrightarrow
                                                                                     TRUE
\mathbb{RAB}(\mathrm{AddOne}(\overline{1},\ (S,\ \oplus,\ \otimes)))
                                                                                    \mathbb{RAB}(S, \oplus, \otimes) \wedge \mathbb{IP}(S, \oplus)
                                                                          \Leftrightarrow
\mathbb{LAB}(AddOne(\overline{1}, (S, \oplus, \otimes))) \Leftrightarrow
                                                                                 \mathbb{LAB}(S, \oplus, \otimes) \wedge \mathbb{IP}(S, \oplus)
```

7.11 Direct Product, (\times, \times)

```
\mathbb{LD}((S, \oplus_S, \otimes_S) \times (T, \oplus_T, \otimes_T))
                                                                                              \mathbb{LD}(S, \oplus_S, \otimes_S) \wedge \mathbb{LD}(T, \oplus_T, \otimes_T)
                                                                                    \Leftrightarrow
   \mathbb{RD}((S, \oplus_S, \otimes_S) \times (T, \oplus_T, \otimes_T))
                                                                                              \mathbb{RD}(S, \oplus_S, \otimes_S) \wedge \mathbb{RD}(T, \oplus_T, \otimes_T)
                                                                                    \Leftrightarrow
   \mathbb{ZA}((S, \oplus_S, \otimes_S) \times (T, \oplus_T, \otimes_T))
                                                                                              \mathbb{Z}\mathbb{A}(S, \oplus_S, \otimes_S) \wedge \mathbb{Z}\mathbb{A}(T, \oplus_T, \otimes_T)
                                                                                    \Leftrightarrow
   \mathbb{OA}((S, \oplus_S, \otimes_S) \times (T, \oplus_T, \otimes_T))
                                                                                           \mathbb{OA}(S, \oplus_S, \otimes_S) \wedge \mathbb{OA}(T, \oplus_T, \otimes_T)
                                                                                    \Leftrightarrow
\mathbb{RAB}((S, \oplus_S, \otimes_S) \times (T, \oplus_T, \otimes_T))
                                                                                    \Leftrightarrow \mathbb{RAB}(S, \oplus_S, \otimes_S) \wedge \mathbb{RAB}(T, \oplus_T, \otimes_T)
\mathbb{LAB}((S, \oplus_S, \otimes_S) \times (T, \oplus_T, \otimes_T))
                                                                                    \Leftrightarrow \mathbb{LAB}(S, \oplus_S, \otimes_S) \wedge \mathbb{LAB}(T, \oplus_T, \otimes_T)
```

7.12 Lexicographic Product, (\vec{x}, \times)

Assume $\mathbb{AS}(S, \oplus_S)$, $\mathbb{CM}(S, \oplus_S)$, and $\mathbb{SL}(S, \oplus_S)$.

```
\mathbb{LD}((S, \oplus_S, \otimes_S) \times (T, \oplus_T, \otimes_T))
                                                                                    \Leftrightarrow
                                                                                           \mathbb{LD}(S, \oplus_S, \otimes_S) \wedge \mathbb{LD}(T, \oplus_T, \otimes_T)
                                                                                                     \wedge (\mathbb{LC}(S, \otimes_S) \vee \mathbb{LK}(T, \otimes_T))
   \mathbb{RD}((S, \oplus_S, \otimes_S) \times (T, \oplus_T, \otimes_T))
                                                                                              \mathbb{RD}(S, \oplus_S, \otimes_S) \wedge \mathbb{RD}(T, \oplus_T, \otimes_T)
                                                                                                     \wedge (\mathbb{RC}(S, \otimes_S) \vee \mathbb{RK}(T, \otimes_T))
                                                                                              \mathbb{Z}\mathbb{A}(S, \ \oplus_S, \ \otimes_S) \wedge \mathbb{Z}\mathbb{A}(T, \ \oplus_T, \ \otimes_T)
   \mathbb{Z}\mathbb{A}((S, \oplus_S, \otimes_S) \times (T, \oplus_T, \otimes_T))
                                                                                    \Leftrightarrow
                                                                                              \mathbb{OA}(S, \oplus_S, \otimes_S) \wedge \mathbb{OA}(T, \oplus_T, \otimes_T)
   \mathbb{OA}((S, \oplus_S, \otimes_S) \times (T, \oplus_T, \otimes_T))
                                                                                    \Leftrightarrow
\mathbb{RAB}((S, \oplus_S, \otimes_S) \times (T, \oplus_T, \otimes_T))
                                                                                    \Leftrightarrow
                                                                                              \mathbb{RAB}(S, \oplus_S, \otimes_S) \wedge (\mathbb{RAB}(T, \oplus_T, \otimes_T) \vee \mathbb{AR}(S, \otimes_S))
\mathbb{LAB}((S, \oplus_S, \otimes_S) \times (T, \oplus_T, \otimes_T))
                                                                                              \mathbb{LAB}(S, \oplus_S, \otimes_S) \wedge (\mathbb{LAB}(T, \oplus_T, \otimes_T) \vee \mathbb{AL}(S, \otimes_S))
```

7.13 \mathcal{N}

Which constraints should we impose on (S, \oplus, \otimes) in order to make this easier, cleaner? And how can we do this without giving up to much in terms of expressive power?

```
\mathbb{LD}(\mathcal{N}(L, (S, \oplus, \otimes)))
                                                                 ???
  \mathbb{RD}(\mathcal{N}(L, (S, \oplus, \otimes)))
                                                                 ???
   \mathbb{ZA}(\mathcal{N}(L, (S, \oplus, \otimes)))
                                                                 ???
  \mathbb{OA}(\mathcal{N}(L, (S, \oplus, \otimes)))
                                                                 ???
                                                       \Leftrightarrow
\mathbb{RAB}(\mathcal{N}(L, (S, \oplus, \otimes)))
                                                                 ???
                                                       \Leftrightarrow
\mathbb{LAB}(\mathcal{N}(L, (S, \oplus, \otimes)))
                                                                 ???
                                                                 ???
  \mathbb{LD}(\mathcal{N}(R, (S, \oplus, \otimes)))
  \mathbb{RD}(\mathcal{N}(R, (S, \oplus, \otimes)))
                                                                 ???
  \mathbb{ZA}(\mathcal{N}(R, (S, \oplus, \otimes)))
                                                        \Leftrightarrow
                                                                 ???
  \mathbb{OA}(\mathcal{N}(R, (S, \oplus, \otimes)))
                                                                 ???
                                                        \Leftrightarrow
\mathbb{RAB}(\mathcal{N}(R, (S, \oplus, \otimes)))
                                                                 ???
\mathbb{LAB}(\mathcal{N}(R, (S, \oplus, \otimes)))
                                                                 ???
```

7.14 \mathcal{M}

```
\mathbb{LD}(\mathcal{M}(L, (S, \oplus, \otimes)))
                                                               ???
   \mathbb{RD}(\mathcal{M}(L, (S, \oplus, \otimes)))
                                                               ???
                                                      \Leftrightarrow
   \mathbb{ZA}(\mathcal{M}(L, (S, \oplus, \otimes)))
                                                               ???
  \mathbb{OA}(\mathcal{M}(L, (S, \oplus, \otimes)))
                                                               ???
\mathbb{RAB}(\mathcal{M}(L, (S, \oplus, \otimes)))
                                                               ???
\mathbb{LAB}(\mathcal{M}(L, (S, \oplus, \otimes)))
                                                               ???
   \mathbb{LD}(\mathcal{M}(R, (S, \oplus, \otimes)))
                                                                ???
  \mathbb{RD}(\mathcal{M}(R, (S, \oplus, \otimes)))
                                                               ???
   \mathbb{ZA}(\mathcal{M}(R, (S, \oplus, \otimes)))
                                                               ???
                                                      \Leftrightarrow
  \mathbb{OA}(\mathcal{M}(R, (S, \oplus, \otimes)))
                                                               ???
\mathbb{RAB}(\mathcal{M}(R, (S, \oplus, \otimes)))
                                                               ???
\mathbb{LAB}(\mathcal{M}(R, (S, \oplus, \otimes)))
                                                               ???
```

8 Other Problems

8.1 Matrix algebras

8.2 swap

We might want to define

$$swap(S, \oplus, \otimes) \equiv (S, \otimes, \oplus).$$

The disadvantage of this is that we would then have to introduce (and close with respect to) these "dual" properties:

$$\begin{array}{cccc} \mathbb{L}\mathbb{D}^{\delta}(S,\;\oplus,\;\otimes) & \equiv & \forall a,b,c \in S,\; a \oplus (b \otimes c) = (a \oplus b) \otimes (a \oplus c) \\ \mathbb{R}\mathbb{D}^{\delta}(S,\;\oplus,\;\otimes) & \equiv & \forall a,b,c \in S,\; (a \otimes b) \oplus c = (a \oplus c) \otimes (b \oplus c) \\ \mathbb{R}\mathbb{AB}^{\delta}(S,\;\oplus,\;\otimes) & \equiv & \forall a,b \in S,\; a = (a \oplus b) \otimes a = a \otimes (a \oplus b) \\ \mathbb{L}\mathbb{AB}^{\delta}(S,\;\oplus,\;\otimes) & \equiv & \forall a,b \in S,\; a = (b \oplus a) \otimes a = a \otimes (b \oplus a) \\ \end{array}$$

- 8.3 k-best paths
- 8.4 Semi-direct product
- 8.5 General reductions