Harshith Reddy Surakanti

Dublin, CA | harshith.surakanti@gmail.com | +1 (317) 332-9086

INDUSTRY EXPERIENCE

Integrated Test Range, DRDO

Balasore, India

Hardware Design Engineer

12/2019 - 11/2022

- Designed and verified RTL/IP modules with a focus on FPGAs and SoCs, integrating IPs and hardware accelerators with Python running on embedded ARM cores with interfacing DMA and DDR4 memory through AXI4 bus, achieving a 40% reduction in latency.
- Automated FPGA workflows, EDA tool automation using TCL scripts and python for front-end and backend flows. Performed linting, STA, PnR, CDC and Routing checks.
- Validating IO interfaces and signal integrity debugging and Testing using Oscilloscope/ logic analyzer.

NTT Data GDS Bangalore, India 06/2019 - 12/2019

Senior Software Development Engineer

- Revamped data extraction ETL scripts from SQL Server, increasing data integration efficiency by 20%. Worked with ETL scripting pipelines involving SQL and Python in Windows environments using PowerShell for automation and task scheduling.
- Designed, implemented, and maintained high-performance ETL workflows to ensure efficient data handling, robust data integrity and data process automation across multiple sources.

EDUCATION

Purdue University Indianapolis

Indianapolis, IN

MS in Electrical and Computer Engineering (VLSI)

Graduation Date: 12/2024

Coursework: SoC Design, MOS VLSI Design, ASIC Design Laboratory, Computer Architecture, Energy Conversion, Communication systems, Semiconductor TCAD (SILVACO).

ENGINEERING & DESIGN EXPERIENCE

SoC Custom IP Design and Hardware Acceleration | Verilog, Python, IP design & Integration

- Developed custom image processing IPs using Verilog and accelerated visual datasets MNIST, CIFAR and Lite-YOLO by offloading compute to PYNQ SoC with integration over AXI4 and DMA engines.
- Implemented modules for live edge detection using Sobel, moving object tracker, Image resizer overlay, and dynamic block motion were integrated through static IP connected Jupyter Notebook using python.
- Creating reconfigurable logic with DPR technique and Automation through TCL commands.

MIPS Pipelined Processor with RAW hazard Resolution | ASIC Physical Design, Openlane

- Developed a 5-stage 32-bitpipelined MIPS processor in Verilog HDL. Implemented instruction-level parallelism and Integrated forwarding unit for resolving RAW data hazards.
- A custom DRC rule deck built using TCL and Linting using Verilator, Yosys synthesis, openSTA, TritonCTS,openROAD for Floorplanning, Placement, Routing, Signoff,GDSII file generated for Tapeout.

32-bit RISC-V processor with RV32I instruction set | Computer Architecture, RISC-V, Cadence

- Performed physical design of a 32-bit RV32I processor targeting 1.2 GHz at 14nm using Cadence tools.
- Verified RTL functionality with Xcelium, synthesis using Genus with DFT scan chain and floorplanning, power grid generation, CTS, routing using Innovus. Conducted STA, DRC/LVS and IR-drop analysis
- Achieved <5% skew, ~70% area utilization, and no signoff violations, generating tapeout-ready GDSII.

FinFET Process and Device Simulation using Silvaco TCAD

- Modeled advanced FinFET fabrication flow using Silvaco Victory Process and Device (2D XZ, 2D YZ, and 3D simulations). Simulation of lithography, etch, regrowth, annealing, and S/D epitaxy processes.
- Tuned lithography bias to optimize mask alignment, impact of lateral etch variations on junction formation and device control. Replaced high-k nitride spacers with low-k PSG+nitride stacks to reduce gate-to-S/D parasitic capacitance in 3D simulations., calibration of anneal time vs effective Junction length.

Karatsuba Multiplier | Github

- Designed a 8x8 Karatsuba multiplier with True Single-Phase Clock (TSPC) logic in Cadence Virtuoso
 45nm technology. Layout, DRC, LVS and Static Timing Analysis using NanoTime were performed.
- Documented the performance metrics with power dissipation of 242.556 uW and propagation delay of 796.886 pSec at 1GHz. Used 4486 transistors (1733 PMOS and 2752NMOS) resulting compact Layout.

8-Bit Manchester Adder | Github

- Implemented an 8-bit Manchester adder with pass transistor logic achieving significant improvements in propagation delay of 411.099 pSec and a power dissipation of 17.591 µW.
- Focused on a minimalist approach, using only 208 transistors (26 per 1-bit adder) to lower Area and Power Consumption. STA, AC/DC/Trans analysis, Monte-Carlo simulation for Post Layout were performed.

SKILL SET

- Technical Skills: Verilog, SystemVerilog, Lint, VHDL, Linux, CUDA, TCL, Git, MATLAB, Python, C, SQL.
- Script Languages: Python, TCL, Bash(Ubuntu), PowerShell, JavaScript
- **Design Skills**: Cadence tools Xcelium, Genus, Innovus, Modus DFT, Virtuoso; OpenLane, Altium PCB Design, Xilinx ISE, Modelsim, Simulink and SILVACO TCAD.
- **Protocols:** I2C, SPI, AXI4, UART, USB and Ethernet.