Asymptotic Upper/Lower/Tight Bound of Running Time - Proof by Definition

Example 1 (Ex. 1.3.): Prove $20n^3 + 10n \log n + 5 = O(n^3)$.

Proof) Assume that the base of log = 2.

Show that $20n^3 + 10n \log n + 5 \le c \cdot n^3$ for a positive constant c and for any $n \ge n_0$.

1) Let's choose a reasonable value of positive constant c.

Since $20n^3 + 10n \log n + 5$ is an increasing function, $20 \cdot 1^3 + 10 \cdot \log 1 + 5 = 25 \le c \cdot 1^3$ for n = 1.

For
$$n=2$$
, $20\cdot 2^3 + 10\cdot 2\log 2 + 5 \le c \cdot 2^3 \Leftrightarrow 25 \le (c-20)\cdot 2^3 \Leftrightarrow 25/8 \le (c-20) \Leftrightarrow 23.125 \le c$

As n increases, the lower bound value of c decreases.

So, it's reasonable to choose c = 25.

2) Now, let's show that $20n^3 + 10n \log n + 5 \le 25 \cdot n^3$ for $n \ge n_0$

$$20n^3 + 10n \log n + 5 \le 25 \cdot n^3 \Leftrightarrow 10n \log n + 5 \le 5 n^3$$

For
$$n=1$$
, $10.2 \log 1 + 5 \le 5 \cdot 1^3 \Leftrightarrow 5 \le 5$.

For
$$n=2$$
, $10.2 \log 2 + 5 \le 5.2^3 \Leftrightarrow 25 \le 5.2^3 \Leftrightarrow 25 \le 40$.

Similarly, for any $n \ge 3$, 2, $\frac{1}{1}$, $20n^3 + 10n \log n + 5 \le 25 \cdot n^3$

Thus, there exists a positive constant c = 25 and $n_0 = 1$ such that

$$20n^3 + 10n \log n + 5 \le c \cdot n^3$$
 for any $n \ge n_0$.

Therefore, $20n^3 + 10n \log n + 5 = 0(\frac{n^3}{n^3})$.

Alternative Proof)

$$\lim_{n \to \infty} \frac{20n^3 + 10n \log n + 5}{\frac{n^3}{n^3}} = \lim_{n \to \infty} \frac{60n^2 + 10n \cdot \frac{1}{n} + 10 \log n}{3n^2} = \lim_{n \to \infty} \frac{120n + \frac{10}{n}}{6n} = \lim_{n \to \infty} \frac{120}{6} = 20 \text{ is a constant.}$$

by L'Hôspital's rule.

Therefore, $20n^3 + 10n \log n + 5 = O(n^3)$.

Example 2: Prove $3n^2 - 3n + 1 = O(n^3)$

Proof)

Show that $3n^2 - 3n + 1 \le c \cdot n^3$ for any $n \ge n_0$. for a positive constant c and for any $n \ge n_0$.

Let us find the positive constants c and n_0 such that $f(n) \le cn^3$ for $n \ge n_0$.

- 1) Since 3n + 1 is a decreasing function, let's choose c = 3. Then, $3n^2 - 3n + 1 \le 3$ $n^3 \Leftrightarrow 1 \le 3n \Leftrightarrow 1/3 \le n$.
- 2) From 1), $3n^2 3n + 1 \le 3n^3$ for any $n \ge n_0 = 1$. As the graph show below, $3n^2 3n + 1 \le 3n^3$ for any $n \ge 1$.

Thus, there exists a positive constant c = 3 and $n_0 = 1$ such that

$$3n^2 - 3n + 1 \le c \cdot n^3$$
 for any $n \ge n_0$.

Therefore, $3n^2 - 3n + 1 = O(n^3)$.

Input:

$$3n^3 \ge 3n^2 - 3n + 1$$

Alternative Proof)

$$\lim_{n \to \infty} \frac{3n^2 - 3n + 1}{n^3} = \lim_{n \to \infty} \frac{6n - 3}{3n^2} = \lim_{n \to \infty} \frac{6}{6n} = 0 \text{ is a constant.}$$

Therefore, $3n^2 - 3n + 1 = O(n^3)$. Note that $3n^2 - 3n + 1 = O(n^3)$.

Example 3 (Ex. 1.4): Prove $3 \log n + \log \log n = O(\log n)$

Proof) Show that $3 \log n + \log \log n \le c \cdot \log n$ for any $n \ge n_0$. for c > 0 and for any $n \ge n_0$. Let us find the positive constants c and n_0 such that $f(n) 3 \log n + \log \log n \le c \log n$ for $n \ge n_0$.

- 1) Since $\log n < n$ for any $n \ge 1$, $\log \log n < \log n$ for any $n \ge 1$ after applying \log function to both side. Then, $3 \log n + \log \log n < 3 \log n + \log n = 4 \log n$. So, let's choose c = 4
- 2) From 1), $3 \log n + \log \log n \le 4 \log n$ for any $n \ge n_0 = 1$. Thus, there exists a positive constant c = 3 and $n_0 = 1$ such that

 $3 \log n + \log \log n \le c \cdot \log n$ for any $n \ge n_0$. for c > 0 and for any $n \ge n_0$.

Therefore, $3 \log n + \log \log n = O(\log n)$

Alternative Proof)

$$\lim_{n\to\infty} \frac{3\log n + \log\log n}{\log n} = 3 \text{ is a constant.}$$

Therefore, $5n \log n + 2n = \Omega(n \log n)$

Example 4 (Ex. 1.5): Prove $2^{100} = 0(1)$

Proof) Show that $2^{100} \le c \cdot 1$ for any $n \ge n_0$. for c > 0 and for any $n \ge n_0$. Let us find the positive constants c and n_0 such that $2^{100} \le c \cdot 1$ for $n \ge n_0$.

- 1) Since 2^{100} is a fixed constant value, let's choose $c = 2^{101}$. Then, $2^{100} \le 2^{101} \cdot 1$.
- 2) From 1), $2^{100} \le 2^{101} \cdot 1$ regardless n or for any $n \ge n_0 = 1$.

Thus, there exists a positive constant $c = 2^{101}$ and $n_0 = 1$ such that

$$2^{100} \le c \cdot 1$$
 for $c > 0$ and for any $n \ge n_0$.

Therefore, $2^{100} = 0(1)$

Alternative Proof)
$$\lim_{n\to\infty} \frac{2^{100}}{1} = 2^{100}$$
 is a constant.

So,
$$2^{100} = 0(1)$$

Example 5 (Ex. 1.8): Prove $2n^3 + 4n^2 \log n = O(n^3)$

Proof) Assume that the base of log is 2. Let's prove it using the properties of big-Oh in Theorem 1.7.

log n = O(n) since $n > \log n$ for any n > 0. Since $4n^2 \log n = 4n^2 \times \log n$, $4n^2 \log n = O(n^2)O(n) = O(n^3)$ by Rule 3 in Thm. 1.7 Since $2n^3 = O(n^3)$, $2n^3 + 4n^2 \log n = O(n^3) + O(n^3) = \max(O(n^3), O(n^3)) = O(n^3)$. Therefore, $2n^3 + 4n^2 \log n = O(n^3)$.

Example 6 (Ex. 1.6'): Prove $5n \log n + 2n = \Omega(n \log n)$

Proof) Assume that the base of log is 2.

Show that $5n \log n + 2n \ge c \cdot n \log n$ for any $n \ge n_0$. for c > 0 and for any $n \ge n_0$. Let us find the positive constants c and n_0 such that $5n \log n + 2n \ge c \cdot n \log n$ for $n \ge n_0$.

- 1) Since $5n \log n + 2n$ is an increasing function and $5n \log n \ge n \log n$ for any n it's reasonable to choose c = 1. Then, $5n \log n + 2n \ge n \log n$ for any n.
- 2) From 1), $5n \log n + 2n \ge n \log n$ for any $n \ge n_0 = 1$.

Thus, there exists a positive constant c = 1 and $n_0 = 1$ such that

 $5n \log n + 2n \ge n \log n$ for c > 0 and for any $n \ge n_0$.

Therefore, $5n \log n + 2n = \Omega(\frac{n \log n}{n})$

Alternative Proof)

$$\lim_{n \to \infty} \frac{n \log n}{5n \log n + 2n} = \lim_{n \to \infty} \frac{n \frac{1}{n} + \log n}{5n \frac{1}{n} + 5 \log n + 2} = \lim_{n \to \infty} \frac{1 + \log n}{7 + 5 \log n} = \frac{1/n}{5/n} = \frac{1}{5} \text{ is a constant.}$$

Therefore, $5n \log n + 2n = \Omega(n \log n)$

Example 7 (Ex. 1.6"): Prove that $5n \log n + 2n = \Theta(n \log n)$.

Proof) Assume that the base of log is 2.

Prove it both for $5n \log n + 2n = O(n \log n)$ and for $5n \log n + 2n = \Omega(n \log n)$.

Since $5n \log n + 2n = \Omega(n \log n)$ was proven above, let's prove $5n \log n + 2n = O(n \log n)$.

Show that $5n \log n + 2n \le c \cdot n \log n$ for any $n \ge n_0$. for c > 0 and for any $n \ge n_0$. Let us find the positive constants c and n_0 such that $5n \log n + 2n \le c \cdot n \log n$ for $n \ge n_0$.

1) To decide *c*:

When n=2, $5n \log n + 2n \le c \cdot n \log n \Leftrightarrow 5.2 \log 2 + 2.2 \le c \cdot 2.2 \log 2 \Leftrightarrow 14 \le 2c \Leftrightarrow 7 \le c$. When n=4, $5n \log n + 2n \le c \cdot n \log n \Leftrightarrow 5.4 \log 4 + 2.4 \le c \cdot 4.2 \log 4 \Leftrightarrow 48 \le 8c \Leftrightarrow 6 \le c$. *etc.*

So, it's reasonable to choose c = 7. Then, $5n \log n + 2n \le 7 n \log n$ for any n.

2) From 1), $5n \log n + 2n \le 7n \log n \Leftrightarrow 2n \le 2n \log n \Leftrightarrow 1 \le \log n$ for any $n \ge n_0 = 2$.

Thus, there exists a positive constant c = 7 and $n_0 = 2$ such that

 $5n \log n + 2n \le 7 n \log n$ for c > 0 and for any $n \ge n_0$.

Hence, $5n \log n + 2n = O(n \log n)$.

Since both $5n \log n + 2n = O(n \log n)$ and $5n \log n + 2n = \Omega(n \log n)$,

 $n \log n \le 5n \log n + 2n \le 7n \log n$ for $c_1 = 1$ and $c_2 = 7$ for any $n \ge n_0 = 2$.

 $5n \log n + 2n = \Theta(n \log n).$ Q.E.D.