(1001919) Métodos computacionalmente intensivos

Lista de fixação 3

Exercício 1. Considere $(p_{t+1}, \theta_{t+1}) := A(p_t, \theta_t)$ tal que

$$\begin{cases} \theta_{t+1} &= \theta_t + \epsilon p_t - 0.5\epsilon^2 g(\theta_t) \\ p_{t+1} &= p_t - 0.5\epsilon(g(\theta_t) + g(\theta_{t+1})). \end{cases}$$

Prove que:

- (a) $A(\theta_{t+1}, -p_{t+1}) = (\theta_t, -p_t).$
- (b) Se $B(\theta, p) := (A \circ A \dots \circ A)(\theta, p)$, então $||J_B(\theta, p)|| = 1$. **Dica**: Use o fato de que, para quaisquer $B(\theta, p)$ e $C(\theta, p)$, definindo $D := C \circ B$, temos $J_D(\theta, p) = J_C(B(\theta, p)) \cdot J_B(\theta, p)$ e, também, $||J_A(\theta, p)|| = 1$, para quaisquer $\theta \in p$.
- (c) (Bônus) Para quaisquer $B(\theta, p)$ e $C(\theta, p)$, definindo $D := C \circ B$, temos $J_D(\theta, p) = J_C(B(\theta, p)) \cdot J_B(\theta, p)$.

Exercício 2. Dizemos que $Y_1, \ldots Y_n$ segue um AR(1) de parâmetro ϕ se $Y_{i+1} = \phi Y_i + \epsilon_{i+1}$, onde $\epsilon_{i+1} \sim N(0, \tau^2)$. Considere que, a priori, ϕ e τ^2 são independentes, $\tau^2 \sim Gamma(1, 1)$, e $\phi \sim N(0, 1)$.

- (a) Simule de um AR(1) com $Y_1 \sim N(0,1)$, $\phi = 0.5$, $\tau^2 = 1$ e $n = 10^4$.
- (b) Use um algoritmo de Metropolis-Hastings usual para simular da posteriori de ϕ e τ^2 . Apresente uma estimativa pontual e intervalar para estes parâmetros.
- (c) Use o HMC por meio do Stan para simular da posteriori de (ϕ, τ^2) . Apresente uma estimativa pontual e intervalar para estes parâmetros. **Dica**: Cheque a referência de modelos do Stan.
- (d) Compare as estimativas da posteriori obtidas nos itens (b) e (c).

Referências