

Determining the capacity of an accumulator

Publication number: EP1120663

Publication date: 2001-08-01

Inventor: RICHTER GEROLF DR (DE); MEISSNER EBERHARD DR (DE)

Applicant: VB AUTOBATTERIE GMBH (DE)

Classification:

- **International:** G01R31/36; G01R31/36; (IPC1-7): G01R31/36

- **European:** G01R31/36V1

Application number: EP20000126938 200001208

Priority number(s): DE20001002473 20000121

Also published as:

- US6388450 (B2)
- US2001009370 (A1)
- EP1120663 (A3)
- DE10002473 (A1)
- EP1120663 (B1)

[more >>](#)

Cited documents:

- US5955869
- US5808445
- EP0560468
- GB2006969

[Report a data error here](#)

Abstract not available for EP1120663

Data supplied from the **esp@cenet** database - Worldwide

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 1 120 663 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
01.08.2001 Patentblatt 2001/31

(51) Int Cl. 7: G01R 31/36

(21) Anmeldenummer: 00126938.0

(22) Anmeldetag: 08.12.2000

(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 21.01.2000 DE 10002473

(71) Anmelder: VB Autobatterie GmbH
30419 Hannover (DE)

(72) Erfinder:
• Richter, Gerolf, Dr.
31139 Hildesheim (DE)
• Meissner, Eberhard, Dr.
31515 Wunstorf (DE)

(74) Vertreter: Kaiser, Dieter Ralf, Dipl.-Ing.
Patentassessor,
Frankenallee 22
65779 Kelkheim (DE)

(54) Verfahren zur Bestimmung des Ladezustandes von Akkumulatoren

(57) Bei einem Verfahren zur Bestimmung des Ladezustandes eines Akkumulators werden mindestens zwei in ihrem Ansatz unterschiedliche Methoden zur Ladezustandsbestimmung gleichzeitig angewendet. Die einzelnen erhaltenen Ergebnisse der unterschiedlichen Methoden werden entsprechend ihrer jeweiligen Zuverlässigkeit in der jeweiligen aktuellen bzw. zurückliegenden Betriebssituation des Akkumulators gewichtet, und der so erhaltene gewichtete Mittelwert der einzelnen Methoden wird als Ausgabegröße des Verfahrens verwendet und angezeigt. Die Spannung des Akkumula-

tors, der durch ihn fließende Strom und seine Temperatur werden gemessen und die unterschiedlichen Methoden verwenden diese Eingangsgrößen sowie aus diesen Eingangsgrößen abgeleitete Größen als Eingabegrößen. Mindestens eine der unterschiedlichen Methoden nutzt die Integration des durch den Akkumulator fließenden Stromes zur Bestimmung der Änderungen des Ladungsinhaltes des Akkumulators. Mindestens eine andere der unterschiedlichen Methoden verwendet ein auf einer elektronischen Rechenanlage realisiertes mathematisches Modell, welches das Verhalten des Akkumulators simuliert.

Beschreibung

[0001] Für zahlreiche Anwendungen ist es erforderlich, den aktuellen Ladezustand (state of charge = SOC) eines Akkumulators zu bestimmen.

5 [0002] Zunächst konzentrierten sich alle Bemühungen diesbezüglich auf die Messung und Auswertung der Elektrolytdichteänderungen, entweder direkt durch mechanische und optische Verfahren oder indirekt über die mit der Säuredichte gekoppelte Ruhespannung der Batterie bzw. der einzelnen Zellen.

[0003] Mit zunehmenden Fortschritten auf dem Gebiet der elektronischen Datenerfassung und -verarbeitung drängte sich die Methode der Ladungsbilanzierung mit Hilfe von Stromzählern in den Vordergrund.

10 [0004] Diese Verfahren zeigen bei Batterien im Anwendungsbereich kompletter Ladung und Entladung mit nur seltenen Zwischenladungen sehr gute Erfolge. Fehler können entstehen durch Mess- und Rechenungenauigkeiten, parasitäre Ladungsverluste im Akkumulator, die Alterung des Stromspeichers sowie sich mit der Höhe des Lade- bzw. Entladestroms ändernde entnehmbare Batteriekapazitäten. Allerdings ist es mit Hilfe solcher integrierender Verfahren nicht möglich, eine Aussage über die aktuelle Leistungsbereitschaft (Produkt Strom mal Spannung) der Batterie eine

15 zuverlässige Aussage zu machen, da z. B. die Änderung des Innenwiderstands eine Funktion der hinsichtlich Zeitdauer und Stromhöhe vorausgegangenen Voll- bzw. Teilzyklen ist.

[0005] Die erwähnten Schwachpunkte der Ladungsbilanzierungsmethode können durch eine mathematische Modellbildung des Akkumulators in zufriedenstellender Weise überwunden werden.

20 [0006] Verfahren mit mathematischen Modellen (beschreibenden Gleichungen bzw. mathematisch darstellbaren Ersatzschaltbildern), deren Auswertung auf elektronischen Rechenanlagen bei Vorgabe eines Satzes von batterietypischen Grunddaten bzw. Ersatzschaltbildkomponentendaten erfolgt, machen eine Ladezustandserfassung der parallel zum Modell zeitgleich betriebenen Batterie möglich. Limitierender Faktor dieser Methoden ist lediglich die Güte des zugrunde liegenden Modells, sowie die Qualität der Eingabeparameter hinsichtlich ihrer Übereinstimmung mit der zu betrachtenden Batterie.

25 [0007] Als Auswertemethode hat sich insbesondere der regelungstechnische Nullabgleich der über das Modell errechneten Ausgangsspannung mit der tatsächlichen Batteriespannung unter den Bedingungen gleicher Temperatur und gleichen Stromdurchsatzes als besonders brauchbar erwiesen. Diese Art der Auswertung lässt auch eine Abschätzung der Alterungsvorgänge im Akkumulator zu.

[0008] Nachteile von auf mathematischen Modellen basierenden Verfahren sind ein enormer Anstieg der Modellkomplexität, wenn insbesondere die Auswirkungen kurzzeitiger Ladungsänderungen errechnet werden sollen, und wenn andererseits aber auch große Ladungsauf- bzw. -entnahmen der Batterie über längere Zeiträume hinweg vorliegen.

30 [0009] Die Problematik besteht darin, dass in Abhängigkeit von den hinsichtlich Zeitdauer und Geschwindigkeitsprofil statistisch verteilten Kraftfahrzeugzyklen, überlagert durch ebenfalls statistisch verteilte Leistungsaufnahmeprofile der im Auto installierten elektrischen Verbraucher, die verschiedensten Lade- bzw. Entladebedingungen für die Starterbatterie möglich sind und vom Ladezustandsermittler erfasst werden müssen.

[0010] Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Ermittlung des Ladezustands eines Akkumulators anzugeben, welches großen Ladungsaustausch in Relation zur Batteriekapazität, Ruhepausen und Standby-Phasen sowie Batteriealterung erfasst.

35 [0011] Diese Aufgabe wird erfindungsgemäß beim eingangs genannten Verfahren durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. In den Unteransprüchen sind weitere vorteilhafte Ausgestaltungen des Verfahrens angegeben.

[0012] Erfindungsgemäß sollen mehrere in ihrem Ansatz unterschiedliche Methoden zur Ladezustandsbestimmung gleichzeitig angewendet, die einzeln erhaltenen Ergebnisse dieser unterschiedlichen Methoden entsprechend ihrer jeweiligen Zuverlässigkeit während der jeweiligen aktuellen bzw. zurückliegenden Betriebssituation des Akkumulators gewichtet und der so erhaltene gewichtete Mittelwert der einzelnen Methoden als Ausgabegröße des Verfahrens verwendet und angezeigt werden. Beispielsweise wird die im Kurzzeitbereich und bei sehr großen Strömen relativ präzise arbeitende Ladungsbilanzmethode mit anderen Methoden für den Langzeitbereich kombiniert, insbesondere mit auf mathematischen Modellen beruhenden Methoden.

40 [0013] Durch diese Vorgehensweise können auch Ruhepausen und Standby-Phasen sowie die Batteriealterung erfasst werden. Ein weiterer Vorteil besteht darin, dass eine Plausibilitätskontrolle der Ergebnisse durch zwei unterschiedliche Ermittlungsverfahren möglich ist.

[0014] Insbesondere ist die Erfindung dadurch gekennzeichnet, dass die Spannung des Akkumulators, der durch ihn fließende Strom und seine Temperatur gemessen werden, und dass die unterschiedlichen Methoden diese Eingangsgrößen sowie aus diesen Eingangsgrößen abgeleitete Größen als Eingabegrößen verwenden.

45 [0015] Dabei ist mindestens eine der eingesetzten Methoden eine integrierende Methode, und mindestens eine andere Methode eine modell-gestützte Methode.

[0016] Unter einer integrierenden Methode ist dabei eine Messung des Akkumulatorstromes durch eine elektronische

Baugruppe und die analog oder digital realisierte Bildung des zeitlichen Stromintegrals $\int i dt$ zu verstehen, wodurch auf die Änderung des Ladezustandes des Akkumulators geschlossen wird.

[0017] Unter einer modell-gestützten Methode ist die Nachbildung des Batterieverhaltens in einem elektronischen Ersatzschaltbild und deren mathematische Fassung in einer digitalen Schaltung zu verstehen. Dabei werden beispielsweise aus dem Vergleich des Verhaltens von Modell und realem Akkumulator über einen regelungstechnischen Ansatz die Parametergrößen des Modells und die Zustandsgrößen des Modells angepasst und so auf den Ladezustand des Akkumulators geschlossen.

[0018] Durch Integration des durch den Akkumulator fließenden Stromes werden die Änderungen des Ladungsinhaltes des Akkumulators bestimmt, aus denen auf Änderungen des Ladezustandes rückgeschlossen wird. Mindestens eine andere der unterschiedlichen Methoden verwendet ein auf einer elektronischen Rechenanlage realisiertes mathematisches Modell, welches das Verhalten des Akkumulators simuliert, wobei beispielsweise aber nicht zwingend aus dem Vergleich des Verhaltens von Modell und realem Akkumulator über einen regelungstechnischen Ansatz die Parametergrößen des Modells und die Zustandsgrößen des Modells angepasst und so auf den Ladezustand des Akkumulators geschlossen wird.

[0019] Zusätzlich kann durch mindestens eine der eingesetzten Methoden auf das Gebrauchsalter oder die Notwendigkeit eines Austausches des Akkumulators, die derzeitige oder zukünftige Leistungsfähigkeit oder die derzeitige oder zukünftige Verfügbarkeit des Akkumulators geschlossen werden, oder ein solcher Rückschluss auf die Verfügbarkeit des Akkumulators erfolgt durch eine Kombination der Aussagen von mehreren der eingesetzten Methoden, wobei gegebenenfalls ein gewichtetes Mittel der so erhaltenen Verfügbarkeitsaussagen der einzelnen Methoden als (weitere) Ausgabegröße des Verfahrens verwendet wird.

[0020] Erfahrungsgemäß können also mindestens zwei unterschiedliche Methoden mit unterschiedlichen Stärken und Schwächen derart kombiniert werden, dass in jeder Betriebssituation mindestens eine von ihnen eine ausreichende Verlässlichkeit hinsichtlich des Ladezustandes, gegebenenfalls auch in Verbindung mit dem zu einem früheren Zeitpunkt bestimmten Ladezustand, besitzt. Je nach Betriebssituation kann eine andere der unterschiedlichen Methoden herangezogen werden. Im allgemeinen Fall wird ein gewichtetes Mittel der durch die unterschiedlichen Methoden ermittelten Ladezustände gebildet.

[0021] Die Berechnung der Wichtungsfaktoren für die Ergebnisse der unterschiedlichen Methoden erfolgt in Abhängigkeit von den Betriebsbedingungen, insbesondere der zeitlichen Verläufe von Spannung, Strom und Temperatur des Akkumulators.

[0022] Weiterhin können noch Batteriekennfelder sowie Parameter für die Berechnung der Wichtungsvorschrift eingehen.

[0023] Insbesondere können auch Methoden verwendet werden, die nur bei bestimmten Betriebszuständen aussagekräftige Ergebnisse liefern und bei anderen Betriebszuständen stärker fehlerbehaftet sind. Durch eine Wichtungsfunktion zwischen den unterschiedlichen Methoden wird sichergestellt, dass die von aussagekräftigen Methoden ermittelten Werte stark, die von unter den gegebenen Betriebszuständen stärker fehlerbehafteten Methoden ermittelten Werte nur gering in das Endergebnis des erfahrungsgemäßen Verfahrens eingehen.

[0024] Der laufend nach diesem Verfahren erhaltene Ladezustandswert, oder eine andere Funktion der im Rahmen des Verfahrens nach den verwendeten verschiedenen Methoden erhaltenen Ladezustandswerte, oder deren absolute Werte, relative Größe, deren Änderung oder Änderungsrate wird zur Anzeige gebracht und/oder zur Steuerung einer Funktion in dem mit dem Akkumulator verbundenen System verwendet. Insbesondere erfolgt die Verwendung zur Steuerung der elektrischen Energien in einem Kraftfahrzeug, und der Ladezustandswert dient als wesentliche Entscheidungshilfe für diese Steuerung.

[0025] Die für die Anwendung des Verfahrens notwendigen Eingangsmesswerte werden in Abtastintervallen T_1 (beispielsweise von 1 ms bis 1 s) zwischen zwei Messvorgängen für z. B. den Batteriestrom und die dazugehörige Batteriespannung ermittelt.

[0026] Ein Rechenintervall der Dauer T_1 legt den Zeitraum zwischen der Bestimmung zweier Ladezustandswerte $LZ(k)$ und/oder der Änderung des Ladezustandes $\Delta LZ(k)$ nach jeder der unterschiedlichen Methoden $k = 1, 2, 3, \dots$ fest.

[0027] Die auf mathematischen Modellen basierenden Methoden laufen ohne Unterbrechung, sozusagen der Batterie zugehörig, gegebenenfalls mit Änderung der Parameter der Komponenten des Ersatzschaltbildes aufgrund der Alterung.

[0028] In einem Rechenintervall T_1 werden nach den verschiedenen Methoden $k = 1, 2, 3, \dots$ die Änderungen der Ladezustandswerte $\Delta LZ_i(k)$ ermittelt.

[0029] Die nach dem erfahrungsgemäßen Verfahren erhaltene Ladezustandsänderung ΔLZ_i ergibt sich daraus als gewichtetes Mittel

$$\Delta LZ_i = \alpha(1) * \Delta LZ_i(1) + \alpha(2) * \Delta LZ_i(2) + \alpha(3) * \Delta LZ_i(3) + \dots$$

Die Wichtungsfaktoren $\alpha(k)$ aller gleichzeitig eingesetzten Methoden addieren sich in ihrer Summe zum Wert "1".

[0030] Aus dem Ladezustand LZ_{i-1} am Ende des vorangehenden Rechenintervalls T_{i-1} und der Ladezustandsänderung ΔLZ_i während des Rechenintervalls T_i wird ein neuer Ladezustand LZ_i berechnet.

[0031] Dieser neue Ladezustandswert LZ_i fließt in die sich durch Vergleich mit den Messwerten iterativ an den wahren Ladezustandswert annähernden modellgestützten Methoden ein. Dadurch wird bei großen Abweichungen von LZ_i vom Ladezustandswert der modellgestützten Methode diese Abweichung bei der Ermittlung von ΔLZ_{i+1} jeweils besonders berücksichtigt und korrigiert.

[0032] Aus den Änderungen der Ladezustandswerte $\Delta LZ_i(k)$ können den verschiedenen Methoden zugeordnete Ladezustände $LZ_i(k)$ berechnet werden. Der nach dem erfundungsgemäßen Verfahren erhaltene Ladezustand LZ_i er-
10 gibt sich daraus als gewichtetes Mittel:

$$LZ_i = \beta(1) * LZ_i(1) + \beta(2) * LZ_i(2) + \beta(3) * LZ_i(3) + \dots$$

15 Die Wichtungsfaktoren $\beta(k)$ aller gleichzeitig eingesetzten Methoden addieren sich in ihrer Summe zum Wert "1". Dieser neue Ladezustandswert LZ_i fließt in die modellgestützten Methoden ein.

[0033] Die Wichtungsfaktoren $\alpha(k)$ der nach den verschiedenen Methoden $k = 1, 2, 3, \dots$ ermittelten Ladezustandsänderungen $\Delta LZ_i(k)$ werden in Rechenintervallen T_i , in denen zu jedem individuellen Zeitpunkt ein kleiner Strom floss, bei auf mathematischen Modellen basierenden Methoden groß (insbesondere in ihrer Summe = 1 bei Strom = 0) und
20 bei auf Stromintegration basierenden Methoden klein (insbesondere in ihrer Summe = 0 bei Strom = 0) gewählt.

[0034] Dadurch wird der geringen Zuverlässigkeit der auf Stromintegration beruhenden Methoden bei kleinen fließenden Stromen Rechnung getragen.

[0035] Die Wichtungsfaktoren $\alpha(k)$ der nach den verschiedenen Methoden $k = 1, 2, 3, \dots$ ermittelten Ladezustandsänderungen $\Delta LZ_i(k)$ werden in Rechenzeitintervallen T_i , in denen ein großer Strom floss, die Änderung des Ladezustandes aber nur gering ist, bei auf mathematischen Modellen basierenden Methoden klein (insbesondere in ihrer Summe = 0 bei Ladezustandsänderung = 0) und bei auf Stromintegration basierenden Methoden groß (insbesondere in ihrer Summe = 1 bei Ladezustandsänderung = 0) gewählt. Dadurch wird der geringen Zuverlässigkeit der erstenen Methode bei kleinen Ladezustandsänderungen Rechnung getragen.

[0036] Ein Strom gilt dabei als klein, wenn er zu einer Änderung des Ladezustandes von nicht mehr als 1%, und vorteilhaft von nicht mehr als 0,2% der Nennkapazität der Speicherbatterie pro Stunde führt; ein Strom gilt als groß, wenn er zu einer Änderung des Ladezustandes von mehr als 10%, und vorteilhaft mehr als 20% der Nennkapazität der Speicherbatterie pro Stunde führt.

[0037] Eine Ladezustandsänderung gilt als klein, wenn sie nicht mehr als 1%, und vorteilhaft nicht mehr als 0,2% der Nennkapazität der Speicherbatterie pro Stunde beträgt; eine Ladezustandsänderung gilt als groß, wenn sie mehr als 10%, und vorteilhaft mehr als 20% der Nennkapazität der Speicherbatterie pro Stunde beträgt.

[0038] Die Wichtungsfaktoren $\alpha(k)$ der nach den verschiedenen Methoden ermittelten Ladezustandsänderungen $\Delta LZ_i(k)$ werden in Rechenintervallen T_i , in denen eine erhebliche Ladezustandsänderung erfolgte, bei auf mathematischen Modellen basierenden Methoden und bei auf Stromintegration basierenden Methoden in gleicher Größenordnung gewählt.

[0039] Die Wichtungsfaktoren $\alpha(k)$ der nach Stromintegrations-Methoden ermittelten Ladezustandsänderungen $\Delta LZ_i(k)$ werden in Rechenzeitintervallen T_i , in denen die auf mathematischen Modellen basierenden Methoden eine unge- naue Beschreibung der Batterie darstellen (häufig in Gebieten mit stark positiver Ladebilanz) gleich 1 gesetzt.

[0040] Die Wichtungsfaktoren $\alpha(k)$ der nach den verschiedenen Methoden $k = 1, 2, 3, \dots$ ermittelten Ladezustandsänderungen $\Delta LZ_i(k)$ werden in Rechenzeitintervallen T_i , in denen keine der in den vorgenannten Beispielen beschrie-
45 benen Voraussetzungen zutreffen, durch Interpolation zwischen diesen Fällen ermittelt. Diese Interpolation kann linear oder mit einem anderen funktionalen Zusammenhang erfolgen.

[0041] Als Eckpunkte der Interpolation betriffs des fließenden Stromes und der umgesetzten Ladungsmenge werden erfundungsgemäß die folgenden Werte verwendet:

[0042] Ein Strom gilt dabei als klein, wenn er zu einer Änderung des Ladezustandes von nicht mehr als 1%, und vorteilhaft nicht mehr als 0,2% der Nennkapazität der Speicherbatterie pro Stunde führt; ein Strom gilt als groß, wenn er zu einer Änderung des Ladezustandes von mehr als 10%, und vorteilhaft mehr als 20% der Nennkapazität der Speicherbatterie pro Stunde führt. Eine Ladezustandsänderung gilt als klein, wenn sie nicht mehr als 1%, und vorteilhaft nicht mehr als 0,2% der Nennkapazität der Speicherbatterie pro Stunde beträgt; eine Ladezustandsänderung gilt als groß, wenn sie mehr als 10%, und vorteilhaft mehr als 20% der Nennkapazität der Speicherbatterie pro Stunde beträgt.

[0043] Jede der gleichzeitig angewendeten Methoden k kann ihre eigene aktuelle Zuverlässigkeit bewerten und kann einen Vorschlagswert für den Wichtungsfaktor $\alpha(k)$ bzw. $\beta(k)$ aus dem Wertebereich von 0 bis 1 vorgeben. Denn jede der Methoden kann aus den Werten ihrer Eingangsgrößen und der Historie ihrer eigenen Werteermittlung ableiten, ob sie unter den gerade vorliegenden Betriebsbedingungen eine mehr oder weniger zuverlässige Aussage zum Ladezu-

stand und seiner Änderung machen kann. Das Verfahren normiert diese Vorschlagswerte so dass ihre Summe sich zu =1 ergibt, und berechnet dann eine Änderung des Ladezustandes oder einen Ladezustand.

[0044] Die Zuverlässigkeit einer der Methoden k hängt ab von der Art der Methode (Stromintegration, modellgestützt, etc....), von den Betriebsbedingungen der Batterie (hoher/niedriger Strom, hohe/niedrige Änderungsraten der Stromstärke, hohe/niedrige Änderungsraten des Ladezustandes, etc....) und von der Genauigkeit der Messung der Eingangsgrößen (Strom, Spannung, Temperatur, ...). Es ist bekannt, dass die Stromintegration eine verhältnismäßig gute Schätzung der geflossenen Ladung erlaubt, wenn der Strom nicht zu klein ist, andernfalls ist der Fehler bei der Strommessung, verglichen mit der Stromstärke, nicht klein genug. Stromintegration ergibt auch dann eine recht gute Schätzung der geflossenen Ladung, wenn die Messdauer nicht zu lang ist, da der Integrationsfehler mit der Zeitdauer wächst.

[0045] Modellgestützte Algorithmen können besser sein, je dynamischer die Betriebsbedingungen sind, d.h. je schneller die Eingangsgrößen Strom, Spannung etc. sich ändern. Je höher die Änderungsrate, desto mehr kann der Algorithmus über den Batteriezustand "lernen".

[0046] Dies gilt, wenn die Messungen schnell genug sind, um den Änderungen folgen zu können, sonst sinkt die Aussagegenauigkeit.

[0047] Da die verschiedenen Eingangsgrößen von den Methoden in unterschiedlicher Weise benutzt werden, können durch Berechnung der Fehlerfortpflanzung die Konsequenzen von Messfehlern auf die Ergebnisse der unterschiedlichen Methoden k berücksichtigt werden. Jeder Modellalgorithmus kann daher eine eigene relative Zuverlässigkeit bei den gegebenen Betriebsbedingungen berechnen, wobei die Messgenauigkeit und die Art des Modells berücksichtigt werden.

[0048] Die Auswertung bzw. Anwendung des nach dem beschriebenen kombinierten Verfahren ermittelten Ladezustandes ermöglicht einen sicheren und wirtschaftlichen Betriebs eines Kraftfahrzeugs.

[0049] Unterschreitet der aktuelle Ladezustand LZ eine vorgegebene Schwellen S1, so erfolgt eine Anzeige (Alarmsfunktion), oder es wird eine Maßnahme ausgelöst, z.B. die Verbraucherlast vermindert oder die der Speicherbatterie zugeführte Ladeleistung erhöht.

[0050] Überschreitet der aktuelle Ladezustand LZ eine vorgegebene Schwellen S2, so erfolgt eine Anzeige (Alarmsfunktion), oder es wird eine Maßnahme ausgelöst, z.B. die Verbraucherlast erhöht oder die der Speicherbatterie zugeführte Ladeleistung vermindert.

[0051] Überschreitet die Abweichung der von den verschiedenen Methoden ermittelten Ladezustände oder die Abweichung der in einem Zeitintervall ermittelten Ladezustandsänderungen eine vorgegebene Schwellen S3, so wird aufgrund dieser zu starken Abweichung zwischen den Ergebnissen nach den verschiedenen Methoden eine Anzeige oder eine Maßnahme ausgelöst.

[0052] Unterschreitet die Abweichung der von den verschiedenen Methoden ermittelten Ladezustände oder die Abweichung der in einem Zeitintervall ermittelten Ladezustandsänderungen wieder eine vorgegebene Schwellen S4, so wird die vorher ausgelöste Maßnahme wieder aufgehoben.

35

Patentansprüche

1. Verfahren zur Bestimmung des Ladezustandes eines Akkumulators, dadurch gekennzeichnet, dass mindestens zwei in ihrem Ansatz unterschiedliche Methoden zur Ladezustandsbestimmung gleichzeitig angewendet werden, die einzeln erhaltenen Ergebnisse der unterschiedlichen Methoden entsprechend ihrer jeweiligen Zuverlässigkeit in der jeweiligen aktuellen bzw. zurückliegenden Betriebssituation des Akkumulators gewichtet werden, und der so erhaltene gewichtete Mittelwert der einzelnen Methoden als Ausgabegröße des Verfahrens verwendet und angezeigt wird.

45

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Spannung des Akkumulators, der durch ihn fließende Strom, und seine Temperatur gemessen werden, und dass die unterschiedlichen Methoden diese Eingangsgrößen sowie aus diesen Eingangsgrößen abgeleitete Größen als Eingabegrößen verwenden.

50

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mindestens eine der unterschiedlichen Methoden die Integration des durch den Akkumulator fließenden Stromes zur Bestimmung der Änderungen des Ladungsinhaltes des Akkumulators nutzt, aus der auf Änderungen des Ladezustandes rückgeschlossen wird, und dass mindestens eine andere der unterschiedlichen Methoden ein auf einer elektronischen Rechenanlage realisiertes mathematisches Modell verwendet, welches das Verhalten des Akkumulators simuliert.

55

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zusätzlich durch mindestens eine der eingesetzten Methoden auf das Gebrauchsalter oder die Notwendigkeit eines Austausches des Akkumulators, die derzeitige oder zukünftige Leistungsfähigkeit oder die derzeitige oder zukünftige Verfügbarkeit des Akkumulators

geschlossen wird.

5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die in einem Rechenintervall T_i erhaltene Änderung des Ladezustandes ΔL_{Zi} als gewichtetes Mittel der nach den verschiedenen Methoden $k = 1, 2, 3, \dots$ ermittelten Ladezustandsänderungen $\Delta L_{Zi}(k)$ errechnet wird:

$$\Delta L_{Zi} = \alpha(1) * \Delta L_{Zi}(1) + \alpha(2) * \Delta L_{Zi}(2) + \alpha(3) * \Delta L_{Zi}(3) + \dots,$$

10 wobei die Wichtungsfaktoren $\alpha(k)$ aller gleichzeitig eingesetzten Methoden in ihrer Summe sich zum Wert "1" addieren, und dass aus dem Ladezustand L_{Zi-1} vor dem Rechenintervall T_i und der Ladezustandsänderung ΔL_{Zi} während des Rechenintervalls T_i ein neuer Ladezustand L_{Zi} berechnet wird, der als Ausgabegröße des Verfahrens verwendet und angezeigt wird.

15 6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass mit den in einem Rechenintervall T_i nach verschiedenen Methoden $k = 1, 2, 3, \dots$ ermittelten Ladezustandsänderungen $\Delta L_{Zi}(k)$ den verschiedenen Methoden zugeordnete Ladezustände $L_{Zi}(k)$ berechnet werden, und hieraus als gewichtetes Mittel ein Ladezustand L_{Zi} des Verfahrens bestimmt wird:

20
$$L_{Zi} = \beta(1) * L_{Zi}(1) + \beta(2) * L_{Zi}(2) + \beta(3) * L_{Zi}(3) + \dots,$$

wobei die Wichtungsfaktoren $\beta(k)$ aller gleichzeitig eingesetzten Methoden in ihrer Summe sich zum Wert "1" addieren, und dass dieser neue Ladezustandswert L_{Zi} in die modellgestützten Verfahren einfließt.

25 7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Wichtungsfaktoren $\alpha(k)$ der nach den verschiedenen Methoden $k = 1, 2, 3, \dots$ ermittelten Ladezustandsänderungen $\Delta L_{Zi}(k)$

30 a) in Rechenzeitintervallen T_i , in denen zu jedem individuellen Zeitpunkt ein kleiner Strom floss, bei auf mathematischen Modellen basierenden Methoden groß und bei auf Stromintegration basierenden Methoden klein gewählt werden,
b) in Rechenzeitintervallen T_i , in denen ein großer Strom floss, die Änderung des Ladezustandes aber nur gering ist, bei auf mathematischen Modellen basierenden Methoden klein und bei auf Stromintegration basierenden Methoden groß gewählt werden,
35 c) in Rechenzeitintervallen T_i , in denen eine erhebliche Ladezustandsänderung erfolgte, bei auf mathematischen Modellen basierenden Methoden und bei auf Stromintegration basierenden Methoden in gleicher Größenordnung gewählt werden.
d) in Rechenzeitintervallen T_i , in denen keine der Voraussetzungen a), b), c) zutreffen, durch Interpolation zwischen diesen Fällen ermittelt werden.

40 8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass jede Methode k ihre eigene aktuelle Zuverlässigkeit bewertet und einen Vorschlagswert für $\alpha(k)$ aus dem Wertebereich von 0 bis 1 vorgibt, dass das Verfahren diese Vorschlagswerte normiert so dass ihre Summe sich zu =1 ergibt, und dass dann eine Änderung des Ladezustandes oder ein Ladezustand berechnet wird.

45 9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der ermittelte Ladezustandswert oder eine andere Funktion der erhaltenen Ladezustandswerte oder deren absolute Werte, relative Größe, deren Änderung oder Änderungsrate zur Anzeige gebracht und zur Steuerung einer Funktion in dem mit dem Akkumulator verbundenen System verwendet wird.

50

55