Base de Datos

DISEÑO DE BASES DE DATOS RELACIONALES

Base de Datos

DependenciasFuncionales

Closure de DF

- Referidas a restricciones (reglas) en los datos en el mundo real.
- Una dependencia funcional es una generalización de la noción de una llave.

- Una dependencia funcional (DF) es una relación entre atributos
 - generalmente entre el PK y otros atributos no clave dentro de una tabla.
- Para cualquier relación R, el atributo Y depende funcionalmente del atributo X (generalmente el PK), si:
 - para cada instancia válida de X, ese valor de X determina de forma única el valor de Y.
 - Se representa como X → Y
 - X y Y se puede referir a uno o más columnas

Dependencia Funcional Ejemplo

- Dado el numero de cédula podemos determinar las columnas nombre, dirección y fecha de nacimiento
 - Cedula → nombre, dirección , fecha de nacimiento
 - $\mathbf{X} \rightarrow \mathbf{Y}$
- Dado el número de cédula y el código del curso puedo determinar la nota del curso
 - Cedula, código curso → nota

Dependencia Funcional (Ejercicio)

- "dos cursos no pueden coincidir en el mismo salón al mismo tiempo "
- a. hora → curso, salón
- b. salón → hora, curso
- c. curso, hora → salón
- d. hora, salón → curso

- Las DF se obtienen desde las reglas de negocio, pero podrían ser obtenidas desde un conjunto de datos
- La DF X→ Y se cumple en R si y solo si para cualquier relación legal r (R), cualquieras dos tuplas t1 y t2 de r que concuerden en los atributos X, también concuerdan en los atributos Y

$$t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

- **Position** → **Phone** es una DF válida?
- X es Position y Y es Phone

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

- Las DF se obtienen desde las reglas de negocio, pero podrían ser obtenidas desde un conjunto de datos: $t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$
- Position → Phone es una DF válida?; X es Position y Y es Phone
- Se buscan dos tuplas donde los valores de X sean iguales: $t_1[X] = t_2[X]$
- La DF Si es válida, siempre que hay 'Salesrep' el phone es '9876'; $\Rightarrow t_1[Y] = t_2[Y]$

	$Y \leftarrow X$			
EmpID	Name	Phone	Position	
E0045	Smith	1234	Clerk	
E3542	Mike	9876 ←	Salesrep +	
E1111	Smith	9876 ←	Salesrep t	
E9999	Mary	1234	Lawyer	

- Phone → Position es una DF válida?
- X es Phone y Y es Position

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

- Las DF se obtienen desde las reglas de negocio, pero podrían ser obtenidas desde un conjunto de datos: $t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$
- Phone → Position es una DF válida?, X es Phone y Y es Position
- La DF no es válida; el valor de Phone '1234' tiene dos valores distintos en 'Position'

		\wedge	/	
EmpID	Name	Phone	Position	
E0045	Smith	1234 →	Clerk	+1
E3542	Mike	9876	Salesrep	
E1111	Smith	9876	Salesrep	
E9999	Mary	1234 →	Lawyer	te

- EmpId → Name, Phone , Position
- No hay dos tuplas que tengan el mismo valor en Empld (X)

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

Dependencia Funcional (Ejercicio)

Para cada DF dada, determine si se cumple o no con los datos dados para la tabla de Producto

name → color
category → department
color, category → price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	99
Gizmo	Stationary	Blue	Supplies	59

Dependencia Funcional Trivial

- Una DF es trivial si:
 - $X \to Y \text{ si } Y \subseteq X$
 - \blacksquare \subseteq (incluido)
 - Si lo de la derecha de la DF está en la izquierda de la DF
- Ejemplos:
 - *ID, name* \rightarrow *ID*
 - \blacksquare name \rightarrow name

Referencias

Database System Concepts, 7th Ed.©Silberschatz, Korth and Sudarshan, 2019

- https://www.udemy.com/database-design-and-management/learn/v4/content
- https://www.visualparadigm.com/support/documents/vpuserguide/3563/3564/85378 conceptual,l.html