Principle Component Analysis

Curse of dimensionality

- · Datasets typically high dimensional
 - vision: 10⁴ pixels, text: 10⁶ words
 - · the way we observe / record them
 - true dimensionality often much lower
 - · a manifold (sheet) in a high-d space
- · Example: handwritten digits
 - 20 x 20 bitmap: {0,1}⁴⁰⁰ possible events
 - · will never see most of these events
 - · actual digits: tiny fraction of events
 - true dimensionality:
 - · possible variations of the pen-stroke

Curse of dimensionality (2)

- · Machine learning methods are statistical by nature
 - count observations in various regions of some space
 - use counts to construct the predictor f(x)
 - e.g. decision trees: p₊/p₋ in {o=rain,w=strong,T>28°}
 - text: #documents in {"hp" and "3d" and not "\$" and ...)
- · As dimensionality grows: fewer observations per region

- statistics need repetition
 - flip a coin once → head
 - P(head) = 100%?

Dealing with high dimensionality

Dimensionality reduction

- · Goal: represent instances with fewer variables
 - try to preserve as much structure in the data as possible
 - discriminative: only structure that affects class separability
- · Feature selection
 - pick a subset of the original dimensions $X_1 X_2 X_3 ... X_{d-1} X_d$
 - discriminative: pick good class "predictors" (e.g. gain)
- Feature extraction
 - construct a new set of dimensions $E_1 E_2 \dots E_m$ $E_i = f(X_1 \dots X_d)$
 - (linear) combinations of original $X_1 X_2 X_3 ... X_d$

Principal Components Analysis

- · Defines a set of principal components
 - 1st: direction of the greatest variability in the data
 - 2nd: perpendicular to 1st, greatest variability of what's left
 - ... and so on until d (original dimensionality)
- First m<<d components become m new dimensions
 - change coordinates of every data point to these dimensions

Why greatest variability?

Example: reduce 2-dimensional data to 1-d

- Pick e to maximize variability
- Reduces cases when two points are close in e-space but very far in (x,y)-space
- Minimizes distances between original points and their projections

Blue projection better than green projection (distance square)

Principal components *2

- subtract mean from each attribute
- Compute covariance matrix Σ
- Compute covariance matrix Σ covariance of dimensions x_1 and x_2 : $x_1 \quad x_2 \\ x_2 \quad 0.8 \\ 0.8 \quad 0.6$ $var(a) = \frac{1}{n} \sum_{i=1}^{n} x_{ia}^2$
 - do x₁ and x₂ tend to increase together?
 - or does x₂ decrease as x₁ increases?

 $cov(b,a) = \frac{1}{n} \sum_{i=1}^{n} x_{ib} x_{ia}$

- turns towards direction of variance
- Want vectors e which aren't turned: Σ e = λ e
 - e ... eigenvectors of Σ, λ ... corresponding eigenvalues
 - principal components = eigenvectors w. largest eigenvalues

Finding Principal Components

1. find eigenvalues by solving: $det(\Sigma - \lambda I) = 0$

$$\det\begin{pmatrix} 2.0 - \lambda & 0.8 \\ 0.8 & 0.6 - \lambda \end{pmatrix} = (2 - \lambda)(0.6 - \lambda) - (0.8)(0.8) = \lambda^2 - 2.6\lambda + 0.56 = 0$$

$$\left\{\lambda_1, \lambda_2\right\} = \frac{1}{2} \left(2.6 \pm \sqrt{2.6^2 - 4 * 0.56}\right) = \left\{2.36, 0.23\right\}$$

2. find ith eigenvector by solving: $\Sigma \mathbf{e}_i = \lambda_i \mathbf{e}_i$

$$\begin{pmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \begin{pmatrix} e_{1,1} \\ e_{1,2} \end{pmatrix} = 2.36 \begin{pmatrix} e_{1,1} \\ e_{1,2} \end{pmatrix} \Rightarrow 2.0e_{1,1} + 0.8e_{1,2} = 2.36e_{1,1} \\ 0.8e_{1,1} + 0.6e_{1,2} = 2.36e_{1,2}$$

$$\begin{pmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \begin{pmatrix} e_{2,1} \\ e_{2,2} \end{pmatrix} = 0.23 \begin{pmatrix} e_{2,1} \\ e_{2,2} \end{pmatrix} \Rightarrow e_2 = \begin{bmatrix} -0.41 \\ 0.91 \end{bmatrix}$$

$$e_1 = 2.2e_{1,2}$$

$$e_1 \sim \begin{bmatrix} 2.2 \\ 1 \\ 0.91 \end{bmatrix}$$

$$e_1 = \begin{bmatrix} 0.91 \\ 0.91 \end{bmatrix}$$

$$e_1 = \begin{bmatrix} 0.91 \\ 0.91 \end{bmatrix}$$

3. 1st PC:
$$\begin{bmatrix} 0.91 \\ 0.41 \end{bmatrix}$$
, 2nd PC: $\begin{bmatrix} -0.41 \\ 0.91 \end{bmatrix}$

Projecting to new dimensions

- e₁ ... e_m are new dimension vectors
- Have instance x = {x₁...x_d} (original coordinates)
- Want new coordinates $\mathbf{x}' = \{x'_1 \dots x'_m\}$:
 - 1. "center" the instance (subtract the mean): x'-μ
 - 2. "project" to each dimension: $(\mathbf{x'}-\mathbf{\mu})^T \mathbf{e}_j$ for j=1...m

$$(\vec{x} - \vec{\mu}) = \begin{bmatrix} (x_1 - \mu_1) & (x_2 - \mu_2) & \cdots & (x_d - \mu_d) \end{bmatrix}$$

$$\begin{bmatrix} x_1' \\ x_2' \\ \vdots \\ x_{m'} \end{bmatrix} = \begin{bmatrix} (\vec{x} - \vec{\mu})^T \vec{e}_1 \\ (\vec{x} - \vec{\mu})^T \vec{e}_2 \\ \vdots \\ (\vec{x} - \vec{\mu})^T \vec{e}_m \end{bmatrix} = \begin{bmatrix} (x_1 - \mu_1)e_{1,1} + (x_2 - \mu_2)e_{1,2} + \cdots + (x_d - \mu_d)e_{1,d} \\ (x_1 - \mu_1)e_{2,1} + (x_2 - \mu_2)e_{2,2} + \cdots + (x_d - \mu_d)e_{2,d} \\ \vdots \\ (x_1 - \mu_1)e_{m,1} + (x_2 - \mu_2)e_{m,2} + \cdots + (x_d - \mu_d)e_{m,d} \end{bmatrix}$$

Direction of greatest variability

- Select dimension e which maximizes the variance
- Points x_i "projected" onto vector e:
- Variance of $\frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{d} x_{ij} e_j \mu \right)^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{d} x_{ij} e_j \right)^2$

- Maximize variance
 - want unit length: ||e||=1
 - add Lagrange multiplier

$$- \text{ add Lagrange multiplier}$$

$$\sum_{j=1}^{d} \cot(1,j)e_{j} = \lambda e_{1}$$

$$\vdots$$

$$\sum_{j=1}^{d} \cot(d,j)e_{j} = \lambda e_{d}$$

$$\vdots$$

$$\cot(d,j)e_{j} = \lambda e_{d}$$

$$\cot(d,j)e_{j} = \lambda e_{d$$

$$V = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right)^{2} - \lambda \left(\left(\sum_{k=1}^{d} e_{j}^{2} \right) - 1 \right)$$

$$\frac{\partial V}{\partial e_a} = \frac{2}{n} \sum_{i=1}^n \left(\sum_{j=1}^d x_{ij} e_j \right) x_{ia} - 2\lambda e_a^{\cdot} = 0$$

hold for
$$2\sum_{j=1}^{d} e_{j} \left(\frac{1}{n} \sum_{i=1}^{n} x_{ia} x_{ij} \right) = 2\lambda e_{a}$$

Variance along eigenvector

Variance of projected points (
$$\mathbf{x}^{\mathsf{T}}\mathbf{e}$$
):
$$\frac{1}{n}\sum_{i=1}^{n}\left(\sum_{j=1}^{d}x_{ij}e_{j} - \mu\right)^{2} = \frac{1}{n}\sum_{i=1}^{n}\left(\sum_{j=1}^{d}x_{ij}e_{j}\right)^{2} \qquad \qquad \mu = \frac{1}{n}\sum_{i=1}^{n}\left(\sum_{j=1}^{d}x_{ij}e_{j}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}\left(\sum_{j=1}^{d}x_{ij}e_{j}\right)\left(\sum_{a=1}^{d}x_{ia}e_{a}\right) \qquad = \sum_{j=1}^{d}\left(\frac{1}{n}\sum_{i=1}^{n}x_{ij}\right)e_{j}$$

$$= \sum_{a=1}^{d}\sum_{j=1}^{d}\left(\frac{1}{n}\sum_{i=1}^{n}x_{ia}x_{ij}\right)e_{j}e_{a}$$

$$= \sum_{a=1}^{d}\left(\sum_{j=1}^{d}\operatorname{cov}(a,j)e_{j}\right)e_{a} \qquad \qquad \operatorname{cov}(a,j) = \frac{1}{n}\sum_{i=1}^{n}x_{ia}x_{ij}$$

$$= \sum_{a=1}^{d}\left(\lambda e_{a}\right)e_{a} \qquad \qquad \sum_{j=1}^{d}\operatorname{cov}(a,j)e_{j} = \lambda e_{a} \quad \text{e is an eigenvector of the covariance matrix}$$

$$= \lambda\|e\|^{2} = \lambda$$

Biggest eigen value captures the maximum variance

0.9

Copyright © 2013 Victor Lavrenk

How many dimensions?

- Have: eigenvectors e₁ ... e_d want: m << d
- Proved: eigenvalue λ_i = variance along e_i
- Pick e_i that "explain" the most variance
 - − sort eigenvectors s.t. $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_d$
 - pick first m eigenvectors which explain 90% or the total variance
 - · typical threshold values: 0.9 or 0.95

Eigen Faces: Projection

- Project new face to space of eigen-faces
- Represent vector as a linear combination of principal components
- How many do we need?

(Eigen) Face Recognition

- · Face similarity
 - in the reduced space
 - insensitive to lighting expression, orientation
- · Projecting new "faces"
 - everything is a face

new face

projected to eigenfaces

PCA and classification

- · PCA is unsupervised
 - maximizes overall variance of the data along a small set of directions
 - does not know anything about class labels
 - can pick direction that makes it hard to separate classes
- Discriminative approach
 - look for a dimension that makes it easy to separate classes

Linear Discriminant Analysis

- LDA: pick a new dimension that gives:
 - maximum separation between means of projected classes
 - minimum variance within each projected class
- Solution: eigenvectors based on between-class and within-class covariance matrices

PCA vs. LDA

- LDA not guaranteed to be better for classification
 - assumes classes are unimodal Gaussians
 - fails when discriminatory information is not in the mean, but in the variance of the data
- Example where PCA gives a better projection:

Dimensionality reduction

Pros

- reflects our intuitions about the data
- allows estimating probabilities in high-dimensional data
 - no need to assume independence etc.
- dramatic reduction in size of data
 - · faster processing (as long as reduction is fast), smaller storage

Cons

- too expensive for many applications (Twitter, web)
- disastrous for tasks with fine-grained classes
- understand assumptions behind the methods (linearity etc.)
 - · there may be better ways to deal with sparseness

Summary

- True dimensionality << observed dimensionality
- High dimensionality → sparse, unstable estimates
- Dealing with high dimensionality:
 - use domain knowledge
 - make an assumption: independence / smoothness / symmetry
 - dimensionality reduction: feature selection / feature extraction
- Principal Components Analysis (PCA)
 - picks dimensions that maximize variability
 - · eigenvectors of the covariance matrix
 - examples: Eigen Faces
 - variant for classification: Linear Discriminant Analysis