ESC201T : Introduction to Electronics

Lecture 34: Minimization (Kmap)

B. Mazhari Dept. of EE, IIT Kanpur

Design Flow

K-map representation of truth table

X	у	min term
0	0	<u>x</u> . y m0
0	1	<u>x . y</u> m1
1	0	x . y m2
1	1	x.y m3

X	/ ₀	1	,
0	m_0	m ₁	
1	m_2	m_3	

X	у	f ₁
0	0	0
0	1	1
1	0	1
1	1	0

X	0	1	
0	0	1	
1	1	0	

$$f = \overline{x}.\overline{y} + x.y$$

3-variable K-map representation

х	у	Z	min terms	
0 0 0 0 1 1	0 0 1 1 0 0	0 1 0 1 0	$\overline{X} \cdot \overline{y} \cdot \overline{z}$	m0 m1 m2 m3 m4 m5
1 1	1 1	0 1	x . y . Z x . y . z	m6 m7

XXX	00	01	11	10
0	m_0	m ₁	m_3	m_2
1	m ₄	m_5	m ₇	m_6

X	у	z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

XXZ	00	01	11	10
0	0	1	1	0
1	0	1	1	0

XXX	00	01	11	10_
0	1	0	1	0
1	0	1	1	0

$$f = x.y.z + x.y.z + x.y.z + x.y.z$$

4-variable K-map representation

W	Х	у	Z	min terms		VZ WX	00	01	11	10_
0	0	0	0	m_0		wx \ 00	0	1	3	2
0	0	0	1	m_1						
0	0	1	0	m ₂		01	4	5	7	6
0	0	1	1	m ₃	ŕ	11	12	13	15	14
1	1	i 1	0	m ₁₄ m ₁₅		10	8	9	11	10

WX VZ	00	01	11	10
00	1	0	1	0
01	0	1	1	0
11	1	0	0	1
10	1	0	0	0

$$f = \overline{w.x.y.z} + \overline{w.x.y.z}$$

Minimization using Kmap

Combine terms which differ in only one bit position. As a result, whatever is common remains.

$$f = \overline{x}. y + x. y$$

$$f = (\bar{x} + x).y$$

$$\Rightarrow$$
 f = y

$$\Rightarrow f = \overline{y}$$

$$\Rightarrow$$
 f = \bar{x}

Principle: x + x = 1 and x + x = x

$$f_2 = \sum (0,2,3)$$

$$f = x.\overline{y} + x.y + \overline{x}.y$$

$$f = x.(\overline{y} + y) + \overline{x}.y$$
$$= x + \overline{x}.y$$

$$f = x + \overline{x} \cdot y + x \cdot y$$
$$= x + (\overline{x} + x) \cdot y$$
$$= x + y$$

The idea is to cover all the 1's with as few and as simple terms as possible

$$f = \overline{x}.\overline{y}.\overline{z} + y.z + x.z$$

$$f = \overline{x} \cdot \overline{z} + x \cdot z$$

$$f = (x.y.z + x.y.z + x.y.z + x.y.z)$$

$$f = x.\overline{y} + x.y$$

$$f = x.(\overline{y} + y) = x$$

XXX	00	01	11	10	
0	1	0	0	1	
1	1	0	0	1	
					Z

$$f = x + \overline{z}$$

Can we do this?

Note that each encirclement should represent a single product term. In this case it does not.

$$f = x.\overline{y}.\overline{z} + x.\overline{y}.z + x.y.z$$
$$= x.\overline{y} + x.z$$

We do not get a single product term. In general we cannot make groups of 3 terms.

Can we use kmap with the following ordering of variables?

			/		
\ VZ	•		1	1	
XVZ	00	01	10	_11_	1
0	0	0	0	0	
1	0	1	1	0	
					J

Can we combine these two terms into a single term?

$$f = x.y.z + x.y.z$$

$$= x.(y.z + y.z)$$

Note that no simplification is possible. Kmap requires information to be represented

These two terms can be combined into a single term but it is not easy to show that on the diagram.

$$f = x.y.z + x.y.z$$

= $x.(y+y).z = x.z$

Kmap requires information to be represented in such a way that it is easy to apply the principle x + x = 1

$$f = w.y.z + w.x.z + w.y.z + w.x.y.z + w.x.y.z$$

But is this the simplest expression?

WX VZ	00	01	11_	10_	
00	1	0	1	0	
01	0	1	1	0	
11	1	0	0	1	
10	1	0	0	0	

W.	x.	V.2	z +	w.	x.	v.	z =	w.	x.	Z
,,,		<i>y</i> • •	•	•		"	-	,,,		_

WX VZ	00	01	11	10
00	1	0	1	0
01	0	1	1	0
11	1	0	0	1
10	1	0	0	0

$$w. x. y. z + w. x. y. z = x. y. z$$

$$f = \overline{w}.y.z + \overline{w}.x.z + w.\overline{y}.\overline{z} + w.x.\overline{z} + \overline{x}.\overline{y}.\overline{z}$$

Is this the best that we can do?

Cover the 1's with minimum number of terms

$$f = \overline{w}. y. z + \overline{w}. x. z + \overline{w}. y. z + \overline{w}. x. z + \overline{w}. y. z + \overline{w}. x. z + \overline{w}. y. z$$

$$f = \overline{w}. y. z + \overline{w}. x. z + w. x. z + w. x. z + x. y. z$$

WX VZ	00	01	11	10_
00	1	0	0	0
01		(-)	0	0
11	0	0	0	0
10	1	0	0	1

WX VZ	00	01	11	10	
00	1	0	0	0	
01	(<u>T</u>)	1	0	0	
11	0	0	0	0	
10	1	0	0	1	

$$f = \overline{w}.x.\overline{y} + w.\overline{x}.\overline{z} + \overline{w}.\overline{y}.\overline{z}$$

$$f = w.x.y + w.x.z + x.y.z$$

Groups of 4

WX VZ	00	01	11	10_
00	0	0	0	0
01	1	0	0	1
11	1	0	0	1
10	0	0	0	0

WX VZ	00	01	11	10	
00	0	1	1	0	
01	0	0	0	0	
11	0	0	0	0	
10	0	1	1	0	

 $\overline{x}.z$

??

WX VZ	00	01	11_	1
00	1	0	1	C
01	0	0	0	C
11	0	0	0	C
10	1	0	1	C

wx 00 01 11 10

 $\overline{x}.\overline{z}$

X.Z

Groups of 8

WX VZ	00	01	11	10_
00	0	1	1	0
01	0	1	1	0
11	0	1	1	0
10	0	1	1	0

Z

WX VZ	00	01	11	10	
00	0	0	0	0	
01	1	1	1	1	
11	1	1	1	1	
10	0	0	0	0	

wx VZ	00	01	11	10_
00	1	0	0	1
01	1	0	0	1
11	1	0	0	1
10	1	0	0	1

 $\frac{-}{x}$

 \mathcal{X}

Examples

Don't care terms

Y_3	. cd			
a	ab 00	01	11	10
	0 0	0	1	0
(01 0	0	0	0
1	11 x	X	х	х
	10 0	0	х	Х

$$y_3 = \overline{a}.\overline{b}.c.d$$

а	b	С	d	y ₀ y ₁ y ₂ y ₃ y ₄ y ₅ y ₆ y ₇ y ₈ y ₉
0	0	0	0	1000000000
0	0	0	1	0100000000
0	0	1	0	0010000000
9	0	1	1	0001000000
0	1	0	0	0000100000
0	1	0	1	0000010000
0	1	1	0	0000001000
0	1	1	1	0000000100
1	0	0	0	0000000010
1	0	0	_1_	0000000001
1	0	1	0	xxxxxxxxx
1	0	1	1	xxxxxxxxx
1	1	0	0	XXXXXXXXX
1	1	0	1	XXXXXXXXX
1	1	1	0	XXXXXXXXX
1	1	1	1	xxxxxxxxx

Don't care terms can be chosen as 0 or 1. Depending on the problem, we can choose the don't care term as 1 and use it to obtain a simpler Boolean expression

Don't care terms should only be included in encirclements if it helps in obtaining a larger grouping or smaller number of groups.

Minimization of Product of Sum Terms using Kmap

$$f = x + \overline{x} \cdot y + x \cdot y$$
$$= x + (\overline{x} + x) \cdot y$$
$$= x + y$$

$$\Rightarrow$$
 f = \bar{x}

$$\Rightarrow$$
 f = \overline{y}

$$f = (x + z) \cdot (x + z)$$
 $\Rightarrow f = x \cdot z + x \cdot z$

$$\Rightarrow$$
 f = x.z + x.z

$$f = (x + y + z).(x + \overline{y} + \overline{z}).(\overline{w} + y + \overline{z}).(\overline{w} + x)$$

Example

Obtain the minimized PoS by suitably using don't care terms

WX VZ	00	01	11	10
00	1	X	0	1
01	1	0	1	1
11	0	X	1	1
10	1	x	1	Х

$$f = (x + w + \overline{z}).(x + \overline{w} + y).(y + \overline{z})$$

Design Flow

