${\rm CS}652$ Smalltalk VM Operational Semantics

Terence Parr

 $\mathrm{April}\ 20,\ 2015$

${\bf Smalltalk}$	$\textbf{Context stack at} \leftarrow$	
"Test testEvalReturnBlock"	Start send 0, 'value':	
<pre>class T [f [x x := 1.^[x := 5]]] t := T new. t f value ←</pre>	$main[_, nil, _] \ f ext{-}block0[_, ,]$	
	Notes: no f on stack during eval of f -block0 but enclosing scope of f -block0 still points at f 's BlockContext.	
Smalltalk	$Context \ stack \ at \leftarrow$	
$\verb"Test testRemoteMethodCanSetMyLocal""$	@store_local Δ =1, i =0:	
<pre>class T [f [x self g:[x := 5]] g: blk [blk value ←]]</pre>	$main[_,,] \underbrace{f[_,nil,] \ g[_,f^{block_0},] \ f}_{\text{enclosing context } \Delta=1} \stackrel{block_0}{\longleftarrow} [_,,5]$	
T new f	After block_return:	
	$main[_,,] \; f[_,{f 5},] \; g[_,f^{block_0},{f 5}]$	
${\bf Smalltalk}$	$\textbf{Context stack at} \leftarrow$	
"Test testRemoteReturn"	Start send 0, 'value':	
<pre>class T [f [self g:[^99]] g:blk [blk value ←]]</pre>	$main[_,t,] \; f[_,,] \; g[_,f^{block_0},] \; f^{block_0}[_,,]$	
	After return in [^99] block:	
<pre> t t := T new.</pre>	$main[_,t,99]$	
t f		
	Notes: Despite eval in g , [^99] unrolls stack to $main$, the caller of f .	

$T \bowtie x$	Resolve x in scope T
$o \in X$	o is instance of X
$\mathbf{v} \in \mathtt{STObject}$	a single object
$oldsymbol{l}_i \in exttt{STObject}$	the i^{th} argument or local variable object
$o_{class} \in \mathtt{STMetaClassObject}$	Metaclass (type) of object o
$o_{class_{class}} = o_{class}$	A metaclass object is its own type
$o_{superclass} \in \texttt{STMetaClassObject}$	Superclass (type) of object o
o_{field_i}	The i^{th} field of object o
$f_{literal_i}$	The i^{th} literal of method f
$f_s^{block_i} \in exttt{BlockDescriptor}$	The i^{th} block of method f associated with instance self= s
$f_s^{block_i}[extsf{-}, extsf{-}, extsf{-}] \in extsf{BlockContext}$	The i^{th} block of method f invoked with self= s
$f_s^{block_i}[_,_,_]^d \in exttt{BlockContext}$	The i^{th} block of method f invoked with self= s and having depth d counting from zero at the method block; e.g., $f [x [y]]$ has a method block at depth 0 with x and a nested block at depth 1 with y
$\gamma \in \texttt{MethodContext}^*$	Stack of method invocations growing to the right
$\delta \in \mathtt{STObject}^*$	Operand stack of objects growing to the right
S	The state of the VM system dictionary
(\mathbb{S},γ)	VM state is the system dictionary and a method invocation stack with zero or more elements
$(\mathbb{S}, \gamma) \Rightarrow (\mathbb{S}', \gamma')$	VM state transition
$(\mathbb{S}, \gamma) \Rightarrow^* (\mathbb{S}', \gamma')$	Zero-or-more state transitions
$f_s[ip, l_0,l_{n-1}, \delta]$	Method invocation context that derived from sending message f to receiver s (self); $f \in \texttt{MethodContext}; l_i$ is local variable or argument, indexed from 0 and arguments first; δ is the operand stack; f can also represent a nested code block not just a method
$f[ip, l_0, l_{n-1}, \delta]$	Same as previous but the receiver is unknown or irrelevant
$f[ip, _, _]$	A method invitation context with "don't care" for locals and operand stack

Figure 1: Smalltalk VM Bytecode Specification Notation

Bytecode Instruction	Transition
initial state	$state_0 = (\mathbb{S}[\mathtt{Transcript}], \mathtt{main}_m[0, \epsilon, \epsilon])$
	for $m \in \text{MainClass}$; program terminates if $\exists state_0 \Rightarrow^* (S', \epsilon)$
nil	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip+1, \underline{\ }, \delta \mathtt{nil}])$
self	$(\mathbb{S}, \gamma f_s[ip, \neg, \delta]) \Rightarrow (\mathbb{S}, \gamma f_s[ip+1, \neg, \delta s])$
true	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip+1, \underline{\ }, \delta \mathtt{true}])$
false	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip+1, \underline{\ }, \delta \mathtt{false}])$
${\tt push_char}\ c$	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip+3, \underline{\ }, \delta c])]$
$\mathtt{push_int}\ i$	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5, \underline{\ }, \delta i])$
${\tt push_float}\ i$	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip+5, \underline{\ }, \delta \ intBitsToFloat(i)])$
${\tt push_field}\; i$	$(\mathbb{S}, \gamma f_s[ip, -, \delta]) \Rightarrow (\mathbb{S}, \gamma f_s[ip + 3, -, \delta s_{field_i}])$
${\tt push_local}\ 0, i$	$(\mathbb{S}, \gamma f[ip, \cdots l_i \cdots, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5, \cdots l_i \cdots, \delta l_i])$
${\tt push_local}\ n>0, i$	$(\mathbb{S}, \gamma g^{block}[\underline{\ }, \cdots \underline{\ } l_i \cdots, \underline{\ }]^{d-n} \cdots g^{block'}[ip, \underline{\ }, \underline{\ }]^{d-1} \cdots g^{block''}[ip, \underline{\ }, \delta]^d) \ \Rightarrow$
	$(\mathbb{S}, \gamma \cdots g^{block''}[ip+5, _, \delta l_i]^d)$
${\tt push_literal}\ i$	$(\mathbb{S}, \gamma f[ip, \cdot, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 3, \cdot, \delta f_{literal_i}])$
${\tt push_global} \ i$	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 3, \underline{\ }, \delta \mathbb{S}[f_{literal_i}]])$
${\tt push_array}\ n$	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta a_1a_n]) \Rightarrow (\mathbb{S}, \gamma f[ip+3, \underline{\ }, \delta A]) \text{ where } A = Array(a_1a_n)$
$\mathtt{store_field}\;i$	$(\mathbb{S}, \gamma f_s[ip, \neg, \delta \mathbf{v}]) \Rightarrow (\mathbb{S}[s_{field_i} = \mathbf{v}], \gamma f_s[ip + 3, \neg, \delta \mathbf{v}])$
$\mathtt{store_local}\ n, i$	$(\mathbb{S}, \gamma f[ip, \cdots l_i \cdots, \delta \mathbf{v}]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5, \cdots l_{i-1}\mathbf{v} l_{i+1} \cdots, \delta \mathbf{v}])$
pop	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta \mathbf{v}]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip+1, \underline{\ }, \delta])$
$\mathtt{send}\ n, i$	$(\mathbb{S}, \gamma f[ip, \neg, \delta r p_1p_n]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5, \neg, \delta] \left(r_{class} \bowtie f_{literal_i}\right)_r [0, p_1p_n, \epsilon])$
$\mathtt{send_super}\ n, i$	$(\mathbb{S}, \gamma f[ip, \neg, \delta r p_1p_n]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5, \neg, \delta] (r_{superclass} \bowtie f_{literal_i})_r[0, p_1p_n, \epsilon])$
$\mathtt{block}\;i$	$(\mathbb{S}, \gamma f[ip, \cdot, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 3, \cdot, \delta f_s^{block_i}])$
block_return	$(\mathbb{S}, \gamma f[ip, \mathbf{x}, \delta] \ g^{block}[\mathbf{x}, \mathbf{y}, \delta' \mathbf{v}]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip, \mathbf{x}, \delta \mathbf{v}])$
$(method\ local)$ return	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta] \ g[\underline{\ }, \underline{\ }, \delta' \mathbf{v}]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip, \underline{\ }, \delta \mathbf{v}])$
$(method\ nonlocal)$ return	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta] \ g_s[\underline{\ }, \underline{\ }, \underline{\ }] \ \cdots \ h[\underline{\ }, \underline{\ }, \underline{\ }] \ g_s^{block}[\underline{\ }, \underline{\ }, \delta' \mathbf{v}]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip, \underline{\ }, \delta \mathbf{v}])$
$dbg\; i, loc$	$(\mathbb{S}, \gamma f[ip, _, _]) \Rightarrow (\mathbb{S}[file=f_{literal_i}, line=loc[31:8], col=loc[7:0]], \gamma f[ip+7, _, _])$ Set VM current filename to $f_{literal_i}$ and split loc into char position (indexed from 0) from lower 8 bits and line number from the upper 24 bits.

Figure 2: Smalltalk VM State Transition Rules

Smalltalk Context stack at ← Before return: "Test returnFromNestedCallViaBlock" class Test [$main[_,,] \ \underline{f}[_,,] \ g[_,f^{block_0},] \ h[_,f^{block_0},] \ \underline{f} \ ^{block_0}[_,,99]$ f [self g: [^99←]] g:blk [self h:blk] h:blk [blk value] After return: main[-, 99]Test new f Notes: Despite eval in g, [^99] unrolls stack to main, the caller of f. **Smalltalk** Context stack at \leftarrow $\verb|"Test testSendBlockBackToSameMethod-|\\$ At store_local Δ =2,i=2: AndSetLocal" $f:pass:^{block_1}[-,,5]$ class T [f:blk pass:p [$f:pass:^{block_2}[-,,]$ p=1 ifTrue: [self g: $[x:=5 \leftarrow]$] $f:pass:[_,f:pass:^{block_1}2nil,]\longleftarrow 2^{nd}$ call to f:pass:ifFalse: [blk value]. $g[_, f:pass:^{block_1},]$] g:blk [self f:blk pass:2] $f:pass:^{block_0}[_,f^{block_0},]$] T new f:nil pass:1 $f:pass:[_, nil \ 1\ 5,] \longleftarrow 1^{st}$ call to f:pass:

Notes:

 $main[_,,]$

Smalltalk fragment	Visitor method result	Side-effects
ϵ	$\epsilon \; (ext{object Code.None})$	
class T : S []	ϵ	
main	main	
	self	
	return	
$ extsf{f}$ <pri>frimitive:#$primitive$-$name$></pri>	ϵ	
f []	ϵ	${\tt f}_{code} =$
		self
		return
$ exttt{f} exttt{ [} body exttt{]}$	ϵ	${ t f}_{code} =$
		body
		pop
		self
operator [body]	ϵ	$egin{aligned} ext{return} \ operator_{code} = \end{aligned}$
1		body
		pop
		self
		return
$\mathtt{a:x\ b:y\ c:z\ [}\ \mathit{body\]}$	ϵ	$a:b:c:_{code} =$
		body
		pop
		self
[args locals]	block i	return
	DIOCK t	$\mathtt{f}_{block_i} = \\ \mathtt{nil}$
\mathtt{f}^{block_i}		block_return
[body]	${ t block}\ i$	$\mathtt{f}_{block_i} =$
\mathbf{f}^{block_i}		body
		${ t block_return}$
$expr_1. expr_2. \cdots expr_n$	$expr_1$	
	pop	
	$expr_2$	
	pop	
	•••	
	$expr_n$	

 ${\bf Figure~3:~Smalltalk~Class/Method/Block~Compilation~Rules}$

Smalltalk fragment	Visitor method result	Side-effects
class T $[x_0x_1x_n \cdots f[\cdots x_i]=expr]$	expr	
	${ t store_field} \; i$	
$\mathtt{a}\!:\!x_0\;\mathtt{b}\!:\!x_1\;[x_2x_n \cdots\;x_i\!:=\!expr\; $	expr	
	${ t store_local}\ 0, i$	
$f[x_0x_n \cdots x_i:=expr]$	expr	
	${ t store_local}\ 0, i$	
$f \left[\cdots \left[x_0 x_n \cdots x_i := expr \right] \right]$	expr	
	$\mathtt{store_local}\ 0, i$	
$ \underbrace{\mathbf{f} : \mathbf{x} \left[\cdots \right]}_{\Delta = \#scopes} \cdots x_i := expr $ $ \mathbf{f} \left[\cdots \underbrace{\left[\mathbf{x} \cdots \right]}_{\Delta} \cdots x_i := expr \right] $	$ exttt{store_local} \ \Delta, 0$	
$\Delta = \#scopes$		
f $[\cdots] x \cdots x_i := expr$	expr	
$\widetilde{\Delta}$	$\mathtt{store_local}\ \Delta, 0$	
class T $[x_0x_1x_n \cdots$ f $[\cdots x_i]$	$\mathtt{push_field}\;i$	
$\mathtt{a} \colon x_0 \ \mathtt{b} \colon x_1 \ [x_2 \dots x_n \cdots \ x_i]$		
$f:x [\cdots] \cdots x$	${\tt push_local}\ \Delta, 0$	
$\Lambda = \#_{econes}$		
$f \left[\cdots \underbrace{\left[x \cdots \right]}_{} \cdots x \right]$	${\tt push_local}\ \Delta, 0$	
Δ		
99	push_int 99	
\$a	push_char $ASCII('a')$	
1.2	<pre>push_float asIntBits(1.2)</pre>	$block_i$, ,
'a string'	$push_literal i$	$oxed{f_{literal_i}^{block_j}} = ext{"a string"}$
nil	nil	
self	self true	
true false	false	
$\{\ expr_1.\ expr_2.\ \cdots\ expr_n\ \}$	$expr_1$	
$\{cupi_1, cupi_2, \cdots cupi_n\}$	$expr_2$	
	$expr_n$	
	n push_array n	

Figure 4: Smalltalk Expression Compilation Rules

Smalltalk fragment	Visitor results	Side-effects
(unary msg) $f \left[\cdots expr w \right]$		$f_{literal_i}^{block_j} = w$
	$\mathtt{send}\ 0, i$	·
(binary msg) $f \left[\cdots expr_1 op expr_2 \right]$	$expr_1$	$\mathbf{f}_{literal_i}^{block_j} = "op"$
	$expr_2$	
	$\mathtt{send}\ 1, i$	
$f \left[\cdots \ expr \ w_1:x_1 \ w_2:x_2 \cdots \ w_n:x_n \right]$	_	$\mathbf{f}_{literal_i}^{block_j} = "w_1: w_2: \cdots w_n:"$
	$\mathtt{send}\ n,i$	
$\mathtt{f} \; [\cdots \mathtt{super} w $	self	$\mathbf{f}_{literal_i}^{block_j} = "w"$
	$\mathtt{send_super}\ 0, i$	
$f [\cdots super w_1:x_1 w_2:x_2 \cdots w_n:x_n]$	expr	$f_{literal_i}^{block_j} = "w_1: w_2: \cdots w_n:"$
	$\mathtt{send_super}\ n, i$	
$\hat{e}xpr$	expr return	
	return	

Figure 5: Smalltalk Message Expression Compilation Rules