Name: Aman Kumar Hawk ID: A20538809 Assignment 2

CS 584

Ecorcine 7.4.
Solution -
Start with For in Let's denste $\hat{y_i} = \hat{f}(x_i)$
$Y_{i}^{\circ} - \hat{f}(x_{i}) = Y_{i}^{\circ} - f(x_{i}) + f(x_{i}) - E.y_{i}^{\circ} + Ey_{i}^{\circ} - y_{i}^{\circ}$
Thus $E_{xx} = 1 \leq E_{xx} \left(Y_{i}^{2} - f(x_{i}) + f(x_{i}) - E_{y_{i}}^{2} + E_{y_{i}}^{2} - g_{i}^{2}\right)^{2}$
$= \frac{1}{N} \sum_{i=1}^{N} A_i^2 + B_i^2 + C_i^2 + D_i^2 + E_i^2 + F_i^2$ $N = \frac{1}{N} \sum_{i=1}^{N} A_i^2 + B_i^2 + C_i^2 + D_i^2 + E_i^2 + F_i^2$
whom, Ai = Eyo (Yi - f(xi))2
$Bi = (f(x_i) - Ey_i^2)^2$
$C_i = (E\hat{y_i} - \hat{y_i})$ $D_i = 2E\hat{y_i} (Y_i - f(x_i))(f(x_i) - E\hat{y_i})$
$E_i = 2E_{y^{\circ}} \left(Y_i^{\circ} - f(x_i) \right) \left(E_{y_i^{\circ}} - g_i^{\circ} \right)$
$F_{i} = 2 (f(x_{i}) - Ey_{i}^{2}) (Ey_{i}^{2} - y_{i}^{2}).$
for vor , me have,
$y_i - \hat{f}(x_i) = y_i - f(x_i) + f(x_i) - Ey_i + Ey_i - y_i$
and,

$$Evolution = \frac{1}{N} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i) + f(x_i) - Ey_i^2 + Ey_i^2 - y_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i + B_i + C_i + H_i + J_i + F_i^2)}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i))^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(y_i - y_i^2))^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(y_i - y_i^2))^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(y_i - y_i^2))^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i)) (F(x_i) - Ey_i^2)^2}_{N i = 1}$$

$$= \underbrace{1} \underbrace{\sum_{i=1}^{N} (y_i - f(x_i$$

$$= -\frac{2}{N} \sum_{i=1}^{N} \frac{E_{y}(y_{i} - f(n_{i}))(E_{y_{i}} - y_{i})}{E_{y_{i}}}$$

$$= \frac{2}{N} \sum_{i=1}^{N} \frac{E_{y}(y_{i}, y_{i}) - E_{y_{i}} \cdot y_{i}}{E_{y_{i}} \cdot y_{i}}$$

$$= \frac{2}{N} \sum_{i=1}^{N} \frac{E_{y_{i}}(y_{i}, y_{i}) - E_{y_{i}} \cdot y_{i}}{E_{y_{i}} \cdot y_{i}}$$

$$= \frac{2}{N} \sum_{i=1}^{N} \frac{E_{y_{i}}(y_{i}, y_{i}) - E_{y_{i}} \cdot y_{i}}{E_{y_{i}} \cdot y_{i}}$$

Euricise 7.5

Solution given, $\hat{y} = Sy$.

For the questions related to the programming is provided below:-

1. Do you get the some applied parameters with each method?
114740
Answer: - From the results, it has been absenced that
while K- Isld - cross natidation rusher of 5 and 10 are
nearly identical for each of the hormonic natures,
bear and morionic ruse as the Mornovice make increases.
The RMSE AIC and bootstop ratues start to follow the
Toothermore, the burn water
3 of AIC is absorbed at mone 3.
2, i, AIC grue higher bias but bower restione:
2, i, AIC gone higher bios but bower reviewe
2, i, AIC gone higher bias but lower reviewe: it, K-fald-cross restelation at
2, i, AIC gove higher bias but lower restione: it, K-fald-cross realidation at a, K=5: gove higher various and but bias
2, i, AIC gone higher bias but bower restione: it, K-fold-viss ratidation at
2, i, AIC gove higher bias but bower restione: il, K-fald-cross restedition at a, K=5:- gove higher variance and but bias b, K=10:- 11 bower 11 11 high 11
2, i, AIC gove higher bias but lower restione: it, K-fald-cross realidation at a, K=5: gove higher various and but bias