

Consider the following Ferstel scheme

Solution:

Compute the value of S1(55) in DES algorithm

Here is S_1 :

S ₁	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0yyyy1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
1yyyy0	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
1уууу1	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

Solution
$$55 = 32 + 46 + 4 + 2 + 1 = 2^{5} + 2^{4} + 2^{2} + 2^{4} + 2^{4} + 2^{4} = 1101111$$

$$S(55) = 14$$

$$S(54) = 54 = 110110$$

$$row 2$$

$$S_{4}(54) = 7$$

Es 3

RSA parameters: $\rho = 5$, q = 11. What is a valid combination for RSA?

a) e=+2 M = 6

b) e=17 d=33 H=6 C=41 V

c) e=11 d=11 H=6 C=16

RSA encryption: $C = M^e \mod N$ where N = pq and $e \in \mathbb{Z}_{\Phi(N)} S.F$ gcd $(e, \Phi(N)) = 1$

RSA deryption: M= comodN where d = e-1 mod \$\overline{a}(n)\$

-1st option: e = 12 => d = e 1 mod \$(N)

d = 12-1 mod 40 => gcd (12,40) =- then 12 is not invertible mod 40

2nd option : gcd (17,40) = 4

40=17×2+6 Po =0

P1=1 47=6x2+5 6=5×1+1

 $6 = 5 \times 1 + 1$ $\rho_2 = 0 - 2 \mod 40 = 38$ $S = \times 5 + 0$ $\rho_3 = 1 - 38 \times 2 = 5$ $\rho_4 = 38 - 5 = 33 \mod 40$

C=H modN = 6 mod 55

6+7 = 6+0.67 = 67 = 63.62.62 = 51.36.36 = 21.36 = 41 mods5

3rd option:

41.11 = 121 = 11 # 1mod 55

Es. 4

DSA augorithm. Given p=11, q=5, d=4, what is the public key?

- a) (44,5,9,5) V
- b) (41, 5,3,5)
- c) (41,5,7,3)
- d) (11, 5, 2, 4)
- e) (11, 5, 4, 2)
- · We have to find a generator $\alpha \in \mathbb{Z}_p$ with $\operatorname{ord}(\alpha) = q$, i.e an element which generates \mathbb{Z}_q s.t $\alpha^q = 1 \mod p$

Choose 3:

$$3^{2} = 3$$
 ok!
 $3^{2} = 4 \mod 5$
 $3^{3} = 3 \cdot 3^{2} = 3 \cdot 4 = 2 \mod 5$

- $3^3 = 3 \cdot 3^2 = 3 \cdot 4 = 2 \mod 5$
- . The private Key is d=4

β = d mod p = 34mod +1 = 32 32 = 9.9 = 4mod +1

public Key is
$$(p,q,d,\beta)=(11,5,3,4)$$
 not in the options

by another generator

$$2'=2$$
 $2^2=4$
 01

$$2^3 = 3$$

$$2^4 = 1 \mod 5$$

Rubuc Key = (11, 5, 2, 5) not in the options

a)
$$9^{1} = 9$$
 $9^{2} = 4$
 $9^{3} = 3$
 $9^{4} = 5$
 $9^{5} = 4$
acceptable
 $8 = 0$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$
 $10^{4} = 5$

b)
$$3^{1} = 3$$

 $3^{2} = 9$
 $3^{3} = 5$
 $3^{4} = 4$
 $3^{5} = 1 \mod 11$ acceptable $(11, 5, 3, 4)$

c)
$$7^{1} = 7$$

 $7^{2} = 5$
 $7^{3} = 2$
 $7^{4} = 3$
 $7^{5} = 10$ not acceptable

d)
$$2^{1} = 2$$

 $2^{2} = 4$
 $2^{3} = 8 = 3 \text{ mod } s$
 $2^{4} = 5$
 $2^{5} = 40$ not acceptable

7)
$$4^{7} = 4$$
 $4^{2} = 5$
 $4^{3} = 9$
 $4^{4} = 3$
 $4^{5} = 1$
acceptable
 $4^{5} = 1$
 $4^{5} = 1$