(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-250434 (P2000-250434A)

(43)公開日 平成12年9月14日(2000.9.14)

(51) Int.Cl.7		識別記号		FΙ				Ť	-7J-ド(多考)
G09F	9/00	366		G O	9 F	9/00		366G	5 C 0 8 0
		364						364Z	5 C 0 8 2
G 0 9 G	3/20	660		G 0	9 G	3/20		660F	5 G 4 3 5
		680						680S	
	5/00	510				5/00		510H	
			審查請求	未請求	家簡	項の数9	OL	(全 9 頁)	最終頁に続く

(21)出願番号

特屬平11-51409

(22)出願日

平成11年2月26日(1999.2.26)

(71)出顧人 000005049

シャープ株式会社

大阪府大阪市阿倍野区長池町22番22号

(72) 発明者 柿本 昌

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(74)代理人 100075557

弁理士 西教 圭一郎

最終頁に続く

(54) 【発明の名称】 携帯型情報機器および重力方向検出器

(57) 【要約】

【課題】 携帯型情報機器の姿勢を重力の方向に対して 適切に検出し、判りやすい情報表示を行う。

【解決手段】 携帯端末の表示部6への表示方向は、主 制御部7が重力方向検出部1が検出する重力方向に応じ て変更する。メモリ5には、重力方向検出部1が検出す る重力方向変化に対応する信号と、携帯端末のハンドリ ング状態および適切な表示方向とがテーブルで関連付け られて記憶されている。主制御部7は、メモリ5に記憶 されているテーブルを参照し、表示部6で表示すべき表 示方向を決定する。表示部6での表示方向は、押圧検出 部2に対する所定の押圧での指示、あるいは入力部3に 対する手書き文字入力の方向などによっても指定するこ とができる。

【特許請求の範囲】

視覚表示用の情報表示手段を備える携帯 【請求項1】 型情報機器において、情報表示手段に作用する重力の方 向を検出する方向検出手段と、

1

方向検出手段の検出結果に基づいて、情報表示手段の姿 勢を判定する判定手段と、

判定手段の判定する情報表示手段の姿勢について予め設 定される基準に従って、情報表示手段での情報の表示方 向を制御する制御手段とを含むことを特徴とする携帯型 情報機器。

【請求項2】 前記制御手段による前記情報表示手段で の情報の表示方向の制御に対し、前記判定手段による姿 勢の判定結果に従う表示方向の変更を禁止する指示と、 所定方向に表示方向を変更する指示とを入力するための 入力手段をさらに含み、

制御手段は入力手段への入力に従って、表示方向の変更 が禁止されれば表示状態を継続し、表示方向の変更が指 示されれば指示された方向に表示方向を変更するよう に、情報表示手段を制御することを特徴とする請求項1 記載の携帯型情報機器。

前記入力手段は、前記情報表示手段また は筺体の表面に付加される部分的な圧力の加圧位置を検 【請求項3】 出し、所定の圧力の加圧位置が連続的に移動するとき に、該移動方向を前記所定方向の指示として入力するこ とを特徴とする請求項2記載の携帯型情報機器。

前記方向検出手段は、筺体に作用する重 【請求項4】 力の方向を検出し、

前記判定手段は、該筺体への前記情報表示手段の装着状 態に基づいて、重力の方向に対する情報表示手段の姿勢 を判定することを特徴とする請求項1~3のいずれかに 記載の携帯型情報機器。

前記制御手段は、前記情報表示手段での 【請求項5】 表示方向の制御を、表示が中止されている間は停止し、 表示が再開されると同時に制御も再開するように制御す ることを特徴とする請求項1~4のいずれかに記載の携 帯型情報機器。

前記判定手段は、前記方向検出手段が検 【請求項6】 出する重力の方向の変化が、所定の閾値以下の振幅、回 転あるいは加速度であるとき、変化を無視することを特 徴とする請求項1~5のいずれかに記載の携帯型情報機 器。

前記情報表示手段は、タッチパネルとし 【請求項7】 て構成され、

タッチパネルに書かれる文字、記号、図形を識別する識 別手段をさらに含み、前記制御手段は、識別手段によっ て識別される文字、記号、図形の配列方向に前記情報表 示手段での表示方向を合わせるように制御することを特 徴とする請求項1~6のいずれかに記載の携帯型情報機 器。

【請求項8.】 前記表示手段での表示方向を示す方向表

示手段を備えることを特徴とする請求項1~7のいずれ かに記載の携帯型情報機器。

【請求項9】 電気絶縁性の容器と、

容器の底面に、間隔をあけて配置される複数の個別電極

容器の底面または周壁面に、該複数の個別電極を外囲す るように配置される共通電極と、

容器内に、内容積の一部を占めるように貯留される液状 導体と、

該複数の個別電極と該共通電極との導通状態を検知し、 導通状態についての予め定める関係に従って、該容器に 10 作用する重力の方向を判定する方向判定手段とを含むこ とを特徴とする重力方向検出器。

【発明の詳細な説明】

[0001] 【発明の属する技術分野】本発明は、携帯型の情報処理 端末や情報処理装置などの携帯型情報機器に関する。

[0002]

30

【従来の技術】近年、携帯電話やPDA (Personal Dig 20 ital Assistant) などとも呼ばれる携帯型情報処理装置 等の携帯型情報機器が広く使用されている。携帯型情報 処理装置をはじめ、携帯電話や携帯端末では、各種情報 の表示用として、液晶表示素子 (LCD) などの表示画 面が、筺体の許す最大限度に近い状態で装備されてい る。携帯電話や携帯端末が動作するアプリケーションが 多様化し、それらのアプリケーションに応じて表示する 情報も多くなり、できるだけ大きな画面で表示すること が要望されているからである。

【0003】たとえば携帯電話において、従来は時刻や 発呼者の電話番号を表示するために、1行分の表示画面 があれば充分と考えられていた。しかしながら、電話帳 機能やメニュー等の表示を行うアプリケーションが一般 的になってきており、必然的に大きな表示部が要求され ている。さらに、画像あるいはメール等の表示を行うた めには、従来の縦長表示より横長表示の方が使いやすい という場合も生じてくる。矩形の表示画面に横長あるい は粧長の表示方向で情報を表示する場合、表示方向を固 定しておくと、表示画面を回転させるか、ユーザが見る 角度を回転させるかあるいは移動させて見るか、表示が 小さくなるのを覚悟の上で画面表示全体を小さくするか などしか、選択の余地はない。

【0004】特開平8-179739号公報には、自動 的に表示方向を変更させる方法として、上下または左右 などの重力の方向を検出する手段を設け、この検出手段 の出力によって、目視表示すべきデータをそのまま表示 部での姿勢に対応する予め定める態様、たとえば成立上 下左右反転の各対応で表示する考え方に基づく先行技術 が開示されている。特開平9-275452号公報に は、特定のアプリケーション、たとえばファクシミリの

起動である受信に対応して、現在表示されている表示方

30

向を自動的に特定のアプリケーションの所定表示方向に 切換える考え方に基づく先行技術が示されている。特開 平9-44143号公報には、携帯情報通信端末装置に 設けられる矩形の表示画面に、検知される重力の方向と は反対方向になるように、表示の向きを制御する考え方 に基づく先行技術が示されている。

[0005]

【発明が解決しようとする課題】特開平8-179739号公報に開示されている先行技術では、情報処理装置の本体は所定の姿勢で保持され、本体に対して表示装置の部分の姿勢が変化し、その姿勢を重力のかかる方向に基づいて検出し、視覚表示すべきデータの表示態様を表示内容の姿勢に対応するようにしている。このため、情報処理装置の本体に対する3次元の重力方向検出は行われず、携帯型情報処理装置のように携帯するためにあらゆる方向から重力が印加される可能性がある場合に対応することができないという問題がある。

【0006】特開平9-275452号公報に開示されている先行技術では、特定のアプリケーションに対して自動的に最適な横方向が得られるように表示を切換えるけれども、すべてのアプリケーションが最適な表示方向を持っているわけではなく、また、ユーザの見たい方向の方が最適な表示とも言える場合もある。

【0007】特開平9-44143号公報の先行技術では、自動車電話や携帯電話などに使用される携帯情報通信端末の表示画面に表示される画像の向きが、常に重力方向とは反対方向にくるように制御されるので、特開平9-275452号公報の先行技術と同様に、必ずしもユーザが見たい方向に表示が行われるとは限らない。

【0008】本発明の目的は、3次元的な重力の方向に応じて表示方向を変更することができ、視覚表示用の情報を情報表示手段に適切な表示方向で表示することができる携帯型情報機器を提供することである。

[0009]

【課題を解決するための手段】本発明は、視覚表示用の情報表示手段を備える携帯型情報機器において、情報表示手段に作用する重力の方向を検出する方向検出手段と、方向検出手段の検出結果に基づいて、情報表示手段の姿勢を判定する判定手段と、判定手段の判定する情報表示手段の姿勢について予め設定される基準に従って、情報表示手段での情報の表示方向を制御する制御手段とを含むことを特徴とする携帯型情報機器である。

【0010】本発明に従えば、方向検出手段が情報表示手段に作用する重力の方向を検出し、判定手段は情報表示手段の姿勢を方向検出手段の検出結果に基づいて判定する。制御手段は、判定手段の判定する情報表示手段の姿勢について予め設定される基準に従って、情報表示手段での情報の表示方向を制御する。重力の方向を、方向検出手段が3次元的に検出するので、情報表情表示手段には3次元的な重力の作用方向に応じて適切な表示方向

で情報の表示を行うことができる。

【0011】また本発明は、前記制御手段による前記情報表示手段での情報の表示方向の制御に対し、前記判定手段による姿勢の判定結果に従う表示方向の変更を禁止する指示と、所定方向に表示方向を変更する指示とを入力するための入力手段をさらに含み、制御手段は入力手段への入力に従って、表示方向の変更が禁止されれば表示状態を継続し、表示方向の変更が指示されれば指示された方向に表示方向を変更するように、情報表示手段を制御することを特徴とする。

【0012】本発明に従えば、入力手段に方向の変更を 禁止する指示や所定方向に表示方向を変更する指示を入 力すると、制御手段は入力手段への入力に従って、表示 方向の変更が禁止されれば表示状態を継続し、表示方向 の変更が指示されれば指示された方向に表示方向を変更 するように制御するので、表示方向を固定したり、所定 の表示方向に統一したりすることもできる。

【0013】また本発明で前記入力手段は、前記情報表示手段または筺体の表面に付加される部分的な圧力の加圧位置を検出し、所定の圧力の加圧位置が連続的に移動するときに、該移動方向を前記所定方向の指示として入力することを特徴とする。

【0014】本発明に従えば、表示方向を指定するための所定の方向の入力は、表示手段または筐体の表面に付加される部分的な圧力の加圧位置を検出し、所定の圧力の加圧位置が連続的に移動するようにして入力することができる。

【0015】また本発明で前記方向検出手段は、箇体に作用する重力の方向を検出し、前記判定手段は、該箇体への前記情報表示手段の装着状態に基づいて、重力の方向に対する情報表示手段の姿勢を判定することを特徴とする。

【0016】本発明に従えば、筺体に作用する重力の方向を検出し、筺体に対する情報表示手段の装着状態に基づいて情報表示手段の姿勢を判定するので、方向検出手段は携帯型情報機器の筺体のどの場所に配置することもでき、小型で高密度に構成部品が収納される携帯型情報機器に対しても、効率的に筺体内の空間を利用して、方向検出手段を配置することができる。

(6) 【0017】また本発明で前記制御手段は、前記情報表示手段での表示方向の制御を、表示が中止されている間は停止し、表示が再開されると同時に制御も再開するように制御することを特徴とする。

【0018】本発明に従えば、情報表示手段に情報が表示されていない間には表示方向の変更のための処理を行わないので、携帯型情報機器が電源として備える電池などの消耗を避けることができる。表示を再開するときは重力の方向に基づく姿勢の判定と、判定結果に応じる表示方向の変更とを再開するので、情報表示手段に情報が表示される間は、姿勢検出による表示方向の切換え制御

を行わせることができる。

【0019】また本発明で前記判定手段は、前記方向検 出手段が検出する重力の方向の変化が、所定の関値以下 の振幅、回転あるいは加速度であるとき、変化を無視す ることを特徴とする。

【0020】本発明に従えば、方向検出手段が検出する 重力の方向の変化が所定の閾値以下の振幅、回転あるい は加速度であるときに、変化を無視して情報表示手段に 対する表示方向の変更の制御を行わないので、手ぶれな どに対して表示方向が変化してしまう事態を避けること ができる。

【0021】また本発明で前記情報表示手段は、タッチパネルとして構成され、タッチパネルに書かれる文字、記号、図形を識別する識別手段をさらに含み、前記制御手段は、識別手段によって識別される文字、記号、図形の配列方向に前記情報表示手段での表示方向を合わせるように制御することを特徴とする。

【0022】本発明に従えば、タッチパネルとしての情報表示手段に手書きで文字、記号、図形を入力すると、識別手段が文字、記号、図形を識別し、制御手段は識別手段によって識別される文字、記号、図形の配列方向に情報表示手段での表示方向を合わせるので、手書きの入力方向に合わせて情報の表示を行わせることができる。

【0023】また本発明は、前記表示手段での表示方向を示す方向表示手段を備えることを特徴とする。

【0024】本発明に従えば、情報表示手段での表示方向を方向表示手段で示すようにしているので、情報表示手段での表示がなかったり、表示方向の判別が困難な状態であっても、表示方向を確認することができる。

【0025】さらに本発明は、電気絶縁性の容器と、容器の底面に、間隔をあけて配置される複数の個別電極と、容器の底面または周壁面に、該複数の個別電極を外囲するように配置される共通電極と、容器内に、内容積の一部を占めるように貯留される液状導体と、該複数の個別電極と該共通電極との導通状態を検知し、導通状態についての予め定める関係に従って、該容器に作用する重力の方向を判定する方向判定手段とを含むことを特徴とする重力方向検出器である。

【0026】本発明に従えば、容器内に液状導体を貯留させ、容器の底面に複数の個別電極を間隔をあけて配置し、容器の底面あるいは容器の内壁面に個別電極を外囲するように共通電極を配置し、個別電極と共通電極との間の導通状態を検知する。容器の底面の傾きに応じて、個別電極と共通電極との間の導通状態は変化し、予め個別電極と共通電極との導通状態と容器の傾きとの対応関係を調べておけば、個別電極と共通電極との導通状態から容器の傾きに対する壁面の変化として、重力の方向を検出することができる。

[0027]

【発明の実施の形態】図1は、本発明の実施の一形態と

しての携帯端末の概略的な電気的構成を示す。本実施形 態の携帯型端末では、重力方向検出部1が重力の方向を 検出する。押圧検出部2は、半導体圧力センサ等を備 え、携帯端末の筺体の表面の一部に設ける領域に対する 押圧の位置を検出する。入力部3は、タッチセンサ付き タッチパネルあるいは入力キーを備え、ユーザからの指 示や操作の入力が行われる。文字認識部4は、入力部3 のタッチパネルにユーザから手書きで文字、記号、図形 などが入力されるときに、入力される文字などの認識を 10 行い、入力された内容を識別する。メモリ5は、重力方 向検出部1の電気的な検出出力に基づいて、携帯端末の ハンドリング状態や表示方向を関連付けて記憶する。表 示部6は、液晶表示素子(LCD)などで構成され、情 報表示手段として文字や画像等の表示を行う。表示部 6 の表面は、入力部3に備えられるタッチパネルとしてが 備えられる。主制御部7は、CPUや、CPUが実行す るプログラムやプログラムの実行に用いるデータが格納 されるROMや、CPUでの演算結果等が格納されるR

AM等を含む。さらに各部に電力を供給する電源なども

20 含まれ、本実施形態の携帯端末が構成される。

6

【0028】図2は、図1に示す携帯端末に対し、まず ユーザが携帯端末を取扱うハンドリング状態に応じて表 示方向を制御する動作の一例を示す。動作を開始した 後、ステップalでは、重力方向の変化があるか否かを 判断する。重力方向検出部1のセンサからの信号の変化 を主制御部7が監視し、ユーザのハンドリング状態が変 化したか否かを判断する。ステップa1で重力変化があ ると判断されるときには、ステップa2で、主制御部7 は表示モードの検出を行う。これは、ユーザがハンドリ ング状態に応じて自動的に表示方向を変更するモードに 設定しているか否かの判定である。この設定は、ユーザ が入力部3に所定の操作を行い、その設定を主制御部7 内のRAMの所定格納箇所に記憶しておくことによって 行われる。この表示モードの設定については後述する。 ステップa 2で、自動的に表示方向を変換するモードが 設定されていればステップa3に進み、その動作を禁止 してマニュアル設定モードが設定されていればステップ a 1 に戻る。ステップ a 3では、重力方向検出部1で検 出したセンサの情報から、携帯端末のハンドリング状態 40 を判定する。この判定は、前述のメモリ5からテーブル を呼出して、センサ情報に対応するハンドリング状態を 確認することで行う。次にステップa4で、手ぶれであ るか否かの判定を行う。手ぶれの判定は、重力の変化が 少ない場合、あるいは変化が少なくかつ繰返しが行われ ている場合などで、手ぶれと判定する。

【0029】本実施形態では、重力方向検出部1の検出 結果に基づいて手ぶれの判定を行っているけれども、再 用に振動センサあるいは各速度センサ等を設けて、これ ちのセンサの出力に基づいて手ぶれの判定を行うことも 50 できる。手ぶれと判定されればステップ a 1 に戻る。手

30

ぶれと判定されないときには、ステップa5に進み、ハンドリング状態からユーザが比較的に確認するのに最も 適した表示方向を決定する。この表示方向の決定は、前 、述のメモリ5のテーブルの重力方向に関連付けて記憶し ている最適な表示方向を呼出して行う。この情報に基づ き、主制御部7は、表示部6を制御して表示の実行を行

【0030】図3は、本発明の実施の他の形態として、 電源となる電池の節約等で表示を中断している場合にお いて、表示を再開する場合の制御の手順の一例を示す。 手順の開始後、ステップb1では、主制御部7が表示再 開信号の検出を行う。表示再開信号としては、電源スイ ッチ (Power SW) のONへの投入や、入力部3に設けら れるいずれかのキーへの入力の検出に応じて発生され、 節電を開示して表示を再開するための信号である。表示 再開信号が検出されると、ステップ b 2 に進み、表示モ ードがマニュアル設定か否かを判断する。これは、前述 のハンドリング状態の変化に応じて表示方向を切換えて よい表示モードか否かの判定であり、切換えが不可であ るマニュアル設定が行われていないときには、ステップ b 3 で重力方向検出部 1 で検出したセンサの情報から携 帯端末のハンドリング状態を判定する重力方向検出が行 われる。ステップ b 2 でマニュアル設定であると判断さ れるとき、またはステップb3の重力方向検出が終了す ると、ステップb4に移る。ステップb4では、ハンド リング状態からユーザが目視確認するのに最も適した表 示方向を決定する。この決定には、メモリ5のテーブル を呼出し、表示方向を決定した後、主制御部7は表示部 6を駆動して表示を実行させる。ステップb5では、表 示が休止状態となるか否かを判断する。主制御部7は、 表示中断イベントのチェックを行い、必要な場合にステ ップ b 6 に進み、表示の中断を実行する。なお、表示中 断のイベントとは、予め決定される節電等のために表示 を中断する条件を示し、タイムアウトあるいはユーザの 所定のキー操作によって発生し、これを主制御部7が検 出する。ステップ b 6 では、主制御部7が表示部6での 表示を休止するように制御し、手順を終了する。

【0031】図4は、本発明の実施のさらに他の形態として、表示部6での表示方向をユーザの携帯端末に対するアクション、たとえば文字入力あるいは所定の場所への接触に応じて変更する動作手順の一例を示す。手順を開始した後、ステップc1では、入力部3に備えられる所定の場所へのタッチが行われているか否かを判断されるときには、ステップc2に進み、タッチパネルへのタッチが行われているか否かを判断する。タッチパネルへのタッチが行われているか否かを判断されるときには、ステップc3に進み、手書きで文字が入力されているか否かを判断する。文字が入力されると判断されるときには、ステップc4に進み、文字認識部4による文字認識を行う。この場合の入

力は文字の他に記号あるいは所定の図形であってもよい。文字認識部4は、文字の識別とともに文字、記号あるいは図形の配列方向を検出し、主制御部7に伝える。 主制御部7は、その配列方向に対応して、記憶している表示方向をメモリ5から読取る。

【0032】ステップ c2でタッチパネルへの入力でな いと判断されるときには、ステップc5に進む。ステッ プ c 5 では、携帯端末の所定の表面に対する所定の押圧 であるか否かの判定を行う。所定の押圧でない場合には 10 ステップ c 1 に戻り、所定の押圧であればステップ c 6 に進む。ステップc6では、押圧により表示方向を決定 し、ステップ c 7に進む。メモリ5には、予め押圧の変 化のパターンとそれに対応した表示方向が記憶され、主 制御部7は検出した押圧の変化と記憶している押圧のパ ターンとを比較し、表示方向を判定する。ステップ c 7 へは、ステップc4での文字認識の終了後も進み、主制 御部7は表示部6を制御し、表示すべき情報をステップ c 4 またステップ c 6 で決定された表示方向に表示す る。本実施形態では、表示方向をユーザの携帯端末に対 20 するアクション、たとえば文字入力あるいは所定の場所 への接触に応じて制御することができる。

【0033】なお、表示が行われている表示状態や、表示内容が図形だけであるような表示方向が不明な場合には、一目でどの表示方向であるかを確認できることの方が都合がよい。そこで、表示方向の設定が自動的に行われているかマニュアルで設定されているかを問わず、表示しておくことが好ましい。このような方向表示は、方向表示手段として、表示部6の画像領域の一部を使用して行うこともでき、あるいは専用の表示部を設けることもできる。

【0034】図5は、図1に示す。重力方向検出部1の 装着位置およびその構成を示す。図5 (a)に示すよう に、図1の携帯端末の筐体10の表面に表示部6やタッ チパネルとしての入力部3が設けられ、筐体10内に重 力方向検出部1が配置される。筐体10は小型であり、 そのまま携帯可能である。筐体10の内部は構成部品が 高密度で収納され、重力方向検出部1は可能なら表示部 6に直接装着し、また筐体10内の任意の場所に装着す ることもできる。

【0035】図5(b)は、重力方向検出部1の平面構成を示し、図5(b)は図5(b)の切断面線C-Cから見た断面構成を示す。重力方向検出部1は、容器11の底面12(個別電極13が複数個間隔をあけて配置され、個別電極13の周囲の周壁面14には共通電極15が設けられる。容器11内には液状導体16が部分的に貯留されている。図5(c)に示すように箇体10の底面12を水平な状態にしておくと、液状導体16は全ての個別電極13と共通電極15との間を電気的に導通状態にする。

【0036】図6は、図5に示す重力方向検出部1の底 🥌

面12を重力の方向に対して傾斜させた例を示す。図6(a)は、手前側を上に奥側を下になるように傾斜させた状態を示す。図6(b)は、左側を上に右側を下になるように傾斜させた状態を示す。図6(c)は、左手前側を上に右奥側を下となるように傾斜させた状態を示す。図6(d)は、左奥側を上に右手前側を下になるように傾斜させた状態を示す。図6の各図に示すように、底面12の傾斜状態に応じて、液状導体16が容器11内を満たす範囲が変化し、個別電極13と共通電極15との間の導通状態が変化する。

【0037】図7は、図5に示す重力方向検出部1の各個別電極13と共通電極15との間の導通状態をケース1、ケース2、ケース3、ケース4、…とし、対応するハンドリング状態および適切な表示方向とをテーブルとした例を示す。このようなテーブルは、図1のメモリ5に予め設定しておく。

【0038】図8は、図7に示すようなテーブルを、電 極の状態を表す信号をアドレスとして参照するための例 を示す。アドレス発生回路20は、電極走査回路21が 各個別電極13を選択して共通電極15との間の電気的 な導通状態をチェックする。入力ゲート回路22は、電 極走査回路21によって選択された1つの個別電極13 と共通電極15との間の電気的な導通状態を、入力レベ ルを弁別して識別する。充分な入力レベルがないときに はその個別電極13と共通電極15との間に液状導体1 6 が存在しない状態であると判断し、充分な電気的入力 があれば液状導体16が存在していると判断する。入力 ゲート回路22の出力がアドレス発生回路20に与えち れ、電極走査回路21からの個別電極13に対する選択。 信号とともに評価され、各個別電極13に対して共通電 30 極15との間で電気的導通があるか否かを表す情報が生 成される。この情報をアドレス信号としてアドレス発生 回路20はメモリ5のテーブルを読出すアドレスを発生 し、主制御部7がテーブルの内容を読出す。

【0039】図9は、図1の押圧検出部2の構成を示す。押圧検出部2は、たとえば9個の圧力センサ31~39が3×3のマトリクス状に配置されて構成される。図8(a)は、ユーザが圧力センサ34、35、36の順にタッチしている状態を示す。このようなタッチが行われると、圧力センサ34、35、36の順に伝達される。主制御部7はユーザのタッチ方向順に応じた方向に表示部6での表示方向を決定する。また図8(b)は、圧力センサ38、35、32の順にタッチした場合を示す。

【0040】図10は、入力部3に設けられる表示モードの入力用のキーの例を示す。中央の丸いキー41は、 携帯端末のハンドリング状態に応じて自動的に最適な表示方向に表示自動モード設定キーである。自動モード設定キー41の周囲には、三角形のキー42~45が設けられ、これらを操作すると、自動的な方向制御モードの 動作が禁止され、それぞれのキー42~45に対応した 表示方向にマニュアル設定することができる。これらの キー41~45~の入力は入力部3で検出され、主制御 部7~伝達される。主制御部7は、入力部3からの入力 に応じて、図2または図3に示すような手順で表示方向 の制御を行う。

【0041】図5では、筺体10が水平に配置されてい る場合に基準となる水平状態としているけれども、筺体 10への表示部6の実装の都合上、表示面が地表面に対 10 して水平になっている場合でも、重力方向検出部1が傾 いて取付けられる場合も生じ得る。このような場合は、 表示部6の表面を水平にした状態で、各個別電極13の 共通電極15に対する導通状態で表される情報を基準と なる水平状態を表す情報として記憶しておき、実際に管 体10のハンドリングなどで生じる重力の方向の変化 を、基準となる情報に基づいて検出することもできる。 【0042】また、表示部6の表示画面は、正方形とし ておくこともできる。正方形であれば、表示方向が変化 しても、全く同様に表示させればよい。表示画面が矩形 20 であるときには、長辺側と短辺側とで表示形態も変える 方が見やすい表示を行うことができる。

【0043】本実施形態の重力方向検出部1は、重力の方向について3次元的に検出することができるので、表示部6での表示も、縦方向および横方向ばかりではなく、その中間の傾斜した方向についても表示可能とし、表示方向をきめ細かく変更するように制御することもできる。傾斜した方向に常時行う場合には、表示部6の表示画面を必ずしも有効に使用することはできないけれども、表示内容を見やすい状態で表示することができる。【0044】また、本実施形態の重力方向検出部1は、たとえば液状導体16として水銀や電解質溶液などを用いることができる。このような重力方向検出部1は、本実施形態のような機構端末ばかりでけなく。無々の機器

たことは成仏等体16として水蛭や竜麻貨浴液などを用いることができる。このような重力方向検出部1は、本実施形態のような携帯端末ばかりではなく、種々の機器に応用して重力方向の検出を行わせることができる。また、個別電極13や共通電極16を半導体チップ上に形成し、図8に示すような電気回路とともに半導体集積回路として構成することもできる。

[0045]

50

【発明の効果】以上のように本発明によれば、3次元的な重力の方向に応じて情報表示手段での表示方向を変更することができ、携帯型情報機器として適切な表示を行わせることができる。

【0046】また本発明によれば、重力の方向に基づく 表示方向の切換えを禁止したり、所定方向に指定したり することもできるので、ユーザが見やすい状態に情報表 示手段の表示方向を制御することもできる。

【0047】また本発明によれば、情報表示手段に作用する重力の方向を、情報表示手段に直接方向検出手段を設けないでも筐体に配置すれば情報表示手段の重力の方向に対する姿勢を判定することができるので、携帯型情

報機器の狭い内部空間内で、方向検出手段を配置する自 由度を高めることができる。

11

【0048】また本発明によれば、情報表示手段への表示が停止している間は重力の方向に対する表示方向の変更を停止し、表示の再開と同時に重力の方向に対する表示の方向の変更を再開するので、表示の停止中での無駄な制御を避けて電力消費を低減することができる。

【0049】また本発明によれば、携帯型情報機器に作用する重力の方向の変化が所定の関値以下の振幅、回転、あるいは加速度であるときには、変化を無視するの 10で、手振れなどに基づく表示方向の制御を避けることができる。

【0050】また本発明によれば、タッチパネルとして 構成される情報表示手段に手書きで文字、記号、図形を 入力すれば、入力方向に応じて表示方向を変更すること ができる。

【0051】また本発明によれば、方向表示手段によって、情報表示手段での表示方向を表示するので、情報表示手段の表示内容だけでは表示方向が分かりにくいときであっても、方向表示手段を参照して容易に表示方向を 20 確認することができる。

【0052】さらに本発明によれば、簡単な構成で3次元的に重力の方向を電気的に検出することができる。

【図面の簡単な説明】

【図1】本発明の実施の一形態の携帯端末の概略的な電気的構成を示すブロック図である。

【図2】図1の携帯端末での動作手順の一例を示すフローチャートである。

【図3】本発明の実施の他の形態としての図1の携帯端[®] 末の動作手順を示すフローチャートである。

【図4】本発明の実施のさらに他の形態として図1の携 帯端末の動作手順を示すフローチャートである。

【図5】図1の携帯端末に重力方向検出部1を装着する

状態を示す簡略化した斜視図、および重力方向検出部 1 の構成を示す断面図である。

【図6】図5に示す重力方向検出部1の動作状態を示す 平面断面図である。

【図7】図5の重力方向検出部1での電極の状態とハンドリング状態および表示方向との関連付けテーブルを示す図表である。

【図8】図5の重力方向検出部1を用いて重力方向の検 出を行う電気的構成を示すブロック図である。

0 【図9】図1の押圧検出部2の構成を示す簡略化した平面図である。

【図10】図1の入力部3の部分的構成を示す平面図である。

【符号の説明】

- 1 重力方向検出部
- 2 押圧検出部
- 3 入力部
- 4 文字認識部
- 5 メモリ
- 20 6 表示部
 - 7 主制御部
 - 10 筐体
 - 11 容器
 - 12 底面
 - 13 個別電極
 - 14 周壁面
 - 15 共通電極
 - 16 液状導体
 - 20 アドレス発生回路
- 30 21 電極走査回路
 - 22 入力ゲート回路
 - 31~39 圧力センサ
 - 41~45 +-

[図1]

【図7】

常径の状態	ハンドリング状態	表示方向		
ケース1		***		
ケース2		***		
ケース3		•••		
ケースも		•••		
1		!		

【図10】

フロントページの続き

(51) Int. C1. ⁷ 識別記号 F I 7-73-ド(参考)
G O 9 G 5/00 5 5 O G O 9 G 5/00 5 5 O C 5/36 5 2 O K

F ターム(参考) 5C080 AA10 BB05 DD01 DD13 EE01

F ターム(参考) 5C080 AA10 BB05 DD01 DD13 EE01 EE23 FF09 GG01 GG12 JJ02 JJ06 JJ07 5C082 AA00 AA21 AA24 BA02 BA12 CA42 CA81 CB01 DA51 MM09 MM10 5G435 AA00 BB12 CC13 DD01 EE30 GG21

BEST AVAILABLE COPY