DeepIntoDeep

Application of Transformers (ViT & Swin Transformer)

발표자: 전성후

Application of Transformers(ViT & Swin Transformer)

전성후

Artificial Intelligence in Korea University(AIKU)

Department of Computer Science and Engineering, Korea University

목차

- (Recap) Transformer
- Vision In Transformer (ViT)
 - How to use attention/Transformer in vision?
 - Architecture
 - Inductive Bias
- Swin Transformer
 - Relative Positional Encoding
- Is Attention All You Need?
 - MLP-Mixer
 - MetaFormer

과제2

- LSTM 구현 + Transformer Encoder 구현하기
- Sentiment Classification

(Recap) Transformer

How to use Attention / Transformers for Vision?

Idea #1. Add Attention to CNNs

Self-Attention Module

Idea #1. Add Attention to CNNs

- Quite used architecture nowadays
- But model is still a CNN; Can we replace convolution entirely?

Idea #2. Replace Conv with "Local Attention"

Lots of tricky details; hard to implement and marginally better than CNNs

Idea #3. Standard Transformers on Pixels

Idea #3. Standard Transformers on Pixels

AN IMAGE IS WORTH 16x16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy*,†, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*,
Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*,†

*equal technical contribution, †equal advising
Google Research, Brain Team
{adosovitskiy, neilhoulsby}@google.com

N input patches, each of shape 3x16x16

Linear projection to D-dimensional vector

N input patches, each of shape 3x16x16

Add positional embedding: learned D-dim vector per position

Linear projection to D-dimensional vector

N input patches, each of shape 3x16x16

• [CLS] token

- Less computation resources
 - In practice: take 224x224 input image, divide into 14x14 grid of 16x16 pixel patches (or 16x16 grid of 14x14 patches)
 - With 48 layers, 16 heads per layer, all attention matrices take 112 MB (or 192MB)

Recall: ImageNet dataset has 1k categories, 1.2M images

When trained on ImageNet, ViT models perform worse than ResNets

B = Base

L = Large

H = Huge

/32, /16, /14 is patch size; smaller patch size is a bigger model (more patches)

Inductive Bias

- Learning is an ill-posed problem; data is not sufficient to find a unique solution.
- Human-designed assumptions about hypothesis space are needed; Inductive Bias

Inductive Bias of CNNs

- Why CNNs have great performance on vision tasks?
- Local kernel processing / Hierarchical processing
- Translation invariance (Shared kernels and sliding windows)

Inductive Bias of CNNs

Strong inductive bias can make models robust to overfitting. (Regularization?)

Recall: ImageNet dataset has 1k categories, 1.2M images

When trained on ImageNet, ViT models perform worse than ResNets

Pretraining and Finetuning

ImageNet-21k has 14M images with 21k categories

If you pretrain on ImageNet-21k and fine-tune on ImageNet, ViT does better: big ViTs match big ResNets

B = Base

L = Large

H = Huge

/32, /16, /14 is patch size; smaller patch size is a bigger model (more patches)

JFT-300M is an internal Google dataset with 300M labeled images

If you pretrain on JFT and finetune on ImageNet, large ViTs outperform large ResNets

/32, /16, /14 is patch size; smaller patch size is a bigger model (more patches)

- ViT models have less 'inductive bias' than ResNets
- Need more pretraining data to learn good features
- ViTs make more efficient use of GPU / TPU hardware (Why?)

JFT-300M is an internal Google dataset with 300M labeled images

If you pretrain on JFT and finetune on ImageNet, large ViTs outperform large ResNets

ViT: 2.5k TPU-v3 core days of training

ResNet: 9.9k TPU-v3 core days of training

/32, /16, /14 is patch size; smaller patch size is a bigger model (more patches)

What ViT accomplished

Input

RGB embedding filters (first 28 principal components)

Inductive Bias: Hierarchicality

- ViT can only produce feature maps of single low resolution
 - Visual elements has various scales, unlike the word tokens
- We cannot attention on pixels (or very small patches) for high-res feature map, due to quadratic computational complexity of self-attention

Swin Transformer

- Expand the applicabaility of Transformer to general-purpos backbone for CV
 - Introduce 'window' concept
 - Starts from small-sized patches, gradually merges neigboring patches

Swin Transformer

- Local Window attention
 - Compute self-attention locally within non-overlapping windows

Computational Complexity of Self-attention

Global (Multihead) Self-Attention

$$\Omega\left(\mathbf{MSA}\right) = \frac{3hw \times C^2}{2(hw)^2C} + hw \times C^2$$
$$= 4hwC^2 + 2(hw)^2C$$

Computational Complexity of Self-attention

Windowed (Multihead) Self-Attention

[for $\lfloor \frac{h}{M} \rfloor \lfloor \frac{w}{M} \rfloor$ windows]

$$M^{2} \times C \xrightarrow{\vdots} W_{K} \in \mathbb{R}^{C \times C} \mathbf{K}$$

$$W_{V} \in \mathbb{R}^{C \times C} \mathbf{K}$$

$$W_{V} \in \mathbb{R}^{C \times C} \mathbf{V}$$

$$M^{2} \times C \times C \times C$$

$$W_{V} \in \mathbb{R}^{C \times C} \mathbf{V}$$

$$M^{2} \times C \times C \times C$$

Computational Complexity of Self-attention

W-MSA has linear complexity to image size (# of patches, hw)

$$\Omega(MSA) = 4hwC^{2} + 2(hw)^{2}C,$$

$$\Omega(W-MSA) = 4hwC^{2} + 2M^{2}hwC,$$

Shifted window

- Problem of W-MSA?
 - Lack of connectivity between windows
 - Introduces Shifted Window
 - Two Successive Swin Transformer Blocks have W-MSA and SW-MSA
 - W-MSA uses regular window
 - SW-MSA uses shifted window

Swin Transformer

- Patch Partition & linear Embedding (w/ Relative Positional Bias)
- Swin Transformer Blocks
- Patch Merging

Swin Transformer

- Patch Partition & linear Embedding (w/ Relative Positional Bias)
- Swin Transformer Blocks
- Patch Merging

Patch Partition & linear Embedding

$$\mathbb{R}^{H \times W \times C}$$

$$\mathbb{R}^{\frac{h}{4} \times \frac{w}{4} \times 48} \qquad \mathbb{R}^{\frac{h}{4} \times \frac{w}{4} \times C}$$

$$\rightarrow \qquad \rightarrow \qquad \qquad \rightarrow$$

$$\vdots \qquad \vdots \qquad \vdots$$

Patch Partition & linear Embedding

$$\mathbb{R}^{H \times W \times C}$$

Kernel size : 4 Out channel : C

Relative Positional Bias

Window size (M) = 3

Relative Position index

12	11	10	7	6	5	2	1	0
13	12	11	8	7	6	3	2	1
14	13	12	9	8	7	4	3	2
17	16	15	12	11	10	7	6	5
18	17	16	13	12	11	8	7	6
19	18	17	14	13	12	9	8	7
22	21	20	17	16	15	12	11	10
23	22	21	18	17	16	13	12	11
24	23	22	19	18	17	14	13	12

 M^2

Swin Transformer Block

: W-MSA

: SW-MSA

: Relative Position Bias

 $Attention(Q, K, V) = SoftMax(QK^{T}/\sqrt{d} + B)V,$

SW-MSA

SW-MSA

Apply self-attention only in the masked(black) part

Swin Transformer

- Patch Partition & linear Embedding (w/ Relative Positional Bias)
- Swin Transformer Blocks
- Patch Merging

Patch Merging

- Concatenates patches in each window and projects from 4C to 2C
- Mix the information of the patches on the channel axis
- Prevent from too large channel size

Swin Transformer

3번 문항

(A) Table 1

(a) Regu	lar Im	age Net-	1K traii	ned models			
method	image	#param.	FLOPs	throughput			
method	size	"Purum	113013	(image / s)	top-1 acc.		
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	77.9		
ViT-L/16 [20]	384^{2}	307M	190.7G	27.3	76.5		
Swin-B	224^{2}	88M	15.4G	278.1	83.5		
Swin-B	384^{2}	88M	47.0G	84.7	84.5		

(B) Table 2

(b) In	age Ne	t-22K pr	e-traine	d models		
method	image size	#param.	FLOPs	throughput (image / s)	The state of the s	
ViT-B/16 [20]	3842	86M	55.4G	85.9	84.0	
ViT-L/16 [20]	384^{2}	307M	190.7G	27.3	85.2	
Swin-B	2242	88M	15.4G	278.1	85.2	
Swin-B	384 ²	88M	47.0G	84.7	86.4	

질문 1

두 Table에 명시된 결과를 <u>자유롭게 분석</u>하세요. 답변에 따라 추가 질문이 있을 수 있습니다.

Vision Transformer: Another Look

Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021

<u>Cat image</u> is free for commercial use under a <u>Pixabay license</u>

Vision Transformer: Another Look

MLP-Mixer

Input: N x C
N patches with
C channels each

MLP 1: C -> C, apply to each of the **N patches** MLP 2: N -> N, apply to each of the **C** channels

MLP-Mixer

Is "Attention" All You Need (in CV)?

Is "Attention" All You Need? "Transformer Architecture" is All You Need!

Transformer vs. MLP-Mixer

- The architecture of Transformer and MLP-Mixer are fundamentally same.
 - Token Mixer: mix information between (spatial) tokens
 - Channel Mixer: mix information between channels
- Traditionally, the success of Transformers has been attributed to attention-based token mixers
 - But, why MLP Mixer works very well?
 - Is Transformer Architecture all we need?

(Note) PoolFormer

• To test the hypothesis, PoolFormer is introduced.

Pooling Token mixing layer: highly simplistic and non-parametric

```
Algorithm 1 Pooling for PoolFormer, PyTorch-like Code

import torch.nn as nn

class Pooling(nn.Module):
    def __init__(self, pool_size=3):
        super().__init__()
        self.pool = nn.AvgPool2d(
            pool_size, stride=1,
                padding=pool_size//2,
                count_include_pad=False,
    )

def forward(self, x):
    """
    [B, C, H, W] = x.shape
    Subtraction of the input itself is added since the block already has a residual connection.
    """
    return self.pool(x) - x
```

(Note) PoolFormer

MoE, Perciver IO, RetNet, ...

디스커션 과제

- 개인 과제 : CNN vs. Transformer
 - 현재 CV 분야에서 활용되는 다양한 모델들의 대부분이 backbone architecture로 CNN 기반 혹은 Transformer 기반 모델들을 활용하고 있습니다. 그렇다면 항상 Transformer을 사용하는 것이 좋을까요? 그 렇지 않다면 어떤 경우에 CNN이 더 좋은 성능을 낼까요?
- 팀 과제 : Inductive Bias
 - 두 표의 결과가 왜 이렇게 나오게 되었는지, inductive bias와 pretraining dataset size의 관점에서 분석해 봅시다.

(A) Table	1						(B) Table 2						
(a) Regular ImageNet-1K trained models							(b) ImageNet-22K pre-trained models						
method	image size	#param.	FLOPs	throughput (image / s)			method	image size	#param.	FLOPs	~ .	ImageNet top-1 acc.	
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	77.9	-	ViT-B/16 [20]	384 ²	86M	55.4G	85.9	84.0	
ViT-L/16 [20]	384^{2}	307M	190.7G	27.3	76.5		ViT-L/16 [20]	384 ²	307M	190.7G	27.3	85.2	
Swin-B	224^{2}	88M	15.4G	278.1	83.5		Swin-B	2242	88M	15.4G	278.1	85.2	
Swin-B	384 ²	88M	47.0G	84.7	84.5		Swin-B	384 ²	88M	47.0G	84.7	86.4	

감사합니다.