Supplementary Material for: N-representability of the target density in Frozen-Density Embedding Theory based methods: numerical significance and relation to electronic polarisation

Niccolò Ricardi, $^{1,\,\mathrm{a})}$ Cristina E. González-Espinoza, $^{1,\,\mathrm{b})}$ and Tomasz Adam Wesołowski $^{1,\,\mathrm{c})}$

Department of Physical Chemistry, University of Geneva,

Geneva (Switzerland)

(Dated: 16 June 2022)

^{a)}Electronic mail: Niccolo.Ricardi@unige.ch

b) Electronic mail: Cristina.GonzalezEspinoza@unige.ch

c) Electronic mail: Tomasz. Wesolowski@unige.ch

S1. CONSTRAINED SEARCH DEFINITIONS OF DENSITY FUNCTIONALS USED IN FDET

A. Functionals in Kohn-Sham formulation of DFT

$$T_s[\rho] = \min_{\Phi \to \sigma} \left\langle \Phi | \hat{T} | \Phi \right\rangle = \left\langle \Phi^o[\rho] | \hat{T} | \Phi^o[\rho] \right\rangle = T_s[\rho] \tag{S1}$$

$$E_{xc}[\rho] = \min_{\Psi \to \rho} \left\langle \Psi | \hat{T} + \hat{V}^{ee} | \Psi \right\rangle - T_s[\rho] - J[\rho]$$

$$= \left\langle \Psi^o[\rho] | \hat{T} + \hat{V}^{ee} | \Psi^o[\rho] \right\rangle - T_s[\rho] - J[\rho],$$
(S2)

where $\hat{V}_{ee} = \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$ is the electron-electron repulsion operator, $J[\rho] = \frac{1}{2} \int \int \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}|} d\mathbf{r}' d\mathbf{r}$, Φ and Ψ are N-electron wave-functions of the single-determinant or Full Configuration Interaction form, respectively.

B. Functionals used in FDET

For a) embedded wavefunctions of the Full Configuration Interaction form, b) embedded non-interacting reference (Kohn-Sham-like) system, and c) embedded one-particle spin-less reduced density matrix, FDET uses the non-additive kinectic-exchange-correlation bifunctional defined as:

$$E_{xct}^{nad}[\rho_A, \rho_B] \equiv E_{xc}[\rho_A + \rho_B] - E_{xc}[\rho_A] - E_{xc}[\rho_B] + T_s[\rho_A + \rho_B] - T_s[\rho_A] - T_s[\rho_B].$$
(S3)

For embedded wavefunctions of truncated Configuration Interaction form, FDET uses another functional:

$$E_{xct}^{nad(truncCI)}[\rho_A, \rho_B] \equiv E_{xct}^{nad}[\rho_A, \rho_B] + E_c^{truncCI}[\rho] \le E_{xct}^{nad}[\rho_A, \rho_B], \tag{S4}$$

where

$$\begin{split} E_c^{truncCI}[\rho] &= \min_{\Psi \longrightarrow \rho} \left\langle \Psi | \hat{T} + \hat{V}^{ee} | \Psi \right\rangle - \min_{\Psi^{truncCI} \longrightarrow \rho} \left\langle \Psi^{truncCI} | \hat{T} + \hat{V}^{ee} | \Psi^{truncCI} \right\rangle \\ &= \left\langle \Psi^o[\rho] | \hat{T} + \hat{V}^{ee} | \Psi^o[\rho] \right\rangle - \left\langle \Psi^{o(truncCI)}[\rho] | \hat{T} + \hat{V}^{ee} | \Psi^{o(truncCI)}[\rho] \right\rangle, \end{split} \tag{S5}$$

If the embedded wavefunction has a single-determinant form:

$$E_{xct}^{nad(SD)}[\rho_A, \rho_B] \equiv E_{xct}^{nad}[\rho_A, \rho_B] + E_c[\rho] \le E_{xct}^{nad}[\rho_A, \rho_B], \tag{S6}$$

where

$$E_{c}[\rho] = \min_{\Psi \to \rho} \left\langle \Psi | \hat{T} + \hat{V}^{ee} | \Psi \right\rangle - \min_{\Phi \to \rho} \left\langle \Phi | \hat{T} + \hat{V}^{ee} | \Phi \right\rangle$$

$$= \left\langle \Psi^{o}[\rho] | \hat{T} + \hat{V}^{ee} | \Psi^{o}[\rho] \right\rangle - \left\langle \Phi^{o}[\rho] | \hat{T} + \hat{V}^{ee} | \Phi^{o}[\rho] \right\rangle,$$
(S7)

is the correlation functional defined also in the Kohn-Sham formulation of DFT.

Using variationally obtained embedded single determinant AND neglecting $E_c[\rho]$ leads to the violation of the basic FDET equality relating FDET energy functional to the Hohenberg-Kohn functional (Eq. 2) leading to the increase of the energy. The energy consistent with the Hohenberg-Kohn functional correcting this increase is given in Eq. 6.

S2. PROOF THAT $M[\rho_B - \rho_v] \leq P[\rho_A + \rho_B - \rho_v^o]$

We start with the obvious equality,

$$\int \rho_A + \rho_B - \rho_v^o = 0, \tag{S8}$$

from which it follows that:

$$\int_{\rho_v^o < \rho_A + \rho_B} \rho_A + \rho_B - \rho_v^o = \int_{\rho_v^o > \rho_A + \rho_B} \rho_v^o - \rho_A - \rho_B. \tag{S9}$$

The above relation used in the definition of P leads to:

$$P[\rho_{A} + \rho_{B} - \rho_{v}^{o}] = \frac{1}{2} \int |\rho_{A} + \rho_{B} - \rho_{v}^{o}|$$

$$= \frac{1}{2} \int_{\rho_{v}^{o} < \rho_{A} + \rho_{B}} \rho_{A} + \rho_{B} - \rho_{v}^{o} +$$

$$\frac{1}{2} \int_{\rho_{v}^{o} > \rho_{A} + \rho_{B}} \rho_{A} + \rho_{B} - \rho_{v}^{o}$$

$$= \int_{\rho_{v}^{o} < \rho_{A} + \rho_{B}} \rho_{A} + \rho_{B} - \rho_{v}^{o}.$$

$$= \int_{\rho_{v}^{o} < \rho_{A} + \rho_{B}} \rho_{A} + \rho_{B} - \rho_{v}^{o}.$$
(S10)

Splitting the domain of integration of the final integral above leads to:

$$P[\rho_A + \rho_B - \rho_v^o] = \int_{\rho_v^o < \rho_B} \rho_A + \rho_B - \rho_v^o +$$

$$\int_{\rho_B \le \rho_v^o < \rho_B + \rho_A} \rho_A + \rho_B - \rho_v^o$$

$$= \int_{\rho_v^o < \rho_B} \rho_B - \rho_v^o +$$

$$+ \int_{\rho_v^o < \rho_B} \rho_A + \int_{\rho_B \le \rho_v^o < \rho_B + \rho_A} \rho_A + \rho_B - \rho_v^o$$

$$(S12)$$

The first integral in the right-hand-side of the equation above is equal to $M[\rho_v^o - \rho_B]$ whereas the second and third are non-negative. As a result:

$$P[\rho_A + \rho_B - \rho_v^o] \ge M[\rho_v^o - \rho_B],\tag{S13}$$

which ends the proof.

S3. DATA

A. cc-pVDZ

complex	$ ho_B$	$E_k[\Delta \rho_{v_A'}^c, \rho_A', \rho_B] \ ^{[a]}$	$E_k[\Delta \rho_{v_B'}^c, \rho_B', \rho_A]^{[a]}$	$E_{int}^{FDET(\rho_B)} [b]$	E_{int}^{ref} [c]	Δ_{CP} [d]	$M^{[e]}$	$P^{[f]}$	P_{cmpl} [g]
7HQ-2MeOH		0.063		-11.200	-14.482	11.159	0.108	0.216	0.350
7HQ-2MeOH	ρ_B^{FAT}	0.053	0.096	-14.216	-14.482	11.159	0.007	0.066	0.350
7HQ-formate	$ ho_B^{isol}$	-0.009		-25.717	-38.148	11.902	0.176	0.285	0.648
7HQ-formate	$ ho_B^{FAT}$	-0.036	0.033	-36.933	-38.148	11.902	0.007	0.070	0.648
uracil- $5H_2O$	$ ho_B^{isol}$	0.166		-32.320	-34.396	23.111	0.203	0.394	0.600
uracil- $5H_2O$	$ ho_B^{FAT}$	0.147	0.162	-39.794	-34.396	23.111	0.014	0.126	0.600
PyrBnz-2HCOOH	$ ho_B^{isol}$	0.130		-26.794	-32.300	13.907	0.175	0.406	0.583
PyrBnz-2HCOOH	$ ho_B^{FAT}$	0.103	0.108	-33.852	-32.300	13.907	0.012	0.110	0.583

 $^{^{[}a]}$ defined in Eq. 7 in the manuscript

[d] Counterpoise correction: $\Delta_{CP} = E_{v_A}^{(A)} + E_{v_B}^{(B)} - E_{v_A}^{(AB)} - E_{v_B}^{(AB)}$, where all values are obtained with MP2, the subscript denotes the subsystem, and the superscript denotes the centres involved in the basis set expansion.

$$^{[e]}$$
 $M=M[\rho_v^{o(ref)}-\rho_B^{FDET(FAT)}]$ with $M[\rho]$ defined in Eq. 18 in the manuscript

$$[f]$$
 $P_{cmpl} = P[\rho_A^{isol} + \rho_B^{isol} - \rho_v^{o(ref)}]$ (cf. Eq. 21), with $P[\rho]$ defined in Eq. 19 in the manuscript

$$^{[g]}$$
 $P=P[\rho_v^{o(ref)}-\rho_{tot}^{FDET(FAT)}]$ with $P[\rho]$ defined in Eq. 19 in the manuscript

$$^{[h]}$$
 $E_{int}^{FDET(FAT)}$ is given in Eq. 17 in the manuscript

TABLE S1. Supplementary data for results obtained with the *supermolecular expansion* and the cc-pVDZ basis set. Energies are given in kcal/mol and quantities related to electron densities are given in atomic units.

 $^{^{[}b]}$ defined in Eq. 12, and Eq. 17 in the manuscript for ρ_B^{isol} and ρ_B^{FAT} respectively.

^[c] Counterpoise corrected, i.e. $E_{int}^{ref} = E_v^{(AB)} - E_{v_A}^{(AB)} - E_{v_B}^{(AB)}$, where all values are obtained with MP2, the subscript denotes the subsystem, and the superscript denotes the centres involved in the basis set expansion.

complex	$ ho_B$	$E_k[\Delta \rho_{v_A'}^c, \rho_A', \rho_B]^{[a]}$	$E_k[\Delta \rho_{v_B'}^c, \rho_B', \rho_A]^{[a]}$	$E_{int}^{FDET(\rho_B)}$ [b]	E_{int}^{ref} [c]	Δ_{CP} [d]	$M^{[e]}$	$P^{[f]}$	P_{cmpl} [g]
7HQ-2MeOH	$ ho_B^{isol}$	0.023		-10.724	-14.482	11.159	0.131	0.228	0.354
7HQ-2MeOH	$\rho_B^{pp(Mulliken)}$	0.021		-12.063	-14.482	11.159	0.091	0.171	0.354
7HQ-2MeOH	$ ho_B^{pp(ChelPG)}$	0.021		-12.343	-14.482	11.159	0.063	0.137	0.354
7HQ-2MeOH	$ ho_B^{FAT}$	0.020	0.036	-12.062	-14.482	11.159	0.045	0.103	0.354
7HQ-formate	$ ho_B^{isol}$	-0.021		-27.189	-38.148	11.902	0.226	0.306	0.645
7HQ-formate	$ ho_B^{pp(Mulliken)}$	-0.021		-29.673	-38.148	11.902	0.181	0.253	0.645
7HQ-formate	$ ho_B^{pp(ChelPG)}$	-0.021		-30.350	-38.148	11.902	0.154	0.222	0.645
7HQ-formate	$ ho_B^{FAT}$	-0.021	0.040	-29.917	-38.148	11.902	0.116	0.177	0.645
uracil-5H ₂ O	$ ho_B^{isol}$	0.068		-30.102	-34.396	23.111	0.264	0.413	0.605
uracil-5H ₂ O	$ ho_B^{pp(Mulliken)}$	0.063		-33.053	-34.396	23.111	0.183	0.303	0.605
uracil-5H ₂ O	$ ho_B^{pp(ChelPG)}$	0.061		-33.678	-34.396	23.111	0.144	0.254	0.605
uracil-5H ₂ O	$ ho_B^{FAT}$	0.057	0.051	-32.892	-34.396	23.111	0.120	0.206	0.605
PyrBnz-2HCOOH	$ ho_B^{isol}$	0.088		-24.896	-32.300	13.907	0.204	0.422	0.582
PyrBnz-2HCOOH	$\rho_B^{pp(Mulliken)}$	0.079		-28.615	-32.300	13.907	0.106	0.265	0.582
PyrBnz-2HCOOH	$\rho_B^{pp(ChelPG)}$	0.077		-29.135	-32.300	13.907	0.090	0.233	0.582
PyrBnz-2HCOOH	$ ho_B^{FAT}$	0.071	0.025	-28.491	-32.300	13.907	0.060	0.162	0.582

[[]a] defined in Eq. 7 in the manuscript

[d] Counterpoise correction: $\Delta_{CP} = E_{v_A}^{(A)} + E_{v_B}^{(B)} - E_{v_A}^{(AB)} - E_{v_B}^{(AB)}$, where all values are obtained with MP2, the subscript denotes the subsystem, and the superscript denotes the centres involved in the basis set expansion.

$$^{[e]}$$
 $M=M[\rho_v^{o(ref)}-\rho_B^{FDET(FAT)}]$ with $M[\rho]$ defined in Eq. 18 in the manuscript

$$^{[f]}$$
 $P_{cmpl}=P[
ho_A^{isol}+
ho_B^{isol}-
ho_v^{o(ref)}]$ (cf. Eq. 21), with $P[
ho]$ defined in Eq. 19 in the manuscript

$$^{[g]}$$
 $P=P[\rho_v^{o(ref)}-\rho_{tot}^{FDET(FAT)}]$ with $P[\rho]$ defined in Eq. 19 in the manuscript

TABLE S2. Supplementary data for results obtained with the *monomer expansion* and the cc-pVDZ basis set. Energies are given in kcal/mol and quantities related to electron densities are given in atomic units.

^[b] defined in Eq. 12, and Eq. 17 in the manuscript for ρ_B^{isol} and ρ_B^{FAT} respectively, and in Eq. 14 for $\rho_B^{pp(Mulliken)}$ and $\rho_B^{pp(ChelPG)}$

^[c] Counterpoise corrected, i.e. $E_{int}^{ref} = E_v^{(AB)} - E_{v_A}^{(AB)} - E_{v_B}^{(AB)}$, where all values are obtained with MP2, the subscript denotes the subsystem, and the superscript denotes the centres involved in the basis set expansion.

 $^{^{[}h]}$ $E_{int}^{FDET(FAT)}$ is given in Eq. 17 in the manuscript

FIG. S1. Integrated negative density M and the FDET-MP2 interaction energy for various choices of ρ_B : a) ρ_B^{isol} (orange triangles), b) ρ_B^{FAT} (light blue hexagons), c) $\rho_B^{pp(Mulliken)}$ (green diamonds), and d) $\rho_B^{pp(ChelPG)}$ (dark blue pentagons). Data obtained using the monomer expansion and the cc-pVDZ basis set. Horizontal lies indicate the reference interaction energy.

Figure S4 shows that the pre-polarisation of ρ_B using the ChelPG representation of ρ_A^{isol} results also in a significant improvement in the total density.

FIG. S2. Integrated negative density M and the total density error P for various choices of ρ_B : a) ρ_B^{isol} (orange triangles), b) ρ_B^{FAT} (light blue hexagons), c) $\rho_B^{pp(Mulliken)}$ (green diamonds), and d) $\rho_B^{pp(ChelPG)}$ (dark blue pentagons). Data obtained using the monomer expansion and the cc-pVDZ basis set.

B. aug-cc-pVDZ

complex	$ ho_B$	$E_k[\Delta \rho_{v_A'}^c, \rho_A', \rho_B]^{[a]}$	$E_k[\Delta \rho_{v_B'}^c, \rho_B', \rho_A]^{[a]}$	$E_{int}^{FDET(\rho_B)}$ [b]	E_{int}^{ref} [c]	Δ_{CP} [d]	$M^{[e]}$	$P^{[f]}$	P_{cmpl} [g]
7HQ-2MeOH		0.092		-10.983	-17.473	5.632	0.121	0.228	0.362
7HQ-2MeOH	$ ho_B^{FAT}$	0.081	0.127	-14.269	-17.473	5.632	0.007	0.059	0.362
7HQ-formate	$ ho_B^{isol}$	0.020		-23.037	-36.485	3.522	0.206	0.316	0.670
7HQ-formate	$ ho_B^{FAT}$	-0.008	0.068	-33.325	-36.485	3.522	0.007	0.066	0.670
uracil- $5H_2O$	$ ho_B^{isol}$	0.224		-32.065	-38.620	7.839	0.234	0.426	0.633
uracil- $5H_2O$	$ ho_B^{FAT}$	0.204	0.236	-39.695	-38.620	7.839	0.014	0.114	0.633
PyrBnz-2HCOOH	$ ho_B^{isol}$	0.160		-26.948	-36.532	7.318	0.184	0.416	0.600
PyrBnz-2HCOOH	$ ho_B^{FAT}$	0.131	0.164	-34.894	-36.532	7.318	0.013	0.104	0.600

 $^{^{[}a]}$ defined in Eq. 7 in the manuscript

[d] Counterpoise correction: $\Delta_{CP} = E_{v_A}^{(A)} + E_{v_B}^{(B)} - E_{v_A}^{(AB)} - E_{v_B}^{(AB)}$, where all values are obtained with MP2, the subscript denotes the subsystem, and the superscript denotes the centres involved in the basis set expansion.

$$^{[e]}$$
 $M=M[\rho_v^{o(ref)}-\rho_B^{FDET(FAT)}]$ with $M[\rho]$ defined in Eq. 18 in the manuscript

$$[f]$$
 $P_{cmpl} = P[\rho_A^{isol} + \rho_B^{isol} - \rho_v^{o(ref)}]$ (cf. Eq. 21), with $P[\rho]$ defined in Eq. 19 in the manuscript

$$^{[g]}$$
 $P=P[\rho_v^{o(ref)}-\rho_{tot}^{FDET(FAT)}]$ with $P[\rho]$ defined in Eq. 19 in the manuscript

$$^{[h]}$$
 $E_{int}^{FDET(FAT)}$ is given in Eq. 17 in the manuscript

TABLE S3. Supplementary data for results obtained with the *supermolecular expansion* and the aug-cc-pVDZ basis set. Energies are given in kcal/mol and quantities related to electron densities are given in atomic units.

 $^{^{[}b]}$ defined in Eq. 12, and Eq. 17 in the manuscript for ρ_B^{isol} and ρ_B^{FAT} respectively.

^[c] Counterpoise corrected, i.e. $E_{int}^{ref} = E_v^{(AB)} - E_{v_A}^{(AB)} - E_{v_B}^{(AB)}$, where all values are obtained with MP2, the subscript denotes the subsystem, and the superscript denotes the centres involved in the basis set expansion.

complex	$ ho_B$	$E_k[\Delta \rho_{v_A'}^c, \rho_A', \rho_B]^{[a]}$	$E_k[\Delta \rho_{v_B'}^c, \rho_B', \rho_A]^{[a]}$	$E_{int}^{FDET(\rho_B)} [b]$	E_{int}^{ref} [c]	Δ_{CP} [d]	$M^{[e]}$	$P^{[f]}$	P_{cmpl} [g]
7HQ-2MeOH	$ ho_B^{isol}$	0.087		-10.702	-17.473			0.231	0.368
7HQ-2MeOH	$\rho_B^{pp(Mulliken)}$	0.084		-10.688	-17.473	5.632	0.121	0.221	0.368
7HQ-2MeOH	$\rho_B^{pp(ChelPG)}$	0.084		-13.492	-17.473	5.632	0.037	0.118	0.368
7HQ-2MeOH	$ ho_B^{FAT}$	0.081	0.128	-13.181	-17.473	5.632	0.013	0.073	0.368
7HQ-formate	$ ho_B^{isol}$	0.021		-22.927	-36.485	3.522	0.205	0.316	0.673
7HQ-formate	$ ho_B^{pp(Mulliken)}$	0.016		-27.202	-36.485	3.522	0.148	0.242	0.673
7HQ-formate	$ ho_B^{pp(ChelPG)}$	0.015		-28.678	-36.485	3.522	0.096	0.186	0.673
7HQ-formate	$ ho_B^{FAT}$	0.011	0.117	-28.028	-36.485	3.522	0.036	0.114	0.673
uracil- $5H_2O$	$ ho_B^{isol}$	0.212		-31.629	-38.620	7.839	0.237	0.427	0.643
I .	$\rho_B^{pp(Mulliken)}$	0.201		-35.221	-38.620	7.839	0.173	0.305	0.643
uracil- $5H_2O$	$ ho_B^{pp(ChelPG)}$	0.205		-38.010	-38.620	7.839	0.058	0.206	0.643
uracil- $5H_2O$	$ ho_B^{FAT}$	0.196	0.234	-37.182	-38.620	7.839	0.024	0.129	0.643
PyrBnz-2HCOOH	$ ho_B^{isol}$	0.161		-25.795	-36.532	7.318	0.185	0.419	0.606
PyrBnz-2HCOOH	$\rho_B^{pp(Mulliken)}$	0.141		-31.448	-36.532	7.318	0.152	0.281	0.606
PyrBnz-2HCOOH	$ ho_B^{pp(ChelPG)}$	0.146		-32.291	-36.532	7.318	0.057	0.215	0.606
PyrBnz-2HCOOH	$ ho_B^{FAT}$	0.139	0.164	-32.418	-36.532	7.318	0.016	0.127	0.606

[[]a] defined in Eq. 7 in the manuscript

[d] Counterpoise correction: $\Delta_{CP} = E_{v_A}^{(A)} + E_{v_B}^{(B)} - E_{v_A}^{(AB)} - E_{v_B}^{(AB)}$, where all values are obtained with MP2, the subscript denotes the subsystem, and the superscript denotes the centres involved in the basis set expansion.

$$^{[e]}$$
 $M=M[\rho_v^{o(ref)}-\rho_B^{FDET(FAT)}]$ with $M[\rho]$ defined in Eq. 18 in the manuscript

$$^{[f]}$$
 $P_{cmpl}=P[
ho_A^{isol}+
ho_B^{isol}-
ho_v^{o(ref)}]$ (cf. Eq. 21), with $P[
ho]$ defined in Eq. 19 in the manuscript

$$^{[g]}$$
 $P=P[\rho_v^{o(ref)}-\rho_{tot}^{FDET(FAT)}]$ with $P[\rho]$ defined in Eq. 19 in the manuscript

TABLE S4. Supplementary data for results obtained with the *monomer expansion* and the aug-cc-pVDZ basis set. Energies are given in kcal/mol and quantities related to electron densities are given in atomic units.

^[b] defined in Eq. 12, and Eq. 17 in the manuscript for ρ_B^{isol} and ρ_B^{FAT} respectively, and in Eq. 14 for $\rho_B^{pp(Mulliken)}$ and $\rho_B^{pp(ChelPG)}$

[[]c] Counterpoise corrected, i.e. $E_{int}^{ref} = E_v^{(AB)} - E_{v_A}^{(AB)} - E_{v_B}^{(AB)}$, where all values are obtained with MP2, the subscript denotes the subsystem, and the superscript denotes the centres involved in the basis set expansion.

 $^{^{[}h]}$ $E_{int}^{FDET(FAT)}$ is given in Eq. 17 in the manuscript

C. cc-pVTZ

complex	$ ho_B$	$E_k[\Delta \rho_{v_A'}^c, \rho_A', \rho_B]^{[a]}$	$E_k[\Delta \rho_{v_B'}^c, \rho_B', \rho_A]^{[a]}$	$E_{int}^{FDET(\rho_B)}$ [b]	E_{int}^{ref} [c]	Δ_{CP} [d]	$M^{[e]}$	$P^{[f]}$	P_{cmpl} [g]
7HQ-2MeOH	l. D	0.040		-10.716	-17.858	5.681	0.125	0.226	0.358
7HQ-2MeOH		0.038		-12.684	-17.858	5.681	0.071	0.153	0.358
7HQ-2MeOH	$ ho_B^{pp(ChelPG)}$	0.037		-13.254	-17.858	5.681	0.045	0.119	0.358
7HQ-2MeOH	$ ho_B^{FAT}$	0.035	0.068	-13.132	-17.858	5.681	0.021	0.074	0.358
7HQ-formate	_	0.002		-25.786	-39.521	6.011	0.214	0.310	0.661
7HQ-formate		0.003		-29.829	-39.521	6.011	0.145	0.230	0.661
7HQ-formate	$ ho_B^{pp(ChelPG)}$	0.003		-30.768	-39.521	6.011	0.116	0.196	0.661
7HQ-formate	$ ho_B^{FAT}$	0.003	0.064	-30.578	-39.521	6.011	0.057	0.127	0.661
uracil- $5H_2O$	$ ho_B^{isol}$	0.119		-32.283	-40.078	11.802	0.247	0.413	0.617
uracil- $5H_2O$	$\rho_B^{pp(Mulliken)}$	0.112		-37.341	-40.078	11.802	0.123	0.249	0.617
uracil- $5H_2O$	$ ho_B^{pp(ChelPG)}$	0.111		-37.944	-40.078	11.802	0.091	0.212	0.617
uracil- $5H_2O$	$ ho_B^{FAT}$	0.104	0.099	-37.489	-40.078	11.802	0.054	0.139	0.617

 $^{^{[}a]}$ defined in Eq. 7 in the manuscript

$$^{[e]}$$
 $M=M[\rho_v^{o(ref)}-\rho_B^{FDET(FAT)}]$ with $M[\rho]$ defined in Eq. 18 in the manuscript

$$P_{cmpl} = P[\rho_A^{isol} + \rho_B^{isol} - \rho_v^{o(ref)}]$$
 (cf. Eq. 21), with $P[\rho]$ defined in Eq. 19 in the manuscript

[g]
$$P = P[\rho_v^{o(ref)} - \rho_{tot}^{FDET(FAT)}]$$
 with $P[\rho]$ defined in Eq. 19 in the manuscript

$$^{[h]}$$
 $E_{int}^{FDET(FAT)}$ is given in Eq. 17 in the manuscript

TABLE S5. Supplementary data for results obtained with the *monomer expansion* and the cc-pVTZ basis set. Energies are given in kcal/mol and quantities related to electron densities are given in atomic units.

^[b] defined in Eq. 12, and Eq. 17 in the manuscript for ρ_B^{isol} and ρ_B^{FAT} respectively, and in Eq. 14 for $\rho_B^{pp(Mulliken)}$ and $\rho_B^{pp(ChelPG)}$

^[c] Counterpoise corrected, i.e. $E_{int}^{ref} = E_v^{(AB)} - E_{v_A}^{(AB)} - E_{v_B}^{(AB)}$, where all values are obtained with MP2, the subscript denotes the subsystem, and the superscript denotes the centres involved in the basis set expansion.

[[]d] Counterpoise correction: $\Delta_{CP} = E_{v_A}^{(A)} + E_{v_B}^{(B)} - E_{v_A}^{(AB)} - E_{v_B}^{(AB)}$, where all values are obtained with MP2, the subscript denotes the subsystem, and the superscript denotes the centres involved in the basis set expansion.

FIG. S3. Integrated negative density M and the FDET-MP2 interaction energy for various choices of ρ_B : a) ρ_B^{isol} (orange triangles), b) ρ_B^{FAT} (light blue hexagons), c) $\rho_B^{pp(Mulliken)}$ (green diamonds), and d) $\rho_B^{pp(ChelPG)}$ (dark blue pentagons). Data obtained using the monomer expansion and the cc-pVTZ basis set. Horizontal lies indicate the reference interaction energy.

Figure S4 shows that the pre-polarisation of ρ_B using the ChelPG representation of ρ_A^{isol} results also in a significant improvement in the total density.

FIG. S4. Integrated negative density M and the total density error P for various choices of ρ_B : a) ρ_B^{isol} (orange triangles), b) ρ_B^{FAT} (light blue hexagons), c) $\rho_B^{pp(Mulliken)}$ (green diamonds), and d) $\rho_B^{pp(ChelPG)}$ (dark blue pentagons). Data obtained using the monomer expansion and the cc-pVTZ basis set.