Geodynamics Tutorial II

Numerical Modeling

Cian Wilson Peter van Keken

We'll need roughly 5 groups around the room.

Please make sure each group has someone with experience of running models/using a terminal.

http://www.smbc-comics.com/comic/2012-05-01

TerraFERMA

Lightweight wrapper exposing functionality from core libraries (among others):

FEniCS

finite element library allowing the easy representation of partial differential equations

PETSc

scientific computation library providing linear and non-linear solvers

SPuD

options management library

Aims to increase testability, shareability and reproducibility.

http://terraferma.github.io

>_

Terminal Cheat Sheet

```
Useful commands:
  cd <directory name>
  change directory
  ls
  list files in current directory
  rm <file name>
  remove file
  eog <image file name>
  view an image
  pwd
  print current directory
```

To run a command in the background (get control of your terminal back) add a & symbol after the command, or, if it's already running:

Ctrl z
bg

To kill a command (that's not in the background):

Ctrl C

We'll be using the command:

tfsimulationharness --test <*shml file name*>

or the shorter/easier to type version:

tfs --test <shml file name>

When we vary parameters, this takes additional arguments:

tfs --parameters <name> <value> [<name> <value> ...] --test <shml file name> where you can specify as many <name> <value> pairs as you want.

Before we begin...

Start virtual machine.

Open terminal.

Change directory to CIDER tutorials: cd cider tutorials

Get updates: git pull

Examples

Instantaneous Heat Diffusion

Driven Lid Convection

Thermal Subduction Zone 🛨

Buoyancy Driven Wedge Fluid Flow \bigcirc

Compaction (& Buoyancy) Driven Fluid Flow

Subduction Benchmarks

Instantaneous Heat Diffusion

Solve:

$$-\nabla \cdot (k \nabla T) = f$$

for the temperature, T.

Available parameters:

k
diffusivity (k in equation above),
default value = 1.0

f heat source (*f* in equation above), default value = 1.0

ncells
number of cells used to discretize each
dimension of domain,
default value = 32

Command:

tfs --test poisson_simple.shml

for the default parameters, or:

tfs --parameters <name> <value> <-name> <value> --test poisson_simple.shml to vary the parameters.

Instantaneous Heat Diffusion

How does the maximum and integral of the temperature vary with f and k? Could we have written our equations better?

How do they vary with ncells?

Driven Lid Convection

Solve:

$$-\nabla \cdot \left(2\mu \left(\frac{\nabla v + \nabla v^{T}}{2}\right)\right) + \nabla p = 0$$

$$\nabla \cdot v = 0$$

$$\mu = \frac{1, z \ge 1/2}{\Delta \mu, z < 1/2}$$

for the velocity, v, and pressure, p, given viscosity, μ .

Available parameters:

dmu

viscosity jump ($\Delta\mu$ in equation above), default value = 1.0

ncells

number of cells used to discretize each dimension of domain, default value = 32

Command:

tfs [--parameters <name> <value>] --test driven_cavity_freeslip.shml for free-slip sides, or:

tfs [--parameters <name> <value>] --test driven_cavity_noslip.shml for no-slip sides.

Driven Lid Convection

What is the effect of varying dmu?

What is the effect of switching boundary conditions (different input files)?

How does RMS velocity vary with ncells?

Thermal Subduction Zone Model

Solve (for 20 Myr):

$$-\nabla \cdot \left(2\mu \left(\frac{\nabla v + \nabla v^{T}}{2}\right)\right) + \nabla p = 0$$

$$\nabla \cdot v = 0$$

$$\frac{\partial T}{\partial t} + v \cdot \nabla T - \frac{1}{Pe} \nabla^2 T = 0$$

 $\mu = \left(\frac{1}{\mu_{diff}} + \frac{1}{\mu_{max}}\right)^{-1}, \mu_{diff} = \exp\left(\frac{Q}{RT_0} + \frac{(T_0 - T_s)(1 - T)}{T_s + (T_0 - T_s)T}\right)$

$$Pe = \frac{h v_0}{\kappa}$$

for the velocity, v, and pressure, p, & temperature, T.

Available parameters:

delta

slab dip, default value = 45°

tslab

age of slab, default value = 50 Myr

tcrust

age of over-riding crust, default value = 50 Myr

vslab

convergence rate (v_0 above), default value = 0.05 m/yr

cpdepth

full mechanical coupling depth, default value = 80 km

delta cpdepth tslab oceanic with age

Also available:

mindx

resolution in wedge corner, default value = 3 km

Command (default parameters take ~5-10 minutes on my laptop):

tfs [--parameters <name> <value>] --test subduction_solid.shml

Thermal Subduction Zone Model

```
Each group should vary one of:
 delta
 tslab
 tcrust
 vslab
 cpdepth
```

What is the effect of varying each on the slab temperature at 100km depth and the maximum temperature in the wedge above that point?

Compile results in spreadsheet: http://tinyurl.com/ycoeqm4p (One tab per parameter.)

Buoyancy Driven Wedge Fluid Flow

Given solid velocity, v, solve:

$$\frac{\partial \phi}{\partial t} + v \cdot \nabla \phi + \nabla \cdot (Kk) - \nabla \cdot (\kappa_{\phi} \nabla \phi) = 0$$

$$K = \phi^{n}$$
artificial diffusion

for the porosity, ϕ . given permeability, K.

Available parameters:

all the parameters from the thermal model plus...

fluxdepth

depth of fluid release from slab,

default value = 150 km

w0onv0

default value = 50

Command (default parameters take ~2 minutes on my laptop):

```
tfs --parameters <name> <value> --test subduction_fluidbuoyancy.shml
```

include the parameters you used for the thermal calculation as well as those for the fluid simulation or else a new thermal simulation will be automatically run as well (taking longer!)

Compaction (& Buoyancy) Driven Fluid Flow

Given solid velocity, v, and temperature, T, solve:

$$\frac{\partial \phi}{\partial t} + v \cdot \nabla \phi - \frac{h^2}{\delta^2} \frac{P}{\widetilde{\xi}} = 0$$

$$-\nabla \cdot (\widetilde{K} \nabla P) + \frac{h^2}{\delta^2} \frac{P}{\widetilde{\xi}} + \nabla \cdot (Kk) = 0$$

$$\widetilde{K} = (\phi + \phi_{\epsilon})^n$$
regularization
$$\uparrow \\ \widetilde{\xi} = \mu / (\phi + \phi_{\epsilon})$$

for the porosity, ϕ . and pore/compaction pressure, P.

Available parameters:

all the parameters from the thermal model plus...

fluxdepth

depth of fluid release from slab,

default value = 150 km

w0onv0

reference fluid velocity to slab velocity (non-dimensional parameter incorporating effects of grain size, fluid viscosity, source magnitude), sets compaction length, δ , above, default value = 50

Command (default parameters take ~8 minutes on my laptop):

tfs --parameters <name> <value> --test subduction_fluidcompaction.shml

include the parameters you used for the thermal calculation as well as those for the fluid simulation or else a new thermal simulation will be automatically run as well (taking longer!)

Compaction/Buoyancy Driven Fluid Flow

What is the effect of varying w0onv0?

What is the effect of adding compaction effects to flow?

Thermal Subduction Zone Benchmarks

Solve various combinations of:

$$-\nabla \cdot \left(2\mu \left(\frac{\nabla v + \nabla v^{T}}{2}\right)\right) + \nabla p = 0$$

$$\nabla \cdot v = 0$$

$$v \cdot \nabla T - \frac{1}{Pe} \nabla^{2} T = 0$$

various μ

$$Pe = \frac{h v_0}{\kappa}$$

40 km rigid layer

for the velocity, v, and pressure, p, & temperature, T/T

Available parameters:

mindx

resolution in wedge corner, default value = 3 km

Commands:

```
tfs [--parameters mindx <value>] --test subduction benchmark1a.shml
tfs [--parameters mindx <value>] --test subduction_benchmark1b.shml
tfs [--parameters mindx <value>] --test subduction_benchmark1c.shml
tfs [--parameters mindx < value>] --test subduction benchmark2a.shml
tfs [--parameters mindx <value>] --test subduction_benchmark2b.shml
```

