

Prof.^a

Paula Shinozaki

Monitora:

Macileide Oliveira

Regressão linear simples com uso do software R

- Não existe "O" modelo e sim "UM DOS" modelos possíveis;
- Dado o critério escolhido, cabe ao pesquisador defender as razões dessa escolha
- Sempre haverá outros caminhos:
 - Podem levar a outros modelos melhores sob algum critério ou não
 - Sempre escolher o modelo mais plausível e parcimonioso.

- Outliers
 - Pontos discrepantes, influências e alavancagem
- Normalidade

Homocedasticidade

$Y = X\beta + \epsilon$

Pelo método dos mínimos quadrados, temos

$$\hat{\beta} = (X'X)^{-1}X'Y$$

Logo os valores ajustados pelo modelo serão estimados por $\hat{Y} = X\hat{\beta}$

Reescrevendo a equação, temos

$$\widehat{Y} = X(X'X)^{-1}X'Y = HY$$

Em que

$$H = (X'X)^{-1}X'$$

R

Pontos de alavanca

São valores desproporcionais de X que <u>perturbam</u> a estimativa de Y. Para tal análise faz-se necessário verificar a diagonal principal h_{ii} da matriz de projeção H, dada por

$$H = X(X^T X)^{-1} X$$

Uma perturbação não necessariamente implica em alterar as estimativas dos parâmetros do modelo.

Propõe avaliar a influência conjunta das observações sob pequenas mudanças (perturbações) no modelo ou nos dados, ao invés da avaliação pela retirada individual ou conjunta de pontos.

Um ponto é dito influência quando a ausência/presença dele no modelo **altera** as estimativas dos parâmetros.

R

Distância de Cook (D_i)

$$D_{\delta} = \frac{(\widehat{\beta} - \widehat{\beta}_{\delta})^{T} X^{T} X(\widehat{\beta} - \widehat{\beta}_{\delta})}{ps^{2}}$$

E mede quanto a perturbação $\boldsymbol{\delta}=(\delta_1,...\delta_n)^T$ afasta $\hat{\beta}_\delta$ de $\hat{\beta}$ segundo a métrica $M=X^TX$.

Resíduo Padronizado (Studentized residuals)

O resíduo padronizado é igual ao valor de um resíduo, e_i , dividido por uma estimativa de seu desvio padrão. Resíduos padronizados maiores que 2 e menores que -2, $-2 < e_i < 2$, são geralmente considerados grandes.

É importante analisar não só o comportamento do resíduo em si mas também como se comportam os valores ajustados com esses resíduos.

Gráfico de envelope

Atkinson (1981) propõe a construção, por simulação de Monte Carlo, de uma banda de confiança para os resíduos da regressão normal linear, a qual denominou **envelope**, e que permite uma melhor comparação entre os resíduos e os percentis da distribuição normal padrão.

Portanto se a suposição de normalidade dos dados for atendida, espera-se que 95% dos dados encontrem-se dentro das bandas de confiança (envelope).

No entanto, a presença de vários pontos fora do envelope, além de indicar que a suposição de normalidade não foi atendida, pode sugerir a ausência de alguma variável importante no modelo.

Pacotes de diagnósticos

https://www.ime.usp.br/~giapaula/textoregressao.htm

Pacotes de diagnósticos

diag_norm.txt - Bloco de Notas

```
Arquivo Editar Formatar Exibir Ajuda
X <- model.matrix(fit.model)</pre>
n < - nrow(X)
p <- ncol(X)
H <- X%*%solve(t(X)%*%X)%*%t(X)
h <- diag(H)
lms <- summary(fit.model)</pre>
s <- lms$sigma
r <- resid(lms)
ts <- r/(s*sqrt(1-h))
di <- (1/p)*(h/(1-h))*(ts^2)
si <- lm.influence(fit.model)$sigma</pre>
tsi <- r/(si*sqrt(1-h))
a <- max(tsi)
b <- min(tsi)
par(mfrow=c(2,2))
plot(h,xlab="Índice", ylab="Medida h", pch=16, ylim=c(0,1))
cut <- 2*p/n
abline(cut,0,1ty=2)
identify(h, n=4)
#title(sub="(a)")
plot(di,xlab="Índice", ylab="Distância de Cook", pch=16)
identify(di, n=4)
plot(tsi,xlab="Índice", ylab="Resíduo Padronizado",
ylim=c(b-1,a+1), pch=16)
abline(2,0,1ty=2)
abline(-2,0,1ty=2)
identify(tsi, n=4)
plot(fitted(fit.model),tsi,xlab="Valor Ajustado",
ylab="Resíduo Padronizado", ylim=c(b-1,a+1), pch=16)
abline(2,0,1ty=2)
abline(-2,0,1ty=2)
identify(fitted(fit.model),tsi, n=4)
par(mfrow=c(1,1))
```

envel_norm.txt - Bloco de Notas

```
Arquivo Editar Formatar Exibir Ajuda
par(mfrow=c(1,1))
X <- model.matrix(fit.model)</pre>
n <- nrow(X)
p <- ncol(X)
H \leftarrow X%*%solve(t(X)%*%X)%*%t(X)
h <- diag(H)
si <- lm.influence(fit.model)$sigma
r <- resid(fit.model)
tsi <- r/(si*sqrt(1-h))
ident <- diag(n)
epsilon <- matrix(0,n,100)
e <- matrix(0,n,100)
e1 <- numeric(n)
e2 <- numeric(n)
for(i in 1:100){
     epsilon[,i] <- rnorm(n,0,1)
     e[,i] <- (ident - H)%*%epsilon[,i]</pre>
     u <- diag(ident - H)
     e[,i] \leftarrow e[,i]/sqrt(u)
     e[,i] <- sort(e[,i]) }
for(i in 1:n){
     eo <- sort(e[i,])</pre>
     e1[i] \leftarrow (eo[2]+eo[3])/2
     e2[i] \leftarrow (eo[97]+eo[98])/2}
med <- apply(e,1,mean)
faixa <- range(tsi,e1,e2)
par(ptv="s")
qqnorm(tsi,xlab="Percentil da N(0,1)",
ylab="Residuo Studentizado", ylim=faixa, pch=16, main="")
par(new=TRUE)
qqnorm(e1,axes=F,xlab="",ylab="",type="l",ylim=faixa,lty=1, main="")
par(new=TRUE)
qqnorm(e2,axes=F,xlab="",ylab="", type="l",ylim=faixa,lty=1, main="")
par(new=TRUE)
qqnorm(med,axes=F,xlab="",ylab="",type="l",ylim=faixa,lty=2, main="")
```


Carregando os dados

Carregando os dados

Função attach: Indexa os dados

attach(Dados)

```
> summary(Dados)
   tempo_Y
                  sexo_W
                                    idade_X
                                                acuidade Z
Min. : 92.0
               Length:20
                                 Min. :20
                                             Min. : 60
               Class :character
1st Qu.:100.8
                                 1st Qu.:25
                                             1st Qu.: 80
Median :107.0
               Mode :character
                                 Median :30
                                             Median: 90
                                             Mean: 85
Mean
      :107.5
                                 Mean
                                      :30
 3rd Ou.:112.2
                                 3rd Qu.:35
                                              3rd Qu.: 90
       :127.0
                                        :40
                                                    :100
                                 Max.
Max.
                                              Max.
```


Modelo linear

fit.model<- lm(acuidade_Z~tempo_Y) fit.model

```
> fit.model<-lm(acuidade_Z~tempo_Y)
> fit.model

call:
lm(formula = acuidade_Z ~ tempo_Y)

Coefficients:
(Intercept) tempo_Y
    180.5208 -0.8886
```

summary(fit.model)

Diagnósticos

_	Studio										
File	_		View	Plots	Session					·	
	New File						n		Addins	•	
	New Project										
	Open File Ctrl+ O										
	Open File in New Column										
	Reopen with Encoding										
	Recent Files					•					
	Open Project										
	Open Project in New Session										
	Recent Projects					,					
							- -	igma			
	Import Dataset										
	Save			Ctrl+S							
	Save As										
	Rename				ida	ida h", pch=16, ylim=c(0,1))					
	Save with Encoding					100	, pen 20, j. n. e(0,2)				
	Save All			Ctrl+Alt+	S						
	Publish										
	Print						stân	stância de Cook", pch=16)			
	Close Close All			Ctrl+W		ne i di	esíduo Padronizado".				
				Ctrl+Shift	+W	23 1 01	estado Padi Olitzado ,				
	Close	All Excep	t Curre	nt	Ctrl+Alt+	Shift+W					
	Close Project										
	Quit S	ession			Ctrl+Q		edia ean	n :30 :30	Medi Mean	an : 90 : 85	

"abrir" o identify

```
File Edit Code View Plots Session Build Debug Profile Tools Help
○ • Om | → Go to file/function
   Dados × diag_norm.txt ×
  ( ABC Q
    2 X <- model.matrix(fit.model)</pre>
    3 n \leftarrow nrow(x)
      p <- ncol(x)
      H <- X%*%solve(t(X)%*%X)%*%t(X)
      h <- diag(H)
      lms <- summary(fit.model)</pre>
      s <- 1ms$sigma
    9 r <- resid(lms)</pre>
   10 ts <- r/(s*sqrt(1-h))
   11 di <-(1/p)*(h/(1-h))*(ts^2)
   12 si <- lm.influence(fit.model)$sigma
   13 tsi <- r/(si*sqrt(1-h))</pre>
   14 a <- max(tsi)
   15 b <- min(tsi)
   16 par(mfrow=c(2,2))
   17 plot(h,xlab="fndice", ylab="Medida h", pch=16, ylim=c(0,1))
   18 cut <- 2*p/n
   19 abline(cut,0,lty=2)
   20 identify(h, n=4)
   21 #title(sub="(a)")
   23 plot(di,xlab="fndice", ylab="Distância de Cook", pch=16)
   24 identify(di, n=4)
   26 plot(tsi,xlab="fndice", ylab="Resíduo Padronizado",
   27 ylim=c(b-1,a+1), pch=16)
   28 abline(2,0,lty=2)
   29 abline(-2,0,1ty=2)
   30 identify(tsi, n=4)
   32 plot(fitted(fit.model),tsi,xlab="Valor Ajustado",
   33 ylab="Residuo Padronizado", ylim=c(b-1,a+1), pch=16)
   34 abline(2,0,lty=2)
   35 abline(-2,0,1ty=2)
   36 identify(fitted(fit.model),tsi, n=4)
  37 par(mfrow=c(1,1))
```

Diagnósticos

- Observações 19 e 2 são aberrantes;
- Observação 19 é influente
- Comportamento adequado dos resíduos

Envelope


```
envel_norm.txt - Bloco de Notas
Arquivo Editar Formatar Exibir Ajuda
par(mfrow=c(1,1))
X <- model.matrix(fit.model)</pre>
n <- nrow(X)
p <- ncol(X)
H <- X%*%solve(t(X)%*%X)%*%t(X)
h <- diag(H)
si <- lm.influence(fit.model)$sigma
r <- resid(fit.model)
tsi <- r/(si*sqrt(1-h))
ident <- diag(n)
epsilon <- matrix(0,n,100)
e \leftarrow matrix(0,n,100)
e1 <- numeric(n)
e2 <- numeric(n)
for(i in 1:100){
     epsilon[,i] <- rnorm(n,0,1)
     e[,i] <- (ident - H)%*%epsilon[,i]</pre>
     u <- diag(ident - H)
     e[,i] <- e[,i]/sqrt(u)
     e[,i] <- sort(e[,i]) }
for(i in 1:n){
     eo <- sort(e[i,])
     e1[i] <- (eo[2]+eo[3])/2
     e2[i] \leftarrow (eo[97]+eo[98])/2
med <- apply(e,1,mean)
faixa <- range(tsi,e1,e2)</pre>
par(pty="s")
qqnorm(tsi,xlab="Percentil da N(0,1)",
ylab="Residuo Studentizado", ylim=faixa, pch=16, main="")
par(new=TRUE)
qqnorm(e1,axes=F,xlab="",ylab="",type="1",ylim=faixa,lty=1, main="")
par(new=TRUE)
qqnorm(e2,axes=F,xlab="",ylab="", type="l",ylim=faixa,lty=1, main="")
qqnorm(med,axes=F,xlab="",ylab="",type="l",ylim=faixa,lty=2, main="")
```


- Todas as observações encontram-se dentro das bandas de confianças.
- Indicando bom ajuste do modelos, ou seja, o modelo captou adequadamente a variabilidade das variáveis
- As suposições de normalidade foram atendidas

