

Machine Intelligence 2 6.1 Maximum Likelihood & Estimation Theory

Prof. Dr. Klaus Obermayer

Fachgebiet Neuronale Informationsverarbeitung (NI)

SS 2017

Estimation theory

Estimator

An estimator $\hat{P}(X)$ is a function that maps from its sample space X (data) to a set of sample estimates W

An estimator ...

- is a function of a random variable
- is a random variable
- lacktriangle can be statistically characterized via its moments (mean, variance, ...)
 - → quality criteria: unbiasedness, efficiency

Probability distributions: an example

$$P(\{\underline{\mathbf{x}}^{(\alpha)}\};\underline{\mathbf{w}}^*)$$

set of observations: $\{\underline{\mathbf{x}}^{(\alpha)}\}, \alpha=1,\ldots,p$ from true distribution

Goal: estimate "true" values w* from observed data

estimator $\widehat{\mathbf{w}}$:

$$\underline{\widehat{\mathbf{w}}} = \underline{\widehat{\mathbf{w}}}(\{\underline{\mathbf{x}}^{(\alpha)}\})$$

- \blacksquare procedure for the determination of $\underline{\mathbf{w}}^*$ given the observed data
- \mathbf{w}^* is a function of $(\{\mathbf{x}^{(\alpha)}\})$
- $\mathbf{x}^{(\alpha)}$ are random variables $\rightarrow \hat{\mathbf{w}}$ is a random variable!

The Maximum Likelihood estimator

the likelihood function

$$\widehat{P}(\{\underline{\mathbf{x}}^{(\alpha)}\};\underline{\mathbf{w}})$$

the log-likelihood function

$$\ln \widehat{P}(\{\underline{\mathbf{x}}^{(\alpha)}\};\underline{\mathbf{w}}) = \sum_{\alpha=1}^{p} \ln \widehat{P}(\underline{\mathbf{x}}^{(\alpha)};\underline{\mathbf{w}})$$

the Maximum Likelihood estimator

$$\underline{\widehat{\mathbf{w}}} = \underset{\mathbf{w}}{\operatorname{argmax}} \widehat{P} \big(\big\{ \underline{\mathbf{x}}^{(\alpha)} \big\} ; \underline{\mathbf{w}} \big)$$

Quality criteria for estimators

What are good estimators?

bias:
$$\underline{\mathbf{b}} = \underbrace{\left\langle \widehat{\mathbf{w}} \right\rangle_{P(x^{\alpha};w)}}_{\text{expectation w.r.t the } \underbrace{\mathbf{true}}_{\text{distribution}} - \underline{\mathbf{w}}^*$$

variance:
$$\underline{\Sigma} = \left\langle (\underline{\widehat{\mathbf{w}}} - \langle \underline{\widehat{\mathbf{w}}} \rangle) (\underline{\widehat{\mathbf{w}}} - \langle \underline{\widehat{\mathbf{w}}} \rangle)^T \right\rangle_{P(x^{\alpha};w)}$$

Optimal estimators

no bias: $\underline{\mathbf{b}} \stackrel{!}{=} 0 \leftarrow \stackrel{\text{only possible if true model}}{\text{within model class}}$

minimal variance: $|\Sigma| \stackrel{!}{=} \min$

The sample mean

N observations $x^{(\alpha)}$

$$x^{(\alpha)} = A + \epsilon^{(\alpha)}$$

with $\epsilon^{(\alpha)} \sim N(0, \sigma^2)$

Examples for estimators for A:

$$\hat{A} = \frac{1}{N} \sum x^{(\alpha)}$$

unbiased

$$\tilde{A} = \frac{1}{2N} \sum x^{(\alpha)}$$

biased for $A \neq 0$

$$\tilde{A} = k$$

minimum variance but biased

The Minimum Variance Unbiased estimator

Optimal estimators

no bias:

$$\underline{\mathbf{b}} \stackrel{!}{=} 0$$

 $\leftarrow \underset{\text{within model class}}{\text{only possible if true model}}$

minimal variance: $|\Sigma| \stackrel{!}{=} \min$

$$|\underline{\Sigma}| \stackrel{!}{=} \min$$

MVU: criteria have to hold for ALL possible values of w*!

MVUs do not always exist

The Minimum Variance Unbiased estimator

given just observed sample conditionally independent observations with the 2 pdfs

$$x[0] \sim \mathcal{N}(\theta, 1)$$
 $x[1] \sim \begin{cases} \mathcal{N}(\theta, 1) & \text{if } \theta \ge 0 \\ \mathcal{N}(\theta, 2) & \text{if } \theta < 0 \end{cases}$

two estimators

$$\hat{\theta}_1 = \frac{1}{2}(x[0] + x[1]) \qquad \text{and} \qquad \hat{\theta}_2 = \frac{2}{3}x[0] + \frac{1}{3}x[1]$$

variances:

$$var(\hat{\theta}_1) = \frac{1}{4}(var(x[0]) + var(x[1])) \begin{cases} \frac{18}{36} & \text{if } \theta \ge 0 \\ \frac{27}{36} & \text{if } \theta < 0 \end{cases}$$
$$var(\hat{\theta}_2) = \frac{4}{9}var(x[0]) + \frac{1}{9}var(x[1]) \begin{cases} \frac{20}{36} & \text{if } \theta \ge 0 \\ \frac{24}{36} & \text{if } \theta < 0 \end{cases}$$

Example for the non-existence of MVUs (Kay, 1993)

MVU vs. minimal mean squared error

$$MSE(\hat{\mathbf{w}}) = E[(\hat{\mathbf{w}} - \hat{\mathbf{w}}^*)^2]$$

This however does not yield a realizable estimator because

$$MSE(\hat{w}) = E\{[(\hat{w} - E(\hat{w})) + (E(\hat{w}) - w^*)]^2\}$$

= $var(\hat{w}) + [E(\hat{w}) - w^*]^2$
= $variance + bias^2$

MSE trades bias against variance.

Cramer-Rao bound for unbiased estimators

The stronger a PDF depends on its parameters, the more accurate will their estimates be.

N observations $x^{(\alpha)}$ with $\epsilon^{(\alpha)}$ $N(0, \sigma^2)$

$$x^{(\alpha)} = A + \epsilon^{(\alpha)}, \qquad \hat{A} = \frac{1}{N} \sum x^{(\alpha)}$$

$$\hat{A} = \frac{1}{N} \sum x^{(\alpha)}$$

Accuracy can be measured by the 'sharpness' of the likelihood function (→ 2nd derivative of the neg. log likelihood).

Cramer-Rao bound for unbiased estimators

Fisher information matrix (Hessian matrix):

$$H_{ij} = -\left\langle \frac{\partial^2 \ln P}{\partial \mathbf{w}_i \partial \mathbf{w}_j} \right\rangle_{P(x^{\alpha}; w^*)} |_{\underline{\mathbf{w}}^*}$$

For all unbiased estimators the following holds (Cramer-Rao Bound):

$$\underline{\Sigma} - \left(\underline{\mathbf{H}}^{-1}\right)$$
 is a positive semidefinite matrix

it follows:

$$var(\hat{w}_i) \geq [H^{-1}]_{ii}$$
 for all i

Variance of an estimator > 1/ Fisher Information

This is a <u>universal</u> lower bound on the variance of estimators. The bound is tight.

Example: CRB for a scalar parameter w

The property of "positive semidefinite":

$$\sigma_{\mathbf{w}}^2 - \left\{ -\left\langle \frac{d^2 \ln P}{d\mathbf{w}^2} \right\rangle_p \Big|_{\underline{\mathbf{w}}^*} \right\}^{-1} \ge 0$$

$$\sigma_{\rm w}^2 > -\frac{1}{\left\langle \frac{d^2 \ln P}{d {\rm w}^2} \right\rangle_p \Big|_{{\bf w}^*}}$$

Comment

Fisher information: precision of the estimator / interesting measure for evaluating data representations

Good estimators

efficient estimator:

$$\mathbf{b} = \mathbf{0}$$
 and $\mathbf{\Sigma} = \mathbf{H}^{-1}$ \leftarrow variance assumes lower bound

unbiased minimum variance estimator:

$$\underline{\mathbf{b}} = \underline{\mathbf{0}} \text{ and} \big| \underline{\boldsymbol{\Sigma}} - \underline{\mathbf{H}}^{-1} \big| \stackrel{!}{=} \min_{\text{all estimators}}$$

Illustration: Cramer-Rao bound

Asymptotic optimality

An estimator is said to be asymptotically unbiased if for $p \to \infty$ (limit of infinite sample size):

$$E(\hat{\mathbf{w}}) \to \mathbf{w}^*$$

An estimator is said to be asymptotically efficient if for $p \to \infty$:

$$var(\hat{\mathbf{w}}) o \mathsf{Cramer} \; \mathsf{Rao} \; \mathsf{lower} \; \mathsf{bound}$$

An estimator is said to be consistent if it converges to the true value for $p \to \infty$ and is asymptotically unbiased.

Results for the Maximum Likelihood estimator

$$P\big(\big\{\underline{\mathbf{x}}^{(\alpha)}\big\};\underline{\mathbf{w}}\big)$$

normalized and two times differentiable

$$H_{ij} = -\left\langle \frac{\partial^2 \ln P}{\partial \mathbf{w}_i \partial \mathbf{w}_j} \right\rangle_{P(x^{\alpha}; w*)}$$

Fisher information matrix

The Maximum Likelihood estimator is consistent and asymptoically unbiased and efficient.

$$\underline{\widehat{\mathbf{w}}} \sim \mathcal{N}\big(\underline{\mathbf{w}}^*, \underline{\mathbf{H}}_{(\mathbf{w}^*)}^{-1}\big)$$

asymptotically Gaussian distributed

Summary

- An estimator is a random variable.
- ⇒ It can only be analyzed statistically (e.g. mean, variance, shape of distribution).
- biased & unbiased estimators
- Minimum Variance Unbiased estimator (MVU) has smallest variance for all values of the true parameter

MVUs and the Cramer-Rao bound

- Minimum Variance Unbiased estimators do not always exist
- Cramer Rao Bound provides a universal bound but may not be realizable

Outlook

Inclusion of prior knowledge

- MLEs: no prior knowledge regarding 'reasonable' parameter values
- Maximum A Posteriori estimates (MAP) incorporate such knowledge via Bayes Theorem (~ regularisation)

$$p(\underline{\mathbf{w}}|\underline{\mathbf{x}}) \propto p(\underline{\mathbf{x}}|\underline{\mathbf{w}})p(\underline{\mathbf{w}})$$

■ Beyond point estimates: Bayesian statistics. A complete (probabilistic) treatment should exploit the degrees of belief in a given model (set of parameters)

Model Fitting: Bayes & Maximimum Likelihood

Estimators revisited

set of observations: $\left\{x^{(\alpha)}\right\}, \alpha = 1, \dots, p$

$$P(\{x^{(\alpha)}\};\underline{\mathbf{w}}^*)$$

drawn from the true distribution: $x^{(\alpha)} \in \{1,2\}$

Goal: estimate "true" values w* from observed data

estimator $\hat{\mathbf{w}}$:

$$\underline{\widehat{\mathbf{w}}} = \underline{\widehat{\mathbf{w}}}(\{x^{(\alpha)}\})$$

- \blacksquare procedure for the determination of $\underline{\mathbf{w}}^*$ given the observed data
- $\underline{\mathbf{w}}^*$ is a function of $(\{x^{(\alpha)}\})$
- $\mathbf{x}^{(\alpha)}$ are random variables $\rightarrow \widehat{\mathbf{w}}$ is a random variable!

A two-armed bandit task

"true" parameters:

$$w^{(1)} = 0.1, w^{(2)} = 2, Q^{(1)}(x = 1) = Q^{(1)}(x = 2) = 0$$

 $P(\{\underline{\mathbf{x}}\};\underline{\mathbf{w}}^*) = \prod_{i=1}^p p^{(\alpha)}(x^{(\alpha)})$

Agents playing games

x = 1 x = 2

average (per trial) cumulative reward from the actions 1 and 2.

corresponding ${\cal Q}$ values

probability of actions 1 and 2

reward prediction error for the chosen action $\delta^{(\alpha)}=R^{(\alpha)}(x^{(\alpha)})-Q^{(\alpha)}(x^{(\alpha)})$

23 / 32

Model fitting

Data generated using the "true" paramters

$$w^{(1)} = 0.1, w^{(2)} = 2, Q^{(1)}(x = 1) = Q^{(1)}(x = 2) = 0$$

compute the corresponding log-likelihood function:

$$\mathcal{L}(\left\{\underline{\mathbf{x}}\right\};\widehat{\underline{\mathbf{w}}}) = \ln(\prod_{\alpha=1}^p p^{(\alpha)}(x^{(\alpha)})) = \sum_{\alpha=1}^p (w^{(1)}Q(x^{(\alpha)}) - \ln(\sum_i e^{w^{(2)}Q(x_i)})$$

• choose $\widehat{\underline{\mathbf{w}}}$ which correspond to the maximum of the log-likelihood function.

Model fitting: grid search

maximum likelihood estimate

"true" paramters
$$w^{(1)} = 0.1, w^{(2)} = 2, Q^{(1)}(x = 1) = Q^{(1)}(x = 2) = 0$$

Model comparison

To avoid overfitting, we compare models according to the model evidence

$$P(\underline{\mathbf{x}}|M) = \int P(\underline{\mathbf{x}}|M,\underline{\mathbf{w}})P(\underline{\mathbf{w}}|M)d\underline{\mathbf{w}}$$

which requires computing very high-dimensional integral and analytically intractable posterior distributions.

We can use a Gaussian distribution to approximate $P(\underline{\mathbf{x}}|M,\underline{\mathbf{w}})P(\underline{\mathbf{w}}|M):=f(\underline{\mathbf{w}})$ around its mode $\hat{\underline{\mathbf{w}}}_{MAP}$:

$$\int f(\underline{\mathbf{w}}) d\underline{\mathbf{w}} \approx f(\underline{\hat{\mathbf{w}}}_{MAP}) \int \exp(-\frac{1}{2} (\underline{\mathbf{w}} - \underline{\hat{\mathbf{w}}}_{MAP})^T H(\underline{\mathbf{w}} - \underline{\hat{\mathbf{w}}}_{MAP})) d\underline{\mathbf{w}} = f(\underline{\hat{\mathbf{w}}}_{MAP}) 2\pi^{\frac{n}{2}} H^{\frac{-1}{2}}$$

Laplace approximation

$$\ln(P(\underline{\mathbf{x}}|M)) \approx \underbrace{\ln(P(\underline{\mathbf{x}}|M, \hat{\underline{\mathbf{w}}}_{MAP}))}_{\text{log likelihood at the optimized parameters}} + \underbrace{\ln(P(\hat{\underline{\mathbf{w}}}_{MAP}|M)) + \frac{n}{2}\ln(2\pi) - \frac{1}{2}\ln(|H|)}_{\text{penalizes model complexity}}$$

Model comparison

- Bayesian Information Criterion
 - $\rightarrow\,$ BIC simplifies Laplace approximation by assuming that the sample size is large and retains terms which grow with the number of data points only.
 - ightarrow Prior over parameters: Gaussian with broad variance (large sample size); data: iid distributed $\ln(|H|) \approx n \ln(p)$. Only terms $\mathcal{O}(\ln(p))$ are retained.

$$BIC \approx \ln(P(\underline{\mathbf{x}}|M, \underline{\hat{\mathbf{w}}}_M)) - \frac{n}{2}\ln(p)$$

n =number of free parameters

- other penalized scores for model comparison:
 - $o AIC = \ln(P(\mathbf{\underline{x}}|M,\hat{\mathbf{\underline{w}}}_M)) n$, penalizes the number of parameters less strongly than does BIC
 - $ightarrow DIC = D(\bar{\mathbf{w}}) + 2p_D$, a hierarchical modeling generalization of the Bayesian information criteria, model complexity measured by estimate of the effective number of parameters.
 - \rightarrow WAIC, LOO...

Model comparison

- Data generated using the "true" paramters $w^{(1)} = 0.1, w^{(2)} = 2, Q^{(1)}(x=1) = Q^{(1)}(x=2) = 0$
- \blacksquare model 1: 2 free parameters: $w^{(1)}, w^{(2)}$.
- \blacksquare model 2: 3 free parameters: $w^{(1)}, w^{(2)}, w^{(3)} = Q^{(1)}(x=1) = Q^{(1)}(x=2)$
- maximum likelihood estimate (grid search):

Model1:
$$\hat{w^1} = 0.009, \hat{w^2} = 2.8$$

Model2: $\hat{w^1} = 0.009, \hat{w^2} = 4.9, \hat{w^3} = 2.8$

■ model comparison by BIC scores:

$$BIC_1 = -51.36 - \frac{2}{2}\ln(100) = -55.97$$

$$BIC_2 = -51.42 - \frac{3}{2}\ln(100) = -58.33$$

$$BIC_{random} = 100\ln(0.5) = -69.32$$

Model performance

$$Q^{(\alpha+1)}(x^{(\alpha)}) = Q^{(\alpha)}(x^{(\alpha)}) + w^{(1)}(R^{(\alpha)}(x^{(\alpha)}) - Q^{(\alpha)}(x^{(\alpha)})) \qquad p^{(\alpha)}(x^{(\alpha)}) = \frac{e^{w^{(2)}}Q(x^{(\alpha)})}{\sum_{i} e^{w^{(2)}}Q(x_{i})}$$
 Reference agent
$$Q^{(\alpha+1)}(x^{(\alpha)}) = Q^{(\alpha)}(x^{(\alpha)}) + w^{(1)}(R^{(\alpha)}(x^{(\alpha)}) - Q^{(\alpha)}(x^{(\alpha)}) = \frac{e^{w^{(2)}}Q(x^{(\alpha)})}{\sum_{i} e^{w^{(2)}}Q(x_{i})}$$

$$Q^{(\alpha+1)}(x^{(\alpha)}) = Q^{(\alpha)}(x^{(\alpha)}) + w^{(1)}(R^{(\alpha)}(x^{(\alpha)}) - Q^{(\alpha)}(x^{(\alpha)}) = \frac{e^{w^{(2)}}Q(x^{(\alpha)})}{\sum_{i} e^{w^{(2)}}Q(x_{i})}$$

$$Q^{(\alpha)}(x^{(\alpha)}) = Q^{(\alpha)}(x^{(\alpha)}) + w^{(1)}(R^{(\alpha)}(x^{(\alpha)}) - Q^{(\alpha)}(x^{(\alpha)}) = \frac{e^{w^{(2)}}Q(x^{(\alpha)})}{\sum_{i} e^{w^{(2)}}Q(x_{i})}$$

$$Q^{(\alpha)}(x^{(\alpha)}) = Q^{(\alpha)}(x^{(\alpha)}) + w^{(1)}(R^{(\alpha)}(x^{(\alpha)}) - Q^{(\alpha)}(x^{(\alpha)}) = \frac{e^{w^{(2)}}Q(x^{(\alpha)})}{\sum_{i} e^{w^{(2)}}Q(x_{i})}$$

$$Q^{(\alpha)}(x^{(\alpha)}) = Q^{(\alpha)}(x^{(\alpha)}) + w^{(1)}(R^{(\alpha)}(x^{(\alpha)}) - Q^{(\alpha)}(x^{(\alpha)}) = \frac{e^{w^{(2)}}Q(x^{(\alpha)})}{\sum_{i} e^{w^{(2)}}Q(x_{i})}$$

$$Q^{(\alpha)}(x^{(\alpha)}) = Q^{(\alpha)}(x^{(\alpha)}) + w^{(1)}(R^{(\alpha)}(x^{(\alpha)}) - Q^{(\alpha)}(x^{(\alpha)}) = \frac{e^{w^{(2)}}Q(x^{(\alpha)})}{\sum_{i} e^{w^{(2)}}Q(x^{(\alpha)})}$$

$$Q^{(\alpha)}(x^{(\alpha)}) = Q^{(\alpha)}(x^{(\alpha)}) + w^{(\alpha)}(x^{(\alpha)}) + w^{(\alpha)}(x^{(\alpha)}) = \frac{e^{w^{(2)}}Q(x^{(\alpha)})}{\sum_{i} e^{w^{(2)}}Q(x^{(\alpha)})}$$

$$Q^{(\alpha)}(x^{(\alpha)}) = Q^{(\alpha)}(x^{(\alpha)}) + w^{(\alpha)}(x^{(\alpha)}) + w^{(\alpha)}(x^{(\alpha)}) = \frac{e^{w^{(2)}}Q(x^{(\alpha)})}{Q(x^{(\alpha)})}$$

$$Q^{(\alpha)}(x^{(\alpha)}) = Q^{(\alpha)}(x^{(\alpha)}) + w^{(\alpha)}(x^{(\alpha)}) + w^{(\alpha)}(x^{(\alpha)}) = \frac{e^{w^{(2)}}Q(x^{(\alpha)})}{Q(x^{(\alpha)})}$$

$$Q^{(\alpha)}(x^{(\alpha)}) = Q^{(\alpha)}(x^{(\alpha)}) + w^{(\alpha)}(x^{(\alpha)}) = \frac{e^{w^{(\alpha)}}Q(x^{(\alpha)})}{Q(x^{(\alpha)})}$$

$$Q^{(\alpha)}(x^{(\alpha)}) = Q^{(\alpha)}(x^{(\alpha)}) + w^{(\alpha)}(x^{(\alpha)}) = Q^{(\alpha)}(x^{(\alpha)})$$

$$Q^{(\alpha)}(x^{(\alpha)}) = Q^{(\alpha)}(x^{(\alpha)}) + Q^{(\alpha)}(x^{(\alpha)}) + Q^{(\alpha)}(x^{(\alpha)}) = Q^{(\alpha)}(x^{(\alpha)})$$

$$Q^{(\alpha)}(x^{(\alpha)}) = Q^{(\alpha)}(x^{(\alpha)}) + Q^{(\alpha)}(x^{(\alpha)}) = Q^{(\alpha)}(x^{(\alpha)})$$

$$Q^{(\alpha)}(x^{(\alpha)}) = Q^{(\alpha)}(x^{(\alpha)}) + Q^{(\alpha)}(x^{(\alpha)}) = Q^{(\alpha)}(x^{(\alpha)})$$

$$Q^{(\alpha)}(x^{(\alpha)}) = Q^{(\alpha)}(x^{(\alpha)}) + Q^{(\alpha)}(x^{(\alpha)}) = Q^{(\alpha)$$

Model fitting: Maximum Likelihood estimation

- nonlinear function optimization: given a function to compute the likelihood with some free parameters.
- local search: likelihood surfaces may not be well- behaved but may have multiple peaks. The optimization may run into local minimum.
- model fitting process is feasible but finicky, which requires ongoing monitoring and tuning.

Choice of priors

- lacktriangleright prior information: the likely range of the parameters via $P(\underline{\mathbf{w}}_M|M)$. Adopting a model with parameter priors (typically Gaussian or Beta distributions) gives us a two-level hierarchical model of how a full dataset is produced.
- probability distributions (from each level of the hieararchical model) can be approximated by drawing independent samples: Markov Chain Monte Carlo methods.
- MCMC method: approximating a distribution with a large set of samples and each sample is drawn based on the previous sample

Model fitting: Hierarchical Bayesian analysis

 \blacksquare assume the lower-level parameters come from a Gaussian prior, we can estimate parameters of the higher-level $\left(\mu_{w^{(1)}},\sigma_{w^{(1)}},\mu_{w^{(2)}},\sigma_{w^{(2)}}\right)$ to see the group differences.

$$\begin{split} &P(\underline{\mathbf{x}}_{i}|\mu_{w^{(1)}},\sigma_{w^{(1)}},\mu_{w^{(2)}},\sigma_{w^{(2)}}) = \\ &\int P(\underline{\mathbf{x}}_{i}|w_{i}^{(1)},w_{i}^{(2)})P(w_{i}^{(1)}|\mu_{w^{(1)}},\sigma_{w^{(1)}})P(w_{i}^{(2)}|\mu_{w^{(2)}},\sigma_{w^{(2)}})dw_{i}^{(1)}dw_{i}^{(2)} \end{split}$$