

AON6160

60V N-Channel AlphaSGT™

General Description

- Trench Power AlphaSGT[™] technology
- Low R_{DS(ON)}
 Low Gate Charge
- · Optimized for fast-switching applications
- RoHS and Halogen-Free Compliant

Applications

- Synchronous Rectification in DC/DC and AC/DC Converters
- Industrial and Motor Drive applications

Product Summary

60V I_D (at V_{GS}=10V) 100A $R_{DS(ON)}$ (at V_{GS} =10V) $< 1.58 m\Omega$

100% UIS Tested 100% Rg Tested

Orderable Part Number Package Type		Form	Minimum Order Quantity
AON6160	DFN 5x6	Tape & Reel	3000

Parameter		Symbol	Maximum	Units
Drain-Source Voltage Gate-Source Voltage		V_{DS}	60	V
		V_{GS}	±20	V
Continuous Drain	T _C =25°C	i	100	
Current G	T _C =100°C	ID	100	Α
Pulsed Drain Currer	t ^C	I _{DM}	400	
Continuous Drain	T _A =25°C		49	A
Current	T _A =70°C	IDSM	39	
Avalanche Current ^C	;	I _{AS}	53	A
Avalanche energy	L=0.3mH ^C	E _{AS}	421	mJ
V _{DS} Spike	10µs	V _{SPIKE}	72	V
	T _C =25°C	P _D	215	W
Power Dissipation ^B	T _C =100°C	' D	86	VV
	T _A =25°C	D .	7.3	W
Power Dissipation ^A	T _A =70°C	P _{DSM}	4.7	VV
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C

Thermal Characteristics						
Parameter		Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	D	14	17	°C/W	
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	40	50	°C/W	
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	0.43	0.58	°C/W	

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	rameter Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		60			V
Zoro Coto Voltago Droin Cu	Zara Cata Valtaga Drain Current	V _{DS} =60V, V _{GS} =0V				1	μА
I _{DSS}	Zero Gate Voltage Drain Current		T _J =55°C			5	
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±20V	V _{DS} =0V, V _{GS} =±20V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS,} I _D =250μA		2.1	2.55	3.4	V
	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =20A			1.3	1.58	mΩ
$R_{DS(ON)}$	Static Drain-Source On-Resistance		T _J =125°C		2.2	2.7	11177
g _{FS}	Forward Transconductance	V _{DS} =5V, I _D =20A			90		S
V_{SD}	Diode Forward Voltage	I _S =1A, V _{GS} =0V			0.66	1	V
Is	Maximum Body-Diode Continuous Cur	ode Continuous Current ^G				100	Α
DYNAMIC	CPARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =30V, f=1MHz		5180	6485	7790	pF
Coss	Output Capacitance			730	1050	1370	pF
C _{rss}	Reverse Transfer Capacitance			5	30	55	pF
R_g	Gate resistance	f=1MHz		0.5	1.1	1.7	Ω
SWITCHI	NG PARAMETERS						
Q _g (10V)	Total Gate Charge	V _{GS} =10V, V _{DS} =30V, I _D =20A			85	120	nC
Q_{gs}	Gate Source Charge				24.5		nC
Q_{gd}	Gate Drain Charge				13		nC
t _{D(on)}	Turn-On DelayTime				19		ns
t_r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =30V, R_{L} =1.5 Ω , R_{GEN} =3 Ω			10.5		ns
$t_{D(off)}$	Turn-Off DelayTime				51		ns
t _f	Turn-Off Fall Time				12		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, di/dt=500A/μs		15	33	50	ns
Q_{rr}	Body Diode Reverse Recovery Charge	e I _F =20A, di/dt=500A/μs		110	176	250	nC

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power

APPLICATIONS OR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

the user's specific board design.

B. The power dissipation P_D is based on T_{J(MAX)}=150° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature $T_{J_{(MAX)}}$ =150° C. D. The R_{NJA} is the sum of the thermal impedance from junction to case R_{NJC} and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =150° C. The SOA curve provides a single pulse rating.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25 $^\circ$ C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

 $V_{\rm DS}$ (Volts) Figure 1: On-Region Characteristics (Note E)

V_{GS} (Volts) Figure 2: Transfer Characteristics (Note E)

 $\label{eq:local_local} \textbf{I}_{\text{D}}\left(\textbf{A}\right)$ Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)

V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Power De-rating (Note F)

T_{CASE} (° C)
Figure 13: Current De-rating (Note F)

Pulse Width (s) Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note H)

Pulse Width (s)
Figure 15: Normalized Maximum Transient Thermal Impedance (Note H)

Rev.3.0: August 2016 Page 5 of 6 www.aosmd.com

Figure A: Gate Charge Test Circuit & Waveforms

Figure B: Resistive Switching Test Circuit & Waveforms

Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Figure D: Diode Recovery Test Circuit & Waveforms

Rev.3.0: August 2016 www.aosmd.com Page 6 of 6