

Blockchain Transactions

R. R. Brooks – rrb@acm.org Clemson University, Electrical and Computer Engineering

July, 2019

These slides

Introduction These slides Blockchain –	□ For programming assignment;□ Gives information on BTC transactions and what we want in
Transaction	program;
Transactions	\Box The two are similar but not the same;
Elliptic Curve DSA	\square Also explains how to use Openssl for DSA signing;
Conclusion	□ We give command line calls;
	☐ We give reference to Google C calls;

Blockchain - Transaction

ntroduction These slides Blockchain – Transaction Transactions Elliptic Curve DSA Conclusion	 □ For now, only simplest type of transaction ¹ □ Pay-to-PubkeyHash □ In general, BTC transactions processed using a variant of Forth. □ Forth is a stack based language developed in 1968. □ Forth was popular with embedded systems in the 1980's;) □ We will do a transaction with one input and two outputs
Conclusion	\square We will do a transaction with one input and two outputs

¹https://en.bitcoin.it/wiki/Transaction

Transaction – Format

Introduction

Transactions Transaction − Format

➢ FormatTransaction − InputPart 1

Transaction – Input Part 2
Transaction –

Transaction – Output

Elliptic Curve DSA

- \Box Transaction format ²
- \square Version 4 bytes Data structure version ex. 01000000
- \Box Input count variable Upcoming number of inputs ex. 01
 - Inputs next slide repeated input count number of times
- \Box Output count variable Upcoming number of outputs ex. 02
 - Outputs future slide repeated output count number of times
- □ Locktime 4 bytes How long to wait until processing ex. 00000000

²https://learnmeabitcoin.com/guide/transaction-data

Transaction – Input Part 1

Introduction

Transactions
Transaction −
Format
Transaction −

Input Part 1
Transaction − Input
Part 2
Transaction −
Output

Elliptic Curve DSA

- ☐ Input: (Has 5 elements)
 - 1. TXID: 32 bytes Hex Hash of previous transaction "f5d8ee39a430901c91a5917b9f2dc19d6d1a0e9cea 205b009ca73dd04470b9a6"
 - to calculate
 - Take transaction whose output you want to spend
 - Do SHA256 twice
 - Reverse the byte order
 - Used to find transactions in BTC blockchain
 - bitcoin-cli getrawtransaction 0e3e2357e806b6cdb1f70b54c3a3a17b6714ee1f0e68bebb44a74b1efd512098
 - 2. VOUT 4 bytes output number in list ex: 0

Transaction – Input Part 2

Introduction

Transactions Transaction –

Format

Transaction – Input

Part 1

Transaction -

▶ Input Part 2

Transaction – Output

Elliptic Curve DSA

- ☐ Input Continued: (fourth element)
 - 4. SciptSig Size variable Size of the Script's
 - 5. ScriptSig:³
 - "304502206e21798a42fae0e854281abd38bacd1aeed3ee373 8d9e1446618c4571d10 90db022100e2ac980643b0b82c0e88ffdfec6b64e3e6ba35e 7ba5fdd7d5d6cc8d25c6b241501"
 - BTC Script $< ScriptPubKey = OP_DUP\ OP_HASH160 < PublicKeyHash > OP_EQUAL\ OP_CHECKSIG \\ ScriptSig = < Signature > < PublicKey >$
 - Pushes hash onto stack; pushes signature onto stack;
 - Checks that signature wsa signed with publickey;
 - Checks that hash in signature equals hash on stack;
 - We will not force you to write a Forth scripting interpreter;
 - ScriptSig will be signed public key and public key;
 - Hash of public key from ScriptSig has to match public key hash in output VOUT of TXID indexed transaction;
 - How to EC sign later;
 - 6. Sequence no 4 bytes usually "FFFFFFF"; irrelevant unless lock time is > 0;

³https://www.cryptocompare.com/wallets/guides/bitcoin-transaction

Transaction – Output

Introduction

Transactions

Transaction −

Format

Transaction − Input

Part 1

Transaction − Input

Part 2

Transaction −

Output

Elliptic Curve DSA

- \Box Output: (Has 3 elements)
 - 1. Value 8 bytes Amount of output in Satoshi's 10^8 Satoshi == 1 BTC;⁴
 - 2. ScriptPubKey Size Variable length Size of locking code;
 - 3. ScriptPubkey: We only do "P2PKH" Pay to public key hash
 - OP_DUP OP_HASH160
 "12ab8dc588ca9d5787dde7eb29569da63c3a238c"
 OP_EQUALVERIFY OP_CHECKSIG
 - For program give the address used by receipient;
 - Address is byte reversed SHA-256(ShH-256(Public Key))

⁴https://learnmeabitcoin.com/guide/transaction-data

EC Signature

Introduction	☐ From command line: ⁵
Transactions Elliptic Curve DSA > EC Signature	 Sign file: openssl dgst -ecdsa-with-SHA1 -sign private.pem test.pdf >
Conclusion	signature.bin
	Verify file:
	 openssl dgst -ecdsa-with-SHA1 -verify public.pem -signature signature.bin test.pdf
	□ C source code ⁶
	☐ C code from Google for reference
	☐ I suggest using system() or exec calls with command line.
	6https://chromium.googlesource.com/chromiumos/third_party/opens

EC Signature

Introduction	☐ Explaind BTC transactions;
Transactions	☐ Explained how transactions should work in program 1;
Elliptic Curve DSA	☐ You will need DSA signatures;
Conclusion	\square You will need to verify DSA signatures;
▶ EC Signature	\square Explained how to do DSA signature and verification at command line;
	☐ Gave reference code;