Pflichtenheft

Wireless Controller for Smart Systems

Bachelor Thesis - Anklin, Bobst, Horath 21. Februar 2020

Fachcoach: Matthias Meier

Manuel Di Cerbo

Team: Raffael Anklin

Robin Bobst Cyrill Horath

Studiengang: Elektro- und Informationstechnik

Semester: Frühlingssemester 2020

Inhaltsverzeichnis

1	Übersicht										
	1.1	Ausgangslage	1								
	1.2	Projektziele	2								
	1.3	Lieferobjekte	4								
2	Lös	${ m ungskonzept}$	5								
3	3 Konzeptschema										
	3.1	UPN	5								
	3.2	GIS	5								
	3.3	HMI	5								
4	Har	rdware	6								
	4.1	Bluetooth Mesh Node (BMN)	6								
	4.2	Gateway Interface System (GIS)	6								
	4.3	Energy Harvesting System (EHS)	7								
	4.4	Power Storage System (PSS)	8								
5	Soft	Software									
	5.1	Software BMN	9								
	5.2	Software GIS	9								
	5.3	Human Machine Interface (HMI)	9								
	5.4	Security	9								
	5.5	Open Source Projekt	9								
6	Pro	jektvereinbarung	11								
A Konzeptschema											
В	Ter	minplanung	13								
\mathbf{C}	Risi	ikoanalyse	14								

1 Übersicht

In diesem Kapitel soll eine Übersicht über den Inhalt des Projekts 5 des Studiengangs Elektround Informationstechnik gegeben werden. Dabei soll auch aufgezeigt werden, welche Ziele erreicht werden sollen und welche Lieferobjekte erstellt werden müssen.

1.1 Ausgangslage

Die Bluetooth Technik wurde im Jahr 1998 von der "Bluetooth Special Interest Group" (SIG) als Industriestandart für Datenübertragung herausgebracht. Ursprünglich wurde das Funkverfahren jedoch von Jaap Hartsen und Sven Mattisson für die Firma Ericsson entwickelt. Der Hauptzweck dieser Methode zur Datenübermittlung war das Ersetzen von Kabelverbindungen von Mobiltelefone, Peripheriegeräte oder Computer. Der Name Bluetooth oder auf Deutsch Blauzahn kommt vom dänischen König Harald Blauzahn. Diesem König gelang es die verfeindeten Länder Dänemark und Norwegen dank seiner Kommunikationsfreudigkeit zu vereinen. Da die skandinavischen Firmen Nokia und Ericsson viel Aufwand in die Bluetooth Technologie gesteckt haben, wurde dieser Name sowie die Runen H (Harald) und B (Blauzahn) für das Logo übernommen.michna_entwicklungsgeschichte_2019 Seit dem Start von Bluetooth gab es eine Vielzahl von Versionen, die von mehreren Firmen ständig weiterentwickelt werden. Im Dezember 2009 wurde von der SIG die Version 4.0 Smart vorgestellt. Mit dieser Version von Bluetooth war es möglich kleine und sparsame Geräte wie z.B. smarte Uhren, Brillen oder sogar Ringe herzustellen.bluetooth sig our 2019 Ab dem Jahre 2017 ist es möglich Bluetooth Komponenten in einem Mesh-Netzwerk zu konfigurieren.eckstein neue 2019 Dieses Netzwerk basiert auf einem "many-to-many pairing system"d.h. jeder Teilnehmer ist mit den anderen Teilnehmern verbunden. Dieses dezentralisierte System hat den Vorteil, dass es kein Master Element benötigt. Fällt ein Teilnehmer aus besteht das Netzwerk trotzdem weiter woolley intro 2017 Genau hier soll das Projekt 5 ansetzten. Da die Programmierung eines Mesh-Netzwerkes sehr kompliziert ist, wird dafür eine "Open Source Software" geschrieben, die es ermöglicht ein Netzwerk vereinfacht aufzubauen und zu konfigurieren.

1.2 Projektziele 2

1.2 Projektziele

In den beiden Tabellen 1.1 und 1.2 sind die Pflicht- resp. Wunschziele für dieses Projekt festgehalten.

Pflichtziele								
Nr.	Ziel	Beschrieb						
P1	Bluetooth-Mesh-	Eine variable Anzahl an BLE-Nodes bauen ein Mesh-						
	Netzwerk	Netzwerk auf um darin Datenaustausch zu ermöglichen.						
P2	UPN	Der Universal-Peripheral-Node kann je nach Einsatz als Sen-						
		sor oder Aktor konfiguriert und bestückt werden.						
Р3	Low Power	Die UPN sind bezüglich Hardware und Software energiespa-						
		rend konzipiert um sie autonom betreiben zu können.						
P4	Security	Das Mesh-Netzwerk ist gegen unerlaubten Zugriff und sons-						
		tigen Angriffen geschützt.						
P5	Netzunabhängig	Durch Versorgung mittels Batterie und Energy-Harvesting						
		können die UPN komplett netzunabhängig betrieben wer-						
		den.						
P6	Energy-Harvesting	Für die Versorgung der UPN werden verschiedene Varianten						
		für das Energy-Harvesting entwickelt. Das Ergebnis wird ei-						
		ne Variantenstudie sein.						
P7	Gateway	Zur Konfiguration des Bluetooth-Mesh-Netzwerks steht ein						
		Gateway basierend auf Standard Hardware (Raspberry-Pi						
		+ nRF52840 USB Dongle o.ä.) zur Verfügung.						
P8	LAN/WLAN	Für die Integration in TCP/IP basierte Systeme bietet der						
		Gateway eine entsprechende Schnittstelle.						
P9	CLI	Mittels Command-Line-Interface kann das Mesh-Netzwerk						
		verwaltet werden.						

Tabelle 1.1: Pflichtziele

1.2 Projektziele 3

Wunschziele						
Nr.	Ziel	Beschrieb				
W1	UPN Konfiguration	Einstellungen des UPN können via Mesh Netzwerk ange-				
	via Mesh	passt werden und somit z.B. die Peripheriekonfiguration ver-				
		ändert werden.				
W2	Firmwareupgrade	Die Firmware der UPN wird via Mesh-Netzwerk aktualisiert.				
	via Mesh					
W3	BLR und BLE	Bluetooth Long Range (BLR) und Bluetooth Low Energy				
		(BLE) ergänzen das Bluetooth Mesh um die Reichweite zu				
		vergrössern oder den Energieverbrauch nochmals zu vermin-				
		dern.				
W4	Dedizierte Hardwa-	Das UPN ist als dedizierte Hardware realisiert und somit				
	re UPN	einsatzbereit.				
W5	Datenschnittstelle	Mittels passender Datenschnittstelle auf dem Gateway kön-				
		nen Fremdsysteme wie Apple Homekit, Google Home oder				
		KNX angebunden werden.				
W6	Datenschnittstelle	Damit keine Daten auf dem Gateway zwischen gespeichert				
	ohne Zwischenspei-	werden müssen können die Nodes mittels verbindungslosem				
	cherung	Protokoll (MQTT, CoAP, usw.) direkt aus dem Mesh Netz-				
		werk mit einem Fremdsystemen kommunizieren.				
W7	HMI	Ein Human-Machine-Interface in Form einer Webapplika-				
		tion unterstützt den User bei der Konfiguration des Mesh-				
1170	D III - G -	Netzwerks und ermöglicht die Anbindung an Fremdsysteme.				
W8	Dedizierte Gateway	Der Gateway ist auf einer dedizierten Hardware umgesetzt.				
IIIO	Hardware					
W9	Onboard Bluetooth	Da der Raspberry-Pi 4 bereits ein Bluetooh 5 Chip besitzt				
		soll direkt dieser verwendet werden anstelle eines angeschlos-				
W10	Mobiltelefon	senen Dongles. Anstelle oder ergänzend zum Gateways kann ein Mobiltele-				
WIU	Modification	fon ins Mesh-Netzwerk eingebunden werden um Konfigura-				
		tionen vorzunehmen oder Daten aus zu lesen.				
W11	GSM/LTE	Für Feldanwendungen besitzt der Gateway ein GSM/LTE				
VV 11	COM/LIT	Modul.				
W12	Versuchsaufbau	Erfolg versprechende Energy-Harvesting-Systeme werden in				
VV 12	Energy-Harvesting	einem Versuchsaufbau auf deren Tauglichkeit weiter geprüft.				
	Energy-marvesung	emem versucusaurbau auf deren Taughenken werter gepruit.				

Tabelle 1.2: Wunschziele

1.3 Lieferobjekte 4

1.3 Lieferobjekte

Zusätzlich zu den Projektzielen, folgen in diesem Kapitel die Lieferobjekte mit dem jeweiligen Datum. In der Tabelle 1.3 sind diese aufgelistet.

Nr.	Datum	Lieferobjekt
1	07.10.2019	Abgabe Pflichtenheft, 1. Version
2	14.10.2019	Abgabe Pflichtenheft, definitive Version
3	13.01.2020	Projektpräsentation
4	13.01.2020	Abgabe Fachbericht
5	13.01.2020	Abgabe Testaufbau Mesh-Netzwerk

Tabelle 1.3: Lieferobjekte

2 Lösungskonzept

Im Zentrum soll die Entwicklung einer Bluetooth Mesh Plattform stehen. Diese soll für ein weiterführendes Projekt einsetzbar sein (Home Automation, Agricultur oder Industrie).

- 2.1 Framework
- 2.2 Bluetooth Mesh
- 2.3 Thread
- 2.4 Zigbee

3 Konzeptschema

In Abbildung A ist das Blockschaltbild ersichtlich, welches alle Teilsysteme und Einheiten darstellt. Es ist modular gegliedert und bietet eine Übersicht der Schnittstellen zwischen den einzelnen Modulen.

Das Konzeptschema besteht aus physikalisch getrennten Systemen, dem *Universal Peripherial Node* (UPN), dem *Gateway Interface System* (GIS), dem *Human Machine Interface* (HMI) und über das Internet verbundene Webserver, im Konzept als *Platform Bindings* bezeichnet.

3.1 UPN

Der *UPN* beinhaltet einen *Bluetoot Mesh Node* (BMN), welcher die Anbindung an das Mesh Netzwerk ermöglicht. Als Stromversorgung dient das *Power Storage System* (PSS), sowie das *Energy Harvesting System* (EHS). Diese Systeme verfügen über externe angebundene Energiequellen (z.B. Solarzellen). Zusätzlich werden die Aktoren und Sensoren des *UPN* über eine *Universal Peripherial Unit* (UPU) angesteuert bzw. eingelesen.

3.2 GIS

Als Zentrale Einheit des GIS dient das Central Control System (CCS). Zur Anbindung an das Mesh Netzwerk steht ebenfalls ein BMN zur Verfügung. Die Stromversorgung erfolgt über das lokale Stromnetz mithilfe eines Netzteils. Zusätzlich wird die Internetverbindung über das Mobile Network Interface (MNI) abgesichert.

3.3 HMI

Das HMI bildet die Benutzerschnittstelle über ein internetfähiges Gerät. Es kommuniziert mittels WLAN/LAN mit dem GIS. Über dieses Gerät kann der Status visualisiert, sowie die Konfigurationen durchgeführt werden.

4 Hardware

In diesem Kapitel wird die Hardware vom Gateway Interface System, dem Universal Peripheral Node, dem Energy Harvesting System und dem Power Storage System beschrieben.

4.1 Bluetooth Mesh Node (BMN)

Im Bluetooth Mesh Protokoll gibt es zwei verschiedene Geräte, ein "unprovisioned device" und einen "node". Das "unprovisioned device" ist ein Teilnehmer, der für das Mesh Netzwerk unbekannt ist und deshalb keine Rechte besitzt. Wird dieses Gerät nun in das Netzwerk aufgenommen, so wird das "unprovisioned device" zu einem "node". Dieses vorgehen nennt sich "provisioning".afaneh_ultimate_2018 Die Hardware für den "node" besteht bei allen Geräten aus dem gleichen SoC. Der nRF52840 von Nordic Semiconductor eignet sich aus folgenden Gründen perfekt für diese Anwendung. Die "nodes" dürfen, um eine lange Laufzeit zu garantieren, sehr wenig elektrische Leistung beziehen. Der nRF52840 benötigt im Ruhemodus nur wenige $[\mu A]$. Ein weiterer Grund ist die sehr gute Dokumentation der Software von Nordic Semiconductor. Die gesamte Software ist im Infocenter erhältlich und frei zugänglich. Weitere Vorteile befinden sich in der Tabelle 4.1:nordic semiconductor nrf52840 2019

Vorteile des nRF52840

Bluetooth 5 -95 dBm Sensivität

Multiprotokoll (Thread, Zigbee, usw) +8 dBm Ausgangsleistung

Geringer Stromverbrauch (wenige $[\mu A]$) USB 2.0 12bit ADC NFC

1 MB flash und 256kB RAM Speicher ARM M4F Cortex

Tabelle 4.1: Vorteile des nRF52840

Abbildung 4.1: nRF52840 SoC nordic_semiconductor_nrf52840-qiaa.png_2019

4.2 Gateway Interface System (GIS)

Der Bluetooth-Mesh-Gateway soll die Plattform gegenüber Fremdsystemen öffnen und damit die Schnittstelle zu IOT Anwendungen (Internet of Things) bilden. Damit die Plattform einfach zu betreiben ist, wird beim Gateway in erster Linie auf den Einplatinen-Computer Raspberry-Pi

4 (siehe Abschnitt 4.2) gesetzt. Andere Einplatinen-Computer wären ebenfalls denkbar wobei die Raspberry-Pi-Plattform bereits sehr weit verbreitet ist und somit oft bereits verfügbar ist.

Der Raspberry-Pi 4 besitzt nebst Ethernet und WLAN Schnittstellen sowie USB 3 Ports auch von Grund auf mit einem Bluetooth 5 Modul ausgestattet. So könnte er direkt ins Bluetooth-Mesh-Netzwerk integriert werden. Um jedoch die volle Integration zu erreichen, wird in erster Linie der oben erwähnte nRF52840 (siehe Abschnitt 4.1) in Form eines Dongle-Development-Boards 4.3 eingesetzt. Via serieller Schnittstelle wird dieser mit dem Raspberry-Pi 4 verbunden.

Als Ergänzung oder Alternative zum Gateway soll beispielsweise ein Mobiltelefon welches ein Bluetooth Modul besitzt ins Mesh Netzwerk integriert werden können. Darüber sollen dann Konfigurationen sowie die Ein- und Ausgabe von Parametern und Daten möglich sein.

Abbildung 4.2: Raspberry-Pi 4 reichelt_elektronik_gmbh_&_co_kg_rasp_nodate

Abbildung 4.3: nRF52840 USB Dongle nordic_semiconductor_nrf52840-dongle-promo.png_2019

4.3 Energy Harvesting System (EHS)

Das EHS beinhaltet unterschiedlichen Methoden um Energie aus der Umgebung aufzufangen. Diese sind in der folgenden Tabelle mit den wichtigsten Kenndaten aufgefasst.

Durch Berechnungen, Simulationen und Testaufbauten soll gezeigt werden, welche Methode sich als genügend ertragreich für unser System erweist. Dafür muss der Energiebedarf des Systems gemessen werden. Die Messungen erfolgen unter verschiedenen Konfigurationen. Mithilfe der Ergebnisse soll es möglich sein, die optimale Konfiguration situationsbedingt zu wählen.

Source	Power density	Harvesting tech.	Advantages	Disadvantages				
Solar	Indoor: 10 µW/cm ² Outdoor: 10 mW/cm ²	Photovoltaic	High power density Mature	Not always available Required exposure to light (not implantable) Expensive				
Vibration	Human: $4 \mu W/cm^2$ Industrial: $100 \mu W/cm^2$	Piezoelectric Electrostatic Electromagnetic	Implantable High efficiency	Not always available Material physical limitation				
Thermal	Human: 30 μW/cm ² Industrial: 1–10 mW/cm ²	Thermoelectric Pyroelectric	High power density Implantable	Not always available Excess heat				
RF	GSM: 0.1 μW/cm ² WI-FI: 1 mW/cm ²	Antenna	Always available Implantable	Low density Efficiency inversely proportional to distance				

Abbildung 4.4: Tabelle Umgebungsenergie tran_rf_2017

4.4 Power Storage System (PSS)

Das *PSS* ist für die Energiespeicherung zuständig. Untersucht wird die Speicherung der gewonnen Energie aus dem *EHS* mithilfe Sekundärer Zellen (Akkus) oder mit *Supercaps*. Der Einsatz eines Tiefendladungsschutzes ist bei verwenden der sekundären Zellen angedacht. Zusätzlich soll die Versorgung aus primären Zellen untersucht werden. Mithilfe der Ergebnisse soll es möglich sein, die optimale Konfiguration situationsbedingt zu wählen.

5 Software

Das Kapitel Software befasst sich mit der Programmierung des Mikrocontroller nRF52840 sowie des GIS.

5.1 Software BMN

Die Software auf dem *BMN* (siehe Abschnitt 4.1) wird mit Hilfe der folgenden *SDKs* von *Nordic* Semiconductor entwickelt:

- nRF5 SDKnordic_semiconductor_nrf5_2019
- nRF5 SDK for Meshnordic_semiconductor_nrf5_2019-1
- Zephyrzephyr_project_zephyr_2019

Diese SDKs enthalten eine sehr gut dokumentierte Bibliothek, die für den Quellcode des BMN benötigt werden.

5.2 Software GIS

Mit dem Ziel den Gateway Open Source und Open Hardware zu realisieren, soll eine einfache Linux-Distribution eingesetzt werden. Beim Raspberry-Pi 4 (siehe Abschnitt 4.2) eignet sich dafür besonders das Debian basierende Betriebssystem Raspbian da es eigens für die Raspberry-Pi Familie entwickelt wurde.

Basierend auf dieser Oberfläche können nun Anbindungen an Fremdsysteme wie Apple Homekit oder KNX mit den passenden Software Bausteinen realisiert werden. Welche Bausteine dies sein werden ist Teil der Umsetzung für eine spezifische Anwendung welche noch nicht festgelegt ist. Daher wird in erster Linie mit einfachen Sprachen wie beispielsweise Node.js oder Python eine Ein- und Ausgabe von Daten oder Befehlen umgesetzt.

5.3 Human Machine Interface (HMI)

Das *HMI* wird kein primäres Ziel sein. Angedacht wird ein einfaches *Webinterface* zur Konfiguration des *Mesh-Netzwerkes*.

5.4 Security

Der Bluetooth-Mesh-Standart von (SIG) stellt vier verschiedene Sicherheitspakete zur Verfügung. nordic_semi

- Authentifizieren durch z.B. LED die auf Board drei Mal blinkt
- Zwei Level AES-CCM Verschlüsselung mit 128-bit Schlüssel
- Verbergen der Metadaten durch einen privaten Schlüssel
- Laufnummer zur Verhinderung von wiederholenden Nachrichten

5.5 Open Source Projekt

Die gesamte Software im Projekt 5 wird als "Open Source Software" deklariert. Damit die Software global zur Verfügung steht, wird diese unter der "General Public License Version 3" (GPLv3) lizenziert. Die GPL beinhaltet ein starkes "copyleft", d.h. das Software-Projekt muss öffentlich und gebührenfrei zugänglich sein und der Quellcode muss jedem ausgehändigt werden, der danach fragt. Das starke "copyleft" bringt aber den Vorteil, dass die Lizenz vom Projekt nicht verändert werden kann. Wird die Software von jemandem weiterentwickelt muss dieser die

GPL Lizenz weiterführen und kann kein "closed source" Projekt daraus erstellen. Ein weiterer Vorteil im Hinblick auf die Bachelorarbeit ist, dass das "copyright" einer "open source" Lizenz beim Entwickler bleibt. Das bedeutet die Grundlage der Software kann weiterentwickelt werden z.B. als eine Software die Hausautomation steuert und somit als "closed source" verwendbar ist.jaeger_was_2018

6 Projektvereinbarung

Projektcoach	
Meier Matthias	
Ort, Datum:	Unterschrift:
Di Cerbo Manuel	
Ort, Datum:	Unterschrift:
Projektteam	
Anklin Raffael	
Ort, Datum:	Unterschrift:
Bobst Robin	
Ort, Datum:	Unterschrift:
Horath Cyrill	
Ort, Datum:	Unterschrift:

 C

Ereignis					Risiko ohne Massnahme n		Prävention		siko i snal n		Verantwortlich	Indikator
Ä.	Risiko	Ursachen	Konsequenzen	Si	pi	Εi		Si	pi	Ei		
Α	Teammitglied fällt kurzfristig aus	Unvorhergesehener Termin, leichte Krankheit, leichter Unfall	Weniger Personalressourcen, kleiner Mehraufwand	3	2	6	Reservezeit einplanen, Transparenter Informationsfluss im Team	1	2	2	СН	Abwesenheit
В	Teammitglied fällt längerfristig aus	Militärdienst, schwere Krankheit, Studienabbruch, schwerer Unfall	Grössere Umplanung, Neuverteilung der Arbeiten	3	2	6	Strukturierte Datenablage, guter Kommunikationsfluss	1	2	2		Abwesenheit
С	Datenverlust oder Zugriffsprobleme	Löschung der Projektdaten, Unzugänglichkeit von Onedrive, keine Internetverbindung	Zugriff auf Daten nicht möglich, Sämtliche Projektdaten nicht mehr vorhanden	2	1	2	Regelmässige Backups, Dokumente zusätzlich lokal abspeichern	1	1	1		Arbeiten auf dem Stand des letzten Backups
D	Software kann nicht mehr ausgeführt werden	Datenverlust, Softwareupdate	Schlimmstenfalls Verlust der gesamten Arbeit, vorübergehende Arbeitspause bis Update komplett	2	3	6	Fertige Softwareteile werden zusätzlich im Onedrive gespeichert (Revisionsverwaltung) / Github	2	1	2		Fehlermeldung
	Softwarekonzept nicht ausführbar	MangeInde Vorkenntnisse, schlechte Planung	Überdenken der Arbeit, Verzug der Arbeiten	2	2	4	Mit Software-Fachcoach besprechen	1	1	1		Nicht funktionierendes Skript
F	Softwareprojekt von Node Gerät und provisioner Gerät nicht verknüpfbar	Schnittstelle wurde nicht korrekt eingehalten	Verzögerung der Arbeit, Mehraufwand	2	2	4	Kommunikation zwischen Softwareteam	1	1	1		Softwareteam können Vorhaben nicht weiterführen
G	Zu kompliziertrer Sachverhalt	Inhalt kann nicht umgesetzt werden	Stillstand der Arbeit, Projekt nicht durchführbar	1	3	3	Früzeitige Besprechung mit Fachcoaches	1	1	1		Kein Weiterkommen
н	Soziale Spannungen im Team	Meinungsverschiedenheiten, schlechte Arbeitsaufteilung, keine Kompromissbereitschaft	Motivation sinkt, Arbeitsmoral sinkt, schlechte Projektarbeit, unzufriedener Arbeitgeber	2	2	4	Gegenseitige Kontrolle, Fehler offen im Team besprechen, Konstruktive Kritik	2	1	2		Schlechte Arbeitsmoral
I	Mangelnde Kommunikation	zu wenig Sitzungen, Angst vor Demütigung	Schlechtes Zusammenspiel, schlechtere Arbeit	2	1	2	Häufigere Sitzungen, höhere Wertschätzung der einzelnen Teammitglieder	1	1	1		Zurückhaltung
J	Nicht Termingerechte Abgabe der Arbeiten	Faulheit, mangelnder Einsatz, falsche Prioritäten, schlechte Projektführung	Terminplan kann nicht eingehalten werden	2	2	4	striktere Projektführung, gegenseitige Kontrolle, frühzeitiges Melden	2	1	2		Schlechte Arbeitsmoral
К	Qualitativ minderwertige Arbeit	Faulheit, mangelnder Einsatz, schlechter Teamgeist	Mehraufwand, Qualitativ ungenügende Arbeit, Zeitliche Probleme	2	2	4	Gegenkontrolle der Arbeiten	2	1	2		Schlechte Arbeitsmoral
L	Schlechte Terminplanung	Aufwand unterschätzt, keine Reserve eingeplant	Mehraufwand, Überarbeitung des Terminplans, Engpässe	3	2	6	Genug Reservezeit einplanen	2	1	2		Terminverzug

si=Entrittswahrscheinlichkeit

pi=Auswirkung