Principles of EE1 – Fall 2018 Quiz #1 SOLUTION (for both classes) (October 9 & 10, 2018)

Prob. 1: One of the following circuits is a series circuit and the other is a parallel circuit. Explain which is which.

Sol.: Circuit (a) is a parallel circuit: there are only two nodes and all four components are connected between them.

Circuit (b) is a series circuit: each node is connected to exactly two components and the same current must ow through each.

Prob. 2: Find the power absorbed by each of the subcircuits A and B given that the voltage and current are 10V and 2A as shown.

Sol.: For subcircuit B the voltage and current correspond to the passive sign convention (i.e. the current arrow in the opposite direction to the voltage arrow) and so the power absorbed by B is given by $V \times I = 20W$.

For device A we need to reverse the direction of the current to conform to the passive sign convention. Therefore the power absorbed by A is V x (-I) = -20W.

As must always be true, the total power absorbed by all components is zero.

Prob. 3: For each of the four circuits below, the power absorbed by the voltage source (P_V) , the

power absorbed by the current source (P_I) and the total power absorbed $(P_V + P_I)$.

Sol.:

The power absorbed is positive if the voltage and current arrows go in opposite directions and negative if they go in the same direction.

So we get: (a) $P_V = +4$, $P_I = -4$, (b) $P_V = +4$, $P_I = -4$, (c) $P_V = -4$, $P_I = +4$, (d) $P_V = -4$, $P_I = +4$. In all cases, the total power absorbed is $P_V + P_I = 0$.

Prob. 4: Determine the voltage V_X in the following circuit.

Sol.: We can find a path (shown highlighted below) from the bottom to the top of the $V_{\rm X}$ arrow that passes only through voltage sources and so we just add these up to get the total potential difference:

$$V_X = (-3) + (+2) + (+9) = +8V.$$

Prob. 5: Determine the current I_X in the following circuit.

Sol.: If we add up the currents flowing out of the region shown highlighted below, we obtain I_X -5-1+2 = 0. Hence I_X = 4 A.

Prob. 6:

- a) Use the node-voltage method to find v_1 , v_2 , and v_3 in the circuit in Fig. P.1.
- b) How much power does the 40 V voltage source deliver to the circuit?

Sol.:

[a]

$$\frac{v_1}{40} + \frac{v_1 - 40}{4} + \frac{v_1 - v_2}{2} = 0, \quad \text{so } 31v_1 - 20v_2 + 0v_3 = 400$$

$$\frac{v_2 - v_1}{2} + \frac{v_2 - v_3}{4} - 28 = 0, \quad \text{so } -2v_1 + 3v_2 - v_3 = 112$$

$$\frac{v_3}{2} + \frac{v_3 - v_2}{4} + 28 = 0, \qquad \text{so } 0v_1 - v_2 + 3v_3 = -112$$

Solving, $v_1 = 60 \text{ V}$; $v_2 = 73 \text{ V}$; $v_3 = -13 \text{ V}$,

[b]
$$i_g = (40 - 60) / 4 = -5 \text{ A}$$

 $p_g = (40)(-5) = -200 \text{ W}$

→ the 40 V source delivers 200 W of power.

Prob. 7:

- a) Use the mesh-current method to find the branch currents i_a , i_b , and i_c in the circuit in Fig. P.2.
- b) Repeat (a) if the polarity of the 140 V source is reversed.

Sol.:

[a]

$$\begin{split} 80 &= 400i_1 - 200i_2 \\ -140 &= -200i_1 + 600i_2 \\ Solving, \, i_1 &= 0.1A; \, i_2 = -0.2A \\ i_a &= i_1 = 0.1A; \, i_b = i_1 - i_2 = 0.3A; \, i_c = -i_2 = 0.2A \end{split}$$

[b] If the polarity of the 140 V source is reversed, we have

$$80 = 400i_1 - 200i_2$$

$$140 = -200i_1 + 600i_2$$

$$i_1 = 0.38A$$
 and $i_2 = 0.36A$

$$i_a=i_1=0.38A;\,i_b=i_1-i_2=0.02A;\,i_c=-i_2=-0.36A$$