Долгов Дмитрий Андреевич

Математическое моделирование течения вязкой неоднородной незжимаемой жидкости в крупных кровеносных сосудах и искусственных сердечных клапанах

Специальность 05.13.18—
«Математическое моделирование, численные методы и комплексы программ»

Автореферат

диссертации на соискание учёной степени кандидата физико-математических наук

Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Кемеровский государственный университет» (КемГУ)

Научный руководитель: доктор физико-математических наук, профессор

Захаров Юрий Николаевич

Официальные оппоненты: Фамилия Имя Отчество,

доктор физико-математических наук, профессор, Не очень длинное название для места работы,

старший научный сотрудник

Фамилия Имя Отчество,

кандидат физико-математических наук,

Основное место работы с длинным длинным длин-

ным длинным названием, старший научный сотрудник

Ведущая организация: Федеральное государственное бюджетное образо-

вательное учреждение высшего профессионального образования с длинным длинным длинным

длинным названием

Защита состоится DD mmmmmmm YYYY г. в XX часов на заседании диссертационного совета NN на базе Название учреждения по адресу: Адрес.

С диссертацией можно ознакомиться в библиотеке Название библиотеки.

Автореферат разослан DD mmmmmmmm YYYY года.

Ученый секретарь диссертационного совета NN, д.ф.-м.н.

Фамилия Имя Отчество

Общая характеристика работы

Актуальность темы. Сердечно-сосудистые заболевания являются одной из наиболее острых проблем современного общества. Во всех странах их количество существенно опережает остальные, поэтому трудно переоценить значимость исследований в этой области. В последние годы наблюдается резкий рост интереса к проблеме сердечно-сосудистых заболеваний, развиваются новые методики исследования, появляются все более точные измерительные приборы. Каждый год в мире проводится примерно 250 000 операций восстановлению или замене поврежденных сердечных клапанов [1] и ожидается, что в ближайшие годы это значение будет только увеличиваться [2]. При этом многие сложности, связанные с созданием искусственных клапанов или протезированием сосудов, относятся к динамике течения крови внутри. Поэтому математическое моделирование данных явлений позволяет получить более глубокое понимание происходящих процессов и найти пути усовершенствования их конструкции.

При изучении подобных явлений методами математического моделирования зачастую удовлетворительные результаты можно получить с помощью модели вязкой несжимаемой жидкости, которая описывается системой дифференциальных уравнений Навье-Стокса, выписанных в форме естественных переменных «скорость-давление». Помимо этого требуется учесть, что кровь является неоднородной по своей природе и состоит из плазмы и форменных элементов (лейкоциты, эритроциты и т.д.), а сосуды и клапаны являются гибкими и изменяют форму под воздействием различных параметров. Необходимость описывать взаимодействия гибких непроницаемых тканей с неоднородной жидкостью приводит к существенным трудностям при постановке задачи и ее численном решении, связанными с построением расчетной сетки и ее изменением в соотвтетсвии с движением лепестков клапана и деформацией сосуда.

Существует несколько устоявшихся подходов, для того, чтобы избежать эти трудности. В данном исследовании используется метод погруженной границы, который предназначен для моделирования тонких препятствий произвольной жесткости. Это позволяет численно решать прикладные задачи оптимизации структуры искусственного клапана.

Целью данной работы является разработка технологии решения нестационарной трехмерной задачи о течении неоднородной вязкой несжимаемой жидкости в крупных кровеносных сосудах с гибкими стенками и трехстворчатых клапанах с гибкими лепестками. Для достижения этой цели был создан программный комплекс, с помощью которого можно моделировать ра-

боту клапана, деформацию стенок кровеносных сосудов и получать картины течения внутри них.

Основные положения, выносимые на защиту:

- 1. Первое положение.
- 2. Второе положение.
- 3. Третье положение.

Научная новизна:

- 1. Впервые
- 2. Впервые
- 3. Впервые

<u>Практическая значимость</u> диссертационной работы определяется

...

Достоверность изложенных в работе результатов обеспечивается ... Апробация работы. Основные результаты работы докладывались на: Название симпозиума (Страна, город, год), Название конференции (Страна, город, год),

Диссертационная работа была выполнена при поддержке грантов ...

Личный вклад. Автор принимал активное участие ...

<u>Публикации.</u> Основные результаты по теме диссертации изложены в XX печатных изданиях, X из которых изданы в журналах, рекомендованных ВАК, XX — в тезисах докладов.

Содержание работы

Во <u>введении</u> обосновывается актуальность исследований, проводимых в рамках данной диссертационной работы, приводится обзор научной литературы по изучаемой проблеме, излагаются цели и задачи исследования.

<u>Первая глава</u> посвящена описанию используемой математической модели, применяемым методам решения, разностным схемам. Рассматривается система дифференциальных уравнений Навье-Стокса, которая моделирует нестационарную задачу о течении вязкой неоднородной несжимаемой жидкости под воздействием перепада давления:

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u} = -\frac{1}{\rho}\nabla p + \nabla \sigma + \vec{f}$$
 (1)

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0 \tag{2}$$

с начальными и краевыми условиями:

$$\vec{u}(\bar{x},0) = \vec{u}_0 \qquad \vec{u}|_{\Gamma_1,\Gamma_4} = \vec{u}_b \qquad u_{\Gamma_2,\Gamma_3} = 0$$
 (3)

$$p_{\Gamma_2} = p_{in} \qquad p_{\Gamma_3} = p_{out} \tag{4}$$

где $\bar{x}=(x,y,z)\in\Omega,$ $\vec{u}=(u,v,w)$ - вектор скорости, \vec{u}_b - скорость, с которой двигаются стенки сосуда и створки клапана при деформации, $\rho=\rho(\bar{x},t)$ - плотность, $p=p(\bar{x},t)$ - давление, $\sigma=\mu(\nabla\vec{u}+(\nabla\vec{u})^T)$ - вязкий тензор напряжений, $\mu=\mu(\bar{x},t)$ - вязкость жидкости, $\vec{f}=\vec{f}(\bar{x},t)$ - вектор массовых сил, который в дальнейшем используется для определения формы сосуда и створок клапана.

Область Ω изображена на рис. 1 и представляет собой сосуд с границей $\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4$, где Γ_1 - стенка кровеносного сосуда, Γ_2 и Γ_3 - области втекания и вытекания, Γ_4 - створки клапана.

Рис. 1: Изображение границ расчетной области

Плотность ρ и вязкость μ определяются следующими соотношениями:

$$\mu = c(\mu_2 - \mu_1) + \mu_1 \tag{5}$$

$$\rho = c(\rho_2 - \rho_1) + \rho_1 \tag{6}$$

где ρ_1, μ_1 - плотность и вязкость жидкости (плазмы), ρ_2, μ_2 - плотность и вязкость примеси (форменных элементов), c - концентрация примеси. Концентрация $c = c(\bar{x}, t), c \in [0, 1]$ примеси определяется как решение уравнения:

$$\frac{\partial c}{\partial t} + \vec{u} \cdot \nabla c = 0 \tag{7}$$

с начальными условиями и краевыми условиями на границе втекания:

$$c(\bar{x},0) = c_0(\bar{x}), \bar{x} \in \Omega \qquad c(\bar{x},t)|_{\Gamma_2} = c_s(\bar{x},t) \tag{8}$$

В качестве заключительного этапа описания математической модели приводятся формулы (9), (10, (11), используемые для моделирования взаимодействия течения жидкости и непроницаемых гибких стенок:

$$F = \frac{\partial}{\partial s}(T\tau) + \frac{\partial^2}{\partial s^2}(E \cdot I \frac{\partial^2}{\partial s^2}X) \tag{9}$$

$$\frac{\partial X}{\partial t}(\bar{q},t) = \int_{\Omega} \vec{u}(\bar{x},t) \cdot \delta(x - X(\bar{q},t)) \, dx \, dy \, dz \tag{10}$$

$$\vec{f}(\bar{x},t) = \int_{\Gamma} \vec{F}(\bar{q},t) \cdot \delta(x - X(\bar{q},t)) \, dq \, dr \, ds \tag{11}$$

Для поставленной задачи приводятся известные теоремы о существовании и единственности решения.

Формулы в строку без номера добавляются так:

$$\lambda_{T_s} = K_x \frac{dx}{dT_s}, \qquad \lambda_{q_s} = K_x \frac{dx}{dq_s},$$

Вторая глава посвящена исследованию

Третья глава посвящена исследованию

В четвертой главе приведено описание

В <u>заключении</u> приведены основные результаты работы, которые заключаются в следующем:

- 1. Результат номер один.
- 2. Результат номер два.
- 3. Результат номер три.