AMs, GAMs, and SpAMs

Zachary Weller

Department of Statistics, Colorado State University wellerz@stat.colostate.edu

November 18, 2014

Motivation

- Regression plays a fundamental role in many data analyses
- In reality, effects may not be nonlinear
- Additive models (AMs) allow a more flexible form for the regression function:

$$E(Y|X_1,...,X_p) = \alpha + f_1(X_1) + ... + f_p(X_p) = \sum_{j=1}^p f_j(X_j)$$
 (1)

- ullet The $f_i's$ give above are general smooth, nonparametric functions
- ullet Non-parametric form for the f_j functions makes model more flexible
- Additivity is retained allowing for easy interpretation

GAMs

• Analogous to generalized linear models, we can model the conditional mean, $\mu(X)$, of Y via a link function g to create generalized additive models (GAMs):

$$g(\mu(X)) = \alpha + f_1(X_1) + \ldots + f_p(X_p)$$
 (2)

- $g(\mu) = logit(\mu)$ for modeling binomial probabilities
- $g(\mu) = log(\mu)$ for log linear models for Poisson counts
- Can mix in linear and other non-parametric form with the nonlinear terms (e.g. if one of the feature variables is a factor)
 - $g(\mu) = X^T \beta + \alpha_k + f(Z)$
 - $g(\mu) = f(X) + h_k(Z)$

Fitting AMs: population level

• Letting P denote the joint distribution of (X_i, Y_i) , \mathcal{H}_j be a Hilbert subspace of $L_2(P)$, and \mathbb{E} be the expectation w.r.t. \mathbf{X} and ϵ , at the population level, we seek the solution to:

$$\min_{f_j \in \mathcal{H}_j, 1 \le j \le p} \mathbb{E}(Y - \sum_{j=1}^p f_j(X_j))^2$$
 (3)

• We seek to estimate all p functions, $f_j(X_j)$, simultaneously \to given sample data, this is done via <u>backfitting</u>

Fitting AMs: sample version

- To employ the backfitting algorithm, first choose a nonparametric smoothers, S_i (e.g. cubic splines)
- Backfitting algorithm

• set
$$\widehat{\alpha} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

- set $\hat{f}_i = 0, \forall j$
- Iterate until convergence (i.e. $\Delta(\hat{f}_j) < \delta$): For each $j = 1, \dots, p$
 - **1** Compute residual: $R_j = Y \widehat{\alpha} \sum_{k \neq j} \widehat{f}_k(X_k)$;
 - 2 Smooth residuals: $\hat{f}_j \leftarrow S_j R_j$
 - 3 Center: $\hat{f}_j \leftarrow \hat{f}_j \frac{1}{N} \sum_{i=1}^N \hat{f}_j(x_{ij})$
- Implemented in the R package 'gam'
- Backfitting algorithm must be modified for GAMs

R examples

- AMs: synthetic data
- GAMs: predicting email spam
 - Data set containing information from 4601 email messages sent to George Forman from Hewlett-Packard laboratories
 - Response: 1 = spam, 0 = not spam (39.4% spam messages)
 - Features: percentage of words in a message that match given word (e.g. money), character frequency (e.g. ;), capital letters (e.g. length of longest uninterrupted sequence of capital letters)
 - Sensitivity and Specificity: may be more serious to classify a genuine email as spam than vice-versa. We can alter the balance between the two types of classification errors in two ways:
 - change the losses (i.e. change the posterior probability needed to classify a message as spam)
 - e-weight the data to encourage model to better fit data in 'email' class (i.e. upweight the '0' instances in the data)

Sparse Additive Models

- Sparse additive models (SpAMs): "Additive models only have good properties when ... p is not large relative to the sample size n"
- May want/need to constrain the index set $\{j: f_j \not\equiv 0\}$
- 2008 paper by Ravikumar, Lafferty, Liu, and Wasserman develops theory and implementation of SpAMs for both AMs and GAMs
- Derive what is effectively a hybrid of backfitting and LASSO
- Show that their estimator satisfies both *sparsistence* ("sparsity pattern consistent") and *persistence* (form of risk consistent)

SpAMs Theory

Modifying (3) to include a scaling parameter for each function and an additional constraint provides:

$$\min_{\beta \in \mathbb{R}^p, f_j \in \mathcal{H}_j} \mathbb{E}(Y - \sum_{j=1}^p \beta_j f_j(X_j))^2$$
 (4)

subject to:
$$\sum_{i=1}^{p} |\beta_{i}| \le L, \tag{5}$$

$$\mathbb{E}(f_j^2) = 1, \quad j = 1, \dots, p$$
 (6)

8 / 11

In penalized Lagrangian form:

$$\mathcal{L}(f,\lambda) = \frac{1}{2}\mathbb{E}(Y - \sum_{j=1}^{p} f_j(X_j))^2 + \lambda \sum_{j=1}^{p} \sqrt{\mathbb{E}(f_j^2(X_j))}$$

$$= \frac{1}{2}\mathbb{E}(Y - \sum_{j=1}^{p} f_j(X_j))^2 + \lambda \sum_{j=1}^{p} ||f_j(X_j)||$$
(7)

SpAMs Theory

Theorem

The functions, $f_j \in \mathcal{H}_j$, that minimize (7) are given by:

$$f_{j} = \left[1 - \frac{\lambda}{\sqrt{\mathbb{E}(P_{j}^{2})}}\right]_{+} P_{j} \quad a.s.$$
 (8)

where $[\cdot]_+$ denotes the positive part, and $P_j = \mathbb{E}[R_j|X_j]$ is the projection of the residual $R_j = Y - \sum_{k \neq j} f_k(X_k)$ onto \mathcal{H}_j

Again, we can implement the sample version via backfitting and soft thresholding algorithm. We can estimate the projection $P_j = \mathbb{E}(R_j|X_j)$ by applying a smoother to the residuals: $\hat{P}_j = S_j R_j$. Furthermore, estimate $\sqrt{\mathbb{E}(P_j^2)}$ by $\hat{s}_j = \frac{1}{\sqrt{n}} \|\hat{P}_j\| = \sqrt{\text{mean}(\hat{P}_j^2)}$.

Zachary Weller (CSU)

SpAM Backfitting Algorithm

- Choose regularization parameter λ (can be chosen by GCV or C_p)
- Initialize $\hat{f}_i = 0, \forall j$
- Iterate until convergence: For each j = 1, ..., p
 - **1** Compute residual: $R_j = Y \widehat{\alpha} \sum_{k \neq j} \widehat{f}_k(X_k)$;
 - ② Estimate $P_j = \mathbb{E}(R_j|X_j)$ by smoothing: $\hat{P}_j = S_jR_j$;
 - **3** Estimate norm: $\hat{s}_{j}^{2} = \frac{1}{n} \sum_{i=1}^{n} \hat{P}_{j}^{2}(x_{ij});$
 - **9** Soft threshold: $\hat{f}_j = [1 \lambda/\hat{s}_j]_+ \hat{P}_j$;
 - **6** Center: $\hat{f}_j \leftarrow \hat{f}_j \frac{1}{N} \sum_{i=1}^N \hat{f}_j(x_{ij})$
- Not currently implemented in R
- A related algorithm, sparse additive machine, is implemented in the 'SAM' package ← can be viewed as a functional version of support vector machines

The End

References:

- Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No.
 New York: Springer, 2009.
- Ravikumar, Pradeep, et al. "Sparse additive models." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 71.5 (2009): 1009-1030.

Questions?