

Dado el circuito RLC serie de la figura y su función transformada de la corriente, complete y responda las consignas :

Dado el circuito de la figura, cuya función de transferencia tiene el formato mostrado, determine los valores de los coeficientes A, B y C, a continuación cambie P → jω, separe en parte Real y parte Imaginaria, calcule los valores para las pulsaciones dadas en la Tabla y responda a las consignas .

<u>NOTA:</u> PONGA EL SIGNO (-) EN CASO DE QUE UN VALOR SEA NEGATIVO Y TRES (3) DECIMALES SIN REDONDEO, DONDE CORRESPONDA.

$$R1 = R2 = 500 [\Omega]$$

$$C1 = C2 = 200 [uF]$$

Valor del coeficiente A de la Función de Transferencia $F_{(P)}$: 100

Valor del coeficiente B de la Función de Transferencia $F_{(P)}$: 30

Valor del coeficiente C de la Función de Transferencia $F_{(P)}$: 100

Valor de ω	Valor Parte Real	Valor Parte Imaginaria (sin "j")		
0	1	0		
1	0,925	-0,280		
2	0,749	-0,468 ✓		
10	0	-0,333		
20	-0,0666	-0,133		
∞	0	0		

El circuito Atenua ó No Atenúa para $\omega \to 0$ NO ATENÚA

El circuito Atenua ó No Atenúa para $\omega \to \infty$ ATENÚA

El circuito Adelanta o Atraza la Fase para $\omega = 0$ EN FASE

El comportamiento del circuito es ATRAZADOR \checkmark de Fase

Dado el siguiente diagrama de Bode de Módulo determine la función de transferencia F(P) y el valor del pedestal marcado .

B) Raíces del numerador:

C) Raíces del denominador :

Dada la siguiente función de transferencia F_(P) , responda si las consignas son VERDADERAS o FALSAS, si respondió VERDADERO en VALOR CORRECTO elija VERDADERO, si respondió FALSO, indique el VALOR CORRECTO y si de los valores propuestos ninguno corresponde a sus cálculos, elija NINGUNO.

$$F_{(P)} = \frac{17.5 * (P+30)^{2} * (P+650)^{2} (P+3650)}{P^{2} * (P+425) * (5P^{2}+8250 P+70312500)}$$

CONSIGNAS	VERDADERO	VALOR		
CONSIGNAS	Ó FALSO	CORRECTO		
1) Si se realiza el escaleo de frecuencia, el diagrama de Bode de Módulo y de Fase, se podrá trazar correctamente con w _{MIN} = 1 [rad/seg] y w _{MAX} = 10000 [rad/seg] .	FALSO	ωmin=0,1 y wmax=100000		
2) Si se realiza el escaleo de amplitud de la Fase, el diagrama de Bode de Fase, se podrá trazar correctamente con fase mínima -90° y fase máxima +90°.	FALSO	-180° y +180° ✓		
3) El Diagrama de Bode de Módulo a bajas frecuencias tendrá una pendiente de –40 dB/octava.	FALSO	-40 dB/dec ✔		
4) El Diagrama de Bode de Fase a bajas frecuencias tendrá una pendiente de –180 º/década.	FALSO	0°/dec ✔		
5) El Diagrama de Bode de Módulo a <u>altas</u> f <u>recuencias</u> tendrá una pendiente de 0 dB/octava.	FALSO	NINGUNO		
6) El valor de la asíntota de la constante total (KTE _{TOTAL}) será de + 76,437 dB.	FALSO	58,199 dB ✓		
7) El diagrama Asintótico de Bode de Módulo tendrá una zona plana ó meseta con pendiente de 0 dB/dec entre 30 < w < 425 [rad/seg].	VERDADERO ✓	VERDADERO 🗸		
8) La función de 2º grado del denominador tiene una pulsación natural ωο = 2750 [rad/seg]	FALSO	3750 [rad/seg] ✔		
9) La función de 2º grado del denominador tiene un factor de amortiguamiento ζ = 0,9	FALSO	ζ = 0,22 ✔		
10) En la función de 2º grado del denominador, será necesario utilizar la tabla o curvas de corrección de 2º al trazar al diagrama de Bode de módulo y de fase.	VERDADERO ✓	VERDADERO ✔		

Dada la siguiente Función de Lazo Abierto $G_{(P)}H_{(P)}$ trace el Diagrama Polar y aplique criterio de Nyquist. Responda a las consignas propuestas.

$$GH_{(P)} = \frac{15 \cdot P - 30}{P^3 + 6 \cdot P^2 + 10 \cdot P}$$

NOTA : en lugar de <u>infinito</u> escriba <u>1e20</u> donde corresponda.

							l
1) Inicio del d	iagrama para l	P → 0 . MÓD	ULO 1e20	✓ FA	-270	✓ Grados	
2) Final del di	agrama para F	P → ∞ . MÓD	NTO 0	✓ FAS	SE -180	✓ Grados	
3) Existe cort	e al eje Real ?	SI					
4) Si existe co	orte al eje real	, indique el	<u>valor positiv</u>	ro de la pulso	nción de cort	<u>e</u> , si no existe corte,	escriba el <u>NO</u>
1,581	~						
5) Si existe co	orte al eje real	l, indique el	valor de cor	<u>te</u> , si no exis	te corte, escr	iba <u>NO</u> 2	✓
6) Existe cort	te al eje Imagi	nario ?	✓				
7) Si existe co	orte al eje Ima	ginario, ind	ique el <u>valor</u>	<u>positivo de</u>	<u>la pulsación</u>	<u>de corte</u> , si no exist	e corte, escriba <u>NO</u>
4,690	✓						
8) Si existe co	orte al eje Ima	ginario, ind	ique el <u>valor</u>	<u>r de corte</u> (No	o escriba la "ˌ	j ", solo valor y sigr	10) , si no existe corte
escriba <u>NO</u>	-0,533	~					
9) Indique la d	cantidad de roc	leos que se p	roducen al pu	ınto -1+j0 , a	l cerrar el Dia	grama Polar y aplico	ar Criterio de Nyquist =
10) Signo de l	os rodeos al pu	ınto -1+j0 =	POSITIVO	•			
11) Aplicando	el Criterio de l	Nyquist el sis	stema será =	INESTABLE	•		
12) Si el Sister	ma fuera Inesto	able. podría i	estabilizarse i	reduciendo la	aanancia ?	SI ×	

Dada la siguiente función $G_{(P)}$ $H_{(P)}$. Aplique criterio de Routh Hourwitz e indique: número de raices a parte real positiva, de numerador y denominador de $G_{(P)}$ $H_{(P)}$ + 1, indique si el sistema es estable (SI), inestable (NO) o no se sabe (N / S). Indique cuantos rodeos tendría el diagrama de Nyquist correspondiente, alrededor de -1+j0.

$$G(p)H(p) = \frac{30 \cdot P + 45}{12P^7 + 14P^6 + 12P^5 + 10P^4 + 24P^3 + 21P^2}$$

Dado el cuadripolo de la figura responda a las consignas planteadas :

D) DETERMINE EL VALOR DE LOS PARÁMETROS DE TRANSMISIÓN DIRECTA Y LAS UNIDADES CORRESPONDIENTES DEL CUADRIPOLO PROPUESTO :

Parámetro	Α		В		С		D	
Valor	1,911	~	597,375	~	0,0204	~	6,904	~
Unidades	[Adim]	~	[Ω]	~	[mho]	~	[Adim]	~

E) EN BASE A SUS CONCLUSIONES DE LOS ITEMS A), B) Y C), DETERMINE EL VALOR DE LA FUNCIÓN DE PROPAGACIÓN DEL CUADRIPOLO PROPUESTO.

FUNCIÓN PROPAGACIÓN = 3,75 ✓ [Adim]

F) EN BASE A SUS CONCLUSIONES DEL ITEM E) INDIQUE EL VALOR DE LA CONSTANTE DE ATENUACIÓN EN NEPERS Y EN DECI-BELLS

ATENUACIÓN = 1,321
✓ [NEPERS]
ATENUACIÓN = 11,48
× [dB]

Dado el filtro de la figura indique : Tipo de Filtro, pulsación de resonancia (ω 0) , Ancho de Banda (BW), pulsación de corte inferior (ω _{C1}), pulsación de corte superior (ω _{C2}) y calcule el valor de la impedancia característica Zo.

Dado el siguiente filtro, indique Tipo de Filtro, pulsación de corte (ω_c), frecuencia de corte (fc), valor de la impedancia característica Zo, valor de "m" y valor de la pulsación a la cual la atenuación es infinita (ω_∞).

Dado el siguiente filtro Pasa Banda (PB) normalizado de Chevischev, calcule los valores de los componentes, para una frecuencia de corte inferior $f_{\rm C1}$ = 477,465 (Hertz), una frecuencia de corte superior $f_{\rm C2}$ = 1273,24 (Hertz), y una impedancia de carga Ro = 600 Ω .

RESPONDA A LAS CONSIGNAS EMPLEANDO TRES DECIMALES SIN REDONDEO DONDE CORRESPONDA Y PRESTE MUCHA ATENCIÓN A LAS UNIDADES INDICADAS DE LOS COMPONENTES.

■ CUESTIONARIO 10 - CUADRIPOLOS ADAPTADORES Y ATENUADORES - 2020

Ir a...

ENCUESTA SOBRE EXÁMEN FINAL VIRTUAL - DÍA 09/09/2020 ►