MoVMi Modellierung des innerstädtischen Verkehrsaufkommens als Datengrundlage für Mikrologistik und autonomen Verkehr

MoVMi Motivation

Leipzig

- Mischverkehr: Transporter, Lastenräder, Fußgänger
- Luftverschmutzung, Lärmbelästigung
- Lieferzeitbeschränkung
- Platzbedarf durch Zustellfahrzeuge → Staubildungen
- Stadtbild: Lieferfahrzeuge parken in zweiter Reihe
- Bevölkerungswachstum
- Wachstum E- Commerce → Paketzustellungen nehmen zu
- Arbeitskräftemangel im KEP-Dienstleisterbereich
- Green City Plan:
 - Bei 4 Depots Feinverteilung von 24.000 Paketen
 - Mögliche Standorte:
 - Hauptbahnhof
 - Wilhelm-Leuschener-Platz
 - Durchmesser Innenstadt ca. 1km

Sendungsvolumen

- Wachstum E- Commerce → Paketzustellungen nehmen zu
- Ca. 5% Wachstum jedes Jahr

KEP-Studie 2022, KE-Consult

Fachkräftemangel

Arbeitskräftemangel im KEP-Dienstleisterbereich bei gleichzeitigen Bedarf

Quelle: https://www.forschungsinformationssystem.de/servlet/is/290020/

Erwartungshaltung

- Ansprüche der Kunden
 - Unmittelbare & direkte Übergabe gewünscht
 - Kurze Abholwege
- Flexible Arbeitsmodelle

Das ärgert die Deutschen bei der Paketzustellung

Anteil der Befragten, die sich über Folgendes aufregen

Basis: 1.136 Befragte (ab 18 Jahren) in Deutschland; 16.-20. November 2018

Quelle: YouGov

Alternativen?

- 1/3 wünscht Paketbriefkasten
- Flexibilität bzgl. Zustellzeit

Jeder Dritte wünscht sich eigenen Paketbriefkasten

Welche dieser Paketdienst-Services würden Sie gerne nutzen?

^{*} wird noch nicht angeboten Basis: 1.086 Internetnutzer (ab 14 Jahren) in Deutschland; April 2019

Quelle: Bitkom

Lösungen

- Micro-Hubs
- Lastenräder
- In-Car-Delivery
- Packstationen
- E-Fahrzeuge
- ÖPNV (CargoTram)
- Lieferroboter

- Intelligente Routenplanung
- Smarte Lieferzonen
- Autonome Last Mile
- Wasserstraßen
- U-Space (Drohnen)

Zielstellung

Schaffung einer Datengrundlage zur Analyse der Effektivität von Mikrologistik im Innenstadtbereich Leipzig

- Erfassung des logistischen Bedarfs von Wirtschaftsakteuren
- Modellierung der orts- und zeitabhängigen Verkehrsdichte
- Generierung eines Modells zur Schätzung der Transportgeschwindigkeit von FTS
- Analyze von Abhängigkeiten, wie Verkehrsdichte; Straßenbreite und Fahrzeugparametern
- Simulative Analyze des logistischen Ablaufs mittels FTS

Transport-volumen

Anzahl Mikro Depots

Benutzeranforderungen

Ergebnisse der Umfrage Straßenbreite Verkehrsdichte (im Speziellen Fußgänger) Größe und Geschwindigkeit Lieferroboter

Fußgängerverteilung Multimodale Verkehrssimulation

Logistiksimulation

Auswertung und Visualisierung der Ergebnisse durch geeignete Kartendarstellung

Zielgebiet

Struktur Zielgebiet

- 0,7 km² großes Gebiet
- Lieferbeschränkungen:
 - Auslieferungen nur zwischen 5-11 Uhr
 - Einige Straßen (rot) auch für Fahrräder zwischen 11-20 Uhr verboten oder reine Fußgängerzone (blau)

Gewerbe in der Innenstadt

	2023
Firmen insgesamt	2 019
Erbringung von freiberuflichen, wissenschaftlichen und technischen Dienstleistungen	530
Handel, Instandhaltung und Reparatur von Kraftfahrzeugen	396
Grundstücks- und Wohnungswesen	222
Gastgewerbe	187
Information und Kommunikation	170
Erbringung von sonstigen wirtschaftlichen Dienstleistungen	154
Erbringung von Finanz- und Versicherungsdienstleistungen	126
Verarbeitendes Gewerbe	51
Weitere	183

Simulations Workflow

 Bedarfsdaten aus Umfrage

Bedarfsbezogene Logistiksimulation

Simulation Roboter Interaktion mit Fußgängern

Methodik der Umfrage

- Sammlung einer Kontaktliste i.H.v. 913 Email Kontakten (Datenbankabfrage und Scraping von Unternehmensregistern)
- Systematisierte Ansprache mittels E-Mail Benachrichtigung der Kontaktliste: Aufruf zum Ausfüllen der Umfrage
- Bereinigung der Daten (siehe rechte Grafik)
 - Ergebnis N=135
- Auswertung erfolgte in R Studio
- Darstellung der wichtigsten Parameter für die Simulation (u.a.):
 - Frequenz der Anlieferung und Versand
 - Sendungsmenge gesamt und pro Anlieferung
 - Clusterung u.a. nach Branche / Unternehmensgröße

Rücklauf N=184

Filterung: Datenschutzerklärung nicht einverstanden

Filterung: Leere Einträgen

Filterung: Testdaten

Filterung: Unplausible Werten (wie außerordentlich hohe

Aufbau und Umfrage Ergebnisse

Ergebnisse Sendungsmenge Anlieferung

Verteilung der Menge an Sendungen pro Anlieferung ohne Berücksichtigung von Ausreißern

Branche pro Anlieferung

Tägliche Sendungsmenge nach

N=135, Quelle: DLR

Ergebnisse Sendungsmenge Versand

N=135, Quelle: DLR

Tägliche Sendungsmenge nach Branche pro Versand

Verteilung der Menge an Sendungen pro Versand ohne Berücksichtigung von Ausreißern

Mikroskopische Verkehrssimulation

- Mikroskopische Simulation von Einzelszenarien mit unterschiedlichen Randbedinungen wie Anz. Fußgänger und verschiedene Straßenbreiten
 - Roadrunner: Kartenerstellung
 - Carla:
 - Platzierung Fußgänger
 - Roboternavigation
- Simulation der Dynamik und Wechselwirkung zwischen Robotern und anderen Verkehrsteilnehmern
- Variation von Parametern und Sensitivitätsanalyse zur Ableitung von relevanten Kenndaten via py Skript
- Generierung eines mehrdimensionalen Kennfeldes zur Abbildung der Transportgeschwindigkeit
- Anwendung auf Straßennetz der Leipziger Innenstadt

Kennfeld Bewegungsgeschwindigkeit

Simulationsergebnisse

- Visualisiert die Bewegungsgeschwindigkeit des Roboters bei verschiedenen Personendichten und Spurweiten
- Linearer Abfall der Geschwindigkeit, wenn sich die Personendichte erhöht
- Ist die Personendichte größer 0,25 Personen/m², dann bewegt sich der Roboter kaum.
- Je mehr Fußgänger sich vor dem Roboter befinden desto schwieriger wird es für Ihn sich zu bewegen.

Sumo Fußgängersimulation

- Platzierung Fußgänger gemäß Anzahl an den Zählschleifen
- Simulation und Darstellung der Verkehrsflüsse im Stadtgebiet
- Darstellung von Personenströmen wie bewegen sich Passanten in der Innenstadt
- Findung von Engpässen

SUMO

Sumo Fußgängersimulation Ergebnisse

Karte Verkehrsdichte und Transportgeschwindigkeit

Verkehrsdichte

Geschwindigkeit

Zusammenfassung

Umfrage

- Sendungsmenge Pakete/Tag
 - Anlieferung: 600
 - Versand: 400
- Einzelhandel und Dienstleistungsbranche haben ca. 60% Anteil

Simulationsumgebungen

- Pipeline zur Ermittlung von Verkehrsdichte und Transportgeschwindigkeit
- Abbildung Roboter interagiert mit Mensch mit Carla schwierig → Anpassungen notwendig um Kennfeld zu generieren
- Bewegungsverhalten Fußgänger mit SUMO
- OSM Kartenmaterial z.T. nicht zuverlässig
- → Sondereffekte bei der Auswertung berücksichtigen

Workshop | Autonome Zustellung in Leipzig

- 16.04.24 15:30
- Raum 259 im Neuen Rathaus Leipzig
- Aktive Mitarbeit gewüscht

Erkenntnisse Umfrage + Interviews

- Ergänzung der Umfrage mit Experteninterviews
- zw. 1083 1750 Paketzustellungen pro Tag
- Größe XS-L (45x35x20 cm): 64% ca. 694-1120 Pakete pro Tag
- Durchschnittliches geschätztes Gewicht ca. 5 kg - 10 kg

Kontakt

Marcel Graef CEO **Sedenius Engineering** marcel.graef@sedenius.com +49 176 70 97 47 39

Prof. Dr.-Ing. Rick Vosswinkel

WHZ Zwickau

Lara Daner

Martin Plener

DLR Institut für Verkehrsforschung

Certified by ISO 9001:2015

TISAX

Zusatzfolien

Staubildung – Fehlerhafte Regeln imKartenmaterial

Zählstellen

