Turing Machines

Sections 17.6 – 17.7

The Universal Turing Machine

Universal Turing Machine:

A programmable TM that accepts as input:

program input string

It executes the program, and produces the output:

output string

The Universal Turing Machine

To formally define the Universal Turing Machine *U* we need to:

- 1. Define an encoding operation for TMs.
- 2. Describe the operation of *U* given input <*M*, *w*>, the encoding of:
 - a TM *M*, and
 - an input string w.

Encoding a Turing Machine *M*

We need to describe $M = (K, \Sigma, \Gamma, \delta, s, H)$ as a string:

- The states
- The tape alphabet
- The transitions

Encoding the States

- Let i be $\lceil \log_2(|K|) \rceil$.
- Number the states from 0 to |K|-1 in binary:
 - · Number s, the start state, 0.
 - Number the others in any order.
- If t' is the binary number assigned to state t, then:
 - · If t is the halting state y, assign it the string yt'.
 - · If t is the halting state n, assign it the string nt'.
 - · If t is any other state, assign it the string qt'.

Example of Encoding the States

Suppose *M* has 9 states.

$$i = 4$$

$$s = q0000$$
,

Remaining states (where y is 3 and n is 4):

q0001, q0010, y0011, n0100, q0101, q0110, q0111, q1000

Encoding a Turing Machine M (cont'd)

The tape alphabet:

```
ax : x \in \{0, 1\}^+, |x| = j, and j is the smallest integer such that 2^j \ge |\Gamma|.
```

Example: $\Sigma = \{\Box, a, b, c\}$. j = 2.

$$a = a00$$
 $a = a01$
 $b = a10$
 $c = a11$

Encoding a Turing Machine M (cont'd)

The transitions: (state, input, state, output, move)

Example: $(q000, a000, q110, a000, \rightarrow)$

An Encoding Example

Consider $M = (\{s, q, h\}, \{a, b, c\}, \{\Box, a, b, c\}, \delta, s, \{h\})$:

state	symbol	δ
S		$(q, \square, \rightarrow)$
S	a	(s,b,→)
S	b	(<i>q</i> ,a, ←)
S	С	(<i>q</i> ,b, ←)
q		(s,a, →)
q	a	(q,b,→)
q	b	(<i>q</i> ,b, ←)
q	С	(<i>h</i> ,a, ←)

state/symbol	representation			
S	q00			
q	q01			
h	h10			
	a00			
a	a01			
b	a10			
С	a11			

$$< M > = (q00, a00, q01, a00, \rightarrow), (q00, a01, q00, a10, \rightarrow), (q00, a10, q01, a01, \leftarrow), (q00, a11, q01, a10, \leftarrow), (q01, a00, q00, a01, \rightarrow), (q01, a01, q01, a10, \rightarrow), (q01, a11, h11, a01, \leftarrow)$$

Enumerating Turing Machines

Theorem: There exists an infinite lexicographic enumeration of:

- (a) All syntactically valid TMs.
- (b) All syntactically valid TMs with specific input alphabet Σ .
- (c) All syntactically valid TMs with specific input alphabet Σ and specific tape alphabet Γ .

Enumerating Turing Machines

Proof: Fix $\Sigma = \{(,), a, q, y, n, 0, 1, comma, \rightarrow, \leftarrow\}$, ordered as listed. Then:

- 1. Lexicographically enumerate the strings in Σ^* .
- 2. As each string *s* is generated, check to see whether it is a syntactically valid Turing machine description. If it is, output it.

To restrict the enumeration to symbols in sets Σ and Γ , check, in step 2, that only alphabets of the appropriate sizes are allowed.

We can now talk about the *i*th Turing machine.

Another Win of Encoding

One big win of defining a way to encode any Turing machine *M*:

We can talk about operations on programs (TMs).

Example of a Transforming TM *T*:

Input: a TM M_1 that reads its input tape and performs some operation P on it.

Output: a TM M_2 that performs P on an empty input tape.

Encoding Multiple Inputs

Let:

$$< X_1, X_2, ... X_n >$$

mean a single string that encodes the sequence of individual values:

$$X_1, X_2, ... X_n$$
.

The Specification of the Universal TM

On input $\langle M, w \rangle$, *U* must:

- Halt iff *M* halts on *w*.
- If *M* is a deciding or semideciding machine, then:
 - If *M* accepts, accept.
 - If *M* rejects, reject.
- If M computes a function, then $U(\langle M, w \rangle)$ must equal M(w).

How U Works

U will use 3 tapes:

- Tape 1: *M*'s tape.
- Tape 2: $\langle M \rangle$, the "program" that U is running.
- Tape 3: *M*'s state.

The Universal TM

< <i>M</i>			M,	W		w>	
1	0	0	0	0	0	0	
1	0	0	0	0	0	0	
1	0	0	0	0	0	0	

Initialization of *U*:

- 1. Copy $\langle M \rangle$ onto tape 2.
- 2. Look at < M >, figure out what i is, and write the encoding of state s on tape 3.

After initialization:

				<w< th=""><th></th><th>w></th><th></th></w<>		w>	
0	0	0	0	1	0	0	
< <i>M</i>			M>				
1	0	0	0	0	0	0	
q	0	0	0				
1							

The Operation of *U*

				<w< th=""><th></th><th>w></th><th></th></w<>		w>	
0	0	0	0	1	0	0	
< <i>M</i>			M>				
1	0	0	0	0	0	0	
q	0	0	0				
1							

Simulate the steps of M:

- 1. Until *M* would halt do:
 - 1.1 Scan tape 2 for a quintuple that matches the (current state, input) pair.
 - 1.2 Perform the associated action, by changing tapes 1 and 3. If necessary, extend the tape.
 - 1.3 If no matching quintuple found, halt. Else loop.
- 2. Report the same result *M* would report.