CS 205 Final Question 1: Grab Bag

16:198:205

- 1) Prove that the function $f(x) = (8x + 5) \mod 17$ is injective on the set $\{0, 1, 2, 3, \dots, 15, 16\}$ (10 points).
- 2) Is $f(x) = (8x + 5) \mod 17$ invertible on this set? If so, give its inverse function (5 points).
- 3) Is $f(x) = (8x + 5) \mod 18$ invertible on this set? If so, give its inverse function (5 points).
- 4) True or false give a mathematical justification (10 points):
 - a) $n = O(n^2)$.
 - b) $n(n+1)(n+2) n^3 = O(n^3)$.
 - c) $n(n+1)(n+2) n^3 = O(n^2)$.
 - d) $n \ln n = O(n^2)$.
 - e) $n^2 = O(n \ln n)$.
 - f) 1/n = O(1).
 - g) 1000000n = O(n).
 - h) $2^n = O(3^n)$.
 - i) $3^n = O(2^n)$.
 - j) $\sum_{i=1}^{n} i(i+1)(i+2) = O(n^4)$.
- 5) The 'double factorial' is a variant on the factorial function where every other number is multiplied together: for instance, 9!! = 9 * 7 * 5 * 3 * 1 = 945, 10!! = 10 * 8 * 6 * 4 * 2 = 3840. In general, n!! is much smaller than n! (20 points).
 - Argue that n!!/n! goes to 0 as $n \to \infty$, i.e., n! dominates n!! severely. Hint: Be wary of cases.
 - Argue, however, that in the limit for even n, $\ln(n!!)/(n \ln n)$ is bound from above and below by some constants.
 - Argue that for odd n, $\ln(n!!)/(n \ln n)$ is bound from above and below by some constants as well. *Hint:* Show that n! = n!!(n-1)!!.
 - Conclude therefore that while n! is a lot larger than n!!, we have that $\ln n!! = \Theta(\ln n!)$.