Kapitel 5: Netze

Motivation und Klassifikationen von Netzen

Mehrere miteinander verbundene autonome Computer

Verbunden: Kommunikation möglichAutonom: Unabhängig voneinander

Zweck

Kommunikationsmöglichkeiten: E-Mail, Surfen im Web, Telefonieren, etc.

Leistungsverbund: Die Gesamtleistung des Netzes zählt, nicht die Einzelleistung von Rechnern.

Erhöhte Zuverlässigkeit: Bei Ausfall eines Rechners können statt dessen andere Rechner genutzt werden. **Erweitertes Dienstleistungsangebot**: Dienste aller Rechner (Server) stehen allen Nutzern zur Verfügung.

Geringere Kosten: Geräte/Rechner können von allen genutzt werden.

Übertragungstechnik

Punkt-zu-Punkt-Verbindungen:

- Dedizierte Leitungen zwischen Rechnern
- Vermittlungsstationen

Broadcast-Netze:

- Ein einziger Übertragungskanal
- Protokolle für Zugriffskontrolle

Logische Bezüge

Peer-to-Peer

- Gleichberechtigung der beteiligten Rechner
- keine Sonderaufgaben für einzelne Rechner

Client-Server

- Clients (Rechner) wollen bestimmten Dienste benutzen
- Server bieten diese Dienste an

Hybride Modelle

- Kombination aus Peer-to-Peer und Client-Server-Modell
- Typischer Anwendungsfall: zentraler Server, welcher einzelnen Knoten beim Entdecken von weiteren Knoten unterstützt (Beispiel: Ursprüngliche Version von Skype mit Supernodes und Login-Server (Telefonbuch))

Übertragungsreichweite

- PAN: Personal Area Network Vernetzung von Kleingeräten (Smartphones, Tablets, etc.)
- LAN Local Area Network (meist Broadcast-Netzwerke)
- MAN Metropolitan Area Network (annlich wie bei LAN)
- WAN Wide Area Network (meist Punkt-zu-Punkt-Verbindungen)
- GAN: Global Area Network (Vernetzung von WANs)

Schichtenarchitekturen

- Problem in mehrere Teile zerlegen => Schichten
- Netzsoftware aus mehreren übereinander gelagerten Schichten
- Jede Schicht stellt der nächsthöheren Schicht Dienste zur Verfügung => Schnittstelle
- Alle Schichten implementiert Protokolle => Zusammenfassung aller **Protokollstack** genannt

Konzeptionelle Parallele zu Schichtenarchitekturen in Betriebssystemen

- Übergänge zwischen Schichten werden von Schnittstellen gebildet.
- Schichten können nicht übersprungen werden.
- Die Kommunikation erfolgt über die Schnittstellen jeder einzelnen Zwischenschicht

Aufbau einer Schichtenarchitektur

- Schicht 1 (engl. layer 1) bietet eine Menge von Basis-Funktionen an.
- Menge aller Funktionen einer Schicht wird Schnittstelle (engl. interface) genannt.
- Mit Hilfe dieser Schnittstelle implementiert Schicht 2 ihre Funktionen.
- Die Sende-Funktionen einer Schicht sind so entworfen, dass sie passende Empfangs-Funktionen derselben Schicht auf dem anderen Host haben. Beide folgen demselben Protokoll (engl. protocol).

Geschlossene Datenstruktur Speichere, Frazess, und Zeitverwahung, EA. System System dienste KERNEL Record Management System EXECUTIVE Sommandospracheninter preter SUPERVISOR An wendun gsprogramme USER Kernel Mode (innen) User Mode (sußen)

Ablauf der Kommunikation in einer Schichtenarchitektur

Logische Kommunikation

- Die korrespondierenden Schichten (z. B. Schicht 3) der beider Partner kommunizieren direkt über deren Protokoll (z. B. Schicht-3-Protokoll) miteinander.

Physische Kommunikation

- Auf der sendenden Seite stellt jede Schicht i gemäß ihres Protokolls Daten zusammen und verwendet die Dienste der direkt darunterliegenden Schicht i 1, um diese Daten zu versenden.
- Schließlich werden die Daten über die Hardware zum Empfänger geschickt.
- Auf der empfangenden Seite nimmt jede Schicht von der direkt darunterliegen Schicht i 1 entgegen, interpretiert diese gemäß ihrem Protokoll und übergibt der nächst höheren Schicht i + 1 die von ihr erwarteten Daten.

Entwurfskriterien für Schichtenmodelle

- Zuverlässigkeit (engl. reliability)
 - Fehlererkennung (engl. error detection) bedeutet, dass damit zu rechnen ist, dass Bits bei der Übertragung verändert werden.
 - **Fehlerkorrektur** (engl. error correction) bedeutet, dass die erkannten Fehler irgendwie behoben werden.
 - Wegfindung (engl. routing) bedeutet, dass Zwischenstationen vorliegen.
- **Erweiterbarkeit** bedeutet, dass die Implementierungsdetails in den Schichten möglichst versteckt werden. Dazu bedarf es Adressierungs-Mechanismen auf jeder Ebene.
- **Ressourcenzuweisung (engl. resource allocation)** bedeutet, dass Übertragungsbandbreiten und Zwischenstationen sinnvoll ausgelastet werden. Vermeide Überlast, versuche Dienstgüte (engl. quality of service) zu garantieren.
- Sicherheit (engl. security): Vertraulichkeit, Integrität, Authentizität und Verfügbarkeit.

Das ISO/OSI-Referenzmodell

- Für neue Abstraktionen wird ein neue Schicht (engl. Layer) angelegt.
- Klare Schnittstellen: Jede Schicht hat wohldefinierte Funktionen.
- **Funktionen** einer Schicht sollten international standardisierbar sein.
- **Kapselung**: Zwischen Schichten fließen möglichst wenig Informationen.
- Zahl der Schichten so groß wie nötig, aber so klein wie möglich.

Übersicht der Layer

Layer 1 (Bitübertragung, (engl. Physical))

- Sende "rohe" Bits über Kommunikationskanal
- Lege physikalische Eigenschaften fest:
 - (1) Darstellung von Bits (elektrisch, optisch, usw),
 - (2) Übertragungsrichtung festlegen (simplex vs. duplex).
- Es geht um mechanische (Stecker), elektrische und zeitliche (engl. timing) Probleme.

Layer 2 (Data Link Layer)

- Gruppiere Bits in Rahmen (engl. frame) und übertrage diese.
- Erste Fehlererkennungsmechanismen werden eingefügt
- Behandele Probleme wie:
 - (1) Zerstörte, verlorengegangene, doppelte Rahmen,
 - (2) Geschwindigkeitsunterschiede Sender-Empfänger,
 - (3) Zugriff auf das Übertragungsmedium.

Layer 3 (Vermittlung (engl. Network))

- Realisiere Ende-zu-Ende Übertragung durch geeignete Wegfindung (engl. routing).
- Abstrahiere von unterschiedlichen Übertragungstechniken und biete ein einheitliches Adressierungsschema. für Rechner (engl. host).
- Gehe mit "Überlast" (engl. congestion) um, versuche Quality of Service sicherzustellen.

Layer 4 (Transport)

- Übertrage Daten von Prozess zu Prozess.
- TCP -

- Baue Verbindungen auf und ab.
- Zerlege große Nachrichten in Teile, übertrage Teile und setze Teile beim Empfänger wieder richtig zusammen.
- Biete Zuverlässigkeit, indem verloren gegangene Teile erneut übertragen werden.
- Abstrahiere von Zwischenknoten

Layer 5 (Sitzung, (engl. session))

- Baue Sitzung zwischen zwei
- Rechnern/Benutzern auf.
- Dialogsteuerung: wer darf senden, wer muss warten.
- Synchronisation: Setze unterbrochene Übertragungen neu auf.

Layer 6 (Presentation)

- Betrachte Syntax und Semantik der übertragenen Bits.
- Abstrahiere von Zeichensatzkodierungen (ASCII, EBCDIC, Unicode)
- Erlaube komplexere Datenstrukturen (Banküberweisung)

Layer 7 (Anwendung, (engl. application))

- Biete Anwendungsprotokolle für Benutzerprogramme.
- Vielzahl von Protokollen existiert: (1) HTTP, (2) SMTP, (3) IMAP 4, (4) FTP, (5) DNS, usw.
- Thema von Betriebssysteme und Netze 2 im n\u00e4chsten Semester.

"Layer 8"

- Gibt es im ISO/OSI-Protokollstack nicht.
- Über den Anwendungen sitzt d* Anwender*in (Benutzer*in)
- Netzproblem auf "Layer 8" = Fehlbedienung durch Benutzer*in

Layer 1 — Aufgaben und Übertragungsmedien

- Lege Signalart (elektrisch, optisch, elektromagnetisch) und Codierung (was bedeutet 1, was 0) fest.
- Definiere Kabel und Steckertypen.

Übertragungsmedien:

Koaxialkabel:

- Ein relativ dicker Draht mit Isolierung und einer Ummantelung zur Abschirmung.

Eigenschaften:

- Kann hochfrequente Signale (bis 1 GHz) übertragen, auf mehreren Kanälen gleichzeitig.
- Hohe Reichweite, mehrere Kilometer Abschirmung äußerer Einflüsse
- Hohe Kosten, großer Biegeradius

Beispiel: Kabelfernsehen

Twisted Pair Kabel:

- Verdrillte isolierte dünne Kupferkabel.

Eigenschaften:

- Vier verdrillte Kabelpaare,
- Niedrigere Reichweite, gerade bei hohen Frequenzen.
- Gute Abschirmung erforderlich, sonst Signalstörungen. Abschirmung um Doppelader und/oder gesamtes Kabel möglich.
- Gut verlegbar, niedrige Biegeradien.
- Telefonnetz und Ethernet basieren auf diesem Kabeltyp.

Beispiel: Telefon, Ethernet

Lichtwellenleiter (Glasfaser): Dünne empfindliche Glasfaser.

- Übertragung besteht aus drei Komponenten:
 - 1. Lichtquelle: LED oder Laser
 - 2. Übertragungsmedium: hauchdünne Glasfaser
 - 3. Detektor (Fotodiode): empfängt Licht, erzeugt elektrischen Impuls.
- Sehr hohe Datenraten erreichbar: > 1 TBit/s; große Reichweite;

Signalfrequenz 1014 . . . 1015 Hz.

- Lichtstrahl wird in Glasfaser ab bestimmten Einfallswinkel reflektiert.
- Aufwendig zu verlegen, schwierig abzuhören.

Beispiel: Glasfaseranschluss der Telekom

WLAN:

- Elektromagnetische Wellen.
- Idee: Benutze elektromagnetische Funkwellen zur Datenübertragung.
- WLAN ist immer ein Broadcast Medium(!), d. h. jeder, der eine Antenne hochhält kann die Signale empfangen.

Spezielle Probleme:

- (1) Medienzugriff. Wer darf wann senden?
- (2) Wie wird ein lokales Netz gebildet?
- (3) Kollisionserkennung?
- (4) Sicherheit?

Beispiele: Eduroam oder Heimnetze

Modulation

- In Abhängigkeit vom **Datensignal**, das wir senden wollen, ändert die Modulation das Trägersignal.
- Die **Abtastfrequenz** sagt, wie oft der Empfänger das Signal misst, um das Ursprungssignal zu rekonstruieren.
- Empfänger muss Modulation rückgängig machen (Demodulation). Das Gerät hierfür heißt **Modem**
- Werden nicht nur zwei Amplituden bzw. Frequenzen verwendet, lässt sich bei einer Abtastung auch mehr als 1 Bit übertragen.

Einige allgemeine Kenngrößen

Kenngrößen und Codierung

- Bandbreite gibt Frequenzdifferenz an, die ohne signifikante Verluste übertragen werden kann. Wird in Hertz (Hz) gemessen.
- Signalfrequenz gibt an, wie oft sich der Signalwert pro Sekunde ändert. Wird in baud gemessen.
- Datenrate gibt an, wie viele Bit pro Sekunde übertragen werden können. Wird in Bit/s oder bps gemessen.
- Codierung gibt an, welche Signaländerungen welchem Bit entsprechen sollen.
- Die Datenrate wird auch Übertragungsgeschwindigkeit genannt. Manchmal wird hier auch der Begriff Bandbreite benutzt.
- Durchsatz: Tatsächlich verfügbare, gemessene Übertragungsgeschwindigkeit. Beispiel: Fast-Ethernet schafft ca. 10 MB/s Durchsatz bei file transfer. (Eigentlich sind 10 MB aber nur 80 Mbit)
- Latenz: Zeitliche Verzögerung bis zur Datenankunft beim Empfänger. Wird durch Ausbreitungsgeschwindigkeit der Signale bestimmt. Dazu kommen Verzögerungen durch Zwischenstationen.
- Round Trip Time (RTT): Dauer einer kompletten Kommunikationsrunde, d. h. Zeit zwischen Absenden einer Nachricht und Ankunft der Antwort beim Absender.

Zusammenfassung Netze, Schichten, Layer 1

- Rechnernetz besteht aus miteinander verbundenen autonomen Rechnern.
- Klassifikation nach Übertragungstechnik, Übertragungsreichweite möglich.
- Schichtenarchitekturen helfen bei Bewältigung der Komplexität.
- Schichten bieten Dienste an und kommunizieren über ein Protokoll mit der Gegenseite.
- Das ISO/OSI-Referenzmodell umfasst sieben Schichten.
- Schicht 1 befasst sich mit den Übertragungsmedien und stellt einen Kommunikationskanal für "rohe" Bits zur Verfügung.