Principle Component Analysis

Dimensionality Reduction

- We can represent the orange points with *only* their v₁ coordinates
 - since v₂ coordinates are all essentially 0
- This makes it much cheaper to store and compare points
- A bigger deal for higher dimensional problems

261458 & 261753 Computer Vision

#7

3

261458 & 261753 Computer Vision

#7

Projection

261458 & 261753 Computer Vision

convert x into v₁, v₂ coordinates

$$\mathbf{x} \to ((\mathbf{x} - \overline{x}) \cdot \mathbf{v}_1, (\mathbf{x} - \overline{x}) \cdot \mathbf{v}_2)$$

For example; $\mathbf{x} = (1,5), \overline{x} = (2,2)$ $v_1 = [1/\sqrt{2} \ 1/\sqrt{2}]^T$ $v_2 = [-1/\sqrt{2} \ 1/\sqrt{2}]^T$

$$\mathbf{x} \to \begin{pmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \end{pmatrix}$$
$$\to \begin{pmatrix} \sqrt{2}, 2\sqrt{2} \end{pmatrix}$$

PCA

Feature

Principle Component Analysis

Feature χ_1

b v_2 v_1 v_2 v_3 v_4 v_5 v_4

Consider the variation along direction **v** among all of the orange points:

$$var(\mathbf{v}) = \sum_{\text{orange point } \mathbf{x}} \|(\mathbf{x} - \overline{\mathbf{x}})^T \cdot \mathbf{v}\|^2$$

What unit vector v minimizes var?

 $\mathbf{v}_2 = min_{\mathbf{v}} \{var(\mathbf{v})\}$

What unit vector v maximizes var?

 $\mathbf{v_1} = max_\mathbf{v} \ \{var(\mathbf{v})\}$

(under the constraint $\|\mathbf{v}\| = 1$)

#7

Principle Component Analysis

$$\begin{array}{ll} \mathit{var}(v) &=& \sum_{x} \| (x - \overline{x})^T \cdot v \| \\ &=& \sum_{x} v^T (x - \overline{x}) (x - \overline{x})^T v \\ &=& v^T \left[\sum_{x} (x - \overline{x}) (x - \overline{x})^T \right] v \quad \text{Covariance Matrix} \\ &=& v^T A v \quad \text{where} \quad A = \sum_{x} (x - \overline{x}) (x - \overline{x})^T \end{array}$$

Solution: **v**₁ is eigenvector of **A** with *largest* eigenvalue **v**₂ is eigenvector of **A** with *smallest* eigenvalue

261458 & 261753 Computer Vision

#7

7

#7

PCA

Principle Component Analysis

- Suppose each data point is N-dimensional
 - Same procedure applies:

$$var(\mathbf{v}) = \sum_{\mathbf{x}} \|(\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \cdot \mathbf{v}\|$$
$$= \mathbf{v}^{\mathrm{T}} \mathbf{A} \mathbf{v} \text{ where } \mathbf{A} = \sum_{\mathbf{x}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}}$$

- The eigenvectors of **A** define a new coordinate system
 - eigenvector with largest eigenvalue captures the most variation among training vectors x
 - eigenvector with smallest eigenvalue has least variation
- We can compress the data by only using the top few eigenvectors
 - corresponds to choosing a "linear subspace"
 - represent points on a line, plane, or "hyper-plane"
 - these eigenvectors are known as the *principal components*

Eigenvectors & Eigenvalues

Eigenvalue problem : Find vector ${f v}$ and ${f \lambda}$ that make

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$
 subject to $\mathbf{v} \neq 0$

 ${f V}$ is call eigenvector of matrix ${f A}$

 λ is call eigenvalue of matrix ${f A}$

- Can be solve by find λ that make $\det(\mathbf{A} \lambda I) = 0$ then find \mathbf{V} that make $(\mathbf{A} \lambda I)\mathbf{v} = \mathbf{0}$
- $\mathbf{A}: N \times N \Longrightarrow$ We cam obtain N possible solutions for eigenvector-eigenvalue pairs (v_i, λ_i)

261458 & 261753 Computer Vision

#7

Eigenfaces

261458 & 261753 Computer Vision

Eigenface Extraction

• The set of faces is a "subspace" of the set of images

- Suppose it is K dimensional
- · We can find the best subspace using **PCA**
- This is like fitting a "hyper-plane" to the set of faces
 - spanned by vectors $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_K}$
 - any face

$$\mathbf{x} \approx \overline{\mathbf{x}} + a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_k \mathbf{v}_k$$

• Each one of these vectors is a direction in face space

V₂, V₃, ...

PCA extracts the

eigenvectors of A

• Gives a set of vectors \mathbf{v}_1 ,

 what do these look like?

261458 & 261753 Computer Vision

#7

11

261458 & 261753 Computer Vision

Eigenface Features

Projecting image onto the Eigenfaces

- The eigenfaces $\mathbf{v}_1, ..., \mathbf{v}_K$ span the space of faces
 - A face is converted to eigenface coordinates by

$$x \to (\underbrace{(x-\overline{x}) \cdot v_1}_{a_1}, \ \underbrace{(x-\overline{x}) \cdot v_2}_{a_2}, \ldots, \ \underbrace{(x-\overline{x}) \cdot v_K}_{a_K})$$

Eigenface Features Projecting image onto the Eigenfaces

1 Eigenface

15 Eigenfaces

40 Eigenfaces

5 Eigenfaces

20 Eigenfaces

50 Eigenfaces

10 Eigenfaces

30 Eigenfaces

100 Eigenfaces

12

	a1	a2	a3	a4	a5	a6
	-1439	-949	711	21	-736	-1051
	-1376	-937	819	-214	-707	-1024
36	1383	1092	149	-10	280	686
36	798	823	569	1140	-192	676

261458 & 261753 Computer Vision

#7

13

Face Detection and Recognition using Eigenfaces

- Algorithm
 - 1. Process the image database (set of images with labels)
 - × Run PCA—compute eigenfaces
 - × Calculate the K coefficients for each image
 - 2. Given a new image (to be recognized) **x**, calculate K coefficients

$$\mathbf{x} \to (a_1, a_2, \dots, a_K)$$

3. Detect if x is a face

$$\|\mathbf{x} - (\overline{\mathbf{x}} + a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \ldots + a_K\mathbf{v}_K)\| < \mathsf{threshold}$$

- 4. If it is a face, who is it?
 - Find closest labeled face in database
 - nearest-neighbor in K-dimensional space

261458 & 261753 Computer Vision

#7