Lecture 13 Relative Dating

Steno's Laws

Cross-Cutting Relationships

Inclusions

Unconformities

Correlation

Q: In what orientation are sedimentary layers originally deposited?

A: Horizontally

Principle of original horizontality

These layers are in their original orientation

Folding or tilting (deformation) occurs after rocks are deposited

Q: What is the oldest sedimentary layer?

A: The one on the bottom

Principle of superposition

Principle of lateral continuity

Sedimentary beds are continuous, extending in all directions until they grade into a different type of sediment

Cross-Cutting Relationships

Q: Which rock is older, the red sedimentary rock or the igneous dike?

A: The red sedimentary rock

Principle of cross-cutting relationships, rocks that do the "cutting" are younger than those

being cut

Cross-Cutting Relationships

Dike - Vertical intrusion of magma that crosscuts layers of rock

Sill - Horizontal intrusion of magma in between layers of sedimentary rock

Cross-Cutting Relationships

Q: Which is younger, the fault or the sedimentary rocks?

A: The fault – Cross-cutting relationships

Inclusions

Q: Which rock is older, the inclusion or the granite surrounding it?

A: The inclusion

Principle of inclusions - inclusions are older than rocks they are included in

Xenolith inclusion in the granite at Enchanted Rock State Park, Texas

Inclusions

Principle of inclusions - inclusions are older than rocks they are included in

Using the principles we just discussed, place the order of events in the follow cross-section from oldest to youngest

- An unconformity is an erosional surface
- Tells you that erosion happened and you are "missing" some of the rock record.

https://mediaplayer.pearsoncmg.com/ assets/ WDOYMI1MTWZx2N59LurusmQEH_v 855uX

http://www.wwnorton.com/college/geo/egeo2/content/animations/10_4.htm

 Angular unconformity has horizontal sedimentary rocks on top of tilted or folded sedimentary rocks

Evolution of an Angular Unconformity

1. Deposition

3. Erosion

2. Deformation

4. Renewed deposition

Disconformity - Young sedimentary rocks on top of very old sedimentary rocks, "middle-age" rocks are missing

"Middle-age" rocks were eroded, then new sediment was deposited in its place

Nonconformity -

Sedimentary rocks directly on top of eroded igneous or metamorphic rocks

Q: Which type of unconformity is shown here?

A: Angular unconformity

Q: Which type of unconformity is shown here?

A: Disconformity

Q: Which type of unconformity is shown here?

A: Nonconformity

- Rocks can be correlated over long distances
- Rocks that make up the Grand Canyon are still buried beneath Zion and Bryce Canyons

The Grand Staircase

Rocks can be correlated over long distances

Rocks can be correlated with fossils

Fossil assemblages can also be used

