Transformers: From moderation to code generation

Pierre GUILLAUME

pierre.guillaume@epita.fr

Corentin DUCHÊNE

corentin.duchene@epita.fr

Introduction

Social media content moderation

Using words as input to the model ?!

Using words as input to the model ?!

```
"I am Jojo!" → "i am <name>" → ["i", "am", ...]

"i" → [ 0.18, 0.62, 0.12 ]

"am" → [ 0.56, 0.27, 0.09 ]

...
```

Algorithmic solution (without machine learning)

RGB Matrix

Different types of machine learning

Supervised

Input 1 -> Target 1

Input 2 -> Target 2

Input 3 -> Target 3

Input 4 -> Target 4

Unsupervised

Self-supervised learning

"People drink a cup of coffee"

Word Embedding

Not contextual

- Word2Vect
- Glove
- FastText

Contextual

- ELMo
- BERT
- CoVe

Problems with RNNs

- Vanishing Gradient
- Problem with long sequences

LSTM (1997) / GRU (2014)

Input Gate / Output Gate / Forget Gate

- Part of the memory to drop
- New information to add to the memory
- Define the hidden state (for next step)

Limits of recurrent models

Difficult to parallelize on GPU

Easy overfitting

Global architecture

Encoder-Decoder architecture

Decoding time step: 1 2 3 4 5 6 OUTPUT Linear + Softmax Kencdec Vencdec DECODER **ENCODER ENCODER** DECODER **EMBEDDING** WITH TIME SIGNAL **EMBEDDINGS** étudiant suis Je INPUT

Decoding time step: 1 (2) 3 4 5 6 OUTPUT I am Linear + Softmax Kencdec Vencdec **ENCODERS DECODERS EMBEDDING** WITH TIME SIGNAL **EMBEDDINGS PREVIOUS** étudiant suis **INPUT OUTPUTS**

Decoding time step: 1 2 3 4 5 6 OUTPUT l am Linear + Softmax Kencdec Vencdec **DECODERS ENCODERS EMBEDDING** WITH TIME SIGNAL **EMBEDDINGS**

étudiant

suis

PREVIOUS

OUTPUTS

am

INPUT

Decoding time step: 1 2 3 4 5 6 OUTPUT I am a Linear + Softmax Kencdec Vencdec **DECODERS ENCODERS EMBEDDING** WITH TIME SIGNAL **EMBEDDINGS PREVIOUS** étudiant suis am INPUT **OUTPUTS**

Decoding time step: 1 2 3 4 5 6 OUTPUT I am a Linear + Softmax Kencdec Vencdec **DECODERS ENCODERS EMBEDDING** WITH TIME SIGNAL **EMBEDDINGS PREVIOUS** étudiant suis am a **INPUT OUTPUTS**

Decoding time step: 1 2 3 4 5 6 I am a student OUTPUT Linear + Softmax Kencdec Vencdec **DECODERS ENCODERS EMBEDDING** WITH TIME SIGNAL **EMBEDDINGS PREVIOUS** étudiant suis am a **INPUT OUTPUTS**

Decoding time step: 1 2 3 4 5 6 I am a student OUTPUT Linear + Softmax Kencdec Vencdec **DECODERS ENCODERS EMBEDDING** WITH TIME SIGNAL **EMBEDDINGS PREVIOUS** étudiant student suis am **INPUT OUTPUTS**

Decoding time step: 1 2 3 4 5 6 OUTPUT | am a student <end of sentence>

Image: https://jalammar.github.io/illustrated-transformer/

Positional encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Attention mechanism

"Joel loves a pigeon, he feeds it"

Self-Attention

Query ~ Word we want know Attention Key ~ All others Words Value ~ Focused words

Self-Attention

Self-Attention

Self-Attention

dk = the square root of the dimension of the key vectors

More stable gradients!

Self-Attention

$$\sigma(\mathbf{z})_i = rac{e^{z_i}}{\sum_{i=1}^K e^{z_j}} \quad ext{ for } i=1,\ldots,K ext{ and } \mathbf{z} = (z_1,\ldots,z_K) \in \mathbb{R}^K.$$

Self-Attention

Multi-head Attention

Multi-head Attention

Multi-head Attention

Masked Multi-head Attention

Masking "future" values to avoid leaks

Hate Speech detection

- Reddit Dataset: Jibes & Delights (2021)
- HateBERT

Dataset: Jibes & Delights (2021)

COMPLIMENTS

Everything about your appearance is perfect.

You have stunning eyes, lovely lips and great hair.

You have a beautiful **smile** and **eyes**, and seems you got a good fashion sense too.

This dudes got the best teeth I've ever seen.

You have lovely blue **eyes**, smooth clear **skin**, and a nice **beard**.

ToastMe / FreeCompliments

INSULTS

You have the facial complexion of a burn victim.

I thought suicide was the worst thing you could do to your body, that **haircut** has proved me wrong.

A goat has a better kept beard than yours

Those walls are about as bare and boring as your **personality**.

Your **eyebrows** are as fake as your father's pride in you.

RoastMe

BERT / HateBERT / Roberta

BERT

Results

Model	Acc	Precision	Recall	F1-score
FastText + BiGRU	0.934	0.951	0.912	0.931
BERT	0.945	0.932	0.959	0.945
HateBERT	0.965	0.975	0.954	0.964
TweetBERT	0.959	0.944	0.975	0.959
HateBERT + ES/EI/BackTr	0.972	0.980	0.964	0.972

Basic autocomplete

$$P(m_0, m_1, \dots, m_N | c_0, c_1, \dots, c_T) = \prod_{i=1}^N P(m_i | c_0, c_1, \dots, c_{i-1})$$

Predict the most likely sequence of tokens given a preceding code context

Transformers for code generation

Encoder

Encoder + Decoder

Classification

Auto-complete

Decoder

Translate English-Code

BERT

GTP

BART

T5

GPT (Generative Pre-Training)

Auto-complete

Jojo I am ...

Translation

I am <to_fr> je ...

Summarization

Bla bla <summarize> ...

GTP

IntelliCode

- Based on GTP-2
- 9 Languages
- Dataset : GitHub
- CHAR_LIT>,
 <COMMENT>, ...
- Prefix Tree Caching

OpenAl Codex (GitHub Copilot)

- Based on GTP-3
- 12 Languages
- 12B parameters

(GPT-3:175B)

Dataset: GitHub

code-T5Text-To-Text Transfer Transformer

https://bit.ly/lse-winter-transformers

Conclusion

Thanks!