Gráfalgoritmusok

Gaskó Noémi

2023. március 1.

Tartalomjegyzék

Követelmények

Bevezető fogalmak

Gráfok ábrázolása

Kurzus & szeminárium

Kurzus:

utolsó héten írásbeli vizsga 120 pont

Szeminárium:

kéthetente

Szerezhetőek plusszpontok

Laborgyakorlat

- 6 laborfeladat
- 5 laborfeladat megoldása kötelező (a megnem oldott feladatra -7 pont jár) laborfeladatonként 10 pont jár
- két tanítási hetente vannak új feladatok
- feladástól számítva ket héten belül lehet feltölteni teljes pontszámra
- újabb két hét türelmi idő van a határidő után, ekkor 5 pontra lehet feltölteni
- az első 5 feladat bemutatása kötelező, be nem mutatott feladat 0 pontot ér
- min. 5 laborjelenlét
- másolt feladat esetén mindkét fél számára -10 pont jár (nem számít, hogy ki kitől másolt)
- Pótszesszióban labortevékenységet NEM lehet pótolni

Laborvizsga

- 11. és 12. heteken, a megfelelő laborórákon
- 20 pont szerezhető

Minimális követelmények

Az írásbeli vizsgán részt lehet venni, ha:

- utolsó héten
- maximum 120 pont
- részvételhez kötelező:
 - 5 leadott és elfogadott laborfeladat
 - 5 laborjelenlét (laborvizsgával együtt)
 - minimum 35 pont laborfeladatokból
 - minimum 10 pont laborvizsgán
- plusszpontok csak a végső pontszámhoz számolhatóak hozzá
- 10-es jegyhez: legalább 100 pont az írásbelin

Jegy megállapítása:

$$\frac{Laborpont + Laborvizsgapont + irasbeli + pluszpontok}{20}$$

Átmenő jegyhez:

- írásbeli vizsga: minimum 60 pont
- összesen minimum 100 pont

Pótvizsga

- labortevékenység NEM pótolható pótvizsgaidőszakban;
- laborvizsga
- nem számít a laborjelenlét
- írásbeli vizsga 120 pont

Mirõl lesz szó?

- bevezetés, séták, vonalak utak, fák
- legrövidebb utak
- kritikus út
- Euler utak, Hamilton utak
- Síkba rajzolható gráfok
- Folyamfeladatok
- Párosítások
- Ramsey számok
- Gráfok színezése
- hálózatok
- ...

Olvasnivaló

- Gaskó Noémi, Kása Zoltán, Gráfalgoritmusok, Kolozsvári Egyetemi Kiadó, 2015.
- Andrásfai Béla, Ismerkedés a gráfelmélettel, Tankönyvkiadó, Budapest, 1971.
- Friedl Katalin, Recski András, Simonyi Gábor, Gráfelméleti feladatok, Typotex Kiadó, Budapest, 2006.
- Hajnal Péter, Gráfelmélet, Polygon Kiadó, Szeged, 2003.

Olvasnivaló (folyt.)

- Clark, J. and Holton, D. A., A First Look at Graph Theory, Singapore, London, New Jersey, World Scientific Publishing Co. Ltd. (1991), 330p. Revised reprint published in 1996.
- Bondy, A. and Murty, U.S.R., Graph Theory, Graduate Texts in Mathematics, Vol. 244, Springer, 2008.
- Robert Sedgewick, Algorithms in C, part 5, Graph algorithms, 2007.
- Thomas H. Cormen, Introduction to algorithms, 3rd edition, MIT Press

Gráfokról

Mind a 7 hidat egyszer érintve visszérhetünk-e a kiindulási pontba?

Megoldás

Leonhard Euler (1707-1783)

2. ábra. Königsbergi hidak

3. ábra. Königsbergi hidak

Hol tartunk most?(1)

Hol tartunk most?(2)

5. ábra. Egy másik hálózat

Hol tartunk most?(3)

6. ábra. Egy másik hálózat

Hol tartunk most?(4)

Értelmezések(ek)

Értelmezés

G gráfnak nevezzük a (V,E,F) hármast, ahol

V - a csúcsok halmaza

E - élek halmaza

F - egy leképezés a csúcsok és az élek között, $F:E \to V \otimes V$

 $A\otimes B=\{\{a,b\}\mid a\in A,b\in B \ \mathrm{vagy}\ a\in B,b\in A\}$ — rendezetlen párok halmaza

Kezdjük egy egyszerû példával:

7. ábra

Hét törpe: Szende, Szundi, Hapci, Morgó, Kuka, Tudor, Vidor A törpék dolgoznak: Szende Hapcival, Szundi Tudorral és Hapcival, Vidor Szendével.

Ábrázoljuk grafikusan!

A G gráf rendjén a csúcsok számát értjük, n=|V|.

Értelmezés

A G gráf nagyságán az élek számát értjük, m=|E|.

Mennyi a gráf rendje illetve nagysága?

Ha $F(e_1)=F(e_2)$ akkor e_1 és e_2 párhuzamos élek (többszörös élek). Ha $F(e)=\{a,a\}$ akkor e hurokél.

Ha $F(e_1)=F(e_2)$ akkor e_1 és e_2 párhuzamos élek (többszörös élek). Ha $F(e)=\{a,a\}$ akkor e hurokél.

Értelmezés

Legyen x a G egy pontja. N(x) az x-el szomszédos pontok halmaza:

$$N(x) = \{ y \in V(G), \exists e \in E(G), F(e) = \{x, y\} \}.$$

Ha $F(e_1)=F(e_2)$ akkor e_1 és e_2 párhuzamos élek (többszörös élek). Ha $F(e)=\{a,a\}$ akkor e hurokél.

Értelmezés

Legyen x a G egy pontja. N(x) az x-el szomszédos pontok halmaza:

$$N(x) = \{ y \in V(G), \exists e \in E(G), F(e) = \{x, y\} \}.$$

Értelmezés

Az x ponthoz illeszkedő élek halmaza:

$$I(x)=\{e\in E(G), \exists y\in V(G), y\neq x, F(e)=\{x,y\}\}$$

Az x ponthoz illeszkedő hurokélek halmaza:

$$L(x) = \{e \in E(G), F(e) = \{x, x\}\}.$$

Értelmezés

Az x pont foka (fokszáma) az x-hez illeszkedő élek száma:

$$\varphi(x) = card(I(x)) + 2 * card(L(x)).$$

Ha $\varphi(x)=0$ izolált pontról beszélünk. Ha $\varphi(x)=1$ végpont vagy levél.

Értelmezés

Egy G gráf egyszerû, ha nincs benne többszörös él illetve hurokél.

Értelmezés

Egy G gráf egyszerû, ha nincs benne többszörös él illetve hurokél.

Értelmezés

Egy G gráf r-reguláris, ha minden csúcsának fokszáma r.

<u>Ért</u>elmezés

Egy G gráf egyszerû, ha nincs benne többszörös él illetve hurokél.

Értelmezés

Egy G gráf r-reguláris, ha minden csúcsának fokszáma r.

Értelmezés

Egy G gráfot teljesnek nevezzük, ha bármely két csúcsát él köti össze. Az n-csúcsú teljes gráfot K_n -el jelöljük.

Egy gráf komplementere

A G'=(V',E') komplementere a G=(V,E) gráfnak ha V'=V és $E'=\{\{a,b\},\{a,b\}\not\in E\}.$

Részgráfok

A
$$H=(V(H),E(H),\mathcal{H})$$
 gráf **részgráfja** $G=(V(G),E(G),\mathcal{G})$ gráfnak, ha $V(H)\subseteq V(G),\ E(H)\subseteq E(G),\ \mathcal{H}=\mathcal{G}|_{E(H)}$.

Ha V(H) = V(G), akkor H feszítő részgráf.

Ha $u,v\in V(H)$ és abból, hogy $\{u,v\}\in E(G)$ következik, hogy $\{u,v\}\in E(H)$, akkor H feszített részgráf.

8. ábra. G gráf

9. ábra. H_1 részgráf

10. ábra. H_2 feszített részgráf 11. ábra. H_3 feszítő részgráf

Gráfok izomorfizmusai

Értelmezés

A G_1 gráf izomorf a G_2 gráffal, ha létezik egy bijektív függvény,

$$f:V(G_1)\to V(G_2)$$

úgy, hogy ha $\{a, b\} \in E(G_1)$, akkor $\{f(a), f(b)\} \in E(G_2)$.

Gráfok izomorfizmusai

Értelmezés

A G_1 gráf izomorf a G_2 gráffal, ha létezik egy bijektív függvény,

$$f:V(G_1)\to V(G_2)$$

úgy, hogy ha $\{a,b\} \in E(G_1)$, akkor $\{f(a),f(b)\} \in E(G_2)$.

Példa izomorf gráfokra

Irányított gráfok

Értelmezés

G irányított gráfnak nevezzük a (V,E,F) hármast, ahol

V - a csúcsok halmaza

E - élek halmaza

F - egy leképezés a csúcsok és az élek között, $F:E \to V \times V$

Irányított gráfok

Értelmezés

G irányított gráfnak nevezzük a (V,E,F) hármast, ahol

V - a csúcsok halmaza

E - élek halmaza

F - egy leképezés a csúcsok és az élek között, $F:E \to V \times V$

Ha $e \in E(G), f(e) = \{u,v\}$, akkor u az e él kezdőpontja, v a végpontja.

Értelmezés

 $N^{be}(u)$ az u-ba bemenő élek kezdőpontjainak halmaza.

 $N^{ki}(u)$ az u-ból kimenő élek végpontjainak halmaza.

Értelmezés

Egy irányított gráfban az u csúcs be-foka az u-ba befutó élek száma.

Egy irányított gráfban az u csúcs ki-foka az u-ból kifutó élek száma.

Súlyozott gráfok

Értelmezés - Súlyozott nem - irányított gráf

A G = (V, E, F, W) súlyozott gráf, ahol

V - a csúcsok halmaza

E - élek halmaza

F - egy leképezés a csúcsok és az élek között, $F:E \to V \otimes V$

W - $W:E
ightarrow \mathbb{R}$ az élek súlya.

Értelmezés - Súlyozott irányított gráf

A G = (V, E, F, W) súlyozott gráf, ahol

V - a csúcsok halmaza

E - élek halmaza

F - egy leképezés a csúcsok és az élek között, $F:E \to V \times V$

W - $W:E
ightarrow \mathbb{R}$ az élek súlya.

Gráfok ábrázolása

A fenti példák esetén a gráfokat grafikusan ábrázoltuk. Gráfok ábrázolására a következőképpen történhet:

szomszédsági (adjacencia) mátrix

 $A=(a_{ij}),\ i,j=1,...,n,$ ahol a_{ij} az i csúcsból a j-be vezető élek száma.

Gráfok ábrázolása

A fenti példák esetén a gráfokat grafikusan ábrázoltuk. Gráfok ábrázolására a következőképpen történhet:

- szomszédsági (adjacencia) mátrix $A=(a_{ij}),\ i,j=1,...,n,$ ahol a_{ij} az i csúcsból a j-be vezető élek száma.
- ullet illeszkedési (incidencia) mátrix B illeszkedési mátrix, melynek b_{ij} elemeit a következőképpen határozzuk meg:

$$b_{ij} = \left\{ \begin{array}{lll} 1 & ha & v_i & \mathrm{illeszkedik} & e_j & -\mathrm{hez} \ \mathrm{\acute{e}s} \ \mathrm{nem} \ \mathrm{hurok\acute{e}l}, \\ 2, & ha & v_i & \mathrm{illeszkedik} & e_j & -\mathrm{hez} \ \mathrm{\acute{e}s} \ \mathrm{hurok\acute{e}l}, \\ 0, & ha & v_i & \mathrm{nem} \ \mathrm{illeszkedik} \ e_j & -\mathrm{hez} \end{array} \right.$$

Gaskó Noémi Gráfalgoritmusok 2023. március 1. 32/36

Gráfok ábrázolása (folyt.)

- élek listája két oszlopos mátrixban tároljuk az élek két végponját (súlyokat plussz oszlopban, ha vannak)
- szomszédsági lista
 - 🔘 minden csúcsnak felsoroljuk a szomszédait, n darab listánk lesz.
 - a szomszédsági listákat egymás után írhatjuk egy speciális karakterrel elválasztva.
 - speciális karaktereket nélkül, megjegyezve a listák kezdőindexeit.

szomszédsági mátrix:

 $\Theta(n^2)$ tárigény, csak akkor érdemes ezt az ábrázolásmódot használni, ha kisebb méretű gráfról van szó.

- szomszédsági mátrix:
 - $\Theta(n^2)$ tárigény, csak akkor érdemes ezt az ábrázolásmódot használni, ha kisebb méretű gráfról van szó.
- illeszkedési (incidencia) mátrix $\Theta(n \times m)$ tárigény

- szomszédsági mátrix:
 - $\Theta(n^2)$ tárigény, csak akkor érdemes ezt az ábrázolásmódot használni, ha kisebb méretű gráfról van szó.
- illeszkedési (incidencia) mátrix $\Theta(n \times m)$ tárigény
- listás ábrázolásmód
 - $\Theta(n+m)$ tárigény, ahol m az élek száma

- szomszédsági mátrix:
 - $\Theta(n^2)$ tárigény, csak akkor érdemes ezt az ábrázolásmódot használni, ha kisebb méretű gráfról van szó.
- illeszkedési (incidencia) mátrix $\Theta(n \times m)$ tárigény
- listás ábrázolásmód $\Theta(n+m)$ tárigény, ahol m az élek száma

Az egyik leggazdaságosabb ábrázolásmód a listákkal való ábrázolás, amit többféleképpen implementálhatunk (programozási nyelvtől függően):

- láncolt lista
- vektoros ábrázolás
- array-ek használata

Séták, utak, vonalak, körök

A
$$G=(V,E,F)$$
 gráfban

Séta

váltakozó szögpontok és élek sorozata:

$$W: v_0, e_1, v_1, e_2, v_2, ..., v_{n-1}, e_n, v_n, n \ge 0.$$

az élek és a szögpontok nem feltétlenül különbőzőek!!!! a séta éleinek a száma a **séta hossza**

Séták, utak, vonalak, körök

A
$$G=(V,E,F)$$
 gráfban

Séta

váltakozó szögpontok és élek sorozata:

$$W: v_0, e_1, v_1, e_2, v_2, ..., v_{n-1}, e_n, v_n, n \ge 0.$$

az élek és a szögpontok nem feltétlenül különbőzőek!!!!

- a séta éleinek a száma a **séta hossza** Sajátos séták:
 - vonal: nincsenek ismétlődő élek

Séták, utak, vonalak, körök

A
$$G=(V,E,F)$$
 gráfban

Séta

váltakozó szögpontok és élek sorozata:

$$W: v_0, e_1, v_1, e_2, v_2, ..., v_{n-1}, e_n, v_n, n \ge 0.$$

- az élek és a szögpontok nem feltétlenül különbőzőek!!!! a séta éleinek a száma a **séta hossza**
- Sajátos séták:
 - vonal: nincsenek ismétlődő élek
 - út: nincsenek ismétlődő szögpontok
- zárt séta: a kezdőpont megegyezik a végponttal ($v_0=v_n$)
- zárt vonal

zárt út: zárt kör

Séta:

Séta: 1a2c4d3b2c4

Séta: 1a2c4d3b2c4

Vonal:

Séta: 1a2c4d3b2c4 Vonal: 2b3d4c2

Séta: 1a2c4d3b2c4 Vonal: 2b3d4c2

Út:

Séta: 1a2c4d3b2c4 Vonal: 2b3d4c2

Út: 1a2b3

Séta: 1a2c4d3b2c4 Vonal: 2b3d4c2

Út: 1a2b3 Zárt vonal:

Séta: 1a2c4d3b2c4 Vonal: 2b3d4c2

Út: 1a2b3

Zárt vonal: 2b3d4c2

Séta: 1a2c4d3b2c4 Vonal: 2b3d4c2

Út: 1a2b3

Zárt vonal: 2b3d4c2

Zárt út:

Séta: 1a2c4d3b2c4 Vonal: 2b3d4c2

Út: 1a2b3

Zárt vonal: 2b3d4c2 Zárt út: 2b3d4c2