

Ambient Intelligence

Barcodes EAN13, 2D codes

Prof. Renato Nunes

renato.nunes@ist.utl.pt

AI - Prof. Renato Nunes, IST

1

Plan

- Barcodes
- Linear barcodes
- Barcodes 2D
- Cases study

Barcode

- An optical machine-readable representation of data
 - Data is represented by varying the widths and spacings of

parallel lines

- First use:
 - Identification of railroad cars (1967)
 - First use of UPC Universal Product Code: 1974 (chewing gum pack)
- Most common use nowadays:
 - Supermarket checkout systems

AI - Prof. Renato Nunes, IST

3

Linear barcodes

 Linear because data is only on one dimension

Barcodes

Universal Product Code (UPC) common formats:

- Used mostly in USA and Canada
- Is being phased out → EAN

AI - Prof. Renato Nunes, IST

5

Barcode

- EAN European Article Number
 - → International Article Number (but still EAN)
- EAN-13 13 digits (12 + 1 check)
 - Superset of UPC
 - Defined by the standards organization "GS1"
 - Used worldwide for marking products often sold at retail point of sale
 - Numbers encoded in UPC and EAN barcodes are known as Global Trade Item Numbers (GTIN)

Global Trade Item Number (GTIN)

- Identifies product information (number usually read through a bar code scanner)
- Identifier is unique and universal
- GTINs may be 8, 12, 13 or 14 digits long
- GTIN-13s may be encoded in EAN-13 and other codes

AI - Prof. Renato Nunes, IST

Examples of GTIN codes

GTIN-14 (GS1-128 or ITF-14)

8

GTIN formats

	Numsystem	GTIN-Format													
•	Position of digits	T1	T2	<i>T</i> 3	T4	T5	T6	T7	T8	T9	T10	T11	T12	T13	T14
	GTIN-14	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11	N12	N13	N14
	GTIN-13	0	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11	N12	N13
	GTIN-12	0	0	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11	N12
	GTIN-8	0	0	0	0	0	0	N1	N2	N3	N4	N5	N6	N7	N8

- Example for GTIN-13
 - N1-N2 / N1-N3 Country code (assigned by GS1)
 - N1-N6 / N1-N7 Company prefix (assigned by GS1)
 - N8-N12 Item code (allocated by the company)
 - N13 Check digit

AI - Prof. Renato Nunes, IST

9

GS1 country codes

- Some examples:
 - 000 019 U.S. and Canada
 - 300 379 France and Monaco

 - 400 440 Germany (440 code inherited from old East Germany on reunification, 1990)
 - 450 459 Japan
 - 460 469 Russia

 - 500 509 United Kingdom
 - 520 521 Greece

 - 539 Ireland
 - 540 549 Belgium and Luxembourg
 - 560 Portugal
 - 569 Iceland

 - 840 849 Spain

AI - Prof. Renato Nunes, IST

If first digit = 2:

Reserved for local use (store/warehouse), for items sold by variable weight

10

EAN barcode – Encoding rules

- EAN-13 encoding rules encode the leading 13th digit by modifying the encoding of the left-hand half of the barcode
- The original rules for UPC are treated as a '0' if read as EAN-13. A UPC barcode XXXXXXXXXXXX therefore is the EAN-13 barcode 0XXXXXXXXXXXX.

5	County				
digit	pattern				
0	EEEEEE				
1	EEOEOO				
2	EEOOEO				
3	EEOOOE				
4	EOEEOO				
5	EOOEEO				
6	EOOOEE				
7	EOEOEO				
8	EOEOOE				
9	EOOEOE				

Codina

First

E = Even (normal) O = Odd (inverted)

11

EAN encoding rules

AI - Prof. Renato Nunes, IST

First digit coding

- Applies only to left digits (6 digits)
- Right digits use always "Even" coding

_	First digit	Coding pattern				
	0	EEEEEE				
	1	EEOEOO				
	2	EEOOEO				
	3	EEOOOE				
	4	EOEEOO				
	5	EOOEEO				
	6	EOOOEE				
	7	EOEOEO				
	8	EOEOOE				
	9	EOOEOE				

Digit coding

	E ven (normal)	O dd (inverted)		
0	3211	1123		
1	2221	1222		
2	2122	2212		
3	1411	1141		
4	1132	2311		
5	1231	1321		
6	1114	4111		
7	1312	2131		
8	1213	3121		
9	3112	2113		

12

EAN encoding rules

Digits coding

space / bar / space / bar

Left digits may be coded like this (Even) or "inverted" (Odd)

bar / space / bar / space

Right digits <u>always</u> coded in this way (even)

Example: $0 \text{ (even)} = 3211 \quad 0 \text{ (odd)} = 1123$

AI - Prof. Renato Nunes, IST

EAN encoding rules

- Calculation of checksum digit (rightmost digit)
 - Calculated from the data digits before it.
 - The checksum is calculated taking a varying weight value times each number in the barcode to make a sum.
 - The weight for a specific position in the EAN code is either 3 or 1, which alternate so that the final data digit has a weight of 3; the same algorithm is used in other GTINs and the Serial Shipping Container Code (SSCC).
 - In an EAN-13 code, the weight is 1 for odd positions and 3 for even positions (weights for EAN-13 are: 1, 3, 1, 3, 1, 3, 1, 3, 1, 3).
 - The checksum digit is then the digit which must be added to this sum to get a number evenly divisible by 10.
- · Example:
 - If the sum is 63 1xN1 + 3xN2 + 1xN3 + 3xN4 + 1xN5 + 3xN6 + 1xN7 + 3xN8 + 1xN9 + 3xN10 + 1xN11 + 3xN12
 - -63 modulo 10 = 3
 - 10 minus 3 makes the checksum = 7

2D barcodes

- Market requested:
 - Codes capable of storing more information, more character types (not just numbers), and that could be printed in a smaller space.

- Increasing the number of bar code digits or layout multiple bar codes
- Problems:
 - · enlarge the bar code area
 - · complicate reading operations
 - increase printing cost
- Solution: 2D barcode
 - QR code (1994)

2D Code with stacked bar codes

2D Code (matrix type)

15

2D barcodes

AI - Prof. Renato Nunes, IST

QR Code = Quick Response code

Contains data

Contains data

QR Code(2D Code)

Typical 2D Codes

	QR Code	PDF417	DataMatrix	Maxi Code	
		懋	335	000	
Developer (country)	DENSO (Japan)	Symbol Technolog. (USA)	RVSI Acuity CiMatrix (USA)	UPS (USA)	
Туре	Matrix	Stacked Bar Code	Matrix	Matrix	
Numeric capacity	7,089	2,710	3,116	138	
Alphanumeric	4,296	1,850	2,355	93	
Binary	2,953	1,018	1,556		
Kanji (Japan)	1,817	554	778		
Main features	Large capacity, small printout size High speed scan	Large capacity	Small printout size	High speed scan	
Standardiza- tion	AIM International JIS, ISO	AIM International ISO	AIM International ISO	AIM International ISO	

AI - Prof. Renato Nunes, IST

17

QR Code (Quick Response Code)

- High Capacity Encoding of Data
- Small Printout Size
- Dirt and Damage Resistant
- Readable from any direction in 360°

ABCOEF GHI JALLANDPORS TUVKYZA, BO I JALLANDPORS TUVKYZA BODEF GH I JALLANDPORS TUVKYZO 23-465 75801 23-465 7584 BODEF GHI JALLANDPORS TUV WYZABODEF GHI JALLANDPORS TUVKYZO 24-56 7594 BODEF GHI JALLANDPORS TUVKYZO ABCOEF GHI JALLANDPORS TUVKYZO 23-456 74901 22-456 74904 COPEF GHI JALLANDPOR POPS TUVKYZABODEF GHI JALLANDPOR POPS TUVKYZABODEF GHI JALLANDPOR

QR Code uses

- Initially used to track parts in vehicle manufacturing
- Now: much wider range of applications, including commercial tracking, entertainment and transport ticketing, product marketing and in-store product labeling.
- Many applications target mobile-phone users (via mobile tagging).
- Users may receive text, add a vCard contact to their device, open a Uniform Resource Identifier (URI), or compose an e-mail or text message after scanning QR codes.
- Google has a popular API to generate QR codes
- Apps for scanning QR codes can be found on nearly all smartphone devices.

AI - Prof. Renato Nunes, IST

19

Case study (1)

- Logistics Control System for Food Products
 - 2D barcode: QR code
 - Product code, expiration date, manufacturing history, and other data are encoded into QR Code
 - The data is used for logistics management of food products
- Benefits
 - Enables first-in first-out execution based on expiration date control
 - Improves traceability based on manufacturing history control

Case study (2)

- Shipping Control System for Garment Products
 - 2D barcode: QR code
 - Shipping destination, product code, color, size, and other data are encoded into QR Code for printing on shipping instructions of garment products.
 - The data is used for shipping control
- Benefits
 - Prevents shipping mistakes
 - Enables instant gathering of shipping instruction data using handy terminals

21

AI - Prof. Renato Nunes, IST

References

- http://en.wikipedia.org/wiki/Barcode
- http://en.wikipedia.org/wiki/Universal_Product_Code
- http://en.wikipedia.org/wiki/International_Article_Number _(EAN)
- http://en.wikipedia.org/wiki/List_of_GS1_country_codes
- http://www.gtin.info/
- http://en.wikipedia.org/wiki/QR_code
- http://www.denso-wave.com/qrcode/aboutgr-e.html
- http://www.databar-barcode.info/