Оглавление

Необыкновенные дифференциальные уравнения – относительно частных производных Первого порядка – относительно первой производной

Определение 1. Область – непустое открытое связное подмножество

Рассмотрим обыкновенное дифференциальное уравнение первого порядка, разрешённое относительно производной:

$$\frac{\mathrm{d}\ y(x)}{\mathrm{d}\ x} = f(x,y(x)), \qquad \text{или в краткой записи } y' = f(x,y) \tag{1}$$

где x – это независимая переменная, y=y(x) – искомая функция, а f(x,y), если не оговорено противное, – вещественная функция, определённая и непрерывная на множестве $\widetilde{G}=G\cup\widehat{G}$

G – область в \mathbb{R}^2

 \widehat{G} – та часть (возможно, пустая) ∂G (границы G), где функция f(x,y) определена и непрерывна К ней же относим те точки, в которых функция f(x,y) может быть доопределена с сохранением непрерывности

Чаще всего будем рассматривать композиции элементарных функций

Определение 2. Функцией называется пара объектов (X, f), в которой X – это любое числовое множество, а f – правило, по которому каждому числу из множества X сопоставляется единственное число

Под непрерывностью будем понимать непрерывность по совокупности переменных

Обозначение. Символ (подразумевает одну из скобок: (или [, а символ) – скобку) или]

Определение 3. Функция $y = \varphi(x)$, заданная на некотором промежутке $\langle a, b \rangle$, называется решением дифференциального уравнения (1), если для всякого $x \in \langle a, b \rangle$ выполняются следующие три условия:

- 1. функция $\varphi(x)$ дифференцируема в точке x
- 2. точка $\left(x,\varphi(x)\right)\in\widetilde{G}$
- 3. $\varphi'(x) = f(x, \varphi(x))$

Замечание. Фактически решение уравнения (1) – это пара: промежуток $\langle a,b \rangle$ и определённая на нём функция $\varphi(x)$

Замечание. Первые два условия вспомогательные – они позволяют подставить $y = \varphi(x)$ в обе части (1)

Замечание. Любое решение $y=\varphi(x)$ является функцией не просто дифференцируемой по условию 1, а непрерывно дифференцируемой или гладкой на $\langle a,b\rangle$, т. е. $\varphi(x)\in C^1(\langle a,b\rangle)$

Доказательство. Функция $\varphi(x)$ дифференцируема, а значит, непрерывна в любой точке $x \in \langle a, b \rangle$, поэтому $f(x, \varphi(x))$ непрерывна как композиция непрерывных функций, что влечёт непрерывность $\varphi'(x)$ При этом, если решение задано на отрезке [a, b], то на его концах существуют и непрерывны односторонние производные

Определение 4. Решение $y = \varphi(x)$ уравнения (1), заданное на промежутке $\langle a, b \rangle$ будем называть:

1. внутренним, если $(x, \varphi(x)) \in G$ для любого $x \in \langle a, b \rangle$

- 2. граничным, если $(x, \varphi(x)) \in \widehat{G}$ для любого $x \in \langle a, b \rangle$
- 3. смешанным, если найдутся такие $x_1, x_2 \in \langle a, b \rangle$, что точка $(x_1, \varphi(x_1)) \in G$, а точка $(x_2, \varphi(x_2)) \in \widehat{G}$ Чтобы узнать, является ли конкретная функция решением, достаточно её подставить

Лемма 1 (о записи решения в интегральном виде). Для того чтобы определённая на промежутке $\langle a,b \rangle$ функция $y=\varphi(y)$ была решением дифференциального уравнения (1), необходимо и достаточно, чтобы функция $\varphi(x)$ была непрерывна на $\langle a,b \rangle$, её график лежал в \widetilde{G} и при некотором $x_0 \in \langle a,b \rangle$ выполнялось тождество

$$\varphi(x) \stackrel{\langle a,b \rangle}{\equiv} \varphi(x_0) + \int_{x_0}^x f(s,\varphi(x)) \, ds$$
 (2)

Доказательство.

• Необходимость

Пусть функция $y=\varphi(x)$ на $\langle a,b \rangle$ является решением уравнения (1), тогда по определению справедливо тождество $f(x,\varphi(x))\stackrel{\langle a,b \rangle}{\equiv} \varphi'(x)$

Интегрируя его при любом фиксированном $x_0 \in \langle a, b \rangle$ по s от x_0 до x и перенося $\varphi(x_0)$ в правую часть, получаем тождество (2)

В самом деле,

$$\int_{x_0}^x f(s, \varphi(s)) ds \stackrel{\langle a, b \rangle}{\equiv} \int_{x_0}^x \varphi'(s) ds = \varphi(x) - \varphi(x_0)$$

• Достаточность

Пусть непрерывная на промежутке $\langle a,b \rangle$ функция $y=\varphi(x)$ удовлетворяет тождеству (2), тогда $\varphi(x)$ нерпрывно дифференцируема на $\langle a,b \rangle$, поскольку в правой части (2) стоит интеграл с переменным верхним пределом от композиции непрерывных функций.

Дифференцируя (2), заключаем, что выполняется и третье условие из определения решения уравнения (1)

Задача (Коши). Для любой точки $(x_0,y_0)\in \widetilde{G}$ задача Коши с начальными данными x_0,y_0 заключается в том, чтобы найти все решения $y=\varphi(x)$ уравнения (1), заданные на промежутках $\langle a,b\rangle\ni x_0$, в том числе внутренние, граничные или смешанные, такие, что $\varphi(x_0)=y_0$.

При этом говорят, что задача Коши поставлена в точке (x_0, y_0) , а найденные решения – это решения поставленной задачи Коши

Обозначение. $3K(x_0, y_0)$