Assignment 1

- 학번: 2//02376
- 이름: 이연우
- 1. 다음 행렬의 다양한 연산에 대하여 답을 구하시오.(답과 풀이과정을 작성하시오.)
- (a) 행렬 $A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 6 & 7 \\ 1 & 2 & 4 \end{pmatrix}$ 의 행렬식을 계산하시오.

(限) Han elar, det(A) = 1x6x4+3x7×1+2x2×2-2x6x1-3x2x4-1x7x2 = 53-50 = 3,

(b) 부울 행렬 $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ 에 대하여 $A \wedge A^2$ 의 값을 구하시오.

부울 행렬
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 에 대하여 $A \wedge A^2$ 의 값을 $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$ $\longrightarrow A \wedge A^2$ $= \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

(c) 행렬 $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ 에 대해 고유값 및 고유벡터를 구하시오. $AV = \lambda V \rightarrow (A - \lambda I) V = 0$

$$A_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V = 0$$

$$d_{V} = \lambda \lambda \rightarrow (A - \lambda I) V =$$

 $\lambda_1 = \lambda_2 = \lambda_1$

$$V_1 = \begin{pmatrix} S \\ + \\ -S - + \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & -5 \\ 1 & -5 & 1 \\ -5 & 1 & 1 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 + 4 - 55 \\ 3 - 54 + 5 \\ -54 + 6 + 5 \end{pmatrix} = 0$$

서울과학기술대학교

(将面部和 C知 好好, 出 與網路 多路 到 2023학년도 봄학기

1=4=52+ 1802. N= (5) opt.

非智 医精体存储 法

$$\lambda_{1} = 1, \ \lambda_{1} = \begin{pmatrix} z \\ t \\ -s - t \end{pmatrix}$$

- 2. 다음 명제와 관련된 문제에 대하여 답을 구하시오.(답과 풀이과정을 작성하시오.)
- (a) 다음 합성 명제가 항진 명제인 것을 진리표를 작성하여 확인하시오.

$(P \land (Q \lor R)) \rightarrow ((P \land Q) \lor (P \lor R))$								
P	Q	R	QVR	PA(QVR)	DA9	PVR	(MQ)V(PVR)	$ ((AVQ) V (BVQ)) \rightarrow ((BVQ) V (BVQ)) $
T T T F F F (b)	TTFFTTFF島	て月下月下月下り	アアファアナーディ	ー ー ー ー ー ー ー ー ー ー ー ー ー ー の の の の の の	TTFFFFF 와	TTTTT775人 号 号	T T T T F T F T F 한 하 시 오.	합성명제의 신리값은 전위 명제가 참이고 후 위 명제가 거짓일 경우에만 거짓이 되고, 그 이외의 경우엔 모두 참이 된다. 주어진 명제의 경우 진리품를 작성한 결과 전 위명제가 참이면서 후위 명제가 거짓인 경우 는 존재하지 않기 때문에 주어진 합성명제는 항진명제이다.

 $P \rightarrow (Q \rightarrow R)$

$$P \rightarrow (Q \rightarrow R) \Leftrightarrow (P \land Q) \rightarrow R$$

 $\Leftrightarrow (P \land Q) \lor R$
 $\Leftrightarrow (P \land Q) \lor R$
 $\Leftrightarrow (P \land Q \land \neg R)$

(c) 다음 명제가 참인지 거짓인지를 증명하시오. (과정을 서술하시오.)

"오늘이 수요일이면 나는 인공지능 또는 이산수학 시험을 본다. 인공지능 교수님이 편찮으시면 인공지능 시험은 치루지 않을 것이다. 오늘은 수요일이고 인공지능 교수님이 편찮으시다. 그러면 나는 이산수학 시험을 본다."

"오늘이 수요일이다" 라는 가정에 대한 명제를 P 라고 하고, "나는 인공지능 시험을 본다"는 명제를 Q, "나는 이산수학 시험을 본다"는 명제를 R, "인공지능 교수님이 편찮으시다"는 명제를 S 라고 하면,

- 1. 오늘이 수요일이면 나는 인공자능 또는 이산수학 시험을 본다 : P -> (Q V R)
- 2. 인용자능 교수님이 편찮으시면 인용자능 시험은 치루지 않을 것이다 : S -> ~Q
- 3. 오늘은 수요일이고 인공자는 교수님이 편찮으시다 : P ^ S
- 4. P \land S -> (Q \lor R) \land ^Q -> (Q \land ^Q) \lor (R \land ^Q) -> 0 \lor (R \land ^Q) -> R \land ^Q (\dark i)
- 즉, 주어진 7 자정에 따르면 나는 오늘 인용지능 시험을 보지 않으며 ($^{\circ}$ Q), 이산수학 시험을 본다(R). 따라서 나는 오늘 이산수학 시험을 본다는 명제는 참이다.
- (d) 다음 명제를 적절한 증명 방법을 선택하여 증명하시오.

" $x^2 + 1$ 이 음수인 정수 x는 존재하지 않는다."

귀유법을 통해 이를 증명할 수 있다.

소^2 + 1 이 음수인 정수 소가 존재한다고 가정해보자. 가정에 따르면 소^2 + 1 < 0 이므로, 소^2 < -1 이다.

그러나 소가 정수범위일 때 소~2은 항상 0이상의 값을 가지므로, 가정은 모순된다.

따라서 가정이 거짓임을 알 수 있고, 주어진 명제 "文2 + 101 음수인 정수 文는 존재하지 않는다"는 참인 명제이다.