Basic Jupyter Notebook Tutorial

This lab has been iteratively developed for EE 126 at UC Berkeley by Rishi Sharma, Sahaana Suri, Kangwook Lee, Kabir Chandrasekher, Max Kanwal, Tony Duan, David Marn, Ashvin Nair, Tavor Baharav, Sinho Chewi, Andrew Liu, Kamil Nar, David Wang, Avishek Ghosh, Chen Meng, Alvin Kao, Ray Ramamurti, and Professors Kannan Ramchandran, Abhay Parekh, and Jean Walrand.

Modified from Berkeley Python Bootcamp 2013 https://github.com/profjsb/python-bootcamp (https://github.com/profjsb/pyt

and Python for Signal Processing http://link.springer.com/book/10.1007%2F978-3-319-01342-8 (http://link.springer.com/book/10.1007%2F978-3-319-01342-8

and EE 123 iPython Tutorial http://inst.eecs.berkeley.edu/~ee123/sp14/lab/python_tutorial.ipynb (http://inst.eecs.berkeley.edu/~ee123/sp14/lab/python_tutorial.ipynb).

General Jupyter Notebook Usage Instructions (Overview)

- Start by clicking Help >> User Interface Tour to get yourself familiar with the Jupyter Notebook environment.
- Click the Play button to run and advance a cell. The short-cut for it is shift-Enter.
- To add a new cell, either select "Insert >> Insert New Cell Below" or click the Plus button.
- You can change the cell mode from code to text in the pulldown menu. Use Markdown for writing text.
- You can change the text in Markdown cells by double-clicking it. The short-cut for this is enter.
- To save your notebook, either select "File >> Save and Checkpoint" Or hit Command-s for Mac and Ctrl-s for Windows.
- To undo edits within a cell, hit command-z for Mac and ctrl-z for Windows.
- Help >> Keyboard Shortcuts has a list of all useful keyboard shortcuts.
- The Help menu also has links to many reference docs you may find useful this semester (e.g. Markdown, Python, NumPy, Matplotlib, SciPy).

Installing Python

Follow the instructions to install Python 3 (if you're reading this, you've probably already done that):

http://ipython.org/install.html (http://ipython.org/install.html)

Make sure you install the notebook dependencies for Jupyter Notebook in addition to the basic package.

Tab Completion

One useful feature of iPython is tab completion:

```
In [1]: x = 1
y = 2
x_plus_y = x + y

# Type `x_` then hit TAB to auto-complete the variable and then press Shift +
# Enter to run the cell.
print(x_plus_y)
```

Help

Another useful feature is the help command. Type any function followed by ? and run the cell to return a help window. Hit the x button to close it.

```
In [2]: abs?
```

Floats and Integers

Doing math in Python is easy, but note that there are int and float types in Python. In Python 3, integer division returns the same results as floating point division.

```
      In [3]:
      59 / 87

      Out[3]:
      0.6781609195402298

      In [4]:
      59 / 87.0

      Out[4]:
      0.6781609195402298
```

Strings

- Double quotes and single quotes are the same thing.
- '+' concatenates strings.

```
In [5]: # This is a comment.
    "Hi " + 'Bye'
Out[5]: 'Hi Bye'
```

Printing

Here are some fancy ways of printing:

Lists

A list is a mutable array of data, i.e. it can constantly be modified. See http://stackoverflow.com/questions/8056130/immutable-vs-mutable-types-python

(http://stackoverflow.com/questions/8056130/immutable-vs-mutable-types-python) for more info. If you are not careful, using mutable data structures can lead to bugs in code that passes common data to many different functions.

Important functions:

- Created a list by using square brackets [].
- '+' appends lists.
- len(x) gets the length of list x.

Tuples

A tuple is an immutable list. They can be created using round brackets ().

They are usually used as inputs and outputs to functions.

Arrays (NumPy)

A NumPy array is like a list with multidimensional support and more functions. We will be using it a lot.

Arithmetic operations on NumPy arrays correspond to elementwise operations.

Important functions:

- .shape returns the dimensions of the array.
- .ndim returns the number of dimensions.
- .size returns the number of entries in the array.
- len() returns the first dimension.

To use functions in NumPy, we have to import NumPy to our workspace. This is done by the command <code>import numpy</code>. By convention, we rename <code>numpy</code> as <code>np</code> for convenience.

```
In [14]:
        # by convention, import numpy as np
        import numpy as np
        x = np.array([[1, 2, 3], [4, 5, 6]])
        print(x)
        [[1 2 3]
         [4 5 6]]
In [15]:
        print("Number of Dimensions:", x.ndim)
        Number of Dimensions: 2
In [16]: print("Dimensions:", x.shape)
        Dimensions: (2, 3)
In [17]: print("Size:", x.size)
        Size: 6
In [18]: print("Length:", len(x))
        Length: 2
In [19]: a = np.array([1, 2, 3])
        print("a = ", a)
        \# elementwise arithmetic
        print("a * a = ", a * a)
        a = [1 2 3]
        a * a = [1 4 9]
In [20]: | b = np.array(np.ones((3, 3))) * 2
        print("b = \n", b)
        c = np.array(np.ones((3, 3)))
        print("c = \n", c)
        [[2. 2. 2.]
        [2. 2. 2.]
        [2. 2. 2.]]
        c =
         [[1. 1. 1.]
         [1. 1. 1.]
         [1. 1. 1.]]
Multiply elementwise:
In [21]: | print("b * c = \n", b * c)
        b * c =
         [[2. 2. 2.]
         [2. 2. 2.]
         [2. 2. 2.]]
Now multiply as matrices (not arrays):
```

```
In [22]: print("b * c =\n", np.dot(b, c))

b * c =
[[6. 6. 6.]
[6. 6. 6.]
[6. 6. 6.]]
```

Alternatively, we can just convert to or create a matrix instead of an array and then use normal multiplication:

```
In [23]: print("b * c =\n", np.matrix(b) * np.matrix(c))

d = np.matrix([[1, 1j, 0], [1, 2, 3]])
e = np.matrix([[1], [1j], [0]])

print("d * e =\n", d * e)

b * c =
   [[6. 6. 6.]
   [6. 6. 6.]
   [6. 6. 6.]
   d * e =
   [[0.+0.j]
   [1.+2.j]]
```

Slicing for NumPy Arrays

NumPy uses pass-by-reference semantics so it creates views into the existing array, without implicit copying. This is particularly helpful with very large arrays because copying can be slow.

```
In [24]: x = np.array([1, 2, 3, 4, 5, 6])
print(x)
[1 2 3 4 5 6]
```

We slice an array from a to b - 1 with [a:b].

```
In [25]: y = x[0:4] print(y)

[1 2 3 4]
```

Since slicing does not copy the array, changing y changes x:

```
In [26]: y[0] = 7
print(x)
print(y)

[7 2 3 4 5 6]
[7 2 3 4]
```

To actually copy x, we should use .copy:

```
In [27]: x = np.array([1, 2, 3, 4, 5, 6])
y = x.copy()
y[0] = 7
print(x)
print(y)
[1 2 3 4 5 6]
[7 2 3 4 5 6]
```

Plotting

In this class we will use matplotlib.pyplot to plot signals and images.

To begin with, we import matplotlib.pyplot as plt (again for convenience).

```
In [28]: import numpy as np
# by convention, we import pyplot as plt
import matplotlib.pyplot as plt
# import r_ function from numpy
from numpy import r_

# if you don't specify a number before the colon, the starting index defaults
# to 0

x = r_[:1:0.01]
a = np.exp(-x)
b = np.sin(x * 10.0) / 4.0 + 0.5

# plot in browser instead of opening new windows
%matplotlib inline
```

plt.plot(x, a) plots a against x.

plt.figure()
plt.plot(x, a)

plt.style.use('default')

In [31]:

Once you started a figure, you can keep plotting to the same figure.

To plot different plots, you can create a second figure.


```
In [37]: plt.figure()
   plt.plot(x, a)
   plt.plot(x, b)
   plt.xlabel("time")
   plt.ylabel("space")

   plt.title("Most Important Graph in the World")

plt.legend(("$\exp(x)$", "$\sin(x)$"))
Out[37]: 
cmatplotlib.legend.Legend at 0x10b6cba20>
```

and process and process and the second secon

There are many options you can specify in plot(), such as color and linewidth. You can also change the axis using plt.axis.

```
In [38]:
        plt.figure()
        plt.plot(x, a, ":r", linewidth=20)
        plt.plot(x, b, "--k")
        plt.xlabel("time")
        plt.ylabel("space")
        plt.title("Most Important Graph in the World")
        plt.legend(("blue", "red"))
        plt.axis([0, 4, -2, 3])
Out[38]: [0, 4, -2, 3]
                           Most Important Graph in the World
             3
                                                                   blue
                                                               --- red
             2
             0
            -1
                     0.5
                                                 2.5
              0.0
                            1.0
                                   1.5
                                          2.0
                                                        3.0
                                                               3.5
                                                                       4.0
                                         time
```

There are many other plotting functions. For example, we will use plt.imshow() for showing images and plt.stem() for plotting discretized signals.

```
In [39]:
        # image
        plt.figure()
        \# plotting the outer product of a and b
        data = np.outer(a, b)
        plt.imshow(data)
Out[39]: <matplotlib.image.AxesImage at 0x10b16b978>
          20 -
          40 -
          60 -
          80 -
                      20
                               40
                                        60
                                                 80
In [43]:
        # stem plot
        plt.figure()
        # subsample by 5
        plt.stem(x[::5], a[::5])
Out[43]: <Container object of 3 artists>
          1.0
          0.8
          0.6
          0.4
          0.2
          0.0
                0.0
                           0.2
                                       0.4
                                                   0.6
                                                               0.8
```

```
In [44]: # xkcd style plots
    # Note: Requires matplotlib version 1.3.1 or higher
    plt.xkcd()
    plt.plot(x, a)
    plt.plot(x, b)
    plt.xlabel("time")
    plt.ylabel("space")

plt.title("Most Important Graph in the World")

plt.legend(("blue", "red"))
```

Out[44]: <matplotlib.legend.Legend at 0x10d484780>

To turn off xkcd style plotting, restart the kernel or run the command `plt.rcdefaults()`.

```
In [45]: plt.rcdefaults()
```

Logic

For Loop

Indentation matters in Python. Everything indented belongs to the loop:

If-Else

Same goes for If-Else:

Random Library

The NumPy random library should be your resource for all Monte Carlo simulations which require generating instances of random variables.

The documentation for the library can be found here: http://docs.scipy.org/doc/numpy/reference/routines.random.html (http://docs.scipy.org/doc/numpy/reference/routines.random.html)

The function rand can be used to generates a uniform random number in the range [0, 1).

Let's see how we can use this to generate a fair coin toss (i.e. a discrete Bernoulli(1/2) random variable).

```
In [51]: # Bernoulli(1/2) random variable
x = round(random.rand())
print(x)
```

Now let's generate several fair coin tosses and plot a histogram of the results.

```
In [52]:
         k = 100
         x1 = [round(random.rand()) for _ in range(k)]
         plt.figure()
         plt.hist(x1)
          # we could also use NumPy's round function to elementwise round the vector.
         x2 = np.round(random.rand(k))
         plt.figure()
         plt.hist(x2)
Out[52]: (array([55., 0., 0., 0., 0., 0., 0., 0., 0., 45.]),
array([0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.]),
           <a list of 10 Patch objects>)
           60
           50
           40
           30
           20
           10
                 0.0
                             0.2
                                         0.4
                                                     0.6
                                                                 0.8
                                                                              1.0
           50
           40
           30
           20
           10
                             0.2
                 0.0
                                         0.4
                                                     0.6
                                                                 0.8
                                                                              1.0
```

We can do something similar for several other distributions, and allow the histogram to give us a sense of what the distribution looks like. As we increase the number of samples we take from the distribution k, the more and more our histogram looks like the actual distribution.

```
In [53]:
       k = 1000
       # k discrete uniform random variables between 0 and 9
       discrete_uniform = random.randint(0, 10, size=k)
       plt.figure(figsize=(6, 3))
       plt.hist(discrete_uniform)
       plt.title("Discrete Uniform")
       continuous uniform = random.rand(k)
       plt.figure(figsize=(6, 3))
       plt.hist(continuous_uniform)
       plt.title("Continuous Uniform")
       # randn generates elements from the standard normal
       std_normal = random.randn(k)
       plt.figure(figsize=(6, 3))
       plt.hist(std_normal)
       plt.title("Standard Normal")
       # To generate a normal distribution with mean mu and standard deviation sigma,
       # we must mean shift and scale the variable
       mu = 100
       sigma = 40
       normal_mu_sigma = mu + random.randn(k) * sigma
       plt.figure(figsize=(6, 3))
       plt.hist(normal_mu_sigma)
       plt.title("N({}, {})".format(mu, sigma))
```


^ We could do this all day with all sorts of distributions. I think you get the point.

Specifying a Discrete Probability Distribution for Monte Carlo Sampling

The following function takes n sample from a discrete probability distribution specified by the two arrays distribution and values.

As an example, let us suppose a random variable X follows the following distribution:

$$X = \begin{cases} 1 \text{ w/ probability } 0.1\\ 2 \text{ w/ probability } 0.4\\ 3 \text{ w/ probability } 0.2\\ 4 \text{ w/ probability } 0.2\\ 5 \text{ w/ probability } 0.05\\ 6 \text{ w/ probability } 0.05 \end{cases}$$

Then we would have: distribution = [0.1, 0.4, 0.2, 0.2, 0.05, 0.05] and values = [1, 2, 3, 4, 5, 6].

```
In [54]:
       def n_sample(distribution, values, n):
           if sum(distribution) != 1:
               distribution = [distribution[i] / sum(distribution) \
                    for i in range(len(distribution))]
           rand = [random.rand() for i in range(n)]
           rand.sort()
           samples = []
           sample_pos, dist_pos, cdf = 0, 0, distribution[0]
           while sample pos < n:
               if rand[sample_pos] < cdf:</pre>
                    sample pos += 1
                    samples.append(values[dist_pos])
               else:
                    dist_pos += 1
                    cdf += distribution[dist pos]
           return samples
```

```
In [55]:
        \# collect k samples from X and plot the histogram
        samples_from_x = n_sample(
             [0.1, 0.4, 0.2, 0.2, 0.05, 0.05], [1, 2, 3, 4, 5, 6], k)
        plt.hist(samples_from_x)
        plt.ylim((0, 1000))
        print("Wow, if we normalized the y-axis that would be a PMF. Incredible!")
        print("I should try that.")
        Wow, if we normalized the y-axis that would be a PMF. Incredible!
        \ensuremath{\textsc{I}} should try that.
          1000
           800
           600
           400
           200
             0
                            2
                                       3
In [56]:
        # Normalize the samples from X to plot the probability mass function below:
        plt.hist(samples_from_x, bins=6, normed=True)
        plt.ylim((0, 1))
Out[56]: (0, 1)
          1.0
          0.8
          0.6
          0.4
          0.2
          0.0
                          2
                                                          5
```

Question 1: Sampling and Plotting a Binomial Random Variable

A binomial random variable $X \sim \operatorname{Binomial}(n,p)$ can be thought of as the number of heads in n coin flips where each flip has probability p of coming up heads. We can equivalently think of it as the sum of n Bernoulli random variables:

$$X = \sum_{i=1}^{n} X_i$$
 where $X_i \sim \text{Bernoulli}(p)$.

In this question, you will put your new plotting skills to work and sample the values of a binomial random variable.

```
In [78]:
       def plot binomial(
              n, trials=[10, 50, 100, 1000, 10000], p_values=[0.1, 0.2, 0.5, 0.8]):
           On different figures, plot a histogram of the results of the given
           number of trials of the binomial variable with parameters n and p for all
           values in the given list.
           for trial in trials:
               for p value in p values:
                   samples = ([sum(n_sample([1 - p_value, p_value], [0, 1], n)) for _ in range(t)
       rial)])
                   plt.figure()
                   plt.title("B({}, {}), Trials={}".format(n, p_value, trial))
                   plt.hist(samples, normed=True)
                   plt.show()
       \# Feel free to play around with other values of n.
      plot_binomial(100)
```


. Now that you have plotted many values of a few different binomial random variables, do the results coincide with what you expect them to?

Yes, the mean is around np.

0.00

Question 2: Monte Carlo Method for Estimating Pi

After going through this tutorial, you might wonder: why should we bother with NumPy at all?

While many of you may not have used NumPy previously, or not see the purpose in learning this library, we strongly urge you to force yourself to use NumPy as much as possible while doing virtual labs.

NumPy (and using matrix operations rather than loops) is your friend when it comes to efficiently dealing with lots of data or doing elaborate simulations. If you find yourself using many loops or list comprehensions to process data, think about using NumPy. Furthermore, NumPy is widely used in industry and academic research, and so it will benefit you greatly to become comfortable with it this semester!

Let's work through an example to see the usefulness of NumPy.

Estimate the value of π using a Monte Carlo method.

Monte Carlo methods are algorithms that use probability and randomness to solve problems that would be difficult otherwise. Here, we will use a Monte Carlo simulation to estimate the value of π .

Suppose we have a one meter by one meter square dartboard with a quarter circle inscribed in it, as shown below:

If we throw darts at the dartboard such that they are equally likely to land anywhere in the square, then as we throw more and more darts, the fraction of them that will land in the quarter circle will approach

$$\frac{\text{Area of quarter circle}}{\text{Area of square}} = \frac{\pi}{4}$$

Therefore, after simulating this process, we can take the fraction of darts that landed within the circle, and multiply this value by 4 to use as our estimate for π .

A version of the simulation that does not use NumPy at all is given. Your job is to re-implement the simulation using NumPy to speed it up. For reference, the staff solution is ~15x better.

```
n [156]:
        import time
        import numpy as np
        import random
        def monte carlo pi(num points):
            # num_points is the number of random points to choose
            count = 0
            for _ in range(num_points):
                randx, randy = random.random(), random.random()
                if (randx ** 2 + randy ** 2 < 1):</pre>
                     count += 1
            estimate = (count / num points) * 4
            return estimate
        def monte_carlo_pi_numpy(num_points):
            # num_points is the number of random points to choose
            count = np.count nonzero(np.random.rand(num points) ** 2 + np.random.rand(num points)
         ** 2 < 1)
            # Your beautiful code here... #
            return count / num points * 4
To see the effectiveness of using NumPy, let's run both implementations of the simulation, with and without NumPy, and
compare their speeds.
In [157]:
        num points = 10000000 # number of random points to choose
In [158]: start = time.clock()
        print("Estimate of Pi:", monte_carlo_pi(num_points))
        print ("Actual value of Pi:", np.pi)
        end = time.clock()
        total1 = end - start
       Estimate of Pi: 3.1421008
       Actual value of Pi: 3.141592653589793
In [159]:
        start = time.clock()
        print("Estimate of Pi:", monte_carlo_pi_numpy(num_points))
        print ("Actual value of Pi:", np.pi)
        end = time.clock()
        total2 = end - start
       Estimate of Pi: 3.1415484
       Actual value of Pi: 3.141592653589793
In [160]:
        print("w/o NumPy:\t %f s\nw/ NumPy:\t %f s" %(total1, total2))
        print("Total Speedup: " + str(total1 / total2) + "x")
```

5.014565 s

0.398187 s

Total Speedup: 12.593492504777691x

w/o NumPv:

w/ NumPy: