Recommender Systems

E0 259: Data Analytics Lecture 3

Deep Learning 101

Types of Activation Functions - Sigmoid

- Goes from 0 to 1.
- Increase weights to make it steeper
- Since it flattens out when doing gradient descent, if a value becomes 0 or 1, neurons don't learn.

$$\sigma(z) \equiv 1/(1 + e^{-z})$$

Types of Activation Functions - tanh

- Goes from -1 to 1.
- Centered around 0, rather 0.5
- Convergence faster

Types of Activation Functions - ReLU

- Goes from 0 to infinity
- In positive side gradient is never vanishes or explodes
- For negative part, can fix with something called leaky ReLU

Multi Layer Perceptron

- Stack together multiple neurons
- Output of each circle is linear sum of inputs followed by non linear activation!

Universal Approximation Theorem

For any arbitrary continuous function f(x), given any ϵ , there exists a single hidden layer and weights such that the output function of the perceptron g(x) is such that $|f(x) - g(x)| < \epsilon$, for all x.

Each rectangle represents 2 hidden neurons.

What is Deep Learning

- Stack lots of hidden layers!
- Can have several billion parameters!
- Why stack, when 1 hidden layer is enough by Universal Approximation Theorem?
- Represent knowledge or feature hierarchies.

From fast.ai

Learning Rate and Optimizers

- Big steps/learning rate: never converge
- Small steps/learning rate: converge very slowly

Loss Functions

- Cross Entropy for classification tasks
- Mean square error
- Log likelihood
- Hinge loss etc.
- Use gradient descent to solve.
- Batch, stochastic and mini-batch methods

Types of Optimizers

• Momentum:

- to escape local optima.
- Use some factored weight from previous step to keep the momentum

Nesterov accelerated gradient:

- Use momentum term plus correction fact based on where you are going to be.
- Correction step accounts for very large steps and oscillations

• Adagrad:

- Small learning rate for frequent features
- Large learning rate for infrequent features

RMSprop:

- Normalization factor that slows diminishing learning rate of Adagrad
- Adam:
 - Trade of between momentum and RMSProp

What Do We Need to Learn and How?

- The Weight matrices for the linear transformation at each layer.
- How Do We Learn This?
- By Stochastic Gradient Descent (several details and nuances here)
- If we have billions of parameters in these matrices, and tons of data, isn't learning these parameters computationally hard?
- Stochastic Gradient Descent with backpropagation to the rescue!

Chain Rule of Calculus

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x}$$

For Multiple Paths

$$\frac{\partial z}{\partial x} = \sum_{i=1}^{n} \frac{\partial z}{\partial y_i} \frac{\partial y_i}{\partial x}$$

Forward Propagation

- Let x_t be the t^{th} training sample.
- Let current set of weights at layer l be W_t^l

• Let $\mathbf{a_t^l}$ be values of activation function at l^{th} layer.

Forward Prop (contd)

- Let $\mathbf{z}_{\mathbf{t}}^{\mathbf{l}} = \mathbf{W}_{\mathbf{t}}^{\mathbf{l-1}} \mathbf{a}_{\mathbf{t}}^{\mathbf{l-1}}$ be linear transformation at l^{th} layer
- Let $\mathbf{a_t^l} = \mathbf{g(z_t^l)}$, g is non linear activation function

- Let L be the final loss function
- e.g. for regression, $L = \sum_{i=1}^{N} (y_i a^L)^2$

Backpropagation

- From this final loss value for the x_t, we want to figure out how to adjust the weights.
- Consider simple 2 layer network

Flow Graph

Backprop Step 1

• Assume mean square loss.

• Error =
$$\delta_3 = 2(\hat{y} - y)$$

Backprop Step 2 - Calculate Gradient W.R.T. W₂

Gradient w.r.t. $W_2 = \delta_3 a_2^T$

Backprop Step 2 - Calculate Gradient W.R.T. a₂

Gradient w.r.t. a_2 is $\delta_2 = g'(z_2) \circ \delta_3 a_2^T$

In General

•
$$\frac{\nabla \mathbf{L}}{\nabla \mathbf{x}} = \frac{\nabla \mathbf{L}}{\nabla \mathbf{a^L}} \frac{\nabla \mathbf{a^L}}{\nabla \mathbf{z^L}} \frac{\nabla \mathbf{z^L}}{\nabla \mathbf{a^{L-1}}} \dots \frac{\nabla \mathbf{z^1}}{\nabla \mathbf{a^1}} \frac{\nabla \mathbf{a^1}}{\nabla \mathbf{x}}$$

$$\bullet \ \ \frac{\nabla \mathbf{a}^{\mathbf{l}}}{\nabla \mathbf{z}^{\mathbf{l}}} = \mathbf{g}'(\mathbf{z}^{\mathbf{l}})$$

$$ullet$$
 $rac{
abla \mathbf{z}^l}{
abla \mathbf{a}^{l-1}} = \mathbf{W}^{l-1}$

$$\bullet \ \ \tfrac{\nabla L}{\nabla \mathbf{x}} = \tfrac{\nabla L}{\nabla \mathbf{a}^L} \mathbf{g}'(\mathbf{z}^L).\mathbf{W}^{L-1} \ldots \mathbf{W}^1 \mathbf{g}'(\mathbf{z}^1)$$

Backpropagation

• Let error at level l be δ^{1}

•
$$\delta^{\mathbf{L}} = \frac{\nabla \mathbf{L}}{\nabla \mathbf{a}^{\mathbf{L}}}$$

•
$$\delta^{L-1} = \delta^L \mathbf{g}'(\mathbf{z}^L) \mathbf{W}^{L-1}$$

•
$$\delta^{\mathbf{l}} = \delta^{\mathbf{l+1}} \mathbf{g}'(\mathbf{z^{l+1}}) \mathbf{W}^{\mathbf{l}}$$

Neural Collaborative Filtering

- Most often we do not have explicit ratings.
- We only have implicit feedback based on user item interactions (user watches a movie, buys a book etc.)
- This is a 0-1 signal.
- Matrix factorization approach models only simple linear interactions over this

Example User Item Matrix (WWW 2017 - He et. al)

 With implicit ratings, Jaccard similarity good proxy for cosine similarity

• $sim(1, 2) = \frac{1}{2}$, $sim(1,3) = \frac{2}{5}$, $sim(2,3) = \frac{2}{3}$

• Consider new user 4, $sim(1,4) = 3/5 > sim(3,4) = \frac{2}{5} > sim(2,4) = \frac{1}{5}$

Matrix Factorization

Linear Transformation

Suppose we factorize to 2 factors.

 No matter where we place user 4, she is closer to 2 than 3!!!:(

Neural Collaborative Filtering

NCF Model

$$\hat{y}_{ui} = f(\mathbf{P}^T \mathbf{v}_u^U, \mathbf{Q}^T \mathbf{v}_i^I | \mathbf{P}, \mathbf{Q}, \Theta_f),$$

Loss Function for NCF Model

Let Y be set of all possible interactions between users and items.

Y * be set of observed interactions between users and items

• Y be set of non interactions between users and items

Since interactions are binary, we want the predicted value to take a value between 0 and

Can try to model the probability distribution of interactions

Loss Function for NCF Model

$$p(\mathcal{Y}, \mathcal{Y}^- | \mathbf{P}, \mathbf{Q}, \Theta_f) = \prod_{(u,i) \in \mathcal{Y}} \hat{y}_{ui} \prod_{(u,j) \in \mathcal{Y}^-} (1 - \hat{y}_{uj})$$

Use log likelihood

$$L = -\sum_{(u,i)\in\mathcal{Y}} \log \hat{y}_{ui} - \sum_{(u,j)\in\mathcal{Y}^{-}} \log(1 - \hat{y}_{uj})$$

$$= -\sum_{(u,i)\in\mathcal{Y}\cup\mathcal{Y}^{-}} y_{ui} \log \hat{y}_{ui} + (1 - y_{ui}) \log(1 - \hat{y}_{ui}).$$

NCF Generalizes Matrix Factorization

Make the Neural Layer and identity layer. Then same as MF.

Flexible Model - Fusion of Matrix Factorization and and MLP

- Shared embeddings limits flexibility
- Doesn't allow for each embedding dimension to be different

Performance of Neural Collaborative Filtering

How Does/Did Spotify Solve Cold Start? - CNNs

1	0	1	2	3
5	6	3	4	2
6	3	6	1	2
4	6	3	1	3
4	2	6	4	9

1	2
3	4

Kernel

- Linear Transform: Slide Kernel across image.
- Multiply and add original matrix values and kernel values. E.g.: 1*1 + 0*2 + 5*3 + 6*4 = 40
- Apply non linearity on pixel value also consider neighboring values for smoothing (pooling)
- Have different kernels and multiple layers

VGG Net

From fast.ai

Spotify Recommendation System

- Take audio gram
- Apply CNN on top of it
- Do vector similarity search