Introduction to ∞ -categories

Talk by Marco Robalo at DAGIT 2017 Typed by Timothy Hosgood

Monday 12th June, 2017

Abstract

These are a copy of my notes on a talk given by Marco Robalo at Derived Algebraic Geometry in Toulouse (DAGIT) 2017: the content is purely his; the mistakes are all mine.

1 Motivation

- **1.1. Idea.** An ∞ -category consists of
 - objects;
 - 1-morphisms between objects;
 - n-morphisms between (n-1)-objects (for $n \ge 2$);
 - composition laws for *n*-morphisms $(n \ge 1)$ defined up to higher morphisms;
 - associativity of compositions up to homotopy.
- **1.2.** Proto-example. (Fundamental ∞ -groupoid) For a CW-complex X we have
 - objects = points;
 - 1-morphisms = homotopies;
 - 2-morphisms = homotopies of homotopies;
 - ... and so on.
- **1.3. Problem.** No direct definition that is operational and simultaneously close to our intuition/desire (infinitely many axioms!).
- **1.4. Solution.** Find a model category whose objects serve as models for ∞ -categories.
- **1.5. Modelling.** Many classical examples:
 - homotopy types can be modelled by topological spaces, simplicial sets, categories, etc.:
 - \bullet homotopy theory of homotopy-commutative $\mathbb{Q}\text{-algebras}$ can be modelled by dgalgebras;
 - derived stacks can be modelled by simplicial presheaves.

- **1.6. Question.** Why so many models?
- **1.7. Answer.** Dwyer-Kan localisation: every model category has an associated ∞ -category that captures all the important information.
- **1.8. Question.** If we have models then why care about ∞ -categories?
- **1.9. Answer.** Many reasons:
 - not all ∞ -categories have a model presentation;
 - no 'good enough' definition of functors that relate different models (need an ∞ -functor between the associated ∞ -categories);
 - models for diagrams are not always given by diagrams of models;
 - proofs and statements become 'simpler'.

2 Preliminary definitions

- **2.1.** Category of simplices. Write Δ to be the category of simplices:
 - $ob(\Delta) = \{[n]\}_{n \in \mathbb{N}}$ where $[n] = \{0 < 1 < \ldots < n\}$ is the ordered set of natural numbers up to n;
 - $\operatorname{Hom}_{\Delta}([m],[n])$ is the set of order-preserving maps from [m] to [n].
- **2.2. Simplicial notation.** We use the following notation:
 - $sSet = Set^{\Delta^{op}} = Fun(\Delta^{op}, Set);$
 - $\Delta[n] = \operatorname{Hom}_{\Delta}(-, [n]) \in \mathsf{sSet};$
 - $S_n = \operatorname{Hom}_{\mathsf{sSet}}(\Delta[n], S)$ for $S \in \mathsf{sSet}$;
 - $\Lambda_n^i = \Delta[n] \setminus \{\text{interior and the face opposite the } j\text{-th vertex}\}$ is the i-th horn (for $n \ge 2$).

$$\Delta[2] =$$

$$0 \xrightarrow{1} \qquad \qquad \Lambda_2^1 =$$

$$0 \xrightarrow{2} \qquad \qquad 2$$

- **2.3.** Nerve. The nerve $N(\mathcal{C})$ of a category \mathcal{C} is the simplicial set with
 - *n*-simplices given by $(x_0 \xrightarrow{f_1} x_1 \xrightarrow{f_2} \dots \xrightarrow{f_n} x_n)$ in C;
 - boundary maps given by composition (or forgetting the first/last object and morphism for the two edge cases);
 - degeneracy maps given by inserting the identity.
- **2.4.** Note. There is a set-bijection

$$\{\text{functors } \mathcal{C} \to \mathcal{D}\} \simeq \{\text{simplicial maps } N(\mathcal{C}) \to N(\mathcal{D})\}.$$

2

2.5. Lemma. There is an equivalence of categories $X \simeq N(\mathcal{C})$ if and only if all *inner* horns lift *uniquely*.

$$\begin{array}{ccc} \Lambda_n^i & & & X \\ & & & \\ & & & \\ & & \\ \Delta[n] & & \end{array} \quad \text{for all } i \in \{1,\dots,n-1\}$$

2.6. Composition. For example, " Λ^1_2 gives composition".

$$x_1 \xrightarrow{f_1} x_2 \xrightarrow{f_2} x_0 \xrightarrow{\exists ! f_2 \circ f_1} x_2$$

2.7. Associativity. As another example, " Λ_3^1 gives associativity":

$$x_0 \xrightarrow{f_1} x_1 \xrightarrow{f_2} x_2 \xrightarrow{f_3} x_3 \text{ in } \mathcal{C}$$

corresponds to

$$\Lambda^1_2 \xrightarrow{(f_2, f_1)} N(\mathcal{C})$$
 and $\Lambda^1_2 \xrightarrow{(f_3, f_2)} N(\mathcal{C})$

which generate compositions

$$\Delta[2] \xrightarrow{(f_2,f_1)} N(\mathcal{C})$$
 and $\Delta[2] \xrightarrow{(f_3,f_2)} N(\mathcal{C})$.

So $(f_3 \circ f_2) \circ f_1 = f_3 \circ (f_2 \circ f_1)$ if and only if we can 'fill the back face of the tetrahedron with vertices x_0, x_1, x_2 , and x_3 ', i.e. if and only if we can extend $\Lambda^1_3 \to N(\mathcal{C})$ to $\Delta[3] \to N(\mathcal{C})$.

- **2.8. Exercise.** What does the lifting of Λ_3^2 tell us?
- **2.9. Summary.** The lifting property for inner horns (0 < i < n) gives composition and associativity laws; for outer horns (i = 0, n) it gives inverses.

$$\begin{array}{ccc}
 & x_0 \\
 & & \exists ! \\
 & x_0 & \xrightarrow{f_1} & x_1
\end{array}$$

2.10. Kan complex. If $X \in \mathsf{sSet}$ is such that $X \simeq \operatorname{Sing}(T)$, where $\operatorname{Sing}(T)$ consists of singular simplices in a topological space T (i.e. continuous maps $|\Delta^n| \to T$) then we call it a **Kan complex**. Note that X is a Kan complex if and only if *all* horns lift, but *not necessarily* uniquely.

3 Quasi-categories

3.1. Quasi-category. A **quasi-category** is a simplicial set \mathcal{C} such that all *inner* horns lift, but *not necessarily* uniquely. This notions lies in between that of a Kan complex and that of the nerve of a category: we get compositions that aren't unique, but their non-uniqueness is controlled by higher homotopy data. For example, consider

$$x_0 \xrightarrow{f_1} x_1 \xrightarrow{f_2} x_2 \xrightarrow{\mathrm{id}_{x_2}} x_2$$

which gives us two maps $u_1, u_2 \colon \Delta[2] \to \mathcal{C}$. Similarly, for 'associativity' we can use the lifting of Λ^1_3 as before, after filling one face with the identity.

- **3.2.** ∞ -category. We can use quasi-categories as a model for ∞ -categories: define the objects of a quasi-category \mathcal{C} to be the 0-simplices, and the n-morphisms to be the n-simplices.
- **3.3.** ∞ -functor. Since functors are 'maps that preserve commutative diagrams', it makes sense to define an ∞ -functor to be a map of simplicial sets between quasi-categories, since these send n-simplices to n-simplices and preserve boundaries.
- **3.4.** Homotopy category. Given an ∞ -category $\mathcal C$ we define its homotopy category $\mathrm{h}\mathcal C$ to be the (1-)category with
 - ob(hC) = ob(C);
 - $\operatorname{Hom}_{\mathrm{h}\mathcal{C}}(x,y) = \operatorname{Hom}_{\mathcal{C}}(x,y) / \sim$, where $f \sim g$ if there exists a 2-morphism $u \colon \Delta[2] \to \mathcal{C}$ with boundary $(\operatorname{id}_y g + f)$.

Note that compositions are unique (and thus well defined) thanks to the lifting property, i.e. u_1, u_2 are identified in the homotopy category.

3.5. Subcategory. An ∞ -subcategory \mathcal{C}' of an ∞ -category \mathcal{C} is a sub-simplicial set obtained as a fibre product in sSet:

$$\begin{array}{cccc} \mathcal{C}' & \longrightarrow & \mathcal{C} \\ \downarrow & & \downarrow & & \text{where } \mathcal{D} \text{ is a subcategory of } \mathbf{h}\mathcal{C}. \\ N(\mathcal{D}) & \longrightarrow & N(\mathbf{h}\mathcal{C}) \end{array}$$

- **3.6. Equivalence.** A 1-morphism f in \mathcal{C} is called an **equivalence** if [f] in $h\mathcal{C}$ is an isomorphism.
- **3.7.** ∞ -groupoid. An ∞ -category where *all* 1-morphisms are equivalences is called an ∞ -groupoid.
- **3.8. Proposition.** An ∞ -category is an ∞ -groupoid if and only if it is a Kan complex.
- **3.9. Example.** For T a topological space, $\operatorname{Sing}(T)$ is an ∞ -groupoid

4 Simplicial nerve and rectification

4.1. Mapping space. Let x, y be objects in an ∞ -category \mathcal{C} . We define the **mapping space** Map_{\mathcal{C}}(x, y) as the simplicial set obtained as the fibre product

$$\Delta[0] \times_{\mathcal{C}} \operatorname{\mathsf{Fun}}(\Delta[1], \mathcal{C}) \times_{\mathcal{C}} \Delta[0]$$

where the maps are given by $x,y \colon \Delta[0] \to \mathcal{C}$ and $\mathrm{ev}_0,\mathrm{ev}_1 \colon \mathrm{Fun}(\Delta[1],\mathcal{C}) \to \mathcal{C}$, where ev_n is the evaluation on n.

4.2. Note. Another notation used is $\operatorname{Hom}_{\mathcal{C}}^{\operatorname{LR}}(x,y)$, where we write the pullback as

$$\operatorname{Hom}_{\mathcal{C}}^{\operatorname{LR}}(x,y) \longrightarrow \mathcal{C}^{\Delta[1]}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\{x\} \times \{y\} \longrightarrow \mathcal{C} \times \mathcal{C}$$

- **4.3. Proposition.** Map_C(x,y) is a Kan complex.
- **4.4. Note.** $\pi_0 \operatorname{Map}_{\mathcal{C}}(x,y) \simeq \operatorname{Hom}_{\mathrm{h}\mathcal{C}}(x,y)$.
- **4.5. Warning.** These is *no* strict manifestation of composition:

$$\operatorname{Map}_{\mathcal{C}}(y, z) \times \operatorname{Map}_{\mathcal{C}}(x, y) \not\to \operatorname{Map}_{\mathcal{C}}(x, z).$$

4.6. Rectification. (Lurie) There exists $\widetilde{\mathrm{Map}}_{\mathcal{C}}(x,y) \in \mathsf{sSet}$ and canonical zig-zags of weak equivalences of simplicial sets

$$\widetilde{\mathrm{Map}}_{\mathcal{C}}(x,y) \xrightarrow{\sim} \{*\} \xleftarrow{\sim} \mathrm{Map}_{\mathcal{C}}(x,y)$$

such that we do get strict manifestations of composition maps. We write $\mathfrak{C}[\mathcal{C}]$ for the **rectified category**, which is simply \mathcal{C} but with $\widehat{\mathrm{Map}}$ replacing Map. Note that the rectified category is a true simplicial category.

- **4.7. Simplicial nerve.** There exists a *non-trivial* extension of the nerve construction to simplicial categories that takes into account the simplicial structure, i.e. the **simplicial nerve** $N_{\Delta}(\mathcal{E})$ is a simplicial set when \mathcal{E} is a simplicial category.
- **4.8.** Application. We can model a simplicial category \mathcal{E} by the simplicial set $N_{\Delta}(\mathcal{E})$.
- 4.9. Theorem. (Joyal-Lurie) There exists a model structure on sSet with
 - cofibrant-fibrant objects = quasi-categories;
 - weak equivalences = essentially surjective morphisms that induce a weak equivalence on mapping spaces.
- **4.10. Theorem.** (Bergner) There exists a model structure on $\mathsf{Cat}^{\Delta^{\mathrm{op}}}$ with
 - cofibrant-fibrant objects = simplicial categories enriched over Kan complexes;
 - weak equivalences = essentially surjective morphisms that induce a weak equivalence on mapping spaces.
- **4.11. Theorem.** (Lurie) The adjunction $(\mathfrak{C} \dashv N_{\Delta})$ forms a Quillen equivalence.
- **4.12. Example.** Let \mathcal{M} be a simplicial model category and write $\mathcal{M}^{\mathrm{cf}}$ to mean the subcategory of cofibrant-fibrant objects. Then $\mathcal{M}^{\mathrm{cf}}$ is enriched over Kan complexes and so $N_{\Delta}(\mathcal{M}^{\mathrm{cf}})$ is a quasi-category.

4.13. Rectification of diagrams. Let \mathcal{D} be a category and \mathcal{M} a combinatorial simplicial model category. Then there is an equivalence of quasi-categories

$$\operatorname{\mathsf{Fun}}\!\left(N(\mathcal{D}),N_{\Delta}(\mathcal{M}^{\operatorname{cf}})\right) \simeq N_{\Delta}\!\left((\mathcal{M}^{\mathcal{D}})^{\operatorname{cf}}\right)$$

where we endow $\mathcal{M}^{\mathcal{D}}$ with the projective model structure.

- **4.14.** Explicit examples. The following three examples are prototypical.
 - I. The ∞ -category $\mathcal S$ of spaces. This is $\mathcal S=N_\Delta(\mathsf{sSet}^\mathrm{cf})$ where
 - sSet has the model structure used to study weak homotopy equivalences etc.;
 - the cofibrant-fibrant objects are Kan complexes;
 - $\operatorname{Map}_{\mathcal{S}}(x,y) \simeq \operatorname{\underline{Hom}}_{\Delta}(x,y)$.
- II. The ∞ -category Cat_∞ of ∞ -categories. This is $\mathsf{Cat}_\infty = N_\Delta(\mathsf{sSet})$ where sSet has the model structure as in Joyal-Lurie, but modified in some way so as to make it a simplicial model category.
- III. The ∞ -category $\mathsf{PreSh}(N(\mathcal{D}))$ of presheaves of spaces. Here \mathcal{D} is an arbitrary category and sSet has the same model structure as in example I. Then

$$\mathsf{PreSh}(N(\mathcal{D})) = \mathsf{Fun}(N(\mathcal{D}^{\mathrm{op}}), \mathcal{S}) \simeq \mathsf{Fun}\Big(N(\mathcal{D}^{\mathrm{op}}), N_{\Delta}(\mathsf{sSet}^{\mathrm{cf}})\Big) \simeq N_{\Delta}\Big((\mathsf{sSet}^{\mathcal{D}^{\mathrm{op}}})^{\mathrm{cf}}\Big).$$

5 Homotopy colimits

- **5.1. Initial object.** An **initial object** is some $\emptyset \in \mathcal{C}$ such that, for all $x \in \mathcal{C}$, the Kan complex $\operatorname{Map}_{\mathcal{C}}(\emptyset, x)$ is contractible.
- **5.2. Slogan.** Universal objects are defined up to a contractible space of choices.
- **5.3. Cones.** Given $K \in \mathsf{sSet}$ and an infinity functor $d \colon K \to \mathcal{C}$ we construct a new simplicial set K^{\triangleright} by formally adding an exterior vertex to K. Then a **cone under** d is a map of simplicial sets $\tilde{d} \colon K^{\triangleright} \to \mathcal{C}$ such that $\tilde{d}|_K = d$.

- **5.4. Proposition.** Cones under d give a quasi-category $C_{d/}$.
- **5.5. Colimits.** A colimit is an initial object of $C_{d/}$.
- **5.6. Proposition.** Let $F \colon \mathcal{J} \to \mathcal{E}$ be a simplicial functor between Kan-enriched categories, and $c \in \mathcal{E}$ an object with a compatible family $\{\eta_j \colon F(j) \to c\}$. Then c is a **homotopy colimit of** F if and only if the induced map $N_{\Delta}(\mathcal{J} \to N_{\Delta}(\mathcal{E}))$ is a colimit diagram.

6

5.7. Example.

$$\begin{split} \operatorname{coeq}_{\mathcal{S}}\left(\ast \mathop{\rightrightarrows}^{\operatorname{id}}_{\operatorname{id}}\ast\right) &\simeq \operatorname{colim}_{\mathcal{S}}\left(\begin{array}{c}\ast \coprod \ast \to \ast \\ \downarrow \\ \ast \end{array}\right) \simeq \operatorname{hocolim}\left(\begin{array}{c}\ast \coprod \ast \to \ast \\ \downarrow \\ \ast \end{array}\right) \\ &\simeq \operatorname{colim}_{\operatorname{sSet}}\left(\begin{array}{c}\ast \coprod \ast \to \Delta[1] \\ \downarrow \\ \Delta[1] \end{array}\right) \simeq S^1 \in \operatorname{sSet} \end{split}$$

6 Localisation

6.1. ∞ -localisation. If $\mathcal D$ is an arbitrary category then $N(\mathcal D)$ is an ∞ -category with unique composition. Let W be some class of morphisms in $\mathcal D$. Then a ∞ -localisation of $\mathcal D$ along W is a quasi-category $N(\mathcal D)[W^{-1}]_\infty$ along with a map $N(\mathcal D) \to N(\mathcal D)[W^{-1}]_\infty$ in sSet such that

$$\operatorname{Fun}(N(\mathcal{D})[W^{-1}]_{\infty},\mathcal{C}) \to \operatorname{Fun}(N(\mathcal{D}),\mathcal{C})$$

is fully faithful with essential image being the subcategory of ∞ -functors that send morphisms in W to equivalences in \mathcal{C} , for any quasi-category \mathcal{C} .

6.2. Theorem. (Quillen, Dwyer-Kan) For any simplicial model category \mathcal{M} with weak equivalences W there is a chain of equivalences of ∞ -categories

$$N(\mathcal{M})[W^{-1}]_{\infty} \simeq N(\mathcal{M}^c)[W_c^{-1}]_{\infty} \simeq N_{\Delta}(M^{\mathrm{cf}})$$

where the first equivalence comes from cofibrant replacement. We call any one of these quasi-categories an **underlying** ∞ -category of \mathcal{M} .

6.3. Gabriel-Zisman localisation. The homotopy category (as a model category construction) of \mathcal{M} can be recovered from the ∞ -localisation:

$$h(N(\mathcal{M})[W^{-1}]_{\infty}) \simeq Ho(\mathcal{M}).$$

7 Presheaves and ∞ -functors

7.1. Presheaves. Given a quasi-category \mathcal{C} we have the quasi-category of presheaves

$$\mathsf{PreSh}(\mathcal{C}) = \mathsf{Fun}(\mathcal{C}^{\mathrm{op}}, \mathcal{S}).$$

7.2. Note. For a category \mathcal{D} recall that

$$\mathsf{PreSh}(N(\mathcal{D})) \simeq N_{\Lambda}(\mathcal{M}^{\mathrm{cf}})$$

where \mathcal{M} is the model category of simplicial presheaves on \mathcal{D} .

7.3. Yoneda lemma. For a quasi-category $\mathcal C$ there exists a fully faithful ∞ -functor $j\colon \mathcal C\to \mathsf{PreSh}(\mathcal C)$ with the following universal property: if a quasi-category $\mathcal D$ has all colimits then the composition

$$\mathsf{Fun}^{\mathrm{L}}(\mathsf{PreSh}(\mathcal{C}),\mathcal{D}) \to \mathsf{Fun}(\mathcal{C},\mathcal{D})$$

is an equivalence of ∞ -categories, where Fun^L denotes left-adjoint functors (i.e. those admitting right adjoints).

- **7.4. Note.** To construct j we need to exhibit a **cocartesian fibration** $\mathcal{N} \to \mathcal{C}^{\mathrm{op}} \times \mathcal{C}$ where \mathcal{N} is given by the ∞ -category of **twisted arrows in** \mathcal{C} , which has
 - objects are morphisms in \mathcal{C} and;
 - $\operatorname{Hom}_{\mathcal{N}}(f: a \to b, g: x \to y) = \{(p: x \to a, q: b \to y) \mid g = qfp\}.$
- **7.5. Constructing** ∞ -functors. Generally, an ∞ -functor $F \colon \mathcal{C} \to \mathcal{D}$ corresponds to a cocartesian fibration $p \colon K \to \Delta[1]$ with $p^{-1}(0) \simeq \mathcal{D}$ and $p^{-1}(1) \simeq \mathcal{C}$ satisfying certain properties (formalised by the idea of cocartesian fibrations and the ∞ -Grothendieck construction) see Lurie's *Higher Topos Theory* Definition 5.2.1.1.

8 Presentability

At this point in the talk I succumbed to the unbearably sticky summer heat and failed to take any notes for a good five minutes. There was a lot of important stuff said about **presentable** ∞ -categories and universes, but all I managed to write down were the last few propositions. Sorry.

- **8.1. Lemma.** All presheaf categories are presentable; S is presentable.
- **8.2.** Adjoint functor theorem. If an ∞ -functor $F \colon \mathcal{C} \to \mathcal{D}$ between *presentable* ∞ -categories commutes with all small colimits then it admits a right adjoint.
- **8.3. Proposition.** If $\mathcal C$ and $\mathcal D$ are presentable ∞ -categories then $\mathsf{Fun}^L(\mathcal C,\mathcal D)$ is a presentable ∞ -category.
- **8.4. Presentable localisations.** Let \mathcal{C} be a presentable ∞ -category and W a *small* collection of 1-morphisms. Define $\mathcal{C}^{W\text{-local}}$ to be the full subcategory of \mathcal{C} given by those objects $x \in \text{ob}(\mathcal{C})$ such that

$$\operatorname{Map}_{\mathcal{C}}(b,x) \to \operatorname{Map}_{\mathcal{C}}(a,x)$$

is an equivalence for all $(a \to b)$ in W. Then $\mathcal{C}^{W\text{-local}}$ is presentable and its inclusion into \mathcal{C} admits a left adjoint which exhibits $\mathcal{C}^{W\text{-local}}$ as an ∞ -localisation of \mathcal{C} along W that is internal to the theory of ∞ -categories:

$$\mathsf{Fun}^{\mathrm{L}}(\mathcal{C}^{W\text{-local}},\mathcal{D}) \simeq \mathsf{Fun}^{\mathrm{L},\mathrm{W}}(\mathcal{C},\mathcal{D})$$

where $\mathsf{Fun}^{\mathsf{L},\mathsf{W}}(\mathcal{C},\mathcal{D})$ consists of colimit-preserving functors that send morphisms in W to equivalences.

8.5. Proposition. An ∞ -category \mathcal{C} is presentable if and only if it is equivalent to the presentable localisation of some $\mathsf{PreSh}(\mathcal{D})$.

9 Symmetric monoidal ∞ -categories

9.1. Note. A 'classical' symmetric monoidal category is the data of a pseudofunctor

$$A^{\otimes} \colon \mathrm{Fin}_{*} \to \mathrm{Cat} \quad \mathrm{such \ that} \quad A^{\otimes}(\{0,1,\ldots,n\}_{0}) = \underbrace{A \times \ldots \times A}_{n \ \mathrm{times}}$$

where Fin_* is the category of finite pointed sets, and we write S_x to mean the set S pointed at the element $x \in S$.

9.2. Symmetric monoidal ∞ -categories. We define a symmetric monoidal ∞ -category as the data of an ∞ -functor

$$\mathcal{C}^{\otimes} \colon N(\mathsf{Fin}_{*}) \to \mathsf{Cat}_{\infty} \quad \text{such that} \quad \mathcal{C}^{\otimes}(\{0,1,\dots,n\}_{0}) = \prod_{i=1}^{n} \mathcal{C}^{\otimes}(\{0,1\}_{0}).$$

10 Subtleties

- Saying that 'a diagram commutes' isn't really ∞ -categorical; we need to exhibit a *specific* n-simplex.
- Defining an ∞ -functor by saying how it acts on objects and 1-morphisms is purely informal; we need to define it via sSet.