Bases de données avancées

Dépendances Fonctionnelles

Équipe pédagogique BD

https:

//perso.liris.cnrs.fr/marc.plantevit/doku/doku.php?id=lifbdw2_2019a Version du 9 septembre 2019

Dépendances fonctionnelles

- La forme la plus fréquemment rencontrée de dépendances.
- ▶ Sont à l'origine de l'approche par décomposition des schémas.

Classe de dépendances

On doit définir la syntaxe et la sémantique des dépendances concernées.

- La syntaxe : c'est le langage logique autorisé pour définir une contrainte. C'est la "forme" de la contrainte.
- La **sémantique** : ensemble de conditions devant être remplies pour que la contrainte soit *satisfaite* (c'est à dire juste) dans les données. C'est le *sens* de la contrainte.

Définition des dépendances fonctionnelles

Syntaxe des dépendances fonctionnelles

Une *Dépendance Fonctionnelle (DF)* sur un schéma de relation R est une expression formelle de la forme $R: X \to Y$ (ou simplement $X \to Y$ lorsque R est implicite), avec $X, Y \subseteq R$.

- ▶ Une DF $X \rightarrow Y$ est dite triviale si $Y \subseteq X$
- ▶ Une DF standard si $X \neq \emptyset$.
- ▶ Un ensemble X est dit clef de relation si $R: X \rightarrow R$
- A ce point, une dépendance X → Y est simplement une certaine écriture formelle : une syntaxe;
- ▶ On pourrait aussi bien la noter $X \Rightarrow Y$, $X \spadesuit Y$ ou $X \leadsto Y$;
- ▶ On va donner donner le sens de cette écriture, sa sémantique.

Sémantique des dépendances fonctionnelles

Soit r une relation sur R. Une DF $R: X \to Y$ est satisfaite dans r, noté $r \models X \to Y$, ssi

$$\forall t_1, t_2 \in r.t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y]$$

- ▶ Si $r \models X \rightarrow Y$, on dit aussi que X détermine (fonctionnellement) Y dans r.
- intuitivement, on définit une DF X → Y pour exprimer le fait que lorsqu'on connaît la valeur de X, alors on peut déterminer (en parcourant la relation) de façon certaine la valeur de Y.
- ▶ C'est l'expression du caractère fonctionnel de $\pi_{X,Y}(R)$.

Quel est le sens d'une dépendance *non-standard*? Pourquoi une dépendance *triviale* est-elle dite *triviale*?

Clé

Une clé peut-être définie de deux manières :

- une clé est un ensemble d'attributs qui ne prend jamais deux fois la même valeur (pas de doublons dans les relations);
- ► A l'aide des DFs : une clé est un ensemble d'attributs qui détermine (au sens des DF) tous les autres attributs de la relation ;
- Ces deux définitions sont équivalentes.

Clé primaire (primary key)

Une clé primaire est simplement une clé parmi les autres, choisie par le concepteur pour sa simplicité ou son aspect naturel.

Exemple

 $\mathit{Titre},\ \mathit{Acteur} \to \mathit{Titre},\ \mathit{Acteur},\ \mathit{Metteur}$ est une dépendance de clé de la relation $\mathit{Films}.$

Exemple

r	Α	В	С	D
t_1	a_1	b_1	c_1	d_1
t_2	a_1	b_1	c_1	d_2
<i>t</i> ₃	a_1	b_2	<i>c</i> ₂	d_3
t_4	a ₂	b_2	<i>c</i> ₃	d_4

- $ightharpoonup r \models AB \rightarrow C$
- ▶ $r \models D \rightarrow ABCD$
- ▶ $r \nvDash AB \rightarrow D$
- $\blacktriangleright \ r \nvDash A \to C$

Fin du cours.