CT 41: 第二期臨床試驗 Phase II Design

林建甫

台北大學 統計系

2019-2020

Phase II (SE, SA)

- Safety and Efficacy Studies (SE)
- Safety-Activity (SA)
- Larger Size ($20\sim100$)
- Carry forward recommended dose from phase I
- Seeking to establish evidence of activity
- Not comparative (II, IIa) vs. comparative (IIb)
- Sometimes controlled
- Several months to 2 years
- Practice for phase 3

目錄

- Phase II Overview
- Two-stage Phase II Design
- Simon's Two-Stage Design
- Admissible Two-Stage Designs

Phase II Design: Introduction

- Looking for evidence of activity,
 with respect to what is already available to subjects.
- "Phase II" is convenient word but loosely defined.
- Piantadosi uses term middle development.

4/73

Phase II Design Overview

- feasibility of treatment
- side effects and toxicity
- logistics of administration and cost
- dose finding (lowest dose level with good efficacy)
- Major issue: Is there enough evidence of efficacy of the new drug to move to phase III?
- Surrogate markers are often used.
- Usually, one-arm (no comparison)

表1: When is phase 2 step most critical?

Factors in favor of Phase 2	Factors in favor of skipping Phase 2
Many competing experimental therapies in	Lack of available therapies for disease (ei-
pipeline	ther experimental or approved)
Pessimistic about likelihood of success	Optimistic about likelihood of success
Availability of short-term, easily measured	Efficacy usefully measured by hard clinical
surrogate efficacy outcomes	outcomes
Highly prevalent disease	Rare disease
Opportunity cost for failed phase 3 trial would be high	Opportunity cost for time required to do phase 2 is high

A disease has a population prevalence of 2%. You have a diagnostic test for the disease that has sensitivity and specificity equal to 0.9. What is the post-test probability that an individual who tests positive has the disease?

- 0.155
- 0.431
- o.783
- 0.900

測驗 2

Repeat the previous question with a true disease prevalence of 20%.

- 0.420
- 0.531
- 0.692
- 0.990

Drug Development Pipeline I

- Let W denote drugs that are worthwhile
- Let W^{C} denote drugs that are not worthwhile
- Illustration of phase 2 goal:

Drug Development Pipeline II

圖1: 第二期臨床試驗目標

Drug Development Pipeline III

- $P_{ph2}(W)$: % of truly "worthwhile" drug entering phase 2 stage
- α , β : type I and type II error rates in phase 2
- S_2 indicate that a drug is selected in phase 2 pipeline
- From Bayes Rule, true positive finding from phase 2 is:

$$P(W | S_{2}) = \frac{P(S_{2} | W)P_{ph2}(W)}{P(S_{2} | W)P_{ph2} + P(S_{2} | W^{c})P_{ph2}(W^{c})}$$
(1.1)
$$= \frac{(1 - \beta)P_{ph2}(W)}{(1 - \beta)P_{ph2}(W) + \alpha(1 - P_{ph2}(W))}.$$
(1.2)

Drug Development Pipeline IV

- If 2% of drugs entering phase 2 study are truly worthwhile.
- \bullet $\alpha =$ 0.05, and $\beta =$ 0.20, then

$$\frac{(0.80 \times 0.02)}{(0.80 \times 0.02 + 0.05 \times 0.95)} \approx 25\%. \tag{1.3}$$

 Approximate 25% of drugs leaving phase 2 study and entering phase 3 study, are truly worthwhile.

Drug Development Pipeline V

- Phase 2 goal is to enrich phase 3 population with worthwhile drugs so that positive findings in phase 3 are highly likely to be true positives:
- If 25% of drugs entering phase 3 study are truly worthwhile.
- $\alpha = 0.05$, and $\beta = 0.20$, then

$$\frac{(0.80 \times 0.25)}{(0.80 \times 0.25 + 0.05 \times 0.75)} \approx 84\%. \tag{1.4}$$

84% of drugs leaving phase 3 study,
 i.e. submitted for regulatory approval, are truly worthwhile.

General Dichotomy of Phase II Designs

- Phase II or Phase IIA: any evidence of activity?
 Lower threshold, single arm, fewer subjects
- Phase IIB: evidence of greater efficacy?
 Higher threshold, randomized (multiple arms), more subjects.
- In reality, blurry distinction between these two.

Statistical Setup for Single Arm Phase II I

- All subjects enrolled to new therapy.
- Followed for outcome ("response")
- Response often (forced to be) binary, $Y \in \{0, 1\}$.
- May take time to occur, e.g.
 - tumor shrinkage of X% by 3 months.
 - clinical improvement of symptoms by 6 months.
- Should not take too long.

Statistical Setup for Single Arm Phase II II

- Two motivating questions:
 - What is current response rate to best available therapy? $(\pi_0; \text{historical})$
 - What response rate would suggest activity? (π_1)

Phase II with Single Arm: Hypothesis Testing I

•
$$\pi = P(Y = 1) = P(\text{response})$$

$$H_{\rm o}: \pi = \pi_{\rm o} \quad {\rm versus} \quad H_{\rm 1}: \pi = \pi_{\rm 1}.$$
 (1.5)

- Reject H_0 = conclude further study warranted
- Do not reject H_0 = conclude no further study warranted

Phase II with Single Arm: Hypothesis Testing II

表2: 假設檢定: 型一誤差與型二誤差

	可能的決策		
真實的狀況	接受 H _o	拒絶 H _o	
H _o 為真	(4) 正確決策	(1) 型一錯誤 (FP)	
	特異性 (Specificity)	α 誤差	
H _A 為真	(2) 型二錯誤 (FN)	(3) 正確決策	
	β誤差	敏感度 (Sensitivity)	

Phase II with Single Arm: Hypothesis Testing III

- One-sided hypothesis test.
- R: total # of responses
- Estimate π with $\widehat{\pi} = R/n$.
- Reject H_0 if R/n > r/n for some constant r
- What sample size n is required?

Phase II with Single Arm:

Normal-based Sample Size

- H_0 : $\pi = \pi_0$ versus H_A : $\pi = \pi_1$.
- Effect size: $\delta = \pi_1 \pi_0$.
- n: sample size.

$$n = \frac{\left(Z_{1-\alpha}\sqrt{\pi_0(1-\pi_0)} + Z_{1-\beta}\sqrt{\pi_A(1-\pi_1)}\right)^2}{(\pi_1 - \pi_0)^2}.$$
 (1.6)

Comments on Formula

• Large-sample approximation based on normality assumption.

Actually easy to calculate "exact" sample size directly

- using binomial distribution (hopefully get similar results).
- Phase II trials have limited budgets-negotiations are inevitable.
- One of your jobs is to communicate ramifications of different choices.
- Various formulas exist in softwares.

Determining r l

- Reject H_0 if R/n > r/n at the end.
- If sufficiently many subjects respond.
- $\pi_0 = 0.20$ and $\pi_1 = 0.35$
- \bullet $\alpha = 0.05$ and $\beta = 0.20$
- one-sided test
- n = 50 and r = 15 (reject H_0)

$$Pr(R > r \mid \pi = \pi_1 = 0.35) = 0.720.$$
 (1.8)

Determining r II

- So if 15 or more responses (out of n = 50), move to phase 3
- Reality check: 95% score-based CI for π is (0.19, 0.44).
- CI lower limit = 0.19 $< \pi_0 = 0.20$
- Evidence not overwhelming.

目錄

- Phase II Overview
- Two-stage Phase II Design
- Simon's Two-Stage Design
- 4 Admissible Two-Stage Designs

Stopping for Futility I

- In one-stage design, all subjects enrolled before decision
- What if no responses after 5, 10, 15 subjects?
- Worthwhile, ethical to continue?
- Motivation for interim futility analyses
- futile = no use in trying
- lack of evidence for activity

Stopping for Futility II

- Simple futility analysis
- First stage: assesses likelihood of no responses under H_1 .

表3: Stopping for Futility When

R = o

subjects enrolled	$P(R = o \mid \pi = o.35)$
1	0.650
2	0.423
3	0.275
4	0.179
5	0.116
6	0.075
7	0.049
8	0.032

Two-stage design (Gehan, 1961)

- Stage One:
 - Enroll initial cohort of n₁ subjects.
 - Stop for futility if no responders
- Stage Two:
 - Otherwise, enroll remaining $n n_1$ subjects.
 - Conduct standard hypothesis test at end.
- Gehan originally proposed $n_1 = 14$ based upon $H_1 : \pi = 20\%$.
- Circa 1960 (early chemotherapeutic era),
 20% response rate was impressive.
- We can use $n_1 = 7$ based upon larger 35% response rate.

測驗3

Relative to a one-stage design, adding a futility analysis will generally

- increase the total type I error rate
- not change the total type I error rate
- decrease the total type I error rate

測驗 4

How many unique values of *n*, i.e. the actual sample size, can a two-stage design actually have, assuming all rules are followed precisely?

- the actual sample size is pre-specified in advance
- there are two possible sample size
- n: enrollment could stop at any point in the trial

Modified Gehan's Designs

- Modified Gehan's Designs
- Continue if $R_1 > 0$ (first stage), R > r (second stage)

$$= P(R > r, R_1 > o \mid \pi = \pi_0)$$
 (2.2)

$$= \sum_{X=1}^{n_1} P(R > r, R_1 = X \mid \pi = \pi_0)$$
 (2.3)

$$=\sum_{k=1}^{n_1}P(R-R_1>r-x,R_1=x\mid \pi=\pi_0)$$
 (2.4)

$$= \sum_{x=1}^{n_1} P(R - R_1 > r - x \mid \pi = \pi_0) \times P(R_1 = x \mid \pi = \pi_0). \quad (2.5)$$

表4: 比較第二期試驗設計: One Stage 與 Modified Gehan

	Type I Error	Power	P (Early Termination)	ℰ (Enrollment)
One Stage	0.061	0.812	0.00	50
Modified Gehan	0.057	0.785	0.21	41

Comments

- Tradeoff: enroll 9 fewer subjects (on average) for slight loss of power.
- However, futility analysis is conservative:

$$P(R_{\rm 1}={\rm o}\,|\,\pi=\pi_{\rm o})=$$
 0.210, i.e. almost 80% chance of enrolling max possible subjects under $H_{\rm o}$

• Possible refinement: new stage 1 stopping rule: $R_1 > r_1$. Tune $\{r_1, n_1\}$ to stop when $H_0: \pi = \pi_0$ appears likely

How to Determine n_1 and n? I

• Determine n_1 : denote X = # responses out of n_1 subjects.

$$P(X = 0) = (1 - \pi)^{n_1}.$$
 (2.6)

- π_0 = minimal efficacy
- If $\pi > \pi_0 \Rightarrow$ investigate the new drug in phase III.
- Control the probability of discarding the new drug early if in fact it is promising.
- n_1 has to satisfy:

$$P(X = 0) = (1 - \pi)^{n_1} \le \alpha_0, \ \forall \ \pi_\ge \pi_0.$$
 (2.7)

• where α_0 is our tolerance.

How to Determine n_1 and n? II

- $P(X = 0) = (1 \pi)^{n_1}$ is an deceasing function of π ,
- Only need n_1 for

$$(1-\pi_0)^{n_1} \le \alpha_0. \tag{2.8}$$

$$\Rightarrow n_1 \log(1 - \pi_0) \le \log(\alpha_0) \tag{2.9}$$

$$\Rightarrow$$
 need $n_1 \ge \frac{\log(\alpha_0)}{\log(1-\pi_0)}$ (2.10)

•
$$\pi_0 = 0.20$$
, $\alpha_0 = 0.05$

$$n_1 \ge \frac{\log(0.05)}{\log(1 - 0.20)} \approx 14. \quad \text{(round up)}$$
 (2.11)

34/73

How to Determine n_1 and n? III

- Interpretation:
- If see o/14 responses,
 upper limit of 95% CI on |pi is less than 0.2
- 95% sure response rate with new therapy is less than π_0 .

How to Determine n_1 and n? IV

- $n_2 = n n_1$ chosen to give sufficient precision for estimating |pi| after all patients observed
- Gehan chooses n_2 after seeing X_1 , but most applications fix n_1 and n_2 (or n) in advance.

How to Determine n_1 and n? V

- Gehan determine n: based on precision of 95% Cl.
- Want to be 95% sure that the estimate is within \pm 15% of the minimum $\pi_0=$ 0.2:

$$1.96 \times \left(\frac{0.2 \times 0.8}{2}\right)^{\frac{1}{2}} = 0.15. \tag{2.12}$$

• Solve $n \approx 28$.

How to Determine n_1 and n? VI

Expected sample size under Gehan design

$$n = \begin{cases} n_1, & \text{with probability } (1-\pi)^{n_1}; \\ n, & \text{with probability } 1-(1-\pi)^{n_1}. \end{cases} \tag{2.13}$$

$$mean(n) = n_1(1-\pi)^{n_1} + (n_1+n_2)\left(1-(1-\pi)^{n_1}\right) \tag{2.14}$$

$$= n_1 + n_2\left(1-(1-\pi)^{n_1}\right). \tag{2.15}$$

目錄

- Phase II Overview
- Two-stage Phase II Design
- 3 Simon's Two-Stage Design
- 4 Admissible Two-Stage Designs

Simon's Two-Stage Design (Simon, 1989)

- Goal: identify design set $\{r_1, n_1, r, n\}$ that satisfies type I error α and power 1β constraints.
- Lots of such sets exist
- Simon proposed two designs that are best by some definition (Simon, Control Clinical Trials, 1989)
- More than 2800 citations currently

Simon's Two-Stage Design: Statistical Considerations I

- Suppose two values $\pi_{\rm o} < \pi_{\rm 1}$ are pre-specified
- Divide $\pi \in (0, 1)$ into 3 Regions: Drug is ineffective | Indifference region | effective
- If $\pi \leq \pi_0$ then declare the drug ineffective with high probability, 1 $-\alpha$, where α is taken to be small.
- If $\pi \geq \pi_1$, then consider the drug for further investigation with high probability, 1β , where β is taken to be small.
- α and β are generally 0.05 and 0.20.

Simon's Two-Stage Design: Statistical Considerations II

- Find integers n_1 , n, r_1 , r, with $n_1 < n$, $r_1 < n$, and r < n
- Enroll n_1 subjects in the first stage.
 - If r_1 subjects or less respond, then declare the treatment a failure and stop.
 - If more than r_1 respond, then add $(n - n_1)$ subjects for a total of n subjects.

42/73

Simon's Two-Stage Design: Statistical Considerations III

- At the second stage:
 - if the total # that respond among all n subjects is greater than r, then declare the treatment a success.
 - otherwise, declare it a failure.
- stop the trial at stage 1
 - if the # of responses among n_1 is greater than r, then declare the treatment a success.

Statistical Considerations IV

- X_1 = the # of responses in stage 1 (out of n_1 subjects)
- X_2 = the # of responses in stage 2 (out of $n_2 = n n_1$ subjects)

$$X_1 \sim Bin(n_1, \pi), X_2 \sim Bin(n_2, \pi)$$
 (X₁ and X₂ are ind). (3.1)

Simon's Two-Stage Design: Statistical Considerations V

• Declare the new drug a failure if

$$(X_1 \le r_1) \text{ OR } \{(X_1 > r_1) \text{ AND } (X_1 + X_2 \le r)\}.$$
 (3.2)

• The new drug is declared a success if

$$(X_1 > r_1) \text{ AND } (X_1 + X_2 > r).$$
 (3.3)

Statistical Considerations VI

Design constraints

$$P((X_1 > r_1) \text{ AND } (X_1 + X_2 > r)) \le \alpha, \ \forall \ \pi \le \pi_0; \quad (3.4)$$

$$P\Big((X_1>r_1) \text{ AND } (X_1+X_2>r)\Big)\geq eta, \ orall \ \pi\geq \pi_1.$$
 (3.5)

Statistical Considerations VII

Denote the power function by

$$\Psi(\pi) = P((X_1 > r_1) \text{ AND } (X_1 + X_2 > r) \mid \pi).$$
 (3.6)

• $\Psi(\pi)$ is an increasing function of π for any n_1 , r_1 , n, r.

Statistical Considerations VIII

Therefore, criteria (3.4) and (3.4) are equivalent to

$$P((X_1 > r_1) \text{ AND } (X_1 + X_2 > r) \mid \pi = \pi_0) = \alpha, \quad (3.7)$$

$$P((X_1 > r_1) \text{ AND } (X_1 + X_2 > r) \mid \pi = \pi_0) = \beta, \quad (3.8)$$

$$P((X_1 > r_1) \text{ AND } (X_1 + X_2 > r) \mid \pi = \pi_1) = \beta.$$
 (3.8)

Statistical Considerations IX

- How to calculate $P((X_1 > r_1) \text{ AND } (X_1 + X_2 > r) \mid \pi)$ for each π ?
- By independence of X_1 and X_2 :

$$P((X_1 > r_1) \text{ AND } (X_1 + X_2 > r) \mid \pi)$$
 (3.9)

$$= \sum_{m_1 > r_1, m_1 + m_2 > r} P(X_1 = m_1, X_2 = m_2)$$
 (3.10)

$$= \sum_{m_1 > r_1, m_1 + m_2 > r} P(X_1 = m_1) P(X_2 = m_2). \tag{3.11}$$

Simon's Two-Stage Optimal Design I

- Many combinations of n_1 , n, r_1 , r satisfy (3.4) and (3.4).
- Optimal Design: has smallest expected sample size when $\pi=\pi_{\rm o}$ (when the new drug is ineffective)

Simon's Two-Stage Optimal Design II

ullet The expected sample size when $\pi=\pi_{
m o}$

$$\mathcal{E}(n \mid \pi = \pi_{0})$$
(3.12)
= $n_{1}P(\text{stop at stage 1}) + nP(\text{did not stop at stage 1})$ (3.13)
= $n_{1}\Big(P(X_{1} \leq r_{1} \mid \pi = \pi_{0}) + P(X_{1} > r \mid \pi = \pi_{0})\Big)$
+ $nP(r_{1} + 1 \leq X_{1} < r \mid \pi = \pi_{0}).$ (3.14)

51/73

Simon's Two-Stage Optimal Design III

- Through computer search, the optimal design can be identified.
- Among all sets of n_1 , n, r_1 , r satisfy (3.4) and (3.4) constraints, identify set that minimizes $\mathcal{E}(n \mid \pi = \pi_0)$
- Minimize number of subjects enrolled when trial should not have been run.
- Simon (1989), Optimal two-stage designs for Phase II clinical trials. Controlled Clinical Trials. 10: 1-10.

Simon's Two-Stage Minimax Design

- Through computer search, the optimal design can be identified.
- Among all sets of n_1 , n, r_1 , r satisfy (3.4) and (3.4) constraints, identify set that minimizes n.
- Aimed at identifying effective agents using as few patients as possible.

For studying a rare disease in which patient accrual is slow, which of the Simon's design would likely make more sense

- optimal
- minimax

• Implemented in clinfun package (Seshan, 2015)

目錄

- Phase II Overview
- Two-stage Phase II Design
- Simon's Two-Stage Design
- 4 Admissible Two-Stage Designs

Admissible Two-Stage Designs

• Consider expected cost function for any possible design set satisfying α and β constraints given by

$$C(q, \{r_1, n_1, r, n\}) = qn + (1 - q)\mathcal{E}(n \mid \pi = \pi_0)$$
 (4.1)

- It is weighted average of maximum sample size and expected sample size under H_0
- Design set n_1 , n, r_1 , r is called admissible if it achieves smallest possible cost across all possible design sets for at least one $q \in [0,1]$.

Simon's Design and Admissible Design

- Simon's optimal design is admissible because it minimizes risk when q = (?)
- Simon's minimax design is admissible because it minimizes risk when q = (?)
- There are usually other admissible designs that minimize risk for $q \in (0, 1)$.
- Jung et al., 2004

Discussion I

- Phase 2 trials are most often futility trials.
- Goal is to prune inefficacious treatments
- Could trial stop for efficacy at stage 1? Should it?
- Different implications from stopping early because $R_1 \le r_1$ and failing to reject H_0 because $R \le r$
- Nothing special about two stages.
- More stages possible.

Discussion II

- Strict sample sizes and adherence to interim analyses may be difficult to adhere to.
- Causes trial conduct to deviate from trial design and potentially invalidates type I error and power properties.
- Inference is conditional on following design as it is laid out

Inference depends on design: Ex 1 I

• Suppose that we conduct minimax design with π_0 = 0.20, π_1 = 0.35, α = 0.05, and 1 $-\beta$ = 0.80: $\{r_1, n_1, r, n\} = \{6, 31, 15, 53\}$

• We successfully conclude the trial with R = 16 > r = 15 responders.

61/73

Inference depends on design: Ex 1 II

Could report p-value:

$$p P(R > 15, R_1 > 6 \mid \pi = \pi_0) (4.2)$$

$$= \sum_{x=7}^{31} P(R > 15, R_1 = x \mid \pi = \pi_0) (4.3)$$

$$= \sum_{x=7}^{31} P(R - R_1 > 15 - x, R_1 = x \mid \pi = \pi_0) (4.4)$$

$$= \sum_{x=7}^{31} P(R - R_1 > 15 - x \mid \pi = \pi_0) (4.5)$$

$$\times P(R_1 = x \mid \pi = \pi_0) (4.5)$$

$$= 0.0498. (4.6)$$

Inference depends on design: Ex 1 III

Inference depends on design: Ex 2 I

- Adapted from (Lindley and Phillips, 1976).
- Two designs for testing H_0 : $\pi = 0.2$.

Inference depends on design: Ex 2 II

- Design 1:
- Enroll n = 25 patients.
- R is binomial.
- Observe R = 8 responses.
- p-value is

$$P(R \ge 8 \mid \pi = 0.2) = \sum_{x=8}^{25} {25 \choose 8} (0.2)^{x} (0.8)^{25-x}$$
 (4.7)
= 0.109. (4.8)

```
1 # Inference depends on design: Ex 2
2 pbinom(7 , 25, 0.2, lower.tail = F) # 1-binomial CDF
3 [1] 0.1091228
```


Inference depends on design: Ex 2 III

- Design 2:
- Enroll patients until f = 17 non-responders.
- R is negative binomial. Observe R = 8 responses.
- p-value is (negative-binomial)

$$P(R \ge 8 \mid \pi = 0.2) = \sum_{x=8}^{\infty} {x+16 \choose x} (0.2)^{x} (0.8)^{17}$$
 (4.9)
= 0.0892. (4.10)

```
1 # Inference depends on design: Ex 2
2 # Design 2
3 pnbinom(7, 17, 1-0.2, lower.tail = F) # 1 - neg-binom CDF
4 [1] 0.08917126
```


Inference depends on design: Ex 2 IV

- Design 1: p = 0.109.
- Design 2: p = 0.089.
- If $\alpha = 0.10$ were significance threshold, then same data (but different designs) yield different conclusions.

Likelihood Principle

- In both examples,
 likelihood of final data was equal for both designs.
- Frequentist inference based on what could have occurred and not just what did occur.
- Violates likelihood principle: inference should be based only upon likelihood function and not design.

K-Stage Design (Fleming, 1982)

- Gehan design allows for early termination only if new therapy seems ineffective
- Fleming (1982, Biometrics)
- K-stage designs allow for early stopping if
 - treatment appears ineffective
 - or treatment appears overwhelmingly effective
- preserve (approximately) size and power of a single stage design

Practical Uses of Fleming's Designs

- Rarely happens that want more than 2 stages
- Rarely terminate phase II trial early because treatment is effective.
- Phase III takes time to develop.
- Phase III is not often ready in time to take advantage of early stopping
- Would like more information before starting phase III.

More Phase II Designs

- Bayesian Single Stage Design Sylvester, Biometrics, 1988.
- Bayesian Two-Stage Design Herson, Biometrics, 1979.
- Bayesian Two-Stage Design
 Simon and Thall, Controlled Clinical Trials, 1989.
 Simon and Thall, Biometrics, 1994.
- Bivariate Designs (Early Stopping for Response and Toxicity)
 Bryant and Day Biometrics, 1995. Conaway and Petroni,
 Biometrics, 1995.

R Packages: Phase II Design

- clinfun
- ph2simon
- ph2mult
- DoseFinding
- MCPMod
- OneArmPhaseTwoStudy
- ph2mult

目錄

- Phase II Overview
- Two-stage Phase II Design
- Simon's Two-Stage Design
- Admissible Two-Stage Designs

Randomized Controlled Phase II Designs

- Two Arms Design and Multiple Arms Design
- Single Stage and Multiple Stages
- Non-adative Design Adaptive Design

Thanks!

