3-band equalizer

Tipo	Q	Características
Bessel	0.57	Melhor atraso
Butterworth	0.707	Amplitude homogênea
Chebychev	0.8-1.3	Corte inicial rápido
Cauer/Eliptico	0.7-1.3	Corte inicial muito rápido

Filtros Butterworth

2ª Ordem

 $Q_{\text{(fator de qualidade)}} = 0.707$

Ganho uniforme em passa faixa

Queda brusca em frequências de corte

$$\left|H(jw)\right|^2 = \frac{H_0}{1 + \left(\omega/\omega_0\right)^{2\pi}}$$

Note that the higher the Butterworth filter order, the higher the number of cascaded stages there are within the filter design, and the closer the filter becomes to the ideal "brick wall" response.

In practice however, Butterworths ideal frequency response is unattainable as it produces excessive passband ripple.

$$f = \frac{I}{2.\prod.R.C}$$

Componentes Utilzados

J-FET Baixo Ruído

Próximos Passos

- Avaliar técnicas de redução de ruídos;
- Projetar divisor de tensão para utilizar somente uma fonte DC;
- Estudar controle remoto do dispositivo;
- Finalizar projeto PCB.

Bibliografia

- Integrated Electronics by Millman & Halkias McGraw-Hill.
- Microelectronic Circuits 6th edition

Daniel Sandoval
Guilherme Alexsanders
Pedro Salum Franco

Dúvidas?