

1

CLAIMS

deletions at a plurality of DNA sequences, comprising the
steps of:

treating said DNA to form single-stranded complementary strands;

adding a plurality of paired oligonucleotide primers, each pair specific for a different sequence, one primer of each pair substantially complementary to a part of the sequence in the sense-strand and the other primer of each pair substantially complementary to a different part of the same sequence in the complementary anti-sense strand;

annealing the plurality of primers to their complementary sequences;

simultaneously extending said plurality of annealed primers from each primer's 3' terminus to synthesize an extension product complementary to the strands annealed to each primer, said extension products, after separation from their complement, serving as templates for the synthesis of an extension product from the other primer of each pair;

separating said extension products from said templates to produce single-stranded molecules;

amplifying said single stranded molecules by repeating, at least once, said annealing, extending and separating steps; and

identifying said amplified extension products from each different sequence.

2. The method of Claim 1 for detecting deletions at a plurality of genomic DNA sequences, wherein said sequences are selected from the group of sequences on the X and Y chromosomes.

3. The method of Claim 2 for the detection of X-linked disease, wherein said genomic DNA sequences

35

1 contain a deletion that causes a genetic disease.

4. The method of Claim 3 for the detection of
said X-linked genetic diseases selected from the group
5 consisting of ornithine transcarbamylase deficiency,
hypoxanthine phosphoribosyltransferase deficiency,
steroid sulfatase deficiency and X-linked muscular
dystrophy.

10 5. The method of Claim 4 for the detection of
X-linked muscular dystrophy, wherein said plurality of
paired primers are complementary to different sequences
within the gene coding for the dystrophin protein.
sub c2

15 6. The method of Claim 5, wherein the plurality
of paired primers is selected from the group consisting
of:

(1) 5'-GACTTCGATGTTGAGATTACCTTCCC-3'
(2) 5'-AAGCTTGAGATGCTCTCACCTTTCC-3',

20 (1) 5'-GTCCTTACACACTTACCTGTTGAG-3'
(2) 5'-GGCCTCATTCTCATGTTCTAATTAG-3',

(1) 5'-AAACATGGAACATCCTTGTGGGAC-3'
(2) 5'-CATT CCTATTAGATCTGTCGCCCTAC-3',

25 (1) 5'-GATAGTGGGCTTACTTACATCCCTTC-3'
(2) 5'-GAAAGCACGCAACATAAGATAACACCT-3',

(1) 5'-CTTGATCCATATGCTTTACCTGCA-3'
(2) 5'-TCCATCACCCCTCAGAACCTGATCT-3',

30 (1) 5'-GAATACATTGGTAAATCCCAACATG-3'
(2) 5'-CCTGAATAAAGTCTCCTTACACAC-3', and

35 (1) 5'-TTCTACCACATCCCATTCTTCCA-3'
(2) 5'-GATGGCAAAAGTGTGAGAAAAAGTC-3'.

1 7. The method of Claim 3, wherein said genomic
DNA is from fetal tissue.

5 8. The method of Claim 1 for detecting
deletions at a plurality of genomic DNA sequences, wherein
the plurality of paired primers is selected from the group
consisting of:

- Mark 83*
- 10 (1) 5'-GACTTCGATGTTGAGATTACTTCCC-3'
(2) 5'-AAGCTTGAGATGCTCTCACCTTTCC-3',
- 15 (1) 5'-GTCCTTACACACTTACCTGTTGAG-3'
(2) 5'-GGCCTCATTCTCATGTTCTAATTAG-3',
- 20 (1) 5'-AAACATCGAACATCCTGTGGGGAC-3'
(2) 5'-CATTCTATTAGATCTGTCGCCCTAC-3',
- 25 (1) 5'-GATACTGGGCTTACTTACATCCTTC-3'
(2) 5'-GAAAGCACGCAACATAAGATACACCT-3',
- 30 (1) 5'-CTTGATCCATATGCTTTACCTGCA-3'
(2) 5'-TCCATCACCCCTCAGAACCTGATCT-3',
- 35 (1) 5'-GAATACATTGGTAAATCCAACATG-3'
(2) 5'-CCTGAATAAAAGTCTOCTTACACAC-3',
- 40 (1) 5'-TTCTACCACATCCCATTCTTCCA-3'
(2) 5'-GATGGCAAAAGTGTGAGAAAAAGTC-3',
- 45 (1) 5'-TGGTCTCCTTAAACCTGTCTT-3'
(2) 5'-ACACAACGTGTTCACTAG-3',
- 50 (1) 5'-ACGTGGAGTGACGATGCTCTCCC-3'
(2) 5'-GTGGGATTCAACCCTTTCCC-3', and
- 55 (1) 5'-GAAGTCAAGGACACCGAGGAA-3'
(2) 5'-AGCCCTCTGCCAGTCCTAGTG-3'.

9. A DNA sequence of the formula:

5'	10	20	30	40	50
TAAATTGACT	TTCGATGTTG	AGATTACTTT	CCCTTGCTAT	TTCAGTGAAC	
60	70	80	90		100
CAAACCTTAAG	TCAGATAAAA	CAATTTTATT	TGGCTTCAAT	ATGGTGCTAT	
110	120	130	140		150
TTTGATCTGA	AGGTCAATCT	ACCAACAAAGC	AAGAACAGTT	TCTCATTATT	
160	170	180	190		200
TTCCTTTGCC	ACTCCAAGCA	GTCTTTACTG	AAGTCTTCG	AGCAATGTCT	
210	220	230	240		250
35 GACCTCTGTT	TCAATACTTC	TCACAGATT	CACAGGCTGT	CACCAACACT	
260	270	280	290		300
CAGCCATCAC	TAACACAGAC	AACTGTAATG	GAAACAGTAA	CTACGGTGAC	

1	310	320	330	340	350
	CACAAGGGAA	CAGATCCTGG	TAAAGCATGC	TCAAGAGGAA	CTTCCACCCAC
	360	370	380	390	400
5	CACCTCCCCA	AAAGAAGAGG	CAGATTACTG	TGGATTCTGA	AATTAGGAAA
	410	420	430	440	450
	AGGTGAGAGC	ATCTCAAGCT	TTTATCTGCA	AATGAAGTGG	AGAAAAACTCA
	460	470	480	490	500
	TTTACAGCAG	TTTGTTGGT	GGTGTTC	CTTCAGCAAT	ATTTCCAGAA
	510	520	530	540	550
	TCCTCGGGTA	CCTGTAATGT	CAGTTAACGT	AGTGAGAAAA	ATTATGAAGT
	560	570	580	590	600
	ACATTTAAA	ACTTTCACAA	GAAATCACTA	TCGCAACAGA	AACTAAATGC
	610	620	630	640	650
10	TTAATGGAAA	TGGTGTTC	TGGGGTGAAA	GAAGAAACTA	TAGAAACTAT
	660	670	680	690	700
	AGGTGATAAA	CTACTGTGGT	AGCATTAA	TCCTAAAAGT	TTCTTCTTT
	710	720	730	740	750
	CTTTTTTTT	TTTCTTCCTT	ATAAAGGCC	TGCTTGTGA	GTCCCTAGTT
	760	770	780	790	800
	TTGCATTAAA	TGTCTTTT	TTCCAGTAAC	GGAAAGTGCA	TTTCATGAA
	810	820	830	840	850
15	GAAGTACACC	TATAATAGAT	GGGATCCATC	CTGGTAGTT	ACGAGAACAT
	860	870	880	890	900
	GATGTCTCAG	TCTGCGCATC	CTAAATCAGG	AGTAATTACA	GAACACATTT
	910	920	930	940	950
	CCTGTTCTT	GATATTATA	AAGTCTTATC	TTGAAGGTGT	TAGAATTTTT
	960	970	980	990	1000
	AACTGATCTT	TTTGTGACTA	TTCAGAATTA	TGCATTTAG	ATAAGATTAG
20	1010	1020	1030	1040	
	GTATTATGTA	AATCAGTGG	TATATTAAAT	GATGGCAATA	A-3'

and fragments and derivatives thereof, said fragments and derivatives complementary to the sense and anti-sense strands of the gene coding for dystrophin, said fragments and derivatives capable of annealing to said strands of the dystrophin gene and amplifying dystrophin sequences.

10. A DNA sequence of the formula:

5'	10	20	30	40	50
	TGTCCAAAAT	AGTTGACTT	CTTTCTTAA	TCAATAAATA	TATTACTTTA
	60	70	80	90	100
30	AAGGGAAAAA	TTGCAACCTT	CCATTTAAAA	TCAGCTTAT	ATTGAGTATT
	110	120	130	140	150
	TTTTTAAAT	GTTGTGTGTA	CATGCTAGGT	GTGTATATTA	ATTTTATTT
	160	170	180	190	200
	GTTACTTGAA	ACTAAACTCT	GCAAATGCAG	GAAACTATCA	GAGTGATATC
	210	220	230	240	250
	TTTGTCACTA	TAACCAAAAA	ATATACGCTA	TATCTCTATA	ATCTGTTTA
	260	270	280	290	300
35	CATAATCCAT	CTATTTTCT	TGATCCATAT	GCTTTTACCT	GCAGGGCGATT

	310	320	330	340	350
	TGACAGATCT	GTTGAGAAAT	GGCGGCCGTTT	TCATTATGAT	ATAAAGATAT
	360	370	380	390	400
	TTAATCAGTG	GCTAACAGAA	GCTGAACAGT	TTCTCAGAAA	GACACAAATT
	410	420	430	440	450
5	CCTGAGAATT	GGGAACATGC	TAAATACAAA	TGGTATCTTA	AGGTAAAGTCT
	460	470	480	490	500
	TTGATTTGTT	TTTTCGAAAT	TGTATTTATC	TTCAGCACAT	CTGGACTCTT
	510	520	530	540	550
	TAACCTCTTA	AAGATCAGGT	TCTGAAGGGT	GATGGAAATT	ACTTTGACT
	560	570	580		
	GTGTTGTCA	TCATTATATT	ACTAGAAAAGA	AAA-3'	

10 and fragments and derivatives thereof, said fragments and derivatives complementary to the sense and anti-sense strands of the gene coding for dystrophin, said fragments and derivatives capable of annealing to said strands of the dystrophin gene and amplifying dystrophin sequences.

11. A DNA sequence of the formula:

	5'	10	20	30	40	50
20	ACCCAAATAC	TTTGTTCATG	TTTAAATTTC	ACAACATTC	ATAGACTATT	
	60	70	80	90	100	
	AAACATGGAA	CATCCTTGTG	GGGACAAGAA	ATCGAATTTG	CTCTTGAAAA	
	110	120	130	140	150	
	GGTTTCCAAC	TAATTGATT	GTAAGGACATT	ATAACATCCT	CTAGCTGACA	
	160	170	180	190	200	
	AGCTTACAAA	AATAAAAAACT	GGAGCTAAC	GAGAGGGTGC	TTTTTTCCCT	
	210	220	230	240	250	
	GACACATAAA	AGGTGTCTT	CTGTCTTGT	TCCTTTGGAT	ATGGGCATGT	
	260	270	280	290	300	
25	CAGTTTCATA	GGGAAATTTC	CACATGGAGC	TTTTGTATTT	CTTCTTTGCC	
	310	320	330	340	350	
	CAGTACAAC	GCATGTGGTA	GCACACTGTT	TAATCTTTTC	TCAAATAAAA	
	360	370	380	390	400	
	AGACATGGGG	CTTCATTTT	GTTCGCCTT	TTTGGTATCT	TACAGGAAC	
	410	420	430	440	450	
	CCAGGATGGC	ATTGGGCAGC	GGCAAACTGT	TGTCAGAAC	TTGAATGC	
	460	470	480	490	500	
	CTGGGGAAGA	AATAATTCA	CAATCCTCAA	AAACAGATGC	CAGTATTCTA	
	510	520	530	540	550	
30	CAGGAAAAAT	TGGGAAGCCT	GAATCTGC	TGGCAGGAGG	TCTGCAAAC	
	560	570	580	590	600	
	GCTGTCAGAC	AGAAAAAAAGA	GGTAGGGCGA	CAGATCTAAT	AGGAATGAAA	
	610	620				
	ACATTTAGC	AGACTTTTA	AGCTT-3'			

and fragments and derivatives thereof, said fragments and
35 derivatives complementary to the sense and anti-sense

strands of the gene coding for dystrophin, said fragments and derivatives capable of annealing to said strands of the dystrophin gene and amplifying dystrophin sequences.

12. A DNA sequence of the formula:

5'	10	20	30	40	50
TTTTGTAGAC	GGTTAACGAA	TAATTTGAA	TACATTGGTT	AAATCCCAAC	
60	70	80	90	100	
ATGTAATATA	TGTAATATAAT	CAATATTATG	CTGCTAAAAT	AACACAAATC	
110	120	130	140	150	
AGTAAGATTC	TGTAATATTT	CATGATAAAAT	AACTTTGAA	AATATATTTT	
160	170	180	190	200	
10 TAAACATTTT	GCCTATGCCT	TGAGAATTAT	TTACCTTTT	AAAATGTATT	
210	220	230	240	250	
TTCCTTCAG	GTTTCCAGAG	CTTTACCTGA	GAAACAAAGGA	GAAATTGAAG	
260	270	280	290	300	
CTCAAATAAA	AGACCTTGGG	CAGCTTGAAA	AAAAGCTTGA	AGACCTTGAA	
310	320	330	340	350	
GAGCAGTTAA	ATCATCTGCT	GCTGTGGTTA	TCTCCTATTA	GGAATCAGTT	
360	370	380	390	400	
GGAAATTAT	AACCAACCAA	ACCAAGAAGG	ACCATTGAC	GTAAAGGTAG	
410	420	430	440	450	
GGGAACCTTT	TGCTTAATA	TTTTGTCTT	TTTAAGAAA	AATGGCAATA	
460	470	480	490	500	
TCACTGAATT	TTCTCATTG	GTATCATTAT	TAAAGACAAA	ATATTACTTG	
510	520	530	540	550	
20 TTAAAGTGTG	GTAAGGAAGA	CTTTATTCAG	GATAACCACA	ATAGGCACAG	
560	570	580	590	600	
GGACCACTGC	AATGGAGTAT	TACAGGAGGT	TGGATAGAGA	GAGATTGGGC	
610	620	630	640	650	
TCAACTCTAA	ATACAGCACA	GTGGAAGTAG	GAATTTATAG	C-3'	

and fragments and derivatives thereof, said fragments and derivatives complementary to the sense and anti-sense strands of the gene coding for dystrophin, said fragments and derivatives capable of annealing to said strands of the dystrophin gene and amplifying dystrophin sequences.

25
13. A DNA sequence of the formula:

30	5'	10	20	30	40	50
TGAGAAATAA	TAGTTCCGGG	GTGACTGATA	GTGGGCTTTA	CTTACATCCT		
60	70	80	90	100		
TCTCAATGTC	CAATAGATGC	CCCCAAATGC	GAACATTCCA	TATATTATAA		
110	120	130	140	150		
ATTCTATTGT	TTTACATTGT	GATGTTCACT	AATAAGTTGC	TTTCAAAGAG		
160	170	180	190	200		
GTCATAATAG	GCTTCTTTCA	AATTTTCAGT	TTACATAGAG	TTTTAAATGGA		
210	220	230	240	250		
TCTCCAGAAT	CAGAAACTGA	AAGAGTTGAA	TGACTGGCTA	ACAAAACAGA		

1 260 270 280 290 300
AGAAAGAACCA AGGAAAATGG AGGAAGAGGCC TCTTGGACCT GATCTTGAAG
310 320 330 340 350
ACCTAAAACCG CCAAGTACAA CAACATAAGG TAGGTGTATC TTATGTTGCG
360 370 380 390 400
5 TGCTTTCTAC TAGAAAGCAA ACTCTGTGTA TAGTACCTAT ACACAGTAAC
410 420 430 440 450
ACAGATGACA TGGTTGATGG GAGAGAATTA AAACCTTAAAG TCAGCCATAT
460 470 480 490 500
TTTAAAAATT ATTTTACCT AATTGTTTTT GCAATCTTG TTGCCAATGG
510 520 530 540 550
CCTTGAATAA GTCCCCCTCCA AAATTCAAGGT GATTGTATTA GGAGATGGAA
560 570 580 590 600
10 TATTAAGGG TGAATAATCC ATCAGGGCTC CTCCCTTAAG AATAGGATCA
610 620 630 640 650
AGTCCCATAT AAAAGAGGCT TCACACAGTG TTCTCCTATC TCTTGACCCT
660 670 680 690 700
CCACCATGCA CCACCATGTG AAAACTCTGT GAAAAGGCC TCACCAGATG
710 720 730 740 750
CTAACATCTT GATCTTGGAT TTCCCAAACCT CGAGAACTGT GAAAAAAATAA
760 770 780 790 800
15 AGGTACATTC TTCCTAAATT ACCTCATTCT CATTAAACA CACAAAGTGC
810
ACACATAGCT G-3'

and fragments and derivatives thereof, said fragments and derivatives complementary to the sense and anti-sense strands of the gene coding for dystrophin, said fragments and derivatives capable of annealing to said strands of the dystrophin gene and amplifying dystrophin sequences.

14. A DNA sequence of the formula:

—
T510X

25 5' 10 20 30 40 50
TTACTGGTGG AAGAGTTGCC CCTGCGCCAG GGAATTCTCA AACAAATTAAA
60 60 70 80 90 100
TGAAACTGGA GGACCCGTGC TTGTAAGTGC TCCCATAAGC CCAGAAAGAGC
110 110 120 130 140 150
AAGATAAAACT TGAAAATAAG CTCAAGCAGA CAAATCTCCA GTGGATAAAAG
160 160 170 180 190 200
GTTAGACATT AACCATCTCT TCCGTCACAT GTGTTAAATG TTGCAAGTAT
210 210 220 230 240 250
30 260 270 280
TTGTATGTAT TTTGTTTCCT GGGTGCTTCA TTGGTCGGGG AGGAGGCTGG
TATGTGGATT GTTGTTTGT TTTGTTTTT-3'

and fragments and derivatives thereof, said fragments and derivatives complementary to the sense and anti-sense strands of the gene coding for dystrophin, said fragments and derivatives capable of annealing to said strands of

the dystrophin gene and amplifying dystrophin sequences.

15. A DNA sequence of the formula:

5'	10	20	30	40	50
AAGCTTGAT	ACTGTGCTT	AAGTGTTCAC	CCTTGAAA	GAAAATAATT	
60	70	80	90	100	
TTGACAGTGA	TGTAGAAATA	ATTATTTGAT	ATTATTTCA	AAACAAAATT	
110	120	130	140	150	
TATATCCAAT	ACTAACACA	GAATTTGTA	AAACAATAAG	TGTATAAAGT	
160	170	180	190	200	
AAAATGAACA	TTAGGATTAT	TGAGATTATT	GTAGCTAAA	CTAGTGTAA	
210	220	230	240	250	
TTCATATAAA	TTATGTTAAT	AAATTGTATT	GTCATTATTG	CATTTACTT	
260	270	280	290	300	
TTTGAAAAG	TAGTTAATGC	CTGTGTTCT	ATATGAGTAT	TATATAATTC	
310	320	330	340	350	
AAGAAGATAT	TGGATGAATT	TTTTTTTAA	GTAAATGTG	TTTCACATCT	
360	370	380	390	400	
CTGTTCTTT	TCTCTGCACC	AAAAGTCACA	TTTTGTGCC	CTTATGTACC	
410	420	430	440	450	
15 AGGCAGAAAT	TGATCTGCAA	TACATGTGGA	GTCTCCAAGG	GTATATTAA	
460	470	480	490	500	
ATTTAGTAAT	TTTATTGCTA	ACTGTGAAGT	TAATCTGCAC	TATATGGGTT	
510	520	530	540	550	
CTTTTCCCCA	GGAAACTGAA	ATAGCAGTTC	AAGCTAAACA	ACCGGATGTG	
560	570	580	590	600	
GAAGAGATT	TGTCTAAAGG	GCAGCATTG	TACAAGGAAA	AACCAGCCAC	
610	620	630	640	650	
20 TCAGCCAGTG	AAGGTAATGA	AGCAACCTCT	AGCAATATCC	ATTACCTCAT	
660	670	680	690	700	
AATGGGTTAT	GCTTCGCCCTG	TTGTACATT	GCCATTGACG	TGGACTATTT	
710	720	730	740	750	
ATAATCAGTG	AAATAACTG	TAAGGAAATA	CTGGCCATAC	TGTAATAGCA	
760	770	780	790	800	
GAGGCAAAGC	TGTCTTTTG	ATCAGCATAT	CCTATTATA	TATTGTGATC	
810	820	830	840		
25 TTAAGGCTAT	TAACGAGTCA	TTGCTTTAAA	GGACTCATTT	CTGTC-3'	

and fragments and derivatives thereof, said fragments and derivatives complementary to the sense and anti-sense strands of the gene coding for dystrophin, said fragments and derivatives capable of annealing to said strands of the dystrophin gene and amplifying dystrophin sequences.

16. A DNA sequence of the formula:

5'	103	113	123	133	143
CCCATCTTGT	TTTGCCTTG	TTTTTCTTG	AATAAAAAAA	AAATAAGTAA	
153	163	173	183		193
35 AATTATTTTC	CCTGGCAAGG	TCTGAAACT	TTTGTCTCT	TTACCACTTC	

1	203	213	223	233	243
	CACAAATGTAT	ATGATTGTTA	CTGAGAAAGGC	TTATTTAACT	TAAGTTACTT
	253	263	273	283	293
	GTCCAGGCAT	GAGAATGAGC	AAAATCGTT	TTTAAAAAAAT	TGTTAAATGT
5	303	313	323	333	343
	ATATTAATGA	AAAGGTTGAA	TCTTTTCATT	TTCTACCATG	TATTGCTAAA
	353	363	373	383	393
	CAAAGTATCC	ACATTGTTAG	AAAAAGATAT	ATAATGTCAT	GAATAAGAGT
	403	413	423	433	443
	TTGGCTCAAA	TTGTTACTCT	TCAATTAAAT	TTGACTTATT	GTTATTGAAA
	453	463	473	483	493
	TTGGCTCTTT	AGCTTGTGTT	TCTAATTTTT	CTTTTCTTC	TTTTTCTCTT
10	503	513	523	533	543
	TTTGCAAAAA	CCCAAAATAT	TTTAGCTCCT	ACTCAGACTG	TTACTCTGGT
	553	563	573	583	593
	GACACAACCT	GTGGTTACTA	AGGAAACTGC	CATCTCCAAA	CTAGAAATGC
	603	613	623	633	643
	CATCTTCCTT	GATGTTGGAG	GTACCTGCTC	TGGCAGATTT	CAACCGGGCT
	653	663	673	683	693
	TGGACAGAAC	TTACCGACTG	GCTTTCTCTG	CTTGATCAAG	TTATAAAATC
15	703	713	723	733	743
	ACAGAGGGTG	ATGGTGGGTG	ACCTTGAGGA	TATCAACGAG	ATGATCATCA
	753	763	773	783	793
	AGCAGAAGGT	ATGAGAAAAA	ATGATAAAAG	TTGGCAGAAG	TTTTTCTTTA
	803	813	823	833	843
	AAATGAAGAT	TTTCCACCAA	TCACTTTACT	CTCCTAGACC	ATTTCCCACC
	853	863	873	883	893
	AGTTCTTAGG	CAACTGTTTC	TCTCTCAGCA	AACACATTAC	TCTCACTATT
20	903	913	923	933	943
	CAGCCTAAGT	ATAATCAGGT	ATAAAATTAAT	GCAAATAACA	AAAGTAGCCA
	953	963	973	983	993
	TACATTAAAA	AGGAAAATAT	ACAAAAAA	AAAAAA	AAGCCAGAAA
	1003	1013			
	CCTACAGAAT	AGTGCTCTAG	TAATTAC 3'		

25 and fragments and derivatives thereof, said fragments and derivatives complementary to the sense and anti-sense strands of the gene coding for dystrophin, said fragments and derivatives capable of annealing to said strands of the dystrophin gene and amplifying dystrophin sequences.

30 17. A DNA sequence of the formula:

5'	10	20	30	40	50
	ATCTCTATCA	TTAGAGATCT	GAATATGAAA	TACTTGTCAA	AGTGAATGAA
	60	70	80	90	100
	AATTNNNTAA	ATTATGTATG	GTTAACATCT	TTAAATTGCT	TATTTTTAAA
	110	120	130	140	150
	TTGCCATGTT	TGTGTCCCAG	TTTGCATCAA	CAAATAGTTT	GAGAACTATG
35	160	170	180	190	200
	TTGGAAAAAA	AAATAACAAAT	TTTATTCTTC	TTTCTCCAGG	CTAGAAGAAC

T530X

53

1	210	220	230	240	250
	AAAAGAAATAT	CTTGTCAAGAA	TTTCAAAGAG	ATTTAAATGA	ATTTGTTTTA
	260	270	280	290	300
	TGGTTGGAGG	AAGCAGATAA	CATTGCTAGT	ATCCCAC TTG	AACCTGGAAA
5	310	320	330	340	350
	AGAGCAGCAA	CTAAAAGAAA	AGCTTGAGCA	AGTCAAGGTA	ATTTTATTTT
	360	370	380	390	400
	CTCAAATCCC	CCAGGGCCTG	CTTGCATAAA	GAAGTATATG	AATCTATTTT
	410	420	430	440	450
	TTAACATTCAAT	CATTGGTTTT	CTGCCCATTA	GGTTATT CAT	AGTTCCCTTGC
	460	470	480	490	500
	TAAAGTGT TT	TTCTCACAAAC	TTTATTTCTT	CTTAACCCTG	CAGTTCTGAA
10	510	520	530	540	550
	CCAGTGCACA	TAAGAACATA	TGTATATATG	TGTGTGTGTG	TATTTATATA
	560	570	580	590	600
	TACACACACA	CATATTGCAT	CTATACATCT	ACACATATAG	ATGTATAGAT
	610	620	630	640	650
	TCAATATGTC	TAAAAATGTA	TATAATT CAC	AGTTTTATC	TTTGATTGAA
	660	670	680		
	ATATTAAAGG	GA CTGAGACT	CACACTCATA	TACTTT-3'	

15 and fragments and derivatives thereof, said fragments and derivatives complementary to the sense and anti-sense strands of the gene coding for dystrophin, said fragments and derivatives capable of annealing to said strands of the dystrophin gene and amplifying dystrophin sequences.

20

add E 2 *add d³*

25

30

35