CHE261A Patent Application

Applicant: SynergyX

Inventors: Diya Saraf, Sakshi Dargu, Aditya Gupta, Sanskaar Srivastava, Priyanshu Kamde

Chemical Formula: (C10H8O4)n

Chemical Name: Polyethylene terephthalate(PET)

Process Title: Production of PET from Pure Terephthalic Acid and Ethylene Glycol

Catalysts: Antimony TriAcetate

Process Description:
a. Process Flow Diagram:


```
A-MIXING VESSEL
 B- ESTERIFIER
C- PRE-POLY CONDENSATION TANK
D- DISC RING REACTOR
E-SCRAPPER CONDENSER
F- CONDENSATE COLLECTOR
G- MOTHER VESSEL OF EG
M- DISTILLATION COLUMN
I - FURNACE
K- NEAT EXCUANGBERS
1. Fresh EG
                       17. Spent EG
2. Catalyst
                     18. Recovered EG
                       19. Recovered EG
3. PTA
4. Paste
                      20. Recycled EG
5. BMET
                       21. Water Vapors.
 6. Waste + Unseacted
         EG vaposs
7. Catalyst
8. Catalyst
9. Small chain PET
10. Eg vaposs
11- EG vaposs
12. small chain PET
13. Liquid EG
14. Cold EG
15. Condensed Eg
16. Long Chain PET
```

b. Material Balance:

HODC-
$$\langle O \rangle$$
-COOH + HO(CH2)OH \longrightarrow HO-(OC- $\langle O \rangle$ -COO(CH2)O)H
(TPA) (EG) + 2NH2O (PET)
(MM=166.14) (MM=62.07) (H2O) (MM=192.2)
(MM=18)

- Basis = 100 tonnes PET/day = 4166.6 kg PET/hr = 100 $\times 10^3 \times 1 \text{ kg PET/hr} = 4166.6 \text{ kg PET/hr} = 21.68 \text{ kmol/hr} = 100 <math>\times 10^3 \times 1 \times 1 \text{ kmol PET/hr} = 21.68 \text{ kmol/hr} = 24 192.2$ For 90 % overall conversion,
- · EG required = 21.68 = 24.08 kmol/hr
- · TPA required = EG required = 24.08 kmol / hr

Balance across Mixer

- · Flowrate of Catalyst (Antimony TriAcetate) is taken to be 18 ppm
- · Also for the ratio, E|T=1.12
- Thus flowrate of MEG = (1.12)(24.08 kmo)/hr) = 26.97 kmol/hr
- · Fresh MEG = 24.08 kmol/hr
- MEG recycled = (26.97 24.08) kmol | hr
 = 2.89 kmol | hr
 = 2.89 x 62.07 kg | hr = 179.38 kg | hr
- · Flowrate of TPA = 24.08 kmol/hr

	Input	Output
TPA	24.08	
MEG	26.97	
Paste		
Total	51.05	51.05

```
Balance Across Esterifier:-
HOOC- (O) COOH + 2 HO (UN) OH -> HO (CH2) (UO) (O) COO- (U12) OH
               (MM=62.07) +2H2O (MM=254.24)
    (TPA)
                           (MM=18)
 (MM = 166.14)
· TPA reg for the above reaction is 24.08 kmol/hr
· Thus MEG reg = 2 (TPA reg) = 2(24.08) = 48.16 kmol/h
· MEG from paste of mixer = 26.97 kmol /hr
· Thus MEG obtained from recycle = (48-16-26-97)
  Due to 90 %. conversion,
 We have unreacted MEG as = (0.1)(48.16)
         = 4.816 kmol /hr
.: Reached MEG = (0.9) (48.16)
                        = 43.34 kmol hr
 We have unreacted TPA as = (0.1) (24.08)
                        = 2.408 kmol/hr
         :. Reacted TPA = (0,9) (24.08)
                        = 21.672 kmol | hr
 Also, BHET (bis (2-hydroxyethy) tereputhalate)
     produced in above reaction = no. of reacted
                                moler of TPA
                            = 21.672 kmol hr
  And Water produced = no. of reacted moles of MEG
                     = 43.34 kmol/hr
                       =780.12 Kg/M
```

	Input:	Output	Stream
recycled MEG	21.19		
MEG in	26.97	Mar Wallan	3 1- 14007
TPA	24.08	DES STAME	///
BUET	11=14111	21.67	
EG (un-reacted)		4.816	dr 27 h
TPA (un-reacted)	1 4 /	2.408	
Water		43.34	
Total	72.24	72.234	
		person de la constitución de la	1111111111111

```
Balance Across Extense PRE - Polycondinsation E Unit CJ
  Tank
n 40 (CM2) coo (O ) coo (CM2)204 -
        n nof c" (o) - courch; ) on + (n-1) nocu; chi
  n BHET - + n PET + (n-1) EG
1: 254.24 192.2 62.07
MM: 254.24
 mous of BMET available = Stream 5
           =21.679 kmolly
                     = 5511,62 kg lhe
 [conversion = 921.] [From RnD report]
  80, Reacted BMET = 92% X [21.678]
                 = 19.944 kmollhs
                 = 5070.56 kg/hl.
   A unreacted BMET: (available - reacted BMET)
            = (21.678 - 19.944) kmol/hr
                = 1.734 Kmol/hr
                  = 440.85 kg/hz
```

moles of PET produced = moles of BUET seached 30 PET preduced = 19,944 kmol /hs. = 3833.24 kg/hl. meles of MEG vapors = (anders of BMET reached = 18,944 Kmol/W = 1175.85 kg/hs i stream enput antport 5517.62 Kg/M BUETIN 400.19kg/W 400.19kg/W 5 un-reacted 440.85 kg/ly BUET 3833.24 Kg/M P 9 Loducel 1175.85 4/M 10 E9 vapors log brokents Balance across mother visul of SEG EGRin (uniton) Stream 7 = stream 18 EGRin EGRIN 18 EGRIN FGRIN 20 = Total EGR in mother ussel. : MEG recipled: 179.38 kg/hr = EGR in stleam 20 CFrom cockette barance & across mixel] MEG recycled in stream 19= 21,19 kmol the = 1315.26 kg/hl CFrom balance across esterifier] % Total MEG in Alcam 17= 1315.26 + 179.38 = 1494.64 kg/hs.

	I enout the	(kg)	hr) Stream	
MEG	1494.64	-	17	-
EEG MEG	-	1315.26	19	
MEG		179.38		
Balar	nce acro	ss Distill	ation co	dunn
	Balance Across Distillation Column Curit HJ Mass input = mass centput			
=) 8	=) stream 6+ stream 13 = stram21 + stream			
wa	ter vagado	s in z r	rates vap	iors out
=	H20 vap	ours in	steam ?	4 = 40 in input stream 6
00	water vapours in = water vapors out Hro vapours in stream 2 = 420 in input stream 6 stream 21 = 780.12 kg/h/ Errom barance across esterifier J			
AX	so) bach	and the court of	m-	
unseacted Eq in stream 6 + Eq recorded in stream 13				
= spent EG in stleam 17.				
El secovered = (1494.64 - 298.93) kg/hs				
		2 1195.	71 kg/he	•
		nput	output	Stleam
Equ	n-seacted):	298.93/M	_	6
wa	ites 7	80.12 kg/hg	_	6
E9 81	covered	1195-71 kg/hl	-	13
spe	int Eg	-	1494.64 kg/	42 17
wa	vaposs.	_	180.12 kg/h	21

```
Balance Across Disc Ring Reactor
                      (unit D)
 cerrenced Reaction Yield & = 96%.
       [Flow RnD Repost]
stocker of en
unseacted BUET in stream 9= unreacted BUET
                           in stream 12
   BUETIN
 A stream 12 = 440, 85 kg lhs.
 BUET that will react = 0.96 × 440.85
                  =423. 20 kg /he =1. 6646 kmd/he
 BHET unreacted = 440.85-423.21
                  = 17.64 kg/hs.
                  = 0.069 kmol/hg
 PET formed = 300 kg the mous of BNET reacted
            = 1.6646 kmol 1 hg
             = # 319,94 kg/hs
 * small chain PET input = 3833, 24 kg lhs
                               [Stream 97
                                = Stlem 12
   EG vapots = 41,27 kg/hs
                                   = 19.944kmol)
               = 0.665 kmol/hr.
               [= fundes of BUET - 1)]
  Long chain PET = PET formed +
                   small chain PET input
              = 4153, 18 kg lhs
            2 21.608 knowl / hs
```

Input = contput PET in + BUET wasercled = solids + Eq vaposs thong chain 440.85 + 3833.24 = solids + 41.27 + 21.608 4153.18 solids = 49.6 4 kg/hr Input (19ths output 19ths) Streams PET input 3833.24 311 ET unseacted 940.85 #7.64 12 dy 16 solids 79.64 11 EG vapors - 41.27 11 Long Chain 4153.18 16 Balance Across Scrapper Condenser y Distillate Total input of EG = Stream 10 + stream !! = 1217.12 kg/hs. Let showering cold Eq = X kg/h/. Condensed EG = Y kg/hs uncondensed vapors out = 7 kg/hs By wass balance, input = output 1083.028 + X= 4+ Z -- O 4= X+ 1076.48 -- @ A Z = 21. 065 kg/hg

801			tion col	
		-X = 797		
		= Y = 199		
_scrap	per con	denser kg/m) output	alhs)	
	Input	19 m outpu	St.	leans
9 vapors	41.27	-	10	
vapors	1175.88	-	10	
Showered		-	14	
mdensote	-	1993.48	15	
ondensed	_	21.065		
Cone	densale	Collector		
	1	1	D 1+	
		put	output	Streams
iondenso	tity 19	93.48	-	15
cold Eg		- 7	197.394	14
Liquid EC	j l	- #	195071	13

c. Energy Balance:

Balance Across Mixer

$$T = 328 \text{ K}$$
 $P = 1 \text{ atm}$
 $(CP)_{PPA} = 2.82 \times 10^{5} \frac{kT}{kmol.K}$
 $(CP)_{PPA} = 2.69 \times 10^{5} \frac{kT}{kmol.K}$
 $(CP)_{PP$

```
For EG vapor (unreacted),
     Q= (4.816 kmo) (130 kmol K) (256) K
     + (4.816 \frac{\text{kmol}}{\text{hr}}) (6.56 \times 10^{4} \frac{\text{kJ}}{\text{kmol}})
0 = (1.6 + 3.16) \times 10^{5} \text{ kJ/hr} = 4.76 \text{ kJ/hr}
For TPA (unreacted)
    Q = (2.408 kmol) (350 KJ ) (256K)
     Q= 2.16 ×103 ×J/hr
For Water vapor,
      Q= mGAT+ mix
     a = (43.34 × (256 k)) (35.7 k) (256 k)
     \dot{Q} = (3.96 \times 10^{5} + 17.6 \times 10^{5}) (4.07 \times 10^{6} \frac{kJ}{km-1})
     Q = 2.16 \times 10^6 \text{ kJ/hr}
150 \quad \text{Total Qout} = 5.09 \times 10^6 \text{ kJ/hr}
  Also.
  Heat of reaction:
  TPA -8.16×165 KJ/kmol BHET -10.94×105 KJ/kmol
MEG -3.85×105 KJ/kmol Water -2.42×105 KJ/kmol
   Total Hr = - 9.16 ×106 rt | Kmol hr
    Q'in + Hr 1 - Dow = Qnet
        Q_{\text{net}} = (0.947 - 4.16 - 5.09) \times 10^6 \text{ kJ/hr}

Q_{\text{net}} = -8.3 \times 10^6 \text{ kJ/hr}
```

```
For EG vapors, 1

\lambda = 6.56 \times 10^4 \text{ kJ [kmo]}
     Q=mGAT+ml
    0 = (18,944 kmol) (131 KT) (272 K) +
                 (18.944 Kmol) (6.56 × 104 KJ)
    \hat{Q} = (6.75 + 12.4) \times 10^5 \text{ kJ/hr}

\hat{Q} = 19.2 \text{ kJ/hr} = 1.92 \times 10^6 \text{ kJ/hr}
  Total Qow = 3.05 x 107 kJ/hr
   Also, Heat of Reaction
    BHET -10.94 \times 10^5 ESTERNOT Hr = -248.36 \times 10^5
PET -19.74 \times 10^5 ESTERNOT FSTERNOT hr
    MEG - 3.85 X105 KJ (KMI)
· Flow Rate of Dow Therm required for this heat
      T = 284^{\circ}C = 557 + \Delta T = (557 - 545) K

Cp = 842.61 \ \text{KJ} | \text{kmol, k} = 12 \text{ k}
     Onet = Oin - Oout + Hr
   = (0.246 - 3.05 - 2.48) \times 10^{7} \text{ kJ/hr}
= -5.29 \text{ kJ/hr}
(M)_{dowtherm} = 0 = 5.29 \times 10^{7} \text{ kJ/hr}
(M)_{dowtherm} = 5229.56 \text{ kmol/hr}
(M)_{dowtherm} = 5229.56 \text{ kmol/hr}
```

```
Balance Across DRR
   T= 548 K
   P=1.5-1.2 mbar
  [nput] => @ T=545K DT = 272K
 For BHET unreacted, Q= mCp DT
       Q= (1-734 kmol) (405 kmol K) (272 K)
       Q = 1.91 X105 11/hr
 For PET, Q= (19.944 kmol) (5190 kJ) (272K)
          a = 2.82 x107 kJ/hr
  Total Oin= 2.83 X107 KJ/hr
 ONDW => @ T= 548K DT= 275 K
 For BHET unreacted, \dot{Q} = (0.0643 \frac{\text{kmol}}{\text{hr}}) (405 \frac{\text{kJ}}{\text{kmol}}) (275)
 For Long Chain PET, Q= (21.61 kmol) (5160 KJ) (275 K)
                   0 = 3.07 XID7
 For EG vapors, A = 6.56×109 Let | Kmo)
  Q= mCpAT+mA
  \hat{Q} = (0.665 \frac{\text{kinol}}{\text{hr}})(132 \frac{\text{KJ}}{\text{mod h}})(275 \text{ k}) +
   \hat{Q} = 6.78 \times 10^4 \text{ kJ} / \text{hr}
(0.665 \frac{\text{kmol.k}}{\text{hr}}) (6.56 \times 10^4 \frac{\text{kJ}}{\text{kmol}})
Total Oom = 3.07 ×107 kJ/hr
  Qnet = Qin - Qow = (2.83-3.07) X107 KJ
Qnet = 2.39 X106 KJ hr
```

```
Flow Rate of Dow Therm required for this heat,
        T = 286 °C = 559 k

C_9 = 842.61 \frac{kJ}{kmol.k}

\Delta T = (559 - 548)k

\Delta T = 11 k
      \frac{(m)_{dowtherm}}{(m)_{dowtherm}} = \frac{0}{Cp \Delta T} = \frac{2.39 \times 10^6 \text{ kJ/hr}}{(842.61 \text{ kJ})(11 \text{ k})} 
 \frac{(m)_{dowtherm}}{(m)_{dowtherm}} = \frac{258.17 \text{ kmol}}{hr} 
 Balance Across Distillation Column
      P= 260 mbar
Input |
For EG vapor unreacted, \dot{Q} = (4.82 \frac{\text{kmol}}{\text{Nr}})(130 \frac{\text{kJ}}{\text{kmol K}})(256\text{K})

(1 = 6.56 \times 10^4 \frac{\text{ks}}{\text{kmol}}) + (4.82 \frac{\text{kmol}}{\text{Nr}})(6.56 \times 16^4 \frac{\text{kJ}}{\text{kmol}})

\dot{Q} = (1.6 + 3.16) \times 10^5 \frac{\text{kJ}}{\text{kmol}}
                                            Q= 4.76 ×105 kJ/hr
 For Water vapors, A = 4.07 XID4 KJ/kmo)
Q= mCp DT+ind
   Q= (43.34 kmol) (35.7 kt ) (256 k)
           + (43.34) (4.07 ×104 +7/kmol)
   \hat{Q} = (3.96 + 17.6) \times 10^5 \text{ kJ/hr}

\hat{G} = 2.16 \times 10^6 \text{ kJ/hr}
Fir EG lig recovery, G=mcp DT, DT=80K
   Q = (19.27 kmol) (183 KJ ) (80K)
   $ = 2.82 X105 KJ/hr
Qin (total) = 2.92 x 106 kg/hr
```

```
] Output |
  For EGlig, A = 6.56 X104 KJ/kmol, DT=100 K
    Q = mcp AT + mx
    Q = (24.08 kmol) (160 KT) (100 K)
      + (24.08 kmol) (6.56 X104 kJ)
     0 = 3.85 kJ | hr
   For Condensed water, DT=40K
        à= (43.34 kmol) (65 ks) (40 K)
          Q = 1.13 KJ | hr
     total Qout = (1.13 +3.85) 105 KJ/hr
            · Qout = 4.98x10 kJ/hr
    \dot{Q}_{net} (Net Heat) = \dot{Q}_{in} - \dot{Q}_{out}

\dot{Q}_{net} = (2.92 \times 10^6 - 4.98 \times 10^5) \text{ kg/hr}

\dot{Q}_{net} = 2.42 \times 10^6 \text{ kg/hr}
 Balance Across Scrapper Condenser
  [Input]
   For EG vapors, \lambda = 6.56 \times 10^4 \text{ kJ/kmo}, \Delta T = 295 \text{ KG}
    Q = mcp AT + mid
    Q = (0.665 kmol) (132 kJ ) (275 K)
    \hat{\Phi} = \frac{(0.665 \text{ kmol})(6.56 \times 16^4 \text{ kJ/kmol})}{(2.42+4.36)(0^4 \text{ kJ/hr})} = 6.78 \times 16^4 \text{ kJ/hr}
```

Also for EG vapors,

$$\dot{Q} = (18.95 \frac{\text{kmol}}{\text{hr}})(132 \frac{\text{kJ}}{\text{kmol}})(275 \text{ K})$$
 $+ (18.95 \frac{\text{kmol}}{\text{hr}})(6.56 \times 10^4 \frac{\text{kJ}}{\text{kmol}})$
 $\dot{Q} = (6.88 + 12.4) \times 10^5 \text{ kJ/hr}$

For EG showered, $\dot{Q} = \dot{m} C_{p} \Delta T$
 $\dot{Q} = (12.85 \frac{\text{kmol}}{\text{hr}})(154 \frac{\text{kJ}}{\text{kmol}})(40 \text{ K})$
 $\dot{Q} = 7.9 \times 10^4 \text{ kJ/hr}$

Total $\dot{Q}_{1n} = (1.93 + 0.079 + 0.068) \times 10^6 \text{ kJ/hr}$
 $\dot{Q}_{1n} = 2.07 \times 10^6 \text{ kJ/hr}$

Output \Rightarrow

For Condensed EG, $\dot{Q} = \dot{m} C_{p} \Delta T$, $\Delta t = 80 \text{ K}$
 $\dot{Q} = (32.12 \frac{\text{kmol}}{\text{hr}})(157 \frac{\text{kJ}}{\text{kmol}})(80 \text{ K})$
 $\dot{Q} = 4.03 \times 10^5 \text{ kJ/hr}$

Total $\dot{Q}_{000} = 4.03 \times 10^5 \text{ kJ/hr}$

Net Heat, $\dot{Q}_{1n} = (2.07 - 0.403) \times 10^6 \text{ kJ/hr}$
 $\dot{Q}_{1n} = (2.07 - 0.403) \times 10^6 \text{ kJ/hr}$

Contributions of each Author:

- a. Process Flow Diagram: Diya Saraf, Sanskaar Srivastava
- b. Material Balance: Sakshi Dargu ,Aditya Gupta, Priyanshu Kamde
- Energy Balance: Sakshi Dargu, Diya Saraf

Sign the pdf and upload.		
Name	Roll No	Signature
Diya Saraf	220383	Digo
Sakshi Dargu	220323	
Sanskaar Srivastava	220967	Danekaar
Aditya Gupta	220066	Adilys
Priyanshu Kamde	220494	G