0.1 2007 午前

$$\boxed{ 1 \ (1)} A \, を簡約化すると、 \\ A \rightarrow \begin{pmatrix} 1 & -1 & -1 \\ 0 & 2 & 0 \\ 0 & -2 & 0 \end{pmatrix} \text{ \mathfrak{L} \mathfrak{D} } \text{ } \text{rank } A = 2 \, \mathfrak{T} \mathfrak{D} \mathfrak{S} \, .$$

$$(2) \text{det}(A - \lambda E) = \begin{vmatrix} -1 - \lambda & 1 & 1 \\ 1 & 1 - \lambda & -1 \\ -2 & 0 & 2 - \lambda \end{vmatrix} = \begin{vmatrix} -1 - \lambda & 1 & 0 \\ 1 & 1 - \lambda & \lambda - 2 \\ -2 & 0 & 2 - \lambda \end{vmatrix} = (-1 - \lambda)(1 - \lambda)(2 - \lambda) - \begin{vmatrix} 1 & \lambda - 2 \\ -2 & 2 - \lambda \end{vmatrix} =$$

方程式は $\lambda^2(2-\lambda)=0$ である.

(3) 固有値 $\lambda=0$ の固有空間は A の rank が 2 であることから 1 次元である. したがって重複度と一致しな いため、対角化不可能.

 $|2|(1)\phi_r(kA+B) = (kA+B) + r(t(kA+B)) = (kA+B) + rktA + rtB = \phi_r(kA) + \phi_r(B)$ である. よって 線形変換.

 $(2)E_{ij}$ を (i,j) 成分が 1 でそれ以外が 0 の行列とする. このとき、 $\{E_{11}, E_{12}, E_{21}, E_{22}\}$ は V の基底である.

$$\phi_r(E_{ij})=E_{ij}+rE_{ji}$$
 であるから ϕ_r の表現行列は $X=egin{pmatrix} 1+r&0&0&0\ 0&1&r&0\ 0&r&1&0\ 0&0&0&1+r \end{pmatrix}$ である.

$$X$$
を簡約化すると、 $X o egin{pmatrix} 1+r & 0 & 0 & 0 \ 0 & 1 & r & 0 \ 0 & 0 & 1-r^2 & 0 \ 0 & 0 & 0 & 1+r \end{pmatrix}$ である.

よって $r \neq \pm 1$ のとき rank X = 4 より dim ker $\phi_r = 0$ である. r = 1 のとき, rank X = 3 より dim ker $\phi_y = 1$ である. r = -1 のとき、 $\operatorname{rank} X = 1$ より $\dim \ker \phi_r = 3$ である.

(3)dim V – dim ker ϕ_r = dim Im ϕ_r である. よって $r \neq \pm 1$ のとき dim ker Im r = 4 である. r = 1 のとき, $\dim \operatorname{Im} \phi_r = 3 \text{ cbs}.$ $r = -1 \text{ Obs}, \dim \operatorname{Im} \phi_r = 1 \text{ cbs}.$

 $\fbox{3}$ $(1)x=rac{s+t}{2},y=rac{s-t}{2}$ より $R'=\left\{(s,t)\;\middle|\;\;a\leq s\leq b,rac{s+t}{2}\geq 0,rac{s-t}{2}\geq 0
ight\}$ にうつる.またヤコビ行列の行列式 $tarrow -\frac{1}{2}rac{a}{b}$

$$\iint_{R} \frac{x^{2} + y^{2}}{(x+y)^{3}} dx xy = \iint_{R'} \frac{\frac{s^{2} + t^{2}}{2}}{s^{3}} \frac{1}{2} ds dt = \frac{1}{4} \int_{a}^{b} \int_{-s}^{s} \frac{s^{2} + t^{2}}{s^{3}} dt ds = \frac{1}{4} \int_{a}^{b} \frac{1}{s^{3}} \left(\left[s^{2}t + \frac{1}{3}t^{3} \right]_{-s}^{s} \right) ds$$

$$= \frac{1}{4} \int_{a}^{b} \frac{8}{3} ds = \frac{2}{3} (b-a)$$

(2)

$$\frac{\partial}{\partial s} = \frac{\partial}{\partial x} \frac{1}{2} + \frac{\partial}{\partial y} \frac{1}{2}$$
$$\frac{\partial}{\partial t} = \frac{\partial}{\partial x} \frac{1}{2} + \frac{\partial}{\partial y} \frac{-1}{2}$$

である. よって $\left(\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2}\right) = 4\frac{\partial}{\partial s}\frac{\partial}{\partial t}$ である. すなわち $\frac{\partial^2}{\partial s\partial t}g = 0$ が成り立つ.

よって $\frac{\partial}{\partial t}g$ は s についての定数関数である. したがって $\frac{\partial}{\partial t}g(s,t)=g_2(t)$ なる関数 g_2 が存在する. t につい て積分すれば $g(s,t)=f_1(s)+f_2(t)$ とできる.ここで f_2 は g_2 の不定積分の一つであり, f_1 は積分定数であ る. よって $f(x,y) = f_1(x+y) + f_2(x-y)$ と表せる.

 $\boxed{4}$ (1)u(x) は v(x) が正値関数のため、狭義単調増加な連続関数であり極限が無限大に発散する

から
$$u$$
 は全単射である. $u(x)=t$ で変数変換できて、 $dt=u'(x)dx=v(x)dx$ である. したがって
$$\int_{1}^{R}u(x)^{\alpha}v(x)dx=\int_{u(1)}^{u(R)}t^{\alpha}dt=\begin{cases} \frac{1}{\alpha+1}\begin{bmatrix}x^{\alpha+1}\end{bmatrix}_{u(1)}^{u(R)} & (\alpha\neq-1)\\ [\log t]_{u(1)}^{u(R)} & (\alpha=-1) \end{cases}=\begin{cases} \frac{1}{\alpha+1}(u(R)^{\alpha+1}-u(1)^{\alpha+1}) & (\alpha\neq-1)\\ \log u(R)-\log u(1) & (\alpha=-1) \end{cases}$$
 であ

る. よって $\alpha+1<0$ のときのみ, $u(R)\to\infty$ で収束する. それ以外では発散する. すなわち $\alpha<-1$ のとき のみ $R \to \infty$ で収束し、それ以外では発散する.