DIVE: Dynamic Inhomogeneous Volumetric Environments for Computer Graphics and Visualization

Jing Hua

Thesis Proposal

Department of Computer Science Stony Brook University

Advisor: Professor Hong Qin

December, 2003

Abstract

This thesis proposal presents a novel spline-based framework for haptics-enabled modeling, manipulating, and visualizing volumetric data. We have systematically developed new Dynamic Inhomogeneous Volumetric Environments, DIVE, for volumetric data and/or solid geometry with inhomogeneous attributes. Our environment is founded upon spline-based volumetric implicit functions and powerful physics-based modeling. This new paradigm affords representing, direct modeling, and rendering of multi-dimensional, physical attributes across any volumetric objects. In particular, we employ the trivariate B-splines to model volumes of structured grids, and we use the trivariate simplex splines to represent a tetrahedral decomposition of any 3D domain with complicated geometry and arbitrary topology. The multiresolution capability is achieved by interactively subdividing any region of interest and allocating more knots and control coefficients accordingly. The feature-sensitive fitting algorithms that we develop can reconstruct a more compact, continuous representation for real-world data.

In addition, our spline-based models are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. The versatility of our dynamic volumetric modeling affords users to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive interface for direct manipulation. We augment our framework with a 3D haptic interface, further facilitating the realistic manipulation of any modeled dataset. Within our framework, users can easily manipulate the geometry and topology of modeled objects, as well as their physical properties through intuitive, haptic means with force feedback.

Another major contribution of this thesis proposal is the new Scalar-Field-guided shape Deformation (SFD) technique for free-form deformations. In contrast to the traditional lattice-based FFD driven by parametric geometry and spline theory, we employ scalar fields as embedding spaces instead. Upon the deformation of the scalar field, the vertices will move accordingly, which result in free-form deformations of the embedded object. The scalar field construction, sketching, and manipulation are both natural and intuitive. By tightly coupling self-adaptive subdivision and mesh optimization with SFD, versatile multi-resolution free-form deformations can be achieved because our algorithm can adaptively refine and improve the model on the fly to improve the mesh quality. We can also enforce various constraints on embedded models, which enable our technique to preserve the shape features and facilitate more sophisticated design. Our system demonstrates that SFD is very powerful and intuitive for shape modeling. It significantly enhances traditional FFD techniques and facilitates a larger number of shape deformations.

Our approach and the entire framework have diverse applications, including solid modeling, shape design, heterogeneous modeling of physical objects and properties, material editing and reconstruction, reverse engineering and model reconstruction from samples, haptic rendering, volume simplification and visualization, medical data exploration and visualization. More generally, it can be used for more general data modeling, such as weather data modeling, and geographical data modeling.

Contents

1	Intr	oduction	1
	1.1	Problem Statement	2
	1.2	Contributions	4
	1.3	Research Plan	5
		1.3.1 Summary of Current Work	5
		1.3.2 Summary of Remaining Work	6
	1.4	Thesis Proposal Organization	6
2	Bacl	kground	7
	2.1	Overview of Geometric Modeling Techniques	7
	2.2	Definition of Implicit Functions	0
	2.3	Implicit Functions for Computer Graphics	1
		2.3.1 Implicit Functions for Geometric Modeling	2
		2.3.2 Surface Reconstruction Using Implicit Functions	5
		2.3.3 Animation Using Implicit Functions	6
		2.3.4 Shape Morphing Using Implicit Functions	7
	2.4	Rendering of Implicit Functions	8
		2.4.1 Polygonization	8
		2.4.2 Ray Tracing	9
	2.5		20
	2.6	Haptic Interaction	23
	2.7	Discussion	
3	Imp	1 0	26
	3.1	Introduction and Motivation	
	3.2	Volumetric Implicit Functions	
		3.2.1 Tensor-Product Scalar B-splines	27
		3.2.2 Building Volumetric Implicit Functions	28
	3.3	Geometric Modeling	29
	3.4	Hierarchical Implicit Function Fitting	32
	3.5	Haptic Feedback	34
	3.6	Discussion	36
	a.		
4			37
	4.1		37
	4.2	Trivariate DMS-spline Volumes	
			38
		1	39
	4.0		11
	4.3	ϵ	11
		4.3.1 Interactive Tetrahedralization	12

		4.3.2 Geometric Editing Using Control Points	12
		4.3.3 Attribute Editing Using Control Coefficients or Control Points	13
	4.4	Feature Sensitive Data Fitting	15
		4.4.1 The Fitting Algorithm	16
		4.4.2 Finding a Good Initial Tetrahedralization	17
		· · · · · · · · · · · · · · · · · · ·	19
		4.4.4 Local Adaptive Refinement	51
	4.5	Visualization Techniques	52
		4.5.1 Direct Volume Rendering	52
		4.5.2 Marching Tetrahedra Isosurfacing	
	4.6	Implementation and Discussion	
	4.7	Discussion	
5	_		57
	5.1	Introduction and Motivation	
	5.2	Dynamic Parametric Spline Solids	
	5.3	Dynamic Volumetric Models	
		5.3.1 Integration of Elasticity with Attribute Fields	
		5.3.2 Response to Applied Forces	
	5.4	Overview of Our Approach	
	5.5	Numerical Integration and Simulation	
		5.5.1 Explicit Time Integration	
		5.5.2 Implicit Time Integration	
	5.6	Interaction Techniques	55
		5.6.1 Haptic Tools	55
		5.6.2 Constraint-based Tools	59
	5.7	Discussion	1
6	Scal	ar-Field-Guided Shape Deformation 7	73
U	6.1	Introduction	
	6.2	SFD Space Definition using Scalar Field	
	6.3	Scalar-Field-Guided Shape Deformation	
	6.4	SFD Model Optimization	
	0.4	•	79
			30
	6.5	1	30
	0.5	•	31
			32
			33
	6.6	y 1	35 35
	6.7	1	90
	6.7		?U

7	Hap	otic Modeling of Dynamic Meshes and Point Set Surfaces	94			
	7.1	Introduction	94			
	7.2	Direct Manipulation of Polygonal Objects with Haptics	95			
		7.2.1 PDE-Based Surface Flow	95			
		7.2.2 Force Models	95			
		7.2.3 Haptics-Based Mesh Editing	97			
	7.3	Touch Enabled Editing on Point Set Surfaces	99			
		7.3.1 Construct Volumetric Implicit Representation for Point Set Surface	100			
		7.3.2 Dynamic Update of Point Set Surface	101			
		7.3.3 Editing Toolkits	102			
8	DIV	E System Architectures and Time Performance	104			
	8.1	Spline-based Dynamic Volumetric Modeling Environment	104			
		8.1.1 System Implementation	105			
		8.1.2 Results and Time Performance	106			
	8.2	Scalar-Field-Guided Shape Deformation System	107			
9	Con	nclusion and Future Work	110			
	9.1	Conclusion	110			
	9.2	Future Work	111			
		9.2.1 Short Term	111			
		9.2.2 Long Term	112			
	9.3	Recent Publications	113			
	9.4	Publication Plan	114			
Bi	Bibliography					