The causal effect of early retirement on medication use across sex and occupation: Evidence from Danish administrative data

Jolien Cremers^{1,2}, Torben Heien Nielsen³, Claus Thorn Ekstrøm¹

¹University of Copenhagen, Section of Biostatistics, Department of Public Health

²Statistics Denmark

³University of Copenhagen, Center for Economic Behavior and Inequality, Department of Economics

May 28th, 2020

Why?

Challenges in the literature:

- Directionality, size, reverse causality
- Adequate measures of health

Common patterns:

- self-reported health based studies: positive effect¹
- administrative data: decline in doctors' appointments and hospital utilization²
- mental health & medication use: mixed results³

¹e.g. Coe & Zamarro (2011), Eibich (2015), Shai (2018), Gorry, Gorry & Slavov (2018)

²Bíró & Elek (2018), Nielsen (2019), Frimmel & Pruckner (2020), Perdrix (2020), Hallberg, Johansson & Josephson (2015), Kuusi, Martikainen & Valkonen (2020)

³Coe & Zamarro (2011), Mazzonna & Peracci (2012), Kolodziej & García-Gómez (2019), Biró & Elek (2018), Hagen (2018), Perdrix (2020), Gorry et.al. (2018), Frimmel & Pruckner (2020)

How?

Registry data:

- large administrative data source
- specific health conditions
- monthly data

Approach:

- recent reform -> eligibility age enforced by law instead of (financial) incentives -> improved identifiability
- heterogeneity by occupation, sex, medication types
- improved IV technique for binary outcomes⁴

⁴g-estimation, Vansteelandt, Bowden, Babnezhad & Ghoetghebeur (2011)

Reform

Table 1: Ages at which Early Retirement Pension (ERP) is available according to date of birth.

Date of Birth	ERP age
< 1954	60
≥ 0 1-January-1954	60.5
\geq 01-July-1954	61
≥ 0 1-January-1955	61.5
≥ 0 1-July-1955	62
≥ 0 1-January-1956	62.5
\geq 01-July-1956	63
≥ 0 1-January-1959	63.5
≥ 0 1-July-1959	64
> 1963	computed in relation
	to life expectancy

Labour market attachment age 58-63

IV model

- ► ERP: retirement between age 60-60.5
- ➤ YOB: year of birth, pre-1954 (unaffected cohorts) or ≥ 1954 (affected cohorts)
- MED: medication use between age 60-60.5 (short-term) or 60-63

(long-term)

- MH: medication use between age 59.5-60, 0, ≤7, ≤31 or >31 daily defined
 - S: sex (male/female)

doses a month

O: longest held occupation type between age 45-55.

IV model

$$P(\mathsf{MED}_i = 1) = logit^{-1}(\beta_0 + \beta_1 \mathsf{ERP}_i + \beta_2 \mathsf{S}_i + \beta_3 \mathsf{O}_i + \beta_4 \mathsf{MH}_i + u_i)$$

$$P(\mathsf{ERP}_i = 1) = logit^{-1}(\gamma_0 + \gamma_1 \mathsf{YOB}_i + \gamma_2 \mathsf{S}_i + \gamma_3 \mathsf{O}_i + \gamma_4 \mathsf{MH}_i + \nu_i)$$

Medication types

Painkillers⁵

musculosceletal disorders

Medication to reduce blood pressure⁶

- job strain
- control over work

Antidepressants and medications for anxiety and sleep disorders⁷

- stress
- low physical activity
- shift work and insomnia

⁵M02AA, N02A, N02B (antiinflammatory preparations, non-steroids for topical use, opioids, other analgesics and antipyretics) N02BE01, N02BE05, N02BA01, N02BA51, N02BB51 and 200 mg M01AE01 are not included

⁶C02, C03, C07, C08, C09 (antihypertensives, diuretics, beta blocking agents, calcium channel blockers, agents acting on the renin-angiotensin system)

⁷N05B N05C, N06A, N06C (anxiolytics, hypnotics and sedatives, antidepressants, psycholeptics and psychoanaleptics in combination)

Results

Percentage point change in medication use if all would have retired

Conclusion

- ▶ Decrease in overall medication use and use of painkillers
- ► Heterogeneous effects across medication and population groups
- ► Effect not persistent long term

Discussion

- ▶ Upper white-collar, income/wealth effects
- ► No long-term effects?
- Effects on amount of medication use (IV models for count/zero-inflated outcomes)
- Different types of medication, split up mental health medication?

References I

Bíró, A., & Elek, P. (2018). How does retirement affect healthcare expenditures? Evidence from a change in retirement age. Health Economics, 27, 803-818.

Coe, N. B., & Zamarro, G. (2011). Retirement effects on health in Europe. Journal of Health Economics, 30(1), 77–86.

Eibich, P. (2015). Understanding the effect of retirement on health: Mechanisms and heterogeneity. Journal of Health Economics, 43, 1-12.

Frimmel, W., & Pruckner, G.J. (2020). Retirement and healthcare utilization. Journal of Public Economics, 184, 104164.

Gorry, A., Gorry, D., & Slavov, S.N. (2018). Does retirement improve health and life satisfaction? Health Economics, 27, 2067-2068.

References II

Hagen, J. (2018). The effects of increasing the normal retirement age on health care utilization and mortality. Journal of Population Economics, 31, 193-234.

Hallberg, D.P., Johansson, P., & Josephson, M. (2015). Is an early retirement offer good for your health? Quasi-experimental evidence from the army. Journal of Health Economics, 44, 274-285.

Kolodziej, I. W. K., & García-Gómez, P. (2019). Saved by retirement: Beyond the mean effect on mental health. Social Science and Medicine, 225, 85–97.

Kuusi, T., Martikainen, P., & Valkonen, T. (2020). The influence of old-age retirement on health: Causal evidence from the Finnish register data. The Journal of the Economics of Ageing, 100257.

Mazzonna, F, & Peracchi, F (2012), Aging, Cognitive abilities and retirement? European Economic Review, 56(4), 691-710

References III

Nielsen, N.F. (2019). Sick of retirement? Journal of health economics, 65, 133-152.

Shai, O. (2018). Is retirement good for men's health? Evidence using a change in the retirement age in Israel. Journal of Health Economics, 57, 15-30.

Vansteelandt, S., Bowden, J., Babanezhad, M., & Goetghebeur, E. (2011). On instrumental variables estimation of causal odds ratios. Statistical science: a review journal of the Institute of Mathematical Statistics, 26(3), 403-422.

Descriptives

		Year of birth					
		<1954 (N = 222,269)			≥1954 (N = 231,722)		
		All	ERP = yes	ERP = no	All	ERP = yes	ERP = no
S	male	0.51	0.39	0.54	0.51	0.45	0.51
	female	0.49	0.61	0.46	0.49	0.55	0.49
0	blue-collar	0.27	0.35	0.25	0.25	0.13	0.25
	lower white- collar	0.41	0.46	0.39	0.42	0.43	0.41
	upper white- collar	0.22	0.12	0.25	0.20	0.29	0.20
	no occupation	0.10	0.07	0.10	0.14	0.15	0.14
МН	0 DDD/month	0.30	0.26	0.31	0.30	0.22	0.30
	≤ 7	0.14	0.12	0.14	0.14	0.12	0.14
	DDD/month						
	≤ 31 DDD/month	0.19	0.19	0.19	0.19	0.19	0.19
	> 31 DDD/month	0.37	0.43	0.36	0.37	0.47	0.37
MH type	none	0.30	0.25	0.31	0.30	0.22	0.30
	hypertension	0.32	0.36	0.31	0.31	0.36	0.31
	painkillers	0.02	0.03	0.02	0.03	0.05	0.03
	mental	0.06	0.07	0.05	0.05	0.09	0.05
	other	0.30	0.29	0.30	0.31	0.29	0.31
ERP	no	0.80	0	1	0.98	1	0
	yes	0.21	1	0	0.02	0	1

Medication frequencies

Table 2: Most frequently used types of prescription medication (\leq 15%) in the period 2008-2017 among individuals aged 58-63 that have used prescription medication at least once.

medication type (ATC)	percentage	subtypes (≤10%)
antiinfectives for systemic use (J01)	68%	penicillins
antiinflammatory and antirheumatic products (M01)	46%	ibuprofen
analgesics (N02)	45%	paracetamol, tramadol
agents acting on the renin-angiotensin system (C09)	32%	ACE inhibitors (plain),
		Angiotensin II receptor blockers (plain)
lipid modifying agents (C10)	30%	HMG C0A reductase inhibitors
drugs for acid related disorders (A02)	29%	proton pump inhibitors
opthalmologicals (S01)	28%	antibiotics
corticosteroids, dermatological preparations (D07)	28%	corticosteroids, (potent, group III)
psycholeptics (N05)	21%	benzodiazepine derivatives + related drugs
antithrombotic agents (B01)	21%	platelet aggregation inhibitors
diuretics (C03)	20%	thiazides and potassium in combination
calcium channel blockers (C08)	19%	dihydropyridine derivatives
antifungals for dermatological use (D01)	17%	imidazole and triazole derivatives
beta blocking agents (C07)	17%	beta blocking agents (selective)
psychoanaleptics (N06)	17%	selective serotonin reuptake inhibitors
drugs for obstructive airway diseases (R03)	16%	selective beta-2-adrenoreceptor agonists
cough and cold preparations (R05)	16%	=
sex hormones and modulators of the genital system (G03)	15%	estradiol