MAT 1741-Problèmes de pratique-Sous-Espace vectoriel et système générateur

- 1. Dans chaque cas, déterminer si le sous-ensemble U de l'espace vectoriel V est un sous-espace vectoriel de V. Si vous dites que U est un sous-espace vectoriel de V, montrer le. Si vous dites que U n'est pas un sous-espace vectoriel de V, expliquer pourquoi.
 - (a) $U = \{(x, y, z) \in \mathbb{R}^3; \ x^2 y^2 + z^2 \ge 3\}, \ V = \mathbb{R}^3.$
 - (b) $U = \{(x, y, z) \in \mathbb{R}^3; x + y + 2z = 1\}, V = \mathbb{R}^3.$
 - (c) $U = \{(x, y) \in \mathbb{R}^2; x \le 0, y \ge 0\}, V = \mathbb{R}^2.$
 - (d) $U = \{(x, y, z) \in \mathbb{R}^3; xyz = 0\}, V = \mathbb{R}^3.$
 - (e) $U = \{(x, y, 2x^2 y^2); x, y \in \mathbb{R}\}, V = \mathbb{R}^3$
 - (f) $U = \{(2x, x y, x + 2y, -2x + y); x, y \in \mathbb{R}\}, V = \mathbb{R}^4.$
 - (g) $U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; ad = 0 \right\}, V = \mathbb{M}_{22}(\mathbb{R})$
 - (h) $U = \left\{ \begin{bmatrix} a+2b+c & -b & 0 \\ a-c & b+2c & -a \\ 0 & 0 & a+b+c \end{bmatrix}; a, b, c \in \mathbb{R} \right\}, V = \mathbb{M}_{33}(\mathbb{R})$
 - (i) $U = \{p(x) \in \mathbb{P}_3; \ p(0) = (p(1))^2\}, \ V = \mathbb{P}_3$
 - (j) $U = \{p(x) \in \mathbb{P}_4; \ p(0) = p(1)\}, \ V = \mathbb{P}_4$
 - (k) $U = \{p(x) \in \mathbb{P}_3; \deg p(x) = 3\}, V = \mathbb{P}_3$
 - (1) $U = \{ f \in \mathbb{F}(\mathbb{R}, \mathbb{R}) ; f'' 2f' + f = 0 \}, V = \mathbb{F}(\mathbb{R}, \mathbb{R}) \}$
 - (m) $U = \{ f \in \mathbb{F}(\mathbb{R}, \mathbb{R}) ; 2f(0) = -f(-1) \}, V = \mathbb{F}(\mathbb{R}, \mathbb{R}) \}$
 - (n) $U = \{ f \in \mathbb{F}(\mathbb{R}, \mathbb{R}) ; f(0) + f(-1) = 2 \}, V = \mathbb{F}(\mathbb{R}, \mathbb{R}) \}$
- 2. (1) Écrire si possible chacun des vecteurs suivants comme une combinaison linéaire des vecteurs 1 + x, $1 + x^2$ et $x + x^2$ dans \mathbb{P}_2 .

(a)
$$1 - 3x + 2x^2$$
 (b) x (c) x^2

(2) Écrire si possible chacun des vecteurs suivants comme une combinaison linéaire des vecteurs 1 + x, $1 + x^2$ et $x - x^2$ dans \mathbb{P}_2 .

(a)
$$1 - 3x + 2x^2$$
 (b) $1 - 3x + 4x^2$

- (3) Pour quelle(s) valeur(s) du réel t a-t-on $1-x+tx^2 \in \text{span}\{1+x, 1+x^2, 2+2x^2\}$
- 3. Soit $A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$ et considérer l'ensemble

$$U = \{X \in \mathbb{M}_{22}; \ AX = XA\}.$$

Montrer que U est un sous-espace de \mathbb{M}_{22} et en donner un système générateur.

4. Parmi les fonctions suivantes de l'espace $\mathbb{F}([0, \pi], \mathbb{R})$, lesquelles sont dans span $\{\cos^2 x, \sin^2 x\}$?

(a)
$$\cos 2x$$
 (b) x^2 (c) 1 (d) $\sin(2x)$

5. Soit

$$U = \left\{ A \in \mathbb{M}_{33} \left(\mathbb{R} \right); \ A = A^T \right\}.$$

Montrer que U est un sous-espace de $\mathbb{M}_{33}\left(\mathbb{R}\right)$ et en donner un système générateur.

6. Considérer les trois vecteurs suivants de \mathbb{R}^4 :

$$v_1 = (-1, 2, -3, 1), v_2 = (1, 0, 2, 1), v_3 = (0, -4, -3, 2).$$

- (1) Dans chaque cas, déterminder si $v \in \text{span}\{v_1, v_2, v_3\}$. Si vous dites que $v \in \text{span}\{v_1, v_2, v_3\}$, écrivez le vecteur comme une combinaison linéaire de v_1, v_2 et v_3 .
- (a) v = (0, 0, -5, 6)
- (b) v = (0, -2, -4, 0)
- (c) v = (0, -8, -6, 4)
- (2) Soit v=(-1,2,-8,t). Pour quelle(s) valeur(s) du réel t a-t-on $v\in \mathrm{span}\{v_1,\,v_2,\,v_3\}$.
- 7. Considérer les trois matrices suivantes de M_{22} :

$$A_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Dans chaque cas, déterminer si $A \in \text{span} \{A_1, A_2, A_3\}$:

$$(a) A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad (b) A = \begin{bmatrix} 1 & 4 \\ 2 & 1 \end{bmatrix} \quad (c) A = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$$

- 8. Soit U et W deux sous-espaces d'un espace vectoriel V.
 - (1) Montrer que l'intersection, $U \cap W = \{v \in V; v \in U \text{ et } v \in W\}$, de U et W est un sous-espace de V.
 - (2) Montrer qu'en général l'union, $U \cup W = \{v \in V; v \in U, \text{ ou } v \in W\}$, de U et W n'est pas un sous-espace de V (il suffit de donner un exemple où $U \cup W$ n'est pas un sous-espace).
 - (3) On définit la somme de U et W comme étant l'ensemble noté U+W des vecteurs de V qui sont de la forme u+w avec $u\in U$ et $w\in W$:

$$U + W = \{u + w; u \in U \text{ et } w \in W\}.$$

Montrer que U + W est un sous-espace de V.

- 9. Soit V un espace vectoriel et $v \in V$ un vecteur non nul.
 - (1) Quels sont les sous-espaces de span $\{v\}$?
 - (2) Si a est un scalaire non nul, montrer que span $\{av\}$ = span $\{v\}$
 - (3) Plus généralement, si v,v_1,v_2,\ldots,v_n sont des vecteurs dans V tels que $v\in \text{span}\{v_1,v_2,\ldots,v_n\}$, montrer que

$$span\{v, v_1, v_2, \dots, v_n\} = span\{v_1, v_2, \dots, v_n\}$$

(En d'autres mots, on ne change pas l'enveloppe linéaire si on enlève un vecteur qui est une combinaison linéaire des autres). En déduire que

$$\operatorname{span} \{ (-1,0,1,2), (1,-1,-4,2), (-1,0,0,2), (-1,-1,-3,6), (-2,1,5,0) \}$$

$$= \operatorname{span} \{ (-1,0,1,2), (1,-1,-4,2), (-1,0,0,2) \}$$

dans \mathbb{R}^4 .