Proposta per l'elaborato di matematica e fisica

Grafico della funzione derivata e correnti di spostamento

Rifletti sulla teoria

- La funzione f(x) è dispari e continua in \mathbb{R} . Verifica che il suo grafico passa per l'origine 0 del sistema di riferimento.
- Definisci la primitiva di una funzione f(x) e spiega come si possono usare le primitive delle funzioni nel calcolo dell'integrale definito.
- La funzione f(x) è pari e integrabile in \mathbb{R} . Verifica che $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx.$
- Enuncia il teorema della circuitazione di Ampère e spiega perché il campo magnetico \vec{B} non è conservativo.
- Determina l'espressione per il campo magnetico all'interno di un solenoide rettilineo percorso da una corrente *i*.
- Durante il processo di carica un condensatore immagazzina energia. Da dove proviene questa energia? Quanto vale la densità di energia per unità di volume?

Mettiti alla prova

Il grafico in figura rappresenta l'andamento della funzione

$$f(x) = \frac{8}{x^2 + 4}.$$

- 1. Disegna l'andamento probabile del grafico della funzione f'(x), senza eseguire lo studio di funzione. Basati sui dati deducibili dal grafico e motiva le scelte effettuate.
- 2. Dimostra mediante la definizione di derivata che la derivata di una funzione derivabile e pari è dispari.
- 3. Puoi dire la stessa cosa delle primitive di una funzione pari?

Un condensatore piano ha le armature di forma circolare e di raggio R. Supponi di poter trascurare gli effetti al bordo.

4. Spiega l'ipotesi di Maxwell delle correnti di spostamento.

- **5.** Determina l'espressione del campo magnetico indotto B(t) a distanza r < R dall'asse del condensatore se l'intensità del campo elettrico tra le armature varia secondo la legge $E(t) = E_0 f(t)$, con $f(t) = \frac{8}{t^2+4}$.
- **6.** Cosa cambia nell'espressione trovata se r > R?