Homework 4 Report

Professor Pei-Yuan Wu EE5184 - Machine Learning

資料科學學位學程碩一 R07946007 陳庭安

Problem 1.

(0.5%) 請說明你實作之 RNN 模型架構及使用的 word embedding 方法,回報模型的正確率並繪出訓練曲線 *。

* 訓練曲線 (Training curve):顯示訓練過程的 loss 或 accuracy 變化。橫軸為 step 或 epoch, 縱軸為 loss 或 accuracy。

RNN 模型架構

一層 units = 80 的 LSTM,Dropout rate = 0.3,接一層的 Fully connected layer (activation = 'softmax'),每筆 data output 2 個 prediction 值,分別是惡意評論、非惡意評論的預測機率值

Word embedding 方法

每個詞頻介於第 10 百分位至第 95 百分位的 word*,經 word2vec model 15 次 iterations 映射到 200 維的向量空間。(*詞頻太低或太高的字捨去)

Word vectors 丟進 LSTM 前先做 padding,把每個評論字數不足 40 的補零向量,超出 40 的截斷。

RNN 模型正確率

[Epoch = 10, Optimizer = SGD(Ir = 0.05, momentum = 0.9), loss = binary cross entropy error]

Training accuracy	Validating accuracy	Testing accuracy
		(Public / Private)
0.7471	0.7255	0.7247 / 0.7242

Training Curves

(0.5%) 請實作 BOW+DNN 模型, 敘述你的模型架構, 回報正確率並繪出訓練曲線。

BOW+DNN 模型架構

四層 Fully connected layers,輸出的 nodes 個數分別為 128, 64, 32, 2 個。前三層 activation = 'relu',有做 Batch Normalization 與 Dropout(0.3);最後一層 activation = 'softmax'

BOW+DNN 模型正確率

[Epoch = 10, Optimizer = SGD(Ir = 0.05, momentum = 0.9), loss = binary cross entropy error]

Training accuracy	Validating accuracy	Testing accuracy
		(Public / Private)
0.7840	0.7206	0.7143 / 0.7132

Training Curves

Problem 2. (1%) 請敘述你如何 improve performance(preprocess, embedding, 架構等), 並解釋為何這些做法可以使模型進步。

Preprocessing - 斷詞。中文句子大多時候詞比字更有其意義。

Word embedding – 詞頻過低或過高的字不放入 model train。詞頻過低,表示該字很少出現,而詞頻過高,有可能大多數評論都有出現該詞,該詞無代表性。

Padding - 截斷字數取 40 是因為 8~9 成的評論字數不超過 40 字。截斷字數取太小,model 會學不到句子的意義;而取太大,大部分評論會補非常多零向量,model 可能會被太多的 0 影響而造成bias。

Model 架構 -加 Batch normalization 是把 data 做 scaling,避免 gradient descent 更新參數受大值影響,加 Dropout 是防止 overfitting。

Problem 3. (1%) 請比較不做斷詞 (e.g., 以字為單位) 與有做斷詞,兩種方法實作出來的效果差異,並解釋為何有此差別。

Accuracies after 10th epoch:

Model /	Training	Validating	Testing
Method	Accuracy	Accuracy	Accuracy
			(Public/Private)
LSTM with	0.7471	0.7255	0.7247 / 0.7242
Word Segmentation			
BOW + DNN with	0.7840	0.7206	0.7143 / 0.7118
Word Segmentation			
LSTM without	0.5788	0.5220	0.6473 / 0.6520
Word Segmentation			
BOW + DNN without	0.7660	0.7117	0.7118 / 0.7085
Word Segmentation			

若沒有做斷詞就丟入 LSTM 表現會很差,而且 training 過程十分不穩定,因為 詞在句子中擺放的相對位置會比字來的固定,LSTM 考慮的就是順序性,所以相對字,有做斷詞的結 果會好很多。

有無做斷詞對於 Bag of Words + DNN 的方法,影響就小很多,因為只有考慮字詞出現的頻率而沒有考慮順序性。但畢竟詞比字來的有其意義,所以有斷詞的結果還是稍微好點。

Problem 4. (1%) 請比較 RNN 與 BOW 兩種不同 model 對於" 在說別人白痴之前,先想想自己"與"在說別人之前先想想自己,白痴" 這兩句話的分數(model output),並討論造成差異的原因。

預測為惡意評論的機率:

Model / Method	在說別人白痴之前,先想想自己	在說別人之前先想想自己,白痴
LSTM with	0.6973	0.7097
Word Segmentation		
BOW + DNN with	0.2672	0.2672
Word Segmentation		
LSTM without	0.5410	0.5410
Word Segmentation		
BOW + DNN without	0.5514	0.5514
Word Segmentation		

兩句話字詞內容相同,只是語序不同,所以在 BOW + DNN 模型下兩句話的預測結果一定是相同的。

沒有做斷詞兩種方法都有點難辨識是否為惡意評論,可能原因是沒有考慮詞的意義,'白'、'痴'與'白痴'意義就不同。

然而有做斷詞的 BOW + DNN 卻是預測不是惡意評論,這有點出乎意料,有種可能是 data 中'白痴'出現的頻率不高,在 preprocessing 的時候忽略掉了,而其他像是'別人'、'之前'、'自己'等字詞單看都比較沒惡意,所以被預測為非惡意評論。

有做斷詞的 LSTM 預測這兩句話為惡意評論機率值都最高,最準確,因為有考慮詞的意義與順序性。前述'白痴'可能被篩掉、沒被考慮的假設下,LSTM 仍有可能從 ['在','說','別人','之前','先','想想','自己] 的語序判斷此為一則惡意評論。

所以詞頻過濾對於 BOW+ DNN 的預測結果有很大的影響。

ML HWY.

fe(x): decision stump

٤ŧ

dt = Indt

utti = ut . exp (- y" ft (x") . at).

Final classifier
$$H(x) = sign(\frac{3}{10} \times 10^{-2} + 6 \times 10^{-2})$$

= $\begin{cases} 1, x = 0, 2, 3, 4 \\ -1, x = 1, 5, 6, 1, 8, 9 \end{cases}$

ML HWY.

$$t=2$$
, $z=-2$, $z:=90$, $zf=10$, $z_0=90$, $c=3$

$$g(z)=-2$$
, $f(zi)=1$, $f(z_f)=1$, $f(z_0)=1$

$$c'=1\cdot(-2)+3\cdot 1=1$$

$$y_2=1\cdot 1=1$$

t=3,
$$z=4$$
, $z_i=190$, $z_f=-90$, $z_0=90$, $c=1$
 $g(z)=4$, $f(z_i)=1$, $f(z_f)=0$, $f(z_0)=1$
 $c'=1.4+1.0=4$
 $y_3=1.4=4$

$$t=4$$
, $Z=0$, $Z_i=90$, $Z_f=10$, $Z_0=90$, $Z_0=4$
 $g(Z_0)=0$, $f(Z_0)=1$, $f(Z_0)=1$, $f(Z_0)=1$
 $C'=1\cdot0+4\cdot1=4$
 $Y_4=1\cdot4=4$

((cont.)

$$t=5$$
, $z=2$, $z:=90$, $zf=10$, $zo=-10$, $c=4$
 $g(z)=z$, $f(z;)=1$, $f(zf)=1$, $f(ze)=0$
 $c'=1\cdot z+4\cdot 1=6$
 $y_5=0\cdot 6=0$
 $t=6$, $z=-4$, $z:=-10$, $zf=1(0)$, $z_0=90$, $c=6$
 $g(z)=-4$, $f(zi)=0$, $f(zf)=1$, $f(z_0)=1$
 $c'=0\cdot (-4)+6\cdot 1=6$

$$t=1$$
, $z=1$, $z:=190$, $zf=-90$, $zo=90$, $c=b$

$$g(z)=1$$
, $f(z:)=1$, $f(zf)=0$, $f(zo)=1$

$$c'=1\cdot1+6\cdot0=1$$

$$y_1=1\cdot1=1$$

$$t=8$$
, $z=2$, $z:=90$, $zf=(0, 20=90, c=1)$
 $g(z)=2$, $f(z:)=1$, $f(zf)=1$, $f(z\circ)=1$
 $c'=1\cdot z+1\cdot 1=3$
 $y=1\cdot 3=3$