Computational Sementics for Watural Language Processing	Alexis Tabin
ASSIGNMENT 1 Hierarchical Softmax	16-821-803
Hufmann Coding	l times w
The following coaling $(appendix)$, document $(appendix)$, we appendix $(appendix)$, we $(appendix)$, where $(appendix)$ $(appendix)$, we $(appendix)$, where $(appendix)$ $(appendix)$, we appendix $(appendix)$, where $(appendix)$ $(appendix)$, we $(appendix)$, where $(appendix)$ $(appendix)$, we $(appendix)$ $(appendix)$, where $(appendix)$ $(appendix)$ $(appendix)$, we $(appendix)$ $(append$	ord frequency
$P_{\omega}(c) = \frac{\exp\{(s(\omega,c))\}}{\sum_{c \in V} \exp\{(s(\omega,c))\}}$ $\frac{\sum_{c \in V} \exp\{(s(\omega,c))\}}{\sup_{c \in V} \sup\{(s(\omega,c))\}}$	pair (w,c)
approximated by slepth of rode c in tree $\frac{1}{3}$ $f(c) = \frac{C(c) - 1}{C(c) - 1}$ rode of appth j on road to loaf c $f(c) = \frac{C(c) - 1}{C(c) - 1}$	A
$J=(V(C_1)) \rightarrow (C_1)+1)$ * inedes S. I binary tree, $ V =2^0=1024$ & \$ To compute $P_{uv}(c)$, we need to go all the way down to the leaf the real $V(C_1)$ and $V(C_2)$ and $V(C_1)$ has nodes: $V(C_2)$	222
is composed of 9 edges here. => \frac{1}{\times inner wades} = 10 General case: Total \times node> = inner w	023
$= O(\log V ^{\frac{1}{2}}-1)$ $= O(\log V)$ $= O(\log V)$	3 + 1024 = 2047 16

= 4 Intuitively, we have:

$$\mathbb{E}[L(a)] = 3.0.1 + 3.0.1 + 2.0.3 + 1.0.5 = 1,7$$

10 due

worst case: Let take the last example.

the worst can is this one