

Day - 4 Classification Tree

January 11, 2018

Copyright © 2017 IQVIA. All rights reserved.

What will I learn?

- + Concept behind classification tree and random forest
- + When to use logistic regression and when to use classification tree?
- + How to develop classification tree and random forest in R?

An overview of Classification tree

• It is a non-parametric tree based algorithm used for prediction of discrete variable using a mix of continuous and discrete predictors

Examples:

- a. Does a customer default on credit card payment or not
- b. To understand whether the HCPs will respond to the sales force campaign (i.e. Response = Yes) or not (i.e. Response = No)
- c. Will a student get admission into business school (i.e. Response = Yes) or not (i.e. Response = No)

All of these are examples for categorical outcome variable

Example of a Decision Tree (1/2)

IIIIS RATINE

In order to understand decision tree let us start with an example.

Let us take a credit card company which has a set of customers. Some of them are profitable and some of them are unprofitable

- Unprofitable customers: Do not use credit cards frequently / use card but pay on time
- Profitable customers: Do not make payment in full (carry balance on card) or on time

Company's customer base

Profitable Unprofitable

Example of a Decision Tree (2/2)

- Age
- Gender
- Marital Status
- # of cards

^{*} Potential Customers are the people who are not the customers of this company but the company can market to these customers so they have the potential to be its customers

Apply Model to Test Data

III STRATUS

Existing customer data base

2222222222

S. No	Age	Gender	Marital Status	Profitability
1	36	М	M	Р
2	32	F	S	U
3	38	М	M	Р
4	40	F	S	U
5	44	F	M	Р
6	56	F	M	Р
7	58	М	S	U
8	30	М	S	Р
9	28	M	M	U
10	26	М	M	U

Decision tree output (Historical Data) Total Population = 10 Profitable = 5Unprofitable = 5 Profitability rate = 50% Age > 35 Age < = 35Total Population = 6 Total Population = 4 Profitable = 4 Profitable = 1 Unprofitable = 2Unprofitable = 3 Profitability rate = 66% Profitability rate = 25% Married **Single**

Total Population = 4 Total Population = 2 Profitable = 4 Profitable = 0Unprofitable = 0 Unprofitable = 2Profitability rate = 100% Profitability rate = 0%

Profitable customers

Why Age?

Why Split at 35 and not at 30 or 45?

How to determine the Best Split (1/2)

III STRATILE

Gini Coefficients = $(p(green))^2 + (p(red))^2$ Where p(green) is the proportion of green in the data

Profitable Customers

Age > 35

Age < = 35

8

of greens = 4# of reds = 2

Proportion of greens = 0.67 Proportion of reds = 0.33

Gini = $(0.67)^2 + (0.33)^2 = 0.56$

of greens = 1# of reds = 3

Proportion of greens = 0.25 Proportion of reds = 0.75

Gini = $(0.25)^2 + (0.75)^2 = 0.62$

Gini score for the split (4/10)*0.56 + (1/10)*0.62 =**0.84**

of greens = 5 # of reds = 5

Proportion of greens = 0.50 Proportion of reds = 0.50

Gini = 0.25 + 0.25 = 0.50

Married

Single

of greens = 4 # of reds = 0

Proportion of greens = 1.0 Proportion of reds = 0

Gini = $(1.0)^2 + (0)^2 = 1.0$

of greens = 0 # of reds = 2

Proportion of greens = 0 Proportion of reds = 1.0

Gini = $(0)^2 + (1.0)^2 = 1.0$

How to determine the Best Split (2/2)

Gini Coefficients = $(p(green))^2 + (p(red))^2$ Where p(green) is the proportion of green in the data

Age > 30

Age < = 30

8

of greens = 4# of reds = 3

Proportion of greens = 0.57 Proportion of reds = 0.43

Gini = $(0.57)^2 + (0.43)^2 = 0.51$

of greens = 1 # of reds = 2

Proportion of greens = 0.33 Proportion of reds = 0.67

Gini = $(0.33)^2 + (0.67)^2 = 0.56$

Gini score for the split (4/10)*0.51 + (1/10)*0.56 = 0.75

of greens = 5 # of reds = 5

Proportion of greens = 0.50 Proportion of reds = 0.50

Gini = 0.25 + 0.25 = 0.50

Age > 45

Age < = 45

of greens = 1 # of reds = 1

Proportion of greens = 0.5 Proportion of reds = 0.5

Gini = $(0.5)^2 + (0.5)^2 = 0.5$

of greens = 4 # of reds = 4

Proportion of greens = 0.5 Proportion of reds = 0.5

Gini = $(0.5)^2 + (0.5)^2 = 0.5$

Performance evaluation vs model validation

<u>Model performance evaluation</u>: It is an assessment of how accurate the model is, and how well it answers the business question framed

• How well is the model "predicting"/"explaining"?
• Metric : Classification table / Confusion matrix

- Are the relationship captured by the model intuitive and explainable?
 Metric: Look for business explanation

Training dataset - Typically models should be build on the training data set

Developed model should be used on the test data set to ensure the general applicability of the model

Performance evaluation technique

Performance of logistic regression model can be accessed through classification table / confusion matrix

Confusion matrix looks as shown below:

$$Model Accuracy = \frac{(TP + TN)}{(TP + FN + FP + TN)}$$

Model validation technique

It is assessment of how valid and applicable the model is, beyond the sample on which it was generated

Steps involve in validation process:

An overview of random forest

Reference:

Data Mining Techniques
- Gordon S. Linoff

Practical Session – Implementation in R

Datasets : Copyright © by Jigsaw academy

Please do not redistribute the datasets and the deck

