

Convolutional Neural Network (Basic) Cheat Sheet (source: DeepLearning.AI - Andrew Ng) V2021.01.02 (Dr Yan Xu)

Core Motivations

- → Significantly reduce # of parameters to extract features in hidden layers
- → Sparse localized connections
- Parameter sharing

Basic Concepts

→ Feature Extraction Layers:

- Convolution Layer
 - Stride (default: 1)
 - Padding (default: 0)
 - Kernel size (or Filter size)
 - Kernel count (or Filter count)
- Non-linear activation function (e.g. ReLU)
- Pooling Layer
 - max pooling

•	•	
$n \times n$ image	$f \times f$ filter	
padding p	stride s	
$\left\lfloor \frac{n+2p-f}{s} + \right\rfloor$	1] ×	$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$

→ Classification Layers:

- Flatten operation
- Fully Connected Layer
- Softmax Layer

Parameter Count Example

	Activation shape	Activation Size	# parameters
Input:	(32,32,3)	— 3,072 a ^{rol}	0
CONV1 (f=5, s=1)	(28,28,8)	6,272	208 <
POOL1	(14,14,8)	1,568	0 ←
CONV2 (f=5, s=1)	(10,10,16)	1,600	416 ←
POOL2	(5,5,16)	400	0 ←
FC3	(120,1)	120	48,001
FC4	(84,1)	84	10,081
Softmax	(10,1)	10	841

CNN Popular Architectures

→ Classic Networks

- LeNet 5 (a small network)
- AlexNet
- VGG 16

→ ResNet (deep networks)

o ability to learn the identity transformation

→ Inception Network

- To concat various sizing filters & polling together
- Trick: use 1*1 convolution to reduce filters
- Variant: GoogLeNet

Transfer Learning

- → Frozen layers
- → Initial parameters

Object Detection (e.g. YOLO)

- → Idea 1: Object & Location Learning Together
 - o location encoding should be consistent
- → Idea 2: Sliding Window Detection
- Idea 3: Sliding Window as CNNspeed up calculation
- → Idea 4: Object/Cell Ownership
- divide an image to N * N cells (e.g. n = 19)
 - each object belongs to one cell
 - training / prediction targets for each cell
 (note: each cell is learning itself based on nearby cells)
- → Idea 5: Anchor Box
 - o Each cell could have 1+ objects
- → Idea 6: Non-Max Suppression
 - Remove predictions which have a higher IOU with a better prediction with the same class
- → Accuracy Measure: IOU

→ Finally, Object Detection: YOLO

(source: https://pjreddie.com/darknet/yolo/)

Other Applications

- → Face Recognition
- → Image Style Transfer
- → Generative Adversarial Networks

1: The # of parameters in feature extraction layers is small