Gabriel Borrero y d (Theoritical): Catalina Flores $h(d) := \emptyset(\chi_K + d\chi_K)$ Primero, vamos a calcular la derivada de h(d) y la anvlamos: h'(a) = da [Ø(xk+drk)]→Reglade la cadena h'(a) = 4 (x_k + ar_k). d/da [x_k + dr_k] () d [x-x+dr-x]=r-k Entonces, la devivada Completa es: h'(d)=0'(x_k+dr_k)·r_k Ahora, el enviciado indica que debemos anular la devivada: \$\(\((x_k + dk) \cdot \frac{r_k}{r_k} = 0 \) \(f^{\tau} \cdot k = -(Ax_k - b) \) Entonces, VØ(X_K+dK)·(Az_K-b)=0 Ahora, como A es simétnica (VØ(X_K) + dA VØ(X_K))(-Y_K) $\nabla \mathcal{O}(X-K)$ es el gradiente de \mathcal{O} en X-K, por lo tanto: For otro lado, como que remos hallar a, entonces despejamos: -dA Da(x_k) = Da(X_k)·(-r_k) Q = - (DØ(x-k) · Y-k)/(ADØ(x-k) Finalmente, Como Y-K -- (Ax-K-b), entonces: Finalmente, se tiene que: d=-(- VØ (x-k)-r-k)/(A VØ (x-k)-r-k) d= rxT. rx __ Comprobado. 0 = P\$(x-k) · Y-k/ (ADØ(x-k) · Y-k) -YKT. A. T_K