

Introdução à Teoria das Probabilidades

Conteudista

Prof.ª Dra. Rosangela Maura C. Bonici

Revisão Textual

Juliane Khun

Sumário

Objetivos da Unidade	4
Contextualização	5
Introdução	6
Experimento Aleatório	6
Conceitos Importantes de Probabilidade	7
Espaço Amostral – Ω	7
Evento	8
Probabilidade em um Espaço Amostral Finito	9
Cálculo da Probabilidade de um Evento	10
Regra da Adição – Probabilidade da União de Dois Eventos – P	(A∪B) – Conjunção
Ou	12
Regra Formal da Adição	12
Probabilidade do Evento Complementar	16
Regra da Multiplicação – Probabilidade da Intersecção de Dois	s Eventos – P(A∩B)
– Conjunção E	19
Regra Formal da Multiplicação	19
Em Síntese	22
Atividades de Fixação	23
Material Complementar	24

Referências	25
Gabarito	26

Objetivos da Unidade

- Conhecer um pouco sobre a Introdução à Teoria das Probabilidades;
- Definir experimento aleatório, espaço amostral e evento;
- Aprender a calcular a probabilidade de um evento, probabilidade de um evento complementar e a usar a regra da adição e da multiplicação de probabilidades.

Atenção, estudante! Aqui, reforçamos o acesso ao conteúdo *on-line* para que você assista à videoaula. Será muito importante para o entendimento do conteúdo.

Este arquivo PDF contém o mesmo conteúdo visto *on-line*. Sua disponibilização é para consulta *off-line* e possibilidade de impressão. No entanto, recomendamos que acesse o conteúdo *on-line* para melhor aproveitamento.

VOCÊ SABE RESPONDER?

Para darmos início à unidade, contudo, convidamos você a refletir acerca da questão: Você sabe o que é desvio padrão?

Contextualização

Convide a moçada para uma aposta em que todos os jogos de azar foram úteis na construção da Teoria das Probabilidades.

Cenário 1

França, século XVII. Um matemático e filósofo mostra-se preocupado com um jogo fictício entre duas pessoas igualmente imaginárias. A disputa havia chegado a um ponto em que um dos participantes aparentemente tinha mais chance de ganhar do que o adversário. O francês em questão se pergunta: como dividir com justiça as apostas?

Ele é Blaise Pascal, que começou a estruturar a Teoria das Probabilidades em correspondências trocadas com outro matemático e colega seu, Pierre de Fermat.

Portanto, logo na origem, probabilidade era sinônimo de jogo de azar.

Cenário 2

Alemanha, século XX. Um físico alemão – Werner Karl Heisenberg – complica ainda mais a crença clássica do determinismo quando afirma que é impossível especificar e determinar simultaneamente a posição e a velocidade de uma partícula subatômica com precisão absoluta.

À medida que a determinação de uma dessas grandezas fica mais precisa, avalia Heisenberg, mais incerta se torna a outra. Esse é, basicamente, o enunciado do Princípio da Incerteza. E incerteza é quase o mesmo que probabilidade. Se no início o cálculo de probabilidades era destinado a prever resultados de jogos de azar, hoje em dia é muito mais do que isso. Trata-se de uma ferramenta fundamental para os cálculos estatísticos, as estimativas, as previsões econômicas, meteorológicas, políticas e muito mais.

Lembre-se de que o jogo de pôquer já foi tema de diversos filmes, inspirou artistas e escritores. Um bom exemplo é o texto humorístico "Pôquer Interminável", de Luís Fernando Veríssimo, que faz parte do livro **O Analista de Bagé**.

Introdução

A Teoria das Probabilidades é utilizada para determinar as chances de um experimento aleatório acontecer.

Experimento Aleatório

O experimento aleatório é um de tipo prova em que seu resultado não pode ser determinado antes de se realizar o experimento. Por exemplo: jogar um dado e anotar o número da face que ficará voltada para cima.

Sabemos que há seis resultados possíveis, que são os números 1, 2, 3, 4, 5 e 6. Entretanto, é impossível prever qual será o resultado antes de realizar o experimento. Se desconhecermos os resultados, a teoria das probabilidades possibilita que descubramos as chances de ocorrência de cada um dos resultados possíveis para o dado.

Por exemplo

1. Qual a chance de ocorrência da face 1, 2 e 3 em um dado. Podemos dizer que a chance é:

Face 1 =
$$\frac{1}{6}$$

Face
$$2 = \frac{1}{6}$$

Face
$$3 = \frac{1}{6}$$

Lemos: 1 chance em 6 possibilidades

2. Num grupo de 15 lâmpadas, 3 são defeituosas. Considere o experimento: uma lâmpada é escolhida ao acaso e observamos se ela é ou não é defeituosa. Trata-se de um experimento aleatório com dois resultados possíveis:

a) A lâmpada é defeituosa (chance
$$\frac{3}{15}$$
 ou $\frac{1}{5}$).

Lemos: 3 chances em 15 possibilidades.

b) A lâmpada é boa (chance
$$\frac{12}{15}$$
 ou $\frac{4}{5}$).

Lemos: 12 chances em 15 possibilidades

Percebemos que a probabilidade de se escolher uma lâmpada boa é bem maior do que de se escolher uma lâmpada defeituosa.

Conceitos Importantes de Probabilidade

Nesta parte de nosso estudo, iremos definir alguns conceitos importantes sobre Probabilidade.

Espaço Amostral – Ω

Espaço Amostral é o conjunto formado por **todos os resultados** possíveis de um experimento aleatório.

Usamos a letra grega ômega, cujo símbolo é Ω , para identificar um espaço amostral. A notação matemática que usamos é:

$$\Omega\left\{\,_\,,\,_\,,\,_\,,\,\dots\,\right\}$$

Dentro das chaves, vamos descrever todos os resultados possíveis para o lançamento do dado.

Evento

Definimos **evento** em probabilidade como sendo qualquer subconjunto do espaço amostral.

Para designar um evento, usaremos sempre letras maiúsculas do alfabeto.

A notação matemática que usamos é:

$$A = \{ , , , , , ... \}$$

Dentro das chaves, vamos descrever os resultados possíveis.

Vejamos alguns exemplos:

Seja o experimento aleatório: lançar um dado e observar a face superior, temos que:

Tabela 1 – Possibilidades de resultados em lancamentos de um dado

rapeta i i ossibilidades de les	suitados em lançamentos de um dado	
	Resultado	
Espaço amostral	Ω = {1, 2, 3, 4, 5, 6}	
Evento A: ocorrência de n° par	A = {2, 4, 6}	
Evento B: ocorrência de n° ímpar e múltiplo de 3	B = {3} O evento que contém somente UM elemento é chamado de evento elementar	
Evento C: ocorrência de um n° menor que 7	C = {1, 2, 3, 4, 5, 6} Este tipo de evento composto por TODOS os elementos do espaço amostral é chamado de evento certo	

	Resultado
Evento D: ocorrência do nº 5	D = {5} O evento que contém somente UM elemento é chamado de evento elementar
Evento E: ocorrência de um n° maior que 6	E { } O evento, cujo resultado do conjunto é vazio, é chamado de evento impossível

Probabilidade em um Espaço Amostral Finito

Dado um experimento aleatório, vamos fazer afirmações a respeito das chances de cada um dos possíveis resultados.

Considere $\Omega = \{a_1, a_2, a_3, ..., a_n\}$. Vamos atribuir a cada elemento um número real que exprima a chance de eles ocorrerem.

- O evento {a₁} ocorre com chance P₁;
- O evento {a₂} ocorre com chance P₂;
- O evento $\{a_n\}$ ocorre com chance P_n .

O que queremos dizer é que podemos associar a cada elemento descrito em um evento uma probabilidade.

Cálculo da Probabilidade de um Evento

Para calcular a probabilidade de um evento, devemos fazer:

 $P(A) = \frac{n \acute{u}mero \ de \ maneiras \ como \ o \ evento \ pode \ ocorrer}{n \acute{u}mero \ de \ elementos \ do \ espaço \ amostral}$

Devemos exprimir a probabilidade de um evento por números fracionários ou decimais usando sempre três casas decimais significativas.

Por exemplo:

P = 0,0000128506 arredondar para 0,0000129 (três casas decimais significativas).

A probabilidade de um evento é sempre um número menor ou igual a 1. A soma de $P_1 + P_2 + ... + P_n = 1$.

Vamos trabalhar com alguns exemplos para ficar mais claro.

Exemplo 1

Em um teste realizado por uma Universidade, uma questão típica de múltipla escolha tem 5 respostas possíveis. Respondendo aleatoriamente, qual a probabilidade de essa questão estar errada?

Resolução

Para calcular a probabilidade do evento questão errada, temos 5 alternativas; dessas, 4 são erradas e 1 é certa. Portanto, para calcularmos essa probabilidade, devemos usar a fórmula:

$$P(A) = \frac{\text{número de maneiras como o evento pode ocorrer}}{\text{número de elementos do espaço amostral}}$$

$$P(\text{resposta errada}) = \frac{4}{5} \text{ ou } 0.8$$

Resposta

A probabilidade de esta questão estar errada é de $\frac{4}{5}$ (lê-se 4 erradas em 5 possibilidades) ou, ainda, 0,8.

Exemplo 2

Uma seguradora fez um levantamento sobre mortes causadas por acidentes domésticos e chegou à seguinte constatação: 160 mortes foram causadas por quedas, 120 por envenenamento e 70 por fogo ou queimaduras. Selecionando aleatoriamente um desses casos, qual a probabilidade de que a morte tenha sido causada por envenenamento?

Resolução

Queremos calcular a probabilidade do evento de morte por envenenamento. Somando o total de mortes, elas perfazem um total de 350. E as mortes por envenenamento são 120.

Usando a fórmula $P(A) = \frac{n \acute{u}mero \ de \ maneiras \ como \ o \ evento \ pode \ ocorrer}{n \acute{u}mero \ de \ elementos \ do \ espaço \ amostral}$, temos

Mortes por envenenamento
$$\uparrow$$
P (morte por envenenamento) = $\frac{120}{350}$ = 0,343
$$\downarrow$$
Total de mortes

P (morte por envenenamento) =
$$\frac{120}{350}$$
 ou 0,343

Resposta

A probabilidade de morte por envenenamento é de $\frac{120}{350}$. Lê-se 120 em 350 possibilidades ou, ainda, de 0,343.

Exemplo 3

No lançamento de uma moeda, qual a probabilidade da face que fica voltada para cima ser "cara"?

Resolução

Uma moeda tem um total de duas possibilidades ou a face que fica voltada para cima é par ou é coroa.

Usando a fórmula $P(A) = \frac{número de maneiras como o evento pode ocorrer}{número de elementos do espaço amostral}$, temos

P(face cara) =
$$\frac{1}{2}$$
 ou 0,5

Resposta

A probabilidade de que a face da moeda que fica voltada para cima seja cara é de $\frac{1}{2}$ (lê-se uma possibilidade de cara em duas) ou 0,5.

Regra da Adição - Probabilidade da União de Dois Eventos - P(A ∪ B) - Conjunção Ou

Quando queremos juntar dois conjuntos ou eventos, em probabilidade dizemos que queremos fazer a **UNIÃO** de dois eventos. Matematicamente temos: sejam os eventos A e B, a probabilidade de A \cup B (lê-se A união B) são todos os elementos de A ou de B.

A operação que devemos realizar é a descrita a seguir.

Regra Formal da Adição

Temos duas situações para fazer a união de dois eventos: i) quando os eventos não têm elementos em comum e; ii) quando os eventos têm elementos em comum.

Vamos representar graficamente dois experimentos aleatórios e seus eventos A e B, um em que temos elementos em comum e um em que não temos eventos em comum.

Figura 1 – Eventos Mutuamente Exclusivos (não tem elementos em comum)

Fonte: Acervo do conteudista

#ParaTodosVerem: imagem composta por dois círculos: à esquerda A, dentro dele existem 4 pontos amarelos; à direita B, dentro dele, existem 3 quadrados azuis. Acima um símbolo Ω. Fim da descrição.

Figura 2 – Eventos com Elementos Comuns – Não são Mutuamente Exclusivos (o mesmo elemento aparece nos dois eventos)

Fonte: Acervo do conteudista

#ParaTodosVerem: imagem composta por dois círculos que se conectam: à esquerda A, dentro dele existem 3 pontos laranjas; à direita B, dentro dele, existem 2 quadrados verdes. Na intersecção entre eles há um triângulo azul. Acima um símbolo Ω. Fim da descrição.

Então, para fazer a união de dois eventos, devemos considerar duas situações distintas:

- P(A∪B) = P(A) + P(B), quando os eventos A e B são eventos mutuamente exclusivos (**não têm elementos em comum**);
- P(A∪B) = P(A) + P(B) P(A ∩ B), quando há elementos comuns aos eventos A e B.

Vamos a um exemplo de aplicação: a Tabela a seguir representa um teste realizado com um medicamento chamado Seldane, que é utilizado para dor de cabeça.

Algumas pessoas tomaram o medicamento e outras tomaram placebo, que não tem o poder ativo da droga.

Tabela 2 – Teste do medicamento Seldane

	Seldane	Placebo	Grupo controle	Total
Dor de Cabeça	49	49	24	122
Sem dor de cabeça	732	616	602	1950
Total	781	665	626	2072

Vamos calcular as probabilidades pedidas.

1. Determine a probabilidade de se obter uma pessoa que fez uso de placebo ou estava no grupo de controle.

Veja que temos de trabalhar com a união de eventos. Note a conjunção ou!

O 1° evento é: fez uso de placebo.

O 2° evento é: estava no grupo de controle.

Resolução

Os eventos são mutuamente exclusivos, pois não tem jeito de uma pessoa ter feito uso de placebo e estar no grupo de controle. Note na tabela que as colunas são independentes. Portanto, os eventos são independentes.

Temos, então, que: $P(A \cup B) = P(A) + P(B)$.

Calculando cada uma das probabilidade pela fórmula:

Lembrem-se! Para calcular cada uma das probabilidades, temos de usar a fórmula:

 $P(A) = \frac{n\'umero \ de \ maneiras \ como \ o \ evento \ pode \ ocorrer}{n\'umero \ de \ elementos \ do \ espaço \ amostral}$

$$P \text{ (placebo ou grupo de controle)} = \frac{665}{2072} + \frac{665}{2072} = \frac{665}{2072} = 0.623$$

$$P \text{ (placebo)} = \frac{\text{total de placeblo}}{\text{total de pessoas}} \qquad P \text{ (grupo controle)} = \frac{\text{total do grupo controle}}{\text{total de pessoas}}$$

$$P(\text{placebo ou grupo controle}) = \frac{665}{2072} + \frac{626}{2072} = \frac{1291}{2072} = 0,623$$

$$P(\text{placebo}) = \frac{\text{total de placebo}}{\text{total de pessoas}}$$

$$P(\text{grupo controle}) = \frac{\text{total do grupo controle}}{\text{total de pessoas}}$$

Resposta

A probabilidade de se obter uma pessoa que fez uso de placebo ou estava no grupo de controle é de 0,623. Passando para porcentagem, 62,3%.

2. Determine a probabilidade de se obter alguém que tenha usado **Seldane** ou **que** não teve dor de cabeça.

Veja que temos de trabalhar com a união de eventos. Note a conjunção ou!

O 1° evento é: fez uso de Seldane.

O 2° evento é: não teve dor de cabeça.

Resolução

Os eventos **NÃO SÃO** mutuamente exclusivos, eles apresentam elementos em comum. Veja na Tabela que a coluna do Seldane **cruza** com a coluna sem dor de cabeça.

Isso significa que pessoas que estão no grupo que tomaram Seldane também estão no grupo das que não tiveram dor de cabeça.

Temos, então, que $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

$$P(Seldane) = \frac{\text{total de Seldane e sem dor de cabeça}}{\text{total de pessoas}}$$

P(Seldane e sem dor de cabeça) =
$$\frac{781}{2072} + \frac{1950}{2072} - \frac{732}{2072} = \frac{1999}{2072} = 0,965$$

$$P\big(\text{Seldane}\,) = \, \frac{\text{total de Seldane}}{\text{total de pessoas}} \,\, P\big(\text{Seldane}\,) = \, \frac{\text{total sem dor de cabeça}}{\text{total de pessoas}}$$

Resposta

A probabilidade de se obter alguém que tenha usado Seldane ou que não teve dor de cabeça é de 0,965 ou, ainda, 96,5%.

Probabilidade do Evento Complementar

Sejam A e \underline{A} (complementar de A em relação à Ω), esses eventos são mutuamente exclusivos, ou seja, não têm elementos em comum.

Logo, $P(A \cup \underline{A}) = P(A) + P(\underline{A})$.

Temos que P (A) + P(\underline{A}) = 1.

Como A \cup $\underline{A} = \Omega$ e P $(\Omega) = 1$, daí vem:

$$P(\underline{A}) = 1 - P(A)$$

Traduzindo para Língua Portuguesa: um evento complementar é aquele, como o nome já diz, que complementa o espaço amostral.

Veja o exemplo: Seja o experimento: lançamento de um dado.

O Espaço Amostral é: $\Omega = \{1, 2, 3, 4, 5, 6\}$.

Seja o Evento A: face par voltada para cima, portanto A = { 2, 4, 6 }.

Seja <u>A</u>, ou seja, o complementar de A. O complementar de A seriam os elementos que faltam para completar o espaço amostral, portanto:

$$\underline{A} = \{1, 3, 5\}.$$

Como A \cup \underline{A} = Ω , isso significa que se juntarmos os elementos de A com os elementos de \underline{A} , temos como resultado o espaço amostral Ω .

Veja que é verdade { 2, 4, 6 } ∪ { 1, 3, 5 } = { 1, 2, 3, 4, 5, 6 }.

Vamos calcular as probabilidades do evento A e do evento complementar de A (\underline{A}).

Calculando a probabilidade de A temos: $\frac{3}{6}$.

Calculando a probabilidade de \underline{A} , temos também: $\frac{3}{6}$.

A fórmula diz que se somarmos $P(A) + P(\underline{A}) = 1$. Vamos ver se é verdade?

$$\frac{3}{6} + \frac{3}{6} = \frac{6}{6} = 1$$
. Veja: é verdade!

Concluímos com isso que a soma das probabilidades de um evento qualquer com o seu complementar é sempre igual a 1. Isso significa que todo espaço amostral tem probabilidade igual a 1, o que justifica dizermos:

$$P(\Omega) = 1$$

A equação: $P(A) + P(\underline{A}) = 1 \rightarrow P(\underline{A}) = 1 - P(A)$ é a fórmula que devemos usar para calcular o valor da probabilidade de um evento complementar.

Vejamos alguns exemplos.

Exemplo 1

Seja P(A) =
$$\frac{2}{5}$$
, determine P(\underline{A}).

Resolução

Para calcular o complementar, devemos usar a fórmula:

$$P(A) = 1 - P(A)$$

$$P(\underline{A}) = 1 - \frac{2}{5} = \frac{5}{5} - \frac{2}{5} = \frac{3}{5}$$

Resposta

A probabilidade do complementar de A é $\frac{3}{5}$ ou 0,6.

Exemplo 2

Determine P(A), dado P(A) = 0.228.

Resolução

Para calcular o complementar, devemos usar a fórmula:

$$P(A) = 1 - P(A)$$

$$P(\underline{A}) = 1 - 0.228 = 0.772$$

Resposta

A probabilidade do complementar de A é 0,772 ou 77,2%.

Regra da Multiplicação -Probabilidade da Intersecção de Dois Eventos - P(A ∩ B) -Conjunção E

Para determinar a probabilidade de intersecção de dois eventos, devemos considerar se os eventos são **independentes**, ou seja, se a ocorrência de um deles não afeta a ocorrência do outro.

Regra Formal da Multiplicação

Podemos usar a regra da multiplicação em duas situações: quando os eventos são independentes, ou seja, a ocorrência de um deles não afeta a ocorrência do outro e quando os eventos são dependentes um do outro, quando a ocorrência de um afeta a ocorrência do outro evento.

EVENTO INDEPENDENTE P (A \cap B) = P (A) . P(B) EVENTO DEPENDENTE P (A \cap B) = P (A) . P(B\A)

Vejamos alguns exemplos de aplicação da regra da multiplicação.

Exemplo 1

Uma empresa produz um lote de 50 filtros dos quais 6 são defeituosos. Nestas condições, escolhidos aleatoriamente 2 filtros, determine a probabilidade de ambos serem bons.

a) Com reposição (eventos independentes)

Resolução

Colocamos os 50 filtros em uma caixa, damos, assim, a todos a mesma oportunidade de serem escolhidos.

Temos, então, nessa caixa, 44 filtros bons e 6 filtros ruins. Retiramos o primeiro deles. Dizemos que a probabilidade de retirada de um filtro bom é de:

Devolvemos esse filtro para a caixa e aí procedemos a uma nova retirada, com a mesma probabilidade de $\frac{44}{50}$. Ao devolver o filtro para a caixa, o número de elementos

do **espaço amostral se mantém** o mesmo. Isso identifica um **evento independente**.

Retirar dois filtros bons significa que o 1° **e** o 2° filtros devem ser bons. Veja que a conjunção usada nesse caso foi **e**, o que denota que temos de usar a regra da multiplicação.

Vamos usar a regra da multiplicação para eventos independentes $P(A \cap B) = P(A) \cdot P(B)$ (são independentes)

$$P(bom e bom) = \frac{44}{50} \cdot \frac{44}{50} = \frac{1936}{2500} = 0,774$$

Resposta

Escolhidos aleatoriamente 2 filtros, a probabilidade de que ambos sejam bons, com reposição, é de 0,774 ou 77,4%.

b) Sem reposição (eventos dependentes)

Colocamos os 50 filtros em uma caixa, damos, assim, a todos a mesma oportunidade de serem escolhidos. Temos, então, nessa caixa, 44 filtros bons e 6 filtros ruins. Retiramos o primeiro deles. Dizemos, então, que a probabilidade de retirada de um

filtro bom é de $\frac{44}{50}$. Veja que, nesse caso, por ser SEM REPOSIÇÃO, não devolvemos

o filtro para a caixa. Temos, então, agora na caixa, 49 filtros. Procedemos a uma nova retirada com probabilidade de:

 $43 \longrightarrow \text{Havia } 44 \text{ bons. } 1 \text{ já foi retirado. } \text{Restaram } 43.$

49 → Havia 50 filtros no total. 1 já foi retirado e não devolvido. Restam 49

Como não devolvemos o filtro para a caixa, o número de elementos do espaço amostral se alterou, o que caracteriza um **evento dependente**. A realização do 1º evento afetou a realização do 2º evento, pois o **espaço amostral não se manteve**.

Retirar dois filtros bons significa que o 1º e o 2º devem ser bons. Veja que a conjunção usada nesse caso foi **e**, o que denota que temos de usar a regra da multiplicação.

Vamos usar a regra da multiplicação para eventos dependentes:

Essa notação denota que o evento A afetou
$$P \text{ (bom e bom)} = \frac{44}{50} \cdot \frac{43}{49} = \frac{1892}{2450} = 0,772$$

 $P(A \cap B) = P(A)$. $P(B \setminus A)$ Essa notação denota que o evento A afetou o evento B.

$$P(bom e bom) = \frac{44}{50} \cdot \frac{43}{49} = \frac{1892}{2450} = 0,772$$

Resposta

Escolhidos aleatoriamente 2 filtros, a probabilidade de que ambos sejam bons, SEM reposição, é de 0,772 ou 77,2%.

Em Síntese

Bem, espero que você tenha gostado de estudar e trabalhar com probabilidades.

Parece ser difícil, mas com a prática dos exercícios vai ficar mais fácil. Portanto, não deixe de realizar a Atividade de Sistematização para fixar os conceitos que aprendeu e tirar suas dúvidas.

Atividades de Fixação

1. Qual é a probabilidade de lançar um dado comum de seis faces e obter um número ímpar?

- **a)** $\frac{1}{6}$
- **b)** $\frac{2}{6}$
- **c)** $\frac{3}{6}$
- **d)** $\frac{4}{6}$
- **e)** $\frac{5}{6}$

2. Em um saco, há 5 bolas vermelhas, 3 bolas verdes e 2 bolas azuis. Qual é a probabilidade de escolher aleatoriamente uma bola vermelha ou uma bola azul?

- a) $\frac{5}{10}$
- **b)** $\frac{7}{10}$
- c) $\frac{5}{10}$
- d) <u>5</u>
- **e)** $\frac{7}{9}$

Atenção, estudante! Veja o gabarito desta atividade de fixação no fim deste conteúdo.

Material Complementar

∄ Site

Banco Internacional de Objetos Educacionais

Neste banco, você encontrará uma vasta coleção de materiais didáticos, como vídeos, áudios, imagens e atividades interativas, prontos para serem utilizados em sala de aula ou para aprimorar o aprendizado em casa. https://bit.ly/3wLQVUH

Introdução à PROBABILIDADE - Teoria das Probabilidades 01

Este vídeo oferece uma introdução clara e envolvente aos conceitos fundamentais da probabilidade, abrindo as portas para compreender a incerteza e a aleatoriedade de eventos.

https://youtu.be/0LvT1v9YMpQ

Leituras

Introdução à Teoria da Probabilidade

TEIXEIRA, R. C.; MORGADO, A. C. Introdução à Teoria da Probabilidade. 30/09/2011.

Este artigo é uma porta de entrada para compreender os conceitos básicos por trás da incerteza e da aleatoriedade dos eventos. https://bit.ly/3PEm7Mj

Início da Matematização das Probabilidades

Se você deseja entender os fundamentos matemáticos por trás das probabilidades, explorar suas aplicações e a evolução desse campo ao longo da história, o site da UFRGS é o lugar certo.

http://bit.ly/49mqTWe

Referências

CRESPO A. A. Estatística Fácil. 11. ed. São Paulo: Saraiva, 1994.

DOWNING, D. Estatística Aplicada. 2. ed. São Paulo: Saraiva, 2002.

MORETTIN, L. G. Estatística Básica. 7. ed. São Paulo: Pearson, 2000.

NEUFELD, J. L. **Estatística Aplicada à Administração Usando o Excel**. São Paulo: Pearson, 2003.

SPIEGEL, M. R. Estatística. 3. ed. Coleção Schaum. São Paulo: Pearson, 1994.

SPIEGEL, M. R. **Probabilidade e Estatística**. Coleção Schaum. São Paulo: Pearson, 1977.

SILVA, E. M. Estatística para os Cursos de Economia, Administração e Ciências Contábeis. 3. ed. São Paulo: Atlas, 1999.

Gabarito

Questão 1

c) $\frac{3}{6}$

Justificativa: Um dado comum de seis faces tem 3 números ímpares (1, 3 e 5) e 3 números pares (2, 4 e 6). Portanto, a probabilidade de obter um número ímpar ao lançar o dado é de $\frac{3}{6}$, que pode ser simplificado para $\frac{1}{2}$.

Questão 2

b) $\frac{7}{10}$

Justificativa: Há 5 bolas vermelhas e 2 bolas azuis, totalizando 5 + 2 = 7 bolas vermelhas ou azuis no saco. O número total de bolas no saco é 5 (vermelhas) + 3 (verdes) + 2 (azuis) = 10 bolas. Portanto, a probabilidade de escolher aleatoriamente uma bola vermelha ou azul é $\frac{7}{10}$.