

Design Calculation Sheet for dsfdsf

Designer: dsfdsf

Location: dsfdsf

City: dfsdf

Country: sdfds

Date: 2020-06-20 10:44:37

Table of Contents

1-Secondary Beams

- Design For Flexural and shear
- Design For serviceability
- Connections Design

2-Main Beams

- Design For Flexural and shear
- Design For serviceability
- Connections Design

3-Columns

• Design For Normal Stress

Secondary Beams

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
22	(20,4,6)	(20,8,6)	4	0.01	0.01
21	(20,0,6)	(20,4,6)	4	0.01	0.01
2	(0,4,6)	(0,8,6)	4	0.01	0.01
1	(0,0,6)	(0,4,6)	4	0.01	0.01

Design Limit state:

Combo: D+L

Md: 0.01 t.m

Vd: 0.01 ton

Service Limit State

Combo: LIVE

Span: 4 m

Load: 0 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 15.58 < 81.98 => Compact Web

c/tf= 3.06 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 59.39 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 0.06 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0 cm < dall= 1.33 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd=0.01 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0 \text{ t/cm}^2 \text{ a q} = 0 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0 t/cm^2$ $qmt = 0 t/cm^2 => qres = (q^2 + qmt^2)^0.5 = 0 t/cm^2 < 0.2Fu = 0.72 t/cm^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
18	(16,4,6)	(16,8,6)	4	2.01	2.01
17	(16,0,6)	(16,4,6)	4	2.01	2.01
20	(18,4,6)	(18,8,6)	4	2.01	2.01
3	(2,0,6)	(2,4,6)	4	2.01	2.01
4	(2,4,6)	(2,8,6)	4	2.01	2.01
5	(4,0,6)	(4,4,6)	4	2.01	2.01
6	(4,4,6)	(4,8,6)	4	2.01	2.01
7	(6,0,6)	(6,4,6)	4	2.01	2.01
8	(6,4,6)	(6,8,6)	4	2.01	2.01

9	(8,0,6)	(8,4,6)	4	2.01	2.01
10	(8,4,6)	(8,8,6)	4	2.01	2.01
19	(18,0,6)	(18,4,6)	4	2.01	2.01
12	(10,4,6)	(10,8,6)	4	2.01	2.01
13	(12,0,6)	(12,4,6)	4	2.01	2.01
14	(12,4,6)	(12,8,6)	4	2.01	2.01
15	(14,0,6)	(14,4,6)	4	2.01	2.01
16	(14,4,6)	(14,8,6)	4	2.01	2.01
11	(10,0,6)	(10,4,6)	4	2.01	2.01

Design Limit state:

Combo: D+L

Md: 2.01 t.m

Vd: 2.01 ton

Service Limit State

Combo: LIVE

Span: 4 m

Load: -1 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 27.93 < 81.98 => Compact Web

c/tf= 4.36 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 117.48 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.38 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.21 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 1.2 cm < dall= 1.33 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 2.01 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.14 \text{ t/cm}^2 \text{ a} = 0.09 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.21 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.09 \text{ t/cm}^2 \text{ a qmt} = 0.14 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.17 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.17 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Main Beams

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
9	(14,8,6)	(20,8,6)	6	4.05	2.03
7	(0,8,6)	(6,8,6)	6	4.05	2.03
3	(14,0,6)	(20,0,6)	6	4.05	2.03
1	(0,0,6)	(6,0,6)	6	4.05	2.03

Design Limit state:

Combo: D+L

Md: 4.05 t.m

Vd: 2.03 ton

Service Limit State

Combo: LIVE

Span: 6 m

Load: -0.67 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 32.39 < 81.98 => Compact Web

c/tf= 4.81 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 154.92 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.25 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.14 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 1.38 cm < dall= 2 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 2.03 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.14 \text{ t/cm}^2 \text{ a} = 0.09 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.21 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.09 \text{ t/cm}^2 \text{ a qmt} = 0.14 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.17 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.17 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
6	(14,4,6)	(20,4,6)	6	8.07	4.04
4	(0,4,6)	(6,4,6)	6	8.07	4.04
8	(6,8,6)	(14,8,6)	8	8.1	3.04
2	(6,0,6)	(14,0,6)	8	8.1	3.04

Design Limit state:

Combo: D+L

Md: 8.1 t.m

Vd: 3.04 ton

Service Limit State

Combo: LIVE

Span: 8 m

Load: -0.75 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 36.23 < 81.98 => Compact Web

c/tf= 5.68 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 193.65 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE300

fact= 1.45 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.14 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 2.28 cm < dall= 2.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd=3.04 ton

Rleast= 3.07 ton

N= 3 with Pitch= 70 mm & Full Layout: (35;70 70 35)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.17 \text{ t/cm}^2 \text{ a} = 0.12 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.27 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.12 \text{ t/cm}^2 \text{ a qmt} = 0.17 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.21 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.21 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 210 mm & tp = 10 mm & Sw = 6 mm

Bear	m ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
į	5	(6,4,6)	(14,4,6)	8	16.14	6.06

Design Limit state:

Combo: D+L

Md: 16.14 t.m

Vd: 6.06 ton

Service Limit State

Combo: LIVE

Span: 8 m

Load: -1.5 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 40.24 < 81.98 => Compact Web

c/tf= 5.35 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 232.38 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE400

fact= 1.39 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.18 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 1.65 cm < dall= 2.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 6.06 ton

Rleast= 3.72 ton

N= 3 with Pitch= 93 mm & Full Layout: (46;93 93 47.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.19 \text{ t/cm}^2 \text{ a} = 0.18 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.37 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.18 \text{ t/cm}^2 \text{ a qmt} = 0.19 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.27 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.23 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 280 mm & tp = 10 mm & Sw = 6 mm

Columns

Column ID	Start Point	End Point	Height (m)	Nmax (ton)
6	(6,4,0)	(6,4,6)	6	-14.16
7	(14,4,0)	(14,4,6)	6	-14.16
2	(6,0,0)	(6,0,6)	6	-7.12
3	(14,0,0)	(14,0,6)	6	-7.12
10	(6,8,0)	(6,8,6)	6	-7.12
11	(14,8,0)	(14,8,6)	6	-7.12
5	(0,4,0)	(0,4,6)	6	-4.1
8	(20,4,0)	(20,4,6)	6	-4.1
1	(0,0,0)	(0,0,6)	6	-2.08
4	(20,0,0)	(20,0,6)	6	-2.08
9	(0,8,0)	(0,8,6)	6	-2.08
12	(20,8,0)	(20,8,6)	6	-2.08

Design Limit state:

Combo: D+L

Nd: -14.16 ton

1-Check Local Buckling

dw/tw= 15.58 < 37.44 => Compact Web

c/tf= 3.06 < 10.91 => Compact Flange

2-Check Normal Stress

Section: IPE80

lambda = 571.43 > 100

fc= 1.85 t/cm^2 < Fc= 0.02 t/cm^2