Espacios de Hilbert

Leonardo Fernández Matemática Aplicada E.T.S.I. Navales Curso 2002-3

1. Producto escalar.

Definición 1.1 Sea E un espacio lineal sobre \mathbb{K} . Un producto escalar o producto interno definido sobre E es una aplicación $\langle, \rangle : E \times E \to \mathbb{K}$ que verifica ser:

- 1. **Definida positiva:** $\langle x, x \rangle \geq 0$, $\forall x \in E, y \langle x, x \rangle = 0 \Leftrightarrow x = 0_E$.
- 2. Lineal por la derecha: $\langle z, \lambda x + \mu y \rangle = \lambda \langle z, x \rangle + \mu \langle z, y \rangle, \ \forall x, y, z \in E, \ \forall \lambda, \mu \in \mathbb{K}.$
- 3. Hermítica: (Simétrica si el cuerpo es \mathbb{R}): $\langle x,y\rangle = \overline{\langle y,x\rangle}, \ \forall x,y\in E.$

Un espacio pre-Hilbert es una pareja (E, \langle, \rangle) . Los subespacios lineales de (E, \langle, \rangle) heredan por restricción el producto escalar.

Sobra el conjugado si el espacio es real. De estas condiciones se coligen las siguientes propiedades:

- 1. Antilinealidad por la izquierda: (Linealidad por la izquierda si el cuerpo es \mathbb{R}): $\langle \lambda x + \mu y, z \rangle = \bar{\lambda} \langle x, z \rangle + \bar{\mu} \langle y, z \rangle, \ \forall x, y, z \in E, \ \forall \lambda, \mu \in \mathbb{K}.$
- 2. Si $\langle x, z \rangle = \langle y, z \rangle$ para todo $z \in E$, entonces x = y.

Ejemplo 1.1 En \mathbb{K}^n se define el producto escalar euclídeo,

$$\langle,\rangle: \quad \mathbb{K}^n \times \mathbb{K}^n \quad \to \qquad \quad \mathbb{K}$$

$$x,y \qquad \mapsto \quad \langle x,y\rangle = \sum_{i=1}^n \overline{x^i} y^i \quad \cdot$$

Definición 1.2 Dos vectores x, y se dicen **ortogonales** si $\langle x, y \rangle = 0$. Lo denotaremos por $x \perp y$.

Diremos que un conjunto de vectores S es **ortogonal** si todas sus parejas de vectores distintos son ortogonales. Si además $\langle x, x \rangle = 1$ para todo $x \in S$, diremos que el conjunto es **ortonormal**.

Dos conjuntos S_1 , S_2 se dicen **ortogonales** si todas las parejas formadas por un vector de S_1 y un vector de S_2 son ortogonales.

Teorema 1.1 Teorema de Pitágoras: Sean $x, y \in (E, \langle, \rangle)$ ortogonales. Entonces se verifica:

$$||x + y||^2 = ||x||^2 + ||y||^2.$$

Corolario 1.1 Designaldad de Beßel: Sea $\{x_1, \ldots, x_n\}$ un conjunto ortonormal en (E, \langle, \rangle) . Entonces, para todo $x \in E$,

$$||x||^2 \ge \sum_{i=1}^n |\langle x_i, x \rangle|^2.$$

Corolario 1.2 Designaldad de Cauchy-Schwarz: Sean $x, y \in (E, \langle , \rangle)$. Se verifica

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||.$$

Proposición 1.1 Todo espacio pre-Hilbert es un espacio lineal normado con la norma $||x|| = \sqrt{\langle x, x \rangle} y$, por ende, un espacio métrico.

Corolario 1.3 en Sea (E, \langle, \rangle) un espacio pre-Hilbert real. Entonces el producto escalar en una aplicación continua.

Definición 1.3 Un espacio pre-Hilbert completo en su norma se denomina espacio de Hilbert.

Proposición 1.2 Identidades de polarización: Sea (E, \langle, \rangle) un espacio pre-Hilbert real o complejo. Entonces, para todo $x, y \in E$,

$$\langle x, y \rangle = \frac{1}{4} \{ \|x + y\|^2 - \|x - y\|^2 \}, \text{ si } \mathbb{K} = \mathbb{R},$$

$$\langle x, y \rangle = \frac{1}{4} \left\{ \|x + y\|^2 - \|x - y\|^2 - i \|x + iy\|^2 + i \|x - iy\|^2 \right\}, \text{ si } \mathbb{K} = \mathbb{C}.$$

Teorema 1.2 Ley del paralelogramo: Sea (E, || ||) un espacio lineal normado. Se verifica

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2), \quad \forall x, y \in E,$$

si y sólo si || || proviene de un producto escalar.

Definición 1.4 Sea un subconjunto $F \subset E$ de un espacio de Hilbert (E, \langle, \rangle) . Definimos el **complemento** ortogonal $F^{\perp} := \{x \in E : x \perp F\}$.

Verifica las siguientes propiedades:

- 1. F^{\perp} es subespacio lineal cerrado de (E, \langle, \rangle) , aunque F no sea subespacio siquiera.
- 2. $F \cap F^{\perp} \subset \{0_E\}$.

Teorema 1.3 Teorema de la proyección ortogonal: Sea F un subespacio cerrado de un espacio de Hilbert (E, \langle , \rangle) . Entonces, para todo $x \in E$,

- 1. Existen $x_F \in F$, $x_{F^{\perp}} \in F^{\perp}$ únicos, tales que $x = x_F + x_{F^{\perp}}$. Es decir, F y F^{\perp} son suma directa ortogonal, $E = F \stackrel{\perp}{\oplus} F^{\perp}$.
- 2. $d(x,F) = d(x,x_F) = ||x_{F^{\perp}}||$

El vector x_F se denominará proyección ortogonal de x sobre F y es la mejor aproximación de x dentro del subespacio F, ya que es el vector de F "más próximo" a x.

Corolario 1.4 Sea (E, \langle, \rangle) un espacio de Hilbert. Sea $S \subset E$. Entonces $S^{\perp \perp} = \overline{\mathcal{L}(S)}$ y $S^{\perp \perp \perp} = S^{\perp}$.

Corolario 1.5 Sea F un subespacio de (E, \langle, \rangle) , espacio de Hilbert. Entonces F es denso en E si y sólo si $F^{\perp} = \{0_E\}$.

2. Bases ortonormales.

Definición 2.1 Sea (E, \langle, \rangle) un espacio de Hilbert. Sea $B \subseteq E$. Decimos que B es una base ortonormal de (E, \langle, \rangle) si B es un subconjunto ortonormal de E y $E = \overline{\mathcal{L}(B)}$. No son necesariamente bases lineales.

Definición 2.2 Un espacio de Hilbert se dice separable si sus bases ortonormales son numerables.

Proposición 2.1 Método de ortonormalización de Gram-Schmidt: Sea $\{x_j\}_{j\in J}\subset (E,\langle,\rangle)$ un subconjunto linealmente independiente de cardinal numerable. Entonces existe un conjunto ortonormal $\{y_j\}_{j\in J}$ que verifica $\overline{\mathcal{L}(\{y_j\}_{j\in J})}=\overline{\mathcal{L}(\{x_j\}_{j\in J})}$

- 1. $z_1 = x_1, y_1 = z_1/||z_1||$
- 2. $z_2 = x_2 \langle y_1, x_2 \rangle y_1, \quad y_2 = z_2 / ||z_2|| \dots$
- 3. $z_n = x_n \sum_{i=1}^{n-1} \langle y_i, x_n \rangle y_i, \quad y_n = z_n / ||z_n|| \dots$

Teorema 2.1 Sea (E, \langle, \rangle) un espacio de Hilbert separable. Sea $S = \{x_i\}_{i \in I}$ un conjunto ortonormal. Las siguientes afirmaciones son equivalentes:

- 1. S es base ortonormal de (E, \langle, \rangle) .
- 2. $S^{\perp} = \{0_E\}.$
- 3. Desarrollo de Fourier: $\forall x \in E, \ x = \sum_{i \in I} \langle x_i, x \rangle x_i$.

- 4. Identidad de Parseval: $\forall x, y \in E, \langle x, y \rangle = \sum_{i \in I} \langle x, x_i \rangle \langle x_i, y \rangle.$
- 5. Identidad de Parseval: $\forall x \in E, ||x||^2 = \sum_{i \in I} |\langle x_i, x \rangle|^2$.

Proposición 2.2 Sea $\{x_n\}_{n=1}^{\infty}$ un subconjunto ortonormal de un espacio de Hilbert (E,\langle,\rangle) . Entonces,

$$\sum_{i=1}^{\infty} \lambda_i x_i \ converge \ en \ (E, \langle, \rangle) \Leftrightarrow \sum_{i=1}^{\infty} |\lambda_i|^2 \ converge \ en \ \mathbb{R}.$$

Teorema 2.2 Serie trigonométrica de Fourier: Sea $f:[a,a+T] \to \mathbb{C}$. Una base ortonormal de $L^2([a,a+T])$ viene dada por el conjunto:

$$B = \left\{ e_n : e_n(x) = \frac{1}{\sqrt{T}} e^{i n \frac{2\pi}{T} x}, \ n \in \mathbb{Z} \right\}.$$

Los coeficientes del desarrollo se obtienen mediante la expresión:

$$f = \sum_{x \in \mathbb{Z}} f_n e_n, \qquad f_n = \langle e_n, f \rangle = \int_a^{a+T} \overline{e_n(x)} f(x) dx = \frac{1}{\sqrt{T}} \int_a^{a+T} e^{-i n \frac{2\pi}{T} x} f(x) dx.$$

Teorema 2.3 Sea $f \in C^1([a, a+T])$ tal que f(a) = f(a+T). Su serie de Fourier converge uniformemente a f.

Teorema 2.4 Sea $f:[a,a+T]\to\mathbb{C}$ una función C^1 a trozos. Su desarrollo de Fourier converge en [a,a+T] con límite:

- 1. f(x) si $x \in (a, a + T)$ es un punto de continuidad.
- 2. $\frac{1}{2}(f(x+0)+f(x-0))$ si $x \in (a, a+T)$ es un punto de discontinuidad.
- 3. $\frac{1}{2}(f(a) + f(a+T))$ si $x \in \{a, a+T\}.$

Teorema 2.5 : **Teorema de Carleson:** Sea $f \in L^2([a, a + T])$. Su serie de Fourier converge puntualmente salvo en un conjunto de medida nula.

Ejemplo 2.1 Series trigonométricas de Fourier: Otra base ortonormal para $L^2([a, a + T])$ es la formada por:

$$B' = \{c_n\}_{n=0}^{\infty} \cup \{s_n\}_{n=1}^{\infty},$$

$$c_0(x) = \frac{1}{\sqrt{T}}, \ c_n(x) = \sqrt{\frac{2}{T}} \cos \frac{2\pi n}{T} x, \ s_n(x) = \sqrt{\frac{2}{T}} \sin \frac{2\pi n}{T} x, \ n \in \{1, 2, \ldots\}.$$

Los coeficientes del desarrollo de Fourier se obtienen del siguiente modo:

$$\mathfrak{F}(f) = a_0 \, c_0 + \sum_{n=1}^{\infty} (a_n \, c_n + b_n \, s_n), \quad a_0 = \langle c_0, f \rangle = \frac{1}{\sqrt{T}} \int_a^{a+T} f(x) \, dx,$$

$$a_n = \langle c_n, f \rangle = \sqrt{\frac{2}{T}} \int_a^{a+T} \cos \frac{2\pi n}{T} x f(x) dx, \qquad b_n = \langle s_n, f \rangle = \sqrt{\frac{2}{T}} \int_a^{a+T} \sin \frac{2\pi n}{T} x f(x) dx.$$

3. Transformada de Fourier.

Definición 3.1 La transformada de Fourier es una isometría T en $L^2(\mathbb{R})$ (Plancherel),

$$\begin{array}{cccc} T: & L^2(\mathbb{R}) \cap L^1(\mathbb{R}) & \to & L^2(\mathbb{R}) \\ f & \mapsto & F \end{array}, \qquad [T(f)](k) = F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \, e^{-ikx} f(x).$$

La transformada inversa de Fourier tiene por expresión,

$$T^{-1}: \quad L^2(\mathbb{R}) \cap L^1(\mathbb{R}) \quad \xrightarrow{\longrightarrow} \quad L^2(\mathbb{R}) \\ G \qquad \mapsto \qquad g \qquad , \qquad [T^{-1}(G)](x) = g(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk \, e^{ikx} G(k).$$

El hecho de que la transformada de Fourier sea una isometría de $L^2(\mathbb{R})$ se expresa por medio de la identidad de la energía o de Plancherel, que juega el papel de la de Parseval para los desarrollos de Fourier.

$$\int_{-\infty}^{\infty} dx \, |f(x)|^2 = \int_{-\infty}^{\infty} dk \, |F(k)|^2.$$

Proposición 3.1 $T^2 = I$, $T^3 = T^{-1}$, $T^4 = \mathbb{I}$, siendo I la inversión, $I(f) = \tilde{f}$, $\tilde{f}(x) = f(-x)$, $e \mathbb{I}$, la identidad.

Proposición 3.2 Sea $f \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$ una función real y F su transformada de Fourier. Sean e_a y T_a los siguientes funcionales definidos en $L^2(\mathbb{R}) \cap L^1(\mathbb{R})$, $(e_a f)(x) = e^{-iax} f(x)$, $(T_a f)(x) = f(x-a)$. Entonces,

$$T(e_a f) = T_{-a} F, \qquad T(T_a f) = e_a F.$$

Proposición 3.3 Sea f tal que $f, f' \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ y g tal que $g, Xg \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, siendo (Xg)(x) = x g(x). Sean F, G, respectivamente, sus tranformadas de Fourier. Entonces,

$$T(f') = iXF,$$
 $T(Xg) = iG'.$

Proposición 3.4 Sea f una función meromorfa (analítica salvo en un número finito de puntos del plano complejo) con singularidades sólo en puntos fuera del eje real $\{a_1,\ldots,a_n\}\subset\mathbb{C}$ y que verifica $\lim_{z\to\infty}f(z)=0$. Entonces,

$$[T(f)](k) = \begin{cases} -\sqrt{2\pi}i \sum_{\Im a_i < 0} \operatorname{Res}(f(z)e^{-ikz}, a_i) & \text{si } k > 0 \\ \sqrt{2\pi}i \sum_{\Im a_i > 0} \operatorname{Res}(f(z)e^{-ikz}, a_i) & \text{si } k < 0 \end{cases}$$

Definición 3.2 Definimos la convolución de funciones como una aplicación binaria en $E = L^1(\mathbb{R}) \cap L^2(\mathbb{R})$,

Proposición 3.5 La convolución de funciones es conmutativa (f * g = g * f) y asociativa (f * (g * h) = (f * g) * h).

Proposición 3.6 Sean $f, g \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ y F, G, las respectivas transformadas. Entonces,

$$T(fg) = \frac{1}{\sqrt{2\pi}}F * G \text{ si } fg \text{ es transformable}, \quad T(f*g) = \sqrt{2\pi}FG.$$

Definición 3.3 Definimos la correlación de funciones reales como una aplicación binaria en $E = L^1(\mathbb{R}) \cap L^2(\mathbb{R})$,

 $si\ f=g,\ denominaremos\ a\ f**f\ la\ autocorrelación\ de\ f.$