Chapter 10.2.2: KRUSELL-SMITH Algorithm and Overlapping Generations Model

Burkhard Heer and Alfred Maußner University of Augsburg, Germany February 28, 2022

Krusell-Smith Algorithm: Applications

- Cyclical behavior of income distribution: Castañeda, Díaz-Giménez, and Ríos-Rull (1998)
- Great Recession 2007-09:
 - Wealth and income dynamics: Krueger, Mitman, and Perri (2016)
 - Housing: Kaplan, Mitman, and Violante (2020)

Contents

1 Motivation and Results

2 The Overlapping Generations Model

3 Computation of the Dynamics: Krusell-Smith Algorithm

Motivation

Research questions:

- Ocyclical income and wealth distribution: How can we model it?
- ⇒ Stochastic Overlapping Generations (OLG) model with income uncertainty/heterogeneity
- 4 How can we compute it?
 - Steady state perturbation: no idiosyncratic uncertainty \rightarrow Chapters 2 & 10.2.1 in Heer/Maußner
 - \blacksquare Krusell-Smith Algorithm \rightarrow this presentation

Motivation

Overlapping generations model with endogenous income/wealth distribution:

- life-cycle savings
- uncertain lifetime
- uncertain earnings
- pay-as-you-go pensions
- endogenous labor supply

Motivation

	Gini Coefficients		
	US	OLG Model	
wages	0.375	0.302	
gross income	0.553	0.386	
wealth	0.78-0.80	0.558	

Note: US Data is taken from Budría Rodríguez, Díaz-Giménez, Quadrini, and Ríos-Rull (2002) and Krueger,

Mitman, and Perri (2016).

Lorenz Curve: Income

Note: US Data is taken from Budría Rodríguez, Díaz-Giménez, Quadrini, and Ríos-Rull (2002).

Lorenz Curve: Wealth

Note: US Data is taken from Budría Rodríguez, Díaz-Giménez, Quadrini, and Ríos-Rull (2002).

Correlation of income shares with GDP

	0-20%	20-40%	40-60%	60-80%	80-95%	General Equilibrium Modelling Indicate Management Manag
	0 2070	20 1070	10 0070	00 00 70	00 3370	
US	0.53	0.49	0.31	-0.29	-0.64	0.00
Castañeda et al. (1998)	0.95	0.92	0.73	-0.56	-0.90	-0.84
our model						
i) $pen_t(\epsilon) = \epsilon \cdot \bar{p}en_t$	0.85	0.54	0.60	-0.30	0.23	-0.44
$ii) pen_t(\epsilon) = \bar{p}en_t$	0.75	-0.48	0.41	0.08	0.06	-0.29

Notes: Entries in rows 1 and 2 are reproduced from Table 4 in Castañeda et al. (1998). Annual logarithmic output has been detrended using the Hodrick-Prescott filter with smoothing parameter $\lambda=100$.

Topic for PhD thesis: Cyclical behavior of (gross) income distribution

- Labor income: a combination of unemployment dynamics in Castañeda, Díaz-Giménez, and Ríos-Rull (1998) and the OLG model seems promising
- Add demand shock and sticky wages
- Use more than two points to approximate technology $Z_t \Rightarrow$ behavior of Y_t jumps up and down otherwise!
- Capital income: problematic
- → recessions are not alike:

```
2008 Great recession, SP 500 return approx. -38%
```

2019 Covid-19 crisis, SP 500 return approx. +28%

Dynamic behavior of factor share: bottom quintile

Dynamic behavior of factor share: 60-80% quintile

Computation: PYTHON or GAUSS?

RUN TIME: Krusell-Smith Algorithm

	PYTHON	GAUSS	
Non-stochastic steady state	11m:53s	2m:19s	
Policy functions	39m:03	14m:18s	
Simulation (200 periods)	1h:13m:52s	3m:52s	
Total	1d:21h:40m:18s	5h:18m:40s	

DOWNLOADS: PYTHON or GAUSS code

• PYTHON and GAUSS CODES (with slides):

```
https://www.uni-augsburg.de/de/fakultaet/wiwi/prof/vwl/maussner/dgebook/.
```

• Or send an email: Burkhard.Heer@wiwi.uni-augsburg.de

OLG Model: Demographics

1. Demographics

- Every year, a new generation of equal measure is born at real-life age 21 corresponding to age s=1 in the model.
- Households live a maximum of T = 70 years (corresponding to real-life age 90).
- Survival from age s to age s+1 is stochastic with probability ϕ_t^s .
- During their first $T^W = 45$ years as workers, agents supply labor l_t^s at age s in period t enjoying leisure $1 l_t^s$.
- After T^W years, retirement is mandatory ($l_t^s = 0$ for $s > T^W$).
- ullet The maximum number of retirement periods amounts to T^R .

OLG Model: Demographics

OLG Model: Demographics

- $N_t(s)$ number of households of age s at t.
- N_t total population
- Population growth rate $g_{n,t}$:

$$N_{t+1} = (1 + g_{n,t})N_t$$

• Newborn cohort growth rate n_t :

$$N_{t+1}(1) = (1+n_t)N_t(1)$$

- In the stationary equilibrium:
 - \bullet ϕ^s constant
 - $n = q_n = 0.754\%$

OLG Model: Households

2. Households

Households maximize expected intertemporal utility:

$$\max \sum_{s=1}^{T} \beta^{s-1} \left(\prod_{j=1}^{s} \phi_{t+j-1}^{j-1} \right) \mathbb{E}_{t} \left[u(c_{t+s-1}^{s}, 1 - l_{t+s-1}^{s}) \right], \quad (1)$$

• with instantaneous utility u(c, 1 - l):

$$u(c, 1 - l) = \frac{\left(c^{\gamma} (1 - l)^{1 - \gamma}\right)^{1 - \eta}}{1 - \eta},\tag{2}$$

 β — discount factor $1/\eta$ — intertemporal elasticity of substitution (IES) γ — share of consumption in utility

OLG Model: Households

Net labor income:

$$y_t^s = (1 - \tau_t^l - \tau_t^p)\epsilon(s, e, \theta)A_t w_t l_t^s$$

 A_t — aggregate productivity with growth rate g_A

• idiosyncratic productivity: $\epsilon(s,e,\theta)=e\theta \bar{y}^s$

 \bar{y}^s — age component of wage, Hansen (1993) $e \in \{0.57, 1.43\}$ — permanent productivity type (high school/college)

 $\theta \in \{0.727, 1.233\}$ — stochastic component: Markov process from Storesletten, Telmer, and Yaron (2007)

$$\pi(\theta'|\theta) = \begin{pmatrix} \pi_{11}^{\theta} & \pi_{12}^{\theta} \\ \pi_{21}^{\theta} & \pi_{22}^{\theta} \end{pmatrix} = \begin{pmatrix} 0.98 & 0.02 \\ 0.02 & 0.98 \end{pmatrix}$$
(3)

OLG Model: Age-specific productivity component

OLG Model: Households

• Budget constraint of the worker at age s in period t:

$$k_{t+1}^{s+1} = \left(1 + (1-\tau^k)r_t\right)k_t^s + (1-\tau^l-\tau_t^p)w_tA_t\epsilon(s,e,\theta)$$

$$+ tr_t - (1+\tau^c)c_t^s, \quad s = 1,\dots,45,$$

 k_t^s — capital (wealth) of the s-year old in period t r_t — rate of return on capital δ — depreciation rate τ_t^k — capital income tax rate τ_t^l — labor income tax rate τ_t^p — pension contribution rate τ_t^c — consumption tax rate tr_t — government transfers

(4)

OLG Model: Households

- Retirees receive productivity-dependent pension $y_t^s = pen_t(\mathbf{e})$
- Budget constraint of the retiree at age $s = 46, \ldots, 70$:

$$k_{t+1}^{s+1} = (1 + (1 - \tau^k)r_t)k_t^s + pen_t(e) + tr_t - (1 + \tau^c)c_t^s,$$
 (5)

with
$$k_t^{71}\equiv 0$$
 and $l_t^{46}=l_t^{47}=\ldots=l_t^{70}\equiv 0.$

• Credit constraint: $k_t^s \ge 0$

OLG Model: Firms

3. Firms

- Perfect competition in goods and factor markets
- Cobb-Douglas production function:

$$Y_t = Z_t F(K_t, A_t L_t) = Z_t K_t^{\alpha} (A_t L_t)^{1-\alpha}.$$
 (6)

- Stochastic productivity Z_t : 2-state Markov process
 - Annual standard deviation of output is approximately equal to 2% implying $\{Z_1, Z_2\} = \{0.98, 1.02\}$.
 - Transition matrix: average duration of cycle = 6 years

$$Prob(Z'|Z) = \begin{pmatrix} 2/3 & 1/3 \\ 1/3 & 2/3 \end{pmatrix}. \tag{7}$$

OLG Model: Firms

Profits:

$$\Pi_t = Y_t - w_t A_t L_t - r_t K_t - \delta K_t.$$

• Factors are rewarded with their marginal product:

$$w_t = (1 - \alpha) Z_t K_t^{\alpha} (A_t L_t)^{-\alpha}, \tag{8}$$

$$r_t = \alpha Z_t K_t^{\alpha - 1} (A_t L_t)^{1 - \alpha} - \delta.$$
 (9)

OLG Model: Government

4. Government and Social Security

 Government budget is financed by taxes and accidental bequests:

$$Tr_t + G_t = \tau_t^l A_t L_t w_t + \tau_t^k r_t K_t + \tau_t^c C_t + Beq_t, \qquad (10)$$

 C_t — aggregate consumption G_t — government consumption

- Government collects accidental bequests Beq_t .
- Balanced social security budget:

$$Pen_t = \tau_t^p A_t L_t w_t. \tag{11}$$

OLG Model: Government

- Two types of pensions:
 - **1** Lump-sum pensions: $pen_t = repl \cdot (1 \tau^l \tau^p) A_t w_t \bar{l}$
 - 2 Pensions depending on permanent productivity type: $pen_t = repl \cdot (1 \tau^l \tau^p) A_t w_t e \bar{l}$

 \bar{l} — steady-state average working hours repl — net replacement rate of pensions with respect to wages

OLG Model: Stationary Variables

5. Stationary Variables

• Stationary individual variables \tilde{x}_t^s for $x \in \{c, y, k\}$ (with the exception of labor supply l_t):

$$\tilde{x}_t^s \equiv \frac{x_t^s}{A_t}$$

• Stationary aggregate variables X_t (with the exception of aggregate efficient labor L_t) for $X \in \{Pen, Tr, G, Beq, Y, K, C\}$:

$$\tilde{X}_t \equiv \frac{X_t}{A_t N_t}.$$

OLG Model: Stationary Variables

- ullet Aggregate stationary labor $\tilde{L}_t = L_t/N_t$.
- Moreover, individual and aggregate government transfers are identical:

$$\widetilde{Tr}_t = \widetilde{tr}_t.$$

6. Equilibrium

• Population N_t and the youngest cohort $N_t(1)$ grow at the same rates $g_{N,t} = \frac{N_{t+1}}{N_t} - 1$ and $n_t = \frac{N_{t+1}(1)}{N_t(1)} - 1$, respectively, implying:

$$\frac{N_{t+1} - N_t}{N_t} = n.$$

② Total population N_t is equal to the sum of all cohorts:

$$N_t = \sum_{s=1}^{T} N_t(s)$$

with associated constant shares of the s-year-old cohorts

$$\mu^s = \frac{N_t(s)}{N_t}.$$

3 Firms maximize profits implying the factor prices w and r:

$$w = (1 - \alpha)Z\tilde{K}^{\alpha}\tilde{L}^{-\alpha},\tag{12a}$$

$$r = \alpha Z \tilde{K}^{\alpha - 1} \tilde{L}^{1 - \alpha} - \delta. \tag{12b}$$

 \bullet Households maximize their lifetime utility subject to their budget constraint and the non-negative constraint on wealth, $\tilde{k} \geq 0$ implying the optimal policy functions $\tilde{k}'(\tilde{z})$, $\tilde{c}(\tilde{z})$ and $l(\tilde{z})$ for next-period wealth, consumption and labor supply with stationary state variable \tilde{z} :

$$\tilde{z} = (s, e, \theta, \tilde{k}, Z, \tilde{K})$$

- ① Distribution function $f_t(s,e,\theta,\tilde{k})$ of the individual state variable (s,e,θ,\tilde{k}) in period $t\Rightarrow$ discrete approximation
- Aggregate consistency conditions: labor L_t , wealth K_t , consumption C_t , bequests Beq_t
- → sum of individual variables = aggregate variable

• For example, labor supply:

$$\tilde{L}_t = \sum_{s=1}^{T^w} \sum_{i_\theta=1}^{n_\theta} \sum_{j=1}^2 \sum_{i_k=1}^{n_k} \epsilon(s, e_j, \theta_{i_\theta}) \ l_t(s, e_j, \theta_{i_\theta}, \tilde{k}_{i_k}) \ f_t(s, e_j, \frac{\epsilon_{\text{energl-distings}}}{k_{i_\theta}}).$$

The fiscal budget is balanced:

$$\tilde{T}r_t + \tilde{G}_t = \tau_t^l \tilde{L}_t w_t + \tau_t^k r_t \tilde{K}_t + \tau_t^c \tilde{C}_t + \widetilde{Beq_t},$$

where aggregate consumption ${\cal C}$ is the sum of individual consumptions:

$$\tilde{C}_t = \sum_{s=1}^{T} \sum_{i_{\theta}=1}^{n_{\theta}} \sum_{j=1}^{2} \sum_{i_k=1}^{n_k} \tilde{c}_t(s, e_j, \theta_{i_{\theta}}, \tilde{k}_{i_k}) f_t(s, e_j, \theta_{i_{\theta}}, \tilde{k}_{i_k}).$$
(13)

and $\tilde{G}_t = \tilde{G}$ constant.

① At the beginning of period t+1, the government collects accidental bequests from the s-year old households who do not survive from period t until period t+1:

$$\frac{\widetilde{Beq}_t}{(1+g_A)} = \sum_{s=2}^{T} \sum_{i=1}^{n_{\theta}} \sum_{s=1}^{2} \sum_{i=1}^{n_k} (1-\phi_t^s) \, \tilde{k}_t'(s,e_j,\theta_{i_{\theta}},\tilde{k}_{i_k}) \, f_t(s,e_j,\theta_{i_{\theta}},\tilde{k}_{i_k}),$$

The goods markets clear:

$$\tilde{Y}_t = \tilde{C}_t + \tilde{G}_t + (1 + g_A)(1 + n)K_{t+1} - (1 - \delta)K_t.$$
 (14)

lacktright Dynamics of the distribution function: o described in the next section

Calibration

			PERSONAL PRINTERS ALPRIO MANAGERS
Parameter	Value	Description	Dynamic General Equilibrium Modelling
α	0.35	production elasticity of capital	Computational Militaria and Applications
δ	8.3%	depreciation rate of capital	© Springer
g_A	2.0%	growth rate of output	
$1/\eta$	1/2	intertemporal elasticity of substitution	
γ	0.29	preference parameter for utility weight of co	nsumption
β	1.011	discount factor	
n	0.754%	population growth rate	
$ au^l + au^p$	28%	tax on labor income	
$ au^k$	36%	tax on capital income	
$ au^c$	5%	tax on consumption	
G/Y	18%	share of government spending in steady-stat	e production
repl	49.4%	net pension replacement rate	
$\{e_1,e_2\}$	$\{0.57, 1.43\}$	permanent productivity types	

Krusell-Smith Algorithm

Krusell-Smith Algorithm: Krusell and Smith (1998)

- Compute the non-stochastic steady state with $Z_t \equiv 1$. Store the policy functions and the steady-state distribution of $(s, \epsilon, \theta, \tilde{k})$.
- Choose an initial parameterized functional form for the law of motion for the aggregate next-period capital stock and present period employment and transfers:

$$\tilde{K}_{t+1} = g^K(Z_t, \tilde{K}_t) \tag{15a}$$

$$\tilde{L}_t = g^L(Z_t, \tilde{K}_t) \tag{15b}$$

$$\widetilde{Tr}_t = g^{Tr}(Z_t, \widetilde{K}_t).$$
 (15c)

- Solve the consumer's optimization problem as a function of the individual and aggregate state variables, $(s,e,\theta,\tilde{k};Z\tilde{K})$.
- Simulate the dynamics of the distribution function.
- Use the time path for the distribution to estimate the law of motion for \tilde{K}_t , \tilde{L}_t and \widetilde{Tr}_t .
- Iterate until the parameters of the functions g^K , g^L and g^{Tr} converge.
- ② Test the goodness of fit for the functional form using, for example, \mathbb{R}^2 . If the fit is satisfactory, stop, otherwise choose a different functional form for $g(.) = (g^K, g^L, g^{Tr})'$.

Step 1: Computation of the non-stochastic steady state

Two Loops:

- Inner loop: Computation of the inidividual policy functions given $(\tilde{K}, \tilde{L}, \widetilde{Tr}, \widetilde{pen})$
- **②** Outer loop: Computation of $(\widetilde{K},\widetilde{L},\widetilde{Tr},\widetilde{pen})$

Two options for the computation of the individual optimal policies:

- Value function iteration: numerical optimization
- ② Euler equations: non-linear eqs. solver ✓
 - We start in the last period of life where next-period capital stock is equal to zero: $\tilde{k}'(s,e,\theta,\tilde{k})\equiv 0$

- Iterating backwards over ages $s = 69, 68, \dots, 1$
- Euler eq.:

$$rf(\tilde{z}) = u_c(\tilde{c}(\tilde{z}, 1 - l(\tilde{z}))) - \beta \mathbb{E}_t u_c(c'(\tilde{z}', 1 - l(\tilde{z}'))) (1 + (1 - \tau^k)r).$$

with

$$l = \gamma - (1 - \gamma) \frac{\tilde{tr} + (1 + (1 - \tau^k))r\tilde{k} - (1 + g_A)\tilde{k}'}{(1 - \tau^l - \tau^p)e\theta\bar{y}^s w}$$
 (16a)

$$\tilde{c} = \frac{(1 - \tau^l - \tau^p)e\theta \bar{y}^s wl + \tilde{tr} + (1 + (1 - \tau^k))r\tilde{k} - (1 + g_A)\tilde{k}'}{1 + \tau^c}$$
(16b)

if $l \geq 0$, otherwise l = 0.

much faster than value function iteration

- test Euler equation for $\tilde{k}' = 0$: rf > 0?
- Problem: initial values at $(s, e, \theta, \tilde{k}_{i_k})$:
 - \bullet Solution for \tilde{k}_{i_k-1}
 - **1** Solution at age s+1

 - Computation of maximum possible value \tilde{k}' for small $\tilde{c} \approx 0.001$, using half of this value
 - \Rightarrow Pick value with lowest absolute value for the residual function rf!
- Next-period capital stock \tilde{k}' not a grid point: linear interpolation of $\tilde{c}'(.)$ and $\tilde{l}'(.)$

- Dynamic General Equilibrium Modelling
- Choice of asset grid over \tilde{k} : [0, 10.0] with 50 grid points
- → upper boundary non-binding
 - Choice of initial values for \tilde{K} , \tilde{L} : $\bar{l}=0.30$, $\tilde{L}=0.20$, r=2.0%
 - Update scheme of aggregate variables: linear adjustment of old value by 30% of the difference
 - Computational time of Step 1:
 - GAUSS: ≈ 2 minutes
 - PYTHON: \approx 12 minutes

OLG Model: Non-stochastic steady state distribution of \tilde{k}

Step 2:

Choose an initial parameterized functional form for the law of motion for the aggregate next-period capital stock and present period employment and transfers:

$$\tilde{K}_{t+1} = g^K(Z_t, \tilde{K}_t) \tag{17a}$$

$$\tilde{L}_t = g^L(Z_t, \tilde{K}_t) \tag{17b}$$

$$\widetilde{Tr}_t = g^{Tr}(Z_t, \widetilde{K}_t).$$
 (17c)

Specification of
$$g = (g^K, g^L, g^{Tr})'$$
:

$$\ln K_{t+1} = \omega_{K,0} + \omega_{K,1} \ln \tilde{K}_t + \omega_{K,2} \mathbf{1}_{Z_t = Z_1} + \omega_{K,3} \mathbf{1}_{Z_t = Z_1} \ln \tilde{K}_t,$$

$$\ln \tilde{L}_t = \omega_{L,0} + \omega_{L,1} \ln \tilde{K}_t + \omega_{L,2} \mathbf{1}_{Z_t = Z_1} + \omega_{L,3} \mathbf{1}_{Z_t = Z_1} \ln \tilde{K}_t,$$

$$\widetilde{T}r_t = \omega_{Tr,0} + \omega_{Tr,1} \tilde{K}_t + \omega_{Tr,2} \mathbf{1}_{Z_t = Z_1} + \omega_{Tr,3} \mathbf{1}_{Z_t = Z_1} \tilde{K}_t,$$

Notice: $\widetilde{Tr_t}$ can be negative \Rightarrow not a logarithmic function

Initial values: ω_0 such that the values are equal to their non-stochastic steady state counterparts.

Solution:

$$\omega_K = \begin{pmatrix} 0.0386 \\ 0.0176 \\ 0.9257 \\ -0.0075 \end{pmatrix}, \quad \omega_L = \begin{pmatrix} -1.2663 \\ 0.0227 \\ 0.0748 \\ -0.0046 \end{pmatrix}, \quad \omega_{Tr} = \begin{pmatrix} 0.00224 \\ 0.00555 \\ -0.00173 \\ 0.00149 \end{pmatrix}$$

Regression of simulated K_{t+1} and L_t on $(1, \mathbf{1}_{Z_t = Z_1}, \ln \tilde{K}_t, \mathbf{1}_{Z_t = Z_1} \times \ln \tilde{K}_t)'$ and $\tilde{T}r_t$ on $(1, \mathbf{1}_{Z_t = Z_1}, \tilde{K}_t, \mathbf{1}_{Z_t = Z_1} \times \tilde{K}_t)'$:

 \Rightarrow all three regressions with $R^2 = 1.000$.

Step 3:

Solve the consumer's optimization problem as a function of the individual and aggregate state variables, $(s,e,\theta,\tilde{k};Z\tilde{K})$.

- Again, solution of the Euler equation with a non-linear eq. solver
- We start in the last period of life where next-period capital stock is equal to zero: $\tilde{k}'(\tilde{z}) \equiv 0$
- Factor prices depend on (Z_t, \tilde{K}_t) in period t and t+1

$$rf(\tilde{z}) = u_c(\tilde{c}(\tilde{z}, 1 - l(\tilde{z}))) - \beta \mathbb{E}_t u_c(c'(\tilde{z}', 1 - l(\tilde{z}'))) (1 + (1 - \tau^k)r_{t+1}).$$

• State vector in period t: $\tilde{z}_t = (s, e, \theta, \tilde{k}_t; Z_t, \tilde{K}_t)$

- Computation of next-period utility in the aggregate state $Z_{t+1} = Z'$ and individual state $\theta_{t+1} = \theta'$:
 - Probability: $Prob(Z'|Z) \times Prob(\theta'|\theta)$
 - computation of \tilde{K}_{t+1} with the help of $g^K(.)$
 - Given Z_{t+1} , K_{t+1} , we can compute L_{t+1} using $g^L(.)$
 - Given Z_{t+1} , K_{t+1} and L_{t+1} , we can compute r_{t+1}
 - To compute \tilde{c}' and l' at age s+1 with productivity θ' and aggregates Z_{t+1} and \tilde{K}_{t+1} , we interpolate $\tilde{c}(.)$ and l() bi-linearly at $(\tilde{k}_{t+1}, \tilde{K}_{t+1})$

- Grid over aggregate capital stock: $\tilde{K} \in [0.8\bar{K}, 1.2\bar{K}]$, where $\bar{K}=1.818$ is the non-stochastic steady state capital stock, using $n_K=7$ grid points
 - ightarrow little curvature of policy function in K
 - ightarrow we need to check if the series for the simulated capital stock remains in this interval \checkmark
- Total number of grid points for policy function:

$$T \times n_{\theta} \times n_{e} \times n_{k} \times n_{K} \times n_{Z} = 70 \times 2 \times 2 \times 50 \times 7 \times 2 = 28,000$$

- → time consuming part:
 - GAUSS: 14 minutes
 - PYTHON: 39 minutes

Step 4:

Simulate the dynamics of the distribution function.

Two options:

- Monte-Carlo simulation for e.g. 1,000 households in each cohort ⇒ too time-consuming
- ② Use discrete approximation of distribution at grid points and study dynamics for the approximation ⇒ faster with high accuracy

- Initial distribution $f_0(s,e,\theta,\tilde{k})$ in period t=0: non-stochastic steady state
 - by
- Distributions f_0 , f_1 , ... are normalized to one (divided by population size N_t)
- Aggregate capital stock in the initial period is equal to $\tilde{K}_0 = \bar{K}$
- Period t=0: Random number generator, with probability 1/2 each the technology state Z_0 in the initial period is either Z_1 or Z_2
- Compute optimal policy functions for next-period wealth $\tilde{k}_1 = \tilde{k}'$ for each value of (s,e,θ,\tilde{k}) on the grid points
- Add the mass at this grid point to the distribution $g_1(s, e, \theta', \tilde{k}')$ with probability $Prob(\theta'|\theta)$

- \bullet If \tilde{k}' is not a grid point: split the mass between the neighboring two grid points
- → see Section 7.2 in Heer/Maußner
 - \bullet Weigh the mass by the survival probability ϕ^s and divide by (1+n) to correct for growing population
- Use random number generator to compute Z_1 given Z_0 and Prob(Z'|Z)
- Continue iteration for $t = 2, \dots, 200$
- Computational time for the simulation of 200 periods:
 - GAUSS: 3 minutes
 - PYHTON: 1 hour:14 minutes

- Distribution function $f_1(s,e,\theta,\tilde{k})$ in period t+1 given distribution function $f_0(s,e,\theta,\tilde{k})$ in period t with predetermined aggregate capital stock \tilde{K}_{t+1} and realization $Z_{t+1} \in \{Z_1,Z_2\}$:
 - At age s = 1: newborn cohort.

$$g_1(1, e, \theta, 0) = \frac{\mu^1}{4}$$

 μ^1 — share of 1-year old in total population 1/4 — share of each individual productivity type (e,θ) among workers

- Update at ages $s=2,\ldots,70$: summing over all grid points $f_0(s,\ldots)$ at ages $s=1,\ldots,69$:
 - ① At grid point $(s,e_j,\theta_{i_\theta},\tilde{k}_{i_k})$, next-period wealth $\tilde{k}'(s,e_j,\theta_{i_\theta},\tilde{k}_{i_k})=k_i$ is a grid point:

$$f_1(s+1,e_j,\theta',\tilde{k}_i) = Prob(\theta'|\theta_{i_{\theta}}) \times f_0(s,e_j,\theta_{i_{\theta}},\tilde{k}_{i_k}) \times \frac{\phi^s}{1+n},$$

for
$$\theta' \in \{\theta_1, \theta_2\}$$

2 Next-period wealth $\tilde{k}'(s,e_j,\theta_{i_\theta},\tilde{k}_{i_k})$ lies between k_i and k_{i+1}

$$f_1(s+1,e_j,\theta',\tilde{k}_i) = \frac{\tilde{k}_{i+1} - \tilde{k}'}{\tilde{k}_{i+1} - \tilde{k}_i} Prob(\theta'|\theta_{i_{\theta}}) \times f_0(s,e_j,\theta_{i_{\theta}},\tilde{k}_{i_k}) \times \frac{\phi^s}{1+n},$$

$$f_1(s+1, e_j, \theta', \tilde{k}_{j+1}) = \frac{k' - k_i}{k_{i+1} - k_i} Prob(\theta'|\theta_{i\theta}) \times f_0(s, e_j, \theta_{i\theta}, \tilde{k}_{ik}) \times \frac{\phi^s}{1+n},$$
for $\theta' \in \{\theta_1, \theta_2\}$

 \Rightarrow code can easily be parallelized in the loop over ages $s=1,\ldots,69$.

Step 5:

Use the time path for the distribution to estimate the law of motion for \tilde{K}_t , \tilde{L}_t and $\widetilde{T}r_t$.

- ① Compute \tilde{K} , \tilde{L} , \tilde{C} , \widetilde{Beq}_t : summing up individual variables using mass $g_t(.)$
- **2** Compute τ^p that balances the social security budget
- Compute aggregate taxes
- lacktriangledown Compute transfers \widetilde{Tr}_t from the fiscal budget constraint
- **3** Use OLS regression of \tilde{K}_{t+1} , \tilde{L}_t and \widetilde{Tr}_t on $\ln \tilde{K}_t$ and \tilde{K}_t to derive the parameters ω_K , ω_L and ω_{Tr}

Step 6:

Iterate until the parameters of the functions g^K , g^L and g^{Tr} converge.

 \Rightarrow linear update by 30% of the difference

number of iterations in outer loop: 23

total computational time:

• GAUSS: \approx 5 hours

• PYTHON: \approx 2 days

Step 7:

Test the goodness of fit for the functional form using, for example, \mathbb{R}^2 . If the fit is satisfactory, stop, otherwise choose a different functional form for $q(.) = (q^K, q^L, q^{Tr})'$.

- $\Rightarrow R^2 = 1.000$ in all regressions
- \rightarrow see discussion in Chapter 8.3 in Heer/Maußner for a discussion of R^2 as a measure of accuracy

Computation: PYTHON or GAUSS?

RUN TIME: Krusell-Smith Algorithm

	· ·					
	PYTHON	GAUSS				
Non-stochastic steady state	11m:53s	2m:19s				
Policy functions	39m:03	14m:18s				
Simulation (200 periods)	1h:13m:52s	3m:52s				
Total	1d:21h:40m:18s	5h:18m:40s				

Correlation of income shares with GDP

	0-20%	20-40%	40-60%	60-80%	80-95%	General Equilibrium Modelling Programme 95–100%
						© Springer
US	0.53	0.49	0.31	-0.29	-0.64	0.00
Castañeda et al. (1998)	0.95	0.92	0.73	-0.56	-0.90	-0.84
our model						
i) $pen_t(\epsilon) = \epsilon \cdot \bar{p}en_t$	0.85	0.54	0.60	-0.30	0.23	-0.44
$ii) pen_t(\epsilon) = \bar{p}en_t$	0.75	-0.48	0.41	0.08	0.06	-0.29

Notes: Entries in rows 1 and 2 are reproduced from Table 4 in Castañeda et al. (1998). Annual logarithmic output has been detrended using the Hodrick-Prescott filter with smoothing parameter $\lambda=100$.

References

- Budría Rodríguez, S., J. Díaz-Giménez, V. Quadrini, and J.-V. Ríos-Rull (2002): "Updated Facts on the U.S. Distributions of Earning Income, and Wealth," Federal Reserve Bank of Minneapolis Quarterly Review, pp. 2 35.
- Castañeda, A., J. Díaz-Giménez, and J.-V. Ríos-Rull (1998): "Exploring the Income Distribution Business Cycle Dynamics," *Journal of Monetry Economics*, 42, 93 130.
- Hansen, G. D. (1993): "The cyclical and secular behavior of the labor input: comparing efficiency units and hours worked," *Journal of Applied Econometrics*, 8(1), 71–80.
- KAPLAN, G., K. MITMAN, AND G. L. VIOLANTE (2020): "The Housing Boom and Bust: Model Meets Evidence," *Journal of Political Economy*, 128(9), 3285 – 3345.
- KRUEGER, D., K. MITMAN, AND F. PERRI (2016): "Macroeconomics and Household Heterogeneity," in *Handbook of the Macroeconomics*, ed. by J. B. Taylor, and H. Uhlig, pp. 843–921. Elsevier.

KRUSELL, P., AND A. A. SMITH (1998): "Income and Wealth Heterogeneity in the Macroeconomy," *Journal of Political Economy*, 106(5), 867–896.

STORESLETTEN, K., C. I. TELMER, AND A. YARON (2007): "Asset Pricing with Idiosyncratic Risk and Overlapping Generations," *Review of Economic Dynamics*, 10, 519–548.