Versuch 101: Das Vrägheitsmoment durhgeführt an 14.10.2014 Vukar Jevic und Lars Hoffmann Tiel Tiel des Versuchs ides, Vrägheitsmomente verschiedener Korper experimental zu bestimmer und den Steinerscher Satz zu verifizieren. Vacorie Auf einer Massepunkt, der im Abstand - auf einer Kreisbahn um einen Kirkel rolled, wirkel die Aargerdiale Kraft Frang ma=mrig und danis das Drehmomen M= mr2 is. Die Göße mr wird dabei als Trägheitsmoment I des Massepurktes definier. Entsprechend ergilt sich für einen ausgedehnber Körper aus n Hunktmassen, die sich alle mit der gleichen Winkelgenhwindigkeit bewegen, das Vrägheihmoment $1 = \sum_{i=1}^{n} m_i r_i^2,$ welches für einer starrer Körger mit der Masserverteilung g(#) in Jolgeralis Integral übergeht: $1 = \int \rho(\hat{r}) \cdot r^2 dV.$ Wenn nun das Vrägheidsmoment Is eines Körpers für eine bestimmte Drehachse (3. B. durch den Schwerpunkt) bekannt ist, berechnet sich das Trägheitsmoment I des gleichen Körpers, aber für eine Rotationsachse in Abstand a parallel sur verpränglicher Achse durch 1=1s+mac Dies wird als Satz von Steiner bezeichnet.

Email-Adjense angelu

Wird die Spiralfelde der Messapparader un der Wirkel of ausgeberkt, fühl dies zu einem rücktreiberden Drehmoment wobei Dals Wirkebichtgröße bezeichnet wird. Daraus folgt, dass der Körper für kleine Auslenkungen Ramonische Schwingunger mit der Schwingungsdauer V = 27 75 ausfüht.

Durkführung Tur Bestimming der Wirkelrichtgröße D wird auf der Drillachse eine leichte (und später als masselos argenommens) Metallstange befestigt, un einer Wirkel of ausgelenkt und an einem Punkt in Abstand r von oler Drehachse wird rechtwinklig zun Radius die zur Auslenkung rotwerdige Kraft genessen. Die Wirksbrichtgröße Dergill sich dan über den Zusammerhang $\mathfrak{D} = \frac{\overline{\Gamma}}{\varphi}$ Um dar ligenträgheitsmoment Iz der Drillachse zu bestimmer, wird eine Metallstarge mit zwei Gewichter, die als Purchmasser argenommen werder, jeweils in Abstand a vom Rotationszentrum auf der Dillacher beferligt. Die Starge wird ausgeberkt und die Schwingungsperiodendauer mil einer Stoppuhr gemessen. Das Eightägleismoment 10 wird annhließend rechnerisch mit lisaer Regression bestimt. Ein Tylinder und eine Nugel werder nacheinander auf der Drillachse befishigt and ausgelerkt. Auch hier wind nithilf einer Hoppul die jeweilige Schwigungsseroderdauer bestrumt. Darack wird eine Golzpuppe auf der Dillachse befertigt und zum Schwinger gebracht. Analog zu dem vorhergeberder Versuchskeit wird die Schwingungs serooken daner jeweils für zwei verstiedere Körperhaldunger gemesser Anschließend wird das Verliäldnis der errechneten Trägheidsmomente mid dem Oudierter der genesseren Trägheitsmomente verglichen.

duffrau der Messapparadur (Fig. 1) aufgeshaubter Probekörner Drillachese Spiralfeder

2 Hotel Kefere ziem Quelle 2

AUSWERTUNG	Land Kart
Annahme: Alle unterfuction Kooper Besitzen eine ko	ustan te
Annahme: Alle unterfuction Rooper Besitzen eine ko Massendichtefunktion und sind somit homogen.	Cat!
FEHLERRECHNUNG	
Det Feblet des Mittelwerts wird im Folgenden al	s AX
bezeichnet, des Mittelwart selst als X.	
$\Delta \overline{x} = \sqrt{\sum_{i=1}^{N} \frac{(x_i - \overline{x})^2}{N(N-1)}} $ (4)	
$\Delta X = \bigvee_{i \in A} N(N-1)$	
Det Wert einet fehledbe Raffeten Grøße wird mi	t oleo
Gaußschen Felile fortspflanzung esmittelt:	
The state of the s	12 000 = :- tou
(2) $6y = \sqrt{\frac{3y}{9x_i}} / 2\Delta x_i^2 / \Delta x_i = Feli$ (2) $6y = \sqrt{\frac{3y}{9x_i}} / 2\Delta x_i^2 / \Delta x_i = Feli$	(i) I have to
0 '	4 0
Bestimming old Winhal nichtgroße D Formel wird DX: 1	
	4ERADI, DEIO VA
$\vec{d} = 0,02096 \text{ Nm}$	
△d = \(0,043² +0,106² +0,0816² +0,093² +0,123° +0,42	
+ 0,3432 + 0,2732 + 0,1932 + 0,1232 + 0,1432)1	2 10 Nm
= 0, 118 ·10 2 Nm	
D= d + ad = (2,097 ± 0,118).10 Nm	Schöu
Bestimming der Eigentragheitsmoments des Drillachse	
Zuraclest nivel der Stab als dunner Stab genaturt, ser	in Traybuits-
moment I stab berebut sich zu I stab = 12 m l2	
Det verwendere Stab hat eine Zarge von abm und mig	gt 96,29g,
damit betragt sein Tragleitsmoment 2,89.10 3 kg	u.
Die Messworke sind auf Tab. 213 der Datensitze einzusehen.	
Die Messurk sind in Fig 2 aufgezeichnet.	

```
Lineare Regression:
  a: = i-ter quadrierter Abstand der Markhtorze zur Drielachse
 m = Steigung der Fit-Gerenden
 b = y-Achsen-Absoluit der Fit-Geracien
Ti = i-te quadricobe geitspaune
ri = i ter Abstand que Fit - Geraden
 Das Gleichrungssystem { maj +b - Tr = r1; maz +b -Tz ; ... }
 ist zu minimieren. Zurächst schretet man das Gleichrugsrystem run
in: ||A(b)-T|| = ||T||, A = \begin{pmatrix} a_1^2 & 1 \\ a_2^2 & 1 \\ \vdots & \vdots \\ a_{10}^2 & 1 \end{pmatrix}, T = \begin{pmatrix} T_1^2 \\ T_2^2 \\ \vdots \\ T_{10}^2 \end{pmatrix}
 A^{T}A(b) = A^{T} = 3

folding (1215312 2436) (on) = (1065-82)

folding (2436 10) (b) = (241, 7)

Mit m = 0; 076707 we use b = 5, 48428 s<sup>2</sup>, Febb-?
 Das gesante Tragheitsmoment des Apparatus berechnet sich zu:
  Iges = (m, + mz) a + ID + Istab, m, mz sind die Marshu der
 reswendeten Junichte. Aus dem Zusammenhang T= 211/ 1 bow.
 T2 = 4π2 = ergibt sich durch Roeffizienten Vergleich mit der
 Kurgleich geraden T^2 = ma_1^2 + 6 der Zusammeng
T^2 = 4\pi^2 \frac{(m_1 + m_2)}{D} a_{eff}^2 + 4\pi^2 D^{-4} (I_0 + I_{stab})
 a_{eH}=0 \Rightarrow T^2=4\pi^2\left(T_0+T_{5tab}\right) \stackrel{72}{\Leftarrow} b = \frac{4\pi^2}{D}\left(T_0+T_{5tab}\right)
 (=) 4112 - Is = Is Is = (2.10 + 2,5.10 ) kym²
```


Bestimming des Tragheitsmoments eines Zylinders m = 1525,59 h = 0,1393m J=0,08m F=0,04m T=2,328 AT = (0,002 +0,0182+0,0122+0,0082+0,0122)= T = (2,328 ± 0,006) 5 E bus Theorie word

Berechung des Cornar Lungswerts Position des Eglindre? Solverent out
nontental? I = 1 m + 2 + 1 m = = 1.1,5255 kg · 0,04 m + 1. 1,5255 kg - 9 13 93 m I = 3,08 - 10 - 3 kg m2 Bestimming des Tragheitsmoments wet die Schningung planet this dem gusammenhang T = 20 \$ folgt far das Tragheits moment: $I = T^2 U D = (0.02097 \pm 0.0018) Vm$ $4\pi^2 T = (2.328 \pm 0.006) S$ $\partial_D I = \frac{T^2}{4\pi^2}$ $\partial_T I = \frac{TD}{2\pi^2}$ Nach (2) faigt: DI = \(\begin{pmatrix} 2,328\frac{22}{5} & 0,0018Nm \\ 4112 & 0,0018Nm \\ 211 & 0,006 \\ \ \end{pmatrix} \end{pmatrix}^2 + \begin{pmatrix} 2,328\frac{2}{5} & 00209+Nm \\ 211 & 0,006 \\ \ \end{pmatrix} \end{pmatrix}^2 = 1,627.10 4 kgm2 I = T2D = 2,328252 · 902097Nm = 2,879.103 kgm2 I = (2,879 ± 0,163).10 kgm² Dieser Wert authalt noch das Eigentragheitsmoment des In Clackse. Der Ermitelte Wert ist somit I = (2,86 ±0,3)·10-3 kgm²

Bestimming des Tragbeitsmonants einer Kingel d=(0,1363 ± 0,0002)m r= (90682 ± 0,0001)m Dd = VQ00092+0,00022+0,00032+0,00032+0,00042)1 = 2.10-4m T = (1714 ± 0,002) 5 AT = (0,0042.3+0,0062.2) = 2.1035 bur theoretists / Theoriem Magel = 0, 8128 kg Bere chung des Erwartungs werts C IX= = mr2 2, I= 4 mo, => DI = 4.0,8128kg. 90682 m.0,000 lm = 4,43.10 kgm2 Ix = 3.0, 8128kg. 90682 m2 = 1,5122.10-3 Rgm2 IK = (1,5122 ± 0,0044).15 kg m2 Bestimming des Traghaitsmoments riber die Schningengedauer $\frac{DT^{2}}{4\pi^{2}} = T \qquad \Delta J = \sqrt{\frac{1}{145} \frac{7145}{902097000000} + \frac{1}{1472} \frac{1145}{900118000}}, \text{ with }$ = 8,79.10 5 kgm2 her Famil I = 0,02097Nm. 1,714252 = 1,560.10 3 kgm2 Damit Behrigt das Trigbeitsmoment der Rugel mit Direlactive (1,560 ± 0,09).10-3 kgm² und olive Dollaclife: (4,54 ± 0,27).10 - kg m2

BRUNNEN B

Aufgrund des ohnehin schon seht groben Näheningen unde bei des Berechung des Tragbeitsmornents des Puppe von dem Eigen-tragbeitsmoment der Drillachse abgesehen.

Diskussion Trotz der relativ großer Ungeracigkeil des ügenhägheitsmoments de Drillachse sind große Übereinstimmungen zwinder der Ewastungwerten und den genessenen Werten fertzusteller, was auf die Nichtigkeit der Vacorie birdentes. Die Abweielungen konnen zum größten Veil auf die Ungerauigkeit der Leibnessung zurückgeführt werden: Er wurde die merselliche Keakdionszeit weder bestimmt noch herausgerechnet. Bei der Puppe lasser sich größere Abweichungen fertikeller, die cineseits durk die grobe Approximation (3. B. halder Torus einer Arapesformiger Overwhith, er ist also kein Zylinder; dasselbe gill für Arme und Beine), andererseits durch rullecht Junktionierende Gelerke (der Am serkte sich wäherd der Messing) erklärt werder könner. Veikelin schwingt die Type vergleichsweise schnell, woodwale die Teilmessung schwieiger und danis ungenauer wurde. Die rel. Felle hodrud swähn (30%) ... Likeahur TU Dordmund, Skript zu Versuch 10-1 "Das Vrägheitsmoment" http://129.217.224.2/HOMEPAGE/PHYSIKER/BACHELOR/ API SKRIPT/Traegheit.pdf

	-	V				H			1	Dr								-			
a)	Ma	we	a	es	SA	abs	-	ms			Ь)	0	Là	ng	e	de.	s (Ma	ls	ℓ_{s}	
	9	6,	2	8	9									35.				m			
		6,		1	1								1					m			
		6,							ŀ			- 1						m			
	7.1	6,		1	17.7													m			
	100000	6,		2.5														m			
c)	М	use	di	ės,	Gei	vid	lks	Н;	ח	n H				D		m	Ð				
	2														1,						
							- 1		L									9			
	2				1	1 1												9			
	2					DAYS CT.												9			
		2																9			
						7			L									7			
									L												
	F							-													
								1				-									
												1									

a d	chwingungsdauer 51 5	T _s	$\frac{T^2}{s^2}$
0,30	43,07	8,61	74,20
0,30	43,20	8,64	74,65
0,20	30,13	6,03	36,31
0,20	30,13	6,03	36,31
0,18	27,55	5,51	30,36
0,18	27,49	5,50	30,23
0,16	24,96	4,99	24,92
0,16	25,12	5,02	25,24
0,714	22,55	4,51	20,34
0,14	22,44	4,49	20,14
0,12	20,07	4,01	16,11
0,12	20,18	4,04	16,29
0,10	17,84	3,57	12,73
0,10	17,64	3,53	12,45
0,08	15,75	3,15	9,92
0,08	15,67	3,13	9,82
0,06	13,83	2,77	7,65
0,06	14,03	2,81	7,87
0,04	12,50	2,50	6,25
0,04	12,46	2,49	6,21

a) M 1	2	5	2	5,	5	9		en.	 ¹ 2					Но О,	1	3	9	4	m	oler	3	n,	2	
1		- 1												0,										
						9								0,										
1						55								0,										
1	2		2	5,	5	97								0,	1	3	g	3	m					
c) I),	.	hr	ne	ue		d	2																
0 0	, (9	8	0	o	m																		
						m																		
	1					M																		
						m																		
a) S	ŀ	1					u	٠		T														
	-	1	1,	6	6					2,	3	3												
1/4	-	1	1,	5 7	5					2,	3	1												
	и.											4												
	1	1	1,	6	0							2												
		1	1,	. 6	P					2,	3	4												

a)	1100		No		v.	0.4	0.							-				1			
7	Max. 8						. ,,	'K													ļ
	1 1	- 1	- 1		~								-								
	8	- 1												1		Ė					
	8													1							
	8																				
	8	7,	۷,	8	9																
6)	Dun	chi	ne	sse	e-	0	lk							1							
	0,	1	3	5	4	m								1		F					
	0,	1	3	6	3	Μ								1							
	0,	1	3	6	5	m															
	0,	7	3	6	0	m								1	ļ						
	0,	1	3	6	6	M															
	0,	1	3	6	7	M									-						
c)	8.4	2, .				h.							4		ŀ	H	F				
9	Sch	5 ₇	7	K		u	25	1		T s		-			Ī	F	F				ŀ
		5						-				-	-	-	-						
		8,	5	5					1	,7	1				I	F					
		8,	6	0					1,	7	2					H					
		8,	5	3					1,	7	1	1	4	ł		F					
	- 1	8,	- 1						1,	7	1	Ħ	1								
		8,	6	0					1,	7	2	1	4		ļ						
		-										1			ļ						
														1	ļ						
		1																			

Masse	e ole	s Puy	yre:	m,	, =		1	6	3,	1	5	9									
												V									
Arm:	U	urchi	resser		0,	U	1	6	0	m											
	K	ige:			σ,	1	3	5	O	~	`										
Bein:	D	urch	usser	:	Ó,	0	-1	7	0	m											
		nge:								M											
Kopf:	Du	rhm	eurs:		0,	0	Э	1	0	m											
7.4	Ho	he:					5														
Yorso:	D	weln	resse	:	0,	0	3	3	0	m											
	40	he;			0,	0	9	8	0	Μ											
Schwing	gung	rda	w (Pa	nidi	on	1)				-11	S	Sha	ring	im	gse	laur	s (T	ેડાં	Hio	n =	L)
	5												1	S	Ţ	laur	İ		<u>T</u> S		
6	6,4	9			σ,	6	4	9					3	6	9			0,	9	6	9
(5,4	6			0,	6	4	6					3,	6	1			0,	9	6	1
(5,5	2			0,	6	5	2					9,	6	0			0,	9	6	O
(5,4	6			0,	6	4	6					9,	7	3			0,	9	7	3
. 6	6	σ			0,	6	6	0					9,	7	3			0,	9	7	3
6	5,5	5			0,	6	5	5					9,	6	6			0,	9	6	6
6	,5	3			0,	6	5	3					9,	6	4			0,	9	6	4
6	5	2			0,	6	5	2					3,	6	7			0,	9	6	7
6	5,5	2			0,	6	5	2					9	6	4			0,	9	6	4
6	,5	0			0,	6	5	0					9,	7	3			0,	9	7	3