서울특별시 공공 자전거 따릉이 데이터 분석

김부겸

목 차

1.	개요	••••	• • • • •	• • • •	• • • •	••••	• • • • •	••••	• • • • •	• • • • •	••••	• • • • •	••••	• • • • •	• • • • •	• • • •	• • • • •	• • • • •	••••	• • • • • •	3	
가.	배경	••••																• • • • •				3
나.	목적	••••																• • • • •			••••	3
2.	분석	과건	ð 	••••	• • • •			• • • •			••••					• • • •						3
가.	수집	• • • •							• • • • •		• • • • •						• • • • •			;	3	
나.	전처	리 ·																			. 4	
다.	탐색	••••																			4	
라.	분석	• • • •																		6	ò	
3.	결론				• • • •													8	3			
가.	분석	결과																				8
	활용																					

따름이 데이터 분석

1. 개요

가. 분석배경

- 1) 따름이 이용현황 증가
- 2010년 도입 이후 2024년 5월까지 약 1억 9000만건의 이용 횟수 기록
- 2019년과 2023년 이용현황을 비교해보면 주중 이용 건수는 2.5배(1300만건→3300만건), 주말은 2.1배(500만건→1100만건)으로 늘음
- 즉, 따릉이가 단순히 취미수단이 아닌 일상 속의 교통수단으로 정착

2) 전국 자전거 공급 부족

- 아직 전국적으로 공공자전거가 활성화 되어있지 않음
- 수요 대비 공급이 부족한 지역이 있음

*2023년 12월 기준

나. 목적

1) 가장 많이 이용되고있는 서울 공공자전거를 기반으로 다른 지역에 공공자전거를 설치하기에 좋은지 알아보려고함

2. 분석 과정

가. 데이터 수집

- 1) 데이터: 서울 열린데이터 광장
- 2) 기간: 2023년 12월
- 3) 구성
- 서울시 공공자전거 대여소 정보
- 서울시 공공자전거 이용 정보_시간대별
- 서울시 공공자전거 이용 정보_월별
- 서울교통공사 역주소 및 전화번호

- 서울시 대학 및 전문대학 DB 정보
- 서울시 고등학교 기본정보
- 서울시 인구밀도 (구별) 통계

나. 데이터 전처리

- 1) 2023년도 12월 데이터만 사용
- 2) 결측값 제거
- 3) 필요한 컬럼 추출
- 4) 데이터 병합

다. 데이터 탐색

1) 자치구별 이용건수

- 강서구의 이용량이 가장 많은 것을 확인할 수 있음 2) 연령 별 이용건수

- 20~30대의 이용량이 많은 것을 확인할 수 있음

3) 시간 별 이용 건수

- 8시와 18시의 값이 가장 큰 것을 보아 출퇴근 시간대에 많이 이용하는 것을 알 수 있음

4) 따릉이 대여소 지도 시각화

- 앞선 3가지 시각화를 통해 학교, 지하철역 주변에 대여소가 있을거라 판단함

- 파란색 점(지하철역), 빨간색 점(고등학교), 노란색 점(대학교) 표시
- 지하철 역, 대학교와 고등학교 주변에 대여소가 있는 것으로 보임

라. 데이터 분석

- 1) 랜덤포레스트 분류
- 랜덤포레스트가 조정을 안해도 성능이 좋게 나오기에 랜덤 포레스트 분류 사용
- 위도, 경도를 이용해 지하철역 인근에 대여소가 있는지 분류

	precision	recall	f1-score
No Rental Shop	0.50	0.20	0.29
Rental Shop	0.93	0.98	0.95
accuracy			0.91
macro avg	0.71	0.59	0.62
weighted avg	0.89	0.91	0.90

- Rental Shop의 정밀도가 0.93으로 잘 예측됨
- 하지만, No Rental Shop의 경우 데이터의 수가 적어 잘 예측하지 못함
- 데이터의 수가 적다는 것은 대부분의 지하철 역 주변에 대여소가 있기 때문
- 이를 통해 지하철역 근처에는 대여소가 있다는 것을 알 수 있음 2) 다중 선형 회귀분석
- 종속변수를 대여소수로 하고, 각 독립변수(이용건수,지하철역 수, 대학교 수, 고등학교 수, 인구밀도)가 영향을 미치는지 확인해보기
- 단계적 회귀법을 이용함

OLS Regression Results

Don Variable:		어 스 스	R-squared (u	ncentered):	======	0.863	
Model: OLS Method: Least Squares Date: Sun, 01 Sep 2024			i. R-squared (statistic:		0.868 0.858 151.7 7.29e-12 -129.72 261.4 262.7		
==========	coef std err	 t	t P> t	======== [0.025	0.975]		
 이 용건 수	0.0011 8.79e-0)5 12	2.316 0.0	00 0.001	0	. 001	
Omnibus: Prob(Omnibus): Skew: Kurtosis:	9.9 0.0 -0.7 5.8)08 Jar '98 Pro		:	1 . 450 9 . 811 0 . 00741 1 . 00		

- 종속변수: 대여소수, 독립변수: 이용건수
- 변수가 유의하고 R-squared 값도 0.863으로 잘 나옴

OLS Regression Results

Dep. Variable: 대여소수 R-squared (uncentered): 0.948										
Model:		0LS	Adj. R-sc	juared (unce	0.944					
Method:	Le	ast Squares	F-statist	ic:		209.9				
Date:	Prob (F-s	tatistic):		1.69e-15						
Time:		09:48:55	Log-Likelihood:			-117.63				
No. Observations	:	25	AIC:		239.3					
Df Residuals:		23	BIC:			241.7				
Df Model:		2								
Covariance Type:		nonrobust								
=======================================		========				======				
	coef s	td err	t	P> t	[0.025	0.975]				
이용건수	0.0006	9.12e-05	7.003	0.000	0.000	0	.001			
지하철역수	4.4532	0.727	6.124	0.000	2.949		5.958			
	1. 1002									
Omnibus:		0.282	Durbin-Wa	:====== itson:		2.060				
	=======	0.282 0.868	 Durbin-Wa Jarque-Be			2.060 0.464				
Omnibus:	=======			ra (JB):						
Omnibus: Prob(Omnibus):		0.868	Jarque-Be	ra (JB):		0.464				

- 종속변수: 대여소수, 독립변수: 이용건수, 지하철역수
- 모든 변수 유의하며, R-squared 값이 0.9444 나옴

OLS Regression Result:

Dep. Variable Model: Method: Date: Time: No. Observatic Df Residuals: Df Model: Covariance Typ	0 Least Squar Sun, 01 Sep 20 09:34:	Prob (F-statistic) Log-Likelihood: AIC: BIC:	0.76t 0.732 22.30 1: 8.02e-07 -109.30 226.6 231.5		
		t P> t			
이 용건 수 지 하철 역 수	0.0005 7.9e-0 2.6343 0.6 -1.1794 1.694	-0.696 0.494	0.000 0.001 1 1.215 4.053 -4.701 2.343		
Omnibus: Prob(Omnibus) Skew: Kurtosis:	4.1 0.1 0.5 4.1	26 Jarque-Bera (JB): 04 Prob(JB):	1.854 2.407 0.300 2.65e+05		

- 종속변수: 대여소수, 독립변수: 이용건수, 지하철역수, 대학수

- 대학수 변수가 유의하지 않아 제거하기로함

OL S	Door	ession	Door	1+0
ULS	Kear	ession	Resu	ITS

Dep. Variable:	≥수 R-sq	uared:	0.798					
Model:		0LS	Adj. R-s	quared:	0.769			
Method:	Least	Squares	F-statis	tic:	27.63			
Date:	Sun, 01	Sep 2024	Prob (F-	statistic):	1.75e-07			
Time:		09:34:56	Log-Like	lihood:	-107.47			
No. Observation	25	AIC:			222.9			
Df Residuals:	21	BIC:			227.8			
Df Model:		3						
Covariance Type	: n	onrobust						
	coef std	err	t	P> t	[0.025	0.975]		
const 3	0.2063 10.	661 2	2.833	0.010	8.036	52.377		
이용건수	0.0004 8	.33e-05	4.690	0.000	0.000	0.001		
지 하철 역 수	2.2598	0.664	3.404	0.003	0.879	3.640		
고등학교수	1.7851	0.906	1.970	0.062	-0.099	3.669		
Omnibus:	========	3.977	======= Durbin-W	======== atson:		====== 1.779		
Prob(Omnibus):	0.137		era (JB):	2.315				
Skew:		0.679	Prob(JB)	:		0.314		
Kurtosis:		3.613	Cond. No		2	.77e+05		
						======		

- 고등학교수의 변수도 유의하지 않아 제거하기로함

OLS Regression Results

=====================================									
Dep. Variable: Model:		네어크 OLS		0.834 0.811					
Method:	Lea	st Squares	Adj. R-s F-statis		35.23				
Date:	Sun, 0	1 Sep 2024	Prob (F-	statistic):	2.22e-08				
Time:		09:35:14	-	lihood:	-104.99				
No. Observations			AIC:		218.0				
Df Residuals: Df Model:		21 3	BIC:			222.9			
Covariance Type: nonrobust									
	coef st			P> t	[0.025	0.975]			
const 13					-11.559				
이용건수	0.0004	7.65e-05	4.606	0.000	0.000	0.001			
지하철역수					1.266				
인구수	0.0001	3.4e-05	3.057	0.006	3.32e-05	0.000			
Omnibus:		2.322	Durbin-W	atson:		1.881			
Prob(Omnibus):		0.313	Jarque-B	era (JB):		1.350			
Skew:			Prob(JB)		0.509				
Kurtosis:		3.158	Cond. No		1	. 44e+06			

- 모든 변수가 유의하고, R-squared값도 0.834로 모형을 잘 설명함

3. 결론

가. 분석 결과

- 다중 선형 회귀 분석을 통해 대여소 수에 영향을 미치는 변수는 이용건수, 지하철역 수 와 인구 수 라는 것을 확인할 수 있음
- 학교 주변과 대여소가 연관이 있을 것이라 판단했지만 유의하지 않을 것을 보아 영향을 미치지 않음
- 결론적으로 이용건수, 지하철역수, 인구수가 많은 지역에 대여소의 수가 많다.

나. 활용 방안

- 공공 자전거가 없는 지역에서 이를 지표로 사용하여 공공 자전거 대여소를 설치할 수 있음
- 이용건수의 경우, 20-30대와 출퇴근 시간대에 이용을 많이하는 것을 확인하여 이용건수 가 많을 위치를 판단할 수 있음
- 추가적인 데이터를 수집하여 더 많은 인사이트를 도출해 활용할 수 있을 것이라 예상함