- 书面作业讲解
 - UD第2章问题1、5、6、7、8、10、11
 - UD第3章问题2、6、7、8、9、10、11
 - UD第4章问题1、5、7、9、13
 - UD第6章问题12、14、15、18
 - UD第17章问题11、13、14、16、18、19
 - -ES第24节练习4、6、8
 - UD第27章项目3

UD第2章问题1

- P→Q
 - Q if P
 - P is sufficient for Q
 - Q is necessary for P
 - Ponly if Q
 - Q whenever P
- You can come to the party only if you have an invitation.
 - Have an invitation \rightarrow Come to the party?
 - Come to the party → Have an invitation ?

UD第2章问题6

•
$$\neg(P \rightarrow Q)$$

 $\leftrightarrow \neg(\neg P \lor Q)$
 $\leftrightarrow \neg(\neg P) \land \neg(Q)$
 $\leftrightarrow P \land \neg Q$

- If T is continuous, then T is bounded.
 - 否定: T is continuous and T is not bounded.
- The number x is prime only if x is odd.
 - 否定: The number x is prime and x is not odd.

UD第4章问题5g

- There is a y such that xy=0 for every x.
 - 否定1: For all y, there is an x such that xy≠0
 - 否定2: There is an x such that for all y xy≠0
 - 两种写法等价吗?

UD第4章问题5j

• For all ε >0, there exists δ >0 such that if x is a real number with $|x-1|<\delta$, then $|x^2-1|<\varepsilon$.

- 符号化:
$$\forall \varepsilon, (\varepsilon > 0 \rightarrow \exists \delta, (\delta > 0 \land \forall x, (x \in R \land |x-1| < \delta \rightarrow |x^2-1| < \varepsilon))$$

- 否定:
$$\exists \varepsilon, (\varepsilon > 0 \land \forall \delta, (\delta \le 0 \lor \exists x, (x ∈ R \land |x - 1| < \delta \land |x^2 - 1| \ge \varepsilon))$$

$$- \text{ II: } \exists \varepsilon, \left(\varepsilon > 0 \land \forall \delta, \left(\delta > 0 \to \exists x, \left(x \in R \land |x - 1| < \delta \land |x^2 - 1| \ge \varepsilon\right)\right)\right)$$

UD第4章问题13c

1 If I is a positive real number, then there exists a real number m such that m>I.

$$\forall l, (l > 0 \rightarrow \exists m, m > l)$$

② Every real number m is less than t.

$$\forall m, (m < t)$$

③ The real number t is not positive?

$$t > 0$$
?

UD第17章问题11b

- g(1)=a, g(m+n)=g(m)g(n)
- 证明: g(n)=aⁿ

- 数学归纳法证明:
 - 1. n=0时,g(0)=1,成立
 - 2. 假设n=k时,成立,即g(k)=a^k
 - 3. 欲证n=k+1时,成立,即g(k+1)=a^{k+1}

问题&条件

条件

问题

4. 因为,g(k+1)=g(k)g(1)=a^ka=a^{k+1},得证

UD第17章问题13

• n+1阶时:

- 1. 如果 $ac(a_1c+b_1)...(a_nc+b_n)=0$,那么ac=0或 $a_ic+b_i=0$
- 如果a_ic+b_i=0且i≠1,那么将1和i下标互换(rearrange), 总之使得ac(a₁c+b₁)=0
- 3. 那么 $ac(a_1c+b_1)...(a_{n-1}c+b_{n-1})=0$,根据归纳假设,c必为0

• 但是, 2阶时:

 如果ac(a₁c+b₁)=0是因为(a₁c+b₁)=0而非ac=0,那么上述 第2步就不能实现

UD第17章问题16

- 因为节点数为n+1的convex polygon可以分为:
 - -一个三角形
 - -一个节点数为n的convex polygon
- 所以.....

ES第24节练习8

- Output the length of a longest monotone subsequence.
 - -19108375264
- 算法
 - 穷举法
 - 动态规划法
 - 其它更有效的算法:
 http://en.wikipedia.org/wiki/Longest_increasing_s
 ubsequence#Efficient algorithms

- Part 1 \ Part 2 \ Part 3
- Part 4: $\omega_A = \omega_B$
 - $-:A\cap B\subseteq A$
 - 又∵A∩B是successor set //Part 3
 - ∴ω_Δ⊆A∩B //ω_Δ的定义
 - ∴ ω_Δ⊆B
 - 又∵ω_A是successor set //Part 3
 - ∴ω_B⊆ω_A //ω_B的定义
 - 同理,ω_A⊆ω_B
 - $: \omega_A = \omega_B$

- Part 5: S=ω
 - 将S作为Part 4中的arbitrary successor set A
 - -则ω是A的若干子集的交集 //ω_Δ的定义
 - ∴ω⊆S
- Part 6: x⁺≠0
 - 反证: $x^+=x \cup \{x\}=\Phi \Rightarrow x=\Phi \Rightarrow \{\Phi\}=\Phi$

- Part 7: S={x∈ω: ∀y∈ω, if y∈x, then y⊆x}=ω
 Use Part 5, 其条件为:
 - Φ∈S
 - 2. If $x \in S$, then $x^+ \in S$
 - Φ∈S显然成立
 - 2. 给定: $\forall y \in \omega$, if $y \in x$, then $y \subseteq x$ 需证明: $\forall y \in \omega$, if $y \in x^+$, then $y \subseteq x^+$ $y \in x^+ = x \cup \{x\}$
 - 如果y∈x,那么y⊆x⊆x⁺
 - 如果y∈{x},那么y=x⊆x+

- Part 8: x=y
 - $\mathsf{x} \cup \{\mathsf{x}\} = \mathsf{y} \cup \{\mathsf{y}\}$
 - ∴x∈y或x∈{y}
 - ∴x⊆y或x=y //Part 7
 - ∴x⊆y
 - 同理, y⊆x

- 教材答疑和讨论
 - DH第2章

问题1:数据结构的应用

- 向量/列表 (vector/list)
- 数组/表格 (array/table)
- 队列 (queue)
- 栈 (stack)
- 树 (tree)

一棵野生的二叉树

如何不用递归实现second-visit-traversal?

如何走迷宫?

如何实现逐层输出?

如何对战Tic-tac-toe?

