<u>chapter 6</u>: numerical integration

$$\int_0^1 f(x)dx \approx \sum_{i=0}^n c_i f_i$$
 , c_i : coefficients , $f_i = f(x_i)$, x_i : points

20 Thu 4/1

 $\underline{\text{ex}}: \int_0^1 e^{-x^2} dx = 0.7468..., \text{ consider } x_i = ih, h = \frac{1}{n}, i = 0,..., n: \text{ uniform}$

right-hand Riemann sum

trapezoid rule

$$R(h) = f_1 h + f_2 h + \dots + f_n h = (f_1 + f_2 + \dots + f_n) h$$

h	R(h)	error	error/h	$ \operatorname{error}/h^2$	2
1	0.3679	0.3789	0.3789	0.3789	
0.5	0.5733	0.1735	0.3470	0.6939	
0.25	0.6640	0.0829	0.3314	1.3257	
0.125	0.7064	0.0405	0.3237	2.5898	\Rightarrow error = $O(h)$, 1st order accurate

$$T(h) = \frac{1}{2}(f_0 + f_1)h + \frac{1}{2}(f_1 + f_2)h + \dots + \frac{1}{2}(f_{n-1} + f_n)h$$
$$= (\frac{1}{2}f_0 + f_1 + \dots + f_{n-1} + \frac{1}{2}f_n)h$$

h	T(h)	error	error/h	$ \operatorname{error}/h^2 $
1	0.6839	0.0629	0.0629	0.0629
0.5	0.7314	0.0155	0.0309	0.0618
0.25	0.7430	0.0038	0.0154	0.0614
0.125	0.7459	0.0010	0.0077	$0.0613 \Rightarrow \text{error} = O(h^2)$, 2nd order accurate

question: How can we obtain a more accurate integration formula?

- 1. piecewise quadratic interpolant (Simpson's rule)
- 2. cubic spline interpolant
- 3. non-uniform points (e.g. Chebyshev, adapted)
- 4. extrapolation (explained next)

<u>Richardson extrapolation</u> (Romberg's method)

$$R_0(h) = T(h) = \int_0^1 f(x) dx + c_2 h^2 + c_4 h^4 + c_6 h^6 + \cdots : 2nd \text{ order accurate}$$
 note: finding c_2, c_4, c_6, \ldots is a good exercise, but the values are not needed here
$$R_0(2h) = T(2h) = \int_0^1 f(x) dx + c_2 (2h)^2 + c_4 (2h)^4 + c_6 (2h)^6 + \cdots \\ = \int_0^1 f(x) dx + 4c_2 h^2 + 16c_4 h^4 + 64c_6 h^6 + \cdots \\ \Rightarrow \frac{1}{3} (4R_0(h) - R_0(2h)) = \int_0^1 f(x) dx - 4c_4 h^4 - 20c_6 h^6 + \cdots : 4th \text{ order accurate}$$
 define $R_1(h) = \frac{1}{3} (4R_0(h) - R_0(2h)) = R_0(h) + \frac{1}{3} (R_0(h) - R_0(2h))$
$$R_1(h) = \int_0^1 f(x) dx + \tilde{c}_4 h^4 + \tilde{c}_6 h^6 + \cdots \\ = \int_0^1 f(x) dx + \tilde{c}_4 (2h)^4 + \tilde{c}_6 (2h)^6 + \cdots \\ = \int_0^1 f(x) dx + 16\tilde{c}_4 h^4 + 64\tilde{c}_6 h^6 + \cdots \\ \Rightarrow \frac{1}{15} (16R_1(h) - R_1(2h)) = \int_0^1 f(x) dx - \frac{16}{5} \tilde{c}_6 h^6 + \cdots : 6th \text{ order accurate}$$

extrapolation table

$$\begin{array}{c|c} 2h & --- R_0(2h) \\ h & --- R_0(h) & \stackrel{\Delta}{ & } \\ \hline \begin{array}{c} \frac{\Delta}{3} & \\ \hline \\ \frac{\Delta}{3} & \\ \hline \\ \frac{1}{2}h & --- R_0(\frac{1}{2}h) & \stackrel{\Delta}{ & } \\ \hline \end{array} \\ R_1(\frac{1}{2}h) & \stackrel{\Delta}{ & } \\ \hline \end{array} \\ R_2(\frac{1}{2}h) \end{array}$$

$$\underline{\text{ex}}: \int_0^1 e^{-x^2} dx = 0.74682413\dots$$

J0						
	h	$R_0(h)$	$R_1(h)$	$R_2(h)$	$R_3(h)$	
	1.0	0.683940				
	0.5	0.731370	0.7471800			
	0.25	0.742984	0.7468553	0.7468336		
	0.125	0.745866	0.7468266	0.7468246	0.7468244	: more accurate

define $R_2(h) = \frac{1}{15}(16R_1(h) - R_1(2h)) = R_1(h) + \frac{1}{15}(R_1(h) - R_1(2h))$

- 1. The last column $R_3(h)$ uses $\frac{\Delta}{63}$.
- 2. down a column \Rightarrow decreasing h, fixed order of accuracy across a row \Rightarrow fixed h, increasing order of accuracy
- 3. Extrapolation can be applied to any numerical approximation if the error has an expansion in powers of h.

21 Tue 4/6

22

Thu 4/8

orthogonal polynomials

recall: dot product of two vectors in n-dimensional space

$$x, y \Rightarrow x \cdot y = x^T y = \sum_{i=1}^n x_i y_i$$

define: inner product of two functions on the interval [-1,1]

$$f(x), g(x) \Rightarrow \langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$$

properties

1.
$$\langle f, f \rangle \ge 0$$
, $\langle f, f \rangle^{1/2} = ||f|| : \underline{\text{norm}} \text{ of } f$, $||f|| = 0 \Leftrightarrow f = 0$

2.
$$\langle f, \alpha g + h \rangle = \alpha \langle f, g \rangle + \langle f, h \rangle$$

 $\underline{\text{def}}$: Two functions f and g are $\underline{\text{orthogonal}}$ if $\langle f, g \rangle = 0$.

examples

$$\langle \sin \pi x, \cos \pi x \rangle = \int_{-1}^{1} \sin \pi x \cos \pi x dx = \frac{1}{2\pi} \sin^{2} \pi x \Big|_{-1}^{1} = 0 : \text{ orthogonal}$$

$$\langle 1, x \rangle = \int_{-1}^{1} 1 \cdot x dx = 0$$
: orthogonal

$$\langle 1, x^2 \rangle = \int_{-1}^{1} 1 \cdot x^2 dx = \frac{2}{3} : \underline{\text{not}} \text{ orthogonal}$$

note

- 1. If f(x) is even and g(x) is odd (or vice versa), then f and g are orthogonal.
- 2. Starting from $\{1, x, x^2, \ldots\}$, the <u>Gram-Schmidt process</u> yields a set of orthogonal polynomials $\{P_0(x), P_1(x), P_2(x), \ldots\}$ called the <u>Legendre polynomials</u>.

$$P_0(x) = 1$$

$$P_1(x) = x - \frac{\langle x, P_0 \rangle}{||P_0||^2} P_0 = x$$

$$P_2(x) = x^2 - \frac{\langle x^2, P_0 \rangle}{||P_0||^2} P_0 - \frac{\langle x^2, P_1 \rangle}{||P_1||^2} P_1 = x^2 - \frac{1}{3}$$

$$\langle x^2, P_0 \rangle = \int_{-1}^1 x^2 dx = \frac{2}{3}, ||P_0||^2 = \int_{-1}^1 dx = 2$$

check :
$$\langle P_2, P_0 \rangle = \cdots = 0$$
 , $\langle P_2, P_1 \rangle = 0$ ok

$$P_3(x) = x^3 - \frac{\langle x^3, P_0 \rangle}{||P_0||^2} P_0 - \frac{\langle x^3, P_1 \rangle}{||P_1||^2} P_1 - \frac{\langle x^3, P_2 \rangle}{||P_2||^2} P_2 = x^3 - \frac{3}{5}x$$

$$\langle x^3, P_1 \rangle = \int_{-1}^1 x^3 \cdot x dx = \frac{2}{5}, ||P_1||^2 = \int_{-1}^1 x^2 dx = \frac{2}{3}$$

check:
$$\langle P_3, P_0 \rangle = 0$$
, $\langle P_3, P_1 \rangle = \cdots = 0$, $\langle P_3, P_2 \rangle = 0$ ok

Gaussian quadrature

- 1. $P_n(x)$ has n distinct roots in (-1,1), call them x_1,\ldots,x_n
- 2. There exist constants c_1, \ldots, c_n such that the integration rule

 $\int_{-1}^{1} f(x)dx \approx \sum_{i=1}^{n} c_i f(x_i)$ is exact when f(x) is any polynomial of degree $\leq 2n-1$.

pf of 1:

Assume n > 1.

Then $0 = \langle P_n, P_0 \rangle = \int_{-1}^{1} P_n(x) dx$, so P_n changes sign at least once in (-1, 1).

Let x_1, \ldots, x_j be the points in (-1, 1) at which P_n changes sign, so $1 \le j \le n$.

Let $q(x) = (x - x_1) \cdots (x - x_j)$ and note that q also changes sign at x_1, \ldots, x_j and degree(q) = j.

Now consider the intervals $(-1, x_1), (x_1, x_2), \ldots, (x_j, 1)$, and note that P_n and q always have the same sign or always have the opposite sign on each interval.

In either case, $\langle P_n, q \rangle = \int_{-1}^1 P_n(x) q(x) dx \neq 0$.

But then degree $(q) \ge n$, because degree $(q) < n \Rightarrow \langle P_n, q \rangle = 0$.

Hence $j \ge n, j \le n \Rightarrow j = n$. ok

pf of 2: omit (see end of the note if interested)

ex: 3-point Gaussian quadrature

$$\int_{-1}^{1} f(x)dx \approx c_1 f(x_1) + c_2 f(x_2) + c_3 f(x_3)$$

$$P_3(x) = x^3 - \frac{3}{5}x = x(x^2 - \frac{3}{5}) = 0 \implies x_1 = -\sqrt{\frac{3}{5}}, x_2 = 0, x_3 = \sqrt{\frac{3}{5}}$$

$$f(x) = 1 \implies \int_{-1}^{1} dx = c_1 + c_2 + c_3 = 2$$

$$f(x) = x \implies \int_{-1}^{1} x dx = c_1 \cdot -\sqrt{\frac{3}{5}} + c_2 \cdot 0 + c_3 \cdot \sqrt{\frac{3}{5}} = 0 \implies c_1 = c_3$$

$$f(x) = x^2 \implies \int_{-1}^{1} x^2 dx = c_1 \cdot \frac{3}{5} + c_2 \cdot 0 + c_3 \cdot \frac{3}{5} = \frac{2}{3} \implies c_1 = \frac{5}{9}, c_2 = \frac{8}{9}$$

 $\int_{-1}^{1} f(x)dx \approx \frac{5}{9} f(-\sqrt{\frac{3}{5}}) + \frac{8}{9} f(0) + \frac{5}{9} f(\sqrt{\frac{3}{5}}) : \text{ exact for polynomials of degree} \le 5$

$$f(x) = x^3 \implies \int_{-1}^{1} x^3 dx = 0$$
 : ok , also $f(x) = x^5$

$$f(x) = x^4 \implies \int_{-1}^{1} x^4 dx = \frac{5}{9} \cdot \frac{9}{25} + \frac{8}{9} \cdot 0 + \frac{5}{9} \cdot \frac{9}{25} = \frac{2}{5}$$
: ok

$$\int_{0}^{1} e^{-x^{2}} dx = \int_{-1}^{1} e^{-(\frac{1}{2}(t+1))^{2}} \frac{1}{2} dt = 0.746824$$

$$t = 2x - 1 , x = \frac{1}{2}(t+1)$$

$$n \quad G_{n}$$

$$2 \quad 0.746595$$

$$3 \quad 0.746816$$

$$4 \quad 0.746824$$

recall: T(0.125) = 0.745866, so Gaussian quadrature is much more accurate than the trapezoid rule.

pf of 2: omit (requires a little bit of Lagrange interpolations)

Let f(x) be a polynomial of degree $\leq 2n - 1$.

 $\underline{\operatorname{case } 1}: \operatorname{degree}(f) \le n-1$

$$f(x) = \sum_{i=1}^{n} f(x_i) L_i(x)$$
: Lagrange interpolating polynomial at x_1, \ldots, x_n

$$\int_{-1}^{1} f(x)dx = \sum_{i=1}^{n} f(x_i) \int_{-1}^{1} L_i(x)dx = \sum_{i=1}^{n} c_i f(x_i) , \text{ where } c_i = \int_{-1}^{1} L_i(x)dx \quad \underline{ok}$$

 $\underline{\text{case } 2}: \underline{\text{degree}}(f) \le 2n - 1$

 $f = qP_n + r$, where q: quotient, degree $(q) \le n - 1$

r: remainder, degree $(r) \le n-1$

$$\Rightarrow f(x_i) = q(x_i)P_n(x_i) + r(x_i) = r(x_i)$$

$$\int_{-1}^{1} f(x)dx = \int_{-1}^{1} q(x)P_n(x)dx + \int_{-1}^{1} r(x)dx = \langle q, P_n \rangle + \sum_{i=1}^{n} c_i r(x_i) : \text{ by case } 1$$
$$= \sum_{i=1}^{n} c_i f(x_i) \quad \underline{\text{ok}}$$