

The QuantEcon MATLAB-Python-Julia Cheat Sheet

Victoria Gregory

CONTENTS

1	Creating Vectors	2
2	Creating Matrices	3
3	Manipulating Vectors and Matrices	4
4	Input and Output	5

This document summarizes commonly-used, equivalent commands across MATLAB, Python, and Julia

CONTENTS 1

ONE

CREATING VECTORS

Operation	MATLAB	Python	Julia
Create a row vector	A = [1 2 3]	A = np.array([1 2 3])A = [1 2 3]
Create a column vector	A = [1; 2; 3]		A = [1; 2; 3]
Sequence starting at j ending at n, with difference k between points	A = j:k:n		A = j:k:n
Linearly spaced vector of k points	A = linspace(1, 5, k)	;)	A = linspace(1, 5, k)
Vector dot product	dot(A, B)		dot(A, B)

TWO

CREATING MATRICES

Operation	MATLAB	Python	Julia
Create a matrix	A = [1 2; 3 4]		A = [1 2; 3 4]
Create a 2 by 2 matrix of zeros	A = zeros(2, 2)		A = zeros(2, 2)
Create a 2 by 2 matrix of ones	A = ones(2, 2)		A = ones(2, 2)
Create a 2 by 2 identity matrix	A = eye(2, 2)		A = eye(2, 2)
Create a diagonal matrix	A = diag([1 2 3])		A = diagm([1; 2; 3])

THREE

MANIPULATING VECTORS AND MATRICES

Operation	MATLAB	Python	Julia
Transpose	A'		A'
Concatenate horizontally	A = [[1 2] [1 2]] A = horzcat([1 2],	[1 2])	A = [[1 2] [1 2]] A = hcat([1 2], [1 2])
Concatenate vertically	A = [[1 2]; [1 2]] A = vertcat([1 2],	[1 2])	A = [[1 2]; [1 2]] A = vcat([1 2], [1 2])

FOUR

INPUT AND OUTPUT

Operation	MATLAB	Python	Julia
Opening a file	fopen('file')	open('file')	open('file')