Lecture 20

Simple Processor

- Continued from previous lecture
- 4 instructions
 - − Load: Rx <= Data</p>
 - Move: Rx <= Ry (multiple registers can read from the bus at the same time)
 - $Add: Rx \le Rx + Ry$
 - Subtract: $Rx \le Rx Ry$
- Encoding for each interruction (2 bit encoding in this case)
- Encoding for each register (2 bits in this case)

Simplified Example

where the instruction encoding for the second operation would be 100110, where 10 stands for "Add", 01 for R1 and 10 for R2, and a FSM is used to complete the process

- Each instruction has 8 bits
- In the example above, there are 2 trailing bits that are ignored (because the processor knows they are not needed for "Add")
- The longest operation needs 3 steps: Add/Sub
- A 2 bit counter is needed to count which step we are on

$\overline{Q_1W_0}$	$T_0T_1T_2T_3$
00	1000
01	0100
10	0010
11	0001

- Function register
 - takes in f_1f_0 and returns 4 bits representing the operations
 - takes Rx and returns 4 bits representing the value of Rx similar to the above table
 - same for Ry
 - Control Signals for each step

	T_1	T_2	T_3
I_0 : Load	Extern = 1 $Rin[3:0] X$ $Done = 1$		

	T_1	T_2	T_3
I_1 : move	Rin[3:0] = X[3:0] Rout[3:0] = Y[3:0] Done = 1		
I_2 : Add	Rout[3:0] = X[3:0] Ain = 1	Rout[3:0] = Y[3:0] $Add/Sub = 0$ $Gin = 1$	Gout = 1 $Rin[3:0] = X[3:0]$ $Done = 1$
I_3 : Sub	Rout[3:0] = X[3:0] Ain = 1	Rout[3:0] = Y[3:0] $Add/Sub = 1$ $Gin = 1$	Gout = 1 $Rin[3:0] = X[3:0]$ $Done = 1$

 $Assume\ enables\ not\ shown\ are\ 0$

Ain = $(I_2 + I_3)T_1$ Gin = $(I_2 + I_3)T_2$ Extern = I_0I_1 Gout = $(I_2 + I_3)T_3$ Done = $(I_0 + I_1)T_1 + (I_2 + I_3)T_3$ FRin = wT_0

 $clear = Done + \overline{w}T_0$