1	次の広義積分が絶対収束する	-	シ	を示せ
1.	<u> 八切四我惧力が祀刈収</u> 来する) _	\subset	と小で。

(a)
$$\int_0^\infty \frac{\sqrt{x}}{x^2 - 2x + 2} \mathrm{d}x$$

x > 0 の時 $\sqrt{x} > 0, x^2 - 2x + 2 > 0$ である。

a > 0 とすると問の積分は次の様になる。

$$\int_0^\infty \frac{\sqrt{x}}{x^2 - 2x + 2} dx = \lim_{a \to \infty} \int_0^a \frac{\sqrt{x}}{x^2 - 2x + 2} dx \tag{1}$$

(b)
$$\int_{-\infty}^{\infty} \frac{x^n e^{-itx}}{\cosh x} dx \qquad (n \in \mathbb{Z}_{\geq 0}, \ t \in \mathbb{R})$$

- $a\in\mathbf{R}$ に対して広義積分 $\int_{-\infty}^{\infty}e^{2iax-x^2}\mathrm{d}x$ は絶対収束することを示せ。
 - (b) a>0 と仮定する。また、R>0 とする。 $\mathbb C$ 上の正則関数 $f(z)=e^{2iaz-z^2}$ を -R,R,R+ia,-R+ia を頂点とする長方形の境界に沿って積分してから $R\to\infty$ とすることで $\int_{-\infty}^{\infty}e^{2iax-x^2}\mathrm{d}x$ を求めよ。 (ヒント: 虚軸に並行な線積分は $R\to\infty$ のとき 0 に収束することを示す)