

Optimization of a Fed-Batch Bioreactor

Chanchal Yadav (22110055), Pradeep Kumar Meena (22110196)

Department of Chemical Engineering, IIT Gandhinagar

Project Supervisor: Prof. Nitin Padhiyar

Introduction and Objective

Fed-Batch Bioreactor: A bioreactor where substrates are continuously added over time, while the culture medium is not removed. This method allows for more control over microbial growth and product formation.. **Applications**: Used in pharma, biofuels, and fermentation processes.

Objective: Maximize the final concentration of product P at a given time tf .

$$\max_{u(t)} J = P(t_f)$$

Manipulated Variable: The feed rate of substrate u, which influences both the substrate concentration S and biomass concentration X. Constraints:

- ▶ Input bounds on feed rate: $u_{min} \le u \le u_{max}$.
- ▶ Biomass concentration constraint: X(t) ≤ Xmax to avoid oxygen depletion.

Reactions and Conditions

Reactions:

Substrate S is converted into Biomass X and Product

$$S \xrightarrow{X} P$$
.

Conditions:

► Fed-batch bioreactor, isothermal.

Model Equations

Biomass: $rac{dX}{dt} = \mu(S)X - rac{u}{V}X$

Substrate: $rac{dS}{dt} = -rac{\mu(S)}{Y_r}X - rac{
u}{Y_n}X + rac{u}{V}(S_{in} - S)$

Product: $rac{dP}{dt} =
u X - rac{u}{V} P$

Volume: $\frac{dV}{dt}=u$

Variables:

- S = Substrate concentration
- X = Biomass concentration
- V = Volume of the culture
- P = Product concentration
- u = Feed rate of substrate

Parameters:

- $\blacktriangleright \mu_m$, K_m , K_i , ν : Kinetic parameters
- \triangleright Y_x , Y_p : Yield coefficients
- \triangleright S_{in} : Inlet substrate concentration
- \triangleright X_{max} : Maximum biomass concentration
- \triangleright u_{\min} , u_{\max} : Feed rate bounds

Parameters and Initial Conditions

Kinetic Parameters:

- $oldsymbol{eta}_m = 0.53\,h^{-1}$, $K_m = 1.2\,g/L$, $K_i = 22\,g/L$
- $ullet Y_x = 0.4$, $Y_p = 1$, $u = 0.5 \, h^{-1}$

Feed Conditions:

- $ullet S_{
 m in} = 20\,g/L$, $u_{
 m min} = 0$, $u_{
 m max} = 1\,L/h$
- $ullet X_{
 m max} = 3\,g/L$

Initial Conditions:

 $ullet X_0 = 1\,g/L$, $S_0 = 0\,g/L$, $P_0 = 0\,g/L$, $V_0 = 2\,L$

ODE Solutions at Fixed Feed Rate

• at u = 0.5 L/h

Maximum Product P = 6.5964 g/L

Feed Rate Optimization

Optimization Methods

(a) Iterative Method:

- Try multiple constant values of $u \in [0,1]$
- Solve ODEs and record P(tf)
- Select uu giving maximum product

(b) Fmincon method (without constraint)

- Iterative method: u = 0.4284 L/h, P = 6.6778 g/L.
- fmincon: u = 0.4284 L/h, P = 6.6778 g/L.

(b) fmincon Optimization (With Constraints) Biomass constraint: $X(t) \le 3$

- Optimal feed rate u = 0.3173 L/h.
- Final product concentration P = 6.4633 g/L.

Initial Condition Optimization

Methods:

- Used fmincon in Matlab for linear constrained optimization
- Objective: Maximize final product
 P(tf)
- Bounds were set for physical and operational feasibility

Parameter	Symbol	Lower Bound	Upper Bound	Optimized 2	
Initial Biomass (g/L)	XO	0.5	2		
Initial Substrate (g/L)	S0	0	4	0	
Initial Volume (L)	V0	0.1	4	2.8	
Feed Rate (L/h)	u	0	1	0.5	
Maximum Product (g/L)	P(tf)	_	_	8.0671	

Hourly Feed Rate Optimization:

Optimize the feed rate u(t) at each hour to maximize the product concentration P(tf) at the final time tf = 8 hours.

Maximum Product Achieved:P(tf)=7.4124g/L

Result

Case No.	Optimization Type	X _o (g/L)	S _o (g/L)	V _o (L)	u (L/h)	t (h)	P(tf) (g/L)
1	Fixed Feed Rate (Iterative)	1	0	2	0.4284	8	6.6778
2	Fixed Feed Rate (fmincon, with constraint)	1	0	2	0.3173	8	6.4633
3	Hourly Feed Rate (8 u _a)	1	0	2	{u ₁ , u ₂ ,, u ₈ }	8	7.4124
4	Optimized Initial Conditions + Feed	2	0	2.7809	0.4569	8	8.0671
5	Hourly Feed (8 u _a) with Optimized Initial condition	1	0	2	{u ₁ , u ₂ ,, u ₈ }	8	8.7371

Conclusion

- Optimizing initial conditions significantly enhances product yield, even when using a constant feed rate.
- Hourly feed rate control improves product formation compared to a single constant feed, but its effectiveness increases further when paired with optimized initial states.
- The best product concentration(P(tf)=8.7371 g/L)
 was achieved by combining hourly feed rate
 control with optimized initial conditions.
- Across all strategies, maintaining the biomass constraint was critical for stable and sustainable bioprocess operation.
- These results demonstrate the value of joint optimization of initial conditions and control strategies in fed-batch bioreactor design.

References

1. B. Srinivasan, S. Palanki, and D. Bonvin, "Dynamic Optimization of Batch Processes: I. Characterization of the Nominal Solution," Institut d'Automatique, École Polytechnique Fédérale de Lausanne, Switzerland, and Florida State University, USA, Jun. 21, 2001.