3 types of outlier:

1. Global

Values that are completely different from the overall data group

2. Contextual

Normal data points under certain conditions but become anomalies under other conditions (common in time-data series)

3. Collective

Group of abnormal points that follow similar patterns and are isolated from the rest of the populations

Ways to deal with outliers:

1. Delete

If you sure when the outliers are mistake, typos or errors

2. Reassign

If the dataset is small and/or it will be used for modelling or machine learning. Common ways to reassign:

- Create a floor and ceiling at a quantile
- Impute the mean or average

3. Leave

If the dataset only will be used for analysis, EDA and nothing else or the dataset is resistant to outliers

Common threshold for outliers

```
Upper Limit = Third Quartile + 1.5 \times Interquartile Range
Lower Limit = First Quartile - 1.5 \times Interquartile Range
```

Categorial data

- Data that uses words or quality rather than number
- Many data models and algorithms don't work well with categorical data
- Common ways to change categorial data to numerical:

Dummy variables

Values of 0 or 1

Label encoding

Each category is assigned with a unique number
The data will be simpler to clean, join, group, takes less storage and algorithm/model will typically runs smoother
Suitable for large datasets

One hot encoding

Each category is represented by 0 or 1 Suitable for small datasets Common label encoding python functions: df.astype() .cat.codes pd.get_dummies() LabelEncoder() (scikit-learn.preprocessing)

Input Validation

The practice of thoroughly analyzing and double-checking to make sure data is complete, error-free, and high-quality.