ARO laboratoire 1 Fetch

Question 1

L'incrémentation du PC à la valeur 2 car nous utilisons un processeur 16 bits. C'est-à-dire, pour passer à la prochaine instruction en mémoire nous devons avancer de 16 bits soit 2 octets.

Question 2

Ce chronogramme représente la "recherche" ou fetch d'instructions, l'éxécution de ceux-ci ainsi que l'incrémentation automatique de l'adresse.

La ligne .../PC_fut_o à une valeur toujours 2 au dessus de .../PC_pres_i ce qui démontre l'incrémentation de 2 octets pour passer à la prochaine instruction. Le fait que .../PC_pres_i prend ensuite la valeur qu'avait .../PC_fut_o démontre que l'incrémentationà réellement lieu.

Les lignes .../instr_data_i et .../instr_data_i sont indentique car il n'y a aucune modification des instructions durant l'éxécution.

Finalement l'adresse de l'instruction actuelle (.../instr_addr_o) est la même que PC_pres_i pour montrer que le PC lit à chaque fois l'instruction à l'adresse demandée.

Question 3

Signal Name	Signal V											
LTclk	0											
processeur_ARO2/instr_addr_o	0	0	2	4	6	40	42	44	46	0	2	4
processeur_ARO2/fetch/PC_pres_i	0	o	2	4	6	40	42	44	46	0	2	(4
processeur_ARO2/fetch/PC_fut_o	2	2	4	6	40	42	44	46	(0	2	4	6
processeur_ARO2/instr_data_o	2000	2000	2101	2202	E01B	2400	2501	2602	E7DB	2000	2101	22

Ce chronogramme représente le fonctionnement du saut en avant et en arrière.

Sur ce diagramme on montre à nouveau la différence entre le \dots/PC_pres_i et le \dots/PC_fut_o . Cette fois par contre au moment où on atteint l'instruction E01B on fait un saut à l'adresse 0x40.

Ceci est démontré comme avant en étant dans .../PC_fut_o pour ensuite devenir l'adresse actuelle dans .../PC_pres_i et

Pour le saut en arrière, on effectue l'instruction E7DB qui donne un offset négatif pour revenir à l'adresse 0x0 pour recommencer le programme.

Nous voyons la circularité du programme quand il revient au début et recommence les même étapes.

Question 4

C'est une valeur non signée car elle représente l'adresse à laquelle il faut sauter. Ceci à ne pas confondre avec l'offset depuis l'adresse actuelle.