PROGRAMACIÓN MATEMÁTICA

Programación Lineal Particular (PLP)

Problema de Transporte

LA IMPORTANCIA DE LA PLP

- Problemas de Transporte, Transbordo y Asignación son aplicaciones especiales de la programación lineal.
- Pueden resolverse a través del método Simplex, sin embargo, su estructura especial permite resolverlos rápida y eficientemente mediante algoritmos especiales.

PROBLEMA DE TRANSPORTE

Su objetivo es minimizar el costo total de envío de un producto (o productos) desde los centros de suministro a los centros de demanda bajo las siguientes restricciones:

- cada centro de demanda recibe su requerimiento;
- los envíos desde un centro de suministro no exceden su capacidad disponible.

MODELO MATEMÁTICO DEL PROBLEMA DE TRANSPORTE

 X_{ij} cantidad de unidades a enviar desde el origen i al destino $j \Rightarrow$ Cantidad a transportar C_{ij} costo de enviar una unidad desde el origen i al destino $j \Rightarrow$ Costo unitario de transporte a_i cantidad de unidades de oferta del origen $i \Rightarrow$ Nivel de oferta a_i cantidad de unidades de demanda del destino a_i 0 Cantidad demandada

Se puede representar el modelo mediante una red cuyos nodos indicarán las fuentes y destinos, y los arcos las rutas de transporte.

Función Objetivo: minimizar
$$\sum_{i=1}^{n} \sum_{j=1}^{m} C_{ij} X_{ij}$$
 $\forall i=1, ..., n \ y \ j=1, ..., m$

Sujeto a:

la suma de los envíos no puede ser mayor que la oferta

$$\sum_{j=1}^{m} X_{ij} \leq a_{i}$$

la suma de los envíos debe satisfacer la demanda

$$\sum_{j=1}^{n} X_{jj} = b_{j}$$

condición de no negatividad

$$Xij \geq 0$$

Puede observarse que el modelo tiene (n+m) restricciones, además de las condiciones de no negatividad, esto llevado a los problemas reales implica un número elevado de restricciones. Por este motivo, se prefieren utilizar algoritmos específicos que han sido desarrollados para lograr mayor rapidez y eficiencia de cálculo en lugar del método Simplex.

El modelo presentado, implica que la oferta total deba ser superior a la demanda total, es decir:

$$\sum_{i=1}^n a_i \geq \sum_{j=1}^m b_j$$

Cuando la oferta total es igual a la demanda total se dice que se está ante un modelo de transporte equilibrado, es decir:

$$\sum_{i=1}^{n} X_{ij} = b_j \quad ; \quad \sum_{j=1}^{m} X_{ij} = a_i$$

En la vida real se pueden presentar variantes adicionales al problema de transporte que pueden resolverse realizando ligeras modificaciones al modelo. Estos casos especiales son:

- 1. La oferta total no es igual a la demanda total.
- 2. El objetivo es de maximización.
- 3. El problema se degenera.
- 4. Existen rutas inaceptables de transporte.

¿Cómo trabajaremos con los modelos especiales?

El siguiente diagrama de flujo esquematiza la metodología a utilizar:

FASE I: Hallar una solución inicial

Los métodos más conocidos:

- Costo mínimo (MM),
- Regla del Noroeste (NWC) o
- Ballas-Hammer o Método de aproximación de Vogel (VAM)

FASE II: Aplicar Test de optimalidad

Paso 1: Aplicar el método MODI

Si la solución es óptima terminar sino ir al Paso 2.

Paso 2: Aplicar el método del Cruce del Arroyo y volver al Paso 1

Oferta total ≠ Demanda total

se soluciona incorporando un origen o un destino ficticio.

- Si la oferta total es mayor que la demanda total, se introduce un destino ficticio con una demanda exactamente igual al exceso de oferta sobre la demanda. El o los orígenes que, en la solución óptima, abastecerían a ese destino ficticio quedarían con stock.
- Del mismo modo, si la demanda total es mayor que la oferta total, se introduce un origen ficticio con una oferta exactamente igual al exceso de demanda sobre la oferta. En este caso el o los destinos que debieran ser abastecidos por ese origen ficticio, en la solución óptima, quedarían con una demanda insatisfecha.
- En cualquiera de los casos mencionados se pueden asignar coeficientes de costos:
- cero a cada una de las rutas de transporte desde el origen ficticio o hacia el destino ficticio. Esto es así, porque no existe transferencia real hacia o desde un nodo ficticio;
- máximo a cada una de las rutas de transporte desde el origen ficticio o hacia el destino ficticio. Esto posibilita obtener la solución óptima con Costo mínimo o Voguel.

Objetivo es de maximización

se realiza una transformación en la tabla de ingresos o beneficios a una de costos.

Se toma el mayor valor de la tabla (Cij máx) y se arma una nueva haciendo la resta de ese valor con el correspondiente en la celda a calcular (Cij) obteniendo el valor en la nueva tabla (C´ij).

Una vez encontrada la solución óptima no olvidarse calcular el valor de dicha solución con los valores originales de la tabla (antes de la transformación).

C'ij = Cij máx - Cij

Rutas inaceptables de transporte

se asignan costos altos para evitar su selección.

Si existiesen rutas inaceptables de transporte, se le asignan a los arcos no factibles un costo extremadamente alto, M, con objeto de mantenerlos fuera de la solución.

En los problemas de maximización ese costo se toma infinitamente pequeño, -M.

Degeneración

se bloquea el proceso para encontrar una solución.

Para salvar la degeneración se:

- descompensan las filas y columnas (no la oferta y la demanda) con un valor $oldsymbol{\epsilon}$ que al encontrar la solución óptima le asignaremos valor cero; o
- asignan un 0 (cero) en una ruta no utilizada de la tabla.

PROBLEMA DE TRANSPORTE

Ejemplo:

Una empresa que fabrica y vende autopartes desea optimizar su sistema de distribución. La firma cuenta con tres centros de distribución (CD), y tres locales de venta mayorista (LV). En la siguiente tabla se presentan los costos de transporte (en pesos por miles de unidades), las disponibilidades de los centros de distribución y las demandas de los puntos de venta (ambas en miles de unidades mensuales).

MODELO MATEMÁTICO DEL PROBLEMA DE TRANSPORTE

Si plateamos el problema por programación lineal general tendríamos:

- Variables: X_{ii} cantidad en miles de unidades a transportar del CD_i al LV_i
- Coeficientes:

C_{ij} costo de transportar mil de unidades del CD_i al LV_j a_i cantidad de miles de unidades de oferta del CD_i b_i cantidad de miles de unidades de demanda del LV_i

Función Objetivo:

Minimizar
$$Z=600.X_{11}+500.X_{12}+400.X_{13}+400.X_{21}+300.X_{22}+500.X_{23}+500.X_{31}+300.X_{32}+200.X_{33}$$

sujeto a:

Restricciones de Oferta

$$X_{11} + X_{12} + X_{13} \le 30$$

$$X_{21} + X_{22} + X_{23} \le 30$$

$$X_{31} + X_{32} + X_{33} \le 20$$

Restricciones de Demanda

$$X_{11}+X_{21}+X_{31}=20$$

$$X_{12} + X_{22} + X_{32} = 20$$

$$X_{13}+X_{23}+X_{33}=30$$

Restricciones de contorno

$$X_{11}$$
; X_{12} ; X_{13} ; X_{21} ; X_{22} ; X_{23} ; X_{31} ; X_{32} ; $X_{33} \ge 0$

RESOLUCIÓN DEL PROBLEMA DE TRANSPORTE POR MATRICES

CD \ LV	LV1	LV2	LV3	Oferta
CD1	600	500	400	30
CD2	400	300	500	30
CD3	500	300	200	20
				80
Demanda	20	20	30	70

CD\LV	LV1		LV2		LV3		LVf		Oferta
		600		500		400		600	
CD1									30
		400		300		500		600	
CD2									30
		500		300		200		600	
CD3									20
Demanda		20		20		30		10	80 \ 80

FASE I: Hallar una solución básica factible inicial Método del Costo mínimo

CD\LV	LV1		LV2		LV3		LVf		Oferta
		600		500		400		600	10 0 20
CD1	10				10		10		30
		400		300		500		600	0
CD2	10		20				Ì		76. 39
		500		300		200		600	0
CD3	,		,		20		,		20
Demanda		20 10		20		4 8			80 \ 80
	0			0	0			0	

FASE I: Hallar una solución básica factible inicial Costo mínimo (MM),

Regla del Noroeste (NWC)

FASE II: Aplicar Test de optimalidad

<u>Paso 1</u>: Aplicar el método MODI \rightarrow Si la **solución es óptima terminar** sino ir al Paso 2.

<u>Paso 2</u>: Aplicar el método del Cruce del Arroyo y volver al Paso 1.

FASE II: Verificar si la solución básica factible inicial por el método de Costo mínimo es óptima.

CD\LV	LV1		LV2		LV3		LVf		Oferta	u _i
		600		500		400		600)
CD1	10			0	10		10		30	0
		400		300		200		400		
CD2	10		20			+		+	30	-200
		400		300		200		400		
CD3		+		0	20			+	20	-200
Demanda		20		20		30		10	80 \ 80	
V _j		600	5	500	4	100	6	600		

Costos Directos = $u_i + v_i \rightarrow N^{\circ}$ celdas ocupadas = n+m-1

Tabla de Costos Directos

CD\LV	LV1		LV2		LV3		LVf		Oferta
		600		500		400		600	
CD1									30
		400		300		500		600	
CD2									30
		500		300		200		600	
CD3									20
Demanda		20		20		30		10	80 \ 80

FASE I: Hallar una solución básica factible inicial Costo mínimo (MM),

Regla del Noroeste (NWC)

FASE II: Aplicar Test de optimalidad

<u>Paso 1</u>: Aplicar el método MODI \rightarrow Si la **solución es óptima terminar** sino ir al Paso 2.

Paso 2: Aplicar el método del Cruce del Arroyo y volver al Paso 1.

Plan de transporte

- Transportar 10 mil unidades del CD1 al LV1 a un costo de \$ 6.000 mensuales
- Transportar 10 mil unidades del CD1 al LV3 a un costo de \$ 4.000 mensuales
- Transportar 10 mil unidades del CD2 al LV1 a un costo de \$ 4.000 mensuales
- Transportar 20 mil unidades del CD2 al LV2 a un costo de \$ 4.000 mensuales
- Transportar 20 mil unidades del CD3 al LV3 a un costo de \$ 6.000 mensuales

El costo del transporte mensual asciende a \$ 24.000.- quedando un remanente de stock de 10 mil unidades en el CD1

CD\LV	LV1		LV2		LV3		LVf		Oferta
		600		500		400		600	
CD1									30
		400		300		500		600	
CD2									30
		500		300		200		600	
CD3									20
Demanda		20		20		30		10	80 \ 80

FASE I: Hallar una solución básica factible inicial Método del Noroeste

CD\LV	LV1		LV2		LV3		LVf		Oferta
		600		500		400		600	0
CD1	20		10						10-39
		400		300		500		600	00
CD2			10		20				0 20 30
		500		300		200		600	0
CD3					10		10		20
Demanda				20		96 36		4	80 \ 80
		0	0		0			U	

Costos Directos = $u_i + v_i \rightarrow N^{\circ}$ celdas ocupadas = n+m-1

FASE I: Hallar una solución básica factible inicial

Costo mínimo (MM),

Regla del Noroeste (NWC)

FASE II: Aplicar Test de optimalidad

<u>Paso 1</u>: Aplicar el método MODI \rightarrow Si la solución es óptima terminar sino ir al Paso 2.

Paso 2: Aplicar el método del Cruce del Arroyo y volver al Paso 1.

¿Cómo salvar una degeneración?

FASE I: Hallar una solución básica factible inicial Método del Noroeste

CD\LV	LV1		LV2		LV3		LVf		Oferta
		600		500		400		600	0
CD1	20		10+ε						30+€
		400		300		500		600	0 20+2ε
CD2			10-ε		20+2	<u>2ε</u>			20+2£ 30 +£
		500		300		200		600	0
CD3					10-2	ε	10+3	3ε	0 10+3ε 2 0+ ε
Demanda		20		20		30		10+3ε	80+3ε\80+3ε
		0	0 10	3-6	0 10	-2c	()	

Costos Directos - Costos Indirectos ≥ 0

Costos Directos = $u_i + v_i \rightarrow N^{\circ}$ celdas ocupadas = n+m-1

CD\LV	LV1		LV2		LV3		LVf		Oferta	u _i
		600		500		700		1100		0
CD1	20		<mark>10</mark> +ε		-	300		-500	30+ε	
		400		300		500		900		200
CD2		0	<mark>10</mark> -ε		2()+2	ε		-300	30+ε	-200
		100		0		200		600		-500
CD3		+		+	10-2	ε	10+	<mark>3</mark> ε	20+ε	-500
Demanda		20		20		30		10+3ε	80+3ε\80+3ε	
V _j	61	00	50	00	70	0		1100		

CD\LV	LV1		LV2		LV3		LVf		Oferta
		600		500		400		600	
CD1									30
		400		300		500		600	
CD2									30
		500		300		200		600	
CD3									20
Demanda		20		20		30		10	80 \ 80

FASE I: Hallar una solución básica factible inicial

Costo mínimo (MM),

Regla del Noroeste (NWC)

FASE II: Aplicar Test de optimalidad

<u>Paso 1</u>: Aplicar el método MODI \rightarrow Si la **solución es óptima terminar** sino ir al Paso 2.

<u>Paso 2</u>: Aplicar el método del Cruce del Arroyo y volver al Paso 1.

CD\LV	LV1		LV2		LV3		LVf		Oferta	u _i
		600		500		700)	1100		0
CD1	20		<mark>10</mark> +ε		-	300		-500	30+ε	
		400		300		500		900		-200
CD2		0	<mark>10</mark> -ε		20+2	ε		-300	30+ε	-200
		100		0		200		600		
CD3		+		+	10-2	ε	10+	<u>3</u> ε	20+ε	-500
Demanda		20		20		30		10+3ε	80+3ε\80+3ε	
v _j	6	00	50	0	70	0		1100		

Costos Directos = $u_i + v_j \rightarrow N^{\circ}$ celdas ocupadas = n+m-1

CD\LV	LV1		LV2		LV3		LVf		Oferta	u _i
		600		0		200		600		
CD1	20			+		4	10 +8	ε	30+ε	0
		900		300		500		900		
CD2		500	20		<mark>10</mark> +ε			-300	30+ε	300
		600		0		200		600		
CD3		100		+	<mark>20</mark> -ε		<mark>2</mark> ε		20+ε	0
Demanda		20		20		30		10+3ε	80+3ε\80+3ε	
V _j	6	00		0	2	00		600		

CD\LV	LV1	LV2		LV3		LVf		Oferta
	600)	500		400		600	
CD1								30
	400)	300		500		600	
CD2								30
	500		300		200		600	
CD3				·				20
Demanda	20)	20		30		10	80 \ 80

FASE I: Hallar una solución básica factible inicial

Costo mínimo (MM),

Regla del Noroeste (NWC)

FASE II: Aplicar Test de optimalidad

<u>Paso 1</u>: Aplicar el método MODI \rightarrow Si la solución es óptima terminar sino ir al Paso 2.

Paso 2: Aplicar el método del Cruce del Arroyo y volver al Paso 1.

CD\LV	LV1		LV2		LV3		LVf		Oferta	u _i
		600		0		200		600		
CD1	20			+		4-	10 +8	61	30+ε	0
		900		300		500		900		
CD2		500	20		<mark>10</mark> +ε			-300	30+ε	300
		600		0		200		600		
CD3	-	100		+	<mark>20</mark> -ε		<u>2</u> ε		20+ε	0
Demanda		20		20		30		10+3ε	80+3ε\80+3ε	
Vj	6	00		0	2	00		600		

Costos Directos = u_i + v_j \rightarrow N° celdas ocupadas = n+m-1

CD\LV	LV1		LV2		LV3		LVf		Oferta	u _i
		600		500)	700		600		
CD1	20-2	m		0		300	10+3	з	30+ε	0
		400		300		500		400		
CD2	<mark>2</mark> ε		20		<mark>10</mark> -ε			+	30+ε	-200
		100		0		200		100		
CD3		+		+	<mark>20</mark> +ε			+	20+ε	-500
Demanda		20		20		30		10+3ε	80+3ε\80+3ε	
V _j	6	500		500	7	700		600		

CD\LV	LV1		LV2		LV3		LVf		Oferta
		600		500		400		600	
CD1									30
		400		300		500		600	
CD2									30
		500		300		200		600	
CD3									20
Demanda		20		20		30		10	80 \ 80

FASE I: Hallar una solución básica factible inicial

Costo mínimo (MM),

Regla del Noroeste (NWC)

FASE II: Aplicar Test de optimalidad

<u>Paso 1</u>: Aplicar el método MODI \rightarrow Si la solución es óptima terminar sino ir al Paso 2.

Paso 2: Aplicar el método del Cruce del Arroyo y volver al Paso 1.

CD\LV	LV1		LV2		LV3	LV3			Oferta	u _i
		600		500)	700		600		
CD1	20-2	m		O		300	10+3	38	30+ε	0
		400		300		500		400		
CD2	<mark>2</mark> ε		20		10 -ε			+	30+ε	-200
		100		0		200		100		
CD3		+		+	<mark>20</mark> +ε			+	20+ε	-500
Demanda		20		20		30		10+3ε	80+3ε\80+3ε	
v _j	(500		500	7	700		600		

CD\LV	LV1		LV2		LV3		LVf		Oferta
		600		500		400		600	
CD1									30
		400		300		500		600	
CD2									30
		500		300		200		600	
CD3									20
Demanda		20		20		30		10	80 \ 80

Costos Directos = $u_i + v_j \rightarrow N^\circ$ celdas ocupadas = n+m-1

CD\LV	LV1		LV2		LV3		LVf		Oferta	u _i
		600		500		400		600		
CD1	10-ε			0	<mark>10</mark> -ε		10+3	38	30+ε	0
		400		300		200		400		
CD2	<mark>10</mark> +ε		20			+		+	30+ε	-200
		400		300		200		400		
CD3		+		0	<mark>20</mark> +ε			+	20+ε	-200
Demanda		20		20		30		10+3ε	80+3ε\80+3ε	
V _j		600		500	4	00		600		

Costos Directos - Costos Indirectos ≥ 0

ESTAMOS FRENTE A LA SOLUCIÓN ÓPTIMA con 2 soluciones alternativas

CD\LV	LV1		LV2		LV3		LVf		Oferta
		600				400		600	
CD1	10				10		10		30
		400		300					
CD2	10		20						30
						200			
CD3					20				20
Demanda		20		20		30		10	80\80

Plan de transporte

- Transportar 10 mil unidades del CD1 al LV1 a un costo de \$ 6.000 mensuales
- Transportar 10 mil unidades del CD1 al LV3 a un costo de \$ 4.000 mensuales
- Transportar 10 mil unidades del CD2 al LV1 a un costo de \$ 4.000 mensuales
- Transportar 20 mil unidades del CD2 al LV2 a un costo de \$ 6.000 mensuales
- Transportar 20 mil unidades del CD3 al LV3 a un costo de \$ 4.000 mensuales

El costo del transporte mensual asciende a \$ 24.000.- quedando un remanente de stock de 10 mil unidades en el CD1

Objective Maximize Minimize		Starting method Minimum Cost Method		
Optimal solution value = \$24000	LV 1	LV 2	LV 3	Dummy
CD 1	10		10	10
CD 2	10	20		
CD 3			20	

Objective Maximize Minimize			Minimum	method Cost Method
From	То	Shipment	Cost per unit	Shipment cost
CD 1	LV 1	10	600	6000
CD 1	LV 3	10	400	4000
CD 1	Dummy	10	0	0
CD 2	LV 1	10	400	4000
CD 2	LV 2	20	300	6000
CD 3	LV 3	20	200	4000

