Universidade de São Paulo Instituto de Matemática e Estatistica IME

miniEP V - Programação Concorrente e Paralela

Patrícia da Silva Rodrigues (nºUSP 11315590),

 $\begin{array}{c} {\rm Abril} \\ 2023 \end{array}$

1. Para $N = 2^10 = 1024$

Na minha maquina:

Executando $dgemm_0...$ Tempo gasto em $matrix_dgemm_0$: 4.594294s Resultado OK! Tempo OK!

Executando $dgemm_1...$ Tempo gasto em $matrix_dgemm_1$: 0.850996s Resultado OK! Tempo OK!

Os resultados da implementação otimizada apresentou uma melhora significativa, pois, enquanto $matrix_dgemm_1$ levou apenas 0,85 segundos. Já a implementação $matrix_dgemm$ levou 4,5 segundos, uma melhora de cerca de 80 por cento.

Isso aconteceu porque a implemengtação de $matriz_d gemm_1$ usou noçoes de localidade de cache para acessar os elementos das matrizes A, B e C, algo que tornou essa implementação mais eficiente.

2. Na maquina do colega:

Executando $dgemm_0...$ Tempo gasto em $matrix_dgemm_0$: 4.381896s Resultado OK! Tempo OK!

Executando $dgemm_1$... Tempo gasto em $matrix_dgemm_1$: 0.947519s Resultado OK! Tempo OK! Houve uma melhoria de aproximadamente 78.41 por cento no tempo de execução ao utilizar a implementação otimizada $matrix_dgemm_1$ em comparação com a implementação original $matrix_dgemm_0$.