Математические основы криптологии

Автор курса: Применко Эдуард Андреевич Составитель: Смирнов Дмитрий Константинович

2022 г.

Оглавление

1	Дом	пашние задания	1
	1.1	Элементы теории групп	1
	1.2		3
2	Бил	еты	3
	2.1	Делимость в кольце целых чисел. НОД, алгоритм Евклида. Критерий взаимной простоты двух чисел	3
	2.2	Сравнения и их свойства. Китайская теорема об остатках. Кольцо вычетов. Функция Эйлера и её свойства	3
	2.3	Теоремы Эйлера и Ферма. Критерий обратимости, алго-	
	2.4	ритм вычисления обратного элемента	3
	2.5	Теорема о цикличности мультипликативной группы по при-	3
	2.6	марному модулю.	ა 3
	$\frac{2.0}{2.7}$	Решение сравнений первой степени	ე
	∠.1	ства	3
	2.8	Алгоритмы решения сравнений второй степени по просто-	
	2.0	му модулю	3
	2.9	Символ Якоби и его свойства. Числа Блюма и их свойства.	
		Эквивалентность задачи факторизации и решения сравне-	
	0.10	ния второй степени	3
	2.10	Алгоритмы решения сравнений второй степени по примар-	3
	0.11	ному и составному модулю.	ა 3
		Группа, порядок элемента. Теорема Лагранжа	0
	2.12	Нормальный делитель, фактор – группа, первая теорема о гомоморфизме	4
	2.13	Кольцо многочленов, идеал, теорема Безу, кольцо главных	
		идеалов	4
	2.14	Конечное поле. Теорема о простом подполе конечного по-	
		ля. Строение конечного поля. Теорема о примитивном эле-	
		менте	4

ОГЛАВЛЕНИЕ 3

2.15	Построение конечных полей. Алгоритм вычисления обрат-	
	ного элемента. Арифметические операции в конечном поле.	4
2.16	Алгоритмы вычисления дискретного алгоритма	4
	Криптосистема Эль - Гамаля. Протокл Диффи - Хеллмана.	4
	Минимальный многочлен и его свойства. Теорема об изо-	
	морфизме конечных полей одной мощности	4
2.19		
	ложении многочлена $f(x) = xp^n - x$ на неприводимые мно-	
	гочлены. Критерий принадлежности элемента поля соб-	
	ственному подполю	4
2.20	Теорема о группе автоморфизмов конечного поля	4
	Рекуррентные последовательности над конечным полем,	
	линейные рекуррентные последовательности (ЛРП). Ха-	
	рактеристический и минимальный многочлен ЛРП и их	
	свойства.	4
2.22	Теорема об определении структуры ЛРП по её характе-	
	ристическому многочлену. Теорема о ЛРП максимального	
	периода	4
2.23	Прямое произведение групп. Теорема о представлении груп-	
	пы в виде прямого произведения своих подгрупп	4
2.24	Теорема о примарной абелевой группе	4
2.25	Теорема о разложении конечной абелевой группы в произ-	
	ведение своих циклических подгрупп	5
2.26	Нормализатор, централизатор, класс сопряженных элемен-	
	тов конечной группы. Теорема о числе множеств сопря-	
	женных с данным. Теорема о центре примарной группы.	
	Теорема Коши	5
2.27	Двойные смежные классы и их свойства. Теорема Силова	
	(первая)	5
	Вторая и третья теоремы Силова	5
2.29	Группы подстановок. Инвариантное множество, орбита. Тео-	
	рема об индексе стабилизатора группы. Теорема о транзи-	
	твности нормализатора подгруппы транзитвной группы.	٠
	$(\mathbf{y}_{\mathrm{T}} \cdot 13.4)$	5
	Лемма Бернсайда	5
2.31	Регулярные и полурегулярные группы. Порядок полурегу-	J
2 22	лярной группы.	5
2.32	Блоки и импримитивные группы. Критерий импримитив-	
	ности. Теорема о импримитивности транзитивной группы	۲
0.00	с интранзитивным нормальным делителем	5
∠.33	Примитивные группы. Кратная транзитивность. Крите-	۳.
റ ഉഷ	рий кратной транзитивности.	5
$\angle .34$	Теорема о группе автоморфизмов конечной группы	5

2.35	Утверждение об изоморфизме стабилизатора и специаль-	
	ной группы автоморфизмов регулярной подгруппы (Ут .	
	13.5). Утверждение о порядке регулярного нормального	
	делителя кратно транзитивной группы.	5
2.36	Простая группа. Теорема о простоте знакопеременной груп-	
	пы. Теорема о нормальном делителе симметрической груп-	
	пы	5

Часть 1

Домашние задания

1.1 Элементы теории групп

Задачи в этом разделе решаются со следующими параметрами:

p	\mathbf{g}	k				
23	-8	22				

 $\mathbf{3}$ адача 1.1 Убедиться, что $g \in \mathbb{Z}_p^*$ – примитивный элемент \mathbb{Z}_p .

Так как p=23 – простое число, то $\phi(p)=p-1=22$. Разложим это число на простые множители: $\phi(p)=2\cdot 11$. Тогда достаточно проверить следующие 2 неравенства:

$$g^{\frac{\phi(p)}{2}} = (-8)^{11} = 15 \cdot 15^{10} = 15 \cdot 18^5 = 17 \cdot 2^2 = 22 \not\equiv 1 \pmod{p},$$
$$g^{\frac{\phi(p)}{11}} = (-8)^2 = 18 \not\equiv 1 \pmod{p},$$

и одно равенство:

$$g^{\phi(p)} = (-8)^{22} = 18^{11} = 18 \cdot 2^5 = 18 \cdot 9 \equiv 1 \pmod{p}.$$

Делаем вывод, что g действительно является примитивным элементом $\mathbb{Z}_p.$

Задача 1.2 Найти образующий элемент h группы $\mathbb{Z}_{p^2}^*$ Образующий элемент группы $\mathbb{Z}_{p^n}^*, n \geq 2$ имеет вид:

$$h = g + t_0 p, \ t_0 \not\equiv g\nu \pmod{p}; \ \nu = (\frac{g^{\frac{p-1}{2}} + 1}{p}) \pmod{p} \cdot (-2) \pmod{p}$$

Таким образом,

$$\nu = \left(\frac{(-8)^{\frac{23-1}{2}} + 1}{23}\right) \pmod{23} \cdot (-2) \pmod{23} = (1 \cdot (-2)) \pmod{23} = 21$$
$$t_0 \not\equiv (-8) \cdot 21 \pmod{23} = 16 \pmod{23}$$

$$t_1 = 1 \Rightarrow h = (-8) + 1 * 23 = 15$$

Следовательно, h=15 – образующий элемент группы $\mathbb{Z}^*_{23^2}$

Задача 1.3 Подсчитать число образующих группы $\mathbb{Z}_{n^3}^*$

Число образующих группы $\mathbb{Z}_{23^3}^*$ равно $\phi(23^3)=(23-1)23^{3-1}=11638.$ Задача 1.4 Найти элемент a группы $\mathbb{Z}_{p^2}^*$ порядка k

Так как \forall натурального k>1 и простого $p\geq 3$ группа $\mathbb{Z}_{p^k}^*$ является циклической, то $\mathbb{Z}_{23^2}^*$ – циклическая группа. Элемент порядка k в циклической группе порядка N имеет вид h^r , где $r=\frac{N}{k}$. Таким образом,

$$a = h^{\frac{\phi(p^2)}{k}} = 15^{\frac{22*23}{22}} = 15^{23} = 130$$

Задача 1.5 Решить сравнение $a^x \equiv b \pmod{p}$

	p	a	b					
ſ	701	2	163					

1. Убедимся в том, что a=2 – примитивный элемент группы \mathbb{Z}_{701} .

$$\phi(701) = 700 = 2^2 \cdot 5^2 \cdot 7$$

$$g^{\frac{\phi(p)}{2}} = 2^{350} = 700 \not\equiv 1 \pmod{p},$$

$$g^{\frac{\phi(p)}{5}} = 2^{140} = 210 \not\equiv 1 \pmod{p},$$

$$g^{\frac{\phi(p)}{7}} = 2^{100} = 19 \not\equiv 1 \pmod{p},$$

$$g^{\phi(p)} = 2^{700} = 1 \equiv 1 \pmod{p},$$

Таким образом, порядок элемента a равен ord(a) = 700.

- 2. Выбираем минимальное $m: m^2 \ge ord(a) \Rightarrow m = 27$.
- 3. Вычисляем $c = a^m = 2^{27} = 62$.
- 4. Составляем два множества:

i	1	2	2	3	3	4	5	6		7	8	3	9		10	11		12	13	14
c^i	62	33	39	68	$89 \mid 6$	58	138	144	$4 \mid 516 \mid$		447		$375 \mid 1$		117 24		4	407	699	577
i	15	16	5	17	18	19	2	0	21		22	2	23	24		25	26	2	27	
c^i	23	24	Į.	86	425	413	3	70	508	508 65		4	467 2		3 5	88	3 4 2		48	
\int	0		1		2	3	4		5	(6	7		8	9	1	0	11	12	13
ba^{j}	16	3	32	6	652	603	50	5 ;	309	6	18	53	5 ;	369	37	7	4	148	296	592
\int	1	4	15	5	16	17	18	19	9 2	20	21	Т	22	2	3	24	2	5	26	
ba^{j}	48	3	26	5	530	359	17	34	4 6	8	136	3	272	5	44	387	7	3	146	

В таблицах совпадают элементы под номерами i=22 и j=2.

5. Таким образом, $x = mi - j = 27 \cdot 22 - 2 = 592$.

Ответ: x = 592.

Билеты 3

1.2

Часть 2

Билеты

- 2.1 Делимость в кольце целых чисел. НОД, алгоритм Евклида. Критерий взаимной простоты двух чисел.
- 2.2 Сравнения и их свойства. Китайская теорема об остатках. Кольцо вычетов. Функция Эйлера и её свойства.
- 2.3 Теоремы Эйлера и Ферма. Критерий обратимости, алгоритм вычисления обратного элемента.
- 2.4 Криптографическая теорема (обоснование криптосистемы РСА).
- 2.5 Теорема о цикличности мультипликативной группы по примарному модулю.
- 2.6 Решение сравнений первой степени.
- 2.7 Сравнения второй степени. Символ Лежандра и его свойства.
- 2.8 Алгоритмы решения сравнений второй степени по простому модулю.
- 2.9 Символ Якоби и его свойства. Числа Блюма и их свойства. Эквивалентность задачи факторизации и решения сравнения второй степени.
- 2.10 Алгоритмы решения сравнений второй степени по примарному и составному модулю.

- 2.12 Нормальный делитель, фактор группа, первая теорема о гомоморфизме.
- 2.12 Нормальный делитель, фактор группа, первая теорема о гомоморфизме.
- 2.13 Кольцо многочленов, идеал, теорема Безу, кольцо главных идеалов.
- 2.14 Конечное поле. Теорема о простом подполе конечного поля. Строение конечного поля. Теорема о примитивном элементе.
- 2.15 Построение конечных полей. Алгоритм вычисления обратного элемента. Арифметические операции в конечном поле.
- 2.16 Алгоритмы вычисления дискретного алгоритма.
- 2.17 Криптосистема Эль Гамаля. Протокл Диффи Хеллмана.
- 2.18 Минимальный многочлен и его свойства. Теорема об изоморфизме конечных полей одной мощности.
- 2.19 Примитивный многочлен и его свойства. Теорема о разложении многочлена $f(x) = xp^n x$ на неприводимые многочлены. Критерий принадлежности элемента поля собственному подполю.
- 2.20 Теорема о группе автоморфизмов конечного поля.
- 2.21 Рекуррентные последовательности над конечным полем, линейные рекуррентные последовательности (ЛРП). Характеристический и минимальный многочлен ЛРП и их свойства.
- 2.22 Теорема об определении структуры ЛРП по её характеристическому многочлену. Теорема о ЛРП максимального периода.
- 2.23 Прямое произведение групп. Теорема о пред-

Билеты 5

2.25 Теорема о разложении конечной абелевой группы в произведение своих циклических подгрупп.

- 2.26 Нормализатор, централизатор, класс сопряженных элементов конечной группы. Теорема о числе множеств сопряженных с данным. Теорема о центре примарной группы. Теорема Коши.
- 2.27 Двойные смежные классы и их свойства. Теорема Силова (первая)
- 2.28 Вторая и третья теоремы Силова.
- 2.29 Группы подстановок. Инвариантное множество, орбита. Теорема об индексе стабилизатора группы. Теорема о транзитвности нормализатора подгруппы транзитвной группы. (Ут. 13.4).
- 2.30 Лемма Бернсайда.
- 2.31 Регулярные и полурегулярные группы. Порядок полурегулярной группы.
- 2.32 Блоки и импримитивные группы. Критерий импримитивности. Теорема о импримитивности транзитивной группы с интранзитивным нормальным делителем.
- 2.33 Примитивные группы. Кратная транзитивность. Критерий кратной транзитивности.
- 2.34 Теорема о группе автоморфизмов конечной группы.
- 2.35 Утверждение об изоморфизме стабилизатора и специальной группы автоморфизмов регулярной подгруппы (Ут. 13.5). Утверждение о порядке регулярного нормального делителя кратно транзитивной группы.
- 2.36 Простая группа. Теорема о простоте знако-