9K3AMEH 2021

Во всех задачах w — винеровский процесс, $\Lambda_t = t$.

- **1.** Покажите, что процесс $B_t = w_1 w_{1-t}$ винеровский на отрезке [0,1].
- **2.** Выпишите решение СДУ $dX_t = -(1/2)X_t dt + w_t$, $X_0 = 0$, и покажите, что $X_{\ln(t+1)}\sqrt{t+1}$ винеровский процесс. Пользуясь законом повторного логарифма вычислите $\limsup_{t\to\infty} X_t/\sqrt{t}$.
- **3.** Докажите, что w мартингал относительно фильтрации (\mathcal{F}_{t+}^o) , где $\mathcal{F}_t^o := \sigma\{w_s, \ s \leq t\}$.
- **4.** Пусть (Ω, \mathcal{F}) измеримое пространство с фильтрацией $\mathbf{F} = (\mathcal{F}_t)_{t \geq 0}$. На множестве $\Omega \times \mathbb{R}_+$ определены σ -алгебры $\mathcal{P} := \sigma\{A \times]s, \infty[, \ A \in \mathcal{F}_s, \ s \geq 0, \ B \times \{0\}, \ B \in \mathcal{F}_0\}$ (предсказуемая) и $\mathcal{O} := \sigma\{A \times [s, \infty[, \ A \in \mathcal{F}_s, \ s \geq 0\}$ (опциональная). Какая из них включает другую?
- **5.** Пусть $M^n \in \mathcal{M}_0^{2,c}$, $\langle M^n \rangle \leq C = \text{const}$ и $\langle M^n \rangle_t \to t$ при $n \to \infty$. Показать, что распределения случайных величин M_t^n слабо сходятся к гауссовскому распределению с нулевым средним и дисперсией t.
- **6.** Пусть X^x решение СДУ $dX_t^x = f(X_t^x)dt + g(X_t^x)dw_t$, $X_0^x = x$, где $f,g \in C^1$, f' и g' ограничены, и пусть Y решение СДУ $dY_t = f'(X_t^x)Y_tdt + g(X_t^x)Y_tdw_t$, $Y_0 = 1$. Показать, что Y_t производная функции $x \mapsto X_t^x$.
- 7. По теореме о предсказуемом представлении $w_1^4 = Ew_1^4 + \varphi \cdot w_1$, где $\varphi \in L^{2,2}$. Найти φ .
- 8. Пусть динамика управляемого процесса задаётся СДУ $dX_t = (u_t \rho X_t)dt + \sigma X_t dw_t$, где управление $(u_t)_{t \leq T}$ предсказуемый процесс со значениями в [0, M]. Цель: при заданном начальном условии максимизировать

$$\mathbb{E}\Big(\gamma X_T - \int_0^T e^{-ct} u_t dt\Big).$$

Записать уравнение Беллмана.

- **9.** Цена рискового актива $S = x + a\Lambda + \sigma w$. Процентная ставка равна нулю. Получить формулу для цены опциона колл.
- **10.** Определить цену опциона колл с погашением через 180 дней по модели BS. Цена акции 95, страйк 105, волатильность 11, процентная ставка 2.