Homework Sheet 1

Author: Abdullah Oğuz Topçuoğlu

Problem 1

(1.)

The given definition of antisymmetry is not sensible because it implies that for any elements $a, a' \in A$, if $(a, a') \in R$, then $(a', a) \notin R$. When I hear "antisymmetric" i think of something that is the opposite of symmetric and symmetric means if $(a, a') \in R$ then $(a', a) \in R$. And opposite of that would be if $(a, a') \in R$, then $(a', a) \notin R$ as in the question but with a difference that it only applies when $a \neq a'$. Because otherwise in the current definition if we plug in a = a', we get $(a, a) \in R \iff (a, a) \notin R$ which is a contradiction.

(2.)

(a) True.

If $f:A\to B$ and $g:B\to C$ are bijective functions.

To prove that $g \circ f$ is bijective, we need to show that it is both injective and surjective.

Since f and g are injective their composition is also injective. And since f and g are surjective their composition is also surjective.

Therefore, $g \circ f$ is bijective.

(b) False.

Let $A = \{1, 2\}, B = \{1, 2\}, C = \{1\}.$

Define $f: A \to B$ by f(1) = 1, f(2) = 2 (which is injective) and $g: B \to C$ by g(1) = 1, g(2) = 1 (which is surjective).

Then, $g \circ f(1) = g(f(1)) = g(1) = 1$.

Also, $g \circ f(2) = g(f(2)) = g(2) = 1$.

Therefore $g \circ f$ is not injective since $g \circ f(1) = g \circ f(2)$.

(c) False.

Consider this example: Let $A = \{1\}, B = \{1, 2\}, C = \{1, 2\}.$

Define $f:A\to B$ by f(1)=1 (which is injective) and $g:B\to C$ by g(1)=1,g(2)=2 (which is surjective).

In this configuration there is no element in A that maps to 2 in C through $g \circ f$. Thus, $g \circ f$ is not surjective.