Math 325 - Homework 09

Matthew Wilder

March 21, 2022

1. Let Y_1 and Y_2 be discrete random variables with joint probability function $p(y_1, y_2)$. Prove that $E(Y_1) = E(E(Y_1|Y_2))$

Proof. By definition of expected values, we know that $E(E(Y_1|Y_2))$ can be rewritten as

$$\sum_{y_1} \sum_{y_2} p(y_1) \cdot p(y_1, y_2)$$

And since $p(y_1|y_2) = \frac{p(y_1,y_2)}{p(y_2)}$, we can solve for $p(y_1,y_2)$ to get

$$p(y_1, y_2) = p(y_2) \cdot p(y_1|y_2)$$

Substituting into the previous sum we obtain,

$$\sum_{y_1} \sum_{y_2} p(y_1) \cdot p(y_2) \cdot p(y_1|y_2)$$

Because $p(y_1)$ is held constant with respect to y_2 , we can factor it out of the inner sum to obtain

$$\sum_{y_1} p(y_1) \sum_{y_2} p(y_2) \cdot p(y_1|y_2)$$

Using definition of $E(g(Y_1)|Y_2=y_2)=\sum_{y_1}g(y_1)\cdot p(y_1|y_2)$, we can substitute the inner sum with $E(Y_1|Y_2)$, thus obtaining

$$\sum_{y_1} p(y_1) E(Y_1 | Y_2)$$

Which, again, by definition of $E(Y_1|Y_2)$, we know that this is equivalent to $(E(Y_1)$

2. Suppose that Y has a binomial distribution with parameters n and p but that p varies from day to day according to the beta distribution with parameters α and β . Show that

(a)
$$E(Y) = \frac{n\alpha}{\alpha + \beta}$$

Proof. We will rewrite E(Y) as E(E(Y|p)) and for any given p, Y is a binomial distribution.

Thus, the expected value, E(Y|p) = np by definition of a binomial distribution.

Therefore, we obtain E(np). But, because n is held constant, we can factor it out by linearity to obtain $n \cdot E(p)$.

Finally, because p varies via a beta distribution, we know that $E(p) = \frac{\alpha}{\alpha + \beta}$ by definition. Thus, $nE(p) = n\frac{\alpha}{\alpha + \beta}$

$$\therefore E(Y) = \frac{n\alpha}{\alpha + \beta}$$

(b) $Var(Y) = \frac{n\alpha\beta(\alpha+\beta+n)}{(\alpha+\beta)^2(\alpha+\beta+1)}$

Proof. By definition, we know that Var(Y) = E(Var(Y|p)) + Var(E(Y|p))

Using the E(Y|p) obtained from part (a), we can simplify the expression into

$$Var(Y) = E(Var(Y|p)) + Var(np)$$

And by the definition of variance, the n can be pulled out to obtain

$$Var(Y) = E(Var(Y|p)) + n^{2}Var(p)$$

Then, by definition from the beta distribution, we can substitute in for Var(P)

$$Var(Y) = E(Var(Y|p)) + \frac{n^2 \cdot \alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

Since Y is a binomial distribution, therefore Var(Y|p) = npq by definition. Then

$$E(Var(Y|p)) = E(npq)$$
 by definition of variance
 $= nE(pq)$ by linearity of expectation
 $= nE(p(1-p))$ by $q = 1-p$
 $= nE(p-p^2)$ by distribution
 $= nE(p) - nE(p^2)$ by linearity of expectation

Now we need to compute the value of $E(p^2)$

$$Var(p) = E(p^2) - [E(p)]^2$$
 by definition of variance
$$E(p^2) = Var(p) + [E(p)]^2$$
 solve for $E(p^2)$ by definitions of Beta distribution
$$= \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} + \frac{\alpha^2}{(\alpha+\beta)^2}$$
 by definitions of Beta distribution
$$= \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} + \frac{\alpha^2}{(\alpha+\beta)^2}$$
 by distribution of squared term
$$= \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} + \frac{\alpha^2(\alpha+\beta+1)}{(\alpha+\beta)^2(\alpha+\beta+1)}$$
 multiply by a fancy $1 \left(\frac{\alpha+\beta+1}{\alpha+\beta+1}\right)$ add fractions with same denominator

$$\therefore E(p^2) = \frac{\alpha\beta + \alpha^2(\alpha + \beta + 1)}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

Returning to $E(Var(Y|p)) = nE(p) - nE(p^2)$, we know E(p) is $\frac{\alpha}{\alpha+\beta}$ by definition of a beta distribution. Using the $E(p^2)$ that we just computed and $E(Var(Y|p) = nE(p) - nE(p^2)$ we get

$$E(Var(Y|p) = n\frac{\alpha}{\alpha + \beta} - n\frac{\alpha\beta + \alpha^2(\alpha + \beta + 1)}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

Recall that $Var(Y) = E(Var(Y|p)) + \frac{n^2 \cdot \alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$. Substituting in the above value of E(Var(Y|p)) we obtain the following:

$$Var(Y) = n\frac{\alpha}{\alpha+\beta} - n\frac{\alpha\beta + \alpha^2(\alpha+\beta+1)}{(\alpha+\beta)^2(\alpha+\beta+1)} + \frac{n^2 \cdot \alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$

$$= n\left[\frac{\alpha}{\alpha+\beta} - \frac{\alpha\beta + \alpha^2(\alpha+\beta+1)}{(\alpha+\beta)^2(\alpha+\beta+1)} + \frac{n \cdot \alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}\right] \text{ Factor out } n$$

$$= n\left[\frac{\alpha(\alpha+\beta)(\alpha+\beta+1)}{(\alpha+\beta)^2(\alpha+\beta+1)} - \frac{\alpha\beta + \alpha^2(\alpha+\beta+1)}{(\alpha+\beta)^2(\alpha+\beta+1)} + \frac{n \cdot \alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}\right] \text{ Multiply fancy } 1$$

$$= n\left[\frac{\alpha(\alpha+\beta)(\alpha+\beta+1) - \left(\alpha\beta + \alpha^2(\alpha+\beta+1)\right) + n \cdot \alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}\right] \text{ Combine fractions}$$

$$= n\left[\frac{\alpha^3 + 2\alpha^2\beta + \alpha^2 + \alpha\beta^2 + \alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} - \left(\alpha\beta + \left(\alpha^3 + \alpha^2\beta + \alpha^2\right)\right) + n \cdot \alpha\beta}\right] \text{ Distribute terms}$$

$$= n\left[\frac{\alpha^2\beta + \alpha\beta^2 + n\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}\right] \text{ Combine like terms}$$

$$= n\left[\frac{\alpha\beta(\alpha+\beta+n)}{(\alpha+\beta)^2(\alpha+\beta+1)}\right] \text{ Factor out } \alpha\beta$$

$$= \frac{n\alpha\beta(\alpha+\beta+n)}{(\alpha+\beta)^2(\alpha+\beta+1)} \text{ Multiply in the } n$$

$$\therefore Var(Y) = \frac{n\alpha\beta(\alpha+\beta+n)}{(\alpha+\beta)^2(\alpha+\beta+1)}$$

3. Suppose that X and Y have a joint uniform density over the unit square. Find the pdf for their product, that is, find $f_U(u)$, where U = XY

Answer. Using the given fact that X and Y are over a unit square, we can define

$$f(x,y) = \begin{cases} 1 & x,y \in [0,1] \\ 0 & elsewhere \end{cases}$$

When
$$X, Y = (0,0), U = 0$$

When $X, Y = (1,0), U = 0$
When $X, Y = (0,1), U = 0$
When $X, Y = (1,1), U = 1$
 $\therefore U \in [0,1]$

By our given, U = XY, we can substitute in for U and solve for Y to get a CDF

in the following form

$$F_U(u) = P(U \le u) \qquad \text{by definition of CDF}$$

$$= P(XY \le u) \qquad \text{by substitution } U = XY$$

$$= P\left(Y \le \frac{u}{X}\right) \qquad \text{solving for } Y$$

$$= \left(1 - P\left(Y \ge \frac{u}{X}\right)\right) \qquad \text{By definition that probability sums to } 1$$

$$= 1 - \int_u^1 \int_{\frac{u}{x}}^1 f(x, y) \, dy \, dx \qquad \text{by definition of the CDF}$$

$$= 1 - \int_u^1 \int_{\frac{u}{x}}^1 1 \, dy \, dx \qquad \text{since } f(x, y) = 1 \text{ on the support}$$

$$= 1 - \int_u^1 \left(y \Big|_{y = \frac{u}{x}}\right) \, dx \qquad \text{By FTC}$$

$$= 1 - \int_u^1 1 - \frac{u}{x} \, dx \qquad \text{By evaluation}$$

$$= 1 - \left(x - u \cdot \ln |x| \Big|_{x = u}^1\right) \qquad \text{By FTC}$$

$$= 1 - \left[\left(1 - u \cdot \ln(1)\right) - \left(u - u \cdot \ln(u)\right)\right] \qquad \text{By evaluation}$$

$$= 1 - \left[\left(1 - 0\right) - \left(u - u \cdot \ln(u)\right)\right] \qquad \text{By evaluation}$$

$$= 1 - \left[\left(1 - u \cdot \ln(u)\right) - \left(u - u \cdot \ln(u)\right)\right] \qquad \text{By simplification}$$

$$= 1 - \left(1 - u + u \cdot \ln(u)\right) \qquad \text{By simplification}$$

$$= u - u \cdot \ln(u), \ u > 0 \qquad \text{By simplification}$$

We can now write the piecewise CDF as

$$F_U(u) = \begin{cases} 0 & u \in (-\infty, 0] \\ u - u \cdot ln(u) & u \in (0, 1] \\ 1 & u \in (1, \infty) \end{cases}$$

Differentiating the CDF, we can obtain the PDF. The derivative of $u-u \cdot ln(u)$ is a chain rule, $1-\left(u \cdot \frac{du}{u}ln(u) + \frac{du}{d}u \cdot ln(u)\right) = 1-\left(u \cdot \frac{1}{u} + 1 \cdot ln(u)\right) = 1-(1+ln(u)) = -ln(u)$, and there derivative of constants 1 and 0 are both 0.

$$\therefore f_U(u) = \begin{cases} -ln(u) & u \in (0,1] \\ 0 & elsewhere \end{cases}$$

4. Let $X_1, X_2, ..., X_n$ be independent random variables with Poisson distributions and with parameter λ_i , respectively. Let $U = X_1 + \cdots + X_n$. Show that U has a Poisson distribution and determine U's parameter λ_U

Proof. Let m(t) denote the moment generating function for a Poisson distribution. Then

$$m(t) = e^{\lambda(e^t - 1)}$$

We know that $m_U(t)$ will be the product of the n-many $m_x(t)$ moment generating functions that U consists of, therefore:

$$m_U(t) = \prod_{i=1}^n m_{x_i}(t) = m_{x_1}(t) \cdot m_{x_2}(t) \cdot \cdots \cdot m_{x_n}(t)$$

Each m_{x_i} term is a Poisson distribution by definition, and thus each m_{x_i} has the moment generating function $m(t) = e^{\lambda_i(e^t - 1)}$. We can substitute this into the product to obtain the following:

$$m_U(t) = \prod_{i=1}^n e^{\lambda_i(e^t - 1)}$$

By the laws of exponents, this can be rewritten into the following form,

$$m_U(t) = e^{\sum_{i=1}^n \lambda_i (e^t - 1)}$$

And the $(e^t - 1)$ term is independent of i, therefore we can factor it out of the sum to obtain

$$m_{II}(t) = e^{(e^t - 1)\sum_{i=1}^n \lambda_i}$$

We define λ_U as $\sum_{i=1}^n \lambda_i$ and thus the moment generating function of U can be rewritten as

$$m_U(t) = e^{\lambda_U(e^t - 1)}$$

Which, letting λ_U be the coefficient in the Poisson moment generating function $m(t) = e^{\lambda(e^t - 1)}$, then $\lambda_U = \lambda$ is exactly the form of the Poisson moment generating function.

$$\boxed{ \therefore m_U(t) = e^{\lambda_U(e^t - 1)} }$$

5. Let $X_1, X_2, ..., X_n$ denote a random sample of size n from a distribution which is normal $N(\mu, \sigma)$. Define $U = \sum_{i=1}^{\infty} \left(\frac{X_i - \mu}{\sigma}\right)^2$. Show that U has a χ^2 with n degrees of freedom. (Hint: See Homework 6, Problem 5.)

Proof. Let $Z_i = \frac{X_i - \mu}{\sigma}$, then $U = \sum_{i=1}^n Z_i^2$. By Homework 6, Problem 5, we know that Z_i^2 has a gamma distribution with $\alpha = \frac{1}{2}$ and $\beta = 2$.

A gamma distribution with $\alpha = \frac{1}{2}$ and $\beta = 2$ is a chi-squared distribution (χ^2) with 1 degree of freedom by the definitions of Γ and χ^2 distributions.

The moment generating function for Z_i^2 is $(1-2t)^{-\frac{1}{2}}$, (1 degree of freedom). Because U is a sum of n of these distributions, the moment generating function $m_U(t)$ is a product of each component's mgf, therefore

$$m_U(t) = \prod_{i=1}^n m_{x_i}(t) = m_{x_1}(t) \cdot m_{x_2}(t) \cdot \cdots \cdot m_{x_n}(t)$$

And then $m_{x_i}(t)$ is $(1-2t)^{-\frac{1}{2}} \forall i \in [1, n]$, so

$$m_U(t) = \prod_{i=1}^n (1 - 2t)^{-\frac{1}{2}}$$

Since every term has the same base of (1-2t), multiplication becomes the sum of their exponents, therefore

$$m_U(t) = (1 - 2t)^{\sum_{i=1}^n -\frac{1}{2}}$$

Using the definition that $\sum_{i=1}^{n} c = nc$ we can rewrite this to become

$$m_U(t) = (1 - 2t)^{-\frac{n}{2}}$$

A χ^2 distribution with n degrees of freedom has the moment generating function $m(t) = (1-2t)^{-\frac{n}{2}}$. But our computed $m_U(t)$ also has this exact moment generating function. By the uniqueness of the moment generating function, U is a χ^2 distribution with n degrees of freedom.