ME 598/494 Exam 2 Solution - Nov. 9, 2017

Problem 1 (30 Points)

Check if the following statements are true or not. Explain concisely.

- (a) The Lagrangian multipliers for inequality constraints can be negative at the optimal solution.
- (b) Line search in GRG is the same as that in the gradient descent or Newton's method.
- (c) A KKT point is a solution to a minimization problem, **and** a minimal solution must satisfy the KKT conditions.
- (d) GRG can be used when every step of the search is required to be constrained in the feasible domain.
- (e) Fitting a nonlinear model to data can always be done through Newton-Ralphson.
- (f) Scaling the variables will affect the Lagrangian multipliers at the optimal solution.

Solutions

- (a) False. Consider the KKT conditions with inequality constraints: $\nabla_x f + \mu^T \nabla_x g = 0$. Multiply both sides on the right by ∂x to have $\nabla_x f \partial x + \mu^T \nabla_x g \partial x = 0$. At the solution, we have $\nabla_x f \partial x \geq 0$ and $\nabla_x g \partial x \leq 0$. Therefore, if there exists a negative element of μ , say μ_1 , then we can pick ∂x such that $\nabla_x g_1 \partial x < 0$ and $\nabla_x g_i \partial x = 0$ for $i \neq 1$ (this is doable since the number of active inequality constraints is smaller than the number of variables). Thus we have $\nabla_x f \partial x + \mu^T \nabla_x g \partial x > 0$. Proved by contradiction. **Note**: No worry. You only need to show that $\nabla_x f \partial x \geq 0$ and $\nabla_x g \partial x \leq 0$.
- (b) False. There is a minor difference in that you will need to update state variables along with the decision variables.
- (c) False. KKT conditions lead to an optimal solution if the second-order sufficient condition is satisfied. An optimal solution is not necessarily a KKT point when it is irregular.
- (d) True. GRG ensures that the solution satisfies equality constraints at every iteration.
- (e) False. Newton-Ralphson may diverge.
- (f) False. Consider the KKT conditions $\nabla_x f + \mu^T \nabla_x g = 0$. Let y = kx. Thus $\nabla_y f = \nabla_x f(dx/dy) = \nabla_x f/k$. Similarly, $\nabla_y g = \nabla_x g/k$. The scaling does not affect the solution.

Problem 2 (30 Points)

Consider a product with price x, market demand $s(x) = 1 - x^2$, and total cost c(x) = 0.5s(x) linearly increasing with the demand.

- (a) Formulate an optimization problem for maximizing the profit with respect to the price, with a cost limit of $c_{max} = 9/50$. (5 Points)
- (b) Derive the KKT conditions, and show that $x=4/5, \ \mu=3/20$ is an optimal solution. (15 Points)
- (c) How would increasing the cost limit (from 9/50) affect the optimal profit? (5 Points)
- (d) Let c^* be a value such that any cost limit $c_{max} > c^*$ will not change the optimal solution. Discuss how the smallest c^* can be calculated. (5 Points, Optional for MAE494)

Solution

(a) Let the profit be $x(1-x^2) - 0.5(1-x^2)$, the problem is:

$$\min_{x} -x(1-x^{2}) + 0.5(1-x^{2})$$
 subject to $0.5(1-x^{2}) \le 9/50$

(b) The KKT conditions are

$$-1 + 3x^{2} - x - \mu x = 0$$
$$0.5(1 - x^{2}) < 9/50 \quad \text{if} \quad \mu = 0$$
$$0.5(1 - x^{2}) = 9/50 \quad \text{if} \quad \mu > 0$$

The solution is x = 4/5, $\mu = 3/20$. The Hessian of the Lagrangian is $6x - 1 - \mu > 0$. So the solution is a minimizer (or maximizes the profit). **Note**: If you get $\mu = 3/40$, it is probably because you scaled the inequality constraint by 2. You will get full mark for doing so.

- (c) Since $\mu = 3/20$, the profit will be increased by approximately $3/20\Delta c$ when the limit is increased by Δc .
- (d) c^* is the limit at which point μ reaches zero. Given that the inequality constraint is active, i.e., $x = \sqrt{1 2c^*}$, c^* is the (positive) root of $3x^2 1 x = 0$.

Problem 3 (25 Points)

For the linearly constrained problem (where \mathbf{A} and \mathbf{b} are a matrix and a column vector of parameters, respectively):

min
$$f(x)$$
, subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$

- (a) Derive the reduced gradient. (10 Points)
- (b) Concisely state all GRG steps for solving this problem. (10 Points)
- (c) Explain what simplifications occur in GRG due to the linearity of constraints. (5 Points, Optional for MAE494)

Solution

See solutions from previous exams.

Problem 4 (15 Points)

Consider the following problem, with constant m-by-n matrix \mathbf{A} (m < n), constant m-by-1 vector \mathbf{b} :

$$\min_{\mathbf{x}} \quad \mathbf{x}^T \mathbf{x}, \text{ subject to } \mathbf{A} \mathbf{x} = \mathbf{b}$$

- (a) Is this problem convex? Why? (5 Points)
- (b) Derive the KKT conditions and find the optimal solution \mathbf{x}^* . (10 Points, Optional for MAE494)

Solution

- (a) The Hessian of the objective is 2I. The linear equality constraints form a convex set since hyperplanes are convex sets, and the intersection of convex sets is convex. Therefore, the problem is convex.
- (b) The KKT conditions are $2\mathbf{x} + \mathbf{A}^T \boldsymbol{\lambda} = \mathbf{0}$, $\mathbf{A}\mathbf{x} = \mathbf{b}$, and $\boldsymbol{\lambda} \neq \mathbf{0}$. From the first equality, we have $\mathbf{x} = -0.5\mathbf{A}^T \boldsymbol{\lambda}$. Plug this into the second equality to get $-0.5\mathbf{A}\mathbf{A}^T \boldsymbol{\lambda} = \mathbf{b}$, which leads to $\boldsymbol{\lambda}^* = -2(\mathbf{A}\mathbf{A}^T)^{-1}\mathbf{b}$. Then we have $\mathbf{x}^* = \mathbf{A}^T(\mathbf{A}\mathbf{A}^T)^{-1}\mathbf{b}$. Since the problem is convex, this is the solution. Note that we assume \mathbf{A} to have full row-rank. If this is not true, then either $\mathbf{A}\mathbf{x} = \mathbf{b}$ has no solution at all, or there exists a redundant row (or rows) of $[\mathbf{A}|\mathbf{b}]$ that can be removed.

Problem 5 (extra 10 points)

(Principal Component Analysis) Consider the following problem where \mathbf{A} is a symmetric and positive semidefinite matrix:

$$\max_{\mathbf{x}} f = \mathbf{x}^{T} \mathbf{A} \mathbf{x}$$

subject to $h = \mathbf{x}^{T} \mathbf{x} = 1$

Derive the optimal solution. What can you tell about the solution \mathbf{x}^* and λ^* ?

Solution

The KKT conditions are:

$$\mathbf{A}\mathbf{x} + \lambda\mathbf{x} = 0$$
$$\lambda \neq 0$$

By definition, \mathbf{x} and $-\lambda$ can be any of the eigenvector and eigenvalue pairs of the matrix \mathbf{A} . Note that $\mathbf{x}^T \mathbf{A} \mathbf{x} = -\lambda$ at the optimal solution. Therefore, to maximize $\mathbf{x}^T \mathbf{A} \mathbf{x}$ is equivalent to find the maximal eigenvalue of \mathbf{A} . The optimal solution for \mathbf{x} is thus the eigenvector corresponding to that maximal eigenvalue.