Algebra 1A, lista 13.

Konwersatorium 30.01.2017, ćwiczenia 31.01.2017 (bez kartkówki)

0S. Materiał teoretyczny: Charakterystyka ciała: definicja, własności, przykłady. Podciało, własności. Równania algebraiczne w ciele F, znajdowanie rozwiązań w rozszerzeniu F' ciała F. Ciało algebraicznie domknięte: definicja, istnienie (informacyjnie), nieskończoność.

Ciała proste. Podciało proste ciała F. Liczba elementów ciała skończonego. Charakteryzacja ideałów $I \triangleleft R$ takich, że R/I jest ciałem. Ideał maksymalny. Funkcja Frobeniusa w ciele charakterystyki p. Każdy homomorfizm ciał jest monomorfizmem.

1K. Które z podanych pierścieni są ciałami?

- (a) $\mathbb{Z}_2 \times \mathbb{Z}_2$,
- (b) \mathbb{Z}_4 ,
- (c) \mathbb{Z}_{17} ,
- (d) $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$,
- (e) $\mathbb{Q}[X]/(X^3-3)$,
- (f) $\mathbb{Z}[X]/(X^2+1)$
- (g) $\mathbb{Z}_5[X]/(X^2+1)$,
- (h) $\mathbb{R}[X]/(X^2+7)$,
- (i) $\mathbb{Q}(\sqrt[4]{11}) = \{a + b11^{\frac{1}{4}} + c11^{\frac{2}{4}} + d11^{\frac{3}{4}} : a, b, c, d \in \mathbb{Q}\}$
- (j) $M_{n\times n}(\mathbb{R}), n>1.$
 - 2S. Sporządzić tabelki działań ciała:
 - (a) 4-elementowego,
 - (b) 9-elementowego.
 - 3K. Załóżmy, że F jest ciałem, n > 0 i char(F) nie dzieli n. Udowodnić, że:
 - (a) w ciele $F: n \cdot 1 \neq 0$,
 - (b) dla każdego $\in F$ istnieje jedyne $y \in F$ takie, że $n \cdot y = x$.
 - 4K. Rozwiązać równanie kwadratowe $x^2 + x + 1 = 0$
- (a) w ciele \mathbb{Z}_7 ,
- (b) w ciele \mathbb{Z}_5 ,
- (c) w ciele liczb rzeczywistych,
- (d) w ciele liczb zespolonych.
 - 5K. Traktujemy ciało $\mathbb{Q}(\sqrt{2})$ jako przestrzeń liniową nad ciałem \mathbb{Q} .
 - (a) Udowodnić, że układ liczb $1, \sqrt{2}$ jest baza tej przestrzeni liniowej.
- (b) Funkcja $f: \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$ dana jest wzorem $f(x) = (1+\sqrt{2})x$. Sprawdzić, że f jest przekształceniem liniowym przestrzeni liniowej $\mathbb{Q}(\sqrt{2})$ nad ciałem \mathbb{Q} , a następnie obliczyć macierz f w bazie $1, \sqrt{2}$.
 - 6. Traktujemy ciało \mathbb{R} jako przestrzeń liniową nad \mathbb{Q} .
 - (a) Udowodnić, że wymiar tej przestrzeni liniowej jest nieskończony.
 - (b)* Udowodnić, że ten wymiar jest nieprzeliczalny.
 - (c)* Udowodnić, że ten wymiar jest równy 2^{\aleph_0} .
- 7. Załóżmy, że Fjest ciałem zaś $I \triangleleft F$ ideałem w pierścieniu F. Udowodnić, że $I = \{0\}$ lub I = F.

- 8. Załóżmy, że $f:F_1\to F_2$ jest homomorfizmem ciał. Udowodnić, że fjest monomorfizmem.
- 9. Załóżmy, że pierścień R jest przemienny, z jednością, niezerowy oraz $I \triangleleft R$ jest właściwy. Mówimy, że I jest pierwszy, gdy dla wszystkich $a,b \in R,~a \cdot b \in I$ pociąga, że $a \in I$ lub $b \in I$. Udowodnic, że
 - (a) I jest pierwszy $\iff R/I$ jest dziedziną,
 - (b) jeśli I jest maksymalny, to I jest pierwszy.
- 10. Załóżmy, że $f:R\to S$ jest homomorfizmem pierścieni przemiennych. Udowodnić, że:
 - (a) Jeśli $I \triangleleft S$, to $f^{-1}[I] \triangleleft R$.
 - (b) Jeśli $I \triangleleft R$ i f jest "na", to $f[I] \triangleleft S$.