Intro to Proofs: HW09

Aamod Varma

October 31, 2024

Section 12.5

Problem 2

We have $f: \mathbb{R} - \{2\} \to \mathbb{R} - \{5\}$ defined by,

$$f(x) = \frac{5x+1}{x-2}$$

We know that it is bijective hence the inverse exists, we have,

$$y = \frac{5x+1}{x-2}$$
$$yx - 2y = 5x + 1$$
$$-1 - 2y = 5x - yx$$
$$-(1+2y) = x(5-y)$$
$$x = -\frac{1+2y}{5-y}$$

when $y \in \mathbb{R} - \{5\}$ So we have,

$$f^{-1}(y) = -\frac{1+2y}{5-y}$$

Problem 4

The function $f: \mathbb{R} \to (0, \infty)$ is defined as $f(x) = e^{x^3+1}$ is bijective. So we have,

$$y = e^{x^{3}+1}$$

$$\ln(y) = \ln(e^{x^{3}+1})$$

$$\ln(y) = x^{3}+1$$

$$\ln(y) - 1 = x^{3}$$

$$x = (\ln(y) - 1)^{\frac{1}{3}}$$

where $y \in (0, \infty)$ So we have,

$$f^{-1}(y) = (\ln y - 1)^{\frac{1}{3}}$$

Problem 8

Our function takes any $X \in P(\mathbb{Z})$ and maps it to $\overline{X} \in P(\mathbb{Z})$.

The function is bijective as it is injective and surjective. It is injective because if $\theta(X_1) = \theta(X_2)$. This means that $\overline{X_1} = \overline{X_2} \Rightarrow X_1 = X_2$ which means its injective.

Now it is surjective because for any Y in the co domain we can find $X = \overline{Y}$ in the domain such that $\overline{X} = \overline{\overline{Y}} = Y$. This shows surjectivity.

Hence it is bijective and inverse exists. So,

$$Y = \overline{X}$$

$$\overline{Y} = \overline{\overline{X}}$$

$$X = \overline{Y}$$

So we have a function $\theta^{-1}(Y) = \overline{Y}$ which is the inverse of our function.

12.6

Problem 5

Proof. We have a function $f:A\to B$ and a subset $X\subseteq A$. We need to show that $X\subseteq f^{-1}(f(X))$

Essentially we show that $x \in X \Rightarrow x \in f^{-1}(f(X))$

Now if $x \in X$ then $x \in A$ so for any $x \in A$ we have $f(x) \in f(X) \subseteq B$. Now by definition of inverse we have $f^{-1}(f(X)) = \{x \in A : f(x) \in f(X)\}$. So as $f(x) \in f(X)$ we have $x \in f^{-1}f(X)$ which gives us $X \subseteq f^{-1}(f(X))$

Problem 6

Proof. Consider the function defined from $A = \{1\}$ to $B = \{a, b\}$. Let f(1) = b.

Now let Y = B. So we have $f^{-1}(Y) = \{x \in A : f(x) \in Y\} = \{1\}$. However $f(f^{-1}(Y)) = \{a\} \neq Y$

Problem 8

Proof. Consider the function f defined from $A = \{1, 2, 3\}$ to $B = \{a, b\}$. Such that,

$$f(1) = b, f(2) = a, f(3) = b$$

Now let $W=\{1,2\}$ and $X=\{2,3\}.$ First we have $W\cap X=\{2\}$ and $f(W\cap X)=\{a\}$

However consider $f(W)=\{a,b\}$ and $f(X)==\{a,b\}$ which means that $f(W)\cap f(X)=\{a,b\}$

We see that this is not equal to the set above.

Problem 9

Proof. We need to show $f(W \cup X) = f(W) \cup f(X)$. First let $y \in f(W \cup X)$. This means that $y \in B$ such that $\exists x \in W \cup X$ and f(x) = y. So we have $x \in W$ or $x \in X$. If $x \in X$ then by definition we know that $f(x) \in f(X)$ and similarly if $x \in W$ then $f(x) \in f(W)$. So we have either $y \in f(X)$ or

 $yf(W)\Rightarrow y\in f(X)\cup f(W)$. This shows us that $f(W\cup X)\subseteq f(W)\cup f(X)$. Now consider $y\in f(W)\cup f(X)$ this means that either $y\in f(W)$ or $y\in f(X)$. If $y\in f(W)$ then $\exists x\in W\subseteq A$ such that f(x)=y. If $x\in W$ then $x\in W\cup X$. So we have $y\in f(W)$ implies $\exists x\in W\cup X$ such that f(x)=y this means that $y\in f(W\cup X)$. Similarly if $y\in f(X)$ we have $\exists x\in X$ such that f(x)=y, but $x\in X\Rightarrow x\in X\cup W$ so we have $y\in f(X\cup W)$. So we have shown that $y\in f(W)\cup f(X)\Rightarrow y\in f(W\cup X)\Rightarrow f(W)\cup f(X)\subseteq f(W\cup X)$

Problem 10

Proof. We need to show $f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z)$

Consider $x \in f^{-1}(Y \cap Z)$. This means that $\exists y \in Y \cap Z$ such that f(x) = y. Now if $y \in Y \cap Z$ means that $y \in Y$ and $y \in Z$. So we have,

- (1). x such that f(x) = y where $y \in f^{-1}(Y)$ which implies that $x \in f^{-1}(Y)$.
- (2). x such that f(x) = y where $y \in f^{-1}(Z)$ which implies that $x \in f^{-1}(Z)$. Both these imply that $x \in f^{-1}(Y) \cap f^{-1}(Z)$ which imply,

$$f^{-1}(Y \cap Z) \subseteq f^{-1}(Y) \cap f^{-1}(Z)$$

Now assume $x \in f^{-1}(Y) \cap f^{-1}(Z)$. This means that $x \in f^{-1}(Y)$ and $y \in f^{-1}(Z)$

- (1). $x \in f^{-1}(Y)$ then this means $\exists y \in Y$ such that f(x) = y
- (2) $x \in f^{-1}(Z)$ means that $\exists y \in Z$ such that f(x) = y

Now as both these are true we have $y \in Y$ and $y \in Z$ which imply that $y \in Y \cap Z$. So we have f(x) such that $f(x) = y \in Y \cap Z$ which is equivalent to saying $x \in f^{-1}(Y \cap Z)$ which implies,

$$f^{-1}(Y)\cap f^{-1}(Z)\subseteq f^{-1}(Y\cap Z)$$

So we show that.

$$f^{-1}(Y) \cap f^{-1}(Z) = f^{-1}(Y \cap Z)$$

Problem 11

Proof. We need to show that $f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z)$.

First take $x \in f^{-1}(Y \cup Z)$. This for some $y \in Y \cup Z$ we have f(x) = y. So we have two cases $y \in Y$ or $y \in Z$.

- (1). If $y \in Y$ then this means that we have x such that $f(x) = y \in Y$. Or $x \in f^{-1}(Y) >$
- (2). If $y \in Z$ then this means that we have x such that $f(x) = y \in Z$. Or $x \in f^{-1}(Z)$

So either way we can say that $x \in f^{-1}(Y) \cup f^{-1}(Z)$ which implies that,

$$f^{-1}(Y \cup Z) \subseteq f^{-1}(Y) \cup f^{-1}(Z)$$

Now consider $x \in f^{-1}(Y) \cup f^{-1}(Z)$. So either, $x \in f^{-1}(Y)$ or $x \in f^{-1}(Z)$.

- (1). If $x \in f^{-1}(Y)$ then $f(x) = y \in Y$. (2). If $x \in f^{-1}(Z)$ then $f(x) = y \in Z$

So we have either $f(x) \in Y$ or $f(x) \in Z$ which means that $f(x) \in Y \cup Z$. Now by definition we have $x \in f^{-1}(Y \cup Z)$ this implies that,

$$f^{-1}(Y) \cup f^{-1}(Z) \subseteq f^{-1}(Y \cup Z)$$

This implies that,

$$f^{-1}(Y) \cup f^{-1}(Z) = f^{-1}(Y \cup Z)$$

Problem 12

Proof. (1). We need to show that,

$$f$$
 is injective $\Leftrightarrow X = f^{-1}(f(X))$

 $(a). \Rightarrow$

First consider $x \in X$. We have $f(X) = Y = \{f(x) : x \in X\}$. Now $f^{-1}(Y)$ is defined as $\{x: f(x) \in Y\}$. But for any $x \in X$ we have $f(x) \in Y$ by definition, hence $x \in X$ implies that $x \in f^{-1}(f(X))$.

Now consider $a \in f^{-1}f(X)$ so a is in the set $\{x : f(x) \in f(X)\}$. However f(X) is defined as $\{f(x): x \in X\}$. So if $f(a) \in f(X)$ then it means that we have $x \in X$ such that f(x) = f(a). But because f is injective we have x=a which means that $a\in X$. Hence we can say that, $X=f^{-1}(f(X))$ (b). \Leftarrow

We have $X = f^{-1}(f(X))$ and we need to show that f is injective. Assume that f is not injective. That means $\exists x_1 \neq x_2 \text{ such that } f(x_1) = f(x_2)$. Now consider a subset X such that $x_1 \in X$ and $x_2 \notin X$. Now because $x \in X$ we have $f(x_1) \in f(X)$ but this also means that $f(x_2) \in f(X)$. Now by definition of f^{-1} we have $\{x: f(x) \in f(X)\}$ and as $f(x_1) = f(x_2) \in f(X)$ we have $x_1, x_2 \in f^{-1}(f(X))$ which means that $x_2 \in X$ but this contradicts the fact that $x_2 \notin X$ assumption hence our assumption must be wrong and f is injective.

(2). Now we show that,

f is surjective
$$\Leftrightarrow f(f^{-1}(Y)) = Y$$

 $(a). \Rightarrow$

Assume f is surjective. Now consider $y \in f(f^{-1}(Y))$. By definition that means $\exists x$ such that f(x) = y and that $x \in f^{-1}(Y)$. Now by definition of the inverse this set is such that $\{x : f(x) \in Y\}$ so $x \in f^{-1}(Y) \Rightarrow f(x) = y \in Y$. So we have $f(f^{-1}(Y)) \subseteq Y$

Now consider $y \in Y$. Because f is surjective we have $\exists x \text{ such that } f(x) = y$ which means that $x \in f^{-1}(Y)$. Now by definition of f we have the set $\{f(x):x\in f^{-1}(Y)\}\$ so f(x) such that $x\in f^{-1}(Y)$. But we have f(x)=ywhich means that $y \in f(f^{-1}(Y))$. Which gives us, $Y \subseteq f(f^{-1}(Y))$

 $(b) \Leftarrow$

Now assume f is not surjective which means that, $\exists y \in B$ such that there is not $x \in A$ such that f(x) = y. Now now consider $Y = \{y\}$. But because there is no x we have $f^{-1}(Y) = \{\}$ which means that $f(f^{-1}(Y)) = \{\} \neq Y$. Hence f has to be surjective. \square

14.1

Problem 2

Proof. Consider the bijection g defined from \mathbb{R} such that

$$g(x) = 2^x + \sqrt{2}$$

We can show that it is a bijection because its injective and surjective. First because if we have $2^{x_1} + \sqrt{2} = 2^{x_2} + \sqrt{2}$ then,

$$2^{x_1} = 2^{x_2}$$

$$log_2(2^{x_1}) = log_2(2^{x_2})$$

$$x_1 = x_2$$

Hence it is injective.

Now for any $y \in (\sqrt{2}, \infty)$ we have,

$$y = 2^{x} + \sqrt{2}$$
$$2^{x} = y - \sqrt{2} > 0$$
$$x = \log_{2}(y - \sqrt{2})$$

which we know is defined because the inside term is always positive. $\hfill\Box$

Problem 13

First consider the bijective function $f: \mathbb{N} \to \mathbb{Z}$ that maps every number in N to an element in \mathbb{Z} as follows,

$$f(x) = \frac{(-1)^n (2n-1) + 1}{4}$$

We can verify this is a bijective function.

Now consider a function $g: P(N) \to P(Z)$ that maps a set from P(N) to P(Z) defined as,

$$g(X) = \{ f(x) : x \in X \}$$

We know that $f(x) \in Z$ so any set $g(X) \in P(Z)$

Now we show this is a bijective function.

First consider two sets X_1, X_2 , we need to show that $g(X_1) = g(X_2) \Rightarrow X_1 = X_2$.

We have,

$$\{f(x_1): x_1 \in X_1\} = \{f(x_2): x_2 \in X_2\}$$

First consider $x_1 \in X_1$ this means that $f(x_1) \in g(X_1)$. Now because the sets are equal means $\exists x_2 \in X_2$ such that $f(x_2) = f(x_1)$. However because f is injective we have $x_1 = x_2$ or $x_1 \in X_2$. This means that $X_1 \subseteq X_2$

Now we can similarly show that $X_2 \subseteq X_1$ which implies that $X_1 = X_2$ Now we need to show that g is surjective.

Consider an arbitrary Y in P(Z). We need to show there is an $X \in P(N)$ such that g(X) = Y.

We know that because f is surjective, for any $y \in Y, \exists x \in N$ such that f(x) = y. Hence we define,

$$X = \{x : f(x) \in Y\}$$

Now because of how we define X we have,

$$g(X) = \{ f(x) : x \in X \}$$

but $x \in X$ such that $f(x) \in Y$. Hence if $y \in g(X)$ then $\exists x \in X$ such that f(x) = y. But this means that $x \in X$ which implies that $f(x) \in Y$ or $y \in Y$ which shows that $f(x) \subseteq Y$.

Similarly, if $y \in Y$ we have $x \in X$ such that f(x) = y. But based on how g(X) is defined we have f(x) if $x \in X$ but f(x) = y so $y \in g(X)$ hence $Y \subseteq g(X)$ or g(X) = Y

This shows surjection. So we have defined a bijective function fro P(N) to P(Z) showing their cardinality is the same.

Problem 15

Consider the function $f: \mathbb{N} \to \mathbb{Z}$ defined as,

$$f(n) = \frac{(-1)^n (2n-1) + 1}{4}$$

First we show that it is a bijection.

If we have,

$$\frac{(-1)^{n_1}(2n_1-1)+1}{4} = \frac{(-1)^{n_2}(2n_2-1)+1}{4}$$

We can write this as,

$$(-1)^{n_1}(2n_1-1) = (-1)^{n_2}(2n_2-1)$$

We have $2n_1 - 1$ is always positive as $n \ge 1$ which means that for the signs to be the same we need $(-1)^{n_1} = (-1)^{n_2}$ which is only true if we have $n_2 = n_1 + 2k$ for some $k \in \mathbb{Z}$. So now consider,

$$2n_1 - 1 = 2n_2 - 1$$
$$2n_1 - 1 = 2n_1 + 4k - 1$$
$$4k = 0, k = 0$$

Hence $n_1 = n_2$

Now to show it surjective for any $z \in Z$. Consider by cases first z is positive, then we have,

$$n = 2z$$

and if z is negative or zero consider,

$$n = 1 - 2z$$

So for any $z \in Z$ we have an $n \in N$ such that f(n) = z.