Álgebra - Curso de Verão - UFV

$3^{\underline{a}}$ Lista de Exercícios – 2015

Prof. José Antônio O. Freitas

Exercício 1: Sejam $\alpha_1, \ldots, \alpha_t \in S_n$ ciclos disjuntos de comprimentos r_1, \ldots, r_t respectivamente. Mostre que o produto $\alpha_1 \cdots \alpha_t$ tem ordem igual a $mmc\{r_1, \ldots, r_t\}$.

Exercício 2: Sejam p um número primo e $n \in \mathbb{N}$. Mostre que:

- 1. Todo elemento de ordem p no grupo S_p é um p-ciclo.
- 2. S_p não tem elemento de ordem $kp \text{ com } k \geq 2$.
- 3. Se t é um inteiro positivo, mostre que o grupo S_n possui elementos de ordem p^t se, e somente se, $n \ge p^t$.

Exercício 3: Mostre que as possíveis ordens de elementos do grupo S_7 pertencem ao conjunto $\{1, 2, 3, 4, 5, 6, 7, 10, 12\}$.

Exercício 4: Se $\sigma \in S_n$ é um r-ciclo, mostre que $(-1)^{\sigma} = (-1)^{r-1}$.

Exercício 5: Escreva cada elemento de S_4 como um produto de ciclos disjuntos. Escreva cada elemento de S_4 como um produto de transposições.

Exercício 6: Use as idéias da do Lema sobre conjugação de permutações em S_n nos itens abaixo.

- 1. Sejam $a, b, i, j \in \{1, ..., n\}$ distintos. Mostre que existe um 3-ciclo σ , envolvendo a e b e mais uma letra, tal que $\sigma(aij)\sigma^{-1} = \sigma(bak)\sigma^{-1}$ para algum k. Conclua que $(aij) \in \langle (abl) \mid l \in \{1, ..., n\} \setminus \{a, b\} \rangle$.
- 2. Dados $a, k, l, m \in \{1, ..., n\}$ distintos, sabemos que existe $\sigma \in S_n$ tal que $(klm) = \sigma(akm)\sigma^{-1}$ para algum k. Mostre que σ pode ser escolhido igual a um 3-ciclo envolvendo a letra a e mais duas letras.
- 3. Sejam $a, b \in \{1, \ldots, n\}$ distintos. Conclua que

$$\langle 3 - ciclos \rangle = \langle (abl) \mid l \notin \{a, b\} \rangle.$$

Logo $A_n = \langle (abl) \mid l \notin \{a, b\} \rangle$.