${\bf Mathematik*}$

Linus Yury Schneeberg

2025/26

Inhaltsverzeichnis

1	Differentialrechnung									2	2							
	1.1	Ableitungen in verschiedenen Kontexten															6	2

1 Differential rechnung

:

1.1 Ableitungen in verschiedenen Kontexten

reine Mathematik

Bestimmen Sie die Ableitung der folgenden Fuktionen an einer beliebigen Stelle x_0 ihres Definitionsbereiches:

(a) $c(x) = c, x \in \mathbb{R} \land c \in \mathbb{R}$

Dann ist

$$c'(x_0) = \lim_{h \to 0} \frac{c(x_0 + h) - c(x_0)}{h}.$$

Das lässt sich zu $c'(x_0) = \lim_{h \to 0} 0$ umformen.

$$c'(x_0) = \lim_{h \to 0} 0$$

genau dann, wenn: $\forall \varepsilon > 0 \colon \exists \delta > 0 \colon \forall x \colon |0 - x| < \delta \implies |0 - c'(x_0)| < \varepsilon$

genau dann, wenn: $\forall \varepsilon > 0 \colon \exists \delta > 0 \colon \forall x \colon |x| < \delta \implies |c'(x_0)| < \varepsilon$

genau dann, wenn: $\forall \varepsilon > 0$: $[(\forall \delta > 0 : \exists x : |x| < \delta) \implies |c'(x_0)| < \varepsilon]$ Lemma 1.1, 1.2

genau dann, wenn: $\forall \varepsilon > 0 : |c'(x_0)| < \varepsilon$

Da $\forall \varepsilon > 0$: $|c'(x_0)| < \varepsilon$ nur für $c'(x_0) = 0$ gilt, ist $c'(x_0) = 0$.

Lemma 1.1. Sei P(x) eine logische Aussage, die abhängig von x ist und Q eine logische Aussage, die unabhängig von x ist. Dann gilt

 $\forall x \colon P(x) \implies Q$

genau dann, wenn: $(\exists x : P(x)) \implies Q$

Beweis.

$$\forall x \colon P(x) \implies Q$$

genau dann, wenn: $\forall x \colon \neg P(x) \lor Q$

genau dann, wenn: $\bigwedge_{x \in \mathbb{R}} \neg P(x) \vee Q$

genau dann, wenn: $\left(\bigwedge_{x \in \mathbb{R}} \neg P(x) \right) \lor Q$

genau dann, wenn: $\left(\neg\bigvee_{x\in\mathbb{R}}P(x)\right)\vee Q$

genau dann, wenn: $\neg (\exists x \colon P(x)) \lor Q$

genau dann, wenn: $(\exists x : P(x)) \implies Q$

QED

Lemma 1.2. Sei P(x) eine logische Aussage, die abhängig von x ist und Q eine logische Aussage, die unabhängig von x ist. Dann gilt

$$\exists x \colon P(x) \implies Q$$
 genau dann, wenn: $(\forall x \colon P(x)) \implies Q$

Beweis.

$$\begin{array}{c} \exists x \colon P(x) \Longrightarrow Q \\ \text{genau dann, wenn: } \exists x \colon \neg P(x) \vee Q \\ \text{genau dann, wenn: } \bigvee_{x \in \mathbb{R}} \neg P(x) \vee Q \\ \\ \text{genau dann, wenn: } \left(\bigvee_{x \in \mathbb{R}} \neg P(x)\right) \vee Q \\ \\ \text{genau dann, wenn: } \left(\neg \bigwedge_{x \in \mathbb{R}} P(x)\right) \vee Q \\ \\ \text{genau dann, wenn: } (\neg \forall x \colon P(x)) \vee Q \\ \\ \text{genau dann, wenn: } (\forall x \colon P(x)) \Longrightarrow Q \end{array}$$

QED

(b)
$$f(x) = ax + b, x, a, b \in \mathbb{R}$$

Dann ist

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{a * (x_0 + h) + b - (ax_0 + b)}{h}$$

$$= \lim_{h \to 0} \frac{ah}{h}$$

$$= \lim_{h \to 0} a$$

$$= a$$

(c)
$$p(x) = x^2, x \in \mathbb{R}$$

Dann ist

$$p'(x_0) = \lim_{h \to 0} \frac{p(x_0 + h) - p(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{(x_0 + h)^2 - x_0^2}{h}$$

$$= \lim_{h \to 0} \frac{x_0^2 + 2x_0h + h^2 - x_0^2}{h}$$

$$= \lim_{h \to 0} 2x_0 + h$$

$$= 2x_0$$

(d)
$$q(x) = x^3, x \in \mathbb{R}$$

Dann ist

$$q'(x_0) = \lim_{h \to 0} \frac{q(x_0 + h) - q(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{(x_0 + h)^3 - x_0^3}{h}$$

$$= \lim_{h \to 0} \frac{3x_0h^2 + 3x_0^2h + h^3}{h}$$

$$= \lim_{h \to 0} 3x_0h + 3x_0^2 + h^2$$

$$= 3x_0^3$$

(e)
$$g(x) = x^n, x \in \mathbb{R} \land n \in \mathbb{N} \setminus \{0\}$$

Dann ist

$$q'(x_0) = \lim_{h \to 0} \frac{g(x_0 + h) - g(x_0)}{h}$$
$$= \lim_{h \to 0} \frac{(x_0 + h)^n - x_0^n}{h}$$
$$\stackrel{?}{=} nx_0^2$$