Math 214 – Foundations of Mathematics Homework 9

Due April 3rd

Alexander Powell

Solve the following problems. Please remember to use complete sentences and good grammar.

- 1. (4 Points) Solve the following problems in \mathbb{Z}_n .
 - (a) In \mathbb{Z}_8 , express the following sums and products as [r], where $0 \le r < 8$:

$$[3] + [6], [3] \cdot [6], [-13] + [138], [-13] \cdot [138]$$

Solution: First, we know that $\mathbb{Z}_8 = \{[0], [1], [2], [3], [4], [5], [6], [7]\}$. So it follows that:

$$[3] + [6] = [1],$$

$$[3] \cdot [6] = [2],$$

$$[-13] + [138] = [5]$$
, and

$$[-13] \cdot [138] = [6]$$

(b) Let $[a], [b] \in \mathbb{Z}_8$. If $[a] \cdot [b] = [0]$, does it follow that [a] = [0] or [b] = [0]?

Solution: No, because if, for example, you let [a] = [2] and [b] = [4], it is evident that $[a] \cdot [b] = [0]$ while neither [a] not [b] equal [0].

2. (4 Points) Prove that for any prime p, if $[a], [b] \in \mathbb{Z}_p$, then $[a] \cdot [b] = [0]$ implies [a] = [0] or [b] = [0].

Solution:

Proof. If $[a], [b] \in \mathbb{Z}_p$, then $\exists k \in \mathbb{Z}$ such that $a \cdot b = P \cdot k$. Then it follows that $P | (a \cdot b)$. So now we just need to prove that P | a or P | b. From theorem 11.14, we have that if a | bc then either a | b or a | c. Hence, it follows that for any prime p, if $[a], [b] \in \mathbb{Z}_p$, then $[a] \cdot [b] = [0]$ implies [a] = [0] or [b] = [0].

3. (4 Points) Prove that the multiplication in Z_n , $n \ge 2$, defined by $[a] \cdot [b] = [ab]$ is well-defined. (See Theorem 8.9 for the case of addition, and Result 4.11)

Solution:

Proof. Let $[a], [b], [c], [d] \in \mathbb{Z}_n$, where [a] = [b] and [c] = [d]. Now we prove that [ac] = [bd]. It follows that $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$. Thus, $ab \equiv cd \pmod{n}$ from result 4.11. So, we can conclude that abRcd which implies that [ab] = [cd]. Hence, multiplication in \mathbb{Z}_n is well-defined.

4. (4 Points) Let p be a positive prime number and let $f: \mathbb{Z}_p \to \mathbb{Z}_p$ be defined as $f([x]) = [x^2]$. Show that f is a function. Give examples to show that it is not necessarily injective or surjective.

Solution:

Proof. First we prove that f is a function: i) $\forall [x] \in \mathbb{Z}_p, \exists [y] \in \mathbb{Z}_p$ such that $([x], [y]) \in f$. It is clear that $([x], [x^2]) \in f$, so f passes the first condition of being a function. ii) Next, if [x] = [y], then $[x^2] = [y^2]$.

Then, x = y + kp and $x^2 = (y + kp)2 = (y + kp)(y + kp) = y^2 + 2ykp + (kp)^2$, which equals $y^2 + pm$ for some $m \in \mathbb{Z}$. Hence, f is a well-defined function.

Next we show that f is not necessarily injective or surjective.

First, an example to show f is not injective: Let p = 5, then,

$$f([0]) = [0]$$

and

$$f([5]) = [5^2] = [25] = [0]$$

, so f is not injective.

No we show that f is not surjective: This can be demonstrated by letting y = -5. There is no x such that $[x^2] = [-5]$.

- 5. (4 Points) Consider the function $f(x) = \frac{3x-5}{x+2}$.
 - (a) Determine the domain $D(f) \subseteq \mathbb{R}$ and range $R(f) \subseteq \mathbb{R}$ of the function f.

Solution: The only restrictions on the domain of f are that the denominator of the functions cannot equal to 0, or $x + 2 \neq 0$, or $x \neq -2$. So, the domain of f is all $x \in \mathbb{R}$ not equal to 2. The range of the function is all real numbers, or \mathbb{R} .

(b) Prove that the function $f: D(f) \to R(f)$ is bijective.

Solution: To prove that f is bijective we must prove that it is both injective and surjective. To prove it is injective we examine the equation:

$$\frac{3x - 5}{x + 2} = \frac{3y - 5}{y + 2}$$

Which can be rewritten as (3x-5)(y+2) = (3y-5)(x+2),

which multiplies out to 3xy + 6x - 5y - 10 = 3xy + 6y - 5x - 10

$$3xy + 6x - 5y = 3xy + 6y - 5x$$

$$6x - 5y = 6y - 5x$$

$$11x = 11y$$

x = y, so f is injective.

Next, we prove that f is surjective. If $f(x) = \frac{3x-5}{x+2}$, let $x \in \mathbb{R}$. So, $\forall y \in \mathbb{R}$, we try to find $x \in \mathbb{R}$ such that f(x) = y. Set $\frac{3x-5}{x+2} = y$. Then:

$$3x - 5 = y(x+2)$$

$$-5 = y(x+2) - 3x$$

$$-5 = xy + 2y - 3x$$

$$-5 - 2y = xy - 3x$$

$$\frac{-5-2y}{y-3} = x$$
 or $x = \frac{2y+5}{3-y}$

So, $\forall y \in \mathbb{R}$, let $x = \frac{2y+5}{3-y}$, proving f is surjective. And since we have shown that f is surjective and injective, we can say that f is bijective.

- 6. (4 Points)
 - (a) Prove that the function $f(x) = x^2 2x + 3$, with domain $x \in \mathbb{R}$, is neither injective nor surjective.

Solution:

Proof. First we prove that f is not injective:

Suppose:
$$f(x) = f(y)$$
 or $x^2 - 2x + 3 = y^2 - 2y + 3$

$$x^2 - 2x = y^2 - 2y$$

$$x^2 - y^2 - 2x + 2y = 0$$

$$(x^2 - y^2) + (-2x + 2y) = 0$$

$$(x+y)(x-y) - 2(x-y) = 0$$

$$(x-y)(x+y-2) = 0$$

Now, let x = 0 and x = 2 so that:

 $f(0) = 0^2 - 2(0) + 3$ and $f(2) = 2^2 - 2(2) + 3 = 3$. So, f is not injective since f(0) = f(2) = 3.

Next we prove that f is not surjective.

Set
$$x^2 - 2x + 3 = y$$

$$x^2 - 2x + 1 - 1 + 3 = y$$

$$(x-1)^2 = y-2$$

So, $\forall x \in \mathbb{R}$, $(x-1)^2 \ge 0$. Now, choose y = -15, then y - 2 = -15 - 2 = -17 < 0.

This implies that for y = -15, $\forall x \in \mathbb{R}, x^2 - 2x + 3 \neq -15$. So, $f : \mathbb{R} \to \mathbb{R}$ is not surjective.

(b) Prove that the function $f(x) = x^2 - 2x + 3$, with domain $x \in (-\infty, 0)$, is a bijection from $(-\infty, 0)$ to its range. What is the range of f(x)? Determine the inverse function $f^{-1}(x)$, its domain and range.

Solution: To prove something is bijective, we must prove it is injective and surjective. To prove it is injective:

Suppose $f(x) = f(y), x, y \in A$. Then

$$x^2 - 2x + 3 = y^2 - 2y + 3$$

$$(x-y)(x+y-2) = 0$$

Since x > 0 and y > 0, then either x - y > 0 or $x + y - 2 \ge -2$. Now, recall the axiom: $a, b \in \mathbb{R}, a \cdot b = 0 \implies a = 0 \lor b = 0$. Then x - y = 0 so x = y. So, f is injective from $(-\infty, 0)$.

Next we prove surjectivity:

Solving $x^2 - 2x + 3 = y$, we get $(x - 1)^2 = y - 2$ and y - 2 > 0 so $\sqrt{y - 2} \in \mathbb{R}$, or $x = 1 \pm \sqrt{y - 2}$.

Choose $x = 1 \pm \sqrt{y-2} \in A$, then

$$f(1 \pm \sqrt{y-2}) = (1 \pm \sqrt{y-2})^2 - 2(1 \pm \sqrt{y-2}) + 3 = y$$

, so f is surjective.

Also, the range of f(x) is $[2, \infty)$.

To find the inverse of f(x), we solve for the variable x, and then switch the variables, as shown below.

$$x = y^2 - 2y + 3$$

$$y^2 - 2y = x - 3$$

$$y^2 - 2y + 1 - 1 = x - 3$$

$$\sqrt{(y-1)^2} = \pm \sqrt{x-2}$$

$$y=1\pm\sqrt{x-2}$$

So, $f^{-1}(x) = 1 \pm \sqrt{x-2}$ and the domain of $f^{-1}(x)$ is $[2,\infty)$ and the range is the set of all real numbers.