Machine Learning Theory

Sampling, Misspecification, and Non-Gaussian Noise

David A. Hirshberg April 3, 2025

Emory University

Where We Left Off

What do we know about the error of this least squares estimator $\hat{\mu}$?

$$\hat{\mu} = \operatorname*{argmin}_{m \in \mathcal{M}} \frac{1}{n} \sum_{i=1}^{n} \{Y_i - m(X_i)\}^2$$
 for convex \mathcal{M}

Where We Left Off

What do we know about the error of this least squares estimator $\hat{\mu}$?

$$\hat{\mu} = \operatorname*{argmin}_{m \in \mathcal{M}} \frac{1}{n} \sum_{i=1}^{n} \{Y_i - m(X_i)\}^2$$
 for convex \mathcal{M}

Here's what we proved in lecture.

$$\begin{split} \|\hat{\mu} - \mu^\star\|_{L_2(\mathbf{P_n})} &< s \quad \text{w.p. } 1 - \delta \text{ for } \quad \frac{s^2}{2\sigma} \geq \mathbf{w}(\mathcal{M}_s^\circ) + s\sqrt{\frac{2\Sigma_n}{\delta n}} \\ \text{where} \quad \mathbf{w}(\mathcal{V}) &= \mathrm{E}\max_{v \in \mathcal{V}} \langle g, \ v \rangle_{L_2(\mathbf{P_n})} \quad \text{and} \quad \Sigma_n = \sigma^2 \{1 + 2\log(2n)\} \quad \text{for } g_i \overset{iid}{\sim} N(0, 1) \\ \text{if} \quad Y_i &= \mu(X_i) + \varepsilon_i \quad \text{for } \varepsilon_i \overset{iid}{\sim} N(0, \sigma^2) \quad \text{for } \mu \in \mathcal{M} \end{split}$$

,

Where We Left Off

What do we know about the error of this least squares estimator $\hat{\mu}$?

$$\hat{\mu} = \underset{m \in \mathcal{M}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \{Y_i - m(X_i)\}^2 \quad \text{for convex } \mathcal{M}$$

Here's a simplified version of you're proving for homework.

$$\begin{split} \|\hat{\mu} - \mu^\star\|_{L_2(\mathbf{P_n})} &< s + 2\sqrt{\frac{2\Sigma_n}{\delta n}} \quad \text{w.p. } 1 - \delta \text{ for } \frac{s^2}{2\sigma} \geq \mathbf{w}(\mathcal{M}_s) \\ \text{where} \quad \mathbf{w}(\mathcal{V}) &= \mathrm{E}\max_{v \in \mathcal{V}} \langle g, \ v \rangle_{L_2(\mathbf{P_n})} \quad \text{and} \quad \Sigma_n = \sigma^2 \{1 + 2\log(2n)\} \quad \text{for } g_i \overset{iid}{\sim} N(0, 1) \\ \text{if } \quad Y_i &= \mu(X_i) + \varepsilon_i \quad \text{for } \ \varepsilon_i \overset{iid}{\sim} N(0, \sigma^2) \quad \text{for } \ \mu \in \mathcal{M} \end{split}$$

,

When Does This Bound Apply?

When Does This Bound Apply?

- The second column is out. We've assumed correct specfication.
- The second row is out. We've assumed normality.

Today, We Fix That

Today, We Fix That

- With misspecification, we estimate the model's best approximation to μ .
- · Non-normality doesn't really matter much. We'll look at how it affects our bound.

Misspecification

What happens when μ isn't in the model?

- \cdot Our error in estimating μ is bounded by a sum of two terms.
 - The critical radius s, i.e., the one satisfying $s^2/2\sigma \geq \mathrm{w}(\mathcal{M}_s^\circ) + s\sqrt{\frac{2\Sigma_n}{\delta n}}$.
 - \cdot The distance from μ to its best approximation in the model. Or really 3 times that.

We showed this in the model selection lab using the Cauchy-Schwarz inequality.

• In convex models, we can say more. Our error in estimating μ^\star does not depend on its distance to μ .

Review

- $\hat{\mu}$ minimizes $\ell(m) = \frac{1}{n} \sum_{i=1}^n \{Y_i \mu(X_i)\}^2$ among curves m in a convex set \mathcal{M} .
- If μ is in the model, that tells us it's one of the curves with loss as small as μ 's.

i.e.
$$m=\hat{\mu}$$
 satisfies $\ell(m) \leq \ell(\mu)$ if $\mu \in \mathcal{M}$.

- To prove $\hat{\mu}$ is in the neighborhood \mathcal{M}_s , we show that ...
- ...none of these curves is in the neighborhood's complement $M \setminus \mathcal{M}_s$.

$$\hat{\mu} \in \mathcal{M}_s$$
 if $\ell(m) > \ell(\mu)$ for all $m \in \mathcal{M} \setminus \mathcal{M}_s$.

- i.e. we show the loss difference is strictly positive for curves in the complement.
- \cdot That's true if it's positive for curves on the neighborhood's boundary \mathcal{M}_s° .

$$\ell(m) - \ell(\mu) > 0$$
 for all $m \in \mathcal{M} \setminus \mathcal{M}_s$ if $\ell(m) > \ell(\mu)$ for all $m \in \mathcal{M}_s^{\circ}$.

- · And that boils down to the neighborhood's squared radius exceeding ...
- \cdot ...twice its boundary's maximal inner product with noise arepsilon = Y m.

$$\ell(m) - \ell(\mu) = s^2 - \langle \, Y - \mu, \, \, m - \mu \rangle \geq s^2 - 2 \max_{m \in \mathcal{M}_s^\circ} \langle \, Y - \mu, \, \, m - \mu \rangle \quad \text{for all} \quad m \in \mathcal{M}_s^\circ$$

· Then we do a little probability and get our error bound.

The Argument with no if

For any $\mu^* \in \mathcal{M}$, we can expand our mean squared error difference as before.

$$\ell(m) - \ell(\mu^{\star}) = \|m - \mu^{\star}\|_{L_{2}(\mathbf{P}_{\mathbf{n}})}^{2} - \frac{2}{n} \sum_{i=1}^{n} \varepsilon_{i}^{\star} \{m(X_{i}) - \mu^{\star}(X_{i})\} \quad \text{for} \quad \varepsilon_{i}^{\star} = Y_{i} - \mu^{\star}(X_{i}).$$

But our new 'noise' ε_i^\star doesn't have mean zero. It's our old noise ε_i , minus something.

$$\varepsilon_i^{\star} = \{ Y_i - \mu(X_i) \} - \{ \mu^{\star}(X_i) - \mu(X_i) \}.$$
something

So we can think of our mean squared error difference as having three terms:

$$\begin{split} \ell(m) - \ell(\mu^\star) &= \|m - \mu^\star\|_{L_2(\mathrm{Pn})}^2 & \text{squared distance, like before;} \\ &- \frac{2}{n} \sum_{i=1}^n \varepsilon_i \left\{ m(X_i) - \mu^\star(X_i) \right\} & \text{a mean zero term, like before;} \\ &+ \frac{2}{n} \sum_{i=1}^n \{ \mu^\star(X_i) - \mu(X_i) \} \{ m(X_i) - \mu^\star(X_i) \} & \text{and something else.} \end{split}$$

We can use our argument, ignoring the new term, if that term is always non-negative.

Why?

$$\ell(m) - \ell(\mu^*) = \|m - \mu^*\|_{L_2(\mathbf{P_n})}^2$$

$$- \frac{2}{n} \sum_{i=1}^n \varepsilon_i \{ m(X_i) - \mu^*(X_i) \}$$

$$+ \frac{2}{n} \sum_{i=1}^n \{ \mu^*(X_i) - \mu(X_i) \} \{ m(X_i) - \mu^*(X_i) \}$$

We want to show that if distance from m to μ^* is big enough, it wins.

- · In particular, it wins in the sense that the loss difference $\ell(m) \ell(\mu^*)$ is positive.
- · That implies distance from $\hat{\mu}$ to μ^{\star} is smaller, as distance doesn't win in that case.

If this new term is non-negative, it helps distance win.

- If the loss difference is positive when we ignore a non-negative term ...
- · ...then it's still positive when we don't.

$$\ell(m) - \ell(\mu^{\star}) > 0 \quad \text{if} \quad \|m - \mu^{\star}\|_{L_{2}(\mathbf{P_{n}})}^{2} - \frac{2}{n} \sum_{i=1}^{n} \varepsilon_{i} \left\{ m(X_{i}) - \mu^{\star}(X_{i}) \right\} > 0 \quad \text{ what we're used to}$$

$$\text{and} \quad \frac{2}{n} \sum_{i=1}^{n} \{ \mu^{\star}(X_{i}) - \mu(X_{i}) \} \{ m(X_{i}) - \mu^{\star}(X_{i}) \} \geq 0 \quad \text{new term}$$

This only works if the new term is non-negative. Can we choose $\mu^* \in \mathcal{M}$ so it is?

The new term is always non-negative when we compare to the *best approximation* to μ in the model,

$$\begin{split} \mu^{\star} &= \underset{m \in \mathcal{M}}{\operatorname{argmin}} \|m - \mu\|_{L_{2}(\mathbf{P_{n}})}^{2} \quad \text{satisfies} \quad \frac{2}{n} \sum_{i=1}^{n} \{\mu^{\star}(X_{i}) - \mu(X_{i})\} \{m(X_{i}) - \mu^{\star}(X_{i})\} \\ & \quad \text{or in vector notation} \quad \frac{2}{n} \langle \mu^{\star} - \mu, m - \mu^{\star} \rangle_{2} \geq 0 \quad \text{for all} \quad m \in \mathcal{M}. \end{split}$$

It's proportional to the dot product between two vectors: $\mu \to \mu^{\star}$ and $\mu^{\star} \to m$.

- \cdot When the model ${\cal M}$ is convex, these vectors are always in the same direction.
- They both point 'in' to the model. That means the dot product is non-negative.

)

Claim. For any convex set \mathcal{M} in an inner product space, ¹

$$\begin{split} \mu^{\star} &= \underset{m \in \mathcal{M}}{\operatorname{argmin}} \|m - \mu\| \quad \text{satisfies} \\ \langle \mu^{\star} - \mu, \ m - \mu^{\star} \rangle \geq 0 \quad \text{ for all curves } \quad m \in \mathcal{M}. \end{split}$$

Proof. Let $m_{\lambda} = \lambda(m - \mu^{\star}) + \mu^{\star}$.

$$||m_{\lambda} - \mu||^{2} = \langle \lambda(m - \mu^{*}) + (\mu^{*} - \mu), \ \lambda(m - \mu^{*}) + (\mu^{*} - \mu) \rangle$$
$$= \lambda^{2} ||m - \mu^{*}||^{2} + ||\mu^{*} - \mu||^{2} + 2\lambda \langle m - \mu^{*}, \ \mu^{*} - \mu \rangle.$$

Because $m_{\lambda} \in \mathcal{M}$, it follows that this is at least as large as $\|\mu - \mu^{\star}\|^2$, so

$$0 \le \lambda^2 ||m - \mu^*||^2 + 2\lambda \langle m - \mu^*, \mu^* - \mu \rangle$$

and therefore, dividing by $\lambda > 0$, that

$$0 \le \lambda ||m - \mu^*||^2 + 2\langle m - \mu^*, \ \mu^* - \mu \rangle.$$

Because this holds for arbitrarily small $\lambda > 0$, it must also hold for $\lambda = 0$.

¹An inner product space is a vector space with a norm $||u|| = \sqrt{\langle u, u \rangle}$ induced by an inner product $\langle u, v \rangle$.

That's not true for other choices

When $\mu^\star \in \mathcal{M}$ isn't the closest point to μ , these vectors can point in opposite directions. That is, this dot product can be negative for some $m \in \mathcal{M}$.

The same thing can happen for the closest point in a non-convex model.

Summary

When we use a convex model, the least squares estimator $\hat{\mu}$ converges to the model's closest point to μ . This generalizes our result without misspecification.

- · If μ is in the model, that closest point is μ .
- · Otherwise, it's something else.

We can bound our estimator's distance to that closest point μ^* just like we've been bounding distance to μ when we assumed it was in the model.

$$\begin{split} \|\hat{\mu} - \mu^\star\|_{L_2(\mathbf{P_n})} &< s + 2\sqrt{\frac{2\Sigma_n}{\delta n}} \quad \text{w.p. } 1 - \delta \quad \text{if} \quad s^2/2\sigma \geq \mathbf{w}(\mathcal{M}_s) \\ \text{for} \quad \mathcal{M}_s &= \left\{ m \in \mathcal{M} : \|m - \mu^\star\|_{L_2(\mathbf{P_n})} \leq s \right\} \quad \text{and} \quad \Sigma_n = \sigma\{1 + 2\log(2n)\} \\ \text{if} \quad Y_i &= \mu(X_i) + \varepsilon_i \quad \text{for} \quad \varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2) \quad \text{for some function } \mu. \end{split}$$

Misspecification

Examples

Figure 1: Increasing Curves (n = 100.)

Figure 2: Increasing Curves (n=400.)

Figure 3: Decreasing Curves (n=100.)

Figure 4: Decreasing Curves (n=400.)

Figure 5: Bounded Variation Curves: $ho_{\mathrm{TV}} \leq 1 \, (n=100.)$

Figure 6: Bounded Variation Curves: $ho_{\mathrm{TV}} \leq 1.~(n=400.)$

Figure 7: Lipschitz Curves: $\rho_{\mathrm{Lip}} \leq 1 \ (n=100.)$

Figure 8: Lipschitz Curves: $\rho_{\mathrm{Lip}} \leq 1~(n=400.)$

Figure 9: Concave Curves (n=100.)

Figure 10: Concave Curves (n=400.)

Non-Gaussian Noise

Starting Point

$$\begin{split} \ell(m) - \ell(\mu^\star) &= \|m - \mu^\star\|_{L_2(\mathbf{P_n})}^2 & \text{squared distance} \\ &- \frac{2}{n} \sum_{i=1}^n \varepsilon_i \left\{ m(X_i) - \mu^\star(X_i) \right\} & \text{a mean zero term} \\ &+ \frac{2}{n} \sum_{i=1}^n \{ \mu^\star(X_i) - \mu(X_i) \} \{ m(X_i) - \mu^\star(X_i) \} & \text{a non-negative term} \end{split}$$

We can bound error using a corresponding width, no matter how noise is distributed.

$$\|\hat{\mu} - \mu^{\star}\|_{L_{2}(\mathbf{P_{n}})} < s + 2\sqrt{\frac{2\Sigma_{n}}{\delta n}} \quad \text{w.p. } 1 - \delta \text{ for } \frac{s^{2}}{2} \geq \mathbf{w_{\epsilon}(\mathcal{M}_{s})}$$
 where $\mathbf{w_{\epsilon}(\mathcal{V})} = \mathbf{E}\max_{v \in \mathcal{V}} \langle \epsilon, v \rangle_{L_{2}(\mathbf{P_{n}})} \quad \text{and} \quad \Sigma_{n} = \mathbf{E}\max_{i \in 1...n} \varepsilon_{i}^{2}.$

This bound depends on the model \mathcal{M} and the distribution of the noise ε in a complex, entangled way: through the width $\mathbf{w}_{\varepsilon}(\mathcal{M}_{s})$.

Plan for Today

To disentangle the impact of the model and noise distribution, we'll bound this width in terms of gaussian width.

$$w_{\epsilon}(\mathcal{M}_s) \leq \alpha w(\mathcal{M}_s)$$

for α depending on ε but not $\mathcal M$ or s.

At the heart of this comparison $\mathbf{w}_{\epsilon}(\cdot) \leq \alpha \mathbf{w}(\cdot)$ are two ideas.

1. Symmetrization. We'll substitute for ϵ_i a variant that's symmetric around zero.

$$\epsilon_i
ightarrow \epsilon_i - \epsilon_i'$$
 where ϵ_i' is an independent copy of ϵ_i

This substitution increases width: $w_{\epsilon}(\cdot) \leq w_{\epsilon-\epsilon'}(\cdot)$.

2. Contraction. We'll substitute a gaussian vector for our symmetrized noise $\epsilon - \epsilon'$. We can bound the impact of this substitution in a model-invariant way.

$$\mathbf{w}_{\epsilon-\epsilon'}(\cdot) \leq \sqrt{2\pi} M_n \times \mathbf{w}(\cdot) \quad \text{for} \quad M_n = \mathbf{E} \max_{i \in 1...n} |\varepsilon_i|$$

This lets us re-use our gaussian width calculations to analyze regression with any noise distribution.

A Simple Consequence: Width Comparison implies Radius Comparison

- · If you have a width comparison $\mathbf{w}_{\epsilon} \leq \alpha \mathbf{w}_{\eta}$ for some $\alpha \geq 1$.
- This implies a radius comparison $s_\epsilon \leq \alpha s_\eta$ for all convex models \mathcal{M} .

$$s_{\epsilon} = \alpha s_{\nu}$$
 satisfies $\frac{s_{\epsilon}^2}{2} \ge \mathbf{w}_{\epsilon}(\mathcal{M}_{s_{\epsilon}})$ if $\frac{s_{\eta}^2}{2} \ge \mathbf{w}_{\eta}(\mathcal{M}_{s_{\eta}})$ for convex \mathcal{M} and $\mathbf{w}_{\epsilon} \le \alpha \mathbf{w}_{\eta}$ for $\alpha \ge 1$.

- Interpretation. The noise ε makes regression at most ' α times harder' than the noise η .
- This is simplistic and 'lossy'.
 For most models, our width comparison implies a better radius comparison.

Proof: Width Comparisons imply Radius Comparisons

Claim. If $w_{\varepsilon} \leq \alpha \, w_{\eta}$ for $\alpha \geq 1$, then for any convex model \mathcal{M} , the critical radius using noise ε is at most α times the critical radius using noise η , i.e.

$$\frac{(\alpha s)^2}{2} \geq w_\varepsilon(\mathcal{M}_{\alpha s}) \quad \text{if} \quad \frac{s^2}{2} \geq w_\eta(\mathcal{M}_s) \quad \text{and} \quad w_\varepsilon \leq \alpha \, w_\eta \quad \text{for} \quad \alpha \geq 1.$$

Proof. If $s^2/2 \ge w_{\eta}(\mathcal{M}_s)$, then

Proof: Width Comparisons imply Radius Comparisons

Claim. If $w_{\varepsilon} \leq \alpha w_{\eta}$ for $\alpha \geq 1$, then for any convex model \mathcal{M} , the critical radius using noise ε is at most α times the critical radius using noise η , i.e.

$$\frac{(\alpha s)^2}{2} \geq w_\varepsilon(\mathcal{M}_{\alpha s}) \quad \text{if} \quad \frac{s^2}{2} \geq w_\eta(\mathcal{M}_s) \quad \text{and} \quad w_\varepsilon \leq \alpha \, w_\eta \quad \text{for} \quad \alpha \geq 1.$$

Proof. If $s^2/2 \ge w_{\eta}(\mathcal{M}_s)$, then

$$\begin{split} \alpha s/2 &\geq \alpha \, \mathrm{w}_{\eta}(\mathcal{M}_s)/s & \text{multiplying both sides by } \alpha/s \\ &\geq \alpha \, \mathrm{w}_{\eta}(\mathcal{M}_{\alpha s})/(\alpha s) & \text{using sublinearity of } f(s) = \mathrm{w}_{\eta}(\mathcal{M}_s) \\ &\geq \mathrm{w}_{\varepsilon}(\mathcal{M}_{\alpha s})/(\alpha s) & \text{using our premise } \alpha \, \mathrm{w}_{\eta} \geq \mathrm{w}_{\varepsilon}. \end{split}$$

Multiplying both sides by αs , we get our claim.

Summary

Where we are. We have a bound that depends on the model \mathcal{M} and the distribution of the noise ε in a complex and entangled way.

$$\begin{split} \|\hat{\mu} - \mu^\star\|_{L_2(\mathbf{P_n})} &< s_\epsilon + 2\sqrt{\frac{2\Sigma_n}{\delta n}} \quad \text{w.p. } 1 - \delta \text{ for } \quad \frac{s_\epsilon^2}{2} \geq \mathbf{w}_\epsilon(\mathcal{M}_{s_\epsilon}) \\ \text{where } \quad \mathbf{w}_\epsilon(\mathcal{V}) &= \mathrm{E}\max_{v \in \mathcal{V}} \langle \epsilon, v \rangle_{L_2(\mathbf{P_n})} \quad \text{and} \quad \Sigma_n = \mathrm{E}\max_{i \in \mathcal{I}} \varepsilon_i^2. \end{split}$$

Where we're going. We'll derive a bound that depends on the model \mathcal{M} and the distribution of the noise ε in simpler and disentangled way.

$$\begin{split} \|\hat{\mu} - \mu^\star\|_{L_2(\mathbf{P_n})} &< \sqrt{2\pi} M_n \ s + 2\sqrt{\frac{2\Sigma_n}{\delta n}} \leq & \text{ w.p. } 1 - \delta \ \text{for } \quad \frac{s^2}{2} \geq \mathbf{w}(\mathcal{M}_s) \end{split}$$
 where
$$\mathbf{w}(\mathcal{V}) = \mathbf{E} \max_{v \in \mathcal{V}} \langle g, v \rangle_{L_2(\mathbf{P_n})} \quad \text{and} \quad M_n = \mathbf{E} \max_{i \in 1 \dots n} |\varepsilon_i|. \end{split}$$

Better yet. We can simplify it into a bound that depends on only one measure of noise complexity.

$$\|\hat{\mu} - \mu^\star\|_{L_2(\mathbf{P_n})} \leq \sqrt{2\pi \Sigma_n} \bigg(s + \sqrt{\frac{2}{\delta n}}\bigg) \quad \text{because} \quad M_n \leq \sqrt{\Sigma_n} \quad \text{and} \quad 2 \leq \sqrt{2\pi}$$

Non-Gaussian Noise

Example: Probabilistic Classification

The Setting

Figure 11: classification noise ightarrow symmetrized classification noise ightarrow random-sign noise

Suppose we have independent binary observations.

$$\begin{split} Y_i &= \begin{cases} 1 & \text{ with conditional probability } \mu(X_i) \\ 0 & \text{ otherwise} \end{cases} \\ &= \mu(X_i) + \varepsilon_i \quad \text{for} \quad \varepsilon_i = \begin{cases} 1 - \mu(X_i) & \text{ with conditional probability } \mu(X_i) \\ -\mu(X_i) & \text{ with conditional probability } 1 - \mu(X_i) \end{cases}. \end{split}$$

Note that this *classification noise* ε_i has conditional mean zero.

$$E[\varepsilon_i \mid X_i] = \mu(X_i)\{1 - \mu(X_i)\} + \{1 - \mu(X_i)\}\{-\mu(X_i)\} = 0.$$

The Setting

Figure 11: classification noise \rightarrow symmetrized classification noise \rightarrow random-sign noise

What we need to bound is classification-noise width

$$\mathbf{w}_{\epsilon}(\mathcal{V}) = \frac{1}{n} \operatorname{E} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} \varepsilon_{i} v_{i}.$$

We'll show it's no bigger than a version with symmetrized noise.

$$\varepsilon_i - \varepsilon_i' = \begin{cases} +1 & \text{ when } \varepsilon_i = 1 - \mu(X_i), \ \varepsilon_i' = \mu(X_i) \\ -1 & \text{ when } \varepsilon_i = \mu(X_i), \ \varepsilon_i' = 1 - \mu(X_i) \\ 0 & \text{ when } \varepsilon_i = \varepsilon_i' \end{cases}$$

20

The Setting

Figure 11: classification noise \rightarrow symmetrized classification noise \rightarrow random-sign noise

And we'll show that this is no bigger than a version with random sign noise

$$\mathrm{w}_{\epsilon}(\mathcal{V}) \leq \mathrm{w}_{\epsilon-\epsilon'}(\mathcal{V}) \leq \mathrm{w}_{s}(\mathcal{V}) \quad \text{where} \quad s_{i} = \pm 1 \ \text{w.p.} \ 1/2.$$

The trick will be multiplying the symmetrized noise by a random sign. It's already symmetric, so that doesn't change its distribution.

$$\varepsilon_i - \varepsilon_i' \stackrel{dist}{=} s_i(\varepsilon_i - \varepsilon_i')$$

Then we'll contract out the symmetrized noise, leaving the random sign. You'll see.

Step 1

We bound our maximum in terms of one involving symmetric noise. We'll work with an independent $copy \ \varepsilon'$ of our noise vector ε .

$$\mathbf{E}_{\varepsilon} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} \varepsilon_{i} v_{i} \overset{(a)}{=} \mathbf{E}_{\varepsilon} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} (\varepsilon_{i} - \mathbf{E}_{\varepsilon'} \, \varepsilon'_{i}) v_{i}$$

$$\overset{(b)}{=} \mathbf{E}_{\varepsilon} \max_{v \in \mathcal{V}} \mathbf{E}_{\varepsilon'} \sum_{i=1}^{n} (\varepsilon_{i} - \varepsilon'_{i}) v_{i}$$

$$\overset{(c)}{\leq} \mathbf{E}_{\varepsilon} \mathbf{E}_{\varepsilon'} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} (\varepsilon_{i} - \varepsilon'_{i}) v_{i}.$$

(a)
$$\mathbf{E}_{\varepsilon'} \, \varepsilon'_i = 0$$
.

We bound our maximum in terms of one involving symmetric noise. We'll work with an independent $copy \varepsilon'$ of our noise vector ε .

$$\begin{split} \mathbf{E}_{\varepsilon} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} \varepsilon_{i} v_{i} \overset{(a)}{=} \mathbf{E}_{\varepsilon} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} (\varepsilon_{i} - \mathbf{E}_{\varepsilon'} \, \varepsilon'_{i}) v_{i} \\ \overset{(b)}{=} \mathbf{E}_{\varepsilon} \max_{v \in \mathcal{V}} \mathbf{E}_{\varepsilon'} \sum_{i=1}^{n} (\varepsilon_{i} - \varepsilon'_{i}) v_{i} \\ \overset{(c)}{\leq} \mathbf{E}_{\varepsilon} \mathbf{E}_{\varepsilon'} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} (\varepsilon_{i} - \varepsilon'_{i}) v_{i}. \end{split}$$

- (a) $E_{\varepsilon'} \varepsilon'_i = 0$.
- (b) Expectation is linear.

We bound our maximum in terms of one involving symmetric noise. We'll work with an independent $copy \ \varepsilon'$ of our noise vector ε .

$$\begin{split} \mathbf{E}_{\varepsilon} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} \varepsilon_{i} v_{i} \overset{(a)}{=} \mathbf{E}_{\varepsilon} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} (\varepsilon_{i} - \mathbf{E}_{\varepsilon'} \, \varepsilon'_{i}) v_{i} \\ \overset{(b)}{=} \mathbf{E}_{\varepsilon} \max_{v \in \mathcal{V}} \mathbf{E}_{\varepsilon'} \sum_{i=1}^{n} (\varepsilon_{i} - \varepsilon'_{i}) v_{i} \\ \overset{(c)}{\leq} \mathbf{E}_{\varepsilon} \mathbf{E}_{\varepsilon'} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} (\varepsilon_{i} - \varepsilon'_{i}) v_{i}. \end{split}$$

- (a) $E_{\varepsilon'} \varepsilon'_i = 0$.
- (b) Expectation is linear.
- (c) Maximizing the average gives us something smaller than averaging the maxima.

We bound our maximum in terms of one involving symmetric noise. We'll work with an independent copy ε' of our noise vector ε .

$$\begin{split} \mathbf{E}_{\varepsilon} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} \varepsilon_{i} v_{i} &\stackrel{(a)}{=} \mathbf{E}_{\varepsilon} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} (\varepsilon_{i} - \mathbf{E}_{\varepsilon'} \, \varepsilon'_{i}) v_{i} \\ &\stackrel{(b)}{=} \mathbf{E}_{\varepsilon} \max_{v \in \mathcal{V}} \mathbf{E}_{\varepsilon'} \sum_{i=1}^{n} (\varepsilon_{i} - \varepsilon'_{i}) v_{i} \\ &\stackrel{(c)}{\leq} \mathbf{E}_{\varepsilon} \mathbf{E}_{\varepsilon'} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} (\varepsilon_{i} - \varepsilon'_{i}) v_{i}. \end{split}$$

- (a) $E_{\varepsilon'} \varepsilon'_i = 0$.
- (b) Expectation is linear.
- (c) Maximizing the average gives us something smaller than averaging the maxima.
 - In (c), we choose the maximizing $v \in \mathcal{V}$ for each ε' .

We bound our maximum in terms of one involving symmetric noise. We'll work with an independent $copy \ \varepsilon'$ of our noise vector ε .

$$\begin{split} \mathbf{E}_{\varepsilon} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} \varepsilon_{i} v_{i} \overset{(a)}{=} \mathbf{E}_{\varepsilon} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} (\varepsilon_{i} - \mathbf{E}_{\varepsilon'} \, \varepsilon'_{i}) v_{i} \\ \overset{(b)}{=} \mathbf{E}_{\varepsilon} \max_{v \in \mathcal{V}} \mathbf{E}_{\varepsilon'} \sum_{i=1}^{n} (\varepsilon_{i} - \varepsilon'_{i}) v_{i} \\ \overset{(c)}{\leq} \mathbf{E}_{\varepsilon} \mathbf{E}_{\varepsilon'} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} (\varepsilon_{i} - \varepsilon'_{i}) v_{i}. \end{split}$$

- (a) $E_{\varepsilon'} \varepsilon'_i = 0$.
- (b) Expectation is linear.
- (c) Maximizing the average gives us something smaller than averaging the maxima.
 - · In (c), we choose the maximizing $v \in \mathcal{V}$ for each ε' .
 - · If we wanted to choose the same one each time, like we do in (b), we could.

We introduce independent random signs $s_i=\pm 1$ w.p. 1/2, changing nothing.

$$\mathbf{E}_{\varepsilon} \ \mathbf{E}_{\varepsilon'} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} (\varepsilon_i - \varepsilon_i') v_i = \mathbf{E}_s \ \mathbf{E}_{\varepsilon} \ \mathbf{E}_{\varepsilon'} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} s_i (\varepsilon_i - \varepsilon_i') v_i.$$

Why does this change nothing?

We introduce independent random signs $s_i=\pm 1$ w.p. 1/2, changing nothing.

$$E_{\varepsilon} E_{\varepsilon'} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} (\varepsilon_i - \varepsilon_i') v_i = E_s E_{\varepsilon} E_{\varepsilon'} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} s_i (\varepsilon_i - \varepsilon_i') v_i.$$

Why does this change nothing?

- Because the inner mean $(\mathbf{E}_{\varepsilon} \mathbf{E}_{\varepsilon'})$ doesn't depend on the signs s_i .
- That's because ε_i and ε_i' have the same distribution.
- And this implies $(\varepsilon_i-\varepsilon_i')$ and $(\varepsilon_i'-\varepsilon)=-(\varepsilon_i-\varepsilon_i')$ do, too.

We swap the order of our averages and think about the inner average as a *function* of our vector of symmetric noise.

$$\begin{split} \mathbf{E}_s \, \mathbf{E}_\varepsilon \, \mathbf{E}_{\varepsilon'} \max_{v \in \mathcal{V}} \sum_{i=1}^n s_i (\varepsilon_i - \varepsilon_i') v_i &= \mathbf{E}_\varepsilon \, \mathbf{E}_{\varepsilon'} \, \mathbf{E}_s \max_{v \in \mathcal{V}} \sum_{i=1}^n s_i (\varepsilon_i - \varepsilon_i') v_i \\ &= \mathbf{E}_\varepsilon \, \mathbf{E}_{\varepsilon'} \, f(\varepsilon - \varepsilon') \quad \text{for} \quad f(u) = \mathbf{E}_s \max_{v \in \mathcal{V}} \sum_{i=1}^n s_i u_i v_i. \end{split}$$

This function f is convex.

What does that mean? These, for example, are all convex.

$$f\{(1-\lambda)a+\lambda b\} \leq (1-\lambda)f(a)+\lambda f(b)$$
 for $\lambda \in [0,1]$. That's Convexity

We swap the order of our averages and think about the inner average as a *function* of our vector of symmetric noise.

$$\begin{split} \mathbf{E}_{s} \, \mathbf{E}_{\varepsilon} \, \mathbf{E}_{\varepsilon'} & \max_{v \in \mathcal{V}} \sum_{i=1}^{n} s_{i}(\varepsilon_{i} - \varepsilon'_{i}) v_{i} = \mathbf{E}_{\varepsilon} \, \mathbf{E}_{\varepsilon'} \, \mathbf{E}_{s} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} s_{i}(\varepsilon_{i} - \varepsilon'_{i}) v_{i} \\ &= \mathbf{E}_{\varepsilon} \, \mathbf{E}_{\varepsilon'} \, f(\varepsilon - \varepsilon') \quad \text{for} \quad f(u) = \mathbf{E}_{s} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} s_{i} u_{i} v_{i}. \end{split}$$

This function f is convex.

How do we know? Maximizing each term is better than maximizing their sum.

$$\begin{split} f\{(1-\lambda)a + \lambda b\} &= \mathbf{E}_s \max_{v \in \mathcal{V}} \left\{ (1-\lambda) \sum_{i=1}^n s_i a_i v_i + \lambda \sum_{i=1}^n s_i b_i v_i \right\} \\ &\leq \mathbf{E}_s \left\{ \max_{v \in \mathcal{V}} \left(1 - \lambda \right) \sum_{i=1}^n s_i a_i v_i + \max_{v \in \mathcal{V}} \lambda \sum_{i=1}^n s_i b_i v_i \right\} \\ &= (1-\lambda) \mathbf{E}_s \max_{v \in \mathcal{V}} \sum_{i=1}^n s_i a_i v_i + \lambda \mathbf{E}_s \max_{v \in \mathcal{V}} \lambda \sum_{i=1}^n s_i b_i v_i \\ &= (1-\lambda) f(a) + \lambda f(b). \end{split}$$

31

We swap the order of our averages and think about the inner average as a *function* of our vector of symmetric noise.

$$\begin{split} \mathbf{E}_s \, \mathbf{E}_\varepsilon \, \mathbf{E}_{\varepsilon'} \max_{v \in \mathcal{V}} \sum_{i=1}^n s_i (\varepsilon_i - \varepsilon_i') v_i &= \mathbf{E}_\varepsilon \, \mathbf{E}_{\varepsilon'} \, \mathbf{E}_s \max_{v \in \mathcal{V}} \sum_{i=1}^n s_i (\varepsilon_i - \varepsilon_i') v_i \\ &= \mathbf{E}_\varepsilon \, \mathbf{E}_{\varepsilon'} \, f(\varepsilon - \varepsilon') \quad \text{for} \quad f(u) = \mathbf{E}_s \max_{v \in \mathcal{V}} \sum_{i=1}^n s_i u_i v_i. \end{split}$$

This function f is convex.

Why does this matter? The max of a convex function over a cube occurs at a corner.

What cube?

The vector of symmetric noise, $\varepsilon - \varepsilon'$, is in the *unit cube* $[-1,1]^n$.

$$\varepsilon_i - \varepsilon_i' = \begin{cases} 0 & \text{when } \varepsilon_i = \varepsilon_i' \\ +1 & \text{when } \varepsilon_i = 1 - \mu(X_i), \; \varepsilon_i' = \mu(X_i) \\ -1 & \text{when } \varepsilon_i = \mu(X_i), \; \varepsilon_i' = 1 - \mu(X_i). \end{cases}$$

The average over this random vector is bounded by the maximum over the cube it's in.

$$\begin{split} \mathbf{E}_{\varepsilon} \, \mathbf{E}_{\varepsilon'} \, \mathbf{E}_s \max_{v \in \mathcal{V}} \sum_{i=1}^n s_i (\varepsilon_i - \varepsilon_i') v_i &\leq \max_{u \in [-1,1]^n} \mathbf{E}_s \max_{v \in \mathcal{V}} \sum_{i=1}^n s_i u_i v_i \\ &= \max_{u \in [-1,1]^n} f(u) \quad \text{max over the cube} \\ &= \max_{u \in \{-1,1\}^n} f(u) \quad \text{max over its corners} \end{split}$$

We characterize this maximum over corners. Remember what f is.

$$\max_{u \in \{-1,1\}^n} f(u) = \max_{u \in \{-1,1\}^n} \mathbf{E}_s \max_{v \in \mathcal{V}} \sum_{i=1}^n s_i u_i v_i$$
$$= \mathbf{E}_s \max_{v \in \mathcal{V}} \sum_{i=1}^n s_i v_i.$$

Why?

Hint. What's the distribution of s_i ? And s_iu_i for $u_i \in \{-1, 1\}$?

We characterize this maximum over corners. Remember what f is.

$$\max_{u \in \{-1,1\}^n} f(u) = \max_{u \in \{-1,1\}^n} E_s \max_{v \in \mathcal{V}} \sum_{i=1}^n s_i u_i v_i$$
$$= E_s \max_{v \in \mathcal{V}} \sum_{i=1}^n s_i v_i.$$

Why?

Hint. What's the distribution of s_i ? And $s_i u_i$ for $u_i \in \{-1, 1\}$?

- For $u_i \in \{-1, 1\}$, the distributions of u_i and $s_i u_i$ are the same.
- \cdot So the distribution of the sum, and its maximum, are the same at every corner u.
- Including the vector of all ones u = (1, 1, ..., 1).

Summary

classification noise width \leq symmetrized classification noise width \leq random sign width This means probabilistic classification is *easier* than regression with random sign noise. Or, at least, that we get a better bound.

$$\frac{s^2}{2} \geq w_s(\mathcal{M}_s) \quad \text{and} \quad w_s(\mathcal{M}_s) \geq w_\varepsilon(\mathcal{M}_s) \quad \Longrightarrow \quad \frac{s^2}{2} \geq w_\varepsilon(\mathcal{M}_s)$$

Terminology

People call random sign width, or something like it, Rademacher Complexity.

$$\begin{aligned} \text{Rademacher Complexity}(\mathcal{V}) &= \mathbf{E} \max_{v \in \mathcal{V}} \langle s, v \rangle_{L_2(\mathbf{P_n})} & \text{for i.i.d. } s_i = \begin{cases} +1 & \text{w.p. } 1/2 \\ -1 & \text{w.p. } 1/2 \end{cases} \\ & \text{or maybe } &= \mathbf{E} \max_{v \in \mathcal{V}} \left| \langle s, v \rangle_{L_2(\mathbf{P_n})} \right| \end{aligned}$$

- This second definition is the same if \mathcal{V} is symmetric, i.e. $v \in \mathcal{V} \implies -v \in \mathcal{V}$.
- · Otherwise, it can be a little bigger.
 - · At most 2× bigger. Prove it!
 - $\cdot\,$ Use the bound $\max a, b \leq a+b$ and the symmetry of s 's distribution.

Non-Gaussian Noise

The General Case

Symmetrization and Contraction: Examples

Figure 12: real noise \rightarrow symmetrized noise \rightarrow scaled sign noise

$$\begin{split} \mathbf{w}_{\varepsilon}(\mathcal{V}) &\leq \mathbf{w}_{s(\varepsilon - \varepsilon')}(\mathcal{V}) \leq 2 \, \mathbf{w}_{s\varepsilon}(\mathcal{V}) \\ \mathbf{E} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} \varepsilon_{i} v_{i} &= \mathbf{E} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} (\varepsilon_{i} - \mathbf{E} \, \varepsilon'_{i}) v_{i} \\ &\stackrel{(a)}{\leq} \mathbf{E} \, \mathbf{E}' \max_{v \in \mathcal{V}} \sum_{i=1}^{n} (\varepsilon_{i} - \varepsilon'_{i}) v_{i} \\ &= \mathbf{E}_{s} \, \mathbf{E} \, \mathbf{E}' \max_{v \in \mathcal{V}} \sum_{i=1}^{n} s_{i} (\varepsilon_{i} - \varepsilon'_{i}) v_{i} \\ &\stackrel{(b)}{\leq} \mathbf{E}_{s} \, \mathbf{E} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} s_{i} \varepsilon_{i} + \mathbf{E}_{s} \, \mathbf{E}' \max_{v \in \mathcal{V}} \sum_{i=1}^{n} s_{i} \varepsilon'_{i} v_{i} \\ &= 2 \, \mathbf{E}_{s} \, \mathbf{E} \max_{v \in \mathcal{V}} \sum_{i=1}^{n} \varepsilon_{i} s_{i} v_{i}. \end{split}$$

- (a) Replacing ε_i with $s_i(\varepsilon_i \varepsilon_i')$ is 'free'.
 - · We stopped here in our example because $\varepsilon_i \varepsilon_i'$ was easy to bound.
 - · Generally, we take an extra step to express things in terms of $arepsilon_i$ again.
- (b) Replacing ε_i with $s_i\varepsilon_i$ increases width by at most $2\times$.

$$\begin{aligned} \mathbf{w}_{\eta}(\mathcal{V}) &= \mathbf{w}_{s\eta}(\mathcal{V}) \leq \mathbf{E} \|\eta\|_{\infty} \, \mathbf{w}_{\eta}(\mathcal{V}) \quad \text{if} \quad \eta \overset{dist}{=} -\eta. \\ \mathbf{E}_{s} \, \mathbf{E}_{\eta} \, \max_{v \in \mathcal{V}} \sum_{i=1}^{n} \eta_{i} s_{i} v_{i} \leq \mathbf{E}_{\eta} \, \max_{u \in \mathbb{R}^{n}} \mathbf{E}_{s} \, \max_{v \in \mathcal{V}} \sum_{i=1}^{n} u_{i} s_{i} v_{i} \\ &= \mathbf{E}_{\eta} \|\eta\|_{\infty} \, \max_{u \in [-1,1]^{n}} \mathbf{E}_{s} \, \max_{v \in \mathcal{V}} \sum_{i=1}^{n} u_{i} s_{i} v_{i} \\ &= \mathbf{E}_{\eta} \|\eta\|_{\infty} \times \max_{u \in [-1,1]^{n}} \mathbf{E}_{s} \, \max_{v \in \mathcal{V}} \sum_{i=1}^{n} u_{i} s_{i} v_{i} \\ &= \mathbf{E}_{\eta} \|\eta\|_{\infty} \times \mathbf{E}_{s} \, \max_{v \in \mathcal{V}} \sum_{i=1}^{n} s_{i} v_{i} \end{aligned}$$

- We can 'contract out' any symmetrically distributed noise vector η by ...
 - 1. multiplying in independent random signs s_i . Symmetry $\implies s_i \eta_i \stackrel{dist}{=} \eta_i$.
 - 2. maximizing over a cube containing η .
- · We just have to use a big enough cube.
 - · In our example, $\eta=\varepsilon-\varepsilon'$ was in the unit cube $[-1,1]^n$ deterministically.
 - Generally, we maximize over a random cube $[-\|\eta\|_{\infty},\ \|\eta\|_{\infty}]^n$.
 - And we can pull out the cube's radius $\|\eta\|_\infty$ as a multiplicative factor.

Implications for Regression

Regression with arbitrary independent noise, i.e.

$$Y_i = \mu(X_i) + \varepsilon_i$$
 where $\varepsilon_1 \dots \varepsilon_n$ are independent,

is no harder than with scaled-up random sign noise, i.e.

$$Y_i = \mu(X_i) + Ms_i \quad \text{for} \quad M = \mathbf{E} \|\varepsilon_i - \varepsilon_i'\|_{\infty} \quad \text{and} \quad s_i = \begin{cases} +1 & \text{w.p. } 1/2 \\ -1 & \text{w.p. } 1/2 \end{cases}.$$

The Symmetric Case

Regression with arbitrary independent symmetric noise, i.e.

 $Y_i = \mu(X_i) + \varepsilon_i$ where $\varepsilon_1 \dots \varepsilon_n$ are independent with $\varepsilon_i \stackrel{dist}{=} -\varepsilon_i$, is no harder than with scaled-up random sign noise, i.e.

$$Y_i = \mu(X_i) + Ms_i \quad \text{for}^2 \quad M = \mathbf{E} \|\varepsilon_i\|_{\infty} \quad \text{and} \quad s_i = \begin{cases} +1 & \text{w.p. } 1/2 \\ -1 & \text{w.p. } 1/2 \end{cases}.$$

Figure 13: real noise \rightarrow symmetrized noise \rightarrow scaled sign noise

 $^{^2}M=\mathbb{E}\|arepsilon_i\|_{\infty}\leq 2\sigma\sqrt{2\log(2n)}$ for $arepsilon_i\sim N(0,\sigma^2)$. See Appendix B of the Gaussian Width Homework.

Non-Gaussian Noise

Comparison to the Gaussian Case

- So far, we've bounded arbitrary-noise width in terms of random-sign width.
- But often, it's easier to understand gaussian width. That's good enough.3

$$\frac{1}{2\sqrt{\log(2n)}} \operatorname{w}_g(\mathcal{V}) \leq \operatorname{w}_s(\mathcal{V}) \leq \sqrt{\frac{\pi}{2}} \operatorname{w}_g(\mathcal{V})$$

$$\approx 1.25 \text{ for } n = 100$$

- We just saw it can't be that much bigger than random-sign width.
- · And we can show it's at least 4/5 as big.

$$\operatorname{E}\max_{v\in\mathcal{V}}\sum_{i=1}^n g_iv_i = \operatorname{E}_s\operatorname{E}_g\max_{v\in\mathcal{V}}\sum_{i=1}^n |g_i|s_iv_i \geq \operatorname{E}_s\max_{v\in\mathcal{V}}\sum_{i=1}^n\operatorname{E}_g|g_i|s_iv_i.$$

 $^{^3}$ We can show $.125\,\mathrm{w}_g(\mathcal{V}) \leq \mathrm{w}_s(\mathcal{V}) \leq 1.25\,\mathrm{w}_g(\mathcal{V})$ for $n \leq 10$ trillion by bounding $\mathrm{E}\|g\|_{\infty}$ more carefully.

Comparison in Steps

Figure 14: real noise \rightarrow symmetrized noise \downarrow scaled sign noise \leftarrow scaled gaussian noise

$$\mathbf{w}_{\varepsilon}(\mathcal{V}) \leq \mathbf{w}_{\varepsilon - \varepsilon'}(\mathcal{V}) \leq \mathbf{E} \| \varepsilon - \varepsilon' \|_{\infty} \quad \mathbf{w}_{s}(\mathcal{V}) \leq \sqrt{\frac{\pi}{2}} \, \mathbf{E} \| \varepsilon - \varepsilon' \|_{\infty} \quad \mathbf{w}_{g}(\mathcal{V}) \\ \leq \sqrt{2\pi} \approx 2.5 \times \mathbf{E} \| \varepsilon \|_{\infty}$$

Implications for Regression

Figure 15: real noise \rightarrow scaled gaussian noise

For any noise vector ε with independent components ε_i ,

$$\mathbf{w}_{\varepsilon}(\mathcal{V}) \leq 2 \,\mathbf{E} \|\varepsilon\|_{\infty} \cdot \mathbf{w}_{s}(\mathcal{V}) \leq \sqrt{2\pi} \,\mathbf{E} \|\varepsilon\|_{\infty} \cdot \mathbf{w}_{g}(\mathcal{V}).$$

- \cdot We can bound the width \mathbf{w}_{ε} in terms of
 - 1. random-sign width
 - 2. the maximum absolute value of ε 's components.
- · And we can bound random-sign width in terms of gaussian width.

This means we don't have to bound a million different kinds of widths for each model. We can bound random-sign width or gaussian width. Whichever is easier.

Sampling

Starting Point

We have a bound that's valid for any signal μ and any vector of independent noise ε .

$$\|\hat{\mu} - \mu^\star\|_{L_2(\mathbf{P_n})} < 2\sqrt{\Sigma_n} \left(s + \sqrt{\frac{2}{\delta n}}\right) \quad \text{w.p. } 1 - \delta \text{ for } \quad \frac{s^2}{2} \geq \mathbf{w}_s(\mathcal{M}_s)$$

- It depends on the model's size through the *critical radius* of random-sign width.
 - $s \quad \text{satisfying} \quad s^2/2 \geq \mathbf{w}_s(\mathcal{M}_s) \quad \text{for} \quad \mathcal{M}_s = \{m \in \mathcal{M} \, : \, \|m \mu^\star\|_{L_2(\mathbf{P_n})} \leq s\}$
 - · This is a one-number summary of the gaussian width of neighborhoods ...
 - · ...of the model's best approximation to the signal. It's the summary that matters.
- It depends on the noise's size through the expected maximum square.

$$\Sigma_n = \mathrm{E} \max_{i \in 1 \dots n} |\varepsilon_i|^2$$

44

What does this tell us?

Bounds like this say how close $\hat{\mu}$ and μ^\star are, on average, on our sample $X_1 \dots X_n$.

$$\frac{1}{n}\sum_{i=1}^{n} \{\hat{\mu}(X_i) - \mu^{\star}(X_i)\} < \dots$$

It doesn't tell us how close they are in the gaps between those points.

- Let's think about what happens when $X_1 \dots X_n$ is are drawn independently from some distribution P. Think sampling with replacement from a population.
- · We'll bound the population root mean squared error $\|\hat{\mu} \mu^{\star}\|_{L_2(\mathbf{P})}$.

What Population Mean Squared Error Is

It's the mean squared error we make at random point X' distributed like $X_1 \ldots X_n$.

$$\|\hat{\mu} - \mu^*\|_{L_2(\mathbf{P})}^2 = \mathcal{E}_{X'} \left[\{\hat{\mu}(X') - \mu^*(X')\}^2 \right]$$

That's the integral of the squared distance between the two curves, multiplied by the density of X_i .

$$\|\hat{\mu} - \mu^\star\|_{L_2(\mathbf{P})}^2 = \int \{\hat{\mu}(x) - \mu^\star(x)\}^2 p(x) dx \quad \text{if} \quad X_i \quad \text{has the density} \quad p(x).$$

Why we care about Population Mean Squared Error: Generalization

If we're interested in average accuracy for a bunch of new points $X_1' \dots X_{n'}'$ distributed like $X_1 \dots X_n$, that's more or less exactly what it is.

$$\|\hat{\mu} - \mu\|_{L_2(\mathbf{P})}^2 = \mathbf{E}_{X'} \left[\left\{ \hat{\mu}(X') - \mu(X') \right\}^2 \right] \stackrel{LLN}{\approx} \frac{1}{n'} \sum_{i=1}^{n'} \left\{ \hat{\mu}(X_i') - \mu(X_i') \right\}^2.$$

This can be a bit different from accuracy on our original sample $X_1 \dots X_n$.

- BV regression spends its 'variation budget' jumping to fit on the original sample.
- Between those points, it doesn't know whether it should jump or not.
 - · So we can get larger error at our new points.
 - · It's usually not much larger, but sometimes it is. We'll see why.

Why we care about Population Mean Squared Error: Generalization

If we're interested in average accuracy for new points from a different distribution Q, we can bound this by comparing this distribution's density to that of our observations.

$$\frac{1}{n'} \sum_{i=1}^{n'} \{ \hat{\mu}(X_i') - \mu(X_i') \}^2 \approx \|\hat{\mu} - \mu\|_{L_2(\mathbb{Q})}^2 = \int \{ \hat{\mu}(x) - \mu(x) \}^2 \frac{q(x)}{p(x)} p(x) dx$$

$$\leq \max_x \frac{q(x)}{p(x)} \|\hat{\mu} - \mu\|_{L_2(\mathbb{P})}^2.$$

47

Why we care about Population Mean Squared Error: Generalization

If we're interested in accuracy at a specific point x', we can think of this new distribution Q as a little bump around x'.

$$\{\hat{\mu}(x')-\mu(x')\}^2\approx \|\hat{\mu}-\mu\|_{L_2(Q_\epsilon)} \quad \text{ for } \quad Q=N(x',\epsilon^2).$$

47

Sketch: What Our Sample MSE Bounds Tell Us About Population MSE.

Starting Point. Suppose $\hat{\mu}$ is in some neighborhood of μ^{\star} .

$$\hat{\mu} \in \mathcal{M}_s = \{ m \in \mathcal{M} : \| m - \mu^* \|_{L_2(P_n)} \le s \}$$

We bound the maximum difference between population and sample MSE on that neighborhood.

$$\hat{\mu} \in \mathcal{M}_s \implies \|\hat{\mu} - \mu^*\|_{L_2(\mathbf{P})}^2 - \|\hat{\mu} - \mu^*\|_{L_2(\mathbf{P}_n)}^2 \le Z := \max_{f \in \mathcal{M}_s - \mu^*} \|f\|_{L_2(\mathbf{P})}^2 - \|f\|_{L_2(\mathbf{P}_n)}^2.$$

We show this maximum is approximately constant, i.e. close to its expectation.

$$Z$$
 satisfies $Z \leq \operatorname{E} Z + \sqrt{rac{\operatorname{Var}(Z)}{\delta n}}$ w.p. $1 - \delta$

We use symmetrization to get a bound in terms of random-sign width.

- (a) Write population MSE as an expectation over an independent copy of our sample.
- (b) Compare the result to a maximum of an average of symmetric random variables.
- (c) Introduce random signs and compare to two copies of a simpler maximum.

$$\begin{split} n \times & \to Z \overset{(a)}{=} \to_{X} \max_{f \in \mathcal{M}_{s} - \mu^{\star}} \to_{X'} \sum_{i=1}^{n} f(X'_{i})^{2} - \sum_{i=1}^{n} f(X_{i})^{2} \\ & \stackrel{(b)}{\leq} \to_{X} \to_{x'} \to_{s} \max_{f \in \mathcal{M}_{s} - \mu^{\star}} \sum_{i=1}^{n} s_{i} \left\{ f(X'_{i})^{2} - f(X_{i})^{2} \right\} \\ & \stackrel{(c)}{\leq} \to_{X} \to_{X'} \to_{s} \max_{f', f \in \mathcal{M}_{s} - \mu^{\star}} \sum_{i=1}^{n} s_{i} f'(X'_{i})^{2} + (-s_{i}) f(X_{i}) \\ & = 2 \to_{X} \to_{s} \max_{f \in \mathcal{M}_{s} - \mu^{\star}} \sum_{i=1}^{n} s_{i} f(X_{i})^{2} \end{split}$$

Contracting Out Lipschitz Functions

This expectation bound is $2\times$ the expected random-sign width of the squares of the functions in our neighborhood.

$$n \times \mathbf{E} Z \leq 2 \mathbf{E}_{X} \mathbf{E}_{s} \max_{f \in \mathcal{M}_{s} - \mu^{\star}} \sum_{i=1}^{n} s_{i} f(X_{i})^{2}$$

$$\leq 4 \mathbf{E}_{X} \max_{f \in \mathcal{M}_{s} - \mu^{\star}} ||f||_{L_{\infty}(\mathbf{P}_{\mathbf{n}})} \mathbf{E}_{s} \max_{f \in \mathcal{M}_{s} - \mu^{\star}} \sum_{i=1}^{n} s_{i} f(X_{i})$$

$$\underset{n \times \mathbf{w}_{s}(\mathcal{M}_{s} - \mu^{\star})}{\underset{n \times \mathbf{w}_{s}(\mathcal{M}_{s}$$

We've compared that to the width of the neighborhood itself using \dots

Lemma (The Lipschitz Contraction Lemma)

$$\mathbf{E}_s \max_{v \in \mathcal{V}} \sum_{i=1}^n s_i \psi_i(v_i) \leq L \, \mathbf{E}_s \max_{v \in \mathcal{V}} \sum_{i=1}^n s_i v_i \text{ if } |\psi_i(u_i) - \psi_i(v_i)| \leq L |u_i - v_i| \text{ for all } u, v \in \mathcal{V}.$$

Application. Taking $\psi_i(x) = x^2$ for all i and $\mathcal{V} = \{f(X_1) \dots f(X_n) : f \in \mathcal{M}_s - \mu^*\}$,

$$E_{s} \max_{f \in \mathcal{M}_{s} - \mu^{\star}} \sum_{i=1}^{n} s_{i} f(X_{i})^{2} \leq L \max_{f \in \mathcal{M}_{s} - \mu^{\star}} \sum_{i=1}^{n} s_{i} f(X_{i})$$

$$\text{for} \qquad L = \max_i \max_{f \in \mathcal{M}_s - \mu^\star} |\psi_i'\{f(X_i)\}| = \max_i \max_{f \in \mathcal{M}_s - \mu^\star} |2f(X_i)|.$$

Implications

If the curves in $\mathcal{M}_s-\mu^\star$ are all bounded by a constant B, the difference between population and sample MSE is at most ...

$$\begin{split} & \max_{m \in \mathcal{M}_s} \|m - \mu^\star\|_{L_2(\mathbf{P})}^2 - \|m - \mu^\star\|_{L_2(\mathbf{P_n})}^2 \\ & \leq \mathbf{E} \, Z + \sqrt{\frac{\mathrm{Var}(Z)}{\delta n}} \quad \text{w.p. } 1 - \delta \\ & \leq 4B \, \mathbf{E}_X \, \mathbf{w}_s(\mathcal{M}_s) + Bs \times \sqrt{\frac{2\Sigma_n}{\delta n}} \qquad \text{using Efron-Stein on } \mathrm{Var}(Z) \\ & \leq 4B \, \mathbf{w}_s(\mathcal{M}_s) + Bs \times \left(4 + \sqrt{\Sigma_n}\right) \sqrt{\frac{2}{\delta n}} \qquad \text{using Efron-Stein on } \mathrm{Var}(\mathbf{w}_s(\mathcal{M}_s)) \end{split}$$

We will combine this with our bound on sample MSE from the previous section.

$$\|\hat{\mu} - \mu\| \in \mathcal{M}_{s_{\delta}} \quad \text{for} \quad s_{\delta} := 2\sqrt{\Sigma_n} \bigg(s + \sqrt{\frac{2}{\delta \, n}} \bigg) \quad \text{w.p. } 1 - \delta \ \text{if} \quad \frac{s^2}{2} \geq \mathrm{w}_s(\mathcal{M}_s)$$

$$\{g_1>t\}\\\{g_2>t\}$$

$$\leq s_{\delta}^{2} + \left\{ 4B \, \mathbf{w}_{s_{\delta}}(\mathcal{M}_{s_{\delta}}) + Bs_{\delta} \times \left(4 + \sqrt{\Sigma_{n}}\right) \sqrt{\frac{2}{\delta n}} \right\}$$

$$\leq s_{\delta}^{2} + \left\{ 2Bs_{\delta}s + Bs_{\delta} \times \left(4 + \sqrt{\Sigma_{n}}\right) \sqrt{\frac{2}{\delta n}} \right\} \approx \left\{ s_{\delta} + Bs \right\}^{2}$$

 $\|\hat{\mu} - \mu\|_{L_2(P_n)}^2 = \|\hat{\mu} - \mu\|_{L_2(P_n)}^2 + \left\{ \|m - \mu\|_{L_2(P)}^2 - \|m - \mu\|_{L_2(P_n)}^2 \right\}$

By the union bound, these two bounds hold simultaneously w.p. $\geq 1-2\delta$. Consequently ...

because
$$w_{s_{\delta}}(\mathcal{M}_{s_{\delta}}) \leq \frac{s_{\delta}}{s} w_{s}(\mathcal{M}_{s}) \leq \frac{s_{\delta}}{s} \frac{s^{2}}{2} = \frac{s_{\delta}s}{2}$$
.

Interpretation

$$\|\hat{\mu} - \mu\|_{L_2(\mathbf{P})} \le 2\{B + \sqrt{\Sigma_n}\} \left(s + \sqrt{\frac{2}{\delta n}}\right)$$
 w.p. $1 - \delta$ if $\frac{s^2}{2} \ge w_s(\mathcal{M}_s)$

This is the bound we'd get on sample MSE with additional scaled random-sign noise.

i.e. if we'd observed
$$Y_i = \mu(X_i) + \varepsilon_i + Bs_i$$

Left: With little noise, our estimator $\hat{\mu}$ fits substantially better at the sample points X_i . Right: With more, it doesn't. The observations are far enough from μ that we can't estimate it all that precisely even where we have some data.

Signal Recovery

$$\|\hat{\mu} - \mu\|_{L_2(\mathbf{P})} \leq \approx 2\{\sqrt{\Sigma_n} + B\} \left(s + \sqrt{\frac{2}{\delta n}}\right) \quad \text{w.p. } 1 - \delta \text{ if } \frac{s^2}{2} \geq \mathbf{w}_s(\mathcal{M}_s) \quad \text{and} \quad \max_{m \in \mathcal{M}_s} \|r\|_{L_2(\mathbf{P})} \leq \approx 2\{\sqrt{\Sigma_n} + B\} \left(s + \sqrt{\frac{2}{\delta n}}\right) \quad \text{w.p. } 1 - \delta \text{ if } \frac{s^2}{2} \geq \mathbf{w}_s(\mathcal{M}_s) \quad \text{and} \quad \max_{m \in \mathcal{M}_s} \|r\|_{L_2(\mathbf{P})} \leq \approx 2\{\sqrt{\Sigma_n} + B\} \left(s + \sqrt{\frac{2}{\delta n}}\right) \quad \text{w.p. } 1 - \delta \text{ if } \frac{s^2}{2} \geq \mathbf{w}_s(\mathcal{M}_s) \quad \text{and} \quad \max_{m \in \mathcal{M}_s} \|r\|_{L_2(\mathbf{P})} \leq \approx 2\{\sqrt{\Sigma_n} + B\} \left(s + \sqrt{\frac{2}{\delta n}}\right) \quad \text{w.p. } 1 - \delta \text{ if } \frac{s^2}{2} \geq w_s(\mathcal{M}_s) \quad \text{and} \quad \max_{m \in \mathcal{M}_s} \|r\|_{L_2(\mathbf{P})} \leq \approx 2\{\sqrt{\Sigma_n} + B\} \left(s + \sqrt{\frac{2}{\delta n}}\right) \quad \text{w.p. } 1 - \delta \text{ if } \frac{s^2}{2} \geq w_s(\mathcal{M}_s) \quad \text{and} \quad \max_{m \in \mathcal{M}_s} \|r\|_{L_2(\mathbf{P})} \leq \approx 2\{\sqrt{\Sigma_n} + B\} \left(s + \sqrt{\frac{2}{\delta n}}\right) \quad \text{w.p. } 1 - \delta \text{ if } \frac{s^2}{2} \geq w_s(\mathcal{M}_s) \quad \text{and} \quad \max_{m \in \mathcal{M}_s} \|r\|_{L_2(\mathbf{P})} \leq \approx 2\{\sqrt{\Sigma_n} + B\} \left(s + \sqrt{\frac{2}{\delta n}}\right) \quad \text{w.p. } 1 - \delta \text{ if } \frac{s^2}{2} \geq w_s(\mathcal{M}_s) \quad \text{and} \quad \max_{m \in \mathcal{M}_s} \|r\|_{L_2(\mathbf{P})} \leq \approx 2\{\sqrt{\Sigma_n} + B\} \left(s + \sqrt{\frac{2}{\delta n}}\right) \quad \text{w.p. } 1 - \delta \text{ if } \frac{s^2}{2} \geq w_s(\mathcal{M}_s) \quad \text{and} \quad \max_{m \in \mathcal{M}_s} \|r\|_{L_2(\mathbf{P})} \leq \approx 2\{\sqrt{\Sigma_n} + B\} \left(s + \sqrt{\frac{2}{\delta n}}\right) \quad \text{w.p. } 1 - \delta \text{ if } \frac{s^2}{2} \geq w_s(\mathcal{M}_s) \quad \text{and} \quad \text{w.p. } 1 - \delta \text{ if } \frac{s^2}{2} \geq w_s(\mathcal{M}_s) \quad \text{and} \quad \text{if } \frac{s^2}{2} \geq w_s(\mathcal{M}_s) \quad \text{if } \frac{s^2}{2} \geq w_s(\mathcal{M}_s) \quad \text{and} \quad \text{if } \frac{s^2}{2} \geq w_s(\mathcal{M}_s) \quad \text{if } \frac{s^2}{$$

This is the bound we'd get on sample MSE with additional scaled random-sign noise.

i.e. if we'd observed
$$Y_i = \mu(X_i) + arepsilon_i + Bs_i$$

Signal Recovery is regression without any noise at all.

- · This is an extreme case of the low-noise regime. And it's still hard.
- · When you want to estimate μ between the sample points $X_1 \dots X_{n_t}$...
- · ...what you want to see is still obscured by 'sampling noise'.

References

Chapter 6 of Talagrand's Upper and Lower Bounds for Stochastic Processes.

· Random Signs vs. Gaussians: Proposition 6.22

· Contraction: Lemma 6.4.5

· Lipschitz Contraction: Theorem 6.5.1

Appendices

Appendices

Boundedness

Our Population MSE bound introduces a new consideration: boundedness $\mu-\mu^\star$ in neighborhoods of μ^\star .

neighborhoods of
$$\mu^*$$
.
$$\|\hat{\mu} - \mu\|_{L_2(\mathbf{P})} \le \approx 2\{B + \sqrt{\Sigma_n}\} \left(s + \sqrt{\frac{2}{\delta n}}\right) \quad \text{w.p. } 1 - \delta \quad \text{if} \quad \frac{s^2}{2} \ge \mathbf{w}_s(\mathcal{M}_s) \quad \text{and} \quad \max_{m \in \mathcal{M}_s} \|m\|_{L_2(\mathbf{P})} \le \infty$$

Getting a bound ${\it B}$ can take a bit of work. There are options.

Option 1. Baking it into the Model.

$$\mathcal{M} = \{m: \|m\|_{\infty} \leq B \quad \text{and} \quad \rho_{TV}(m) \leq B\} \implies \|m - \mu^{\star}\|_{\infty} \leq \|m\|_{\infty} + \|\mu^{\star}\|_{\infty} \leq 2B$$

$$\mathcal{M} = \{m: |m(0)| = 0 \quad \text{and} \quad \rho_{TV}(m) \leq B\} \implies \dots$$

Option 2. Arguing Based on Bounded Data.

Others?

Appendices

Convex Functions Are Maximized At

Extreme Points

Definition

A function f is convex if secants lie above the curve.

$$f\{(1-\lambda)a+\lambda b\} \le (1-\lambda)f(a)+\lambda f(b)$$
 for $\lambda \in [0,1]$

We can give this a probabilistic interpretation for a random variable $Z_{\lambda}.$

$$f(\operatorname{E} Z_{\lambda}) \leq \operatorname{E} f(Z_{\lambda})$$
 where $Z_{\lambda} =$

Definition

A function f is convex if secants lie above the curve.

$$f\{(1-\lambda)a+\lambda b\} \leq (1-\lambda)f(a) + \lambda f(b) \quad \text{ for } \quad \lambda \in [0,1]$$

We can give this a probabilistic interpretation for a random variable $Z_{\lambda}.$

$$f(\operatorname{E} Z_{\lambda}) \leq \operatorname{E} f(Z_{\lambda})$$
 where $Z_{\lambda} = \begin{cases} a & \text{w.p. } 1 - \lambda \\ b & \text{w.p. } \lambda \end{cases}$

Jensen's Inequality

In fact, this is true all random variables ${\it Z}$. If ${\it f}$ is convex, its mean value exceeds its value at the mean.

$$f(E Z) \le E f(Z)$$

That's called Jensen's Inequality.

You can prove it for discrete random variables via induction.

Jensen's Inequality Proof

Base case.

It's true for random variables taking on 2 values.

$$f(\lambda_1z_1+\lambda_2z_2)\leq \lambda_1f(z_1)+\lambda_2f(z_2)\quad \text{if}\quad \lambda_1,\lambda_2\geq 0\quad \text{satisfy}\quad \lambda_1+\lambda_2=1$$

Inductive Step.

We'll show that if it's true for random variables taking on n-1 values, then it's also true for ones taking on n values.

$$f\left\{\sum_{i=1}^{n} \lambda_{i} z_{i}\right\} = f\left\{(1 - \lambda_{n}) \left(\sum_{i=1}^{n-1} \frac{\lambda_{i}}{1 - \lambda_{n}} z_{i}\right) + \lambda_{n} z_{n}\right\}$$

$$\leq (1 - \lambda_{n}) f\left(\sum_{i=1}^{n-1} \frac{\lambda_{i}}{1 - \lambda_{n}} z_{i}\right) + \lambda_{n} f(z_{n})$$

$$\leq (1 - \lambda_{n}) \sum_{i=1}^{n-1} \frac{\lambda_{i}}{1 - \lambda_{n}} f(z_{i}) + \lambda_{n} f(z_{n})$$

$$= \sum_{i=1}^{n-1} \lambda_{i} f(z_{i}) + \lambda_{n} f(z_{n})$$

Maxima of Convex Functions

Convex functions have no local maxima.

That means the maximum of a convex function over an interval occurs at an endpoint. **Proof.**

$$\max_{x \in [a,b]} f(x) = \max_{\lambda \in [0,1]} f\{(1-\lambda)a + \lambda b\} \leq \max_{\lambda \in [0,1]} (1-\lambda)f(a) + \lambda f(b) = \max\{f(a),f(b)\}$$

This is essentially true in higher dimensions as well. We just need the right generalizations of *interval* and its *endpoints*.

Convex Polytopes

The natural generalizations a convex polytope and its extreme points.

Definitions.

A **convex polytope** is the set of all weighted averages of some set of vectors $u_1 \dots u_K$.

$$\mathcal{U} = \left\{ \sum_i \lambda_i u_i \ : \ \lambda \in \Lambda \right\} \quad \text{ where } \quad \Lambda = \left\{ \lambda \ : \ \lambda_i \geq 0 \ \text{ for all } i \ \text{ and } \ \sum_i \lambda_i = 1 \right\}$$

Its **extreme points** are the subset of these vectors that are not redundant. That is, they're the ones we cannot write as weighted averages of the others.

Examples.

- A triangle is the set of weighted averages of its three vertices, its extreme points.
- A square is the set of weighted averages of its four vertices, its extreme points.
- A cube in \mathbb{R}^n is the set of weighted averages of its 2^n vertices, its extreme points.

Maxima of Convex Functions over Polytopes

The maximum of a convex function over a convex polytope occurs at an extreme point.

Proof.

It's more-or-less the same as the one-dimensional case. We apply Jensen's inequality to a random extreme point Z_{λ} .

$$\max_{u \in \mathcal{U}} f(u) = \max_{\lambda \in \Lambda} f\left(\sum_{i} \lambda_{i} u_{i}\right) \leq \max_{\lambda \in \Lambda} \sum_{i} \lambda_{i} f(u_{i}) \leq \max_{i} f(u_{i})$$

where

$$Z_{\lambda} = \begin{cases} u_1 & \text{ w.p. } \lambda_1 \\ \vdots & \vdots \\ u_K & \text{ w.p. } \lambda_K \end{cases}$$