THE RANDOM FOREST ALGORITHM

DECISION TREES

A decision tree splits the data using decision nodes until we are left with "leaf nodes", or target value.

RANDOM FOREST

"Random forest is a commonly-used machine learning algorithm, trademarked by Leo Breiman and Adele Cutler, that combines the output of multiple decision trees to reach a single result." - What Is Random Forest? | IBM

id	x_0	x_1	x_2	x_3	x_4	y	id	id	id	
0	4.3	4.9	4.1	4.7	5.5	0	2	2	4	
1	3.9	6.1	5.9	5.5	5.9	0	0	1	1	
2	2.7	4.8	4.1	5.0	5.6	0	2	3	3	
3	6.6	4.4	4.5	3.9	5.9	1	4	1	0	
4	6.5	2.9	4.7	4.6	6.1	1	5	4	0	
5	2.7	6.7	4.2	5.3	4.8	1	5	4	2	
			A	F'OF	RE'S'	T'C	F DECISION	N TREES		
							x_0, x_1	x_2, x_3	x_2, x_4	x
								7.516	$x_2 \leq 4.1$	1
							$x_1 \le 4.9$	$x_3 \le 4.6$	12 = 4.1	$\stackrel{x_1}{>}$
										1
							$x_0 \le 4.3$ 1		$x_2 \leq 4.7$	
										ン
							\bigcirc \bigcirc		\bigcirc	(

Number of trees

N=1

N = 10

N = 100

Actual vs. Predicted:					
		Predicted			
319	0	0			
552	1	1			
508	1	1			
492	0	0			
999	1	1			
399	1	1			
823	1	1			
437	1	1			
830	1	1			
562	0	0			

[200 rows x 2 columns]
Model Accuracy: 98.50%

	Actual	Predicted		
931	1	1		
748	0	0		
692	0	0		
506	1	1		
117	0	0		
• •				
546	0	0		
81	1	1		
123	1	1		
460	0	0		
924	1	1		
[200 rows x 2 columns] Model Accuracy: 99.50% Confusion Matrix: [[48 0] [1 151]]				

```
Actual Predicted
868
467
          0
86
845
237
448
762
471
226
937
          1
[200 rows x 2 columns]
Model Accuracy: 100.00%
Confusion Matrix:
[[ 49 0]
```

0 151]]

```
score:0.975, n estimator:1
score:0.99, n estimator:2
score:1.0, n estimator:3
score:1.0, n estimator:4
score:1.0, n estimator:5
score:0.995, n estimator:6
score:1.0, n estimator:7
score:1.0, n estimator:8
score:1.0, n estimator:9
score:1.0, n estimator:10
score:1.0, n estimator:11
score:1.0, n estimator:12
score:1.0, n estimator:13
score:1.0, n estimator:14
score:1.0, n estimator:15
score:1.0, n estimator:16
score:1.0, n estimator:17
score:1.0, n estimator:18
score:1.0, n estimator:19
score:1.0, n estimator:20
score:1.0, n estimator:21
score:1.0, n estimator:22
score:1.0, n estimator:23
score:1.0, n estimator:24
score:1.0, n estimator:25
```

OTHER PARAMETERS

Gini Index = $1 - \sum_{i=1}^{n} (P_i)^2$

- Split quality criterion: Gini
- While designing the decision tree, the features possessing the least value of the Gini Index would get preferred.
- Max depth=none
- Min samples leaf=1
- Max features=sqrt
- Bootstrap=true

INITIAL DATASET

	Α	В	С	D
1	Cell_Load	RSRP	RSRQ	Handover_Decision
2	0.25	81.78	12.92	0
3	0.64	87.11	16.27	1
4	0.79	80.32	13.04	1
5	0.41	65.97	11.06	1
6	0.11	79.52	11.92	1
7	0.22	69.9	11.24	1
8	0.78	99.33	19.37	1
9	0.35	81.5	12.24	1
10	0.89	60.84	9.47	1
11	0.34	63.57	7.06	1
12	0.75	65.75	11.42	1
13	0.75	64.2	7.81	1
14	0.32	81.4	13.74	0
15	0.58	51.88	9.58	1
16	0.85	61.07	7.58	1
17	0.9	68.57	14.53	1
18	0.46	98.88	16.02	0
19	0.02	64.38	7.65	1
20	0.73	74.05	13.65	1
21	0.73	68.96	13.16	1
22	0.7	63.69	6.61	1
23	0.65	81.25	14.9	1
24	0.16	53.81	6.35	1
25	0.2	91.62	19.66	0

Train model using random forest algorithm

Trained_model.pkl

[1 1 1 1 0 1 1 0 1]
Predicted first handover decision : 1

	Α	В	С	D
1	Cell_Load	RSRP	RSRQ	Handover_Decision
2	0.64	73.33	13.93	
3	0.75	95.99	19.09	
4	0.91	76.52	14.97	
5	0.95	93.7	19.88	
6	0.13	98.28	16	
7	0.25	80.27	11.01	
8	0.46	56.63	9.29	
9	0.22	95.88	16.86	_
10	0.58	50.64	5.87	

10 samples

...1000 samples