HW 2 - ASTR540

Daniel George - dgeorge5@illinois.edu

Q1)

a)

Let R be the radius of the Sun and d be the distance from the earth to the Sun, then:

$$ln[95]:= eq\Omega = \Omega == PiR^2/d^2$$

Out[95]= $\Omega == \frac{\pi R^2}{d^2}$

Let FR be the flux at the surface of the sun, then flux at distance r from the Sun is given by:

In[96]:=
$$F[r_] = FRR^2/r^2$$
Out[96]:= $\frac{FRR^2}{r^2}$

Flux at earth (Fd) is:

In[97]:= eqFd = Fd == F[d]
Out[97]= Fd ==
$$\frac{FR R^2}{d^2}$$

Solving for FR and substituting the value of R in terms of Ω :

$$_{\text{In}[98]=}$$
 sFRd = Solve[eqFd, FR][[1, 1]] /. Solve[eq Ω , R][[1]] Out[98]= FR $\rightarrow \frac{\text{Fd }\pi}{\Omega}$

b)

Given angular diameter to be .57°:

$$ln[99]:= eqA = 2 R / d == .57 °$$

$$Out[99]= \frac{2 R}{d} == 0.0099483767363677$$

Solid angle subtended by sun:

$$\label{eq:continuity} $$ \ln[100] = S\Omega = \Omega \to Last[eq\Omega /. Solve[eqA, R][[1]]]$ $$ Out[100] = \Omega \to 0.000077731013066585$$

Substituting the value of flux at Earth:

$$In[101]$$
:= sFR = sFRd /. Fd -> 1.4 kW/m² /. sΩ

Out[101]= FR → 56582.688704419 kW/m²

Using Stefan-Boltzmann law and solving for T:

$$ln[102] =$$
 Solve $[T > 0 && FR == (1 \sigma) T^4 /. SFR, T]$
Out $[102] = \{ \{T \rightarrow 5620.4113614522 K \} \}$

d)

We have the following formula:

In[103]:= Equal @@ sFRd

Out[103]=
$$\mathbf{FR} = \frac{\mathbf{Fd} \pi}{\Omega}$$

Flux at the surface of Sun is given by:

Out[104]=
$$FR \rightarrow \frac{2 \pi h c^2}{\left(-1 + e^{\frac{1 h c / k}{T \lambda}}\right) \lambda^5}$$

Substituting above:

Out[105]=
$$\frac{2 \pi h c^2}{\left(-1 + e^{\frac{-1 h c/k}{T \lambda}}\right) \lambda^5} = \frac{Fd \pi}{\Omega}$$

Therefore we can solve the above equation for temperature.

Q3)

Defining number density (nd):

$$In[106]:= nd = 0.1/pc^3;$$

Finding maximum distance (d):

$$ln[107] = sd = NSolve[0.01" == 1 au /d, d][[1, 1]]$$

Out[107]=
$$d \rightarrow 2.062648062471 \times 10^7 \text{ au}$$

Number of stars in sphere of radius d:

 $ln[108] = nd 4 / 3 Pi d^3 / . sd$

Out[108]= 418 879.02048848

Q4)

Defining function to find ratio of specific intensities:

$$ln[109] = iRatio[\tau_, b_] := (1 - Exp[-\tau Sqrt[1 - b^2]]) / (1 - Exp[-\tau])$$

Plotting ratio vs b for different τ :

