Contents

1	Topological Spaces and Continuous Maps	2
	1.1 Elementary Topology	
	1.2 Topological Bases	
	1.3 Subspaces	
	1.4 Continuous Maps	

Contents 1

PMATH 367 FALL 2025 JAKE EDMONSTONE

1 Topological Spaces and Continuous Maps

1.1 Elementary Topology

Given an inner product on an \mathbb{R} -vector space $\langle \cdot, \cdot \rangle$, one can define a norm $\|x\| = \sqrt{\langle x, x \rangle}$. Given a norm, one can define a metric $d(x,y) = \|x-y\|$. Given a metric d on a set X, one can define open sets in X:

given $a \in X$ and r > 0, $B(a,r) := \{x \in X \mid d(x,a) < r\}$. Then for $A \subseteq X$, we say A is open in X when $\forall a \in A \exists r > 0$ such that $B(a,r) \subseteq A$. Equivalently, for all $a \in A$, there is $b \in X$, r > 0 such that $a \in B(b,r) \subseteq A$.

Remark

The set of open sets on a metric space is called the *metric topology* on X.

Open sets in a metric space satisfy the following:

- 1. \emptyset and X are open
- 2. arbitrary unions of open sets are open
- 3. finite intersections of open sets are open

Notation

For a set of sets S, the union of S is

$$\bigcup S \coloneqq \{x \,|\, \exists A \in S, x \in A\} = \bigcup_{A \in S} A$$

In the case that $S \neq \emptyset$, the intersection of S is

$$\bigcap S \coloneqq \{x \,|\, \forall A \in S, x \in A\} = \bigcap_{A \in S} A$$

Note

 $\bigcap S$ would contain all elements as the condition $\forall A \in \emptyset$ would be vacuously satisfied. If we are given a universal set X, and S is known to be a set of subsets of X, then $\bigcap \emptyset = X$.

Definition 1.1.1

Let *X* be a set. $\mathcal{T} \subseteq \mathcal{P}(X)$ is called a *topology* on *X* if

- 1. $\emptyset, X \in \mathcal{T}$
- 2. If $S \subseteq \mathcal{T}$ is nonempty, then $| | S \in \mathcal{T}$
- 3. If $S \subseteq \mathcal{T}$ is nonempty and finite, then $\bigcap S \in \mathcal{T}$

The elements of \mathcal{T} are called the open sets of X. The closed sets are the compliments of the open sets.

Elementary Topology

Remark

To show 3 holds, it suffices to show the intersection of 2 open sets is open (by induction)

Definition 1.1.2

If X is a set, and \mathcal{T} is a topology on X, then (X,\mathcal{T}) is called a *topological* space

Remark

When $f: X \to Y$ is a map between metric spaces, f is continuous iff $f^{-1}(V)$ is open in X for every open set $V \subseteq Y$.

Definition 1.1.3

For a map $f: X \to Y$ between topological spaces, we say that f is continuous when $f^{-1}(V)$ is open in X for every open set $V \subseteq Y$.

Example 1.1.1

if $f:A\subseteq\mathbb{R}^n\longrightarrow B\subseteq\mathbb{R}^m$ is an elementary function, then f is continuous.

Definition 1.1.4

When S, T are topologies on X with $S \subseteq T$, we say that S is coarser than T and T is finer than S. When $S \subseteq T$, we use strictly coarser/finer.

Example 1.1.2

 $\{\emptyset, X\}$ is a topology on X called the *trivial topology*

Example 1.1.3

 $\mathcal{P}(X)$ is a topology on X called the *discrete topology*

Example 1.1.4

When $X = \emptyset$, $\mathcal{T} \subseteq \mathcal{P}(X) \Rightarrow \mathcal{T} \subseteq \{\emptyset\} \Rightarrow \mathcal{T} = \emptyset \lor \mathcal{T} = \{\emptyset\}$. Thus the only topology on \emptyset is $\{\emptyset\}$.

Example 1.1.5

When $X = \{a\}$ the only topology is $\mathcal{T} = \{\emptyset, \{a\}\}$

Exercise 1.1.1

Find all topologies on the 2 and 3 element sets.

Definition 1.1.5

Let X be a topological space. Let $A \subseteq X$.

- 1. The *interior* of A (in X) denoted by A° is the union of all open sets in X which are contained in A.
- 2. The *closure* of A denoted \overline{A} is the intersection of all closed sets in X which contain A.
- 3. The *boundary* of A, denoted by ∂A , given by $\partial A = \overline{A} \setminus A^{\circ}$

Note

The set of closed sets in a topological space is closed under arbitrary intersections and under finite unions. In particular \emptyset , X are closed

Theorem 1.1.1

Let X be a topological space, $A \subseteq X$.

- 1. A° is open, and is the largest open set which is contained in A
- 2. \overline{A} is closed, and is the smallest closed set which contains A
- 3. A is open iff $A = A^{\circ}$
- 4. A is closed iff $A = \overline{A}$
- 5. $\underline{A}^{\circ \circ} = A^{\circ}$
- 6. $\overline{A} = \overline{A}$

Definition 1.1.6

Let X be a topological space, let $A \subseteq X$, let $a \in X$.

- 1. We say that a is an $interior\ point$ of A when $a\in A$ and there is an open set U such that $a\in U\subseteq A$
- 2. We say that a is a *limit point* of A when for every open set $U \ni a$ we have $U \cap (A \setminus \{a\}) \neq \emptyset$. The set of limit points of A is denoted by A'
- 3. We say that a is a boundary point of A when every open set $U \ni a$, we have $U \cap A \neq \emptyset$ and $U \cap A^c \neq \emptyset$

Theorem 1.1.2

Let *X* be a topological space and let $A \subseteq X$.

- 1. A° is equal to the set of all interior points
- 2. For $a \in X$,

$$a \in A' \Longleftrightarrow a \in \overline{A \smallsetminus \{a\}}$$

- 3. A is closed iff $A' \subseteq A$
- 4. $\overline{A} = A \cup A'$
- 5. \overline{A} is the disjoint union

$$\overline{A} = A^{\circ} \sqcup \partial A$$

6. ∂A is equal to the set of boundary points of A

1.2 Topological Bases

Theorem 1.2.1

Let X be a set. Then the intersection of any set of topologies on X is also a topology on X.

Proof: Let $\{\mathcal{T}_{\alpha}\}_{\alpha\in I}$ be a collection of topologies on X. Let $\mathcal{T}=\cap_{\alpha}\mathcal{T}_{\alpha}$

- 1. Since $X, \emptyset \in \mathcal{T}_{\alpha}$ for all $\alpha \in I$. We have $X, \emptyset \in \mathcal{T}$
- 2. Let $\{U_i\} \subseteq \mathcal{T}$. For all $\alpha \in I$, we have each $U_i \in \mathcal{T}_{\alpha}$. Thus $\bigcup_i U_i \in \mathcal{T}_{\alpha} \Longrightarrow \bigcup_i U_i \in \mathcal{T}$ as desired.

3. Let $U_1,...,U_n\in\mathcal{T}$. Then again for all $\alpha\in I$, we have each $U_i\in\mathcal{T}_{\alpha}$. Thus $\cap_{i=1}^n U_i\in\mathcal{T}_{\alpha}\Longrightarrow\cap_{i=1}^n U_i\in\mathcal{T}$

Corollary 1.2.2

When X is a set and $\mathcal S$ is any set of subsets of X (that is $S\subseteq \mathcal P(X)$), there is a unique smallest (coarsest) topology $\mathcal T$ on X which contains $\mathcal S$. Indeed $\mathcal T$ is the intersection of (the set of) all topologies on X containing $\mathcal S$.

This topology \mathcal{T} is called the topology on X generated by \mathcal{S}

Definition 1.2.1

Let X be a set. A *basis of sets* on X is a set \mathcal{B} of subsets of X (So $\mathcal{B} \subseteq \mathcal{P}(X)$) such that

- 1. \mathcal{B} covers X, that is $| \mathcal{B} = X$
- 2. For every $C, D \in \mathcal{B}$ and $a \in C \cap D$. There is $B \in \mathcal{B}$ such that $a \in B \subseteq C \cap D$.

When \mathcal{B} is a basis of sets in X and \mathcal{T} is the topology on X generated by \mathcal{B} , we say that \mathcal{B} is a basis for \mathcal{T} . The elements in \mathcal{B} are called basic open sets in X.

Topological Bases 5

Theorem 1.2.3

Characterization of Open Sets in Terms of Basic Open Sets

Let X be a topological space, Let \mathcal{B} be a basis for the topology on X.

- 1. For $A \subseteq X$, A is open iff for every $a \in A$, there is $B \in \mathcal{B}$ such that $a \in B \subseteq A^*$
- 2. The open sets in X are the unions of (sets of) elements in \mathcal{B}

Equivalently,

- 1. $\mathcal{T} = \{A \subseteq X \mid \forall a \in A, \exists B \in \mathcal{B} \ a \in B \subseteq A\}$
- 2. $\mathcal{T} = \{ \bigcup C \mid C \subseteq \mathcal{B} \}$

Proof: Let \mathcal{T} be the topology on X (generated by \mathcal{B}). Let \mathcal{S} be the set of all sets $A \subseteq X$ with property * ($\forall a \in A \exists B \in \mathcal{B} : a \in B \subseteq A$). And let \mathcal{R} be the set of (arbitrary) unions of (sets of) elements in \mathcal{B} . Recall that \mathcal{T} is the intersection of the set of all topologies on X which contain \mathcal{B} . Note that \mathcal{S} contains \mathcal{B} (obviously). Let us show that \mathcal{S} is a topology on X. We have $\emptyset \in \mathcal{S}$ vacuously and $X \in \mathcal{S}$ because \mathcal{B} covers X (given $a \in X$, we can choose $B \in \mathcal{B}$ with $a \in B$). When $U_k \in \mathcal{S}$ for every $k \in K$ (where K is any index set). Let $a \in \cup_k U_k$. Choose $\ell \in K$ so that $a \in U_\ell$. Since $U_\ell \in \mathcal{S}$, we can choose $B \in \mathcal{B}$ so that $a \in B \subseteq U_\ell$. Since $U_\ell \subseteq \bigcup_k U_k$, we have $a \in B \subseteq \bigcup_k U_k$. Thus $\bigcup_k U_k$ satisfies * , hence $\bigcup_k U_k \in \mathcal{S}$ as required. Suppose $U, V \in \mathcal{S}$ Let $a \in U \cap V$. Since $U \in \mathcal{S}$ we can choose $C \in \mathcal{B}$ with $C \in \mathcal{S}$ we can choose $C \in \mathcal{B}$ with $C \in \mathcal{S}$ we can choose $C \in \mathcal{B}$ with $C \in \mathcal{S}$ we can choose $C \in \mathcal{B}$ with $C \in \mathcal{S}$ we can choose $C \in \mathcal{B}$ with $C \in \mathcal{C}$ with $C \in \mathcal{C}$ where $C \in \mathcal{C}$ is a basis, $C \in \mathcal{C}$ where $C \in \mathcal{C}$ is a contain $C \in \mathcal{C}$ where $C \in \mathcal{C}$ is a contain $C \in \mathcal{C}$ where $C \in \mathcal{C}$ is a contain $C \in \mathcal{C}$ where $C \in \mathcal{C}$ is a contain $C \in \mathcal{C}$ where $C \in \mathcal{C}$ is a contain

$$a \in B \subset C \cap D \subset U \cap V$$

Thus $U\cap V$ satisfies * so that $U\cap V\in\mathcal{S}$ as required. Thus \mathcal{S} is a topology on X containing \mathcal{B} , hence $\mathcal{T}\subseteq\mathcal{S}$. Let us show that $\mathcal{S}\subseteq\mathcal{R}$ let $U\in\mathcal{S}$. For each $a\in U$, choose $B_a\in\mathcal{B}$ with $a\in B_a\subseteq U$. Then we have

$$U=\bigcup_{a\in U}B_a\in\mathcal{R}$$

Thus $\mathcal{S} \subseteq \mathcal{R}$. Finally note that $\mathcal{R} \subseteq \mathcal{T}$ because if $U = \bigcup_k B_k$ with $B_k \in \mathcal{B}$, then each $B_k \in \mathcal{T}$, and \mathcal{T} is a topology, so

$$U = \bigcup_{k \in K} B_k \in \mathcal{T}$$

Theorem 1.2.4

Characterization of a Basis in terms of the Open Sets

Let X be a topological space with topology \mathcal{T} . Let $\mathcal{B} \subseteq \mathcal{T}$. Then \mathcal{B} is a basis for \mathcal{T} iff $\forall U \in \mathcal{T} \forall a \in U \exists B \in \mathcal{B} \quad a \in B \subseteq U$. *

Proof: If \mathcal{B} is a basis for \mathcal{T} , then * holds by part 1 of the previous theorem. Suppose * holds. Let us show that \mathcal{B} is a basis of sets in X. Note that \mathcal{B} covers X since, taking U = X in * we have $\forall a \in X \exists B \in \mathcal{B} \quad a \in B \subseteq X$. Also note that given $C, D \in \mathcal{B}$ and $a \in C \cap D$, then by taking $U = C \cap D$ in * (noting that $C, D \in \mathcal{B} \subseteq \mathcal{T}$ so that $U = C \cap D \in \mathcal{T}$) we can choose $B \in \mathcal{B}$ with $a \in B \subseteq C \cap D$. Thus \mathcal{B} is a basis of sets in X. It remains to show that \mathcal{T} is the topology generated by \mathcal{B} . Let \mathcal{S} be the topology generated by \mathcal{B} . By part 1 of the previous theorem, S is the set of all unions of

Topological Bases 6

elements in \mathcal{B} . Also \mathcal{S} is the smallest topology which contains \mathcal{B} . Since $\mathcal{B} \subseteq \mathcal{T}$ and \mathcal{T} is a topology, we have $\mathcal{S} \subseteq \mathcal{T}$. Also we have $\mathcal{T} \subseteq \mathcal{S}$ because given $U \in \mathcal{T}$, by property *, for each $a \in U$, we can choose $B_a \in \mathcal{B}$ with $a \in B_a \subseteq U$, and then we have $U = \bigcup_{a \in U} B_a \in \mathcal{S}$ since it is a union of elements in \mathcal{B}

Example 1.2.1

When X is a metric space, the set \mathcal{B} of all open balls in X is a basis for the metric topology on X.

Remark

We can use a basis for testing various topological properties:

When X is a topological space, and \mathcal{B} is a basis for the topology on X, and $A\subseteq X$ and $a\in X$. Then

$$a \in A^{\circ} \iff \exists B \in \mathcal{B} \text{ with } a \in B \subseteq A$$

$$a \in \overline{A} \iff \forall B \in \mathcal{B} \text{ with } a \in B \quad B \cap A \neq \emptyset$$

$$a \in A' \iff \forall B \in \mathcal{B} \text{ with } a \in B \quad (B \setminus \{a\}) \cap A \neq \emptyset$$

$$a \in \partial A \iff \forall B \in \mathcal{B} \text{ with } a \in B \quad B \cap A \neq \emptyset \text{ and } B \cap (X \setminus A) \neq \emptyset$$

Definition 1.2.2

A topological space X is called *Hausdorff* when for all $a,b\in X$ with $a\neq b$, there exist disjoint open sets U and V in X with $a\in U$ and $b\in V$.

Example 1.2.2

Metric spaces are Hausdorff

Topological Bases 7

1.3 Subspaces

Definition 1.3.1

Subspace Topology

П

Let Y be a topological space with topology S, and $X \subseteq Y$ be a subset. Let

$$\mathcal{T} \coloneqq \{ V \cap X \,|\, V \in \mathcal{S} \}$$

Then \mathcal{T} is a topology on X:

Indeed $\emptyset \in \mathcal{S}$ so $\emptyset \cap X = \emptyset \in \mathcal{T}$ and $Y \in \mathcal{S}$ so $Y \cap X = X \in \mathcal{T}$. If K is any index set and $U_k \in \mathcal{T}$ for each $k \in K$, then for each $k \in K$ we can choose $V_k \in \mathcal{S}$ such that $U_k = V_k \cap X$ and then we have

$$\begin{split} \bigcup_{k \in K} U_k &= \bigcup_{k \in K} (V_k \cap X) \\ &= \left(\bigcup_{k \in K} V_k\right) \cap X \in \mathcal{T} \end{split}$$

since $\bigcup_{k \in K} V_k \in \mathcal{S}$. Similarly, when K is finite and $U_k \in \mathcal{T}$ for each $k \in K$ we have $\bigcap_{k \in K} U_k \in \mathcal{T}$ The topology \mathcal{T} on X is called the *subspace topology* on X (inherited from the topology on Y).

Theorem 1.3.1

Let Y be a topological space, let \mathcal{C} be a basis for the topology on Y. Let $X \subseteq Y$ be a subset. Then the set

$$\mathcal{B} = \{ C \cap X \, | \, C \in \mathcal{C} \}$$

is a basis for the subspace topology on X.

Proof: Exercise

Theorem 1.3.2

Let Z be a topological space, let $Y \subseteq Z$ be a subspace and $X \subseteq Y$ be a subset. Then the subspace topology on X inherited from Y is equal to the subspace topology on X inherited from Z.

Proof: Exercise

Theorem 1.3.3

Let Y be a metric space, (using the metric topology) and let $X \subseteq Y$. Then the subspace topology on X (inherited from the topology on Y) is equal to the metric topology on X using the metric on X obtained by restricting the metric on Y.

Proof: Exercise

Subspaces 8

PMATH 367 FALL 2025 JAKE EDMONSTONE

1.4 Continuous Maps

Definition 1.4.1

Let X, Y be topological spaces.

- 1. For $f: X \to Y$ and $a \in X$, we say that f is *continuous at* a when for every open set $V \subseteq Y$ with $f(a) \in V$, there exists an open set $U \subseteq X$ with $a \in U \subseteq f^{-1}(V)$.
- 2. We say that f is *continuous* (in or on X) when for every open set $V \subseteq Y$, $f^{-1}(V)$ is open in X.
- 3. A homeomorphism from X to Y is is a bijective map $f: X \to Y$ such that both f and its inverse $f^{-1}: Y \to X$ are continuous. We say that X and Y are homeomorphic, and we write $X \cong Y$, when there exists a homeomorphism $f: X \to Y$. (and we remark that $f^{-1}: Y \to X$ is also a homeomorphism).

Theorem 1.4.1

Constant maps and inclusion maps are continuous.

Proof: For $f: X \to Y$ given by $f(x) = c \in Y$ for all $x \in X$. When V is open in Y,

$$f^{-1}(V) = \begin{cases} X \text{ if } c \in V \\ \emptyset \text{ if } c \not\in V \end{cases}$$

When $X \subseteq Y$ is a subspace and $f: X \to Y$ is given by f(x) = x for all $x \in X$, when V is open in Y.

$$f^{-1}(V) = \{x \in X \mid f(x) \in V\}$$
$$= \{x \in X \mid x \in V\}$$
$$= V \cap X$$

which is open in X. (when X uses the subspace topology)

Remark

When Y is a topological space and $X \subseteq Y$ we shall assume, unless otherwise noted, that X uses the subspace topology.

Theorem 1.4.2

Equivalent Definitions of Continuity

Let $f: X \to Y$ be a map between topological spaces

- 1. f is continuous iff f is continuous at every $a \in X$
- 2. f is continuous iff for every closed set $K \subseteq Y$, $f^{-1}(K)$ is closed in X.
- 3. If \mathcal{C} is a basis for the topology on Y then f is continuous iff for every $C \in \mathcal{C}$, $f^{-1}(C)$ is open in X.

Proof of 1: Suppose f is continuous on X. Let $a \in X$. Let V be an open set in Y with $f(a) \in V$. Let $U = f^{-1}(V)$, then $f^{-1}(V)$ is open, since f is continuous and $a \in U \subseteq f^{-1}(V)$. Suppose, conversely, that f is continuous at every $a \in X$. Let V be an open set in Y. For each $a \in f^{-1}(V)$ since f is continuous at a with $f(a) \in V$, we can choose an open set U_a in X with $a \in U_a \subseteq f^{-1}(V)$. Then

Continuous Maps 9

$$f^{-1}(V) = \bigcup_{a \in f^{-1}(V)} U_a$$

which is open in X, since it is a union in open sets in X.

Theorem 1.4.3

Let $f: X \to Y$, $g: Y \to Z$ be continuous maps between topological spaces, then the composite map $h = g \circ f: X \to Z$ is continuous.

Proof: Show that $h^{-1}(W) = f^{-1}(g^{-1}(W))$

Remark

Homeomorphism of topological spaces behaves like an equivalence relation on the class of all topological spaces. For topological spaces X, Y, Z

- 1. $X \cong X$ (since id_X is a homeomorphism a special case of the inclusion map)
- 2. If $X \cong Y$ then $Y \cong X$ (when $f: X \to Y$ is a homeomorphism, so is $f^{-1}: Y \to X$)
- 3. If $X\cong Y\cong Z$ then $X\cong Z$ (if $f:X\to Y,g:Y\to Z$ are homeomorphisms then so is $g\circ f$)

Theorem 1.4.4 Restriction of Domain and Restriction or Expansion of Codomain

Let X,Y,Z be topological spaces. Suppose $f:X\to Y$ is continuous.

- 1. For any subspace $A \subseteq X$, the restriction $f|_A: A \to Y$ is continuous.
- 2. If $Y \subseteq Z$ is a subspace then $f: Y \to Z$ is continuous and if $B \subseteq Y$ with $f(X) \subseteq B$, then $f: X \to B$ is continuous.

Proof: Exercise

Lemma 1.4.5

Glueing/Pasting Lemma

Let $f:X\to Y$ be a map between topological spaces

- 1. If $X = \bigcup_{k \in K} U_k$ where each U_k is open in X and if each restriction map $f\big|_{U_k} : U_k \to y$ is continuous (where U_k is using the subspace topology), then f is continuous.
- 2. If $X = C_1 \cup \dots \cup C_n$ where each C_k is closed in X, and if each restriction $f|_{C_k} : C_k \to Y$ is continuous, then f is continuous.

Continuous Maps 10