CSE 340

Computer Architecture

Student Name : Rejwan Shafi

Student ID : 2329 11 08

Section : 09

Assignment No: : 02

Faculty: STK (Sumaiya Tanjil Khan)

Date of Submission: 09 / 11/2023

Answer to the question no 1

Difference between program counter and \$zero

register

is as follows

Program Counter	\$zero register		
•Program Counter points to the address of the instruction that is currently being executed.	• \$ Zero register always hold the constant zero.		
Program Counter is read only and can be updated by the CPU. When the	· \$ zero register is read only and it can't be updated		
Program Counter points to the next instruction			

In case of 16 bit architecture, increment in memory address for sequential instruction execution $=\frac{16}{8}$

Similarly, in case of 128 bit architecture, inerement in memory address for sequential

instruction execution = $\frac{128}{8}$ = 16

The given MIPS instruction is,

\$4, X (\$5)

As we are using 256 bit architecture; so increment in memory address would be $=\frac{256}{8}=32$

We want to load the content of A[5], Given that array's bare address in stored in \$5. So. the offsets value, $\chi = 5 \times 32 = 160$

: Value of X is 160.

Answer to the question no 3

SU \$ to, \$51, 0 # An I In already 32 bit. \$tu, \$to, \$50 odd

16 \$t1, 0 (\$t0)

sw \$ t1, 0 (\$52)

Answer to the question no a

Given that,

* is stoned in \$50

Y is stored in \$51.

Base address of Arr is stored in \$54.

and the given code i's,

X = 15Y - 5;

Arr [5] = 2x + Arr [10];

MIPS Code:

511 \$ to, \$ \$1, 4

Sub \$ to, \$ to, \$ \$1.

addi \$50, \$to, -5

lw \$t1, 40 (\$54)

add \$ 12, \$50, \$50

add \$t1, \$ t2,\$t1

sω \$t1, 20 (\$59)

Machine Code for each instruction.

• SII \$to, \$51, 4 (Rtyee)

(000000	00000	10001	01000	00100	xxxxx
•	opwde	2°Y	rt	rd	Shamt	funch

Given that,

MIPS instruction

bez \$9, \$8,124

and Pc's value is = (1278A9B1)16

from the MIPS Instruction we can get the offset value which is $(124)_{10} = (000000000001111100)_2$

After 2 bit left shift 18/bit representation of offset value would be = $(0.000000001111100000)_2$

After sign extension; 32 bit representation of offset value would be, = $\begin{pmatrix} 0000 & 0000 & 0000 & 0000 & 0000 & 0000 \end{pmatrix}_{16}$

- 22 Branch address in hex would be
 - = (PC+4 +00000 1 FO) 16
 - = (1278 A 481 + 4 + 00000 1F0),6
 - = (1278A6A5) 16
- .: Branch address in hex would be, OX1278A6A5

Given that

offset = 1590

Pe holds the address = (00 AB 1203)16

: PC+4 = (DOAB1207) = (0000 0000 1010 1011 0001 0010 0000 UIII)

: (Pe+4) 1 MSB 4 bits = 0000

.. Jump address = (PC+4 's MSB q bits) + (offset x4)

 $= (0000)_2 + (159.0 \times 4)_{10}$

= (0000) 2 t (6360) 10

= (0000)2 + (0000 0000 0000 0000 0001 1000 1101 1000)2

= (0000 0000 0000 0000 0001 1000 1101 1000)

 $= (00001808)_{16}$

Jump address = 0x 0000 18 08

Given that,

MIPS instruction is,

Lw \$8, 52 (\$17)

offset = $(52)_{10}$ = $(offset \times 4)$

and PC holds the address = (15632017)16 = (358 817 815)10

: Memory address = Base address + (offset xa). = (358817815)+ (52)

= (358817867)

= (1563204B),6.

:: Memory address = 0x 1563204B

add \$53, \$53, \$ zero. # initializing i= 0. Loup:

siti \$to, \$53, 10

\$to, \$zero, Exit

\$to, \$53,2 511

add \$ to, \$to, \$51. # Memory address of A[i]

Lw \$t1, 0 (\$t0).

bez \$t1, \$54, Else.

sll \$t1, \$53,2.

\$t1, \$t1, \$s2 # Memory address of B [i].

Lω \$ t2, O (\$t1) # Content of Bli]

su \$t2, \$t2,2

add \$t2, \$t2, \$s1 # Memory address of A[B[i]]

lw \$t3, 0 (\$t2). # Content of A[B[1]]

add \$t3, \$t3, \$55 # A[B[i]]+1

SW \$t3, 0 (4t2) # A[B[i]] = A[B[i]] +1.

add \$53, \$53, \$55. # 1+= 1 j 100p.

Else:

add \$t2, \$53, \$55

su \$t2, \$t2, 2

add \$t2, \$t2, \$52. # Memory address of B [i+1]

Lw \$t3, 0 (4t2) # Content of B [i]

sw \$63.0 (4to). # A[i] = B[i+1] add \$53, \$53, \$55. # 1+=1

j Loop

Exit:

```
addi $$1, $$1, 20

addi $$2, $$1, -10

addi $$50, $$50, 7

add $$53, $$2, $$50

jal sum

j Exit
```

Sum.

addi
$$4 \text{ s.P.} 4 \text{ s.P.} - 4$$
Sw $4 \text{ s.O.}, 0 \text{ C.4 s.P.}$

add $4 \text{ to.}, 4 \text{ a.O.}, 4 \text{ a.L.} # (x+y+z)$

add $4 \text{ to.}, 4 \text{ to.}, 4 \text{ a.L.} # (x+y+z)$

add $4 \text{ s.O.}, 4 \text{ t.O.}, 4 \text{ z.E.}$

add $4 \text{ v.O.}, 4 \text{ s.O.}, 4 \text{ z.E.}$

add $4 \text{ v.O.}, 4 \text{ s.O.}, 4 \text{ z.E.}$

add $4 \text{ v.O.}, 4 \text{ s.O.}, 4 \text{ z.E.}$

add $4 \text{ v.O.}, 4 \text{ s.O.}, 4 \text{ z.E.}$

addi $4 \text{ s.O.}, 6 \text{ s.O.}, 4 \text{ z.E.}$

addi $4 \text{ s.O.}, 6 \text{ s.O.}, 4 \text{ z.E.}$

ip $4 \text{ s.O.}, 4 \text{ s.O.}, 4 \text{ z.E.}$

0

Exit:

As we are considering 64 bit MIPS Architectures. Therefore, each memory slots address is 64 bits. Whereas, in each memory slot we can stone only 8 bit of data.

- is = 2 ×8 bits 11
 - = 14757395258 96764 12928 bits
 - = 184467440 73709 55 1616 by te [: 1by te = 8 bit]
 - = 1.8496749073 Zogss X10 16 Kilobyte.
 - = 184467.44 073709.55 Megabyte
 - = 1844 6744 . 073709548 Terabyte.
 - = 18.4467 Exabyte.