

Jakub Błaszczyk Adam Dłubak Aleksandra Orzechowska

ZESPÓŁ PROJEKTOWY

DR MARTIN TABAKOW

OPIEKUN PROJEKTU

Doktor Politechniki Wrocławskiej, zajmujący się m.in. badaniami o tematyce biomedycznej.

JAKUB BŁASZCZYK

LIDER ZESPOŁU PROJEKTOWEGO

Programista, astrofizyk i fotograf, którego odpowiedź "bo tak" nigdy nie satysfakcjonuje.

ALEKSANDRA ORZECHOWSKA

CZŁONEK ZESPOŁU PROJEKTOWEGO

Grająca na skrzypcach programistka, lubi czytać kryminały i uważa, że dobre rozplanowanie to podstawa.

ADAM DŁUBAK

CZŁONEK ZESPOŁU PROJEKTOWEGO

Programista i fotograf w jednym, trenuje taniec towarzyski, a projekt zawsze musi być "dopięty na ostatni guzik".

INDEKS K167

PRZEDSTAWIENIE ZAGADNIENIA

Projekt ściśle związany z tematyką onkologiczną inżynierii biomedycznej. W oparciu o zdjęcia histopatologiczne nowotworów z barwionymi antygenami Ki67, należy określić współczynnik proliferacji (zdolności namnażania się komórek), a w konsekwencji złośliwości nowotworu. Uzyskanie tej informacji pozwoli na skuteczniejsze dobranie leczenia dla pacjenta w krótszym czasie, co znacząco może zwiększyć szanse przeżycia i pełnego wyzdrowienia.

ELEVATOR PITCH

W CZYM PROBLEM?

DŁUGI PROCES DIAGNOZY

BRAKI KADROWE

DOKŁADNOŚĆ BADAŃ

RĘCZNIE - WOLNO

STATYSTYKI PROBLEM NOWOTWORÓW

W POLSCE W LATACH 1999 - 2015

Ponad 2 miliony zachorowań:

- W tym 250 tys. na raka piersi
- W tym 140 tys. na raka gruczołu krokowego

7 NA 10 PRZYPADKÓW TO NOWOTWORY ZŁOŚLIWE

NOWOTWORY ZŁOŚLIWE W POLSCE

POWSZECHNOŚĆ NOWOTWORÓW

MĘŻCZYŹNI

FAZA EMPATYZACJI BY LEPIEJ ZROZUMIEĆ PROBLEM

Podstawą sukcesu jest dobre zrozumienie problemu, który chce się rozwiązać...

- Brak gwarancji wyników
- Statystyki mówiące o nowotworach
- Coraz większa powszechność nowotworów
- Korelacja antygenu Ki67 i indeksu proliferacji

ROZWIĄZAĆ PROBLEM PERSPEKTYWA UŻYTKOWNIKA

9 tygodni

Czas postawienia diagnozy

Brak wspomagania

Brak narzędzi wspierających analizę.

Więcej informacji

Lekarz podejmie trafniejszą decyzję posiadając więcej informacji.

Onkolodzy potrzebują narzędzia do szybszej i skutecznej diagnozy nowotworów, co pozwoli im na dobranie odpowiedniej strategii leczenia pacjentów.

ALTERNATYWA

HISTORIA CHOROBY

Rozwiązanie w oparciu o analizę historii choroby pacjenta:

- brak możliwości pełnego wglądu do historii choroby
- wymagany bardzo wysoki poziom wiedzy medycznej
- pomysł odrzucony we wstępnej fazie projektu

SZCZEGÓŁOWA ANALIZA PROJEKTU

DATA MODEL CANVAS

PROBLEMY

Jak przyspieszyć proces diagnozy nowotworów?

Czy proces ma słabe punkty?

Czy proces jest zautomatyzowany?

WARTOŚĆ BIZNESOWA

Przyspieszenie procesu diagnozy

Zwiększenie szans pacjentów na przeżycie / wyzdrowienie

Wzrost efektywności służby zdrowia

DATA MODEL CANVAS WSPÓŁPRACA, ZESPÓŁ, PARTNERZY

DATA MODEL CANVAS

DANE, MODEL, REZULTATY

Obrazy histopatologiczne z barwnikiem KI67

Do dyspozycji około 200 zdjęć uzyskanych od specjalistów dziedzinowych

Logika zbiorów rozmytych (klasyfikacja)

Wykrywanie i oznaczanie komórek z pełnych obrazów histopatologicznych

Prawidłowe rozpoznanie komórek

Porównanie wyników z podobnymi rozwiązaniami

DATA MODEL CANVAS

UŻYTKOWNICY I WDROŻENIE

Użytkownikami będą osoby nietechniczne (onkolodzy i laboranci), dlatego aplikacja powinna być:

- Czytelna i intuicyjna
- Przesłaniająca cały mechanizm analizy
- W pełni udokumentowana
- Nie wymagająca dodatkowego sprzętu

PRZEWIDYWANE

KOSZTY

KORZYŚCI

Nakład czasowy

Brak wkładu finansowego

Wiedza techniczna

Przyspieszenie procesu diagnozy

Zwrot nakładów pracy i zaufanie rynku

Poznanie dziedziny inżynierii biomedycznej

PODSUMOWANIE

FAZA PIERWSZA - WNIOSKI

- Rynek medyczny jest obszerny ale ma dużą lukę technologiczną
- Rozpoczęcie poznawania teorii (zbiory rozmyte, przetwarzanie obrazu)
- Lepsze zrozumienie projektu dzięki Design Thinking
- Usystematyzowanie wiedzy dzięki Data Model Canvas

DZIĘKUJEMY ZA UWAGĘ