Calibration with Privacy in Peer Review

Wenxin Ding¹, Gautam Kamath², Weina Wang³, Nihar B. Shah³

¹ University of Chicago, ² University of Waterloo, ³ Carnegie Mellon University

Our goal is to design methods for the conference to accept better papers while guarding against privacy leakage due to calibration.

MOTIVATION

- Reviewers in peer review are often miscalibrated.
- A number of algorithms have been proposed to calibrate reviews.
- Attempts of calibration can leak sensitive information about which reviewer reviewed which paper.
- Another challenge is a small number of samples (reviews) per reviewer.

PROBLEM SETTING

• 2 reviewers

2 papers

- Miscalibration function of reviewer j: β_i
- Noise of reviewer j: ε_i
- Quality of paper i: θ_i*
- Score of paper i reviewed by reviewer $j: s_i = \beta_j(\theta_i^*) + \varepsilon_j$
- β , distributions of ϵ and θ^* are **known**
- Marginal p.d.f. of scores given by reviewer $j: f_i$
- 2 possible assignments:

Assignment 1 Assignment 2

(1) We provide explicit computationally-efficient algorithms for calibration with privacy that optimally trades off the error of the conference and the error of the adversary.

higher-quality Conference: accept by paper estimating paper quality

Error of the conference E_C : probability of accepting the lower-quality paper

Adversary: guess true assignment by MAP

Error of the adversary: probability of guessing the wrong assignment

Per-instance error: error under specific scores

Average-case error: error over the distribution of scores

MAIN RESULTS

- 1. Establish the Pareto frontier of the tradeoff between privacy and utility.
- 2. Design explicit computationallyefficient algorithms that we prove are Pareto optimal.
- Noiseless: $\varepsilon = 0$

Pareto frontier:

(2) We establish the structure of the Pareto optimal curve between the errors.

• Noisy: $\varepsilon \sim N(0, \sigma^2)$

Pareto frontier:

ALGORITHMS

Per-instance error in the noiseless case:

Input: s_1, s_2 , maximum allowable $E_C(s_1, s_2)$

If one paper has higher estimated quality under both assignments: accept the paper

Otherwise, the conference selects probability p:

- with probability p the conference calibrates under the true assignment;
- with probability 1-p the conference calibrates under the wrong assignment

Average-case error in the noiseless case:

Input: maximum allowable E_C

If E_C is large:

run per-instance algorithm with $E_C = 1$

Otherwise, the conference flips a coin:

- if coin outcome is head: run per-instance algorithm with $E_C = 1$;
- Otherwise, the conference calibrates under the true assignment

*algorithm for noisy case is available in the paper