Математическое описание расчета аварийного истечения из трубопровода

1. Основные уравнения

1.1 Уравнение Бернулли для истечения

Основой расчета является уравнение Бернулли для струи жидкости [1]:

$$\frac{p_1}{\rho g} + \frac{v_1^2}{2g} + h_1 = \frac{p_2}{\rho g} + \frac{v_2^2}{2g} + h_2 + h_w$$

где: - p_1 , p_2 - давление в начальной и конечной точках, Π а - v_1 , v_2 - скорости в начальной и конечной точках, м/с - h_1 , h_2 - высотные отметки точек, м - h_w - потери напора, м - ρ - плотность жидкости, кг/м³ - g - ускорение свободного падения, м/с²

1.2 Формула Торричелли

Скорость истечения через отверстие определяется формулой Торричелли [2]:

$$v = \mu \sqrt{2gH}$$

где: - v - скорость истечения, м/с - μ - коэффициент расхода - H - полный напор, м

1.3 Расчет расхода

Объемный и массовый расходы рассчитываются как:

$$Q = v \cdot A G = Q \cdot \rho$$

где: - Q - объемный расход, м³/с - G - массовый расход, кг/с - A - площадь отверстия, м²

2. Потери давления

2.1 Формула Дарси-Вейсбаха

Потери давления по длине трубопровода рассчитываются по формуле [3]:

$$\Delta p = \lambda \frac{L}{D} \frac{\rho v^2}{2}$$

где: - λ - коэффициент трения - L - длина трубопровода, м - D - диаметр трубопровода, м

2.2 Формула Колбрука-Уайта

Коэффициент трения определяется по неявной формуле Колбрука-Уайта [4]:

$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{k_e}{3.7D} + \frac{2.51}{Re\sqrt{\lambda}}\right)$$

где: - k_e - эквивалентная шероховатость, м - Re - число Рейнольдса

2.3 Число Рейнольдса

$$Re = \frac{\rho v D}{\eta}$$

где η - динамическая вязкость жидкости, Π а·с

3. Нестационарные процессы

3.1 Время опорожнения

Время опорожнения участка трубопровода рассчитывается как:

$$t = \frac{V}{O}$$
 для малых отверстий

$$t = \sqrt{\frac{2L}{a}}$$
 для случая полного разрыва

где: - V - объем участка трубопровода, м 3 - L - длина участка, м

3.2 Изменение давления во времени

Давление в трубопроводе при истечении изменяется по закону:

$$p(t) = p_0 \cdot \frac{V(t)}{V_0}$$

где: - p_{0} - начальное давление - V_{0} - начальный объем - V(t) - текущий объем жидкости

Источники

- [1] Идельчик И.Е. Справочник по гидравлическим сопротивлениям / Под ред. М.О. Штейнберга. 3-е изд., перераб. и доп. М.: Машиностроение, 1992. 672 с.
- [2] Чугаев Р.Р. Гидравлика: Учебник для вузов. 4-е изд., доп. и перераб. Л.: Энергоиздат, 1982. 672 с.

- [3] Альтшуль А.Д., Киселев П.Г. Гидравлика и аэродинамика. М.: Стройиздат, 1975. 323 с.
- [4] Colebrook, C. F., White, C. M. "Experiments with Fluid Friction in Roughened Pipes." Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 161.906 (1937): 367-381.
- [5] Лойцянский Л.Г. Механика жидкости и газа. М.: Дрофа, 2003. 840 с.

Примечания по реализации

- 1. В коде используется итерационный метод решения уравнения Колбрука-Уайта для нахождения коэффициента трения.
- 2. Для учета влияния местных сопротивлений и неравномерности потока вводится коэффициент расхода µ (по умолчанию 0.62 для острой кромки).
- 3. При расчете нестационарного процесса истечения принято допущение о квазистационарности процесса на каждом временном шаге.
- 4. Изменение давления по длине трубопровода учитывается через потери напора по формуле Дарси-Вейсбаха.
- 5. Влияние вязкости учитывается через число Рейнольдса при расчете коэффициента трения.