Astrofísica Extragaláctica Lista 4 – Aglomerados de Galáxias

Junho de 2021

Parte A

- 1. Determinação de massa. Descreva três métodos de determinação de massa de aglomerados.
- 2. **SZ.** Explique o que é o efeito Sunyaev-Zeldovich.

Parte B

- 3. Equação de Poisson. Mostre que o perfil de densidade de Hernquist decorre do potencial gravitacional $\Phi(r) = -\frac{GM}{r+a}$.
- 4. **Perfil NFW.** (a) Calcule analiticamente a massa cumulativa M(r) do perfil NFW. (b) Avaliando M(r) em r_{200} , mostre que o parâmetro $\rho_{\rm s}$ fica determinado pela concentração $c=r_{200}/r_{\rm s}$:

$$\rho_{\rm s} = \frac{200}{3} \; \rho_{\rm crit} \; \frac{c^3}{\left[\ln{(1+c)} - \frac{c}{1+c} \right]}$$

5. Relação entre Hernquist e NFW O comprimento de escala de Hernquist (a_h) e o comprimento de escala de NFW (r_s) estão conectados pela concentração $c = r_{200}/r_s$. Exigindo que os dois perfis coincidam para raios pequenos, demonstre a relação aproximada:

$$\frac{a_{\rm h}}{r_{\rm s}} \simeq \sqrt{2\left[\ln(1+c) - \frac{c}{1+c}\right]}$$

6. **Equilíbrio hidrostático.** Considerando simetria esférica e um gás com perfil de densidade $\rho_{\rm g}(r)$ em equilíbrio na presença de um potencial gravitacional total $\Phi(r)$, mostre que o perfil de temperatura do gás é:

$$T(r) = \frac{\mu m_H}{k} \frac{1}{\rho_{\rm g}(r)} \int_r^{\infty} \rho_{\rm g}(r') \, \frac{d\Phi}{dr'} \, dr'$$

7. **Peso molecular médio.** Mostre que, em termos de densidade numérica de elétrons, o peso molecular médio de um gás com abundância primordial totalmente ionizado é aproximadamente:

$$\mu_e \simeq \frac{2}{1+X} \simeq 1.1$$

Parte C

8. Determinação da massa de um aglomerado

Usando magnitudes e redshifts do SDSS, determine a massa dinâmica do aglomerado de Coma.

9. Modelo de um aglomerado

Vamos construir um modelo de um aglomerado de galáxias esfericamente simétrico, considerando duas componentes: a matéria escura, representada pelo perfil de Herquist; e o gás do ICM, representado pelo perfil de Dehnen (com $\gamma = 0$).

Matéria escura:

- (a) Considere um halo com $M_{200}=5\times10^{14}\,\mathrm{M}_\odot$. Consulte em Duffy et al. (2008) qual deve ser a concentração c desse halo (supondo baixo redshift) e faça um gráfico do perfil de densidade de NFW com tais parâmetros.
- (b) Obtenha o comprimento de escala $a_{\rm h}$ do perfil de Hernquist de mesma massa $M_{\rm h}=M_{200}.$ Plote a comparação entre os dois perfis.

Gás:

(c) Para estabelecer a massa total de gás, adote uma fração de bárions global de 15%. Encontre o valor do comprimento de escala $a_{\rm g}$ do perfil de Dehnen (com $\gamma=0$), de tal modo que o perfil de densidade do gás seja comparável a um β -model com os seguintes parâmetros:

$$n_e = 5 \times 10^{-3} \text{ cm}^{-3}$$

 $r_c = 100 \text{ kpc}$
 $\beta = 0.7$

- (d) Faça um gráfico da fração de bárions em função do raio.
- (e) Usando o potencial gravitacional total (com os parâmetros obtidos) calcule numericamente o perfil de temperatura e faça um gráfico de T(r) em unidades de keV.
- (f) Supondo que o gás emite por Bremsstrahlung, integre numericamente a emissividade dentro do volume contido em r_{200} para obter a luminosidade total em raios-X.
- (g) Refaça os perfis do gás apenas trocando $\gamma=0$ por $\gamma=1$ no perfil de Dehnen. O que acontece com a densidade e a temperatura do gás na região central?

2