The Distribution of *G*-Weyl CM Fields and the Colmez Conjecture

Frank Thorne (with Adrian Barquero-Sanchez and Riad Masri)

University of South Carolina

Automorphic Forms Workshop 2018

The Main Theorem

Theorem

Assume a weak form of Malle's Conjecture.

Then, the Colmez conjecture is true for 100% of CM fields of any fixed degree, when ordered by discriminant.

The Main Theorem

What do these words mean???

Theorem

Assume a weak form of Malle's Conjecture.

Then, the Colmez conjecture is true for 100% of CM fields of any fixed degree, when ordered by discriminant.

The Colmez Conjecture

Conjecture (Colmez '93)

Let E be a CM field, and let X_{Φ} be a CM abelian variety of type (\mathcal{O}_E, Φ) . Then,

$$h_{\sf Fal}(X_{\Phi}) = -Z(A_{E,\Phi}^0,0) - \frac{1}{2}\mu_{\sf Art}(A_{E,\Phi}^0),$$

where in the above

The Colmez Conjecture

Conjecture (Colmez '93)

Let E be a CM field, and let X_{Φ} be a CM abelian variety of type (\mathcal{O}_E, Φ) . Then,

$$h_{\sf Fal}(X_{\Phi}) = -Z(A_{E,\Phi}^0,0) - \frac{1}{2}\mu_{\sf Art}(A_{E,\Phi}^0),$$

where in the above

- $ightharpoonup X_{\Phi}$ is an abelian variety over $\overline{\mathbb{Q}}$ with complex multiplication by \mathcal{O}_E , and CM type for E (....)
- $h_{\text{Fal}}(X_{\Phi})$ is the Faltings height of X_{Φ} , which in fact only depends on Φ;
- The quantity on the right is defined in terms of logarithmic derivatives of Artin L-functions associated to characters defined in terms of the representation theory of Gal(Q^{CM}/Q).
- I could explain all this in more detail, but the margins of these slides are too small.

Suppose we have the following:

▶ A totally real number field F of degree $[F : \mathbb{Q}] = d$;

- ▶ A totally real number field F of degree $[F : \mathbb{Q}] = d$;
- ▶ $G := Gal(F^c/\mathbb{Q})$ is a transitive subgroup of S_d ;

- ▶ A totally real number field F of degree $[F : \mathbb{Q}] = d$;
- $G := \operatorname{Gal}(F^c/\mathbb{Q})$ is a transitive subgroup of S_d ;
- ▶ A totally imaginary quadratic extension E/F (a CM field);

- ▶ A totally real number field F of degree $[F : \mathbb{Q}] = d$;
- $G := \operatorname{Gal}(F^c/\mathbb{Q})$ is a transitive subgroup of S_d ;
- ▶ A totally imaginary quadratic extension E/F (a CM field);
- ▶ Then $Gal(E^c/\mathbb{Q}) \subseteq C_2 \wr G$, where

$$C_2 \wr G := C_2^d \rtimes G.$$

Suppose we have the following:

- ▶ A *totally real* number field F of degree $[F : \mathbb{Q}] = d$;
- $G := \operatorname{Gal}(F^c/\mathbb{Q})$ is a transitive subgroup of S_d ;
- ▶ A totally imaginary quadratic extension E/F (a CM field);
- ▶ Then $Gal(E^c/\mathbb{Q}) \subseteq C_2 \wr G$, where

$$C_2 \wr G := C_2^d \rtimes G.$$

Definition

If $Gal(E^c/\mathbb{Q}) = C_2 \wr G$, we call E a G-Weyl CM field.

Suppose we have the following:

- ▶ A *totally real* number field F of degree $[F : \mathbb{Q}] = d$;
- $G := \operatorname{Gal}(F^c/\mathbb{Q})$ is a transitive subgroup of S_d ;
- ▶ A totally imaginary quadratic extension E/F (a CM field);
- ▶ Then $Gal(E^c/\mathbb{Q}) \subseteq C_2 \wr G$, where

$$C_2 \wr G := C_2^d \rtimes G.$$

Definition

If $Gal(E^c/\mathbb{Q}) = C_2 \wr G$, we call E a G-Weyl CM field.

Theorem

If E is a G-Weyl CM field, then the Colmez conjecture is true for E.

Fields Satisfying the Colmez Conjecture

Theorem

If E is a G-Weyl CM field, then the Colmez conjecture is true for E.

Follows without too much difficulty from:

Fields Satisfying the Colmez Conjecture

Theorem

If E is a G-Weyl CM field, then the Colmez conjecture is true for E.

Follows without too much difficulty from:

► An averaged version of the Colmez conjecture, proved (independently) by Andreatta, Goren, Howard, and Madapusi Pera; and by Yuan-Zhang;

Fields Satisfying the Colmez Conjecture

Theorem

If E is a G-Weyl CM field, then the Colmez conjecture is true for E.

Follows without too much difficulty from:

- An averaged version of the Colmez conjecture, proved (independently) by Andreatta, Goren, Howard, and Madapusi Pera; and by Yuan-Zhang;
- Previous work of my coauthors.

Theorem

Assume a weak form of Malle's Conjecture.

Then, 100% of CM fields of any fixed degree are G-Weyl CM fields, when ordered by discriminant.

Theorem

Assume a weak form of Malle's Conjecture.

Then, 100% of CM fields of any fixed degree are G-Weyl CM fields, when ordered by discriminant.

That is: 100% of CM fields have Galois group as big as it can be.

Theorem

Assume a weak form of Malle's Conjecture.

Then, 100% of CM fields of any fixed degree are G-Weyl CM fields, when ordered by discriminant.

That is: 100% of CM fields have Galois group as big as it can be.

To count degree 2d CM fields E, count pairs (E, F), where F is the maximal totally real subfield.

Theorem

Assume a weak form of Malle's Conjecture.

Then, 100% of CM fields of any fixed degree are G-Weyl CM fields, when ordered by discriminant.

That is: 100% of CM fields have Galois group as big as it can be.

To count degree 2d CM fields E, count pairs (E, F), where F is the maximal totally real subfield.

An adaptation of work of Klüners.

Step 1: Counting quadratic extensions E/F

Step 1: For each totally real F, enumerate all totally imaginary quadratic extensions E/F.

Step 1: Counting quadratic extensions E/F

Step 1: For each totally real F, enumerate all totally imaginary quadratic extensions E/F.

To do this, define a Dirichlet series

$$D_{F,C_2}^-(s) := \sum_{[E:F]=2} \frac{1}{\mathcal{N}_{F/\mathbb{Q}}(\mathfrak{D}_{E/F})^s}$$

where the sum is over all totally imaginary quadratic extensions E/F, and $\mathfrak{D}_{E/F}$ is the relative discriminant.

Counting quadratic extensions

Theorem (Cohen-Diaz-Olivier '02)

For Re(s) > 1 we have

$$D_{F,C_2}^-(s) = \frac{1}{\zeta_F(2s)} \sum_{\mathfrak{c}_{\infty} \subset \mathfrak{m}_{\infty}} \sum_{\mathfrak{c} \mid 2} \frac{(-1)^{|\mathfrak{c}_{\infty}|}}{2^{|\mathfrak{c}_{\infty}|}} \mathcal{N}_{F/\mathbb{Q}}(2/\mathfrak{c})^{1-2s} \sum_{\chi \in Q(\mathrm{Cl}_{\mathfrak{c}^2\mathfrak{c}_{\infty}}(F))} \mathcal{L}_F(\chi,s),$$

where $\mathfrak c$ runs over all integral ideals of F dividing 2, $\mathfrak c_\infty$ runs over all subsets of the set of real places $\mathfrak m_\infty$ of F, χ runs over all quadratic characters $Q(\mathrm{Cl}_{\mathfrak c^2\mathfrak c_\infty}(F))$ of the ray class group $\mathrm{Cl}_{\mathfrak c^2\mathfrak c_\infty}(F)$ modulo $\mathfrak c^2\mathfrak c_\infty$, and $L_F(\chi,s)$ is the L-function of χ .

Theorem (Cohen-Diaz-Olivier '02)

For Re(s) > 1 we have

$$D_{F,C_2}^-(s) = \frac{1}{\zeta_F(2s)} \sum_{c \text{: finite}} \left(\text{some 2-adic} \atop \text{mumbo jumbo} \right) \sum_{\chi} L_F(\chi,s),$$

where χ ranges (more or less) over quadratic characters of Cl(F).

Theorem (Cohen-Diaz-Olivier '02) For Re(s) > 1 we have

$$D_{F,C_2}^-(s) = \frac{1}{\zeta_F(2s)} \sum_{c \text{: finite}} \left(\begin{array}{c} \text{some 2-adic} \\ \text{mumbo jumbo} \end{array} \right) \sum_{\chi} L_F(\chi,s),$$

where χ ranges (more or less) over quadratic characters of Cl(F). What this says:

Theorem (Cohen-Diaz-Olivier '02)

For Re(s) > 1 we have

$$D_{F,C_2}^-(s) = \frac{1}{\zeta_F(2s)} \sum_{c \text{: finite}} \left(\text{some 2-adic} \atop \text{mumbo jumbo} \right) \sum_{\chi} L_F(\chi,s),$$

where χ ranges (more or less) over quadratic characters of $\mathrm{Cl}(F)$.

What this says:

Wild ramification is annoying.

Theorem (Cohen-Diaz-Olivier '02)

For Re(s) > 1 we have

$$D_{F,C_2}^-(s) = \frac{1}{\zeta_F(2s)} \sum_{c \text{: finite}} \left(\text{some 2-adic} \atop \text{mumbo jumbo} \right) \sum_{\chi} L_F(\chi,s),$$

where χ ranges (more or less) over quadratic characters of Cl(F).

What this says:

- Wild ramification is annoying.
- ▶ There are $|\mathrm{Cl}(K)[2]|$ characters in the sum, and $|\mathrm{Cl}_{4\mathfrak{m}_{\infty}}(K)[2]|$ characters in the 'actual sum'.

Theorem (Cohen-Diaz-Olivier '02)

For Re(s) > 1 we have

$$D_{F,C_2}^-(s) = \frac{1}{\zeta_F(2s)} \sum_{c \text{: finite}} \left(\text{some 2-adic} \atop \text{mumbo jumbo} \right) \sum_{\chi} L_F(\chi,s),$$

where χ ranges (more or less) over quadratic characters of Cl(F).

What this says:

- Wild ramification is annoying.
- ▶ There are $|\mathrm{Cl}(K)[2]|$ characters in the sum, and $|\mathrm{Cl}_{4\mathfrak{m}_{\infty}}(K)[2]|$ characters in the 'actual sum'.
- ▶ The quadratic extensions ramified only at 2∞ control the rest.

Counting quadratic extensions: the upshot

Theorem (Cohen-Diaz-Olivier '02)

For Re(s) > 1 we have

$$D_{F,C_2}^-(s) = \frac{1}{\zeta_F(2s)} \sum_{c \text{: finite}} \left(\begin{array}{c} \text{some 2-adic} \\ \text{mumbo jumbo} \end{array} \right) \sum_{\chi} L_F(\chi,s).$$

Counting quadratic extensions: the upshot

Theorem (Cohen-Diaz-Olivier '02)

For Re(s) > 1 we have

$$D_{F,C_2}^-(s) = \frac{1}{\zeta_F(2s)} \sum_{c \text{: finite}} \left(\begin{array}{c} \text{some 2-adic} \\ \text{mumbo jumbo} \end{array} \right) \sum_{\chi} L_F(\chi,s).$$

We obtain

$$\#\{E\,:\, [E:F]=2, \text{ t.i.}, \, \mathcal{N}_{F/\mathbb{Q}}(\mathfrak{D}_{E/F})\leq X\}\asymp X+\#\mathrm{Cl}(F)[2]\cdot o(X),$$

Counting quadratic extensions: the upshot

Theorem (Cohen-Diaz-Olivier '02)

For Re(s) > 1 we have

$$D_{F,C_2}^-(s) = \frac{1}{\zeta_F(2s)} \sum_{c \text{: finite}} \left(\text{some 2-adic} \atop \text{mumbo jumbo} \right) \sum_{\chi} L_F(\chi,s).$$

We obtain

$$\#\{E \ : \ [E:F]=2, \ \mathsf{t.i.}, \ \mathcal{N}_{F/\mathbb{Q}}(\mathfrak{D}_{E/F}) \leq X\} \asymp X + \#\mathrm{Cl}(F)[2] \cdot o(X),$$

$$\sum_{E} d_{E}^{-s} = \sum_{F} \frac{1}{d_{F}^{2s}} D_{F,C_{2}}(s)^{-s}.$$

Definition (The constant δ_d)

For each d, choose $\delta_d \geq 0$ so that

$$|\mathrm{Cl}(K)[2]| \ll_{\epsilon,d} |d_K|^{\delta_d+\epsilon},$$

for all number fields K of degree d.

Definition (The constant δ_d)

For each d, choose $\delta_d \geq 0$ so that

$$|\mathrm{Cl}(K)[2]| \ll_{\epsilon,d} |d_K|^{\delta_d+\epsilon},$$

for all number fields K of degree d.

▶ The 'trivial bound': $\delta_d = \frac{1}{2}$.

Definition (The constant δ_d)

For each d, choose $\delta_d \geq 0$ so that

$$|\mathrm{Cl}(K)[2]| \ll_{\epsilon,d} |d_K|^{\delta_d+\epsilon},$$

for all number fields K of degree d.

- ► The 'trivial bound': $\delta_d = \frac{1}{2}$.
- ▶ The conjectured truth: $\delta_d = 0$.

Definition (The constant δ_d)

For each d, choose $\delta_d \geq 0$ so that

$$|\mathrm{Cl}(K)[2]| \ll_{\epsilon,d} |d_K|^{\delta_d+\epsilon},$$

for all number fields K of degree d.

- ▶ The 'trivial bound': $\delta_d = \frac{1}{2}$.
- ▶ The conjectured truth: $\delta_d = 0$.
- A little better (BSTTTZ): $\delta_3 = .2784 \cdots$ and $\delta_n = \frac{1}{2} \frac{1}{2n}$ for $n \ge 4$.

Step 2: Counting the base fields

Notation: For $d \ge 1$ and $G \subseteq S_d$, write

$$N_d(X,G):=\#\{K\ :\ [K:\mathbb{Q}]=d,\ \mathrm{Gal}(K^c/\mathbb{Q})=G\}.$$

Step 2: Counting the base fields

Notation: For $d \ge 1$ and $G \subseteq S_d$, write

$$N_d(X,G):=\#\{K\ :\ [K:\mathbb{Q}]=d,\ \mathrm{Gal}(K^c/\mathbb{Q})=G\}.$$

Definition (The constant M(G))

For each G, choose M(G) > 0 so that

$$N_d(X,G) \ll X^{M(G)}$$
.

Step 2: Counting the base fields

Notation: For $d \ge 1$ and $G \subseteq S_d$, write

$$N_d(X,G) := \#\{K : [K : \mathbb{Q}] = d, \operatorname{Gal}(K^c/\mathbb{Q}) = G\}.$$

Definition (The constant M(G))

For each G, choose M(G) > 0 so that

$$N_d(X,G) \ll X^{M(G)}$$
.

We can restrict the above to totally real K if we like, but this doesn't seem to help us.

Conjectures:

Conjectures:

• (Folklore/Linnik) M(G) = 1 always;

Conjectures:

- ▶ (Folklore/Linnik) M(G) = 1 always;
- ► (Malle's Conjecture)

$$X^{a(G)} \ll N_d(X,G) \ll X^{a(G)+\epsilon}$$

for $a(G) \leq 1$ determined by the group theory of G.

Conjectures:

- ▶ (Folklore/Linnik) M(G) = 1 always;
- ► (Malle's Conjecture)

$$X^{a(G)} \ll N_d(X,G) \ll X^{a(G)+\epsilon}$$

for $a(G) \leq 1$ determined by the group theory of G.

Conjecture (Our Weak Malle Conjecture)

We always have

$$M(G) + \delta_d < 2.$$

Conjectures:

- ▶ (Folklore/Linnik) M(G) = 1 always;
- ► (Malle's Conjecture)

$$X^{a(G)} \ll N_d(X,G) \ll X^{a(G)+\epsilon}$$

for $a(G) \leq 1$ determined by the group theory of G.

Conjecture (Our Weak Malle Conjecture)

We always have

$$M(G) + \delta_d < 2.$$

Enough if $M(G) < \frac{3}{2} + \frac{1}{2n}$.

Theorem

Theorem

The weak Malle conjecture is known for:

▶ $d \le 5$, any G (Bhargava, Cohen-Diaz-Olivier);

Theorem

- ▶ $d \le 5$, any G (Bhargava, Cohen-Diaz-Olivier);
- Any d, G abelian (Mäki);

Theorem

- ▶ $d \le 5$, any G (Bhargava, Cohen-Diaz-Olivier);
- Any d, G abelian (Mäki);
- ► Any d, G a p-group (Klüners-Malle);

Theorem

- ▶ $d \le 5$, any G (Bhargava, Cohen-Diaz-Olivier);
- Any d, G abelian (Mäki);
- Any d, G a p-group (Klüners-Malle);
- $d = \ell$ prime, $G = D_{\ell}$ (Klüners);

Theorem

- ▶ $d \le 5$, any G (Bhargava, Cohen-Diaz-Olivier);
- Any d, G abelian (Mäki);
- ► Any d, G a p-group (Klüners-Malle);
- $d = \ell$ prime, $G = D_{\ell}$ (Klüners);
- ▶ d = 2|H|, $G = C_2 \rtimes H$ in many cases (Klüners);

Theorem

- ▶ $d \le 5$, any G (Bhargava, Cohen-Diaz-Olivier);
- Any d, G abelian (Mäki);
- ► Any d, G a p-group (Klüners-Malle);
- $d = \ell$ prime, $G = D_{\ell}$ (Klüners);
- ▶ d = 2|H|, $G = C_2 \rtimes H$ in many cases (Klüners);
- ▶ $d = 3|A|, 4|A|, G = S_3 \times A, S_4 \times A, A \text{ abelian (Wang)};$

Theorem

- ▶ $d \le 5$, any G (Bhargava, Cohen-Diaz-Olivier);
- Any d, G abelian (Mäki);
- ► Any d, G a p-group (Klüners-Malle);
- $d = \ell$ prime, $G = D_{\ell}$ (Klüners);
- ▶ d = 2|H|, $G = C_2 \rtimes H$ in many cases (Klüners);
- ▶ $d = 3|A|, 4|A|, G = S_3 \times A, S_4 \times A, A \text{ abelian (Wang)};$

Theorem

- ▶ $d \le 5$, any G (Bhargava, Cohen-Diaz-Olivier);
- Any d, G abelian (Mäki);
- ► Any d, G a p-group (Klüners-Malle);
- $d = \ell$ prime, $G = D_{\ell}$ (Klüners);
- ▶ d = 2|H|, $G = C_2 \times H$ in many cases (Klüners);
- ▶ $d = 3|A|, 4|A|, G = S_3 \times A, S_4 \times A, A \text{ abelian (Wang)};$
- ▶ Any d, |G| = d (Ellenberg-Venkatesh);
- Frobenius groups (Mehta);

Theorem

- ▶ $d \le 5$, any G (Bhargava, Cohen-Diaz-Olivier);
- Any d, G abelian (Mäki);
- Any d, G a p-group (Klüners-Malle);
- $d = \ell$ prime, $G = D_{\ell}$ (Klüners);
- ▶ d = 2|H|, $G = C_2 \times H$ in many cases (Klüners);
- ▶ $d = 3|A|, 4|A|, G = S_3 \times A, S_4 \times A, A \text{ abelian (Wang)};$
- ▶ Any d, |G| = d (Ellenberg-Venkatesh);
- Frobenius groups (Mehta);
- **▶** (....)

Incorporating everything above, we have

$$\xi(s) := \sum_{E} d_{E}^{-s} = \sum_{F} \frac{1}{d_{F}^{2s}} D_{F,C_{2}}(s)^{-s}.$$

Incorporating everything above, we have

$$\xi(s) := \sum_{E} d_{E}^{-s} = \sum_{F} \frac{1}{d_{F}^{2s}} D_{F,C_{2}}(s)^{-s}.$$

Proposition

If the Weak Malle Conjecture is true for whatever family of fields we're summing F over, then:

Incorporating everything above, we have

$$\xi(s) := \sum_{E} d_{E}^{-s} = \sum_{F} \frac{1}{d_{F}^{2s}} D_{F,C_{2}}(s)^{-s}.$$

Proposition

If the Weak Malle Conjecture is true for whatever family of fields we're summing F over, then:

• $\xi(s)$ converges absolutely in $\Re(s) > 1$;

Incorporating everything above, we have

$$\xi(s) := \sum_{E} d_{E}^{-s} = \sum_{F} \frac{1}{d_{F}^{2s}} D_{F,C_{2}}(s)^{-s}.$$

Proposition

If the Weak Malle Conjecture is true for whatever family of fields we're summing F over, then:

- $\xi(s)$ converges absolutely in $\Re(s) > 1$;
- $\xi(s)$ has meromorphic continuation to a half-plane $\Re(s) > \alpha$, with $\alpha < 1$; it has a simple pole at s = 1, with residue

$$\sum_{F} \frac{\operatorname{Res}_{s=1} \zeta_{F}(s)}{2^{d} d_{F}^{2} \zeta_{F}(2)} \quad "\approx " \sum_{F} \frac{1}{d_{F}^{2}}.$$

Incorporating everything above, we have

$$\xi(s) := \sum_{E} d_{E}^{-s} = \sum_{F} \frac{1}{d_{F}^{2s}} D_{F,C_{2}}(s)^{-s}.$$

Proposition

If the Weak Malle Conjecture is true for whatever family of fields we're summing F over, then:

- $\xi(s)$ converges absolutely in $\Re(s) > 1$;
- $\xi(s)$ has meromorphic continuation to a half-plane $\Re(s) > \alpha$, with $\alpha < 1$; it has a simple pole at s = 1, with residue

$$\sum_{F} \frac{\operatorname{Res}_{s=1} \zeta_{F}(s)}{2^{d} d_{F}^{2} \zeta_{F}(2)} \quad "\approx " \sum_{F} \frac{1}{d_{F}^{2}}.$$

• $\xi(s)$ is polynomially bounded in vertical strips.

Suppose that E is not a G-Weyl extension:

Suppose that E is not a G-Weyl extension: $Gal(F^c/\mathbb{Q}) = G$ but $Gal(E^c/\mathbb{Q}) \neq C_2 \wr G$.

Suppose that E is not a G-Weyl extension: $Gal(F^c/\mathbb{Q}) = G$ but $Gal(E^c/\mathbb{Q}) \neq C_2 \wr G$.

Lemma (Klüners)

Given the above, suppose that p is any prime unramified in F but ramified in E.

Suppose that E is not a G-Weyl extension: $Gal(F^c/\mathbb{Q}) = G$ but $Gal(E^c/\mathbb{Q}) \neq C_2 \wr G$.

Lemma (Klüners)

Given the above, suppose that p is any prime unramified in F but ramified in E. Then $p^2 \mid d_L$.

Suppose that E is not a G-Weyl extension: $Gal(F^c/\mathbb{Q}) = G$ but $Gal(E^c/\mathbb{Q}) \neq C_2 \wr G$.

Lemma (Klüners)

Given the above, suppose that p is any prime unramified in F but ramified in E. Then $p^2 \mid d_L$.

Application: Look at the Dirichlet series again: no contribution to the residue.

Table: Values of $r_d(G)$ for $d \leq 5$

d	G	Number of fields	Minimal discriminant	Residue	Proportion
2	C ₂	100,000	5	0.009856	-
3		25,000	49	3.30×10^{-5}	-
	C3	107	49	2.29×10^{-5}	0.69
	S ₃	24,893	148	1.01 × 10 ⁻⁵	0.31
4		25,000	725	1.24 × 10 ⁻⁷	-
	C4	75	1125	2.41×10^{-8}	0.19
	V4	289	1600	1.56 × 10 ⁻⁸	0.13
	D4	8147	725	5.9 × 10 ⁻⁸	0.48
	A4	45	26569	9.3×10^{-11}	0.0008
	S 4	16,444	1957	2.5×10^{-8}	0.20
5		25,000	14641	1.05 × 10 ⁻¹⁰	-
	C 5	5	14641	3.08 × 10 ⁻¹¹	0.29
	D ₅	28	160801	4.24 × 10 ⁻¹³	0.003
	F ₅	15	2382032	9 × 10 ⁻¹⁵	0.00009
	A ₅	21	3104644	5 × 10 ⁻¹⁵	0.00005
	S ₅	24,931	24217	7.4 × 10 ⁻¹¹	0.70