

Sketch-Based Shape Retrieval

Mathias Eitz Ronald Richter Tamy Boubekeur

Telecom ParisTech

Kristian Hildebrand

Marc Alexa TU Berlin

TU Berlin

TU Berlin

TU Berlin

Overview

Why Sketch-Based?

3D warehouse

car

Search

- Problems:
 - vehicle, jeep, truck, pickup, ...
 - no keyword attached to model

Why Sketch-Based?

Easy to sketch, difficult to describe

Why Sketch-Based?

Easy to sketch, difficult to describe

Challenges

- What to match the sketch lines against?
- Sketch is a projection, information lost
- Need to support all possible viewing directions
- Handle extreme abstraction/exaggeration

How Do Humans Sketch for Shape Retrieval?

- Questions:
 - Type of lines humans draw, are outlines enough? [Chen 2003]
 - Consistent quality?
 - Realistic/abstract?
- User study on Amazon Mechanical Turk
 - Interactive drawing tool
 - Asked for a total of ~2,000 sketches in 90 categories
 - Categories from Princeton Shape Benchmark [Shilane 2003]

How Do Humans Sketch for Shape Retrieval?

Large variety of sketching styles:

View-Based Approach

- View-based instead of direct matching to 3D shape
 - [Bülthoff'92]: humans represent shapes using 2D views
 - [Cole'07]: 90% of lines explained by NPR algorithms

View Generation

Similarity Measure

Requirements:

- Tolerate local and global deformations
- Support partial matching
- Fast and efficient

Need appropriate feature transform

Local Feature Extraction

Local Feature Extraction: Gabor Filter

frequency domain

Local Feature Extraction

SIGGRAPH20

Quantization Using Visual Vocabulary

Bag-of-Features Representation

Search

Establishing an Objective Benchmark

First large benchmark for sketch-based 3d shape retrieval

1) query: 2) count matches: 3) precision/recall "fighter jet" "fighter jet"

Comparison to Existing Systems

Competing systems have been optimized as well!

Failure Case

Partial Matching

Partial Matching

Easy to Sketch, Difficult to Describe

Easy to Sketch, Difficult to Describe

Conclusions

- Interactive sketch-based shape retrieval
 - First benchmark for 3d shape retrieval
 - New feature transform that outperforms existing approaches
 - Dataset released to encourage further research

Thanks

- Acknowledgements
 - AMT users for their sketches
 - James Hays for help with AMT
 - Princeton Shape Benchmark [Shilane'04]
 - RTSC tool by Doug DeCarlo, Szymon Rusinkiewicz
 - Cited authors for images from their papers
- See http://cybertron.cg.tu-berlin.de/eitz for:
 - Dataset
 - Demo

Parameter Optimization

Can apply same method to existing descriptors

Best View Generation

- Are all views equally likely to be drawn?
 - Learn model of human viewpoint preference
 - RBF SVM using the following features:
 - projected area [Plemenos 96], depth smoothness, silhouette length [Secord 11]

Best View Generation

Predict best views for unknown model

c) user sketch

Comparison View Generation

Parameter Optimization

- Many parameters in our pipeline best combination?
 - Feature transform: #orientations, Gabor filter parameters
 - Vocabulary size, feature size
- Sampling the whole parameter space is not an option
 - 6-dimensional space, 10 samples: 10^6 samples
 - Each sample takes one hour = 100 years
 - Our solution: choose two free parameters, fix remaining

Parameter Optimization

- Optimizing parameters of underlying GABOR filter
 - x/y axis: bandwidth
 - left to right: peak frequency

