

Dr. Arun K. Kulshreshth

Fall 2020

Lecture 8: Math Concepts II

Reminder

- Midterm Exam 1
 - Wednesday, September 23, 2020
 - ODS: Schedule your exam with ODS by September 18,
 2020

About Today's Lecture

- Last Class:
 - Cartesian coordinate system
 - 2D cartesian space
 - 3D cartesian space
 - Vectors and operations on vectors
- Today
 - Multiple coordinate spaces
 - Matrix operations
 - Orientation representations

Why Multiple Coordinate Spaces?

- Some things become easier in the correct coordinate space.
- We can leave the details of transforming between coordinate spaces to the graphics hardware.
- Coordinate Systems in Games/Graphics
 - World space
 - Object space
 - Camera space

World Space

- World space is the global coordinate system.
- Use it to keep track of position and orientation of every object in the game.
- There is only one world space!

Object Space

Every object in the game has:

- Its own origin (where it is),
- Its own concept of "up" and "right" and "forwards",
- That is, its own coordinate space.
- Use it to keep track of relative positions and orientation (eg. Collision detection, AI)

Camera Space

- Object space for the viewer
- represented by a camera
- used to project 3D space onto screen space

Matrix

Useful in transformations

Definitions

- Algebraic definition of a matrix: a table of scalars in square brackets.
- Matrix dimension is the width and height of the table, w x h.
- Typically we use dimensions 2 x 2 for 2D work, and 3 x 3 for 3D work.

Matrix Components

- Entries are numbered by row and column, eg. m_{ij} is the entry in row i, column j.
- Start numbering at 1, not 0.

```
\begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}
```


Square Matrices

- Same number as rows as columns.
- Entries m_{ii} are called the *diagonal* entries. The others are called *nondiagonal* entries

```
\begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}
```


Diagonal Matrices

A diagonal matrix is a square matrix whose nondiagonal elements are zero.

$$\begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -5 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

The Identity Matrix

The identity matrix of dimension n, denoted I_n , is the n x n matrix with 1s on the diagonal and 0s elsewhere.

$$\mathbf{I}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Vectors as Matrices

- A row vector is a 1 x n matrix.
- A column vector is an n x 1 matrix.
- They were pretty much interchangeable in the lecture on Vectors.
- They're not once you start treating them as matrices.

 $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \qquad \begin{bmatrix} \frac{1}{5} \\ 6 \end{bmatrix}$

Transpose of a Matrix

- The transpose of an $r \times c$ matrix \mathbf{M} is a $c \times r$ matrix called \mathbf{M}^{T} .
- Take every row and rewrite it as a column.
- Equivalently, flip about the diagonal

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^T = \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix}$$

Transpose of a Vector

If \mathbf{v} is a row vector, \mathbf{v}^{T} is a column vector and vice-versa

$$\begin{bmatrix} x & y & z \end{bmatrix}^T = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\begin{bmatrix} x & y & z \end{bmatrix}^T = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad \begin{bmatrix} x \\ y \\ z \end{bmatrix}^T = \begin{bmatrix} x & y & z \end{bmatrix}$$

Multiplying By a Scalar

- Can multiply a matrix by a scalar.
- Result is a matrix of the same dimension.
- To multiply a matrix by a scalar, multiply each component by the scalar.

$$k\mathbf{M} = k \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \\ m_{41} & m_{42} & m_{43} \end{bmatrix} = \begin{bmatrix} km_{11} & km_{12} & km_{13} \\ km_{21} & km_{22} & km_{23} \\ km_{31} & km_{32} & km_{33} \\ km_{41} & km_{42} & km_{43} \end{bmatrix}$$

Matrix Multiplication

Multiplying an $r \times n$ matrix **A** by an $n \times c$ matrix **B** gives an $r \times c$ result **AB**.

Multiplication: Result

- Multiply an $r \times n$ matrix **A** by an $n \times c$ matrix **B** to give an $r \times c$ result **C** = **AB**.
- Then $\mathbf{C} = [c_{ij}]$, where c_{ij} is the dot product of the ith row of \mathbf{A} with the jth column of \mathbf{B} .
- That is:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

<u>Example</u>

$$\begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} & c_{15} \\ c_{21} & c_{22} & c_{23} & c_{24} & c_{25} \\ c_{31} & c_{32} & c_{33} & c_{34} & c_{35} \\ c_{41} & c_{42} & c_{43} & c_{44} & c_{45} \end{bmatrix} =$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} & b_{15} \\ b_{21} & b_{22} & b_{23} & b_{24} & b_{25} \end{bmatrix}$$

$$c_{24} = a_{21}b_{14} + a_{22}b_{24}$$

2 x 2 Case

$$\mathbf{AB} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$$

3 x 3 Case

$$\mathbf{AB} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} & a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{33} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} & a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33} \\ a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} & a_{31}b_{13} + a_{32}b_{23} + a_{33}b_{33} \end{bmatrix}$$

Row Vector Times Matrix Multiplication

Can multiply a row vector times a matrix

Matrix Times Column Vector Multiplication

Can multiply a matrix times a column vector.

$$\begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} xm_{11} + ym_{12} + zm_{13} \\ xm_{21} + ym_{22} + zm_{23} \\ xm_{31} + ym_{32} + zm_{33} \end{bmatrix}$$

Orientation

- What is orientation?
- More than direction.
- A vector specifies direction, but it can also be twisted.

This is Important Because

Twisting an object changes its orientation.

Angular Displacement

- Orientation can't be given in absolute terms.
- Just as a position is a translation from some known point, an orientation is a rotation from some known reference orientation (often called the *identity* or home orientation).
- The amount of rotation is known as an *angular* displacement.

How to Represent Orientation

- 1. Matrices
- 2. Euler angles
- 3. Quaternions

Matrix Form

- List the relative orientation of two coordinate spaces by listing the transformation matrix that takes one space to another.
- For example: from object space to world space.
- Transform back by using the inverse matrix.

Euler Angles

- Euler angles are another common method of representing orientation.
- Euler is pronounced "oiler," not "yoolur."
- They are named for the famous mathematician who developed them, Leonhard Euler (1707 – 1783).

Euler Angles

- Specify orientation as a series of 3 angular displacements from upright space to object space.
- Which axes? Which order?
- Need a convention.

- Heading-pitch-bank
 - Heading: rotation about y axis (aka "yaw")
 - Pitch: rotation about x axis
 - Bank: rotation about z axis (aka "roll")

Heading

Rotation about y-axis

Pitch

Rotation about x-axis

Bank

Rotation about z-axis

The Sign Matters

- Use the hand rule again.
- Thumb points along positive axis of rotation.
- Fingers curl in direction of positive rotation.

The Order Matters

- Heading is first: it is relative to the upright frame of reference – that is, vertical.
- Pitch is next because it is relative to the horizon. But the x-axis may have been moved by the heading change. (Object x is no longer the same as upright x.)
- Bank is last. The z-axis may have been moved by the heading and pitch change. (Object z is no longer the same as upright z.)

Advantages of Euler Angles

- Easy for humans to use.
- Really the only option if you want to enter an orientation by hand.
- Minimal space 3 numbers per orientation.
 - Bottom line: if you need to store a lot of 3D rotational data in as little memory as possible, as is very common when handling animation data, Euler angles are the best choices.

Advantages of Euler Angles

- Another reason to choose Euler angles when you need to save space is that the numbers you are storing are more easily compressed.
 - Each number is <= 360
- Every set of 3 numbers makes sense unlike matrices and quaternions.

<u>Summary</u>

- Multiple coordinate spaces
 - World space
 - Object space
 - Camera space
- Matrix and operations
- Orientation Representations

