An easy proof of quadratic reciprocity

Brant Jones jones3bc@jmu.edu James Madison University

January 16, 2019

Throughout this talk, let p and q be odd primes. . .

Let $\chi_p(q)$ be 1 or -1 according to whether q is or is not a perfect square mod p.

Example. Working mod 5, $1 = 1^2 = 4^2$, $4 = 2^2 = 3^2$.

Example. Working mod 7, 5 is not a perfect square.

Example. Working mod 11, $5 = 4^2 = 7^2$

Example. Working mod 13, or mod 17, 5 is not a perfect square.

Example. Working mod 19, $5 = 9^2 = 10^2$.

Throughout this talk, let p and q be odd primes. . .

Let $\chi_p(q)$ be 1 or -1 according to whether q is or is not a perfect square mod p.

Example. Working mod 5, $1 = 1^2 = 4^2$, $4 = 2^2 = 3^2$.

Example. Working mod 7, 5 is not a perfect square.

Example. Working mod 11, $5 = 4^2 = 7^2$

Example. Working mod 13, or mod 17, 5 is not a perfect square.

Example. Working mod 19, $5 = 9^2 = 10^2$.

Throughout this talk, let p and q be odd primes. . .

Let $\chi_p(q)$ be 1 or -1 according to whether q is or is not a perfect square mod p.

Example. Working mod 5, $1 = 1^2 = 4^2$, $4 = 2^2 = 3^2$.

Example. Working mod 7, 5 is not a perfect square.

Example. Working mod 11, $5 = 4^2 = 7^2$.

Example. Working mod 13, or mod 17, 5 is not a perfect square.

Example. Working mod 19, $5 = 9^2 = 10^2$

Throughout this talk, let p and q be odd primes. . .

Let $\chi_p(q)$ be 1 or -1 according to whether q is or is not a perfect square mod p.

Example. Working mod 5, $1 = 1^2 = 4^2$, $4 = 2^2 = 3^2$.

Example. Working mod 7, 5 is not a perfect square.

Example. Working mod 11, $5 = 4^2 = 7^2$.

Example. Working mod 13, or mod 17, 5 is not a perfect square.

Example. Working mod 19, $5 = 9^2 = 10^2$

Throughout this talk, let p and q be odd primes. . .

Let $\chi_p(q)$ be 1 or -1 according to whether q is or is not a perfect square mod p.

Example. Working mod 5, $1 = 1^2 = 4^2$, $4 = 2^2 = 3^2$.

Example. Working mod 7, 5 is not a perfect square.

Example. Working mod 11, $5 = 4^2 = 7^2$.

Example. Working mod 13, or mod 17, 5 is not a perfect square.

Example. Working mod 19, $5 = 9^2 = 10^2$.

Throughout this talk, let p and q be odd primes. . .

Let $\chi_p(q)$ be 1 or -1 according to whether q is or is not a perfect square mod p.

Example. Working mod 5, $1 = 1^2 = 4^2$, $4 = 2^2 = 3^2$.

Example. Working mod $7 \equiv 2 \mod 5$, 5 is not a perfect square.

Example. Working mod $11 \equiv 1 \mod 5$, $5 = 4^2 = 7^2$.

Example. Working mod $13 \equiv 3 \mod 5$, or mod $17 \equiv 2 \mod 5$, 5 is not a perfect square.

Example. Working mod $19 \equiv 4 \mod 5$, $5 = 9^2 = 10^2$.

After studying such data, you may imagine that $\chi_p(q) = \chi_q(p)$.

Actually, there is one more rule: $\chi_p(q) = -\chi_q(p)$ if p and q are both 3 mod 4.

Throughout this talk, let p and q be odd primes. . .

Let $\chi_p(q)$ be 1 or -1 according to whether q is or is not a perfect square mod p.

Example. Working mod 5, $1 = 1^2 = 4^2$, $4 = 2^2 = 3^2$.

Example. Working mod $7 \equiv 2 \mod 5$, 5 is not a perfect square.

Example. Working mod $11 \equiv 1 \mod 5$, $5 = 4^2 = 7^2$.

Example. Working mod $13 \equiv 3 \mod 5$, or mod $17 \equiv 2 \mod 5$, 5 is not a perfect square.

Example. Working mod $19 \equiv 4 \mod 5$, $5 = 9^2 = 10^2$.

After studying such data, you may imagine that $\chi_p(q) = \chi_q(p)$.

Actually, there is one more rule: $\chi_p(q) = -\chi_q(p)$ if p and q are both 3 mod 4.

Reformulation

Theorem

(Euler's criterion) For any odd prime p, $\chi_p(q) = q^{\frac{p-1}{2}} \mod p$

- Fermat's Little Theorem proves $q^{\frac{p-1}{2}} \mod p$ is ± 1 : p divides $(q^{p-1}-1)=(q^{\frac{p-1}{2}}-1)(q^{\frac{p-1}{2}}+1)$ so divides one of the factors.
- Existence of primitive roots mod p proves the correspondence with χ_p(q).

So, we can restate QR as saying that we have the following **equality of signs**:

$$\left(q^{\frac{p-1}{2}} \bmod p\right) \left(p^{\frac{q-1}{2}} \bmod q\right) = (-1)^{\frac{p-1}{2} \frac{q-1}{2}}.$$

(where the RHS is -1 precisely if p and q are both 3 mod 4.)

So how to prove

$$\left(q^{\frac{p-1}{2}} \bmod p\right) \left(p^{\frac{q-1}{2}} \bmod q\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}?$$

 We need a common setting where we can work mod p and mod q . . . Chinese Remainder Theorem:

$$\mathbb{Z}_{pq} \equiv \mathbb{Z}_p \times \mathbb{Z}_q$$

and moreover

$$\mathbb{Z}_{pq}^{\perp} \equiv \mathbb{Z}_{p}^{\perp} \times \mathbb{Z}_{q}^{\perp}$$

where \mathbb{Z}_{pq}^{\perp} is the set of classes **relatively prime** to pq.

 The statement is about comparing signs, so we should set up some products that are off by a sign . . .


```
6 55 34 13 69 48 27 6 62 41 20 76 5 33 12 68 47 26 5 61 40 19 75 54 4 11 67 46 25 4 60 39 18 74 53 32 3 66 45 24 3 59 38 17 73 52 31 10 2 44 23 2 58 37 16 72 51 30 9 65 1 22 1 57 36 15 71 50 29 8 64 43 0 0 56 35 14 70 49 28 7 63 42 21 0 1 2 3 4 5 6 7 8 9 10
```

- Label by integers along the diagonal line y = x using torus/"pacman" rules to wrap around.
- Labeling (by \mathbb{Z}_{pq} or \mathbb{Z}_{pq}^{\perp}) is injective, by uniqueness of prime factorization.

- Label by integers along the diagonal line y = x using torus/"pacman" rules to wrap around.
- Labeling (by \mathbb{Z}_{pq} or \mathbb{Z}_{pq}^{\perp}) is injective, by uniqueness of prime factorization.
- **Multiplication by** -1 is reflection through the lines at $\frac{p-1}{2}$ and $\frac{q-1}{2}$.

Say a subset $S \subseteq \mathbb{Z}_{pq}^{\perp}$ is **anti-symmetric** if for each $i \in \mathbb{Z}_{pq}^{\perp}$, we have precisely one of i or -i in S:

6		34	13			27	6			20	
5		12			26	5			19		
4				25	4			18			32
3			24	3		38	17			31	10
2		23	2		37	16			30	9	
1		1		36	15			29	8		
0											
	0	1	2	3	4	5	6	7	8	9	10

Notice the sign change required to move between the lower two sets is RHS of our QR statement: $(-1)^{\frac{p-1}{2}\frac{q-1}{2}}$.

Say a subset $S \subseteq \mathbb{Z}_{pq}^{\perp}$ is **anti-symmetric** if for each $i \in \mathbb{Z}_{pq}^{\perp}$, we have precisely one of i or -i in S:

6		34	13			27	6			20	
5		12			26	5			19		
4				25	4			18			32
3			24	3		38	17			31	10
2		23	2		37	16			30	9	
1		1		36	15			29	8		
0											
	0	1	2	3	4	5	6	7	8	9	10

Notice the sign change required to move between the lower two sets is RHS of our QR statement: $(-1)^{\frac{p-1}{2}\frac{q-1}{2}}$.

Say a subset $S \subseteq \mathbb{Z}_{pq}^{\perp}$ is **anti-symmetric** if for each $i \in \mathbb{Z}_{pq}^{\perp}$, we have precisely one of i or -i in S:

Notice the sign change required to move between the lower two sets is RHS of our QR statement: $(-1)^{\frac{p-1}{2}\frac{q-1}{2}}$.

Compare the product of these residues mod p (horizontal):

$$(p-1)!^{\frac{q-1}{2}} \bmod p$$

ast entry: $\frac{pq-1}{2}$. Working mod p: $\frac{pq-p+p-1}{2}=p\frac{q-1}{2}+\frac{p-1}{2}$.

Hence, last multiple of q is: $\frac{pq-q+q-1}{2}=q^{\frac{p-1}{2}}+\frac{q-1}{2}$.

6		34	13			27	6			20	
5		12			26	5			19		
4				25	4			18			32
3			24	3		38	17			31	10
2		23	2		37	16			30	9	
1		1		36	15			29	8		
0			35	14			28	7			21
	0	1	2	3	4	5	6	7	8	9	10

$$\frac{(p-1)!^{\frac{q-1}{2}} \binom{p-1}{2}!}{\binom{p-1}{2}} \mod p$$

 $q(2q)\cdots\left(rac{p-1}{2}q
ight)$

Compare the product of these residues mod p (horizontal):

Last entry:
$$\frac{pq-1}{2}$$
. Working mod p : $\frac{pq-p+p-1}{2}=p\frac{q-1}{2}+\frac{p-1}{2}$.

Hence, last multiple of q is: $\frac{pq-q+q-1}{2}=q\frac{p-1}{2}+\frac{q-1}{2}$.

6		34	13			27	6			20	
5		12			26	5			19		
4				25	4			18			32
3			24	3		38	17			31	10
2		23	2		37	16			30	9	
1		1		36	15			29	8		
0			35	14			28	7			21
	0	1	2	3	4	5	6	7	8	9	10

$$\frac{(p-1)!^{\frac{q-1}{2}}\left(\frac{p-1}{2}\right)!}{q(2q)\cdots\left(\frac{p-1}{2}q\right)} \bmod p$$

Compare the product of these residues mod p (horizontal):

Last entry:
$$\frac{pq-1}{2}$$
. Working mod p : $\frac{pq-p+p-1}{2}=p\frac{q-1}{2}+\frac{p-1}{2}$.

Hence, last multiple of q is: $\frac{pq-q+q-1}{2}=q\frac{p-1}{2}+\frac{q-1}{2}$.

6		34	13			27	6			20	
5		12			26	5			19		
4				25	4			18			32
3			24	3		38	17			31	10
2		23	2		37	16			30	9	
1		1		36	15			29	8		
0			35	14			28	7			21
	0	1	2	3	4	5	6	7	8	9	10

$$\frac{(p-1)!^{\frac{q-1}{2}}\left(\frac{p-1}{2}\right)!}{q(2q)\cdots\left(\frac{p-1}{2}q\right)} \bmod p$$

Compare the product of these residues mod p (horizontal):

Last entry:
$$\frac{pq-1}{2}$$
. Working mod p : $\frac{pq-p+p-1}{2}=p\frac{q-1}{2}+\frac{p-1}{2}$.

Hence, last multiple of q is: $\frac{pq-q+q-1}{2}=q\frac{p-1}{2}+\frac{q-1}{2}$.

6		34	13			27	6			20	
5		12			26	5			19		
4				25	4			18			32
3			24	3		38	17			31	10
2		23	2		37	16			30	9	
1		1		36	15			29	8		
0			35	14			28	7			21
	0	1	2	3	4	5	6	7	8	9	10

$$\frac{(p-1)!^{\frac{q-1}{2}}\left(\frac{p-1}{2}\right)!}{q(2q)\cdots\left(\frac{p-1}{2}q\right)} \bmod p$$

Quadratic Reciprocity by picture!

Sources

What's the "best" proof of quadratic reciprocity?

- Gauss proof V
- G. Rousseau, On the Quadratic Reciprocity Law, J. Austral. Math. Soc. Ser. A 51 (1991), no. 3, 423—425.
- Tim Kunisky, Quadratic Reciprocity by Group Theory, Harvard College Math. Review, Vol. 2, no. 2 (2008), 75—76.