Computational Data Analysis Machine Learning

Yao Xie, Ph.D.

Assistant Professor
Harold R. and Mary Anne Nash Early Career Professor
H. Milton Stewart School of Industrial and Systems
Engineering

Nonlinear Dimensionality Reduction

Limitation of PCA and SVD

Suitable when variables are linearly correlated

Not suitable when nonlinear structures are present

http://www.datawrangling.org/python-montage-code-for-displaying-arrays/

What's a reasonable distance measure

Recall: nearest neighbor graph

(p.23, spectral clustering)

• Given m data points, threshold ϵ , construct matrix $A \in \mathbb{R}^{m \times m}$

$$A^{ij} = \begin{cases} 1, & \text{if } ||x^i - x^j|| \le \epsilon \\ 0, & \text{otherwise} \end{cases}$$

Isomap

- Given m data points, $\{x^1, x^2, ... x^m\} \in \mathbb{R}^n$
- Step 1: build a weighted graph A using nearest neighbors, and compute pairwise shortest distance matrix D
- Step 3: use a centering matrix $H = I \frac{1}{m} 11^T$ to get

$$C = -\frac{1}{2m}H(D)^2H$$
 $D_{ij}^2 := (D_{ij})^2$

• Step 4: compute leading eigenvectors $w^1, w^2, ...$ and eigenvalues $\lambda_1, \lambda_2, \dots$ of C

$$Z^{T} = (w^{1}, w^{2} \dots) \begin{pmatrix} \lambda_{1}^{1/2} & & \\ & \lambda_{2}^{1/2} & \\ & & \ddots \end{pmatrix}$$

$$D_{ij}^2 := (D_{ij})^2$$

Is the entrywise square of the distance matrix

Is the principal direction interpretable?

Result by isomap

