Tutorial 6 - Catastrophe Modeling

- 1. What are the four modules in a catastrophe model?
- 2. Briefly explain the four modules in a catastrophe model.
- 3. You are given the following frequency and severity for non-hurricane weather for insurer ABC.

Accident	Ultimate Frequency per	Ultimate
Year	100 Earned House Years	Severity
2014	1.21	5,886
2015	1.11	6,320
2016	1.31	6,059
2017	1.40	6,204

Compute the trended pure premium per 100 earned house years if

- The pure premium trend is 7.8% per year
- New rate will be in effect for a year, starting from April 1, 2018
- All policies are annual
- 4. The following is the earned premium information for insurer ABC.

Calendar	Earned	Premium
Year	Prem (000)	On-Level Factors
2014	8,701	1.2170
2015	9,400	1.1180
2016	10,550	1.0190
2017	11,326	0.9660

Compute the trended earned premium for each accident year if the premium trend is 1.8% and projected period is the same as previous question.

- 5. From previous two questions, calculate the catastrophe loading for non-hurricane weather if the CY2017 earned house years 14,169.
- 6. (DIY) To understand more about Occurrence Exceedance Probability and Aggregate Exceedance Probability. Try the following:
 - (a) Simulate a natural number n from Poisson distribution (this represents loss frequency), with mean $\lambda = 5$
 - (b) Simulate n number from Lognormal distribution (this represents loss severity), with $\mu = 5$ and $\sigma = 2$
 - (c) Repeat above steps for 100 times
 - (d) Find the maximum loss amount for each iteration of n and compute the OEP of 1 in 100 year, 1 in 10 year losses
 - (e) Find the total loss amount for each iteration of n and compute the AEP of 1 in 100 year, 1 in 10 year losses