微积分(一)下第12周第三次课作业答案与提示

(散度与旋度、Gauss 公式)

1. 填空:

1) 设矢量场
$$\mathbf{A} = x^2 \mathbf{i} + yz\mathbf{j} + zx\mathbf{k}$$
, 则 $\operatorname{div} \mathbf{A} \Big|_{(1,1,2)} = \underline{\mathbf{5}}$,, $\operatorname{rot} \mathbf{A} \Big|_{(1,1,2)} = \underline{-\mathbf{i} - 2\mathbf{j}}$.

- 2) 设 $f(x, y, z) = x^3 y^4 z^2$, 则其梯度场的散度在(1,1,1,)处的值为20.
- 3) 设 $\mathbf{F} = \{x, y, z\}$, $I = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS$, S 取外侧, 当S 为球面 $x^2 + y^2 + z^2 = R^2$ 时,

 $I = 4\pi R^3$; 当 $S 为 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$ 之表面时, I = 3.

2. 设 *S* 是球面 $x^2 + y^2 + z^2 = R^2$ (R > 0) 的外侧, 求

1)
$$I = \oint_S \frac{x dy dz + y dz dx + z dx dy}{\sqrt{x^2 + y^2 + z^2}};$$

答案: $4\pi R^2$

2)
$$I = \iint_S x^3 dy dz + y^2 dz dx + z dx dy.$$

答案: $\frac{4}{5}\pi R^5 + \frac{4}{3}\pi R^3$

3. 求
$$I = \iint_S x^2 dy dz + y^2 dz dx + z^2 dx dy$$
, 其中

1) S 是立方体V: $0 \le x \le a, 0 \le y \le a, 0 \le z \le a$ 的全表面外侧; 答案: $3a^4$

4.计算 $I = \iint_{S} (1-x^2) dydz + 4xydzdx - 2xzdxdy$, $S \in X$ 是 X 要面上的曲线 $\begin{cases} x = e^y \\ z = 0 \end{cases}$ $(0 \le y \le a)$

绕x轴旋转一周所成的旋转曲面,其法矢量与x轴正向夹角为钝角的一侧.

答案: $(e^{2a}-1)\pi a^2$

5.计算
$$I = \iint_S \frac{axdydz + (z+a)^2 dxdy}{\sqrt{x^2 + y^2 + z^2}}$$
 其中 S 为下半球面 $z = -\sqrt{a^2 - x^2 - y^2}$ 的上侧 $(a > 0)$.

答案:
$$-\frac{\pi}{2}a^3$$

6.计算 $I = \iint_{S} (x\cos\alpha + y\cos\beta + z\cos\gamma)dS$, S 是球面 $x^2 + y^2 + z^2 = R^2$ 的外侧, $\cos\alpha$,

 $\cos \beta$, $\cos \gamma$ 是其法矢量的方向余弦. 答案: $4\pi R^3$

7.求矢量 A = xyi + yzj + xzk 沿上半球面 $S: z = \sqrt{R^2 - x^2 - y^2}$ 上侧穿过 S 的通量 Φ .

答案: $\frac{1}{4}\pi R^4$