# A ZOOM FILTER FOR APPLAUSE AND LAUGHTER

Meeting 02.02.22

# What's the problem?

## Motivation

- Little feedback when speaking at virtual conferences
  - Laughter and Applause

### Idea

- Automatic laughter and applause detection in real-time
  - Using machine learning
- Ideally add this to an existing system as alternative to 'Mute'
- => No previous work for this particular use case.



# Existing approaches

Multi-modal

audio-only

Pre-segmented vs. boundary detection

Post processing vs. real-time processing



Project from 2018: https://www.ideo.com/blog/why-vour-office-needs-a-laugh-detector

#### INTERSPEECH 2021

30 August - 3 September, 2021, Brno, Czechia



#### **Robust Laughter Detection in Noisy Environments**

Jon Gillick\*, Wesley Deng<sup>†</sup>, Kimiko Ryokai\*, David Bamman\*

\*School of Information, University of California, Berkeley, CA, USA †EECS, University of California, Berkeley, CA, USA

{jongillick, wesley1016, kimiko, dbamman} @berkeley.edu

## Considerations

- Latency
- Computational cost
- 3. Threshold: 0.4: ▷)

link: https://www.isca-speech.org/archive/interspeech 2021/gillick21 interspeech.html

# Approach

- Use existing state-of-the-art model
- Evaluate it on a new dataset: ICSI corpus
  - suits our domain
- Adapt it for real-time usage

## 3 Results: Evaluation

- average meeting length: 56min
- average laughter length during meeting: 2:06 min

|                | new method    |        | Laughter in [min:sec] |                    |          |
|----------------|---------------|--------|-----------------------|--------------------|----------|
| threshold      | precisio<br>n | recall | predicted             | actual<br>laughter | noise    |
| 0.2            | 20.44%        | 37.40% | 5:03 min              | 1:08 min           | 3:55 min |
| 0.4            | 53.84%        | 20.68% | 1:00 min              | 0:33 min           | 0:27 min |
| 0.6            | 79.68%        | 8.92%  | 0:14 min              | 0:11 min           | 0:03 min |
| 0.8            | 90.44%        | 3.22%  | 0:04 min              | 0:04 min           | 0:00 min |
|                |               |        |                       |                    |          |
| Gillick et al. | 67.6%         | 84.7%  | 2:38 min              | 1:47 min           | 0:51 min |

# Retraining the model

- Problem: Data-Loading
  - 70h of audio only a few minutes per meeting will be used
- Original approach is way too slow
  - Difference between Switchboard and ICSI dataset

- => Lhotse: Python library for speech and audio data preparation
  - still in development

## Next steps

- By End of Week 4: Evaluation of first model trained on ICSI
- By End of Week 6: Evaluation on **MobileNet v3** model
- By End of Week 9: First draft
- By end of Week 11: Final version

# Recap

- Existing approaches + considerations
- Evaluation on the ICSI dataset
- Retraining the model
- Next steps