비정형 데이터 활용 세미 프로젝트

서비스 산업 데이터분석가 취업캠프

록차

1. 프로젝트 개요

2. 모델 플로우

3. 요약 및 시사점

4. 개발 후기

I 프로젝트 개요

1) 프로젝트 배경 / 문제정의

미성년자 비대면 증권계좌 개설이 허용되며 미성년 주식 투자자들 급증

■ 미성년자들의 낮은 경제 이해도

미성년 투자자들이 급증했지만 주식 정보를 이해하는데 어려움을 겪고 있음

뉴스제목만 보고도 상향/하향을 알려주는 숏리뷰 서비스 개발

I 프로젝트 개요

2) 역할 분담

기획서 2 *** +			✓ PPT 4 *** +		
Aa 작업 이름	<u>⊹</u> ; 상태	## 담당자	Aa 작업 이름	<u>⊹</u> 상태	≇≗ 담당자
세미프로젝트 기획안 초안	● 완료	현 현서 고 🛕 김하은 🌑 안재훈	■ PPT 레퍼런스	완료	🛕 김하은 (현) 현서 고
세미프로젝트 기획안 완성	● 완료	№ 지은 권	₽ PPT 초안 □ 1	완료	<u> </u>
			PPT 디자인	완료	△ 김하은
			PPT 발표	● 완료	\! 민준 방
■ EDA 및 데이터 전처리 6 *** +			<u>《</u> 모델링 7 ··· +		
Aa 작업 이름	뜻 상태	## 담당자	Aa 작업 이름	·;: 상태	<i>≇</i> 담당자
<u>A조</u>	● 완료	◉ 현서 고 🤼 민준 방	RandomForest	완료	☞ 정한 이
<u>B조</u>	● 완료	6 안재훈	AdaBoost	• 완료	№ 지은 권
<u> </u>	완료	🛕 김하은 📭 지은 권 🐽 정한 이	나이브베이즈	• 완료	현 현서 고 № 지은 권
SentenceBert	완료	△ 김하은	LSTM	완료	\! 민준 방
test/train 데이터셋 분리	완료	민준 방 🌑 안재훈	BERT	● 완료	₫ 김하은
코드 검수	완료	K Kyoo Kim	뉴스 제목 모델에 적용	● 완료	6 안재훈 (현) 현서 고
			모델링 코드 검수	완료	K Kyoo Kim

데이터 수집

데이터 전처리

train/test 분리

모델링

결과

[데이터 선정]

미래에셋증권 미성년자 보유 상위 종목 (2023.04.25 기준)

순위	국내주식	해외주식	ETF
1위	삼성전자	애플	TIGER 미국 S&P500
2위	카카오	테슬라	TIGER 미국나스닥 100
3위	삼성전자 우선주	마이크로소프트	TIGER 차이나전기차

=> 미성년자 보유 국내주식 종목 1위인 삼성전자 데이터를 수집

[데이터 수집 방법]

• 크롤링 사이트 : 한경 컨세서스 / 네이버 증권 뉴스

• 한경 컨센서스에서 삼성전자로 필터링 된 리포트 크롤링 => 상향/하향 분류 별 리포트 제목, 작성일 등 수집 (총 237개/기간:5년치)

• 네이버 주식 종목에서 삼성전자로 필터링 된 뉴스 크롤링 => 기사 제목, 작성일 등 수집(4000개)

데이터 수집

데이터 전처리

train/test 분리

모델링

결과

[한경 컨센서스 크롤링 데이터]

종목명 종목코드 제목 작성일 2023-04-10 삼성전자 5930 삼성전자 업황이 나쁠수록 감산은 확대된다 2023-03-15 삼성전자 5930 삼성전자 뻔하지만 당연한 최고의 선택 2023-01-09 삼성전자 5930 삼성전자 4Q22 잠정실적 리뷰 2022-11-21 삼성전자 5930 삼성전자 경쟁력 격차 복구 여부에 주목 저점 분할 매수 권고 2022-07-29 삼성전자 5930 삼성전자 시험은 어렵지만 변별력은 높아진다 2022-04-08 삼성전자 5930 삼성전자 1분기 디스플레이 기대 이상 2022-02-14 삼성전자 2022-02-08 삼성전자 5930 삼성전자 리스크는 주가에 반영 성장성은 미반영 2022-01-10 삼성전자 5930 삼성전자 IT Set 실판매 강도에 주목 필요 2022-01-10 삼성전자 5930 삼성전자 반도체 업종 조정기의 끝자락 2022-01-05 삼성전자 5930 삼성전자 2022년은 퀀텀 점프가 될 한 해 2021-12-20 삼성전자 5930 삼성전자 반도체와 모바일 사업부문 실적 호조 2021-11-24 삼성전자 5930 삼성전자 23년 연간 매출액 300조원 2021-10-25 삼성전자 5930 삼성전자 파운드리 사업부 가치 반영 5930 삼성전자 3Q21 하이퍼스케일러들의 서버 DRAM 재고 감소 예상 2021-07-08 삼성전자 2021-07-01 삼성전자 5930 삼성전자 2Q21 영업이익 11 3조원 전망 2021-06-18 오이솔루션 138080 오이솔루션 삼성전자 5G 장비 수주 확대 수혜 기대 2021-03-23 삼성전자 5930 삼성전자 TSMC 에 대적할 수 있는 유일한 반도체 기업 2021-03-08 원익IPS 240810 원익IPS 삼성전자 반도체 부분 투자 확대 예상 2021-01-29 삼성전자 5930 삼성전자 1Q21 영업이익 9 0조원 전망 2021-01-28 삼성물산 28260 삼성물산 4Q20 Review 삼성전자 배당 확대 수혜 기대

[네이버증권 뉴스 크롤링 데이터]

	종목코드	종목명	title
0	5930	삼성전자	'윌가의 황제'가 한국에 왔다제일 먼저 만난 사람은? [투자360]
1	5930	삼성전자	삼성 '유연한 조직 만들기' 시동전 뉴스위크 회장 초청강연
2	5930	삼성전자	코스피, 기관 대량 매수에 2,610대 마감원·달러 환율 1,308원 10전
3	5930	삼성전자	연중최고치' 코스피 2600선 안착삼성電·LG전자 '52주 신고가'
4	5930	삼성전자	'8만전자' 불 지피는 증권가 "삼성전자 좋아질 일만"…SK하이닉스 목표가도 ↑↑.
5	5930	삼성전자	삼성, 리차드 스미스 핑커턴재단 CEO 초청 특강 실시
6	5930	삼성전자	삼성전자, 외인 매도에 주가 숨고르기증권가는 "9만전자, BUY"
7	5930	삼성전자	공생 혹은 동상이몽'우호적 행동주의'는 성공할 수 있을까
8	5930	삼성전자	[초점] 30년 전 이건희가 외친 '신경영'…이재용의 '뉴 삼성'에 쏠리는 눈
9	5930	삼성전자	삼성전자 치솟자조용한 질주에 남몰래 웃었다는 '이 기업'
10	5930	삼성전자	다이먼 JP모건 회장, 5년 만에 방한KIC 등 금융기관장들 만나
11	5930	삼성전자	LG전자 'RE100' 가입…축구장 3개 크기 태양광 발전소 건설도
12	5930	삼성전자	[마켓PRO 칼럼]실적 뒷받침 교육주?소외된 기업 옥석가릴 때
13	5930	삼성전자	[마감시황] 코스피, 기관 대량 매수에 연중 '최고치'경신2610대 안착
14	5930	삼성전자	유연한 조직' 이재용 특명에 삼성 임원 대상 특강
15	5930	삼성전자	[시황] 코스피, 기관 매수세 유입에 상승2615.41 마감
16	5930	삼성전자	코스피, 기관 매수에 0.5% 상승 마감반도체는 조정
17	5930	삼성전자	코스피, 2610선 안착가치주 강세 주도[마감시황]
18	5930	삼성전자	"하반기 3000 가나" 코스피 연중 최고치 기록에 기대감 확산
19	5930	삼성전자	대구창조경제혁신센터 2022 성과평가 최우수 기관 선정
20	Easu	사서저지	코스피 기과 매스에 0.5% 사스 마가 - 바ㄷ눼즈느 조저/조하\

(총 237개/기간:5년치)

(총 4000개)

데이터 수집

데이터 전처리

train/test 분리

모델링

결과

[공통 전처리 과정]

① 한경 컨센서스 크롤링 데이터 -> 상향 :1 / 하향 :0 라벨링

	작성일	종목명	종목코드	제목	label
0	2023-04-10	삼성전자	5930	삼성전자 업황이 나쁠수록 감산은 확대된다	1
1	2023-03-15	삼성전자	5930	삼성전자 뻔하지만 당연한 최고의 선택	1
2	2023-01-09	삼성전자	5930	삼성전자 4Q22 잠정실적 리뷰	1
127	2023-04-10	삼성전자	5930	삼성전자 1Q23 잠정실적 리뷰	0
128	2023-04-10	삼성전자	5930	삼성전자 1Q23P Samsung Pivot 발생 그 이후	0
129	2023-02-01	삼성전자	5930	삼성전자 좀더 구체화된 감산 계획	0

- ② 삼성전자 종목 외의 데이터 제거
- ③ '제목' 컬럼의 데이터 값 안의 '삼성전자' 단어 삭제

데이터 수집 [개별 전처리 과정]	데이	터 전처리 train/	'test 분리 모델	결과	
	1) EDA	2) 조건 설정	3) 형태소 분석	4) 벡터화	
A조	Word Cloud	한글 외 모든 문자,기호 삭제한글자 형태소 삭제	Okt / Mecab	Keras / TF-IDF CV / Word2Vec	
B조	Word Cloud	한글, 영어 외 모든 기호 삭제한글자 형태소 삭제	Okt / Mecab	Keras / TF-IDF CV / Word2Vec	
C조	Word Cloud	 한글, 영어 외 모든 기호 삭제 한글자 형태소 보존 자체 불용어 리스트 적용 	Okt / Mecab / Hannanum	Keras / TF-IDF CV / Word2Vec	
Sentence Transformer	Word Cloud	ko-sroberta-multitask 사전모델 적용			

데이터 수집

데이터 전처리

train/test 분리

모델링

결과

[Code Review]

: C조 - 자체 불용어 리스트 적용 코드

```
1 # 불용어 리스트 생성

2 f = open('stop_words.txt', encoding = 'utf8')

3 reader = csv.reader(f)

4 stopwords = []

5 for i in reader:

6 stopwords.append(i)

7 f.close()
```

Rank NL 사이트의 Korean Stopwords

Korean Stopwords

아	어찌됏든	하기보다는
휴	그위에	차라리
아이구	게다가	하는 편이 낫다
아이쿠	점에서 보아	흐흐
아이고	비추어 보아	놀라다
어	고려하면	상대적으로 말하
나	하게될것이다	자면
우리	일것이다	마치
저희	비교적	아니라면
따라	좀	쉿
의해	보다더	그렇지 않으면
을	비하면	그렇지 않다면
를	시키다	안 그러면
에	하게하다	아니었다면
의	할만하다	하든지
가	의해서	아니면

탐색 후 추가한 Stopwords

```
· 니 ㅁ ㄹ ㅁ ㅂ ㅅ ㅇ ㅈ ㅊ ㅋ ㅌ ㅍ ㅎ ㅏ ㅑ . ㅂ ㅋ ㅗ ㅜ ㅠ ㅡ ㅣ ㅔ ㅐ ㅒ ㅖ ㄴ ㅂ 곧 ㄹ ㅂ
```

총 715개의 stopwords

데이터 수집

데이터 전처리

train/test 분리

모델링

결과

```
1 ### train_test_split
      2 from sklearn,model_selection import train_test_split
      4 # 평가용과 테스트 세트로 나누기
      5X_train, X_test, y_train, y_test = train_test_split(df_final,제목, df_final,label, test_size=0.2, random_state=11)
      7# 출력을 확인하기 위해 데이터 개수 출력
     - 8 print("Train set 개수:", len(X_train))
     9 print("Test set 개수:", len(X_test))
[ ] 1 print(X_train, index)
      2 print (y_train, index)
[ ] 1 train_index = list(X_train,index)
      2 test_index = list(X_test,index)
[ ] 1 b_y_train = df_final, label[train_index]
      2 b_v_test = df_final, label[test_index]
[ ] 1 b_y_train = 'b_y_train,csv'
      2 b_y_test = 'b_y_test,csv'
      4 b_y_train_df = pd,DataFrame(y_train)
     5 b_y_train_df,to_csv(b_y_train, index=False)
     6 b_y_test_df = pd,DataFrame(y_test)
      7 b_y_test_df,to_csv(b_y_test, index=False)
[ ] 1 b_X_train = df_final, label[train_index]
      2 b_X_test = df_final, label[test_index]
[ ] 1 b_X_train = 'b_X_train,csv'
      2 b_X_test = 'b_X_test,csv'
      4 b_X_train_df = pd,DataFrame(b_X_train)
     5 b_X_train_df,to_csv(b_X_train, index=False)
     6 b_X_test_df = pd,DataFrame(b_X_test)
     7 b_X_test_df,to_csv(b_X_test, index=False)
```

- ① 개별 전처리한 데이터 => 80% Train set / 20% Test set (test_size=0.2. random_state=11)
- ② 모델 별 train/test 데이터 통일을 위해 인덱스 일치 작업 진행
- ③ Bert 모델용 => 형태소 분석 데이터 ①과 동일하게 분리

A조: train set-174개, test set-44개 B조: train set-180개, test set-46개 C조: train set-180개, test set-46개

SentenceTransformer : train set-180개, test set-46개

데이터 수집

데이터 전처리

train/test 분리

모델링

결과

[Code Review]

12#모델 객체 생성

13 nb = MultinomialNB()

: Naive Bayes Classifier

```
1 ### 나이브 베이즈 분류 모델 생성
2
3 # 필요한 라이브러리 임폴트
4 from sklearn.naive_bayes import MultinomialNB
5 from sklearn.metrics import accuracy_score
6 from sklearn.preprocessing import MinMaxScaler
7
8 scaler = MinMaxScaler()
9 X_train_wv = scaler.fit_transform(X_train_wv)
10 X_test_wv = scaler.fit_transform(X_test_wv)
```

[MinMaxScaler를 사용한 이유]

'Negative values in data passed to MultinomialNB (input X)' 라는 음수값이 존재한다는 오류가 발생

MinMaxScaler를 사용해서 0에서 1까지의 범위로 정규화하여 음수값을 제거함. 데이터 수집

데이터 전처리

train/test 분리

모델링

결과

atau 1	atan2	-t-n2	
step1	step2	step3	accuracy
	-14240	keras	0.8182
		tfidf	0.5682
	okt218	countvector	0.5682
		word2vec	0.6136
а		keras	0.8409
	mecab218	tfidf	0.5909
	mecabz ro	countvector	0.5682
		word2vec	0.6364
		keras	0.8478
	okt226	tfidf	0.5652
	0KL226	countvector	0.6522
b		word2vec	0.6522
U		keras	0.7391
		tfidf	0.6522
	mecab226	countvector	0.6957
		word2vec	0.6739

	okt226	keras	0.6304
		tfidf	0.6087
		countvector	0.6739
		word2vec	0.6522
		keras	0.6087
С	mecab226	tfidf	0.6087
C		countvector	0.6739
		word2vec	0.5652
	hannaum226	keras	0.6522
		tfidf	0.5870
	Hallilaulii220	countvector	0.6087
		word2vec	0.5652
sentencetransformer			0.6956521739

Best Result

B조 전처리 + Okt + Keras

데이터 수집

데이터 전처리

train/test 분리

모델링

결과

oton	.4	ete n 2	atan?	
step)	step2	step3	accuracy
			keras	0.8636
		okt218	tfidf	0.5682
		OKIZTO	countvector	0.5682
			word2vec	0.5000
а			keras	0.8182
		mecab218	tfidf	0.5000
			countvector	0.5682
			word2vec	0.5909
			keras	0.8478
		okt226	tfidf	0.5870
		UK1220	countvector	0.6739
h			word2vec	0.6304
D	b		keras	0.9130
		mecab226	tfidf	0.5870
		mecab220	countvector	0.5870
			word2vec	0.6304

	okt226	keras	0.6087
		tfidf	0.6087
	UKIZZO	countvector	0.6957
		word2vec	0.4348
		keras	0.5652
	mecab226	tfidf	0.5870
C	IIIecab220	countvector	0.5870
		word2vec	0.6304
	hannaum226	keras	0.5870
		tfidf	0.5870
		countvector	0.5652
		word2vec	0.6522
sentencetransformer			0.6739130435

Best Result

B조 전처리 + Mecab + Keras

Naive Bayes Classifier

데이터 수집

데이터 전처리

train/test 분리

모델링

결과

stop?	otop2	
stepz	steps	accuracy
	keras	0.4091
al#310	tfidf	0.5682
OKIZTO	countvector	0.5682
	word2vec	0.5909
	keras	0.5909
macab219	tfidf	0.5909
mecab216	countvector	0.5682
	word2vec	0.6591
-14220	keras	0.4348
	tfidf	0.6522
UK1220	countvector	0.6957
	word2vec	0.6739
	keras	0.5435
1.226	tfidf	0.5870
IIIecab220	countvector	0.6304
	word2vec	0.6739
	okt218 mecab218 mecab226	okt218 keras tfidf countvector word2vec keras tfidf countvector

		keras	0.5217	
	okt226	tfidf	0.6522	
	UK1220	countvector	0.7174	
		word2vec	0.5870	
		keras	0.5217	
	mecab226	tfidf	0.7174	
С		countvector	0.6522	
		word2vec	0.6522	
	hannaum226	keras	0.5217	
		tfidf	0.6304	
		countvector	0.6304	
		word2vec	0.5435	
sentencetransformer			0.7173913043	

Best Result

SentenceTransformer

데이터 수집

데이터 전처리

train/test 분리

C

모델링

결과

ston1	ston2	eton3	
step1	step2	step3	accuracy
		keras	0.5538
	okt218	tfidf	0.5308
		countvector	0.5308
		word2vec	0.5308
а	mecab218	keras	0.5615
		tfidf	0.5308
		countvector	0.5308
		word2vec	0.5308
	okt226	keras	0.5556
		tfidf	0.5333
		countvector	0.5333
b		word2vec	0.5333
	mecab226	keras	0.5333
		tfidf	0.5333
		countvector	0.5333
		word2vec	0.5333

	okt226	keras	0.5333
		tfidf	0.5333
	UKIZZU	countvector	0.5333
		word2vec	0.5333
		keras	0.5333
med	mecab226	tfidf	0.5333
	mecab220	countvector	0.5333
		word2vec	0.5333
	hannaum226	keras	0.5333
ı		tfidf	0.5333
		countvector	0.5333
		word2vec	0.5333
se	ntencetransforn		

Best Result

A조 전처리 + Mecab + Keras

BERT

데이터 수집

데이터 전처리

train/test 분리

C

모델링

결과

step1		step2	step4	step5 결과: 평가		
		step2	train_test_split	accuracy	loss	
		okt218	a_okt_bert_train a_okt_bert_test	0.6364	0.6182	
	а					
	_	mecab218	a_mecab_bert_train	0.7045		
_			a_mecab_bert_test	0.7045	0.6265	
		okt226	b_okt_bert_train	0.6957	0.5276	
b	UNIZZO	b_okt_bert_test	0.0551	0.5270		
		mecab226	b_mecab_bert_train	0.6957 0.5893		
		III6CaDZZU	b_mecab_bert_train	0.0551	0.3033	

okt226	c_okt_bert_train	0.6739	0.658
	c_okt_bert_test	0.0755	0.050
mecab226	c_mecab_bert_train	0.000	0.6745
	c_mecab_bert_test	0.6522	
hannaum226	c_hannanum_bert_train	0.7609	0.503
	c_hannanum_bert_test	0.7003	0.505

Best Result

C조 전처리 + Hannanum

데이터 수집

데이터 전처리

train/test 분리

모델링

결과

1차 사이클 설정값					
step	models	params			
	keras	max_len=9			
3	word2vec	vector_size=300	window=5	min_count=1	sg=1
	countvectorizer	max_features=10000			
4	train_test_split	test_size=0.2	random_state=11		
5	RF	random_state=11			
	나이브베이즈	random_state=11			
	AdaBoost	random_state=11			
	LSTM	batch_zise=256	epochs=20	validation_split = 0.25	max_len의 경우 형태소별로 다름
	Bert	batch_zise=128	epochs=5	random_seed=11	max_len의 경우 형태소별로 다름

▼ 매개변수 조정 & GridSearchCV를 통한 성능 개선 시도 ▼

2차 사이클 설정값					
step	models	params			
	keras	max_len=9			
3	word2vec	vector_size=300	window=5	min_count=1	sg=1
	countvectorizer	max_features=10000			
4	train_test_split	test_size=0.2	random_state=11		
5	RF	random_state=11	n_estimators = 50~500	max_depth= 1~10	min_samples_leaf = 1~ 6
	나이브베이즈	alpha=0.01~1	cv=15		
	AdaBoost	random_state=11	n_estimators = 50~500		
	LSTM	batch_zise=128	epochs=30	validation_split = 0.25	max_len의 경우 형태소별로 다름
	Bert	batch_zise=16	epochs=10	random_seed=11	max_len의 경우 형태소별로 다름

Result

모든 모델에서 유의미한 성능 개선 X

실전 적용 모습

- news_predict(news, model='rf')
- 모델: rf 분류 할 제목: 뚝뚝 떨어진 D램 가격… 삼성전자·SK하이닉스, 2분기도 어둡다 토큰화 된 제목: ['뚝뚝', '떨어지다', '램', '가격', '삼성', '전자', '하이닉스', '분기도', '어둡다'] 임베딩 된 제목: [[493 494 495 48 496 78 497 498 499]] 하향
- news_predict(news, model='nb')
- 모델: nb 분류 할 제목: 뚝뚝 떨어진 D램 가격… 삼성전자·SK하이닉스, 2분기도 어둡다 토큰화 된 제목: 토큰화 별도로 없음 임베딩 된 제목: 길어서 생략 하향
- news_predict(news, model='adaboost')
- 모델: adaboost 분류 할 제목: 뚝뚝 떨어진 D램 가격… 삼성전자·SK하이닉스, 2분기도 어둡다 토큰화 된 제목: ['뚝뚝', '떨어진', '램', '가격', '삼성전자', '하이닉스', '분기', '도', '어둡', '다'] 임베딩 된 제목: [[440 441 59 442 443 2 444 445 446]] 하향
- [] news_predict(news, model='lstm')

- news_predict(news, model='bert')

1/1 [======] - 9s 9s/ 하향

실전 적용 모습

[Code Review]

```
1 def news_predict(news, model):
4 if model == 'rf':
     print(f'모델: rf')
     # 텍스트 토큰화
     okt = 0kt()
      news_title = re.sub(r'[^¬-ㅎㅏ-|가-힣]', '', news)
      news_title = okt.morphs(news_title, norm=True, stem=True)
12
     print(f'분류 할 제목: {news}')
      print(f'토큰화 된 제목: {news_title}')
15
16
17
     #모델 경로
      classifier_path = '/content/drive/MyDrive/KDT/비정형텍스트분석/KDT_1차프로젝트/뉴스 모델링 적용/RandomForest 모델/b_okt_keras_rf_saved_model1.pkl
      prepro_path = '/content/drive/MyDrive/KDT/비정형텍스트분석/KDT_1차프로젝트/뉴스 모델링 적용/b_okt_keras.pickle'
20
21
      # 학습된 임베딩 모델 불러오기
     with open(prepro_path, 'rb') as f:
       a_prepro_model = pickle.load(f)
24
     # 불러온 임베딩 모델로 처리
     a_prepro_model.fit_on_texts(news_title)
      encoded = a_prepro_model.texts_to_sequences([news_title])
      final_sentence = pad_sequences(encoded, maxlen=9)
     print(f'임베딩 된 제목: {final_sentence}')
30
      # 학습된 분류 모델 불러오기
32
     classifier_model = joblib.load(classifier_path)
33
34
     # 불러온 분류모델에 임베딩된 뉴스 제목 삽입
      result = float(classifier_model.predict(final_sentence))
36
37
     if(result == 1):
38
       print("상향")
       print("하향")
```

[실전 적용 함수 코드 작성]

- ① 학습된 분류 모델, 토크나이저, 데이터셋, 불용어 리스트 등 준비
- ② input 데이터 입력
- 사용자가 입력한 뉴스 기사 제목 -> news 변수
- 사용자가 선택한 모델 -> model 변수
- ③ if 문으로 입력된 모델 선택
- ④ 선택된 모델과 동일한 방식으로 뉴스 제목 전처리
- ⑤ 학습된 분류 모델 불러오기 및 학습
- ⑥ label=1 -> 상향 / label=0 -> 하향 출력

Ⅲ요약 및 시사점

본 프로젝트는 뉴스 제목으로 주식의 상향/하향을 분류하는 모델을 개발하는 것이 주제

3개의 조로 나누고 SentenceTransformer를 이용해 총 4가지 방식으로 데이터 전처리를 진행함

RandomForest, 나이브베이즈, AdaBoost, LSTM, BERT 모델을 이용하여 각 모델별로 성능을 비교함

실험결과, b조의 전처리+Mecab+Keras+AdaBoost모델의 가장 높은 accuracy 점수를 보임. 그러나 실전 적용에서는 SentenceTransformer+Naive Bayes Classifier가 가장 잘 분류함.

Ⅲ요약 및 시사점

GridSearchCV와 파라미터 조정 등 성능 개선을 시도했지만 유의미한 결과가 나오지 않음.

데이터셋이 237개로 작아 학습이 잘 되지 않아 전반적으로 모델 성능이 뛰어나지 않음.

학습에 활용된 한경 컨센서스의 데이터 중 상향/하향 또한 "예측"에 불과하고 실제 상향/하향과 차이가 있음

리포트와 뉴스의 차이점을 잘 반영하지 못해 분류가 잘 되지 않는 모델이 있음

보완점 : 본 프로젝트에선 데이터셋을 늘려 진행하면 성능이 나아질 것으로 예상

Ⅳ 개발 후기

66

보고있나 세종대왕 보고있나 뉴턴

텍스트 전처리 방법을 다양하게 쓴 나머지 경우의 수가 많아져서 관리 하기가 어려웠습니다...

텍스트 데이터 분석은 양이 많을 때 하는게 가장 좋다는 걸 배웠네요!

수업에서 배웠던 코드를 사용해 분 석해볼 수 있어서 좋았습니다!

앞으로 할 본 프로젝트에서는 배운 것들을 더 적용시켜 세미프로젝트 보다 더 즐기면서 하고 싶습니다

세미프로젝트지만 저에게는 첫 프로 젝트인만큼 그 성취감이 배로 다가 오는 것 같습니다.

적절한 데이터를 수집하는 것이 가 장 중요하고 어렵다는 것을 알 수 있 었습니다.

python을 배우고 처음했던 프로젝 트여서 걱정이 많았지만, 팀원 분들 이 잘 이끌어주셔서 프로젝트를 잘 마무리할 수 있었습니다.

1조 팀원분들 너무 감사했습니다!

#