	5/28/03
ANNUA SAN AARTINAS.	Linear Response and Correlation Functions
	When we derived a Lahmann representation for le one-particle Green's Punction Indes (FD-PD) and PS#4]
	[(Gap(XE, X+) = < In [T[]+(X+)]+(R+)[In)
	he found
	$G_{\alpha\beta}(\vec{x},\vec{x}';\omega) = \int_{0}^{\infty} d(t+t') e^{i\omega(t+t')} G_{\alpha\beta}(\vec{x}t,\vec{x}'t')$
	= = = (4° 14(R) 14°) (4° 17°) (4° 17°) (4° 17°)
	w-(Ent-En)+in (pa-reduct) - \(\frac{4}{5}(\frac{1}{5}) + \frac{1}{5}(\frac{1}{5}) + \fracold{1}(\frac{1}) + \frac{1}{5}(\frac{1}{5}) + \frac{1}{5}(1
	(the orders) - \(\frac{1}{2} \overline{1} \
	So this function tells us about states with one particle more
	or one less than the original ground state. The pole positions give excitation energies overlap matrix elements from residues
	· re pose positions give excitation energies
	the claimed on (3) that, with some assumptions, we could bear about
	the spectral density from semi-inclusive electron scattering =>(e,ep) En poten // 12th > and newsure final state but reasure e' (tells in it) and
SC	there will be deduce ?
	78- Impulse approximation implies we learn about the momentum of the proton in the nucleus
	$6 = \Im \left\{ \left \left\langle \mathcal{I}_{n}^{N} \right a_{k} \right \mathcal{I}_{o}^{N} \right\} \left\{ \left \left\langle \mathcal{I}_{n}^{N} + \mathcal{E}_{p} - \mathcal{E}_{o} - u \right\rangle \right = \rho \left(k_{n} + \mu^{N} - \mathcal{E}_{p} \right) \right\}$
	Seike Uz)dz

5/28/03 -What if we nanted to learn about excited states With the same number of particles? >> bosonic collective excitations, such as phonons, Spin walks, ... · existe (and measure) using probes flat couple to porticle density, spin density, or some often particle conserving apprature, e.g. scatter E/m waves, electrons, rentrans · weakly interacting probes > Born approximation is valid So apply a weak porturbation that is time dependent; How does a nuclius respond? The vary the trajuncy and menclingthy of the probe, thre will be different regions with different types · low energy - discrete particle-hole transitions

(think of the second del picture) · intermediate renergy > collective modes > grant resonances (think of vibrating liquid drops - eg Boscalar monopole resonance - breathing mode" - which is related to the compressibility, or the giant dipole resmance when postone vibrate against neutrons.

[Liby on Pleze collect "giant" resonances?] · quasi-elastic scattering at still higher energy > we'll model this today! We lorn about all of those things no linear reponse and correlation fractions . The basic idea of linear response is to bang on a system. at some place and time (or with some frequency and wavelength) and ook how a property of the system changes ("responds") at apother place and (later) time (since causal). · related to probability to absorb photons (or whatever) at porticular frequency (later!).

	15/28/03 We'll Follow charter 5 of Fotter and Walecta in Re
	We'll Follow chapter 5 of Fetter and Walecka in Re initial discussion and then switch to Negele and Orland's discussion. Our notation is a compromise.
	discussion. Our notation is a compromise.
	Stort with our regular Hamiltonian A and the Schrödinger (or S-) picture state (4slt), which satisfies
	1 37 1 4(t) = H1 4(t)>
	which has the (formal) solution
	[14,47= eiAt 14,0)]
. 	(that is, Eift is the evolution operator).
	Now turn on the weak, perturbation $H^{ext}(E)$ at t=to. We have in mind something like
	$H^{ext}(t) = \left(\partial_{x} \varphi^{ext}(x) \right) \hat{O}_{1}(x)$
	where Exter is on S-picture operation like next = 2/12/1/20,
	The subsequent wave function (Fight) satisfies
	() [() = (() + ()) [] ()) [] ())
	The major time dependence is given by A, so we pull Plat out, which defines ALL):
	$\sqrt{\widetilde{\mathcal{H}}_{s}(t)} = e^{-i\widehat{\mathbf{h}}t} \widehat{\mathbf{h}}(t)/\overline{\mathbf{L}_{s}(\omega)}$
	with $A(t)=1$ for $t \le t_0$ (causal boundary condition)

5/28/03 So Alt) represents the modifications to the evolution from adding flex (t). We project its differential equation! 13+ Te-19+ (0) PI(+ AH) 14(0) + Eift 1 19+ 19 19(0) from the - Heith AIHITSUD + HOTEL) AIHITSUD) which Pen implies (since true for any (450)) Plat einti & AL) = Hort eint AL) SA(t) = ift fat (t) = ift A(t) = Hext (t) A(t) (Heisenberg pictur denoted by subscript H) We can solve this equation by iteration for toto, by first integrating for to to to the first integrating for to to to the first of the solution of the soluti Â(t) = 1 - i \ dt' Aext! Â(t') dt' and start with AH)=1 on the right side, then plug the result back, etc. so ALE = 1 - 1 dt Hat(t') + (-1) dt dt" Hat (t) Hat(t') +... (which could be written as a tim-ordered exponential, but we want need to! and the corresponding state vector is 14(t) 7 = e 14(0) > - i e 11t (t + fext) 14500> +...

352
5/26/03 So now suppose we have an S-picture operator Osst) (which may have an explicit time dependence) This could be the derisity as well 4/28/14/28/), for example
We lock for it's expectation value ofter the perturbation:
$ \begin{array}{ll} \langle \hat{G}_{1}(t) \rangle_{\text{ext}} &= \langle \hat{F}_{5}(t) \hat{G}_{5}(t) \hat{F}_{5}(t) \rangle \\ &= \langle \hat{F}_{5}(t) \hat{G}_{1}(t) \hat{F}_{5}(t) \hat{F}_{5}(t) $
where he only keep the linear term, since the external perturbation is weak. From here on we'll take the initial state to be the ground stake (for finite temperature we would use an ensemble of states) with N particles > 1740) - 170>

· Then the change in (GIt) 7 is

$$\begin{aligned} & S\langle S_{i}H\rangle = \langle S_{i}t\rangle_{At} - \langle S_{i}t\rangle \\ &= i\int_{t_{0}}^{t_{0}} dt' \langle Y_{0}|[H_{h}^{ext}(t),\hat{Q}_{h}(t)]|Y_{0}\rangle \\ &= i\int_{t_{0}}^{t_{0}} dt' S(t-t')\langle Y_{0}^{n}|[H_{h}^{ext}(t'),\hat{Q}_{h}(t)]|Y_{0}\rangle \\ &= i\int_{t_{0}}^{t_{0}} dt' S(t-t')\langle Y_{0}^{n}|[H_{h}^{ext}(t'),\hat{Q}_{h}(t)]|Y_{0}\rangle \end{aligned}$$

5128103

Now we have a slight problem: Our path integral exponsion tells us how to calculate time-ordered correlators of field operators, but we need the retarded correlator.

=> use the Lehmann representation to relate

The procedure to construct the Lehmann representation is the same as for the one-particle Green's functions i) insert the Heisenberg field time dependence a) insert intermediate states (non-vanishing matrix elements) 3) fourier transform

We obtain!
$$\left(\frac{D(\vec{x}_1,\vec{x}_2,\omega)}{D_R(\vec{x}_1,\vec{x}_2,\omega)}\right) = \sum_{n=1}^{\infty} \left(\frac{F_n^n |\hat{g}(\vec{x}_2)| f_n^n}{F_n^n} \right) + in$$

$$-\frac{\langle f_n^n |\hat{g}(\vec{x}_2)| f_n^n}{\nabla f_n^n |\hat{g}(\vec{x}_2)| f_n^n} \right) + in$$

$$-\frac{\langle f_n^n |\hat{g}(\vec{x}_2)| f_n^n}{\nabla f_n^n |\hat{g}(\vec{x}_2)| f_n^n} \right) + in$$

$$\omega_{+}(E_n^n - E_n^n) + in$$

$$\omega_{+}(E_n^n - E_n^n) + in$$

We can also Fourier transform to momentum space if we have a uniform system

$$\begin{aligned}
\widehat{g}(\widehat{q}) &= \widehat{g}(\widehat{q},\widehat{x}) \widehat{g}(\widehat{x}) \widehat{g}(\widehat{x}) = \widehat{g}(\widehat{q},\widehat{x}) \widehat{g}(\widehat{x}) = \widehat{g}(\widehat{q},\widehat{x}) \widehat{g}(\widehat{x}) \\
&= \widehat{g}(\widehat{q},\widehat{x}) \widehat{g}(\widehat{x}) \widehat{g}(\widehat{x}) \widehat{g}(\widehat{x}) \widehat{g}(\widehat{x}) \widehat{g}(\widehat{x}) \widehat{g}(\widehat{x}) \widehat{g}(\widehat{x}) \\
&= \widehat{g}(\widehat{x},\widehat{x}) \widehat{g}(\widehat{x}) \widehat{g}(\widehat{x$$

$$\left| \begin{array}{c} \overline{D}(\overline{k}, \omega) \\ \overline{D}_{R}(\overline{k}, \omega) \end{array} \right| = \underbrace{\left| \begin{array}{c} \overline{X} & \overline{X}$$

and the first of the second of

