NOKIA

Future X Network for 5G and IoT

Dr. (Bong Youl) Brian Cho, 趙奉烈 Head of Technology for APAC & Japan

150 years of successful reinvention

Comprehensive portfolio and expertise

Mobile Networks		· ·	Applications & Analytics		Nokia Technologies	Nokia Bell Labs
--------------------	--	-----	-----------------------------	--	-----------------------	--------------------

5G for eMBB, mMTC, URLLC, and more

Bandwidth matters ...

Latency matters ...

Bandwidth & Latency matter ...

IoT (Internet of Things) – Humanity's long standing dream...

"Suppose every instrument could by command or anticipation of need, execute its function on its own; suppose that spindles¹ could weave of their own accord and plectra² strike the strings of zithers³ by themselves; then craftsmen would have no need of hand-work and masters have no need of slaves."

"想像してみよう。あらゆる道具が、必要性から来る指示や予測に基づいて自身の機能を実行することが出来たなら。 想像してみよう。はたおり軸がひとりでに動いて、美しい織物を織ったなら。チター(弦楽器)の弦をピックが自分の意思でつま弾

いたなら。もはや職人が手作業でものを作る必要はなく、

主人に奴隷は無用のものとなるであろう。"

Aristotle (384 - 322 BC)

¹ a rod used in hand spinning to twist and wind thread from a mass of wool.

² thin flat pieces of material to pluck the strings of a musical instrument.

³ a musical instrument consisting of a flat wooden sound box with numerous strings stretched across it, placed horizontally and played with the fingers and a plectrum.

Connectivity: leveraging LTE for robust V2X communications – on the way to 5G

Quick Technical Comparison

The Case for Cellular V2X for Safety and **Cooperative Driving**

5G Automotive Association

	C-V2X: PC5	802.11p	C-V2X: PC5 Advantage
Synchronization			Spectral Efficiency, Synchronization enables
	Synchronous	Asynchronous	time division multiplexing (TDM) and
			lowers channel access overhead.
Resource	FDM and Time	TDM Only	Frequency Division Multiplexing allows for
Multiplexing	Division		larger link budget and therefore longer
Across Vehicles	Multiplexing		range - or more reliable performance at
	(TDM) Possible		the same range.
Channel Coding	Turbo	Convolutional	Coding gain from turbo codes leads to
			longer range – or more reliable
			performance at the same range.
Retransmission	Hybrid	No HARQ	Leads to longer range - or more reliable
	Automatic		performance at the same range.
	Repeat		
	Request		
	(HARQ)		
Waveform	SC-FDM	OFDM	Allows for more transmit power with the
			same power amplifier. Leads to longer
			range - or more reliable performance at
			the same range.
Resource	Semi-	Carrier Sense	Optimizes resource selection with selection
Selection	persistent	Multiple	of close to 'best' resource with no
	transmission	Access with	contention overheads. By contrast 802.11p
	with relative	Collision	protocol selects the first "good enough"
	energy-based	Avoidance	resource and requires contention
	selection.	(CSMA-CA)	overhead.

V2X use case demonstrations in Germany and China

Cross industry

- Nokia Multi-Access Edge Computing installed in LTE networks
- Robust latency below 20ms

Nov. 2015

T •• Sraunhofer

©ntinental 3

Use cases

- Cooperative passing assistant
- Electronic brake lights

June 2016

Ţ.. (⊜

Use cases

- Intersection assistant
- Electronic brake light

Nov. 2016

Use cases

- Cooperative passing assistant
- Electronic brake lights

Software & Sensors: riding the **IoT** wave for predictive maintenance, fleet management, and driver monitoring applications

Nokia End-to-End IoT portfolio from a helicopter view

Applications

IMPACT applications for selected use cases

Ecosystem

IoT Community and

Security

Connect,

Experience,

Market,

Automate

Ō

Planning, readiness, S ervices design, integration

Platform

IMPACT platform

- Application enablement
- Data collection & analytics
- Device management
- Connectivity management

Connectivity

Cellular radio: NB-IoT, LTE-M, EC-GSM Unlicensed & home: LoRa, Wi-Fi, Zigbee, Z-wave Optimized IoT core, leveraging SDN/NFV MEC, Backhaul & FTTx

CPE and devices

Home hub (ONT) & enterprise gateway Partner devices & device certification services Withings digital health products

Endpoint Security, Deepfield

Network Operator's TCO challenge – to be overcome by Cloudification

Network Slicing | Optimized service delivery for heterogeneous use cases Multiple independent instances on one physical network

"The target of Network Slicing is to provide dedicated logical networks with **customer specific functionality**, without losing the **economies of** scale of a common infrastructure"

- Deutsche Telekom AG, White Paper

Network slicing provides optimized software-defined network functions for specific use cases, governing capacity, scalability, security, connectivity, quality and mobility per 'slice'.

Nokia Future X Network – a cloud based digital fabric

Nokia Future X Network – a cloud based digital fabric

