Haematological investigations and interpretation of results.

Prof. Victor Mwanakasale (BSc, MBChB, MSc, Dip, PhD)
MBS 240 (2024)

Objective of the lecture:

For the students to learn commonly requested haematological investigations in clinical practice and Interpretation of the results.

Format of the lecture.

- The blood picture
- 2. Types of hematological investigations
- 3. Interpretation of results of specific haematological investigations.

The blood picture.

- An essential part of the clinical description of practically every disease.
- A normal number and normal distribution of blood cells and a normal hemoglobin concentration in the bloodphysiologic constants*.
- Certain diseases do not produce significant changes*.

- Most hematologic changes a result of pathologic processes secondarily affecting the blood or blood forming tissues.
- 'True blood diseases' less common (e.g. blood cancers).
- Blood picture provides important diagnostic information.

- Clinical hematology is almost coextensive with medical diagnosis.
- Hemorrhagic diseases included in clinical heamatology.

Types of haematological examination.

- These can be:
- 1. Routine/screening examinations
- 2. Special examinations.

Routine/screening examinations.

- A few hematological tests in the examination of every patient.
- Selected based on the most common diseases and abnormalities.
- ➤ Decide whether or not detailed haematological investigations necessary.
- Characteristics of the tests*:
- Simple
- Economical
- Time efficient

Tests*.

- 1. Hemoglobin concentration
- 2. Total white blood cell count
- 3. Differential white blood cell count
- 4. Total red blood cell count*

Toto RBC ⇒ Requested only when there is hematology machine to do red cell count.

Special examinations.

- Any of the examinations on blood included in the routine or ordered from time to time.
- Requested as Single examination, or groups of examinations, indicated by the nature and course of the patient's condition.

Tests. C VEM BFF BS

- 1. Macroscopic blood examination.
- 2. Full blood count.
- 3. Basophil stippling.
- 4. Vitamin B₁₂ and Folic Acid levels.
- 5. Ferritin (serum iron) levels
- 6. Coagulation tests
- 7. Sickling test (sickle cell test)
- 8. Electrophoresis
- 9. Bone marrow biopsy

Interpretation of results of special haematological investigations

Macroscopic examination of blood:

Tests:

- Erythrocyte Sedimentation Rate (ESR)
- II. Plasma viscosity

ESR.

Defn* → Measures rate at which Red blood cells sediment or settle in a period of one hour.

- Raised levels: any cause or focus of inflammation and infection.
- Raised levels: In pregnancy, joint diseases, anemias other than sickle cell anaemia.
- Decreased levels: in polycythemia, sickle cell anemia, and congestive heart failure.

Normal values*:

Normal ESR values*:

AGE	ESR VALUE	
MEN > 50 YRS	<20mm/hr	
MEN < 50YRS	<15mm/hr	
WOMEN > 50 YRS	<30mm/hr	
WOMEN < 50 YRS	<20mm/hr	
NEONATES TO PUBERTY	3-13mm/hr	
NEWBORNS	0-2mm/hr	

Plasma Viscosity*

- Measures level of activity in different diseases.
- Raised levels with disease activity.

Full Blood Count

 -automated (haematology analyser) or manually.

Comprises:

- 1) Hemoglobin concentration*
- 2) Red blood cell count*
- 3) Reticulocyte count*
- 4) Red blood Cell indices
- 5) Platelet count
- 6) White blood cell count
- 7) Differential white blood count

Hemoglobin concentration*

	Females	Males
11- 18 years	11.9 g/dL – 15 g/dL	12.7 g/dL – 17.7 g/dL
Men	13 g/dL û	
Women	12 g/dL û	
1 – 5 years	10.9 g/dL – 15g/dL	
Neonates	13.4g/dL – 19.9g/dL	

Red Blood cell indices*.

- Automated or calculated
- Information provided*
- **volume** of red blood cells
- □concentration of haemoglobin in red blood cells
- □type of anaemia being investigated
- Types and what is measured*:
- 1. MCV (Mean Cell Volume)
- 2. MCH (Mean Cell Haemoglobin).
- 3. MCHC (Mean Cell Haemoglobin Concentration).
- 4. RDW (Red Cell Distribution Width)

The Mean Cell Volume (MCV)*

- ✓ Measures the average volume of red blood cells.
- Normal value: 78- 104 μ³
- MCV=hematocrit (%) X 10/RBC count (million/mm³ blood)

Decreased:(Microcytic RBC)

- I. Anaemia of chronic disease
- II. Iron deficiency anaemia

Increased: (Macrocytic RBC)

- Vitamin B₁₂ deficiency
- Folate deficiency
- III. Thyroid disorders
- IV. Liver disorders
- V. Marrow dysplasia /Aplastic anaemia

The Mean Cell Hemoglobin (MCH).

- ✓ Measures the weight of haemoglobin in a standard volume of blood.
- Normal value of MCH: 27-31 picograms/cell
- MCH=(Hb X 10)/RBCs in volume of blood.
- Decreased in hypochromic anemias.
- Test not very useful.

The Mean Cell Hemoglobin Concentration (MCHC),

- Measure of the concentration of hemoglobin in a given volume of packed red blood cells.
- MCHC = (Hb ÷ PCV) x 100
- Normal values: 32 36 g/dl
- Most useful index.
- Decreased MCHC: ("<u>hypochromic</u>") in microcytic anemias,

- Normal MCHC: ("normochromic") in macrocytic anemias (due to larger cell size, though the hemoglobin amount or MCH is high, the concentration remains normal).
- Increased MCHC: ("hyperchromic") in e.g. sickle cell disease.

Red blood cell distribution width. (RDW or RCDW).

- Measure of the variation of red blood cell (RBC) volume.
- Usually red blood cells are a standard size of about 6–8 μm.

RDW = (Standard deviation of MCV ÷ mean MCV) × 100)

Normal range: 11-15%.

High RDW=Anisocytosis.

Increased RDW observed in:

- I. Iron Deficiency Anemia: usually presents with high RDW and low MCV
- II. Folate and vitamin B12 deficiency anemia: usually presents with high RDW and high MCV
- III. Recent Hemorrhage: typical presentation is high RDW and normal MCV

Platelet count*

- a) Thrombocytosis* (High Platelet count).
- ✓ Inflammation
- a) Thrombocytopaenia* (Low Platelet count)
- ✓ side effects to certain drugs
- ✓ some viral infections

Total White blood cell count*.

- Measures the number of white blood cells in blood.
- High: infection, exercise, stress, steroids.
- Low: immune deficiency, drugs, certain diseases.

Differential white cell count.

- "Differential"
- Proportions of neutrophils, basophils, eosinophils, lymphocytes, monocyte/macrophages among White blood cells.
- Information about the immune system.
- Neutrophils and lymphocytes most important to measure.
- Other three less significant (often measured together)

Neutrophil count*.

- Normal count: 40-60% of total WBC
- Neutrophilia (Increased %) e.g
- ✓ steroids
- ✓ Acute infection
- ✓ Inflammation
- Neutropaenia (Decreased %) e.g
- "Negro" neutropaenia
- ✓ Side effects to certain drugs
- ✓ Bacterial Infection
- ✓ Viral Infection

Eosinophil count*.

Normal count: 2 - 8% of total WBC

- Eosinophilia (Increased %).:
- Side effects to some drugs
- Allergies
- □Worm infection
- Eosinopenia (Decreased %):
- Woman in pregnancy
- Eclampsia
- Electric shock therapy

Basophil count*.

- Normal count is 0 1% of total WBC
- Basophilia (Increased %)
- ✓ Leukemia
- ✓ Haemolytic Anemia
- ✓ Polycythemia
- Basopenia(Decreased %)
- ✓ Inherently deficient
- √ thyroid Disease
- ✓ Side effects to steroids

Lymphocyte count*.

- Normal count: 20 40% of WBC.
- Lymphocytosis*:
- a) High Number b) High %
 Absolute lymphocytosis (High number).
- ✓ Speen removal surgery
- ✓ Acute viral infections
- ✓ Parasite infections
- ✓ Chronic bacterial infection like T.B.

Lymphocytopenia or lymphopenia (Low number)

- ✓ Immunodeficiency like HIV and other viral and bacterial infections,
- ✓ Malnutrition and severe stress
- ✓ intense or prolonged physical exercise.

Basophil stippling.

- Also known as Punctate basophilia.
- RBC demonstrate small dots at the periphery.
- rRNA.
- Always pathological:
- 1) Lead poisoning
- 2) Anaemias

Vitamin B12 and Folic acid levels.

- Measured in patients with macrocytosis i.e. increased MCV.
- Decreased levels of Vit B12 and FA occur in:
- 1) Nutritional deficiency anaemia,
- 2) Aplastic anaemia
- 3) Side effects of certain drugs.

Ferritin*.

- Serum ferritin (Iron) is an acute phase protein.
- High levels with inflammation.

Use:

R/o Iron Deficiency Anaemia (cases of low Hb + low MCV).

Coagulation (clotting) tests.

 Abnormal results in diseases of clotting e.g. hemophilia.

Sickle cell test * (Sickling test).

- Positive in: Sickle cell trait (AS) or sickle cell disease (SS).
- Hemoglobin S, instead of the normal hemoglobin, hemoglobin A.
- HbS $(\alpha_2 \beta^{S2})$

Hb Electrophoresis*.

 Type and size of haemoglobin molecules determined.

Use:

- Diagnose haemoglobinopathies (Quantify the proportions of different variants of haemoglobin)-mild anaemia.
- 2. Detect abnormal haemoglobins e.g HbS
- differentiate Trait from Disease.

Hb Electrophoresis*.

- Haemoglobin electrophoresis is a method of determining the type and size of haemoglobin molecules in a persons blood by observing the rates of transit of these negatively charged proteins in an electric field medium.
- It is used to diagnose haemoglobinopathies, conditions with an unusual combination of haemoglobin types which usually result in mild anaemia.

FIN