

Matplotlib

Tushar B. Kute, http://tusharkute.com

Matplotlib

- Matplotlib is a plotting library for Python. It is used along with NumPy to provide an environment that is an effective open source alternative for MatLab.
- It can also be used with graphics toolkits like PyQt and wxPython.
- Matplotlib module was first written by John D. Hunter.
- Since 2012, Michael Droettboom is the principal developer.
- Currently, Matplotlib ver. 1.5.1 is the stable version available. The package is available in binary distribution as well as in the source code form on www.matplotlib.org.

How to install?

sudo pip install matplotlib
sudo apt install python-matplotlib

How to use?

- Conventionally, the package is imported into the Python script by adding the following statement –
 - from matplotlib import pyplot as plt
- Here pyplot() is the most important function in matplotlib library, which is used to plot 2D data.


```
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(1, 11)
y = 5 * x + 10
plt.title("Matplotlib demonstration")
plt.xlabel("x axis")
plt.ylabel("y axis")
plt.plot(x,y)
plt.show()
```

Markers

- '_'
 - Solid line style
- '__
 - Dashed line style
- '-.'
 - Dash-dot line style
- '•
 - Dotted line style
- '.
 - Point marker
- '.
 - Pixel marker
- 'o'
 - Circle marker

Markers

- 'v
 - Triangle_down marker
- '^'
 - Triangle_up marker
- '<'
 - Triangle_left marker
- '>'
 - Triangle_right marker
- '1'
 - Tri_down marker
- '2'
 - Tri_up marker
- '3'
 - Tri_left marker

Colors

Character	Color
'b'	Blue
'g'	Green
'r'	Red
'c'	Cyan
'm'	Magenta
'у'	Yellow
'k'	Black
'w'	White


```
import numpy as np
import matplotlib.pyplot as plt

x = np.arange(1,11)
y = 5 * x + 10
plt.title("Matplotlib demonstration")
plt.xlabel("x axis")
plt.ylabel("y axis")
plt.plot(x,y, "o")
plt.show()
```



```
import numpy as np
import matplotlib.pyplot as plt
# Compute the x and y coordinates for
x = np.arange(0, 3 * np.pi, 0.1)
y = np.sin(x)
plt.title("sine wave form")
# Plot the points using matplotlib
plt.plot(x, y)
plt.show()
```

Subplots


```
import numpy as np
import matplotlib.pyplot as plt
# Compute the x and y coordinates for pc
x = np.arange(0, 3 * np.pi, 0.1)
y \sin = np.sin(x)
y cos = np.cos(x)
# Set up a subplot grid that has height
# and set the first such subplot as act:
plt.subplot(2, 1, 1)
# Make the first plot
plt.plot(x, y sin)
plt.title('Sine')
# Set the second subplot as active, and
plt.subplot(2, 1, 2)
plt.plot(x, y_cos)
plt.title('Cosine')
# Show the figure.
plt.show()
```


Bar plots


```
from matplotlib import pyplot as plt
x = [5, 8, 10]
y = [12, 16, 6]
x2 = [6,9,11]
y2 = [6, 15, 7]
plt.bar(x, y, align = 'center')
plt.bar(x2, y2, color = 'g', align = 'center')
plt.title('Bar graph')
plt.ylabel('Y axis')
plt.xlabel('X axis')
plt.show()
```



```
from matplotlib import pyplot as plt
import numpy as np

a = np.array([22,87,5,43,56,73,55,54,11,20,51,5,79,31,27])
plt.hist(a, bins = [0,20,40,60,80,100])
plt.title("histogram")
plt.show()
```


Thank you

This presentation is created using LibreOffice Impress 5.1.6.2, can be used freely as per GNU General Public License

Web Resources

http://mitu.co.in http://tusharkute.com

contact@mitu.co.in

tushar@tusharkute.com