(19)日本国特許庁 (JP)

識別記号

(51) Int.Cl.7

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-64324 (P2003-64324A)

(43)公開日 平成15年3月5日(2003.3.5)

テーマコート*(参考)

	(22)出願日		平成13年7月4日(200	01.7.4)			日立化成工業株式会社 東京都新宿区西新宿2丁目1番1号		
(21)出顯番号		身	特顏2001-203614(P2001-203614)		(71)出願	000004455			
					審查請	求 未請求	請求項の数5	OL	(全 12 頁)
	H05K	3/32			H05K	3/32	F	3	
	H01L	21/60	311		H01L	21/60	3118	5 5	F044
		201/00		•		201/00		5	E319
		5/00	•	•		5/00		4	J 0 4 0
	C091	7/02			C09J	7/02	2	. 4	J004

FΙ

(72) 発明者 白金 淳司

茨城県下館市大字五所宮1150番地 日立化

成工業株式会社五所官事業所内

(72)発明者 叶多 秀司

茨城県下館市大字五所宮1150番地 日立化

成工業株式会社五所官事業所内

最終頁に続く

(54) 【発明の名称】 異方導電性接着フィルム及びそれを用いた回路基板の接続方法、回路基板接続体

(57)【要約】

(32) 優先日

(33)優先権主張国

【課題】 異方導電性接着フィルムを基板に仮圧着する 時の作業性を改善するとともに、高い導電性粒子捕捉率 を達成し、回路間短絡の危険性を低減する。

(31) 優先権主張番号 特願2001-175750 (P2001-175750)

日本 (JP)

平成13年6月11日(2001.6.11)

【解決手段】 絶縁性接着剤層と活性光線によって硬化 する絶縁性バインダ層を重ねたフィルムの活性光線によ って硬化する絶縁性バインダ層に導電性粒子を埋め込ん で単層に形成した異方導電性接着フィルムで、活性光線 によって硬化する絶縁性バインダ層の厚みは導電性粒子 の粒子径と同等以下であり、活性光線によって硬化する 絶縁性バインダ層が使用前は未硬化状態で粘着性を示す 異方導電性接着フィルム。この異方導電性接着フィルム を用いて、活性光線透過性のある基板に仮圧着した後、 本圧着直前に活性光線を照射してバインダ層を硬化す 3.

【特許請求の範囲】

【請求項1】 絶縁性接着剤層と活性光線によって硬化する絶縁性バインダ層を重ねたフィルムの該活性光線によって硬化する絶縁性バインダ層に導電性粒子を埋め込んで単層に形成してなる異方導電性接着フィルムであって、該活性光線によって硬化する絶縁性バインダ層の厚みは導電性粒子の粒子径と同等以下であり、該活性光線によって硬化する絶縁性バインダ層が使用前は未硬化状態で粘着性を示すことを特徴とする異方導電性接着フィルム。

【請求項2】 絶縁性接着剤層と活性光線によって硬化する絶縁性バインダ層を重ねたフィルムの該活性光線によって硬化する絶縁性バインダ層に導電性粒子を埋め込んで単層に形成してなる異方導電性接着フィルムであって、該活性光線によって硬化する絶縁性バインダ層の厚みは導電性粒子の粒子径と同等以下であり、該活性光線によって硬化する絶縁性バインダ層が使用前は未硬化状態で粘着性を示す異方導電性接着フィルムを用いて、活性光線によって硬化する絶縁性バインダ層側を活性光線透過性のある基板に仮圧着し、活性光線を照射して該活性光線によって硬化する絶縁性バインダ層の導電性粒子を固定し、接続部材と基板の電極の位置合わせを行い接続することを特徴とする回路基板の接続方法。

【請求項3】 接続前の異方導電性接着フィルムの接続電極投影面積相当の面積に含まれる導電性粒子数に対する接続後の接続電極上に捕捉される導電性粒子数の割合を示す粒子捕捉率の平均値が65~85%であり、接続前の異方導電性接着フィルムの隣接電極間のスペース部分相当の面積に含まれる導電性粒子数に対する接続後の該接続電極に隣接する電極間のスペース部分に残存する導電性粒子数の割合を示す粒子残存率の平均値が65~85%である請求項2に記載の回路基板の接続方法。

【請求項4】 接続部材が半導体チップである請求項2 または請求項3に記載の回路基板の接続方法。

【請求項5】 接続した1個当たりの電極上の導電性粒子数の平均値が1mm² 当たりの個数に換算したとき、2000個/mm²~4000個/mm²の範囲内である請求項2ないし請求項4のいずれかに記載の回路基板の接続方法により得られた回路基板接続体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、相対峙する回路を電気的に接続すると共に接着固定するために用いられる回路接続用の異方導電性接着フィルムに関し、特に I C ベアチップ (半導体チップ)を直接回路に接続する、いわゆるフリップチップボンディングに用いられる異方導電性接着フィルム及びそれを用いた回路基板の接続方法、回路基板接続体に関する。

[0002]

【従来の技術】異方導電性接着フィルムは、基板と基板

の回路接続や基板回路と半導体チップとの電気的接続を 行うために用いられ、例えば、液晶基板と駆動基板とを フラットケーブルにより電気的に接続するために用いら れている。

【0003】この異方導電性接着フィルムは、絶縁性接着剤と導電性粒子とからなり、導電性粒子は、高分子核体の表面が金属薄層により実質的に被覆してなる粒子或いは金属粒子、又は両者を混合した粒子である。この異方導電性接着フィルムの製造方法は、通常エポキシ樹脂等の絶縁性樹脂とカップリング剤、硬化剤、硬化促進剤および導電性粒子を混入・分散した接着剤ワニスをセパレータ上に塗布・乾燥して製造される。

[0004]

【発明が解決しようとする課題】近年、実装する半導体チップはデバイスの小型化、高密度化に伴って、その表面に形成されるバンプの大きさとバンプ間のスペースが小さくなる方向に移行している。最近ではこのバンプの大きさが50μm×30μm、バンプ間スペースが10μm程度まで小さくなりつつある。

【0005】一方、異方導電性接着フィルムは3~10 μmの導電性粒子を絶縁性熱硬化性接着剤中に分散させたものが一般的であり、導電性粒子の粒径や添加量を制御することによって、接続後、接続する回路間に一定数の範囲内の導電性粒子を残存させている。ところで、回路接続後において良好な電気的接続信頼性を確保するためには、1バンプあたり最低でも3個以上の導電性粒子がバンプと回路の間に存在することが必要である。しかしながら、バンプや電極の大きさが小さくなるに従って、接続後においてバンプと回路間、電極間に残存する導電性粒子は少なくなるため導電性粒子の添加量を多くすると導電性粒子の凝集体が隣接するバンプ間スペースを閉塞して短絡する危険性が増大する。

【0006】現状では異方導電性接着フィルムには4000~8000個/mm²の導電性粒子が配合されているが、実際に電気的接続に役立っている導電性粒子は接続後バンプ上に残留しているものだけであり、他の導電性粒子はバンプ間で短絡する導電性異物と見なされる。ここで、異方導電性接着フィルムで回路接続する場合、接続前の異方導電性接着フィルムの接続電極投影面積相当の面積に含まれる導電性粒子数に対する接続後の接続電極上に捕捉される導電性粒子数の割合を粒子捕捉率と定義して記述する。現状の異方導電性接着フィルムの粒子捕捉率は15~30%である。

【0007】本発明者らは、特開2001-52778 号公報にて尊電性粒子を絶縁性のバインダで固定した異 方導電性接着フィルムを用いて90%以上の粒子捕捉率 を達成することを明らかにした。一般的に、粒子固定層 の片面のみに絶縁性接着剤層を設けたとき、タック力が 無いために基板への仮付け時にフィルムがずれて圧着さ れ歩留まりが低下する。

【0008】本発明はかかる状況に鑑みてなされたもので、片面に導電性粒子が配置された異方導電性接着フィルムを基板に仮圧着する時の作業性を改善するとともに、高い導電性粒子捕捉率を達成し、回路間短絡の危険性を低減するとともに接続信頼性に優れた接着フィルムを提供して課題を解決しようとするものである。 【0009】

【課題を解決するための手段】本発明は、「1】絶縁性 接着剤層と活性光線によって硬化する絶縁性バインダ層 を重ねたフィルムの該活性光線によって硬化する絶縁性 バインダ層に導電性粒子を埋め込んで単層に形成してな る異方導電性接着フィルムであって、該活性光線によっ て硬化する絶縁性バインダ層の厚みは導電性粒子の粒子 径と同等以下であり、該活性光線によって硬化する絶縁 性バインダ層が使用前は未硬化状態で粘着性を示すこと を特徴とする異方導電性接着フィルムである。また、本 発明は、[2]絶縁性接着剤層と活性光線によって硬化 する絶縁性バインダ層を重ねたフィルムの該活性光線に よって硬化する絶縁性バインダ層に導電性粒子を埋め込 んで単層に形成してなる異方導電性接着フィルムであっ て、該活性光線によって硬化する絶縁性バインダ層の厚 みは導電性粒子の粒子径と同等以下であり、該活性光線 によって硬化する絶縁性バインダ層が使用前は未硬化状 態で粘着性を示す異方導電性接着フィルムを用いて、活 性光線によって硬化する絶縁性バインダ層側を活性光線 透過性のある基板に仮圧着し、活性光線を照射して該活 性光線によって硬化する絶縁性バインダ層の導電性粒子 を固定し、接続部材と基板の電極の位置合わせを行い接 続することを特徴とする回路基板の接続方法である。

[3]接続前の異方導電性接着フィルムの接続電極投影面積相当の面積に含まれる導電性粒子数に対する接続後の接続電極上に捕捉される導電性粒子数の割合を示す粒子捕捉率の平均値が65~85%であり、接続前の異方導電性接着フィルムの隣接電極間のスペース部分相当の面積に含まれる導電性粒子数に対する接続後の該接続電極に隣接する電極間のスペース部分に残存する導電性粒子数の割合を示す粒子残存率の平均値が65~85%である上記[2]に記載の回路基板の接続方法である。

[4]接続部材が半導体チップである上記[2]または上記[3]に記載の回路基板の接続方法である。そして、本発明は、[5]接続した1個当たりの電極上の導電性粒子数の平均値が1mm2当たりの個数に換算したとき、2000個/mm2~4000個/mm2の範囲内である上記[2]ないし上記[3]のいずれかに記載の回路基板の接続方法により得られた回路基板接続体である。

【0010】本発明は、絶縁性接着剤層の上に導電性粒子の粒径と同等以下の厚みを有する活性光線によって硬化する絶縁性バインダ層を重ね、絶縁性バインダ層の表

面近傍に導電性粒子を埋め込んで単層に形成してなる異 方導電性接着フィルムである。その異方導電性接着フィ ルムを用いて回路基板を接続するもので、絶縁性バイン ダ層側を活性光線透過性のある基板表面に仮圧着した 後、基板越しに活性光線を照射して該活性光線によって 硬化する絶縁性バインダ層の導電性粒子を固定した後、 接続する相手となる接続部材の電極と基板側の電極を位 置合わせして搭載後、本圧着することによって仮圧着時 の作業性を改善できると共に高い導電性粒子捕捉率と回 路間短絡の危険性を低減できる。バインダ層を基板表面・ に仮圧着する時点でバインダ層は未硬化であるためバイ ンダ層は粘着性 (タック性) を有しており、これにより 異方導電性接着フィルムを基板上に載置したとき基板に 容易に貼り付き、位置ずれしないため作業性が改善され る。その後、活性光線を照射して絶縁性バインダ層を硬 化し、導電性粒子を固定化するため本圧着時の導電性粒 子の流動を抑え、電極上に効率良く導電性粒子を確保す ることが出来る。活性光線によって硬化する絶縁性バイ ンダ層は、使用前は未硬化状態で粘着性を示す必要があ る。ここで、使用前とは仮圧着する直前までであり、未 硬化状態とは、硬化が完全に行なわれておらず、接続時 に流動性を示す状態である。粘着性は、電極上に絶縁性 バインダ層を重ねたときに極めて容易に動かない程度の タック性を有している状態を言う。活性光線は、紫外 線、レーザ光、X線、電子線が挙げられ、この際にこれ らの活性光線により絶縁性接着剤層の硬化が十分に進行 しないことが望まれる。この観点から、紫外線が特に好

【0011】即ち上記手順に従えば、接続前の異方導電性接着フィルムの接続電極投影面積相当の面積に含まれる導電性粒子数に対する接続後の接続電極上に捕捉される導電性粒子数の割合を示す粒子捕捉率の平均値が65~85%であり、且つ接続前の異方導電性接着フィルムの隣接電極間のスペース部分相当の面積に含まれる導電性粒子数に対する接続後の該接続電極に隣接する電極間のスペース部分に残存する導電性粒子数の割合を示す粒子残存率の平均値が65~85%を達成でき、前記課題を達成できる。

【0012】したがって、少ない導電性粒子添加量で高い導電性粒子捕捉率を達成することが可能となり、従来の異方導電性接着フィルムでは実現できなかった接続した1個当たりの電極上の導電性粒子数の平均値が1mm2当たりの個数に換算したとき、2000個/mm2~4000個/mm2の範囲内である回路基板接続体を得ることが出来る。

[0013]

【発明の実施の形態】以下、本発明を図面を参照して説明する。図1は本発明の異方導電性接着フィルムを用いた接続工程図を示す。(a)は本発明の異方導電性接着フィルムの部分拡大断面図である。本発明の異方導電性

接着フィルムはセパレータ4上に電気絶縁性の絶縁性接 着剤層3を塗布し、その上に活性光線によって硬化する 絶縁性バインダ層2を塗布し、導電性粒子1を単層に散 布した後、ラミネートロールなどを用いて粒子を埋め込 むことによって作製できる。接続後の接続電気抵抗を小 さく保つためには、導電性粒子を埋め込んだ活性光線に よって硬化する絶縁性バインダ層2の厚みは導電性粒子 1の粒子径と同等以下程度に薄い方が良く、さらに好ま しくは導電性粒子の粒子径より薄い方が良い。(b)は 本発明の異方導電性接着フィルムの活性光線によって硬 化するバインダ層側を活性光線透過性のある基板5の表 面に向けて押える工程を示す。このとき、活性光線によ って硬化する絶縁性バインダ層2が未硬化で粘着性(タ 「ック性」を有するため、基板表面に濡れ易く、位置ずれ しにくいので、効率良く作業することが出来る。(c) は異方導電性接着フィルムを活性光線透過性のある基板 表面に仮圧着する工程を示す。圧着ヘッドフを介してセ パレータ4越しに加圧して、絶縁層バインダ層2と基板 5又は基板の電極6との間隙をなくす。仮圧着条件とし ては絶縁性接着剤層3が硬化しない程度に加熱加圧する ことが好ましいが、加熱は必ずしも必須ではなく、絶縁 性パインダ層2が基板5又は基板の電極6に対して貼り 付けば良いので、必要に応じて絶縁性接着剤層3が硬化 しない程度に加熱すればよい。(d)は活性光線照射工 程を示す。基板5越しに絶縁性バインダ層2に活性光線 を照射することによって、絶縁性バインダ層2を硬化 し、導電性粒子1を固定する。このとき、加圧は必須で はないが、絶縁性バインダ層2の硬化時に絶縁性バイン ダ層2内部に気泡が残らないようにするという観点から 加圧状態で活性光線を照射する方が好ましい。(e)は 接続する電極同士の位置合わせの工程を示す。セパレー タ4を剥離して接続部材8の電極9と基板5の電極6を CCDカメラ等(図示せず)を用いて位置合わせする。 (f) は搭載の工程を示す。位置合わせした接続部材8 を絶縁性接着剤層3の上に搭載する。(g)は本圧着工 程を示す。圧着ヘッド7を介して加熱加圧して接続部材 8の電極9と基板5の電極6の間に存在する導電性粒子 を変形させて電気的導通を得ると共に絶縁性接着剤層3 を流動させて基板5と接続部材8の間の空隙を充填して 硬化する。

【0014】前記の接続工程では、本圧着時、加熱された圧着ヘッドの熱が接続部材8を通って絶縁性接着剤層3に伝わり絶縁性接着剤層は溶融し、接続部材中心部から周辺部に向かって流動する。この時、活性光線透過性を有する基板5に接している絶縁性バインダ層2は活性光線照射時に硬化が進み、溶融粘度が高くなっているため樹脂の流動性(流速)はほぼ零であり、導電性粒子の移動が少なく、基板面から離れるに従って流動する樹脂の流速が大きくなる。この結果、接続部材8の電極上に残留する導電性粒子数が大きくなり、粒子捕捉率がより

高く改善される。したがって、前述したように仮圧着から活性光線照射の工程でしっかり圧着することが粒子捕 捉率を大きくするうえで好ましい。

【0015】セパレータ4としては、異方導電性接着フィルムの作製に一般的に用いられている、例えば、ボリエチレンテレフタレート、ポリプロピレンテレフタレート、ボリブチレンテレフタレート、ポリエチレンー2,6ーナフタレート、ポリエチレンー2,6ーナフタレート、ポリエチレンー2,6ーナフタレンジカルボキシレート等のボリエステルフィルム、ボリプロピレンフィルム、ポリイミドフィルム、ボリサルフォンフィルム、ポリエーテルサルフォンフィルム、ポリフェニレンサルファイドフィルム、ポリアリレートフィルム、ポリアミドイミドフィルム、ポリエーテルイミドフィルム、ポリエーテルエーテルケトンフィルム、ポリアミドフィルム、ポリカーボネートフィルム等を用い、これらは逐次二軸延伸法、同時二軸延伸法等の方法で得ることができる。

【0016】絶縁性接着剤層に用いられる樹脂として は、一般に異方導電性接着フィルムとして使用されてい る樹脂であれば制限はないが、絶縁性バインダ層の樹脂 とは異なる硬化システムである必要がある。スチレンー ブタジエン-スチレン共重合体、スチレン-イソプレン-スチレン共重合体などの熱可塑性樹脂や、エポキシ樹 脂、(メタ)アクリル樹脂、マレイミド樹脂、シトラコ ンイミド樹脂、ナジイミド樹脂、フェノール樹脂などの 熱硬化性樹脂が使用されるが、耐熱性や信頼性の点で熱 硬化性樹脂を使用することが好ましく、特にエポキシ樹 脂、(メタ)アクリル樹脂、マレイミド樹脂、シトラコ ンイミド樹脂、ナジイミド樹脂を用いることが好まし い。さらに(メタ)アクリル樹脂、マレイミド樹脂、シ トラコンイミド樹脂、ナジイミド樹脂などのラジカル重 合性樹脂を用いた場合には低温硬化性の点で好ましい。 【0017】エポキシ樹脂としては、ビスフェノールA 型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビ スフェノールS型エポキシ樹脂、フェノールノボラック 型エポキシ樹脂、クレゾールノボラック型エポキシ樹 脂、ビスフェノールAノボラック型エポキシ樹脂、ビス フェノールFノボラック型エボキシ樹脂、脂環式エボキ シ樹脂、グリシジルエステル型エポキシ樹脂、グリシジ・ ルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹 脂、イソシアヌレート型エポキシ樹脂、脂肪族鎖状エポ キシ樹脂等があり、これらのエポキシ樹脂は、ハロゲン 化されていてもよく、水素添加されていてもよい。これ らのエポキシ樹脂は、2種以上を併用してもよい。 【0018】また、前記エポキシ樹脂の硬化剤として は、アミン類、フェノール類、酸無水物類、イミダゾー ル類、ジシアンジアミド等通常のエポキシ樹脂の硬化剤 として使用されているものが挙げられる。さらには、硬 化促進剤として通常使用されている3級アミン類、有機 リン系化合物を適宜使用しても良い。

【0019】また、エポキシ樹脂を反応させる方法として、前記硬化剤を使用する以外に、スルホニウム塩、ヨードニウム塩等を使用して、カチオン重合させても良い。

【0020】アクリル樹脂としては、メチルアクリレー ト、エチルアクリレート、イソプロピルアクリレート、 イソブチルアクリレート、エチレングリコールジアクリ レート、ジエチレングリコールジアクリレート、トリメ チロールプロパントリアクリレート、テトラメチレング リコールテトラアクリレート、2-ヒドロキシ-1,3 ージアクリロキシプロパン、2,2-ビス[4-(アク リロキシメトキシ)フェニル]プロパン、2、2ービス・ (4-(アクリロキシエトキシ)フェニル)プロパン、ジ シクロペンテニルアクリレートトリシクロデカニルアク リレート、トリス (アクリロキシエチル) イソシアヌレ ート、ウレタンアクリレートなどが挙げられ、また、前 記アクリレートをメタクリレートにしたものを単独また。 は2種類以上を混合して用いても良い。また、必要によ っては、ハイドロキノン、メチルエーテルハイドロキノ ン等のラジカル重合禁止剤を硬化性が損なわれない範囲 で使用しても良い。

【0021】さらに、リン酸エステル構造を有するラジ カル重合性物質を使用した場合、金属等無機物に対する 接着力を向上することができる。リン酸エステル構造を 有するラジカル重合性物質の使用量は、0.1~10重 量部であり、好ましくは0.5~5重量部である。リン 酸エステル構造を有するラジカル重合性物質は、無水リ ン酸と2-ヒドロキシエチル (メタ) アクリレートの反 応生成物として得られる。 具体的には、モノ(2-メタ クリロイルオキシエチル) アシッドホスフェート、ジ (2-メタクリロイルオキシエチル) アシッドホスフェ ート等が有り、単独でも混合して使用しても良い。 【0022】マレイミド樹脂としては、分子中にマレイ ミド基を少なくとも1個有しているもので、例えば、フ ェニルマレイミド、1-メチル-2,4-ビスマレイミ ドペンゼン、N, N'-m-フェニレンビスマレイミ ド、N, N'-p-フェニレンピスマレイミド、N, N' -4, 4-ビフェニレンビスマレイミド、N, N'-4,4-(3,3-ジメチルピフェニレン) ピスマレイ ミド、N, N'-4, 4-(3, 3-ジメチルジフェニ ルメタン) ビスマレイミド、N, N'-4, 4-(3, 3-ジエチルジフェニルメタン) ビスマレイミド、N, N, N'-4, 4-ジフェニルエーテルビスマレイミ ド、N, N'-4, 4-ジフェニルスルホンビスマレイ ミド、2,2-ピス(4-(4-マレイミドフェノキ シ) フェニル) プロパン、2, 2-ビス (3-s-ブチ $\nu - 3$, $4 - (4 - 7\nu + 5) = 10$

プロパン、1,1-ビス(4-(4-マレイミドフェノ

キシ) フェニル) デカン、4,4'-シクロヘキシリデンービス(1-(4-マレイミドフェノキシ) フェノキシ) -2-シクロヘキシルベンゼン、2,2-ビス(4-(4-マレイミドフェノキシ) フェニル) ヘキサフルオロプロパンなどが有り、単独でも2種類以上を混合して使用しても良い。

【0023】シトラコンイミド樹脂としては、分子中に シトラコンイミド基を少なくとも1個有しているもの で、例えば、フェニルシトラコンイミド、1-メチルー 2, 4-ビスシトラコンイミドベンゼン、N, N'-m ーフェニレンピスシトラコンイミド、N. N'-p-フ ェニレンビスシトラコンイミド、N, N'-4, 4-ビ フェニレンピスシトラコンイミド、N, N'-4, 4-(3, 3-ジメチルビフェニレン) ビスシトラコンイミ ド、N, N'-4, 4-(3, 3-ジメチルジフェニル メタン) ビスシトラコンイミド、N, N'-4, 4-(3, 3-ジエチルジフェニルメタン) ビスシトラコン イミド、N, N'-4, 4-ジフェニルメタンピスシト ラコンイミド、N, N'-4, 4-ジフェニルプロパン ビスシトラコンイミド、N, N'-4, 4-ジフェニル エーテルビスシトラコンイミド、N, N'-4, 4-ジ フェニルスルホンピスシトラコンイミド、2,2-ピス (4-(4-シトラコンイミドフェノキシ)フェニル) プロパン、2,2ービス(3-s-ブチル-3,4-(4-シトラコンイミドフェノキシ) フェニル) プロパー ン、1,1-ビス(4-(4-シトラコンイミドフェノ キシ) フェニル) デカン、4,4'-シクロヘキシリデ ンービス(1-(4-シトラコンイミドフェノキシ)フ ェノキシ) -2-シクロヘキシルベンゼン、2、2-ビ ス(4-(4-シトラコンイミドフェノキシ)フェニ ル) ヘキサフルオロプロパンなどが挙げられ、単独でも 2種類以上を混合して使用しても良い。

【0024】ナジイミド樹脂としては、分子中にナジイ ミド基を少なくとも1個有しているもので、例えば、フ ェニルナジイミド、1-メチル-2,4-ビスナジイミ ドベンゼン、N, N'-m-フェニレンピスナジイミ ド、N, N'-p-フェニレンビスナジイミド、N, N' -4,4-ビフェニレンピスナジイミド、N,N'-4,4-(3,3-ジメチルビフェニレン) ビスナジイ ミド、N, N'-4, 4-(3, 3-ジメチルジフェニ ルメタン) ビスナジイミド、N, N'-4, 4-(3, 3-ジエチルジフェニルメタン) ピスナジイミド、N, N'-4, 4-ジフェニルメタンピスナジイミド、N. N'-4,4-ジフェニルプロパンピスナジイミド、 N, N'-4, 4-ジフェニルエーテルピスナジイミ ド、N, N'-4, 4-ジフェニルスルホンピスナジイ ミド、2, 2-ビス(4-(4-ナジイミドフェノキ シ) フェニル) プロパン、2,2-ビス(3-s-ブチ ルー3,4-(4-ナジイミドフェノキシ)フェニル) プロパン、1,1-ビス(4-(4-ナジイミドフェノ

キシ)フェニル) デカン、4,4'-シクロヘキシリデンービス(1-(4-ナジイミドフェノキシ)フェノキシ)-2-シクロヘキシルベンゼン、2,2-ビス(4-(4-ナジイミドフェノキシ)フェニル) ヘキサフルオロプロパンなどが挙げられ、単独でも2種類以上を混合して使用しても良い。

【0025】上記のラジカル重合性化合物を使用した場 合には、重合開始剤を使用する。重合開始剤としては、 熱によってラジカルを発生する化合物であれば特に制限 はなく、過酸化化合物、アゾ系化合物などがあり、目的 とする接続温度、接続時間、保存安定性等を考慮し適宜 選択されるが、高反応性と保存安定性の点から、半減期 10時間の温度が、40℃以上かつ、半減期1分の温度 が180℃以下の有機過酸化物が好ましく、半減期10 時間の温度が、50℃以上、かつ、半減期1分の温度が 170℃以下の有機過酸化物が特に好ましい。接続時間 を10秒とした場合、十分な反応率を得るための重合開 始剤の配合量は、1~20重量%が好ましく、2~15 重量%が特に好ましい。これより少ないと、接続時に硬 化反応が十分進まず、これより多いと樹脂が流動して回 路間の樹脂が十分排除される前に硬化が進んでしまい。 いずれの場合にも接続信頼性が低下する。本発明で使用 される有機過酸化物の具体的な化合物としては、ジアシ ルパーオキサイド、パーオキシジカーボネート、パーオ キシエステル、パーオキシケタール、ジアルキルパーオ キサイド、ハイドロパーオキサイド、シリルパーオキサ イドなどから選定できるが、パーオキシエステル、ジア ルキルパーオキサイド、ハイドロパーオキサイド、シリ ルパーオキサイドは、開始剤中の塩素イオンや有機酸が 5000ppm以下であり、加熱分解後に発生する有機 酸が少なく、回路部材の接続端子の腐食を抑えることが できるため特に好ましい。

【0026】ジアシルパーオキサイド類としては、イソブチルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシニックパーオキサイド、ベンゾイルパーオキシトルエン、ベンゾイルパーオキサイド等が挙げられる。

【0027】パーオキシジカーボネート類としては、ジーnープロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ(2-エチルヘキシルパーオキシ)ジカーボネート、ジメトキシブチルパーオキシジカーボネート、ジ(3-メチルー3-メトキシブチルパーオキシ)ジカーボネート等が挙げられる。

【0028】パーオキシエステル類としては、クミルパーオキシネオデカノエート、1,1,3,3-テトラメ

チルプチルパーオキシネオデカノエート、1-シクロへ キシルー1-メチルエチルパーオキシノエデカノエー ト、セーヘキシルパーオキシネオデカノエート、セーブ チルパーオキシピバレート、1,1,3,3-テトラメ チルブチルパーオキシー2-エチルヘキサノネート、 2,5-ジメチルー2,5-ジー(2-エチルヘキサノ イルパーオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシー2-エチルヘキサノネート、 t-ヘキシルパーオキシ-2-エチルヘキサノネート、 t-ブチルパーオキシ-2-エチルヘキサノネート、t ーブチルパーオキシイソブチレート、1,1ービス(t ープチルパーオキシ)シクロヘキサン、t-ヘキシルパ ーオキシイソプロピルモノカーボネート、セーブチルパ ーオキシー3,5,5ートリメチルヘキサノネート、t ープチルパーオキシラウレート、2,5-ジメチルー 2, 5-ジ (m-トルオイルパーオキシ) ヘキサン、t ーブチルパーオキシイソプロピルモノカーボネート、t ープチルパーオキシー2-エチルヘキシルモノカーボネ ート、セーヘキシルパーオキシベンゾエート、セーブチ ルパーオキシアセテート等を挙げることができる。

【0029】パーオキシケタール類では、1,1ービス (tーヘキシルパーオキシ)-3,3,5ートリメチルシクロヘキサン、1,1ービス (tーヘキシルパーオキシ)シクロヘキサン、1,1ービス (tーブチルパーオキシ)-3,3,5ートリメチルシクロヘキサン、1,1ー(tーブチルパーオキシ)シクロドデカン、2,2ービス (tーブチルパーオキシ)デカン等が挙げられる。

【0030】ジアルキルパーオキサイド類では、 α , α' ービス(t ーブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2, 5 ージメチルー2, 5 ージ(t ーブチルパーオキシ)へキサン、t ーブチルクミルパーオキサイド等が挙げられる。

【0031】ハイドロパーオキサイド類では、ジイソアロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、カメンハイドロパーオキサイド等が挙げられる。

【0032】シリルパーオキサイド類としては、tーブチルトリメチルシリルパーオキサイド、ビス(tーブチル)ジメチルシリルパーオキサイド、tーブチルトリビニルシリルパーオキサイド、ビス(tーブチル)ジビニルシリルパーオキサイド、トリス(tーブチル)ビニルシリルパーオキサイド、tーブチルトリアリルシリルパーオキサイド、ビス(tーブチル)ジアリルシリルパーオキサイド、ドリス(tーブチル)アリルシリルパーオキサイド、ドリス(tーブチル)アリルシリルパーオキサイド、トリス(tーブチル)アリルシリルパーオキサイド等が挙げられる。

【0033】本発明の異方導電性接着フィルムには、フィルム形成性、接着性、硬化時の応力緩和性を付与するため、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ボリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、キシレン樹脂、フェノキシ樹脂、ポリウレタン

樹脂、尿素樹脂等高分子成分を使用することもできる。これら高分子成分は、分子量が10000~10000000のものが好ましい。また、これらの樹脂は、ラジカル重合性の官能基で変性されていても良く、この場合耐熱性が向上する。高分子成分の配合量は、2~80重量%であり、5~70重量%が好ましく、10~60重量%が特に好ましい。2重量%未満では、応力緩和や接着力が十分でなく、80重量%を超えると流動性が低下する。

【0034】本発明の異方導電性接着フィルムは、適宜 充填剤、軟化剤、促進剤、老化防止剤、着色剤、難燃 剤、カップリング剤を添加しても良い。

【0035】絶縁性バインダ層に用いられる活性光線に よって硬化する樹脂としては、付加重合性物質、ラジカ ル重合性物質及び光照射によって活性ラジカルを発生す る化合物が挙げられ、これら重合性物質としては、先に 述べた絶縁性接着剤層に用いることが可能なラジカル重 合性物質を用いることが出来る。光照射によって活性ラ ジカルを発生する化合物、いわゆる光開始剤としては、 ベンゾインエチルエーテル、イソプロピルベンゾインエ ーテル等のベンゾインエーテル、ベンジル、ヒドロキシ シクロヘキシルフェニルケトン等のベンジルケタール、 ベンゾフェノン、アセトフェノン等のケトン類及びその 誘導体、チオキサントン類、ビスイミダゾール類等があ り、これらの光開始剤に必要に応じてアミン類、イオウ 化合物、リン化合物等の増感剤を任意の比で添加しても よい。この際、用いる照射源の波長や所望の硬化特性等 に応じて最適な光開始剤を選択する必要がある。

【0036】活性光線が紫外線の場合、紫外線照射源としては、水銀ランプ、メタルハライドランプ、無電極ランプ等で発生させることができる。紫外線の照射線量は、照射源に用いるランプの性能にもよるが、一般的に0.2J/cm²~20J/cm²の範囲でほぼ十分な硬化を得ることが出来る。

【0037】導電性粒子としては、Au、Ag、Ni、Cu、はんだ等の金属粒子やカーボン、またはガラス、セラミック、プラスチックの非導電性粒子にAu、Ag、白金等の貴金属類を被覆した粒子が使用される。金属粒子の場合には表面の酸化を抑えるため、貴金属類で被覆したものが好ましい。上記導電性粒子のなかで、プラスチックを核体としてAu、Ag等で被覆した粒子や熱溶融金属粒子は、接続時の加熱加圧によって変形し、接触面積が増加したり、電極の高さばらつきを吸収するので接続信頼性が向上する。貴金属類の被覆層の厚みは、100人以上、好ましくは300人以上であれば、良好な接続が得られる。また導電性粒子表面の全部または一部を有機系高分子材料で被覆して得られる粒子を用いても良い。

【0038】 導電性粒子を単層に埋め込む手法としては、例えば、散布、磁場や帯電の利用、メッシュ孔への

充填、スクリーン印刷の利用、表面張力の利用等があるが、導電性粒子を同一電荷に帯電させて散布する方式が好ましい。具体的には、エアチューブをエジェクタと接続し、エジェクタの吸い込み口に導電性粒子を落とし、エアの流れと共に散布させる方法が適用でき、導電性粒子を絶縁性バインダ層上に配置した後、ラミネートロールなどで押し込んで埋め込むことができる。

【0039】また本発明で使用する活性光線透過性のある基板は、仮圧着する時点でバインダ層は未硬化であるため接着フィルムが電極の段差に追随でき、電極の高さは2μm以下であれば充填量となるスペース部分の体積がほとんど無いのでベタ基板と遜色ない仮圧着が可能となるので、電極高さ2μm以下であることが好ましい。2μmを超えると基板と絶縁性バインダ層の界面に残る空隙部分を充填しきれなくなるおそれがある。またこのとき、異方導電性接着フィルムの最低限の厚みを確保する必要性から相手側の接続部材の突起状の電極は3μm以上であることが好ましい。

【0040】本発明に用いる接続部材と基板は、接続部材がICベアチップであり、活性光線透過性のある基板がガラス基板若しくはフィルム状基板である組み合わせが好ましく、又は、接続部材がTAB (Tape Automated Bonding) 若しくはFPC (Flexible Printed Circuit)であり、活性光線透過性のある基板がガラス基板若しくはフィルム状基板である組み合わせが好ましい。

【0041】ICベアチップの形状について正方形に近いものでも縦横比の大きいもの或いは小さいものであっても構わない。また、ICベアチップの電極については、アンダーバンプメタルと呼ばれる下地電極のみの場合とバンプと呼ばれるAuやNiといった金属の突起状の電極を有する場合があるが、接着する相手側の電極の高さが低いので、十分な接着厚みを稼ぐという観点から突起状電極を有する方が好ましい。 ICベアチップの電極の配置についても面配置、4辺配列、2辺配列などがあるが、何れであっても構わない。

【0042】TAB若しくはFPCは、導体(例えば 銅)と基材フィルム(例えばポリイミドフィルム)の貼 り合わせが接着剤を用いる接着剤タイプでも接着剤を用 いない無接着剤タイプでも構わない。TAB若しくはF PCの基材フィルムは、ポリイミド化合物やポリエチレ ンテレフタレート(PET)、ポリエーテルスルフォン (PES)、ポリエチレンナフタレート(PEN)等を 用いることが出来る。TAB若しくはFPCの導体材料 として最も多く使われるのが銅箔であるが、圧延銅箔、 電解銅箔、高屈曲性電解銅箔の何れでもよい。

【0043】本発明の実施例に用いられる活性光線透過性のある基板としては、ガラス基板若しくはフィルム状基板などがある。ガラス基板については、接続体の接続信頼性の観点から平均線膨張率5ppm/℃以下が好ましく、無アルカリガラスであることが好ましい。ガラス

基板の厚みは光透過性の観点から1.2mm以下である ことが好ましい。

【0044】活性光線透過性のあるフィルム状基板につ いては、任意の絶縁性材料又は表面に絶縁性が付与され た導電性材料を用いることが出来るが、量産性に優れ安 価に製造できることから、絶縁性のプラスチックシート を用いることが好ましい。この種のプラスチックシート としては、ポリエチレンテレフタレート (PET)、ポ リエーテルスルフォン (PES)、ポリエチレンナフタ レート (PEN) 等を用いることが出来る。活性光線透 過性のあるフィルム状基板の厚みは10~100μm程 度でよいが、 $10\sim50\mu$ mが好ましい。

【0045】ガラス基板若しくはフィルム状基板上に形 成される回路パターンは基板上にアルミニウム、銅、 銀、錫、鉛、インジウム、クロム、ニッケル等の良導電 性金属材料やITO (Indium Tin Oxide) の薄膜を真空 蒸着法、スパッタリング法、イオンプレーティング法な どによって形成した後、当該薄膜に精密エッチングやレ ーザビームカッティング等を施すことによって形成する ことが出来る。又は導電性のペーストをスクリーン印刷 などの方法によって回路形成したり、基板に導電性箔を 積層してエッチングにより回路形成したり、基板にアデ ティブ法により回路形成することも可能である。

【0046】本発明において、接続電極投影面積相当の

粒子捕捉率の平均値=Σ(粒子捕捉率)/n (式2)

【数2】

ここで、nは計測した接続電極の数を表す。

【0049】例えば図2(a)又は(b)に示される斜 線部分の面積12 (電極間の距離×電極の縦の長さ)の 部分を隣接電極間のスペース部分とし、この部分に相当 する接続前の異方導電性接着フィルムの面積中に含まれ る導電性粒子数を接続前の異方導電性接着フィルムの隣 接電極間のスペース部分相当の面積に含まれる導電性粒 子数とした。以下具体例を2つ挙げて説明するが、これ に限定されるものではない。図2(a)はガラス基板5 とICベアチップ20を異方導電性接着フィルム10で 接続した場合の接続電極の面積11及び隣接電極間のス ペース部分の面積12を示す。接続電極の面積11は、 位置ずれなく電極を接続したとき接続面に対して90・ 方向から見たときに見える I Cベアチップ20の突起電 極であるバンプ21とガラス基板5の1TO電極9の重 なり合う部分の面積11となる。隣接電極間のスペース 部分の面積12は電極間の距離×電極の縦の長さに相当 する面積となる。ITO電極間の距離とバンプ間の距離 はほぼ同じと見て良く、観察の容易性からバンプ間の距

粒子残存率の平均値=Σ(粒子残存率)/n

ここで、nは計測した隣接電極間のスペース部分の数を 表す。

【0052】本発明で用いる粒子捕捉率及び粒子残存率 は接続部材の形状による影響をなくすため、1つの接続 部材中の接続電極の少なくとも3割以上計測する必要が

面積とは、位置ずれなく電極を接続したとき接続面に対し して90・方向から見たときに見える接続した電極の重 なり合う部分の面積をいい、この重なり合う部分の面積 に相当する接続前の異方導電性接着フィルムの面積中に 含まれる導電性粒子数を本発明において接続前の異方導 電性接着フィルムの接続電極投影面積相当の面積に含ま れる導電性粒子数と呼ぶ。ここで、重なり合う部分の面 積に相当する接続前の異方導電性接着フィルムの面積 は、実際に重なり合う部分と縦及び横の長さを揃えるこ とが望ましい。

【0047】粒子捕捉率は、前記したように接続前の異 方導電性接着フィルムの接続電極投影面積相当の面積に 含まれる導電性粒子数に対する接続後の接続電極上に捕 捉される導電性粒子数の割合をいい、下記式1によって 表される。

【数1】

粒子捕捉率(%)=(B/A)×100. (式1) A;接続前の異方導電性接着フィルムの接続電極投影面 積相当の面積に含まれる導電性粒子数

B;接続後の接続電極上に捕捉される導電性粒子数 【0048】本発明における粒子捕捉率の平均値は下記 式2によって算出される。

離に合わせる。図2(b)はTAB13とガラス基板5 を異方導電性接着フィルム10を用いて接続した場合の 接続電極の面積11及び隣接電極間のスペース部分の面 積12を示す。接続電極の面積11は、位置ずれなく電 極を接続したとき接続面に対して90・方向から見たと きに見えるTAB13の電極14とガラス基板5のIT 〇電極9の重なり合う部分の面積11となる。また、隣 接電極間のスペース部分の面積12は隣接電極間の距離 ×異方導電性接着フィルムの接続幅に相当する面積12 となる。TABの電極間の距離とITO電極間の距離は ほぼ同じと見て良く、観察の容易性から隣接電極間の距 離はTABの電極のトップ間の距離に合わせる。

【0050】粒子残存率は、上記スペース部分の面積に 相当する接続前の異方導電性接着フィルムの面積中に含 まれる導電性粒子数に対する接続後にスペース部分の面 積内に残存する導電性粒子数の割合をいう。

【0051】粒子残存率の平均値は、下記式3によって 算出される。

【数3】

(式3)

あり、それらの平均値を算出する。

[0053]

【実施例】以下に本発明を実施例によりさらに具体的に 説明する。

(実施例1)高分子エポキシ樹脂であるフェノキシ樹脂

PKHA (ユニオンカーバイド社製商品名) 40重量部 とマイクロカプセル型潜在性硬化剤を含有する液状工ポ キシ樹脂であるノバキュアHX-3941HP (旭化成 工業株式会社製商品名)100重量部とを混合し、固形 分率30重量%となるように酢酸エチル/トルエン=1 /1の重量混合溶媒で希釈した接着剤ワニスを得た。こ の接着剤ワニスを、離型処理した50μmの二軸延伸ポ リエチレンテレフタレート樹脂フィルム製のセパレータ 上に流延・乾燥して、平均厚み20μmのフィルムAを 得た。このフィルムAの上に、3官能アクリレート(M 315: 東亞合成株式会社製商品名) 100重量部に光 重合開始剤1-ヒドロキシーシクロヘキシルーフェニル ケトン (イルガキュア184:チバ・スペシャリティ・ ケミカルズ株式会社製)/増感剤;4,4'ービスジエ チルアミノベンゾフェノン (EAB: 保土ヶ谷化学工業 株式会社社製商品名)=5/1の重量混合物を1.2重 量部添加し、トルエンに溶解して固形分率10重量%の 活性光線硬化接着剤ワニスを作製し、アプリケータで 流延・乾燥して2μm厚みの 活性光線硬化絶縁性バイ ンダ層を形成したフィルムBを得た。

【0054】平均直径4μmの、Ni/Auめっき皮膜を有するプラスチック粒子をエアエジェクタを通して流動化させて、エアチューブからの圧力0.5MPaで、フィルムB上に平均30,000個/mm² (75個/50μm角)の割合で散布し、フィルムCを得た。なお、フィルムBは0.6m/分の速度で移動させ、エアチューブはフィルムBから10cmの高さのところに固定し、水平方向に散布した。このフィルムCの導電性粒子散布面に、離型処理した二軸延伸PET樹脂フィルムとの非型処理面を向かい合わせて重ね、温度50℃、圧力0.3MPa、速度2m/分の条件で、二本のラミネータロール間を通して、散布した導電性粒子を活性光線硬化絶縁性バインダ層に押し込んだ異方導電性接着フィルムDを得た。フィルムAからフィルムDを得るまでの作製工程を図3に示す。

【0055】50μm×50μmの端子部56箇所及び50μm×50μm56箇所のスペース部分を有するITO回路パターン(高さ0.2μm)を有するガラス基板に、この異方導電性接着フィルムDの絶縁性バインダ層側を100℃、0.2MPaで5秒の加熱加圧を施して貼り付け(仮圧着)、東レエンジニアリング社製セミオートCOGボンダSA1000を用いて0.2MPa

加圧下で活性光線として紫外線を1.0J/cm² 照射し、セパレータを剥がした後、当該ガラス基板と対を成すベアチップ(バンプ高さ15μm)を位置合わせして、200℃、3MPaで20秒の加熱加圧(本圧着)を施して回路接続をした。異方導電性接着フィルムDを200倍の光学顕微鏡で観察して、単位面積当たりのフィルム中の導電性粒子数と回路接続した後のバンプ上及びスペース部分の導電性粒子数をそれぞれ20箇所計測した。

【0056】(比較例1)実施例1と同様の接着剤ワニ スにより、セパレータ上に15μm厚の導電性粒子なし 絶縁性接着剤層3を作製した。また、同接着剤ワニズ中 に、実施例1に用いたものと同じ導電性粒子を分散させ て、8μm厚の導電性粒子入りの異方導電性接着剤層2 2を作製した。接着剤ワニス中に分散させた導電性粒子 は8μm厚の異方導電性接着剤層22の単位面積当り粒 子数が30,000個/mm²になるように調製した。 絶縁性接着剤層3と絶縁性接着剤層22を貼り合わせ、 図4に示す2層構造の異方導電性接着フィルムWを得 た。フィルムWの異方導電性接着剤層22の側を、50 μm×50μmの端子部及び50μm×50μmのスペ ース部分を有する I TO回路パターン (高さ 0. 2μ m)を有するガラス基板に100℃, 0.2MPaで5 秒の加熱加圧を施して貼り付け (仮圧着)、セパレータ を剥がした後、当該ガラス基板と対を成すベアチップ (バンプ高さ15µm)を位置合わせして、200℃、 3MPaで20秒の加熱加圧(本圧着)を施して回路接 続をした。その後、実施例1と同様な計測を実施した。 【0057】(比較例2)実施例1で作製したフィルム Dの活性光線硬化接着剤層側のセパレータを剥離し株式 会社オーク製作所製露光機HMW-6Nを用いて活性光 線として紫外線を1.5J/cm~ 照射し、導電性粒子 を固定した。このフィルムを用いて実施例1と同様に5 0μm×50μmの端子部及び50μm×50μmのス ペース部分を有するIT〇回路パターンを有するガラス 基板に仮圧着しようとしたところ、タック性がなく、仮 圧着してもフィルムが剥がれてしまった。実施例1と比 較例1、2の計測結果を表1に示す。なお、計測値はそ の平均値をとり、小数点第1位を四捨五入した。

[0058]

【表1】

I	五	実施例1	比較例I	比較例2
接続前	フィルム中 粒子数 個/mm²	30000	30000	30000
	フィルム中 粒子数 個/50μm角	75	75	75
接続後	バンプ上 粒子数 個/50μm角	54	19	_
٠.	スペース部分 粒子数 個/50μm角	60	50	_
粒子捕捉	足率 (%)	72	25	_
粒子残存	字率(%)	80	67	_
歩留ま	0 (%)/作製個数(個)	100/5	100/5	0/5

一: 測定不能

【0059】導電性粒子を散布した活性光線硬化絶縁性バインダ層に接続前に活性光線として紫外線を照射して粒子を固定した比較例2では、フィルムの粘着力(タックカ)が無いために、接続サンプルを作製できず、評価できなかった。また、従来の二層構成の異方導電性接着フィルムである比較例1では、接続サンプルを100%作製することは出来たが、接続後におけるバンプ上の導電性粒子数が著しく低下し、導電性粒子捕捉率が25%と低かった。これに対して、本発明の実施例1は接続サンプル作製時の作業効率も良好で歩留まり100%で作製でき、接続後におけるバンプ上の導電性粒子の捕捉率は72%と高い値を示した。

[0060]

【発明の効果】本発明によれば、異方導電性接着フィルムを用いた回路基板の実装において、少ない導電性粒子添加量で高い導電性粒子捕捉率を達成し、回路間短絡の危険性を低減することが可能となる。

【図面の簡単な説明】

【図1】 本発明の異方導電性接着フィルムを用いた接 続工程図

【図2】 (a)はガラス基板5とICベアチップ20を異方導電性接着フィルム10で接続した接続体を接続面に対して90°方向から見た図(b)はTAB13とガラス基板5を異方導電性接着フィルム10を用いて接続した接続体を接続面に対して90°方向から見た図

【図3】 実施例1のフィルム作製工程図

【図4】 比較例1の2層構成異方導電性接着フィルム

の部分拡大断面図

【符号の説明】

1:導電性粒子

2:絶縁性パインダ層(活性光線硬化絶縁性パインダ

層)

3: 絶縁性接着剤層

4:セパレータ

5: (ガラス) 基板

6:(基板の)電極

7: 圧着ヘッド

8:接続部材

9:電極、

10: 異方導電性接着フィルム

11:接続電極の面積

12: 隣接電極間のスペース部分の面積

13: TAB

14: TABの電極

15:フィルムA

16:フィルムB

17:エアチューブ

18: フィルムC

19:ラミネータロール

20: ICベアチップ

21:バンプ

22: 異方導電性接着剤層

23:2層構造の異方導電件接着フィルムW

24:フィルムD

【図1】

【図2】

【図4】

【図3】

Section?

(12) 月2003-64324 (P2003-6B横繊

フロントページの続き

F ターム(参考) 4J004 AA01 AA17 AA18 AB01 AB07 CE01 DB02 DB03 FA05 4J040 JA09 JB08 JB09 JB10 KA32 LA03 LA09 NA20 5E319 AA03 AA07 AB06 AC03 BB13 BB16 CC61 CD04 GG01 GG15 5F044 NN19

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.