• 2 modèles aux objectifs opposés :

Apprentissage :

- Répéter :
 - Apprentissage du discriminateur :
 - Générer un demi batch de données à partir des données réelles => label target 1
 - Générer un demi batch de données à partir du générateur => label target 0
 - Mélanger ces deux demi batchs pour former un seul batch d'apprentissage
 - Effectuer n itérations d'apprentissage à l'aide de ce dernier $(1 \le n \le 5)$
 - Apprentissage du générateur :
 - Figer les variables du discriminateur
 - Générer un batch de données dans le latent space => label target 1
 - Effectuer 1 itération d'apprentissage à l'aide de ce dernier

- Faites varier :
 - Structure (Vanilla GAN, DeepConvolutionnal GAN, MSGGAN)
 - *n* (itérations du discriminateur)
 - Pas d'apprentissages (les deux)
 - Fonction de loss (MSE, KL, Wasserstein...)

• Exemple d'images obtenues avec un MSG GAN Dense avec un sampling aléatoire uniforme depuis le latent space :

• On remarque que les images ne sont plus floues!

• On repart de l'auto encoder

• Idée :

- L'encoder ne projette plus directement dans l'espace latent, mais produit les paramètres de plusieurs distributions de probabilités.
- On choisit en général des Gaussiennes (cf. théorème central limite).
- Pour générer, le générateur va échantillonner ('sampling') ces distributions de probabilités pour produire des valeurs dans l'espace latent et ensuite fonctionner comme précédemment.

• Problème:

• On ne peut pas 'dériver' un échantillonnage (pour la rétropropagation)!

Solution

- Le 'Reparameterization Trick' :
 - Au lieu d'échantillonner la distribution d'espérance μ et d'écart type σ , on va échantillonner la distribution Normale standard : $\aleph(0,1)$ puis multiplier le résultat par σ et ajouter μ .

Solution

- Le 'Reparameterization Trick' :
 - Au lieu d'échantillonner la distribution d'espérance μ et d'écart type σ , on va échantillonner la distribution Normale standard : $\aleph(0,1)$ puis multiplier le résultat par σ et ajouter μ .

Solution

- Le 'Reparameterization Trick' :
 - Au lieu d'échantillonner la distribution d'espérance μ et d'écart type σ , on va échantillonner la distribution Normale standard : $\aleph(0,1)$ puis multiplier le résultat par σ et ajouter μ .
 - $z = \mu + \sigma \times \aleph(0,1)$
- En pratique pour des raisons de stabilité numérique, l'encoder prédit le logarithme de la variance $\log(\sigma^2)$ plutôt que la variance ou l'écart type ainsi :
 - $z = \mu + e^{0.5 \times \log(\sigma^2)} \times \aleph(0,1)$

- Ajout de régularisation :
 - On va ajouter une pénalité (loss) aux paramètres des gaussiennes s'éloignant trop de la distribution normales standard (le retour de la 'KL Divergence'!) :

$$D_{KL}(N(\mu, \sigma) || N(0,1)) = -0.5 \sum_{i=1}^{zdim} \log(\sigma_i^2) - \sigma_i^2 - \mu_i^2 + 1$$

- Ajout de régularisation :
 - On va ajouter une pénalité (loss) aux paramètres des gaussiennes s'éloignant trop de la distribution normales standard (le retour de la 'KL Divergence'!) :

$$D_{KL}(N(\mu, \sigma) || N(0,1)) = -0.5 \sum_{i=1}^{zdim} \log(\sigma_i^2) - \sigma_i^2 - \mu_i^2 + 1$$

• Ainsi le loss total peut s'exprimer :

$$loss = mse(x, x') + coef_{KL} \times D_{KL}$$

 N'hésitez pas non plus à utiliser des Blocs de Convolutions dans le l'encoder, et des couches de convolution et d'Upsampling dans le decoder.

Entraînement des GANs

• Entraîner des GANs est difficile (stabilité)

WGAN (Wasserstein GAN)

- Nouvelle fonction de loss!
 - « Earth mover's distance » ou « Wasserstein distance »

```
def wasserstein_loss(self, y_true, y_pred):
 w_loss = -tf.reduce_mean(y_true*y_pred)
 return w_loss
```

- Avec les changements suivants :
 - vraie image: 1
 - Fausse image : -1
 - Activation du neurone de la dernière couche du discriminateur : linear
 - Contraindre tous les poids des couches du discriminateur entre -0.01 et 0.01

WGAN-GP (Gradient Penalty)

- Nouvelle fonction de loss!
 - « Earth mover's distance » ou « Wasserstein distance »

```
def wasserstein_loss(self, y_true, y_pred):
 w_loss = -tf.reduce_mean(y_true*y_pred)
 return w_loss
```

- Avec les changements suivants :
 - vraie image: 1
 - Fausse image : -1
 - Activation du neurone de la dernière couche du critique : linear
 - Contraindre tous les poids des couches du discriminateur entre -0.01 et 0.01

WGAN-GP (Gradient Penalty)

- Contraindre tous les poids des couches du discriminateur entre -0.01 et 0.01
- https://arxiv.org/pdf/1704.00028.pdf

$$L = \underbrace{\mathbb{E}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_g} \left[D(\hat{\boldsymbol{x}}) \right] - \mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}_r} \left[D(\boldsymbol{x}) \right]}_{\text{Original critic loss}} + \underbrace{\lambda \, \mathbb{E}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_{\hat{\boldsymbol{x}}}} \left[(\|\nabla_{\hat{\boldsymbol{x}}} D(\hat{\boldsymbol{x}})\|_2 - 1)^2 \right]}_{\text{Our gradient penalty}}.$$

WGAN-GP (Gradient Penalty)

- Contraindre tous les poids des couches du discriminateur entre -0.01 et 0.01
- https://arxiv.org/pdf/1704.00028.pdf

Figure 4: Samples of 128×128 LSUN bedrooms. We believe these samples are at least comparable to the best published results so far.

Progressive Growing of GANs

- Entraîner un GAN sur de basses résolutions puis rajouter des couches progressivement :
 - https://research.nvidia.com/sites/default/files/pubs/2017-10 Progressive-Growing-of/karras2018iclr-paper.pdf

MSGGAN (Multi Scale Gradient GAN)

- Décomposer l'espace des images en plusieurs résolutions pour stabiliser l'apprentissage :
 - https://arxiv.org/abs/1903.06048

Diffusion Models

- DDPM et ses dérivés
 - https://arxiv.org/abs/2006.11239
 https://arxiv.org/abs/2102.09672
 https://arxiv.org/abs/2105.05233

Blog de Lilian Weng (pour se tenir à jour à moindre cout)

• https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

