Заметки курса по общей физики «Оптика»

Авторы конспекта: Хоружий К.

Примак Е.

От: 11 мая 2021 г.

Содержание

1	Kpi	исталлооптика
	1.1	Плоские волны в кристаллах
	1.2	Оптически одноосные кристаллы
	1.3	Двойное преломление в электрическом и магнитном полях (эффект Керра)
	1.4	Линейный электрооптический эффект Поккельса
	1.5	Вращение плоскости поляризации
	1.6	Магнитное вращение плоскости поляризации (эффект Фарадея)
2	Нел	инейная оптика
	2.1	Нелинейная поляризацим среды
	2.2	Первое приближение. Генерация вторых гармоник.
	2.3	Второе приближение. Самофокусировка.

1 Кристаллооптика

1.1 Плоские волны в кристаллах

Поведение света всё также описывается уравнениями Максвелла

$$\operatorname{rot} \bm{H} = \frac{1}{c}\dot{\bm{D}}, \quad \operatorname{rot} E = -\frac{1}{c}\dot{\bm{H}},$$
однако усложняются материальные уравнения:

$$D^j = \varepsilon^j_i E^i$$
,

где $arepsilon_{ij}$ — тензор диэлектрической проницаемости, или диэлектрический тензор.

Рассмотрим плоские монохроматические волны вида

$$\mathbf{A} = \mathbf{A}_0 e^{i(\omega t - \mathbf{k} \cdot \mathbf{r})},$$

где $A \in \{E, H, D\}$. Понятно, что

$$rot \mathbf{H} = -i \left[\mathbf{k} \times \mathbf{H} \right], \quad \partial_t \mathbf{D} = -i \omega \mathbf{D}, \quad \dots$$

Подставив это в уравнения Максвелла, вводя верно волновой нормали $N = \frac{v}{c} k$, получаем

$$D = -\frac{c}{v} [N \times H], \quad H = \frac{c}{v} [N \times E],$$

где v — нормальная скорость волны.

Актуально, как никогда, значение вектора Пойтинга

$$m{S} = rac{c}{4\pi} \left[m{E} imes m{H}
ight].$$

Lem 1.1. Вектор пойтинга S определяет направление световых лучей, то есть $S \parallel u = d_k \omega$.

Стоит заметит, что в кристаллая S и N не совпадают по направлению. Однако, как видно из формул, плоские волны в кристалле поперечн в отношении векторов D и H. Вектора E, D, N, S лежат в плоскости, перпендикулярной к вектору H.

Получается, что если E и D не сонаправлены, то зная направление E мы знаем направление и D, а тогда и H, и N, S соответственно тоже. При $E \parallel D$ любая прямая $\bot E$ может служить направлением магнитного поля. Π одставляя $oldsymbol{H}$ в $oldsymbol{D}$ можем найти

$$\boldsymbol{D} = \frac{c^2}{v^2} \boldsymbol{E} - \frac{c^2}{v^2} \left(\boldsymbol{N} \cdot \boldsymbol{e} \right) \boldsymbol{N},$$

и, т.к. $(\boldsymbol{D} \cdot \boldsymbol{N}) = 0$, то скалярно умножая на \boldsymbol{D} находим

$$v^2 = c^2 \frac{(\boldsymbol{D} \cdot \boldsymbol{E})}{D^2}.$$

Таким образом вектор E в кристале является главным.

1.2 Оптически одноосные кристаллы

Def 1.2. Оптически одноосными называют кристаллы, свойства которых обладают симметрей вращения относительно некоторого направления, называемого оптической осью кристалла.

Разложим E и D на составляющие параллельные оптической оси, и нормальный к ней, тогда

$$D_{\parallel} = \varepsilon_{\parallel} E_{\parallel}, \quad D_{\perp} = \varepsilon_{\perp} E_{\perp},$$

где ε_{\parallel} и ε_{\perp} – продольная и поперечные диэлектрические проницаемости кристалла. Плоскости, в которой лежат оптическая ось кристалла и нормаль N, называется главным сечением кристалла.

 ${f Def 1.3.}$ Если электрический вектор D перпендикулярен к главному сечению, то скорость волны не зависит от направдения её распространения, такая волна называется обыкновенной.

Тогда $D \equiv D_{\perp}$, тогда и $D = \varepsilon_{\perp} \bar{E}$, соответственн

$$m{D} = arepsilon_{\perp} m{E}, \quad \Rightarrow \quad egin{array}{c} D = H rac{c}{v} \ H = E rac{c}{v} \end{array} \quad \Rightarrow \quad v = v_{\perp} \equiv v_{
m o} = rac{c}{\sqrt{arepsilon_{\perp}}}.$$

 ${f Def}$ 1.4. Если электрический вектор ${f D}$ лежит в главном сечении, то скорость волны зависит от направления распространения Ю и такую волну называют необыкновенной.

Вектор E в таком случае также лежит в главном сечении, и $E = e_N + E_D$. В таком случае, верно

$$m{H} = rac{c}{v} \left[m{N} imes m{E}_D
ight], \hspace{0.5cm} E_D = rac{m{E} \cdot m{D}}{D} = rac{E_\parallel D_\parallel + E_\perp D_\perp}{D} = rac{1}{D} \left(rac{D_\parallel^2}{arepsilon_\parallel} + rac{D_\perp^2}{arepsilon_\perp}.
ight)$$

Соответсвующие проекции можно заменить на $D\sin\alpha$, где α – угол между оптической осью и волновой нормалью. Вводя $\frac{1}{\varepsilon}=\frac{N_{\perp}^2}{\varepsilon_{\parallel}}+\frac{N_{\parallel}^2}{\varepsilon_{\parallel}}$ можем перейти к

$$E_D = D\left(\frac{\sin^2\alpha}{\varepsilon_{\parallel}} + \frac{\cos^2\alpha}{\varepsilon_{\perp}}\right) = \frac{D}{\varepsilon}, \quad H = \frac{c}{v}E_D, \quad \Rightarrow \quad v = \frac{c}{\sqrt{\varepsilon}} = c\sqrt{\frac{N_{\perp}^2}{\varepsilon_{\parallel}} + \frac{N_{\parallel}^2}{\varepsilon_{\perp}}} \equiv v_{\parallel}.$$

Когда $N_{\perp}=0$, то понятно, что $v=c/\sqrt{\varepsilon_{\perp}}=v_{\perp}=v_{\rm o}$, – нет разницы между обыкновенной и необыкновенной. В случае $N_{\parallel}=0$ верно, что $v=v_{\rm e}\stackrel{\rm def}{=}c/\sqrt{\varepsilon_{\parallel}}$.

Термин оптическая ось введен для обозначения прямой, вдоль которой обе волны распростаняются с одинаковыми скоростями, и таким прямых в общем случае, поэтому кристалл называется *оптически двуосным*. В рассмотренном частном случае оси совпали, и получился *оптически одноосный* кристалл.

Lem 1.5. В общем случае волна, вступающая в кристалл изотропной среды, разделяется внутри кристалла на две линейно поляризованные волны: обыкновенную, вектор электрической индукции которой перпендикулярен к главному сечению, и необыкновенную с вектором электрической индукции, лежащим в главном сечении.

Про показатели преломления. В кристаллая верны законы преломления для *волновых нормалей*: их направления подчиняются закону Снеллиуса

$$\frac{\sin\varphi}{\sin\psi_{\perp}} = n_{\perp}, \quad \frac{\sin\varphi}{\sin\psi_{\parallel}} = n_{\parallel},$$

где n_{\perp} и n_{\parallel} – показатели прелоления обыкновенной и необыкноуенной волн, т.е.

$$n_{\perp} = \frac{c}{v_{\perp}} = n_{\text{o}}, \quad n_{\parallel} = \frac{c}{v_{\parallel}} = \left(\frac{N_{\perp}^2}{\varepsilon_{\parallel}} + \frac{N_{\parallel}^2}{\varepsilon_{\perp}}\right)^{-1/2}.$$

Постоянная n_0 называется обыкновенным показателем преломления. Когда необыкновенная волна распространяется перпендикулярно к оптической оси $(N_{\perp}=1)$,

$$n_{\parallel} = \sqrt{\varepsilon_{\parallel}} \stackrel{\text{def}}{=} n_{\text{e}}.$$

Величина $n_{\rm e}$ — необыкновенный показатель преломления кристалла.

Двойное лучепреломление. При преломлении на первой поверхности пластинки волна внутри кристалла разделяется на обыкновенную, и необыкновенную. Эти волны поляризованы во взаимно перпендикулярных плоскостях и распространяются внутри пластинки в разных направлниях и с разными скоростями. Таким образом можно добиться пространственного разделения двух лучей.

Поляризационные устройства. Комбинация кристаллов – поляризационная призма¹ . Существуют *одно- лучевые* (на полном внутренне отражении) и *двулучевые*.

Def 1.6. Допустимая разность углов наклона между крайними лучами падающего на призму пучка называется апертурой полной поляризации призмы.

Def 1.7. Дихроизм – свойство кристаллов, состоящее в различном поглощении веществом света в зависимости от его поляризации. Всего различают: *линейный дихроизм* (при ⊥ направлениях линейной поляризации); *эллиптический дихроизм* (различное поглощение для правой и левой эллиптической поляризации); *круговой дихроизм* (различные направления круговой поляризации, иначе – эффект Коттона).

Анализ поляризованного света. Пластинка в четверть волны $(\lambda/4)$, вносит дополнительную разность фаз в $\pi/2$ между проходящими через неё лучами, поляризованными во взаимно перпедикулярных плоскостях.

Интерференция поляризованных лучей.

Волны в двуосных кристаллах.

Лучи и волновые нормали.

1.3 Двойное преломление в электрическом и магнитном полях (эффект Керра)

Электрический эффект Керра состоит в том, что многие изотропные тела при введении в постоянное электрическое поле становится оптически анизотропным. В частности, ведут себч как одноосные двупреломляющие кристаллы, оптическая ось которых параллельна приложенному электрическому полю.

 $^{^{1}}$ Самая первая призма — николь, 1828 г.

Пусть внешнее поле E_0 однородно. Понятно, что $n_{\rm e}-n_{\rm o}$ зависит от E_0 в виде

$$n_{\rm e} - n_{\rm o} = qE_0^2,$$

для малых полей, где q зависит только от вещества и от λ . В таком случае разность фаз между обыкновенной и необыкновенными лучами будет

$$\varphi = \frac{2\pi}{\lambda}(n_{\rm e} - n_{\rm o})l = 2\pi B l E^2,$$

где l – толщина образца, а $B \equiv q/\lambda$ – nocmoshhas Keppa. Явление Керра объясняется анизотропией самих молекул.

Для эффекта Керра в газах, в случае полностью анизотропных молекул, можно показать, что при $E \parallel E_0$ показатель преломления будет *необыкновенным*, тогда

$$n = 1 + \frac{2\pi}{3} N\beta,$$

где β — поляризуемость молекулы вдоль оси молекулы. Если же $E\bot E_0$, то показатель преломления будет обыкновенным, и

$$n_{\rm o} = 1 + 2\pi N \beta \langle \sin^{\vartheta} \rangle,$$

где ϑ – угол 2 между $m{E}$ и $m{s}$.

Забавный факт: из полученных соотноешний можем получить

$$\frac{n_{\rm e} - n}{n_{\rm o} - n} = -2,$$

что выполняется для большинства веществ.

Проводя некоторый аккуратны расчёт можем получить выражение для постоянной Керра:

$$n_{\rm e} - n_{\rm o} = \frac{n-1}{5} \frac{\beta}{kT} E_0^2.$$

1.4 Линейный электрооптический эффект Поккельса

Рассмотрим ангармонический осциллятор при наличии внешнего постоянного электрического поля E_0

$$\ddot{r} + 2\gamma \dot{r} + \omega_0^2 r + \beta r^2 = -\frac{e}{m} E_0,$$

где β – постоянная. Считая $r=r_0+q$ можем перейти к уравнению с новой частотой

$$\ddot{q} + 2\gamma \dot{q} + (\omega_0^2 + 2\beta r_0)q = 0,$$

откужа видно изменение частоты колебания на

$$\Delta\omega_0^2 = -\frac{2e\beta}{m\omega_0^2}E_0^2.$$

Смещение собственных частот меняет кривую дисперсии, т.е. показатель преломления n среды. В простейшем случае, когда ω_0 одна (см. §84), изменение n определяется выражением

$$\Delta n = \frac{\partial n}{\partial \omega_0^2} \Delta \omega_0^2 = -\frac{\partial n}{\partial \omega_0^2} - \frac{\partial n}{\partial \omega_0^2} \frac{2e\beta}{m\omega_0^2} E_0 = \frac{\partial n}{\partial \omega} \frac{e\beta}{m\omega\omega_0^2} E_0.$$

При фиксированном внешнем E_0 величина Δn зависит от направления распространения света. Это сказывается на двойном преломлении среды. Изменеие двойного преломления вещества из-за смещения собственной частоты во внешнем электрическом поле называется электрооптическим эффектом Поккельса.

В этом эффекте изменения пропорциональны первой степени E_0 . Эффект Поккельса может наблюдаться только в кристаллах, не обладающих центром симметрии. Устройство, основанное на эффекте Поккельса, называют ячейкой Поккельса.

Она представляет собой кристалл, помещаемый между двумя скрещенными николями. Такое устройство действует так же, как и ячейка Керра. Николи не пропускают свет, когда нет внешнего электрического поля, но при наложении такого поля пропускание появляется. Необходимо, чтобы кристалл до наложения внешнего электрического поля не давал двойного преломления. Этого можно достигнуть, если взять оптически одноосный кристалл, вырезанный перпендикулярно к оптической оси, а свет направить вдоль этой оси. Внешнее поле Еq может быть направлено либо перпендикулярно (поперечный модулятор света), либо параллельно распространению света (продольный модулятор).

²Дописать.

1.5 Вращение плоскости поляризации

Если линейно поляризованный свет проходит через плоскопараллельный слой вещества, то в некоторых случаях плоскость поляризации света оказывается повернутой относительно своего исходного положения. Это явление называется вращением плоскости поляризации или оптической активностью. Если вещество не находится во внешнем магнитном поле, то оптическая активность и вращение плоскости поляризации называются естестыенными. В противоположное случае говорят о магнитном вращении плоскости поляризации, или эффекте Фарадея.

Вращение против часовов – nonoж umenьноe, по часовой – ompu umenьноe. Это свойство, как и в случе с шурупом, не зависит от того, в каком из двух прямо противоположных напралний распространяетя свет 3 .

В области прозрачности и малого поглощения эта история хорошо согласуется с опытом формула Друде

$$\xi = \alpha L, \quad \alpha = \sum_{i} \frac{B_i}{\lambda^2 - \lambda_i^2},$$

где B_i – постоянные, λ_i – длины волн, соответсвующие собтсвенным чатсота рассматриваемого вещества.

По Френелю вращение плоскости поляризации – проявление *кругового двойного лучепрпеломления*. Две волны, которые могут распространятся в оптически активной среде с разными скоростями, поляризованы *по кругу*: по левому и по правому.

Покажем достаточность такого предположения:

$$\begin{split} E_x &= A\cos\xi\cos(\omega t - kz), \\ E_y &= A\sin\xi\cos(\omega y - kz), \end{split} \quad \xi = -\alpha z, \quad \Rightarrow \quad \begin{split} E_x &= \frac{A}{2}\cos(\omega t - kz + \alpha z) + \frac{A}{2}\cos(\omega t - kz - \alpha z), \\ E_y &= \frac{A}{2}\cos(\omega t - kz + \alpha z + \pi/2) + \frac{A}{2}\cos(\omega t - kz - \alpha z - \pi/2). \end{split}$$

Разложим полученную волну на две: $E = E_{\rm n} + E_{\rm n}$, где для $E_{\rm n}$ и $E_{\rm n}$ имеет смысл ввеси $k_{\rm n} = k - \alpha$ и $k_{\rm n} = k + \alpha$. Полученные волны соответствуют правой и левой круговой поляризации. Скорости этих волн определяются выражениями

$$v_{\scriptscriptstyle \Pi} = \frac{\omega}{k - \alpha}, \quad v_{\scriptscriptstyle \Pi} = \frac{\omega}{k + \alpha},$$

и соответсвующие покзатели преломления n = c/v.

Френель выдвинул гипотезу, что возможно независимое распространения поляризованных по кругу волн, с сохранением поляризации, которую подтвердил эксперементально. Тем самым задача объяснения вращения плоскости поляризации была сведена к задаче объяснения кругового двойного лучепреломления.

Поляризованные по кругу в противоположных направлениях волны в окрестности полос или линий поглощения могут отличаться не только скоростями распространения, но и коэффициентами поглощения. Тогда они выйдут с различными амплитудами. Если падающий свет был поляризован линейно, то выходящий будет поляризован эллиптически. Это явление называется круговым дихроизмом.

1.6 Магнитное вращение плоскости поляризации (эффект Фарадея)

Опыты Фарадея показали, что при наличии внешнего магнитного поля вдоль оптической оси системы, угол поворота зависит от длины пути l и напряженноести внешнего поля B, как

$$\xi = R l B$$

де R – постоянная Bepde, или магнитная вращательная способность.

При внесении в магнитное поле B у осцилляторов вещества появляются две новые резонансные частоты $\omega_0 + \Omega$ и $\omega_0 - \Omega$, где Ω – ларморовская частота. Эти собственны частоты проявляеются не только в испускании (прямой эффект Зеемана), но и в поглощении света (обратный эффект Зеемана).

Нормальные волны, которые могут распространятся вдоль магнитного поля, поляризованы по кругу. Когда направления распространения света и магнитного поля совпадают, большей частоте $\omega_+ = \omega_0 + \Omega$ соответсвует вращение по, а меньшей ω_- – против часовой стрелки, если смотреть в направлении магнитного поля. Так как ω_+ и ω_- различны, то происходит сдвиг фаз волн, а соответсвенно, и повород плоскости поляризации на гол

$$\xi = \frac{\omega l}{2c}(n_- - n_+) = \frac{\pi l}{\lambda}(n_- - n_+).$$

Если построить $n_- - n_+$, то можно увидеть, что, как и в случае ларморовского вращения Ω , вращение плоскости поляризации определяется только направлением магнитного поля \boldsymbol{B} и не зависят от направления распространения света. При изменение на противоположное направления распространеняи света не изменятся, в противоположность естественного вращения.

³Если свет заставить пройти туда и обратно через естественно-активное вещество, отразив его от зеркала, то плоскость поляризации возвратится к своему исходисходному направлению.

Вообще, в эффекте Фарадея, воспользовавшись формулой Зеемана можно получить *формулу Беккереля* для постоянной Верде:

$$R = -\frac{e}{2mc^2} \lambda \frac{dn}{d\lambda},$$

где m – масса электрона, e > 0 – его абсолютный заряд.

Ещё можно было бы поговорить про ${\it эффект Макалюзо}$ и ${\it Корбино}$, объясненный Фохтом, но оставим это на светлое будущее.

2 Нелинейная оптика

2.1 Нелинейная поляризацим среды

При распространении света в среде нелинейные явления в оптике связаны прежде всего с *нелинейной зави-симостью* вектора поляризации среды P от напряженности электрического поля E световой волны. Если поле E ещё не «очень сильное», то вектор P можно разложить во степеням E:

$$P_{j} = \alpha_{jk}E_{k} + \alpha_{jkl}E_{k}E_{l} + \alpha_{jklm}E_{k}E_{l}E_{m} + \dots,$$

где α_{jk} – линейная поляризуемость среды, а тензоры высших порядков называют соответственно квадратичной, кубичной, и т.д. поляризуемостями. Поле E предполагаем монохроматичным, среду однородной немагнитной, без дисперсии, а α – функции частот ω . Для изотропной среды все тензоры α вырождаются в скаляры.

В средах, в которых все точки явяются центрами симметрии, квадратичный член равен нулю. Однако, можем рассмотреть *качественно* процессы, полагая

$$\mathbf{P} = \alpha \mathbf{E} + \alpha_2 E \mathbf{E} + \alpha_3 E^2 \mathbf{E} + \dots,$$

где мы принимаем ущербность такого приближения, но зато можем сделать несколько правильных шагов. Разобьем поляризацию, а также индукцию, на линейную и нелиненую: $P = P_1 + P_{\rm nl}$, где нелинейная часть $P_{\rm nl} = \alpha_2 E E + \alpha_3 E^2 E + \ldots$, а линейная $P_1 = \alpha E$. Тогда и $D = E + 4\pi P$ предсавится, как $D_{l=E} + 4\pi P_1$ и нелинейная $D_{\rm nl} = 4\pi P_{\rm nl}$. Линейная часть $D_1 = \varepsilon E$, где ε – диэлектрическая проницаемость. Теперь можем записать уравнения Максвелла в виде

$$\text{rot } \boldsymbol{H} = \frac{1}{c} \frac{\partial \boldsymbol{D}}{\partial t}, \qquad \text{rot } \boldsymbol{H} = \frac{\varepsilon}{c} \frac{\partial \boldsymbol{E}}{\partial t} + \frac{4\pi}{c} \frac{\partial \boldsymbol{P}_{\text{nl}}}{\partial t}, \\
 \text{rot } \boldsymbol{E} = -\frac{1}{c} \frac{\partial \boldsymbol{H}}{\partial c}, \qquad \Rightarrow \qquad \text{rot } \boldsymbol{E} = \frac{1}{c} \frac{\partial \boldsymbol{H}}{\partial t}, \\
 \text{div } \boldsymbol{D} = 0, \qquad \qquad \text{div}(\varepsilon \boldsymbol{E}) = -4\pi \text{ div } \boldsymbol{P}_{\text{nl}}, \\
 \text{div } \boldsymbol{H} = 0. \qquad \qquad \text{div } \boldsymbol{H} = 0.$$

Система решается методом последовательных приближений. В нулевом приближение $\boldsymbol{P}_{\mathrm{nl}}=0$, получаются уравнения линейной электродинамики. В качестве нулевого приближения рассмотрим

$$\boldsymbol{E} = \boldsymbol{E}_0 = \boldsymbol{A}\cos(\omega t - \boldsymbol{k} \cdot \boldsymbol{r}),$$

где $k^2 = \varepsilon \omega^2/c^2$. Для нахождения первого приближения вместо E подставим E_0 , после чего снова получим линейные уравнения, но неоднородные. Правые части могут восприниматься как если бы каждый dV переизлучал волны аки $\partial unonb$ $\Gamma epua$ с моментом $P_{\rm nl}$ dV. Такими итерациями может найти сколь угодно приближений.

Вообще среда диспергирует. Формально всё будет работать если взять эту охапку диффуров и решать её оидельно для слагаемых с частотой ω , частотой 2ω , и т.д., подставляя везде свои ε . По идее это работает.

2.2 Первое приближение. Генерация вторых гармоник.

В нулевом приближении можем найти нелинейную добавку

$$P_{\rm nl} = \alpha_2 E_0^2 = \frac{\alpha_2 A^2}{2} + \frac{\alpha_2 A^2}{2} \cos \left[2(\omega t - \boldsymbol{k} \cdot \boldsymbol{r}) \right].$$

Как ни странно – это вполне адекватный результат, первое слагаемое называют *оптическим детектировани-ем*, – возникновением в нелинейной среде постоянной электрической поляризации при прохождении мощной световой волны.

Второе слагаеоме гармонически меняется во времени. Оно вызывает генерацию второй гармоники в нели-

 μ ейной cpede, т.е. волны с частотой $\omega_2=2\omega$. Найдём поле этой гармоники:

$$\operatorname{rot} \boldsymbol{H} = \frac{\varepsilon[2\omega]}{c} \frac{\partial \boldsymbol{E}}{\partial t} + i\omega \frac{4\pi\alpha_2}{c} A \boldsymbol{A} e^{2(i\omega t - \boldsymbol{k}\boldsymbol{r})},
\operatorname{rot} \boldsymbol{E} = \frac{1}{c} \frac{\partial \boldsymbol{H}}{\partial t}, \qquad \Rightarrow \qquad \boldsymbol{E} = A_1 e^{2i(\omega t - \boldsymbol{k}\boldsymbol{r})}, \qquad \boldsymbol{H} = B_1 e^{2i(\omega t - \boldsymbol{k}\boldsymbol{r})},
\operatorname{div} \boldsymbol{E} = \operatorname{div} \boldsymbol{H} = 0,$$

что соответсвует частному решению от вынужденных колебаний. Из второго уравнения следует, что $E \perp H$, также верно, что $(\mathbf{k} \cdot \mathbf{A}_1) = (\mathbf{k} \cdot \bar{B}_1) = 0$, т.е плоская волна поперечна относительно \mathbf{E} и \mathbf{H} . Учитывая, что $k^2c^2 = \omega^2\varepsilon[\omega]$ можем получить:

$$\mathbf{A}_1 = \frac{2\pi\alpha_2}{\varepsilon[\omega] - \varepsilon[2\omega]} A\mathbf{A}.$$

Если же к частном решению, добавим общее, то увидем, что можем подобрать такую его амплитуду, чтобы интенсивность второй гармоники в начале координат обращалась в нуль:

$$\boldsymbol{E}_1 = \frac{2\pi\alpha_2}{\varepsilon[\omega] - \varepsilon[2\omega]} A\boldsymbol{A} \left(\cos[2(\omega t - \boldsymbol{k} \cdot \boldsymbol{r})] - \cos[2\omega t - \boldsymbol{k}_2 \cdot \boldsymbol{r}]\right),$$

где $k_2^2 = \omega_2^2 \varepsilon [2\omega]/c^2$. Возводя в квадрат и усредняя можем найти интенсивность

$$I_1 \sim rac{lpha_2^2 \omega^2 x^2 I^2}{n^2 c^2} \left(rac{\sin eta}{eta}
ight)^2, \quad \ eta = rac{(2oldsymbol{k} - oldsymbol{k}_2) \cdot oldsymbol{r}}{2} = rac{(2k - k_2)x}{2},$$

где x – пройденное расстояние. Тут принебрегли различием $n[\omega]$ и $n[2\omega]$.

Таким образом с возрастанием x возрастает интенсивность второй гармоники, когда $\beta \in [0, \pi/2] \cup [\pi, 3\pi/2]$, и т.д. В этих сдучаях энергия переходит от исходной волны ко второй гармоники. На других интервалах энергия возвращается от второй, к первой. Условие $\beta = \pi/2$ определяет расстояние, до которого происходит перекачка энергии. Это расстояние называется когерентной длиной, для которого верно, что

$$L_{\rm coh} = \frac{\lambda}{4|n[\omega] - n[2\omega]},$$

где λ – длина исходной волны.

Когда $n[\omega] = n[2\omega]$ верно, что $2\mathbf{k} = \mathbf{k}_2$, тогда и $L_{\rm coh}$ обращается в бесконечность. Это условие – ϕ азовый синхронизм.

Ещё в 1962 году было эксперментально продемонстрирована возможность осущиствить фазовый синхронизм на частотах ω и 2ω между обыкновенной и необыкновенной волной в некоторых кристаллах.

Аналогичное явление — генерация воли с суммарной и разностной частотами. Если на нелинейную среду направить два можных пучка света с различными частотами ω_1 и ω_2 , то из неё будет выходить свет с частотами $\{\omega_1, \omega_2, 2\omega_1, 2\omega_2, \omega_1 + \omega_2, \omega_1 - \omega_2\}$. Так можно получить излучение в инфракрасной и ультрафиолетовой области, например, ≈ 80 нм.

2.3 Второе приближение. Самофокусировка.