Notes on the book: $Robin\ Hartshorne,\ Algebraic\ Geometry$

Meng-Gen Tsai plover@gmail.com

July 23, 2021

Contents

Chapter I: Varieties									2
I.1 Affine Varieties									2
Exercise I.1.2. (Twisted cubic curve)) .								2
Exercise I.1.4									•
Exercise I.1.6									•
I.8 What is Algebraic Geometry?									4
Chapter II: Schemes									ţ
II.1 Sheaves									Ę
Exercise II.1.1. (Constant presheaf)									ŗ

Chapter I: Varieties

I.1 Affine Varieties

Exercise I.1.2. (Twisted cubic curve)

Let $Y \subseteq \mathbf{A}^3$ be the set $Y = \{(t, t^2, t^3) : t \in k\}$. Show that Y is an affine variety of dimension 1. Find generators for the ideal I(Y). Show that A(Y) is isomorphic to a polynomial ring in one variable over k. We say that Y is given by the **parametric representation** x = t, $y = t^2$, $z = t^3$.

Proof.

(1) Note that

$$Y = Z(x^2 - y, x^3 - z)$$

is an algebraic set. Hence I(Y) is the radical of $\mathfrak{a} := (x^2 - y, x^3 - z)$. To show $I(Y) = \mathfrak{a}$, it suffices to show that \mathfrak{a} is prime.

(2) Show that $A/\mathfrak{a} \cong k[t]$ is a domain.

(a) Define a ring homomorphism $\alpha: A/\mathfrak{a} \to k[t]$ by

$$\alpha: f(x, y, z) + \mathfrak{a} \mapsto f(t, t^2, t^3).$$

 α is well-defined since $\alpha((x^2-y)+\mathfrak{a})=0$ and $\alpha((x^3-z)+\mathfrak{a})=0$.

(b) α is surjective since $\alpha(g(x) + \mathfrak{a}) = g(t)$ for any $g(t) \in k[t]$.

(c) Show that α is injective. Suppose $\alpha(f(x, y, z) + \mathfrak{a}) = 0$. Write

$$\begin{split} f(x,y,z) + \mathfrak{a} &= \sum_{(i)} \lambda_{(i)} x^{i_1} (y-x^2)^{i_2} (z-x^3)^{i_3} + \mathfrak{a} \\ &= \sum_i \lambda_i x^i + \mathfrak{a}. \end{split}$$

So

$$0 = \alpha(f(x, y, z) + \mathfrak{a}) = \alpha\left(\sum_{i} \lambda_{i} x^{i} + \mathfrak{a}\right) = \sum_{i} \lambda_{i} t^{i}.$$

Hence $f(x, y, z) + \mathfrak{a} = \mathfrak{a}$.

(3) Hence Y is an affine variety of dimension 1 since A(Y) is isomorphic to a polynomial ring in one variable t over k (Proposition I.1.7). Also, $I(Y) = \mathfrak{a} = (x^2 - y, x^3 - z)$ is generated by $x^2 - y$ and $x^3 - z$.

2

(4) Also see Problems 2.7 and 2.8 in the textbook: William Fulton, Algebraic Curves. If $\varphi: V \to W$ is a polynomial map, and X is an algebraic subset of W, show that $\varphi^{-1}(X)$ is an algebraic subset of V. If $\varphi^{-1}(X)$ is irreducible, and X is contained in the image of φ , show that X is irreducible. This gives a useful test for irreducibility.

Exercise I.1.4.

If we identify A^2 with $A^1 \times A^1$ in the natural way, show that the Zariski topology on A^2 is not the product topology of the Zariski topologies on the two copies of A^1 .

Proof.

- (1) Let $\Delta = \{P \times P : P \in \mathbf{A}^1\}$ be the diagonal subset of \mathbf{A}^2 .
- (2) Δ is a proper closed subset (= Z(x-y)) of \mathbf{A}^2 . However, Δ is not a finite union of horizontal and vertical lines and points (Example I.1.1.2). Hence Δ is not a closed set in the product topology of $\mathbf{A}^1 \times \mathbf{A}^1$.

Exercise I.1.6.

Any nonempty open subset of an irreducible topological space is dense and irreducible. If Y is a subset of a topological space X, which is irreducible in its induced topology, then the closure \overline{Y} is also irreducible.

Proof.

(1) Show that any nonempty open subset of an irreducible topological space is dense. It suffices to show that $U_1 \cap U_2 \neq \emptyset$ for any nonempty open subsets of an irreducible topological space.

 \forall nonempty open sets U_1 and $U_2, U_1 \cap U_2 \neq \emptyset$

 $\iff \forall$ nonempty open sets U_1 and $U_2, X - (U_1 \cap U_2) \neq X$

 $\iff \forall \text{ nonempty open sets } U_1 \text{ and } U_2, (X-U_1) \cup (X-U_2) \neq X$

 $\iff \forall \text{ proper closed sets } Y_1 \text{ and } Y_2, Y_1 \cup Y_2 \neq X$

 \iff $\not\equiv$ proper closed sets Y_1 and $Y_2, Y_1 \cup Y_2 = X$.

(2) Show that any nonempty open subset of an irreducible topological space is irreducible. Given any open subset U of an irreducible topological space X. Write $U \subseteq Y_1 \cup Y_2$ where Y_1 and Y_2 are closed in X.

$$\begin{split} &U\subseteq Y_1\cup Y_2\\ \Longrightarrow \overline{U}\subseteq \overline{Y_1\cup Y_2}\\ \Longrightarrow &X\subseteq Y_1\cup Y_2\\ \Longrightarrow &Y_1=X\supseteq U\text{ or }Y_2=X\supseteq U \end{split} \qquad (U\text{ is dense, }Y_1\cup Y_2\text{ is closed})\\ \Longrightarrow &U\text{ is irreducible}. \end{split}$$

(3) Show that if Y is a subset of a topological space X, which is irreducible (in its induced topology), then the closure \overline{Y} is also irreducible. (Reductio ad absurdum) If \overline{Y} were reducible, there are two closed sets Y_1 and Y_2 such that

$$\overline{Y} \subseteq Y_1 \cup Y_2, \overline{Y} \not\subseteq Y_i (i = 1, 2).$$

- (a) $Y \subseteq \overline{Y} \subseteq Y_1 \cup Y_2$.
- (b) $Y \not\subseteq Y_i (i = 1, 2)$. If not, $Y \subseteq Y_i$ for some i. Take closure to get $\overline{Y} \subseteq \overline{Y_i} = Y_i$ (since Y_i is closed), contrary to the assumption.

By (a)(b), Y is reducible, which is absurd.

I.8 What is Algebraic Geometry?

No exercises.

Chapter II: Schemes

II.1 Sheaves

Exercise II.1.1. (Constant presheaf)

Let A be an abelian group, and define the **constant presheaf** associated to A on the topological space X to be the presheaf $U \mapsto A$ for all $U \neq \emptyset$, with restriction maps the identity. Show that the constant sheaf $\mathscr A$ defined in the text is the sheaf associated to this presheaf.

Proof.

(1) Let \mathscr{F} be the constant presheaf.

- (2) Let $\theta: \mathscr{F} \to \mathscr{A}$ be a morphism consists of a morphism of abelian groups $\theta(U): \mathscr{F}(U) = A \to \mathscr{A}(U)$ for each open set $U \subseteq X$ such that $\theta(U)(a) = f_a: x \mapsto a$ for each element $x \in U$. (It is well-defined.)
- (3) Given any sheaf \mathscr{G} and any morphism $\varphi : \mathscr{F} \to \mathscr{G}$, it suffices to find a morphism $\psi : \mathscr{A} \to \mathscr{G}$ such that $\varphi = \psi \circ \theta$.
- (4) Given an open set $U \subseteq X$. Suppose $f \in \mathscr{A}(U)$ is a continuous maps of U into A. Since A is equipped with the discrete topology, f is locally constant, that is,

$$f(V_i) = a_i$$

where each V_i is a connected component of U. (In particular, $\{V_i\}$ is an open covering of U.)

(5) Now

$$s_i := \varphi(V_i)(a_i) \in \mathscr{G}(V_i)$$

is defined. Since \mathscr{G} is a sheaf and all V_i are disjoint, there is a $s \in \mathscr{G}(U)$ such that $s|_{V_i} = s_i$ for each i. Now we define $\psi(U)$ by

$$\psi(U)(f) = s.$$

Thus ψ is a morphism and $\varphi = \psi \circ \theta$ by construction.