DEFORMATION OF GALOIS REPRESENTATIONS

A notes for the number theory seminar at YMSC, 2022 Update on 2022-10-10 16:16

YIJUN YUAN®

We are given either a number field K and a finite set of primes S, or a local field F, and we are given a representation of either $G_{K,S}$ or G_F into $\operatorname{GL}_n(k)$, where k is a finite field. We want to try to understand all possible lifts of this representation to $\operatorname{GL}_n(A)$, where A is a complete noetherian local ring with residue field k.

-Fernando Q. Gouvêa (cf. [Gou01])

Main reference: [Böc13; Maz89]

Motivation and history of deformation theory: [Maz97; Gou01]

1. Deformations of representations of profinite groups

Notations.

p prime number

 \mathbb{F} finite field of char. p

 $W(\mathbb{F})$ ring of Witt vectors¹ over A

G profinite group

 $V_{\mathbb{F}}$ finite $\mathbb{F}[G]$ -module with continuous G-action

d dimension of $V_{\mathbb{F}}$

 $\beta_{\mathbb{F}}$ a \mathbb{F} -basis of $V_{\mathbb{F}}$

1.1. Deformation functors.

Notations.

 $\widehat{\mathfrak{Ar}}_{W(\mathbb{F})}$ category of complete Noetherian local $W(\mathbb{F})$ -algebra with residue field \mathbb{F}

 $\mathfrak{Ar}_{W(\mathbb{F})}$ full sub-category of finite local Artinian $W(\mathbb{F})$ -algebras

 \mathfrak{m}_A maximal ideal of $A \in \widehat{\mathfrak{Ar}}_{W(\mathbb{F})}$

Remark 1.1 (???). Via the $W(\mathbb{F})$ -structure, the residue field of any $A \in \widehat{\mathfrak{Ar}}_{W(\mathbb{F})}$ is canonically isomorphic to \mathbb{F} .

Definition 1.2. Let $A \in \mathfrak{Ar}_{W(\mathbb{F})}$.

- (1) A deformation of $V_{\mathbb{F}}$ to A is a pair (V_A, ι_A) , such that
 - (a) V_A is A[G]-module, finite free over A, with continuous G-action;
 - (b) $\iota_A: V_A \otimes_A \mathbb{F} \xrightarrow{\cong} V_{\mathbb{F}}$ is G-equivariant.
- (2) A framed deformation of $(V_{\mathbb{F}}, \beta_{\mathbb{F}})$ to A is a triple (V_A, ι_A, β_A) , where
 - (a) (V_A, ι_A) is a deformation of $V_{\mathbb{F}}$ to A;

We view \mathbb{F} as an A-module via the canonical projection $A \to A/\mathfrak{m}_A = F$

 $^{^{1}}W(\mathbb{F})$ is the unique (up to unique isomorphism) complete discrete valuation ring which is absolutely unramified (uniformizer= p) and has residue field \mathbb{F} .

(b) β_A is a A-basis of V_A which reduces to $\beta_{\mathbb{F}}$ under ι_A .

Set
$$D_{V_{\mathbb{F}}}, D_{V_{\mathbb{F}}}^{\square} : \mathfrak{Ar}_{W(\mathbb{F})} \to \operatorname{Set},$$

$$D_{V_{\mathbb{F}}}(A) = \{ deformations \ of \ V_{\mathbb{F}} \ to \ A \} / \cong,$$

$$D^\square_{V_{\mathbb{F}}}(A) = \{ \textit{framed deformations of } (V_{\mathbb{F}}, \beta_{\mathbb{F}}) \ \textit{to} \ A \} / \cong .$$

Remark 1.3.

(1) The <u>FIXED</u> basis $\beta_{\mathbb{F}}$ gives the isomorphism $V_{\mathbb{F}} \cong \mathbb{F}^d$ as vector space. Thus we can view $V_{\mathbb{F}}$ as $\bar{\rho}: G \to \mathrm{GL}(V_{\mathbb{F}}) = \mathrm{GL}_d(\mathbb{F})$: a d-dimensional \mathbb{F} -representation of G. Then

$$D_{V_{\mathbb{F}}}^{\square}(A) = \{ \rho : G \to \operatorname{GL}_d(A) \text{ lifting } \bar{\rho} \},$$

$$\begin{array}{c} {\hbox{\it Does not guarantee}} \ \beta_A \leadsto \beta_{\mathbb{F}}! \\ \\ {\hbox{\it D}_{V_{\mathbb{F}}}(A)} = D_{V_{\mathbb{F}}}^{\square}(A)/action \ \ by \ \ conjugates \ \ of \ \ker(\mathrm{GL}_d(A) \to \mathrm{GL}_d(\mathbb{F})). \\ \\ \\ {\hbox{\it Not always representable!}} \end{array}$$

- (2) Mazur only consdier $D_{V_{\mathbb{F}}}$, which describes representations lifting $V_{\mathbb{F}}$ up to isomorphism. Add "base condition" $\leadsto D_{V_{\pi}}^{\square}$.
- (3) Often consider deformation functors on $\mathfrak{Ar}_{\mathcal{O}} = category$ of local artinian \mathcal{O} -algebra with residue field \mathbb{F} , where \mathcal{O} is ring of integers of a finite totally ramified extension of $W(\mathbb{F}) \left| \frac{1}{n} \right|$

For example, let K be a p-adic field with residue field \mathbb{F}_q , ring of integers \mathcal{O}_K , then $K/W(\mathbb{F}_q)\left[\frac{1}{p}\right]$ is totally ramified and $W(\mathbb{F}_q)\left[\frac{1}{p}\right]/\mathbb{Q}_p$ is unramified.

1.2. Representability.

1.2.1. A finiteness condition.

Definition 1.4 (Mazur). A profinite group G has finiteness condition Φ_p , if \forall open subgroup $G' \subset G$, $\dim_{\mathbb{F}_p} \operatorname{Hom}_{\operatorname{cont}}(G', \mathbb{F}_p) < +\infty$.

Remark 1.5.

- (1) (Burnside basis theorem) $\dim_{\mathbb{F}_p} \operatorname{Hom}_{\operatorname{cont}}(G', \mathbb{F}_p) < +\infty \Leftrightarrow \text{maximal pro-p quotient of } G'$ is topologically finitely generated.
- (2) $\operatorname{Hom}_{\operatorname{cont}}(G', \mathbb{F}_p) \cong \operatorname{Hom}_{\operatorname{cont}}(G', \operatorname{ab}, \mathbb{F}_p).$

Example 1.6 (by CFT). The following groups have Φ_p :

- (1) The Galois group $\mathcal{G}_K = \operatorname{Gal}(\bar{K}/K)$, with K a p-adic field.
- (2) The galois group $\mathcal{G}_{F,S} = \operatorname{Gal}(F_S/F)$, where F is a number field, S is a finite set of places of F and $F_S \subset \overline{F}$ is the maximal extension of F unramified outside S.
- 1.2.2. Main proposition.

Proposition 1.7 (Mazur). If G has Φ_p , then prop:1587

(1) The functor $D_{V_{\mathbb{F}}}^{\square}$ is pro-representable by some $R_{V_{\mathbb{F}}}^{\square} \in \widehat{\mathfrak{Ar}}_{W(\mathbb{F})}$, i.e.

$$D^\square_{V_\mathbb{F}}(A)\cong \mathrm{Hom}_{W(\mathbb{F})}\Big(egin{array}{c} R^\square_{V_\mathbb{F}} \ A\Big), \ A\in \mathfrak{At}_{W(\mathbb{F})}. \end{array}$$
 universal framed deformation ring

which is functorial in $A \in \mathfrak{Ar}_{W(\mathbb{F})}$.

(2) If $\operatorname{End}_{\mathbb{F}[G]}(V_{\mathbb{F}}) = \mathbb{F}$, then $D_{V_{\mathbb{F}}}$ is pro-representable by some $R_{V_{\mathbb{F}}} \in \widehat{\mathfrak{Ar}}_{W(\mathbb{F})}$. universal deformation ring

Maybe it's better to write $D_{V_{\mathbb{Z}}}^{\square}(A) \cong$

(1) Literally, pro-representable functor = limit of representable functor. How Remark 1.8. can we realize that? [nLa22] defines pro-representable to be the filtered colimit of representables. There's a post on MSE (cf. [htt]) which discusses the difference between the two definitions. It might be ture that

$$\operatorname{Hom}_{W(\mathbb{F})}\Big(R_{V_{\mathbb{F}}}^{\square},A\Big) = \operatorname{Hom}_{\widehat{\mathfrak{Ar}}_{W(\mathbb{F})}}\left(\varprojlim_{k} R_{V_{\mathbb{F}}}^{\square}/\mathfrak{m}_{R_{V_{\mathbb{F}}}^{\square}}^{k},A\right) \cong \varprojlim_{k} \operatorname{Hom}_{\mathfrak{Ar}_{W(\mathbb{F})}}\left(R_{V_{\mathbb{F}}}^{\square}/\mathfrak{m}_{R_{V_{\mathbb{F}}}^{\square}}^{k},A\right),$$

for any $A \in \mathfrak{Ar}_{W(\mathbb{F})}$.

- (2) (???) $R_{V_{\mathbb{F}}}^{\square}$ is unique up to unique isomorphism; the identity map in $\operatorname{Hom}(R_{V_{\mathbb{F}}}^{\square}, R_{V_{\mathbb{F}}}^{\square})$ gives rise to a universal framed deformation over $R_{V_{\mathbb{F}}}^{\square}$.
- (3) $R_{V_{\pi}}^{\square}$ exists without Φ_p , but maybe no longer noetherian.
- $(4) \ (???)\mathbb{F} \hookrightarrow \operatorname{End}_{\mathbb{F}[G]}(V_{\mathbb{F}}) \leadsto write \ "=" in \ \operatorname{End}_{\mathbb{F}[G]}(V_{\mathbb{F}}) = \mathbb{F}.$

Proof of Proposition 1.7.

(1) G finite \rightsquigarrow profinite.

• (FORMAL) CONSTRUCTION:

Suppose G is finite. Set

$$G = \langle g_1, \cdots, g_s | r_1(g_1, \cdots, g_s), \cdots, r_t(g_1, \cdots, g_s) \rangle$$

a presentation. Define

$$\mathcal{R} = W(\mathbb{F})[X_{i,j}^k|i,j=1,\cdots,d;k=1,\cdots,s]/\mathcal{I},$$

where

$$\mathcal{I} = \langle r_l(X^1, \cdots, X^s) - \mathrm{id} \rangle_{1 \le l \le t}, X^k = (X_{i,j}^k)_{d \times d}.$$

To make \mathcal{R} complete, local, noetherian, take

$$\mathcal{J} = \ker(\mathcal{R} \to \mathbb{F}, X^k \mapsto \bar{\rho}(g_k), k = 1, \cdots, s),$$

and set $R_{V_{\mathbb{F}}}^{\square} = \varprojlim_{n} \mathcal{R}/\mathcal{J}^{n}$ to be the \mathcal{J} -adic completion of \mathcal{R} . Besides that, we set $\rho_{V_{\mathbb{F}}}^{\square} : G \to \mathrm{GL}_{d}(R_{V_{\mathbb{F}}}^{\square}), g_{k} \mapsto \mathrm{image} \text{ of } X^{k} \text{ in } \mathrm{GL}_{d}(R_{V_{\mathbb{F}}}^{\square}).$ VERIFICATION:

Take $\rho \in D^{\square}_{V_{\sigma}}(A)$, where $\rho : G \to \mathrm{GL}_d(A)$. Define

 $\mathfrak{F}_{\rho} \in \operatorname{Hom}_{W(\mathbb{F})}\left(R_{V_{\mathbb{F}}}^{\square}, A\right), \overline{\text{entries of } X^k} \mapsto \text{corresponding entries of } \rho(g_k), \forall k = 1, \cdots, s.$

Then \mathfrak{F}_{ρ} induces $\widehat{\mathfrak{F}_{\rho}}: \mathrm{GL}_d(R_{V_{\mathbb{F}}}^{\square}) \to \mathrm{GL}_d(A)$. It's immediate to check that $\rho = \widehat{\mathfrak{F}_{\rho}} \circ \rho_{V_{\mathbb{F}}}^{\square}$ and $\widehat{\mathfrak{F}}_{\rho}$ is unique choice to make the diagram commute. Thus, $\mathfrak{F}: \rho \mapsto \mathfrak{F}_{\rho}$ gives the pro-representability when G is finite.

• When G is profinite, we have $G = \lim_i G/H_i$, where $H_i \subset \ker(\bar{\rho})$ are open normal subgroups. For every i, one has a universal pair $(R_i^{\square}, \rho_i^{\square})$ by previous construction. Passing by limits, we define

$$\left(R_{V_{\mathbb{F}}}^{\square},\rho_{V_{\mathbb{F}}}^{\square}\right)=\varprojlim_{i}\Bigl(R_{i}^{\square},\rho_{i}^{\square}\Bigr), \text{with } R_{V_{\mathbb{F}}}^{\square}\in\widehat{\mathfrak{Ar}}_{W(\mathbb{F})}.$$

We will show in [Section 1.4, TBA] that $R_{V_{\mathbb{F}}}^{\square}$ is noetherian.

(2) By Schlessinger's representability criterion (cf. [Section 1.7, TBA]) or by Kisin's work (cf. [Section 2.1, TBA by Y. Chen]).

REFERENCES

4

1.7. Groupid over categories (abstract stuff...)

Definition 1.9.

- (1) A groupoid category is a category in which all morphisms are isomorphisms.
- (2) Call the isomorphism classes the **connected components** of the groupoid.

Remark 1.10.

- (1) Not necessarily all objects in a groupoid are isomorphic.
- (2) $\operatorname{Hom}_{\mathscr{C}}(A,A)$ forms a group for $\forall A \in \operatorname{ob}\mathscr{C}$, where \mathscr{C} is a groupoid category, and the identity in $\operatorname{Hom}_{\mathscr{C}}(A,A)$ is the identity morphism.
- (3) $A \cong B \Rightarrow \operatorname{Hom}_{\mathscr{C}}(A, A) \cong \operatorname{Hom}_{\mathscr{C}}(B, B)$ (non-canonically)

Definition 1.11. Let $\mathscr C$ be a category. Let $\mathscr F$ be another category, $\Theta:\mathscr F\to\mathscr C$ be a functor.

- (1) We say $\eta \in ob(\mathscr{F})$ lies above $T \in ob(\mathscr{C})$, if $\Theta(\eta) = T$.
- (2) We say (η ^α/_→ ζ) ∈ Mor_F lies above (T ^f/_→ S) ∈ Mor_C, if Θ(η) = f.
 (3) (T ∈ ob(C), id_T) is a subcategory of C. Write F(T) the subcategory of F over (T, id_T).

Definition 1.12 (groupoid over \mathscr{C} /category cofibered in groupoids over \mathscr{C}). The triple $(\mathscr{F},\mathscr{C},\Theta)$ is a groupoid over & if

- (1) for any morphisms $\left(\eta \xrightarrow{\alpha} \zeta\right)$ and $\left(\eta \xrightarrow{\alpha'} \zeta'\right)$ in $\mathscr F$ over the same morphism $T \to S$ in \mathscr{C} , there exists unique $\zeta \xrightarrow{u} \zeta'$ in \mathscr{F} over id_S such that $u \circ \alpha = \alpha'$.
- (2) For any $\eta \in ob(\mathscr{C})$ and any $T \xrightarrow{f} S$ in $Mor_{\mathscr{C}}$ with η over T, there exists morphism $\eta \xrightarrow{\alpha} \zeta$ in Mor $_{\mathscr{F}}$ over f.

Remark 1.13. (1) $\forall T \in ob(\mathscr{C})$, the category $\mathscr{F}(T)$ is a groupoid over \mathscr{C} .

(2) Scheme and stack stuff.....

References

Bockle2013 [Böc13] G. Böckle. "Deformations of Galois Representations". In: L. Berger et al. Elliptic Curves, Hilbert Modular Forms and Galois Deformations. Springer Basel, 2013, pp. 21-115. DOI: 10.1007/978-3-0348-0618-3_2.

Gouvea2001 [Gou01] F. Q. Gouvêa. "Deformations of Galois representations". In: Arithmetic Algebraic Geometry. Ed. by B. Conrad and K. Rubin. American Mathematical Society, 2001, pp. 235-406. URL: http://www.ams.org/books/pcms/009/05.

MSE4013849 [htt] S. M. (https://math.stackexchange.com/users/572592/sebastian-monnet). Relationship between two definitions of pro-representable functors. Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/4013849.

B. Mazur. "Deforming Galois Representations". In: Galois Groups over \mathbb{Q} . Ed. by Mazur1989 [Maz89]Y. Ihara, K. Ribet, and J.-P. Serre. Vol. 16. Springer US, 1989, pp. 385–437. DOI: 10.1007/978-1-4613-9649-9_7.

B. Mazur. "An Introduction to the Deformation Theory of Galois Representations". In: Mazur1997 [Maz97] Modular Forms and Fermat's Last Theorem. Ed. by G. Cornell, J. H. Silverman, and G. Stevens. Springer New York, 1997, pp. 243-311. DOI: 10.1007/978-1-4612-1974-3_8.

nLab authors. prorepresentable functor. Oct. 2022. URL: https://ncatlab.org/nlab/ nlab [nLa22]revision/prorepresentable%20functor/7.