Day-14 Quiz-DataScience-Training

Welcome to the Python Programming Quiz! This quiz tests your knowledge of daily learnings. Please read the instructions carefully before starting the quiz.

Instructions and Rules

- Time Limit: You have 20 minutes to complete the quiz.
- Number of Questions: The quiz consists of 20 multiple-choice questions.
- Scoring: Each correct answer is worth 1 point. There is no negative marking for incorrect answers.
- Single Attempt: You are allowed only one attempt to complete the quiz.
- Required Fields: All questions are mandatory. You must answer each question to submit the quiz.
- Resources: This is a closed-book guiz. Do not use any external resources, including books, notes, or the internet.
- **Honesty:** Please answer the questions honestly and to the best of your ability. Cheating or dishonesty will result in disqualification.
- Environment: Ensure you are in a quiet environment where you can concentrate without interruptions.
- Technical Issues: In case of technical issues, please contact the quiz administrator immediately.
- Retakes: There are no retake opportunities for this quiz. Ensure you are prepared before starting.

Good luck, and do your best!

* Indicates required question		

1. Email *

2.	2. 1. Which of the following is the main assumption behind Naive Bayes				
	Mark only one oval.				
	a) All features are independent of each other				
b) All features are dependent on each other					
c) Only some features are independent					
	d) None of the above				
3.	2. Naive Bayes is best suited for which type of problems? *				
	Mark only one oval.				
	a) Regression				
	a) Regression b) Classification				
	b) Classification				
	b) Classification c) Clustering				

4.	3. What does the term 'naive' refer to in Naive Bayes? *				
	Mark only one oval.				
	a) The algorithm is simple				
	b) The algorithm is fast				
	c) The algorithm is outdated				
	d) The algorithm assumes independence among features				
5.	4. Which of the following is not a type of Naive Bayes model? *				
	in trinoir or the femouring to mot a type or realize buyes mouer.				
	Mark only one oval.				
	Mark only one oval.				
	Mark only one oval. a) Gaussian Naive Bayes				
	Mark only one oval. a) Gaussian Naive Bayes b) Multinomial Naive Bayes				
	Mark only one oval. a) Gaussian Naive Bayes b) Multinomial Naive Bayes c) Bernoulli Naive Bayes				

6.	5. In Gaussian Naive Bayes, how is the likelihood of the features calculated? *				
	Mark only one oval.				
	a) Using a Gaussian distribution				
	b) Using a Poisson distribution				
	c) Using a uniform distribution				
	d) Using a binomial distribution				
7.	6. What is the main application of Multinomial Naive Bayes? *				
	Mark only one oval.				
	a) Binary classification				
	b) Multiclass classification				
	c) Text classification				
	d) Image classification				

8.	8. 7. Which Naive Bayes variant is best suited for binary/boolean features?				
	Mark only one oval.				
	a) Gaussian Naive Bayes				
	b) Multinomial Naive Bayes				
	c) Bernoulli Naive Bayes				
	d) Poisson Naive Bayes				
9.	8. Bayes' theorem helps us calculate which probability? *				
	Mark only one oval.				
	a) Joint probability				
	b) Prior probability				
	c) Posterior probability				
	d) Conditional probability				

10.	9. In Naive Bayes, how do we compute the posterior probability?			
	Mark only one oval.			
	a) Using the sum of probabilities			
	b) Using the product of prior and likelihood			
	() c) Using the difference of probabilities			
	d) Using the division of prior and likelihood			
4.4				
11.	10. Which model is preferred for document classification? *			
	Mark only one oval.			
	a) Gaussian Naive Bayes			
	a) Gaussian Naive Bayes b) Multinomial Naive Bayes			
	b) Multinomial Naive Bayes			

2.	11. What is the purpose of a Count Vectorizer in text processing? *				
	Mark only one oval.				
	a) To transform text into a numerical format				
	b) To count the number of documents				
	c) To vectorize images				
	d) To extract numerical features from images				
3.	12. How does the Count Vectorizer handle text data? *				
3.	12. How does the Count Vectorizer handle text data? * Mark only one oval.				
3.					
3.	Mark only one oval.				
3.	Mark only one oval. a) It converts each word into a unique number				
3.	Mark only one oval. a) It converts each word into a unique number b It converts each word into a binary value				

14.	13. Which algorithm is commonly used for spam detection? *				
	Mark only one oval.				
	a) K-Means				
	b) SVM				
	c) KNN				
	d) Naive Bayes				
15.	14. What is the main goal of K-Means clustering? *				
	Mark only one oval.				
	a) To maximize the distance between clusters				
	b) To minimize the distance between clusters				
	c) To find the optimal number of clusters				
	d) To maximize the similarity within clusters				

16. How do you determine the optimum number of clusters using the Elbow Method? *			

	17. Which metric is commonly used to evaluate K-Means clustering? *					
	Mark only one oval.					
	a) Silhouette Score b) R-squared c) Mean Squared Error					
	d) Precision					
19.	18. How is the prior probability estimated in Naive Bayes? *					
	Mark only one oval.					
	a) From the training data					
	a) From the training data b) From the test data					
	b) From the test data					

20.	0. 19. What does inertia represent in K-Means clustering? *				
	Mark only one oval.				
	a) The number of iterations taken to converge				
	b) The distance between cluster centers				
	c) The number of clusters				
	d) The sum of squared distances of samples to their closest cluster center				
21.	20. What is the difference between prior and posterior probabilities in Naive Bayes? *				
	Mark only one oval.				
	a) Prior is the initial probability, posterior is updated with evidence				
	b) Prior is the updated probability, posterior is the initial probability				
	c) Prior and posterior are the same				
	d) Prior is used for prediction, posterior is not used				

This content is neither created nor endorsed by Google.

Google Forms