

Тема: Анализ и сравнение методов машинного обучения для задачи семантической сегментации дорожной разметки на изображении

Ткаченко Елизавета Студентка группы Э-2110

Создание датасета

Создание датасета

Оригинальное изображение

Маска на изображении

Столбцы: x, y, R, G, B, brightness, class

Баланс классов

- ▶Класс 1представлен2% в набореданных
- №Повышение с 2% до 5% за счет отсечения частей изображения

Разделение данных и стандартизация

- 1. На признаки (Х) и целевую переменную (у)
- 2. На тренировочную и тестовую выборки с параметром stratify=y

Он который учитывает дисбаланс классов:

Тренировочная выборка		Тестовая выборка		
class		class		
0	94,9461%	0	94,9459%	
1	5,0539%	1	5,0541%	

3. Стандартизация с помощью StandardScaler

Логистическая регрессия

Лучшие гиперпараметры: 'C': 0.1, 'max_iter': 200, 'solver': 'saga'

Параметр
class_weight='balanced'

Точность = 97,33%ROC AUC = 99,58%F1-score для класса 0 = 99%F1-score для класса 1 = 79%

Логистическая регрессия

Метод опорных векторов

Лучшие гиперпараметры: 'C': 85.09, 'coef0': 0.0, 'degree':

2, 'gamma': 10, 'kernel': 'rbf', 'max_iter': 5000

Параметр
class_weight='balanced'

Точность = 98,88%ROC AUC = 99,73%F1-score для класса 0 = 99%F1-score для класса 1 = 88%

Confusion Matrix SVM

Метод опорных векторов

Метод k-ближайших соседей

Лучшие гиперпараметры: 'metric': 'manhattan',

'n_neighbors': 5, 'weights': 'distance'

Точность = 99,87%ROC AUC = 99,81%F1-score для класса 0 = 100%F1-score для класса 1 = 99%

Метод k-ближайших соседей

Сравнительный анализ

Модель	Accuracy	ROC AUC	F1-score	Время обучения (сек.)	Время
			для класса		предсказан
			1		ия (сек.)
Логистическая	0,9733	0,9959	0,7900	112,1393	0,0072
регрессия	0,9733	0,9939	0,7900	112,1393	0,0072
SVM	0,9888	0,9973	0,8800	266,8359	162,1469
KNN	0,9987	0,9981	0,9900	3,0566	9,4425

Оценка важности факторов

Модель для полного изображения

Тренировочная выборка = df_1 Изображение №1

Тестовая выборка = df_2 Изображение №2

Метод k-ближайших соседей для полного изображения

Лучшие гиперпараметры:

'metric': 'manhattan',

'n_neighbors': 11,

'weights': 'uniform'

TОЧНОСТЬ = 99,89% ROC AUC = 99,25%

F1-score $\Delta \Lambda R$ K ΛA K ΛA

F1-score для класса 1 = 98%

Модель для полного изображения

Спасибо за внимание!