SUPERVISED LEARNING - CLASSIFICATION

JENS BAETENS

GLOSSARY

- Supervised
- Unsupervised
- Reinforcement Learning
- Regression
- Overfitting
- Underfitting
- Learning Rate
- Loss Function

- Feature Engineering
- Normalisation
- Regularisation
- Trainen van een model

WAT IS CLASSIFICATIE?

Supervised learning

Input omzetten naar klasse

Classifier genoemd

WAT IS CLASSIFICATIE?

Gezichtsherkenning

Geschriftherkenning

Spam detectie

Kwaliteitscontroles

Medische diagnoses

TYPES CLASSIFIERS - BINARY

Twee verschillende klassen

Voorbeeld: Goede of slechte kwaliteit, man of vrouw, Goed- of kwaadaardig

TYPES CLASSIFIERS - MULTICLASS

N>2 verschillende klassen (maar 1 mogelijk voor elke input)

Voorbeeld: Gezichtsherkenning (1 klasse per persoon), Hondenrasherkenning, ...

TYPES CLASSIFIERS - MULTILABEL

N>2 verschillende klassen maar meerdere mogelijk per input

Voorbeeld: Beeldherkenning, Meerdere genres mogelijk voor een film, ...

Binary Classification

- Spam
- · Not spam

Multiclass Classification

- Dog
- Cat
- Horse
- Fish
- Bird

Multi-label Classification

- Dog
- Cat
- Horse
- Fish
- Bird

		name	diameter	weight	red	green	blue
name							
grapefruit	9995	grapefruit	15.35	253.89	149	77	20
	9996	grapefruit	15.41	254.67	148	68	7
	9997	grapefruit	15.59	256.50	168	82	20
	9998	grapefruit	15.92	260.14	142	72	11
	9999	grapefruit	16.45	261.51	152	74	2
orange	0	orange	2.96	86.76	172	85	2
	1	orange	3.91	88.05	166	78	3
	2	orange	4.42	95.17	156	81	2
	3	orange	4.47	95.60	163	81	4
	4	orange	4.48	95.76	161	72	9

Gevoelig voor outliers

Zeer breed "fuzzy" middenstuk

Komt niet overeen met een kans 🖁

Ongebalanceerde klassen

=> Geen lineaire regressie mogelijk

CLASSIFICATIE – LOGISTIC REGRESSION

JENS BAETENS

LOGISTIC REGRESSION

Logistische functie (sigmoid)

$$f(z) = \frac{1}{1 + e^{-z}}$$

Geeft een waarde terug tussen 0 en 1 - De kans het tot de klasse hoort

$$f_{\boldsymbol{w}}(x) = \frac{1}{1 + e^{-\boldsymbol{w}^T x}}$$

$$\mathbf{w}^T x = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_N x_N$$

LOGISTIC REGRESSION

$$L(\boldsymbol{w}) = \begin{cases} -ln(f_{\boldsymbol{w}}(x)) & \text{als } y = 1\\ -ln(1 - f_{\boldsymbol{w}}(x)) & \text{als } y = 0 \end{cases}$$

$$L(\mathbf{w}) = -\frac{1}{N} \left[\sum_{i=1}^{N} y_i ln(f_{\mathbf{w}}(x_i)) + (1 - y_i) ln(1 - f_{\mathbf{w}}(x_i)) \right]$$

Minimalisatie dmv Gradient Descent

LOGISTIC REGRESSION

LOGISTIC REGRESSION – HIGHER ORDER FEATURES

LOGISTIC REGRESSION – HIGHER ORDER FEATURES

LOGISTIC REGRESSION – REGULARISATIE

Regularisatie via C-parameter
Inverse regularisatie sterkte

Hoge waarde = weinig regularisatie


```
model = LogisticRegression(C=10) # C= inverse regularisatiesterkte
model.fit(X, df_trimmed.output)
```

LOGISTIC REGRESSION – EVALUATIE

			•	
$\Lambda \sim \sim 1$	IKO	つまり	\sim 1	\sim
Accı	11 1	all	161	
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>a</i>	G C		J

Precisie	$\frac{TP}{TP+FP}$
Specificiteit	$\frac{TN}{TN+FP}$

Recall TN+FP TP+FN

F1-Score
$$2\frac{Precisie*Recall}{Precisie+Recall} = \frac{2TP}{2TP+FP+FN}$$

https://towards datascience.com/confusion-matrix-for-your-multi-class-machine-learning-model-ff9 aa 3 bf7826

VOORBEELD CONFUSION MATRIX

Accuraatheid = 9/12

Sensitiviteit/Recall = 6/8

- Weinig positieve samples gemist

Specificiteit = 3/4

- Weinig negatieve samples gemist

Precision = 6/7

- Weinig negatieve samples als positieve geclassificeerd

LOGISTIC REGRESSION – MULTICLASS

LOGISTIC REGRESSION – ONE VS ALL

LOGISTIC REGRESSION – ONE VS ONE

LOGISTIC REGRESSION – MULTICLASS EVALUATIE

LOGISTIC REGRESSION – MULTICLASS EVALUATIE

Class	Precision	Recall	F1-score
Apple	0.29	0.64	0.40
Orange	0.33	0.17	0.22
Mango	0.17	0.08	0.11

LOGISTIC REGRESSION – MULTICLASS EVALUATIE

Micro - F1: Globale waarden

Macro – F1: Gemiddelde F1 – scores

Weighted F1: Gew. Gemiddelde
- Gewichten = # samples

Class	Precision	Recall	F1-score
Apple	0.29	0.64	0.40
Orange	0.33	0.17	0.22
Mango	0.17	0.08	0.11

https://towards datascience.com/confusion-matrix-for-your-multi-class-machine-learning-model-ff9 aa 3 bf7826

GLOSSARY

- Classificatie
- Binary classifier
- Multi-class classifier
- Multi-label classifier
- True/False Positive/Negative
- Accuraatheid / Specificiteit / ...

- One-vs-All
- One-vs-One
- Confusion matrix