Problem 1: Consider a *Naive Bayes model* as described in the programming assignment for chapter 12. The underlying graph is of the form

where $\mathbf{X} \in \mathbb{R}^n$. The parameters are given by a number $\psi \in [0, 1]$ which parametrizes the distribution of $Y \sim \mathcal{B}er(\psi)$, as well as two vectors $\boldsymbol{\theta}_0, \boldsymbol{\theta}_1 \in [0, 1]^n$. The link function at \mathbf{X} is given by

$$p(\mathbf{x} \mid y; \; \boldsymbol{\theta}_0, \boldsymbol{\theta}_1) = \prod_{j=1}^n \phi_j^{x_j} (1 - \phi_j)^{1 - x_j}$$

where

$$\boldsymbol{\phi} = (1 - y)\boldsymbol{\theta}_0 + y\boldsymbol{\theta}_1$$

and $\boldsymbol{\phi}^{\intercal} = (\phi_1, \dots, \phi_n).$

- (a) Assuming that Naive Bayes models are trained as **generative** models, write down a formula for the model likelihood function $\mathcal{L}_{\text{model}}(\psi, \boldsymbol{\theta}_0, \boldsymbol{\theta}_1)$. For simplicity, your formula should contain the ϕ_i 's rather than the parameters $\boldsymbol{\theta}_0$ and $\boldsymbol{\theta}_0$ themselvs.
- (b) Using your answer from part (a), write down a formula for the model surprisal function $\mathcal{I}_{\text{model}}(\psi, \boldsymbol{\theta}_0, \boldsymbol{\theta}_1)$. For simplicity, your formula should contain the ϕ_j 's rather than the parameters $\boldsymbol{\theta}_0$ and $\boldsymbol{\theta}_0$ themselves.
- (c) Using your answer from part (b), write down an explicit formula for the cross entropy stochastic objective function $J(\psi, \boldsymbol{\theta}_0, \boldsymbol{\theta}_1)$ for a dataset of size m.