Les pavages de Penrose Séminaire de la détente mathématique

Clément Dell'Aiera

ENS Lyon

22 mars 2023

Pavages de Penrose

Pavages de Penrose

Pavages de Penrose

Qu'est ce qu'un pavage?

On pave le plan en utilisant un nombre fini de type de carreaux, que l'on transporte par isométrie euclidienne dans le plan.

Définition

Un pavage est une subdivision du plan en carreaux. Il est caractérisé par

- le type de carreaux utilisé,
- la manière de les arranger les uns par rapport aux autres.

On peut aussi ajouter des couleurs.

Les pavages périodiques

Un patch: un ensemble fini de carreaux.

Définition

Un pavage est périodique s'il existe un patch dont les translatés pavent le plan.

En général, on pave avec des polygones convexes réguliers.

Les pavages périodiques

(Evgraf Fedorov 1891) Il existe 17 types de groupes de pavages périodiques. On les appelles les groupes de papiers peints.

Le palais de l'Alhambra

Le palais de l'Alhambra à Grenade les contient (presque?) tous.

Maurits Cornelis Escher (1898-1972)

Pentaplexité

Il est simple de paver avec des polygones réguliers à 3,4 et 6 côtés.

Pentaplexité

Avec 5?

Apériodicité

Rappel: Un pavage est périodique s'il existe un patch dont les translatés pavent le plan.

De nombreuses formes pavent à la fois de manière périodique et de manière apériodique.

Question

Peut-on paver avec un ensemble de polygones contenant un pentagone régulier?

Question

Existe-t-il des ensembles finis de carreaux qui pavent uniquement de manière apériodique? Quel est le nombre minimal de carreaux pour le faire?

Question

Peut-on paver en utilisant uniquement des pentagones (pas forcément régulier)?

Marjorie Rice

Sans formation mathématiques, elle se passionne pour les pavages après avoir lu la rubrique de mathématiques récréatives de Martin Gardner.

Marjorie Rice

Kershner aurait montré qu'il n'existe que 8 pentagones qui pavent le plan.

Richard James en trouve un qui ne fait pas parti de la liste.

Marjorie Rice

Marjorie Rice en découvre 4. Gardner la met en contact avec Doris Schattschneider.

2017 Rao montre qu'il n'existe que 15 pentagones qui pavent le plan.

Pavages de Penrose

Roger Penrose

(1971) Penrose construit un pavage du plan par un pentagone et 3 autres carreaux.

(1971) Penrose construit un pavage apériodique du plan par 2 losanges.

Inflation et déflation

Comment construire un pavage de Penrose?

Un vulgarisateur, Aatish Bhatia, a mis en ligne ici

pattern collider

une application Javascript qui permet de manipuler les pavages de Penrose.

Comme un lundi

Un preprint du lundi 20 mars, qui affirme qu'il existe une tuile qui pave apériodiquement.

An aperiodic monotile

David Smith¹, Joseph Samuel Myers*², Craig S. Kaplan³, and Chaim Goodman-Strauss⁴

¹ Yorkshire, UK ds.orangery@gmail.com ² Cambridge, UK jsm@polyomino.org.uk

³School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada csk@uwaterloo.ca

> ⁴National Museum of Mathematics, New York, New York, U.S.A. University of Arkansas, Fayetteville, Arkansas, U.S.A. chaimgoodmanstrauss@gmail.com

> > Preprint: March 2023

Monotuile apériodique

Et en physique?

1982 Découverte des quasicristaux

2011 Dan Shechtman, Prix Nobel de Chimie

Pavages de Penrose

Des propriétés exotiques

Les cerf-volants et pointes de flèches ne pavent qu'apériodiquement.

Tout patch (fini) d'un pavage de Penrose (cerf-volants et points de flèches) apparaît un infinité de fois dans n'importe quel autre pavage du même type.

On peut translater localement des patchs finis d'un pavage à l'autre mais pas globalement.

Distance entre pavages

Si $T, T' \subset \mathbb{R}^2$ sont deux pavages,

$$d(T, T') \le \varepsilon$$
 lorsque $T \cap B(0, \varepsilon) \cong T' \cap B(0, \varepsilon)$

définit une distance.

La distance entre deux pavages de Penrose est nulle (si on s'autorise à les translater).

Géométrie Non Commutative

Alain Connes (médaille Fields 1994)

Utilisation d'algèbres d'opérateurs pour étudier des espaces géométriques.

Heisenberg (1925) $[p,q] = i\hbar$

Géométrie Non Commutative

Une idée

Remplacer un espace par une algèbre de fonctions.

$$(X,\mathcal{T})\mapsto (C_0(X),\|\cdot\|_{\infty})$$

A algèbre de Banach complexe, unitale et **commutative**.

 X_A l'espace des **caractère**, i.e. les homomorphismes d'algèbre $\varphi:A\to\mathbb{C}.$

Muni de la topologie de la convergence simple, c'est un espace compact.

Transformée de Gelfand

Si $a \in A$,

$$\hat{a}(\varphi) = \varphi(a) \quad \forall \varphi \in X_A$$

définit la transformée de Gelfand

$$\mathcal{TG}: A \to C(X_A)$$
 ; $a \mapsto \hat{a}$

Représentation de Gelfand

Si A est une sous-algèbre de $\mathcal{B}(H)$ fermée pour $\|\cdot\|$, stable par adjoint, et commutative, alors $T\mathcal{G}$ est un isomorphisme.

Mauvais quotients

On veut passer au quotient par une relation d'équivalence \mathcal{R} sur un espace topologique X.

 X/\mathcal{R} peut être très pathologique, par exemple $\mathcal{C}(X/\mathcal{R})\cong\mathcal{C}$.

Une idée - bis

Remplacer X/\mathcal{R} par une algèbre de Banach non commutative.

$$(X, \mathcal{T}), \mathcal{R} \mapsto (A(X, \mathcal{R}), \|\cdot\|)$$

Dans les cas non singuliers, $A(X, \mathcal{R})$ est équivalent à $C(X/\mathcal{R})$.

Observables non classiques sur l'espace des pavage

L'espace des pavages de Penrose s'identifie à X/\mathcal{R} .

$$X = \{(a_n) \in \{0,1\}^{\mathbb{N}} : a_n = 1 \implies a_{n+1} = 0\}$$

$$a\mathcal{R}b$$
 ssi $\exists N, a_n = b_n \forall n \geq N.$

Observables non classiques sur l'espace des pavage

On observe les matrices complexes

$$a=(a_{x,y})$$

indexées par les paires $(x, y) \in \mathcal{R}$.

Elles peuvent être multipliées

$$(ab)_{x,y} = \sum_{z} a_{x,z} b_{z,y}$$

et agissent sur $\ell^2([x])$ par

$$(a\xi)_y=\sum_z a_{yz}\xi_z.$$

On note

$$||a|| = \sup_{x} ||a||_{\mathcal{B}(\ell^2[x])}.$$

Observables non classiques sur l'espace des pavage

$$A(X, \mathcal{R})$$
 a une trace

$$\tau: A \to \mathbb{C}$$

Si le pavage représente un arrangement d'électrons, on peut retrouver les niveaux d'énergie du matériaux comme les traces des projecteurs de $A(X, \mathcal{R})$.

Pour le pavage de Penrose, on retrouve $\frac{1+\sqrt{5}}{2}$ comme invariant topologique de l'algèbre $A(X,\mathcal{R})$, qui représente la fréquence d'apparition relatives des cerf-volants et des pointes de flèches.

Sources

Les articles

Martin Gardner, Extraordinary nonperiodic tiling that enriches the theory of tiles (Scientific American 1977)
Roger Penrose, Pentaplexity (1979)
Alain Connes, Noncommutative geometry (1994)

Les vidéos youtube

Minutephysics, Why Penrose tiles never repeat Numberphile, 5 and Penrose tiling Thomaths, Mmm! Ep. 9 Marjorie Rice (par Micmaths)

