ECE 4703 Mobile Autonomous Robots

Jenny Zhen Yu
zhenyu@cpp.edu
Department of Electrical and Computer Engineering
California State Polytechnic University, Pomona

Lecture 4: Robot, Sensor, Motor

Outline

- Mobile Autonomous Robots Introduction
 - Sensor packages
 - Camera
 - Depth camera
 - Laser distance sensor
 - Dynamixel
 - How to use open packages

Sensor Package

Type of Sensor Package

1D Range Finders

Infrared linear distance sensor that can be used to make low-cost robots

2D Range Finders

• Sensors that can measure the distance on 2D plane, and is mainly used for navigation

3D Sensors

• Sensors used in 3D distance measurement such as Intel's RealSense, Microsoft's Kinect, ASUS's Xtion

Audio/Speech Recognition

• Currently, there are few voice recognition related parts, but it seems to be added continuously

Cameras

 Camera driver used for object recognition, face recognition, character recognition, etc. and various application packages

Sensor Interfaces

- Very few sensors support USB and web protocols
- There are still many sensors that can acquire data from a microprocessor
- These sensors can be used with UART in MCU, or ROS in mini PC.

Sensor Package Practice #1 (USB Camera)

```
$ sudo apt-get install ros-kinetic-uvc-camera
```

- rosrun uvc_camera uvc_camera_node
- \$ rosrun uvc_camera uvc_camera_node _device:=/dev/video?
- \$ rosrun image view image view image:=/image raw
- rqt_image_view image:=/image_raw
- \$ rviz

If there are more than two cameras, Enter the device number you want to use instead of the question mark (Especially, for notebooks)

Three ways to view image messages

- * Change the display options of RViz
- Change fixed frame
 Global Options > Fixed Frame = camera
- Add image display
 Click 'Add' in the bottom left corner of Rviz, then select Image
 (Add > by display > Rviz > Image)
- 3) Change topic value

 Change the value of 'Image > Image Topic' to "/image_raw"

Sensor Package Practice #1 (USB Camera)

Sensor Package Practice #2 (Transfer images remotely)


```
ROS_MASTER_URI = http://IP_OF_REMOTE_PC:11311
ROS_HOSTNAME = IP_OF_SENSOR_PC
```

```
ROS_MASTER_URI = http://IP_OF_REMOTE_PC:11311
ROS_HOSTNAME = IP_OF_REMOTE_PC
```

* Example of running ROS Master on a remote PC

- Modify '~/.bashrc' for each PC (ROS_MASTER_URI and ROS_HOSTNAME)
- Run 'roscore' & 'rqt_image_view image:=/image_raw' on the remote PC
- Run 'rosrun uvc_camera', 'uvc_camera_node' on the sensor PC

Sensor Package Practice #3 (Camera Calibration)

- \$ sudo apt-get install ros-kinetic-camera-calibration
- s rosrun uvc camera uvc camera node
- \$ rosrun camera_calibration cameracalibrator.py --size 8x6 --square 0.024 image:=/image_raw camera:=/camera

Sensor Package Practice #4 (Depth Camera)

\$ sudo apt-get install ros-kinetic-openni2-camera ros-kinetic-openni2-launch

(In case of ASUS's Xtion)

- \$ tar -xvf Sensor-Bin-Linux-x64-v5.1.0.41.tar.bz2
- Scd Sensor-Bin-Linux-x64-v5.1.0.41/
- sudo sh install.sh
- \$ roslaunch openni2 launch openni2.launch
- \$ sudo apt-get install ros-kinetic-astra-camera ros-kinetic-astra-launch

(In case of ASTRA)

- \$ wget https://raw.githubusercontent.com/tfoote/ros astra camera/master/orbbec-usb.rules
- § wget https://raw.githubusercontent.com/tfoote/ros astra camera/master/install.sh
- \$ sudo ./install.sh
- \$ roslaunch astra launch astra.launch
 - * Change the display options of RViz
 - 1) Change fixed frame
 Change 'Global Options > Fixed Frame' to "camera depth frame"
- 2) Add & configure PointCloud2 Click 'Add' at the bottom left of rviz, then select PointCloud2
- 3) Change topic name & detail settings

Sensor Package Practice #4 (Depth Camera)

(In case of RealSense)

- \$ sudo apt-get install ros-kinetic-librealsense ros-kinetic-realsense-camera
- \$ roslaunch realsense camera r200 nodelet default.launch
- \$ rosrun rviz rviz -d rviz/realsenseRvizConfiguration1.rviz
 - * Change the display options of RViz
 - 1) Change fixed frame
 Change 'Global Options > Fixed Frame' to "camera_depth_frame"
- 2) Add & configure PointCloud2 Click 'Add' at the bottom left of rviz, then select PointCloud2
- 3) Change topic name & detail settings

Sensor Package Practice #4 (Depth Camera)

Sensor Package Practice #5 (Stereo Camera)

```
$ sudo apt-get install libv4l-dev libudev-dev ros-kinetic-rtabmap*
$ cd ~/catkin_ws/src/
$ svn export https://github.com/withrobot/oCam/trunk/Software/oCamS_ROS_Package/ocams
$ cd ~/catkin_ws/ && catkin_make
$ sudo gedit /etc/udev/rules.d/99-ttyacms.rules
ATTRS {idVendor}=="04b4" ATTRS {idProduct}=="00f9", MODE="0666", ENV {ID_MM_DEVICE_IGNORE}="1"
ATTRS {idVendor}=="04b4" ATTRS {idProduct}=="00f8", MODE="0666", ENV {ID_MM_DEVICE_IGNORE}="1"
$ sudo udevadm control --reload-rules
$ roslaunch ocams pointcloud.launch
```

(In case of oCam-Stereo)

https://github.com/withrobot/oCam/tree/master/Products/oCamS-1CGN-U

Sensor Package Practice #6 (LDS)

Sensor Package Practice #6 (LDS)

```
(In case of LDS)
   git clone https://github.com/ROBOTIS-GIT/hls lfcd lds driver.git
   cm
   sudo chmod a+rw /dev/ttyUSB0
   roslaunch hls lfcd lds driver view hlds laser.launch
                                                                                            (In case of RPLiDAR)
   git clone https://github.com/robopeak/rplidar ros.git
   cm
   sudo chmod a+rw /dev/ttyUSB0
   roslaunch rplidar ros rplidar.launch
                                                                                           (In case of HOKUYO)
   sudo apt-get install ros-kinetic-urg-node
   sudo chmod a+rw /dev/ttyACM0
   rosrun urg node urg node
* Change the display options of RViz
1) Change fixed frame: Global Options > Fixed Frame = laser
```

2) Add & configure Axes: Click 'Add' at the bottom left of rviz, then add Axes (Change 'Length' & 'Radius' is option)

(Topic designation is required, 'Color Transformer', 'Color', etc. are options)

3) Add & configure LaserScan: Click 'Add' at the bottom left of rviz, then add LaserScan

Sensor Package Practice #6 (LDS)

Sensor Package Practice #7 (IMU)

(In case of withrobot's myAHRS+)

\$ cs \$ git clone https://github.com/robotpilot/myahrs_driver.git \$ cm \$ sudo chmod a+rw /dev/ttyACM0 \$ roslaunch myahrs_driver.launch

Motor Package

- PhidgetMotorControl HC
- Roboteq AX2550 Motor Controller
- ROBOTIS Dynamixel

DYNAMIXEL PRO

ContorollingDynamixelwith ROS Package

- DynamixelSDK (http://wiki.ros.org/dynamixel-sdk)
 - Support 3 representative OS (Linux, Windows, MacOS)
 - Support programming language such as C, C++, C#, Python, Java, MATLAB, LabVIEW, etc.
 - Support ROS

DYNAMIXEL SDK

- dynamixel_workbench (http://wiki.ros.org/dynamixel-workbench)
 - Provide a variety of examples for ease of use in ROS

Reference

"ROS Robot Programming"

A Handbook is written by TurtleBot3 Developers

Reference

- □ R. Siegwart, I. R. Nourbakhsh, D. Scaramuzza. Introduction to Autonomous Mobile Robots. MIT Press, 2nd Edition, 2011, ISBN-10: 0262015358.
- ☐ Y. Pyo, H. Cho, R. Jung, and T. Lim, ROS Robot Programming, ROBOTIS Co., Ltd., 2017, ISBN 979-11-962307-1-5
- ☐ J. O'Kane, A Gentle Introduction to ROS, CreateSpace Independent Publishing Platform, 2013, ISBN-13: 978-1492143239