Técnicas de Remuestreo

 $Ricardo~Cao~Abad~(rcao@udc.es)~y~Rub\'en~Fern\'andez~Casal~(ruben.fcasal@udc.es)\\ 2019-09-05$

Índice general

P	Prólogo 5				
1	Motivación del principio Bootstrap	7			
	1.1 Introducción				
	1.2 El Bootstrap uniforme				
	1.3 Cálculo de la distribución Bootstrap: exacta y aproximada				
	1.4 Herramientas disponibles en R sobre bootstrap	. 24			
2	Estimación de la precisión y el sesgo de un estimador	2 9			
	2.1 Estimación bootstrap de la precisión y el sesgo de un estimador	. 29			
3	Motivación del método Jackknife	35			
	3.1 Estimación Jackknife de la precisión y el sesgo de un estimador	. 35			
	3.2 Relación Bootstrap/Jackknife en dicha estimación	. 39			
4	Modificaciones del Bootstrap uniforme	43			
	4.1 Bootstrap paramétrico	. 43			
	4.2 Bootstrap simetrizado	. 46			
	4.3 Bootstrap suavizado	. 48			
	4.4 Bootstrap ponderado y bootstrap sesgado	. 53			
	4.5 Deficiencias del bootstrap uniforme	. 54			
	4.6 Validez de la aproximación Bootstrap	. 57			
5	Intervalos de confianza bootstrap	61			
	5.1 Intervalos basados en la distribución normal asintótica	. 61			
	5.2 Método percentil (básico)	. 62			
	5.3 Método percentil- t	. 65			
	5.4 Método percentil- t simetrizado	. 67			
	5.5 Tabla resumen de los errores de cobertura	. 68			
	5.6 Ejemplos	. 68			
6	Bootstrap y estimación no paramétrica de la densidad				
	6.1 Estimación no paramétrica de la función de densidad	. 73			
	6.2 Sesgo, varianza y error cuadrático medio	. 73			
	6.3 Aproximación Bootstrap de la distribución del estimador de Parzen-Rosenblatt	. 75			
	6.4 El Bootstrap en la selección del parámetro de suavizado	. 76			
7	Bootstrap y regresión no paramétrica	81			
	7.1 Estimación no paramétrica de la función de regresión	. 81			
	7.2 Distintos métodos de remuestreo y resultados para ellos				
8	El Bootstrap con datos censurados	87			
	8.1 Introducción a los datos censurados	87			

ÍNDICE GENERAL

	8.2	Remuestreos Bootstrap en presencia de censura	89
	8.3	Relaciones entre los métodos de remuestreo bajo censura	
	8.4	Implementación en R (con los paquetes boot y survival)	91
	8.5	Ejercicios	
9	El I	Bootstrap con datos dependientes	99
	9.1	Introducción a las condiciones de dependencia y modelos habituales de datos dependientes	99
	9.2	El bootstrap en la estimación con datos dependientes	100
	9.3	El bootstrap para la predicción con datos dependientes	105
	9.4	Implementación en R	
	9.5	Implementación en R con el paquete boot	
	9.6	Ejercicios	
	9.7	Implementación en R con el paquete forecast	
	9.8	Spatial data	
\mathbf{R}	efere	encias	119
		Enlaces	122

Prólogo

Este libro contiene los apuntes de la asignatura de Técnicas de Remuestreo del Máster en Técnicas Estadísticas.

Este libro ha sido escrito en R-Markdown empleando el paquete bookdown y está disponible en el repositorio Github: rubenfcasal/book_remuestreo. Se puede acceder a la versión en línea a través del siguiente enlace:https://rubenfcasal.github.io/book_remuestreo.

Para ejecutar los ejemplos mostrados en el libro será necesario tener instalados los siguientes paquetes: boot, bootstrap, survival, forecast, MASS Por ejemplo mediante el comando:

```
install.packages(c("boot", "bootstrap", "survival", "forecast", "MASS"))
```

Para generar el libro (compilar) serán necesarios paquetes adicionales, para lo que se recomendaría consultar el libro de "Escritura de libros con bookdown" en castellano.

Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional (esperamos poder liberarlo bajo una licencia menos restrictiva más adelante...).

6 ÍNDICE GENERAL

Capítulo 1

Motivación del principio Bootstrap

Etimología: bootstrap = cinta de la bota (oreja lateral para calzarse las botas). Modismo anglosajón: to pull oneself up by one's bootstraps.

1.1 Introducción

El bootstrap es un procedimiento estadístico que sirve para aproximar la distribución en el muestreo (normalmente) de un estadístico. Para ello procede mediante remuestreo, es decir, obteniendo muestras mediante algún procedimiento aleatorio que utilice la muestra original.

Su ventaja principal es que no requiere hipótesis sobre el mecanismo generador de los datos. Sí las requiere, aunque suelen ser más relajadas, para obtener propiedades asintóticas del mismo. Por otra parte, su implementación en ordenador suele ser sencilla, en comparación con otros métodos. Su principal inconveniente es la necesidad de computación intensiva, debido a la fuerza bruta del método de Monte Carlo. Con la capacidad computacional actual, esta mayor carga computacional del bootstrap no suele ser un problema hoy en día. En raras ocasiones el bootstrap no necesita del uso de técnicas de Monte Carlo.

1.1.1 Breve nota histórica

Precursores teóricos remotos:

- Laplace (1810). Teoría límite de primer orden.
- Chebychev (final siglo XIX). Teoría límite de segundo orden.

Primeras contribuciones:

- Hubback (1878-1968). Esquemas de muestreo espacial para ensayos agrícolas.
- Mahalanobis (años 1930 y segunda guerra mundial). Precursor del bootstrap por bloques.

Otras contribuciones:

- Gurney, McCarthy, Hartigan (años 1960, 1970). Métodos de half-sampling para estimación de varianzas (U.S. Bureau of the Census).
- Maritz, Jarret, Simon (años 1970, 1980). Métodos de permutaciones relacionados con el bootstrap.

En la actualidad:

 Bradley Efron (Stanford University, 1979). Creador oficial del método. Acuñó su nombre. Fusionó la potencia de Monte Carlo con la resolución de problemas planteados de forma muy general. • Peter Hall (1951-2016). Fue uno de los estadísticos contemporáneos más prolíficos. Dedicó al bootstrap gran parte de su producción a partir de los años 1980.

1.1.2 Paradigma inferencial y análogo bootstrap

Paradigma inferencial

Suponemos que $\mathbf{X} = (X_1, \dots, X_n)$ es una m.a.s. de una población con distribución F y que estamos interesados en hacer inferencia sobre $\theta = \theta(F)$. Para ello nos gustaría conocer la distribución en el muestreo de $R(\mathbf{X}, F)$, cierto estadístico función de la muestra y de la distribución poblacional. Por ejemplo:

$$R = R(\mathbf{X}, F) = \theta(F_n) - \theta(F) = \hat{\theta} - \theta,$$

siendo F_n la función de distribución empírica.

A veces podemos calcular directamente la distribución de $R(\mathbf{X}, F)$, aunque suele depender de cantidades poblacionales, no conocidas en la práctica. Por ejemplo, bajo normalidad $X_i \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)$, si estamos interesados en

$$\theta(F) = \mu = \int x \ dF(x) = \int x f(x) \ dx$$

como $\theta\left(F_{n}\right)=\int x\ dF_{n}\left(x\right)=\sum\frac{1}{n}X_{i}=\bar{X},$ podríamos considerar el estadístico:

$$R = R(\mathbf{X}, F) = \bar{X} - \mu \sim \mathcal{N}\left(0, \frac{\sigma^2}{n}\right).$$

Aunque en la práctica la varianza no es normalmente conocida y habría que aproximarla (sería preferible considerar como estadístico la media estudentizada).

Otras veces sólo podemos llegar a aproximar la distribución de $R(\mathbf{X}, F)$ cuando $n \to \infty$. Por ejemplo, cuando estamos interesados en la media pero desconocemos la distribución de los datos.

Análogo bootstrap

El primer paso es reemplazar la distribución poblacional (desconocida) F por una estimación, \hat{F} , de la misma. Por ejemplo, podríamos considerar la distribución empírica $\hat{F} = F_n$ (bootstrap uniforme; Sección 1.2), o una aproximación paramétrica $\hat{F} = F_{\hat{\theta}}$ (bootstrap paramétrico; Sección 4.1).

Como ejemplo ilustrativo consideramos los datos simulados [Figura 1.1]:

Como aproximación de la distribución poblacional, desconocida en la práctica, siempre podemos considerar la distribución empírica (o una versión suavizada: bootstrap suavizado; Sección 4.3). Alternativamente podríamos asumir un modelo paramétrico y estimar los parámetros a partir de la muestra [Figura 1.2].

```
# Distribución bootstrap uniforme
curve(ecdf(muestra)(x), xlim = c(-3, 3), ylab = "F(x)", type = "s")
# Distribución bootstrap paramétrico (asumiendo normalidad)
curve(pnorm(x, mean(muestra), sd(muestra)), lty = 2, add = TRUE)
# Distribución teórica
curve(pnorm, lty = 3, add = TRUE)
legend("bottomright", legend = c("Empírica", "Aprox. paramétrica", "Teórica"), lty = 1:3)
```

1.1. INTRODUCCIÓN 9

Figura 1.1: Distribución de la muestra simulada.

Figura 1.2: Distribución teórica de la muestra simulada y distintas aproximaciones.

A partir de la aproximación \hat{F} podríamos generar, condicionalmente a la muestra observada, remuestras

$$\mathbf{X}^* = (X_1^*, \dots, X_n^*)$$

con distribución $X_i^* \sim \hat{F}$, que demoninaremos remuestras bootstrap. Por lo que podemos hablar de la distribución en el remuestreo de

$$R^* = R\left(\mathbf{X}^*, \hat{F}\right),\,$$

llamada distribución bootstrap.

La idea original (Efron, 1979) es que la distribución de $\hat{\theta}_b^*$ en torno a $\hat{\theta}$ aproxima la distribución de $\hat{\theta}$ en torno a θ . Por tanto se pretende aproximar la distribución en el muestreo de R por la distribución bootstrap de R^* .

En raras ocasiones la distribución bootstrap de R^* es calculable directamente, pero siempre suele poder aproximarse por Monte Carlo.

1.1.3 Implementación en la práctica

En el caso i.i.d., si empleamos como aproximación la distribución empírica $\hat{F} = F_n$, la generación de las muestras bootstrap puede hacerse mediante remuestreo (manteniendo el tamaño muestral). Habría que simular una muestra de tamaño n de una variable aleatoria discreta que toma los valores X_1, \ldots, X_n todos ellos con probabilidad $\frac{1}{n}$:

• Para cada $i = 1, ..., n, P^*(X_i^* = X_j) = \frac{1}{n}, j = 1, ..., n.$

Existen multitud de algoritmos para simular variables discretas, pero en este caso de equiprobabilidad hay un procedimiento muy eficiente (método de la transformación cuantil con búsqueda directa) que se reduce a simular un número aleatorio U, con distribución $\mathcal{U}(0,1)$, y hacer $X^* = X_{\lfloor nU \rfloor + 1}$, donde $\lfloor x \rfloor$ representa la parte entera de x, es decir, el mayor número entero que sea menor o igual que x. Empleando ese método, el procedimiento para generar la muestra bootstrap sería:

• Para cada i = 1, ..., n generar $U_i \sim \mathcal{U}(0, 1)$ y hacer $X_i^* = X_{|nU_i|+1}$.

```
set.seed(1)
n <- length(muestra)
u <- runif(n)
muestra_boot <- muestra[floor(n*u) + 1]
head(muestra_boot)</pre>
```

```
## [1] -0.1557955 -0.0593134 -1.0441346 -0.5425200 0.9189774 0.2670988
```

En R es recomendable¹ emplear la función sample para generar muestras aleatorias con reemplazamiento del conjunto de datos original:

```
muestra_boot <- sample(muestra, replace = TRUE)
head(muestra_boot)</pre>
```

```
## [1] 0.18879230 -0.41499456 -1.47075238 -0.47340064 0.02800216 0.78213630
```

En el caso multidimensional, cuando trabajamos con un conjunto de datos con múltiples variables, podríamos emplear un procedimiento análogo, a partir de remuestras del vector de índices. Por ejemplo:

```
data(iris)
str(iris)
```

 $^{^{1}}$ De esta forma se evitan posibles problemas numéricos al emplear el método de la transformación cuantil cuando n es extremadamente grande (e.g. https://stat.ethz.ch/pipermail/r-devel/2018-September/076817.html).

1.1. INTRODUCCIÓN

```
## 'data.frame':
                    150 obs. of 5 variables:
   $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
    $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
                  : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1 1 1 ...
  $ Species
n <- nrow(iris)</pre>
# i boot <- floor(n*runif(n)) + 1
\# i\_boot \leftarrow sample.int(n, replace = TRUE)
i_boot <- sample(n, replace = TRUE)</pre>
data_boot <- iris[i_boot, ]</pre>
str(data_boot)
## 'data.frame':
                    150 obs. of 5 variables:
## $ Sepal.Length: num 5 5.2 6.7 5 5.2 6.7 5.4 5.1 4.4 7.3 ...
## $ Sepal.Width : num 3.5 4.1 3 3.5 3.5 3 3 3.8 3 2.9 ...
## $ Petal.Length: num 1.3 1.5 5 1.3 1.5 5 4.5 1.5 1.3 6.3 ...
## $ Petal.Width : num 0.3 0.1 1.7 0.3 0.2 1.7 1.5 0.3 0.2 1.8 ...
                  : Factor w/ 3 levels "setosa", "versicolor", ...: 1 1 2 1 1 2 2 1 1 3 ...
  $ Species
```

Esta forma de proceder es la que emplea por defecto el paquete boot que describiremos más adelante (Sección 1.4.1).

Ejemplo 1.1 (Inferencia sobre la media con varianza conocida). Hemos observado 15 tiempos de vida de microorganismos: 0.143, 0.182, 0.256, 0.260, 0.270, 0.437, 0.509, 0.611, 0.712, 1.04, 1.09, 1.15, 1.46, 1.88, 2.08. A partir de los cuales queremos obtener una estimación por intervalo de confianza de su vida media, suponiendo que la desviación típica es conocida e igual a 0.6 (en el Capítulo 5 se tratará con más detalle la construcción de intervalos de confianza).

```
[Figura 1.3]
```

Contexto clásico

Suponemos que los datos $\mathbf{X} = (X_1, \dots, X_n)$ son una m.a.s. de una población con distribución F, con μ desconocida y σ conocida, y que estamos interesados en hacer inferencia sobre:

$$\theta(F) = \mu = \int x \ dF(x)$$

Para ello, un estadístico adecuado para este caso es:

$$R = R(\mathbf{X}, F) = \sqrt{n} \frac{\bar{X} - \mu}{\sigma},$$

Histogram of muestra

Figura 1.3: Distribución del tiempo de vida de microorganismos.

con $\theta(F_n) = \int x dF_n(x) = \bar{X}$.

Bajo normalidad $(X \sim \mathcal{N}(\mu, \sigma^2))$, $R \sim N(0, 1)$. Si F no es normal, tan sólo sabemos que, bajo ciertas condiciones, $R \stackrel{d}{\to} \mathcal{N}(0, 1)$.

A partir de esta última aproximación, se obtiene el intervalo de confianza asintótico (de nivel $1-\alpha$) para la media μ :

$$\hat{IC}_{1-\alpha}(\mu) = \left(\overline{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \overline{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right).$$

```
alfa <- 0.05
x_barra <- mean(muestra)
z <- qnorm(1 - alfa/2)
ic_inf <- x_barra - z*sigma/sqrt(n)
ic_sup <- x_barra + z*sigma/sqrt(n)
IC <- c(ic_inf, ic_sup)
IC</pre>
```

[1] 0.7093151 0.9013516

$Contexto\ bootstrap$

Consideramos la función de distribución empírica $\hat{F} = F_n$ como aproximación de la distribución poblacional (bootstrap uniforme). Para aproximar la distribución bootstrap del estadístico por Monte Carlo, se generan B = 1000 muestras bootstrap $\mathbf{X}^{*(b)} = \left(X_1^{*(b)}, \dots, X_n^{*(b)}\right)$ de forma que $P^{*(b)}\left(X_i^* = X_j\right) = \frac{1}{n}, \ j = 1, \dots, n$, para $i = 1, \dots, n$ y $b = 1, \dots, B$. A partir de las cuales se obtienen las B réplicas bootstrap del estadístico:

$$R^{*(b)} = R\left(\mathbf{X}^{*(b)}, \hat{F}\right) = \sqrt{n} \frac{\bar{X}^{*(b)} - \bar{X}}{\sigma}, \ b = 1, \dots, B,$$

1.1. INTRODUCCIÓN 13

```
 \cos \bar{X}^{*(b)} = \frac{1}{n} \sum X_i^{*(b)}. 
 \text{set.seed(1)} 
 \text{B <- 1000} 
 \text{estadistico_boot <- numeric(B)} 
 \text{for (k in 1:B) } \{ 
 \text{remuestra <- sample(muestra, n, replace = TRUE)} 
 \text{x_barra_boot <- mean(remuestra)} 
 \text{estadistico_boot[k] <- sqrt(n) * (x_barra_boot - x_barra)/sigma} \}
```

Las características de interés de la distribución en el muestreo de R se aproximan por las correspondientes de la distribución bootstrap de R^* . En este caso nos interesa aproximar los puntos críticos $x_{\alpha/2}$ y $x_{1-\alpha/2}$, tales que:

$$P(x_{\alpha/2} < R < x_{1-\alpha/2}) = 1 - \alpha.$$

Para lo que podemos emplear los cuantiles muestrales²:

```
# Empleando la distribución empírica del estadístico bootstrap:
estadístico_boot_ordenado <- sort(estadístico_boot)
indice_inf <- floor(B * alfa/2)
indice_sup <- floor(B * (1 - alfa/2))
pto_crit <- estadístico_boot_ordenado[c(indice_inf, indice_sup)]
# Empleando la función `quantile`:
# pto_crit <- quantile(estadístico_boot, c(alfa/2, 1 - alfa/2), type = 1)
pto_crit <- quantile(estadístico_boot, c(alfa/2, 1 - alfa/2))
pto_crit</pre>
```

```
## 2.5% 97.5%
## -1.851858 1.873377
```

A partir de los cuales obtenemos la correspondiente estimación por IC boostrap:

$$\hat{IC}_{1-\alpha}^{boot}(\mu) = \left(\overline{X} - x_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \overline{X} - x_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right).$$

```
# Construcción del IC
ic_inf_boot <- x_barra - pto_crit[2] * sigma/sqrt(n)
ic_sup_boot <- x_barra - pto_crit[1] * sigma/sqrt(n)
IC_boot <- c(ic_inf_boot, ic_sup_boot)
names(IC_boot) <- paste0(100*c(alfa, 1-alfa), "%") # rev(names(IC_boot))
IC_boot</pre>
```

```
## 5% 95%
## 0.7135570 0.8960555
```

Nótese que este intervalo de confianza no está centrado en la media, al contrario que el obtenido con la aproximación tradicional. Aunque en este caso no se observan grandes diferencias ya que la distribución bootstrap obtenida es muy similar a la aproximación normal (ver Figura 1.4).

```
hist(estadistico_boot, freq = FALSE)
lines(density(estadistico_boot))
abline(v = pto_crit)
```

²Se podrían considerar distintos estimadores del cuantil x_{α} (ver p.e. la ayuda de la función quantile). Si empleamos directamente la distribución empírica, el cuantil se correspondería con la observación ordenada en la posición $B\alpha$ (se suele hacer una interpolación lineal si este valor no es entero), lo que equivale a emplear la función quantile() de R con el parámetro type = 1. Esta función considera por defecto la posición $1+(B-1)\alpha$ (type = 7). En el libro de Davison y Hinkley (1997), y en el paquete boot, se emplea $(B+1)\alpha$ (equivalente a type = 6; lo que justifica que consideren habitualmente 999 réplicas bootstrap).

curve(dnorm, lty = 2, add = TRUE)
abline(v = c(-z, z), lty = 2)

Histogram of estadistico_boot

Figura 1.4: Distribución del estadístico boostrap y aproximaciones de los cuantiles. Con línea discontinua se muestra la distribución normal asintótica.

1.2 El Bootstrap uniforme

Como ya se comentó anteriormente el bootstrap uniforme es aquel en el que se reemplaza la distribución poblacional (desconocida) por la distribución empírica:

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1} \{X_i \le x\}.$$

Es decir $\hat{F} = F_n$ y, por lo tanto, $R^* = R(\mathbf{X}^*, F_n)$.

Conviene recordar algunas propiedades de la distribución empírica:

$$nF_{n}(x) = \sum_{i=1}^{n} \mathbf{1} \{X_{i} \leq x\} \sim \mathcal{B}(n, F(x)),$$

$$E(nF_{n}(x)) = nF(x) \implies E(F_{n}(x)) = F(x),$$

$$Var(nF_{n}(x)) = nF(x)(1 - F(x))$$

$$\implies Var(F_{n}(x)) = \frac{F(x)(1 - F(x))}{n}$$

Así pues, en este caso el algoritmo bootstrap uniforme (también llamado bootstrap naïve) es el siguiente:

- 1. Para cada $i=1,\ldots,n$ arrojar X_i^* a partir de F_n , es decir $P^*\left(X_i^*=X_j\right)=\frac{1}{n},\,j=1,\ldots,n$
- 2. Obtener $\mathbf{X}^* = (X_1^*, \dots, X_n^*)$
- 3. Calcular $R^* = R(\mathbf{X}^*, F_n)$

Como veremos más adelante, a veces (muy poco frecuentemente) es posible calcular exactamente la distribución bootstrap de R^* . Cuando eso no es posible, esa distribución es fácilmente aproximable por Monte Carlo, arrojando una gran cantidad, B, de réplicas de R^* . En ese caso, el algoritmo se convierte en:

- 1. Para cada i = 1, ..., n arrojar X_i^* a partir de F_n
- 2. Obtener $\mathbf{X}^* = (X_1^*, \dots, X_n^*)$
- 3. Calcular $R^* = R(\mathbf{X}^*, F_n)$
- 4. Repetir B veces los pasos 1-3 para obtener las réplicas bootstrap $R^{*(1)}, \ldots, R^{*(B)}$
- 5. Utilizar esas réplicas bootstrap para aproximar la distribución en el muestreo de ${\cal R}$

1.2.1 Ejemplos

Ejemplo 1.2 (Inferencia sobre la media con varianza conocida, continuación).

En el Ejemplo 1.1 anteriormente visto de inferencia para la media con varianza conocida, el algoritmo bootstrap (basado en Monte Carlo) para aproximar la distribución en el muestreo de R empleado fue:

- 1. Para cada $i=1,\dots,n$ arroja
r $U_{i}\sim\mathcal{U}\left(0,1\right)$ y hacer $X_{i}^{*}=X_{\lfloor nU_{i}\rfloor+1}$
- 2. Obtener $\bar{X}^* = \frac{1}{n} \sum X_i^*$
- 3. Calcular $R^* = \sqrt{n} \frac{\bar{X}^* \bar{X}}{\sigma}$
- 4. Repetir B veces los pasos 1-3 para obtener las réplicas bootstrap $R^{*(1)},\dots,R^{*(B)}$
- 5. Aproximar la distribución en el muestreo de R mediante la empírica de $R^{*(1)}, \ldots, R^{*(B)}$

Como curiosidad podemos calcular la esperanza y la varianza de R y la esperanza y varianza bootstrap de R^* . Para R tenemos:

$$E(R) = \sqrt{n} \frac{E(\bar{X}) - \mu}{\sigma} = 0,$$

$$Var(R) = n \frac{Var(\bar{X})}{\sigma^2} = n \frac{\frac{1}{n}\sigma^2}{\sigma^2} = 1.$$

Para calcular esos mismos momentos de R^* , resultará útil obtener previamente la esperanza y varianza bootstrap de \bar{X}^* :

$$\begin{split} E^*\left(\bar{X}^*\right) &= \frac{1}{n} \sum_{i=1}^n E^*\left(X_i^*\right) = \frac{1}{n} \sum_{i=1}^n E^*\left(X_1^*\right) = E^*\left(X_1^*\right) = \bar{X}, \\ Var^*\left(\bar{X}^*\right) &= \frac{1}{n^2} \sum_{i=1}^n Var^*\left(X_i^*\right) = \frac{1}{n^2} \sum_{i=1}^n Var^*\left(X_1^*\right) = \frac{1}{n} Var^*\left(X_1^*\right) = \frac{S_n^2}{n}, \end{split}$$

ya que

$$E^* (X_1^*) = \sum_{j=1}^n X_j P^* (X_1^* = X_j) = \sum_{j=1}^n \frac{1}{n} X_j = \bar{X},$$

$$Var^* (X_1^*) = E^* (X_1^{*2}) - [E^* (X_1^*)]^2 = \sum_{j=1}^n X_j^2 P^* (X_1^* = X_j) - \bar{X}^2$$

$$= \frac{1}{n} \sum_{j=1}^n X_j^2 - \bar{X}^2 = \frac{1}{n} \sum_{j=1}^n (X_j - \bar{X})^2 = S_n^2$$

Así pues, la esperanza y la varianza bootstrap de R^* resultan:

$$E^* (R^*) = \sqrt{n} \frac{E^* (\bar{X}^*) - \bar{X}}{\sigma} = 0,$$

$$Var^* (R^*) = n \frac{Var^* (\bar{X}^*)}{\sigma^2} = n \frac{\frac{1}{n} S_n^2}{\sigma^2} = \frac{S_n^2}{\sigma^2}.$$

Es curioso observar que la esperanza de R y la esperanza bootstrap de R^* coinciden (son ambas cero), pero no ocurre lo mismo con sus varianzas: la de R es 1 y la varianza bootstrap de R^* es $\frac{S_n^2}{\sigma^2}$, que, aunque tiende a 1 (en probabilidad o de forma casi segura, bajo las condiciones adecuadas) cuando $n \to \infty$, no es igual a 1. Eso nos lleva a intuir que el método de remuestreo bootstrap propuesto quizá podría modificarse ligeramente para que imitase exactamente al caso no bootstrap también en la varianza. Puede comprobarse que eso se consigue remuestreando X^* de la distribución empírica de la muestra modificada: $(\tilde{X}_1, \ldots, \tilde{X}_n)$, siendo

$$\tilde{X}_i = \bar{X} + \frac{\sigma}{S_n} \left(X_i - \bar{X} \right), i = 1, \dots, n.$$

Efectivamente, bajo ese nuevo remuestreo, se tiene

$$E^* (\bar{X}^*) = E^* (X_1^*) = \overline{\hat{X}} = \frac{1}{n} \sum_{i=1}^n \left[\bar{X} + \frac{\sigma}{S_n} (X_i - \bar{X}) \right]$$
$$= \bar{X} + \frac{1}{n} \frac{\sigma}{S_n} \sum_{i=1}^n (X_i - \bar{X}) = \bar{X},$$
$$Var^* (\bar{X}^*) = \frac{1}{n} Var^* (X_1^*) = \frac{\sigma^2}{n},$$

ya que

$$Var^* (X_1^*) = E^* (X_1^{*2}) - [E^* (X_1^*)]^2 = \sum_{j=1}^n \tilde{X}_j^2 P^* (X_1^* = \tilde{X}_j) - \overline{\tilde{X}}^2$$

$$= \frac{1}{n} \sum_{j=1}^n \tilde{X}_j^2 - \overline{\tilde{X}}^2 = \frac{1}{n} \sum_{j=1}^n (\tilde{X}_j - \overline{\tilde{X}})^2 = \frac{1}{n} \sum_{j=1}^n \left[\frac{\sigma}{S_n} (X_j - \bar{X}) \right]^2$$

$$= \frac{\sigma^2}{S_n^2} \frac{1}{n} \sum_{j=1}^n (X_i - \bar{X})^2 = \frac{\sigma^2}{S_n^2} S_n^2 = \sigma^2.$$

Como consecuencia

$$E^*\left(R^*\right) = \sqrt{n} \frac{E^*\left(\bar{X}^*\right) - \bar{X}}{\sigma} = 0,$$

$$Var^*\left(R^*\right) = n \frac{Var^*\left(\bar{X}^*\right)}{\sigma^2} = n \frac{\frac{\sigma^2}{n}}{\sigma^2} = 1.$$

Esto es muy coherente con lo que nos diría la intuición pues, si la varianza poblacional, σ^2 , es conocida (ese es el motivo de que podamos usarla directamente en la definición del estadístico R), el plan de remuestreo

bootstrap también ha de conocer σ^2 , es decir ha de diseñarse de modo que la distribución bootstrap de X^* tenga también varianza bootstrap σ^2 . Eso ocurre con el remuestreo uniforme de la muestra transformada $(\tilde{X}_1, \ldots, \tilde{X}_n)$, pero no ocurre con el remuestreo naïve (a partir de la distribución empírica de la muestra original). Esto da pie a una de las consideraciones más importantes a la hora de diseñar un buen método de remuestreo bootstrap: ha de procurarse que el bootstrap imite todas las condiciones que cumple la población original.

El código para realizar remuestreo bootstrap uniforme sobre la empírica de la muestra perturbando es análogo:

```
# Remuestreo
B <- 1000
estadistico_boot <- numeric(B)</pre>
coeficiente <- sigma/sd(muestra)</pre>
muestra_perturbada <- x_barra + coeficiente * (muestra - x_barra)
for (k in 1:B) {
  remuestra <- sample(muestra_perturbada, n, replace = TRUE)
  x_barra_boot <- mean(remuestra)</pre>
  estadistico_boot[k] <- sqrt(n) * (x_barra_boot - x_barra)/sigma
# Aproximación bootstrap de los ptos críticos
pto_crit <- quantile(estadistico_boot, c(alfa/2, 1 - alfa/2))</pre>
# Construcción del IC
ic_inf_boot <- x_barra - pto_crit[2] * sigma/sqrt(n)</pre>
ic_sup_boot <- x_barra - pto_crit[1] * sigma/sqrt(n)</pre>
IC_boot <- c(ic_inf_boot, ic_sup_boot)</pre>
names(IC boot) <- paste0(100*c(alfa, 1-alfa), "%")</pre>
IC boot
           5%
                    95%
```

Ejemplo 1.3 (Inferencia sobre la mediana). Continuando con el ejemplo de los tiempos de vida de microorganismos, supongamos que queremos obtener una estimación por intervalo de confianza de su vida mediana a partir de los 15 valores observados.

Consideramos la mediana poblacional como parámetro de interés:

$$\theta = \theta(F) = F^{-1}\left(\frac{1}{2}\right) = \inf\left\{x \in \mathbb{R} : F(x) \ge \frac{1}{2}\right\}.$$

Dada una muestra $\mathbf{X} = (X_1, \dots, X_n) \sim F$, θ puede estimarse mediante la mediana muestral

$$\hat{\theta} = \theta\left(F_n\right) = F_n^{-1}\left(\frac{1}{2}\right) = \inf\left\{x \in \mathbb{R} : F_n\left(x\right) \ge \frac{1}{2}\right\}$$

$$= \left\{\begin{array}{cc} X_{(m)} & \text{si } n = 2m - 1 \text{ es impar} \\ \frac{X_{(m)} + X_{(m+1)}}{2} & \text{si } n = 2m \text{ es par} \end{array}\right.$$

siendo $X_{(1)}, \ldots, X_{(n)}$ los estadísticos ordenados.

0.7132745 0.8953890

El estadístico interesante para realizar inferencia en este contexto es $R = \sqrt{n} \left(\hat{\theta} - \theta \right)$. Si la población de partida es continua, puede demostrarse que su distribución asintótica (i.e., cuando $n \to \infty$) viene dada por

$$R = \sqrt{n} \left(\hat{\theta} - \theta \right) \stackrel{d}{\to} \mathcal{N} \left(0, \frac{1}{f(\theta)^2} \right),$$

donde f es la función de densidad de la población. Como consecuencia, la utilización de esta distribución límite, $\mathcal{N}\left(0,1/f\left(\theta\right)^2\right)$, para realizar inferencia sobre la mediana, además de comportar una aproximación de la distribución en el muestreo real, no puede utilizarse directamente porque la densidad (desconocida) aparece en la expresión de la varianza asintótica. Para ser utilizable en la práctica deberíamos estimar f, lo cual es un problema añadido.

Esta es pues una situación muy natural en la que usar un método bootstrap para aproximar la distribución de R. Consideremos como estimador de F la distribución empírica, F_n , y procedamos según un bootstrap uniforme (supongamos n = 2m - 1, impar, por simplicidad):

- 1. Para cada i = 1, ..., n arrojar $U_i \sim \mathcal{U}(0, 1)$ y hacer $X_i^* = X_{\lfloor nU_i \rfloor + 1}$
- 2. Obtener $X_{(1)}^*, \ldots, X_{(n)}^*$ los estadísticos ordenados de la remuestra bootstrap y quedarse con el que ocupa lugar central: $\hat{\theta}^* = \theta\left(F_n^*\right) = X_{(m)}^*$
- 3. Calcular $R^* = \sqrt{n} \left(X_{(m)}^* X_{(m)} \right)$
- 4. Repetir B veces los pasos 1-3 para obtener las réplicas bootstrap $R^{*(1)}, \ldots, R^{*(B)}$
- 5. Aproximar la distribución en el muestreo de R mediante la empírica de $R^{*(1)}, \ldots, R^{*(B)}$

El código implementando este algoritmo sería muy similar al de los casos anteriores:

```
x mediana<- median(muestra)</pre>
# Remuestreo
B <- 1000
estadistico_boot <- numeric(B)</pre>
coeficiente <- sigma/sd(muestra)</pre>
for (k in 1:B) {
  remuestra <- sample(muestra, n, replace = TRUE)
  x_mediana_boot <- median(remuestra)</pre>
  estadistico_boot[k] <- sqrt(n) * (x_mediana_boot - x_mediana)</pre>
}
# Aproximación bootstrap de los ptos críticos
pto_crit <- quantile(estadistico_boot, c(alfa/2, 1 - alfa/2))</pre>
# Construcción del IC
ic_inf_boot <- x_mediana - pto_crit[2]/sqrt(n)</pre>
ic_sup_boot <- x_mediana - pto_crit[1]/sqrt(n)</pre>
IC_boot <- c(ic_inf_boot, ic_sup_boot)</pre>
names(IC_boot) <- paste0(100*c(alfa, 1-alfa), "%")</pre>
IC_boot
```

```
## 5% 95%
## 0.510 0.713
```

Sin embargo, como veremos más adelante, este caso de inferencia de la mediana es uno de los pocos casos en los que la distribución bootstrap se puede calcular de forma exacta, siendo dicha expresión utilizable en la práctica.

1.3 Cálculo de la distribución Bootstrap: exacta y aproximada

1.3.1 Distribución bootstrap exacta

En principio siempre es posible calcular la distribución en el remuestreo del estadístico bootstrap de forma exacta. Al menos para el bootstrap uniforme, que es el más habitual. El motivo es que la distribución de probabilidad de la que se remuestrea en el universo bootstrap es discreta y con un número finito de valores: X_1, \ldots, X_n . Así pues, cada observación bootstrap, X_i^* , ha de tomar necesariamente alguno de esos n valores y, por tanto, el número de posibles remuestras, $\mathbf{X}^* = (X_1^*, \ldots, X_n^*)$, obtenibles mediante el bootstrap uniforme es finito, concretamente n^n . Aún siendo finito, este número es gigantescamente grande incluso para tamaños muestrales pequeños (salvo casos extremos del tipo $n=2,\ldots,9$). Por ejemplo, para n=10, tenemos 10^{10} (diez mil millones de) posibles remuestras bootstrap y para n=20, tendríamos $20^{20} \simeq 10.4857 \cdot 10^{25}$ (algo más de cien cuatrillones). Incluso para estos tamaños muestrales el problema de cálculo de la distribución bootstrap exacta de \mathbf{X}^* es inabordable.

1.3.2 Vectores de remuestreo

Una forma alternativa de representar las posibles remuestras bootstrap es mediante los llamados vectores de remuestreo. Son utilizables en el caso de que el estadístico de interés sea funcional, es decir, cuando R depende de la muestra sólo a través de la distribución empírica o, lo que es lo mismo, el valor de R no cambia cuando realizamos una permutación arbitraria sobre los elementos de la muestra (los cambiamos de orden). Consideremos la remuestra bootstrap $\mathbf{X}^* = (X_1^*, \dots, X_n^*)$ y denotemos por

$$N_j = \# \{i \in \{1, \dots, n\} : X_i^* = X_j\}.$$

Obviamente, si el orden en el que se han obtenido los elementos de la muestra no es importante, entonces el vector $\mathbf{N} = (N_1, \dots, N_n)$ contiene la misma información que la remuestra bootstrap \mathbf{X}^* . Esencialmente lo que hace el vector \mathbf{N} es contabilizar cuantas veces se repite cada elemento de la muestra original en la remuestra bootstrap. Con esta notación, el vector de remuestreo bootstrap, $\mathbf{P}^* = (P_1^*, \dots, P_n^*)$, se define como $P_i^* = \frac{N_i}{n}, i = 1, \dots, n$.

La distribución en el remuestreo de \mathbf{N} , bajo el bootstrap uniforme, es multinomial: $\mathbf{N} \sim \mathcal{M}_n\left(n,\left(\frac{1}{n},\ldots,\frac{1}{n}\right)\right)$. Así que su masa de probabilidad, y por tanto la de \mathbf{P}^* , es fácilmente calculable:

$$P(N_1 = m_1, \dots, N_n = m_n) = \frac{n!}{m_1! \cdots m_n!} \left(\frac{1}{n}\right)^{m_1} \cdots \left(\frac{1}{n}\right)^{m_n}$$
$$= \frac{n!}{m_1! \cdots m_n! n^n},$$

para m_1, \ldots, m_n enteros con $\sum_{i=1}^n m_i = n$, donde el número de átomos de probabilidad de **N** es ahora $\binom{n+n-1}{n} = \binom{2n-1}{n}$.

En general $\binom{2n-1}{n} < n^n$, pues el hecho de que no importe el orden de las componentes de las remuestras bootstrap provoca un menor número de átomos de probabilidad. Aún así dicho cardinal es prohibitivamente grande incluso para tamaños muestrales pequeños: para n=10, resultaría abordable pues $\binom{19}{10}=92\,378$, pero para n=20 tendríamos $\binom{39}{20}=68\,923\,264\,410$. De toda esa enorme cantidad de átomos, el de más grande probabilidad resulta tener una probabilidad de $\frac{n!}{n^n}$, que es insignificantemente pequeña para tamaños pequeños como n=20, con $\frac{20!}{20^{20}}\sim 2.\,320\,2\times 10^{-8}$. De todas formas, existen raras ocasiones en las que el número de átomos de probabilidad de R^* resulta ser mucho menor que el de \mathbf{P}^* .

Para tamaños muestrales realmente pequeños es posible encontrar todos los átomos de probabilidad de la distribución bootstrap. Un ejemplo es la media muestral con, por ejemplo, n=3.

Ejemplo 1.4 (Media muestral para una muestra de tamaño 3). Consideremos una muestra aleatoria simple de tamaño n=3 de una población con distribución F y tomemos como parámetro de interés la media

poblacional $\theta(F) = \mu = \int x dF(x)$. Tomemos como estadístico de interés $R = R(\mathbf{X}, F) = \bar{X}$. El análogo bootstrap de esta estadístico es $R^* = R(\mathbf{X}^*, F_n) = \bar{X}^*$, cuya distribución en el remuestreo se puede calcular de forma exacta debido al reducido número de átomos de probabilidad que tiene. Esta es una distribución discreta con 10 posibles valores, cuyo valor más probable es precisamente \bar{X} que tiene una probabilidad bootstrap de $\frac{2}{9}$, como puede verse en la siguiente tabla.

X* (salvo	N =	D* ()	3!	$ar{X}^*$
permutaciones)	(m_1, m_2, m_3)	$\mathbf{P}^* = (p_1, p_2, p_3)$	$\overline{m_1!m_2!m_3!3^3}$	A
(X_1, X_1, X_1)	(3,0,0)	(1,0,0)	$\frac{1}{27}$	X_1
(X_2, X_2, X_2)	(0, 3, 0)	(0, 1, 0)	$\frac{\overline{1}}{27}$	X_2
(X_3, X_3, X_3)	(0, 0, 3)	(0, 0, 1)	$\frac{1}{27}$	X_3
(X_1, X_1, X_2)	(2,1,0)	$(\frac{2}{3}, \frac{1}{3}, 0)$	$ \frac{\frac{1}{27}}{\frac{1}{27}} \\ \frac{\frac{1}{27}}{\frac{1}{9}} $	$\frac{2X_1 + X_2}{3}$
(X_1, X_1, X_3)	(2,0,1)	$\left(\frac{2}{3}, \frac{1}{3}, 0\right)$ $\left(\frac{2}{3}, 0, \frac{1}{3}\right)$	$\frac{1}{9}$	$\frac{2X_1 + X_3}{3}$
(X_1, X_2, X_2)	(1, 2, 0)	$(\frac{1}{3}, \frac{2}{3}, 0)$	$\frac{1}{0}$	$\frac{X_1 + 2X_2}{3}$
(X_2, X_2, X_3)	(0, 2, 1)	$(\frac{1}{3}, \frac{2}{3}, 0)$ $(0, \frac{2}{3}, \frac{1}{3})$	$\frac{1}{0}$	$\frac{2X_{2}+X_{3}}{3}$
(X_1, X_3, X_3)	(1, 0, 2)	$(\frac{1}{2}, 0, \frac{2}{2})$	$\frac{1}{0}$	$\frac{X_1 + 2X_3}{2}$
(X_2, X_3, X_3)	(0, 1, 2)	$ \begin{pmatrix} \frac{1}{3}, 0, \frac{2}{3} \\ 0, \frac{1}{3}, \frac{2}{3} \end{pmatrix} $	$\frac{3}{1}$	$\frac{X_2 + 2X_3}{2}$
(X_1, X_2, X_3)	(1, 1, 1)	$(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$	$\frac{\overline{9}}{2}$	$\begin{array}{c} X_{3} \\ 2X_{1} + X_{2} \\ 2X_{1}^{3} + X_{3} \\ \hline 2X_{1} + 2X_{2} \\ 2X_{2}^{2} + X_{3} \\ \hline X_{1} + 2X_{3} \\ \hline X_{2} + 2X_{3} \\ \hline X_{2} + 2X_{3} \\ \hline X_{1}^{3} + X_{2} + X_{3} \\ \hline \end{array}$

En algunas ocasiones es factible encontrar expresiones cerradas para la distribución de R^* , más allá de las obvias que consisten en enumerar el ingente número de átomos de probabilidad de \mathbf{P}^* :

$$P^* (R^* = R((m_1, ..., m_n), F_n))$$

Veamos un ejemplo.

1.3.3 Inferencia sobre la mediana

En el caso de la mediana, consideremos, por simplicidad el caso de tamaño muestral impar, n=2m-1. Supongamos también que no hay empates en los valores de la muestra (si los hubiese las expresiones serían más farragosas pero también calculables). La versión bootstrap del estadístico sobre el cual pivota la inferencia es $R^* = X^*_{(m)} - X_{(m)}$. Su distribución bootstrap podría calcularse si se obtuviese la de $X^*_{(m)}$. Pero ésta es factible de calcular por los pocos posibles valores que puede tomar el estadístico $X^*_{(m)}$ (tan sólo los valores de la muestra original) y por la sencillez del bootstrap uniforme. Veámoslo:

$$P^* \left(X_{(m)}^* > X_{(j)} \right) = P^* \left(\# \left\{ X_i^* \le X_{(j)} \right\} \le m - 1 \right),$$

pero # $\{X_i^* \le X_{(j)}\} \sim \mathcal{B}\left(n, \frac{j}{n}\right)$, con lo cual

$$P^* \left(X_{(m)}^* > X_{(j)} \right) = \sum_{k=0}^{m-1} \binom{n}{k} \left(\frac{j}{n} \right)^k \left(\frac{n-j}{n} \right)^{n-k}$$

y, por lo tanto, si $j \geq 2$,

$$\begin{split} P^* \left(X_{(m)}^* = X_{(j)} \right) &= P^* \left(X_{(m)}^* > X_{(j-1)} \right) - P^* \left(X_{(m)}^* > X_{(j)} \right) \\ &= \sum_{k=0}^{m-1} \binom{n}{k} \left(\frac{j-1}{n} \right)^k \left(\frac{n-j+1}{n} \right)^{n-k} \\ &- \sum_{k=0}^{m-1} \binom{n}{k} \left(\frac{j}{n} \right)^k \left(\frac{n-j}{n} \right)^{n-k} \\ &= \sum_{k=0}^{m-1} \binom{n}{k} \left[\left(\frac{j-1}{n} \right)^k \left(\frac{n-j+1}{n} \right)^{n-k} - \left(\frac{j}{n} \right)^k \left(\frac{n-j}{n} \right)^{n-k} \right]. \end{split}$$

Cuando j = 1, entonces

$$P^* \left(X_{(m)}^* = X_{(1)} \right) = 1 - P^* \left(X_{(m)}^* > X_{(1)} \right)$$
$$= 1 - \sum_{k=0}^{m-1} \binom{n}{k} \left(\frac{1}{n} \right)^k \left(\frac{n-1}{n} \right)^{n-k}.$$

1.3.4 Distribución Bootstrap aproximada por Monte Carlo

Como ya se comentó anteriormente, al conocer el mecanismo que genera los datos en el bootstrap, siempre se podrá simular dicho mecanismo mediante el método de Monte Carlo. Por lo que el algoritmo general para la aproximación de Monte Carlo del bootstrap uniforme es:

- 1. Para cada i = 1, ..., n arrojar X_i^* a partir de F_n
- 2. Obtener $\mathbf{X}^* = (X_1^*, \dots, X_n^*)$
- 3. Calcular $R^* = R(\mathbf{X}^*, F_n)$
- 4. Repetir B veces los pasos 1-3 para obtener las réplicas bootstrap $R^{*(1)}, \ldots, R^{*(B)}$
- 5. Utilizar esas réplicas bootstrap para aproximar la distribución en el muestreo de R

Como se mostró en la Sección 1.1.3, el paso 1 se puede llevar a cabo simulando una distribución uniforme discreta mediante el método de la transformación cuantil:

1. Para cada $i=1,\ldots,n$ arroja
r $U_i\sim\mathcal{U}\left(0,1\right)$ y hacer $X_i^*=X_{\lceil nU_i\rceil+1}$

Aunque en R se recomienda emplear la función sample.

Ejemplo 1.5 (Inferencia sobre la media con varianza desconocida). Continuando con el ejemplo de los tiempos de vida de microorganismos, supongamos que queremos obtener una estimación por intervalo de confianza de su vida media a partir de los 15 valores observados pero en la situación mucho más realista de que la varianza sea desconocida.

Tenemos pues $\mathbf{X} = (X_1, \dots, X_n) \sim F$, con μ y σ desconocidas

El parámetro de interés es

$$\theta(F) = \mu = \int x \ dF(x)$$

que se estima mediante

$$\theta\left(F_{n}\right)=\int x\ dF_{n}\left(x\right)=\bar{X}.$$

Así pues, el estadístico en el que basar la inferencia es

$$R = R\left(\mathbf{X}, F\right) = \sqrt{n} \frac{\bar{X} - \mu}{S_{n-1}},$$

donde S_{n-1}^2 es la cuasivarianza muestral:

$$S_{n-1}^2 = \frac{1}{n-1} \sum_{j=1}^n (X_j - \bar{X})^2.$$

Bajo normalidad $(X \sim \mathcal{N}(\mu, \sigma^2))$, se sabe que $R \sim t_{n-1}$ y, en particular, $R \xrightarrow{d} \mathcal{N}(0, 1)$ cuando $n \to \infty$. Si F no es normal entonces la distribución de R ya no es una t_{n-1} , pero también es cierto que, bajo ciertas condiciones, $R \xrightarrow{d} \mathcal{N}(0, 1)$.

En el contexto bootstrap elegimos $\hat{F}=F_n$, con lo cual se trata de un bootstrap naïve o uniforme. El análogo bootstrap del estadístico R será

$$R^* = R(\mathbf{X}^*, F_n) = \sqrt{n} \frac{\bar{X}^* - \bar{X}}{S_{n-1}^*},$$

siendo

$$\bar{X}^* = \frac{1}{n} \sum_{i=1}^n X_i^*,$$

$$S_{n-1}^{*2} = \frac{1}{n-1} \sum_{i=1}^n (X_i^* - \bar{X}^*)^2.$$

El algoritmo bootstrap (aproximado por Monte Carlo) procedería así:

- 1. Para cada $i=1,\ldots,n$ arrojar $U_i \sim \mathcal{U}\left(0,1\right)$ y hacer $X_i^*=X_{\lfloor nU_i \rfloor+1}$
- 2. Obtener \bar{X}^* y S_{n-1}^{*2}
- 3. Calcular $R^* = \sqrt{n} \frac{\bar{X}^* \bar{X}}{S_*^*}$
- 4. Repetir B veces los pasos 1-3 para obtener las réplicas bootstrap $R^{*(1)},\dots,R^{*(B)}$
- 5. Aproximar la distribución en el muestreo de R mediante la distribución empírica de $R^{*(1)}, \ldots, R^{*(B)}$

El código para implementar este método es similar al del caso de varianza conocida del Ejemplo 1.1:

```
muestra \leftarrow c(0.143, 0.182, 0.256, 0.26, 0.27, 0.437, 0.509,
              0.611, 0.712, 1.04, 1.09, 1.15, 1.46, 1.88, 2.08)
n <- length(muestra)</pre>
alfa <- 0.05
x_barra <- mean(muestra)</pre>
cuasi dt <- sd(muestra)
# Remuestreo
set.seed(1)
B <- 1000
remuestra <- numeric(n)
estadistico_boot <- numeric(B)</pre>
for (k in 1:B) {
  remuestra <- sample(muestra, n, replace = TRUE)
  x_barra_boot <- mean(remuestra)</pre>
  cuasi dt boot <- sd(remuestra)</pre>
  estadistico_boot[k] <- sqrt(n) * (x_barra_boot - x_barra)/cuasi_dt_boot
```

```
# Aproximación bootstrap de los ptos críticos
pto_crit <- quantile(estadistico_boot, c(alfa/2, 1 - alfa/2))
# Construcción del IC
ic_inf_boot <- x_barra - pto_crit[2] * cuasi_dt/sqrt(n)
ic_sup_boot <- x_barra - pto_crit[1] * cuasi_dt/sqrt(n)
IC_boot <- c(ic_inf_boot, ic_sup_boot)
names(IC_boot) <- pasteO(100*c(alfa, 1-alfa), "%")
IC_boot</pre>
```

```
## 5% 95%
## 0.4940304 1.2260180
```

Este procedimiento para la construcción de intervalos de confianza se denomina $m\acute{e}todo$ percentil-t y se tratará en la Sección 5.3.

1.3.5 Elección del número de réplicas Monte Carlo

Normalmente el valor de B se toma del orden de varias centenas o incluso millares. En los casos en los que el bootstrap se utiliza para estimar el sesgo o la varianza de un estimador, bastará tomar un número, B, de réplicas bootstrap del orden de B=100,200,500. Sin embargo, cuando se trata de utilizar el bootstrap para realizar contrastes de hipótesis o construir intervalos de confianza son necesarios valores mayores, del tipo B=500,1000,2000,5000.

Evidentemente, la función de distribución del estadístico de interés, $\psi(u) = P(R \le u)$, se estimaría mediante la distribución empírica de las B realizaciones de la aproximación de Monte Carlo, $\hat{\psi}_B(u) = \frac{1}{B} \sum_{i=1}^B \mathbf{1} \left\{ R^{*(i)} \le u \right\}$, de la verdadera distribución bootstrap exacta: $\hat{\psi}(u) = P^*(R^* \le u)$. El error de Monte Carlo de $\hat{\psi}_B(u)$ con respecto a $\hat{\psi}(u)$ viene dado por su varianza Monte Carlo, pues su sesgo Monte Carlo es cero:

$$\begin{split} E^{MC}\left(\hat{\psi}_{B}\left(u\right)\right) &= \frac{1}{B}\sum_{i=1}^{B}E^{MC}\left(\mathbf{1}\left\{R^{*(i)} \leq u\right\}\right) = \frac{1}{B}\sum_{i=1}^{B}P^{*}\left(R^{*(i)} \leq u\right) \\ &= \frac{1}{B}\sum_{i=1}^{B}\hat{\psi}\left(u\right) = \hat{\psi}\left(u\right), \\ Var^{MC}\left(\hat{\psi}_{B}\left(u\right)\right) &= \frac{1}{B^{2}}\sum_{i=1}^{B}Var^{MC}\left(\mathbf{1}\left\{R^{*(i)} \leq u\right\}\right) \\ &= \frac{1}{B^{2}}\sum_{i=1}^{B}P^{*}\left(R^{*(i)} \leq u\right)\left[1 - P^{*}\left(R^{*(i)} \leq u\right)\right] = \\ &= \frac{1}{B^{2}}\sum_{i=1}^{B}\hat{\psi}\left(u\right)\left(1 - \hat{\psi}\left(u\right)\right) = \frac{1}{B}\hat{\psi}\left(u\right)\left(1 - \hat{\psi}\left(u\right)\right) \leq \frac{1}{4B} \end{split}$$

Así, el error de la aproximación de Monte Carlo al bootstrap exacto (raíz cuadrada de la varianza del Monte Carlo), puede acotarse por $\frac{1}{2\sqrt{B}}$.

1.4 Herramientas disponibles en R sobre bootstrap

En R hay una gran cantidad de paquetes que implementan métodos bootstrap. Por ejemplo, al ejecutar el comando ??bootstrap (o help.search('bootstrap')) se mostrarán las funciones de los paquetes instalados que incluyen este término en su documentación (se puede realizar la búsqueda en todos los paquetes disponibles de R a través de https://www.rdocumentation.org).

De entre todos estas herramientas destacan dos librerías como las más empleadas:

- bootstrap: contiene las rutinas (bootstrap, cross-validation, jackknife) y los datos del libro "An Introduction to the Bootstrap" de B. Efron y R. Tibshirani, 1993, Chapman and Hall. La librería fue desarrollada originalmente en S por Rob Tibshirani y exportada a R por Friedrich Leisch. Es útil para desarrollar los ejemplos que se citan en ese libro.
- boot: incluye las funciones y conjuntos de datos utilizados en el libro "Bootstrap Methods and Their Applications" de A. C. Davison y D. V. Hinkley, 1997, Cambridge University Press. Esta librería fue desarrollada originalmente en S por Angelo J. Canty y posteriormente exportada a R (ver Canty, 2002). Este paquete es mucho más completo que el paquete bootstrap y es el que emplearemos como referencia en este libro (ver Sección 1.4.1).

Por otra parte existen numerosas rutinas (scripts) realizadas en R por diversos autores, que están disponibles en Internet (por ejemplo, puede ser interesante realizar una búsqueda en https://rseek.org).

El bootstrap uniforme se puede implementar fácilmente. Por ejemplo, una rutina general para el caso univariante sería la siguiente:

```
#' @param x vector que contiene la muestra.
#' @param B número de réplicas bootstrap.
#' @param statistic función que calcula el estadístico.
boot.strap0 <- function(x, B=1000, statistic=mean){
   ndat <- length(x)
   x.boot <- sample(x, ndat*B, replace=TRUE)
   x.boot <- matrix(x.boot, ncol=B, nrow=ndat)
   stat.boot <- apply(x.boot, 2, statistic)
}</pre>
```

Podríamos aplicar esta función a la muestra de tiempos de vida de microorganismos con el siguiente código:

```
fstatistic <- function(x){
    # mean(x)
    # mean(x, trim=0.2)
    median(x)
    # max(x)
}

B <- 1000
set.seed(1)
stat.dat <- fstatistic(muestra)
stat.boot <- boot.strap0(muestra, B, fstatistic)

res.boot <- c(stat.dat, mean(stat.boot)-stat.dat, sd(stat.boot))
names(res.boot) <- c("Estadístico", "Sesgo", "Error Std.")
res.boot</pre>
```

```
## Estadístico Sesgo Error Std.
## 0.6110000 0.0374880 0.2580493
```

La función boot.strap0() anterior no es adecuada para el caso multivariante (por ejemplo cuando estamos

interesados en regresión). Como se mostró en la Sección 1.1.3 sería preferible emplear remuestras del vector de índices. Por ejemplo:

```
#' Oparam datos vector, matriz o data.frame que contiene los datos.
#' Oparam B número de réplicas bootstrap.
#' Oparam statistic función con al menos dos parámetros,
#' los datos y el vector de indices de remuestreo,
#' y que devuelve el vector de estadísticos.
#' Oparam ... parámetros adicionales de la función statistic.
boot.strap <- function(datos, B=1000, statistic, ...) {
   ndat <- NROW(datos)
   i.boot <- sample(ndat, ndat*B, replace=TRUE)
   i.boot <- matrix(i.boot, ncol=B, nrow=ndat)
   stat.boot <- drop(apply(i.boot, 2, function(i) statistic(datos, i, ...)))
}</pre>
```

El paquete boot, descrito a continuación, emplea una implementación similar.

1.4.1 El paquete boot

La función principal de este paquete es la función boot() que implementa distintos métodos de remuestreo para datos i.i.d.. En su forma más simple permite realizar bootstrap uniforme (denominado bootstrap noparamétrico básico en este paquete):

```
boot(data, statistic, R)
```

donde data es un vector, matriz o data.frame que contiene los datos, R es el número de réplicas bootstrap, y statistic es una función con al menos dos parámetros (con las opciones por defecto), los datos y el vector de índices de remuestreo, y que devuelve el vector de estadísticos.

Por ejemplo, para hacer inferencia sobre la mediana del tiempo de microorganismos, podríamos emplear el siguiente código:

El resultado que devuelve esta función es un objeto de clase boot, una lista con los siguientes componentes: names(res.boot)

```
## [1] "t0" "t" "R" "data" "seed"
## [6] "statistic" "sim" "call" "stype" "strata"
## [11] "weights"
```

Además de los parámetros de entrada (incluyendo los valores por defecto), contiene tres componentes adicionales:

• t0: el valor observado del estadístico (su evaluación en los datos originales).

- t: la matriz de réplicas bootstrap del estadístico (cada fila se corresponde con una remuestra).
- seed: el valor inicial de la semilla (.Random.seed) empleada para la generación de las réplicas.

Este tipo de objetos dispone de dos métodos principales: el método print() que muestra un resumen de los resultados (incluyendo aproximaciones bootstrap del sesgo y del error estándar de los estadísticos; ver Capítulo 2):

res.boot

```
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = muestra, statistic = statistic, R = 1000)
##
##
## Bootstrap Statistics :
##
       original
                  bias
                           std. error
## t1*
          0.611 0.042895
                            0.2495372
```

y el método plot() que genera gráficas básicas de diagnosis de los resultados (correspondientes al estadístico determinado por el parámetro index, por defecto = 1): [Figura 1.5]

```
plot(res.boot)
```


Figura 1.5: Gráficos de diagnóstico de los resultados bootstrap de la mediana de los tiempos de vida de microorganismos.

Además de estos métodos, las principales funciones de interés serían:

- jack.after.boot(): genera un gráfico para diagnósticar la inluencia de las observaciones individuales en los resultados bootstrap (se representan los cuantiles frente a las diferencias en el estadístico al eliminar una observación; este gráfico también se puede obtener estableciendo jack = TRUE en plot.boot()).
- boot.array(): genera la matriz de índices a partir de la que se obtuvieron las remuestras (permite reconstruir las remuestras bootstrap).
- boot.ci(): construye distintos tipos de intervalos de confianza (se tratarán en el Capítulo 5) dependiendo del parámetro type:

- "norm": utiliza la distribución asintótica normal considerando las aproximaciones bootstrap del sesgo y de la varianza.
- "basic": emplea el estadístico $R = \hat{\theta} \theta$ para la construcción del intervalo de confianza.
- "stud": calcula el intervalo a partir del estadístico estudentizado $R = (\hat{\theta} \theta) / \sqrt{Var(\hat{\theta})}$.
- "perc": utiliza directamente la distribución bootstrap del estadístico $(R = \hat{\theta})$.
- "bca": emplea el método BCa ("bias-corrected and accelerated") propuesto por Efron (1987) (ver Sección 5.3.2 de Davison y Hinkley, 1997).
- "all": calcula los cinco tipos de intervalos anteriores.

Based on 1000 bootstrap replicates

Como ya se comentó, la función boot() admite estadísticos multivariantes (haciendo que la función statistic devuelva un vector en lugar de un escalar), pero por defecto las funciones anteriores consideran el primer componente como el estadístico principal. Para obtener resultados de otros componentes del vector de estadísticos habrá que establecer el parámetro index igual al índice deseado. Además, en algunos casos (por ejemplo para la obtención de intevalos de confianza estudentizados con la función boot.ci()) se supone, por defecto, que el segundo componente del vector de estadísticos contiene estimaciones de la varianza del estadístico para cada réplica boostrap.

Ejemplo 1.6 (Inferencia sobre la media con varianza desconocida, continuación). Continuando con el Ejemplo 1.5 de inferencia sobre la media con varianza desconocida. Para obtener la estimación por intervalo de confianza del tiempo de vida medio de los microorganismos con el paquete boot, podríamos emplear el siguiente código:

```
library(boot)
muestra \leftarrow c(0.143, 0.182, 0.256, 0.26, 0.27, 0.437, 0.509,
             0.611, 0.712, 1.04, 1.09, 1.15, 1.46, 1.88, 2.08)
statistic <- function(data, i){</pre>
  remuestra <- data[i]
  c(mean(remuestra), var(remuestra)/length(remuestra))
}
set.seed(1)
res.boot <- boot(muestra, statistic, R = 1000)
res.boot
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## boot(data = muestra, statistic = statistic, R = 1000)
##
##
## Bootstrap Statistics :
        original
                       bias
                                std. error
## t1* 0.8053333 0.001745067 0.157310082
## t2* 0.0259338 -0.001404917 0.007962592
boot.ci(res.boot)
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
```

```
##
## CALL:
## boot.ci(boot.out = res.boot)
##
## Intervals :
## Level
                                 Basic
                                                  Studentized
             Normal
        (0.4953, 1.1119)
                              (0.4945, 1.1121)
                                                   (0.5055, 1.2705)
## 95%
##
## Level
            Percentile
                                  BCa
                              (0.5289, 1.1285)
## 95%
        (0.4986, 1.1161)
## Calculations and Intervals on Original Scale
```

El intervalo marcado como Studentized se obtuvo empleando el mismo estadístico del Ejemplo 1.5.

Modificaciones del bootstrap uniforme

Establecenciendo parámetros adicionales de la función boot se pueden llevar a cabo modificaciones del bootstrap uniforme. Algunos de estos parámetros son los siguientes:

- strata: permite realizar remuestreo estratificado estableciendo este parámetro como un vector numérico o factor que defina los grupos.
- sim = c("ordinary", "parametric", "balanced", "permutation", "antithetic"): permite establecer distintos tipos de remuestreo. Por defecto es igual a "ordinary" que se corresponde con el bootstrap uniforme, descrito anteriormente. Entre el resto de opciones destacaríamos sim = "permutation", que permite realizar contrastes de permutaciones (remuestreo sin reemplazamiento), y sim = "parametric", que permite realizar bootstrap paramétrico (Sección 4.1). En este último caso también habrá que establecer los parámetros ran.gen y mle, y la función statistics no empleará el segundo parámetro de índices.
- ran.gen: función que genera los datos. El primer argumento será el conjunto de datos original y el segundo un vector de parámetros adicionales (normalmente los valores de los parámetros de la distribución).
- mle: parámetros de la distribución (típicamente estimados por máxima verosimilitud) o parámetros adicionales para ran.gen ó statistics.

Además hay otros parámetros para el procesamiento en paralelo: parallel = c("no", "multicore", "snow"), ncpus, cl. Para más detalles sobre los parámetros consultar la ayuda de la función boot() (?boot).

El paquete boot también incluye otras funciones que implementan métodos boostrap para otros tipos de datos, como la función censboot() para datos censurados (Capítulo 8) o la función tsboot() para series de tiempo (Capítulo 9).

Capítulo 2

Estimación de la precisión y el sesgo de un estimador

Uno de los problemas más interesantes que pueden ser abordados desde la perspectiva de los métodos de remuestreo es el de la estimación del sesgo y la precisión de un estimador. En dicho contexto surgió el método Jackknife (bastante antes que el bootstrap), que, en ese sentido, puede considerarse el método de remuestreo más antiguo como tal.

2.1 Estimación bootstrap de la precisión y el sesgo de un estimador

Consideremos $\mathbf{X} = (X_1, \dots, X_n)$ una m.a.s. de una población con distribución F y supongamos que tenemos interés en realizar inferencia sobre un parámetro de la población $\theta = \theta(F)$. Consideremos un estimador, $\hat{\theta} = T(\mathbf{X})$, de dicho parámetro y definamos el estadístico

$$R = R(\mathbf{X}, F) = T(\mathbf{X}) - \theta(F) = \hat{\theta} - \theta.$$

El sesgo del estimador no es más que la esperanza del estadístico R y la varianza de $\hat{\theta}$ es también la varianza de R (pues θ no es aleatorio). Además, el error cuadrático medio del estimador también se puede escribir como el momento de orden 2 de R:

$$\begin{split} Sesgo\left(\hat{\theta}\right) &= E\left(\hat{\theta} - \theta\right) = E\left(R\right), \\ Var\left(\hat{\theta}\right) &= Var\left(\hat{\theta} - \theta\right) = Var\left(R\right), \\ MSE\left(\hat{\theta}\right) &= E\left[\left(\hat{\theta} - \theta\right)^{2}\right] = E\left(R^{2}\right). \end{split}$$

Dado que el principio bootstrap es útil para aproximar la distribución en muestreo del estadístico R, entonces también permitirá aproximar sus momentos (su esperanza, su varianza, la esperanza de su cuadrado) y así proceder según sigue:

- 1. Estimar la función de distribución de probabilidad mediante \hat{F}
- 2. Para cada $i=1,\ldots,n$ arrojar X_i^* a partir de \hat{F} y obtener $\mathbf{X}^*=(X_1^*,\ldots,X_n^*)$
- 3. Calcular $R^* = R\left(\mathbf{X}^*, \hat{F}\right) = T\left(\mathbf{X}^*\right) \theta\left(\hat{F}\right) = \hat{\theta}^* \hat{\theta}$
- 4. Repetir B veces los pasos 2-3 para obtener las réplicas bootstrap $R^{*(1)}, \ldots, R^{*(B)}$

5. Calcular el estimador bootstrap del sesgo:

$$Sesgo^*(\hat{\theta}^*) = \bar{R}^* = \frac{1}{B} \sum_{b=1}^{B} R^{*(b)}.$$

El algoritmo anterior es útil para aproximar por bootstrap el sesgo. Si se desea aproximar la varianza puede sustituirse al paso 5 por:

5. Calcular el estimador bootstrap de la varianza:

$$Var^* \left(\hat{\theta}^* \right) = \frac{1}{B} \sum_{b=1}^{B} \left(R^{*(b)} - \bar{R}^* \right)^2$$

Si se trata de aproximar por bootstrap el error cuadrático medio, el paso 5 pasaría a ser:

5. Calcular el estimador bootstrap del error cuadrático medio: $MSE^*\left(\hat{\theta}^*\right) = \frac{1}{B}\sum_{b=1}^B R^{*(b)2}$

En el caso de la varianza podría ahorrarse algunos cálculos definiendo directamente $R = T(\mathbf{X}) = \hat{\theta}$ y, consecuentemente, $R^* = T(\mathbf{X}^*) = \hat{\theta}^*$. Así otro algoritmo de cálculo algo menos intensivo sería:

- 1. Estimar la función de distribución de probabilidad mediante \hat{F}
- 2. Para cada $i=1,\ldots,n$ arrojar X_i^* a partir de \hat{F} y obtener $\mathbf{X}^*=(X_1^*,\ldots,X_n^*)$
- 3. Calcular $T(\mathbf{X}^*) = \hat{\theta}^*$
- 4. Repetir B veces los pasos 2-3 para obtener las réplicas bootstrap $\hat{\theta}^{*(1)}, \dots, \hat{\theta}^{*(B)}$

5. Calcular
$$\overline{\hat{\theta}^*} = \frac{1}{B} \sum_{b=1}^{B} \hat{\theta}^{*(b)}$$
 y, con ello, $Var^* \left(\hat{\theta}^* \right) = \frac{1}{B} \sum_{b=1}^{B} \left(\hat{\theta}^{*(b)} - \overline{\hat{\theta}^*} \right)^2$

Es interesante mencionar que esto permite aproximar por bootstrap (mediante Monte Carlo) la varianza de un estimador sin conocer una expresión explícita para dicha varianza teórica. En general, el estimador, \hat{F} , de F a utilizar en los pasos 1-2 de estos algoritmos se elije según proceda al caso. En el caso del bootstrap uniforme sería $\hat{F} = F_n$ y se puede proceder como se mostró en la Sección 1.1.3.

2.1.1 Ejemplo: la media muestral

Consideremos como parámetro de interés la media de la población, $\theta = \theta\left(F\right) = \mu = \int x dF\left(x\right)$, y tomemos como estimador la media muestral: $\hat{\theta} = \hat{\mu} = T\left(\mathbf{X}\right) = \bar{X} = \frac{1}{n} \sum_{j=1}^{n} X_{j}$. Supongamos que deseamos estudiar la varianza de este estimador: $Var\left(\hat{\theta}\right) = Var\left(\bar{X}\right) = \frac{\sigma^{2}}{n}$.

A la hora de aproximar por bootstrap $Var\left(\hat{\theta}\right)$, si no disponemos de ninguna otra información adicional (como que la distribución sea de cierta familia paramétrica o que sea continua), parece razonable elegir como método de remuestreo el bootstrap uniforme. En tal caso el algoritmo bootstrap de Monte Carlo procedería de esta forma:

- 1. Para cada $i=1,\ldots,n$ arrojar $U_i \sim \mathcal{U}\left(0,1\right)$ y hacer $X_i^* = X_{\lfloor nU_i \rfloor + 1}$
- 2. Calcular $T(\mathbf{X}^*) = \bar{X}^* = \frac{1}{n} \sum_{i=1}^n X_i^*$
- 3. Repetir B veces los pasos 1-2 para obtener las réplicas bootstrap $\bar{X}^{*(1)},\dots,\bar{X}^{*(B)}$
- 4. Calcular $\overline{\bar{X}^*} = \frac{1}{B} \sum_{b=1}^{B} \bar{X}^{*(b)} \text{ y } Var^* \left(\bar{X}^* \right) = \frac{1}{B} \sum_{b=1}^{B} \left(\bar{X}^{*(b)} \overline{\bar{X}^*} \right)^2$

De todas formas, en este caso puede verse fácilmente que no es necesario realizar Monte Carlo. En efecto,

$$Var^* (\bar{X}^*) = \frac{1}{n^2} \sum_{i=1}^n Var^* (X_i^*) = \frac{1}{n} Var^* (X_1^*)$$

$$= \frac{1}{n} \left\{ E^* (X_1^{*2}) - [E^* (X_1^*)]^2 \right\} = \frac{1}{n} \left[\frac{1}{n} \sum_{j=1}^n X_j^2 - \left(\frac{1}{n} \sum_{j=1}^n X_j \right)^2 \right]$$

$$= \frac{1}{n^2} \sum_{j=1}^n (X_j - \bar{X})^2 = \frac{S_n^2}{n},$$

que es precisamente el estimador plug-in de la varianza de la media muestral.

Ejemplo 2.1 (Aproximación bootstrap de la precisión de estimaciones del tiempo de vida medio de microorganismos). Continuando con el ejemplo de los tiempos de vida de microorganismos, supongamos que queremos estimar la precisión de dos estimadores de su vida media: media muestral y mediana muestral, a partir de los datos observados: 0.143, 0.182, 0.256, 0.260, 0.270, 0.437, 0.509, 0.611, 0.712, 1.04, 1.09, 1.15, 1.46, 1.88, 2.08.

La estimación media
 muestral resulta $\bar{X}=0.8053333$. Por su parte la estimación mediana muestral es
 $x_{(8)}=0.611$.

La varianza del estimador media muestral, \bar{X} es $Var\left(\bar{X}\right)=\frac{\sigma^2}{n}$, desconocida en este caso. Su estimación bootstrap (idéntica a la plug-in) mediante un remuestreo uniforme es calculable sin necesidad de realizar Monte Carlo y resulta:

$$Var^*(\bar{X}^*) = \frac{1}{n^2} \sum_{j=1}^n (x_j - \bar{X})^2 = 0.024204877.$$

Con lo cual
$$\sqrt{Var^*(\bar{X}^*)} = \sqrt{0.024204877} = 0.15558$$

Si consideramos ahora la mediana muestral (como estimador de la media), también sabemos que su distribución bootstrap puede calcularse de forma explícita, sin necesidad de realizar Monte Carlo. Su masa de probabilidad viene dada por:

$$P^* \left(X_{(8)}^* = x_{(1)} \right) = 1 - \sum_{k=0}^{m-1} \binom{n}{k} \left(\frac{1}{n} \right)^k \left(\frac{n-1}{n} \right)^{n-k}$$

$$P^* \left(X_{(8)}^* = x_{(j)} \right) = \sum_{k=0}^{m-1} \binom{n}{k} \left[\left(\frac{j-1}{n} \right)^k \left(\frac{n-j+1}{n} \right)^{n-k} - \left(\frac{j}{n} \right)^k \left(\frac{n-j}{n} \right)^{n-k} \right]$$
para $j = 2, \dots, n$

Con los datos concretos del ejemplo resulta:

$$\begin{array}{ll} P^*\left(X_{(8)}^*=0.143\right)=1.639\times 10^{-6}, & P^*\left(X_{(8)}^*=0.182\right)=2.655\times 10^{-4},\\ P^*\left(X_{(8)}^*=0.256\right)=3.973\times 10^{-3}, & P^*\left(X_{(8)}^*=0.260\right)=2.121\times 10^{-2},\\ P^*\left(X_{(8)}^*=0.270\right)=6.278\times 10^{-2}, & P^*\left(X_{(8)}^*=0.437\right)=0.1249,\\ P^*\left(X_{(8)}^*=0.509\right)=0.1832, & P^*\left(X_{(8)}^*=0.611\right)=0.2073,\\ P^*\left(X_{(8)}^*=0.712\right)=0.1832, & P^*\left(X_{(8)}^*=1.04\right)=0.1249,\\ P^*\left(X_{(8)}^*=1.09\right)=6.278\times 10^{-2}, & P^*\left(X_{(8)}^*=1.15\right)=2.121\times 10^{-2},\\ P^*\left(X_{(8)}^*=1.46\right)=3.973\times 10^{-3}, & P^*\left(X_{(8)}^*=1.88\right)=2.655\times 10^{-4},\\ P^*\left(X_{(8)}^*=2.08\right)=1.639\times 10^{-6}. \end{array}$$

Como consecuencia,

$$E^* \left(X_{(8)}^* \right) = \sum_{j=1}^{15} x_{(j)} P^* \left(X_{(8)}^* = x_{(j)} \right) = 0.65749924$$

$$E^* \left(X_{(8)}^{*2} \right) = \sum_{j=1}^{15} x_{(j)}^2 P^* \left(X_{(8)}^* = x_{(j)} \right) = 0.49500381$$

$$Var^* \left(X_{(8)}^* \right) = 0.49500381 - 0.65749924^2 = 6.2699 \times 10^{-2}$$

$$\sqrt{Var^* \left(X_{(8)}^* \right)} = \sqrt{6.2699 \times 10^{-2}} = 0.25040$$

Las estimaciones bootstrap de los errores cuadráticos medios de ambos estimadores (como estimadores de la media poblacional) son:

$$MSE^* \left(\bar{X}^* \right) = \left(E^* \left(\bar{X}^* \right) - \bar{X} \right)^2 + Var^* \left(\bar{X}^* \right)$$

$$= Var^* \left(\bar{X}^* \right) = 0.024204877,$$

$$MSE^* \left(X^*_{(8)} \right) = \left(E^* \left(X^*_{(8)} \right) - \bar{X} \right)^2 + Var^* \left(X^*_{(8)} \right) =$$

$$= (0.65749924 - 0.8053333)^2 + 6.2699 \times 10^{-2}$$

$$= 0.084554.$$

Una aproximación de Monte Carlo de estas varianzas bootstrap se puede llevar a cabo mediante el siguiente código:

```
# Alternativamente: varmedia <- var(muestra)/n
desvmedia <- sqrt(varmedia)</pre>
# Remuestreo
B <- 1e+04
media <- numeric(B)</pre>
mediana <- numeric(B)
for (k in 1:B) {
    remuestra <- sample(muestra, n, replace = TRUE)</pre>
    media[k] <- mean(remuestra)</pre>
    # remordenada <- sort(remuestra)</pre>
    # mediana[k] <- remordenada[8]</pre>
    mediana[k] <- median(remuestra)</pre>
}
# Aproximaciones precisión
varmediaboot <- (1/B) * sum((media - mean(media))^2)</pre>
desymediaboot <- sqrt(varmediaboot)</pre>
varmedianaboot <- (1/B) * sum((mediana - mean(mediana))^2)</pre>
desvmedianaboot <- sqrt(varmedianaboot)</pre>
desvmedia
## [1] 0.1555792
desvmediaboot
## [1] 0.1570513
desvmedianaboot
## [1] 0.2517709
# Aproximaciones sesgo
sesgomediaboot <- mean(media) - mean(muestra)</pre>
sesgomedianaboot <- mean(mediana) - muestra[8]</pre>
sesgomediaboot
## [1] 0.0004837933
sesgomedianaboot
## [1] 0.0482999
Empleando el paquete boot el código sería más simple:
library(boot)
statistic <- function(data, i){</pre>
  remuestra <- data[i]
  c(mean(remuestra), median(remuestra))
}
set.seed(1)
res.boot <- boot(muestra, statistic, R = B)</pre>
res.boot
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
```

```
## Call:
## boot(data = muestra, statistic = statistic, R = B)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 0.8053333 -0.00046904 0.1550047
## t2* 0.6110000 0.04636960 0.2498358
```

Lamentablemente la función print.boot() calcula las aproximaciones bootstrap del sesgo y de la precisión pero no las almacena. En el caso más simple podríamos obtenerlas con el siguiente código:

```
## original bias std. error
## t1* 0.8053333 -0.00046904 0.1550047
## t2* 0.6110000 0.04636960 0.2498358
```

Capítulo 3

Motivación del método Jackknife

El jackknife es probablemente el método de remuestreo, propiamente dicho, más antiguo. Fue propuesto por Quenouille (1949) para estimar el sesgo de un estimador. Tukey (1958) bautiza el método y lo utiliza para estimar la varianza de un estimador. En realidad el jackknife no suele utilizarse para aproximar la distribución de $R(\mathbf{X}, F)$, sino más bien para estimar características de dicha variable aleatoria, como su esperanza o su varianza.

La diferencia entre el bootstrap y el jackknife es muy fácil de expresar en términos de los vectores de remuestreo. Así, el bootstrap uniforme utiliza vectores de remuestreo de la forma $\mathbf{P}^* = \left(\frac{m_1}{n}, \dots, \frac{m_n}{n}\right)$, con $m_i \in \mathbb{Z}^+$, $i = 1, \dots, n$, mientras que el jackknife considera vectores de remuestreo de la forma

$$\mathbf{P}_{(i)}^* = \left(\frac{1}{n-1}, \dots, 0, \dots, \frac{1}{n-1}\right).$$

En otras palabras todas las remuestras jackknife posibles son tantas como el tamaño muestral y cada una consiste en eliminar una observación de la muestra, quedándose con una remuestra de tamaño n-1 en la que las demás observaciones aparecen exactamente con frecuencia 1.

Evidentemente, el número de posibles remuestras jackknife, n, es muchísimo más pequeño que el número de remuestras bootstrap, $\binom{2n-1}{n}$, lo cual permite calcular con rapidez las realizaciones del estadístico de interés en todas las posibles remuestras jackknife.

3.1 Estimación Jackknife de la precisión y el sesgo de un estimador

Cuando estamos interesados en el sesgo o la varianza de un estimador $\hat{\theta} = \theta(\mathbf{X})$ de un parámetro $\theta = \theta(F)$, el estadístico de interés suele definirse como $R = R(\mathbf{X}, F) = \hat{\theta} - \theta$. En este caso

$$Sesgo\left(\hat{\theta}\right) = E\left(\hat{\theta}\right) - \theta = E\left(R\right),$$

$$Var\left(\hat{\theta}\right) = Var\left(\hat{\theta} - \theta\right) = Var\left(R\right).$$

Así pues trataremos de usar el jackknife para aproximar la esperanza y varianza de R, o, equivalentemente, el sesgo y la varianza de $\hat{\theta}$.

El conjunto de remuestras jackknife es

$$\mathcal{X}_{jackk} = \{ \mathbf{X}^* = \mathbf{X}_{(i)} = (X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n) : i = 1, \dots, n \}$$

y todas ellas se consideran con equiprobabilidad en el universo jackknife. Como primera tentativa estimaríamos el sesgo y la varianza jackknife mediante:

$$E^{*}\left(R^{*}\right) = E_{jackk}^{*}\left(\hat{\theta}^{*}\right) - \theta\left(\mathbf{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \theta\left(\mathbf{X}_{(i)}\right) - \hat{\theta} = \overline{\theta\left(\mathbf{X}_{(\cdot)}\right)} - \hat{\theta},$$

$$Var^{*}\left(R^{*}\right) = Var_{jackk}^{*}\left(\hat{\theta}^{*}\right) = \frac{1}{n} \sum_{i=1}^{n} \left[\theta\left(\mathbf{X}_{(i)}\right) - \overline{\theta\left(\mathbf{X}_{(\cdot)}\right)}\right]^{2},$$

con
$$\overline{\theta\left(\mathbf{X}_{(\cdot)}\right)} = \frac{1}{n} \sum_{j=1}^{n} \theta\left(\mathbf{X}_{(j)}\right).$$

Sin embargo es evidente que las réplicas jackknife son mucho más parecidas a la muestra original de lo que lo son las remuestras bootstrap, en general. De hecho se puede demostrar que el valor absoluto de ese estimador jackknife del sesgo es siempre menor que el valor absoluto del sesgo bootstrap y que la estimación jackknife de la varianza que se acaba de proponer también es menor que la varianza bootstrap. En resumen, el método jackknife necesita de un **factor de elevación** para que las estimaciones que proporciona sean consistentes. La idea es elegir dicho factor de elevación como aquel que provoca que, al multiplicar los estadísticos anteriores por él, y considerando como parámetro a estimar la media o la varianza poblacional, el estimador jackknife finalmente resultante sea insesgado. Así, el factor de elevación resulta ser n-1 y las estimaciones jackknife finales son

$$Sesgo_{jackk}^{*}\left(\hat{\theta}^{*}\right) = (n-1)\left(\overline{\theta\left(\mathbf{X}_{(\cdot)}\right)} - \hat{\theta}\right) = \frac{n-1}{n}\sum_{i=1}^{n}\left(\theta\left(\mathbf{X}_{(i)}\right) - \hat{\theta}\right),$$

$$Var_{jackk}^{*}\left(\hat{\theta}^{*}\right) = \frac{n-1}{n}\sum_{i=1}^{n}\left[\theta\left(\mathbf{X}_{(i)}\right) - \overline{\theta\left(\mathbf{X}_{(\cdot)}\right)}\right]^{2}.$$

Tomando como parámetro de interés la media, $\theta = \mu$, tenemos que

$$\overline{\theta(\mathbf{X}_{(\cdot)})} - \widehat{\theta} = \frac{1}{n} \sum_{i=1}^{n} \theta(\mathbf{X}_{(i)}) - \widehat{\theta} = \frac{1}{n} \sum_{i=1}^{n} \overline{X_{(i)}} - \overline{X} =
= \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n-1} \sum_{j=1, j \neq i}^{n} X_j - \overline{X} = \frac{1}{n(n-1)} \sum_{i, j=1, i \neq j}^{n} X_j - \overline{X}
= \frac{1}{n(n-1)} \sum_{j=1}^{n} (n-1) X_j - \overline{X} = \frac{1}{n} \sum_{j=1}^{n} X_j - \overline{X} = 0,$$

así que $\overline{\theta\left(\mathbf{X}_{(\cdot)}\right)} - \hat{\theta}$ es un estimador insesgado del sesgo de \bar{X} (que es cero). De esta forma, utilizando un factor de elevación arbitrario, c, se tiene igualmente que $c\left(\overline{\theta\left(\mathbf{X}_{(\cdot)}\right)} - \hat{\theta}\right) = 0$, así que es también un estimador insesgado de $Sesgo\left(\bar{X}\right) = 0$. Determinaremos el valor de c imponiendo que el estimador jackknife de la varianza de dicho estimador ($\hat{\theta} = \bar{X}$) es una estimador insesgado de la varianza de dicho estimador. Por una parte, es bien conocido que la varianza de $\hat{\theta}$ es $Var\left(\bar{X}\right) = \frac{\sigma^2}{n}$. Por otra parte, la estimación jackknife de la varianza de $\hat{\theta}$, con factor de elevación c es

$$Var_{jackk}^{*}\left(\bar{X}\right) = \frac{c}{n} \sum_{i=1}^{n} \left[\overline{X_{(i)}} - \overline{\overline{X_{(\cdot)}}} \right]^{2}$$

$$= \frac{c}{n} \sum_{i=1}^{n} \left[\frac{1}{n-1} \sum_{j=1, j \neq i}^{n} X_{j} - \frac{1}{n} \sum_{k=1}^{n} \frac{1}{n-1} \sum_{j=1, j \neq k}^{n} X_{j} \right]^{2}$$

$$= \frac{c}{n} \sum_{i=1}^{n} \left[\frac{1}{n-1} \sum_{j=1, j \neq i}^{n} X_{j} - \frac{1}{n(n-1)} \sum_{k, j=1, j \neq k}^{n} X_{j} \right]^{2}$$

$$= \frac{c}{n} \sum_{i=1}^{n} \left[\frac{1}{n(n-1)} \sum_{j=1, j \neq i}^{n} X_{j} - \frac{1}{n} X_{i} \right]^{2}.$$

La esperanza de esta cantidad resulta:

$$E\left[\frac{c}{n}\sum_{i=1}^{n}\left(\frac{1}{n(n-1)}\sum_{j=1,j\neq i}^{n}X_{j} - \frac{1}{n}X_{i}\right)^{2}\right]$$

$$= \frac{c}{n}\sum_{i=1}^{n}E\left[\left(\frac{1}{n(n-1)}\sum_{j=1,j\neq i}^{n}X_{j} - \frac{1}{n}X_{i}\right)^{2}\right]$$

$$= \frac{c}{n}\sum_{i=1}^{n}E\left[\left(\frac{1}{n(n-1)}\sum_{j=1,j\neq i}^{n}(X_{j} - \mu) - \frac{1}{n}(X_{i} - \mu)\right)^{2}\right]$$

$$= \frac{c}{n}\sum_{i=1}^{n}Var\left[\frac{1}{n(n-1)}\sum_{j=1,j\neq i}^{n}(X_{j} - \mu) - \frac{1}{n}(X_{i} - \mu)\right]$$

$$= \frac{c}{n}\sum_{i=1}^{n}\left(\frac{1}{n^{2}(n-1)^{2}}\sum_{j=1,j\neq i}^{n}\sigma^{2} + \frac{1}{n^{2}}\sigma^{2}\right)$$

$$= \frac{c}{n}\sum_{i=1}^{n}\left(\frac{1}{n^{2}(n-1)}\sigma^{2} + \frac{1}{n^{2}}\sigma^{2}\right) = \frac{c\sigma^{2}}{n(n-1)}.$$

Así pues, el sesgo del estimador jackknife de la varianza de la media muestral es

$$E\left[Var_{jackk}^{*}\left(\bar{X}\right)\right]-\frac{\sigma^{2}}{n}=\frac{c\sigma^{2}}{n\left(n-1\right)}-\frac{\sigma^{2}}{n}=\frac{\sigma^{2}}{n}\left(\frac{c}{n-1}-1\right),$$

que vale cero si y solamente si c=n-1. Dicho en otras palabras, tomando como factor de elevación c=n-1, entonces, tanto el estimador jackknife del sesgo de \bar{X} como el estimador jackknife de la varianza de \bar{X} son estimadores insesgados, respectivamente, del sesgo y la varianza de \bar{X} .

Dichos estimadores resultan

$$\begin{split} Sesgo_{jackk}^*\left(\bar{X}\right) &= (n-1)\left(\overline{\overline{X_{(\cdot)}}} - \bar{X}\right), \\ Var_{jackk}^*\left(\bar{X}\right) &= \frac{n-1}{n}\sum_{i=1}^n \left[\overline{X_{(i)}} - \overline{\overline{X_{(\cdot)}}}\right]^2. \end{split}$$

Podemos realizar un razonamiento análogo cuando el parámetro de interés es la varianza poblacional, $\theta = \sigma^2$. En ese caso, considerando el estimador varianza muestral: $\hat{\theta} = S_n^2$, se tiene que su esperanza viene dada por

$$\begin{split} E\left(S_{n}^{2}\right) &= E\left[\frac{1}{n}\sum_{i=1}^{n}\left(X_{i} - \bar{X}\right)^{2}\right] = \frac{1}{n}\sum_{i=1}^{n}E\left[\left(X_{i} - \bar{X}\right)^{2}\right] \\ &= E\left[\left(X_{1} - \frac{1}{n}\sum_{j=1}^{n}X_{j}\right)^{2}\right] = E\left[\left(\left(X_{1} - \mu\right) - \frac{1}{n}\sum_{j=1}^{n}\left(X_{j} - \mu\right)\right)^{2}\right] \\ &= Var\left[\left(X_{1} - \mu\right) - \frac{1}{n}\sum_{j=1}^{n}\left(X_{j} - \mu\right)\right] \\ &= Var\left[\frac{n-1}{n}\left(X_{1} - \mu\right) - \frac{1}{n}\sum_{j=1,j\neq 1}^{n}\left(X_{j} - \mu\right)\right] \\ &= \left(\frac{n-1}{n}\right)^{2}\sigma^{2} + \frac{1}{n^{2}}\sum_{j=2}^{n}\sigma^{2} \\ &= \frac{\left(n-1\right)^{2}}{n^{2}}\sigma^{2} + \frac{n-1}{n^{2}}\sigma^{2} = \frac{n\left(n-1\right)}{n^{2}}\sigma^{2} = \frac{n-1}{n}\sigma^{2}, \end{split}$$

así que su sesgo es

$$Sesgo\left(S_n^2\right) = E\left(S_n^2\right) - \sigma^2 = -\frac{1}{n}\sigma^2.$$

Para un factor de elevación, c, el estimador jackknife del sesgo de este estimador es

$$Sesgo_{jackk}^{*}\left(S_{n}^{2}\right)=c\left(\overline{\theta\left(\mathbf{X}_{\left(\cdot\right)}\right)}-\widehat{\theta}\right)=c\left(\overline{S_{n,\left(\cdot\right)}^{2}}-S_{n}^{2}\right).$$

Con lo cual la esperanza de este estimador resulta

$$E\left(c\left(\overline{S_{n,(\cdot)}^{2}}-S_{n}^{2}\right)\right)=c\left[E\left(\overline{S_{n,(\cdot)}^{2}}\right)-E\left(S_{n}^{2}\right)\right]$$

Estudiemos por separado cada término:

$$\begin{split} \overline{S_{n,(\cdot)}^2} &= \frac{1}{n} \sum_{i=1}^n S_{n,(i)}^2 = \frac{1}{n} \sum_{i=1}^n \frac{1}{n-1} \sum_{j=1, j \neq i}^n \left(X_j - \overline{X_{(i)}} \right)^2 \\ &= \frac{1}{n} \sum_{i=1}^n \frac{1}{n-1} \sum_{j=1, j \neq i}^n \left(X_j - \frac{1}{n-1} \sum_{k=1, k \neq i}^n X_k \right)^2 \\ &= \frac{1}{n(n-1)} \sum_{i=1}^n \sum_{j=1, j \neq i}^n \left(\frac{n-2}{n-1} X_j - \frac{1}{n-1} \sum_{k=1, k \neq i, k \neq j}^n X_k \right)^2, \end{split}$$

con lo cual

$$E\left(\overline{S_{n,(\cdot)}^{2}}\right) = \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} E\left[\left(\frac{n-2}{n-1}X_{j} - \frac{1}{n-1} \sum_{k=1, k \neq i, k \neq j}^{n} X_{k}\right)^{2}\right]$$

$$= \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} E\left[\left(\frac{n-2}{n-1}(X_{j} - \mu) - \frac{1}{n-1} \sum_{k=1, k \neq i, k \neq j}^{n} (X_{k} - \mu)\right)^{2}\right]$$

$$= \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} Var\left[\frac{n-2}{n-1}(X_{j} - \mu) - \frac{1}{n-1} \sum_{k=1, k \neq i, k \neq j}^{n} (X_{k} - \mu)\right]$$

$$= \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \left[\frac{(n-2)^{2}}{(n-1)^{2}}\sigma^{2} + \frac{1}{(n-1)^{2}}(n-2)\sigma^{2}\right]$$

$$= \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \left[\frac{(n-2)(n-1)}{(n-1)^{2}}\sigma^{2}\right] = \frac{n-2}{n-1}\sigma^{2}$$

Además, ya hemos visto anteriormente que $E\left(S_n^2\right)=\frac{n-1}{n}\sigma^2$, con o cual la esperanza del estimador jackknife del sesgo es

$$c\left(\frac{n-2}{n-1}\sigma^2 - \frac{n-1}{n}\sigma^2\right) = c\sigma^2 \left(\frac{n-2}{n-1} - \frac{n-1}{n}\right)$$
$$= c\sigma^2 \frac{n(n-2) - (n-1)^2}{n(n-1)}$$
$$= c\sigma^2 \frac{-1}{n(n-1)} = -\frac{c\sigma^2}{n(n-1)}.$$

De esta forma, el sesgo del estimador jackknife del sesgo de S_n^2 resulta ser

$$\begin{split} E\left[Sesgo_{jackk}^{*}\left(S_{n}^{2}\right)\right] - Sesgo\left(S_{n}^{2}\right) &= -\frac{c\sigma^{2}}{n\left(n-1\right)} - \left(-\frac{1}{n}\sigma^{2}\right) \\ &= -\frac{\sigma^{2}}{n}\left(\frac{c}{n-1} - 1\right), \end{split}$$

con lo cual este sesgo será cero si y sólo si c = n - 1.

Esto da pie al estimador jackknife del sesgo de la varianza muestral:

$$Sesgo_{jackk}^* \left(S_n^2 \right) = (n-1) \left(\overline{S_{n,(\cdot)}^2} - S_n^2 \right).$$

Así pues, queda justificado, en el caso de estimación de los parámetros media y varianza, la razón de la elección del factor de elevación c = n - 1.

3.2 Relación Bootstrap/Jackknife en dicha estimación

Consideremos un parámetro de interés $\theta(F)$ y su correspondiente estimador que supondremos funcional, $\theta(F_n)$. En realidad, cuando calculamos cantidades como $\theta(\mathbf{X}_{(i)})$, lo que estamos haciendo es evaluar el funcional θ en otra función de distribución

$$F_{n,(i)}(x) = \frac{1}{n-1} \sum_{j=1, j \neq i}^{n} \mathbf{1}(X_j \le x).$$

Dicho en terminología de vectores de remuestreo, el estimador habitual consiste en evaluar θ en el vector $\mathbf{p} = (\frac{1}{n}, \dots, \frac{1}{n}), \theta(\mathbf{p})$, mientras que el estimador construido con toda la muestra excepto el dato *i*-ésimo es la evaluación $\theta(\mathbf{p}_{(i)})$, siendo

$$\mathbf{p}_{(i)} = \left(\frac{1}{n-1}, \dots, \frac{1}{n-1}, 0, \frac{1}{n-1}, \dots, \frac{1}{n-1}\right).$$

En lo que sigue, consideraremos funcionales θ que definen estimadores lineales o cuadráticos en los vectores de remuestreo:

• Estimadores lineales:

$$\theta(\mathbf{p}) = a + \mathbf{b}^T \mathbf{p}$$

• Estimadores cuadráticos:

$$\theta(\mathbf{p}) = a + \mathbf{b}^T \mathbf{p} + \mathbf{p}^T C \mathbf{p}$$

Una forma alternativa de definir estos estimadores es

• Estimadores lineales:

$$\theta\left(\mathbf{p}\right) = \mathbf{b}^{T} \left(\mathbf{p} - \mathbf{p}_{0}\right)$$

• Estimadores cuadráticos:

$$\theta\left(\mathbf{p}\right) = \left(\mathbf{p} - \mathbf{p}_0\right)^T C \left(\mathbf{p} - \mathbf{p}_0\right)$$

Por ejemplo, puede demostrarse fácilmente que la media, \bar{X} , es un estimador lineal en el vector de remuestreo y que la varianza muestral, S_n^2 , es un estimador cuadrático en el vector de remuestreo.

Existen dos resultados que relacionan el sesgo bootstrap y el sesgo jackknife de cualquier estimador cuadrático y la varianza bootstrap y la varianza jackknife de cualquier estimador lineal.

Teorema 3.1. Si $\hat{\theta}$ es un estimador cuadrático, entonces

$$Sesgo_{jackk}\left(\hat{\theta}\right) = \frac{n}{n-1} Sesgo_{boot}\left(\hat{\theta}\right)$$

Teorema 3.2. Si $\hat{\theta}$ es un estimador lineal, entonces

$$Var_{jackk}\left(\hat{\theta}\right) = \frac{n}{n-1} Var_{boot}\left(\hat{\theta}\right)$$

Dicho en otras palabras, para cualquier estimador cuadrático, el sesgo jackknife es mayor que el sesgo bootstrap. Si el estimador es lineal, la varianza jackknife es mayor que la varianza bootstrap. En ambos casos, el factor multiplicador es $\frac{n}{n-1}$.

Ejemplo 3.1 (Aproximación jackknife de la precisión de estimaciones del tiempo de vida medio de microorganismos). Consideremos la muestra de tiempos de vida de microorganismos ya tratada. El siguiente código permite calcular los estimadores jackknife del sesgo y de la precisión tanto de la media como de la mediana muestral.

```
# Para la muestra de TIEMPOS DE VIDA, estima (plug-in) la precisión
# de la media muestral (desumedia) y también estima mediante el jackknife
# dicha precisión (desumediajackk) y también la precisión de la mediana
# muestral, de la cual no se conoce su expresión, (desumedianajackk).
```

```
# También estima el sesgo jackknife de esos dos estimadores
# (sesgomediajackk y sesgomedianajackk, respectivamente).
muestra \leftarrow c(0.143, 0.182, 0.256, 0.26, 0.27, 0.437, 0.509,
    0.611, 0.712, 1.04, 1.09, 1.15, 1.46, 1.88, 2.08)
n <- length(muestra)</pre>
varmedia \leftarrow (1/(n^2)) * sum((muestra - mean(muestra))^2)
desvmedia <- sqrt(varmedia)</pre>
# Jackknife
media <- numeric(n)</pre>
mediana <- numeric(n)</pre>
for (i in 1:n) {
    imuestra <- muestra[-i]</pre>
    media[i] <- mean(imuestra)</pre>
    # remordenada <- sort(imuestra)</pre>
    # mediana[i] <- (remordenada[7] + remordenada[8])/2</pre>
    mediana[i] <- median(imuestra)</pre>
}
# Aproximaciones precisión
varmediajackk \leftarrow ((n - 1)/n) * sum((media - mean(media))^2)
desvmediajackk <- sqrt(varmediajackk)</pre>
varmedianajackk \leftarrow ((n - 1)/n) * sum((mediana - mean(mediana))^2)
desvmedianajackk <- sqrt(varmedianajackk)</pre>
desvmedia
## [1] 0.1555792
desvmediajackk
## [1] 0.1610397
desvmedianajackk
## [1] 0.1834505
# Aproximaciones sesqo
sesgomediajackk <- (n - 1) * (mean(media) - mean(muestra))</pre>
\# sesgomedianajackk <- (n - 1) * (mean(mediana) - muestra[8])
sesgomedianajackk <- (n - 1) * (mean(mediana) - median(muestra))</pre>
sesgomediajackk
## [1] 0
sesgomedianajackk
## [1] -0.003733333
También podríamos emplear la la función jackknife del paquete bootstrap:
library(bootstrap)
resmedia <- jackknife(muestra, mean)</pre>
resmedia
## $jack.se
## [1] 0.1610397
##
```

```
## $jack.bias
## [1] 0
##
## $jack.values
## [1] 0.8526429 0.8498571 0.8445714 0.8442857 0.8435714 0.8316429 0.8265000
## [8] 0.8192143 0.8120000 0.7885714 0.7850000 0.7807143 0.7585714 0.7285714
## [15] 0.7142857
##
## $call
## jackknife(x = muestra, theta = mean)
resmediana <- jackknife(muestra, median)
resmediana
## $jack.se
## [1] 0.1834505
##
## $jack.bias
## [1] -0.003733333
## $jack.values
## [1] 0.6615 0.6615 0.6615 0.6615 0.6615 0.6615 0.6615 0.6105 0.5600 0.5600
## [11] 0.5600 0.5600 0.5600 0.5600 0.5600
##
## $call
## jackknife(x = muestra, theta = median)
```

Estos resultados pueden compararse con los obtenidos en el Ejemplo 2.1 empleando bootstrap. En general las aproximaciones jackknife son adecuadas para el caso de estadísticos "suaves", como la media, pero pueden ser inconsistentes cuando no lo son, como es el caso de la mediana.

Capítulo 4

Modificaciones del Bootstrap uniforme

El bootstrap uniforme (o naïve) es aquel en el que remuestreamos a partir de la función de distribución empírica. Eso es muy razonable cuando no tenemos ninguna información adicional sobre la función de distribución poblacional, ya que la distribución empírica es el estimador máximo verosímil no paramétrico de la función de distribución poblacional. Sin embargo, cuando en el contexto en el que nos encontremos conozcamos alguna propiedad adicional de dicha distribución poblacional, entonces debemos incorporarla en el método de remuestreo, dando lugar a otro método bootstrap que ya no debemos llamar uniforme o naïve. Veremos algunos de ellos.

4.1 Bootstrap paramétrico

Supongamos que sabemos que la función de distribución poblacional pertenece a cierta familia paramétrica. Es decir $F = F_{\theta}$ para algún vector d-dimensional $\theta \in \Theta$. En ese caso parece lógico estimar θ a partir de la muestra (denotemos $\hat{\theta}$ un estimador de θ , por ejemplo el de máxima verosimilitud) y obtener remuestras de $F_{\hat{\theta}}$ no de F_n . Entonces, el bootstrap uniforme se modifica de la siguiente forma, dando lugar al llamado bootstrap paramétrico:

- 1. Dada la muestra $\mathbf{X} = (X_1, \dots, X_n)$, calcular $\hat{\theta}$
- 2. Para cada $i=1,\dots,n$ arroja
r X_i^* a partir de $F_{\hat{\theta}}$
- 3. Obtener $\mathbf{X}^* = (X_1^*, \dots, X_n^*)$
- 4. Calcular $R^* = R\left(\mathbf{X}^*, F_{\hat{\theta}}\right)$

Así utilizaremos las distribución en el remuestreo de R^* para aproximar la distribución en el muestreo de R. Lógicamente, cuando no sea posible obtener una expresión explícita para la distribución bootstrap de R^* utilizaremos una aproximación de Monte Carlo de la misma:

- 1. Dada la muestra $\mathbf{X} = (X_1, \dots, X_n)$, calcular $\hat{\theta}$
- 2. Para cada $i=1,\ldots,n$ arrojar X_i^* a partir de $F_{\hat{\theta}}$
- 3. Obtener $\mathbf{X}^* = (X_1^*, \dots, X_n^*)$
- 4. Calcular $R^* = R\left(\mathbf{X}^*, F_{\hat{\theta}}\right)$
- 5. Repetir B veces los pasos 2-4 para obtener las réplicas bootstrap $R^{*(1)},\,\ldots,\,R^{*(B)}$
- 6. Utilizar esas réplicas bootstrap para aproximar la distribución en el muestreo de R

En general, para llevar a cabo el paso 2, debemos poder simular valores de la distribución $F_{\hat{\theta}}$ (en el caso del bootstrap uniforme se trataba de simular valores de la distribución empírica, lo cual es muy sencillo y rápido). Para ello podemos utilizar el método de inversión, que consiste en simular un valor U procedente de una distribución U(0,1) (es decir, U es un número aleatorio uniforme) y devolver $X^* = F_{\hat{\theta}}^{-1}(U)$. Así, podríamos escribir el paso 2 de una forma más detallada:

```
2. Para cada i=1,\ldots,n arroja<br/>rU_i\sim\mathcal{U}\left(0,1\right)y hacer X_i^*=F_{\hat{\theta}}^{-1}\left(U_i\right)
```

No en todos los modelos paramétricos es fácil de calcular la inversa $F_{\hat{\theta}}^{-1}$. En algunos modelos paramétricos (como el caso de la distribución normal) ni siquiera tenemos una fórmula explícita para $F_{\theta}(x)$, con lo cual difícilmente podremos calcular explícitamente su inversa. En casos como esos es frecuente recurrir a otros métodos para simular la distribución en cuestión. Normalmente existen rutinas incorporadas a la mayoría de los lenguajes de programación y software estadístico (como R) que permiten simular directamente la mayoría de las distribuciones paramétricas habituales.

Ejemplo 4.1 (Inferencia sobre la media con varianza conocida, continuación).

Continuando con el ejemplo de tiempo de vida de microorganismos, podemos modificar fácilmente el código mostrado en el Ejemplo 1.1, de forma que se emplee bootstrap paramétrico (normal), con desviación típica conocida, para calcular un intervalo de confianza para la media poblacional.

```
muestra \leftarrow c(0.143, 0.182, 0.256, 0.26, 0.27, 0.437, 0.509,
              0.611, 0.712, 1.04, 1.09, 1.15, 1.46, 1.88, 2.08)
n <- length(muestra)
sigma <- 0.6
alfa <- 0.05
x_barra <- mean(muestra)</pre>
# Remuestreo
set.seed(1)
B <- 1000
estadistico boot <- numeric(B)</pre>
for (k in 1:B) {
    # u <- rnorm(n)
    \# remuestra <- u * sigma + x_barra
    remuestra <- rnorm(n, x barra, sigma)
    x_barra_boot <- mean(remuestra)</pre>
    estadistico_boot[k] <- sqrt(n) * (x_barra_boot - x_barra)/sigma
}
# Aproximación bootstrap de los ptos críticos
# Empleando la distribución empírica del estadístico bootstrap:
    # estadistico_boot_ordenado <- sort(estadistico_boot)</pre>
    # indice_inf <- floor(B * alfa/2)</pre>
    # indice_sup <- floor(B * (1 - alfa/2))
    # pto_crit <- estadistico_boot_ordenado[c(indice_inf, indice_sup)]</pre>
# Empleando la función `quantile`:
pto crit <- quantile(estadistico boot, c(alfa/2, 1 - alfa/2))
# Construcción del IC
ic_inf_boot <- x_barra - pto_crit[2] * sigma/sqrt(n)</pre>
ic_sup_boot <- x_barra - pto_crit[1] * sigma/sqrt(n)</pre>
IC_boot <- c(ic_inf_boot, ic_sup_boot)</pre>
names(IC_boot) <- paste0(100*c(alfa, 1-alfa), "%")</pre>
IC_boot
```

```
## 5% 95%
## 0.5236922 1.1217871
```

Para emplear el paquete boot, como se comentó en la Sección 1.4.1, habría que establecer en la llamada a la función boot() los argumentos: sim = "parametric", mle igual a los parámetros necesarios para la simulación y ran.gen = function(data, mle), una función de los datos originales y de los parámetros que devuelve los datos generados. En este caso además, la función statistic no necesita el vector de índices como segundo parámetro. Por ejemplo, para calcular el intervalo de confianza para la media del tiempo de vida de los microorganismos, podríamos utilizar el siguiente código:

```
library(boot)
ran.gen.norm <- function(data, mle) {</pre>
    # Función para generar muestras aleatorias normales
    # con desviación típica sigma = 0.6,
    # mle contendrá la media de los datos originales
    out <- rnorm(length(data), mle, sigma)</pre>
    out
}
statistic <- function(data){</pre>
    c(mean(data), sigma^2/length(data))
set.seed(1)
res.boot <- boot(muestra, statistic, R = B, sim = "parametric",</pre>
                 ran.gen = ran.gen.norm, mle = mean(muestra))
boot.ci(res.boot, type = "stud")
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
## CALL :
## boot.ci(boot.out = res.boot, type = "stud")
##
## Intervals :
## Level
            Studentized
         (0.5208, 1.1232)
## Calculations and Intervals on Original Scale
```

Aunque los resultados dependerán en gran medida de que el modelo paramétrico sea adecuado para describir la variabilidad de los datos (en este caso no es muy razonable que el modelo admita tiempos de vida negativos). Si, por ejemplo, consideramos que un modelo exponencial es más adecuado: [Figura 4.1]

```
# Distribución bootstrap uniforme
curve(ecdf(muestra)(x), xlim = c(-.5, 3), ylab = "F(x)", type = "s")
# Distribución bootstrap paramétrico normal
curve(pnorm(x, mean(muestra), 0.6), lty = 2, add = TRUE)
# Distribución bootstrap paramétrico exponencial
curve(pexp(x, 1/mean(muestra)), lty = 3, add = TRUE)
legend("bottomright", legend = c("Empírica", "Aprox. normal", "Aprox. exponencial"), lty = 1:3)
```

Solo tendríamos que cambiar la función que genera los datos:

```
ran.gen.exp <- function(data, mle) {
    # Función para generar muestras aleatorias exponenciales
    # mle contendrá la media de los datos originales
```


Figura 4.1: Distribución empírica de la muestra de tiempos de vida de microorganismos y aproximaciones paramétricas.

```
out <- rexp(length(data), 1/mle)
out
}</pre>
```

4.2 Bootstrap simetrizado

Supongamos que conocemos que la función de distribución poblacional es simétrica entorno a cierto valor. Eso significa que existe un valor c tal que F(c-h)=1-F(c+h) para todo h>0. Equivalentemente, una variable aleatoria es simétrica entorno a c si su función de distribución verifica F(x)=1-F(2c-x) para todo $x\in\mathbb{R}$. Puede demostrarse que dicho centro de simetría, c, ha de ser la media de la distribución, μ , en caso de que exista. Esa información (la simetría) sobre la distribución poblacional también se debe incorporarse en el bootstrap. Así, para estimar la función de distribución poblacional, F, supuesto que es simétrica entorno a μ , es razonable utilizar una versión simetrizada de la distribución empírica, F_n^{sim} . Ese estimador empírico simetrizado de la función de distribución es el que otorga igual masa de probabilidad a una muestra artificialmente construida simetrizando, alrededor de la media muestral, la muestra original:

$$Y_i = \begin{cases} X_i & \text{si } i = 1, \dots, n \\ 2\bar{X} - X_{i-n} & \text{si } i = n+1, \dots, 2n \end{cases}$$

con lo cual $F_n^{sim}(x) = \frac{1}{2n} \sum_{i=1}^{2n} \mathbf{1} (Y_i \leq x)$. Puede demostrarse fácilmente que $F_n^{sim}(x) = \frac{1}{2} (F_n(x) + 1 - F_n(2\bar{X} - x))$. Al diseñar el plan de remuestreo debemos utilizar F_n^{sim} (bootstrap simetrizado), en lugar de F_n (bootstrap

uniforme). (Bootstrap simetrizado), en lugar de r_n (Bootstrap simetrizado), en lugar de r_n (Bootstrap simetrizado).

- 1. Para cada $i=1,\ldots,n$ arrojar X_i^* a partir de F_n^{sim} , es decir $P^*(X_i^*=Y_j)=\frac{1}{2n},\ j=1,\ldots,2n$
- 2. Obtener $\mathbf{X}^* = (X_1^*, \dots, X_n^*)$
- 3. Calcular $R^* = R\left(\mathbf{X}^*, F_n^{sim}\right)$

Como veremos más adelante, a veces (muy poco frecuentemente) es posible calcular exactamente la distribución bootstrap de R^* . Cuando eso no es posible, esa distribución es fácilmente aproximable por Monte Carlo, arrojando una gran cantidad, B, de réplicas de R^* . En ese caso, el algoritmo se convierte en:

- 1. Para cada i = 1, ..., n arrojar X_i^* a partir de F_n^{sim}
- 2. Obtener $\mathbf{X}^* = (X_1^*, \dots, X_n^*)$
- 3. Calcular $R^* = R\left(\mathbf{X}^*, F_n^{sim}\right)$
- 4. Repetir B veces los pasos 1-3 para obtener las réplicas bootstrap $R^{*(1)},\,\ldots,\,R^{*(B)}$
- 5. Utilizar esas réplicas bootstrap para aproximar la distribución en el muestreo de R

Para llevar a cabo el paso 1 podemos proceder de dos formas equivalentes. La primera consiste en definir explícitamente la muestra simetrizada en torno a la media, **Y**, y luego obtener uno de los valores de dicha muestra con equiprobabilidad. El paso 1 quedaría de la siguiente forma:

1. Para cada $i=1,\ldots,n$ arrojar $U_i \sim \mathcal{U}\left(0,1\right)$ y hacer $X_i^*=Y_{\lfloor 2nU_i \rfloor+1}$

Alternativamente podemos proceder con el paso 1 utilizando el hecho de que la función de distribución $F_n^{sim}(x)$ resultar ser la distribución de una variable aleatoria obtenida en dos etapas: en la primera etapa se genera un valor según la empírica, $F_n(x)$, y en la segunda se decide (con equiprobabilidad) si el valor obtenido no se altera o bien si se refleja alrededor de la media muestral, \bar{X} . Así el paso 1 resulta:

1. Para cada $i=1,\ldots,n$ arrojar $U_i,V_i\sim\mathcal{U}\left(0,1\right)$. Si $V_i\leq\frac{1}{2}$ entonces hacer $X_i^*=X_{\lfloor nU_i\rfloor+1}$ y en caso contrario hacer $X_i^*=2\overline{X}-X_{\lfloor nU_i\rfloor+1}$

La utilización de $F_n^{sim}(x)$ en lugar de $F_n(x)$ altera las propiedades conocidas de la distribución (empírica) de la que se remuestrea en el bootstrap uniforme. Así, en primer lugar, $F_n^{sim}(x)$ es simétrica (como se desea) con lo cual todos los momentos impares de esta distribución con respecto a \bar{X} son cero. En particular la media de $F_n^{sim}(x)$ es

$$\int x \, dF_n^{sim}(x) = \frac{1}{2n} \sum_{i=1}^{2n} Y_i = \frac{1}{2n} \left[\sum_{i=1}^n X_i + \sum_{i=1}^n \left(2\bar{X} - X_i \right) \right]$$
$$= \frac{1}{2n} \left(n\bar{X} + 2n\bar{X} - n\bar{X} \right) = \bar{X}.$$

También se conservan los momentos centrales de orden par:

$$\int (x - \bar{X})^{2k} dF_n^{sim}(x) = \frac{1}{2n} \sum_{i=1}^{2n} (Y_i - \bar{X})^{2k}$$

$$= \frac{1}{2n} \left[\sum_{i=1}^n (X_i - \bar{X})^{2k} + \sum_{i=1}^n \left[(2\bar{X} - X_i) - \bar{X} \right]^{2k} \right]$$

$$= \frac{1}{2n} \left[\sum_{i=1}^n (X_i - \bar{X})^{2k} + \sum_{i=1}^n (\bar{X} - X_i)^{2k} \right]$$

$$= \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^{2k}.$$

En particular, la varianza de $F_{n}^{sim}\left(x\right)$ coincide con la de $F_{n}\left(x\right)$, que es S_{n}^{2} .

En general, cuando la distribución de partida es simétrica, es más adecuado utilizar el bootstrap simetrizado que el bootstrap uniforme. Aún así, cuando se realiza inferencia sobre algún estadístico (como $\sqrt{n} \frac{\bar{X} - \mu}{\sigma}$) cuya distribución asintótica ya es simétrica (como la normal), la aproximación bootstrap uniforme para distribuciones de partida simétricas, ya es especialmente buena y, por tanto, la ganancia del bootstrap simétrizado aporta una mejora difícil de detectar en la práctica. Ese no es el caso de otros estadísticos (como los asociados a inferencia sobre la varianza) con distribución más alejada de la simetría.

Ejercicio 4.1 (Inferencia sobre la media con varianza conocida empleando bootstrap simetrizado). Modificar adecuadamente el código del Ejemplo 1.1, para implementar un método bootstrap simetrizado, con el objeto de calcular un intervalo de confianza para la media con desviación típica conocida. Qué diferencias se observan entre los intervalos obtenidos por el bootstrap uniforme y por el simetrizado?

4.3 Bootstrap suavizado

Cuando la distribución poblacional, F, es continua es lógico incorporar dicha información al bootstrap. Eso significa que la función de distribución tiene una función de densidad asociada, relacionadas mediante la expresión: f(x) = F'(x). Para ello, debemos utilizar un método bootstrap que remuestree de un universo bootstrap continuo. En otras palabras debemos utilizar un estimador de la función de densidad y remuestrear de él.

Pasamos a considerar brevemente el problema de estimar, no paramétricamente, la función de densidad, f, de una población, a partir de una muestra, (X_1, X_2, \ldots, X_n) , procedente de la misma. En ese contexto es bien conocido el método histograma (basado en el cual sería posible idear un método bootstrap) aunque es más recomendable utilizar el estimador tipo núcleo propuesto por Parzen (1962) y Rosenblatt (1956), que viene dado por

$$\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - X_i}{h}\right) = \frac{1}{n} \sum_{i=1}^n K_h(x - X_i),$$

donde $K_h(u) = \frac{1}{h}K\left(\frac{u}{h}\right)$, K es una función núcleo (normalmente una densidad simétrica en torno al cero) y h > 0 es una parámetro de suavizado, llamado ventana, que regula el tamaño del entorno que se usa para llevar a cabo la estimación. Este estimador generaliza el bien conocido histograma y, más concretamente, su versión histograma móvil. Así, eligiendo como función K la densidad de una $\mathcal{U}(-1,1)$, el estimador de Parzen-Rosenblatt resulta:

$$\frac{1}{nh} \sum_{i=1}^{n} \frac{1}{2} \mathbf{1} \left\{ \frac{x - X_i}{h} \in (-1, 1) \right\} = \frac{1}{2nh} \sum_{i=1}^{n} \mathbf{1} \left\{ X_i \in (x - h, x + h) \right\}$$
$$= \frac{\# \left\{ X_i \in (x - h, x + h) \right\}}{2nh},$$

que no es más que la frecuencia relativa de datos X_i en el intervalo (x - h, x + h) dividida entre la longitud del intervalo en cuestión (2h).

Es habitual exigir que la función núcleo K sea no negativa y su integral sea uno:

$$K(u) \ge 0, \ \forall u, \ \int_{-\infty}^{\infty} K(u) du = 1.$$

Además también es frecuente exigir que K sea una función simétrica (K(-u) = K(u)).

Aunque la elección de la función K no tiene gran impacto en las propiedades del estimador (salvo sus condiciones de regularidad: continuidad, diferenciabilidad, etc.) la elección del parámetro de suavizado sí es muy importante para una correcta estimación. En otras palabras, el tamaño del entorno usado para la estimación no paramétrica debe ser adecuado (ni demasiado grande ni demasiado pequeño).

En R podemos emplear la función density() del paquete base para obtener una estimación tipo núcleo de la densidad (con la ventana determinada por el parámetro bw), aunque podríamos emplear implementaciones de otros paquetes (como el paquete ks, que admite estimación multidimensional). Por ejemplo, considerando el conjunto de datos precip (que contiene el promedio de precipitación, en pulgadas de lluvia, de 70 ciudades de Estados Unidos), podríamos utilizar el siguiente código [Figura 4.2]:

Kernel density estimation

Figura 4.2: Estimación tipo núcleo de la densidad de 'precip'.

La sensibilidad del estimador tipo núcleo al parámetro de suavizado puede observarse ejecutando el siguiente código (ver Figura 4.3, bandwidth-movie.gif):

Figura 4.3: Efecto de cambio en la ventana en la estimación tipo núcleo de la densidad.

La función de distribución asociada al estimador tipo núcleo de la función de densidad viene dada por

$$\hat{F}_h(x) = \int_{-\infty}^x \hat{f}_h(y) \, dy = \int_{-\infty}^x \frac{1}{n} \sum_{i=1}^n \frac{1}{h} K\left(\frac{y - X_i}{h}\right) dy$$

$$= \frac{1}{nh} \sum_{i=1}^n \int_{-\infty}^x K\left(\frac{y - X_i}{h}\right) dy$$

$$= \frac{1}{n} \sum_{i=1}^n \int_{-\infty}^{\frac{x - X_i}{h}} K(u) \, du = \frac{1}{n} \sum_{i=1}^n \mathbb{K}\left(\frac{x - X_i}{h}\right)$$

donde \mathbb{K} es la función de distribución asociada al núcleo K, es decir $\mathbb{K}\left(t\right)=\int_{-\infty}^{t}K\left(u\right)du$.

El método bootstrap suavizado procede de la siguiente forma:

- 1. A partir de la muestra (X_1,X_2,\ldots,X_n) y utilizando un valor h>0 como parámetro de suavizado, se calcula el estimador de Parzen-Rosenblatt \hat{f}_h
- 2. Se arrojan remuestras bootstrap $\mathbf{X}^* = (X_1^*, X_2^*, \dots, X_n^*)$ a partir de la densidad \hat{f}_h
- 3. Calcular $R^* = R\left(\mathbf{X}^*, \hat{F}_h\right)$
- 4. Repetir B veces los pasos 2-3 para obtener las réplicas bootstrap $R^{*(1)},\,\ldots,\,R^{*(B)}$

Para llevar a cabo un bootstrap que remuestree a partir del estimador $\hat{f}_h(x)$ es útil pensar en dicho estimador como una combinación lineal convexa de funciones de densidad, $K_h(x-X_i)$, cada una con coeficiente $\frac{1}{n}$ en dicha combinación lineal. Gracias a esa representación podemos simular valores, X^* , procedentes de $\hat{f}_h(x)$ en dos pasos.

En un primer paso elegiremos (aleatoriamente y con equiprobabilidad) cuál de los índices $i \in \{1, ..., n\}$ vamos a considerar y en un segundo paso simularemos X^* a partir de la densidad K_h (· $-X_i$). Esta última fase puede relacionarse fácilmente con la simulación de un valor, V, con densidad K, sin más que hacer $X_i + hV$. Así, el paso 2 del algoritmo previo puede llevarse a cabo mediante el siguiente procedimiento:

2. Para cada $i=1,\ldots,n$ arrojar $U_i \sim \mathcal{U}(0,1)$ y V_i con densidad K y hacer $X_i^* = X_{\lfloor nU_i \rfloor+1} + hV_i$

La equivalencia de ambas presentaciones del paso 2 viene dada por el siguiente razonamiento. Denotando $U \sim \mathcal{U}(0,1), I = |nU| + 1$ y $V \sim K$, independiente de U, se tiene:

$$\begin{split} P^* \left(X^* \leq x \right) &= \sum_{i=1}^n P^* \left(X^* \leq x|_{I=i} \right) P^* \left(I = i \right) \\ &= \sum_{i=1}^n P^* \left(X_i + hV \leq x|_{I=i} \right) P^* \left(I = i \right) \\ &= \sum_{i=1}^n P^* \left(V \leq \frac{x - X_i}{h} \bigg|_{X_i} \right) \frac{1}{n} = \frac{1}{n} \sum_{i=1}^n \mathbb{K} \left(\frac{x - X_i}{h} \right), \end{split}$$

cuya función de densidad es, como ya sabemos, $\hat{f}_h(x)$. Esto justifica la presentación alternativa del paso 2, de forma que el bootstrap suavizado puede pensarse, a partir del bootstrap uniforme $(X_i^* = X_{\lfloor nU_i \rfloor + 1})$ añadiendo al mismo una perturbación (hV_i) cuya magnitud viene dada por el parámetro de suavizado (h) y cuya forma imita a la de una variable aleatoria (V_i) con densidad K.

Por ejemplo, la función density() emplea por defecto un núcleo gaussiano, y como se muestra en la ayuda de esta función, podemos emplear un código como el siguiente para obtener nsim simulaciones (ver Figura 4.4):

```
## simulation from a density() fit:
# a kernel density fit is an equally-weighted mixture.
nsim <- 1e6
set.seed(1)
# x_boot <- sample(x, nsim, replace = TRUE)
# x_boot <- x_boot + bandwidth * rnorm(nsim)
x_boot <- rnorm(nsim, sample(x, nsim, replace = TRUE), bandwidth)

plot(npden)
lines(density(x_boot), col = "blue", lwd = 2, lty = 2)</pre>
```

Es fácil percatarse de que los posibles valores que puede tomar una observación X_i^* de cada remuestra bootstrap son infinitos, pues la variable V puede tomar infinitos posibles valores, según la densidad de probabilidad K. Esto significa que la distribución en el remuestreo de la remuestra bootstrap, \mathbf{X}^* , es mucho más complicada que para el bootstrap uniforme. En particular no es discreta y por tanto no puede caracterizarse a partir de vectores de remuestreo sobre la muestra original. Un problema importante es la elección del parámetro de suavizado, h, en este procedimiento de remuestreo. En la práctica es razonable elegir h como un valor bastante pequeño, en relación con la desviación típica de la muestra. Es fácil observar que en el caso extremo h=0 este método de remuestreo se reduce al bootstrap uniforme.

Ejemplo 4.2 (Inferencia sobre la media con varianza conocida, continuación). Continuando con el ejemplo de tiempo de vida de microorganismos, podemos modificar fácilmente el código mostrado en el Ejemplo 1.1, para implementar bootstrap suavizado con función núcleo gaussiana, para calcular un intervalo de confianza para la media poblacional con desviación típica conocida:

```
muestra <- c(0.143, 0.182, 0.256, 0.26, 0.27, 0.437, 0.509, 0.611, 0.712, 1.04, 1.09, 1.15, 1.46, 1.88, 2.08)
n <- length(muestra)
```


Figura 4.4: Estimaciónes tipo núcleo de las densidades de 'precip' y de una simulación.

```
sigma <- 0.6
alfa <- 0.05
x_barra <- mean(muestra)</pre>
# Remuestreo
set.seed(1)
B <- 1000
# h <- 1e-08
h <- bw.SJ(muestra)/2
estadistico_boot <- numeric(B)</pre>
for (k in 1:B) {
    # remuestra <- sample(muestra, n, replace = TRUE)</pre>
    \# remuestrasu <- remuestra + h * rnorm(n, 0, 1)
    remuestrasu <- rnorm(n, sample(muestra, n, replace = TRUE), h)</pre>
    x_barra_boot <- mean(remuestrasu)</pre>
    estadistico_boot[k] <- sqrt(n) * (x_barra_boot - x_barra)/sigma
}
# Aproximación bootstrap de los ptos críticos
pto_crit <- quantile(estadistico_boot, c(alfa/2, 1 - alfa/2))</pre>
# Construcción del IC
ic_inf_boot <- x_barra - pto_crit[2] * sigma/sqrt(n)</pre>
ic_sup_boot <- x_barra - pto_crit[1] * sigma/sqrt(n)</pre>
IC_boot <- c(ic_inf_boot, ic_sup_boot)</pre>
```

```
names(IC_boot) <- paste0(100*c(alfa, 1-alfa), "%")</pre>
IC_boot
##
          5%
                    95%
## 0.4592311 1.1103890
Con el paquete boot, la recomendación es implementarlo como un bootstrap paramétrico:
library(boot)
ran.gen.smooth <- function(data, mle) {</pre>
    # Función para generar muestras aleatorias mediante
    # bootstrap suavizado con función núcleo gaussiana,
    # mle contendrá la ventana.
    n <- length(data)</pre>
    h \leftarrow mle
    out <- rnorm(n, sample(data, n, replace = TRUE), h)
}
statistic <- function(data){</pre>
    c(mean(data), sigma^2/length(data))
}
set.seed(1)
res.boot <- boot(muestra, statistic, R = B, sim = "parametric",
                 ran.gen = ran.gen.smooth, mle = h)
boot.ci(res.boot, type = "stud")
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = res.boot, type = "stud")
## Intervals :
## Level
            Studentized
## 95%
         (0.4580, 1.1132)
## Calculations and Intervals on Original Scale
```

4.4 Bootstrap ponderado y bootstrap sesgado

Mediante el nombre bootstrap ponderado se incluyen todos aquellos métodos de remuestreo bootstrap en los que la distribución de la que se remuestrea es discreta y asigna probabilidades sólo a los datos de la muestra:

$$\hat{F}(X_i) - \hat{F}(X_i^-) = p_i$$
, para $i = 1, \dots, n$

siendo $p_i \ge 0$ y $\sum_{i=1}^n p_i = 1$. En el caso particular $p_i = \frac{1}{n}$ para todo i = 1, ..., n, se tiene el bootstrap uniforme. Veremos más adelante casos particulares de métodos bootstrap ponderados en el contexto de datos censurados y también para datos dependientes.

El bootstrap ponderado da lugar al bootstrap sesgado cuando los pesos, p_i , se eligen de forma que el vector \mathbf{p} minimice la distancia al vector de pesos del bootstrap uniforme $(\frac{1}{n}, \dots, \frac{1}{n})$, sujeto a una serie de restricciones inherentes al problema en estudio. Este método fue propuesto por Hall (1998).

4.5 Deficiencias del bootstrap uniforme

Supongamos un contexto paramétrico en el que la distribución poblacional, F, es la $\mathcal{U}(0,\theta)$. Nuestro interés será hacer inferencia acerca del parámetro θ , para lo cual, dada una muestra observada, $\mathbf{X} = (X_1, X_2, \dots, X_n)$, consideraremos el estimador máximo verosímil en este contexto: $\hat{\theta} = X_{(n)}$. Para realizar dicha inferencia estaremos interesados en aproximar la distribución de $R(\mathbf{X}, F) = \hat{\theta} - \theta$

La función de distribución en el muestreo, G(x), de $\hat{\theta}$ puede calcularse de forma sencilla:

$$G(x) = P\left(\hat{\theta} \le x\right) = P\left(X_{(n)} \le x\right) = P\left(X_i \le x, \forall i \in \{1, \dots n\}\right)$$
$$= \prod_{i=1}^{n} P\left(X_i \le x\right) = F\left(x\right)^n = \left(\frac{x}{\theta}\right)^n, \text{ si } x \in [0, \theta]$$

con lo cual su función de densidad viene dada por

$$g(x) = \frac{n}{\theta} \left(\frac{x}{\theta}\right)^{n-1}$$
, si $x \in [0, \theta]$.

Tomando, por ejemplo, $\theta=1$ y n=50, esta función de densidad resulta [Figura 4.5]:

```
theta <- 1
n <- 50
curve(n/theta * (x/theta)^(n - 1), 0, theta, ylab = "Density")</pre>
```


Figura 4.5: Función de densidad del máximo de una muestra procedente de una uniforme.

Como consecuencia podemos hallar fácilmente el sesgo del estimador $\hat{\theta},$ ya que

$$E\left(\hat{\theta}\right) = \int_{0}^{\theta} x \frac{n}{\theta} \left(\frac{x}{\theta}\right)^{n-1} dx = \left[\frac{n}{n+1} \frac{x^{n+1}}{\theta^{n}}\right]_{x=0}^{x=\theta} = \frac{n}{n+1}\theta,$$

con lo cual $Sesgo(\hat{\theta}) = E(\hat{\theta}) - \theta = -\frac{\theta}{n+1}$. Se ve claramente que $\hat{\theta}$ es un estimador sesgado de θ , puesto que se tiene que $\hat{\theta} \le \theta$ con probabilidad 1.

Si deseamos aproximar mediante bootstrap la distribución en el muestreo de $\hat{\theta}$ (o la de R) y utilizamos un bootstrap uniforme (naïve), la versión bootstrap del estimador resulta ser $\hat{\theta}^* = X_{(n)}^*$, siendo $\mathbf{X}^* = (X_1^*, X_2^*, \ldots, X_n^*)$ una remuestra bootstrap obtenida a partir de la distribución empírica F_n . La distribución en el remuestreo de $\hat{\theta}^*$ resulta un poco más complicada pues es discreta y sólo puede tomar cualquiera de los valores de la muestra.

Suponiendo que no hay empates en las observaciones de la muestra, es fácil darse cuenta de que

$$P^* \left(\hat{\theta}^* \le X_{(j)} \right) = P^* \left(X_{(n)}^* \le X_{(j)} \right) = P^* \left(X_i^* \le X_{(j)}, 1 \le i \le n \right) = \left(\frac{j}{n} \right)^n$$

y, por tanto, su masa de probabilidad viene dada por

$$P^*\left(\hat{\theta}^* = X_{(j)}\right) = \left(\frac{j}{n}\right)^n - \left(\frac{j-1}{n}\right)^n, j = 1, \dots, n.$$

En particular,

$$P^*\left(\hat{\theta}^* = X_{(n)}\right) = 1 - \left(1 - \frac{1}{n}\right)^n \to 1 - \frac{1}{e} \simeq 0.6321,$$

con lo cual la distribución en remuestreo de $R^* = R(\mathbf{X}^*, F_n) = \hat{\theta}^* - X_{(n)}$ tiene un átomo de probabilidad en el valor 0 cuya probabilidad tiende a $1 - \frac{1}{e}$ cuando el tamaño muestral tiende a infinito, es decir

$$\lim_{n \to \infty} P^* (R^* = 0) = 1 - \frac{1}{e},$$

cosa que no ocurre con la distribución en el muestreo de R, que es continua con densidad:

$$g_R(x) = \frac{n}{\theta} \left(\frac{x+\theta}{\theta}\right)^{n-1}, \text{ si } x \in [-\theta, 0].$$

. De esta forma vemos que el bootstrap uniforme (no paramétrico) es inconsistente.

Ejemplo 4.3 (Inferencia sobre el máximo de una distribución uniforme).

El siguiente código implementa el método bootstrap uniforme (también llamado naïve) para aproximar la distribución del estadístico $R = \hat{\theta} - \theta$, para una muestra de tamaño n = 50, proveniente de una población con distribución $\mathcal{U}(0,1)$ [Figura 4.6]:

```
theta <- 1
n <- 50
set.seed(1)
muestra <- runif(50) * theta
theta_est <- max(muestra)
# Remuestreo
B <- 2000
maximo <- numeric(B)
estadistico <- numeric(B)
for (k in 1:B) {
    remuestra <- sample(muestra, n, replace = TRUE)
    maximo[k] <- max(remuestra)
    estadistico[k] <- maximo[k] - theta_est
}</pre>
```


Figura 4.6: Distribución de las réplicas bootstrap (uniforme) del estadístico y distribución poblacional.

4.5.1 Ejemplo (método alternativo)

En este contexto, al conocer la familia paramétrica $(\mathcal{U}(0,\theta))$ a la cual pertenece la distribución de la población de partida, lo natural sería utilizar un bootstrap paramétrico, consistente en obtener las remuestras bootstrap a partir de una distribución uniforme con parámetro estimado:

$$\mathbf{X}^* = (X_1^*, X_2^*, \dots, X_n^*), \text{ con } X_i^* \sim \mathcal{U}\left(0, \hat{\theta}\right).$$

En estas circunstancias es muy sencillo obtener la distribución en el remuestreo de $\hat{\theta}^*$, ya que su deducción es totalmente paralela a la de la distribución en el muestreo de $\hat{\theta}$. Así, la función de densidad de $\hat{\theta}^*$ es

$$\hat{g}(x) = \frac{n}{\hat{\theta}} \left(\frac{x}{\hat{\theta}}\right)^{n-1}, \text{ si } x \in \left[0, \hat{\theta}\right].$$

Con lo cual, al utilizar un bootstrap paramétrico, la distribución en el remuestreo de $R^* = R\left(\mathbf{X}^*, F_{\hat{\theta}}\right) = \hat{\theta}^* - \hat{\theta}$ imita a la distribución en muestreo de $R = R\left(\mathbf{X}, F\right) = \hat{\theta} - \theta$.

Ejemplo 4.4 (Inferencia sobre el máximo de una distribución uniforme, continuación).

Para emplear el bootstrap paramétrico (que remuestrea de una distribución uniforme con parámetro estimado) podríamos emplear un código muy similar al del Ejemplo 4.3 [Figura 4.7]:

```
# Remuestreo
B <- 2000
maximo <- numeric(B)</pre>
estadistico <- numeric(B)
for (k in 1:B) {
    remuestra <- runif(n) * theta_est
    maximo[k] <- max(remuestra)</pre>
    estadistico[k] <- maximo[k] - theta_est</pre>
}
# Distribución estadístico
xlim \leftarrow c(-theta/2, 0) # c(-theta, 0)
hist(estadistico, freq = FALSE, main = "", lty = 2,
     border = "darkgray", xlim = xlim)
lines(density(estadistico))
rug(estadistico, col = "darkgray")
curve(n/theta * ((x + theta)/theta)^(n - 1), col = "blue", lty = 2, lwd = 2, add = TRUE)
```


Figura 4.7: Distribución bootstrap paramétrica y distribución poblacional.

4.6 Validez de la aproximación Bootstrap

Trataremos ahora de dar una justificación teórica del buen funcionamiento del bootstrap uniforme. Para ello, por simplicidad, nos centraremos en el problema de aproximar la distribución en el muestreo del estadístico

$$R = R(\mathbf{X}, F) = \sqrt{n} \frac{\bar{X} - \mu}{\sigma},$$

donde $\mathbf{X} = (X_1, X_2, \dots, X_n)$ es una m.a.s. procedente de una distribución F, con media μ y desviación típica σ . Sabemos que, bajo ciertas condiciones, el teorema central del límite permite obtener la distribución asintótica de R, que es una $\mathcal{N}(0, 1)$, es decir

$$\lim_{n \to \infty} P(R \le u) = \Phi(u), \quad \forall u \in \mathbb{R},$$

siendo Φ la función de distribución de una normal estándar, cuya función de densidad denotaremos por ϕ .

Para ver cómo de buena es la aproximación por normal del estadístico R, debemos razonar cómo de rápida es la convergencia en el límite anteriormente expuesto. La respuesta a esa pregunta viene dada por el Teorema de Cramer que usa los llamados desarrollos de Edgeworth de un estadístico para aproximarlo por una suma de términos, el primero es la función de distribución normal estándar y los siguientes irán tendiendo a cero sucesivamente más rápido cuando el tamaño muestral tiende a infinito. Enunciemos ese resultado.

Teorema 4.1 (Cramer). Consideremos variables aleatorias $X_1, X_2, \ldots, X_n, \ldots$ independientes e idénticamente distribuidas procedentes de una distribución F, con media μ y desviación típica σ . Supongamos que existe cierto j, natural, para el cual $E\left(|X|^{j+2}\right) < \infty$, y que $\lim_{|t| \to \infty} |\alpha(t)| < 1$, siendo $\alpha(t) = E\left(e^{itX}\right)$ la función característica de la población. Entonces:

$$P(R \le u) = P\left(\sqrt{n} \frac{\bar{X} - \mu}{\sigma} \le u\right)$$

= $\Phi(u) + n^{-\frac{1}{2}} p_1(u) \phi(u) + \dots + n^{-\frac{j-1}{2}} p_{j-1}(u) \phi(u) + O\left(n^{-\frac{j}{2}}\right),$

siendo los $p_i(u)$ polinomios de grado 3i-1 cuyos coeficientes dependen de los momentos de X de orden menor o igual que i+2. En particular

$$p_{1}(u) = -\frac{1}{6} \frac{k_{3}}{\sigma^{3}} (u^{2} - 1),$$

$$p_{2}(u) = -u \left[\frac{1}{24} \frac{k_{4}}{\sigma^{4}} (u^{2} - 3) + \frac{1}{72} \left(\frac{k_{3}}{\sigma^{3}} \right)^{2} (u^{4} - 10u^{2} + 15) \right],$$

siendo k_j el j-ésimo cumulante, es decir el términos que acompaña a $\frac{(it)^j}{j!}$ en el desarrollo en serie del logaritmo de la función característica:

$$\log \alpha (t) = \sum_{j=1}^{\infty} k_j \frac{(it)^j}{j!}.$$

Además dichos polinomios tienen paridad alternada, es decir, p_1 es simétrico, p_2 es antisimétrico, p_3 es simétrico, p_3 así sucesivamente:

$$p_1(-u) = p_1(u), \quad p_2(-u) = -p_2(u), \quad p_3(-u) = p_3(u), \cdots$$

Existen ecuaciones que relacionan todos los cumulantes hasta cierto orden con todos los momentos poblacionales hasta ese mismo orden. Dichas ecuaciones permiten expresar los cumulantes en función de los momentos y viceversa.

Como consecuencia de este resultado teórico, el grado de aproximación entre la distribución de R y la normal estándar límite es $O\left(n^{-\frac{1}{2}}\right)$. Sin embargo, puede razonarse fácilmente que este orden de aproximación mejorará cuando utilizamos el bootstrap uniforme, en lugar de la normal estándar, para aproximar la distribución de R. Un desarrollo de Edgeworth para la distribución en el remuestreo de R^* permite obtener la siguiente expresión:

$$P^* (R^* \le u) = \Phi(u) + n^{-\frac{1}{2}} \hat{p}_1(u) \phi(u) + \dots + n^{-\frac{j-1}{2}} \hat{p}_{j-1}(u) \phi(u) + O_P(n^{-\frac{j}{2}}),$$

donde los polinomios $\hat{p}_i(u)$ tienen la misma estructura que los $p_i(u)$ pero reemplazando los cumulantes teóricos por los empíricos y la desviación típica teórica por la empírica. Así pues el grado de aproximación entre cada polinomio $\hat{p}_i(u)$ y su análogo teórico $p_i(u)$ es $\hat{p}_i(u) - p_i(u) = O_P\left(n^{-\frac{1}{2}}\right)$. Como consecuencia, puede obtenerse el orden de aproximación entre la distribución en el muestreo de R y la distribución en el remuestreo de R^* :

$$P(R \le u) - P^*(R^* \le u) = n^{-\frac{1}{2}} [p_1(u) - \hat{p}_1(u)] \phi(u) + O_P(n^{-1})$$

= $O_P(n^{-1})$,

que es mejor que el orden de aproximación de la normal estándar límite. Dichos órdenes pueden resumirse en la siguiente tabla.

Aproximación	Orden
Normal límite	$O\left(n^{-\frac{1}{2}}\right)$
Boot. uniforme	$O_P(n^{-1})$

Usando razonamiento similares pueden encontrarse los órdenes de aproximación, tanto de la normal límite, como del bootstrap uniforme y del bootstrap simetrizado, cuando la distribucional de partida es simétrica. En ese caso, $p_1(u) = 0$, ya que k_3 es cero debido a la simetría de la distribución poblacional. Sin embargo $\hat{p}_1(u)$ no es cero cuando se usa el bootstrap uniforme, aunque sí lo es en el caso del bootstrap simetrizado. La siguiente tabla recoge los órdenes de las distintas aproximaciones.

Aproximación	Orden
Normal límite Boot. uniforme Boot. simetrizado	$O(n^{-1})$ $O_P(n^{-1})$ $O_P(n^{-\frac{3}{2}})$

El siguiente resultado permite generalizar los desarrollos de Edgeworth (Teorema 4.1) a otros estadísticos (estandarizados o studentizados) obtenidos para otros estimadores arbitrarios, $\hat{\theta}$, no necesariamente iguales a la media muestral.

Teorema 4.2 (Bhattacharya-Ghosh). Consideremos variables aleatorias $X_1, X_2, \ldots, X_n, \ldots$ independientes e idénticamente distribuidas procedentes de una distribución F. Sea $\theta = \theta(F)$ un parámetro de dicha distribución y $\hat{\theta}$ un estimador de dicha parámetro. Supongamos además que

$$\sqrt{n}\left(\hat{\theta}-\theta\right) \to \mathcal{N}\left(0,\sigma_{\theta}^{2}\right),$$

en distribución. Entonces, bajo ciertas condiciones de regularidad (pueden verse en Bhattacharya y Ghosh, 1978) se tiene:

$$P\left(\sqrt{n}\frac{\hat{\theta} - \theta}{\sigma_{\theta}} \le u\right) = \Phi(u) + n^{-\frac{1}{2}}p_{1}(u)\phi(u) + \cdots + n^{-\frac{j-1}{2}}p_{j-1}(u)\phi(u) + O\left(n^{-\frac{j}{2}}\right),$$

$$P\left(\sqrt{n}\frac{\hat{\theta} - \theta}{\hat{\sigma}_{\theta}} \le u\right) = \Phi(u) + n^{-\frac{1}{2}}q_{1}(u)\phi(u) + \cdots + n^{-\frac{j-1}{2}}q_{j-1}(u)\phi(u) + O\left(n^{-\frac{j}{2}}\right),$$

siendo los $p_i\left(u\right)$ y $q_i\left(u\right)$ polinomios de grado 3i-1 con paridad alternada, es decir, p_1 y q_1 son simétricos, p_2 y q_2 son antisimétricos, p_3 y q_3 son simétricos y así sucesivamente.

Capítulo 5

Intervalos de confianza bootstrap

Consideremos el problema de construcción, mediante bootstrap, de un intervalo de confianza bilateral, con nivel de confianza $1-\alpha$, para un parámetro θ de la distribución F. Una vez elegido el método bootstrap adecuado a la información disponible en el contexto del que se trate, un aspecto importante es el de la posible corrección de los intervalos de confianza bootstrap, aproximados por el método de Monte Carlo, al objeto de que la probabilidad de cobertura sea lo más parecida posible al nivel nominal $1-\alpha$. Comenzaremos analizando el error de cobertura de los intervalos de confianza clásicos, los basados en la distribución normal asintótica.

5.1 Intervalos basados en la distribución normal asintótica

Consideremos primeramente el caso más sencillo (y poco realista) de construcción de un intervalo de confianza para la media, μ , con desviación típica, σ , conocida. El estadístico usado para construir el intervalo de confianza es

$$R = \sqrt{n} \frac{\bar{X} - \mu}{\sigma}$$

que cuando $n \to \infty$ tiende en distribución a una $N\left(0,1\right)$. El intervalo de confianza basado en dicha aproximación normal es $\hat{I} = \left(\bar{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2}, \bar{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$. Mediante el desarrollo de Edgeworth dado por el Teorema de Cramer es fácil obtener una cota para el error de cobertura de dicho intervalo:

$$\begin{split} P\left(\mu \in \hat{I}\right) - \left(1 - \alpha\right) &= P\left(R < z_{\alpha/2}\right) - P\left(R \leq -z_{\alpha/2}\right) \\ &\quad - \left(\Phi\left(z_{\alpha/2}\right) - \Phi\left(-z_{\alpha/2}\right)\right) \\ &= n^{-\frac{1}{2}} p_1\left(z_{\alpha/2}\right) \phi\left(z_{\alpha/2}\right) + O\left(n^{-1}\right) \\ &\quad - \left(n^{-\frac{1}{2}} p_1\left(-z_{\alpha/2}\right) \phi\left(-z_{\alpha/2}\right) + O\left(n^{-1}\right)\right) \\ &= O\left(n^{-1}\right), \end{split}$$

ya que por la simetría de las funciones $p_1(u)$ y $\phi(u)$ se tiene

$$p_1\left(-z_{\alpha/2}\right)\phi\left(-z_{\alpha/2}\right) = p_1\left(z_{\alpha/2}\right)\phi\left(z_{\alpha/2}\right).$$

De esta forma, el orden del error de cobertura del intervalo de confianza bilateral con desviación típica poblacional conocida es $O\left(n^{-1}\right)$. Puede obtenerse fácilmente el orden del error de cobertura de los intervalos unilaterales que resulta ser $O\left(n^{-\frac{1}{2}}\right)$.

En el caso más realista en que la desviación típica, σ , sea desconocida, el intervalo de confianza resulta

$$\hat{I}_0 = \left(\bar{X} - \frac{S_n}{\sqrt{n}} z_{\alpha/2}, \bar{X} + \frac{S_n}{\sqrt{n}} z_{\alpha/2}\right).$$

Ahora, el estadístico en el que se basa la inferencia resulta:

$$R_1 = \sqrt{n} \frac{\bar{X} - \mu}{S_n}.$$

Un desarrollo de Edgeworth del tipo del obtenido en el Teorema de Bhattacharya-Ghosh permite acotar el error de cobertura de este intervalo:

$$P\left(\mu \in \hat{I}_{0}\right) - (1 - \alpha) = P\left(R_{1} < z_{\alpha/2}\right) - P\left(R_{1} \leq -z_{\alpha/2}\right)$$

$$- \left(\Phi\left(z_{\alpha/2}\right) - \Phi\left(-z_{\alpha/2}\right)\right)$$

$$= n^{-\frac{1}{2}}q_{1}\left(z_{\alpha/2}\right)\phi\left(z_{\alpha/2}\right) + O\left(n^{-1}\right)$$

$$- \left(n^{-\frac{1}{2}}q_{1}\left(-z_{\alpha/2}\right)\phi\left(-z_{\alpha/2}\right) + O\left(n^{-1}\right)\right)$$

$$= O\left(n^{-1}\right).$$

De esta forma, el orden del error de cobertura del intervalo de confianza bilateral con desviación típica desconocida es $O\left(n^{-1}\right)$. El orden del error de cobertura para el intervalo de confianza unilateral resulta $O\left(n^{-\frac{1}{2}}\right)$.

Si el parámetro de interés fuese otro arbitrario: $\theta = \theta(F)$, no necesariamente la media, puede obtenerse, análogamente un intervalo de confianza basado en la normal asintótica:

$$\hat{I}_0 = \left(\hat{\theta} - \frac{\hat{\sigma}_{\theta}}{\sqrt{n}} z_{\alpha/2}, \hat{\theta} + \frac{\hat{\sigma}_{\theta}}{\sqrt{n}} z_{\alpha/2}\right),\,$$

que está basado en el estadístico

$$R_1 = \sqrt{n} \frac{\hat{\theta} - \theta}{\hat{\sigma}_{\theta}}.$$

De forma análoga a lo ya razonado para la media muestral, puede deducirse que el error de cobertura del intervalo de confianza bilateral tiene un orden de $O\left(n^{-1}\right)$, mientras que para intervalos unilaterales el orden es $O\left(n^{-\frac{1}{2}}\right)$.

5.2 Método percentil (básico)

Este método se basa en la construcción del intervalo de confianza, mediante bootstrap, a partir del estadístico no estandarizado

$$R_2 = \sqrt{n} \left(\hat{\theta} - \theta \right).$$

Una vez realizado el correspondiente remuestreo (uniforme, suavizado, simetrizado, ...), a partir de cierto estimador, \hat{F} , de la distribución poblacional, F, la distribución en el muestreo de R_2 se aproxima mediante la distribución bootstrap de

$$R_2^* = \sqrt{n} \left(\hat{\theta}^* - \theta \left(\hat{F} \right) \right).$$

Así se obtienen valores $x_{\alpha/2}$ y $x_{1-\alpha/2}$, siendo x_{β} , tal que $P^*(R_2^* \le x_{\beta}) = \beta$, y a partir de ellos sabemos que

$$1 - \alpha = 1 - \frac{\alpha}{2} - \frac{\alpha}{2} = P^* \left(R_2^* < x_{1-\alpha/2} \right) - P^* \left(R_2^* \le x_{\alpha/2} \right)$$
$$= P^* \left(x_{\alpha/2} < R_2^* < x_{1-\alpha/2} \right),$$

con lo cual decimos que también ha de ser aproximadamente igual a $1-\alpha$ la siguiente probabilidad

$$P\left(x_{\alpha/2} < R_2 < x_{1-\alpha/2}\right) = P\left(x_{\alpha/2} < \sqrt{n}\left(\hat{\theta} - \theta\right) < x_{1-\alpha/2}\right)$$
$$= P\left(\hat{\theta} - \frac{x_{1-\alpha/2}}{\sqrt{n}} < \theta < \hat{\theta} - \frac{x_{\alpha/2}}{\sqrt{n}}\right).$$

Ello da pie a definir el intervalo de confianza bootstrap calculado por el método percentil como

$$\hat{I}_1 = \left(\hat{\theta} - \frac{x_{1-\alpha/2}}{\sqrt{n}}, \hat{\theta} - \frac{x_{\alpha/2}}{\sqrt{n}}\right).$$

Para estudiar el error de cobertura de este intervalo de confianza conviene ver antes qué grado de aproximación existe entre la distribución en el muestreo de R_2 y la distribución bootstrap de R_2^* . A partir del Teorema de Bhattacharya-Ghosh se tiene

$$P(R_{2} \leq v) = P\left(\sqrt{n}\left(\hat{\theta} - \theta\right) \leq v\right) = P\left(\sqrt{n}\frac{\hat{\theta} - \theta}{\sigma_{\theta}} \leq \frac{v}{\sigma_{\theta}}\right)$$

$$= \Phi\left(\frac{v}{\sigma_{\theta}}\right) + O\left(n^{-\frac{1}{2}}\right)$$

$$P^{*}(R_{2}^{*} \leq v) = P^{*}\left(\sqrt{n}\left(\hat{\theta}^{*} - \theta\left(\hat{F}\right)\right) \leq v\right)$$

$$= P^{*}\left(\sqrt{n}\frac{\hat{\theta}^{*} - \theta\left(\hat{F}\right)}{\sigma_{\hat{\theta}}} \leq \frac{v}{\sigma_{\hat{\theta}}}\right) = \Phi\left(\frac{v}{\sigma_{\hat{\theta}}}\right) + O_{P}\left(n^{-\frac{1}{2}}\right).$$

Como consecuencia

$$P^*\left(R_2^* \le v\right) - P\left(R_2 \le v\right) = \Phi\left(\frac{v}{\sigma_{\hat{\theta}}}\right) - \Phi\left(\frac{v}{\sigma_{\theta}}\right) + O_P\left(n^{-\frac{1}{2}}\right) = O_P\left(n^{-\frac{1}{2}}\right),$$

ya que, típicamente, $\sigma_{\hat{\theta}} - \sigma_{\theta} = O_P\left(n^{-\frac{1}{2}}\right)$. En resumen, la distribución en el muestreo de R_2 y la distribución bootstrap de R_2^* se aproximan, una a la otra, a la velocidad $O_P\left(n^{-\frac{1}{2}}\right)$, cuando $n \to \infty$.

El error de cobertura del intervalo de confianza bilateral calculado mediante bootstrap por el método percentil es

$$P\left(\theta \in \hat{I}_{1}\right) - (1 - \alpha) = P\left(R_{2} < x_{1-\alpha/2}\right) - P\left(R_{2} \le x_{\alpha/2}\right)$$
$$- \left[P^{*}\left(R_{2}^{*} < x_{1-\alpha/2}\right) - P^{*}\left(R_{2}^{*} \le x_{\alpha/2}\right)\right]$$
$$= P\left(R_{2} < x_{1-\alpha/2}\right) - P^{*}\left(R_{2}^{*} < x_{1-\alpha/2}\right)$$
$$- \left[P\left(R_{2} \le x_{\alpha/2}\right) - P^{*}\left(R_{2}^{*} \le x_{\alpha/2}\right)\right]$$
$$= O_{P}\left(n^{-\frac{1}{2}}\right)$$

De esta forma el error de cobertura para los intervalos de confianza bilaterales bootstrap obtenidos mediante el método percentil es $O\left(n^{-\frac{1}{2}}\right)$. Puede deducirse que ese es también el orden para los intervalos unilaterales obtenidos por este método. Así pues el orden del error de cobertura para el método percentil cuando se construyen intervalos de confianza unilaterales coincide con el de los construidos usando la normal asintótica pero el orden del error de cobertura de los intervalos bilaterales bootstrap constuidos por el método percentil es peor que el de los basados en la normal asintótica, que es del orden $O\left(n^{-1}\right)$.

Ejemplo 5.1 (Inferencia sobre la media con varianza desconocida, continuación). Continuando con el ejemplo de los tiempos de vida de microorganismos (sin asumir varianza conocida), supongamos que queremos obtener una estimación por intervalo de confianza de su vida media empleando este método. El código necesario sería muy similar al del Ejemplo 1.5:

```
muestra \leftarrow c(0.143, 0.182, 0.256, 0.26, 0.27, 0.437, 0.509,
              0.611, 0.712, 1.04, 1.09, 1.15, 1.46, 1.88, 2.08)
n <- length(muestra)</pre>
alfa <- 0.05
x_barra <- mean(muestra)</pre>
# Remuestreo
set.seed(1)
B <- 1000
remuestra <- numeric(n)
x_barra_boot <- numeric(B)</pre>
estadistico_boot <- numeric(B)</pre>
for (k in 1:B) {
  remuestra <- sample(muestra, n, replace = TRUE)</pre>
  x_barra_boot[k] <- mean(remuestra)</pre>
  estadistico_boot[k] <- sqrt(n) * (x_barra_boot[k] - x_barra)</pre>
}
# Aproximación bootstrap de los ptos críticos
pto_crit <- quantile(estadistico_boot, c(alfa/2, 1 - alfa/2))</pre>
# Construcción del IC
ic_inf_boot <- x_barra - pto_crit[2]/sqrt(n)</pre>
ic_sup_boot <- x_barra - pto_crit[1]/sqrt(n)</pre>
IC_boot <- c(ic_inf_boot, ic_sup_boot)</pre>
names(IC_boot) <- paste0(100*c(alfa, 1-alfa), "%")</pre>
IC boot
##
          5%
                   95%
## 0.457700 1.092293
Aunque en este caso también podemos obtener el intervalo a partir de las réplicas bootstrap del estimador:
pto_crit <- quantile(x_barra_boot, c(alfa/2, 1 - alfa/2))</pre>
ic_inf_boot <- 2*x_barra - pto_crit[2]</pre>
ic_sup_boot <- 2*x_barra - pto_crit[1]</pre>
IC_boot <- c(ic_inf_boot, ic_sup_boot)</pre>
names(IC_boot) <- paste0(100*c(alfa, 1-alfa), "%")</pre>
IC_boot
##
          5%
                   95%
## 0.457700 1.092293
Esta forma de proceder es la que emplea el paquete boot para obtener el que denomina intervalo de confianza
bootstrap básico (estableciendo type="basic" en la llamada a la función boot.ci()):
library(boot)
statistic <- function(data, i) mean(data[i])</pre>
set.seed(1)
res.boot <- boot(muestra, statistic, R = 1000)
res <- boot.ci(res.boot, type = "basic")</pre>
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
```

Based on 1000 bootstrap replicates

```
##
## CALL:
## boot.ci(boot.out = res.boot, type = "basic")
##
## Intervals:
## Level Basic
## 95% ( 0.4945, 1.1121 )
## Calculations and Intervals on Original Scale
IC_boot <- res$basic[4:5]
IC_boot</pre>
```

```
## [1] 0.494535 1.112066
```

Además del paquete boot, otros autores también denominan a este método bootstrap básico (bootstrap percentil básico o incluso bootstrap natural), y utilizan la terminología bootstrap percentil cuando se emplea directamente el estimador como estadístico $(R = \hat{\theta})$ para realizar inferencia. Con el paquete boot habrá que establecer type="perc" en la llamada a la función boot.ci() para obtener el intervalo correspondiente:

```
boot.ci(res.boot, type = "perc")
```

```
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
##
## CALL:
## boot.ci(boot.out = res.boot, type = "perc")
##
## Intervals:
## Level Percentile
## 95% ( 0.4986,  1.1161 )
## Calculations and Intervals on Original Scale
```

En este método se emplean directamente los cuantiles de las réplicas bootstrap del estadístico:

```
# IC_boot <- quantile(res.boot$t, c(alfa/2, 1 - alfa/2)) # type = 7
IC_boot <- quantile(res.boot$t, c(alfa/2, 1 - alfa/2), type = 6)
IC_boot</pre>
```

```
## 2.5% 97.5%
## 0.4985983 1.1161317
```

Asintóticamente ambos métodos son equivalentes, aunque en general es preferible (evita sesgos) el bootstrap percentil básico.

5.3 Método percentil-t

Este método bootstrap, construye un intervalo de confianza bootstrap a partir del estadístico studentizado:

$$R_1 = \sqrt{n} \frac{\hat{\theta} - \theta}{\hat{\sigma}_{\theta}}.$$

Su distribución en el muestreo se aproxima mediante la distribución bootstrap de

$$R_1^* = \sqrt{n} \frac{\hat{\theta}^* - \theta\left(\hat{F}\right)}{\hat{\sigma}_{\theta}^*}.$$

En este caso, los valores $x_{\alpha/2}$ y $x_{1-\alpha/2}$, se obtienen a partir de esta última distribución bootstrap, es decir, x_{β} se define a partir de $P^*(R_1^* \leq x_{\beta}) = \beta$. Como

$$1 - \alpha = P^* \left(x_{\alpha/2} < R_1^* < x_{1-\alpha/2} \right),\,$$

razonamos que también ha de ser aproximadamente igual a $1-\alpha$ la siguiente probabilidad

$$P\left(x_{\alpha/2} < R_1 < x_{1-\alpha/2}\right) = P\left(x_{\alpha/2} < \sqrt{n} \frac{\hat{\theta} - \theta}{\hat{\sigma}_{\theta}} < x_{1-\alpha/2}\right)$$
$$= P\left(\hat{\theta} - \frac{\hat{\sigma}_{\theta}}{\sqrt{n}} x_{1-\alpha/2} < \theta < \hat{\theta} - \frac{\hat{\sigma}_{\theta}}{\sqrt{n}} x_{\alpha/2}\right).$$

Con lo cual, el intervalo de confianza bootstrap calculado por el método percentil-t se define como

$$\hat{I}_2 = \left(\hat{\theta} - \frac{\hat{\sigma}_{\theta}}{\sqrt{n}} x_{1-\alpha/2}, \hat{\theta} - \frac{\hat{\sigma}_{\theta}}{\sqrt{n}} x_{\alpha/2}\right).$$

Utilizando el Teorema de Bhattacharya-Ghosh puede acotarse el error de aproximación entre la distribución en el muestreo de R_1 y la distribución bootstrap de R_1^* :

$$P^* (R_1^* \le u) - P (R_1 \le u) = P^* \left(\sqrt{n} \frac{\hat{\theta}^* - \theta \left(\hat{F} \right)}{\hat{\sigma}_{\theta}^*} \le u \right) - P \left(\sqrt{n} \frac{\hat{\theta} - \theta}{\hat{\sigma}_{\theta}} \le u \right)$$

$$= \Phi (u) + n^{-\frac{1}{2}} \hat{q}_1 (u) \phi (u) + O_P (n^{-1})$$

$$- \left[\Phi (u) + n^{-\frac{1}{2}} q_1 (u) \phi (u) + O (n^{-1}) \right]$$

$$= n^{-\frac{1}{2}} \left[\hat{q}_1 (u) - q_1 (u) \right] \phi (u) + O_P (n^{-1})$$

$$= O_P (n^{-1}),$$

ya que los coeficientes que aparecen en el polinomio $\hat{q}_1(u)$ son estimadores \sqrt{n} -consistentes de los coeficientes del polinomio $q_1(u)$. Los de éste último dependen de los momentos poblacionales y los del primero son sus correspondientes versiones empíricas.

Así pues, el error de cobertura del intervalo de confianza bootstrap bilateral calculado por el método percentilt es

$$P\left(\theta \in \hat{I}_{2}\right) - (1 - \alpha) = P\left(R_{1} < x_{1-\alpha/2}\right) - P\left(R_{1} \le x_{\alpha/2}\right)$$
$$- \left[P^{*}\left(R_{1}^{*} < x_{1-\alpha/2}\right) - P^{*}\left(R_{1}^{*} \le x_{\alpha/2}\right)\right]$$
$$= P\left(R_{1} < x_{1-\alpha/2}\right) - P^{*}\left(R_{1}^{*} < x_{1-\alpha/2}\right)$$
$$- \left[P\left(R_{1} \le x_{\alpha/2}\right) - P^{*}\left(R_{1}^{*} \le x_{\alpha/2}\right)\right]$$
$$= O_{P}\left(n^{-1}\right)$$

Se tiene entonces que el error de cobertura para los intervalos de confianza bilaterales bootstrap obtenidos mediante el método percentil-t es $O\left(n^{-1}\right)$. Puede deducirse que ese es también el orden para los intervalos unilaterales obtenidos por este método. Así pues el orden del error de cobertura para el método percentil-t cuando se construyen intervalos de confianza unilaterales mejora al de los intervalos unilaterales basados en la normal asintótica, con un error de cobertura de orden $O\left(n^{-\frac{1}{2}}\right)$. En el caso de los intervalos de confianza bilaterales, el orden del error de cobertura usando la normal asintótica o bien el bootstrap por el método percentil-t es el mismo, $O\left(n^{-1}\right)$ en ambos casos.

En el Ejemplo 1.5, se implementó este método para obtener una estimación por intervalo de confianza del tiempo de vida medio de microorganismos. En el Ejemplo 1.6 se mmostró como calcular este intervalo empleando el paquete boot (haciendo que la función statistic devuelva también la varianza del estadístico y estableciendo type="stud" en la llamada a la función boot.ci()).

5.4 Método percentil-t simetrizado

Es un método análogo al percentil-t. Sólo difiere de él en la forma de seleccionar los cuantiles de la distribución bootstrap. En lugar de tomar cuantiles que dejen colas iguales ($\frac{\alpha}{2}$ a la izquierda y a la derecha, respectivamente), se eligen los cuantiles de forma que sean simétricos. Así, dado el estadístico R_1 y su versión bootstrap R_1^* , se considera el valor $y_{1-\alpha}$ que cumple P^* ($|R_1^*| \leq y_{1-\alpha}$) = $1-\alpha$. Así se tiene que

$$1 - \alpha = P^* \left(-y_{1-\alpha} \le R_1^* \le y_{1-\alpha} \right).$$

De esa forma se razona que también ha de ser aproximadamente igual a $1-\alpha$ la siguiente probabilidad

$$P(-y_{1-\alpha} < R_1 < y_{1-\alpha}) = P\left(-y_{1-\alpha} < \sqrt{n}\frac{\hat{\theta} - \theta}{\hat{\sigma}_{\theta}} < y_{1-\alpha}\right)$$
$$= P\left(\hat{\theta} - \frac{\hat{\sigma}_{\theta}}{\sqrt{n}}y_{1-\alpha} < \theta < \hat{\theta} + \frac{\hat{\sigma}_{\theta}}{\sqrt{n}}y_{1-\alpha}\right).$$

Con lo cual, el intervalo de confianza bootstrap calculado por el método percentil-t simetrizado se define como

$$\hat{I}_3 = \left(\hat{\theta} - \frac{\hat{\sigma}_{\theta}}{\sqrt{n}} y_{1-\alpha}, \hat{\theta} + \frac{\hat{\sigma}_{\theta}}{\sqrt{n}} y_{1-\alpha}\right).$$

Utilizando el Teorema de Bhattacharya-Ghosh con desarrollos hasta el orden n^{-1} se tiene:

$$P^* (R_1^* \le u) - P (R_1 \le u) = P^* \left(\sqrt{n} \frac{\hat{\theta}^* - \theta \left(\hat{F} \right)}{\hat{\sigma}_{\theta}^*} \le u \right) - P \left(\sqrt{n} \frac{\hat{\theta} - \theta}{\hat{\sigma}_{\theta}} \le u \right)$$

$$= \Phi (u) + n^{-\frac{1}{2}} \hat{q}_1 (u) \phi (u) + n^{-1} \hat{q}_2 (u) \phi (u) + O_P \left(n^{-\frac{3}{2}} \right)$$

$$- \left[\Phi (u) + n^{-\frac{1}{2}} q_1 (u) \phi (u) + n^{-1} q_2 (u) \phi (u) + O \left(n^{-\frac{3}{2}} \right) \right]$$

$$= n^{-\frac{1}{2}} \left[\hat{q}_1 (u) - q_1 (u) \right] \phi (u) + n^{-1} \left[\hat{q}_2 (u) - q_2 (u) \right] \phi (u) + O_P \left(n^{-\frac{3}{2}} \right).$$

Como consecuencia, el error de cobertura del intervalo de confianza bootstrap bilateral calculado por el método percentil-t simetrizado es

$$P\left(\theta \in \hat{I}_{3}\right) - (1 - \alpha) = P\left(-y_{1-\alpha} < R_{1} < y_{1-\alpha}\right) - P^{*}\left(-y_{1-\alpha} < R_{1}^{*} < y_{1-\alpha}\right)$$

$$= P\left(R_{1} < y_{1-\alpha}\right) - P^{*}\left(R_{1}^{*} < y_{1-\alpha}\right) -$$

$$- \left[P\left(R_{1} \leq -y_{1-\alpha}\right) - P^{*}\left(R_{1}^{*} \leq -y_{1-\alpha}\right)\right]$$

$$= n^{-\frac{1}{2}}\left[q_{1}\left(y_{1-\alpha}\right) - \hat{q}_{1}\left(y_{1-\alpha}\right)\right] \phi\left(y_{1-\alpha}\right)$$

$$+ n^{-1}\left[q_{2}\left(y_{1-\alpha}\right) - \hat{q}_{2}\left(y_{1-\alpha}\right)\right] \phi\left(y_{1-\alpha}\right)$$

$$- n^{-\frac{1}{2}}\left[q_{1}\left(-y_{1-\alpha}\right) - \hat{q}_{1}\left(-y_{1-\alpha}\right)\right] \phi\left(-y_{1-\alpha}\right) + O_{P}\left(n^{-\frac{3}{2}}\right)$$

$$= 2n^{-1}\left[q_{2}\left(y_{1-\alpha}\right) - \hat{q}_{2}\left(y_{1-\alpha}\right)\right] \phi\left(y_{1-\alpha}\right) + O_{P}\left(n^{-\frac{3}{2}}\right)$$

$$= O_{P}\left(n^{-\frac{3}{2}}\right)$$

ya que los polinomios $q_1(u)$ y $\hat{q}_1(u)$ son simétricos, $q_2(u)$ y $\hat{q}_2(u)$ son antisimétricos, la función $\phi(u)$ es simétrica y los coeficientes que aparecen en el polinomio $\hat{q}_2(u)$ son estimadores \sqrt{n} -consistentes de los coeficientes del polinomio $q_2(u)$. Como consecuencia, el error de cobertura para los intervalos de confianza

bilaterales bootstrap obtenidos mediante el método percentil-t simetrizado es $O\left(n^{-\frac{3}{2}}\right)$. Puede deducirse que el orden para los intervalos unilaterales obtenidos por este método es $O\left(n^{-1}\right)$. Así pues el orden del error de cobertura para el método percentil-t simetrizado cuando se construyen intervalos de confianza unilaterales mejora al de los intervalos unilaterales basados en la normal asintótica, con un error de cobertura de orden $O\left(n^{-\frac{1}{2}}\right)$, e iguala al orden del error de cobertura de los obtenidos mediante el percentil-t. En el caso de los intervalos de confianza bilaterales, el orden del error de cobertura usando el método percentil-t simetrizado es $O\left(n^{-\frac{3}{2}}\right)$, el cual mejora el orden $O\left(n^{-1}\right)$, que es el que presentan los intervalos basados en la normal asintótica o bien en el método percentil-t.

5.5 Tabla resumen de los errores de cobertura

Tipo de I.C.	Unilateral	Bilateral
Percentil	$O_P\left(n^{-\frac{1}{2}}\right)$ $O_P\left(n^{-1}\right)$	$O_P\left(n^{-\frac{1}{2}}\right)$
Percentil- t	$O_P \left(n^{-1} \right)'$	$O_P \left(n^{-1} \right)'$
Percentil- t simetrizado		$O_P\left(n^{-\frac{3}{2}}\right)$

5.6 Ejemplos

Ejemplo 5.2 (Inferencia sobre la media con varianza desconocida, continuación). Continuando con el ejemplo de los tiempos de vida de microorganismos (sin asumir varianza conocida), para obtener una estimación por intervalo de confianza de su vida media empleando este método se podría utilizar (ver Ejemplo 1.5):

```
muestra \leftarrow c(0.143, 0.182, 0.256, 0.26, 0.27, 0.437, 0.509,
              0.611, 0.712, 1.04, 1.09, 1.15, 1.46, 1.88, 2.08)
n <- length(muestra)</pre>
alfa <- 0.05
x_barra <- mean(muestra)</pre>
cuasi dt <- sd(muestra)
# Remuestreo
set.seed(1)
B <- 1000
remuestra <- numeric(n)
estadistico_boot <- numeric(B)</pre>
for (k in 1:B) {
  remuestra <- sample(muestra, n, replace = TRUE)
  x_barra_boot <- mean(remuestra)</pre>
  cuasi_dt_boot <- sd(remuestra)</pre>
  estadistico_boot[k] <- sqrt(n) * abs(x_barra_boot - x_barra)/cuasi_dt_boot</pre>
}
# Aproximación bootstrap del pto crítico
pto_crit <- quantile(estadistico_boot, 1 - alfa)</pre>
# Construcción del IC
ic_inf_boot <- x_barra - pto_crit * cuasi_dt/sqrt(n)</pre>
```

5.6. EJEMPLOS 69

```
ic_sup_boot <- x_barra + pto_crit * cuasi_dt/sqrt(n)
IC_boot <- c(ic_inf_boot, ic_sup_boot)
names(IC_boot) <- paste0(100*c(alfa, 1-alfa), "%")
IC_boot</pre>
```

```
## 5% 95%
## 0.4293376 1.1813290
```

Ejemplo 5.3 (Estudio de simulación). El siguiente código permite realizar estudios de simulación comparando las probabilidades de cobertura y las longitudes de los intervalos de confianza clásicos (basados en normalidad), bootstrap percentil, bootstrap percentil-t y bootstrap percentil-t simetrizado para la media, en el caso de muestras procedentes de una distribución $\exp(\lambda)$. En este caso se obtienen las estimaciones Monte Carlo a partir de 500 simulaciones con $\lambda=0.01$, tamaño muestral n=100 y B=1000 réplicas bootstrap para un nivel de confianza nominal del 90% ($\alpha=0.10$).

```
t.ini <- proc.time()</pre>
rate <- 0.01
mu <- 1/rate
n <- 100
alfa <- 0.1
namesI <- paste0(100*c(alfa, 1-alfa), "%")</pre>
B <- 1000
percentil <- numeric(B)</pre>
percentilt <- numeric(B)</pre>
percentilts <- numeric(B)</pre>
nsim < -500
resultados <- array(dim = c(nsim, 2, 4))
dimnames(resultados) <- list(NULL, c("Cobertura", "Longitud"),</pre>
         c("Normal", "Percentil", "Percentil-t", "Percentil-t simetrizado"))
# Bucle simulación
set.seed(1)
for (isim in 1:nsim) {
    # Aproximación clásica
    muestra \leftarrow rexp(n, rate = 0.01)
    media <- mean(muestra)</pre>
    desv <- sd(muestra)</pre>
    z \leftarrow qnorm(1 - alfa/2)
    ic_inf <- media - z*desv/sqrt(n)</pre>
    ic_sup <- media + z*desv/sqrt(n)</pre>
    I0 <- c(ic_inf, ic_sup)</pre>
    # names(IO) <- namesI</pre>
    resultados[isim, 1, 1] <- (IO[1] < mu) && (mu < IO[2])
    resultados[isim, 2, 1] <- IO[2] - IO[1]
    # Remuestreo bootstrap
    for (k in 1:B) {
        remuestra <- sample(muestra, n, replace = TRUE)</pre>
        percentil[k] <- sqrt(n) * (mean(remuestra) - media)</pre>
        percentilt[k] <- percentil[k]/sd(remuestra)</pre>
        percentilts[k] <- abs(percentilt[k])</pre>
```

```
# Aproximación bootstrap percentil
    pto_crit <- quantile(percentil, c(alfa/2, 1 - alfa/2))</pre>
    # Construcción del IC
    ic_inf_boot <- media - pto_crit[2]/sqrt(n)</pre>
    ic_sup_boot <- media - pto_crit[1]/sqrt(n)</pre>
    I1 <- c(ic_inf_boot, ic_sup_boot)</pre>
    # names(I1) <- namesI</pre>
    resultados[isim, 1, 2] <- (I1[1] < mu) && (mu < I1[2])
    resultados[isim, 2, 2] <- I1[2] - I1[1]
    # Aproximación bootstrap percentil-t
    pto_crit <- quantile(percentilt, c(alfa/2, 1 - alfa/2))</pre>
    # Construcción del IC
    ic_inf_boot <- media - pto_crit[2] * desv/sqrt(n)</pre>
    ic_sup_boot <- media - pto_crit[1] * desv/sqrt(n)</pre>
    I2 <- c(ic_inf_boot, ic_sup_boot)</pre>
    \# names(I2) \leftarrow namesI
    resultados[isim, 1, 3] <- (I2[1] < mu) && (mu < I2[2])
    resultados[isim, 2, 3] <- I2[2] - I2[1]
    # Aproximación bootstrap percentil-t simetrizado
    pto_crit <- quantile(percentilts, 1 - alfa)</pre>
    # Construcción del IC
    ic_inf_boot <- media - pto_crit * desv/sqrt(n)</pre>
    ic_sup_boot <- media + pto_crit * desv/sqrt(n)</pre>
    I3 <- c(ic_inf_boot, ic_sup_boot)</pre>
    \# names(I3) \leftarrow namesI
    resultados[isim, 1, 4] <- (I3[1] < mu) && (mu < I3[2])
    resultados[isim, 2, 4] <- I3[2] - I3[1]
}
t.fin <- proc.time() - t.ini
t.fin
##
      user system elapsed
##
     27.08
              0.03
                      27.22
apply(resultados, c(2, 3), mean)
                Normal Percentil Percentil-t Percentil-t simetrizado
## Cobertura 0.89200
                         0.88600
                                      0.91200
                                                                0.90400
## Longitud 32.24304 32.05088
                                     33.39516
                                                               33.34209
# knitr::kable(t(apply(resultados, c(2, 3), mean)), digits = 3)
```

Aproximación	Cobertura	Longitud
Normal	0.892	32.243
Percentil	0.886	32.051
Percentil-t	0.912	33.395
Percentil-t simetrizado	0.904	33.342

La siguiente tabla recoge las probabilidades de cobertura, estimadas por Monte Carlo, en una ejecución con

5.6. EJEMPLOS 71

tamaño muestral $n=100,\,N=10000$ trials y B=1000 réplicas bootstrap para un nivel de confianza nominal del 90% ($\alpha=0.10$).

Aproximación	Cobertura IC
Normal	88.60%
Boot. percentil	88.60%
Boot. percentil- t	89.76%
Boot. percentil- t simetrizado	89.46%

Capítulo 6

Bootstrap y estimación no paramétrica de la densidad

En este capítulo se presentarán diversos métodos bootstrap adecuados para realizar inferencia en algunos problemas en el contexto de la estimación no paramétrica de la densidad. Concretamente, se abordará el problema de construcción de intervalos de confianza para la funciones de densidad en un punto dado, así como la selección del parámetro de suavizado para el estimador tipo núcleo de la función de densidad. A continuación se incluye una breve introducción a estos métodos no paramétricos de estimación de curvas.

6.1 Estimación no paramétrica de la función de densidad

Como ya se introdujo en la Sección 4.3, si (X_1, X_2, \ldots, X_n) es una muestra aleatoria simple (m.a.s.), de una población con función de distribución F, absolutamente continua, y función de densidad f, el estimador tipo núcleo propuesto por Parzen (1962) y Rosenblatt (1956) viene dado por

$$\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - X_i}{h}\right) = \frac{1}{n} \sum_{i=1}^n K_h(x - X_i),$$

donde $K_h(u) = \frac{1}{h}K(\frac{u}{h})$, K es una función núcleo (normalmente una densidad simétrica en torno al cero) y h > 0 es una parámetro de suavizado, llamado ventana, que regula el tamaño del entorno que se usa para llevar a cabo la estimación. Es habitual exigir que la función núcleo K sea no negativa y su integral sea uno:

$$K(u) \ge 0, \ \forall u, \ \int_{-\infty}^{\infty} K(u) du = 1.$$

Además también es frecuente exigir que K sea una función simétrica (K(-u) = K(u)).

6.2 Sesgo, varianza y error cuadrático medio

6.2.1 Sesgo

Mediante cálculos sencillos puede obtenerse el sesgo del estimador de Parzen-Rosenblatt:

$$Sesgo\left(\hat{f}_{h}\left(x\right)\right) = E\left(\hat{f}_{h}\left(x\right)\right) - f\left(x\right) = \int \frac{1}{h}K\left(\frac{x-y}{h}\right)f\left(y\right)dy - f\left(x\right)$$
$$= \left(K_{h}*f\right)\left(x\right) - f\left(x\right),$$

siendo * el operador convolución:

$$(f * g)(x) = \int f(x - y) g(y) dy.$$

A partir de la expresión del sesgo puede obtenerse otra asintótica para el mismo:

$$E\left(\hat{f}_{h}\left(x\right)\right) - f\left(x\right) = \frac{d_{K}}{2}h^{2}f''\left(x\right) + O\left(h^{4}\right),$$

con $d_K = \int t^2 K(t) dt$.

6.2.2 Varianza

La varianza puede tratarse análogamente:

$$Var\left(\hat{f}_{h}\left(x\right)\right) = \frac{1}{nh^{2}}Var\left(K\left(\frac{x-X_{1}}{h}\right)\right)$$

$$= \frac{1}{nh^{2}}\left[\int K\left(\frac{x-y}{h}\right)^{2}f\left(y\right)dy - \left(\int K\left(\frac{x-y}{h}\right)f\left(y\right)dy\right)^{2}\right]$$

$$= \frac{1}{n}\left[\left(\left(K_{h}\right)^{2}*f\right)\left(x\right) - \left(\left(K_{h}*f\right)\left(x\right)\right)^{2}\right]$$

$$= \frac{1}{nh}\left[\left(K^{2}\right)_{h}*f\right]\left(x\right) - \frac{1}{n}\left[\left(K_{h}*f\right)\left(x\right)\right]^{2}.$$

Su expresión asintótica resulta:

$$Var\left(\hat{f}_{h}\left(x\right)\right) = \frac{c_{K}}{nh}f\left(x\right) - \frac{1}{n}f\left(x\right)^{2} + O\left(\frac{h}{n}\right),$$

 $con c_K = \int K(t)^2 dt.$

6.2.3 Error cuadrático medio

Como consecuencia el error cuadrático medio del estimador es:

$$MSE\left(\hat{f}_{h}\left(x\right)\right) = E\left(\hat{f}_{h}\left(x\right) - f\left(x\right)\right)^{2} = Sesgo\left(\hat{f}_{h}\left(x\right)\right)^{2} + Var\left(\hat{f}_{h}\left(x\right)\right)$$
$$= \left[\left(K_{h} * f\right)\left(x\right) - f\left(x\right)\right]^{2} + \frac{1}{nh}\left[\left(K^{2}\right)_{h} * f\right]\left(x\right)$$
$$-\frac{1}{n}\left[\left(K_{h} * f\right)\left(x\right)\right]^{2}.$$

Además, su expresión asintótica es:

$$MSE\left(\hat{f}_{h}(x)\right) = \frac{d_{K}^{2}}{4}h^{4}f''(x)^{2} + \frac{c_{K}}{nh}f(x) - \frac{1}{n}f(x)^{2} + O\left(h^{6}\right) + O\left(\frac{h}{n}\right).$$

6.2.4 Error cuadrático medio integrado (MISE)

Una medida global (no para un x particular) del error cometido por el estimador es el error cuadrático medio integrado:

$$MISE\left(\hat{f}_{h}\left(x\right)\right) = \int E\left[\left(\hat{f}_{h}\left(x\right) - f\left(x\right)\right)^{2}\right] dx = \int MSE\left(\hat{f}_{h}\left(x\right)\right) dx = \int \left[\left(K_{h} * f\right)\left(x\right) - f\left(x\right)\right]^{2} dx + \frac{c_{K}}{nh} - \frac{1}{n}\int \left[\left(K_{h} * f\right)\left(x\right)\right]^{2} dx.$$

Una expresión asintótica para el mismo es la siguiente:

$$MISE\left(\hat{f}_h(x)\right) = \frac{d_K^2}{4}h^4 \int f''(x)^2 dx + \frac{c_K}{nh} - \frac{1}{n} \int f(x)^2 dx + O\left(h^6\right) + O\left(\frac{h}{n}\right).$$

En ella se puede ver el efecto negativo de tomar ventanas (h) demasiado grandes o demasiado pequeñas.

6.3 Aproximación Bootstrap de la distribución del estimador de Parzen-Rosenblatt

Antes de proceder a abordar el bootstrap en este contexto conviene presentar la distribución asintótica del estimador y otras aproximaciones posibles. Pueden encontrarse más detalles sobre estos resultados en Cao (1990).

6.3.1 Distribución asintótica del estimador de Parzen-Rosenblatt

Las condiciones mínimas necesarias para que el sesgo y la varianza del estimador tiendan a cero cuando el tamaño muestral tiende a infinito son $h \to 0$, $nh \to \infty$. En tales circunstancias se tiene

$$\sqrt{nh}\left(\hat{f}_{h}\left(x\right)-f\left(x\right)\right)\overset{d}{\rightarrow}\mathcal{N}\left(B,V\right).$$

Además, puede probarse que el valor asintóticamente óptimo de h, en el sentido del MSE, es $h = c_0 n^{-1/5}$, con

$$c_0 = \left(\frac{c_K f(x)}{d_K^2 f''(x)^2}\right)^{1/5}.$$

Con esa elección de h los valores de media y varianza de la distribución normal límite son

$$B = \frac{1}{2}c_0^{5/2}d_K f''(x),$$

$$V = c_K f(x).$$

Para utilizar la distribución asintótica anterior en la construcción de intervalos de confianza para f(x) podemos

- 1. Estimar B y V y utilizarlos en la correspondiente distribución normal (metodo plug-in).
- 2. Diseñar un plan de remuestreo y utilizar el método bootstrap.

6.3.2 Aproximación plug-in

Pasa por estimar B y V mediante

$$\hat{B} = \frac{1}{2}\hat{c}_0^{5/2} d_K \hat{f}_g''(x) ,$$

$$\hat{V} = c_K \hat{f}_h(x) ,$$

siendo g una ventana adecuada para estimar la derivada segunda de la función de densidad. Utilizando la desigualdad de Berry-Esséen se obtiene el siguiente orden de convergencia:

$$\sup_{z \in \mathbf{R}} \left| P\left[\sqrt{nh} \left(\hat{f}_h\left(x \right) - f\left(x \right) \right) \le z \right] - \Phi\left(\frac{z - \hat{B}}{\hat{V}^{1/2}} \right) \right| = O_P\left(n^{-1/5} \right),$$

que empeora la tasa teórica de la aproximación normal basada en la media y varianza exactas $(B_n = E\left[\sqrt{nh}\left(\hat{f}_h\left(x\right) - f\left(x\right)\right)\right]$ y $V_n = Var\left[\sqrt{nh}\left(\hat{f}_h\left(x\right) - f\left(x\right)\right)\right]$):

$$\sup_{z \in \mathbf{R}} \left| P\left[\sqrt{nh} \left(\hat{f}_h\left(x \right) - f\left(x \right) \right) \le z \right] - \Phi\left(\frac{z - B_n}{V_n^{1/2}} \right) \right| = O\left(n^{-2/5} \right),$$

aunque no la de la normal asintótica, $\mathcal{N}(B,V)$, cuya tasa es igualmente de orden $O_P(n^{-1/5})$.

6.3.3 Aproximación bootstrap

Se procede según el siguiente plan de remuestreo.

- 1. A partir de la muestra $(X_1, X_2, ..., X_n)$ y utilizando una **ventana piloto** g, se calcula el estimador de Parzen-Rosenblatt \hat{f}_q .
- 2. Se arrojan remuestras bootstrap $(X_1^*, X_2^*, \dots, X_n^*)$ a partir de la densidad \hat{f}_q .
- 3. Se construye el análogo bootstrap del estimador de Parzen-Rosenblatt

$$\hat{f}_h^*(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - X_i^*}{h}\right).$$

4. Se aproxima la distribución en el muestreo de $\sqrt{nh}\left(\hat{f}_h\left(x\right)-f\left(x\right)\right)$ por la distribución en el remuestreo de $\sqrt{nh}\left(\hat{f}_h^*\left(x\right)-\hat{f}_g\left(x\right)\right)$.

Si nuestro interés estuviese en el sesgo o la varianza de $\hat{f}_h(x)$ entonces utilizaríamos, en el paso 4 del algoritmo anterior, los análogos bootstrap del sesgo o la varianza: $E^*\left(\hat{f}_h^*(x) - \hat{f}_g(x)\right)$ o $Var^*\left(\hat{f}_h^*(x)\right)$.

En el algoritmo anterior, la ventana g ha de ser asintóticamente mayor que h. De hecho, una elección razonable para g es aquella que minimiza $E\left[\left(\hat{f}_g''\left(x\right)-f''\left(x\right)\right)^2\right]$. Asintóticamente esa ventana viene dada por

$$g \simeq \left(\frac{5f(x) \int K''(t)^2 dt}{d_K^2 f^{(4)}(x)^2 n}\right)^{1/9}.$$

El orden de convergencia de para la aproximación bootstrap viene dado por

$$\sup_{z \in \mathbf{R}} \left| P\left[\sqrt{nh} \left(\hat{f}_h\left(x \right) - f\left(x \right) \right) \le z \right] - P^* \left[\sqrt{nh} \left(\hat{f}_h^*\left(x \right) - \hat{f}_g\left(x \right) \right) \le z \right] \right|$$

$$= O_P\left(n^{-2/9} \right),$$

que mejora los ofrecidos por la aproximación normal teórica y el método plug-in.

6.4 El Bootstrap en la selección del parámetro de suavizado.

6.4.1 Expresión asintótica de la ventana óptima

El MISE tiene una expresión asintótica que puede usarse como criterio para obtener un valor óptimo del parámetro de suavizado:

$$MISE(h) = AMISE(h) + O(h^{6}) + O(\frac{h}{n}),$$

con

$$AMISE(h) = \frac{d_K^2}{4}h^4 \int f''(x)^2 dx + \frac{c_K}{nh} - \frac{1}{n} \int f(x)^2 dx.$$

El parámetro de suavizado que minimiza el AMISE es

$$h_{AMISE} = \left(\frac{c_K}{nd_K^2 \int f''(x)^2 dx}\right)^{1/5}.$$

Existen multitud de métodos encaminados a dar respuesta al problema de selección del parámetro de suavizado. Entre ellos destacamos los métodos plug-in, los de validación cruzada (suavizada o no) y, desde luego, los métodos bootstrap (ver, por ejemplo, Marron (1992)).

6.4.2 Análogo bootstrap del MISE

La idea básica (Cao (1993)) consiste en diseñar un plan de remuestreo, del tipo bootstrap suavizado, para estimar el MISE:

- 1. A partir de la muestra $(X_1, X_2, ..., X_n)$ y utilizando una ventana piloto g, se calcula el estimador de Parzen-Rosenblatt \hat{f}_q .
- 2. Se arrojan remuestras bootstrap $(X_1^*, X_2^*, \dots, X_n^*)$ de la densidad \hat{f}_g .
- 3. Para cada h > 0, se obtiene el análogo bootstrap del estimador de Parzen-Rosenblatt

$$\hat{f}_h^*(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - X_i^*}{h}\right).$$

4. Se construye la versión bootstrap del MISE:

$$MISE^{*}\left(h\right) = \int E^{*}\left[\left(\hat{f}_{h}^{*}\left(x\right) - \hat{f}_{g}\left(x\right)\right)^{2}\right]dx.$$

5. Se minimiza $MISE^*(h)$ en h > 0 y se obtiene el selector bootstrap:

$$h_{MISE}^* = \arg\min_{h>0} MISE^* (h)$$

6.4.3 Expresión cerrada para MISE*

A diferencia de lo que es habitual, en este contexto es posible obtener una expresión cerrada para el análogo bootstrap del MISE:

$$MISE^{*}(h) = \int \left[\left(K_{h} * \hat{f}_{g} \right) (x) - \hat{f}_{g} (x) \right]^{2} dx$$

$$+ \frac{c_{K}}{nh} - \frac{1}{n} \int \left[\left(K_{h} * \hat{f}_{g} \right) (x) \right]^{2} dx$$

$$= \frac{c_{K}}{nh} - \frac{1}{n^{3}} \sum_{i,j=1}^{n} \left[\left(K_{h} * K_{g} \right) * \left(K_{h} * K_{g} \right) \right] (X_{i} - X_{j})$$

$$+ \frac{1}{n^{2}} \sum_{i,j=1}^{n} \left[\left(K_{h} * K_{g} - K_{g} \right) * \left(K_{h} * K_{g} - K_{g} \right) \right] (X_{i} - X_{j}).$$

6.4.4 Elección de la ventana piloto

De nuevo ocurre que el problema de elección óptima de la ventana piloto, g, viene ligado al de estimación óptima de la curvatura de la función de densidad. Así, una buena elección de g es la que minimiza

$$E\left[\left(\int \hat{f}_{g}^{"}\left(x\right)^{2}dx - \int f^{"}\left(x\right)^{2}dx\right)^{2}\right].$$

El valor asintótico de dicha ventana g es

$$g_0 = \left(\frac{\int K''(t)^2 dt}{n d_K \int f^{(3)}(x)^2 dx}\right)^{1/7}.$$

6.4.5 Resultados teóricos

Utilizando cualquier ventana piloto determinística que cumpla $\frac{g-g_0}{g_0} = O\left(n^{-1/14}\right)$, se tiene

$$\frac{h_{MISE}^* - h_{MISE}}{h_{MISE}} = O_P \left(n^{-5/14} \right),$$

$$\frac{MISE \left(h_{MISE}^* \right) - MISE \left(h_{MISE} \right)}{MISE \left(h_{MISE} \right)} = O_P \left(n^{-5/7} \right).$$

Mediante técnicas más sofisticadas que permiten que g dependa de h pueden obtenerse tasas ligeramente mejores:

$$\frac{h_{MISE}^* - h_{MISE}}{h_{MISE}} = O_P \left(n^{-1/2} \right).$$

6.4.6 Caso particular de núcleo gaussiano

Cuando el núcleo K es la función de densidad de una $\mathcal{N}(0,1)$:

- K_h es la densidad de una $\mathcal{N}(0, h^2)$
- K_q es la densidad de una $\mathcal{N}\left(0,g^2\right)$
- $K_h * K_q$ es la densidad de una $\mathcal{N}\left(0, h^2 + g^2\right)$
- $(K_h * K_q) * (K_h * K_q)$ es la densidad de una $\mathcal{N}(0, 2h^2 + 2g^2)$
- $(K_h * K_g) * K_g$ es la densidad de una $\mathcal{N}\left(0, h^2 + 2g^2\right)$
- $K_g * K_g$ es la densidad de una $\mathcal{N}(0, 2g^2)$

con lo cual

$$MISE^*(h) = \frac{c_K}{nh} - \frac{1}{n^3} \sum_{i,j=1}^n K_{\sqrt{2h^2 + 2g^2}}(X_i - X_j)$$
$$+ \frac{1}{n^2} \sum_{i,j=1}^n \left[K_{\sqrt{2h^2 + 2g^2}}(X_i - X_j) - 2K_{\sqrt{h^2 + 2g^2}}(X_i - X_j) + K_{\sqrt{2g^2}}(X_i - X_j) \right].$$

6.4.7 Comparación con otros selectores

El método bootstrap presentado es muy semejante al de validación cruzada suavizada (SCV) propuesto por Hall, Marron y Park (1992). En estudios de simulación comparativos (ver Cao, Cuevas y González-Manteiga (1993)) puede verse como este método ofrece resultados muy competitivos con otros métodos de selección del parámetro de suavizado. En general es el que mejor comportamiento ofrece junto con el método plug-in tipo solve-the-equation de Sheather y Jones (1991) y el método SCV.

Otros selectores bootstrap con mucho peor comportamiento son:

- Hall (1990), en el que se remuestrea de la distribución empírica, con lo cual no se imita el sesgo.
- Faraway y Jhun (1990), que eligen g como la ventana de validación cruzada, que resulta ser demasiado pequeña.
- Taylor (1989), que elige g=h, con lo cual $MISE^*(h) \to 0$, cuando $h \to \infty$, lo cual produce un mínimo global de $MISE^*$ inconsistente con h_{MISE} .

Capítulo 7

Bootstrap y regresión no paramétrica

7.1 Estimación no paramétrica de la función de regresión

Sea $\{(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)\}$ una m.a.s. de una población bidimensional (X, Y), con $E(|Y|) < \infty$, para la cual queremos estimar la función de regresión de Y dada X:

$$m\left(x\right) = E\left(\left.Y\right|_{X=x}\right).$$

La función de regresión puede escribirse así:

$$m(x) = \int y f_{2|1}(y|_x) dy = \int y \frac{f(x,y)}{f_1(x)} dy = \frac{\int y f(x,y) dy}{f_1(x)}$$
$$= \frac{\int y f_{1|2}(x|_y) f_2(y) dy}{f_1(x)} = \frac{\Psi(x)}{f_1(x)},$$

siendo $f_1(x)$ la función de densidad marginal de X y

$$\Psi(x) = \int y f_{1|2}(x|_y) f_2(y) dy = E(Y f_{1|2}(x|_Y)).$$

Las funciones $\Psi(x)$ y $f_1(x)$ pueden estimarse mediante el método núcleo:

$$\hat{f}_{1,h}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - X_i}{h}\right),$$

$$\hat{\Psi}_h(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - X_i}{h}\right) Y_i,$$

resultando así el estimador tipo núcleo de Nadaraya-Watson (ver Nadaraya (1964) y Watson (1964)):

$$\hat{m}_{h}(x) = \frac{\hat{\Psi}_{h}(x)}{\hat{f}_{1,h}(x)} = \frac{\frac{1}{n} \sum_{i=1}^{n} K_{h}(x - X_{i}) Y_{i}}{\frac{1}{n} \sum_{i=1}^{n} K_{h}(x - X_{i})}.$$

Para este estimador se pueden probar propiedades semejantes a las mencionadas para el estimador de Parzen-Rosenblatt de la función de densidad.

En esta sección se presentarán métodos de remuestreo bootstrap adecuados para el contexto de la función de regresión. El objetivo es aproximar la distribución en el muestreo del estimador de Nadaraya-Watson. Los resultados reflejan el comportamiento de los métodos de remuestreo bootstrap, tanto en un aspecto condicional a la muestra de la variable explicativa como incondicionalmente.

7.1.1 Distribución asintótica del estimador de Nadaraya-Watson

Antes de proceder a abordar el bootstrap en este contexto conviene presentar la distribución asintótica del estimador de Nadaraya-Watson, dado por

$$\hat{m}_h(x) = \frac{\frac{1}{n} \sum_{i=1}^{n} K_h(x - X_i) Y_i}{\frac{1}{n} \sum_{i=1}^{n} K_h(x - X_i)}.$$

De forma semejante al caso de la densidad, puede comprobarse que las condiciones mínimas necesarias para la consistencia del estimador, en términos del parámetro de suavizado, son $h \to 0$, $nh \to \infty$, cuando $n \to \infty$. En tales circunstancias se tiene

$$\sqrt{nh}\left(\hat{m}_h\left(x\right)-m\left(x\right)\right)\stackrel{d}{\to}\mathcal{N}\left(B,V\right).$$

Además, puede probarse que el valor asintóticamente óptimo de h, en el sentido del MSE, es de la forma $h = c_0 n^{-1/5}$. En tal caso, los valores de media y varianza de la distribución normal límite son

$$B = \frac{1}{2}c_0^{5/2}d_K \frac{m''(x) f(x) + 2m'(x) f'(x)}{f(x)},$$

$$V = c_K \frac{\sigma^2(x)}{f(x)},$$

siendo f(x) la función de densidad marginal de X y $\sigma^2(x) = Var(Y|_{X=x})$ la varianza condicional de Y dado X = x.

Al igual que en el caso de la densidad, para utilizar la distribución asintótica anterior en la construcción de intervalos de confianza para m(x) podemos

- 1. Estimar B y V y utilizarlos en la correspondiente distribución normal (metodo plug-in).
- 2. Diseñar un plan de remuestreo y utilizar el **método bootstrap**.

7.1.2 Ordenes de convergencia de la distribución del estimador de Nadaraya-Watson a su distribución asintótica

Los órdenes de convergencia de la aproximación de la distribución (condicional o incondicional) del estadístico a la distribución normal límite vienen dados por:

$$\sup_{z \in \mathbf{R}} \left| P^{Y|_{X}} \left[\sqrt{nh} \left(\hat{m}_{h} \left(x \right) - m \left(x \right) \right) \le z \right] - \Phi \left(\frac{z - B}{V^{1/2}} \right) \right| = O_{P} \left(n^{-1/5} \right),$$

$$\sup_{z \in \mathbf{R}} \left| P \left[\sqrt{nh} \left(\hat{m}_{h} \left(x \right) - m \left(x \right) \right) \le z \right] - \Phi \left(\frac{z - B}{V^{1/2}} \right) \right| = O \left(n^{-2/5} \right),$$

donde $P^{\left. Y\right|_{X}}\left(A\right)$ denota $P\left(A|_{X_{1},X_{2},...,X_{n}}\right) .$

7.1.3 Aproximación plug-in

Consiste en estimar B y V mediante estimadores apropiados de f(x), f'(x), m(x), m'(x), m''(x) y $\sigma^2(x)$. Usando, para cada una de estas seis curvas, selectores de los parámetros de suavizado encaminados a aproximar las ventanas óptimas para cada una de ellas (proceso bastante laborioso), pueden obtenerse estimadores del sesgo, \hat{B} , y la varianza, \hat{V} , que cumplen $\hat{B} - B = O_P(n^{-2/9})$ y $\hat{V} - V = O_P(n^{-2/5})$. Como consecuencia

se tienen los siguientes órdenes de convergencia (condicional e incondicional) para la aproximación plug-in:

$$\sup_{z \in \mathbf{R}} \left| P^{Y|_X} \left[\sqrt{nh} \left(\hat{m}_h \left(x \right) - m \left(x \right) \right) \le z \right] - \Phi \left(\frac{z - \hat{B}}{\hat{V}^{1/2}} \right) \right| = O_P \left(n^{-1/5} \right),$$

$$\sup_{z \in \mathbf{R}} \left| P \left[\sqrt{nh} \left(\hat{m}_h \left(x \right) - m \left(x \right) \right) \le z \right] - \Phi \left(\frac{z - \hat{B}}{\hat{V}^{1/2}} \right) \right| = O_P \left(n^{-2/9} \right).$$

que iguala y empeora, respectivamente, la tasa teórica de la aproximación normal límite (ver Cao (1991)).

7.2 Distintos métodos de remuestreo y resultados para ellos

7.2.1 Wild bootstrap

Este método de remuestreo bootstrap, propuesto por Wu (1986) y estudiado por Härdle y Marron (1991), procede del siguiente modo:

- 1. A partir del estimador de Nadaraya-Watson de m(x) y tomando el parámetro ventana de partida, h, se construyen los residuos $\hat{\varepsilon}_i = Y_i \hat{m}_h(X_i), i = 1, 2, \dots, n$.
- 2. Para cada índice $i=1,2,\ldots,n$, se arroja, condicionalmente a la muestra observada, $\{(X_1,Y_1),(X_2,Y_2),\ldots,(X_n,Y_n)\}$, un residuo bootstrap $\hat{\varepsilon}_i^*$ de una distribución de probabilidad que cumpla, $E^*(\hat{\varepsilon}_i^*)=0$, $E^*(\hat{\varepsilon}_i^{*2})=\hat{\varepsilon}_i^2$ y $E^*(\hat{\varepsilon}_i^{*3})=\hat{\varepsilon}_i^3$. Aunque la condición del momento de orden 3 no es estrictamente necesaria, es útil para las demostraciones de validez del método.
- 3. Usando una ventana piloto g, asintóticamente mayor que h (i.e. $g/h \to \infty$), se arrojan análogos bootstrap de las observaciones de la variable respuesta: $Y_i^* = \hat{m}_g(X_i) + \hat{\varepsilon}_i^*$, i = 1, 2, ..., n.
- 4. A partir de la remuestra bootstrap $\{(X_1, Y_1^*), (X_2, Y_2^*), \dots, (X_n, Y_n^*)\}$ se construye el análogo bootstrap del estimador de Nadaraya-Watson:

$$\hat{m}_{h}^{*}(x) = \frac{\frac{1}{n} \sum_{i=1}^{n} K_{h}(x - X_{i}) Y_{i}^{*}}{\frac{1}{n} \sum_{i=1}^{n} K_{h}(x - X_{i})}.$$

5. Se aproxima la distribución en el muestreo de $\sqrt{nh}\left(\hat{m}_h\left(x\right)-m\left(x\right)\right)$ por la distribución en el remuestreo de $\sqrt{nh}\left(\hat{m}_h^*\left(x\right)-\hat{m}_g\left(x\right)\right)$.

El paso 2 suele llevarse a cabo encontrando una variable aleatoria, V^* , que cumpla E^* (V^*) = 0, E^* (V^{*2}) = 1 y E^* (V^{*3}) = 1, arrojando una muestra de tamaño n de la misma, ($V_1^*, V_n^*, \ldots, V_n^*$), y luego definiendo $\hat{\varepsilon}_i^* = \hat{\varepsilon}_i V_i^*$ para $i = 1, 2, \ldots, n$.

Una de las elecciones más habituales para la distribución de V^* es la distribución discreta con masa de probabilidad en dos puntos $(P^*(V^*=a)=p \text{ y } P^*(V^*=b)=1-p)$ que es solución del sistema de tres ecuaciones dadas por los tres primeros momentos:

$$ap + b(1 - p) = 0,$$

 $a^{2}p + b^{2}(1 - p) = 1,$
 $a^{3}p + b^{3}(1 - p) = 1.$

Esto da lugar al llamado bootstrap de la sección aurea (golden section bootstrap), con $a = \frac{1-\sqrt{5}}{2}$, $b = \frac{1+\sqrt{5}}{2}$, $p = \frac{5+\sqrt{5}}{10}$, es decir

$$P^* \left(V^* = \frac{1 - \sqrt{5}}{2} \right) = \frac{5 + \sqrt{5}}{10}$$
$$P^* \left(V^* = \frac{1 + \sqrt{5}}{2} \right) = \frac{5 - \sqrt{5}}{10}$$

La elección de la ventana g, que aparece en el paso 3, guarda relación con la estimación de m''(x), pues esa es la cantidad crítica a la hora de estimar B y V. Tomando una ventana piloto de orden óptimo en ese sentido, $g_0 \simeq d_0 n^{-1/9}$, se obtienen las siguientes tasas de convergencia (condicionales e incondicionales) para la aproximación dada por el wild bootstrap:

$$\begin{split} \sup_{z \in \boldsymbol{R}} \left| P^{Y|_X} \left[\sqrt{nh} \left(\hat{m}_h \left(x \right) - m \left(x \right) \right) \leq z \right] - P^* \left[\sqrt{nh} \left(\hat{m}_h^* \left(x \right) - \hat{m}_g \left(x \right) \right) \leq z \right] \right| &= O_P \left(n^{-2/9} \right), \\ \sup_{z \in \boldsymbol{R}} \left| P \left[\sqrt{nh} \left(\hat{m}_h \left(x \right) - m \left(x \right) \right) \leq z \right] - P^* \left[\sqrt{nh} \left(\hat{m}_h^* \left(x \right) - \hat{m}_g \left(x \right) \right) \leq z \right] \right| &= O_P \left(n^{-1/5} \right). \end{split}$$

7.2.2 Bootstrap suavizado en la variable explicativa

La idea es tratar, por un lado, de considerar la variabilidad inherente a la variable explicativa (en el wild bootstrap esa parte de la remuestra se mantiene fija) y, por otro, que la distribución en el remuestreo de $Y^*|_{X^*=X_i}$ no sea degenerada (como sí lo sería en un bootstrap naïve bidimensional).

El plan de remuestreo, propuesto por Cao y González-Manteiga (1993) consta de los siguientes pasos:

1. Dada la muestra $\{(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)\}$, se construye un estimador (empírico en la variable respuesta y suavizado en la explicativa) de la distribución conjunta de (X, Y):

$$\hat{F}_g\left(x,y\right) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\left\{Y_i \le y\right\}} \int_{-\infty}^{x} K_g\left(t - X_i\right) dt.$$

- 2. Se arrojan remuestras bootstrap, $\{(X_1^*, Y_1^*), (X_2^*, Y_2^*), \dots, (X_n^*, Y_n^*)\}$, con distribución $\hat{F}_g(x, y)$.
- 3. Se construye el análogo bootstrap del estimador de Nadaraya-Watson:

$$\hat{m}_{h}^{*}(x) = \frac{\frac{1}{n} \sum_{i=1}^{n} K_{h}(x - X_{i}^{*}) Y_{i}^{*}}{\frac{1}{n} \sum_{i=1}^{n} K_{h}(x - X_{i}^{*})}.$$

4. Se utiliza la distribución en el remuestreo de $\sqrt{nh}\left(\hat{m}_{h}^{*}\left(x\right)-\hat{m}_{g}\left(x\right)\right)$ para aproximar la distribución del estadístico de interés: $\sqrt{nh}\left(\hat{m}_{h}\left(x\right)-m\left(x\right)\right)$.

La ventana piloto, g, óptima vuelve a ser de orden $n^{-1/9}$, es decir asintóticamente mayor que h.

La distribución bidimensional de la que se remuestrea en el paso 2, $\hat{F}_g(x,y)$, puede sustituirse por una distribución suavizada en ambas variables:

$$\tilde{F}_g(x,y) = \frac{1}{n} \sum_{i=1}^n \int_{-\infty}^y K_g(s - Y_i) ds \int_{-\infty}^x K_g(t - X_i) dt.$$

Esto es lo mismo que remuestrear de la densidad bidimensional

$$\hat{f}_g(x,y) = \frac{1}{n} \sum_{i=1}^n K_g(x - X_i) K_g(y - Y_i),$$

que es el estimador tipo núcleo de Parzen-Rosenblatt de la variable bidimensional (X,Y).

Cálculos sencillos permiten demostrar que si (X^*, Y^*) tiene distribución $\hat{F}_q(x, y)$, entonces,

- X^* tiene densidad marginal bootstrap $\hat{f}_g(x)$.
- La distribución marginal bootstrap de Y^* es la empírica de las Y_i : $\hat{F}_n^Y(y) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{\{Y_i \leq y\}}$.
- La función de regresión del plan de remuestreo bootstrap coincide con la estimación de Nadaraya-Watson con ventana g, es decir,

$$E^* (Y^*|_{X^*=x}) = \hat{m}_g (x).$$

• De hecho, la distribución condicional $Y^*|_{X^*=x}$ es

$$\hat{F}_g(y|_x) = \frac{\frac{1}{n} \sum_{i=1}^n K_g(x - X_i) \mathbf{1}_{\{Y_i \le y\}}}{\frac{1}{n} \sum_{i=1}^n K_g(x - X_i)},$$

es decir, el estimador tipo núcleo Nadaraya-Watson de la distribución condicional.

Esta última observación da pie a diseñar un método que permita simular valores de (X^*, Y^*) , tal y como se requiere en el paso 2 del plan de remuestreo. Para ello basta con simular X^* a partir del estimador de Parzen-Rosenblatt construído con la muestra de la variable explicativa (es decir, el bootstrap suavizado clásico) y luego simular Y^* a partir de la distribución discreta que da a cada dato Y_i la probabilidad

$$w_i(X^*) = \frac{\frac{1}{n} K_g(X^* - X_i)}{\frac{1}{n} \sum_{j=1}^n K_g(X^* - X_j)}, i = 1, 2, \dots, n.$$

Las tasas de convergencia de la aproximación bootstrap proporcionadas por este método resultan:

$$\sup_{z \in \mathbf{R}} \left| P^{Y|_{X}} \left[\sqrt{nh} \left(\hat{m}_{h} \left(x \right) - m \left(x \right) \right) \leq z \right] - P^{Y^{*}|_{X^{*}}} \left[\sqrt{nh} \left(\hat{m}_{h}^{*} \left(x \right) - \hat{m}_{g} \left(x \right) \right) \leq z \right] \right|$$

$$= O_{P^{*}} \left(n^{-2/9} \right), \text{ en probabilidad } P,$$

$$\sup_{z \in \mathbf{R}} \left| P \left[\sqrt{nh} \left(\hat{m}_{h} \left(x \right) - m \left(x \right) \right) \leq z \right] - P^{*} \left[\sqrt{nh} \left(\hat{m}_{h}^{*} \left(x \right) - \hat{m}_{g} \left(x \right) \right) \leq z \right] \right|$$

$$= O_{P} \left(n^{-2/9} \right).$$

7.2.3 Resumen comparativo

La siguiente tabla recoge un resumen de las tasas de convergencia obtenidas con cada una de las aproximaciones estudiadas:

Aproximación	condicional	incondicional
Normal teórica Plug-in Wild bootstrap Bootstrap suavizado en la variable explicativa	$O_P\left(n^{-1/5}\right)$ $O_P\left(n^{-1/5}\right)$ $O_P\left(n^{-2/9}\right)$ $O_{P^*}\left(n^{-2/9}\right)$ en probabilidad P	$O\left(n^{-2/5}\right) \ O_P\left(n^{-2/9}\right) \ O_P\left(n^{-1/5}\right) \ O_P\left(n^{-1/5}\right)$

Exceptuando las tasas de convergencia de la normal teórica (aproximación inutilizable en la práctica) se observa que el método bootstrap suavizado en la variable explicativa presenta órdenes que igualan o mejoran al resto de los métodos, tanto en un aspecto condicional como condicionalmente. Así, condicionalmente los dos remuestreos bootstrap son los que ofrecen una mejor tasa de convergencia $(n^{-2/9}$, frente a $n^{-1/5}$ de la aproximación plug-in). En el sentido incondicional el bootstrap suavizado en la variable explicativa y la aproximación plug-in son los que presentan un mejor orden $(n^{-2/9}$, frente a $n^{-1/5}$ del wild bootstrap).

Capítulo 8

El Bootstrap con datos censurados

En este capítulo se hace una introducción a los datos censurados y se presentan diversos métodos de remuestreo para este contexto, analizando la validez de los mismos.

8.1 Introducción a los datos censurados

Considérese una variable de interés, X, no negativa que no siempre es posible observar (por ejemplo un tiempo de vida) pues, en ocasiones, ocurre otro fenómeno previo, cuyo tiempo hasta su ocurrencia, C, puede ser anterior a la variable de interés (es decir, C < X). Cuando X es un tiempo de vida ante una enfermedad mortal, la variable C suele representar el tiempo hasta el fin del estudio, el tiempo hasta que el individuo fallezca por otra causa o el tiempo hasta que se produce una pérdida de seguimiento. Es habitual definir el indicador de no censura $\delta = \mathbf{1}_{\{X \le C\}}$. Si C < X diremos que la observación es censurada y sólo seremos capaces de observar C junto con el valor de δ . Cuando $X \le C$ entonces somos capaces de observar la variable de interés y además el valor de δ .

En resumen, en lugar de observar la muestra (X_1, X_2, \ldots, X_n) , sólo podemos observar $((T_1, \delta_1), (T_2, \delta_2), \ldots, (T_n, \delta_n))$, siendo $T_i = \min\{X_i, C_i\}$ los tiempos de vida observados y $\delta_i = \mathbf{1}_{\{X_i \leq C_i\}} = \mathbf{1}_{\{T_i = X_i\}}$ los indicadores de censura, para $i = 1, 2, \ldots, n$. En el modelo de censura aleatoria por la derecha, que es el más habitual, se supone que X_i y C_i $(i = 1, 2, \ldots, n)$ son independientes. Además (X_1, X_2, \ldots, X_n) son mutuamente independientes, como también lo son (C_1, C_2, \ldots, C_n) .

Denotando por F (respectivamente G y H) la función de distribución de la variable aleatoria X (respectivamente C y T), la condición de independencia implica que 1 - H(t) = (1 - F(t))(1 - G(t)).

8.1.1 Estimador de Kaplan-Meier

Puede verse fácilmente que, bajo censura aleatoria por la derecha, la distribución empírica $F_n(t) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{T_i \leq t\}}$ deja de ser consistente. En este contexto el estimador no paramétrico de máxima verosimilitud de la función de distribución es el estimador límite-producto, propuesto por Kaplan y Meier (1958), obtenido a partir de la función de supervivencia (S(t) = 1 - F(t)):

$$\hat{S}\left(t\right) = 1 - \hat{F}\left(t\right) = \prod_{T_{(i)} < t} \left(\frac{n-i}{n-i+1}\right)^{\delta_{(i)}},$$

siendo $(T_{(1)}, T_{(2)}, \ldots, T_{(n)})$ la muestra de estadísticos ordenados de los tiempos de vida observados y $(\delta_{(1)}, \delta_{(2)}, \ldots, \delta_{(n)})$ los correspondientes concomitantes.

Ejemplo 8.1 (Estimación de Kaplan-Meier). Se observan los datos censurados: (2.1,0), (3.2,1), (1.2,1), (4.3,0), (1.8,1), (3.9,1), (2.7,0), (2.5,1). El estimador resulta:

$$\hat{F}(t) = \begin{cases} 0 & \text{si } t < 1.2\\ 0.125 & \text{si } 1.2 \le t < 1.8\\ 0.25 & \text{si } 1.8 \le t < 2.5\\ 0.4 & \text{si } 2.5 \le t < 3.2\\ 0.6 & \text{si } 3.2 \le t < 3.9\\ 0.8 & \text{si } 3.9 \le t \end{cases}$$

En R se recomienda emplear el paquete survival para el análisis de datos censurados. Podemos utilizar la función survfit() para obtener la estimación Kaplan-Meier de la función de supervivencia (y a partir de ella la de la distribución). En este caso podríamos utilizar el siguiente código [Figura 8.1]:

```
datcen <- data.frame(t = c(2.1, 3.2, 1.2, 4.3, 1.8, 3.9, 2.7, 2.5),
                 cen = c(0, 1, 1, 0, 1, 1, 0, 1))
library(survival)
fit <- survfit(Surv(t, cen)~1, data = datcen)
summary(fit)
## Call: survfit(formula = Surv(t, cen) ~ 1, data = datcen)
##
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
     1.2
                      1
                           0.875
                                    0.117
                                                0.6734
##
     1.8
              7
                                                0.5027
                      1
                           0.750
                                    0.153
                                                                   1
##
     2.5
                      1
                           0.600
                                    0.182
                                                0.3315
##
     3.2
              3
                      1
                           0.400
                                    0.203
                                                0.1477
                                                                   1
##
     3.9
                           0.200
                                    0.174
                                                0.0363
old.par \leftarrow par(mfrow = c(1, 2))
plot(fit, main = "Método plot de un objeto 'survfit'")
legend("bottomleft", c("supervivencia", "conf.int"), lty = 1:2)
with(fit, {
  plot(c(0, time), c(1, surv), type = "s", lty = 2,
       main = "Estimaciones funciones supervicencia y distribución",
       xlab = "t", ylab = "", ylim = c(0, 1))
  lines(c(0, time), 1 - c(1, surv), type = "s")
  legend("bottomright", c("supervivencia", "distribución"), lty = 2:1)
})
par(old.par)
```

8.1.2 Distribución asintótica del estimador de Kaplan-Meier

El estimador de Kaplan-Meier sólo otorga pesos positivos a los datos no censurados, aunque la forma de distribuirse los datos censurados en medio de los no censurados afecta a los pesos de estos últimos. Por otra parte, en ausencia de censura (es decir $\delta_i = 1, i = 1, 2, ..., n$), el estimador de Kaplan-Meier coincide con la distribución empírica.

La obtención de la propiedades de sesgo y varianza asintóticos y distribución límite del estimador de Kaplan-Meier es mucho más laboriosa que en el caso de la distribución empírica, en un contexto sin censura. Esto es así porque el estimador de Kaplan-Meier deja de ser una suma de variables iid, como sí ocurre con la empírica.

Figura 8.1: Estimaciones Kaplan-Meier de la función de supervivencia y de la función de distribución.

Breslow y Crowley (1974) obtienen el siguiente resultado para la distribución límite para el estimador de Kaplan-Meier:

$$\sqrt{n}\left(\hat{F}\left(t\right) - F\left(t\right)\right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, \sigma^{2}\left(t\right)\right),$$

siendo

$$\sigma^{2}(t) = (1 - F(t))^{2} \int_{0}^{t} \frac{dH_{1}(u)}{(1 - H(u))^{2}}, t \leq H^{-1}(1),$$

$$H_{1}(u) = P(X \leq u, X \leq C) = P(T \leq u, \delta = 1).$$

También existen resultados de convergencia en distribución del proceso estocástico

$$\left\{ \sqrt{n} \left(\hat{F}(t) - F(t) \right), t \in \left[0, H^{-1}(1) \right] \right\}$$

a un proceso gaussiano límite.

8.2 Remuestreos Bootstrap en presencia de censura

Estos métodos tratan del mecanismo bootstrap para aproximar la distribución de un estadístico, $R(\mathbf{T}, \boldsymbol{\delta})$, siendo $\mathbf{T} = (T_1, T_2, \dots, T_n)$ y $\boldsymbol{\delta} = (\delta_1, \delta_2, \dots, \delta_n)$. Los dos siguientes métodos de remuestreo fueron propuestos por Efron (1981).

8.2.1 El bootstrap simple

Procede de la siguiente forma:

- 1. Construir la distribución empírica bidimensional, $F_n^{T,\delta}$, de la muestra $\{(T_1,\delta_1),(T_2,\delta_2),\dots,(T_n,\delta_n)\}$.
- 2. Arrojar remuestras $\{(T_1^*, \delta_1^*), (T_2^*, \delta_2^*), \dots, (T_n^*, \delta_n^*)\}$ a partir de dicha distribución empírica. Esto es tanto como decir que

$$P^*((T^*, \delta^*) = (T_i, \delta_i)) = \frac{1}{n}$$
, para $i = 1, 2, \dots, n$.

3. Evaluar el estadístico de interés en el vector que contiene la remuestra bootstrap: $R^* = R(\mathbf{T}^*, \boldsymbol{\delta}^*)$, con $\mathbf{T}^* = (T_1^*, T_2^*, \dots, T_n^*)$ y

$$\boldsymbol{\delta}^* = (\delta_1^*, \delta_2^*, \dots, \delta_n^*).$$

4. Aproximar la distribución en el muestreo del estadístico $R(\mathbf{T}, \boldsymbol{\delta})$ por la distribución en el remuestreo de $R(\mathbf{T}^*, \boldsymbol{\delta}^*)$.

Este método es de muy rápida implementación y ejecución.

8.2.2 El bootstrap obvio

Para detallar el método es necesario definir el estimador de Kaplan-Meier, $\hat{G}(t)$, de la variable censurante, a partir de

$$1 - \hat{G}(t) = \prod_{T_{(i)} \le t} \left(\frac{n-i}{n-i+1}\right)^{1-\delta_{(i)}}.$$

Observemos que este estimador es totalmente semejante al de Kaplan-Meier de la variable de interés pero simplemente reemplazando cada valor $\delta_{(i)}$ por $1 - \delta_{(i)}$.

El mecanismo de remuestreo procede como sigue:

- 1. Construir los estimadores de Kaplan-Meier de las distribuciones de la variable de interés, $\hat{F}(t)$, y de la variable censurante, $\hat{G}(t)$.
- 2. Para cada índice $i=1,2,\ldots,n$, arrojar observaciones bootstrap independientes, X_i^* con distribución \hat{F} y C_i^* con distribución \hat{G} .
- 3. Definir $T_i^* = \min \{X_i^*, C_i^*\}$ y $\delta_i^* = \mathbf{1}_{\{X_i^* \leq C_i^*\}}$, para $i = 1, 2, \dots, n$, y considerar la remuestra bootstrap $(\mathbf{T}^*, \boldsymbol{\delta}^*)$, con $\mathbf{T}^* = (T_1^*, T_2^*, \dots, T_n^*)$ y $\boldsymbol{\delta}^* = (\delta_1^*, \delta_2^*, \dots, \delta_n^*)$.
- 4. Aproximar la distribución en el muestreo del estadístico $R(\mathbf{T}, \boldsymbol{\delta})$ por la distribución en el remuestreo de su análogo bootstrap, $R(\mathbf{T}^*, \boldsymbol{\delta}^*)$.

Obviamente, este método de remuestreo imita fielmente el modelo de datos censurados por la derecha. Su ejecución es considerablemente más lenta que la del método simple, pues necesita de la construcción de los estimadores de Kaplan-Meier, de la obtención de remuestras a partir de ellos y de algunos cálculos adicionales.

8.3 Relaciones entre los métodos de remuestreo bajo censura

8.3.1 Equivalencia entre el bootstrap simple y el obvio

Es fácil demostrar que el bootstrap simple y el obvio son planes de remuestreo equivalentes (cuando se supone que en la muestra no existe ninguna observación no censurada que esté empatada con otra censurada). Esta equivalencia se establece en el sentido de que la distribución bootstrap de (T^*, δ^*) es la misma para cualquiera de los dos métodos.

Así, si (T^*, δ^*) se genera mediante el método obvio, entonces

$$\begin{split} P^*\left(T^* > t\right) &= P^*\left(X^* > t, C^* > t\right) \\ &= P^*\left(X^* > t\right) P^*\left(C^* > t\right) = \left(1 - \hat{F}\left(t\right)\right) \left(1 - \hat{G}\left(t\right)\right) \\ &= \left[\prod_{T_{(i)} \le t} \left(\frac{n - i}{n - i + 1}\right)^{\delta_{(i)}}\right] \left[\prod_{T_{(i)} \le t} \left(\frac{n - i}{n - i + 1}\right)^{1 - \delta_{(i)}}\right] \\ &= \prod_{T_{(i)} \le t} \frac{n - i}{n - i + 1} = \prod_{i=1}^{\#\left\{T_{(j)} \le t\right\}} \frac{n - i}{n - i + 1} \\ &= \frac{n - 1}{n} \cdot \frac{n - 2}{n - 1} \cdot \dots \cdot \frac{n - \#\left\{T_{(j)} \le t\right\}}{n - \#\left\{T_{(j)} \le t\right\} + 1} \\ &= \frac{n - \#\left\{T_{(j)} \le t\right\}}{n} = 1 - H_n\left(t\right) = \frac{\#\left\{T_{(j)} > t\right\}}{n}, \end{split}$$

siendo $H_n(t)$ la distribución empírica de la muestra (T_1, T_2, \dots, T_n) .

Esto demuestra que la distribución bootstrap marginal de T^* es la misma para ambos remuestreos. Sólo resta probar pues que la distribución condicionada $\delta^*|_{T^*=T_i}$ es idéntica en ambos casos. Pero esto es inmediato ya que, en los dos remuestreos esa distribución condicionada es la degenerada en el valor δ_i .

8.3.2 El bootstrap de Reid

Es otro método alternativo propuesto por Reid (1981). Consta de los siguientes pasos:

- 1. Construir el estimador de Kaplan-Meier, $\hat{F}(t)$, de la muestra original.
- 2. Arrojar remuestras bootstrap (todas formadas por observaciones no censuradas, T_i^* , $i=1,2,\ldots,n$) a partir de $\hat{F}(t)$.
- 3. Aproximar la distribución en el muestreo de $R(\mathbf{T}, \boldsymbol{\delta})$, por la distribución bootstrap de $R(\mathbf{T}^*, \mathbf{1})$, siendo $\mathbf{1}$ el vector formado por n unos.

8.3.3 Validez de los planes de remuestreo

Akritas (1986) demuestra que los procesos bootstrap $\sqrt{n}\left(\hat{F}_{Efron}^*\left(t\right)-\hat{F}\left(t\right)\right)$ y $\sqrt{n}\left(\hat{F}_{Reid}^*\left(t\right)-\hat{F}\left(t\right)\right)$ tienden a sendos procesos límite distintos. Aquí \hat{F}_{Efron}^* denota la versión bootstrap del estimador de Kaplan-Meier bajo el remuestreo de Efron (cualquiera de ellos, ya que el remuestreo simple y el obvio son equivalentes) y \hat{F}_{Reid}^* es la correspondiente versión bootstrap del estimador de Kaplan-Meier bajo el remuestreo de Reid (una distribución empírica, al fin y al cabo, porque en el remuestreo de Reid todas las observaciones son no censuradas).

Además el proceso límite del estimador de Kaplan-Meier, $\sqrt{n}\left(\hat{F}\left(t\right)-F\left(t\right)\right)$, es el mismo que el del bootstrap de Efron. Como consecuencia el remuestreo de Efron es consistente y el de Reid es inconsistente.

8.4 Implementación en R (con los paquetes boot y survival)

La función censboot() del paquete boot implementa distintos métodos de remuestreo para datos censurados. Por defecto utiliza el bootstrap simple (sim = "ordinary") y su uso es prácticamente igual al del bootstrap uniforme con la función boot() (descrita en la Sección 1.4.1), la única diferencia es que la función statistic

solo tiene los datos como único parámetro (aunque en este caso podríamos emplear también la función boot()).

8.4.1 Bootstrap simple

Como ejemplo utilizaremos el conjunto de datos channing del paquete boot, que contiene la edad de entrada y de partida o muerte de las personas que pasaron por el centro de retiro 'Channing House' (Palo Alto, California), desde su apertura en 1964 hasta el 1 de julio de 1975 (ver Sección 3.5 y 'Practical 3.2', de Davison y Hinkley, 1997). En primer lugar consideraremos únicamente la muestra de hombres:

```
# Datos
library(boot)
data(channing)
# Calcular edad (de partida o muerte) en años
channing$age <- (channing$entry + channing$time)/12
# Seleccionar hombres (y de paso hacer que `index = c(1, 2)` para `censboot()`)
chan <- subset(channing, sex=="Male", c(age, cens))</pre>
# Estimación supervivencia
library(survival)
chan.F <- survfit(Surv(age, cens)~1, data = chan)</pre>
chan.F
## Call: survfit(formula = Surv(age, cens) ~ 1, data = chan)
##
            events median 0.95LCL 0.95UCL
      97.0
               46.0
                       87.0
                                85.8
                                        90.4
# plot(chan.F)
# Estimaciones de interés
with(chan.F,
    c(s75 = max(surv[time > 75]), s85 = max(surv[time > 85]),
      p75 = min(time[surv \leftarrow 0.75]), p50 = min(time[surv \leftarrow 0.5]))
)
##
          s75
                      s85
                                  p75
                                              p50
## 0.9160745 0.6347541 82.4166667 87.0000000
# Bootstrap
# library(boot)
chan.stat <- function(data) {</pre>
    s <- survfit(Surv(age, cens)~1, data = data)
    with(s, c(s75 = max(surv[time > 75]), s85 = max(surv[time > 85]),
            p75 = min(time[surv \leftarrow 0.75]), p50 = min(time[surv \leftarrow 0.5])))
}
set.seed(1)
chan.boot <- censboot(chan, chan.stat, R = 199) # sim = "ordinary"</pre>
chan.boot
##
## CASE RESAMPLING BOOTSTRAP FOR CENSORED DATA
##
##
## Call:
## censboot(data = chan, statistic = chan.stat, R = 199)
##
```

```
## ## Bootstrap Statistics :
## original bias std. error
## t1* 0.9160745 -0.010197967 0.03107258
## t2* 0.6347541 -0.006979654 0.05572596
## t3* 82.4166667 -0.061139028 1.23839853
## t4* 87.0000000 0.195142379 1.09877565
```

8.4.2 Otros métodos de remuestreo

La función censboot() implementa otros dos métodos de remuestreo, sim = c("cond", "weird"), aunque en ambos casos hay que establecer en el parámetro F. surv la estimación de Kaplan-Meier de la supervivencia y, si sim = "cond", la correspondiente a la variable censurante en G. surv. Se recomienda estimarlas con la función survfit() del paquete survival (ver Figura 8.2):

Figura 8.2: Estimaciones de la supervivencia (izquierda; indicando los tiempos de las observaciones censuradas) y de la variable censurante (derecha; indicando los de las no censuradas).

```
par(old.par)
```

En el boostrap condicional (sim = "cond") se condiciona el muestreo al patrón de censura observado. El mecanismo es similar al del bootstrap obvio:

- 1. Construir los estimadores de Kaplan-Meier de las distribuciones de la variable de interés, $\hat{F}(t)$, y de la variable censurante, $\hat{G}(t)$.
- 2. Para cada índice i = 1, 2, ..., n, generar X_i^* independientes con distribución \hat{F} .
- 3. Si la i-ésima observación está censurada ($\delta_i = 0$) se toma $C_i^* = X_i$ y si no ($\delta_i = 1$) se genera un valor

de la estimación de la distribución de la variable censurante condicionada a $C > X_i$:

$$\hat{G}\left(t\mid_{t>X_{i}}\right) = \frac{\hat{G}(t) - \hat{G}(X_{i})}{1 - \hat{G}(X_{i})}.$$

4. Definir $T_i^* = \min\{X_i^*, C_i^*\}$ y $\delta_i^* = \mathbf{1}_{\left\{X_i^* \leq C_i^*\right\}}$, para $i = 1, 2, \dots, n$, y considerar la remuestra bootstrap $(\mathbf{T}^*, \boldsymbol{\delta}^*)$, con $\mathbf{T}^* = (T_1^*, T_2^*, \dots, T_n^*)$ y $\boldsymbol{\delta}^* = (\delta_1^*, \delta_2^*, \dots, \delta_n^*)$.

El otro método (sim = "weird") es el denominado weird bootstrap (Andersen et al., 1993) que emplea la estimación de Nelson-Aalen de la función de riesgo acumulada para generar los valores (e.g. Sección 3.5.2 de Davison y Hinkley, 1997).

El siguiente código muestra un ejemplo de la aplicación de ambos métodos:

```
chan.boot2 <- censboot(chan, chan.stat, R = 199, F.surv = chan.F,</pre>
                  G.surv = chan.G, sim = "cond")
chan.boot2
##
  CONDITIONAL BOOTSTRAP FOR CENSORED DATA
##
##
## Call:
  censboot(data = chan, statistic = chan.stat, R = 199, F.surv = chan.F,
##
       G.surv = chan.G, sim = "cond")
##
##
##
## Bootstrap Statistics :
         original
                        bias
                                std. error
## t1* 0.9160745 0.001487588
                                0.02733430
## t2* 0.6347541 -0.002352270
                                0.05369653
## t3* 82.4166667 0.056113903
                                1.09585116
## t4* 87.0000000 0.311557789 1.07687814
chan.boot3 <- censboot(chan, chan.stat, R = 199, F.surv = chan.F,
                  sim = "weird")
chan.boot3
##
  WEIRD BOOTSTRAP FOR CENSORED DATA
##
##
## Call:
   censboot(data = chan, statistic = chan.stat, R = 199, F.surv = chan.F,
       sim = "weird")
##
##
##
## Bootstrap Statistics :
         original
                                 std. error
                         bias
       0.9160745 -0.0009515623
## t1*
                                 0.02451369
## t2* 0.6347541 -0.0046012462
                                 0.04549111
## t3* 82.4166667 -0.0477386935
                                 1.05510180
## t4* 87.0000000 0.2985762144 0.94422869
```

8.5. EJERCICIOS 95

8.5 Ejercicios

Ejercicio 8.1 (Bootstrap censurado por estratos). Analizar el conjunto de datos channing completo, teniendo en cuenta el sexo como estrato (i.e. Surv(age, cens) ~ sex y strata = chan\$sex)

```
# Datos
data(channing)
# Calcular edad (de partida o muerte) en años
channing$age <- (channing$entry + channing$time)/12</pre>
# Seleccionar variables
chan <-channing[c("age", "cens", "sex")]</pre>
# Estimación supervivencia
library(survival)
chan.F <- survfit(Surv(age, cens) ~ sex, data = chan)</pre>
chan.F
## Call: survfit(formula = Surv(age, cens) ~ sex, data = chan)
##
##
                n events median 0.95LCL 0.95UCL
## sex=Female 365
                      130
                              88
                                     86.7
                                             89.5
## sex=Male
               97
                       46
                              87
                                     85.8
                                             90.4
plot(chan.F, lty = 1:2, xlim = c(60, 100))
```


Figura 8.3: Estimaciones de la supervivencia.

```
res <- summary(chan.F)
# res
str(res)</pre>
```

```
## List of 16
## $ n
                 : int [1:2] 365 97
## $ time
                : num [1:146] 67 68.5 69.2 70 70.4 ...
## $ n.risk
                 : num [1:146] 364 359 355 353 352 346 344 340 335 334 ...
## $ n.event
                : num [1:146] 1 1 1 1 1 1 1 1 1 1 ...
                : num [1:146] 2 3 3 1 0 6 0 3 4 0 ...
## $ n.censor
                : num [1:146] 0.997 0.994 0.992 0.989 0.986 ...
## $ surv
## $ type
                : chr "right"
## $ strata
                : Factor w/ 2 levels "sex=Female", "sex=Male": 1 1 1 1 1 1 1 1 1 1 ...
                : num [1:146] 0.00274 0.0039 0.00479 0.00554 0.00619 ...
## $ std.err
## $ lower
                : num [1:146] 0.992 0.987 0.982 0.978 0.974 ...
## $ upper
                 : num [1:146] 1 1 1 1 0.998 ...
## $ conf.type : chr "log"
## $ conf.int
                : num 0.95
## $ call
                  : language survfit(formula = Surv(age, cens) ~ sex, data = chan)
## $ table
                : num [1:2, 1:9] 365 97 365 97 365 ...
   ..- attr(*, "dimnames")=List of 2
##
   ....$ : chr [1:2] "sex=Female" "sex=Male"
    ....$ : chr [1:9] "records" "n.max" "n.start" "events" ...
## $ rmean.endtime: num [1:2] 98.3 98.3
## - attr(*, "class")= chr "summary.survfit"
# Estimaciones de interés
res$table[, c("*rmean", "median")]
##
               *rmean median
## sex=Female 88.21716
                          88
## sex=Male
             86.71872
                          87
as.numeric(res$table[, c("*rmean", "median")])
## [1] 88.21716 86.71872 88.00000 87.00000
```

Ejercicio 8.2 (Bootstrap censurado con riesgo proporcional de Cox). Reproducir el ejemplo del modelo de riesgo proporcional de Cox en (Canty, 2002, Rnews_2002-3):

```
# Datos
data(melanoma)
mel <- melanoma[melanoma$ulcer == 1, ]</pre>
mel$cens <- 1 * (mel$status == 1)
# Estimación supervivencia
library(survival)
# Modelo de riesgo proporcional de Cox
mel.cox <- coxph(Surv(time, cens) ~ thickness, data = mel)</pre>
mel.cox
## Call:
## coxph(formula = Surv(time, cens) ~ thickness, data = mel)
##
##
                coef exp(coef) se(coef)
## thickness 0.09968 1.10481 0.04052 2.46 0.0139
##
## Likelihood ratio test=5 on 1 df, p=0.02541
## n= 90, number of events= 41
# summary(mel.cox)
# Estadísticos de interés
```

8.5. EJERCICIOS 97

mel.cox\$coefficients

thickness ## 0.09967665

Capítulo 9

El Bootstrap con datos dependientes

En este capítulo se presentan gran cantidad de métodos bootstrap para realizar inferencia, así como predicción, en el contexto de datos dependientes. En primer lugar se hace una introducción a las condiciones habituales de dependencia y a los modelo paramétricos de dependencia, para luego centrarse en los métodos de remuestreo en ambos contextos.

En cada uno de los dos contextos (estimación y predicción) se estudiarán dos situaciones drásticamente diferentes. En la primera de ellas consideraremos modelos en los que la estructura de dependencia está explícitamente modelizada (normalmente a través de una ecuación de autorregresión), mientras que la segunda trata el caso en que no existe ninguna especificación explícita de la estructura de dependencia (simplemente se asumen condiciones mixing, por ejemplo). Una revisión sobre los resultados principales puede verse en Cao (1999).

9.1 Introducción a las condiciones de dependencia y modelos habituales de datos dependientes

9.1.1 Situaciones de dependencia general

Consideramos un proceso estocástico en tiempo discreto y con espacio de estados continuo (p. ej. \mathbb{R}), $\{X_t\}_{t\in\mathbb{Z}}$, del cual observamos parte de su trayectoria: (X_1,X_2,\ldots,X_n) , es decir una muestra de datos dependientes. Este tipo de procesos estocásticos suelen llamarse series temporales.

Normalmente supondremos que el proceso $\{X_t\}_{t\in\mathbb{Z}}$ es estacionario. En ocasiones se requerirá además que sea fuertemente mixing:

$$\sup_{A \in \mathcal{F}_{1}^{n}, B \in \mathcal{F}_{n+k}^{\infty}} |P(A \cap B) - P(A)P(B)| \le \alpha_{k}, \text{ con } \alpha_{k} \to 0,$$

o bien uniformemente mixing:

$$|P(A \cap B) - P(A)P(B)| \le \phi_k P(A), \forall A \in \mathcal{F}_1^n, \forall B \in \mathcal{F}_{n+k}^\infty, \text{ con } \phi_k \to 0,$$

siendo \mathcal{F}_s^t la σ -algebra generada por las variables aleatorias X_s, \ldots, X_t .

Estas condiciones establecen que la dependencia entre las variables aleatorias que conforman las observaciones de la muestra se atenúa a medida que sus instantes temporales se distancian.

9.1.2 Modelos paramétricos de dependencia

Los modelos paramétricos más habituales para datos dependientes y estacionarios son los autorregresivos (AR(p)):

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_p X_{t-p} + a_t, \ t \in \mathbb{Z},$$

de medias móviles (MA(q)):

$$X_t = a_t - \theta_1 a_{t-1} - \theta_2 a_{t-2} - \dots - \theta_n a_{t-n}, t \in \mathbb{Z}$$

y la mezcla de ambos (ARMA(p,q)):

$$X_{t} = \phi_{1} X_{t-1} + \phi_{2} X_{t-2} + \dots + \phi_{p} X_{t-p}$$

+ $a_{t} - \theta_{1} a_{t-1} - \theta_{2} a_{t-2} - \dots - \theta_{q} a_{t-q},$

En las anteriores expresiones los $\{a_t\}_{t\in\mathbb{Z}}$ representan una sucesión de variables independientes con la misma distribución (ruido blanco), habitualmente con distribución normal.

9.2 El bootstrap en la estimación con datos dependientes

El objetivo de esta sección es mostrar distintos métodos de remuestreo para realizar inferencia sobre los parámetros de una serie temporal. Comenzaremos tratando los modelos de dependencia explícita para luego abordar la situación en que tan sólo existen condiciones generales de dependencia.

9.2.1 Modelos paramétricos de dependencia

Consideremos uno de los casos más simples, dado por el modelo AR(p):

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_n X_{t-n} + a_t,$$

donde $\{a_t\}$ es una sucesión de variables aleatorias independientes de media cero (ruido blanco), de tal forma que a_t es independiente del pasado de X_t : $\{X_{t-1}, X_{t-2}, \ldots\}$.

En el contexto de estimación error cuadrático medio de predicción (PMSE), Stine (1987) propone un método bootstrap que mejora el estimador clásico de sustitución del PMSE del mejor predictor lineal estimado (ver capítulo 2 de Fuller (1976)), cuando la distribución del ruido blanco no tiene porqué ser normal. El método procede como sigue:

1. Obtener una estimación de los coeficientes de autorregresión:

$$\widehat{\phi}_1, \widehat{\phi}_2, \dots, \widehat{\phi}_p.$$

En el artículo de Stine estos estimadores se obtienen por el método de mínimos cuadrados.

2. Calcular los residuos (para aquellos índices que sea posible):

$$\widehat{a}_t = X_t - \widehat{\phi}_1 X_{t-1} - \widehat{\phi}_2 X_{t-2} + \dots - \widehat{\phi}_p X_{t-p}, \quad t = p+1, p+2, \dots, n.$$

Estos valores son sustitutos de los errores inobservables a_t .

3. Calcular la distribución empírica de los residuos corregidos (recentrados y reescalados):

$$\widehat{F_n^a}(x) = \frac{1}{n-p} \sum_{t=n+1}^n 1_{\{\widehat{a}_t' \le x\}},$$

donde
$$\hat{a}'_t = \hat{a}_t - \bar{a}$$
 y $\bar{a} = \frac{1}{n-p} \sum_{t=p+1}^n \hat{a}_t$.

- 4. Arrojar $a_t^*, t = 1, 2, \dots, n + k$ observaciones iid con distribución $\widehat{F_n}^{\widehat{a}}$.
- 5. Fijar los primeros p valores de las réplicas bootstrap de la serie:

$$X_1^*, X_2^*, \dots, X_p^*$$

igual a cero (o con igual probabilidad de los n - p + 1 bloques posibles de observaciones consecutivas de la serie original) y definir:

$$X_t^* = \widehat{\phi}_1 X_{t-1}^* + \widehat{\phi}_2 X_{t-2}^* + \dots + \widehat{\phi}_p X_{t-p}^* + a_t^*, \quad t = p+1, \dots, n+k.$$

- 6. A partir de la remuestra bootstrap (hasta el instante n), calcular las versiones bootstrap, $\widehat{\phi}_1^*, \widehat{\phi}_2^*, \dots, \widehat{\phi}_p^*$, de los estimadores y obtener \widehat{X}_{n+k}^* , la predicción de X_{n+k}^* , usando la versión bootstrap de los estimadores de los parámetros y las últimas observaciones de la remuestra bootstrap.
- 7. Aproximar el PMSE mediante su análogo bootstrap:

$$PMSE^* = E^* \left[\left(\hat{X}_{n+k}^* - X_{n+k}^* \right)^2 \right].$$

Ferretti y Romo (1996) demuestran la consistencia de un bootstrap basado en los residuos (en el sentido de convergencia débil de la distribución bootstrap) para contrastes de raíz unitaria en series temporales del tipo AR(1), tanto en el caso de errores iid como cuando el error sigue también un modelo AR(1). Heimann y Kreiss (1996) dan un resultado similar, sólo para el caso de errores iid, cuando el tamaño muestral de las remuestras bootstrap es m_n , de forma que $\frac{m_n}{n} \to 0$ (subremuestreo).

Las ideas generales sobre el bootstrap para modelos autorregresivos pueden extenderse al bootstrap de series temporales autorregresivas y de media móvil. Consideremos un modelo ARMA(p,q):

$$X_{t} = \phi_{1} X_{t-1} + \phi_{2} X_{t-2} + \dots + \phi_{p} X_{t-p}$$
$$+ a_{t} - \theta_{1} a_{t-1} - \theta_{2} a_{t-2} - \dots - \theta_{q} a_{t-q},$$

o, equivalentemente,

$$\phi(B)X_t = \theta(B)a_t,$$

donde $\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p$, $\theta(B) = 1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q$ y B es el operador retardo: $BX_t = X_{t-1}$. La diferencia principal con respecto al caso autorregresivo es que ahora se necesitan estimar los coeficientes la parte de media móvil, al objeto de calcular los residuos, \hat{a}_t . Así, el algoritmo bootstrap para una serie AR(p) puede adaptarse a este caso de manera inmediata. En este contexto, Kreiss y Franke (1992) usan la representación

 $MA(\infty)$ del proceso de error en términos de la series original, $a_t = \theta(B)^{-1}\phi(B)X_t$, para construir los residuos (utilizando los parámetros estimados en la fórmula anterior) y demuestran la validez asintótica del bootstrap (en el sentido de la distancia de Mallows) para aproximar la distribución en el muestreo del M-estimador de los parámetros de un modelo ARMA(p,q).

Paparoditis (1996) demuestra la validez del bootstrap para la inferencia acerca de los parámetros de un proceso ARMA multidimensional de orden infinito. El autor propone arrojar réplicas bootstrap de modelos ARMA de orden finito creciente, de forma que ese orden tienda a infinito a cierta tasa, según crece el tamaño muestral. Bühlmann (1997) desarrolla ideas semejantes en el contexto de procesos $AR(\infty)$, introduciendo el llamado sieve bootstrap. Este método se ha extendido estimación no paramétrica de la regresión cuando la variable explicativa sigue un modelo $AR(\infty)$ (ver Bühlmann (1998)).

9.2.2 Situaciones de dependencia general

En esta sección se estudia el caso en que no se asume ningún tipo de estructura autorregresiva sobre el proceso estocástico. De hecho, asumiremos condiciones generales de dependencia, como condiciones mixing o de m-dependencia, por ejemplo.

El problema de no tener una ecuación explícita que relacione el valor actual de la serie con sus valores pasados provoca que no sea posible diseñar un plan de remuestreo a partir de un modelo de dependencia explícita.

9.2.3 El bootstrap por bloques

La primeras propuestas para evitar el problema de carecer de una expresión explícita para modelizar la dependencia corresponden a Künsch (1989) y Liu y Singh (1992), que propusieron de forma independiente el llamado bootstrap por bloques (moving blocks bootstrap o MBB). El método procede del siguiente modo:

- 1. Fijar un entero positivo, b, el tamaño del bloque, y tomar k igual al menor entero mayor o igual que $\frac{n}{b}$.
- 2. Definir los bloques (o submuestras): $B_{i,b} = (X_i, X_{i+1}, \dots, X_{i+b-1})$, o simplemente B_i , para $i = 1, 2, \dots, q$ (q = n b + 1).
- 3. Arrojar k observaciones (bloques), $\xi_1, \xi_2, \dots, \xi_k$, con distribución equiprobable sobre el conjunto de posibles bloques: $\{B_1, B_2, \dots, B_q\}$. Cada ξ_i es un vector b-dimensional $(\xi_{i,1}, \xi_{i,2}, \dots, \xi_{i,b})$.
- 4. Definir \vec{X}^* como el vector formado por las n primeras componentes de

$$(\xi_{1,1},\xi_{1,2},\ldots,\xi_{1,b},\xi_{2,1},\xi_{2,2},\ldots,\xi_{2,b},\ldots,\xi_{k,1},\xi_{k,2},\ldots,\xi_{k,b}).$$

Si tomamos b = 1, entonces k = n y se obtiene el bootstrap ordinario. Por otra parte, si b = n, tenemos k = 1 y se obtiene el remuestreo degenerado, ya que todas las réplicas bootstrap coincidirían con la muestra original.

Künsch (1989) y Liu y Singh (1992) demuestran la validez asintótica de este método bajo condiciones poco restrictivas sobre el grado de dependencia y el tamaño del bloque. Por ejemplo, Liu y Singh (1992) demuestran que si el proceso estocástico es m-dependiente (i.e., (X_t, X_{t+1}, \ldots) y (X_s, X_{s-1}, \ldots) son independientes siempre que s+m < t), si T es un funcional dos veces Frechet diferenciable y el tamaño del bloque satisface $b \to \infty$ y $b \log n/n \to 0$, entonces

$$\sup_{x \in \mathbb{R}} \left| P^* \left\{ \sqrt{n} \left(T(F_n^*) - T(F_n) \right) \le x \right\} - P \left\{ \sqrt{n} \left(T(F_n) - T(F) \right) \le x \right\} \right| \to 0,$$

en probabilidad. Naik-Nimbalkar y Rajarshi (1994) demuestran la consistencia del proceso empírico MBB bajo la condición de que $b = O(n^{1/2-\varepsilon})$, para algún $\varepsilon \in (\frac{1}{4}, \frac{1}{2})$. Bühlmann (1994) lo extiende al caso multivariante y debilita la condición sobre ε , siendo $\varepsilon \in (0, \frac{1}{2})$.

Carlstein, Do, Hall, Hesterberg y Künsch (1995) propusieron una modificación del MBB. Su idea consiste en seleccionar las remuestras de bloques de acuerdo a una cadena de Markov. El primer bloque de la remuestra bootstrap se genera igual que para el MBB ordinario. Una vez que se se seleccionado en la remuestra el bloque B_i , el siguiente bloque de la remuestra bootstrap se elige dentro de todos los posibles bloques, B_j , poniendo más probabilidad a aquellos que son precedidos por un bloque, B_{j-1} , cuyo último valor, X_{j+b-2} , es más cercano al último valor, X_{i+b-1} , del bloque B_i . En el caso j=1, esta regla no tiene sentido, ya que no existe un bloque anterior al B_1 , así que, en ese caso los autores proponen hacer que la probabilidad dependa de la distancia entre X_1 (el primer valor del bloque B_1) y el valor siguiente al último del bloque B_i , es decir X_{i+b} . De nuevo esto sólo es posible si i < q. Si i = q usan X_1 en lugar de X_{i+b} . Estas probabilidades se calculan usando pesos de tipo núcleo. Estos autores demuestran la consistencia de esta versión del MBB para el estimador bootstrap de la varianza de la media muestral.

9.2.4 Elección de b

Un asunto importante en el método bootstrap por bloques es la elección del tamaño del bloque, b. Hall, Horowitz y Jing (1995) considera este problema en el contexto de la estimación bootstrap del sesgo y la varianza. Obtienen una expresión asintótica para el error cuadrático medio: $n^{-2}(C_1b^{-2} + C_2n^{-1}b)$, donde C_1 y C_2 son constantes desconocidas que dependen del problema de estimación del que se trate. Está claro entonces que el tamaño óptimo del bloque (en el sentido del error cuadrático medio) es de orden $n^{1/3}$.

Un resultado importante de utilidad para probar la validez del MBB en muchos contextos es el dado por Radulović (1996). Este autor demuestra que siempre que una sucesión de variables aleatorias fuertemente mixing satisface el Teorema Central del Límite, dicho resultado también es válido para la versión bootstrap por bloques.

9.2.5 El bootstrap estacionario

Consideremos el bootstrap por bloques para una muestra, $(X_1, X_2, ..., X_n)$, de tamaño n = 100 y el tamaño del bloque b = 10. Podemos calcular fácilmente las distribuciones bootstrap conjuntas de (X_{10}^*, X_{11}^*) y (X_9^*, X_{10}^*) :

$$P^* \{ (X_{10}^*, X_{11}^*) = (X_i, X_j) \} = \frac{1}{91^2}, \quad \text{para} \quad i = 10, 11, \dots, 100;$$
$$j = 1, 2, \dots, 91$$
$$P^* \{ (X_9^*, X_{10}^*) = (X_i, X_j) \} = \frac{1}{91}, \quad \text{para} \quad i = 9, 10, \dots, 99; \ j = i + 1.$$

Como estas distribuciones bootstrap son diferentes entonces el MBB no es estacionario.

Con el fin de remediar la falta de estacionariedad del MBB, Politis y Romano (1994a) proponen el llamado bootstrap estacionario (stationary bootstrap, SB). El método necesita de la elección de un número $p \in [0, 1]$ y puede presentarse de dos formas equivalentes:

SB1:

- 1. Arrojar X_1^* de F_n , la distribución empírica construida con las muestra (X_1, X_2, \dots, X_n) .
- 2. Una vez que se ha arrojado el valor $X_i^* = X_j$ (para algún $j \in \{1, 2, ..., n-1\}$) con i < n, se define la siguiente observación bootstrap, X_{i+1}^* , como X_{j+1} , con probabilidad 1-p y arrojada de la función de distribución empírica de la muestra, con probabilidad p. En el caso j = n, la observación X_{j+1} se reemplaza por X_1 .

SB2:

- 1. Definir los bloques circulares $B_{i,b}=(X_i,X_{i+1},\ldots,X_{i+b-1})$ con $b\in\mathbb{N},\ i=1,2,\ldots,n$ y $X_t=X_{((t-1)\mathrm{mod}\ n)+1}$ si t>n.
- 2. Arrojar realizaciones iid, L_1, L_2, \ldots , con distribución geométrica de parámetro p, i.e.

$$P(L_1 = m) = p(1-p)^{m-1}, m = 1, 2, \dots$$

- 3. Obtener enteros aleatorios, I_1, I_2, \ldots , con distribución equiprobable sobre el conjunto $\{1, 2, \ldots, n\}$.
- 4. Definir $X_1^*, X_2^*, \dots, X_n^*$ como los n primeros valores obtenidos al unir los bloques $B_{I_1, I_1}, B_{I_2, I_2}, \dots$

A continuación se comentan algunos aspectos interesantes en relación con el SB.

• El número mínimo de bloques necesario, k, en el método de remuestreo SB2, de forma que el conjunto de bloques $B_{I_1,L_1}, B_{I_2,L_2}, \ldots, B_{I_k,L_k}$ tenga, al menos, n observaciones, coincide con el menor entero k para el cual $\sum_{i=1}^k L_i \geq n$.

- Eligiendo p=1 se tiene el bootstrap clásico. La elección p=0 corresponde a una permutación circular aleatoria de la muestra, que conduce a una distribución bootstrap degenerada si el estadístico es funcional (i.e., si es sólo función de la distribución empírica, pero no depende del orden de los datos).
- Condicionalmente a la muestra observada, el proceso bootstrap, $\{X_i^*\}$, es estacionario. Más aún, si no hay datos empatados, entonces el proceso bootstrap es un proceso de Markov. En general, es un proceso markoviano de orden r+1, donde

$$r = \max \{b \in \mathbb{N} / \exists i, j, i \neq j \text{ con } B_{i,b} = B_{i,b} \}.$$

• Observando el esquema de remuestreo SB2 resulta fácil generalizar el método a casos en los que la distribución de L_i no es geométrica y la distribución de los I_i no tiene porqué ser equiprobable. En tales casos, debe ponerse mucho cuidado en la elección de esas distribuciones para no destruir la estacionariedad del proceso bootstrap. Con esta generalización del remuestreo SB2, el MBB puede pensarse como un caso particular, tomando

$$P(L_i = m) = \begin{cases} 1 & \text{si} & m = b \\ 0 & \text{si} & m \neq b \end{cases}$$

$$P(I_i = j) = \begin{cases} 1/q & \text{si} & j = 1, 2, \dots, q \\ 0 & \text{si} & j = q + 1, q + 2, \dots, n \end{cases}$$
con $q = n - b + 1$.

• Como el tamaño medio del bloque en el SB es $\frac{1}{p}$, en cierto sentido el valor p juega el papel inverso del tamaño del bloque en el MBB (p=1 es comparable con b=1 y p=0 con $b\to\infty$).

Dado un proceso estocástico estrictamente estacionario con función de autocovarianza γ , cumpliendo $\gamma(0) + \sum_r |r\gamma(r)| < \infty$, con momento finito de orden d+2 (para algún d>0) y la siguiente condición para los coeficientes mixing:

$$\sum_{k} \alpha_k^{\frac{d}{d+2}} < \infty,$$

Politis y Romano (1994a) demostraron la validez asintótica del bootstrap estacionario:

$$\sup_{x \in \mathbb{D}} \left| P^* \left\{ \sqrt{n} (\bar{X}_n^* - \bar{X}_n) \le x \right\} - P \left\{ \sqrt{n} (\bar{X}_n - \mu) \le x \right\} \right| \to 0,$$

en probabilidad, siempre que $p \to 0$ y $np \to \infty$. Estos autores también dan una idea acerca de cómo generalizar este resultado a estadísticos funcionales, $T(F_n)$, donde T es un funcional Frechet diferenciable. Politis y Romano (1994c) también demostraron que el método funciona para una amplia clase de estimadores, incluyendo los de mínima distancia.

9.2.6 El método del submuestreo

Politis y Romano (1994b) proporcionan un método bootstrap que es válido bajo condiciones minimales. Estos autores presentan dos versiones de este método: una para datos independientes y otra para datos dependientes.

Para enunciar el método del submuestreo de forma unificada consideremos las observaciones, X_1, X_2, \ldots, X_n , que provienen o bien de (a) variables aleatorias iid con distribución F o (b) un proceso estocástico fuertemente mixing. Consideremos un parámetro $\theta = \theta(F), T_n = T_n(X_1, X_2, \ldots, X_n)$ un estimador de él, y $J_n(\cdot, F)$ la función de distribución en el muestreo de $\tau_n(T_n - \theta)$. Se fija un entero b < n y se define:

- en el caso iid, $S_{n,i} = T_b(Y_i)$, i = 1, 2, ..., N, donde $Y_1, Y_2, ..., Y_n$ son todas las $N = \binom{n}{b}$ posibles submuestras de tamaño b (sin reemplazamiento) de la muestra original.
- en el caso de datos dependientes, $S_{n,i} = T_b(B_{i,b})$, i = 1, 2, ..., N, donde $B_{i,b}$, i = 1, 2, ..., N, con N = n b + 1, son todos los posibles bloques de tamaño b.

Este método propone usar la función de distribución empírica de los valores $\tau_b(S_{n,i}-T_n)$,

$$L_n(x) = \frac{1}{N} \sum_{i=1}^{N} 1_{\{\tau_b(S_{n,i} - T_n) \le x\}}$$

como aproximación de la distribución en el muestreo de $\tau_n(T_n-\theta)$. El resultado demostrado por Politis y Romano (1994b) afirma que siempre que $\tau_b/\tau_n \to 0$, $b \to \infty$ y $b/n \to 0$, la condición $\tau_n(T_n-\theta) \to^d J(\cdot,F)$ implica que $L_n(x) \to J(x,F)$ para cada x, punto de continuidad de $J(\cdot,F)$ y $\|L_n(\cdot) - J_n(\cdot,F)\|_{\infty} \to 0$ en probabilidad (si $J(\cdot,F)$ es continua). A grandes rasgos este resultado garantiza que, bajo condiciones minimales sobre el tamaño del bloque, el método del submuestreo es siempre asintóticamente válido, siempre que el estadístico de interés tenga una distribución límite.

9.3 El bootstrap para la predicción con datos dependientes

Dado un proceso estocástico en tiempo discreto, $\{X_t\}_{t\in\mathbb{Z}}$, un problema importante en este contexto es predecir un valor futuro del proceso. Habiendo observado una trayectoria del proceso, hasta el tiempo $n: X_1, X_2, \ldots, X_n$, la cuestión es encontrar un predictor, tan preciso como sea posible, para el valor del proceso a k retardos, X_{n+k} . Puede construirse un predictor puntual o un intervalo de predicción, que es típicamente más informativo.

9.3.1 Modelos de dependencia paramétrica

Al igual que en el caso de estimación, cuando la estructura de dependencia sigue un modelo paramétrico, esta información puede usarse para adaptar el bootstrap ordinario al contexto de predicción. La mayor parte de los mecanismos bootstrap presentados en la sección anterior para la estimación en el contexto paramétrico son también válidos para la predicción con muy pocos cambios.

Stine (1987) propone un método bootstrap (ya presentado antes) para estimar el error cuadrático medio de predicción del mejor predictor lineal estimado en el contexto de un modelo AR(p). Usa versiones bootstrap de los parámetros estimados y la remuestra bootstrap para obtener

$$\widehat{X}_{n+j}^* = \widehat{\phi}_1^* \widehat{X}_{n+j-1}^* + \widehat{\phi}_2^* \widehat{X}_{n+j-2}^* + \dots + \widehat{\phi}_p^* X_{n+j-p}^*, \quad j = 1, 2, \dots, k,$$

con $X_t^* = X_t^*$ para $t \le n$, cuya distribución bootstrap se usa para estimar la verdadera distribución en el muestreo del predictor.

Thombs y Schucany (1990) proponen método bootstrap primero hacia atrás y luego hacia adelante para obtener intervalos de predicción a k retardos para procesos AR(p). El método procede como sigue:

1. Construir los residuos hacia atrás:

$$\hat{e}_i = X_i - \hat{\phi}_1 X_{i+1} - \hat{\phi}_2 X_{i+2} - \dots - \hat{\phi}_p X_{i+p}, \quad i = 1, 2, \dots, n - p,$$

y calcular su versión corregida, \tilde{e}'_i (tal y como se hace en el método de Stine en la sección anterior).

- 2. Arrojar errores bootstrap hacia atrás, \hat{e}_i^* , de la función de distribución empírica de los residuos hacia atrás corregidos.
- 3. Definir réplicas bootstrap hacia atrás:

$$X_i^* = \widehat{\phi}_1 X_{i+1}^* + \widehat{\phi}_2 X_{i+2}^* + \dots + \widehat{\phi}_p X_{i+p}^* + \widehat{e}_i^*, \quad i = n - p, \dots, 1,$$

con
$$X_i^* = X_i$$
 para $t = n - p + 1, n - p + 2, \dots, n$.

4. Calcular versiones bootstrap de los estimadores, $\widehat{\phi}_1^*, \widehat{\phi}_2^*, \dots, \widehat{\phi}_p^*$

5. Construir residuos hacia adelante:

$$\hat{a}_i = X_i - \hat{\phi}_1 X_{i-1} - \hat{\phi}_2 X_{i-2} + \dots - \hat{\phi}_p X_{i-p}, \quad i = p+1, p+2, \dots, n,$$

y su versión corregida \hat{a}'_i .

- 6. Arrojar errores bootstrap hacia adelante, \hat{a}_i^* , de la función de distribución empírica de los residuos hacia adelante corregidos.
- 7. Definir las réplicas bootstrap hacia adelante:

$$X_{n+j}^* = \widehat{\phi}_1^* X_{n+j-1}^* + \widehat{\phi}_2^* X_{n+j-2}^* + \dots + \widehat{\phi}_p^* X_{n+j-p}^* + \widehat{a}_{n+j}^*, \quad j = 1, 2, \dots, k.$$

Thombs y Schucany (1990) prueban la validez asintótica del bootstrap demostrando que, cuando el tamaño muestral, n, tiende a infinito,

$$P^*(X_{n+k}^* \le x) - P(X_{n+k} \le x|_{X_{n-p+1},X_{n-p+2},...,X_n}) \to 0,$$

de forma casi segura, para casi todo x. Este resultado implica la validez asintótica del intervalo de predicción bootstrap $(x_{\alpha/2}^*, x_{1-\alpha/2}^*)$, donde x_{β}^* se define mediante $P^*\left(X_{n+k}^* \leq x_{\beta}^*\right) = \beta$. Algunos estudios de simulación muestran los beneficios de este método sobre los métodos clásicos cuando la distribución del error no es normal.

García-Jurado, González-Manteiga, Prada-Sánchez, Febrero-Bande y Cao (1995) demuestran la validez del bootstrap de Thombs y Schucany para modelos ARI(p,d). Supongamos que $X_t \sim ARI(p,d)$, la idea principal de esta extensión es la siguiente:

- 1. Construir la serie de diferencias, $Y_t = \nabla^d X_t$, donde ∇ es el operador diferencia definido por $\nabla X_t = X_t X_{t-1}$. Obviamente Y_t tiene una estructura AR(p).
- 2. Aplicar el bootstrap de Thombs y Schucany a esta serie para obtener la serie bootstrap $\{Y_t^*\}$.
- 3. Calcular réplicas bootstrap X_t^* mediante d integraciones de la serie Y_t^* , fijando las primeras observaciones bootstrap: $X_t^* = X_t$ para $t \le n$.

Cao, Febrero-Bande, González-Manteiga, Prada-Sánchez y García-Jurado (1997) estudian un método bootstrap, alternativo al de Thombs y Schucany, que es computacionalmente más rápido y también consistente. Puede resumirse en los siguientes pasos:

- 1. Construir la distribución empírica de los residuos hacia adelante corregidos, $F_n^{\widehat{a'}}$.
- 2. Generar \hat{a}_i^* con distribución $F_n^{\widehat{a}'}$.
- 3. Construir réplicas bootstrap futuras

$$X_{n+j}^* = \widehat{\phi}_1 X_{n+j-1}^* + \widehat{\phi}_2 X_{n+j-2}^* + \dots + \widehat{\phi}_p X_{n+j-p}^* + \widehat{a}_{n+j}^*, \quad j = 1, 2, \dots, k,$$
donde $X_i^* = X_i$ para $i = n, n-1, \dots, n-p+1$.

Estos autores demuestran la validez asintótica de este método bootstrap (en el mismo sentido que Thombs y Schucany) y de una versión suavizada en la cual se reemplaza $F_n^{\widehat{a'}}$ por $K_h * F_n^{\widehat{a'}}$, en el paso 2. Pascual, Romo y Ruiz (2001) proponen una variante de este método en la que se incorpora la variabilidad en la estimación de los parámetros de la serie.

9.3.2 Situaciones de dependencia general

Cuando la estructura de dependencia de la serie no es explícita los métodos bootstrap existentes para la estimación (como el MBB, el SB o el método de submuestreo) no funcionan para la predicción. El motivo es que estos métodos no estiman consistentemente la distribución condictional

$$X_{n+k}|_{X_1,X_2,...,X_n}$$
.

Esta situación es completamente diferente del caso en que la dependencia de modeliza paramétricamente, ya que en ese otro caso los métodos bootstrap usados para la estimación permanecen válidos, en general, en el contexto de predicción.

Es poco menos que imposible estimar la distribución condicional anterior sin hacer ninguna suposición sobre el tipo de dependencia. Sin embargo se puede llevar a cabo una estimación cuando se supone que el proceso estocástico es markoviano de orden p, porque entonces,

$$X_{n+k}|_{X_1,X_2,...,X_n} = {}^{d}X_{n+k}|_{X_{n-\nu+1},X_{n-\nu+2},...,X_n}$$

y, por tanto,

$$F_k(y|\vec{x}) = F_k(y|x_1, x_2, ..., x_p) = P(X_{n+k} \le y|x_{n-p+1} = x_1, x_{n-p+2} = x_2, ..., x_n = x_p)$$

puede estimarse por medio de un estimador no paramétrico de la distribución condicional, basado en estimadores no paramétricos de la regresión, como, por ejemplo, mediante el estimador tipo núcleo:

$$\widehat{F}_{k,H}(y|\vec{x}) = \frac{\sum_{i=1}^{q-k} K_H(\vec{x} - B_{i,p}) \cdot 1_{\{X_{i+p+k-1} \le y\}}}{\sum_{i=1}^{q-k} K_H(\vec{x} - B_{i,p})},$$

donde q = n - p + 1, $K_H(\vec{u}) = \det(H)^{-1}K(H^{-1}\vec{z})$, K es una función núcleo, H es una matriz ventana diagonal definida positiva y $B_{i,p}$, i = 1, 2, ..., q son los bloques muestrales de tamaño p. Este estimador podría usarse para calcular intervalos predicción aproximados para X_{n+k} dasos los valores observados del proceso hasta el instante n.

En el caso p=1 ($\{X_t\}$ es un proceso de Markov) el estimador núcleo puede escribirse como

$$\widehat{F}_{k,h}(y|\vec{x}) = \frac{\sum_{i=1}^{n-k} K_h(x - X_i) \cdot 1_{\{X_{i+k} \le y\}}}{\sum_{i=1}^{n-k} K_h(x - X_i)},$$

donde $K_h(u) = h^{-1}K(u/h)$ y h > 0. Usar este estimador para calcular el intervalo de predicción de nivel α : $\left(\widehat{F}_{k,h}^{-1}(\alpha/2|\vec{x}), \widehat{F}_{k,h}^{-1}(1-\alpha/2|\vec{x})\right)$, es equivalente a llevar a cabo un método bootstrap de forma que

$$P(X_{n+k}^* = X_{i+k}) = \widehat{p}_i = \frac{K_h(X_n - X_i)}{\sum_{i=1}^{n-k} K_h(X_n - X_j)}, i = 1, 2, \dots, n - k.$$

Teniendo esto en cuenta ese mecanismo bootstrap puede describirse como sigue:

- 1. Construir los bloques muestrales de tamaño k+1: $B_{i,k+1}$, $i=1,2,\ldots,n-k$.
- 2. Calcular los valores \hat{p}_i , i = 1, 2, ..., n k.
- 3. Arrojar un bloque del conjunto $\{B_{1,k+1}, B_{2,k+1}, \dots, B_{n-k,k+1}\}$ con probabilidades \widehat{p}_i , $i=1,2,\dots,n-k$ y definir X_{n+k}^* como la última observación de los bloques generados.

Está claro que la precisión de este mecanismo bootstrap depende de las propiedades del estimador tipo núcleo de la distribución condicional. Así, por ejemplo, bajo las condiciones impuestas en el Teorema 1 de Gannoun (1990) se obtiene que

$$\sup_{x \in C} \sup_{y \in \mathbb{R}} \left| P\left(X_{n+k}^* \le y | X_{n-x} \right) - P\left(X_{n+k} \le y | X_{n-x} \right) \right| \to 0$$

en probabilidad.

Como consecuencia los intervalos de predicción bootstrap tienen probabilidad de cobertura asintóticamente correcta, uniformemente, en probabilidad, sobre la última observación de la muestra. Este resultado puede extenderse fácilmente para procesos de Markov de orden p > 1.

9.4 Implementación en R

Para simular una serie de tiempo en R se puede emplear la función arima.sim del paquete base stats. Por ejemplo, podemos generar una serie autoregressiva con:

```
# Parametros
nsim <- 200
              # Numero de simulaciones
xvar <- 1
              # Varianza
xmed <- 0
              # Media
rho <- 0.5
              # Coeficiente AR
             # Periodo de calentamiento (burn-in)
nburn <- 10
evar <- xvar*(1 - rho^2) # Varianza del error
# Simulación
set.seed(1)
ry \leftarrow arima.sim(list(order = c(1,0,0), ar = rho),
            n = nsim, sd = sqrt(evar)) # n.start = nburn
plot(ry)
```


En este caso el periodo de calentamiento se establece mediante el parámetro n.start (que se fija automáticamente a un valor adecuado).

La recomendación es fijar la varianza de las series simuladas si se quieren comparar resultados considerando distintos parámetros de dependencia.

Otras opciones:

```
rand.gen = rnorm
innov = rand.gen(n, ...)
n.start = NA
start.innov = rand.gen(n.start, ...)
```

Ejemplo (?arima.sim):

9.5 Implementación en R con el paquete boot

La función tsboot() del paquete boot implementa distintos métodos de remuestreo para series de tiempo.

```
library(boot)
# ?tsboot
```

9.5.1 Rnews 1

Canty, A. J. (2002). Resampling methods in R: the boot package. Rnews: The Newsletter of the R Project, 2 (3), pp. 2-7.

tsboot() can do either of these methods by specifying sim="fixed" or sim="geom" respectively. A simple call to tsboot includes the time series, a function for the statistic (the first argument of this function being the time series itself), the number of bootstrap replicates, the simulation type and the (mean) block length.

```
# Datos
data(lynx)
# ?lynx
# Boot
```

```
library(boot)
lynx.fun <- function(tsb) {</pre>
  fit <- ar(tsb, order.max = 25)
  c(fit$order, mean(tsb))
}
# tsboot
set.seed(1)
tsboot(log(lynx), lynx.fun, R = 199, sim = "geom", l = 20)
## STATIONARY BOOTSTRAP FOR TIME SERIES
##
## Average Block Length of 20
##
## tsboot(tseries = log(lynx), statistic = lynx.fun, R = 199, 1 = 20,
       sim = "geom")
##
##
##
## Bootstrap Statistics :
##
        original
                       bias
                                std. error
## t1* 11.000000 -6.216080402
                                 2.8210147
## t2* 6.685933 0.004037546
                                 0.1133995
```

9.5.2 Rnews 2

Canty, A. J. (2002). Resampling methods in R: the boot package. Rnews: The Newsletter of the R Project, 2 (3), pp. 2-7.

An alternative to the block bootstrap is to use model based resampling. In this case a model is fitted to the time series so that the errors are i.i.d. The observed residuals are sampled as an i.i.d. series and then a bootstrap time series is reconstructed. In constructing the bootstrap time series from the residuals, it is recommended to generate a long time series and then discard the initial burn-in stage. Since the length of burn-in required is problem specific, tsboot does not actually do the resampling. Instead the user should give a function which will return the bootstrap time series. This function should take three arguments, the time series as supplied to tsboot, a value n.sim which is the length of the time series required and the third argument containing any other information needed by the random generation function such as coefficient estimates. When the random generation function is called it will be passed the arguments data, n.sim and ran.args passed to tsboot or their defaults.

One problem with the model-based bootstrap is that it is critically dependent on the correct model being fitted to the data. Davison and Hinkley (1997) suggest post-blackening as a compromise between the block bootstrap and the model-based bootstrap. In this method a simple model is fitted and the residuals are found. These residuals are passed as the dataset to tsboot and are resampled using the block (or stationary) bootstrap. To create the bootstrap time series the resampled residuals should be put back through the fitted model filter. The function ran.gen can be used to do this.

```
# Datos
lynx1 <- log(lynx)
# Modelo
lynx.ar <- ar(lynx1)
# Residuos</pre>
```

9.6. EJERCICIOS

```
lynx.res <- with(lynx.ar, resid[!is.na(resid)])</pre>
lynx.res <- lynx.res - mean(lynx.res)</pre>
# Boot
library(boot)
lynx.ord <- c(lynx.ar$order, 0, 0)</pre>
lynx.mod <- list(order = lynx.ord, ar = lynx.ar$ar)</pre>
lynx.args <- list(mean = mean(lynx1), model = lynx.mod)</pre>
lynx.black <- function(res, n.sim, ran.args) {</pre>
    m <- ran.args$mean
    ts.mod <- ran.args$model
    m + filter(res, ts.mod$ar, method = "recursive")
}
# tsboot
set.seed(1)
tsboot(lynx.res, lynx.fun, R = 199, l = 20,
        sim = "fixed", n.sim = 114,
        ran.gen = lynx.black, ran.args = lynx.args)
```

```
##
## POST-BLACKENED BLOCK BOOTSTRAP FOR TIME SERIES
## Fixed Block Length of 20
##
## Call:
  tsboot(tseries = lynx.res, statistic = lynx.fun, R = 199, 1 = 20,
##
       sim = "fixed", n.sim = 114, ran.gen = lynx.black, ran.args = lynx.args)
##
##
## Bootstrap Statistics :
##
         original bias
                           std. error
## t1* 0.0000e+00 9.954774 3.24628223
## t2* 6.1989e-18 6.678628 0.09172397
```

9.6 Ejercicios

Ejercicio 9.1 (Practical 8.1, Lynx data: Davison y Hinkley, 1997). Reproducir el "Practical 8.1 (Lynx data)" en Davison, A. C., y Hinkley, D. V. (1997). Bootstrap methods and their application. Cambridge university press, http://statwww.epfl.ch/davison/BMA (caché):

Dataframe lynx contains the Canadian lynx data, to the logarithm of which we fit the autoregressive model that minimizes AIC:

```
ts.plot(log(lynx))
```



```
lynx.ar <- ar(log(lynx))
lynx.ar$order</pre>
```

[1] 11

The best model is AR(11). How well determined is this, and what is the variance of the series average? We bootstrap to see, using lynx.fun (given below), which calculates the order of the fitted autoregressive model, the series average, and saves the series itself.

Here are results for fixed-block bootstraps with block length l=20:

To obtain similar results for the stationary bootstrap with mean block length l=20:

```
.Random.seed <- lynx.1$seed
lynx.2 <- tsboot(log(lynx), lynx.fun, ...
# lynx.2</pre>
```

9.6. EJERCICIOS 113

See if the results look different from those above. Do the simulated series using blocks look like the original? Compare the estimated variances under the two resampling schemes. Try different block lengths, and see how the variances of the series average change.

For model-based resampling we need to store results from the original model:

Check the orders of the fitted models for this scheme.

For post-blackening we need to define yet another function:

Compare these results with those above, and try the post-blackened bootstrap with sim="geom". (Sections 8.2.2, 8.2.3)

Ejercicio 9.2 (Practical 8.2, Beaver data: Davison y Hinkley, 1997). Reproducir el "Practical 8.2 (Beaver data)" en Davison, A. C., y Hinkley, D. V. (1997). Bootstrap methods and their application. Cambridge university press, http://statwww.epfl.ch/davison/BMA (caché):

The data in beaver consist of a time series of n = 100 observations on the body temperature y_1, \ldots, y_n and an indicator x_1, \ldots, x_n of activity of a female beaver, Castor canadensis.

```
# ?beaver
plot(beaver)
```


We want to estimate and give an uncertainty measure for the body temperature of the beaver. The simplest model that allows for the clear autocorrelation of the series is ...

To fit the original model and to generate a new series:

```
data <- beaver
# fit <- function( data ){</pre>
    # X \leftarrow cbind(rep(1,100), data\$activ) # ErrorR
    X \leftarrow cbind(rep(1, 100), data[, "activ"])
#
    para \leftarrow list(X = X, data = data)
#
    # assign("para",para, frame=1) # ErrorR
#
   # assign("para", para, envir = .GlobalEnv)
#
   para <<- para
#
    # arima.mle # ErrorR
# ---
#
    d \leftarrow arima.mle(x = para$data$temp,
                model = list(ar = c(0.8)), xreg = para$X)
#
#
   res \leftarrow arima.diaq(d, plot = F, std.resid = T)$std.resid
#
   res <- res[!is.na(res)]
#
   list(
#
      paras = c(d$model$ar, d$reg.coef, sqrt(d$sigma2)),
#
      res = res - mean(res),
#
      fit = X % * % d$reg.coef)
# }
#
# beaver.args <- fit(beaver)</pre>
# white.noise <- function(n.sim, ts)</pre>
      sample(ts, size = n.sim, replace = TRUE)
# beaver.gen <- function(ts, n.sim, ran.args){</pre>
     tsb <- ran.args$res
#
#
      fit <- ran.args$fit
      coeff <- ran.args$paras
#
#
      ts$temp <- fit + coeff[4] * arima.sim(model = list(ar = coeff[1]),
#
          n = n.sim, rand.gen = white.noise, ts = tsb)
#
# }
# new.beaver <- beaver.gen( beaver, 100, beaver.args )</pre>
# # Now we are able to generate data, we can bootstrap and see the results of beaver.boot as follows:
\# beaver.fun <- function(ts) fit(ts)$paras
# beaver.boot <- tsboot( beaver, beaver.fun, R=99, sim="model",
          n.sim=100,ran.gen=beaver.gen,ran.args=beaver.args)
# names(beaver.boot)
# beaver.boot$t0
# beaver.boot$t[1:10,]
```

showing the original value of beaver.fun and its value for the first 10 replicate series. Are the estimated mean temperatures for the R = 99 simulations normal? Use boot.ci to obtain normal and basic bootstrap confidence intervals for the resting and active temperatures. In this analysis we have assumed that the linear model with AR(1) errors is appropriate. How would you proceed if it were not? (Section 8.2; Reynolds, 1994)

Ejercicio 9.3 (Practical 8.3, Sunspot data: Davison y Hinkley, 1997). Reproducir el "Practical 8.3 (Sunspot data)" en Davison, A. C., y Hinkley, D. V. (1997). Bootstrap methods and their application. Cambridge university press, http://statwww.epfl.ch/davison/BMA (caché):

Consider scrambling the phases of the sunspot data. To see the original data,

```
data(sunspot.year) # WarningR: data set 'sunspot' not found
# ?sunspot.year
yl <- c(-50, 200)
plot(sunspot.year, ylim = yl)
abline(h = 0, lty = 2)</pre>
```


two replicates generated using ordinary phase scrambling, and two phase scrambled series whose marginal distribution is the same as that of the original data:

```
set.seed(DNI)
sunspot.1 <- tsboot(sunspot.year, ...
.Random.seed <- sunspot.1$seed # set.seed(1)
sunspot.2 <- tsboot(sunspot.year, ...</pre>
```

What features of the original data are preserved by the two algorithms? (You may find it helpful to experiment with different shapes for the figures.) (Section 8.2.4; Problem 8.4; Theiler et al, 1992)

9.7 Implementación en R con el paquete forecast

9.7.1 Bootstrap condicional (a partir de un modelo ajustado)

En la práctica normalmente se ajusta un modelo a los datos observados y posteriormente se obtienen las simulaciones condicionadas empleando el modelo ajustado.

Por ejemplo, en el caso de series de tiempo, se puede emplear la función simulate del paquete forecast:

```
library(forecast)
# ?co2
```



```
plot(forecast(fit, h=12*4), col="blue")
lines(ry, col="red")
```

9.8. SPATIAL DATA

Ver enlaces en referencias 9.9.1.

9.8 Spatial data

Ver enlaces en referencias 9.9.2.

Referencias

Akritas, M. G. (1986). Bootstrapping the Kaplan-Meier estimator. J. Amer. Statist. Assoc. 81, 1032–1038.

Beran, R. (1987). Prepivoting to reduce level error of confidence sets. Biometrika 74, 457-468.

Bhattacharya, R.N. and Ghosh, J.K. (1978). On the validity of the formal Edgeworth expansion. *Ann. Statist.* **6**, 434–451.

Bickel, P.J. and Freedman, D.A. (1981). Some Asymptotic theory for the bootstrap. Ann. Statist. 12, 2, 470-482.

Bowman, A., Hall, P. and Prvan, T. (1998). Bandwidth selection for the smoothing of distribution functions. Biometrika, 85, 4, 799-808.

Breslow, N. and Crowley, J. (1974). A large sample study of the life table and product limit estimates under random censorship. *Ann. Statist.* 2, 437–453.

Bühlmann, P. (1994). Blockwise bootstrap empirical processes for stationary sequences. Ann. Statist. 22, 995-1012.

Bühlmann, P. (1997). Sieve bootstrap for time series. Bernoulli 3, 123-148.

Bühlmann, P. (1998). Sieve bootstrap for smoothing in nonstationary time series. Ann. Statist. 26, 48-83.

Cao, R. (1990). Órdenes de convergencia para las aproximaciones normal y bootstrap en la estimación no paramétrica de la función de densidad. *Trabajos de Estadística*, vol. 5, 2, 23-32.

Cao, R. (1991). Rate of convergence for the wild bootstrap in nonparametric regression. *Ann. Statist* 19, 2226-2231.

Cao, R. (1993). Bootstrapping the mean integrated squared error. Jr. Mult. Anal. 45, 137–160.

Cao, R. (1999). An overview of bootstrap methods for estimating and predicting in time series. Test 8, 95-116.

Cao, R., Cuevas, A. and González-Manteiga, W. (1993). A comparative study of several smoothing methods in density estimation. *Comp. Statist. Data Anal.* 17, 153–176.

Cao, R., Febrero-Bande, M., González-Manteiga, W., Prada-Sánchez, J.M. and García-Jurado, I. (1997). Saving computer time in constructing consistent bootstrap prediction intervals for autoregressive processes. *Commun. Statist. Simula.* **26**, 961-978.

Cao, R. and González-Manteiga, W. (1993). Bootstrap methods in regression smoothing. *Journal of Nonparametric Statistics* 2, 379-388.

Cao, R. and Prada-Sánchez, J.M. (1993). Bootstrapping the mean of a symmetric population. Statistics & Probability Letters 17, 43-48.

Carlstein, E., Do, K-A., Hall, P., Hesterberg, T. and Künsch, H.R. (1995). Matched-block bootstrap for dependent data. Preprint.

Davison, A.C. and Hinkley, D.V. (1997). Bootstrap Methods and their Application. Cambridge University Press.

Efron, B. (1979). Bootstrap Methods: Another look at the Jackknife. Ann. Statist., 7, 1-26.

Efron, B. (1981). Censored data and the bootstrap. J. Amer. Statist. Assoc. 76, 312–319.

Efron, B. (1982). The Jackknife, the Bootstrap and other Resampling Plans. CBMS-NSF. Regional Conference series in applied mathematics.

Efron, B. (1983). Estimating the error rate of a prediction rule: improvements on cross-validation. J. Amer. Stat. Assoc. 78, 316-331.

Efron, B. (1987). Better Bootstrap confidence intervals (with discussion). J. Amer. Statist. Assoc. 82, 171-200.

Efron, B. (1990). More Efficient Bootstrap Computations. J. Amer. Statist. Assoc. 85, 79-89.

Efron, B. and Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science 1, 54-77.

Efron, B. and Tibshirani, R.J. (1993). An Introduction to the Bootstrap. Chapman and Hall.

Faraway, J.J. and Jhun, M. (1990). Bootstrap choice of bandwidth for density estimation. *Jr. Amer. Statist. Assoc.* **85**, 1119–1122.

Ferretti, N. and Romo, J. (1996). Unit root bootstrap test for AR(1) models. Biometrika 83, 849-860.

Freedman, D.A. (1981). Bootstrapping regression models. Ann. Statis. 9, 6, 118-1228.

Fuller, W.A. (1976). Introduction to statistical time series. New York: Wiley.

Gannoun, A. (1990). Estimation non paramétrique de la médiane conditionnelle. Application à la prévision. C. R. Acad. Sci. Paris 310, 295-298.

García-Jurado, I. González-Manteiga, W., Prada-Sánchez, J.M., Febrero-Bande, M. and Cao, R. (1995). Predicting using Box-Jenkins, nonparametric and bootstrap techniques. *Technometrics* **37**, 303-310.

González-Manteiga, W. and Prada-Sánchez, J.M. (1985). Una aplicación de los métodos de suavización no paramétricos en la técnica bootstrap. Proceedings Jornadas Hispano-Lusas de Matemáticas. Murcia, 1985.

González-Manteiga, W., Prada-Sánchez, J.M. and Romo, J. (1994). The Bootstrap-A Review. Computational Statistics, 9, 165-205.

Hall, P. (1986). On the bootstrap and confidence intervals. Ann. Statist. 14, 1431-1452.

Hall, P. (1988-a) Theoretical comparison of bootstrap confidence intervals. Ann. Statist. 16, 927-953.

Hall, P. (1988-b). Rate of convergence in bootstrap approximations. Ann. Probab. 16, 4, 1665-1684.

Hall, P. (1990). Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems. J. Multivariate Anal. 32, 177–203.

Hall. P. (1992). The Bootstrap and Edgeworth Expansion. Springer Verlag.

Hall, P., Horowitz, J.L. and Jing, B-Y. (1995). On blocking rules for the bootstrap with dependent data. *Biometrika* 82, 561-574.

Hall, P., Marron, J.S. and Park, B. (1992). Smoothed cross-validation. Probab. Theor. Rel. Fields 92, 1–20.

Hall, P. and Martin, M.A. (1988). On bootstrap resampling and iteration. Biometrika 75, 661-671.

Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric regression fits. Ann. Statist. 21, 1926-1947.

Härdle, W. and Marron, J. S. (1991). Bootstrap simultaneous error bars for nonparametric regression. *Ann. Statist.* **19**, 778–796.

9.8. SPATIAL DATA

Hartigan, J.A. (1969). Using subsample values as typical values. J. Amer. Statist. Assoc. 64, 1303-1317.

Heimann, G. and Kreiss, J-P. (1996). Bootstrapping general first order autoregression. *Statist. Prob. Lett.* **30**, 87-98.

Kaplan, E. L. and P. Meier, Nonparametric estimation from incomplete observations, *J. Amer. Statist. Assoc.* **53** (1958) 457–481.

Kreiss, J-P. and Franke, J. (1992). Bootstrapping stationary autoregressive moving average models. *J. Time Ser. Anal.* **13**, 297-317.

Künsch, H.R. (1989). The jackknife and the bootstrap for general stationary observations. *Ann. Statist.* 17, 1217-1241.

Liu, R.Y. and Singh, K. (1992). Moving blocks jackknife and bootstrap capture weak dependence. In *Exploring the limits of bootstrap* (R. LePage and L Billard, Eds.), pp. 225-248. New York: Wiley.

Mammen, E. (1992). When does Bootstrap Work?. Springer Verlag.

Maritz, J.S. (1979). A note on exact robust confidence intervals for location. Biometrika, 66, 163-166.

Marron, J.S. (1992). Bootstrap bandwidth selection. In *Exploring the limits of the bootstrap*, LePage, R. and Billard, L. eds., pp. 249–262. New York: Wiley.

Nadaraya, E.A. (1964). On estimating regression. Theor. Probab. Appl. 9, 141-142.

Naik-Nimbalkar, U.V. and Rajarshi, M.B. (1994). Validity of blockwise bootstrap for empirical processes with stationary observations. *Ann. Statist.* **22**, 980-994.

Navidi, W. (1989). Edgeworth expansions for bootstrapping regression models. Ann. Statist. 17, 4, 1472-1478.

Paparoditis, E. (1996). Bootstrapping autoregressive and moving average parameters estimates of infinite order vector autoregressive processes. J. Mult. Anal. 57, 277-296.

Parzen, E. (1962). On estimation of a probability density function and mode. Ann. Math. Statist. 33, 1065–1076.

Pascual, L., Romo, J. and Ruiz, E. (2001). Effects of parameter estimation on prediction densities: a bootstrap approach. *Int. J. Forecasting*, 17, 83-103

Politis, D.N. and Romano, J.R. (1994a). The stationary bootstrap. J. Amer. Statist. Assoc. 89, 1303-1313.

Politis, D.N. and Romano, J.R. (1994b). Large sample confidence regions based on subsamples under minimal assumptions. *Ann. Statist.* **22**, 2031-2050.

Politis, D.N. and Romano, J.R. (1994c). Limit theorems for weakly dependent Hilbert space valued random variables with application to the stationary bootstrap. *Statist. Sin.* 4, 461-476.

Politis, D.N., Romano, J.P. and Wolf, M. (1999). Subsampling. Springer Verlag.

Prada-Sánchez, J.M. and Cotos-Yáñez, T. (1997). A Simulation Study of Iterated and Non-iterated Bootstrap Methods for Bias Reduction and Confidence Interval Estimation. Comm. Statist .-Simula., 26(3), 927-946.

Prada-Sánchez, J.M. and Otero-Cepeda, X.L. (1989). The use of smooth bootstrap techniques for estimating the error rate of a prediction rule. Comm. Statist .-Simula., 18(3), 1169-1186.

Quenouille, M. (1949). Approximate test of correlation in time series. J. Roy. Statist. Soc. Ser. B, 11, 18-84.

Radulović, D. (1996). The bootstrap for the mean of strong mixing sequences under minimal conditions. *Statist. Prob. Lett.* **28**, 65-72.

Reid, N. (1981). Estimating the median survival time. Biometrika 68, 601-608.

Rizzo, M.L. (2008). Statistical Computing with R. Chapman&Hall/CRC

Rosenblatt, M. (1956). Remarks on some nonparametric estimate of a density function. *Ann. Math. Statist.* **27**, 832–837.

Rubin, D.B. (1981). The Bayesian Bootstrap. Ann. Statist., 9, 1, 130-134.

Rubinstein, R.Y. (1981). Simulation and the Monte Carlo Method. Wiley.

Schucany, W., Gray, H. and Owen, O. (1971). On bias reduction in estimation. J. Amer. Statist. Assoc., 66, 524-533.

Shao, J. (1999). Mathematical Statistics. Springer.

Sheather, S.J. and Jones, M.C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. *Jr. Royal Statist. Soc. Ser. B* **53**, 683–690.

Silverman, B.W. (1986). Density Estimation. Chapman and Hall.Shao, J. and Tu, D. (1995). The Jackknife and Bootstrap. Springer Verlag.

Sing, K. (1981). On the asymptotic accuracy of Efron's bootstrap. Ann. Statist. 9, 6, 1.187-1195.

Stine, R.A. (1987). Estimating properties of autoregressive forecasts. J. Amer. Statist. Assoc. 82, 1072-1078.

Taylor, C. C. (1989). Bootstrap choice of the smoothing parameter in kernel density estimation. *Biometrika* **76**, 705–712.

Thombs, L.A. and Schucany, W.R. (1990). Bootstrap prediction intervals for autoregression. *J. Amer. Statist. Assoc.* **85**, 486-492.

Tukey, J. (1958). Bias and confidence in not quite large samples, abstract, Ann. Math. Statist., 29, 614.

Watson, G.S. (1964). Smooth regression analysis. Sankhyā Ser. A 26, 359-372.

Wu, C.-F. J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. *Ann. Statist.* **14**, 1261–1350.

9.9 Enlaces

• Recursos para el aprendizaje de R

9.9.1 Forecasting: Principles and Practice

Forecasting: Principles and Practice, 2^a ed by Rob J. Hyndman and George Athanasopoulos:

- 3.1 Some simple forecasting methods
- 3.6 The forecast package in R
- 11.4 Bootstrapping and bagging
- Appendix: For instructors

9.9.2 Spatial data

- Apuntes de simulación:
 - 9 Simulación de Distribuciones Multidimensionales
 - 9.3 Simulación condicional e incondicional
- Castillo-Páez, S., Fernández-Casal, R., García-Soidán, P. A nonparametric bootstrap method for spatial data, Computational Statistics and Data Analysis, 137 (2019) 1-15.

9.9. ENLACES 123

- Poster bootstrap condicional (pdf)
- npsp, post en castellano.
- Tesis geoestadística espacio-temporal (pdf)