Software 2 WS 2016 #3

 $T_k(\cos[\theta]) = \cos(k \theta)$

where Tk is the nth Chebychev function.

By Applying the nth Chebychev polynomial to an input sine wave, we obtain a cosine wave at the *k* th harmonic.

 $T_k(\cos[\theta]) = \cos(k \theta)$

where Tk is the nth Chebychev function.

By Applying the nth Chebychev polynomial to an input sine wave, we obtain a cosine wave at the *k* th harmonic.

Table 6.1 Chebychev functions T_0 through T_8

$$T_0 = 1$$

 $T_1 = x$
 $T_2 = 2x^2 - 1$
 $T_3 = 4x^3 - 3x$
 $T_4 = 8x^4 - 8x^2 + 1$
 $T_5 = 16x^5 - 20x^3 + 5x$
 $T_6 = 32x^6 - 48x^4 + 18x^2 - 1$
 $T_7 = 64x^7 - 112x^5 + 56x^3 - 7x$
 $T_8 = 128x^8 - 256x^6 + 160x^4 - 32x^2 + 1$

$$T_k x (\cos[\theta]) = \cos(k x \theta)$$

$$T_{1} = x$$
 $x(\cos[\theta]) = \cos(\theta)$

$$T_2 = 2x^2 - 1$$
 $(2x^2 - 1)(\cos[\theta]) = \cos(2\theta)$

$$T_3 = 4x^3 - 3x$$
 $(4x - 3x)(\cos[\theta]) = \cos(3\theta)$

F: Was ist der Vorteil der Chebychev Funktion?

A: Bandlimited = Keine Aliasing

- Waveshaping: Klangfarbe ist abhängig von Amplitude
- * F: Wie kann man Klangfarbe unabhängig von Amplitude steuern?

* A: Amplitude Normalisation

* F: Drei Methoden?

- Drei Methoden
 - loudness normalisation
 - power normalisation
 - peak normalisation

	Kommentare
loudness	ideal für Musik kompliziert (psychoakustik)
power	Forschung von Le Brun (1979) Digital Waveshaping Synthesis" in Journal of the Audio Engineering Society, 27(4)
peak	die einfachste Methode, praktisch

Amplitude Normalisation (Peak)

Figure 6.29 Waveshaping instrument with a normalization section. The value of indexes a value in the normalization table that scales the output of the waveshape

amplitude_noramlization.maxpat

Klassische Waveshaping

Andere Quellen

Andere Quellen

- ?
- ?
- ?

Andere Quellen

Andere Quellen

Funktion

- 2x Kosinusse mit unterschiedlichen Frequenzen
- * FM
- * Sample (Aufgenommene Klänge)

* 2x Kosinusse mit unterschiedlichen Frequenzen

* Aufgenommene Klänge

Andere Funktionen

Andere Funktionen

Weitere Entwicklungsmöglichkeiten

- Movable Waveshaping
- Fractional Waveshaping
- Postprocessing and Parameter Estimation

Movable Waveshaping

* Was ist Movable Waveshaping?

Erfinder: Xin Chong (1987)

Movable Waveshaping

Postprocessing

Postprocessing

Experiment mit Filter

H.A.

Lesen Sie "The Computer Music Tutorials" Seite. 265-279