MATH 620 HOMEWORK (DUE 9/10)

HIDENORI SHINOHARA

Exercise. Show that $F_*: T_p\mathbb{R}^n \to T_q\mathbb{R}^m$.

Proof. Let $v_1, v_2 \in T_pU, c \in \mathbb{R}$. Then $v_1 = c_1^j \frac{\partial}{\partial x^j} \mid_p, v_2 = c_2^j \frac{\partial}{\partial x^j} \mid_p$ where $c_i^j \in \mathbb{R}$. Let $\gamma_1(t) = p + t(c_1^1, \cdots, c_1^n), \gamma_2(t) = p + t(c_2^1, \cdots, c_2^n), \gamma = c\gamma_1 + \gamma_2$. Then there exist unique $b_1^1, \cdots, b_1^m, b_2^1, \cdots, b_2^m, b^1, \cdots, b^m \in \mathbb{R}$ such that

- $\bullet F_*(v_1) = b_1^s \frac{\partial}{\partial y^s}.$
- $F_*(v_2) = b_2^s \frac{\partial}{\partial y^s}$.
- $F_*(cv_1+v_2) = b^s \frac{\partial}{\partial v^s}$.

For each s,

$$b_{s} = (F_{*}(cv_{1} + v_{2}))(y^{s})$$

$$= \frac{d}{dt}y^{s} \circ F \circ \gamma(t)\Big|_{t=0}$$

$$= \frac{d}{dt}F^{s} \circ \gamma(t)\Big|_{t=0}$$

$$= \frac{\partial F^{s}}{\partial x^{j}}\Big|_{p}(cc_{1}^{j} + c_{2}^{j})$$

$$= c\frac{\partial F^{s}}{\partial x^{j}}\Big|_{p}c_{1}^{j} + \frac{\partial F^{s}}{\partial x^{j}}\Big|_{p}c_{2}^{j}$$

$$= c\frac{d}{dt}F^{s} \circ \gamma_{1}(t)\Big|_{p}c_{1}^{j} + \frac{d}{dt}F^{s} \circ \gamma_{2}(t)\Big|_{p}c_{2}^{j}$$

$$= c(F_{*}v_{1})(y^{s}) + (F_{*}v_{2})(y^{s})$$

$$= cb_{1}^{s} + b_{2}^{s}.$$
(Let $F^{s} = y^{s} \circ F$.)

Therefore, $F_*(cv_1 + v_2) = cF_*(v_1) + F_*(v_2)$.

Exercise. Prove that if $f_i \in \mathscr{C}^{\infty}$, then $f_I dx^I \in \mathcal{A}^k$.

Proof. Let $\eta = f_I dx^I$ and let $\zeta = dx^I$. Let $X_1, \dots, X_k \in \mathfrak{X}(\mathbb{R}^n)$. We must show that $F: \mathbb{R}^n \to \mathbb{R}$ defined by $F(p) = \eta_p(X_{1,p}, \dots, X_{k,p})$ is smooth. For any $p \in \mathbb{R}^n$,

$$F(p) = \eta_{p}(X_{1,p}, \dots, X_{k,p})$$

$$= (f_{i_{1}}(p)dx^{i_{1}}|_{p} \wedge \dots \wedge f_{i_{k}}(p)dx^{i_{k}}|_{p})(X_{1,p}, \dots, X_{k,p})$$

$$= \sum_{\sigma \in S_{k}} (f_{i\sigma_{1}}(p)dx^{i\sigma_{1}}|_{p})(X_{1,p}) \cdots (f_{i\sigma_{k}}(p)dx^{i\sigma_{k}}|_{p})(X_{k,p})$$

$$= (f_{1}(p) \cdots f_{k}(p)) \sum_{\sigma \in S_{k}} (dx^{i\sigma_{1}}|_{p})(X_{1,p}) \cdots (dx^{i\sigma_{k}}|_{p})(X_{k,p})$$

$$= (f_{1}(p) \cdots f_{k}(p)) \zeta_{p}(X_{1,p}, \dots, X_{k,p}).$$

As discussed in the lecture, $\zeta = dx^I \in \mathcal{A}^k(\mathbb{R}^n)$. Thus the mapping $p \mapsto \zeta_p(X_{1,p}, \dots, X_{k,p})$ must be smooth. Since each f_i is smooth and the product of smooth functions is smooth, $p \mapsto f_1(p) \cdots f_k(p) \zeta_p(X_{1,p}, \cdots, X_{k,p})$ is smooth. Therefore, F is smooth, so $\eta = f_I dx^I \in \mathcal{A}^k$.