Rozvrhovanie a logistika

OBSAH PREDNÁŠKY

- Základné informácie o predmete
- Logistika a jej ciele
 - Štruktúra činností výrobnej logistiky
 - Základné skupiny úloh výrobnej logistiky
- Metódy používané na riešenie úloh výrobnej logistiky
 - Operačný výskum
- Lineárne programovanie
 - Predpoklady modelov lineárneho programovania (LP)
 - Normovaný (štandardný) tvar úloh LP
 - Princíp simplexovej metódy riešenia úloh LP

Základné informácie o predmete

- Všetky potrebné informácie možno nájsť na web stránke predmetu:
 - https://jan.paralic.website.tuke.sk/ral.html
 - Základné údaje, rozsah, cieľová skupina, vyučujúci, anotácia
 - Špecifické ciele predmetu, ktoré zároveň definujú rozsah vedomostí a zručností požadovaných pri zápočtovej písomke a na skúške
 - Náplň prednášok aj s PDF verziou podkladov k prednáškam
 - Plán a náplň cvičení
 - Spôsob hodnotenia
 - Odporúčaná literatúra

Rozvrhovanie a logistika

Základné údaje Prednášky Cvičenia Spôsob hodnotenia Literatúra

Základné údaje o predmete:

Rozsah: 2 h. prednáška a 1 h. cvičenie týždenne – zápočet a skúška (6 kreditov)

Určený pre: povinne voliteľný predmet pre 2. ročník bakalárskeho štúdia – letný semester, študijný program Hospodárska informatika

Prerekvizity: žiadne

Prednášajúci: <u>prof. Ing. Ján Paralič, PhD.</u>, e-mail: *jan.paralic at tuke.sk* **Cvičiaci:** doc. Ing. Peter Butka, PhD. e-mail: *peter.butka at tuke.sk*

Anotácia: Po úspešnom absolvovaní tohto predmetu získajú študenti základné vedomosti a zručnosti potrebné pre formuláciu a riešenie rozhodovacích úloh výrobnej logistiky a rozvrhovania. Študenti sú zoznámení so základnými modelmi a technikami operačného výskumu používanými na riešenie logistických úloh ako napr. alokačné a distribučné úlohy, rozvrhovanie, optimalizácia skladových zásob, t.j. základy ekonomického riadenia. Študenti vedia tvorivo aplikovať získané poznatky, využívať systémový prístup pri analýze úloh rozvrhovania a logistiky a pri ich riešení vhodne použiť vybrané softvérové nástroje.

Špecifické ciele vyučovacieho predmetu: Špecifické ciele k jednotlivým témam učiva sú uvedené v poslednom stĺpci tabuľky Prednášky. Tieto špecifické ciele odrážajú nielen náplň prednášok (ide o špecifické ciele na úrovni zapamätania, resp. porozumenia), ale aj náplň cvičení (špecifické ciele na úrovni aplikácie až syntézy)

Prednášky – <u>d'alšie podklady sú priebežne zverejňované v MS Teams</u>

Téma číslo	Náplň prednášky	Rozsah (hod.)	Špecifické ciele
1.	 Úvodná prednáška (prednaska01.pdf) obsah a ciele predmetu, štruktúra činností výrobnej logistiky a základné triedy úloh ktoré rieši (schema1.pdf), definície základných pojmov (výrobná logistika, operačný výskum), metódy: operačný výskum, miesto umelej inteligencie pri riešení logistických úloh. 	1	 Vlastnými slovami definovať pojmy výrobná logistika, operačný výskum, načrtnúť schému štruktúry činností výrobnej logistiky v podniku a opísať jej jednotlivé bloky, vymenovať jednotlivé typy úloh riešené v rámci logistiky, vymenovať metódy používané na riešenie úloh logistiky, zhodnotiť ich význam pre jednotlivé typy úloh.
2.	Základné metódy operačného výskumu (<u>prednaska01.pdf</u>) • úlohy lineárneho programovania, • spôsoby riešenia týchto úloh - graficky (<u>pr01.pdf</u>), Simplexovým algoritmom, normovanie,	3	 Definovať úlohy lineárneho (LP) a celočíselného (CP) programovania, popísať grafickú metódu a Simplexov algoritmus, formulovať základné typy logistických úloh ako úlohy lineárneho programovania a normovať ich,

Približný plán cvičení – <u>d'alšie podklady sú priebežne zverejňované v MS Teams</u>

Týždeň semestra	Obsah cvičenia	Programové prostriedky	
2.	Úvodné cvičenie • popis náplne cvičení • podmienky udelenia zápočtu Lineárne programovanie 1. • riešenie grafickou metódou (pre jednoduché dvojrozmerné úlohy)	Príklady: 2.pdf finančné plánovanie, zmiešavací problém, investičný problém	
3.	Lineárne programovanie 2. • návrh lineárneho programu pre zložitejšie slovne zadané úlohy • ukážky riešenia v jazyku R	Ďalšie príklady : <u>LP-priklady.pdf</u> zloženie stravy, zmiešavací problém, zloženie zliatiny	
5.	Celočíselné programovanie a alokačné úlohy • riešenie rôznych typov úloh CP (napr. aj priradzovací a distribučný problém) • ukážky riešenia úloh CP v jazyku R	Príklady : <u>3.pdf</u> priradzovací problém, tri verzie distribučného problému	
7.	 Ďalšie metódy metóda vetvenia a medzí metóda CRAFT (kvadratický priradzovací problém) 	<u>pr02.pdf</u> <u>prednaska03.pdf</u>	
9.	Rozvrhovanie 1. • Riešenie rôznych úloh rozvrhovania (na jednom procesore, na viacerých paralelných procesoroch)	prednaska04.pdf	
10.	Rozvrhovanie 2. • Riešenie rôznych úloh rozvrhovania (na viacerých dedikovaných procesoroch - špeciálne prípady flow shop a job shop).	preunaskav 4 .pur	
11.	Zápočtová písomka		

Spôsob hodnotenia

- Zápočtová písomka spočívajúca v riešení úloh: maximálne 30 bodov (<u>Podmienkou udelenia zápočtu je zisk aspoň 16 bodov</u>)
- Hodnotenie za riešenie priebežných úloh z prednášok počas semestra: maximálne 20 bodov
- Záverečný test na skúške pozostáva z otázok na úrovni špecifických cieľov predmetu (pozri <u>pravý stĺpec v tabuľke Prednášky</u>). Za test je možné získať maximálne 50 bodov.
- V prípade, že dosiahnutý súčet bodov je na hornej hranici známky, študent môže požiadať o ústnu skúšku, pričom dostane 1 až 2 doplňujúce otázky. Za ústnu skúšku je možné získať maximálne **3 body**.

Literatúra

- 1. Paralič, J.: Rozvrhovanie a logistika. Equilibria, s.r.o., Košice, 2010, 94 s.
- 2. Mach, M., Paralič, J.: <u>Úlohy a ohraničeniami od teórie k programovaniu</u>. Elfa, 2000, ISBN 80-88964-48-2, 217 s.
- 3. Paralič: Riešenie úloh rozvrhovania logickým programovaním ohraničení, dizertačná práca, Technická univerzita Košice, Máj 1997.
- 4. Dupal', A., Brezina, I.: Logistika v manažmente podniku. Sprint, Bratislava, 2005, ISBN 80-89085-38-5, 326 s.
- 5. Malindžák, D.: Výrobná logistika I, 1996.
- 6. Dudorkin: Operační výzkum, Praha 1993.

Pojem logistika

Etymologický význam slova:

```
logo – myslieť, slovo
logos – súdny, mysliaci
logistika – praktické umenie počítať
```

- Prvý krát tento pojem ako odborný termín použil v roku 1837 švajčiarsky generál Jomini vo význame "náuka ako riadiť pohyb, zásobovanie a ubytovanie bojujúcich jednotiek"
- Od 2. polovice 20. storočia sa tento pojem používa aj v civilnej sfére
 - Hlavným cieľom logistiky je celková optimalizácia, t.j. minimalizácia celkových nákladov pri riadení materiálneho a informačného zabezpečenia danej organizácie

Definícia logistiky

- <u>Definícia 1</u>: Logistika je ucelená teória o spôsoboch zabezpečenia plynulého toku tovaru a informácií v danej organizácii s cieľom minimalizácie nákladov.
- Logistika má 2 stránky:
 - Materiálno-technickú
 - Riadiacu (informačnú)
- <u>Definícia 2</u>: Logistika je tá časť procesu zásobovacieho reťazca (supply chain), ktorá plánuje, implementuje a riadi efektívny tok a skladovanie tovarov, služieb a súvisiacich informácií, medzi bodom vzniku a bodom spotreby, s cieľom uspokojiť požiadavky zákazníka.

Štruktúra činností výrobnej logistiky

Metódy riešenia úloh v logistike

- 1. Operačný výskum (Bc. RaL, OEP)
- 2. Metódy umelej inteligencie, napr.:
 - Metódy riešenia úloh s ohraničeniami (Bc. RaL)
 (CSP constraint satisfaction problems)
 - Neurónové siete (Ing. PMAD)
 - Znalostné (expertné) systémy (Bc. ZS)
 - Evolučné algoritmy (Ing. HOP)
- 3. Heuristiky

Operačný výskum (1)

- Definícia: Operačný výskum je vedecká disciplína, predmetom ktorej je skúmanie operácií v organizačných jednotkách.
- Operácia je postupnosť vzájomne závislých akcií smerujúcich k určitému cieľu. (pozn.: súvisí s podnikovými procesmi, angl. business processes, väčšinou operácie sú ich časti - podprocesy)
- Cieľom je vypracovať závery a odporúčania, ktoré slúžia ako podklad pre čo najlepšie riadenie skúmaných operácií.

Operačný výskum (2)

- V operačnom výskume je podstatou riešenia zostavenie vhodného matematického modelu danej logistickej úlohy a jeho následné riešenie
- Používané matematické modely možno rozdeliť podľa rôznych kritérií:
 - Podľa toho, <u>či obsahujú náhodné veličiny</u>:
 - Stochastické obsahujú náhodné veličiny
 - Deterministické neobsahujú náhodné veličiny

Operačný výskum (3)

- Ďalšie typy matematických modelov:
 - Podľa toho, <u>či modelujú časové zmeny</u>:
 - Dynamické obsahujú (modelujú) časové zmeny
 - Statické neobsahujú (nemodelujú) časové zmeny
 - Podľa toho, či obsahujú kriteriálnu funkciu:
 - Rozhodovacie obsahujú kriteriálnu funkciu optimalizujú
 - Technologické neobsahujú kriteriálnu funkciu neoptimalizujú

Lineárne programovanie

- Je to riešenie optimalizačnej úlohy, tzv. problému lineárneho programovania. Pritom je potrebné
- 1. nájsť takú *n*-ticu reálnych čísel x^{T} , $x^{T} = (x_1, x_2, ..., x_n)$
- 2. pre ktorú nadobúda **kriteriálna funkcia** $f(\overline{x}) = c_1 x_1 + c_2 x_2 + ... + c_n x_n$

minimum alebo maximum a ktorá

3. spĺňa obmedzujúce podmienky

$$a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n \ge b_i \ (i = 1, ..., m)$$

prípadne aj podmienky nezápornosti

$$x_i \ge 0$$
 $(j = 1, \dots, n)$

Príklad – Úloha o výrobnom programe

Závod vyrába dva rôzne kusové výrobky v dvoch technologických procesoch. Na výrobu prvého výrobku sú potrebné 3kg suroviny S_1 a 1kg suroviny S_2 . Na výrobu druhého výrobku sú potrebné 3kg suroviny S_1 a 2kg suroviny S_2 . Závod má zásoby prvej suroviny S_1 = 2100kg a druhej suroviny S_2 = 1000kg. Cieľom úlohy je zostrojiť taký výrobný plán, v ktorom maximalizujeme zisk z produkcie. Zisk z predaja výrobku 1. typu sú 2 peňažné jednotky (PJ) a za predaj výrobku 2. typu 3 PJ.

	S ₁ [kg/ks]	S ₂ [kg/ks]	Cena [PJ/ks]
1. výrobok	3	1	2
2. výrobok	3	2	3
Zásoby [kg]	2100	1000	_

Príklad – zostavenie matematického modelu

1. Identifikácia premenných:

Nech x_i (i = 1, 2) je počet výrobkov i-teho typu

2. Formulácia kriteriálnej funkcie:

 $2x_1 + 3x_2$ má byť maximálne

3. Formulácia ohraničení:

$$3x_1 + 3x_2 \le 2100$$

$$x_1 + 2x_2 \le 1000$$

$$x_1, x_2 \ge 0$$

Príklad – riešenie grafickou metódou

- Používa sa v prípade úloh s dvoma premennými, každá je reprezentovaná jednou osou v dvojrozmernom priestore
- Postup (<u>nájdete na príklade v týchto podkladoch na webe</u>):
 - 1. Zakreslíme všetky definované ohraničenia zostrojením zodpovedajúcich deliacich priamok (spravidla ide o polroviny)
 - 2. Vyznačíme oblasť spĺňajúcu všetky ohraničenia, tzv. množinu prípustných riešení (MPR)
 - 3. Zakreslíme priamku zodpovedajúcu kriteriálnej funkcii pre ľubovoľne zvolenú hodnotu nákladov (náklady = parameter)
 - 4. Zistíme, ktorým smerom hodnota kriteriálnej funkcie rastie, resp. klesá pri zmenách parametra a na základe toho identifikujeme v ktorom krajnom bode MPR sa nachádza optimálne riešenie
 - 5. Vypočítame súradnice bodu reprezentujúceho optimálne riešenie

Predpoklady modelov lineárneho programovania (1)

- PROPORCIONALITA (priama úmernosť) –
 predpoklad priamej úmernosti spotreby
 jednotlivých zdrojov (suroviny, čas a pod.)
 a hodnoty produkcie (náklady, zisk a pod.)
 s veľkosťou produkcie.
- ADITÍVNOSŤ (spočítateľnosť) celková spotreba ľubovoľného zdroja a celková cena sa rovná súčtu jednotlivých dielčích spotrieb a dielčích cien vyplývajúcich z určitej produkcie v jednotlivých procesoch.

Predpoklady modelov lineárneho programovania (2)

- DELITEĽNOSŤ znamená že pripúšťame, aby premenné nadobúdali nielen celočíselné, ale aj zlomkové hodnoty.
- NEZÁPORNOSŤ znamená, že (spravidla)
 nie sú prípustné záporné hodnoty
 premenných.

Normovaný (štandardný) tvar úloh lineárneho programovania

- Kriteriálna funkcia musí byť minimalizáciou
- Obmedzujúce podmienky musia byť rovnosti
- Všetky premenné musia byť nezáporné

$$f(x) \stackrel{!}{=} MIN$$

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = b_i, \forall i = 1..m$$

$$x_i \ge 0, \forall j = 1..n$$

Prevod úlohy lineárneho programovania na normovaný (štandardný) tvar

$$Ak: f(x) = MAX \Rightarrow g(x) = -f(x) \Rightarrow g(x) = MIN$$

$$Ak: f(x) = g(x) + k \Rightarrow MIN(g(x) + k) = MIN(g(x)) + k = MIN$$

$$Ak: a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n \ge b_i \Rightarrow \text{vtedy je potrebn\'e}$$

$$\text{zavies\'e pomocn\'u premenn\'u } x_{n+1} \ge 0 \text{, t.j. } a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n - x_{n+1} = b_i$$

$$Ak: a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n \le b_i \Rightarrow \text{vtedy je potrebn\'e}$$

$$\text{zavies\'e pomocn\'u premenn\'u } x_{n+1} \ge 0 \text{, t.j. } a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n + x_{n+1} = b_i$$

$$Ak: x_j \le 0 \Rightarrow \text{vtedy je potrebn\'e zavies\'e dve pomocn\'e}$$

$$\text{premenn\'e } x_k, x_l \ge 0 \text{, t.j. } x_k - x_l \ge 0$$

Prevod úlohy lineárneho programovania na normovaný (štandardný) tvar

$$x_i \ (i = 1, 2) \in R$$

$$2x_1 + 3x_2 \rightarrow MAX$$

$$3x_1 + 3x_2 \le 2100$$

$$x_1 + 2x_2 \le 1000$$

$$x_1, x_2 \ge 0$$

Príklad – prevod modelu na normovaný (štandardný) tvar

- 1. Základné premenné x_i (i = 1, 2) počet výrobkov i-teho typu a doplnkové premenné
- 2. Normovaná kriteriálna funkcia:

$$-2x_1 - 3x_2$$
 má byť minimálne

3. Normované ohraničenia:

$$3x_1 + 3x_2 + x_3 = 2100$$

 $x_1 + 2x_2 + x_4 = 1000$
 $x_1, x_2, x_3, x_4 \ge 0$

Ďalšie vlastnosti úloh lineárneho programovania

- Maticové vyjadrenie ohraničení normovanej úlohy LP: $\overline{Ax} = \overline{b}$
- A jej vektorové vyjadrenie: $x_1 \overline{P_1} + x_2 \overline{P_2} + ... + x_n \overline{P_n} = \overline{P_0}$
- Bázické riešenie tejto sústavy rovníc: $\bar{x} = (x_1, x_2, ..., x_m, 0, ..., 0)$ kde m je počet rovníc
- Množina prípustných riešení (MPR) je konvexná ak pre všetky $\overline{x_1}, \overline{x_2}$ z MPR aj všetky riešenia na ich spojnici sú z MPR
- Riešenie LP problému je zjednodušené tým, že kriteriálna funkcia vždy nadobúda svoj extrém aspoň v jednom krajnom bode MPR
- Hľadanie krajných bodov MPR je ekvivalentné hľadaniu prípustných báz sústavy vektorov $(\overline{P_1}, \overline{P_2}, ..., \overline{P_n})$

Princíp simplexovej metódy riešenia úloh lineárneho programovania

- Je založený na efektívnom prieskume krajných bodov MPR a robí to iteratívne týmto postupom:
 - 1. Vyjdeme z ľubovoľného krajného bodu (vrcholu).
 - 2. Prejdeme k takému krajnému bodu MPR, ktorého hodnota kriteriálnej funkcie je lepšia (ak taký existuje) a pokračujeme krokom 2 v novom krajnom bode.
 - Prechod od jedného krajného bodu k inému znamená prechod od jedného bázického riešenia k inému bázickému riešeniu.
 - Ak takýto bod neexistuje, potom aktuálne najlepšie nájdené bázické riešenie je optimálne.

26

Úloha z 1. prednášky

- 1. Vymyslite a slovne popíšte ľubovoľný problém (konkrétnu úlohu), ktorý je možné namodelovať ako problém lineárneho programovania.
- 2. Následne napíšte aj matematický model lineárneho programovania Vami vymysleného problému, t.j.
 - a. správne identifikujte premenné, ich význam a definičný obor,
 - b. napíšte kriteriálnu funkciu,
 - c. napíšte všetky požadované ohraničenia na premenné.

Pozor, musí to byť iná úloha než tá, ktorá bola na prednáške alebo cvičení.