LIF15 – Théorie des langages formels

Sylvain Brandel 2019 – 2020

sylvain.brandel@univ-lyon1.fr

CM 10

ANALYSE SYNTAXIQUE

Source: Xavier Urbain

Automates finis

- Transducteurs rationnels
 - Automates finis avec transitions étiquetées par une sorte
 - → génération de tokens

• Erreurs jusqu'ici LEXICALES

Grammaires

- Type 0
 - Grammaires générales
 Pas de restrictions
- Type 1
 - Grammaires contextuelles uAv → uwv
 - Grammaires croissantes
 Si w → w' ∈ R alors |w| ≤ |w'|
- Type 2
 - Grammaires hors contexte Si $w \rightarrow w' \in R$ alors $w \in V$
- Type 3
 - Grammaires régulières

Grammaires

Grammaires croissantes

$S \rightarrow ABCS$
$S \to T_{c}$
$CA \to AC$
$BA \rightarrow AB$
$CB \to BC$
$CT_c \rightarrow T_c c$
$CT_c \to T_b c$
$BT_b \rightarrow T_b b$
$BT_b \rightarrow T_a b$
$AT_a \rightarrow T_a a$

 $T_a \rightarrow \varepsilon$

 $\mathsf{S} \to \mathsf{aSTc}$ $S \rightarrow aTc$ $S \rightarrow abc$

 $cB \rightarrow Bc$

 $bB \rightarrow bb$

 $cT \rightarrow Tc$

 $T \rightarrow b$

(contextuelle) $S \rightarrow aSBc$

 $S \rightarrow aSBC$

 $S \rightarrow aBC$

 $CB \rightarrow HB$

 $HB \rightarrow HC$

 $HC \rightarrow BC$

 $aB \rightarrow ab$

 $bB \rightarrow bb$

 $bC \rightarrow bc$

 $cC \rightarrow cc$

Grammaire croissante → grammaire contextuelle

- Expressions arithmétiques sur {+, × , (,), id, cte}
- E → id | cte | E + E | E × E | (E)

 $x + 2.5 \times 4 + (y + z)$

E
$$\Rightarrow \underline{E} + \underline{E}$$

 $\Rightarrow id + \underline{E} \times \underline{E}$
 $\Rightarrow id + cte \times \underline{E}$
 $\Rightarrow id + cte \times \underline{E} + \underline{E}$
 $\Rightarrow id + cte \times cte + \underline{E}$
 $\Rightarrow id + cte \times cte + (\underline{E} + \underline{E})$
 $\Rightarrow id + cte \times cte + (id + \underline{E})$
 $\Rightarrow id + cte \times cte + (id + \underline{E})$
 $\Rightarrow id + cte \times cte + (id + id)$

- Dérivation : gauche
- Parenthésage implicite : (x + (2.5 × (4 + (y + z))))

- Expressions arithmétiques sur {+, ×, (,), id, cte}
- E → id | cte | E + E | E × E | (E)

$$x + 2.5 \times 4 + (y + z)$$

$$E \Rightarrow E + \underline{E}$$

$$\Rightarrow E + (\underline{E})$$

$$\Rightarrow E + (E + \underline{E})$$

$$\Rightarrow E + (\underline{E} + id)$$

$$\Rightarrow \underline{E} + (id + id)$$

$$\Rightarrow E \times \underline{E} + (id + id)$$

$$\Rightarrow E \times cte + (id + id)$$

$$\Rightarrow E + \underline{E} \times cte + (id + id)$$

$$\Rightarrow E + cte \times cte + (id + id)$$

$$\Rightarrow id + cte \times cte + (id + id)$$

- Dérivation droite
- Parenthésage implicite : (((x + 2.5) × 4) + (y + z))

- $(((x + 2.5) \times 4) + (y + z)) \neq (x + (2.5 \times (4 + (y + z))))$
- Dérivation droite avec $((x + (2.5 \times 4)) + (y + z))$?
- G ambiguë si ∃ w ∈ L(G) tq plusieurs dérivations droite pour w.
- Lever l'ambiguïté
 - Pas toujours faisable
 - Cas faciles : 1) Nouveau non terminal par niveau de priorité
 - 2) Récursif gauche si associatif gauche (resp. droite)

- Expressions arithmétiques sur {+, × , (,), id, cte}
- E → id | cte | E + E | E × E | (E)
- + < × + moins prioritaire que ×
- + et \times : associatifs à gauche x+y+z = (x+y)+z

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T \times F \mid F$
 $F \rightarrow id \mid cte \mid (E)$

- Unique derivation gauche ou droite
- Un peu plus long et complexe mais univoque

Arbre syntaxique

- Plusieurs dérivations pour un même résultat (permutations, etc.)
 - → Représentation invariante
 - → Représentation unique lorsque G non ambiguë
- Soit G = (V, Σ, R, S), arbres de syntaxe de G :
 - Nœuds internes étiquetés par V
 - Feuilles étiquetées par Σ
 - Si nœud interne N a k fils $a_1, ..., a_k$ alors N → $a_1 ... a_k \in R$
- Arbre de dérivation : $\Lambda = S$ feuilles $\in \Sigma$

Arbre syntaxique

Exemple

Arbre de la dérivation E ⇒* id × id + id

Arbre syntaxique

- Un arbre de dérivation = plusieurs dérivations
 - → Stratégies de parcours (parent avant fils)
- Pour arbre de dérivation : mot des feuilles ∈ L(G)
- Réciproque : produire un arbre, récurrence sur longueur de dérivation
 - Nulle : arbre = feuille a
 - N ⇒ⁿ w_1Mw_2 ⇒ $w_1a_1 ... a_kw_2$: ajout de k fils au nœud M de l'arbre de N ⇒ⁿ w_1Mw_2
- G ambiguë si ∃ w ∈ L(G) avec deux arbres de dérivation distincts
- Construction de l'arbre vers le haut ou vers le bas ?

Analyse descendante

• Exemple : grammaire de Dick

$$(1) S \rightarrow (S)S$$

(2) S
$$\rightarrow \varepsilon$$

- $((()())()) \in L(G)$?
- Construction de l'arbre :
 - Lecture à partir de la gauche
 Left
 - Construction dérivation gauche
 Left
 - Règle déterminée par 1 caractère à produire
 - **→** LL(1)

Analyse descendante

- Efficace
- Simple
- Pas toutes LL(1)
- Si récursif à gauche → échec

```
• Par exemple E \rightarrow E + T | T T \rightarrow T \times F \mid F F \rightarrow id \mid cte \mid (E) pas faisable
```

Analyse ascendante

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T \times F \mid F$
 $F \rightarrow id \mid cte \mid (E)$

- Récursive gauche ...
- $E \rightarrow T$ ou $E \rightarrow E + T$?
 - → Analyse ascendante
- Construction de l'arbre
 - Lecture à partir de gauche
 - Dérivation droite
 - → LR
- En particulier construction d'une forêt

à l'envers

Analyse ascendante

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T \times F \mid F$
 $F \rightarrow id \mid cte \mid (E)$

- Racine de forêt : suite des racines des arbres la constituant
- Opérations :
 - 1. LectureShift
 - 2. EnracinementReduce

Sur juxtaposition f f' construction de fN si N $\rightarrow \Lambda$ (f')

$$id \times id + id$$
?

- Type et signification : depuis l'arbre de syntaxe
- Utilisateur : ce qu'on écrit
- Concrète : presque comme on écrit Impropre à bonne compréhension
 - → niveau intermédiaire : syntaxe abstraite dépolluée
- On veut :
 - Objectif 1 : sans ambiguïté
 - Objectif 2 : sans scories
 - Objectif 3 : structure et valeurs

- T ensemble d'étiquettes abstraites
- $\Sigma = T \cup \{(;); ,\}$
- $G = (V, \Sigma, R, S)$ abstraite si
 - 1. Règles : $N \to t$ ou $N \to t(N_1, \dots, N_k) \text{ pour } N_i \in V, \, t \in T$
 - 2. Occurrence t unique dans G
- Mot généré : expression abstraite

$$T = \{p, m, cte\} \quad E \rightarrow p(E,E) \mid m(E,E) \mid cte$$

$$T = \{+, \times, cte\} \quad E \rightarrow +(E,E) \mid \times(E,E) \mid cte$$

- G abstraite nécessairement non ambiguë Objectif 1 OK
- Représentation arborescente :
 - facile grâce à la forme des règles

t
/ \
a₁ ... a_k

Arbre de syntaxe abstraite A de sorte N : nœuds dans T et

$$- N \rightarrow t \in R \qquad \text{et } A = t$$

$$ou$$

$$- N \rightarrow t(N_1, \dots, N_k) \in R \quad \text{et } \Lambda (A) = t$$

A a alors k fils ASA de sortes respectives N₁ . . . N_k

Comparaison AS / ASA

Objectif 2 OK

• Pour valeurs : étiquette = langage rationnel

$$E \rightarrow +(E,E) \mid \times (E,E) \mid cte(Nat)$$

Nat $\in (0|1| \cdot \cdot \cdot \mid 9)+$

Objectif 3 OK

Actions dans une grammaire

```
E \rightarrow E + T \qquad \{ +(E_1, T_1) \}
E \rightarrow T \qquad \{ T_1 \}
T \rightarrow T \times F \qquad \{ \times (T_1, F_1) \}
T \rightarrow F \qquad \{ F_1 \}
F \rightarrow Nat \qquad \{ cte(val(Nat_1)) \}
F \rightarrow (E) \qquad \{ E_1 \}
```

• Erreurs ici SYNTAXIQUES