

# **Teaser**

Tool for Energy Analysis and Simulation for Efficient Retrofit





# Introduction





| Campus       | Forschungszentrum Jülich | Melaten (RWTH Aachen) |
|--------------|--------------------------|-----------------------|
| Area         | 2,2 km²                  | 1,25 km²              |
| # Buildings  | ~ 200                    | ~ 50                  |
| Thermal Grid | > 40 km                  | > 10 km               |
| Heating      | CHP                      | Gas boilers           |
| Cooling      | Compression Chillers     | Absorption Chillers   |



# Roadmaps to the City of the Future







### **Motivation**

- Data acquisition and modelling on urban scale:
  - Time consuming
  - Sparse information, not sufficient for dynamic BPS
  - > TEASER
- Dynamic Urban Building Energy Modeling (UBEM)
  - Common BPS tools are designed for in-depth analysis of single buildings
  - Full power of these tools cannot be utilized due to data issues
  - Full power of these tools is not necessary due to shifted focus on integral analysis of an entire district
  - Computational overhead of these tools is not justified by means of accuracy of level of detail on urban scale.
  - Reduced Order Model





### TEASER Tool for F

# Tool for Energy Analysis and Simulation for Efficient Retrofit

Data acquisition on district scale often provides too sparse data for dynamic BPS



One workflow from building to urban scale simulations



# What you should know and be able to do after this workshop

- Understand the impacts of using statistical enriched data sets
- Get an overview of the structure of TEASER and it's GUI
- Using TEASER's functionalities to create
  - Your own individual building
  - A building based on an archetype
- Understand the basics, advantages and disadvantages of ROM
- Export ROM's from TEASER and geht them running in Dymola
- Get an expression of possible workflows for Urban Building Energy Modeling using
  - Python
  - **TEASER**
  - Annex60 Lib
- Get yourself comfortable by using Annex60 building and HVAC models



# **Data Enrichment using Archetypes in TEASER**



Type of Building



Year of Construction

Boundary Conditions, General Approach



Materials, Constructions



# **Data Enrichment using Archetypes in TEASER**



# Zone area weighted allocation Correction factors The state of the sta





Zones

# **TEASER – Application View**







# TEASER – Workflow View Workflow Automation for Urban Building Energy Modelling

### **Data Acquisition**













Individual Energy **Demand Profiles** 





### **TEASER – Structural View**









# **Python**

- Short history:
  - Developed 1991 by Guido van Rossum
  - Name inspired by Monty Python
- Properties:
  - Open-source
  - General-purpose
  - Readability
  - Scripting
    - = Simple syntax
    - = Simple semantics
    - = Implicit variable declaration
    - = Dynamic types
  - Procedural and Object-Oriented
  - Numerous packages available on the internet







# **Reduced Order Modeling**

Reducing the system's complexity through focussing on predominant time constants

- Detailed analysis of the use case's
  - Which time constants are of interest?
  - Which interactions need to be modelled?



Reduced order modeling using grey box modeling approaches from control theory





# **Control Theory**

- Interdisciplinary approach, often used in electrical and control engineering.Concerns the mathematical description of physical systems on an abstract level.
  - **■** Input, Output
  - System (model)
  - Transfer function (mathematical model)



CC0.

https://commons.wikimedia.org/w/index.php?curid=27150846

### Example:

- 1. First order differential equation (e.g. energy storage)
- One-directional excitation
- Always an exponential behavior:

$$y(t) = y(t \rightarrow \infty) + [y(t_0) - y(t \rightarrow \infty)]^e_{\tau}$$

 $\triangleright \tau$ : Time constant

Quelle: De Doncker, "Grundgebiete der Elektrotechnik II"





# **Example**

## Charging a storage (convective):

$$\equiv mc\frac{dT}{dt} = \dot{m}c(T_{in} - T)$$

$$\equiv \frac{1}{T_{in}-T}dT = \frac{\dot{m}c}{mc}dt$$

$$\equiv T - T_0 = (T_{in} - T_0)(1 - e^{-\frac{\dot{m}c}{mc}t}) \quad U_{\text{max}} + U(t)$$

$$\equiv \tau = RC, R = \frac{1}{mc}$$
 and  $C = mc$ 





# Decharging a storage (conductive):

$$\equiv mc\frac{dT}{dt} = -kA(T - T_u)$$

$$\equiv T - T_u = (T_0 - Tu)e^{-\frac{kA}{mc}t}$$

$$\equiv R = \frac{1}{kA}$$
 and  $C = mc$ 



# **Example**



### **Thermal Network Models**

$$\frac{\partial \vartheta(t, x)}{\partial t} = \frac{\lambda}{c * \rho} * \frac{\partial^2 \vartheta(t, x)}{\partial x^2}$$

Discretization (Beuken-Model)

$$R = \frac{s}{\lambda}$$
,  $C = c * \rho * s$ 

Number of R's and C's determines spatial and physical resolution

$$N_{RC} = N_{Zones} * N_{Walls} * N_{RCperWall}$$

### Design decisions:

- Linearized indoor radiative heat exchange
- No view-factors
- Internal gains are considered as ideal point sources





# **Reduced Order Model**



The manufactor of the control of the





### **Effective Thermal Mass**

Similar to a non-symmetrical discretization in CFD or FEM problems.



$$\blacksquare$$
  $R$ ,  $C = f(d_{eff})$ 

$$d_{eff} = f(\rho_n, c_n, \lambda_n, d_n, T)$$

- *T* depends on the system's typical fluctuations in time
- Recommendations
  - **■** ISO 13790 = 1 Day
  - $\equiv$  VDI 6007 = 5/7 Days







### **Use Case: Annex60 DESTEST**





# **Information Modelling on Urban Scale**

- CityGML City Geography Markup Language (XML-based format)
  - Open Geospatial Consortium Standard
  - Common information model for representation of 3D urban objects
    - = Geometry (Level of Detail)
    - = Semantics
    - Topology
  - Does not contain energy-related objects or attributes



- **■** Extension of CityGML information model for specific domains
  - = Extension of CityGML classes
  - Definition of new classes
- EnergyADE (in Development)
- Enables exchange of semantic and topological data for advanced energy applications (e.g. dynamic BPS)
- Participative development in an international expert group from 13 organisations







### **Use Case**

- Six buildings
  - Level of Detail 1
    - = Generic surfaces
    - = Extruded footprints
  - Level of Detail 2
    - = Type of surfaces
    - = Root structures
- Knowledge of existing CityGML attributes
  - **■** Function
  - Year of construction
  - Number of storeys
  - Height of storeys
- Intended for workflow demonstration and export with EnergyADE







# Workflow for CityGML Import and Export







# **Building and HVAC Exercise**

Task: Set up a three-zone building and connect it to a heating system to compute the annual heating load

Use 2016-10-24-gensim\tuesday\BuildingAndHVAC\Models\A1\_North\_Template

First think about the general design, then choose models

- Create a simple heating system consisting of:
  - Ideal heater/boiler
  - Integrator to get annual heat load
  - 3. Radiators (one per room)
  - 4. Valves with PI-controllers per room
  - 5. Pump
  - 6. Ideal pipes (no heat losses, two per radiator)
- Change the control strategy to include night setback
- Change the control strategy to be occupancy-dependent



E.ON Energy Research Center

# **Parameter Settings**

### Medium:

- Simple water, e.g. Modelica.Media.Water.ConstantPropertyLiquidWater
- Pressure drops: 100 Pa
- Radiators:
  - Nominal flow temperature: 65 °C
  - Nominal return temperature: 50 °C
- Heat loads
  - Living room: 92028 W
  - Bed room: 70870 W
  - Sanitary room: 13040 W
  - Set temperatures: 20 °C
- Volume flows:
  - Living room circuit: 1.4 kg/s
  - Bed room circuit: 1.12 kg/s
  - Sanitary room circuit: 0.2 kg/s
- Night setback: 15 °C, 10 PM 6 AM, Occupancy: 15 °C if nobody in the room



# **Schema**





### **Models**





# **Exemplary implementation**

### Want to check your model?

Here are some exemplary implementations:

2016-10-24-gensim\tuesday\BuildingAndHVAC\Models



# **Setting up the Pulse**



### Results

- Area: 581 m²
- kWh = Joule/(3600\*1000)
  - Use Integrator to get the annual heat load in Joule
  - Set gain of integrator to 1/(3600\*1000) to get kWh
- A1 NorthBoiler:
  - Annual heat load: 34158.4 kWh
  - Annual heat load per sqm: 58.8 kWh/m2a
- A1\_NightSetback:
  - Annual heat load: 33692.5 kWh
  - Annual heat load per sqm: 58 kWh/m2a
- A1\_Occupancy:
  - Annual heat load: 32289.5 kWh
  - Annual heat load per sqm: 55.6 kWh/m2a





# https://github.com/RWTH-EBC/TEASER

https://github.com/RWTH-EBC/AixLib

### Contact

E.ON Energy Research Center Mathieustraße 10 52074 Aachen Germany

Moritz Lauster
T +49 241 80 49772
F +49 241 80 49769
mlauster@eonerc.rwth-aachen.de

Further Information:

http://www.eonerc.rwth-aachen.de



