PROJETO 3 - Introdução à Física Computacional - 2021 MÉTODOS BÁSICOS INTEGRO-DIFERENCIAIS

Prof. F. C. Alcaraz - Turma 1 Data de entrega 16/06/2021 (quarta feira)

A) Escreva um código FORTRAN que operando em precisão dupla (real*8) forneça os dados da tabela abaixo para as derivadas da função $f(x) = \cosh(3x)\sin(x/4)$ para x = 0.5. Escreva apenas os desvios em relação aos resultados exatos. Na última linha escreva os valores numéricos com precisão 10^{-11} obtidos mediante a expressão analítica que você deve derivar.

	derivada	derivada	derivada	derivada	derivada	derivada
\parallel h	simétrica	p/frente	p/traz	simétrica	segunda	terceira
	3 pontos	2 pontos	2 pontos	5 pontos	simétrica	anti-simétrica
					5 pontos	5 pontos
0.5						
0.2						
0.1						
0.05						
0.01						
0.005						
0.001						
0.0005						
0.0001						
0.00005						
0.00001						
0.000001						
0.0000001						
0.00000001						
EXATOS						

Diga em cada caso qual o valor de h mais apropriado para uso. Justifique seus resultados.

B) Escreva um código FORTRAN que calcule a integral $\int_0^1 \exp(x/2) \sin(\pi x) dx$ usando diversos métodos e para diferentes números de pontos. Estime apenas os desvios em relação ao valor exato. Na última linha da tabela escreva o valor numérico exato com precisão 10^{-11} obtido pela expressão analítica que você deve calcular.

Diga em cada caso qual o valor apropriado para N. Justifique seus resultados.

C) Faça um programa que calcule as raízes positivas e negativas de $f(x) = x^3 - 14x - 20$, preenchendo a tabela a seguir. Eleja uma tolerância de 10^{-6} . Inicie a sua procura em x = -10 na busca direta ou como ponto inicial nos outros métodos. Eleja na busca direta um espaçamento inicial de 0.5. No caso da busca direta r_1, r_2 e r_3 são os valores quando existe mudança de sinal em f(x). Na última linha da tabela coloque os valores exatos.

N	h = (b - a)/N	Regra do Trapézio	Regra de Simpson	Regra de Boole
12	1/12			
24	1/24			
48	1/48			
96	1/96			
192	1/192			
384	1/384			
768	1/768			
1536	1/1536			
3072	1/3072			
6144	1/6144			
EXATOS	-			

	Procura Direta		Newton-Raphson			Método da Secante			
Iteração	$\mid r_1 \mid$	r_2	r_3	r_1	r_2	r_3	r_1	r_2	r_3
0									
1									
2									
3									
4									
5									
6									
EXATOS									

RELAÇÕES AUXILIARES

A) Diferenciação numérica

$$x_n \equiv x_0 + nh, \quad (n = 0, \pm 1, \pm 2, \ldots)$$
 (0.1)

$$f_n \equiv f(x_n) = f(x_0 + nh), \quad (n = 0, \pm 1, \pm 2, \ldots)$$
 (0.2)

Expansão em Taylor ao redor de x_0

$$f(x) = f_0 + (x - x_0)f' + \frac{(x - x_0)^2}{2!}f'' + \frac{(x - x_0)^3}{3!}f''' + \cdots$$
 (0.3)

onde

$$f' = \frac{df}{dx}|_{x=x_0}, \quad f'' = \frac{d^2x}{dx^2}|_{x=x_0}.$$
 (0.4)

De (3) tem-se que

$$f_n = f_0 + nhf' + \frac{n^2h^2}{2!}f'' + \frac{n^3h^3}{3!}f''' + \cdots,$$
 (0.5)

De onde tiramos as relações:

derivada para frente de dois pontos

$$f' = \frac{f_1 - f_0}{h} + O(h) \tag{0.6}$$

derivada para traz de dois pontos

$$f' = \frac{f_0 - f_{-1}}{h} + O(h) \tag{0.7}$$

derivada simétrica de 3 pontos

$$f' = \frac{f_1 - f_{-1}}{2h} + O(h^2) \tag{0.8}$$

derivada simétrica de 5 pontos

$$f' = \frac{f_{-2} - 8f_{-1} + 8f_1 - f_2}{12h} + O(h^4)$$
(0.9)

derivada segunda simétrica de 3 pontos

$$f'' = \frac{f_{-1} - 2f_0 + f_1}{h^2} + O(h^2) \tag{0.10}$$

derivada terceira assimétrica de 4 pontos

$$f''' = \pm \frac{-f_{\mp 1} + 3f_0 - 3f_{\pm 1} + f_{\pm 2}}{h^3} + O(h)$$
 (0.11)

derivada segunda simétrica de 5 pontos

$$f'' = \frac{-f_{-2} + 16f_{-1} - 30f_0 + 16f_1 - f_2}{12h^2} + O(h^4)$$
 (0.12)

derivada terceira anti-simétrica de 5 pontos

$$f''' = \frac{-f_{-2} + 2f_{-1} - 2f_1 + f_2}{2h^3} + O(h^2)$$
 (0.13)

B) QUADRATURA NUMÉRICA

Seja $N = \frac{b-a}{h}$ um número inteiro par e

$$\int_{a}^{b} f(x)dx = \int_{a}^{a+2h} f(x)dx + \int_{a+2h}^{a+4h} f(x)dx + \dots + \int_{b-2h}^{b} f(x)dx.$$
 (0.14)

regra do trapézio

$$\int_{-h}^{h} f(x)dx = \frac{h}{2}(f_{-1} + 2f_0 + f_1) + O(h^3).$$
(0.15)

Integrando-se $f(x) = f_0 + \frac{f_1 - f_{-1}}{2h}x + \frac{f_1 - 2f_0 + f_{-1}}{2h^2}x^2 + O(x^3)$ tem-se regra de Simpson

$$\int_{-h}^{h} f(x)dx = \frac{h}{3}(f_1 + 4f_0 + f_{-1}) + O(h^5). \tag{0.16}$$

Usando-se outras formas discretizadas para as derivadas obtem-se:

regra de Simpson 3/8

$$\int_{x_0}^{x_3} f(x)dx = \frac{3h}{8} (f_0 + 3f_1 + 3f_2 + f_3) + O(h^5). \tag{0.17}$$

regra de Boole (impropriamente chamada de regra de Bode)

$$\int_{x_0}^{x_4} f(x)dx = \frac{2h}{45} (7f_0 + 32f_1 + 12f_2 + 32f_3 + 7f_4) + O(h^7). \tag{0.18}$$

C) Cálculo de raízes de equações

Método de busca direta Método de Newton-Raphson

$$x^{i+1} = x^i - \frac{f(x^i)}{f'(x^i)} \tag{0.19}$$

explorando-se que $f'(x^i) = \frac{f(x^i) - f(x^{i-1})}{x^i - x^{i-1}}$ temos **Método da secante**

$$x^{i+1} = x^{i} - f(x^{i}) \frac{x^{i} - x^{i-1}}{f(x^{i}) - f(x^{i-1})}.$$
(0.20)