1. For a network layer with n jupuls and a maxeut activation of, it is formally
$\phi(x) = \max(\langle w_i^T x + b_i \rangle_{i=1}^n)$
For backgrop,
• •
yn — ground truth
$d_{n} = \phi(x)$
$\varepsilon_{\rm m} = \frac{1}{2} \ y_{\rm m} - d_{\rm m} \ ^2$
- v
We need to update beight ω_n , by $\Delta \omega_n$
$\Delta \omega_n = -n \frac{\partial E_n}{\partial \omega_n}$, n being the learning rate
12 mm = 10 mm 1 miles
$= - \gamma \frac{\partial}{\partial \omega_n} \ \phi(x_n) - y_n \ ^2 \cdot \frac{1}{2}$
$= - \eta \varepsilon_{\mathbf{w}} \cdot \frac{\partial}{\partial \mathbf{w}_{\mathbf{n}}} \phi(\mathbf{x}_{\mathbf{n}})$
C TO DON.
$= \begin{cases} -n \in X_n & x = i \text{s.t.} W_i \times + b = \emptyset(x) \\ 0 & n = i \text{s.t.} \omega_i \times + b < \emptyset(x) \end{cases}$
(δ) $n=i$ st. wix+b $<\phi(x)$