

Introductions

SU Computer Science Capstone Team:

- Jules Hunter
- Joshua Baron
- Jessica Huang
- J Guadalupe Andrade

Sponsors:

- Dr. Peter Dauenhauer
- Daniel Nausner

Advisor:

Dr. Burkhard Englert

Organizations

Project Overview

The Microgrid Toolkit is designed to help plan for the long-term impact and sustainability of microgrid installations. The main feature of the tool is a customizable simulation that predicts energy production and consumption as well as socioeconomic impacts of a microgrid system. It is a web application that should enable system designers to optimize their plans for energy solutions in developing countries.

Project Goals

- ▶ Develop a user-friendly microgrid design tool for non-technical users.
 - Desktop & Mobile functionality
- Guide users through project creation, system input, simulations, analysis, and storage.
- Improve energy scripts
 - Easily query resource data such as solar irradiance, wind and temperature by location.
 - Consolidate and Improve performance of previous simulation scripts
- Simulation & Results Analysis
 - Generate Graphics and plots of project outputs
 - 20-year energy projections
 - Financial and impact analysis

Frontend - Jessica

- Design User Interface
- ► Implement User Interfaces from wireframes
 - Using React
- ► Ensures usability and accessibility

Homepage

- Currently only Sign up + Login buttons are working
- Graph is clickable
 - Leads to tutorial
- Learn More! Leads to an indepth manual

Sign Up/Login Page

Pop up format optimizes user experience

Progress so far - Jessica

- Designed + Implemented the homepage
 - Translated wireframe into react code
- Connected sign up/login page to homepage
- Connected login page to test page

Future Plans - Jessica

- ► Homepage for returning users
 - Includes quick access to project
- Create user manual
- ► Implement footer
- Create rest of pages
 - Project design
 - About

Josh - Backend

- Google Firebase (Google Cloud)
 - Google Authentication
 - Google Firestore
 - Google Functions
 - Google Storage
 - Google Hosting

User Login and Registration

Firebase Authentication
 Email and Password
 Secure Sign In

Data Storage

- Firestore
 - No SQL database
- Cloud Buckets
 - Stores User Project Data
 - Easier to Store Project Data in Cloud Buckets

Cost Efficiency

Running the Simulation

Function	Trigger
run_simulation us-central1	HTTP Request https://run-simulation-2e75hqar4q-uc.a.run.app
fetch_solar_data_function us-central1	HTTP Request https://fetch-solar-data-function-2e75hqar4q-uc.a.run.app

Google Cloud Functions
 Run Backend Simulation Scripts

Progress so Far - Josh

- User Login and Registration features
- Project Selection Page
 - Add Projects
 - Delete Projects
 - Share Projects
- Connected Database to Store User Information and Project Information
- Connected Backend Scripts to Website

Future Plans - Josh

- Password Recovery
- Security Features
- Website Hosting

Integration of API Data for Solar & Wind Energy - Jose

- Solar, Temperature, Wind Data API Selection
- Query, Gather, Process Data
- User Interface Implementation
- ► Simulation Calculation Implementation

Progress so Far - Jose

- API Found (NSRDB: National Solar Radiation Database)
- ▶ Data has been retrieved & calculated
 - Zambia
- The data has been structured in CSV format
- Method created to fit the UI

Future Plans - Jose

- Ensure data is useful & reliable
- Reduce data wait time
- Include areas outside of Africa
- Allow for user selection of displayed CSV data

Jules - Scripts

- Consolidating and improving performance of legacy code
 - Solar
 - Wind
 - Diesel
 - Load
 - Net Energy
- Energy Storage System (batteries, curtailment)

Solar

- Using a panel Output Power formula
 - Other options considered:
 PVWatts Model, Machine
 Learning
 - Accounts for losses due to temperature, wiring, aging, dust, converter
- Hourly data default

Solar Equation

$$P_{\mathrm{out}} = \left(\frac{I}{STC_{\mathrm{irr}}}\right) \times \left[P_{\mathrm{rated}} + P_{\mathrm{rated}} \times \left(\frac{\mathrm{coef}}{100}\right) \times \left(T_{\mathrm{cell}} - STC_{\mathrm{temp}}\right)\right] \times \prod_{i} (1 - \mathrm{losses}_{i})$$

- $P_{\text{out}} = \text{Solar power output (W)}$
- $I = \text{Solar irradiance (W/m}^2)$
- $STC_{irr} = 1000 \text{ W/m}^2$ (Standard Test Conditions irradiance)
- $P_{\text{rated}} = \text{Rated panel power (e.g., 680 W)}$
- coef = Temperature coefficient (e.g., -0.45)
- $T_{\rm cell} = T_{\rm ambient} + 0.0563 \times I$ (Cell temperature adjusted for irradiance)
- $STC_{\text{temp}} = 25^{\circ}\text{C}$ (Standard Test Conditions temperature)

- $\prod_i (1 \text{losses}_i)$ accounts for efficiency losses:
 - Wiring losses (10%)
 - Module mismatch losses (10%)
 - Module aging losses (8%)
 - Dust/dirt losses (11%)
 - Converter losses (5%)

$$P_{\text{wind}} = \begin{cases} 0, & V < V_{\text{cut-in}} \text{ or } V > V_{\text{cut-out}} \\ P_{\text{rated}} \times \left(\frac{V - V_{\text{cut-in}}}{V_{\text{rated}} - V_{\text{cut-in}}} \right)^3, & V_{\text{cut-in}} \leq V < V_{\text{rated}} \\ P_{\text{rated}}, & V_{\text{rated}} \leq V \leq V_{\text{cut-out}} \end{cases}$$

Wind

- Wind data is first converted from km/h to m/s
- Converts power output to kW

Diesel & Load

- Reads fuel consumption and generator output from dataset, and applies losses
 - Losses: engine efficiency, generator efficiency, transmission, converter
- Load: aggregates 5 loads

Net Energy - Without Batteries

Progress so far - Jules

Calculations implemented:

- Solar Power Output
- Load Profile
- Wind Energy Generation
- Diesel Energy Generation
- Net Energy Balance

Matplotlib used for plotting graphs

All graphs saved and displayed in the web app

Future Plans - Jules

BATTERY STORAGE MODELING

USER INPUT & WEB UI ENHANCEMENTS

INTERACTIVE GRAPHS

OPTIMIZING ENERGY MIX FOR DIFFERENT DEMAND SCENARIOS

Q & A Time! Questions?