PROBLEMAS DE CIRCUITOS ELECTRÓNICOS

2º Curso de Grado en Ingeniería Informática – 17/18

TEMA 5: El transistor bipolar

- 1.- En el circuito de la figura
- a) Calcular el punto de trabajo del transistor, siendo:

$$V_{CC} = 5 V$$

$$V_{BB} = 1 V$$

$$R_C = 1 K\Omega$$

$$R_B = 10 \text{ K}\Omega$$

$$V_{BE,\gamma} = 0.7 \text{ V}$$

$$V_{CE(saturación)} = 0.2 \text{ V}$$

$$\beta = 100$$

- b) Calcular la resistencia de colector mínima que pase el transistor a saturación.
- c) Con $R_C = 1$ K Ω , ¿qué valores de R_B pasan el transistor a saturación?

- a) Si se emplea un transistor con $\beta=99$, y las resistencias dadas son $R_C=2.7$ K Ω y $R_F=180$ K Ω , hallar los valores de V_{CE} e I_C . Tomar $V_{BE,\gamma}=0.7$ V.
- b) Repetir (a) con β = 199.
- c) Suponiendo que β = 5, determinar los valores de las resistencias R_C y R_F para que V_{CE} = 2.5 V e I_C = 1 mA.

- 3.- La figura muestra un circuito de autopolarización para un transistor.
- a) Determinar el punto de trabajo del dispositivo cuando:

$$V_{CC} = 12 V$$
,

$$R_1 = 120 \text{ K}\Omega$$
,

$$R_2 = 24 \text{ K}\Omega$$
,

$$R_C = 2.4 \text{ K}\Omega$$
,

$$R_E = 680 \Omega$$

$$V_{BE,\gamma} = 0.7 \text{ V},$$

$$\beta = 100$$

b) Determinar el punto de trabajo del dispositivo cuando:

$$V_{CC} = 15 \text{ V},$$

$$R_1 = 100 \text{ K}\Omega$$
,

$$R_2 = 50 \text{ K}\Omega,$$

$$R_C = 5 \text{ K}\Omega$$
,

$$R_E = 3 K\Omega$$
,

$$V_{BE,\gamma} = 0.7 \text{ V},$$

$$\beta = 100$$

c) Determinar R_1 , R_2 y R_E para que el punto de funcionamiento del transistor sea tal que $V_{CE} = 6$ V e $I_C = 2$ mA, al tiempo que se verifica la relación de corrientes: $I_{R1}/I_B = 30$, y suponiendo que:

$$V_{CC} = 15 \text{ V},$$

$$R_C = 3 K\Omega$$
,

$$V_{BE,\gamma} = 0.7 \text{ V},$$

$$\beta = 50$$

4.- Determinar R_1 y R_C para que la intensidad de colector y la tensión del colector en el punto de reposo valgan respectivamente $I_{CQ}=2$ mA y $V_{CEQ}=10$ V.

Suponer $V_{BE,\gamma}=0.7~V,~y~que$ se verifica el criterio de estabilidad de la polarización frente a variaciones de la temperatura $[R_B<<(\beta+1)~R_E].$

Suponer: $\beta \gg 1$

5.- Determinar el punto de trabajo (I_C , I_B , V_{CE}) de los dos transistores suponiendo que la ganancia en corriente ($\beta=100$) es la misma para ambos ($V_{BE}=0.7~V$ en activa o saturación; $V_{CE}=0.2~V$ en saturación).

6.- Sabiendo que los dos transistores del circuito de la figura están en saturación, determinar la corriente de base del transistor T1 ($V_{BE,sat} = 0.7 \text{ V}$; $V_{CE,sat} = 0.2 \text{ V}$).

- **7.-** En el siguiente circuito:
- a) Encontrar el valor mínimo de la tensión V_{BB} para que el transistor T2 pase de corte a conducción.
- b) Para $V_{BB} = 3$ V encontrar el valor mínimo que debe tomar R_2 para que el transistor T_2 se encuentre saturado.

Datos:
$$V_{CC} = 5 \text{ V}$$
;
 $R_1 = R_E = 1 \text{ K}\Omega$; $R_B = 10 \text{ K}\Omega$;
 $V_{BE(activa)} = V_{BE(saturac.)} = 0.7 \text{ V}$;

$$V_{CE(saturación)} = 0.2 \text{ V};$$

$$\beta = 19$$
.

- 8.- Para el circuito de la figura:
- a) Determinar la función de transferencia, $V_o(V_i)$, para el transistor en las tres regiones de activa, corte y saturación.
- b) Determinar el rango de valores de V_i para el que es válida cada una de las funciones anteriores, y dibujar la función de transferencia para tensiones de entrada desde -5 V hasta +5 V.

$$\begin{split} &(V_{BE}=0.7~V,~V_{CE,sat}=0.2~V,~\beta=50;\\ &V_{CC}=+5~V,~R_{B}=10~K\Omega,~R_{C}=1~K\Omega.) \end{split}$$

9.- Suponiendo un transistor de unión típico de silicio, deducir las expresiones de V_E para los distintos rangos de V_{CC} ($V_{CC} \ge 0$) en los que el transistor se encuentra en los estados de corte o conducción posibles. Indicar expresamente dichos rangos y el estado correspondiente del transistor.

Suponer conocidos los valores de V_{CC} , R_B y R_E , y las aproximaciones lineales para el transistor: $V_{BE,conducción} \approx V_{BE\gamma}$, $V_{CE,saturación} \approx V_{CEsat}$ y $\beta \equiv$ ganancia de corriente en activa (emisor común).

- **10.-** <u>Demostrar</u> que el circuito de la figura se comporta, entre los nodos a y b, como una fuente de corriente constante, siempre y cuando el transistor esté en la región activa.
- ¿Qué relación existe entre la corriente en la carga R_L y la tensión de entrada V_i?
- ¿Entre qué valores puede variar R_L para que el transistor funcione en activa?

Suponiendo que $V_i = 5 V$, y que:

$$\begin{split} R &= 10 \text{ K}\Omega, & V_{CC} &= 15 \text{ V}, \\ V_{BE\gamma} &= 0.7 \text{ V}, & \beta &= 100, \end{split}$$

calcular dicho intervalo de valores de R_L.

- **11.-** En el circuito de la figura, el amplificador operacional es ideal, $V_{in}=15$ V, $R_1=10~K\Omega,~R_2=5~K\Omega,~R_3=5~K\Omega$ y el transistor está caracterizado por $h_{FE}=100$, $V_{BE}^{\ \ act}=0.6~V~y~V_{CE}^{\ \ sat}=0.2~V$. Calcular:
- a) El voltaje de salida V_{out} .
- b) Las corrientes del transistor.

- **12.-** El amplificador operacional de la figura es ideal y está funcionando en la región lineal.
- a) ¿A partir de qué tensión de entrada, V_i, comenzará a conducir el transistor?
- b) Para $V_i = 10 \text{ V}$, encontrar la intensidad I_o . ¿Entra o sale del operacional?

Datos: $R_1=R_4=R_E=R_C=1$ K Ω ; $R_2=9$ K Ω ; $R_3=19$ K Ω : $\beta=100;$ $V_{BE(activa)}=0.6$ V.

13.- Sabiendo que v_i toma valores tales que: $v_i \leq V_{CC}$, deducir las expresiones de la corriente que circula por el LED, i_{LED} , utilizando los modelos lineales para gran señal del transistor bipolar de unión (T) y del LED, suponiendo que éste presenta una resistencia despreciable en conducción. Indicar los intervalos de vi en que son válidas cada una de las expresiones de i_{LED} dadas.

Considerar que: $V_{CC} >> V_{BE\gamma} + V_{\gamma}$, y suponer conocidos: V_{CC} , R_B y R_E ;

 V_{γ} (del LED); β , $V_{BE\gamma}$ y V_{CEsat} (del transistor).

- **14.-** La figura representa un circuito estabilizador por diodo zener y transistor. El circuito se emplea para obtener un voltaje de salida V_{AB} prácticamente independiente de las variaciones de voltaje de la fuente original (de equivalente de Thévenin V_o , R_o) y de la corriente consumida por la carga R_L .
- a) Suponiendo que no se conecta la resistencia R_L (salida en circuito abierto), calcular el mínimo voltaje que se precisa en V_o ($V_o^{mín}$) para que el zener esté trabajando en la región inversa zener (modelo: V_Z , R_Z).
- b) Suponiendo que $V_o > V_o^{mín.}$ y que el transistor trabaja en la región activa (modelo: h_{FE} , $V_{BE}^{act.}$), calcular una expresión para el voltaje y la resistencia equivalente de Thévenin entre los terminales A y B.
- c) A partir de los resultados anteriores, calcular el factor de estabilización de voltaje, $S_v = \partial V_{AB} / \partial V_o$.

