13.1) Seemingly Unrelated Regressions (SUR)

Vitor Kamada

August 2019

Reference

Wooldridge (2010). **Econometric Analysis of Cross Section and Panel Data.** Ch 7.7

https://ebookcentral.proquest.com/lib/wayne/detail.action?docID = 33391968 and the state of th

2 / 13

System of Equations

$$\begin{aligned} \textit{housing} &= \beta_{10} + \beta_{11} \textit{houseprc} + \beta_{12} \textit{foodprc} + \beta_{13} \textit{clothprc} + \beta_{14} \textit{income} \\ &+ \beta_{15} \textit{size} + \beta_{16} \textit{age} + \textit{u}_1. \end{aligned}$$

$$food = \beta_{20} + \beta_{21}houseprc + \beta_{22}foodprc + \beta_{23}clothprc + \beta_{24}income$$
$$+ \beta_{25}size + \beta_{26}age + u_2.$$

clothing =
$$\beta_{30} + \beta_{31}$$
houseprc + β_{32} foodprc + β_{33} clothprc + β_{34} income + β_{35} size + β_{36} age + u_3 .

$$E(u_g|x_1, x_2, ..., x_G) = 0$$

 $g = 1, ..., G$

Generalized Least Squares (GLS)

$$E(\epsilon \epsilon' | X) = \sigma^2 V(X)$$
 $(n \times n)$
 $V^{-1} = C'C$
 $Cy = CX\beta + C\epsilon$
 $\hat{\beta}_{GLS} = (X'V^{-1}X)^{-1}X'V^{-1}y$

Vitor Kamada ECO 7110 Econometrics August 2019 4/13

GLS - Two Equations

$$y_{g} = X_{g}\beta_{g} + u_{g}, \quad g = 1, 2$$

$$\begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix} = \begin{bmatrix} X_{1} & 0 \\ 0 & X_{2} \end{bmatrix} \begin{pmatrix} \beta_{1} \\ \beta_{2} \end{pmatrix} + \begin{pmatrix} u_{1} \\ u_{2} \end{pmatrix}$$

$$\Sigma \otimes I_N = \begin{bmatrix} \sigma_{11}I_N & \sigma_{12}I_N \\ \sigma_{21}I_N & \sigma_{22}I_N \end{bmatrix}$$

$$\hat{\beta}_{GLS} = \begin{bmatrix} \sigma_{11} X_1' X_1 & \sigma_{12} X_1' X_2 \\ \sigma_{21} X_2' X_1 & \sigma_{22} X_2' X_2 \end{bmatrix}^{-1} \begin{bmatrix} \sigma_{11} X_1' y_1 + \sigma_{12} X_1' y_2 \\ \sigma_{21} X_2' y_1 + \sigma_{22} X_2' y_2 \end{bmatrix}$$

Seemingly Unrelated Regressions (SUR)

$$\begin{bmatrix} y_{i1} \\ \vdots \\ y_{iG} \end{bmatrix} = \begin{bmatrix} x'_{i1} & 0 & 0 \\ 0 & \cdots & 0 \\ 0 & 0 & x'_{iG} \end{bmatrix} \begin{bmatrix} \beta_{i1} \\ \vdots \\ \beta_{iG} \end{bmatrix} + \begin{bmatrix} u_{i1} \\ \vdots \\ u_{iG} \end{bmatrix}$$

$$\hat{\beta}_{GLS} = \{X'(\Sigma^{-1} \otimes I_N)X\}^{-1}\{X'(\Sigma^{-1} \otimes I_N)y\}$$

$$Var(\hat{eta}) = \{X'(\Sigma^{-1} \otimes I_N)X\}^{-1}$$

4□▶ 4□▶ 4□▶ 4□▶ 4□ ▶ 9<</p>

SUR Estimator = **FGLS Estimator**

- 1) Estimate each equation by OLS
 - 2) Estimate Σ , using:

$$\hat{u}_j = y_j - X_j \hat{eta}_j$$
 and $\hat{\sigma}_{jj'} = \hat{u}_j' \hat{u}_{j'} / N$

3) Use $\hat{\Sigma}$ to obtain $\hat{\beta}_{FGLS}$

Vitor Kamada ECO 7110 Econometrics August 2019 7/13

SUR Model for Hourly Wages and Hourly Benefits

r ₁₂	= ,	.32	

Explanatory Variables	hrearn	hrbens
educ	.459 (.069)	.077 (.008)
exper	076 (.057)	.023 (.007)
$exper^2$.0040 (.0012)	0005 (.0001)
tenure	.110 (.084)	.054 (.010)
tenure ²	0051 (.0033)	0012 (.0004)
union	.808 (.408)	.366 (.049)
south	457 (.552)	023 (.066)
nrtheast	-1.151 (0.606)	057 (.072)
nrthcen	636 (.556)	(.072) 038 (.066)
married	.642 (.418)	.058
white	1.141 (0.612)	(.050) .090 - (.073) - .268 - (.048)
male	1.785 (0.398)	.268 (.048)
intercept	-2.632 (1.228)	890 (.147)

Vitor Kamada ECO 7110 Econometrics August 2019 8/13

Medical Expenditure Panel Survey (MEPS)

- Medicare-eligible population
- \bullet Aged > 65 years
- Medicare does not cover all medical expenses
- People usually buy private insurance

Idrugexp: log of expenditure on prescribed drugs

Idrugexp: log of expenditure on all categories of medical services other than drugs

actlim: activity limitation

```
X1 = sm.add_constant(df[['age', 'age2',
    'actlim', 'totchr', 'medicaid', 'private']])
X2 = sm.add_constant(df[['age', 'age2',
    'actlim','totchr', 'educyr', 'private']])
```

```
OLS1 = sm.OLS(df.ldrugexp, X1,
  missing='drop').fit(cov_type='HC1')
```

	coef	std err	Z	P> z
const	-4.4022	2.972	-1.481	0.139
age	0.2764	0.079	3.484	0.000
age2	-0.0018	0.001	-3.475	0.001
actlim	0.3574	0.046	7.854	0.000
totchr	0.4035	0.016	24.768	0.000
medicaid	0.0893	0.062	1.435	0.151
private	0.0775	0.044	1.750	0.080

	coef	std err	Z	P> z
const	C 1414	2 052	1 504	0 111
const	-6.1414	3.853	-1.594	0.111
age	0.3174	0.103	3.081	0.002
age2	-0.0021	0.001	-3.047	0.002
actlim	0.7421	0.064	11.664	0.000
totchr	0.2960	0.020	14.460	0.000
educyr	0.0650	0.008	8.531	0.000
private	0.2590	0.054	4.773	0.000

11 / 13

Vitor Kamada ECO 7110 Econometrics August 2019

$r_{12} = \hat{\sigma}_{12} / \sqrt{\hat{\sigma}_{11}\hat{\sigma}_{22}} = 0.17$

```
from linearmodels.system import SUR
from collections import OrderedDict
Equation = OrderedDict()
Equation['ldrugexp'] = {'dependent': df.ldrugexp, 'exog': X1}
Equation['ltotothr'] = {'dependent': df.ltotothr, 'exog': X2}
SUR Reg = SUR(Equation).fit()
res1 = SUR Reg.equations['ldrugexp'].resids
res2 = SUR Reg.equations['ltotothr'].resids
np.corrcoef(res1, res2)
array([[1.
                            , 0.17427516],
           [0.17427516, 1.
```

Breusch-Pagan or Lagrange Multiplier (LM) Test

$$Nr_{12}^2 = 3251 \times 0.1741^2 = 98.54$$

 Vitor Kamada
 ECO 7110 Econometrics
 August 2019
 12 / 13

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q (*)

SUR Results

	Panamoton	Std. Err.	T_ctat	P-valuo
			1-3tat	
const	-3.8913	2.6290	-1.4802	0.1388
age	0.2630	0.0702	3.7478	0.0002
age2	-0.0017	0.0005	-3.7387	0.0002
actlim	0.3547	0.0400	8.8715	0.0000
totchr	0.4005	0.0144	27.828	0.0000
medicaid	0.1068	0.0539	1.9798	0.0477
private	0.0810	0.0390	2.0788	0.0376
	Equatio	n: ltotothr,	Dependent	Variable:
========				
	Parameter	Std. Err.	T-stat	P-value
const	-5.1983	2.6469	-1.9640	0.0495
age	0.2928	0.0707	4.1399	0.0000
age2	-0.0019	0.0005	-4.0930	0.0000
actlim	0.7387	0.0431	17.143	0.0000
totchr	0.2874	0.0141	20.318	0.0000
educyr	0.0653	0.0053	12.238	0.0000
private	0.2689	0.0373	7.2116	0.0000
			4 □ ▶ 4 ₫	