

Problem: Machines can recognize faces but cannot understand human emotion.

Who Cares: Healthcare, customer service, education, and security that relies on human Al interaction.

Why is it Important: Al's ability to understand human emotion enables a natural, empathetic, and safer interaction between the two.

THE PROBLEM

SOLUTION OVERVIEW

Solution: Detect human facial emotions and classify them in real time.

How: By using a YOLO model trained on labeled facial emotion data to help machines accurately interpret human emotion.

A Computer vision model system that will help machines recognize and respond to human expressions through facial emotion analysis.

TECHNICAL APPROACH

- CV Technique: Object Detection/ Classification
- Model:YOLOvII Small (Ultralytics)
- Framework: Kaggle Networks with PyTorch, Ultralytics, OpenCV

The YOLOvII architecture supports both object detection and image classification. Variant YOLOvIIs (The small variant) is faster, lightweight, and efficient, which is ideal for real time emotion recognition tasks. Using Kaggle Notebooks provides a convenient environment that allows direct access to the dataset from its source.

DATA PLAN

- Source: Kaggle
 - AffectNet (Public dataset)
- SIZE: Over I million images
- Labels:
 - Anger, Contempt,
 Disgust, Fear, Happy,
 Neutral, Sad, Surprise

SYSTEM DIAGRAM

Data → Processing → Model → Prediction

SUCCESS METRICS

- Primary Metrics: Accuracy
- Target: 70% accuracy
- Secondary Metrics: Speed

WEEK-BY-WEEK PLAN

Week	Task	Milestone
10 (Oct 30)	Get dataset, set up environment	Dataset ready
II (Nov 6)	Train or fine-tune mode	el Model working
12 (Nov 13)	Test and improve	Good accuracy
13 (Nov 20)	Create demo / video	Demo ready
14 (Nov 27)	Final testing / documentation	Everything done
15 (Dec 4)	Present project	Presentation day

CHALLENGES & BACKUP PLANS

Challenge: What if the GPU times out during model training?

Plan B: Save checkpoints frequently to Google Drive.

Challenge: What if the model doesn't reach the target accuracy?

Plan B: Fine-tune the YOLOvII pretrained model on the dataset with GPU optimization.

RESOURCES NEEDED

- Compute: Google Colab Pro GPU (NVIDIAT4), Kaggle
- Tools: PyTorch, Ultralytics, OpenCV,
- **Cost:**\$10