Signature and Name of Invigilator

	(2)		OMR Sho	eet N	0.:						
1.	(Signature)									ndida	
	(Name)		Roll No.								
2.	(Signature)			(1	n figu	ıres a	s per	adm	issior	card)
	(Name)	PAPER - III	Roll No.								
Т	00715	TTED COLENIA		D		(I	n wo	rds)			

Time: $2\frac{1}{2}$ hours]

COMPUTER SCIENCE AND **APPLICATIONS**

[Maximum Marks: 150 Number of Questions in this Booklet: 75

Number of Pages in this Booklet: 16

Instructions for the Candidates

- 1. Write your roll number in the space provided on the top of
- This paper consists of seventy five multiple-choice type of questions.
- 3. At the commencement of examination, the question booklet will be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as below:
 - To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker-seal and do not accept an open booklet.
 - (ii) Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the Question Booklet will be replaced nor any extra time will be given.
 - (iii) After this verification is over, the Test Booklet Number should be entered on the OMR Sheet and the OMR Sheet Number should be entered on this Test Booklet.
- 4. Each item has four alternative responses marked (1), (2), (3) and (4). You have to darken the circle as indicated below on the correct response against each item.

Example: (1) (2) (4) where (3) is the correct response.

- 5. Your responses to the items are to be indicated in the OMR Sheet given inside the Booklet only. If you mark your response at any place other than in the circle in the OMR Sheet, it will not be evaluated.
- 6. Read instructions given inside carefully.
- 7. Rough Work is to be done in the end of this booklet.
- 8. If you write your Name, Roll Number, Phone Number or put any mark on any part of the OMR Sheet, except for the space allotted for the relevant entries, which may disclose your identity, or use abusive language or employ any other unfair means, such as change of response by scratching or using white fluid, you will render yourself liable to 9. disqualification.
- 9. You have to return the original OMR Sheet to the invigilators at the end of the examination compulsorily and must not carry it with you outside the Examination Hall. You are however, allowed to carry original question booklet and duplicate copy of OMR Sheet on conclusion of examination.
- 10. Use only Blue/Black Ball point pen.
- 11. Use of any calculator or log table etc., is prohibited.
- 12. There are no negative marks for incorrect answers.

परीक्षार्थियों के लिए निर्देश

- 1. इस पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिए।
- इस प्रश्न-पत्र में पचहत्तर बहुविकल्पीय प्रश्न हैं।
- 3. परीक्षा प्रारम्भ होने पर, प्रश्न-पुस्तिका आपको दे दी जायेगी। पहले पाँच मिनट आपको प्रश्न-पुस्तिका खोलने तथा उसकी निम्नलिखित जाँच के लिए दिये जायेंगे, जिसकी जाँच आपको अवश्य करनी है:
 - प्रश्न-पुस्तिका खोलने के लिए पुस्तिका पर लगी कागज की सील को फाड़ लें। खुली हुई या बिना स्टीकर-सील की पुस्तिका स्वीकार न करें।
 - (ii) कवर पृष्ठ पर छपे निर्देशानुसार प्रश्न-पुस्तिका के पृष्ठ तथा प्रश्नों की संख्या को अच्छी तरह चैक कर लें कि ये पूरे हैं। दोषपूर्ण पुस्तिका जिनमें पृष्ठ/प्रश्न कम हों या द्बारा आ गये हों या सीरियल में न हों अर्थात किसी भी प्रकार की त्रृटिपूर्ण पुस्तिका स्वीकार न करें तथा उसी समय उसे लौटाकर उसके स्थान पर दूसरी सही प्रश्न-पुस्तिका ले लें। इसके लिए आपको पाँच मिनट दिये जायेंगे। उसके बाद न तो आपकी प्रश्न-पुस्तिका वापस ली जायेगी और न ही आपको अतिरिक्त समय दिया जायेगा।
 - (iii) इस जाँच के बाद प्रश्न-पुस्तिका का नंबर OMR पत्रक पर अंकित करें और OMR पत्रक का नंबर इस प्रश्न-पुस्तिका पर अंकित कर दें।
- प्रत्येक प्रश्न के लिए चार उत्तर विकल्प (1), (2), (3) तथा (4) दिये गये हैं। आपको सही उत्तर के वृत्त को पेन से भरकर काला करना है जैसा कि नीचे दिखाया गया है।

उदाहरण: (1) (2) ■ (4) जबिक (3) सही उत्तर है।

- 5. प्रश्नों के उत्तर केवल प्रश्न पुस्तिका के अन्दर दिये गये OMR पत्रक पर ही अंकित करने हैं। यदि आप OMR पत्रक पर दिये गये वृत्त के अलावा किसी अन्य स्थान पर उत्तर चिन्हांकित करते हैं, तो उसका मूल्यांकन नहीं होगा।
- 6. अन्दर दिये गये निर्देशों को ध्यानपूर्वक पहें।
- 7. कच्चा काम (Rough Work) इस पुस्तिका के अन्तिम पृष्ठ पर करें।
- यदि आप OMR पत्रक पर नियत स्थान के अलावा अपना नाम, रोल नम्बर, फोन नम्बर या कोई भी ऐसा चिह्न जिससे आपकी पहचान हो सके, अंकित करते हैं अथवा अभद्र भाषा का प्रयोग करते हैं, या कोई अन्य अनुचित साधन का प्रयोग करते हैं, जैसे कि अंकित किये गये उत्तर को मिटाना या सफेद स्याही से बदलना तो परीक्षा के लिये अयोग्य घोषित किये जा सकते हैं।
- आपको परीक्षा समाप्त होने पर मूल OMR पत्रक निरीक्षक महोदय को लौटाना आवश्यक है और परीक्षा समाप्ति के बाद उसे अपने साथ परीक्षा भवन से बाहर न लेकर जायें। हालांकि आप परीक्षा समाप्ति पर मूल प्रश्न-पुस्तिका तथा OMR पत्रक की डुप्लीकेट प्रति अपने साथ ले जा सकते हैं।
- 10. केवल नीले/काले बाल प्वाईंट पेन का ही इस्तेमाल करें।
- 11. किसी भी प्रकार का संगणक (कैलकुलेटर) या लाग टेबल आदि का प्रयोग वर्जित है।
- 12. गलत उत्तरों के लिए कोई नकारात्मक अंक नहीं हैं।

1 P.T.O.

COMPUTER SCIENCE AND APPLICATIONS PAPER - III

Note	:	This paper cor All questions a		•	objecti	ve type question	ns of tw	vo (2) marks each.
1.	of th	e form $101x_1x_2x_1$	$\frac{1}{3}00.$ W		highe	est priority vecto	r addre	le a vector addresses in hexadecimal?
	(1)	ВС	(2)	A4	(3)	BD	(4)	AC
2.	MVI MOV MOV MVI OUT HLT	B, 82H V A, B V C, A D, 37H PORT1	tput at I	PORT1 if the follo	•	Nimi	G	
	(1)	37H	(2)	82H	(3)	В9Н	(4)	00H
3.	Whice (1)	ch of the follow RST 6.5	ing 8085 (2)	5 microprocessor RST 7.5	hardy (3)	ware interrupt h TRAP	as the l	lowest priority ? INTR
4.	100 r		ory cycle refreshe	requires 250 nse		at percentage of		operation requires ry's total operating 0.32
5.	asser The oper s	mbled from a de CPU is fetching	evice th and exe	at transmits charecuting instruction will the CPU be s	racters ns at a slowed	s at a rate of 480 in average rate o	00 char of one m of the	
	(1)	0.06%	(2)	0.12%	(3)	1.2%	(4)	2.5%
6.	A CI (1) (2) (3)	by checking in	terrupt terrupt	y executing inter register after exe register at the en t is registered	cution	n of each instruc		·

(4) by checking interrupt register at regular time interval D-8715

7.	father parer male parer male male female female how	nt(Sally, Ent(Jim, Bont(Alice, Jint(Thoma (Bob), (Jim), (le(Salley), de(Alice).	Bob), b), ane), s, Jane) oms are), e matcl	hed to			e 'X' l	before the	e quer	ту			
	fathe (1)	er(X, Jane) 1	report	s a Res (2)	sult?			(3)	3		(4)	4		
8.	Forw	vard chai	ning s	ystem	s are			_ wh	ere as ba	ıckwa	ırd chai	ning s	ystems a	are
	(1) (3)	Data dri Data dri					(2) (4)		driven, I driven, (
9.	(a) (b) (c) (d) Code (1) (2) (3)	ch the following the the following the List - I JAVA Python Prolog ADA es: (a) (b) (iii) (i) (i) (iii) (i) (iii) (ii) (iv)	(c) (ii) (ii) (iv)	(d) (iv) (iv) (ii)	(i) (ii) (iii) (iv)	Dyna Statio	List amical cally for ally for ally for ally for ally for ally for all and all all all all all all all all all al	II ly ob lon-cobject	es : ject orien bject orie oriented n-object o	ented	ed			
10.	The (1) (3)	combinati network subnet m	numbe	er	ddres	s and	a por (2) (4)	sock	nber is kn et addres Caddress	s	as			
11.		twork wit each fran 2 Mbps				age of	-		What is t	the th		it of thi	is networ	
12.		sider a sub containin								•			_	
		 25		(2)	27			(3)	53		(4)	72		
D-87	715						3						Paper-	·III

13.	In a (1) (2) (3) (4)	classful addressir refers to the cur refers to broadce refers to broadce refers to loopbace	rent r ast on ast on	network the local : a distant	networl	ς.	ero) as netwo	rk numbe	er:	
14.	mess	lectronic mail, w			lowing	-		he transf		media
	(1)	IMAP	(2)	SMTP		(3)	POP 3	(4)	MIME	
15.		evice is sending of 000 characters?	ut dat	a at the ra	te of 20	00 bp	s. How long o	loes it ta	ke to send a	file of
	(1)	50	(2)	200	((3)	400	(4)	800	
16.		ctivity - Selection				i has	a start time s	and a fi	nish time f_i	where
		f_i . Activities i and $s_i \ge f_j$			le 1f :	(3)	$s_i \ge f_j \text{ or } s_j \ge f$	i (4)	$s_i \ge f_j$ and $s_i \ge f_j$	$s_j \ge f_i$
17.	Give	n two sequences	X and	Y:	·					
		$X = \langle a, b, c, b, d \rangle$				•				
		$Y = \langle b, d, c, a, b \rangle$, a\.							
	The	longest common	subsec	quence of 2	X and Y	is:				
	(1)	$\langle b, c, a \rangle$	(2)	$\langle c, a, b \rangle$		(3)	$\langle b, c, a, a \rangle$	(4)	$\langle b, c, b, a \rangle$	
18.		ere are n integers			eger has	s d diş	gits and each o	ligit is in	the set {1, 2	,, k},
	radi: (1)	x sort can sort the O(d n k)	num (2)	bers in : O(d n ^k)		(3)	O((d+n)k)	(4)	O(d(n+k)))
10	, ,		C	, ,	-	` /				
19.		solution of the re								
	T(n)	$\leq \begin{cases} \theta(1) \\ T\left(\frac{\mathbf{n}}{s}\right) + T\left(\frac{7\mathbf{r}}{10}\right) \end{cases}$	1)	if $n \leq 3$	80				
		$\left[T\left(\frac{s}{s}\right) + T\left(\frac{s}{10}\right)\right]$	+ 6	$\int + O(n)$	if $n > 8$	30				
	is:	O(lg n)			(2)	O(n)				
	(1) (3)	$O(n \log n)$			(4)	O(n) None	e of the above			
20.	Floy	d-Warshall algori	ithm ı	ıtilizes		_ to s	olve the all-pa	irs short	est paths p	roblem
	on a	directed graph i	n	ti1 73\	me.	Croo	dy algorithm	A(V/2 1cm)		
	(3)	Dynamic progra	ammir	$\theta(V^3)$	(2) (4)	Dyna	amic programi	ming, $\theta(V)$	⁷² lgn)	
D-87	/15 									
ט-סי	13				4				Pa	per-III

21. Let n = 4 and $(a_1, a_2, a_3, a_4) = (do, if, int, while)$. Let $p(1:4) = \left(\frac{3}{8}, \frac{3}{8}, \frac{1}{8}, \frac{1}{8}\right)$ and

 $q(1:4) = \left(\frac{2}{8}, \frac{3}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}\right) \text{ where p(i) and q(i) denotes the probability with which we search } a_i$ and the identifier x being searched satisfy $a_i < x < a_{i+1}$ respectively. The optimal search tree is given by :

22. The family of context sensitive languages is _____ under union and _____ under reversal.

- (1) closed, not closed
- (2) not closed, not closed

(3) closed, closed

(4) not closed, closed

(i)

23. Match the following:

List - I

- (a) $\{a^n b^n | n > 0\}$ is a deterministic context free language
- (ii) but not context free language

List - II

- (b) The complement of $\{a^n b^n a^n | n > 0\}$ is a context free language
- (ii) but not context free language

but not recursive language

- (c) $\{a^n b^n a^n\}$ is context sensitive language
- (iii) but can not be accepted by a deterministic pushdown automation
- (d) L is a recursive language
- (iv) but not regular

Codes:

- (a) (b)
 - (c) (d)

(iv)

(iii)

- (1) (i) (ii)
- (2) (i) (ii) (iv) (iii)
- (3) (iv) (iii) (ii) (i)
- (4) (iv) (iii) (i) (ii)
- **24.** The language of all non-null strings of a's can be defined by a context free grammar as follow:

$$S \rightarrow a S |S a| a$$

The word a³ can be generated by _____

_ different trees.

- (1) Two
- (2) Three
- (3) Four
- (4) Five

D-8715

5

Paper-III

25.		ch one of the following		nctional	quali	ty attribu	tes is	not hig	hly affe	ected by the
	(1) (3)	itecture of the software Performance Usability	?	(2) (4)		ability tability				
26.		context free grammar g $S \rightarrow XYX$ $X \rightarrow aX \mid bX \mid \lambda$ $Y \rightarrow bbb$ rates the language whice $(a + b)*bbb$ $(a + b)*(bbb)(a + b)*$		fined by 1 (2)	abb	ar express b(a + b)* b)(bbb)(a			0	
27.		e are exactly abet {a, b} where <i>x</i> is all 64 (2)				mata with 1024	three	states (4)	x, y and	$\mathrm{d}z$ over the
28.	$L_1 = L_2 =$	n the following two lat $\{a^n b a^n n > 0\}$ $\{a^n b a^n b^{n+1} n > 0\}$ ch of the following is co L_1 is context free lang L_1 is not context free l Both L_1 and L_2 are no Both L_1 and L_2 are no	orrect ? uage an anguage ntext fre	d L ₂ is note and L ₂ is	is con ges	text free l	_	_		
29.	Whice (1) (2) (3) (4)	ch of the following is us Making atleast one m Making atleast one mo Declaring as Abstract Declaring as Abstract	nember f ember f class us	function a unction a sing virtu	as pur s virt al key	re virtual rual functi yword		on		
30.	Mato	th the following with re	eference	to object	orier	nted mode List - II				
	(a)	List - I Polymorphism	` '			perator a	and at		es with	operations
	(b)	Inheritance	(ii) F			model an entation o			thods fr	om users of
	(c) (d) Cod	Encapsulation Abstraction	(iii) L	Jsing sim		perations sses from			0	
	(4)	(a) (b) (c) (d)								
	(2)	(iv) (iii) (i) (ii) (iii) (iv) (i) (ii)								
	(3)	(iii) (i) (ii) (iv)								
	(4)	(iv) (iii) (ii) (i)								

D-8715

6 Paper-III

31.	In((a)	CRC based designone or two use				of:					
	(b)	several progra	-								
	(c)	project co-ord									
	(d)	one or two sys	stem an	alysts							
	Cod				(2)	(-) ((la) (a) a sa d	/L)			
	(3)	(a) and (c) (a), (c) and (d)	1		(2) (4)		(b), (c) and ((b) and (d)	(a)			
		(a), (c) and (a)			(1)	(a), ((b) and (d)				
32.	The	end points of a	given li	ne are (0, 0) and (6, 18).	Compute 6	each v	alue o	of y as x step	s from
		3, by using equa				_	_				
	(1)	For $x = 0$, $y = 0$									
	(2) (3)	For $x = 0$, $y = 1$ For $x = 0$, $y = 2$									
	(4)	For $x = 0$, $y = 0$			•						
	(-)	101 % 0, 9	-,,	y 5, 11 =	, 9 -,		•				
33.		ch of the follow	~ ~	aphic prim	itives a	are co	onsidered as	s the	basic 1	building blo	ocks of
		puter graphics		Linas	(a)	Dolve	linas	(4)	Dolve	~~~	
	(a) Cod		(b)	Lines	(c)	Poly	lines	(d)	Poly	gons	
	(1)	(a) only			(2)	(a) a	nd (b)				
	(3)	(a), (b) and (c)			(4)		(b), (c) and	(d)			
					40						
34.		script and Java						are tr	ue.		
	(a) (b)	Javascripts syr Javascript is st		-			syntax				
	(c)	Java and Javas					nd of Java				
	Cod		T -				, , , , , , , , , , , , , , , , , , , ,				
	(1)	(a) only	(2)	(a), (b) an	nd (c)	(3)	(a) and (b))	(4)	(a) and (c)	
			,C)				_			
35.	Whi data	ch of the follow	ring sta	itements ar	e true	with	reference to	o the	way c	of describing	z XML
	(a)	XML uses DTI) to de	scribe the d	lata						
	(b)	XML uses XSL									
	(c)	XML uses a de	escriptio	on node to	describ	e the	data				
	Cod		(2)	<i>a</i> > 1		(2)	() 1 (1)				
	(1)	(a) only	(2)	(b) only		(3)	(a) and (b))	(4)	(a) and (c)	
36.	Whi	ch of the follow	ing is/	are correct	with 1	refere	nce to Abst	ract cl	lass an	d interface	?
	(a)	A class can in	_								
	(b)	An Abstract cl	ass can	provide co	mplete	and	default code	e but	an inte	erface has no	o code.
	Cod			(2)	(1)						
	(1)	(a) is true	h) ara h	(2)	, ,	true) mon (b) io 1				
	(3)	Both (a) and (o) are t	rue (4)	meiti	ner (a) nor (b) is t	ue			
D-8	715				7					Pai	per-III
					•					- ",	

37.	Matc		follov st - I	ving v	with re	espect		us m i st - 1		ory managem	ent algori	thms :
	(a)		and p	agino	+	(i)				rogramming		
	(b)		nentat		5	(ii)	working		_	10gramming		
	(c)	0	amic p		ione	(iii)	•	_		ew of memor	• • • • • • • • • • • • • • • • • • • •	
	(d)	•	d part	•		(iv)	compac			ew of friends	· y	
	Code		ı part	1110115		(10)	compac	. 11011				
	Coul	(a)	(b)	(c)	(d)							
	(1)	(iii)	(iv)	(c) (ii)	(i)							
	(2)	(ii)	(iii)	(i)	(iv)							
	(2)	(iv)	(iii)	(ii)	(i)							
	(4)	(ii)	(iii)	(iv)	(i)							
		(11)	(111)	(11)	(1)							
38.	Func	tion o	f men	nory 1	manag	emen	t unit is	:				le.
	(1)	Addı	ress tı	ransla	tion		(2	2) 1	Mem	ory allocatio	n	
	(3)	Cach	e ma	nager	nent		(4	.)	All o	f the above		
39.												P ₂ and P ₃ . Process
												ur tape drives and
												holding five tape
		t ₁ , sys			oranig	, two	iape uriv	res al	na p	rocess r ₃ is n	loiding till	ee tape drives. At
	(1)	safe		<i>5</i> III .	(2)	unsa	fe state	70	(3)	deadlocked	state (4)	starvation state
	(1)	Saic	state			arisa	ic state		(0)	acaarockea	state (1)	starvation state
40.	In U	nix op	eratir	ıg svs	tem, sı	pecial	files are	used	d to :			
	(1)	-		0 ,						a process rea	ds	
	(2)						•			to file name		
	(3)	-								d with i-nod		
	(4)					-	-			on program o		rogram
41.	Mate	h tha	follow	ving i	n Univ	, filo s	system :					
41.	wate		t - I	ville	11 0111	t ine s	List -	TT				
	(a)		block		(i)	Infor	mation a		t filo	evetem		
	(b)	. •	r bloc		(ii)		mation a			2		
	(c)		e table		(iii)		ige space		tine			
	(d)		block		(iv)		for mak		OS r	eady.		
	Code		DIOCI	`	(11)	Couc	lor mar	viii g	001	cady		
	Cour	(a)	(b)	(c)	(d)							
	(1)	(iv)	(i)	(ii)	(iii)							
	(2)	(i)	(iii)	(ii)	(iv)							
	(3)	(iii)	(i)	(ii)	(iv)							
	(4)	(iv)	(ii)	(i)	(iii)							
	(* / 	(** <i>)</i> 	**/ 	*/ 								
D-8	715							8				Paper-III

42.	In an operating system, indivisibility of operation means: (1) Operation is interruptable (2) Race - condition may occur (3) Processor can not be pre-empted (4) All of the above
43.	A horn clause is (1) A clause in which no variables occur in the expression (2) A clause that has at least one negative literal (3) A disjunction of a number of literals (4) A clause that has at most one positive literal
44.	In Propositional Logic, given P and P \rightarrow Q, we can infer (1) \sim Q (2) Q (3) $P \wedge Q$ (4) $\sim P \wedge Q$
45.	Reasoning strategies used in expert systems include (1) Forward chaining, backward chaining and problem reduction (2) Forward chaining, backward chaining and boundary mutation (3) Forward chaining, backward chaining and back propagation (4) Backward chaining, problem reduction and boundary mutation
46.	Language model used in LISP is (1) Functional programming (2) Logic programming (3) Object oriented programming (4) All of the above
47.	In constraint satisfaction problem, constraints can be stated as (1) Arithmatic equations and inequalities that bind the values of variables (2) Arithmatic equations and inequalities that doesn't bind any restriction over variables (3) Arithmatic equations that impose restrictions over variables (4) Arithmatic equations that discard constraints over the given variables
48.	As compared to rental and leasing methods to acquire computer systems for a Management Information System (MIS), purchase method has following advantage: (1) It has high level of flexibility (2) It doesn't require cash up-front (3) It is a business investment (4) Little risk of obsolescence
49.	Consider the conditional entropy and mutual information for the binary symmetric channel. The input source has alphabet $X = \{0, 1\}$ and associated probabilities $\left\{\frac{1}{2}, \frac{1}{2}\right\}$. The channel
	matrix is $\begin{pmatrix} 1-p & p \\ p & 1-p \end{pmatrix}$ where p is the transition probability. Then the conditional entropy
	is given by : (1) 1 (3) $1 + plog(p) + (1-p)log(1-p)$ (2) $-plog(p) - (1-p)log(1-p)$ (4) 0

D-8715

50.	Which of t (1) JPEG	he following	_	a lossy MPEG	ompr compr	ession (3)	technique FFT	?(4)	Arit	hmetic c	oding
51.	(1) Com (2) Com (3) Com	ge deconvo bination of bination of bination of le of the above	blur ide segmer blur an	entifica ntation	and cla	ssifica		ion			
52.	one of the	sible solutic basic variab nerate	ole is ze	ro.			problem is infeasible			unbou	<u> </u>
53.	(a) The solution if Codes: (1) (a) an (3) (b) an	he following solution must number of p ws and n is he positive a solution of it satisfies: nd (b) only nd (c) only	st be fea positive the nu- allocation a trans	asible, i allocat mber o ons mu sportati	ions mu f colum st be in on prol	ist be ons. indepolem is (a) a	equal to mendent po	sitions. e non-d	when	re m is tl	he number
54.	Consider t	he following	g transp	Sto		iem :]			
			I	II	III	IV	Supply	=			
	s	A	4	6	8	13	50	-			
	Factories	В	13	11	10	8	70				
	Fact	C	14	4	10	13	30				
		D	9	11	13	8	50				
		Demand	25	35	105	20					
		ortation cost el's Approxi	mation			sible so	olution of th	he above	e trans	sportatio	on problem
55.		cter set used	l in Wi	ndows	-	-				_•	
		ASCII	2		(2)		nded ASC				
	(3) 16 bi	t UNICODI	ن		(4)	12 0	it UNICO	DE			
56.	In Unix, th	e command	to enab	ole exec	ution p	ermiss	ion for file	"mylife	" by a	all is	
	, ,	od ugo + X	•		(2)		a + X	•			
	(3) Chm	od +X myf	ıle		(4)	All	of the abov	7e			
D-8	715				10)					Paper-III

57. What will be the output of the following Unix command?

 $m chap0\[1 - 3\]$

- (1) Remove file chap0[1 3]
- (2) Remove file chap01, chap02, chap03
- (3) Remove file chap\ $[1 3\]$
- (4) None of the above
- **58.** Which of the following statements regarding the features of the object-oriented approach to databases are **true**?
 - (a) The ability to develop more realistic models of the real world.
 - (b) The ability to represent the world in a non-geometric way.
 - (c) The ability to develop databases using natural language approaches.
 - (d) The need to split objects into their component parts.
 - (e) The ability to develop database models based on location rather than state and behaviour.

Codes:

- (1) (a), (b) and (c)
- (2) (b), (c) and (d)
- (3) (a)
 - (a), (d) and (e)
- (4)
- (c), (d) and (e)

59. Consider the following database table :

Create table test(

```
one integer,
two integer,
primary key(one),
unique(two),
check(one>=1 and <=10)
check(two>=1 and <=5)
```

How many data records/tuples atmost can this table contain?

- (1) 5
- (2) 10
- (3) 15
- (4) 50
- **60.** Suppose ORACLE relation R(A, B) currently has tuples {(1, 2), (1, 3), (3, 4)} and relation S(B, C) currently has {(2, 5), (4, 6), (7, 8)}. Consider the following two SQL queries SQ1 and SQ2:

SQ1: Select *

From R Full Join S

On R.B = S.B;

SQ2: Select *

From R Inner Join S

On R.B = S.B;

The numbers of tuples in the result of the SQL query SQ1 and the SQL query SQ2 are given by :

- (1) 2 and 6 respectively
- (2) 6 and 2 respectively
- (3) 2 and 4 respectively
- (4) 4 and 2 respectively

- Consider the following three SQL queries (Assume the data in the people table):
 - Select Name from people where Age>21; (a)
 - (b) Select Name from people where Height>180;
 - Select Name from people where (Age>21) or (Height>180); (c)

If the SQL queries (a) and (b) above, return 10 rows and 7 rows in the result set respectively, then what is one possible number of rows returned by the SQL query (c)?

- (1) 3
- (2)
- 10
- (4) 21
- The distributed system is a collection of __(P)_ and communication is achieved in distributed 62. system by $\underline{(Q)}$, where (P) and (Q) are :
 - Loosely coupled hardware on tightly coupled software and disk sharing, respectively. (1)
 - Tightly coupled hardware on loosely coupled software and shared memory, respectively. (2)
 - Tightly coupled software on loosely coupled hardware and message passing, respectively.
 - (4)Loosely coupled software on tightly coupled hardware and file sharing, respectively.
- Consider the following three tables R, S and T. In this question, all the join operations are natural joins (\bowtie) . (π) is the projection operation of a relation :

]	R		S			T
A	В	В		С	A	С
1	2	6		2	7	1
3	2 2	2		4	1	2
5	6	8		1	9	3
7	8	8		3	5	4
9	8	2		5	3	5

Possible answer tables for this question are also given as below:

A	В	C									
1	2	4									
1	2	5									
3	2	4									
3	2	5	A	В	C	Α	В				
5	6	2	1	2	2	1	6	2			_
7	8	1	3	2	5	3	2	5	A	В	С
7	8	3	5	6	4	5	2	4	3	2	5
9	8	1	7	8	1	7	8	1	7	8	1
9	8	3	9	8	3	9	8	3	9	8	3
	(a)			(b)			(c)			(d)	•

What is the resulting table of $\pi_{A,B}(R \bowtie T) \bowtie \pi_{B,C}(S \bowtie T)$?

(1) (a) (2) (b) (3) (c)

- (d)

64. Consider the two class classification task that consists of the following points:

Class $C_1 : [-1, -1], [-1, 1], [1, -1]$

Class C_2 : [1, 1]

The decision boundary between the two classes C_1 and C_2 using single perceptron is given by:

 $x_1 - x_2 - 0.5 = 0$ (1)

- (3) $0.5(x_1 + x_2) 1.5 = 0$
- (2) $-x_1 + x_2 0.5 = 0$ (4) $x_1 + x_2 0.5 = 0$
- Consider a standard additive model consisting of rules of the form of 65. If x is A_i AND y is B_i THEN z is C_i .

Given crisp inputs $x = x_0$, $y = y_0$, the output of the model is :

- $z = \sum_{i} \mu_{A_{i}}(x_{0}) \mu_{B_{i}}(y_{0}) \mu_{C_{i}}(z)$ (1)
- (2) $z = \sum_{i} \mu_{A_i}(x_0) \mu_{B_i}(y_0)$
- (3) $z = \operatorname{centroid}\left(\sum_{i} \mu_{A_{i}}(x_{0}) \mu_{B_{i}}(y_{0}) \mu_{C_{i}}(z)\right)$
- (4) $z = \operatorname{centroid}\left(\sum_{i} \mu_{A_{i}}(x_{0}) \mu_{B_{i}}(y_{0})\right)$
- A bell-shaped membership function is specified by three parameters (a, b, c) as follows: 66.

 $\frac{1}{1+\left(\frac{x-c}{a}\right)^b} \quad (2) \quad 1+\left(\frac{x-c}{a}\right)^{2b} \quad (3) \quad 1+\left(\frac{x-c}{a}\right)^b \quad (4) \quad 1-\left(\frac{x-c}{a}\right)^{2b}$

- Which of the following is/are the principle components of a memory-tube display? 67.
 - Flooding gun

- (b) Collector
- (c) Phosphorus grains
- (d) Ground

Codes:

- (1) (a) and (b)
- (2)(c) only
- (3)(d) only
- All the above
- 68. Which of the following steps is/are not required for analog to digital conversion?
 - (a) Sensing
- Conversion (b)
- Amplification (c)

- (d) Conditioning
- (e) Quantization
- Codes:
- (1)(a) and (b)

(c) and (d)

(a), (b) and (e)

None of the above

69. Which raster locations would be chosen by Bresenham's algorithm when scan converting a line from (1, 1) to (8, 5)?

(1)	x	y
	1	1
	2	1 2 3 3 4 4 5
	2 3 4 5 6 7	3
	4	3
	5	4
	6	4
	7	5
	8	6

x	y
1	1
2	2
3	2
4	3
5	4
6	5 6
7	6
8	7

;	у	(4)	х	y
l	1		1	1
2	2		2 3	2
3	2			2 2 3
1	2 3 3 4 4 5		4 5	3
5	3		5	5
5	4		6 7	4
7	4		7	5
3	5		8	5

70. Consider a unit square centred at origin. The coordinates of the square are translated by a factor $(\frac{1}{2}, 1)$ and rotated by an angle of 90°. What shall be the coordinates of the new square?

(1)
$$\left(\frac{-1}{2}, 0\right), \left(\frac{-1}{2}, 1\right), \left(\frac{-3}{2}, 1\right), \left(\frac{-3}{2}, 0\right)$$

(2) $\left(\frac{-1}{2}, 0\right), \left(\frac{1}{2}, 1\right), \left(\frac{3}{2}, 1\right), \left(\frac{3}{2}, 0\right)$

(2)
$$\left(\frac{-1}{2}, 0\right), \left(\frac{1}{2}, 1\right), \left(\frac{3}{2}, 1\right), \left(\frac{3}{2}, 0\right)$$

(3)
$$\left(\frac{-1}{2}, 0\right), \left(\frac{1}{2}, 0\right), \left(\frac{-3}{2}, 1\right), \left(\frac{-3}{2}, 0\right)$$

(4)
$$\left(\frac{-1}{2}, 0\right), \left(\frac{1}{2}, 1\right), \left(\frac{-3}{2}, 1\right), \left(\frac{-3}{2}, 0\right)$$

71. Which of the following is/are the components of a CRT?

- **Electron Gun** (a)
- Control Electrode (b)
- (c) Focusing Electrode
- (d) Phosphor Coated Screen

Codes:

(1)(a) and (d)

- (2) (a), (b) and (d)
- (a), (b), (c) and (d)
- (a), (c) and (d) (4)

- **72.** Which one of the following statements is **incorrect**?
 - (1) Pareto analysis is a statistical method used for analyzing causes, and is one of the primary tools for quality management.
 - (2) Reliability of a software specifies the probability of failure-free operation of that software for a given time duration.
 - (3) The reliability of a system can also be specified as the Mean Time To Failure (MTTF).
 - In white-box testing, the test cases are decided from the specifications or the requirements.
- 73. Consider a language A defined over the alphabet $\Sigma = \{0, 1\}$ as $A = \{0^{\lfloor n/2 \rfloor}, 1^n : n > 0\}$.

The expression $\lfloor n/2 \rfloor$ means the floor of n/2, or what you get by rounding n/2 down to the nearest integer.

Which of the following is **not** an example of a string in A?

- (1) 011
- (2) 0111
- (3) 0011
- (4) 001111
- **74.** Which one of the following statements, related to the requirements phase in Software Engineering, is **incorrect**?
 - (1) "Requirement validation" is one of the activities in the requirements phase.
 - (2) "Prototyping" is one of the methods for requirement analysis.
 - (3) "Modelling-oriented approach" is one of the methods for specifying the functional specifications.
 - (4) "Function points" is one of the most commonly used size metric for requirements.

75. tag is an extension to HTML that can enclose any number of Javascript statements.

- (1) <SCRIPT>
- (2) <BODY>
- (3) <HEAD>
- (4) <TITLE>

- o 0 o -

D-8715