Winter Vacation Seminar & Paper Review

# ELECTRA: PRETRAINING TEXT ENCODERS AS DISCRIMINATORS RATHER THAN GENERATORS

18<sup>th</sup>, January, 2021 Natural Language Learning Lab Taegyeong, Eo

## Pre-Trained Language Model

- ✓ 언어를 이해하도록 미리 학습된 모델
- ✓ Fine-tuning 하여 언어에 관련된 다양한 Task를 수행할 수 있음
  - Ex) Q/A, Sentence Classification, Named Entity Recognition ...
- ✓ 크게 2가지 방식으로 분류
  - Bi-directional(BERT, ELMo), Uni-directional(GPT)





# Transfer Learning

- ✓ 미리 학습된 모델의 특질(feature, knowledge)을 활용하여 새로운 모델에 적용하는 것
- ✓ 기존 모델의 Fine-tuning을 통해 Downstream Task를 수행
- ✓ Low-shot learning (※ Universal Language Model Fine-tuning for Text Classification)
  - 1/10의 데이터만 사용해서 동일한 성능







# Fine-tuning

- ✓ Pre-trained Model을 변형하거나 레이어를 추가하여 새로운 데이터로 학습하는 것
- ❖ 구조는 어떻게?
  - 그대로 가져다 쓰는 경우
  - 내부 구조를 변경하는 경우 (※ Parameter-Efficient Transfer Learning for NLP)
    - "Training adapters with sizes 0.5-5% of the original model, performance is within 1% of the competitive published results on BERT<sub>LARGE</sub> "

for param in model.bert.parameters():
 param.requires grad = False

- ❖ 가중치는 어떻게?
  - 가중치를 고정하는 경우
    - 가중치를 Freezing
  - 가중치를 업데이트하는 경우
    - 기존 모델의 가중치로 초기화 후 학습







# Masked Language Model (BERT)

- ✓ Input Sequence중 n%의 Token을 [MASK]로 치환
  - 보통 15%의 토큰을 치환하도록 설정
    - 15% ↑ : 문맥을 충분히 반영하지 못함
    - 15% ↓ : 학습 효율이 떨어짐
- ✓ 마스킹된 Sequence를 모델에 넣었을 때 원본을 맞추도록 학습
- ✓ Loss function

모델의 Output 이 값이 1에 수렴하도록 학습 사원이 vocab\_size인 vector 
$$(x,class) = -\log \left( rac{\exp(x[class])}{\sum_{j} \exp(x[j])} 
ight)$$
해당 토큰의 target class

$$ext{loss} = rac{\sum_{i=1}^{N} loss(i, class[i])}{\sum_{i=1}^{N} weight[class[i]]}$$

모든 토큰에 대한 평균 loss



## ELECTRA 제안 배경

- ✓ 최근 Language Model의 pre-training 방법은 많은 연산을 필요로 함
- ✓ MLM은 대부분의 연산이 bidirectional representation에 사용
  - Context를 반영하는데 매우 많은 연산이 사용
  - Input Sequence의 15%만 학습하는 구조로 인해 발생되는 비효율



replaced token detection 을 적용하여 학습 효율을 높여보자

## **ELECTRA** (Efficiently Learning an Encoder that Classifies Token Replacements Accurately)

- ✓ Generator + Discriminator Network로 구성
- ✓ GAN과 유사한 구조지만 Adversarial 하지는 않음
  - ① Generator는 Input Sequence에 대해 랜덤으로 Masking
  - ② Token Replacement: Generator는 Masking된 Token을 Replace (Sampling)
  - ③ Detection: Discriminator는 Sampling된 Sequence에 대해 Binary Classification



## **ELECTRA** (Efficiently Learning an Encoder that Classifies Token Replacements Accurately)

- ✓ Generator는 Discriminator의 ½ ~ ¼ 의 사이즈를 가짐
  - 모델의 크기를 동일하게 할 경우 Weight tying을 통해 약간의 성능향상이 있음
  - 하지만, Network의 사이즈를 동일하게 가져갈 경우 모델의 사이즈가 2배로 커짐
  - 실험적으로 모델 크기 대비 성능비가 가장 좋음
- ✓ 각 Network는 Token Embedding만 공유
- ✓ Combined Loss를 최소화

$$\min_{\theta_G, \theta_D} \sum_{\boldsymbol{x} \in \mathcal{X}} \mathcal{L}_{\text{MLM}}(\boldsymbol{x}, \theta_G) + \lambda \mathcal{L}_{\text{Disc}}(\boldsymbol{x}, \theta_D)$$

- λ = 50 으로 설정
  - Discriminator의 Loss가 상대적으로 많이 작음





RoBERTa, XLNet보다 4배 효율적으로 학습



### Generator

- ✓ 일반적으로 Small MLM을 사용
- ✓ Discriminator를 학습시키기 위한 Network
- ✓ Token Sequence를 입력받아 Contextualized Sequence를 출력
  - Input Sequence :  $x = [x_1, ..., x_n]$
  - Output Sequence :  $h(x) = [h_1, ..., h_n]$ 
    - h(x)의 각 벡터는 해당 위치에서 Context를 반영한 확률분포를 내포함
    - lacktriangle  $h_t$ 에 Linear Layer + Softmax를 적용하면 확률분포를 얻을 수 있음
- ✓ 주어진 분포에서 가장 확률이 높은 클래스(Token id)로 치환
- ✓ 인풋과 아웃풋의 유사도(내적)를 통해 확률을 정의





#### **Generator: Loss function**

- ✓ Maximum likelihood로 학습
  - 주어진 <u>데이터를 가장 잘 설명할 수 있는 확률분포</u>(θ)를 찾는 것
  - Likelihood(가능도)란? 주어진 확률분포(θ)에 대한 주어진 데이터의 확률밀도함수(p.d.f)값의 곱





우측 분포의 Likelihood가 더 높음

#### **Generator: Loss function**

- $\checkmark \prod P_G(x_t|X)$ 를 최대화 하도록 학습 = Negative log likelihood(Loss function)를 최소화 하도록 학습
  - log를 적용한 이유? 곱을 합으로 계산하여 언더플로우 방지
  - Negative Scaling한 이유? Loss는 최소화 해야하므로
- ✓ Masked position에 대한 Negative log likelihood의 평균이 Loss

모델의 parameters 모델의 확률분포 
$$\mathcal{L}_{\text{MLM}}(\boldsymbol{x}, \boldsymbol{\theta}_G) = \mathbb{E}\left(\sum_{\boldsymbol{i} \in \boldsymbol{m}} -\log p_G(x_{\boldsymbol{i}}|\boldsymbol{x}^{\text{masked}})\right)$$
 전체 토큰의 15% 주어진 Input Sequence  $m_i \sim \text{unif}\{1,n\} \text{ for } i=1 \text{ to } k$ 

- ✓ CrossEntropyLoss로 구현
  - 내부적으로 log\_softmax를 적용
  - Class에 대한 weight 없음

#### **Discriminator**

- ✓ Replaced Sequence를 Input으로 받아 모든 토큰에 대해서 Binary Classification
  - Real(0): Not Replaced
  - Fake(1): Replaced
- ✓ 모든 토큰에 대해 학습하기 때문에 MLM에 비해 학습 효율이 높음
- ✓ 모든 학습이 끝나면

Generator는 버리고

Discriminator(ELECTRA)만을 이용해

Down-stream Task에 대해 Fine-tuning 수행



## **Discriminator: Loss function**



- ✓ Discriminator가 정답을 맞췄을 경우 Loss가 감소하도록 Loss function을 정의 (Binary Cross Entropy Loss)
  - Input = Output : D(x<sup>corrupt</sup>, t) ≒ 1이면 Loss ≒ 0
  - Input != Output : D(x<sup>corrupt</sup>, t) ≒ 0이면 Loss ≒ 0

모든 토큰에 대해 학습





# Adversarial training

- ✓ Generator에서 Sampling 때문에 back-propagation 불가능
  - Sampling 하는 행위는 독립적으로 시행되지 않음
  - Sampling 하는 행위는 모든 토큰에 대한 확률의 곱으로 볼 수 있음
- ✓ 몇가지 가정을 통해 복잡한 행위를 단순화 해보자
  - Discriminator의 예측값(=D(x,t))은 다른 토큰에 독립
  - Not Replaced Token들은 Replaced Token들에 독립
- ✓ Reinforcement Learing을 통해서 generator에 대해 학습을 시도
  - policy gradient reinforcement learning

$$\nabla_{\theta_G} \mathcal{L}_{\text{Disc}} \approx \underset{\boldsymbol{x}, \boldsymbol{m}}{\mathbb{E}} \sum_{t \in \boldsymbol{m}} \underset{\hat{x}_t \sim p_G}{\mathbb{E}} \nabla_{\theta_g} \log p_G(\hat{x}_t | \boldsymbol{x}^{\text{masked}}) [R(\hat{x}_t, \boldsymbol{x}) - b(\boldsymbol{x}^{\text{masked}}, t)]$$





MLE Learing보다 성능이 좋지 않음

#### **Small Models**

- ✓ ELECTRA의 목적은 Small Model이 Single GPU에서도 빠르게 학습이 가능하도록 하는 것
- ✓ BERT(base, small)와 동일한 parameter setting으로 실험

| Model         | Train / Infer FLOPs | Speedup      | Params       | Train Time + Hardware  | GLUE |
|---------------|---------------------|--------------|--------------|------------------------|------|
| ELMo          | 3.3e18 / 2.6e10     | 19x / 1.2x   | 96M          | 14d on 3 GTX 1080 GPUs | 71.2 |
| GPT           | 4.0e19 / 3.0e10     | 1.6x / 0.97x | 117 <b>M</b> | 25d on 8 P6000 GPUs    | 78.8 |
| BERT-Small    | 1.4e18 / 3.7e9      | 45x / 8x     | 14M          | 4d on 1 V100 GPU       | 75.1 |
| BERT-Base     | 6.4e19 / 2.9e10     | 1x / 1x      | 110 <b>M</b> | 4d on 16 TPUv3s        | 82.2 |
| ELECTRA-Small | 1.4e18/3.7e9        | 45x / 8x     | 14 <b>M</b>  | 4d on 1 V 100 GPU      | 79.9 |
| 50% trained   | 7.1e17 / 3.7e9      | 90x / 8x     | 14 <b>M</b>  | 2d on 1 V100 GPU       | 79.0 |
| 25% trained   | 3.6e17 / 3.7e9      | 181x / 8x    | 14M          | 1d on 1 V 100 GPU      | 77.7 |
| 12.5% trained | 1.8e17 / 3.7e9      | 361x / 8x    | 14M          | 12h on 1 V100 GPU      | 76.0 |
| 6.25% trained | 8.9e16 / 3.7e9      | 722x / 8x    | 14M          | 6h on 1 V100 GPU       | 74.1 |
| ELECTRA-Base  | 6.4e19 / 2.9e10     | 1x / 1x      | 110 <b>M</b> | 4d on 16 TPUv3s        | 85.1 |



- ① 동일 연산시 BERT보다 훨씬 좋은 성능
- ② Small Model에서 %의 학습만으로 BERT능가

## **Large Models**

- ✓ Token Replacement Detection의 효율성을 측정하기 위함
- ✓ BERT<sub>LARGE</sub>와 동일한 parameter setting으로 실험

| Model                                         | Train FLOPs                                                        | Params               | CoLA                         | SST          | MRPC                                | STS          | QQP                  | MNLI                         | QNLI                         | RTE                          | Avg.         |
|-----------------------------------------------|--------------------------------------------------------------------|----------------------|------------------------------|--------------|-------------------------------------|--------------|----------------------|------------------------------|------------------------------|------------------------------|--------------|
| BERT<br>RoBERTa-100K<br>RoBERTa-500K<br>XLNet | 1.9e20 (0.27x)<br>6.4e20 (0.90x)<br>3.2e21 (4.5x)<br>3.9e21 (5.4x) | 356M<br>356M         | 60.6<br>66.1<br>68.0<br>69.0 | 95.6<br>96.4 | 88.0<br><b>91.4</b><br>90.9<br>90.8 | 92.2<br>92.1 | 92.2                 | 86.6<br>89.3<br>90.2<br>90.8 | 92.3<br>94.0<br>94.7<br>94.9 | 70.4<br>82.7<br>86.6<br>85.9 | 87.9<br>88.9 |
| BERT (ours)<br>ELECTRA-400K<br>ELECTRA-1.75M  | 7.1e20 (1x)<br>7.1e20 (1x)<br>3.1e21 (4.4x)                        | 335M<br>335M<br>335M | 67.0<br><b>69.3</b><br>69.1  |              | 89.1<br>90.6<br>90.8                | 92.1         | 91.5<br>92.4<br>92.4 | 89.6<br>90.5<br><b>90.9</b>  | 93.5<br>94.5<br><b>95.0</b>  | 79.5<br>86.8<br><b>88.0</b>  | 89.0         |



- ① RoBERTa, XLNET의 ¼의 학습만으로 동일한 성능
- ② SOTA Model과 동일 연산 시 더 높은 성능

# **Large Models**

- ✓ Parameter 수 > 3억 인 모델들에 대해서 벤치마크
- ✓ GLUE test-set에 대한 결과
- ✓ ELECTRA(Fully Trained Large) 모델이 가장 좋은 성능을 보임

| Model   | Train FLOPs    | CoLA | SST         | MRPC | STS  | QQP  | MNLI | QNLI | RTE  | WNLI | Avg.* | Score |
|---------|----------------|------|-------------|------|------|------|------|------|------|------|-------|-------|
| BERT    | 1.9e20 (0.06x) | 60.5 | 94.9        | 85.4 | 86.5 | 89.3 | 86.7 | 92.7 | 70.1 | 65.1 | 79.8  | 80.5  |
| RoBERTa | 3.2e21 (1.02x) | 67.8 | 96.7        | 89.8 | 91.9 | 90.2 | 90.8 | 95.4 | 88.2 | 89.0 | 88.1  | 88.1  |
| ALBERT  | 3.1e22 (10x)   | 69.1 | <b>97.1</b> | 91.2 | 92.0 | 90.5 | 91.3 | _    | 89.2 | 91.8 | 89.0  | _     |
| XLNet   | 3.9e21 (1.26x) | 70.2 | 97.1        | 90.5 | 92.6 | 90.4 | 90.9 | _    | 88.5 | 92.5 | 89.1  | _     |
| ELECTRA | 3.1e21 (1x)    | 71.7 | 97.1        | 90.7 | 92.5 | 90.8 | 91.3 | 95.8 | 89.8 | 92.5 | 89.5  | 89.4  |

✓ SQuAD 벤치마크에 대해서도 동일한 양상을 보임

## **Efficiency Analysis**

- ✓ ELECTRA는 모든 토큰에 대해서 학습을 하기 때문에 효율적이라는 것은 명백하지는 않음
- ✓ ELECTRA가 어디서 성능상 이득을 얻는지 명확하게 파악하기 위해 실험
  - ELECTRA 15%: Discriminator가 Masked Token에 대해서만 학습
    - 모든 토큰을 학습함으로써 얻는 이득을 측정하기 위함
  - Replace MLM : Masking하는 과정없이 Generator가 생성한 토큰으로 치환
    - [MASK]가 모델에 미치는 영향을 측정하기 위함
  - All-Token MLM : Replace MLM + 모든 토큰에 대해 수행
    - 모든 토큰을 학습함으로써 얻는 이득을 측정하기 위함

## **Efficiency Analysis**

- ✓ 모든 토큰을 학습하는 과정에서 많은 이득을 얻고 있음을 확인
  - ELECTRA 비교
  - AT-MLM vs R-MLM
- ✓ [MASK] 토큰에 대한 Mismatch로 학습하는 과정이 성능을 약간 저하시킴
  - **BERT vs R-MLM**

| Model      | ELECTRA | All-Tokens MLM | Replace MLM | ELECTRA 15% | BERT |
|------------|---------|----------------|-------------|-------------|------|
| GLUE score | 85.0    | 84.3           | 82.4        | 82.4        | 82.2 |

Table 5: Compute-efficiency experiments (see text for details).







✓ ELECTRA는 Small 모델에서 더 효율적

#### Conclusion

- ✓ Token Replaced Detection이라는 새로운 pre-training 방식을 제안
- ✓ Generator에서 생성한 Negative Sample에 대해서 학습
- ✓ MLM에 비해 높은 학습효율을 보임을 증명함
- ✓ Downstream Task들에 더 좋은 성능을 보임
- ✓ Language Model에 대한 접근성이 크게 향상될 것으로 기대
- ✓ 앞으로의 pre-training 방법은 성능뿐만 아니라 학습 효율 또한 고려해야할 것
  - 모델의 크기가 너무 커졌기 때문

Q/A