

Technische

Grundlagen der Informationstechnik (Wireless)

Drahtlose Kommunikation / Berechnung von Funkstrecken

Thomas Schneider

- Motivation und Einführung
- Die elektromagnetische Welle
- Der drahtlose Kanal
- Antennen
- Ausbreitung e/m Wellen
- Berechnung von Funkstrecken
- THz-Kommunikation
- Funksysteme
- Optische Kommunikation
- Silizium Photonik
- Plasmonik

- Grundgleichung
- Link Budget
- Beispiel für Richtfunkstrecke

- Grundgleichung
- Link Budget
- Beispiel für Richtfunkstrecke

$$L_{\rm P} = 32.4 + 20\log f_{\rm MHz} + 20\log d_{\rm km} - G_{\rm T} - G_{\rm R}$$

Grundgleichung

Link Budget

Beispiel für Richtfunkstrecke

Sendeleistung 19dBm
Minimaler Empfangspegel -67dBm
Gewinn Ant Rx 40dBi
Gewinn Ant Tx 40dBi
Frequenz 23GHz

Richtfunkstrecke

EIRP = equivalent isotropically radiated power ERP = effective radiated power

EIRP = ERP + 2.15ERP = EIRP - 2.15

- Grundgleichung
- Link Budget
- Beispiel für Richtfunkstrecke

 $D = R\cos^{-1}[\cos\theta_1\cos\theta_2\cos(\lambda_1 - \lambda_2) + \sin\theta_1\sin\theta_2]$

Erdkrümmung

$$b \approx \frac{r_1 r_2}{2R}$$

Radio-Horizont
$$d=\sqrt{2Rh_{_S}}$$

 $R_{eff} = 8500 km$

0.194dB/km@23GHz

 $40\text{mm/h} \rightarrow 5.566\text{dB/km}@23\text{GHz}$

1. Teilstrecke

2. Teilstrecke

3. Teilstrecke

Gesamtsystem

Drahtlose Kommunikation

- Die Grundgleichung der Funkwellenausbreitung, oder Friis Formel, oder free-space path-loss Equation, bestimmt die Empfangsleistung in einer bestimmten Entfernung für die Freiraumausbreitung.
- Der Pfadverlust ist dabei quadratisch von der Frequenz und der Entfernung abhängig.
- Die Leistung bleibt, unabhängig von der Entfernung, gleich.
- Mit einer Link-Budget Analyse lassen sich Funkstrecken berechnen.

Drahtlose Kommunikation

- Die Grundgleichung der Funkwellenausbreitung, oder Friis Formel, oder free-space path-loss Equation, bestimmt die Empfangsleistung in einer bestimmten Entfernung für die Freiraumausbreitung.
- Der Pfadverlust ist dabei quadratisch von der Frequenz und der Entfernung abhängig.
- Die Leistung bleibt, unabhängig von der Entfernung, gleich.
- Mit einer Link-Budget Analyse lassen sich Funkstrecken berechnen.

