Boolean Algebra

- Basic definitions (2.2, 2.3)
- Basic theorems (2.4)
- Boolean functions (2.5)
- Other logic operations (2.7)
- Gates (2.8)
- Integrated circuits (2.9)
- Minterms/maxterms (2.6)

2.2 Basic definitions

- Boolean algebra is named after George Boole, English mathematician, educator, philosopher and logician.
- Best known as the author of *The Laws of Thought* (1854) which contains Boolean algebra.
- Shannon (1937) discovered how to optimize digital systems using Boole's work.

There is a crater on the moon named after him, Boole.

2.2 Basic definitions

A variable, or literal is a symbol used to represent a condition, or data. Each variable has a value of 1 or 0.

The **complement** represents the inverse of a variable; indicated by an over-bar. Thus, the complement of *A* is *A* or *A*'.

Closure. The result of any operation is a 1 or 0.

2.4 Basic definitions: Commutative Laws

The **commutative laws** apply to both OR and AND. For OR, the commutative law states:

The order in which variables in the OR operations makes no difference.

$$A + B = B + A$$

For AND, the commutative law states:

The order in which variables in the AND operations makes no difference.

$$AB = BA$$

2.4 Basic definitions: Associative Laws

The **associative laws** also apply to both OR and AND. For OR, the associative law states:

When forming the OR of more than two variables, the result is the same regardless of the grouping of the variables.

$$A + (B + C) = (A + B) + C$$

For AND, the associative law states:

When forming the AND of more than two variables, the result is the same regardless of the grouping of the variables.

A(BC) = (AB)C

2.4 Basic definitions:

Venn Diagrams for Boolean Algebra

2.4 Basic definitions: Order preference

- 1 Parenthesis
- 2 AND
- 3 OR

A OR B AND C OR D

$$= A + B \cdot C + D$$

$$= A + BC + D = A + (BC) + D$$

2.4 Basic definitions:

Venn Diagrams for Boolean Algebra

2.4 Basic definitions:

Venn Diagrams for Boolean Algebra

Can describe the same set (function) in different ways

2.4 Basic functions

AND			OR			ТОГ	
X	y	$x \cdot y$	X	y	x + y	X	x'
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		•
1	1	1	1	1	1		

1.
$$A + 0 = A$$

2.
$$A + 1 = 1$$

3.
$$A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

5.
$$A + A = A$$

6.
$$A + \overline{A} = 1$$

7.
$$A \cdot A = A$$

8.
$$A \cdot \overline{A} = 0$$

9.
$$\overline{\overline{A}} = A$$

10.
$$A + AB = A$$

11.
$$A + AB = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

Rule 1: A + 0 = A

When A = 1, the input causes the output to go to X = 1. When A = 0, the 0 inputs cause the output to go to X = 0. In either case, the value of X equals the value of A.

$$A = 1$$

$$0$$

$$X = 1$$

$$X = 0$$

$$X = 0$$

$$X = A + 0 = A$$

Rule 2: A + 1 = 1

When A = 1, the inputs cause the output to go to X = 1. When A = 0, the 1 input caused the output to go to X = 1. In either case, the value of X equals one (1).

$$A = 1$$

$$1$$

$$X = 1$$

$$X = A + 1 = 1$$

$$X = A + 1 = 1$$

Rule 3: $A \cdot 0 = 0$

When either input to an AND gate equals 0, the output from the gate has a value of X = 0, regardless of the value at the other input.

$$A = 1$$

$$0$$

$$X = 0$$

$$0$$

$$X = A \cdot 0 = 0$$

Rule 4: $A \cdot 1 = A$

When one input to an AND gate equals 1, the output from the gate has a value of X = A. As shown, X = 1 when A = 1 and X = 0 when A = 0.

Rule 5: A + A = A

When the inputs to an OR gate are equal, the output equals the value at the inputs. When both inputs equal 1, the gate output is X = 1. When both inputs equal 0, the gate output is X = 0.

$$A = 0$$

$$A = 0$$

$$X = 0$$

$$X = A + A = A$$

$$X = A + A = A$$

Rule 6: $A + \overline{A} = 1$

When the inputs to an OR gate are unequal (complements), one of the two always equals 1. When either input equals 1, the gate output is X = 1. Therefore, the output from the OR gate equals 1 whenever the inputs are unequal (complementary).

$$A = 0$$

$$\overline{A} = 1$$

$$X = 1$$

$$X = A + \overline{A} = 1$$

$$X = A + \overline{A} = 1$$

Rule 7: $A \cdot A = A$

When the inputs to an AND gate are equal, the gate output also equals that value. Thus, X = 1 when both inputs equal 1 and X = 0 when both inputs equal 0.

$$A = 0$$

$$A = 0$$

$$A = 1$$

$$A = 1$$

$$X = A$$

$$X = A \cdot A = A$$

Rule 8: $A \cdot \overline{A} = 0$

When the inputs to an AND gate are unequal (complements), one of the two always equals 0. When either input equals 0, the gate output is X = 0. Therefore, the output from the AND gate equals 0 whenever the inputs are unequal (complementary).

$$A = 1$$

$$\overline{A} = 0$$

$$X = 0$$

$$\overline{A} = 1$$

$$X = 0$$

$$X = A \cdot \overline{A} = 0$$

Rule 9: $\overline{\overline{A}} = A$

When a value is inverted, it is the complement of the original value. When inverted a second time, it returns to its original value. Thus, A = 0 inverted twice equals 0 and A = 1 inverted twice equals 1.

$$A = 0 \qquad \qquad A = 1 \qquad \qquad A = 0 \qquad A = 1 \qquad \qquad X = \overline{A} = 1$$

$$X = \overset{=}{A} = A$$

Rule 10: A + AB = A

$$A(1 + B) = A$$

$$A \cdot 1 = A$$

$$A + AB = A$$

Rule 11: $A + \bar{A}B = A + B$

Rule 12:
$$(A + B)(A + C) = A + BC$$

$$AA + AC + AB + BC$$

$$A(1+C+B)+BC$$

$$A + BC$$

	AA = A
2.2 Simplify	A+A=A
(a) $XY + XY$	A.0=0
In general, group similar terms	A-1=A
	A A =0
$=X(Y+\overline{Y})$	
= x · 1 = ×	A+A =1
	1+A=1

(b)
$$(X+Y)(X+\overline{Y})$$
 in general, Factor terms into a sum-of-product (SOP)

 $X = XX + X\overline{Y} + XY + Y\overline{X}$
 $= X + X\overline{Y} + XY + XY$
 $= X + X\overline{Y} + XY$

(F)
$$\overrightarrow{A}BC + \overrightarrow{A}B\overrightarrow{C} + \overrightarrow{A}BC + \overrightarrow{A$$

2.4(e) Reduce to two literals ARC'D + A'BD + ABCD ABD(C'+C) + A'BD ABD +A'BD BD(A+A)

2.5 Boolean Functions The NAND function

(complement of AND function)

A B X 0 0 1 0 1 1 1 0 1 1 1 0	Inp	uts	Output
0 1 1	A	В	X
	0	0	1
1 0 1 1 1 0	0	1	1
1 1 0	1	0	1
	1	1	0

The **NAND** operation is shown with a dot between the variables and a bar covering them. Thus, the NAND operation is written as $X = \overline{AB}$.

2.5 Boolean Functions The NOR function

(complement of OR function)

Inp	uts	Output
A	В	X
0	0	1
0	1	0
1	0	0
11	1	0

The **NOR** operation is shown with a OR sign between the variables and an over-bar covering them. Thus, the NOR operation is written as X = A + B.

2.5 Boolean Functions The XOR function

The **exclusive-OR gate** produces a HIGH output only when both inputs are at opposite logic levels. The truth table is

Output
X
0
1
1
0

The **XOR** operation is written as $X = A\overline{B} + \overline{A}B$. Alternatively, it can be written with a circled OR sign between the variables as

$$X = A \oplus B$$

2.5 Boolean Functions The XNOR function

(complement of XOR function)

The **exclusive-NOR gate** produces a HIGH output only when both inputs are at opposite logic levels. The truth table is

Inpu	ıts	Output
\overline{A}	В	X
0	0	1
0	1	0
1	0	0
1	1	1

The **XNOR** operation is written as $X = \overline{AB} + AB$. Alternatively, it can be written with a circled OR sign between the variables as

$$X = A \odot B$$

Venn Diagrams of Some Basic Functions

4-Input AND Functions

