Motivation

Consumption Heterogeneity: Micro Drivers and Macro Implications

Edmund Crawley & Andreas Kuchler

Norges Bank, Danmarks Nationalbank and Deutsche Bundesbank conference on Heterogeneous households, firms and financial intermediaries September 28, 2018

Is Heterogeneity Important for Macroeconomics?

Theory: Consumption heterogeneity is *potentially* very important for macroeconomic dynamics

• e.g. Recent HANK models

Macroeconomic events can redistribute wealth between High and Low MPC households, affecting aggregate consumption

Is Heterogeneity Important for Macroeconomics?

Theory: Consumption heterogeneity is *potentially* very important for macroeconomic dynamics

• e.g. Recent HANK models

Macroeconomic events can redistribute wealth between High and Low MPC households, affecting aggregate consumption

Empirics: Testing and quantifying these effects often boils down to measuring the distribution of MPC along some dimension of redistribution

Ability to do so is limited by:

- Methods to measure MPCs
- Consumption data
- Household balance sheet data

Two Empirical Contributions

- 1 Method: New methodology to measure MPCs out of transitory and permanent income shocks
 - Builds on Blundell, Pistaferri, and Preston (2008)
 - Correctly accounts for the Time Aggregation Problem
- 2 Data: Panel data covering all Danish households 2004-2015
 - Large sample size reveals clear, systemic heterogeneity
 - Detailed household balance sheets allow us to infer implications for monetary policy transmission

Two Empirical Contributions

- 1 Method: New methodology to measure MPCs out of transitory and permanent income shocks
 - Builds on Blundell, Pistaferri, and Preston (2008)
 - Correctly accounts for the Time Aggregation Problem
- 2 Data: Panel data covering all Danish households 2004-2015
 - Large sample size reveals clear, systemic heterogeneity
 - Detailed household balance sheets allow us to infer implications for monetary policy transmission

We also test to what extent a buffer-stock model can fit the observed distribution of MPC with liquid wealth

A one percentage point interest rate hike reduces aggregate expenditure by **26 basis points** through this *interest rate exposure channel* alone

Redistribution > Intertemporal Substitution

What has the Empirical MPC literature Found?

General consensus: MPCs are large (≈ 0.5 including durables)

• For both expected and unexpected transitory shocks

What has the Empirical MPC literature Found?

General consensus: MPCs are large (≈ 0.5 including durables)

• For both expected and unexpected transitory shocks

Few studies have enough power to say much about the distribution of MPCs in the population

- Jappelli and Pistaferri (2014) Italian Survey Data
- Fuster, Kaplan, and Zafar (2018) NY Fed Survey
- Fagereng, Holm, and Natvik (2016) Norway Lottery Data
- Gelman (2016) Financial App Data

Liquid assets and income are key predictors of transitory MPC

Our method and data can uncover detailed heterogeneity - Many potential applications

How Are Consumption Responses Typically Measured?

Three methods:

- 1 (Natural) Experiments stimulus checks, lotteries etc
 - Few true experiments, especially for permanent shocks
 - Data limitations
- 2 Ask people
 - Unclear how to interpret
- 3 Make identifying restrictions on income and consumption dynamics
 - Empirical methods (until now!) have been flawed

We develop a robust method based on 3

Exploit increasing importance of permanent shocks as the time over which growth is measured increases

N. Years of Growth

$$\Delta^{N}c_{i} = \alpha^{N} + \beta^{N}\Delta^{N}y_{i} + \varepsilon_{i}$$

Exploit increasing importance of permanent shocks as the time over which growth is measured increases

Regressing Consumption Growth on Income Growth

$$\Delta^{N}c_{i} = \alpha^{N} + \beta^{N}\Delta^{N}y_{i} + \varepsilon_{i}$$

Exploit increasing importance of permanent shocks as the time over which growth is measured increases

$$\Delta^{N}c_{i} = \alpha^{N} + \beta^{N}\Delta^{N}y_{i} + \varepsilon_{i}$$

Exploit increasing importance of permanent shocks as the time over which growth is measured increases

$$\Delta^{N}c_{i} = \alpha^{N} + \beta^{N}\Delta^{N}y_{i} + \varepsilon_{i}$$

Exploit increasing importance of permanent shocks as the time over which growth is measured increases

$$\Delta^{N}c_{i} = \alpha^{N} + \beta^{N}\Delta^{N}y_{i} + \varepsilon_{i}$$

Aside: Why Not Blundell, Pistaferri and Preston 2008?

Common Assumptions

Income y_t is made up of:

- Permanent Income (random walk)
- Transitory Income (uncorrelated over time)

Key to BPP Identification

 Δy_{t+1} is a valid instrument for transitory shocks in year t

- Negatively correlated with transitory shocks in year t
- Uncorrelated with permanent shocks in year t

Aside: Why Not Blundell, Pistaferri and Preston 2008?

Common Assumptions

Income y_t is made up of:

- Permanent Income (random walk)
- Transitory Income (uncorrelated over time)

Key to BPP Identification

 Δy_{t+1} is a valid instrument for transitory shocks in year t

- Negatively correlated with transitory shocks in year t
- Uncorrelated with permanent shocks in year t

Fails due to the Time Aggregation Problem

Observed permanent income growth is *positively* autocorrelated

BPP misinterprets *positive* permanent income shocks as *negative* transitory shocks

→ Thinks negative transitory shocks result in consumption increasing

Observed permanent income growth is *positively* autocorrelated

BPP misinterprets *positive* permanent income shocks as *negative* transitory shocks

→ Thinks negative transitory shocks result in consumption increasing

If the Permanent Income Hypothesis holds, BPP will estimate the MPC to be -0.6

Income flow consists of:

- Permanent Income (random walk)
- Transitory Income (persistence < 2 years)

Income flow consists of:

Motivation

- Permanent Income (random walk)
- Transitory Income (persistence < 2 years)

Generic Transitory Impulse Response, f(t)

$$\bar{y}_{T} = \int_{T-1}^{T} p_{t} dt + \int_{T-1}^{T} \int_{t-2}^{t} f(t-s) dq_{s} dt$$

$$\Delta^{N} \bar{y}_{T} = \bar{y}_{T} - \bar{y}_{T-N}$$

$$= \int_{T-1}^{T} (p_{t} - p_{T-1}) dt - \int_{T-N-1}^{T-N} (p_{t} - p_{T-N}) dt$$

$$+ (p_{T-1} - p_{T-N}) \xrightarrow{\text{Independent increments}} Var = (\frac{1}{3} + \frac{1}{3} + N - 1)\sigma_{p}^{2}$$

$$+ \int_{T-1}^{T} \int_{t-2}^{t} f(t-s) dq_{s} dt - \int_{T-N-1}^{T-N} \int_{t-2}^{t} f(t-s) dq_{s} dt$$

$$\bar{y}_{T} = \int_{T-1}^{T} p_{t}dt + \int_{T-1}^{T} \int_{t-2}^{t} f(t-s)dq_{s}dt$$

$$\Delta^{N}\bar{y}_{T} = \bar{y}_{T} - \bar{y}_{T-N}$$

$$= \int_{T-1}^{T} (p_{t} - p_{T-1})dt - \int_{T-N-1}^{T-N} (p_{t} - p_{T-N})dt$$

$$+ (p_{T-1} - p_{T-N}) \xrightarrow{\text{Independent increments}} Var = (\frac{1}{3} + \frac{1}{3} + N - 1)\sigma_{p}^{2}$$

$$+ \int_{T-1}^{T} \int_{t-2}^{t} f(t-s)dq_{s}dt - \int_{T-N-1}^{T-N} \int_{t-2}^{t} f(t-s)dq_{s}dt$$

$$\text{Independent if } N \geq 3$$

Motivation

Identification Restrictions: Income

$$\bar{y}_{T} = \int_{T-1}^{T} p_{t}dt + \int_{T-1}^{T} \int_{t-2}^{t} f(t-s)dq_{s}dt$$

$$\Delta^{N}\bar{y}_{T} = \bar{y}_{T} - \bar{y}_{T-N}$$

$$= \int_{T-1}^{T} (p_{t} - p_{T-1})dt - \int_{T-N-1}^{T-N} (p_{t} - p_{T-N})dt$$

$$+ (p_{T-1} - p_{T-N}) \xrightarrow{\text{Independent increments}} \text{Var} = (\frac{1}{3} + \frac{1}{3} + N - 1)\sigma_{p}^{2}$$

$$+ \int_{T-1}^{T} \int_{t-2}^{t} f(t-s)dq_{s}dt - \int_{T-N-1}^{T-N} \int_{t-2}^{t} f(t-s)dq_{s}dt$$

$$\text{Independent if } N \geq 3$$

$$\implies \text{Var}(\Delta^{N}\bar{y}_{T}) = (N - \frac{1}{3})\sigma_{p}^{2} + 2\sigma_{q}^{2} \text{ for } N \geq 3$$

Assumptions on Consumption

- \bullet Permanent: Consumption permanently moves by fraction ϕ of the income shock
- Transitory: Persistence < 2 years

Evidence

Assumptions on Consumption

- \bullet Permanent: Consumption permanently moves by fraction ϕ of the income shock
- Transitory: Persistence < 2 years

Evidence

This is a key difference between what we assume and BPP

Consumption flow is given by:

$$c_{t} = \phi p_{t} + \int_{t-2}^{t} g(t-s)dq_{s}$$

$$\implies \operatorname{Cov}(\Delta^{N} \bar{c_{T}}, \Delta^{N} \bar{y_{T}}) = \phi(N - \frac{1}{3})\sigma_{p}^{2} + 2\psi \sigma_{\tilde{q}}^{2}$$

where $\psi = \frac{\operatorname{Cov}(\tilde{\mathbf{c}},\tilde{\mathbf{q}})}{\operatorname{Var}(\tilde{\mathbf{q}})}$, the regression coefficient of 'transitory' consumption on transitory income

Consumption flow is given by:

$$c_t = \phi p_t + \int_{t-2}^t g(t-s) dq_s$$

$$\implies \operatorname{Cov}(\Delta^N \bar{c_T}, \Delta^N \bar{y_T}) = \phi(N - \frac{1}{3}) \sigma_p^2 + 2\psi \sigma_{\tilde{q}}^2$$

where $\psi = \frac{\mathrm{Cov}(\tilde{\pmb{\epsilon}},\tilde{\pmb{q}})}{\mathrm{Var}(\tilde{\pmb{q}})}$, the regression coefficient of 'transitory' consumption on transitory income

- ϕ : MPX out of permanent income shocks
- ullet ψ : MPX out of transitory income shocks

Marginal Propensity to eXpend (includes durables)

Full Identification

We use GMM on the equations:

$$\operatorname{Var}(\Delta^{N} \bar{y_{T}}) = (N - \frac{1}{3})\sigma_{p}^{2} + 2\sigma_{\tilde{q}}^{2}$$
$$\operatorname{Cov}(\Delta^{N} \bar{c_{T}}, \Delta^{N} \bar{y_{T}}) = \phi(N - \frac{1}{3})\sigma_{p}^{2} + 2\psi\sigma_{\tilde{q}}^{2}$$

Liquid Wealth

with N = 3, 4, 5 (and T = 2007, ..., 2015) to identify the four unknowns:

- σ_p^2 : Permanent shock variance
- ullet $\sigma_{ ilde{a}}^2$: (Time aggregated) transitory shock variance
- ϕ : MPX out of permanent income shocks
- ullet ψ : MPX out of transitory income shocks

Data

What we need:

- Panel Data on Income and Expenditure
- Household Balance Sheet Data (detail on nominal assets)

Data

What we need:

- Panel Data on Income and Expenditure
- Household Balance Sheet Data (detail on nominal assets)

Income:

- Starting point: Register based micro data for all Danish households made available by Statistics Denmark
 - We use after-tax income for the household head, based on third-party reported tax data
 - Restrict sample to heads aged 30-55
- We divide through by permanent income (mean income over all observed years) and take the residual after controlling for age, education, marital status etc. (along with interactions of these)

Data: Expenditure

We impute expenditure from the budget constraint

$$C_t \equiv Y_t - S_t = Y_t - P_t - \Delta NW$$

- Deposit and brokerage accounts all third party reported
- Works well for households with simple financial lives
- Main issue: Capital gains and losses
 - Exclude households where methodology will not work well (eg business owners)
 - Exclude housing wealth and years with housing transactions
 - Capital gains for stocks based on a diversified index
- Noisy, but perhaps better than surveys (Kuchler et al. 2018)
- Huge sample size advantage: sample covers 7.6 million observations over 2004-2015

Data: When is Measurement Error a Problem?

Our method has the same measurement error issues as the regressions:

$$\Delta^{N} c_{i} = \alpha^{N} + \beta^{N} \Delta^{N} y_{i} + \varepsilon_{i}$$

That is:

- 1 Measurement error in $\Delta^N y_i$ leads to attenuation bias
- 2 Measurement error in $\Delta^N c_i$ should be uncorrelated with $\Delta^N y_i$

When might 2 fail?

- When a proportion of assets are held off balance sheet
- When returns are correlated with *changes* in income (e.g. own stock in the company you work for)
- When insurance is provided by friends and family

Results by Liquid Wealth

MPX by Liquid Wealth Quantile 1.0 o Permanent MPX w Transitory MPX 0.8 0.6 MPX 0.4 0.2 0.0

MPX by Net Wealth

MPX Results are Robust to Misspecification

How does Monetary Policy Effect Aggregate Consumption?

- Intertemporal Substitution
- Aggregate Income

Representative Agent Channels

Dominates in Rep. Agent NK models

How does Monetary Policy Effect Aggregate Consumption?

- Intertemporal Substitution
- Aggregate Income

Representative Agent Channels

Large in Spender-Saver, or TANK models

How does Monetary Policy Effect Aggregate Consumption?

- Intertemporal Substitution
- Aggregate Income
- Fisher (Inflationary debt relief)Earnings Heterogeneity
- Interest Rate Exposure

Representative Agent Channels

Redistribution Channels

How does Monetary Policy Effect Aggregate Consumption?

How can we *empirically* measure the size of the redistribution channels?

Need to know the distribution of MPCs along the relevant dimension of redistribution

Interest Rate Exposure: Auclert's Experiment

- Real interest rate increases 1% for 1 year
- Hold constant income and inflation

How does the subsequent redistribution impact aggregate consumption?

Dimension of Redistribution: Unhedged Interest Rate Exposure

Interest Rate Exposure: Dimension of Redistribution

Define **Unhedged Interest Rate Exposure** for household *i* as the total savings the household will invest at this year's interest rate:

$$URE_i = Y_i - C_i + A_i - L_i$$

Where

- Y_i = Total after tax income
- C_i = Total Expenditure, including interest payments
- $A_i = Maturing assets$
- L_i = Maturing liabilities

Following a change in the interest rate dR, the size of the Interest Rate Exposure channel on household i's expenditure is:

$$dc_i = MPC_iURE_i\frac{dR}{R}$$

Interest Rate Exposure: Aggregation

Aggregate to find size of channel:

$$egin{aligned} dc_i &= & MPC_iURE_i & rac{dR}{R} \ &\Longrightarrow & rac{dC}{C} &= \mathbb{E}_I\Big(MPC_irac{URE_i}{\mathbb{E}_I(c_i)}\Big)rac{dR}{R} \end{aligned}$$

Define sufficient statistic:

$$\mathcal{E}_{R} = \mathbb{E}_{I} \left(MPC_{i} \frac{URE_{i}}{\mathbb{E}_{I}(c_{i})} \right)$$

 \implies Need to know the distribution of MPC_i with URE_i

We can do that!

Interest Rate Exposure: MPX Distribution

URE/Mean Expenditure

Interest Rate Exposure: MPX Distribution

MPX by URE Decile

Interest Rate Exposure: MPX Distribution

Interest Rate Exposure: Out of Sample

Total URE sums to zero - this is not true for our household sample

• -57bn USD

Motivation

	MPX	URE	\mathcal{E}_R component
Estimation Sample	See Distribution	-61	-0.29
Young	0.5	-15	-0.06
Old	0.5	6	0.02
Pension Funds	0.1	37	0.03
Government	0.0	-23	0.00
Non-financial Corp.	0.1	-13	-0.01
Financial Sector	0.1	61	0.05
Rest of World	0.0	9	0.00
Total		0	-0.26

Notes: URE numbers are in billions of 2015 USD.

All Five Transmission Channels

Aggregate Income Channel
$$dC$$

$$\frac{dC}{C} = \underbrace{\mathcal{M}\frac{dY}{Y}}_{\mathcal{L}}$$

$$\underbrace{+\mathcal{E}_R\frac{dR}{R}}_{\mathcal{L}}$$

Interest Rate Exposure Channel

Earnings Heterogeity Channel $+\gamma \mathcal{E}_Y \frac{dY}{Y}$

Intertemporal Substitution Channel

Fisher Channel
$$\underbrace{-\mathcal{E}_P \frac{dP}{P}}$$

 \mathcal{M} 0.52 \mathcal{E}_{Y} -0.03 \mathcal{E}_{P} -0.75 \mathcal{E}_{R} -0.26 \mathcal{S} 0.49

All Five Transmission Channels

$$\frac{dC}{C} = \overbrace{\mathcal{M}\frac{dY}{Y}}^{\text{Aggregate Income Channel}} \underbrace{\mathcal{M}\frac{dY}{Y}}_{\text{ER}}$$
Interest Rate Exposure Channel

Earnings Heterogeity Channel

Fisher Channel Intertemporal Substitution Channel

 \mathcal{M} 0.52 -0.03 Compare \mathcal{E}_R to σS :

 σ in the range of 0.1 to 0.5 (maybe)

$$\sigma S \approx (0.05) - 0.2$$

Aim of Modeling Exercise

Can we calibrate a standard Buffer-Stock saving model to fit the distribution of MPC with liquid wealth?

Key features:

- High overall Transitory MPC
- Decreasing with liquid wealth

Benchmark Model

Households maximize expected utility

$$\mathbb{E}_t \sum_{i=t}^{\infty} \beta^i u(\mathbf{c}_i)$$

with:

- Permanent and Transitory shocks to income (calibrated to Danish data)
- Saving in one (liquid) asset
- No borrowing
- CRRA utility, $\rho = 2$

Benchmark Model: Fitting the Liquid Wealth Distribution

Ex-ante heterogeneity in the discount rate

 $\beta^i \sim \text{Unif}[\beta_{\text{low}}, \beta_{\text{high}}]$ Chosen to fit level and distribution of liquid wealth (especially at the low end)

Benchmark Model: Results

Simulate panel of data and estimate ϕ and ψ

Transitory MPX by Liquid Wealth Quantile: Model vs Data Data Mode 1.0 0.8 0.6 0.4 0.2 0.0 Liquid Wealth Quintile

Taste Shock Model

First order problem: Transitory MPCs are too low

Need to lower β 's without reducing savings

Is income risk the only source of precautionary saving?

- In the data, expenditure FAR for volatile than income
- Surprise expenses can be large

Simple extension - add large taste shocks

$$\mathbb{E}_t \sum_{i=t}^{\infty} \beta^i \mathcal{X}_i u(\mathbf{c}_i)$$

Taste Shock Model: Results

Transitory MPX by Liquid Wealth Quantile: Model vs Data 1.2 □ Model 1.0 0.8 0.6 0.4 -0.2 0.0 Liquid Wealth Quintile

Conclusion

- We have designed a new method to estimate consumption responses to income shocks
- It appears to work well, both in theory and practice
- We can use it to show that heterogeneity plays a key role in monetary policy transmission

Thank you!

Durables

We have data on value of household cars

Construct expenditure excluding car purchases and sales

$$C_T^{\mathsf{nocar}} = C_T - \Delta \mathsf{CarValue}$$

• Construct proxy for non durable consumption (Cars \approx 42.1% durable expenditure)

$$C_T^{\text{nondurable}} = C_T - \frac{1}{0.421} \Delta \text{CarValue}$$

MPX by Liquid Wealth Quantile

Evidence of Consumption Decay Within 2 Years

From Gelman (2016)

Notes: 1,445,560 observations from 48,059 individuals. The vertical bars on each coefficient represent 95% confidence intervals using heteroskedasticity robust errors clustered at the individual level.

MPX by Net Wealth

MPX by Net Wealth Quantile

