Hierarchical beta-binomial model

Stat 340: Bayesian Statistics

Motivating experiment

- Imagine a single toxicity experiment performed on rats. Lots of those are carried out before drugs are approved for use in humans.
- ullet is the probability that a rat receiving no treatment in an experiment develops a tumor.
- ullet Current experiment: n=14 rats in the study, and y=4 rats develop a tumor.
- Previous experiments: the same experiment has been performed with 70 other groups of rats
 - $y_j =$ # rats with tumors in jth experiment
 - $n_i = \text{sample size in jth experiment}$
 - $\theta_j =$ probability that a rat receiving no treatment in an experiment develops a tumor in jth experiment

Structure of hierarchical model

Assumption:

current tumor risk, θ_{71} , and the 70 historical risks, $\theta_1, \ldots, \theta_{70}$, are a random sample from a common distribution

Fig. 5.1 in Gelman et al. (2004)

Posterior derivations

Before moving on to hyper-prior selection and tuning, let's explore how to derive out posterior distributions

Hyper priors (second stage)

- In hierarchical models, the choice of the hyper-prior is important because it is possible to end up with an improper posterior distribution.
- For example, in this beta-binomial example a uniform prior on α , β does not work because the posterior distribution of α , β is non-integrable.
- An approach that often makes the choice of hyper prior easier is to think of functions of the parameters that are more intuitive.

Beta-binomial hyperprior

What are functions of α and β that are more intuitive?

Prior mean:
$$\mu = \frac{\alpha}{\alpha + \beta}$$

Prior sample size:
$$\eta = \alpha + \beta$$

Approx. prior SD:
$$\eta^* = (\alpha + \beta)^{-1/2}$$

Noninformative hyperprior - option 1

One way to develop a noninformative prior would be to place uniform densities on (μ, η)

$$\mu = rac{lpha}{lpha + eta} \sim \mathrm{Beta}(1,1)$$
 $\eta = lpha + eta \sim 1$

What does this imply about the prior of α , β on the original scale?

We need to find the Jacobian of the inverse transformation to answer this.

Noninformative hyperprior - option 2

An alternative approach is to place uniform densities on prior the mean and approximate SD

$$\mu = rac{lpha}{lpha + eta} \sim \mathrm{Beta}(1,1)$$
 $\eta^* = (lpha + eta)^{-1/2} \sim 1$

The implied prior for (α, β) is given by

$$\pi(\alpha, \beta) \propto (\alpha + \beta)^{-5/2}$$

which is a proper prior distribution (should be more efficient)

Noninformative priors in JAGS

```
noninform_model<-"
model {
## sampling
for (i in 1:N){
   y[i] ~ dbin(theta[i], n[i])
## priors
for (i in 1:N){
   theta[i] ~ dbeta(alpha, beta)
## noninformative hyperpriors
alpha <- mu / pow(eta, 2)
beta <- (1 - mu) / pow(eta, 2)
mu \sim dbeta(1, 1)
eta \sim dbeta(1, 1)
}"
```

Comparing posterior parameterizations

Estimated vs observed tumor rates

- The rates θ_j are **shrunk** toward their sample point estimates (diagonal)
- Smaller experiments are shrunk more and have higher posterior variances

What if we don't want to be "fully noninformative"

Hyperprior for μ

•
$$\mu = \frac{\alpha}{\alpha + \beta} \in (0, 1)$$

- $\mu \sim \mathrm{Beta}(a_0,b_0)$ is reasonable
- Beta(1, 1) would represent little prior knowledge

Hyperprior for η

• $\eta > 0$

 Many options for distributions, which makes sense?

Albert and Hu's approach

- Choose $\mu \sim \mathrm{Beta}(a_0,b_0)$
- Reframe η in terms of a shrinkage factor, λ , and place a prior on λ
 - $\theta_j | \alpha, \beta, y \sim \text{Beta}(\alpha + y_j, \beta + n_j y_j)$
 - ullet $E(heta_j|lpha,eta,y)=rac{lpha+y_j}{n_j+lpha+eta}$, now re-express in terms of μ and η

Albert and Hu's approach

• Once you tune your prior on λ , this induces a prior on η

$$\lambda \sim \mathrm{Unif}(0,1) \qquad \Longrightarrow \qquad \pi(\eta) = rac{n_j}{(n_j + \eta)^2}, \eta > 0$$

- JAGS doesn't "know" this distribution, but it knows the logistic distribution
- Let $u = \log(\eta)$, this transformation gives a $\operatorname{Logistic}(n_j, 1)$ PDF

$$\pi(
u) = rac{e^{-(
u-\log n_j)}}{\left\lceil 1 + e^{-(
u-\log n_j)}
ight
ceil^2},
u \in \mathbb{R}$$

dlogis in JAGS

JAGS model specification

```
weak_inform_model<-"</pre>
model {
## sampling
for (i in 1:N){
   y[i] ~ dbin(theta[i], n[i])
## priors
for (i in 1:N){
   theta[i] ~ dbeta(alpha, beta)
## noninformative hyperpriors
alpha <- mu * eta
beta <- (1 - mu) * eta
mu \sim dbeta(1, 1)
eta <- exp(logeta)
logeta ~ dlogis(logn, 1)
}"
```

Comparing posterior parameterizations

