CMSC 474, Game Theory

7. Incomplete-Information Games

Dana Nau University of Maryland

Introduction

- All the kinds of games we've looked at so far have assumed that everything relevant about the game being played is common knowledge to all the players:
 - > the number of players
 - > the actions available to each
 - > the payoff vector associated with each action vector
- True even for imperfect-information games
 - ➤ The actual moves aren't common knowledge, but the game is
- We'll now consider games of *incomplete* information
 - Players are uncertain about the game being played

Example

- Consider the payoff matrix shown here
 - > ε is a small positive constant; Agent 1 knows its value
 - > Agent 1 doesn't know the values of a, b, c, d
- The matrix represents a set of games, G
 - Agent 1 doesn't know which game in *G* is the one being played

L	R			
100, a	$1-\varepsilon, b$			
2, c	1, <i>d</i>			

T

В

- What kind of strategy makes sense?
 - > So far, we've seen two possibilities
 - maxmin strategy: maximize worst-case expected utility
 - *minimax regret* strategy: minimize worst-case regret
- Suppose we have a probability distribution on the games in *G* ...

Bayesian Games

- *Bayesian Game*: a set of games *G* that satisfies two fundamental conditions:
 - Condition 1: same strategy space
 - Condition 2: common prior

	L	R			
T	100, a	$1-\varepsilon, b$			
В	2, <i>c</i>	1, <i>d</i>			

- Condition 1: same strategy space.
 - Each game in G has the same number of agents
 - ➤ For each agent *i*, each game in *G* has the same *strategy space*
 - same set of possible strategies (hence same set of actions A_i)
 - > Only difference is in the payoffs
- This condition isn't very restrictive
 - Can often reformulate problems to fit it

Example

Suppose we don't know whether player 2 only has strategies L and R, or also an additional strategy C:

		L	R			L	C	R
Game G_1	U	1, 1	1, 3	Game G_2	U	1, 1	0, 2	1, 3
	D	0, 5	1, 13					1, 13

Having no strategy C is equivalent to having a strategy C that's strictly dominated by the other strategies

Game
$$G_1$$
' U $\begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 5 & 2 & -100 & 1 & 1 \end{bmatrix}$ has same Nash equilibria as G_1

- We've reduced the problem to this:
 - Which payoffs does player 2 have:
 - \triangleright The ones in G_1 , or the ones in G_2 ?

Bayesian Games

- Condition 2: common prior. The agents have common knowledge of a prior probability distribution over the games in *G*
 - > prior: what an agent knows before it learns additional information
- The agents' individual beliefs are *posterior probabilities*
 - Combine the common prior distribution with individual "private signals" (what's "revealed" to the individual players)
- This rules out whole families of games, but greatly simplifies the theory
 - > So most work on incomplete-information games uses it
- Later: some examples of games that don't satisfy Condition 2

Definitions of Bayesian Games

- The book discusses three different ways to define Bayesian games
 - > All are
 - equivalent (ignoring a few subtleties)
 - useful in some settings
 - intuitive in their own way
- The first definition (Section 7.1.1) is based on information sets
- A Bayesian game consists of
 - > a set of games that differ only in their payoffs
 - > a common (i.e., known to all players) prior distribution over them
 - > for each agent, a partition structure (set of information sets) over the games
- Formal definition on the next page

7.1.1 Definition based on Information Sets

- A *Bayesian game* is a 4-tuple (*N*,*G*,*P*,*I*) where:
 - \triangleright N is a set of agents
 - \triangleright G is a set of N-agent games
 - For every agent *i*, every game in *G* has the same strategy space
 - \triangleright P is a common prior over G
 - *common*: common knowledge (known to all the agents)
 - *prior*: probability before learning any additional info
 - $ightharpoonup I = (I_1, ..., I_N)$ is a tuple of partitions of G, one for each agent
 - Information sets

• Example:

Example (Continued)

- $G = \{MP, PD, Crd, BoS\}$
 - Suppose the randomly chosen game is MP
- Agent 1's information set is $I_{1,1}$
 - > 1 knows the game is MP or PD
- 1 can infer *posterior* probabilities for MP and PD

$$\Pr[MP | I_{1,1}] = \frac{\Pr[MP \land I_{1,1}]}{\Pr[I_{1,1}]} = \frac{\Pr[MP]}{\Pr[MP] + \Pr[PD]}$$
$$= \frac{0.3}{0.3 + 0.1} = \frac{3}{4}$$

$$Pr[PD|I_{1,1}] = \frac{Pr[PD]}{Pr[MP] + Pr[PD]} = \frac{0.1}{0.3 + 0.1} = \frac{1}{4}$$

• Agent 2's information set is $I_{2,1}$

$$\Pr[MP|I_{2,1}] = \frac{\Pr[MP]}{\Pr[MP] + \Pr[CrD]} = \frac{0.3}{0.3 + 0.2} = \frac{3}{5}$$

$$\Pr[\text{Crd} | I_{2,1}] = \frac{\Pr[\text{Crd}]}{\Pr[\text{MP}] + \Pr[\text{CrD}]} = \frac{0.2}{0.3 + 0.2} = \frac{2}{5}$$

7.1.2 Definition Based on Chance Moves

- Extensive form with Chance Moves
 - > The book gives a description, but not a formal definition
- Hypothesize a special agent, *Nature*
 - > Nature has no utility function
- At the start of the game, Nature makes a probabilistic choice according to the common prior
- Agents receive individual signals about Nature's choice
 - Some choices are "revealed" to some players, others to other players
 - > The players receive **no** other information

Example

- Same example as before, but translated into extensive form
 - Game tree of depth 3
- Nature randomly chooses MP

U

L

R

- \triangleright Nature sends signal $I_{1,1}$ to Agent 1
- \triangleright Nature sends signal $I_{2,1}$ to Agent 2
- Each agent chooses independently

R

MP (p=0.3)

L

R

(2,0) (0,2) (0,2) (2,0) (2,2) (0,3) (3,0) (1,1) (2,2) (0,0) (0,0) (1,1) (2,1) (0,0) (0,0) (1,2)

R

Nature

Discussion

- Can we represent a real game this way?
- For *n* players, always get an imperfect-information game tree of depth n+1
 - \triangleright 2 players \rightarrow depth 3
- Root node: choice node for *Nature*
 - Nature makes probabilistic choice according to the common prior
- Nodes at depth *i*: information sets for player *i*
 - \triangleright i's strategy s_i maps the information sets into actions

(2,0) (0,2) (0,2) (2,0) (2,2) (0,3) (3,0) (1,1) (2,2) (0,0) (0,0) (1,1) (2,1) (0,0) (0,0) (1,2)

Example

Translate Backgammon to a Bayesian game?

- Nature makes choices throughout the game
 - Dice rolls have random outcomes
 - Players see the outcomes
- Each player makes moves throughout the game
 - Both players see all moves
- Translate to normal form game
 - > 3D matrix
 - > For each player, a huge number of possible strategies
 - > From the normal form, construct the depth-3 tree
- Not practical

MAX

Extending the Definition

- Could extend the definition to include
 - Players sometimes get information about each other's moves
 - > Nature makes choices and sends signals throughout the game
- To model backgammon, bridge, ...
 - Just use their usual game trees

7.1.3 Definition Based on Epistemic Types

- Recall, we can assume the only thing players are uncertain about are the other players' utility functions
 - > Define uncertainty directly over the utility functions
- **Definition 7.1.2**: a *Bayesian game* is a tuple $(N, \mathbf{A}, \Theta, \Pr, \mathbf{u})$ where:
 - \triangleright N is a set of agents
 - $ightharpoonup A = A_1 \times ... \times A_n$, where A_i is player i's set of possible actions
 - \triangleright $\Theta = \Theta_1 \times ... \times \Theta_n$, where Θ_i is player i's set of possible types
 - $ightharpoonup \Pr: \Theta \to [0,1]$ is a common prior distribution over types
 - \triangleright **u** = (u_1, \ldots, u_n) , where u_i is player i's utility function
 - $u_i: \mathbf{A} \times \mathbf{\Theta} \to \mathbf{R}$ i.e., $u_i(a_1, ..., a_n, \theta_1, ..., \theta_n) = x$
- All of the above is common knowledge among the players
- Agent *i*'s *type* is the information *i* has that isn't common knowledge
 - \triangleright i knows i's type, but not what the other agents' types are

Types

- θ_i : all information *i* has that *isn't* common knowledge, e.g.,
 - > i's actual payoff function
 - > i's beliefs about other agents' payoff functions,
 - > i's beliefs about *their* beliefs about his/her own payoff function
 - Any other higher-order beliefs

Example

- Agent 1's possible types: $\Theta_1 = \{\theta_{1,1}, \theta_{1,2}\}$
 - \triangleright 1's type is $\theta_{1,i} \Leftrightarrow$ 1's info set is $I_{1,i}$
- Agent 2's possible types: $\Theta_2 = \{\theta_{2,1}, \theta_{2,2}\}$

 $\theta_{2,1}$

MP (p = 0.3)

 $U \mid 2, 0 \mid 0, 2 \mid$

Crd(p=0.2)

 $0, 2 \mid 2, 0$

 $\theta_{1,1}$

$$ho$$
 Pr[$\theta_{2.1} \mid \theta_{1.1}$] = 0.3/(0.3 + 0.1) = 3/4; Pr[$\theta_{2.2} \mid \theta_{1.1}$] = 0.1/(0.3 + 0.1) = 1/4

$$ho$$
 Pr[$\theta_{2.1} \mid \theta_{1.2}$] = 0.2/(0.2 + 0.4) = 1/3; Pr[$\theta_{2.2} \mid \theta_{1.2}$] = 0.4/(0.2 + 0.4) = 2/3

 $\theta_{2,2}$

PD (p = 0.1)

 $U \mid 2, 2 \mid 0, 3$

D | 3, 0 | 1, 1

BoS (p = 0.4)

R

Example (continued)

- $u_i(a_1,...,a_n,\theta_1,...,\theta_n)$
 - depends on both the types and the actions
 - > the types determine what game it is
 - the actions determine the payoff within that game

	$ heta_{2,1}$	$\theta_{2,2}$				
$ heta_{1,1}$	MP $(p = 0.3)$ L R U 2, 0 0, 2 D 0, 2 2, 0	PD $(p = 0.1)$ L R U 2, 2 0, 3 D 3, 0 1, 1				
$\theta_{1,2}$	Crd (p=0.2) L R U 2, 2 0, 0 D 0, 0 1, 1	BoS $(p = 0.4)$ L R U 2, 1 0, 0 D 0, 0 1, 2				

a_1	a_2	θ_1	θ_2	u_1	u_2
U	L	$\theta_{1,1}$	$\theta_{2,1}$	2	0
\mathbf{U}	$_{\rm L}$	$\theta_{1,1}$	$\theta_{2,2}$	2	2
\mathbf{U}	\mathbf{L}	$\theta_{1,2}$	$\theta_{2,1}$	2	2
\mathbf{U}	$_{\rm L}$	$\theta_{1,2}$	$\theta_{2,2}$	2	1
\mathbf{U}	\mathbf{R}	$\theta_{1,1}$	$\theta_{2,1}$	0	2
\mathbf{U}	\mathbf{R}	$\theta_{1,1}$	$\theta_{2,2}$	0	3
\mathbf{U}	\mathbf{R}	$\theta_{1,2}$	$\theta_{2,1}$	0	0
\mathbf{U}	\mathbf{R}	$\theta_{1,2}$	$\theta_{2,2}$	0	0
D	L	$\theta_{1,1}$	$\theta_{2,1}$	0	2
D	L	$\theta_{1,1}$	$\theta_{2,2}$	3	0
D	L	$\theta_{1,2}$	$\theta_{2,1}$	0	0
D	L	$\theta_{1,2}$	$\theta_{2,2}$	0	0
D	R	$\theta_{1,1}$	$\theta_{2,1}$	2	0
D	R	$\theta_{1,1}$	$\theta_{2,2}$	1	1
D	R	$\theta_{1,2}$	$\theta_{2,1}$	1	1
D	R	$\theta_{1,2}$	$\theta_{2,2}$	1	2

Strategies

- In principle, we could use any of the three definitions of a Bayesian game
- The book uses the 3rd one (epistemic types)
- *Pure strategy* for player *i*
 - function that maps each of i's types to an action
 - > what i would play if i had that type
- Mixed strategy s_i
 - probability distribution over pure strategies
 - $ightharpoonup s_i(a_i \mid \theta_i) = \Pr[i \text{ plays action } a_i \mid i \text{ 's type is } \theta_i]$
- Three kinds of expected utility, depending on what we know about the players' types
 - > ex ante: before we know anything other than the common prior
 - > ex post: after we know everyone's type
 - > ex interim: know only agent i's type
 - i.e., the game from i's point of view

Expected Utility

- The players' expected utilities depend on both their strategies and their types
- Type profile: a vector $\boldsymbol{\theta} = (\theta_1, \theta_2, ..., \theta_n)$ of types, one for each agent

- $\triangleright \theta = (\theta_i, \theta_{-i})$
- Agent i's ex post expected utility (know what θ is):

$$EU_i(\mathbf{s}, \boldsymbol{\theta}) = \sum_{\mathbf{a}} \Pr[\mathbf{a} \mid \mathbf{s}, \boldsymbol{\theta}] \ u_i(\mathbf{a}, \boldsymbol{\theta})$$

Agent *i*'s *ex ante* expected utility (only know the common prior):

$$EU_i(\mathbf{s}) = \sum_{\mathbf{\theta}} \Pr[\mathbf{\theta}] EU_i(\mathbf{s}, \mathbf{\theta})$$

Agent i's ex interim expected utility (know θ_i and the common prior)

$$EU_{i}(\mathbf{s}, \theta_{i}) = \sum_{\theta_{-i}} \Pr[\theta_{-i} \mid \theta_{i}] \underbrace{EU_{i}(\mathbf{s}, (\theta_{i}, \theta_{-i}))}$$

Bayes-Nash Equilibria

- Just like the definition of a Nash equilibrium, except that we're using
 - Bayesian-game strategies
 - > ex ante expected utilities
- Given a strategy profile s_{-i}
 - \triangleright a best response for agent i is a strategy s_i^* such that
 - $EU_i(s_i^*, \mathbf{s}_{-i}) = \max_{S_i} EU_i(s_i, \mathbf{s}_{-i})$
- *Bayes-Nash* equilibrium
 - > a strategy profile s such that
 - for every s_i in \mathbf{s} , s_i is a best response to \mathbf{s}_{-i}

Computing Bayes-Nash Equilibria

- Basic idea
 - Construct a payoff matrix for the entire Bayesian game
 - > Find equilibria on that matrix

- First, write each pure strategy as a list of actions, one action for each type
- Agent 1's pure strategies:
 - > UU: U if type $\theta_{1,1}$, U if type $\theta_{1,2}$ ▶ UD: U if type $\theta_{1,1}$, D if type $\theta_{1,2}$ > DU: D if type $\theta_{1,1}$, U if type $\theta_{1,2}$ > DD: D if type $\theta_{1,1}$, D if type $\theta_{1,2}$
- Agent 2's pure strategies:
 - LL: L if type $\theta_{2,1}$, L if type $\theta_{2,2}$ ► LR: L if type $\theta_{2,1}$, R if type $\theta_{2,2}$ > RL: R if type $\theta_{2,1}$, L if type $\theta_{2,2}$ > RR: R if type $\theta_{2,1}$, R if type $\theta_{2,2}$

Updated 11/3/16

Computing Bayes-Nash Equilibria (continued)

• Next, compute the *ex ante* expected utility for each pure-strategy profile

Computing Bayes-Nash Equilibria (continued)

• Put all of the *ex ante* expected utilities into a payoff matrix

0, 0

0, 0

$$\triangleright$$
 e.g., $EU_1(UU,LL)$, $EU_2(UU,LL)$

LLLRRLRRNow we can compute best responses and Nash equilibria UU1, 0.7 1, 1.2 0, 0.9 $\theta_{2,2}$ $\theta_{2,1}$ 0.8, 0.21, 1.1 0.4, 10.6, 1.9MP (p = 0.3)PD (p = 0.1) $\theta_{1,1}$ [2,0] 0, 2 DU1.5, 1.4 0.5, 1.1 1.7, 0.4 0.7, 0.1 0, 22, 0 BoS (p = 0.4)0.3, 0.6 0.5, 1.5 1.1, 0.2 1.3, 1.1 Crd(p=0.2)DD

Updated 11/3/16

0, 0

Computing Bayes-Nash Equilibria (continued)

• Put all of the *ex ante* expected utilities into a payoff matrix

 \triangleright e.g., $EU_1(UU,LL)$, $EU_2(UU,LL)$

Updated 11/3/16

0, 0

0, 0

Ex Interim Payoff Matrix

- Suppose we learn agent 1's type is $\theta_{1,1}$
- Recompute the expected payoffs using the posterior probabilities
 - ho Pr[MP | $\theta_{1,1}$] = $\frac{3}{4}$, Pr[PD | $\theta_{1,1}$] = $\frac{1}{4}$
 - $\sim u_2(UU,LL \mid \theta_{1,1}) = \frac{3}{4}(0) + \frac{1}{4}(2) = 0.5$

• Ex interim payoff matrix when agent 1's type is $\theta_{1,1}$

I.I.

• Can't use it to compute equilibria, since $\theta_{1,1}$ isn't common knowledge

RI

RR

LR

	2 \	1/			LL	LIL	ILL	1111
	$ heta_{2,1}$		$ heta_{2,2}$	0000			, , , , , , , , , , , , , , , , , , ,	
	MP $(p = 0.3)$ L R		PD $(p = 0.1)$	UU	(2, 0.5)	1.5, 0.75	0.5, 2	0, 2.25
$igg heta_{1,1}$	U 2,0 0,2 D 0,2 2,0		U (2, 2) 0, 3 D 3, 0 1, 1	UD	2, 0.5	1.5, 0.75	0.5, 2	0, 2.25
				DU	0.75, 1.5	0.25, 1.75	2.25, 0	1.75, 0.25
				DD	0.75, 1.5	0.25, 1.75	2.25, 0	1.75, 0.25

Ex Post Equilibria

- An ex post equilibrium: a strategy profile s such that for every s_i in s and for *every* type profile θ ,
 - \triangleright s_i is a best response to \mathbf{s}_{-i} given $\boldsymbol{\theta}$

• *i.e.*,
$$EU_i((s_i, \mathbf{s}_{-i}), \mathbf{\theta}) = \max(EU_i((s_i', \mathbf{s}_{-i}), \mathbf{\theta}))$$

- Doesn't say that i knows the other agents' types
- It says that *regardless* of what *i* knows about the other agents' types, i wouldn't want to switch to a different strategy
 - > Not even if i had inaccurate information
 - > Not even if i believed the others had inaccurate information
- A little like a dominant strategy equilibrium
 - Not guaranteed to exist
- Many dominant strategy equilibria are *ex post* equilibria, but not always

Updated 11/3/16

Example: Auctions (this material isn't in the book)

- An auction is a way (other than bargaining) to sell a fixed supply of a *commodity* (an item to be sold) for which there is no well-established ongoing market
- Bidders make bids
 - > proposals to pay various amounts of money for the commodity
- The commodity is sold to the bidder who makes the largest bid
- Example applications
 - Real estate, art, oil leases, electromagnetic spectrum, electricity, eBay, google ads
- Several kinds of auctions are incomplete-information, and can be modeled as Bayesian games

Types of Auctions

• Classify according to how the commodity is valued:

> Private-value auctions

- Each bidder may have a different *bidder value (BV)*, i.e., how much the commodity is worth to that bidder
- A bidder's BV is his/her private information, not known to others
- E.g., flowers, art, antiques

Common-value auctions

- The ultimate value of the item is the same for all bidders, but bidders are unsure what that ultimate value is
- E.g., oil leases, Olympic broadcast rights

> Affiliated (correlated) value auctions

- These are somewhere between private and common-value auctions
- BVs for the auctioned item(s) are correlated, but not necessarily the same for all

Types of Auctions

- Classify according to the rules for bidding
 - English
 - Dutch
 - First price sealed bid
 - Vickrey
 - many others
- I'll describe several of these and will analyze their equilibria
- Possible problem: collusion (secret agreements for fraudulent purposes)
 - > Groups of bidders who won't bid against each other, to keep the price low
 - ➤ Bidders who place phony (phantom) bids to raise the price (hence the auctioneer's profit)
- If there's collusion, the equilibrium analysis is no longer valid

English Auction

- The name comes from oral auctions in English-speaking countries, but I think this kind of auction was also used in ancient Rome
 - ➤ Used for antiques, artworks, cattle, horses, wholesale fruits and vegetables, old books, etc.
- Typical rules:
 - > Auctioneer solicits an opening bid from the group
 - Anyone who wants to bid should call out a new price at least c higher than the previous high bid (e.g., c = 1 dollar)
 - ➤ The bidding continues until all bidders but one have dropped out
 - ➤ The highest bidder gets the object, for a price equal to his/her final bid
- For each bidder *i*, let
 - \triangleright $v_i = i$'s valuation of the commodity (private information)
 - \triangleright $B_i = i$'s final bid
- If i wins, then i's profit is $\pi_i = v_i B_i$ and everyone else's profit = 0

English Auction (continued)

- Nash equilibrium:
 - \triangleright Each bidder *i* participates until the bidding reaches v_i then drops out
 - So assuming rationality, $B_i < v_i$ Why not $B_i \le v_i$?
 - \triangleright The highest bidder, i, gets the object, at price $B_i < v_i$, so $\pi_i = B_i v_i > 0$
 - B_i is close to the second highest bidder's valuation
 - For every bidder $j \neq i$, $\pi_i = 0$
- Why is this an equilibrium?
- Suppose bidder *j* deviates and none of the other bidders deviate
 - ➤ If *j* deviates by dropping out earlier,
 - Then *j*'s profit will be 0, no better than before
 - \triangleright If j deviates by bidding $B_i > v_j$, then either
 - someone else bids higher and wins the auction, so j's profit is still 0
 - j win's the auction but j's profit is $v_j B_j \le 0$, worse than before

• Which kind of equilibrium is this?

English Auction (continued)

- If there is a large range of bidder valuations, then the difference between the highest and 2nd-highest valuations may be large
 - Thus if there's wide disagreement about the item's value, the winner might be able to get it for much less than his/her valuation
- Let *n* be the number of bidders
 - The higher n is, the more likely it is that the highest and 2^{nd} -highest valuations are close
 - Thus, the more likely it is that the winner pays close to his/her valuation

Example

- Auction a 20-dollar bill
 - ➤ It will be sold to the highest bidder, who must pay the amount of his/her bid
 - The second-highest bidder must also pay his/her bid, but gets nothing
 - No collusion
 - > The minimum increment for a new bid is 10 cents

Example

- Auction a 20-dollar bill
 - ➤ It will be sold to the highest bidder, who must pay the amount of his/her bid
 - The second-highest bidder must also pay his/her bid, but gets nothing
 - No collusion
 - > The minimum increment for a new bid is 10 cents
- This is called an escalation auction

All-Pay Auction

Swoopo

- > Used to be a web site that auctioned items
- > Now defunct
- URL redirects to another site that does something similar
- In ordinary auctions, bids cost nothing
 - > But Swoopo required bidders to pay 60 cents/bid for each of their bids
- Bidders didn't pick the price they bid
 - > Swoopo would increment the last offer by a fixed amount—a penny, 6 cents, 12, cents—that was determined before the start of the auction.
- Each time someone placed a bid, the auction got extended by 20 seconds
- Related to a lottery or a raffle
 - > Main differences:

pay a fixed fee, rather than a bid; winner chosen at random

Swoopo Example

- From http://poojanblog.com/blog/2010/01/swoopo-psychology-game-theory-and-regulation
 - Swoopo auctioned an ounce of gold (worth about \$1,100)
 - > Selling price was \$203.13
 - \triangleright Increment was 1 cent => 20,313 bids
 - At 60 cents per bid, Swoopo got \$12,187.80 in revenue
 - > Swoopo netted about \$11,000
 - Winner's total price:
 - Selling price, plus the price of his/her bids
 - Probably about \$600

First-Price Sealed-Bid Auctions

• Examples:

- construction contracts (lowest bidder)
- > real estate
- > art treasures
- Typical rules
 - ➤ Bidders write their bids for the object and their names on slips of paper and deliver them to the auctioneer
 - ➤ The auctioneer opens the bid and finds the highest bidder
 - The highest bidder gets the object being sold, for a price equal to his/her own bid
 - Winner's profit = BV- price paid
 - Everyone else's profit = 0

First-Price Sealed-Bid (continued)

- Suppose that
 - > There are *n* bidders
 - \triangleright Each bidder *i* has a BV, v_i , which is private information
 - \triangleright But a probability distribution for v_i is common knowledge
 - e.g., let's say every v_i is uniformly distributed over [0,100]
 - \triangleright Let B_i denote the bid of player i
 - \triangleright Let π_i denote the profit of player i
- What is an equilibrium bidding strategy for the players?
- First we'll look at the case where n = 2

First-Price Sealed-Bid (continued)

- Let B_i be agent i's bid, and π_i be agent i's profit
- If $B_i \ge v_i$, then $\pi_i \le 0$
 - > So assuming rationality, $B_i < v_i$

Why not $B_i \leq v_i$?

- Thus
 - $\rightarrow \pi_i = 0$ if $B_i \neq \max_i \{B_i\}$
 - $\rightarrow \pi_i = v_i B_i \quad \text{if } B_i = \max_i \{B_i\}$
- How much below v_i should your bid be?
- The smaller B_i is,
 - > the less likely that i will win the object
 - > the more profit i will make if i wins the object

First-Price Sealed-Bid (case n = 2)

- Suppose your BV is *v* and your bid is *B*
- Let x be the other bidder's BV and αx be his/her bid, where $0 < \alpha < 1$
 - \triangleright You don't know the values of x and α
- Your expected profit from bidding *B* is
 - \triangleright E(π) = Pr[your bid is higher](ν -B) + Pr[your bid is lower](0)
- x is uniformly distributed over [0,100]
 - Pr[your bid is higher] = P[$\alpha x < B$] = Pr[$x < B/\alpha$] = $(1/100) (B/\alpha) = B/100\alpha$
- So $E(\pi) = Pr[your bid is higher](v-B)$ = $(B/100\alpha) (v-B) = (Bv-B^2)/100\alpha$
- $E(\pi)$ is maximized when derivative is 0
 - $v 2B = 0 \implies B = v/2$
- To maximize your expected profit, bid ½ of what the item is worth to you!

First-Price Sealed-Bid (continued)

- With *n* bidders, if your bid is *B*, then
 - ➤ If all other bidders have BVs uniformly distributed over [0,100]
 - Before, Pr[your bid is highest] was $B/100\alpha$
 - Now it's $(B/100\alpha)^{n-1}$
- Expected profit is $E(\pi) = (B^{n-1}/100\alpha) (v-B) = (vB^{n-1}-B^n)/100\alpha$
 - \triangleright E(π) is maximized when derivative = 0
 - $(n-1)B^{n-2}v nB^{n-1} = 0$
 - (n-1)v nB = 0
 - B = v(n-1)/n
- As *n* increases, $B \rightarrow v$
 - > Increased competition drives bids close to the valuations
- Bayes-Nash Equilibrium for 1st-price sealed-bid auctions:
 - > each bidder *i* bids the expected highest value among *i*'s rivals, conditional on *i*'s own value being higher than all of the rivals' values

Updated 11/3/16

Dutch Auctions

- Examples: flowers in the Netherlands, fish market in England and Israel, tobacco market in Canada
- Typical rules
 - Auctioneer starts with a high price
 - Auctioneer lowers the price gradually, until some buyer shouts "Mine!"
 - The first buyer to shout "Mine!" gets the object at the price the auctioneer just called
 - \triangleright Winner's profit = BV price
 - \triangleright Everyone else's profit = 0
- Game-theoretically equivalent to first-price, sealed-bid auctions
 - > The object goes to the highest bidder at the highest price
 - ➤ A bidder must choose a bid without knowing the bids of any other bidders
 - > The optimal bidding strategies are the same

Auction Design

- Two of the possible goals:
 - (1) Pareto efficiency (Pareto optimal outcome):
 - \triangleright The commodity should to the bidder i with the highest v_i
 - > Suppose it goes to another bidder j with $v_j < v_i$
 - > Then can make both *i* and *j* better off as follows:
 - Transfer the commodity from *i* to *j*
 - Have j pay i an amount between v_j and v_i
 - (2) Profit maximization:
 - > Highest expected profit to seller

Auction Design

- English auction does well at achieving both goals
 - Main drawback: bidders must make a long sequence of bids
 - Impractical in many cases
- Sealed-bid first price auction:
 - No buyer knows other buyers' valuations
 - ➤ Bidder with the highest valuation may bid too low and lose to another bidder
 - => not Pareto efficient
- Dutch auction:
 - No buyer knows other buyers' valuations
 - Bidders don't want to claim the prize too early
 - ➤ Bidder with the highest valuation may delay too long and lose to another bidder

=> not Pareto efficient

Sealed-Bid, Second-Price Auctions

- Proposed by Vickrey in 1961; usually called a Vickrey auction
 - > Same idea has been used in stamp collectors' auctions since 1893
- Other auctions that come close:
 - US Treasury's long-term bonds
 - eBay proxy bidding
- Typical rules
 - ➤ Bidders write their bids for the object and their names on slips of paper and deliver them to the auctioneer
 - > The auctioneer opens the bid and finds the highest bidder
 - The highest bidder gets the object being sold, for a price equal to the *second highest* bid
- Winner's profit = BV price
- Everyone else's profit = 0

Sealed-Bid, Second-Price (continued)

- Equilibrium bidding strategy: bid your true value
- **Proof**: show that bidding your true value is a weakly dominant strategy
- Let
 - \triangleright v = your valuation of the object
 - \rightarrow X = the highest bid by anyone else
 - $ightharpoonup s_v =$ the strategy of bidding v
 - π_v = your profit when using s_v
 - > $s_B =$ a strategy that bids some $B \neq v$
 - π_B = your profit when using s_B
- Show that $\pi_B \le \pi_v$ for all B, v, X
 - \triangleright There are 3! = 6 possible numeric orderings of B, v, and X
 - \triangleright For each one, show that $\pi_B \leq \pi_v$

Sealed-Bid, Second-Price (continued)

- \triangleright The 6 possible numeric orderings of B, v, and X:
 - v < B < X: you don't get the commodity, so $\pi_B = \pi_v = 0$.
 - v < X < B: $\pi_v = 0$, but $\pi_B = v X < 0$
 - X < v < B: you pay X rather than your bid, so $\pi_B = \pi_v = v X > 0$
 - X < B < v: you pay X rather than your bid, so $\pi_B = \pi_v = v X > 0$
 - B < X < v: $\pi_B = 0$, but $\pi_v = v X > 0$
 - B < v < X: you don't get the commodity, so $\pi_B = \pi_v = 0$
- $\rightarrow \pi_R \le \pi_v$ in every case, so s_v is weakly dominant
- Equilibrium: everyone bids their true value
 - What kind of equilibrium is this?
 - Bayes-Nash? *ex post?*
- Equilibrium outcome is nearly the same as in English auctions
 - > The object goes to the highest bidder
 - Price is the second highest BV

A Practical Problem

- Vickrey auctions don't always go as planned
 - ➤ New Zealand, 1990 auction of electromagnetic spectrum
- One case:
 - > Highest bid: NZ\$100,000
 - Second-highest bid: NZ\$6
- Another case:
 - ➤ Highest bid: NZ\$7 million
 - Second-highest bid: NZ\$5,000
- Why?
 - > Only a few bidders, no minimum bid => poor profit for seller
- New Zealand's government has since amended its auction rules

Reserve Price

- Suppose there are 2 bidders for a commodity
 - > Each buyer's valuation is \$20 with probability ½; \$50 with probability ½
- Probability ¼ for each of the following value profiles:
 - > (\$20, \$20), (\$20, \$50), (\$50, \$20) and (\$50, \$50).
- English auction, minimum increment \$1, no reserve value
 - ➤ With probability ¼ each, winning bids will be \$20, \$21, \$21 and \$50
 - \triangleright Seller's expected revenue is (\$20 + \$21 + \$21 + \$50)/4 = \$28
- English auction, minimum increment \$1, reserve value \$50
 - > Probability 1/4 of no sale
 - > Probability ³/₄ that the winning bid will be \$50
- Seller's expected revenue = $\frac{3}{4}(50) + \frac{1}{4}(0) = 37.5
- Probability \(\frac{1}{4} \) of no trade => loss of Pareto efficiency

Updated 11/3/16

The Winner's Curse

- Consider a common-value auction
 - ➤ Item's ultimate value is the same for all bidders, but bidders are unsure what that ultimate value is
- Each bidder estimates the value and bids accordingly
 - > Some overestimate, some underestimate
 - > The largest overestimate ends up winning the auction
- A possible example: FCC 1996 spectrum auction
 - ➤ Largest bidder: \$4.2 million, NextWave Personal Communications Inc
 - ➤ In January 1998 they went bankrupt unable to pay their bills
- Optimal strategy:
 - Bid less than what you think the item is worth
 - > How much less?

Summary

- Incomplete information vs. imperfect information
- Incomplete information vs. uncertainty about payoffs
- Bayesian games (three different definitions)
 - Changing uncertainty about games into uncertainty about payoffs
 - > Ex ante, ex interim, and ex post utilities
 - Bayes-Nash equilibria
- Bayesian-game interpretations of Bridge and Backgammon
- Auctions and their equilibria
 - > English, Dutch, sealed bid first price, sealed bid second price (Vickrey)
- Auction design
 - > Pareto efficiency, profit maximization
 - Reserve price, winner's curse