Лабораторная работа № 03 ДО

Полупроводниковые диоды, характеристики и применение

1. Цель работы

- Изучение принципа работы полупроводникового диода и его свойств.
- Экспериментальное получение вольтамперной характеристики диода, определение основных параметров диода.
- Исследование схемы однополупериодного выпрямителя, однополупериодного выпрямителя с фильтром и схемы двухстороннего ограничителя.

2. Методика эксперимента

Исследование схем проводится методом моделирования с помощью программы *Design Lab 8.0*. Исследование схемы однополупериодного выпрямителя проводится на схемах рис.1. Схема для получения ВАХ диода приведена на рис.2. По снятым характеристикам определяются малосигнальные параметры диода. Схема двухстороннего ограничителя показана на рис. 3.

Рис. 1. Схема однополупериодного выпрямителя: без фильтра (a), с фильтром (δ)

Рис. 2. Схема для получения ВАХ стабилитрона

3. Подготовка к работе

3.1. Изучить следующие вопросы:

- свойства полупроводников, примесные полупроводники, донорные и акцепторные примеси;
- основные и неосновные носители, диффузионный и дрейфовый токи;
- образование *p-n*-перехода, прямое и обратное смещение *p-n*-перехода;
- диод, BAX диода, прямая и обратная ветвь BAX диода, пробой диода, стабилитрон;
- выпрямительные схемы, выпрямительные схемы с фильтром, расчет емкости фильтра;
- схема двухстороннего ограничителя.

- 3.2. Нарисовать качественно ВАХ диода и показать, как для прямой ветви ВАХ в произвольной рабочей точке определить параметры линейной схемы замещения диода: дифференциальное сопротивление $r_{_{
 m J}}$ и напряжение отсечки $U_{_{
 m J0}}$.
- 3.3. Для однополупериодной схемы выпрямителя (рис. 2,6) рассчитать емкость конденсатора фильтра C_1 , если заданы следующие параметры: R_1 сопротивление нагрузки и $k_{\rm II}$ коэффициент пульсаций. К входу схемы подключен источник синусоидального напряжения с частотой f и амплитудой U_m . Диод считать идеальным. Номер варианта выбирается из таблиц 1, 2 по номеру группы M и порядковому номеру студента в учебном журнале N.

 $R_1 = (1000 + 10 \text{ N}) \text{ Om}.$

									T	аблица 1
N	1	2	3	4	5	6	7	8	9	10
<i>f</i> , Гц	500	750	1000	1250	1500	1750	2000	2250	2500	2750
N	11	12	13	14	15	16	17	18	19	20
<i>f</i> , Гц	3000	3250	3500	3750	4000	4250	4500	4750	5000	5250
N	21	22	23	24	25	26	27	28	29	30
<i>f,</i> Гц	5500	5750	6000	6250	6500	6750	7000	7250	7500	7750

								Tac	блица 2
M	1	2	3	4	6	7	8	9	12
U_m , B	10	15	20	25	30	35	40	10	15
k_{Π} , %	10	12	14	16	18	11	13	15	17

3.4. Для схемы двухстороннего ограничителя (рис.3), выполненного на стабилитронах в соответствии с вариантом (табл. 3) нарисовать качественно передаточную характеристику $U_{\scriptscriptstyle \mathrm{Bhx}}(U_{\scriptscriptstyle \mathrm{Bx}})$. Стабилитроны считать идеальным.

Рис. 3. Схема двухстороннего ограничителя

Таблица 3

Номер NСтабилитронМодель стабилитрона115КС136КS136216КС139КS139317КС143КS143418КС147КS147519КС151КS151620КС156КS156721КС162КS162822КС168КS168923КС175КS1751024КС182КS1821125КС191КS1911226КС210KS2101327КС456KS4561428КС510KS510				Тионнци з	
1 15 KC136 KS136 2 16 KC139 KS139 3 17 KC143 KS143 4 18 KC147 KS147 5 19 KC151 KS151 6 20 KC156 KS156 7 21 KC162 KS162 8 22 KC168 KS168 9 23 KC175 KS175 10 24 KC182 KS182 11 25 KC191 KS191 12 26 KC210 KS210 13 27 KC456 KS456	Номер N		Стабилитрон		
2 16 KC139 KS139 3 17 KC143 KS143 4 18 KC147 KS147 5 19 KC151 KS151 6 20 KC156 KS156 7 21 KC162 KS162 8 22 KC168 KS168 9 23 KC175 KS175 10 24 KC182 KS182 11 25 KC191 KS191 12 26 KC210 KS210 13 27 KC456 KS456		1		1	
3 17 KC143 KS143 4 18 KC147 KS147 5 19 KC151 KS151 6 20 KC156 KS156 7 21 KC162 KS162 8 22 KC168 KS168 9 23 KC175 KS175 10 24 KC182 KS182 11 25 KC191 KS191 12 26 KC210 KS210 13 27 KC456 KS456	1	15	KC136	KS136	
4 18 KC147 KS147 5 19 KC151 KS151 6 20 KC156 KS156 7 21 KC162 KS162 8 22 KC168 KS168 9 23 KC175 KS175 10 24 KC182 KS182 11 25 KC191 KS191 12 26 KC210 KS210 13 27 KC456 KS456	2	16	KC139	KS139	
5 19 KC151 KS151 6 20 KC156 KS156 7 21 KC162 KS162 8 22 KC168 KS168 9 23 KC175 KS175 10 24 KC182 KS182 11 25 KC191 KS191 12 26 KC210 KS210 13 27 KC456 KS456	3	17	KC143	KS143	
6 20 KC156 KS156 7 21 KC162 KS162 8 22 KC168 KS168 9 23 KC175 KS175 10 24 KC182 KS182 11 25 KC191 KS191 12 26 KC210 KS210 13 27 KC456 KS456	4	18	КС147	KS147	
7 21 KC162 KS162 8 22 KC168 KS168 9 23 KC175 KS175 10 24 KC182 KS182 11 25 KC191 KS191 12 26 KC210 KS210 13 27 KC456 KS456	5	19	KC151	KS151	
8 22 KC168 KS168 9 23 KC175 KS175 10 24 KC182 KS182 11 25 KC191 KS191 12 26 KC210 KS210 13 27 KC456 KS456	6	20	KC156	KS156	
9 23 KC175 KS175 10 24 KC182 KS182 11 25 KC191 KS191 12 26 KC210 KS210 13 27 KC456 KS456	7	21	KC162	KS162	
10 24 KC182 KS182 11 25 KC191 KS191 12 26 KC210 KS210 13 27 KC456 KS456	8	22	KC168	KS168	
11 25 KC191 KS191 12 26 KC210 KS210 13 27 KC456 KS456	9	23	КС175	KS175	
12 26 KC210 KS210 13 27 KC456 KS456	10	24	KC182	KS182	
13 27 KC456 KS456	11	25	KC191	KS191	
	12	26	KC210	KS210	
14 Z8 KC510 KS510	13	27	KC456	KS456	
	14	28	KC510	KS510	

4. Рабочее задание

Часть 1. Исследование однополупериодной схемы выпрямителя

- 4.1. В операционной системе «Windows» под управлением программы «Schematics» собрать схему однополупериодного выпрямителя (рис.1,*a*).
- 4.2. Установив режим расчета схемы во временной области, получить осциллограммы входного и выходного напряжений. С помощью преобразования Фурье для выходного напряжения определить среднее значение (постоянную составляющую $U_{{\rm вых}\,0}$) и амплитуду первой гармоники $U_{{\rm вых}\,1}$. Рассчитать коэффициент пульсаций.
- 4.3. Подключить к выходу схемы конденсатор C_1 (рис. 1,6), установить емкость, рассчитанную в п. 3.3 подготовки к работе.
- 4.4. Получить осциллограммы входного и выходного напряжений. С помощью преобразования Фурье для выходного напряжения определить среднее значение (постоянную составляющую $U_{{\scriptscriptstyle \mathrm{Bыx}\,0}}$) и амплитуду первой гармоники $U_{{\scriptscriptstyle \mathrm{Bыx}\,1}}$. Рассчитать коэффициент пульсаций. Сравнить с п. 4.2. Результаты занести в таблицу 4.

Таблица 4

Коэффициент пульсаций	Заданное	Без конденсатора	С конденсатором
	значение	п. 4.2	п. 4.4
k_{Π} , %			

Часть 2. Исследование вольтамперной характеристики стабилитрона

- 4.5. В операционной системе «Windows» под управлением программы «Schematics» собрать схему для получения ВАХ стабилитрона (рис.2).
 - <u>Примечание</u>: модель стабилитрона берется из файла Diodes.lib согласно варианту (табл. 3).
- 4.6. Снять ВАХ стабилитрона.
- 4.7. Для рабочей точки $I_{_{\rm I}}$ = 10 мА определить параметры линейной схемы замещения прямой ветви стабилитрона: дифференциальное сопротивление $r_{_{\rm I\! I}}$ и напряжение отсечки $U_{_{\rm I\! I}0}$. Их значения записать в таблицу 5.
- 4.8. Для рабочей точки $I_{_{\rm I}}$ = 10 мА определить параметры линейной схемы замещения обратной ветви стабилитрона: дифференциальное сопротивление стабилитрона $r_{_{\rm CT}}$ и напряжение $U_{_{\rm CT}\,0}$. Их значения записать в таблицу 5.
- 4.9. Нарисовать схемы замещения для прямой и обратной ветви стабилитрона (рабочий ток $I_{_{\rm I}} = 10\,{\rm mA}$).

Таблица 5

	Прямая ветвь	Обратная ветвь
	А — К	A — K
Схемы замещения	1)	1)
	2)	2)
Параметры		

Часть 3. Исследование двухстороннего ограничителя

- 4.10. В операционной системе «Windows» под управлением программы «Schematics» собрать схему двухстороннего ограничителя (рис.3). $R_1 = (1000 + 10 \text{ N}) \text{ Ом}.$
 - <u>Примечание</u>: модель стабилитронов берется из файла Diodes.lib согласно варианту (табл. 3).
- 4.11. Получить передаточную характеристику ограничителя при изменении входного напряжения от $-1.5\,U_{\rm cr}$ до $+1.5\,U_{\rm cr}$. По передаточной характеристике определить напряжение на выходе для $U_{\rm bx}=\pm 1.2\,U_{\rm cr}$.

- 4.12. Получить осциллограммы входного $u_{\mbox{\tiny BX}}$ и выходного напряжения $u_{\mbox{\tiny BMX}}$ и тока $i_{\mbox{\tiny R}}$.
 - Установить амплитуду источника 1,5 $U_{\rm cr}$ и частоту 1 кГц.
 - На осциллограммах для одного периода отметить интервалы (участки) и режимы работы каждого из стабилитронов D_1 и D_2 (открыт, закрыт или режим пробоя).
 - В схеме двухстороннего ограничителя, ввести обозначение входного и выходного напряжения и положительного напряжения на диодах.
 - Для каждого участка нарисовать схемы замещения диодной сборки D_1 D_2 , считая стабилитроны идеальными. Результаты занести в таблицу 6.

Таблица 6

	I	1	Ι	Таолица о
Участок	1	2	3	4
D_1				
D_2				
Схема замещения				

Приложение.

Расчет емкости конденсатора фильтра

Для инженерных расчетов для схемы однополупериодного выпрямителя емкость конденсатора фильтра можно определить так:

$$C_{\Phi^1} = (U_{_{\mathrm{H}}}/R_{_{\!\mathrm{H}}})T/2\Delta U_{_1} = \frac{1}{2fR_{_{\!\mathrm{H}}}k_{_{\!\!\!\Pi,\mathrm{DOH}}}}.$$