LEC17: Computer Viewing-part1

Ku-Jin Kim
School of Computer Science & Engineering
Kyungpook National University

Notice: This PPT slide was created by partially extracting & modifying notes from Edward Angel's Lecture Note for E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Contents

- OpenGL Viewing Functions
- Viewing APIs

Computer Viewing

- Three steps of the viewing process
 - Positioning the camera
 - Setting the modeling & viewing matrices
 - Model-view matrix
 - Selecting a lens
 - Setting the projection matrix
 - Parallel (orthogonal) projection
 - Perspective projection
 - Clipping
 - Setting the view volume
- These steps are implemented in the pipeline

Model-View Matrix

object frame \Rightarrow world frame world frame \Rightarrow camera frame

The Default OpenGL Camera

- In OpenGL, initially the object/world and camera frames are at the same origin & orientation
 - Default model matrix: identity matrix
 - Default view matrix: identity matrix
- OpenGL also specifies a default view volume that is a cube with sides of length 2 centered at the origin
 - $x = y = z = \pm 1$

Default Projection

Default : orthogonal (parallel) projection

Actually we get is...

Moving the Camera

- If we want to move camera, we can do it either by
 - Moving the camera to p (Translate the camera frame)

OR

- Moving the objects to -p (Translate the world frame)
- Both of these views are equivalent and are determined by the model-view matrix
 - Translation matrix: $T(-p_{x'}, -p_{y'}, -p_z)$ for the object

Model-View Matrix

- Both modeling matrix and viewing matrix are applied to objects with object transformation
- Concatenation of modeling and viewing matrices are called as model-view matrix

Moving the Camera (1)

- We can move the camera to render the side view of the object
- Example: side view
 - Rotate the camera:
 R_v(-90°)
 - Move it away from origin: T(3, 0, 0)
- When we think the camera as an object:
 - Transformation matrix: T(3, 0, 0)R_y(-90°)

Moving the Camera (2)

- If we want to move the object rather than camera for rendering the same result
 - Transformation matrix of camera:

$$C = T(3, 0, 0)R_{y}(-90^{\circ})$$

- Inverse of C must be applied to the object
- Transformation matrix of object

$$C^{-1} = R_{y}(+90^{\circ})T(-3, 0, 0)$$

View Matrix Construction

- For computing view matrix we can approach
 - Step1) Compute the transformation matrix (C) for the camera to be with the expected orientation (M₁) and location (M₂)
 - $C = M_2 M_1$
 - Step2) Compute the inverse matrix of C to apply it to objects
 - $C^{-1} = M_1^{-1} M_2^{-1}$

Deciding Camera Frame

- Deciding location and orientation of camera
 - 1) Using VRP, VUP, VPN
 - VRP (view reference point)
 - VPN (view plane normal)
 - VUP (view up vector)

Moving Camera for Viewing Objects

default frames

frames after changing camera frame

Deciding Camera Frame by VRP, VPN, VUP (1)

VRP:
$$\mathbf{p} = [p_x \ p_y \ p_z \ 1]^T$$

VPN: $\mathbf{n} = [n_x \ n_y \ n_z \ 0]^T$
VUP: $\mathbf{v}_{up} = [v_{upx} \ v_{upy} \ v_{upz} \ 0]^T$

- Vector normalization for a vector $\mathbf{v} = (v_x, v_y, v_z)$: $\mathbf{v}/||\mathbf{v}||$, where $||\mathbf{v}|| = \operatorname{sqrt}(v_x^2 + v_y^2 + v_z^2)$
- n, v are normalized
 n = n / ||n||
 v_{up} = v_{up} / ||v_{up}||
- → length is 1

Deciding Camera Frame by VRP, VPN, VUP (2)

VRP : $\mathbf{p} = [p_x \ p_y \ p_z \ 1]^T$ normalized VPN : $\mathbf{n} = [n_x \ n_y \ n_z \ 1]^T$ normalized VUP : $\mathbf{v}_{up} = [v_{upx} \ v_{upy} \ v_{upz} \ 1]^T$

Constructing camera frame (**u-v-n-p**):

1) v: Projection of VUP to view plane Let's compute **v**:

$$\mathbf{v} = \alpha \, \mathbf{n} + \beta \, \mathbf{v}_{\text{up}}$$
,

If β is assumed to be 1, then

 $(\alpha \, \mathbf{n} + \mathbf{v}_{\text{up}}) \cdot \mathbf{n} = 0$,

since \mathbf{v} and \mathbf{n} are perpendicular.

 $\alpha = -(\mathbf{v}_{\text{up}} \cdot \mathbf{n})/(\mathbf{n} \cdot \mathbf{n})$, where $\mathbf{n} \cdot \mathbf{n} = 1$
 $\mathbf{v} = -(\mathbf{v}_{\text{up}} \cdot \mathbf{n}) \, \mathbf{n} + \mathbf{v}_{\text{up}}$

- 2) Compute \mathbf{u} as $\mathbf{u} = \mathbf{n} \times \mathbf{v}$
- 3) Normalize **u** and **v**

Default Camera Frame in OpenGL

- Camera position: p = (0, 0, 0)
- View plane normal: $n = (0, 0, 1) // z_c$ in page 15
- View up vector: v = (0, 1, 0) // y_c
- u = (1, 0, 0) // x_c
 - This follows right hand rule, when u, v, n correspond to x, y, z, respectively
 - But, we want camera frame with left hand rule, when we change it !!!

HW#17 Show Green Face (5points)

- Due date:This Friday 6:00pm
- Modify the program "LEC17.2_side_view.c" to show the green face of given object.
- Don't change vertices, colors, and indices arrays, and the result must be seen as the right figure.
- Submit .c file through LMS.

