GaAs N-channel Dual Gate MES FET

Description

SGM2006M/P is an N-channel dual gate GaAs MES FET for UHF band low-noise amplification. This FET is suitable for a wide range of applications including TV tuners, cellular radios and DBS IF amplifiers.

Features

- · Low voltage operation
- Low noise: NF = 1.2 dB (Typ.) at 800 MHz
- High gain: Ga = 22 dB (Typ.) at 800 MHz
- High stability
- Built-in gate-protection diode
- Standard SOT-143 package

Application

UHF band amplifier, mixer and oscillator

Structure

GaAs N-channel dual gate metal semiconductor field effect transistor

Absolute Maximum Ratings (Ta = 25°C)

Drain to source voltage

				Vosx	12	V
Gate	1	to	source	voltage		
				V _{G1} S	- 5	V
Gate	2	to	source	voltage		
				V _{G2} S	- 5	V
• Drain	C	LIFTE	ent	lo	55	mΑ

- Allowable power dissipation
 - P_D 150 mW
- Channel temperature
- Tch 150 ℃
- Storage temperature

Tstg - 55 to + 150 ℃

Mark

Package Outline

Unit: mm

E88Z10-ST

4:Gate 1

M-255

Electrical Characteristics (Ta = 25 ℃)

Item	Symbol	Condition	Min.	Typ.	Max.	Unit
Drain to source voltage	VDSX	ID = 20 μA VG1S = 0V VG2S = - 4.0V	11			٧
Gate 1 cutoff current	IG1SS	VG1S = - 4.5V VG2S = OV VDS = OV			- 8	μА
Gate 2 cutoff current	IG2SS	V _{G2S} = - 4.5V V _{G1S} = 0V V _{DS} = 0V			- 8	μА
Gate 2 to drain cutoff current	IG2DO	$V_{G2D} = -12V$			- 10	μА
Drain saturation current	IDSS	V _{DS} = 5V V _{G1S} = 0V V _{G2S} = 0V	10		35	mA
Gate 1 cutoff voltage	Vg1s (OFF)	V _{DS} = 5V I _D = 100 μA V _{G2} S = 0V			- 2.5	٧
Gate 2 cutoff voltage	Vg2s (OFF)	VDS = 5V ID = 100 μA VG1S = 0V			- 2.5	٧
Forward transfer admittance	gm	VDS = 5V ID = 10mA VG2S = 1.5V f = 1KHz	20	26.		mS
Input capacitance	Ciss	VDS = 5V ID = 10mA		1.1	3	pF
Reverse transfer capacitance	Crss	VG2S = 1.5V f = 1MHz		28	40	fF
Noise figure	NF	Vps = 5V lp = 10mA		1.2	2.0	dB
Associated gain	Ga	V _{G2S} = 1.5V f = 800MHz	18	22		dB

Typical Characteristics (Ta = 25 °C)

Noise Figure Characteristics ($V_{DS} = 5V$, $V_{G2S} = 1.5V$, $I_D = 10$ mA)

at 800 MHz

						THE R. P. LEWIS CO., LANSING, MICH.	THE PERSON NAMED IN COLUMN 2 IS NOT	the same of the sa
f	Ga	NFmin	NF50	Rn	r (S)		r (L)	
(MHz)	(dB)	(dB)	(dB)	(Ω)	MAG	ANG	MAG	ANG
		1.23	2.59	29.1	.823	18.9°	.824	3.1 °
600	21.2	-	2.59	29.2	.804	20.4°	.896	5.8°
800	20.8	1.26	2.78	37.7	.750	24.2°	.865	3.9*
1000	19.5	1.57	210	31.1	.750	- 112		

S-parameters vs. Frequency Characteristics ($V_{DS} = 5V$, $V_{G2S} = 1.5V$, $I_D = 10$ mA)

			S21		S12		S22	
f	S1			ANG	MAG	ANG	MAG	ANG
(MHz)	MAG	ANG	MAG			50.9°	.976	- 1.6°
100	1.00	- 4.0°	2.63	174°	.001	84.7	.975	- 2.8°
200	.996	- 8.0°	2.62	168°	.002		.971	- 4.0°
300	.985	- 12.3°	2.61	163°	.004	85.8°	.968	- 5.2°
400	.968	- 16.0°	2.57	157°.	.004	77.0°	.965	- 6.4°
500	.953	- 19.9°	2.55	152°	.006	80.2°		- 7.8°
600	.933	- 24.1°	2.53	146°	.006	84.4°	.966	- 8.7°
700	.916	- 27.6°	2.51	141*	.007	75.3°	.964	- 9.9°
800	.895	- 31.5°	2.49	135°	.008	77.9°	.963	- 11.3°
900	.872	- 35.1°	2.47	130°	.009	77.1 °	.962	- 12.3°
1000	.844	- 38.8°	2.45	125°	.009	79.8°	.961	- 12.5°
1100	.819	-421°	2.42	119°	.010	72.3°	.959	
1200	.778	- 44.8°	2.36	114°	.010	75.4°	.955	- 15.0°
1	.747	- 48.9°	2.33	108°	.010	76.0°	.953	- 16.5
1300	.713	- 52.4°	2.29	103*	.011	80.0°	.950	- 17.7
1400	.679	- 55.7°	2.24	97.1°	.011	74.2°	.945	- 19.1
1500	.646	- 58.6*	2.18	92.1	.011	70.0°	.939	- 19.7
1600	1	- 61.5°	2.14	87.4°	.012	76.5°	.946	- 20.9
1700	.616	- 63.8°	2.12	82.0°	.012	83.6*	.949	- 22.1
1'800	.589	- 65.7°	2.09	76.8°	.012	81.7*	.953	- 23.7
1900	.552	- 65.7 - 66.8°	2.06	71.3*	.013	83.4*	.956	- 25.4
2000	.517	- 66.6	2.00	1				