Calculus AB Individual 2020

Catholic High Tournament

1. Find
$$\lim_{x\to 2} \left(\frac{x-2}{x^3-8}\right)$$

2. Find a for which
$$f(x) = \begin{cases} ax+1 & \text{if } x \leq -3 \\ ax^2-1 & \text{if } x > -3 \end{cases}$$
 is continuous

3. Find and simplify the derivative of $e^{\ln x} + x^{\ln e} + \ln(e^x)$

4. If f(x) has values given in the table below, and $g(x) = \frac{3}{f(x)}$, find g'(5)

f(5)	f'(5)
-3	6

5. Find the slope of the tangent line to $y = \csc x$ when $x = \frac{\pi}{6}$

6. The cost in dollars of manufacturing q units of a product is $C(q) = 5q^2 + 2q + 300$. Use marginal cost to estimate the cost of the manufacturing the 31st unit.

7. If
$$f(x) = \frac{x}{2x+1}$$
, find $f''(x)$

8. Find
$$\frac{dy}{dx}$$
 if $(\sin x)(\cos y) = y$

9. On what open interval(s) is $f(x) = 6x^2 + \frac{x}{2} + \frac{6}{x} + 3$ concave down?

10. If
$$h(x) = \sin(g(x))$$
, $g(2) = \frac{\pi}{4}$, $g'(2) = 5$, and $g''(2) = 3$, find $h''(2)$

11. Find
$$f(x)$$
 if $\frac{\mathrm{d}f}{\mathrm{d}x} = \sec^2(x)$ and $f(\frac{\pi}{4}) = 2$

- 12. Find the instantaneous rate of change of $f(\theta) = |\tan \theta|$ when $\theta = \frac{2\pi}{3}$
- 13. Find the coordinates of the absolute maximum point of $f(x) = x^{2/3}(5-2x)$ on [-1,2]
- 14. In a right circular cone, the radius is 4 inches and is increasing at 5 in/sec while the height is 3 inches and is decreasing at 6 in/sec. Find the rate of change of volume at that time (include units)
- 15. Find the slope intercept equation of the line tangent to $y = e^x$ that passes through the origin.

Answers

- 1. $\frac{1}{12}$
- 2. $\frac{1}{6}$
- 3. 3
- 4. -2
- 5. $-2\sqrt{3}$
- 6. C'(30) = 302
- 7. $-\frac{4}{(2x+1)^3}$
- 8. $\frac{\cos x \cos y}{\sin x \sin y + 1}$
- 9. (-1,0)
- 10. $-11\sqrt{2}$
- 11. $\tan x + 1$
- 12. -4
- 13. (-1,7)
- 14. $8\pi \text{ in}^3/\text{sec}$
- 15. y = ex