GEOMETRÍA MODERNA I

2019-1 (7 diciembre 2018)

EXAMEN FINAL

INSTRUCCIONES: Justificar y argumentar todos los resultados que se realicen. Resolver los cinco ejercicios.

- 1. Sea l una recta y L un punto tal que $L \notin l$. Construir la recta incidente en L que es paralela a l.
- 2. Demostrar que si $\triangle ABC$ se cumple que $|\angle ABC| = \bot$, $L \in \overline{AC}$ con |AL| = |LC|, M el punto en que la bisectriz interna de $|\angle ABC|$ interseca a \overline{AC} , h_B la ortogonal a \overline{AC} por B y $N = h_B \cap \overline{AC}$ entonces $|\angle NBM| = |\angle MBL|$.
- 3. Sean A, O, H tres puntos no colineales. Construir un triángulo que tenga a A como uno de sus vértices, a H como su ortocentro y a O como su circuncentro.
- 4. Sean $\triangle ABC$, $P \in \overline{BC}$, $Q \in \overline{CA}$ y $R \in \overline{AB}$ tal que $\overline{AP} \cap \overline{BQ} \cap \overline{CR} \neq \emptyset$. Demostrar que
 - lacktriangledown si $\overline{QR} \cap \overline{BC} = \{P'\}$, $\overline{RP} \cap \overline{CA} = \{Q'\}$, $\overline{PQ} \cap \overline{AB} = \{R'\}$ entonces P', Q', R' son colineales.
 - \overline{AP} , $\overline{BQ'}$ y $\overline{CR'}$ son concurrentes.
- 5. Demstrar que cada uno de los triángulos formados por tres de los cuatro lados de un cuadrilátero completo está en perspectiva con el triángulo diagonal del cuadrilátero.