

Binary Search Basic

이분탐색 기초

競技プログラミングの鉄則

KPSC Algorithm Study 24/11/21 Thu.

by Haru_101

- 이분탐색은 배열 내에서의 특정 값이나 어떤 조건을 만족하는 값을 효율적으로 찾는 방법
- 먼저, 크기가 N인 배열에서 어떤 특정 값 x가 존재하는지 찾는다고 가정합시다.
- 단순하게 생각해보면, 반복문 하나로 배열의 모든 값을 순회하면서 있는지 검사하면 될 것 같습니다.

- 하지만, 배열의 크기가 크고 찾을 값이 여러개라면?
- 배열의 크기가 N이고, 찾을 값의 개수(= 쿼리의 개수)가 Q라고 합시다.
- 그러면, 한 번 값을 찾는데에 최대 O(N)의 시간이 걸리고, 이를 Q번 하므로, O(QN)이 걸립니다.
- N = Q = 100,000이면 시간 내에 문제를 해결하지 못합니다.

- 이제 이분탐색(Binary Search)에 대해 배워봅시다.
- 이분탐색은 탐색의 범위를 계속 절반으로 줄여나가면서 값을 찾는 과정입니다. 그래서 이분탐색입니다.
- 배열이 다음과 같이 오름차순으로 정렬되어 있을 때, 23이라는 값을 찾는다고 해봅시다.

1 2 5 11 13 15 21 23 20

- 먼저, 가장 왼쪽을 L, 가장 오른쪽을 R로 잡습니다.
 - 편의상 1-indexed라고 합시다.

- 그 다음, 중간을 나타내는 M값을 잡습니다.
 - $M = \frac{(L+R)}{2}$ 이고, 소숫점 이하는 버립니다.

- 이제, M = 5에 있는 값을 23과 비교해봅시다.
 - 13은 23보다 작네요.

- 그러면, 다음과 같이 결론을 내릴 수 있습니다.
 - [L, M]에 있는 값들은 우리가 찾고자 하는 값보다 작네.
 - 그러면, 더 이상 이 범위에서 23을 찾을 필요는 없네.

- 따라서, 다음 번에 탐색할 범위를 줄입니다.
 - [L, M]에 우리가 찾고자 하는 값이 없으므로, 다음 번에 탐색할 범위를 [M + 1, R]로 축소!
 - M + 1인 이유는, M에 찾고자 하는 값이 없기 때문입니다.

- 지금까지 해왔던 과정을 다시 반복해봅시다.
 - 먼저 $M = \frac{L+R}{2}$ 값을 잡습니다.

- 이제, M = 7에 있는 값을 23과 비교해봅시다.
 - 21은 23보다 작네요.

- 그러면, 다음과 같이 결론을 내릴 수 있습니다.
 - [L, M]에 있는 값들은 우리가 찾고자 하는 값보다 작네.
 - 그러면, 더 이상 이 범위에서 23을 찾을 필요는 없네.

- 따라서, 다음 번에 탐색할 범위를 줄입니다.
 - [L, M]에 우리가 찾고자 하는 값이 없으므로, 다음 번에 탐색할 범위를 [M + 1, R]로 축소!
 - M + 10 이유는, M에 찾고자 하는 값이 없기 때문입니다.

- 지금까지 해왔던 과정을 다시 반복해봅시다.
 - 먼저 $M = \frac{L+R}{2}$ 값을 잡습니다.

1	2	5	11	13	1 5	21	23	26
---	---	---	----	----	------------	----	----	----

- 이제, M = 8에 있는 값을 23과 비교해봅시다.
 - 우리가 찾던 23이 *M*에 있네요!

1 2 5 11 13 15 21 2

• 우리가 찾고자 했던 23이 배열 내에 있으므로, 인덱스를 출력하거나 True등을 출력하면 됩니다.

1 2 5 11 13 15 21 23 2	26	23	21	15	13	11	5	2	1
--	----	----	----	----	----	----	---	---	---

• 근데, 이 배열이 정렬되어있지 않다면 어떻게 될까요?

1	23	26	15	13	11	7	5	2

• 먼저, 가장 왼쪽을 L, 가장 오른쪽을 R로 잡습니다.

- 그 다음, 중간을 나타내는 M값을 잡습니다.
 - $M = \frac{(L+R)}{2}$ 이고, 소숫점 이하는 버립니다.

- 이제, M = 5에 있는 값을 23과 비교해봅시다.
 - 13은 21보다 작네요.

- 그러면, 다음과 같이 결론을 내릴 수 있습니다.
 - [L, M]에 있는 값들은 우리가 찾고자 하는 값보다 작네.
 - 그러면, 더 이상 이 범위에서 23을 찾을 필요는 없네.

- 따라서, 다음 번에 탐색할 범위를 줄입니다.
 - [L, M]에 우리가 찾고자 하는 값이 없으므로, 다음 번에 탐색할 범위를 [M+1, R]로 축소
 - M + 1인 이유는, M에 찾고자 하는 값이 없기 때문입니다.

• 근데, 23이 회색 부분에 있네요?

- 이런 일을 방지하고자, 찾고자 하는 배열, 범위에서는 단조성이 보장되어야 합니다.
- 단조성이란, 단조증가 혹은 단조감소를 의미합니다.
- 단조 증가 : a < b이면 $f(a) \le f(b)$
- 단조 감소 : a < b이면 $f(a) \ge f(b)$

- 문제를 풀어봅시다.
- https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_k

問題文

小さい順に並べられている、要素数 N の配列 $A=[A_1,A_2,\cdots,A_N]$ があります。要素 X は配列 A の何番目に存在するかを出力してください。 なお、この問題は単純な全探索(\to **1.2節**)でも解けますが、ここでは二分探索法を使って実装してください。

制約

- 1 < N < 100000
- $1 \le A_1 < A_2 < \cdots < A_N \le 10^9$
- 整数Xは A_1,A_2,\ldots,A_N のいずれかである
- 오름차순으로 정렬된 크기가 N인 배열 $A = [A_1, A_2, \cdots, A_N]$ 이 있습니다. 원소 X가 배열 A의 몇 번째에 존재하는지 출력하세요.
- [제약] *X* ∈ *A*

• 이분탐색 기본 구현이므로 따로 구체적인 설명은 스킵하고, 코드를 첨부합니다.

```
• • •
 1 int arr[100005];
 2 int main() {
      fastio();
      int N, X;
 5 cin >> N >> X;
      for(int i=1; i<=N; i++) {
          cin >> arr[i];
      int L = 1;
      int R = N;
      while(L \le R) {
         int M = (L+R)/2;
          if(arr[M] == X) {
              cout << M;
              break;
          } else if(arr[M] < X) {</pre>
           L = M+1;
          } else {
              R = M-1;
22 }
```


• C++에서는 lower_bound(start, end, val)을 이용해서 풀 수도 있습니다.

```
• • •
 1 int arr[100005];
 2 int main() {
       fastio();
       int N, X;
      cin >> N >> X;
       for(int i=1; i<=N; i++) {
           cin >> arr[i];
       int idx = lower_bound(arr+1, arr+1+N, X) - arr;
       if(idx <= N && arr[idx] == X) cout << idx;</pre>
10
11
       else cout << -1;
12 }
```


• 참고로, 앞 문제에선 배열이 이미 정렬된 순으로 주어져 있기 때문에 따로 정렬하지 않아도 됩니다.

- 이분탐색은 배열 내에서 값을 찾는 것 뿐만 아니라 특정 조건을 만족하는 값을 찾는 데에도 유용합니다.
- 이 부분은 문제를 보면서 해설하겠습니다.

- 문제를 풀어봅시다.
- https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_l

問題文

N 台のプリンターがあり、1 から N までの番号が付けられています。プリンターi は A_i 秒ごとにチラシを 1 枚印刷します。すなわち、スイッチを入れてから A_i 秒後、 $2A_i$ 秒後、 $3A_i$ 秒後・・・ に印刷します。すべてのプリンターのスイッチを同時に入れたとき、K 枚目のチラシが印刷されるのは何秒後でしょうか。

制約

- $1 \le N \le 100\,000$
- $1 \le K \le 10^9$
- $1 \le A_i \le 10^9$
- 答えは10⁹を超えない
- 入力はすべて整数
- N대의 프린터기가 있고, 각 프린터는 1부터 N까지의 번호가 부여되어 있습니다. 프린터 i는 A_i 초마다 전단지를 1장 인쇄합니다.
- 다시 말하면, 전원을 키면 A_i 초 후, $2A_i$ 초 후, $3A_i$ 초 후, ...에 인쇄됩니다. 모든 프린터의 전원을 동시에 킬 때, 몇 초 뒤에 K장 째의 전단지가 인쇄되는 지 출력하시오.
- [제약] 정답은 10⁹를 넘지 않음

• 아래 예제에 대해서 살펴 봅시다.

4 101 2 3 4

• 그렇다면 인쇄 현황을 아래의 표로 나타낼 수 있습니다. (〇는 해당 초에 인쇄됨을 의미함)

프린터 초	1	2	3	4	5	6	7	8	9
1	0	0	0	0	0	0	0	0	0
2		0		0		0		0	
3			0			0			0
4				0				0	

- 일단, 각 프린터는 A_i 초마다 1장 인쇄하므로, 어떤 X초까지 해당 프린터가 인쇄한 전단지의 장 수 α_i 는, $\alpha_i = \frac{X}{A_i}$, 소수점 이하 버림
- 위 식으로 나타낼 수 있습니다.

프린터 초	1	2	3	4	5	6	7	8	9
1	0	0	0	0	0	0	0	0	0
2		0		0		0		0	
3			0			0			0
4				0				0	

• 예를 들어 프린터 2가 $A_2=2$ 초마다 1장 씩 인쇄하므로, X=7초 후에 인쇄한 전단지의 장 수 α_2 는 $\alpha_2=\frac{7}{2}=3$ 이 됩니다. (소수점 버림)

프린터 초	1	2	3	4	5	6	7	8	9
1	0	0	0	0	0	0	0	0	0
2		0		0		0		0	
3			0			0			0
4				0				0	

- 따라서, 모든 프린터에 대해 X초 후에 인쇄한 전단지의 총 합은, $\sum \alpha_i$ 가 됩니다.
- 이를 $S = \sum \alpha_i$ 로 두고, 이 S를 이용해 이분탐색을 하면 됩니다.

프린터 초	1	2	3	4	5	6	7	8	9
1	0	0	0	0	0	0	0	0	0
2		0		0		0		0	
3			0			0			0
4				0				0	

• 'S로 이분탐색을 한다'가 감이 안오실 수 있을 것 같아서, 입력 예시를 가지고 설명을 하겠습니다.

4 10 1 2 3 4

- 먼저 $S \ge 100$ S = 찾아야 합니다.
 - $S \leq 9$ 라면 10번째 전단지가 인쇄가 되지 않았음을 의미하기 때문입니다.

프린터 초	1	2	3	4	5	6	7	8	9
1	0	0	0	0	0	0	0	0	0
2		0		0		0		0	
3			0			0			0
4				0				0	

- 이제 1초를 *L*, 9초를 *R*로 잡습니다.
 - 참고: 9초로 잡으면 안되지만, 이 입력 예제에서는 가능하므로 9초로 잡습니다. 추후 설명하겠습니다.

• 그 다음, L, R의 중간인 $M = \frac{1+9}{2} = 5$ 를 잡습니다.

	L = 1				M=5				R = 9		
	1				1		1				
	I										
	I										
	*				*				•		
프린터 초	1	2	3	4	5	6	7	8	9		
1	0	0	0	0	0	0	0	0	0		
2		0		0		0		0			
3			0			0			0		
4				0				0			

• 이제 X = M일 때 즉, X초가 경과하였을 때 모든 프린터에서 전단지가 몇 장 나왔는지 계산해봅시다.

	L = 1				M = 5				R = 9	
	1					1				
	*				*				•	
프린터 초	1	2	3	4	5	6	7	8	9	
1	0	0	0	0	0	0	0	0	0	
2		0		0		0		0		
3			0			0			0	
4				0				0		

• 이제 X = M일 때 즉, X초가 경과하였을 때 모든 프린터에서 전단지가 몇 장 나왔는지 계산해봅시다.

		L = 1				M=5			R = 9		
		1				- 1				1	
		1				- 1				1	
		1				- 1				1	
		•				*				•	
	프린터 초	1	2	3	4	5	6	7	8	9	
$\alpha_1 = 5$	1	0	0	0	0	0	0	0	0	0	
$\alpha_2 = 2$	2		0		0		0		0		
$\alpha_3 = 1$	3			0			0			0	
$\alpha_4 = 1$	4				0				0		

• 지금 상황에선 S = 9입니다. 이 값은 K = 10보다 작으므로, [L, M] 구간에는 찾고자 하는 답이 없음을 알 수 있습니다.

• 따라서, L = M + 1로 옮기고, 다시 이 과정을 반복해봅시다.

	L = 1				M = 5	L = 6			R = 9
	I				I	1			1
	-					- 1			
	I				I	I			1
	*				*	*			*
프린터 초	1	2	3	4	5	6	7	8	9
1	0	0	0	0	0	0	0	0	О
2		0		0		0		0	
3			0			0			0
4				0				0	

• L, R의 중간인 $M = \frac{6+9}{2} = 7$ 을 잡습니다.

L=6	M = 7	R = 9
1	1	1
1	1	1
1	1	1
*	*	•

프린터 초	1	2	3	4	5	6	7	8	9
1	0	0	0	0	0	0	0	0	0
2		0		0		0		0	
3			0			0			0
4				0				0	

• 이제 X = M일 때 즉, X초가 경과하였을 때 모든 프린터에서 전단지가 몇 장 나왔는지 계산해봅시다.

L=6 M=7 R=9

0

• 이제 X = M일 때 즉, X초가 경과하였을 때 모든 프린터에서 전단지가 몇 장 나왔는지 계산해봅시다.

						L = 6	M = 7		R = 9
						I	I		1
						I	I		1
						T I	- 1		1
						*	*		•
프린터 초	1	2	3	4	5	6	7	8	9
1	0	0	0	0	0	0	0	0	0
2		0		0		0		0	

0

S = 13

 $\alpha_4 = 1$

 $\alpha_1 = 7$

 $\alpha_2 = 3$

 $\alpha_3 = 2$

0

- 지금 상황에선 S=13입니다. 이 값은 K=10보다 크므로, [M,R] 구간에서도 조건을 만족한다는 것 은 알 수 있습니다.
- 일단 이 구간에서 조건을 가장 먼저 만족하는 시간이 M이므로,L=6 M=7 R=9M=7 값을 정답으로 임시로 저장해둡니다.

	프린터 초	1	2	3	4	5	6	7	8	9
$\alpha_1 = 7$	1	0	0	0	0	0	0	0	0	0
$\alpha_2 = 3$	2		0		0		0		0	
$\alpha_3 = 2$	3			0			0			0
$\alpha_4 = 1$	4				0				0	

- 문제는, M = 7이전에 이미 K번째 전단지가 인쇄되었을 수 있습니다.
- 즉, 6초 때, K = 10번째 전단지가 인쇄되었을 수 있습니다.
- 따라서 정답을 확정해두지 않고 저장만 해둡니다.

									•
프린터 초	1	2	3	4	5	6	7	8	9
1	0	0	0	0	0	0	0	0	0
2		0		0		0		0	
3			0			0			0
4				0				0	

S = 13

 $\alpha_1 = 7$

 $\alpha_2 = 3$

 $\alpha_3 = 2$

 $\alpha_4 = 1$

L=6 M=7 R=9

• 지금 상황에선 S=13입니다. 이 값은 K=10보다 크므로, [M,R] 구간에는 더 이상 최적의 해가 존재하지 않습니다. (M제외) 따라서, R을 M-1로 변경하고 지금까지 해왔던 과정을 반복하면 됩니다.

*	*	•
- 1	1	1
1	1	1
1	1	1
L = 6	M = 7	R=9

	프린터 초	1	2	3	4	5	6	7	8	9
$\alpha_1 = 7$	1	0	0	0	0	0	0	0	0	0
$\alpha_2 = 3$	2		0		0		0		0	
$\alpha_3 = 2$	3			0			0			0
$\alpha_4 = 1$	4				0				0	

• L, R의 중간인 $M = \frac{6+6}{2} = 6$ 을 잡습니다.

$$L = M = R = 6$$

프린터 초	1	2	3	4	5	6	7	8	9
1	0	0	0	0	0	0	0	0	0
2		0		0		0		0	
3			0			0			0
4				0				0	

• 이제 X = M일 때 즉, X초가 경과하였을 때 모든 프린터에서 전단지가 몇 장 나왔는지 계산해봅시다.

$$L = M = R = 6$$

	프린터 초	1	2	3	4	5	6	7	8	9
	1	0	0	0	0	0	0	0	0	0
3	2		0		0		0		0	
2	3			0			0			0
_	4				0				0	

S = 12

 $\alpha_4 = 1$

 $\alpha_1 = 6$

 $\alpha_2 = 3$

 $\alpha_3 = 2$

- 지금 상황에선 S = 12입니다. 이 값은 K = 10보다 큽니다.
- 아까 저장했던 정답 후보가 M = 7인데, M = 6에서도 조건을 만족하므로 정답 후보를 다시 6으로 바꿉니다. L = M = R = 6

\	¥	1

	프린터 초	1	2	3	4	5	6	7	8	9
6	1	0	0	0	0	0	0	0	0	0
3	2		0		0		0		0	
2	3			0			0			0
1	4				0				0	

 $\alpha_3 = 2$

 $\alpha_1 = 6$

 $\alpha_2 = 3$

 $\alpha_4 = 1$

• 이제 L = R이므로 더 이상 반복문이 돌지 않기 때문에 반복이 종료되고, 최종적으로 정답은 6이 됩니다.

$$L = M = R = 6$$

	프린터 초	1	2	3	4	5	6	7	8	9
5	1	0	0	0	0	0	0	0	0	0
3	2		0		0		0		0	
2	3			0			0			0
_	4				0				0	

 $\alpha_4 = 1$

 $\alpha_1 = 6$

 $\alpha_2 = 3$

 $\alpha_3 = 2$

- [단조성 증명]
- 이전에 이분탐색을 하려면 단조성을 만족해야 한다고 언급했었습니다.
- 이 문제가 단조성을 만족하는지 간단하게 봐봅시다.

- 먼저, t = i에 인쇄되는 전단지의 수는 0장 이상입니다. 이 값을 α 라고 하면,
- $S_{t=i-1} + \alpha = S_{t=i}$ 가 됩니다.
- 여기서, α 에 대해 식을 정리하면, $\alpha = S_{t=i} S_{t=i-1}$ 이 되고, $\alpha \geq 0$ 이므로 $S_{t=i} S_{t=i-1} \geq 0$ 입니다.
- 따라서, $S_{t=i} \ge S_{t=i-1}$ 이므로, t초까지 인쇄된 전단지 수의 합을 f(t)라고 할 때, f(t)는 단조증가 함수입니다.
- 물론 직관적으로 볼 때 이게 보일 수 있지만, 식으로 한 번 정리해보는 것도 나쁘진 않은 것 같습니다.

Challenge

- 문제를 풀어봅시다.
- https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_n

問題文

 $A \cdot B \cdot C \cdot D$ の4つの箱があります。各箱には、以下のN枚のカードが入っています。

- 箱 A には整数 A_1, A_2, \dots, A_N が書かれたカードがある。
- 箱Bには整数 B_1, B_2, \cdots, B_N が書かれたカードがある。
- 箱 C には整数 C_1, C_2, \dots, C_N が書かれたカードがある。
- 箱 D には整数 D_1, D_2, \cdots, D_N が書かれたカードがある。

あなたはそれぞれの箱から 1 枚ずつカードを取り出します。取り出した 4 枚のカードに書かれた整数の合計が K となる可能性はあるか、判定してください。

制約

- 1 < N < 1000
- $1 \le K \le 10^8$
- $1 \le A_x, B_y, C_z, D_w \le 10^8$
- A, B, C, D 4개의 상자에는 각각 N개의 카드가 있고, A 상자에는 A_1, \cdots, A_N, B 상자에는 B_1, \cdots, B_N, C 상자에는 C_1, \cdots, C_N, D 상 자에는 D_1, \cdots, D_N 이 써져있는 카드가 있습니다.
- 각 상자에서 카드 한 장을 뽑습니다. 이때 뽑은 카드 4장의 합이 정확히 K가 될 수 있는지 출력하는 프로그램을 작성하시오.

Challenge

- 문제를 단순히 4중 반복문으로 풀고자 하니... $N = 10^3$ 이라서 $O(N^4)$ 은 당연히 안 될 것 같습니다.
- 어떻게 풀어야 할까요?

Challenge

- 결론부터 말하면 $A_i + B_j$ 를 다 나열한 배열 AB와 $C_i + D_j$ 를 다 나열한 배열 CD를 가지고 문제를 풀 수 있습니다.
- 즉, $A_i + B_j + C_k + D_l = K$ 를 만족하는 (i, j, k, l)을 직접적으로 구하는 것이 아니라, $AB_i + CD_j = K$ 를 만족하는 (i, j)를 찾으면 됩니다.
- 더 깊게 생각해보면 K는 이미 문제에서 주어져 있고, AB_i 는 우리가 지정할 수 있는 값입니다.
- 따라서, CD_i 는 $K AB_i$ 이므로, $K AB_i$ 가 CD_i 가 배열 내에 존재하는 지 검사하면 됩니다.