Introduction to R Session 2

Department of Sociology | University of Oxford

Casey Breen

2023-10-07

Intro to R – Session 2

- Reminder: course materials available from:
 - www.github.com/caseybreen/intro_r
- Questions on problem set 1?

Review of session 1

- What's the difference between R and RStudio?
- What's a vector? What's a data. frame?
- What does the \$ operator do? What does data\$column_b
 do?
- What are two different data structures? What are three different data types?
- What does %in% operator do?
- What does the ! operator do?

Session 2

- Module 4: Importing and exporting in data
- Module 5: Data manipulation (dplyr) and data visualization (ggplot2)
- Module 6: Best practices and resources for self-study

Module 4

Importing and exporting data

Key learning objectives

- Common data formats
- Functions for importing / exporting data
- Types of file paths in R

Importing data

- Common formats for data
 - .csv, .xlsx, .txt, .dat (stata), etc.
- Key functions
 - read_csv() function from tidyverse: Read CSV files
 - Also built-in ("base") function: read csv()
 - read.table(): Read text files
 - readxl::read_excel():Read Excel files

```
1 ## read in CSV file
2 df <- read_csv("/path/to/your/data.csv") ## faster
3
4 ## read in stata file
5 library(haven)
6 data <- read_dta("path/to/file.dta")</pre>
```

File paths

- Absolute Path: Specifies the full URL or address to locate a file or directory. Starts with the root directory.
 - Windows:
 - "C:\Users\username\folder\file.csv"
 - macOS/Linux:
 - "/home/username/folder/file.csv"
- Relative Path: Specifies how to find the file or directory based on the current working directory.
 - folder/file.csv

Working directories

- The working directory is the folder where your R session or script looks for files to read, or where it saves files you write
- Commands like read_csv("file.csv") or write_csv(data, "file.csv")
 will read from or write to this directory by default
- Key syntax:
 - getwd() returns working directory
 - setwd("/path/to/folder") sets working directory

```
1 getwd()
```

[1] "/Users/caseybreen/workspace/teaching/intro_r/slides"

Reading in .CSV files

- Recap: to read in .csv files use read_csv() function from tidyverse
 - This will read in the .csv file into memory as a data frame

```
1 library(tidyverse)
2 df <- read_csv("dataset.csv")</pre>
```

Write out a data frame to a .csv file using write_csv():

```
1 write_csv(df, "dataset_v2.csv")
```

Downloading data for exercises

- We will be using the censoc numident demo dataset
- Please download the .csv file from the course website (intro_r/data)
- Short url: https://shorturl.at/egz69

Live coding demo

- Downloading demo file from github
- Reading in a .csv file in R using read_csv()
 - Absolute and relative paths
- Using tab to auto-complete file paths
- Exploring a data frame: number of columns, rows, column names, etc.

In-class exercise 1

- Load and install the tidyverse packages using the commands install packages () and library ()
- 2. Use the read_csv() function to read in the downloaded dataset and assign it to the object censoc
- 3. Use the head command to look at the first 5 rows
- 4. How many columns are in the dataset?
- 5. How many rows are in the dataset?
- 6. List the column names. What are a few research questions that could be addressed using this dataset?

Exercise 1 solutions

1. Load and install the tidyverse packages using the commands install packages () and library ()

```
1 install.packages(tidyverse)
2 library(tidyverse)
```

2. Use the read_csv() function to read in the dataset and assign it to the object censoc

```
1 censoc <- read_csv("censoc_numident_demo_codebook_v2.1.pdf")</pre>
```

3. Use the head () command to look at the first 5 rows

```
1 head(censoc)
```

4. How many columns are in the dataset?

```
1 ncol(censoc)
[1] 39
```

Exercise 1 solutions (cont.)

5. How many rows are in the dataset?

```
1 nrow(censoc)
[1] 85865
```

6. List the column names.

Module 5

Data manipulation and visualization

Key learning objectives

- Overview of tidyverse suite of packages
- Fundamentals of data manipulation with dplyr
- Data visualization with ggplot

Tidyverse

- Packages: Collection of R packages designed for data science.
- Data manipulation: Simplifies data cleaning and transformation with dplyr.
- Data Visualization: Enables advanced plotting with ggplot2.

Data Manipulation using dplyr

filter: Select rows based on conditions.

```
1 filtered_df <- filter(df, age > 21)
```

select: Choose specific columns

```
1 filtered_df <- select(df)</pre>
```

mutate: Add or modify columns

```
1 df <- mutate(df, age_next_year = age + 1)</pre>
```

summarize or summarise: Aggregate or summarize data based on some criteria

```
1 filtered_df <- summarize(df, mean(age))</pre>
```

group_by: Group data by variables. Often used with summarise().

```
1 filtered_df <- df %>%
2 group_by(gender) %>%
3 summarize(mean(age))
```

The Pipe Operator %>% (or >) in R

- Takes the output of one function and passes it as the first argument to another function
 - "And then do..."
- What's the below code doing?

```
1 filtered_df <- df %>%
2 group_by(gender) %>%
3 summarize(mean(age))
```

Recoding values in R

- Sometime you want to recode a variable to take different values (e.g., recoding exact income to binary high/low income variable)
- The case_when() function in R is part of the dplyr package and is used for creating new variables based on multiple conditions:

```
1 new_var <- case_when(
2 condition1 ~ value1,
3 condition2 ~ value2,
4 TRUE ~ value_otherwise
5 )</pre>
```

Live coding demo

- Filter data
- Selecting data
- Calculating summary statistics by group
- Creating and recoding variables

In-class exercise 2

- 1. Filter the censoc data.frame to include only women (sex == 2). Use the filter command.
- 2. Filter the censoc data.frame to include only people born between 1905 and 1920 using the byear variable.
- 3. Select the columns histid, death_age, sex, and ownershp
- 4. Calculate the average age of death for women (hint: refer to question 1)

Exercise 2 solutions

1. Filter the censoc data.frame to include only women (sex == 2). Use the filter command.

```
1 censoc %>%
2 filter(sex == 2)
```

2. Filter the censoc data.frame to include only people born between 1905 and 1920 using the byear variable.

```
1 ## method 1
2 censoc %>%
3 filter(byear %in% 1905:1920)
4
5 ## method 2
6 censoc %>%
7 filter(byear >= 1905 & byear <= 1920)</pre>
```

Exercise 2 solutions (cont.)

3. Select the columns histid, death_age, sex, and ownershp

```
censoc select <- censoc %>%
      select(histid, death age, sex, ownershp)
  4 head(censoc select)
# A tibble: 6 \times 4
  histid
                                        death age
                                                    sex ownershp
  <chr>
                                            <dbl> <dbl>
                                                            <db1>
1 235C4FA2-B407-4E61-A31D-DBF299C1C120
2 ODE161A7-34A7-47EA-B053-EA8549172CCC
3 EFF79CEC-DA83-482A-AB9A-FFCAC3C9A6A5
4 B51D01FA-54A4-4E5E-8BCF-B6D9521A2983
5 D545AEB1-C5C3-4E32-BB22-4BF58CF50311
6 A71A537B-C440-4E85-A276-334B05B723A7
```

4. Calculate the average age of death for women (hint: refer to question 1)

Data visualization using ggplot

- ggplot2 provides a powerful and flexible system for creating a variety of data visualizations
- aes: Defines what data to show
- geoms: Chooses the type of plot (e.g., histogram)

```
1 ggplot(data = <DATA>) +
2 <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```

Types of plots

- geom_point(): Scatter plot
- geom_bar(): Bar chart
- geom_histogram(): Histogram
- And more ...

```
1 ggplot(data = censoc) +
2 geom_histogram(aes(x = death_age))
```


Live coding demo

- Create histogram using ggplot
- Demonstrate flexibility of ggplot
 - Themes
 - Axis labels, titles
 - Colors

In-class exercise 3

- 1. Make a histogram of the variable death_age. When are most people dying?
- 2. Make a histogram of the variable byear. When are most people born?
- 3. Recode the variable sex from numeric values (1, 2) to take character values ("men" and "women"). Note that 1 = men, 2 = women.
- 4. Calculate the mean of of death for both men and women using group_by() and summarize(). Do men or women live longer?
- 5. Make a histogram of the variable death_age for both men and women. Use the filter() command.
- 6. Now try adding the following line to the histogram you made in question 1: + facet_wrap(~sex)

Exercise 3 solutions

1. Make a histogram of the variable death_age. When are most people dying?

```
1 ggplot(data = censoc) +
2 geom_histogram(aes(x = death_age))
```

2. Make a histogram of the variable byear. When are most people born?

```
1 ggplot(data = censoc) +
2 geom_histogram(aes(x = death_age))
```

Exercise 3 solutions (cont.)

3. Recode the variable sex from numeric values (1, 2) to take character values ("men" and "women"). Note that 1 = men, 2 = women.

```
# A tibble: 6 × 2
    sex sex_recode
    <dbl> <chr>
1     1 men
2     1 men
3     1 men
4     2 women
5     1 men
6     2 women
```

Exercise 3 solutions (cont.)

4. Calculate the mean of of death for both men and women using group_by() and summarize(). Do men or women live longer?

```
1 ggplot(data = censoc) +
2 geom_histogram(aes(x = death_age))
```

5. Make a histogram of the variable death_age for both men and women. Use the filter() command.

```
## filter
censoc_men <- censoc %>% filter(sex == 1)
censoc_women <- censoc %>% filter(sex == 2)

## histogram for men
ggplot(data = censoc_men) +
geom_histogram(aes(x = death_age))

## histogram for women
ggplot(data = censoc_women) +
geom_histogram(aes(x = death_age))
```

Exercise 3 solutions (cont.)

6. Now try adding the following line to the histogram you made in question 1: + facet_wrap(~sex)

```
1 ggplot(data = censoc) +
2 geom_histogram(aes(x = death_age)) +
3 facet_wrap(~sex)
```


Module 6

Best practices and resources for selfstudy

Key learning objectives

- Best practices for writing and documenting code
- Where to go when you're stuck
- Resources for learning more

Best practices (opinionated)

- **Style**: use descriptive names and "snake_case"
- Documentation: Start commenting your code early, it's a good habit for the future
- Learn tidyverse: It offers a more coherent syntax and is widely used in data science
- Advanced topics: R Projects, github integration, etc

When you're stuck

- Google
 - Lots of packages have documentation available online
 - Stack overflow excellent resource
- Use help syntax (e.g., ?dplyr)
- GPT4 (decent, but be careful!)

Resources for learning more

In-class exercise 4

Do homeowners in the United States live longer than renters in the United States?

- 1. Using the censoc data.frame, create a new data.frame censoc_homeownership that filters out any "not available values" for the ownershp variable (values of ownershp = 0). Use the filter command.
- 2. In the censoc_homeownership data.frame, create a new variable homeowner using the mutate command and the case_when command. Assign this new variable homeowner a value of "own" if ownershp == 1 and a value of "rent" if ownershp == 2. Note: we can check the values for this variable here: https://usa.ipums.org/usa-action/variables/OWNERSHP#codes_section
- 3. Make a histogram on the age of death for "homeowner" and "renter" groups using ggplot. Use the facet_wrap(~homeowner) use the censoc_homeownership data.frame
- 4. Calculate the average age of death for "homeowner" and "renter" groups. Which group lives longer, on average? Use the <code>group_by</code> and <code>summarize</code> commands. What are some possible explanations for homeowners living longer than renters in the US?

Exercise 4 solution

Do homeowners in the United States live longer than renters in the United States?

- 1. Using the censoc data.frame, create a new data.frame censoc_homeownership that filters out any "not available values" for the ownershp variable (values of ownershp = 0). Use the filter command.
- 2. In the censoc_homeownership data.frame, create a new variable homeowner using the mutate command and the case_when command. Assign this new variable homeowner a value of "own" if ownershp == 1 and a value of "rent" if ownershp == 2. Note: we can check the values for this variable here: https://usa.ipums.org/usa-action/variables/OWNERSHP#codes_section

Exercise 4 solution (cont.)

3. Make a histogram on the age of death for "homeowner" and "renter" groups using ggplot. Use the facet_wrap(~homeowner) — and make sure you're using your censoc_homeownership data.frame

4. Calculate the average age of death for "homeowner" and "renter" groups. Which group lives longer, on average? Use the <code>group_by</code> and <code>summarize</code> commands. What are some possible explanations for homeowners living longer than renters in the US?

Thank you

- Course materials available from:
 - www.github.com/caseybreen/intro_r
- Please independently complete problem set 2 (and review solutions)
- Questions: casey.breen@sociology.ox.ac.uk