US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication Kind Code Publication Date Inventor(s) 20250258298 A1 August 14, 2025 Vosburgh; Frederick

MAGNETIC VELOCITY AND POSITION SENSORS

Abstract

A system includes at least one sensing unit, the sensing unit including a sensing element. The system includes at least one spatial Lorentz filter coupled to the sensing element. The spatial Lorentz filter (SLF) includes an input coupled to the sensing element and an analog to digital converter (ADC) providing a filtered output signal. The sensing unit is connected to a processor configured for determining velocity or position with respect to a magnetic field and/or a geographic position by processing SLF output signals.

Inventors: Vosburgh; Frederick (Durham, NC)

Applicant: Archaius Inc. (Durham, NC)

Family ID: 1000008571793

Assignee: Archaius Inc. (Durham, NC)

Appl. No.: 19/169647

Filed: April 03, 2025

Related U.S. Application Data

parent US continuation 18591879 20240229 parent-grant-document US 12287411 child US 19169647

parent US continuation 18208040 20230609 parent-grant-document US 11921224 child US 18591879

parent US continuation 17776488 20220512 parent-grant-document US 11675087 US continuation PCT/US21/12811 20210108 child US 18208040

us-provisional-application US 63117612 20201124

us-provisional-application US 63094161 20201020

us-provisional-application US 63021637 20200507

us-provisional-application US 62960175 20200113

Publication Classification

Int. Cl.: G01S19/21 (20100101); **G01S19/45** (20100101)

U.S. Cl.:

CPC **G01S19/215** (20130101); **G01S19/45** (20130101);

Background/Summary

CROSS REFERENCES TO RELATED APPLICATIONS [0001] This application is related to and claims priority from the following U.S. patents and patent applications. This application is a continuation of U.S. patent application Ser. No. 18/591,879, filed Feb. 29, 2024, which is a continuation of U.S. patent application Ser. No. 18/208,040, filed Jun. 9, 2023 and issued as U.S. Pat. No. 11,921,224, which is a continuation of U.S. patent application Ser. No. 17/776,488, filed May 12, 2022, which is a national stage entry filed under 35 U.S.C. § 371 of PCT Application No. PCT/US21/12811, filed Jan. 8, 2021, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/960,175, filed Jan. 13, 2020. PCT Application No. PCT/US21/12811 claims the benefit of U.S. Provisional Patent Application Ser. No. 63/021,637, filed May 7, 2020. PCT Application No. PCT/US21/12811 claims the benefit of U.S. Provisional Patent Application Ser. No. 63/094,161, filed Oct. 20, 2020. PCT Application No. PCT/US21/12811 claims the benefit of U.S. Provisional Patent Application Ser. No. 63/094,161, filed Oct. 20, 2020. PCT Application No. PCT/US21/12811 claims the benefit of U.S. Provisional Patent Application Ser. No. 63/117,612, filed Nov. 24, 2020. Each of the abovelisted applications is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0002] The subject matter described herein relates generally to navigation sensors and to determining displacement and position in a magnetic field.

2. Description of the Prior Art

[0003] Faraday (1831), Hall (1879) and Lorentz (1895), among others, described electric effects of magnetic fields, e.g. charge separation and current deflection, which can be shown to be proportional to charge velocity in a magnetic field. Although widely inferred from Einstein (1906) to be impossible, the local measurement of velocity through the geomagnetic field would have utility as an aid to navigation, particularly in the absence of GPS.

SUMMARY OF THE INVENTION

[0004] In light of this, the present invention provides Magnetic Velocity and Position (MVP) sensors for local measurement of velocity with respect to the geomagnetic field and, thereby, over ground using the geomagnetic field as the frame of reference and without requiring prior knowledge of that field.

[0005] A system includes at least one sensing unit, the sensing unit including a sensing element. The sensing unit includes at least one spatial Lorentz filter (SLF) coupled to the sensing element. SLF includes a connection coupled to the sensing element and an analog to digital converter (ADC) providing a digital filtered via an output connector. SLF also comprises a signal condition circuit providing at least one of amplitude gain and frequency selection. The sensing unit is connected to a processor configured for determining velocity or position with respect to a magnetic field and/or a geographic position by processing SLF output signals.

[0006] The computer processing elements described herein can be implemented in software in combination with hardware and/or firmware. For example, the subject matter described herein can be implemented in software executed by a processor. In one example implementation, the subject

matter described herein may be implemented using a computer readable medium having stored thereon computer executable instructions that when executed by the processor of a computer control the computer to perform steps. Example computer readable media suitable for implementing the subject matter described herein include non-transitory devices, such as disk memory devices, chip memory devices, programmable logic devices, and application specific integrated circuits. In addition, a computer readable medium that implements the subject matter described herein may be located on a single device or computing platform or may be distributed across multiple devices or computing platforms.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. **1** is a block diagram of a vehicle using a magnetic velocity and/or position (MVP) sensor system to navigate.

[0008] FIG. **2** is block diagram of an example system for magnetic velocity and/or position measurement.

[0009] FIG. **3**A is a block diagram of an example system for magnetic sensing of velocity and/or position using the Hall Effect.

[0010] FIG. **3**B is a diagram of the SLF providing digital output signals to the processor;

[0011] FIG. **4** is a block diagram of an example sensing unit for the system.

[0012] FIG. **5** shows another example of a sensing unit.

[0013] FIG. **6** shows another example of a sensor including a number of sensing units arranged for measuring velocity in two or more dimensions.

[0014] FIG. **7** is a block diagram of an example sensor system configured for orienting a sensing unit with respect to a local magnetic field.

[0015] FIG. **8** is a block diagram of an example system configured to detect GPS spoofing.

[0016] FIG. **9** is a flow diagram of an example method.

DETAILED DESCRIPTION

[0017] The present invention includes sensors that measure velocity through the Earth's magnetic field and, thereby, over ground. A system using the sensor can determine current geographic position by detecting, isolating, and measuring velocity signals induced by the Lorentz force acting on the sensor due to motion through the field. The sensor has at least one sensing unit incorporating a sensing element coupled to at least one SLF the output of which is connected to a digital processor. Signals from at least one sensing unit are processed to determine a velocity vector of desirable dimension. The processor integrates velocity over time to determine changes in position, which is added to a prior position to determine current position.

[0018] Examples of use of the system in addition to navigation include mapping environmental parameters such as the magnetic field, water currents or winds, air or water quality, and dynamic electromagnetic signals such as sources of light or radio signals.

[0019] FIG. **1** is a block diagram of a vehicle **100** using a magnetic velocity and/or position (MVP) sensor system **102** to navigate. The vehicle **100** includes a guidance and navigation controller (GNC) **104** that can be used to track the position of the vehicle **100** and, in some examples, to autonomously or semi-autonomously control the vehicle **100**. The GNC **104** can receive velocity and/or position information from the system **102**.

[0020] In some examples, the vehicle includes a global positioning system (GPS) system **106**. The GNC **104** can use the GPS system **106** to determine the position of the vehicle **100** and then use sensor **102** to track changes in the position of the vehicle **100** over time. This can be useful, for example, where the GPS system **106** is subject to spoofing. The system **102** can continue to track the position of the vehicle **100** even though the GPS system **106** has failed. Comparing positions

determined by system **102** and GPS **106**, for example by the GNC, can be used to detect spoofing [0021] The system **102** is configured to measure velocity through the Earth's magnetic field. A charge moving through a magnetic field experiences a Lorentz force which can displace the charge in linear proportion to velocity. However, in some conventional systems, local measurement of that deflection and, thereby, velocity is impossible because of adverse field effects.

[0022] The system **102** performs velocity measurement using spatial Lorentz filters (SLF) to isolate velocity indicative signals induced by movement with respect to the Earth's magnetic field. Velocity is integrated over time to update a previous measurement of position. In addition to supporting accurate navigation in the absence of GPS or other reference signals, the present invention can also support mapping of environmental parameters, e.g. field strength, signal sources or topography.

[0023] FIG. **2** is block diagram of an example magnetic velocity and position (MVP) sensor system **102**. The system **102** includes at least one sensing unit **120**. The sensing unit **120** includes one or more sensing elements **122**.

[0024] The sensing element **122** comprises at least one type of a conductor and semiconductor. In some examples, the sensing element **122** comprises one or more layered materials, for example, Giant, Tunneling and Anisotropic Magneto-Resistive materials (GMR, TMR, and AMR) or graphene. In some cases, these materials can be more sensitive than a homogenous semiconductor layer. The sensing element **122** can be formed in any appropriate shape, e.g., as a circular disc, a slab, or deposit or filament.

[0025] The system **102** includes at least one SLF **124** coupled to the sensing element **122**. The SLF **124** includes a connection **126** (e.g., a pickup or other input type) coupled to the sensing element **122** (e.g., one pickup for each end of the sensing element in the case where there is more than one pickup). The connection **126** can be, e.g., a non-contact (e.g., eddy current pickup) type or a capacitor or a switch among others. In some examples, the connection **126** is made by soldering or any other appropriate electrical connection.

[0026] The SLF 124 includes an analog to digital converter (ADC) 128 providing a digital type filtered output signal. ADC 128 receives an analog signal from the connection 126, and may be is subject to adverse field effects between the connection 126 and the ADC 128. For this reason, SLF is reduced in size and oriented to minimize such effects. ADC 128 then provides output signals of digital type not readily corrupted by adverse field effects acting on conductors between SLF 124 and a system processor 130. The processor 130 is any type that can determine velocity or position with respect to a magnetic field and/or a geographic position by processing the output signal from the ADC 128 velocity being determined in one, two, or three dimensions and position being determined with respect to the field or a prior position or a geographic position. In some cases, an initial position input device 132 or an orientation sensor 134 is attached to the processor 130. Input device 132 can be any type such as a GPS receiver, celestial, RF or visual triangulation device or a keypad. Orientation device 134 can comprise any type such as compass, heading, local field or tilt sensor.

[0027] FIG. **3**A is a diagram of a sensing unit **304** comprising a sensing element **122** formed of conducting or semiconducting or layered material for carrying a current **318** between a first end **310** and a second end **308** of the sensing element **306**. The sensing unit **304** comprises an SLF **312** of any type that can detect a potential due to Lorentz force induced deflection of a current **318**. [0028] SLF **312** is connected between a first side **322** and a second side **324** of the sensing element **306** and is preferably oriented orthogonal to the sensing element **306** for minimizing coupling of SLF **312** with the magnetic field. In some cases, SLF **312** is orientable and can be re-oriented to minimize coupling of the field to SLF. The connection of SLF **312** to the sensing element **306** preferably is mid-way between first end **310** and second end **308**, i.e. where current deflection is greatest. In some cases, SLF **312** comprises a potential measuring type, such as a volt meter preferably having a digital output or with a connection to an ADC.

[0029] FIG. **3**B is a diagram of an SLF **350** comprising a connecting input **352** and an output **354** between which is connected an analog to digital converter ADC **358**. SLF **350** is of a size and/or orientation to the field that minimizes coupling of the field with SLF **350**.

[0030] SLF **350** comprises a signal conditioner **356** connected between the input **352** and the ADC **358**. The signal conditioner **356** can be of any type, e.g. frequency-selecting or amplifying or both. [0031] SLF **350** can include a signal-to-noise reducer SNRr **362** e.g. of amplitude attenuating or noise providing type connected between the signal conditioner **356** and the ADC **358**. SLF **350** can include a dynamic range reducer DRr **364**, e.g. an averaging or decimation filter, connected between the ADC **358** and the output **354**. SNRr **362** and/or DRr **364** are of adjustable type although this is not required. SLF **350** comprises an analog output **360** connectable to another object, e.g. a voltmeter or the system processor.

[0032] FIG. **4** is a block diagram of an example sensing unit **400** for the system **102**. The sensing unit **400** includes a sensing element **402**. The sensing element **402** is made of any conducting or semiconducting material of any geometry, e.g., circular disc, slab, or filament. The sensing element **402** is mounted in a fixed or rotatable orientation.

[0033] The sensing element **402** includes a first end **406** which can include a switch **408**. The sensing element **402** includes a second end **410** having a distance from first end **406** according a desirable end-end charge gradient, or potential induced by a Lorentz force created by movement of the sensing element with respect to the Earth's magnetic field. The element **402** functions as a capacitor, charge being retained at the first and second ends **406** and **410** during rotation by opening switch **408**. The second end **410** can include a ground connection of fixed or rotation-permitting type, e.g. to permit the sensing element **402** to reorient between a coupling orientation and a non-coupling orientation.

[0034] The sensing element **402** is coupled to at least one SLF **404**. The SLF **404** includes a pickup **412** coupled to a signal conditioner **414**. The output of the signal conditioner **414** is coupled to an ADC **416**. The ADC **416** provides a filtered output signal which is proportional to a velocity measurement.

[0035] FIG. **5** is a diagram of another example of a sensing unit **500**. The sensing unit **500** includes a sensing element **502** and two SLFs **510** and **514**, one at each end of the sensing element **502**. The first SLF **510** includes an input **508**, which can be of switchable type. Second SLF includes a second input **512** which can be of switchable type. Inputs **508**, **512** can be of any charge retaining type, such as a switchable capacitor.

[0036] The SLFs **510**, **514** can, in some cases, be reoriented with respect to the magnetic field, either separately or together with a re-orientable sensing element **502**. The spatial extent and/or the orientation of SLFs **510** and **514** are selected to minimize exposure to a Lorentz force, i.e. by shrinking and orienting in the direction of travel. The first SLF **504** is electrically isolated from second SLF **506**, e.g. by being connected to a separate ground or other ground loop avoidance. It will be understood by those versed in the art that a re-orientable sensing element **502** comprises an enhancement of the rotating disk sensor described in U.S. Pat. No. 9,243,915, which is hereby incorporated by reference in its entirety.

[0037] FIG. **6** shows an example system **600** including a plurality of non-parallel sensing units **602**, **604**, **606**, **608** in an array configuration that can provide to the processor a plurality of signals for co-processing to provide enhanced determinations of velocity and/or position. In some cases, the array includes supernumerary sensing units for enhanced resolving of velocity components. [0038] FIG. **7** is a block diagram of an example system **700** that has a magnetometer **706** and/or a tilt sensor **708** connected to a processor **704** to indicate orientation of at least one sensing unit **702** with respect to the magnetic field and/or to the surface of the Earth for normalizing velocity with respect to the local magnetic field by any methods, for example Eq. 1;

[00001] $V_n = kE/B$ Eq.1

[0039] where V.sub.n is field-normalized velocity, \boldsymbol{k} is a constant, \boldsymbol{E} is amplitude of an SLF output

signal and B is a concurrent measure of the local magnetic field.

[0040] Velocity is normalized for tilt of the sensor relative to gravity by any method such as by Eq. 2:

[00002] $V_t = V \cos \text{Eq.} 2$

[0041] where θ is sensing element orientation to the Earth's surface.

[0042] Velocity over ground can be calculated by normalizing SLF output signal for both the local field and the sensor tilt. It will be appreciated by those versed in the art that normalizing can be conducted by a processor **704**, or an external device such as a GNC system.

[0043] The system **700** can include a gimbal configured to orient the sensor **702**, e.g., based on feedback from the magnetometer **706** and/or tilt sensor **708**, for orienting sensor **702** with respect to the field. The processor **704** is any type that can determine a current orientation, a desirable orientation and an orientation difference. The processor **704** is any type that can adjust velocity to compensate for orientation difference.

[0044] The processor **704** is any type that can integrate velocity over time to determine a change in position and/or to combine change in position with a prior position, such as one stored in memory, to determine a current position.

[0045] FIG. **8** is a block diagram of an example system **800** configured to detect GPS spoofing. The system **800** comprises at least one sensing unit **810** connected to a system processor **802** by a first processor input **808** and a GPS receiver **806** connected to processor **802** by a second processor input **804**. The processor **802** can be connected to an external device **816**, e.g. a GNC.

[0046] The processor **802** is any type that can compare to a threshold the difference between a geographic position provided by sensing unit **810** and a GPS position provided by GPS receiver **806**, and issuing an alarm when this difference exceeds a threshold. Those versed in the art will appreciate a position provided by a GPS receiver **806** can be used to provide an initial geographic position or to adjust current position for accumulated sensor error. GPS receiver **806** can include an anti-jamming antenna **812** to provide enhanced reception.

[0047] The sensing unit **810** and/or the GPS receiver **806** can be connected directly to the external device **816** such as a GNC, as indicated by the dotted connection lines. External device **816** is any type that can compare position determinations to detect GPS spoofing.

[0048] FIG. **9** is a flow diagram of an example method **900** for navigating with respect to the Earth's magnetic field or Earth's geography.

[0049] The method **900** includes forming at least one sensing element signal by carrying an MVP sensor in a magnetic field (**902**), modifying sensing element signals using at least one SLF to provide a digital type SLF output signal (**904**), providing the output signals to the system processor (**906**), processing the output signals to determine velocity (**908**), determining change in position by integrating velocity to determine a change in position (**910**), determining a current position by adding change in position to a prior position (**912**).

[0050] Modifying by the SLF comprises converting sensing element signals to digital type. In some cases, modifying signals includes signal conditioning sensing element signals before converting them to digital form. Conditioning includes at least one of amplifying and frequency selecting. Providing output signals to the processor is providing by electrical or optical conductors.

[0051] Determining velocity can comprises normalizing SLF output signals for local magnetic field strength and/or sensing element tilt. Normalizing velocity comprises dividing said SLF output signal by a concurrently detected magnetic field signal. Normalizing for sensing tilt comprising adjusting velocity signal strength to determine velocity over ground. Processing comprises combining a plurality of SLF output signals or plurality of normalized velocity signals to form a velocity vector. Determining velocity and/or position is conducted with respect to at least one of magnetic field and geographic position.

[0052] Processing comprises determining and adjusting for orientation of a sensing unit with respect to the local magnetic field for improving sensing element sensor magnitude. Controlling

can be conducted by computation or by orienting the sensing unit using passive and/or active gimbal. An illustrative passive gimbal is weighted to maintain orientation with respect to gravity. One type of active gimbal is servo-controlled wherein signals from the magnetometer and/or tilt sensor are provided to the servo rotating the gimbal to orient the sensing unit in a desired direction by feedback method maximizing strength of at least one sensing element signal or by feed-forward method calculating and making an open loop adjustment calculated from the magnetometer and/or tilt signals.

[0053] Determining position can include comparing geographic position with GPS provided position. Comparing comprises determining difference in position between geographic position and GPS position. Comparing can further comprise issuing an alarm when this difference exceeds a threshold. In some cases, a GPS position, or position determined by other methods, e.g. RF, celestial or visual triangulation, can be used to compensate for MVP sensor drift.

[0054] Determining current position can include comparing current position to a desired position and adjusting navigation to steer a vehicle with respect to desired destination and/or navigation

[0055] The scope of the present disclosure includes any feature or combination of features disclosed in this specification (either explicitly or implicitly), or any generalization of features disclosed, whether or not such features or generalizations mitigate any or all of the problems described in this specification. Accordingly, new claims may be formulated during prosecution of this application (or an application claiming priority to this application) to any such combination of features.

[0056] In particular, with reference to the appended claims, features from dependent claims may be combined with those of the independent claims and features from respective independent claims may be combined in any appropriate manner and not merely in the specific combinations enumerated in the appended claims.

[0057] For the purposes of the present disclosure, a current source is any type such as the plus terminal of a battery and a current sink is any type such as the negative terminal of the battery. For the purposes of the present disclosure velocity is intended to encompass unprocessed velocity signals normalized velocity and velocity over ground. Unprocessed velocity signals is intended to encompass sensing element signals and SLF output signals.

[0058] Certain modifications and improvements will occur to those skilled in the art upon a reading of the foregoing description. The above-mentioned examples are provided to serve the purpose of clarifying the aspects of the invention and it will be apparent to one skilled in the art that they do not serve to limit the scope of the invention. All modifications and improvements have been deleted herein for the sake of conciseness and readability but are properly within the scope of the present invention.

Claims

track.

- **1**. A system comprising: at least one sensing unit comprising a sensing element and at least one spatial Lorentz filter, wherein the at least one spatial Lorentz filter includes an input and an output, wherein an analog to digital converter (ADC) is connected between the input and the output for providing a digital output signal; and wherein the at least one sensing unit is connected to a processor configured for determining a velocity or a position with respect to a magnetic field and/or a geographic position by processing the digital output signal.
- **2**. The system of claim 1, wherein the digital output signal is normalized based on a local magnetic field.
- **3.** The system of claim 1, wherein the at least one sensing unit is a current-deflection sensing unit, wherein the sensing element is connected at a first end to a current source and at a second end to a current sink, wherein the at least one spatial Lorentz filter is connected between a first side and a

second side of the sensing element for detecting a cross-element potential proportional to a velocity dependent force due to coupling of the magnetic field with the sensing element.

- **4.** The system of claim 1, wherein the at least one spatial Lorentz filter includes a first spatial Lorentz filter and a second spatial Lorentz filter.
- **5.** The system of claim 1, wherein the system is operable to compare the position with respect to the magnetic field to a geolocation determined by at least one global positioning system (GPS) receiver to calibrate the system.
- **6**. The system of claim 1, wherein the at least one spatial Lorentz filter comprises a signal conditioner connected between the input and the ADC, wherein the signal conditioner comprises a frequency-selector and/or an amplifier.
- 7. The system of claim 1, wherein an orientation and/or a spatial extent is selected to reduce coupling of the at least one spatial Lorentz filter with the magnetic field.
- **8.** The system of claim 1, further comprising a plurality of non-parallel sensing units comprising an array for measuring the velocity in more than one direction.
- **9.** A method comprising: detecting a sensing element signal induced by a spatial force with at least one sensing unit, wherein the at least one sensing unit comprises a sensing element and at least one spatial Lorentz filter connected to the sensing element, wherein the at least one spatial Lorentz filter comprises an input and an output; providing the sensing element signal to the at least one spatial Lorentz filter; and providing the output to a processor configured to process the output to determine a velocity or a position with respect to a magnetic field and/or a geographic position, wherein processing the output comprises normalizing the output; wherein the normalized output is a normalized velocity signal.
- **10**. The method of claim 9, wherein the output is normalized based on a local magnetic field.
- **11.** The method of claim 9, further comprising selecting an orientation and/or a spatial extent is to reduce coupling of the at least one spatial Lorentz filter with the magnetic field.
- **12**. The method of claim 9, wherein modifying the sensing element signal comprises signal conditioning prior to any digital conversion.
- **13**. The method of claim 9, further comprising comparing the position with respect to the magnetic field to a geolocation determined by at least one global positioning system (GPS) receiver to calibrate the system.
- **14**. The method of claim 9, wherein the position is determined by integrating the normalized velocity signal over time to determine a change in position and adding the change in position to an initial position to determine an updated position.
- **15.** The method of claim 9, further comprising amplifying and/or frequency selecting the sensing element signal before any modification of the sensing element signal by digital conversion.
- **16**. A system comprising: at least one sensing unit comprising a sensing element and at least one spatial Lorentz filter, wherein the at least one spatial Lorentz filter includes an input and an output; wherein the at least one sensing unit is connected to a processor configured for determining a velocity or a position with respect to a magnetic field and/or a geographic position by processing an output signal of the at least one sensing unit; and wherein the sensing element is connected at a first end to a current source and at a second end to a current sink, wherein the at least one spatial Lorentz filter is connected between a first side and a second side of the sensing element for detecting a cross-element potential proportional to a velocity dependent force due to coupling of the magnetic field with the sensing element.
- **17**. The system of claim 16, wherein the output signal is normalized based on a local magnetic field.
- **18**. The system of claim 16, wherein the system is operable to compare the position with respect to the magnetic field to a geolocation determined by at least one global positioning system (GPS) receiver to calibrate the system.
- 19. The system of claim 16, wherein the at least one spatial Lorentz filter comprises a signal

conditioner, wherein the signal conditioner comprises a frequency-selector and/or an amplifier.20. The system of claim 16, further comprising a plurality of non-parallel sensing units comprising an array for measuring the velocity in more than one direction.