

Relacion-6.pdf

Pucherillos

Lógica y Métodos Discretos

1º Grado en Ingeniería Informática

Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación Universidad de Granada

MÁSTEREN

Inteligencia Artificial & Data Management

MADRID

academia DOS MOTIVOS

Relación - Uniticación y resolución

Pablo Vega Romero Grupo A1

Ejercicio 6.1: Señala cuáles de los siguientes grupos de literales son unificables:

1. {a(~, f(~)), a (f(~), f(~))}. Q(x, f(s)) (x1f(e)) Q(f(x), f(s)) (310) Q(f(x), f(a))

2. {P(x, o(x, a), f(o)); P(x, o(o((o), b), o), f(a))} (x10(1(b), b)) -> (y1a) Ambor quedorían: P(g(f(a), b), g (g(f(a), b), a), f(a))

3. (Q(x, g(x, b)), Q(b, z), Q(z, g(x, a)))

$$3(x,0) = 2$$

$$x = 3$$

4. {R(46), 5(4(2,2)), 3(a, f(46))), R(5, 5(4(a), f(f(b))), 3(2, f(3)))}

 $\frac{f(f(x))}{g(x)} = \frac{f(f(x))}{g(x)} = \frac{f(f(x))}$

(x11(p) 21 t(1(p)) 'slor)

Ejercicio 6.2. Comprueba que cada una de los signientes con juntos de dalvalas es insatisfacible. 1. {Q(a), 7 R(a, 5), 7 Q(x) v R(x, f(x))} 7 R.(a,y) -Q(x), R(x, f(x)) 2. (7Q(a,y),7S(x) ,Q(f(x),f(x)), S(a)} 7 Q (a,5) 7 5(x) V Q (x,f(x)) 3. { p(a), 7 s(a, x), 7 p(y) v s(y, f(y))} 75(a,x) 7P(b) v5(b,f(b)) 4. {P(x),7P(x) v Q(x,a),7Q(5,a)} 7Q(y,a) 7P(x) vQ(x,a) TP(C)
P(C)
Insection

{P(x, a, 3(x,b)), 7P(f(y), 2, 9(f(a),b))} P(x, a, g(x,b)) - P(f(5), 2, 9 (f(a), b)) (5/a, 2/a) Ejercicio 6.3: Demuestra haciendo uso de la técnica de resolución lineal input, que la sentencia $\exists x (M(x) \land \neg O(x))$ es consecuencia lógica de la hipótesis: 1. Yy (7C(y) → 3xA(x1y)): Yy 3x (CCO) - A(x, o)) -> FNP 4, (-((a)) → A(((a),b)) → FNS 45 (C(3) ~ A(f(3), 3)) → FC 2. ∀x[3, (¬C(5), A(x,5)) → H(x)] YXYy((-C(5) NA(X)) -> FNP y FNS 4x4y (C(3) v ¬ A(x,y) v M(x)) → FC 3. 4x(0(-) -) M(x)) -> FNP , FNS $\forall \times (\neg D(\times) \vee M(\times)) \longrightarrow FC$ 4. Vx (M(x) x O(x) -> = 3, (- (4) x A (x, 5))) VXYy (MCx) NO(x) -> C(y) VTA(xy)) -> FNP 4x4y (¬M(x) v¬O(x) v C(y) v ¬ A(x,y)) -> FC 5. 3×7((x) → FNP ¬C(a) → FNS y FC ((*)0 ~ (x)M) × [E = 3 Yx(¬M(x) v D(x)) → FNP, FNS y FC

Esto no son apuntes pero tiene un 10 asegurado (y lo vas a disfrutar igual).

Abre la **Cuenta NoCuenta** con el código <u>WUOLAH10</u>, haz tu primer pago y llévate 10 €.

Este número es indicativo del riesgo del producto, siendo 1/6 indicativo de menor riesgo y 6/6 de mayor riesgo.

NG BANK NV se encuentra adherida si Sistema de Garantía de Depósitos Holandès con una garantía de hasto 100.000 euros por depositante. Consulta más información en ina es

Me interesa

{C(5) v A (f(5),5); C(5) v 7 A (2,5) v M(2); 7 O(2) v M(2); 7 M(2) v 7 O(2) v 7 A (2,5),7 C(4),7 M(2) v O(2)}

Consulta condiciones <mark>aqu</mark>

Ejerdico 6.4: (comprueba que

{ 3 * (P(x) x 4 > (D(x) -> L(x, x))) }

1. 3 * (P(x) x 4 > (D(x) -> L(x, x))) }

4 * (P(x) -> 4 > (D(x) -> L(x, x)))

4 * (P(x) -> 4 > (D(x) -> L(x, x)))

4 * (P(x) -> 4 > (D(x) -> L(x, x)))

4 * (P(x) -> 4 > (D(x) -> L(x, x)))

4 * (P(x) -> 4 > (D(x) -> L(x, x)))

4 * (P(x) -> 4 > (D(x) -> L(x, x)))

5 * (P(x) -> 4 > (D(x) -> L(x, x)))

3 * (P(x) -> 4 > (D(x) -> L(x, x)))

3 * (P(x) -> 1 > (P(x) -> 1

WUOLAH

-5-

ING BANK NV se encuentra adherido al Sistema de Garantía de Depósitos Holandés con una garantía de hasta 100.000 euros por depositante. Consulta más información en ing.es

Que te den **10 € para gastar** es una fantasía. ING lo hace realidad.

Abre la **Cuenta NoCuenta** con el código **WUOLAH10**, haz tu primer pago y llévate 10 €.

Quiero el cash

Consulta condiciones aquí

-6-

academia DOS MOTIVOS

WUOLAH

Escaneado con CamScanner

.. {PAG) vI(x),7M(x) vP(v),7AG) vAI(x),7TG) v7PG),7I(x) vC(x),7PAG) vM(x), 7AI(x) v7C(x),A(a),T(a)}.

7A(x) v AI(x)	7 AI(x) y7C(x)
TAGE) VTC(x)	71 (x) v ((x)
7A(x) , 7I(x)	PAG) VICO
	0.00
7A(x) y PA(x)	- 64(%) ~ W(x)
7A(x) V N	16) -M(x) vP(x)
1	
7A(2) v	P(4) 77(4) 47P(4)
1	7(0)
	v-7(y)
(x /a)	$A(\alpha)$
,	1A(a)
	- Insatisfaable