1 语言与文法

句子的逆 x^R or x^T .

定义 1.1 文法 (Grammar) G 是一个四元组 G = (V, T, P, S) 其中,

- **变量(Variable)**的非空有穷集。∀A ∈ V, A 叫做语法变量(syntactic variable), 也叫非终极符号 (nonterminal)。

T— 终极符 (Terminal) 的非空有穷集。 $\forall a \in T, a$ 叫做终极符。 $V \cup T = \emptyset$ 。 P— **产生式 (Production)** 的非空有穷集。对于 $a \rightarrow b$, a 是**左部**, b 是**右部**。 $S-S \in V$, 文法 G 的开始符号 (Start symbol)。

- 只写产生式,第一个产生式的左部为开始符号
- 对一组有相同左部的产生式

 $\alpha \to \beta_1, \alpha \to \beta_2, \alpha \to \beta_3, \ldots$ 可以记为 $\alpha \to \beta_1 |\beta_2|\beta_3 \ldots \beta_1, \beta_2, \beta_3$ 称为**候选式**(Candidate)

- 形如 $\alpha \to \epsilon$ 的产生式叫做空产生式,也叫做 ϵ 产生式 英文大写字母为**语法变量**

 - 英文小写字母为**终结符号**
 - 英文较后的大写字母为语法变量或者终极符号
 - 英文较后的大写字母为终极符号行
 - 希腊字母表示**语法变量和终极符号组成的行**

定义 1.2 设 G = (V, T, P, S) 是一个文法, 如果 $\alpha \to \beta \in P, \gamma, \delta \in (V \cup T)$, 则称 $\gamma \alpha \delta$ 在 G 中直接推导 (Derivation) 出 $\gamma \beta \delta$, 记作 $\gamma \alpha \delta \Rightarrow \gamma \beta \delta$ 。

于此相对应, $\gamma\beta\delta$ 归约到 $\gamma\alpha\delta$, 简称 β 归约为 α 。 \Rightarrow 是 $(V \cup T)^*$ 上的二元关系。

定义 1.3 对于文法 $G: \stackrel{n}{\Longrightarrow} = \left(\stackrel{\rightarrow}{\Rightarrow}\right)^n \stackrel{*}{\Longrightarrow} = \left(\stackrel{\rightarrow}{\Rightarrow}\right)^* \stackrel{\equiv}{\Longrightarrow} = \left(\stackrel{\rightarrow}{\Rightarrow}\right)^+$

定义 **1.4** 对于语言 G = (V, T, P, S):

语法范畴 A $L(A) = \{ w | w \in T^* \perp A \stackrel{*}{\Rightarrow} w \}$

语言(Language) $L(G) = \{ w | w \in T^* \exists S \stackrel{*}{\Rightarrow} w \}$

句子 (Sentence) $\forall w \in L(G)$

句型 (Sentential Form) $\forall \alpha \in (V \cup T)^*$, 如果 $S \stackrel{*}{\Rightarrow} \alpha$, 则称 α 是 G 产生的 一个句型。

定义 1.5 对于文法 G_1, G_2 , 如果 $L(G_1) = L(G_2)$, 则称 G_1 与 G_2 等价。

文法的乔姆斯体系

定义 1.6 对于文法 G = (V, T, P, S):

G 叫做 0 型文法,也叫短语结构文法(PSG,Phrase Structure Grammar) L(G) 是 0 型语言, 也叫短结构语言, 可递归枚举集。

定义 1.7 对于 0 型文法文法 G = (V, T, P, S):

 $\forall \alpha \to \beta \in P, |\beta| \ge |\alpha|, \text{ 则 G 是 1 型文法, 或上下文有关文法。}$

定义 1.8 对于 1 型文法文法 G = (V, T, P, S):

 $\forall \alpha \to \beta \in P, \ |\beta| \ge |\alpha|, \ \alpha \in V \ \text{则} \ \text{G} \ \text{E} \ 2 \ \text{型上下文无关文法}.$ 定义 1.9 对于 2 型文法文法 $G = (V, T, P, S) \colon \forall \alpha \to \beta \in P \colon A \to wB$ 和 $A \to w, \ \text{其中} \ A, B \in V, w \in T^+ \colon \text{G} \ \text{是右线性文法}. \ A \to Bw \ \text{和} \ A \to w,$ 其中 $A,B\in V,w\in T^+$: G 是左线性文法。则 G 是 3 型文法,或正则文法。

1.2 空产生式

允许在 CSG, CFG, RG 文法中存在空产生式。

允许在 CSL, CFL, RL 语言中存在空语句。

左右线性文法等价,其中左线性的表述好。左右都有的线性文法不是正则文法。 $\forall G, \exists G', L(G') = L(G),$ 但是 G' 中的开始符号不出现在任何产生式的右部, 且在 $\epsilon \in L(G')$ 时,G' 中只有 $S' \to \epsilon$ 这样一个 ϵ 产生式。可以去 S 产生式 和 ϵ 产生式

1.2.1 语言运算

给定上下文无关文法 G_1, G_2 , 构造 G 使得:

1. $L(G) = L(G_1)L(G_2)$

其中 $V_1 \cup V_2 = \emptyset$, $S \notin V_1 \cup V_2$

 $G = (V_1 \cup V_2 \cup S, T, P_1 \cup P_2 \cup S \to S_1 S_2, S)$

2. $L(G) = L(G_1) \cup L(G_2)$

 $G_{\cup} = (V_1 \cup V_2 \cup S, T, P_1 \cup P_2 \cup P_3, S)$ $P_3 = \{S \to S_1 | S_2\}$

3. $L(G) = L(G_1)^{\frac{1}{2}}$

 $G_* = (V_1 \cup \{S\}, T, P_1 \cup P_2, S)$

 $P_2 = \{ S \to \epsilon | SS_1 \}$

给定 RG G_1, G_2 , 构造 RG G 使得:

1. $L(G) = L(G_1)L(G_2)$

其中 $V_1 \cup V_2 = \emptyset$, $S \notin V_1 \cup V_2$

2. $L(G_1) = L(G_1) \cup L(G_2)$

 $G_{\cup} = (V_1 \cup V_2 \cup S, T, P_1 \cup P_2 \cup P, S)$

 $P = \{S \to \alpha | S_1 \to \alpha \in P_1\} \cup \{S \to \alpha | S_2 \to \alpha \in P_2\}$

3. $L(G) = L(G_1)^*$

 $G_{\cup} = (V_1 \cup S, T, P_1 \cup P, S) \ P = \{S \to \epsilon | S_1 S\}$

定义 1.10 $M = (Q, \Sigma, \delta, q_0, F)$, 其中:

Q : 状态的有穷集合

Σ : 输入字母表

 δ : 状态转义函数 $Q \times \Sigma \to Q$ 。 $\forall (q,a) \in Q \times \Sigma$, $\delta(q,a) = p$

 q_0 : 开始状态

: 终止状态

定义 1.11 扩展 δ 为 $\hat{\delta}: Q \times \Sigma^* \to Q$

- 1. $\delta(q, \epsilon) = q$
 - 2. $\hat{\delta}(q, wa) = \delta(\hat{\delta}(q, w), a)$

注意到 $Q \subset Q \times \Sigma^*$, 且对 $\forall (q, a) \in Q \times \Sigma$, $\hat{\delta}(q, a) = \delta(q, a)$ 所以, 不用 区分 δ 与 $\hat{\delta}$ 。

 $\delta \not\in Q \times \Sigma^* \to Q$ 上的映射。

定义 1.12 有穷状态自动机 $M=(Q,\Sigma,\delta,q_0,F)$ 识别的语言: L(M)=

 $\{x|\delta(q_0,x)\in F\}$

定义 1.13 有穷状态自动机 M_1, M_2 : 若有 $L(M_1) = L(M_2)$, 则称二者等价。 定义 1.14 对于有穷自动状态机 $M = (Q, \Sigma, \delta, q_0, F)$

$$\begin{split} & set(q) = \{x | \delta(q_0, x) = q\} \\ & \text{所以有: } \Sigma^* = \bigcup_{q \in Q} set(q) \\ & \forall q, p \in Q, q \neq p, set(q) \cap set(p) = \emptyset \end{split}$$

同时,如果 Q 中不存在不可达状态,则 $set(q_0), set(q_1) \dots$ 是 Σ^* 的一个划分。

定义 1.15 $xR_My \iff \delta(q_0,x) = \delta(q_0,y) \iff \exists q \in Q, x,y \in set(q)$ 例 1.1 对于 FSA $M = (Q, \Sigma, \delta, q_0, F)$,构造 FA M' 使得 $L(M') = \Sigma^* - L(M)$ $M' = (Q, \Sigma, \delta, q_0, CQF)$

例 1.2 给定 $M_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$ $M_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ 构造:

- M_3 使得 $L(M_3) = L(M_1) \cap L(M_2)$
- $M = (Q_1 \times Q_2, \Sigma, \delta, [q_{01}, q_{02}], F_1 \times F_2)$ M_3 使得 $L(M_3) = L(M_1) \cup L(M_2)$
- $M = (Q_1 \times Q_2, \Sigma, \delta, [q_{01}, q_{02}], Q_1 \times F_2 \cup F_1 \times Q_2)$ $\delta([q, p], a) = [\delta_1(q, a), \delta_2(p, a)]$

1.3 NFA 不确定的有穷状态自动机

定义 1.16 NFA $M=(Q,\Sigma,\delta,q_0,F)$, 其中:

 Q, Σ, q_0, F 同 FA。 $\delta: Q \times \Sigma \to 2^Q$ (幂集), $\delta(q, a) = \{p_1, p_2, \dots, p_n\}$ 可选一个进入

扩展 δ 为 $\hat{\delta}: Q \times \Sigma^* \to 2^Q$ $\hat{\delta}(q, \epsilon) = \{q\}$ $\hat{\delta}(q, wa) = \bigcup_{q_0 \in \hat{\delta}(q, w)} \delta(q_0, a)$

进一步拓展: $\hat{\delta}: 2^Q \times \Sigma^* \to 2^Q \ \hat{\delta}(P,x) = \bigcup_{p \in P} \hat{\delta}(p,x)$

对 $\forall (q,a) \in Q \times \Sigma^*$, $\hat{\delta}(q,a) = \delta(q,a)$ 所以不用区分 δ 与 $\hat{\delta}$ 。 δ 是 $Q \times \Sigma^* \to 2^Q$ 上的映射。

定理 1.1 NFA 与 DFA 等价。

证: 对于 NFA $M=(Q,\Sigma,\delta,q_0,F)$,构造 DFA $M'=(2^Q,\Sigma,\delta',[q_0],F')$

 $\overline{F'} = \{ [q_1, q_2, \dots, q_n] | \{q_1, q_2, \dots, q_n\} \cap F \neq \emptyset \}$

 $\delta'([q_1, q_2, \dots, q_n], a) = [\beta_1, \beta_2, \dots, \beta_n] \iff \delta(\{q_1, q_2, \dots, q_n\}, a) =$ $\{\beta_1, \beta_2, \ldots, \beta_n\}$

所以,对于 $\forall M$ 是 NFA,可以构造 DFA M'

1.4 带空移动的有穷状态自动机

定义 1.17 ϵ – NFA $M = (Q, \Sigma, \delta, q_0, F)$:

 δ : 状态转义函数。 $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to 2^Q$

其中,对于 $\forall q \in Q, \delta(q,\epsilon) = \{p_1, p_2, \dots, p_n\}$: 表示在 q 状态不读入任何字 符,可以将状态变为 p_1, p_2, \dots, p_n ,称为 M 在 q 状态做了一次空移动 1. $\epsilon-CLOSURE(q)=\{p|\text{M} q 到 p 有一条标记为\epsilon的路}$

- 2. $\epsilon CLOSURE(P) = \bigcup_{p \in P} \epsilon CLOSURE(p)$
- 3. $\hat{\delta}(q, \epsilon) = \epsilon CLOSURE(q)$
- 4. $\hat{\delta}(q, wa) = \epsilon CLOSURE(P)$ $P = \bigcup_{r \in \hat{\delta}(q, w)} \delta(r, a)$
- 5. 进一步拓展 $\delta: 2^Q \times \Sigma \to w^Q$: $\delta(P, a) = \bigcup_{q \in P} \delta(q, a)$
- 6. 进一步拓展 $\hat{\delta}: 2^Q \times \Sigma^* \to 2^Q$: $\delta(P, w) = \bigcup_{q \in P} \delta(q, w)$

注意: $\hat{\delta} \neq \delta$, $\delta(q, a)$ 只要 a 不是 ϵ , 就不能走空移动。反过来, $\hat{\delta}(q, w)$ 在 w 字符串的中间可以走任意个空移动

定义 1.18 $\epsilon - NFAM$ 识别的语言: $L(M) = \{x | \hat{\delta}(q_0, x) \cap F \neq \emptyset\}$

定理 1.2 $\epsilon - NFA$ 等价与 NFA。

证明: 设 $\epsilon - NFA M = (Q, \Sigma, \delta, q_0, F)$:

$$\mathbb{R} M' = \left(Q, \Sigma, \hat{\delta}, q_0, \begin{cases} F \cup \{q_0\} & F \cap \epsilon - CLOSURE(q_0) \neq \emptyset \\ F & F \cap \epsilon - CLOSURE(q_0) = \emptyset \end{cases}\right)$$

由此可见,DFA, NFA, $\epsilon-NFA$ 等价。以后统称为 FA。

1.5 FA 与 RG 等价

定理 1.3 对 \forall DFA M, \exists RG G 使得 L(G) = L(M)。

构造: 对于 $DFA\ M = (Q, \Sigma, \delta, q_0, F)$, 取 RG $G = (Q, \Sigma, P, q_0)$ $P = \{q \to ap | \delta(q, a) = p\} \cup \{q \to a | \forall \delta(q, a) \in F\} \cup \{q_0 \to \epsilon | q_0 \in F\}$

 $= \{q \to ap | \delta(q, a) = p\} \cup \{q \to \epsilon | q \in F\}$

定理 1.4 对 \forall RG G, \exists FA M 使得 L(G) = L(M)。构造:对于 RG G = (V, T, P, S),RG 为右线性文法。

取 FA $M = (V \cup \{f\}, T, \delta, S, \{f\})$, 其中

 $\delta(A,a) = \{B | \forall A \to aB \in P\} \cup \{f | \forall A \to a \in P\}$

2 正则表达式

定义 2.1 σ 上的 RE 是满足如下条件的式子:

- ϵ 是 RE, 表示的语言 $L(\epsilon) = \{\epsilon\}$
- \emptyset 是 RE, 表示的语言 $L(\emptyset) = \emptyset$
- $\forall a \in \sigma, \ a$ 是 RE, 表示的语言 $L(a) = \{a\}$
- $\forall r, s$ 是 RE 且分别表示 R, S, 则有:
 - (r+s) 是 RE, 表达的语言 $L(r+s) = R \cup S$
 - (rs) 是 RE, 表达的语言 L(r+s)=RS

- (r^*) 是 RE, 表达的语言 $L(r+s) = R^*$

约定 1: 运算符优先级 * > × > + 约定 2: 引入正闭包 $r^+ = r^*r$

2.1 RE \rightarrow FA

定理 2.1 对于 \forall RE r,\exists FA M,使得 L(M)=L(r)

3 正则语言的性质

3.1 正则语言的泵引理

引理 3.1 正则语言的的泵引理。对于 $\forall RLL$, 存在一个仅依赖与 L 的正整数 N, 对于 $\forall z \in L$, $|z| \ge N$, 则存在 u, v, w 满足以下条件: $uvw = z \quad |uv| \le N \quad |v| \ge 1 \quad$ 对于 $\forall k \ge 0$, $uv^k w \in L$

引理 3.2 拓展的泵引理。对于 $\forall RLL$, 存在一个仅依赖与 L 的正整数 N, 对 于 $\forall z=z_1z_2z_3\in L, |z_2|\geq N,$ 则存在 u,v,w 满足以下条件: $uvw=z_2 \quad |uv|\leq N \quad |v|\geq 1 \quad \text{对于} \forall k\geq 0, uv^kw\in L$ **例 3.1** 证明 $L=\{0^p|p$ 是质数} 不是 RL。

取 $z=0^x$ 。取 $v=0^l$, $l\ge 1$ 。 $uv^kw=0^{x+(k-1)l}$ 。 取 $z=0^x$ 。取 $v=0^l$, $t\ge 1$ 。 $uv^kw=0^{x+(k-1)l}$ 。

当 k = x + 1 时,有 x + (x + 1 - 1)l = (l + 1)x 是合数,所以 $uv^k w \notin L$, 与泵引理矛盾。所以 L 不是 RL。

定理 3.1 RL 对于并、乘、闭包、交、补封闭。

3.2 Myhill 定理

定义 3.1 $xR_My \iff \delta(q_0,x) = \delta(q_0,y)$

 $\iff \exists q \in Q, x, y \in set(q)$

定义 3.2 $xR_Ly \iff \forall z \in \Sigma^*, xz \in L \iff yz \in L$

定义 3.3 R 是右不变的是指如果 xRy 则有 $\forall z \in \Sigma^*, xzRyz$ 定理 3.2 对于 DFA M,如果 xR_My ,则 $xR_{L(M)}y$ 。

证明: 由 xR_My 知 $\delta(q_0,x)=\delta(q_0,y)$ 。不妨设其为 q_1 。

对于 $\forall z \in \Sigma^*$, $\delta(q_0, xz) = \delta(\delta(q_0, x), z) = \delta(q_1, z) = \delta(q_0, yz)$ 。不妨设其 为 q_2 。

如果 $xz \in L$,则有 $q_2 \in F$,所以 $yz \in L$ 。反之亦然。 所以 $xz \in L \iff yz \in L$ 。所以 $xR_My \iff xR_{L(M)}y$ 定理 3.3 Myhill 定理。以下 3 个命题等价:

1. L 是 RL

2. L 是 Σ^* 上的某个具有有穷指数的右不变等价关系的某些等价类的并。

3. R_L 具有有穷指数。 证明 **3.1** $1\Rightarrow 2$ 。设 L 是 RL,DFA M 使得 L(M)=L。

 R_M 是 Σ^* 上的右不变等价关系,且 $|\Sigma^*/R_M| \leq |Q|$ 。

 $L = \bigcup_{q \in F} set(q)$

证明 3.2 $2 \Rightarrow 3$ 。设 $L \not\in \Sigma^*$ 上的具有有穷指数的右不变等价关系 R 的某些 等价类的并。

下面证明如果 xRy, 那么 xR_Ly 。

设 $x, y \in \Sigma^*, xRy$ 。由 R 的右不变性,对于 $\forall z \in \Sigma^*, xzRyz$ 。

再注意到 L 是 R 的某些等价类的并,且 xz,yz 在同一个等价类中,所以 $xz \in$ $L \iff yz \in L$.

所以 xR_Ly 。

证明 3.3 $3 \Rightarrow 1$ 。设 R_L 具有有穷指数。取 $M' = (\Sigma^*/R_L, \Sigma, \delta', [\epsilon], \{[x]|x \in$ L

 $\delta'([a],x) = [ax]$ 。显然,L(M') = L。

意义: L 是 RL 的充要条件

定理 3.4 在同构意义下,M' 是状态最少的唯一识别 L 的 DFA。

3.2.1 证明 L 是/不是 RL

1. 证明 L 是 RL。证明 R_L 的指数有穷。**列举所有等价类即可**

2. 证明 L 不是 RL。证明 R_L 的指数无穷。

例 3.2 证明 $\{0^n1^n|n\geq 0\}$ 不是 RL。 易得,对于 $\forall i\neq j\in N$, $0^i\mathcal{M}^0$ 因此 \mathcal{R}_L 的指数无穷。

3.3 DFA 的最小化

标记终止状态和非终止状态不能合并

逐个判断其他的能否合并

4 CFL 上下文无关语言

4.1 CFG

定义 4.1 CFG G = (V, T, P, S) 的语法树为满足如下条件的树:

1. 每个节点的标记 $x \in V \cup T \cup \{\epsilon\}$

2. 如果节点 V 的标记为 A, V 从左到右的子节点 V_1,V_2,\ldots,V_k 的标记依 次为 y_1, y_2, \ldots, y_k ,则 $A \rightarrow y_1 y_2 \ldots y_k \in P$ 3.根节点标记为 S

4. 中间节点的标记为变量 $x \in V$

5. 从左到右的叶子节点 v_1,\ldots,v_n 的标记 x_1,\ldots,x_n 组成的串 $x_1x_2...x_n$ 为该树的结果。

6. 如果 v 的标记为 ϵ ,则它没有兄弟。

定义 4.2 满足语法树定义中除第三条外条件的树,称作 A-子树。

定理 4.1 有一颗结果为 α 的语法树 \iff $S \stackrel{*}{\Rightarrow} \alpha$

定义 4.3 每一步派生均实施在当前句型最右变量上的派生叫最右派生。

每一步派生均实施在当前句型最左变量上的派生叫最左派生。

定理 4.2 最左派生与最右派生的语法树是一一对应的。

定义 4.4 如果 CFG G 有句子有棵颗不同的语法书,则 G 是二义性的。 定义 4.5 如果 CFL L 没有非二义性文法,则称之为固有二义性的。

4.2 去无用符号

4.2.1 去除无用符号

定义 **4.6** X 是有用符号,即 $\exists X \in L(G), S \stackrel{*}{\Rightarrow} \alpha X \beta \stackrel{*}{\Rightarrow} x$ 。

X 是有用的,必须同时满足如下两条:

1. $S \stackrel{*}{\Rightarrow} \alpha X \beta$

如何判断?

(a) $V' = \{S\} \cup \{A|S \to \alpha A\beta \in P\}$ $T' = \{a|S \to \alpha a\beta \in P\}$

 $V' = V' \cup \{B | A \to \alpha B \beta \in P \& AinV'\}$ $T' = T' \cup \{a|A \to \alpha a\beta \in P\&AinV'\}$

 $2. \ X \stackrel{*}{\Rightarrow} w, w \in T^*$

G = (V, T, P, S), 对于:

 $\forall a \in T, \ a \ \mbox{\em in} \ \ 2.$

 $A \in V$, 如何判断 A 是否满足 2?
(a) $V' = \{A | A \to w \in P\}$ (b) 重复 $V' = \{A | A \to \alpha, \alpha \in (V' \cup T)^*\} \cup V'$

定理 **4.3** 对于 ∀ CFG G, ∃ CFG G',

1. L(G') = L(G)

G' 中无无用符号。

4.2.2 去除 ϵ - 产生式

定义 4.7 如果 $A \stackrel{*}{\Rightarrow} \epsilon$, 则称 A 为可空变量。

定理 4.4 对于 ∀ CFG G, G':

1. G' 中无空产生式

2. $L(G') = L(G) - \{\epsilon\}$

对于 $A \to x_1 x_2 \dots x_n$, 替换为 $A \to y_1 y_2 \dots y_n$, 其中当 x_i 不是可空变量时,

 $y_i = x_i$,否则 $y_i = x_i$ 或 ϵ 。

注意 $y_1y_2 \dots y_n$ 不能都为 ϵ 。

4.2.3 去单一产生式

定义 4.8 形如 $A\to B$ 的产生式是单一产生式。 定义 4.9 对 \forall CFG G, \exists CFG G', L(G')=L(G), G' 中无单一产生式。 推论: 对于 \forall CFG G, 存在 CFG G 使得 L(G') = L(G), 且 G' 没有无用 符, ← 产生式和单一产生式。

4.3 CNF 乔姆斯基范式

定义 4.10 如果 G 的产生式均具有以下形式:

 $\int A \rightarrow BC$ $A \rightarrow a$

则称之为 CNF。

4.4 GNF 格雷巴赫范式

定义 4.11 如果 G 的产生式均具有以下形式:

 $A \to a\alpha, \alpha \in V$

则称之为 GNF。

例 4.1
$$A \to Aa|Ab|c|d =$$
$$\begin{cases} A \to c|d|cB|dB \\ B \to a|b|aB|bB \end{cases}$$

例 4.2
$$A \to A\alpha_1|A\alpha_2|A\alpha_3|\beta_1|\beta_2 = \begin{cases} A \to \beta_1|\beta_2|\beta_1B|\beta_2B \\ B \to \alpha_1|\alpha_2|\alpha_3|\alpha_1B|\alpha_2B|\alpha_3B \end{cases}$$

+骤:

1. 给变量排序

2. 从 A_1 到 A_n 逐一使产生式满足如下要求: $A_i \to A_h \alpha, j \ge i$

3. 从 A_{n-1} 开始通过回代,逐一使 $A_{n-1}, A_{n-2} \dots$ 的产生式满足要求

4. 通过代入,使第二步中引入的新变量的产生式满足要求。

关键: **去左递归**

如: $\int A \to A\alpha_1 |A\alpha_2| \dots |A\alpha_n|$ 为所有 A 产生式,且 $\beta_1,\beta_2,\ldots,\beta_m$ 的 $A \rightarrow \beta_1 | \beta_2 | \dots | \beta_m$

首字母不是 A, 可以用如下的产生式组替代:

$$\begin{cases} A \to \beta_1 | \beta_2 | \dots | \beta_m | \beta_1 A' | \beta_2 A' | \dots | \beta_r A' \\ A' \to \alpha_1 A' | \alpha_2 A' | \dots | \alpha_n A' | \alpha_1 | \alpha_2 | \dots | \alpha_n A' | \alpha_r | \alpha_r \end{cases}$$

定理 4.5 对于 \forall 化简了的 CFG, \exists GNF 与之等价。

5 PDA 下推自动机

5.1 PDA 的定义

定义 5.1 PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$ 其中:

Q : 状态的有穷集合

Σ: 输入字母表

 Γ : 栈符号的非空有穷集

$$Q \times (\Sigma \cup {\epsilon}) \times \Gamma \to 2^{Q \times \Gamma^*}$$

 $\forall (q, a, A) \in Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma, \ \delta(q, a, A) = \{(p_1, \gamma_1), \dots, (p_k, r_k)\}\$ 表示 M 在状态 q,栈顶为 A 时读到 a,将栈顶符号 A 弹出,将 γ_i 依次 压入栈, 并将状态改为 p_i 。

 $\forall (q, A) \in Q \times \Gamma, \ \delta(q, \epsilon, A) = \{(p_1, \gamma_1), \dots, (p_k, r_k)\}$ 表示 M 在状 态 q, 栈顶为 A 时做空移动,将栈顶符号 A 弹出,将 γ_i 依次压入栈,并 将状态改为 p_i 。

 q_0 : 开始状态

 $z_0 \in \Gamma$: 栈底符号

F : 终止状态

定义 **5.2** PDA M 的 ID $(q, x, \alpha) = Q \times \Sigma^* \times \Gamma^*$

其中 q 是 M 的当前状态, x 是 M 的输入带上剩余串, α 是 M 的栈中当前的内

设 M 当前的 ID 是 $(q,ax,A\alpha)$, 如果 $(p,\gamma)\in\delta(q,a,A)$, 则 M 的 ID 变为 $(p, x, \gamma \alpha)$, 记作 $(q, ax, A\alpha) \vdash_M (p, x, \gamma \alpha)$.

如果 $(p, \gamma) \in \delta(q, \epsilon, A)$, 则 M 的 ID 变为 $(p, ax, \gamma\alpha)$, 记作 $(q, ax, A\alpha) \vdash_M$ $(p, ax, \gamma\alpha)$.

 $\dot{\vdash}_M$ 是 $Q \times \Sigma^* \times \Gamma^*$ 上的二元关系。

定义 5.3 $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$

用终态识别的语言 $L(M)=x|(q_0,x,z_0)\vdash^*(q,\epsilon,\alpha)$ and $q\in F$ 。用空栈识别的语言 $N(M)=x|(q_0,x,z_0)\vdash^*(q,\epsilon,\epsilon)$ and $q\in F$ 。