Sistema de ganho para a fonte de corrente com ACG

Gustavo Pinheiro

1 Resumo dos circuitos

Figure 1: Circuito de ganho proposto.

Figure 2: modelo do potenciômetro digital X9C10x

2 Circuito de ganho

O circuito de ganho proposto é composto por 3 estágios. O sinal de entrada V_{in} representa o sinal gerado pela fonte de corrente.

O primeiro estágio é formado por um amplificador inversor (gain), onde o resistor variável R_S corresponde ao potenciômetro digital X9C104, com resistência máxima de 100 $k\Omega$, com 99 elementos resistivos internos e 100 steps.

O segundo estágio é um filtro passa-alta de primeira ordem. O último estágio é um buffer, responsável por elevar a impedância de saída do circuito.

Figure 3: Circuito de ganho proposto.

O nome dos nós destacados na Figure 3 são nomeados da mesma maneira na simulação spice presente nesse repositório.

3 Modelo SPICE do potenciômetro digital X9C10x

O modelo SPICE do potenciômetro digital X9C104 é mostrado no circuito da Figure 4. Os conectores RL, RW e RH são os disponíveis no componente físico.

Figure 4: Modelo SPICE potenciômetro digital X9C10x

• R_L : low resistor

• $R_{TOTAL} = 100 \ k\Omega$

• R_W : wiper

• $C_L = 10 \text{ pF}$

• R_H : high resistor

• $C_W = 25 \text{ pF}$

O modo como o potenciômetro digital é ligado ao circuito de ganho é destacado na Figure 5. Os conectores RL e RW são estão conectados ao terra.

Figure 5: Ligações do potenciômetro X9C10x ao circuito de ganho.

4 Outras considerações sobre o uso do modelo

O módulo do potenciômetro digital X9C10x utilizado no sistema é o visto na Figure 6, que apresenta 4 capacitores externos ao componente. Estes não são considerados na simulação spice presente no repositório.

Figure 6: Módulo do potenciômetro digital.