1

1.1

We show that $R^{-1} \subseteq Y \times X$ is a partial function if $R \subseteq X \times Y$ is injective by proofing R^{-1} satisfies the right uniquess condition

$$(y,x),(y,x') \in R^{-1} \Rightarrow x = x'.$$

Since R is injective the following holds true:

$$(x,y),(x',y') \in R | x \neq x' \Rightarrow y \neq y' \tag{1}$$

Thus

$$(y, x), (y, x') \in R^{-1} | (x, y), (x', y) \in R \Rightarrow x = x'$$

because $x \neq x'$ contradicts (1).

1.2

 $\emptyset \subseteq \emptyset \times Y$: First we show that $\emptyset \subseteq \emptyset \times Y$ is a partial function. By definition

$$(x,y),(x',y') \in R \Rightarrow y = y'$$

the empty relation is right-unique because we have no elements in the relation. Further we show totalness with $dom(R) = \emptyset$. By Definition

$$dom(R) = \{ a \in A | \exists a' \in A : (a, a') \in R \}$$

the domain of the empty relation is also empty due missing elements and therfore $dom(R) = \emptyset = \emptyset$.

 $\emptyset \subseteq X \times \emptyset$: This relation is also a partial function because the relation is also empty.

But it is not total because the preimage is X and the domain is \emptyset . Therefore

$$dom(R) = \emptyset \neq X$$

1.3

Let (S, \cdot) , (T, *) be two semigroups and $f: S \to T$ be a partial semigroup homomorphismus, then we have $f(S) \leq_{sg} T$ with

$$f(s) * f(s') = f(s, s') \tag{1}$$

f(S) is a subsemigroup of T iff f(S) is closed under *:

$$\forall x, y \in f(S) : x * y \in f(S)$$

Since f is a semigroup homomorphismus (1) holds true, thus

$$\exists a, b \in S : x * y = f(a) * f(b) = f(a \cdot b)$$
 (2)

and since (S, \cdot) is a semigroup, it is closed under \cdot , hence

$$a \cdot b \in S$$

and with this (2) holds true and therefore the initial implication of Lemma 2.49. \Box

1.4

To prove that $\sim_k \subseteq \Sigma^* \times \Sigma^*$ is a congruence relation for some given $k \in \mathcal{N}$ we first show that given two words $u, v \in \Sigma^*$ which are k - Simon - congruent they are also (k-1) - Simon - congruent for $k \in \mathcal{N}$ with $ScatFact_{k-1}(u) = ScatFact_{k-1}(v)$.

We prove this claim using a prove by contradiction, therefore, we assume that we are given two words $u, v \in \Sigma^*$ which are k - Simon - congruent, however, not (k - 1) - Simon - congruent. This means that the $ScatFact_{k-1}(u) \neq ScatFact_{k-1}(v)$. This means that there exists at least one object in WLOG. $ScatFact_{k-1}(u)$ which does not exist in $ScatFact_{k-1}(v)$, lets call this element w. Since, $ScatFact_k(u)$ contains all ScatterFactors

of u this means that there exists at least one $w' \in ScatFact_k(u)$ which contains w (either $wx = w' \lor xw = w' \mid x \in u \land |x| = 1$). However, $ScatFact_k(u) = ScatFact_k(v)$ and therefore, $w' \in ScatFact_k(v)$. Per definition of the ScatFact_k set, $ScatFact_{k-1}(v)$ has to contain all ScatterFactors of v of length v-1, therefore also v since v' exists in v and by removing v from v' v is a ScatterFactor of v. This concludes the prove by contradiction. To now prove that $v_k = v$ is a congruence relation for some v, we need to show that for v and v are v is a scatterFactor of v to prove the right congruence. Since, v and v are v is a concatenate v to both words from the same ScatterFactors for all v is a ScatterFactor of v and v are the same. The prove for left congruence is symmetrical, which concludes the prove.

2

2.1

We can find a state machine homomorphism (SMH) for M and M' which is monomorphic but not epimorphic or isomorphic. To prove this conjecture we will first show that there can not exist a epimorphic SMH. For a SMH f to be epimorphic it has to be surjective. This means that given $f = (\alpha, \beta)$:

$$\alpha: Q \to Q' \land \beta: \Sigma \to \Sigma' \tag{2.1}$$

the range of α and β have to be equal to Q' and Σ' respectively.

Lets assume that α maps to Q' and β to Σ' . This means that we have to map the states of Q to the states of Q'. The state r_1 is isolated whilst the states r_2 and r_3 form a cyclic state machine with stern with stern length and cycle length of 1. Therefore, we would need to find a similar structure in Q to map the states to Q'. If we look for these structures in M we can find an isolated state q_4 when we disregard c. However, we can only find a cyclic state machine with stern if we either disregard a, c or b, c since the combination of b and c allows us to always move between the states of $q_i \mid i \in 3$. Thus, we can not find a mapping of β to Σ' , since, we need to omit either at least 2 out of 3 elements of Σ to be able to represent the structure of M, therefore, either α or β can not be surjective.

To prove that M and M' are monomorphic we only have to provide a state machine homomorphism that is injective. For this we map a onto a' and q_4 onto r_1 . α is injective because there only exists a single element in the relation, therefore, there can only exists a one-to-one mapping. For β this is the same case as only the tuple (q_4, r_1) exists in β . Now we need to show that

$$\forall q \in Q \land \forall a \in \Sigma : \alpha(q\delta_a) \subseteq (\alpha(q))\delta'_{\beta(a)}$$
(2.2)

Since, there only exist one element with one state we can apply the transition function for the element a on the state q_4 and then apply α . δ_a on q_4 results in q_4 , and if we then apply α this results in r_1 . If we first apply α on q_4 this results in r_1 . And if we then apply $\delta'_{\beta(a)}$ on r_1 it stays in r_1 which proves that it is a state machine morphism.

This concludes that M and M' are monomorphic. \square