Crypto1 - TD 3

2023 - 2024

Énoncé

Exercice 1:

1.a Décrire une attaque dans le protocole de mise en accord de clé Diffie-Hellman dans laquelle un attaquant actif (i.e. qui peut modifier les données pendant le protocole Diffie-Hellman) peut ensuite intercepter, déchiffrer et modifier toutes les communications qu'Alice ou Bob chiffrerait avec sa clé.

Exercice 2:

Dans cet exercice, on pourra utiliser les résultats numériques suivants :

- $-319 \equiv 11 \times 29$; $10^{11} \equiv 263 \mod 319$; $263^2 = 216 \times 319 + 265$;
- $\begin{array}{lll} & 133^3 \equiv 12 \mod 319 \, ; \, 133^{25} \equiv 133 \mod 319 \, ; \\ & 11^2 \equiv 121 \mod 280 \, ; \, 11^4 \equiv 81 \mod 280 \, ; \, 11^8 \equiv 121 \mod 280 \, ; \, 11^{16} = 81 \mod 280 \, ; \end{array}$
- -95 = 64 + 31; $81 \cdot 11 \equiv 51 \mod 280$; $81 \cdot 121 \equiv 1 \mod 280$.

On considère la clef publique RSA e = 11 et N = 319.

- **2.a**] Quel est le chiffrement avec cette clef du message M = 100?
- Calculer la clef privée correspondant à la clef publique.
- **2.c** Déchiffrer le message C = 133.

Exercice 3:

Étant donné un système de congruences $\{x \equiv a_i \mod m_i\}_{1 \le i \le k}, a_i \in \mathbb{Z}_{m_i}, 1 \le i \le k,$ et les m_i sont des entiers premiers entre eux deux à deux. Le théorème des restes chinois (CRT) donne une construction d'une solution x du système de congruences. Pour cela, on pose $m = \prod_{i=1}^k m_i$ et:

$$N_i = \frac{m}{m_i}$$
, et $S_i \equiv N_i^{-1} \mod m_i$, $1 \le i \le k$.

Montrer que $x \equiv \sum_{i=1}^{k} a_i N_i S_i \mod m$ est l'unique solution du système.

Exercice 4:

Dans tout cet exercice, on supposera que N est une clé publique RSA dont les facteurs premiers sont p et q s. On notera d et e les exposants de (dé)chiffremnt.

- **4.a**] Montrer que pour tout entier a on a $a^d \equiv a^{(d \mod (p-1))} \mod p$.
- A partir de $a_p \equiv a^d \mod p$ et $a_q \equiv a^d \mod q$, comment retrouver $a^d \mod n$?
- **4.c** Quelle sera alors la complexité de ce calcul?

Exercice 5:

Soit $N = p \cdot q$, avec p > q des premiers. On suppose que p et q sont "proches". Finalement, on pose t = (p+q)/2 et s = (p-q)/2.

- **5.a**] Montrer que $n = t^2 s^2$, s est petit, et t est plus grand que \sqrt{n} . On considère l'algorithme suivant :
 - 1. $aux := \lceil \sqrt{n} \rceil$
 - $2. res := aux^2 n$
 - 3. Tant que res n'est pas un carré parfait
 - (a) aux := aux + 1
 - (b) $res := aux^2 n$
 - 4. Retourner $aux + \sqrt{res}$
- **5.b**] Utiliser les questions précédentes pour expliquer ce que retourne cet algorithme.
- **5.c**] Dérouler l'algorithme avec n = 24960007. On vous donne $\lceil \sqrt{24960007} \rceil = 4996$ et $4996^2 24960007 = 9$.
- **5.d**] Donner la complexité de l'algorithme en fonction de t et n.
- **5.e**] En déduire que la complexité s'écrit comme :

$$\frac{(\sqrt{n}-p)^2}{2p}.$$

Exercice 6:

Soit N = pq avec p et q des premiers.

- **6.a**] Montrer que $\varphi(N) = n p q + 1$.
- **6.b**] Montrer alors que p et q sont des racines de $X^2 (n \varphi(n) + 1)X + n = 0$.
- **6.c** En déduire que la connaissance de $\varphi(N)$ permet de factoriser n.
- **6.d** Utiliser cette technique pour factoriser N=21 et sachant que $\varphi(21)=12$.

Exercice 7:

Soit \mathbb{G} un groupe commutatif (noté multiplicativement). Pour simplifier, on peut considérer que $\mathbb{G} = (\mathbb{Z}/n\mathbb{Z})^*$

Proposer un algorithme qui étant donnés t éléments g_1, \ldots, g_t du groupe $\mathbb G$ et des entiers positifs n_1, \ldots, n_t calcule le produit $g_1^{n_1} \ldots g_t^{n_t} \in \mathbb G$ en $O(\ell+2^t)$ multiplications dans $\mathbb G$ (où ℓ est la taille en bits de $\max(n_1, \ldots, n_t)$).

Exercice 8: Algorithme de Shanks

Considérons un groupe multiplicatif cyclique \mathbb{G} engendré par $g \in \mathbb{G}$ d'ordre connu q (autrement dit, nous avons $\mathbb{G} = \{1, g, g^2, \dots, g^{q-1}\}$). Proposer un algorithme de résolution de logarithme discret par compromis temps-mémoire de complexité $O(\sqrt{q})$ opérations de groupe en temps et $O(\sqrt{q})$ éléments de groupe en mémoire.

Indication. On pourra remarquer que pour tout élément $h = g^x \in \langle g \rangle$, l'entier x s'écrit sous la forme $x = x_1T + x_0$ avec $0 \le x_0 < T$ et $0 \le x_1 < T$ pour $T = \lceil \sqrt{q} \rceil + 1$.

Exercice 9:

Soient N un module RSA et e un nombre entier premier avec $\varphi(N)$. Considérons un algorithme \mathcal{A} qui prend en entrée un élément de \mathbb{Z}_N^* et retourne un élément de \mathbb{Z}_N^* , en temps τ (dans le pire des cas) où τ représente au moins le coût d'une exponentiation dans \mathbb{Z}_N^* .

Supposons qu'il existe un sous-ensemble E de \mathbb{Z}_N^* avec $\#E \ge \epsilon N$ et $\epsilon \in]0,1]$ pour lequel lorsque \mathcal{A} est exécuté sur un élément $x \in E$, l'élément y retourné par \mathcal{A} vérifie $y^e = x \mod N$.

9.a] Montrer qu'il existe un algorithme \mathcal{B} qui résout le problème RSA dans \mathbb{Z}_N^* en un temps espéré $O(\tau/\epsilon)$.

Exercice 10:

- 10.a] Montrer que le protocole de chiffrement RSA naïf n'est pas sémantiquement sûr sous une attaque à clairs choisis.
- **10.b**] Montrer que le protocole de chiffrement RSA naïf est inversible sous une attaque à un chiffré choisi.

Exercice 11:

L'algorithme de chiffrement d'ElGamal est un algorithme de cryptographie asymétrique basé sur le problème du logarithme discret. Il a été créé par T. ELGAMAL en 1985 :

- **Génération des clés :** L'utilisateur choisit un groupe \mathbb{G} d'ordre q dans lequel le problème du logarithme discret est jugé difficile et g un générateur de \mathbb{G} . Il tire uniformément aléatoirement $x \in \mathbb{Z}_q^*$ et calcule $y = g^x \in \mathbb{G}$. La clé publique est (q, g, y) et la clé secrète associée est x.
- **Chiffrement :** étant donné un message clair $m \in \mathbb{G}$, l'algorithme de chiffrement tire uniformément aléatoirement $r \in \mathbb{Z}_q^*$ et calcule $c_1 = g^r \in \mathbb{G}$ et $c_2 = m \cdot y^r \in \mathbb{G}$. Le chiffré de m est le couple (c_1, c_2) .
- **Déchiffrement :** étant donné un chiffré $(c_1, c_2) \in \mathbb{G}^2$, l'algorithme de déchiffrement retourne (c_2/c_1^x) .
- **11.a**] Montrer que le protocole de chiffrement ElGamal n'est pas à sens-unique sous une attaque à un chiffré choisi.