Machine Learning 10-601

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

January 26, 2015

Today:

- Bayes Classifiers
- Conditional Independence
- Naïve Bayes

Readings:

Machine Learning (ML),

Ch. 3: Naïve Bayes and Logistic

Regression

Two Principles for Estimating Parameters

• Maximum Likelihood Estimate (MLE): choose θ that maximizes probability of observed data $\mathcal D$

$$\widehat{\theta}$$
 = arg max $P(\mathcal{D} \mid \theta)$ \mathcal{D} $\mathcal{D$

• Maximum a Posteriori (MAP) estimate: choose θ that is most probable given prior probability and the data

$$\widehat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D})$$

$$= \arg\max_{\theta} = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

Maximum Likelihood Estimate

ullet Each flip yields boolean value for X

$$X \sim \text{Bernoulli: } P(X) = \theta^X (1 - \theta)^{(1 - X)}$$

(=1 X=0) P(X=1) = θ P(X=0) = 1-θ(Bernoulli)

• Data set D of independent, identically distributed (iid) flips produces α_1 ones, α_0 zeros

$$P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$$

$$\hat{\theta}^{MLE} = \arg\max_{\theta} P(D|\theta) = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

Maximum A Posteriori (MAP) Estimate

• Data set D of independent, identically distributed (iid) flips produces α_1 ones, α_0 zeros

$$P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$$

- Assume prior $P(\theta) = Beta(\beta_1, \beta_0) = \frac{1}{B(\beta_1, \beta_0)} \theta^{\beta_1 1} (1 \theta)^{\beta_0 1}$
- Then $\hat{\theta}^{MAP} = \arg\max_{\theta} P(D|\theta)P(\theta) = \frac{3775 763 \% (直记) \lambda 为的)}{(\alpha_1 + \beta_1 1) + (\alpha_0 + \beta_0 1)}$

(like MLE, but hallucinating $\beta_1 - 1$ additional heads, $\beta_0 - 1$ additional tails)

Let's learn classifiers by learning P(Y|X)

Consider Y=Wealth, X=<Gender, HoursWorked>

Gender	HrsWorked	P(rich G,HW)	P(poor G,HW)
F	<40.5	.09	.91
F	>40.5	.21	.79
M	<40.5	.23	.77
M	>40.5	.38	.62

How many parameters must we estimate?

Suppose $X = \langle X_1, ..., X_n \rangle$ where X_i and Y are boolean RV's

Gender	HrsWorked	P(rich G,HW)	P(poor G,HW)
F	<40.5	.09	.91
F	>40.5	.21	.79
М	<40.5	.23	.77
М	>40.5	.38	.62

To estimate $P(Y|X_1, X_2, ... X_n)$

$$\#percone ters: \frac{y^{n}+y^{n}}{z} = z^{n}$$

If we have 30 boolean X_i 's: $P(Y | X_1, X_2, ..., X_{30})$

Bayes Rule

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

Which is shorthand for:

$$(\forall i, j) P(Y = \underline{y_i} | X = \underline{x_j}) = \frac{P(X = x_j | Y = y_i) P(Y = y_i)}{P(X = x_j)}$$

Equivalently:

$$(\forall i, j) P(Y = y_i | X = x_j) = \frac{P(X = x_j | Y = y_i) P(Y = y_i)}{\sum_k P(X = x_j | Y = y_k) P(Y = y_k)}$$

Can we reduce params using Bayes Rule?

Suppose $X = \langle X_1, ..., X_n \rangle$ where X_i and Y are boolean RV's

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

How many parameters to define $P(X_1, ..., X_n \mid Y)$?

分情况讨论: 下一一一分估计2升(X=<X,...,Xn-)

但是P(X=1)+12(X=1)40)不一定为1故不可相切饿乙,

=>估计 X 需要 (5/1-1)+(2/1)=2/11-2个估计。

=> 気気質(x(t)): (z)+(= z**-) イを数式だけ・ How many parameters to define P(Y)?

Naïve Bayes

Naïve Bayes assumes

$$P(X_1...X_n|Y) = \prod_i P(X_i|Y)$$
 假设: 特征相至納至, 过用于小数据集.

i.e., that X_i and X_j are conditionally independent given Y, for all i≠j

Conditional Independence

Definition: X is <u>conditionally independent</u> of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z

$$(\forall i, j, k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$$

Which we often write

$$P(X|Y,Z) = P(X|Z)$$

E.g.,

P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Naïve Bayes uses assumption that the X_i are conditionally independent, given Y. E.g., $P(X_1|X_2,Y)=P(X_1|Y)$

Given this assumption, then:

$$P(X_1, X_2|Y) = P(X_1|X_1Y_1) P(X_1Y_2) = P(X_1|Y_1|X_2|Y_1)$$

若介護量且两两加高: $P(X_1, X_1X_1|Y_1) = P(X_1, X_1|X_1Y_2|Y_1) P(X_1|X_2)$
 $= P(X_1, X_2|Y_1) P(X_1|Y_2) = \cdots = P(X_1|Y_1) P(X_1|Y_2) \cdots P(X_1|Y_1)$

对于近的(X11(4): Y可取明两值. 每个Xn分一次四) 为第2n次一 Naïve Bayes uses assumption that the X_i are conditionally independent, given Y. E.g., $P(X_1|X_2,Y)=P(X_1|Y)$

Given this assumption, then:

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$

= $P(X_1|Y)P(X_2|Y)$

in general:
$$P(X_1...X_n|Y) = \prod_i P(X_i|Y)$$

Naïve Bayes uses assumption that the X_i are conditionally independent, given Y. E.g., $P(X_1|X_2,Y)=P(X_1|Y)$

Given this assumption, then:

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$

= $P(X_1|Y)P(X_2|Y)$

in general:
$$P(X_1...X_n|Y) = \prod_i P(X_i|Y)$$

How many parameters to describe $P(X_1...X_n|Y)$? P(Y)?

- Without conditional indep assumption?
- With conditional indep assumption?

Naïve Bayes in a Nutshell

Bayes rule:

$$P(Y = y_k | X_1 ... X_n) = \frac{P(Y = y_k) P(X_1 ... X_n | Y = y_k)}{\sum_j P(Y = y_j) P(X_1 ... X_n | Y = y_j)}$$

Assuming conditional independence among X_i's:

$$P(Y = y_k | X_1 ... X_n) = \frac{P(Y = y_k) \prod_i P(X_i | Y = y_k)}{\sum_j P(Y = y_j) \prod_i P(X_i | Y = y_j)}$$

So, to pick most probable Y for $X^{new} = \langle X_1, ..., X_n \rangle$

$$Y^{new} \leftarrow \arg\max_{y_k} P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$

Naïve Bayes Algorithm – discrete X_i

Train Naïve Bayes (examples)

for each* value
$$y_k$$
 estimate $\pi_k \equiv P(Y=y_k)$ states for each attribute X_i for each attribute X_i estimate $\theta_i \in P(X_i=x_{ij}|Y=y_k)$ for $\theta_i \in P(X_i=x_{i$

^{*} probabilities must sum to 1, so need estimate only n-1 of these...

Estimating Parameters: Y, X_i discrete-valued

Maximum likelihood estimates, (MLE's):

$$\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\}}{|D|}$$
 统计划文数。
$$\hat{\theta}_{ijk} = \hat{P}(X_i = x_{ij}|Y = y_k) = \frac{\#D\{X_i = x_{ij} \land Y = y_k\}}{\#D\{Y = y_k\}}$$
 Number of items in dataset D for which $Y = y_k$

$$D = \frac{1}{3} \frac{1}{3}$$

Naïve Bayes: Subtlety #1

Often the X_i are not really conditionally independent

如军朴素买时斯行致没不成立,强行使用也可以

- We use Naïve Bayes in many cases anyway, and it often works pretty well
 - often the right classification, even when not the right probability (see [Domingos&Pazzani, 1996])
- What is effect on estimated P(Y|X)?
 - Extreme case: what if we add two copies: $X_i = X_k$ ン 那么会 多致 过分为 注 X_i し み A_i こ $A_$

Naïve Bayes: Subtlety #2

If unlucky, our MLE estimate for $P(X_i \mid Y)$ might be zero. (for example, $X_i = birthdate$. $X_i = Jan_25_1992$)

• Why worry about just one parameter out of many? 人炒的时候总有某些 *\(X;\)(Y) => 等級最后结果为。

What can be done to address this?

特征选择预处证

Estimating Parameters

• Maximum Likelihood Estimate (MLE): choose θ that maximizes probability of observed data \mathcal{D}

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

 Maximum a Posteriori (MAP) estimate: choose θ that is most probable given prior probability and the data

$$\widehat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D})$$

$$= \arg\max_{\theta} = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

Estimating Parameters: Y, X, discrete-valued

Maximum likelihood estimates:

$$\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\}}{|D|}$$

$$\hat{\theta}_{ijk} = \hat{P}(X_i = x_j | Y = y_k) = \frac{\#D\{X_i = x_j \land Y = y_k\}}{\#D\{Y = y_k\}} \quad \text{and} \quad$$

MAP estimates (Beta, Dirichlet priors); つ外科 克雷分布

$$\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\} + (\beta_k - 1)}{|D| + \sum_m (\beta_m - 1)}$$
 "imaginary" examples

Only difference:

$$\hat{\theta}_{ijk} = \hat{P}(X_i = x_j | Y = y_k) = \frac{\#D\{X_i = x_j \land Y = y_k\} + (\beta_k - 1)}{\#D\{Y = y_k\} + \sum_m (\beta_m - 1)}$$

What you should know:

- Training and using classifiers based on Bayes rule
- Conditional independence
 - What it is
 - Why it's important
- Naïve Bayes 一始的数字 => 编式级(线性集)
 - What it is
 - Why we use it so much
 - Training using MLE, MAP estimates
 - Discrete variables and continuous (Gaussian)

Questions:

How can we extend Naïve Bayes if just 2 of the X_i's are dependent?

 What does the decision surface of a Naïve Bayes classifier look like?

 $\begin{cases} \sqrt{\frac{\gamma(\gamma; \gamma)}{p(\gamma; \gamma)}} = 0 \end{cases}$ What error will the classifier achieve if Naïve Bayes

- - Can you use Naïve Bayes for a combination of discrete and real-valued X_i?

连续: 田 Granssian distribution估计连续 T.V.

What if we have continuous X_i ?

Eg., image classification: X_i is ith pixel

What if we have continuous X_i ?

image classification: X_i is ith pixel, Y = mental state

Still have:

$$P(Y = y_k | X_1 ... X_n) = \frac{P(Y = y_k) \prod_i P(X_i | Y = y_k)}{\sum_j P(Y = y_j) \prod_i P(X_i | Y = y_j)}$$

Just need to decide how to represent $P(X_i \mid Y)$

What if we have continuous X_i ?

Eg., image classification: X_i is ith pixel

Gaussian Naïve Bayes (GNB): assume

Gaussian Naïve Bayes Algorithm – continuous X_i (but still discrete Y)

• Train Naïve Bayes (examples) for each value y_k estimate* $\pi_k \equiv P(Y=y_k)$ for each attribute X_i estimate class conditional mean μ_{ik} , variance σ_{ik}

• Classify (X^{new})

$$Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$
 $Y^{new} \leftarrow \arg\max_{y_k} \ \pi_k \prod_i Normal(X_i^{new}, \mu_{ik}, \sigma_{ik})$

^{*} probabilities must sum to 1, so need estimate only n-1 parameters...

Estimating Parameters: Y discrete, X_i continuous

Maximum likelihood estimates:

jth training example

$$\widehat{\mu}_{ik} = \frac{1}{\sum_{j} \delta(Y^{j} = y_{k})} \sum_{j} X_{i}^{j} \delta(Y^{j} = y_{k})$$
 ith feature kth class
$$\delta(\mathbf{z}) = 1 \text{ if } \mathbf{z} \text{ true,}$$
 else 0

$$\hat{\sigma}_{ik}^2 = \frac{1}{\sum_j \delta(Y^j = y_k)} \sum_j (X_i^j - \hat{\mu}_{ik})^2 \delta(Y^j = y_k)$$