Communication Technologies 2 (CT2) Machine Learning: Applications and Algorithms Activity Recognition:

Activity Recognition: Evaluation metrics

Michel Morold

Lecture in WS 2018 / 2019 01.11.2018

Outline

Activity Recognition

Instance-based Activity Recognition

Event-based Evaluation

Summary

ACTIVITY RECOGNITION (AR)

Activity Recognition (AR)

...to recognize the actions and intentions of a user based on a group of observations

Daily Life Activities

Activity Recognition (AR)

Activity Recognition (AR)

Sensor-based Activity Recognition

Dense Sensing

- Attached to objects to monitor human activities through user-object interactions
- Suitable for activities that involve a number of objects within an environment

[ComTec]

Sensor-based Activity Recognition

Wearable Sensing

- Can be positioned directly or indirectly on the body
- Sensors be embedded into, clothes, mobile devices, etc.
- Position, pulse, skin temperatures
- Mainly physical activities like walking, running, etc.

[1]

Activity Recognition Process

Activity Recognition Process

Segmentation

Feature extraction

© ComTec 2018

10

Machine Learning

Machine learning

Supervised

- Bayesian statistics
- Decision trees
- Artificial neural network
- Support vector machines
- Hidden Markov models
- Etc...

Unsupervised

- Data clustering
- Self-organizing map
- Artificial neural network
- Expectation-maximization algorithm
- Etc...

Reinforcement

- Monte Carlo Method
- Q-learning
- Temporal difference learning
- Learning Automata
- Etc...

© ComTec 2018 11

Activity Recognition Process

Machine Learning

© ComTec 2018

Feature extraction

Segmentation

INSTANCE-BASED ACTIVITY RECOGNITION

Instance-based AR

- An instance is a vector that contains all features calculated within a segment
- For supervised learning the instance is labeled with an activity

		Ground Truth	Recognized by the model	
	1	step down	step down	
time	2	walking	step down	
ţi	3	walking	walking	
	, 4	sitting	sitting	
	•••	•••	•••	

© ComTec 2018 14

Example – 3 activities / 300 instances

Activity	Total count of Instances
step down	100
walking	100
sitting	100
Σ	300

Example – 3 activities / 300 instances

Activity	Total count of Instances
step down	100
walking	100
sitting	100
Σ	300

time

Ground Truth	Recognized
step down	step down
walking	step down
walking	walking
sitting	sitting
•••	•••

Example – 3 activities / 300 instances

Activity	Total count of Instances	Correct recognized Instances
step down	100	100
walking	100	95
sitting	100	90
Σ	300	285

time

Ground Truth	Recognized
step down	step down
walking	step down
walking	walking
sitting	sitting
	•••

Example – 3 activities / 300 instances **Confusion Matrix**

Recognition

step down	walking	sitting	_		
100	0	0	step down	truth	Σ 100
5	95	0	walking	Ground t	Σ 100
7	3	90	sitting	Gro	Σ 100
Σ 112	Σ 98	Σ 90			Σ 300

What is recognition accuracy over all classes?

Recognition

step down	walking	sitting	_		
100	0	0	step down	truth	Σ 100
5	95	0	walking		Σ 100
7	3	90	sitting	Ground	Σ 100
Σ 112	Σ 98	Σ 90	_		Σ 300

recognition performance averaged over all activities

$$classification\ accuracy = \frac{correct\ recognized\ instances}{total\ count\ of\ instances} = \frac{100 + 95 + 90}{300} = 95\%$$

- Recognition performance as binary problem e.g. "step down" or "not step down"
- represented in a tuple of two elements "AB"
 - B: can be Positive (P) or Negative (N)
 - Positive (P): classifier recognizes "step down"
 - Negative (N): classifier detects "not step down", e.g. walking was recognized instead
 - A: can be True (T) of False (F)
 - True (T): the recognition is correct
 - False (F): the recognition is not correct
- "AB" results in four combinations: TP, FP, TN, FN

Tuple combinations

- True Positives (TP):
 - Recognition step down (positive) and this classification is correct (true)
- False Positives (FP):
 - Recognition step down (positive) and this classification is incorrect (false)
- True Negatives (TN):
 - Recognition not step down (negative) and this classification is correct (true)
- False Negatives (FN):
 - Recognition not step down (negative) and this classification is incorrect (false)
- origin in Information Retrieval

Recognition

ĺ	step down	not step down	not step down	٦		
	100	0	0	step down	truth	Σ 100
	5	95	0	not step down	Ground to	Σ 100
	7	3	90	not step down	Gro	Σ 100
•	Σ 112	Σ 98	Σ 90	-		Σ 300

binary classification problem focused on activity "step down"

$$-$$
 TP = ?

Recognition

	step down	not step down	not step down	7		
	100	0	0	step down	truth	Σ 100
	5	95	0	not step down	Sround to	Σ 100
	7	3	90	not step down	Gro	Σ 100
•	Σ 112	Σ 98	Σ 90	-		Σ 300

- binary classification problem focused on activity "step down"
 - **TP** = 100
 - $\mathbf{FP} = ?$

Recognition

1	step down	not step down	not step down	7		
	100	0	0	step down	truth	Σ 100
	5	95	0	not step down	Ground to	Σ 100
	7	3	90	not step down	Gro	Σ 100
•	Σ 112	Σ 98	Σ 90	-		Σ 300

- binary classification problem focused on activity "step down"
 - **TP** = 100
 - **FP** = 5+7 = 12
 - **TN** = 95+0+3+90 = 188
 - FN = ?

Recognition

step down	not step down	not step down	7		
100	0	0	step down	truth	Σ 100
5	95	0	not step down	Ground to	Σ 100
7	3	90	not step down	Gro	Σ 100
Σ 112	Σ 98	Σ 90	-		Σ 300

- binary classification problem focused on activity "step down"
 - **TP** = 100
 - **FP** = 5+7 = 12
 - **TN** = 95+0+3+90 = 188
 - **FN** = 0+0 = 0

Precision

The precision, often referred to positive predictive value, represents the ratio of correctly classified (truly) "step down" instances to the total number of instances recognized as "step down".

Therefor the precision expresses the "step down" detection accuracy.

↓ precisio Recognitio					
step down	not step down	not step down			
100	0	0	step down	.nth	Σ 100
5	95	0	not step down	Ground truth	Σ 100
7	3	90	not step down	Gro	Σ 100
Σ 112	Σ 98	Σ 90	-		Σ 300

$$Precision = \frac{TP}{(TP + FP)}$$
 step down (not step down e.g. walking or sitting) precision = 100 / (100+12) = 89.3%

Recall

The recall, also called *true positive rate* or *hit rate* represents the ratio of correctly classified "step down" instances to the total number of "step down" instances, i.e. how many of the truly "step downs" were correctly classified.

The recall represents the usability of the detection as a low usability leads to high rate of undetected "step downs".

↓ precisio Recognitio						
step down	not step down	not step down				
100	0	0	step down	ruth	Σ 100	← recall
5	95	0	not step down	und t	Σ 100 Σ 100 Σ 100	
7	3	90	not step down	Gro	Σ 100	
Σ 112	Σ 98	Σ 90	-		Σ 300	

$$Recall = \frac{TP}{(TP + FN)}$$

recall =
$$100 / (100+0) = 100.0\%$$

F-measure

$$F = \frac{2 * (Precision * Recall)}{(Precision + Recall)}$$

† hierigio	11					
Recognition	on					
step down	not step down	not step down				
down	down	down	•			
100	0	0	step down	ruth	Σ 100	← recall
5	95	0	not step down	und t	Σ 100 Σ 100 Σ 100	
7	3	90	not step down	Gro	Σ 100	
Σ 112	Σ 98	Σ 90			Σ 300	

step down (not step down e.g. walking or sitting)

precision	= 100 / (100+12) =	89.3%
recall	= 100 / (100+0) =	100.0%
F-measure	= 2 * (89.3% * 100.0%) / (89.3% + 100.0%) =	94.3%

I pracision

Metrics summary

↓ precisio Recognitio							
step down	not step down	not step down	_			Com	Tec
100	0	0	step down	ruth	Σ 10	00	← recall
5	95	0	not step down	und t	Σ 10 Σ 10 Σ 10	00	
7	3	90	not step down	Gro	Σ 10	00	
Σ 112	Σ 98	Σ 90			Σ 30	00	

step down (not step down e.g. walking or sitting)

precision	= 100 / (100+12) =	89.3%
recall	= 100 / (100+0) =	100.0%
F-measure	= 2 * (89.3% * 100.0%) / (89.3% + 100.0%) =	94.3%

walking (not walking e.g. step down or sitting)

precision	= 95 / (95+3) =	96.9%
recall	= 95 / (95+5) =	95.0%
F-measure	= 2 * (96.9% * 95.0%) / (96.9% + 95.0%) =	96.0%

sitting (not sitting e.g. step down or walking)

precision	= 90 / (90+0) =	100.0%
recall	= 90 / (90+10) =	90.0%
F-measure	= 2 * (100.0% * 90.0%) / (100.0% + 90.0%) =	94.7%

Instance-based evaluation

 An instance (or frame) is a fixed-length, fixedrate unit of time

 Instance by instance comparison between prediction (i.e. recognition) and ground truth (i.e. labels)

 Does not consider specific error types of continuous activity recognition

Instance-based evaluation

- Challenges detecting real world activities
 - Activities can have variable durations and ambiguous start and stop times, so that activities are being detected before or after they actually occur
 - Single events being fragmented into multiple smaller events of the same activity
 - Merging of several real events into a single recognized event

Event-based Evaluation (Ward et al. [2])

© ComTec 2018 31

Event-based Evaluation

 An event is a variable duration sequence of positive instances within a continuous time series (i.e. a sequence of the same instances)

Instances

- step down
- walking
- walking
- walking
- sitting
- walking

• ...

Events

- step down
- walking
- sitting
- walking
- ...

Event-based Evaluation

 A segment is a contiguous sequence of instances with a variable duration, in which neither prediction nor the ground truth labels changes

Event-based Evaluation Type of Errors

- Ground truth Errors
 - Fragmentation
 - Deletion
 - Underfill
- Recognition Errors
 - Merge
 - Insertion
 - Overfill

Event-based Evaluation - Ground truth Errors

 Fragmentation (F): A ground truth event that contains more than one matching segment

Ground truth	Recognition
step down	step down
walking	walking
walking	sitting
walking	walking
sitting	sitting
walking	walking

Event-based Evaluation - Ground truth Errors

 Deletion (D): A ground truth event that contains no matching segments

	Ground truth	Recognition
	step down	step down
	walking	walking
	walking	walking
	walking	walking
<	sitting	walking
	walking	walking

Event-based Evaluation - Ground truth Errors

 Underfill (U): A ground truth event not completely covered by recognition

	Ground truth	Recognition
	step down	step down
	walking	walking
	walking	walking
	walking	sitting
	sitting	sitting
	walking	walking

Event-based Evaluation - Recognition Errors

 Merge (M): A recognized event that contains more than one matching segment

	Ground truth	Recognition
	step down	step down
	walking	walking
	walking	walking
	walking	walking
<	sitting	walking
	walking	walking

Event-based Evaluation - Recognition Errors

 Insertion (I): A recognized event that contains no matching segments

Ground truth	Recognition
step down	step down
 walking	walking
walking	sitting
walking	walking
sitting	sitting

Event-based Evaluation - Recognition Errors

 Overfill (O): A recognized event which spills over its ground truth boundary

Ground truth	Recognition
step down	step down
walking	walking
walking	walking
walking	walking
sitting	walking
sitting	sitting
•••	

© ComTec 2018 40

Example

[4]

Activity Recognition Process

Machine Learning

© ComTec 2018 42

Feature extraction

Segmentation

Summary Questions

- 1. What is the purpose of activity recognition?
- 2. What is the difference between online and offline activity recognition?
- 3. What is the purpose of performance metrics?
- Name one metric that show a models recognition performance for one activity.
- 5. What does the event-based evaluation help?
- Name some errors in the event-based evaluation.

References

- [1] L. Bao and S. S. Intille, "Activity Recognition from User-Annotated Acceleration Data," in Lecture Notes in Computer Science, Pervasive Computing, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, O. Nierstrasz, C. Pandu Rangan, B. Steffen, D. Terzopoulos, D. Tygar, M. Y. Vardi, and A. Ferscha, Eds, Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 1–17.
- [2] J. A. Ward, P. Lukowicz, and G. Tröster, "Evaluating Performance in Continuous Context Recognition Using Event-driven Error Characterisation," in Proceedings of the Second International Conference on Location- and Context-Awareness, Berlin, Heidelberg, 2006, pp. 239–255.
- [3] J. A. Ward, P. Lukowicz, and H. W. Gellersen, "Performance Metrics for Activity Recognition," ACM Trans. Intell. Syst. Technol., vol. 2, no. 1, pp. 1–23, Jan. 2011.
- [4] J. A. Ward, P. Lukowicz, and G. Tröster, "A categorisation of performance errors in continuous context recognition," in Proc. IEEE Int'l Symp. on Wearable Comp, Workshop for On-Body Sensing, 2005.