

Transportation network modelling

Thomas Balstrøm Department of Geosciences and Natural Ressource Management

tb@ign.ku.dk

Agenda

- What is a transportation network?
- Network algorithms
 - Shortest path and
 - Travelling Salesman's Problem
- Location Allocation
- Service area
- Availability/Accessibility
- Network datamodel
- Network features
- Exercises

Transportation network

A transportation network is used to optimize searches relative to distances and travel time.

The network is based on graph theory and built from **edges** and **junctions**. The transportation network may include directions, and travel costs based on impedances can be time enabled.

Travelling Salesman's Problem

Challenge: Visit a set of destinations once and return home having minimized the distance travelled.

First number = distance in km Last number = travel time in minutes Dijkstra's algorithm:

Start point = 0All other points = ∞

Start at 0 and determine distance to neighbors.

Sort the distances and select the point with the shortest distance to the lowest value and determine distance to neighbors from there.

Update accum. distances, select point with lowe value and continue.

Shortest / fastest route

Fastest route Kalundborg – HelsingørShortest route Kalundborg - Helsingør

First number = distance in km Last number = travel time in minutes

Travelling Salesman's Problem

How many various combinations of path finding in between 3 cities: 1

Thus, the number of combinations of path finding is (n-1)! / 2

How many various path finding combinations in between 4 cities: 3

Travelling Salesman's Problem

How many various combinations of path finding in between 20 cities:

$$19!/2 = 6.08 * 10^{16}$$

A fast home computer today can handle 10 Tflops (= 10^{12} floating point operations per second), the calculation will take

$$1,9 * 10^9$$
 years

Instead several heuristics are available:

1) random, 2) greedy, 3) 2-opt, 4) simulated annealing

TSP video

Explanation: Simulated Annealing- The Travelling Salesman Problem (fourmilab.ch)

Network Dataset Features

- Cost attributes (distance vs. time costs)
- Historical traffic information
- Turn delays (turns that take a long time)
- Restriction attributes (one-way streets)
- Turn restrictions
- 'Global' turn delays (company prefers avoiding left turns)
- Directions (prohibiting)
- U-turns (prohibiting)
- Curb approach
- Barriers (construction, accidents)

Cost of travel

- Properties
 - One-way street
 - Number of lanes in each direction
- Impedance
 - The costs by travelling through a network is usually expressed by travel distance or travel time
- The impedance is dependent on the direction of the travel

Cost Attributes

- Historical traffic
 - Find the best routes given expected traffic delays.
 - Get more accurate arrival times.

Turns

There exists 3 types of turns:

- Right turn
- Left turn
- U-turn

- Represent relationships for network connections
- Can influence the transport through a network (e.g. a right turn with oncoming traffic takes longer time than just driving straight ahead)
- Global Turn Delays
 - Global turns add a cost to every turn in the network.
 - Reduces the number of turn features you need to digitize.

Restriction attributes

- Specify which edges, junctions, and turns that can't be traversed
 - One ways
 - Prohibited turns (no left turns, no U-turns)

Restriction and Descriptor Attributes

- Restriction attributes can be derived from descriptor attributes and vehicle characteristics
 - Model height, weight, width limits

WEIGHT LIMIT 10 TONS

Curb Approach

 Curb approach ensures the vehicle arrives on and departs from a specific side of the road

Connect address points to network

Addresses not connected to the network

Addresses connected to the network by identyfing the shortest distance from points to roads

The state of the s

Connect address points to network

Alternatively snap the address' locations to nearest road edges

-> Use ArcGIS Snap tool

Network - datamodel

Network attribute table

LineID	FNODE	TNODE	Cost	ONE-
				WAY
1	1	14	90	В
2	2	3	85	В
3	6	14	110	В
4	14	3	75	FT

Turn table

Node	Arc1	Arc2	Cost
14	1	4	-1
7	7	8	23
9	14	15	34

ArcGIS procedure: Create Network Dataset

Prepare the network's components and store them in a feature dataset

ArcGIS procedure: Build network

Build the network from the feature dataset's components

ArcGIS procedure: Load stops

ArcGIS procedure: Line up the problem

Travelling Salesman's Problem

Driving directions

1	Route	: Graphic Pick 13 - Graphic Pick 13	105 km	Мар
	<u>1</u> :	Start at Graphic Pick 13		Map
	2:	Go southeast on Brommevej toward Skolevej	221 m	Map
	3:	Turn left on Stavsdalvej	468 m	Map
4	<u>4</u> :	Continue on Nybrovej	3,2 km	<u>Map</u>
1	<u>5</u> :	Continue on Godthåbsvej	1,7 km	<u>Map</u>
9	<u>6</u> :	Continue on Svanekevej	5,3 km	<u>Map</u>
- 1	<u>7</u> :	Continue on Østermarievej	2,4 km	<u>Map</u>
1	<u>8</u> :	Continue on Storegade	385 m	<u>Map</u>
9	<u>9</u> :	Bear right on Otto Holst Bakke	29 m	<u>Map</u>
2	<u>10</u> :	Arrive at Graphic Pick 11, on the right		<u>Map</u>
2	<u>11</u> :	Depart Graphic Pick 11		
2	<u>12</u> :	Continue east on Otto Holst Bakke	56 m	<u>Map</u>
1	<u>13</u> :	Bear right on Borgergade	41 m	<u>Map</u>
- 2	<u>14</u> :	Turn right on Madvigsgade	40 m	<u>Map</u>
1	<u>15</u> :	Continue on Svaneke Torv	58 m	<u>Map</u>
2	<u>16</u> :	Continue on Postgade	51 m	<u>Map</u>
2	<u>17</u> :	Turn right on Kirkebakken	113 m	<u>Map</u>
- 1	<u>18</u> :	Turn left on Kirkepladsen	38 m	<u>Map</u>
- 2	<u> 19</u> :	Turn left to stay on Kirkepladsen	34 m	<u>Map</u>
2	<u>20</u> :	Turn right on Sander Dichsgade and immediately turn left on Lille Plads	83 m	<u>Map</u>
2	<u>21</u> :	Turn right on Lille Plads and immediately turn left on Hullebakke	71 m	<u>Map</u>
- 2	<u>22</u> :	Continue on Søndergade	915 m	<u>Map</u>
- 2	<u>23</u> :	Continue on Aarsdalevej	1,5 km	<u>Map</u>
- 2	<u>24</u> :	Turn left on Strandvejen	596 m	<u>Map</u>
- 2	<u>25</u> :	Continue on Gaden	547 m	<u>Map</u>
- 2	<u> 26</u> :	Turn left on Aarsdalevej	86 m	<u>Map</u>
- 2	<u>27</u> :	Turn right on Sdr Aarsdalevej	2,6 km	<u>Map</u>

Service areas – school districts by travel time

Service areas:

Shows the areas within specific distances from one or more facilities.

Example: The service areas covered by 4 schools

Location - Allocation

Which centres service a network?

Two criteria is applied in the allocation process:

Supply: The number of available resources in a centre.

Demand: The number of resources demanded in the nearby nodes.

Allocate works by allocating demand – usually to the nearest centre - until the demand corresponds to the supply of resources in the centre

Example: A school (the centre) has a resource that is the available seats for pupils.

The number of pupils (nodes) makes up the demand.

Nodes are allocated to the schools via connections until the total number of pupils along at the of the connections is equal to the number of available seats.

ArcGIS geoprocessing environment for transportation networks

ArcGIS ModelBuilder workflow

ArcGIS – try more

Explore the Network Analyst Tutorial.

Search for ArcGIS Pro network analyst tutorial:

Network Analyst tutorials—ArcGIS Pro | Documentation

Network Analysis in ArcGIS Online – Find Routes

Network Analysis in ArcGIS Online – service areas

Online shortest path services right now – Google Maps

Online shortest path services, rush hour prediction Google Maps

