Motion and Recombination of Electrons and Holes

2.1 Thermal Motion

Average electron or hole kinetic energy $=\frac{3}{2}kT = \frac{1}{2}mv_{th}^2$

$$v_{th} = \sqrt{\frac{3kT}{m_{eff}}} = \sqrt{\frac{3 \times 1.38 \times 10^{-23} \text{JK}^{-1} \times 300 \text{K}}{0.26 \times 9.1 \times 10^{-31} \text{kg}}}$$

$$= 2.3 \times 10^5 \,\mathrm{m/s} = 2.3 \times 10^7 \,\mathrm{cm/s}$$

2.1 Thermal Motion

- Zig-zag motion is due to collisions or scattering with imperfections in the crystal.
- Net thermal velocity is zero.
- Mean time between collisions is $\tau_m \sim 0.1 \text{ps}$

Hot-point Probe can determine sample doing type

Hot-point Probe distinguishes N and P type semiconductors.

Thermoelectric Generator (from heat to electricity) and Cooler (from electricity to refrigeration)

2.2 Drift

The average velocity of the carriers is no longer zero when an electric E field is applied to the semiconductor. This nonzero velocity is called the **drift velocity**.

2.2.1 Electron and Hole Mobilities

• *Drift* is the motion caused by an electric field.

2.2.1 Electron and Hole Mobilities

The carrier loses its entire drift momentum after each collisions. The drift momentum gained between collisions is equal to the force

$$m_p v = q \mathbf{E} \, au_{mp}$$
 $au_p = \frac{q \, \mathbf{E} \, au_{mp}}{m_p}$ $au_n = \frac{q \, \mathbf{E} \, au_{mn}}{m_n}$

• μ_p is the hole mobility and μ_n is the electron mobility

2.2.1 Electron and Hole Mobilities

$$v = \mu \mathbf{E}$$
; μ has the dimensions of v/\mathbf{E} $\left[\frac{\text{cm/s}}{\text{V/cm}} = \frac{\text{cm}^2}{\text{V} \cdot \text{s}}\right]$.

Electron and hole mobilities of selected semiconductors

	Si	Ge	GaAs	InAs
$\mu_n (\text{cm}^2/\text{V·s})$	1400	3900	8500	30000
$\mu_p (\text{cm}^2/\text{V·s})$	470	1900	400	500

Based on the above table alone, which semiconductor and which carriers (electrons or holes) are attractive for applications in high-speed devices?

Drift Velocity, Mean Free Time, Mean Free Path

EXAMPLE: Given $\mu_p = 470 \text{ cm}^2/\text{V} \cdot \text{s}$, what is the hole drift velocity at $\mathbf{E} = 10^3 \text{ V/cm}$? What is τ_{mp} and what is the distance traveled between collisions (called the **mean free path**)? Hint: When in doubt, use the MKS system of units.

Solution:
$$v = \mu_p \mathbf{E} = 470 \text{ cm}^2/\text{V} \cdot \text{s} \times 10^3 \text{ V/cm} = 4.7 \times 10^5 \text{ cm/s}$$

$$\tau_{mp} = \mu_p m_p / q = 470 \text{ cm}^2/\text{V} \cdot \text{s} \times 0.39 \times 9.1 \times 10^{-31} \text{ kg/1.6} \times 10^{-19} \text{ C}$$

$$= 0.047 \text{ m}^2/\text{V} \cdot \text{s} \times 2.2 \times 10^{-12} \text{ kg/C} = 1 \times 10^{-13} \text{s} = 0.1 \text{ ps}$$

$$mean free path = \tau_{mh} v_{th} \sim 1 \times 10^{-13} \text{ s} \times 2.2 \times 10^7 \text{ cm/s}$$

$$= 2.2 \times 10^{-6} \text{ cm} = 220 \text{ Å} = 22 \text{ nm}$$

This is smaller than the typical dimensions of devices, but getting close.

2.2.2 Mechanisms of Carrier Scattering

There are two main causes of carrier scattering:

- 1. Phonon Scattering
- 2. Ionized-Impurity (Coulombic) Scattering

Phonon scattering mobility decreases when temperature rises:

Impurity (Dopant)-Ion Scattering or Coulombic Scattering

There is less change in the direction of travel if the electron zips by the ion at a higher speed.

$$\mu_{impurity} \propto rac{v_{th}^3}{N_a + N_d} \propto rac{T^{3/2}}{N_a + N_d}$$

Temperature Effect on Mobility

Question: What N_d will make

 $d\mu_n/dT = 0$ at room

temperature?

Velocity Saturation

- When the kinetic energy of a carrier exceeds a critical value, it generates an optical phonon and loses the kinetic energy.
- Therefore, the kinetic energy is capped at large \mathbf{E} , and the velocity does not rise above a saturation velocity, v_{sat} .

2.2.3 Drift Current and Conductivity

Hole current density

$$J_p = qpv$$

A/cm² or C/cm²·sec

EXAMPLE: If
$$p = 10^{15} \text{cm}^{-3}$$
 and $v = 10^{4} \text{ cm/s}$, then $J_{p} = 1.6 \times 10^{-19} \text{C} \times 10^{15} \text{cm}^{-3} \times 10^{4} \text{cm/s}$
= $1.6 \text{ C/s} \cdot \text{cm}^{2} = 1.6 \text{ A/cm}^{2}$

2.2.3 Drift Current and Conductivity

$$J_{p,drift} = qpv = qp\mu_p$$
E

$$J_{n,drift} = -qnv = qn\mu_n$$
E

$$J_{drift} = J_{n,drift} + J_{p,drift} = \sigma \mathbf{E} = (qn\mu_n + qp\mu_p)\mathbf{E}$$

 $\sigma = qn\mu_n + qp\mu_p$ $\sigma = qn\mu_n + qp\mu_p$

 $1/\sigma$ = is resistivity (ohm-cm)

Relationship between Resistivity and Dopant Density

EXAMPLE: Temperature Dependence of Resistance

- (a) What is the resistivity (ρ) of silicon doped with 10^{17} cm⁻³ of arsenic?
- (b) What is the resistance (R) of a piece of this silicon material $1 \mu m$ long and $0.1 \mu m^2$ in cross-sectional area?

Solution:

(a) Using the N-type curve in the previous figure, we find that $\rho = 0.084 \ \Omega$ -cm.

(b)
$$R = \rho L/A = 0.084 \Omega \cdot \text{cm} \times 1 \mu \text{m} / 0.1 \mu \text{m}^2$$

= $0.084 \Omega \cdot \text{cm} \times 10^{-4} \text{ cm} / 10^{-10} \text{ cm}^2$
= $8.4 \times 10^{-4} \Omega$

EXAMPLE: Temperature Dependence of Resistance

By what factor will R increase or decrease from T=300~K to T=400~K?

Solution: The temperature dependent factor in σ (and therefore ρ) is μ_n . From the mobility vs. temperature curve for 10^{17}cm^{-3} , we find that μ_n decreases from 770 at 300K to 400 at 400K. As a result, R **increases** by

$$\frac{770}{400} = 1.93$$

2.3 Diffusion Current

Particles diffuse from a higher-concentration location to a lower-concentration location.

2.3 Diffusion Current

$$J_{n,diffusion} = qD_n \frac{dn}{dx} \qquad J_{p,diffusion} = -qD_p \frac{dp}{dx}$$

D is called the diffusion constant. Signs explained:

Total Current – Review of Four Current Components

$$J_{TOTAL} = J_n + J_p$$

$$J_n = J_{n,drift} + J_{n,diffusion} = qn\mu_n \mathbf{E} + qD_n \frac{dn}{dx}$$

$$J_p = J_{p,drift} + J_{p,diffusion} = qp\mu_p \mathbf{E} - qD_p \frac{dp}{dx}$$

2.4 Relation Between the Energy Diagram and V, E

 E_c and E_v vary in the opposite direction from the voltage. That is, E_c and E_v are higher where the voltage is lower.

$$\mathbf{E}(x) = -\frac{dV}{dx} = \frac{1}{q} \frac{dE_c}{dx} = \frac{1}{q} \frac{dE_v}{dx}$$

2.5 Einstein Relationship between D and μ

Consider a piece of non-uniformly doped semiconductor.

Decreasing donor concentration

$$n = N_c e^{-(E_c - E_f)/kT}$$

$$\frac{dn}{dx} = -\frac{N_c}{kT} e^{-(E_c - E_f)/kT} \frac{dE_c}{dx}$$

$$E_c(x) = -\frac{n}{kT} \frac{dE_c}{dx}$$

$$E_f = -\frac{n}{kT} q \mathbf{E}$$

$$E_c(x) = -\frac{n}{kT} \mathbf{E}$$

$$E_f$$
 $E_{\nu}(x)$

2.5 Einstein Relationship between D and μ

$$\frac{dn}{dx} = -\frac{n}{kT}q\mathbf{E}$$

$$J_n = qn\mu_n\mathbf{E} + qD_n\frac{dn}{dx} = 0 \quad \text{at equilibrium.}$$

$$0 = qn\mu_n\mathbf{E} - qn\frac{qD_n}{kT}\mathbf{E}$$

$$D_n = \frac{kT}{q} \mu_n$$
 Similarly, $D_p = \frac{kT}{q} \mu_p$

These are known as the Einstein relationship.

EXAMPLE: Diffusion Constant

What is the hole diffusion constant in a piece of silicon with $\mu_p = 410 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$?

Solution:

$$D_p = \left(\frac{kT}{q}\right)\mu_p = (26 \,\text{mV}) \cdot 410 \,\text{cm}^2 \text{V}^{-1} \text{s}^{-1} = 11 \,\text{cm}^2/\text{s}$$

Remember: kT/q = 26 mV at room temperature.

2.6 Electron-Hole Recombination

- •The equilibrium carrier concentrations are denoted with n_0 and p_0 .
- •The total electron and hole concentrations can be different from n_0 and p_0 .
- The differences are called the *excess carrier* concentrations n' and p'.

$$n \equiv n_0 + n'$$

$$p \equiv p_0 + p'$$

Charge Neutrality

- •Charge neutrality is satisfied at equilibrium (n'=p'=0).
- When a non-zero *n* 'is present, an equal *p* 'may be assumed to be present to maintain charge equality and vice-versa.
- •If charge neutrality is not satisfied, the net charge will attract or repel the (majority) carriers through the drift current until neutrality is restored.

$$n'=p'$$

Recombination Lifetime

- •Assume light generates n and p. If the light is suddenly turned off, n and p decay with time until they become zero.
- •The process of decay is called *recombination*.
- •The time constant of decay is the *recombination* time or carrier lifetime, τ .
- •Recombination is nature's way of restoring equilibrium (n'=p'=0).

Recombination Lifetime

- τ ranges from 1ns to 1ms in Si and depends on the density of metal impurities (contaminants) such as Au and Pt.
- •These *deep traps* capture electrons and holes to facilitate recombination and are called *recombination centers*.

Direct and Indirect Band Gap

Direct band gap Example: GaAs

Direct recombination is efficient as k conservation is satisfied.

Indirect band gap Example: Si

Direct recombination is rare as k conservation is not satisfied

Rate of recombination (s⁻¹cm⁻³)

$$\frac{dn'}{dt} = -\frac{n'}{\tau}$$

$$n' = p'$$

$$\frac{dn'}{dt} = -\frac{n'}{\tau} = -\frac{p'}{\tau} = \frac{dp'}{dt}$$

EXAMPLE: Photoconductors

A bar of Si is doped with boron at 10^{15} cm⁻³. It is exposed to light such that electron-hole pairs are generated throughout the volume of the bar at the rate of 10^{20} /s·cm³. The recombination lifetime is 10μ s. What are (a) p_0 , (b) n_0 , (c) p', (d) n', (e) p, (f) n, and (g) the np product?

EXAMPLE: Photoconductors

Solution:

- (a) What is p_0 ? $p_0 = N_a = 10^{15} \,\text{cm}^{-3}$
- (b) What is n_0 ? $n_0 = n_i^2/p_0 = 10^5 \text{ cm}^{-3}$
- (c) What is p'?

 In steady-state, the rate of generation is equal to the rate of recombination.

$$10^{20}/\text{s-cm}^3 = p'/\tau$$

 $\therefore p' = 10^{20}/\text{s-cm}^3 \cdot 10^{-5}\text{s} = 10^{15} \text{ cm}^{-3}$

EXAMPLE: Photoconductors

- (d) What is n'? $n' = p' = 10^{15} \text{ cm}^{-3}$
- (e) What is p? $p = p_0 + p' = 10^{15} \text{cm}^{-3} + 10^{15} \text{cm}^{-3} = 2 \times 10^{15} \text{cm}^{-3}$
- (f) What is n? $n = n_0 + n' = 10^5 \text{cm}^{-3} + 10^{15} \text{cm}^{-3} \sim 10^{15} \text{cm}^{-3} \text{ since } n_0 << n'$
- (g) What is np? $np \sim 2 \times 10^{15} \text{cm}^{-3} \cdot 10^{15} \text{cm}^{-3} = 2 \times 10^{30} \text{ cm}^{-6} >> n_i^2 = 10^{20} \text{ cm}^{-6}.$ The np product can be very different from n_i^2 .

2.7 Thermal Generation

If n is negative, there are fewer electrons than the equilibrium value.

As a result, there is a net rate of *thermal generation* at the rate of $|n'|/\tau$.

2.8 Quasi-equilibrium and Quasi-Fermi Levels

• Whenever $n' = p' \neq 0$, $np \neq n_i^2$. We would like to preserve and use the simple relations:

$$n = N_c e^{-(E_c - E_f)/kT}$$

$$p = N_{v}e^{-(E_{f}-E_{v})/kT}$$

• But these equations lead to $np = n_i^2$. The solution is to introduce two *quasi-Fermi levels* E_{fn} and E_{fp} such that

$$n = N_c e^{-(E_c - E_{fn})/kT}$$

$$p = N_{v}e^{-(E_{fp}-E_{v})/kT}$$

Even when electrons and holes are not at equilibrium, within each group the carriers can be at equilibrium. Electrons are closely linked to other electrons but only loosely to holes.

EXAMPLE: Quasi-Fermi Levels and Low-Level Injection

Consider a Si sample with $N_d = 10^{17} \text{cm}^{-3}$ and $n' = p' = 10^{15} \text{cm}^{-3}$.

(a) Find
$$E_f$$
.
 $n = N_d = 10^{17} \text{ cm}^{-3} = N_c \exp[-(E_c - E_f)/kT]$
 $\therefore E_c - E_f = 0.15 \text{ eV}. \quad (E_f \text{ is below } E_c \text{ by } 0.15 \text{ eV}.)$

Note: n'and p'are much less than the majority carrier concentration. This condition is called **low-level** injection.

EXAMPLE: Quasi-Fermi Levels and Low-Level Injection

Now assume $n' = p' = 10^{15} \text{ cm}^{-3}$. (b) Find E_{fn} and E_{fp} .

$$n = 1.01 \times 10^{17} \text{cm}^{-3} = N_c e^{-(E_c - E_{fn})/kT}$$

$$E_c - E_{fn} = kT \times \ln(N_c/1.01 \times 10^{17} \text{cm}^{-3})$$
= 26 meV × ln(2.8×10¹⁹ cm⁻³/1.01×10¹⁷ cm⁻³)
= 0.15 eV

 E_{fn} is nearly identical to E_f because $n \approx n_0$.

EXAMPLE: Quasi-Fermi Levels

$$p = 10^{15} \text{ cm}^{-3} = N_{\nu} e^{-(E_{fp} - E_{\nu})/kT}$$

$$\therefore E_{fp} - E_{\nu} = kT \times \ln(N_{\nu}/10^{15} \text{cm}^{-3})$$

$$= 26 \text{ meV} \times \ln(1.04 \times 10^{19} \text{cm}^{-3}/10^{15} \text{cm}^{-3})$$

$$= 0.24 \text{ eV}$$

$$\frac{0.15 \text{ eV}}{E_{f} E_{fn}}$$

$$E_{c}$$

$$E_{f} E_{fn}$$

$$E_{\nu}$$

2.9 Chapter Summary

$$v_p = \mu_p \mathbf{E}$$
 $v_n = -\mu_n \mathbf{E}$ $J_{p,drift} = qp\mu_p \mathbf{E}$ $J_{n,drift} = qn\mu_n \mathbf{E}$

$$J_{n,diffusion} = qD_n \frac{dn}{dx}$$

$$J_{p,diffusion} = -qD_p \frac{dp}{dx}$$

$$D_n = \frac{kT}{q} \mu_n$$

$$D_p = \frac{kT}{q} \mu_p$$

2.9 Chapter Summary

 τ is the recombination lifetime. n and p are the excess carrier concentrations.

$$\begin{vmatrix}
n = n_0 + n' \\
p = p_0 + p'
\end{vmatrix}$$

Charge neutrality requires n'=p'.

rate of recombination =
$$n'/\tau = p'/\tau$$

 E_{fn} and E_{fp} are the quasi-Fermi levels of electrons and holes.

$$n = N_c e^{-(E_c - E_{fn})/kT}$$

$$p = N_v e^{-(E_{fp} - E_v)/kT}$$