Inteligência Artificial

Aula 08- Solução de Problemas (Busca com Informação -Algoritmos por Refinamentos Sucessivos)¹

Sílvia M.W. Moraes

Faculdade de Informática - PUCRS

March 29, 2017

¹Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores.

Sinopse

- Nesta aula, apresentamos uma introdução a solução de problemas por algoritmos de busca local por refinamentos sucessivos.
- Este material foi construído com base nos capítulos:
 - 4 do livro Artificial Intelligence a Modern Approach de Russel & Norvig
 - 4 do livro Inteligência Artificial de Luger.

Sumário

1 O que vimos ...

2 Algoritmos de Busca Local por Refinamentos Sucessivos

Aulas anteriores

- Agente Reativos e Cognitivos
- Solução de Problemas
 - Representação, Espaço de Estados, Plano: sequência de ações
 - Busca sem informação
 - Busca com informação
 - A*
 - Algoritmos de busca local por refinamentos sucessivos: Hill Climbing e Simulated Anneling

Algoritmo Genético: Introdução

- Como já vimos, algoritmos de busca por refinamento sucessivo partem de soluções propostas e tentam melhorá-las.
- Algoritmos Genéticos:
 - Métodos de otimização e busca inspirados nos mecanismos de evolução de populações de seres vivos.
 - Foram introduzidos por John Holland (1975) e popularizados por um dos seus alunos, David Goldberg (1989).
 - Seguem o princípio da seleção natural e sobrevivência (Charles Darwin - livro "A Origem das Espécies", 1859):
 - "Quanto melhor um indivíduo se adaptar ao seu meio ambiente, maior será sua chance de sobreviver e gerar descendentes".

Algoritmo Genético: Ciclo

• Ciclo de execução:

• Ciclo de execução:

- População Inicial: conjunto de soluções geradas aleatoriamente. Correponde à população da geração 0 (ponto de partida do algoritmo).
 - cada elemento da população é chamado de indivíduo ou cromossomo.
 - um cromossomo é formado por genes seqüências de DNA que servem para determinar as características da solução.
 - os cromossomos podem ser codificados em binário (mais tradicional), inteiro, real, alfabeto específico, ...
 - tamanho da população (número de soluções) é um parâmetro do algoritmo.

- Exemplo: Retomando o problema das 8 rainhas ...
 - Objetivo: Dispor as oito rainhas em um tabuleiro sem que uma ataque a outra.
 - Uma rainha ataca outra se esta estiver na mesma linha, coluna ou diagonal.

 Passo 1: Escolher a codificação mais indicada para o problema

• Binário: necessário 3 bits por rainha

Inteiro: valores de 0 a 7

- Passo 2: Definir o tamanho da população (número de individuos) e gerá-la aleatoriamente.
 - recomenda-se que a população inicial contenha soluções distintas (uma diferente da outra).
 - Exemplo: tamanho = 5

	Cromossomos										
0	0	2	2	4	0	5	3	6			
1	1	2	3	5	0	6	1	2			
2	0	3	3	5	7	4	3	5			
3	1	2	3	4	0	0	1	2			
4	7	3	4	4	5	5	6	2			

Algoritmo Genético: Cálculo da Aptidão

Ciclo de execução:

Algoritmo Genético: Cálculo da Aptidão

- Passo 3: Logo após a geração de uma população, verifica-se a aptidão dos cromossomos.
 - Aptidão: é determinada por uma função que diz o quanto os indivíduos são aptos. Ela mede a qualidade da solução.
 - Vamos usar a mesma função heurística h, usada nos exemplos anteriores, para calcular a aptidão
 - h: corresponde ao número de pares de rainhas que estão atacando umas às outras, seja direta ou indiretamente.
 - objetivo é h = 0, logo, quanto menor o valor de h melhor (índividuo mais apto).

Algoritmo Genético: Cálculo da Aptidão

 Cada um dos índivíduos da população é avaliado pela função de aptidão (h).

			Cr	omo	ssom	os			h
0	0	2	2	4	0	5	3	6	7
1	1	2	3	5	0	6	1	2	9
2	0	3	3	5	7	4	3	5	6
3	1	2	3	4	0	0	1	2	14
4	7	3	4	4	5	5	6	2	7

- Esse é o momento de analisarmos se o objetivo já foi alcançado.
 - Quando isso acontece, o algoritmo pára e apresenta o cromossomo que satisfaz o objetivo como solução final.
 - Caso contrário, inicia a seleção ...

Algoritmo Genético: Seleção

Ciclo de execução:

Algoritmo Genético: Seleção

- A partir desse ponto, inicia o processo de construção da população intermediária, ou seja, a população da próxima geração.
 - A seleção é o operador genético que escolhe indíviduos da população atual que serão usados para gerar a próxima população.
 - É projetada para escolher preferencialmente indivíduos de maior aptidão, embora não exclusivamente, a fim de manter a diversidade da população.
 - Há vários tipos de seleção. Eis alguns:
 - Seleção por elitismo: consiste em passar o melhor indíviduo da população atual diretamente para a próxima.
 - Seleção por torneio: é usada para selecionar os individuos da população atual com fins de cruzamento.

Algoritmo Genético: Seleção por Elitismo

- Passo 4: Aplicação da seleção por elitismo.
 - É recomendada pois melhora o desempenho do algoritmo por preservar a melhor solução encontrada até o momento.

População Atual

			С	romo	ssom	os			h
0	0	2	2	4	0	5	3	6	7
1	1	2	3	5	0	6	1	2	9
2	0	3	3	5	7	4	3	5	6
3	1	2	3	4	0	0	1	2	14
4	7	3	4	4	5	5	6	2	7

População Intermediária

	Cromossomos											
0 3 3 5 7 4 3												

Algoritmo Genético: Seleção por Torneio

- Passo 5: Aplicação da seleção por torneio para selecionar os indíviduos que serão cruzados.
 - A seleção por torneio binária é a mais usada e consiste em
 - escolher randomicamente dois indivíduos da população atual e escolher o melhor para ser o pai.
 - escolher randomicamente novamente dois indivíduos da população atual e escolher o melhor para ser a mãe.

Algoritmo Genético: Seleção por Torneio

				Pop	ulaç	ão A	tual					
			Cromossomos									
	0	0	0 2 2 4 0 5 3 6									
	1	1	2	3	5	0	6	1	2	9		
mãe	2	0	3	3	5	7	4	3	5	6		
	3	1	2	3	4	0	0	1	2	14		
pai	4	7	3	4	4	5	5	6	2	7		

- Seleção por torneio:
 - gera randomicamente: 1 e 4, escolhe 4 para ser o pai
 - gera randomicamente: 3 e 2, escolhe o 2 para ser a mãe
- O passo seguinte é o cruzamento ...

Algoritmo Genético: Crossover

Ciclo de execução:

Algoritmo Genético: Crossover

- Passo 6: Cruzamento dos indivíduos selecionados.
 - O operador genético crossover é responsável por
 - cruzar a carga genética dos indíviduos escolhidos pela seleção no passo anterior
 - gerar os indivíduos da próxima geração.
 - Há vários tipos de cruzamento:
 - n-ponto: consiste em cortar os cromossomos em n pontos.
 Quando n = 1, é chamado de uniponto. Para diferentes valores de n é chamado de multiponto.
 - uniforme: aplica uma máscara binária que determina como os genes serão misturados para formar os filhos.

Algoritmo Genético: Crossover uniponto

- No cruzamento uniponto:
 - escolhe-se o ponto de corte aleatoriamente.
 - para formar o filho1, unimos o inicio da mãe com o final do pai.
 - para formar o filho2, unimos o inicio do pai com o final da mãe.

Algoritmo Genético: Crossover uniponto

- Os indivíduos gerados (filhos) são colocados na população intermediária.
- O processo de seleção e cruzamento (passos 4 e 5) devem ser repetidos até completar a população.
 - Observação: toda a população tem sempre a mesma quantidade de elementos.

População Intermediária

	Cromossomos											
0 3 3 5 7 4 3 5												
0	3	3	4	5	5	6	2					
7	3	4	5	7	4	3	5					

Algoritmo Genético: Crossover multiponto

- Exemplo de cruzamento n-ponto, para n=2.
 - Os pontos de corte são escolhidos aleatoriamente.
 - É mais interessante para cromossomos longos.

Algoritmo Genético: Crossover uniforme

- No cruzamento uniforme, é necessário inicialmente gerar uma máscara binária.
 - A máscara determina como os genes deve ser copiados para formar os filhos.
 - Filho1: contém os genes do pai cuja posição na máscara é 1 e os genes da mãe cuja posição na máscara é 0.
 - Filho2: o oposto.

O próximo passo é a mutação ...

Filho

Filho

Algoritmo Genético: mutação

• Ciclo de execução:

Algoritmo Genético: mutação

- Passo 7: Aplicação da operação de mutação
 - O operador genético mutação consiste em uma mudança genética em cromossomos da população.
 - A taxa de mutação deve ser baixa.
 - Escolhe randomicamente um dos filhos récem gerados pelo cruzamento e um dos seus genes para mutar.
 - Substitui o gene escolhido por outro, também gerado aleatoriamente.

Algoritmo Genético: mutação

• Exemplo:

• Indivíduo escolhido aleatoriamente: 2

Gene escolhido aleatoriamente: 4 (posição)

Antes

População Intermediária

	Cromossomos										
0	0	3	3	5	7	4	3	5			
1	0	3	3	4	5	5	6	2			
2	7	3	4	5	7	4	3	5			
3											
4											

Depois

População Intermediária

	Cromossomos											
0 3 3 5 7 4 3 5												
0	3	3	4	5	5	6	2					
7	3	4	5	0	4	3	5					

Algoritmo Genético: Critérios de Parada

- Uma vez preenchida a população intermediária,
 - ela se transforma na população atual (geração+1) e
 - o ciclo reinicia no passo 3.

Critérios de parada

- solução ótima
- número de gerações
- convergência: 98 a 99% dos índividuos representam a mesma solução.

Algoritmo Genético: Terminologia Básica

- genótipo ou cromossomo ou individuo :
 - um elemento da população (uma solução possivel)
 - estrutura de dados que contém uma solução codificada para o problema. Ex: 0 1 0 0
- fenótipo cromossomo decodificado. Ex: 4
- gene representação de cada parâmetro conforme o alfabeto utilizado (binário, inteiro ou real) Ex: célula
- alelos valores de um gene. Ex: {0,1}

Algoritmo Genético: Terminologia Básica

- população conjunto de pontos (indivíduos/soluções) no Espaço de Busca
- geração iteração (ciclo) responsável por gerar uma nova população
- aptidão bruta valor da função de aptidão para um indivíduo da população
- aptidão máxima melhor indivíduo da população corrente
- aptidão média aptidão média da população corrente

Algoritmo Genético: Dicas

- Contribuem para resultados melhores:
 - Incluir na na população inicial uma solução obtida por outro método (o AG tende a melhorar tal solução);
 - Garantir diversidade na geração da população inicial.
 - Iniciar com uma população inicial relativamente gerande e reduzi-la com o tempo.
 - Usar de elitismo

Algoritmo Genético: exercícios

- Atividade I: Um projeto possui 10 tarefas que precisam ser distribuidas entre 2 pessoas da equipe. Para cada tarefa foi estimado o número de horas necessário para concluí-la.
 - Ocomo poderíamos realizar a distribuição de tarefas entre as duas pessoas de forma harmônica?
 - Para responder à questão, considere as tarefas e sua carga (em horas);

t	1	t2	t3	t4	t5	t6	t7	t8	t9	t10
5	5	10	15	3	10	5	2	16	9	7

- 2 Como poderiamos codificar as soluções ?
- Oefina uma função objetivo (de avaliação/aptidão) adequada para o problema.
- Se a distribuição de tarefas fosse para n pessoas, a função definida no item 2 poderia ser generalizada para n? (Sim. Como? / Não. Defina uma nova função.)

Algoritmo Genético: exercícios

- Atividade II:Desenvolver um AG para descobrir um frase informada pelo usuário.
 - Representação do Cromossomo em ASCII.
 - Exemplo "Familia" = (102,97,109,105,108,105,97)
 - Espaço de busca: Considerando que existem 26 letras maiusculas/minusculas + espaço em branco, uma frase de comprimento N terá um espaço de busca de $(26+26+1)\times N$, ou seja, $53\times N$.
 - Teste as funções objetivo:

$$f_1 = \sum_{\substack{i=1\\ \text{fraseUsuario}|\\ \text{f}_2 = \sum_{\substack{i=1\\ \text{i}=1}}^{|\text{fraseUsuario}|} 1 - \text{sinal}(\text{fraseUsuario}[i] - \text{cromossomo}[i])^2$$

$$onde \ sinal(x) = \begin{cases} 1 & \text{se} \quad x = 0\\ 0 & \text{se} \quad x \neq 0 \end{cases}$$