Introduction to Group Theory: Summary

Based on the lectures of Florian Naef David Lawton 22337087

20th May 2024.

Contents

1	Lecture 1: Definitions & Examples		
2	Lecture 2: Integers Modulo n and the Quaternion Group2.1 Integers Modulo n: $\mathbb{Z}/n\mathbb{Z}$	4 4 5	
3	Lecture 3: Generators-Relations	6	
4	Lecture 4: Symmetric Group	7	
5	Lecture 5: The Category of Groups.	8	
6	Lecture 6: Group Actions	10	
7	Lecture 7: Subgroups	12	
8	Lecture 8: Cyclic Groups and Subgroups. 8.1 Cyclic Groups	13 13 15	
9	Lecture 9: Euclidean Algorithm	16	
10	Lecture 10: Subgroups of Finite Cyclic Groups	18	

1 Lecture 1: Definitions & Examples

Definition 1.1. A **group** is pair (G, m) such that G is a **set** and $m : G \times G \to G$ is a mapping from G to itself s.t.

- G is associative under m, ie. $m(a,(b,c)) = m((a,b),c) \ \forall \ a,b,c \in G$.
- G has a unit, ie. $\exists e \in G$ s.t. $m(e,g) = m(g,e) = g \ \forall g \in G$.
- Each element of G has an inverse, ie. $\forall a \in G, \exists b \in G \text{ s.t. } m(a,b) = m(b,a) = e.$

Remark. We usually write m(a,b) as a*b, $a \cdot b$, or ab. Associativity becomes a(bc) = (ab)c. We also write the inverse of element a as a^{-1} .

The notation (G, m) is rewritten simply as G for convenience.

Example.

- 1. $G = \{e\}$ (Trivial group)
- 2. $(\mathbb{Z},+)$, e=0, $a^{-1}=-a$ (Integers under addition)
- 3. $(\mathbb{Q}, +)$ (Rational numbers under addition)¹
- 4. $(\mathbb{Q}^x = \mathbb{Q} \setminus \{0\}, *), e = 1, a^{-1} = \frac{1}{a}$
- 5. $GL(n,\mathbb{R}) = \{n \times n \text{ matrix } A \text{ with entries in } \mathbb{R} | \det A \neq 0\}, e = \mathbb{I}, A^{-1} = A^{-1} \text{ (General linear group)}$
- 6. $S(X) = \{f : X \times X \to X | f \text{ bijective} \}, e = Id_X, f^{-1} = f^{-1}$

Definition 1.2. A group is **abelian** if all elements of the set are commutative under the mapping, ie. for group G = (G, m), $ab = ba \ \forall \ a, b \in G$. Note: a * b often written as a + b for abelian groups.

Proposition 1.1. For any group the following is true.

- 1. The unit is unique
- 2. For each $a \in G$, a^{-1} is uniquely determined.
- 3. $(a^{-1})^{-1} = a$
- 4. $(ab)^{-1} = b^{-1}a^{-1}$
- 5. For any $a_1, ..., a_n$, the value of $a_1 \cdot ... \cdot a_n$ is independent of bracketing.

Proof. Each numbered proof correspond to the respective number in the proposition.

- 1. Suppose e, e' are both units of group G. Then e = e'e = e'. \square
- 2. Given $a \in G$, suppose $\exists b_1, b_2 \in G$ s.t. they both satisfy the conditions of the inverse of a. Then $b_1 = b_1 e = b_1 (ab_2) = (b_1 a)b_2 = eb_2 = b_2$. \square

¹For any field F, (F, +) and $(F \setminus \{0\}, *)$ are groups.

 $^{^{2}}$ 1, 2, 3 abelian. 4, 5 generally non-abelian ($n \geq 2$ in 4, $|X| \geq 3$ in 5.)

- 3. Let $b = (a^{-1})^{-1}$, therefore $ba^{-1} = e = a^{-1}b$. a satisfies this, and since the inverse is uniquely determined, $a = b = (a^{-1})^{-1}$.
- 4. $ab(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aa^{-1} = e$. Similar for $(b^{-1}a^{-1})ab$. Therefore $b^{-1}a^{-1}$ satisfies the conditions of the inverse of ab, and is therefore equal to $(ab)^{-1}$ since the inverse is uniquely determined.
- 5. Proof by induction. Let $f(a_1, ..., a_n)$ be a bracketing of $a_1, ..., a_n$. Define $f(a_1, ..., a_n) = (a_1(...(a_{n-1}a_n)...)) := m_n(a_1, ..., a_n)$.

Induction on n:

$$n = 1, 2$$
: $m(a_1) = a_1$, $m_2(a_1, a_2) = m(a_1, a_2)$.
 $n \ge 3$: $f = m(f_1(a_1, ..., a_k), f_2(a_{k+1}, ..., a_n))$.

By ind. hyp. $f_1 = m_k$, $f_2 = m_{n-k}$.

It remains to show that $m(m_k, m_{n-k}) = m_n \ \forall \ k$.

$$k = 1 : m(a_1, m_{n-1}(a_2, ..., a_n)) = m_n(a_1, ..., a_n).$$

$$k > 1 : m(m_k(a_1, ..., a_k), m_{n-k}(a_{k+1}, ..., a_n)) = m(m(a_1, m_{k-1}(a_2, ..., a_k)), m_{n-k}(a_{k+1}, ..., a_n)).$$

$$= m(a_1, m(m_{k-1}(a_2, ..., a_k), m_{n-k}(a_{k+1}, ..., a_n))) \text{ by associativity.}$$

$$= m(a_1, m_{n-1}(a_2, ..., a_n)) = m_n(a_1, ..., a_n)$$

Remark. Either of left or right inverse, uniquely characterise a^{-1} .

Proposition 1.2. Left and right cancellation hold in any group.

$$ax = ay : x = y$$
 (1)

$$xa = ya : x = y \tag{2}$$

Proof. Multiply by a^{-1} from left, right respectively.

Remark. Let (G, m), $m: G \times G \to G$ satisfy:

• m(a, m(b, c)) = m(m(a, b), c) (Associativity)

- $\exists e \in G \text{ s.t. } m(e,q) = q, \ \forall \ q \in G. \text{ (Left-unit)}$
- $\forall a \in G, \exists b \in G \text{ s.t. } m(b,a) = e. \text{ (Left-inverse)}$

then (G, m) is a group.

Notation.

$$x^{n} = x \cdot (x, n-2 \text{ times}) \cdot x, \ x^{-n} = x^{-1} \cdot (x^{-1}, n-2 \text{ times}) \cdot x^{-1}$$
 (3)

$$n \cdot x = x + x + x + \dots + x, -n \cdot x = (-x) + (-x) + (-x) + \dots + (-x)$$
 (For abelian) (4)

Definition 1.3. The order of $x \in G$ is the smallest $n \in \mathbb{Z}^+$ s.t. $x^n = e$. The order is denoted |x| = n.

Example. • $G = \mathbb{C}^{\times}, x = i, |x| = 4.$

•
$$G = GL(2, \mathbb{R}), x = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}, |x| = 6$$

2 Lecture 2: Integers Modulo n and the Quaternion Group

2.1 Integers Modulo n: $\mathbb{Z}/n\mathbb{Z}$

Definition 2.1. Let $a, b \in \mathbb{Z}$. We say a, b have the same residue mod n, and write $a \equiv b \pmod{n}$ if $\exists k \in \mathbb{Z}$ s.t. $a - b = k \cdot n$.

Given $a \in \mathbb{Z}$ denote by

$$\bar{a} = \{ b \in \mathbb{Z} | b \equiv a \pmod{n} \}$$
$$= \{ a + kn \in \mathbb{Z} | k \in \mathbb{Z} \} \subseteq \mathbb{Z}$$

and define

$$\mathbb{Z}/n\mathbb{Z} = \{ \bar{a} \subseteq \mathbb{Z} | a \in \mathbb{Z} \} \tag{5}$$

Lemma 2.1. • $a \equiv b \pmod{n} \Leftrightarrow \bar{a} = \bar{b}$

•
$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, ..., \overline{n-1}\}$$

Proof.

$$a \equiv b \pmod{n} \Rightarrow a = b + k \cdot n$$

$$\Rightarrow b = a - k \cdot n = a + l \cdot n, \ l \in \mathbb{Z}$$

$$\Rightarrow b = a \pmod{n}$$

$$\begin{split} \mathbb{Z}/n\mathbb{Z} &= \{\bar{a} \subseteq \mathbb{Z} | a \in \mathbb{Z} \}, \ \bar{a} = \{a + kn \in \mathbb{Z} | k \in \mathbb{Z} \} \\ &\Rightarrow \ \forall \ a < n, \ \bar{a} = \{a + kn \in \mathbb{Z} | k \in \mathbb{Z} \}, \\ &\forall \ a \geq n, \ \bar{a} = \{n + b + kn \in \mathbb{Z} | k \in \mathbb{Z}, a = n + b \} \\ &= \{b + (k+1)n | k \in \mathbb{Z} \} = \bar{b} \end{split}$$

$$\begin{array}{l} \Rightarrow \ \forall \ a \geq n, \ \bar{a} = \overline{a-n} \\ \\ \Rightarrow \ \mathbb{Z}/n\mathbb{Z} = \{ \bar{a} \subseteq \mathbb{Z} | a \in \mathbb{Z}, \ a < n \} = \{ \bar{0}, \bar{1}, ..., \overline{n-1} \} \end{array}$$

Proposition 2.2. The assignment $m(\bar{a}, \bar{b}) = \overline{a+b}$ is well defined, and $(\mathbb{Z}/n\mathbb{Z}, m)$ is an abelian group.

Proof. Let $\bar{a_1} = \bar{a_2}$, $\bar{b_1} = \bar{b_2}$, this implies that $a_1 \equiv a_2 \pmod{n}$, $b_1 \equiv b_2 \pmod{n}$. It is then necessary that $a_1 + b_1 = a_2 + b_2 \pmod{n}$. Thus $\overline{a_1 + b_1} = \overline{a_2 + b_2}$, and so m is well defined.

It remains to show that $(\mathbb{Z}/n\mathbb{Z}, m)$ is a group. Therefore we must show that it is associative, and contains a left-unit, and left-inverse.

Let $G = (\mathbb{Z}/n\mathbb{Z}, m)$. For $a, b, c \in G$,

$$m(a,b) = a + b, \ m(b,c) = b + c$$

 $\Rightarrow m(a, m(b,c)) = a + b + c = m(m(a,b),c),$

therefore G is associative.

To show the existence of the left-unit, we must show there exists $e \in G$ s.t. $e+g=g \ \forall \ g \in G$. For $m(\bar{a},\bar{b})=\overline{a+b}=\bar{b}$, where $\bar{a},\bar{b}\in G$, it is clear from this that $a=k\cdot n$ for some $k\in\mathbb{Z}$. Therefore a=0 (mod n). This implies that $\bar{a}=\bar{0}$. Therefore $\bar{0}$ is the left-unit of G (and consequently right-unit as abelian).

To show the existence of the left-inverse, we must show that $\forall a \in G, \exists b \in G \text{ s.t. } m(a,b) = e.$ If

 $m(\bar{a}', \bar{b}') = \bar{0}$, then $a' = -b' \pmod{n}$. Therefore, $a' = n - b' \pmod{n}$, which implies that $\bar{a} = \overline{n - b'}$. Hence, $\forall \bar{g} \in G, \bar{g}^{-1} = \overline{n - g}$.

 $G=(\mathbb{Z}/n\mathbb{Z},m)$ then satisfies all the required conditions of <u>a group</u>. To show that G is abelian, one must only note that a+b=b+a \forall $a,b\in\mathbb{Z}$ which implies that $\overline{a+b}=\overline{b+a}$, and consequently $m(\bar{a},\bar{b})=m(\bar{b},\bar{a})$ $\forall \bar{a},\bar{b}\in G$.

Notation. We write $a = \bar{a}$, for example, in $\mathbb{Z}/5\mathbb{Z}$, we write 2 + 3 = 0.

Lemma 2.3. $1 \in \mathbb{Z}/n\mathbb{Z}$ has order n.

Proof.

$$n \cdot 1 = n = 0$$

$$k \cdot 1 = k \neq 0, \text{ for } 0 < k < n$$

2.2 Quaternion Group

Let $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$, with $m: Q_8 \times Q_8 \to Q_8$ given by:

$$i^{2} = j^{2} = k^{2} = -1$$

 $ij = k, ki = j, jk = i$
 $ji = -k, ik = -j, kj = -i$

where signs manipulate as expected.

Proposition 2.4. (Q_8, m) is a group.

Proof. Simple to show associativity, left-unit, left-inverse. Not done here.

3 Lecture 3: Generators-Relations

Given a set $r_1, r_2, r_3, ..., r_l$ of words (relations) in $g_1^{\pm}, g_2^{\pm}, ..., g_k^{\pm}$ (generators). We can define a group

$$G = \langle g_1, ..., g_k | r_1, ..., r_l \rangle \tag{6}$$

This is called the presentation of a group. We will define the group more precisely later.

Elements of G are words (combinations) of $g_1^{\pm}, g_2^{\pm}, ..., g_l^{\pm}$ under the equivalence relation given by

- removing/adding $g_i g_i^{-1}, g_i^{-1} g_i, e$,
- replacing an occurrence of r_i with e.

Example. Dihedral Group

$$D_{2n} = \langle r, s | r^n = s^2 = (sr)^2 = e \rangle \tag{7}$$

Let w try to enumerate all the elements of D_{2n} : If f is any word in r^{\pm} , s^{\pm} , use $r^{-1} = r^{n-1}$ and $s^{-1} = s$ to get a word in r, s. Since $s^2 = e$, we can assume

$$f = r^{i_1} s r^{i_2} s \dots s r^{i_l}, \ i_j > 0 \tag{8}$$

and then use $sr = (sr)^{-1} = r^{-1}s^{-1} = r^{n-1}$ to move the terms around and reach the form $f = sr^i$ or $f = r^i$.

$$\Rightarrow D_{2n} = \{e, r, ..., r^{n-1}, s, rs, ..., r^{n-1}s\}$$
(9)

These elements are not necessarily distinct.

 D_{2n} is the group of symmetries on a regular n-gon. D_{2n} can be realised as

$$r = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}, \ \theta = \frac{2\pi}{n}, \ s = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
 (10)

Remark.

- $G = \langle \text{gen.} | \text{rel.} \rangle$ is always a group.
- Generally, it is difficult to decide for $x \in G$, if x = e.

4 Lecture 4: Symmetric Group

The symmetric group is the group of bijective maps from a set of n elements to the its These map between permutations of these n elements.

$$S_n = \{ \sigma : \{1, 2, ..., n\} \to \{1, 2, ..., n\} | \sigma \text{ bij.} \}$$
 (11)

Each element of S_n can be written in the form of the permutation it maps the original set to, ie. $(\sigma(1), ..., \sigma(n))$.

$$\sigma = \begin{pmatrix} 2 & 1 & 3 \end{pmatrix} \in S_3 \text{ or } \sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \in S_3. \tag{12}$$

as well as this these maps can be decomposed into cycles. For example,

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 45 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix} \in S_5$$
$$1 \to 3 \to 5 \to 1, \ 2 \to 4 \to 2$$
$$\Rightarrow \sigma = \begin{pmatrix} 1 & 3 & 5 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix}$$

this is called cycle decomposition.

Definition 4.1. Given $a_1, a_2, ..., a_l \in \{1, ..., n\}$, all distinct, we define an 'l-cycle': $S_n \ni \sigma := (a_1 \quad ... \quad a_l)^3$ by the formula

$$\sigma(x) = \begin{cases} a_{j+1} & \text{, if } x = a_j \\ x & \text{, else} \end{cases}$$
 (13)

Lemma 4.1. Let $\sigma = (a_1 \ a_2 \ ... \ a_l)$ and $\tau = (b_1 \ b_2 \ ... \ b_k)$ be such that $\{a_1, a_2, ..., a_l\} \land \{b_1, b_2, ..., b_k\} = \emptyset$. Then $\sigma \cdot \tau = \tau \cdot \sigma$.

Proof. Since the two sets, $A = \{a_1, a_2, ..., a_l\}$, $B = \{b_1, b_2, ..., b_k\}$ are disjoint, $\sigma(b_i) = b_i, \tau(a_i) = a_i$ and $\sigma(x) = \tau(x) = x \ \forall \ x$ not in A, B. Therefore it follows that $\sigma \cdot \tau(b_i) = \tau \cdot \sigma(b_i) = b_{i+1}, \ \sigma \cdot \tau(a_i) = \tau \cdot \sigma(a_i) = a_{i+1},$ and $\sigma \cdot \tau(x) = \tau \cdot \sigma(x) = x \ \forall \ x$ not in A, B. Therefore $\forall \ g \in \{1, ..., n\}, \tau \cdot \sigma = \sigma \cdot \tau$.

Proposition 4.2. Every $\sigma \in S_n$ admits a decomposition into disjoint cycles.

Proof. For some $\sigma \in S_n$, and $i \in \{1, ..., n\}$ be s.t. $i = \min\{j \in \{1, ..., n\} | \sigma(j) \neq j\}$. For some l_1, l_2 , we have $\sigma^{l_1}(i) = \sigma^{l_2}(i)$. Therefore, $\sigma^{l_1-l_2}(i) = i$, and w.l.o.g. $l = l_1 - l_2 > 0$. Set $\sigma = \begin{pmatrix} i & f(i) & ... & f^{l-1}(i) \end{pmatrix}$. The proof is continued by replacing σ with $\sigma_1^{-1} \cdot \sigma$, and $i = \min\{j \in \{1, ..., n\} | \sigma(j) \neq j\}$ with $i = \min\{j \in \{1, ..., n\} | \sigma_1^{-1} \cdot \sigma(j) \neq j\}$ and repeating.

Remark. Not every product of cycles is a cycles decomposition. ie. If the cycles are not disjoint.

 $^{^3(}a_1 \quad a_2 \quad \dots \quad a_l) = (a_2 \quad \dots \quad a_l \quad a_1)$

5 Lecture 5: The Category of Groups.

Consider $G = \{e, a, b, c\}$ with multiplication.

Note that if we assign a=2, b=1, c=3 this 'is' (isomorphic to, this will be defined later) $\mathbb{Z}/4\mathbb{Z}$.

Definition 5.1. Let G, H be groups. A group **homomorphism** is a map $\varphi : G \to H$ s.t.

$$\varphi(a \cdot_G b) = \varphi(a) \cdot_H \varphi(b) \tag{15}$$

 $(\cdot_G, \cdot_H \text{ denote the binary maps of } G, H \text{ respectively.})$

Definition 5.2. If group homomorphism φ is a bijection, then it is called a **group isomorphism**. In this case G, H are **isomorphic**.

Proposition 5.1. Let $\varphi: G \to H$ be a group homomorphism. Then

1.
$$\varphi(e_G) = e_H$$

2.
$$\varphi(a^{-1}) = \varphi(a)^{-1}$$

Proof. From the definition of a group homomorphism:

$$\varphi(e_G \cdot_G b) = \varphi(e_G) \cdot_H \varphi(b)$$
$$= \varphi(b)$$

This implies

$$\varphi(b) = \varphi(e_G) \cdot_H \varphi(b)$$

which can only be true if

$$\varphi(e_G) = e_H \tag{16}$$

proving the first condition. The second condition begins in a similar way, from the definition of a group homomorphism we know

$$\varphi(a \cdot_G a^{-1}) = \varphi(a) \cdot_H \varphi(a^{-1})$$

but

$$\varphi(a \cdot_G a^{-1}) = \varphi(e_G) = e_H$$

$$\Rightarrow \varphi(a) \cdot_H \varphi(a^{-1}) = e_H$$

$$\Rightarrow \varphi(a^{-1}) = \varphi(a)^{-1}$$

Definition 5.3. |G| is called the **order** of G. This is defined as the number of elements in the group for a finite group (group in which the underlying set is finite) or infinity for a non-finite group.

Proposition 5.2. Let G be a group of order 2. Then $G \cong \mathbb{Z}/2\mathbb{Z}$ (Isomorphic)

Proof. G group $\Rightarrow \exists e \in G$, and $a \in G$ s.t $a \neq e$. Define map $\varphi : \mathbb{Z}/n\mathbb{Z} \to G$.

$$0 \mapsto e$$
$$1 \mapsto a$$

We must then check that $\varphi(x+y) = \varphi(x)\varphi(y) \; \forall \; , y \in \digamma/n\mathbb{Z}$:

x	y	
0	0	Trivially true
1	1	$\varphi(1+1) = \varphi(0) = e$
		$\varphi(1)\varphi(1)=a^2$
		Only true if $a^2 = e$, which must be true since $a^2 = a$ implies $a = e$.
0	1	True since $\varphi(1) = a$, $e\varphi(1) = a$
1	0	True since $\varphi(1) = a$, $e\varphi(1) = a$

Proposition 5.3.

- 1. Let $f: H \to K$, $g: G \to H$ be group homomorphisms, then so is $f \circ g$.
- 2. Let $f: H \to K$ be a group isomorphism, then so is f^{-1} .

Proof.

- 1. $(f \circ g)(ab) = f(g(ab) = f(g(a)g(b)) = f(g(a))f(g(b)) = (f \circ g)(a)(f \circ g)(b)$ Therefore $f \circ g$ satisfies the condition of a group homomorphism.
- 2. $f(f^{-1}(ab)) = ab = f(f^{-1}(a))f(f^{-1}(b))$, then since f is injective, f(p) = f(q) implies p = q. Therefore $f^{-1}(ab) = f^{-1}(a)f^{-1}(b)$, and f^{-1} is then a group homomorphism.

6 Lecture 6: Group Actions

Definition 6.1. A group action of a group G on a set X is a map $G \times X \to X$ written as $(g, x) \mapsto g.x$ s.t.

- $\bullet \ g_1 \cdot (g_2 \cdot x) = (g_1 g_2) \cdot x$
- $\bullet \ e \cdot x = x$

We sometimes write $G \circlearrowright X$.

A map of sets $G \times X \to X$ can be equivalently given by

$$G \to^{\rho} \{f : X \to X\}$$

 $g \mapsto \rho(g)$

where $\rho(g)(x) = g \cdot x$.

Proposition 6.1. A map $G \times X \to X$ defines a group action iff⁴ the corresponding map $G \to^{\rho} \{f : X \to X\}$ is s.t. $\rho(g) \in S_X \ \forall \ g \in G \ and \ \rho : G \to S_X \ is a group homomorphism.⁵$

Proof.

$$\rho(g_1)(\rho(g_2)(x)) = \rho(g_1g_2)(x) \iff \rho(g_1) \circ \rho(g_2) = \rho(g_1g_2)$$
$$\iff \rho(e) = \mathrm{id}_X$$

"
$$\Rightarrow$$
 " : $\rho(g) \circ \rho(g^{-1}) = \rho(gg^{-1}) = \rho(e) = \mathrm{id}_X \Rightarrow \rho(g) \text{ surj.}^6$
 $\rho(g^{-1}) \circ \rho(g) = \rho(g^{-1}g) = \mathrm{id}_X \Rightarrow \rho(g) \text{ inj.}^7$

This implies that $\rho(g) \in S_X$, as the requirement is that the map is bijective. Since the first line, at the start of the proof, is true for any for any group action, this implies that $\rho: G \to S_X$ is a group homomorphism. Then, since all steps taken are reversible, the same process can be taken in reverse to show the bijectivity of $\rho(g)$, and ρ being a group homomorphism, implies that the map $G \times X \to X$ is a group action, proving " \Leftarrow ".

Example.

1. Trivial action: For any X, we define $G \times X \to X$ s.t. $(g, x) \mapsto x$.

2. Defining action of S_X on $X: S_X \times X \to X$, $(\sigma, x) \mapsto \sigma(x)$. We can claim that the map ρ from above is in this scenario id: $S_X \to S_X$.

3. G acting on itself by

$$\rho_l: G \times G \to G \qquad (g, x) \mapsto gx
\rho_r: G \times G \to G \qquad (g, x) \mapsto xg^{-1}
\rho_{adj.}: G \times G \to G \qquad (g, x) \mapsto gxg^{-1}$$

Called **left regular action**.

Called **right regular action**. Verification of each as a group Called **adjoint action**.

⁴If and only if

 $^{{}^{5}}S_{X}$ is the symmetric group on set X

⁷Maps are surjective if and only if a right inverse exists for each element. Maps are injective if and only if a left inverse exists for each element.

action:

$$\rho_l$$
 :

We can let the map corresponding to $\rho_l, \phi: G \to \{f: X \to X\}$ be s.t. $\phi(g)(x) = gx$.

Then
$$\phi(g_1)(\phi(g_2)(x)) = \phi(g_1)(g_2x) = g_1g_2x = \phi(g_1g_2)(x)$$
.
 $\Rightarrow \phi(g_1) \circ \phi(g_2) = \phi(g_1g_2), \phi(e) = e$

As in the above proof, this implies both left and right inverses therefore $\rho_l \in S_X$

 ρ_r :

Analogous to ρ_l

 $\rho_{adj.}$:

Similar to ρ_l , define $\phi(g)(x) = gxg^{-1}$. Then $\phi(g_1)(\phi(g_2)(x)) = \phi(g_1)(g_2xg_2^{-1})$ = $g_1g_2xg_2^{-1}g_1^{-1} = (g_1g_2)x(g_1g_2)^{-1} = \phi(g_1g_2)(x)$. $\Rightarrow \phi(g_1) \circ \phi(g_2) = \phi(g_1g_2), \phi(e) = e$

Same conclusion can be drawn as in the case of ρ_l .

4. $D_{2n} \times \{1, ..., n\} \rightarrow \{1, ..., n\}$:

$$(r^i, j) \mapsto i + j \mod n$$

 $(r^i s, j) \mapsto i - j \mod n$

Figure 1: Illustration of the action of the D_{12} group on the set $\{1,...,n\}$. The element s of D_{2n} reflects across the vertical, and the element r rotates by $\frac{2\pi}{n}$ in the anti-clockwise direction.

7 Lecture 7: Subgroups

Definition 7.1. A subset $H \leq G$ of a group (G, m) is a **subgroup** if the restriction of m to $H \times H$ turns H into a group. We write $H \leq G$ in that case.

Remark. To specify, H is required to have contain the unit, inverses and be associative, it is also required to have closure under m. That is to say $\forall a, b \in H, m(a, b) \in H$.

Proposition 7.1. $H \subseteq G$ is a subgroup iff

" \Rightarrow ": $H < G \Rightarrow \exists e \in H \text{ s.t. } ea = a \forall a \in H.$

- H is non-empty.
- if $a, b \in H$, $ab^{-1} \in H$.

Proof.

```
∴ H non-empty.

H \leq G \Rightarrow \forall b \in H, \exists c \in H \text{ s.t. } bc = e \ (c = b^{-1})

∴ \forall a, b \in H, m(a, b^{-1}) = ab^{-1} \in H \text{ due to closure under } m

" \Leftarrow ": As a subset of G, associativity implied.

H non-empty ∴ \exists h \in H. Second condition implies aa^{-1} \in H \Rightarrow e \in H. (unit exists) w.l.o.g. we can impose that the subset H is not the trivial group, ie. H \neq (\{h = e\}, m), \Rightarrow \exists h \in H \text{ s.t. } h \neq e. \Rightarrow eh^{-1} = h^{-1} \in H \text{ (inverses exist)} for any 2 elements a, b \in H, ab^{-1} \in H \text{ and } b^{-1} \Rightarrow a, b^{-1} \in H \text{ so } ab \in H \text{. (closure)}
```

Example.

- 1. Every group G has a trivial subgroup, $(\{e\}, m) \leq G$, and an improper subgroup, $G \leq G$.
- 2. $n\mathbb{Z} = \{nk | k \in \mathbb{Z}\} \subseteq \mathbb{Z} \text{ is a subgroup of } (\mathbb{Z}, +).$
- 3. Given $x \in G$, $\langle x \rangle = \{x^n | n \in \mathbb{Z}\} \subseteq G$ is the subgroup of G generated by x.
- 4. Let $G \times X \to X$ be a group action, and $s \in X$. The **stabilizer of** s, $G_s := \{g \in G | g \cdot s = s\}$, forms a subgroup of G.

- 5. Let $\varphi: G \to H$ be a group homomorphism. Then
 - $\ker \varphi := \{g \in G | \varphi(g) = e\}$

 $\therefore H \leq G.$

• im $\varphi := \varphi(G) = \{ \varphi(g) \in H | g \in G \}$

are both subgroups, of G and H respectively.

Lecture 8: Cyclic Groups and Subgroups. 8

Cyclic Groups

Definition 8.1. A group H is cyclic if it can be generated by a single element. That is to say $\exists x \in H$ s.t. $H = \langle x \rangle = \{x^n | n \in \mathbb{Z}\}.$

Proposition 8.1. If $H = \langle x \rangle$, then $|H| = |x|^{-8}$. Also

1. if $|H| = n < \infty$, then the elements $e, x, x^2, ..., x^{n-1}$ are all distinct and $H = \{e, x, ..., x^{n-1}\}$.

2. if
$$|H| = \infty$$
 then $H = \{..., x^{-2}, x^{-1}, e, x, x^2, ...\}$ and $x^a \neq x^b$ if $a \neq b$.

Proof.

|x|=n: We first show $H = \langle x \rangle \subseteq \{e, x, ..., x^{n-1}\}.$ Let $x^m \in H$, m = kn + r, $0 \le r \le n - 1$

$$x^{m} = x^{kn+r} = x^{n} \cdot x^{n} \cdot \dots \cdot x^{n} \cdot x^{r} = e \cdot x^{r} = x^{r}$$

$$\Rightarrow H = \langle x \rangle = \{x^{r} | 0 \le r \le n-1\} = \{e, x, ..., x^{n-1}\}.$$

To show
$$x^i \neq x^j \ \forall i, j \text{ s.t. } 0 \leq i, j \leq n-1,$$
 assume $x^i = x^j, \ \Rightarrow x^{i-j} = e$. But, $0 \leq i-j \leq n-1$, contradicting $|x| = n$

 $|x| = \infty$:

 $x^i \neq x^j \ \forall \ i \neq j$ shown as in the first case.

Proposition 8.2. Let $H = \langle x \rangle$, then

• if |H| = n, there exists a group isomorphism defined by

$$\varphi: \mathbb{Z}/n\mathbb{Z} \to H \tag{17}$$

$$k \mapsto x^k$$
 (18)

• and if $|H| = \infty$, there exists group isomorphism defined by

$$\varphi: \mathbb{Z} \to H$$

$$k \mapsto x^k$$

Proof.

• φ well defined:

Finite order: $k \equiv l \pmod{n} \Rightarrow k = l + mn, m \in \mathbb{Z}$. Then $x^k = x^{l+mn} = x^l(x^n)^m = x^l$. No equivalent terms in \mathbb{Z} for non-finite order.

• φ group homomorphism:

$$\varphi(k_1 + k_2) = x^{k_1 + k_2} = x^{k_1} \cdot x^{k_2} = \varphi(k_1) \cdot \varphi(k_2)$$

⁸The order of element $x \in G$ can also be defined as the order of the subgroup which it generates.

• φ bijective: Follows from previous proposition. Also provable through existence of left, right inverses.

8.2 Subgroups of Cyclic Groups

Proposition 8.3. Let $G = \langle x \rangle$ be cyclic and $H \leq G$ be a subgroup. Then H is also cyclic.

Proof. Trivial if $H = \{e\}$. Assume not the case, and let $l = \min\{m \in \mathbb{Z}^{>0} | x^m \in H\}$. Then it is obvious that $\langle x^l \rangle \subseteq H$ (closure of subgroup). We then let $x^k \in H$ be an arbitrary element of H. We can write $k = l \cdot k' + r$, $0 \le r \le l - 1$, then $x^r = x^{k-lk'} = x^k(x^l)^{k'} \in H$ (closure of H). But r < l, and l is the minimum greater than 0. Hence, $r = 0, x^r = e$, and $x^k = (x^l)^{k'} \in \langle x^l \rangle$. Thus, $H \subseteq \langle x^l \rangle$, but $\langle x^l \rangle \subseteq H$, and so $H = \langle x^l \rangle$.

Proposition 8.4. Let $G = \langle x \rangle$ be an infinite cyclic group ($|G| = \infty$). Then the assignment $n \mapsto \langle x^n \rangle$ defines a bijection from $\mathbb N$ and subgroups of G.

Proof. By Prop. 8.2.1, each subgroup of G is of the form $\langle x^n \rangle$, $n \in \mathbb{Z}$. Since $\langle x^{-n} \rangle = \langle x^n \rangle$, we can assume $n \in \mathbb{N}$ (hence, map is surjective). Suppose $\langle x^n \rangle = \langle x^m \rangle$, then

$$x^n = x^{km}$$
$$\Rightarrow n = km$$

Similarly m = k'n. Then n = kk'n, but $k, k' \in \mathbb{N}$, so k = k' = 1 and m = n (map is then injective). Then since the outlined map is both injective and surjective, it is bijective.

Remark. From Thm. 8.1.1, $G = \langle x \rangle$ s.t. $|G| = \infty$ is isomorphic to \mathbb{Z} . Since each element x^n is mapped to n, each subgroup $\langle x^n \rangle$ is mapped to the corresponding subgroup generated by n, $\{..., -n-n, 0, n, n+n, ...\}$ which is written as $n\mathbb{Z} = \{n \cdot k | k \in \mathbb{Z}\}$.

9 Lecture 9: Euclidean Algorithm

Definition 9.1. We say m is a divisor of n if $\exists k \in \mathbb{Z}$ s.t. n = km and write m|n in that case.

Example.

- $1|n \ \forall n \in \mathbb{Z}$
- $d|m, d|n \Rightarrow d|m \pm n$
- $n|0, \forall n$
- $d|n \Rightarrow |d| \leq |n|, ifn \neq 0$
- $n|n, \forall n$

Definition 9.2. For $m, n \in \mathbb{Z}$ we define the greatest common divisor, $gcd(m, n) := max\{d \in \mathbb{Z}^{>0} | d|m, d|n\}$, we set (0,0) = 0.

Lemma 9.1.

- 1. (m,n) = (n,m)
- 2. $(m,n) = (m,n+am) \ \forall \ a \in \mathbb{Z}$
- 3. $(m,n) = (r,n), \forall r \equiv m \pmod{n}$
- 4. (m,0) = |m|

Proof. 1. Trivial, from definition of g.c.d., changing order does not change set of common denominators.

2. It is sufficient for this proof to show that the sets $A = \{d \in \mathbb{Z}^{>0} | d|m, d|n\}$ and $B = \{d \in \mathbb{Z}^{>0} | d|m, d|n + am\}$, for any $n \in \mathbb{Z}$, are equal.

For any $d \in A$, d|m, d|n. We can then write m = dp, n = dq. It follows that m + an = d(p + aq), and so d|m + an. Thus, $A \subseteq B$.

For any $d \in B$, an analogous argument shows that $B \subseteq A$. Therefore A = B, and so $\max\{d \in \mathbb{Z}^{>0} | d|m, d|n\} = \max\{d \in \mathbb{Z}^{>0} | d|m, d|n+am\}$, and so $(m,n) = (m,n+am) \ \forall \ n \in \mathbb{Z}$.

- 3. Since $r \equiv m \pmod{n}$, (r, n) = (m + an, n) = (m, n) by the 2nd part of Lemma 9.1.
- 4. For $d \in \mathbb{Z}$ s.t. d|m, it must be that d|0 also (0 divisible by all integers). Therefore, $\{d \in \mathbb{Z} \mid d|m\} \subseteq \{d \in \mathbb{Z} \mid d|0\}$ and so $(m,0) = \max\{d \in \mathbb{Z} \mid d|m, d|0\} = \max\{d \in \mathbb{Z} \mid d|m\} = |m|$.

Proposition 9.2 (Euclidean Algorithm). Let $m, n \in \mathbb{Z}$, then $\exists a, b \ s.t$

$$(m,n) = am + bn (19)$$

The procedure of Euclid's algorithm to find (m,n) for $m,n \in \mathbb{Z}$, where we can presume m > n w.l.o.g. (swapping), involves subtracting the maximum multiples of n from m s.t the remainder is non negative . This makes use of the second part of Lemma 9.1. The procedure is repeated until one of the remainders is zero, in which case the g.c.d. is $(m,n) = (r_{n-1},0) = |r_{n-1}|$. $r_{n-1}|$ is the remainder produced after n-1 iterations of the procedure.

Proof. For $m, n \in \mathbb{Z}$, to find (m, n), we use Lemma 9.1. First we can assume $m \geq n$, then $(m, n) = (n, r_1)$ where $r_1 \equiv m \mod n$. Since $0 \leq r_1 \leq |n|$, we can replace n with $r_2 \equiv n \mod |r_1|$. This is repeated until $r_{l+1} = 0 = r_{l-1} \mod r_l$. Then

$$(m,n) = (r_l, r_{l+1}) = (r_l, 0) = |r_l|$$

Since $r_{i+1} + k_{i+1}r_i = r_{i-1}$,

$$\binom{r_i}{r_{i+1}} = \underbrace{\binom{0}{1} \quad 1}_{A_i} \binom{r_{i-1}}{r_i}$$

Thus

$$\begin{pmatrix} r_l \\ 0 \end{pmatrix} = A_l \cdot A_{l-1} \cdot \dots \cdot A_1 \cdot A_0 \cdot \begin{pmatrix} m \\ n \end{pmatrix}$$
$$= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} m \\ n \end{pmatrix}$$

10 Lecture 10: Subgroups of Finite Cyclic Groups

Proposition 10.1. Let $G = \langle x \rangle$ be a cyclic group of order |G| = n. Then

1.
$$\langle x^l \rangle = \langle x^{(l,n)} \rangle$$

2.
$$|\langle x^l \rangle| = \frac{n}{(l,n)}$$

In particular there is a one-to-one correspondence

$$A = \{d \in \mathbb{Z}^{>0} \mid d|n\} \iff B = \{H \subseteq G | H \le G\}$$
$$d \in A \mapsto \langle x^d \rangle$$

Proof.

1. It is required to show that the two groups are subsets of each other and so are equivalent.

"
$$\subseteq$$
" $d = (l, n) \Rightarrow \exists k \in \mathbb{Z}^{>0} \text{ s.t. } l = kd.$

$$x^{l} = x^{kd} = (x^{d})^{k} \in \langle x^{d} \rangle.$$

$$\Rightarrow \langle x^{l} \rangle \subseteq \langle x^{d} \rangle.$$

"\(\text{\text{\$\geq}}\)" By proposition 9.2,
$$d=al+bn$$
.
$$x^d=(x^l)^a\cdot(x^n)^b=(x^l)^a\in\langle x^l\rangle$$
$$\Rightarrow \langle x^d\rangle\subseteq\langle x^l\rangle$$

$$\Rightarrow \langle x^d \rangle = \langle x^l \rangle$$

2. For some $\langle x^l \rangle$, we can assume $l = d \cdot k$, where d = (l, n), by 1. The order of the group generated by $\langle x^d \rangle$ is the smallest $k \in \mathbb{N}$ s.t. $(x^d)^k = e$ or dk = mn, for $m \in \mathbb{Z}$. Since d|n, we can let m = 1 w.l.o.g., and so $k = \frac{n}{d} = \frac{n}{(l,n)}$.

Define

$$\varphi: \{d \in \mathbb{Z}^{>0} \mid d|n\} \to \{H \subseteq G | H \le G\}$$
$$d \mapsto \langle x^d \rangle$$

Each subgroup of G is cyclic, ie. $\forall H \leq G, H = \langle x^l \rangle, l \in \mathbb{Z}$. By proposition 10.1, 1., $\langle x^l \rangle = \langle x^{(l,n)} \rangle$. Since $(l,n)|n, (l,n) \in \{d \in \mathbb{Z}^{>0} \mid d|n\}$ and so φ is surjective.

Suppose $\varphi(d_1) = \varphi(d_2)$, then by proposition 10.1, 2., $\frac{n}{d_1} = \frac{n}{d_2}$. Therefore $d_1 = d_2$. Thus, φ is injective.

Remark. It is also shown that group G has a unique subgroup of order $\frac{|G|}{d}$ for each pos. divisor d of |G|.

Corollary 10.1.1. For $x \in G$, $\langle x^k \rangle = \langle x \rangle$, then (k, |x|) = 1.

Proof.

$$\begin{aligned} |\langle x^k \rangle| &= |\langle x \rangle| = |x| \\ &= \frac{|x|}{(k,|x|)} \text{ by Prop. } 10.1 \end{aligned}$$

It follows that (k, |x|) = 1.

Definition 10.1. Let G be a group. We define the **group of automorphisms** of G to be

$$Aut(G) = \{ \varphi : G \to G \mid \varphi \text{ a group isomorphism} \}$$
 (20)

Lemma 10.2. Aut $(G) \leq S_G$, in particular, Aut(G) is a group under composition.

Proof. The symmetric group is defined in Eq. 11. The symmetric group on G is thereby the group of bijective maps from G to itself. This does not require the maps to be homomorphisms, which is the requirement which the group of automorphisms of G places on these maps.

Let $\varphi \in \operatorname{Aut}(G)$, then φ is a group isomorphism, $\varphi : G \to G$. Then φ is bijective, and thus, $\varphi \in S_G$. Hence, $\operatorname{Aut}(G) \subseteq S_G$.

It is then required to show $\operatorname{Aut}(G)$ is a group under composition. The unit of S_G is id, since $\operatorname{id}_G(g_1)\operatorname{id}_G(g_2) = g_1g_2$ and id_G is bijective, id_G is a group isomorphism. Thus $\operatorname{id}_G \in \operatorname{Aut}(G)$.

Since each $\varphi \in \operatorname{Aut}(G)$ is bijective we can assume the existence of $\varphi \in S_G$ (bijective). Then since φ , $\varphi(g_1)\varphi(g_2) = \varphi(g_1g_2) \ \forall \ g_1, g_2 \in G$ we can say $\varphi^{-1}(\varphi(g_1)\varphi(g_2)) = g_1g_2 = \varphi^{-1}(\varphi(g_1))\varphi^{-1}(\varphi(g_2))$. Since $\varphi(g) \in G$, it follows that φ^{-1} is a group isomorphism, and so $\varphi \in \operatorname{Aut}(G)$.

For $\varphi_1, \varphi_2 \in \text{Aut}(G)$, $\varphi_1(g_1g_2) = \varphi_1(g_1)\varphi_1(g_2)$ and so $\varphi_2(\varphi_1(g_1g_2)) = \varphi_2(\varphi_1(g_1))\varphi_2(\varphi_1(g_2))$, then $\varphi_2 \circ \varphi_1 \in \text{Aut}(G)$.

Therefore Aut(G) is a group under composition.

Proposition 10.3. The group $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ is isomorphic to the multiplicative group of integers modulo n.

$$\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \cong \mathbb{Z}/n\mathbb{Z}^{\times} := \{ k \in \mathbb{Z}/n\mathbb{Z} \mid (k, n) = 1 \}$$
(21)

Where $\mathbb{Z}/n\mathbb{Z}^{\times}$ has group multiplication defined by $\overline{k_1} \cdot \overline{k_2} = \overline{k_1 \cdot k_2}$, and unit $\overline{1}$.

Proof. Define map

$$\Psi: \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \to \mathbb{Z}/n\mathbb{Z}^{\times}$$
$$\varphi \mapsto \varphi(1)$$

• Ψ is well defined:

$$\begin{split} \langle 1 \rangle &= \mathbb{Z}/n\mathbb{Z} \Rightarrow \langle \varphi(1) \rangle = \mathbb{Z}/n\mathbb{Z} = \langle 1 \rangle \\ &\Rightarrow (n, \varphi(1)) = 1, \text{ by Cor. } 10.1.1 \\ &\Rightarrow \varphi(1) \in \mathbb{Z}/n\mathbb{Z}^{\times} \end{split}$$

The first step here relies on the fact that $n = |1| = |\varphi(1)|$. It is then easy to show that each automorphism is mapped to an element of $\mathbb{Z}/n\mathbb{Z}^{\times}$.