```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from bitalg.tests.test3 import Test
from bitalg.visualizer.main import Visualizer
```

Triangulacja wielokątów monotonicznych - problem monitorowania galerii

Przydatne funkcje

```
polygon_example_1 = [(5,5), (3,4), (6,3), (4,2), (6,0), (7,1), (8,4)]
In [115...
         polygon_example_2 = [(4, 1), (2, 2), (3, 5), (4, 7), (6, 6), (3, 9), (6, 6)]
         polygon_example_colors = [4,4,4,4,3,0,2,0,4,4,1]
         polygon_example_tri = [(polygon_example_1[0], polygon_example_1[2]),
                                (polygon_example_1[2], polygon_example_1[5]),
                                (polygon_example_1[2], polygon_example_1[6]),
                                 (polygon_example_1[6], polygon_example_1[3]),
                                 (polygon_example_1[2], polygon_example_1[4]),]
In [116... | def draw_polygon(polygon):
             vis = Visualizer()
              points = polygon
              vis.add_polygon(polygon, fill=False)
              vis.show()
In [117... | def draw_polygon_colors(polygon,colors):
             points_start=[]
             points end=[]
              points connect=[]
             points_divide=[]
             points_regular=[]
              for i in range(len(polygon)):
                  if colors[i]==0:
                      points_start.append(polygon[i])
                  elif colors[i]==1:
                      points_end.append(polygon[i])
                  elif colors[i]==2:
                      points_connect.append(polygon[i])
                  elif colors[i]==3:
                      points_divide.append(polygon[i])
                  elif colors[i]==4:
                      points_regular.append(polygon[i])
             vis = Visualizer()
              colors_start = ['green']
              color_end=['red']
              color_connect=['blue']
              color_divide=['cyan']
```

```
color_regular=['#3B240B']
  vis.add_polygon(polygon, fill=False)
  vis.add_point(points_start, color=colors_start)
  vis.add_point(points_end, color=color_end)
  vis.add_point(points_connect, color=color_connect)
  vis.add_point(points_divide, color=color_divide)
  vis.add_point(points_regular, color=color_regular)
  vis.show()
def draw_polygon_tri(polygon,tri):
```

```
In [118... def draw_polygon_tri(polygon,tri):
    plt.close()
    vis = Visualizer()
    points = polygon
    tri_line_segments = tri
    vis.add_polygon(points, fill=False)
    vis.add_point(points)
    vis.add_line_segment(tri_line_segments, color='red')
    vis.show()
```

Wprowadzenie

Celem ćwiczenia jest:

- sprawdzanie \$y\$-monotoniczności
- podział wierchołków na kategorie
- triangulacja wielokąta monotonicznego

Przykładowy wielokąt \$y\$-monotoniczny

```
In [119... draw_polygon(polygon_example_1)
```


Do tego celu wygeneruj wielokąt.

Czy wielokąt jest \$y\$-monotoniczny?

Wielokąt jest monotoniczny, gdy jego wierzchołki mogą być ułożone w taki sposób, że jedna z jego współrzędnych (na przykład współrzędna \$x\$ lub \$y\$, w zależności od układu współrzędnych) zawsze rośnie lub maleje wzdłuż kolejnych wierzchołków. Innymi słowy, dla każdej pary wierzchołków wielokąta (oprócz wierzchołka startowego i końcowego), jeden z punktów ma większą (lub mniejszą) wartość danej współrzędnej niż drugi punkt.

W praktyce, wielokąt monotoniczny może być łatwiej sortowany lub przetwarzany w pewnych algorytmach geometrycznych, ponieważ istnieje pewna kolejność, w jakiej wierzchołki pojawiają się wzdłuż danej osi (np. osi \$x\$ lub \$y\$). Monotoniczność może ułatwić znajdowanie przecięć linii w takim wielokącie lub wykonywanie innych operacji geometrycznych. W tym zadaniu interesuje nas monotoniczność wielokąta wzdłuż osi \$y\$.

Ćw. Uzupełnij funkcję is_y_monotonic . Pamiętaj, aby sprawozdanie zawierało krótki opis działania tej funkcji.

```
In [121... def is_y_monotonic(polygon):
              Funkcja określa czy podana figura jest y-monotoniczna.
              :param polygon: tablica krotek punktów na płaszczyźnie euklidesowej p
              :return: wartość bool - true, jeśli wielokąt jest monotoniczny i fals
              0.000
              n = len(polygon)
              idx = 0
              for i in range(1,n):
                  if polygon[idx][1] < polygon[i][1]:</pre>
                      idx = i
              left = True
              for i in range(n+1):
                  if left and polygon[(idx + i) % n][1] < polygon[(idx + i + 1) % n</pre>
                      left = False
                  elif not left and polygon[(idx + i) % n][1] > polygon[(idx + i +
                      return i == n
              return False
```

Przeprowadź test poprawności powyższej funkcji.

```
In [122... Test().runtest(1, is_y_monotonic)
```

```
Lab 3, task 1:

Test 1: Passed
Test 2: Passed
Test 3: Passed
Test 4: Passed
Test 5: Passed
Test 6: Passed
Test 7: Passed
Test 8: Passed
Test 9: Passed
Test 10: Passed
Result: 10/10
Time: 0.010s
```

Sprawdź monotoniczność swojego wielokątu.

```
In [123... print(is_y_monotonic(polygon_example_1))
```

True

Podział wierzchołków na kategorie

Wierzchołki naszego wielokąta możemy podzielić na parę kategorii:

- początkowe, gdy obaj jego sąsiedzi leżą poniżej i kąt wewnętrzny ma mniej niż
 180 stopni. To wierzchołki, w których wielokąt zaczyna się monotoniczny spadek
- końcowe, gdy obaj jego sąsiedzi leżą powyżej i kąt wewnętrzny ma mniej niż 180 stopni. To wierzchołki, w których monotoniczność wielokąta się zmienia, czyli na przykład zaczyna się monotoniczny wzrost, jeśli wcześniej był spadek, lub na odwrót.

Wierzchołki startowe i końcowe są ważne w kontekście algorytmów przetwarzania wielokątów monotonicznych, takich jak algorytmy dziel i zwyciężaj oraz triangulacji.

- dzielący, gdy obaj jego sąsiedzi leżą poniżej i kąt wewnęntrzny ma więcej niż 180 stopni. To wierzchołki, które wyznaczają przekątne (linie łączące), tworzące trójkąty podczas triangulacji.
- łączący, gdy obaj jego sąsiedzi leżą powyżej i kąt wewnęntrzny ma więcej niż 180 stopni. To wierzchołki, które są połączone liniami (przekątnymi) wewnątrz wielokąta, tworząc trójkąty.

Wierzchołki łączące i dzielące odgrywają kluczową rolę w procesie triangulacji wielokątów, pozwalając na podział figury na trójkąty w sposób bezkolizyjny.

• prawdiłowy, pozostałe przypadki, jeden sąsiad powyżej drugi poniżej

Przykładowy wielokąt z pokolorowanymi wierzchołkami.

Figure

Figure

Ćw. Uzupełnij funkcję color vertex .

```
In [125... def det(a, b, c):
              return (a[0] - c[0]) * (b[1] - c[1]) - (b[0] - c[0]) * (a[1] - c[1])
In [126... def color_vertex(polygon):
              Funkcja dzieli wierzchołki na kategorie i przypisuje wierzchołkom odp
              :param polygon: tablica krotek punktów na płaszczyźnie euklidesowej p
              return: tablica o długości n, gdzie n = len(polygon), zawierająca cy
              0.000
              y = 1
              n = len(polygon)
              T = [0] * n
              for i in range(n):
                  prev = polygon[i-1]
                  next = polygon[(i+1)%n]
                  if polygon[i][y] > next[y] and polygon[i][y] > prev[y] and det(pr
                      T[i] = 0
                  elif polygon[i][y] < next[y] and polygon[i][y] < prev[y] and det(</pre>
                      T[i] = 1
                  elif polygon[i][y] < next[y] and polygon[i][y] < prev[y] and det(p</pre>
                      T[i] = 2
                  elif polygon[i][y] > next[y] and polygon[i][y] > prev[y] and det(
                      T[i] = 3
                  else:
                      T[i] = 4
              return T
```

Przeprowadź test poprawności powyższej funkcji.

In [128... colors = color_vertex(polygon)
 draw_polygon_colors(polygon,colors)

Zwizualizuj swój wielokąt z pokolorowanymi według kategorii wierzchołkami.

Triangulacja wielokąta monotonicznego

Triangulacja wielokąta monotonicznego to proces podziału wielokąta monotonicznego na trójkąty poprzez dodawanie przekątnych (linii łączących wierzchołki), które nie przecinają się wewnętrznie.

Przykładowy wielokąt podzielony na trójkąty.

In [129... draw_polygon_tri(polygon_example_1,polygon_example_tri)

Figure

Ćw. Uzupełnij funkcję triangulation . Wykorzystaj algorytm opisany na wykładzie.

```
In [130... def chains(polygon):
    """ the lowest point is not in left or right chain """
    n = len(polygon)
    idx = 0
    for i in range(1,n):
        if polygon[idx][1] < polygon[i][1]:
        idx = i
    L = set()</pre>
```

```
R = set()
    left = True
   for i in range(n):
        if left and polygon[(idx + i) % n][1] < polygon[(idx + i + 1) % n
            left = False
        elif left:
            L.add(polygon[(idx + i) % n])
        else:
            R.add(polygon[(idx + i) % n])
    return L, R
def different_chains(p, S, L, R):
    return (p not in L and S[-1] in L) or (p not in R and S[-1] in R)
def save_indices(polygon):
    return {p: i for i, p in enumerate(polygon)}
def det(a, b, c):
    return (a[0] - c[0]) * (b[1] - c[1]) - (b[0] - c[0]) * (a[1] - c[1])
def is_triangle_inside(p1, p2, p3, L, R):
   if p3 in L:
        return det(p1, p2, p3) > 0
   else:
        return det(p1, p2, p3) < 0
def triangulation(polygon):
    Funkcja dokonuje triangulacji wielokata monotonicznego.
    :param polygon: tablica krotek punktów na płaszczyźnie euklidesowej p
    :return: tablica krotek dodawanych po kolei przekatnych np: [(1,5),(2
   0.000
   n = len(polygon)
   L, R = chains(polygon)
    idx = save_indices(polygon)
   polygon = sorted(polygon, key=lambda p: p[1], reverse=True)
   P = []
   S = [polygon[0], polygon[1]]
   for i in range(2, n):
        if different_chains(polygon[i], S, L, R):
            for p in S[1:]:
                P.append([idx[p], idx[polygon[i]]])
            S = [S[-1], polygon[i]]
        else:
            while len(S) >= 2:
                if is_triangle_inside(S[-2], S[-1], polygon[i], L, R):
                    P.append([idx[S[-2]], idx[polygon[i]]])
                    S.pop()
                else:
                    break
            S.append(polygon[i])
    return P[:-1]
```

Jakich struktur można użyć do przechowywania wielokątu, oraz utworzonej triangulacji? Uzasadnij wybór struktury w swoim algorytmie

ODPOWIEDŹ:

Przeprowadź testy poprawności powyższej funkcji.

Zwizualizuj powstały wielokąt podzielony na trójkąty.

```
In [132... import json
         import matplotlib.pyplot as plt
         import numpy as np
         import matplotlib.collections as mcoll
         import matplotlib.widgets as mwdg
         from matplotlib.backend_bases import MouseEvent
         from matplotlib.patches import Polygon
         BLUE = u'#1f77b4'
         class Callback:
             def __init__(self, ax):
                 self.added_points = []
                 self.ax = ax
             def on click(self, event):
                 if event.inaxes != self.ax:
                      return
                 new_point = (event.xdata, event.ydata)
                 self.added_points.append(new_point)
                 print(new_point)
                 self.draw(autoscaling=False)
             def draw_points(self):
                 if self.added_points:
                      self.ax.scatter(*zip(*(np.array(self.added_points))))
             def draw_lines(self):
                 if len(self.added_points) >= 2:
                     # lines = []
                      for i in range(len(self.added_points)):
                          self.ax.plot([self.added_points[i-1][0], self.added_point
```

```
[self.added_points[i-1][1], self.added_point
             def draw_polygon(self):
                 if len(self.added_points) >= 3:
                      p = Polygon(self.added_points, alpha=0.3)
                      self.ax.add_patch(p)
             def draw(self, autoscaling=True):
                 if not autoscaling:
                      xlim = self.ax.get_xlim()
                     ylim = self.ax.get_ylim()
                 self.ax.clear()
                 self.draw_points()
                 self.draw_lines()
                 self.draw_polygon()
                 self.ax.autoscale(autoscaling)
                 if not autoscaling:
                      self.ax.set_xlim(xlim)
                      self.ax.set_ylim(ylim)
                 plt.draw()
         class InputVisualizer(Visualizer):
             def __init__(self):
                 super().__init__()
                 self.callback = None
                 plt.close()
                 self.fig = plt.figure()
                 self.ax = plt.axes(autoscale_on=False)
             def get_added_points(self):
                 plt.close()
                 return self.callback.added_points
             def input(self):
                  self.callback = Callback(self.ax)
                 self.fig.canvas.mpl_connect('button_press_event', self.callback.o
                 self.callback.draw()
                 plt.show()
In [133... %matplotlib widget
         vis = InputVisualizer()
```

vis.input()

Figure

Figure

Figure

polygon_3

```
In [141... polygon_3 = [(-0.007712318051245906, 0.04726967910667525), (-0.0354340922
In [142... print(is_y_monotonic(polygon_3))
```

In [143... draw_polygon(polygon_3)

Figure

Figure

Figure

Podział wierzchołków

```
In [147... p1 = [(-0.0074905438576975125, 0.04708028619939637), (-0.0321074793415684)
In [148... colors = color_vertex(p1)
    draw_polygon_colors(p1,colors)
```


Figure

Figure

polygon3

```
In [151... p3 = [(-0.00194618901898784, 0.04670149811418549), (-0.03277280192221365,
In [152... colors = color_vertex(p3)
    draw_polygon_colors(p3,colors)
```

Figure

In [164... colors = color_vertex(polygon_1)
 draw_polygon_colors(polygon_1,colors)

Figure


```
In [165... t1 = [(-0.00305505998672978, 0.04726967910667525), (-0.028780866438342684)
In [166... assert is_y_monotonic(t1), 'Polygon is not y-monotonic'
    tri = triangulation(t1)
    draw_polygon_tri(t1,[[t1[diag[0]], t1[diag[1]]] for diag in tri])
```

Figure


```
In []:
```

polygon2

```
In [167... t2 = [(-0.021905866438342685, 0.047891974304661675), (-0.0440832857931813)]
```

```
In [168...
assert is_y_monotonic(t2), 'Polygon is not y-monotonic'
tri = triangulation(t2)
draw_polygon_tri(t2,[[t2[diag[0]], t2[diag[1]]] for diag in tri])
```

Figure

Figure


```
In [169... t3 = [(0.018013488400366998, 0.05054348863048477), (-0.02833731805124591,
In [170... assert is_y_monotonic(t3), 'Polygon is not y-monotonic'
    tri = triangulation(t3)
    draw_polygon_tri(t3,[[t3[diag[0]], t3[diag[1]]] for diag in tri])
```

Figure


```
In [171... t5 = [(-0.009708285793181393, 0.049673460634239885), (-0.0343252212770523)
In [172... assert is_y_monotonic(t5), 'Polygon is not y-monotonic'
    tri = triangulation(t5)
    draw_polygon_tri(t5,[[t5[diag[0]], t5[diag[1]]] for diag in tri])
```


Figure


```
In [163... assert is_y_monotonic(t6), 'Polygon is not y-monotonic'
    tri = triangulation(t6)
    draw_polygon_tri(t6,[[t6[diag[0]], t6[diag[1]]] for diag in tri])
```

Figure

Figure

In []: