How The Internet Works

or

What You Need To Know From Computer Networking

Objective

- A different hack night not so focused on security
- Answer "what happens when you go to google.com"
- Only concerned about the network parts
 - Moving packets from A to B

- I'll have breaks for questions
 - Lots of interdependent knowledge
- Do ask me for clarifications while I'm talking though

- Network protocols are built on top of each other
- Commonly grouped into 7 layers the OSI model
- Physical (1)
- Data Link
- Network
- Transport
- Session
- Presentation
- Application (7)

Layer 1 - Physical

- Physical medium used to transport bits (symbols)
- How those bits are encoded
- Copper
- Coax
- Fiber
- Hubs

Layer 2 - Data Link

- Framing
- Chunks of data going from A to B
- "Physical addresses"
- Ethernet (802.3)
- PPP
- Switches

Layer 3 - Network

- Packets
- Moving packets between different physical layers
- "Logical addresses"
- IP
- Routers

Layer 4 - Transport

- Datagrams
- Multiplexing (ports), delivery guarantees (ensuring packets arrive, that they arrive in order, etc.)
- TCP
- UDP

Layer 5-7

- Abstractions within computers to make processing data easier
- Sockets
- Encryption
- HTTP, FTP, etc.
- This talk is staying at 2 <= layer <= 4

Questions?

Things We Care About

MAC Addresses (Layer 2)

- Physical address tied to your network card
- How other layer 2 devices on the same subnet talk to you
- (In theory) globally unique
- Written as 6 hex bytes (48 bits) separated with colons: 6c:40:08:b4:0a:b0

IP Addresses (Layer 3)

- Logical address for your computer
- Unique within your network
- 2 types
 - o IPv4
 - 32 bits
 - 4 decimal bytes separated with dots: 1.2.3.4
 - o IPv6
 - 128 bits
 - 8 groups of 2 hex bytes separated with colons: fe80:0:0:0:852:1d5c:9804:e376

IP Addresses (Layer 3)

- Some reserved ranges:
 - Loopback: 127.0.0.0/8
 - Private networks (RFC1918):
 - **1**0.0.0.0/8
 - **172.16.0.0/12**
 - **1**92.168.0.0/16
 - Multicast: 224.0.0.0/4
 - And more!
- These can not be routed on the public internet

IP Networks

- Let's pick apart this subnet: 192.168.0.0/24
- 192.168.0.0 is the first IP in the network
- /24 is the subnet mask in CIDR notation
 - o 24 is the number of 1 bits set if you write out the mask in binary
 - 0 1111111111111111111111111000000000
 - Subnet mask may also be written in dot decimal: 255.255.255.0
- What does this do for us?
 - Sending a packet from IP A to IP B
 - If A AND subnet_mask == B AND subnet_mask, A and B are on the same network
 - The packet doesn't need to be routed

IP Networks

- Subnet: 192.168.0.0/25
- 192.168.0.3 needs to send a packet to 192.168.0.120
- 192.168.0.3: 11000000.10101000.00000000.00000011
- 255.255.255.128: 111111111.11111111.11111111.10000000
- Result: 11000000.10101000.00000000.000000000 = 192.168.0.0
- 192.168.0.120: 11000000.10101000.00000000.01111000
- 255.255.255.128: 111111111.11111111.11111111.10000000
- Result: 11000000.10101000.00000000.000000000 = 192.168.0.0

IP Networks

- Subnet: 192.168.0.0/25
- 192.168.0.3 needs to send a packet to 192.168.0.129
- 192.168.0.3: 11000000.10101000.00000000.00000011
- 255.255.255.128: 111111111.11111111.11111111.10000000
- Result: 11000000.10101000.00000000.000000000 = 192.168.0.0
- 192.168.0.129: 11000000.10101000.00000000.10000001
- 255.255.255.128: 111111111.11111111.11111111.10000000
- Result: 11000000.10101000.00000000.100000000 = 192.168.0.128

Questions?

How Traffic Flows

- Packets are delivered to devices on the subnet based on MAC address
- Cannot hop subnets without being routed

- 00:11:22:33:44:55 can communicate with 66:77:88:99:aa:bb
- But not with de:ad:be:ee:ee:ef
- Either way, we don't think about MAC addresses in code - we think about IPs
- How are IPs resolved to MAC addresses?

- Address Resolution Protocol
- 00: wants to talk with 66:
- 00: sends an ARP packet asking "who has 192.168.0.4" to the magic ff:ff:ff:ff:ff:ff MAC address
- The switch sends the ARP packet out all ports
- 66: sees the packet, knows it is 192.168.0.4, responds "I am 192.168.0.4"
- 00: receives the response, now knows what MAC address belongs to 192.168.0.4

de:ad:be:ee:ee:ef

- How does a packet get directed between different networks?
- Every device has a routing table
- For each subnet, where should the device send the packet
- May go out a link directly
- May be **forwarded** to a router
- May be dropped
 - DoS prevention

Routing

Destination	Gateway	Netif
default	10.23.0.1	en0
10.23/21	0.0.0.0	en0
10.23.0.1/32	0.0.0.0	en0
127	127.0.0.1	lo0
127.0.0.1	127.0.0.1	lo0
169.254	0.0.0.0	en0
224.0.0/4	0.0.0.0	en0
255.255.255.255/32	0.0.0.0	en0

Routing

Destination	Gateway	Netif
default	10.23.0.1	en0
10.23/21	0.0.0.0	en0
10.23.0.1/32	0.0.0.0	en0
127	127.0.0.1	100
127.0.0.1	127.0.0.1	lo0
169.254	0.0.0.0	en0
224.0.0/4	0.0.0.0	en0
255.255.255.255/32	0.0.0.0	en0

Default Route

- Sometimes written in the CIDR notation: 0.0.0.0/0
 - All IPs
- "Catch-all" route
- Usually points to the **default gateway**

Routing

Destination	Gateway	Netif
default	10.23.0.1	en0
10.23/21	0.0.0.0	en0
10.23.0.1/32	0.0.0.0	en0
127	127.0.0.1	lo0
127.0.0.1	127.0.0.1	lo0
169.254	0.0.0.0	en0
224.0.0/4	0.0.0.0	en0
255.255.255.255/32	0.0.0.0	en0

Most Specific Prefix

- What happens when subnets overlap?
- The **most specific** route is chosen
 - The one with the fewest number of 0's in the mask
 - Or the largest number in CIDR form

Routing

- What does it mean to **route**?
- Send the layer 3 (IP) packet to the gateway's MAC address
- Router will receive the packet, figure out where to send it
 - Presumably a more complex routing table
- May route/forward again, or directly deliver

- .3 wants to talk with .5
- .3 determines .5 is on a different subnet
- .3 looks up the route to get to .5 in its routing table
- Finds the default gateway .1
- .3 sends encapsulates the layer 3 IP packet addressed to .5 in a layer 2 frame going to the MAC address of the gateway (13:)

de:ad:be:ee:ee:ef

- .1 receives the packet, sees it's going to .5
- Does a routing table lookup, finds .5 is on a subnet attached to it

.1's Routing Table

Destination	Gateway	Netif
192.168.0.0/24	0.0.0.0	eth0
172.16.0.0/24	0.0.0.0	eth1

- .1 receives the packet, sees it's going to .5
- Does a routing table lookup, finds .5 is on a subnet attached to it

.1's Routing Table

Destination	Gateway	Netif
192.168.0.0/24	0.0.0.0	eth0
172.16.0.0/24	0.0.0.0	eth1

- Puts the unmodified IP packet in a layer 2 frame with a destination MAC of de: and sends it out eth1
- .5 receives the packet

Questions?

Briefly: How IPs Are Assigned

IP Assignment

- Can be statically set or dynamically assigned (DHCP)
- Static use cases
 - Static/unmoving network hardware
 - Critical hardware which DHCP relies on
- Dynamic use cases
 - Everything else

DHCP

- Dynamic Host Configuration Protocol
- Clients send a "discovery" message and are offered an IP
- Can also set routes, DNS servers, search domains, etc.

Advanced Routing

Route Distribution

- Routing rules can be statically set or dynamically added
- Many ways to distribute routes
 - o DHCP
 - Open Shortest Path First (OSPF)
 - Enhanced Interior Gateway Routing Protocol (EIGRP)
 - o Border Gateway Protocol (BGP)
 - Tons more

Route Distribution

- Why distribute routes automatically?
- The public internet has >700,000 routes
- NetEng's aren't paid enough to add all of those by hand
- Protocols also deal with
 - o Path optimization (shortest path, cheapest, etc.)
 - Reconvergence after hardware failure (assuming redundancy in the network)

BGP

- Border Gateway Protocol
- Logical organizations are assigned Autonomous System Numbers (ASNs)
 - o NYU has an ASN
 - Amazon has multiple ASNs
 - Google has even more ASNs
- Each AS peers with other ASes
 - Directly (either as a paid upstream like an ISP or cost free for large ASes)
 - As part of an Internet Exchange Point (IX/IXP)
- The peers advertise routes for IP space that they can get to
 - NYU advertises IPs that they own
 - NYU's ISPs advertise the rest of the internet to NYU

^{*} Level 3 connects to Cloudflare through Tata

Weird stuff can still happen

- 1. 128.238.66.1
- 2. 128.238.60.2
- 3. ???
- 4. 216.165.101.1
- 5. dmzgwa-ptp-nyugwa-vl3081.net.nyu.edu
- 6. EXTGWD-PTP-DMZGWA.NET.NYU.EDU
- 7. via-111-8th-st-nyc001jp01.yipes.com
- 8. xe-2-0-0.cr8-nyc3.ip4.gtt.net xe-3-0-0.cr8-nyc3.ip4.gtt.net
- 9. as6453.nyc30.ip4.gtt.net
- 10. if-ae-8-2.tcore1.nto-new-york.as6453.net
- 11. if-ae-0-2.tcore1.sqn-san-jose.as6453.net
- 12. if-ae-18-2.tcore2.sv1-santa-clara.as6453.net

Useful Utilities

- mtr
- ISP looking glasses
- https://bgp.he.net

BGP Security

- BGP is basically unsecured
- Anybody who can control peering routers can dictate where IP traffic flows
- Recall: most specific routes take precedence
- An attacker with access to a well-connected router could advertise very specific /24s for all of Google (for example)
- All traffic destined to Google that determined the attacker's path to be optimal would go to the attacker
- Lets them do basically anything
- Get SSL certs, control DNS, etc. etc.

BGP Security

- Mitigations:
 - Route filtering (limiting the routes that will be accepted to what's expected)
 - o (Soon) RPKI (RFC6480)

Distributing Traffic

- Many (large) sites have Points of Presence (PoPs) in many cities (metros)
- These sites need a way to route traffic to the nearest PoP
- Two ways to accomplish
 - DNS
 - Anycast
- DNS only works with hostnames
- Can we distribute 1.1.1.1, 8.8.8.8, 9.9.9.9, etc.?

Anycast

- Many PoPs can advertise the same IP(s)
- Shortest path selection naturally routes people to the closest PoP
 - For some definition of close

Questions?

Additional Stuff

Limited IPs

- Recall: IPv4 addresses are 32 bits
- Only 4.2 billion IPv4 addresses
 - o Minus 224.0.0.0/4
 - o Minus 240.0.0.0/4
 - o Minus 0/8
 - o Minus 10/8
 - 0 ...
- Many more than 4.2 billion networked devices
- How can we give them all access?

NAT

- Network Address Translation
- Two types: Source NAT (SNAT), Destination NAT (DNAT)
 - o NAT commonly refers to DNAT
- At a (sub)net edge, translate/rewrite IPs
- Simple example
 - Rewrite traffic destined to 8.8.8.8 to go to 9.9.9.9
 - The opposite translation (9.9.9.9 => 8.8.8.8) happens when the received traffic goes back the other way

NAT

- More commonly used to translate connections from internal IPs (10/8, 172.16/12, 192.168/16) to IPs on the public internet
- Rewrites traffic to come from the NAT device itself
- Maps the 4-tuple (int_src_ip, int_src_port, dst_ip, dst_port) to (nat_src_ip, nat_src_port, dst_ip, dst_port)

VPNs

- Virtual Private Networks
- Two main types:
 - Site-to-site: connect entire networks over a secure tunnel
 - Remote access: connect your computer to a remote network securely
- Basic idea: encapsulate and encrypt raw packets in another packet to the VPN server
- The VPN server receives the encapsulated packet, decrypts it, and drops it on the network

Questions?

DNS

DNS

- Domain Name Server
- Transforms domain names into IPs (google.com -> 172.217.12.206)
 - o Or other data...
- Many record types: A, AAAA, CNAME, MX, PTR, TXT, etc.
- Hierarchical
 - o Root servers know where TLD nameservers are
 - o TLD nameservers know where domain nameservers are
 - Domain nameservers can resolve records (or delegate further)

DNS

- Two main types of servers: recursive, and authoritative
- Recursive servers
 - o "Normal" servers you're familiar with
 - o On home networks
 - o 1.1.1.1, 8.8.8.8, 9.9.9.9, etc.
- Authoritative servers
 - Holds the actual information for a domain

DNS Security

- DNS is not encrypted and not authenticated
- People on the network can observe the sites you go to by looking at DNS traffic
- DNSSEC is an extension to DNS which allows authentication
 - Chain of trust like normal SSL/TLS
- Work being done to encrypt: DoH, DNS over TLS
- SSL/TLS cert verification removes spoofing ability

DNS Security

- Other DNS issues:
 - Dangling records
 - Cache poisoning
 - Reflected DoS (UDP)

Horus

Q&A / AMA

Thanks!