Moyses Vol. 1 - Soluções

Artur R. B. Boyago (aka Morcego)

January 14, 2024

CONTENTS

CHAPTER I.

Movimento Unidimensio	mal	

§1.	Q1																																												1
§ 2.	Q2																																												1
§ 3.	Q3																																												2
§4.	Q4																																												2
§5.	Q_5																																												2
§ 6 .	Q6	•				•	•	•	•	•					•		•				•		•	•							•	•			•		•				•				2
	CHAPTER II.																																												
																			C	ıΠ	LA	.Г	11	C)	ı	11	•																		
	Movimento bidimensional.																																												
§ 1.	Q1																																												
§ 2.	Q2																																										 		3
§ 3.	Q3	•		•				•	•	•					•	•	•															•	٠			 ٠	•	٠			•		 	•	3
																				тт	۸.	חר	тт	כדי	. 1	гтт	-																		
																				Н	Α.	Γ.	11	SK	ί.	LII																			
																Os	s I	Pr	in	ci	рi	os	d	a	D	in	âr.	ni	ca																
§ 1.	Q1																																												5
§2.	Q8																																												6
Ü																																													
																			C	Η	A	P'	ГΕ	ER	?]	[V	•																		
															R	οt	20	·õ.	മര	Δ	1	ſ	m	Δn	to	. 4	lη	മാ	ıls	ar.															
															10	Οū	ay	ζO,	Co	C	IV.	10	111	C11	100	, 1	711	81	110	λl.															
C 1	O1																																												-
§1.	Q1																																												
§ 2.	Q2	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	 •	•	•	•	•	•	•	•	•	1

CHAPTER I.

MOVIMENTO UNIDIMENSIONAL

§1. Q1

O problema estabelece que a tartaruga anda continuamente até o final, mas que a lebre tem uma pequena parcela de tempo de descanso. Portanto, o tempo que demora a tartaruga chegar ao final deve ser menor ou igual ao tempo da lebre chegar ao final para que ela ganhe a corrida. Portanto, vamos achar o tempo de corrida da tartaruga, e igualar ao tempo de corrida da lebre:

$$\text{(Tempo de corrida da tartaruga)} = \frac{\text{Dist. total}}{v_t} \\
\text{(Tempo de corrida da lebre)} = \frac{\text{Dist. ao descanso}}{v_l} + \text{(Tempo de descanso } t_s) + \frac{\text{(Dist. total - Dist. ao descanso)}}{v_l}$$

Igualando os dois, podemos achar uma expressão pro tempo de descanso t_s e substituir os valores:

$$\begin{split} \frac{D}{v_t} &= \frac{d}{v_l} + t_s + \frac{D-d}{v_l} \\ \frac{D}{v_t} &- \frac{D}{v_l} = t_s \\ (600 \text{ m}) \left(\frac{1}{1,5 \text{ m/min}} - \frac{1}{30 \text{ km/h}} \right) \approx 6\text{h}38\text{min} \end{split}$$

Queremos saber o tempo para atingir uma velocidade sob aceleração constante, que pode ser achado por v(t) = at, e depois a distância total, que é $at^2/2$.

$$a = \frac{100 \text{ km/h}}{4 \text{ s}} \approx \frac{27,7 \text{ m/s}}{4 \text{ s}} \approx 6,92 \text{ m/s}^2$$

Esse α é $\approx 70\%$ da gravidade média da terra. O tempo é então:

$$(100 \text{ km/h}) = (6,92 \text{ m/s}^2)t \to t \approx 4\text{s}$$

Substituindo para achar a distância:

$$x(t) = \frac{1}{2}(6,92 \text{ m/s}^2)(4\text{s})^2 \approx 2,41 \text{ km}$$

§3. Q3

§4. Q4

§5. Q5

§6. Q6

CHAPTER II.

MOVIMENTO BIDIMENSIONAL

§1. Q1

§2. Q2

§3. Q3

Queremos provar a desigualdade:

$$||a|-|b||\leq |a+b|\leq |a|+|b|$$

Essa identidade é trivial por lógica; o primeiro termo sempre vai ter dois números estritamente positivos se subtraindo e gerando outro positivo, no segundo temos dois números formando um estrito positivo, e no terceiro sempre temos dois números estritamente positivos se somando.

Usando algebra geométrica, sabemos que $|\mathbf{a}| = \mathbf{a}^2$, logo, simplesmente fazendo quadrados de tudo:

$$(a^2 - b^2)^2 \le (a + b)^2 \le a^2 + b^2$$

CHAPTER III.

OS PRINCIPIOS DA DINÂMICA

§1. Q1

Isso é só uma prova das *lei dos senos*. Sabendo que $\mathbf{F_1} + \mathbf{F_2} + \mathbf{F_3} = \mathbf{0}$, podemos usar algebra geométrica rapidamente; tome o produto externo Λ em tres partições dessa equação:

$$(\mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3) \wedge \mathbf{F}_1 = 0 \wedge \mathbf{F}_1$$

 $(\mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3) \wedge \mathbf{F}_2 = 0 \wedge \mathbf{F}_2$
 $(\mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3) \wedge \mathbf{F}_3 = 0 \wedge \mathbf{F}_3$

Termos da forma $\mathbf{x} \wedge \mathbf{x}$ são $\mathbf{0}$, logo temos:

$$\mathbf{F}_2 \wedge \mathbf{F}_1 + \mathbf{F}_3 \wedge \mathbf{F}_1 = 0$$
$$\mathbf{F}_1 \wedge \mathbf{F}_2 + \mathbf{F}_3 \wedge \mathbf{F}_2 = 0$$
$$\mathbf{F}_1 \wedge \mathbf{F}_3 + \mathbf{F}_2 \wedge \mathbf{F}_3 = 0$$

Se colocarmos os segundos termos no lado do zero, e depois tomarmos suas magnitudes, temos:

$$|\mathbf{F}_2 \wedge \mathbf{F}_1| = |\mathbf{F}_3 \wedge \mathbf{F}_1|$$
$$|\mathbf{F}_1 \wedge \mathbf{F}_2| = |\mathbf{F}_3 \wedge \mathbf{F}_2|$$
$$|\mathbf{F}_1 \wedge \mathbf{F}_3| = |\mathbf{F}_2 \wedge \mathbf{F}_3|$$

Pela regra que $|\mathbf{a} \wedge \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\cos\theta_{ab}$, temos então a conclusão final da lei dos senos:

$$\frac{\sin\theta_{23}}{\mathbf{F}_1} = \frac{\sin\theta_{31}}{\mathbf{F}_2} = \frac{\sin\theta_{12}}{\mathbf{F}_3}$$

O martelo originalmente tem uma energia cinética de $m\mathbf{v}^2/2$, e pelo trabalho W que a madeira faz no prego, essa energia é totalmente dissipada pra zero. O trabalho é a força média \mathbf{F}_m vezes o deslocamento l. Queremos achar a proporção:

$$\frac{\text{(For. med.)}}{\text{(Peso do martelo)}} = \frac{\mathbf{F}_m}{m\mathbf{g}} = \frac{W/l}{m\mathbf{g}}$$

Sabendo que:

$$\frac{1}{2}m\mathbf{v}^2 - \mathbf{F}_m l = 0 \to \mathbf{F}_m = \frac{1}{2l}m\mathbf{v}^2$$

Portanto podemos substituir:

$$\frac{\left(\frac{1}{2l}m\mathbf{v}^2\right)}{m\mathbf{g}}$$

Para acharmos \mathbf{v} , o problema disse que é a velocidade final do martelo depois duma queda de altura h. Essa velocidade é $\sqrt{2\mathbf{g}h}$, logo:

$$\frac{\left(\frac{1}{2l}m\mathbf{v}^2\right)}{m\mathbf{g}} = \frac{\mathbf{v}^2}{2l\mathbf{g}} = \frac{2\mathbf{g}h}{2\mathbf{g}l} = \frac{h}{l}$$

CHAPTER IV.

ROTAÇÕES E MOMENTO ANGULAR

§1. Q1

Esse problema é relativamente conceitual então serei breve. O vetor $\mathbf{c} = \mathbf{a} \times \mathbf{b}$ é um vetor axial que representa o dual pseudoescalar do bivetor $\mathbf{a} \wedge \mathbf{b}$. Por isso $|\mathbf{c}| = |\mathbf{a} \wedge \mathbf{b}|$, ou seja, seu comprimento é proporcional a área do bivetor, e pode ser então descrito como $i(\mathbf{a} \wedge \mathbf{b})$.

Sobre o segundo problema, se você somar vários bivetores em direções opostas com a mesma magnitude, evidentemente você irá retornar zero. Uma nota, irei usar bivetores ao invés de vetores axiais em todo o resto do livro por que os acho intoleravéis.

§2. Q2

O momento de dipolo é $\mathbf{p} = q\mathbf{d}$, ou seja, apenas uma diferença de posições com escala por carga. Sabemos que o torque é o bivetor $\tau = \mathbf{f} \wedge \mathbf{x}$, e sabemos que a força \mathbf{f} do campo elétrico \mathbf{E} é simplesmente $q\mathbf{E}$, logo o torque:

$$\tau = (q\mathbf{E}) \wedge \mathbf{d}$$
$$= \mathbf{E} \wedge (q\mathbf{d})$$
$$= \mathbf{E} \wedge \mathbf{p}$$

Sobre a energia potencial U, sabemos que ela deve ser:

$$U \propto \int_{\gamma} \mathbf{F} \cdot d\mathbf{x}$$

Mas queremos uma relação ao torque au.