Logique Mathématique

Contrôle Final - Durée 2h - Tout document interdit

Exercice 1 ((1-1), 2, 2)

Déduire des énoncés P₁ et P₂ ci-dessous, en utilisant la résolution, que Hamid n'est pas un ami d'Ali.

Puis en déduire en utilisant un arbre sémantique qu'il y'a des informaticiens qui ne sont pas honnêtes.

P₁: Si Ali est honnête et si tous ses amis sont honnêtes alors tous les informaticiens sont honnêtes.

P₂ : Il est vrai qu'Ali est honnête et il est vrai que tous ses amis sont honnêtes mais Hamid qui est un informaticien n'est pas honnête.

Exercice 2(1, 2, 2)

Nous utiliserons dans cet exercice le symbole de prédicat " = " pour traduire la relation *égalité*. Ecrire dans le langage des prédicats du 1^{ier}ordre les axiomes a, b, et c suivants :

- a. 0 n'est le successeur d'aucun entier.
- b. Tout entier a un successeur unique.
- c. Si 0 vérifielapropriété P et si, si tout entier*n* vérifie P alors son successeur vérifie également Palors tous les entiers vérifient la propriété P.

Exercice 3. (4)

Soient c_1 et c_2 deux clauses telles que :

$$c_1: P(f(x)) \vee Q(y)$$
 $c_2: \neg P(u) \vee \neg Q(g(v))$

Question. Donner si elles existent :

- a. Une H-interprétation qui satisfait c_1 et c_2
- b. Une H-interprétation qui falsifie c_1 et c_2
- c. Une H-interprétation qui satisfait c_1 et qui ne satisfait pas c_2
- d . Une H-interprétation qui satisfait c_2 et qui ne satisfait pas c_1

Exercice 4. ((1,1,1), 2)

Soient C_1 et C_2 deux clauses telles que :

$$C_1: P(f(x)) \vee Q(y)$$
 $C_2: \neg P(x) \vee \neg Q(x)$

Question1.Donner:

- 1. Deux clauses résolvantes de C_1 et C_2 . Nous les désignerons par C_{R1} et c_{R2} respectivement.
- 2. Une instance de base de C_{R1} et une instance de base de C_{R2} .
- 3. Une instance de base de C_1 (C_{1B}) et une instance de base de C_2 (C_{2B}) telles que C_{R1B} soit une résolvante de C_{1B} et C_{2B} .

Question2.S'il existe une instance de base valide d'une clause Cpeut-on en déduire que C est également valide ?

N.B. Il ne vous sera remis qu'un seul cahier d'examen. Prenez en soin

Exercice 1 ((1-1), 2, 2)

Déduire des énoncés P₁ et P₂ ci-dessous, en utilisant la résolution, que Hamid n'est pas un ami d'Ali.

Puis en déduire en utilisant un arbre sémantique qu'il y'a des informaticiens qui ne sont pas honnêtes.

P₁: Si Ali est honnête et si tous ses amis sont honnêtes alors tous les informaticiens sont honnêtes.

P₂ : Il est vrai qu'Ali est honnête et il est vrai que tous ses amis sont honnêtes mais Hamid qui est un informaticien n'est pas honnête.

Corrigé:

Traduction en langage des prédicats

A(x,y): x est ami de yH(x): x est honnête

I(x): x est un informaticien

a :ali, h :hamid

$$\beta 1 : (H(a) \land \forall x (A(x, a) \to H(x))) \to \forall y (I(y) \to H(y))$$

β2:
$$H(a) \land \forall x (A(x,a) \rightarrow H(x)) \land I(h) \land \neg H(h)$$

 β 3: $\neg A(h, a)$

 $\beta 4:\exists x (I(x) \land \neg H(x))$

Forme prenexe de β_1 :

$$\forall x (H(a) \land (A(x,a) \to H(x))) \to \forall y (I(y) \to H(y))$$

$$\beta_{1P} : \exists x \forall y (H(a) \land (A(x,a) \to H(x))) \to (I(y) \to H(y))$$

Forme de Skolem de β_1 :

$$\beta_{1S}: \forall y (H(a) \land (A(b,a) \rightarrow H(b))) \rightarrow (I(y) \rightarrow H(y))$$

Forme clausale de β_{1s} :

$$\forall y(H(a) \land (\neg A(b,a) \lor H(b))) \rightarrow (\neg I(y) \lor H(y))$$

$$\forall y(\neg H(a) \lor (A(b,a) \land \neg H(b))) \lor (\neg I(y) \lor H(y))$$

$$\forall y((\neg H(a) \lor A(b,a)) \land (\neg H(a) \lor \neg H(b))) \lor (\neg I(y) \lor H(y))$$

$$\forall y((\neg H(a) \lor A(b,a) \lor \neg I(y) \lor H(y)) \land (\neg H(a) \lor \neg H(b) \lor \neg I(y) \lor H(y)))$$

Forme prenexe de β_2 :

$$\forall x (H(a) \land (A(x,a) \rightarrow H(x)) \land I(h) \land \neg H(h))$$

Forme de Skolem de β_2 :

$$\forall x (H(a) \land (A(x,a) \rightarrow H(x)) \land I(h) \land \neg H(h))$$

Forme clausale de β_2 :

$$\forall x (H(a) \land (\neg A(x, a) \lor H(x)) \land I(h) \land \neg H(h))$$

Déduire, en utilisant la résolution, que Hamid n'est pas un ami d'Ali. On démontre que $S=\{\beta_1,\beta_2,\neg\beta_3\}$ est inconsistant

$$\neg \beta_3 : A(h,a)$$

$$Sc=\{ \neg H(a) \lor A(b,a) \lor \neg I(y) \lor H(y) , \neg H(a) \lor \neg H(b) \lor \neg I(y') \lor H(y') , H(a), \neg A(x,a) \lor H(x), I(h), \neg H(h), A(h,a) \}$$

C1: \neg H(a) v A(b,a) v \neg I(y) v H(y)

C2: \neg H(a) v \neg H(b) v \neg I(y') v H(y')

C3: H(a)

C4: $\neg A(x,a) \vee H(x)$

C5: I(h)

C6: \neg H(h)

C7: A(h,a)

C8: $\neg A(h,a) \vee H(h) \quad C4[h/x]$

C9: $\neg A(h,a)$ res(C8,C7)

C10: \Box res (C9,C7)

Sc $\mid - \square \mid >$ Sc est inconsitant \Rightarrow S est inconsitant $\Rightarrow \beta_1,\beta_2 \mid -\beta_3$

Déduire en utilisant un arbre sémantique qu'il existe des informaticiens qui ne sont pas honnêtes.

 $\beta_1, \beta_2 \models \beta_4 ssi \{\beta_1, \beta_2\} \cup \{\neg \beta_4\}$ non satisfiable

$$\neg \beta_4 : \forall x (\neg I(x) \lor H(x))$$

 $Sc=\{ \neg H(a) \ v \ A(b,a) \ v \neg I(y) \ v \ H(y) \quad , \neg H(a) \ v \neg H(b) \ v \neg I(y') \ v \ H(y') \ , H(a), \ \neg A(x,a) \ v \ H(x), \ I(h), \ \neg H(h) \ , \neg I(z) \ v H(z) \ \}$

Arbre Sémantique clos => {C5b, C7b} est non satisfiable => il exsite un sous ensemble d'instance de base de Sc non satisfiable => Sc est non satisfiable => S est non satisfiable => $\beta_1,\beta_2 \models \beta_3$

Exercice 2 (1, 2, 2)

Nous utiliserons dans cet exercice le symbole de prédicat " = " pour traduire la relation *égalité*. Ecrire dans le langage des prédicats du 1^{ier}ordre les axiomes a, b, et c suivants :

- a. 0 n'est le successeur d'aucun entier.
- b. Tout entier a un successeur unique.
- c. Si 0 vérifiela propriété P et si, si tout entiern vérifie P alors son successeur vérifie également Palors tous les entiers vérifient la propriété P.
- a. 0 n'est le successeur d'aucun entier.

$$\forall x \neg (s(x) = a)$$

b. Tout entier a un successeur unique.

$$\forall x (\exists y ((s(x) = y) \land \forall z ((s(x) = z) \rightarrow y = z))$$

c. Si 0 vérifie la propriété P et si, si tout entier *n* vérifie P alors son successeur vérifie également P alors tous les entiers vérifient la propriété P.

$$\left(P(0) \land \forall x \ \Big(E(x) \land \ P(x) \to P\big(s(x)\big)\Big)\right) \to (\forall x \ \big(E(x) \to P(x)\big))$$

Exercice 3. (4)

Soient c_1 et c_2 deux clauses telles que :

$$c_1 : \mathbf{P}(f(x)) \vee \mathbf{Q}(y)$$

$$c_2 : \neg P(u) \lor \neg Q(g(v))$$

Question. Donner si elles existent :

a. Une H-interprétation qui satisfait c_1 et c_2

$$I_{h1} = \{ Q(a), Q(g(a)), ..., Q(g^{i}(a)), \neg P(a), \neg P(g(a)), ..., \neg P(g^{i}(a)), ... \}$$

b. Une H-interprétation qui falsifie c_1 et c_2

$$I_{h2} = \{ \neg Q(a), \neg P(f(a)), P(a), Q(g(a)), \ldots \}$$

Il suffit de falsifier une instance de base de C1 et une instance de base de C2

c. Une H-interprétation qui satisfait c_1 et qui ne satisfait pas c_2

$$I_{h3} = \{ Q(a), Q(g(a)), ..., Q(g^{i}(a)), P(a), ... \}$$

d . Une H-interprétation qui satisfait c_2 et qui ne satisfait pas c_1

$$I_{h4} = \{ \neg Q(a), \neg P(f(a)), \neg Q(g(a)), ..., \neg Q(g^{i}(a)), ... \}$$

Exercice 4. ((1,1,1), 2)

Soient C_1 et C_2 deux clauses telles que :

$$C_1$$
: $P(f(x)) \vee Q(y)$

$$C_2: \neg P(x) \lor \neg Q(x)$$

Question1.Donner:

- 1. Deux clauses résolvantes de C_1 et C_2 . Nous les désignerons par C_{R1} et c_{R2} respectivement.
- 2. Une instance de base de C_{R1} et une instance de base de C_{R2} .
- 3. Une instance de base de C_1 (C_{1B}) et une instance de base de C_2 (C_{2B}) telles que C_{R1B} soit une résolvante de C_{1B} et C_{2B} .

Question2.S'il existe une instance de base valide d'une clause Cpeut-on en déduire que C est également valide?

Réponse Question1.

1. Deux clauses résolvantes de C_1 et C_2

On renomme les variables (0.5)

$$C_1: P(f(x)) \vee Q(y)$$
 $C_2: \neg P(u) \vee \neg Q(u)$

 $C_1: P(f(x)) \vee Q(y)$

 C_2 : $\neg P(u) \lor \neg Q(u)$

C3: $P(f(x)) \vee Q(u)$ C1[u/y]

C4: $P(f(x)) \lor \neg P(u)$ res (C2,C3) (C_{R1})

C5: $\neg P(f(x)) \lor \neg Q(f(x))$ C2[f(x)/u]

C6: $Q(y) \lor \neg Q(f(x))$ res(C5,C1) (C_{R2})

2. Une instance de base de C_{R1} et une instance de base de C_{R2} .

 $C_{R1B}: P(f(a)) \vee \neg P(a)$

 $C_{R2B}: Q(a) \lor \neg Q(f(a))$

3. Une instance de base de C_1 (C_{1B}) et une instance de base de C_2 (C_{2B}) telles que C_{R1B} soit une résolvante de C_{1B} et C_{2B} .

 C_{1B} : $P(f(a)) \vee Q(a)$

 $C_{2B} : \neg P(a) \lor \neg Q(a)$

 $C_{R1B}: P(f(a)) \vee \neg P(a) \operatorname{res}(C_{1B}, C_{2B})$

Réponse Question2.S'il existe une instance de base valide d'une clause *C* peut-on en déduire que *C* est également valide ?

Non, nous ne pouvons pas déduire que C est valide. A titre d'exemple, la clause $C_B : P(a) \lor \neg P(a)$ est valide alors que la clause $C : P(x) \lor \neg P(y)$ ne l'est pas.