Chapitre 6 – Séries de Fourier

I) Fonctions périodiques

1) Propriétés

<u>Proposition</u>: On dit qu'une fonction $f:\mathbb{R}\to\mathbb{C}$ est périodique si $\exists T>0$ tel que

$$\forall t \in \mathbb{R}, f(t+T) = f(t)$$

On dit alors que T est une période de la fonction f, et que f est T-périodique.

Dans toute la suite du chapitre, T désignera un réel strictement positif.

<u>Proposition</u>: Soient $a \in \mathbb{R}$, et $g : [a, a + T[\to \mathbb{C}]$. Il existe une unique fonction T-périodique de \mathbb{R} dans \mathbb{C} qui coïncide avec g sur [a, a + T[

<u>Proposition</u>: Soit $f : \mathbb{R} \to \mathbb{C}$ un fonction T-périodique et $a \in \mathbb{R}$. On a équivalence entre :

- (i) f est continue sur \mathbb{R} .
- (ii) La restriction $f|_{[a,a+T]}$ est continue.

<u>Proposition</u>: Soit $f : \mathbb{R} \to \mathbb{C}$ une fonction T-périodique, $a \in \mathbb{R}$ et $k \in \mathbb{N}$. On a équivalence entre :

- (i) f est de classe C^k par morceaux sur \mathbb{R} .
- (ii) La restriction $f|_{[a,a+T]}$ est de classe C^k par morceaux.

<u>Proposition</u>: Soit $f : \mathbb{R} \to \mathbb{C}$ une fonction T-périodique. Pour tout $a \in \mathbb{R}$,

$$\int_{a}^{a+T} f(t)dt = \int_{0}^{a} f(t)dt$$

<u>Démonstration</u>: **★**

Soit $a \in \mathbb{R}$

$$\int_{a}^{a+T} f(t)dt = \int_{a}^{0} f(t)dt + \int_{0}^{T} f(t)dt + \int_{T}^{a+T} f(t)dt$$
$$= -\int_{0}^{a} f(t)dt + \int_{0}^{T} f(t)dt + \int_{0}^{a} \underbrace{f(u+T)}_{=f(u)} du$$

(on a posé u = t - T)

$$= \int_0^T f(t)dt$$

Dans toute la suite du chapitre, on considèrera uniquement des fonctions 2π -périodiques.

Notons $C_{2\pi}$ l'ensemble des fonctions de $\mathbb R$ dans $\mathbb C$ <u>continues</u> et 2π -périodiques.

Et $CM_{2\pi}$ l'ensemble des fonctions <u>continues par morceaux</u> et 2π -périodiques.

2) L'espace préhilbertien $C_{2\pi}$

 $\underline{\text{D\'efinition}:} \, \text{Soient} \, f,g \in \mathit{CM}_{2\pi}, \, \text{on d\'efinit} \, \langle f,g \rangle = \frac{1}{2\pi} \int_0^{2\pi} \overline{f(t)} g(t) dt$

<u>Proposition</u>: L'application $\langle , \rangle : CM_{2\pi} \times CM_{2\pi} \rightarrow \mathbb{C}$

$$(f,g) \mapsto \langle f,g \rangle$$

est une forme sesquilinéaire hermitienne positive sur $CM_{2\pi}$.

Attention: ce n'est pas un produit scalaire hermitien sur $CM_{2\pi}$!!

<u>Proposition</u>: \langle , \rangle définit un produit scalaire hermitien sur $C_{2\pi}$.

Définition:
$$\forall f \in CM_{2\pi}$$
, on pose $||f||_2 = \sqrt{\langle f, f \rangle} = \sqrt{\frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 dt}$

Remarque : Même si ce n'est pas une norme sur $CM_{2\pi}$, elle vérifie quand même :

Proposition: $\forall f, g \in CM_{2\pi}$, on a:

- (1) $\forall \lambda \in \mathbb{C}$, $||\lambda f||_2 = |\lambda| ||f||_2$
- (2) Inégalité de Cauchy-Schwarz : $|\langle f, g \rangle| \le ||f||_2 ||g||_2$
- (3) Inégalité triangulaire : $||f + g||_2 \le ||f||_2 + ||g||_2$

 $\underline{\text{D\'efinition}}: \forall n \in \mathbb{Z} \text{, on d\'efinit } e_n : \mathbb{R} \to \ \mathbb{C}$

$$t\mapsto e^{int}$$

Et $\forall n \in \mathbb{N}$, on définit $C_n : \mathbb{R} \to \mathbb{C}$ et $T_n : \mathbb{R} \to \mathbb{C}$

$$t \mapsto \cos(nt)$$
 $t \mapsto \sin(nt)$

3) Polynômes trigonométriques

<u>Proposition</u>: Soit $P \in \mathcal{P}$ un polynôme trigonométrique. Alors $\exists n \in \mathbb{N}$,

$$P = \sum_{k=-n}^{n} c_k e_k = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k C_k + b_k T_k)$$

et $\forall k \in [-n; n], c_k = \langle e_k, P \rangle$.

et
$$\forall k \in [0; n], a_k = c_k + c_{-k} = 2\langle C_k, P \rangle, b_k = i(c_k - c_{-k}) = 2\langle T_k, P \rangle.$$

De plus, on a
$$||P||^2 = \sum_{k=-n}^n |c_k|^2 = \frac{|a_0|^2}{4} + \frac{1}{2} \sum_{k=1}^n (|a_k|^2 + |b_k|^2)$$

$$\exists c_0 \in \mathbb{C}, u_0 = c_0 e_0 \text{ et } \forall n \in \mathbb{N}^*, \exists c_n, c_{-n} \in \mathbb{C}, u_n = c_n e_n + c_{-n} e_{-n}$$

Remarque : On note souvent les séries trigonométriques comme des séries bilatère $\sum\limits_{n\in\mathbb{Z}}c_ne_n$. La somme partielle d'ordre n d'une telle série de fonctions est : $\forall n\in\mathbb{N}$, $S_n=\sum_{k=-n}^nc_ke_k$.

De même, en posant pour tout $n\in\mathbb{N}$, $a_n=c_n+c_{-n}$ et $b_n=i(c_n+c_{-n})$

On peut écrire
$$\sum\limits_{n\in\mathbb{Z}}c_ne_n=rac{a_0}{2}C_0+\sum\limits_{n\in\mathbb{N}^*}(a_nC_n+b_nT_n)$$

II) Coefficients de Fourier

1) Définition et propriétés calculatoires

<u>Définition</u>: Soit $f \in CM_{2\pi}$. On définit ses coefficients de Fourier exponentiels de f par :

$$\forall n \in \mathbb{Z}, c_n(f) = \langle e_n, f \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-int}dt$$

On définit les coefficients trigonométriques de f par

$$\forall n \in \mathbb{N}, \quad a_n(f) = 2\langle C_n, f \rangle = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos(nt) dt$$
$$b_n(f) = 2\langle T_n, f \rangle = \frac{1}{\pi} \int_0^{2\pi} f(t) \sin(nt) dt$$

<u>Proposition</u>: Si une série trigonométriques $\sum \alpha_n e_n$ CVU sur $\mathbb R$, alors sa fonction somme

$$S: \mathbb{R} \to \mathbb{C}$$

$$t \mapsto \sum_{n=-\infty}^{+\infty} \alpha_n e_n(t)$$

appartient à $C_{2\pi}$, et les coefficients de Fourier exponentiels de S sont égaux aux coefficients de la série trigonométrique, ie $\forall n \in \mathbb{Z}$, $\alpha_n = c_n(S)$

<u>Proposition</u>: Soit $f \in CM_{2\pi}$. Alors $\forall n \in \mathbb{N}$,

$$a_n(f) = c_n(f) + c_{-n}(f), b_n(f) = i(c_n(f) - c_{-n}(f))$$
$$c_n(f) = \frac{a_n(f) - ib_n(f)}{2}, c_{-n}(f) = \frac{a_n(f) + ib_n(f)}{2}$$

Remarque: On a $a_0(f) = 2c_0(f) \Leftrightarrow c_0(f) = \frac{a_0(f)}{2}$ et $b_0(f) = 0$

Proposition: Soit $f \in CM_{2\pi}$

- (1) Si f est à valeurs dans \mathbb{R} , alors ses coefficients de Fourier trigonométriques sont réels.
- (2) Si f est paire, alors $\forall n \in \mathbb{N}, b_n(f) = 0$.
- (3) Si f est impaire, alors $\forall n \in \mathbb{N}, a_n(f) = 0$.

<u>Proposition</u>: Soient $f, g \in CM_{2\pi}$, alors $\forall \lambda, \mu \in \mathbb{C}$, $\forall n \in \mathbb{Z}$, $c_n(\lambda f + \mu g) = \lambda c_n(f) + \mu c_n(g)$.

2) Séries de Fourier

<u>Définition</u>: Soit $CM_{2\pi}$. On appelle série de Fourier de f la série trigonométrique $\sum_{n\in\mathbb{N}}c_n(f)e_n$. On appelle somme de Fourier de f la fonction somme de la série de Fourier de f:

$$S: t \mapsto \sum_{n=-\infty}^{+\infty} c_n(f)e^{int} = \frac{a_0(f)}{2} + \sum_{n=1}^{+\infty} (a_n(f)\cos(nt) + b_n(f)\sin(nt))$$

Pour $n \in \mathbb{N}$, on notera $s_n(f)$ la somme partielle d'ordre n de la série de Fourier de f:

$$S_n(f) = \sum_{k=-n}^{n} c_k(f)e_k = \frac{a_0(f)}{2}C_0 + \sum_{k=1}^{n} (a_k(f)C_k + b_k(f)T_k)$$

3) Interprétation géométrique et comportement asymptotique

Proposition : Soit $f \in C_{2\pi}$.

Pour tout $n \in \mathbb{N}$, $S_n(f)$ est le projeté orthogonal de f sur $\mathcal{P}_n = \mathrm{Vect}\{e_n \mid n \in \mathbb{Z}\}$.

De plus, pour tout $n \in \mathbb{N}$,

$$||f||_2^2 = ||S_n(f)||_2^2 + ||f - S_n(f)||^2$$
 et $||f - S_n(f)||_2 = d(f, \mathcal{P}_n)$

<u>Proposition</u>: Soit $f \in CM_{2\pi}$. Pour tout $n \in \mathbb{N}$, $f - S_n(f)$ est orthogonal au sev \mathcal{P}_n , ie $\forall P \in \mathcal{P}_n$,

$$\langle f - S_n(f), P \rangle = 0$$

En particulier, $\langle f - S_n(f), S_n(f) \rangle = 0$.

Corollaire : Inégalité de Bessel

Soit $f \in CM_{2\pi}$. Alors $\forall n \in \mathbb{N}, ||S_n(f)||_2 \leq ||f||_2$.

Cela équivaut à

$$\sum_{k=-n}^{n} |c_k(f)|^2 = \frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 dt$$

De plus, la série bilatère $\sum\limits_{n\in\mathbb{Z}}|c_n(f)|^2$ et la série numérique $\sum\limits_{n\in\mathbb{N}^*}(|a_n(f)|^2+|b_n(f)|^2)$ convergent, et on a

$$\sum_{n=-\infty}^{+\infty} |c_n(f)|^2 = \frac{|a_0(f)|^2}{4} + \frac{1}{2} \sum_{n=1}^{+\infty} (|a_n(f)|^2 + |b_n(f)|^2) \le ||f||_2 = \frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 dt$$

 $\underline{\mathsf{Corollaire}} : \mathsf{Soit} \ f \in \mathit{CM}_{2\pi}, \mathsf{alors} \ c_n(f) \underset{n \to \pm \infty}{\longrightarrow} 0, \ a_n(f) \underset{n \to \pm \infty}{\longrightarrow} 0, \ b_n(f) \underset{n \to \pm \infty}{\longrightarrow} 0.$

<u>Propriété</u>: Soit $k \in \mathbb{N}$, $f : \mathbb{R} \to \mathbb{C}$ 2π -périodique et de classe C_k . Alors $\forall n \in \mathbb{Z}$,

$$c_n\big(f^{(k)}\big)=(in)^kc_n(f)$$

En particulier, $c_n(f) = \underset{|n| \to +\infty}{o} \left(\frac{1}{n^k}\right)$.

III) Théorème de convergence

<u>Définition</u>: Soit $f \in CM_{2\pi}$. On dit que f est développable en série de Fourier si elle est égale sur $\mathbb R$ à la somme de sa série de Fourier, ie si :

$$\forall t \in \mathbb{R}, f(t) = \sum_{n = -\infty}^{+\infty} c_n(f)e^{int}$$
$$= \frac{a_0(f)}{2} + \sum_{n = 1}^{+\infty} (a_n(f)\cos(nt) + b_n(f)\sin(nt))$$

Théorème: (Théorème de Dirichlet)

Soit $f: \mathbb{R} \to \mathbb{C}$ 2π -périodique. Si f est de classe C^1 par morceaux sur \mathbb{R} , alors la série de Fourier de f converge simplement sur \mathbb{R} vers la régularisée de f notée f, où

$$\tilde{f}: t \in \mathbb{R} \mapsto \frac{f(t^+) + f(t^-)}{2}$$

Théorème : (théorème de convergence normale)

Soit $f: \mathbb{R} \to \mathbb{C}$ 2π -périodique. Si f est de classe C^1 par morceaux sur \mathbb{R} et <u>continue</u> sur \mathbb{R} , alors la série de Fourier de f converge normalement sur \mathbb{R} vers f, et $\forall t \in \mathbb{R}$, S(f)(t) = f(t).

Théorème : (théorème de Parseval/Parseval-Bessel)

Soit
$$f \in CM_{2\pi}$$
, alors $||S_n(f) - f||_2 \xrightarrow[n \to +\infty]{} 0$.

De plus, on a l'égalité de Parseval-Bessel :

$$||f||_2^2 = \lim_{n \to +\infty} ||S_n(f)||^2$$
,

ie:

$$\frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 dt = \sum_{n=-\infty}^{+\infty} |c_n(f)|^2$$