n 1
Вопрос 1
Баллов: 1,00 из 1,00
Как связаны значения $lpha$ и eta ?
Выберите один ответ:
○ a. В модели катящегося шара alpha = beta
○ b. В формуле обновления мы вычисляем взвешенное среднее, поэтому alpha + beta = 1
 с. Никак, мы можем варьировать эти параметры независимо друг от друга
Ваш ответ верный.

Вопрос Инфо

Вопрос ИНФО
- 2
Вопрос 2 Выполнен
Баллов: 1,00 из 1,00
В нулевой момент времени EMA (Exponential Moving Average) равно 0. Это значит, что первый шаг градиентного спуска с EMA совпадает с шагом обычного градиентного спуска без EMA с точностью до значения learning rate. Пусть в алгоритме градиентного спуска с EMA скорость обучения $lpha=0.1$, а параметр EMA $eta=0.9$.

Чему тогда равен learning rate для первого шага обычного градиентного спуска, который делает такой же первый шаг?

Выберите один ответ:

a. 1

b. 0.01

O c. 0

od. 0.1

e. 10

Ваш ответ верный.

Вопрос 3

Выполнен

Баллов: 1,00 из 1,00

Может ли при обновлении параметров согласно формуле $w^{t+1} = w^t - \alpha \frac{
abla f(w^t)}{\sqrt{EMA_{\gamma}(
abla f^2)^t}}$ произойти деление на 0 в знаменателе?

Выберите один ответ:

- 🔾 а. Может, в этом случае следует обновить параметр gamma в ЕМА
- b. Не может, так как сумма квадратов всегда положительна
- 🔾 с. Может, в этом случае следует использовать другой оптимизатор
- Может, но в знаменателе 0 может появиться только в том случае, если градиент всегда был равен 0 -- это значит, что мы
 начинали обучение в точке оптимума.

Ваш ответ верный.

Зыполнен
5аллов: 1,00 из 1,00
Отметьте верные утверждения
Выберите один или несколько ответов:
a. learning rate = 3e-04 является оптимальным для всех методов
☑ b. Невозможно заранее определить, какой из оптимизаторов покажет лучшие результаты
🗌 с. Параметры для метода Adam фиксированы, менять их нельзя
☑ d. Иногда SGD может показать лучшие результаты, чем RMSProp
 е. Adam всегда показывает лучшие результаты по сравнению с другими оптимизаторами
Ваш ответ верный.
◀ 4.1 Самый обычный градиентный спуск
Перейти на
472

Вопрос 4

4.3 Задачи по теме: Понимаем SGD c momentum ▶