OPTIMAL CERTIFIED RADIUS ESTIMATION IN RANDOMIZED SMOOTHING *

Zakariae MOUTAOUAKIL

Paris Cité University Zakariae.moutaouakil@etu.u-paris.fr

ABSTRACT

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Keywords First keyword · Second keyword · More

1 Introduction

The rapid advancement of deep neural networks has revolutionized numerous fields, from computer vision [1] to natural language processing [2]. These powerful models have demonstrated an unprecedented ability to learn complex patterns from data, leading to remarkable performance in a wide array of tasks [3]. As deep learning continues to permeate various aspects of our lives, from smartphone applications to autonomous vehicles, the integration of these models into critical systems has become increasingly commonplace [4].

However, this widespread adoption has brought to light significant concerns regarding the security and reliability of neural networks [5]. As these models become more deeply embedded in our technological infrastructure, addressing their vulnerabilities has become a matter of paramount importance. The field of adversarial machine learning has emerged as a crucial area of research, focusing on understanding and mitigating the susceptibility of neural networks to malicious attacks [6].

One of the primary challenges in neural network security is adversarial robustness [7]. Adversarial examples, which are imperceptibly perturbed inputs designed to fool state-of-the-art models, have been shown to pose significant threats to deployed systems [8]. These vulnerabilities have been demonstrated across various domains, including image classification [9], speech recognition [10], and even physical-world applications [11]. The ease with which these adversarial examples can be generated and their transferability across different models have raised serious concerns about the reliability of neural networks in security-sensitive applications [12].

The implications of such vulnerabilities extend far beyond academic interest. In safety-critical applications like autonomous vehicles [13] or medical diagnosis systems [14], adversarial attacks could lead to catastrophic consequences. For instance, subtle perturbations to road signs could cause an autonomous vehicle to misinterpret critical signals, potentially leading to accidents. Similarly, in healthcare, adversarial manipulations of medical images could result in misdiagnosis, putting patients' lives at risk. Moreover, as machine learning models become more prevalent in security-sensitive areas such as malware detection [15] and biometric authentication [16], the potential for malicious exploitation grows exponentially.

^{*} Citation: Authors. Title. Pages.... DOI:000000/11111.

The financial sector is another domain where the security of neural networks is of utmost importance. Machine learning models are increasingly being used for fraud detection, credit scoring, and algorithmic trading [17]. Adversarial attacks in these contexts could lead to significant financial losses and erode trust in financial institutions. The potential for market manipulation through adversarial techniques poses a serious threat to the stability of financial systems [18].

Efforts to address these security challenges have given rise to a burgeoning field of research focused on developing robust machine learning models [19]. Defensive strategies range from adversarial training [20] to input preprocessing techniques [21] and detection methods [22]. Adversarial training, which involves augmenting the training data with adversarial examples, has shown promise in improving model robustness. However, this approach often comes at the cost of increased computational complexity and potential degradation of performance on clean data [23]. Input preprocessing techniques aim to remove adversarial perturbations before feeding the data into the neural network. These methods include various image transformations, such as bit-depth reduction, JPEG compression, and total variation minimization [24]. While these approaches can be effective against certain types of attacks, they often struggle to generalize to more sophisticated adversarial perturbations.

Detection methods, on the other hand, focus on identifying adversarial examples at test time. These approaches leverage various statistical properties of adversarial examples or employ separate neural networks trained to distinguish between clean and adversarial inputs [25]. However, many of these detection methods have been shown to be vulnerable to adaptive attacks, where the adversary is aware of the defense mechanism and can craft adversarial examples that evade detection [26].

The limitations of these empirical defense strategies have highlighted the need for more principled approaches to neural network security. In response to these challenges, recent years have seen a growing interest in certifiable robustness guarantees for neural networks [27]. These approaches aim to provide formal assurances about a model's behavior under bounded perturbations, offering a rigorous foundation for building secure AI systems. Certifiable robustness techniques can be broadly categorized into two main approaches: exact methods and relaxation-based methods. Exact methods, such as Mixed Integer Linear Programming (MILP) [28] and Satisfiability Modulo Theories (SMT) [29], provide precise robustness guarantees but are computationally expensive and scale poorly to large neural networks. Relaxation-based methods, on the other hand, offer more scalable solutions by approximating the network's behavior. These include techniques based on abstract interpretation [30], semidefinite programming [31], and linear programming [32].

While these certifiable robustness techniques have made significant progress, they often struggle to scale to state-of-theart neural network architectures and typically provide overly conservative bounds. This has led to a growing interest in probabilistic certification methods, which offer a balance between scalability and rigorous guarantees. Among these probabilistic certification methods, randomized smoothing has emerged as a particularly promising technique for achieving scalable and flexible robustness certification [33]. This approach involves adding random noise to the input and using the probabilistic properties of the smoothed classifier to derive robustness guarantees. Randomized smoothing has gained significant attention due to its ability to scale to large neural networks and its applicability to various types of data and model architectures.

As we continue to rely more heavily on deep learning systems in critical applications, the importance of addressing their security vulnerabilities cannot be overstated. The field of adversarial machine learning is rapidly evolving, with new attack methods and defense strategies constantly emerging. While significant progress has been made in understanding and mitigating these vulnerabilities, many challenges remain.

The development of robust and secure neural networks requires a multifaceted approach, combining empirical defenses, formal verification techniques, and novel architectural designs. As we move forward, it is crucial to not only focus on defending against known attack methods but also to anticipate and prepare for future threats. This necessitates a proactive approach to security, integrating robustness considerations into the very foundations of neural network design and training. In the following sections, we will delve deeper into the concept of randomized smoothing, exploring its theoretical foundations, practical implementations, and potential applications in various domains. We will examine how this technique fits into the broader landscape of adversarial machine learning and discuss its strengths and limitations in providing certifiable robustness guarantees for neural networks.

2 Background & Related Work

2.1 Notation

Let \mathcal{X} be a subset of the input space \mathbb{R}^d . We identify the set of labels \mathcal{Y} with the set of integers $\{1, \dots, m\}$, where m is the number of classes.

If x is a data point in \mathcal{X} and y is its true label in \mathcal{Y} , then the prediction of a typical neural network classifier $F_{out}: \mathcal{X} \to \mathcal{Y}$ can be decomposed as $F_{out}(x) = \arg\max_{k \in \mathcal{Y}} s_k \circ f(x)$ where $g: \mathcal{X} \to \mathbb{R}^d$ is a subclassifier that outputs logits and $s: \mathbb{R}^d \to \Delta^{d-1}$ is the normalizing last layer that projects onto the (d-1)-dimensional probability simplex defined as:

$$\Delta^{d-1} := \left\{ p \in \mathbb{R}^d : p_i \ge 0, \sum_{i=1}^d p_i = 1 \right\}.$$

We denote by $F := s \circ f$ the classifier that outputs a probability distribution over the m classes. We call F the **soft** classifier, and F_{out} the **hard classifier**.

The simplex maps that are most commonly found in the literature are the softmax, the hardmax that is defined as the projection that puts all mass in the index of the maximum component (with ties broken arbitrarily), and the sparsemax that is defined as the Hilbert projection onto the convex closed set which is the d-1-dimensional probability simplex.

We will call the case where we use the hardmax as a simplex map the **discrete case** and the case where we use a continuous simplex projection (like the softmax or the sparsemax) the **continuous case**.

2.2 Randomized Smoothing

Randomized smoothing is a technique designed to enhance the robustness of classifiers against small perturbations or adversarial attacks that stems from a simple intuition: if a classifier's decision is stable under small random perturbations of the input, it's likely to be more robust overall (this intuition will be made more rigorous using the concept of robustness radius).

Following the same conventions as in the previous section, we define the smoothed classifier $\hat{F}: \mathcal{X} \to \Delta^{d-1}$ using randomized smoothing as implementing a majority vote over predictions of the soft classifier F with noisy versions of the input:

$$\hat{F}(x) := \mathbb{E}_{\epsilon \sim \mathcal{N}(0, \sigma^2 I)} [F(x + \epsilon)],$$

where $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$ represents Gaussian noise with mean 0 and covariance matrix $\sigma^2 I$. The final smoothed classifier is given by $\hat{F}_{out}(x) = \arg\max_{k \in \mathcal{Y}} \hat{F}_k(x)$. We can reinterpret this expectation as convolving F with the Gaussian kernel p_{σ} ; $\hat{F} = F * p_{\sigma}$, where

$$p_{\sigma}(z) \coloneqq \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{\|z\|^2}{2\sigma^2}\right).$$

2.3 Robustness Radius

For a given classifier $F: \mathcal{X} \to \Delta^{d-1}$, we can quantify its decision confidence for a specific input x using a metric called the certified radius, denoted as R(F,x). This radius represents the maximum allowable perturbation ϵ that can be applied to the input x while ensuring the classifier's output remains consistent with the true label y.

The certified radius serves as an indicator of a classifier's resilience to input disturbances. A larger value of R(F,x) suggests greater robustness against perturbations for that particular input.

In the context of randomized smoothing with Gaussian noise, the size of the perturbation is usually measured using the ℓ_2 -norm, therefore we can formally define the certified radius as:

$$R(F,x) \coloneqq \begin{cases} 0 & \text{if } F_{out}(x) \neq y, \\ \min\left\{\epsilon > 0 \mid \exists \tau \in B_2(0,\epsilon), \, F_{out}(x+\tau) \neq y\right\} & \text{otherwise,} \end{cases}$$

where $B_2(0,\epsilon)$ represents the ℓ_2 -ball centered at the origin with radius ϵ .

2.4 Certified Radius and Lipschitz Constant

The concept of Lipschitz continuity provides an intuitive framework for understanding classifier robustness and its relation to the certified radius.

A soft classifier $F: \mathcal{X} \to \Delta^{d-1}$ is Lipschitz continuous if there exists a constant $L \geq 0$ such that for all $x_1, x_2 \in \mathcal{X}$:

$$||F(x_1) - F(x_2)|| \le L \cdot ||x_1 - x_2||.$$

Lipschitz continuity essentially bounds the maximum change in the output for a given change in the input, which means that a smaller Lipschitz constant indicates that the classifier's output is less sensitive to input perturbations.

The following proposition highlights the relationship between Lipschitz continuity and a quantity named the prediction margin M(f,x) (defined below) which quantifies how far the input is from the decision boundary of the classifier. A positive margin indicates correct classification, with larger values suggesting higher confidence, while a negative margin indicates misclassification:

$$M(F,x) := F(x)_y - \max_{i \neq y} \{F(x)_i\}. \tag{1}$$

Proposition 1 If the classifier F is Lipschitz continuous with Lipschitz constant L(F) and if $M(F,x) > \sqrt{2}L(F)r$, then for any adversarial example $x + \epsilon$ such that $\|\epsilon\| \le r$, $M(F, x + \epsilon) > 0$.

As a corollary of the proposition above, we can induce a certified radius that is proportional to the prediction margin:

$$R(F,x) \ge \frac{M(F,x)}{\sqrt{2}L(F)}$$

Going back to randomized smoothing, we can demonstrate easily from the definition of the smoothed classifier \hat{F} that its Lipschitz constant is less than L(F). Moreover, if the simplex map s is 1-Lipschitz (like in the case of softmax or sparsemax), then $L(F) \leq L(f)$. As a result, we can write our first certified radius for a smoothed classifier as follows:

$$R_1(\hat{F}, x) := \frac{M(\hat{F}, x)}{\sqrt{2}L(f)} \tag{2}$$

2.5 Certified Radius and Noise Magnitude

In the discrete case, Cohen et al. proved a model-agnostic certifiably tight radius for randomized smoothing, meaning meaning there exist adversarial examples at distances arbitrarily close to the ball centered at x with their radius. The method scales to large networks and high-dimensional data, as it only requires evaluating the base classifier on noisy samples.

Formally, their certified radius is defined as:

$$R_2(\hat{F}, x) := \frac{\sigma}{2} M(\Phi^{-1} \circ \hat{F}, x) = \frac{\sigma}{2} \left(\Phi^{-1}(\hat{F}(x)_y) - \Phi^{-1}(\max_{i \neq y} \{ (\hat{F}(x)_i) \}) \right), \tag{3}$$

where Φ is the Gaussian cumulative distribution function. The appearance of the Gaussian CDF (Φ) in this formula is tied to the blurring effect of the decision boundary induced by the addition of Gaussian noise to the input.

This guarantee is tight because it considers the worst-case scenario where all the probability mass of the runner-up class is concentrated at the point closest to the decision boundary. It's worth noting that the noise magnitude σ plays a crucial role in both cases. Larger σ values tend to increase the certified radius of the smoothed classifier, potentially improving robustness. However, this comes at the cost of potentially reduced accuracy on clean (unperturbed) inputs, as the noise may cause misclassifications even in the absence of adversarial perturbations, embodying a fundamental trade-off in randomized smoothing between robustness and clean accuracy.

3 Problem Formulation

3.1 Monte Carlo Simulation

Both certified radii (2) and (3) require evaluating the output of the smoothed classifier \bar{F} . The evaluation of a smoothed classifier presents a unique challenge due to the intractable nature of the integral involved in its definition. To overcome this limitation, the classical approach is to use Monte Carlo methods, which provide a practical and efficient means of approximating the output of the smoothed classifier, capable of scaling to large networks and high-dimensional data.

The Monte Carlo approach relies on the law of large numbers to approximate the true expectation. The process begins by generating a large number of independent Gaussian noise samples, typically in the order of thousands or tens of

thousands. These noise samples are then added to the input x, creating a set of perturbed inputs. The base classifier F is then evaluated on each of these perturbed inputs, producing a collection of outputs. The key insight of the Monte Carlo method is that the empirical distribution of these outputs converges to the true distribution of the smoothed classifier's output as the number of samples increases.

The exact procedure differs slightly depending on whether we are dealing with a discrete classifier (outputting class labels directly) or a continuous classifier (outputting logits or probabilities).

3.1.1 Discrete Case

In the discrete case, our base classifier F outputs one-hot dimensional vectors that we can assimilate to class labels. To approximate the output of the smoothed classifier \hat{F} , we generate a vector of counts $X=(X_1,\ldots,X_m)$ through a sampling process. This process begins by generating n independent noise samples from a Gaussian distribution $\mathcal{N}(0,\sigma^2I)$. We then evaluate the base classifier on each of these noisy inputs, producing a set of class labels. Finally, we count the occurrences of each class to form our vector X.

This vector of counts X can be interpreted as a sample from a multinomial distribution with parameters n and $p=(p_1,\ldots,p_K)$, where $p_k=\mathbb{P}(f(x+\epsilon)=k)$. The probability vector p is precisely what we aim to approximate, as it represents the output of the smoothed classifier. To obtain a concrete prediction, we simply select the class with the highest count: $\hat{F}_{out}(x) = \arg\max_{k \in \{1,\ldots,m\}} X_k$. This approach effectively approximates the argmax operation over the class probabilities in the definition of the smoothed classifier.

The law of large numbers ensures that as $n \to \infty$, the empirical probabilities X_k/n converge to the true probabilities p_k , providing a consistent estimator of the smoothed classifier's output. Moreover, the multinomial nature of X allows us to construct confidence intervals for the true probabilities p_k using methods such as the Clopper-Pearson interval. These confidence intervals play a crucial role in certifying the robustness of the smoothed classifier, as they allow us to bound the probabilities of the top class and the runner-up with high confidence.

3.1.2 Continuous Case

In the continuous case, our base classifier $F: \mathbb{R}^d \to \Delta^{m-1}$ outputs a vector of probabilities for each class. Here, instead of a vector of counts, we produce a matrix $X \in \mathbb{R}^{n \times m}$ where each row represents the output of the base classifier for a single noisy sample. The process begins similarly to the discrete case, with the generation of n independent noise samples. We then evaluate the base classifier on each noisy input, but instead of counting class labels, we store the full output vectors as rows of our matrix X.

Each column of X represents the varying confidence scores for a particular class label across the noisy samples. The column-wise means $\hat{p}_j = \frac{1}{n} \sum_{i=1}^n X_i^j$ provide an estimate of the expected confidence for each class under the noise distribution, effectively approximating the output of the smoothed classifier. This approach not only captures the central tendency of the classifier's behavior but also allows us to compute confidence intervals that account for the fluctuations in these scores. The final prediction is then determined by the class with the highest mean confidence: $\hat{F}_{out}(x) = \arg\max_{k \in \{1, \dots, m\}} \hat{p}_k$. By considering both the mean and the variability of these confidence scores, we can obtain a more nuanced understanding of the classifier's behavior under noise, which is crucial for both prediction and robustness certification.

In this case, the central limit theorem ensures that \bar{z} converges to a multivariate normal distribution as $n \to \infty$, centered at the true expected logits. This allows us to construct confidence intervals for the true expected logits and, consequently, for the probabilities of the smoothed classifier. The continuous case offers some advantages in terms of statistical efficiency, as it retains more information from each evaluation of the base classifier. However, it may be more computationally intensive, especially for large m, as it requires storing and manipulating the full matrix Z rather than just a vector of counts.

In both the discrete and continuous cases, the accuracy of the Monte Carlo approximation improves with the number of samples n, allowing for a trade-off between computational cost and precision. Larger n provides tighter confidence intervals and more reliable predictions, but at the cost of increased computation time and memory usage. The choice between the discrete and continuous approaches may depend on the specific base classifier and the computational resources available. The discrete approach is often simpler to implement and may be more memory-efficient, especially for large m. The continuous approach, while potentially more statistically efficient, requires more storage and computation, particularly when dealing with logits.

In practice, the choice of n and σ involves balancing multiple objectives: prediction accuracy, robustness guarantees, computational efficiency, and clean accuracy. These parameters may need to be tuned based on the specific requirements of the application and the characteristics of the dataset and base classifier.

3.2 Monte Carlo Approximation and Conservative Confidence Intervals

While the Monte Carlo methods offers a practical means of approximating the output of a smoothed classifier, it introduces an element of randomness into the evaluation process, a factor that must be carefully considered, especially when certifying the robustness of these classifiers, since the certified radius represents a guarantee of the classifier's stability under adversarial perturbations, and any uncertainty in its computation could potentially undermine this guarantee.

The biggest risk induced by the randomness in our Monte Carlo approximation is that our empirical estimate might overstate the true robustness of the classifier. If we were to naively use our empirical estimates without accounting for this risk, we might end up with an overly optimistic assessment of the classifier's robustness. Such an overestimation could have serious consequences in security-critical applications, where reliance on an inflated robustness guarantee could lead to vulnerabilities.

To address this risk and maintain the integrity of our robustness guarantees, the use of confidence intervals is key. Specifically, we employ a one-sided lower confidence bound on our estimate of the certified radius. In the context of robustness certification, we are primarily concerned with avoiding overestimation of the classifier's capabilities. An underestimation, while potentially leading to a smaller certified radius, does not compromise the validity of our robustness guarantee. It merely results in a more conservative certification, which is preferable to an optimistic one that might not hold in practice.

The use of a confidence interval highlights two important trade-offs. The first trade-off that we touched on in the previous section is the influence of the number of Monte Carlo samples on the width of the confidence interval, and consequently the conservatism of our robustness estimate. Increasing the number of samples narrows the confidence interval, potentially leading to tighter robustness bounds. However, this comes at the cost of increased computational overhead. In practice, the choice of sample size often involves balancing the desire for tight bounds with computational constraints.

Another factor to consider is the choice of confidence level for these intervals. A higher confidence level (e.g., 99% vs 95%) provides stronger statistical guarantees but results in wider intervals and thus smaller certified radii. Again, this represents a trade-off between the strength of the probabilistic guarantee and the size of the certified radius.

3.3 Practical Calculation of Confidence Interval

When trying to estimate both certified radii, the heavy-lifting part of the calculation involves estimating the margin $M(\hat{F},x)$ or $M(\Phi^{-1}\circ\hat{F},x)$. In practice, computing this margin exactly as defined can be computationally intensive, especially for classifiers with a large number of classes. However, a useful simplification can be made without compromising the conservative nature of our robustness estimate. Instead of considering all classes other than the true class y, we can focus solely on the class with the second-highest confidence score, which can be determined empirically.

Formally, if we denote the index of the class with the second-highest score as j, we can approximate the margin as:

$$M(\hat{F}, x) = \hat{F}(x)_y - \hat{F}(x)_j$$
, and $M(\Phi^{-1} \circ \hat{F}, x) = \Phi^{-1}(\hat{F}(x)_y) - \Phi^{-1}(\hat{F}(x)_j)$.

This simplification is based on the observation that the class posing the greatest threat to the current classification is the one with the next highest score after the predicted class. By using only this "runner-up" class in our margin calculation, we ensure that our estimate of the certified radius remains conservative. This is because the maximum over all other classes will always be greater than or equal to the score of the second-highest class.

The classical statistical approach to estimate the margin is to combine an exact one-sided interval confidence interval with Bonferroni correction. The use of exact intervals, rather than approximate ones, is crucial in this context. Exact intervals guarantee that the true probability is contained within the interval with at least the specified confidence level, regardless of the sample size or the true underlying probability. This property is particularly important when certifying robustness, as we need to ensure that our guarantee holds with high probability. Approximate intervals, such as those based on normal approximations, may underestimate the uncertainty for extreme probabilities or small sample sizes, potentially leading to overly optimistic robustness certificates. The exact interval is then used to get a lower bound to the probability of the predicted class while simultaneously applying an upper bound to the probability of the runner-up class to yield a conservative estimate of the classifier's robustness.

Intuitively, the application of a lower bound to the highest probability effectively diminishes the perceived confidence of the classifier in its primary prediction. This deliberate underestimation of confidence creates a more stringent condition for establishing robustness guarantees. It simulates a scenario where the classifier operates under suboptimal conditions, thereby testing its resilience in a more challenging environment than may actually exist.

Conversely, for the runner-up class, the utilization of an upper bound on its probability artificially enhances the perceived strength of the alternative classification. This overestimation of the competing class's likelihood presents a more formidable challenge to the primary prediction. The effect is to reduce the apparent margin between the top two classes, thus imposing a more rigorous criterion for demonstrating the classifier's decisiveness.

The confluence of these two conservative estimates – the understatement of the classifier's confidence in its primary prediction and the overstatement of the potential for an alternative classification – engenders a scenario that approaches a worst-case within the bounds of statistical confidence. This conservative framework ensures that any subsequent robustness guarantees derived from these estimates will remain valid even under these pessimistic assumptions. Consequently, this approach provides a highly reliable, albeit potentially overly cautious, assessment of the classifier's robustness.

3.3.1 Discrete Case

In the discrete case, the Clopper-Pearson interval, also known as the exact binomial confidence interval, provides a conservative estimate of the true probability of an event given a number of observed successes in a fixed number of trials. In our context, we use this method to construct confidence intervals for the probabilities of the top class and the runner-up class.

To account for the fact that we are estimating multiple probabilities simultaneously, we apply the Bonferroni correction. This correction adjusts the significance level for each individual confidence interval to ensure that the overall probability of any interval not containing the true value remains below our chosen significance level.

Concretely, let n_A be the number of times the top class A is observed in n Monte Carlo samples, and n_B be the count for the runner-up class B. We construct a lower bound $\underline{p_A}$ for the probability of class A and an upper bound $\overline{p_B}$ for class B using the Clopper-Pearson method:

$$p_A = \text{BetaInv}(\alpha/2, n_A, n - n_A + 1) \tag{4}$$

$$\overline{p_B} = \text{BetaInv}(1 - \alpha/2, n_B + 1, n - n_B)$$
(5)

Here, BetaInv is the inverse of the cumulative distribution function of the Beta distribution, and α is the chosen significance level (typically 0.001 or smaller).

Consequently, we can use these bounds to compute a conservative estimate of the margin:

$$\hat{M}(\hat{F}, x) = \underline{p_A} - \overline{p_B}, \quad \tilde{M}(\Phi^{-1} \circ \hat{F}, x) = \Phi^{-1}(\underline{p_A}) - \Phi^{-1}(\overline{p_B})$$
(6)

where Φ^{-1} is the inverse of the standard normal cumulative distribution function.

This conservative margin estimate can then be used to compute the certified radius, ensuring that our robustness guarantee holds with high probability. The use of these statistical techniques allows us to make strong claims about the robustness of our smoothed classifier, even when working with finite samples in a probabilistic setting. By consistently underestimating the true margin, we maintain the validity of our robustness certificates at the cost of potentially being overly conservative in some cases.

3.3.2 Continuous Case

In the continuous case, to obtain a lower or an upper bound on the mean of a class probability, the corresponding column in the prediction matrix X serves as a sample we can use to estimate the mean with an exact confidence interval. The classical approach to obtaining confidence intervals involves inverting concentration inequalities which describe how a random variable deviates from its expected value. These inequalities provide upper bounds on the probability that a random variable differs from its mean by more than a certain amount. Common examples include Markov's inequality, Chebyshev's inequality, and Hoeffding's inequality. To derive a confidence interval, we simply invert these concentration inequalities.

This inversion essentially flips the perspective: instead of bounding the probability of deviation, we bound the range of possible values for the parameter of interest. The key idea is to express the probability statement in terms of the

unknown parameter rather than the random variable. This inversion process typically involves algebraic manipulation of the inequality. We start with the concentration inequality, which gives us a probabilistic bound on the deviation of our estimator from the true parameter value. By rearranging this inequality, we can express it in terms of the parameter itself, creating a range of values that likely contains the true parameter with a specified level of confidence.

The resulting confidence interval provides a range of plausible values for the unknown parameter, along with a measure of the uncertainty associated with the estimate. The width of this interval is influenced by factors such as the sample size, the variability in the data, and the desired level of confidence.

In randomized smoothing, the state-of-the-art approach uses a variance-adaptive concentration inequality to obtain confidence bounds. Other variance-agnostic approaches have limitations, particularly in scenarios with low variance which are the scenarios that we are interested in, since well-trained classifiers (like neural networks trained using Gaussian data augmentation or adversarial training) have very low variance in their outputs for similar inputs. For example, Hoeffding's inequality assumes the worst-case scenario for variance, which is 1/4 for a bounded random variable in [0,1]. This assumption can lead to overly wide confidence intervals when the actual variance is much smaller than this upper bound.

Unlike Hoeffding's, Bernstein's inequality takes into account the actual variance of the random variables. By incorporating this information, Bernstein's inequality can provide tighter bounds, especially in low-variance scenarios relative to their range. However, the standard Bernstein inequality still requires knowledge of the true variance or at least a good upper bound, which is often unknown in practical situations. This limitation led to the development of the empirical Bernstein inequality. This data-dependent version estimates the variance from the sample itself, rather than relying on a priori bounds or assumptions.

Proposition 2 (Empirical Bernstein Inequality) Let X_1, X_2, \ldots, X_n be independent random variables with values in [a,b], and let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ be their empirical mean. Define the empirical variance as

$$V_n = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2.$$

Then, for any $\delta \in (0,1)$ and $n \geq 2$, with probability at least $1 - \delta$,

$$\mathbb{E}[X] \le \bar{X}_n + \sqrt{\frac{2V_n \ln(1/\delta)}{n}} + \frac{7(b-a) \ln(1/\delta)}{3(n-1)}.$$

4 Certified Radius Estimation in the Discrete Case

4.1 Definitions and Notations

Following the same footsteps in , we have a vector of counts $X=(X_1,\ldots,X_m)$ that follows a multinomial distribution with parameters n and $p=(p_1,\ldots,p_m)$, where n is the number of samples (which is fixed for our purposes) and $p_k=\mathbb{P}(f(x+\epsilon)=k)$ are the sole unknown parameters. In general, we wish to estimate a lower confidence bound (the development for an upper confidence bound is identical but uninteresting for our intents given the reasons we layed out in the previous section) for a real-valued function $\theta\coloneqq g(p)$ of the multinomial parameter p. We assume that the multinomial parameter p lives in a constraint space denoted as χ^{m-1} which is a subset of Δ^{m-1} . We also denote by $\chi^{m-1}_n \coloneqq \chi^{m-1} \cap \Delta^{m-1}_n$ the discrete constraint space, i.e. the values that can taken empirically by p given p trials.

The maximum likelihood estimator (MLE) of θ is given by $\hat{\theta} = g(\hat{p})$ where $\hat{p} = \frac{X}{n} = \left(\frac{X_1}{n}, \cdots, \frac{X_m}{n}\right)$ is the MLE of the multinomial parameter p. Define $\Theta \coloneqq g(\chi^{m-1})$ (respectively $\hat{\Theta} \coloneqq g(\chi^{m-1})$) as the set of all possible values that can be taken by θ (respectively by $\hat{\theta}$). Denote by $\tilde{\theta} \in \hat{\Theta}$ the observed value of θ in our data, and by $\Pi(\cdot|p)$ the cumulative distribution function (CDF) of $\hat{\theta}$ given a multinomial parameter $p \in \Delta^{m-1}$. For any $L \in \Theta$, define

$$\Pi(L) := 1 - \inf_{\substack{p \in \Delta^{m-1} \\ g(p) \le L}} \Pi(\tilde{\theta}|p). \tag{7}$$

Denote by $\Omega_n^{m-1}:=\{x\in\mathbb{R}^m:x_i\geq 0,\sum_{i=1}^mx_i=n\}$ the sample space of the multinomial distribution. For any $p\in\Delta^{m-1}$ and $x\in\Omega_n^{m-1}$, we write

$$\binom{n}{x} \coloneqq \binom{n}{x_1} \cdots \binom{n}{x_m}, \quad p^x \coloneqq p_1^{x_1} \cdots p_m^{x_m}.$$

Hence, we can explicitly write the CDF of $\hat{\theta}$ as

$$\Pi(\tilde{\theta}|p) = \sum_{\substack{x \in \Omega_n^{m-1} \\ g(\frac{x}{n}) \le \tilde{\theta}}} \binom{n}{x} p^x.$$

For any $p \in \Delta^{m-1}$ such that $m \ge 3$ (which we assume), we define the reduced multinomial parameter $q \in \Delta^2$ (which depends implicitly on p) by $q_1 = p_1$, $q_2 = p_2$ and $q_3 = 1 - p_1 - p_2$. It can be proven by simple algebraic manipulations that if the function q depends only on the parameters p_1 and p_2 , then the CDF of $\hat{\theta}$ can be simplified to

$$\Pi(\tilde{\theta}|p) = \Pi(\tilde{\theta}|q) = \sum_{\substack{x \in \Omega_n^2 \\ g(\frac{x}{n}) \le \tilde{\theta}}} \binom{n}{x} q^x.$$

It is also worth noting that $\Pi(\tilde{\theta}|q)$ is a posynomial function in the parameter q, a fact that we will use later. Finally, the quantity $\Pi(L)$ can be simplified to

$$\Pi(L) = 1 - \inf_{\substack{q \in \Delta^2 \\ g(q) \le L}} \Pi(\tilde{\theta}|q).$$

4.2 First Radius Estimation

In the case of the first radius, our constraint space χ^{m-1} is the entire simplex Δ^{m-1} . Therefore, the discrete constraint set and the discrete simplex set coincide. The sets Θ and $\hat{\Theta}$ are equal to [-1,1] and $\{-\frac{n}{n},\frac{n-1}{n},\dots,-\frac{1}{n},0,\frac{1}{n},\frac{2}{n},\dots,\frac{n}{n}\}$ respectively. The observed value $\tilde{\theta} \in \hat{\Theta}$ can be written as $\tilde{\theta} = \frac{k}{n}$ for some $k \in [-n,n]$. Without loss of generality, we can assume that the two classes with the highest probabilities are respectively classes 1 and 2 (i.e. y=1 and j=2). Hence, the CDF of $\hat{\theta}$ can be rewritten as

$$\Pi(\tilde{\theta}|p) = \Pi(\tilde{\theta}|q) = \mathbb{P}(X_1 - X_2 \le k|q) = \sum_{x_2=0}^n \sum_{x_1=0}^{\min(k+x_2,n)} \binom{n}{x} q^x.$$

For a given confidence level $1-\alpha$, the lower confidence bound on θ is given by

$$\hat{\theta} = \inf \left\{ L \in \Theta : \Pi(L) = \alpha \right\}. \tag{8}$$

Therefore, to compute the lower confidence bound $\underline{\hat{\theta}}$, we need to solve two optimization problems in the equations (7) and (8). Starting by the easy one, suppose we can compute $\Pi(L)$ for any $L \in \Theta$, it is clear that the function Π is nondecreasing in L, which means that we can find $\hat{\theta}$ by binary search.

Computing $\Pi(L)$ demands that we solve the following optimization problem:

$$\inf_{\substack{q \in \Delta^2 \\ q_1 - q_2 \le L}} \Pi(\tilde{\theta}|q). \tag{9}$$

This optimization problem (9) falls under the category of **signomial optimization problems**, a kind of optimization problems that are extensively studied in the literature. Details on how to solve the signomial optimization problem can be found in Appendix ??. Solving signomial problems can be time-consuming, that is why the next lemma can helpful in justifying suboptimal but faster methods in the first iterations of the binary search.

Lemma 1 If there exists
$$q \in \Delta^2$$
 such that $q_1 - q_2 \le L$ and $\Pi(\tilde{\theta}|q) \le 1 - \alpha$, then $\underline{\hat{\theta}} \le L$.

It is worth noting that this lemma holds true for both first and second radii. The lemma above has the following implication: if we suboptimally solve the optimization problem (9) for a given $L \in \Theta$, and if we find a value that is less than $1-\alpha$, then the lower confidence bound we are looking for resides on the right side of L, which narrows down the search space to the left subspace of L. In the first iterations of the binary search, our candidate L is likely to be far away from the optimal solution $\underline{\hat{\theta}}$, which means that solutions of the optimization problem (??) are likely to correspond to values that are less $1-\alpha$, therefore we can get away with suboptimally solving the problem. In practice, bayesian optimization algorithms often work well and are reasonably fast for the problem (??), and we implement an early stopping rule to stop optimizing further if we fall below $1-\alpha$.

4.3 Second Radius Estimation

In the same was as the last section, we need to solve the following optimization problem

$$\inf_{\substack{q \in \Delta^2 \\ \Phi^{-1}(q_1) - \Phi^{-1}(q_2) \le L}} \Pi(\tilde{\theta}|q). \tag{10}$$

Since Φ^{-1} is not a posynomial function, the optimization problem (10) cannot be classified as a signomial optimization problem, due to the non-signomial constraint $\Phi^{-1}(q_1) - \Phi^{-1}(q_2) \leq L$. To circumvent this problem, the following lemma shows that we can substitue the function Φ^{-1} with its taylor series approximation which is a polynomial (and in particular, a posynomial) function.

Lemma 2 Let Φ_M^{-1} be the taylor series approximation of Φ^{-1} up to order M. If we assume that $p_1 \geq 1/2$, then

$$M(\Phi^{-1} \circ \hat{F}, x) \ge M(\Phi_M^{-1} \circ \hat{F}, x)$$

This lemma guarantees that replacing Φ^{-1} with its taylor series approximation preserves the conservativeness of the certified radius. The new margin has the advantage that the following optimization problem is a signomial optimization problem

$$\inf_{\substack{q \in \Delta^2 \\ \Phi_M^{-1}(q_1) - \Phi_M^{-1}(q_2) \le L}} \Pi(\tilde{\theta}|q), \quad \text{with} \quad \Pi(\tilde{\theta}|q) = \sum_{\substack{x \in \Omega_n^2 \\ \Phi_M^{-1}\left(\frac{x_1}{n}\right) - \Phi_M^{-1}\left(\frac{x_2}{n}\right) \le \tilde{\theta}}} \binom{n}{x} q^x. \tag{11}$$

In the same manner as before, in the first iterations of binary search we can suboptimally solve this optimization problem using techniques such as bayesian optimization.

A disadvantage of the taylor series approximation is that the lemma assumes that $p_1 \ge 1/2$ to maintain the conservativeness of the certified radius. To get around this potentially untrue hypothesis, we can test it using the one-sided Clopper-Pearson interval. If the test succeeds, we proceed with the taylor series approximation. If not, as a fallback, we use the standard Clopper-Pearson interval with Bonferroni correction to estimate the certified radius.

5 Certified Radius Estimation in the Discrete Case

5.1 Estimating By Betting

In , Ramdas et al introduced a novel approach to obtain confidence intervals with exact coverage for the mean of a bounded random variable. Their method is based on creating confidence sequences which are stronger than confidence intervals in the sense that while a confidence interval provides a range estimate for a parameter at a fixed sample size, a confidence sequence offers a sequence of intervals that are valid at any stopping time, providing continuous monitoring capabilities. Their new method shows significant improvements over past works including empirical Bernstein inequality in terms of interval width.

Full details about their work is outside the scope of this report. The interested reader is encouraged to consult the original paper to learn more about their method. But for summary, the intuition behind the new method is rooted in a betting framework. The approach can be conceptualized as a game between a statistician and nature. For each potential mean value m in the interval [0,1], a separate game is established. The statistician's strategy involves making bets on future observations, with the goal of accumulating wealth if the true mean differs from m. The confidence set at any time t consists of all values m for which the statistician's wealth has not exceeded a certain threshold (specifically, $1/\alpha$ for a $1-\alpha$ confidence level).

The authors frame this approach within the context of supermartingale theory, connecting it to existing work in nonparametric concentration and estimation. They also provide a plethora of betting strategies that range from simple to implement but overly conservative strategies to tight but inefficient ones.

For the intents of this report, we will use the simplest confidence sequence mentioned in their paper, namely, the following, as we leave the exploration of tighter confidence sequences for future work.

Proposition 3 Suppose $(X_t)_{t=1}^{\infty} \sim P$ for some $P \in \mathcal{P}$. For any (0,1)-valued predictable $(\lambda_t)_{t=1}^{\infty}$,

$$C_t^{\textit{PrPI-EB}} \coloneqq \left(\frac{\sum_{i=1}^t \lambda_i X_i}{\sum_{i=1}^t \lambda_i} \pm \sqrt{\frac{2\log(2/\alpha) + \sum_{i=1}^t v_i \psi_e(\lambda_i)}{\sum_{i=1}^t \lambda_i}}\right)$$

forms a $(1-\alpha)$ -CS for μ , as does its running intersection, $\bigcap_{i < t} C_i^{PrPI\text{-}EB}$.

In particular, we recommend the predictable plug-in $(\lambda_t^{PPI\text{-}EB})_{t=1}^{\infty}$ given by

$$\lambda_t^{\textit{PrPI-EB}} \coloneqq \sqrt{\frac{2\log(2/\alpha)}{\hat{\sigma}_{t-1}^2\log(1+t)}} \wedge 1, \quad \hat{\sigma}_t^2 \coloneqq \frac{1}{4} + \frac{\sum_{i=1}^t (X_i - \hat{\mu}_i)^2}{t+1}, \quad \hat{\mu}_t \coloneqq \frac{1}{2} + \frac{\sum_{i=1}^t X_i}{t+1}$$

where (15)

While the first article only showed empirically the improvements in terms of interval width over existing work, Ramdas et al later proved in that the asymptotic width of their confidence sequence not only is tighter than empirical Bernstein's, but also achieves the width of the theoretical Bernstein's inequality in both the first-order and second-order limiting terms. Formally, the width of the (one-sided) theoretical Bernstein's inequality, which we consider to be the gold standard, is given by

$$w_n^{(TB)} = \sigma \sqrt{\frac{2\log(2/\alpha)}{n}} + \frac{2\log(1/\alpha)}{3n}.$$

The width of the empirical Bernstein's inequality is given by

$$w_n^{(EB)} = \sigma \sqrt{\frac{2\log(2/\alpha)}{n}} + \frac{7\log(2/\alpha)}{3(n-1)}.$$

Ramdas et al also proved that the width of their confidence sequence matches that of the theoretical Bernstein's inequality at least up to the second-order limiting term:

$$w_n^{\text{PrPI-EB}} = \sigma \sqrt{\frac{2 \log(2/\alpha)}{n}} + \frac{2 \log(1/\alpha)}{3n} + o\left(\frac{1}{n}\right).$$

5.2 First Radius Estimation

5.3 Second Radius Estimation

6 Conclusion and Future Work

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Acknowledgments

Nulla malesuada portitior diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

References

- [1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In *Advances in neural information processing systems*, pages 1097–1105, 2012.
- [2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv* preprint arXiv:1810.04805, 2018.
- [3] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436-444, 2015.
- [4] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

- [5] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial machine learning. *Pattern Recognition*, 84:317–331, 2018.
- [6] Yevgeniy Vorobeychik and Murat Kantarcioglu. Adversarial machine learning. Morgan & Claypool, 2018.
- [7] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.
- [8] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. *arXiv preprint arXiv:1412.6572*, 2014.
- [9] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017 IEEE Symposium on Security and Privacy (SP), pages 39–57. IEEE, 2017.
- [10] Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted attacks on speech-to-text. In 2018 *IEEE Security and Privacy Workshops (SPW)*, pages 1–7. IEEE, 2018.
- [11] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world. *arXiv preprint* arXiv:1607.02533, 2016.
- [12] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine learning: from phenomena to black-box attacks using adversarial samples. *arXiv preprint arXiv:1605.07277*, 2016.
- [13] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world attacks on deep learning visual classification. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 1625–1634, 2018.
- [14] Samuel G Finlayson, Hyung Won Chung, Isaac S Kohane, and Andrew L Beam. Adversarial attacks against medical deep learning systems. *arXiv preprint arXiv:1804.05296*, 2019.
- [15] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick McDaniel. Adversarial examples for malware detection. In *European Symposium on Research in Computer Security*, pages 62–79. Springer, 2017.
- [16] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition. In *Proceedings of the 2016 ACM SIGSAC Conference on Computer* and Communications Security, pages 1528–1540, 2016.
- [17] Shengyuan Gu and Bryan T Kelly. Adversarial deep learning for robust detection of binary trading signals. *arXiv* preprint arXiv:1810.08295, 2018.
- [18] Bin Li, Yijie Wang, and Liangliang Zhang. Adversarial attacks on financial deep learning models. *arXiv preprint* arXiv:2004.05150, 2020.
- [19] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*, 2017.
- [20] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. *arXiv preprint arXiv:1705.07204*, 2017.
- [21] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens Van Der Maaten. Countering adversarial images using input transformations. *arXiv preprint arXiv:1711.00117*, 2017.
- [22] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On detecting adversarial perturbations. *arXiv preprint arXiv:1702.04267*, 2017.
- [23] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry. Robustness may be at odds with accuracy. *arXiv preprint arXiv:1805.12152*, 2018.
- [24] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial examples in deep neural networks. In *Network and Distributed System Security Symposium*, 2017.
- [25] Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial examples. In *Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security*, pages 135–147, 2017.
- [26] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In *International Conference on Machine Learning*, pages 274–283. PMLR, 2018.
- [27] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized smoothing. In *International Conference on Machine Learning*, pages 1310–1320. PMLR, 2019.
- [28] Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed integer programming. In *International Conference on Learning Representations*, 2017.

- [29] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An efficient smt solver for verifying deep neural networks. In *International Conference on Computer Aided Verification*, pages 97–117. Springer, 2017.
- [30] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. Ai2: Safety and robustness certification of neural networks with abstract interpretation. In 2018 IEEE Symposium on Security and Privacy (SP), pages 3–18. IEEE, 2018.
- [31] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Semidefinite relaxations for certifying robustness to adversarial examples. In *Advances in Neural Information Processing Systems*, pages 10900–10910, 2018.
- [32] Eric Wong and J Zico Kolter. Provable defenses against adversarial examples via the convex outer adversarial polytope. In *International Conference on Machine Learning*, pages 5286–5295. PMLR, 2018.
- [33] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. Certified robustness to adversarial examples with differential privacy. In 2019 IEEE Symposium on Security and Privacy (SP), pages 656–672. IEEE, 2019.