Coordinate and Tangent-Space Charts for a Plane Curve

1 The Curve as a 1–Dimensional Submanifold

Definition 1. Let $f: \mathbb{R} \to \mathbb{R}$ be a C^1 -function. Its graph

$$C = \left\{ (x, y) \in \mathbb{R}^2 \mid y = f(x) \right\}$$

is a 1-dimensional embedded submanifold of \mathbb{R}^2 .

Fix $a \in \mathbb{R}$ and set

$$p = (a, f(a)) \in C.$$

2 Global Coordinate Chart on C

6.1. Chart via a Parametrization

Define

$$\Phi: \underbrace{\mathbb{R}}_{U} \longrightarrow C, \qquad \Phi(t) = (t, f(t)).$$

Proposition 1. Φ is a diffeomorphism from $U = \mathbb{R}$ onto C, with inverse

$$\Phi^{-1}: C \longrightarrow \mathbb{R}, \qquad (x,y) \longmapsto x.$$

Hence $t \in \mathbb{R}$ is a global coordinate on C, and every point $p \in C$ admits the unique representation $p = \Phi(t)$.

Proof. Φ is C^1 with Jacobian determinant $1 \neq 0$, hence a local diffeo; injectivity and surjectivity are immediate from its formula. The inverse $\Phi^{-1}(x,y) = x$ is C^1 .

6.2. Ambient Coordinate Restriction

Equivalently, let

$$\pi_i : \mathbb{R}^2 \longrightarrow \mathbb{R}, \quad \pi_1(x,y) = x, \ \pi_2(x,y) = y.$$

Then the pair

$$(x,y)|_C = (\pi_1,\pi_2)|_C : C \longrightarrow \mathbb{R}^2$$

serves as the inclusion of C into its ambient coordinate system, with

$$(x,y)(t,f(t)) = (t,f(t)).$$

3 Coordinate Chart on the Tangent Spaces

7.1. The Tangent Bundle and Its Trivialization

The tangent bundle of C may be presented via the push–forward

$$d\Phi \ : \ TU \ = \ U \times \underbrace{\mathbb{R}}_{\text{model fiber}} \ \longrightarrow \ TC \subset T\mathbb{R}^2,$$

where

$$d\Phi_t(\dot{t}) = \frac{d}{dt} \Big(t, f(t) \Big) \Big|_t \dot{t} = \dot{t} \Big(1, f'(t) \Big) \in T_{\Phi(t)} C.$$

Since $d\Phi_t$ is a vector-space isomorphism $\mathbb{R} \to T_{\Phi(t)}C$, this gives a trivialization

$$TC \cong U \times \mathbb{R},$$

and in particular, at t = a,

$$d\Phi_a : \mathbb{R} \xrightarrow{\sim} T_p C, \qquad \tau \longmapsto \tau(1, f'(a)).$$

Thus $\tau \in \mathbb{R}$ is a local coordinate on the fibre T_pC .

7.2. Cotangent-Bundle Coordinates

Dually, the ambient projections π_i induce

$$d\pi_i : T_p \mathbb{R}^2 \longrightarrow \mathbb{R}, \quad (v_1, v_2) \longmapsto v_i.$$

Restricting to the line $T_pC = \text{span}\{(1, f'(a))\} \subset T_p\mathbb{R}^2$ yields a map

$$(d\pi_1, d\pi_2)|_{T_pC}: T_pC \longrightarrow \mathbb{R}^2$$
, model cotangent fiber

$$v \longmapsto (dx(v), dy(v)).$$

Again this is injective onto the one-dimensional subspace $\{(\tau, f'(a)\tau)\}\subset \mathbb{R}^2$, and projecting to the first factor recovers the scalar coordinate τ .

4 Coordinate Functions on C

$$x = \pi_1|_C : C \longrightarrow \mathbb{R}, \quad y = \pi_2|_C : C \longrightarrow \mathbb{R}.$$

Explicitly,

$$x(\Phi(t)) = t, \quad y(\Phi(t)) = f(t),$$

and at $p = \Phi(a)$, x(p) = a and y(p) = f(a).

5 Differentials on the Tangent Space

$$dx = d\pi_1|_{T_p\mathbb{R}^2} : T_p\mathbb{R}^2 \to \mathbb{R}, \quad dy = d\pi_2|_{T_p\mathbb{R}^2} : T_p\mathbb{R}^2 \to \mathbb{R},$$

$$dx(v_1, v_2) = v_1, \quad dy(v_1, v_2) = v_2.$$

Restricted to $T_pC = \text{span}\{(1, f'(a))\}$ one has

$$dx(1, f'(a)) = 1,$$
 $dy(1, f'(a)) = f'(a).$

In particular $dy/dx\big|_p = f'(a)$ as expected.