Math 425 Pset 2

Rohan Mukherjee

October 11, 2023

Lemma 0.1. Let (X, d) be a metric space, let $A \subset X$, and suppose there is a sequence $A \supset \{a_n\} \rightarrow a \notin A$. Then a is a limit point of A.

Proof. Given any r > 0, we can find a N so that if $n \ge N$, $d(a_n, a) < r$. Note also that since $a_n \ne a$, $a_n \in N_r(a) \setminus \{a\}$ by definition, and consequently since $a_n \in A$ for every n, we see that $(N_r(a) \setminus \{a\}) \cap A \ne \emptyset$, so a is indeed a limit point of A, as claimed.

I use this lemma countless times during this homework assignment, so I thought it would be a good idea to put it right here.

- 1. A clean example is $\mathfrak{G} = \{(1/n, 1-1/n)\}_{n=1}^{\infty}$. One notes clearly, that as each $(1/n, 1-1/n) \subset (0,1)$ for positive n, we have that the union is contained in (0,1). Similarly, given any $x \in (0,1)$, WLOG $|x| \leq 1/2$, we can choose an integer n > 1/x so that $x \in (1/n, 1-1/n)$, which completes double inclusion (I realize now that double inclusion is not necessary, but this doesn't affect the claim). Let $S_i = (1/i, 1-1/i)$, and suppose \mathfrak{G} had a finite subcover, say $\{S_l, \ldots, S_k\}$ (where the indices are increasing). One notes clearly that $S_l \subset S_{l+1} \subset \cdots \subset S_k$, so it suffices to show that S_k does not cover (0,1) (i.e., $\bigcup_{i=l}^k S_i = S_k$). Clearly, $(2k)^{-1} \notin (1/k, 1-1/k)$.
- 2. E is not countable. For if it was, there would be a bijection $f: \mathbb{N} \to E$. From this consider the number with its i-th digit a 4 if f(i) has a 7 in the i-th place, or in the case where f(i) has a 4 in the i-th place, make the new number have a 7 in the i-th place. Clearly this number is not on our list, so indeed E is not countable. E is also not dense in [0,1], for the largest possible number in E would be the number with all digits being a 7. Then we could just choose x=1 and $\varepsilon=0.2$, and we see that as every number in E is less than 0.8, we cannot be within 0.2 of x, so E is not dense by counterexample. Let x be a point in [0,1] with a non 4 or 7 digit, and call the first digit place that is not a 4 or 7 n, and for any number $z \in [0,1]$, let z_l where $l \in \mathbb{N}$ denote the lth digit of z. Let $y \in E$, and let $m \le n$ be the first digit place that y and x differ (Note: y and x certainly differ at the digit place n, but they might differ before that too). Then $|y-m|=|(y_m-x_m)/10^m+\sum_{k=m+1}^{\infty}(y_k-x_k)/10^k| \ge |(y_m-x_m)/10^m|-|\sum_{k=m+1}^{\infty}(y_k-x_k)/10^k|$ by the reverse triangle inequality. Since y_k is either a 4 or a 7, and $x_k \in \{0, \cdots, 9\}$, we see that $|y_k-x_k| \le 7$. Also, $|\sum_{k=m+1}^{\infty}(y_k-x_k)/10^k| \le \sum_{k=m+1}^{\infty}|y_k-x_k|/10^k| \ge |(y_m-x_m)/10^m|-|\sum_{k=m+1}^{\infty}(y_k-x_k)/10^k| \ge |(y_m-x_m)/10^m|-|\sum_{k=m+1}^{\infty}(y_k-x_k)/10^k|-|\sum_{k=m+1}^{\infty}(y_k-x_k)/10^k|-|\sum_{k=m+1}^{\infty}(y_k-x_k)/10^k|-|\sum_{k=m+1}^{\infty}(y_k-x_k)/10^k|-|\sum_{k=m+1}^{\infty}(y_k-x_k)/10^k|-|\sum_{k=m+1}^{\infty}(y_k-x_k)/10^k|-|\sum_{k=m+1}^{\infty}(y_k-x_k)/10^k|-|\sum_{k=m+1}^{\infty}(y_k-x_k)/10^k|-|\sum_{k=m+1}^{\infty}(y_k-x_k)/10^k|-|\sum_{k=m+1}^{\infty}(y_k-x_k)/10^k|-|\sum_{k=m+1}^{\infty}(y_k-x_k)/10^k|-|\sum_{k=m+1}^{\infty}(y_k-x_k)/10^$

- $7/9 \cdot 1/10^m \ge 1/10^m 7/9 \cdot 1/10^m = 2/9 \cdot 1/10^m \ge 2/9 \cdot 1/10^n$. Since y was arbitrary, we see that taking $r < 2/9 \cdot 1/10^n$ will be so that $(N_r(x) \setminus x) \cap E = \emptyset$, which shows that x is not a limit point of E. Since everything not in E is not a limit point of E, we see that all limit points of E lie in E, i.e. that E is closed. Finally, E is also perfect since E is closed (we showed this above), and given any $x \in E$, and given any $\varepsilon > 0$, by the archimedian property we can find E so that E is an integral E and just flip the E th digit of E to get something in E, not equal to E0, which is within E1 is a limit point of E1, as claimed.
- 3. Let x be a limit point of $A + B \subset \mathbb{R}^d$. Then for $i \in \mathbb{N}$, there is some $a_i + b_i \in A + B$ so that $|a_i + b_i - x| < 1/i$. So, there is a sequence $\{a_i + b_i\}_{i=1}^{\infty} \to x$. Because $\{a_i\} \subset A$, and A is compact, there is some R > 0 so that $|a_i| < R$. Similarly, since there is some N sufficiently large so that if $n \ge N$, $|a_n + b_n - x| < \varepsilon$, we see that $|b_n| \le |a_n + b_n| + |a_n| \le \varepsilon + x + R$, and as $\{b_1, \ldots, b_{n-1}\}$ is clearly finite, the b_i 's are bounded. Therefore, b_i has a convergent subsequence, so pass to a convergent subsequence say $b_k \to b$. Suppose $c_k \to c$, $\{c_k\} \subset C$, then if *C* is closed, $c \in C$. For if *c* was not in *C*, then given any $\varepsilon > 0$ there is some *N* so that if $n \ge N$, $|c_n - c| < \varepsilon$, i.e. that $(N_{\varepsilon}(c) \setminus c) \cap C \ne \emptyset$ (clearly $c_n \ne c$ for every c_n). So c is a limit point of C that C does not contain, a contradiction. So $b \in B$. Given any $\varepsilon > 0$, since $a_i + b_i \to x$, there is N_1 so that for every $n \ge K_1$, $|a_k - b_k - x| < \varepsilon/2$ (we passed to the same indices as the new convergent subsequence of *b*). Similarly, since $b_k \to b$, there is some K_2 so that if $k \ge K_2$, $|b_k - b| < \varepsilon/2$. So for any $k \ge \max\{K_1, K_2\}$, and any $m, n \ge K$, $|a_m - a_n| - \varepsilon/2 \le |a_m - a_n| - |b_m - b_n| \le |a_m + b_m - a_n - b_n| < \varepsilon/2$, i.e. that $|a_m - a_n| < \varepsilon$, so a_k is Cauchy and therefore convergent, call its limit a. Since $a_k \subset A$ and A is closed (By Heine-Borel, compact \implies closed + bounded), $a \in A$. Clearly $a_k + b_k$ is a subsequence of the original $a_i + b_i$, so $a_k + b_k \rightarrow x$ as well, but this time we know that we can split up the limits to get that $a_k + b_k \rightarrow a + b$ as well. Since $x = a + b \in A + B$, A + B contains all it's limit points, and is therefore closed, as claimed. Q.E.D.
- 4. Consider $A = \{1 + 1/10, 2 + 1/10^2, \cdots\}$ and $B = \{-1, -2, \cdots\}$. Both these sets are closed because both of their complements is a countable union of open intervals (For example, $B^c = (-1, \infty) \cup \bigcup_{k=-\infty}^{-1} (k-1,k)$). Also, if $0 \in A+B$, then 0=a+b for some $a \in A, b \in B$. Everything in A is of the form $a+1/10^a$ for a natural a, and everything in B is of the form -b for a natural b. This says that $a+1/10^a=b$, i.e. that $1/10^a=b-a$, which is impossible since the LHS is not an integer. Finally, given any $\varepsilon > 0$, $N_{\varepsilon}(0) \setminus 0 \cap A+B$ is nonempty because we can find a natural number i so that $10^i > \varepsilon$ (by the Archimedian property), i.e. that $1/10^i < \varepsilon$, which tells us that $|i+1/10^i-i-0|=1/10^i < \varepsilon$, and clearly $i+1/10^i \in A$ and $-i \in B$, so 0 is a limit point of A+B that is not in A+B, so A+B is not closed.
- 5. Suppose instead that $d(A, B) \le 0$ for some compact set A and closed set B. Since $d(x, y) \ge 0$ for every x, y, it follows that d(A, B) (the inf of many distances) is also nonnegative, so we see that d(A, B) = 0. By the definition of the inf, given any $n \in \mathbb{N}$, we can find $a_n \in A$, $b_n \in B$, so that $d(a_n, b_n) < 1/n$. Now clearly $\{a_n\} \subset A$, and since compact \iff sequentially compact, a_n has a convergent subsequence. So, pass to a convergent subsequence $a_k \to a \in A$. I claim that $b_k \to a$ as well. Given any $\varepsilon > 0$, choose K_1 large enough so that $d(a_k, a) < \varepsilon/2$, and also choose $K_2 > 2/\varepsilon$, and choose $K = \max\{K_1, K_2\}$. Then $d(b_k, a) \le d(b_k, a_k) + d(a_k, a) < \varepsilon/2 + \varepsilon/2 = \varepsilon$, so indeed $b_k \to a$ (Note: by construction, for

- any $m > K_2$, $d(a_m, b_m) < 1/m < 1/K_2 < \varepsilon$). Since $A \cap B = \emptyset$, we know that $a \notin B$, and by Lemma 0.1 a is a limit point of B. But then B doesn't contain one of it's limit points, so B is not closed, a contradiction. So d(A, B) > 0, as claimed.
- 6. (a) Suppose that one of $A \cap \overline{B} \neq \emptyset$ or $\overline{A} \cap B \neq \emptyset$ were true. Since both A, B are closed, $\overline{A} = A$ and similarly $\overline{B} = B$. Then this would tell us that $A \cap B \neq \emptyset$ is true, a contradiction.
 - (b) WLOG, suppose that $A \cap \overline{B} \neq \emptyset$. Then let $y \in A \cap \overline{B}$. If $y \in B$, then $y \in A \cap B$, a contradiction, so $y \in B'$. Then since y is a limit point of B, $\forall r > 0$ $N_r(y) \setminus y \cap B \neq \emptyset$. Also, since $y \in A$, and A is open, $\exists l > 0$, $N_r(y) \subset A$. One therefore sees that $N_l(y) \setminus y \cap B \neq \emptyset$, and similarly that $N_l(y) \subset A$, which combined tells us that $A \cap B \neq \emptyset$, a contradiction. The other case follows in exactly the same way, so we are done.
 - (c) Theorem 2.19 tells us that every neighborhood is an open set, so $N_{\delta}(p)$ is open. Similarly, let $q \in \{q \in X \mid d(p,q) > \delta\}$. Since $d(p,q) > \delta$, $d(p,q) = \delta + a$ for some a > 0. Now consider $N_{a/2}(q)$. I claim that everything in this neighborhood also has distance at least δ from p. Certainly, given $b \in N_{a/2}(q)$, $\delta + a = d(p,q) \le d(q,b) + d(b,p) < a/2 + d(b,p)$, which says that $\delta + a/2 < d(b,p)$, or more importantly that $\delta < d(b,p)$, as claimed. So q is an interior point of $\{q \in X \mid d(p,q) > \delta\}$, and since q was arbitrary $\{q \in X \mid d(p,q) > \delta\}$ is open. Finally, suppose there was an $x \in N_{\delta}(p) \cap \{q \in X \mid d(p,q) > \delta\}$. Then $d(x,p) < \delta$, and $d(x,p) > \delta$, a contradiction, so these sets are disjoint. We proved in the last part that two disjoint open sets are separated, so these two sets are separated, as claimed.
 - (d) Suppose there was a connected metric space that is countable. Fix $p \in X$. I claim that there is a $\delta \in \mathbb{R}_{>0}$ so that given any $y \in X$, $d(p,y) \neq \delta$. If for all $\delta > 0$ there was a point $y_{\delta} \in X$ so that $d(y_{\delta}, p) = \delta$, we could define an onto map to the reals by $f: X \to \mathbb{R}_{>0}$ by f(y) = d(y, p). But then X would be uncountable, a contradiction. So, there is at least one $\delta > 0$ so that for every $y \in X$, $d(y, p) \neq \delta$. Since given any $x \in X$ d(x, p) is either $\geq \delta$, or $\langle \delta$, and we have shown that it cannot equal δ , $N_{\delta}(p)$ and $\{q \in X \mid d(p, q) > \delta\}$ partition X. But by part c), these two sets are separated, so X is not connected, a contradiction.
- 7. Let $k \in K$. Since $K \subset U$, there is a $r_k > 0$ so that $N_{r_k}(k) \subset U$. Also, note that $\overline{N_{r_k/2}(k)} \subset N_{r_k}(k)$, since if $x \in \overline{N_{r_k/2}(k)}$, then either $x \in N_{r_k/2}(k)$ or $x \in N_{r_k/2}(k)'$. In the first case, $d(x,k) < r_k/2 < r_k$, so clearly $x \in N_{r_k}(k)$. In the second case, we know that since x is a limit point of $N_{r_k/2}(k)$, $(N_{r_k/2}(x) \setminus x) \cap N_{r_k/2}(k) \neq \emptyset$, so we can find a $y \in (N_{r_k/2}(x) \setminus x) \cap N_{r_k/2}(k)$. Finally, one notes that $d(x,k) \leq d(x,y) + d(y,k) < r_k/2 + r_k/2 = r_k$, so indeed $x \in N_{r_k}(k)$, as claimed. Next, one notes that since $k \in N_{r_k/2}(k)$, $K \subset \bigcup_{k \in K} N_{r_k/2}(k)$. Since K is compact, this open cover has a finite subcover, say $\bigcup_{i=1}^l N_{r_{k_i/2}}(k)$, where $l < \infty$. Because this is an open cover of K, $K \subset \bigcup_{i=1}^l N_{r_{k_i/2}}(k)$. Next, $\bigcup_{i=1}^l N_{r_{k_i/2}}(k) = \bigcup_{i=1}^l \overline{N_{r_{k_i/2}}(k)}$, since this is a finite union. Finally, since $\overline{N_{r_{k_i/2}}(k)} \subset N_{r_{k_i}}(k)$, we see that $\overline{\bigcup_{i=1}^l N_{r_{k_i/2}}(k)} \subset \bigcup_{i=1}^l N_{r_{k_i/2}}(k) \subset U$ (again, since each $N_{r_{k_i}}(k_i) \subset U$ by construction, and since this is a finite union). In the end, we get the chain $K \subset \bigcup_{i=1}^l N_{r_{k_i/2}}(k) \subset \overline{\bigcup_{i=1}^l N_{r_{k_i/2}}(k)} = \bigcup_{i=1}^l \overline{N_{r_{k_i/2}}(k)} \subset \bigcup_{i=1}^l N_{r_{k_i}}(k_i) \subset U$, which completes the proof.