

Auto-focusing optical device and optical apparatus comprising such a device

Patent number: FR2620537

Publication date: 1989-03-17

Inventor: ZAHORSKI DORIAN; LACOMBAT MICHEL; LELUYER MAURICE

Applicant: MICRO CONTROLE (FR)

Classification:

- international: G01J1/42; G02B7/11; G02B21/18

- european: G02B21/24B3D

Application number: FR19870012699 19870914

Priority number(s): FR19870012699 19870914

Abstract of FR2620537

Optical device for automatically focusing onto the plane of an object to be observed. According to the invention, this device comprises: - a first means 5 for forming a parallel light beam 2; - a semi-reflective mirror 7; - a second, optically converging means 10 in the vicinity of the focal point 11 of which lies a reflective object 16; - a third, optically converging means 18 receiving the beam 2' passing through the said mirror; and - a screen 22 placed in the focal plane 20 of the focal point of the said third means 18, and comprising an edge 23 level with the optical axis 9 of this means and perpendicular to the said optical axis, two photosensitive elements 26, 27 being placed symmetrically in relation to the optical axis and perpendicular to the edge of the screen.

(19) RÉPUBLIQUE FRANÇAISE
INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE
PARIS

(11) N° de publication :
(à utiliser que pour les commandes de reproduction)

2 620 537

(21) N° d'enregistrement national :

87 12699

(51) Int Cl⁴ : G 02 B 7/11, 21/18; G 01 J 1/42.

(12)

DEMANDE DE BREVET D'INVENTION

A1

(22) Date de dépôt : 14 septembre 1987.

(71) Demandeur(s) : Société anonyme dite : MICRO-
CONTROLE. — FR.

(30) Priorité :

(43) Date de la mise à disposition du public de la demande : BOPI « Brevets » n° 11 du 17 mars 1989.

(72) Inventeur(s) : Dorian Zahorski ; Michel Lacombat ; Maurice Leluyer.

(60) Références à d'autres documents nationaux appartenants :

(73) Titulaire(s) :

(74) Mandataire(s) : Propri Conseils.

(54) Dispositif optique à mise au point automatique et appareil optique comportant un tel dispositif.

(57) Dispositif optique pour la mise au point automatique sur le plan d'un objet à observer.

Selon l'invention, ce dispositif comporte :

- un premier moyen 5 pour former un faisceau lumineux parallèle 2;
- un miroir semi-réfléchissant 7;
- un second moyen optiquement convergent 10 au voisinage du foyer 11 duquel se trouve un objet réfléchissant 16;
- un troisième moyen optiquement convergent 18 recevant le faisceau 2' traversant ledit miroir; et
- un écran 22 disposé dans le plan focal 20 du foyer dudit troisième moyen 18, et comportant une arête 23 affleurant l'axe optique 9 de ce dernier et perpendiculaire audit axe optique, deux éléments photosensibles 26, 27 étant disposés symétriquement par rapport à l'axe optique, perpendiculairement à l'arête de l'écran.

R 2 620 537 - A1

1 La présente invention concerne un dispositif optique du type autofocus, destiné à réaliser automatiquement la coïncidence entre un plan réel, dit plan objet, et un plan virtuel, dit plan de mise au point, le plan objet pouvant par exemple être celui d'un objet à observer, d'une plaque à exposer, etc..., alors que le plan de mise au point peut être le plan d'un dispositif d'observation (optique ou électronique), d'un dispositif d'exposition, d'un dispositif d'écriture, etc...

5

10 Quoique non exclusivement, ces dispositifs autofocus sont par exemple utilisés dans les microscopes optiques, et permettent d'effectuer une mise au point automatique sur l'objet à observer, afin que celui-ci apparaisse à l'observateur avec une netteté optimale.

15 De tels dispositifs autofocus sont déjà connus. Par exemple, on connaît un dispositif autofocus, disposé dans un microscope, et qui comprend une source lumineuse émettant un rayon lumineux en direction d'un système optique. Ce dernier est constitué, dans cette réalisation,

20 par un miroir sur lequel se réfléchit, par un premier chemin optique, le rayon lumineux en direction d'un objectif qui le dirige à son tour vers le plan de l'objet. Une image de la source lumineuse est ainsi formée sur le plan de l'objet. Le rayon lumineux réfléchi par l'objet et

25 issu de ladite image traverse, par un second chemin, à nouveau l'objectif pour se diriger vers des moyens de détection différentielle, déterminant si la mise au point de l'image de la source sur l'objet à observer est correcte ou non. Pour cela, ces moyens de détection sont constitués

30 par deux photodiodes distantes l'une de l'autre symétriquement par rapport à l'axe optique dudit objectif, et disposées dans un plan de détection parallèle au plan de l'objet, ledit plan de détection recevant ainsi une image de celle formée sur le plan de l'objet. Ces photodiodes

1 sont reliées à un amplificateur différentiel, lui-même
relié par sa sortie à des moyens moteurs destinés à la
commande du déplacement de l'objet à observer permettant,
lorsque la mise au point du plan image est incorrecte, de
5 l'amener dans la position exacte.

Quand la mise au point de l'objet est correcte, l'image
projetée par le rayon lumineux réfléchi par l'objet se
forme, par le second chemin optique, sensiblement à
l'intersection du plan de détection et de l'axe optique,
10 entre les deux photodiodes. Par conséquent, l'amplificateur
différentiel, recevant des signaux identiques des deux
photodiodes, ne délivre pas de signal aux moyens moteurs,
qui ainsi ne sont pas actionnés ; le plan objet à observer
apparaît à l'observateur avec une netteté optimale.

15 En revanche, lorsque l'image projetée par le rayon lumineux
réfléchi se forme en partie ou en totalité sur l'une ou
l'autre photodiode, l'amplificateur différentiel reçoit
alors deux signaux différents. Par conséquent, il délivre
un signal aux moyens moteurs pour que ceux-ci agissent, par
20 exemple, sur le support où est disposé l'objet, de façon
que l'image projetée par le rayon lumineux réfléchi, alors
corrigé par le déplacement du plan de l'objet, se forme
dans le plan de détection entre les deux photodiodes,
lesquelles délivrent ainsi des signaux identiques à
25 l'amplificateur différentiel, le plan de l'objet étant
alors correctement mis au point.

Bien que donnant des résultats convenables, ce dispositif
autofocus connu présente notamment l'inconvénient
d'utiliser des chemins optiques différents, ce qui est
30 préjudiciable aux résultats escomptés pour le type
d'appareil optique tel que les microscopes, puisque des
erreurs de décalage optique dues aux différents chemins
optiques empruntés par le rayon lumineux peuvent alors se
produire.

1 De plus, le dispositif autofocus décrit ci-dessus conjugue
la source lumineuse, l'objet à observer, et les moyens de
déttection, c'est-à-dire que l'image de la source lumineuse
est projetée, par le premier chemin optique, sur le plan de
5 l'objet, qui, à son tour, projette, par le second chemin
optique différent du premier, l'image obtenue sur le plan
de détection. Un tel dispositif est alors adapté à l'obser-
vation d'objets dont les surfaces respectives à observer
sont parfaitement planes. Mais, dans le cas où les objets
10 présentent des reliefs, ce dispositif n'est plus approprié
puisque la mise au point ne peut se faire que sur l'un des
éléments de surface objet, ou sur plusieurs éléments de
surface ayant une hauteur identique, pour lequel le rayon
lumineux réfléchi se dirige entre les deux photodiodes du
15 plan de détection. Par conséquent, pour pouvoir observer
les éléments de surface de l'objet, contenus dans des plans
correspondants, il est nécessaire de déplacer à chaque fois
l'objet.

On connaît également un autre dispositif du type autofocus
20 comprenant deux sources lumineuses émettrices qui
convergent vers un diaphragme dont l'image est projetée sur
le plan de l'objet à observer à travers un objectif, le
faisceau lumineux réfléchi par ledit objet étant ensuite
dévié, par l'intermédiaire d'une lame semi-réfléchissante,
25 vers des moyens de détection différentielle analogues aux
précédents. Le principe de fonctionnement de ce dispositif
autofocus est sensiblement identique à celui décrit
précédemment. Ce dispositif, bien que d'une conception
différente, présente également les inconvénients énoncés à
30 propos du premier dispositif décrit.

La présente invention a pour but de remédier à ces
inconvénients, et concerne un dispositif autofocus, dont
les éléments du système optique sont disposés sur un même
axe optique par rapport auquel sont symétriquement disposés
35 les moyens de détection différentielle.

1 A cet effet, le dispositif optique pour la mise au point
automatique sur le plan d'un objet à observer, du type
comprenant une source lumineuse émettant un faisceau
lumineux en direction dudit objet à travers un système
5 optique, ledit faisceau étant ensuite réfléchi par ledit
objet en direction de moyens de détection différentielle
comprenant au moins deux éléments photosensibles suscepti-
bles de délivrer des signaux identiques quand l'objet se
trouve dans une position de mise au point correcte, tandis
10 que, lorsque les signaux délivrés sont différents, des
moyens moteurs permettent un déplacement relatif entre
ledit objet et ledit système optique pour obtenir la mise
au point souhaitée, est remarquable selon l'invention en ce
que ledit système optique comporte :

15 - un premier moyen pour former un faisceau lumineux
parallèle à partir du faisceau émis par ladite source ;
- un miroir semi-réfléchissant interposé sur le trajet
dudit faisceau parallèle ;
- un second moyen optiquement convergent recevant ledit
20 faisceau lumineux parallèle provenant dudit miroir, ledit
objet étant disposé au moins approximativement au voisinage
du foyer dudit second moyen, et étant susceptible de
réfléchir la lumière en direction dudit second moyen, de
sorte que celui-ci forme un faisceau réfléchi qui atteint
25 alors ledit miroir semi-réfléchissant ;
- un troisième moyen optiquement convergent recevant ledit
faisceau réfléchi provenant dudit miroir ; et
- un écran disposé dans le plan focal du foyer dudit
troisième moyen, et comportant une arête affleurant l'axe
30 optique de ce dernier et perpendiculaire audit axe optique,
les deux éléments photosensibles étant disposés au-delà
dudit plan focal du troisième moyen, dans un plan perpendi-
culaire à l'axe optique et symétriquement de part et
d'autre du plan formé par l'arête de l'écran et l'axe
35 optique.

1 Ainsi, comme les second et troisième moyens optiquement convergents sont alignés sur un même axe optique, le trajet du faisceau lumineux, provenant du miroir semi-réfléchissant, et aboutissant sur le plan de détection, est toujours.
5 centré sur ledit axe optique, ce qui supprime les éventuels risques de décalages optiques ou autres lorsque le faisceau parcourt des chemins optiques différents.

Selon une autre caractéristique de l'invention, entre
lesdits moyens de détection et lesdits moyens moteurs, sont prévus des moyens électroniques de traitement des signaux délivrés par les moyens de détection, et qui, pour chaque valeur de la différence des signaux délivrée par ces derniers, élaborent puis délivrent un signal aux moyens moteurs pour que ceux-ci déplacent axialement, suivant ledit axe optique et dans le sens souhaité, ledit objet de façon que le plan à observer soit amené puis confondu avec le plan focal du second moyen optiquement convergent.

Ainsi, lorsque le plan de l'objet est confondu avec le plan focal du second moyen, et uniquement dans ce cas là, la tache lumineuse, alors ponctuelle, ainsi formée au foyer est réfléchie par l'objet, et se forme symétriquement dans un plan conjugué au foyer du troisième moyen convergent, sur le même axe optique. L'image de la tache ponctuelle à ce foyer, situé sur l'axe optique, n'est alors pas arrêtée par ledit écran dont l'arête vient affleurer cet axe, et par conséquent, le faisceau lumineux issu de l'image de la tache ponctuelle diverge en direction des deux éléments photosensibles qui reçoivent la même quantité de lumière. Les moyens de détection délivrent alors un signal nul aux moyens de traitement électroniques, et le plan de l'objet à observer est dans la position de meilleure mise au point.

1 En revanche, dans le cas où le plan de l'objet est décalé
axialement par rapport au plan focal du second moyen
convergent, la tache formée sur le plan image n'est plus
ponctuelle, mais est toujours centrée sur l'axe optique. En
5 conséquence, l'image de la tache lumineuse se forme en aval
ou en amont dudit écran, selon que le plan objet est situé
en aval ou en amont du plan focal du second moyen. L'écran
opaque arrête alors une partie du faisceau lumineux puisque
le point de convergence, situé sur l'axe et où se forme
10 l'image, se trouve soit en aval, soit en amont dudit écran,
tandis que l'autre partie du faisceau non arrêtée se
propage en direction de l'un ou l'autre des éléments photo-
sensibles. Les moyens de détection délivrent alors un
signal aux moyens de traitement qui à leur tour délivrent
15 un signal aux moyens moteurs, lesquels impriment un dépla-
cement au support sur lequel repose l'objet, de façon à
amener le plan de celui-ci dans le plan focal du second
moyen.

Ledit système optique peut comprendre, de plus, des moyens
20 de balayage de l'image de la source sur le plan objet à
observer disposés entre ledit miroir semi-réfléchissant et
ledit second moyen optiquement convergent, transversalement
audit axe optique, lesdits moyens de balayage permettant
alors au faisceau lumineux parallèle réfléchi par ledit
25 miroir d'être dirigé puis focalisé successivement en
différents endroits de la surface dudit objet.

Ainsi, dans le cas où l'objet à observer présente une
topologie en relief, comme par exemple les circuits
intégrés sur les substrats desquels sont gravés des motifs
30 de hauteur variable, afin de les contrôler, il suffit
d'utiliser les moyens de balayage pour permettre audit
faisceau lumineux réfléchi par le miroir semi-réfléchissant
d'être dirigé puis focalisé par le second moyen vers
l'objet, sans avoir à déplacer celui-ci.

1 Dans le cas des dispositifs autofocus connus décrits précédemment, l'utilisation des moyens de balayage n'est pas réalisable puisque l'on vient imager la source lumineuse et l'objet sur le plan de détection. Dans le 5 dispositif de l'invention, ce sont les différentes pupilles qui sont conjuguées avec le plan de détection ; ainsi, un déplacement latéral de l'image de la source lumineuse n'est pas vu comme une variation de mise au point.

10 Dans une forme de réalisation, lesdits moyens de balayage sont constitués par un prisme rotatif, disposé transversalement à l'axe optique dudit système, par l'intermédiaire de moyens pour la commande de la rotation dudit prisme. L'axe de rotation dudit prisme peut être parallèle ou orthogonal à l'arête de celui-ci.

15 Avantageusement, lesdits moyens pour la commande de la rotation dudit prisme sont reliés à une mémoire électronique elle-même reliée aux moyens électroniques de traitement des signaux, ladite mémoire électronique mémorisant pour chaque valeur angulaire occupée par le prisme, la valeur 20 correspondante du signal engendré par lesdits moyens de détection.

Lorsque ledit dispositif de mise au point automatique est monté sur un appareil optique, il est avantageux que ledit second moyen optiquement convergent soit constitué par 25 l'objectif dudit appareil.

Les figures du dessin annexé feront bien comprendre comment l'invention peut être réalisée. Sur ces figures, des références identiques désignent des éléments semblables.

La figure 1 est une vue schématique du dispositif optique 30 autofocus selon l'invention.

1 Les figures 2A, 2B et 2C représentent les trois positions particulières que peut occuper le plan de l'objet à observer, respectivement une première position pour laquelle le plan est correctement mis au point, une seconde 5 position pour laquelle le plan à observer est situé en aval du plan final de meilleure mise au point, et une troisième position pour laquelle le plan à observer est situé en amont du plan focal de meilleure mise au point.

10 La figure 3 est une vue schématique d'un exemple du dispositif autofocus équipé d'un prisme de balayage.

La figure 4 illustre schématiquement une variante de réalisation du prisme de balayage.

La figure 5 montre en coupe schématique un montage du prisme de balayage de la figure 4.

15 La figure 6 représente une variante de réalisation du prisme de la figure 4.

La figure 7 est une vue du palier à air selon la flèche F de la figure 6.

20 La figure 8 est une vue selon la ligne VIII-VIII de la figure 7.

Les figures 9 et 10 sont respectivement des perspectives partielles des dispositifs illustrés sur les figures 1 et 3.

25 La figure 11 illustre l'implantation du dispositif selon l'invention dans un microscope.

1 Le dispositif optique pour la mise au point automatique du
plan d'un objet à observer, conforme à l'invention et
montré par la figure 1, comprend une source lumineuse 1
émettant un faisceau lumineux 2 en direction d'un système
5 optique 4. Le faisceau 2 traverse auparavant un premier
moyen optique, tel qu'une lentille 5, qui forme un faisceau
lumineux parallèle, suivant un premier axe optique 6, vers
le système 4. Ce dernier comprend un miroir semi-réfléchis-
sant 7 interposé sur le trajet lumineux du faisceau
10 parallèle 2, et incliné à 45° par rapport à l'axe optique.
6. Par conséquent, le faisceau réfléchi par le miroir 7 est
centré sur un second axe optique 9 perpendiculaire au
premier axe optique 6. Le système comporte ensuite, selon
le sens de propagation du faisceau parallèle réfléchi 2, un
15 second moyen optique, en l'occurrence une lentille
convergente 10, qui focalise alors le faisceau 2 au foyer
11, dans le plan focal 12 de la lentille 10, le foyer 11
étant situé sur le second axe optique 9. Comme le montre la
figure 1, le plan d'observation 15 de l'objet 16 à observer
20 est confondu, dans ce cas, avec le plan focal 12 de la
lentille 10. Par conséquent, l'objet 16 réfléchit la
lumière en direction de la lentille 10, de sorte que
celle-ci forme un faisceau lumineux parallèle de retour 2'
qui traverse alors ledit miroir semi-réfléchissant, en
25 étant toujours centré sur l'axe optique 9.

Le système 4 comporte également un troisième moyen optique,
en l'occurrence une lentille convergente 18, alignée sur
l'axe optique 9 et qui reçoit le faisceau 2' lequel
converge au foyer 19 de la lentille 18. Dans le plan focal
30 20 de celle-ci est avantageusement disposé un écran opaque
11 dont une arête 23 vient affleurer l'axe optique 9,
perpendiculairement à ce dernier.

Au-delà du plan focal 20 sont disposés des moyens de
déttection différentielle 25 constitués, par exemple, de

1 deux éléments photosensibles 26 et 27 disposés symétriquement de part et d'autre de l'axe optique 9 dans un plan de détection 28 perpendiculaire à celui-ci. Les deux éléments sont reliés à un amplificateur différentiel 29 dont la
5 sortie 30 est reliée à des moyens électroniques de traitement 31 des signaux délivrés par les moyens de détection.

10 Comme on le verra à l'examen des figures 2A,2B et 2C, ces moyens 31 permettent, pour chaque valeur de la différence des signaux délivrés à la sortie 30 de l'amplificateur 29, de délivrer à leur tour un signal 32 à des moyens moteurs 33 pour que ceux-ci agissent sur le support, non représenté, où est disposé l'objet, de façon à amener le plan 15 à observer dans la position de meilleure mise au point, pour 15 laquelle ce plan est confondu avec le plan focal 12 de la lentille 10.

Les figures 2A,2B et 2C illustrent les trois positions essentielles susceptibles d'être occupées par le plan externe à observer 15 de l'objet 16.

20 Dans le cas de la figure 2A (correspondant à la représentation de la figure 1) pour laquelle le plan 15 est correctement mis au point, le faisceau parallèle 2, issu de la source 1 à travers la lentille 5, est réfléchi par le miroir 7 en direction de la lentille 10, selon l'axe optique 9. Le faisceau 2 converge ensuite au foyer 11 dans le plan focal 12 avec lequel est confondu le plan 15 de l'objet 16. Par conséquent, une tache ponctuelle A, image de la source lumineuse 1, se forme au foyer 11. L'objet 16 réfléchit la lumière en direction de la lentille 10 de sorte que celle-ci forme un faisceau retour 2' parallèle, analogue au précédent, et qui traverse alors le miroir semi-réfléchissant 7, puis la lentille 18, laquelle focalise le faisceau lumineux 2' au foyer 19. L'image A' de la tache ponctuelle A se forme par conséquent sur l'axe
25
30

1 optique 9 au foyer 19, et n'est pas arrêtée par l'arête 23
de l'écran 22 qui vient affleurer ledit axe. Ainsi, le
faisceau lumineux 2' issu de l'image A' diverge au-delà du
plan focal 20 de la lentille 18 et vient éclairer les deux
5 éléments photosensibles 26 et 27 disposés dans le plan de
déttection 28. Les deux éléments 26 et 27, recevant une même
quantité de lumière, délivrent alors des signaux identiques
à l'amplificateur différentiel 29 dont le signal de sortie
30 est alors nul. Par conséquent, les moyens de traitement
10 électroniques 31 délivrent un signal 32, également nul, aux
moyens moteurs 33, lesquels ne sont pas actionnés.

Le plan 15 de l'objet 16 est donc dans la position de
meilleure mise au point, puisqu'il est confondu avec le
plan focal 12.

15 En revanche, figure 2B, on suppose que le plan 15 de
l'objet est légèrement décalé par rapport au plan focal 12
en étant en aval de celui-ci, c'est-à-dire disposé entre le
plan focal 12 et la lentille 10. Le faisceau lumineux 2
forme alors une tache B sur le plan 15 qui n'est plus
20 ponctuelle. La lumière réfléchie par l'objet et issue de la
tache B repart vers la lentille 10 selon un trajet optique
différent de celui emprunté en regard de la figure 2A mais
toujours centré par rapport à l'axe 9. Afin de conserver
une clarté aux figures, la construction du faisceau
25 lumineux retour 2' n'a été représentée qu'au moment où il
traverse la lentille 18 en direction des moyens de
déttection différentielle 25.

Le faisceau lumineux retour 2' n'est donc plus parallèle
entre les deux lentilles 10 et 18, et par conséquent
30 converge, lorsqu'il traverse la lentille 18, en un point
19B différent du foyer 19 et situé au-delà de l'écran 22.
En ce point 19B se forme l'image B' de la tache. Comme le

1 montre la figure 2B, la moitié supérieure par rapport à
l'axe 9 du faisceau 2' est alors arrêtée par l'écran opaque
22, alors que la moitié inférieure continue son trajet pour
diverger ensuite au niveau du point 19B en direction de
5 l'élément photosensible 26. En revanche, l'élément photo-
sensible 27 n'est pas éclairé ; ainsi, l'amplificateur
différentiel 29 reçoit deux signaux différents des éléments
photosensibles, et délivre un signal non nul 30 aux moyens
de traitement électroniques 31. Ceux-ci, en fonction du
10 signal 30 reçu représentatif de la différence des signaux
délivrés par les moyens de détection, délivrent à leur tour
un signal 32 aux moyens moteurs pour qu'ils agissent sur le
support, non représenté, où est disposé l'objet, de façon
que le plan 15 soit ramené dans le plan focal 12, d'une
15 distance et dans un sens correspondant au signal 32 reçu.
Le plan 15 est alors à nouveau correctement mis au point
puisque il est confondu avec le plan focal, la tache B étant
devenue ponctuelle.

Le cas illustré par la figure 2C montre le plan 15 de
20 l'objet 16 disposé en amont du plan focal 12. Comme pour la
figure 2B, une tache lumineuse C centrée sur l'axe optique
9 se forme sur le plan 15 dont l'objet 16 réfléchit à
partir de celle-ci la lumière en direction de la lentille
selon un faisceau non représenté en direction de la
25 lentille 18. Cette dernière forme alors le faisceau retour
2' non parallèle mais centré sur l'axe 9, lequel faisceau
traverse le miroir semi-réfléchissant 7 puis la lentille 18
par laquelle le faisceau 2' converge en un point 19C situé
avant l'écran opaque 22. En ce point 19C est située l'image
30 C' de la tache lumineuse C.

Comme le montre la figure 2C, le faisceau lumineux retour
2' diverge à partir du point C puis la moitié supérieure
est alors arrêtée par l'écran opaque interrompant la

1 propagation de cette moitié du faisceau en direction de
l'élément photosensible 26. En revanche, la moitié
inférieure du faisceau, qui n'est pas arrêtée par l'écran
22, vient éclairer l'autre élément photosensible 27, de
5 sorte que l'amplificateur différentiel 29, recevant deux
signaux différents, délivre un signal 30 aux moyens de
traitement électroniques 31. Ceux-ci, en fonction du signal
30 reçu, délivrent à leur tour un signal 32 aux moyens
moteurs 33 de façon qu'ils impriment un déplacement selon
10 l'axe optique 9 dans le sens approprié pour que le plan 15
de l'objet soit ramené puis confondu avec le plan focal 12.

Selon l'invention, le dispositif autofocus est particuliè-
rement approprié à la mise au point sur des objets
présentant des reliefs. Par exemple, sur la figure 3, on a
15 représenté schématiquement un substrat 40 (correspondant à
l'objet 16) d'un circuit intégré sur lequel sont gravés des
motifs 41 présentant des hauteurs différentes, et qu'il est
impératif de contrôler afin d'en détecter les éventuelles
imperfections. Pour fixer les idées, la hauteur de la
20 topologie d'un tel circuit peut être comprise entre 0,2 µm
et 3 µm. Or, comme la profondeur de champ d'un objectif de
microscope est de l'ordre de 0,6 µm, on ne peut pas par
conséquent visualiser la totalité des motifs convenable-
ment. Avantageusement, dans le dispositif de la figure 3,
25 il est prévu des moyens de balayage 43 disposés entre le
miroir semi-réfléchissant 7 et la lentille 10. Dans le mode
de réalisation illustré schématiquement sur la figure 3,
les moyens de balayage 43 sont constitués par un prisme 44
susceptible de pivoter autour d'un axe 45 disposé transver-
30 salement à l'axe optique 9 et parallèlement à son arête 47,
la rotation dudit prisme étant assurée par des moyens 46
pour la commande de sa rotation.

1 Comme le montre la figure 3, pour laquelle ledit prisme 44
occupe une position angulaire déterminée, qui est fonction
de l'information délivrée par des moyens de commande 46, le
faisceau lumineux parallèle 2, après réflexion sur le
5 miroir semi-réfléchissant 7, traverse la face inclinée 48
du prisme en étant alors dévié parallèlement, puis l'autre
face inclinée 49, en étant une nouvelle fois déviée paral-
lèlement, en direction de la lentille 10.

10 Le faisceau parallèle 2 franchit la lentille et se focalise
dans le plan focal 12 de celle-ci en un foyer 11'. Dans cet
exemple, le plan 15A du motif 41 à observer est confondu
avec le plan focal 12 ; par conséquent, il se forme une
tache ponctuelle A au foyer 11'. L'image A' de cette tache
ponctuelle A se forme par l'intermédiaire du faisceau
15 parallèle retour 2', au foyer 19 dans le plan focal 20 de
la lentille 18, comme dans le cas illustré sur la figure
2A. En effet, le motif 41 réfléchit alors la lumière en
direction de la lentille 10, de sorte que celle-ci forme un
faisceau retour 2', qui traverse ensuite le prisme selon un
20 faisceau retour parallèle 2' analogue au faisceau 2
réfléchi par le miroir.

25 Par conséquent, le plan 15A du motif 41 est dans la
position de meilleure mise au point et les deux éléments
photosensibles 26 et 27 reçoivent une même quantité de
lumière.

30 Dans le cas où le plan du motif 41 à observer se trouve
décalé en aval ou en amont par rapport au plan focal 12 de
la lentille 10, la mise au point de ce plan s'effectue de
manière analogue aux cas décrits en regard des figures 2B

ou 2C.

1 De plus, comme le montre la figure 3, les moyens de
commande 46 du prisme 44 sont reliés par une liaison 50 à
une mémoire électronique 51, elle-même reliée par une
liaison 52 aux moyens de traitement des signaux 31. Cette
5 mémoire 51 permet ainsi de mémoriser, pour chaque valeur
angulaire occupée par ledit prisme 44, la valeur du signal
différentiel engendré par l'amplificateur 29. De ce fait,
la totalité du relief du substrat, dans ce cas, est mis en
mémoire et stocké. On peut alors réaliser, à partir de ce
10 registre, une mise au point à partir de critères divers
tels qu'un maximum, un minimum, une valeur moyenne, etc...

Sur la figure 4, on a représenté une variante de réalisati-
on du dispositif de balayage 43. Dans ce cas, le prisme
44 est monté rotatif autour de l'axe optique 9, de sorte
15 que le foyer 11 décrit sur le plan 15 un cercle 80, lors de
la rotation dudit prisme. La figure 5 montre que, en vue de
sa rotation, le prisme 44 de la figure 4 peut être monté
dans un roulement à billes ou analogue 81.

Dans une variante de réalisation illustrée par les figures
20 6 à 8, le prisme 44 de la figure 4 est disposé dans un
palier à air 60 constitué notamment de deux patins 61 et
62. Le patin 61 présente une cuvette sphérique 63, dans
laquelle est disposé le prisme 44, lui-même partiellement
25 sphérique, et des orifices d'alimentation 64 en fluide sous
pression qui sont reliés par des liaisons 65 partiellement
représentées à une commande fluidique, par exemple pneuma-
tique, définissant dans ce cas les moyens de commande 46,
lesdits orifices 64 débouchant dans la cuvette sphérique.
Un passage axial 67 est également ménagé dans le patin 61
30 de sorte que, lorsque le prisme repose sur la cuvette
sphérique par sa partie sphérique, sa face 49 soit tournée
vers ce passage axial 67. Le patin 62 est, quant à lui,
logé dans un corps transparent 68 venant se fixer au patin
61. Le patin 62 est disposé en regard de la face 48

1 du prisme, celle-ci étant tournée vers un passage axial 72
prévu dans le patin 62, et qui est coaxial et identique au
passage 67. Des orifices d'alimentation 69 en fluide sous
pression, pratiqués dans le patin 62, ainsi que dans le
5 fond 70 du corps 68 sont reliés par des liaisons 71,
partiellement représentées, à la commande pneumatique, et
débouchent en regard de la face 48 du prisme. De plus, une
rondelle élastique 73 est interposée entre le fond 70 du
corps 68 et le patin 62 de façon que celui-ci soit
10 convenablement positionné.

Lorsqu'une pression fluidique est délivrée par les moyens
de commande 46, en l'occurrence par la commande pneumatique,
celle-ci se répartit, par les orifices 64 et 69
respectivement des patins 61 et 62, sous forme de coussins
15 d'airs 75, entre le prisme 49 et les patins 61 et 62, ledit
prisme étant alors monté flottant dans le palier 60.

Ainsi, pour faire tourner le prisme 44 autour de l'axe
optique 9, on applique par l'intermédiaire de la commande
pneumatique une pression appropriée, dans au moins l'un des
20 orifices 64 du patin 61.

Sur la figure 9, on a représenté, en perspective, le
dispositif autofocus décrit en regard de la figure 1 et qui
est destiné dans une application particulièrement avanta-
geuse à équiper un microscope optique. Ce dispositif
25 autofocus est particulièrement approprié pour l'observation
et le contrôle d'objets présentant une surface sensiblement
plane. On distingue nettement la position de l'écran opaque
22 par rapport à l'axe optique 9.

La source lumineuse 1 peut être une diode laser alors que
30 les éléments photosensibles 26,27 peuvent être des
photodiodes.

1 Sur la figure 10, on a représenté, en perspective, le dispositif autofocus décrit en regard de la figure 3, dispositif également destiné plus particulièrement à équiper un microscope optique, et spécifiquement approprié
5 à l'observation d'objets présentant des reliefs.

Enfin, la figure 11 illustre l'adaptation du dispositif autofocus de l'invention dans un microscope. Dans ce cas,
la lentille 10 est formée par l'objectif dudit microscope
et le couplage optique s'effectue par un miroir semi-trans-
parent 82, disposé entre l'objectif 10 et l'oculaire 83
dudit microscope. Sur la figure 11, on a représenté
également le dispositif d'éclairage 84 dudit microscope.
10

REVENDICATIONS

- 1 1 - Dispositif optique pour la mise au point automatique sur le plan d'un objet à observer, du type comprenant une source lumineuse (1) émettant un faisceau lumineux (2) en direction dudit objet (16) à travers un système optique (4), ledit faisceau étant ensuite réfléchi par ledit objet en direction de moyens de détection différentielle (25) comprenant au moins deux éléments photosensibles (26,27) susceptibles de délivrer des signaux identiques quand l'objet se trouve dans une position de mise au point correcte, tandis que, lorsque les signaux délivrés sont différents, des moyens moteurs (33) permettent un déplacement relatif entre ledit objet (16) et ledit système optique (4) pour obtenir la mise au point souhaitée, caractérisé en ce que ledit système optique comporte :
 - 15 - un premier moyen (5) pour former un faisceau lumineux parallèle (2) à partir du faisceau émis par ladite source (1) ;
 - un miroir semi-réfléchissant (7) interposé sur le trajet dudit faisceau parallèle ;
 - 20 - un second moyen optiquement convergent (10) recevant ledit faisceau lumineux parallèle provenant dudit miroir, ledit objet (16) étant disposé au moins approximativement au voisinage du foyer (11) dudit second moyen (10), et étant susceptible de réfléchir la lumière en direction dudit second moyen, de sorte que celui-ci forme un faisceau réfléchi (2') qui atteint ledit miroir semi-réfléchissant (7) ;
 - un troisième moyen optiquement convergent (18) recevant ledit faisceau réfléchi (2') provenant dudit miroir ; et
 - 25 - un écran (22) disposé dans le plan focal (20), du foyer dudit troisième moyen (18), et comportant une arête (23) affleurant l'axe optique (9) de ce dernier et perpendiculaire audit axe optique, les deux éléments photosensibles (26,27) étant disposés au-delà dudit plan focal (20) du

1 troisième moyen, dans un plan perpendiculaire à l'axe optique et symétriquement de part et d'autre du plan formé par l'arête de l'écran et l'axe optique.

2 - Dispositif selon la revendication 1,
5 caractérisé en ce que, entre lesdits moyens de détection différentielle (25) et lesdits moyens moteurs (33), sont prévus des moyens électroniques de traitement des signaux (31) délivrés par les moyens de détection (25), et qui, pour chaque valeur de la différence des signaux (30)
10 délivrée par ces derniers, élaborent puis délivrent un signal (32) aux moyens moteurs pour que ceux-ci déplacent axialement, suivant ledit axe optique (9) et dans le sens souhaité, ledit objet (16) de façon que le plan (15) à observer soit amené puis confondu avec le plan focal (12)
15 du second moyen optiquement convergent (10).

3 - Dispositif selon l'une des revendications 1 ou 2,
caractérisé en ce que ledit système optique (4) comprend des moyens de balayage (43) dudit objet à observer,
disposés entre ledit miroir semi-réfléchissant (7) et ledit 20 second moyen optiquement convergent (10), transversalement audit axe optique (9).

4 - Dispositif selon la revendication 3,
caractérisé en ce que lesdits moyens de balayage (43) comportent un prisme (44) susceptible de pivoter autour 25 d'un axe parallèle (45) à son arête (47).

5 - Dispositif selon la revendication 3,
caractérisé en ce que lesdits moyens de balayage (43) comportent un prisme (44) susceptible de tourner autour de l'axe optique (9) dudit dispositif.

1 6 - Dispositif selon l'une des revendications 4 ou 5,
 caractérisé en ce que lesdits moyens (46) pour la commande
 de la rotation dudit prisme (44) sont reliés à une mémoire
 électronique (51) elle-même reliée aux moyens électroniques
5 de traitement des signaux (31), ladite mémoire électronique
 mémorisant pour chaque valeur angulaire occupée par le
 prisme, la valeur correspondante du signal délivré par
 lesdits moyens de détection différentielle (25).

7 - Dispositif selon la revendication 5,
10 caractérisé en ce que ledit prisme tournant (44) est
 disposé dans un palier à air (60) relié aux moyens (46)
 pour la commande de la rotation dudit prisme.

8 - Dispositif selon la revendication 7,
 caractérisé en ce que ledit palier à air (60) est constitué
15 d'une part, d'un premier patin (61) dans lequel est ménagée
 une cuvette sensiblement sphérique (63) recevant ledit
 prisme (44), des orifices d'alimentation (64) destinés à
 être raccordés aux moyens de commande (46) étant prévus
 dans ledit patin pour déboucher dans ladite cuvette en
20 regard d'une (49) des faces du prisme, et d'autre part,
 d'un second patin (62) fixé au premier et venant position-
 ner ledit prisme (44) contre ladite cuvette (63), des
 orifices d'alimentation (69) destinés à être raccordés aux
 moyens de commande (46) étant également prévus dans ce
25 second patin pour déboucher en regard de l'autre face (48)
 dudit prisme.

9 - Appareil optique, et notamment microscope, comportant
 le dispositif de mise au point automatique spécifié sous la
 revendication 1,
30 caractérisé en ce que ledit second moyen optiquement
 convergent (10) est constitué par l'objectif dudit appareil
 optique et en ce que des moyens (82) de couplage optique
 audit dispositif sont prévus entre l'objectif (10) et
 l'oculaire (83) dudit appareil.

10 - Appareil optique selon la revendication 9,
caractérisé en ce que ledit dispositif de mise au point
automatique comporte les particularités spécifiées selon
l'une quelconque des revendications 2 à 8.

2620537

2/5

FIG.3

3 / 5

FIG. 6

FIG. 8

FIG. 7

2620537

4/5

FIG. 9

FIG. 10

2620537

5/5

FIG. 4

FIG. 5

FIG. 11