

Magma transport processes

Paul A. Jarvis

paul.jarvis@unige.ch

26th November 2020

Magmatic transport processes

Viscosity and density control how magma is transported within the Earth's crust Can consider transport of bulk magma, or **fractionation** of individual phases

Crystal settling

Sills can contain **cumulates** - dense regions of crystals which have settled to the base of a chamber

In viscous fluid, three forces act on sphere:

- Gravity $F_{\rm g}=4\pi\rho_{\rm c}r^3g/3$
- Buoyancy $F_b = 4\pi \rho_m r^3 g/3$
- Viscous drag $F_{\rm v}=6\pi\eta_{\rm m} r v_{\rm s}$

where r= radius, $v_{\rm s}=$ settling speed

In equilibrium $F_{\rm g} = F_{\rm b} + F_{\rm v} \implies$

$$v_{\rm s} = \frac{2(\rho_{\rm c} - \rho_{\rm m})gr^2}{9\eta_{\rm m}}$$

Simple models of cumulate formation: Convecting or static magma

Partially-molten sill, 2 populations of crystals size d_1 and d_2 where $d_1 > d_2$ $\implies v_{\rm s,1} > v_{\rm s,2}$

Static magma

Convecting magma

$$\phi_1,\phi_2=\phi_1(t),\phi_2(t)$$

Both populations are homogeneously dispersed throughout the sill

Populations settle at different speeds

$$t = dt$$

Volume of settling particles per unit area:

$$\phi_1 v_{s,1} dt$$
 $\phi_2 v_{s,2} dt$

Ratio of population volumes =
$$\frac{\phi_1 v_{s,1}}{\phi_2 v_{s,2}}$$

All of the coarse population has settled.

What does the cumulate look like?

Bubble formation - volatile solubility

As magma rises, pressure falls and bubble solubility decreases

Solubility - Amount of substance that can be dissolved in a mixture

If volatile concentrations exceed solubility, then magma is supersaturated

Bubble formation - Supersaturation

Supersaturation - Difference between actual pressure, and that at which concentration of dissolved volatiles would be in equilibrium

Nucleation - Process by which bubbles initially form

Nucleation creates an interface between melt and volatile

Interfacial tension - Energy created to create an interface between two substances

Required amount of supersaturation corresponds to energy needed

Bubble formation - Nucleation

Two types of nucleation:

Homogeneous

Heterogeneous

Bubble formation - Homogenous nucleation

Occurs in the absence of crystals

Bubbles nucleate in the melt

Requires supersaturation of \sim 10-100 MPa

Bubble formation - Heterogeneous nucleation

Interfacial energy between vapour and crystal less than that between vapour and melt

Bubbles nucleate on crystals

Requires supersaturation of \sim 1-10 MPa

⇒ in presence of crystals, nucleation will almost always be heterogeneous

14 / 19

Bubble growth

As pressure decreases, bubbles grow due to expansion and increasing amount of exsolved gas

3 regimes of bubble growth:

- Viscosity-limited growth
 - Melt viscosity is sufficiently high to slow down bubble expansion
 - Leads to large supersaturation and build up of over-pressure in bubbles (mechanical disequilibrium)
 - ullet Significant for $\eta_{\rm m} \geq 10^9$ Pa s (silicic melts at shallow depths and low $X_{\rm H_2O}$
- Diffusion-limited growth
 - Melt diffusivity is too low for oversaturated volatiles to diffuse to pre-existing bubbles (chemical disequilibrium)
 - Leads to nucleation at the expense of growth
 - Results in many small bubbles
- Solubility-limited growth
 - Diffusivity high, and viscosity low, enough to allow mechanical and chemical equilibrium
 - Bubbles can grow unhindered
 - Favoured for low melt viscosity (hot, mafic) and low ascent rates

Bubble rise speed

Bubble rise speed can be estimated by assuming spherical shape and using Stokes law

$$v_{\mathsf{b}} = \frac{(\rho_{\mathsf{m}} - \rho_{\mathsf{b}})gd^2}{18\eta_{\mathsf{m}}}$$

Depends on:

- $\rho_{\rm m}=$ Melt density
- ρ_b = Bubble density
- d = Bubble diameter
- $\eta_{\rm m} = {\sf Melt}$ viscosity

Other factors:

- Bubble shape
- Bubble concentration ϕ_b
- Crystal fraction ϕ_c

Bubble flow regimes

 $v_b = Bubble speed, v_m = Melt speed$

flow

If $v_h \ll v_m \implies$ dispersed flow:

- Bubbly flow
- Bubbles dispersed
- Move as passive tracers

If $v_b \gtrsim v_m \implies$ separated flow

- $1 \le v_{\rm b}/v_{\rm m} \le 10 \implies \text{slug flow}$
- $v_{\rm b}/v_{\rm m} \gtrsim 10 \implies$ annular flow

Flow regimes are observed for gas flow in a vertical pipe Application to volcanic conduits remains debatable

Conduit flow

Flow driven by pressure gradient $\mathrm{d}P/\mathrm{d}z$ Velocity profile given by

$$\frac{\mathrm{d}V}{\mathrm{d}r} = \frac{r}{2\eta} \frac{\mathrm{d}P}{\mathrm{d}z}$$

Friction with conduit walls means flow is fastest in centre
Model is valid if flow is NOT separated

Fragmentation

Fragmentation - During explosive eruptions, magma fragements to form **pyroclasts** - ash, lapilli, bombs

- Style of fragmentation depends on magma rheology
- In turn depends on $\phi_{\rm c}, \phi_{\rm b}, \eta_{\rm m}, \dot{\epsilon}$
- Controls style of eruption

(D) (B) (E) (E) (E) (9)

Modeling volcanic processes

Magma mixing and mingling

Magma mixing and mingling - Magmas of different compositions juxtapose and interact

- Viscosity and density contrasts between magmas inhibit mixing
- Heat transfer fromm hot to cold magma associated with rheological changes
- Style of mixing changes with time

