Reconfigurable Broadcast Networks and Asynchronous Shared-Memory Systems are Equivalent

A. R. Balasubramanian, <u>Chana Weil-Kennedy</u> *Technical University of Munich*

Two Models

Reconfigurable Broadcast Network (RBN)

- introduced in [Delzanno, Sangnier & Zavattaro, CONCUR '10]
- anonymous, identical processes which can communicate by selective broadcast.

Asynchronous Shared Memory System (ASMS)

- introduced in [Esparza, Ganty & Majumdar, CAV '13]
- anonymous, identical processes which can communicate by writing to a shared register.

*

Goal: put a process in final

*

Goal: put a process in final

Simulation of polynomial-size with bijection between configurations

Simulation of polynomial-size with bijection between configurations

Simulation idea #1

*

Simulation of polynomial-size with bijection between configurations

Simulation

A **cube** is a boolean combination of constraints

Simulation

A **cube** is a boolean combination of constraints

cube-reachability: given cubes $\mathscr C$ and $\mathscr C'$, does there exist $M \in \mathscr C$ and $M' \in \mathscr C'$ such that M reaches M'?

Simulation

RBN and ASMS are polynomial-time equivalent w.r.t. to cube-reachability

cube-reachability: given cubes $\mathscr C$ and $\mathscr C'$, does there exist $M \in \mathscr C$ and $M' \in \mathscr C'$ such that M reaches M'?

[Delzanno et al., FSTTCS '12]

Unbounded initial cube reachability is PSPACE-complete for RBN

is a combination of constraints of the form $0 \leq \#q \leq 0 \ \ \text{and} \ \ 0 \leq \#q < \infty$

[Delzanno et al., FSTTCS '12]

Unbounded initial cube reachability is PSPACE-complete for RBN

PSPACE-complete for ASMS

[Bouyer et al., ICALP '16]

In ASMS, $(\{k \cdot init\}, r)$ almost-surely covers final if it covers final with probability 1 under a uniform stochastic scheduler

[Bouyer et al., ICALP '16]

In ASMS, $(\{k \cdot init\}, r)$ almost-surely covers final if it covers final with probability 1 under a uniform stochastic scheduler

- $k \ge 1$ is a **positive cut-off** if $(\{h \cdot init\}, r)$ almost-surely covers final for all $h \ge k$
- $k \ge 1$ is a **negative cut-off** if $(\{h \cdot init\}, r)$ does not almost-surely cover final for all $h \ge k$

[Bouyer et al., ICALP '16]

In ASMS, $(\{k \cdot init\}, r)$ almost-surely covers final if it covers final with probability 1 under a uniform stochastic scheduler

- $k \ge 1$ is a **positive cut-off** if $(\{h \cdot init\}, r)$ almost-surely covers final for all $h \ge k$
- $k \ge 1$ is a **negative cut-off** if $(\{h \cdot init\}, r)$ does not almost-surely cover final for all $h \ge k$

All ASMS have a positive or negative cut-off and this can be decided in EXPSPACE

[Bouyer et al., ICALP '16]

In ASMS, $(\{k \cdot init\}, r)$ almost-surely covers final if it covers final with probability 1 under a uniform stochastic scheduler

- $k \ge 1$ is a **positive cut-off** if $(\{h \cdot init\}, r)$ almost-surely covers final for all $h \ge k$
- $k \ge 1$ is a **negative cut-off** if $(\{h \cdot init\}, r)$ does not almost-surely cover final for all $h \ge k$

All ASMS have a positive or negative cut-off and this can be decided in EXPSPACE

All RBN have a positive or negative cut-off and this can be decided in EXPSPACE

Conclusion

Further

We also compare RBN / ASMS to immediate observation nets (IO):

- anonymous, identical processes which can communicate by observation.
- RBN can simulate IO nets, but IO nets cannot simulate RBN

Conclusion

Further

We also compare RBN / ASMS to immediate observation nets (IO):

- anonymous, identical processes which can communicate by observation.
- RBN can simulate IO nets, but IO nets cannot simulate RBN

Future

- Find complexity of cube-reachability problem for RBN / ASMS. We have article in progress: PSPACE-complete
- Look at open problems for RBN / ASMS (like universal reachability)

Conclusion

Further

We also compare RBN / ASMS to immediate observation nets (IO):

- anonymous, identical processes which can communicate by observation.
- RBN can simulate IO nets, but IO nets cannot simulate RBN

Future

- Find complexity of cube-reachability problem for RBN / ASMS. We have article in progress: PSPACE-complete
- Look at open problems for RBN / ASMS (like universal reachability)

Thank you!

Parameterized problems

A **cube** is a boolean combination of constraints

$$a \le \#q \le b$$

$$\in \mathbb{N} \cup \infty$$

parameterized problems: verifying predicates using boolean operators and reachability operators pre^* and $post^*$ over cubes

PSPACE

 $pre^*(\mathscr{C})$ is the set of markings that can reach \mathscr{C}

 $post^*(\mathscr{C})$ is the set of markings that \mathscr{C} can reach

e.g. reachability from cube \mathscr{C} to cube \mathscr{C}' : $post^*(\mathscr{C}) \cap \mathscr{C}' \neq \emptyset$

Parameterized problems

A **cube** is a boolean combination of constraints

$$a \le \#q \le b$$

$$\in \mathbb{N} \cup \infty$$

parameterized problems: verifying predicates using boolean operators and reachability operators pre^* and $post^*$ over cubes

PSPACE

 $pre^*(\mathscr{C})$ is the set of markings that can reach \mathscr{C}

 $post^*(\mathscr{C})$ is the set of markings that \mathscr{C} can reach

e.g. almost-sure reachability from cube $\mathscr{C}_{\mathit{init}}$ to cube $\mathscr{C}_{\mathit{final}}$

$$post^*(\mathscr{C}_{init}) \subseteq pre^*(\mathscr{C}_{final})$$