WMAN 633 Homework 7

Joe Kingsbury

Question 1

 ${\bf Load~data~and~place~into~an~unmarkedFrameOccu~object}$

```
#Set working directory
#setwd(choose.dir())
bobcat <- read.csv("Bobcat.csv") # detection/non-detection data
p_covs <- read.csv("p covariates.csv") #Detection covarites
psi_covs <- read.csv("psi covariates.csv") #Site level covairates

bobcat_mat <- as.matrix(bobcat)

det_covs <- list(
    People = data.frame(p_covs[,c(1:71)]))
head(det_covs$People)</pre>
```

##		People1	People2 P	eople3 Pe	ople4	Peop	le5	Peopl	Le6	People	7 People8	People9
##	1	0.82	0.25	0.15	0.09	0	.07	0.	. 28	1.3	9 1.14	0.13
##	2	0.00	0.00	0.00	0.00	0	.00	0.	.00	0.0	0.00	0.00
##	3	0.74	0.12	0.18	0.59	0	.53	0.	. 41	1.0	3 0.53	0.15
##	4	0.00	0.00	0.00	0.00	0	.00	0.	.00	0.0	0.00	0.00
##	5	0.00	0.00	0.00	0.00	0	.00	0.	.00	0.0	0.00	0.00
##	6	0.37	0.24	0.06	0.14	0	.10	0.	. 22	0.5	3 0.32	0.06
##		People10	People11	People12	Peopl	Le13 1	Peop	le14	Peo	ple15	People16	People17
##	1	0.43	0.44	0.63	(0.26		1.15		0.43	0.00	0.00
##	2	0.00	0.00	0.00	(0.00		0.00		0.00	0.00	0.00
##	3	0.32	0.34	0.19	(0.20		0.96		NA	NA	NA
##	4	0.00	0.00	0.00	(0.00		0.01		0.01	0.00	0.00
##	5	0.00	0.00	0.00	(0.00		0.02		0.00	0.00	0.00
##	6	0.02	0.01	0.06	(0.09		0.37		0.55	0.05	0.04
##		People18	People19	People20	Peopl	Le21	Peop	le22	Peo	ple23	People24	People25
##	1	0.00	0.00	0.00		0.0		0.91		NA	NA	NA
##	2	0.00	0.00	0.00		NA		NA		NA	NA	NA
##	3	NA	NA	NA		NA		NA		NA	NA	NA
##	4	0.00	NA	NA		NA		NA		NA	NA	NA
##	5	0.00	0.00	0.00		0.0		NA		NA	NA	NA
##	6	0.06	0.19	0.19		0.2		NA		NA	NA	NA
##		-	People27	-	-		Peop	1e30	Peo	•	-	People33
##	1	NA	NA	NA		NA		NA		NA	NA	NA
##	2	NA	NA	NA		NA		NA		NA	NA	NA
##	3	NA	NA	NA		NA		NA		NA	NA	NA
##	4	NA	NA	NA		NA		NA		NA	NA	NA
##	5	NA	NA	NA		NA		NA		NA	NA	NA

```
## 6
            NA
                      NA
                                NA
                                          NA
                                                    NA
     People34 People35 People36 People37 People38 People39 People40 People41
## 1
            NA
                      NA
                               NA
                                         NA
                                                   NA
                                                             NA
## 2
            NA
                      NA
                               NA
                                          NA
                                                   NA
                                                             NA
                                                                       NA
                                                                                 NA
## 3
            NA
                      NA
                               NA
                                         NA
                                                   NA
                                                             NA
                                                                        NA
                                                                                 NA
## 4
            NA
                      NA
                               NA
                                         NA
                                                   NA
                                                             NA
                                                                       NA
                                                                                 NΑ
## 5
            NA
                      NA
                               NA
                                         NA
                                                   NA
                                                             NA
                                                                       NA
## 6
            NA
                                         NA
                      NA
                               NA
                                                   NA
                                                             NA
                                                                       NA
                                                                                 NA
     People42 People43 People44 People45 People46 People47 People48 People49
## 1
            NA
                      NA
                               NA
                                         NA
                                                   NA
                                                             NA
                                                                        NA
                                                                                 NA
## 2
            NA
                      NA
                               NA
                                          NA
                                                   NA
                                                             NA
                                                                       NA
                                                                                 NA
## 3
            NA
                      NA
                               NA
                                         NA
                                                   NA
                                                             NA
                                                                       NA
                                                                                 NA
## 4
            NA
                      NA
                               NA
                                         NA
                                                   NA
                                                             NA
                                                                        NA
                                                                                 NA
## 5
            NA
                      NA
                                NA
                                         NA
                                                    NA
                                                                        NA
                                                              NA
                                                                                 NA
## 6
            NA
                      NA
                               NA
                                          NA
                                                   NA
                                                             NA
                                                                       NA
                                                                                 NA
     People50 People51 People52 People53 People54 People55 People56 People57
## 1
                                                                        NA
            NA
                      NA
                               NA
                                          NA
                                                   NA
                                                             NA
                                                                                 NA
## 2
            NA
                      NA
                                NA
                                          NA
                                                    NA
                                                              NA
                                                                        NA
                                                                                 NA
## 3
            NA
                      NA
                               NA
                                         NA
                                                   NA
                                                             NA
                                                                       NA
                                                                                 NA
## 4
            NA
                      NA
                               NA
                                         NA
                                                   NA
                                                             NA
                                                                       NA
                                                                                 NA
## 5
            NA
                      NA
                               NA
                                         NA
                                                   NA
                                                             NA
                                                                       NA
                                                                                 NA
## 6
            NA
                      NA
                               NA
                                          NA
                                                    NA
                                                              NA
     People58 People59 People60 People61 People62 People63 People64 People65
## 1
            NA
                      NA
                               NA
                                         NA
                                                   NA
                                                             NA
## 2
            NA
                      NA
                               NA
                                         NA
                                                   NA
                                                             NA
                                                                       NA
                                                                                 NA
## 3
            NA
                      NA
                               NA
                                         NA
                                                   NA
                                                             NA
                                                                       NA
                                                                                 NA
## 4
            NA
                      NA
                               NA
                                         NA
                                                   NA
                                                              NA
                                                                       NA
                                                                                 NA
## 5
            NA
                                                    NA
                                                                        NA
                      NA
                                NA
                                          NA
                                                              NA
                                                                                 NA
## 6
            NA
                      NA
                               NA
                                          NA
                                                    NA
                                                              NA
                                                                       NA
                                                                                 NA
     People66 People67 People68 People69 People70 People71
## 1
            NA
                      NA
                                NA
                                          NA
                                                   NA
                                                              NA
## 2
            NA
                      NA
                               NA
                                         NA
                                                   NA
                                                              NA
## 3
                                         NA
                                                   NA
            NA
                      NA
                               NA
                                                              NA
## 4
            NA
                                         NA
                                                   NA
                                                             NA
                      NA
                               NA
## 5
            NA
                      NA
                                NA
                                          NA
                                                    NA
                                                              NA
## 6
            NA
                      NA
                                NA
                                          NA
                                                   NA
                                                             NA
```

library(unmarked)

```
## Warning: package 'unmarked' was built under R version 4.0.4
```

Loading required package: lattice

```
occu_data <- unmarkedFrameOccu(y = bobcat_mat, siteCovs = psi_covs, obsCovs = det_covs)
head(occu_data)</pre>
```

```
## Data frame representation of unmarkedFrame object.
      y.1 y.2 y.3 y.4 y.5 y.6 y.7 y.8 y.9 y.10 y.11 y.12 y.13 y.14 y.15 y.16 y.17
##
## 1
        0
             0
                  0
                      0
                                             0
                                                  0
                                                        0
                                                                                    0
                                                                                          0
             0
                      0
                                             0
                                                  0
                                                        0
                                                                         0
                                                                                          0
## 2
         0
                  0
                           0
                               0
                                    0
                                        0
                                                              0
                                                                   0
                                                                               0
                                                                                    0
## 3
                  0
                      0
                           0
                               0
                                    0
                                        0
                                            0
                                                  0
                                                        0
                                                              0
                                                                   0
                                                                         0
                                                                              NA
                                                                                   NA
                                                                                         NΑ
## 4
             0
                  0
                      0
                           0
                               0
                                    0
                                        0
                                            0
                                                  0
                                                        0
                                                              0
                                                                   0
                                                                         0
                                                                               0
                                                                                    0
                                                                                          0
```

##	5		0	0	0	0	0	0	0	0	0		0	() (0	0	0	C) (0
##	6		0	0	0	0	0	0	0	0	0		0	() (0	0	0	C		
##	7		0	0	0	0	0	0	0	0	0		0			0	0	0	(
##	8		0	0	0	0	0	0	0	0	0		0			0	0	0	(
## ##	9 10		0	0	0	0	0	0	0	0	0		0))	0	0	(
##	10	7.7		y.19		-	-		y.23	-	-					-	-	-			
	1	y	0	y.13 0	у.	20 y 0	0	0	y.25 NA	-	NA	y . 20 NA	-	NA	y.Zr NA	y . 20 NA	-	NA	NA	y.or	y.32 NA
##	2		0	0		0	NA	NA	NA		NA	NA		NA	NA	N.A		NA	NA	NA	NA
##	3		NA	NA]	NA	NA	NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA
##	4		0	NA]	NA	NA	NA	NA		NA	NA	1	NA	NA	NA	L	NA	NA	NA	NA
##	5		0	0		0	0	NA	NA		NA	NA	1	NA	NA	NA		NA	NA	NA	NA
##	6		0	0		0	0	NA	NA		NA	NA	1	NA	NA	NA		NA	NA	NA	NA
##	7		0	0		0	0	NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA
##	8		0	0		0	0	NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA
##	9		0	0		0	0	0	0		0	(0	0	(0	0	0	NA NA
## ##	10	77	.33		37				y.38	7.7											NA v 47
	1	У	NA	y.54 NA	-	SS y NA	NA	y.si NA	y.30 NA	-	NA	y.40	-	NA	y.42 NA	y.4c	-	NA	NA	y.40 NA	y.47 NA
##	2		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA
##	3		NA	NA]	NA	NA	NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA
##	4		NA	NA]	NA	NA	NA	NA		NA	NA	1	NA	NA	NA	L	NA	NA	NA	NA
##	5		NA	NA]	NA	NA	NA	NA		NA	NA	1	NA	NA	NA	L	NA	NA	NA	NA
##	6		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA
##	7		NA	NA		NA	NA	NA	NA		NA	NI		NA	NA	NA		NA	NA	NA	NA
##	8		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA
## ##	9		NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA		NA NA	NA NA	N A N A		NA NA	NA NA	NA NA	NA NA
##	10	77	NA 48.						иа у.53			NA						NA 50 77			NA v 62
	1	У	NA	y.49 NA	-	oo y NA	NA	y.32 NA	y.33 NA	-	NA	y . 5 c	-	NA	y.sr NA	y.sc NA	-	NA	NA	y.or NA	y.oz NA
##	2		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA
##	3		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA
##	4		NA	NA]	NA	NA	NA	NA		NA	NA	1	NA	NA	NA		NA	NA	NA	NA
##	5		NA	NA]	NA	NA	NA	NA		NA	NA	1	NA	NA	NA	L	NA	NA	NA	NA
##	6		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA
##	7		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA
##	8		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA
##			NA MA	NA NA		NA NA	NA NA	NA			NA NA	NA NA		NA		N A N A		NA NA	NA NA	NA NA	NA NA
##	10	7.7	NA 63					NA	y.68			NA 70		NA 71							
##	1	y	NA	y.O4 NA	•	NA NA	NA	y.or NA	•	•	NA	y.rc NA	•	NA		0.04	1 60	0.8		.0.2	
##			NA	NA		NA	NA	NA			NA	NA		NA		0.04		0.0		0.0	
##			NA	NA		NA	NA	NA			NA	NA		NA		0.03		0.7		0.1	
##	4		NA	NA]	NA	NA	NA	NA		NA	NA	1	NA	(0.03		0.0	0	0.0	00
##	5		NA	NA]	NA	NA	NA	NA		NA	NA	1	NA	(0.03		0.0	О	0.0	00
##			NA	NA]	NA	NA	NA			NA	NA		NA		0.03		0.3	7	0.2	24
##			NA	NA		NA	NA	NA			NA	NA		NA		0.03		0.0		0.0	
##			NA	NA		NA	NA	NA			NA	NA		NA		0.03		0.0		0.0	
##			NA	NA NA		NA MA	NA	NA			NA	NA		NA		0.03		0.2		0.1	
##	10	D,	NA	NA ۱۵۶۱		NA nla	NA 1 Da	NA	NA .5 Pe		NA	NA Pac		NA o 7		0.03	Doo	0.00		0.0	
##	1	76	_	le.s i).15	e0]	рте. 0.0		0.		_	.e.6		_	e.7 .39	_	1.14	reo	0.1		_	43
##				0.00		0.0		0.			.00			.00		0.00		0.00			.00
##				0.18		0.5		0.			.41			.03		0.53		0.1			32

		0.00	0.00	0.00	0.00	0.00		
##		0.00	0.00	0.00	0.00			.00 0.00
##		0.00	0.00	0.00	0.00			.00 0.00
##		0.06	0.14	0.10	0.22			.06 0.02
##		0.00	0.00	0.00	0.00			.00 0.00
## ##		0.00 0.07	0.00 0.05	0.00 0.10	0.00 0.12			.00 0.00 .27 0.06
	10	0.07	0.05	0.10	0.12			.00 0.00
##	10							
##	1	0.44	0.63	0.26	1.15	0.43	People.16 0.00	0.00
##		0.00	0.00	0.20	0.00	0.43		0.00
##		0.34	0.00	0.00	0.00	NA		
##		0.00	0.19	0.20	0.90	0.01	0.00	0.00
##		0.00	0.00	0.00	0.02	0.01		0.00
##		0.01	0.06	0.09	0.37	0.55		0.04
##		0.00	0.00	0.00	0.00	0.00		0.00
##		0.00	0.00	0.00	0.00	0.00		0.00
##		0.08	0.15	0.04	0.18	0.46		0.04
##		0.00	0.00	0.00	0.00	0.00		0.00
##							People.23	
##	1	0.00	0.00	0.00	0.00	0.91	NA	NA
##	2	0.00	0.00	0.00	NA	NA	NA	NA
##	3	NA	NA	NA	NA	NA	NA	NA
##	4	0.00	NA	NA	NA	NA	NA	NA
##	5	0.00	0.00	0.00	0.00	NA	NA	NA
##	6	0.06	0.19	0.19	0.20	NA	NA	NA
##	7	0.00	0.03	0.00	0.00	NA	NA	NA
##	8	0.00	0.00	0.00	0.00	NA	NA	NA
##	9	0.09	0.03	0.03	0.04	0.03	0.18	0.2
##	10	0.00	0.00	0.00	0.00	0.00		0.0
##		-	-	People.27	-	-	People.30	People.31
##		NA	NA	NA	NA	NA	NA	NA
##		NA	NA	NA	NA	NA	NA	NA
##		NA	NA	NA	NA	NA		
##		NA	NA	NA	NA	NA	NA	
##		NA	NA	NA	NA	NA	NA	
	6	NA	NA	NA	NA	NA	NA	NA
##		NA	NA	NA	NA	NA	NA	NA
##		NA O 14	NA O 11	NA O OC	NA O 10	NA O 20		NA
##		0.14	0.11	0.06	0.18	0.38	0.21	0.09
##	10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
##	1	NA	NA	NA	NA	NA	People.37	NA
##		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
##		NA	NA	NA	NA	NA NA	NA	NA NA
##		NA	NA	NA	NA	NA	NA	NA
##		NA	NA	NA	NA	NA	NA	NA
##		NA	NA	NA	NA	NA	NA	NA
##		NA	NA	NA	NA	NA	NA	NA
##		NA	NA	NA	NA	NA	NA	NA
##		NA	NA	NA	NA	NA	NA	NA
##		NA	NA	NA	NA	NA	NA	NA
##							People.44	
##	1	NA	NA	NA	NA	NA	NA	NA
##	2	NA	NA	NA	NA	NA	NA	NA

##	3	NA						
##		NA						
##	5	NA						
##	6	NA						
##	7	NA						
##	8	NA						
##	9	NA						
##	10	NA						
##		People.46	People.47	People.48	People.49	People.50	People.51	People.52
##	1	NA						
##	2	NA						
##	3	NA						
##	4	NA						
##	5	NA						
##	6	NA						
##	7	NA						
##	8	NA						
##	9	NA						
##	10	NA						
##		People.53	People.54	People.55	People.56	People.57	People.58	People.59
##	1	NA						
##	2	NA						
##	3	NA						
##	4	NA						
##	5	NA						
##	6	NA						
##	7	NA						
##	8	NA						
##	9	NA						
##	10	NA						
##		People.60	People.61	People.62	People.63	People.64	People.65	People.66
##	1	NA						
##	2	NA						
##	3	NA						
##	4	NA						
##	5	NA						
##	6	NA						
##	7	NA						
##	8	NA						
##	9	NA						
##	10	NA						
##			People.68					
##	1	NA	NA.	NA	NA.	NA		
##		NA	NA	NA	NA	NA		
##		NA	NA	NA	NA	NA		
##		NA	NA	NA	NA	NA		
##		NA	NA	NA	NA	NA		
##		NA	NA	NA	NA	NA		
##		NA	NA	NA	NA	NA		
##		NA	NA	NA	NA	NA		
##		NA	NA	NA	NA	NA		
	10	NA	NA	NA	NA	NA		

Question 2

Fit the following candidate set of models:

Detection model	Occupancy model
intercept-only	intercept-only
people	intercept-only
intercept-only	disturbance
people	disturbance

```
fit1 <- occu(~ 1 ~ 1, data = occu_data)
fit2 <- occu(~ People ~ 1, data = occu_data)
fit3 <- occu(~ 1 ~ Dist_5km, data = occu_data)
fit4 <- occu(~ People ~ Dist_5km, data = occu_data)
summary(fit1)</pre>
```

```
##
## Call:
## occu(formula = ~1 ~ 1, data = occu_data)
## Occupancy (logit-scale):
  Estimate
                SE
                     z P(>|z|)
      -1.32 0.0879 -15 7.6e-51
##
##
## Detection (logit-scale):
## Estimate SE
                       z P(>|z|)
      -3.02 0.0734 -41.1
##
##
## AIC: 4490.771
## Number of sites: 1951
## optim convergence code: 0
## optim iterations: 29
## Bootstrap iterations: 0
```

summary(fit2)

```
##
## Call:
## occu(formula = ~People ~ 1, data = occu_data)
## Occupancy (logit-scale):
## Estimate
              SE z P(>|z|)
##
      -1.32 0.0879 -15 9.21e-51
##
## Detection (logit-scale):
              Estimate
                           SE
                                   z P(>|z|)
## (Intercept) -3.0141 0.0743 -40.550 0.000
## People
              -0.0765 0.3759 -0.203
                                      0.839
##
## AIC: 4492.729
## Number of sites: 1951
```

```
## optim convergence code: 0
## optim iterations: 35
## Bootstrap iterations: 0
summary(fit3)
##
## Call:
## occu(formula = ~1 ~ Dist_5km, data = occu_data)
## Occupancy (logit-scale):
               Estimate
                           SE
                                   z P(>|z|)
                  -1.05 0.101 -10.40 2.42e-25
## (Intercept)
## Dist_5km
                 -23.65 4.773 -4.96 7.23e-07
##
## Detection (logit-scale):
##
  Estimate
                 SE
                        z P(>|z|)
       -3.02 0.0732 -41.2
##
## AIC: 4461.006
## Number of sites: 1951
## optim convergence code: 0
## optim iterations: 52
## Bootstrap iterations: 0
summary(fit4)
##
## Call:
## occu(formula = ~People ~ Dist_5km, data = occu_data)
##
## Occupancy (logit-scale):
               Estimate
                           SE
                                   z P(>|z|)
                  -1.05 0.101 -10.39 2.63e-25
## (Intercept)
## Dist_5km
                 -23.64 4.773 -4.95 7.28e-07
##
## Detection (logit-scale):
##
               Estimate
                            SE
                                     z P(>|z|)
## (Intercept) -3.0133 0.0741 -40.646
                                         0.000
## People
                -0.0609 0.3779 -0.161
                                         0.872
##
## AIC: 4462.98
## Number of sites: 1951
## optim convergence code: 0
## optim iterations: 39
## Bootstrap iterations: 0
```

Question 3

Perform model selection with AIC. What is your top model? How do you know? Is there model selection uncertainty?

library(AICcmodavg) ## Warning: package 'AICcmodavg' was built under R version 4.0.5 occu_cand.set <- list(</pre> F1 = fit1, F2 = fit2, F3 = fit3, F4 = fit4) occu_mods <- aictab(cand.set = occu_cand.set, second.ord = F)</pre> occu_mods ## ## Model selection based on AIC: ## ## K AIC Delta AIC AICWt Cum.Wt 0.00 0.73 ## F3 3 4461.01 0.73 - 2227.50## F4 4 4462.98 1.97 0.27 1.00 -2227.49

My top model is model 3, fit3, which uses the intercept-only for the detection model and the disturbance within 5km for the abundance model. I know this is my top model because the Δ AIC for Model 1 and Model 2 is greater than 2. There is some uncertainty between model 3 and model because the Δ AIC between Model 3 and Model 4 is less than 2.

1.00 -2243.39

1.00 -2243.36

Question 4

[1] -23.65047

F1 2 4490.77

F2 3 4492.73

29.77

31.72 0.00

0.00

Average both the effect of people on detection, and disturbance on occupancy, over all models. Report model-averaged slope coefficients and 95% confidence intervals.

```
#People's effect on detection across all models
people_avg <- modavgShrink(cand.set = occu_cand.set, parm = 'People', second.ord = F, parm.type = 'dete
People_slopecoef <- people_avg$Mod.avg.beta
People_slopecoef

## [1] -0.01653469

people_95 <- cbind(people_avg$Lower.CL,people_avg$Upper.CL)
people_95

## [,1] [,2]
## [1,] -0.4061781 0.3731087

#Effect of disturbance on occupancy across all models
dist_avg <- modavgShrink(cand.set = occu_cand.set, parm = 'Dist_5km', second.ord = F, parm.type = 'psi'
Dist_5km_slopecoef <- dist_avg$Mod.avg.beta
Dist_5km_slopecoef</pre>
```

```
dist_95 <- cbind(dist_avg$Lower.CL, dist_avg$Upper.CL)
dist_95

## [,1] [,2]
## [1,] -33.006 -14.29494</pre>
```

Question 5

Obtain and plot model-averaged predictions of occupancy probability and detection probability. Average over all models, and make predictions over the observed range of each variable.

```
#Detection predictions
p_covs[is.na(p_covs)] = 0 #Necessary because you can't generate new data with NAs
new_p <- data.frame(</pre>
 People = seq(min(p_covs[1:71]), to = max(p_covs[1:71]), length.out = 100))
avg_prd_det <- modavgPred(cand.set = occu_cand.set, newdata = new_p, second.ord = F, parm.type = 'detec
avg_prd_det
##
## Model-averaged predictions on the response scale
## based on entire model set and 95% confidence interval:
##
##
       mod.avg.pred uncond.se lower.CL upper.CL
## 1
              0.047
                         0.003
                                  0.041
                                            0.054
## 2
              0.047
                         0.003
                                  0.041
                                            0.054
## 3
              0.047
                         0.003
                                  0.041
                                            0.054
## 4
              0.047
                         0.003
                                  0.040
                                            0.054
## 5
              0.047
                         0.004
                                  0.040
                                            0.054
## 6
              0.047
                         0.004
                                  0.039
                                            0.055
## 7
              0.047
                         0.004
                                  0.039
                                            0.056
## 8
              0.046
                         0.005
                                  0.038
                                            0.056
## 9
                         0.005
              0.046
                                  0.038
                                            0.057
## 10
              0.046
                         0.005
                                  0.037
                                            0.058
## 11
              0.046
                         0.006
                                  0.036
                                            0.059
## 12
              0.046
                         0.006
                                  0.036
                                            0.060
## 13
              0.046
                         0.006
                                  0.035
                                            0.061
## 14
              0.046
                         0.007
                                  0.034
                                            0.062
## 15
              0.046
                         0.007
                                  0.034
                                            0.063
## 16
              0.046
                         0.008
                                  0.033
                                            0.064
## 17
              0.046
                         0.008
                                  0.032
                                            0.065
## 18
              0.046
                         0.008
                                  0.032
                                            0.067
## 19
              0.046
                         0.009
                                  0.031
                                            0.068
## 20
                         0.009
              0.046
                                  0.030
                                            0.069
## 21
              0.046
                         0.010
                                  0.030
                                            0.070
              0.046
## 22
                         0.010
                                  0.029
                                            0.072
## 23
              0.046
                         0.011
                                  0.028
                                            0.073
## 24
              0.046
                         0.011
                                  0.028
                                            0.074
## 25
              0.046
                         0.011
                                  0.027
                                            0.076
## 26
              0.046
                         0.012
                                  0.027
                                            0.077
## 27
              0.046
                         0.012
                                  0.026
                                            0.079
                                            0.080
## 28
              0.046
                         0.013
                                  0.026
```

##	29	0.046	0.013	0.025	0.082
##	30	0.046	0.013	0.024	0.083
##	31	0.046	0.014	0.024	0.085
##	32	0.046	0.014	0.023	0.086
##	33	0.046	0.015	0.023	0.088
##	34	0.045	0.015	0.022	0.090
##	35	0.045	0.015	0.022	0.092
##	36	0.045	0.016	0.021	0.093
##	37	0.045	0.016	0.021	0.095
##	38	0.045	0.017	0.021	0.097
##	39	0.045	0.017	0.021	0.099
##	40	0.045	0.017	0.020	0.101
##	41	0.045	0.017	0.020	0.101
##	42		0.018	0.019	0.102
		0.045			
##	43	0.045	0.019	0.018	0.106
##	44	0.045	0.019	0.018	0.108
##	45	0.045	0.019	0.018	0.110
##	46	0.045	0.020	0.017	0.112
##	47	0.045	0.020	0.017	0.114
##	48	0.045	0.020	0.016	0.117
##	49	0.045	0.021	0.016	0.119
##	50	0.045	0.021	0.016	0.121
##	51	0.045	0.021	0.015	0.123
##	52	0.045	0.022	0.015	0.126
##	53	0.045	0.022	0.015	0.128
##	54	0.045	0.023	0.014	0.130
##	55	0.045	0.023	0.014	0.133
##	56	0.045	0.023	0.014	0.135
##	57	0.045	0.024	0.013	0.137
##	58	0.045	0.024	0.013	0.140
##	59	0.045	0.024	0.013	0.143
##	60	0.045	0.025	0.013	0.145
##	61	0.044	0.025	0.012	0.148
##	62	0.044	0.025	0.012	0.150
##	63	0.044	0.026	0.012	0.153
##	64	0.044	0.026	0.011	0.156
##	65	0.044	0.026	0.011	0.159
##	66	0.044	0.027	0.011	0.161
##	67	0.044	0.027	0.011	0.164
##	68	0.044	0.027	0.010	0.167
##	69	0.044	0.028	0.010	0.170
##	70	0.044	0.028	0.010	0.173
##	71	0.044	0.028	0.010	0.176
##	72	0.044	0.028	0.010	0.179
##	73	0.044	0.029	0.009	0.182
##	74	0.044	0.029	0.009	0.185
##	75	0.044	0.029	0.009	0.189
##	76	0.044	0.030	0.009	0.192
##	77	0.044	0.030	0.009	0.195
##	78	0.044	0.030	0.003	0.199
##	79	0.044	0.031	0.008	0.202
##	80	0.044	0.031	0.008	0.202
##	81	0.044	0.031	0.008	0.209
##	82	0.044	0.031	0.008	0.209
πĦ	02	0.011	0.001	0.000	V.ZIZ

```
## 83
               0.044
                          0.032
                                    0.007
                                             0.216
## 84
               0.044
                          0.032
                                    0.007
                                             0.219
                                             0.223
## 85
               0.044
                          0.032
                                    0.007
               0.044
                          0.033
                                             0.227
## 86
                                    0.007
## 87
               0.044
                          0.033
                                    0.007
                                             0.230
## 88
               0.044
                          0.033
                                    0.007
                                             0.234
## 89
               0.044
                          0.033
                                    0.006
                                              0.238
                                              0.242
## 90
               0.044
                          0.034
                                    0.006
## 91
               0.043
                          0.034
                                    0.006
                                             0.246
## 92
                          0.034
                                             0.250
               0.043
                                    0.006
## 93
               0.043
                          0.035
                                    0.006
                                             0.254
## 94
               0.043
                          0.035
                                    0.006
                                              0.258
## 95
                          0.035
               0.043
                                    0.006
                                             0.262
## 96
               0.043
                          0.035
                                    0.006
                                              0.266
## 97
               0.043
                          0.036
                                    0.005
                                              0.270
## 98
               0.043
                          0.036
                                    0.005
                                              0.274
## 99
               0.043
                          0.036
                                    0.005
                                              0.278
                                              0.282
## 100
               0.043
                          0.036
                                    0.005
```

```
plot(x = new_p$People, y = avg_prd_det$mod.avg.pred, type = '1', ylab = 'Predicted Detection Probability
lines(x = new_p$People, y = avg_prd_det$upper.CL, lwd = 1, lty = 2)
lines(x = new_p$People, y = avg_prd_det$lower.CL , lty = 2)
```



```
#Occupancy predictions
new_psi <- data.frame(Dist_5km = seq(from = min(psi_covs), to = max(psi_covs), length.out = 100))
new_psi</pre>
```

$Dist_5km$ ## 1 0.00000000 2 ## 0.001313131 ## 3 0.002626263 ## 4 0.003939394 ## 5 0.005252525 ## 6 0.006565657 ## 7 0.007878788 ## 8 0.009191919 ## 9 0.010505051 ## 10 0.011818182 ## 11 0.013131313 ## 12 0.01444444 ## 13 0.015757576 ## 14 0.017070707 ## 15 0.018383838 ## 16 0.019696970 ## 0.021010101 ## 18 0.022323232 ## 19 0.023636364 ## 20 0.024949495 ## 21 0.026262626 ## 22 0.027575758 ## 23 0.028888889 ## 24 0.030202020 25 0.031515152 ## 26 0.032828283 ## 27 0.034141414 ## 28 0.035454545 ## 29 0.036767677 ## 30 0.038080808 ## 31 0.039393939 ## 32 0.040707071 ## 33 0.042020202 ## 34 0.043333333 0.044646465 ## 35 ## 36 0.045959596 ## 37 0.047272727 ## 38 0.048585859 ## 39 0.049898990 40 0.051212121 ## 41 0.052525253 ## 42 0.053838384 ## 43 0.055151515 ## 44 0.056464646 ## 45 0.057777778 ## 46 0.059090909 ## 47 0.060404040 ## 48 0.061717172 ## 49 0.063030303

50

51

52

53

0.064343434

0.065656566

0.066969697

0.068282828

```
## 55 0.070909091
## 56 0.07222222
## 57 0.073535354
## 58 0.074848485
## 59 0.076161616
## 60 0.077474747
## 61 0.078787879
## 62 0.080101010
## 63 0.081414141
## 64 0.082727273
## 65
     0.084040404
## 66 0.085353535
## 67 0.086666667
## 68 0.087979798
## 69
      0.089292929
## 70
     0.090606061
## 71
     0.091919192
## 72 0.093232323
## 73 0.094545455
## 74 0.095858586
## 75 0.097171717
## 76 0.098484848
## 77 0.099797980
## 78 0.101111111
## 79 0.102424242
## 80 0.103737374
## 81 0.105050505
## 82 0.106363636
## 83 0.107676768
## 84 0.108989899
## 85 0.110303030
## 86 0.111616162
## 87 0.112929293
## 88 0.114242424
## 89 0.11555556
## 90 0.116868687
## 91 0.118181818
## 92 0.119494949
## 93 0.120808081
## 94 0.122121212
## 95 0.123434343
## 96 0.124747475
## 97
      0.126060606
## 98 0.127373737
## 99 0.128686869
## 100 0.130000000
avg_prd_occupancy <- modavgPred(cand.set = occu_cand.set, newdata = new_psi, second.ord = F, parm.type</pre>
avg_prd_occupancy
##
## Model-averaged predictions on the response scale
## based on entire model set and 95% confidence interval:
```

54 0.069595960

##				
##	mod.avg.pred	uncond.se	lower.CL	upper.CL
## 1	0.260	0.019	0.224	0.300
## 2	0.254	0.019	0.219	0.292
## 3	0.248	0.018	0.215	0.285
## 4	0.242	0.017	0.210	0.278
## 5	0.237	0.017	0.206	0.271
## 6	0.231	0.016	0.201	0.264
## 7	0.226	0.016	0.196	0.258
## 8	0.220	0.015	0.192	0.252
## 9	0.215	0.015	0.187	0.246
## 10	0.210	0.015	0.182	0.241
## 11	0.205	0.015	0.177	0.235
## 12	0.200	0.015	0.172	0.230
## 13	0.195	0.015	0.168	0.225
## 14	0.190	0.015	0.163	0.221
## 15	0.185	0.015	0.158	0.216
## 16	0.181	0.015	0.153	0.212
## 17	0.176	0.015	0.148	0.208
## 18	0.172	0.015	0.144	0.204
## 19 ## 20	0.167	0.016	0.139	0.200
## 20	0.163 0.159	0.016 0.016	0.134 0.130	0.196 0.193
## 21	0.155	0.016	0.130	0.193
## 23	0.151	0.016	0.120	0.186
## 24	0.147	0.017	0.121	0.182
## 25	0.143	0.017	0.113	0.179
## 26	0.139	0.017	0.109	0.176
## 27	0.135	0.017	0.105	0.173
## 28	0.132	0.017	0.101	0.170
## 29	0.128	0.018	0.098	0.167
## 30	0.125	0.018	0.094	0.164
## 31	0.122	0.018	0.091	0.161
## 32	0.118	0.018	0.087	0.158
## 33	0.115	0.018	0.084	0.156
## 34	0.112	0.018	0.081	0.153
## 35	0.109	0.018	0.078	0.150
## 36	0.106	0.018	0.075	0.148
## 37	0.103	0.019	0.072	0.145
## 38	0.100	0.019	0.069	0.143
## 39	0.097	0.019	0.067	0.140
## 40	0.095	0.019	0.064	0.138
## 41	0.092	0.019	0.061	0.136
## 42	0.090	0.019	0.059	0.133
## 43 ## 44	0.087	0.019	0.057 0.055	0.131
## 44 ## 45	0.085 0.082	0.019 0.019	0.055	0.129
## 45	0.082	0.019	0.052	0.127 0.125
## 47	0.030	0.019	0.030	0.123
## 48	0.075	0.018	0.048	0.122
## 49	0.073	0.018	0.045	0.120
## 50	0.071	0.018	0.043	0.116
## 51	0.069	0.018	0.041	0.114
## 52	0.067	0.018	0.039	0.112

```
0.065
                          0.018
## 53
                                    0.038
                                              0.110
## 54
               0.063
                          0.018
                                    0.036
                                              0.109
## 55
               0.062
                          0.018
                                              0.107
                                    0.035
## 56
                          0.018
                                              0.105
               0.060
                                    0.033
## 57
               0.058
                          0.017
                                    0.032
                                              0.103
## 58
               0.056
                          0.017
                                    0.031
                                              0.101
## 59
               0.055
                          0.017
                                    0.030
                                              0.100
## 60
                                              0.098
               0.053
                          0.017
                                    0.028
## 61
               0.052
                          0.017
                                    0.027
                                              0.096
## 62
                                              0.095
               0.050
                          0.017
                                    0.026
## 63
               0.049
                          0.016
                                    0.025
                                              0.093
## 64
               0.047
                          0.016
                                    0.024
                                              0.091
## 65
               0.046
                          0.016
                                    0.023
                                              0.090
## 66
                          0.016
                                              0.088
               0.045
                                    0.022
## 67
               0.043
                          0.016
                                    0.021
                                              0.087
## 68
               0.042
                          0.015
                                    0.020
                                              0.085
## 69
               0.041
                          0.015
                                    0.019
                                              0.084
## 70
               0.040
                          0.015
                                    0.019
                                              0.082
## 71
               0.038
                          0.015
                                    0.018
                                              0.081
## 72
               0.037
                          0.015
                                    0.017
                                              0.079
## 73
               0.036
                          0.014
                                    0.016
                                              0.078
## 74
               0.035
                          0.014
                                    0.016
                                              0.077
## 75
               0.034
                          0.014
                                    0.015
                                              0.075
## 76
               0.033
                          0.014
                                    0.014
                                              0.074
## 77
                          0.014
                                              0.073
               0.032
                                    0.014
## 78
               0.031
                          0.013
                                    0.013
                                              0.071
## 79
               0.030
                          0.013
                                    0.013
                                              0.070
## 80
               0.029
                          0.013
                                    0.012
                                              0.069
## 81
               0.028
                          0.013
                                    0.012
                                              0.068
## 82
               0.028
                          0.013
                                    0.011
                                              0.067
## 83
               0.027
                          0.012
                                    0.011
                                              0.065
## 84
               0.026
                          0.012
                                    0.010
                                              0.064
## 85
                          0.012
               0.025
                                    0.010
                                              0.063
## 86
               0.024
                          0.012
                                    0.009
                                              0.062
## 87
               0.024
                          0.012
                                    0.009
                                              0.061
## 88
               0.023
                          0.011
                                    0.009
                                              0.060
## 89
               0.022
                          0.011
                                    0.008
                                              0.059
## 90
               0.022
                          0.011
                                    0.008
                                              0.058
## 91
               0.021
                          0.011
                                    0.008
                                              0.057
## 92
               0.020
                          0.011
                                    0.007
                                              0.056
## 93
               0.020
                          0.010
                                    0.007
                                              0.055
## 94
               0.019
                          0.010
                                    0.007
                                              0.054
## 95
                                    0.006
               0.019
                          0.010
                                              0.053
## 96
               0.018
                          0.010
                                    0.006
                                              0.052
## 97
                          0.010
                                    0.006
                                              0.051
               0.018
## 98
               0.017
                          0.009
                                    0.006
                                              0.050
## 99
                          0.009
                                    0.005
                                              0.049
               0.016
## 100
               0.016
                          0.009
                                    0.005
                                              0.048
```

```
plot(x = new_psi$Dist_5km, y = avg_prd_occupancy$mod.avg.pred, type = 'l', ylab = 'Predicted Occupancy :
lines(x = new_psi$Dist_5km, y = avg_prd_occupancy$upper.CL, lwd = 1, lty = 2)
lines(x = new_psi$Dist_5km, y = avg_prd_occupancy$lower.CL , lty = 2)
```

