7b - Feature Selection II COM2004/3004

Jon Barker

Department of Computer Science University of Sheffield

Autumn Semester

7b - Feature Selection II

Jon Barker

Recap

Divergence

Correlation

Algorithms

In this lecture we will,

- Consider the problem of selecting multiple features.
- Explain why divergence of 1-D distributions is not generally useful.
- Examine divergence for multivariate normal distributions.
- Explore how feature selection can be automated using a selection algorithm.
- Compare various feature selection algorithms.

- ► Feature selection is about choosing features that minimise the probability of classification error.
- Classification error arises when class distributions 'overlap'.
- So we choose features whose distributions have the smallest 'overlap'.
- We talk about 'measures of class separability'.
- ▶ We introduced 'Divergence', d_{12} , as one such measure.

- Feature selection is about choosing features that minimise the probability of classification error.
- Classification error arises when class distributions 'overlap'.
- So we choose features whose distributions have the smallest 'overlap'.
- ▶ We talk about 'measures of *class separability*'.
- ▶ We introduced 'Divergence', d_{12} , as one such measure.

- ► Feature selection is about choosing features that minimise the probability of classification error.
- Classification error arises when class distributions 'overlap'.
- So we choose features whose distributions have the smallest 'overlap'.
- ▶ We talk about 'measures of *class separability*'.
- ▶ We introduced 'Divergence', d_{12} , as one such measure.

Correlation

- ► Feature selection is about choosing features that minimise the probability of classification error.
- Classification error arises when class distributions 'overlap'.
- So we choose features whose distributions have the smallest 'overlap'.
- We talk about 'measures of class separability'.
- ▶ We introduced 'Divergence', d_{12} , as one such measure.

Correlation

Feature Selection Algorithms

- ► Feature selection is about choosing features that minimise the probability of classification error.
- Classification error arises when class distributions 'overlap'.
- So we choose features whose distributions have the smallest 'overlap'.
- We talk about 'measures of class separability'.
- ▶ We introduced 'Divergence', *d*₁₂, as one such measure.

Define.

$$D_{12} = \int_{-\infty}^{+\infty} p(x|\omega_1) \ln \frac{p(x|\omega_1)}{p(x|\omega_2)} dx \tag{1}$$

$$d_{12} = D_{12} + D_{21} (2)$$

► For 1-d Gaussians the equation for divergence becomes.

$$d_{12} = \frac{1}{2} \left(\frac{\sigma_1^2}{\sigma_2^2} + \frac{\sigma_2^2}{\sigma_1^2} - 2 \right) + \frac{1}{2} (\mu_1 - \mu_2)^2 \left(\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2} \right)$$

▶ Define,

$$D_{12} = \int_{-\infty}^{+\infty} p(x|\omega_1) \ln \frac{p(x|\omega_1)}{p(x|\omega_2)} dx \tag{1}$$

▶ The **divergence**, written d_{12} , is defined as,

$$d_{12} = D_{12} + D_{21} (2)$$

► For 1-d Gaussians the equation for divergence becomes,

$$d_{12} = \frac{1}{2} \left(\frac{\sigma_1^2}{\sigma_2^2} + \frac{\sigma_2^2}{\sigma_1^2} - 2 \right) + \frac{1}{2} (\mu_1 - \mu_2)^2 \left(\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2} \right)$$

where μ_1 and μ_2 are the means of the distributions, and σ_1 and σ_2 are the standard deviations.

Define,

$$D_{12} = \int_{-\infty}^{+\infty} p(x|\omega_1) \ln \frac{p(x|\omega_1)}{p(x|\omega_2)} dx \tag{1}$$

▶ The **divergence**, written d_{12} , is defined as,

$$d_{12} = D_{12} + D_{21} (2)$$

For 1-d Gaussians the equation for divergence becomes,

$$d_{12} = \frac{1}{2} \left(\frac{\sigma_1^2}{\sigma_2^2} + \frac{\sigma_2^2}{\sigma_1^2} - 2 \right) + \frac{1}{2} (\mu_1 - \mu_2)^2 \left(\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2} \right)$$

where μ_1 and μ_2 are the means of the distributions, and σ_1 and σ_2 are the standard deviations.

- Consider again our gender features.
- Say we have computed the divergence between male and female distributions for each feature:

left arm length	2.5
right arm length	2.4
hair length	1.8
weight	1.3
shoe size	1.2
eye colour	0.01 ¹

- If using one feature, best feature is 'left arm length'
- If using two features, best features would be 'left arm length' and 'right arm length'...Right?
- No!, not necessarily... we need to consider their joint distribution.

¹These figures are made up for sake of illustration and are not intended to be realistic!

- Consider again our gender features.
- Say we have computed the divergence between male and female distributions for each feature:

left arm length	2.5
right arm length	2.4
hair length	1.8
weight	1.3
shoe size	1.2
eye colour	0.01 ¹

- If using one feature, best feature is 'left arm length'
- If using two features, best features would be 'left arm length' and 'right arm length'...Right?
- No!, not necessarily... we need to consider their joint distribution.

¹These figures are made up for sake of illustration and are not intended to be realistic!

Say we have computed the divergence between male and female distributions for each feature:

left arm length	2.5
right arm length	2.4
hair length	1.8
weight	1.3
shoe size	1.2
eye colour	0.01 ¹

- If using one feature, best feature is 'left arm length'
- ▶ If using two features, best features would be 'left arm length' and 'right arm length'... Right?
- No!, not necessarily... we need to consider their joint distribution.

Recap

Divergence

Correlation

Algorithms

¹These figures are made up for sake of illustration and are not intended to be realistic!

- Consider again our gender features.
- Say we have computed the divergence between male and female distributions for each feature:

left arm length	2.5
right arm length	2.4
hair length	1.8
weight	1.3
shoe size	1.2
eye colour	0.01 ¹

- If using one feature, best feature is 'left arm length'
- ▶ If using two features, best features would be 'left arm length' and 'right arm length'... Right?
- No!, not necessarily...we need to consider their joint distribution.

¹These figures are made up for sake of illustration and are not intended to be realistic!

Divergence in 1 dimension

Divergence for pairs of Gaussian distributions:

But distributions have more opportunity to be separate in higher dimensions...

7b - Feature Selection II

Jon Barker

Recap

Divergence

Correlation

Algorithms

- ► Consider the joint distribution of a pair of features, x_1 and x_2 written as $p(x_1, x_2)$.
- We can plot the value of x_1 on the x-axis and x_2 on the y-axis, and $p(x_1, x_2)$ on the z-axis to form a surface.
- If x₁ and x₂ have a Gaussian distribution and are independent then p(x₁, x₂) will look something like this

▶ Consider the joint distribution of a pair of features, x_1 and x_2 – written as $p(x_1, x_2)$.

- ▶ We can plot the value of x_1 on the x-axis and x_2 on the y-axis, and $p(x_1, x_2)$ on the z-axis to form a surface.
- If x₁ and x₂ have a Gaussian distribution and are independent then p(x₁, x₂) will look something like this

- ► Consider the joint distribution of a pair of features, x_1 and x_2 written as $p(x_1, x_2)$.
- ▶ We can plot the value of x_1 on the x-axis and x_2 on the y-axis, and $p(x_1, x_2)$ on the z-axis to form a surface.
- If x₁ and x₂ have a Gaussian distribution and are independent then p(x₁, x₂) will look something like this,

- ► Consider the joint distribution of a pair of features, x_1 and x_2 written as $p(x_1, x_2)$.
- ▶ We can plot the value of x_1 on the x-axis and x_2 on the y-axis, and $p(x_1, x_2)$ on the z-axis to form a surface.
- If x₁ and x₂ have a Gaussian distribution and are independent then p(x₁, x₂) will look something like this,

... or with the corresponding contour plot.

- ► Consider the joint distribution of a pair of features, x_1 and x_2 written as $p(x_1, x_2)$.
- ▶ We can plot the value of x_1 on the x-axis and x_2 on the y-axis, and $p(x_1,x_2)$ on the z-axis to form a surface.
- If x₁ and x₂ have a Gaussian distribution and are independent then p(x₁, x₂) will look something like this,

... or just as a contour plot.

▶ However, if x_1 and x_2 are correlated the circles become stretched along the diagonal.

▶ However, if x_1 and x_2 are correlated the circles become stretched along the diagonal.

▶ However, if x_1 and x_2 are correlated the circles become stretched along the diagonal.

▶ However, if x_1 and x_2 are correlated the circles become stretched along the diagonal.

▶ However, if *x*₁ and *x*₂ are correlated the circles become stretched along the diagonal.

▶ However, if x_1 and x_2 are correlated the circles become stretched along the diagonal.

▶ However, if *x*₁ and *x*₂ are correlated the circles become stretched along the diagonal.

► Class 2 - mean of x_1 = 50.5; mean of x_2 = 50.5

- ▶ Distributions increasingly overlap as correlation between x_1 and x_2 increases, i.e. divergence decreases.
- So the divergence of the joint $p(x_1, x_2)$ distributions, cannot be predicted from divergence of distributions $p(x_1)$ and and divergence of distributions $p(x_2)$

4 ロ ト 4 倒 ト 4 豆 ト 4 豆 ト 9 9 9 9

7b - Feature Selection II

Jon Barker

Recap

Divergence

Divergence and Correlation

Algorithms

Divergence for *n*-dimensional Gaussians

Remember,

- ▶ 1-d Gaussians are defined by their mean, μ , and a their variance σ^2 .
- ▶ n-d Gaussians are defined by a vector of means, μ , and a covariance matrix, Σ .

The divergence between a pair of n-d Gaussians can be shown to be,

$$d_{12} = \frac{1}{2} trace \left(\Sigma_1^{-1} \Sigma_2 + \Sigma_2^{-1} \Sigma_1 - 2I \right) + \frac{1}{2} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T (\Sigma_1^{-1} + \Sigma_2^{-1}) (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$$

- trace(X) is the sum of the values on the leading diagonal of matrix X
- ▶ x^T means the transpose of vector x, i.e. turns a row vector into a column and vice versa.

$$1$$
-d versus n -d Gaussian Divergence

Compare the equation for *n*-d Gaussian divergence,

$$d_{12} = \frac{1}{2} trace \left(\Sigma_1^{-1} \Sigma_2 + \Sigma_2^{-1} \Sigma_1 - 2I \right) + \frac{1}{2} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T (\Sigma_1^{-1} + \Sigma_2^{-1}) (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$$

With equation for the 1-d Gaussian divergence.

$$d_{12} = \frac{1}{2} \left(\frac{\sigma_1^2}{\sigma_2^2} + \frac{\sigma_2^2}{\sigma_1^2} - 2 \right) + \frac{1}{2} (\mu_1 - \mu_2)^2 \left(\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2} \right)$$

The 1-d equation is just a special case of the N-d equation.

The divergence between a pair of *n*-d Gaussians is,

$$d_{12} = \frac{1}{2} trace \left(\Sigma_1^{-1} \Sigma_2 + \Sigma_2^{-1} \Sigma_1 - 2I \right) + \frac{1}{2} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T (\Sigma_1^{-1} + \Sigma_2^{-1}) (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$$

Note, if the features are uncorrelated, (i.e. Σ are diagonal matrices), then the *n*-d divergence reduces to the sum of the 1-d divergences.

$$d_{12} = \sum_{i} \left(\frac{1}{2} \left(\frac{\sigma_{i1}^2}{\sigma_{i2}^2} + \frac{\sigma_{i2}^2}{\sigma_{i1}^2} - 2 \right) + \frac{1}{2} (\mu_{i1} - \mu_{i2})^2 \left(\frac{1}{\sigma_{i1}^2} + \frac{1}{\sigma_{i2}^2} \right) \right)$$

Returning to our example and considering again picking
the best pair of features,

left arm length (LAL)	2.5
right arm length (RAL)	2.4
hair length (HL)	1.8
weight (W)	1.3
shoe size (SS)	1.2
eye colour (EC)	0.012

- ► LAL and RAL are clearly going to be highly correlated people are pretty symmetrical!
- ► So it is possible that the joint distribution of LAL and HL would produce a higher divergence.

²These figures are made up for sake of illustration and are not realistic

 Returning to our example and considering again picking the best pair of features,

left arm length (LAL)	2.5
right arm length (RAL)	2.4
hair length (HL)	1.8
weight (W)	1.3
shoe size (SS)	1.2
eye colour (EC)	0.01 ²

- ► LAL and RAL are clearly going to be highly correlated people are pretty symmetrical!
- So it is possible that the joint distribution of LAL and HL would produce a higher divergence.

²These figures are made up for sake of illustration and are not realistic

 Returning to our example and considering again picking the best pair of features,

left arm length (LAL)	2.5
right arm length (RAL)	2.4
hair length (HL)	1.8
weight (W)	1.3
shoe size (SS)	1.2
eye colour (EC)	0.01 ²

- LAL and RAL are clearly going to be highly correlated people are pretty symmetrical!
- So it is possible that the joint distribution of LAL and HL would produce a higher divergence.

²These figures are made up for sake of illustration and are not realistic

Simple scalar feature selection

- Choose a 1-dimensional class separability criteria, C. e.g. could choose divergence, but there are others.
- The value of the criterion C(k) is computed for each feature.
 k.
- Select the n features corresponding to the n best values of C(k).
- Simple to perform but does not consider correlation between features.

Divergence and Correlation

Feature Selection Algorithms

- Simple scalar feature selection
 - Choose a 1-dimensional class separability criteria, C. e.g. could choose divergence, but there are others.
 - The value of the criterion C(k) is computed for each feature k.
 - Select the n features corresponding to the n best values of C(k).
- ▶ Simple to perform but does not consider correlation between features.

Divergence and Correlation

- Simple scalar feature selection
 - ► Choose a 1-dimensional class separability criteria, *C.* e.g. could choose divergence, but there are others.
 - ► The value of the criterion C(k) is computed for each feature, k.
 - Select the n features corresponding to the n best values of C(k).
- Simple to perform but does not consider correlation between features.

Divergence

Divergence and Correlation

- Simple scalar feature selection
 - Choose a 1-dimensional class separability criteria, C. e.g. could choose divergence, but there are others.
 - ► The value of the criterion C(k) is computed for each feature, k.
 - Select the n features corresponding to the n best values of C(k).
- Simple to perform but does not consider correlation between features.

Divergence and

- Simple scalar feature selection
 - ► Choose a 1-dimensional class separability criteria, *C.* e.g. could choose divergence, but there are others.
 - ► The value of the criterion C(k) is computed for each feature, k.
 - Select the n features corresponding to the n best values of C(k).
- Simple to perform but does not consider correlation between features.

- ▶ As before, choose first feature as one with highest C(k). Say it has index i₁
- ▶ Compute correlation, $\rho_{i,j}$ between selected feature, i_1 , and each remaining feature, j.
- Compute adjusted separability between selected features and remaining features, according to,

$$C'(j) = \alpha_1 C(j) - \alpha_2 |\rho_{ij}| \tag{3}$$

- ▶ Select 2nd feature as that which has highest C'(j).
- Select nth feature as that which has highest.

$$\alpha_1 C(j) - \frac{\alpha_2}{n-1} \sum_{i=1}^{n-1} |\rho_{i,j}|$$
 (4)

- As before, choose first feature as one with highest C(k). Say it has index i₁
- ▶ Compute correlation, $\rho_{i,j}$ between selected feature, i_1 , and each remaining feature, j.
- Compute adjusted separability between selected features and remaining features, according to,

$$C'(j) = \alpha_1 C(j) - \alpha_2 |\rho_{ij}| \tag{3}$$

- ▶ Select 2nd feature as that which has highest C'(j).
- ▶ Select *n*th feature as that which has highest

$$\alpha_1 C(j) - \frac{\alpha_2}{n-1} \sum_{r=1}^{n-1} |\rho_{i_r j}|$$
 (4)

- As before, choose first feature as one with highest C(k).
 Say it has index i₁
- ▶ Compute correlation, $\rho_{i,j}$ between selected feature, i_1 , and each remaining feature, j.
- Compute adjusted separability between selected features and remaining features, according to,

$$C'(j) = \alpha_1 C(j) - \alpha_2 |\rho_{ij}| \tag{3}$$

- Select 2nd feature as that which has highest C'(j).
- Select nth feature as that which has highest.

$$\alpha_1 C(j) - \frac{\alpha_2}{n-1} \sum_{r=1}^{n-1} |\rho_{i,rj}|$$
 (4)

- As before, choose first feature as one with highest C(k).
 Say it has index i₁
- ▶ Compute correlation, $\rho_{i,j}$ between selected feature, i_1 , and each remaining feature, j.
- Compute adjusted separability between selected features and remaining features, according to,

$$C'(j) = \alpha_1 C(j) - \alpha_2 |\rho_{ij}| \tag{3}$$

- ▶ Select 2nd feature as that which has highest C'(j).
- Select nth feature as that which has highest.

$$\alpha_1 C(j) - \frac{\alpha_2}{n-1} \sum_{r=1}^{n-1} |\rho_{irj}|$$
 (4)

- ▶ As before, choose first feature as one with highest C(k). Say it has index i₁
- ▶ Compute correlation, $\rho_{i,j}$ between selected feature, i_1 , and each remaining feature, j.
- Compute adjusted separability between selected features and remaining features, according to,

$$C'(j) = \alpha_1 C(j) - \alpha_2 |\rho_{ij}| \tag{3}$$

- ▶ Select 2nd feature as that which has highest C'(j).
- Select nth feature as that which has highest,

$$\alpha_1 C(j) - \frac{\alpha_2}{n-1} \sum_{r=1}^{n-1} |\rho_{i_r j}|$$
 (4)

- Scalar techniques simple but have poor theoretical justification and will in general be sub-optimal.
- n-dimensional separability is poorly modeled by 1-d separability and pairwise correlations.
- We really want to consider the separability of the n-dimensional joint distributions directly.
- Consider a brute force approach which computes separability of joint distribution for all feature subsets
- ightharpoonup How many way of choosing n features from a possible m?

$$\frac{m!}{n!(m-n)!}$$

- Scalar techniques simple but have poor theoretical justification and will in general be sub-optimal.
- n-dimensional separability is poorly modeled by 1-d separability and pairwise correlations.
- We really want to consider the separability of the n-dimensional joint distributions directly.
- Consider a brute force approach which computes separability of joint distribution for all feature subsets
- \blacktriangleright How many way of choosing n features from a possible m?

$$\frac{m!}{n!(m-n)!}$$

- Scalar techniques simple but have poor theoretical justification and will in general be sub-optimal.
- n-dimensional separability is poorly modeled by 1-d separability and pairwise correlations.
- We really want to consider the separability of the n-dimensional joint distributions directly.
- Consider a brute force approach which computes separability of joint distribution for all feature subsets
- ▶ How many way of choosing n features from a possible m?

$$\frac{m!}{n!(m-n)!}$$

- Scalar techniques simple but have poor theoretical justification and will in general be sub-optimal.
- n-dimensional separability is poorly modeled by 1-d separability and pairwise correlations.
- We really want to consider the separability of the n-dimensional joint distributions directly.
- Consider a brute force approach which computes separability of joint distribution for all feature subsets.
- ▶ How many way of choosing n features from a possible m?

$$\frac{m!}{n!(m-n)!}$$

- Scalar techniques simple but have poor theoretical justification and will in general be sub-optimal.
- n-dimensional separability is poorly modeled by 1-d separability and pairwise correlations.
- We really want to consider the separability of the n-dimensional joint distributions directly.
- Consider a brute force approach which computes separability of joint distribution for all feature subsets.
- ▶ How many way of choosing n features from a possible m?

$$\frac{m!}{n!(m-n)!}$$

- Scalar techniques simple but have poor theoretical justification and will in general be sub-optimal.
- n-dimensional separability is poorly modeled by 1-d separability and pairwise correlations.
- We really want to consider the separability of the n-dimensional joint distributions directly.
- Consider a brute force approach which computes separability of joint distribution for all feature subsets.
- ▶ How many way of choosing *n* features from a possible *m*?

$$\frac{m!}{n!(m-n)!}$$

- Finds good feature selection without trying all possibilities: start with all features and progressively remove one feature at a time.
- ► Consider an example where we have m = 4 features x_1, x_2, x_3, x_4 .
 - Pick a class separability measure, C, and compute its value for the feature vector [x₁, x₂, x₃, x₄]
 - Eliminate one feature at a time and compute C for each possible 3-d vector, i.e. [x₂, x₃, x₄], [x₁, x₃, x₄], [x₁, x₂, x₄] and [x₁, x₂, x₃]. Select the best, say, [x₁, x₃, x₄].
 - Eliminate another feature and recompute C for each 2-d vector, i.e. [x₃, x₄], [x₁, x₄], [x₁, x₃]. Select the best...etc
- Note, this is a suboptimal approach. It does not guarantee to find the best selection/

- Finds good feature selection without trying all possibilities: start with all features and progressively remove one feature at a time.
- ► Consider an example where we have m = 4 features x_1, x_2, x_3, x_4 .
 - Pick a class separability measure, C, and compute its value for the feature vector $[x_1, x_2, x_3, x_4]$
 - ▶ Eliminate one feature at a time and compute C for each possible 3-d vector, i.e. $[x_2, x_3, x_4]$, $[x_1, x_3, x_4]$, $[x_1, x_2, x_4]$ and $[x_1, x_2, x_3]$. Select the best, say, $[x_1, x_3, x_4]$.
 - ▶ Eliminate another feature and recompute C for each 2-d vector, i.e. $[x_3, x_4]$, $[x_1, x_4]$, $[x_1, x_3]$. Select the best...etc
- Note, this is a suboptimal approach. It does not guarantee to find the best selection/

- Finds good feature selection without trying all possibilities: start with all features and progressively remove one feature at a time.
- ► Consider an example where we have m = 4 features x_1, x_2, x_3, x_4 .
 - Pick a class separability measure, C, and compute its value for the feature vector $[x_1, x_2, x_3, x_4]$
 - Eliminate one feature at a time and compute C for each possible 3-d vector, i.e. $[x_2, x_3, x_4]$, $[x_1, x_3, x_4]$, $[x_1, x_2, x_4]$ and $[x_1, x_2, x_3]$. Select the best, say, $[x_1, x_3, x_4]$.
 - ▶ Eliminate another feature and recompute *C* for each 2-d vector, i.e. [*x*₃, *x*₄], [*x*₁, *x*₄], [*x*₁, *x*₃]. Select the best...etc
- Note, this is a *suboptimal* approach. It does not guarantee to find the best selection/

- Finds good feature selection without trying all possibilities: start with all features and progressively remove one feature at a time.
- ► Consider an example where we have m = 4 features x_1, x_2, x_3, x_4 .
 - Pick a class separability measure, C, and compute its value for the feature vector $[x_1, x_2, x_3, x_4]$
 - ▶ Eliminate one feature at a time and compute C for each possible 3-d vector, i.e. $[x_2, x_3, x_4]$, $[x_1, x_3, x_4]$, $[x_1, x_2, x_4]$ and $[x_1, x_2, x_3]$. Select the best, say, $[x_1, x_3, x_4]$.
 - ▶ Eliminate another feature and recompute *C* for each 2-d vector, i.e. [*x*₃, *x*₄], [*x*₁, *x*₄], [*x*₁, *x*₃]. Select the best...etc
- Note, this is a *suboptimal* approach. It does not guarantee to find the best selection/

- Finds good feature selection without trying all possibilities: start with all features and progressively remove one feature at a time.
- ► Consider an example where we have m = 4 features x_1, x_2, x_3, x_4 .
 - ▶ Pick a class separability measure, C, and compute its value for the feature vector $[x_1, x_2, x_3, x_4]$
 - ▶ Eliminate one feature at a time and compute C for each possible 3-d vector, i.e. $[x_2, x_3, x_4]$, $[x_1, x_3, x_4]$, $[x_1, x_2, x_4]$ and $[x_1, x_2, x_3]$. Select the best, say, $[x_1, x_3, x_4]$.
 - ▶ Eliminate another feature and recompute C for each 2-d vector, i.e. $[x_3, x_4]$, $[x_1, x_4]$, $[x_1, x_3]$. Select the best...etc
- Note, this is a suboptimal approach. It does not guarantee to find the best selection/

- Finds good feature selection without trying all possibilities: start with all features and progressively remove one feature at a time.
- ► Consider an example where we have m = 4 features x_1, x_2, x_3, x_4 .
 - ▶ Pick a class separability measure, C, and compute its value for the feature vector $[x_1, x_2, x_3, x_4]$
 - ▶ Eliminate one feature at a time and compute C for each possible 3-d vector, i.e. $[x_2, x_3, x_4]$, $[x_1, x_3, x_4]$, $[x_1, x_2, x_4]$ and $[x_1, x_2, x_3]$. Select the best, say, $[x_1, x_3, x_4]$.
 - ▶ Eliminate another feature and recompute C for each 2-d vector, i.e. $[x_3, x_4]$, $[x_1, x_4]$, $[x_1, x_3]$. Select the best...etc
- Note, this is a suboptimal approach. It does not guarantee to find the best selection/

- Similar to sequential backward selection, but we start with a single feature and progressively add features.
- Consider an example where we have m = 4 features x_1, x_2, x_3, x_4 .
 - Pick a class separability measure, C, and compute its value for each individual feature. Select the best. Say, x2
 - Now computer C for all possible 2-d vectors formed using x_2 and one other feature, $[x_1, x_2]$, $[x_2, x_3]$ and $[x_2, x_4]$. Select the best, say, $[x_2, x_3]$.
 - Add another feature and recompute C for the resulting 3-d vectors, i.e. [x₁, x₂x₃] and [x₂, x₃, x₄]... etc
- Again, this is a suboptimal approach.
- ► Choosing forward or backward depends on whether the desired number of features *n* is closer to *m* (choose backward) or to 1 (choose forward).

- Similar to sequential backward selection, but we start with a single feature and progressively add features.
- ► Consider an example where we have m = 4 features x_1, x_2, x_3, x_4 .
 - Pick a class separability measure, C, and compute its value for each individual feature. Select the best. Say, x₂
 - Now computer C for all possible 2-d vectors formed using x_2 and one other feature, $[x_1, x_2]$, $[x_2, x_3]$ and $[x_2, x_4]$. Select the best, say, $[x_2, x_3]$.
 - Add another feature and recompute C for the resulting 3-d vectors, i.e. [x₁, x₂x₃] and [x₂, x₃, x₄]... etc
- ▶ Again, this is a *suboptimal* approach.
- ▶ Choosing forward or backward depends on whether the desired number of features *n* is closer to *m* (choose backward) or to 1 (choose forward).

- Similar to sequential backward selection, but we start with a single feature and progressively add features.
- ► Consider an example where we have m = 4 features x_1, x_2, x_3, x_4 .
 - Pick a class separability measure, C, and compute its value for each individual feature. Select the best. Say, x_2
 - Now computer C for all possible 2-d vectors formed using x_2 and one other feature, $[x_1, x_2]$, $[x_2, x_3]$ and $[x_2, x_4]$. Select the best, say, $[x_2, x_3]$.
 - Add another feature and recompute C for the resulting 3-d vectors, i.e. [x₁, x₂x₃] and [x₂, x₃, x₄]... etc
- ► Again, this is a *suboptimal* approach.
- ► Choosing forward or backward depends on whether the desired number of features *n* is closer to *m* (choose backward) or to 1 (choose forward).

- Similar to sequential backward selection, but we start with a single feature and progressively add features.
- ► Consider an example where we have m = 4 features x_1, x_2, x_3, x_4 .
 - Pick a class separability measure, C, and compute its value for each individual feature. Select the best. Say, x_2
 - Now computer C for all possible 2-d vectors formed using x_2 and one other feature, $[x_1, x_2]$, $[x_2, x_3]$ and $[x_2, x_4]$. Select the best, say, $[x_2, x_3]$.
 - Add another feature and recompute C for the resulting 3-c vectors, i.e. $[x_1, x_2x_3]$ and $[x_2, x_3, x_4]$... etc
- ► Again, this is a *suboptimal* approach.
- ► Choosing forward or backward depends on whether the desired number of features *n* is closer to *m* (choose backward) or to 1 (choose forward).

- Similar to sequential backward selection, but we start with a single feature and progressively add features.
- ► Consider an example where we have m = 4 features x_1, x_2, x_3, x_4 .
 - ▶ Pick a class separability measure, *C*, and compute its value for each individual feature. Select the best. Say, *x*₂
 - Now computer C for all possible 2-d vectors formed using x_2 and one other feature, $[x_1, x_2]$, $[x_2, x_3]$ and $[x_2, x_4]$. Select the best, say, $[x_2, x_3]$.
 - ▶ Add another feature and recompute C for the resulting 3-d vectors, i.e. [x₁, x₂x₃] and [x₂, x₃, x₄]... etc
- Again, this is a *suboptimal* approach.
- ► Choosing forward or backward depends on whether the desired number of features *n* is closer to *m* (choose backward) or to 1 (choose forward).

- Similar to sequential backward selection, but we start with a single feature and progressively add features.
- ► Consider an example where we have m = 4 features x_1, x_2, x_3, x_4 .
 - Pick a class separability measure, C, and compute its value for each individual feature. Select the best. Say, x_2
 - Now computer C for all possible 2-d vectors formed using x_2 and one other feature, $[x_1, x_2]$, $[x_2, x_3]$ and $[x_2, x_4]$. Select the best, say, $[x_2, x_3]$.
 - ▶ Add another feature and recompute *C* for the resulting 3-d vectors, i.e. [*x*₁, *x*₂*x*₃] and [*x*₂, *x*₃, *x*₄]...etc
- Again, this is a *suboptimal* approach.
- ► Choosing forward or backward depends on whether the desired number of features *n* is closer to *m* (choose backward) or to 1 (choose forward).

- Similar to sequential backward selection, but we start with a single feature and progressively add features.
- ► Consider an example where we have m = 4 features x_1, x_2, x_3, x_4 .
 - ▶ Pick a class separability measure, *C*, and compute its value for each individual feature. Select the best. Say, *x*₂
 - Now computer C for all possible 2-d vectors formed using x_2 and one other feature, $[x_1, x_2]$, $[x_2, x_3]$ and $[x_2, x_4]$. Select the best, say, $[x_2, x_3]$.
 - ▶ Add another feature and recompute C for the resulting 3-d vectors, i.e. [x₁, x₂x₃] and [x₂, x₃, x₄]... etc
- Again, this is a suboptimal approach.
- ► Choosing forward or backward depends on whether the desired number of features *n* is closer to *m* (choose backward) or to 1 (choose forward).

Divergence and Correlation

- Overcomes problem of nesting effect
 - backward selection: once a feature is discarded it can't be reconsidered.
 - forward selection: once a feature is added it can't be removed.
- ► Floating search methods substantially more complicated but offer better performance.
- Won't cover here but see T&K p. 286 if interested.

- Divergence between distributions increases as more dimensions are added.
- ▶ *N*-d divergence is sum of 1-d divergences, but only if the dimensions are independent.
- Divergence less than sum if the distributions are correlated.
- Optimal feature selection: try all subsets of features and pick the one the maximises class separability.
- For most problems too many features to consider this approach.
- A sequential feature selection algorithm can usually find a good set of features without having to consider all possible subsets.

- Divergence between distributions increases as more dimensions are added.
- N-d divergence is sum of 1-d divergences, but only if the dimensions are independent.
- Divergence less than sum if the distributions are correlated.
- Optimal feature selection: try all subsets of features and pick the one the maximises class separability.
- For most problems too many features to consider this approach.
- A sequential feature selection algorithm can usually find a good set of features without having to consider all possible subsets.

- Divergence between distributions increases as more dimensions are added.
- ▶ N-d divergence is sum of 1-d divergences, but only if the dimensions are independent.
- Divergence less than sum if the distributions are correlated.
- Optimal feature selection: try all subsets of features and pick the one the maximises class separability.
- For most problems too many features to consider this approach.
- A sequential feature selection algorithm can usually find a good set of features without having to consider all possible subsets.

- Divergence between distributions increases as more dimensions are added.
- ▶ N-d divergence is sum of 1-d divergences, but only if the dimensions are independent.
- Divergence less than sum if the distributions are correlated.
- Optimal feature selection: try all subsets of features and pick the one the maximises class separability.
- For most problems too many features to consider this approach.
- A sequential feature selection algorithm can usually find a good set of features without having to consider all possible subsets.

- Divergence between distributions increases as more dimensions are added.
- N-d divergence is sum of 1-d divergences, but only if the dimensions are independent.
- Divergence less than sum if the distributions are correlated.
- Optimal feature selection: try all subsets of features and pick the one the maximises class separability.
- For most problems too many features to consider this approach.
- A sequential feature selection algorithm can usually find a good set of features without having to consider all possible subsets.

- Divergence between distributions increases as more dimensions are added.
- ▶ N-d divergence is sum of 1-d divergences, but only if the dimensions are independent.
- Divergence less than sum if the distributions are correlated.
- Optimal feature selection: try all subsets of features and pick the one the maximises class separability.
- For most problems too many features to consider this approach.
- A sequential feature selection algorithm can usually find a good set of features without having to consider all possible subsets.