Text	DB		

L	Hits	Search Text	DB	Time stamp
Number	L			
1	65	(ionized adj physical adj vapor) and	USPAT;	2003/09/23
		@ad<20020123 and (Ti or titanium)	US-PGPUB	13:16
2	18	(ionized adj physical adj vapor) and	USPAT;	2003/09/23
		@ad<20020123 and AC	US-PGPUB	13:22
3	16	((ionized adj physical adj vapor) and	USPAT;	2003/09/23
1		@ad<20020123 and (Ti or titanium)) and	US-PGPUB	13:16
į į		((ionized adj physical adj vapor) and		
		@ad<20020123 and AC)		
4	1	(ionized adj physical adj vapor) and	EPO; JPO;	2003/09/23
		@ad<20020123 and AC	DERWENT;	13:22
1			IBM TDB	

L	Hits	Search Text	DB	Time stamp
Number				
1 121	ionized adj physical adj vapor	USPAT;	2003/09/23	
		US-PGPUB	11:43	
2 107	(ionized adj physical adj vapor) and	USPAT;	2003/09/23	
	@ad<20020123	US-PGPUB	11:43	
3 65	((ionized adj physical adj vapor) and	USPAT;	2003/09/23	
	@ad<20020123) and (Ti or titanium)	US-PGPUB	11:44	
4 63	(((ionized adj physical adj vapor) and	USPAT;	2003/09/23	
	@ad<20020123) and (Ti or titanium)) not	US-PGPUB	11:54	
	(fortin or mosel)			
5 15	((((ionized adj physical adj vapor) and	USPAT;	2003/09/23	
	@ad<20020123) and (Ti or titanium)) not	US-PGPUB	11:48	
	(fortin or mosel)) and silicide			
6 6	(((((ionized adj physical adj vapor) and	USPAT;	2003/09/23	
		@ad<20020123) and (Ti or titanium)) not	US-PGPUB	11:50
ļ	(fortin or mosel)) and silicide) and			
1		cobalt		
7 9	(((((ionized adj physical adj vapor) and	USPAT;	2003/09/23	
		@ad<20020123) and (Ti or titanium)) not	US-PGPUB	11:50
		(fortin or mosel)) and silicide) not		
	((((((ionized adj physical adj vapor) and	1		
	@ad<20020123) and (Ti or titanium)) not			
		(fortin or mosel)) and silicide) and		
	cobalt)			
8 48	((((ionized adj physical adj vapor) and	USPAT;	2003/09/23	
		@ad<20020123) and (Ti or titanium)) not	US-PGPUB	11:54
	(fortin or mosel)) not ((((ionized adj			
		physical adj vapor) and @ad<20020123) and		
	(Ti or titanium)) not (fortin or mosel))			

DOCUMENT-IDENTIFIER:

US 20020001946 A1

TITLE:

Method and fabricating metal

interconnection with

reliability using ionized physical

vapor deposition

----- KWIC -----

Detail Description Paragraph - DETX (3):

[0020] First, referring to FIG. 3, a first Ti film 22 is formed on a

semiconductor substrate 21 at a thickness of approximately 50 to 500 .ANG.

using the ionized physical vapor deposition (referred to as "IPVD") method. In

the sputtering method, metal atoms from a target may be ionized and accelerated

toward a wafer through <u>AC</u> bias which is applied to a semiconductor substrate.

The directness of the ionized atoms may provide an improved step-coverage of

the first Ti film 22. In the IPVD method using a radio frequency coil, a

hollow cathode or a magnetron, since the kinetic energy of the ionized Ti atoms

is high, the first Ti film 22 has an excellent crystal orientation in an

<002> direction. Further, in the preferred embodiment of the present

invention, the \underline{AC} bias is in a range of 0 to 500 W and the DC bias is applied

to the radio frequency coil in a range of 0.5 to 5 kW when the processing

pressure is in a range of approximately 1 to 100 mtor.

Claims Text - CLTX (3):

2. The method as recited in claim 1, wherein the ionized physical vapor deposition method uses any one of a radio frequency coil, a hollow cathode and a magnetron and applies <u>AC</u> bias to a processing chamber in order to increase a

09/23/2003, EAST Version: 1.04.0000

directness of the ionized atoms from a Ti target.

Claims Text - CLTX (5):

4. The method as recited in claim 3, wherein an <u>AC</u> bias of 0 to 500 W is applied to a wafer, on which the multilayer metal thin film is formed, at a pressure of 1 to 100 mtorr and a DC bias of 0.5 to 5 kW is applied to the radio frequency coil.

Claims Text - CLTX (15):

14. The method as recited in claim 10, wherein the ionized physical vapor deposition method uses any one of a radio frequency coil, a hollow cathode and a magnetron and applies <u>AC</u> bias of 0 to 500 W to a processing chamber.

Claims Text - CLTX (17):

16. The method as recited in claim 15, wherein an <u>AC</u> bias of 0 to 500 W is applied to a wafer, on which the multilayer metal thin film is formed, at a pressure of 1 to 100 mtorr and a DC bias of 0.5 to 5 kW is applied to the radio frequency coil.

09/23/2003, EAST Version: 1.04.0000