МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.Ломоносова

Факультет вычислительной математики и кибернетики

Второе практичское задание по курсу лекций «Численные методы линейной алгебры»

ОТЧЕТ

о выполненном задании

студента 301 учебной группы факультета ВМК МГУ Мартьянова Артема Олеговича

Содержание

Постановка задачи	2
Описание метода решения задачи Метод Оценка собственных значений	
Описание программы	4
Код программы	5
Полученные результаты	11

Постановка задачи

Дана система уравнений x+Ax=F, где $A\in \mathcal{R}^{n\times n}$ - симметричная положительно определенная матрица. Матрица предоставляется в виде файла в формате csv. Требуется написать программу на языке программирования C (или C++), реализующую метод Чебышева решения СЛАУ с оптимальным набором итерационных параметров, обеспечивающих устойчивость решения к оппибкам округления. Количество итераций взять равным степени двойки, при котором погрешность решения на последней итерации в среднеквадратической норме не превосходит погрешность прямого метода. Начальное приближение взять равным нулю. Также требуется построить график среднеквадратической нормы погрешности решения как функции номера итерации метода Чебышева и вычислить относительную погрешность решения, полученного методом Чебышева. Оценить собственные значения с помощью теоремы Гершгорина.

Описание метода решения задачи

Решать СЛАУ будем с помощью метода Чебышева с оптимальным набором итерационных параметров. Далее опишем выбор всех параметров.

Метод

В общем случае итерационный метод Чебышева можно записать так:

$$B\frac{x^{k+1} - x^k}{\tau_{k+1}} + Ax^k = b, \qquad k = 0, 1, \dots$$

Поскольку в настоящее время неизвестно регулярных способов хорошего выбора матрицы B для произвольной A, то положим B = I.

Согласно теории, итерационные параметры для наибольшей скорости схождения следует выбирать следующим образом:

$$\tau_j = \frac{\tau_0}{1 - \rho_0 \mu_j}, j = 1, 2, \dots, k,$$

где

$$\mu_j \in \mathfrak{M}_n = \left\{ \cos \frac{2i-1}{2n} \pi, \quad i = 1, 2, \dots, n \right\}, \quad \tau_0 = \frac{2}{\lambda_k + \lambda_1}, \quad \rho_0 = \frac{\lambda_k - \lambda_1}{\lambda_k + \lambda_1},$$

где λ_k и λ_1 - максимальное и минимальное собственные значения матрицы A соответственно.

К сожалению, вычисления по этим формулам при произвольном использовании итерационных параметров не является устойчивым с точки зрения машинной арифметики. Но если выбирать эти параметры в определенном порядке, требуемая устойчивость все же будет. Далее опишем нужный порядок выбора параметров. Иными словами, нам нужно построить оптимальное упорядочение множества \mathfrak{M}_n .

Приведем решение этой задачи в случае, когда $n=2^p$ (в соответсвии с постановкой задачи). Обозначим через θ_m множество, состоящее из m целых чисел:

$$\theta_m = \{\theta_1^{(m)}, \theta_2^{(m)}, \dots, \theta_m^{(m)}\}.$$

Исходя из множества $\theta_1 = \{1\}$, построим множество θ_{2^p} по следующему правилу. Пусть множество θ_m построено. Тогда множество θ_{2m} определим по формулам

$$\theta_{2m} = \{\theta_{2i}^{(2m)} = 4m - \theta_i^{(m)}, \theta_{2i-1}^{(2m)} = \theta_i^{(m)}, \quad i = 1, 2, \dots, m\}, \quad m = 1, 2, \dots, 2^{p-1}.$$

Нетрудно убедиться, что множество θ_{2^k} состоит из нечетных чисел от 1 до 2^{k+1} — 1. Используя построенное множество θ_{2^p} , упорядочим множество \mathfrak{M}_{2^p} следующим образом:

 $\mathfrak{M}_n^* = \left\{ \cos \beta_i, \quad \beta_i = \frac{\pi}{2n} \theta_i^{(n)}, \quad i = 1, 2, \dots, n \right\}, \quad n = 2^p.$

Такое построение обеспечивает минимальное влияние вычислительной погрешности на сходимость чебышевского метода.

Оценка собственных значений

Собственные значения (которые нужны для нахождения τ_0 и ρ_0) оценим с помощью теоремы Гершгорина.

В общем случае теорема Гершгорина говорит о том, что все собственные значения компексной матрицы лежат внутри так называемых кругов Гершгорина. Пусть A - комплексная матрица $n \times n$ с элементами a_{ij} . Обозначим через R_i сумму модулей внедиагональных элементов i-й строки (при $i \in \{1, \dots n\}$):

$$R_i = \sum_{j \neq i} |a_{ij}|.$$

Рассмотрим $D(a_{ii}, R_i) \subseteq \mathbb{C}$ - круг с центром в a_{ii} и радиусом R_i . Такой круг называется кругом Гершгорина. Наша матрица A по условию положительно определенная, а значит все ее собственные значения вещественны. Тогда круги Гершгорина вырождаются в отрезки на вещественной прямой. Таким образом, чтобы получить оценку для собственных значений, нам нужно найти минимальное значения среди левых границ и максимальное среди правых:

$$\lambda_{min} = \min_{i=1,n} \{a_{ii} - R_i\} \leqslant \lambda_1, \lambda_n \leqslant \lambda_{max} = \max_{i=1,n} \{a_{ii} + R_i\}$$

Описание программы

Здесь приведем описание основных функций программы (не будем заострять внимание на перегрузках операторов, они были реализованы для большего удоства и лучшей читаемости кода).

- std::vector<int> theta_set_construction(int m) Функция, которая строит множество θ_m , используещееся для построения оптимальной последовательности итерационных параметров.
- std::vector<double> optim_iterative_parameters_set(int n) Функция, строящая оптимально упорядоченное множество \mathfrak{M}_n^* , описанное выше.
- std::vector<double> eigenvalue_estimation(const std::vector<std::vector<double>> Функция, рассчитывающая оценку собственных значений с помощью теоремы Гершгорина(подробное описание выше).
- std::vector<double> chebyshevIteration(const std::vector<std::vector<double> & A, const std::vector<double> & F, std::vector<float> &statX, std::vector<float> &statY, int maxIterations)
 - Функция, реализующая метод Чебышева. Принимает матрицу системы, правую часть, массивы для хранения данных, требующихсяя для дальнейшего построения графика, количество итераций,

Код программы

Код основной программы для решения СЛАУ методом Чебышева на языке С++:

```
1 #include <iostream>
2 #include <cmath>
3 #include <vector>
4 #include <map>
5 #include <algorithm>
7 // Импорт кода из первого задания (прямого метода)
8 #include "../lu.cpp"
10 template < typename T>
11 \text{ void}
12 linspace(std::vector<T> &v, float start, float stop, int amount)
13 {
14
       double step = (stop - start) / (amount - 1);
       if (v.size() < amount) v.resize(amount);</pre>
15
16
       for (int i = 0; i < v.size(); ++i) {</pre>
17
           v[i] = start + step * i;
18
       }
19 }
20
21 // Перегрузки операторов
22 template < typename T>
23 std::ostream&
24 operator << (std::ostream &out, const std::vector <T> &v)
25 {
26
       for (auto &it : v) out << it << " ";</pre>
27
       return out;
28 }
29
30 template < typename T>
31 std::vector<T>
32 operator*(const std::vector<std::vector<T>> &m1, const std::vector<std::
      vector < T >> &m2)
33 {
34
       if (m1[0].size() != m2.size()) throw "Matrix sizes doesnt match";
35
       std::vector<std::vector<T>> res(m1.size());
36
       for (auto &it : res) it.resize(m2[0].size());
37
       for (int i = 0; i < m1.size(); ++i)</pre>
38
39
           for (int j = 0; j < m2[0].size(); ++j)</pre>
40
           {
41
                double sum = 0.0;
42
                for (int k = 0; k < m1[0].size(); ++k)</pre>
43
                     sum += m1[i][k] * m2[k][j];
44
45
46
                res[i][j] = sum;
47
           }
48
       }
49
       return res;
50 }
51
52 \text{ template} < \text{typename T} >
```

```
53 \text{ std}::\text{vector} < T >
54 operator*(const std::vector<std::vector<T>> &m, const std::vector<T> &x)
55 {
        if (m[0].size() != x.size()) throw "Matrix and vector sizes doesnt
56
       match";
57
        std::vector<T> ret(x.size());
58
        for (int i = 0; i < x.size(); ++i)</pre>
59
        {
60
            double sum = 0.0;
61
            for (int j = 0; j < x.size(); ++j)</pre>
62
            {
63
                 sum += m[i][j] * x[j];
64
            }
65
            ret[i] = sum;
66
67
        return ret;
68 }
69
70 template < typename T>
71 \text{ std}::\text{vector} < T >
72 operator - (const std::vector <T> &v1, const std::vector <T> &v2)
73 {
74
        if (v1.size() != v2.size()) throw "Vectors sizes doesnt match";
75
        std::vector<T> ret(v1.size());
76
        for (int i = 0; i < v1.size(); ++i)</pre>
77
78
            ret[i] = v1[i] - v2[i];
79
        }
80
        return ret;
81 }
82
83 template < typename T>
84 \text{ std}::\text{vector} < T >
85 operator+(const std::vector<T> &v1, const std::vector<T> &v2)
86 {
87
        if (v1.size() != v2.size()) throw "Vectors sizes doesnt match";
        std::vector<T> ret(v1.size());
88
89
        for (int i = 0; i < v1.size(); ++i)</pre>
90
        {
            ret[i] = v1[i] + v2[i];
91
92
        }
93
        return ret;
94 }
95
96 // функция для постороения множества тетта, которое используется для ген
       ерации
97 // последовательности оптимальных итерационных параметров
98 std::vector<int>
99 theta_set_construction(int m)
100 {
101
        if ((m & (m - 1)) != 0) throw "Argument m must be power of 2";
        if (m == 1) return std::vector<int>{0, 1};
102
        m = m / 2;
103
104
        std::vector<int> smaller_set = theta_set_construction(m);
105
        std::vector < int > ret(m * 2 + 1);
106
        for (int i = 1; i <= m; ++i)</pre>
107
```

```
108
            ret[2 * i] = 4 * m - smaller_set[i];
109
            ret[2 * i - 1] = smaller_set[i];
110
        }
111
        return ret;
112 }
113
114 std::vector <double >
115 optim_iterative_parameters_set(int n)
116 {
117
        if ((n & (n - 1)) != 0) throw "Argument n must be power of 2";
118
        std::vector<double> ret(n + 1);
119
        auto theta = theta_set_construction(n);
120
        for (int i = 1; i <= n; ++i)</pre>
121
122
            ret[i] = cos(M_PI * theta[i] / (n * 2));
123
        }
124
        return ret;
125 }
126
127 double
128 norm2(const std::vector < double > &v1)
129 {
        double ans = 0.0;
130
131
       for (const auto &item : v1)
132
133
            ans += item * item;
134
135
        return sqrt(ans);
136 }
137
138 // Функция для нахождения оценки собственных значений с помощью теоремы
       Гершгорина
139 \text{ std}::\text{vector} < \text{double} >
140 eigenvalue_estimation(const std::vector<std::vector<double>> &A)
141 {
142
        double lambdaMax = 0.0;
143
        double lambdaMin = 0.0;
144
        for (int i = 0; i < A.size(); ++i)</pre>
145
146
            double sum_abs_not_diag = 0.0;
147
            for (int j = 0; j < A[0].size(); ++j)</pre>
148
            {
149
                 if (i != j) sum_abs_not_diag += std::fabs(A[i][j]);
150
            }
            if (i == 0) {
151
152
                 lambdaMin = sum_abs_not_diag;
153
            } else if (lambdaMin > sum_abs_not_diag) lambdaMin = A[i][i] -
       sum_abs_not_diag;
154
            if (A[i][i] + sum_abs_not_diag > lambdaMax) lambdaMax = A[i][i]
       + sum_abs_not_diag;
155
        return std::vector<double> {lambdaMin, lambdaMax};
156
157 }
158
159 // Решение системы линейных уравнений методом Чебышева
160 std::vector < double > chebyshevIteration(const std::vector < std::vector <
       double >> & A,
```

```
161
                                             const std::vector <double >& F,
162
                                             std::vector<float> &statX,
163
                                             std::vector<float> &statY,
164
                                             int maxIterations,
165
                                             std::vector <double > &x_true)
166 {
167
       if (A.size() != A[0].size()) throw "Matrix should be n*n!\n";
       if ((maxIterations & (maxIterations - 1)) != 0) throw "maxIterations
168
        argument should be power of 2";
169
       statX.resize(maxIterations), statY.resize(maxIterations);
170
       int n = A.size();
171
       std::vector < double > x(n, 0.0);
172
       std::vector<double> xPrev(n, 0.0);
173
174
       // Оценка для собственных значений с помощью теоремы Гершгорина
175
       std::vector<double> estim = eigenvalue_estimation(A);
176
       double lambdaMin = estim[0], lambdaMax = estim[1];
177
178
       double tau0 = 2.0 / (lambdaMax + lambdaMin);
       double ro = (lambdaMax - lambdaMin) / (lambdaMax + lambdaMin);
179
180
181
       std::vector<double> tau_parameters = optim_iterative_parameters_set(
       maxIterations);
182
       for (int k = 0; k < maxIterations; ++k) {</pre>
183
            double tau = tau0 / (1 - tau_parameters[k + 1] * ro);
184
            for (int i = 0; i < n; ++i) {</pre>
185
                double sum = 0.0;
186
                for (int j = 0; j < n; ++ j) {
                    sum += A[i][j] * xPrev[j];
187
188
189
                x[i] = xPrev[i] + tau * (F[i] - sum);
190
            }
191
192
            statX[k] = k;
193
            statY[k] = norm2(F - A * x);
194
            xPrev = x;
195
       }
196
197
       return x;
198 }
199
200 int main() {
201
       std::string filename = "../SLAU_var_2.csv";
202
       std::vector<std::vector<double>> A = read_csv(filename);
203
       for (int i = 0; i < A.size(); i++) ++A[i][i];</pre>
204
       std::vector<double> x = generate_random_vect(A.size());
205
       std::vector<double> F;
206
       try { F = A * x; }
207
       catch (const char* str) { std::cerr << std::string(str) << std::endl</pre>
       ; }
208
209
       // LU-разложение
210
       std::vector<std::vector<double>> L;
211
       std::vector<std::vector<double>> U;
212
       std::vector<std::vector<double>> tmp_A = A;
213
       LU_decomposition(tmp_A, L, U);
214
```

```
215
       std::vector<double> x_computed = solve_system(L, U, F);
216
       double direct_method_error = norm2(x_computed - x);
217
218
       // Метод Чебышева
219
       int pow_of_two = 0;
220
       std::vector<float> statX, statY;
221
       std::vector<double> solution(x.size(), 0);
       int maxIterations = 0;
222
223
       while (norm2(solution - x) >= direct_method_error)
224
225
            ++pow_of_two;
226
            statX.clear(), statY.clear();
227
            maxIterations = pow(2, pow_of_two);
            solution = chebyshevIteration(A, F, statX, statY, maxIterations,
228
       x);
229
230
       statX.shrink_to_fit(), statY.shrink_to_fit();
231
232
       std::cout << "Оценка спектра матрицы с помощью теоремы Гершгорина(ми
      нимальное, максимальное значения): " <<
233
       eigenvalue_estimation(A) << std::endl;</pre>
234
       std::cout << "Количество итераций метода Чебышева: " <<
      maxIterations << std::endl;</pre>
235
       std::cout << "Погрешность решения прямым методом по второй норме: "
      << direct_method_error << std::endl;
236
       std::cout << "Погрешность решения методом Чебышева по второй норме:
       " << norm2(solution - x) << std::endl;
237
       std::cout << "Относительная погрешность решения методом Чебышева по
      второй норме: " << norm2(solution - x) / norm2(x) << std::endl;
238
239
       // Сохраним данные в csv файлы для отрисовки графика в Python
240
       std::ofstream fileX("statX.csv");
241
       for (const auto &value : statX)
242
       {
243
            fileX << value << ",";
244
       }
245
       std::ofstream fileY("statY.csv");
246
       for (const auto &value : statY)
247
       {
248
            fileY << value << ",";</pre>
249
       }
250
251
       return 0;
252 }
```

Листинг 1: second-task.cpp

Код для отрисовки графика зависимости среднеквадратической нормы погрешности от номера итерации метода Чебышева

```
1 import matplotlib.pyplot as plt
2 import numpy as np
4 path_to_fileX = "/home/ubuntu/code/uni/5sem/chmy/second_task/statX.csv"
5 path_to_fileY = "/home/ubuntu/code/uni/5sem/chmy/second_task/statY.csv"
7 dataX = np.genfromtxt(path_to_fileX, delimiter=",", dtype=np.float32)
8 dataY = np.genfromtxt(path_to_fileY, delimiter=",", dtype=np.float32)
10 assert dataX.shape[0] == dataY.shape[0], "Incorrect array sizes"
11 not_nan_mask = ~np.isnan(dataY)
12 dataY = dataY[not_nan_mask]
13 dataX = dataX[not_nan_mask]
14 plt.figure(figsize=(11, 7))
15 plt.grid()
16 plt.plot(dataX, dataY)
17 plt.title("График второй нормы как функции номера итерации")
18 plt.xlabel("Номер итерации")
19 plt.ylabel("Вторая норма погрешности")
20 plt.savefig("graph.png")
21 plt.show()
```

Листинг 2: graph.py

Полученные результаты

Результаты работы программы с матрицей из первого практического задания:

- Оценка спектра матрицы с помощью теоремы Гершгорина(минимальное, максимальное значения): 1 153.4
- Количество итераций метода Чебышева: 256
- Погрешность решения прямым методом по второй норме: 2.5601e-15
- Погрешность решения методом Чебышева по второй норме: 1.73998e-15
- Относительная погрешность решения методом Чебышева по второй норме: 3.02366e-16

Рис. 1: График зависимости второй нормы погрешности от номера итерации