1) $\therefore \forall x F x \lor \neg \forall x F x$

Proof:

Construct a proof for the argument: ∴ ∀xFx ∨ ¬∀xFx

Premises (separate with "," or ";"):			
$\forall x(Fx \Rightarrow Gx), \exists xFx$			
Concl	usion:		
ЭхGх			
CREATE PROBLEM			
	oof:	r the argument: $\forall x (Fx \rightarrow Gx)$, $\exists xFx :: \exists xGx$	
201130	adet a proor to	the argument. VA(VA -> CA), SAVA II SACA	
1 V	$x(Fx \to Gx)$		
2 3	xFx		
3 T	Fc		
4 T	Fc → Gc	∀E 1	
5	Gc	→E 3 4	
5	$\exists xGx$	3I 5	
7 3	xGx	∃E 2, 3-6	
1+	NEW LINE	i∓ NEW SUBPROOF	
⊕ c	ongratulations	! This proof is correct.	
c	HECK PROOF	START OVER	
Sa	mple e	exercise sets	

3) $\forall x(\neg Mx \lor Ljx), \forall x(Bx \Rightarrow Ljx), \forall x(Mx \lor Bx) \therefore \forall xLjx$

Sample exercise sets

4) Pa V Qb, Qb \Rightarrow (b = c), \neg P a \therefore Qc

Proof:

Construct a proof for the argument: $Pa \vee Qb$, $Qb \rightarrow b = c$, $\neg Pa :: Qc$

Sample exercise sets

5) $\forall x \forall y (Rxy \Rightarrow (x = y))$ \therefore Rab \Rightarrow Rba

Premises (separate with "," or ";"): $\forall x \forall y (Rxy \Rightarrow (x = y))$ Conclusion: $Rab \Rightarrow Rba$ CREATE PROBLEM

Proof:

Construct a proof for the argument: $\forall x \forall y (Rxy \rightarrow x = y) :: Rab \rightarrow Rba$

Sample exercise sets

Sample Truth-Functional Logic exercises (Chap. 15, ex. C; Chap. 17, ex. B)