Data Clustering

Danushka Bollegala

Outline

- Why cluster data?
- Clustering as unsupervised learning
- Clustering algorithms
 - k-means, k-medoids
 - agglomerative clustering
 - Brown's clustering
 - Spectral clustering
- Cluster evaluation measures
 - Purity
 - Normalised Mutual Information
 - Rand Index
 - B-CUBED
 - Precision, Recall, F-score
- Supervised clustering

Why cluster data?

- Data Mining has two main objectives
 - Prediction: classification, regression etc.
 - Description: pattern mining, rule extraction, visualisation *clustering*
- Clustering is:
 - Unsupervised learning
 - no label data is required (consider classification algorithms we discussed so far in the lecture which are supervised algorithms)
 - Generalisation / Abstraction of concepts
 - Topic detection
 - Visualisation
 - Outlier detection

Unsupervised Learning

- Supervised learning
 - labels for training instances are provided
- Unsupervised learning
 - No labels for training instances are provide
- Semi-supervised learning
 - Both labeled and unlabeled training instances are provided
- What can we learn about training data if we do not have any labels?
 - The similarity and distribution of the features can still be learnt and this can be used to create rich feature spaces for supervised learning (if required)

How many clusters?

General Remarks

- A single dataset can be clustered into several ways
- There is no single right or wrong clustering
 - Simply different views on the same data
- If so how can we measure the quality of a clustering algorithm?
 - Two ways
 - Compare the clusters produced by a clustering algorithm against some reference (gold standard) set of clusters (direct evaluation)
 - Use the clusters as features for some other (eg. supervised learning) task and measure the difference in the performance of the second task (indirect evaluation)

Clustering as Optimisation

- Given a dataset $\{\mathbf{x}_1, ..., \mathbf{x}_N\}$ of N instances represented as d dimensional real vectors $(\mathbf{x}_i \in R^d)$, partition these N instances into k clusters $S_1,...,S_k$ such that some objective function $f(S_1,...,S_k)$ is minimised.
- Observations
 - k and f are given
 - f can be the similarity between the clusters (good to create dissimilar clusters as much as possible), information gain, correlation and various other such goodness measures (heuristics)
 - Often clustering is an NP hard and a non-convex problem
 - http://rangevoting.org/VattaniKmeansNPC.pdf
 - approximations, relaxations are required in practice

Convex Functions

Clustering Algorithms

- Partitioning
 - Construct k partitions and iteratively update the partitions
 - k-Means, k-Medoids
- Hierarchical
 - Create a hierarchy of clusters (dendrogram)
 - Agglomerative clustering (bottom-up)
 - Conglomerative clustering (top-down)
- Graph-based clustering
 - Graph-cut algorithms (Spectral Clustering)
- Model-based clustering
 - Mixture of Gaussians
- Other types: Non-parametric Bayesian (Latent Dirichlet Allocation), Expectation Maximisation (EM) algorithm, and many more ...

k-Means Derivation

$$\arg\min_{S_1,...,S_k} \sum_{i=1}^k \sum_{\boldsymbol{x}_i \in S_i} ||\boldsymbol{x}_j - \boldsymbol{\mu}_i||^2$$

We want to minimize the distance between data instances (x_i) and some cluster centres (μ_i)

$$f(S_1, \dots, S_k) = \sum_{i=1}^k \sum_{x_i \in S_i} ||x_j - \mu_i||^2$$

This objective function is called the within cluster sum of squares (WCSS) objective

$$\frac{\partial f(S_1, \dots, S_k)}{\partial \mu_i} = 0$$

$$\frac{\partial f(S_1, \dots, S_k)}{\partial \mu_i} = \sum_{\boldsymbol{x}_j \in S_i} 2(\boldsymbol{x}_j - \boldsymbol{\mu}_i)$$

$$\mu_i = \frac{1}{|S_i|} \sum_{\boldsymbol{x}_j \in S_i} \boldsymbol{x}_j$$

Just compute the centroid (mean) of each cluster and that will give you the cluster centers

k-Means Clustering

- INPUT
 - The number of clusters k
 - Dataset {x₁, ..., x_N} of N instances represented as d dimensional real vectors (x_i ∈ R^d)
- 1. Set k instances from the dataset randomly. (initial cluster means/centers)
- 2. Assign all other instances to the closest cluster centre.
- 3. Compute the mean of each cluster
- 4. until convergence repeat between steps 2 and 3 convergence = no instances have moved among clusters (often after a fixed number of iterations specified by the user)

Issues with k-Means

- Results can vary depending on the initial random choices
- Can get trapped in a local minimum that isn't the global optimal solution
 - Repeat the clustering procedure multiple times with different initialisations and select the best final clustering
 - best? according to what? many heuristics exist.
 - smallest number of iterations before convergence
 - largest total distance between the final cluster means
- Outliers have a larger effect on the mean value, hence cluster centre and the cluster
- cluster centres (means) are not actual instances in the cluster
 - We could pick actual instances as initial cluster centroids.

Evaluating Clustering — Purity

- Let us assume that we have a set $\Omega = \{\omega_1, ..., \omega_K\}$ clusters for a set of classes $C = \{c_1, ..., c_J\}$
- Purity measures the ratio of the items that are in the cluster with the same class as its own.

purity(
$$\Omega$$
, C) = $\frac{1}{N} \sum_{k} \max_{j} |\omega_{k}| c_{j}$

Here, N is the total number of items.

Quiz: Compute purity for this clustering.

purity =
$$(5 + 4 + 3) / 17 = 12/17 = 0.71$$

Purity achieves its maximum value of 1 for singletons (each item is in a cluster containing only that single item)!

Obviously this is not good "clustering" and purity does not recognise this.

Evaluating Clustering — NMI

- Let us assume that we have a set $\Omega = \{\omega_1, ..., \omega_K\}$ clusters for a set of classes $C = \{c_1, ..., c_J\}$
- Normalised Mutual Information (NMI) computes the ratio of information that we can know about the classes C given the clusters Ω to the averaged information that is contained in C and Ω .

$$NMI(\Omega, C) = \frac{I(\Omega, C)}{[H(\Omega) + H(C)]/2}$$

$$I(\Omega, \mathcal{C}) = \sum_{k} \sum_{j} p(\omega_k \cap c_j) \log \left(\frac{p(\omega_k \cap c_j)}{p(\omega_k)p(c_j)} \right)$$
$$= \sum_{k} \sum_{j} \frac{|\omega_k \cap c_j|}{N} \log \left(\frac{N|\omega_k \cap c_j|}{|\omega_k||c_j|} \right)$$

$$H(\Omega) = -\sum_{k} p(\omega_k) \log p(\omega_k)$$
$$= -\sum_{k} \frac{|\omega_k|}{N} \log \frac{|\omega_k|}{N}$$

Why we do we normalise by the average?

- $I(X,Y) \le [H(X) + H(Y)]/2$
- Proof (sketch):
 - I(X,Y) = H[X] H[X|Y] = H[Y] H[Y|X]
 - Add those two and use the fact that (conditional) entropy is nonnegative
 - $H[X|Y] + H[Y|X] \ge 0$

Quiz: Compute NMI for this clustering.

Let
$$C_1 = Blue$$
, $C_2 = Pad$ and $C_3 = Green$.

$$P(C_1) = \frac{8}{17}, \quad P(C_2) = \frac{5}{17}, \quad P(C_3) = \frac{4}{17}.$$

$$\therefore H(C) = -\frac{3}{2}P(C_3) \log P(C_3)$$

$$= -\left[\frac{3}{17}\log \frac{5}{17} + \frac{5}{17}\log \frac{5}{17} + \frac{4}{17}\log \frac{4}{17}\right] = 1.055$$

Chewise,
$$P(\omega_1) = \frac{6}{17}, \quad P(\omega_2) = \frac{6}{17}, \quad P(\omega_3) = \frac{5}{17}$$

$$H[\Omega] = -\left[\frac{6}{17}\log \frac{6}{17} + \frac{6}{17}\log \frac{6}{17} + \frac{5}{17}\log \frac{5}{17}\right] = 1.095$$

$$P(\omega_1 \cap C_4) = \frac{5}{17}, \quad P(\omega_1 \cap C_2) = \frac{1}{17}, \quad P(\omega_1 \cap C_3) = \frac{0}{17}$$

$$P(\omega_2 \cap C_1) = \frac{1}{17}, \quad P(\omega_2 \cap C_2) = \frac{4}{17}, \quad P(\omega_2 \cap C_3) = \frac{1}{17}$$

$$P(\omega_3 \cap C_1) = \frac{2}{17}, \quad P(\omega_3 \cap C_2) = \frac{0}{17}, \quad P(\omega_3 \cap C_3) = \frac{3}{17}$$

$$T(\upsilon_7 C) = \frac{3}{2}\sum_{k=1}^{2} P(\omega_k \cap C_3) \log \frac{P(\omega_k \cap C_3)}{P(\omega_k)} \approx 0.496$$

$$(H(\omega) + HC)/2 = \frac{0.4496}{(1.055)} \approx 0.4182$$

```
import math

C = [5,1,1,4,1,2,3]

p = []
N = sum(C)
for x in C:
    p.append(float(x) / float(N))

E = 0
for x in p:
    E += - x * math.log(x)

print E
```

Evaluating Clustering — Rand Index (RI)

- Build a contingency table considering pairs of items in each cluster
 - Positive = same cluster
 - Negative = different clusters
 - True = same class
 - False = different classes
- TP = No. of item pairs that are in the same cluster and belong to the same class
- FP = No. of item pairs that are in the same cluster but belong to different classes
- TN = No. of item pairs that are in different clusters and belong to different classes
- FN = No. of item pairs that are in different clusters but belong to the same class

contingency table	same cluster	different clusters		
same class	TP	FN		
different classes	FP	TN		

$$RI = \frac{TP + TN}{TP + FP + TN + FN}$$

(accuracy of the clustering)

Quiz: Compute RI for this clustering.

TP+FP =
$$6C_2 + 6C_2 + 3C_2 = 15 + 15 + 10 = 40$$
.

$$\left[n_{Y} = \frac{n!}{r! (n-r)!} \right]$$

$$6(2 = \frac{6!}{2! \cdot 4!} = \frac{6 \times 5}{2} = 15$$
 $5(2 = \frac{5!}{2! \cdot 3!} = \frac{5 \times 4}{2} = 10.$

$$TP = {}^{5}C_{2} + {}^{4}C_{2} + {}^{3}C_{2} + {}^{2}C_{2} = 10 + 6 + 3 + 1 = 20$$

$${}^{4}C_{2} = \frac{4!}{2! \cdot 2!} = \frac{4 \times 3}{2} = 6$$

$$FN = (5x1) + (1x4) + (5x2) + (1x2) + (1x3)$$

= $5+4+10+2+3=24$

$$TN + FN = (5+1)(1+1+4) + (5+1)(3+2) + (1+1+4)(3+2)$$

$$= 6\times6 + 6\times5 + 6\times5 = 36 + 30 + 30 = 96.$$

	same cluster	different clusters
same class	20	24
different classes	20	72

Evaluating Clustering — P/R/F

- We can use Precision (P), Recall (R), and F-measure
 (F) at to evaluate the accuracy of a clustering.
- For this purpose we must first create the contingency table as we did for RI and then compute P, R, F as follows

Quiz: Compute P/R/F for this clustering.

	same cluster	different clusters
same class	TP=20	FN=24
different classes	FP=20	TN=72

$$P = TP / (TP + FP) = 20 / (20+20) = 0.5$$

 $R = TP / (TP + FN) = 20 / (20 + 24) = 0.45$
 $F = 2PR / (P + R) = 0.47$

B-CUBED Measure

- Proposed in (Bagga B. Baldwin = B³)
 - A. Bagga and B. Baldwin. Entity-based cross document coreference resolution using the vector space model, In Proc. of 36th COLING-ACL, pages 79--85, 1998.
- We would like to evaluate clustering without labelling any clusters.

$$\operatorname{precision}(x) = \frac{\text{No. of items in C(x) with A(x)}}{\text{No. of items in C(x)}}$$
$$\operatorname{recall}(x) = \frac{\text{No. of items in C(x) with A(x)}}{\text{Total no. of items with A(x)}}$$

C(x): The ID of the cluster that x belongs to

A(x): label of x

B-CUBED Measure

 Compute the average over all the items (instances) that appear in all clusters (N)

$$Precision = \frac{1}{N} \sum_{p \in DataSet} Precision(p)$$

$$Recall = \frac{1}{N} \sum_{p \in DataSet} Recall(p)$$

$$F-Score = \frac{1}{N} \sum_{p \in DataSet} F(p)$$

Hierarchical Clustering

- Sometimes we might want to organise the data into a hierarchy of subsuming concepts for visualisation (abstraction) purposes
- Two methods exists
 - Conglomerative clustering
 - Start from one big cluster with all data instances and repeatedly partition it
 - Top-down approach
 - Agglomerative clustering
 - Start singletons (clusters with exactly one instance) and iteratively merge the most similar two clusters
 - Bottom-up approach
 - computationally more efficient (O(logn) merges required)

Merging two clusters

- Single linkage
 - Distance between two clusters A and B is the smallest distance between any instance $a \in A$ and $b \in B$

$$D(\mathcal{A}, \mathcal{B}) = \min_{a \in \mathcal{A}, b \in \mathcal{B}} dist(a, b)$$

- Complete linkage
 - Distance between two clusters A and B is the largest distance between any instance $a \in A$ and $b \in B$

$$D(\mathcal{A},\mathcal{B}) = \max_{\substack{a \in \mathcal{A}, b \in \mathcal{B}}} dist(a,b)$$

 • Average linkage (Group-Average)

- - Average of all the pairs selected from each cluster

$$D(\mathcal{A}, \mathcal{B}) = \frac{1}{|\mathcal{A}||\mathcal{B}|} \sum_{a \in \mathcal{A}, b \in \mathcal{B}} dist(a, b)$$

Quiz: Let us assume that in the 2D space there are two clusters {A,B,C} and {P,Q,R}. Which of the distances correspond to the single link and complete link distances between the shown clusters?

Group-Average Agglomerative Clustering

• INPUT:

- A set of N data instances $\{x_1, ..., x_N\}$, Number of clusters k
- Initialise
 - Create singletons $S_i = \{x_i\}$ for i = 1, ..., N
- Repeat until only we are left with one cluster
 - Merge the two clusters S_i and S_j with the minimum distance (cf. maximum similarity)

$$D(\mathcal{S}_i, \mathcal{S}_j) = \frac{1}{|\mathcal{S}_i||\mathcal{S}_j|} \sum_{a \in \mathcal{S}_i, b \in \mathcal{S}_j} dist(a, b)$$

Dendrogram

Clusters as Features

- We can use clustering to find similar features in instances without requiring any supervision (no label data is required for clustering)
 - Distributional similarity of features over instances
- Once we have clustered the features, we can use the cluster IDs as features
- Benefits
 - Reduces the dimensionality of the feature space
 - dogs and cats are mapped to pets
 - Reduces feature sparseness
 - If at least one of the features in a cluster appears in an instance, then we assume that the entire cluster appeared as a feature for that instance

Clustering the word-document Matrix

	d ₁	d_2	d ₃	d_4	d_5	d ₆
dog	2	3	0	0		5
cat	I	I	0	0	3	2
apple	0	0	I	2	3	0
banana	0	0	2	5	0	0

Clustering the 2D matrix

- Each row vector can be seen as the feature vector for each word (row elements)
 - We can measure similarity between row vectors and cluster the words
- Each column vector can be seen as the feature vector for each document (column elements)
 - We can measure similarity between column vectors and cluster the documents

Co-clustering

- Cluster both rows and columns simultaneously!
 - You will get both row and column clusters
- Information Theoretic Co-Clustering (ITCC)
 - Inderjit Dhillion and Subramanyam Mallela and Dharmendra Modha, pp. 89--98, International Conference on Knowledge Discovery and Data Mining (KDD), 2003.

Clustering as Graph Partitioning

- Given a set of instances $\{x_1, ..., x_N\}$, we can represent these instances using a weighted undirected graph G, where the weight of the edge that connects two vertices in the graph corresponds to the similarity between the corresponding vertices.
- Then, the clustering problem becomes a graph partitioning problem where we must delete k edges from this graph to create k number of clusters
 - Spectral clustering algorithms (discussed later at the lecture for Graph Mining)