CS 3313 Foundations of Computing:

Properties of Context Free Languages – Part 1

http://gw-cs3313.github.io

1

CFGs and PDAs?

- Grammars are a formalism for defining (generating) languages
- Automata are machine models to accept a class of languages
- CFGs generate Context Free languages
- PDAs accept context free languages
- Theorem: If L is a context free language (CFL) then there is a PDA M and a CFG G such that L = L(M) = L(G)

Designing a PDA for a CFG

- Recall: We described a regular language using a RegEx, and there was a procedure that (automatically) generated a DFA from that expression
- Question: If we provide a grammar for a CFL, then is there a procedure that (automatically) generates a PDA for that grammar
 ?
 - Think of the PDA as the parser generated from the grammar!

3

Generating PDA for a Grammar

From results on Normal forms, any context free grammar can be expressed by an equivalent Greibach Normal Form (GNF) grammar where each production is of the form:

 $A \rightarrow a \alpha$ where $\alpha \in V^*$

Example:

 $S \rightarrow aSB \mid aB$

 $B \rightarrow b$

Derivations in the grammar...

$$S \rightarrow aSB \mid aB \qquad B \rightarrow b$$

- Leftmost derivations apply production to the leftmost variable in sentential form
 - S => aSB => aaSBB => aaaBBB => aaabBB => aaabbb

5

Derivations in GNF and Moves in a PDA

- ... $S = >^* a_1 a_2 a_3 ... a_i A_i \alpha_i ... \alpha_2 \alpha_1$, where $a_i \in T$ and $\alpha_i \in V^*$
 - Leftmost derivation, at each step we generate terminal symbol a_i
- PDA reads input from left to right
 - It reads $a_1a_2a_3...a_i...$
- G derives: $S = a_1 \alpha_2 \alpha_3 ... \alpha_i A_i \alpha_i ... \alpha_2 \alpha_1$
 - Eventually $a_1a_2a_3...a_iA_i$ $\alpha_i...$ $\alpha_2\alpha_1 = *a_1a_2a_3...a_ix$
- PDA simulates $(q, \alpha_1 \alpha_2 \alpha_3 ... \alpha_i x, S) \vdash^* (q, x, A_i \alpha_i ... \alpha_2 \alpha_1)$

PDA for a Context Free Language

- Theorem: For every context free language L, there exists a PDA M such that L= L(M).
- Proof:
 - If L is a CFL then it is generated by some GNF grammar G=(V,T,P,S) with L(G)=L
 - Key idea: construct a PDA that simulates leftmost derivations in G

7

PDA for a Context Free Language

- L is generated by a GNF grammar G = (V,T,P,S)
 - All productions are of the form $A \rightarrow a \alpha$ where $a \in T$ and $\alpha \in V^*$
- PDA $M = (\{q_0, q_1, q_2\}, T, V \cup \{Z\}, \delta, q_0, \{q_2\})$
 - Stack alphabet = Set of Variables in G and the start stack symbol Z
 - Alphabet = set of terminal symbols T
 - $\delta(q_0, \lambda, Z) = \{(q_1, SZ)\}$ /* push S to stack, goto q_1 and start simulation
 - $\delta(q_1, \lambda, Z) = \{(q_2, Z)\}/*$ if no input and 'empty stack' go to accept state
 - $\delta(q_1, a, A)$ contains (q_1, α) whenever $A \to a \alpha$ is a production in P
 - Simulate a derivation $A => a \alpha$

Proof - contd..

- Key idea: PDA reads a, pops A from stack, and pushes α to stack if $A \rightarrow a \alpha$ is a production in the grammar
- PDA simulates leftmost derivations in G
 - Input is processed left to right
- Prove: $S = > *x \alpha$ (using leftmost derivation) if and only if

$$(q_1, x, SZ) + (q_1, \lambda, Z)$$

- Note: from definition of δ , $(q_0, x, Z) + (q_1, x, SZ)$
 - This starts PDA with S on TOS
- Proof by induction:
 - 1. If $(q_1, x, SZ) \vdash^* (q_1, \lambda, z)$ then $S =>^* x \alpha$
 - 2. If $S = *x \alpha$ then $(q_1, x, SZ) \vdash *(q_1, \lambda, \alpha Z)$

a

Example: PDA from CFG

- $S \rightarrow aSB \mid aB$ $B \rightarrow b$
- PDA $M = (\{q_0, q_1, q_2\}, \{a, b\}, \{S, B, Z\}, \delta, q_0, \{q_2\})$
 - $\delta(q_0, \lambda, Z) = \{(q_1, SZ)\}$ /* push S to stack, goto q_1 and start simulation
 - $\delta(q_1, \lambda, Z) = \{(q_2, Z)\}/*$ if no input and 'empty stack' go to accept state
 - $\delta(q_1, a, S)$ contains $\{(q_1, SB), (q_1, B)\}$
 - $\delta(q_1, b, B)$ contains $\{(q_1, \lambda)\}$
 - Because we have productions $S \rightarrow aSB$ and $S \rightarrow aB$
 - and $\delta(q_1, a, A)$ contains (q_1, α) whenever $A \to a \alpha$ is a production in P
- Derivation for aabb: $S \Rightarrow aSB \Rightarrow aaBB \Rightarrow aabB \Rightarrow aabb$
- In PDA:

 $(q_0, aabb, Z) \vdash (q_1, w, SZ) \vdash$

PDA to CFG

- Theorem: If L =L(M) for a PDA M, then there is a context free grammar G such that L(G)=L(M)
- Proof: Read theorem 7.2 in textbook.
- Outline given a PDA, we want to generate a grammar that simulates PDA via leftmost derivations
- The proof is rarely used to construct grammars its purpose is to show the equivalence of the two formalisms CFG and PDA

11

CFG to PDA Conversion "Algorithm"

- The constructive proof can be implemented as an algorithm that takes a GNF Grammar G and generates a PDA
- We can then feed this PDA to a program that simulates/implements any PDA
 - We have an automated process for "writing" a parser!
- BUT.....the conversion/proof may lead to a non-deterministic PDA
 - Question: Can we convert the grammar to a deterministic PDA?

Deterministic Pushdown Automata

- A deterministic pushdown automata (DPDA)never has a choice in its move
- Restrictions on dpda transitions:
 - Any (state, symbol, stack top) configuration may have at most one (state, stack top) transition definition
 - If the DPDA defines a transition for a particular (state, λ, stack top) configuration, there can be no input-consuming transitions out of state s with a at the top of the stack
- Unlike the case for finite automata, a λ-transition does not necessarily mean the automaton is nondeterministic

13

Deterministic Context-Free Languages

- A context-free language L is deterministic (DCFL) if there is a dpda to accept L
- Sample deterministic context-free languages:

```
{ a^nb^n: n \ge 0 }
{ wcw^R: w \in \{a, b\}^*}
```

- Theorem: Deterministic and nondeterministic pushdown automata are not equivalent: there are some context-free languages for which no DPDA exists that accepts the language
 - Syntax of most programming languages is deterministic context free

Next: Properties of Context Free Languages

- What are the properties of CFLs?
- What types of languages are CFL?
 - Can all properties/semantics of a programming language be captured by a CFL?
 - Can natural languages be described by CFGs?
 - Can we determine ambiguity and remove ambiguity?
 - Can we parse natural languages using a CFG for the syntax?
- If we combine CFLs using set operations, is the resulting language CFL?
- How do we prove if a language is not context free ?
 - Pumping lemma for CFLs !!

15

Why bother with Properties/limits of CFLs – Ex1

- Exercise in abstraction:
- Scenario: We "update" our programming language (defined by grammar G₁) from v1.0 to a new 'version' v2.0 defined by a grammar G₂
- we would like to design a compiler that can parse a program in version 1.0 or a (legacy) program in version 2.0
- Is this possible?
- Rephrase the question: Is there a context free grammar that accepts the union of the two languages v1.0 and v2.0?

Why bother with Properties/limits of CFLs –Ex2

- Exercise in abstraction:
- Scenario: In a program, we have function declaration and then a function call.
 - The actual and formal parameters need to match
 - Ex: int foo(int x, char y).... and main has: z= foo(a,b)
 - a must be an int, b must be a char
- Question: Can this property be described/specified by a context free grammar?
- Abstraction: the property can be captured by {aⁿb^mcⁿd^m}
 - aⁿ,b^m are formal parameters n of type a (int), m of type b (char)

17

Pumping Lemma: Intuition

- Informally: DFAs don't have external memory, so languages that require "storing" counts, strings, etc. are likely to not be regular
 - Ex: {equal number of a's and b's}, { ww^R},....
- Recall the pumping lemma for regular languages.
 - It told us that if there was a string long enough to cause a cycle in the DFA transition graph, then we could "pump" the cycle and discover an infinite sequence of strings that had to be in the language.
 - Apply it using the 2-person game:
 - You pick the string after adversary picks n (i.e., you cannot specify a value for n)

Intuition for CFLs

- For CFL's the situation is a little more complicated.
- PDAs have external memory a stack
 - But stack is limited in its capabilities
 - One "counter"
 - If you store something in the stack then when you check storage (i.e., pop the stack) the reverse pattern is popped.
 - Informal limits:
 - Languages that require multiple counters { aⁿbⁿcⁿ}
 - Languages that require exact patterns {ww}
 - If you push a pattern into the stack in the "first part" of the string, then that pattern repeats in "second part"
- We can always find two pieces of any sufficiently long string to "pump" in tandem.
 - That is: if we repeat each of the two pieces the same number of times, we get another string in the language.

19

Properties of Parse Trees

- Lemma 1: Let G in Chomsky Normal Form (CNF), then for any parse tree with yield w (string w generated by grammar) if n is the length of the longest path in the tree then $|w| \le 2^{n-1}$.
- Proof: What type of tree is a parse tree for a CNF grammar? –
 binary tree
- Recall CS1311 !!!
- Or prove by induction on length of the path
 - Basis: n=1 derivation must be $S \rightarrow a$
 - Ind.Step: Since G is in CNF, $S \rightarrow AB$ and $A=>* w_2$ and $B=>* w_2$
 - A derives substring w_1 with path \leq n-1
 - B derives substring w_2 with path ≤ n-1
 - From IH: $|w_1| \le 2^{n-2}$ and $|w_2| \le 2^{n-2}$
 - $-\ |w| = |w_1| + |w_2| \ \leq \ 2^{n\text{-}1}$

Properties of parse trees for arbitrarily long strings

- From previous theorems, if L is a CFL then there exists CNF G=(V,T,P,S) such that L=L(G)
 - L is generated by a CNF grammar G
 - |V| = m finite set of variables m variables
- We are implicitly discussing infinite languages
 - If a language is finite then it is a regular language
 - Implies regular grammar (subset of CFLs)
- Suppose we have $z \in L(G)$ and $|z| \ge n = 2^m$
- What can we say about parse tree for z?
 - From lemma 1, parse tree for z must have a path of length at least m+1
 - Yield of the tree is $\leq 2^m$

21

Parse tree properties

- If path has length $k \ge m+1$, then it has k+1 vertices/nodes in the path
 - Last vertex is labelled with a terminal
- Therefore path has k internal nodes labelled with variables of the grammar
 - These are $A_1, A_2...A_i,...A_i...A_k$
 - A₁ is the start symbol S
- We have m distinct variables \Rightarrow from pigeon hole principle, at least two of the vertices A_i and A_j are the same variable
 - In fact, from the leaf, these two occur within path of length m+1
- So what does this tell us about the parse tree for z?

Statement of the CFL Pumping Lemma

For every context-free language L

There is an integer n, such that

For every string z in L of length $\geq n$

There exists z = uvwxy such that:

- 1. $|vwx| \leq n$.
- 2. |vx| > 0.
- 3. For all $i \ge 0$, $uv^i wx^i y$ is in L.

27

27

How do use the pumping lemma: recall 2 person adversarial game

- For all context free languages L, there exists n...for all z in L
-there exists uvwxy....
- Logical statements/assertions that have several alternations of for all and there exists quantifiers can be thought of as a game between two players
- Application of the pumping lemma can be seen as a two player game (of 5 steps)

Pumping Lemma as Adversarial Game

- 1. Player 1 (we) picks language we want to show is not a CFL
- 2. Player 2 "adversary" gets to pick *n*
 - We do not know the value of n, and must plan for all values of n
- 3. We get to pick z, and may use n as a parameter
 - Can express z using the parameter n
- 4. Adversary gets to break z into *uvwxy* subject only to the constraints that $|vwx| \le n$ and $|vx| \ge 1$.
- 5. We "win" the game, if we can, by picking i and showing uv^iwx^iy is not in L
 - We have to show this for all cases of how adversary breaks z into uvwxy

29

Example: $L = \{ a^i b^i c^i \}$

- Informally: CFL (PDA) can count & match two groups of symbols but not three (since we have one counter)
- Apply pumping lemma to prove L is not CFL
- Assume L is CFL
- Let *n* be the constant of the lemma.
- Pick $z = a^n b^n c^n$
- Big difference from pumping lemma for regular languages
 - For regular languages, the pumping lemma allowed us to focus on the first n symbols/locations in the string
 - In CFL, the lemma only states $|vwx| \le n$
 - This suggests we have to consider different cases where vwx can occur!
 - Prove contradiction in every case!
 - No matter how adversary breaks up vwx, we prove a contradiction

Example: Cases for vwx for $L = \{a^ib^ic^i\}$

- 1. vwx is entirely within a^n
- 2. vwx is entirely within bⁿ
- 3. vwx is entirely within c^n
- 4. vwx has two symbols (a and b, or b and c)

31

Example: Cases for vwx for $L = \{a^nb^nc^n\}$

- 1. vwx is entirely within a^n
 - $u=a^j v=a^k w=a^l x=a^m y=a^{n-j-k-l-m}b^n c^n$ $1 \le k+m \le n$
 - $z'=uv^2wx^2y=a^{n+k}b^{n+m}c^n$ more a's than b's, c's. contradiction
- 2. vwx is entirely within b^n
 - $u=a^nb^j \ v=b^k \ w=b^l \ x=b^m \ y=b^{n-j-k-l-m} \ c^n$ $1 \le k+m \le n$
 - $z' = uv^2wx^2y = a^nb^{n+k+m}c^n$ more b's than a's, c's. contradiction
- 3. vwx is entirely within c^n
 - $u=a^n b^n c^j v=c^k w=c^l x=c^m y=c^{n-j-k-l-m}$ $1 \le k+m \le n$
 - $z' = uv^2wx^2y = a^nb^nc^{n+k+m}$ more c's than a's, b's. contradiction
- what if vx has two symbols (a and b, or b and c)

Example: Cases for vwx for $L = \{a^nb^nc^n\}$

- 4. vx has two different symbols (a and b, or b and c)
 - $v \in \{a^+b^+\}$ $x \in \{b^+c^+\}$ $v \in \{a^+b^+\}$ $x \in \{b^+c^+\}$
 - Consider $z' = uv^2wx^2y$: pattern of a's, b's, and c's?
- 5. v is in a^* and x is in b^*
 - $u=a^{j} \ v=a^{k} \ w=a^{n-j-k}b^{l} \ x=b^{m} \ y=b^{n-m} \ c^{n}$ 1 < k+m < n
 - Consider $z' = uv^2wx^2y : a^{n+k}b^{n+m}c^n$ since (k+m)>1, either n+k>n or n+m>n (or both) => less c's than a's or b's contradiction
- 6. v is in b^* and x is in c^*
 - $u=a^nb^j \ v=b^k \ w=b^{n-j-k}c^l \ x=c^m \ v=c^{n-l-m}$ 1 < k+m < n
 - Consider $z' = uv^2wx^2y : a^n b^{n+k} c^{n+m}$ since (k+m) > 1, either n+k > n or n+m > n (or both) => less a's than b's or c's contradiction

33

Exercise: $L_2 = \{ a^i b^j c^i d^j \}$ a's = c's and b's = d's

- Intuition: L_2 is likely not CFL. If we push a's and b's on the stack (to remember how many), then we pop b's before a's
- 1. Assume L_2 is CFL you pick
- 2. Let *n* be the constrant *adversary picks*
- 3. Consider $z=a^nb^nc^nd^n \in L_2$ you pick
- 4. z = uvwxy, $|vwx| \le n$, and $|vx| \ge 1$ adversary picks
- 5. For every $i \ge 0$, $uv^i wx^i y \in L_2$ you pick I
- Question: (a) Find all cases for vwx and then (b) show contradiction for each case

"weakness" of the Pumping Lemma

- It allows vwx to be anywhere in the string
 - In contrast to pumping lemma for regular languages
- Looking at the proof, we can see the opportunity to limit the 'areas' to pump....leads to a stronger pumping lemma:

Ogden's lemma: For every context-free language L, there is an integer n (which may in fact be the same as for the pumping lemma), such that if z is any string in L and we mark any n or more positions of z as "distinguished", then z = uvwxy such that:

- 1. vwx has at most n distinguished positions
- 2. vx has at least one distinguished position
- 3. For all $i \ge 0$, $uv^i wx^i y$ is in L.

Pumping lemma essentially marks all positions as distinguished!

35

Example $L_3 = \{ w | w \in \{a,b\}^* \}$

- Is this language a CFL?
- If we push w into the stack,

what pattern is popped from the stack?

Example $L_3 = \{ w | w \in \{a,b\}^* \}$

- Prove it is not CFL
- Let *n* be the constant of the lemma
- Consider $w=a^nb^n$, i.e., $z=a^nb^na^nb^n \in L_3$
- What are the possible cases for vwx?

aa.....aabb.....bb aa.....aabb.....bb

37

Example $L_3 = \{ w | w \in \{a,b\}^* \}$

- Let n be the constant of the lemma and consider $z = a^n b^n a^n b^n \in L_3$
- What are the possible cases for vwx? aa....aabb....bb aa...aabb....bb
- Case 1: $v=a^j x=a^k$ pick i=2 and $z'=uv^2wx^2y$
- Case 2: $v=a^j x=b^k$ pick i=2 and $z'=uv^2wx^2y$

 $1 \le |vwx| \le n$ therefore $1 \le j+k \le n$

- Case 3: $v=b^i x=b^k$ pick i=2 and $z'=uv^2wx^2y$
- Case 4: $v=b^{j}x=a^{k}$ pick i=2 and $z'=uv^{2}wx^{2}y$
- Case 5: $v=a^i x=a^k$ pick i=2 and $z'=uv^2wx^2y$
- Case 6: $v = a^j x = b^k$ pick i = 2 and $z' = uv^2wx^2y$
- Case 7: either v or x consists of two different symbols (a^+b^+) or b^+a^+

Example $L_3 = \{ w \ w \ | \ w \in \{a,b\}^* \}$

- We proved L₃ is not CFL
- How about L = $\{x \ y \mid x <> y \ and \ x, y \in \{a,b\}^*\}$
- There is a position in *x* such that the same position in *y* is a different symbol
- $x = x_1 a x_2$ $y = y_1 b y_2$ and $|x_1| = |y_1| = k$ and $|x_2| = |y_2| = l$
 - x_1, x_2, y_1, y_2 can be arbitrary strings only their lengths matter to get a and b are the same position in both halves
- PDA: read first k symbols and push "1" to stack, store a (in state), then read and pop k symbols –and repeat in second half reading y