Designing Fair and Private Voting Rules

Farhad Mohsin (mohsif)

Course project for CSCI 6968 (Trustworthy ML)

Introduction

- Voters divided into groups by features, e.g., gender, race, age
- Traditional voting rules maximizes some measure of economic efficiency
 - Winner might be highly preferred to majority group, being *unfair* to minorities
- A fair voting rule looks at voter features and chooses an alternative with similar utility to both groups
- Considering voter features risk loss of privacy
- How to get a voting rule both fair and private?

Preliminaries

Voting scenario

- Two groups, n_1 , n_2 voters in each.
- Set of m alternatives \mathcal{A} . Voters give a ranking over all m alternatives
- Assumption
 - Any voter receives utility (m-j) if their j-th ranked alternative won
 - Example:

```
Alternatives = \{A, B, C, D\}
Voter i's ranking : A > C > B > D
i gets 3 utility if A wins, 2 for C, 1 for B, 0 for D
```

- A collection of votes \equiv preference profile, we have two preference profiles P_1 , P_2
- Average utility of group for alternative a is $W(a, P_1)$

Fair and Private Outcomes in Voting

Definition (Group Imbalance in Voting) [1]

In a voting scenario, if two groups have voting profile (collection of rankings) P_1 , P_2 , then the group imbalance for any alternative is

$$\Delta W(a, P_1, P_2) = |W(a, P_1) - W(a, P_2)|$$

where W(a, P) is the average utility for voters in P if a wins.

Fair outcome
$$\equiv \underset{a}{\operatorname{argmin}} \Delta W(a, P_1, P_2)$$

Definition (ϵ —Differential Privacy in Voting) [2,3]

A randomized single-winner voting rule r satisfies $\epsilon - DP$ if for preference profiles P, P' differing only in one vote $\Pr(r(P) \in S) \le \exp(\epsilon) \Pr(r(P') \in S)$

For any subset of alternatives *S*

Fair and Private Voting Rules

- Problem
 - Input: Preference profile of two groups P_1 , P_2
 - Goal: Design a voting rule that is ϵDP and approximately fair
 - Approximate fairness:
 - If winning alternative is a, it satisfies α -approximate fairness if $\Delta W(a,P_1,P_2) \leq (1+\alpha) \min_{a'} \Delta W(a',P_1,P_2)$

i.e, not too imbalanced compared to least imbalance

Baseline Algorithm

- Laplace mechanism (baseline)
 - 1. Add Laplace noise to group utility values $W(a, P_k)$ for all a and k = 1,2 (both groups) to get noisy estimates for all alternatives $\widehat{W}(a, P_k)$
 - 2. Compute Imbalance and final outcome in terms of $\widehat{W}(a, P_k)$
- Theoretical guarantees
 - If added noise is $Lap(\frac{m(m-1)}{2n\epsilon})$, then Laplace mechanism is ϵDP
 - Estimate for group utility is an unbiased estimate
 - Thus, estimate for utility difference is also unbiased

Sampling Algorithm

Sampling algorithm

- 1. With probability $\delta/2$, return a random winner
- 2. With probability 1γ , follow steps 3-5
- 3. Fix some $n_s \leq \min(n_1, n_2)$ as sampling parameter
- 4. For each alternative $a \in \mathcal{A}$, each group k = 1,2
 - Sample $\sim n_{\scriptscriptstyle S}$ pairwise comparisons from the voters in group k
 - e.g. from ranking A > B > C, sample A > B
 - Assign $\overline{W}(a, P_k)$ = number of pairwise comparisons where a wins
- 5. Compute Imbalance and final fair outcome in terms of $\overline{W}(a, P_k)$

• Theoretical guarantees

- Differentially private when samples from each group, $n_{\rm S}=O(\frac{m}{\epsilon^2}\ln\frac{m}{\delta})$
- Value for fairness gives $\epsilon-approximate$ fairness with probability $\geq 1-\delta$
- Only works when number of samples from a group $n_{\scriptscriptstyle S} \leq \epsilon n$

Experimental Results

Experimental setup

- m=4 alternatives
- Rankings for two groups sampled from different Mallow's distributions
- Results averaged over 1000 samples

				ϵ	
n1	n2	Algorithm	0.3	0.6	1
1000	500	laplace	0.45	0.45	0.45
	-	sampling	0.47	0.55	0.62
2000	1000	laplace	0.45	0.45	0.45
	-	sampling	0.46	0.58	0.65
4000	2000	laplace	0.45	0.45	0.45
	-	sampling	0.46	0.55	0.69

Table: Difference of utilities for the two fair-private voting algorithms at different levels of privacy

Conclusion and Future Work

Results

- Laplace mechanism is sufficient enough for fairness
- Sampling mechanism suffers loss due to sampling and loss of information

Future work

- Look at the three-way fairness-utility-privacy trade-off
- Local-DP version of sampling mechanism possible. Compare with regular local-DP method (e.g., randomized response)