Отчёт о выполнении лабораторной работы 2.1.3

Мещеряков Павел Б02-920

10 сентября 2020 г.

Определение C_p/C_v по скорости звука в газе

Цель работы: 1) измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу; 2) определение показателя адиабаты с помощью уравнения состояния идеального газа.

В работе используются: звуковой генератор ГЗ; электронный осциллограф ЭО; микрофон; телефон; раздвижная труба; теплоизолированная труба, обогреваемая водой из термостата; баллон со сжатым углекислым газом; газгольдер.

1 Теоретическое введение

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ . На измерении скорости звука основан один из наиболее точных методов определения показателя адиабаты.

Скорость звука в газах определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}},$$

где R - газовая постоянная, T - температура газа, а μ его молярная масса. Выразим показатель адиабаты:

 $\gamma = \frac{\mu}{RT}c^2$

Звуковая волна, распространяющаяся вдоль трубы, испытывает многократные отражения от торцов. Звуковые колебания в трубе являются наложением всех отраженных волн и, вообще говоря, очень сложны. Картина упрощается, если длина трубы L равна целому числу полуволн, то есть когда

$$L = n\frac{\lambda}{2},$$

где λ — длина волны звука в трубе, а n — любое целое число.

Скорость звука с связана с его частотой f и длиной волны λ соотношением:

$$c = \lambda f$$
.

Подбор условий, при которых возникает резонанс, можно производить двояко:

1) При неизменной частоте f звукового генератора (а следовательно, и неизменной длине звуковой волны λ) можно изменять длину трубы L. Для этого применяется раздвижная труба. Длина раздвижной трубы постепенно увеличивается, и наблюдается ряд последовательных резонансов. Для k-ого резонанса имеем:

$$L_{n+k} = n\frac{\lambda}{2} + k\frac{\lambda}{2},$$

т. е. $\lambda/2$ равно угловому коэффициенту графика, изображающего зависимость длины трубы L от номера резонанса k.

2) При постоянной длине трубы можно изменять частоту звуковых колебаний. В этом случае следует плавно изменять частоту f звукового генератора, а следовательно, и длину звуковой волны λ . Для k-ого резонанса получим:

$$L = (n+k)\frac{\lambda_{k+1}}{2}$$

$$f_{k+1} = \frac{c}{\lambda_{k+1}} = \frac{c}{2L}(n+k) = f_1 + \frac{c}{2L}k.$$

Скорость звука, деленная на 2L, определяется, таким образом, по угловому коэффициенту графика зависимости частоты от номера резонанса.

1.1 Эксперементальная установка:

Рис. 2. Установка для изучения зависимости скорости звука от температуры

Соответственно двум методам измерения скорости звука в работе имеются две установки (рис. 1 и 2). В обеих установках звуковые колебания в трубе возбуждаются телефоном Т и улавливаются микрофоном М. Мембрана телефона приводится в движение переменным током звуковой частоты; в качестве источника переменной ЭДС используется звуковой генератор ГЗ. Возникающий в микрофоне сигнал наблюдается на осциллографе ЭО.

Микрофон и телефон присоединены к установке через тонкие резиновые трубки. Такая связь достаточна для возбуждения и обнаружения звуковых колебаний в трубе и в то же время мало возмущает эти колебания: при расчетах оба торца трубы можно считать неподвижными, а влиянием соединительных отверстий пренебречь.

Первая установка (рис. 1) содержит раздвижную трубу с миллиметровой шкалой. Через патрубок (на рисунке не показан) труба может наполняться воздухом или углекислым газом из газгольдера. На этой установке производятся измерения γ для воздуха и для CO_2 .

Вторая установка (рис. 2) содержит теплоизолированную трубу постоянной длины. Воздух в трубе нагревается водой из термостата. Температура газа принимается равной температуре омывающей трубу воды. На этой установке измеряется зависимость скорости звука от температуры.

1.2 Ход работы

- 1. Перепишем параметры установки: $L = 700 \pm 1$ мм.
- 2. Исходя из примерного значения скорости звука ($\approx 270 \, \frac{\text{м}}{\text{c}}$), предварительно рассчитаем, в каком диапазоне частот следует вести измерения, чтобы при удлинении трубы можно было наблюдать 4 резонанса: $L = \frac{n\lambda}{2}, L + \Delta L = \frac{(n+4)\lambda}{2}$. Поскольку $\Delta L \leq 23$ см, то $\lambda \leq 11.5$ см. Следовательно $f \geq 2400$ гц.

Проведём измерения на первой установке для CO_2 . Плавно изменяя длину трубы, последовательно зафиксируем все доступные для наблюдения точки резонанса. Измерения проводятся для нескольких частот.

f, Гц	2492		2751		3016		3265	
k	l_1 , cm	l_2 , cm						
0	0	0	0.2	0.2	0.9	0.9	1.0	1.0
1	5.0	5.8	6.0	6.0	6.2	6.1	5.5	5.3
2	11.0	10.8	10.5	10.3	11.5	11.5	9.7	9.4
3	17.0	17.1	16.0	15.5	17.2	17.2	11.4	11.5
4	23.0	22.9	19.5	20.0	22.5	22.5	18.8	18.5

 l_1 соответсвует значение на размеченной подвижной части трубы укорачиванию длины, а l_2 удлинению.

3. Изобразим полученные результаты на графике, откладывая по оси абсцисс номер k последовательного резонанса, а по оси ординат — соответствующее удлинение трубы Δl . Угловой коэффициент прямой определяет длину полуволны.

Вычислим с помощью полученных графиков скорость звука в углекислом газе и рассчитаем погрешности.

Погрешность σ_c отдельного измерения определяется следующей формулой:

$$\sigma_c = c\sqrt{\left(\frac{\sigma_\lambda}{\lambda}\right)^2 + \left(\frac{\sigma_f}{f}\right)^2}.$$

Результаты представлены в таблице:

f, Гц	2492	2751	3016	3265
λ , $\mathbf{M} \cdot 10^{-2}$	5.755	4.885	5.425	4.135
$c, \frac{M}{c}$	286.829	268.773	327.236	270.016
σ_{λ} , m · 10^{-2}	0.022	0.022	0.022	0.022
σ_f, Γ ц	5	5	5	5
$\sigma_c, rac{ ext{M}}{ ext{c}}$	1.238	1.305	1.436	1.495

Можно заметить, что значения скоростей звука при различных частотах не совпадают. Усреднив полученные значения найдём окончательное значение скорости звука в углекислом газе.

$$\overline{c} = 288.2 \frac{M}{c}$$

$$c_{\text{CJI}} = \sqrt{\frac{\sum_{i=1}^{4} (c_i - \overline{c})^2}{3}} = 27.2 \frac{M}{c}.$$

$$c_{\text{KOC}} = \sqrt{\frac{\sum_{i=1}^{4} (\sigma_{c_{\text{KOC}}})^2}{4^2}} = 0.69 \frac{M}{c}.$$

Общая погрешность:

$$\sigma_c = \sqrt{(c_{cm})^2 + (c_{koc})^2} = 27.2 \frac{M}{c}.$$

Итак,

$$c = 288.2 \pm 27.2 \frac{M}{c}$$
.

Теоретическое значение скорости при температуре $t=24.1^{\circ}C$ равно

$$c_{\text{\tiny T}} = 273.6 \, \frac{\text{M}}{\text{c}}.$$

В пределах погрешности эксперементальное значение совпадает с теоретическим. Однако стоит сказать пару слов о таком сильном разбросе для с. Это может быть связано с тем, что подвижную часть цилиндра двигали не достаточно медленно.

4. Проведём измерения на второй установке. Данные представлены в таблице.

$t, \circ C$	24.1		30		40		50	
k	f_1 , Γ ц	f_2 , Γ ц	f_1 , cm	f_2 , Γ ц	f_1 , Γ ц	f_2 , cm	f_1 , Γ ц	f_2 , Γ ц
0	200	200	195	203	227	230	238	240
1	447	453	461	466	456	456	466	468
2	662	657	666	667	678	673	684	681
3	866	871	896	883	895	898	909	911
4	1089	1089	1100	1100	1120	1120	1138	1138

 f_1 - соотвествует значениям при увеличении частоты на трубу, f_2 - при уменьшении. Видно, что данные воспроизводятся при обратном ходе.

5. Полученные результаты изобразим на графике, откладывая по оси абсцисс номер резонанса k, а по оси ординат — разность между частотой последующих резонансов и частотой первого резонанса: $\Delta f_k = f_{k+1} - f_1$. Угловой коэффициент прямой определяет величину c/2L.

Вычислим с помощью полученных графиков скорость звука в воздухе и рассчитаем погрешности. Погрешность σ_c отдельного измерения определяется следующей формулой:

$$\sigma_c = c\sqrt{\left(\frac{\sigma_L}{L}\right)^2 + \left(\frac{\sigma_A}{A}\right)^2},$$

где A - коэффициент наклона прямой на графике. Результаты представлены в таблице:

t, ° C	24.1	30	40	50
А, Гц	219.7	222.8	222.4	224.1
$c, \frac{M}{c}$	351.52	356.48	355.84	358.56
σ_A, Γ ц	1.1	1.1	1.1	1.1
σ_L , $\mathrm{M}\cdot 10^{-3}$	1	1	1	1
$\sigma_c, \frac{M}{c}$	1.814	1.855	1.815	1.816
γ	1.446	1.458	1.406	1.384

По полученным данным расчитаем γ .

$$\overline{\gamma} = 1.423$$

$$\gamma_{\text{сл}} = \sqrt{\frac{\sum_{i=1}^{4} (\gamma_i - \overline{\gamma})^2}{3}} = 0.04.$$

Косвенная погрешность определения γ мала, так как $\frac{2\sigma_c}{4c} \approx 0.25\%$. Итак,

$$\gamma = 1.42 \pm 0.04$$

что в пределах погрешности совпадает с теоретическим значением $\gamma=1.4$. Если обратить внимание на полученные значения для c, то можно усомниться в справедливости формулы $c^2=\frac{\gamma RT}{\mu}$ и начать предпологать, что показатель адиабаты является функцией от температуры $\gamma=\gamma(T)$. Однако температуры в данном опыте не слишком большие и другие степени свободы не могли активироваться у молекул газа. Есть гипотеза, объясняющая такие разбросы.Вероятно измерения производились не во время достижения термодинамического равновесия и нужно было ждать приличное время (5 минут) после того как на термостате установится необходимая температура, для того чтобы система пришла в пригодное состояние для измерений.