```
4/9/24, 10:17 PM
                                                                                                         AssignmentChesetti4
```

```
In [66]: import cv2
         import os
         import numpy as np
         import pandas as pd
         import seaborn as sns
         from glob import glob
         import tensorflow as tf
         import matplotlib.pyplot as plt
         from tensorflow.keras.models import Sequential
         from tensorflow.keras.utils import to categorical
         from sklearn.model selection import train test split
         from mlxtend.preprocessing import TransactionEncoder
         from mlxtend.frequent patterns import apriori, association rules
         from tensorflow.keras.preprocessing.image import ImageDataGenerator
         import warnings
         warnings.filterwarnings("ignore")
         from keras.callbacks import Callback
         from PIL import Image
         import matplotlib.pyplot as plt
         from tensorflow.keras.callbacks import Callback
         from tensorflow.keras.layers import Conv2D, Dense, Flatten, MaxPooling2D
         from tqdm import tqdm
         from tqdm.notebook import tqdm
         groceries= pd.read csv(r"C:\Users\mohan\Downloads\Grocery Items 7.csv")
         grocery list= [row.dropna().tolist() for index, row in groceries.iterrows()]
         te = TransactionEncoder()
         te_ary = te.fit(grocery_list).transform(grocery list)
         data = pd.DataFrame(te ary, columns=te.columns )
         frequent itemsets = apriori(data, min support=0.01, use colnames=True)
         ar=association rules(frequent itemsets, metric="confidence", min threshold=0.1)
         print("\n minimum support = 0.01 and minimum confidence threshold = 0.1, the association rules generated : \n")
         print(ar)
         msv = [0.001, 0.005, 0.01]
         mct = [0.05, 0.075, 0.1]
         rows = []
         for i in msv:
             items = apriori(data, min support=i, use colnames=True)
```

```
for j in mct:
        ar = association rules(items, metric="confidence", min threshold=j)
        # Append row to the list
        rows.append({'msv': i, 'mct': j, 'count': len(ar)})
dataset = pd.DataFrame(rows)
glue = dataset.pivot(index='mct', columns='msv', values='count')
plt.figure(figsize=(8, 6))
sns.heatmap(glue, annot=True, fmt=".1f")
plt.title("Association Rules Count Heatmap")
plt.xlabel("Minimum Support")
plt.vlabel("Minimum Confidence Threshold")
plt.show()
s1 = data.iloc[:len(data)//2]
s2 = data.iloc[len(data)//2:]
s1 frequent itemsets = apriori(s1, min support=0.005, use colnames=True)
s2 frequent itemsets = apriori(s2, min support=0.005, use colnames=True)
s1 association rules = association rules(s1 frequent itemsets, metric="confidence", min threshold=0.075)
s2 association rules = association rules(s2 frequent itemsets, metric="confidence", min threshold=0.075)
print("\nAssociation Rules for Subset 1:")
print(s1 association rules)
print("\nAssociation Rules for Subset 2:")
print(s2 association rules)
common rules = pd.merge(s1 association rules, s2 association rules, on=['antecedents', 'consequents'])
print("\nCommon Association Rules:")
print(common rules)
class TQDMProgressBar(Callback):
    def on train begin(self, logs=None):
        self.epochs = self.params["epochs"]
        self.tqdm bar = tqdm(total=self.epochs, desc="Training Progress")
    def on epoch end(self, epoch, logs=None):
        self.tqdm bar.update(1)
    def on train end(self, logs=None):
        self.tqdm bar.close()
def load and process data(dataset dir):
   X, y = [], []
```

```
class folders = [
        "C:\\Users\\mohan\\Desktop\\Cropped\\n02091635-otterhound",
        "C:\\Users\\mohan\\Desktop\\Cropped\\n02097209-standard schnauzer",
        "C:\\Users\\mohan\\Desktop\\Cropped\\n02099712-Labrador retriever",
        "C:\\Users\\mohan\\Desktop\\Cropped\\n02112137-chow",
   for class index, folder name in tqdm(enumerate(class folders), total=len(class folders), desc="Loading Data"):
       folder path = os.path.join(dataset dir, folder name)
       for filename in os.listdir(folder path):
            # img = np.load(os.path.join(folder path, filename))
            img = Image.open(os.path.join(folder path, filename))
            X.append(img)
           y.append(class_index)
   X = np.array(X) / 255.0
   y = to categorical(y, num classes=4)
   if X.ndim == 3:
       X = np.expand dims(X, axis=-1)
    return train test split(X, y, test size=0.2, random state=42, stratify=y)
def build model(input shape, filter size=(3, 3)):
    model = Sequential([
        Conv2D(8, filter size, activation="relu", input shape=input shape),
       MaxPooling2D(2),
        Flatten(),
       Dense(16, activation="relu"),
       Dense(4, activation="softmax"),
   1)
    model.compile(
        optimizer="adam",
       loss="categorical crossentropy",
       metrics=["accuracy"]
    return model
def train and evaluate model(model, X train, y train, filter size):
    tqdm callback = TQDMProgressBar()
    history = model.fit(
       X train,
       y train,
```

```
epochs=20,
        batch size=32,
        validation split=0.2,
        callbacks=[tqdm callback],
        verbose=0 # Turn off the default Keras progress bar
    plot learning curves(history, filter size)
    evaluate model performance(model, X train, y train, filter size)
def plot learning_curves(history, filter_size):
    plt.figure(figsize=(8, 6))
    plt.plot(history.history["accuracy"], label="Training Accuracy")
    plt.plot(history.history["val accuracy"], label="Validation Accuracy")
    plt.title(f"Learning Curves for Filter Size {filter size}")
    plt.xlabel("Epochs")
    plt.ylabel("Accuracy")
    plt.legend()
    plt.show()
def evaluate model performance(model, X_train, y_train, filter_size):
    train score = model.evaluate(X train, y train, verbose=0)
    print(f"Performance for Filter Size {filter size}:")
    print(f"Training Loss: {train score[0]:.4f}, Training Accuracy: {train score[1]*100:.2f}%\n")
dataset dir = r"C:\Users\mohan\Desktop\Cropped"
X train, X test, y train, y test = load and process data(dataset dir)
input shape = X train.shape[1:]
print(input shape)
print(f"Training model with filter size {(3, 3)}...")
model = build model(input shape, (3, 3))
train and evaluate model(model, X_train, y_train, (3, 3))
print(f"Training model with filter size {(5, 5)}...")
model = build model(input shape, (5, 5))
train and evaluate model(model, X train, y train, (5, 5))
print(f"Training model with filter size {(7, 7)}...")
model = build model(input shape, (7, 7))
train and evaluate model(model, X train, y train, (7, 7))
```

4/9/24, 10:17 PM

minimum support = 0.01 and minimum confidence threshold = 0.1, the association rules generated :

```
antecedents
                             consequents antecedent support \
        (rolls/buns) (other vegetables)
0
                                                    0.111000
                            (whole milk)
1
  (other vegetables)
                                                    0.118250
        (rolls/buns)
                            (whole milk)
2
                                                    0.111000
3
              (soda)
                            (whole milk)
                                                    0.097125
4
            (yogurt)
                            (whole milk)
                                                    0.087750
  consequent support
                       support confidence
                                                lift leverage conviction \
0
             0.11825 0.011250
                                  0.101351 0.857094 -0.001876
                                                                  0.981195
             0.15800 0.014250
1
                                  0.120507 0.762705 -0.004433
                                                                  0.957370
2
             0.15800 0.014375
                                  0.129505 0.819649 -0.003163
                                                                  0.967265
3
             0.15800 0.012750
                                  0.131274 0.830849 -0.002596
                                                                  0.969236
4
             0.15800 0.011500
                                  0.131054 0.829457 -0.002365
                                                                  0.968990
  zhangs metric
      -0.157931
0
      -0.260818
1
2
      -0.198402
      -0.183999
3
```

-0.183931



## Association Rules for Subset 1:

| 733 | octación Naics for Sab       | JCC 1.             |            |         |   |
|-----|------------------------------|--------------------|------------|---------|---|
|     | antecedents                  | consequents        | antecedent | support | , |
| 0   | (bottled beer)               | (other vegetables) |            | 0.04250 |   |
| 1   | (bottled beer)               | (whole milk)       |            | 0.04250 |   |
| 2   | (bottled water)              | (other vegetables) |            | 0.05950 |   |
| 3   | (bottled water)              | (whole milk)       |            | 0.05950 |   |
| 4   | (canned beer)                | (whole milk)       |            | 0.05000 |   |
| 5   | (citrus fruit)               | (whole milk)       |            | 0.04750 |   |
| 6   | (frankfurter)                | (other vegetables) |            | 0.03400 |   |
| 7   | (frankfurter)                | (whole milk)       |            | 0.03400 |   |
| 8   | (frozen vegetables)          | (other vegetables) |            | 0.03075 |   |
| 9   | (newspapers)                 | (whole milk)       |            | 0.04175 |   |
| 10  | (pip fruit)                  | (other vegetables) |            | 0.04700 |   |
| 11  | (other vegetables)           | (rolls/buns)       |            | 0.12300 |   |
| 12  | (rolls/buns)                 | (other vegetables) |            | 0.10850 |   |
| 13  | (root vegetables)            | (other vegetables) |            | 0.07125 |   |
| 14  | (sausage)                    | (other vegetables) |            | 0.06275 |   |
| 15  | (shopping bags)              | (other vegetables) |            | 0.04925 |   |
| 16  | (soda)                       | (other vegetables) |            | 0.09800 |   |
| 17  | (whole milk)                 | (other vegetables) |            | 0.15450 |   |
| 18  | (other vegetables)           | (whole milk)       |            | 0.12300 |   |
| 19  | (yogurt)                     | (other vegetables) |            | 0.08175 |   |
| 20  | (pastry)                     | (whole milk)       |            | 0.04850 |   |
| 21  | (pip fruit)                  | (rolls/buns)       |            | 0.04700 |   |
| 22  | (pip fruit)                  | (soda)             |            | 0.04700 |   |
| 23  | (pip fruit)                  | (whole milk)       |            | 0.04700 |   |
| 24  | (pork)                       | (whole milk)       |            | 0.03775 |   |
| 25  | (root vegetables)            | (rolls/buns)       |            | 0.07125 |   |
| 26  | (sausage)                    | (rolls/buns)       |            | 0.06275 |   |
| 27  | (shopping bags)              | (rolls/buns)       |            | 0.04925 |   |
| 28  | (soda)                       | (rolls/buns)       |            | 0.09800 |   |
| 29  | (rolls/buns)                 | (soda)             |            | 0.10850 |   |
| 30  | (tropical fruit)             | (rolls/buns)       |            | 0.06925 |   |
| 31  | (whole milk)                 | (rolls/buns)       |            | 0.15450 |   |
| 32  | (rolls/buns)                 | (whole milk)       |            | 0.10850 |   |
| 33  | (yogurt)                     | (rolls/buns)       |            | 0.08175 |   |
| 34  | (root vegetables)            | (soda)             |            | 0.07125 |   |
| 35  | <pre>(root vegetables)</pre> | (whole milk)       |            | 0.07125 |   |
| 36  | (sausage)                    | (soda)             |            | 0.06275 |   |
| 37  | (sausage)                    | (whole milk)       |            | 0.06275 |   |
| 38  | (shopping bags)              | (soda)             |            | 0.04925 |   |
|     |                              |                    |            |         |   |

| 20       | /ahamaina haaa                 | `       | /b.a.l.a. m.#.l.t.\                  |          | 0.04025   |            |   |
|----------|--------------------------------|---------|--------------------------------------|----------|-----------|------------|---|
| 39       | (shopping bags                 | •       | (whole milk)                         |          | 0.04925   |            |   |
| 40       | • • •                          |         | (whole milk)                         |          | 0.09800   |            |   |
| 41       | (whole milk                    | •       | (soda)                               |          | 0.15450   |            |   |
| 42       | (soda                          | •       | (yogurt)                             |          | 0.09800   |            |   |
| 43       | (yogurt                        | •       | (soda)                               |          | 0.08175   |            |   |
| 44<br>45 | (tropical fruit                | •       | (whole milk)                         |          | 0.06925   |            |   |
| 45<br>46 | <pre>(whipped/sour cream</pre> |         | <pre>(whole milk) (whole milk)</pre> |          | 0.04825   |            |   |
| 46       | (yogur-c                       | )       | (MUOTE WITK)                         |          | 0.08175   |            |   |
|          | consequent support             | support | confidence                           | lift     | leverage  | conviction | \ |
| 0        | 0.12300                        | 0.00500 | 0.117647                             | 0.956480 | -0.000228 | 0.993933   |   |
| 1        | 0.15450                        | 0.00625 | 0.147059                             | 0.951837 | -0.000316 | 0.991276   |   |
| 2        | 0.12300                        | 0.00525 | 0.088235                             | 0.717360 | -0.002068 | 0.961871   |   |
| 3        | 0.15450                        | 0.00675 | 0.113445                             | 0.734274 | -0.002443 | 0.953692   |   |
| 4        | 0.15450                        | 0.00550 | 0.110000                             | 0.711974 | -0.002225 | 0.950000   |   |
| 5        | 0.15450                        | 0.00725 | 0.152632                             | 0.987907 | -0.000089 | 0.997795   |   |
| 6        | 0.12300                        | 0.00500 | 0.147059                             | 1.195600 | 0.000818  | 1.028207   |   |
| 7        | 0.15450                        | 0.00550 | 0.161765                             | 1.047021 | 0.000247  | 1.008667   |   |
| 8        | 0.12300                        | 0.00500 | 0.162602                             | 1.321964 | 0.001218  | 1.047291   |   |
| 9        | 0.15450                        | 0.00500 | 0.119760                             | 0.775149 | -0.001450 | 0.960534   |   |
| 10       | 0.12300                        | 0.00525 | 0.111702                             | 0.908147 | -0.000531 | 0.987281   |   |
| 11       | 0.10850                        | 0.01275 | 0.103659                             | 0.955378 | -0.000596 | 0.994599   |   |
| 12       | 0.12300                        | 0.01275 | 0.117512                             | 0.955378 | -0.000596 | 0.993781   |   |
| 13       | 0.12300                        | 0.00600 | 0.084211                             | 0.684638 | -0.002764 | 0.957644   |   |
| 14       | 0.12300                        | 0.00625 | 0.099602                             | 0.809769 | -0.001468 | 0.974013   |   |
| 15       | 0.12300                        | 0.00525 | 0.106599                             | 0.866658 | -0.000808 | 0.981642   |   |
| 16       | 0.12300                        | 0.00900 | 0.091837                             | 0.746640 | -0.003054 | 0.965685   |   |
| 17       | 0.12300                        | 0.01775 | 0.114887                             | 0.934038 | -0.001254 | 0.990834   |   |
| 18       | 0.15450                        | 0.01775 | 0.144309                             | 0.934038 | -0.001254 | 0.988090   |   |
| 19       | 0.12300                        | 0.00700 | 0.085627                             | 0.696154 | -0.003055 | 0.959127   |   |
| 20       | 0.15450                        | 0.00525 | 0.108247                             | 0.700631 | -0.002243 | 0.948133   |   |
| 21       | 0.10850                        | 0.00500 | 0.106383                             | 0.980488 | -0.000099 | 0.997631   |   |
| 22       | 0.09800                        | 0.00500 | 0.106383                             | 1.085541 | 0.000394  | 1.009381   |   |
| 23       | 0.15450                        | 0.00800 | 0.170213                             | 1.101701 | 0.000739  | 1.018936   |   |
| 24       | 0.15450                        | 0.00575 | 0.152318                             | 0.985876 | -0.000082 | 0.997426   |   |
| 25       | 0.10850                        | 0.00600 | 0.084211                             | 0.776134 | -0.001731 | 0.973477   |   |
| 26       | 0.10850                        | 0.00575 | 0.091633                             | 0.844548 | -0.001058 | 0.981432   |   |
| 27       | 0.10850                        | 0.00575 | 0.116751                             |          | 0.000406  | 1.009342   |   |
| 28       | 0.10850                        | 0.00950 | 0.096939                             |          | -0.001133 | 0.987198   |   |
| 29       | 0.09800                        | 0.00950 | 0.087558                             |          | -0.001133 | 0.988556   |   |
| 30       | 0.10850                        | 0.00750 | 0.108303                             | 0.998187 | -0.000014 | 0.999779   |   |

```
31
               0.10850
                       0.01400
                                   0.090615
                                            0.835160 -0.002763
                                                                   0.980333
32
               0.15450
                       0.01400
                                   0.129032 0.835160 -0.002763
                                                                   0.970759
33
               0.10850
                       0.00650
                                   0.079511 0.732818 -0.002370
                                                                   0.968507
34
                                   0.077193 0.787683 -0.001483
               0.09800
                       0.00550
                                                                   0.977452
35
               0.15450
                       0.00875
                                   0.122807
                                            0.794867 -0.002258
                                                                   0.963870
36
               0.09800
                       0.00650
                                   0.103586
                                            1.056997 0.000350
                                                                   1.006231
37
                                   0.151394 0.979899 -0.000195
               0.15450
                       0.00950
                                                                   0.996340
38
               0.09800
                       0.00500
                                   0.101523 1.035947 0.000174
                                                                   1.003921
39
               0.15450
                       0.00775
                                   0.157360
                                            1.018514 0.000141
                                                                   1.003395
40
                       0.01525
                                   0.155612 1.007199 0.000109
               0.15450
                                                                   1.001317
41
               0.09800
                       0.01525
                                   0.098706 1.007199 0.000109
                                                                   1.000783
              0.08175 0.00775
                                   0.079082 0.967359 -0.000262
                                                                   0.997102
42
43
               0.09800
                       0.00775
                                            0.967359 -0.000262
                                                                   0.996466
                                   0.094801
44
                                            0.958022 -0.000449
               0.15450
                       0.01025
                                   0.148014
                                                                   0.992388
45
               0.15450 0.00500
                                   0.103627
                                            0.670725 -0.002455
                                                                   0.943246
46
                                            0.831329 -0.002130
               0.15450 0.01050
                                   0.128440
                                                                   0.970100
```

zhangs\_metric

- 0 -0.045364
- 1 -0.050193
- 2 -0.295242
- 3 -0.277865
- 4 -0.298658
- 5 -0.012689
- 6 0.169358
- 7 0.046490
- 8 0.251277
- 9 -0.232371
- 10 -0.095948
- 11 -0.050564
- 12 -0.049782
- 13 -0.331534
- 14 -0.200415
- 15 -0.139287
- 16 -0.273362
- 17 -0.077086
- 18 -0.074523
- 19 -0.322182
- 20 -0.309900
- 21 -0.020454
- 22 0.082686

```
23
         0.096865
24
        -0.014670
25
        -0.236970
26
       -0.164151
27
        0.074335
28
        -0.116780
29
        -0.117993
30
       -0.001948
31
       -0.189260
32
       -0.181265
33
       -0.284209
34
        -0.224941
35
       -0.217448
36
        0.057533
37
        -0.021418
38
         0.036498
39
         0.019119
40
         0.007924
41
        0.008454
42
        -0.036059
       -0.035444
43
44
        -0.044961
45
       -0.340288
46
        -0.180970
```

## Association Rules for Subset 2:

|    | antecedents                        | consequents        | antecedent support \ |
|----|------------------------------------|--------------------|----------------------|
| 0  | (bottled beer)                     | (other vegetables) | 0.04525              |
| 1  | (bottled beer)                     | (rolls/buns)       | 0.04525              |
| 2  | (bottled beer)                     | (whole milk)       | 0.04525              |
| 3  | (bottled water)                    | (other vegetables) | 0.06300              |
| 4  | (bottled water)                    | (rolls/buns)       | 0.06300              |
| 5  | (bottled water)                    | (soda)             | 0.06300              |
| 6  | (bottled water)                    | (whole milk)       | 0.06300              |
| 7  | (brown bread)                      | (whole milk)       | 0.03525              |
| 8  | (butter)                           | (whole milk)       | 0.03325              |
| 9  | (citrus fruit)                     | (other vegetables) | 0.05675              |
| 10 | (citrus fruit)                     | (whole milk)       | 0.05675              |
| 11 | (domestic eggs)                    | (whole milk)       | 0.03625              |
| 12 | (frankfurter)                      | (whole milk)       | 0.03725              |
| 13 | <pre>(fruit/vegetable juice)</pre> | (whole milk)       | 0.03425              |
|    |                                    |                    |                      |

| 14 | (newspapers)                    | (whole milk)       | 0.03625                    |
|----|---------------------------------|--------------------|----------------------------|
| 15 | (other vegetables)              | (rolls/buns)       |                            |
| 16 | (rolls/buns)                    | (other vegetables) | 0.11350                    |
| 17 | (root vegetables)               | (other vegetables) | 0.06925                    |
| 18 | (soda)                          | (other vegetables) | 0.09625                    |
| 19 | (other vegetables)              | (soda)             | 0.11350                    |
| 20 | (tropical fruit)                | (other vegetables) | 0.06850                    |
| 21 | <pre>(whipped/sour cream)</pre> | (other vegetables) | 0.04375                    |
| 22 | (other vegetables)              | (whole milk)       | 0.11350                    |
| 23 | (other vegetables)              | (yogurt)           | 0.11350                    |
| 24 | (yogurt)                        | (other vegetables) | 0.09375                    |
| 25 | (pastry)                        | (whole milk)       | 0.05325                    |
| 26 | (pip fruit)                     | (whole milk)       | 0.04550                    |
| 27 | (pork)                          | (whole milk)       | 0.03350                    |
| 28 | (root vegetables)               | (rolls/buns)       | 0.06925                    |
| 29 | (sausage)                       | (rolls/buns)       | 0.05950                    |
| 30 | (soda)                          | (rolls/buns)       | 0.09625                    |
| 31 | (tropical fruit)                | (rolls/buns)       | 0.06850                    |
| 32 | (whole milk)                    | (rolls/buns)       | 0.16150                    |
| 33 | (rolls/buns)                    | (whole milk)       | 0.11350                    |
| 34 | (rolls/buns)                    | (yogurt)           | 0.11350                    |
| 35 | (yogurt)                        | (rolls/buns)       | 0.09375                    |
| 36 | <pre>(root vegetables)</pre>    | (whole milk)       | 0.06925                    |
| 37 | <pre>(root vegetables)</pre>    | (yogurt)           | 0.06925                    |
| 38 | (sausage)                       | (whole milk)       | 0.05950                    |
| 39 | (sausage)                       | (yogurt)           | 0.05950                    |
| 40 | (shopping bags)                 | (whole milk)       | 0.04575                    |
| 41 | (tropical fruit)                | (soda)             | 0.06850                    |
| 42 | (soda)                          | (whole milk)       | 0.09625                    |
| 43 | (tropical fruit)                | (whole milk)       | 0.06850                    |
| 44 | (tropical fruit)                | (yogurt)           | 0.06850                    |
| 45 | <pre>(whipped/sour cream)</pre> | (whole milk)       | 0.04375                    |
| 46 | (whole milk)                    | (yogurt)           | 0.16150                    |
| 47 | (yogurt)                        | (whole milk)       | 0.09375                    |
|    | consequent support supp         | port confidence    | lift leverage conviction \ |
| 0  | 0.11350 0.00                    |                    | 216930 0.001114 1.028567   |
| 1  |                                 |                    | 973544 -0.000136 0.996624  |
| 2  |                                 |                    | 060500 0.000442 1.011790   |
| 3  |                                 |                    | 909027 -0.000651 0.988487  |
| 4  |                                 |                    | 839102 -0.001151 0.979816  |
| 7  | 0.11330 0.00                    | 0.077270 0.        | 000101 0.0010              |

| 5  | 0.09625 | 0.00600 | 0.095238 | 0.989487 | -0.000064 | 0.998882 |
|----|---------|---------|----------|----------|-----------|----------|
| 6  | 0.16150 | 0.00675 | 0.107143 | 0.663423 | -0.003424 | 0.939120 |
| 7  | 0.16150 | 0.00575 | 0.163121 | 1.010034 | 0.000057  | 1.001936 |
| 8  | 0.16150 | 0.00500 | 0.150376 | 0.931120 | -0.000370 | 0.986907 |
| 9  | 0.11350 | 0.00525 | 0.092511 | 0.815075 | -0.001191 | 0.976871 |
| 10 | 0.16150 | 0.00725 | 0.127753 | 0.791042 | -0.001915 | 0.961311 |
| 11 | 0.16150 | 0.00600 | 0.165517 | 1.024875 | 0.000146  | 1.004814 |
| 12 | 0.16150 | 0.00525 | 0.140940 | 0.872691 | -0.000766 | 0.976066 |
| 13 | 0.16150 | 0.00650 | 0.189781 | 1.175115 | 0.000969  | 1.034905 |
| 14 | 0.16150 | 0.00650 | 0.179310 | 1.110281 | 0.000646  | 1.021702 |
| 15 | 0.11350 | 0.00975 | 0.085903 | 0.756855 | -0.003132 | 0.969810 |
| 16 | 0.11350 | 0.00975 | 0.085903 | 0.756855 | -0.003132 | 0.969810 |
| 17 | 0.11350 | 0.00550 | 0.079422 | 0.699757 | -0.002360 | 0.962982 |
| 18 | 0.11350 | 0.00925 | 0.096104 | 0.846730 | -0.001674 | 0.980754 |
| 19 | 0.09625 | 0.00925 | 0.081498 | 0.846730 | -0.001674 | 0.983939 |
| 20 | 0.11350 | 0.00800 | 0.116788 | 1.028972 | 0.000225  | 1.003723 |
| 21 | 0.11350 | 0.00500 | 0.114286 | 1.006923 | 0.000034  | 1.000887 |
| 22 | 0.16150 | 0.01075 | 0.094714 | 0.586462 | -0.007580 | 0.926226 |
| 23 | 0.09375 | 0.00950 | 0.083700 | 0.892805 | -0.001141 | 0.989032 |
| 24 | 0.11350 | 0.00950 | 0.101333 | 0.892805 | -0.001141 | 0.986461 |
| 25 | 0.16150 | 0.00750 | 0.140845 | 0.872106 | -0.001100 | 0.975959 |
| 26 | 0.16150 | 0.00575 | 0.126374 | 0.782499 | -0.001598 | 0.959792 |
| 27 | 0.16150 | 0.00500 | 0.149254 | 0.924172 | -0.000410 | 0.985605 |
| 28 | 0.11350 | 0.00625 | 0.090253 | 0.795178 | -0.001610 | 0.974446 |
| 29 | 0.11350 | 0.00600 | 0.100840 | 0.888461 | -0.000753 | 0.985921 |
| 30 | 0.11350 | 0.00800 | 0.083117 | 0.732307 | -0.002924 | 0.966863 |
| 31 | 0.11350 | 0.00625 | 0.091241 | 0.803884 | -0.001525 | 0.975506 |
| 32 | 0.11350 | 0.01475 | 0.091331 | 0.804681 | -0.003580 | 0.975603 |
| 33 | 0.16150 | 0.01475 | 0.129956 | 0.804681 | -0.003580 | 0.963744 |
| 34 | 0.09375 | 0.00950 | 0.083700 | 0.892805 | -0.001141 | 0.989032 |
| 35 | 0.11350 | 0.00950 | 0.101333 | 0.892805 | -0.001141 | 0.986461 |
| 36 | 0.16150 | 0.00700 | 0.101083 | 0.625901 | -0.004184 | 0.932789 |
| 37 | 0.09375 | 0.00550 | 0.079422 | 0.847172 | -0.000992 | 0.984436 |
| 38 | 0.16150 | 0.00800 | 0.134454 | 0.832531 | -0.001609 | 0.968752 |
| 39 | 0.09375 | 0.00650 | 0.109244 | 1.165266 | 0.000922  | 1.017394 |
| 40 | 0.16150 | 0.00575 | 0.125683 | 0.778223 | -0.001639 | 0.959034 |
| 41 | 0.09625 | 0.00575 | 0.083942 | 0.872121 | -0.000843 | 0.986564 |
| 42 | 0.16150 | 0.01025 | 0.106494 | 0.659403 | -0.005294 | 0.938438 |
| 43 | 0.16150 | 0.00650 | 0.094891 | 0.587557 | -0.004563 | 0.926407 |
| 44 | 0.09375 | 0.00625 | 0.091241 | 0.973236 | -0.000172 | 0.997239 |
| 45 | 0.16150 | 0.00575 | 0.131429 | 0.813799 | -0.001316 | 0.965378 |
|    |         |         |          |          |           |          |

46 0.09375 0.01250 0.077399 0.825593 -0.002641 0.982278 47 0.16150 0.01250 0.967500 zhangs\_metric 0.186709 0 1 -0.027675 2 0.059752 3 -0.096499 4 -0.169878 5 -0.011212 6 -0.351258 7 0.010298 8 -0.071080 9 -0.193894 10 -0.218779 11 0.025184 12 -0.131587 13 0.154304 14 0.103063 15 -0.265994 16 -0.265994 17 -0.315533 18 -0.166869 19 -0.169566 20 0.030227 21 0.007190 22 -0.443027 23 -0.119283 24 -0.116987 25 -0.134123 26 -0.225530 27 -0.078251 28 -0.216758 29 -0.117764 30 -0.287992 31 -0.207544 32 -0.224493 33 -0.214951 34 -0.119283 35 -0.116987 36 -0.391048

```
37
        -0.162353
38
        -0.176197
39
         0.150799
40
        -0.229964
41
        -0.136004
42
        -0.363679
43
         -0.429739
44
        -0.028676
45
        -0.193075
46
        -0.201238
47
        -0.189038
Common Association Rules:
              antecedents
                                                antecedent support x \
                                   consequents
0
          (bottled beer)
                           (other vegetables)
                                                              0.04250
1
          (bottled beer)
                                  (whole milk)
                                                              0.04250
2
                           (other vegetables)
         (bottled water)
                                                              0.05950
3
         (bottled water)
                                  (whole milk)
                                                              0.05950
4
          (citrus fruit)
                                  (whole milk)
                                                              0.04750
5
           (frankfurter)
                                  (whole milk)
                                                              0.03400
6
             (newspapers)
                                  (whole milk)
                                                              0.04175
7
      (other vegetables)
                                  (rolls/buns)
                                                              0.12300
8
             (rolls/buns)
                           (other vegetables)
                                                              0.10850
9
       (root vegetables)
                           (other vegetables)
                                                              0.07125
10
                   (soda)
                           (other vegetables)
                                                              0.09800
      (other vegetables)
11
                                  (whole milk)
                                                              0.12300
12
                 (yogurt)
                           (other vegetables)
                                                              0.08175
13
                 (pastry)
                                  (whole milk)
                                                              0.04850
14
              (pip fruit)
                                  (whole milk)
                                                              0.04700
15
                   (pork)
                                  (whole milk)
                                                              0.03775
       (root vegetables)
16
                                  (rolls/buns)
                                                              0.07125
17
                (sausage)
                                  (rolls/buns)
                                                              0.06275
                   (soda)
                                 (rolls/buns)
18
                                                              0.09800
19
        (tropical fruit)
                                  (rolls/buns)
                                                              0.06925
20
             (whole milk)
                                  (rolls/buns)
                                                              0.15450
             (rolls/buns)
21
                                  (whole milk)
                                                              0.10850
22
                                  (rolls/buns)
                 (yogurt)
                                                              0.08175
23
       (root vegetables)
                                  (whole milk)
                                                              0.07125
24
                (sausage)
                                  (whole milk)
                                                              0.06275
25
         (shopping bags)
                                  (whole milk)
                                                              0.04925
26
                   (soda)
                                  (whole milk)
                                                              0.09800
```

| 27 | (tropical     | fruit)  | (who         | ole milk)      | 0         | .06925       |         |
|----|---------------|---------|--------------|----------------|-----------|--------------|---------|
| 28 | (whipped/sour | cream)  | (whole milk) |                | 0.04825   |              |         |
| 29 | (             | yogurt) | (who         | ole milk)      | 0         | .08175       |         |
|    |               |         |              |                |           |              |         |
|    | consequent su | pport_x | support_x    | confidence_x   | lift_x    | leverage_x   | \       |
| 0  |               | 0.1230  | 0.00500      | 0.117647       | 0.956480  | -0.000228    |         |
| 1  |               | 0.1545  | 0.00625      | 0.147059       | 0.951837  | -0.000316    |         |
| 2  |               | 0.1230  | 0.00525      | 0.088235       | 0.717360  | -0.002068    |         |
| 3  |               | 0.1545  | 0.00675      | 0.113445       | 0.734274  | -0.002443    |         |
| 4  |               | 0.1545  | 0.00725      | 0.152632       | 0.987907  | -0.000089    |         |
| 5  |               | 0.1545  | 0.00550      | 0.161765       | 1.047021  | 0.000247     |         |
| 6  |               | 0.1545  | 0.00500      | 0.119760       | 0.775149  | -0.001450    |         |
| 7  |               | 0.1085  | 0.01275      | 0.103659       | 0.955378  | -0.000596    |         |
| 8  |               | 0.1230  | 0.01275      | 0.117512       | 0.955378  | -0.000596    |         |
| 9  |               | 0.1230  | 0.00600      | 0.084211       | 0.684638  | -0.002764    |         |
| 10 |               | 0.1230  | 0.00900      | 0.091837       | 0.746640  | -0.003054    |         |
| 11 |               | 0.1545  | 0.01775      | 0.144309       | 0.934038  | -0.001254    |         |
| 12 |               | 0.1230  | 0.00700      | 0.085627       | 0.696154  | -0.003055    |         |
| 13 |               | 0.1545  | 0.00525      | 0.108247       | 0.700631  | -0.002243    |         |
| 14 |               | 0.1545  | 0.00800      | 0.170213       | 1.101701  | 0.000739     |         |
| 15 |               | 0.1545  | 0.00575      | 0.152318       | 0.985876  | -0.000082    |         |
| 16 |               | 0.1085  | 0.00600      | 0.084211       | 0.776134  | -0.001731    |         |
| 17 |               | 0.1085  | 0.00575      | 0.091633       | 0.844548  | -0.001058    |         |
| 18 |               | 0.1085  | 0.00950      | 0.096939       | 0.893445  | -0.001133    |         |
| 19 |               | 0.1085  | 0.00750      | 0.108303       | 0.998187  | -0.000014    |         |
| 20 |               | 0.1085  | 0.01400      | 0.090615       | 0.835160  | -0.002763    |         |
| 21 |               | 0.1545  | 0.01400      | 0.129032       | 0.835160  | -0.002763    |         |
| 22 |               | 0.1085  | 0.00650      | 0.079511       | 0.732818  | -0.002370    |         |
| 23 |               | 0.1545  | 0.00875      | 0.122807       | 0.794867  | -0.002258    |         |
| 24 |               | 0.1545  | 0.00950      | 0.151394       | 0.979899  | -0.000195    |         |
| 25 |               | 0.1545  | 0.00775      | 0.157360       | 1.018514  | 0.000141     |         |
| 26 |               | 0.1545  | 0.01525      | 0.155612       | 1.007199  | 0.000109     |         |
| 27 |               | 0.1545  | 0.01025      | 0.148014       | 0.958022  | -0.000449    |         |
| 28 |               | 0.1545  | 0.00500      | 0.103627       | 0.670725  | -0.002455    |         |
| 29 |               | 0.1545  | 0.01050      | 0.128440       | 0.831329  | -0.002130    |         |
|    |               |         |              |                |           |              |         |
|    | conviction x  | zhangs  | metric_x a   | ntecedent supp | ort y con | sequent supp | ort y \ |
| 0  | 0.993933      |         | 0.045364     |                | 04525     |              | .1135   |
| 1  | 0.991276      | -       | 0.050193     |                | 04525     |              | .1615   |
| 2  | 0.961871      |         | 0.295242     |                | 06300     |              | .1135   |
| 3  | 0.953692      | -       | 0.277865     | 0.             | 06300     | 0            | .1615   |

| 4  | 0.9977    | 95 -0.0      | 12689    | 0.         | 05675        |   | 0.1615 |
|----|-----------|--------------|----------|------------|--------------|---|--------|
| 5  | 1.0086    | 67 0.0       | 46490    | 0.         | 0.03725      |   | 0.1615 |
| 6  | 0.9605    | 34 -0.2      | 32371    | 0.         | 0.03625      |   | 0.1615 |
| 7  | 0.9945    | 99 -0.0      | 50564    | 0.         | 11350        |   | 0.1135 |
| 8  | 0.9937    | 81 -0.0      | 49782    | 0.         | 11350        |   | 0.1135 |
| 9  | 0.9576    | 44 -0.3      | 31534    | 0.         | 06925        |   | 0.1135 |
| 10 | 0.9656    | 85 -0.2      | 73362    | 0.         | 09625        |   | 0.1135 |
| 11 | 0.9880    | 90 -0.0      | 74523    | 0.         | 11350        |   | 0.1615 |
| 12 | 0.9591    | 27 -0.3      | 22182    | 0.         | 09375        |   | 0.1135 |
| 13 | 0.9481    | 33 -0.3      | 09900    | 0.         | 05325        |   | 0.1615 |
| 14 | 1.0189    | 36 0.0       | 96865    | 0.         | 04550        |   | 0.1615 |
| 15 | 0.9974    | 26 -0.0      | 14670    | 0.         | 03350        |   | 0.1615 |
| 16 | 0.9734    | 77 -0.2      | 36970    | 0.         | 06925        |   | 0.1135 |
| 17 | 0.9814    | 32 -0.1      | 64151    | 0.         | 05950        |   | 0.1135 |
| 18 | 0.9871    | 98 -0.1      | 16780    | 0.         | 09625        |   | 0.1135 |
| 19 | 0.9997    | 79 -0.0      | 01948    | 0.         | 06850        |   | 0.1135 |
| 20 | 0.9803    | 33 -0.1      | 89260    | 0.         | 0.16150      |   | 0.1135 |
| 21 | 0.9707    | 59 -0.1      | 81265    | 0.         | 0.11350      |   | 0.1615 |
| 22 | 0.9685    | 07 -0.2      | 84209    | 0.         | 0.09375      |   | 0.1135 |
| 23 | 0.9638    | 70 -0.2      | 17448    | 0.         | 0.06925      |   | 0.1615 |
| 24 | 0.9963    | 40 -0.0      | 21418    | 0.         | 05950        |   | 0.1615 |
| 25 | 1.0033    | 95 0.0       | 19119    | 0.         | 0.04575      |   | 0.1615 |
| 26 | 1.0013    | 17 0.0       | 07924    | 0.         | 09625        |   | 0.1615 |
| 27 | 0.9923    | 88 -0.0      | 44961    | 0.06850    |              |   | 0.1615 |
| 28 | 0.9432    | 46 -0.3      | 40288    | 0.         | 04375        |   | 0.1615 |
| 29 | 0.9701    | 00 -0.1      | 80970    | 0.         | 09375        |   | 0.1615 |
|    |           |              |          |            |              |   |        |
|    | support_y | confidence_y | lift_y   | leverage_y | conviction_y | \ |        |
| 0  | 0.00625   | 0.138122     | 1.216930 | 0.001114   | 1.028567     |   |        |
| 1  | 0.00775   | 0.171271     | 1.060500 | 0.000442   | 1.011790     |   |        |
| 2  | 0.00650   | 0.103175     | 0.909027 | -0.000651  | 0.988487     |   |        |
| 3  | 0.00675   | 0.107143     | 0.663423 | -0.003424  | 0.939120     |   |        |
| 4  | 0.00725   | 0.127753     | 0.791042 | -0.001915  | 0.961311     |   |        |
| 5  | 0.00525   | 0.140940     | 0.872691 | -0.000766  | 0.976066     |   |        |
| 6  | 0.00650   | 0.179310     | 1.110281 | 0.000646   | 1.021702     |   |        |
| 7  | 0.00975   | 0.085903     | 0.756855 | -0.003132  | 0.969810     |   |        |
| 8  | 0.00975   | 0.085903     | 0.756855 | -0.003132  | 0.969810     |   |        |
| 9  | 0.00550   | 0.079422     | 0.699757 | -0.002360  | 0.962982     |   |        |
| 10 | 0.00925   | 0.096104     | 0.846730 | -0.001674  | 0.980754     |   |        |
| 11 | 0.01075   | 0.094714     | 0.586462 | -0.007580  | 0.926226     |   |        |
| 12 | 0.00950   | 0.101333     | 0.892805 | -0.001141  | 0.986461     |   |        |

| 13 | 0.00750 | 0.140845 | 0.872106 | -0.001100 | 0.975959 |
|----|---------|----------|----------|-----------|----------|
| 14 | 0.00575 | 0.126374 | 0.782499 | -0.001598 | 0.959792 |
| 15 | 0.00500 | 0.149254 | 0.924172 | -0.000410 | 0.985605 |
| 16 | 0.00625 | 0.090253 | 0.795178 | -0.001610 | 0.974446 |
| 17 | 0.00600 | 0.100840 | 0.888461 | -0.000753 | 0.985921 |
| 18 | 0.00800 | 0.083117 | 0.732307 | -0.002924 | 0.966863 |
| 19 | 0.00625 | 0.091241 | 0.803884 | -0.001525 | 0.975506 |
| 20 | 0.01475 | 0.091331 | 0.804681 | -0.003580 | 0.975603 |
| 21 | 0.01475 | 0.129956 | 0.804681 | -0.003580 | 0.963744 |
| 22 | 0.00950 | 0.101333 | 0.892805 | -0.001141 | 0.986461 |
| 23 | 0.00700 | 0.101083 | 0.625901 | -0.004184 | 0.932789 |
| 24 | 0.00800 | 0.134454 | 0.832531 | -0.001609 | 0.968752 |
| 25 | 0.00575 | 0.125683 | 0.778223 | -0.001639 | 0.959034 |
| 26 | 0.01025 | 0.106494 | 0.659403 | -0.005294 | 0.938438 |
| 27 | 0.00650 | 0.094891 | 0.587557 | -0.004563 | 0.926407 |
| 28 | 0.00575 | 0.131429 | 0.813799 | -0.001316 | 0.965378 |
| 29 | 0.01250 | 0.133333 | 0.825593 | -0.002641 | 0.967500 |
|    |         |          |          |           |          |

|    | zhangs_metric_y |
|----|-----------------|
| 0  | 0.186709        |
| 1  | 0.059752        |
| 2  | -0.096499       |
| 3  | -0.351258       |
| 4  | -0.218779       |
| 5  | -0.131587       |
| 6  | 0.103063        |
| 7  | -0.265994       |
| 8  | -0.265994       |
| 9  | -0.315533       |
| 10 | -0.166869       |
| 11 | -0.443027       |
| 12 | -0.116987       |
| 13 | -0.134123       |
| 14 | -0.225530       |
| 15 | -0.078251       |
| 16 | -0.216758       |
| 17 | -0.117764       |
| 18 | -0.287992       |
| 19 | -0.207544       |
| 20 | -0.224493       |
| 21 | -0.214951       |

```
22
          -0.116987
23
          -0.391048
          -0.176197
24
          -0.229964
25
26
          -0.363679
27
          -0.429739
28
          -0.193075
29
          -0.189038
Loading Data: 0%
                            | 0/4 [00:00<?, ?it/s]
(128, 128, 3)
Training model with filter size (3, 3)...
Training Progress: 0%
                                 | 0/20 [00:00<?, ?it/s]
```





Performance for Filter Size (3, 3):

Training Loss: 0.8307, Training Accuracy: 63.68%

Training model with filter size (5, 5)...

Training Progress: 0% | 0/20 [00:00<?, ?it/s]





Performance for Filter Size (5, 5):

Training Loss: 0.2961, Training Accuracy: 91.89%

Training model with filter size (7, 7)...

Training Progress: 0% | 0/20 [00:00<?, ?it/s]





Performance for Filter Size (7, 7):

Training Loss: 0.4172, Training Accuracy: 90.71%

In [63]: # Based on the given performance metrics and learning curves, we can make several observations:
# The model with the (3, 3) filter size has the highest training accuracy of 63.68% and a
# training loss of 0.2961. A training loss of 0.2723 and a training accuracy of 91.89% are displayed by the model with the (5,
# The model with the (7, 7) filter size records a training accuracy of 90.71% and a training loss

# of 0.4172.

# The comparison between models trained with different filter sizes (3x3, 5x5, and 7x7) reveals insights into their performanc # Analyzing learning curves and evaluation metrics indicates whether each model is overfitting, underfitting, or performing op

# Overfitting is signaled by a large gap between training and validation accuracy, with lower validation accuracy and higher l

# Underfitting is indicated by low accuracies and high loss for both training and validation.

# Conversely, models exhibiting similar high accuracies and low losses for both training and validation are deemed well-balanc

# Adjustments to architecture or hyperparameters may be made based on these observations to improve model performance.

In [ ]: