End-Term Examination

(CBCS)(SUBJECTIVE TYPE)(OffLine)

Course Name: B.Tech , Semester: 3rd Sem.

(December, 2024)

Subject Code: BCS 203	Subject: Discrete Structures
Time :3 Hours	Maximum Marks: 60

Note: Q1 is compulsory. Attempt one question each from the Units I, II, III & IV.

Q1	(5*4-20)
a) Identify the nature of the proposition S, whether it is Tautology/	(5*4=20)
Contingency/ Contradiction.	
$S: ((P \land Q) \rightarrow R) \rightarrow ((P \land Q) \rightarrow (Q \rightarrow R))$	
b) Draw the Hasse Diagram of the following: D_{105} , and D_{72}	
c) Prove that group G is an Abelian group if and only if $(ab)^{-1} = a^{-1}b^{-1}$	-1,
$\forall a,b \in G.$	
d) The chromatic number of the following graph is	
Fig. (a)	b
W.	State 1
UNIT I	4.5
Q2 a) Let p, q, r, s represent the following propositions.	(5+5)
p: x∈{8,9,10,11,12}	
q: x is a composite number	300
r: x is a perfect square	
s: x is a prime number The integer $x \ge 2$ which satisfies: $\neg((p \Rightarrow q) \land (\neg r \lor \neg s))$ is	
 b) The binary operator ≠ is defined by the following truth table. 	
b) The binary operator φ is defined by the following truth tasks.	
$p \mid q \mid p \neq q$	
0 0 0	
0 1 1	
1 0 1	
Identify the state of the binary and the whother it is associative	
Identify the nature of the binary operator ≠, whether it is associative,	1
commutative, or both?	days are (5+5
a) Translate the following into propositional logic: i) not all rainy	40752.0
cold ii) None of my friends are perfect. Note: Where the varia	וטובא מוב.
rainy(x), cold(x), f(x): friend, p(x): perfect.	

A. $((a \rightarrow b) \land (b \rightarrow c)) \rightarrow (a \rightarrow c)$ B. $(a \leftrightarrow c) \rightarrow (\sim b \rightarrow (a \land c))$ C. $(a \land b \land c) \rightarrow (c \lor a)$ D. $a \rightarrow (b \rightarrow a)$ UNIT II Q4 a) Using the principle of mathematical induction, Show that 2^{2n} . 1 is divisible by 3. b) Find the total number of relation on a set R with n elements which is antisymmetric but not reflexive. a) Prove that the relation congruence modulo m on the set Z of all integers is an equivalence relation. b) Explain the following Sets with example: a) Finite b) Infinite, c) Countable d) Uncountable. UNIT III Q6 a) Define a Field. Prove that the set of integers Z_{11} with addition and multiplication is a Field. b) State and prove Lagrange's theorem for finite groups. Q7 a) Prove that a group of prime order p is cyclic. b) Let C be the set of all positive rational numbers and * be the binary operation on C defined as C a * b = C prove that C be an abelian group. UNIT IV Q8 a) State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively. where V, E, and F represent vertices, edges, and region, respectively. The number of distinct minimum-weight spanning trees in the following graph is Q9 3 3 3 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5		b) Identify the first transfer of the first	
B. (a ↔ c) → (~ b → (a ∧ c)) C. (a ∧ b ∧ c) → (c ∨ a) D. a → (b → a) UNIT II Q4 a) Using the principle of mathematical induction, Show that 2 ²ⁿ - 1 is divisible by 3. b) Find the total number of relation on a set R with n elements which is antisymmetric but not reflexive. Q5 a) Prove that the relation congruence modulo m on the set Z of all integers is an equivalence relation. b) Explain the following Sets with example: a) Finite b) Infinite, c) Countable d) Uncountable. UNIT III Q6 a) Define a Field. Prove that the set of integers Z ₁₁ with addition and multiplication is a Field. b) State and prove Lagrange's theorem for finite groups. Q7 a) Prove that a group of prime order p is cyclic. b) Let G be the set of all positive rational numbers and * be the binary operation on G defined as a * b = ²ⁿ / ₂ , ∀a, b ∈ G. Prove that (G,*) be an abelian group. Q8 a) State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively, where V, E, and F represent vertices, edges, and region, respectively, where V, E, and F represent vertices, edges, and region, respectively, where V, E, and F represent vertices, edges, and region, respectively, where V, E, and F represent vertices, edges, and region, respectively, where V, E, and F represent vertices, edges, and region, respectively. b) The number of distinct minimum-weight spanning trees in the following graph is Q8 (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? Q9 1 If e is the lightest edge of some cycle in G, then every MST of G includes e. Q9 1 If e is the heaviest edge of some cycle in G, then every MST of G excludes e.		b) Identify the following Boolean expressions which is/are NOT tautology?	
C. (n ∧ b ∧ c) → (c ∨ a) D. a → (b → a) UNIT II. Q4 a) Using the principle of mathematical induction, Show that 2²²²² - 1 is divisible by 3. b) Find the total number of relation on a set R with n elements which is antisymmetric but not reflexive. Q5 a) Prove that the relation congruence modulo m on the set Z of all integers is an equivalence relation. b) Explain the following Sets with example: a) Finite b) Infinite, c) Countable d) Uncountable. UNIT III Q6 a) Define a Field. Prove that the set of integers Z₁₁ with addition and multiplication is a Field. b) State and prove Lagrange's theorem for finite groups. D6 a) Prove that a group of prime order p is cyclic. b) Let G be the set of all positive rational numbers and * be the binary operation on G defined as a * b = ab/7 , ∀a,b ∈ G. Prove that (G,*) be an abelian group. UNIT IV Q8 a) State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively. where V, E, and F represent vertices, edges, and region, respectively. b) The number of distinct minimum-weight spanning trees in the following graph is a) G = (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? about the minimum spanning trees (MSTs) of G is/are TRUE? b) It is is the lightest edge of some cycle in G, then every MST of G includes e. e. li. If e is the heaviest edge of some cycle in G, then every MST of G excludes e.			
 Q4 a) Using the principle of mathematical induction, Show that 2²ⁿ-1 is divisible by 3. b) Find the total number of relation on a set R with n elements which is antisymmetric but not reflexive. Q5 a) Prove that the relation congruence modulo m on the set Z of all integers is an equivalence relation. b) Explain the following Sets with example: a) Finite b) Infinite, c) Countable d) Uncountable. UNIT III Q6 a) Define a Field. Prove that the set of integers Z₁₁ with addition and multiplication is a Field. b) State and prove Lagrange's theorem for finite groups. Q7 a) Prove that a group of prime order p is cyclic. b) Let G be the set of all positive rational numbers and * be the binary operation on G defined as α * b = ^{ab}/_a , ∀a, b ∈ G. Prove that (G,*) be an abelian group. UNIT IV Q8 a) State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively. where V, E, and F represent vertices, edges, and region, respectively. where V, E, and F represent vertices, edges, and region, respectively. b) The number of distinct minimum-weight spanning trees in the following graph is Q6 = (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? Q7			
 Q4 a) Using the principle of mathematical induction, Show that 2²ⁿ-1 is divisible by 3. b) Find the total number of relation on a set R with n elements which is antisymmetric but not reflexive. Q5 a) Prove that the relation congruence modulo m on the set Z of all integers is an equivalence relation. b) Explain the following Sets with example: a) Finite b) Infinite, c) Countable d) Uncountable. UNIT III Q6 a) Define a Field. Prove that the set of integers Z₁₁ with addition and multiplication is a Field. b) State and prove Lagrange's theorem for finite groups. Q7 a) Prove that a group of prime order p is cyclic. b) Let G be the set of all positive rational numbers and * be the binary operation on G defined as α * b = ^{ab}/_a , ∀a, b ∈ G. Prove that (G,*) be an abelian group. UNIT IV Q8 a) State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively. where V, E, and F represent vertices, edges, and region, respectively. where V, E, and F represent vertices, edges, and region, respectively. b) The number of distinct minimum-weight spanning trees in the following graph is Q6 = (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? Q7		$C.(a \wedge b \wedge c) \rightarrow (c \vee a)$	
Q4 a) Using the principle of mathematical induction, Show that 2²n-1 is divisible by 3. b) Find the total number of relation on a set R with n elements which is antisymmetric but not reflexive. Q5 a) Prove that the relation congruence modulo m on the set Z of all integers is an equivalence relation. b) Explain the following Sets with example: a) Finite b) Infinite, c) Countable d) Uncountable. UNIT III Q6 a) Define a Field. Prove that the set of integers Z ₁₁ with addition and multiplication is a Field. b) State and prove Lagrange's theorem for finite groups. Q7 a) Prove that a group of prime order p is cyclic. b) Let G be the set of all positive rational numbers and * be the binary operation on G defined as a * b = \frac{ab}{7}, \text{Va.} b \in G. Prove that (G,*) be an abelian group. Q8 a) State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively. where V, E, and F represent vertices, edges, and region, respectively. where V, E, and F represent vertices, edges, and region, respectively. b) The number of distinct minimum-weight spanning trees in the following graph is Q8 = (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? Q8	Ni Eli	The state of the s	
a) Using the principle of mathematical induction, Show that 2²¹¹¹ Is divisible by 3. b) Find the total number of relation on a set R with n elements which is antisymmetric but not reflexive. Q5 a) Prove that the relation congruence modulo m on the set Z of all integers is an equivalence relation. b) Explain the following Sets with example: a) Finite b) Infinite, c) Countable d) Uncountable. UNIT III Q6 a) Define a Field. Prove that the set of integers Z₁₁ with addition and multiplication is a Field. b) State and prove Lagrange's theorem for finite groups. Q7 a) Prove that a group of prime order p is cyclic. b) Let G be the set of all positive rational numbers and * be the binary operation on G defined as a * b = ab/2, ∀a, b ∈ G. Prove that (G,*) be an abelian group. UNIT IV Q8 a) State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively. where V, E, and F represent vertices, edges, and region, respectively. b) The number of distinct minimum-weight spanning trees in the following graph is Q8 a) G = (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? 1. If e is the lightest edge of some cycle in G, then every MST of G includes e. Q9 II. If e is the heaviest edge of some cycle in G, then every MST of G excludes e.			(5+5)
Show that 2 ²ⁿ . 1 is divisible by 3. b) Find the total number of relation on a set R with n elements which is antisymmetric but not reflexive. a) Prove that the relation congruence modulo m on the set Z of all integers is an equivalence relation. b) Explain the following Sets with example: a) Finite b) Infinite, c) Countable d) Uncountable. UNIT III UNIT III (5+5) a) Define a Field. Prove that the set of integers Z ₁₁ with addition and multiplication is a Field. b) State and prove Lagrange's theorem for finite groups. b) Let G be the set of all positive rational numbers and * be the binary operation on G defined as a * b = \frac{ab}{7}, \text{Va}, \text{b} \in G. Prove that (G,*) be an abelian group. UNIT IV 3) State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively. where V, E, and F represent vertices, edges, and region, respectively. where V, E, and F represent vertices, edges, and region, respectively. b) The number of distinct minimum-weight spanning trees in the following graph is a) G = (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? 1. If e is the lightest edge of some cycle in G, then every MST of G includes e. II. If e is the heaviest edge of some cycle in G, then every MST of G excludes e.	Q4	a) Using the principle of mathematical induction,	(0.0)
antisymmetric but not reflexive. a) Prove that the relation congruence modulo m on the set Z of all integers is an equivalence relation. b) Explain the following Sets with example: a) Finite b) Infinite, c) Countable d) Uncountable. UNIT III Define a Field. Prove that the set of integers Z ₁₁ with addition and multiplication is a Field. b) State and prove Lagrange's theorem for finite groups. a) Prove that a group of prime order p is cyclic. b) Let G be the set of all positive rational numbers and * be the binary operation on G defined as a * b = \frac{ab}{7}, \text{Va, b} \in G. Prove that (G,*) be an abelian group. UNIT IV State and prove Euler's formula for connected planar graphs: V-E-R= 2, where V, E, and F represent vertices, edges, and region, respectively, where V, E, and F represent vertices, edges, and region, respectively. b) The number of distinct minimum-weight spanning trees in the following graph is a) G = (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? I. If e is the lightest edge of some cycle in G, then every MST of G includes e. II. If e is the heaviest edge of some cycle in G, then every MST of G excludes e.		Change 1 1 227 4 to divisible by 3	
antisymmetric but not reflexive. a) Prove that the relation congruence modulo m on the set Z of all integers is an equivalence relation. b) Explain the following Sets with example: a) Finite b) Infinite, c) Countable d) Uncountable. UNIT III Description of Field. Prove that the set of integers Z11 with addition and multiplication is a Field. b) State and prove Lagrange's theorem for finite groups. Description on G defined as a * b = ab an abelian group. A * b = ab		b) Find the total number of relation on a set R with n elements which is	
a) Prove that the relation congruence modulo in on the set is an equivalence relation. b) Explain the following Sets with example: a) Finite b) Infinite, c) Countable d) Uncountable. UNIT III 26 a) Define a Field. Prove that the set of integers Z ₁₁ with addition and multiplication is a Field. b) State and prove Lagrange's theorem for finite groups. 3 Prove that a group of prime order p is cyclic. b) Let G be the set of all positive rational numbers and * be the binary operation on G defined as a * b = \frac{ab}{c}, \text{Va, b} \in \in \text{C.Prove that } (G,*) be an abelian group. UNIT IV 3 State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively. Where V, E, and F represent vertices, edges, and region, respectively. Where V, E, and F represent vertices, edges, and region, respectively. The number of distinct minimum-weight spanning trees in the following graph is 3 C 4 G = (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? 1. If e is the lightest edge of some cycle in G, then every MST of G includes e. II. If e is the heaviest edge of some cycle in G, then every MST of G excludes e.		antisymmetric but not reflexive.	()
is an equivalence relation. b) Explain the following Sets with example: a) Finite b) Infinite, c) Countable d) Uncountable. UNIT III (5+5) a) Define a Field. Prove that the set of integers Z ₁₁ with addition and multiplication is a Field. b) State and prove Lagrange's theorem for finite groups. (5+5) a) Prove that a group of prime order p is cyclic. b) Let G be the set of all positive rational numbers and * be the binary operation on G defined as a * b = \frac{ab}{7}, \frac{a}{2}, \frac{b}{2} \ e. G. Prove that (G,*) be an abelian group. UNIT IV B) State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively. where V, E, and F represent vertices, edges, and region, respectively. b) The number of distinct minimum-weight spanning trees in the following graph is 3 c 4 3 G = (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? about the minimum spanning trees (MSTs) of G is/are TRUE? I. If e is the lightest edge of some cycle in G, then every MST of G includes e. II. If e is the heaviest edge of some cycle in G, then every MST of G excludes e.	Q5	a) Prove that the relation congruence modulo in on the sec	
b) Explain the following Sets with example. By Third d) Uncountable. UNIT III Q6 a) Define a Field. Prove that the set of integers Z11 with addition and multiplication is a Field. b) State and prove Lagrange's theorem for finite groups. Q7 a) Prove that a group of prime order p is cyclic. b) Let G be the set of all positive rational numbers and * be the binary operation on G defined as Q8 * b = \frac{ab}{7}, \text{Va}, b \in G. Prove that (G,*) be an abelian group. Q8 a) State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively. b) The number of distinct minimum-weight spanning trees in the following graph is Q8 * G = (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? Q8 * A G = (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? Q8 * I. If e is the lightest edge of some cycle in G, then every MST of G includes excludes e.		is an equivalence relation.	
a) Define a Field. Prove that the set of integers Z ₁₁ with addition and multiplication is a Field. b) State and prove Lagrange's theorem for finite groups. 3) Prove that a group of prime order p is cyclic. b) Let G be the set of all positive rational numbers and * be the binary operation on G defined as a * b = \frac{ab}{2}, \forall va, b \in G. Prove that (G,*) be an abelian group. WINIT IV a) State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively. where V, E, and F represent vertices, edges, and region, respectively. b) The number of distinct minimum-weight spanning trees in the following graph is 3		b) Explain the following Sets with example: a) Third any	
a) Define a Field. Prove that the set of integers Z ₁₁ with addition and multiplication is a Field. b) State and prove Lagrange's theorem for finite groups. 3) Prove that a group of prime order p is cyclic. b) Let G be the set of all positive rational numbers and * be the binary operation on G defined as a * b = \frac{ab}{7}, \text{Va}, b \in G. Prove that (G,*) be an abelian group. UNIT IV a) State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively. b) The number of distinct minimum-weight spanning trees in the following graph is 3 G = (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? 1. If e is the lightest edge of some cycle in G, then every MST of G includes e. II. If e is the heaviest edge of some cycle in G, then every MST of G excludes e.		d) Uncountable.	(5+5)
multiplication is a Field. b) State and prove Lagrange's theorem for finite groups. a) Prove that a group of prime order p is cyclic. b) Let G be the set of all positive rational numbers and * be the binary operation on G defined as a * b = ab/7, ∀a, b ∈ G. Prove that (G,*) be an abelian group. UNIT IV a) State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively. where V, E, and F represent vertices, edges, and region, respectively. b) The number of distinct minimum-weight spanning trees in the following graph is 3 C 4 3 G = (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? I. If e is the lightest edge of some cycle in G, then every MST of G includes e. II. If e is the heaviest edge of some cycle in G, then every MST of G excludes e.		UNIT III	(3+3)
multiplication is a Field. b) State and prove Lagrange's theorem for finite groups. a) Prove that a group of prime order p is cyclic. b) Let G be the set of all positive rational numbers and * be the binary operation on G defined as a * b = ab/7, ∀a, b ∈ G. Prove that (G,*) be an abelian group. UNIT IV a) State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively. where V, E, and F represent vertices, edges, and region, respectively. b) The number of distinct minimum-weight spanning trees in the following graph is 3 C 4 3 G = (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? I. If e is the lightest edge of some cycle in G, then every MST of G includes e. II. If e is the heaviest edge of some cycle in G, then every MST of G excludes e.	Q6	a) Define a Field. Prove that the set of integers 211	
 a) Prove that a group of prime order p is cyclic. b) Let G be the set of all positive rational numbers and * be the binary operation on G defined as a * b = ab/7, ∀α, b ∈ G. Prove that (G,*) be an abelian group. a) State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively. b) The number of distinct minimum-weight spanning trees in the following graph is a) G = (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? l. If e is the lightest edge of some cycle in G, then every MST of G includes e. l. If e is the heaviest edge of some cycle in G, then every MST of G excludes e. 		multiplication is a Field.	
a) Prove that a group of prime order p is cyclic. b) Let G be the set of all positive rational numbers and * be the binary operation on G defined as a * b = ab / 7, ∀a, b ∈ G. Prove that (G,*) be an abelian group. UNIT IV a) State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively. b) The number of distinct minimum-weight spanning trees in the following graph is a) G = (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? I. If e is the lightest edge of some cycle in G, then every MST of G includes e. II. If e is the heaviest edge of some cycle in G, then every MST of G excludes e.		b) State and prove Lagrange's theorem for mind govern	(5+5)
a) State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively. Where V, E, and F represent vertices, edges, and region, respectively. The number of distinct minimum-weight spanning trees in the following graph is a) G = (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? I. If e is the lightest edge of some cycle in G, then every MST of G excludes e. II. If e is the heaviest edge of some cycle in G, then every MST of G excludes e.			3 M 889
a) State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively. Where V, E, and F represent vertices, edges, and region, respectively. The number of distinct minimum-weight spanning trees in the following graph is a) G = (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? I. If e is the lightest edge of some cycle in G, then every MST of G excludes e. II. If e is the heaviest edge of some cycle in G, then every MST of G excludes e.	Q7	a) Prove that a group of prime order pile of the binary	
a * b = \frac{ab}{7}, ∀a, b ∈ G. Prove that (G,*) be an abelian group. UNIT IV a) State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively. The number of distinct minimum-weight spanning trees in the following graph is b) The number of distinct minimum-weight spanning trees in the following graph is c d G = (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? I. If e is the lightest edge of some cycle in G, then every MST of G includes e. III. If e is the heaviest edge of some cycle in G, then every MST of G excludes e.		b) Let G be the set of all positive rate	
a) State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively. b) The number of distinct minimum-weight spanning trees in the following graph is a) G = (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? I. If e is the lightest edge of some cycle in G, then every MST of G excludes e. II. If e is the heaviest edge of some cycle in G, then every MST of G excludes e.		operation on G defined as	
a) State and prove Euler's formula for connected planar graphs: V-E+R= 2, where V, E, and F represent vertices, edges, and region, respectively. b) The number of distinct minimum-weight spanning trees in the following graph is a) G = (V,E) is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? I. If e is the lightest edge of some cycle in G, then every MST of G excludes e. II. If e is the heaviest edge of some cycle in G, then every MST of G excludes e.	1	$a*b = \frac{ab}{7}$, $\forall a,b \in G$. Prove that $(a*)$	(5+5)
a) $G = (V, E)$ is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? I. If e is the lightest edge of some cycle in G, then every MST of G includes e. II. If e is the heaviest edge of some cycle in G, then every MST of G excludes e.	18	where V, E, and P representations where	
a) $G = (V,E)$ is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? about the minimum spanning trees (MSTs) of G is/are TRUE? I. If e is the lightest edge of some cycle in G, then every MST of G includes e. II. If e is the heaviest edge of some cycle in G, then every MST of G excludes e.			•
a) $G = (V, E)$ is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTs) of G is/are TRUE? I. If e is the lightest edge of some cycle in G, then every MST of G includes e. II. If e is the heaviest edge of some cycle in G, then every MST of G excludes e.			
weight, and e is a particular of about the minimum spanning trees (MSTs) of G is/are TRUE? about the minimum spanning trees (MSTs) of G is/are True? about the minimum spanning trees (MSTs) of G is/are True? about the minimum spanning trees (MSTs) of G is/are True? about the minimum spanning trees (MSTs) o			(5+5)
weight, and e is a particular of about the minimum spanning trees (MSTs) of G is/are TRUE? about the minimum spanning trees (MSTs) of G is/are True? about the minimum spanning trees (MSTs) of G is/are True? about the minimum spanning trees (MSTs) of G is/are True? about the minimum spanning trees (MSTs) o		(1.5) is an undirected simple graph in which each edge has a distinct	
e. II. If e is the heaviest edge of some cycle in G, then every MST of G excludes e.		about the minimum spanning trees (MSTs) of G is/are TRUE? about the minimum spanning trees (MSTs) of G is/are TRUE? about the lightest edge of some cycle in G, then every MST of G includes	
excludes e.	ı	e. I. If e is the heaviest edge of some cycle in G, then every MST of G.	
b) Prove that: Any planar graph can be color.	е	excludes e. he colored using at most five	
ALEGERT VOLUME TO THE TOTAL PROPERTY OF THE PR	b) P	rove that: Any planar graph can be designed the same color.	

Q9