NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Ложкин Павел

Постановка задачи

Основная идея

$$(x,y,z,\theta,\phi) \to \mathbb{F}_{\Theta} \to (RGB\sigma)$$

$$\mathbf{x} = (x, y, z)$$
 - положение пикселя

 $\sigma(\mathbf{x})$ - плотность пикселя

$$\mathbf{d} = (heta, \phi)$$
 - направление луча

 $RGB(\mathbf{x},\mathbf{d})$ - цвет пикселя

Основная идея

Получение картинки: Volume Rendering

Луч
$$\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$$

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t),\mathbf{d})dt$$

$$T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s))ds\right)$$

Получение картинки: Volume Rendering

$$t_i \sim \mathcal{U}\left[t_n + \frac{i-1}{N}(t_f - t_n), \ t_n + \frac{i}{N}(t_f - t_n)\right]$$

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i \qquad \delta_i = t_{i+1} - t_i$$

$$T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)$$

Общий пайплайн

Оптимизации: Positional Encoding

Модель плохо передает высокочастотные изменения цветов

Ground Truth

Complete Model

No View Dependence No Positional Encoding

Оптимизации: Positional Encoding

$$\gamma(p) = \left(\sin\left(2^0\pi p\right), \cos\left(2^0\pi p\right), \cdots, \sin\left(2^{L-1}\pi p\right), \cos\left(2^{L-1}\pi p\right)\right)$$

Нормализуем координаты (x, y, z) до отрезка [-1, 1]

$$(x, y, z) \rightarrow (\gamma_{10}(x), \gamma_{10}(z), \gamma_{10}(y))$$

$$(d_1, d_2, d_3) \to (\gamma_4(d_1), \gamma_4(d_2), \gamma_4(d_3))$$

Оптимизации: Hierarchical Volume Sampling

 Мы семплируем слишком много точек, которые расположены просто в воздухе или внутри объекта и не вносят вклад в итоговый цвет

Оптимизации: Hierarchical Volume Sampling

$$\hat{C}_c(\mathbf{r}) = \sum_{i=1}^{N_c} w_i c_i \qquad w_i = T_i (1 - \exp(-\sigma_i \delta_i))$$

$$\hat{w}_i = \frac{w_i}{\sum_{j=1}^{N_c} w_j}$$

По \hat{w} можно построить новую кусочно-линейную функцию плотности и насемплировать из нее еще N_f точек

По получившимся N_c+N_f точкам строим предсказание $\hat{C}_f(\mathbf{r})$ модели

Итоговая архитектура

$$\mathcal{L} = \sum_{\mathbf{r} \in \mathcal{P}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$

Сравнение с другими моделями

	Diffuse Synthetic 360° [41]			Realistic Synthetic 360°			Real Forward-Facing [28]		
Method	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	$SSIM\uparrow$	LPIPS↓	PSNR↑	SSIM†	LPIPS↓
SRN [42]	33.20	0.963	0.073	22.26	0.846	0.170	22.84	0.668	0.378
NV [24]	29.62	0.929	0.099	26.05	0.893	0.160	-	-	-
LLFF [28]	34.38	0.985	0.048	24.88	0.911	0.114	24.13	0.798	0.212
Ours	40.15	0.991	0.023	31.01	0.947	0.081	26.50	0.811	0.250

Neural Volumes (NV) - свертки и volume render Scene Representation Networks (SRN) - рекурентный volume render Local Light Field Fusion (LLFF) - 3d свертки, усреднение векторов признаков близлежащих камер

Проблемы NeRF

- 1-2 дня обучения на одну сцену (InstantNeRF)
- Необходимо одинаковое освещение на тренировочных данных (NeRF-w)
- Неизменяемый источник света (NeRV)
- Долгий инференс (InstantNeRF)
- Отдельная модель на каждую сцену (PixelNeRF)
- Сильное ухудшение качества из-за неточных позиций камер (NeRF--, BaRF)

Новые модели

zip-NeRF

InstantNeRF

