Polar Coordinates

Patrick Chen

March 6, 2025

Polar coordinated describe a point by the angle and distance.

$$r^2 = x^2 + y^2$$
, $\tan \theta = \frac{y}{x}$
 $x = r \cos \theta$, $y = r \sin \theta$

By some convention, the principal angle is $-\pi < \theta \le \pi$ although, a principal angle of $0 \le \theta < 2\pi$ is also common.

Negative Radius

A point with a $\theta \in (-\pi, \pi]$ and r > 0 can also be expressed with a negative radius.

$$\theta \mapsto \theta + \tau$$
$$r \mapsto -r$$

Example 1

$$r = \frac{1}{\cos(\theta) + \sin(\theta)}$$

$$r = \frac{1}{\cos(\theta) + \sin(\theta)}$$

$$r\cos(\theta) + r\sin(\theta) = 1$$

$$x + y = 1$$

$$y = 1 - x$$

This is a straight line with slope -1 and y-intercept 1.

Example 2

$$r = \sin \theta$$

$$r^{2} = r \sin \theta$$

$$x^{2} + y^{2} = y$$

$$x^{2} + y^{2} - 2(\frac{1}{2}y) + (\frac{1}{2})^{2} = (\frac{1}{2})^{2}$$

$$x^{2} + (y - \frac{1}{2})^{2} = (\frac{1}{2})^{2}$$

This is a circle with radius $r=\frac{1}{2}$ and origin $O=(0,\frac{1}{2}).$

Shapes in polar Coordinates

Graphing

A graph of a polar equation $r=g(\theta)$ is the set of all points in the plane what satisfy the equation. θ does not need to be a principal angle and r does not need to be positive. Sometimes it is easier to convert a polar function into a Cartesian function.

Circle

A circle is described with $r(\theta) = c$ where c is a constant. The radius of this circle is |c|.

Polar Tangents

The derivative of a polar function can be calculated the same way a parametric function's derivative is calculated with $x = r \cos \theta$, and $y = r \sin \theta$.

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} = \frac{\frac{dr}{d\theta}\sin(\theta) + r\cos(\theta)}{\frac{dr}{d\theta}\cos(\theta) - r\sin(\theta)}$$