Determining Thin Film Roughness with Extreme Ultraviolet Light

Cody Petrie Stephen Harman R. Steven Turley Brigham Young University

Extreme Ultraviolet (EUV)

- EUV Wavelength: about 1nm to 6onm.
- Absorbed strongly by almost every medium.

Nonspecular Reflection

Data Acquisition

- Lawrence Berkeley National Laboratory.
 - Collected data at the Advanced Light Source beamline 6.3.2.
- Collected data from two samples of UO_x (Uranium Oxide)
 - Thicknesses of 412nm & 44nm
- 4 scans for each sample, each with different wavelengths and different angles.

Data

- Channel Electron Multiplier (CEM)
 - Limited to about 100,000 photon counts.
 - Data taken with different filters to decrease photon count.
 - Renormalized points to get smooth reflection data. We have data that spans up to 6 decades.

UOx 412nm Thickness

UOx 44nm Thickness

Data Analysis

- Compared these results to 3 different calculation.
- Creating a surface that has RMS roughness and PSD determined by AFM data that has been collected.
- The 3 methods that we have used are
 - Geometrical Optics
 - Physical Optics
 - Physical Optics without Kirchhoff Approximation
 - No results from this yet

Geometrical Optics

- The Results that we got from geometrical optics did not correspond with the data collected.
- This must not be good enough for our surfaces.

Physical Optics

Kirchhoff Approximation

- Assume a plane wave incident on a locally planar surface.
- Calculate the currents induced on the surface.
- This approximation works if the surface is smooth compared to the wavelength.

Physical Optics

 Use Maxwell's equations to calculate the radiated fields.

$$\nabla \cdot \mathbf{D} = 0$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial \mathbf{t}}$$

$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial \mathbf{t}} = 0$$

These are turned into boundary integral equations by using the divergence theorem.

$$\int_{V} (\nabla \cdot \mathbf{A}) \, dV = \oint_{S} (\mathbf{A} \cdot \widehat{\mathbf{n}}) dA$$

- Slit allows 2D calculation rather than 3D.
- These calculations were done for a perfect conductor.
 Very similar to calculations for a dielectric.

Reflection vs. AFM

412nm Thickness

Measured

Calculated

Reflection vs. AFM

44nm Thickness

Measured

Calculated

Reflection vs. AFM

- 44nm Thickness
- AFM Data
 - RMS: 16.0 nm
 - PSD: 2.8 □ m⁻¹

UOx

Fitting Reflection Data

412nm Thickness

AFM:

RMS: 6.97nm

PSD: $0.2 \square m^{-1}$

Calculation: 5nm

 $0.2 \square m^{-1}$

Fitting Reflection Data

44nm Thickness

AFM:

RMS: 16nm

PSD: 2.8 □ m⁻¹

Calculation:

10nm

 $0.2 \square m^{-1}$

Conclusion

- Another method of measuring surface roughness that compliments existing methods such as AFM.
 - This gives us insights that other methods don't give us.

Acknowledgements

- R. Steven Turley
- Lexi Bach
- David Allred
- Jordan Bell
- Greg Hart
- Advanced Light Source
- Eric Gullikson
- Brigham Young University REU Program

Data Normalization

- Normalization
 - Width of the beam at the detector is 1.09°.
 - Calculate how much of the entire scan entered the detector.

$$\lambda = \frac{\int_a^b R \, d\theta}{\int_{-\infty}^\infty R \, d\theta}$$

• Where a and b are 1.09°/2 away from the peak.

Data Normalization

- Normalization
 - Reflectivity of the sample at a particular angle.

Reflectivity =
$$\frac{I}{I_0}$$

$$\frac{dR}{d\theta} = \frac{\text{Reflectivity}}{\lambda} = R'$$

• Normalized beam is $\frac{d^2R}{d\theta^2}$

$$\frac{d^2 R}{d\theta^2} = R \frac{R'}{\int_{-\infty}^{\infty} R \, d \, \theta}$$