Multivariate Modeling Spatial Estimation

Lecture outline . . .

- Trend Modeling
- Kriging

Introduction

Prerequisites

Probability

Multivariate Analysis

Spatial Estimation

Statistical Learning

Feature Selection

Multivariate Modeling

Conclusions

Multivariate Modeling Spatial Estimation

Lecture outline . . .

Trend Modeling

Introduction

Prerequisites

Probability

Multivariate Analysis

Spatial Estimation

Statistical Learning

Feature Selection

Multivariate Modeling

Conclusions

What Will You Learn?

Why Cover Spatial Estimation?

- We will use kriging estimate and variance combined with an assumption of Gaussian distribution to calculate the prior distribution (given well data) at each location.
- We will use multivariate kriging to combine the secondary variables to estimate the likelihood distribution.

Multivariate, Spatial Uncertainty

Geostatistical spatial estimation methods make an assumption concerning stationarity

- Geostatistical spatial estimation methods will make an assumption concerning stationarity
 - If we observe a trend, we should model the trend.

- Geostatistical spatial estimation methods will make an assumption concerning stationarity
 - Then model the residuals.

- Geostatistical spatial estimation methods will make an assumption concerning stationarity
 - After modeling, add the trend back to the modelled residuals

Conter for Geostalia

- How bad could it be if we did not model a trend?
- Geostatistical
 estimation would
 assume stationarity and
 away from data we
 would estimate with the
 global mean (simple
 kriging)!

Model with stationary mean + data.

Model with mean trend model and residual + data.

Trend Modeling

We must identify and model trends / nonstationarities

Images from Pyrcz and Deutsch (2014)

- While we discuss data-driven trend modeling here any trend modeling should include data integration over the entire asset team
 - Geology
 - Geophysics
 - Petrophysics
 - Reservoir Engineering

Any variance in the trend is removed from the residual:

$$\sigma_X^2 = \sigma_{X_t}^2 + \sigma_{X_r}^2 + 2C_{X_t,X_r}$$

• if the $X_t \parallel X_r$, $C_{X_t,X_r} = 0$

$$\sigma_{X_r}^2 = \sigma_X^2 - \sigma_{X_t}^2$$

- So if σ_X^2 is the total variance (variability), and $\sigma_{X_t}^2$ is the variability that is deterministically modelled, treated as known, and $\sigma_{X_r}^2$ is the component of the variability that is treated as unknown.
- Result: the more variability explained by the trend the less variability that remains as uncertain.

Additivity of Variance for Decomposing Trend and Residual

Can we partition variance of random variable Z between trend (X) and residual (Y)? $\sigma_Z^2 = E(Z^2) - [E(Z)]^2$

- Start with the variance of Z:
- Substitute: Z = X + Y $\sigma_{X+Y}^2 = E\left((X+Y)^2\right) \left[E(X+Y)\right]^2$ $\sigma_{X+Y}^2 = E\left(X^2 + 2XY + Y^2\right) \left[E(X) + E(Y)\right]^2$ $\sigma_{X+Y}^2 = E\left(X^2\right) + 2E(XY) + E\left(Y^2\right) \left(E(X)^2 + 2E(X)E(Y) + E(Y)^2\right)$ $\sigma_{X+Y}^2 = \left[E\left(X^2\right) E(X)^2\right] + \left[E\left(Y^2\right) E(Y)^2\right] + 2\left[E(XY) E(X)E(Y)\right]$ $\sigma_X^2 \qquad \sigma_Y^2 \qquad C_{XY}(0)$
- Note covariance: $C_{XY} = E(XY) E(X)E(Y)$
 - $\sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2 + 2C_{XY}(0)$ \triangleleft Additivity of variance
- If the X_Y , $C_{XY}(0) = 0$, then $\sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2$ In practice

- Model that assumes perfect knowledge, without uncertainty
- Based on knowledge of the phenomenon or trend fitting to data
- Most subsurface models have a deterministic component (trend) to capture expert knowledge and to provide a stationary residual for geostatistical modeling.

Trend Modeling

Trend models:

Example facies trend model Gocad SKUA. http://www.pdgm.com/getdoc/b24891f9-7470-4728-8cb7-0ddd7df196df/skua-facies-modeling/

- Tend to be smooth, based on data and interpretation
- May be complicated (see above)
- Parameterized by vertical proportion curves (see below) and areal trend maps

Trend Modeling Workflow

- How to calculate a trend model:
 - Moving window average of the available data
 - Weighting scheme within the window
 - » Uniform weights can cause discontinuities
 - » Reduce weight at edges of moving window to reduce discontinuities (e.g. Gaussian weights).

Trend 2D + 1D Workflow

Calculate 2D Area and 1D Vertical trends:

Trend Modeling Workflow

How to calculate a trend model:

1D Vertical Trend

3D Trend

 Calculate the 2D areal trend by interpolating over vertically averaged wells.

2D Areal Trend

- Calculate the 1D vertical trend by averaging layers
- Combine the 1D vertical and the 2D areal trends:

Trend Definition

- Observation of nonstationarity in any statistic, metric of interest
- A model of the nonstationarity in any statistic, metric of interest
- Typically modeled with support of data and expert knowledge in a deterministic manner (without uncertainty).

Multivariate Modeling Spatial Estimation

Lecture outline . . .

Kriging

Introduction

Prerequisites

Probability

Multivariate Analysis

Spatial Estimation

Statistical Learning

Feature Selection

Multivariate Modeling

Conclusions

Consider the case of estimating at some unsampled location:

- How would you do this given data, $z(\mathbf{u}_1)$, $z(\mathbf{u}_2)$, and $z(\mathbf{u}_3)$?
- Note: z is the variable of interest (e.g. porosity etc.) and \mathbf{u}_i is the data locations.

Consider the case of estimating at some unsampled location:

 $z(u_{\alpha})$ is the data values

 $z^*(u_0)$ is an estimate

 λ_{α} is the data weights

 m_z is the global mean

How would you do this given data, $z(\mathbf{u}_1)$, $z(\mathbf{u}_2)$, and $z(\mathbf{u}_3)$?

$$z^*(\mathbf{u_0}) = \sum_{\alpha=1}^n \lambda_{\alpha} \mathbf{z}(\mathbf{u_{\alpha}}) + \left(1 - \sum_{\alpha=1}^n \lambda_{\alpha}\right) m_z$$
 Unbiasedne Constraint Weights su

Unbiasedness Weights sum to 1.0.

Consider the case of estimating at some unsampled location:

How would you do this given data, $z(\mathbf{u}_1)$, $z(\mathbf{u}_2)$, and $z(\mathbf{u}_3)$?

$$z^*(\mathbf{u}_0) - m_z(\mathbf{u}_0) = \sum_{\alpha=1}^n \lambda_\alpha (\mathbf{z}(\mathbf{u}_\alpha) - m_z(\mathbf{u}_\alpha))$$
 In the case where the mean is non-stationary.

Given
$$y = z - m$$
, $y^*(u_0) = \sum_{\alpha=1}^n \lambda_\alpha y(u_\alpha)$

Simplified with residual, y.

Consider the case of estimating at some unsampled location:

• Linear weighted, sound good. How do we get the weights? λ_{α} , $\alpha = 1, ..., n$

$$y^*(\mathbf{u}_0) = \sum_{\alpha=1}^n \lambda_\alpha \, \mathbf{y}(\mathbf{u}_\alpha)$$
 Simplified with residual, y.

Consider the case of estimating at some unsampled location:

- Linear weighted, sound good. How do we get the weights? λ_{α} , $\alpha = 1, ..., n$
- Equal weighted / average?

$$\lambda_{\alpha} = 1/n$$

Equal weight average of data

What's wrong with that?

standardized so weights

sum to 1.0.

Consider the case of estimating at some unsampled location:

- How do we get the weights? λ_{α} , $\alpha = 1, ..., n$
- Inverse distance?

$$\lambda_{lpha} = rac{1}{dist(\mathbf{u}_0, \mathbf{u}_{lpha})^p} igg/_{\sum_{lpha=1}^n \lambda_{lpha}}$$

What's wrong with that?

Consider the case of estimating at some unsampled location:

- How do we get the weights? λ_{α} , $\alpha = 1, ..., n$
- It would be great to use weight that account for closeness (spatial correlation > distance alone), redundancy (once again with spatial correlation).
- How can we do that?

Derivation of Simple Kriging Equations

Consider a linear estimator:

$$Y^*(\mathbf{u}) = \sum_{i=1}^n \lambda_i \cdot Y(\mathbf{u}_i)$$

where $Y(u_i)$ are the residual data (data values minus the mean) and $Y^*(u_i)$ is the estimate (add the mean back in when we are finished)

The estimation variance is defined as:

Stationary Mean, Variogram $E{Y} = 0$

$$E\left\{\left[Y^{*}(u) - Y(u)\right]^{2}\right\} = \dots$$

$$2\gamma(\mathbf{h}) = E\left\{\left[Y(\mathbf{u}) - Y(\mathbf{u} + \mathbf{h})\right]^{2}\right\}$$

$$= E\left\{\left[Y^{*}(u)\right]^{2}\right\} - 2 E\left\{Y^{*}(u) Y(u)\right\} + E\left\{\left[Y(u)\right]^{2}\right\}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} E\left\{Y(u_{i}) Y(u_{j})\right\} - 2 \sum_{i=1}^{n} \lambda_{i} E\left\{Y(u) Y(u_{i})\right\} + C(0)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} C(u_{i}, u_{j}) - 2 \sum_{i=1}^{n} \lambda_{i} C(u, u_{i}) + C(0)$$

redundancy

closeness

variance

 $C(\mathbf{u}_i, \mathbf{u}_j)$ – covariance between data i and j, $C(\mathbf{u}_i, \mathbf{u})$ covariance between data and unknown location and C(0) is the variance.

More Derivation

• Optimal weights λ_i , i = 1,...,n may be determined by taking partial derivatives of the error variance w.r.t. the weights

$$\frac{\partial[]}{\partial \lambda_i} = \sum_{j=1}^n \lambda_j C(\mathbf{u}_i, \mathbf{u}_i) - 2 \cdot C(\mathbf{u}, \mathbf{u}_i), i = 1, \dots, n$$

and setting them to zero

$$\sum_{j=1}^{n} \lambda_j C(\mathbf{u}_i, \mathbf{u}_i) = C(\mathbf{u}, \mathbf{u}_i), i = 1, ..., n$$

 This system of n equations with n unknown weights is the simple kriging (SK) system

Kriging Definition

- Estimation approach that relies on linear weights that account for spatial continuity, data closeness and redundancy.
- Weights are unbiased and minimize the estimation variance.

Simple Kriging: Some Details

There are three equations to determine the three weights:

$$\lambda_1 \cdot \mathcal{C}(\mathbf{u}_1, \mathbf{u}_1) + \lambda_2 \cdot \mathcal{C}(\mathbf{u}_1, \mathbf{u}_2) + \lambda_3 \cdot \mathcal{C}(\mathbf{u}_1, \mathbf{u}_3) = \mathcal{C}(\mathbf{u}_0, \mathbf{u}_1)$$

$$\lambda_1 \cdot C(\mathbf{u}_2, \mathbf{u}_1) + \lambda_2 \cdot C(\mathbf{u}_2, \mathbf{u}_2) + \lambda_3 \cdot C(\mathbf{u}_2, \mathbf{u}_3) = C(\mathbf{u}_0, \mathbf{u}_2)$$

$$\lambda_1 \cdot \mathcal{C}(\mathbf{u}_3, \mathbf{u}_1) + \lambda_2 \cdot \mathcal{C}(\mathbf{u}_1, \mathbf{u}_2) + \lambda_3 \cdot \mathcal{C}(\mathbf{u}_1, \mathbf{u}_3) = \mathcal{C}(\mathbf{u}_0, \mathbf{u}_1)$$

In matrix notation: Recall that

$$C(\mathbf{h}) = C(0) - \gamma(\mathbf{h})$$

$$\begin{bmatrix} C(\mathbf{u}_1, \mathbf{u}_1) & C(\mathbf{u}_1, \mathbf{u}_2) & C(\mathbf{u}_1, \mathbf{u}_3) \\ C(\mathbf{u}_2, \mathbf{u}_1) & C(\mathbf{u}_2, \mathbf{u}_2) & C(\mathbf{u}_2, \mathbf{u}_3) \\ C(\mathbf{u}_3, \mathbf{u}_1) & C(\mathbf{u}_3, \mathbf{u}_2) & C(\mathbf{u}_3, \mathbf{u}_3) \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} C(\mathbf{u}_0, \mathbf{u}_1) \\ C(\mathbf{u}_0, \mathbf{u}_2) \\ C(\mathbf{u}_0, \mathbf{u}_3) \end{bmatrix}$$

redundancy

closeness

Properties of Simple Kriging

- Solution exists and is unique of matrix $\left[C(v_i,v_j)\right]$ is positive definite
- Kriging estimator is unbiased:

$$E\left\{ \begin{bmatrix} Z & -Z^* \end{bmatrix} \right\} = 0$$

- Minimum error variance estimator (just try to pick weights, you won't bet it)
- Best Linear Unbiased Estimator
- Provides a measure of the estimation (or kriging) variance (uncertainty in the estimate):

$$\sigma_E^2(\mathbf{u}) = C(0) - \sum_{\alpha=1}^n \lambda_\alpha C(\mathbf{u} - \mathbf{u}_\alpha) \qquad \sigma_E^2 \to [\mathbf{0}, \sigma_x^2]$$

More Properties

- Exact interpolator: at data location
- Kriging variance can be calculated before getting the sample information, homoscedastic!
- Kriging takes into account:
 - distance of the information: $C(\mathbf{u}, \mathbf{u}_i)$
 - configuration of the data: $C(\mathbf{u}_i, \mathbf{u}_j)$
 - structural continuity of the variable being considered: $C(\mathbf{h})$
- The smoothing effect of kriging can be forecast we will return to this with simulation.
- Kriging theory is part of the probabilistic theory of projectors: orthogonal projection onto space of linear combinations of the n data (Hilbert space)

File Simple_Kriging_Demo.xls

Simple Kriging Demonstration

Michael Purcz, Geostatistics at Petroleum and Geosustems Engineering, University of Texas at Austin (mpyrcziił austin, utexas edu)

ı	4.0	15.0										
	1. Data	and Esti	mate Lo	cations and Value								
	Point	8	У	value	residual							
	1	60	80	0.1	-0.040							
	2	25	50	0.12	-0.020							
	3	80	10	0.2	0.060							
	unknown	50	50									
	mean			0.140								

2. Dista	nce Mati	rix	
0.00	46.10	72.80	31.62
46.10	0.00	68.01	25.00
72.80	68.01	0.00	50.00

5. Covariance Matrix								
1.000	0.771	0.643	0.842					
0.771	1.000	0.666	0.875					
0.643	0.666	1.000	0.752					

Mean Weight

-0.029

Description

This sheet provides an illustration of Simple Kriging at a single estimated location.

- Step 1: Input the data locations and values, the unknown simulated location. At any point these locations and values may be changed to observed their influence on the simulation.
- Step 2: The distance matrix is automatically calculated, that is the distance between the data and the unknown locations.
- Step 3: Enter the model of spatial continuity in the form of an isotropic spherical variogram and nugget effect (contributions
- should sum to one). This model may be changed at any time to observed sensitivities to spatial continuity. Step 4: Variogram matrix is calculated by applying the distance matrix to the isotropic variogram model.
- Step 5: Covaraince matrix is calculated by subtracing the variogram from the variance (1 for standard normal distribution).

This is applied to improve numerical stability as a diagonally dominant matrix is more readily invertable.

- Step 6: The left hand side of the covariance matrix is inverted.
- Step 7: The inverted left handside matrix is multiplied by the right hand side matrix to calculate the simple kriging weights.
- Step 8: The kriging estimate and kriging variance are calculated with the weights and covariances.
- Step 9: With the Gaussian assumption the complete local conditional cumulative distribution function is available.

Excel file available at: https://github.com/GeostatsGuy/ExcelNum ericalDemos/blob/master/Simple_Kriging_ Demo.xlsx

Simple Kriging Hands-on

- Some ideas for experimenting with simple kriging. Do the following and pay attention to the weights, the estimate and the estimation variance.
- 1. Set points 1 and 2 closer together.

2. Put point 1 behind point 2 to create screening.

3. Put all points outside the range.

4. See the range very large.

Spatial Uncertainty Hands-on

Variogram and Trend-based Uncertainty Away from a Single Well

Michael Pyrcz, Geostatistics at Petroleum and Geosystems Engineering, University of Texas at Austin (mpyrcz@austin.utexas.edu)

Instructions: set the (1) well porosity value, (2) global porosity variance, (3) trend slope away from the well, and (4) variogram parameterized by the relative nugget effect and spherical range.

Spatial Model							
Vell Value	0.124						
Global Yar.	0.0009						
Trend m	0.00004						
Nugget	0.05						
Spherical	0.95						
Range	450						

Distance	•	5	10	15	20	25	3♦	35	40	45	50	55	60	65	70	75	**	‡ 5	90	95	100	105	110	115	120
Estimate	0.124	0.1242	0.1244	0.1246	0.1248	0.125	0.1252	0.1254	0.1256	0.1258	0.126	0.1262	0.1264	0.1266	0.1268	0.127	0.1272	0.1274	0.1276	0.1278	0.128	0.1282	0.1284	0.1286	0.1288 (
Rel. Var.	5×	7×	8×	10%	11%	13%	14%	16%	18%	19%	21%	22%	24%	25%	27%	29%	30×	32×	33×	35×	36%	38%	39%	41%	42%
St. Dev.	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
P10	0.12	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.10	0.10	0.10	0.10	0.10
P90	0.13	0.13	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
GlobalP10	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
GlobalP90	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17

Things to try: change spatial continuity range and observed impact on uncertainty away from well. File: Uncertainty_Away_From_Well_Demo.xlsx

Multivariate Kriging

- Simple kriging may be applied to make estimates given a set of collocated secondary variables at the location to estimate the primary variable.
- This is not spatial estimation, but multivariate estimation!

- Given the assumption of Gaussian distributed variables we have a complete model of uncertainty for the primary variable at location u!
- We can back transform for uncertainty in the original variable units.

Multivariate Kriging Demonstration

 Demonstration of multivariate kriging to estimate porosity from secondary data permeability and acoustic impedance.

Spatial Estimation **New Tools**

Topic	Application to Subsurface Modeling
Trend Modeling	Decompose variance into deterministic trend and stochastic residual. 30% of porosity variance is described by a linear depth trend and 70% is described by a 3D variogram model.
Kriging Estimates and Kriging Variances	Kriging provides the best estimate and a measure of estimation variance. Given a kriging estimate of 13% and kriging variance of 9% and the assumption of a Gaussian distribution we have a complete local distribution of uncertainty for pre-drill porosity.
Multivariate Kriging	Multivariate kriging combines secondary information sources while accounting for closeness and redundancy. Given secondary data the likelihood distribution for local porosity is mean of 15% and standard deviation of 2.5% with a Gaussian distribution.

Multivariate Modeling Spatial Estimation

Lecture outline . . .

- Trend Modeling
- Kriging

Introduction

Prerequisites

Probability

Multivariate Analysis

Spatial Estimation

Statistical Learning

Feature Selection

Multivariate Modeling

Conclusions