Math formulas for Competitive Programming

1 Number theory

Theorem 1.1 (Chicken McNugget Theorem). Let a, b be two coprime positive integers. Then, the largest non-negative integer that cannot be expressed as ax + by ($x \ge 0, y \ge 0$) is equal to ab - a - b.

Corollary 1.1.1. Let a, b be two coprime positive integers. Then, there are exactly $\frac{(a-1)(b-1)}{2}$ non-negative integers that cannot be expressed as ax + by $(x \ge 0, y \ge 0)$.

Definition 1.2 (p-adic valuation of n). For a given natural number n and a prime p, the p-adic valuation of n is the highest exponent of a power of p that divides n and is denoted as $v_p(n)$.

Remark.

$$v_p(n!) = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor \tag{1}$$

Theorem 1.3 (Legendre's Formula). Let n be a natural number and p be a prime. Let $s_p(n)$ be the sum of digits of n in base p. Then,

$$v_p(n!) = \frac{n - s_p(n)}{p - 1}$$

Corollary 1.3.1.

$$v_p(\binom{n}{m}) = \frac{s_p(m) + s_p(n-m) - s_p(n)}{p-1}$$

Corollary 1.3.2.

$$v_p\binom{n}{m} = O(\log_p(n))$$

Theorem 1.4 (Kummer's Theorem). Given a prime p and integers $0 \le m \le n$, the p-adic valuation of the binomial coefficient, denoted as $v_p(\binom{n}{m})$, is equal to the number of carries when adding n-m and m in base p.

Lemma 1.5. For any natural number n and any prime p, we have:

$$(1+x)^{p^n} \equiv 1 + x^{p^n} \pmod{p}$$

Theorem 1.6 (Lucas' Theorem). Given a prime p and non-negative integers n, m such that expressed in base p they are:

$$n = \sum_{i=0}^{k} n_i p^i$$

$$m = \sum_{i=0}^{k} m_i p^i$$

where k is the maximum of the lengths of n and m in base p (we can complete with leading zeroes for the minimum length). Then, we have:

$$\binom{n}{m} \equiv \prod_{i=0}^{k} \binom{n_i}{m_i} \pmod{p}$$

(using the convention that if n < m then $\binom{n}{m} = 0$)

Corollary 1.6.1. Given two integers n, p such that $1 \le p \le n$ and p is prime, then

$$\binom{n}{p} \equiv \left| \frac{n}{p} \right| \pmod{p}$$

Corollary 1.6.2. Given a prime p and a non-negative integers n with a p-expansion

$$n = \sum_{i=0}^{k} n_i p^i$$

Then there are $\prod_{i=0}^k (n_i + 1)$ integers x such that $\binom{n}{x}$ is not divisible by p. In other words, the n-th row of Pascal's triangle has $\prod_{i=0}^k (n_i + 1)$ numbers that are not divisible by p.

Lemma 1.7 (Harmonic bounds). Let H_n be the harmonic sum $(H_n = \sum_{i=1}^n \frac{1}{i})$. Then, $\ln(n+1) \leq H_n \leq 1 + \ln(n)$

Theorem 1.8 (Erdős–Szekeres Theorem). Any sequence of distinct real numbers with length at least L = rs + 1 (with r, s non-negative integers numbers) has

- A monotonically increasing subsequence with length at least r + 1, or
- A monotonically decreasing subsequence with length at least s+1

Corollary 1.8.1. Any permutation of n numbers has

- A monotonically increasing subsequence with length at least $|\sqrt{n}|$, or
- A monotonically decreasing subsequence with length at least $|\sqrt{n}|$

2 Graph

Lemma 2.1 (Euler's Formula - Planar Graph). For any planar graph with V vertices, E edges, F faces and C connected components, then V - E + F = C + 1

Lemma 2.2 (Cayley's Formula). The number of spanning trees of a complete graph of n vertices is n^{n-2}

Lemma 2.3 (Kirchoff's matrix tree theorem). Let A be the adjacency matrix where A_{uv} is the number of edges between u and v. Let D be the degree matrix where D_{uu} is the degree of vertex u. Let L = D - A be the Laplacian Matrix. Then, all cofactors of L are equal to each other and they are equal to the number of spanning trees of the graph.

3 Geometry

Lemma 3.1 (Euler's Formula). For any convex polyhedron with V vertices, E edges and F faces, then V - E + F = 2