Wirkungsquerschnitt

$$\sigma = rac{N_s}{N_{in} \cdot rac{ ext{Targetteilchen}}{ ext{cm}^2}} \;\;\;\;\;\;\; \leftrightarrow ext{prozessabhängig!}$$

(ohne Berücksichtigung von Detektorakzeptanzen und -effizienzen, experimentelle Daten (N_s) müssen üblicherweise korrigiert werden (Simulationen zur Effizenz/Akzeptanzbestimmung))

Luminosität

$$L = \phi N_t = \dot{N}_{in} \cdot \frac{N_t}{A}$$
 \leftrightarrow Strahlstrom·Targetflächendichte

Integrierte Luminosität

$$\int Ldt$$

 $\leftrightarrow z.B. zum Vergleich von Datenmengen$

28

Der Wirkungsquerschnitt

1) Der Wirkungsquerschnitt im Allgemeinen

Wie groß ist die Wahrscheinlichkeit, dass eine Reaktion eines bestimmten Typs passiert

 \leftrightarrow Information über die auftretenden Prozesse und Wechselwirkungen

2) zurück zur Rutherfordstreuung

- Überprüfung der theoretischen Erwartung (Coulombstreuung am schweren Atomkern) anhand des Experimentes

⇒ Differentieller Wirkungsquerschnitt für die Rutherford-Streuung = ?

Masse und positive Ladung in einem kleinen Raumgebiet konzentriert

→ Atomkern

Vergleich Experiment

Rutherford: Annahme: positive Ladung ist im Zentrum des Atoms konzentriert

 \Rightarrow Coulomb Streuung: $F \sim 1/r^2$

b: Stoßparameter

klassisch ...

30

Das Rutherford Experiment: Coulomb-Streuung

 $\frac{\mathbf{v_0}}{\mathbf{v_0}}$

geringster Abstand δ_0

$$E_{kin}=rac{mv_0^2}{2}=rac{Z_1\cdot Z_2\cdot e^2}{4\pi\epsilon_0\delta_0}$$

$$ightarrow \delta_0 = rac{Z_1 \cdot Z_2 \cdot e^2}{4\pi \epsilon_0 E_{kin}}$$

Energieerhaltung:

$$rac{mv^2}{2}_{\uparrow} = rac{mv_0^2}{2} - rac{Z_1 \cdot Z_2 \cdot e^2}{4\pi\epsilon_0 \delta}$$

kinetische Energie bei kleinstem Abstand δ

Drehimpulserhaltung:

$$mv\delta=mv_0b$$

Impulserhaltung:

$$ec{p}ert = ert ec{p}'ert$$
: elastische Streuung $ec{q} = ec{p} - ec{p}' \quad q = 2p \cdot \sin(rac{ heta}{2})$ oder $p_{ert ert} = -mv_0\sin(rac{ heta}{2}),$ $p_{ert ert}' = +mv_0\sin(rac{ heta}{2})$ ($ert ert ert$ = entlang OD)

$$an(rac{ heta}{2}) = rac{\delta_0}{2b} \quad \leftrightarrow$$
 Ableitung Übungen (*)

Das Rutherford Experiment: Coulomb-Streuung

im Folgenden:
Axialsymmetrie des
Streuprozesses \leftrightarrow nur Abhängigkeit von θ

klassischer Streuprozess: $\mathbf{b} \leftrightarrow \boldsymbol{\theta}$

Teilchenzahlerhaltung:

Anzahl einlaufender Teilchen/s = Anzahl gestreuter Teilchen/s in $d\Omega$ of dR

$$\begin{array}{rcl} j \cdot 2\pi b db & = & j \cdot dR \left(\frac{d\sigma}{d\Omega}\right) \\ & = & j \cdot 2\pi \sin\theta d\theta \left(\frac{d\sigma}{d\Omega}\right) \\ \Rightarrow & \left(\frac{d\sigma}{d\Omega}\right) = \frac{b}{\sin\theta} \left|\frac{db}{d\theta}\right| & \quad \operatorname{mit} ({}^{\!\!\!\!\!\!\!\!\!^{*}}) \Rightarrow \end{array}$$

Differentieller Wirkungsquerschnitt:

$$\left(rac{d\sigma}{d\Omega}
ight) = \left(rac{Z_1\cdot Z_2\cdot e^2}{4\pi\epsilon_0\cdot 4E_0}
ight)^2\cdot rac{1}{\left(\sinrac{ heta}{2}
ight)^4}$$

Das Rutherford Experiment: Coulomb-Streuung

Rutherford'sche Streuformel:

$$\left(rac{d\sigma}{d\Omega}
ight) = \left(rac{Z_1\cdot Z_2\cdot e^2}{4\pi\epsilon_0\cdot 4E_0}
ight)^2\cdot rac{1}{\left(\sinrac{ heta}{2}
ight)^4}$$

- fällt sehr schnell mit θ ab
- $ullet \sim rac{1}{E_{kin}^2}$: fällt bei festem Winkel quadratisch ab
- $\frac{1}{\left(\sin\frac{\theta}{2}\right)^4}$: charakteristisch für 1/r -Potential
- Integral divergiert wegen unendlicher Reichweite der Coulomb-Kraft

Rutherford'sche Streuformel:

$$\left(rac{d\sigma}{d\Omega}
ight) = \left(rac{Z_1\cdot Z_2\cdot e^2}{4\pi\epsilon_0\cdot 4E_0}
ight)^2\cdot rac{1}{\left(\sinrac{ heta}{2}
ight)^4}$$

Näherungen:

- elastische Streuung am reinen Coulombpotential (keine Anregungen), Kern und Projektil als Punktladungen
- $M\gg m$: Rückstoß vernachlässigt
- Wechselwirkungen von Teilchen ohne Spin (keine magnetische WW).

Anmerkung:

Quantenmechanische Rechnung liefert das gleiche Ergebnis wie die klassische Herleitung

Das Rutherford Experiment: Coulomb-Streuung

Anschaulich:

- größere Winkel \leftrightarrow größerer Impulsübertrag $q=2p\cdot\sin(rac{ heta}{2})$
- je größer q ist, desto größer muss Coulombkraft sein, die m spürt, um nach aussen gestreut zu werden

- \leftrightarrow Hohe Felder in der Nähe des Kerns \Rightarrow kleine b
- ⇒ Relativ zur gesamten Wechselwirkungsfläche (Atome) tritt die Nähe zum Kern sehr selten auf ⇒ Große Winkel sehr selten.
 - bei festen θ : q umso größer, je größer E_{kin} ist je größer q ist, desto größer muss Coulombkraft sein, die m auf θ herausstreut.
- \Rightarrow Wahrscheinlichkeit dafür (d.h. auch der Wirkungsquerschnitt) fällt mit E_{kin}^2

Abweichungen von der Rutherford-Streuung

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{Z_1 \cdot Z_2 \cdot e^2}{4\pi\epsilon_0 \cdot 4E_0}\right)^2 \cdot \frac{1}{\left(\sin\frac{\theta}{2}\right)^4}$$

• feste Einschussenergie:

⇔ Effekt der starken Wechselwirkung

⇒ Bestimmen des Kernradius

$$R_Kpprox \delta_{crit} = rac{Z_1\cdot Z_2\cdot e^2}{4\pi\epsilon_0 2E_{kin}} \cdot \left[1+1/\sin(rac{ heta_{crit}}{2})
ight]$$

Das Rutherford Experiment: Coulomb-Streuung

Abweichungen von der Rutherford-Streuung

• fester Streuwinkel:

⇔ Effekt der starken Wechselwirkung

⇒ Bestimmen des Kernradius

$$R_Kpprox \delta_{crit} = rac{Z_1\cdot Z_2\cdot e^2}{4\pi\epsilon_0 2E_{kin}} \cdot \left[1+1/\sin(rac{ heta_{crit}}{2})
ight]$$

$$\Rightarrow R pprox R_0 \cdot A^{1/3}, \qquad R_0 pprox 1.3 fm$$

37

Atomkerne

- Größe des Atomkerns: 1-10 fm, $1 \text{fm} = 10^{-15} \text{m}$
- $\Rightarrow Rpprox R_0\cdot A^{1/3}\,,\quad R_0pprox 1.3fm$ aus Streuexperimenten
 - Typischer Radius der Atomhülle: 0.1nm = 10⁻¹⁰m
 - Atomkerne aufgebaut aus Protonen und Neutronen
 - Neutron entdeckt durch Chadwick (1932)

..... wir werden etwas später wieder auf die Atomkerne zurückkommen

38

Weitere historische Daten

- \leftrightarrow detailliertere Liste siehe z.B. Bethge "Kernphysik"
 - Bohr'sches Atommodell (1913), Erklärung des Wasserstoffspektrums
 - Entwicklung der Quantenmechanik um die Atomstruktur zu beschrieben (from 1925: De Broglie, Schrödinger, Heisenberg, Born)
 (später auch QFT ↔ Lamb-shift)
 - Neutrino Hypothese (1930 Pauli) (β-decay)
 - Entdeckung des Neutrons (1932 Chadwick)
 - Entdeckung des Positrons (1932 Anderson)
 - Entdeckung der Kernspaltung (1938 Hahn, Strassmann)
 - Erste kontrollierte Kettenreaktion (1942 Fermi)
 - Entwicklung der Atombombe (1945 Oppenheimer ...)
 - Entdeckung des Pions (1947 Powell) (heute erklärt als $q\bar{q}$)
 - Entdeckung von Teilchen mit Strangeness (1953 Brookhaven)
 - Entdeckung des Antiprotons (1955 Chamberlain, Segre)
 - Experimentelle Entdeckung des Neutrinos (1959 Reines, Cowan) (nach 29 Jahren ...)

Weitere historische Daten

- Paritätsverletzung im β-Zerfall (1956 Lee, Yang, Wu)
 (bis dahin hatte man als selbstverständlich angesehen, dass Prozesse invariant unter Raumspiegelung sind)
- Quarkmodell für Hadronen (1964 Gell-Mann, Zweig) (Ordnungsschema)
- Entwicklung der Quantenchromodynamik (1972 Gell-Mann)
- Beobachtung des $J/\Psi \to$ Bestätigung des Charm-Quarks (1974 Richter, Ting) (zuvor postuliert um das Nicht-Auftreten bestimmter Prozesse in der schwachen WW. zu erklären)
- Beobachtung des Bottom-Quarks (1977 Ledermann)
- Entdeckung des W- und Z-Bosons (1983 Rubbia) (Eichbosonen der schwachen WW.)
- Entdeckung des Top-Quarks (1995 Fermi-Lab.)
- Beobachtung von Neutrino-Oszillationen → Neutrinos haben Masse! (1998 Superkamiokande, 2001 SNO, 2003 Kamland)
- Entdeckung des Higgs-Bosons (2012 CERN)
 (M=125 GeV, 2013 Nobelpreis für P. Higgs und F. Englert)

Einführung: Unser Bild heute ...

Das Standardmodell der Teilchenphysik

Kurze Zusammenfassung ... mehr Information später der Vorlesung

Elementarteilchen: 3 Familien:

(= Fermionen: Spin 1/2-Teilchen)

Das Standardmodell der Teilchenphysik

• Elementarteilchen: 3 Familien:

Fundamentale Kräfte / Wechselwirkungen

4 fundamentale Wechselwirkungen

- Gravitation (im Bereich der Teilchenphysik zu vernachlässigen)
- Elektromagnetische Wechselwirkung
- Schwache Wechselwirkung
- Starke Wechselwirkung
- → auch verantwortlich für Teilchenzerfälle usw.
- ⇒ Wechselwirkung durch Teilchenaustausch

• Elementarteilchen und Austauschteilchen

Wechselwirkung durch Teilchenaustausch

(aus Povh et al.)

klassische Physik: Wechselwirkung zwischen zwei Teilchen beschrieben

durch ein Feld/Potential

Quantenfeldtheorie: Wechselwirkung durch den Austausch von Bosonen