Challenge: When Will the Sakura Bloom?

Problem definition: Basics of the Sakura Bloom-cycle

In a year, sakura trees basically go through 4 phases: energy production, hibernation, growth, and of course flowering. These phases roughly follow the seasons, but not exactly.

Production phase: Initial development of the buds (Summer-Fall)

Hibernation phase: Bud growth stops while the tree goes into hibernation (Late Fall-Winter)

Growth phase: Buds once again continue to grow when the tree comes out of its winter hibernation (Late Winter-Spring)

Flowering phase: The buds finally bloom in spring (as climate conditions allow), once they have been able to fully develop. (Spring)

Each year, near the end of winter but before the trees finally bloom, the hibernation period ends. The sakura that rested through the winter once gain become metabolically active, and the buds continue to grow (though we may not immediately notice when this happens.) However, the cycle is not simply clockwork- for example, in places where the temperature is above 20°C year-round, the trees are unable to hibernate sufficiently, and thus cannot blossom.

In this challenge, we have outlined the basic mechanism by which the sakura reach their eventual bloom-date. We consider building a bloom-date prediction model for the case of sakura in Tokyo, with the data split as follows:

Test years: 1966, 1971, 1985, 1994, and 2008

Training years: 1961 to 2017 (Excluding the test years)

You should fit the model to the data from the training years, then use the model to predict the bloom-date for each of the test years.

Abstract:

Based on different features of weather data of Tokyo, the blooming date of Sakura flower(cherry blossom) is to be predicted by diffrent models and accuracies are to be compared based on r2 score. Along with two given models, an ANN model has been proposed here. Required processing and feature engineering has been done and explained with proper tuning of hyper parameters.

Problem 0-1: (5pts)

Acquire data of sakura blooming date (桜の開花日) for Tokyo from 1961 to 2018 using the Japanese Meteorological Agency website (気象庁).

Data collection:

Weather data(Tokyo) of everyday from January,1961 to March,2017 has been collected from Japanese Meteorological Agency website(https://www.jma.go.jp/jma/en/menu.html)). The collected features in the dataset are-

- 1. Local pressure
- 2. Sea pressure
- 3. Precipitation data
- 4. Maximum, minimum and average temperature data
- 5. Sun hours
- 6. Average and minimum humidity
- 7. Blooming date of Sakura in Tokyo for each year

Importing libraries

```
In [1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.metrics import r2_score, mean_squared_error
    from sklearn.preprocessing import RobustScaler, MinMaxScaler
    import tensorflow as tf
```

Functions

```
In [3]: def ActualBD(dframe,y):
            actual days=[]
            grouped = dframe.groupby('year')
            for i in range(len(y)):
                actual day = 0
                tempo = grouped.get_group(y[i])
                total days = tempo.shape[0]
                tempo = tempo.reset index(drop=True)
                for p in range(total days):
                    if tempo.loc[p,'bloom']==0:
                         actual day = 0
                     else:
                         actual day = tempo.loc[p,'day count']
                         break
                actual_days.append(actual_day)
            bd df = pd.DataFrame({'years':y,'day:actual':actual days})
            return bd df
```

```
In [4]: def SplitDataSet(dframe,t_years):
    #Takes total dataframe and values of 'test' years
    #Returns separate train and test dataframes
    train_dframe = dframe[~dframe['year'].isin(t_years)]
    train_dframe = train_dframe.reset_index(drop=True)
    test_dframe = dframe[dframe['year'].isin(t_years)]
    test_dframe = test_dframe.reset_index(drop=True)
    return train_dframe,test_dframe
```

```
In [5]: def ThresholdDegreeRule(dframe, degree, y):
            #Takes a dataframe, Threshold temperature value for blooming and a list of years
            #Returns prediction of blooming date for each year
            b count =[]
            b month =[]
            b day = []
            sum_values = []
            actual days=[]
            grouped = dframe.groupby('year')
            for i in range(len(y)):
                actual day = 0
                tempo = grouped.get group(y[i])
                total days = tempo.shape[0] #Needs to be counted before dropping January
                tempo =tempo[tempo.month != 1] #Excluding January to start from February 1st
                tempo = tempo.reset index(drop=True)
                sum deg = 0
                for j in range(total days):
                    day no = tempo.loc[j,'day count']
                    sum deg= sum deg+ tempo.loc[j, 'max temp']
                    if sum deg>degree:
                        break
                b count.append(day no)
                for p in range(total days):
                    if tempo.loc[p,'bloom']==0:
                         actual day = 0
                     else:
                         actual day = tempo.loc[p,'day count']
                         break
                actual days.append(actual day)
                sum values.append(sum deg)
            pred = pd.DataFrame({'years':y,'day:actual':actual days,'day:predicted':b count,'sum':sum values})
            return pred
```

```
In [6]: def AccMaxTempCounter(dframe,y):
            #Takes dataframe and list of years
            #Returns dataframe of accumulated maximum temperature for each year
            acc temp list = []
            grouped = dframe.groupby('year')
            for i in range(len(y)):
                tempo = grouped.get group(y[i])
                total days = tempo.shape[0]
                tempo = tempo[tempo.month != 1] #Excluding January because calculation starts from February 1st
                tempo = tempo.reset index(drop=True)
                acc temp = 0
                for j in range(total days):
                    if tempo.loc[j,'bloom'] == 0:
                        acc temp = acc temp + tempo.loc[j, 'max temp']
                     else:
                         acc_temp = acc_temp + tempo.loc[j,'max temp']
                         break
                acc temp list.append(acc temp)
            df = pd.DataFrame({'years':y,'AccMaxTempLimit':acc temp list})
            return df
In [7]: def CalcTmean(acc df,y):
            T = acc df.loc[:,'AccMaxTempLimit'].sum(axis=0)
            Tmean = T/len(train years)
            return Tmean
In [8]: def CalcR2Score(actual, pred):
            R2= r2 score(actual, pred)
            return R2
In [9]: def CalcMSE(actual, pred):
            mse = mean_squared_error(actual,pred)
            return mse
```

```
In [11]: def CalcDj(fi,L,Tf_dframe,y):
    #Takes values to calculate Dj for each year and year list
    #Returns Dj value of each year in a dataframe
    dj_list = []
    x1 = 136.75 - (7.689*fi)+(0.133*fi*fi)-(1.307*(np.log(L)))
    for i in range(Tf_dframe.shape[0]):
        q = Tf_dframe.loc[i,'AVG_TEMP3m']
        x2 = 0.144*q + 0.285*q*q
        dj = x1+x2
        dj = int(dj)
        #dj = round(dj)
        #dj = int(dj)
        dj_list.append(dj)
        Dj_df= pd.DataFrame({'Dj':dj_list,'YEARS':y})
    return Dj_df
```

```
In [12]: def CalcDTSj(Ea,dj_df,act_bd_df,dframe,y):
             R = 8.314
             Ts = 290 #in Kelvin
             Ea = Ea*4184 #in joule
             dj_list = np.array(dj_df['Dj'])
             ABD list = np.array(act bd df['day:actual'])
             DTSj list = []
             grouped = dframe.groupby('year')
             for i in range(len(y)):
                 DTSj = 0
                 tempo = grouped.get_group(y[i])
                 tempo = tempo.reset_index(drop=True)
                 Dji = dj list[i]
                 BD = ABD list[i]
                 for j in range(Dji,BD+1):
                     Tij=tempo.loc[j-1,'avg temp']
                     Tij = Tij + 273
                     ts=Calc_ts(Ea,Tij,Ts,R)
                     DTSj = DTSj +ts
                     #DTSj = round(DTSj)
                     #DTSj = int(DTSj)
                 DTSj_list.append(DTSj)
             return DTSj list
```

```
In [13]: def Calc_ts(Ea,Tij,Ts,R):
    A = Tij-Ts
    B = Ea*A
    C= R*Tij*Ts
    D = B/C
    ts = np.exp(D)
    return ts
```

```
In [14]: def FindingMSE(dframe,dj df,actBD df,DTSmean df,y):
             #Calculated mean square error between actual and predicted values
             R = 8.314
             Ts = 290
             MSE perEa = []
             Dj_list = np.array(dj_df['Dj']) #This is per year
             ABD list = np.array(actBD df['day:actual']) #This is per year
             DTSi = DTSmean df['DTSmean'].values.tolist()
             grouped = dframe.groupby('year')
             for i in range(len(Ea list)):
                 DTSmean = DTSi[i]
                 Ea = Ea list[i]*4184
                 pred BD =[]
                 for i in range(len(y)):
                      DTSi = 0
                     tempo = grouped.get_group(y[i])
                     tempo = tempo.reset index(drop=True)
                     Dji = Dj list[i]
                     for j in range(Dji,tempo.shape[0]):
                          Tij=tempo.loc[j-1, 'avg temp']
                          Tij = Tij + 273
                          ts=Calc ts(Ea,Tij,Ts,R)
                          if DTSj<DTSmean :</pre>
                              DTSi = DTSi+ts
                          else:
                              BD pred = j
                              break
                      pred BD.append(BD pred)
                 PRED BD=np.array(pred BD)
                 #print('ABD list:',ABD list)
                 #print('PRED BD:',PRED BD)
                 #print(len(ABD list),len(PRED BD))
                 #MSE = CalcMSE(ABD list,PRED BD)
                 MSE = mean squared error(ABD list,PRED BD)
                 #print(MSE)
                 MSE perEa.append(MSE)
             MSE Ea df = pd.DataFrame({'Ea value(Kcal)':Ea list,'MSE Score':MSE perEa})
             return MSE Ea df
```

```
In [15]: def FindingEabyR2(dframe,dj df,actBD df,DTSmean df,y):
             R = 8.314
             Ts = 290
             r2 perEa = []
             Dj_list = np.array(dj_df['Dj']) #This is per year
             ABD_list = np.array(actBD_df['day:actual']) #This is per year
             DTSi = DTSmean df['DTSmean'].values.tolist()
             grouped = dframe.groupby('year')
             for i in range(len(Ea list)):
                 DTSmean = DTSi[i]
                 Ea = Ea list[i]*4184
                 pred_BD =[]
                 for i in range(len(y)):
                     DTSj = 0
                     tempo = grouped.get group(y[i])
                     tempo = tempo.reset index(drop=True)
                     Dji = Dj list[i]
                     for j in range(Dji,tempo.shape[0]):
                          Tij=tempo.loc[j-1,'avg temp']
                          Tij = Tij + 273
                         ts=Calc_ts(Ea,Tij,Ts,R)
                          if DTSj<DTSmean:</pre>
                              DTSj = DTSj+ts
                          else:
                              BD pred = j
                              break
                     pred BD.append(BD pred)
                 PRED BD=np.array(pred BD)
                 #print('ABD_list:',ABD_list)
                 #print('PRED BD:',PRED BD)
                 #print(len(ABD list),len(PRED BD))
                 r2 = CalcR2Score(ABD list, PRED BD)
                 #print(MSE)
                 r2 perEa.append(r2)
             r2 Ea df = pd.DataFrame({'Ea value(Kcal)':Ea list,'r2 Score':r2 perEa})
             return r2 Ea df
```

```
In [59]: def PREDByBestEaDTSmeas(dframe,dj_df,actBD_df,Ea,DTSmean,y):
             R = 8.314
             Ts = 290
             Dj_list = np.array(dj_df['Dj']) #This is per year
             ABD list = actBD df['day:actual'].values.tolist() #This is per year
             grouped = dframe.groupby('year')
             Ea = Ea*4184
             pred BD =[]
             for i in range(len(y)):
                 DTSj = 0
                 tempo = grouped.get group(y[i])
                 tempo = tempo.reset index(drop=True)
                 Dji = Dj list[i]
                 for j in range(Dji,tempo.shape[0]):
                      Tij=tempo.loc[j-1,'avg temp']
                     Tij = Tij + 273
                     ts=Calc_ts(Ea,Tij,Ts,R)
                      if DTSj<DTSmean:</pre>
                          DTSj = DTSj+ts
                      else:
                          BD pred = j-1
                          break
                 pred BD.append(BD pred)
             pred df = pd.DataFrame({'day:predicted':pred BD,'day:actual':ABD list,'years':y})
             return pred_df
```

```
In [17]: def CreateFeat(dframe, y, S M, E M, feat name):
             c dframe=dframe.copy()
             grouped = c_dframe.groupby('year')
             year values = []
             for i in range(len(y)):
                 tempo = grouped.get_group(y[i])
                 value_list = []
                 for m in range(S M,E M+1):
                      feat sum = 0
                      value =0
                     sub df =tempo[tempo.month == m]
                     sub df = sub df.reset index(drop=True)
                     feat sum = sub df[feat name].sum()
                     value = feat sum/sub df.shape[0]
                     value list.append(value)
                 year values.append(value list)
             new feat = E M-S M+1
             col = list(range(S M,E M+1))
             new df = pd.DataFrame(year values,columns=col)
             new df['year']=y
             return new df
```

Preprocessing steps

```
In [18]: #READING DATA
df = pd.read_csv('sakura.csv')

In [19]: #DELETING UNNECESSARY COLUMNS
del df['serial']
#Adding columns
df['day_count']=0
df['actual BD']=0
#NECCESSARY INPUT VARIABLES
test_years = [1966,1971,1985,1994,2008]
In [20]: all_years = df.year.unique().tolist()
```

In [21]: df = UpdateDayCount(df,all_years)

In [22]: ActualBD_df = ActualBD(df,all_years)
 print(ActualBD_df)

	day:actual	years
0	91	1961
1	91	1962
2	91	1963
3	93	1964
4	92	1965
5	79	1966
6	89	1967
7	89	1968
8	96	1969
9	97	1970
10	89	1971
11	88	1972
12	90	1973
13	92	1974
14	88	1975
15	82	1976
16	81	1977
17	90	1978
18	82	1979
19	91	1980
20	85	1981
21	82	1982
22	90	1983
23	102	1984
24	93	1985
25	93	1986
26	82	1987
27	93	1988
28	79	1989
29	79	1990
30	89	1991
31	84	1992
32	83	1993
33	90	1994
34	90	1995
35	91	1996
36	80	1997
37	86	1998
38	83	1999
39	90	2000
40	82	2001
41	75	2002

```
44
                      90
                           2005
          45
                      80
                           2006
          46
                      79
                           2007
                      82
                           2008
          47
          48
                      80
                           2009
          49
                      81
                           2010
          50
                      87
                           2011
          51
                      91
                           2012
          52
                      75
                           2013
          53
                      84
                           2014
          54
                      82
                           2015
          55
                      81
                           2016
          56
                      80
                           2017
In [23]: train df,test df=SplitDataSet(df,test years)
In [24]: train_years=train_df.year.unique().tolist()
         ActualBD tr = ActualBD(train df,train years)
In [25]:
          ActualBD test = ActualBD(test df,test years)
          print(ActualBD test)
             day:actual years
          0
                     79
                          1966
          1
                     89
                          1971
          2
                     93
                          1985
                          1994
          3
                     90
                     82
                          2008
```

Missing value checking

```
In [26]:
         #Checking if any of the year has any missing values
         grouped = df.groupby('year')
         for i in range(len(all years)):
                 tempo = grouped.get group(all years[i])
                 if tempo.shape[0]!= 365:
                      print(all years[i],tempo.shape[0])
         1964 366
         1968 366
         1972 366
         1976 366
         1980 366
         1984 366
         1988 366
         1992 366
         1996 366
         2000 366
         2004 366
         2008 366
         2012 366
         2016 366
         2017 90
```

1. Prediction using the "600 Degree Rule" (15pts total)

For a rough approximation of the bloom-date, we start with a simple "rule-based" prediction model, called the "600 Degree Rule". The rule consists of logging the maximum temperature of each day, starting on February 1st, and sum these temperatures until the sum surpasses 600° C. The day that this happens is the predicted bloom-date. This 600° C threshold is used to easily predict bloom-date in various locations varies by location. However, for more precise predictions, it should be set differently for every location. In this challenge, we verify the accuracy of the "600 Degree Rule" in the case of Tokyo.

	dayractual	day:nnodicted	CIIM	voanc
a	day:actual 91	day:predicted 84	sum 614.6	years 1961
0 1	91	78	609.3	1962
2	91	86	609.8	1963
3	93	90	613.9	1964
4	92	90	615.0	1965
5	89	86	612.5	1967
6	89	85	605.3	1968
7	96	88	601.8	1969
8	97	90	600.6	1970
9	88	88	610.4	1972
10	90	84	610.2	1973
11	92	89	603.7	1974
12	88	88	607.9	1975
13	82	83	611.3	1976
14	81	84	602.0	1977
15	90	88	613.4	1978
16	82	80	603.1	1979
17	91	89	601.3	1980
18	85	85	600.1	1981
19	82	84	610.7	1982
20	90	85	602.8	1983
21	102	100	612.3	1984
22	93	92	614.3	1986
23	82	83	608.3	1987
24	93	89	610.0	1988
25	79	81	608.1	1989
26	79	81	605.4	1990
27	89	83	603.0	1991
28	84	83	601.1	1992
29	83	83	612.9	1993
30	90	84	608.0	1995
31	91	87	607.8	1996
32	80	80	614.6	1997
33	86	81	603.5	1998
34	83	80	604.1	1999
35	90	85	608.2	2000
36	82	81	609.0	2001
37	75	76	612.3	2002
38	86	86	603.7	2003
39	78	77	608.4	2004
40	90	85	608.4	2005
41	80	82	604.9	2006

```
79
                            78 609.0
                                         2007
42
43
                                601.1
            80
                            79
                                         2009
44
            81
                            82
                                601.8
                                         2010
45
            87
                                609.8
                                         2011
                            84
            91
                            89
                                614.3
                                         2012
46
            75
                            78 612.8
47
                                         2013
                                607.6
48
            84
                            84
                                         2014
                            81 600.9
                                         2015
49
            82
50
            81
                            78 603.0
                                         2016
51
            80
                            79 606.6
                                         2017
```

```
In [29]: actual_tr = np.array(pred_600_tr['day:actual'])
    pred_tr_600 = np.array(pred_600_tr['day:predicted'])
    R2_600 = CalcR2Score(actual_tr,pred_tr_600)
    print('R2 Score for 600 degree rule in TRAIN DATA is:',R2_600)
```

R2 Score for 600 degree rule in TRAIN DATA is: 0.5841220511371663

```
In [30]: #PREDICTION ON TEST DATA
pred_600_test = ThresholdDegreeRule(test_df,600,test_years)
print(pred_600_test)
```

```
day:actual day:predicted
                                sum years
0
                         79 607.6
                                     1966
          79
                         86 605.6
1
          89
                                     1971
2
                                     1985
          93
                         88 604.4
                         87 608.9
3
          90
                                      1994
4
          82
                         83 614.8
                                      2008
```

```
In [31]: actual_test = np.array(pred_600_test['day:actual'])
    pred_test_600 = np.array(pred_600_test['day:predicted'])
    R2_600 = CalcR2Score(actual_test,pred_test_600)
    print('R2 Score for 600 degree rule in TEST DATA is:',R2_600)
```

R2 Score for 600 degree rule in TEST DATA is: 0.6793002915451896

Result of 600 Degree Rule:

1. R2 Score on test data is: 0.6793

Problem 1-1: (5pts)

From here-on, we refer to the bloom-date in a given year j as BD_j . For each year in the training data, calculate the accumulated daily maximum temperature from February 1st to the actual bloom-date BD_j , and plot this accumulated value over the training period. Then, average this accumulated value as T_{mean} , and verify whether we should use 600° C as a rule for Tokyo.

	AccMaxTempLimit	years
0	721.0	1961
1	768.1	1962
2	701.7	1963
3	676.6	1964
4	642.2	1965
5	660.8	1967
6	654.6	1968
7	724.0	1969
8	696.3	1970
9	610.4	1972
10	705.3	1973
11	658.0	1974
12	607.9	1975
13	596.7	1976
14	556.7	1977
15	640.1	1978
16	631.8	1979
17	640.6	1980
18	600.1	1981
19	581.5	1982
20	662.5	1983
21	643.7	1984
22	627.5	1986
23	588.7	1987
24	649.7	1988
25	583.1	1989
26	573.6	1990
27	688.2	1991
28	615.5	1992
29	612.9	1993
30	684.6	1995
31	680.1	1996
32	614.6	1997
33	679.2	1998
34	642.7	1999
35	689.7	2000
36	627.1	2001
37	591.7 603.7	2002
38		2003 2004
39	627.9	
40	683.9	2005
41	577.2	2006

```
621.8
                        2007
42
43
               616.6
                        2009
               587.1
                       2010
44
               646.1
                       2011
45
               652.6
                       2012
46
               550.6
                       2013
47
               607.6
48
                       2014
                       2015
49
               617.9
50
               652.5
                        2016
51
               619.5
                        2017
```

In [33]: acc_t_df_tr.plot(x='years',y='AccMaxTempLimit',kind = 'bar',figsize=(12,5),title = 'Accumulated maximum tempe
rature values per year over the training period')

Out[33]: <matplotlib.axes._subplots.AxesSubplot at 0x121b41e1e10>

In [34]: Tmean_tr = CalcTmean(acc_t_df_tr,train_years)
print(Tmean_tr)

638.3557692307693

Verification of 600 degree rule:

The calculated Tmean is 638.35 degree which is higher than 600 degree. So Different result is expected.

Problem 1-2: (10pts)

Use the average accumulated value T_{mean} calculated in 1-1 to predict BD_j for each test year, and show the error from the actual BD_j . Compare to the prediction results when 600° C is used a threshold value, and evaluate both models using the coefficient of determination (R^2 score).

In [35]: pred_Tmean_tr=ThresholdDegreeRule(train_df,Tmean_tr,train_years)
 print(pred_Tmean_tr)

	dayractual	davennodicted	CIIM	waans
0	day:actual	day:predicted	SUM	years
0	91	87	645.9	1961
1 2	91 91	81 88	641.7	1962
3	93	92	646.3	1963
3 4	93	92	656.5 642.2	1964
5	89	88	647.0	1965
6	89 89	88	639.1	1967 1968
7	96	91	644.4	1969
8	97	94	649.7	1979
9	88	90	646.5	1972
10	90	87	656.4	1973
11	92	91	644.5	1974
12	88	90	642.5	1975
13	82	86	645.4	1976
14	81	87	642.7	1977
15	90	90	640.1	1978
16	82	83	648.1	1979
17	91	91	640.6	1980
18	85	88	641.1	1981
19	82	87	646.7	1982
20	90	89	647.6	1983
21	102	102	643.7	1984
22	93	94	643.6	1986
23	82	85	639.2	1987
24	93	93	649.7	1988
25	79	84	649.0	1989
26	79	83	645.4	1990
27	89	86	649.7	1991
28	84	86	641.7	1992
29	83	85	646.7	1993
30	90	87	640.7	1995
31	91	89	638.6	1996
32	80	83	647.4	1997
33	86	84	645.5	1998
34	83	83	642.7	1999
35	90	88	651.2	2000
36	82	83	646.6	2001
37	75	78	649.0	2002
38	86	89	649.4	2003
39	78	79	638.4	2004
40	90	87	639.9	2005
41	80	85	651.8	2006

```
42
                     79
                                     81 651.1
                                                 2007
         43
                     80
                                     82
                                         650.1
                                                 2009
                                         643.6
                                                 2010
         44
                     81
                                     86
         45
                     87
                                         646.1
                                                 2011
                                     87
                     91
                                         652.6
                                                 2012
         46
                                     91
         47
                     75
                                     80
                                         649.8
                                                 2013
         48
                     84
                                         642.4
                                                 2014
         49
                     82
                                         647.3
                                                 2015
                                     84
         50
                     81
                                     80 638.7
                                                 2016
         51
                     80
                                     82 650.2
                                                 2017
         actual tr = np.array(pred Tmean tr['day:actual'])
In [36]:
         pred tr Tmean = np.array(pred Tmean tr['day:predicted'])
         R2 600 = CalcR2Score(actual tr,pred tr Tmean)
         print('R2 Score for Tmean rule on TRAIN DATA is:',R2 600)
         R2 Score for Tmean rule on TRAIN DATA is: 0.7225596835711259
         pred Tmean test=ThresholdDegreeRule(test df,Tmean tr,test years)
In [37]:
         print(pred Tmean test)
            day:actual day:predicted
                                          sum years
                                    82 649.7
                     79
                                                1966
                                    88 644.8
         1
                     89
                                                1971
                    93
                                    91 644.6
                                                1985
         3
                    90
                                    90 656.6
                                                1994
         4
                    82
                                    85 644.0
                                                2008
In [37]:
         actual test = np.array(pred Tmean test['day:actual'])
         pred test Tmean = np.array(pred Tmean test['day:predicted'])
         R2 600 = CalcR2Score(actual test, pred test Tmean)
         print('R2 Score for Tmean rule on TEST DATA is:',R2 600)
         R2 Score for Tmean rule on TEST DATA is: 0.8323615160349854
```

Comparison of 600 Degree Rule with Tmean:

R2 scrore on test data using calculated Tmean(638.36 degree) is 0.8323 which is much better than 600 degree rule. So it is wise to calculate Tmean from available dataset instead of using a predefined value.

2. Linear Regression Model: Transform to Standard Temperature (30pts total)

The year to year fluctuation of the bloom-date depends heavily upon the actual temperature fluctuation (not just the accumulated maximum). In order to get to a more physiologically realistic metric, Sugihara et al. (1986) considered the actual effect of temperature on biochemical activity. They introduced a method of "standardizing" the temperatures measured, according to the fluctuation relative to a standard temperature.

In order to make such a standardization, we apply two major assumptions, outlined below.

1) The Arrhenius equation:

The first assumption, also known in thermodynamics as the "Arrhenius equation", deals with chemical reaction rates and can be written as follows:

$$k = A \exp\left(-rac{E_a}{RT}
ight)$$

Basically, it says that each reaction has an activation energy, E_a and a pre-exponential factor A. Knowing these values for the particular equation, we can find the rate constant k if we know the temperature, T, and applying the universal gas constant, $R = 8.314 [\mathrm{J/K} \cdot \mathrm{mol}]$.

2) Constant output at constant temperature:

The second assumption, is simply that the output of a reaction is a simple product of the duration and the rate constant k, and that product is constant even at different temperatures.

$$tk = t'k' = t''k'' = \cdots = \text{const}$$

Making the assumptions above, we can determine a "standard reaction time", t_s required for the bloom-date to occur. We can do so in the following way:

$$t_s = \exp\Bigl(rac{E_a(T_{i,j}-T_s)}{RT_{i,j}T_s}\Bigr)$$

We define $T_{i,j}$ as the daily average temperature, and use a standard temperature of $T_s=17^{\circ}\mathrm{C}$. For a given year j, with the last day of the hibernation phase set as D_j , we define the number of "transformed temperature days", DTS_J , needed to reach from D_j to the bloom-date BD_j with the following equation:

$$DTS_j = \sum_{i=D_j}^{BD_j} t_s = \sum_{i=D_j}^{BD_j} \exp\Bigl(rac{E_a(T_{i,j}-T_s)}{RT_{i,j}T_s}\Bigr).$$

From that equation, we can find the average DTS for x number of years (DTS_{mean}) as follows:

$$egin{align} DTS_{ ext{mean}} &= rac{1}{x} \sum_{j}^{x} DTS_{j} \ &= rac{1}{x} \sum_{j}^{x} \sum_{i=D_{j}}^{BD_{j}} \exp\Bigl(rac{E_{a}(T_{i,j} - T_{s})}{RT_{i,j}T_{s}}\Bigr) . \end{split}$$

In this exercise, we assume that DTS_{mean} and E_a are constant values, and we use the data from the training years to fit these 2 constants. The exercise consists of 4 steps:

- 1. Calculate the last day of the hibernation phase D_i for every year j.
- 2. For every year j, calculate DTS_i as a function of E_a , then calculate the average (over training years) DTS_{mean} also as a function of E_a .
- 3. For every year j, and for every value of E_a , accumulate t_s from D_j and predict the bloom date BD_j^{pred} as the day the accumulated value surpasses DTS_{mean} . Calculate the bloom date prediction error as a function of E_a , and find the optimal E_a value that minimizes that error.
- 4. Use the previously calculated values of D_i , DTS_{mean} , and E_a to predict bloom-day on years from the test set.

```
In [38]: #initializing constant values
Fi = 35.67 #Value of latitude [°N] for Tokyo
L = 4 #Distance of Tokyo from the nearest coastline [km]
```

```
In [39]: #Calculating Tf
    Tf_tr = CalcTf(train_df,train_years)
    #print(Tf_tr)
    #Calculating Dj
    Dj_tr = CalcDj(Fi,L,Tf_tr,train_years)
    print(Dj_tr)
```

	Dj	YEARS
0	39	1961
1	41	1962
2	38	1963
3	40	1964
4	38	1965
5	42	1967
6	43	1968
7	42	1969
8	38	1970
9	45	1972
10	44	1973
11	39	1974
12	40	1975
13	45	1976
14	40	1977
15	41	1978
16	50	1979
17	42	1980
18	41	1981
19	45	1982
20	44	1983
21	35	1984
22	39	1986
23	46	1987
24	45	1988
25	51	1989
26	48	1990
27	46	1991
28	48	1992
29	47	1993
30	45	1995
31	45	1996
32	50	1997
33	47	1998
34	48	1999
35	47	2000
36	45	2001
37	55	2002
38	44	2003
39	50	2004
40	45	2005
41	45	2006

42	54	2007
43	50	2009
44	47	2010
45	43	2011
46	42	2012
47	49	2013
48	47	2014
49	46	2015
50	48	2016
51	45	2017

Problem 2-1: (5pts)

According to Hayashi et al. (2012), the day on which the sakura will awaken from their hibernation phase, D_j , for a given location, can be approximated by the following equation:

$$D_j = 136.75 - 7.689\phi + 0.133\phi^2 - 1.307 \ln L + 0.144 T_F + 0.285 T_F^2$$

where ϕ is the latitude [°N], L is the distance from the nearest coastline [km], and T_F is that location's average temperature [°C] over the first 3 months of a given year. In the case of Tokyo, $\phi=35\,^{\circ}40'$ and $L=4\mathrm{km}$.

Find the D_i value for every year j from 1961 to 2017 (including the test years), and plot this value on a graph.

(In Problem 1, we had assumed a D_{j} of February 1st.)

```
In [40]: Tf_all = CalcTf(df,all_years)
Dj_all = CalcDj(Fi,L,Tf_all,all_years)
print(Dj_all)
```

	Dj	YEARS
0	39	1961
1	41	1962
2	38	1963
3	40	1964
4	38	1965
5	45	1966
6	42	1967
7	43	1968
8	42	1969
9	38	1970
10	42	1971
11	45	1972
12	44	1973
13	39	1974
14	40	1975
15	45	1976
16	40	1977
17	41	1978
18	50	1979
19	42	1980
20	41	1981
21	45	1982
22	44	1983
23	35	1984
24	41	1985
25	39	1986
26	46	1987
27	45	1988
28	51	1989
29	48	1990
30	46	1991
31	48	1992
32	47	1993
33	43	1994
34	45	1995
35	45	1996
36	50	1997
37	47	1998
38	48	1999
39	47	2000
40	45	2001
41	55	2002

```
42
    44
         2003
    50
43
         2004
    45
         2005
44
    45
45
         2006
46
    54
         2007
    46
         2008
47
48
    50
         2009
49
    47
         2010
50
    43
         2011
51
    42
         2012
52
    49
         2013
53
    47
         2014
54
    46
         2015
55
    48
         2016
56
    45
         2017
```

In [41]: Dj_all.plot(y='Dj',x='YEARS',kind='bar',figsize=(20,5),title='Values of Dj for all years')

Out[41]: <matplotlib.axes._subplots.AxesSubplot at 0x121b46475f8>

Problem 2-2: (10pts)

Calcluate DTS_j for each year j in the training set for discrete values of E_a , varying from 5 to 40kcal ($E_a=5,6,7,\cdots,40\,\mathrm{kcal}$), and plot this DTS_j against E_a . Also calculate the average of DTS_j over the training period, and indicate it on the plot as DTS_{mean} . Pay attention to the units of **every parameter** ($T_{i,j}, E_a, \ldots$) in the equation for t_s .

```
In [42]: Ea_list = list(range(5,41)) #Since Ea varies from 5 Kcal to 40 Kcal
print(Ea_list)

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 3
3, 34, 35, 36, 37, 38, 39, 40]
```

```
In [43]: DTSj_perEa = []
    DTSmean_perEa =[]
    DTS_Ea_allyear =[]
    DTS_Ea_allyear =[]
    for Ea in Ea_list:
        DTSj = CalcDTSj(Ea,Dj_tr,ActualBD_tr,train_df,train_years)
        #DTSj_perEa.append(DTSj)
        #print('DTSj:',DTSj)
        DTS_Ea_allyear.append(DTSj)
        DTSmean = (sum(DTSj)/len(train_years))
        DTSmean_perEa.append(DTSmean)
    DTSmean_df_tr = pd.DataFrame({'DTSmean':DTSmean_perEa,'Value of Ea(Kcal)':Ea_list})
    print(DTSmean_df_tr)
```

	DTSmean	Value	of	Ea(Kcal)
0	32.207353			5
1	30.487368			6
2	28.871963			7
3	27.354288			8
4	25.927966			9
5	24.587061			10
6	23.326045			11
7	22.139768			12
8	21.023433			13
9	19.972567			14
10	18.983002			15
11	18.050851			16
12	17.172491			17
13	16.344539			18
14	15.563839			19
15	14.827447			20
16	14.132613			21
17	13.476768			22
18	12.857516			23
19	12.272614			24
20	11.719968			25
21	11.197622			26
22	10.703743			27
23	10.236621			28
24	9.794654			29
25	9.376342			30
26	8.980284			31
27	8.605165			32
28	8.249756			33
29	7.912905			34
30	7.593532			35
31	7.290625			36
32	7.003235			37
33	6.730474			38
34	6.471507			39
35	6.225551			40

```
In [44]: DTSmean_df_tr.plot(x='Value of Ea(Kcal)',y='DTSmean')
```

Out[44]: <matplotlib.axes._subplots.AxesSubplot at 0x121b4184978>


```
In [45]: DTS_Ea_allyear=np.array(DTS_Ea_allyear).T
```

In [48]: print(dts_df_plot)

	1961	1962	1963	1964	1965	1967	\
5	38.897696	38.079014	39.562942	39.134908	39.483797	36.109247	\
6	36.605456	35.947260	37.229751	36.747995	36.969676	34.186211	
7	34.461601	33.944242	35.051627	34.524604	34.621374	32.389306	
8	32.455942	32.061744	33.017677	32.453076	32.427605	30.709303	
9	30.579019	30.292100	31.117802	30.522609	30.377874	29.137708	
10	28.822050	28.628152	29.342636	28.723198	28.462417	27.666698	
11	27.176876	27.063214	27.683487	27.045571	26.672153	26.289066	
12	25.635917	25.591045	26.132296	25.481134	24.998630	24.998168	
13	24.192131	24.205814	24.681582	24.021921	23.433986	23.787876	
14	22.838973	22.902074	23.324403	22.660549	21.970900	22.652537	
15	21.570359	21.674736	22.054315	21.390167	20.602562	21.586929	
16	20.380633	20.519042	20.865336	20.204424	19.322628	20.586230	
17	19.264535	19.430547	19.751911	19.097429	18.125193	19.645985	
18	18.217172	18.405092	18.708883	18.063714	17.004760	18.762074	
19	17.233993	17.438792	17.731461	17.098207	15.956207	17.930684	
20	16.310764	16.528010	16.815192	16.196198	14.974764	17.148289	
21	15.443543	15.669347	15.955943	15.353317	14.055986	16.411620	
22	14.628660	14.859619	15.149870	14.565505	13.195733	15.717652	
23	13.862701	14.095849	14.393401	13.828993	12.390147	15.063579	
24	13.142483	13.375251	13.683215	13.140280	11.635632	14.446798	
			13.016224				
25 26	12.465044	12.695216	12.389558	12.496113	10.928834	13.864897	
26	11.827624	12.053300		11.893471	10.266630	13.315632	
27	11.227649	11.447216	11.800545	11.329544	9.646105	12.796923	
28	10.662722	10.874821	11.246701	10.801723	9.064541	12.306836	
29	10.130607	10.334107	10.725714	10.307579	8.519404	11.843571	
30	9.629221	9.823193	10.235432	9.844856	8.008331	11.405455	
31	9.156619	9.340315	9.773852	9.411455	7.529114	10.990933	
32	8.710988	8.883820	9.339110	9.005422	7.079696	10.598554	
33	8.290635	8.452158	8.929470	8.624942	6.658156	10.226969	
34	7.893982	8.043875	8.543313	8.268324	6.262702	9.874917	
35	7.519554	7.657609	8.179133	7.933993	5.891658	9.541227	
36	7.165974	7.292078	7.835527	7.620485	5.543463	9.224804	
37	6.831957	6.946084	7.511185	7.326436	5.216657	8.924626	
38	6.516302	6.618499	7.204889	7.050576	4.909878	8.639738	
39	6.217887	6.308264	6.915501	6.791722	4.621852	8.369250	
40	5.935662	6.014388	6.641960	6.548771	4.351390	8.112330	
							,
_	1968	1969	1970	1972	• • •	2007	\
5	35.377918	41.134654	43.351901	33.263209	• • •	20.343955	
6	33.480384	38.888086	40.673474	31.495383	• • •	19.387851	
7	31.702390	36.788025	38.176369	29.835122	• • •	18.482623	
8	30.035621	34.823932	35.847538	28.275414	• • •	17.625427	

9	28.472383	32.986075	33.674915	26.809727	• • •	16.813589
10	27.005550	31.265466	31.647336	25.431977	• • •	16.044585
11	25.628525	29.653801	29.754470	24.136496	• • •	15.316041
12	24.335193	28.143405	27.986757	22.918001	• • •	14.625717
13	23.119889	26.727183	26.335346	21.771566	•••	13.971504
14	21.977361	25.398573	24.792041	20.692599	•••	13.351413
15	20.902738	24.151504	23.349253	19.676817	• • •	12.763570
16	19.891501	22.980359	21.999951	18.720225	• • •	12.206207
17	18.939458	21.879936	20.737622	17.819094	• • •	11.677658
18	18.042714	20.845420	19.556229	16.969944	• • •	11.176352
19	17.197656	19.872349	18.450175	16.169527	• • •	10.700805
20	16.400925	18.956587	17.414272	15.414808	• • •	10.249620
21	15.649401	18.094304	16.443709	14.702955	• • •	9.821478
22	14.940181	17.281943	15.534023	14.031320	• • •	9.415133
23	14.270568	16.516207	14.681073	13.397430	• • •	9.029413
24	13.638053	15.794037	13.881015	12.798971	• • •	8.663207
25	13.040298	15.112591	13.130281	12.233784	• • •	8.315470
26	12.475130	14.469230	12.425561	11.699845	• • •	7.985215
27	11.940522	13.861503	11.763776	11.195264	• • •	7.671508
28	11.434587	13.287132	11.142070	10.718272	• • •	7.373469
29	10.955567	12.743998	10.557786	10.267214		7.090267
30	10.501821	12.230132	10.008457	9.840540		6.821116
31	10.071819	11.743698	9.491787	9.436798		6.565273
32	9.664134	11.282992	9.005643	9.054631		6.322039
33	9.277434	10.846423	8.548039	8.692766		6.090751
34	8.910472	10.432511	8.117129	8.350009		5.870783
35	8.562088	10.039876	7.711194	8.025244		5.661543
36	8.231193	9.667232	7.328633	7.717424		5.462472
37	7.916773	9.313379	6.967957	7.425565		5.273042
38	7.617876	8.977196	6.627776	7.148747		5.092754
39	7.333614	8.657640	6.306799	6.886106		4.921133
40	7.063154	8.353734	6.003818	6.636832		4.757735
	2009	2010	2011	2012	2013	2014
5	24.285988	27.736887	33.767207	37.481296	21.205958	29.306835
6	23.161089	26.524076	31.912487	35.416652	20.250222	27.858905
7	22.098828	25.379704	30.169335	33.476808	19.352112	26.494176
8	21.095454	24.299494	28.530656	31.653751	18.507897	25.207525
9	20.147453	23.279450	26.989824	29.940008	17.714096	23.994155
10	19.251531	22.315845	25.540653	28.328608	16.967466	22.849580
11	18.404601	21.405195	24.177362	26.813045	16.264981	21.769598
12	17.603768	20.544248	22.894550	25.387246	15.603822	20.750278
13	16.846318	19.729963	21.687170	24.045545	14.981358	19.787938

```
14
    16.129705
               18.959500
                           20.550505
                                       22.782647
                                                   14.395133
                                                              18.879131
15
    15.451539
               18.230202
                           19.480146
                                       21.593611
                                                   13.842860
                                                              18.020628
    14.809581
               17.539588
                           18.471970
                                       20.473819
                                                   13.322399
                                                              17.209404
    14.201727
               16.885334
                           17.522122
                                       19.418958
                                                   12.831758
17
                                                              16.442627
               16.265268
18
    13.626004
                           16.626997
                                       18.424996
                                                   12.369072
                                                              15.717643
19
    13.080557
               15.677358
                           15.783223
                                       17.488166
                                                   11.932604
                                                              15.031964
20
    12.563648
               15.119702
                           14.987646
                                       16.604946
                                                   11.520729
                                                              14.383258
21
    12.073641
               14.590517
                           14.237312
                                       15.772043
                                                   11.131931
                                                              13.769340
22
    11.609002
               14.088137
                           13.529459
                                       14.986374
                                                   10.764791
                                                              13.188162
23
    11.168289
               13.610999
                           12.861502
                                       14.245060
                                                   10.417986
                                                              12.637802
    10.750147
                                                   10.090276
24
               13.157641
                           12.231020
                                       13.545404
                                                              12.116458
25
    10.353302
               12.726690
                           11.635745
                                       12.884883
                                                    9.780506
                                                              11.622441
     9.976557
               12.316862
                                                    9.487591
26
                           11.073556
                                       12.261134
                                                              11.154164
     9.618787
               11.926952
                                                    9.210521
27
                           10.542464
                                       11.671947
                                                              10.710140
     9.278933
28
               11.555828
                           10.040606
                                       11.115251
                                                    8.948348
                                                              10.288973
29
     8.955999
               11.202431
                            9.566237
                                       10.589106
                                                    8.700186
                                                                9.889351
30
     8.649049
               10.865766
                            9.117722
                                       10.091695
                                                    8.465206
                                                                9.510044
31
     8.357202
               10.544900
                            8.693528
                                        9.621317
                                                    8.242631
                                                                9.149898
32
     8.079629
               10.238954
                            8.292217
                                        9.176374
                                                    8.031734
                                                                8.807826
33
     7.815548
                9.947107
                            7.912444
                                        8.755371
                                                    7.831835
                                                                8.482809
34
     7.564226
                9.668585
                            7.552943
                                        8.356906
                                                    7.642297
                                                                8.173890
35
     7.324970
                 9.402661
                            7.212529
                                        7.979663
                                                    7.462521
                                                                7.880168
                            6.890092
                                        7.622408
36
     7.097128
                 9.148653
                                                    7.291948
                                                                7.600798
37
     6.880086
                 8.905918
                            6.584588
                                        7.283983
                                                    7.130052
                                                                7.334985
38
     6.673267
                8.673852
                            6.295037
                                        6.963303
                                                    6.976343
                                                                7.081980
39
     6.476124
                 8.451888
                            6.020521
                                        6.659347
                                                    6.830357
                                                                6.841080
40
     6.288145
                8.239491
                            5.760177
                                        6.371157
                                                    6.691662
                                                                6.611625
         2015
                     2016
                                 2017
    28.550943
               26.496934
5
                           27.509010
    27.131151
               25.240513
                           26.081565
7
    25.789274
               24.054264
                           24.732542
8
    24.520757
               22.933972
                           23.457460
9
    23.321326
               21.875685
                           22.252104
    22.186969
               20.875699
10
                           21.112504
    21.113916
               19.930541
11
                           20.034923
12
    20.098628
               19.036953
                           19.015842
13
    19.137778
               18.191881
                           18.051949
    18.228244
14
               17.392457
                           17.140125
15
    17.367089
               16.635993
                           16.277431
16
    16.551553
               15.919967
                           15.461102
17
    15.779043
               15.242011
                           14.688531
    15.047121
               14.599904
18
                           13.957263
```

```
14.353493 13.991558 13.264987
19
              13.415018
20
   13.696002
                          12.609522
              12.868442
                          11.988816
   13.072620
   12.481439
               12.350107
                          11.400934
23
   11.920662
              11.858389
                          10.844053
   11.388599
               11.391765
                          10.316455
24
   10.883659
               10.948804
25
                           9.816520
   10.404345
               10.528162
                           9.342721
26
27
    9.949246
               10.128575
                           8.893618
28
    9.517034
                9.748855
                           8.467854
    9.106457
                           8.064149
29
                9.387886
    8.716338
                           7.681296
30
                9.044617
    8.345565
31
                8.718061
                           7.318156
    7.993091
                8.407290
32
                           6.973656
33
    7.657931
                8.111430
                           6.646783
    7.339154
                7.829660
                           6.336580
34
    7.035883
                7.561207
                           6.042147
35
    6.747291
                           5.762631
36
                7.305341
    6.472598
                7.061380
                           5.497231
37
38
    6.211068
                6.828677
                           5.245187
39
     5.962006
                6.606626
                           5.005785
40
     5.724756
                6.394654
                           4.778349
```

[36 rows x 52 columns]

In [49]: dts_df_plot.plot(figsize=(20,10),grid = True)

Out[49]: <matplotlib.axes._subplots.AxesSubplot at 0x121b4b95048>

Problem 2-3: (11pts)

Using the same E_a values and calculated DTS_{mean} from 2-2, predict the bloom date BD_j for each of the training years. Find the mean squared error relative to the actual BD and plot it against E_a . Find the optimal E_a^* that minimizes that error on the training data.

```
In [50]: MSE_DF= FindingMSE(train_df,Dj_tr,ActualBD_tr,DTSmean_df_tr,train_years)
    print(MSE_DF)
```

	Ea value(Kcal)	MSE Score
0	5	58.403846
1	6	53.250000
2	7	48.903846
3	8	44.769231
4	9	39.711538
5	10	36.480769
6	11	33.211538
7	12	30.769231
8	13	27.750000
9	14	24.750000
10	15	22.480769
11	16	20.442308
12	17	19.173077
13	18	17.615385
14	19	16.346154
15	20	15.500000
16	21	14.923077
17	22	13.307692
18	23	13.500000
19	24	12.865385
20	25	12.730769
21	26	12.173077
22	27	12.307692
23	28	10.865385
24	29	11.461538
25	30	10.750000
26	31	11.019231
27	32	11.038462
28	33	11.134615
29	34	11.711538
30	35	12.000000
31	36	12.615385
32	37	13.288462
33	38	13.019231
34	39	13.153846
35	40	14.307692

```
In [51]: MSE_DF.plot(x='Ea value(Kcal)',y='MSE Score')
```

Out[51]: <matplotlib.axes._subplots.AxesSubplot at 0x121b50d16d8>

Problem 2-4: (4pts)

Using the D_j dates from problem 2-1, the average DTS_{mean} from 2-2, and the best-fit E_a^* from 2-3, predict the bloom-dates BD_j for the years in the test set. Determine the error between your predicted BD_j values and the actual values, and evaluate this model using the coefficient of determination (R^2 score).

```
In [60]: DTSmean = 9.376342
Ea = 30
    Tf_test = CalcTf(test_df,test_years)
    Dj_test = CalcDj(Fi,L,Tf_test,test_years)
    pred_test_optEa=PREDByBestEaDTSmeas(test_df,Dj_test,ActualBD_test,Ea,DTSmean,test_years)
    print(pred_test_optEa)
```

	day:actual	day:predicted	years
0	79	79	1966
1	89	88	1971
2	93	92	1985
3	90	91	1994
4	82	83	2008

```
In [56]: DTSmean = 9.376342
         Ea = 30
         Tf test = CalcTf(test df,test years)
         Dj test = CalcDj(Fi,L,Tf test,test years)
         pred test optEa=PREDByBestEaDTSmeas(test df,Dj test,ActualBD test,Ea,DTSmean,test years)
         print(pred test optEa)
         DTSmean
            day:actual day:predicted years
         0
                    79
                                   80
                                        1966
                    89
                                    89
                                        1971
         1
         2
                                   93
                                        1985
                    93
         3
                    90
                                    92
                                        1994
                    82
                                         2008
         4
                                   84
Out[56]: 9.376342
         PRED optEa=np.array(pred test optEa['day:predicted'])
In [61]:
         ActualBD test = ActualBD(test df,test years)
         ACT BD optEa = np.array(ActualBD test['day:actual'])
In [62]: R2 Score optEa = CalcR2Score(ACT BD optEa, PRED optEa)
         print("R2 Score for best DTS is: ",R2 Score optEa)
         R2 Score for best DTS is: 0.9708454810495627
```

Problem 2-5: (extra 10pts)

Discuss any improvements you could make to the model outlined above. If you have a suggestion in particular, describe it. How much do you think the accuracy would be improved?

- 1.According to the mentioned model and datasets, there is an assumption that the average temperature of a single day is sustained throughout the day. This is not the case in real life as the temperature can flactuate even from hour to hour. So if the fluctuations of the temperature could be added, the accuracy and could possibly be improved.
- 2. There are different species of cherry trees from the Prunus genus. Different species of trees might have different type if implecations to different changes of variables. We did not take that into account. If we can take those things into consideration, accuracy might be improved.

Suggested improvements:

- 1. Sakura blooming depends on a lot of variables such as maximum and minimum temperature of the day, precipitation, available sun hours etc.

 These variables are no less important that features included in the model outlined above. So inclusion of these variables in the above model can improve the model's accuracy.
- 2. Besides air composition can be an important factor for Sakura bloomimg because percentage of Carbon Di Oxide in air directly affects photosynthesis and respiration of trees. The model should also take this into account.

3. Predicting Bloom-date via Neural Network (30pts total)

Data analysis

```
In [63]: c_df = df.copy()
    c_train_df = train_df.copy()
    c_test_df = test_df.copy()
```

Out[64]: <matplotlib.axes._subplots.AxesSubplot at 0x121b4cb58d0>

Correlation analysis among attributes:

Highly correlated features:

- 1. Temperature and precipitation
- 2. Temperature and humidity
- 3. Humidity and precipitation
- 4. Pressure and temperrature(negative)
- 5. Average humidity and sun hours

We will analyze these correlations while discussing environmental blooming factors for sakura.

```
In [65]: C_ACTULABD_DF = ActualBD_df.copy()
In [66]: sns.boxplot(C_ACTULABD_DF['day:actual'])
Out[66]: <matplotlib.axes._subplots.AxesSubplot at 0x121b4caeac8>
```


Blooming factors for Sakura:

To predict the blooming day of Sakura accurately, we need to know aout the factors that affect Sakura blooming and their correlations. Various environmental factors affect when plants open their flowers, including day length, air temperature, and soil moisture. [1] The most important factor in blooming of Sakura is temperature.

- -Chilly days during the winter and warm or mild days during the spring generally accelerate the maturation of flower buds.
- -By contrast, unseasonable winter warmth and unseasonable springtime chills can slow the process.[3]

Feature engineering decisions:

- 1. From above mentioned points obviously minimum temperatures, maximimum temperatures and averarge temperatures all play signifant role in sakura blooming. But our interest should be the winter and spring season just before the season of sakura. Hence, here we have considered the first three months of each year for each feature.
- 2. Soil moisture highly depends on ammount of precipitation. So total precipitation of first three months of each year were also considered. Sun hours was also considered as a feature.
- 3. Even though humidity is highly correlated to temperature, precipitation and sun hours, this feature was not included because it degrades the performance on the NN model. This may be because we have limited number of training data and unnecessary number of features can hamper the performance of the model.
- 4. Since the place was fixed so pressure remained almost same during our interest period over the years. So pressure values were not included as feature. If we need to predict the blooming date of Sakura for different places, we need to consider air pressure also.
- 5. Year was considered a feature to take account of the gradual change in overall environment.

In [67]: C_ACTULABD_DF.plot(x='years',y='day:actual',kind='bar',grid=1,figsize=(20,10),xticks=list(range(1961,2018,2
)))

Out[67]: <matplotlib.axes._subplots.AxesSubplot at 0x121b42f8c88>

Evidence behind decisions:

From the above plot, we can see blooming occured later than usual times in 1969,1970 and 1984. If we analyze our data, we can easily observe that winters were warmer than usual(~6 degree celcius) and springs were colder(~7.5) than usual.

In 1966,1989,1997,2002,2013 winters were colder(~3) than usual and springs were warmer(>9 degree celcius) that usual. So as mentioned above, blooming occured pretty early. This proves that our model is expected to give satisfactory result since we have also emphasised on various temperature features of the first three months

Feature engineering

```
In [68]: new df = CreateFeat(df,all years,1,3,'avg temp')
         new df2 = CreateFeat(df,all years,1,3,'min temp')
         new df3 = CreateFeat(df,all years,1,3,'total preci')
         new df5 = CreateFeat(df,all years,1,3,'sun hours')
In [69]: jan mintemp = new df2[1].values.tolist()
         feb mintemp = new df2[2].values.tolist()
         march_mintemp = new_df2[3].values.tolist()
         jan_p = new_df3[1].values.tolist()
         feb_p = new_df3[2].values.tolist()
         march p = new df3[3].values.tolist()
         jan_sun = new_df5[1].values.tolist()
         feb_sun = new_df5[2].values.tolist()
         march sun = new df5[3].values.tolist()
In [70]: | act bd list = ActualBD df['day:actual'].values.tolist()
In [71]: new df['day:actual']=act bd list
         new df['min temp jan']= jan mintemp
         new df['min temp feb']= feb mintemp
         new df['min temp mar']= march mintemp
         new df['preci jan']= jan p
         new df['preci feb']= feb p
         new df['preci mar']= march p
         new_df['sun_jan']= jan_sun
         new df['sun feb']= feb sun
         new df['sun mar']= march sun
         new df.set index('year',inplace=True,drop=False)
```

In [72]: print(new_df)

	1	2	3	year	day:actual	min_temp_jan	١
year							
1961	3.570968	4.528571	8.222581	1961	91	-0.680645	
1962	4.545161	5.939286	8.248387	1962	91	-0.500000	
1963	3.170968	4.800000	7.635484	1963	91	-2.625806	
1964	5.400000	4.186207	7.570968	1964	93	1.570968	
1965	4.400000	4.671429	6.925806	1965	92	0.570968	
1966	4.648387	7.217857	9.558065	1966	79	0.135484	
1967	4.445161	4.932143	9.490323	1967	89	0.148387	
1968	5.703226	4.337931	10.025806	1968	89	0.903226	
1969	5.719355	5.664286	7.858065	1969	96	1.377419	
1970	4.529032	5.992857	5.548387	1970	97	0.409677	
1971	5.122581	5.853571	8.303226	1971	89	1.674194	
1972	6.587097	5.113793	9.661290	1972	88	2.822581	
1973	6.267742	6.882143	7.796774	1973	90	2.832258	
1974	4.358065	5.060714	7.332258	1974	92	0.558065	
1975	4.661290	5.107143	7.880645	1975	88	0.793548	
1976	5.374194	6.751724	8.967742	1976	82	0.700000	
1977	3.448387	4.910714	9.300000	1977	81	0.029032	
1978	5.616129	4.228571	8.651613	1978	90	1.725806	
1979	6.574194	8.439286	9.922581	1979	82	2.448387	
1980	5.554839	5.227586	8.238710	1980	91	1.683871	
1981	4.435484	5.296429	8.961290	1981	85	0.567742	
1982	5.761290	5.450000	9.877419	1982	82	2.241935	
1983	6.238710	6.053571	8.567742	1983	90	2.493548	
1984	3.735484	3.037931	5.887097	1984	102	0.158065	
1985	4.125806	6.475000	7.764516	1985	93	0.451613	
1986	4.516129	4.253571	7.751613	1986	93	0.967742	
1987	5.812903	6.832143	9.293548	1987	82	1.948387	
1988	7.683871	4.934483	8.351613	1988	93	3.729032	
1989	8.070968	7.500000	9.580645	1989	79	4.819355	
1990	5.003226	7.764286	10.622581	1990	79	1.729032	
1991	6.280645	6.546429	9.545161	1991	89	2.841935	
1992	6.793548	6.879310	9.700000	1992	84	3.174194	
1993	6.190323	7.685714	8.700000	1993	83	3.293548	
1994	5.532258	6.575000	8.061290	1994	90	2.106452	
1995	6.283871	6.460714	8.903226	1995	90	2.525806	
1996	6.590323	5.427586	9.154839	1996	91	2.935484	
1997	6.790323	7.028571	10.532258	1997	80	2.706452	
1998	5.348387	7.014286	10.132258	1998	86	1.867742	
1999	6.622581	6.721429	10.051613	1999	83	2.512903	
2000	7.583871	5.951724	9.406452	2000	90	4.203226	
2001	4.900000	6.628571	9.819355	2001	82	1.716129	

2002	7.441935	7.932143	12.2032	26 2002	75	3.40967	7	
2003	5.454839	6.442857	8.6741	94 2003	86	1.96451	6	
2004	6.341935	8.510345	9.8225	81 2004	78	3.06451	6	
2005	6.129032	6.150000	8.9645	16 2005	90	2.55161	3	
2006	5.061290	6.657143	9.8451	61 2006	80	2.03871	0	
2007	7.638710	8.646429	10.8258	06 2007	79	4.62903	2	
2008	5.893548	5.513793	10.6774	19 2008	82	2.69354	8	
2009	6.758065	7.821429	9.9645	16 2009	80	3.53871	0	
2010	7.022581	6.500000	9.0967	74 2010	81	2.96774	2	
2011	5.054839	7.007143	8.0806	45 2011	87	1.53225	8	
2012	4.796774	5.448276	8.8258	06 2012	91	1.79677	4	
2013	5.541935	6.160714	12.0967	74 2013	75	1.84516	1	
2014	6.329032	5.942857	10.3806	45 2014	84	2.48064	5	
2015	5.783871	5.717857	10.2516	13 2015	82	1.83225	8	
2016	6.080645	7.227586	10.1419	35 2016	81	1.83871	0	
2017	5.832258	6.928571	8.4935	48 2017	80	1.67741	9	
	min_temp_	feb min_	temp_mar	preci_jan	preci_feb	preci_mar	sun_jan	\
year		_			· –	. –		
1961	-0.457	'14 3	3.919355	1.258065	1.553571	3.438710	5.922581	
1962	0.832	143	3.335484	1.306452	0.482143	2.112903	6.796774	
1963	0.214	286	3.161290	0.006452	0.760714	2.796774	7.454839	
1964	0.682	759	3.077419	4.664516	2.206897	3.216129	4.019355	
1965	0.289	286	2.590323	1.548387	0.375000	1.435484	5.658065	
1966	2.589	286	5.487097	0.761290	4.357143	3.222581	6.316129	
1967	1.060	714	4.745161	1.038710	1.564286	2.248387	6.270968	
1968	-0.137	931	5.822581	0.306452	1.655172	3.032258	7.070968	
1969	2.089	286	3.703226	1.758065	3.571429	3.903226	4.787097	
1970	1.703	571	1.329032	1.887097	1.232143	1.500000	5.870968	
1971	1.910	714	4.109677	1.032258	1.357143	2.177419	5.858065	
1972	2.310	345	5.506452	3.661290	4.896552	1.419355	5.045161	
1973	2.789	286	3.725806	4.387097	1.607143	0.322581	5.729032	
1974	1.439	286	3.590323	0.935484	2.089286	3.677419	7.403226	
1975	1.250	1000	3.993548	2.177419	2.678571	3.483871	5.893548	
1976	2.875	862	5.109677	0.016129	4.413793	2.806452	7.264516	
1977	0.521	.429	5.261290	0.629032	0.964286	5.387097	5.209677	
1978	0.564	286	4.841935	0.903226	1.142857	3.725806	5.161290	
1979	4.889	286	5.777419	1.903226	3.428571	2.967742	5.790323	
1980	1.306	897	4.851613	2.854839	0.896552	5.596774	5.870968	
1981	1.892	857	5.180645	0.112903	1.357143	3.645161	7.529032	
1982	1.846	429	5.903226	1.048387	1.839286	2.354839	6.258065	
1983	2.392	857	5.187097	0.951613	1.803571	3.193548	6.612903	
1984	-0.037	931	1.954839	1.612903	1.758621	2.225806	6.735484	

1985	3.139286	4.841935	0.145161	5.071429	4.338710	6.480645
1986	0.810714	3.900000	0.483871	0.982143	6.064516	5.990323
1987	2.953571	5.141935	1.225806	1.053571	3.032258	5.851613
1988	1.131034	4.561290	0.903226	0.603448	5.967742	6.354839
1989	4.317857	5.793548	3.064516	3.821429	3.806452	4.922581
1990	5.121429	7.019355	1.048387	4.160714	3.145161	5.783871
1991	2.532143	6.161290	1.774194	2.464286	5.290323	6.793548
1992	3.100000	6.480645	1.612903	1.241379	6.612903	5.909677
1993	3.750000	5.022581	3.709677	2.035714	1.951613	4.193548
1994	3.032143	4.819355	1.612903	3.160714	3.693548	5.600000
1995	2.939286	5.296774	1.161290	0.964286	5.806452	7.232258
1996	1.668966	5.509677	0.419355	1.551724	3.806452	6.380645
1997	3.100000	6.796774	0.935484	0.767857	3.419355	7.632258
1998	3.585714	5.929032	3.935484	3.946429	3.483871	5.241935
1999	2.535714	6.332258	0.629032	1.267857	4.661290	7.000000
2000	2.372414	5.229032	2.145161	0.137931	2.758065	4.961290
2001	2.832143	5.654839	4.080645	0.821429	3.467742	5.767742
2002	4.414286	8.080645	3.177419	0.892857	2.645161	6.512903
2003	3.235714	5.135484	3.258065	1.910714	5.145161	6.709677
2004	4.279310	5.716129	0.112903	0.689655	4.177419	6.567742
2005	2.478571	4.980645	2.483871	1.714286	2.290323	6.451613
2006	3.264286	5.929032	2.161290	4.035714	2.564516	5.480645
2007	4.967857	6.822581	1.354839	2.035714	2.483871	5.664516
2008	1.872414	7.170968	0.564516	1.965517	3.854839	5.316129
2009	4.446429	6.322581	4.580645	1.660714	3.177419	5.635484
2010	3.032143	5.093548	0.290323	4.107143	4.629032	7.158065
2011	3.217857	4.048387	0.112903	5.392857	2.387097	7.867742
2012	2.231034	5.267742	1.612903	3.241379	4.661290	5.903226
2013	2.689286	7.932258	2.258065	1.071429	1.435484	6.854839
2014	2.803571	6.680645	0.790323	5.625000	3.661290	6.583871
2015	1.910714	5.783871	2.983871	2.214286	3.032258	5.870968
2016	3.113793	6.109677	2.741935	1.965517	3.322581	6.500000
2017	2.592857	4.151613	0.838710	0.553571	2.758065	7.312903

	sun_feb	sun_mar
year		
1961	7.067857	5.841935
1962	6.964286	6.122581
1963	7.139286	6.412903
1964	5.206897	6.419355
1965	6.907143	8.141935
1966	5.342857	4.851613
1967	5.807143	5.832258

1968	7.096552	5.093548
1969	3.467857	5.783871
1970	5.717857	6.316129
1971	5.317857	6.558065
1972	3.882759	6.700000
1973	5.817857	6.693548
1974	4.814286	5.925806
1975	6.300000	5.880645
1976	4.734483	4.780645
1977	6.735714	4.577419
1978	5.632143	6.229032
1979	5.878571	6.135484
1980	7.106897	5.080645
1981	5.617857	6.212903
1982	6.000000	5.735484
1983	7.246429	5.677419
1984	6.293103	6.635484
1985	5.471429	2.387097
1986	6.485714	5.209677
1987	5.685714	4.809677
1988	6.148276	4.187097
1989	4.839286	5.690323
1990	2.914286	6.464516
1991	7.117857	3.735484
1992	5.737931	3.187097
1993	6.989286	6.054839
1994	7.364286	5.100000
1995	6.403571	4.335484
1996	6.441379	5.241935
1997	6.842857	5.867742
1998	5.371429	6.177419
1999	7.175000	3.838710
2000	7.162069	6.706452
2001	5.464286	5.809677
2002	5.839286	6.170968
2003	5.500000	6.574194
2004	7.527586	5.512903
2005	5.317857	5.648387
2006	4.589286	5.683871
2007	6.914286	6.290323
2008	7.406897	6.038710
2009	4.685714	5.254839
2010	4.225000	4.509677

```
2011 5.317857 6.929032
2012 5.124138 4.829032
2013 6.203571 6.132258
2014 4.992857 6.612903
2015 5.960714 6.264516
2016 5.520690 5.222581
2017 6.917857 6.138710
```

Preparing labels for NN model

```
In [73]: test_labels = new_df.loc[test_years,'day:actual'].values
    train_labels = new_df.loc[train_years,'day:actual'].values
    del new_df['day:actual']
```

Scaling feature values

Among various scalers(Standard, MinMax, Robust) Robust scaler performed best. Hence Robust Scaler is used here to scale the features.

Why scaling is needed:

Most machine learning algorithms take into account only the magnitude of the measurements, not the units of those measurements. That's why one feature, which is expressed in a very high magnitude (number), may affect the prediction a lot more than an equally important feature.

```
In [74]: col_names = new_df.columns.values.tolist()
    robust_scaler = RobustScaler()
    new_df[col_names] = robust_scaler.fit_transform(new_df[col_names])
```

```
new df = pd.DataFrame(new df)
In [75]:
           new df.head()
Out[75]:
                                   2
                                              3
                                                      year min_temp_jan min_temp_feb min_temp_mar preci_jan preci_feb preci_mar
                                                                                                                                         sun ja
            year
            1961 -1.391579 -0.979978 -0.533465 -1.000000
                                                               -1.400716
                                                                              -1.800000
                                                                                             -0.723757 -0.032967
                                                                                                                  -0.076271
                                                                                                                               0.1675 -0.0632
            1962 -0.755789 -0.127354 -0.517717 -0.964286
                                                               -1.300537
                                                                              -1.023656
                                                                                                        0.000000 -0.584746
                                                                                                                                        0.7530
                                                                                             -1.057090
                                                                                                                               -0.8600
            1963 -1.652632 -0.815929 -0.891732 -0.928571
                                                               -2.479428
                                                                              -1.395699
                                                                                             -1.156538
                                                                                                       -0.885714 -0.452542
                                                                                                                               -0.3300
                                                                                                                                        1.3674
            1964 -0.197895 -1.186900 -0.931102 -0.892857
                                                                -0.152057
                                                                              -1.113608
                                                                                             -1.204420
                                                                                                        2.287912
                                                                                                                  0.233781
                                                                                                                               -0.0050 -1.8403
            1965 -0.850526 -0.893636 -1.324803 -0.857143
                                                                -0.706619
                                                                              -1.350538
                                                                                             -1.482505
                                                                                                        0.164835 -0.635593
                                                                                                                               -1.3850 -0.3102
```

Preparing train and test data for NN model

```
In [76]: new_test_df =new_df.loc[ test_years , : ]
    new_train_df =new_df.loc[ train_years , : ]

In [77]: train = new_train_df.copy()
    test = new_test_df.copy()

In [78]: train =np.array(train)
    test =np.array(test)
    train_labels =np.array(train_labels)
    test_labels =np.array(test_labels)
    train_labels =train_labels.reshape(-1,1)
```

Problem 3-1: (20pts)

Build a neural network and train it on the data from the training years. Use this model to predict the bloom-dates for each year in the test set. Evaluate the error between predicted dates and actual dates using the coefficient of determination (R2 score). Only use the weather data given in tokyo.csv and the sakura data acquired in problem 0-1.</br>

Tuning hyperparameters and decision of best model:

- a) No of input features:
- 1. Avg temp of January and March:

r2 score: 0.672

2. Average temp of February and March:

r2 score: 0.7303

3. Average temp of January-March and min temp of January:

r2 score: 0.7594

4. Average and min temp of January-March:

r2 score: 0.82507

5. Average, min and max temp of January-March:

r2score: 0.77405

6. Average and min temp and total precipitation of January-March:

r2 score: 0.839

7. Average, min temp,total pricipitation, avg humidity and sun hours of January-March:

r2 score: 0.665

8. Average, min temp, total precipitation and sun hours of January-March:

r2 score: 0.87609 All of the above model included 'year' as feature values.

9. Best model without including 'year' as feature:

r2 score: 0.81

b) Tuning number of layers:

ANN model with 1 hidden layer gave an r2 score of 0.87609 on test data and 0.81014 on train data.


```
#Prediction on test data
in_test={input_feat:np.array(test)}
pred = sess.run((out),feed_dict=in_test)
pred = pred.reshape(-1)
for i in range(len(pred)):
    pred[i]=int(pred[i])

r2_test_NN = r2_score(test_labels,pred)
print('r2 score by NN:',r2_test_NN)
```

ANN model with 2 hidden layer gave an r2 score of 0.81778 on test data and 0.6709 on train data.


```
#Prediction on test data
in_test={input_feat:np.array(test)}
pred = sess.run((out),feed_dict=in_test)
pred = pred.reshape(-1)
for i in range(len(pred)):
    pred[i]=int(pred[i])

r2_test_NN = r2_score(test_labels,pred)
print('r2 score by NN:',r2 test_NN)
```

ANN model with no hidden layer gave an r2 score of 0.91 on test data and 0.77 on train data.


```
#Prediction on test data
in_test={input_feat:np.array(test)}
pred = sess.run((out),feed_dict=in_test)
pred = pred.reshape(-1)
for i in range(len(pred)):
    pred[i]=int(pred[i])

r2_test_NN = r2_score(test_labels,pred)
print('r2 score by NN:',r2_test_NN)
```

Since the ANN model with 1 hidden layer gave satisfactory values in both test and train data, this model was chosen.

c) Activation function:

With activation: 0.6428


```
#Prediction on test data
in_test={input_feat:np.array(test)}
pred = sess.run((out),feed_dict=in_test)
pred = pred.reshape(-1)
for i in range(len(pred)):
    pred[i]=int(pred[i])

r2_test_NN = r2_score(test_labels,pred)
print('r2 score by NN:',r2_test_NN)
```

Without activation: 0.876


```
#Prediction on test data
in_test={input_feat:np.array(test)}
pred = sess.run((out),feed_dict=in_test)
pred = pred.reshape(-1)
for i in range(len(pred)):
    pred[i]=int(pred[i])
```

```
r2_test_NN = r2_score(test_labels,pred)
print('r2 score by NN:',r2_test_NN)
```

d) Batch size:

no of batch: 5, r2 score = 0.6356


```
#Prediction on test data
in_test={input_feat:np.array(test)}
pred = sess.run((out),feed_dict=in_test)
pred = pred.reshape(-1)
for i in range(len(pred)):
    pred[i]=int(pred[i])
```

```
r2_test_NN = r2_score(test_labels,pred)
print('r2 score by NN:',r2_test_NN)
```

no of batch: 8, r2 score = 0.7594

LR = .5, No 0f Total Layer =2, L2 regularization, beta=0.01, Input Feature=4


```
#Prediction on test data
in_test={input_feat:np.array(test)}
pred = sess.run((out),feed_dict=in_test)
pred = pred.reshape(-1)
for i in range(len(pred)):
    pred[i]=int(pred[i])
```

```
r2_test_NN = r2_score(test_labels,pred)
print('r2 score by NN:',r2_test_NN)
```

no of batch: 9, r2 score = 0.68


```
#Prediction on test data
in_test={input_feat:np.array(test)}
pred = sess.run((out),feed_dict=in_test)
pred = pred.reshape(-1)
for i in range(len(pred)):
    pred[i]=int(pred[i])
```

```
r2_test_NN = r2_score(test_labels,pred)
print('r2 score by NN:',r2_test_NN)
```

e) Regularization constant:

value: 0.5, score: 0.5116


```
#Prediction on test data
in_test={input_feat:np.array(test)}
pred = sess.run((out),feed_dict=in_test)
pred = pred.reshape(-1)
for i in range(len(pred)):
    pred[i]=int(pred[i])
```

```
r2_test_NN = r2_score(test_labels,pred)
print('r2 score by NN:',r2_test_NN)
```

value: 0.1, score = 0.6793


```
#Prediction on test data
in_test={input_feat:np.array(test)}
pred = sess.run((out),feed_dict=in_test)
pred = pred.reshape(-1)
for i in range(len(pred)):
    pred[i]=int(pred[i])

r2_test_NN = r2_score(test_labels,pred)
print('r2 score by NN:',r2_test_NN)
```

value: .01, score = 0.7157


```
#Prediction on test data
in_test={input_feat:np.array(test)}
pred = sess.run((out),feed_dict=in_test)
pred = pred.reshape(-1)
for i in range(len(pred)):
    pred[i]=int(pred[i])

r2_test_NN = r2_score(test_labels,pred)
print('r2 score by NN:',r2_test_NN)
```

f) Optimizer:

Among various optimizer, Adadelta, Gradient descent were really slow and but could not converge that much even with high values of epoch and low learning rate. Adagrad was slightly better. RMSPropOptimizer performed best among these with moderate epoch and learning rate.

g) Epochs and Learning rate:

Various combination of epochs and learning rates for various optimizer has been tried. Among them the best values are chosen based on training and validation error(MSE) and r2 score of test ant training data. Initially 70% data were used for training and 30% for cross validation. Final training are done for all training data and r2 scores are reported for both training and test set.

```
LearningRate = .01
In [79]:
         epoch = 190
         reg const = .01
In [80]: #Variable declarartions
         input node = train.shape[1]
         hid 1 = int(input node/2)
         #hid 2 = int(input node/2)
         output node = 1
         with tf.variable scope("WB", reuse=tf.AUTO REUSE):
             w1= tf.Variable(tf.get variable('w1',[input node, hid 1],dtype=tf.float64))
             w2= tf.Variable(tf.get variable('w2',[hid 1, output node],dtype=tf.float64))
             #w3= tf.Variable(tf.get variable('w3',[hid 2, output node],dtype=tf.float64))
         b1= tf.Variable(tf.zeros([hid 1],dtype=tf.float64))
         #b2= tf.Variable(tf.zeros([hid_2],dtype=tf.float64))
         b2= tf.Variable(tf.zeros([output node],dtype=tf.float64))
         weights= [w1,w2]
         biases = [b1,b2]
```

```
In [83]: | input_feat = tf.placeholder(tf.float64, shape=[None, train.shape[1]])
         output labels=tf.placeholder(tf.float64, shape=[None, 1])
         hlayer 1 = tf.add(tf.matmul(input feat, weights[0]),biases[0])
         #hlayer 2 = tf.add(tf.matmul(hlayer 1, weights[1]),biases[1])
         #hlayer 1 =tf.nn.relu(hlayer 1)
         out = tf.add(tf.matmul(hlayer 1, weights[1]),biases[1])
         mse loss = tf.losses.mean squared error(labels=output labels, predictions=out)
         mse loss=tf.cast(mse loss,tf.float64)
         reg const=np.float64(reg const)
         reg=0.5*tf.reduce sum(tf.square(weights[0])) #Applying L2 regularization formula
         reg+=0.5*tf.reduce sum(tf.square(weights[1]))
         reg=tf.cast( reg,tf.float64)
         reg loss =tf.multiply(np.float64(0.5),tf.add(mse loss,tf.multiply(reg const,reg)))
         optimizer = tf.train.RMSPropOptimizer(LearningRate)
         func_to_opt = optimizer.minimize(reg loss)
         #Running sessions
         sess = tf.Session()
         init = tf.global variables initializer()
         sess.run(init)
         #Setting BatchSize and splitting value for validation
         no of batch=8
         no of train batch=int(0.99*no of batch)
         train batch=np.array split(train,no of batch)
         labels of train batch=np.array split(train labels,no of batch)
         #Training and validation phase
         loss tr=[]
         loss va=[]
         for i in range(epoch):
             train loss=0
             for j in range(0,len(train batch)):
                 single train batch={input feat:train batch[j],output labels:labels of train batch[j]}
                 = sess.run((func to opt), feed dict=single train batch)
                 trainbatch loss = sess.run((mse loss), feed dict=single train batch)
                 train loss+=trainbatch loss
```

```
train_loss=train_loss/(j+1)

val_loss=0
for k in range(no_of_train_batch,no_of_batch):
    single_cv_batch={input_feat:train_batch[k],output_labels:labels_of_train_batch[k]}
    valid_loss = sess.run((mse_loss),feed_dict=single_cv_batch)
    val_loss+valid_loss

val_loss=val_loss/(no_of_batch-no_of_train_batch)
loss_tr.append(train_loss)
loss_va.append(val_loss)

print('epoc:',i,'train_loss',train_loss,'valid_loss',val_loss)
```

epoc: 0 train loss 7293.5238037109375 valid loss 6509.58837890625 epoc: 1 train loss 7160.042541503906 valid loss 6363.44677734375 epoc: 2 train loss 7018.608642578125 valid loss 6197.16064453125 epoc: 3 train loss 6858.920227050781 valid loss 6008.31640625 epoc: 4 train loss 6680.4144287109375 valid loss 5798.244140625 epoc: 5 train loss 6484.1453857421875 valid loss 5569.18310546875 epoc: 6 train loss 6271.630554199219 valid loss 5323.56787109375 epoc: 7 train loss 6044.532470703125 valid loss 5063.82373046875 epoc: 8 train loss 5804.561340332031 valid loss 4792.32080078125 epoc: 9 train loss 5553.44873046875 valid loss 4511.38916015625 epoc: 10 train loss 5292.947998046875 valid loss 4223.33544921875 epoc: 11 train loss 5024.838073730469 valid loss 3930.458984375 epoc: 12 train loss 4750.927062988281 valid loss 3635.062744140625 epoc: 13 train loss 4473.054504394531 valid loss 3339.451904296875 epoc: 14 train loss 4193.087921142578 valid loss 3045.9296875 epoc: 15 train loss 3912.9186096191406 valid loss 2756.790283203125 epoc: 16 train loss 3634.4530029296875 valid loss 2474.303466796875 epoc: 17 train loss 3359.601104736328 valid loss 2200.6953125 epoc: 18 train loss 3090.262725830078 valid loss 1938.1279296875 epoc: 19 train loss 2828.309295654297 valid loss 1688.66845703125 epoc: 20 train loss 2575.5592498779297 valid loss 1454.25439453125 epoc: 21 train loss 2333.7511596679688 valid loss 1236.648681640625 epoc: 22 train loss 2104.5075073242188 valid loss 1037.3870849609375 epoc: 23 train loss 1889.2919082641602 valid loss 857.7140502929688 epoc: 24 train loss 1689.3552932739258 valid loss 698.5084838867188 epoc: 25 train loss 1505.6687088012695 valid loss 560.2006225585938 epoc: 26 train loss 1338.8386039733887 valid loss 442.6829528808594 epoc: 27 train loss 1189.005844116211 valid loss 345.227783203125 epoc: 28 train loss 1055.7462005615234 valid loss 266.4417724609375 epoc: 29 train loss 938.0337924957275 valid loss 204.3233184814453 epoc: 30 train loss 834.3533382415771 valid loss 156.48695373535156 epoc: 31 train loss 742.982307434082 valid loss 120.49945068359375 epoc: 32 train loss 662.2971839904785 valid loss 94.1455078125 epoc: 33 train loss 590.9215469360352 valid loss 75.50607299804688 epoc: 34 train loss 527.70490026474 valid loss 62.89957809448242 epoc: 35 train loss 471.6435794830322 valid loss 54.7967529296875 epoc: 36 train loss 421.8201560974121 valid loss 49.78431701660156 epoc: 37 train loss 377.37729120254517 valid loss 46.60800552368164 epoc: 38 train loss 337.52454900741577 valid loss 44.27692794799805 epoc: 39 train loss 301.56993103027344 valid loss 42.15919494628906 epoc: 40 train loss 268.95394134521484 valid loss 39.982940673828125 epoc: 41 train loss 239.2594747543335 valid loss 37.727806091308594 epoc: 42 train loss 212.18968391418457 valid loss 35.47979736328125

epoc: 43 train loss 187.52966785430908 valid loss 33.325462341308594 epoc: 44 train loss 165.11074042320251 valid loss 31.303892135620117 epoc: 45 train loss 144.78569769859314 valid loss 29.39923667907715 epoc: 46 train loss 126.41471791267395 valid loss 27.55634880065918 epoc: 47 train loss 109.85985541343689 valid loss 25.712064743041992 epoc: 48 train loss 94.98648190498352 valid loss 23.831579208374023 epoc: 49 train loss 81.6700177192688 valid loss 21.926712036132812 epoc: 50 train loss 69.80389881134033 valid loss 20.04254150390625 epoc: 51 train loss 59.299668073654175 valid loss 18.229778289794922 epoc: 52 train loss 50.0783908367157 valid loss 16.52713966369629 epoc: 53 train loss 42.061134457588196 valid loss 14.957253456115723 epoc: 54 train loss 35.16475212574005 valid loss 13.530200958251953 epoc: 55 train loss 29.30135142803192 valid loss 12.24791431427002 epoc: 56 train loss 24.380082726478577 valid loss 11.1078519821167 epoc: 57 train loss 20.308936715126038 valid loss 10.105491638183594 epoc: 58 train loss 16.995645821094513 valid loss 9.236480712890625 epoc: 59 train loss 14.347766697406769 valid loss 8.498221397399902 epoc: 60 train loss 12.272662699222565 valid loss 7.890121936798096 epoc: 61 train loss 10.678402930498123 valid loss 7.4113945960998535 epoc: 62 train loss 9.47589522600174 valid loss 7.056637287139893 epoc: 63 train loss 8.58216443657875 valid loss 6.812231540679932 epoc: 64 train loss 7.9237717390060425 valid loss 6.65646505355835 epoc: 65 train loss 7.439444035291672 valid loss 6.564224720001221 epoc: 66 train loss 7.0810607969760895 valid loss 6.512794017791748 epoc: 67 train loss 6.812735706567764 valid loss 6.485171794891357 epoc: 68 train loss 6.608626276254654 valid loss 6.470211505889893 epoc: 69 train loss 6.450453609228134 valid_loss 6.461246013641357 epoc: 70 train loss 6.325333505868912 valid loss 6.454488754272461 epoc: 71 train loss 6.2241829335689545 valid loss 6.447904109954834 epoc: 72 train loss 6.140556156635284 valid loss 6.440446376800537 epoc: 73 train loss 6.069846212863922 valid loss 6.431612014770508 epoc: 74 train loss 6.008780211210251 valid loss 6.421260833740234 epoc: 75 train loss 5.954988241195679 valid loss 6.409404277801514 epoc: 76 train loss 5.906755119562149 valid loss 6.396173000335693 epoc: 77 train loss 5.862841367721558 valid loss 6.381738662719727 epoc: 78 train loss 5.822345465421677 valid loss 6.3662800788879395 epoc: 79 train loss 5.784592181444168 valid loss 6.349974155426025 epoc: 80 train loss 5.749099761247635 valid loss 6.333030700683594 epoc: 81 train loss 5.715492755174637 valid loss 6.315587997436523 epoc: 82 train loss 5.6835010051727295 valid loss 6.297827243804932 epoc: 83 train loss 5.652906388044357 valid loss 6.2798309326171875 epoc: 84 train loss 5.6235582530498505 valid loss 6.261743068695068 epoc: 85 train loss 5.595324903726578 valid loss 6.243649959564209

epoc: 86 train loss 5.568108767271042 valid loss 6.2256317138671875 epoc: 87 train loss 5.541827440261841 valid loss 6.207754135131836 epoc: 88 train loss 5.516421854496002 valid loss 6.1900482177734375 epoc: 89 train loss 5.491834461688995 valid loss 6.1725850105285645 epoc: 90 train loss 5.468025267124176 valid loss 6.155374050140381 epoc: 91 train loss 5.444953352212906 valid loss 6.138452053070068 epoc: 92 train loss 5.422582983970642 valid loss 6.12183141708374 epoc: 93 train loss 5.400891721248627 valid loss 6.105523586273193 epoc: 94 train loss 5.379852592945099 valid loss 6.089547634124756 epoc: 95 train loss 5.359440743923187 valid loss 6.073886394500732 epoc: 96 train loss 5.339642375707626 valid loss 6.058574676513672 epoc: 97 train loss 5.320427775382996 valid loss 6.043565273284912 epoc: 98 train loss 5.301790118217468 valid loss 6.028879165649414 epoc: 99 train loss 5.283708482980728 valid loss 6.0145134925842285 epoc: 100 train loss 5.266165137290955 valid loss 6.000447750091553 epoc: 101 train loss 5.249149113893509 valid loss 5.9866790771484375 epoc: 102 train loss 5.232652068138123 valid loss 5.973211288452148 epoc: 103 train loss 5.216654539108276 valid loss 5.960031032562256 epoc: 104 train loss 5.201140642166138 valid loss 5.947103500366211 epoc: 105 train loss 5.18610817193985 valid loss 5.934450626373291 epoc: 106 train loss 5.17153537273407 valid loss 5.9220428466796875 epoc: 107 train loss 5.157418519258499 valid loss 5.909882068634033 epoc: 108 train loss 5.143744736909866 valid loss 5.897955417633057 epoc: 109 train loss 5.130502939224243 valid loss 5.8862433433532715 epoc: 110 train loss 5.1176818907260895 valid loss 5.874758243560791 epoc: 111 train loss 5.105273485183716 valid loss 5.8634772300720215 epoc: 112 train loss 5.0932663679122925 valid loss 5.852396011352539 epoc: 113 train loss 5.081654340028763 valid loss 5.841506481170654 epoc: 114 train loss 5.070422917604446 valid loss 5.8308024406433105 epoc: 115 train loss 5.059564679861069 valid loss 5.820271015167236 epoc: 116 train loss 5.049068599939346 valid loss 5.809896945953369 epoc: 117 train loss 5.038933366537094 valid loss 5.799707889556885 epoc: 118 train loss 5.029140323400497 valid loss 5.789649486541748 epoc: 119 train loss 5.019687354564667 valid loss 5.779750823974609 epoc: 120 train loss 5.010562092065811 valid loss 5.769991397857666 epoc: 121 train loss 5.001759350299835 valid loss 5.760385036468506 epoc: 122 train loss 4.993270128965378 valid loss 5.7509026527404785 epoc: 123 train loss 4.9850857853889465 valid loss 5.7415547370910645 epoc: 124 train loss 4.977194905281067 valid loss 5.732325077056885 epoc: 125 train loss 4.969598293304443 valid loss 5.723221302032471 epoc: 126 train loss 4.96228152513504 valid loss 5.714224338531494 epoc: 127 train loss 4.955239802598953 valid loss 5.705348491668701 epoc: 128 train loss 4.948465526103973 valid loss 5.696584224700928

epoc: 129 train loss 4.941949516534805 valid loss 5.687927722930908 epoc: 130 train loss 4.935685694217682 valid loss 5.679368495941162 epoc: 131 train loss 4.929670214653015 valid loss 5.6709136962890625 epoc: 132 train loss 4.923889368772507 valid loss 5.662558078765869 epoc: 133 train loss 4.9183478355407715 valid loss 5.654300689697266 epoc: 134 train loss 4.913029342889786 valid loss 5.646145343780518 epoc: 135 train loss 4.907924145460129 valid loss 5.6380839347839355 epoc: 136 train loss 4.90303772687912 valid loss 5.6301045417785645 epoc: 137 train loss 4.898356109857559 valid loss 5.622209072113037 epoc: 138 train loss 4.893877029418945 valid loss 5.614409923553467 epoc: 139 train loss 4.889594078063965 valid loss 5.606703281402588 epoc: 140 train loss 4.885498255491257 valid loss 5.599067211151123 epoc: 141 train loss 4.881581783294678 valid loss 5.591522693634033 epoc: 142 train loss 4.877849251031876 valid loss 5.584065914154053 epoc: 143 train loss 4.874290108680725 valid loss 5.576694965362549 epoc: 144 train loss 4.870893090963364 valid loss 5.569387912750244 epoc: 145 train loss 4.867658644914627 valid loss 5.562183380126953 epoc: 146 train loss 4.86458221077919 valid loss 5.55504035949707 epoc: 147 train loss 4.861660420894623 valid loss 5.547998428344727 epoc: 148 train loss 4.8588807284832 valid loss 5.541007995605469 epoc: 149 train loss 4.85624586045742 valid loss 5.53411865234375 epoc: 150 train loss 4.853750303387642 valid loss 5.527305603027344 epoc: 151 train loss 4.851383522152901 valid loss 5.520563125610352 epoc: 152 train loss 4.849145278334618 valid loss 5.513898849487305 epoc: 153 train loss 4.847033992409706 valid loss 5.5073161125183105 epoc: 154 train loss 4.845040380954742 valid loss 5.500809192657471 epoc: 155 train loss 4.843167200684547 valid loss 5.494377613067627 epoc: 156 train loss 4.841401174664497 valid loss 5.488021373748779 epoc: 157 train loss 4.8397476226091385 valid loss 5.481753826141357 epoc: 158 train loss 4.838194563984871 valid loss 5.475555419921875 epoc: 159 train loss 4.8367423713207245 valid loss 5.469430446624756 epoc: 160 train loss 4.835385218262672 valid loss 5.463369369506836 epoc: 161 train loss 4.834127306938171 valid loss 5.457394123077393 epoc: 162 train loss 4.832954943180084 valid loss 5.4515061378479 epoc: 163 train loss 4.831870466470718 valid loss 5.445685863494873 epoc: 164 train loss 4.830869436264038 valid loss 5.439932346343994 epoc: 165 train loss 4.8299490958452225 valid loss 5.43426513671875 epoc: 166 train loss 4.829103007912636 valid loss 5.42865514755249 epoc: 167 train loss 4.828333184123039 valid loss 5.423145294189453 epoc: 168 train loss 4.827634647488594 valid loss 5.417701721191406 epoc: 169 train loss 4.8270028829574585 valid loss 5.412308216094971 epoc: 170 train loss 4.826435565948486 valid loss 5.407015323638916 epoc: 171 train loss 4.8259323835372925 valid loss 5.40179443359375

epoc: 172 train loss 4.825492277741432 valid loss 5.396631717681885 epoc: 173 train loss 4.825107082724571 valid loss 5.391557693481445 epoc: 174 train loss 4.8247784078121185 valid loss 5.386549472808838 epoc: 175 train loss 4.824501991271973 valid loss 5.381622314453125 epoc: 176 train loss 4.824275970458984 valid loss 5.376763820648193 epoc: 177 train loss 4.824097260832787 valid loss 5.371983051300049 epoc: 178 train loss 4.823964610695839 valid loss 5.367246150970459 epoc: 179 train loss 4.823875680565834 valid loss 5.362612247467041 epoc: 180 train loss 4.823832035064697 valid loss 5.358036041259766 epoc: 181 train loss 4.823827281594276 valid loss 5.353527545928955 epoc: 182 train loss 4.823859557509422 valid loss 5.349094867706299 epoc: 183 train loss 4.823930606245995 valid loss 5.344730854034424 epoc: 184 train loss 4.82403028011322 valid loss 5.3404388427734375 epoc: 185 train loss 4.824165374040604 valid loss 5.336204528808594 epoc: 186 train loss 4.8243376314640045 valid loss 5.332062244415283 epoc: 187 train loss 4.824533686041832 valid loss 5.327972888946533 epoc: 188 train loss 4.824758887290955 valid loss 5.323946952819824 epoc: 189 train loss 4.82501120865345 valid loss 5.319984436035156

```
In [84]: #Plotting
    plt.title('LR = .01, No 0f Total Layer =3, L2 regularization,beta=0.01,Input Feature=13')
    plt.plot(loss_tr[:], label = 'train')
    plt.plot(loss_va[:],label='validation')
    plt.xlabel('Epoch')
    plt.ylabel('MSE')
    plt.legend()
    plt.show()
```

LR = .01, No 0f Total Layer =3, L2 regularization, beta=0.01, Input Feature=13


```
In [85]: #Prediction on test data
in_test={input_feat:np.array(test)}
pred_test = sess.run((out),feed_dict=in_test)
pred_test = pred_test.reshape(-1)
for i in range(len(pred_test)):
    pred_test[i]=int(pred_test[i])
```

```
In [88]: r2_test_NN = r2_score(test_labels,pred_test)
print('r2 score by NN:',r2_test_NN)
```

```
In [89]: in_train={input_feat:np.array(train)}
    pred = sess.run((out),feed_dict=in_train)
    pred = pred.reshape(-1)
    for i in range(len(pred)):
        pred[i]=int(pred[i])

In [90]: r2_train_NN = r2_score(train_labels,pred)
    print('r2 score by NN:',r2_train_NN)
    r2 score by NN: 0.8101426755191411
```

Problem 3-2: (10pts)

Compare the performance (via R^2 score) of the 3 implementations above: the 600 Degree Rule, the DTS method, and the neural network approach. For all methods, and each test year, plot the predicted date vs. the actual date. Discuss the accuracy and differences of these 3 models.

Comparison between 3 implementations by R2 Score(On test data):

600 Degree rule: 0.67930
 DTS method: 0.91253

3. Neural network approach: 0.87609

In [91]: comparison_df = pd.DataFrame({'day:actual':test_labels,'year':test_years,'Pred by NN':pred_test,'Pred by 600
 D.R':pred_test_600,'Pred by DTS':ACT_BD_optEa})
 comparison_df.head()

Out[91]:

	Pred by 600D.R	Pred by DTS	Pred by NN	day:actual	year
0	79	79	81.0	79	1966
1	86	89	87.0	89	1971
2	88	93	90.0	93	1985
3	87	90	90.0	90	1994
4	83	82	82.0	82	2008

In [92]: comparison_df.plot(x='year',y=['day:actual','Pred by NN','Pred by 600D.R','Pred by DTS'],kind='bar',figsize=(
15,8),title='Actual and Predicted Blooming Days by different approach')

Out[92]: <matplotlib.axes._subplots.AxesSubplot at 0x121ba38d518>

Actual and Predicted Blooming Days by different approach

Discussion:

As we have seen from the test scores, Tmean = 638 degree performed better tha 600 degree rule. DTS method performed best among all the approaches. NN approach could have performed even better if there were more data available for training. More precise domain analysis for sakura blooming factors could have resulted in better predictions. As we have seen in the NN approach, data manupulation and proper feature engineering improves the R2 scores significantly. So there is obvious scopes for better result using ANN. One more thing to note here is the difference of test scores and train scores. In any approach, only a good test score can not ensure that the claimed model is good enough because of very low number of test data. In this case it would be wise to choose a model that gives optimum good scores in both train and test dataset rather than choosing a model which gives good score in a small model but performs porrly in a large model.

4. Trends of the Sakura blooming phenomenon (20pts total)

Problem 4-1: (20pts)

Based on the data from the past 60 years, investigate and discuss trends in the sakura hibernation (D_i) and blooming (BD_i) phenomena in Tokyo.

```
In [93]: Dj_all['day:actual'] = ActualBD_df['day:actual']
    print(Dj_all)
```

_	Dj	YEARS	day:actual
0	39	1961	91
1	41	1962	91
2	38	1963	91
3	40	1964	93
4	38	1965	92
5	45	1966	79
6	42	1967	89
7	43	1968	89
8	42	1969	96
9	38	1970	97
10	42	1971	89
11	45	1972	88
12	44	1973	90
13	39	1974	92
14	40	1975	88
15	45	1976	82
16	40	1977	81
17	41	1978	90
18	50	1979	82
19	42	1980	91
20	41	1981	85
21	45	1982	82
22	44	1983	90
23	35	1984	102
24	41	1985	93
25	39	1986	93
26	46	1987	82
27	45	1988	93
28	51	1989	79
29	48	1990	79
30	46	1991	89
31	48	1992	84
32	47	1993	83
33	43	1994	90
34	45	1995	90
35	45	1996	91
36	50	1997	80
		1998	
38	48	1999	83
39	47		90
40	45	2001	82
41	55	2002	75
33 34 35 36 37 38 39 40	43 45 45 50 47 48 47 45	1994 1995 1996 1997 1998 1999 2000 2001	90 90 91 80 86 83 90 82

42	44	2003	86
43	50	2004	78
44	45	2005	90
45	45	2006	80
46	54	2007	79
47	46	2008	82
48	50	2009	80
49	47	2010	81
50	43	2011	87
51	42	2012	91
52	49	2013	75
53	47	2014	84
54	46	2015	82
55	48	2016	81
56	45	2017	80

In [94]: Dj_all.plot(x='YEARS',y='Dj',grid=True)

Out[94]: <matplotlib.axes._subplots.AxesSubplot at 0x121b5a4deb8>

Dj_all.plot(x='YEARS',y='day:actual',grid=True)

Comments on trend of blooming phenomena in Tokyo

As we can see from the graph plotted, blooming is occuring earlier than it used to 60 years ago. As we have mentioned earlier, cold winter temperature and warm spring temperature accelerates blooming date. We know one of the effects of global warming is colder winter and warmer summer. This can be the reason behind earlier blooming of sakura.[1]

Note

This challenge was given as an assignement in the AI training program of Hiperdyne Corporation. Please use the content only for learning purposes. Plagiarizing is strictly prohibited. -Sumaiya Saima, AI engineer, Hiperdyne.

References:

- 1. https://slate.com/news-and-politics/2007/03/how-do-horticulturists-know-when-the-cherry-blossoms-will-bloom.html)
- 2. https://www.jma.go.jp/jma/en/menu.html)
- 3. American Horticultural Society research

