

Where are the graphs?

- Some famous graph data
 - Social Networks
 - Web sites/internet
 - XML Documents
 - Biological/chemical networks

Why graph analysis?

- Knowledge discovery in social networks
 - Targeted advertising.
 - Pattern extraction for behavioral analysis.
 - Useful statistics and conclusions for a wide range of scientists
- Mining in Web Data
 - Interesting navigation patterns
 - XML documents
- Biological Data Analysis
 - Drug discovery
 - DNA Analysis
- Geographic Information Systems
-And much more......

Problem formulation

Given a directed graph G and two nodes u and v, is there a path connecting u to v (denoted $u \sim v$)?

Directed Graph → DAG (directed acyclic graph) by coalescing the strongly connected components

YES

NO

Motivation

- Classical problem in graph theory.
- Studying the influence flow in social networks
 - Even undirected graphs (facebook) are converted to directed w.r.t a certain attribute distribution
- Security: finding possible connections between suspects
- Biological data: is that protein involved- directly or indirectly- in the expression of a gene?
- Primitive for many graph related problems (pattern matching)

Methods Overview

	Method	Query time	Construction	Index size
Naïve	DFS/BFS	O(n+m)	O(n+m)	O(n+m)
	Transitive Closure	O(1)	$O(nm)=O(n^3)$	O(n²)
	Optimal Tree Cover (Agrawal et al., SIGMOD'89)	O(n)	O(nm)=O(n ³)	O(n ²)
Tree Cover	GRIPP (Triβl et al., SIGMOD'07)	O(m-n)	O(n+m)	O(n+m)
	Dual-Labeling (Wang et al., ICDE'06)	O(1)	O(n+m+t ³)	O(n+t ²)
Chain Cover	Optimal Chain Cover (Jagadish, TODS'90)	O(k)	O(nm)	O(nk)
	Path-Tree (Jin, et al., SIGMOD'08)	log²k'	O(mk')/O(mn)	O(nk')
HOP Cover	2-HOP (SODA 2002)	O(nm ^{1/2})	$O(n^3 T_C) = O(n^5)$	O(m ^{1/2})
	3-HOP (Yang Xiang et al., SIGMOD '09)	O(log n +k)	O(kn²)	O(nk)

Depth First Traversal

- ? u~v
- Depth First Traversal (DFT) starting from u
- if node v is discovered:
 - then stop search, report YES
- If all nodes have been visited:
 - then report NO

No index and thus no construction overhead and no extra space consumption

Query time: O(m+n) the entire graph should be traversed in the worst case

TOO GOOD

TOO BAD

Transitive Closure (TC)

	0	1	2	3	4	5	
0	1	1	0	1	1	1	
1	0	1	0	0	1	1	
2	0	1	1	0	1	1	
3	0	1	0	1	1	1	
4	0	0	0	0	1	1	
5	0	0	0	0	0	1	

- It can be done by dynamic programming algorithm Floyd—Warshall in $\Theta(n^3)$
- It takes $O(n^2)$ space

TOO BAD

 BUT, queries can be answered in constant time O(1)

TOO GOOD

Optimal Tree Cover [idea]

SIGMOD '89

- Index: smallest postorder number of descendants
- DFT postorder number

Postorder: left-right-root

$$label(u) = [u_{start}, u_{end}]$$

(example)
$$?(b \sim h) \Rightarrow ?(1 \leq 2 < 4) \Rightarrow YES$$

 $?(b \sim c) \Rightarrow ?(1 \leq 5 < 4) \Rightarrow NO$

Query Processing:
$$?(u \sim v) \Rightarrow$$

 $?(u_{start} \leq v_{end} < u_{end})$

Topological sorting: parent comes before the child

- Index Construction: O(nm) time = $O(n^3)$
 - 1. Connect all nodes with no predecessors to a dummy node-root.
 - 2. Find a spanning tree for the DAG (+root) requires a topological sorting first
 - 3. Label nodes according to tree edges (postorder).
 - 4. For each non-tree edge (u,v) in reverse topological order of the nodes-:

$$label(v) = label(v) \cup label(u)$$

5. If $label(a) \subset label(b)$ for labels inherited from nodes a, b, then keep only label(b).

• Query processing: O(n) time $label(u) = \left\{ [u_{start}, u_{end}], [u_{start_1}, u_{end_1}] \dots \right\}$ $(u \sim v) \ \textit{iff} \ \exists i : (u_{start_i} \leq v_{end} < u_{end_i})$

• Space: $O(n^2)$ worst case

Bipartite Graph: every one of these (n-x)vertices will inherit all (x) labels, resulting in total (n-x)(x+1)labels, yielding $O(n^2)$.

- The authors propose an algorithm for finding the optimal spanning tree (in terms of total label size).
- They also suggest a maintenance mechanism with nonconsecutive numbering of nodes.
- Although asymptotically equivalent to the straightforward method of transitive closure, in the experiments the method performs better in orders of magnitude.
- The experiments are quite primitive (graphs with 1000 nodes)

GRIPP Index Creation

SIGMOD '07

Depth-first traversal of G

- We reach a node v
 - for the first time
 - add tree instance of v to IND(G)
 - proceed traversal
 - again
 - add non-tree instance of v to IND(G)
 - do not traverse child nodes of v

GRIPP Index Table, IND(G)

node	pre	post	inst
R	0	21	tree
A	1	20	tree
В	2	7	tree
E	3	4	tree
F	5	6	tree
С	8	9	tree
D	10	19	tree
G	11	14	tree
В'	12	13	Non-tree
Н	15	18	tree
Α'	16	17	Non-tree
	GRIPP	index, IN	ID(G)

• Is node C reachable from node D?

GRIPP Query answering

?(D ~C)

If D_{pre} <	C_{pre} <	D_{pos}
----------------	-------------	-----------

C reachable from D

node	pre	post	inst
R	0	21	tree
A	1	20	tree
В	2	7	tree
E	3	4	tree
F	5	6	tree
C	8	9	tree
D	10	19	tree
G	11	14	tree
В'	12	13	non
н	15	18	tree
A '	16	17	non

GRIPP Query answering

?(D ~C)

Step 1: Retrieve RIS (D).

If $C \in RIS(D)$ then answer YES and finish.

Step 2: Else

foreach non_tree entry $h' \in RIS(D)$ do:

recursively issue the query $?(h \sim C)$

h is the correspondent tree entry of h'

Gripp [Facts]

- Index Construction Time: Depth First Traversal, linear O(m+n)
- Storage: O(n) nodes of the graph + O(m-n) non-tree nodes yields O(m+n) storage
- Query Time: in the worst case we ask for O(m-n) recursive calls.

The authors use some pruning techniques and heuristics and claim that their algorithm has **almost constant** query time for various types of graphs.

The order of the traversal is crucial. The same for the order of the recursive hops.

Dual Labeling [assumptions]

- Basic assumption: most practical graphs are sparse.
 - Examples of biological data and XML documents
 - Average degree ~1.2 (edges/node)
- The authors will use this fact to build nearly optimal algorithms for tree-like sparse graphs
- Thus, they assume that t<<n.

Dual Labeling [idea]

- 1. DFT to Compute a spanning tree and the <u>Transitive Link Table</u> (for the non-tree edges)
- 2. Compute the transitive link closure.

TRANSITIVE LINK TABLE

7->[2,5)

9->[6,9)

9->[2,5)

 Now we can answer queries by checking the tree labels + the transitive link table(TLT)

```
- examples: ?A \simG YES: 7 ∈ [1,9)
```

?D $\sim F$ YES: Although $4 \notin [6,9)$ if we search TLT we find

edge 7->[2,5) for which $7 \in [6,9)$ and $4 \in [2,5)$

?D \sim C NO: 5 \notin [6,9) and there is no entry in TLT with the

above property

TRANSITIVE LINK TABLE

7->[2,5)

9->[6,9)

9->[2,5)

- The size of TLT is $O(t^2)$ since it contains the transitive closure of t non-tree edges.
- Given the above indexing scheme, query time might take $O(t^2)$ for the linear search of TLT
- The goal is to reduce query time to O(1).
- We woudn't mind to put them in a table (since t is small) in order to reduce the query time in O(1) but we cannot!
 - TLT consists of entries of the form: $i \rightarrow [x, y)$
 - We would need 3D table
- The authors propose one solution

 $?u \sim v$ u = [a1, b1)v = [a2, b2)

 $a2 \notin [a1, b1)$ so unreachable from tree only edges What is the property of an entry $i \rightarrow [j, k)$ in TLT?

 $i \in [a1, b1) \land [j, k) \ni a2$

Now reachability can be defined in constant time by the values of the two labels.

$$u: ([a1, b1), < x1, y1, z1 >)$$

 $v: ([a2, b2), < x2, y2, z2 >)$

 $u \sim v \Leftrightarrow$

- $a2 \in [a1, b1)$ or
- N[x1, z2] N[y1 z2] > 0

e.g.:

 $?K \sim E$

- 3 ∉ [9,10)
- N[1,0] N[-,0] = 1 0 > 0So the answer is YES.

 $? H \sim B$

- 2 ∉ [8,9)
- N[1,0] N[1,0] = 1 1 > 0So the answer is NO.

Dual Labeling [sum up]

- Index Construction Time: Depth First Traversal, linear O(m+n) + transitive link closure construction $O(t^3)$ yields $O(m+n+t^3) \approx O(m+n)$ for t << n.
- Storage: O(n) nodes of the graph $O(t^2)$ for the TLT matrix yields $O(n+t^2)$ storage
- Query Time: O(1)

Of course if t is comparable to n (there are a lot of non-tree edges) then Dual Labeling performs as bad as the naïve approach of the Transitive closure of the graph.

Chain Cover

ACM Trans. Database Syst. '90

Enough with the spanning trees!

Let's partition the graph into chains

 $R \sim K \sim G \sim E$

Chain 0: R VK VX VG VX VE

Chain 1: D ∿H

Chain 2: A ∿C

Chain 3: B ∞F

Chain Cover

- A chain cover of G is a partition of G into disjoint sets called chains.
- Let G=(V,E) a directed graph and $c_i \subseteq V$ s.t. if $u, v \in c_i$ then $u \rightsquigarrow v$. Now let C= $\{c_1, c_2, ..., c_k\}$ the set containing such sets.

If $\forall u \in V \exists i : u \in c_i$ and $\forall i \neq j, c_i \cap c_j = \emptyset$ then C is a chain cover of G.

Chain Cover [index]

The idea behind the chain cover is again to produce a compressed transitive closure of the graph based on the chains.

e.g ?K ∿F

- Find label of F: (1,3)
- Find K's entry for chain no 3:
 (0,3)
- 0≤1 so answer is YES

	R	A	В	С	D	Е	F	G	Н	K
c_0	(1,0)	(2,0)	(3,0)	-	(2,0)	-	-	(3,0)	-	(2,0)
c ₁	(0,1)	(0,1)	-	-	(1,1)	-	-	-	-	(0,1)
c ₂	(0,2)	(2,1)	-	-	-	-	-	-	-	-
c ₃	(0,3)	(0,3)	(1,3)	-	(0,3)	-	-	(0,3)	-	(0,3)

Chain Cover

- The efficiency depends heavily in the initial chain covering (not unique of course).
- The smaller the number of chains the better.
- Optimal chain cover can be found in polynomial time.
- How? Transform the problem to a min-flow problem.

Find optimal Chain Cover

We'll use a simpler graph for illustration:

Min-Flow problem

- Solve the min flow problem for the transformed graph under the constraints:
 - flow $(x_i y_i) > 0 \forall i$
 - flow $(x_i y_i) \ge 0 \ \forall i \ne j$
 - no flow accumulation in the nodes

The problem can be formulated by LP(Linear Program)

Chain Cover [facts]

- Index Construction Time: It takes $O(n^3)$ to compute the transitive closure and find the min chain cover
 - there are faster (and a lot more complicated) methods that use bipartite maching and drop the complexity to $O(n^2 + kn\sqrt{k})$

k is the number of the chains

- Storage: O(nk) [worst case: k=O(n) so there is no real compression]
- Query Time: **O(1)** if *k* is small enough to store the index in a 2D table. If not storing it into lists and indexing the lists yields O(logn+ k) query time

Path-Tree Cover

- In the tree covering approaches, we tried to:
 - 1. build a spanning tree T,
 - 2. give some labels w.r.t. T and then
 - find a solution for the extra reachability induced by the non-tree edges
- In this paper the authors pay special attention to the first of the above steps.
- They generalize the notion of spanning tree to spanning graph
- They try to compute the <u>best</u> spanning graph in order to reduce the complexity of the third step (the non-spanning edges)

Constructing Path-Tree

- Step 1: Path-Decomposition of DAG
- Step 2: Minimal Equivalent Edge Set between any two paths
- Step 3: Path-Graph Construction
- Step 4: Path-Tree Cover Extraction

Step 1: Path-Decomposition

Simple linear algorithm based on topological sort can achieve a path-decomposition

Step 2: Minimal equivalent edge set

The reachability between any two paths can be captured by a unique minimal set of edges

The edges in the minimal equivalent edge set do not cross (always parallel)!

Step 3: Path-Graph Construction

Step 4: Extracting Path-Tree Cover

Weighted Directed Path-Graph

Maximal Directed Spanning Tree

Chu-Liu/Edmonds algorithm, $O(m' + k \log k)$

3-Tuple Labeling for Reachability

Interval labeling (2-tuple)
High-level description about paths
Pi → Pj ?

Transitive Closure Compression

Path-tree cover (including labeling) can be constructed in $O(m + n \log n)$

An efficient procedure can compute and compress the transitive closure in O(mk), k is number of paths in path-tree

Path-tree cover [and then?]

 After building this complex index structure, they use the techniques discussed above (GRIPP, Dual Labeling etc.).

2 HOP-Cover [idea]

- Transitive closure compression (again...)
- If I choose node 1 as a center node, then I know that all 1's ancestors can reach 1's descendants.
- So by choosing node 1, all the green edges are covered.
- The goal is to choose nodes so as to cover all edges in TC(G)

2 HOP-Cover [idea]

- Based on that, we can label nodes as follows:
 - each node u will have a label L(u)

$$- L(u) = \{L_{in}(u), L_{out}(u)\}\$$

$$-L_{in}(u), L_{out}(u) \subseteq V$$

After choosing node 1, we add it at

-
$$L_{out}(2) = \{1\}, L_{out}(3) = \{1\},$$

 $L_{out}(0) = \{1\}$

$$-L_{in}(4) = \{1\}, L_{in}(5) = \{1\}$$

$$-L_{in}(1) = \{1\}, L_{out}(1) = \{1\}$$

 After covering all edges of TC(G), nodes are labeled

	0	1	2	3	4	5
L _{in}		{1}		{0}	{1,4}	{1,4}
L _{out}	{1,4,0}	{1}	{1}	{1,4}	{4}	

2 HOP-Cover [idea]

 Now reachability queries can be answered using the labels:

-
$$?u \sim v$$
 $L_{out}(u) \cap L_{in}(v) \neq \emptyset$
e.g.
 $?0 \sim 5$
 $L_{out}(0) \cap L_{in}(5) = \{1,4,0\} \cap \{1,4\} \neq \emptyset$

 $TC_{size} = Ans_w \cdot Desc_w$ 2-HOP = $Ans_w + Desc_w$

?4 ~ 1	
$L_{out}(4) \cap L_{in}(1) =$	$= \{4\} \cap \{1\} = \emptyset$
NO	

YES

	0	1	2	3	4	5
L _{in}		{1}		{0}	{1,4}	{1,4}
L _{out}	{1, X 0}	{1}	{1}	{1,4}	{4}	

Table with redundancy

2 HOP-Cover

Compression for each center node w $TC_{size} = Ans_w \cdot Desc_w$ $2-HOP = Ans_w + Desc_w$

- Problem: How do you find a minimum 2-Hop Cover in the graph?
 - exact solution is NP hard
- Approximate Solution: Greedily pick the node with the highest compression as a center node
 - log n approximation ratio
 - but for each node we should compute all the subsets of ancestors and descendants to see which yields the highest compression
 - exponential combinations: another 2-approximation algorithm to find the approximate highest compression node (algorithm based on bipartite matching- works in linear time)

2-HOP cover

- Problem: How do you find a minimum 2-Hop Cover in the graph?
 - exact solution is NP hard
- There have been also other methods:
 - Heuristics
 - Geometrical Approach
 - Graph partitioning methods

2-HOP cover

- Index Construction Time: complicated and costly $O(n^3 \cdot |TC|) = O(n^5)$
- Storage: $O(n\sqrt{m})$
- Query Time: $O(\sqrt{m})$.

3 HOP-Cover [intuition]

3-HOP Cover [overview]

- Vertex→Vertex→Vertex (2 hop)
- Vertex→Chain(Vertex→Vertex)→Vertex (Initial motivation of 3-HOP)
- Chain(Vertex→Vertex) → Chain(Vertex→Vertex) →
 Chain(Vertex→Vertex) (3 hop contour)
- Chain decomposition is a spanning structure of G
- Some special vertices in the graph are labeled by L_{out} (a subset of vertices it can reach) and/or L_{in} (a subset of vertices it can be reached from).
- Chain decomposition plus the set of L_{out} and L_{in} are all that we need to design efficient reachability answering schemes.

Conclusion

	Method	Query time	Construction	Index size
Naïve -	DFS/BFS	O(n+m)	O(n+m)	O(n+m)
Ivalve	Transitive Closure	O(1)	$O(nm)=O(n^3)$	O(n²)
	Optimal Tree Cover (Agrawal et al., SIGMOD'89)	O(n)	O(nm)=O(n ³)	O(n ²)
Tree Cover	GRIPP (Triβl et al., SIGMOD'07)	O(m-n)	O(n+m)	O(n+m)
	Dual-Labeling (Wang et al., ICDE'06)	O(1)	O(n+m+t ³)	O(n+t ²)
Chain Cover	Optimal Chain Cover (Jagadish, TODS'90)	O(k)	O(nm)	O(nk)
	Path-Tree (Jin, et al., SIGMOD'08)	log²k'	O(mk')/O(mn)	O(nk')
НОР	2-HOP (SODA 2002)	O(nm ^{1/2})	$O(n^3 T_C) = O(n^5)$	O(m ^{1/2})
Cover	3-HOP (Yang Xiang et al., SIGMOD '09)	O(log n +k)	O(kn²)	O(nk)

THANK YOU

APPENDIX

Optimal Tree Cover[results]

Figure 3.9. Storage required for a 1000 node graph as a function of average degree

GRIPP[results]

DFS labeling

- 1. Starting from the first vertex in the root-path
- 2. Always try to visit the next vertex in the same path
- 3. Label a node when all its neighbors has been visited L(v)=N-x, x is the # of nodes has been labeled

3-Tuple Labeling for Reachability

3-HOP Cover [results]

Figure 8: Index size of Synthetic Datasets (2K)