MINOR PROJECT REPORT ON

IMPLEMETATION OF CLOUD BURST PREDICTION SYSTEM

Submitted in partial fulfillment of the requirements

For the award of the degree of

BACHELOR OF TECHNOLOGY IN ELECTRONICS AND COMMUNICATION ENGINEERING

Submitted By

Kshitij Chaturvedi 00315602821 **Kanishk Patel 02515602821**

Jatin Sardana 02115602821

Under the guidance of Dr. SURENDER DHIMAN, HOD, ECE Department

Department of Electronics & Communication Engineering
Dr. Akhilesh Das Gupta Institute of Professional Studies
Guru Gobind Singh Indraprastha University
Dwarka, Delhi-110078.
November- 2024

CERTIFICATE

I/We hereby certify that the work that is being presented in the project report entitled Implementation of Cloud Burst Prediction System using Advanced Deep Learning to the partial fulfilment of the requirements for the award of the degree of Bachelor of Technology in Electronics & Communication Engineering from Dr Akhilesh Das Gupta Institute of Professional Studies, New Delhi. This is an authentic record of our own work carried out during a period from Aug, 2024 to Nov, 2024 under the guidance of Dr. Surender Dhiman, H.O.D of ECE department.

The matter presented in this project has not been submitted by us for the award of any other degree elsewhere.

Kshitij Chaturvedi Kanishk Patel Jatin Sardana 00315602821 02515602821 02115602821 F4 F4 F4

This is to certify that the above statement made by the candidates is correct to the best of our knowledge.

(Dr.) SURENDER DHIMAN H.O.D., ECE Department.

Mr. Devraj Gautam Project In-charge ECE Department. Prof. (Dr.) Surender Dhiman H.O.D., ECE Department.

ACKNOWLEDGEMENT

We would like to acknowledge the contributions of the following persons, without

whose help and guidance this report would not have been completed.

We acknowledge the counsel and support of our project guide Mr. Devraj Gautam,

Assistant Professor, ECE department, with respect and gratitude, whose expertise,

guidance, support, encouragement, and enthusiasm has made this report possible. Their

feedback vastly improved the quality of this report and provided an enthralling

experience. We are indeed proud and fortunate to be supervised by him.

We are thankful to Prof. (Dr.) Surender Dhiman, H.O.D. ECE department, Dr.

Akhilesh Das Gupta Institute of Professional Studies, New Delhi for his constant

encouragement, valuable suggestions and moral support and blessings.

We are immensely thankful to our esteemed, Prof. (Dr.) Niranjan Bhattacharya,

Director, Dr. Akhilesh Das Gupta Institute of Professional Studies, New Delhi for

his never-ending motivation and support.

We shall always remain indebted to Mr. Devraj Gautam, the project in charge of the

ECE department, and faculty and staff members of Dr Akhilesh Das Gupta Institute

of Professional Studies, New Delhi.

Finally, yet importantly, we would like to express our heartfelt thanks to God, our

beloved parents for their blessings, our friends/classmates for their help and wishes for

the successful completion of this project.

Kshitij Chaturvedi

00315602821

Kanishk Patel 02515602821

Jatin Sardana 02115602821

ii

Dr. Akhilesh Das Gupta Institute of Professional Studies

Electronics and Communication Engineering

Vision Of Department: To produce World class Electronics & Communication Engineers through academic excellence and innovations, who would be competent Technocrats with work ethics to meet the needs of the society

would be competent Technocrats with work ethics to meet the needs of the				
society				
Mission of Department	Program Educational			
	Objectives (PEOs)			
M1. To impart quality	PEO1: Graduates shall excel in the			
education for excelling in the	field of electronics and			
field of Electronics &	communication engineering by			
Communication Engineering to	applying their acquired knowledge			
face real world challenges in	and skills to develop feasible and			
existing and emerging domains.	viable solutions to engineering			
	challenges of the country.			
M2. To provide a creative	PEO2: Graduates shall be adaptive			
platform for promotion of	to innovations and new technologies			
innovations in the field of	which shall lead them to professional			
Electronics & Communication	excellence.			
Engineering by keeping close				
proximity to industry.				
M3. To provide conducive	PEO3: Graduates shall manage			
environment for development	resources skillfully and practice the			
of work ethics and prepare	profession with ethics, integrity and			
socially responsible citizens.	social responsibility.			

ABSTRACT

The Cloud Burst Prediction system utilizes real-time meteorological data combined with advanced machine learning techniques to accurately forecast sudden, intense rainfall events that could lead to flash floods and severe damage. The system continuously collects and monitors real-time atmospheric parameters, including humidity, temperature, pressure, and rain intensity, through hardware sensors linked to a database. This data is then analyzed by a predictive model trained on extensive historical weather data, enabling it to detect conditions conducive to cloud bursts with high precision.

Incorporating real-time data acquisition and predictive analytics, this system delivers proactive alerts and early warnings, allowing authorities and communities in vulnerable areas to take timely preventive actions. Its primary objectives include improving disaster readiness, minimizing risk to life and infrastructure, and enhancing resilience against extreme weather events in regions prone to sudden, intense rainfall. By bridging data science and meteorology, this project aims to provide a scalable, efficient solution for cloud burst prediction, aiding in the mitigation of weather-related disasters.

TABLE OF CONTENTS

Titl	e Page	
• Certificate		
Acknowledgement		
Vision Mission		
Abstract		iii. iv.
• Table of Contents		V.
• List of Figure		V1.
• List	of Tables	vii.
CHAPTI	ER 1: INTRODUCTION AND LITERATURE REVIEW	
1.1.	Introduction	1
1.2.	1 3	1
	Literature Overview	2
	Project Motivation	4
1.5.	Organization of Project Report	5
CHAPTI	ER 2: METHODOLOGY ADOPTED	
2.1.	Objectives	6
2.2.	Tool used	7
2.3.	Work Flow diagram of proposed work	9
CHAPTI	ER 3: DESIGNING AND RESULT ANALYSIS	
3.1.	Block diagram of proposed work	11
3.2.	Designing steps	13
3.3.	Simulated results analysis	30
CHAPTI	ER 4: MERITS, DEMERITS AND APPLICATIONS	
4.1.	Merits	34
	Demerits	35
4.3.	Applications	36
CHAPTI	ER 5: CONCLUSIONS AND FUTURE SCOPE	
5.1.	Conclusion	37
5.2.	Future Scope	37
REFERE	CNCES	39
APPENI	OIX	42

LIST OF FIGURES

Figure No.	Title of Figure	Page No.
Fig 2.1.	ESP32 NodeMCU Module	8
Fig 2.2.	Workflow Architecture	9
Fig 3.1.	Rain Sensor with Buzzer	11
Fig 3.2.	DHT11 Sensor with OLED Display	11
Fig 3.3.	Breadboard Circuit with Integrated Sensor	12
	Modules	
Fig 3.4.	LSTM Architecture	12
Fig 3.5.	Time Series Graph Plot	16
Fig 3.6.	Time Series Plot for May 2021	17
Fig 3.7.	Correlation Heatmap	18
Fig 3.8.	Distribution Plot (Histogram)	19
Fig 3.9.	Box Plot	19
Fig 3.10.	Yearly Data Trend Graph	20
Fig 3.11.	Simple ANN Architecture	25
Fig 3.12.	Generic RNN Architecture – Unfolded	26
	Overtime	
Fig 3.13.	LSTM Memory Cell	27
Fig 3.14.	Model Deployment using Fast-API &	29
	Docker	
Fig 3.15.	Training & Validation Loss Plot	31
Fig 3.16.	Actual Vs. Predicted Graph	32
Fig 3.17.	LSTM v/s GRU	33
Fig 5.1.	Himachal Pradesh cloudburst Tragedy	38
Fig A.1.	Hourly Historical Data from Open-Mateo	42
	API	
Fig A.2.	User Interface	43

LIST OF TABLES

Table No.	Title of Table	Page No.
Table 3. 1.	Model Architecture Table	28
Table 3. 2.	Training and Validation Metrics Table	31

