Мультимоделирование SVM

Сергей Иванычев

Александр Адуенко

sergeyivanychev@gmail.com

aduenko1@gmail.com

Московский физико-технический институт Факультет управления и прикладной математики Кафедра «Интеллектуальные системы»

Предпосылки. Комбинирование алгоритмов.

Понятие

Сильный классификатор — $|{
m AUC} - 0.5| \gg 0$ во многих реальных задачах.

Примеры: SVM, логистическая регрессия, Lasso...

Понятие

Слабый классификатор — $|\mathrm{AUC} - 0.5| > 0$ в большинстве задач

Примеры: решающий пень...

Предпосылки. Комбинирование алгоритмов.

Комбинирование сильных классификаторов

- Простое голосование
- Линейная комбинация
- ...

Комбинирование слабых классификаторов

- Bagging
- Boosting

Предпосылки. Задача

Вопросы

Может ли нелинейная комбинация классификаторов решать задачу лучше, чем каждый классификатор по отдельности?

Сужение задачи: модели — SVM с разными ядрами, комбинирующий алгоритм — логистическая регрессия.

Цели исследования

Цели

- Построить лучшую по сравнению с отдельными моделями комбинацию (супермодель)
- Установить связь между множествами опорных объектов и схожестью классификаторов
- Использовать знание множеств опорных объектов для улучшения комбинации

Постановка задачи

Пусть
$$X^I = (x_i, y_i)_{i=1}^I, x \in R^n, y \in \{\pm 1\}.$$

Определения

S-я модель — SVM с ядром K_s из множества ядер:

$$\mathcal{K} = \{K_j\}_{j=1}^m$$

Отступ — значение дискриминантной функции на объекте

$$M_s = \sum_{i=1}^{l} \lambda_i y_i K_s(x_i, x) - w_0$$

(□ ► ◀疊 ► ◀필 ► ◀필 ► _ 필 _ 쒼오♡

Постановка задачи

$$M = \begin{pmatrix} M_1 & \dots & M_s \end{pmatrix}$$

— матрица отступов, новая матрица «объект-признак». Пусть \mathcal{A} — множество алгоритмов классификации.

$$A = \{a(x) = g(x,\theta) | \theta \in \Theta\} \ g : R^m \to Y$$

Пару (g, \mathcal{K}) будем называть **супермоделью**.

Задача выбора алгоритма комбинирования

$$L(y, g(M(X^I), \theta)) \to \min_{\Theta}$$

Где L — функционал качества (в нашем случае AUC)

4□ > 4ⓓ > 4≧ > 4≧ > ½ 9<</p>

Литература

- 1 Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. 1995
- 2 Alex J Smola et al. A Tutorial on Support Vector Regression. 2004
- 3 Rauf Izmailov, Vladimir Vapnik and Akshay Vashist. Multidimensional Splines with Infinite Number of Knots as SVM Kernels. 2013
- D. Gorgevik и D. Cakmakov. Handwritten Digit Recognition by Combining SVM Classiers. 2005
- Salah Althloothi и др. Human activity recognition using multi-features and multiple kernel learning. 2014
- S.S. Bucak, R. Jin и Ak. Jain. Multiple Kernel Learning for Visual Object Recognition: A Review. 2014

Связь между разными расстояниями.

Необходимо найти способ определять схожие модели, то есть дающие схожие результаты, чтобы не включать таковые в супермодель.

Расстояния

Опорным расстоянием $\rho_S(K_i, K_j)$ на выборке X^I будем называть функцию:

$$\rho_{M}(K_{i}, K_{j}, X^{I}) = \frac{\# [SV_{i} \Delta SV_{j}]}{\# [SV_{i} \cup SV_{j}]}$$

Отступным расстоянием $\rho_M(K_i, K_j)$ будем называть следующую функцию

$$\rho_M(K_i, K_j, X^I) = 1 - \operatorname{corr}(M_i, M_j)$$

Связаны ли эти расстояния? Проанализируем эволюцию распределения пар расстояний в зависимости от параметра регуляризации.

Эксперимент. Ядра и данные.

В качестве исходных данных взяты датасеты German Credits, Wine и Heart disease из UCI.

Ядра:

- Линейное
- Полиномиальное (степени 3, 4, 5)
- RBF-ядро ($\gamma \in \{0.0001, 0.001, 0.01, 0.1, 1\}$)
- INK-spline ядро

Эксперимент. German credit

Рис.: German credit

Эксперимент. German credit

Таблица: German info

	mean(#SV)	$mean(\rho_M)$	$mean(\rho_S)$	Correlation
C = 1.0	603.4	0.184	0.094	0.376
C = 10.0	603.6	0.187	0.097	0.537
C = 100.0	594.7	0.134	0.131	0.556
C = 500.0	584.3	0.133	0.161	0.717
C = 1000.0	581.6	0.120	0.172	0.870
C = 2500.0	577.9	0.126	0.189	0.918

Эксперимент. Wine

Рис.: Wine

Эксперимент. Wine

Таблица: Wine info

	mean(#SV)	$mean(\rho_M)$	$mean(\rho_S)$	Correlation
C = 1.0	3284.1	0.220	0.144	0.600
C = 10.0	3284.9	0.130	0.121	0.687
C = 100.0	3275.0	0.091	0.091	0.270
C = 500.0	3252.6	0.110	0.105	0.591
C = 1000.0	3235.2	0.124	0.118	0.694
C = 2500.0	3208.6	0.127	0.133	0.795

Эксперимент. Heart disease

Рис.: Heart disease

Эксперимент. Heart disease

Таблица: Heart info

	mean(#SV)	$mean(\rho_M)$	$mean(\rho_S)$	Correlation
C = 1.0	272.0	0.003	0.027	0.608
C = 10.0	260.8	0.020	0.088	0.929
C = 100.0	249.1	0.063	0.152	0.927
C = 500.0	231.9	0.135	0.238	0.940
C = 1000.0	223.1	0.157	0.268	0.953
C = 2500.0	211.4	0.166	0.297	0.962

Результаты эксперимента

- С ростом константы регуляризации расстояние между ядрами и расстояние между их отступами лучше коррелируют между собой.
- При высоких параметре регуляризации коэффициент корреляции Пирсона достигает более 0.8, то есть расстояния практически линейно зависят друг от друга.

Вывод

Если множества опорных объектов пары классификаторов похожи , то и векторы отступов похожи

Построение супермодели

Обозначения: $X_{\text{train}}, X_{\text{test}}, y_{\text{train}}, y_{\text{test}}$

```
/* Обучение */
SVM.fit(X_{train}, y_{train});
M_{train} \leftarrow SVM.margin(X_{train});
Logregr.fit(M_{train}, y_{train});
/* Прогнозирование */
M \leftarrow SVM.margin(X_{test});
Logregr.predict\_probability(M);
Algorithm 1: Наивная логистическая регрессия
```

Плохо! Если во множестве моделей есть переобученный классификатор, то супермодель будет также переобучена

Построение супермодели

```
/* Обучение */
X_{\text{train}}, X_{\text{val}} \leftarrow \text{split}(X);
\text{SVM.fit}(X_{\text{train}}, y_{\text{train}});
M_{\text{val}} \leftarrow \text{SVM.margin}(X_{\text{val}});
\text{Logregr.fit}(M_{\text{val}}, y_{\text{val}});
/* Прогнозирование */
M \leftarrow \text{SVM.margin}(X_{\text{test}});
\text{Logregr.predict\_probability}(M);
Algorithm 2: Стэкинг
```

Уже лучше, однако не понятно, как интерпретировать отрицательные веса в логистической регрессии.

Построение супермодели

Используем **робастную логистическую регрессию**. Преобразуем задачу оптимизации:

$$R(w) + C \sum_{i=1}^{n} \log(\exp(-y_i(X_i^T w + c)) + 1) \rightarrow \min_{w \geqslant 0, c}$$

Получаем вектор неотрицательных весов

Выводы

Эксперимент был проведен на датасетах Housing, Heart, German и синтетически сгенерированном. С учетом примененных эвристик, таких как:

- Использование классификаторов только из интервала $[\mathrm{AUC_{best}}, \mathrm{AUC_{best}} \delta]$
- ullet Повторное обучение SVM на X, после обучения регрессии
- Использование I_1 -регуляризации для логистической регрессии пока не удалось получить супермодель с устойчивым выигрышем.

$$\mathrm{AUC_{best}} - \mathrm{AUC_{super}} \approx 0.002$$

Направления дальнейшей работы

- Усовершенствование или исправление комбинирующего алгоритма.
- Использование расстояний между моделями для улучшения качества предсказаний.

С. Иванычев & А. Адуенко (МФТИ)

Code sharing

Исходный код проекта написан на языке Python 3.5. Код и данные доступны по ссылке:

https://sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group374/Ivanychev2016SVM Multimodelling/

Супермодель представлена в виде объекта SVMSupermodel и обладает стандартным интерфейсом классификаторов библиотеки scikit-learn.

Основная статья, а также подробная документация доступна в папке с проектом.