FEUILLE DE TRAVAUX DIRIGÉS N° 1

ETUD'+, Centre de formation Et Cours de soutien 11 place de la Tour 641610, Morlaàs

A.U.: 2019-2020

Calcul matriciel

Enseignant-Formateur: H. El-Otmany

Exercice n°1 On considère les matrices carrées $A, B \in \mathcal{M}_{3,3}(\mathbb{R})$ telles que

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 3 & 2 & 0 \end{pmatrix}; \qquad B = \begin{pmatrix} 0 & 3 & 1 \\ 1 & 0 & 1 \\ 2 & -1 & 1 \end{pmatrix}.$$

Calculer AB, BA, $(A + B)^2$, $A^2 + B^2 + 2A.B$ et A - 3B.

Exercice n°2 On considère la matrice carrée $A \in \mathcal{M}_{2,2}(\mathbb{R})$ telle que

$$A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right).$$

- 1. Calculer A^2 et A^3 .
- 2. Déterminer A^n pour tout $n \in \mathbb{Z}$.

Exercice n°3 Soient A et B deux matrices dans $\mathcal{M}_{n,n}(\mathbb{R})$ pour n un entier quelconque.

- 1. Sous quelles conditions l'égalité $(A+B)(A-B)=A^2-B^2$ est vraie?
- 2. Déterminer si l'égalité de la question (1) est vérifiée pour les matrices suivantes :

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}; \qquad B = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}.$$

Exercice n°4 Une matrice carrée $A\mathcal{M}_{3,3}(\mathbb{R})$ est dite *orthogonale* si et seulement si A satisfait $A^tA = I_3$. Déterminer les valeurs $a, b \in \mathbb{R}$ telles que la matrice A définie ci-dessous est orthogonale.

$$A = \begin{pmatrix} a & 0 & 0 \\ 0 & \cos b & \sin b \\ 0 & -\sin b & \cos b \end{pmatrix}.$$

Exercice n°5 On considère la matrice carrée $A \in \mathcal{M}_{3,3}(\mathbb{R})$ telle que :

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 1 \end{array}\right).$$

- 1. Calculer A^2 , A^3 et $A^3 A^2 + A I_3$.
- 2. Exprimer A^{-1} en fonction de A^2 , A et I_3 .
- 3. Exprimer A^4 en fonction de A^2 , A et I_3 .

Exercice $n^{\circ}6$ Montrer que la matrice carrée A définie par :

$$M = \begin{pmatrix} 0 & 0 & 2 & 1 \\ 0 & 1 & -1 & 0 \\ -1 & 0 & 3 & 1 \\ 0 & -1 & -2 & -1 \end{pmatrix}$$

est inversible en calculant explicitement son inverse.