Outline for today

Stat155 Game Theory Lecture 13: General-Sum Games

Peter Bartlett

October 11, 2016

- Two-player general-sum games
 - Definitions: payoff matrices, dominant strategies, safety strategies, Nash equilibrium.
 - Example: Cheetahs and gazelles
- Multiplayer general-sum games
 - Nash equilibrium
 - Example: Polluting factories

1/21 2/21

General-sum games

General-sum games

Notation

- A two-person general-sum game is specified by two payoff matrices, $A, B \in \mathbb{R}^{m \times n}$.
- Simultaneously, Player I chooses $i \in \{1, ..., m\}$ and the Player II chooses $j \in \{1, ..., n\}$.
- Player I receives payoff a_{ij} .
- Player II receives payoff b_{ij} .

Dominated pure strategies

A pure strategy e_i for Player I is *dominated* by $e_{i'}$ in payoff matrix A if, for all $j \in \{1, \dots, n\}$,

$$a_{ij} \leq a_{i'j}$$
.

Similarly, a pure strategy e_j for Player II is dominated by $e_{j'}$ in payoff matrix B if, for all $i \in \{1, ..., m\}$,

$$b_{ij} \leq b_{ij'}$$
.

3/21 4/21

Safety strategies

• A safety strategy for Player I is an $x_* \in \Delta_m$ that satisfies

$$\min_{y \in \Delta_n} x_*^\top A y = \max_{x \in \Delta_m} \min_{y \in \Delta_n} x^\top A y.$$

- x_* maximizes the worst case expected gain for Player I.
- Similarly, a safety strategy for Player II is a $y_* \in \Delta_n$ that satisfies

$$\min_{x \in \Delta_m} x^\top B y_* = \max_{y \in \Delta_n} \min_{x \in \Delta_m} x^\top B y.$$

• y* maximizes the worst case expected gain for Player II.

Nash equilibria

A pair $(x_*, y_*) \in \Delta_m \times \Delta_n$ is a *Nash equilibrium* for payoff matrices $A, B \in \mathbb{R}^{m \times n}$ if

$$\max_{x \in \Delta_m} x^\top A y_* = x_*^\top A y_*,$$

$$\max_{y \in \Delta_n} x_*^\top B y = x_*^\top B y_*.$$

- If Player I plays x_* and Player II plays y_* , neither player has an incentive to unilaterally deviate.
- x_* is a best response to y_* , y_* is a best response to x_* .
- In general-sum games, there might be many Nash equilibria, with different payoff vectors.

5/21

Example: Cheetahs and Gazelles

Example: Cheetahs and Gazelles

Payoff matrices				
		large	small	
	large	$(\ell/2,\ell/2)$	(ℓ,s)	
	small	(s,ℓ)	(s/2, s/2)	
($(s \leq \ell).$			

Payoff matrices				
	large	small		
large	$(\ell/2,\ell/2)$	(ℓ,s)		
small	(s,ℓ)	(s/2,s/2)		
$(s \leq \ell).$				

- Dominant strategy?
- For $\ell \geq 2s$, large is a dominant strategy.
- Suppose $\ell < 2s$.
- Pure Nash equilibria? (large, small), (small, large).

6/21

• But who gets the large gazelle?

7/21

- Mixed Nash equilibrium?
- If Cheetah I plays Pr(large) = x, Cheetah II's payoffs are:

large:
$$L(x) = \frac{\ell}{2}x + \ell(1-x),$$

small:
$$S(x) = sx + \frac{s}{2}(1 - x)$$
.

• Equilibrium is when these are equal: $x^* = (2\ell - s)/(\ell + s)$.

- Example: $\ell = 8$, s = 6.
- Equilibrium is when L(x) = S(x): $x^* = (2\ell s)/(\ell + s) = 5/7$.
- Think of x as the proportion of a population of cheetahs that would greedily pursue the large gazelle.
 For a randomly chosen pair of cheetahs, if x > x*, S(x) > L(x), and non-greedy cheetahs will do better. And vice versa. Evolution pushes the proportion to x*. This is the evolutionarily stable strategy.

9/21

Comparing two-player general-sum and zero-sum games

Comparing two-player general-sum and zero-sum games

Zero-sum games

- A pair of safety strategies is a Nash equilibrium (minimax theorem)
- 2 Hence, there is always a Nash equilibrium.
- If there are multiple Nash equilibria, they form a convex set, and the expected payoff is identical within that set.
 - Thus, any two Nash equilibria give the same payoff.

General-sum games

- A pair of safety strategies might be unstable.
 (Opponent aims to maximize their payoff, not minimize mine.)
- ② There is always a Nash equilibrium (Nash's Theorem).
- 3 There can be multiple Nash equilibria, with different payoff vectors.

Zero-sum games

If each player has an equalizing mixed strategy (that is, $x^{\top}A = v\mathbf{1}^{\top}$ and $Ay = v\mathbf{1}$), then this pair of strategies is a Nash equilibrium. (from the principle of indifference)

General-sum games

If each player has an equalizing mixed strategy for their opponent's payoff matrix (that is, $x^{\top}B = v_2\mathbf{1}^{\top}$ and $Ay = v_1\mathbf{1}$), then this pair of strategies is a Nash equilibrium.

11/21

- Two-player general-sum games
 - Definitions: payoff matrices, dominant strategies, safety strategies, Nash equilibrium.
 - Example: Cheetahs and gazelles
- Multiplayer general-sum games
 - Nash equilibrium
 - Example: Polluting factories

Notation

- A k-person general-sum game is specified by k utility functions, $u_i: S_1 \times S_2 \times \cdots \times S_k \to \mathbb{R}$.
- Player j can choose strategies $s_i \in S_i$.
- Simultaneously, each player chooses a strategy.
- Player j receives payoff $u_j(s_1, \ldots, s_k)$.
- k = 2: $u_1(i,j) = a_{ii}$, $u_2(i,j) = b_{ii}$.
- For $\mathbf{s} = (s_1, \dots, s_k)$, let \mathbf{s}_{-i} denote the strategies without the *i*th one:

$$\mathbf{s}_{-i} = (s_1, \dots, s_{i-1}, s_{i+1}, \dots, s_k).$$

• And write (s_i, s_{-i}) as the full vector.

13 / 21

14 / 21

Multiplayer general-sum games

Multiplayer general-sum games

Definition

A vector $(s_1^*, \ldots, s_k^*) \in S_1 \times \cdots \times S_k$ is a *pure Nash equilibrium* for utility functions u_1, \ldots, u_k if, for each player $j \in \{1, \ldots, k\}$,

$$\max_{s_i \in S_i} u_j(s_j, \mathbf{s}_{-j}^*) = u_j(s_j^*, \mathbf{s}_{-j}^*).$$

• If the players play these s_j^* , nobody has an incentive to unilaterally deviate: each player's strategy is a best response to the other players' strategies.

Definition

A sequence $(x_1^*, \ldots, x_k^*) \in \Delta_{S_1} \times \cdots \times \Delta_{S_k}$ (called a *strategy profile*) is a *Nash equilibrium* for utility functions u_1, \ldots, u_k if, for each player $j \in \{1, \ldots, k\}$,

$$\max_{x_j \in \Delta_{S_j}} u_j(x_j, \mathbf{x}_{-j}^*) = u_j(x_j^*, \mathbf{x}_{-j}^*).$$

Here, we define

$$u_j(\mathbf{x}^*) = \mathbb{E}_{s_1 \sim x_1, \dots, s_k \sim x_k} u_j(s_1, \dots, s_k)$$

$$= \sum_{s_1 \in S_1, \dots, s_k \in S_k} x_1(s_1) \cdots x_k(s_k) u_j(s_1, \dots, s_k).$$

• If the players play these mixed strategies x_j^* , nobody has an incentive to unilaterally deviate: each player's mixed strategy is a best response to the other players' mixed strategies.

Example: Polluting Factories

Pure equilibria?
 (purify, purify, pollute), (purify, pollute, purify), (pollute, purify), urify).
 "Tragedy of the commons": (pollute, pollute, pollute)

If firm III purifies, the cost matrix (cost = - payoff) is			
firm II			
purify pollute			
$ \begin{bmatrix} & \text{purify} & (1,1,1) & (1,0,1) \\ & & \text{pollute} & (0,1,1) & (3,3,4) \end{bmatrix} $			
\(\beta\) pollute \((0,1,1) (3,3,4) \\			
If firm III pollutes, then it is			
firm II			
purify pollute			
purify (1,1,0) (4,3,3) pollute (3,4,3) (3,3,3)			
E pollute (3,4,3) (3,3,3)			
(Karlin and Peres, 2016)			
(Namin and Feres, 2010)			

- Set $\mathbf{x}_i = (p_i, 1 p_i)$, that is, $Pr(\text{Player } i \text{ plays purify}) = p_i$.
- For $0 < p_i < 1$, we have a Nash equilibrium iff

$$u_i(\text{purify}, \mathbf{x}_{-i}) = u_i(\text{pollute}, \mathbf{x}_{-i}).$$

 Solving shows there are two symmetric mixed Nash equilibria:

$$p_1 = p_2 = p_3 = \frac{3 \pm \sqrt{3}}{6}.$$

17/21 18/21

Example: Polluting Factories

- $p_i = \Pr(i \text{ plays purify}).$
- Plot: **cost** for $p_1 = p_2 = p_3$.
- Blue curve: $-u_i(\text{purify}, \mathbf{x}_{-i})$ = $p^2 + 2p(1-p) + 4(1-p)^2$ Red curve: $-u_i(\text{pollute}, \mathbf{x}_{-i})$ = $6p(1-p) + 3(1-p)^2$.

- Imagine that we draw random factories from a population with proportion p that pollute.
- What if p is a little less than $(3 + \sqrt{3})/6 \approx 0.79$? purify has lower cost.
- What if p is a little more than $(3 + \sqrt{3})/6 \approx 0.79?$ pollute has lower cost.
- What about near $p = (3 \sqrt{3})/6 \approx 0.21$? Not an attractor!
- What about near p = 0?
 pollute has lower cost.

Example: Polluting Factories

If firm III purifies, the cost matrix (cost = - payoff) is

Nash equilibria:

- \bullet (p, p, p) with
 - $p = (3 + \sqrt{3})/6 \approx 0.79$.
 - $p = (3 \sqrt{3})/6 \approx 0.21$.
 - p = 0.
- (purify, purify, pollute), (purify, pollute, purify), (pollute, purify, purify).

Outline

- Two-player general-sum games
 - Definitions: payoff matrices, dominant strategies, safety strategies, Nash equilibrium.
 - Example: Cheetahs and gazelles
- Multiplayer general-sum games
 - Nash equilibrium
 - Example: Polluting factories