Assignment Project Exam Help

Add WeChat powcoder

Assignment Project Exam Help

https://poweodercom

Assignment Project Exam Help

Add WeChat powcoder

Assignment Project Exam Help

Locality/proverywhere

Assignment Project Exam Help

- Locality everywhere.
- Add WeChat powcoder
 Locality in Computing
- Local Coloring
- Coloring Assignment Project Exam Help
- Lower Bounds https://powcoder.com

Assignment Project Exam Help

Add WeChat powcoder

Assignment Project Exam Help

Locality/percerywhere

Assignment Project Exam Help

- Locality is everywhere:
 - PhysicsAdd WeChat powcoder
 - Biology
 - Social Sciences
 Assignment Project Exam Help
 - Mathematics
- They have differences and similarities.

Assignment Project Exam Help

- An object is only directly influenced by its immediate surrounded WeChat powcoder
- A theory using the principle of locality is said to be a "local theory".

- Relativity is a local theory
 - It limits the https://www.sqder.com/memores can travel to the speed of light c Add WeChat powcoder
- Quantum mechanics is not a local theory.
 - A measurement made on one of a pair of separated but entangled particles causes a simultaneous effect, the collapse of the wave function, in the remote particle (i.e. an effect exceeding the speed of light).

- Phenotypes might be influenced by local variations and effects.
 - Shape Add WeChat powcoder
 - Size
 - Color Assignment Project Exam Help
 - Nature
 - Other environtherstalpawcoder.com
- In turn, this affected twenty powcoder
- Quantum Biology is a newly developing field for the study of non-local biological phenomena.
 - Bird navigation

- Local Characteristics
 - Language
 WeChat powcoder
 - Behaviour
 - Culture Assignment Project Exam Help
 - Food
- Global Phenomena https://powcoder.com
 - Cascades Add WeChat powcoder
 - Rumors
- How do certain events cascade?

Assignment Project Exam Help

- It has a proximity interpretation.
- Related somehow to distance.
- Concerns phenomena that are geometrically close to each other.
- Locality is Assignment Project between Helpsame thing as location!

https://powcoder.com

Assignment Project Exam Help

Add WeChat powcoder

Assignment Project Exam Help

Localitys:/ipwcomputing

- Usually it means:
 - the execution of a process depends on nearby processes.
 - there is no dependency between events that occur far away.
- It has a special role in corputing and communication.
 - What can be computed globally if there is a restriction on how far infohitpsin/payscoderteom
- Can you elect a Andde We Chat powcoder
 - making use only of local information?

Assignment Project Exam Help
Decision made at node u not affected by nodes far away from u.

• How do we quantify "far away" from u?

- Given that locality is influenced by distance "how far is far away"? Add WeChat powcoder
- May depend on the topology

- How do you parametrize locality?
- Best to study specific problems!

Assignment Project Exam Help

- Global vs Local Algorithms
- On a Line Add WeChat powcoder
- On a Tree

Assignment Project Exam Help

https://powcoder.com

Local Algorithms in DC Assignment Project Exam Help

- An algorithm is local if messages initiated by the nodes do not propagate to Wickhathpowegidetor.
 - How can you ensure correctness of the algorithm?
 - Which problems can you solve this way?
 - Assignment Project Exam Help
- Local approach https://pawcoderecomommunication!
- Lets go back to Addri We Chat powcoder

- A vertex coloring is an assignment of colors to vertices of a graph so And Mye Chatdpowe code are assigned different colors.
- How do you color a set of points on a line?

 Assignment Project Exam Help
- - Is the algorithm correct?
 - Is this a local algorithm?
 - Is there a local colouring algorithm?

Global vs Local Coloring Assignment Project Exam Help

- Before a node decides on its colour it must collect information about it Add how Chat powcoder
- There are two ways to do this depending on how far this information collection can spread 1. Globally Assignment Project Exam Help

 - https://powcoder.com 2. Locally

Assignment Project Exam Help

• Globally?

- You are not constrained by # of hops.
- Locally? Assignment Project Exam Help

- Constrained by # of hops.
- In a distributed setting, the difficulty des in keeping the assignment of colors consistent throughout the graph despite the fact that propagation is limited!

Coloring with Restricted Number of Hops Assignment Project Exam Help

• Consider nodes "independently" initiating coloring.

- If the number of hops a message can propagate is restricted you may not be able to complete the coloring!

 Assignment Project Exam Help
- If a given set of nodes start coloring at the same time how do you ensure consistent: copy goder.com
 - Nodes will start with their own identifiers.
- More than that, you may have to use more than the minimum required number of colors so as to achieve a correct coloring!
- Regardless of the number of colors you use
 - can you achieve a proper coloring, and
 - at the same time restrict the number of hops?

Quantifying Locality: Network Assignment Project Exam Help

- Consider a class \mathcal{N} of networks.
- A typical network G = (V, E) in \mathcal{N} is a graph with n vertices.
 - Line,
 - Ring, Assignment Project Exam Help
 - Tree,
 - https://powcoder.com - etc.
- The concept should be applicated that the concept should be applicated to the concept should be appl (networks).

Quantifying Locality: Distance Assignment Project Exam Help

- Locality should depend on distance.
- Let $n \to h(n)$ be an integer valued function:
 - -h(n) is the number of hops allowed in a network of size n.
- Examples: Assignment Project Exam Help

$$-n \rightarrow h(n) = 1$$

$$-n \rightarrow h(n) = 1,$$

https://powcoder.com
 $-n \rightarrow h(n) = c$, c is some constant,

$$-n \rightarrow h(n) = Agld$$
, WeChat powcoder

$$- n \to h(n) = \sqrt{n},$$

$$-n \rightarrow h(n) = n,$$

$$-n \to h(n) = \log^* n$$
, etc

Quantifying Locality: Problems Assignment Project Exam Help

- Consider a problem \mathcal{P} (e.g., colouring), and a class \mathcal{A} of synchronical distribution provides of \mathcal{P} for \mathcal{N} .
 - The class \mathcal{A} of distributed algorithms is h-local if during the execution of an algorithm $A \in \mathcal{A}$ on a network $G \in \mathcal{N}$ (on n vertices) ssignagenth and region of the pill never propagate more than h(n) hops from its originator. https://powcoder.com

Which Problems in DC are Local? Assignment Project Exam Help

- Not all problems are going to be h-local, for a given function h.
- Which ones are h-local, for a function $n \to h(n) = c$, where c a constant?
 - Leader Election Assignment Project Exam Help
 - Spanning Tree
 - Maximum Interprite poweroder.com
 - Coloring
 Add WeChat powcoder
 - Minimum Dominating Set
- For which topologies?

Assignment Project Exam Help

Add WeChat powcoder

Assignment Project Exam Help

Lowedroring

Coloring a Line Graph: Assumptions Assignment Project Exam Help

• Assume you are on a line of n nodes.

- To start, assume that each node v has a distinct identity id_v (for example, either their location or the network interface card would do).
 - Identity selections: poweoder toom he coloring problem...besides we also know several ways to solve this problem! Add WeChat powcoder

Assignment Project Exam Help

• Our main goal is to show

• Theorem 1 WeChat powcoder
There is a coloring algorithm which can 3-color any line in $O(\log^* n)$ time, where

log* n is the iterated lograithm of n
Assignment Project Exam Help
in the algorithm all nodes start with their identifiers.

- This result is important in certain types of networks (like wireless) where messages should not propagate too far!
- **NB**: Note the important parameters taken into account:
 - Final number of colors in the graph.
 - Termination time of the coloring algorithm.

Assumptions for Coloring Assignment Project Exam Help

- Let $v \to c_v$ be an arbitrary coloring of the vertices.
 - Observe that e. Chat powcoder coloring!
- For example,
 - the identity assignment below is a colouring using n colors,

- and so is any permutation of the identities.

Assumptions for Coloring Assignment Project Exam Help

- Represent each c_v as a sequence of bits.
 - Let $|c_v|^{A}$ be the number of bits in c_v , and
 - $-c_v(i)$ the *i*-th bit of c_v .

• Example Assignment Project Exam Help

- $-c_u = 594 = 512 + 64 + 16 + 2 = 2^9 + 2^6 + 2^4 + 2^1.$
- In binary c_u https://powcoder.com
- $c_u(i)$ is the inhold twhere coupting starts from i=0 from left to right: $c_u(0)=1, c_u(2)=0$.

• The concatenation

- of two sequences s, s' of bits is the sequence ss'.
- **Example:** if s = 1010 and s' = 110 then ss' = 1010110

Idea for an Algorithm on a Line Assignment Project Exam Help

Assume an ordering of the vertices (left to right would do).

- Starting Rule:
 - Start wassignment Project Exam Help
 - * for example con for all v for all
 - Color "leftmost vertex" with the bit 0.^a
- Any other starting coloring would do.

^aThis is a starting condition and we will need to justify it: will do this later!

- Since nodes $u \to v$ are neighbors (with u preceding v), their current and MisChatifforn code c_v .
- \bullet Produce a new "legal" coloring for a vertex v from the current one, say c_v , as follows:
 - Find the first index $1 \le i \le |c_v|$ such that v's color differs from the colour predeceder com
- Set new color to "i concatenated with $c_v(i)$ ": $c_v \to ic_v(i)$; Add WeChat powcoder
 Recoloring rule guarantees that neighbors will get new
- different colors.
- **NB:** Bit representation of each new color is of length logarithmic of the length of the previous color!

Coloring Algorithm for Vertex v Assignment Project Exam Help

• Assume an ordering of the vertices (left to right would do).

- Coloring Algorithm: Assignment Project Exam Help
 - 1. $c_v \leftarrow id_v$;
 - 2. Repeat: https://powcoder.com
 - (a) $\ell \leftarrow |c_v|$; Add WeChat powcoder (b) if v is "leftmost vertex" then set $I \leftarrow 0$
 - (b) if v is "leftmost vertex" then set $I \leftarrow 0$ else set $I \leftarrow \min\{i : c_v(i) \neq c_{pre(v)}(i)\};$
 - (c) Set $c_v \leftarrow Ic_v(I)$; /* concatenation */
 - (d) Inform the successor suc(v) of v of this choice;
 - 3. Until $|c_v| = \ell$; /*Until length does not change */

Assignment Project Exam Help

- Given two nodes $u \to v$.
- Lets show how the color of node v changes from the old color c_v to a new color c_v .
 - A similar change occurs to the color of u but this is Assignment Project Exam Help influenced from the predecessor of u.
- Let their current their by powcoder $\Omega_v = 631$.
- Convert to binaydd WeChat powcoder

$$c_u = 512 + 64 + 16 + 2 = 2^9 + 2^6 + 2^4 + 2^1$$

 $c_v = 512 + 64 + 32 + 16 + 4 + 2 + 1 = 2^9 + 2^6 + 2^5 + 2^4 + 2^2 + 2^1 + 2^0$

• $c_u = 1001010010$ and $c_v = 1001110111$

Assignment Project Exam Help

• Consider the two nodes with colors

Add WeChat powcoder

 $c_u = 1001010010$ and $c_v = 1001110111$

• What is the smallest i such that $c_u(i) \neq c_v(i)$?

• Line up the bits

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

1001110111

• So i = 4 (counting starts from 0); in binary 4 is 100 and the new colour of v in binary representation is

$$ic_v(i) = 1001 = 9$$

Execution of Coloring Algorithm Assignment Project Exam Help

• A node receives input from its predecessor...

• ...and provides input to its successor.

Add WeChat powcoder

Assignment Project Exam Help (1/2)

• Consider three consecutive neighboring nodes u, v, w at some iteration Addhe Wig Chat point code prev(v), v = pre(w).

Assignment Project Exam Help

- Let I, J be the indices picked by v, w in Step 2(b), respectively.
 - $-I := \min\{i : \frac{\text{https://powcoder.com}}{c_u(i)} \text{ and } j : c_v(j) \neq c_w(j)\}$
 - v, w receive the well-be well powcoder

$$c_v \leftarrow Ic_v(I)$$

and

$$c_w \leftarrow Jc_w(J)$$

- We need to show that $Ic_v(I) \neq Jc_w(J)$.
- There are two cases to consider:
- - 1. If $I \neq J$ then rule 2(b) ensures that the new labels $Ic_v(I)$, $Ic_w(J)$ as defined in 2(c) differ in a bit Assignment Project Exam Help - because I, J do
 - 2. If I = J the https://powsoeletheome new labels as defined in 2(c) differ in the last bit $- \text{Recall that } c_u(I) \neq c_v(I) \text{ and } c_v(J) \neq c_w(J)$

 - Since I = J we have that $c_u(I) \neq c_v(I)$ and $c_v(I) \neq c_w(I)$
 - The new labels for v, w will be $Ic_v(I)$ and $Ic_w(I)$ and by choice of I we have that $c_v(I) \neq c_w(I)$.

Assignment Project Exam Help

- At the start, $K_0 = K = O(\log n)$ is the max number of bits of a node in Addrignet paragoder
- Let K_r denote the number of bits in the color representation after the rth iteration.

Assignment Project Exam Help

- Observe that $K_{r+1} = \lceil \log K_r \rceil + 1$.
 - Therefore the the condense of roughly log log n bits, the third of roughly log log log n bits, etc. Add We Chat powcoder
- As a matter of fact the "sizes of the colours" shrink very rapidly!
 - The size of the colour (measured in bits) in the new step is the logarithm of the size of the colour in the previous step!

Assignment Project Exam Help*

- $\log^* n$ is not really a logarithm:
 - it is rather the number of iterations of the log function on a number n until it stops having an effect!
- Log-Star (in base 2) of nicoject Exam Help
 - Is the number of logarithms in base 2 needed so that starting from type idea of logarithms in base 2 needed so that
- Can be defined in the base 2.

Assignment Project Exam Help

- Iterated Definition of $\log^* n$: Let
 - $-\log^{(1)} A \stackrel{dd}{=} \log^{(1)} N$, and powcoder
 - $-\log^{(x+1)} n = \log(\log^x n), \text{ for } x \ge 1.$

Then $\log^* n = \text{first integer} x \text{ such that } \log^{(x)} n \le 2$. a

• Recursive definition of $\log^* n$:

https://powcoder.com $\lim_{\substack{1 \\ \log^* x \text{ odd } \\ \text{ if } x \leq 2}} 1 \lim_{\substack{1 \\ \text{ if } x > 2}} 2$

 $a \log^{(x)} n$ should not be confused with $\log^x n$: the logarithm to the power x.

Assignment Project Exam Help

• Log-star is a very slowly growing function.

Add WeChat powcoder Consider the number $n = 2^{2}$.

$$\log(2^{2^5}) = 2^5$$

Assignment 2 Project Exam Help

https://powcoder.201489 $\log(2.32) < 2.$ Add WeChat powcoder

Hence, $\log^*(2^{2^5}) = 4$.

• Log-star of all the atoms in the observable universe (estimated to be 10^{80}) is 5.

The Starting Nodes: Something Wrong? Assignment Project Exam Help

• Recall the leftmost node was given the color 0.

- It is not clear from the description of the algorithm why the identities of the nodes "located" at the beginning of the line are reduced to constant size.
 - By beginning we mean the first $O(\log^* n)$ nodes.
- Observe that the tipe we descent the location $O(\log^* n)$ are indeed reduced to constant size.

 Add WeChat powcoder
- Can remedy this by adding an additional step at the end of the algorithm:
 - The first $O(\log^* n)$ nodes run a recoloring algorithm to reduce their colors to constant size.
- Note that this step takes additional time $O(\log^* n)$.

Assignment Project Exam Help

- If K_i = number of bits in the coloring after *i* iterations then
 - $-K_{r+1}$ Add We Chat powcoder
 - $-K_{r+1} < K_r$ as long as $K_r \ge 4$.
- Therefore in the final coloring you have
 - https://powcoder.com – at most three choices for an index to a bit in the (r-1)-st coloring, and WeChat powcoder
 - two choices for the value of the bit,
 which gives a total of six colors.
- It turns out,
 - we can improve on # of colors from six to three, but
 - cannot improve on the $\log^* n$.

Three Colors Suffice Assignment Project Exam Help

• How do we reduce the number of colors from six to three?

• Suppose that the algorithm we discussed before has colored a line with the six colors 0, 1, 2, 3, 4, 5 as follows

OAsigninent Project Exam Help 2 4 5

• How do you colartibusing only the colors 0, 1, 2?

Three Colors Suffice Assignment Project Exam Help

• Start with the sequence

Add WeChat powcoder 0 5 4 2 5 3 0 3 1 5 4 2 3 0 1 4 3 2 4 0 1 0 2 4 5

• Eliminate 5: by choosing a color from 0, 1, 2

Assignment Project Exam Help
0 1 4 2 0 3 0 3 1 0 4 2 3 0 1 4 3 2 4 0 1 0 2 4 0

https://powcoder.com Eliminate 4: by choosing a color from 0, 1, 2

Add WeChat powcoder 10 2 1 0

• Eliminate 3: by choosing a color from 0, 1, 2

Assignment Project Exam Help

- Theorem 2 There is an algorithm which can 3-color any ring of size nAidthgWre Einhat powcoder
- Same algorithm.

Assignment Project Exam Help

https://powcoder.com

Assignment Project Exam Help

Add WeChat powcoder

Assignment Project Exam Help

Cotho ppreder onees

Assignment Project Exam Help

- The line colouring algorithm also works on trees!
- The basic assumption is that you must have a node of the tree
- designated as the root!
- Further, other nodes must have at perent (in a predecessor)!
- The main theorem is the following. https://powcoder.com

Assignment Project Exam Help

• Theorem 3 There is an algorithm which can 6-color any tree in log* nAdde.WeChat powcoder

Assignment Project Exam Help

https://powcoder.com

6-Coloring Algorithm for Trees: Vertex *v* Assignment Project Exam Help

- Algorithm: 6-Color
 - $1. c_v \leftarrow Add WeChat powcoder$
 - 2. Repeat:
 - (a) $\ell \leftarrow |c_v|$; (b) if v is the root then set Exam Help

else set $I_{\text{pow}}(i)$; $C_{\text{oder}}(i)$;

- (c) Set $c_v \leftarrow Ic_v(I)$; /* concatenation */
- (d) Inform all Alddrive Chat this who cler
- 3. Until $|c_v| = \ell$;
- Why is the algorithm correct?

3-Coloring Theorem for Trees Assignment Project Exam Help

- Theorem 4 There is an algorithm which can 3-color any tree in $O(\log Addti We$ Chat powcoder
- The reason is that the coloring on the descendants of a given node is independent when done on disjoint paths.

 Assignment Project Exam Help

https://powcoder.com

Assignment Project Exam Help

- The color reduction method is called "shift-down".
- Algorithm Shift-Down Powcoder
 - 1. Concurrently at all vertices:
 - Recolor each non-root vertex by the color of its parent.
 Assignment Project Exam Help
 Recolor root by a new color, different from its current one.

- Why is "shift-down" correct?
- Colors (of the original coloring) are shifted down.

Analysis of Shift-Down Algorithm Assignment Project Exam Help

• Lemma 1 (Analysis of Algorithm Shift Down)

Algorithm Chiff Chapter Down Codering legality; also siblings are monochromatic.

- Two vertices v = parent(w), w are recolored by $c_{parent(v)}$ and c_v , which are different since c was a legal colouring.
- If v = root, then the new colors are x and c_v , where x is some color different from c_v .
- Also, all children of some vertex v get the same new color c_v .

Final Color Reduction Assignment Project Exam Help

• Now assume the six colors employed in the tree are Add WeChat powcoder 0, 1, 2, 3, 4, 5

The final three reduction steps involve cancelling colors
 Assignment Project Exam Help
 3, 4, 5

one at a time. https://powcoder.com

- In the end, there del We Chat power der, 2.
 - This is done by Algorithm Six2Three

Six2Three Algorithm Assignment Project Exam Help

- Algorithm Six2Three
 - 1. for x = 5, 4, 3 do hat powered x */
 - 2. Perform subroutine **Shift-Down** on the current colouring;
 - 3. if $c_v = x$ then
 - 4. v chooses signment Project Exams Help any of the neighbors.
 - 5. endif https://powcoder.com
 - 6. endfor Add WeChat powcoder

Assignment Project Exam Help

• Recolouring method

• Example discarding the that powcoder

Analysis of Six2Three Assignment Project Exam Help

- Theorem 5 (Analysis of Algorithm Six to Three)

 Algorithm $\operatorname{Add}_{\operatorname{Algorithm}}$ Chatopowie doth three colors in time $O(\log^* n)$.
- Each vertex colored x will find an available color from the set $\{1,2,3\}$, Assignment Project Exam Help
 - since by the Shifts Down Lemma at two of these colors are occupied, one by its parent and one by its children.
- Now note that recoloring the *x* colored vertices simultaneously creates no problem since they are all mutually nonadjacent.

Assignment Project Exam Help

- Fast tree-coloring with only 2 colors is more than exponentially more expected. Chatopogy colors.
 - In a tree degenerated to a line, nodes far away need to figure out whether they are an even or odd number of hops away frassignment Projectt Exam Holpring.
 - To do that one has to send a message to these nodes. This nttps://powcoder.com
 costs time linear in the number of nodes.

Assignment Project Exam Help

Add WeChat powcoder

Assignment Project Exam Help

Lower Bounds

Assignment Project Exam Help $\log^* n$?

- The only thing better than $O(\log^* n)$ running time is O(1) running Mcd WeChat powcoder
 - A 2-coloring is possible with O(1) running time in a distributed system with GPS!
- It turns out that we can prove a lower bound of $\Omega(\log^* n)$ on the time required to see the colors.
 - This implies a tight bound of Po(Yog n) on the time required for 3-coloring the line (ring).

Assignment Project Exam Help

• Theorem 6 Every deterministic, distributed algorithm to color a directed didg. We Chat power least ($\log^* n$)/2 – 1 rounds.

• The proof uses a theorem of Frank P. Ramsey.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

(22 February 1903 19 January 1930).

• We will not prove Theorem 6 here.

Generalizations and Additional Results Assignment Project Exam Help

- Linial (1992) proves that
 - in rooted d-regular tree $T_{d,r}$ of radius r, any synchronous distributed algorithm running in time $\leq \frac{2}{3}r$ cannot color $T_{d,r}$ by fewer than $\frac{1}{2}\sqrt{d}$ colors.
 - an arbitrary graph \bar{C} of order n and max degree Δ , can be colored with $5\Delta^2 \log n$ colors in one time unit distributively.
 - for G labeled, in time $O(\log *n)$ it is possible to color G with $O(\Delta^2)$ And We Chatipa we spectronous algorithm.
- There exists a deterministic distributed algorithm for coloring arbitrary graphs with max degree Δ ;
 - can be colored with $\Delta + 1$ colors in $O(\Delta \log^* n)$ time.

Assignment Project Exam Help

1. For any graph G = (V, E) define the chromatic numbers

 $\underbrace{\mathsf{Add}}_{\chi_{centralized}} \underbrace{\mathsf{WeChat}}_{\mathsf{powcoder}} \underbrace{\mathsf{powcoder}}_{\mathsf{powcoder}} (G), \chi_{local}(G)$

for centralized, distributed, and local computation.

- (a) How do Athey differ? Project Exam Help
- (b) Is there a natural order of these three quantities?
- 2. Define the concepts of centralized, distributed and local for any algorithmic computation and make a comparison.
- 3. Let $n \to h(n)$ be an integer valued function, where h(n) is the number of hops allowed in a network of size n to complete the computation. Formulate the various types of computation discussed above in terms of the function h(n).
- 4. $(\star\star)$ Consider Exercise 3. If h(n) = n then the number of ^aDo not submit!

colors is 2. If h(n) = 1, then the number of colors is 3. For Assignment Project Exam Help which threshold value of h(n) does the number of colors jumps from 2 ta3d WeChat powcoder

- 5. Compute $\log^*(10^{1000})$.
- 6. Compute $\log^*(2^{2^{2^{16}}})$. Assignment Project Exam Help
- 7. Explain in more detail (than the slide presented in class) that the local coloring than (see that the local coloring) reduces to a six coloring.

 Add WeChat powcoder
- 8. Show in detail that on the line graph three colors suffice.
- 9. Prove that a log* coloring algorithm is possible on a ring. How many colors does it require?
- 10. Prove in detail the correctness of the log* tree coloring algorithm.

Assignment Project Exam Help

- L. Barenboim, and M. Elkin. Distributed graph coloring: Fundamentals Watchest proverpolents. Synthesis Lectures on Distributed Computing Theory 4.1 (2013): 1-171.
- N. Linial. Locality in distributed graph algorithms. SIAM Journal on Signment Project Exam Help
- D. Peleg, Distributed: Opoputiogler. Locality Sensitive Approach, SIAM, 2000.

 Add WeChat powcoder