

Лекция 5 Вопросы построения обучающих множеств

Владимир Гулин

5 октября 2018 г.

План лекции

Машинное обучение в реальной жизни

Sampling

Active Learning

Active Learning in practice

Машинное обучение в реальной жизни

Схема компонентов системы машинного обучения

Машинное обучение в реальной жизни

▶ Работаем не на той же выборке, на которой обучались

► Какие потенциальные проблемы с данными вы видите на этой картинке?

- Points of class A
- ▲ Points of class B
 - Unlabelled ฦ๐๎ฑิงts

 ▶ Существуют неразмеченные точки на границе между классами

Points of class A

▲ Points of class B

Unlabelled points

- Существуют неразмеченные точки на границе между классами
- Количество данных в разных классах несбалансировано
 - Points of class A
 - ▲ Points of class B
 - Unlabelled points

- Существуют неразмеченные точки на границе между классами
- ▶ Количество данных в разных классах несбалансировано
- Имеется неразмеченная группа данных

- Points of class A
- Points of class B
- Unlabelled points

Несмещенная выборка

Определение

Несмещенная (репрезентативная) выборка - это такая выборка, в которой все основные признаки генеральной совокупности, из которой извлечена данная выборка, представлены приблизительно в той же пропорции или с той же частотой, с которой данный признак выступает в этой генеральной совокупности.

Labeled & Unlabled data

- Sampling
- Active Learning
- Semi-supervised learning

Мотивация

Упрощенная схема поисковой системы

Мотивация

Проблемы

- Все компоненты используют машинное обучение с учителем
- Асесорские оценки дорогое удовольствие
- Требуются большие обучающие выборки для высокого качества
- ightharpoonup Долго обучаться (примеров 10^6-10^7)

Хотим компактные обучающие выборки

- Проще анализировать данные
- Быстрее можно перестраивать модели и проводить эксперименты

Sampling

Определение

Sampling - метод исследования множества, путем анализа его подмножеств

Применение

- Предварительный анализ данных
- Исходное множество слишком велико

Sampling

Simple random sampling

Systematic sampling

Stratified random sampling

Cluster sampling

Simple random sampling

Systematic sampling

Stratified sampling

Cluster sampling

Вопрос:

А какой алгоритм семплирования выбрать?

Active Learning

Интуиция

Active Learning

Идея

The key idea behind active learning is that a machine learning algorithm can achieve greater accuracy with fewer training labels if it is allowed to choose that data from which it learns.

▶ Забиваем на требование несмещенности выборки

Мотивирующий пример

Вопрос:

Сколько точек необходимо для того, чтобы найти θ с точностью ε

Классическая схема машинного обучения

Схема с активным обучением

Типы активного обучения

Pool-based sampling

Stream based selective sampling

Query-synthezis

Active Learning Strategies

Uncertainty Sampling

Query-by-Committiee

Expected Model Change

Expected Error Reduction

Variance Reduction

Density-Weighted Methods

Bonus technique

Идея

Построим модель на ошибках предыдущей и будем ей предсказывать точки, которые брать в обучение

$$L(y, h(\mathbf{x})) = \sum_{i=1}^{N} (y_i - h(\mathbf{x}_i))^2$$
$$\widehat{f}(\mathbf{x}_i) = |y_i - h(\mathbf{x}_i)|, \quad i = 1, \dots, N$$

Uncertainty Sampling

Идея

Выбираем те примеры, в которых модель уверена меньше всего

$$x^* = arg \min |P(\hat{y}|x) - 0.5|$$

Points of class A

Unlabelled points

Uncertainty Sampling

Случай нескольких классов

Least confident

$$x_{LC}^* = arg \max_{x} (1 - P_{\theta}(\widehat{y}|x))$$
 $\widehat{y} = arg \max_{y} P_{\theta}(y|x)$

Margin sampling

$$x_M^* = arg \min_{x} P_{\theta}(\widehat{y}_1|x) - P_{\theta}(\widehat{y}_2|x)$$

Entropy (общий случай)

$$x_H^* = arg \max_{x} - \sum_{c} P_{\theta}(\hat{y}_c|x) \log P_{\theta}(\hat{y}_c|x)$$

Uncertainty Sampling

Пример: Случай трехклассовой классификации

► Какой мере неопределенности соотвествует каждая из этих картинок?

Uncertainty Sampling vs Random Sampling

Вопрос:

▶ Что делать если у нас нет постреорного распределения p(y|x)?

Query-by-Committiee

Вместо одной модели используем коммитет

- Points of class A
- Points of class B
- __ Unlabeled₃pợiถนร

Query-by-Committiee

Для измерения уровня несогласия между моделями используют:

Vote Entropy

$$x_{VE}^* = arg \max_{x} - \sum_{c} \frac{V(y_c)}{T} \log \frac{V(y_c)}{T}$$

Kullback-Leibler Divergence

$$x_{\mathit{KL}}^* = arg \max_{x} rac{1}{T} \sum_{t=1}^{I} D(P_{ heta^t} || P_T),$$
 гд

$$D(P_{\theta^t}||P_T) = \sum_{c} P_{\theta^t}(y_c|x) \log \frac{P_{\theta^t}(y_c|x)}{P_T(y_c|x)}, \quad P_T(y_c|x) = \frac{1}{T} \sum_{t=1}^{I} P_{\theta^t}(y_c|x)$$

Query-by-Committiee

Идея:

Выбираем очередную точку максимально сокращая пространство решений

Query-by-Bagging Qbag

Input: T – initial labelled training set

C – size of the committee

A – learning algorithm

U – set of unlabelled objects

Output: T' – extended training set

- 1. Uniformly resample T, obtain $T_1...T_C$, where $|T_i| < |T|$
- 2. For each T_i build model M_i using A
- 3. Select $x^* = \min_{x \in U} |\sum_{i=1}^{C} I(M_i = 1) \sum_{i=1}^{C} I(M_i = 0)|$
- 4. Pass x* to assessor and update T
- 5. Repeat from 1 until convergence

Query-by-Bagging

Query-by-Boosting

Вспоминаем AdaBoost

- 1. Инициализировать веса объектов $w_i = 1/N, j = 1, 2, ..., N$.
- 2. Для всех *i* от 1 до *T*:
 - (a) Построить классификатор $a_i(\mathbf{x})$, используя веса w_i
 - (b) Вычислить

$$err_i = \frac{\sum_{j=1}^{N} w_j I(y_j \neq a_i(\mathbf{x}_j))}{\sum_{j=1}^{N} w_j}$$

(с) Вычислить

$$b_i = \log \frac{1 - err_i}{err_i}$$

- (d) Присвоить $w_i \rightarrow w_i \cdot exp[b_i \cdot I(y_i \neq a_i(\mathbf{x}_i))], j = 1, \dots, N.$
- (е) Нормируем веса объектов

$$w_j o rac{w_j}{\sum\limits_{i=1}^N w_j}, j=1,\ldots,N.$$

3.
$$h(\mathbf{x}) = sign \left[\sum_{i=1}^{T} b_i a_i(\mathbf{x}) \right]$$

Expected Model Change

Идея

Выбираем примеры, оказывающие наибольшее влияние на модель

$$x^*_{EMC} = arg \max_{x} \sum_{c} P_{\theta}(y_c|x) \|\nabla L_{\theta}(D \cup (x, y_c))\|$$

При этом надо понимать

$$\|\nabla L_{\theta}(D \cup (x, y_c))\| \approx \|\nabla L_{\theta}(x, y_c)\|$$

Expected Error Reduction

Идея

Выбираем примеры, увеличивающие обобщающую способность нашей модели

Замечание

- Необходимо научиться оценивать ошибку обобщения модели на данных $D \cup (x, y)$
- ightharpoonup В качестве валидационной выборки будем использовать все оставшееся неразмеченное множество U

$$\begin{split} x_{0/1}^* &= arg \min_{x} \sum_{c} P_{\theta}(y_c|x) \left(\sum_{u=1}^{U} 1 - P_{\theta^{+(x,y_c)}}(\widehat{y}|x^{(u)}) \right) \\ x_{log}^* &= arg \min_{x} \sum_{c} P_{\theta}(y_c|x) \left(- \sum_{l=1}^{U} \sum_{c} P_{\theta^{+(x,y_c)}}(y_k|x^{(u)}) \log P_{\theta^{+(x,y_c)}}(y_k|x^{(u)}) \right) \end{split}$$

Variance Reduction

Идея

Можем минимизировать ошибку обобщения неявно, уменьшая variance модели

$$E[(\hat{y} - y)^2 | x] = Noise + Bias^2 + Variance$$

Каким образом уменьшать Variance?

Variance Reduction

Идея

Будем собирать примеры, которые поподают в листы нашей модели, соответсвующие малому числу примеров обучающей выборки

Density-Weighted Methods

Идея

Будем дополнительно использовать информацию о похожести примеров при добавлении новых, чтобы отбираемые примеры были "репрезентативны" относительно данного распределения

Density-Weighted Methods

$$x^* = arg \max_{x} \phi_A(x) \times \left(\frac{1}{U} \sum_{u=1}^{U} \rho(x, x^u)\right)^{\beta}$$

ϵ -active

Идея

Будем с некоторой вероятностью смотреть и в другие области пространства

Algorithm 1 ϵ -active

```
1: Input: X, \epsilon

2: Output: x_t, r_t

3: x_t = \begin{cases} Active learning(X) & if (q < \epsilon) \\ Random(X) & if (q \ge \epsilon) \end{cases}
```

4: **if** x was not queried in the past **then** Query O for label y of x

5: Observe reward r_t

EG-active

Exponentiated gradient active

Будем подбирать вероятность динамически

Algorithm 2 EG-active.

```
Input: (\epsilon_1,...,\epsilon_T) : candidate values for \epsilon
\beta, \tau and k: parameters for EG
N: number of iterations
p_k \Leftarrow \frac{1}{T} and \mathbf{w}_k \Leftarrow 1, k = 1, ..., T
for i=1 to N do
   Sample d from discrete (p_1, ..., p_T)
   Run the \epsilon-active with \epsilon_d
   Receive the feedback r_t
   w_k \leftarrow w_k \exp(\frac{\tau[r_i I(k=d)+\beta]}{n_k}), k=1,...,T
   p_k \leftarrow (1-k)(\frac{w_k}{\sum_{i=1}^T w_i} + \frac{k}{T}), k = 1, ..., T
end for
```

EG-active

Результаты экспериментов на UCI

Active Learning in practice

Querying in Batches

Вместо того, чтобы давать экспертам примеры по одному, отдадим сразу пачку

Вопрос:

▶ Как правильно организовать эту процедуру?

Active Learning in practice

Noisy Oracles

- Эксперты и люди и они совершают ошибки
- Необходимо проверять оценки экспертов другими экспертами
- НЕ каждый эксперт знает правильный ответ при разметке (нужно эксперты в узких областях)
- группа экспертов != миллионы пользователей (смещенные оценки)

Labeling costs

- Экспертам надо платить зарплату
- lacktriangle Много экспертов ightarrow много денег
- Что лучше? Уточнить оценку для уже известного примера или оценить новый?

Итоги

- Активное обучение простой эфективный метод для набора датасета
- Может быть применено практически для любых методов машинного обучения с учителем
- Требует значительных вычислительных расходов
- Собранный датасет работает только для данных признаков и для данного алгоритма. Если, что-то меняется, то похорошему активно обучаться надо заново
- ▶ Тестовый датасет всегда должен быть репрезентативен!!!

Задача

Дано: Имеется набор точек из 10 мерного пространства данных.

Требуется: Требуется реализовать процедуру активного обучения для решения задачи регрессии.

Пошаговая инструкция

1. Скачать данные и запустить шаблон кода на python https://goo.gl/MDZNax

```
$ python al.py -h
$ python al.py -tr train.txt -te test.txt
```

- 2. Выбрать алгоритм для решения задачи регресии
- 3. Выполнить random sampling
- 4. Разработать процедуру активного обучения
- 5. Построить графики rmse, в зависимости от числа примеров

Дз по активному обучению:

Задание:

Реализовать один из алгоритмов активного обучения, рассказанных на лекции и применить его в соревновании на Kaggle.

Вопросы

