

RAPPORT DE STAGE

Fracturation de floes de glace par percussion dans un modèle granulaire

ÉtudiantRoussel Desmond Nzoyem

Superviseur Stéphane Labbé

Enseignant référent Christophe Prud'homme

Stage effectué au Laboratoire Jacques-Louis Lions; du 03 février 2021 au 31 juillet 2021; pour l'obtention du master 2 CSMI.

Année académique 2020 - 2021

Remerciements

Avant tout développement sur cette expérience professionnelle, il apparaît opportun de commencer ce rapport de stage par des remerciements, à ceux qui m'ont appris des choses, et à ceux qui ont eu la gentillesse de faire de ce stage un moment agréable et profitable.

Ainsi, je remercie le Pr. Stéphane Labbé, mon maître de stage qui m'a formé et accompagné tout au long de cette expérience avec beaucoup de patience et de pédagogie. Étant donné la situation sanitaire de COVID-19, il a su me transmettre tous les enseignements et les ressources (livres, reférences, etc.) nécessaires pour effectuer mes différentes missions (et bien plus encore), à distance comme en présentiel. Je vous en suis profondément reconnaissant.

J'éttends mes remerciements à mes illustre prédécesseurs Matthias Rabatel et Dimitri Balasoiui sans qui mon travail n'aurait pas eu lieu. Dimitri a su me guider dans les moments les plus difficile du stage. Les mots ne sauraient exprimer ma reconnaissance envers les visio-conférence organisées afin de me permettre de prendre en main de son travail.

Je remercie aussi l'ensemble du personnel du Laboratoire Jacques-Louis Lions qui m'a permis d'effectuer un stage scientifique très enrichissant dans les meilleures conditions possibles. J'addresses mes salutations aux doctorants et aux étudiants en séjour de recherche pour leur unique regard sur les difficultés auquelles fait face. En particulier, je remercie Madame Catherine Drouet de l'administration pour son assistance et ses conseils inestimables.

Enfin, je remercie mes proches, ma famille et mes amis pour leurs encouragements. Si un lecteur estime que son nom aurait du figurer ici de facon explicite, faite ceci : imprimer cette page, montrer la moi, et cela sera votre coupon pour une bièrre gratuite (ou un caffé, ou autre chose). Les trucs gratuits sont mieux qu'une mention, n'est-ce pas?

Table des matières

Chapitre 1

État de l'art

1.0.0.1 Formulation en problème linéaire de complémentarité

Il existe deux principales manières de formuler le problème du contact entre deux solides rigides. L'auteur de [rabatel2015thesis] opte pour le formalisme vitesse-impulsion, au détriment du formalisme accélération-force. En effet, l'approche en vitesse-impulsion apporte l'avantage de pouvoir exprimer la force de friction de Coulomb directement par rapport à la vitesse. Il n'est pas nécessaire de connaître la nature du contact. Il nous faut donc définir les notions d'impulsion. Sur un intervalle de temps δt^* , s'il y a un contact entre les floes Ω_k et Ω_l au point P_j , nous dirons que le floe Ω_k a subi un choc provenant du floe Ω_l au point de contact P_j caractérisé par l'impulsion :

$$\mathcal{I}_{kj} = \int_{\delta t^*} c_{kj} \mathbf{F}_{kj}(t) \, \mathrm{d}t.$$

rabatel2015thesis fait donc apparaître les impulsions dans les équations des moments ?? pour le floe Ω_k sur l'intervalle temporel δt^* :

$$\mathcal{M}_k \int_{\delta t^*} \dot{W}_k(t) dt = \int_{\delta t^*} \mathcal{H}(t) dt + \sum_{j \in E_k} \begin{pmatrix} \mathcal{I}_{kj} \\ G_k \mathbf{P}_j \wedge \mathcal{I}_{kj} \end{pmatrix}.$$

En écrivant $\delta t^* = [t^-, t^+]$, on peut donc introduire les inconnues β , $\lambda \in (\mathbb{R}^2)^m$ pour le problème de contact

$$\mathcal{M}(W(t^{+}) - W(t^{-})) = \int_{\delta t^{*}} \mathcal{H}(t) dt + \mathbf{B}\beta + \mathbf{J}\lambda, \qquad (1.1)$$

où **B** et **J** sont deux matrices de $(\mathbb{R}^3)^{n \times m}$ telle que

$$\mathbf{B} = (d_{kj})_{\substack{1 \leq k \leq n \\ 1 \leq j \leq m}}, \quad d_{kj} = \begin{cases} 0 \in \mathbb{R}^3 & \text{si } P_j \text{ n'est pas un point de contact de } \Omega_k \\ \begin{pmatrix} c_{kj} \mathbf{T}_j \\ c_{kj} \mathbf{P}_j \mathbf{G}_k \wedge \mathbf{T}_j \end{pmatrix} & \text{si } P_j \text{ est un point de contact de } \Omega_k \end{cases}$$

$$\mathbf{J} = (s_{kj})_{\substack{1 \leq k \leq n \\ 1 \leq j \leq m}}, \quad s_{kj} = \begin{cases} 0 \in \mathbb{R}^3 & \text{si } P_j \text{ n'est pas un point de contact de } \Omega_k \\ \begin{pmatrix} c_{kj} \mathbf{N}_j \\ c_{kj} \mathbf{P}_j \mathbf{G}_k \wedge \mathbf{N}_j \end{pmatrix} & \text{si } P_j \text{ est un point de contact de } \Omega_k \end{cases}$$

Les matrices **B** et **J** sont obtenues par décomposition des forces de contact dans le repère de contact $\mathcal{R}_{\Omega_i} = (P_i, \mathbf{T}_i, \mathbf{N}_i)$ (voir **??**).

Comme précédemment mentionné, afin de modéliser la friction dans une collision qui respecte la loi de Coulomb, [rabatel2015thesis] se base sur les travaux de Stewart et Trinkle [stewart1996implicit] qui définissent une condition de complémentarité reliant la composante tangentielle β_j de l'impulsion appliquée au point P_j , la composante normale λ_j , la vitesse relative tangentielle du point P_j et le coefficient de friction μ . On introduit le vecteur $\tilde{\beta}$ contenant les composantes de l'impulsion tangentielle dans chacune des directions possible de glissement T_j ou $-T_j$. Il devient alors possible de formuler le problème de contact (sur tout le système S) sans interpénétration par le problème linéaire de complémentarité suivant. Dans cette formulation, l'impulsion de contact est effectivement à l'intérieur du cône de Coulomb :

$$\begin{cases}
\begin{pmatrix} 0 \\ \mathbf{w} \\ \gamma \\ \sigma \end{pmatrix} = \begin{pmatrix} \mathcal{M} & -\mathbf{J} & -\mathbf{D} & 0 \\ \mathbf{J}^{T} & 0 & 0 & 0 \\ \mathbf{D}^{T} & 0 & 0 & \mathbf{H} \\ 0 & \mu & -\mathbf{H}^{T} & 0 \end{pmatrix} \begin{pmatrix} W(t^{+}) \\ \lambda \\ \tilde{\beta} \\ \alpha \end{pmatrix} + \begin{pmatrix} \int_{\delta t^{*}} \mathcal{H}(t) \, \mathrm{d}t - \mathcal{M}W(t^{-}) \\ 0 \\ 0 \\ 0 \end{pmatrix} \\
\begin{pmatrix} \mathbf{w} \\ \gamma \\ \sigma \end{pmatrix} \ge 0, \quad \begin{pmatrix} \lambda \\ \tilde{\beta} \\ \alpha \end{pmatrix} \ge 0, \quad \begin{pmatrix} \mathbf{w} \\ \gamma \\ \sigma \end{pmatrix} \cdot \begin{pmatrix} \lambda \\ \tilde{\beta} \\ \alpha \end{pmatrix} = 0,
\end{cases} \tag{1.2}$$

avec

$$\mathbf{w} = \mathbf{J}^T W(t^+), \quad \mathbf{H}^T = (e_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le 2m}}, \quad \tilde{\beta} = (\tilde{\beta}_j)_{1 \le j \le m}, \quad \lambda = (\lambda_j)_{1 \le j \le m},$$

 μ est la matrice diagonale de diagonale (μ_1,\ldots,μ_m) ,

$$e_{ij} = \begin{cases} 1 \text{ si } j = 2(i-1) + 1 \text{ ou } j = 2(i-1) + 2 \\ 0 \text{ sinon} \end{cases}$$
 ,

$$D = (\mathbf{B}_1 | -\mathbf{B}_1 | \dots | \mathbf{B}_m | -\mathbf{B}_m)$$
 avec \mathbf{B}_j la colonne j de la matrice \mathbf{B} .

Le problème consiste alors à trouver les vitesses après contact $W(t^+)$, à l'aide des composantes inconnues tangentielle et normale des impulsions dans les repères de contact $(\tilde{\beta}\gamma)$, elles-mêmes inconnues du système.