ANCESTOR MATRIX FROM BINARY TREE

(1) The Node values are numbered 0 to N-1

(2) N= number of Node, .

(3) We don't do The raming / numbering or marking.

(4) The Nodes values are numbered like This .

In This TREE .

N=6

Neds are numbered

o to 5

2D Ancestor MATRIX, Such That The Matrix has. oto (N-1) Rows, oto (N-1) Glums i.e NXN cutput:-Matrix.

filling q values: for any cell a (i,j) i= row Index.

j = Cetumn Index.

i = ancestor of j. Then a (ij) =1 elx, a (ij) =0.

At any a(iij) ask the question, is node numbered (i) an anustor of Node numbered (j)

(e) (d)	(3)	0		2	3	4	5	
(Leaf)	C= 0	0	0	0	0	0	0	
- 4/	(= 0 (= 1	1	0	٥	0	ł	0	
	i= 2	0	٥	0	ı	0	c	
(leap)	i= 3	0	٥	0	0	0	0	
(leag)	i= 4 i= 5	0	0	0	0	0	o	
	i= 5	ı	i.	1	1	4	0	
								NXN metro

For (9) i=0, j=3,

is The Node Numbered Zero, The ancestor of Node That is Numbered as (3). The answer is No. So, it gets a Zero.

for (4) i=1, j=4

Is The Node numbered (1), The ancestor of Node That is Numbered as (4). The answer is Yes total. So, it gets a 1.

As you can see from the ancestor Table, most of its values are.

=> while an ancestor Matrix is created, it makes sense to. create a NXN Matrix, pre-filled with Zeroes.

find The size of The Binary Tree (to Build The .

initial anastor Hatrix)

Size of The Binon Tree .

Its The Count of number of nooles in The Binary

> They all Contribute o.

Size (node) { H (! nodb) { return o

return size (node lept) +1 + Size (node right)

The above recurrive function can be used. To determine The size of Binary Tree & Thereby Construct an initial ancestor. Matrix & (size x size) dimension.

3+2+1 = 56 | So a 6x6 2D Array |

(initialized with Zeros)

So a 6x6 2D Array is

Now The Tree has To Be Traversed to fill in The Ancestor Matrix. a simple pre-order Traversal would Also Do,

Root -> LEFT RIGHT

Noturally Traverses The Root Ost (anus for Ost) ging a chance To store The Nocle into an Array of Ancestors.

for (4)

So when processing Node (4),

=> Node 1, 5 conbe stored

=> Ancestor Can be stored.

When procesing Node 3

=) Node 2, 5 are stored.

=> Node 1) That was previously stored was popped out as its subtrees.

(C), (G) have finished procemp.

for any Node

-> push (store Temposaily)

-> procen legt SubTree.

-> Prace Right Scholine.

-> semare of from Ancestor List

function Construct Ancestor H	atrix	(100	le, an	cestor	Arr,	ances	horted)
y (! node) {							
return;							
3							
ancestor Arr. for Each (an	cento	1>	{ ·				
ancestor Hautin & Tancer	bril	ral][node	ral	=1		
3);							
ancestor Arr. push (n	ode)	7					
Courtmet Ancestor Hartina	(node	. LEF	T, and	erby A	m, a	ncestor	Het)
Constnet Ancestor Martinic (
ancestor Aw. pop ();							
return ancestor Matrix;		1 100					
3	-	0	A129	2	3	4	5
For ept-	6					1	
	-						
(5)	1					1	
(5) (C)	1						
(5) (C) (C) (C) (C)						1	
Pre-ordui-	2					1	
© (4) (3) Pre-ordui- 510423	2					1	

for The Node,
(4)·
When Node = (4),
Ancestor Array Las 5 1
Now, we iterate over these ancestors Array.
We know that (5) & (1) are ancestors of (4) per pre-order.
so, we have to fill.
Matrix [5] [4] -> is (5) An oncestor 8(4) -> yes-1
Hatrix [8] [4] -> is (1) an ancestor of (4) -> yes -1
while manually fillip, we filled asking The question.
-> is the Node numbered i=x an ancestor p
Noch number j=y (Row wise)
Ret while till's wir The program, its filled as
-> Node (A) is ablenter of Node (B) tohum
descendent descendent descendent A Node (A) is absenter of Node (B) A Node (A) is absenter of Node (C) Wix.