Functional Dependencies:

- A functional dependency (FD) is a relationship between two attributes, X and Y, if for every valid instance of X, that value of X uniquely determines the value of Y. This relationship is denoted as X → Y.
 - I.e. If column X of a table uniquely identifies column Y of the same table then it can be represented as $X \to Y$.
 - A functional dependency $X \to Y$ in a relation holds if two or more tuples having the same value for X also have the same value for Y.
- The left side of the above FD notation is called the **determinant**, and the right side is the **dependent**.
- E.g.
 - a. SIN → Name, Birth date, Address means that SIN determines Name, Address and Birthdate. Given a SIN, we can determine any of the other attributes within the table.
 - b. ISBN → Title means that ISBN determines Title.
- Types of functional dependencies:
 - 1. Multivalued dependency:
 - **Multivalued dependency** occurs when there are more than one independent multivalued attributes in a table.

- E	Ξ.g.
-----	------

Car_model	Maf_year	Color
H001	2017	Metallic
H001	2017	Green
H005	2018	Metallic
H005	2018	Blue
H010	2015	Metallic
H033	2012	Gray

In this example, maf_year and color are independent of each other but dependent on car_model. In this example, these two columns are said to be multivalued dependent on car_model.

This dependence can be represented like this:

car_model → maf_year car_model → colour

- 2. Trivial Functional dependency:
- The dependency of an attribute on a set of attributes is known as **trivial functional dependency** if the set of attributes includes that attribute.
- Note: A → A is always a trivial functional dependency.
- E.g.

Consider a table with two columns Student_id and Student_Name.

{Student_Id, Student_Name} → **Student_Id** is a trivial functional dependency as Student_Id is a subset of {Student_Id, Student_Name}.

Furthermore, Student_Id \rightarrow Student_Id & Student_Name \rightarrow Student_Name are trivial dependencies too.

3. Non-trivial Functional Dependency:

- A **non-trivial functional dependency** occurs when **A** → **B** where B is not a subset of A.

I.e. If a functional dependency $X \to Y$ holds true where Y is not a subset of X then this dependency is called a non-trivial functional dependency.

- E.g.

Consider an employee table with three attributes: emp_id, emp_name, and emp_address.

The following functional dependencies are non-trivial:

```
emp_id → emp_name (emp_name is not a subset of emp_id)
emp_id → emp_address (emp_address is not a subset of emp_id)
```

However, **{emp_id, emp_name}** → **emp_name** is trivial because emp_name is a subset of {emp_id, emp_name}.

4. Transitive Dependency:

- A functional dependency is said to be **transitive** if it is indirectly formed by two functional dependencies.
- X → Z is a transitive dependency if the following three functional dependencies hold true:
 - $X \rightarrow Y$
 - Y does not $\rightarrow X$
 - $Y \rightarrow Z$
- E.g.

Book	Author	Author_age
Game of Thrones	George R. R. Martin	66
Harry Potter	J. K. Rowling	49
Dying of the Light	George R. R. Martin	66

$\{Book\} \rightarrow \{Author\}$

{Author} does not → {Book}

{Author} → **{Author_age}**

Therefore as per the rule of transitive dependency:

{Book} → **{Author_age}** should hold. That makes sense because if we know the book name we can know the author's age.

- **Note:** A transitive dependency can only occur in a relation of three or more attributes.

- Axioms of functional dependency:

- 1. If we have $X \rightarrow Y$ and all the values in X are unique, then we know for sure that there is a valid functional dependency between X and Y.
- 2. Similarly, if we have $X \rightarrow Y$ and all the values in Y are the same, then we know for sure that there is a valid functional dependency between X and Y.
- 3. **Reflexive Axiom:** If X is a set of attributes and $Y \subseteq X$, then $X \to Y$.
- 4. Augmentation Axiom: If $X \rightarrow Y$ and Z is a set of attributes, then $XZ \rightarrow YZ$.
- 5. Transitivity Axiom: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$.
- 6. Union Axiom: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
- 7. **Decomposition Axiom:** If $X \to YZ$, then $X \to Y$ and $X \to Z$.
- 8. **Pseudo Transitivity Axiom:** If $X \rightarrow Y$ and $WY \rightarrow Z$, then $WX \rightarrow Z$.

9. Composition Axiom: If $X \to Y$ and $Z \to W$, then $XZ \to YW$.

Note: The reflexive, augmentation and transitivity axioms are called the **Armstrong Axioms**.

- Closure/Attribute Closure:
- Defined as "Given a set of attributes, what are the other attributes that can be fetched from it."
- The closure of an attribute, A, is denoted as A⁺.
- Equivalence of functional dependencies:
- Let FD1 and FD2 are two FD sets for a relation R.
 - 1. If all FDs of FD1 can be derived from FDs present in FD2, we can say that FD1 ⊆ FD2.
 - 2. If all FDs of FD2 can be derived from FDs present in FD1, we can say that FD2 ⊆ FD1.
 - 3. If 1 and 2 both are true, FD1 = FD2.
- Irreducible set of functional dependencies/Canonical Form:
- Whenever a user updates the database, the system must check whether any of the functional dependencies are getting violated in this process. If there is a violation of dependencies in the new database state, the system must roll back. Working with a huge set of functional dependencies can cause unnecessary added computational time. This is where the canonical cover comes into play.
- A canonical cover of a set of functional dependencies F is a simplified set of functional dependencies that has the same closure as the original set F.
- Examples:
 - 1. Given the table and the functional dependencies below, show and explain which functional dependencies are valid and which are invalid.

Α	В	С	D	Е
а	2	3	4	5
а	2	3	6	5
2	а	3	4	5

 $A \rightarrow BC$ $DE \rightarrow C$ $C \rightarrow DE$ $BC \rightarrow A$

Soln:

1. $A \rightarrow BC$

This one is valid because if you look at the table, under column A, there are 2 a's, and they both correspond to 2 in column B and 3 in column C.

2. $DE \rightarrow C$

This one is valid because there are 2 instances of {D: 4, E:5} and they both correspond to 3 in C.

3. $C \rightarrow DE$

This one is invalid because there are 3 instances of $\{C:3\}$ but they correspond to different values in DE. In the second row, C = 3 corresponds to D = 6 and E = 5 while in rows 1 and 3, C = 3 corresponds to D = 4 and E = 5.

4. $BC \rightarrow A$

This one is valid because there are 2 instances of B = 2 and C = 3 and both times, they correspond to A = a.

2. Given a relational R with attributes A, B and C, R(A,B,C), and the following functional dependencies, find the closure of A.

 $\mathsf{A}\to\mathsf{B}$

 $B \rightarrow C$

Soln:

 A^+ = {A, B, C} because A can determine A, and B. Furthermore, B can determine C.

3. Given a relational R with attributes A, B, C, D, E, and F, R(A,B,C,D,E,F), and the following functional dependencies, find the closure of D and DE.

 $\mathsf{A}\to\mathsf{B}$

 $\mathsf{C} \to \mathsf{DE}$

 $AC \rightarrow F$

 $D \rightarrow AF$

 $E \rightarrow CF$

Soln:

 D^+ = {A, B, D, F} because D can determine A, D and F. Furthermore, A can determine B.

(DE)⁺ = {A, B, C, D, E, F} because D can determine A, D and F. Furthermore, A can determine B. E can determine E, C and F.

4. Given R(A, B, C, D, E, F, G) and the following functional dependencies, find the closure of AC.

 $\mathsf{A} \to \mathsf{B}$

 $\mathsf{BC}\to\mathsf{DE}$

 $AEG \rightarrow G$

Soln:

 $(AC)^+$ = {A, C, B, D, E} because AC can determine A and C. Then, A can determine B. Then, BC can determine D and E.

5. Given R(A, B, C, D, E) and the following functional dependencies, find the closure of B.

 $A \rightarrow BC$

 $\mathsf{B}\to\mathsf{D}$

 $\mathsf{CD} \to \mathsf{E}$

 $\mathsf{E} \to \!\! \mathsf{A}$

Soln:

 $B^+ = \{B, D\}$ because B can determine B and D.

6. Given R(A, B, C, D, E, F) and the following functional dependencies, find the closure of AB.

 $\mathsf{AB} \to \mathsf{C}$

 $\mathsf{BC}\to\mathsf{DE}$

 $\mathsf{D}\to\mathsf{E}$

 $\mathsf{CA} \to \mathsf{B}$

Soln:

$$(AB)^+ = \{A, B, C, D, E\}$$

7. Given R(A, B, C, D, E, F, G, H) and the following functional dependencies, find the closure of BCD.

 $\mathsf{A}\to\mathsf{BC}$

 $CD \rightarrow E$

 $\mathsf{E} \to \mathsf{C}$

 $\mathsf{D} \to \mathsf{AEH}$

 $\mathsf{ABH} \to \mathsf{BD}$

 $\mathsf{DH}\to\mathsf{BC}$

 $BCD \rightarrow H$

Soln:

 $(BCD)^{+} = \{B, C, D, H, E, A\}$

8. Given R(A, C, D, E, H) and the following 2 sets of functional dependencies Set 1:

 $A \rightarrow C$

 $\mathsf{AC}\to\mathsf{D}$

 $\mathsf{E} \to \mathsf{ADH}$

Set 2:

 $\mathsf{A} \to \mathsf{CD}$

 $E \rightarrow AH$

We want to know if the 2 sets of functional dependencies are equivalent.

Soln:

Step 1: Check if all of the FDs of Set 1 are in Set 2.

To do so, I will compute the closures of A, AC and E using the functional dependencies of Set 2.

 A^+ = {A, C, D} (Knowing A, I can get A, C and D.) (AC) $^+$ = {A, C, D} (Knowing A, I can get A, C and D. Knowing C, I can get C.) E^+ = {E, A, H, C, D} (Knowing E, I can get E, A and H. Knowing A, I can get C and D.)

Since the FDs of Set 1 are in the closure of each LHS item computed using the FDs of set 2, we know that Set $1 \subseteq \text{Set } 2$.

A⁺ in Set 1 = {A, C} but A⁺ computed using the FDs of Set 2 = {A, C, D}. $(AC)^+$ in Set 1 = {A, C, D} but $(AC)^+$ computed using the FDs of Set 2 = {A, C, D}. E⁺ in Set 1 = {E, A, D, H} but E⁺ computed using the FDs of Set 2 = {E, A, H, C, D}.

Hence, Set $1 \subseteq \text{Set } 2$.

Step 2: Check if all of the FDs of Set 2 are in Set 1.

To do so, I will compute the closures of A and E using the functional dependencies of Set 1.

A⁺ = {A, C, D} (Knowing A, I can get A and C. Knowing AC, I can get D.) E⁺ = {E, A, D, H, C} (Knowing E, I can get E, A, D and H. Knowing A, I can get C.)

A⁺ in Set 2 = {A, C, D} but A⁺ computed using the FDs of Set 1= {A, C, D}. E⁺ in Set 2 = {E, A, H} but A⁺ computed using the FDs of Set 1 = {E, A, D, H, C}. Hence, Set $2 \subseteq \text{Set } 1$.

Since Set $1 \subseteq \text{Set } 2$ and Set $2 \subseteq \text{Set } 1$, Set 1 = Set 2.

9. Given R(P, Q, R, S) and the following 2 sets of functional dependencies Set 1: $P \rightarrow Q$ $Q \rightarrow R$ $R \rightarrow S$ Set 2: $\mathsf{P} \to \mathsf{QR}$ $R \rightarrow S$ We want to know if the 2 sets of functional dependencies are equivalent. Soln: Step 1: $P^+ = \{P, Q, R, S\}$ (Knowing P, I can get P, Q and R. Knowing R, I can get S.) $Q^+ = \{Q\}$ (Knowing Q, I can get Q.) $R^+ = \{R, S\}$ (Knowing R, I can get R and S.) Here, Set 1 \subseteq Set 2 because in Set 1, Q⁺ = {Q, R} while in Set 2, Q⁺ = {Q}. Step 2: $P^+ = \{P, Q, R, S\}$ (Knowing P, I can get P and Q. Knowing Q, I can get R. Knowing R, I can get S.) $R^+ = \{R, S\}$ (Knowing R, I can get R and S.) Here. Set $2 \subseteq \text{Set } 1$. Therefore, Set $2 \subseteq \text{Set } 1$. 10. Given R(A, B, C) and the following 2 sets of functional dependencies Set 1: $A \rightarrow B$ $\mathsf{B}\to\mathsf{C}$ $C \rightarrow A$ Set 2: $A \rightarrow BC$ $B \rightarrow A$ $C \rightarrow A$ We want to know if the 2 sets of functional dependencies are equivalent. Soln: Step 1: $A^+ = \{A, B, C\}$ $B^+ = \{B, A, C\}$ $C^+ = \{C, A, B\}$ Here, Set $1 \subseteq \text{Set } 2$. Step 2: $A^+ = \{A, B, C\}$ $B^+ = \{B, C, A\}$ $C^+ = \{C, A, B\}$ Here, Set $2 \subseteq \text{Set } 1$.

Therefore, Set 1 = Set 2.

11. Given R(V, W, X, Y, Z) and the following 2 sets of functional dependencies

Set 1: $W \rightarrow X$

 $WX \rightarrow Y$

 $Z \rightarrow WY$

 $\mathsf{Z} \to \mathsf{V}$

Set 2:

 $W \rightarrow XY$

 $Z \rightarrow WX$

We want to know if the 2 sets of functional dependencies are equivalent.

Soln:

Step 1:

 $W^+ = \{W, X, Y\}$

 $(WX)^+ = \{W, X, Y\}$

 $\dot{Z}^+ = \{Z, \dot{W}, \dot{X}, \dot{Y}\}$

Here, Set 1 \subseteq Set 2. (V is not in Z^+ .)

Step 2:

 $W^+ = \{W, X, Y\}$

 $Z^+ = \{Z, W, Y, V, X\}$

Here, Set $2 \subseteq \text{Set } 1$.

Therefore, Set $2 \subseteq \text{Set } 1$.

12. Given R(W, X, Y, Z) and the following set of functional dependencies

 $\mathsf{X} \to \mathsf{W}$

 $WZ \rightarrow XY$

 $Y \to WXZ$

We want to check for redundancy.

The redundancy can occur at ∞ , β or $\infty \rightarrow \beta$.

Step 1: We will remove redundancies at the β level.

To do this, we will apply the decomposition rule.

 $\mathsf{X} \to \mathsf{W}$

 $WZ \to X$

 $WZ \rightarrow Y$

 $Y \rightarrow W$

 $Y \rightarrow X$

 $Y \rightarrow Z$

Now, we will find the closure of each item on the LHS, first with the FD and second without the FD.

Variable	With FD	Without FD
X ⁺	{X, W}	$\{X\}$ (Without $X \to W$)
(WZ)⁺	{W, Z, X, Y}	$\{W, Z, X, Y\}$ (Without WZ \rightarrow X) Redundant
(WZ)⁺	{W, Z, X, Y}	$\{W, Z, X\}$ (Without $WZ \rightarrow Y$)
Y ⁺	{Y, W, X, Z}	$\{Y, X, Z, W\}$ (Without $Y \rightarrow W$) Redundant
Y ⁺	{Y, W, X, Z}	$\{Y, Z, W, X\}$ (Without $Y \rightarrow X$) Redundant
Y ⁺	{Y, W, X, Z}	$\{Y, X, W\}$ (Without $Y \rightarrow Z$)

A FD is redundant if it can be recreated some other way.

Hence, the following FDs are redundant:

 $WZ \to X\,$

 $Y \rightarrow W$

 $Y \rightarrow X$

The canonical form are the following FDs:

 $\mathsf{X} \to \mathsf{W}$

 $WZ \rightarrow Y$

 $Y \rightarrow Z$

Step 2: We will remove redundancies at the ∝ level.

Note: We can't decompose WZ because if we do, we will get different closures.

 $(WZ)^+ = \{W, Z, X, Y\}$

 $W^+ = \{W\}$

 $Z^+ = \{Z\}$

Since we can't decompose WZ, nothing changes.

13. Given R(A, B, C, D) and the following set of functional dependencies

 $\mathsf{A}\to\mathsf{B}$

 $\mathsf{C}\to\mathsf{B}$

 $D \rightarrow ABC$

 $\mathsf{AC} \to \!\! \mathsf{D}$

We want to check for redundancy.

Soln:

Step 1: We will remove redundancies at the β level.

 $\mathsf{A}\to\mathsf{B}$

 $C \to \mathsf{B}$

 $\mathsf{D}\to\mathsf{A}$

 $\mathsf{D}\to\mathsf{B}$

 $\mathsf{D}\to\mathsf{C}$

 $\mathsf{AC} \to \!\! \mathsf{D}$

Variable	With FD	Without FD
A ⁺	{A, B}	$\{A\}$ (Without $A \rightarrow B$)
C ⁺	{C, B}	$\{C\}$ (Without $C \rightarrow B$)
D⁺	{D, A, B, C}	$\{D, B, C\}$ (Without $D \rightarrow A$)
D⁺	{D, A, B, C}	$\{D, A, C, B\}$ (Without $D \rightarrow B$) Redundant
D⁺	{D, A, B, C}	$\{D, A, B\}$ (Without $D \rightarrow C$)
(AC)⁺	{A, C, D, B}	$\{A, C, B\}$ (Without $AC \rightarrow D$)

The following FD is redundant:

 $D \rightarrow B$

The canonical form are the following FDs:

 $\mathsf{A}\to\mathsf{B}$

 $\mathsf{C}\to\mathsf{B}$

 $D \rightarrow A$

 $\mathsf{D}\to\mathsf{C}$

 $AC \rightarrow D$

Step 2: We will remove redundancies at the ∞ level.

Note: We can't decompose AC because if we do, we will get different closures.

$$(AC)^+ = \{A, C, D, B\}$$

 $A^{+} = \{A, B\}$

 $C^+ = \{C, B\}$

Since we can't decompose AC, nothing changes.

14. Given R(V, W, X, Y, Z) and the following set of functional dependencies

$$\mathsf{V} \to \mathsf{W}$$

$$VW \to X\,$$

$$Y \to VXZ$$

We want to check for redundancy.

Soln:

Step 1: We will remove redundancies at the β level.

$$\mathsf{V} \to \mathsf{W}$$

$$VW \to X$$

$$Y \rightarrow V$$

$$\mathsf{Y} \to \mathsf{X}$$

$$Y \rightarrow Z$$

Variable	With FD	Without FD
V ⁺	{V, W, X}	$\{V\}$ (Without $V \rightarrow W$)
(VW) ⁺	{V, W, X}	$\{V, W\}$ (Without $VW \rightarrow X$)
Y ⁺	{Y, V, X, Z, W}	$\{Y, X, Z\}$ (Without $Y \rightarrow V$)
Y ⁺	{Y, V, X, Z, W}	$\{Y, V, Z, W, X\}$ (Without $Y \rightarrow X$) Redundant
Y ⁺	{Y, V, X, Z, W}	$\{Y, V, X, W\}$ (Without $Y \rightarrow Z$)

The following FD is redundant:

$$Y \rightarrow X$$

The canonical form are the following FDs:

$$V \rightarrow W$$

$$\mathsf{VW} \to \mathsf{X}$$

$$Y \rightarrow V$$

$$Y \rightarrow Z$$

Step 2: We will remove redundancies at the ∝ level.

$$(VW)^{+} = \{V, W, X\}$$

$$V^{+} = \{V, W, X\}$$

$$W^+ = \{W\}$$

Hence, we can rewrite $VW \rightarrow X$ into $V \rightarrow X$.

The canonical form are the following FDs:

$$V \rightarrow W$$

$$V \rightarrow X$$

$$Y \rightarrow V$$

$$Y \rightarrow Z$$