Часть 1. Тест.

Вопрос 1 ♣ Использование робастных стандартных ошибок в форме Уайта при гетероскедастичности позволяет

- А увеличить точность прогнозов
- В сузить доверительные интервалы для коэффициентов
- С получить эффективные оценки коэффициентов
- D устранить смещённость оценок коэффициентов
- **E** строить корректные доверительные интервалы для коэффициентов
- **F** Нет верного ответа.

$$\operatorname{Var}(\hat{\beta}) = \begin{pmatrix} 1 & 0.1 & 0.2 \\ 0.1 & 4 & 1.5 \\ 0.2 & 1.5 & 29 \end{pmatrix}.$$

Длина 95%-го доверительного интервала для $\beta_2+\beta_3$ примерно равна

A 24

C 6

E 12

B 1.96

D 36

F Нет верного ответа.

Вопрос 3 \clubsuit Оценка \hat{eta}_{2SLS} модели $Y=X\beta+\varepsilon$ получена двухшаговым МНК с матрицей инструментальных переменных Z. Если число инструментов превышает количество включенных в модель факторов, то \hat{eta}_{2SLS} имеет вид

- $\boxed{\mathbf{A}} \ Z(Z'Z)^{-1}Z'X$
- $\boxed{\mathsf{B}} (Z'Z)^{-1}Z'Y$
- $\boxed{\mathbb{C}} (Z'X)^{-1}Z'Y$

- \square $(X'Z(Z'Z)^{-1}Z'X)^{-1}Z'Z(Z'Z)^{-1}X'Y$
- $[E] (X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'Y$
- **F** Нет верного ответа.

Вопрос 4 👫 При оценивании коэффициентов моделей бинарного выбора

- A оценки логит и пробит моделей имеют противоположные знаки
- В оценки логит и пробит моделей всегда совпадают
- С оценки пробит модели имеют более высокую значимосить, чем логит
- D оценки пробит моделей всегда выше, чем логит
- E оценки логит моделей всегда выше, чем пробит
- **F** Нет верного ответа.

Вопрос 5 朂 Процесс ε_t является белым шумом. Нестационарным является процесс

$$\boxed{\mathbf{C}} \ Y_t = 0.1Y_{t-1} + \varepsilon_t$$

$$\boxed{\mathbf{E}} Y_t = -1Y_{t-1} + \varepsilon_t$$

$$\boxed{\mathbf{B}} Y_t = 2017\varepsilon_t$$

$$\boxed{\mathrm{D}} \ Y_t = 2017$$

Вопрос 6 \clubsuit С помощью МНК оценена зависимость потребления Y_i от дохода X_i , $\hat{Y}_i = 0.5$ — $0.4X_i$. Если же использовать центрированные и нормированные переменные, то зависимость примет вид $\hat{Y}_i^{st} = -0.6 X_i^{st}$. Коэффициент множественной детерминации R^2 для первой модели равен

При отсутствии автокорреляции в регрессии по n наблюдениям статистика Дарбина-Уотсона имеет

$$\overline{\mathsf{A}} \ \mathcal{N}(0;1)$$
-распределение

$$oxed{A}$$
 $\mathcal{N}(0;1)$ -распределение $oxed{C}$ $\mathcal{N}(\mu;\sigma^2)$ -распределение $oxed{E}$ $F_{k,n}$ -распределение

$$\blacksquare$$
 t_n -распределение

$$\boxed{\mathrm{D}} \; t_{n-k}$$
-распределение

При работе с панельными данными для выбора между моделью с фиксированными эффектами и моделью со случайными эффектами используется

D тест Голдфелда-Квандта

В тест Бройша-Пагана

Тест отношения правдоподобия

С поиск на сетке

| F | *Нет верного ответа.*

Обобщенный МНК служит для оценивания регрессионной модели $Y=X\beta+arepsilon$ в случае нарушения следующего условия теоремы Гаусса-Маркова

$$\boxed{\mathbf{A}} \ \mathbf{E}(\varepsilon_i) = 0$$

$$\boxed{\mathsf{C}} \ \mathsf{Var}(\varepsilon_i) = \sigma_{\varepsilon}^2$$

$$\boxed{\mathbf{C}} \ \operatorname{Var}(\varepsilon_i) = \sigma_{\varepsilon}^2 \qquad \qquad \boxed{\mathbf{E}} \ \operatorname{Cov}(\varepsilon_i, X_i) = 0$$

$$lacksquare$$
 B rank $X = k$

$$\boxed{\mathbb{D}} \operatorname{Cov}(Y_i, \varepsilon_i) = 0$$

Вопрос 10 Рассмотрим логит-модель $\hat{Y}_i^* = \hat{\beta}_1 + \hat{\beta}_2 X_i + \hat{\beta}_3 D_i$, и $Y_i = 1$, если $Y_i^* > 0$. Если переменная X_i является количественной, то предельный эффект увеличения X_i можно посчитать по формуле

$$\boxed{\mathbf{A}} \hat{\beta}_2/F^2(\hat{Y}_i^*)$$

$$\boxed{\mathbf{E}} \hat{\beta}_2/f^2(\hat{Y}_i^*)$$

$$\boxed{\mathbf{B}} \hat{\beta}_2/f(\hat{Y}_i^*)$$

Ура! На этой страничке вопросов уже нет :)

Имя, фамилия и номер группы:

Вопрос 1 : A B C D E F

Вопрос 2 : A B C D E F

Вопрос 3 : A B C D E F

Вопрос 4 : A B C D E F

Вопрос 5 : A B C D E F

Вопрос 6 : A B C D E F

Вопрос 7 : A B C D E F

Вопрос 8 : A B C D E F

Вопрос 9: A B C D E F

Вопрос 10 : A B C D E F

Часть 2. Задачи.

- 1. Рассмотрим AR(2) процесс $Y_t=2+Y_{t-1}-0.5Y_{t-2}+u_t$, где u_t белый шум с единичной дисперсией.
 - а) Является ли данный процесс стационарным?
 - б) Найдите $Cov(Y_t, Y_{t-1}), Cov(Y_t, Y_{t-2}).$
- 2. Начинающий исследователь Елисей исследует зависимость успехов в учёбе своих однокурсников, G_i , от времени, которое они тратят на учёбу, T_i . По выборке из 100 человек он смог оценить следующую регрессию:

$$\hat{G}_i = 40 + 5T_i$$

Елисей был бы рад полученному результату, но тут на лекции по эконометрике ему рассказали про эндогенность и пропущенные переменные, и он решил, что в его модели эти проблемы точно есть. Изучив литературу, он узнал, что на успехи в учёбе кроме времени влияют ещё и способности студента, A_i , при этом способности коррелированы со временем, которое студент тратит на учёбу.

- а) Проверьте, является ли найденная Елисеем оценка коэффициента при времени состоятельной;
- б) Если оценка не состоятельна, то предложите способ получения состоятельной оценки;
- в) Найдите асимптотическую величину смещения оценки, если $Cov(G_i, A_i) = 6$, $Cov(T_i, A_i) = 3$, $Var(G_i) = 16$, $Var(A_i) = 100$, $Var(T_i) = 49$.
- 3. Для определения, сколько земли следует фермеру отвести под клубнику, если ее будущие цены неизвестны, используется модель адаптивных ожиданий:

$$\begin{cases} A_t = \beta_1 + \beta_2 P_{t+1}^e + u_t \\ P_{t+1}^e - P_t^e = \lambda (P_t - P_t^e) \end{cases},$$

где A_t — количество акров, отведенное под клубнику в году t, P_t — фактическая цена клубники, а P_t^e — ожидаемая цена клубники. Константа λ — коэффициент адаптации. Ошибки u_t удовлетворяют условию теоремы Гаусса-Маркова.

- а) Объясните, как исследователь перешёл от исходной модели к преобразованной модели $A_t = \alpha_1 + \alpha_2 P_t + \alpha_3 A_{t-1} + \nu_t$.
- б) Какие проблемы возникнут при оценивании коэффициентов преобразованной модели с помощью МНК? Как с ними справиться?

4. Рассмотрим систему одновременных уравнений

$$\begin{cases} c_t = \alpha_1 + \alpha_2 y_t + \alpha_3 c_{t-1} + u_{1t} \\ i_t = \beta_1 + \beta_2 r_t + \beta_3 y_t + u_{2t} \\ y_t = c_t + g_t + i_t \end{cases},$$

где c_t — потребление, i_t — инвестиции, y_t — ВНР, i_t — процентная ставка, g_t — правительственные расходы. Первые три переменные являются эндогенными.

- а) Возможно ли оценить коэффициенты данной системы уравнений и почему?
- б) Если возможно, то опишите последовательность Ваших действий.
- 5. Исследователь, используя данные по 880 индивидуумам, оценил вероятность получения степени бакалавра после четырехлетнего обучения в колледже в зависимости от обобщённых результатов тестов ASVABC. Переменная ВАСН равна 1, если индивидуум получил степень бакалавра, и равна 0 иначе. Исследователь оценил линейную модель с помощью МНК:

$$\widehat{BACH}_i = -0.8 + 0.02 ASVABC.$$

А также логит-модель:

$$\widehat{BACH}^*_i = -11.1 + \underset{(0.01)}{0.2} ASVABC,$$

где $BACH_i = 1$ если $BACH_i^* > 0$.

- а) Как оценивается логит-модель?
- б) Каковы недостатки линейной модели в данном случае?
- в) Оцените предельный эффект объясняющего фактора для среднего значения ASVABC, равного 40.
- 6. Модели панельных данных со случайными эффектами: определение, способы оценивания.