Pneumonia Detection on Chest X-rays Using Transfer Learning

Hammed Gafar

PNEMONIA

Pneumonia is an infection of the lungs

One of the leading causes of death worldwide

Chest x-ray is the best method for diagnosis

Why is diagnosis hard?

Limited expert radiologists

Appearance of pneumonia can overlap with other diagnosis

Diagnosis can be inaccessible in developing countries

Transfer Learning

Knowledge can be transferred at the parametric level

• Improve by leveraging the generic image features

 Saves the amount of samples, hardware, and time used to train the model

Feature Extractor Hybrid:

Frozen pretrained feature extractor plus trainable machine learning model

Feature Extractor:

Frozen pretrained feature extractor plus fully connected (FC) layer

Fine Tuning:

The feature extractor is partially trainable (unfrozen) plus FC layers

Fine-Tuning from Scratch:

All layers in the feature extractor and FC layers are trainable

Radiologist-Level Pneumonia Detection on Chest X-Rays (Pranav et al)

- The researchers used DenseNet with slight modifications
- The output layer was replaced with a single output with a sigmoid function
- The weights were initialized from a model pretrained on ImageNet
- Downscale the images to 224 X 224 and normalize based on ImageNet training set
- The model outperformed radiologist on F1 metric

Input Chest X-Ray Image

CheXNet 121-layer CNN

Output Pneumonia Positive (85%)

Objective - Build a binary classification model for detecting pneumonia

Methodology:

Preprocessing:

Resize images, normalize, and augment (flip, rotate).

Model Architecture:

- Fine-tune a pre-trained CNN that was trained on the ImageNet dataset.
- Fully connected with two neurons at the output layer
- SoftMax loss function

Evaluation:

- Use a confusion matrix, a classification report
- (Optional) Apply class activation mappings (CAMs) to visualize areas indicative of disease.

REFERENCES

Kim, H. E., Cosa-Linan, A., Santhanam, N., Jannesari, M., Maros, M. E., & Ganslandt, T. (2022). Transfer learning for medical image classification: a literature review. BMC medical imaging, 22(1), 69. https://doi.org/10.1186/s12880-022-00793-7

• Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... & Ng, A. Y. (2017). Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225.