Introduction to Cryptography

François Koeune - Olivier Pereira

Slide 02

Computational Security

Let $\Pi := \langle Gen, Enc, Dec \rangle$ be a scheme s.t. $|\mathcal{K}| < |\mathcal{M}|$ Then Π is not a perfectly secret encryption scheme.

⇒ Somehow, we want *imperfect* encryption

What can we expect from imperfect security?

- Replace impossibility by infeasibility (what?)
- Practical scheme emulating perfect scheme for practical purposes

Computational Security

Emulating perfectness? (informally, for encryption)

Given $\Pi := \langle Gen, Enc, Dec \rangle$, and adversary \mathcal{A} Define the following experiment $\mathsf{PrivK}_{\mathcal{A}.\Pi}^{\mathsf{eav}}$ ':

- 1. \mathcal{A} not unbounded outputs $m_0, m_1 \in \mathcal{M}$
- 2. Choose $k \leftarrow \text{Gen}$ and $b \leftarrow \{0,1\}$, and send $c = \text{Enc}_k(m_b)$ to \mathcal{A}
- 3. $\mathcal{A}(c)$ outputs b'
- 4. Define $PrivK_{A,\Pi}^{eav}$:= 1 iff b = b'

$$\Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\mathsf{\Pi}}{}'=1] = \frac{1}{2} + \mathsf{negligible\ term}$$

Computational Security: Concrete Bounds

Two relaxations:

- 1. \mathcal{A} does not have unbounded power
 - ightharpoonup Suppose ${\cal A}$ makes a brute force search
 - ► 10⁹ keys/sec
 - ▶ 10⁶ computers
 - ▶ 10^9 seconds (≈ 30 years)
 - \Rightarrow makes $\approx 2^{80}$ steps
- 2. A can have a small success probability
 - ► Say, 2^{-48}
 - Event with $Pr \approx 2^{-30}/sec$ occurs 1/100 years
 - ▶ Proba. to win the Belgian Lotto: $\approx 2^{-22}$
- \Rightarrow Suggests that $|\mathcal{K}| = 2^{128}$ would be very nice!

Computational Security: Concrete Bounds

Two relaxations:

- 1. \mathcal{A} does not have unbounded power
- 2. A can have small success probability

Proposed solution:

• design schemes that are (t, ϵ) -secure

What does it say?

- Concrete bounds: we know what we can hold
- ▶ Contests can be organized, ...

Computational Security: Concrete Bounds

Elliptic curves over Fom

Curve	Field size (in bits)	Estimated number of machine days	Prize (US\$)	Status
ECC2-79	79	352	Handbook of Applied Cryptography & Maple V software	SOLVED December 1997
ECC2-89	89	11278	Handbook of Applied Cryptography & Maple V software	SOLVED February 1998
ECC2K-95	97	8637	\$ 5,000	SOLVED May 1998
ECC2-97	97	180448	\$ 5,000	SOLVED September 1999
ECC2K-108	109	1.3 × 10 ⁶	\$ 10,000	SOLVED April 2000
ECC2-109	109	2.1 × 10 ⁷	\$ 10,000	SOLVED April 2004
ECC2K-130	131	2.7 × 10 ⁹	\$ 20,000	
ECC2-131	131	6.6×10^{10}	\$ 20,000	
ECC2-163	163	2.9×10^{15}	\$ 30,000	

See: https://www.certicom.com/content/certicom/en/

the-certicom-ecc-challenge.html

Computational Security: Asymptotic Bounds

Concrete security bounds:

- ▶ Suppose $\langle Gen, Enc, Dec \rangle$ is (t, ϵ) -secure. What about 5t?
- ▶ How does (t, ϵ) change with key size? Can encryption cost become > cryptanalysis cost?

Another solution:

- ▶ Consider (t, ϵ) as functions of a security parameter n (e.g., the length of the key)
- ▶ Define a class of "feasible" algorithms Number of steps as a f(n)
- ▶ Show: \forall feasible strategy of \mathcal{A} , $\Pr[\mathcal{A} \text{ wins}] \rightarrow 0$ fast when n increases

Computational Security: Asymptotic Bounds

Asymptotic security:

Π is secure if

- every "feasible" adversary strategy
- succeeds with "negligible" probability

as a function of the security parameter

An increase of computational power is bad news for ${\mathcal A}$

Let n be the length of the numbers we use. . .

Simple computational problems:

▶ Addition: $\mathcal{O}(n)$

▶ Multiplication: $\mathcal{O}(n^2)$

• (Modular) Exponentiation: $\mathcal{O}(n^3)$

▶ Search in ordered list: $\mathcal{O}(\log(n))$

Computationally hard problems:

▶ Integer factorization: $2^{\mathcal{O}(\sqrt{n \cdot \log(n)})}$

Exhaustive key search: 2ⁿ

(The complexities listed here reflect classical algorithms, not the best known algorithms, which have more complex expressions.)

Observations suggest:

Polynomial-time algorithms are efficient

 \triangleright A is efficient if \exists polynomial p s.t. $\mathcal{A}(x)$ takes < p(|x|) steps

"Arbitrary" choice!?

- Various computing architectures can make complexity change by a polynomial factor
- Algorithmic improvements typically change complexity by a polynomial factor
- ▶ But is $|x|^{1000}$ less efficient than $e^{\frac{|x|}{1000}}$?
- ▶ What tells asymptotic security about |x| = 128?

For discussion see, e.g., http://www.cs.princeton.edu/theory/complexity/

Observations suggest:

Polynomial-time algorithms are efficient

 \triangleright A is efficient if \exists polynomial p s.t. $\mathcal{A}(x)$ takes < p(|x|) steps

Does it capture what we want?

- Cryptography is about randomness e.g., choosing a key, . . .
- ▶ If honest parties can use randomness, so should A!
- ▶ Is a probabilistic A more powerful?
- Where do we find randomness?

Efficient ⇔ Probabilistic polynomial-time (PPT)

- \triangleright A is efficient if \exists polynomial p s.t. $\mathcal{A}(x)$ takes $\leq p(|x|)$ steps
- Steps include tossing a coin

Negligible Functions

What should be a "negligible" success probability?

- ▶ 1/p(n) is not small for PPT A: Polynomial repetition of A is still PPT
- ⇒ "negligible" ⇔ "decreases faster than any inverse poly."

f is negligible iff:

 \forall positive polynomial p, $\exists N$ such that $\forall n \geq N$:

$$f(n) \leq \frac{1}{p(n)}$$

Examples: 2^{-n} , $2^{-\sqrt{n}}$, $n^{-\log(n)}$

Asymptotic security

Why using such an asymptotic treatment?

- Tells us how primitives behave
- PPT algos and negl. functions are convenient:
 - ▶ PPT algo running PPT algos is still PPT
 - ightharpoonup f negl and p poly $\Rightarrow p \cdot f$ negl
- PPT/negl capture our experience
- ► PPT/negl are robust to model changes

This will be adopted in the rest of this course

Encryption

What would be encryption in a computational world?

A triple $\langle Gen, Enc, Dec \rangle$ of PPT algos: (Introduce n)

- ▶ Gen probabilistically selects $k \leftarrow \text{Gen}(1^n)$ $1^n := 111 \cdots 1 \ (n \text{ times}) \ n \text{ is the security parameter}$
- ▶ Enc provides $c \leftarrow \operatorname{Enc}_k(m)$
- ▶ Dec provides $m := Dec_k(c)$

Correctness: "for any security parameter..."

▶ $\forall n, k \leftarrow \text{Gen}(1^n)$, and $\forall m$: $\text{Dec}_k(\text{Enc}_k(m)) = m$

Security for Encryption

What would this become in a computational world?

Given $\Pi := \langle \text{Gen}, \text{Enc}, \text{Dec} \rangle$, and adversary \mathcal{A} , define the experiment $\text{PrivK}_{\mathcal{A},\Pi}^{\text{eav}}(n)$:

- 1. $\mathcal{A}(1^n)$ outputs m_0, m_1 of identical lengths
- 2. Pick $k \leftarrow \operatorname{Gen}(1^n)$, $b \leftarrow \{0,1\}$, and send $c \leftarrow \operatorname{Enc}_k(m_b)$ to A
- 3. $\mathcal{A}(c)$ outputs b'
- 4. Define PrivK^{eav}_{A,Π}(n) := 1 iff b = b'

Security of Encryption

 $\Pi := \langle Gen, Enc, Dec \rangle$ has indistinguishable encryptions in the presence of eavesdroppers if \forall PPT \mathcal{A} , \exists negl. ϵ :

$$\mathsf{Pr}[\mathsf{Priv}\mathsf{K}^{\mathsf{eav}}_{\mathcal{A},\mathsf{\Pi}}(\mathit{n})=1]=rac{1}{2}+\epsilon(\mathit{n})$$

Efficiency and Security depend on the security parameter

Building Secure Encryption Schemes

Emulating a one-time pad!

Gen(1ⁿ): pick
$$k \leftarrow \{0,1\}^{I(n)}$$
, set $\mathcal{M} = \{0,1\}^{I(n)}$
 \rightarrow We want $|k| < |m| = I(n)$, for any $m \in \mathcal{M}$

$$\rightarrow$$
 Expand $k \in \{0,1\}^n$ to $G(k) \in \{0,1\}^{l(n)}$

 $\operatorname{Enc}_k(m)$: compute and return $c = m \oplus k$

- \rightarrow Instead, compute $c = m \oplus G(k)$
- \rightarrow Enough if G(k) is indistinguishable of random

 $\operatorname{Dec}_k(c)$: compute and return $m = c \oplus k$

 \rightarrow Instead, compute $c \oplus G(k)$

G is called a pseudorandom generator

A deterministic poly-time algorithm G is a pseudorandom generator (or simply a PRG) only if, for any n,

- ▶ $\forall s \in \{0,1\}^n$, $G(s) \in \{0,1\}^{l(n)}$ and I(n) > n
- ▶ \forall PPT D, \exists negligible function ϵ s.t.

$$\left| \Pr[D(r) = 1] - \Pr[D(G(s)) = 1] \right| \le \epsilon(n)$$

where
$$r \leftarrow \{0,1\}^{l(n)}$$
 and $s \leftarrow \{0,1\}^n$

String s is called the seed Function I is called the expansion factor of G

Pseudorandom generators:

- ▶ Can only be computationally secure: try $I(n) = 2 \cdot n$
- ▶ *n* should be large enough to avoid brute-force

Theorem: [Håstad, Impagliazzo, Levin, Luby, 1999] Pseudorandom generators exist iff one-way functions exist

Existence of one-way functions $\Rightarrow P \neq NP$

Proving the existence of a pseudorandom generator is worth \$1.000.000!

See: http://www.claymath.org/millennium-problems/p-vs-np-problem/

Assumption:

Pseudorandom generators exist

Building Secure Encryption Schemes

Our intuition leads us to $\Pi := \langle Gen, Enc, Dec \rangle$:

Gen(1ⁿ): pick $k \leftarrow \{0,1\}^n$, set $\mathcal{M} = \{0,1\}^{l(n)}$

 $\operatorname{Enc}_k(m)$: compute and return $c = m \oplus G(k)$

 $\operatorname{Dec}_k(c)$: compute and return $m = c \oplus G(k)$

What about security?

Definition \Rightarrow Assumption \Rightarrow Reduction

Building Encryption Schemes

THEOREM

If G is a pseudorandom generator, then Π is a (fixed length) encryption scheme that has indistinguishable encryption in the presence of an eavesdropper.

PROOF.

- \triangleright \forall PPT \mathcal{A} for Π with η advantage.
- ▶ \exists PPT *D* for *G* with η advantage.

Therefore, η must be negligible.

Reduction

Suppose $\Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1] = \frac{1}{2} + \eta(n)$

 $\Rightarrow \mathcal{A}$ is s.t. $\Pr[b=b']=\frac{1}{2}+\eta(n)$

Reduction

Observe:

- ▶ If b'' = 0, $Pr[D \text{ outputs } 1] = \frac{1}{2}$: one-time pad
- ▶ If b'' = 1, $\Pr[D \text{ outputs } 1] = \frac{1}{2} + \eta(n)$: $\Pr[K_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)]$
- ▶ D distinguishes with advantage $\eta(n)$
- ▶ If A is PPT, then D is PPT too

Building Encryption Schemes

THEOREM

If G is a pseudorandom generator, then Π is a (fixed length) encryption scheme that has indistinguishable encryption in the presence of an eavesdropper.

Observations:

- Encryption with keys shorter than messages!
- Proof is conditional, by reduction
- Proof holds for computationally bounded adversaries, and leaves some probability of attack

Variable-length encryption

 Π is restricted to messages with |m| < l(|k|)

- ▶ We need G with variable-length output
- ▶ Use G repeatedly until output is long enough (see KL, Fig. 7.1)
- ▶ Preserves security if *G* is used polynomially many times

Conclusion

- Computational security opens doors for cryptography with shorter keys We can encrypt m of length p(|k|)!
- ▶ What about encrypting multiple messages? (same key) Even the one-time pad becomes insecure!