

Problems 1-4 will be discussed in the tutorial.

- 1. (a) Calculate the magnitude of \vec{E} and \vec{B} fields associated with a monochromatic light beam with 2mW power ($\lambda=632.8 \mathrm{nm}$) propagating in i) vacuum and ii) glass of refractive index 1.5. The beam cross-section is $0.5 \mathrm{mm}^2$. Comment on the relative strengths of \vec{E} and \vec{B} fields and the way light propagates in a non-conducting medium.
 - (b) Calculate the radiation pressure exerted by the light beam on a perfectly absorbing medium and also a perfectly reflecting medium.
- 2. A plane electromagnetic wave traveling in air ($\mu_r = 1$; $\epsilon_r = 1$) has $\mathbf{E} = \hat{y}10 \ e^{i(4x-3z-\omega t)}$ Vm⁻¹. The wave falls on a dielectric medium with $\mu_r = 1$ and $\epsilon_r = 1.44$ at z = 0 (the surface of the medium is in x-y plane).
 - (a) Find the expression for the electric field of the reflected wave.
 - (b) Find the expression for the electric and the magnetic fields of the transmitted wave.
- 3. A light wave is incident from air on crown glass (n = 1.52) at an angle $\theta = \frac{\pi}{6}$. The beam is linearly polarized in the plane of incidence. Assume that the magnetic permeabilities are same across the boundary between the two media.
 - (a) Determine the amplitude reflection and transmission coefficients, i.e., $\frac{E_{0R}}{E_{0I}}$ and $\frac{E_{0T}}{E_{0I}}$, respectively.
 - (b) Find the angle at which the reflected wave would be completely extinguished.
- 4. Calculate the time averaged energy density of an electromagnetic plane wave in a conductor. Comment on the contributions due to the magnetic field and electric field in a conducting medium.
- 5. Consider a plane wave of angular frequency ω traveling in a conducting medium of conductivity σ . The electric field is given by $\mathbf{E} = E_0 e^{i(kx-\omega t)} \hat{y}$, where $k^2 = i\mu_0 \sigma \omega$.
 - (a) Find **B**.
 - (b) Fine the phase difference between **E** and **B**.
 - (c) Find the contribution of **E** and **B** to the energy density.
- 6. Calculate the reflection coefficient (R) for light beam having angular frequency $\omega = 4 \times 10^{15}$ rad/s at an air-to-silver interface. [Given, $\mu_{air} = \mu_{Ag} = \mu_0$; $\epsilon_{Ag} \approx \epsilon_0$; $\sigma = 6 \times 10^7 (\Omega m)^{-1}$].
- 7. Consider light traveling in air (n = 1) which is incident normally on the wall of a glass plate $(n_1 = 1.5)$ of thickness a and eventually passes into water. Find the overall transmission coefficient T (from air to water) and plot it as a function of k_1a where k_1 is the wave-number of the light in glass. The refractive index of water is $n_2 = 1.3$.

- 8. Consider a plane polarized electromagnetic wave traveling along z direction in a dielectric of refractive index n_1 and incident normally on a ohmic conductor of conductivity σ and refractive index $n_2 = n_1(1+i\beta)$, where β is a dimensionless real number. The dielectric-conductor interface S_1 lies in the XY plane. The incident electromagnetic wave is linearly polarized in the x direction and the corresponding electric field is represented as $\vec{E}_I = E_{0I}e^{-i(\omega t k_1 z)}\hat{x}$. Assume $\mu_1 \approx \mu_2 \approx \mu_0$ (the free space permeability). The amplitudes of reflected and transmitted electric fields are E_{0R} and E_{0T} , respectively.
 - (a) Write down the expression for the incident magnetic field.
 - (b) Write down the expressions for the electric field and magnetic field corresponding to the transmitted wave.
 - (c) Find out the free charge density at S_1 using appropriate boundary conditions.
 - (d) What is the free surface current density at S_1 ?
 - (e) Write down the boundary conditions at the dielectric-conductor interface S_1 for the components of \vec{E} and \vec{B} fields parallel to the interface to find out the phase change undergone by the electric field vector of the reflected wave.

