Numerical Analysis Homework 6

Lucas MacQuarrie (20234554) April 29, 2025

Chapter 5

11)
[]
Solution:
Let $f(x)$ be a smooth enough function in a neighbourhood of a zero $f(x_0)=0$ and $f'(x_0)\neq 0$. Recall that Newton's method is quadratic in a neighbourhood of x_0 in this case, so we'll solve this question by finding an f with $a^{\frac{1}{n}}$ as a root. Newton's method will then converge quadratically in some neighbourhood of the $a^{\frac{1}{n}}$, as is required. Fixing n , consider $f(x):=x^n-a$. Then by definition, $a^{\frac{1}{n}}$ is a zero of this function. Furthermore, $f'(x)=nx^{n-1}$ and $f'(a^{\frac{1}{n}})=n(a^{\frac{1}{n}})^{n-1}\neq 0$. Then the iteration scheme defined by
$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^n - a}{nx_k^{n-1}} = x_k \left(1 - \frac{1}{n}\right) + \frac{a}{nx_k^{n-1}}$
will suffice.

13)

Let the function $f: \mathbb{R} \to \mathbb{R}$ be twice continuously differentiable for all $x \in U(\xi) := \{x \in \mathbb{R} \mid |x - \xi| \leqslant r\}$ in a neighborhood of a simple zero ξ , $f(\xi) = 0$. Show that the sequence $\{x_n\}$ generated by

$$y = x_n - f'(x_n)^{-1} f(x_n),$$

$$x_{n+1} = y - f'(x_n)^{-1} f(y),$$

converges locally at least cubically to ξ .

Solution:

Lemma 1 (Theorem 8.1 (J.F Traub, "ITERATIVE METHODS FOR THE SOLUTION OF EQUATIONS", 1964, Prentice-Hall.)). Suppose $x_{n+1} = \varphi(x_n)$ converges to x_0 with order p (where $f(x_0) = 0$ is multiplicity one) on some neighbourhood of x_0 where f is sufficiently differentiable. Then

$$x_{n+1} = \psi(x_n) = \varphi(x_n) - \frac{f(\varphi(x_n))}{f'(x_n)}$$

converges with order p + 1.

Proof. We'll prove by induction that $\psi^{(j)}(x_0) = 0$ for j = 1, 2, ..., p which is equivalent to being order p + 1. First see that

$$\psi'(x)=\varphi'(x)-\frac{f'(\varphi(x))\varphi'(x)f'(x)-f''(x)f(\varphi(x))}{f'(x)^2}$$

which evaluates at $x = x_0$ to

$$\psi'(x_0) = \phi'(x_0) - \frac{f'(\phi(x_0))\phi'(x_0)f'(x_0) - f''(x_0)f(\phi(x_0))}{f'(x_0)^2} = 0 - \frac{0 - 0}{f'(x_0)^2} = 0$$

since x_0 is a simple zero of f, $f'(x_0) \neq 0$.

Next fix an integer $l \le p$ and suppose $\psi^{(k)}(x_0) = 0$ for k = 1, 2, ..., l - 1 < p. We get that

$$\begin{split} \psi(x) &= \varphi(x) - \frac{f(\varphi(x))}{f'(x)} \\ f'(x)\psi(x) &= f'(x)\varphi(x) - f(\varphi(x)) \\ \frac{\partial^{(l)}}{\partial x^{(l)}}_{x=x_0} f'(x)\psi(x) &= \frac{\partial^{(l)}}{\partial x^{(l)}}_{x=x_0} f'(x)\varphi(x) - \frac{\partial^{(l)}}{\partial x^{(l)}}_{x=x_0} f(\varphi(x)) \\ \sum_{k=0}^{l} \binom{l}{k} f^{(l-k+1)}(x_0) \underbrace{\psi^{(k)}(x_0)}_{=0, \ \forall k=1,\dots,l-1} &= \sum_{k=0}^{l} \binom{l}{k} f^{(l-k+1)}(x_0) \underbrace{\varphi^{(k)}(x_0)}_{=0, \ \forall k=1,\dots,l-1} - \frac{\partial^{(l)}}{\partial x^{(l)}}_{x=x_0} f(\varphi(x)) \\ f^{(l+1)}(x_0)\psi(x_0) + f^{(1)}(x_0)\psi^{(l)}(x_0) &= f^{(l+1)}(x_0)\varphi(x_0) + f^{(1)}(x_0)\varphi^{(l)}(x_0) - \frac{\partial^{(l)}}{\partial x^{(l)}}_{x=x_0} f(\varphi(x)) \\ f^{(l+1)}(x_0)\psi(x_0) + f^{(1)}(x_0)\psi^{(l)}(x_0) &= f^{(l+1)}(x_0)\varphi(x_0) + f^{(1)}(x_0)\varphi^{(l)}(x_0) - \frac{\partial^{(l)}}{\partial x^{(l)}}_{x=x_0} f(\varphi(x)). \end{split}$$

Now Faa di Bruno's formula onto the right most term yields

$$\begin{split} \frac{\partial^{(l)}}{\partial x^{(l)}}_{x=x_0} f(\varphi(x)) &= \sum_{\sum_{i=1}^l \mathrm{i} m_i = l} \frac{l!}{\prod_{i=1}^l m_i ! i !^{m_i}} f^{(m_1 + \cdots + m_l)}(\varphi(x_0)) \prod_{k=1}^l (\varphi^{(k)}(x_0))^{m_k}, \text{ only non-zero when } m_l = 1 \\ &= \frac{l!}{1! l!^l} f'(x_0) \varphi^{(l)}(x_0) \\ &= f'(x_0) \varphi^{(l)}(x_0) \end{split}$$

and we now have

$$f'(x_0)\psi^{(l)}(x_0)=f'(x_0)\varphi^{(l)}(x_0)-f'(x_0)\varphi^{(l)}(x_0)=0.$$

Since $f'(x_0) \neq 0$ we have that $\psi^{(l)}(x_0) = 0$. Thus by the principle of mathematical induction $\psi^{(k)}(x_0) = 0$ for k = 1, 2, ..., p and $x_{n+1} = \psi(x_n)$ converges to x_0 with order p + 1.

Then the solution this problem is simple. Since

$$y = x_n - f'(x_n)^{-1} f(x_n),$$

$$x_{n+1} = y - f'(x_n)^{-1} f(y),$$

we recognize that y is just Newton's method, which converges quadratically. Replace $\phi(x)$ in the lemma with y to see that $x_{n+1} = y - f'(x_n)^{-1}f(y)$ converges cubically, as required.

Code

Coding Question:

Let the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ be given by

$$f(z) = \begin{bmatrix} \exp(x^2 + y^2) - 3 \\ x + y - \sin(3(x + y)) \end{bmatrix}, \quad z = \begin{bmatrix} x \\ y \end{bmatrix}.$$

Calculate a root of f(z) using the modified Newton method. Use an error tolerance of $\varepsilon=10^{-6}$ for the stop condition. Comment on what you observed about choosing the starting point and the order of convergence.