MTH1102D Calcul II

Chapitre 10, section 2: Les intégrales de surface

Flux d'un champ vectoriel à travers une surface

Introduction

- Intégrale de surface d'un champ vectoriel.
- Interprétation de cette intégrale.

Définition

Soit \vec{F} un champ vectoriel défini dans un voisinage d'une surface S. L'intégrale de \vec{F} sur S est

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S} \vec{F} \cdot \vec{n} \, dS.$$

Définition

Soit \vec{F} un champ vectoriel défini dans un voisinage d'une surface S. L'intégrale de \vec{F} sur S est

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S} \vec{F} \cdot \vec{n} \, dS.$$

Notation pour désigner l'intégrale de \vec{F} sur S.

Définition

Soit \vec{F} un champ vectoriel défini dans un voisinage d'une surface S. L'intégrale de \vec{F} sur S est

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S} \vec{F} \cdot \vec{n} \, dS.$$

Fonction scalaire dépendant du point $(x, y, z) \in S$.

On considère un champ vectoriel \vec{F} défini dans un voisinage d'une surface S.

On considère un champ vectoriel \vec{F} défini dans un voisinage d'une surface S.

On considère un champ vectoriel \vec{F} défini dans un voisinage d'une surface S.

• $\vec{F} \cdot \vec{n}$ est la composante de \vec{F} normale à S.

On considère un champ vectoriel \vec{F} défini dans un voisinage d'une surface S.

- $\vec{F} \cdot \vec{n}$ est la composante de \vec{F} normale à S.
- $\vec{F} \cdot \vec{n} \, dS$ est la « quantité » de \vec{F} qui passe « à travers » un petit élément d'aire dS.
- $\iint_{S} \vec{F} \cdot \vec{n} \, dS$ est le *flux* de \vec{F} à travers la surface S.

Formule de calcul

Si S est paramétrée par $\vec{R}(u,v)$ avec $(u,v)\in D$ alors

$$\vec{F} \cdot \vec{dS} = \vec{F} \cdot \vec{n} \, dS$$

Formule de calcul

Si S est paramétrée par $\vec{R}(u,v)$ avec $(u,v)\in D$ alors

$$\vec{F} \cdot d\vec{S} = \vec{F} \cdot \vec{n} \, dS$$

$$= \vec{F}(\vec{R}(u, v)) \cdot \frac{\vec{R}_u \times \vec{R}_v}{||\vec{R}_u \times \vec{R}_v||} ||\vec{R}_u \times \vec{R}_v|| \, dA$$

Formule de calcul

Si S est paramétrée par $\vec{R}(u,v)$ avec $(u,v)\in D$ alors

$$\vec{F} \cdot d\vec{S} = \vec{F} \cdot \vec{n} dS$$

$$= \vec{F}(\vec{R}(u, v)) \cdot \frac{\vec{R}_u \times \vec{R}_v}{||\vec{R}_u \times \vec{R}_v||} ||\vec{R}_u \times \vec{R}_v|| dA$$

$$= \vec{F}(\vec{R}(u, v)) \cdot (\vec{R}_u \times \vec{R}_v) dA$$

donc

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{D} \vec{F}(\vec{R}(u,v)) \cdot \left(\vec{R}_{u} \times \vec{R}_{v}\right) dA$$

Attention à l'orientation :

- La paramétrisation de *S* choisie ne donne peut-être pas l'orientation correcte (selon le contexte) de *S*.
- Si le vecteur normal un vecteur normal $\vec{R}_u \times \vec{R}_v$ ne donne pas l'orientation correcte alors on choisit plutôt le vecteur normal $-\left(\vec{R}_u \times \vec{R}_v\right)$ dans la formule de calcul.

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{D} \vec{F}(\vec{R}(u,v)) \cdot \pm \left(\vec{R}_{u} \times \vec{R}_{v}\right) dA$$

Résumé

- Définition de l'intégrale de surface d'un champ vectoriel.
- Interprétation de cette intégrale comme un flux.
- Formule de calcul de l'intégrale de flux.
- La formule doit tenir compte de l'orientation de la surface.