Quantitative Laser Diagnostics for Combustion Chemistry and Propulsion

Lecture 12: Shock Tube Applications with Lasers

- Laser Absorption Theory
- 2. Survey of Capabilities
- 3. Kinetics Applications:
 Rate Constant Measurements
 Multi-Species Time-Histories
- 4. New Species Diagnostics

1. Laser Absorption Theory

Governing Equation: Beer-Lambert Law

- Quantitative absorption requires database for S, Φ
- What species have been measured?

2. Survey of Capabilities: **Species and Wavelengths**

Ultraviolet		Visible		Infrared	
CH ₃	216 nm	CN	388 nm	CO	2.3 μm
NO	225 nm	CH	431 nm	H ₂ O	2.5 μm
0,	227 nm	NCO	440 nm	CO ₂	2.7 μm
HO_{2}	230 nm	NO_2	472 nm	NO	I ₂ O 3.4 μm 5.2 μm
OH/CH ₂ O 306 nm		NH_2^2	597 nm	C_2H_4	10.5 μm
NH	336 nm	HCO	614 nm	C_3H_6/i	C ₄ H ₈ 11/11.3 μm

First use of tunable dye lasers in shock tubes (1982)

Spectra-Physics 380

2. Survey of Capabilities: Species and Wavelengths

Ultraviolet		Visible		Infrared	
CH ₃	216 nm	CN	388 nm	CO 2.3 μm	
NO	225 nm	CH	431 nm	H ₂ O 2.5 μm	
0,	227 nm	NCO	440 nm	CO ₂ 2.7 μm Fuel/CH ₂ O 3.4 μm	
HO_2	230 nm	NO_2	472 nm	NO 5.2 μm	
OH/CH ₂ O 306 nm		NH_2	597 nm	C ₂ H ₄ 10.5 μm	
NH	336 nm	HCO	614 nm	$C_3H_6/i-C_4H_8$ 11/11.3	μm

Ultra-fast lasers used to extend UV tuning range (2009)

Coherent MIRA Ti-Sapphire Ring Laser

2. Survey of Capabilities: Species and Wavelengths

Ultraviolet		Visible		Infrared	
CH ₃	216 nm	CN	388 nm	CO	2.3 μm
NO	225 nm	CH	431 nm	H ₂ O	2.5 μm
O_2	227 nm	NCO	440 nm	CO ₂	2.7 μm ₂ 0 3.4 μm
HO_2	230 nm	NO_2	472 nm	NO	5.2 μm
OH/CH ₂ O 306 nm		NH_2	597 nm	C_2H_4	10.5 μm
NH	336 nm	HCO	614 nm	C_3H_6/i	C ₄ H ₈ 11/11.3 μm

New lasers allow simple access to mid-IR

M² UV Ti:Sapp Laser

2. Survey of Capabilities: Species and Wavelengths

Ultraviolet		Visible		Infrared	
CH ₃	216 nm	CN	388 nm	CO	2.3 μm
NO	225 nm	CH	431 nm	_	2.5 μm
0,	227 nm	NCO	440 nm	CO ₂	2.7 μm
HO ₂	230 nm	NO_2	472 nm	NO	I ₂ O 3.4 μm 5.2 μm
OH/CH ₂ O 306 nm		NH_2^2	597 nm	C_2H_4	10.5 μm
NH	336 nm	HCO	614 nm	C_3H_6/i	C_4H_8 11/11.3 µm

How sensitive are laser absorption diagnostics in shock tubes?

2. Laser Absorption Yields High Sensitivity Representative Detection Limits: Large Molecules

Large molecules: 10-100's ppm

2. Laser Absorption Yields High Sensitivity Representative Detection Limits: Diatomic Molecules

- Diatomic molecules @ 1500K:
 - sub-ppm detectivity for UV absorbers
 - ppm detectivity for IR absorbers

3. Kinetics Applications

- Foundation Fuel Kinetics
 OH+H₂=H₂O+H
- 2. Methyl Ester Kinetics
 ME+OH=Products
 Methyl Formate pyrolysis
- 3. Butanol Isomer Kinetics n-Butanol pyrolysis t-butanol+OH using isotopic labeling

 Recent Elementary Rate Constant Measurements using Shock Tube/Laser Absorption Methods

•
$$H + O_2 = OH + O$$

•
$$H_2O_2 + M = OH + OH + M$$

• OH +
$$H_2O_2 = H_2O + HO_2$$

• OH +
$$HO_2 = H_2O + O_2$$

•
$$HO_2 + HO_2 = H_2O_2 + O_2$$

•
$$CH_3 + HO_2 = Products$$

•
$$C_2H_4 + M = C_2H_2 + H_2 + M$$

•
$$OH + H_2 = H_2O + H$$

How Do We Measure Individual Reaction Rates?

- Two-Step Process
 - 1. Design: use sensitivity analysis to kinetically isolate reactions
 - 2. Execute: use shock tubes for step heating and laser absorption for species detection

$$k$$
Example: $H + O_2 \rightarrow OH + O$

Accurate k values critical to combustion modeling

Example: H + O₂ → OH + O
 Rate Measurement using H₂O Laser at 2.55 mm

Shock Conditions: 1472 K, 1.8 atm, 0.1%O₂/0.9%H₂/Ar

• H_2O time-history provides precise determination of k_1

Arrhenius Plot: $H + O_2 \rightarrow OH + O$

Arrhenius Plot: $H + O_2 \rightarrow OH + O$

■ Modern laser methods significantly reduce measurement uncertainty!

Next example: $OH + H_2 \rightarrow H_2O + H$

Elementary Reaction Rate Determination:
 OH + H₂ → H₂O + H

Motivation: Large uncertainty in k_{OH+H2} gives large uncertainty in modeled H₂/air flame speeds

Experimental Strategy: Direct determination of rate constant

- Pseudo-first order experiment
- Fuel in excess
- TBHP used as a prompt OH precursor
 - Useful T range (850 to 1350 K)
 - Pioneered by Bott and Cohen (1984), also used at Argonne

TBHP: tert-butylhydroperoxide

Acetone

Representative OH Absorption Data

- High SNR data, ppm sensitivity
- k_{best-fit} determined within 3-5%

Arrhenius Plot: OH + H₂ → H₂O + H

• Very low overall uncertainty in k: $\pm 17\%$ (2 σ)

Comparison with Past Work: OH + H₂ → H₂O + H

Excellent agreement with previous work,
 but uncertainty in k substantially reduced

1. Rate Constant Measurements

- OH + Methyl Formate
- OH + Methyl Acetate
- OH + Methyl Propanoate
- OH + Methyl Butanoate

Conducted as first-order experiments, with TBHP as source of OH

2. Methyl Formate Pyrolysis

- Multi-species Data

MF, CH₃OH CO, CH₄, CH₂O

Summary: OH+Methyl Esters → Products

- Low scatter data with ± 25% overall uncertainty
- Good agreement with modified SAR

(Structure Activity Relationship)

Comparison with Recent Quantum Calculations:
 Methyl Formate +OH → Products

- Shock tube/laser absorption rate 2-4x faster than calculation
- Confirms continuing value of high—accuracy experimental data

 Methyl Formate Pyrolysis Kinetics:
 Multi-Species Laser Absorption Data Can Provide Near-Complete Oxygen Balance

Laser data successfully tracks all major contributors to O-atom balance

Time [µs]

Atom balance provides important new validation tool for chemical models

Two Studies of Butanol Kinetics

1. n-Butanol Pyrolysis:

Challenge: Complex Pathways

Solution: Multi-Species Time-Histories

OH, CO, CH_4 , H_2O , C_2H_4

HO— CH₃

2. tert-Butanol + OH \rightarrow Products

Challenge: Multiple Reaction Sites,

OH Reformation

Solution: Isotopic Labeling

- OH+ tert-Butanol → Products
 Use of Isotopic Labeling
- Challenges: Multiple Reaction Sites, OH Reformation
- Solution: Isotopic labeling provides strategy to identify OH attack sites

- OH+ tert-Butanol → Products
 Conventional Experiment using t-C₄H₉¹⁶OH
- Measurement of OH removal by t-C₄H₉¹⁶OH affected by OH reformation pathway
- Measurement gives

$$k_{1b} + k_{1a} (1-BR_2)$$

= $(k_{1b} + k_{1a})(1-BR_1BR_2)$

$$\begin{array}{c} \textbf{t-C_4H_9}^{16}\text{OH} + ^{16}\text{OH} \\ \hline \\ \downarrow^{16}\text{OH} & \downarrow^{16}\text{O} \\ \downarrow^{16}\text{OH} & \downarrow^{16}\text{O} \\ \downarrow^{16}\text{OH} & \downarrow^{16}\text{O} \\ \downarrow^{16}\text{OH} & BR_I = k_{1a}/(k_{1a}+k_{1b}) \\ \hline \\ \downarrow^{16}\text{OH} & (2b) & \text{CH}_3 + \\ \downarrow^{16}\text{OH} & \\ \downarrow^{16}\text{OH} & BR_2 = k_{2a}/(k_{2a}+k_{2b}) \\ \hline \\ \downarrow^{16}\text{OH} & OH \text{ reformation!} \\ \hline \end{array}$$

- OH+ tert-Butanol → Products
 Conventional Experiment using t-C₄H₉¹⁶OH
- Measurement of OH removal by t-C₄H₉¹⁶OH affected by OH reformation pathway
- Measurement gives

$$k_{1b} + k_{1a} (1-BR_2)$$

= $(k_{1b} + k_{1a})(1-BR_1BR_2)$

• Measurement of ^{16}OH in t-C₄H₉ ^{18}OH gives $(k_{1a}+k_{1b})$ with no ^{16}OH reformation

$$\begin{array}{c} \text{t-C}_{4}\text{H}_{9}\text{O}^{18}\text{H} + ^{16}\text{OH} \\ \downarrow^{18}\text{OH} & \stackrel{16 \bullet \text{H}}{+ ^{16}\text{OH}} & \stackrel{18}{+ ^{16}\text{OH}} & \stackrel{18}{+ ^{16}\text{OH}} \\ \downarrow^{16 \bullet \text{H}} & & & & & \downarrow^{18}\text{OH} \\ \downarrow^{16 \bullet \text{H}} & & & & & \downarrow^{18}\text{OH} \\ \downarrow^{18}\text{OH} & & & & & & \downarrow^{18}\text{OH} \\ \downarrow^{18}\text{OH} & & & & & & \downarrow^{18}\text{OH} \\ \downarrow^{18}\text{OH} & & & & & & \downarrow^{18}\text{OH} \\ \downarrow^{18}\text{OH} & & & & & & & \downarrow^{18}\text{OH} \\ \downarrow^{18}\text{OH} & & & & & & & \downarrow^{18}\text{OH} \\ \downarrow^{18}\text{OH} & & & & & & & \downarrow^{18}\text{OH} \\ \downarrow^{18}\text{OH} & & & & & & & & \downarrow^{18}\text{OH} \\ \downarrow^{18}\text{OH} & & & & & & & & \downarrow^{18}\text{OH} \\ \downarrow^{18}\text{OH} & & & & & & & & & \downarrow^{18}\text{OH} \\ \downarrow^{18}\text{OH} & & & & & & & & & & \downarrow^{18}\text{OH} \\ \downarrow^{18}\text{OH} & & & & & & & & & & \downarrow^{18}\text{OH} \\ \downarrow^{18}\text{OH} & & & & & & & & & & & \downarrow^{18}\text{OH} \\ \downarrow^{18}\text{OH} & & & & & & & & & & & \downarrow^{18}\text{OH} \\ \downarrow^{18}\text{OH} & & & & & & & & & & & & \downarrow^{18}\text{OH} \\ \downarrow^{18}\text{OH} & & & & & & & & & & & & & \downarrow^{18}\text{OH} \\ \downarrow^{18}\text{OH} & & & & & & & & & & & & & & & & & & \\ \downarrow^{18}\text{OH} & & & & & & & & & & & & & & & & & \\ \downarrow^{18}\text{OH} & & & & & & & & & & & & & & & & & \\ \downarrow^{18}\text{OH} & & & & & & & & & & & & & & & & \\ \downarrow^{18}\text{OH} & & & & & & & & & & & & & & & \\ \downarrow^{18}\text{OH} & & & & & & & & & & & & & & \\ \downarrow^{18}\text{OH} & & & & & & & & & & & & & \\ \downarrow^{18}\text{OH} & & & & & & & & & & & & \\ \downarrow^{18}\text{OH} & & & & & & & & & & & \\ \downarrow^{18}\text{OH} & & & & & & & & & & & \\ \downarrow^{18}\text{OH} & & & & & & & & & & \\ \downarrow^{18}\text{OH} & & & & & & & & & & \\ \downarrow^{18}\text{OH} & & & & & & & & & \\ \downarrow^{18}\text{OH} & & & & & & & & \\ \downarrow^{18}\text{OH} & & & & & & & & \\ \downarrow^{18}\text{OH} & & & & & & & \\ \downarrow^{18}\text{OH} & & & & & & & \\ \downarrow^{18}\text{OH} & & & & & & & \\ \downarrow^{18}\text{OH} & & & & & & & \\ \downarrow^{18}\text{OH} & & & & & & \\ \downarrow^{18}\text{OH} & & & & & & \\ \downarrow^{18}\text{OH} & & & & & \\ \downarrow^{18}\text{OH} & & & & & & \\ \downarrow^{18}\text{OH} & & & & & \\ \downarrow^{18}\text{OH} & & & & & & \\ \downarrow^{18}\text{OH} & & & & & \\ \downarrow^{18}\text{OH} & & & & & & \\ \downarrow^{18}\text{OH} & & & & \\ \downarrow^{18}\text{OH} & & & & & \\ \downarrow^{18}\text{OH} & & & & \\ \downarrow^{18}\text{OH} & & & & & \\ \downarrow^{18}\text{OH} & & & & \\$$

OH Absorption Data for tert-Butanol (O¹⁶ & O¹⁸)

- Slow removal of OH during ¹⁶O butanol pyrolysis
- Faster removal of OH during ¹⁸O butanol pyrolysis
- How do the rates compare?

OH + tert-Butanol (O¹⁶ & O¹⁸)
 Net OH Decay Rate due to Reaction with t-Butanol

$$k_{\text{total}} = (k_{1a} + k_{1b})$$

Derived from t-C₄H₉¹⁸OH

OH + tert-Butanol (O¹⁶ & O¹⁸)
 Net OH Decay Rate due to Reaction with t-Butanol

- First direct determination of overall rate $(k_{1a}+k_{1b})$
- Ratio ($^{18}O/^{16}O$ expts.) gives (1-BR₁BR₂) = 0.2
- Since $BR_1 = 0.95$, then $BR_2 = 0.8 (\pm 0.05)$

Recent Work:

- 1. Aldehydes, e.g.: CH₂O, CH₃CHO
- 2. Alkenes, e.g.: iso-C₄H₈
- 3. Alkynes, e.g.: C₂H₂
- 4. Cavity Enhanced Absorption Spectroscopy (CEAS)

Aldehyde Diagnostics

Motivation: Aldehydes provide critical information about first stages of hydrocarbon oxidation, especially oxygenated fuels

Challenge: Overlapping absorption spectra

Strategy: Three colors (λ_1 and λ_2 in IR, and λ_3 in UV)

Three Lasers

Detectors |

Reflected

shock wave

- Validation Experiment: Simultaneous Measurement of Known CH₂O & CH₃CHO Concentrations
- Shock heat trioxane/acetaldehyde mixture
- Observe formaldehyde formation
- Recover correct CH₂O/CH₃CHO concentrations

Measured Absorbance Time-Histories

0.5 0.167% (CH₂O)₃ / 0.5% CH₂CHO / Ar 2895.92 cm⁻¹ T = 965 K, P = 2.26 atm 2895.60 cm 0.4 32606.50 cm 32601.10 cm Absorbance 0.3 CH₂O, CH₂CHO, (CH₂O)₃ CH2O, CH3CHO, (CH2O)3 0.1 CH₂O, CH₂CHO, OH CH,O, CH,CHO CH,CHO 0.0 500 750 -250 0 250 1000 Time [µs]

Aldehyde Concentration Time-Histories

Recovered dCH₂O/dt & plateau mole fractions: Success!

New Alkene Sensors: Far-IR Detection using QC Laser

This spectral region holds high promise for multiple species: ethylene, propene, isobutene, ...

Example: isobutene, an important decomposition product of branched alkanes

Iso-Octane Pyrolysis: First Detection of iso-Butene in Shock Tube

Data provide important test for iso-octane decomposition pathways

Iso-Octane Pyrolysis: Comparison with Modeling

- Data provide important test for iso-octane decomposition pathways
- Reasonable agreement with LLNL model!

Next alkyne detection: acetylene

New Alkyne Sensor: Acetylene Detection at 3 μm

3 μm acetylene detection provides sensitive mid-IR detection

Next: first application in propene

First Acetylene Measurements: Propene Pyrolysis

Data provide high-sensitivity acetylene time-histories for modeling

First Acetylene Measurements: Propene Pyrolysis

Data provide high-sensitivity acetylene time-histories for modeling

First Acetylene Measurements: Propene Pyrolysis

- Data provide high-sensitivity acetylene formation rates
- Reveals significant difference between JetSurF, ARAMCO and data
- Wide applicability of diagnostic: soot formation, alkene pyrolysis. ...

Ultra-sensitive Species Detection:Cavity-Enhanced Absorption Spectroscopy (CEAS) with TDL Source

> Off-axis CEAS superior to traditional multipass

- Cavity increases effective absorption path length, L_{eff}
- Variable gain via L_{eff} where G=L_{eff}/D=R/(1-R) (10<G<1000 at low finesse)
- Off-axis insertion enables easy, robust alignment

CO formation by acetone (10ppm) pyrolysis

- First highly-diluted CO formation experiment
- Detection limit ~ 0.3ppm at 100kHz time resolution
- Data yield rate constant for acetone dissociation
- Demonstrates high CO sensitivity and good temporal resolution
- Further improvements: 10 100x in progress

Summary:

Laser absorption & shock tubes are a frontier for combustion kinetics

Next: Three Lectures on Laser-Induced Fluorescence (LIF)

- Two level model
- More complex models
- Applications