Section 2.3 – Orthogonality

Definition

Two nonzero vectors \mathbf{u} and \mathbf{v} in \mathbf{R}^n are said to be *orthogonal* (or *perpendicular*) if their dot product is zero $\mathbf{u} \cdot \mathbf{v} = 0$.

We will also agree that he zero vector in \mathbb{R}^n is orthogonal to every vector in \mathbb{R}^n . A nonempty set of vectors \mathbb{R}^n is called an *orthogonal set* if all pairs of distinct vectors in the set are orthogonal. An orthogonal set of unit vectors is called an *orthonormal set*.

Example

The floor of your room (extended to infinity) is a subspace V. The line where two walls meet is a subspace W (one-dimensional). Those subspaces are orthogonal. Every vector up the meeting line is perpendicular to every vector on the floor. The origin (0, 0, 0) is in the corner.

Example

Show that u = (-2, 3, 1, 4) and v = (1, 2, 0, -1) are orthogonal in \mathbb{R}^4

Solution

$$\mathbf{u.v} = (-2)(1) + (3)(2) + (1)(0) + (4)(-1)$$
$$= -2 + 6 + 0 - 4$$
$$= 0$$

These vectors are orthogonal in R^4

Standard Unit Vectors

$$\hat{i} \cdot \hat{j} = \hat{i} \cdot \hat{k} = \hat{j} \cdot \hat{k} = 0$$

Proof

$$\hat{i} \cdot \hat{j} = (1, 0, 0) \cdot (0, 1, 0) = 0$$

Normal

To specify slope and inclination is to use a nonzero vector n, called a *normal*, that is orthogonal to the line or plane.

The line passes through a point $P_0(x_0, y_0)$ that has a normal $\mathbf{n} = (a, b)$ and the plane through $P_0(x_0, y_0, z_0)$ that has a normal $\mathbf{n} = (a, b, c)$. Both the line and the plane are represented by the vector equation

$$\boldsymbol{n} \cdot \overrightarrow{P_0 P} = 0$$

The line equation: $a(x-x_0)+b(y-y_0)=0$

The plane equation: $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$

Projections

Theorem Projection onto a line

If u and a are vectors in \mathbb{R}^n , and if $a \neq 0$, then u can be expressed in exactly one way in the form u = w + e, where w is a scalar multiple of a and e is orthogonal to a.

The vector \mathbf{w} is called the *orthogonal projection* of \mathbf{u} on \mathbf{a} or sometimes *component* of \mathbf{u} along \mathbf{a} . The vector \mathbf{e} is called the vector *component* of \mathbf{u} orthogonal to \mathbf{a} (error vector and should be perpendicular to \mathbf{a})

$$proj_{\mathbf{a}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a} = p$$
 (vector component of \mathbf{u} along \mathbf{a})
$$\mathbf{u} - proj_{\mathbf{a}} \mathbf{u} = \mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a}$$
 (vector component of \mathbf{u} orthogonal to \mathbf{a})

The length is $\|proj_{\mathbf{a}}\mathbf{u}\| = \|\mathbf{u}\| |\cos \theta|$

$$\|proj_a \mathbf{u}\| = \frac{|\mathbf{u} \cdot \mathbf{a}|}{\|\mathbf{a}\|}$$

Special case: If u = a then $\frac{u \cdot a}{\|a\|^2} = 1$. The projection of a onto a is itself.

Special case: If u is perpendicular to a then $u \cdot a = 0$. The projection is p = 0.

Example

Find the orthogonal projections of the vectors $\hat{e}_1 = (1, 0)$ and $\hat{e}_2 = (0, 1)$ on the line L that makes an angle θ with the positive x-axis in \mathbb{R}^2

Solution

Let $\mathbf{a} = (\cos \theta, \sin \theta)$ be the unit vector along the line L.

$$\|\boldsymbol{a}\| = \sqrt{\cos^2 \theta + \sin^2 \theta} = 1$$

$$e_1 \cdot a = (1,0)(\cos\theta, \sin\theta) = (1)\cos\theta + (0)\sin\theta = \underline{\cos\theta}$$

$$proj_{a}e_{1} = \frac{e_{1} \cdot a}{\|a\|^{2}} a$$
$$= \frac{\cos \theta}{1} (\cos \theta, \sin \theta)$$
$$= \left(\cos^{2} \theta, \cos \theta \sin \theta\right)$$

$$proj_{a}e_{2} = \frac{e_{2} \cdot a}{\|a\|^{2}} a = \frac{(0,1)(\cos\theta, \sin\theta)}{1} (\cos\theta, \sin\theta)$$
$$= \frac{(0,1)(\cos\theta, \sin\theta)}{1} (\cos\theta, \sin\theta)$$
$$= \sin\theta(\cos\theta, \sin\theta)$$
$$= \left(\sin\theta\cos\theta, \sin^{2}\theta\right)$$

Example

Let u = (2, -1, 3) and a = (4, -1, 2). Find the vector component of u along a and the vector component of u orthogonal to a.

Solution

$$proj_{a} u = \frac{u \cdot a}{\|a\|^{2}}$$

$$= \frac{(2, -1, 3) \cdot (4, -1, 2)}{\left(\sqrt{4^{2} + (-1)^{2} + 2^{2}}\right)^{2}} (4, -1, 2)$$

$$= \frac{8 + 1 + 6}{21} (4, -1, 2)$$

$$= \frac{15}{21} (4, -1, 2)$$

$$= \frac{5}{7} (4, -1, 2)$$

$$= \left(\frac{20}{7}, -\frac{5}{7}, \frac{10}{7}\right)$$

The vector component of \boldsymbol{u} orthogonal to \boldsymbol{a} is

$$\mathbf{u} - proj_{\mathbf{a}} \mathbf{u} = (2, -1, 3) - \left(\frac{20}{7}, -\frac{5}{7}, \frac{10}{7}\right)$$
$$= \left(-\frac{6}{7}, -\frac{2}{7}, \frac{11}{7}\right)$$

Theorem of Pythagoras in \mathbb{R}^n

If \boldsymbol{u} and \boldsymbol{v} are orthogonal vectors in \boldsymbol{R}^n with the Euclidean inner product, then

$$\|u + v\|^2 = \|u\|^2 + \|v\|^2$$

Proof

Since \boldsymbol{u} and \boldsymbol{v} are orthogonal, then $\boldsymbol{u} \cdot \boldsymbol{v} = 0$

$$||u + v||^{2} = (u + v) \cdot (u + v)$$

$$= ||u||^{2} + 2(u \cdot v) + ||v||^{2}$$

$$= ||u||^{2} + ||v||^{2}$$

Distance

Theorem

In \mathbb{R}^2 the distance D between the point $P_0 = (x_0, y_0)$ and the line ax + by + c = 0 is

$$D = \frac{\left| ax_0 + by_0 + c \right|}{\sqrt{a^2 + b^2}}$$

In \mathbb{R}^3 the distance D between the point $P_0 = (x_0, y_0, z_0)$ and the plane ax + by + cz + d = 0 is

$$D = \frac{\left| ax_0 + by_0 + cz_0 + d \right|}{\sqrt{a^2 + b^2 + c^2}}$$

Exercises Section 2.3 – Orthogonality

- 1. Determine whether \boldsymbol{u} and \boldsymbol{v} are orthogonal
 - a) u = (-6, -2), v = (5, -7)
- c) u = (1, -5, 4), v = (3, 3, 3)
- b) u = (6, 1, 4), v = (2, 0, -3)
- d) $\mathbf{u} = (-2, 2, 3), \quad \mathbf{v} = (1, 7, -4)$
- 2. Determine whether the vectors form an orthogonal set
 - a) $\mathbf{v}_1 = (2, 3), \quad \mathbf{v}_2 = (3, 2)$
 - b) $\mathbf{v}_1 = (1, -2), \quad \mathbf{v}_2 = (-2, 1)$
 - c) u = (-4, 6, -10, 1) v = (2, 1, -2, 9)
 - d) u = (a, b) v = (-b, a)
 - e) $v_1 = (-2, 1, 1), v_2 = (1, 0, 2), v_3 = (-2, -5, 1)$
 - f) $v_1 = (1, 0, 1), v_2 = (1, 1, 1), v_3 = (-1, 0, 1)$
 - g) $v_1 = (2, -2, 1), v_2 = (2, 1, -2), v_3 = (1, 2, 2)$
- Find a unit vector that is orthogonal to both $\mathbf{u} = (1, 0, 1)$ and $\mathbf{v} = (0, 1, 1)$ **3.**
- 4. a) Show that $\mathbf{v} = (a, b)$ and $\mathbf{w} = (-b, a)$ are orthogonal vectors.
 - b) Use the result to find two vectors that are orthogonal to $\mathbf{v} = (2, -3)$.
 - c) Find two unit vectors that are orthogonal to (-3, 4)
- 5. Find the vector component of u along a and the vector component of u orthogonal to a.
 - a) u = (6, 2), a = (3, -9)
- d) $\mathbf{u} = (1, 1, 1), \quad \mathbf{a} = (0, 2, -1)$

- b) u = (3, 1, -7), a = (1, 0, 5)e) u = (2, 1, 1, 2), a = (4, -4, 2, -2)c) u = (1, 0, 0), a = (4, 3, 8)f) u = (5, 0, -3, 7), a = (2, 1, -1, -1)f) u = (5, 0, -3, 7), a = (2, 1, -1, -1)
- Project the vector \mathbf{v} onto the line through \mathbf{a} , check that $\mathbf{e} = \mathbf{u} proj_a \mathbf{u}$ is perpendicular to \mathbf{a} : 6.

a)
$$v = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
 and $a = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

a)
$$v = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
 and $a = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ b) $v = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$ and $a = \begin{pmatrix} -1 \\ -3 \\ -1 \end{pmatrix}$ c) $v = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $a = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$

c)
$$v = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 and $a = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$

Find the projection matrix $\operatorname{proj}_{a} u = \frac{u \cdot a}{\|a\|^{2}}$ onto the line through $a = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Draw the projection of \mathbf{v} onto \mathbf{a} and also compute it from $\operatorname{proj}_{\mathbf{a}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a}$ 8.

a)
$$v = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$
 and $a = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ b) $v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $a = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

b)
$$v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $a = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

- 9. Show that if \mathbf{v} is orthogonal to both \mathbf{w}_1 and \mathbf{w}_2 , then \mathbf{v} is orthogonal to $k_1\mathbf{w}_1 + k_2\mathbf{w}_2$ for all scalars k_1 and k_2 .
- **10.** a) Project the vector $\mathbf{v} = (3, 4, 4)$ onto the line through $\mathbf{a} = (2, 2, 1)$ and then onto the plane that also contains $a^* = (1, 0, 0)$.
 - b) Check that the first error vector $\mathbf{v} \mathbf{p}$ is perpendicular to \mathbf{a} , and the second error vector $\mathbf{v} \mathbf{p}$ p^* is also perpendicular to a^* .
- 11. Compute the projection matrices $aa^T / a^T a$ onto the lines through $a_1 = (-1, 2, 2)$ and $a_2 = (2, 2, -1)$. Multiply those projection matrices and explain why their product $P_1 P_2$ is what it is. Project $\mathbf{v} = (1, 0, 0)$ onto the lines \mathbf{a}_1 , \mathbf{a}_2 , and also onto $\mathbf{a}_3 = (2, -1, 2)$. Add up the three projections $p_1 + p_2 + p_3$.
- 12. If $P^2 = P$ show that $(I P)^2 = I P$. When P projects onto the column space of A, I Pprojects onto the ____.
- What linear combination of (1, 2, -1) and (1, 0, 1) is closest to $\vec{v} = (2, 1, 1)$? **13.**
- Show that $\vec{u} \vec{v}$ is orthogonal to $\vec{u} + \vec{v}$ if and only if $||\vec{u}|| = ||\vec{v}||$
- Given u = (3, -1, 2) v = (4, -1, 5) and w = (8, -7, -6)**15.**
 - a) Find 3v 4(5u 6w)
 - b) Find $u \cdot v$ and then the angle θ between u and v.
- **16.** Given: u = (3, 1, 3) v = (4, 1, -2)
 - a) Compute the projection \mathbf{w} of \mathbf{u} on \mathbf{v}
 - b) Find p = u w and show that p is perpendicular to v.
- a) Show that $\mathbf{v} = (a, b)$ and $\mathbf{w} = (-b, a)$ are orthogonal vectors
 - b) Use the result in part (a) to find two vectors that are orthogonal to $\mathbf{v} = (2, -3)$
 - c) Find two unit vectors that are orthogonal to (-3, 4)

- **18.** Show that A(3, 0, 2), B(4, 3, 0), and C(8, 1, -1) are vertices of a right triangle. At which vertex is the right angle?
- **19.** Establish the identity: $u \cdot v = \frac{1}{4} ||u + v||^2 \frac{1}{4} ||u v||^2$
- **20.** Find the Euclidean inner product $u \cdot v$: u = (-1, 1, 0, 4, -3) v = (-2, -2, 0, 2, -1)
- **21.** Find the Euclidean distance between **u** and **v**: $\mathbf{u} = (3, -3, -2, 0, -3)$ $\mathbf{v} = (-4, 1, -1, 5, 0)$

(Exercises 22-26) Find

- a) $\vec{v} \cdot \vec{u}$, $|\vec{v}|$, $|\vec{u}|$
- b) The cosine of the angle between \vec{v} and \vec{u}
- c) The scalar component of \vec{u} in the direction of \vec{v}
- d) The vector $proj_{\mathbf{v}}\mathbf{u}$

$$\vec{v} = 2\hat{i} - 4\hat{j} + \sqrt{5}\hat{k}, \quad \vec{u} = -2\hat{i} + 4\hat{j} - \sqrt{5}\hat{k}$$

23.
$$\vec{v} = \frac{3}{5}\hat{i} + \frac{4}{5}\hat{k}, \quad \vec{u} = 5\hat{i} + 12\hat{j}$$

24.
$$\vec{v} = 2\hat{i} + 10\hat{j} - 11\hat{k}, \quad \vec{u} = 2\hat{i} + 2\hat{j} + \hat{k}$$

25.
$$\vec{v} = -\hat{i} + \hat{j}, \quad \vec{u} = 2\hat{i} + \sqrt{17}\hat{j}$$

26.
$$\vec{v} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}\right), \quad \vec{u} = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{3}}\right)$$

- 27. Suppose Ted weighs 180 *lb*. and he is sitting on an inclined plane that drops 3 *units* for every 4 horizontal units. The gravitational force vector is $\vec{F}_g = \begin{pmatrix} 0 \\ -180 \end{pmatrix}$.
 - a) Find the force pushing Ted down the slope.
 - b) Find the force acting to hold Ted against the slope
- **28.** Prove that is two vectors \vec{u} and \vec{v} in R^2 are orthogonal to nonzero vector \vec{w} in R^2 , then \vec{u} and \vec{v} are scalar multiples of each other.