UMWELT-PRODUKTDEKLARATION

nach ISO 14025 und EN 15804

Deklarationsinhaber SWISS KRONO Tec AG

Herausgeber Institut Bauen und Umwelt e.V. (IBU)

rogrammhalter Institut Bauen und Umwelt e.V. (IBU

Deklarationsnummer EPD-KRO-20150067-IBD2-DE

CO EPD Ref. No. ECO-00000188

usstellungsdatum 15.06.2015

Gültig bis 14.06.2020

SWISS KRONO OSB-Platten SWISS KRONO Tec AG

www.bau-umwelt.com / https://epd-online.com

Allgemeine Angaben

SWISS KRONO Tec AG SWISS KRONO OSB-Platten Programmhalter Inhaber der Deklaration IBU - Institut Bauen und Umwelt e.V. **KRONOTEC AG** Panoramastr. 1 Haldenstraße 12 10178 Berlin 6006 Luzern - Schweiz Deutschland Deklariertes Produkt/deklarierte Einheit Deklarationsnummer EPD-KRO-20150067-IBD2-DE 1 Kubikmeter OSB Platte Diese Deklaration basiert auf den Gültigkeitsbereich: Produktkategorienregeln: Dieses Dokument bezieht sich auf alle OSB-Platten, Holzwerkstoffe, 07.2014 welche in folgenden Werken der SWISS KRONO (PCR geprüft und zugelassen durch den unabhängigen GROUP hergestellt werden: Sachverständigenrat) SWISS KRONO GmbH, Heiligengrabe, Deutschland SWISS KRONO Sp. z o.o, Zary, Polen Ausstellungsdatum Der Inhaber der Deklaration haftet für die 15.06.2015 zugrundeliegenden Angaben und Nachweise; eine Haftung des IBU in Bezug auf Herstellerinformationen, Gültig bis Ökobilanzdaten und Nachweise ist ausgeschlossen. 14.06.2020 Verifizierung Menmanes Die CEN Norm /EN 15804/ dient als Kern-PCR Verifizierung der EPD durch eine/n unabhängige/n Dritte/n gemäß /ISO 14025/ Prof. Dr.-Ing. Horst J. Bossenmayer intern extern (Präsident des Instituts Bauen und Umwelt e.V.) Manin

2. Produkt

Dr. Burkhart Lehmann

(Geschäftsführer IBU)

2.1 Produktbeschreibung

OSB-Platten (Oriented Strand Board - SWISS KRONO OSB) sind klebstoffgebundene, dreischichtig aufgebaute Holzwerkstoffplatten (Flachpressplatten) aus orientiert gestreuten, länglichen Holzspänen (120 -160 mm lange Kiefernholz Furnierstreifen), sog. Strands gemäß /EN13986/ bzw. /EN 300/ "OSB". "Strands" aus einer definierten Dicke und Form, vornehmlich aus Rundhölzern, werden in mehreren Schichten verleimt. Die Orientierung der Mittelschicht erfolgt dabei im 90° Winkel zu den Deckschichten. Die OSB-Platten werden mit einem PMDI-Harz verleimt und in Dicken von 8 bis 40 mm hergestellt. Für die schwer entflammbare SWISS KRONO OSB/SF-B wird ein Flammschutzmittel zugesetzt. Das deklarierte Produkt stellt einen massengewichteten Durchschnitt der hergestellten Sortimente dar. Bei der Berechnung des Durchschnittes wird berücksichtigt, dass in den beiden Werken unterschiedliche Mengen mit unterschiedlichen Dichten produziert werden.

2.2 Anwendung

Die SWISS KRONO OSB entsprechen der Nutzungsklasse 1 und 2 nach EC5 und dürfen daher in Feuchtbereich bzw. nicht bewitterten Außenbereich verwendet werden. OSB-Platten können in tragenden und aussteifenden Bauteilen eingesetzt werden.

2.3 Technische Daten

Unabhängige/r Prüfer/in vom SVR bestellt

Bautechnische Daten

Matthias Schulz.

Dautechinische Daten				
Bezeichnung	Wert	Einheit		
Rohdichte nach /EN 323/	600 -	kg/m³		
	620			
Elastizitätsmodul (längs)	4930 -	N/mm ²		
Liastizitatsirioddi (larigs)	7500	14/111111		
	1980 -	N1/2		
Elastizitätsmodul (quer)	3500	N/mm ²		
Diaman afastial ait (linear)	14,8 -	N1/2		
Biegezugfestigkeit (längs)	28,5	N/mm ²		
Biegezugfestigkeit (quer)	7,4 - 20	N/mm ²		
Wärmeleitfähigkeit	0,13	W/(mK)		
N/a a a and a manifeliff, a i a man i d a mata a da mata	200 -			
Wasserdampfdiffusionswiderstandszahl	300	-		

2.4 Inverkehrbringung/Anwendungsregeln

Für das Inverkehrbringen in der EU/EFTA (mit Ausnahme der Schweiz) gilt die Verordnung (EU) Nr. 305/2011 vom 9. März 2011. Die Produkte benötigen eine Leistungserklärung unter Berücksichtigung von /EN 13986:2004

Holzwerkstoffe zur Verwendung im Bauwesen — Eigenschaften, Bewertung der Konformität und Kennzeichnung/ und die CE-Kennzeichnung. Für die Verwendung gelten die jeweiligen nationalen Bestimmungen, in Deutschland die /Allgemeine bauaufsichtliche Zulassung:

Zulassungsnummer: Z-9.1-503;

Zulassungsgegenstand: OSB SWISS KRONO 4; Zulassungsbescheid vom 20.01.2010/ des DIBt - Deutsches Institut für Bautechnik.

SWISS KRONO OSB – Holzwerkstoffe zur Verwendung im Bauwesen können in allen tragenden und aussteifenden Bauteilen eingesetzt werden, in denen die allgemeine bauaufsichtli-che Zulassung oder die Leistungseigenschaften nach /EN 13986/ Voraussetzung für den Einsatz sind. Die SWISS KRONO OSB-Platten können auch in Bereichen wie z.B. in der Verpac-kungsindustrie oder für Regale, Möbel, Türen usw. verwendet werden.

2.5 Lieferzustand

OSB-Platten der Werke sind in folgenden Dimensionen erhältlich:

Länge: 2050 mm bis 15000 mm Breite: 675 mm bis 2800 mm

Dicke: 8 bis 40 mm

Sonderformate sind auf Anfrage verfügbar.

2.6 Grundstoffe/Hilfsstoffe

- Holzanteil, ca. 90 % (überwiegend Holzart Kiefer, teilweise PEFC- oder FSC-zertifiziert)
- Klebstoff, PUR-Harz (MDI-Basis) 2 4 %
- Wasser in Form von Holzfeuchte 4 6 %
- Wachsemulsion < 1 %
- Flammschutzmittel (bei SWISS KRONO OSB/SF-B)

2.7 Herstellung

- 1) Entrindung des Holzes
- 2) Zerspanen des Rundholzes zu Strands (kleinen furnierähnlichen Streifen)
- 3) Trocknung der nassen Strands von 100 % Holzfeuchte auf 3 % Holzfeuchte
- 4) Sieben der Strands in Deckschicht-, Mittelschicht und Feinstfraktion
- 5) Beleimung der Deckschicht- und Mittelschichtstrands mit Harz
- 6) Ausrichtung der Deckschicht-Strands in Produktionsrichtung, die Mittelschichtstrands werden in einem Winkel von 90° zur Deckschicht orientiert
- 7) Verpressung des Strand-Kuchens in einer kontinuierlich arbeitenden Presse
- 8) Besäumen der OSB an den Längskanten und Aufteilung in die Plattenlänge
- 9) Stapelung der OSB und Verpackung mit einer Kartonage und Kunststoff- oder Stahlbändern Alle Herstellwerke verfügen über ein

Qualitätsmanagementsystem nach /ISO 9001/

2.8 Umwelt und Gesundheit während der Herstellung

Aufgrund der Herstellungsbedingungen sind keine besonderen, sich aus gesetzlichen und anderen Vorschriften ergebenden Maßnahmen zum Gesundheitsschutz erforderlich. Die Maximale Arbeitsplatz-Konzentration (Deutschlands) wird an jeder Stelle der Anlage deutlich unterschritten. Luft: Die produktionsbedingt entstehende Abluft wird entsprechend den gesetzlichen Be-stimmungen gereinigt. Die Emissionen liegen deutlich unter den geforderten Grenzwerten.

Wasser / Boden: Belastungen von Wasser und Boden entstehen nicht. Produktionsbe-dingte Abwässer fallen nicht an. Die Produktion läuft abwasserfrei.

Lärm: Schallschutzmessungen haben ergeben, dass alle innerhalb und außerhalb der Produktionsstätte

ermittelten Werte weit unter den geforderten Anforderungen lie-gen. Lärmemittierende Anlagenteile wie die Entrindungstrommel wurden entsprechend gekapselt.

Die Herstellwerke verfügen über ein Umweltmanagementsystem nach /ISO 14001/

2.9 Produktverarbeitung/Installation

Die SWISS KRONO OSB kann mit den üblichen Holzbearbeitungsmaschinen oder -werkzeugen bearbeitet werden. Bei der Verarbeitung sind die üblichen Sicherheitsmaßnahmen wie für die Verarbeitung von Vollholz zu treffen (Arbeitshandschuhe, Staubmasken beim Schleifen und Sägen).

2.10 Verpackung

Die Transportverpackungen Papier, Karton, PE-Folien, und Verpackungsbänder können bei sortenreiner Sammlung dem Recycling zugeführt werden.

2.11 Nutzungszustand

Die stoffliche Zusammensetzung für den Zeitraum der Nutzung entspricht den unter 2.6 angegebenen Grundstoffen.

2.12 Umwelt & Gesundheit während der Nutzung

Bei normaler, dem Verwendungszweck von SWISS KRONO OSB entsprechender Nutzung, sind keine gesundheitlichen Schäden zu erwarten. Gefährdungen für Wasser, Luft und Boden können bei bestim-mungsgemäßer Anwendung nicht entstehen.

2.13 Referenz-Nutzungsdauer

Die Lebensdauer von SWISS KRONO OSB hängt vom Einsatzbereich ab und liegt bei korrekter Anwendung gemäß Nutzungsklasse 1 und 2 bei mind. 50 Jahren. Einflüsse auf die Alterung bei Anwendung nach den Regeln der Technik.

2.14 Außergewöhnliche Einwirkungen

Rrand

D-s2, d0 - nach /EN 13986/ Euroklasse D, Rauchklasse s2, Abtropfklasse d0 oder B-s2, d0 bei Kronoply/ Kronopol OSB/3 SF-B Rauchgasentwicklung / Rauchdichte: Entsprechend der Rauchentwicklung und Rauch-dichte von Massivholz.

Toxizität der Brandgase: Durch den Umwandlungsprozess bei der Verbrennung wird unter bestimmten Brandbedingungen aus den in den Platten enthaltenen PUR-Harzen Cyanwas-serstoff (Blausäure) freigesetzt. Aufgrund der Toxizität der entstehenden gasförmigen Blau-säure dürfen Reste der genannten Produkte nur in dafür zugelassenen geschlossenen Anla-gen, keinesfalls jedoch in irgendeiner Art von offenem Feuer verbrannt werden. Wechsel des Aggregatzustandes (brennendes Abtropfen/Abfallen): Ein brennendes Ab-tropfen ist nicht möglich, da SWISS KRONO OSB bei Erwärmung nicht flüssig wird.

Wasser

Bei der quantitativen Analyse auf anorganische Spurenstoffe im Material konnten keine Schwermetalle nachgewiesen werden. Die OSB Platten schädigen in keiner Weise Mensch und Umwelt.

Mechanische Zerstörung

Bruchverhalten: Das Bruchbild von SWISS KRONO OSB zeigt ein relativ sprödes Verhalten, wobei es an den Bruchkanten der Platten zu keinen glatten Bruchflächen kommt. Dabei entstehen keine Schäden für die Umwelt.

2.15 Nachnutzungsphase

SWISS KRONO OSB-Platten können bei Umbau oder Beendigung der Nutzungsphase eines Ge-bäudes im Falle eines selektiven Rückbaus, sofern sie unbehandelt und nicht vollflächig ver-klebt sind, problemlos getrennt erfasst und für die gleiche Anwendung wieder verwendet wer-den. Energetische Verwertung (in dafür zugelassenen Anlagen): Aufgrund des hohen Heizwertes ist eine energetische Verwertung zur Erzeugung von Prozessenergie und Strom (KWK-Anlagen) von auf der Baustelle anfallenden OSB-Resten sowie OSB-Platten aus Ab-bruchmaßnahmen empfehlenswert.

2.16 Entsorgung

Entsorgung/Deponierung: Auf der Baustelle anfallende Reste von SWISS KRONO OSB sowie solche aus Abbruchmaßnahmen dürfen, so fern eine stoffliche Verwertung nicht möglich ist, nicht deponiert werden, sondern müssen aufgrund ihrer rein organischen Bestandteile (Holz, PUR) und deren hohen Heizwerte einer energetischen Verwertung (s.o.) bzw. der Verbrennung in einer MVA zugeführt werden. Abfallschlüssel: 170201/030103 nach Europäischem Abfallkatalog.

Verpackung: Die Transportverpackungen Papier/Karton und Kunststoffbänder bzw. Bandeisen können bei sorten-reiner Sammlung dem Recycling zugeführt werden. Eine externe Entsorgung kann im Ein-zelfall mit dem Hersteller geregelt werden.

2.17 Weitere Informationen

Weitere Informationen sind unter www.swisskrono.com und www.swisskrono.pl verfügbar.

3. LCA: Rechenregeln

3.1 Deklarierte Einheit

Die Deklaration bezieht sich auf die Herstellung von 1m³ OSB Platte mit einem Gewicht von 617 kg/m³.

Angabe der deklarierten Einheit

Bezeichnung	Wert	Einheit
Deklarierte Einheit	1	m ³
Umrechnungsfaktor zu 1 kg	0,0016	-
Massebezug	-	kg/m ³
Holzfeuchte bei Auslieferung	4,5	%

3.2 Systemgrenze

Es handelt sich um eine "von der Wiege bis zum Werkstor, mit Optionen" EPD. Die Lebenszyklusanalyse für die betrachteten Produkte umfasst die Lebenswegabschnitte "Produktionsstadium",

sowie "Gutschriften und Lasten jenseits der Grenzen des Produktsystems". Die Systeme beinhalten somit folgende Stadien gemäß /EN 15804/: Produktstadium (Module A1-A3):

- A1 Rohstoffbereitstellung und –verarbeitung und Verarbeitungsprozesse von als Input dienenden Sekundärstoffen
- A2 Transport zum Hersteller,
- A3 Herstellung

In Modul C3 wird der Nettofluss und die Emission des biogenen CO2 angeführt.

Nachdem das Produkt als gehacktes Altholz den Endof-Waste Status erreicht hat, wird angenommen, dass das Produkt einer Biomasseverbrennung zugeführt wird, welche thermische Energie und Elektrizität produziert. Daraus entstehende Wirkungen und Gutschriften sind im Modul D deklariert.

3.3 Abschätzungen und Annahmen

Die bei der Produktion verwendeten Schleifbänder (abrasive belts) werden abgeschätzt. Die Zusammensetzung (Siliciumcarbid wird mittels Kunstharz auf einer Papier- bzw Kunststoffunterlage befestigt) beruht auf Angaben des Herstellers. Die Anteile der einzelnen Komponenten des Schleifpapiers sind eigene Abschätzungen.

Der Anteil der Schleifbänder am Gesamtsystem liegt deutlich unter 1 %. Deshalb ist der Einfluss der beschriebenen Abschätzung auf die berechneten Ergebnisse vernachlässigbar klein. Der Anteil von schwer entflammbaren OSB Platten liegt deutlich unter 1%, deshalb wird das Flammschutzmittel vernachlässigt.

Es wird angenommen, dass das Produkt nach der Nutzung energetisch verwertet werden kann. Da von der Verwertung der Platten im EU-Raum ausgegangen werden kann, entspricht die Annahme der Substitution von thermischer Energie und Strom gemäß EU-27 Mix realistischen Verhältnissen. Die Gutschrift für die thermische Energie errechnet sich aus dem Datensatz "EU-27: Thermische Energie aus Erdgas PE "; die Gutschrift für Strom aus dem Datensatz "EU-27: Strom-Mix PE".

3.4 Abschneideregeln

Es wurden alle Daten aus der Betriebsdatenerhebung berücksichtigt. Vernachlässigt wurden die Holzpaletten im deutschen Werk, die häufig wiederverwendet werden können, und die Flammschutzmittel, die in sehr geringen Mengen eingesetzt werden. Der Anteil von schwer entflammbaren OSB-Platten an der Gesamtproduktion liegt deutlich unter 1%. Es kann davon ausgegangen werden, dass die Summe der vernachlässigten Prozesse 5 % der Wirkungskategorien daher nicht übersteigt und die Abschneidekriterien gemäß /EN 15804/ erfüllt sind. Auch das Häckseln und Sortieren vor der Verbrennung wurde nicht berücksichtigt.

3.5 Hintergrunddaten

Alle relevanten Hintergrund-Datensätze wurden der Datenbank der Software /GaBi 6/ (GABI 6 2013) entnommen und sind nicht älter als 10 Jahre. Die verwendeten Daten wurden unter konsistenten zeitlichen und methodischen Randbedingungen erhoben

3.6 Datenqualität

Die Datenerfassung für die untersuchten Produkte erfolgte direkt an den beiden Produktionsstandorten für den Zeitraum von 01.10.2011 bis 30.09.2012 auf Basis eines von der Consulting Firma PE International (umfirmiert in "thinkstep AG") erstellten Fragebogens. Die In- und Outputdaten wurden von SWISS KRONO

zur Verfügung gestellt und auf Plausibilität geprüft. Somit ist von einer guten Repräsentativität der Daten auszugehen.

3.7 Betrachtungszeitraum

Es wurden alle Primärdaten aus der Betriebsdatenerhebung der Firmen SWISS KRONO GmbH und SWISS KRONO Sp. z o.o berücksichtigt, d.h. alle für die Rezeptur eingesetzten Ausgangsstoffe, der Energiebedarf und alle direkten Produktionsabfälle wurden in der Bilanzierung berücksichtigt. Nur die Flammschutzmittel wurden nicht berücksichtigt. Die Herstellungsdaten stellen einen Durchschnitt des Zeitraumes von 01.10.2011 bis 30.09.2012 dar. Für alle In- und Outputs wurden die tatsächlichen Transportdistanzen und Transportmittel angesetzt.

3.8 Allokation

Die Zurechnung von Energiegutschriften für im Biomassekraftwerk produzierten Strom und thermischer Energie im End-of-Life erfolgt nach Heizwert des Inputs, wobei auch die Effizienz der Anlage mit eingeht.

Die Berechnung der vom Input abhängigen Emissionen (z.B. CO2, HCI, SO2 oder Schwermetalle) im End-of-Life erfolgte nach stofflicher Zusammensetzung der eingebrachten Sortimente. Die technologieabhängigen Emissionen (z.B. CO) werden

nach Abgasmenge zugerechnet. Abfälle wurden ebenfalls gesamt der Produktion zugerechnet.

Die Vorkette für den Forst wurde nach /Hasch 2002/ in der Aktualisierung von Rüter und Albrecht (2007)

bilanziert. Bei Sägewerksresthölzern werden der Forstprozess und dazugehörige Transporte gemäß Volumenanteil (bzw. Trockenmasse) dem Holz zugerechnet, aus den Sägewerksprozessen werden dem Sägewerksrestholz keine Belastungen zugerechnet. Zur Abgrenzung der Stoffströme von anderen im Werk hergestellten Produkten wird ein Berechnungsschlüssel im Controlling des Herstellers angewandt. Demnach werden die jeweiligen In- und Outputflüsse den Produkten nach Volumen zugeordnet

Um die Nettoflüsse für das Modul "D" zu berechnen, wurden die Altholzmengen für SWISS KRONO OSB-Platten, die in Modul A1-A3 in das System eingebracht werden und thermisch verwertet werden, herangezogen. Zur Berechnung der Nettoflüsse wurde die für die Produktion von thermischer Energie und Strom eingesetzte Altholzmenge hergenommen. Die Gesamtmasse der Sekundärbrennstoffe (Altholz aus externen Quellen) wurde von der Gesamtmasse des Produkts abgezogen. Die um den in der Produktion verbrannten Altholzanteil reduzierte Produktmasse wird anschließend im End-of-Life verbrannt.

3.9 Vergleichbarkeit

Grundsätzlich ist eine Gegenüberstellung oder die Bewertung von EPD Daten nur möglich, wenn alle zu vergleichenden Datensätze nach /EN 15804/ erstellt wurden und der Gebäudekontext, bzw. die produktspezifischen Leistungsmerkmale, berücksichtigt werden.

4. LCA: Szenarien und weitere technische Informationen

Das berechnete Szenario beinhaltet eine Recyclingquote von OSB Platten von 100 %, also ohne Ausschuss.

Nachdem das Produkt den End-of-Waste Status erreicht hat, wird angenommen, dass das Produkt einer Biomasseverbrennung (EU-27 Durchschnitt) zugeführt wird, welche thermische Energie und Elektrizität produziert. Daraus entstehende Wirkungen und Gutschriften sind im Modul D deklariert. Die Emissionen von biogenen CO₂ werden in C3 deklariert. Es wird

angenommen, dass das Produkt während der Nutzung nicht mit Chemikalien behandelt oder gewartet wurde; aus diesem Grund wird die Biomasseverbrennung als geeignet angenommen. Es wird angenommen, dass das Produkt nach der Nutzung mit einem Heizwert von 18,8 MJ/kg (bei einer durchschnittlichen Holzfeuchte von 12 %) energetisch verwertet werden kann. Durch die Erhöhung der Feuchte des Produkts während der Nutzung ist dieser niedriger als der Heizwert des Produkts direkt nach der Produktion. Da in dieser Studie von einer Verbrennung in einer Biomassekraftwerk ausgegangen wird, kann davon ausgegangen werden, dass R1>0,6 ist, da die Effizienz von Biomasseanlagen in der Regel größer 0,6 ist. Die Verwertung der Platten in einem Biomassekraftwerks und die daraus entstehende Energie wird dem Modul D zugeordnet. Dafür wurde ein End-of-Life Szenario für die entsprechende Menge Altholz in /GaBi/ modelliert.

Ende des Lebenswegs (C3)

Bezeichnung	Wert	Einheit	
Zur Energierückgewinnung	605,12	kg	

5. LCA: Ergebnisse

Die folgenden Tabellen zeigen die Ergebnisse der Umweltwirkungsanalyse differenziert nach den CML-Umweltkategorien, Ressourceneinsatz, Output-Flüssen und Abfallkategorien skaliert auf die funktionelle Einheit von 1 m³ OSB Platte. In Modul C3 wird die Freisetzung des biogenen CO₂ und die stoffliche Primärenergie, die in den Platten enthalten ist, deklariert. Lasten aus der Verbrennung (außer biogenen CO₂) und Gutschriften werden in D deklariert.

	in D deklariert. ANGABE DER SYSTEMGRENZEN (X = IN ÖKOBILANZ ENTHALTEN; MND = MODUL NICHT DEKLARIERT)																	
ANG	ABE D	ER S	YSTEN	<i>I</i> GRE	NZEN	(X = I)	I OKC	BILA	NZ EN	ITHALI	ΓEN; Μ	IND = I	MODU	L NIC	HT DE	KLARIERT)		
Produktionsstadiu Brrichtung des Bauwerks				Nutzungsstadium							Entsorgungsstadium				Gutschriften und Lasten außerhalb der Systemgrenze			
Rohstoffversorgung	Transport	Herstellung	Transport vom Hersteller zum Verwendungsort	Montage	Nutzung / Anwendung	Instandhaltung	Reparatur	Ersatz	Erneuerung	Energieeinsatz für das Betreiben des Gebäudes	Wassereinsatz für das Betreiben des Gebäudes	Rückbau / Abriss	Transport	Abfallbehandlung	Beseitigung	Wiederverwendungs- Rückgewinnungs- oder Recyclingpotenzial		
A1	A2	А3	A4	A 5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D		
Х	Χ	Х	MND	MND	MND	MND	MND	MND	MNE	MND	MND	MND	MND	Х	MND	X		
ERGE	BNIS	SE D	ER ÖK	OBIL	ANZ U	MWEL	TAUS	WIRK	UNG	EN: 1 m	n³ OSB	Platte	(617	ka)				
	ERGEBNISSE DER ÖKOBILANZ UMWELTAU Parameter									A1-			С3	-5/	D -6,49E+2			
Globales Erwärmungspotenzial Abbau Potential der stratosphärischen Ozonschicht								g CO₂-Äo		-7,60E+2			1,04E+3					
			der stratos otenzial v					(g CFC11-Äq.] 1,36E-4					0,00E+					
	versau	ierungsp Futi	rophierung	on bouer Ispotenzi	<u>i unu vva:</u> al	sser	lr	[kg SO ₂ -Äq.] 1,04E+0 [kg (PO ₄) ³ -Äq.] 1,39E-1				+	0,00E+0 0,00E+0					
	Bildu	ngspoter	ntial für tro	posphäris	sches Ozo	on	[k	g Ethen-Ä	.q.]	1,50			0,00E+0			5,21E-2		
	nzial für d	len abiot	ischen Ab	bau nicht	fossiler R	essource	n [kg Sb-Äq	.]	1,281	0,00E+0			-7,82E-5				
			oiotischen					[MJ]		4,61E	0,00E+0			-8,41E+3				
ERGE	EBNIS	SE D	ER ÖK	OBIL	ANZ R	ESSO	URCE	NEINS	ATZ:	1 m³ C	SB PI	atte (6	17 kg)					
			Parar					Einheit		A1-A3			СЗ			D		
			Primären					[MJ]		8,99E+2		0,00E+0						
	Emeue		imärenerg rneuerbar			utzung		[MJ]		1,19E+4 1,28E+4		-1,19E+4						
	Nicht o					oträger		[MJ]		4,27E+3		-1,19E+4 0,00E+0						
	Nicht-erneuerbare Primärenergie als Energieträger Nicht-erneuerbare Primärenergie zur stofflichen Nutzung									5,37E+2		-5,37E+2						
	7	Total nich	nt erneuerl	pare Prim	ärenergie	:		[MJ]		4,81E+3			-5,37E+2					
	Eins	atz von Se	ekundärst	offen			[kg]		0,00E+0	0,00E+0			0,00E+0					
			rbare Sek					[MJ]		2,12E+2	0,00E+0			1,14E+4				
		uerbare S			е		[MJ]		0,00E+0			0,00E+0						
EDO	- DAMO		von Süßv			UTDU	· ·	[m³]	INID 4	7,21E-1	L/ATE		0,00E+0			-2,16E+0		
					ANZ O	UIPU	I-FLU	SSEL	IND A	BFALL	-KATE	GORIE	:N:					
1 m³ OSB Platte (617 kg)																		
		Parar					Einheit		A1-A3			C3			n außerhalb der Systemgrenze b außerhalb der Systemgrenze c außerhalb der Systemgrenze b außerhalb der Systemgrenze b außerhalb der Systemgrenze c außerhalb der Systemgrenze b außerhalb der Systemgrenze c außerhalb der Systemgrenze b außerhalb der Systemgrenze c außerhalb der Systemgrenze c außerhalb der Systemgrenze b außerhalb der Systemgrenze c auße			
		rlicher Ab					[kg]		1,70E-3			0,00E+0						
Entsorgter nicht gefährlicher Abfall Entsorgter radioaktiver Abfall								[kg] [kg]		3,06E+0 0,00E+0 8,13E-2 0,00E+0								
Komponenten für die Wiederverwendung								[kg]		0,13L-2 0,00E+0								
Stoffe zum Recycling								[kg]		0,00E+0								
Stoffe für die Energierückgewinnung								[kg]		IND			6,05E+2 INC			IND		
Exportierte elektrische Energie								[MJ]		IND			0,00E+0		IND IND			
Exportierte thermische Energie										IND			0,00E+0			IND		

6. LCA: Interpretation

Die folgende Interpretation enthält eine Zusammenfasssung der Ökobilanzergebnisse bezogen auf eine funktionelle Einheit von 1 m³ OSB Platte.

Der abiotische Verbrauch elementarer Ressourcen (ADPE) ist hauptsächlich von der Rohstoffbereitstellung dominiert. Hier spielt das Klebersystem die entscheidende Rolle. Beim abiotischen Verbrauch fossiler Ressourcen (ADPF) geht etwa die Hälfte der Wirkung auf die Bereitstellung thermischer Energie zurück. Der Einsatz von Erdgas wirkt sich hier stark aus.

Versauerungs- und Eutrophierungspotential (AP, EP) werden teils durch die Rohstoffbereitstellung, teils durch Energieerzeugung und teils durch Prozessemissionen verursacht.

Das Treibhauspotential **(GWP)** nimmt eine besondere Stellung ein, da durch die Sequestrierung von Kohlenstoffdioxid im Holz negative Werte in der Bilanz in den Modulen A1-A3 entstehen. Die Speicherung des Kohlenstoffs während des

Baumwachstums schlägt sich in der Rohstoffbereitstellung nieder. Dieser gespeicherte

Kohlenstoff wird bei der Verbrennung im End-of-Life wieder freigesetzt. Den größten Treiber der globalen Erwärmung stellt die Erzeugung thermischer Energie dar, weil durch die Verbrennung von Holzabfällen und Erdgas große Mengen CO2 freigesetzt werden. Das Ozonabbaupotential (ODP) wird fast ausschließlich von der Rohstoffbereitstellung verursacht.

Der Primärenergieverbrauch von nicht erneuerbaren Energieträgern (**PENRE**) ist zum größten Teil der Energiebereitstellung, also thermische Energie und Strom, zuzuordnen.

Der Bedarf an Primärenergie von erneuerbaren Energieträgern (**PERE**) ist zu über 90% auf die

Rohstoffbereitstellung zurück zu führen. Der Bedarf an erneuerbaren Energieträgern in der Rohstoffbereitstellung wird zu einem hohen Anteil durch die Rundholzbereitstellung erzeugt.

Der polnische Strommix, der in die Produktion der OSB Platten in Zary einfließt, führt dazu, dass das Werk in Polen etwas höhere Werte beim Versauerungspotential **(AP)** aufweist als das Werk in Heiligengrabe.

7. Nachweise

7.1 Formaldehyd

Das Klebsystem für SWISS KRONO OSB beinhaltet kein Formaldehyd. Deshalb nicht relevant.

7.2 MDI

Messstelle: Eco-INSTITUT GmbH, Köln, D Prüfbericht, Datum: 35926-001 vom 25.06.2012 Ergebnis:

Die Prüfung der SWISS KRONO OSB erfolgte nach der DFG Nr.1-Analysemethode.

Die Emissionen von MDI und anderen Isocyanaten lagen unterhalb der Nachweisgrenze (< 2 $\mu g/m^3$) des Analyseverfahrens.

7.3 Prüfung auf Vorbehandlung der Einsatzstoffe Zur Herstellung von SWISS KRONO OSB wird kein

Altholz verwendet. Deshalb nicht relevant.

7.4 Toxizität der Brandgase

Messstelle: Elektro-Physik Aachen GmbH Prüfbericht: 14/2009 vom 14.5.2009

Ergebnis: Es wurde OSB FO verleimt beprobt. Die

Ergebnisse nach /DIN 53 436/ zeigen, dass keine Chlorverbindungen und Schwefelverbindungen nachgewiesen werden konnten. Die unter den gewählten Versuchsbedingungen freigesetzten gasförmigen Emissionen entsprechen weitgehend den Emissionen, die unter gleichen Bedingungen aus Holz freigesetzt werden.

7.5 VOC-Emissionen

Der VOC-Nachweis ist bei verkürzter Gültigkeit der EPD (1 Jahr) optional.

7.6 Lindan/PCP

Messstelle: MPA Eberswalde, Materialprüfungsanstalt Brandenburg GmbH, D.

Prüfbericht: 31/07/7847/13, 25.9.-11.10.2007 und 31/08/1011/09, 19.6.-1.7.2008 (nach CEN/TR 14823 und Anhang IV AltholzV, Holzfeuchte: in Anlehnung an /FN 322/)

Ergebnis: Nach der Extrahierung der enthaltenen Stoffe wurden die Lösungen derivatisiert, aufgearbeitet und anschließend gaschromatographisch analysiert. Die Werte für PCP und Lindan liegen unterhalb der Nachweisgrenze von 0,1 mg/kg.

8. Literaturhinweise

Allgemeine bauaufsichtliche Zulassung:

Zulassungsnummer: Z-9.1-503; Zulassungsgegenstand: OSB Kronoply 4; Zulassungsbescheid vom 20.01.2010; DIBt -Deutsches Institut für Bautechnik

CE-Kennzeichnung und Prüfverfahren für Holzwerkstoffe

DIN-Taschenbuch 365 Holzwerkstoffe 2 CE-Kennzeichnung; Allgemeine Prüfverfahren; Verklebung; Holzschutz; Formaldehydbestimmung – Normen, Richtlinien; 2014

CEN/TR 14823:

Dauerhaftigkeit von Holz und Holzprodukten -Quantitative Bestimmung von Pentachlorphenol in Holz

DIN EN 323: Holzwerkstoffe; Bestimmung der Rohdichte; Deutsche Fassung EN 323:1993

DIN 53436: Erzeugung thermischer Zersetzungsprodukte von Werkstoffen für ihre

analytisch- toxikologische Prüfung

EAK 170201, EAK 150103, EAK 150102:

Verordnung über das europäische Abfallverzeichnis, Fundstelle BGBI I 2001, 3379

EN 300: Platten aus langen, flachen, ausgerichteten Spänen (OSB) - Definitionen, Klassifizierung und Anforderungen

EN 322: Holzwerkstoffe; Bestimmung des Feuchtegehaltes

EN 13986: Holzwerkstoffe zur Verwendung im Bauwesen - Eigenschaften, Bewertung der Konformität und Kennzeichnung

EN ISO 9001: Qualitätsmanagementsysteme – Anforderungen (ISO 9001:2008)

GaBi Software

GaBi 6. Software und Datenbank zur ganzheitlichen Bilanzierung. LBP, Universität Stuttgart und PE

International, 2013.

GaBi Dokumentation

GaBi 6: Dokumentation der GaBi 6-Datensätze der Datenbank zur ganzheitlichen Bilanzierung. LBP, Universität Stuttgart und PE International, 2013.

Hasch, J. (2002), Ökologische Betrachtung von Holzspan und Holzfaserplatten, Diss., Uni Hamburg überarbeitet 2007: Rueter, S. (BFH HAMBURG; Holztechnologie), Albrecht, S. (Uni Stuttgart, GaBi)

ISO 14001:2004: Umweltmanagementsysteme – Anforderungen mit Anleitung zur Anwendung

Produktkategorienregeln für Bauprodukte Teil B: Anforderungen an die EPD für Holzwerkstoffe, Version 1.6, 2014-07

Institut Bauen und Umwelt e.V., Berlin (Hrsg.):

Erstellung von Umweltproduktdeklarationen (EPDs);

Allgemeine Grundsätze für das EPD-Programm des Instituts Bauen und Umwelt e.V. (IBU), 2013-04.

Produktkategorienregeln für Bauprodukte Teil A: Rechenregeln für die Ökobilanz und Anforderungen an den Hintergrundbericht. 2013-04.

ISO 14025

DIN EN ISO 14025:2011-10, Environmental labels and declarations — Type III environmental declarations — Principles and procedures.

EN 15804

EN 15804:2012-04+A1 2013, Sustainability of construction works — Environmental product declarations — Core rules for the product category of construction products.

Herausgeber

| Institut Bauen und Umwelt e.V. | Tel | +49 (0)30 3087748- 0 | Panoramastr.1 | Fax | +49 (0)30 3087748- 29 | 10178 Berlin | Mail | info@bau-umwelt.com | Tel | 49 (0)30 3087748- 29 | info@bau-umwelt.com | Web | www.bau-umwelt.com | www.bau-

Programmhalter

Ersteller der Ökobilanz

 PE International
 Tel
 +43 (0) 1/8907820

 Hütteldorferstraße 63-65
 Fax
 +43 (0) 1/890782010

 1150 Wien
 Mail
 t.daxner@pe-international.com

1150 WienMailt.daxner@pe-international.comAustriaWebwww.pe-international.com

Inhaber der Deklaration

 SWISS KRONO Tec AG
 Tel
 +41 41 419 03 20

 Haldenstraße 12
 Fax
 +41 41 419 03 25

 6006 Luzern
 Mail
 info@krono.com

 Switzerland
 Web
 www.swisskrono.com