เลขที่นั่งสอบ	
---------------	--

มหาวิทยาลัยเทค โน โลยีพระจอมเกล้าธนบุรี การสอบปลายภาคการศึกษาที่ 1/2551

CHE 141 Thermodynamics I

ภาควิชาวิศวกรรมเคมีปี 2 (โครงการ 2 ภาษา)

สอบวันพฤหัสบคีที่ 2 ๆุลาคม พ.ศ. 2551

เวลา 9.00-12.00 น.

<u>คำเคือน</u>

- 1) ข้อสอบมี 4 ข้อ 12 หน้า (50 คะแนน) ให้ทำลงในข้อสอบ หากไม่พอทำในด้านหลัง
- 2) ห้ามนำเอกสารใดๆ เข้าห้องสอบ
- 3) อนุญาตให้ใช้เครื่องคำนวณได้

ชื่อ-นามสกุล	รหัสประจำตัว
20 10 100 110	

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบเพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

(คร.บุณยพัต สุภานิช)

ผู้ออกข้อสอบ

ข้อ	คะแนน (50)
1	
2	
3	
4	
รวม	

ข้อสอบนี้ได้ผ่านการประเมินจากภาควิชาวิศวกรรมเคมีแล้ว

(รศ.คร.อนวัช สังข์เพีชร) หัวหน้าภาควิชาวิศวกรรมเคมี

- 1) ระบบ Refrigeration เครื่องหนึ่งทำงานในช่วงอุณหภูมิ 30 °C และ -10 °C ระบบนี้สามารถคึง ความร้อนออกจากช่องทำความเย็นได้ในอัตรา 3 MW โดยใช้กำลังงานในอัตรา 0.6 MW จงหา
 - ก) ค่า Coefficient of Performance (COP) ของระบบ Refrigeration นี้
 - ข) ค่า COP ที่ได้นี้มีค่าน้อยกว่าค่า COP ของวัฏจักร Reversed Carnot ที่ทำงานในช่วงอุณหภูมิ เคียวกัน เป็นเท่าใด
 - ค) กำลังงานที่ใช้ในระบบนี้มีค่ามากกว่ากำลังงานของวัฏจักร Reversed Carnot ที่ทำงาน ในช่วงอุณหภูมิเดียวกัน และมีค่า Cooling load ในอัตราที่เท่ากัน เป็นเท่าไร

(5 คะแนน)

สำหรับทำข้อ 1)

ชื่อ-นามสกุล รหัสประจำตัว.......

- 2) ในวัฏจักร Rankine วงรอบหนึ่ง น้ำถูกปั๊มป์แบบ Isentropic จากสถานะ Sat. liquid ที่ความคัน 0.1 MPa ไปยังความคัน 4 MPa แล้วจึงป้อนเข้าสู่ Boiler ซึ่งมีการให้ความร้อนในอัตรา 1.2 MW เพื่อต้มน้ำที่ความคันคงที่ จนได้ไอน้ำ superheated ที่ความคัน 4 MPa อุณหภูมิ 320 °C ไอน้ำที่ ได้นี้นำไปหมุน turbine โดยมีสภาวะที่ทางออกของ turbine เป็น 0.1 MPa และสัคส่วนไอน้ำ อิ่มตัวเท่ากับ 0.95 ของไหลที่ออกจาก turbine นี้จะถูกควบแน่นใน condenser ที่ความคันคงที่ เพื่อให้กลายเป็น Sat. liquid และนำกลับไปใช้ในวงรอบต่อไป จงหาว่า
 - ก) Isentropic efficiency ของ turbine และอุณหภูมิที่ทางออกของ turbine มีค่าเป็นเท่าไร
 - ข) อัตราการไหลของไอน้ำในวัฏจักรนี้ มีค่าเป็นเท่าไรในหน่วย kg/hr
 - ค) อัตราการให้พลังงานสุทธิจากระบบนี้ (Net Work) มีค่าเป็นเท่าไรในหน่วย kW
 - ง) ประสิทธิภาพทางความร้อนของวัฏจักรนี้ (Cycle efficiency) มีค่าเป็นเท่าไร

$$(1 \text{ kJ/m}^3 = 1 \text{ kPa})$$
 (15 กะแนน)

Property	State 1	State 2	State 3	State 4
P (MPa)	0.1	4	4	0.1
T (°C)	-		320	
Phase Condition	Sat. liquid			
h (kJ/kg)				
s (kJ/kg.K)				

ชื่อ-นามสกุลรหัสประจำตัว......

ตารางคุณสมบัติของใอน้ำ

Saturated water-Pressure table

	Sat. temp., T _{sat} °C		fic volume, n³/kg	<i>Internal energy,</i> kJ/kg				Enthal) kJ/kg	Entropy, kJ/kg · K			
Press., P kPa		Sat. liquid, v,	Sat. vapor, v _g	Sat. liquid, u,	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h,	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s,	Evap.,	Sat. vapor, s _g
75	91,76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4	1.2132	6.2426	7.4558
100	99,61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257,5	2675.0	1.3028	6.0562	7.3589
101.325	99,97	0.001043	1.6734	418.95	2087.0	2506.0	419.06	2256.5	2675.6	1.3069	6.0476	7.3545
125	105.97	0.001048	1.3750	444.23	2068.8	2513.0	444.36	2240.6	2684.9	1.3741	5.9100	7.2841
150	111,35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0	2693.1	1.4337	5.7894	7.2231
3500	242.56	0.001235	0.057061	1045.4	1557.6	2603.0	1049.7	1753.0	2802.7	2.7253	3.3991	6.1244
4000	250.35	0.001252	0.049779	1082.4	1519.3	2601.7	1087.4	1713.5	2800.8	2.7966	3.2731	6.0696
5000	263,94	0.001286	0.039448	1148.1	1448.9	2597.0	1154.5	1639.7	2794.2	2.9207	3.0530	5.9737
6000	275.59	0.001319	0.032449	1205.8	1384.1	2589.9	1213.8	1570.9	2784.6	3.0275	2,8627	5.8902
7000	285.83	0.001352	0.027378	1258.0	1323.0	2581.0	1267.5	1505.2	2772.6	3.1220	2.6927	5.8148

Super	heated wat	er (<i>Conti</i>	nued)										
T	V	u	h	s	ν	u	h	s	v	u	h	\$	
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	
	P = 4.0 MPa (250.35°C)					= 4.5 MP	a (257.44°	°C)	P =	P = 5.0 MPa (263.94°C)			
Sat.	0.04978	2601.7	2800.8	6.0696	0.04406	2599.7	2798.0	6.0198	0.03945	2597.0	2794.2	5.9737	
275	0.05461	2668.9	2887.3	6.2312	0.04733	2651.4	2864.4	6.1429	0.04144	2632.3	2839.5	6.0571	
300	0.05887	2726.2	2961.7	6.3639	0.05138	2713.0	2944.2	6.2854	0.04535	2699.0	2925.7	6.2111	
350	0.06647	2827.4	3093.3	6.5843	0.05842	2818.6	3081.5	6.5153	0.05197	2809.5	3069.3	6.4516	
400	0.07343	2920.8	3214.5	6.7714	0.06477	2914.2	3205.7	6.7071	0.05784	2907.5	3196.7	6.6483	
450	0.08004	3011.0	3331.2	6.9386	0.07076	3005.8	3324.2	6.8770	0.06332	3000.6	3317.2	6.8210	
500	0.08644	3100.3	3446.0	7.0922	0.07652	3096.0	3440.4	7.0323	0.06858	3091.8	3434.7	6.9781	
600	0.09886	3279.4	3674.9	7.3706	0.08766	3276.4	3670.9	7.3127	0.07870	3273.3	3666.9	7.2605	
700	0.11098	3462.4	3906.3	7.6214	0.09850	3460.0	3903.3	7.5647	0.08852	3457.7	3900.3	7.5136	
800	0.12292	3650.6	4142.3	7.8523	0.10916	3648.8	4140.0	7.7962	0.09816	3646.9	4137.7	7.7458	
900	0.13476	3844.8	4383.9	8.0675	0.11972	3843.3	4382.1	8.0118	0.10769	3841.8	4380.2	7.9619	
1000	0.14653	4045.1	4631.2	8.2698	0.13020	4043.9	4629.8	8.2144	0.11715	4042.6	4628.3	8.1648	
1100	0.15824	4251.4	4884.4	8.4612	0.14064	4250.4	4883.2	8.4060	0.12655	4249.3	4882.1	8.3566	
1200	0.16992	4463.5	5143.2	8.6430	0.15103	4462.6	5142.2	8.5880	0.13592	4461.6		8.5388	
1300	0.18157	4680.9	5407.2	8.8164	0.16140	4680.1	5406.5	8.7616	0.14527	4679.3		8.7124	

1	
พื _{้ถ-} ขาข <i>ส</i> ถล	รหัสประจำตัว
DO-н IN II I I I I I I I I I I I I I I I I	J PI B L J T I PI J

- 3) ในระบบทำความเย็นเครื่องหนึ่งที่ใช้สารทำความเย็นแบบ R-134a ระบบนี้มีค่า COP เท่ากับ 2 และมีอัตราการทำความเย็น (\dot{Q}_L) เท่ากับ 900 kW สารทำความเย็นนี้ไหลเข้าสู่ compressor ที่ ความคัน 0.1 MPa อุณหภูมิ –10 °C และออกจาก compressor ที่ความคัน 0.9 MPa อุณหภูมิ 90 °C โดยการอัคนี้เป็นแบบ Adiabatic หลังจากนั้นจึงถ่ายเทความร้อนทิ้งสู่บรรยากาศผ่าน condenser กำหนดให้การถ่ายเทความร้อนใน condenser และใน evaporator เป็นแบบ Isobaric จงหา
 - ก) การอัดใน compressor เป็นแบบใด มีอัตราการใช้กำลังงานเท่าไร (kW) และมีค่า compressor efficiency เป็นเท่าใด
 - ข) สภาวะของสารทำความเย็นที่ตำแหน่งต่างๆ ในตารางที่กำหนดให้ (Subcooled liquid, Sat. liquid, Mixed phase, Sat. vapor or Superheated vapor)
 - ค) % vapor quality ที่ทางออกของ Joule-Thomson วาล์วมีค่าเป็นเท่าไร
 - ง) อัตราการใหลของสารทำความเย็นในระบบนี้มีค่าเท่าไร

(15 คะแนน)

Property	State 1	State 2	State 3	State 4
P (MPa)	0.1	0.9	0.9	0.1
T (°C)	-10	90	_	
Phase				
Condition				
h (kJ/kg)				
s (kJ/kg.K)			-	

ชื่อ-นามสกุลรหัสประจำตัว......

ตารางคุณสมบัติ R-134a

	_		<i>volume,</i> /kg	Internal energy, kJ/kg			E	nthalpy, kJ/kg		Entropy, kJ/kg · K		
Press., P kPa	Sat. temp., T _{sat} °C	Sat. liquid, v,	Sat. vapor, v _g	Sat. liquid, u,	Evap.,	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s,	Evap., s _{fg}	Sat. vapor, s _g
60	~36.95	0.0007098	0.31121	3.798	205.32	209.12	3.841	223.95	227.79	0.01634	0.94807	0.96441
70	-33.87	0.0007144	0.26929	7.680	203.20	210.88	7.730	222.00	229.73	0.03267	0.92775	0.96042
80	-31.13	0.0007185	0.23753	11.15	201.30	212.46	11.21	220.25	231.46	0.04711	0.90999	0.95710
90	-28.65	0.0007223	0.21263	14.31	199.57	213.88	14.37	218.65	233.02	0.06008	0.89419	0.95427
100	-26.37	0.0007259	0.19254	17.21	197.98	215.19	17.28	217.16	234.44	0.07188	0.87995	0.95183
900	35.51	0.0008580	0.022683	100.83	148.01	248.85	101.61	167.66	269.26	0.37377	0.54315	0.91692
950	37.48	0.0008641	0.021438	103.69	146.10	249.79	104.51	165.64	270.15	0.38301	0.53323	
1000	39.37	0.0008700	0.020313	106.45	144.23	250.68	107.32	163.67	270.99	0.39189		
1200	46.29	0.0008934	0.016715	116.70	137.11	253.81	117.77	156.10	273.87	0.42441	0.48863	0.91303
1400	52.40	0.0009166	0.014107	125.94	130.43	256.37	127.22	148.90	276.12	0.45315	0.45734	0.91050

Superheated refrigerant

7	v	U	h	S	V	u	h	s	V	u		s
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K
	P = 0.0	95°C)	₽ = 0	$P = 0.10 \text{ MPa} (T_{\text{sat}} = -26.37^{\circ}\text{C})$				$P = 0.14 \text{ MPa} (T_{\text{sat}} = -18.77^{\circ}\text{C})$				
Sat,	0.31121	209.12	227.79	0.9644	0.19254	215.19	234.44	0.9518	0.14014	219.54	239.16	0.9446
-20	0.33608	220.60	240.76	1.0174	0.19841	219.66	239.50	0.9721				
-10	0.35048	227.55	248.58	1.0477	0.20743	226.75	247.49	1.0030	0.14605	225.91	246.36	0.9724
0	0.36476	234.66	256,54	1.0774	0.21630	233.95	255.58	1.0332	0.15263	233.23	254.60	1.0031
10	0.37893	241.92	264.66	1.1066	0.22506	241.30	263.81	1.0628	0.1,5908	240.66	262.93	1.0331
20	0,39302	249.35	272.94	1.1353	0.23373	248.79	272.17	1.0918	0.16544	248.22	271.38	1.0624
30	0.40705	256.95	281.37	1.1636	0.24233	256.44	280.68	1.1203	0.17172	255.93	279.97	1.0912
40	0.42102	264.71	289.97	1.1915	0.25088	264.25	289.34	1.1484	0.17794	263.79	288.70	1.1195
50	0.43495	272.64	298.74	1.2191	0.25937	272.22	298.16	1.1762	0.18412	271.79	297.57	1.1474
60	0.44883	280.73	307,66	1.2463	0.26783	280,35	307.13	1.2035	0.19025	279.96	306.59	1.1749
70	0.46269	288.99	316.75	1.2732	0.27626	288.64	316.26	1.2305	0.19635	288.28	315.77	1.2020
80	0.47651	297.41	326.00	1.2997	0.28465	297.08	325.55	1.2572	0.20242	296.75	325.09	1.2288
90	0.49032	306.00	335.42	1.3260	0.29303	305.69	334.99	1.2836	0.20847	305.38	334,57	1.2553
100	0.50410	314.74	344.99	1.3520	0.30138	314.46	344.60	1.3096	0.21449	314.17	344.20	1.2814
•	P.=	0.80 MPa	$(T_{\rm sat} = 31$.31°C)	$P = 0.90 \text{ MPa} (T_{\text{sat}} = 35.51 ^{\circ}\text{C})$				$P = 1.00 \text{ MPa} (T_{sat} = 39.37^{\circ}\text{C})$			
Sat.	0.02562	1 246.79	267.29	0.9183	0.022683	248.85	269.26	0.9169	0.020313	250.68	270.99	0.9156
40	0.02703			0.9480	0.023375	253.13	274.17	0.9327	0.020406	251.30	271.71	0.9179
50	0.02854			0.9802	0.024809	262.44	284.77	0.9660	0.021796	260.94	282.74	0.9525
60	0.02997		296.81		0.026146	271.60		0.9976	0.023068	270.32		0.9850
70		0 281.81			0.027413	280.72		1.0280	0.024261	279.59		1.0160
80		9 290.84			0.028630	289.86		1.0574	0.025398	288.86		1.0458
90		1 299.95			0.029806	299.06		1.0860	0.026492	298.15		1.0748
100		3 309.15			0.030951	308.34		1.1140	0.027552	307.51		1.1031
110		0 318.45			0.032068			1.1414	0.028584	316.94	345.53	3 1.1308
120		5 327.87			0.033164			1.1684	0.029592	326.47	356.06	1.1580
130		3 337.40			0.034241			1.1949	0.030581	336.11	366.69	1.1846
140	0.03998			1.2321	0.035302			1.2210	0.031554	345.85	377.40	1.2109
150	0.04114			1.2577	0.036349			1.2467	0.032512	355.71	388.27	2 1.2368
160	0.04229			1.2830	0.037384			1.2721	0.033457	365.70	399.1	1.2623
170	0.04342			1.3080	0.038408			1.2972	0.034392	375,81	410.20	1.2875
180				1.3327	0.039423		422.00	1.3221	0.035317	386.04	421.30	5 1.3124

4) ในการอัดก๊าซไนโตรเจน (N₂) บริสุทธิ์ให้เป็นของเหลวโดยใช้กระบวนการแบบ Linde ดังรูป ข้างล่างที่กำหนดให้ ก๊าซไนโตรเจนที่เข้าสู่กระบวนการอยู่ที่ความดัน 1 bar อุณหภูมิประมาณ 300 K หลังจากนำก๊าซที่ป้อนเข้ามาผสมกับก๊าซที่ได้จากการ recycle แล้วจึงป้อนเข้าสู่ compressor แบบ 3 ขั้นตอน โดยที่ขั้นตอนแรกอัดก๊าซแบบ Isentropic ไปที่ความดัน 3.5 bar แล้วจึงสดอุณหภูมิแบบ Isobaric ลงมาที่อุณหภูมิ 180 K จากนั้นจึงอัดในขั้นตอนที่สองแบบ Isentropic จนมีความดันเป็น 22 bar แล้วจึงลดอุณหภูมิแบบ Isobaric จนมีค่าเท่ากับ 195 K จากนั้นจึงอัดในขั้นตอนสุดท้ายแบบ Isentropic จนมีความดันเป็น 70 bar แล้วจึงลดอุณหภูมิใน Final cooler แบบ Isobaric จนมีค่าเท่ากับ 150 K

ในถึง flash drum ซึ่งทำงานแบบ adiabatic มีเปอร์เซ็นต์ของไอที่ออกจากถึงเมื่อเทียบกับทางเข้า ถึง เท่ากับ 68.75%

จากค่าที่กำหนดให้เพียงบางส่วนคั้งแสดงในตาราง จงหา

- ก) พลังงานที่ใช้ใน compressor ทั้งหมดต่อ kg ของ LNG เหลวที่ผลิตได้ และวาดเส้นทางการ เปลี่ยนแปลงในกระบวนการขั้นตอนต่างๆ ของทั้งระบบบนกราฟ P-h Diagram ที่ กำหนดให้
- ข) อัตราการถ่ายเทความร้อนในเครื่องแลกเปลี่ยนความร้อน HX ในหน่วย (kW) เมื่ออัตราการ ป้อนก๊าซเข้าสู่กระบวนการ (สาย Feed) มีค่าเป็น 3 kg/sec

State	P (MPa)	T (K)	h (kJ/kg)
1	0.1	~300	462.5
5*	0.1		
1*	0.1		
а	0.35		
b	0.35	180	
с	2.2		
d	2.2 ·	195	
2	7		
3	7	150	
3*	7		
4	0.1	Mixed Phase	
5	0.1	Sat.Vap.	227.5
6	0.1	Sat. Liq.	27.5

ชื่อ-นามสกุล		รหัสประจำตัว	
	8 + 6 6 4 E	2-2.2 P. MPa -1 0.6 0.4 -0.3	2000.1
		330	
		300	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
		270 6	\$
	8	240 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	S S
		165	å å
		120 300 Noode	250 H, KJING
			Dajeunies 00 20
300		90	\$ 1 m
(y. 8 ₁₁₎			8
	Baleta \$100.0=4	105 FO S	
THERMODYNAMIC PROPERTIES OF NITROGEN		Dejej _{nji}	