

ESTADO GASEOSO

- En este estado, las partículas tienen la suficiente energía para superartodas las fuerza de atracción entre ellas.
- Estado desordenado, con partículas moviéndose de manera caótica
- Cada partícula está completamente separada una de otra.
- Tienen bajas densidades (fácilmente compresibles)
- Llenan completamente el recipiente que los contiene
- · Malos conductores del calor y la electricidad

LAS LEYES DE LOS GASES

- Debido a que los gases son altamente compresibles y se expanden cuando se los calienta vamos a estudiar estas propiedades en forma exhaustiva
- Las relaciones entre volumen. presión, temperatura y moles se conocen como las leves de los gases.

Presión del Gas

Los Gases ejercen presión sobre las paredes del recipiente en el cuál se encuentran.

La presión se define como la fuerza aplicada por unidad de área.

Presión = Fuerza/Area

Unidades de Presión

1,00 atm = 760 torr = 760 mm Hg1.01 x 105 Pa = 1.01325 bar = 1013.25 mbar

Leyes de los gases

- Ley de BoyleLey de Charles
- Ley de Gay-Lussac
- Ley de Avogadro

La ecuación GENERAL de los gases ideales combina estas leyes en una sola relación

UNIDADES A EMPLEAR

Volumen (V)

litros, aunque alguna otra unidad puede ser empleada

1 du3 = 1 L = 1000 mL = 1000 cm

Temperatura (T)

Debe ser expresada en escala absoluta: K (Kelvin)

Presión (P)

atm, torr, mm_{Ha}, F

Moles (n)

1 mol \Rightarrow 6,022 x 10²³ partículas

°+273=K

> 9 atm = 760 mmHg = 760 torr = 1,013 bar = 1,013.15 Pa

DE BOYLE - MARRIOTTE

2 LEY DE CHARLES

$$\frac{\frac{V_o}{T_o}}{\frac{4}{T_o}} = \frac{\frac{4}{T_o}}{\frac{4}{T_o}}$$

$$\frac{P_0}{T_0} = \frac{P_1}{T_1}$$

Aprol contiene 5,022.10 partoley (molecular) V = k.nPyT cly COMPNADA GASES

17 = 1,87 adm

No
$$R_{+}$$
 $V=54L \rightarrow cte$
 $P=2atm \rightarrow P^{2}$
 $V=54L \rightarrow cte$
 $V=54$

T_273K -> T=-17°C +(273)= 256K

LEY DE AVOGADRO

LEY DE GASES ÎDEALES

CNPT P=1 atm $T=0^{\circ}C=273,15K$ $T=0^{\circ}C=273,15K$

EJ. ; WAL ES EL VOL DE 2 moles DE VIN 645 A 3,5 atm y 310 K? PV = NRT $R = 0.082 \frac{\text{adv.L}}{\text{nol.K}}$ $V = \frac{NRT}{P} = \frac{2 \text{ mol. x qobladul.}}{3.5 \text{ adv. mol. K}} \frac{3 \text{ sol. k}}{3.5 \text{ adv. mol. K}}$

$$\frac{102 \frac{MML}{Nol.K}}{P} = \frac{2 \frac{MN}{Nol.K} \times 9082 \frac{MML}{315 \frac{MNL}{Nol.K}}}{315 \frac{MNL}{Nol.K}}$$

$$\longrightarrow V = 14,5 L$$

TEORIA CINÉTICA MOLECULAR. L'explica el comportamiento de los gases en termino de una seie de postulados

- 1 los gases estan formados por particulas muy pequeñas (moleculas) que estan separadas por grandes distancias.
- 2. las moleculas de los gases se mueven con una velocidad muy alta
- 3. la presión es el resultado del choque de las moleculas contra las paredes del recipiente
- 4. no existen fuerzas de atracción entre las moléculas de los gases ideales o con el recipiente que las contiene.
- 5. los choques de las moleculas son elásticos (la Ec de las moléculas no cambia con el tiempo si T cte)

