HMED1101 – Lunger og respirasjon

Guro Løvik Goll
Førsteamanuensis Universitetet i Oslo
Seniorforsker REMEDY forskningssenter/ Overlege Revmatologisk avd
Diakonhjemmet sykehus

X-Ray of a Normal Chest

Courtesy of Intermountain Medical Imaging, Boise, Idaho.

Forelesning - Lunger og respirasjon

Mål for forelesningen

Lære om respirasjonssystemet (kap. 5)

Disposisjon

- Anatomi og fysiologi: luftveiene og lungene
- Diagnostikk: funksjonstester, røntgen og bronkoskopi
- Sykdom: luftveier og lunger
- Litt om immunforsvaret (kap. 9)

Sirkulasjonssystemet (senere forelesning)

Oppgaver i sirkulasjonssystemet

- Hjertet: pumper blod
- Vev: tar opp O₂ og næringsstoffer, avgir CO₂ og avfallsstoffer
- Lungene: O₂ tilføres, CO₂ avgis

Sirkulasjonssystemet (senere forelesning)

Oppgaver i sirkulasjonssystemet

- Hjertet: pumper blod
- Vev: tar opp O₂ og næringsstoffer, avgir CO₂ og avfallsstoffer
- Lungene: O₂ tilføres, CO₂ avgis

Respirasjonssystemet

Respirasjonens **hovedoppgave** er tilføring av O₂ og fjerning av CO₂ fra kroppens celler

Forutsetninger og delfunksjoner alveoler luftvoler

Rørsystem med ventilasjon

- Transport av luft til og fra alveoler
- Gassutveksling av O₂ og CO₂ (inkl. transport i blodet)
- Reguleringsmekanismer

Luftveiene

Starten på luftveiene:

Nesehulen

 varmer og fukter innåndingslufta

 Slimhinnene: fanger opp små fremmedlegemer i gassen som strømmer gjennom

Munnhulen

 Svelget – Pharynx – som har to utløp:

- Luftrøret
- Spiserøret (øsofagus)

Luftveiene

Larynx (strupehodet)

 Forbinder svelget (pharynx) med luftrøret (trachea)

Trachea (luftrøret)

Bronkiene

Bronkiolene

Alveolene (i lungene)

Luftveiene

Larynx

Trachea

Bronkiene

Bronkiolene

Alveolene (i lungene)

Lungene

- De to lungene ligger i brysthulen, atskilt fra hverandre av brystkilleveggen (mediastinum)
- På undersiden er lungene atskilt fra bukhulen av mellomgulvet (diafragma)
- Den venstre lungen har to lapper, den høyre tre
- Lungen er kledd av en tynn hinne - pleura

🛓 Gyldendal © Philip Wilson i faglig samarbeid med f

Luftveiene og lungene

Luftveiene: ventilasjon, leder gass

- Munnhulen, nesehulen og svelget
- Hovedluftrøret (trachea)
- Bronkier (større), bronkioler (mindre)

Alveolene (i lungene): gassutveksling

- Blodet tar opp O₂
- Blodet gir fra seg CO₂

♣ Gyldendal © Deborah Maizels i faglig samarbeid med

KOLS – Kronisk obstruktiv lungesykdom

Bronkitt

Trange, betente luftveier

Emfysem

- Deler av lungen mister elastisitet
- Alveoler slås sammen, areal for gassutveksling blir mindre

Chronic Obstructive Pulmonary Disease (COPD)

Ventilasjon

- Innpust (inspirasjon)
- Utpust (ekspirasjon)

Ventilasjon

- Innpust (inspirasjon)
- Utpust (ekspirasjon)

Ventilasjon - respirasjonsmuskulatur

- Kontraksjon i respirasjonsmusklene gir endring i torakshulens volum
- Denne volumendringen medfører tilsvarende endring av lungevolumet
- Endring av lungevolumet fører til at også alveolevolumet endres
- Det blir trykkforskjeller, og luften strømmer henholdsvis inn- eller ut av luftveiene og lungene.

Ventilasjon

Innpust (inspirasjon)

- Diaphragma (mellomgulvet)
- Aksessoriske respirasjonsmuskler (mellom ribbeina og utenpå brystkassen)
- Gir økt alveolevolum → lavere alveoletrykk → det strømmer luft inn i alveolene

Utpust (ekspirasjon)

- Vanligvis passiv (avslapning og elastisitet)
- Aktiv (forsert): magemuskler og indre intercostalm.
- Gir redusert alveolevolum → høyere alveoletrykk → strømmer luft ut av alveolene

16

Ventilasjon – faktorer som påvirker

- Luftveismotstand
 - Diameter
- Lungenes elastisitet
 - Hvor mye kraft trengs for å spenne lungene
- Overflatespenning i alveolene
 - Reduseres av surfaktant

Kasuistikk #3

- Jens (28) og Anne (31) skal ha barn
- Gravid uke 28, normalt svangerskap hittil
- Kontroll: Anne har for høyt blodtrykk. Stiger.
- Planlegger å forløse barnet før tiden
- Anne får steroid-medikasjon
- Må sette i gang fødselen allerede dagen etter
- Gir et stoff til barnet for å redusere risiko for pustevansker

Luftveiene - gassutveksling

 Gassutvekslingen foregår mellom alveolene og lungekapillærene (minste blodårene)

Luftveiene - gassutveksling

- Oksygentrykket i alveolene er høyere enn i blodet som strømmer inn i lungekapillærene fordi dette blodet har gitt fra seg oksygen (O₂) ute i kroppens celler
- Derfor diffunderer flere oksygenmolekyler fra alveolgassen over i blodet enn fra blodet til alveolgassen, og det blir nettotransport av oksygen til blodet
- For CO₂ er det motsatt

Transport av O₂ og CO₂

- Luftveiene og lungene har til hensikt å frakte gasser til og fra blodet,
- Blodet skal frakte det videre til- og fra steder i kroppen der det trengs («til celler og vev»)
- Transporten rundt i kroppen reguleres på ulike måter i sirkulasjonssystemet

Overvåkning og regulering av respirasjon

- Respirasjonsreguleringen tilpasser kontinuerlig ventilasjonen til kroppens behov for tilførsel av oksygen og utskilling av karbondioksid
- Informasjon om blodets oksygen- og karbondioksidinnhold registreres av spesielle reseptorer og respirasjonssenteret i den forlengede marg og omsettes til nerveimpulser til respirasjonsmuskulaturen, som innstiller tidevolum og respirasjonsfrekvens på riktig nivå

Behov for hjelp til ventilasjon

Ventilasjon med maske og bag

- Akutte tilstander
- Korte kirurgiske inngrep

Behov for hjelp til ventilasjon

Respirator

- Intubasjon
- Koble til "pustemaskin"

ANATOMI OG FYSIOLOGI - OPPSUMMERING

Luftveiene og lungene

- Larynx, trachea, bronkiene, bronkielene, alveolene
- Frakter O₂ inn og CO₂ ut

Gassutvekslingen

- Oksygentrykket i alveolene høyere enn i kapillærene
- O₂ diffunderer over i blodet
- For CO₂ er det motsatt

Respirasjonsreguleringen

- Respirasjonssenter i forlengede marg
- Nerveimpulser til resp.musk.: diafragma, int.costalmusk.

Pneumothorax

Pneumothorax

DIAGNOSTIKK: Respirasjon og lunger

- viktige undersøkelser
- Klinisk undersøkelse: inkl. lytte på lungene (auskultasjon)
- «Oksygenstatus»: oksygenmåling, blodgass
- Lungekapasitet: Spirometri osv.
- Billeddiagnostikk: røntgen, CT osv.
- Skopi: Bronkoskopi, evt med biopsi

Oksygenmåling

«Oksygenprosent»

Blodgass

pO₂, pCO₂, pH

DIAGNOSTIKK: Respirasjon og lunger

- viktige undersøkelser
- Klinisk undersøkelse: inkl. lytte på lungene (auskultasjon)
- «Oksygenstatus»: oksygenmåling, blodgass
- Lungekapasitet: Spirometri osv.
- Billeddiagnostikk: røntgen, CT osv.
- Skopi: Bronkoskopi, evt med biopsi

Lungekapasitet - spirometri

Lungekapasitet

& Gyldendal © Deborah Maizels i faglig samarbeid med forfatterne

TIDEVOLUM (TV)

- Hva vi puster inn og ut. En voksen i hvile tar opp ca 500 ml luft ved hver inspirasjon (innånding) og trekker pusten 12-16 ganger per minutt
- Av dette kommer ved hver inspirasjon ca 350 ml ned i alveolene der gasskiftet skjer (resten blir stående i luftveiene – «dødrommet»)
- Kan økes betydelig ved aktivitet fra ca 6-7 l/min til 100 l/min (opp mot 200 l/min hos idrettsutøvere)

Lungekapasitet

& Gyldendal © Deborah Maizels i faglig samarbeid med forfatterne

VITALKAPASITET (VC) OG TOTAL LUNGEKAPASITET

- Etter en rolig inspirasjon på cirka 500 ml kan det ved forsert inspirasjon opptas ytterligere cirka 3300 ml luft som kalles inspiratorisk reservevolum
- Etter en rolig utånding (ekspirasjon) på 500 ml kan det ytterligere utåndes cirka 1000 ml såkalt reserveluft
- Summen av disse tre størrelsene (det vil si tidevolum + inspiratorisk og ekspiratorisk reserveluft) kalles lungenes **vitalkapasitet** (ca. 4,8 liter)
- Vitalkapasitet og residualluften utgjør lungenes totalkapasitet, som er ca. 6 liter hos en voksen mann

HMED1101 – Lunger og respirasjon

Guro Løvik Goll
Førsteamanuensis Universitetet i Oslo
Seniorforsker REMEDY forskningssenter/ Overlege Revmatologisk avd
Diakonhjemmet sykehus

DIAGNOSTIKK: Respirasjon og lunger

- viktige undersøkelser
- Klinisk undersøkelse: inkl. lytte på lungene (auskultasjon)
- «Oksygenstatus»: oksygenmåling, blodgass
- Lungekapasitet: Spirometri osv.
- Billeddiagnostikk: røntgen, CT osv.
- Skopi: Bronkoskopi, evt med biopsi

Billeddiagnostikk – røntgen toraks

Normalt røntgen toraks

Pneumotoraks

Billeddiagnostikk

Røntgen

CT

MR

PET-SCAN

CT-bilde av normalt lungevev (sett nedenfra/ovenfra)

Kombinert PET og CT av lungekreft med spredning

DIAGNOSTIKK: Respirasjon og lunger – OPPSUMMERT

- Klinisk undersøkelse: inkl. lytte på lungene (auskultasjon)
- «Oksygenstatus»: oksygenmåling, blodgass
- Lungekapasitet: Spirometri
- Billeddiagnostikk: røntgen, CT, PET
- Skopi: Bronkoskopi, evt med biopsi

OBSTRUKTIV SYKDOM I LUFTVEIENE

- KOLS
- Astma

SYKDOM I LUNGEVEVET

- Lungefibrose
- Allergisk alveolitt

SVULST / KREFT

Lungekreft

- Pneumoni (lungebetennelse)
- Tuberkulose

OBSTRUKTIV SYKDOM I LUFTVEIENE

- KOLS
- Astma

SYKDOM I LUNGEVEVET

- Lungefibrose
- Allergisk alveolitt

SVULST / KREFT

Lungekreft

- Pneumoni (lungebetennelse)
- Tuberkulose

KOLS – Kronisk obstruktiv lungesykdom

- **RØYKING** risikofaktor!
- Chronic Obstructive Pulmonary Disease (COPD)

- **Bronkitt**
 - Trange, betente luftveier
- Emfysem
 - Mindre elastisitet
 - Alveoler slås sammen
- Ca 6% av befolkningen
- **Funn:**
 - Endrete spirometriverdier
- Behandling:
 - Røykestopp!
 - Inhalasjonsmedisiner
 - Tabletter

ASTMA

- Kronisk betennelse i luftveiene
- Del av «atopi»: atopisk eksem, allergi, astma
- 10-12% av befolkning; starter som regel i barnealder

Symptomer:

Tungpust («pipende»), tetthet i brystet, hoste

Funn:

 Endrete spirometriverdier som varierer over døgnet og bedrer seg ved behandling

Behandling:

Inhalasjonsmedisiner

OBSTRUKTIV SYKDOM I LUFTVEIENE

- KOLS
- Astma

SYKDOM I LUNGEVEVET

- Lungefibrose
- Allergisk alveolitt

SVULST / KREFT

Lungekreft

- Pneumoni (lungebetennelse)
- Tuberkulose

NORMAL LUNGE

LUNGEFIBROSE

OBSTRUKTIV SYKDOM I LUFTVEIENE

- KOLS
- Astma

SYKDOM I LUNGEVEVET

- Lungefibrose
- Allergisk alveolitt

SVULST / KREFT

Lungekreft

- Pneumoni (lungebetennelse)
- Tuberkulose

OBSTRUKTIV SYKDOM I LUFTVEIENE

- KOLS
- Astma

SYKDOM I LUNGEVEVET

- Lungefibrose
- Allergisk alveolitt

SVULST / KREFT

Lungekreft

- Pneumoni (lungebetennelse)
- Tuberkulose

OBSTRUKTIV SYKDOM I LUFTVEIENE

- KOLS
- Astma

SYKDOM I LUNGEVEVET

- Lungefibrose
- Allergisk alveolitt

SVULST / KREFT

Lungekreft

INFEKSJONER

- Pneumoni (lungebetennelse)
- Tuberkulose

- BETENNELSE (INFLAMMASJON)
- KREFT
- INFEKSJON

EGEN FORELESNING

Litt om.... Immunsystemet

Oppgaver for immunforsvaret

- Å HOLDE OSS FRISKE
 - Infeksjonsforsvar
 - Drepe unormale celler
 - Fjerne gamle og døde celler
- Reagerer mot det som oppleves fremmed
- Inflammasjonsreaksjoner (betennelsesreaksjoner)

BETENNELSESREAKSJON - inflammasjon

En betennelse (inflammasjon) er en reaksjon på en vevsskade i kroppen

- Hypersensitivitet (eks. allergier)
- Infeksjoner (eks. virus, bakterier)
- Fysisk skader (eks. traume, forbrenning, stråling)
- Kjemiske skader (eks. etsende syre)

BETENNELSESREAKSJON - inflammasjon

En betennelse (inflammasjon) er en reaksjon på en vevsskade i kroppen

- Hypersensitivitet (eks. allergier)
- Infeksjoner (eks. virus, bakterier)
- Fysisk skader (eks. traume, forbrenning, stråling)
- Kjemiske skader (eks. etsende syre)

Allergi – reaksjon på noe ufarlig / vanlig

- Reaksjon på noe ufarlig (allergen)
 - Pollen, partikler i lufta, mat, medikamenter
- Mer enn 40% av befolkningen får allergiske reaksjoner en eller flere ganger ila livet (mer alvorlige 10-20%)
- Arv spiller en stor rolle
- Noen plages også med astma og/eller hudeksem – snakker da ofte om «atopiske plager»

PRIKKTEST FOR ALLERGI

AUTOIMMUNITET – reaksjon på eget vev

Immunforsvaret angriper eget vev (klarer ikke å skille eget fra fremmed)

- Diabetes mellitus type 1
- Rheumatoid artritt
- Cøliaki
- Hemolytisk anemi

INFEKSJONSFORSVARET

- Medfødt (nonadaptivt) forsvar
 - Barrierer: slimhinner/hud
 - Molekyler i sekreter
 - Fagocytterende celler

- Ervervet (adaptivt) forsvar
 - Humoral immunitet (B-celler)
 - Cellemediert immunitet (T-celler)

🗼 Gyldendal © Deborah Maizels i faglig samarbeid med forfatterne

- Transport av luft i rørsystem luftveiene:
 - Øvre luftveier, trachea, bronkier, bronkioler, alveoler
- Ventilasjon innpust (inspirasjon) og utpust (ekspirasjon)
 - Endring av volum → endring av trykk
 → transport av luft
- Gassutveksling O₂ og CO₂ mellom alveoler og lungekapilærer
- O₂ fraktes med blodet ut i kroppen, CO₂ fraktes til lungene

Gvldendal © Deborah Maizels i faqli

- Transport av luft i rørsystem luftveiene:
 - Øvre luftveier, trachea, bronkier, bronkioler, alveoler
- Ventilasjon innpust (inspirasjon) og utpust (ekspirasjon)
 - Endring av volum → endring av trykk
 → transport av luft
- Gassutveksling O₂ og CO₂ mellom alveoler og lungekapilærer
- O₂ fraktes med blodet ut i kroppen, CO₂ fraktes til lungene

- Transport av luft i rørsystem luftveiene:
 - Øvre luftveier, trachea, bronkier, bronkioler, alveoler
- <u>Ventilasjon</u> innpust (inspirasjon) og utpust (ekspirasjon)
 - Endring av volum → endring av trykk
 → transport av luft
- Gassutveksling O₂ og CO₂ mellom alveoler og lungekapilærer
- O₂ fraktes med blodet ut i kroppen, CO₂ fraktes til lungene

- Transport av luft i rørsystem luftveiene:
 - Øvre luftveier, trachea, bronkier, bronkioler, alveoler
- Ventilasjon innpust (inspirasjon) og utpust (ekspirasjon)
 - Endring av volum → endring av trykk
 → transport av luft
- Gassutveksling O₂ og CO₂
 mellom alveoler og lungekapilærer
- O₂ fraktes med blodet ut i kroppen, CO₂ fraktes til lungene

- Transport av luft i rørsystem luftveiene:
 - Øvre luftveier, trachea, bronkier, bronkioler, alveoler
- Ventilasjon innpust (inspirasjon) og utpust (ekspirasjon)
 - Endring av volum → endring av trykk
 → transport av luft
- Gassutveksling O₂ og CO₂ mellom alveoler og lungekapilærer
- O₂ fraktes med blodet ut i
 kroppen, CO₂ fraktes til lungene

- · Diagnostikk:
 - Klinisk undersøkelse
 - «Oksygenstatus»
 - Lungekapasitet: Spirometri
 - Billeddiagnostikk: røntgen, CT
 - Skopi: Bronkoskopi
- Sykdommer:
 - Obstruktiv sykdom i luftveiene (KOLS, Astma)
 - Sykdom i lungevevet
 (Lungefibrose, Allergisk alveolitt)
 - Lungekreft
 - Infeksjoner

Diagnostikk:

- Klinisk undersøkelse
- «Oksygenstatus»
- Lungekapasitet: Spirometri
- Billeddiagnostikk: røntgen, CT
- Skopi: Bronkoskopi

Sykdommer:

- Obstruktiv sykdom i luftveiene (KOLS, Astma)
- Sykdom i lungevevet
 (Lungefibrose, Allergisk alveolitt)
- Lungekreft
- Infeksjoner

Diagnostikk:

- Klinisk undersøkelse
- «Oksygenstatus»
- Lungekapasitet: Spirometri
- Billeddiagnostikk: røntgen, CT
- Skopi: Bronkoskopi

Sykdommer:

- Obstruktiv sykdom i luftveiene (KOLS, Astma)
- Sykdom i lungevevet
 (Lungefibrose, Allergisk alveolitt)
- Lungekreft
- Infeksjoner

Spesialiteter som spesielt jobber med dette

<u>Legespesialister:</u>

- Allmennleger (fastleger)
- Radiologer
- Indremedisinere
 - Lungeleger
 - Infeksjonsmedisinere
- Kreftleger (onkologer)
- Generelle kirurger
 - Torakskirurger
- Akutt- og mottaksmedisin
- Pediatere (barneleger)
- Arbeidsmedisinere

Neste forelesning: hjertet, sirkulasjon og hemostase

