	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	Tipo de Prova Exame de Época Normal	Ano letivo 2021/2022	Data 01-07-2022
P.PORTO		Curso LSIRC+LEI		Hora 10:00
		Unidade Curricular Matemática Discreta		Duração 3,0 horas

Nome:	Número:
-------	---------

Observações:

A avaliação desta Unidade Curricular, na modalidade de avaliação durante o período de exames, contempla dois elementos com as ponderações: 70% Exame + 30% Trabalho Prático.

Para a realização desta prova o estudante pode usar um formulário (com até duas páginas A4) manuscrito e criado pelo próprio. No final da prova, têm de ser entreques o enunciado, as folhas de resposta e de rascunho, assim como o formulário, todos devidamente identificados com o nome e número de estudante.

Eliana Costa e Silva, Isabel Cristina Duarte e Glória Carvalho

PARTE1

RESPONDA À QUESTÃO 1 NESTA FOLHA. NÃO PRECISA DE JUSTIFICAR A SUA RESPOSTA.

1.	Considere os conjuntos $X = \{$	$x^2 + 1 : x \in \{0, 1\}$	$\}$ e $Y = \{$	{Ø, 0,1, 2, {1,2}}	}.
----	---------------------------------	----------------------------	-----------------	--------------------	----

1.1. [0.6] Complete os espaços abaixo com ∈ ou ⊆ por forma a obter afirmações verdadeiras.

d	V
Ø	Y

$$\{0,1\}$$
 Y $\{1,2\}$ X $\{1,2\}$ Y

1.2. [0.6] Complete os espaços abaixo por forma a obter afirmações verdadeiras.

A função	$f: \{0,1\} \longrightarrow Y$, definida por $f(x) = \{x\} \cap X$ é	(injetiva/não injetiva) e
	(sobrejetiva/não sobrejetiva), portanto é _	(bijetiva/não bijetiva).

1.3. [0.8] Determine:

$$X \times Y =$$

$$X^2 =$$

$$\mathcal{P}(X) - \mathcal{P}(Y) = \underline{\hspace{1cm}}$$

$$\#(X \oplus Y) = \underline{\hspace{1cm}}$$

PARA AS QUESTÕES 2 ATÉ 6, APRESENTE TODAS AS JUSTIFICAÇÕES E CÁLCULOS NA FOLHA DE RESPOSTA.

2. [1.2] Tendo em conta as igualdades apresentadas ao lado, determine:

$$\sum_{i=1}^{76} \left(\frac{3}{5}\right)^{i}$$

$$7\sum_{i=0}^{45}(i^3-i^2)$$

$$\frac{5}{3} \prod_{i=97}^{101} 2$$

$$\frac{\sum_{i=0}^{n} ar^{i}, r \neq 0 \text{ (PG)} \quad a \times \frac{1 - r^{n+1}}{1 - r}, r \neq 1}{\sum_{i=1}^{n} i \text{ (PA)} \quad \frac{n(n+1)}{2}}$$

$$\frac{\sum_{i=1}^{n} i^{2} \quad n(n+1)(2n+1)}{\sum_{i=1}^{n} i^{3} \quad n^{2}(n+1)^{2}}$$

3. [1.2] Considere a fórmula de recorrência dada por:

$$\begin{cases} S(1) = 5 \\ S(n) = 3 S(n-1) + 4, \ n \ge 2 \end{cases}$$

Recorrendo ao algoritmo EGV (Expand, Guess, Verify), encontre a fórmula fechada correspondente.

ESTG-PR05-Mod013V2 Página 1 de 6

	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	Tipo de Prova Exame de Época Normal	Ano letivo 2021/2022	Data 01-07-2022
P.PORTO		Curso LSIRC+LEI		Hora 10:00
		Unidade Curricular Matemática Discreta		Duração 3,0 horas

4.	Considere o conjunto $A = \{1,4,6,7\}$, e as duas relações seguintes definidas em A
	$R = \{(x, y) : x - y \text{ divisível nor } 2\} \in S = \{(1, 1), (1, 4), (1, 7), (4, 6)\}$

4.1. [0.4] Represente a relação *R* graficamente na figura ao lado;

4.2. [0.8] Indique, justificando, se a relação R é de equivalência e em caso afirmativo escreva o seu conjunto quociente;

4.3. [1.2] Calcule:

$$S^2 =$$

$$\triangleright$$
 $S \cap R =$ _____.

5. Considere o fragmento de código solo onde são definidas as matrizes de adjacência M1 e M2 de dois grafos com vértices V1={a,b,c,d,e,f} e V2={A,B,C,D}, respetivamente. Com base no *output*, responda às guestões seguintes.

> M1=[1 0 0 1 0 1;	> M1^4	4					> M2^4	ŀ		
> 1 0 0 0 0 0;	ans =						ans =			
> 1 1 0 0 0 1;	16.	9.	6.	10.	8.	12.	60.	18.	54.	24.
> 0 0 1 0 1 0;	5.	2.	4.	3.	3.	5.	18.	6.	15.	6.
> 0 0 1 0 0 1;	13.	7.	7.	9.	8.	11.	54.	15.	57.	24.
> 1 1 0 1 1 0];	10.	2.	5.	7.	5.	7.	24.	6.	24.	12.
	11.	5.	5.	8.	6.	9.	> M2+N	12^2+M2	2^3+M2	^4
$> M2 = [1 \ 0 \ 2 \ 1]$	17.	7.	7.	11.	9.	11.	ans =			
> 0 0 1 0							83.	24.	78.	35.
> 2 1 1 0							24.	8.	23.	8.
> 1 0 0 1];							78.	23.	79.	32.
							35.	8.	32.	19.

5.1. Relativamente ao grafo definido pela matriz M1, indique:

i) [0.6] todos os caminhos de comprimento 4 do segundo para o quinto vértice;

ii) [0.2] o número de caminhos de comprimento 4 do quinto para o quarto vértice;

5.2. [0.4] Relativamente ao grafo definido pela matriz M2, indique justificando se se trata de um grafo conexo;

6. Relativamente ao grafo apresentado ao lado:

6.1. [0.6] indique a ordem, a dimensão, o conjunto dos vértices e das arestas;

Ordem ______

Dimensão ______

Conjunto das arestas_____

Conjunto dos Vértices_____

6.2. [1.0] determine a matriz de adjacências e determine o grau de cada vértice.

6.3. [0.4] averigue, **justificando**, se se trata de um grafo euleriano ou semi-euleriano, e, se possível, determine um circuito ou caminho de Euler, recorrendo ao Algoritmo de Fleury.

ESTG-PR05-Mod013V2 Página 2 de6

		Tipo de Prov Exame de Ép		ادد			Ano letivo 2021/20	רכו	Data 01-07-20	רכר
	ECCOLA	Curso	JUCA INUITI	Idi			2021/20	ادد	Hora	JCC
P.PORTO	ESCOLA SUPERIOR DE TECNOLOGIA	LSIRC+LI							10:00	
	E GESTÃO	Unidade Curricular Matemática Discreta							Duração 3,0 horas	
Nome:		Waternatica	Biscicta					N	úmero:	
_				PARTE 2						
RESPONDA ÀS QU	ESTÕES 7 A	<u>TÉ 10 NES</u>	TA FOL	HA. NÃO PREC	CISA DE	JUSTII	FICAR A SUA	RESPO	OSTA.	
7. [0.5] Considere o fr	annonto d	a cádina c	W	طم حقم طمانات	25 25 11		s do adiasân	-i- N <i>1</i> 1	o MD do doi:	- ~~-f
de vértices {a,b,c,d,e,f}	_	_							e MZ de doi:	s graios
os dois grafos s		•	iente. Ci	JIII BUSE 110 OU	tput, pt		=[0 0 0 0 1		> M2=[1	1 0 0.
apenas o grafo			é de Ha	milton			0 1 0 0 0;	°,	> 1 1 1	
nenhum dos gr						l	0 0 1 0 0;		> 0 1 0	0;
apenas o grafo	de vértices	{A,B,C,D} é	de Ham	ilton			0 1 0 0 0;		> 0 2 0	1];
		455	ı			l	1 0 0 0 0];			
8. Com base no fragm	nento de có	digo sci _{lab}	ao lad	0,						
podemos afirmar que:				> an		r(22),	factor(126),	fact	or(294), fac	tor(525)
8.1. [0.5] mdc(294, 52				an		1.				
<u> </u>	21 nenh	numa das a	nteriore	!S	2. 3	. 3.	7.			
8.2. [0.5] existe o inve	rso de 525	modulo:		an	2. 3	. 7.	7.			
22126 <i>i</i>	294 🗌 nenl	numa das a	nteriore	es an	s = 3. 5	. 5.	7.			
o [o=]		- /	П.							
9. [0.5] Um inverso do	e 5 modulo	7 e: 2		3 ∐4	5					
10. Considere a rede (constituída	nor cinco	nágina	swehAR(D e	F com	ns <i>links</i>			
mostrados na imagem		F	F 9	, _, .	-,		-	\bigcap	E (E	R.
10.1. [0.5] Considere o	ille em cai	da nasso	escolhe	mos de forma	a aleat	ória ur	n <i>link</i> da		($\rightarrow $
página web onde estan	•	•			_		_	<u> </u>	. \.	1
subjacente é:	103.711146	iz ac trarisi	çuo (uc		_, uo p	00033	S Markov (<u>-</u>		Se .
,									G	
T =				T	=					
0. 0.5	0.333333	3 0.	1.		0. 0.5		0.	0. 0.5	0.5	0.5
0. 0. 0. 0.5	0.333333		0.		0.333	33333	0.3333333	0.	0.3333333	0.
0.5 0. 0.5 0.	0.333333		0.		0.		0.	0.5	0.	0.5
T = 0.41 0.59	0.39 0.	73 0.54		Т	= 0.	0.5	0.33 0.	1.		
0.88 0.69 0.11 0.89		26 0.12			0. 0.	0. 0.5	0.33 0. 0. 0.5	0.		
0.2 0.5 0.56 0.35	0.34 0.	26 0.63 53 0.76			0.5	0.	0.33 0.	0.		
					0.5	0.	0. 0.5	0.		
				> T^6*[1 0	0 0 0]	'> T	^6*[0 1 0 0	0]'	> T^6*[0 0 0	0 1]'
10.2. [0.5] Conside		cálculos		ans =		ans	=	a	ns =	
apresentados no fra	_	_		0.2916667 0.0277778			3935185 0601852		0.4027778 0.0694444	
scila , sendo T a n definida na alínea antei		transiçao		0.1423611 0.2291667			1111111 1956019		0.0833333 0.2152778	
				0.3090278			2395833		0.2291667	
A probabilidade, de con	-		١	- m/mb 6 /	· ·	!	-4-			
seis passos depois não		na página <i>l</i>		· ·	_	adame	nte:			
0,39	0,11		0,5	U	0,56					

ESTG-PR05-Mod013V2 Página 3 de6

- **11.** Considere o grafo ponderado apresentado ao lado.
- **11.1. [1.2]** Use o algoritmo de *Dijkstra* para encontrar o caminho de menor custo entre a e g.

Observação: Apresente a sua resolução na tabela abaixo.

lt.	v _d (M)	Mc	А	v_i, \dots, v_d, v_j e $L(v_j)$	X e <i>X</i> _d	R: Caminhos mínimos

ESTG-PR05-Mod013V2 Página 4 de6

		Tipo de Prova Exame de Época Normal	Ano letivo 2021/2022	Data 01-07-2022
P. PORTO	ESCOLA SUPERIOR	Curso LSIRC+LEI		Hora 10:00
	DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta		Duração 3,0 horas

Nome: ______Número: _____

11.2. [1.2] Usando o Algoritmo de *Kruskal*, determine uma árvore geradora de custo mínimo do grafo, e indique o seu comprimento.

Observação: Apresente a sua resolução na tabela abaixo.

t	(vi,vj)	Si	Sj	Т	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	Nr

ESTG-PR05-Mod013V2 Página 5 de6

		Tipo de Prova Exame de Época Normal	Ano letivo 2021/2022	Data 01-07-2022		
P.PORTO	ESCOLA SUPERIOR	Curso LSIRC+LEI		Hora 10:00		
	DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta		Duração 3,0 horas		

PARA AS QUESTÕES SEGUINTES, APRESENTE TODAS AS JUSTIFICAÇÕES E CÁLCULOS NA FOLHA DE RESPOSTA.

- **12. [1.0]** Determine, recorrendo ao Algoritmo de Euclides, os inteiros s e t (coeficientes de Bézout) tais que $mdc(32,105) = 105 \times s + 32 \times t$, e se possível, indique o inverso de 32 mod 105.
- **13. [0.6]** Resolva, se possível, a congruência $7x \equiv 2 \mod 12$, sabendo que 7 é inverso de 7 modulo 12.
- **14. [1.0]** Escreva a sequência de números pseudo-aleatórios gerada por $x_{n+1} = (6x_n + 2) \mod 13$, com raíz $x_0 = 1$.
- **15.** Considere a função de encriptação $f(n) = (8n + 1) \mod 29$ e ainda as correspondências seguintes:

Α	В	C	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	_	#	@
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		23	24	25	26	27	28

- **15.1. [0.4]** Mostre que a função de desencriptação é definida por $f^{-1}(n) = (11n + 18) \mod 29$.
- **15.2.** [0.8] Desencripte a mensagem "@ECC_".

16. [0.8] Considere o sistema RSA com a=13 e $m=43\times 59=2537$. Sendo b=937 a chave privada, desencripte a mensagem "1590".

Use os outputs do salas que considerar necessários.

> pmodulo(1408,2537)	> x=13;
ans =	> x_new=1;
1408.	> for k=1:1408,
> pmodulo(1408^13,2537)	> x_new=pmodulo(x*x_new,2537);
ans =	> end
0.	> x_new
	x_new =
	271.
> x=1048;	> x=1590;
> x_new=1;	> x_new=1;
> for k=1:13,	> for k=1:2537,
>	> x_new=pmodulo(x*x_new,937);
<pre>x_new=pmodulo(x*x_new,2537);</pre>	> end
> end	> x_new
> x_new	x_new =
x_new =	664.
1673.	
> x=1590;	> x=1590;
> x_new=1;	> x_new=1;
> for k=1:13,	> for k=1:937,
> x_new=pmodulo(x*x_new,2537);	> x_new=pmodulo(x*x_new,2537);
> end	> end
> x_new	> x_new
x_new =	x_new =
1332.	1203.

ESTG-PR05-Mod013V2 Página 6 de6