

Universidade Estadual do Oeste do Paraná – UNIOESTE Campus de Cascavel Colegiado de Ciência da Computação

Otimização Combinatória

Trabalho 2 Busca Tabu, Simulated Anealling e Colônia de Formigas

Conforme combinado, cada grupo ficará responsável pelo desenvolvimento de uma abordagem de otimização aplicada a um cenário específico.

Sobre a implementação

- 1. Não podem ser usadas soluções prontas. Cada equipe deve implementar sua própria resolução para a técnica.
- 2. Deve-se exibir na interface da implementação as soluções parciais do método em execução. Através da visualização deve ser possível acompanhar a evolução da técnica.
- 3. Para implementar a interface pode-se empregar métodos e modelos prontos.
- 4. Linguagens que podem ser usadas: C, C++, Java e Pyhton
- 5. Deve-se enviar o projeto construído contento todos os códigos fonte construídos.
- 6. A entrega do trabalho deve ser feita via Teams.
- 7. Cada equipe deverá submeter um arquivo zipado chamado "Grupo n" contendo todos os arquivos especificados anteriormente.

DATA DE ENTREGA: 14/02/2023 até as 23:59

Atentem-se pois não serão aceitos trabalhos entregues após o prazo!

Membros	Grupo	Técnica	Problema			
Augusto Barella Dal Pra		D				
Gustavo Portela Rauntenberg	1	Busca Tabu	Problema do Caixeiro Viajante			
João Vitor Biederman		ianu				
Gabriel Lenser						
Gabriel Tadioto Oliveira	2	Simulated	Problema da Mochila Binária			
Gustavo Alberto Ohse Hanke		Anealling				
Gabriel Andrade de Araújo	_	Busca				
Roberval Requião Junior	3	Tabu	Problema da Designação Generalizada			
Fabio Novack da Silva						
Eduardo Pimentel dos Santos	4	Simulated	Problema do Empacotamento Unidimensional			
Gustavo Magalhães Faino		Anealling	começando com pior solução			
Leonardo Bednarczuk Balan de Oliveira		_				
Gabriel Santos da Silva	5	Busca	Problema da Mochila Binária			
David Antonio Brocardo		Tabu				
Luiz Fernando Becher de Araujo		Simulated	Bullian de Catalia Matalia			
Vinicius Sendoski de Andrade	6	Anealling	Problema do Caixeiro Viajante			
Luiz Felipe Fonseca Rosa						
Leonardo Calsavara	7	Busca	Problema do Empacotamento Unidimensional			
Pedro Henrique Ferreira Zoz		Tabu	começando com pior solução			
Isadora Coelho Araújo						
Maria Eduarda Crema Carlos	8	Simulated	Problema da Designação Generalizada			
Pedro Lucas Moraes		Anealling				
Erik Felipe Olinek de Castilho		Busca				
Jonathan Santos Tadei	9	Tabu	Otimização de Circuitos (Conectividade)			
Pedro Hernesto Pissetti Venzke		C: 1 . 1				
João Luiz Reolon	10	Simulated Anealling	Problema do Empacotamento Unidimensional			
Gabriel Belinski Salomão		Aneaning	começando com solução gulosa			
Marlon Fabichacki Pereira		C-12 -:1-				
Ronaldo Drecksler Farias Pachico	11	Colônia de Formigas	Problema do Caixeiro Viajante			
Vinicius Visconsini Diniz		TOTTINGAS				
Fernando Schumaker Fiedler		D	Buchlance de Consentante de l'uidine en sie de l			
Fabricio Marcos Cordeiro	12	Busca Tabu	Problema do Empacotamento Unidimensional começando com solução gulosa			
Luiz Eduardo Garzon		Tabu	começando com solução guiosa			
Bruno Stafuzza Maion		Cimulatad				
Rafael Roberto Hoffmann	13	Simulated Anealling	Problema do Caixeiro Viajante			
Lucca Abbado Neres		Ancailing				
Gabriel Neneve dos Santos		Cimulatad				
Gabriel Rodrigues dos Santos	14	Simulated Anealling	Otimização de Circuitos (Conectividade)			
Juliano Augusto da Silva		Ancaming				
Matheus Centenaro		Cimulatad				
Pedro Henrique de Oliveira Berti	15	Simulated Anealling	Problema da Designação Generalizada			
Renan Valduga Kafer		Ancaimig				

Mochila Binária (Grupos 2 e 5)

Entrada: Arquivos em formato txt contendo a capacidade da mochila e uma lista de itens contendo o custo e o benefício de cada um. O formato do arquivo é apresentado na Figura 1.

10)5									Capacidade da Mochila
3	42	5	48	42	13	3	20	12	37	Benefícios dos Itens
2	35	13	29	9	25	2	14	4	17	Custos dos Itens

Figura 1. Configuração do arquivo de entrada para o problema da mochila binária

No próprio nome do arquivo é apresentada a quantidade de itens presentes. Por exemplo, o arquivo "Mochila10.txt" apresenta a capacidade da mochila e as informações de custo e valor de dez itens.

Arquivos de entrada disponíveis em:

 $\frac{https://drive.google.com/file/d/1hHgX7rv2EivKS2SHHFuZhJFufEidWQmK/view?us}{p=sharing}$

Problema do Caixeiro Viajante e de Roteamento (Grupos 1, 6, 11 e 13))

Entrada: Arquivos em formato txt contendo o número de vértices que compõe o grafo e a sua devida lista de adjacências, contendo o peso das arestas entre cada par de vértices.

- Valores iguais a zero indicam a ausência de conexão entre os vértices;
- Os grafos disponíveis no link são ponderados;
- Os grafos disponíveis no link são não direcionados.

O formato de cada arquivo é apresentado na Figura 2. Na ilustração cada linha representa o custo de cada aresta a partir do vértice de origem até o destino. Por exemplo, na primeira linha temos o valor 6. Ele indica que o custo para ir do vértice 1 até o quinto vértice é igual a seis.

Figura 2. Estrutura dos arquivos de entrada para os problemas TSP e de Roteamento

A matriz indicada na Figura 2 refere-se ao grafo apresentado a seguir.

Figura 3. Grafo construído a partir do arquivo de entrada apresentado na Figura 1

A entrada dos dados para a construção dos grafos deve ser feita com base nos arquivos texto disponíveis em: https://drive.google.com/file/d/1EMjUKBrOclz3MUTcU-ifyVP5Vuu-ogZE/view?usp=sharing

Problema de Designação Generalizada (Grupos 3, 8 e 15)

Entrada: Arquivos em formato txt contendo na primeira linha o número (NP) de programadores disponíveis para o trabalho. Na linha seguinte é apresentada a quantidade de módulos (NM) que precisam ser desenvolvidos. Nas NP linhas seguintes são apresentados os custos de cada programador para cada módulo. Cada coluno refere-se a um dos NM módulos. Em seguida são apresentadas NP linhas com as cargas horárias gastas por cada programador para desenvolver cada um dos NM módulos. Na última linha do arquivo temos NP colunas que se referem à cada horária que cada programador tem disponível para a tarefa.

4	Número de programadores										
8	Número de módulos a serem desenvolvidos										
7	7	10	8	16	16	0	17				
10	5	9	9	14	4	16	11	Custo de Execução por cada			
11	8	7	5	1	11	20	12	programador por módulo			
5	7	6	8	16	7	15	17				
10	14	16	12	8	20	10	16				
10	14	16	12	8	20	10	16	CH gasta por cada programador			
10	14	16	12	8	20	10	16	Para cada módulo			
10	14	16	12	8	20	10	16				
30	25	20	40	CH dispon	ível por pi	rogramado	or				

Figura 4. Formato do arquivo de entrara para o Problema de Designação Generalizada

Na Tabela 1 estão representados os custos para execução de cada módulo por cada desenvolvedor. O objetivo será escolher quem deve desenvolver cada módulo de forma que seja gasto o menor valor possível.

		Módulos a serem desenvolvidos									
		1	2	3	4	5	6	7	8		
res	1	7	7	10	8	16	16	0	17		
nador	2	10	5	9	9	14	4	16	11		
Programadores	3	11	8	7	5	1	11	20	12		
Pr	4	5	7	6	8	16	7	15	17		

Tabela 1. Custos dos módulos ao serem desenvolvidos por cada programador

Na Tabela 2 são apresentados quantas horas cada programador gasta para trabalhar em cada um dos oito módulos a serem desenvolvidos.

Módulos a serem desenvolvidos

		1	2	3	4	5	6	7	8		
sə	1	10	14	16	12	8	20	10	16		
nador	2	10	14	16	12	8	20	10	16		
Programadores	3	10	14	16	12	8	20	10	16		
P	4	10	14	16	12	8	20	10	16		

Tabela 2. Carga horária necessária para desenvolver cada módulo

Na Tabela 3 são apresentadas as quantidades de carga horária que cada programador dispõe para desenvolver os módulos requisitados. A solução final não deve permitir que nenhum dos quatro programadores trabalhe além da carga horária apresentada na tabela.

Programadores									
1	2	3	4						
30	25	20	40						

Tabela 3. Número de horas que cada programador tem disponível

Os arquivos de entrada para testes da implementação podem ser acessados no link: https://drive.google.com/file/d/1inILq2pWgxelLXZ6nJLdjFlbgR3WrTwB/view?usp=s haring

Problema da Conexão de Circuitos (Grupos 9 e 14)

Entrada (Figura 5): Arquivos em formato txt contendo na primeira linha o número de componentes que devem ser conectados. Na segunda linha é identificado o número exato de conexões que devem ser estabelecidas no circuito. Na terceira linha é apresentado o número máximo de conexões que cada componente pode realizar.

Nas linhas 4 e 5 são apresentadas as coordenadas de cada componente. Na quarta linha são apresentadas as posições no eixo X enquanto na última linha são detalhadas as posições sobre o eixo Y.

Sabendo-se cada componente deve ter no mínimo uma conexão, encontre a melhor combinação de conexão entre os elementos presentes no arquivo de entrada de forma que a soma dos cabos para estabelecer tais conexões seja o menor possível.

05 → Número de componentes a serem conectados
08 → Número de conexões que deve ser estabelecido em todo o circuito
04 → Número máximo de conexões que um componente pode realizar
12,1 14,7 9,0 4,3 1,2 → Posição no eixo X de todos os componentes
15,0 10,0 2,4 2,1 0,8 → Posição no eixo Y de todos os componentes

Figura 5. Estrutura do arquivo de entrada para o problema de otimização de circuitos

Os arquivos de entrada para os testes podem ser acessados no endereço: https://drive.google.com/file/d/1qazkugQ3v9sxENY1D1LGIFMHjjO2RC02/view?usp = sharing

Problema do Empacotamento Unidimensional (Grupos 4, 7, 10 e 12)

Entrada: Arquivos em formato txt (conforme apresentado na Figura 6) contendo na primeira linha a capacidade que cada recipiente é capaz de armazenar. Na segunda linha é identificado o número de itens que devem ser alocados na menor quantidade possível de recipientes. Na terceira linha são apresentados os tamanhos dos itens que devem ser alocados.

```
10 → Capacidade dos recipientes
8 → Número de itens a serem alocados
1 3 2 4 8 5 7 6 → Tamanho de cada um dos itens presentes
```

Figura 6. Estrutura do arquivo de entrada para o problema do empacotamento.

A tarefa consiste em, dada a capacidade de cada recipiente e as características dos itens, identificar qual o menor número de recipientes necessário para guardar todos os itens presentes.

No cenário em que o método começa com a **pior solução** possível cada item é acomodado em um recipiente. Dessa forma, a solução inicial demanda a maior quantidade de recipientes possível.

No cenário em que o método começa com uma **solução gulosa** para se obter a primeira solução válida deve-se rodar o um algoritmo guloso com o seguinte comportamento (Figura 7):

Figura 7. Pseudocódigo do algoritmo guloso para encontrar uma primeira solução válida para o problema do empacotamento.

Os arquivos de entrada para os testes podem ser acessados no endereço: https://drive.google.com/file/d/1B76Lx2bhhFckTIpUnz069ljCmf3kxQN_/view?usp=sharing