

Uso de Redes de Função de Base Radial e Cadeias de Markov para detecção online de mudanças de conceito em fluxos contínuos de dados

Discente: Ruivaldo Neto **Orientador:** Ricardo Rios

Universidade Federal da Bahia Departamento de Ciência da Computação Programa de Pós-Graduação em Ciência da Computação

Contato: rneto@rneto.dev

16 de Dezembro de 2019

Roteiro

- 1. Introdução
- 2. Fundamentação Teórica
- 3. RBFChain
- 4. Experimentos
- 5. Conclusões e Trabalhos Futuros

- Avanços tecnológicos recentes contribuiram para o aumento do volume de dados produzidos por sistemas computacionais [8].
- Parte significativa desse volume é produzida na forma de Fluxos Contínuos de Dados (FCDs): sequências ininterruptas e potencialmente infinitas de eventos [1].
- FCDs estão presentes em variados domínios de aplicação:
 - Análise do Mercado Financeiro;
 - Gestão de redes de telecomunicação;
 - Detecção de intrusos;
 - Monitoramento de tráfico; etc.

- Técnicas de Aprendizado de Máquina (AM) são utilizadas para extrair informações úteis desses grandes conjuntos de dados.
- Cenários com FCDs limitam a aplicação dessas técnicas, pois impõem restrições de tempo de resposta, de uso dos recursos computacionais e apresentam comportamento não estacionário.
- Em cenários não estacionários, o contexto do processo gerador e/ou
 a distribuição dos dados podem sofrer alterações ao longo do tempo.
- Essas mudanças, denominadas mudanças de conceito (concept drifts), podem ter impacto negativo nas técnicas de AM aplicadas.

- Inicialmente, realizava-se a atualização periódica dos modelos para mitigar os efeitos das mudanças de conceito.
- Pesquisadores propuseram métodos mais precisos e eficazes baseados em monitoramento.
- Os métodos propostos apresentam limitações ao serem aplicados em cenários com FCDs [1]:
 - Necessidade de rotulação;
 - Não atendem às restrições (tempo de resposta e uso de recursos).

- Visando superar essas limitações, este trabalho propõe um novo método de detecção de mudanças de conceito baseado em Redes de Função de Base Radial (redes RBF) e Cadeias de Markov, denominado RBFChain.
- O método proposto se diferencia por detectar mudanças em tempo de execução, de forma computacionalmente eficiente e independente de rótulos.

Fundamentação Teórica

Fluxos Contínuos de Dados e Aprendizado de Máquina

- Fluxos Contínuos de Dados (FCDs) são sequências ininterruptas e
 potencialmente infinitas de eventos [1], que não podem ser
 armazenados e devem ser analisados em tempo de execução.
- Algoritmos de AM foram adaptados para atender a essas restrições
 [2], mas ainda são sucetíveis a mudanças de conceito.

- Mudanças de conceito são alterações no contexto do processo e/ou na distribuição dos dados que podem impactar negativamente técnicas de AM.
- Podem ser definidas formalmente através da Teoria Bayesiana de Decisão [4]: sendo p_{t_0} e p_{t_1} as distribuições de probabilidades conjuntas nos instantes t_0 e t_1 , há mudança de conceito entre t_0 e t_1 se:

$$\exists X: p_{t_0}(X,c) \neq p_{t_1}(X,c) \tag{1}$$

- São categorizadas como Virtuais ou Reais [5]:
 - Mudanças Virtuais são alterações na probabilidade a priori das classes, P(c), e não modificam os resultados esperados.
 - Mudanças Reais são alterações na probabilidade a posteriori, p(c|X), e modificam os resultados esperados.

Figura 1: Mudança de Conceito Virtual vs. Mudança de Conceito Real.

• Ocorrem de forma abrupta, gradual, incremental ou recorrente [7].

Figura 2: Padrões de ocorrência de Mudanças de Conceito.

Algoritmos para Detecção de Mudança de Conceito

- Algoritmos de detecção se dividem em dois grupos, conforme a necessidade de rotulação dos dados [7]:
 - Explícitos/Supervisionados: Dependem da rotulação dos dados.
 Realizam a detecção a partir do monitoramento de medidas de performance como taxa de erro e acurácia.
 - Implícitos/Não Supervisionados: Independem da rotulação dos dados. Realizam a detecção através do monitoramento de características dos próprios dados ou de indicadores produzidos pelas técnicas de aprendizado aplicadas.

Ferramenta: MOA

- O MOA é o principal framework para pesquisa com fluxos contínuos.
- Possui rotinas para produzir dados sintéticos e para avaliar métodos de detecção de mudança de conceito.

Figura 3: MOA - Tela Inicial.

Mudança de Conceito - RBFChain

- O método proposto identifica mudanças sob qualquer padrão de ocorrência.
- É independente de rótulos, logo considera todas mudanças identificadas como mudanças reais.
- Foi implementado e validado através do MOA.

Redes de Função de Base Radial

- Redes de Função de Base Radial são redes neurais cuja ativação é realizada através do cálculo da distância entre o evento e um centro definido [3].
- A arquitetura mais básica para redes RBF envolve três camadas:
 - Entrada: Recepciona os dados e encaminha para camada intermediária.
 - Intermediária: Composta por funções de ativação de base radial que atuam como neurônios.
 - Saída: Pondera os resultados da camada intermediária, agregando-os linearmente para compor a resposta final da rede.

Redes de Função de Base Radial

Figura 4: Arquitetura RBF.

Redes de Função de Base Radial

- O RBFChain utiliza uma rede RBF adaptada, composta apenas pelas camadas inicial e intermediária.
- O processo de ativação da camada intermediária produz, implicitamente, grupos dos eventos recebidos.
- Mudanças de conceito são identificadas quando o grupo ativo desse agrupamento é alterado.

 Cadeias de Markov são processos estocásticos no qual a probabilidade do estado em um determinado período de tempo depende apenas do estado no período imediatamente anterior (Equação 2).

$$\mathbb{P}(X_t = s_j | X_{t-1} = s_i, \dots, X_0 = s_0) = \mathbb{P}(X_t = s_j | X_{t-1} = s_i) = p_{ij}$$
(2)

- A Cadeia de Markov pode assumir os estados a₁, a₂,..., a_r, de tal modo que a probabilidade de transição de um estado a_i para um estado a_j seja P_{ij} (um valor dependente apenas de i e j);
- As probabilidades entre estados podem ser representadas por uma matriz estocástica (Equação 3):

$$P = \begin{bmatrix} P_{11} & P_{12} & \dots & P_{1r} \\ P_{21} & P_{22} & \dots & P_{2r} \\ \vdots & \vdots & \vdots & \vdots \\ P_{r1} & P_{r2} & \dots & P_{rr} \end{bmatrix}$$
(3)

Figura 5: Representação Gráfica: Cadeia de Markov com três estados.

- O RBFChain utiliza uma Cadeia de Markov para modelar o agrupamento criado na rede RBF adaptada.
- Os grupos formados representam os estados e as ativações de novos grupos, as transições.
- As transições são refletidas no modelo markoviano através do aumento da probabilidade correspondente e a diminuição proporcional das outras transições, respeitando a condição: $0 \le P_{ij} \le 1$.

Trabalhos Relacionados

- Pesquisa na literatura em busca de trabalhos que propõem métodos para identificação de mudanças de conceito em fluxos contínuos de dados, de forma online e independente de rótulos.
- Também foram estudadas técnicas que pudessem subsidiar o desenvolvimento de novos algoritmos que atendam a esses requisitos.

Trabalhos Relacionados

- Análise dos algoritmos Implícitos/Não Supervisionados da subcategoria Detecção de Novidade / Métodos de Agrupamento.
- Análise dos métodos para detecção de Change Points em séries temporais que atuam de forma online:
 - Modelos autoregressivos;
 - Séries com autosimilaridade e periodicidade.
- Análise da aplicação de algoritmos de agrupamento estáveis.
- Identificação de lacuna de pesquisa.

RBFChain

Visão Geral

 O RBFChain atua diretamente sobre o fluxo de dados e é composto por dois componentes principais: uma Rede de Função de Base Radial (RBF) adaptada e uma Cadeia de Markov.

Visão Geral

Figura 6: Arquitetura RBFChain.

Execução de exemplo

- S = 0.11, 0.12, 0.13, 0.33, 0.34, 0.45, 0.6, 0.33, 0.25, 0.14, 0.11, 0.15
- $\sigma = 3, \lambda = 0.8, \alpha = 0.25, \delta = 0.5$

Figura 7: Execução de exemplo do RBFChain.

Execução de exemplo

Figura 8: Evolução do modelo markoviano.

Experimentos

Dados Sintéticos

- O primeiro experimento utilizou dados sintéticos produzidos por versões adaptadas das classes geradoras do MOA.
- Foram utilizados 4 conjuntos de dados, com 2.500 eventos cada.
- Os eventos possuem valores entre 0 e 1, com adição de um ruído randômico entre [-0.1, 0.2].
- Cada conjunto de dados pode representar até 2 conceitos distintos.
- Cada conceito é composto por 400 eventos.

Dados Sintéticos

Figura 9: Representação gráfica dos conjuntos de dados sintéticos.

Dados Sintéticos - Métricas

Tabela 1: Métricas utilizadas na avaliação com dados sintéticos.

Métrica	Observação				
TP	Tempo de Processamento por instância (média em seg.).				
MR	Mudanças Reais existentes no conjunto de dados.				
VP	Verdadeiro Positivo. Quantidade de detecções corretas.				
FP	Falso Positivo. Quantidade de detecções errôneas.				
ATR	Atraso de detecção.				
	Quantidade média de instâncias até a detecção.				

Dados Sintéticos - Sem mudanças de conceito

Figura 10: Comportamento dos algoritmos para o conjunto de dados sem mudanças de conceito.

Dados Sintéticos - Sem mudanças de conceito

Tabela 2: Resultados dos algoritmos para o conjunto de dados sem mudanças de conceito.

Algoritmo	TP	MR	VP	FP	ATR
RBFChain	0.013	0	0	0	_
ADWIN	0.025	0	0	0	
CUSUM	0.016	0	0	0	
DDM	0.014	0	0	0	
EDDM	0.013	0	0	0	
EWMA	0.014	0	0	0	
HDDMA	0.017	0	0	0	
PageHinkley	0.015	0	0	0	
SeqDrift1	0.017	0	0	0	

Dados Sintéticos - Sem mudanças de conceito

- Todos algoritmos testados demonstraram tolerância a ruídos e não indicaram nenhum falso positivo.
- RBFChain obteve a melhor média em tempo de processamento, juntamente com o EDDM.

Dados Sintéticos - Mudanças Abruptas

Figura 11: Comportamento dos algoritmos para o conjunto de dados com mudanças de conceito abruptas.

Dados Sintéticos - Mudanças Abruptas

Tabela 3: Resultados dos algoritmos para o conjunto de dados com mudanças de conceito abruptas.

Algoritmo	TP	MR	VP	FP	ATR
RBFChain	0.015	6	5	0	166.67
ADWIN	0.016	6	6	2046	9.00
CUSUM	0.021	6	3	0	68.83
DDM	0.015	6	3	0	38.83
EDDM	0.013	6	0	0	
EWMA	0.014	6	1	0	1.00
HDDMA	0.014	6	3	0	10.00
PageHinkley	0.015	6	1	0	16.17
SeqDrift1	0.015	6	5	0	167.50

Dados Sintéticos - Mudanças Abruptas

- RBFChain e SeqDrift1 apresentaram as melhores acurácias, identificando 5 das 6 mudanças existentes, sem produzir nenhum falso positivo.
- RBFChain apresentou o terceiro melhor tempo de processamento (TP), com uma pequena diferença para o primeiro.
- ADWIN se mostrou hipersensível.

Dados Sintéticos - Mudanças Graduais

Figura 12: Comportamento dos algoritmos para o conjunto de dados com mudanças de conceito graduais.

Dados Sintéticos - Mudanças Graduais

Tabela 4: Resultados dos algoritmos para o conjunto de dados com mudanças de conceito graduais.

Algoritmo	TP	MR	VP	FP	ATR
RBFChain	0.011	3	3	0	101.00
ADWIN	0.020	3	3	2209	1.00
CUSUM	0.014	3	2	0	83.33
DDM	0.014	3	1	1	58.33
EDDM	0.013	3	0	0	_
EWMA	0.015	3	0	0	
HDDMA	0.014	3	2	0	100.67
PageHinkley	0.014	3	1	0	22.33
SeqDrift1	0.015	3	3	1	194.33

Dados Sintéticos - Mudanças Graduais

- RBFChain obteve a melhor acurácia, identificando todas as três mudanças de conceito, sem produzir falso positivos.
- Algoritmo SeqDrift1 apresentou a segunda melhor acurácia, pois também detectou as três mudanças corretamente, entretanto, apresentou um falso positivo e uma taxa de atraso significativamente maior.
- RBFChain também apresentou o melhor tempo de processamento.

Dados Sintéticos - Mudanças Incrementais

Figura 13: Comportamento dos algoritmos para o conjunto de dados com mudanças de conceito incrementais.

Dados Sintéticos - Mudanças Incrementais

Tabela 5: Resultados dos algoritmos para o conjunto de dados com mudanças de conceito incrementais.

Algoritmo	TP	MR	VP	FP	ATR
RBFChain	0.020	1	1	2	501.00
ADWIN	0.017	1	1	1923	1.00
CUSUM	0.014	1	1	1	434.00
DDM	0.014	1	1	1	349.00
EDDM	0.013	1	0	0	
EWMA	0.016	1	0	1	
HDDMA	0.014	1	1	1	213.00
PageHinkley	0.014	1	1	1	449.00
SeqDrift1	0.016	1	1	2	331.00

Dados Sintéticos - Mudanças Incrementais

- A mudança de conceito incremental representa uma dificuldade, pois todos algoritmos que detectaram a mudança existente também produziram falso positivos.
- RBFChain e SeqDrift1, que apresentaram os melhores resultados nos testes anteriores, tiveram a pior acurácia, pois emitiram dois falsos positivo cada.
- Teste considerado inconclusivo, ressaltando a necessidade de uma investigação mais detalhada sobre a detecção de mudanças de conceito incrementais.

Dados Reais - Identificação de fixações e sacadas

- Dados de monitoramento ocular têm sido utilizados por uma quantidade significativa de pesquisas, em diferentes áreas do conhecimento.
- Os dados brutos coletados precisam ser identificados em eventos, como fixações e sacadas, para serem analisados.
- O processo de identificação é realizado por algoritmos. Entretanto, nenhum algoritmo existente na literatura permitir identificar eventos em tempo de execução.
- Para superar esta limitação, empregamos o RBFChain na identificação de fixações e sacadas.

Dados Reais - Identificação de fixações e sacadas

Figura 14: Exemplo de identificação de fixações e sacadas. Fonte: [6].

Dados Reais - Identificação de fixações e sacadas

- O experimento utilizou dados de dois macacos-prego (Dede e Juju) produzidos e cedidos pelo Instituto do Cérebro (UFRN).
- Cada conjunto de dados possui 6.200 eventos, que indicam a localização do olhar ao longo do tempo (x, y).
- O RBFChain foi ligeiramente adaptado para analisar a alternância (sacadas) e a continuidade (fixações) dos conceitos.
- Os resultados foram validados através de métricas de classificação, utilizando os resultados do algoritmo ClusterFix [6] como rótulos.

Dados Reais - Identificação de fixações e sacadas - Trajetórias

Figura 15: Trajetória Dede.

Figura 16: Trajetória Juju.

Dados Reais - Identificação de fixações e sacadas - Métricas

Tabela 6: Métricas utilizadas na avaliação com dados reais.

tamente.
mo correta-
mbém foram
t

Dados Reais - Identificação de fixações e sacadas - Dede

Figura 17: ClusterFix - Dede.

Figura 18: RBFChain - Dede.

Dados Reais - Identificação de fixações e sacadas - Dede

Tabela 7: Resultados para o conjunto de dados *Dede*.

QT	AC	PR	RE
6.200	0.87	0.98	0.88

- 87% das fixações e sacadas identificadas pelo RBFChain tiveram a mesma classificação pelo ClusterFix.
- 98% das fixações identificadas pelo RBFChain tiveram a mesma classificação pelo ClusterFix.
- 88% das fixações identificadas pelo ClusterFix também foram identificadas pelo RBFChain.

Dados Reais - Identificação de fixações e sacadas - Juju

Figura 19: ClusterFix - Juju.

Figura 20: RBFChain - Juju.

Dados Reais - Identificação de fixações e sacadas - Juju

Tabela 8: Resultados para o conjunto de dados Juju.

QT	AC	PR	RE
6.200	0.82	0.98	0.83

- 82% das fixações e sacadas identificadas pelo RBFChain tiveram a mesma classificação pelo ClusterFix.
- 98% das fixações identificadas pelo RBFChain tiveram a mesma classificação pelo ClusterFix.
- 83% das fixações identificadas pelo ClusterFix também foram identificadas pelo RBFChain.

Conclusões e Trabalhos Futuros

Conclusões

- Novo método de detecção de mudanças de conceito, capaz de detectar mudanças em tempo de execução, de forma computacionalmente eficiente e independente de rótulos;
- Novo método para identificação de fixações e sacadas em tempo de execução, com acurácia equivalente ao estado da arte.

Trabalhos Futuros

- Desenvolvimento de novas estratégias para o cálculo dos parâmetros.
- Criação de novas bases de dados experimentais.
- Investigação aprofundada sobre a detecção de mudanças incrementais.

Referências i

C. C. Aggarwal.

Data Streams: Models and Algorithms (Advances in Database Systems).

Springer-Verlag, Berlin, Heidelberg, 2006.

C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu.

A framework for clustering evolving data streams.

In Proceedings of the 29th International Conference on Very Large Data Bases - Volume 29, VLDB '03, pages 81-92, VLDB Endowment, 2003.

A. Braga, A. C. Carvalho, and T. B. Ludermir.

Redes Neurais Artificiais: Teoria e aplicações, volume 2.

LTC Editora, 2007.

Referências ii

R. O. Duda, P. E. Hart, and D. G. Stork.

Pattern Classification (2Nd Edition).

Wiley-Interscience, New York, NY, USA, 2000.

J. a. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia.

A survey on concept drift adaptation.

ACM Comput. Surv., 46(4):44:1–44:37, Mar. 2014.

S. D. König and E. A. Buffalo.

A nonparametric method for detecting fixations and saccades using cluster analysis: Removing the need for arbitrary thresholds.

Journal of Neuroscience Methods, 227:121 – 131, 2014.

Referências iii

I. Zliobaite.

Learning under concept drift: an overview.

CoRR, abs/1010.4784, 2010.

M. Zwolenski and L. Weatherill.

The digital universe rich data and the increasing value of the internet of things.

Australian Journal of Telecommunications and the Digital Economy, 2, 10 2014.