带*表示难度较大或者不方便设置待填空白的知识点。

网页版数学工具:

WolframAlpha (https://www.wolframalpha.com/)

GeoGebra (https://www.geogebra.org/)

Desmos (https://www.desmos.com).

1 函数

- 1. 求 $y = \frac{Ax + B}{Cx + D}$ $(AD BC \neq 0)$ 的值域 (只需写出计算方法,无需具体结果):
- 2. 设 k > 0, b > 0, 则 $y = kx + \frac{b}{x}$ 与 $y = kx \frac{b}{x}$ 的图像如下,这两种函数都是双曲线,

3. 求 $y = \frac{x^2 + Ax + B}{x + C}$ ①或 $y = \frac{x + C}{x^2 + Ax + B}$ ②的值域 (若分子或分母的最高次项系数不为 1,则先将系数提取出来),方法一:换元 _____;方法二: ______,以①式为例写出主要过程:要绘

制①或②的图像,可以先绘制 $y = (x^2 + Ax + B)(x + C)$ 的图像,因为这个三次函数的正负号与①或②式的正负号是一致的。

4. 求
$$y = \frac{\sqrt{Ax^2 + B}}{Cx^2 + D}$$
 的值域,先提取系数,
$$y = \frac{\sqrt{A}}{C} \cdot \frac{\sqrt{x^2 + \frac{B}{A}}}{x^2 + \frac{D}{C}}, \, \,$$
换元, $t =$ ________,那么

$$x^{2} = t^{2} - \frac{B}{A},$$

$$y = \frac{\sqrt{A}}{C} \cdot \frac{t}{t^{2} - \frac{B}{A} + \frac{D}{C}} = \frac{\sqrt{A}}{C} \cdot \frac{1}{t + \left(\frac{D}{C} - \frac{B}{A}\right)\frac{1}{t}}$$

5. 给定 4 个实数 x_1, x_2, x_3, x_4 ,其中任意两个都不相等,设 $y_i = \frac{Ax_i + B}{Cx_i + D}$, $(AD - BC \neq 0, i = 1, 2, 3, 4)$,那么,

$$\frac{(y_1 - y_3)(y_2 - y_4)}{(y_1 - y_4)(y_2 - y_3)} = \frac{(x_1 - x_3)(x_2 - x_4)}{(x_1 - x_4)(x_2 - x_3)}$$

- 7. 恒成立问题或有解问题 (\exists 表示存在, \forall 表示任意。 $f(x)_{\max}, f(x)_{\min}$ 分别表示 f(x) 在区间 (a,b) 上的最大值、最小值。)

$$\exists x_0 \in (a,b), \ f(x_0) > m \Rightarrow \underline{\qquad}$$

$$\exists x_0 \in (a,b), \ f(x_0) < m \Rightarrow \underline{\qquad}$$

$$\forall x \in (a,b), \ f(x) < m \Rightarrow \underline{\qquad}$$

$$\forall x \in (a,b), \ f(x) > m \Rightarrow \underline{\qquad}$$

8. 对数运算法则:

$$\log_a(MN)=$$
_____. $\log_a\left(\frac{M}{N}\right)=$ _____. $\log_aM^n=$ _____, $\log_{a^n}M=$ _____. 换底公式: $\log_aM=$ ____.

9. 常见函数方程 (写出符合以下等式的函数):

$$f(x_1 + x_2) = f(x_1) + f(x_2)$$

$$f\left(\frac{x_1 + x_2}{2}\right) = \frac{f(x_1) + f(x_2)}{2}$$

$$f(x_1x_2) = f(x_1)f(x_2)$$

$$f(x_1 + x_2) = f(x_1)f(x_2)$$

$$f(x_1x_2) = f(x_1) + f(x_2)$$

$$f(x_1x_2) = x_2f(x_1) + x_1f(x_2)$$

$$f(x_1x_2) + f(x_1 - x_2) = 2\lambda f(x_1)f(x_2)$$

$$f(x_1 + x_2) = f(x_1) + f(x_2) + 2\lambda x_1x_2$$

10. *
$$f(x) = \ln \frac{1+x}{1-x}$$
 或 $f(x) = \ln \frac{1-x}{1+x}$,则
$$f(x_1) + f(x_2) = f(\underline{\hspace{1cm}}$$

11. $\arctan x_1 + \arctan x_2 =$ _____.

12. 函数凹凸性,填 "<"或 ">",请结合图像记忆。 $x_1, x_2 \in (0, \pi), x_1 \neq x_2$,

$$\frac{1}{2}(\sin x_1 + \sin x_2) - \sin \frac{x_1 + x_2}{2}$$

$$x_1, x_2 \in (0, \frac{\pi}{2}), \ x_1 \neq x_2,$$

$$\frac{1}{2}(\tan x_1 + \tan x_2)$$
_____ $\tan \frac{x_1 + x_2}{2}$

$$x_1, x_2 \in \mathbf{R}, \ x_1 \neq x_2,$$

$$\frac{e^{x_1} + e^{x_2}}{2} - e^{\frac{x_1 + x_2}{2}}$$

$$x_1, x_2 \in (0, +\infty), \ x_1 \neq x_2,$$

$$\frac{\ln x_1 + \ln x_2}{2} \underline{\qquad} \ln \frac{x_1 + x_2}{2}$$

$$x_1, x_2 \in (0, +\infty), \ x_1 \neq x_2, \ \alpha \in \mathbf{R}, \ \alpha > 1$$

$$\frac{x_1^{\alpha} + x_2^{\alpha}}{2} - - \left(\frac{x_1 + x_2}{2}\right)^{\alpha}$$

- 13. 若 f(x) 满足 $f(x) = \pm \frac{1}{f(x+a)}$,那么 f(x) 的一个周期是
- 14. 若 f(x) 满足 f(x+a) = f(b-x),则 f(x) 的一条对称轴是
- 15. 如果 f(x) 同时具有对称轴 x = a 和对称中心 (b, c),且 $a \neq b$,那么 f(x) 具有周期 $T = _____$.
- 16. 三变量均值不等式: 设 $a,b,c\geqslant 0$,则 $\frac{a+b+c}{3}\geqslant$
- 17. 设 a, b > 0, x > 0,利用上面的三变量均值不等式,有: $ax^2 + \frac{b}{x} = ax^2 + \frac{b}{2x} + \frac{b}{2x} \geqslant _{-----};$ $ax + \frac{b}{x^2} = \frac{1}{2}ax + \frac{1}{2}ax + \frac{b}{x^2} \geqslant _{-----}.$
- 18. 零点存在定理: 若函数 f(x) 在闭区间 [a,b] 连续,且 $f(a)\cdot f(b)$ ______,则一定存在 $x_0\in (a,b)$,使 $f(x_0)=0$. 此定理为二分法找函数零点的理论基础。
- 19. * 记 $f_0(x) = x$, $f_1(x) = f(x)$, $f_{n+1}(x) = f(f_n(x))$. 称 $f_n(x)$ 为函数 f(x) 的 n 次迭代。

$J_n(x)$ 內函級 J	(x) 的 n 次运气。
f(x)	$f_n(x)$
$x + 2\sqrt{x} + 1$	
$\frac{x}{a+bx}$	
$\sqrt[k]{ax^k+b}$	
$x^2 + 2x$	
$\frac{x^2}{2x-1}$	$\frac{x^{2^n}}{x^{2^n} - (x-1)^{2^n}}$

20. $f_1(x) = f(x) = \frac{1+x}{1-x}, \ f_{n+1}(x) = f(f_n(x)), \ n \in \mathbf{N}^+, \ k \in \mathbf{N}, \ \text{Iff } f_{4k+1}(x) = \underline{\qquad}, f_{4k+2}(x) = \underline{\qquad}, \ f_{4k+3}(x) = \underline{\qquad}, f_{4k+4}(x) = \underline{\qquad}.$

2 排列、组合与二项式定理

- 21. 排列数: $P_n^k =$ ________,或者写成 A_n^k .
- 23. 二项式定理: $(a+b)^n =$
- 24. $(a+b+c)^2 =$ ______. $(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c})^2$ 的结果类似。
- 25. 杨辉三角:

1
1 1
1 2 1

第 n+1 行的系数之和为 $\sum_{k=0}^{n} C_{n}^{k} =$ _______

- 26. * 偶数件不同物品中选出奇数件物品的方法数 C_{2n}^1 , C_{2n}^3 , C_{2n}^5 , ... 都是 _____数。(填"奇"或"偶")
- 27. * 组合恒等式:

$$\sum_{k=r}^{n} C_{k}^{r} = \underline{\qquad}, \quad \sum_{k=0}^{r} C_{m}^{k} C_{n}^{r-k} = \underline{\qquad}$$

$$\sum_{k=1}^{n} k C_{n}^{k} = \underline{\qquad}, \quad \sum_{k=1}^{n} k^{2} C_{n}^{k} = \underline{\qquad}$$

28. * 设 n 个元素错排的方案数为 D_n , $D_1 = 0$, $D_2 = 1$, 则

$$D_n = (n-1)(D_{n-1} + D_{n-2})$$

$$D_n - nD_{n-1} = -[D_{n-1} - (n-1)D_{n-2}] = (-1)^n$$

$$\frac{D_n}{n!} - \frac{D_{n-1}}{(n-1)!} = \frac{(-1)^n}{n!}$$

$$D_n = n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \dots + (-1)^n \frac{1}{n!} \right]$$

29. $(ax^{\alpha} + bx^{\beta})^n$ 展开式的通项为

$$T_{r+1} = C_n^r a^{n-r} b^r x^{(n-r)\alpha + r\beta},$$

设 $C_n^m a^{n-m} b^m$ 是最大的系数,则

30. 设 $k \in \mathbb{N}$, 在从 30k + 1 到 30k + 30 这连续 30 个整数中, 不是 2 或 3 或 5 的倍数的整数一共有 _____ 个。

3 概率论与数理统计

- 32. 数学期望 (或均值) 的定义: E(X) = _______, 性质: E(aX + b) = ______. 方差: $D(X) = E\{[X E(X)]^2\} =$ _______, 性质: D(aX + b) = ______.
- 33. 伯努利大数定律: 独立地重复一个伯努利试验 n 次, 当 n 很大时, 频率逼近概率。
- 34. 概率加法公式:

$$P(A_1 \cup A_2) = \underline{\hspace{1cm}}$$

- 35. 条件概率公式: $P(B \mid A) =$ _____. 概率乘法公式: $P(A \cap B) =$ ____. 若 A, B 相互独立,则 $P(A \cap B) =$ ____.
- 36. 全概率公式: P(A) =_____.
- 37. * 贝叶斯公式:

$$P(\Omega_i \mid A) = \underline{\hspace{1cm}}$$

- 41. 正态分布: $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \ \mu \in \mathbf{R}, \ \sigma > 0.$ 数学期望为_______,方差为______.若 $X \sim N(\mu, \sigma^2)$,则 $\frac{X-\mu}{\sigma} \sim$ _______ (标准正态分布).
- 42. 最小二乘法,回归直线 $\hat{y} = \hat{a} + \hat{b}x$.

 $\hat{a} = \overline{y} - \hat{b}\overline{x}$

$$\hat{b} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{\sum_{i=1}^{n} x_i y_i - n\overline{x}\,\overline{y}}{\sum_{i=1}^{n} x_i^2 - n\overline{x}^2}$$
$$= \frac{n \sum_{i=1}^{n} x_i y_i - \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$

回归直线通过散点图的几何中心 (\bar{x},\bar{y}) .

43. 样本相关系数

$$\begin{split} r &= \frac{\sum\limits_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum\limits_{i=1}^{n} (x_i - \overline{x})^2 \cdot \sqrt{\sum\limits_{i=1}^{n} (y_i - \overline{y})^2}}} \\ &= \frac{\sum\limits_{i=1}^{n} x_i y_i - n \overline{x} \overline{y}}{\sqrt{\sum\limits_{i=1}^{n} x_i^2 - n \overline{x}^2} \cdot \sqrt{\sum\limits_{i=1}^{n} y_i^2 - n \overline{y}^2}} \\ &= \frac{n \sum\limits_{i=1}^{n} x_i y_i - \left(\sum\limits_{i=1}^{n} x_i\right)\left(\sum\limits_{i=1}^{n} y_i\right)}{\sqrt{n \sum\limits_{i=1}^{n} x_i^2 - \left(\sum\limits_{i=1}^{n} x_i\right)^2 \cdot \sqrt{n \sum\limits_{i=1}^{n} y_i^2 - \left(\sum\limits_{i=1}^{n} y_i\right)^2}} \end{split}$$

44. (卡方) 独立性检验, 2×2 列联表:

	Y = 0	Y = 1	合计
X = 0	a	b	a+b
X = 1	c	d	c+d
合计	a+c	b+d	n = a + b + c + d

$$\chi^{2} = \frac{n(ad - bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$$

 χ^2 越大,说明"X与Y有关系"成立的可能性越大。

4 三角函数

45. 正余弦和角、差角公式:

$$\cos(\alpha \pm \beta) = \underline{\hspace{2cm}}$$
$$\sin(\alpha \pm \beta) = \underline{\hspace{2cm}}$$

46	_	倍角	八	士.
40.		ᇚᄱ	Δ	14:

$$\sin 2x = \underline{\qquad}$$

$$\cos 2x = \underline{\qquad}$$

(余弦二倍角需写出三种形式)

47. * 三倍角公式:

$$\sin 3x = \underline{\hspace{1cm}}$$

$$\cos 3x = \underline{\hspace{1cm}}$$

48. 余弦的递推关系:

$$\cos(n+1)\theta = 2\cos\theta\cos n\theta - \underline{\hspace{1cm}}$$

49. 和差化积:

$$\sin x + \sin y = \underline{\qquad}$$

$$\cos x + \cos y = \underline{\qquad}$$

50. 积化和差:

$$\sin x \sin y = \underline{\hspace{2cm}}$$

$$\cos x \cos y = \underline{\hspace{2cm}}$$

$$\sin x \cos y = \underline{\hspace{2cm}}$$

51. 辅助角公式:

$$a\sin x + b\cos x$$

$$= \underline{\qquad \qquad \left(\tan \varphi = \frac{b}{a}\right)}$$

变体一:

$$a\sin x + b\cos(x + x_0)$$

变体二:

$$a\cos^2 x + b\sin^2 x + c\sin x\cos x$$

变体三:

$$a\sin^2 x + b\cos x = \underline{\hspace{1cm}}$$

52. *

$$\sum_{k=1}^{n} \cos kx = \underline{\qquad}$$

$$\sum_{k=1}^{n} \sin kx = \underline{\qquad}$$

$$53. * \cos \frac{x}{2} \cos \frac{x}{4} \cdots \cos \frac{x}{2^n} = \underline{\qquad}.$$

$$54. * \Delta ABC$$
 中的恒等式 $(A+B+C=\pi)$:
$$\sin A + \sin B + \sin C = \underline{\hspace{1cm}}$$

$$\cos A + \cos B + \cos C = \underline{\hspace{1cm}}$$

$$\tan A + \tan B + \tan C = \underline{\hspace{1cm}}$$

$$\tan \left(\frac{A}{2}\right) \tan \left(\frac{B}{2}\right) + \tan \left(\frac{B}{2}\right) \tan \left(\frac{C}{2}\right) + \tan \left(\frac{A}{2}\right) \tan \left(\frac{C}{2}\right) = \underline{\hspace{1cm}}$$

55. 对于 $\triangle ABC$,考虑 $A=B=C=\frac{\pi}{3}$ 的特殊情形,以及两个角趋近于 0,第三个角趋近于 π 时的极限 (或者一个角趋近于 0,剩余两个角趋近于 $\frac{\pi}{2}$),有

56. 当 $x \in \left(0, \frac{\pi}{2}\right)$ 时, $\sin x > \frac{2}{\pi}x$, $\cos x > 1 - \frac{2}{\pi}x$. 对于锐角三角形 ABC,有

$$\sin A + \sin B + \sin C > \underline{\hspace{2cm}}$$

$$\cos A + \cos B + \cos C > \underline{\hspace{2cm}}$$

$$\tan A + \tan B + \tan C \geqslant \underline{\hspace{2cm}}$$

57. * 参数方程 $\begin{cases} x = A\cos(\omega t + a) \\ y = B\cos(\omega t + b) \end{cases}, AB \neq 0,$ 消去参数 t 可得:

5 复数

59. 虚数单位 i 的整数次幂的周期性:

$$\mathbf{i}^{4n} = \underline{\hspace{1cm}}, \ \ \mathbf{i}^{4n+1} = \underline{\hspace{1cm}}, \ \ \mathbf{i}^{4n+2} = \underline{\hspace{1cm}}, \ \ \mathbf{i}^{4n+3} = \underline{\hspace{1cm}}.$$

60. 共轭复数的性质:

$$\overline{\overline{z}} = \underline{\hspace{1cm}}, \overline{z_1 \pm \underline{z_2}} = \underline{\hspace{1cm}},$$
 $\overline{z_1 \cdot z_2} = \underline{\hspace{1cm}}, \overline{\left(\frac{z_1}{z_2}\right)} = \underline{\hspace{1cm}}.$

61. 复数的模的性质:

$ z = \underline{\hspace{1cm}}$	$z\overline{z} = $,
$ z_1z_2 = $, $\left rac{z_1}{z_2} ight =$ $_{___}$,
$ z_1 + z_2 ^2 + z_1 - z_2 ^2$	$ ^2 = \frac{ ^{2} ^{2}}{ }$	

62. 三角不等式: _____ $\leq |z_1 \pm z_2| \leq$ _____.

64. 去掉 $\sqrt{a+bi}$ 的根号的方法: 设 $\sqrt{a+bi} = x+yi$, 两 边平方, 然后比较左右两边的实部和虚部, 可得到两个 方程: _______.

65. 欧拉公式 $e^{ix} =$ ______.

66. * 自然对数的底数 e = 2.718281828 · · · 的定义:

e = _____

67. $\cos(n\theta) + i\sin(n\theta) = (\underline{\hspace{1cm}})^n$,将等号右边用二项式定理展开后,比较左右两边的实部和虚部,即可得到任意的 n 倍角公式。

68. 若 $x^n = 1$, $n \in \mathbb{N}^+$, 则称 x 为 n 次单位根,复数范围 内, x 共有 n 个不同的值,分别是

____·

69. $(x + iy)(\cos \theta + i \sin \theta)$ = (坐标旋转公式).

6 向量

70. 零向量具有任意方向。

71. $\overrightarrow{a} = (a_1, a_2, a_3)$, $\overrightarrow{b} = (b_1, b_2, b_3)$,两者的数量积 ("点乘") 定义为

$$\overrightarrow{a}\cdot\overrightarrow{b}=|\overrightarrow{a}||\overrightarrow{b}|\cos\langle\overrightarrow{a},\overrightarrow{b}\rangle=\underline{\hspace{1cm}}$$

 \overrightarrow{a} , \overrightarrow{b} 的夹角的余弦为

$$\cos\langle \overrightarrow{a}, \overrightarrow{b} \rangle =$$

72. 二阶行列式: $\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \underline{\hspace{1cm}}$

73. * $\overrightarrow{a} = (a_1, a_2, a_3)$, $\overrightarrow{b} = (b_1, b_2, b_3)$, 这两者的向量积 ("叉乘") 定义为

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

$$(a_1^2 + a_2^2)(b_1^2 + b_2^2)$$

$$= (a_1b_1 + a_2b_2)^2 + \underline{\hspace{1cm}}$$

75. 向量基本定理: 如果 $\overrightarrow{e_1}$ 与 $\overrightarrow{e_2}$ 是平面上两个不平行的 向量,那么该平面上的任意向量 \overrightarrow{a} ,都可唯一地表示 为 $\overrightarrow{e_1}$ 与 $\overrightarrow{e_2}$ 的线性组合,即存在唯一的一对实数 λ 与 μ ,使得 ______.

76. 平面上有不同的四点 O, P, Q, R,设 $\overrightarrow{OR} = \lambda \overrightarrow{OP} + \mu \overrightarrow{OQ}$,则 P, Q, R 三点共线的充要条件是

7 解三角形

78. 外心: 三条______ 线的交点; 内心: 三条 线的交点;

· · · · · · · · · · · · · · · · · · ·	线的交点; 线的交点。		r 为内 ⁻ 示).
于 ΔABC ,重心 G α		88.	* 对于

80. 正弦定理:

 $\overrightarrow{OG} = \underline{\qquad} (\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC})$

R 为三角形外接圆半径。

81. 余弦定理:

$$c^{2} = a^{2} + b^{2} - 2\overrightarrow{a} \cdot \overrightarrow{b}$$

$$= \underline{\qquad}$$

$$\overrightarrow{a} \cdot \overrightarrow{b} = \underline{\qquad}$$

$$\cos C = \underline{\qquad}$$

- 82. 对任意三角形,"大边"是"大角"的充要条件。
- 83. * 对于 Δ*ABC*,

$$a + b + c \geqslant 2(a\cos A + b\cos B + c\cos C)$$

将三个余弦定理的式子相加可得:

$$a^{2} + b^{2} + c^{2} = 2bc \cos A + 2ac \cos B + 2ab \cos C$$

将上式中的 a,b,c 换成任意实数 x,y,z, 同时保持 $A+B+C=\pi$, 那么有嵌入不等式

$$x^2 + y^2 + z^2 \geqslant$$

- 84. $(a^2 b^2)^2 + (2ab)^2 = (_____)^2$,具有勾股定理的形式。让 $a, b(a \neq b)$ 取正整数,就能得到勾股数,比如 (3,4,5), (5,12,13), (7,24,25), (8,15,17), (9,40,41), (11,60,61), (20,21,29).
- 85. 把上一条中的 a^2 换成 \overrightarrow{a} , b^2 换成 \overrightarrow{b} , 实数乘法换成 向量点乘,就得到向量的极化恒等式:

86.	对于 ΔABC , R 为外接圆半径, r 为内切圆半径, $p=\frac{a+b+c}{2}$ 为三角形周长的一半,三角形的面积公式有
	两边夹角:
	只含 R, A, B, C:
	只含 R,a,b,c:
	只含 p,r:
	只含 <i>p,a,b,c</i> :

- 88. * 对于 $\triangle ABC$, 外森比克不等式:

$$a^2 + b^2 + c^2 \geqslant \underline{\qquad} S_{\Delta ABC}$$

89. * ΔABC 的<u>费马点</u>: 分别以 AB,BC,AC 为边,在 ΔABC 外部 (或内部) 作三个等边三角形,这三个等 边三角形的外接圆会交于同一点,即费马点。当三角形 的最大内角小于 120° 时,费马点位于三角形内部,设 费马点与三个顶点连线长度分别为 x,y,z,则

$$xy + yz + zx = \frac{4}{\sqrt{3}}S_{\Delta ABC} \leqslant \frac{1}{3}(a^2 + b^2 + c^2)$$

- 90. * 三角形的内心和外心的距离为 $\sqrt{R(R-2r)}$. 任意三角形的外接圆半径大于等于 2 倍内切圆半径 $(R\geqslant 2r)$.
- 91. * $\triangle ABC$ 内部有任意一点 O,记 $\triangle AOB$, $\triangle BOC$, $\triangle COA$ 的面积分别为 S_C, S_A, S_B ,那么有:

$$S_A \cdot \underline{\hspace{1cm}} + S_B \cdot \underline{\hspace{1cm}} + S_C \cdot \underline{\hspace{1cm}} = \overrightarrow{0}$$

♦ 当 $O \neq \Delta ABC$ 的重心时,

$$S_A:S_B:S_C=$$

♦ 当 O 是 $\triangle ABC$ 的垂心时,

$$S_A:S_B:S_C=$$

♦ 当 $O \in \Delta ABC$ 的内心时,

$$S_A:S_B:S_C=\underline{\hspace{1cm}}$$

♦ 当 O 是 $\triangle ABC$ 的外心时,

$$S_A:S_B:S_C=$$

92. D 是 $\triangle ABC$ 的 BC 边上的一点,则 $\frac{|AB|}{|AC|} = \frac{|BD|}{|CD|}$ 的 充分必要条件是: AD 是________。

93. (皮克公式) 横纵坐标均为整数的点称为格点, 所有顶点均在格点的多边形称为格点多边形。设格点多边形内部有 N 个格点, 边界上有 B 个格点。则多边形的面积为

8 导数与积分

94. 基本初等函数的导数公式:

$$(x^{\alpha})' = \underline{\hspace{1cm}}, (\ln x)' = \underline{\hspace{1cm}},$$
 $(a^{x})' = \underline{\hspace{1cm}}, (e^{x})' = \underline{\hspace{1cm}},$
 $(\sin x)' = \underline{\hspace{1cm}}, (\cos x)' = \underline{\hspace{1cm}},$
 $(\tan x)' = \underline{\hspace{1cm}}.$

95. 导数运算法则:

$$[c_1 f(x) + c_2 g(x)]' = \underline{\qquad}$$
$$[f(x) \cdot g(x)]' = \underline{\qquad}$$
$$\left[\frac{f(x)}{g(x)}\right]' = \underline{\qquad}$$

96.

$$[f(x) \cdot x^n]' = \underline{\qquad}$$

$$\left[\frac{f(x)}{x^n}\right]' = \underline{\qquad}$$

- 97. 复合函数求导法则: [g(f(x))]' = g'(u)f'(x), 再将 u 换 回 f(x). 比如 $[\ln f(x)]' =$ _____
- 98. 设 $f(x) = (x x_0)^n g(x)$, 两边取自然对数, 有 $\ln f(x) = n \ln(x - x_0) + \ln q(x)$

两边求导,有

$$\frac{f'(x)}{f(x)} = \underline{\hspace{1cm}}$$

- 可导偶函数的导函数是____ 函数。
- 100. 牛顿-莱布尼茨公式 (微积分基本公式):

$$\int_{a}^{b} f'(x) \mathrm{d}x = \underline{\qquad}$$

101. * 罗必塔 (L'Hospital) 法则: 当 $x \to x_0$ 时, 如果 f(x)和 g(x) 均趋于 0 或 $\pm \infty$,那么

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

特别地, $\lim_{x\to 0} x \ln x =$ ____

- 102. 把 $e^x \ge x + 1$ 中的 x 换成 x 1,有 $e^{x-1} \ge x$,两边 同乘 e,有 ____.
- 103. 把 $e^x \ge x + 1$ 中的 x 换成 -x,有 $e^{-x} \ge -x + 1$,当 x < 1 时,两边同时取倒数,有 $e^x \le$
- 104. x 换成 $\alpha x(\alpha > 0)$, 有 $e^{\alpha x} \geqslant \alpha x + 1$, 当 $1 + \alpha x > 0$ 时,两边同时开 α 次方,有 $e^x \ge$

105. * e 是自然对数的底数, $n \in \mathbb{N}^+$,则

$$2\leqslant \left(1+\frac{1}{n}\right)^n<\mathrm{e}<\left(1+\frac{1}{n}\right)^{n+1}$$

- 106. 对于三次函数 $y = f(x) = ax^3 + bx^2 + cx + d$,对称中 心的坐标为 _____,对称中心也是三次函数 的拐点 (二阶导数为 0, 且二阶导数在此点左右异号)。
- 107. * 对任意 n 次首一多项式 P(x)(最高次项系数为 1 的 多项式),设M代表|P(x)|在区间[-1,1]上的最大值, 那么无论其它项的系数怎么变化 (保持首一),M 总是 大于等于
- 108. * 函数 f(x) 在 $x = x_0$ 处的泰勒 (Taylor) 级数 $f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2$ $+\frac{f'''(x_0)}{2!}(x-x_0)^3+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\cdots$ 当 $x_0 = 0$ 时,

$$e^{x} = \underbrace{ - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + \dots}_{\text{cos } x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + \dots}_{\text{cos } x = 1 + \frac{1}{2}x - \frac{1}{2 \cdot 4}x^{2} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 6}x^{3} - \dots}_{\text{ln}(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + (-1)^{n-1} \frac{x^{n}}{n} + \dots}_{\text{ln} \frac{1+x}{1-x}} = 2 \underbrace{ - \frac{1}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + (-1)^{n-1} \frac{x^{n}}{n} + \dots}_{\text{ln} \frac{1+x}{1-x}}_{\text{ln} \frac{1+x}{1-x}} = 2 \underbrace{ - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + (-1)^{n-1} \frac{x^{n}}{n} + \dots}_{\text{ln} \frac{1+x}{1-x}}_{\text{ln} \frac{1+x}{1-x}}}_{\text{ln} \frac{1+x}{1-x}}$$

- 99. 可导奇函数的导函数是_____ 函数 (填"奇"或"偶"); 109. 当 |x| < 0.2 时, $\sqrt{1+x} \approx 1 + \frac{1}{2}x$ (x 可正可负). 而且 |x| 越小,这个估算公式越精确 $\sqrt{1.1} = 1.048808 \cdots \approx 1 + \frac{1}{2} \times 0.1 = 1.05$ $\sqrt{73} = 8.544003 \dots = \sqrt{64+9} = \sqrt{64\left(1+\frac{9}{64}\right)} =$
 - 110. 拉格朗日中值定理: 如果函数 f(x) 满足: (1) 在闭区间 $[x_1, x_2]$ 上连续; (2) 在开区间 (x_1, x_2) 内可导。 那么至少存在一点 $\xi \in (x_1, x_2)$, 使得 $f'(\xi) =$ $\frac{f(x_2) - f(x_1)}{f(x_2)}$. (至少能作出一条和割线斜率相等的切
 - 111. * 厄米特-哈达玛 (Hermite-Hadamard) 不等式: f(x) 在 区间 [a,b] 上连续且可积, $\forall x_1, x_2 \in [a,b], x_1 < x_2$, 如 果 $f\left(\frac{x_1+x_2}{2}\right) < \frac{1}{2}[f(x_1)+f(x_2)]$ (等价于 f''(x)>0), 那么有

$$f\left(\frac{x_1+x_2}{2}\right) < \frac{1}{x_2-x_1} \int_{x_1}^{x_2} f(x) dx < \frac{f(x_1)+f(x_2)}{2}$$

112. * 小于等于 n 的全部正整数的 $1 \sim 5$ 次方的求和结果:

$$1^{1} + 2^{1} + 3^{1} + \dots + n^{1} = \frac{n^{2}}{2} + \frac{n}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n^{3}}{3} + \frac{n^{2}}{2} + \frac{n}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{4}}{4} + \frac{n^{3}}{2} + \frac{n^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n^{5}}{5} + \frac{n^{4}}{2} + \frac{n^{3}}{3} - \frac{n}{30}$$

$$1^{5} + 2^{5} + 3^{5} + \dots + n^{5} = \frac{n^{6}}{6} + \frac{n^{5}}{2} + \frac{5n^{4}}{12} - \frac{n^{2}}{12}$$

 $1 \sim n$ 的 k 次方求和结果是关于 n 的 k+1 次多项式,多项式的系数从高次项到低次项依次为

$$\frac{1}{k+1}$$
, $\frac{1}{2}$, $\frac{k}{12}$, 0, $-\frac{k(k-1)(k-2)}{720}$,...

以上这些求和公式可以写成如下通式,

$$1^{k} + 2^{k} + 3^{k} + \dots + n^{k}$$

$$= \frac{1}{k+1} \sum_{j=0}^{k} C_{k+1}^{j} B_{j} n^{k+1-j} + n^{k}$$

$$= \frac{1}{k+1} n^{k+1} + \frac{1}{2} n^{k} + \frac{k}{12} n^{k-1} + \dots$$
(2)

 B_j 为伯努利数, $B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_3 = 0, B_4 = -\frac{1}{30}, B_5 = 0, B_6 = \frac{1}{42} \cdots$ 伯努利数满足递推 关系: $0 = \sum_{j=0}^{n-1} C_n^j B_j \ (n \ge 2)$. (1) 式实际上是欧拉-麦克劳林求和公式的一个特例。

113. 黎曼 zeta 函数:
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} (s > 1)$$
, $\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \underline{\hspace{1cm}}$.

114. 非整数次幂求和 (只有近似公式,没有精确公式):

$$\sum_{l=1}^{n} l^{-1/2} \leqslant \underline{\hspace{2cm}}$$

$$\sum_{l=1}^{n} l^{-1/3} \leqslant \underline{\hspace{2cm}}$$

$$\sum_{l=1}^{n} l^{1/3} \leqslant \underline{\hspace{2cm}}$$

$$\sum_{l=1}^{n} l^{1/2} \leqslant \underline{\hspace{2cm}}$$

系数同样满足第112条中 (2) 式的规律,只是其中的 k 不是正整数,同时不要出现**负幂项**。常数项的作用是提高近似公式的精度,可通过令 n=1 来确定常数项。

9 不等式

- | 116. 设 a, b, c, d 均大于 0,且 $\frac{a}{b} < \frac{c}{d}$,那么 $\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$.
- 117. $a, b \in \mathbf{R}$,则 $\frac{|a+b|}{1+|a+b|}$ $\frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$. (填 <, >, \leq , \geq 之一。)
- 118. 设 a>1,当 $k\geqslant 1$ 时, $a^k-1\geqslant a^k-a^{k-1}=(a-1)a^{k-1}$,所以

$$\frac{1}{a^k - 1} \leqslant \underline{\hspace{1cm}}$$

- 119. 伯努利不等式: 当 x > -1 时,

 - 若 $0 < \alpha < 1$,则 $(1+x)^{\alpha}$ ___1 + αx . 用数学归纳法或求导证明。
- 120. * 广义伯努利不等式:

若
$$x_1, x_2, \cdots x_n > 0, n \geqslant 2$$
,则

$$(1+x_1)(1+x_2)\cdots(1+x_n)$$

> $1+(x_1+x_2+\cdots+x_n)$

若
$$x_1, x_2, \dots x_n \in (0, 1), n \geqslant 2$$
,则

$$(1-x_1)(1-x_2)\cdots(1-x_n)$$

> $1-(x_1+x_2+\cdots+x_n)$

用数学归纳法证明。

121.
$$x \in \left(0, \frac{\pi}{2}\right)$$
,

$$\frac{1}{x + \frac{x^3}{3}} < \frac{3x}{3 - x^2} < \tan x < \frac{x}{1 - \frac{2}{\pi}x}$$

122. * $x \in (0,1)$,

$$\frac{x}{\sqrt{1+x^2}} < \frac{x}{\sqrt{1+\frac{2}{3}x^2}} < \sin x < \frac{x}{\sqrt{1+\frac{1}{3}x^2}} < x$$

$$< \frac{x}{\sqrt{1-\frac{1}{3}x^2}} < \tan x < \frac{x}{\sqrt{1-\frac{2}{3}x^2}} < \frac{x}{\sqrt{1-x^2}}$$

- 124. $x \in (0,1)$, $e^{2x} < \frac{1+x}{1-x}$. 两边取自然对数,有 2x <_____. 令 $t = \frac{1+x}{1-x} \in (1,+\infty)$,则 x =_____, 上面的不等式变为
- 125. $t \in (1, +\infty)$, $\ln t <$ ______(含 \sqrt{t}).

126. 对任意两个不等的正实数 x_1, x_2 , 有

$$\sqrt{x_1 x_2} < \frac{x_2 - x_1}{\ln x_2 - \ln x_1} < \frac{x_1 + x_2}{2}$$

 $\frac{x_2-x_1}{\ln x_2-\ln x_1}$ 称为对数平均值。把上式中的 x_1 换成 e^{x_1} , x_2 换成 e^{x_2} , 可得:

- 127. 两变量均值不等式 (包含 4 种均值):
- 128. * 将上式推广到 n 变量情形: 调和均值 $(H_n) \leq \Pi$ 几何均值 $(G_n) \leq \Pi$ 算术均值 $(A_n) \leq \Pi$ 平方均值 (Q_n)

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \leqslant \sqrt[n]{a_1 a_2 \dots a_n} \leqslant \frac{a_1 + a_2 + \dots + a_n}{n} \leqslant \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}}$$

其中, $a_1, a_2, \cdots a_n$ 均非负。

129. 给定 $\lambda a + \mu b = C$,求 ab 的最大值和 $\frac{k_1}{a} + \frac{k_2}{b}$ 的最小值。其中, $\lambda, \mu, C, k_1, k_2$ 为正的常数,a, b 为正的变量。

$$ab = \frac{1}{\lambda\mu}(\lambda a \cdot \mu b) \leqslant \underline{\qquad \qquad }$$

$$\frac{k_1}{a} + \frac{k_2}{b} = \left(\frac{k_1}{a} + \frac{k_2}{b}\right) \cdot \frac{1}{C}(\lambda a + \mu b)$$

- 130. 若 $x \in \mathbf{R}$,则 $\sqrt{x^2 + 4} + \frac{1}{\sqrt{x^2 + 4}} \geqslant \underline{\qquad}$.
- 131. * 加权算术-几何均值不等式: 正数 λ_k 满足 $\lambda_1 + \lambda_2 + \cdots + \lambda_n = 1$,且 $x_k \ge 0$,那么

$$x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_n^{\lambda_n} \leqslant \lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n$$

132. 柯西不等式:

$$\overrightarrow{a} = (a_1, a_2, \cdots, a_n), \overrightarrow{b} = (b_1, b_2, \cdots, b_n),$$
那么
$$|\overrightarrow{a} \cdot \overrightarrow{b}| = |\overrightarrow{a}||\overrightarrow{b}||\cos\theta| \leqslant |\overrightarrow{a}||\overrightarrow{b}|$$
$$|\overrightarrow{a} \cdot \overrightarrow{b}|^2 \leqslant |\overrightarrow{a}|^2|\overrightarrow{b}|^2$$

把上式转化为坐标表示:

133. $a, b, c \in \mathbf{R}$,因为 $(a-b)^2 + (b-c)^2 + (c-a)^2 \ge 0$,所以, $a^2 + b^2 + c^2 \ge$

| 134. * 赫尔德 (Hölder) 不等式: $p > 1, q > 1, \frac{1}{p} + \frac{1}{q} = 1,$ $a_k \ge 0, b_k \ge 0, k = 1, 2 \cdots n,$ 那么

$$\sum_{k=1}^{n} a_k b_k \leqslant \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} \cdot \left(\sum_{k=1}^{n} b_k^q\right)^{\frac{1}{q}}$$

等号成立的条件是:存在非 0 实数 λ ,对任意 $k=1,2\cdots n$ 都有 $\lambda a_k=b_k$. 当 p=q=2 时,就变成柯西不等式。

135. * 闵可夫斯基 (Minkowski) 不等式: $r > 0, r \neq 1, a_k > 0, b_k > 0$, 那么

$$\left[\sum_{k=1}^{n} (a_k + b_k)^r\right]^{\frac{1}{r}} \leqslant \left(\sum_{k=1}^{n} a_k^r\right)^{\frac{1}{r}} + \left(\sum_{k=1}^{n} b_k^r\right)^{\frac{1}{r}} \quad (r > 1)$$

$$\left[\sum_{k=1}^{n} (a_k + b_k)^r\right]^{\frac{1}{r}} \geqslant \left(\sum_{k=1}^{n} a_k^r\right)^{\frac{1}{r}} + \left(\sum_{k=1}^{n} b_k^r\right)^{\frac{1}{r}} \quad (r < 1)$$

以上两式等号成立的条件都是:存在非0实数 λ ,对任意 $k=1,2\cdots n$ 都有 $\lambda a_k=b_k$.

136. 含根号的缩放:

以上各项除 $2\sqrt{k}$ 外,取倒数后均可裂项。

137. 含平方的缩放:

以上各项除 $k^2 + 1$ 和 k^2 外, 取倒数后均可裂项。

138. 正整数倒数求和缩放:

$$< \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n} < -$$

10 数列

139. 设 $\{a_n\}$ 是公差为 d 的等差数列, S_n 是其前 n 项和,

- $S_{m+n} = S_m + S_n +$ ____ ;
- $\frac{S_{2n-1}}{a_n} =$ ____;
- $m \neq n$, $\frac{S_m S_n}{m n} = \frac{S_{m+n}}{m + n} = \underline{\hspace{1cm}};$
- $S_n, S_{2n} S_n, S_{3n} S_{2n} \cdots$ 是公差为 _____ 的等差数列;
- 在前 2n 项中, 奇数项之和 = $\frac{a_1 + a_3 + \dots + a_{2n-1}}{a_2 + a_4 + \dots + a_{2n}}$ =

- 在前 2n+1 项中, $\frac{6}{8}$ 数项之和 = $\frac{a_1+a_3+\cdots+a_{2n+1}}{a_2+a_4+\cdots+a_{2n}}$ =
- 141. 等差乘以等比型数列求和 $(x \neq 1)$:

$$\sum_{k=1}^{n} kx^{k-1} = \frac{nx^{n+1} - (n+1)x^n + 1}{(1-x)^2}$$

当 |x| < 1 时,

$$\sum_{k=1}^{\infty} kx^{k-1} = \underline{\hspace{1cm}}$$

对上式求导,

$$\sum_{k=2}^{\infty} k(k-1)x^{k-2} = \underline{\hspace{1cm}}$$

因为 $k^2x^{k-1} = x \cdot k(k-1)x^{k-2} + kx^{k-1}$, 所以

$$\sum_{k=1}^{\infty} k^2 x^{k-1} = \underline{\qquad}$$

$$\sum_{k=1}^{\infty} k^2 x^k = \underline{\qquad}$$

142. 常见裂项方法:

$$\frac{1}{n(n+k)} = \underline{\qquad \qquad }$$

$$\frac{1}{n(n+1)(n+2)} = \underline{\qquad \qquad }$$

$$\frac{1}{4n^2 - 1} = \underline{\qquad \qquad }$$

$$\frac{1}{\sqrt{n} + \sqrt{n+k}} = \underline{\qquad \qquad }$$

$$\frac{a^n}{(a^n+1)(a^{n+1}+1)} = \underline{\qquad \qquad }$$

143. * 阿贝尔 (Abel) 求和公式: 数列 $\{a_n\}$, $\{b_n\}$ 的前 n 项和分别为 A_n , B_n , 那么

$$\sum_{k=1}^{n} A_k b_k + \sum_{k=1}^{n-1} a_{k+1} B_k = A_n B_n \tag{3}$$

- 144. 如果 f(x) 在区间 [a,b] 上满足下列 2 个条件,则称 f(x) 为一个压缩函数。
 - (1) 任意 $x \in [a, b]$, 有 $f(x) \in [a, b]$;
 - (2) 任意 $x,y \in [a,b]$, 存在常数 $L \in (0,1)$, 使得 $|f(x) f(y)| \leq$ ______.
- 145. 压缩映像原理:如果 f(x) 是区间 [a,b] 上的压缩函数,那 么必定存在唯一的 $X \in [a,b]$,满足方程______, X 被称为 f(x) 的不动点。

- = 146. A > 0, B > 0,记 $f(x) = \sqrt{Ax + B}$, $g(x) = A + \frac{B}{x}$,数列 $\{a_n\}$ 满足: $a_1 > 0, a_{n+1} = f(a_n) = \sqrt{Aa_n + B}$,数列 $\{b_n\}$ 满足: $b_1 > 0, b_{n+1} = g(b_n) = A + \frac{B}{b_n}$,那么数列 $\{a_n\}$, $\{b_n\}$ 的不动点均为_______.
 - 147. 设 a > 0 且 $a \neq 1$,若 a < 1,则 $x_1 = a$;若 a > 1,则 $x_1 = \frac{1}{a}$.定义数列 $x_{n+1} = \frac{x_n}{2}(3 ax_n^2)$,那么数列 $\{x_n\}$ 的不动点为______.

 - $a_{n+1} = Aa_n + Bq^n$. 两边同除 q^n ,有 $\frac{a_{n+1}}{q^n} = \frac{1}{q^n}$, 这样就转化成了上一条中的一阶线性 递推数列。
 - 150. $a_{n+1} = Aa_n^2$, $\mathbb{M} Aa_{n+1} = \underline{\hspace{1cm}} = \cdots = \underline{\hspace{1cm}}$.
 - 151. $a_{n+1} = a_n^2 + 2a_n$. 两边同时加 1, $a_{n+1} + 1 =$
 - 152. $a_{n+1} = a_n^2 2a_n + 2$. 两边同时减 1, $a_{n+1} 1 =$
 - 153. $a_{n+1} = \frac{Aa_n}{Ca_n + D}$,两边取倒数, $\frac{1}{a_{n+1}} = \underline{\hspace{1cm}}$ 那么 $\left\{\frac{1}{a_n}\right\}$ 为一阶线性递推数列。
 - 154. * 设 p > 1, a < 0,当 $x \to 0$ 时, $f(x) \approx x + ax^p$,定义数列 $a_{n+1} = f(a_n)$,如果对任意的正整数 n,都有 $a_n > 0$,且 $\lim_{n \to \infty} a_n = 0$,那么

$$\lim_{n \to \infty} n a_n^{p-1} = \frac{1}{a(1-p)}$$

如果 $a_n > 0$,且 $\lim_{n \to \infty} a_n = +\infty$,那么可以做倒代换 $b_n = \frac{1}{a_n}$,然后对 b_n 应用上式。

155. 对于二阶线性递推数列 $a_{n+2} = Aa_{n+1} + Ba_n$,先解特征方程 _______,假设有两个不等的根 x_1, x_2 (可以为复数),那么

$$a_{n+2} - x_2 a_{n+1} = x_1 (a_{n+1} - x_2 a_n) = \cdots$$

$$= \underline{\qquad \qquad }$$

$$a_{n+2} - x_1 a_{n+1} = x_2 (a_{n+1} - x_1 a_n) = \cdots$$

$$= \underline{\qquad \qquad }$$

156. 分式线性递推数列 $a_{n+1} = \frac{Aa_n + B}{Ca_n + D}$, 先解方程______,假设有两个不等的根 x_1, x_2 (可以为复数),那么

$$a_{n+1} - \alpha = \frac{Aa_n + B - \alpha(Ca_n + D)}{Ca_n + D}$$

$$= \frac{1}{a_{n+1} - \beta} = \frac{Aa_n + B - \beta(Ca_n + D)}{Ca_n + D}$$

$$= \frac{1}{Aa_n + B - \beta(Ca_n + D)}$$

两式相除可得:

$$\frac{a_{n+1} - \alpha}{a_{n+1} - \beta} = \left(\frac{A - C\alpha}{A - C\beta}\right) \cdot \frac{a_n - \alpha}{a_n - \beta} = \cdots$$

157. * 分式非线性递推数列, $a_{n+1} = \frac{1}{2} \left(a_n + \frac{A^2}{a_n} \right)$,假设 $a_1 \neq \pm A$,

$$a_{n+1} - A = \frac{a_n^2 + A^2 - 2Aa_n}{2a_n} = \frac{(a_n - A)^2}{2a_n}$$

$$a_{n+1} + A = \frac{a_n^2 + A^2 + 2Aa_n}{2a_n} = \frac{(a_n + A)^2}{2a_n}$$

$$\frac{a_{n+1} - A}{a_{n+1} + A} = \frac{(a_n - A)^2}{(a_n + A)^2} = \dots = \frac{(a_1 - A)^{2^n}}{(a_1 + A)^{2^n}}$$

解析几何 11

158. 直线的方程:

一般式方程:

点法式方程:

斜截式方程:

点斜式方程:

截距式方程:

两点式方程:

- 159. 直线的参数方程: $\begin{cases} x = _{,\phi}, \phi \text{ 是直线的倾} \\ y = _{,\phi} \end{cases}$ 斜角,|t| 表示直线上任一点到 (x_0,y_0) 的距离。更一般 地,可以写成 $\begin{cases} x=x_0+at\\ y=y_0+bt \end{cases}, ~ 若 ~ a^2+b^2\neq 1, ~ 则此时$
- 160. 点 (x_0, y_0) 到直线 Ax + By + C = 0 的距离公式:
- 的距离公式: . . .
- 162. 两条直线 $l_1: A_1x + B_1y + C_1 = 0$, $l_2: A_2x + B_2y + 173$. * 平摆线参数方程: $\begin{cases} x = R(\theta \sin \theta) \\ y = R(1 \cos \theta) \end{cases}$. $C_2=0$,且 $A_1B_2-A_2B_1
 eq 0$,则过 l_1,l_2 的交点的任 意直线都可以用

条角平分线的方程为

163. 平面的方程:

一般式方程:

点法式方程: ;

截距式方程:

- 164. 点 (x_0, y_0, z_0) 到平面 Ax + By + Cz + D = 0 的距离公
- 165. 设二次方程 $ax^2 + bx + c = 0$ 的两根为 x_1, x_2 ,判别式 为 Δ ,则 $|x_1-x_2|=$ ______, $x_1^2+x_2^2=$ ______
- 166. 椭圆和双曲线的准线方程是
- 167. 点差法,在椭圆上取不同的两点 (x_1,y_1) , (x_2,y_2) ,则

$$\begin{cases} \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} = 1\\ \frac{x_2^2}{a^2} + \frac{y_2^2}{b^2} = 1 \end{cases}$$

两式相减,有 $\frac{y_2-y_1}{x_2-x_1}=$ ______. 如果是双曲线,则 $\frac{y_2-y_1}{x_2-x_1}=$ ______.

- 168. 圆锥曲线 (不包括圆) 的统一极坐标方程: ρ = p 代表焦点到准线的距离。e 是离心 率。椭圆: 0 < e < 1; 抛物线: e = 1; 双曲线: e > 1. 过焦点且倾斜角为 θ 的弦的长度为_
- 170. * 椭圆的顶投影参数方程,设椭圆的上顶点为 N(0,b), 在 x 轴上任取一点 U(u,0), 过 N,U 两点的直线与椭 圆的除 N 以外的交点为 P(x,y),则

$$\begin{cases} x = a \cdot \frac{2au}{u^2 + a^2} \\ y = b \cdot \frac{u^2 - a^2}{u^2 + a^2} \end{cases}$$

- - ____ 表达。 l_1 和 l_2 的两 174.* 圆的渐开线参数方程: $\begin{cases} x = R(\cos\theta + \theta\sin\theta) \\ y = R(\sin\theta \theta\cos\theta) \end{cases}$
 - 175. 球的表面积 S = ,球的体积 V =

- 176. 椭圆面积公式为______,而不是 $\frac{1}{2}\pi(a^2+b^2)$; 椭球 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 的体积公式为 $\frac{4}{3}\pi abc$, 而不是 $\frac{4}{9}\pi(a^3+b^3+c^3).$
- 177. 到平面上两定点的距离之比为不等于 1 的定值的点的 轨迹是圆(称为"阿波罗尼奥斯圆")。
- 178. ⊙O 的半径是 R,且 O, A, A' 三点共线,如果 $|OA| \cdot |OA'| = ____$,则 A 点与 A' 点互为 "反演点"。

- 179. 椭圆上一点 (x_0, y_0) 的切线斜率为 , 切线方程 为_____(换一半)。
- 180. 双曲线上一点 (x_0, y_0) 的切线斜率为______,切线方 程为_____(换一半)。
- 181. 抛物线 $y^2 = 2px$ 上一点 (x_0, y_0) 的切线斜率为 ____,切线方程为_____(换一半)。
- 182. 当点 (x_0, y_0) 在椭圆外部时,直线 $\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$ 表示 $\left| 186. \right|$ 椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的性质: 椭圆的切点弦,即从点 (x_0,y_0) 向椭圆作两条切线,连 接两个切点得到的弦。

从点 (x_0, y_0) 出发作椭圆的两条割线,与椭圆有 4 个交 点,那么以这4个交点为顶点的四边形的对角线交点 也在切点弦上。

183. 当点 (x_0, y_0) 在椭圆内部时,直线 $\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$ 与椭 圆相离,从直线 $\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$ 上的点向椭圆作两条 切线,则切点弦过定点 (x_0,y_0) .

184. 椭圆上有不同的四点 A, B, C, D,假设 AB 与 CD 所 在的直线交于 P 点, AD 与 BC 所在的直线交于 R 点, AC 与 BD 交于 Q 点,则 P 点的极线是 QR, Q 点的 极线是 PR, R 点的极线是 PQ, ΔPQR 称为自极三 角形。

185. 判断直线 l: Ax + By + C = 0 与椭圆的位置关系,将 直线方程变形为

$$\frac{\left(-\frac{Aa^2}{C}\right)x}{a^2} + \frac{\left(-\frac{Bb^2}{C}\right)y}{b^2} = 1$$

设 $P\left(-\frac{Aa^2}{C}, -\frac{Bb^2}{C}\right)$, 当 P 点在椭圆内部时 (即 $A^2a^2 + B^2b^2 < C^2$), 直线 l 与椭圆相离; 当 P 点在椭 圆上时,直线 l 与椭圆相切; 当 P 点在椭圆外部时,直 线 l 与椭圆相交。

- - 在椭圆外一点向椭圆做两条切线,切线夹角保持为 $\frac{\pi}{2}$ 时, 切线交点的轨迹方程为 准圆)
 - 从椭圆中心 O 引出两条相互垂直的向径,与椭圆分别 交于 P,Q 两点, 从 O 点向 PQ 作垂线, 垂足为 H, 那么 H 点的轨迹也是一个圆 (内准圆),圆的方程为 _____. 斜边长度 |PQ| 的取值范围是:

 $|PQ| \leq |PQ|$

 ΔOPQ 的面积的取值范围是:

 $S_{\Delta OPQ} \leqslant S_{\Delta OPQ} \leqslant S_{\Delta OPQ}$

• 以下三种情形,斜率之积为定值。

 $k_{AP} \cdot k_{BP} = k_{OT} \cdot k_{PT} = k_{OM} \cdot k_{AB} = \underline{\hspace{1cm}}.$

• AB,CD 是椭圆的两条相交弦,交点为 P,且 AB,CD的斜率互为相反数,则 $|PA| \cdot |PB| =$

• * 椭圆上任意一点 $P(x_0, y_0)$, 过 P 点作两条相互垂直的直线,这两条直线与椭圆的除 P 点之外的交点分别是 Q, R, 那么线段 QR 过定点

$$\left(\frac{(a^2-b^2)x_0}{a^2+b^2}, -\frac{(a^2-b^2)y_0}{a^2+b^2}\right)$$

• * 过椭圆内部一点 $M(x_0,y_0)$ 作椭圆的两条垂直弦 PQ,RS,弦 PQ,RS 的中点分别为 K,L,那么线段 KL 过定点

$$\left(\frac{a^2x_0}{a^2+b^2}, \frac{b^2y_0}{a^2+b^2}\right)$$

- 椭圆上任意一点 $P(x_0, y_0)$, 过 P 点作两条斜率互为相反数的直线,这两条直线与椭圆的除 P 点之外的交点分别是 Q, R, 那么直线 QR 的斜率是定值,且与过 P 的切线的斜率互为 ______。
- 在椭圆的长轴 AB 上有一定点 M(m,0),过点 M 作椭圆的弦 CD,记直线 AC, BD 的斜率分别为 k_1, k_2 ,则① $\frac{k_1}{k_2}$ 是定值;
 - ② $\stackrel{n2}{AC}$, BD 延长线的交点的轨迹方程是 _____,即点 M 关于椭圆的极线;
 - ③ 设②中的极线与 AB 延长线的交点为 H,则 CH, DH 的斜率互为
- P 为椭圆上一点, F_1, F_2 是椭圆的左右焦点, $\angle F_1 P F_2 = \theta$,则 $S_{\Delta F_1 P F_2} = \dots$
- F_1, F_2 是椭圆的两个焦点,椭圆上一点 P 处的切线 PT 平分 ΔPF_1F_2 在点 P 处的外角。焦点在直线 PT 上的 投影点的轨迹是以长轴为直径的圆。以 PF_1 (或 PF_2) 为 直径的圆必与以长轴为直径的圆 _____。
- 设椭圆的左右两个顶点为 $A_1(-a,0)$, $A_2(a,0)$, 与 y 轴 平行的直线交椭圆于 P_1 , P_2 时, A_1P_1 与 A_2P_2 的交点的轨迹方程是

187. 双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 的性质:

- 从不在双曲线上的一点做双曲线的两条切线,如果两条切线垂直,那么切线交点的轨迹也是一个圆(蒙日圆,外准圆),圆的方程为
- * 双曲线上任意一点 $P(x_0, y_0)$, 过 P 点作两条相互垂直的直线,这两条直线与双曲线的除 P 点之外的交点分别

是 Q,R, 那么线段 QR 过定点。

$$\left(\frac{(a^2+b^2)x_0}{a^2-b^2}, -\frac{(a^2+b^2)y_0}{a^2-b^2}\right)$$

必须满足 $a \neq b$, 定点才存在。

• * 过平面上任意一点 $M(x_0,y_0)$ 作双曲线的两条垂直弦 PQ,RS,弦 PQ,RS 的中点分别为 K,L,那么线段 KL 过定点。

$$\left(\frac{a^2x_0}{a^2-b^2}, -\frac{b^2y_0}{a^2-b^2}\right)$$

必须满足 $a \neq b$, 定点才存在。

- 双曲线上任意一点 $P(x_0, y_0)$, 过 P 点作两条斜率互为相反数的直线,这两条直线与双曲线的除 P 点之外的交点分别是 Q, R,那么直线 QR 的斜率是定值,且与过 P 的切线的斜率互为
- P 为双曲线上一点, F_1, F_2 是双曲线的左右焦点, $\angle F_1 P F_2 = \theta$,则 $S_{\Delta F_1 P F_2} =$ _____.
- 设 k > 0,则等轴双曲线 $y = \frac{k}{x}$ 的实半轴和虚半轴的长度均为 ____,焦点坐标是_____.

188. 抛物线 $y^2 = 2px$ 的性质:

- 抛物线的焦点为 F,顶点为 O,过焦点的直线与抛物线 交于 $P(x_1,y_1),Q(x_2,y_2)$ 两点,则 $\frac{1}{|FP|} + \frac{1}{|FQ|} = \frac{1-\cos\theta}{p} + \frac{1-\cos\theta}{p} = \frac{1}{1+\cos\theta} = \frac{$
- 抛物线的对称轴上有一个固定点 $M(x_0,0)$,过 M 的直线与抛物线交于 $P(x_1,y_1),Q(x_2,y_2)$ 两点,则 $y_1y_2 = \underbrace{\qquad \qquad }_{}, x_1x_2 = \frac{y_1^2}{2p} \cdot \frac{y_2^2}{2p} = \underline{\qquad }_{}.$
- 抛物线的顶点为 O, A, B 两点在抛物线上, 若 \overrightarrow{OA} . $\overrightarrow{OB} = -p^2$,则直线 AB 过定点 ______.
- 从准线上的一点 $P\left(-\frac{p}{2},y_0\right)$ 向抛物线作两条切线,设切点分别为 Q,R,则这两条切线 PQ,PR 相互_____。 设抛物线焦点为 F,那么 QR 恒过_____,且 PF \bot ______.
- 抛物线上任意一点 $P(x_0, y_0)$, 过 P 点作两条相互垂直的直线,这两条直线与抛物线的除 P 点之外的交点分别是 Q, R, 那么线段 QR 过定点 ______.
- 抛物线上任意一点 $P(x_0, y_0)$, 过 P 点作两条斜率互为相反数的直线,这两条直线与抛物线的除 P 点之外的交点分别是 Q, R,那么直线 QR 的斜率是定值,且与过 P 的切线的斜率互为 ______。

- 189. * 彭赛列 (Poncelet) 闭合定理: 给定两条圆锥曲线 Γ_1 | 193. $\pi \approx 3.141592653$ 的分数近似值: 和 Γ_2 ,若存在一个 n $(n \geqslant 3)$ 边形满足: 内接于 Γ_1 且 | $\frac{22}{7} \approx 3.142857, \ \frac{355}{113} \approx 3.14159292.$ 外切于 Γ_2 ,则必然存在无数个这样的 n 边形满足该性 质 (同时内接和外切)。
- 190. * 三角形的内心和外心的距离为 $\sqrt{R(R-2r)}$, 其中 R为外接圆半径,r 为内切圆半径。假设一个半径为 r 的 小圆位于一个半径为 R 大圆的内部 (两个圆没有交点), 若 2r < R 且两个圆的圆心距恰好等于 $\sqrt{R(R-2r)}$, 那么存在无穷多个三角形, 分别以这两个圆为内切圆 和外接圆。
- 191. * 蝴蝶定理: 在圆锥曲线中, 过弦 PQ 的中点 M 任作 两条弦 AB,CD, 直线 AC,BD 交 PQ 于点 E,F, 则 ME = EF.

零散考点 **12**

192. 集合的 3 个特征:

- 194. 三次方程韦达定理: $(a \neq 0)$,

$$x^{3} + \frac{b}{a}x^{2} + \frac{c}{a}x + \frac{d}{a} = (x - x_{1})(x - x_{2})(x - x_{3}) = 0$$

$$x_{1} + x_{2} + x_{3} = \underline{\qquad};$$

$$x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3} = \underline{\qquad};$$

$$x_{1}x_{2}x_{3} = \underline{\qquad}.$$

195. 因式分解:

$$a^{3} \pm b^{3} = \underline{\hspace{1cm}}$$

$$a^{4} - b^{4} = \underline{\hspace{1cm}}$$

$$= (a - b)(a + b)(a^{2} + b^{2})$$

$$a^{n} - b^{n} = (a - b)(\underline{\hspace{1cm}})$$

$$a^{3} + b^{3} + c^{3} - 3abc =$$

- 196. 锥体 (圆锥、棱锥) 体积公式: V = ____, S 为底面积,h 为锥体高度。
- 197. 圆台或棱台的体积: V =S,S' 为两个底面积,h 为台体高度 (两个底面间的距 离)。