INSTITUTO SUPERIOR de ENGENHARIA de LISBOA

Licenciatura em Engenharia Informática e Multimédia

2º Semestre Letivo 2018/2019

Computação Física

1.º Trabalho Prático

Objetivos: Desenho de circuitos combinatórios baseados em funções lógicas. Desenho de circuitos sequenciais utilizando o grafismo ASM e abordagem de encaminhamento de dados. Simulação dos circuitos projetados no Arduino.

Pretende-se o projeto de uma ALU (*Arithmetic and Logic Unit*) para operar dois números binários, $A \in B$, a quatro (4) bits cada, consoante uma palavra de controlo C, a dois (2) bits. Das operações, ter-se-á um resultado R, que é um número binário a quatro (4) bits. O bloco sequencial funciona ao ritmo de um sinal de *clock* (CLK). A ALU deverá possuir as funcionalidades operativas e de afetação de *flags*, indicadas e descritas na seguinte tabela:

Controlo (C)		Funcionalidade			Flags		
C_1	C ₀	Mnemónica	Designação	Operação	Cy/Bw	Ov	Z
0	0	ADD	Adição	R = A + B	•	•	•
0	1	SUB	Subtração	R = A - B	•	•	•
1	0	ASR	Arithmetic Shift Right	$R = A / 2^B$	1	1	•
1	1	NOR	NOR bit-a-bit	$R = \overline{A + B}$	-	-	•

Notar que, na operação ASR, o operando A e o resultado R são números relativos. Contudo, o operando B deve ser considerado no âmbito dos números naturais.

A flag Cy/Bw deve ser considerada, interpretando-se \mathbb{A} , \mathbb{B} e \mathbb{R} em código binário natural. A flag Ov deve ser considerada quando \mathbb{A} , \mathbb{B} e \mathbb{R} são interpretados em código binário de complementos. A representação dos números, em ambos os domínios, é a 4 bits.

- 1. Defina o modelo "caixa preta" da ALU, em termos dos sinais de entrada e de saída;
- 2. Adote uma abordagem modular à ALU, dividindo-a em módulos distintos quanto à funcionalidade, definindo as entradas e as saídas de cada módulo;
- 3. Desenhe o circuito dos módulos combinatórios;
- 4. Desenhe o circuito dos módulos sequenciais, projetando cada módulo recorrendo à técnica de encaminhamento de dados e ao grafismo ASM;
- 5. Simule separadamente, no Arduino, cada uma das funcionalidades da ALU:
- 6. Integre todos os módulos da ALU num único sistema lógico e teste a solução obtida no Arduino.

Nota: Devido à limitação do número de pinos digitais do Arduino Uno, podem ser utilizados também os pinos analógicos (A0 a A5) para *input/output* digital.

Este trabalho tem a duração de **3 sessões práticas** e é realizado em grupo, fazendo parte da avaliação prática da disciplina.

Os docentes