TRA PROJEKT - EFEKT REVERB

ERYK MROCZKO

Spis treści:

- 1. Etap I Dokumentacja wstępna
- 2. Etap II Dokumentacja algorytmiczna

1. Etap I - Dokumentacja wstępna

Pogłos jest jednym z najważniejszych efektów modulacyjnych w całej muzyce. Jest używany do symulowania akustyki różnych przestrzeni oraz pomieszczeń. Samo zjawisko można podzielić na trzy fazy:

do słuchacza dociera dźwięk bezpośredni (Direct sound); do słuchacza docierają czoła fal po pierwszym odbiciu (Early reflections); wtórne odbicia nie rozróżnialne dla ucha-pogłos właściwy (Multiple reflections).

Realizacja algorytmu realizująca pogłos składa się z kilku do kilkunastu filtrów używanych do wykonania echa, z tym że czasy opóźnienia są krótsze.

Wczesna implementacja efektu pogłosu za pomocą filtru cyfrowego IIR (filtr grzebieniowy), powoduje zniekształcenia barwy dźwięku i charakteryzuje się stałymi odstępami między odbiciami. (U mnie będzie ich kilka z różnymi opóźnieniami grupowymi)

Wprowadza się też nowy rodzaj filtru - filtr wszechprzepustowy. Ten filtr działa tak jak zwykłe echo z tą różnicą, że moduł widma amplitudowego jest funkcją stałą - unikamy w ten sposób zmiany barwy dźwięku.

Filtr wszechprzepustowy

Pogłos jest algorytmem złożonym zatem istnieje wiele wariantów rozwiązań. Przytoczony wariant jest algorytmem Schroeder'a.

Schemat algorytmu pogłosu Schroeder'a

Inny wariant algorytmu Schroeder'a zakłada równoległe połączenie filtrów grzebieniowych, kaskadowe połączenie filtrów wszechprzepustowych oraz zmienne odstępy między odbiciami i prawdopodobnie coś takiego postaram się wykonać:

Najpierw postaram się wykonać projekt w Matlabie, kiedy to się uda przeniosę projekt na realizacje sprzętową na STM32.

2. Etap II - Dokumentacja algorytmiczna

Do wykonania projektu wykorzystam algorytm Schroedera.

Schemat blokowy:

Opis algorytmu:

Pierwszy etap algorytmu składa się z czterech, równolegle połączonych, filtrów grzebieniowych. Każdy z nich, ma inne opóźnienie oraz wzmocnienie. Następnie, sumowane są sygnały wyjściowe z tych filtrów i przemnożone przez pewien współczynnik z zakresu (0,1) aby zredukować amplitudę tego zsumowanego sygnału wyjściowego z wszystkich 4 filtrów. Kolejnymi etapami są 3 szeregowo podłączone filtry wszechprzepustowe. Każdy z nich, również ma swoje wzmocnienie oraz opóźnienie. Sygnał, po przejściu przez każdy z nich ponownie jest mnożony przez pewien współczynnik z zakresu (0,1), w tym samym celu co poprzednio. Następnie, sygnał jest sumowany z oryginalnym sygnałem, również przemnożonym w celu zmniejszenia amplitudy. Zsumowany sygnał Wet i Dry jest naszym reverbem.

Dlaczego taki algorytm?

Wybrałem algorytm Schroedera, dlatego że jest bardzo znanym algorytmem, oraz najbardziej podstawowym, a jednocześnie pozwala uzyskać zadowalające brzmienie pogłosu. Jest to jednak jednak dość prymitywna metoda w porównaniu do nowoczesnych metod kreacji pogłosu np. przez używanie odpowiedzi impulsowej pomieszczenia (wystarczy klaśnięcie, stuknięcie czegoś w pokoju) i jej splotu z sygnałem wejściowym.

Jak działa ten układ?

Ogółem, pogłos jest złożeniem wielu odbitych składowych dźwięku, od różnych np. ścian, i w różnym tempie, o różnym kącie uderzenia itd. Generalnie, najpierw dolatuje do nas dźwięk pierwszych odbić, a później dołączają do tego dźwięki odbijające się już po raz któryś.

Filtry grzebieniowe

W moim układzie, za te pierwsze odbicia odpowiada równoległe połączenie 4 filtrów rekursywnych grzebieniowych. Filtr grzebieniowy w najprostszym ujęciu jest to sieć symulująca opóźnienie, sygnału wejściowego o daną jednostkę czasu. Imitują one nam te ściany, wybieramy zatem jak mocny dźwięk ma do nas "powrócić" oraz z jakim opóźnieniem (czyli, jak daleko mają być te ściany od siebie).

Połączone równolegle, dają bardzo krótki reverb, nazwałbym go "room", albo "chamber", dlatego spełnia swoje zadanie - pierwsze odbicia od obiektów.

Filtry wszechprzepustowe

Za kolejne odbicia oraz wrażenie wielkości pomieszczenia odpowiada szeregowe połączenie filtrów wszech przepustowych, które są dość nietypowymi filtrami, ponieważ ich charakterystyka amplitudowa jest równa jedności w całym zakresie częstotliwości. Zadaniem tego filtru jest natomiast modyfikacja fazy sygnału, bez wpływu na jego amplitudę. Ogółem, połączenie tych filtrów dodaje do sygnału dużo przestrzeni i "trwania" reverbu.

Matlab:

Algorytm, który opisuje, udało mi się już wykonać w programie Matlab. Do dokumentacji załączam kod Matlabowski oraz 3 próbki na których można sprawdzić działanie algorytmu.

Podsumowanie:

Następnym krokiem w tworzeniu projektu, będzie już końcowa implementacja tego algorytmu na płytce STM32F429. Ale już mogę powiedzieć, że projekt bardzo rozszerza moje horyzonty, zwłaszcza, że korzystam z reverbów niemal na codzień - dobrze (dla mnie) wiedzieć jak one działają.