

Memory Analysis in Transformers

Kun Yuan

Center for Machine Learning Research @ Peking University

Warmup: Linear neural network

dims: d (p,d) p (q,p)

$$h=W_1x$$
 $\dfrac{\partial f}{\partial W_1}=\dfrac{\partial f}{\partial h}x^T$ $z=\sigma(h)$ $\dfrac{\partial f}{\partial h}=\dfrac{\partial f}{\partial z}\odot
abla \sigma(h)$ $\hat{y}=W_2z$ $\dfrac{\partial f}{\partial W_2}=\dfrac{\partial L}{\partial \hat{y}}z^T, \ \dfrac{\partial f}{\partial z}=W_2\dfrac{\partial L}{\partial \hat{y}}$ $f=L(\hat{y})$ $\dfrac{\partial f}{\partial \hat{y}}=
abla L(\hat{y})$ Backward

Store h, z and \widehat{y} Store $\nabla_{W_1} f(W_1)$ and $\nabla_{W_2} f(W_2)$

Warmup: Linear neural network with batch size

dims: d (p,d) p (q,p)

$$h_b = W_1 x_b \qquad \frac{\partial f}{\partial W_1} = \frac{1}{B} \sum_{b=1}^B \frac{\partial f}{\partial h_b} x_b^T,$$

$$z_b = \sigma(h_b) \qquad \frac{\partial f}{\partial h_b} = \frac{\partial f}{\partial z_b} \odot \nabla \sigma(h_b)$$

$$\hat{y}_b = W_2 z_b \qquad \frac{\partial f}{\partial W_2} = \frac{1}{B} \sum_{b=1}^B \frac{\partial L}{\partial \hat{y}_b} z_b^T, \quad \frac{\partial f}{\partial z_b} = W_2 \frac{\partial f}{\partial \hat{y}_b}$$

$$f = \frac{1}{B} \sum_{b=1}^B L(\hat{y}_b) \qquad \frac{\partial f}{\partial x_b} = \frac{\partial L}{\partial x_b}$$

Forward

Backward

Store $\{\mathbf{h}_b, \mathbf{z}_b, \widehat{\mathbf{y}}_b\}_{b=1}^B$

Store $\nabla_{W_1} f(W_1)$ and $\nabla_{W_2} f(W_2)$

Memory decomposition

Memory = Model + Gradient + Optimizer states + Activations

- Given a model with P parameters, gradient will consume P parameters, and Optimizer states will consume 2P parameters;
 4P parameters in total.
- When using FP32 to store parameters, each parameter takes 4 Bytes

When using FP16 or BF16 to store parameters, each parameter takes 2 Bytes

Decoder-only Transformers

- Number of the transformer layers: l
- Sequence length: s
- Vocabulary size: v
- Embedding representation dims: *h*

Parameters
$$P = 12\ell h^2 + 2vh$$

Model + Gradient + Optimizer states = 4P * 4 (Bytes)

Next we estimate activations

Embedding

- We need to store the embedding activations with parameters sh
- Position embedding can be ignored when using RoPE and ALiBi

Multi-head attentions

• We need to store Q_i , K_i and V_i

$$3(sh/a) \times a = 3sh$$

Self-attention

$$\operatorname{softmax}(\frac{Q_i K_i^T}{\sqrt{h/a}}) V_i = \operatorname{softmax} \boxed{ } \times \boxed{ } \times \boxed{ } = \boxed{ } \overset{h/a}{=}$$
 One-head attention

- Store $Q_i K_i^T$ with s^2 parameters;
- Store softmax($Q_i K_i^T$) with s^2 parameters
- Store $\operatorname{softmax}(\frac{Q_iK_i^T}{\sqrt{h/a}})V_i$ with sh/a parameters

Store $2s^2a + sh$ activations

Multi-head attentions

• We need to store *A* with *sh* parameters

Layer normalization

Then layer normalization computes:

output =
$$\frac{x - \mu}{\sqrt{\sigma} + \epsilon} * \gamma + \beta$$

• Dims of γ and β : h

We can ignore the layer normalization

Feed-forward layers

$$X' = \operatorname{ReLU}(A \cdot W_1 + b_1) \cdot W_2 + b_2$$

- Store AW₁ with 4sh parameters
- Store ReLU(AW₁) with 4sh parameters
- Store ReLU(AW_1)· W_2 with sh parameters
- The activations of b_1 and b_2 can be ignored

9sh

Transformer block

• Multi-head attentions: $5sh + 2s^2a$

• Feed-forward layers : 9*sh*

• *l* layers of attentions : $(2s^2a + 14sh) \times l$

Probability predictions

$$p = \operatorname{Softmax}(X \cdot W_v + b_v)$$

- Store XW_v with sv parameters
- Store Softmax(XW_v) with sv parameters

Total activations

- Embedding activations: sh
- Self-attention activations: $(2s^2a + 14sh) \times l$
- Probability activations: 2sv

Total activation parameters with batch-size 1:

$$(2s^2a + 14sh) \times l + 2sv + sh$$

Ignoring 2sv and sh and using batch-size b:

$$(2s^2a + 14sh) \times l \times b$$

Total memory

Memory = Model + Gradient + Optimizer states + Activations

$$(48 l h^2 + bl(2s^2a + 14sh)) \times 4 \text{ Bytes}$$

- When hidden state h is large, the model parameters dominate the memory
- When batch-size b or sequence length s is large, the activation dominates the memory

Examples

Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10^{-4}
GPT-3 XL	1.3B	24	2048	24	128	1 M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2 M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

GPT3 has 175B parameters; its model consumes 4 \times 175 \times 10⁹ Bytes = 700 GB

Its gradient takes 700 GB parameters; Optimizer states take 1.4 TB

GPT has sequence length s = 2048. When b=1, its activation takes 444 GB, 63% of the model

When b=128, its activation is 81 times of the model size

Summary

Memory = Model + Gradient + Optimizer states + Activations

$$(48 l h^2 + bl(2s^2a + 14sh)) \times 4 \text{ Bytes}$$

- When hidden state h is large, the model parameters dominate the memory
- When batch-size b or sequence length s is large, the activation dominates the memory
- The activation-incurred memory cannot be ignored