Academia Sabatina de Jóvenes Talento

Polinomios Clase #5

Encuentro: 5
Curso: Polinomios
Semestre: I

Fecha: 22 de abril de 2023

Instructor: Kenny Jordan Tinoco

D. auxiliar: José Adán Duarte

Contenido: División de Polinomios

En esta quinta sesión de clase veremos la división de polinomios. Abordaremos los métodos de Horner, Ruffini y división clásica, estos son los métodos básicos (y en general suficientes) para la mayoría de problemas de división polinómica.

1. Desarrollo

Definición 1.1 (**División con resto**). Para todo polinomio F y G existen los polinomios Q y R tal que

$$F(x) = G(x)Q(x) + R(x), \quad \text{con } 0 \le \deg(R) < \deg(G).$$

Donde Q y R son el cociente y resto (o residuo) de la división de F por G. Si R(x) = 0, entonces diremos que G divide a F, y lo vamos a denotar como $G(x) \mid F(x)$.

Abreviaremos $G(x) \mid F(x)$ como $G \mid F$ ya que al efectuar una división polinómica los polinomios en cuestión deben de tener la misma variable.

Ejemplo 1. Con $F(x) = x^7 - 1$ y $G(x) = x^3 + x + 1$ llegaremos a que

$$x^{7} - 1 = (x^{3} + x + 1)(x^{4} - x^{2} - x + 1) + 2x^{2} - 2.$$

Aquí
$$Q(x) = x^4 - x^2 - x + 1$$
 y $R(x) = 2x^2 - 2$.

1.1. Método clásico

Se recomienda cuando los polinomios a dividir son de una sola variable o para polinomios homogéneos. El algoritmo es el siguiente:

- a. Completar y ordenar los dos polinomios, tanto el divisor como el dividendo.
- b. Dividir el primer término del dividendo por el primer término del divisor para obtener el primer término del cociente.
- c. Multiplicar el divisor con signo cambiado por los términos del cociente y sumar ordenamente el producto obtenido con el dividendo.

- d. Tratar el resto obtenido en el paso anterior como el nuevo dividiendo y repetir los pasos b y c.¹.
- e. Continuar el proceso hasta que el resto obtenido tenga un grado menor al divisor o bien al obtener cero.

1.2. Método de Horner

Se recomienda usar el método de Horner cuando el polinomio divisor es de segundo grado o más y se opera solo con los coeficientes de los polinomios ordenados y completos. Los coeficientes se distribuyen en un cuadro como el que sigue:

Algoritmo del método de Horner

- a. Se anotan los coeficientes del dividiendo en la parte superior del cuadro en forma horizontal.
- b. Se anotan los coeficientes del divisor en la parte izquierda del cuadro en forma vertical con los signos cambiados a excepción del primero.
- c. La línea de trazos separa el cociente del resto y para su trazo se considera el grado del divisor. En el cociente se cuentan tantos términos como el grado del dividendo menos el grado grado del divisor más uno.
- d. El primer término del cociente se obtiene dividiendo el primer coeficiente del dividendo entre el primer coeficiente del divisor.
- e. El coeficiente obtenido en el paso anterior se multiplica con los demás coeficientes del divisor con signo opuesto y los resultados se escriben en forma horizontal a partir de la siguiente columna hacía la derecha.
- f. Las cantidades que se encuentran en la segundo columna se suman y el resultado se divide entre el primer coeficiente del divisor, repitiéndose el procedimiento hasta coincidir con la última columna del dividendo.
- g. Para finalizar, se suman directamente las columnas correspoindientes al residuo, lo que conformará los coeficientes del polinomio residuo o resto.

¹En general, los métodos para la división de polinomios son recursivos.

1.3. Método de Ruffini

Se recomienda usar este método cuando el divisor tiene la forma $ax \pm b$. El método de Riffini se considera como un caso particular del método de Horner. Este método se apoya de un cuadro como el siguiente

Donde \square es el resultado de resolver la ecuación $ax \pm b = 0$.

Algoritmo del método de Ruffini

- a. Se anotan los coeficientes del dividiendo en forma horizontal y el valor de \square en la columna izquierda.
- b. Se baja el primer coeficiente del dividendo y se multiplica por el valor de \square , el resultado se anota en la siguiente columna, debajo del segundo coeficiente del dividendo.
- c. Se suman las cantidades de la segunda columna y se sigue el mismo procedimiento hasta obtener un término debajo del último coeficiente del dividendo.
- d. El residuo es la suma de cantidades de la última columna.

1.4. Agregados culturales y preguntas

- a. Existe una rica y abundante literatura sobre la resolución de problemas, entre todas ellas destacamos *El arte de resolver problemas* de *José Luis Córdova*.
- b. He aquí una cita "En pocas palabras: cualquier problema (por trivial que parezca) lleva a una investigación. El gusto por la investigación, la curiosidad, es una de las mayores riquezas de la humanidad. Y para investigar no existe ningún camino lógico, sólo el camino de la intuición y la convicción de que existe un orden detrás del caos de percepciones."

2. Ejercicios y Problemas

Sección de ejercicios y problemas para el autoestudio.

Problema 2.1. Si el polinomio $3x^5 + 6x^3 - 3x$ se le divide entre x + 1 se obtiene como resultado un cociente de grado m, un término independiente b y un resto a. Hallar m + a + b.

Problema 2.2. Al dividir $x^4 - x^2 - 2x + 1$ entre $x^2 + x + 1$, determine el producto de los términos del cociente.

Problema 2.3. Si $P(x-2) = x^3 - 10x^2 + 28x - 24$, hallar el resto de dividir P(x) por x-3

Problema 2.4. Si el resto de la división de $6x^4 - 11x^2 + ax + b$ entre $3x^2 - 3x - 1$ es 3x + 2. Hallar a - b.

Problema 2.5. Para que la división de $x^4 + ax^2 + b$ entre $x^2 + x + 1$ sea exacta, encuentre los valores de a y b apropiados.

Problema 2.6. Si el polinomio $P(x) = ax^4 + bx^3 + cx^2 + 3x + 1$ se divide por $x^2 - x + 2$ se obtiene un cociente cuya suma de coeficientes es 22 y un resto R(x) = 10x - 1, calcular b + c.

Problema 2.7. Al dividir el polinomio $P(x) = 55x^3 + (166 + b)x - x^2 - 2$ entre $Q(x) = ax^2 - 39x + 2$, el residuo es de la forma R(x) = mx. Calcular el valor de a + b.

Problema 2.8. ¿Qué valor adquire $\frac{n+19}{k+1}$, si la división $\frac{x^{19}-nx+k}{x^2-2x+1}$ es exacta?

3. Problemas propuestos

Recordar que los problemas de esta sección son los asignados como **tarea**. Es el deber del estudiante resolverlos y entregarlos de manera clara y ordenada el próximo encuentro (de ser necesario, también se pueden entregar borradores).

Asignación. Complementar el estudio de la división polinómica con recursos en internet; vídeos, foros, documentos, etc.

Problema 3.1. Dado los polinomios $P(x)=2x^5+x^4+ax^2+bx+c$ y $Q(x)=x^4-1$, se sabe que $Q\mid P$. Hallar $\frac{a+b}{a-b}$.

Problema 3.2. Dado los polinomios $P(x) = 16x^5 + ax^2 + bx + c$ y $Q(x) = 2x^3 - x^2 + 1$, se sabe que $Q \mid P$. Hallar a + b + c.

Problema 3.3. Dado los polinomios $P(x) = 6x^4 + 4x^3 - 5x^2 - 10x + a$ y $Q(x) = 3x^2 + 2x + b$, se sabe que $Q \mid P$. Hallar $a^2 + b^2$.

4. Extra

Problema 4.1. ¿Para qué valores de $n \in \mathbb{N}$ se cumple que $x^2 + x + 1 \mid x^{2n} + x^n + 1$?

Referencias

- [BGV14] Radmila Bulajich, José Gómez, and Rogelio Valdez. Álgebra. UNAM, 2014.
- [CL22] Axel Canales and Ricardo Largaespada. Clase 5. División de polinomios. *Academia Sabatina de Jóvenes Talento*, Abril 2022.
- [Eng97] Arthur Engel. Problem-Solving Strategies. Springer, 1997.

En caso de consultas

Instructor: Kenny J. Tinoco Teléfono: +505 7836 3102 (*Tigo*) Correo: kenny.tinoco10@gmail.com

Docente: José A. Duarte Teléfono: +505 8420 4002 (Claro) Correo: joseandanduarte@gmail.com