F	I(÷	. 1	a
			a

		i i G	ı I C		
970 AGGTTTACCG TCCAAATGGC	980 CATTTTGACA GTAAAACTGT	990 CTAGATGGCA GATCTACCGT	1000 TCCGTCCCAC AGGCAGGGTG	1010 GGGTAGCAGG CCCATCGTCC	1020 TCATGAAGCT AGTACTTCGA
1030 GACCAAGGCA CTGGTTCCGT 1090	1040 AGTCCTTTCA TCAGGAAAGT 1100	1050 GGGGGAAGAA CCCCCTTCTT 1110	1060 AATCAGGAAA TTAGTCCTTT	1070 AAAAAAAATT TTTTTTTAA	1080 TTAGAAGCAT AATCTTCGTA
TTCAAGÄÄĞC AAGTTCTTCG	AAGATGGAAT TTCTACCTTA	ATTTGTĀCĀĀ TAAACATGTT	1120 AACAGGTGCT TTGTCCACGA	1130 TTCTCCCCA AAGAGGGGGT	1140 CCATGCGACC GGTACGCTGG
1150 CGGGAGCTCC GCCCTCGAGG 1210	1160 ACTGATATGG TGACTATACC	1170 ACAGAATAGC TGTCTTATCG	1180 TTTACAGCTA AAATGTCGAT	1190 CATTCAAAAC GTAAGTTTTG	1200 ACACACACAC TGTGTGTGTG
ACACACÁCÁC TGTGTGTGTG 1270	1220 ACACACACAC TGTGTGTGTG 1280	1230 ACACACACAC TGTGTGTGTG	1240 ACACACACAT TGTGTGTGTA	1250 GTTTTCTTCC CAAAAGAAGG	1260 CTCCCTCCAC GAGGGACCTC
TTCCTCCCAT AAGGAGGGTA 1330	TCTCTGTGGT AGAGACACCA	1290 CCCAAAGAGA GGGTTTCTCT	1300 TGACCATATT ACTGGTATAA	1310 GACTGTAGAA CTGACATCTT	ATCACACCAC TAGTGTGGTG
CATAAAAGCC GTATTTTCGG 1390	1340 CATCTGGGAG GTAGACCCTC 1400	1350 CCATTTCCAG GGTAAAGGTC	1360 ACTGATCTTT TGACTAGAAA	1370 TTATCATTAA AATAGTAATT	1380 GGTTTGAATT CCAAACTTAA
CTTGCCACGT GAACGGTGCA 1450	GTGGGTŤŤÁ CACCCAAAAT	1410 AGGTTTTTAG TCCAAAAATC	1420 GGATTTTTAT CCTAAAAATA	1430 CTAGCGGCAC GATCGCCGTG	1440 TCACCTGCTT AGTGGACGAA
CCCTGTGAAT GGGACACTTA 1510	1460 GTTCAGAATT CAAGTCTTAA	1470 CACTGGGCTT GTGACCCGAA	1480 GGTCAGCTAA CCAGTCGATT	1490 TGGAAATGAT ACCTTTACTA	1500 CTATGGTTTG GATACCAAAC
ACTTAAATGT TGAATTTACA 1570	1520 GAAAGGAAAA CTTTCCTTTT 1580	1530 AAAAGAAGGG TTTTCTTCCC	1540 GGAAAAGGAG CCTTTTCCTC	1550 GGAGGGAGAA CCTCCCTCTT	1560 AGAGGGGAAG TCTCCCCTTC
GGAAAACTGC CCTTTTGACG 1630	CTTTTATGCC GAAAATACGG 1640	1590 TATTGCTACT ATAACGATGA 1650	1600 CTAACATTTT GATTGTAAAA	GTCTCTCACC CAGAGAGTGG	TTCCACTTGG AAGGTGAACC
TTCTTCAATG AAGAAGTTAC 1690	GAAAGACTGG CTTTCTGACC 1700	ATAGAAAGCT TATCTTTCGA 1710	1660 GGGAGCCAGC CCCTCGGTCG	1670 CAGGGATAGG GTCCCTATCC	1680 AGGAGTGTGT TCCTCACACA
GTGTGTGTGG CACACACACC 1750	GGGGGGGTGĞ CCCCCCCACC 1760	GCAGCAAGCA CGTCGTTCGT 1770	1720 GAGCCTTAGA CTCGGAATCT 1780	1730 GACAGAGAAG CTGTCTCTTC 1790	1740 AGCCTGCTAG TCGGACGATC
AGAYCATGAG TCTRGTACTC 1810	CTTYCTTTGA GAARGAAACT 1820	GACCCCTAGT CTGGGGATCA 1830	GCTAACAGGA CGATTGTCCT	ATAGTTCCTA TATCAAGGAT 1850	1800 ACCAGGTAGC TGGTCCATCG
TGTGGTCACG ACACCAGTGC	TGACTCGGCT ACTGAGCCGA	GGAAGSCCTG CCTTCSGGAC	1840 GCTTTGTCTT CGAAACAGAA	TTTGCTTGCT AAACGAACGA	1860 GTGCAGCCTT CACGTCGGAA

FIG. 1b

		1 101			,
1870 GAACAAACAC CTTGTTTGTG	1880 CCTGGCCTCT GGACCGGAGA	1890 TTGAACCCCA AACTTGGGGT	1900 CTATTTCTCA GATAAAGAGT	1910 GCCCTCAGAT CGGGAGTCTA 1970	1920 GAAGAAGTAA CTTCTTCATT 1980
1930 TGGTACCTTG ACCATGGAAC 1990	1940 GAGGATACTG CTCCTATGAC 2000	1950 ATGGGTTCAA TACCCAAGTT 2010	1960 GTGAACTAGG CACTTGATCC 2020	GCAGAGGGTG CGTCTCCCAC 2030	GAAGGTTTTG CTTCCAAAAC 2040
TAACCATAAA	CTGAAGTGGG	GTGTTGGTTA	GTAAGTAGCC	ATGAATACCA	TAAAAATATC
ATTGGTATTT	GACTTCACCC	CACAACCAAT	CATTCATCGG	TACTTATGGT	ATTTTTATAG
2050	2060	2070	2080	2090	2100
TGTCAGGTGG ACAGTCCACC 2110	CCAGAGCATC	ACTGTGTTCA TGACACAAGT 2130	GAACACAACG CTTGTGTTGC 2140	GCCCACTCAG CGGGTGAGTC 2150	AACACGCĞĞĂ TTGTGCGCCT 2160
CAATTGĀĀĀĞ	GCACCAÁCCT	CCGTGCTTČČ	TACCCGTTĠŤ	TTTGTTÄČČĞ	TGTAAAČĠČĂ
GTTAACTTTC	CGTGGTTGGA	GGCACGAAGG	ATGGGCAACA	AAACAATGGC	ACATTTGCGT
2170	2180	2190	2200	2210	2220
ACTCAACTCT	CGGCACTGĂĂ	CAGGCTTTTĞ	CTGCAGĀCČŤ	GGGGTCTGGÅ	GGTGTTĞTČT
TGAGTTGAGA	GCCGTGACTT	GTCCGAAAAC	GACCTCTGGA	CCCCAGACCT	CCACAACAGA
2230	2240	2250	2260	2270	2280
CTGAGACĀĞĞ	AAAACTÕÄTÖ	TTGTTAČTĂŤ	GGCATAGTAG	TAACCACGGA	GCTCTGĀĞĂŤ
GACTCTGTCC	TTTTGAGTAG	AACAATGATA	CCGTATCATC	ATTGGTGCCT	CCAGACTCTA
2290	2300	2310	2320	2330	2340
AGCCCTGAGC	TGGTGCCGTT	TAGAAAAGTT	TGATGCTTTÄ	GAAAGAĀĀTČ	GTGGCTTÁÁÁ
TCGGGACTCG	ACCACGGCAA	ATCTTTTCAA	ACTACGAAAT	CTTTCTTTAG	CACCGÁATTT
2350	2360	2370	2380	2390	2400
AGAAGCCTAC	CTGGCATGGG	GGCCCATCCT	CTCCAGCCAT	CCGAATCTCÁ	ATCTGGTCGT
TCTTCCGATG	GACCCTACCC	CCGGGTAGGA	GAGGTCGGTA	GGCTTAGAGT	TAGACCAGCA
2410	2420	2430	2440	2450	2460
GTGCGTAAGA	ATAGAATCCT	CGGAATGGTA	ACCATGTCTT	GCTTTTTCTT	CTGGGCTTGC
CACGCATTCT	TATCTTAGGA	GCCTTACCAT	TGGTACAGAA	CGAAAAAGAA	GACCCGAACG
2470	2480	2490	2500	2510	2520
TGAGGAAGTC	CCAGGCAGCG	TAGACGTCTT	GGGGGTAGGT	CTGGGAÁÁÁÁ	TCTCCCAAGA
ACTCCTTCAG	GGTCCCTCGC	ATCTGCAGAA	CCCCCATCCA	GACCCTTTTT	AGAGGGTTCT
2530	2540	2550	2560	2570	2580
TTTTAGGAGG	GGCAGGCGGG	GGATGAGAAA	CTTGGAGATT	CGGTAGATCG	CTGTAGAGCA
AAAATCCTCC	CCGTCCGCCC	CCTACTCTTT	GAACCTCTAA	GCCATCTAGC	GACATCTCGT
Pun	itive transcri	ptional start	site (5'- end	of rat brain 5	'- race product).
2590	2600	2610	2620	2630	2640
ACTCAGACAG	TCGGCGGCCT	GAAGAGGACT	TGTGCAAACA	CTTCCTCTCT	GGACAAGGAG
TGAGTCTGTC	AGCCGCCGGA	CTTCTCCTGA	ACACGTTTGT	GAAGGAGAGA	CCTGTTCCTC
2650 GAATGCAGGA CTTACGTCCT	2660 GGCCACCGCC CCGGTGGCGG Corre	2670 TGCAGTACAT ACGTCATGTA sponds to tran	2680 CTTGGAGTGT GAACCTCACA slational star	2690 TGGAGGGATG ACCTCCCTAC t site in rat/1	2700 TGCCTGCACT ACGGACGTGA numan GLP-2R gene.
2710	2720	2730	2740	2750	2760
TGTGAAAGGG	CGCCAGAAGG	ACGAGGCCCC	AACCAAGCCC	GGCAGTGCCC	AGTAGATGCA
ACACTTTCCC	GCGGTCTTCC	TGCTCCGGGG	TTGGTTCGGG	CCGTCACGGG	TCATCTACGT
2770	2780	2790	2800	2810	2820
GAGAGCGTCC	CTGCCCCGGG	CGCACAGTWG	GGCTCCCTGC	GGCCCAGGGG	CCTGAGTCTC
CTCTCGCAGG	GACGGGGCCC	GCGTGTCAWC	CCGAGGGACG	CCGGGTCCCC	GGACTCAGAG

FIG. 1c

Putative translationa	start	site in	n murine	GLP-2	Receptor	gene.
-----------------------	-------	---------	----------	-------	----------	-------

			00.00	0070	0000
2830 TCCACKCCCA	2840 CGGG <u>ATG</u> CGT	2850 CGGCTCTGGG	2860 GCCCTGGGAC	2870 GCCCTTCCTC	2880 TCCCTGCTTC
AGGTGMGGGT	GCCCTACGCA	GCCGAGACCC	CGGGACCCTG	CGGGAAGGAG	AGGGACGAAG
2890	2900	2910	2920	2930	2940
TGCTGGTTTC ACGACCAAAG	CATCAAGCAA GTAGTTCGTT	GTAAGAACAG CATTCTTGTC	ATTTTTATTC TAAAAATAAG	CTCATTCGTC GAGTAAGCAG	TTGTTAATAT AACAATTATA
Nouncommu	QINGITOGIT	omitorials			
2950 TATCAGTTGT	2960 GCATGTTTTC	2970 TGAGTGTACA	2980 AGCAATTTAG	2990 GCCCCGTGTA	3000 GGCAATTTGG
ATAGTCAACA	CGTACAAAAG	ACTCACATCT	TCGTTAAATC	CGGGGCACAT	CCGTTAAACC
3010	3020	3030	3040	3050	3060
GTAAGAĂTĀĂ CATTCTTATT	AACCATĂŤŤĂ TTGGTATAAT	AGAAAATGAG TCTTTTACTC	GCTCAACCAC CGAGTTGGTG	AACCCCAGTA TTGGGGTCAT	GCATTCTGCT CGTAAGACGA
VALIVITATI	i ruu mmm	10111111010			
3070 CACTGTTCAT	3080 ATTTTGGCTG	3090 Atttttaaaa	3100 AAATTCTCTT	3110 TTCTGTGCAT	3120 TATTTTACAC
GTGACAAGTA	TAAAACCGAC	TAAAAATTT	TTTAAGAGAA	AAGACACGTA	ATAAAATGTG
3130	3140	3150	3160	3170	3180
AGCCGAAATT	,,,,,,,,				
TCGGCTTTAA	•••••	• • • • • • • • • • • • • • • • • • • •			

3'-End of murine GLP-2 Receptor gene sequenced to date.

FIG. 2 Sequence alignment of the 5' end of the mGLP-2 receptor gene with the 5' end of the cDNA encoding the rat GLP-2R.

Putative	transcript	ional start s	site.		_	
	1				5'-UTR nearly between rat ar	identical
					sequences enco	oding 5'
		1		20	end of GLP-2R.	
MOUSE GLP-2R RAT GLP-2R	1	AACACTTCCT AACACTTCCT	20 CTCTGGACAA CTCTGGACAA	GGAGGAATGC GGAGGAGTGC	40 Aggaggccac Aggaggccac	50 CGCCTGCAGT CGCCTGCAGT
MOUSE GLP-2R RAT GLP-2R	51 51	60 ACATCTTGGA ACATCITGGA	70 GTGTTGGAGG GTGTTGGAGG	80 GATGTGCCTG GATGTGCCTG	90 CACTTGTGAA CACTTGTGAA	100 AGGGCCCCAG CGGGCGCCAG
MOUSE GLP-2R RAT GLP-2R	101 101	110 AAGGACGAGG GAGA <u>ATG</u> AGG	120 CCCCAACCAA CCCCAACCAA	130 GCCCGGCAGT GCCCGGCAGT	140 GCCCAGTAGA GCCCAGTAGA	150 TGCAGAGAGC TGCAGAGAGG
MOUSE GLP-2R RAT GLP-2R	151 151	160 GTCCC-TGCC CACCCGTGCC	170 CCGGGC CCGAGTGAGG	180 GCACAG GCACAGCCAG	190 TWGGGCTCCC TGGGCATCCC	200 TGCGGCCCAG TGAGGCCCAG
MOUSE GLP-2R RAT GLP-2R	201 201	GGGC¢CGTTC	220 CTCTCCACKC CTCTCCACTC	230 CCACGGGATG CCAACAG <u>ATG</u>	240 CGTCGGCTCT CGTCTGCTGT	250 GGGGCCCTGG GGGGCCCTGG
MOUSE GLP-2R RAT GLP-2R	251 251	GACGCCTTC GAGGCCCTTC	270 CTCTCCCTGC CTCGCCCTGC	TTCTGCTGGT TTCTGCTGGT	290 TTCCATCAAG TTCCATCAAG	300 CAAGTAAGAA CAAGTTACAG
MOUSE GLP-2R RAT GLP-2R	301 301	CAGATTTTTA GATCGCTCCT	320 TTCCTCATTC CAAGGAGACA	GTCTTGTFAA ACTCAGAAGT	340 TATTATCAGT GCGCTAATTA	350 TGTGCATGTT TAAGGAGAAG
	Upstream I	nitiator ATG	codon.			
			Dowi	nstream Initia	ator ATG codon.	•

Sequence alignment of the 5' end of the mGLP-2 receptor gene with the 5' end of the cDNA encoding the rat GLP-2R.

The 5' end of the cDNA encoding the rat GLP-2R (cloned by 5'-RACE) is presented in alignment with the corresponding region of sequence encoding the murine GLP-2R. The upstream initiator ATG codon is present in the rat sequence, and the downstream initiator ATG codon is conserved between in both the rat and murine sequences encoding the GLP-2R. The sequence corresponding to the putative 5'-UTR (untranslated region) is nearly identical between the rat and murine sequences presented.

Title: GLP-2 RECEPTOR GENE PROMOTER AND USES THEREOF Inventor(s): Daniel J. DRUCKER Appl. No.: 09/833,740

Hind III

Bam H1

Eco R1

Pvu II

PST I

Sal I Xba i

Xho I

Title: GLP-2 RECEPTOR GENE PROMOTER AND USES THEREOF Inventor(s): Daniel J. DRUCKER Appl. No.: 09/833,740

F1G. 5

		•
	***	tcctcattc tattatcag
atgrittgit ittritititg ggcitgitga gga cegcitgit cititititit ggcitgitga gga cectigit cititititit agcitgitga atga cectactit gg-gggggca;ggcggggg; atga cectactit gg-gggggca; ggggggggggggggggggggggggggggggg	GCT GGG AGG CCC TTC CTC GCC CTG CTT CTG CTG GTT TCC ATC AAG CAA	GCT GGG ACG CCC TTC CTC TCC CTT CTG CTG GTT TCC ATC GCT GGG AGG CCC TTC CTC ACT CTG GTC CTG CTG GTT TCC ATC 246
mouse GLP-2R human GLP-2R human GLP-2R mouse GLP-2R mouse GLP-2R mouse GLP-2R mouse GLP-2R rat GLP-2R mouse GLP-2R mouse GLP-2R human GLP-2R human GLP-2R	9-4T9	mouse GLP-2R human GLP-2R
mouse GLP-2R human GLP-2R human GLP-2R human GLP-2R human GLP-2R human GLP-2R rat GLP-2R human GLP-2R mouse GLP-2R mouse GLP-2R human GLP-2R	rat	mouse human

nlsLacZ GAPDH Cerebellum Cortex Medulla Amygdala Pons **Pituitary**

F1G. 8a

F1G. 8b

F16. 8c

FIG. 8d

FIG. 9a

GLP-2R

FIG. 9b

Preimmune

FIG. 9c

GLP-2R

FIG. 9d

Preimmune

FIG. 9e

B-Galactosidase

FIG. 9f

B-Galactosidase

GLP-2R

FIG. 10a

FIG. 10b

FIG. IOc

 β -Galactosidase

FIG. 10d

FIG. IOe

FIG. 10f

 $\beta\text{-}Galactosidase$

FIG. IOg

FIG. 10h

Title: GLP-2 RECEPTOR GENE PROMOTER AND USES THEREOF Inventor(s): Daniel J. DRUCKER Appl. No.: 09/833,740

FIG. IIa

FIG. IIb

FIG. IIc

