Relace

Zdeněk Dvořák

17. října 2018

Definice 1. Binární relace R mezi množinami X a Y je podmnožina $X \times Y$.

Binární relace R na množině X je podmnožina $X \times X$.

Místo $(x,y) \in R$ píšeme xRy.

Relace s vyšší aritou (množiny k-tic); nebudeme se jimi teď zabývat.

Příklad 1.

 $\{(1,a),(1,b),(2,a),(2,b),(2,c)\}$ je relace mezi $\{1,2,3\}$ a $\{a,b,c\}$. Rovnost na libovolné množině M:

$$\{(x,x):x\in M\}.$$

Dělitelnost v přirozených číslech:

$$\{(x,y): x,y \in \mathbb{N}, x|y\}.$$

Soudělnost v přirozených číslech:

$$\{(x,y): x,y \in \mathbb{N}, \operatorname{nsd}(x,y) > 1\}.$$

Prázdná relace \emptyset , univerzální relace $X \times Y$. Rovnoběžnost v rovině:

$$\{(x,y): x,\ y\ extit{primky}\ v\ extit{rovine},\ x\parallel y\}$$

Reprezentace výčtem hodnot, grafem, šipkovým diagramem, maticí. Vlastnosti relace R na množině X:

- reflexivní: xRx pro každé $x \in X$.
- symetrická: pro každé $x, y \in X$, $xRy \Leftrightarrow yRx$.

- slabě antisymetrická: pro každé $x, y \in X$, jestliže $xRy \wedge yRx$, pak x = y.
- $\bullet\,$ antisymetrická: pro žádné $x,y\in X$ neplatí zároveň xRy a yRx.
- tranzitivní: pro každé $x, y, z \in X$, jestliže xRy a yRz, pak xRz.

Definice 2. Relace na R množině X je

- ekvivalence, jestliže R je reflexivní, symetrická a tranzitivní,
- <u>částečné uspořádání</u>, jestliže R je reflexivní, slabě antisymetrická a tranzitivní,
- ostré částečné uspořádání, jestliže R je antisymetrická a tranzitivní.

Operace na relacích:

- Inverze: pro relaci R mezi X a Y je $R^{-1} = \{(y, x) : (x, y) \in R\}$ relace mezi Y a X; $xR^{-1}y$ právě když yRx.
- Skládání: pro relaci R_1 mezi X a Z a relaci R_2 mezi Z a Y je $R_1 \circ R_2 = \{(x,y): (\exists z) (x,z) \in R_1 \land (z,y) \in R_2\}$ relace mezi X a Y.

Příklad 2.

Relace R je tranzitivní, právě když $R \circ R \subseteq R$. V obecnosti $R_1 \circ R_2 \neq R_2 \circ R_1$. $R \circ R^{-1}$ je symetrická.

1 Ekvivalence

Nechť R je ekvivalence na množině X. <u>Třída ekvivalence</u> prvku $a \in X$ je $[a]_R = \{x : x \in X, aRx\}$.

Věta 1. Nechť R je ekvivalence na množině X.

- (a) Pro každé $a \in X$ platí $a \in [a]_R$.
- (b) Jestliže $a, b \in X$ a aRb, pak $[a]_R = [b]_R$.
- (c) Jestliže $a, b \in X$ a $\neg aRb$, pak $[a]_R \cap [b]_R = \emptyset$.

Důkaz. (a) platí díky reflexivitě.

Nechť platí aRb. Jestliže $c \in [b]_R$, pak bRc, což z tranzitivity implikuje aRc, a tedy $c \in [a]_R$. Proto máme $[b]_R \subseteq [a]_R$. Ze symetrie platí bRa a stejný argument implikuje $[a]_R \subseteq [b]_R$. Tedy $[a]_R = [b]_R$, a (b) platí.

Pro (c) ukážeme ekvivalentní obměnu: Jestliže $[a]_R \cap [b]_R \neq \emptyset$, pak aRb. Skutečně, když $c \in [a]_R \cap [b]_R$, pak aRc a bRc a ze symetrie a tranzitivity dostáváme aRb.

Rozklad na třídy ekvivalence $\mathcal{P}(R) = \{[x]_R : x \in X\}.$

Příklad 3. Nechť ~ je relace na \mathbb{N} tž. $x \sim y$ právě když 3|x - y. Pak $[3]_{\sim} = [6]_{\sim} = [9]_{\sim} = \dots$ jsou čísla dělitelná 3, $[1]_{\sim} = [4]_{\sim} = \dots$ jsou čísla dávající zbytek 1 po dělení 3, a $[2]_{\sim} = [5]_{\sim} = \dots$ jsou čísla dávající zbytek 2 po dělení 3. Každé číslo dává zbytek 0, 1, nebo 2 po dělení 3, a tedy $\mathcal{P}(\sim) = \{[1]_{\sim}, [2]_{\sim}, [3]_{\sim}\}.$

Nechť P je relace na atomech, xPy právě když x a y mají stejně protonů. Třídy ekvivalence: chemické prvky.

Třídy ekvivalence jednoznačně určují ekvivalenci. Nechť $\mathcal Q$ je rozklad množiny X (tj. prvky $\mathcal Q$ jsou neprázdné navzájem disjunktní podmnožiny X a $X = \bigcup_{Q \in \mathcal Q} Q$. Definujme relaci $\sim_{\mathcal Q}$ na X tž. $x \sim_{\mathcal Q} y$ právě když existuje $Q \in \mathcal Q$ tž. $x,y \in Q$.

Lemma 2. Pro každý rozklad Q množiny X je \sim_{Q} ekvivalence a třídy této ekvivalence jsou právě prvky Q. Naopak, je-li R ekvivalence na X, pak $R = \sim_{\mathcal{P}(R)}$.

 $D\mathring{u}kaz$. Reflexivita a symetrie $\sim_{\mathcal{Q}}$ je zřejmá. Jestliže $x \sim_{\mathcal{Q}} y$ a $y \sim_{\mathcal{Q}} z$, pak $x,y \in Q_1$ a $y,z \in Q_2$ pro nějaké $Q_1,Q_2 \in \mathcal{Q}$. Jelikož prvky \mathcal{Q} jsou navzájem disjunktní a $y \in Q_1 \cap Q_2$, máme $Q_1 = Q_2$. Proto $x,z \in Q_1$ a $x \sim_{\mathcal{Q}} z$. Proto $\sim_{\mathcal{Q}}$ je i tranzitivní, a tedy $\sim_{\mathcal{Q}}$ je ekvivalence. Pro každé $x \in X$ je třída ekvivalence $[x]_{\sim_{\mathcal{Q}}}$ rovná prvku $Q \in \mathcal{Q}$ tž. $x \in Q$.

Nechť R je ekvivalence na X. Jestliže xRy pak $[x]_R = [y]_R$, a tedy $x, y \in [x]_R$ a $x \sim_{\mathcal{P}(R)} y$. Jestliže $x \sim_{\mathcal{P}(R)} y$, pak $x, y \in Q$ pro nějaké $Q \in \mathcal{P}(R)$, řekněme $Q = [z]_R$. Pak xRz a yRz, a ze symetrie a tranzitivity xRy. Proto $R = \sim_{\mathcal{P}(R)}$.

2 Částečná uspořádání

Pozorování 3. Nechť X je množina a $E = \{(x,x) : x \in X\}$ je relace rovnosti na X. Je-li \leq částečné uspořádání na X, pak $\leq \setminus E$ je ostré částečné uspořádání na X. Je-li \prec ostré částečné uspořádání na X, pak $\prec \cup E$ je částečné uspořádání na X.

Reprezentace <u>Hasseho diagramem</u>: šipky vedou nahoru, bez tranzitivních a reflexivních šipek.

Pro částečné uspořádání \leq na X a $x \in X$ definujme $\downarrow_{\leq} x = \{y : y \in X, y \prec x\}.$

Věta 4. Nechť \leq je částečné uspořádání na množině X a $x, y \in X$. Pak $x \leq y$ právě $když \downarrow_{\leq} x \subseteq \downarrow_{\leq} y$. Navíc, jestliže $x \neq y$, pak $\downarrow_{\leq} x \neq \downarrow_{\leq} y$.

 $D\mathring{u}kaz$. Jestliže $x \leq y$ a $z \in \downarrow_{\preceq} x$, pak $z \leq x$ a z tranzitivity $z \leq y$, a tedy $z \in \downarrow_{\preceq} y$; proto $x \subseteq \downarrow_{\preceq} y$.

Z reflexivity máme $x\in\downarrow_{\preceq} x$. Jestliže $\downarrow_{\preceq} x\subseteq\downarrow_{\preceq} y$, pak $x\in\downarrow_{\preceq} y$, a tedy $x\preceq y$.

Jestliže $x \neq y$, pak ze slabé antisymetrie plyne $x \not\preceq y$ nebo $y \not\preceq z$; BÚNO předpokládejme $x \not\preceq y$. Pak $x \not\in \downarrow_{\preceq} y$, a proto $\downarrow_{\preceq} x \neq \downarrow_{\preceq} y$.

Prvky x a y jsou <u>neporovnatelné</u> v částečném uspořádání \leq , jestliže $x \not \leq y$ a $y \not \leq x$. Antiřetězec je množina navzájem neporovnatelných prvků.

Příklad 4. Relace "x dělí y" je uspořádání na přirozených číslech. Dvě čísla jsou neporovnatelná, jestliže ani jedno z nich nedělí to druhé.

Částečné uspořádání je lineární, jestliže každé dva prvky jsou porovnatelné. <u>Řetězec</u> je množina navzájem porovnatelných prvků; tedy \preceq na řetězci je lineární uspořádání.

Prvek $x \in X$ je v uspořádání \leq na X

- nejmenší, jestliže $x \leq y$ pro každé $y \in X$,
- minimální, jestliže neexistuje prvek $y \in X \setminus \{x\}$ tž. $y \leq x$.

Obdobně největší a maximální.

Příklad 5. Má-li částečné uspořádání nejmenší prvek, pak je (ze slabé antisymetrie) jednoznačný a je to také jediný minimální prvek.

Navzájem různé minimální prvky jsou neporovnatelné.

Uspořádání děliteností na \mathbb{N} má nejmenší prvek 1.

Uspořádání děliteností na $\mathbb{N}\setminus\{1\}$ nemá nejmenší prvek, minimální prvky jsou prvočísla.

Uspořádání celých čísel dle velikosti nemá žádný minimální prvek.

Lemma 5. Je-li \leq částečné uspořádání na neprázdné konečné množině X, pak \prec má alespoň jeden minimální prvek.

 $D\mathring{u}kaz$. Indukcí dle |X|. Jestliže $X = \{x\}$, pak x je minimální prvek. Můžeme tedy předpokládat $|X| \geq 2$. Nechť x je libovolný prvek X. Uvažujme \leq na množině $X \setminus \{x\}$. Z indukčního předpokladu má toto částečné uspořádání minimální prvek m. Jestliže $x \not \leq m$, pak m je minimální i na X. Jestliže $x \leq m$, pak x je minimální prvek na X; jinak by musel existovat prvek $z \in X \setminus \{x\}$ tž. $z \leq x$, z tranzitivity bychom měli $z \leq m$ a z minimality m na $X \setminus \{x\}$ by plynulo z = m, a tedy $m \leq x$ ve sporu se slabou antisymetrií. \square