♦ Nuclear Fleet Retirement Analysis & Energy Security Implications

Project Summary:

This project models nuclear power capacity trajectories globally through 2050 under different build-out scenarios. Using reactor-level data from the IAEA, we forecast how plant retirements, absent new investments, lead to sharp declines in baseload capacity—raising critical concerns for grid reliability.

Scenario-wise analysis:

1. Global Decline Without Action

- In both the USA and RoW, nuclear capacity peaks around 2025.
- Without new builds, a steep decline begins post-2030, particularly in RoW.
- This drop reflects the retirement of aging nuclear plants, typically modelled at a 60-year operational lifespan.

By 2050, global nuclear capacity falls below 1990 levels in a no-intervention scenario—a critical concern for baseload supply.

2. "Required New Builds" Scenario Stabilizes the Decline

- If countries invest enough to maintain 2025 capacity levels, nuclear output stabilizes through 2050.
- This approach essentially compensates for plant retirements one-to-one—but does not increase capacity beyond today's baseline.

This scenario buys time for renewables to scale but does not resolve longer-term grid adequacy under electrification growth.

3. USA 300% Growth Scenario Shows Major Strategic Shift

- Under the "Linear 300% USA Growth" scenario, capacity triples between 2030– 2050.
- This makes the USA the only group in the model with a rising nuclear trajectory.
- It creates energy resilience by building dispatchable, non-intermittent power alongside renewables.

This illustrates how long-term nuclear investments can reverse decline trends and offset fossil retirements.

Key Findings

1. Nuclear Capacity is Declining Rapidly Without New Builds

Our simulation assumes nuclear plants retire after 60 years of operation, with no new plants built. Under this "no-intervention" baseline:

- Global nuclear capacity declines sharply after 2030, as legacy reactors retire.
- The **USA** is **especially impacted**, with nearly half of capacity retired by 2050.
- Without action, this leads to a severe reduction in dispatchable baseload electricity.

2. Renewables Alone May Not Be Enough

While renewables are expanding, their **intermittency limits their ability to replace nuclear baseload**, especially during:

- Evening peaks (when solar drops but demand remains high)
- Low-wind seasons or cold winters
- Industrial ramp-up periods with sustained demand

These gaps will require dispatchable or firm generation capacity.

3. Coal Plants are Also Retiring

Most OECD and several developing countries are retiring coal due to emissions targets and aging infrastructure. This double loss—**coal + nuclear**—puts extreme pressure on the grid unless:

- Significant energy storage is added
- Or, new firm generation is commissioned

Scenario Modelled: No New Nuclear Builds

We modelled global nuclear fleet capacity under the assumption that **no new plants** are added after 2025. Our simulation accounts for:

- Plant-level age and retirement dates
- Shutdown assumptions at 60 years
- Annual net capacity aggregation by country group

Result: Without reinvestment, global capacity falls well below 2025 levels by 2040, leaving a **gap of over 100 GW** in baseload capacity.

▲ Energy Security Implications

- **Grid instability** becomes more likely as renewable share rises without firm backup.
- Import dependency increases in countries without local gas or hydro reserves.
- Energy prices may spike due to peak-hour shortages, as seen in several recent global power crises.

⊗ Strategic Recommendation

Nuclear should be evaluated not just for decarbonization, but as a **ramp-up buffer** for grids transitioning away from fossil fuels.

Governments and utilities need to factor in new nuclear development—especially small modular reactors (SMRs)—as a **non-intermittent complement to renewables**.

☆ Tools & Techniques Used

- Data: IAEA reactor-level database
- Modeling: Plant life simulation, scenario analysis
- Tools: R (tidyverse, ggplot2, plotly), Excel
- Output: Interactive dashboards and PNG visual summaries

© Use This Work If You Are...

- A **clean energy startup** modelling long-term supply adequacy
- A **policy advisor** needing data-driven nuclear planning insights
- A grid planner needing tools to simulate capacity loss over time
- A **consulting firm** building energy scenarios for government clients

About the Analyst

This analysis was performed by a data scientist with experience in **energy markets**, **net zero modelling**, and **forecasting tools** for emissions and capacity planning. I specialize in translating raw data into **strategic insights and stakeholder-ready visuals**.