Testing and Tuning SkinnyDip: Noise-Robust Clustering

SkinnyDip

Non-parametric, deterministic clustering

Robust to very noisy data

Based on the "dip-test" for modality

Modality and Empirical Cumulative Distribution Function

ECDF is a monotonically increasing function

 Unimodal: ECDF is concave up to mode and convex after

Dip Test

J. A. Hartigan and P. Hartigan. The dip test of unimodality. The Annals of Statistics, 1985.

Hypercubic Regions

 SkinnyDip recurses through each dimension of the data and finds approximate unimodal regions

 These intersections of these regions are then combined to form the basis of each cluster

 Accuracy drops exponentially with increasing dimensionality

SkinnyDip Running Example Unlabeled

SkinnyDip Running Example Ground Truth

Testing

Map unsupervised clusters to ground truth labels

Gain a better understanding of inherent error

Test multiple dimensions and clusters

Tuning

 Use distribution of points in each cluster as evidence for underlying variance

- Remap points in the original data using empirical data
 - e.g. Mahalnobis distance using pseudo-inverse cov

Retest

Unlabeled Single Gaussian 1D

SkinnyDip for Single Gaussian 1D

Ground Truth for Single Gaussian 1D

SkinnyDip+Recluster for Single Gaussian 1D

Unlabeled for Single Gaussian 2D

Ground Truth for Single Gaussian 2D

SkinnyDip for Single Gaussian 2D

SkinnyDip+Recluster for Single Gaussian 2D

Unlabeled Single Gaussian 3D

GroundTruth for Single Gaussian 3D

SkinnyDip for Single Gaussian 3D

GroundTruth for Single Gaussian 3D

0.6

0.8

0.2

0.4

0.0

0.0

1.0

SkinnyDip+Recluster for Single Gaussian 3D

Random Data Unlabeled

Random Data Ground Truth

Random Data SkinnyDip

Random Data Ground Truth

Random Data SkinnyDip+Recluster

SkinnyDip Running Example Unlabeled

SkinnyDip Running Example

SkinnyDip Running Example Ground Truth

SkinnyDip Running Example with Reclustering

Conclusions

False Negative Rates for original and Reclustered versions of SkinnyDip

- Reclustering to balance out error rates is only practical in lower dimensions
- Small neglected regions still exponentially increase error in higher dimensions
- Less uniform the background noise means more prone to extraneous clusters
- Authors discuss the uses of SkinnyDip on real-world noisy data. Locational classification in 2 or 3 dimensions is still practical

References

Samuel Maurus and Claudia Plant. 2016. Skinny-dip: Clustering in a Sea of Noise. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining* (KDD '16). ACM, New York, NY, USA, 1055-1064. DOI: https://doi.org/10.1145/2939672.2939740

 J. A. Hartigan and P. Hartigan. The dip test of unimodality. The Annals of Statistics, 1985.

Questions?