Policy Gradient on Linear Quadratic Problem

Farnaz Adib Yaghmaie

Linkoping University, Sweden farnaz.adib.yaghmaie@liu.se

March 12, 2021

Dynamics:

$$s_{t+1} = As_t + Bu_t + w_t$$

State and action:

$$s_t \in \mathbb{R}^n$$
, $u_t \in \mathbb{R}^m$

■ Cost function (≡ negative of reward):

$$c_t = s_t^{\dagger} Q s_t + u_t^{\dagger} R u_t, \quad Q \ge 0, R > 0$$

└─ Specification

Solvability Criterion: Minimize the average cost (\equiv maximize the average reward)

$$\lambda = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} c_t.$$

Configuring the nework

We consider a linear policy, so the mean of the pdf is selected as

$$\mu_{\theta}(s) = \theta s \tag{1}$$

and the pdf is given by

$$\pi_{ heta}(s) = rac{1}{\sqrt{(2\pi\sigma^2)^{n_a}}} \exp[-rac{1}{2\sigma^2}(a- heta s)^{\dagger}(a- heta s)]$$

Collect data

■ Observe s and sample $a \sim \pi_{\theta}(s)$

$$a = theta s + sigma * np.random.randn(n_a)$$

- Apply a and observe r.
- Add s, a, r to the history.
- **2** Update the parameter θ
 - We calculate the reward and standardize it.
 - We calculate the gradient using

$$\nabla_{\theta} J = \frac{1}{\sigma^2 |\mathcal{D}|} \sum_{\tau \in \mathcal{D}} \sum_{t=1}^{T} (a_t - \theta s_t) s_t^{\dagger} R(T). \tag{2}$$

 We optimize the policy by a gradient algorithm (e.g. an ADAM optimizer)

Try the following:

Run

Crash_course_on_RL/pg_on_lq_notebook.ipynb and verify the median of the error in estimating the optimal gain is $\sim 0.08\%.$

Set

'explore_mag=0.000001' in 'Mypgrl.pg_linpolicy' and verify that the agent cannot learn the optimal gain by using a deterministic policy in PG.

■ Make sure you understand the code!

PG on Linear Quadratic Problem

Results

Email your questions to

farnaz.adib.yaghmaie@liu.se