

An Intr	oduction to Relational Database Theory	Contr
3.	Predicates and Propositions	63
3.1	Introduction	63
3.2	What Is a Predicate?	63
3.3	Substitution and Instantiation	68
3.4	How a Relation Represents an Extension	69
3.5	Deriving Predicates from Predicates	75
	EXERCISES	84
4.	Relational Algebra - The Foundation	85
4.1	Introduction	85
4.2	Relations and Predicates	88
4.3	Relational Operators and Logical Operators	89
4.4	JOIN and AND	90
4.5	RENAME	93
4.6	Projection and Existential Quantification	97
4.7	Restriction and AND	103
4.8	Extension and AND	106
4.9	UNION and OR	108
4.10	Semidifference and NOT	111

Outline

- 关系及其表示
- 关系运算
- 关系性质
- 等价关系
- 序关系
- 函数关系

iscrete Mathematics, 6 Relation

Discrete Methematics & Delation

1 有序对与笛卡尔积

- ▶ 序偶(序对, Ordered Pair): (a,b)或者 <a,b>
 - 序偶<a, b>中两个元素不一定来自同一个集合,它们可以代表不同类型的事物。例如,a代表操作码,b代表地址码,则序偶<a, b>就代表一条单地址指令;哈密尔顿引进有序偶(a, b)来表示复数a+bi
 - $\; (a,b) \! = \! (c,d) \Leftrightarrow a \! = \! c \! \wedge \! b \! = \! d$
 - $a≠b \Rightarrow (a,b)≠(b,a)$
- ▶ 有序n元组: (a1,a2,...,an)=((a1,a2,...,an-1),an)
- ▶ 有序n元组<mark>相等</mark>: (a1,a2,...,an)=(b1,b2,...,bn)

Discrete Mathematics, 6 Relation

1 有序对与笛卡尔积

示例

 $A = \{\emptyset, a\}, B = \{1, 2, 3\}.$

A×B={<∅,1>,<∅,2>,<∅,3>,<a,1>,<a,2>,<a,3>}.

 $B \times A = \{<1,\varnothing>,<1,a>,<2,\varnothing>,<2,a>,<3,\varnothing>,<3,a>\}.$

 $\mathsf{A}{\times}\mathsf{A}{=}\{\ <\varnothing,\varnothing>,\ <\varnothing,a>,\ <\mathsf{a},\varnothing>,\ <\mathsf{a},a>\}.$

 $B \times B = \{<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<2,3>,<3,1>,<3,2>,<3,3>\}.$

Discrete Mathematics, 6 Relation

1 有序对与笛卡尔积

n维笛卡尔积

 $A_1 \times A_2 \times ... \times A_n$ $=\{<\!x_{1},\!x_{2},\!...,\!x_{n}\!>\mid x_{1}\!\in\!A_{1}\!\!\wedge\!x_{2}\!\in\!A_{2}\!\!\wedge\!...\!\!\wedge\!x_{n}\!\in\!A_{n}\,\}$ $A^n = A \times A \times ... \times A$ $\Leftrightarrow |A_i| = n_i, i = 1, 2, ..., n,$

显然 $|A_1 \times A_2 \times ... \times A_n| = n_1 \times n_2 \times ... \times n_n$.

1 有序对与笛卡尔积

笛卡尔积一些性质

 $A \times B = \emptyset \Leftrightarrow A = \emptyset \vee B = \emptyset$

非交换

 $A \times B \neq B \times A$ (除非 $A = B \lor A = \emptyset \lor B = \emptyset$)

非结合

 $(A \times B) \times C \neq A \times (B \times C)$ (除非 $A = \emptyset \lor B = \emptyset \lor C = \emptyset$)

分配律

 $A \times (B \cup C) = (A \times B) \cup (A \times C)$

1 有序对与笛卡尔积

1. $A \times (B \cup C) = (A \times B) \cup (A \times C)$

2. $A\times(B\cap C) = (A\times B)\cap (A\times C)$ 3. $(B\cup C)\times A = (B\times A)\cup (C\times A)$

4. $(B \cap C) \times A = (B \times A) \cap (C \times A)$

示例 试证明分配律

 $\mathsf{A}{\times}(\mathsf{B}{\cup}\mathsf{C})=(\mathsf{A}{\times}\mathsf{B}){\cup}(\mathsf{A}{\times}\mathsf{C}).$

证明: ∀<x,y>, <x,y>∈A×(B∪C)

 $\Leftrightarrow x{\in} A{\scriptstyle \land} y{\in} (B{\cup} C) \Leftrightarrow x{\in} A{\scriptstyle \land} (y{\in} B{\scriptstyle \lor} y{\in} C)$

 $\Leftrightarrow (x \in A \land y \in B) \lor (x \in A \land y \in C)$

 \Leftrightarrow (<x,y> \in A \times B) \vee (<x,y> \in A \times C)

 $\Leftrightarrow x \in (A \times B) \cup (A \times C)$

所以, $A\times(B\cup C) = (A\times B)\cup (A\times C)$.

示例 设A,B,C,D是任意集合,

(1) 若A≠Ø,则 A×B⊆A×C ⇔ B⊆C.

(2) $A \subseteq C \land B \subseteq D \Rightarrow A \times B \subseteq C \times D$,

且当(A=B=∅)∨(A≠∅∧B≠∅)时,

 $A \times B \subseteq C \times D \Rightarrow A \subseteq C \land B \subseteq D$.

1 有序对与笛卡尔积

证明 (1) 若A≠∅, 则A×B⊆A×C ⇔ B⊆C.

(⇒) 若 B=∅, 则 B⊆C.

设 B≠∅, 由A≠∅, 设x∈A.

 $\forall y, y \in B \Rightarrow \langle x,y \rangle \in A \times B$

 $\Rightarrow < x,y > \in A \times C$

 $\Leftrightarrow x{\in} A{\scriptstyle \wedge} y{\in} C \Rightarrow y{\in} C.$

所以,B⊆C

1 有序对与笛卡尔积

1 有序对与笛卡尔积

(⇐)若B=∅,则A×B⊆A×C.

设 B≠Ø.

 $\forall\, {<} x,\!y {>},\!<\! x,\!y {>}\, {\in} A {\times} B \Leftrightarrow x {\in} A {\wedge} y {\in} B$

 $\Rightarrow x \in A \land y \in C \Leftrightarrow \langle x,y \rangle \in A \times C$

所以, A×B⊆A×C.

2 二元关系 (Binary Relations)

设n∈l+, A1,A2,...,An为任意n个集合,ρ⊆A1×A2×...×An,则

(1)称ρ为A1,A2,...,An间的n元关系;

(2)若n=2,则称ρ为从A1到A2的二元关系;

(3)若 $\rho=\Phi$,则称 ρ 为<mark>空关系</mark>;

(4)若ρ=A1×A2×...×An,则称ρ为<mark>普遍关系</mark>;

(5)若A1=A2=...=An=A,则称ρ为A上<mark>的n元关系</mark>;

(6)若 ρ ={(x,x)|x∈A},则称 ρ 为A上的<mark>恒等关系。</mark>

若ρ是由A到B的一个关系,且(a,b) \in ρ,则a对b有关系ρ,记为

apb。中缀(infix)、前缀(prefix)、后缀(suffix)记号

A relation is a particular type of set. A function is a particular type of relation. A predicate is a particular type of function.

Discrete Mathematics, 6 Relation

2 二元关系 (Binary Relations)

对集合A上的关系R, 可以定义:

定义域(domain): dom R = { x | ∃y(y∈A ∧ xRy) } 值域(range): ran R = { y | ∃x(x∈A ∧ xRy) } 域(field): fld R = dom R ∪ ran R

Discrete Mathematics, 6 Relation

2 二元关系 (Binary Relations)

示例

- {<1,2>,<α,β>,<a,b>}是二元关系,{<1,2>,<3,4>,<白菜,小猫>}是二元关系,A={<a,b>,<1,2,3>,a,α,1}不是关系
- 2. 设A={1,2,4,7,8}, B={2,3,5,7}, 定义由A到B的关系 ρ ={(a,b)| 5|(a+b)}, |表示整除,求关系 ρ 。
- 设A={2,3,4,5,9,25},定义A上的关系ρ,对于任意的a,b∈A, 当且仅当(a-b)² ∈ A时,有aρb,试问ρ由哪些序偶组成?
- 4. 设A={0,1,2},求A上的普遍关系U_A和A上的恒等关系I_A。
- 5. A到B不同的二元关系共有多少个?A上不同的二元关系共有 多少个?

Discrete Mathematics, 6 Relation

2 二元关系 (Binary Relations)

示例

6. 设A⊆R, 则可以定义A上的:

小于等于(less than or equal to)关系:

 $\mathsf{LEA} = \{ \, \langle \mathsf{x}, \mathsf{y} \rangle \mid \mathsf{x} \in \mathsf{A} \land \mathsf{y} \in \mathsf{A} \land \mathsf{x} \leq \mathsf{y} \, \}$

小于(less than)关系,LA = { <x,y> | x∈A ∧ y∈A ∧ x<y }

大于等于(greater than or equal to)关系

大于(great than)关系

7. 设A为任意集合,则可以定义P(A)上的:

包含关系: ⊆A = { <x,y> | x ⊆A ∧ y ⊆A ∧ x ⊆y }

Discrete Mathematics, 6 Relation

2 二元关系 (Binary Relations)

示例

8 自然数上的二元关系

 $D = \{(m,n) \in N^2 \mid m \mid n\}$

自然数上的同余关系

 $R_k {=} \{ (m,n) {\in} \, N^2 \, \big| \, \, (k, \big| m{-}n \big|) {\in} \, D \}$

m≡n (mod k)

iscrete Mathematics, 6 Relation

3 关系的表示

- 集合论方法 (序对之集合)
- 代数表示 (矩阵表示法)
- 几何表示(图)

关系R的集合表达式,关系矩阵,关系图三者均可以唯一互相确定

iscrete Mathematics, 6 Relation

3 关系的表示——关系矩阵

设 $A=\{a_1,a_2,...,a_m\}$, $B=\{b_1,b_2,...,b_n\}$, $R_A\times B$, 则R的关系矩阵 M(R) (或者记为 M_R) $=(r_{ij})_{m\times n,i}$ 其中,

$$r_{ij} = \begin{cases} 1, & x_i R x_j \\ 0, & otherwise \end{cases}$$

如, A={2,3,4,5},B={6,7,8,9},由A到B的关系 ρ={(2,7),(2,9),(3,7),(3,8),(4,7),(4,9),(5,6),(5,7),(5,8),(5,9)},

所以关系矩阵

$$M_{\rho} = \begin{vmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{vmatrix}$$

iscrete Mathematics, 6 Relation

3 关系的表示——关系矩阵

集合A到B的关系R的关系图G(R)或 G_R :

由结点(表示集合元素)与 \dot{D} (表示结点代表的元素之间具有关系R)构成的图。结点数为|A|+|B|,有向边数为|R|

4 关系运算

对任意关系R,G,有:

▶ 逆(Inverse Operation):

$$R^{-1} = \{ \langle x, y \rangle \mid yRx \}$$

▶ 复合(合成)(Composite Operation)

RoG = { <x,y> | ∃z(xRz ∧ zGy)}

Discrete Mathematics 6 Palation

Discrete Methematics & Deletion

4 关系运算

示例 Grandparents

To construct the "isGrandparentOf" relation, we can compose "isParentOf" with itself.

 $\underline{\mathsf{isGrandparentOf}} = \underline{\mathsf{isParentOf}} \circ \underline{\mathsf{isParentOf}}.$

Similarly, we can construct the "isGreatGrandparentOf" relation by the following composition:

 $\underline{\mathsf{isGreatGrandparentOf}} = \underline{\mathsf{isGrandparentOf}} \circ \underline{\mathsf{isParentOf}}.$

isParentOf² = isGrandparentOf, isParentOf³ = isGreatGrandparentOf.

iscrete Mathematics, 6 Relatio

4 关系运算

2 设F是任意集合,则

(1) $domF^{-1} = ranF$; (2) $ranF^{-1} = domF$; (3) $(F^{-1})^{-1} = F$.

证明: (1) $\forall x, x \in domF^{-1} \Leftrightarrow \exists y(xF^{-1}\ y) \Leftrightarrow \exists y(yFx) \Leftrightarrow x \in ranF$ 于是,domF-1 = ranF.

(2)可类似证明.

 $(3) \ \forall \, {<} x,y{>}, {<} x,y{>} \, {\in} (F^{-1})^{-1} \Leftrightarrow x(F^{-1})^{-1}y \Leftrightarrow yF^{-1}x \Leftrightarrow$ $xFy \Leftrightarrow \langle x,y \rangle \in F$. 所以, (F-1)-1 = F.

4 关系运算

3 设R₁,R₂,R₃为集合A上二元关系,则 关系, m,n∈N, 有:

 $(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$

证明: ∀<x,y>, <x,y>∈(R₁oR₂) oR₃

- $\Leftrightarrow \exists z (x(R_1 o R_2)z \wedge z R_3 y)$
- $\Leftrightarrow \exists z (\exists t (\ xR_1t \wedge tR_2z\) \wedge zR_3y)$
- $\Leftrightarrow \exists z \exists t (\ (xR_1t \wedge tR_2z) \wedge zR_3y \) \)$
- $\Leftrightarrow \exists t \exists z (\ xR_1t \wedge \ tR_2z \wedge zR_3y)$

(4) $(\rho^n)^m = \rho^{m \cdot n}$ $\Leftrightarrow \exists t (xR_1t \wedge \exists z (\ tR_2z \wedge zR_3y)\)$

(2) $\rho^{n+1} = \rho \circ \rho^n$, $n \in \mathbb{N}$

(3) $\rho^m \circ \rho^n = \rho^{m+n}$

设A为任意集合,ρ为A上的任意二元

(1) ρ^0 是A上的恒等关系,即 $\rho^0 = I_A$

- $\Leftrightarrow \exists \textcolor{red}{t}(xR_1\textcolor{red}{t} \wedge \textcolor{red}{t}(R_2oR_3)y)$
- $\Leftrightarrow xR_1o (R_2oR_3)y$
- $\Leftrightarrow <x,y> \in R_1o(R_2oR_3)$
- ∴ $(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$.

4 关系运算

4设R₁,R₂,R₃是集合,则

- (1) $R_1 \circ (R_2 \cup R_3) = (R_1 \circ R_2) \cup (R_1 \circ R_3)$
- (2) $(R_1 \cup R_2) \circ R_3 = (R_1 \circ R_3) \cup (R_2 \circ R_3)$
- (3) $R_1 o(R_2 \cap R_3) \subseteq (R_1 o R_2) \cap (R_1 o R_3)$
- $(4)\ (R_1 {\smallfrown} R_2) o R_3 {\,\subseteq\,} (R_1 o R_3) {\smallfrown} (R_2 o R_3)$
- (5) $(R_1 \circ R_2)^{-1} = R_2^{-1} \circ R_1^{-1}$

4 关系运算

- (1) $R_1o(R_2 \cup R_3) = (R_1oR_2) \cup (R_1oR_3)$
- 证明: \forall < x,y > , < x,y > \in R₁o(R₂ \cup R₃)
- $\Leftrightarrow \exists z (xR_1z {\scriptstyle \wedge} z (R_2 {\scriptstyle \cup} R_3)y)$
- $\Leftrightarrow \exists z(xR_1z \land (zR_2y \lor zR_3y))$
- $\Leftrightarrow \exists z ((xR_1z {\scriptstyle \wedge} zR_2y) {\scriptstyle \vee} (xR_1z {\scriptstyle \wedge} zR_3y))$
- $\Leftrightarrow \exists z (xR_1z {\scriptstyle \wedge} zR_2y) {\scriptstyle \vee} \exists z (xR_1z {\scriptstyle \wedge} zR_3y)$
- \Leftrightarrow < x,y > \in ($R_1 \circ R_2$) \cup ($R_1 \circ R_3$)

4 关系运算

(3) $R_1o(R_2 \cap R_3) \subseteq (R_1oR_2) \cap (R_1oR_3)$

证明: \forall < x,y > , < x,y > \in R₁o(R₂ \cap R₃)

- $\Leftrightarrow \exists z (xR_1z \wedge z (R_2 \cap R_3) \ y) \Leftrightarrow \exists z (xR_1z \wedge (zR_2y \wedge zR_3y))$
- $\Leftrightarrow \exists z ((xR_1z \wedge zR_2y) \wedge (xR_1z \wedge zR_3y))$
- $\mathop{\Rightarrow} \exists z (xR_1z \mathrel{\wedge} zR_2y) \mathrel{\wedge} \exists z (xR_1z \mathrel{\wedge} zR_3y)$
- $\Leftrightarrow \!\! x(R_1oR_2)y \wedge \!\! x(R_1oR_3)y \!\! \Leftrightarrow \!\! x((R_1oR_2) \cap (R_1oR_3))y$
- $\Leftrightarrow <\!x,y\!> \in (R_1oR_2) \cap (R_1oR_3).$

反例(说明=不成立):

设R₁={<d,b>,<d,c>}, R₂={<b,a>}, R₃={<c,a>}. 则R₁o(R₂ \cap R₃) =R₁o \varnothing = \varnothing , $R_1 \circ R_2 = \{< d, a>\}, \; R_1 \circ R_3 = \{< d, a>\}, \; (R_1 \circ R_2) \cap (R_1 \circ R_3) = \{< d, a>\}.$

5 关系性质-传递性

设R⊆A×A, 说R是传递的(Transitive), 如果

 $\forall x \forall y \forall z (x \in A \land y \in A \land z \in A \land xRy \land yRz {\rightarrow} xRz).$

R非传递⇔∃x∃y∃z(x∈A∧y∈A∧z∈A∧xRy∧yRz∧¬xRz)

性质: R是传递的

- $\Leftrightarrow RoR {\subseteq} R$
- ⇔ R-1是传递的
- \Leftrightarrow 在M(RoR)中, $\forall i \forall j$, 若 r_{ij} =1,则M(R)中相应元素 r_{ij} =1.
- \Leftrightarrow 在G(R)中, $\forall x_i \forall x_j \forall x_k$, 若有有向边< $x_i, x_j >$ 、< $x_j, x_k >$ 、则必有有向边< $x_i, x_k >$.

Discrete Mathematics, 6 Relation

5 关系性质

示例

在 N = {0,1,2,...} 上:

- ≤={<x,y>|x∈N∧y∈N∧x≤y}自反,反对称,传递
- ≥={<x,y>|x∈N∧y∈N∧x≥y}自反,反对称,传递
- <={<x,y>|x∈N∧y∈N∧x<y}反自反,反对称,传递</p>
- >={<x,y>|x∈N∧y∈N∧x>y}反自反,反对称,传递|={<x,y>|x∈N∧y∈N∧x|y}反对称,传递(-0|0)
- a) $I_N = \{ \langle x,y \rangle | x \in N \land y \in N \land x = y \}$ 自反,对称,反对称,传递
- b) U_N={<x,y>|x∈N∧y∈N}=N×N自反,对称,传递.

Discrete Mathematics, 6 Relation

5 关系性质

示例

 $A = \{a,b,c\}$

 $R_1 = \{ < a, a >, < a, b >, < b, c >, < a, c > \},$

 $R_2 = \{ \langle a, a \rangle, \langle a, b \rangle, \langle b, c \rangle, \langle c, a \rangle \},$

 $R_3 = \{ <a,a>, <b,b>, <a,b>, <b,a>, <c,c> \},$

 $R_4 = \{ <a,a>, <a,b>, <b,a>, <c,c> \},$

 $R_5 = \{ <a,a>, <a,b>, <b,b>, <c,c> \},$

 $R_6 = \{ \langle a,b \rangle, \langle b,a \rangle, \langle b,c \rangle, \langle a,a \rangle \},$

screte Mathematics, 6 Relation

5 关系性质

示例

设R₁,R₂⊆A×A都具有某种性质

	自反	反自反	对称	反对称	传递
R ₁ -1, R ₂ -1					
$R_1 \cup R_2$					
$R_1 \cap R_2$					
R ₁ oR ₂ , R ₂ oR ₁					
R ₁ -R ₂ , R ₂ -R ₁					
R ₁ ', R ₂ '					

Discrete Mathematics, 6 Relation

5 关系性质

示例

设 $R_1, R_2 \subseteq A \times A$ 都具有某种性质

	自反	反自反	对称	反对称	传递
R ₁ -1, R ₂ -1	4	1	1	1	1
$R_1 \cup R_2$	4	1	1		
$R_1 \cap R_2$	4	1	1	1	4
R ₁ oR ₂ , R ₂ oR ₁	1				
R ₁ -R ₂ , R ₂ -R ₁		1	1	1	
R ₁ ', R ₂ '			1		

iscrete Mathematics, 6 Relatio

5 关系性质

5 关系性质

示例

(1) R_1, R_2 自反 \Rightarrow $R_1 \circ R_2$ 自反.

证明:∀x,

 $x \in A$

 $\Rightarrow xR_1x \wedge xR_2x$

 $\Rightarrow xR_1oR_2x$

 $\therefore R_1, R_2$ 自反 $\Rightarrow R_1 \circ R_2$ 自反.

screte Mathematics, 6 Relation

5 关系性质

示例

(2) R_1, R_2 反自反 \Rightarrow $R_1 \cap R_2$ 反自反.

证明: (反证) 若R1∩R2非反自反,则

∃x∈A,

 $x(R_1 \cap R_2)x$

 $\Leftrightarrow xR_1x \wedge xR_2x$

与R₁,R₂反自反矛盾!

 $\therefore R_1, R_2$ 反自反 $\Rightarrow R_1 \cap R_2$ 反自反.

Discrete Mathematics, 6 Relatio

5 关系性质

示例

(3) R_1 , R_2 对称 \Rightarrow R_1 - R_2 对称.

证明:∀x,y∈A,

 $x(R_1-R_2)y$

 $\Leftrightarrow xR_1y \wedge \neg xR_2y$

 $\Leftrightarrow yR_1x \wedge \neg yR_2x \\ \Leftrightarrow y(R_1\text{-}R_2)x$

 \therefore R₁,R₂对称 \Rightarrow R₁-R₂对称.

Discrete Mathematics, 6 Relation

5 关系性质

示例

(4) R_1 对称 \Rightarrow R_1 对称.

证明: ∀x,y∈A,

 $x(R_1')y \Leftrightarrow x(U_A-R_1)y$

 $\Leftrightarrow xU_Ay \wedge \neg xR_1y$

 $\Leftrightarrow yU_Ax \wedge \neg yR_1x$

 \Leftrightarrow y(U_A-R₁)x \Leftrightarrow y(R₁')x

∴ R_1 对称 \Rightarrow R_1 ′ 对称.

iscrete Mathematics, 6 Relatio

示例

(5) R_1 反对称 \Rightarrow R_1^{-1} 反对称.

证明: (反证) 若R1-1非反对称,则

∃х,у∈А,

 $xR_1^{-1}y \,\wedge\, yR_1^{-1}x \,\wedge\, x{\neq}y$

 $\Leftrightarrow yR_1x \, \wedge \, xR_1y \, \wedge \, x{\neq}y$

与R₁反对称矛盾!

 $\therefore \ R_1 \hbox{反对称} \Rightarrow R_1^{-1} \hbox{反对称}.$

iscrete Mathematics, 6 Relation

I		
I		
I		
I		
I		
I		
I		
I		
Discrete Mathematics, 6 Relation		