## NEW PROOF OF THE SYMMEDIAN POINT TO BE THE CENTROID OF ITS PEDAL TRIANGLE, AND THE CONVERSE

## **Darij Grinberg**

The following theorem is an important property of the symmedian point of a triangle (Fig. 1):



Fig. 2 **Theorem 1**: Let L be the symmedian point of a triangle ABC. From L, drop the perpendiculars LX, LY, LZ on the sides BC, CA, AB, where X, Y, Z are the respective feet of the perpendicular. Then L is the centroid of the triangle XYZ.

We mention that in the customary terminology, the triangle XYZ is called the pedal triangle of L with respect to the triangle ABC; but the triangle XYZ is also called **Lemoine** 

## **pedal triangle** of triangle ABC.

Theorem 1 can be paraphrased as follows: The symmedian point of a triangle is the centroid of the Lemoine pedal triangle.

Several proofs of Theorem 1 are known. In [2], p. 72-74, two proofs are presented. The proof given in [1] is a standard synthetic proof by constructing an auxiliary triangle.



Fig. 3

We will prove Theorem 1 with the help of another construction; in fact, we regard the intersection D of the tangents to the circumcircle of  $\triangle ABC$  through the vertices B and C (Fig. 2). After [2], p. 60, the point D lies on the symmedian from the vertex A, i. e. on the symmedian AL. Thus, we have:

**Lemma 2**: The symmedian point *L* lies on the line *AD*.

Now we will prove the following lemma (Fig. 3):

**Lemma 3**: Drop perpendiculars DX', DY', DZ' from D to the sides BC, CA, AB. Then DY'X'Z' is a parallelogram. [This theorem is interesting to have another signification: It means that an ex-symmedian point D is an ex-centroid (exmedian point) of its pedal triangle X'Y'Z'.]

*Proof* (Fig. 4): We denote the angles of triangle ABC by  $\triangle CAB = \alpha$ ,  $\triangle ABC = \beta$  and  $\triangle BCA = \gamma$ . As chord-tangent angles, the angles  $\triangle CBD$  and  $\triangle BCD$  are both equal to the chordal angle of the chord BC, i. e. the angle  $\alpha$ . From this, we have

$$\triangle DBZ' = 180^{\circ} - \triangle ABC - \triangle CBD = 180^{\circ} - \beta - \alpha = \gamma.$$

Since  $\triangle DX'B = 90^{\circ}$  and  $\triangle DZ'B = 90^{\circ}$ , the points X' and Z' lie on the circle having the segment DB as diameter, and consequently, BX'DZ' is a cyclic quadrilateral, and as chordal angles  $\triangle DX'Z' = \triangle DBZ'$ . Thus,

$$\triangle DX'Z' = \gamma. \tag{1}$$

Since the points X' and Y' lie on the circle having the segment DC as diameter (because  $\triangle DX'C = 90^{\circ}$  and  $\triangle DY'C = 90^{\circ}$ ), CX'DY' is a cyclic quadrilateral, and this yields

$$\triangle X'DY' = 180^{\circ} - \triangle X'CY' = 180^{\circ} - (180^{\circ} - \triangle BCA) = 180^{\circ} - (180^{\circ} - \gamma) = \gamma.$$

By comparison with (1), we get  $\triangle DX'Z' = \triangle X'DY'$ , and from this,  $X'Z' \parallel DY'$ . Analogously, we can prove  $X'Y' \parallel DZ'$ , and thus, DY'X'Z' is a parallelogram, qed.



Fig. 4 Note that from the parallelogram DY'X'Z', we get: The diagonal DX' bisects the diagonal Y'Z'. That means that the D-median of triangle DY'Z' is DX'. Since DX' is orthogonal to BC, we have:

**Lemma 4**: The *D*-median of triangle DY'Z' is orthogonal to *BC*.

Now we will connect this with Theorem 1 (Fig. 5). Since L lies on AD and Y lies on AY', and  $LY \parallel DY'$  (because  $LY \perp CA$  and  $DY' \perp CA$ ), we have AY : AY' = AL : AD. Similarly, AZ : AZ' = AL : AD, and we conclude AY : AY' = AZ : AZ'. This yields  $YZ \parallel Y'Z'$ . Thus, the corresponding sides of triangles LYZ and DY'Z' are parallel ( $LY \parallel DY'$ ,  $YZ \parallel Y'Z'$  und  $ZL \parallel Z'L'$ ); therefore, also the L-median of triangle LYZ is parallel to the D-median of triangle DY'Z'. After Lemma 4, the latter one is orthogonal to BC; thus, also the L-median of triangle LYZ is orthogonal to BC, i. e. the perpendicular from L to BC bisects the segment YZ. But this perpendicular is the line LX. Thus, LX bisects the segment YZ, i. e. in the triangle XYZ, LX is a median. Similarly, LY and LZ are the two other medians in triangle XYZ, and therefore, L is the centroid of triangle XYZ. This proves Theorem 1.



Fig. 5

This was my new proof. Also interesting is the observation that Theorem 1 possesses a valid converse theorem. We will now present a proof of *Theorem 1 together with the converse*:

**Theorem 5** (**Theorem 1 together with the converse**): Let P be an arbitrary point in the plane of a triangle ABC, and let  $\Delta XYZ$  be the pedal triangle of P with respect to triangle ABC. Then P is the centroid of triangle XYZ if and only if P is the symmedian point of triangle ABC.

In other words: There exists only one point which is the centroid of its pedal triangle, and this is the symmedian point.

The *proof* is similar to the trigonometric proof of Theorem 1 in [2], p. 72-73.

For first, we need the following lemma (proven in [2], p. 59):

**Lemma 6**: The distances of a point to the sides of a triangle ABC are in the ratios of these sides if and only if the point is the symmedian point of the triangle. In other words: For the distances x = PX, y = PY, z = PZ of P to BC, CA, AB, the equation

$$x : y : z = a : b : c$$

holds if and only if P coincides with the symmedian point L of  $\triangle ABC$ .

Now we want to see when the point *P* is the centroid of its pedal triangle *XYZ*.

When does *PY* bisect the segment *ZX*? Let *D* be the intersection of *PY* and *ZX*. Then, after the sine law in triangles *PDZ* and *PDX*, we have

$$\frac{ZD}{DX} = \frac{\sin \triangle ZPD \cdot PZ : \sin \triangle PDZ}{\sin \triangle XPD \cdot PX : \sin \triangle PDX} = \frac{\sin \triangle ZPD}{\sin \triangle XPD} \cdot \frac{PZ}{PX} : \frac{\sin \triangle PDZ}{\sin \triangle PDX}$$

The angles  $\triangle PDZ$  and  $\triangle PDX$  sum up to 180°; thus, their sines are equal:  $\sin \triangle PDZ = \sin \triangle PDX$ , and we get

$$\frac{ZD}{DX} = \frac{\sin \triangle ZPD}{\sin \triangle XPD} \bullet \frac{PZ}{PX} = \frac{\sin \triangle ZPD}{\sin \triangle XPD} \bullet \frac{z}{x}.$$
 (2)

For the angle  $\triangle ZPD$ , we have  $\triangle ZPD = 180^{\circ} - \triangle ZPY$ ; but we also have  $\triangle ZAY = 180^{\circ} - \triangle ZPY$ , since AZPY is a cyclic quadrangle (as for  $\triangle AZP = 90^{\circ}$  and

 $\triangle AYP = 90^{\circ}$ , the points Z and Y lie on the circle having segment AP as diameter). This yields  $\triangle ZPD = \triangle ZAY$ , or  $\triangle ZPD = \alpha$ . Analogously, one finds  $\triangle XPD = \gamma$ ; with this, the equation (2) is simplified to

$$\frac{ZD}{DX} = \frac{\sin\alpha}{\sin\gamma} \bullet \frac{z}{x} = \frac{a}{c} \bullet \frac{z}{x} = \frac{z}{x} : \frac{c}{a}.$$

Therefore, ZD = DX holds if and only if z : x = c : a. This means that P lies on the Y-median of triangle XYZ if and only if z : x = c : a. Analogously, P lies on the X-median of triangle XYZ if and only if y : z = b : c. Thus, P is the centroid of triangle XYZ (lies on two medians) if and only if x : y : z = a : b : c. After Lemma 6, the condition x : y : z = a : b : c holds if and only if P is the symmedian point of ABC. Therefore, P is the centroid of the pedal triangle XYZ if and only if P is the symmedian point of ABC. This proves Theorem 5.



- [1] Emil Donath: *Die merkwürdigen Punkte und Linien des ebenen Dreiecks*, Berlin 1976.
- [2] Ross Honsberger: *Episodes in Nineteenth and Twentieth Century Euclidean Geometry*, USA 1995.