Lab Assignment 1

Steven Truong

Task 1

First note that

$$\mathbf{z}_n^{\top} \mathbf{w} = \sum_{i=0}^{M-1} w_i x_n^i$$

which is linear in each w_i . Then

$$\frac{\partial J(\mathbf{w})}{\partial w_i} = \frac{\partial}{\partial w_i} \left(\frac{1}{2} \sum_{n=1}^N (\mathbf{z}_n^\top \mathbf{w} - t_n)^2 \right)$$
$$= \sum_{n=1}^N (\mathbf{z}_n^\top \mathbf{w} - t_n) x_n^i.$$

This gives us the following gradient:

$$\nabla J(\mathbf{w}) = \sum_{n=1}^{N} (\mathbf{z}_n^{\top} \mathbf{w} - t_n) \mathbf{z}_n$$

Then

$$\nabla J(\mathbf{w}) = \mathbf{0} \iff \sum_{n=1}^{N} (\mathbf{z}_n^{\top} \mathbf{w} - t_n) \mathbf{z}_n = \mathbf{0}$$
$$\iff \sum_{n=1}^{N} \mathbf{z}_n \mathbf{z}_n^{\top} \mathbf{w} = \sum_{n=1}^{N} t_n \mathbf{z}_n$$
$$\iff A\mathbf{w} = \mathbf{b},$$

where

$$A = \sum_{n=1}^{N} \mathbf{z}_n \mathbf{z}_n^{\top}$$
 and $\mathbf{b} = \sum_{n=1}^{N} t_n \mathbf{z}_n$.

Task 2

Note that

$$\begin{pmatrix} \mathbf{z}_1^\top \\ \mathbf{z}_2^\top \\ \vdots \\ \mathbf{z}_N^\top \end{pmatrix}$$

is the Vandermonde matrix, which we'll call V. Also, it is known that V is always full rank as long as all the x_n are different. This means that the \mathbf{z}_n are linearly independent if N < M.

There will always be a solution to the system $A\mathbf{w} = \mathbf{b}$, and uniqueness depends on M and N. There are two cases to consider.

Case 1: N < M

In this case, solutions are not unique. For N < M, the \mathbf{z}_n are linearly independent, so we have

$$J(\mathbf{w}) = \mathbf{0} \iff \mathbf{z}_n^{\mathsf{T}} \mathbf{w} - t_n = 0 \ \forall n$$

which, written in matrix form, is $V\mathbf{w} = \mathbf{t}$, where $\mathbf{t} = \begin{pmatrix} t_1 & t_2 & \cdots & t_N \end{pmatrix}^\top$, and V is full row rank. V is thus onto, but not one-to-one, which means that we have non-unique solutions for all \mathbf{t} .

Case 2: $N \geq M$

We'll show that A is positive definite, so it's bijective. In other words, for every \mathbf{b} , there exists a unique \mathbf{w} satisfying $A\mathbf{w} = \mathbf{b}$.

A is positive semidefinite since it is the sum of positive semidefinite matrices. Suppose there exists some $\mathbf{z} \neq \mathbf{0}$ such that $\mathbf{z}^{\top} A \mathbf{z} = 0$. Then since each $\mathbf{z}_n \mathbf{z}_n^{\top}$ is positive semidefinite,

$$\mathbf{z}^{\top} A \mathbf{z} = \sum_{n=1}^{N} \mathbf{z}^{\top} (\mathbf{z}_{n} \mathbf{z}_{n}^{\top}) \mathbf{z} = 0 \iff \mathbf{z}^{\top} (\mathbf{z}_{n} \mathbf{z}_{n}^{\top}) \mathbf{z} = 0 \ \forall n.$$

Since \mathbf{z} is not the zero vector, \mathbf{z} must be orthogonal to \mathbf{z}_n for all n. But since $N \geq M$ and V has full rank, $\{\mathbf{z}_1, \dots, \mathbf{z}_N\}$ spans \mathbb{R}^M . This implies that \mathbf{z} must be $\mathbf{0}$ since it will be orthogonal to every vector in \mathbb{R}^M since any vector can be written as a linear combination of $\{\mathbf{z}_1, \dots, \mathbf{z}_N\}$, which is a contradiction. Thus, A is positive definite, so $A\mathbf{w} = \mathbf{b}$ has a unique solution for any \mathbf{b} .

Task 4

Task 6

M=4 gives a poor approximation of our data since it's unable to capture the oscillation of f at all.

M=8 gives a decent approximation of our data. It's able to capture the oscillation of f on the interval of interest, and it matches the overall shape of our sample. However, it's not able to capture the peaks very well, especially at the origin.

M=16 gives, by far, the best approximation of the data. It pretty much fits the data set exactly.

M=32 is also a good approximation of the data, but not as well as M=16. It fits the data extremely well except at the ends of the interval, where it begins to explode because of its large degree.

M=64 is mostly the same as M=32, but it explodes much faster at the end points than M=32, and in the opposite direction.

Task 7

Task 8

M=4 doesn't give a very good approximation of the data since it's unable to capture the oscillation of f.

M=8 and M=16 are the best approximations for the data sample from our tested polynomials. However, M=16 seems to be the best overall since their key difference is that M=16 captures the peak at the origin better than M=8.

When M is close to N, we get graphs that oscillate and explode close to the ends of our sample. This is true for M=32 and M=64, which both oscillate and have sharp jumps in the graph. For example, close to x=-3, M=64 has a huge jump right before it explodes.

