EIE2050 Digital Logic and Systems

Professor Qijun Zhang

Office: Room 404, Research A Building

Basic combinational logic circuits

Implementing combinational logic

The universal gates

Reading material: Chapter 5 of Textbook:

Textbook: Digital Fundamentals (global edition, 11th edition), by Thomas Floyd, Pearson 2015.

The examples used in the lecture are based on the textbook.

- Basic combinational logic circuits
 - ADD-OR logic
 - ADD-OR-Invert logic
 - Exclusive OR logic
 - Exclusive NOR logic

- Basic combinational logic circuits
 - ADD-OR logic

$$X = AB + CD$$

AND-OR logic directly implements SOP expression

- Basic combinational logic circuits
 - ADD-OR-Invert logic

$$X = \overline{AB + CD} = (\overline{A} + \overline{B})(\overline{C} + \overline{D})$$

AND-OR-Invert logic produces a POS output

- Basic combinational logic circuits
 - Exclusive-OR logic (XOR)

$$X = A\overline{B} + \overline{A}B$$

$$X=A \oplus B$$

A	B	X
0	0	0
0	1	1
1	0	1
1	1	0

- Basic combinational logic circuits
 - Exclusive-NOR logic

$$X = \overline{AB} + \overline{AB} = \overline{AB} + AB$$

В	X
0	1
1	0
0	0
1	1
	0 1

- Implementing combinational logic
 - From Boolean expression to logic circuit

Given expression:
$$X = AB + CDE$$

Analyze:
$$X = \overrightarrow{AB} + \overrightarrow{CDE}$$
 OR

Resulting logic circuit: X = AB + CDE

- Implementing combinational logic
 - From Boolean expression to logic circuit

Given expression:
$$X = AB(C\overline{D} + EF)$$

Analysis and results:

SOP implementation:
$$AB(C\overline{D} + EF) = ABC\overline{D} + ABEF$$

- Implementing combinational logic
 - From truth table to logic circuit

Given truth table:

	Inputs		Outpu	t
A	B	<i>C</i>	X	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	←
1	0	0	1	←
1	0	1	0	
1	1	0	0	
1	1	1	0	

Resulting logic circuit:

- Implementing combinational logic
 - From truth table to logic circuit

Given truth table:

	Inputs		Output		
A	\boldsymbol{B}	<u>C</u>	X	_	
0	0	0	0	•	
0	0	1	0		
0	1	0	0		
0	1	1	1 ←		$\overline{A}BC$
1	0	0	0		
1	0	1	1 ←		$A\overline{B}C$
1	1	0	1 ←		$A\overline{B}C$ $AB\overline{C}$
1	1	1	0		

Resulting logic circuit:

- Implementing combinational logic
 - Example: develop a logic circuit with four variables that will only produce a 1 output when exactly three input variables are 1s.

A	В	C	D	Product Term
0	1	1	1	A BCD
1	0	1	1	$A\overline{B}CD$
1	1	0	1	$AB\overline{C}D$
1	1	1	0	$ABC\overline{D}$

$$X = \overline{A}BCD + A\overline{B}CD + AB\overline{C}D + ABC\overline{D}$$

- Implementing combinational logic
 - Simplify the logic circuit to minimum form

Boolean expression:
$$X = (\overline{A}\overline{B}\overline{C})C + \overline{A}\overline{B}\overline{C} + D$$

= $A + B + C + D$

Simplified logic circuit:

- Implementing combinational logic
 - Simplify the logic circuit to minimum form

Boolean expression:

$$X = A\overline{B}\overline{C} + AB\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}\overline{D}$$

Karnaugh map:

Minimum logic circuit:

- Implementing combinational logic
 - Example: develop a logic circuit with four variables that will only produce a 1 output when exactly three input variables are 1s.

A	В	C	D	Product Term
0	1	1	1	ĀBCD
1	0	1	1	$A\overline{B}CD$
1	1	0	1	$AB\overline{C}D$
1	1	1	0	$ABC\overline{D}$

$$X = \overline{A}BCD + A\overline{B}CD + AB\overline{C}D + ABC\overline{D}$$

Universal gates

- NAND gate
- NOR gate

- Universal gates
 - NAND gate as a universal logic element

- Universal gates
 - NOR gate as a universal logic element

Universal gates

AND-OR equivalent:

Combinational logic using NAND gates

Logic circuit using NAND gates: $C \qquad G_3 \qquad CD$ Bubbles cancel $C \qquad G_3 \qquad G_2 \qquad G_3$ Bubbles cancel $C \qquad G_3 \qquad G_2 \qquad G_3$ Bubbles cancel

- Universal gates
 - Dual symbols for NAND logic:

NAND symbol

negative-OR symbol

Dual symbols for NOR logic:

NOR symbol

negative-AND symbol

- logic diagrams using dual symbols,
 Guidelines for connections:
 - bubble-to-bubble ← yes
 - nonbubble-to-nonbubble ← yes
 - bubble-to-nonbubble ← no
 - nonbubble-to-bubble ← no

- Universal gates
 - NAND logic diagrams using dual symbols

- Universal gates
 - NAND logic diagrams using dual symbols

- Universal gates
 - NAND logic diagrams using dual symbols

- Universal gates
 - Combinational logic using NOR gates

Logic circuit using NOR gates: **Bubbles** cancel Redrawn with negative AND symbol for G_1 : **Bubbles** cancel

- Universal gates
 - NOR logic diagrams using dual symbols

- Universal gates
 - NOR logic diagrams using dual symbols

Waveform operations

Waveform operations

Derive output expression Simplify the expression

$$X = \overline{AC} + \overline{BC} + \overline{CD}$$