Précipitation et solubilité

Dissolution

Définition : Solution saturée

Une solution est dite **saturée** en l'espèce *X* si, à l'équilibre chimique, *X* coexiste sous les formes dissoute et non-dissoute (solide ou liquide).

Définition

Définition : Solubilité

La solubilité d'une espèce X à l'état solide ou liquide est la quantité n_X maximale de X dissoute dans 1L d'une solution saturée de X.

Définition : Solide ionique peu soluble

Un **solide ionique** est un solide neutre formé de cations et d'anions liés par des forces électrostatiques.

Un solide ionique formé de C^{p+} et A^{q-} a pour formule $C_x A_y$ avec px = qy pour assurer la neutralité. Il se dissocie en C^{p+} et A^{q-} lors de sa dissolution.

Il est dit **peu soluble** si sa solubilité dans l'eau pure est faible (typiquement $\leq 0,1$ mol· L^{-1}).

Définition

Définition : Produit de solubilité

Le produit de solubilité, noté $K_s(T)$, du solide ionique peu soluble $C_x A_{y(s)}$ est la constante de sa réaction de dissolution :

$$C_x A_{y(s)} \Longrightarrow xC^{p+} + yA^{q-} \qquad K_s(T)$$

On définit également : $pK_s(T) = -\log K_s(T)$.

Pour une solution saturée (et diluée), on aura donc :

$$K_{s}(T) = \frac{[C^{p+}]^{x}[A^{q-}]^{y}}{c^{\circ x+y}}$$

Exercice : lien avec la solubilité

Exprimer la solubilité dans l'eau pure, notée s, des solides ioniques peu solubles suivants en fonction de leur produit de solubilité et donner sa valeur en $mg \cdot L^{-1}$.

solide	pK_s
$AgCl_{(s)}$	9,75
$Ag_2CrO_{4(s)}$	11,9

Condition de précipitation

Condition de précipitation

On introduit le cation C^{p+} et l'anion A^{q-} du solide ionique peu soluble C_xA_y aux concentrations respectives c_C et c_A .

Si $c_{\mathbf{C}}^{x} c_{\mathbf{A}}^{y} \ge K_{s}$ on observe la précipitation de $C_{x} A_{y(s)}$ et on obtient une solution saturée dans laquelle $[C^{p+}]^{x} [A^{q-}]^{y} / c^{\circ x+y} = K_{s}(T)$

Si $c_{\mathbf{C}}^{x}c_{\mathbf{A}}^{y} < \mathrm{K}_{s}(T)$, on n'observe pas de précipitation, l'équilibre chimique entre $C_{x}A_{y(s)}$ et les ions C^{p+} et A^{q-} n'est pas atteint, le système reste avec $[C^{p+}] = c_{C}$ et $[A^{q-}] = c_{A}$.

Diagramme de distribution

On introduit du I⁻ dans une solution de Ag⁺. On pose pAg = $-\log c_{Ag^+}/c^\circ$ et pI = $-\log[I^-]/c^\circ$, avec [I⁻] la concentration à l'équilibre.

Identification dans les dosages

L'apparition d'un précipité se manifeste dans les dosages par un point anguleux.

Effet d'ion commun

Effet d'ion commun

La solubilité d'un solide ionique peu soluble dans une solution contenant déjà l'un de ses ions est inférieure à ce qu'elle serait dans l'eau pure. C'est **l'effet d'ion commun**.

Exercice : Solubilité de NiCO_{3(s)}

On étudie la solubilité s du carbonate de nickel NiCO_{3(s)} en fonction du pH de la phase aqueuse dans laquelle on essaie de le dissoudre. On donne la courbe représentant p $s = -\log(s)$ en fonction du pH.

- (a) L'ion carbonate CO₃²- est une dibase. Donner les formules chimiques de ses autres formes acidobasiques.
 On nomme pK_{a1} ≤ pK_{a2} leurs pK_a.
 - (b) Justifier qualitativement la variation de la solubilité s en fonction du pH observée sur la courbe.
- 2. On note K_s le produit de solubilité de NiCO₃ et $h = 10^{-pH}$.
 - (a) Établir l'expression de la solubilité s en fonction de K_s , h, K_{a1} et K_{a2} .
 - (b) Simplifier cette expression dans chacun des domaines de prédominance des formes acidobasiques de CO_3^{2-} et en déduire, par lecture sur la courbe :
 - les valeurs de pK_{a_1} et pK_{a_2}
 - la valeur de pKs

Justifier également les valeurs des pentes des tangentes à la courbe.

Indispensable

Indispensable

- définitions de la solubilité
- expressions en fonction du K_s
- 🙎 la solution doit être saturée pour que l'équilibre chimique soit réalisé
- savoir traiter qualitativement les compétitions