D'autres dessins récursifs...

Carrés

profondeur 3

Etoiles

profondeur 1

profondeur 2

profondeur 4

Peano

Exercice 1 La fonction mystère

Que fait la fonction suivante?

```
def mystere(L, M = []):
    if not L:
        return M
    a=L.pop(0)
    if a not in M:
        M.append(a)
    return mystere(L,M)
```

Exercice 2 Le retour de la fonction mystère

Que fait la fonction suivante?

```
def mystere2(L):
    if len(L) == 1:
        return L[0]
    if L[0] < L[1]:
        L.pop(1)
    else:
        L.pop(0)
    return mystere2(L)</pre>
```

Exercice 3 Calcul du pgcd de deux nombres

Rappel : le **pgcd** de deux entiers naturels a et b est le plus grand diviseur commun à a et b.

Exemple : pgcd(20, 24) = 4

Les diviseurs de 20 sont : 1, 2, **4**, 5, 10, 20. Les diviseurs de 24 sont : 1, 2, 3, **4**, 6, 8, 12, 24

Le plus grand diviseur qui soit commun aux deux nombres est bien 4.

Ecrire en Python une fonction récursive pgcd(a, b) renvoyant le plus grand diviseur commun de deux nombres a et b.

Pour cela, on utilisera le résultat mathématique suivant :

" pgcd(a, b) = pgcd(b, r) où a = bq + r" (dans la division euclidienne de a par b, q est le quotient et r est le reste)

Exercice 4 Nombre d'adhérents

Une association a remarqué que d'une année sur l'autre :

- elle perd 5 % de ses adhérents
- elle gagne 200 nouveaux adhérents
- 1) Le nombre d'adhérents de cette association était égal à 2000 au 1^{ier} janvier 2019.
- a) Montrer que le nombre d'adhérents est égal à 2100 en 2020 et sera égal à 2195 en 2021.
- b) Si on note u_n le nombre d'adhérents n années après 2019, exprimer u_{n+1} en fonction de u_n .
- c) Ecrire en Python une fonction récursive nommée nombre (n) affichant le nombre théorique d'adhérents après n années, $n \ge 1$.
- 2) En utilisant la fonction nombre (n) précédente et une boucle, faire afficher le nombre théorique d'adhérents au cours des 20 prochaines années.

Exercice 5 Division euclidienne

Faire la division euclidienne de deux entiers naturels a et b (b non nul) revient à compter combien de fois on peut ôter b de a (sans que le résultat devienne négatif). Ce nombre de fois est appelé le *quotient* et la quantité restante est appelée le *reste*.

Par exemple, diviser 26 par 6 revient à faire 4 soustractions successives :

```
26-6=20

20-6=14

14-6=8

8-6=2 (on s'arrête car 2 < 6)

Ici, le quotient est donc q = 4 et le reste r = 2.
```

Ecrire en Python une fonction récursive nommée division (a, b, q=0) qui retourne le quotient et le reste entiers de la division euclidienne de a par b.

Exercice 6 Etude d'une fonction récursive

On considère le programme suivant :

```
def f(a,b):
    if b==1:
        return a
    return a + f(a, b-1)
```

- 1) En exécutant le programme à la main, dire quel résultat retourne £ (4,3).
- 2) En déduire la signification de la valeur retournée par cette fonction pour deux entiers naturels non nuls *a* et *b*.
- 3) Pour une fonction récursive, un cas de base est un cas qui ne nécessite pas d'appel récursif à la fonction.

Quel est le cas de base de cette fonction?

- 4) Qu'est-ce qui garantit que le programme s'arrête?
- 5) La complexité de cette fonction est-elle linéaire ? quadratique ? exponentielle ?

Exercice 7 La fonction compteur

Ecrire une fonction récursive compteur (chaine, car) retournant le nombre de fois que l'on peut compter le caractère car dans la chaîne chaine.

Par exemple, compteur ("abracadabra", "a") renvoie le nombre 5 car il y a 5 "a" dans la chaîne "abracadabra".

Exercice 8 Coefficients binomiaux

1) Ecrire une fonction récursive binomial (n , k) qui retourne la valeur du coefficient binomial $\binom{n}{k}$ en exploitant la relation de récurrence du triangle de Pascal :

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Et en sachant, de plus, que pour tout entier naturel n, $\binom{n}{0} = \binom{n}{n} = 1$.

- 2) Tenter de calculer binomial (30, 15). Que pensez-vous de l'efficacité de cette fonction?
- 3) Améliorer les performances de cette fonction en utilisant la technique de mémoïsation dans un dictionnaire, et en utilisant la propriété $\binom{n}{k} = \binom{n}{n-k}$