The analysis was performed to understand the molecular interactions of AgNP and Ag+ ions with chitosan.

The pure chitosan films exhibits characteristic transmittance band at:

- 3000–3500 cm⁻¹ overlapped NaH and OH stretching vibrations
- 1643 cm⁻¹ band for amide I (C@O stretching)
- 1556 cm⁻¹ for amide II (NaH bending)
- 1410 cm⁻¹ for OH bending vibrations
- 1326 cm⁻¹ for CH₂ wagging vibration
- 1261 cm⁻¹ for amide III due to combination of NaH deformation and CAN stretching
- 1154 cm⁻¹ for anti-symmetrical stretching of CAOAC bridge.

In the FTIR spectra of CS/AgNP nanocomposite film the bands at

- 3370 cm⁻¹ (amine and hydroxyl groups)
- 1556 cm⁻¹ (bending vibrations of NH₃) decrease in intensity and slightly shift to lower wave number evidencing the interaction of primary amino groups in chitosan with AgNP surface.
- 1643 cm⁻¹ (amide I group), 1410 cm⁻¹ (bending vibration of AOH group) and 1326 cm⁻¹ (CH₂ wagging vibration) were not changed, suggesting that these transmittance bands are not sensitive to the metal nanoparticle surface.

In contrast to the CS/AgNP composite, the CS/Ag+ ions films showed a significant decrease in transmittance at

- 3370 cm⁻¹, it also shifts to 3430 cm⁻¹.
- The prominent NAH bending vibration bands around 1556 cm⁻¹ shifted to 1539 cm⁻¹ along with a decreasing in intensity, suggesting that the NaH vibration is strongly affected by the interaction with Ag+ ions.
- 1410 cm⁻¹ (that corresponds to OH bending vibration), the bands near 1077 cm⁻¹ (that are usually attributed to the CAO and CAN stretching vibrations) and the bands at 1326 cm⁻¹ corresponded to CH₂ wagging vibrations, all showed a remarkable intensity reduction. These changes are due to the interaction of hydroxyl groups with Ag+ ions through oxygen.
- CS/Ag+ ion composite film shows a new band about 821 cm⁻¹ assigned to NO₃ absorption, which confirms the existence of NO₃ as a residual ion from silver salt.
- Such band is not observed in CS/AgNP films, likely due to thermal decomposition of NO₃ to NO and O₂.