Mixture Distributions

1. Characterisation

- Each policy has distribution in same family, $f(x;\theta)$
- However, i^{th} policy has $\theta = \theta_i$
- Distribution of θ_i 's in porfolio: $\theta \sim g(t; \eta)$.
- Claim generation from portfolio perspective:

Choose Random Policy
$$\rightarrow$$
 Random Claim Amount from Chosen Policy
$$[\theta_i \sim g(t;\eta)] \qquad [X|\theta_i \sim f(x;\theta_i)]$$

- "Portfolio-Wide" (Mixture Distribution) pdf:
 - · IDEA:

$$Pr(\text{Claim} = x) = \sum_{i} Pr(\text{Claim} = x|\text{Policy }i)Pr(\text{Policy }i)$$

· FORMALLY:

$$f_X(x;\eta) = \int_{\Theta} f(x;t)g(t;\eta)dt,$$

where Θ is set of possible θ values; usually $(0, \infty)$.

1. Characterisation

- Probability Density Function (pdf):
 - · Claims for policy i are exponential with (mean) parameter θ_i
 - $\cdot \theta_i$'s distributed in portfolio according to:

$$g(t; \alpha, \delta) = \frac{\delta^{\alpha}}{\Gamma(\alpha)} t^{-(\alpha+1)} \exp\left(-\frac{\delta}{t}\right)$$

the inverse Gamma distribution

(derived as distribution of $Y = X^{-1}$ when $X \sim \text{Gamma}$)

· Mixture distribution pdf:

$$f_X(x;\alpha,\delta) = \int_0^\infty t^{-1} e^{-x/t} \frac{\delta^\alpha}{\Gamma(\alpha)} t^{-(\alpha+1)} e^{-\delta/t} dt$$

$$= \frac{\delta^\alpha}{\Gamma(\alpha)} \int_0^\infty t^{-(\alpha+2)} e^{-(x+\delta)/t} dt$$

$$= \frac{\delta^\alpha \Gamma(\alpha+1)}{\Gamma(\alpha)(x+\delta)^{\alpha+1}} \int_0^\infty \frac{(x+\delta)^{\alpha+1}}{\Gamma(\alpha+1)} t^{-(\alpha+2)} e^{-(x+\delta)/t} dt$$

$$= \frac{\alpha \delta^\alpha}{(x+\delta)^{\alpha+1}}$$

 \cdot Mixture distribution *CDF*:

$$F_X(x;\alpha,\delta) = \int_0^x \frac{\alpha \delta^{\alpha}}{(u+\delta)^{\alpha+1}} du = 1 - \left(\frac{\delta}{x+\delta}\right)^{\alpha}$$

- 1. Characterisation (Continued)
 - Moments:

$$E_{\alpha,\delta}(X) = E_{\alpha,\delta}\{E(X|\theta)\} = E_{\alpha,\delta}(\theta) = \frac{\delta}{\alpha - 1}, \quad \alpha > 1$$

$$E_{\alpha,\delta}(X^2) = E_{\alpha,\delta}\{E(X^2|\theta)\} = E_{\alpha,\delta}(2\theta^2) = \frac{2\delta^2}{(\alpha - 1)(\alpha - 2)}, \quad \alpha > 2$$

• Quantiles (Percentiles):

$$x_p \text{ solves}: Pr\{X \le x_p\} = p$$

$$\implies 1 - \frac{\delta^{\alpha}}{(x_p + \delta)^{\alpha}} = p$$

$$\implies x_p = \delta\{(1 - p)^{-1/\alpha} - 1\}$$

- 2. Estimation of Parameters based on x_1, \ldots, x_n :
 - (Standard) Method of Moments (MOM): Solve system:

$$\frac{\delta}{\alpha - 1} = \overline{x}, \qquad \frac{2\delta^2}{(\alpha - 1)(\alpha - 2)} = \overline{x^2},$$

yeilds solution:

$$\hat{\alpha}_{MOM} = \frac{2(\overline{x^2} - \overline{x}^2)}{\overline{x^2} - 2\overline{x}^2} = \frac{2(n-1)s^2}{(n-1)s^2 - n\overline{x}^2}$$

$$\hat{\delta}_{MOM} = \frac{\overline{x}\overline{x^2}}{\overline{x^2} - 2\overline{x}^2} = \frac{(n-1)\overline{x}s^2 + n\overline{x}^3}{(n-1)s^2 - n\overline{x}^2}$$

 \cdot The MOM estimates for our data are found to be:

$$\hat{\alpha}_{MOM} = 2.476, \qquad \hat{\delta}_{MOM} = 4412.3$$

- 2. Estimation of Parameters based on x_1, \ldots, x_n (Continued):
 - Method of Percentiles (MOP): Solve:

$$\{\delta\{(1-p_1)^{-1/\alpha}-1\}=\hat{x}_{p_1}; \qquad \delta\{(1-p_2)^{-1/\alpha}-1\}=\hat{x}_{p_2},$$

for some choice of p_1 and p_2

Requires iterative (computer-based) solution methods.

For our data, MOP estimates based on upper and lower quartiles $(p_1 = 0.25, p_2 = 0.75)$ are:

$$\hat{\alpha}_{MOP} = 1.576$$
 $\hat{\delta}_{MOP} = 2002.38$

- 2. Estimation of Parameters based on x_1, \ldots, x_n (Continued):
 - Maximum Likelihood Estimate (*MLE*) Log-Likelihood Function:

$$l(\alpha, \delta) = n \ln \alpha + n\alpha \ln \delta - (\alpha + 1) \sum_{i=1}^{n} \ln(x_i + \delta)$$

Score equations:

$$\frac{n}{\alpha} + n \ln \delta - \sum_{i=1}^{n} \ln(x_i + \delta) = 0,$$
$$\frac{n\alpha}{\delta} - (\alpha + 1) \sum_{i=1}^{n} (x_i + \delta)^{-1} = 0$$

- · MLEs require iterative (computer-based) solution method.
- · For our data:

$$\hat{\alpha}_{MLE} = 1.909; \qquad \hat{\delta}_{MLE} = 2704.47$$

3. Goodness-of-Fit Testing:

- Pearson Chi-Squared Test:
 - \cdot Use equal-count bins from previous exponential calculations.

Table 2.6: Observed and Expected Claim Amounts (in \pounds 's) using the Pareto Distribution

Bin Range	O_i .	$E_{i,MLE}$	$E_{i,MOM}$	$E_{i,MOP}$	_	Bin Range	O_i	$E_{i,MLE}$	$E_{i,MOM}$	$E_{i,MOP}$
0-260	12	15.4	12.7	16.8		2072-2618	5	6.0	6.7	5.6
260-545	18	12.9	11.4	13.5		2618-3285	6	5.3	6.1	4.9
545-860	10	10.9	10.2	11.0		3285-4145	6	4.8	5.9	4.4
860-1212	8	9.3	9.1	9.1		4145 - 5357	3	4.3	5.2	4.0
1212-1612	7	8.0	8.2	7.7		5357-7429	4	4.2	5.1	4.0
1612 - 2072	10	6.9	7.4	6.5		7429+	7	7.7	8.3	8.3

$$X_{MLE}^2 = 5.59, df = 12 - 1 - 2 = 9, p$$
-value = 0.780

$$X_{MOM}^2 = 7.00, df = 12 - 1 - 2 = 9, p$$
-value = 0.639

$$X_{MOP}^2 = 6.40, df = 12 - 1 - 2 = 9, p$$
-value = 0.699

- 3. Goodness-of-Fit Testing (Continued):
 - Pearson Chi-Squared Test (Continued):
 - · Calculating $E_{i,MLE}$'s:

$$E_{(a,b)} = nPr_{\alpha,\delta}(a < X \le b) = n\{F_X(b;\alpha,\delta) - F_X(a;\alpha,\delta)\}$$
$$= n\left\{\frac{\delta^{\alpha}}{(a+\delta)^{\alpha}} - \frac{\delta^{\alpha}}{(b+\delta)^{\alpha}}\right\}$$

· Using MLEs yields:

$$E_{(0,260.15),MLE} = 96 \left\{ 1 - \frac{2704.47^{1.909}}{(260.15 + 2704.47)^{1.909}} \right\} = 15.44$$

- 3. Goodness-of-Fit Testing (Continued):
 - Pearson Chi-Squared Test (Continued):
 - · Equal-count bin construction, 12 bins each with $E_i = 8$:
 - · For first bin, (0, b), solve:

$$8 = 96Pr_{\alpha,\delta}(0 < X \le b)$$

$$= 96\left\{1 - \frac{\delta^{\alpha}}{(b+\delta)^{\alpha}}\right\}$$

$$\implies b = \delta\{(11/12)^{-1/\alpha} - 1\}$$

Using $\hat{\alpha}_{MLE}$ and $\hat{\delta}_{MLE}$ yields b = 126.12.

· For next bin, (126.12, b), solve:

$$96 = 8 \left\{ \frac{2704.47^{1.909}}{(126.12 + 2704.47)^{1.909}} - \frac{2704.47^{1.909}}{(b + 2704.47)^{1.909}} \right\}.$$

Yields b = 271.03. Continue.

·
$$X_{MLE}^2 = 3.25$$
, $df = 12 - 1 - 2 = 9$, p-value = 0.953

·
$$X_{MOM}^2 = 5.5, df = 12 - 1 - 2 = 9, p$$
-value = 0.789

$$\cdot X_{MOP}^2 = 7.75, df = 12 - 1 - 2 = 9, p$$
-value = 0.559

1. Characterisation

- \bullet Model for NUMBER of claims per policy.
- Claims are rare, assume each policy has Poisson distribution
- However, i^{th} policy has rate $\lambda = \lambda_i$
- Distribution of λ_i 's in porfolio: $\lambda \sim G(\alpha, \theta)$.
- Claim generation from portfolio perspective:

Choose Random Policy
$$\rightarrow$$
 Random Number of Claims from Chosen Policy
$$[\lambda_i \sim G(\alpha, \theta)] \qquad [N | \lambda_i \sim Pois(\lambda_i)]$$

- 1. Characterisation (Continued)
 - "Portfolio-Wide" (Mixture Distribution) pmf:

$$p_{N}(n; \alpha, \theta) = \int_{0}^{\infty} Pr(N = n | \lambda) g(\lambda; \alpha, \theta) d\lambda$$
$$= \int_{0}^{\infty} \frac{\lambda^{n} e^{-\lambda}}{n!} \frac{1}{\theta^{\alpha} \Gamma(\alpha)} \lambda^{\alpha - 1} e^{-\lambda/\theta} d\lambda$$
$$= \frac{\Gamma(\alpha + n)}{n! \Gamma(\alpha)} \left(\frac{1}{1 + \theta}\right)^{\alpha} \left(\frac{\theta}{1 + \theta}\right)^{n}.$$

· Alternate form for pdf if $\alpha = k$ an integer and $p = (1 + \theta)^{-1}$:

$$p_N(n; k, p) = \frac{(n+k-1)!}{n!(k-1)!} p^k (1-p)^n$$

- 1. Characterisation (Continued)
 - Moments (calculation left as exercise):

$$E_{\alpha,\theta}(N) = \alpha\theta$$
 $E_{\alpha,\theta}(N^2) = \alpha\theta(1 + \theta + \alpha\theta)$

• Quantiles (Percentiles):

$$\begin{aligned} x_p \text{ solves} : & Pr\{N \leq x_p\} = p \\ \Longrightarrow & \sum_{n=0}^{x_p} \frac{\Gamma(\alpha+n)}{n!\Gamma(\alpha)} \bigg(\frac{1}{1+\theta}\bigg)^{\alpha} \bigg(\frac{\theta}{1+\theta}\bigg)^n = p \end{aligned}$$

- \cdot Requires iterative (computer-based) solution methods
- · Since N is discrete, x_p not available for some choices of p.

- 2. Estimation of Parameters based on n_1, \ldots, n_m :
 - (Standard) Method of Moments (MOM): Solve system:

$$\alpha\theta = \overline{n}, \qquad \alpha\theta(1 + \theta + \alpha\theta) = \overline{n^2},$$

yeilds solution:

$$\hat{\alpha}_{MOM} = \frac{\overline{n^2}}{\overline{n^2} - \overline{n}^2 - \overline{n}} = \frac{m\overline{n}^2}{(m-1)s^2 - m\overline{n}}$$

$$\hat{\theta}_{MOM} = \frac{\overline{n^2} - \overline{n}^2}{\overline{n}} - 1 = \frac{(m-1)s^2}{m\overline{n}} - 1$$

- 2. Estimation of Parameters based on n_1, \ldots, n_m (Continued):
 - \bullet Method of Percentiles (MOP):

Requires iterative (computer-based) solution methods.

No solutions available for some choices of p_1 and p_2 .

- 2. Estimation of Parameters based on n_1, \ldots, n_m (Continued):
 - Maximum Likelihood Estimate (*MLE*)
 Log-Likelihood Function:

$$l(\alpha, \theta) = \sum_{i=1}^{m} \ln\{p_N(n_i; \alpha, \theta)\}$$

$$= -m \ln\{\Gamma(\alpha)\} - m\alpha \ln(1+\theta) + \sum_{i=1}^{m} \ln\{\Gamma(\alpha+n_i)\}$$

$$+ \sum_{i=1}^{m} n_i \{\ln \theta - \ln(1+\theta)\} - \sum_{i=1}^{m} \ln(n_i!)$$

Score equations:

$$-m\psi(\alpha) - m\ln(1+\theta) + \sum_{i=1}^{m} \psi(\alpha + n_i) = 0,$$
$$-\frac{m\alpha}{1+\theta} + \sum_{i=1}^{m} n_i \left\{ \frac{1}{\theta} - \frac{1}{1+\theta} \right\} = 0$$

where $\psi(x) = \frac{d}{dx} \ln\{\Gamma(x)\}$ is the digamma function

- · Second equation reduces to $\alpha\theta = \frac{1}{m} \sum_{i=1}^{m} n_i$
- · However, MLEs require iterative (computer-based) solution method.

2. Estimation of Parameters based on n_1, \ldots, n_m (Continued):

Table 2.7a: Observed Counts for Policies Making Various Numbers of Claims

Number of Claims Made	Observed Number of Policies
0	81056
1	16174
2	2435
3	295
4	36
5+	4

- $\overline{n} = 0.22093$, $\overline{n^2} = 0.29245$, $s^2 = 0.24364$.
- Under Poisson model for N:

$$\hat{\lambda}_{MLE} = \hat{\lambda}_{MOM} = \overline{n} = 0.22093.$$

· MOP estimate not readily available.

Percentiles of Poisson require

iterative (computer-based) calculation.

 $\bullet\,$ Under Negative Binomial (or Poisson-mixture) model for $N\colon$

$$\cdot \ \hat{\alpha}_{MOM} = \frac{\overline{n}^2}{\overline{n^2} - \overline{n}^2 - \overline{n}} = 2.149, \quad \hat{\theta}_{MOM} = \frac{\overline{n^2} - \overline{n}^2}{\overline{n}} - 1 = 0.1028$$

· Using iterative (computer-based) solution:

$$\hat{\alpha}_{MLE} = 2.123 \qquad \hat{\theta}_{MLE} = 0.1041$$

3. Goodness-of-Fit Testing:

- Pearson Chi-Squared Test:
 - · Data is already categorical, so bin choice less of an issue.

Table 2.7b: Observed and Expected Counts for Policies Making Various Numbers of Claims

Number of Claims Made	Observed Number of Policies	Expected Counts (Poisson)	Expected Counts (Neg. Bin.)
0	81056	80177.28	81035.34
1	16174	17713.57	16233.32
2	2435	1956.73	2382.57
3	295	144.10	307.16
4	36	7.96	36.86
5+	4	0.36	4.75

$$X_{Poisson}^2=553.35,\,df=6-1-1=4,\,p$$
-value $pprox 0$

$$X_{Neg.Bin.}^2 = 1.996, df = 6 - 1 - 2 = 3, p$$
-value = 0.573

- 3. Goodness-of-Fit Testing (Continued):
 - Pearson Chi-Squared Test (Continued):
 - · Calculating $E_{i,Pois}$'s:

$$E_{i,Pois} = mPr_{\lambda}(N=i) = m\frac{\lambda^{i}e^{-\lambda}}{i!}$$

· Using MLE or MOM yields:

$$E_{0,Pois} = 100000 \frac{(0.22093)^0 e^{-0.22093}}{0!} = 80177.28$$

$$E_{1,Pois} = 100000 \frac{(0.22093)^1 e^{-0.22093}}{1!} = 17713.57$$

$$\vdots$$

$$E_{5+,Pois} = 100000 - \sum_{i=0}^{4} E_{i,Pois} = 0.36$$

- 3. Goodness-of-Fit Testing (Continued):
 - Pearson Chi-Squared Test (Continued):
 - · Calculating $E_{i,Neg.Bin.}$'s:

$$E_{i,Neg.Bin} = mPr_{\alpha,\theta}(N=i) = m\frac{\Gamma(\alpha+i)}{i!\Gamma(\alpha)} \left(\frac{1}{1+\theta}\right)^{\alpha} \left(\frac{\theta}{1+\theta}\right)^{i}$$

· Using MOMs yields:

$$E_{0,Neg.Bin.} = 100000 \frac{\Gamma(2.149)}{0!\Gamma(2.149)} \left(\frac{1}{1.1028}\right)^{2.149} \left(\frac{0.1028}{1.1028}\right)^{0}$$

$$= 81035.34$$

$$E_{1,Neg.Bin.} = 100000 \frac{\Gamma(2.149+1)}{1!\Gamma(2.149)} \left(\frac{1}{1.1028}\right)^{2.149} \left(\frac{0.1028}{1.1028}\right)^{1}$$

$$= 100000(2.149)(0.8103534)(0.093217)$$

$$= 16233.32$$

$$\vdots$$

$$E_{5+,Neg.Bin.} = 100000 - \sum_{i=0}^{4} E_{i,Neg.Bin.} = 4.75$$