

Exploiting Time

Let's consider how we dealt with time so far

- We learned an estimator for f(t, x) and one for f(t)
- ...Which we used to compute $f(x \mid t) = f(t, x)/f(t)$

It worked well, but we had to introduce one additional dimension

What if we wanted to consider time and sequence input?

Exploiting Time

Let's consider how we dealt with time so far

- We learned an estimator for f(t, x) and one for f(t)
- ...Which we used to compute $f(x \mid t) = f(t, x)/f(t)$

It worked well, but we had to introduce one additional dimension

What if we wanted to consider time and sequence input?

Let's consider a second approach to handle time

- This consists in learning many density estimators:
- Each estimator is specialized for a given time (e.g. 00:00, 00:30, 01:00...)

We can then choose which estimator to use based on the current time

Exploiting Time

Formally, what we have is a first ensemble model

In particular, we obtain our estimated probabilities by evaluating:

$$f_{g(t)}(x)$$

- \blacksquare Each f_i function is an estimator
- lacktriangle The g(t) retrieves the correct f_i based (in our case) on the time value

We'll call this general idea a "selection ensemble"

In terms of properties:

- \blacksquare Each f_i estimator works with smaller amounts of data
- ...But the individual problems are easier!

Learning an Estimator for one Time Value

Let us make a test by learning an estimator for a single time value

First, we separate the training data

- We'll use the normalized version
- ...So as to simplify our guesses for bandwidth selection

Learning an Estimator for one Time Value

Let us make a test by learning an estimator for a single time value

Then, we focus on the values for a single time value

```
In [3]: wdata tr test = wdata tr.iloc[0::48] # 48 is the step
          wdata tr test.head()
Out[3]:
                                    0
                                             1
                                                      2
                                                               3
                                                                                 5
                                                                                          6
                                                                                                             8
                   timestamp
           2014-07-01 04:30:00 0.357028
                                      0.267573  0.204458  0.153294
                                                                 0.125770 0.094591
                                                                                            0.067955
                                                                                                      0.073124 0.071050
           2014-07-02 04:30:00 0.440194
                                      0.327429
                                               0.249267
                                                        0.194811
                                                                  0.158694 0.119646
                                                                                    0.098541
                                                                                             0.083462
                                                                                                      0.084615
                                                                                                               0.081816
           2014-07-03 04:30:00 0.416357
                                      0.347743 0.277088
                                                        0.233694 0.191815 0.144306
                                                                                   0.107661 0.097060
                                                                                                      0.103579 0.101307
                                      0.473941 0.412702 0.373391
                                                                 0.328581 0.276693
                                                                                    0.237053 0.216574
           2014-07-04 04:30:00 0.513318
                                                                                                      0.186251 0.147302
           2014-07-05 04:30:00 0.578672 0.533006 0.475455 0.412702 0.362361 0.301287 0.263721 0.233629 0.210944 0.145557
```


Learning a 23:30 Estimator

Then we proceed as usual

We choose a bandwidth:

Then we store the bandwidth in a variable:

```
In [5]: h = grid.best_params_['bandwidth']
```

- For sake of simplicity, we'll use the same bandwidth for all estimators
- lacktriangle Even if we should re-calibrate h for each estimator in principle

Learning the Ensemble

Now, we need to repeat the process for every unique time value

- unique in pandas returns a Series with all unique values
- We do not care about how time is measured
- ...We only care about having 48 discrete steps

Learning the Ensemble

Finally, we can learn 48 specialized estimators

```
In [7]:
    kde = {}
    for hidx, hour in enumerate(day_hours):
        tmp_data = wdata_tr.iloc[hidx::48]
        kde[hour] = KernelDensity(kernel='gaussian', bandwidth=h)
        kde[hour].fit(tmp_data)
```

- For each unique time value, we separate a subset of the training data
- Then we build and learn a KDE estimator

We chose to store everything in a dictionary:

```
In [8]: print(str(kde)[:256], '...}')

{0.0: KernelDensity(bandwidth=0.019473684210526317), 0.5: KernelDensity(bandwidth=0.019473684210526317), 1.0: KernelDensity(bandwidth=0.019473684210526317), 1.5: KernelDensity(bandwidth=0.0194736842105263 ...}
```


Generating the Signal

The we can generate the alarm signal

- In a practical implementation we should do this step by step
- ...But for an evaluation purpose it is easier to do it all at once

```
In [9]: ldens_list = []
    for hidx, hour in enumerate(day_hours):
        tmp_data = wdata.iloc[hidx::48]
        tmp_ldens = kde[hour].score_samples(tmp_data)
        tmp_ldens = pd.Series(index=tmp_data.index, data=tmp_ldens)
        ldens_list.append(tmp_ldens)
```

- For each unique time value, we separate a subset of the whole data
- Then we obtain the estimated (log) probabilities

The process is even faster than before

■ ...Because each KDE estimator is trained a smaller dataset

Generating the Signal

All signals are stored in a list

- We need to concatenate them all in single DataFrame
- Then we can sort all rows by timestamp (it's the index)

```
In [10]: | ldens = pd.concat(ldens list, axis=0)
         ldens = ldens.sort index()
         signal = -ldens
         signal.head()
Out[10]: timestamp
         2014-07-01 04:30:00
                                -27.059255
         2014-07-01 05:00:00
                                -27.505901
         2014-07-01 05:30:00
                              -27.741645
         2014-07-01 06:00:00
                              -27.925602
         2014-07-01 06:30:00
                               -27.657585
         dtype: float64
```

A suggestion: always do concatenations in a single step in pandas

It's way faster than appending DataFrame objects one by one

Generating the Signal

Now we can plot out signal:

- It's very similar to that of the other time-based model
- ...But also a bit smoother, like that of the sequence-based model

Threshold Optimization and Evaluation

Now we can optimize the threshold and evaluate the results

```
In [12]: signal_opt = signal[signal.index < val_end]
    labels_opt = labels[labels < val_end]
    windows_opt = windows[windows['end'] < val_end]
    thr_range = np.linspace(10, 200, 100)

best_thr, best_cost = util.opt_thr(signal_opt, labels_opt, windows_opt, cmodel, thr_range)
    print(f'Best threshold: {best_thr}, corresponding cost: {best_cost}')</pre>
Best threshold: 104.04040404040404, corresponding cost: 10
```

Let us see the cost on the whole dataset:

```
In [13]: ctst = cmodel.cost(signal, labels, windows, best_thr)
print(f'Cost on the whole dataset {ctst}')
Cost on the whole dataset 10
```

This is the best result we have achieved so far!

What if we used this approach for the second period?

