Lecture 13: 20 May, 2021

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning April–July 2021

Limitations of classification models

Recall

- Bias : Expressiveness of model limits classification
- Variance: Variation in model based on sample of training data

Overcoming limitations

- Bagging is an effective way to overcome high variance
 - Ensemble models
 - Sequence of models based on independent bootstrap samples
 - Use voting to get an overall classifier
- How can we cope with high bias?

The boosting algorithm — Adaboost

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%
- Damping factor reduce weight of correct inputs
- Reweight data items and normalize
- Final classifier

$$f_{\text{final}}(x) = \underset{y \in Y}{\arg \max} \sum_{t: f_t(x) = y} \log \frac{1}{\beta_t}$$

AdaBoost(D, Y, BaseLeaner, k)

- Initialize $D_1(w_i) \leftarrow 1/n$ for all i;
- for t = 1 to k do
- $f_t \leftarrow \text{BaseLearner}(D_t);$

4.
$$e_t \leftarrow \sum_{i:f_t(D_t(\mathbf{x}_i))\neq y_i} D_t(w_i);$$

- if $e_t > \frac{1}{2}$ then
 - $k \leftarrow k 1$:
- exit-loop
- 8. else

9.
$$\beta_t \leftarrow e_t / (1 - e_t)$$

9.
$$\beta_{t} \leftarrow e_{t} / (1 - e_{t});$$
10
$$D_{t+1}(w_{i}) \leftarrow D_{t}(w_{i}) \times \begin{cases} \beta_{t} & \text{if } f_{t}(D_{t}(\mathbf{x}_{i})) = y_{i} \\ 1 & \text{otherwise} \end{cases};$$

3/15

11.
$$D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^n D_{t+1}(w_i)}$$

Boosting: An example

■ Final classifier is weighted sum of three weak classifiers

- AdaBoost uses weights to build new weak learners that compensate for earlier errors
- Gradient boosting follows a different approach
 - Shortcomings of the current model are defined in terms of gradients
 - Gradient boosting = Gradient descent + boosting

Gradient Boosting for Regression

- Training data $(x_1, y_1, (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$
 - $y_2 = 1.3, F(x_2) = 1.4$
 -
- Add an additional model h, so that new prediction is F(x) + h(x)

Gradient Boosting for Regression

- Training data $(x_1, y_1, (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model *F* we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$
 - $y_2 = 1.3, F(x_2) = 1.4$
 -
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should *h* look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$
- $h(x_i) = y_i F(x_i)$
- Fit a new model h (typically a regression tree) to the residuals $y_i F(x_i)$
- If F + h is not satisfactory, build another model h' to fit residuals $y_i - [F(x_i) + h(x_i)]$
- Why should this work?

Residuals and gradients

Gradient descent

Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$

Individual loss:

$$L(y, F(x) = (y - F(x))^2/2$$

Minimize overall loss:

$$J = \sum_{i} L(y_i, F(x_i))$$

- Residual $y_i F(x_i)$ is negative gradient
- Fitting h to residual is same as fitting h to negative gradient
- Updating F using residual is same as updating F based on negative gradient

Residuals and gradients

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
 - Absolute loss |y f(x)|
 - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta \\ \delta(|y-F|-\delta/2), & |y-F| > \delta \end{cases}$$

Residuals and gradients

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
 - Absolute loss |y f(x)|
 - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta \\ \delta(|y-F|-\delta/2), & |y-F| > \delta \end{cases}$$

- More generally, boosting with respect to gradient rather than just residuals
- Given any differentiable loss function *L*,
 - Start with an initial model F
 - Calculate negative gradients

$$-g(x_i) = \frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}$$

- Fit a regression tree h to negative gradients $-g(x_i)$
- Update F to $F + \rho h$
- ρ is the learning rate

■ Predict age based on given attributes

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

- Predict age based on given attributes
- Build a regression tree using CART algorithm

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

■ LikesHats seems irrelevant, yet pops up

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

- LikesHats seems irrelevant, yet pops up
- Can we do better?

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

11 / 15

PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

PersonID			Tree1 Residual		
1	13	19.25	-6.25		
2	14	19.25	-5.25		
3	15	19.25	-4.25		
4	25	57.2	-32.2		
5	35	19.25	15.75		
6	49	57.2	-8.2		
7	68	57.2	10.8		
8	71 57.2		71 57.2		13.8
9	73	57.2	15.8		

11 / 15

PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

11 / 15

	5,25,35,49,68,71,73}	Per son ID	A g e	Tree1 Predi	Tree1 Resi dual	Tree2 Predi	Co mbi ned	Final Resi dual
Gardening=F	Gardening=T	1	13	19.25	-6.25	-3.567	15.68	- 2.683
{13,14,15,35}	{25,49,68,71,73}	2	14	19.25	-5.25	-3.567	15.68	-1.683
{13,14,13,33}	(23,47,00,71,73)	3	15	19.25	-4.25	-3.567	15.68	-0.6833
	Tree 1	4	25	57.2	-32.2	-3.567	53.63	-28.63
		5	35	19.25	15.75	-3.567	15.68	+ 19.32
5.25,-4.25,-32	2.2,15.75,-8.2,10.8,13.8,15.8}	6	49	57.2	-8.2	7.133	64.33	- 15.33
mes=F	VideoGames=T	7	68	57.2	10.8	-3.567	53.63	+14.37
		8	71	57.2	13.8	7.133	64.33	+ 6.667
3.8,15.8}	{-6.25,-5.25,-4.25,-32.2,15.75,10.8}	9	73	57.2	15.8	7.133	64.33	+ 8.667
	Tree 2							

Tree 2

		Per	Α	Tree1	Tree1	Tree2	Co	Final				
{13,14,15,25,35,49,68,71,73}		son							Predi Resi	Predi		Resi
Gardening=F	Gardening=T	ID	e	ction	dual	ction	ned	dual				
Gardening-r	Gardening-1	1	13	19.25	-6.25	-3.567	15.68	- 2.683				
{13,14,15,35}	{25,49,68,71,73}	2	14	19.25	-5.25	-3.567	15.68	-1.683				
(,-,,)	(3	15	19.25	-4.25	-3.567	15.68	0.6833				
	Tree 1	4	25	57.2	-32.2	-3.567	53.63	-28.63				
		5	35	19.25	15.75	-3.567	15.68	+ 19.32				
{-6.25,-5.25,-4.25,-32	2.2,15.75,-8.2,10.8,13.8,15.8}	6	49	57.2	-8.2	7.133	64.33	- 15.33				
VideoGames=F	VideoGames=T	7	68	57.2	10.8	-3.567	53.63	+ 14.37				
{-8.2,13.8,15.8}	{-6.25,-5.25,-4.25,-32.2,15.75,10.8}	8	71	57.2	13.8	7.133	64.33	+ 6.667				
{-0.2,13.0,13.8}	{-0.23,-3.23,-4.23,-32.2,13.73,10.8}	9	73	57.2	15.8	7.133	64.33	+ 8.667				

Tree 2

12 / 15

						٧x		
{13,14,15,25,35,49,68,71,73} ardening=F Gardening=T 5,14,15,35} Tree 1 -5.25,-4.25,-32.2,15.75,-8.2,10.8,13.8,15.8} Games=F VideoGames=T 3.8,15.8} {-6.25,-5.25,-4.25,-32.2,15.75,10	Per son ID	A g e	Tree1 Predi ction	Tree1 Resi dual	Tree2 Prediction	Co mbi ned	Final Resi dual	
ng-r	Gardening-1	1	13	19.25	-6.25	-3.567	15.68	- 2.683
35}	{25,49,68,71,73}	2	14	19.25	-5.25	-3.567	15.68	- 1.683
,	(==,,==,,=,	3	15	19.25	-4.25	-3.567	15.68	0.6833
	Tree 1	4	25	57.2	-32.2	-3.567	53.63	-28.63
	-	5	35	19.25	15.75	-3.567	15.68	+ 19.32
3	2.2,15.75,-8.2,10.8,13.8,15.8}	6	49	57.2	-8.2	7.133	64.33	-15.33
	VideoGames=T	7	68	57.2	10.8	-3.567	53.63	+ 14.37
	(4.05.505.405.00.015.75.40.0)	8	71	57.2	13.8	7.133	64.33	+ 6.667
1}	{-0.25,-5.25,-4.25,-32.2,15.75,10.8}	9	73	57.2	15.8	7.133	64.33	+ 8.667

Tree 2

Tree 1

Tree 2

General Strategy

■ Build tree 1, F₁

Tree 1

Tree 2

- Build tree 1, F₁
- Fit a model to residuals, $h_1(x) = y F_1(x)$

Tree 1

Tree 2

- Build tree 1, F₁
- Fit a model to residuals, $h_1(x) = y F_1(x)$
- Create a new model $F_2(x) = F_1(x) + h_1(x)$

Tree 1

Tree 2

- Build tree 1, F₁
- Fit a model to residuals, $h_1(x) = y F_1(x)$
- Create a new model $F_2(x) = F_1(x) + h_1(x)$
- Fit a model to residuals, $h_2(x) = y F_2(x)$

Tree 1

Tree 2

- Build tree 1, F₁
- Fit a model to residuals, $h_1(x) = y F_1(x)$
- Create a new model $F_2(x) = F_1(x) + h_1(x)$
- Fit a model to residuals, $h_2(x) = y F_2(x)$
- Create a new model $F_3(x) = F_2(x) + h_2(x)$
-

Tree 1

Tree 2

Learning Rate

Tree 1

Tree 2

Learning Rate

 \bullet h_j fits residuals of F_j

Tree 1

Tree 2

Learning Rate

- \blacksquare h_j fits residuals of F_j
- $F_{i+1}(x) = F_J(x) + LR \cdot h_i(x)$
 - LR controls contribution of residual
 - \blacksquare *LR* = 1 in our previous example

Tree 1

Tree 2

Learning Rate

- \bullet h_j fits residuals of F_j
- $F_{j+1}(x) = F_J(x) + LR \cdot h_j(x)$
 - *LR* controls contribution of residual
 - \blacksquare LR = 1 in our previous example
- Ideally, choose LR separately for each residual to minimize loss function
 - Can apply different LR to different leaves

Tree 1

Tree 2

14 / 15

Assume binary classification

15 / 15

- Assume binary classification
- lacksquare Original training outputs are $y \in \{0,1\}$

15 / 15

- Assume binary classification
- Original training outputs are $y \in \{0, 1\}$
- For each x, classifier produces scores $\langle s_0, s_1 \rangle$

15 / 15

- Assume binary classification
- Original training outputs are $y \in \{0, 1\}$
- For each x, classifier produces scores $\langle s_0, s_1 \rangle$
- Use softmax to convert to probabilities:

For
$$j \in \{0,1\}$$
, $p_j = rac{e^{s_j}}{e^{s_0} + e^{s_1}}$

- Assume binary classification
- Original training outputs are $y \in \{0, 1\}$
- For each x, classifier produces scores $\langle s_0, s_1 \rangle$
- Use softmax to convert to probabilities:

For
$$j \in \{0,1\}$$
, $p_j = \frac{e^{s_j}}{e^{s_0} + e^{s_1}}$

Use cross entropy as the loss function

$$L(y, F) = y \log(p_1) + (1 - y) \log(p_0)$$

- Assume binary classification
- Original training outputs are $y \in \{0, 1\}$
- For each x, classifier produces scores $\langle s_0, s_1 \rangle$
- Use softmax to convert to probabilities:

For
$$j \in \{0,1\}$$
, $p_j = \frac{e^{s_j}}{e^{s_0} + e^{s_1}}$

Use cross entropy as the loss function

$$L(y, F) = y \log(p_1) + (1 - y) \log(p_0)$$

Compute negative gradients

- Assume binary classification
- Original training outputs are $y \in \{0, 1\}$
- For each x, classifier produces scores $\langle s_0, s_1 \rangle$
- Use softmax to convert to probabilities:

For
$$j \in \{0,1\}$$
, $p_j = \frac{e^{s_j}}{e^{s_0} + e^{s_1}}$

Use cross entropy as the loss function

$$L(y, F) = y \log(p_1) + (1 - y) \log(p_0)$$

- Compute negative gradients
- Fit regression trees to negative gradients to minimize cross entropy

One node tree