Capstone 2:

Supervised Learning Capstone Telco Customer Churn via Kaggle

•••

May, 2020

Overview of Assignment

- Go out and find a dataset of interest.
 - <u>Telco Customer Churn</u> IBM Watson analytics
 - o Predict behavior to retain customers.
- Explore the data
- Model your outcome of interest.
 - Naive Bayes Applies Bayes' theorem with strong feature independence assumptions
 - K-Nearest Neighbors (KNN) Input consists of the K closest training samples in the feature space
 - Decision Tree Data is continuously split according to a certain parameter
 - Random Forest Combines results from Decision Trees at the end of the process.
 - o Logistic Regression Typically used when the dependent variable is binary
 - Support Vector Machine (SVM) Uses classification algorithms for two-group classification problems.
 - o Gradient Boosting Combines results from Decision Trees along the way.

Features:

String

CustomerID

Categorical

- Gender
- SeniorCitizen
- Partner
- Dependents
- PhoneService
- MultipleLines
- InternetService
- OnlineSecurity
- OnlineBackup
- DeviceProtection

Continuous

- TechSupport
- StreamingTV
- StreamingMovies
- Contract
- PaperlessBilling
- PaymentMethod
- Churn

- Tenure
- MonthlyCharges
- TotalCharges

Capstone objective:

Customer churn is when a customer ends their relationship with a business. Looking at the Telco data from the customers perspectives and services, I use various models to predict behavior and decisions to retain customers.

Exploration:

df.info() #no null, but why is total charges an object?

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 21 columns):

Data	columns (total 21	columns):					
#	Column	Non-Null Count	Dtype				
0	customerID	7043 non-null	object				
1	gender	7043 non-null	object				
2	SeniorCitizen	7043 non-null	int64				
3	Partner	7043 non-null	object				
4	Dependents	7043 non-null	object				
5	tenure	7043 non-null	int64				
6	PhoneService	7043 non-null	object				
7	MultipleLines	7043 non-null	object				
8	InternetService	7043 non-null	object				
9	OnlineSecurity	7043 non-null	object				
10	OnlineBackup	7043 non-null	object				
11	DeviceProtection	7043 non-null	object				
12	TechSupport	7043 non-null	object				
13	StreamingTV	7043 non-null	object				
14	StreamingMovies	7043 non-null	object				
15	Contract	7043 non-null	object				
16	PaperlessBilling	7043 non-null	object				
17	PaymentMethod	7043 non-null	object				
18	MonthlyCharges	7043 non-null	float64				
19	TotalCharges	7043 non-null	object				
20	Churn	7043 non-null	object				
<pre>dtypes: float64(1), int64(2), object(18)</pre>							

memory usage: 1.1+ MB

Unique Values for Features -Convert to Binary

customerID	[7590-VHVEG, 5575-GNVDE, 3668-QPYBK, 7795-CFOC				
gender	[Female, Male]				
SeniorCitizen	[0, 1]				
Partner	[Yes, No]				
Dependents	[No, Yes]				
tenure	[1, 34, 2, 45, 8, 22, 10, 28, 62, 13, 16, 58,				
PhoneService	[No, Yes]				
MultipleLines	[No phone service, No, Yes]				
InternetService	[DSL, Fiber optic, No]				
OnlineSecurity	[No, Yes, No internet service]				
OnlineBackup	[Yes, No, No internet service]				
DeviceProtection	[No, Yes, No internet service]				
TechSupport	[No, Yes, No internet service]				
StreamingTV	[No, Yes, No internet service]				
StreamingMovies	[No, Yes, No internet service]				
Contract	[Month-to-month, One year, Two year]				
PaperlessBilling	[Yes, No]				
PaymentMethod	[Electronic check, Mailed check, Bank transfer				
MonthlyCharges	[29.85, 56.95, 53.85, 42.3, 70.7, 99.65, 89.1,				
TotalCharges	[29.85, 1889.5, 108.15, 1840.75, 151.65, 820.5				
Churn	[No, Yes]				
dtype: object					

Split Churn Samples Distribution Plot

Churn Counts No Churn Customers: 5,174 Churn Customers: 1,869

Check Continuous Variables for Outliers via Boxplot

Multicollinearity Heat Map of Features

Find index of feature columns with correlation greater than 0.55
to_drop = [column for column in upper.columns if any(upper[column] > 0.55)

to_drop

['Contract', 'MonthlyCharges', 'TotalCharges']

Histogram of Features

Large count of low values for:
Monthly Charges
Total Charges
Tenure


```
number = df[df['TotalCharges'] <= 24]
number
#Makes sense. Tenure is 1 and they only have phone service.
#tell story about Data.</pre>
```

nts	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBackup
0	1	1	0	0	0	0
0	1	1	0	0	0	0
0	1	1	0	0	0	0
1	1	1	0	0	0	0
0	1	1	0	0	0	0
1	1	1	0	0	0	0
1	1	1	0	0	0	0

Low Values Show: Phone Service = 1 & No Other Services

Histogram of Features

0 104 1 58 Name: Churn, dtype: int64

number.Churn.value_counts()

#30% of phone service only came for one month?

Treat for Class Imbalance

```
#upsample/downsample
#lost part of data from downsample. Results were not satisfactory.
from sklearn.utils import resample
no_churn = resample(no_churn, n_samples = 4000, random_state=1)
churn = resample(churn, n_samples = 4000, random_state=1)
max_sizes = no_churn['Churn'].value_counts().max()
max_sizes
```

```
churned = pd.concat([churn, no churn])
```

```
sns.countplot('Churn', data=churned)
churned.Churn.value_counts()
```


4000

1

Drop Features With High Multicollinearity

```
# Split data into classes and training groups.
X = churned.drop(['customerID', 'TotalCharges', 'Churn', 'InternetService',
'PaymentMethod_Mailed check', 'PaymentMethod_Mailed check',
'Contract', 'Dependents', 'MultipleLines', 'OnlineBackup', 'StreamingTV'],
y = churned.Churn
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
len(X_train)
```

Multicollinearity Heat Map of Features After Highly Correlated Features Were Dropped

Models Accuracy Summary

```
Naive Bayes Unweighted Accuracy: 0.74 (+/- 0.02)
KNN Unweighted Accuracy: 0.83 (+/- 0.04)
Decision Tree Unweighted Accuracy: 0.91 (+/- 0.02)
Random ForestUnweighted Accuracy: 0.92 (+/- 0.02)
Logistic Regression Unweighted Accuracy: 0.76 (+/- 0.03)
SVM Unweighted Accuracy: 0.68 (+/- 0.14)
Gradient Boosting Unweighted Accuracy: 0.78 (+/- 0.03)
```

Apply Normalization to SVM

```
#stability increased here w/ Normalization (had impact on regression)
sv = LinearSVC()
sv.fit(X train, y train)
sv predict = sv.predict(X test)
#sv predicts = sv.predict proba(X test)
sv score = cross val score(sv, X, y, cv=10)
print('Cross Val Score: {}'.format(sv score))
print("Unweighted Accuracy: %0.2f (+/- %0.2f)" % (sv score.mean(), sv score
Cross Val Score: [0.77 0.75 0.76625 0.74 0.74625 0.77 0.7875
0.75875 0.78625
 0.751251
Unweighted Accuracy: 0.76 (+/-0.03)
```

Continue Exploration:

- Gather age group data.
- Gather data from competing companies.
- Gather behavioral data.
- Are there various networks?
- Are there reliability issues?

Questions?