Foglio di Esercizi 8 - Matrici e Applicazioni lineari

1 Operazioni con le matrici

Esercizio 1. Date le matrici

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix},$$

capire quali tra i due prodotti AB oppure A^TB e' possibile eseguire, e poi calcolarlo.

Esercizio 2. Date le seguenti matrici

$$A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} -2 & 1 & -1 \\ 2 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 0 & -1 \end{pmatrix}$$

calcolare, quando possibile

$$AC$$
, $B + CA$, $(BC)A$, BA , BA^T , $A^T + BC$.

Esercizio 3. Dati $a, b, c, \in \mathbb{R}$ numeri reali e date le matrici

$$A = \begin{pmatrix} 1+a & 0 \\ c-2b & 3c-a \end{pmatrix}, \qquad B = \begin{pmatrix} -b-c & 0 \\ 4a+b & a+b \end{pmatrix},$$

trovare i valori di a,b,c tali che A=-B .

2 Rango di una matrice

Esercizio 4. Determinare il rango delle seguenti matrici

$$A = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 2 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & -1 \end{pmatrix}, \qquad C = \begin{pmatrix} 2 & 1 & 3 & 4 & 6 \\ -2 & 3 & -1 & 5 & 3 \\ 6 & -1 & 7 & 4 & 10 \\ -8 & 8 & -6 & 13 & 5 \end{pmatrix}$$

Stabilire poi quanti e quali sono i vettori linearmente indipendenti che costituiscono le righe (o le colonne) delle matrici.

Esercizio 5. Calcolare il rango delle seguenti matrici al variare del parametro $k \in \mathbb{R}$.

$$A = \begin{pmatrix} -2 & -2 & -1 \\ k & -1 & 1 \\ 4 & k & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 1 & k \\ k & 2k & 1 \\ 2 & k+2 & -2 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 0 & -k & 1 \\ 0 & 1 & 0 & k \\ -1 & k & 1 & 0 \end{pmatrix}$$

Esercizio 6. Calcolare il rango delle seguenti matrici

$$A = \begin{pmatrix} -1 & 1 & 1 & 2 \\ 2 & -1 & 0 & 0 \\ 0 & 1 & 1 & h \\ 1 & -1 & 1 & 2h \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 & 2 & 1 \\ 1 & 2 & 2 & 1 \\ 1 & 1 & h & 0 \\ 0 & h & 2h & h^2 \end{pmatrix}$$

al variare di $h \in \mathbb{R}$. Stabilire, sempre al variare di h, quali e quanti vettori linearmente indipendenti sono presenti tra le righe (o le colonne) di A e B.

Esercizio 7. Calcolare il rango di

$$A = \begin{pmatrix} 1 & -1 & 0 & k-1 \\ 2 & 0 & k & 0 \\ 0 & h & 0 & 0 \end{pmatrix},$$

al variare di $h, k \in \mathbb{R}$.

Esercizio 8. Stabilire per quali valori di $h \in \mathbb{R}$ la seguente matrice ha rango 1.

$$A = \begin{pmatrix} 1 & -1 & h \\ h & 2h & 0 \end{pmatrix},$$

3 Applicazioni Lineari

Esercizio 9. È data la seguente applicazione lineare da \mathbb{R}^3 a \mathbb{R}^2 :

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y-2z \\ -x-y+2z \end{pmatrix}$$

a) Scrivere la matrice associata a $\,T\,$ rispetto alle basi canoniche di $\,\mathbb{R}^3\,$ e di $\,\mathbb{R}^2\,$

Esercizio 10. Sono date le matrici

$$A_1 = \begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix}$$
 e $A_2 = \begin{pmatrix} 1 & 2 & 1 & -1 \\ 1 & 2 & 1 & -1 \\ 1 & 2 & 1 & -1 \end{pmatrix}$

- a) Per ciascun i=1,2 scrivere esplicitamente l'applicazione lineare $T_i: \mathbb{R}^n \to \mathbb{R}^m$ rappresentata da A_i rispetto alle basi canoniche.
- b) Trovare una base di $\operatorname{Ker} T_i$ e $\operatorname{Im} T_i$.

Esercizio 11. Sia $T: \mathbb{R}^3 \to \mathbb{R}^2$ definita da

$$T(0,-2,1) = (3,-1)$$

$$T(1,1,-2) = (1,2)$$

$$T(2,0,-1) = (11,1).$$

Determinare la matrice che rappresenta T rispetto alle basi canoniche.

Esercizio 12. Sia $\{e_1, e_2, e_3\}$ la base canonica di \mathbb{R}^3 , e si consideri l'unica applicazione lineare $T: \mathbb{R}^3 \to \mathbb{R}^2$ tale che:

$$T(e_1) = (1,0), \quad T(e_2) = (2,-1) \quad \mathbf{e} \quad T(e_3) = (1,1).$$

a) Determinare la matrice associata a T rispetto alle basi canoniche.