Package 'MFASTR'

April 10, 2017

Version 0.1.0.0000
 Description This is a port of the MFAST codes into R. The main functions do_station_simple and do_station_complex replicate MFAST's usability. Other functions in this package are documented to give advanced users more fexability.

URL http://mfast-package.geo.vuw.ac.nz/

BugReports https://github.com/shearwavesplitter/MFASTR

Title The Multiple Filter Automatic Shear Wave Splitting Technique in R

Depends R (>= 2.14), RSEIS, TauP.R, signal

Suggests circular

SystemRequirements GNU make, Linux

License

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1.9000

R topics documented:

ak135_alp	2
ak135_taupo	2
anginc	3
checkcomp	3
checkspick	4
createini	4
cut_simple	5
do_all_complex	6
do_all_simple	7
do_station_complex	8
do_station_simple	9
filter_spread	10
grade	11
logfiles	11

2 ak135_taupo

Index																										19
	write_sample		•	•	 •	•	•	 •	•	•	•	 •	•	•	 •	•	•	•	 •	•	•	•	 •		•	18
	writesac_filtsm																									
	writesac_filt .																						 			16
	snr																									15
	run_mfast																									15
	rms																									14
	readtvel																									14
	readtriplet																									13
	mean.weighted	l.																								12

ak135_alp

The ak135_alp velocity model

Description

The ak135_alp velocity model

Usage

ak135_alp

Format

A TauP.R compatible velocity model

ak135_taupo

The ak135_taupo velocity model

Description

The ak135_taupo velocity model

Usage

ak135_taupo

Format

A TauP.R compatible velocity model

anginc 3

anginc	Angle of incidence	
--------	--------------------	--

Description

Determines the angle of incidence for an event

Usage

```
anginc(tvel, trip)
```

Arguments

tvel	Veloctity model read in by readtvel or a stored model (ak135_alp, ak135_taupo)
trip	Seismogram triplet (output of readtriplet)

Value

The angle of incidence at the surface (degrees) and the ray parameter

Examples

```
# Determine the angle of incidence for event 2002.054.09.47.lhor2
pathto <- "~/mfast/sample_data/raw_data"
write_sample(pathto)
event <- "2002.054.09.47.lhor2"
triplet <- readtriplet(event,path=pathto)
a <- anginc(ak135_alp,triplet)</pre>
```

checkcomp

Check components

Description

Checks a folder to make sure all three components are present and moves those with missing components to a subdirectory

Usage

```
checkcomp(path, E = ".e", N = ".n", Z = ".z")
```

path	Path to folder
Е	Suffix of the east component
N	Suffix of the north component
Z	Suffix of the vertical component

4 createini

Check S-wave picks

Description

Checks a folder to make sure all events have S-wave picks and moves those with missing picks to a subdirectory

Usage

```
checkspick(path, suffix = "E", header = "t0", E = ".e", N = ".n",
    Z = ".z")
```

Arguments

path	Path to folder
suffix	Which component to look for the S-pick in (E, N, or Z)
header	Header name of where the S-pick is stored
E	Suffix of the east component
N	Suffix of the north component
Z	Suffix of the vertical component

createini

Create .ini

Description

Creates an MFAST .ini (paramter) file

Usage

```
createini(path, trip, filts, name, number = 3, E = ".e", N = ".n",
  Z = ".z", nwbeg = 5, fdmin = 0.3, fdmax = 8, t_win_freq = 3,
  tlagmax = 1, Ncmin = 5, Mmax = 15)
```

path	Path to folder
trip	Seismogram triplet (output of readtriplet)
name	Event name (without suffix)
number	Number of best filters to use
nwbeg	number of start times tested
fdmin	Minimum allowed dominant frequency

cut_simple 5

fdmax Maximum allowed dominant frequency Window to calculate the dominant frequency t_win_freq Maximum allowed time delay (s) tlagmax Minimum number of points in an acceptable cluster Ncmin maximum number ofclusters Mmax dataframe of the best filters (output of filter_spread) suffe Suffix of east component suffn Suffix of north component suffz Suffix of vertical component Minimum snr allowed for a good filter snrmax Window for SNR (s) t_win_snr Modification to t_win_snr to account for error in S-pick (s) t_err

Value

A vector of dominant frequency in the S-wave (maxfreq) for each filter

Examples

```
# Create .ini file for event 2002.054.09.47.lhor2
pathto <- "~/mfast/sample_data/raw_data"
write_sample(pathto)
event <- "2002.054.09.47.lhor2"
triplet <- readtriplet(event,path=pathto)
bestfilt <- filter_spread(triplet)
maxfreq <- createini(pathto,triplet,bestfilt,event)</pre>
```

cut_simple Simple cut

Description

A simple routine to cuts out portion of a vector signal

Usage

```
cut\_simple(x, dt, t1, t2, b = 0)
```

Χ	vector signal
dt	sample interval
t1	Begin cut time
t2	End cut time

6 do_all_complex

Value

A cut vector signal

do_all_complex Run MFAST on multiple stations with more options

Description

Run shear wave splitting measurements on multiple folders/stations

to maximum available.

Usage

```
do_all_complex(path, sheader = "t0", nwbeg = 5, fdmin = 0.3, fdmax = 8,
    t_win_freq = 3, tlagmax = 1, Ncmin = 5, Mmax = 15, snrmax = 3,
    t_win_snr = 3, t_err = 0.02, filtnum = 3, type = "normal",
    filter = NULL, tvelpath = NULL, tvel = ak135_alp, suffe = ".e",
    suffn = ".n", suffz = ".z", no_cores = Inf)
```

path	Path to folder containing folders with events
sheader	SAC header the S-wave pick is stored in
nwbeg	number of start times tested
fdmin	Minimum allowed dominant frequency
fdmax	Maximum allowed dominant frequency
t_win_freq	Window to calculate the dominant frequency (s)
tlagmax	Maximum allowed time delay (s)
Ncmin	Minimum number of points in an acceptable cluster
Mmax	maximum number of clusters
snrmax	Minimum snr allowed for a good filter
t_win_snr	Window for SNR (s)
t_err	Modification to t_win_snr to account for error in S-pick (s)
filtnum	Number of filters to test
type	Which of the MFAST default settings and filters to use. If a P-wave pick is present, type="verylocal" uses it to set t_win_snr
filter	User defined set of filters (this overrides the filter selected with type).
tvelpath	Path to a .tvel file containing the velocity model (overrides tvel)
tvel	A tvel file read with readtvel (ak135_alp and ak135_taupo are already loaded)
suffe	Suffix of east component
suffn	Suffix of north component
suffz	Suffix of vertical component
no_cores	Number of cores to run measurements on. Set to 1 for verbose mode. Defaults

do_all_simple 7

Value

A dataframe containing a summary of all the stations

Examples

```
# Run on measurements three folders of the normal sample data
write_sample("~/mfast/sample_data/raw_data")
write_sample("~/mfast/sample_data/raw_data2")
write_sample("~/mfast/sample_data/raw_data3")
do_all_complex(path="~/mfast/sample_data")
```

do_all_simple

Run MFAST on multiple folders

Description

Run shear wave splitting measurements on more than one folder/station

Usage

```
do_all_simple(path, sheader = "t0", type = "normal", filtnum = 3,
  tvelpath = NULL, tvel = ak135_alp, no_cores = Inf)
```

Arguments

path Path to folder containing folders with events sheader SAC header the S-wave pick is stored in

type Which of the MFAST default settings and filters to use

filtnum Number of filters to test

tvelpath Path to a .tvel file containing the velocity model (overrides tvel)

A tvel file read with readtvel (ak135_alp and ak135_taupo are already loaded)

no_cores Number of cores to run measurements on. Set to 1 for verbose mode. Defaults

to maximum available.

Details

Component suffixes are determined automatically

Value

A dataframe containing a summary of all the stations

8 do_station_complex

Examples

```
# Run on measurements three folders of the normal sample data
write_sample("~/mfast/sample_data/raw_data")
write_sample("~/mfast/sample_data/raw_data2")
write_sample("~/mfast/sample_data/raw_data3")
do_all_simple(path="~/mfast/sample_data")
```

do_station_complex

Run MFAST with more options

Description

Run shear wave splitting measurements on a folder of events with more options

Usage

```
do_station_complex(path, sheader = "t0", nwbeg = 5, fdmin = 0.3,
  fdmax = 8, t_win_freq = 3, tlagmax = 1, Ncmin = 5, Mmax = 15,
  snrmax = 3, t_win_snr = 3, t_err = 0.02, filtnum = 3,
  type = "normal", filter = NULL, tvelpath = NULL, tvel = ak135_alp,
  suffe = ".e", suffn = ".n", suffz = ".z", no_cores = Inf)
```

Arguments

tvelpath

tvel

path	Path to folder
sheader	SAC header the S-wave pick is stored in
nwbeg	number of start times tested
fdmin	Minimum allowed dominant frequency
fdmax	Maximum allowed dominant frequency
t_win_freq	Window to calculate the dominant frequency (s)
tlagmax	Maximum allowed time delay (s)
Ncmin	Minimum number of points in an acceptable cluster
Mmax	maximum number of clusters
snrmax	Minimum snr allowed for a good filter
t_win_snr	Window for SNR (s)
t_err	Modification to t_win_snr to account for error in S-pick (s)
filtnum	Number of filters to test
type	Which of the MFAST default settings and filters to use. If a P-wave pick is present, type="verylocal" uses it to set t_win_snr
filter	User defined set of filters (this overrides the filter selected with type).

Path to a .tvel file containing the velocity model (overrides tvel)

A tvel file read with readtvel (ak135_alp and ak135_taupo are already loaded)

do_station_simple 9

suffe	Suffix of east component
suffn	Suffix of north component
suffz	Suffix of vertical component
no_cores	Number of cores to run measurements on. Set to 1 for verbose mode. Defaults to maximum available.

Value

A dataframe containing the summary file

Examples

```
# Run on measurements the normal sample data with defaults
write_sample("~/mfast/sample_data/raw_data")
do_station_complex(path="~/mfast/sample_data/raw_data")

# Run measurements with your own defined filters
filt_low <- c(0.1,0.2,0.5)
filt_high <- c(1,2,3)
filts <- cbind(filt_low,filt_high)
write_sample("~/mfast/sample_data/raw_data")
do_station_complex(path="~/mfast/sample_data/raw_data",filter=filts)</pre>
```

Description

Run shear wave splitting measurements on a folder of events

Usage

```
do_station_simple(path, sheader = "t0", type = "normal", filtnum = 3,
  tvelpath = NULL, tvel = ak135_alp, no_cores = Inf)
```

path	Path to folder
sheader	SAC header the S-wave pick is stored in
type	Which of the MFAST default settings and filters to use
filtnum	Number of filters to test
tvelpath	Path to a .tvel file containing the velocity model (overrides tvel)
tvel	A tvel file read with readtvel (ak135_alp and ak135_taupo are already loaded)
no_cores	Number of cores to run measurements on. Set to 1 for verbose mode. Defaults to maximum available.

filter_spread

Details

Component suffixes are determined automatically

Value

A dataframe containing the summary file

Examples

```
# Run on measurements the normal sample data
write_sample("~/mfast/sample_data/raw_data")
do_station_simple(path="~/mfast/sample_data/raw_data")

# Run on measurements the verylocal sample data where the S-pick is stored in the t5 header
write_sample("~/mfast/sample_data/raw_data",type="verylocal")
do_station_simple(path="~/mfast/sample_data/raw_data",type="verylocal",sheader="t5")
```

filter_spread

Find best filters

Description

Determines the best filters for an event

Usage

```
filter_spread(trip, type = "normal", filter = NULL, t_win_snr = 3,
    t_err = 0.05, snrmax = 3)
```

Arguments

trip	Seismogram triplet (output of readtriplet)
type	Which of the default filters to use. If a P-wave pick is present, type="verylocal" uses it to set t_win_snr
filter	User defined filters. Overrides filters selected by type (for "verylocal" the P-pick is still used)
t_win_snr	Window for SNR
t_err	Modification to t_win_snr to account for error in S-pick
snrmax	Minimum snr allowed for a good filter

Value

A dataframe of the filters sorted by SNR*bandwidth

grade 11

Examples

```
# Define your own set of filters
filt_low <- c(0.1,0.2,0.5)
filt_high <- c(1,2,3)
filts <- cbind(filt_low,filt_high)
write_sample("~/mfast/sample_data/raw_data")
triplet <- readtriplet("2002.054.09.47.lhor2",path="~/mfast/sample_data/raw_data")
bestfilt <- filter_spread(triplet,filter=filts)</pre>
```

grade

Grade .summ file

Description

Grades a .summ file (do_station automatically grades)

Usage

```
grade(path, minsnr = 3, tlagmax = 1, minl = 0)
```

Arguments

path Path to .summ file to be graded
minsnr Minimum SNR allowed for an AB+ grade

tlagmax Maximum time delay allowed for an AB+ grade
minl Minimum lambdamax allowed for a AB+ grade

Examples

```
# (Re)grade LHOR2.75.summ
write_sample("~/mfast/sample_data/raw_data")
do_station_simple(path="~/mfast/sample_data/raw_data")
pathto <- "~/mfast/sample_data/raw_data/LHOR2.summ_files/LHOR2.75.summ"
grade(pathto)</pre>
```

logfiles

Parse results

Description

Parses output of shear wave splitting measurement for a set of filters (used to build .summ files)

Usage

```
logfiles(path, name, trip, filtlist, maxfreqv, comment = "MFASTR", anginc)
```

12 mean.weighted

Arguments

path Path to folder name Name of event

trip Seismogram triplet (output of readtriplet)

filtlist Dataframe of the best filters to be used (output of writesac filt)

maxfreqv Vector of dominant frequency in the S-wave (maxfreq) for each filter(output of

create_ini)

comment Optional comment

anginc Angle of indidence (output of anginc)

Value

A dataframe containing the results for that event

Examples

```
# Run shear wave splitting measurement on event 2002.054.09.47.lhor2 and parse the results
pathto <- "~/mfast/sample_data/raw_data"
write_sample(pathto)
event <- "2002.054.09.47.lhor2"
triplet <- readtriplet(event,path=pathto)
a <- anginc(ak135_alp,triplet)
bestfilt <- filter_spread(triplet)
maxfreq <- createini(pathto,triplet,bestfilt,event)
f <- writesac_filt(pathto,triplet,event,bestfilt)
run_mfast(pathto,event,f)
res <- logfiles(pathto,event,triplet,f,maxfreq,anginc=a)</pre>
```

mean.weighted

Weighted axial mean

Description

The mean of a weighted axial variable

Usage

```
## S3 method for class 'weighted'
mean(vec, weights = NULL)
```

Arguments

vec A vector of axis (degrees)

weights A vector of weights of the same length as vec

Value

The mean axis (degrees) and the Pythagorean length

readtriplet 13

|--|

Description

Reads, cuts, and loads S-wave pick into the t5 header using RSEIS/JSAC.seis as a workhorse

Usage

```
readtriplet(event, path = ".", E = ".e", N = ".n", Z = ".z",
header = "t0", pheader = "a")
```

Arguments

event	Event name
path	Path to folder
header	Name of header containing the S-wave pick
pheader	Name of header containing the P-wave pick
suffe	Suffix of east component
suffn	Suffix of north component
suffz	Suffix of vertical component

Details

The S-wave pick must be stored on at least the east component and the P-wave pick (if present) must be stored on the vertical component

Value

A list containing dataframes for each of the three components with signal and header information

Examples

```
# Read in 2002.054.09.47.lhor2
pathto <- "~/mfast/sample_data/raw_data"
write_sample(pathto)
event <- "2002.054.09.47.lhor2"
triplet <- readtriplet(event,path=pathto)</pre>
```

14 rms

readtvel

Read .tvel

Description

Reads a .tvel file and saves it in an RSEIS compatible format

Usage

```
readtvel(name)
```

Arguments

name

Name and path of .tvel file

Value

RSEIS compatible dataframe containing the velocity model

Examples

```
path <- "~/mfast/velocity/ak135_taupo.tvel"
model <- readtvel(path)
write_sample("~/mfast/sample_data/raw_data")
do_station_simple(path="~/mfast/sample_data/raw_data",tvel=model)</pre>
```

rms

Root mean square

Description

Simple routine to determine root mean square value of a signal

Usage

rms(x)

Arguments

Х

Vector signal

Value

RMS value

run_mfast 15

run_mfast

Run splitting measurement

Description

Runs shearwave splitting measurements on a set of filtered SAC files

Usage

```
run_mfast(path, name, filtlist)
```

Arguments

path Path to folder name Name of event

filtlist A dataframe of the best filters to be used (output of writesac_filt)

Examples

```
# Run shear wave splitting measurements on event 2002.054.09.47.lhor2
pathto <- "~/mfast/sample_data/raw_data"
write_sample(pathto)
event <- "2002.054.09.47.lhor2"
triplet <- readtriplet(event,path=pathto)
bestfilt <- filter_spread(triplet)
maxfreq <- createini(pathto,triplet,bestfilt,event)
f <- writesac_filt(pathto,triplet,event,bestfilt)
run_mfast(pathto,event,f)</pre>
```

snr

S-wave SNR

Description

Determine the signal to noise ratio around the S-wave pick (workhorse of filter_spread)

Usage

```
snr(E, N, s, p = -12345, dt, t_win_snr = 3, t_err = 0.05, b = 0, type = "normal")
```

16 writesac_filt

Arguments

Е	Vector signal of the east component
N	Vector signal of the north component
S	S-wave pick time
р	P-wave pick time
dt	Sample interval
t_win_snr	Window for SNR (s)
t_err	Modification to t_win_snr to account for error in S-pick (s)
type	If type is set to "verylocal" then the P-wave pick (if present) is used to set t_win_snr

Value

Signal to noise ratio around the S-wave pick

writesac_filt	Write filtered SAC files	

Description

Writes out filtered waveforms ready to have shear wave splitting measured

Usage

```
writesac_filt(path, trip, name, filtlist, number = 3, E = ".e", N = ".n", Z = ".z")
```

path	Path to folder
trip	Event triplet (output of readtriplet)
name	Name of the event
filtlist	Dataframe of the best filters (output of filter_spread)
number	Number of best filters to use
Е	Suffix of the east component
N	Suffix of the north component
Z	Suffix of the vertical component #return A dataframe of the filters that have been written

writesac_filtsmp 17

Examples

```
# Write out three best filters for event 2002.054.09.47.lhor2
pathto <- "~/mfast/sample_data/raw_data"
event <- "2002.054.09.47.lhor2"
write_sample(pathto)
triplet <- readtriplet(event)
bestfilt <- filter_spread(triplet)
f <- writesac_filt(pathto,triplet,event,bestfilt)</pre>
```

writesac_filtsmp

Simple write

Description

Write out an event with a chosen filter

Usage

```
writesac_filtsmp(path, trip, name, low, high, E = ".e", N = ".n",
    Z = ".z", n = 1)
```

path	Path to folder
trip	Event triplet (output of readtriplet)
name	Name of the event
low	Low frequency cut-off
high	High frequency cut-off
Е	Suffix of the east component
N	Suffix of the north component
Z	Suffix of the vertical component
n	Number for suffix .fbn (e.g .fb2)

18 write_sample

write_sample

Sample data

Description

Writes out MFAST sample data

Usage

```
write_sample(path, type = "normal")
```

Arguments

path Path to folder

type "normal" or "verylocal" sample data

Examples

```
# Write out MFAST sample events
write_sample("~/mfast/sample_data/raw_data")

# Write out MFAST verylocal sample events
write_sample("~/mfast/sample_data/raw_data",type="verylocal")
```

Index

```
*Topic datasets
    ak135_alp, 2
    ak135_taupo, 2
ak135_alp, 2
ak135_taupo, 2
anginc, 3
checkcomp, 3
checkspick, 4
createini, 4
cut_simple, 5
{\tt do\_all\_complex}, {\tt 6}
{\tt do\_all\_simple, 7}
do_station_complex, 8
do_station_simple, 9
filter_spread, 10
grade, 11
logfiles, 11
mean.weighted, 12
readtriplet, 13
readtvel, 14
rms, 14
run_mfast, 15
snr, 15
write_sample, 18
writesac_filt, 16
writesac_filtsmp, 17
```