Abyan Ardiatama

24060120140161

Praktikum 4 ML

Hierarchial Clustering

```
import numpy as np
import pandas as pd
from scipy import ndimage
from scipy.cluster import hierarchy
from scipy.spatial import distance_matrix
from matplotlib import pyplot as plt
from sklearn import manifold,datasets
from sklearn.cluster import AgglomerativeClustering
from sklearn.datasets import make_blobs
%matplotlib inline
df = pd.read_csv('cars_clus.csv')
```

print(df.head(10))

	manufa	ict	model	sa	les	resa	le	typ	e	pric	е	engine_s	horsepow	wheelbas	\
0	Acu	ıra In	tegra	16.	919	16.	36		0	21.	5	1.8	140	101.2	
1	Acu	ıra	TL	39.	384	19.8	375		0	28.	4	3.2	225	108.1	
2	Acu	ıra	CL	14.	114	18.2	25		0	\$null	\$	3.2	225	106.9	
3	Acu	ıra	RL	8.	588	29.7	25		0	4	2	3.5	210	114.6	
4	Au	ıdi	A4	20.	397	22.2	255		0	23.9	9	1.8	150	102.6	
5	Au	ıdi	A6	18	.78	23.5	55		0	33.9	5	2.8	200	108.7	
6	Au	ıdi	A8	1	38		39		0	6	2	4.2	310	113	
7	В	BMW	323i	19.	747	\$nul	.1\$		0	26.9	9	2.5	170	107.3	
8	BMW		328i	9.	231	28.675			0	33.	4	2.8	193	107.3	
9	В	BMW	528i	528i 17 . 527		36.125			0	38.	9	2.8	193	111.4	
		length	curb_	wgt	fuel				ln	sales	р	partition			
0	67.3	172.4	2.	639		13.2		28		2.828		0			
1	70.3	192.9		517		17.2		25		3.673		0			
2	70.6	192		. 47		17.2		26		2.647		0			
3	71.4	196.6	3	.85		18		22		2.15		0			
4	68.2 178 2.9		998	998 1			27		3.015		0				
5	76.1 192		3.	3.561		18.5		22		2.933		0			
6	74	198.2	3.	902		23.7		21		0.322		0			
7	68.4	176	3.	179		16.6	26	5.1		2.983		0			
8	68.5	176	3.	197		16.6		24		2.223		0			
9	70.9	188	3.	472		18.5	24	1.8		2.864		0			

```
print("Shape of dataset:", df.shape)
# Check if there is any missing value
df.isnull().sum()
```

```
Shape of dataset: (159, 16)
manufact
model
             0
sales
             0
resale
type
price
engine_s
horsepow
wheelbas
             0
width
             0
length
curb_wgt
fuel_cap
mpg
lnsales
partition
             0
dtype: int64
```

```
# Data Cleaning, convert to numerical, if can't drop the data
df[['sales','resale','type','price','engine_s','horsepow','wheelbas','width','length','curb_wgt','fuel_cap','mpg','lr
df = df.dropna()
df = df.reset_index(drop=True)
print("Shape of dataset after cleaning: ", df.shape)
# Check if there is any missing value
df.isnull().sum()
    Shape of dataset after cleaning: (117, 16)
    manufact
                  0
    model
                  0
    sales
                  0
    resale
                  0
    type
    price
    engine s
                  0
    horsepow
    wheelbas
                  0
    width
    lenath
                  0
    curb_wgt
    fuel_cap
                  0
    mpg
    lnsales
                  0
```

partition
dtype: int64

▼ Tugas 1

Agglomerative Clustering Single Linkage dan Average Linkage Dataset cars_clustering

X1,y1=make_blobs(n_samples=50,centers=[[4,4],[-2,-1],[1,1],[10,4]], cluster_std=0.9) plt.scatter(X1[:,0],X1[:,1], marker='o')

<matplotlib.collections.PathCollection at 0x7f13a670d5d0>


```
agglom=AgglomerativeClustering(n clusters=4,linkage='single')
agglom.fit(X1,v1)
    AgglomerativeClustering(linkage='single', n clusters=4)
#Create Figure of size 6 inches and 4 inches
plt.figure(figsize=(6,4))
#These 2 lines of code are used to scale the data points down
#or else the data points will be scattered very far apart
#Create amnimum and maximum range of X1
x min,x max=np.min(X1,axis=0), np.max(X1,axis=0)
#get the average distance for X1
X1 = (X1-x min) / (x max -x min)
#This loop displays all of the datapoints
for i in range(X1.shape[0]):
  #Replace the data points with their respective cluster value
  #(ex.0) and is color coded with a colormap (plt.cm.spectral)
  plt.text(X1[i, 0], X1[i, 1], str(y1[i]),
           color=plt.cm.nipy spectral(agglom.labels [i] / 10.),
           fontdict={'weight':'bold','size':9})
#Remove the x ticks, y ticks, x and y axis
plt.xticks([])
plt.yticks([])
#plt.axis('off')
#Display the plot of the original data before clustering
```

```
plt.scatter(X1[:, 0], X1[:, 1], marker='.')
#Display the plot
plt.show()
```



```
#Plotting the dendorgram
dist_matrix = distance_matrix(X1,X1)
print(dist_matrix)
```

dendro · = · hierarchy.dendrogram(Z)

after removing the cwd from sys.path.

dendro = hierarchy.dendrogram(X)

dendro = hierarchy.dendrogram(Y)

▼ Tugas 2

Agglomerative Clustering menggunakan scipy dan scikit-learn Single Linkage dan Average Linkage Dataset cars_clustering

```
# Feature selection
featureset = df[['engine_s', 'horsepow', 'wheelbas', 'width', 'length', 'curb_wgt', 'fuel_cap', 'mpg']]
featureset.head()
#Normalization
from sklearn.preprocessing import MinMaxScaler
x = featureset.values #return numpv array
min max scaler = MinMaxScaler()
feature mtx = min max scaler.fit transform(x)
feature mtx [0:5]
    array([[0.11428571, 0.21518987, 0.18655098, 0.28143713, 0.30625832,
            0.2310559 , 0.13364055, 0.43333333],
            [0.31428571. 0.43037975. 0.3362256 . 0.46107784. 0.5792277 .
            0.50372671, 0.31797235, 0.33333333],
            [0.35714286, 0.39240506, 0.47722343, 0.52694611, 0.62849534,
            0.60714286, 0.35483871, 0.23333333],
            [0.11428571, 0.24050633, 0.21691974, 0.33532934, 0.38082557,
            0.34254658, 0.28110599, 0.4
            [0.25714286, 0.36708861, 0.34924078, 0.80838323, 0.56724368,
            0.5173913 . 0.37788018. 0.2333333311)
```

```
#Clustering with scipy
import scipy
leng = feature mtx.shape[0]
D = scipy.zeros([leng,leng])
for i in range(leng):
  for i in range(leng):
    D[i,j] = scipy.spatial.distance.euclidean(feature_mtx[i],feature_mtx[j])
    /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:4: DeprecationWarning: scipy.zeros is deprecated an
      after removing the cwd from sys.path.
#Single Linkage, Average Linkage, and Complete Linkage
import pylab
import scipy.cluster.hierarchy
Z = hierarchy.linkage(D, 'complete')
X = hierarchy.linkage(D, 'single')
Y = hierarchy.linkage(D, 'average')
    /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:4: ClusterWarning: scipy.cluster: The symmetric nor
      after removing the cwd from sys.path.
    /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:5: ClusterWarning: scipy.cluster: The symmetric nor
    /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:6: ClusterWarning: scipy.cluster: The symmetric nor
```

```
from scipy.cluster.hierarchy import fcluster
max d = 3
clusters = fcluster(Z,max d,criterion='distance')
clusters
    array([ 1, 5, 5, 6, 5, 4, 6, 5, 5, 5, 5, 5, 4, 4, 5, 1,
              5, 5, 4, 2, 11, 6, 6, 5, 6, 5, 1, 6, 6, 10,
              3, 5, 1, 7, 6, 5, 3, 5, 3, 8, 7, 9, 2, 6,
              2, 1, 6, 5, 2, 7, 5, 5, 5, 4, 4, 3, 2, 6, 6,
           7, 4, 7, 6, 6, 5, 3, 5, 5, 6, 5, 4, 4, 1, 6, 5, 5,
           5, 6, 4, 5, 4, 1, 6, 5, 6, 6, 5, 5, 5, 7, 7, 7, 2,
           2, 1, 2, 6, 5, 1, 1, 1, 7, 8, 1, 1, 6, 1,
          dtvpe=int32)
from scipy.cluster.hierarchy import fcluster
k=5
clusters = fcluster(Z, k, criterion='maxclust')
clusters
    array([1, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1, 3, 3, 3, 3, 2, 1,
          5, 3, 3, 3, 3, 3, 1, 3, 3, 4, 4, 4, 4, 2, 3, 1, 3, 3, 3, 2, 3, 2,
          4, 3, 4, 1, 3, 3, 3, 2, 1, 1, 3, 3, 1, 3, 3, 3, 3, 2, 2, 2, 1, 3,
          3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 2, 2, 1, 3, 3, 3, 3, 3, 2,
          3, 2, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1,
          3, 4, 1, 1, 3, 1, 1], dtype=int32)
#Plotting Dendrogram
fig·=·pylab.figure(figsize=(18,50))
def llf(id):
  return '[%s %s %s]' % (df['manufact'][id],df['model'][id], int(float(df['type
#Plotting Complete Linkage
```

dendro = hierarchy.dendrogram(Z, leaf_label_func=llf, leaf_rotation=0, leaf_for

#Plotting Single Linkage
fig = pylab.figure(figsize=(18,50))
dendro = hierarchy.dendrogram(X, leaf_label_func=llf, leaf_rotation=0, leaf_font_size=12, orientation='right')

#Plotting · Average · Linkage
fig · = · pylab · figure (figsize = (18,50))
dendro · = · hierarchy · dendrogram (Y, · leaf_label_func = llf, · leaf_rotation = 0, · leaf_for

→ Tugas 3

Agglomerative Cluster menggunakan scikit-learn dan scipy dengan single linkage, average linkage, dan complete linkage menggunakan dataset iris

```
# Import iris dataset
from sklearn.datasets import load_iris
iris = load_iris()

# Convert to df
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['target'] = iris.target
```

df.head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

```
#Clustering with scipy
import scipy
leng = feature mtx.shape[0]
D = scipy.zeros([leng,leng])
for i in range(leng):
  for i in range(leng):
    D[i,j] = scipy.spatial.distance.euclidean(feature mtx[i], feature mtx[j])
    /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:4: DeprecationWarning: scipy.zeros is deprecated an
      after removing the cwd from sys.path.
#Single Linkage, Average Linkage, and Complete Linkage
import pylab
import scipy.cluster.hierarchy
Z = hierarchy.linkage(D, 'complete')
X = hierarchy.linkage(D, 'single')
Y = hierarchy.linkage(D, 'average')
    /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:4: ClusterWarning: scipy.cluster: The symmetric nor
      after removing the cwd from sys.path.
    /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:5: ClusterWarning: scipy.cluster: The symmetric nor
    /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:6: ClusterWarning: scipy.cluster: The symmetric nor
def llf(id):
    return '[%s]' % ( iris.target_names[df['target'][id]] )
#Plotting · Complete · Linkage
fig = pylab figure(figsize = (18,50))
         bicmounts, dandwarmam/7 last label from 11f last matations A last for
```

dendro:=:nlerarcny.dendrogram(Z, 'teal_tabet_func=ttf, 'teal_rotation=0, 'teal_for

#Plotting Single Linkage
fig = pylab.figure(figsize=(18,50))
dendro = hierarchy.dendrogram(X, leaf_label_func=llf, leaf_rotation=0, leaf_font_size=12, orientation='right')


```
#Plotting Average Linkage
fig = pylab.figure(figsize=(18,50))
dendro = hierarchy.dendrogram(Y, leaf_label_func=llf, leaf_rotation=0, leaf_for
```

fuirainical

Colab paid products - Cancel contracts here

2s completed at 07:54

×