Branch-and-bound per problemi di programmazione lineare intera

Luigi De Giovanni

Dipartimento di Matematica, Università di Padova

Programmazione Lineare Intera

$$\begin{array}{ll}
\min / \max & c^T x \\
\text{s.t.} & Ax = b \\
& x \in \mathbb{Z}_+^n
\end{array}$$

Algoritmo universale per ottimizzazione combinatoria

- generare tutte le possibili soluzioni x;
- 2 verificare l'ammissibilità della soluzione $x \in X$;
- \circ valutare f(x)
- lacktriangledown scegliere la x ammissibile cui corrisponde la migliore f(x).

- Come generare lo spazio delle soluzioni (ammissibili)?
- Come esplorare efficientemente lo spazio delle soluzioni?

Generazione delle soluzioni: Branch

$$z = \operatorname{opt}\{f(x) : x \in X\} \qquad X = \bigcup_{i=1}^{n} X_i = X$$
$$z^{(k)} = \operatorname{opt}\{f(x) : x \in X_k\}$$

$$z = \text{opt } \{ z^{(k)}, k = 1, ..., n \}$$

- divide et impera (\sim top-down)
- divisione (e soluzione) ricorsiva
- albero delle soluzioni (ammissibili)
- operazione di branch

Branching: regole base

•
$$E_0 = X$$

•
$$E_i = \bigcup_{j \text{ figlio di } i} E_j$$

• preferibilmente $E_j \cap E_k = \emptyset, \ \forall \ j, k \ \text{figli di} \ i$

Esempio: branching binario

$$x_i \in \{0,1\}, i = 1..n$$

Livello 0

Livello 1

Livello 2

Livello n

Esempio: branching "naturale" per path-finding

Ad ogni passo, esplora le diverse direzioni ammesse:

- posso sfruttare parallelismo?
- esiste un criterio per scartare cammini parziali?

Esplorazione efficiente: **bound** + fathom (o prune)

Esempio:
$$\min z = 11 \, x_1 + 9 \, x_2 + 10 \, x_3 + y$$

s.t. $x_1 + x_2 + x_3 \ge 1$
...molti altri vincoli su x_i e y (non formulabili)...
 $x_i \in \{0,1\}, \quad y \ge 0$
È noto che $x_3 = 1$, $x_1 = x_2 = y = 0$ è ammissibile (con $z = 10$)

- $z = \min\{z^{(1)}, z^{(2)}\}$, e anche $z \le 10$
- $z^{(1)} \geq 9$
- $z^{(2)} \ge 11(\ge 10)$ \Longrightarrow Possiamo potare $E_2!!!$

Branch-and-bound: idea base

- Branch: costruzione dell'albero delle soluzioni (enumerazione ricorsiva)
- **Soluzione ammissibile** (incumbent solution): valore possibile, ma non dimostrabilmente ottimo
- Bound: valutazione ottimistica della funzione obiettivo per le soluzioni associate ad un nodo (sottoalbero)
- Fathom: se il bound di un nodo non è migliore dell'incumbent, il relativo sottoalbero si può potare

Enumerazione implicita dello spazio delle soluzioni

Metodo del Branch-and-Bound (B&B)

Inizializzazione: Esegui una stima ottimistica B_0 della funzione obiettivo e poni $L = \{(P_0, B_0)\}, \bar{x} = \emptyset, \bar{z} = +\infty(\min)[-\infty(\max)]$

Repeat:

Criterio di Stop: Se $L = \emptyset$, allora stop: \bar{x} è la soluzione ottima. *Selezione nodo*: Seleziona ed estrai $(P_i, B_i) \in L$ per effettuare il branch Dividi P_i in t sotto-problemi $P_i, j = 1...t$ ($\bigcup_i P_i = P_i$ Branching: For each sottoproblema i = 1..t: Bounding: Valuta una stima ottimistica B_i di P_i , ottenendo eventuali informazioni su soluzione "rilassata" x_i^R (e.g., parziale) di P_j , e/o su inammissibilità di P_i Fathoming: If P_i non è ammissibile: continue elseif B_i non è migliore di \bar{z} ammissibile: continue elseif x_i^R è ammissibile (e.g., completa): if x_i^R anche migliore di \bar{z} : aggiorna $\bar{z} \leftarrow B_i, \ \bar{x} \leftarrow x_{ii}^R$ elimina da L nodi k con L_k non migliore di \bar{z} $(x_{ii}^R \text{ è ottima per } P_i)$ continue Ricorsione:

else aggiungi (P_i, B_i) a L $(B_i \text{ è più promettente di } \bar{z})$

Esempio (dummy): scelta ottima di appalti

Una grossa azienda di costruzioni edili deve decidere la combinazione ottimale degli appalti da accettare per la costruzione degli edifici $A, B \in C$. I profitti attesi per i tre edifici sono di $3, 5 \in 7$ milioni di euro rispettivamente. L'azienda dispone di 4 ruspe speciali e gli edifici richiedono risp. $3, 2 \in 3$ ruspe. È possibile inoltre affittare fino a due altre ruspe speciali per la durata dei lavori, al costo di un milione di euro a ruspa.

Decisioni:

- accettare appalto $i, i \in \{A, B, C\}$. Possibili decisioni: sì/no.
- numero di ruspe da affittare. Possibili decisioni: 0, 1 o 2.

Possibili combinazioni: $2 \times 2 \times 2 \times 3 = 24$

Branch: scegliere una decisione (nell'ordine A-B-C-num.ruspe) e creare un sottoproblema per ogni valore

Bound: somma profitti di tutti gli appalti possibili meno costo ruspe "fissate" (valutazione imprecisa ma ottimistica e veloce, senza ragionamenti su ruspe "necessarie")

Esempio: albero di branch-and-bound

A: 3 M\$, 3 ruspe

B: 5 M\$, 2 ruspe

C: 7 M\$, 3 ruspe

*Esempio: regola alternativa per il calcolo dei bound

Bound: sommare i profitti di tutti gli appalti possibili *e valutare una stima* per difetto *R* delle ruspe necessarie (sulla base degli appalti fissati)

(A: 3 M\$, 3 ruspe B: 5 M\$, 2 ruspe C: 7 M\$, 3 ruspe)

(in blu: UB) Lo la stima di R porte non solo de un U.B., ma anche e une solutione ammissimile.

Progettazione

- Regole di branching: strategia per costituire sottoproblemi sempre più semplici (al limite una soluzione!)
 - $-E_i: \cup_i E_i = E \text{ (must!)} [e E_i \cap E_i = \emptyset \text{ opzionale}]$
- Bound: lower bound (min, LB) o upper bound (max, UB).
 - Valutazione **ottimistica**...: $LB \le f(E_i)$ $UB \ge f(E_i)$
 - ...ma non troppo! efficienza computazionale .vs. qualità bound*
- Regole di fathoming: evito di esplorare nodo se
 - [N.M.] Assenza di soluzione migliorante (B_i non migliora $f(\bar{x})$)
 - [S.A.] Valutazione ottimistica è anche di soluzione ammissibile
 - **[N.A.]** Sottoproblema non ammissibile ($E_i = \emptyset$)
- Strategie di esplorazione: Depth First, Best Bound First, Mista
- Valutazione di soluzioni ammissibili: opzionale!
 - sforzo computazionale .vs. possibilità di potare nodi
- Criteri di arresto: tutti i nodi fathomed (metodo esatto). Oppure...

B&B per PLI

Problema di PLI(M) (fissiamo le idee: max)

$$z_{I} = \max c^{T} x$$

$$Ax \leq b$$

$$x \geq 0$$

$$x_{i} \in \mathbb{Z}, \qquad i \in I.$$

$$(1)$$

Rilassamento continuo

$$z_{L} = \max c^{T} x$$

$$Ax \le b$$

$$x > 0$$
(2)

$$z_L \ge z_I$$
 z_L è un UB!

Problema P_0

Rilassamento lineare: $x_1 = 3.75$, $x_2 = 1.75$, con valore $z_L^0 = 24.06$

Branch da P_0 su variabile frazionaria $x_1 = 3.75$

- Non perdo soluzioni intere: $E_1 \cup E_2 = E_0$, $z_I = \max\{z_I^1, z_I^2\}$
- z_I^0 esclusa!

Problema P_1

Rilassamento lineare: $x_1 = 3$, $x_2 = 2$, con valore $z_1^1 = 23.5$

Soluzione intera (rilassamento ammissibile): nodo potato per **S.A.** aggiornamento incumbent, $\bar{z}=23.5$

Problema P₂

Rilassamento lineare: $x_1 = 4$, $x_2 = 0.83$, con valore $z_L^2 = 23.54$

Branch da P_2 su variabile frazionaria $x_2 = 0.83$

$$E_3 \cup E_4 = E_2$$

Problema P_3

Rilassamento lineare: $x_1 = 4.5$, $x_2 = 0$, con valore $z_L^3 = 22.5$

 $z_L^3 \leq \bar{z}$: nodo potato per **N.M.**

Problema P_4

Rilassamento lineare: non ammissibile.

Anche (P_4) non è ammissibile: nodo potato per **N.A.**

Tutti i nodi fathomed: $\bar{x} = (2,3)$ con $\bar{z} = 23.5$ ottima!

Albero di branch-and-bound

B&B per PLI: scelte progettuali

- Bound con rilassamento continuo
 - formulazioni alternative per bound più stringenti*
- Branch binario su una variabile frazionaria
 - come scelgo la variabile frazionaria? (e.g. "più" frazionaria, "più" intera, diving etc.)
 - possibile branching t-ario se pochi valori alternativi
- Fathoming standard
- Strategie di esplorazione: mista, diving etc.
- Soluzione ammissibile
 - euristiche (o meta-euristiche) ad-hoc prima del branch-and-bound
 - rounding heuristic sulla soluzione frazionaria ad ogni nodo (o sotto particolari condizioni)
 - etc.
- Arresto standard + max time, optimality gap etc.

*Esempio: bound e formulazioni alternative per PLIM

- F₂ è migliore di F₁: fornisce bound più stringenti (più vicini all'ottimo): UB più bassi (per problemi di max) o LB più alti (per problemi di min)
- F_3 è la formulazione ideale: permette di risolvere il problema al nodo radice (senza branching)

Esercizio

- min o max?
- nodi da chiudere?
- intervallo ottimo?
- best bound first?
- LB e UB per chiudere...

Esercizio

- min o max? valore '??'?
- intervallo ottimo?
- nodi da chiudere?
- best bound first?
- LB e UB per chiudere...