Classifications of Exact Structures and Cohen-Macaulay-finite Iwanaga-Gorenstein Algebras

Haruhisa Enomoto

Graduate School of Mathematics, Nagoya University

15 August, ICRA 2018

Outline

- Introduction
 - Auslander Correspondence for Exact Categories
- Classifications of Exact Structures
 - Exact Categories
 - Categories of Finite Type
 - Main Results
- Applications
 - (best possible) Classifications of CM-finite IG Algebras

Outline

- Introduction
 - Auslander Correspondence for Exact Categories
- Classifications of Exact Structures
 - Exact Categories
 - Categories of Finite Type
 - Main Results
- Applications
 - (best possible) Classifications of CM-finite IG Algebras

Categories of Finite Type = Algebras

k: a field.

Proposition

There exists a bijection between:

- (1) Hom-finite k-categories \mathcal{E} of finite type (: \Leftrightarrow categories with finitely many indecomposables).
- (2) Finite-dimensional k-algebras Γ (we call Γ an Auslander algebra of \mathcal{E}).

Idea

- (1) Categorical properties of ${\mathcal E}$ and
- (2) Homological behavior of its Auslander algebra Γ

should be related!

Categories of Finite Type = Algebras

k: a field.

Proposition

There exists a bijection between:

- (1) Hom-finite k-categories \mathcal{E} of finite type (: \Leftrightarrow categories with finitely many indecomposables).
- (2) Finite-dimensional k-algebras Γ (we call Γ an Auslander algebra of \mathcal{E}).

Theorem (Auslander correspondence)

TFAE for the above \mathcal{E} and Γ .

- (1) \mathcal{E} is abelian. (Categorical!)
- (2) gl.dim $\Gamma \leq 2 \leq \operatorname{dom.dim} \Gamma$ (Homological!)

What Corresponds to Exact Structures?

Our Aim

is to Classify Exact Structures on a given category using its Auslander algebra.

Outline

- Introduction
 - Auslander Correspondence for Exact Categories
- Classifications of Exact Structures
 - Exact Categories
 - Categories of Finite Type
 - Main Results
- 3 Applications
 - (best possible) Classifications of CM-finite IG Algebras

Exact Category

$$0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$$
 is a kernel-cokernel pair in \mathcal{E} : $\Leftrightarrow f = \ker g$ and $g = \operatorname{coker} f$.

Definition (Quillen 1973)

An exact category consists of a pair (\mathcal{E}, F) , where

- ullet is an additive category, and
- F is a class of ker-coker pairs in \mathcal{E} (called F-exact) satisfying some conditions.

Exact Category

$$0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$$
 is a kernel-cokernel pair in \mathcal{E} : $\Leftrightarrow f = \ker g$ and $g = \operatorname{coker} f$.

Definition (Quillen 1973)

An exact category consists of a pair (\mathcal{E}, F) , where

- ullet is an additive category, and
- F is a class of ker-coker pairs in \mathcal{E} (called F-exact) satisfying some conditions.

Example

Extension-closed subcategory of abelian categories (e.g. torsion class, CM rep-theory,...)

Auslander Algebras of Categories of Finite Type

From now on, fix a field k and

- Algebra = finite-dimensional *k*-algebra.
- Category = Krull-Schmidt Hom-finite k-category.
- \mathcal{E} : a category of finite type.

Definition

An Auslander algebra Γ of \mathcal{E} is defined by $\Gamma := \operatorname{End}_{\mathcal{E}}(G)$, where G is the additive generator of \mathcal{E} ($\mathcal{E} = \operatorname{add} G$).

Auslander Algebras of Categories of Finite Type

From now on, fix a field k and

- Algebra = finite-dimensional k-algebra.
- Category = Krull-Schmidt Hom-finite k-category.
- E: a category of finite type.

Definition

An Auslander algebra Γ of \mathcal{E} is defined by $\Gamma := \operatorname{End}_{\mathcal{E}}(G)$, where G is the additive generator of \mathcal{E} ($\mathcal{E} = \operatorname{add} G$).

Projectivization

 $\Gamma := \operatorname{End}_{\mathcal{E}}(G)$: the Auslander algebra of \mathcal{E} .

Proposition (Auslander's "Projectivization")

We have (anti-)equivalences

$$P_{(-)} := \mathcal{E}(G, -) : \mathcal{E} \xrightarrow{\sim} \operatorname{proj} \Gamma,$$

$$P^{(-)} := \mathcal{E}(-,G) : \mathcal{E} \xrightarrow{\sim} \operatorname{proj} \Gamma^{\operatorname{op}},$$

which satisfies

$$\operatorname{Hom}_{\Gamma}(P_{(-)}, \Gamma) = P^{(-)},$$

$$\operatorname{Hom}_{\Gamma}(P^{(-)}, \Gamma) = P_{(-)}.$$

Projectivization

 $\Gamma := \operatorname{End}_{\mathcal{E}}(G)$: the Auslander algebra of \mathcal{E} .

Proposition (Auslander's "Projectivization")

We have (anti-)equivalences, something like Yoneda emb.:

$$P_{(-)} := \mathcal{E}(G,-) : \mathcal{E} \xrightarrow{\sim} \operatorname{proj} \Gamma, \quad P_X \quad \text{``} = \text{'`} \quad \mathcal{E}(-,X)$$

$$P^{(-)} := \mathcal{E}(-,G) : \mathcal{E} \xrightarrow{\sim} \operatorname{proj} \Gamma^{\operatorname{op}}, \quad P^X \quad \text{``} = \text{'`} \quad \mathcal{E}(X,-)$$

which satisfies

$$\operatorname{Hom}_{\Gamma}(P_{(-)}, \Gamma) = P^{(-)},$$

$$\operatorname{Hom}_{\Gamma}(P^{(-)}, \Gamma) = P_{(-)}.$$

Ker-Coker pair in \mathcal{E} in terms of Γ -module

 \mathcal{E} : cat of fin. type, Γ : its Auslander algebra.

Proposition

$$0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$$
 is a ker-coker pair in $\mathcal E$

 \Leftrightarrow

The following is exact:

$$0 \to \mathcal{E}(-,X) \xrightarrow{f \circ} \mathcal{E}(-,Y) \xrightarrow{g \circ} \mathcal{E}(-,Z).$$

The following is exact:

$$0 \to \mathcal{E}(Z, -) \xrightarrow{\circ g} \mathcal{E}(Y, -) \xrightarrow{\circ f} \mathcal{E}(X, -).$$

Ker-Coker pair in \mathcal{E} in terms of Γ -module

 $\mathcal{E}\colon$ cat of fin. type, $\Gamma\colon$ its Auslander algebra.

Proposition

$$0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$$
 is a ker-coker pair in $\mathcal E$

 \Leftrightarrow

• The following is exact in $mod \Gamma$

$$0 \to P_X \xrightarrow{f \circ} P_Y \xrightarrow{g \circ} P_Z$$

2 The following is exact in $\operatorname{mod} \Gamma^{\operatorname{op}}$

$$0 \to P^Z \xrightarrow{\circ g} P^Y \xrightarrow{\circ f} P^X$$

Ker-Coker pair in \mathcal{E} in terms of Γ -module

 \mathcal{E} : cat of fin. type, Γ : its Auslander algebra.

Proposition

 $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$ is a ker-coker pair in $\mathcal E$

$$\Leftrightarrow$$
 for $M := \operatorname{Coker}(P_Y \to P_Z)$ in $\operatorname{\mathsf{mod}} \Gamma$,

• The following is exact in mod $\Gamma \leadsto \operatorname{pd} M_{\Gamma} \leq 2$

$$0 \to P_X \xrightarrow{f \circ} P_Y \xrightarrow{g \circ} P_Z \to M \to 0.$$

2 The following is exact in mod $\Gamma^{op} \leadsto \operatorname{Ext}^{0,1}_{\Gamma}(M,\Gamma) = 0$.

$$0 \to P^Z \xrightarrow{\circ g} P^Y \xrightarrow{\circ f} P^X \to \operatorname{Ext}^2_\Gamma(M,\Gamma) \to 0.$$

Definition

The subcat $C_2(\Gamma) \subset \operatorname{mod} \Gamma$ consists of Γ -modules M satisfying

Definition

The subcat $C_2(\Gamma) \subset \operatorname{mod} \Gamma$ consists of Γ -modules M satisfying

- lacktriangledown pd $M_{\Gamma} \leq 2$.

$$0 \to X \to Y \to Z \to 0 \longmapsto M := \operatorname{Coker}(P_Y \to P_Z)$$

Ker-cok pair in $\mathcal{E} \longleftrightarrow \operatorname{Obj in } \mathcal{C}_2(\Gamma)$

Definition

The subcat $C_2(\Gamma) \subset \operatorname{mod} \Gamma$ consists of Γ -modules M satisfying

$$0 \to X \to Y \to Z \to 0 \longmapsto M := \operatorname{Coker}(P_Y \to P_Z)$$

$$\text{Ker-cok pair in } \mathcal{E} \longleftrightarrow \operatorname{Obj in } \mathcal{C}_2(\Gamma)$$

Class of ker-cok pairs \longleftrightarrow Subcat of $\mathcal{C}_2(\Gamma)$

Definition

The subcat $C_2(\Gamma) \subset \operatorname{mod} \Gamma$ consists of Γ -modules M satisfying

- **2** $\operatorname{Ext}_{\Gamma}^{0,1}(M,\Gamma) = 0.$

Exact str. on \mathcal{E}

$$0 \to X \to Y \to Z \to 0 \longmapsto M := \operatorname{Coker}(P_Y \to P_Z)$$
 Ker-cok pair in \mathcal{E} \longleftrightarrow Obj in $\mathcal{C}_2(\Gamma)$ Class of ker-cok pairs \longleftrightarrow Subcat of $\mathcal{C}_2(\Gamma)$

Definition

The subcat $C_2(\Gamma) \subset \operatorname{mod} \Gamma$ consists of Γ -modules M satisfying

- lacktriangledown pd $M_{\Gamma} \leq 2$.
- **2** $\operatorname{Ext}_{\Gamma}^{0,1}(M,\Gamma) = 0.$

$$0 \to X \to Y \to Z \to 0 \longmapsto M := \operatorname{Coker}(P_Y \to P_Z)$$

Ker-cok pair in
$$\mathcal{E}$$
 \longleftrightarrow Obj in $\mathcal{C}_2(\Gamma)$

Class of ker-cok pairs
$$\longleftrightarrow$$
 Subcat of $\mathcal{C}_2(\Gamma)$

Exact str. on $\mathcal{E} \longleftrightarrow$ modules supported at 2-regular simples

2-Regular Condition

Definition

A simple Γ -module S is called 2-regular : \Leftrightarrow

- $lack S\in \mathcal C_2(\Gamma),$ that is, $\operatorname{pd} S_\Gamma=2$ and $\operatorname{Ext}^{0,1}_\Gamma(S,\Gamma)=0.$

2-Regular Condition

Definition

A simple Γ -module S is called 2-regular : \Leftrightarrow

- \bullet $S \in \mathcal{C}_2(\Gamma)$, that is, pd $S_{\Gamma} = 2$ and $\operatorname{Ext}^{0,1}_{\Gamma}(S,\Gamma) = 0$.

2-regular simple Γ -mod correspond to AR ker-coker pairs in \mathcal{E} :

$$0 \to X \to Y \to Z \to 0: \\ \text{AR ker-cok pair in } \mathcal{E} \longleftrightarrow 0 \to P_X \to P_Y \to P_Z \to S \to 0 \\ \text{2-reg. simple } \Gamma\text{-mod } S$$

AR Quivers and Main Result

 \mathcal{E} : cat. of fin. type, Γ : its Auslander algebra.

Definition

The AR quiver $Q(\mathcal{E})$ of \mathcal{E} is the translation quiver defined by:

- Quiver = the usual quiver of \mathcal{E} (or Γ)
- $X \leftarrow Z$ if \exists an AR ker-cok pair $0 \to X \to Y \to Z \to 0$ in \mathcal{E} .

AR Quivers and Main Result

 \mathcal{E} : cat. of fin. type, Γ : its Auslander algebra.

Definition

The AR quiver $Q(\mathcal{E})$ of \mathcal{E} is the translation quiver defined by:

- Quiver = the usual quiver of \mathcal{E} (or Γ)
- $X \leftarrow Z$ if \exists an AR ker-cok pair $0 \to X \to Y \to Z \to 0$ in \mathcal{E} .

Theorem [E]

There exists a bijection between the following classes.

- Exact structures F on \mathcal{E} .
- **2** Sets S of 2-regular simple Γ -modules.
- **3** Sets \mathbb{A} of dotted arrows in $Q(\mathcal{E})$.

Outline

- Introduction
 - Auslander Correspondence for Exact Categories
- Classifications of Exact Structures
 - Exact Categories
 - Categories of Finite Type
 - Main Results
- Applications
 - (best possible) Classifications of CM-finite IG Algebras

Auslander Correspondence for CM-fin IG Alg?

Definition

- Λ is Iwanaga-Gorenstein if id Λ_{Λ} , id $\Lambda < \infty$.
- $X \in \text{mod } \Lambda$ is Cohen-Macaulay if $\operatorname{Ext}_{\Lambda}^{>0}(X, \Lambda) = 0$.
- Λ : CM-finite if CM Λ is of fin. type.

Auslander Correspondence for CM-fin IG Alg?

Definition

- Λ is Iwanaga-Gorenstein if $id \Lambda_{\Lambda}$, $id_{\Lambda} \Lambda < \infty$.
- $X \in \text{mod } \Lambda$ is Cohen-Macaulay if $\text{Ext}_{\Lambda}^{>0}(X, \Lambda) = 0$.
- CM Λ : the cat. of CM Λ -modules. \rightsquigarrow an exact cat!
- Λ : CM-finite if CM Λ is of fin. type.

$$\begin{array}{c} \text{CM-fin algebras} \\ & \stackrel{CM}{\longrightarrow} \\ \text{Cats of fin-type} \end{array} \begin{array}{c} \xrightarrow{1-1} \\ \text{Algebras} \end{array}$$

Auslander Correspondence for CM-fin IG Alg?

Definition

- Λ is Iwanaga-Gorenstein if $id \Lambda_{\Lambda}$, $id_{\Lambda} \Lambda < \infty$.
- $X \in \text{mod } \Lambda$ is Cohen-Macaulay if $\operatorname{Ext}_{\Lambda}^{>0}(X, \Lambda) = 0$.
- CM Λ : the cat. of CM Λ -modules. \rightsquigarrow an exact cat!
- Λ : CM-finite if CM Λ is of fin. type.

Important point

We CANNOT recover Λ from its CM category,

∄ Auslander Correspondence for CM-fin IG Alg?

Definition

- Λ is Iwanaga-Gorenstein if $id \Lambda_{\Lambda}$, $id_{\Lambda} \Lambda < \infty$.
- $X \in \text{mod } \Lambda$ is Cohen-Macaulay if $\operatorname{Ext}_{\Lambda}^{>0}(X, \Lambda) = 0$.
- CM Λ : the cat. of CM Λ -modules. \rightsquigarrow an exact cat!
- Λ : CM-finite if CM Λ is of fin. type.

$$\begin{array}{c} \text{CM-fin algebras} \\ & & \\ &$$

Important point

We CANNOT recover Λ from its CM category, but CAN if its exact str. is given!

Characterizing CM categories of IG algebras

Characterizing CM categories of IG algebras

$$\left\{ \begin{array}{l} \text{CM-finite} \\ \text{IG-alg. } \Lambda \end{array} \right\} \xrightarrow{\text{CM}} \left\{ \begin{array}{l} \text{Exact cats } \mathcal{E} \\ \text{of finite type} \end{array} \right\} \xrightarrow{\text{1-1}} \left\{ \begin{array}{l} \text{Alg. } \Gamma + \text{sets of} \\ \text{dotted arrows} \end{array} \right\}$$

 \mathcal{E} : exact cat. of fin. type, Γ : its Auslander algebra.

Proposition (Kalck-Iyama-Wemyss-Yan,E)

 $\mathcal{E} \simeq \mathsf{CM}\,\Lambda$ as exact cats for some IG algebra $\Lambda \Leftrightarrow$

- Projective objects in \mathcal{E} = Injective objects in \mathcal{E} (equivalently, \mathcal{E} is Frobenius).

"Classification" of CM-finite IG alg.

Corollary

There exists a bijection between the following.

- CM-finite Iwanaga-Gorenstein algebras Λ.
- ② Pairs (Γ, \mathbb{A}) , where Γ is an algebra with $\operatorname{gl.dim} \Gamma < \infty$ and \mathbb{A} is a set of dotted arrows of $Q(\Gamma)$ which is union of stable τ -orbits

"Classification" of CM-finite IG alg.

Corollary

There exists a bijection between the following.

- CM-finite Iwanaga-Gorenstein algebras Λ.
- 2 Pairs (Γ, \mathbb{A}) , where Γ is an algebra with $\operatorname{gl.dim} \Gamma < \infty$ and \mathbb{A} is a set of dotted arrows of $Q(\Gamma)$ which is union of stable τ -orbits

Remark

- Γ parametrizes possible additive str. of CM category.
- A parametrizes possible Frobenius exact str. on that cat., or equivalently, possible IG alg. whose CM cats are that cat.

Example

 $\Gamma:=kQ/({\rm commutativity}\ {\rm and}\ {\rm zero}\ {\rm relation})$ (two vertical arrows are identified).

Example

 $\Gamma := kQ/(\text{commutativity and zero relation})$ (two vertical arrows are identified).

- \Rightarrow the above is $Q(\Gamma)$. Thus \exists 2 stable τ -orbits.
- \rightsquigarrow We obtain $2^2 = 4$ CM-fin IG algebras Λ .

 $\Gamma := kQ/(\text{commutativity and zero relation})$ (two vertical arrows are identified).

- \Rightarrow the above is $Q(\Gamma)$. Thus \exists 2 stable τ -orbits.
- \rightsquigarrow We obtain $2^2 = 4$ CM-fin IG algebras Λ .

A: Orange Dotted Arrows.

 $\Gamma := kQ/(\text{commutativity and zero relation})$ (two vertical arrows are identified).

- \Rightarrow the above is $Q(\Gamma)$. Thus \exists 2 stable τ -orbits.
- \rightsquigarrow We obtain $2^2 = 4$ CM-fin IG algebras Λ .

A: Orange Dotted Arrows.

 $\Gamma := kQ/(\text{commutativity and zero relation})$ (two vertical arrows are identified).

- \Rightarrow the above is $Q(\Gamma)$. Thus \exists 2 stable τ -orbits.
- \rightsquigarrow We obtain $2^2 = 4$ CM-fin IG algebras Λ .

A: Orange Dotted Arrows.

 $\Gamma := kQ/(\text{commutativity and zero relation})$ (two vertical arrows are identified).

- \Rightarrow the above is $Q(\Gamma)$. Thus \exists 2 stable τ -orbits.
- \rightsquigarrow We obtain $2^2 = 4$ CM-fin IG algebras Λ .

A: Orange Dotted Arrows.

NON-Example

If A: Orange, then in the corresponding exact str,

- Red: proj. objects,
- Blue: injective objects.
- \rightsquigarrow Proj \neq Inj. (not Frobenius)

(This exact cat. is ${}^{\perp}U$ for some cotilting Λ -module U)

$$\mathcal{E} := \operatorname{mod} k[\bullet \leftarrow \bullet \leftarrow \bullet].$$

∃ 3 dotted arrow, hence

 $\exists \ 2^3 = 8 \ \text{exact str. on } \mathcal{E}$

$$\mathcal{E} := \operatorname{mod} k[\bullet \leftarrow \bullet \leftarrow \bullet].$$

∃ 3 dotted arrow, hence

 $\exists \ 2^3 = 8 \ \text{exact str. on } \mathcal{E}$

Orange arrows are chosen.

- Red: proj. objects,
- Blue: injective objects.

No arrows \leftrightarrow trivial exact str. of \mathcal{E} (the smallest one).

$$\mathcal{E} := \operatorname{mod} k[\bullet \leftarrow \bullet \leftarrow \bullet].$$

∃ 3 dotted arrow, hence

 $\exists~2^3=8$ exact str. on ${\cal E}$

- Red: proj. objects,
- Blue: injective objects.

$$\mathcal{E} := \operatorname{mod} k[\bullet \leftarrow \bullet \leftarrow \bullet].$$

∃ 3 dotted arrow, hence

 $\exists~2^3=8$ exact str. on ${\cal E}$

- Red: proj. objects,
- Blue: injective objects.

$$\mathcal{E} := \operatorname{mod} k[\bullet \leftarrow \bullet \leftarrow \bullet].$$

∃ 3 dotted arrow, hence

 $\exists \ 2^3 = 8 \ \text{exact str. on } \mathcal{E}$

- Red: proj. objects,
- Blue: injective objects.

$$\mathcal{E} := \operatorname{mod} k[\bullet \leftarrow \bullet \leftarrow \bullet].$$

∃ 3 dotted arrow, hence

 $\exists~2^3=8$ exact str. on ${\cal E}$

- Red: proj. objects,
- Blue: injective objects.

$$\mathcal{E} := \operatorname{mod} k[\bullet \leftarrow \bullet \leftarrow \bullet].$$

∃ 3 dotted arrow, hence

 $\exists \ 2^3 = 8 \ \text{exact str. on } \mathcal{E}$

- Red: proj. objects,
- Blue: injective objects.

$$\mathcal{E} := \operatorname{mod} k[\bullet \leftarrow \bullet \leftarrow \bullet].$$

∃ 3 dotted arrow, hence

 $\exists \ 2^3 = 8 \ \text{exact str. on } \mathcal{E}$

- Red: proj. objects,
- Blue: injective objects.

$$\mathcal{E} := \operatorname{mod} k[\bullet \leftarrow \bullet \leftarrow \bullet].$$

∃ 3 dotted arrow, hence

 $\exists \ 2^3 = 8 \ \text{exact str. on } \mathcal{E}$

Orange arrows are chosen.

- Red: proj. objects,
- Blue: injective objects.

All arrows \leftrightarrow usual exact str. of \mathcal{E} (the largest one).

Thank you for your attention!