-
$$\max Z = x_1 - 2x_2$$

 $x_1 - x_2 \ge 1$
 $x_1 - 2x_2 \le 6$
 $2x_1 - x_2 \le 6$
 $x_1 \ge 0, x_2 \le 0$

Risolviamo il problema primale con l'algoritmo del simplesso $\min Z = -x_1 - 2x_2$ $x_1 + x_2 - x_3 = 1$ $x_1 + 2x_2 + x_4 = 6$ $2x_1 + x_2 + x_5 = 6$ $x_{1,2,3,4,5} \ge 0$

Sostituiamo 0, 0 ad x1,x2 per vedere se tutto funziona $-x_3 = 1 \rightarrow x_3 = -1$

$$x_4 = 6$$

$$x_5 = 6$$

Notiamo che $x_3 = -1 \rightarrow x_3 \ge 0 \rightarrow falso$

Quindi non possiamo risolverlo siccome non ci è stato spiegato

Metodo grafico

Qui noi dobbiamo tracciare delle linee

Trasformiamo $x_2 \le 0$ in $x_2 \ge 0$

$$\min -x_1 - 2x_2$$

$$x_1 + x_2 \ge 1$$

$$x_1 + 2x_2 \le 6$$

$$2x_1 + x_2 \le 6$$

Facendo così invertiamo tutti gli x2

Ora, per fare il grafico, date $x_1 = 0$ e trovate x_2

E poi $x_2 = 0$ e trovate x_1

E guardate a sinistra/destra della funzione a seconda se è > o < Ed esce questo

Noi dobbiamo far si che Z sia il più piccolo possibile Affinchè questo succeda dobbiamo sommare/sottrarre 1 a Z Z è più piccolo sommando 6

o Risolvi il duale

$$\min Y = y_1 + 6y_2 + 6y_3$$

$$y_1 + y_2 + 2y_3 \ge 1$$

$$-y_1 - 2y_2 - y_3 \le -2$$

$$y_1 \le 0$$

$$y_{2,3} \ge 0$$

Nota: nelle equazioni i segni rimangono uguali, nelle condizioni inverti

Primale (MAX)		Duale (MIN)			Primale	(MIN)	Duale (MAX)	
Vincolo di variabile	≥	≥	Vincolo funzionale		Vincolo di variabile	≥	≤	Vincolo funzionale
	free	=				free	=	
	≤	≤				≤	≥	
Vincolo funzionale	≥	\leq	Vincolo di variabile		Vincolo funzionale	≥	≥	Vincolo di variabile
	=	free				=	free	
	\leq	≥				\leq	≤	

Controlliamo se si può fare

$$y_1 = y_2 = 0$$

 $2y_3 \ge 1 \rightarrow y_3 \ge \frac{1}{2}$
 $-y_3 \le -2 \rightarrow y_3 \ge 2$

Tutti e due sono congruenti con il vincolo $y_3 \ge 0$