The Math of Types

Ryan Orendorff

June 13th, 2015

What we will talk about today

Time permitting, I would like to cover the following topics.

- ► The math of regular data types.
- ▶ What a zipper is, and why you might want one.
- Dissection and delimited continuations (as time permits).

The Math of Regular Data Types

What is an Algebra?

In the most general sense, "algebra is the study of mathematical symbols and the rules for manipulating these symbols".¹

Algebraic structures provide a way for us to "bolt on" manipulation powers onto a set of symbols.

In this talk, we will consider symbols that are both numbers and types.

Magmas

A magma is a binary function \otimes that takes two symbols and produces a third from the same set of symbols.²

²the fact it returns something from the same set makes the operation closed

A magma is a binary function \otimes that takes two symbols and produces a third from the same set of symbols.²

For example, if the symbols we are dealing with are numbers, then we can consider · to be a binary operator that performs this property.

A magma is a binary function \otimes that takes two symbols and produces a third from the same set of symbols.²

For example, if the symbols we are dealing with are numbers, then we can consider · to be a binary operator that performs this property.

On types, one operation we can do to combine two types is to create a pair, which is itself a type.

$$data(,) a b = (a, b)$$

Monoids

Monoids are similar to magmas. They need a binary operator, but it has to have an identity element such that

$$a \otimes o = o \otimes a = a$$

Monoids

Monoids are similar to magmas. They need a binary operator, but it has to have an identity element such that

$$a \otimes o = o \otimes a = a$$

Our multiplication on numbers still follows this rule if we choose 1 as the identity element.

$$a \cdot 1 = a$$

Monoids

Monoids are similar to magmas. They need a binary operator, but it has to have an identity element such that

$$a \otimes o = o \otimes a = a$$

Our multiplication on numbers still follows this rule if we choose 1 as the identity element.

$$a \cdot 1 = a$$

On types, do we have the same property? Is there a **One**?

$$(a, One) \simeq a$$

Sidenote: This up to isomorphism thing

When we talk about something "up to isomorphism" for the types, we mean that there is a way to convert between the types. Specifically, if

$$f :: A \rightarrow B ; g :: B \rightarrow A$$

then

$$f \cdot g = id; g \cdot f = id$$

Sidenote: This up to isomorphism thing

When we talk about something "up to isomorphism" for the types, we mean that there is a way to convert between the types. Specifically, if

$$f :: A \rightarrow B ; g :: B \rightarrow A$$

then

$$f \cdot g = id; g \cdot f = id$$

For example, we define

$$f(a, (b, c)) = ((a, b), c)$$

 $g((a, b), c) = (a, (b, c))$

We will use \simeq to mean "equal by isomorphism".

So what is **OneType**?

We need a value that we can always pair with some **a** that does not carry any information. What does this mean? I should be able to write these functions.

```
f :: (a, 0ne) \rightarrow a
g :: a \rightarrow (a, 0ne)
```

We need a type where there is only one way to make a value of it.

So what is **OneType**?

We need a value that we can always pair with some **a** that does not carry any information. What does this mean? I should be able to write these functions.

```
f :: (a, 0ne) \rightarrow a
g :: a \rightarrow (a, 0ne)
```

We need a type where there is only one way to make a value of it.

How about

So what is **OneType**?

We need a value that we can always pair with some **a** that does not carry any information. What does this mean? I should be able to write these functions.

```
f :: (a, 0ne) \rightarrow a
g :: a \rightarrow (a, 0ne)
```

We need a type where there is only one way to make a value of it.

How about

What we have so far

Operations	Numbers	Types
⊗ associativity ⊗ identity ⊗ identity law	1	(,) (a, (b, c)) \simeq ((a, b), c) One or () (a, One) \simeq a

We didn't talk about associativity, but monoids must have it as well.

What we have so far

Operations	Numbers	Types
⊗ associativity ⊗ identity ⊗ identity law	1	(,) (a, (b, c)) \simeq ((a, b), c) One or () (a, One) \simeq a

We didn't talk about associativity, but monoids must have it as well.

But I think we forgot something

What about addition?

We can certainly add numbers as well, with the following properties

$$a + 0 = a$$

 $a + (b + c) = (a + b) + c$

What about addition?

We can certainly add numbers as well, with the following properties

$$a + 0 = a$$

 $a + (b + c) = (a + b) + c$

Numbers form a monoid using the + operator.

Can we do sums with types?

What about addition?

We can certainly add numbers as well, with the following properties

$$a + 0 = a$$

 $a + (b + c) = (a + b) + c$

Numbers form a monoid using the + operator.

Can we do sums with types?

What about

data Either a b = Left a | Right b

Addition on Types

Let's see if Either makes sense over the associativity property.

Either A (Either B C) == Either (Either A B) C

Addition on Types

Let's see if **Either** makes sense over the associativity property.

```
Either A (Either B C) == Either (Either A B) C

f (Left a) = Left (Left a)
f (Right (Left b)) = Left (Right b)
f (Right (Right c)) = Right c

and g is defined similarly.
```

For numbers, it is o. For types, we need something that can never happen.

For numbers, it is o. For types, we need something that can never happen.

data Void — no data constructors

For numbers, it is o. For types, we need something that can never happen.

data Void — no data constructors

This means, for **Either a Void**, it is impossible to call the **Right** constructor.

For numbers, it is o. For types, we need something that can never happen.

data Void — no data constructors

This means, for **Either a Void**, it is impossible to call the **Right** constructor.

From this we can easily show Either a Void \simeq a

The combined total of our investigation

Operations	Numbers	Types
\otimes		(,)
⊗ associativity	$a \cdot (b \cdot c) = (a \cdot b) \cdot c$	$(a, (b, c)) \simeq ((a, b), c)$
⊗ identity	1	One or ()
⊗ identity law	$a \cdot 1 = a$	(a, One) \simeq a
\oplus	+	Either
⊕ associativity	a + (b + c) = (a + b) + c	Either A (Either B C) \simeq
_		Either (Either A B) C
\oplus identity	0	Void
⊕ identity law	$a \cdot o = a$	Either a Void \simeq a

And there are a few other laws

All of these laws are followed by numbers and types. This makes both numbers and types an algebraic structure called a semiring.

Operations	Numbers	Types
⊗ commute	$a \cdot b = b \cdot a$	$(a, b) \simeq (b, a)$
\oplus commute	a+b=b+a	Either A B \simeq
		Either B A
⊕ implied equality	a+b=a+c	Either A B \simeq Either A C
	$\implies b = c$	\implies B \simeq C
Left distributive	$(a+b)\cdot c =$	(Either A B, C) \simeq
	$a \cdot c + b \cdot c$	Either (A, C) (B, C)
Zero is not One	0 ≠ 1	Void ≄ One

How can we use this?

Using the semiring operations, we can start to build up terms programmatically.

For example, take the Maybe type.

data Maybe a = Nothing | Just a

How can we use this?

Using the semiring operations, we can start to build up terms programmatically.

For example, take the Maybe type.

data Maybe a = Nothing | Just a

type Maybe a = Either One a

How can we use this?

Using the semiring operations, we can start to build up terms programmatically.

For example, take the Maybe type.

data Maybe a = Nothing | Just a

type Maybe a = Either One a

In number this is Maybe(x) = 1 + x

Making the algebra easier to see

```
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE DeriveFunctor #-}
newtype K a x = K a deriving (Show, Functor)
newtype Id x = Id x deriving (Show, Functor)
newtype (p : *: q) x = Prod (p x, q x) deriving (Show, Functor)
data (p:+: q) x = L (p x) | R (q x) deriving (Show, Functor)
type One = K()
one = K()
```

The paper "Algebra of Programming" (Bird, de Moor 1997) has a much more in depth coverage.³

Recreating Maybe

```
type Maybe = One :+: Id

just :: x → Maybe x
just x = R (Id x)

nothing :: Maybe x
nothing = L one
```

Recreating Maybe

```
type Maybe = One :+: Id

just :: x → Maybe x
just x = R (Id x)

nothing :: Maybe x
nothing = L one

fmap (+2) nothing == L one
```

Recreating Maybe

```
type Maybe = One :+: Id
just :: x \rightarrow Maybe x
iust x = R (Id x)
nothing :: Maybe x
nothing = L one
fmap (+2) nothing == L one
fmap (+2) (just 5) == R (Id 7)
```

Notice no functor instance was declared for Maybe.

Zippers

Motivation: Updating lists has poor performance

Say you want to update one element of a list. Here is one way to do that.

Motivation: Updating lists has poor performance

Say you want to update one element of a list. Here is one way to do that.

As an example, lets update an element of a simple list.

```
update 2 (10 'const') list == [1, 2, 10, 4, 5]
```

Where is the poor performance?

Say we start with some list ${\bf 1}$ with six elements.

```
index
0 1 2 3 4 5
1 = a : b : c : d : e : f : []
```

Now let's update the third element using some update function f.

Where is the poor performance?

Say we start with some list 1 with six elements.

We now have a bunch of copies of elements we didn't touch!

The performance problem is a compounding problem

If we made many updates near the same location, then we keep allocating new nodes.

```
index
   0 1 2 3 4 5
1 = a : b : c : d : e : f : []
m = update 3 f l == a : b : c : f d : -
n = update 3 g m == a : b : c : g (f d) : -
etc.
```

Note that this not just poor space usage but poor *time* as well. Each update is O(n).

What if we "pause" our traversal?

The main problem we have is that we keep traversing the list over and over, making new lists every time.

```
{\tt m}={\tt update}\ {\tt i}\ {\tt f}\ {\tt l}\ -{\tt maybe}\ {\tt makes}\ {\tt an}\ {\tt edit}\ {\tt at}\ {\tt the}\ {\tt end}\ {\tt update}\ {\tt i}\ {\tt f}\ {\tt m}\ -{\tt update}\ {\tt is}\ {\tt in}\ {\tt same}\ {\tt spot}\ {\tt i}\ ,\ {\tt and}\ {\tt we}\ {\tt traverse}\ {\tt m}\ {\tt to}\ {\tt the}
```

What happens if we instead we separate the list before and after the index i?

```
type PauseList a = ([a], [a])
```

Converting to a PauseList

Here are some helper functions to convert from/to a **PauseList** from a **List**.

```
toPause :: Int → [a] → PauseList a
toPause i xs = (reverse . take i $ xs, drop i xs)

fromPause :: PauseList a → [a]
fromPause (prior, curnext) = reverse prior ++ curnext

current :: PauseList a → a
current (_, x:_) = x
```

Converting to a PauseList

Here are some helper functions to convert from/to a **PauseList** from a **List**.

```
toPause :: Int \rightarrow [a] \rightarrow PauseList a
toPause i xs = (reverse . take i $ xs, drop i xs)
from Pause :: Pauselist a \rightarrow [a]
fromPause (prior, curnext) = reverse prior ++ curnext
current :: Pauselist a → a
current (\_, x:\_) = x
p = \text{toPause 2 } [0, 1, 2, 3, 4, 5] == ([2, 1], [3, 4, 5])
current p == 3
```

Moving in a PauseList

And some ways in which to move around a PauseList

```
forward :: PauseList a → PauseList a
forward (prior, current : next) = (current:prior, next)
backward :: PauseList a → PauseList a
backward (lastcur:prior, curnext) = (prior, lastcur:curnext)
```

Moving in a PauseList

And some ways in which to move around a PauseList

```
forward :: PauseList a → PauseList a
forward (prior, current : next) = (current:prior, next)

backward :: PauseList a → PauseList a
backward (lastcur:prior, curnext) = (prior, lastcur:curnext)

p = toPause 2 [0, 1, 2, 3, 4, 5] == ([2, 1], [3, 4, 5])
forward p = ([3, 2, 1], [4, 5])
```

Updating a PauseList

Now let's look at the **updatePause** function to update the current value.

```
updatePause :: (a \rightarrow a) \rightarrow PauseList \ a \rightarrow PauseList \ a
updatePause f (prior, current : next) = (prior, f current : next)
```

Here, only 1 node is being created, and it is the node being modified

udpatePause pictorally

We'll use this notation for a **PauseList** with the cursor on the third element.

$$pl = a \leftarrow b \leftarrow _c_ \rightarrow d \rightarrow e \rightarrow []$$

udpatePause pictorally

We'll use this notation for a **PauseList** with the cursor on the third element.

Now local updates are a quite efficient O(1).

Going forward and backward also has a constant cost

Similarly, moving the current position has a constant cost.

What we have created is called a Zipper or One Hole Context

The generic "pausing" structure is often known as a zipper, or as a one hole context. Here we will be focusing on the one hole context nomenclature.

Examples of zippers

- ZipperFS
- Xmonad

One-hole types

We can think of one-hole types as "focusing" on an element. Another canonical example is a tree.

What is the context for a product type?

$$(x, x)$$
 — sometimes called x^2

What is the context for a product type?

$$(x, x)$$
 — sometimes called x^2

Well we either be focusing on the left side⁴

What is the context for a product type?

$$(x, x)$$
 — sometimes called x^2

Well we either be focusing on the left side⁴

or the right side.

What is the context for a product type?

$$(x, x)$$
 — sometimes called x^2

Well we either be focusing on the left side4

or the right side.

We can represent this as **Either (One, x) (x, One)** (sometimes written as 2x).

⁴here • will represent the focus

And now a triple

What is the context for a triple?

$$(x, x, x)$$
 — sometimes called x^3

And now a triple

What is the context for a triple?

$$(x, x, x)$$
 — sometimes called x^3

Well we either be focusing on the left side⁵

or the middle

or the right side

⁵here ○ will represent the focus

And now a triple

What is the context for a triple?

$$(x, x, x)$$
 — sometimes called x^3

Well we either be focusing on the left side⁵

or the middle

or the right side

We can represent this as Either (Either (One, x, x) (x, One, x)) (x, x, One) (sometimes written as $3x^2$).

And the context for One?

Can we have a one hole context for the **One** type?

data One = One

And the context for One?

Can we have a one hole context for the **One** type?

data One = One

Well we have nothing to take the context of (an \mathbf{x}), so we can represent the context as impossible.

data Void

Enumeration Context

Actually, this trick can be done for any simple enumeration.

```
— Some enumeration
data Cards = Hearts | Spades | Clubs | Diamonds — 4
```

Enumeration Context

Actually, this trick can be done for any simple enumeration.

- Some enumeration
 data Cards = Hearts | Spades | Clubs | Diamonds 4
- And the context with respect to some variable data Void

Context for addition

Say we have the data type

data Crafty $x = Left x \mid Right (x, x)$

What is the one hold context for this?

Context for addition

Say we have the data type

```
data Crafty x = Left x \mid Right (x, x)
```

What is the one hold context for this?

Well we could either have a hole in the left side, or a hole in one of two positions on the right side.

```
Either One (Either (One, x) (x, One))
```

A table of what we have so far

Туре	Number	Context	Number
One	1	Void	0
Cards	4	Void	0
(x, x)	χ^2	(x, One) :+: (One, x)	2 <i>X</i>
(X, X, X)	<i>x</i> ³	(One, x, x) :+: (x, One, x)	$3X^{2}$
Crafty	$X^2 + X$:+: (x, x, One) (x, One) :+: (One, x) :+: One	2X + 1

A table of what we have so far

Туре	Number	Context	Number
One	1	Void	0
Cards	4	Void	0
(X, X)	χ^2	(x, One) :+: (One, x)	2 <i>X</i>
(X, X, X)	<i>x</i> ³	(One, x, x) :+: (x, One, x)	$3X^{2}$
		:+: (x, x, One)	
Crafty	$X^2 + X$	(x, One) :+: (One, x) :+: One	2X + 1

That looks an awful lot like differentiation.

What else is a differentiation

What is the differentation of [a]?

What else is a differentiation

What is the differentation of [a]? ([a], [a])

What have we learned thus far?

We have learned

- how to do algebra on types.
- ► What a zipper is
- ► That taking the derivative of a type gives us back a zipper.

There are other differentiation laws such as the chain rule for composition and differentiating a fixed point type.

Dissection

An example use of a zipper

```
Let's look at a binary tree.6

data Expr = Val Int | Add Expr Expr

eval :: Expr → Int
eval (Val x) = x
eval (Add e1 e2) eval e1 + eval e2
```

Trying a tail recursive version

```
type Stack = [Expr :+: Int]
eval :: Expr \rightarrow Int
eval e = load e []
load :: Expr \rightarrow Stack \rightarrow Int
load (Val i) stk = unload i stk
load (Add e1 e2_ = load e1 (Left e2 : stk)
unload :: Int \rightarrow Stack \rightarrow Int
unload v [] = v
unload v1 (Left e2: stk) = load e2 (Right v1: stk)
unload v2 (Right v1 : stk) = unload (v1 + v2) stk
```

Eval can be implemented generically two ways

- ▶ Differentiating a data type (the Conor McBride method)
- ► Delimited continuations to pause a traversal (the Oleg Kiselyov method)

Examples

- ► Folding a tree, finding its maximum path weight, height, etc
- ► Generating a tree (ex: a Stern-Brocot tree)
- Inverting a tree to perform some action at the leaves (ex: hasSuffix)

Quote

"But if there is a message for programmers and programming language designers, it is this: the miserablist position that types only exist to police errors is thankfully no longer sustainable, once we start writing programs like this [generic zippers]. By permitting calculations of types and from types, we discover what programs we can have, just for the price of structuring our data. What joy!"

- Conor McBride

References

All article names are clickable links.

- Clowns to the Left of me, Jokers to the Right by Conor McBride (the POPL version).
- Organizing Numerical Theories using Axiomatic Type Classes by Pawrence Paulson
- ► The Algebra of Albebraic Data Types by Chris Taylor (written version 1, 2, and 3)
- Category Theory for Programmers by Bartosz Milewski
- Conquering Folds by Edward Kmett
- Zippers Part 1, 2, 3 by Pavel Panchekha
- Polynomial Functors Constrainted by Regular Expressions by Dan Piponi and Brent Yorgey