Mathematics CS1003

Dr. Meriel Huggard

Room 1.10 Lloyd Institute
School of Computer Science and Statistics
Trinity College Dublin, IRELAND
http://mymodule.tcd.ie
Meriel.Huggard@tcd.ie

Michaelmas Term

Eigenvalues and Eigenvectors I

Considering a matrix A, we want to calculate

- its eigenvalues
- its eigenvectors

Definition:

We want to find real numbers, λ , and non-zero vectors, \mathbf{v} ; where they exist; such that \mathbf{v} and $A\mathbf{v}$ are scalar multiples of each other:

$$A\mathbf{v} = \lambda \mathbf{v}$$

- λ is called an eigenvalue of A.
- \mathbf{v} is the eigenvector of A corresponding to λ .

Eigenvalues and Eigenvectors II

Our equation

$$A\mathbf{v} = \lambda \mathbf{v}$$

may be rewritten as:

$$A\mathbf{v} - \lambda \mathbf{v} = 0$$

or, using the identity matrix *I*:

$$(A - \lambda I)\mathbf{v} = 0$$

To find when this has a non-trivial solution we need to find when

$$\det(A - \lambda I) = 0$$

This is called the characteristic equation of *A*.

When we expand this we obtain the characteristic polynomial of *A*.

Eigenvalues and Eigenvectors III

EXAMPLE: Find the eigenvalues of the matrix

$$A = \left(\begin{array}{ccc} 5 & 6 & 2\\ 0 & -1 & -8\\ 1 & 0 & -2 \end{array}\right).$$

Eigenvalues and Eigenvectors IV

SOLUTION: We found that

$$\det(A - \lambda I) = -\lambda^3 + 2\lambda^2 + 15\lambda - 36.$$

To find solutions to $det(A - \lambda I) = 0$ i.e., to solve

$$\lambda^3 - 2\lambda^2 - 15\lambda + 36 = 0.$$

- Find integer valued solutions. Such solutions divide the constant term (36). Possibilities: ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 18 , ± 36 .
- $\lambda = 3$: $3^3 2.3^2 15.3 + 36 = 0$.
- Now factor out $\lambda 3$:

$$(\lambda - 3)(\lambda^2 + \lambda - 12) = \lambda^3 - 2\lambda^2 - 15\lambda + 36.$$

Eigenvalues and Eigenvectors V

• Solve $\lambda^2 + \lambda - 12 = 0$ by formula:

$$\lambda = \frac{-1 \pm \sqrt{1^2 - 4.1. - 12}}{2} = \frac{-1 \pm 7}{2}$$

Thus $\lambda = -4$ or 3.

So

$$det(A - \lambda I) = -\lambda^3 + 2\lambda^2 + 15\lambda - 36$$
$$= (\lambda - 3)(\lambda - 3)(\lambda + 4)$$

The eigenvalues of A are $\lambda = -4$, 3. Note that $\lambda = 3$ is a repeated root of the characteristic equation.

Eigenvalues and Eigenvectors VI

Once the eigenvalues of a matrix A have been found, we can find the eigenvectors by Gaussian Elimination.

• For each eigenvalue λ, we have

$$(A - \lambda I)\mathbf{x} = \mathbf{0},$$

where x is the eigenvector associated with eigenvalue λ .

2 Find x by Gaussian elimination. That is, convert the augmented matrix

$$\left(A - \lambda I : \mathbf{0}\right)$$

to reduced row echelon form, and solve the resulting linear system.

Eigenvalues and Eigenvectors VII

EXAMPLE: Find the eigenvectors of

$$A = \left(\begin{array}{ccc} 5 & 6 & 2 \\ 0 & -1 & -8 \\ 1 & 0 & -2 \end{array}\right).$$

we know that the eigenvalues of A are $\lambda = -4,3$ with 3 being a repeated root (twice).

Eigenvalues and Eigenvectors VIII

SOLUTION:

• Case 1: $\lambda = -4$

We must find vectors **x** which satisfy $(A - \lambda I)$ **x** = **0**:

$$\lambda = -4 \text{ gives us } A - \lambda I = \left(egin{array}{ccc} 9 & 6 & 2 \\ 0 & 3 & -8 \\ 1 & 0 & 2 \end{array} \right).$$

Eigenvalues and Eigenvectors IX

ullet Construct the augmented matrix $\left(A-\lambda I\ \dot{oldsymbol{0}}\right)$ and convert it to row echelon form

$$\begin{pmatrix} 9 & 6 & 2 & 0 \\ 0 & 3 & -8 & 0 \\ 1 & 0 & 2 & 0 \end{pmatrix} \begin{array}{c} R1 \\ R2 \\ R3 \end{array} \xrightarrow{R1 \leftrightarrow R3} \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 3 & -8 & 0 \\ 9 & 6 & 2 & 0 \end{pmatrix} \begin{array}{c} R1 \\ R2 \\ R3 \end{array}$$

$$\stackrel{R3 \to R3 \to 9 \times R1}{\longrightarrow} \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 3 & -8 & 0 \\ 0 & 6 & -16 & 0 \end{pmatrix} \begin{array}{c} R1 \\ R2 \\ R3 \end{array}$$

$$\stackrel{R2 \to 1/3 \times R2}{\longrightarrow} \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -8/3 & 0 \\ 0 & 6 & -16 & 0 \end{pmatrix} \begin{array}{c} R1 \\ R2 \\ R3 \end{array}$$

$$\stackrel{R2 \to 1/3 \times R2}{\longrightarrow} \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -8/3 & 0 \\ 0 & 6 & -16 & 0 \end{pmatrix} \begin{array}{c} R1 \\ R2 \\ R3 \end{array}$$

$$\stackrel{R3 \to R3 \to 6 \times R2}{\longrightarrow} \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -8/3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{array}{c} R1 \\ R2 \\ R3 \end{array}$$

Eigenvalues and Eigenvectors X

Rewrite as a linear system

$$x_1 + 2x_3 = 0$$

 $x_2 - 8/3x_3 = 0$

or, introducing parameters

$$x_1 = -2t$$
$$x_2 = 8/3t$$
$$x_3 = t$$

Thus

$$\mathbf{x} = \begin{pmatrix} -2t \\ 8/3t \\ t \end{pmatrix} = t \begin{pmatrix} -2 \\ 8/3 \\ 1 \end{pmatrix} \quad \text{for any } t \in \mathbb{R}$$

are eigenvectors of *A* associated with the eigenvalue $\lambda = -4$.

Eigenvalues and Eigenvectors XI

• Case 2: $\lambda = 3$

We seek vectors x for which $(A - \lambda I)\mathbf{x} = \mathbf{0}$.

$$\lambda = 3 \Rightarrow A - \lambda I = \begin{pmatrix} 2 & 6 & 2 \\ 0 & -4 & -8 \\ 1 & 0 & -5 \end{pmatrix}.$$

Eigenvalues and Eigenvectors XII

ullet Construct the augmented matrix $\left(A-\lambda I\ \dot{m{0}}
ight)$ and reduce it to row echelon form.

$$\begin{pmatrix} 2 & 0 & 2 & 0 & | & R1 \\ 0 & -4 & -8 & 0 & | & R2 \\ 1 & 0 & -5 & 0 & | & R3 \end{pmatrix}$$

$$\xrightarrow{R1 \leftrightarrow R3} \qquad \begin{pmatrix} 1 & 0 & -5 & 0 \\ 0 & -4 & -8 & 0 \\ 2 & 6 & 2 & 0 & | & R3 \end{pmatrix}$$

$$\xrightarrow{R3 \to R3 \to 2 \times R1} \qquad \begin{pmatrix} 1 & 0 & -5 & 0 \\ 0 & -4 & -8 & 0 \\ 0 & 6 & 12 & 0 & | & R2 \\ 0 & 6 & 12 & 0 & | & R3 \end{pmatrix}$$

$$\xrightarrow{R2 \to -1/4 \times R2} \qquad \begin{pmatrix} 1 & 0 & -5 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 6 & 12 & 0 & | & R3 \end{pmatrix}$$

$$\xrightarrow{R3 \to R3 \to 6 \times R2} \qquad \begin{pmatrix} 1 & 0 & -5 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & | & R1 \\ R2 & R3 & | & R2 \\ R3 & | & R3 & | & R3 & | & R3 \end{pmatrix}$$

Eigenvalues and Eigenvectors XIII

Rewrite this as a linear system:

$$x_1 - 5x_3 = 0$$
$$x_2 + 2x_3 = 0.$$

or, introducing parameter t,

$$x_1 = 5t$$

$$x_2 = -2t$$

$$x_3 = t$$

Thus

$$\mathbf{x} = \begin{pmatrix} 5t \\ -2t \\ t \end{pmatrix} = t \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix} \quad \text{for any } t \in \mathbb{R}$$

are eigenvectors associated with eigenvalue $\lambda = 3$.

Eigenvalues and Eigenvectors XIV

Conclusions:

- The solution of the linear system will involve at least one parameter, so there are infinitely many eigenvectors.
- However, all eigenvectors have a very specific form.