## Machine Learning – I

Richa Singh

Google classroom code: wgzuohn

Slides are prepared from several information sources on the web and books

## Recap of Lecture 1

- Machine learning:
  - Supervised learning
  - Unsupervised learning
  - Reinforcement learning
- Evaluation metrics

#### **Evaluation Metrics**

- Classification: Accuracy
- Regression: Mean Squared Error
- Retrieval: Precision/Recall, F-Score
- Ranking: mean Average Precision

# Sensitivity, Specificity

In a group of 500 people, 250 are known to have prostatic cancer. When tested, 200 of them had a positive test. In the people without prostatic cancer, 20 people had a positive test. What is the sensitivity and specificity of the test?

-----

Sensitivity measures how often a test correctly generates a positive result for people who have the condition that's being tested for (also known as the "true positive" rate). A test that's highly sensitive will flag almost everyone who has the disease and not generate many false-negative results.

Specificity measures a test's ability to correctly generate a *negative* result for people who *don't* have the condition that's being tested for (also known as the "true negative" rate). A high-specificity test will correctly rule out almost everyone who *doesn't* have the disease and won't generate many false-positive results.

https://www.healthnewsreview.org/toolkit/tips-for-understanding-studies/understanding-medical-tests-sensitivity-specificity-and-positive-predictive-value/

# Sensitivity, Specificity

In a group of 500 people, 250 are known to have prostatic cancer. When tested, 200 of them had a positive test. In the people without prostatic cancer, 20 people had a positive test. What is the sensitivity and specificity of the test?

Answer: 200/250 = 0.8 (sensitivity); 230/250 = 0.92 (specificity)

Sensitivity measures how often a test correctly generates a positive result for people who have the condition that's being tested for (also known as the "true positive" rate). A test that's highly sensitive will flag almost everyone who has the disease and not generate many false-negative results.

Specificity measures a test's ability to correctly generate a *negative* result for people who *don't* have the condition that's being tested for (also known as the "true negative" rate). A high-specificity test will correctly rule out almost everyone who *doesn't* have the disease and won't generate many false-positive results.

 $\frac{https://www.healthnewsreview.org/toolkit/tips-for-understanding-studies/understanding-medical-tests-sensitivity-specificity-and-positive-predictive-value/)$ 

### Precision, Recall

#### Example:

A search engine stores 60 documents relating to Topic A. When a search query relating to Topic A is entered, the result returns 40 documents relating to Topic A, and 10 documents related to some other topic. What is the precision and recall for the given search?

# Precision, Recall

#### Example:

A search engine stores 60 documents relating to Topic A. When a search query relating to Topic A is entered, the result returns 40 documents relating to Topic A, and 10 documents related to some other topic. What is the precision and recall for the given search?

Answer: 40/50 = 0.8 (precision); 40/60 = 0.66 (recall)

#### Type-I error, Type-II error

A binary classifier classifies given objects into two classes - bags (+ve class) and purses (-ve class). Out of 90 bags and 20 purses, it classified 80 bags correctly and none of the purses. What is the confusion matrix? What is the Type-1, Type-II error?

- Answer:
- TP-80; TN-0; FP-20; FN-10
- Type I: 20/20 = 1
- Type II: 10/90 = 0.11

Solve the questions shared via WebEx chat

Clustering: Normalized Mutual Information

$$NMI(Y,C) = \frac{2 \times I(Y;C)}{[H(Y) + H(C)]}$$

- Y = class labels
- C = cluster labels
- H(.) = Entropy
- I(Y;C) = Mutual Information b/w Y and C
- Note: All logs are base-2.

#### Performance Evaluation

- Receiver operating characteristics (ROC) curve
  - For authentication/verification
  - False positive rate vs true positive rate
- Detection error-tradeoff (DET) curve
  - False positive rate vs false negative rate
- Cumulative match curve (CMC)
  - Rank vs identification accuracy

## **ROC Curve**





#### **CMC Curve**



How to draw ROC curve?

#### True disease state vs. Test result

| Disease               | not rejected                      | rejected                         |
|-----------------------|-----------------------------------|----------------------------------|
| No disease<br>(D = 0) | specificity                       | X<br>Type I error<br>(False +) α |
| Disease<br>(D = 1)    | X<br>Type II error<br>(False -) β | Power 1 - β; sensitivity         |

## Specific Example



Test Result

#### **Threshold**



Test Result

#### Some definitions ...



Test Result





Test Result



Test Result

# Moving the Threshold: right



# Moving the Threshold: left



#### ROC curve



How to draw CMC curve?



Samples in the database

Query





Top-4 retrieved images

Correct answer at rank - 1

Query





Top-4 retrieved images

Correct answer at rank - 4

#### How to compute rank accuracies

- Rank-1 accuracy: 50%
- Rank-2 accuracy: 50 + 0 %
- Rank-3 accuracy: 50 + 0 + 0 %
- Rank-4 accuracy: 50 + 0 + 0 + 50 %

Cumulative in nature

Non-decreasing

## **Decision Trees**

#### **Decision Trees**

Classify between lemon and oranges



#### **Decision Trees**



#### Rules for classifying data using attributes

- The tree consists of decision nodes and leaf nodes.
- A decision node has two or more branches, each representing values for the attribute tested.
- A leaf node attribute produces a homogeneous result (all in one class), which does not require additional classification testing

$$\mathcal{F}$$
 – Decision Trees

$$f(X_1, X_2, X_3) \in \mathcal{F}$$



Features can be discrete, continuous or categorical

- Features can be discrete, continuous or categorical
- Each internal node: test some set of features {Xi}
- Each branch from a node: selects a set of value for {Xi}
- Each leaf node: prediction for Y

## Example: What to do this Weekend?

- If my parents are visiting
  - We'll go to the cinema
- If not
  - Then, if it's sunny I'll play tennis
  - But if it's windy and I'm rich, I'll go shopping
  - If it's windy and I'm poor, I'll go to the cinema
  - If it's rainy, I'll stay in

#### Written as a Decision Tree



# Using the Decision Tree (No parents on a Sunny Day)



# Using the Decision Tree (No parents on a Sunny Day)



### From Decision Trees to Logic

- Read from the root to every tip
  - If this and this and this ... and this, then do this
- In our example:
  - If no\_parents and sunny\_day, then play\_tennis
  - no\_parents ∧ sunny\_day → play\_tennis

#### How to design a decision tree

- Decision tree can be seen as rules for performing a categorisation
  - E.g., "what kind of weekend will this be?"
- Remember that we're learning from examples
  - Not turning thought processes into decision trees
- The major question in decision tree learning is
  - Which nodes to put in which positions
  - Including the root node and the leaf nodes

What do you think: how should we compute which nodes to put in which positions?

#### The ID3 Algorithm

- Invented by J. Ross Quinlan in 1979
- ID3 uses a measure called Information Gain
  - Used to choose which node to put next
- Node with the highest information gain is chosen
  - When there are no choices, a leaf node is put on
- Builds the tree from the top down, with no backtracking
- Information Gain is used to select the most useful attribute for classification

#### Entropy – General Idea

- From Tom Mitchell's book:
  - "In order to define information gain precisely, we begin by defining a measure commonly used in information theory, called entropy that characterizes the (im)purity of an arbitrary collection of examples"
- A notion of impurity in data
- A formula to calculate the homogeneity of a sample
- A completely homogeneous sample has entropy of 0
- An equally divided sample has entropy of 1

#### Entropy - Formulae

- Given a set of examples, S
- For example, in a binary categorization
  - Where p₁ is the proportion of positives
  - And p<sub>\_</sub> is the proportion of negatives

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

- For examples belonging to classes c<sub>1</sub> to c<sub>n</sub>
  - Where  $p_n$  is the proportion of examples in  $c_n$

$$Entropy(S) \equiv \sum_{i=1}^{n} -p_i \log_2 p_i$$

# **Entropy Example**

#### *PlayTennis*: training examples

| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
|-----|----------|-------------|----------|--------|------------|
| D1  | Sunny    | Hot         | High     | Weak   | No         |
| D2  | Sunny    | Hot         | High     | Strong | No         |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |
| D4  | Rain     | Mild        | High     | Weak   | Yes        |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool        | Normal   | Strong | No         |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild        | High     | Weak   | No         |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes        |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes        |
| D12 | Overcast | Mild        | High     | Strong | Yes        |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes        |
| D14 | Rain     | Mild        | High     | Strong | No         |

# **Entropy Example**

```
Entropy(S) =
- (9/14) Log2 (9/14) - (5/14) Log2 (5/14)
= 0.940
```