Bayesian inference using the integrated nested Laplace approximation (INLA)

Master's Degree in Biostatistics

J<mark>oaq</mark>uín Martínez-Minaya, 2021-11-10

Universitat Politècnica de València

https://smeg-bayes.org/

http://vabar.es/

jmarmin@upv.es

Outline

- 1. Why INLA?
- 2. Elements to understand how INLA works
- 3. Putting all the pieces together: INLA
- 4. R-INLA
- 5. Model Selection
- 6. Examples
- 7. References

INLA as an alternative to MCMC

- MCMC is an asymptotically exact method whereas INLA is an **approximation**. Their error are frequently very similar, as has been shown in many simulation studies.
- INLA is a **fast alternative** to MCMC for the general class of latent Gaussian models (LGMs). Many familiar models can be re-cast to look like LGMs:
 - generalized linear models, generalized additive models, smoothing spline models,
 - state space models, semi-parametric regression, random walk (first and second order) models,
 longitudinal data models,
 - **spatial and spatiotemporal** models, log-Gaussian Cox processes and geostatistical and geoadditive models., etc.
- To understand INLA, we need to be familiar with:
 - Latent Gaussian models
 - Gaussian Markov Random Fields (GMRFs)
 - Laplace approximations

Latent Gaussian model

Level 1: likelihood

The first stage is formed by the **conditionally independent likelihood** function of data coming from a certain exponential family distribution:

$$p(oldsymbol{y} \mid oldsymbol{ heta}, oldsymbol{\psi}_1) = \prod_{i=1}^n p(y_i \mid \eta_i(oldsymbol{ heta}), oldsymbol{\psi}_1)$$

- $m{y}=(y_1,\ldots,y_n)^T$ is the response vector, $m{ heta}=(heta_1,\ldots, heta_n)^T$ is the **latent field**,
- $oldsymbol{\psi}_1$ is the hyperparameter vector of the exponential family distribution and
- $\eta_i(m{ heta})$ is the i-th linear predictor that connects the data to the latent field.

Indeed each η_i can take a more general additive form:

$$\eta_i = eta_0 + \sum_{j=1}^J eta_k x_{ij} + \sum_{k=1}^K f^{(k)}(z_{ik})$$

Latent Gaussian model

Level 2: latent Gaussian field

• The second stage is formed by the **latent Gaussian field**, where we attribute a Gaussian distribution with mean μ and precision matrix $Q(\psi_2)$ to the latent field θ conditioned on the hyperparameters ψ_2 , that is:

$$oldsymbol{ heta} \mid oldsymbol{\psi}_2 \sim \mathcal{N}(oldsymbol{0}, Q^{-1}(oldsymbol{\psi}_2))$$

• If we can assume conditional independence in θ , then this latent field is a **Gaussian Markov Random** Field (GMRF).

Level 3: hyperparameters

• Finally, the third stage is formed by the **prior distribution** assigned to the hyperparameters:

$$oldsymbol{\psi} = (oldsymbol{\psi}_1, oldsymbol{\psi}_2) \sim p(oldsymbol{\psi})$$

GLMM

• Breslow and Clayton (1993) present a dataset where they account for the proportion of seeds that germinated on each of 21 plates arranged according to a 2 by 2 factorial layout by seed and type of root extract.

The variables are:

- r: number of germinated seeds per plate
- **n**: number of total seeds per plate
- **x1**: seed type (0: seed O. aegyptiaco 75; 1: seed O. aegyptiaco 73)
- **x2**: root extracted (0: bean; 1: cucumber)
- plate: indicator for the plate This dataset is located in the package INLA

r	n	х1	x2	plate
10	39	0	0	1
23	62	0	0	2
23	81	0	0	3
26	51	0	0	4
17	39	0	0	5
5	6	0	1	6

Example: mixed-effects model

• We assume the counts follow a conditionally independent Binomial likelihood function:

$$y_i \mid \pi_i \sim \mathrm{Binomial}(n_i, \pi_i), \; i = 1, \dots, 21$$

• We account for linear effects on **covariates** $x1_i$ and $x2_i$ for each individual, as well as a **random effect** on the individual level, the plate b_i .

$$egin{aligned} \eta_i &= \operatorname{logit}(\pi_i) = eta_0 + eta_1 x 1_i + eta_2 x 2_i + b_i \ eta_j &\sim \mathcal{N}(0, au_eta^{-1}), \; au_eta \; \operatorname{known}, \; j = 0, 1, 2 \ b_i &\sim \mathcal{N}(0, au_b^{-1}) \end{aligned}$$

So, in this case, $\theta = (\beta_0, \beta_1, \beta_2, b_1, \dots, b_{21})$. A Gaussian prior is assigned for each element of the **latent** field, so that $\theta \mid \psi$ is **Gaussian distributed**.

• To assign the prior of $oldsymbol{\psi}=(au_b)$:

$$\log(au_b) \sim \log \mathrm{Gamma}(1, 5 \cdot 10^{-5})$$

Gaussian Markov Random Fields (GMRFs)

• A GMRF is a random vector following a multivariate normal distribution with Markov properties.

$$i
eq j, \; heta_i \mid heta_{ij},$$

being -ij all elements other than i and j.

• Rue et al. (2009) showed how conditional independence properties are encoded in the precision matrix, and how this can be exploited to improve computation involving these matrices.

$$i
eq j, \; heta_i \perp heta_j \mid heta_{ij},$$

$$heta_i \perp heta_j \mid oldsymbol{ heta}_{ij} \leftrightarrow oldsymbol{Q}_{ij} = 0$$

• This Markov assumption in the GMRF results in a **sparse precision matrix**. This sparseness aids extremely fast computation.

The pairwise Markov property

The two black nodes are conditionally independent given the gray nodes

Example: precision matrix in AR1

Covariance matrix (2) Precision matrix (2)

0.8730	0.6957	0.5201	0.3460	0.1728
0.6957	1.3931	1.0417	0.6929	0.3460
0.5201	1.0417	1.5659	1.0417	0.5201
0.3460	0.6929	1.0417	1.3931	0.6957
0.1728	0.3460	0.5201	0.6957	0.8730

1.9025	-0.9500	0.0000	0.0000	0.0000
-0.9500	1.9025	-0.9500	0.0000	0.0000
0.0000	-0.9500	1.9025	-0.9500	0.0000
0.0000	0.0000	-0.9500	1.9025	-0.9500
0.0000	0.0000	0.0000	-0.9500	1.9025

Laplace approximations

- The Laplace approximation is used to estimate any distribution p(heta) with a normal distribution.
- It uses the first three terms (quadratic function) **Taylor series expansion** around the mode θ^* of a function to approximate its log.
- Using the approximation, $p(\theta)$ can be approximated using a **Gaussian distribution** with mean the mode θ^* and variance the Fisher information, $\frac{-1}{\frac{d^2\log(p(\theta^*))}{n^2}}$.

$$p(heta) pprox \mathcal{N}\left(heta^*, rac{-1}{rac{d^2\log(p(heta^*))}{d heta^2}}
ight)$$

• It can be easily expanded to the multivariate case.

Example: approximating the beta distribution

INLA: Aim

Marginals of the latent field and hyperparameters

$$egin{aligned} p(heta_i \mid oldsymbol{y}) &= \int p(heta_i \mid oldsymbol{\psi}, oldsymbol{y}) \cdot p(oldsymbol{\psi} \mid oldsymbol{y}) doldsymbol{\psi} \;,\; i = 1, \ldots, n \ \\ p(\psi_j \mid oldsymbol{y}) &= \int p(oldsymbol{\psi} \mid oldsymbol{y}) doldsymbol{\psi}_{-j} \;,\; j = 1, \ldots, m \end{aligned}$$

- As a result, we have to numerically approximate:
 - 1. The **joint posterior distribution of the hyperparmeters** $p(\psi \mid y)$, needed to calculate the posterior hyperparameters marginals $p(\psi_j \mid y)$, and the posterior marginals of the latent field $p(\theta_i \mid y)$.
 - 2. The marginals of the full conditional distribution of θ , $p(\theta_i \mid \psi, y)$, needed to compute the posterior marginals of the latent field $p(\theta_i \mid y)$.

Hyperparameters: joint posterior distribution

The approximation is computed as follows

$$ilde{p}(oldsymbol{\psi} \mid oldsymbol{y}) := rac{p(oldsymbol{ heta}, oldsymbol{\psi} | oldsymbol{y})}{p_G(oldsymbol{ heta} \mid oldsymbol{\psi}, oldsymbol{y})}igg|_{oldsymbol{ heta} = oldsymbol{ heta}^*(oldsymbol{\psi})} \,,$$

- where:
 - $p_G(\theta \mid \psi, y)$ is the Gaussian approximation to the full conditional of θ , $p(\theta \mid \psi, y)$ given by the **Laplace method**, and,
 - $m{ ilde{ heta}}^*(m{\psi})$ is the mode of the full conditional of $m{ heta}$ for a given $m{\psi}$.
 - \circ Note: this approximation is exact if $p(m{ heta} \mid m{y}, m{\psi})$ is Gaussian.

Full posterior marginals for the latent field

Gaussian approximation

- Conditional posterior distributions $p(\theta_i \mid \boldsymbol{\psi}, \boldsymbol{y})$ are approximated directly as the marginals from $p_G(\boldsymbol{\theta} \mid \boldsymbol{\psi}, \boldsymbol{y})$.
- It is the **fastest to compute** but with possible **errors** in the location of the posterior mean.

Laplace approximation

• The vector $m{ heta}$ is rewriten as $m{ heta}=(heta_i,m{ heta}_{-i})$, and the Laplace approximation is used for each element of the latent field

$$ilde{p}(heta_i \mid oldsymbol{\psi}, oldsymbol{y}) := rac{p(oldsymbol{ heta}, oldsymbol{\psi} | oldsymbol{y})}{p_{LG}(oldsymbol{ heta}_{-i} \mid heta_i, oldsymbol{\psi}, oldsymbol{y})}igg|_{oldsymbol{ heta}_{-i} = oldsymbol{ heta}_{-i}^*(heta_i, oldsymbol{\psi})},$$

where $p_{LG}(\boldsymbol{\theta}_{-i} \mid \theta_i, \boldsymbol{\psi}, \boldsymbol{y})$ is the Laplace Gaussian approximation to $p(\boldsymbol{\theta}_{-i} \mid \theta_i, \boldsymbol{\psi}, \boldsymbol{y})$ and $\boldsymbol{\theta}_{-i}$ is its mode.

The most accurate but time consuming.

Full posterior marginals for the latent field

Simplified Laplace approximation

- Based on a Taylor's series expansion of third order.
- Fast to compute and usually accurate enough.

Final step: integration

- The INLA algorithm uses Newton-like methods to explore the joint posterior distribution for the hyperparameters $\tilde{p}(\boldsymbol{\psi}|\boldsymbol{y})$ to find **suitable points** for the numerical integration.
- Posterior marginals for the **latent variables** $\tilde{p}(\theta_i|m{y})$ are then computed via numerical integration as:

$$ilde{p}(heta_i \mid oldsymbol{y}) = \int ilde{p}(heta_i \mid oldsymbol{\psi}, oldsymbol{y}) ilde{p}(oldsymbol{\psi} \mid oldsymbol{y}) \mathrm{d}oldsymbol{\psi} pprox \sum_{k=1}^K ilde{p}(heta_i \mid oldsymbol{\psi}^{(k)}, oldsymbol{y}) ilde{p}(oldsymbol{\psi}^{(k)} \mid oldsymbol{y}) \Delta_k$$

• Posterior marginals for the **hyperparameters** ψ_j are approximated using the integrations points previously constructed.

Data

у	х	id
2.109177	0.3077661	1
1.954976	0.2576725	2
2.294048	0.5523224	3
2.217938	0.0563832	4
2.007082	0.4685493	5
2.339932	0.4837707	6

Fitting the model using R-INLA

Defining the formula

```
formula \leftarrow y ~ 1 + x # 1 is referred to the intercept term formula \leftarrow y ~ 1 + f(x, model = "linear")
```

Calling R-INLA

Posterior distributions

Posterior distribution of the parameters

	mean	sd	0.025quant	0.5quant	0.975quant	mode	kld
(Intercept)	1.9946	0.0226	1.9502	1.9946	2.0389	1.9946	0
Χ	0.4935	0.0388	0.4172	0.4935	0.5698	0.4935	0

Posterior distributions of the hyperparameters

	mean	sd	0.025quant	0.5quant	0.975quant	mode
Precision for the Gaussian observations	99.4865	13.9906	73.9147	98.8369	128.7726	97.5136

Families

exponentialsurv

fmri

###

###

```
inla.list.models(section = "likelihood")
## Section [likelihood]
###
        agaussian
                                        The aggregated Gaussian likelihoood
###
        beta
                                        The Beta likelihood
        betabinomial
                                        The Beta-Binomial likelihood
###
        betabinomialna
###
                                        The Beta-Binomial Normal approximation likelihood
                                        The blended Generalized Extreme Value likelihood
###
        bgev
        binomial
                                        The Binomial likelihood
###
        cbinomial
                                        The clustered Binomial likelihood
###
                                        Then censored Poisson likelihood
        cenpoisson
###
                                        Then censored Poisson likelihood (version 2)
###
        cenpoisson2
        circularnormal
                                        The circular Gaussian likelihoood
###
                                        Cox-proportional hazard likelihood
###
        coxph
###
        dgp
                                        Discrete generalized Pareto likelihood
        exponential
                                        The Exponential likelihood
###
```

The Exponential likelihood (survival)

fmri distribution (special nc-chi)

Latent effects

inla.list.models(section = "latent")

```
## Section [latent]
        2diid
                                        (This model is obsolute)
###
###
                                        Auto-regressive model of order p(AR(p))
        ar
                                        Auto-regressive model of order 1 (AR(1))
##
        ar1
                                        Auto-regressive model of order 1 w/covariates
##
        ar1c
                                        The Besag area model (CAR-model)
###
        besag
###
        besag2
                                        The shared Besag model
###
        besagproper
                                        A proper version of the Besag model
        besagproper2
                                        An alternative proper version of the Besag model
###
###
                                        The BYM-model (Besag-York-Mollier model)
        bym
                                        The BYM-model with the PC priors
###
        bym2
##
        clinear
                                        Constrained linear effect
###
                                        Create a copy of a model component
        сору
                                        Exact solution to the random walk of order 2
###
        crw2
        dmatern
                                        Dense Matern field
###
###
        fgn
                                        Fractional Gaussian noise model
```

Hyperpriors

logtgaussian

logtnormal

###

###

```
inla.list.models(section = "prior")
## Section [prior]
        betacorrelation
###
                                        Beta prior for the correlation
###
        dirichlet
                                        Dirichlet prior
                                        A generic prior defined using expressions
###
        expression:
                                        A constant prior
###
        flat
###
        gamma
                                        Gamma prior
###
        gaussian
                                        Gaussian prior
        invalid
                                        Void prior
###
        jeffreystdf
                                        Jeffreys prior for the doc
###
###
        linksnintercept
                                        Skew-normal-link intercept-prior
                                        A constant prior for log(theta)
        logflat
###
        loggamma
                                        Log-Gamma prior
###
        logiflat
                                        A constant prior for log(1/theta)
###
        logitbeta
                                        Logit prior for a probability
###
```

Truncated Gaussian prior

Truncated Normal prior

Model selection scores in R-INLA

- When use different covariates and random effects, we need some measures to select the best model:
 - **DIC**: deviance information criteria

$$DIC = 2 * E(D(\boldsymbol{\theta})) - D(E(\boldsymbol{\theta}))$$

• **WAIC**: within-sample predictive score

$$WAIC = \sum_{i} var_{post}(log(p(y_{i}|oldsymbol{ heta})))$$

LCPO: leave-one-out cross-validation score

$$CPO_i = p(y_i \mid y_{-i})$$

$$LCPO = -\overline{\log(CPO_i)}$$

GLMM

• Breslow and Clayton (1993) present a dataset where they account for the proportion of seeds that germinated on each of 21 plates arranged according to a 2 by 2 factorial layout by seed and type of root extract.

The variables are:

- r: number of germinated seeds per plate
- **n**: number of total seeds per plate
- **x1**: seed type (0: seed O. aegyptiaco 75; 1: seed O. aegyptiaco 73)
- **x2**: root extracted (0:bean; 1:cucumber);
- plate: indicator for the plate This dataset is located in the package INLA

r	n	x1	x2	plate
10	39	0	0	1
23	62	0	0	2
23	81	0	0	3
26	51	0	0	4
17	39	0	0	5
5	6	0	1	6

Example: mixed-effects model

• We assume the counts follow a conditionally independent Binomial likelihood function:

$$y_i \mid \pi_i \sim \mathrm{Binomial}(n_i, \pi_i), \; i = 1, \dots, 21$$

• We account for linear effects on **covariates** $x1_i$ and $x2_i$ for each individual, as well as a **random effect** on the individual level, the plate b_i .

$$egin{aligned} \eta_i &= \operatorname{logit}(\pi_i) = eta_0 + eta_1 x 1_i + eta_2 x 2_i + b_i \ eta_j &\sim \mathcal{N}(0, au_eta^{-1}), \; au_eta \; \operatorname{known}, \; j = 0, 1, 2 \ b_i &\sim \mathcal{N}(0, au_b^{-1}) \end{aligned}$$

So, in this case, $\theta = (\beta_0, \beta_1, \beta_2, b_1, \dots, b_{21})$. A Gaussian prior is assigned for each element of the **latent** field, so that $\theta \mid \psi$ is **Gaussian distributed**.

• To assing the prior of $oldsymbol{\psi}=(au_b)$:

$$\log(au_b) \sim \log \mathrm{Gamma}(1, 5 \cdot 10^{-5})$$

Bayesian splines

- GLMM with independent random effect does not cover situations in which relationship between the response variable and the covariate is not linear.
- In INLA, we can do this by means of the **random walk** of order 1 and 2.
 - First order Random Walk (RW1)

$$\Delta x_j = x_j - x_{j+1} \sim \mathcal{N}\left(0, \sigma^2 = rac{1}{ au}
ight).$$

Second order Random Walk (RW2)

$$\Delta^2 x_i = x_i - 2x_{i+1} + x_{i+2} \sim \mathcal{N}\left(0, \sigma^2 = rac{1}{ au}
ight).$$

 \circ The prior for the hyperparameter au is reparametrized in terms of their logarithm:

$$\log(au) \sim \log \mathrm{Gamma}(1, 5 \cdot 10^{-5})$$
 .

Smoothing time series of binomial data

- The number of **occurrences of rainfall** over 1 mm in the Tokyo area for each calendar year during two years (1983-84) are registered.
- It is of interest to estimate the underlying probability π_t of rainfall for calendar day t which is, a priori, assumed to change gradually over time.
- For each day $t=1,\ldots,366$ of the year we have the number of days that rained y_t and the number of days that were observed n_t .

Dataset

у	n	time
0	2	1
0	2	2
1	2	3
1	2	4
0	2	5
1	2	6

Smoothing time series of binomial data. The model

• A conditionally independent **binomial likelihood** function:

$$y_t \mid \pi_t \sim \mathrm{Binomial}(n, \pi_t), \ t = 1, \dots, 366$$

with (usual) logit link function:

$$\pi_t = rac{\exp(\eta_t)}{1+\exp(\eta_t)}$$

• We assume that (instead of a linear predictor), $\eta_t = f_t$, where f_t follows a circular **random walk** of second order (RW2) model with precision τ :

$$\Delta^2 f_i = f_i - 2 f_{i+1} + f_{i+2} \sim \mathcal{N}(0, au^{-1}).$$

The fact that we use a circular model here means that in this case f_1 is a neighbor of f_{366} . So, in this case $m{ heta}=(f_1,\ldots,f_{366})$ and again $m{ heta}|m{\psi}$ is **Gaussian distributed**.

• To assing the prior of $oldsymbol{\psi}=(au)$:

Posterior distribution of the probability

Disease mapping

• Congdon (2007) study suicide mortality in 32 London boroughs (excluding the City of London) in the period 1989–1993 for male and female combined, using a disease mapping model and an ecological regression model.

- The variables are:
 - **N**: which contains the name of boroughs
 - O: the number of observed suicides in the period under study
 - E: the number of expected cases of suicides(E),
 - x1: an index of social deprivation, and
 - x2: an index of social fragmentation (X2),
 which represents the lack of social
 connections and of sense of community.

NAME	у	E	х1	x2
Barking and Dagenham	75	80.7	0.87	-1.02
Barnet	145	169.8	-0.96	-0.33
Bexley	99	123.2	-0.84	-1.43
Brent	168	139.5	0.13	-0.10
Bromley	152	169.1	-1.19	-0.98
Camden	173	107.2	0.35	1.77

Standarized Mortality Ratio (SMR): raw data

The model

• A conditional independent **Poisson** likelihood function is assumed:

$$y_i \sim ext{Poisson}(\lambda_i), \;\; \lambda_i = E_i
ho_i, \;\; \log(
ho_i) = \eta_i \;, i = 1, \dots 32$$

• We assume that $\eta_i=eta_0+u_i+v_i$, being $m{u}$ the independent random effect and $m{v}$ the spatially structured random effect:

$$u_i \sim \mathcal{N}\left(0, au_{m{u}}^{-1}
ight), \; v_i \mid m{v}_{-i} \sim \mathcal{N}\left(rac{1}{n_i} \sum_{i \sim j} v_j, rac{1}{n_i au_{m{v}}}
ight) \; .$$

In this case $m{ heta}=(v_1,\ldots,v_{32},u_1,\ldots,u_{32})$, and $m{ heta}\mid m{\psi}$ is Gaussian distributed.

• **Hyperpriors** for $au_{m u}$ and $au_{m v}$ are reparametrized in terms of their logarithm:

$$\log(\tau_{\boldsymbol{v}}) \sim \log \operatorname{Gamma}(1, 0.001) \;,\; \log(\tau_{\boldsymbol{u}}) \sim \log \operatorname{Gamma}(1, 0.001) \;.$$

Posterior distribution of the spatial effect

Posterior distribution for the SMR and P(SMR > 1)

This material has been constructed based on:

- Blangiardo, M., & Cameletti, M. (2015). Spatial and spatio-temporal Bayesian models with R-INLA. John Wiley & Sons.
- Rue, H., & Held, L. (2005). Gaussian Markov random fields: theory and applications. Chapman and Hall/CRC.
- Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the royal statistical society: Series b (statistical methodology), 71(2), 319-392.
- Wang, X., Ryan, Y. Y., & Faraway, J. J. (2018). Bayesian Regression Modeling with INLA. Chapman and Hall/CRC.
- Tutorials by Haakon Bakka
- A gentle INLA tutorial by Kathryn Morrison
- INLA book by Virgilio Gómez-Rúbio

