

Provas de ingresso específicas para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de especialização tecnológica, Decreto-Lei n.º 113/2014, de 16 de julho

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM ENGENHARIA ELETROTÉCNICA

DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

PROVA 2016

Duração da prova: 120 minutos

Nome:	 	
CC/BI/Passaporte N.º	 Validade:/	

INSTRUÇÕES (leia com atenção, por favor)

- Os candidatos com aprovação em cursos preparatórios para o ingresso no ensino superior, organizados no âmbito de uma área departamental, poderão optar pela creditação das classificações aí obtidas como sendo a classificação do conjunto das perguntas da prova relativas às matérias já avaliadas nesses cursos. Para este efeito, consideram-se apenas os cursos homologados pelo conselho técnico-científico.
- Indique em todas as folhas o número do seu CC, BI ou Passaporte. Coloque esse documento de identificação sobre a mesa para validação de identidade.
- As respostas devem ser efetuadas nos locais apropriados de resposta, nesta mesma prova, utilizando caneta preta ou azul.
- As questões de desenvolvimento devem ser também respondidas nas folhas de prova. Se necessitar de mais folhas de resposta solicite-as aos professores vigilantes. Numere todas as folhas suplementares que utilizar.
- Não utilize corretor ou borracha para eliminar respostas erradas. Caso se engane, risque a resposta errada e volte a responder.
- Se responder a alguma questão fora do local apropriado de resposta, indique no local da resposta que esta foi efetuada em folha anexa.
- Para a realização desta prova será permitido o seguinte material de apoio: caneta, lápis e máquina de calcular.
- Durante a realização da prova os telemóveis e outros meios de comunicação deverão estar desligados. A utilização destes equipamentos implica a anulação da prova.

ESTRUTURA DA PROVA

- **Grupo 1** Três questões de resposta múltipla de matemática.
- **Grupo 2** Um problema de matemática.
- **Grupo 3** Três questões de resposta múltipla de física.
- Grupo 4 Um problema de física.
- Grupo 5 Dois problemas enquadrados nos conteúdos do curso.
- Grupo 6 Questão para desenvolvimento de assunto de cultura científica na área do curso.

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: -1/5 de valor)

Para cada uma das questões indique <u>a resposta correta</u> do seguinte modo X.

Considere a função real de variável real $f(x) = e^x + x - 1$.

1	A equação	da reta	tangente	20	gráfico	da	func	ão	fem	v	— (n	٤.
1.	A equação	ua reta	tangeme	ao	granco	ua	Tunç	ao ,	<i>i</i> em	х	= (U	е.

- $\square (A) y = 2x + 2$
- \Box (B) $\frac{y+2}{2} = x$
- \square (C) $x-2=\frac{1}{2}(y-1)=2-z$
- \square (D) $(x, y) = (-1,4) + k(1,2), k \in \mathbb{R}$
- \square (E) y = 2x
- 2. O valor do $\lim_{x\to 0} \frac{f(x)}{x}$ é:
- □ (A) 1
- \square (B) 0
- \square (C) + ∞
- □ (D) 2
- \square (E) $-\infty$
- 3. Quantos números naturais de três algarismos diferentes se podem escrever, não utilizando o algarismo 2 nem o algarismo 5?
- □ (A) 256
- □ (B) 278
- □ (C) 286
- □ (D) 294
- □ (E) 336

CC / BI / Passaporte N.º

Grupo 2

(Cotação: 2,0 valores)

Resolva o problema proposto na folha de prova e indique claramente a resposta final do mesmo. Se o espaço para responder se mostrar insuficiente poderá usar o verso desta folha para continuar a resposta.

Considere a função $g(x) = \frac{e^{x^2 + x}}{2x + 1}$, definida em $\mathbb{R} \setminus \left\{ -\frac{1}{2} \right\}$.

- a) Mostre que $g'(x) = \frac{((2x+1)^2-2)e^{x^2+x}}{(2x+1)^2}$.
- b) Determine, caso existam, os zeros de g'.

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: -1/5 de valor)

Indique <u>as respostas corretas</u> do seguinte modo ⊠.

1 – Um corpo, inicialmente na origem de um sistema de eixos, é sujeito a um movimento retilíneo e
a sua velocidade em função do tempo está indicada no gráfico

Diga qual das afirmações é verdadeira:

- ☐ (A) O corpo permaneceu parado no intervalo de tempo [2,4] s
- \square (B) No instante t = 5 s o corpo encontra-se de novo na posição de onde partiu
- □ (C) A aceleração do corpo é nula no intervalo de tempo [8,10] s
- \square (D) Ao fim dos primeiros 5 segundos, o corpo percorreu a distância de 100 m
- □ (E) O movimento do corpo nunca é retardado

2 – Um homem, uma ave e um inseto deslocam-se com velocidades de módulos $v_{\rm H} = 3.6~{\rm km \cdot h^{-1}}$, $v_{\rm A} = 30~{\rm m \cdot min^{-1}}$ e $v_{\rm I} = 60~{\rm cm \cdot s^{-1}}$, respetivamente. Essas velocidades satisfazem a relação:

- \square (A) $v_{\rm I} > v_{\rm H} > v_{\rm A}$
- \square (B) $v_{\rm A} > v_{\rm I} > v_{\rm H}$
- \Box (C) $v_{\rm H} > v_{\rm A} > v_{\rm I}$
- \square (D) $v_{\rm A} > v_{\rm H} > v_{\rm I}$
- \square (E) $v_{\rm H} > v_{\rm I} > v_{\rm A}$

CC / BI / Passaporte	N.º	

3 – Num sistema conservativo, um corpo de massa m_1 , sob a influência da aceleração da gravidade
é largado de uma certa altura h_1 . Se um outro corpo de massa m_2 que seja metade de m_1 for
largado de uma altura h_2 que seja o quádruplo de h_1 , chega ao solo com uma velocidade v_2 que
será:

□ (A) igual a v₁ □ (B) duas vezes inferior a v₁ □ (C) duas vezes superior a v₁ □ (D) quatro vezes inferior a v₁

(Cotação: 2,0 valores)

Considere o seguinte circuito elétrico.

Determine:

- a) O valor da resistência equivalente à associação das resistências R₃, R₄, R₅ e R₆.
- b) O valor da resistência total do circuito representado.
- c) A intensidade da corrente elétrica através da bateria, quando ligada a esta associação de resistências.

(Cotação total: 6,0 valores; cotação parcial: 3,0 valores por problema)

Resolva os problemas propostos na folha de prova e indique claramente a resposta final dos mesmos. Se o espaço para responder se mostrar insuficiente poderá usar o verso da folha para continuar a resposta.

1) No circuito apresentado a seguir, os interruptores K_1 e K_2 estão fechados.

Considerando que:

- 1 Com os dois interruptores K₁ e K₂ fechados, o wattímetro marcou 36 W.
- 2 Com o interruptor K₁ fechado e o interruptor K₂ aberto, o wattímetro marcou 24 W.

Atendendo aos valores lidos no wattímetro conforme considerado em 1- e 2-, calcule justificadamente:

- a) O valor da tensão de alimentação U.
- b) O valor da resistência elétrica assinalada com R₂.
- c) As intensidades de corrente assinaladas no circuito $(I, I_1 e I_2)$.

2) Considere o circuito elétrico apresentado a seguir:

- a) Calcule a resistência elétrica total equivalente.
- b) Determine o valor indicado pelo voltímetro.
- c) Calcule a potência dissipada na resistência R2.

CC / BI / Passaporte	N.º	
OO / Di / i assapoi te	<i>;</i> 14.	

(Cotação: 4,0 valores)

Responda ou desenvolva o tema proposto. Escreva entre 10 a 15 linhas. Se o espaço para responder se mostrar insuficiente poderá usar o verso da folha para continuar a resposta.

No nosso planeta, encontramos diversos tipos de fontes de energia. Considere os exemplos dados nas figuras seguintes:

Figura adaptada: www.edp.pt

De entre os exemplos dados, escolha, *3 fontes de energia renovável ou alternativa* e *3 fontes de energia não renovável, fóssil ou convencional*. Enumere, ordenadamente, as vantagens e desvantagens das *6 fontes de energia por si escolhidas*, em relação ao seu potencial de utilização em Portugal do ponto de vista económico e ambiental.

Que medidas regulamentares, de incentivo e de penalização, deverão ser incorporadas num futuro Plano Energético Nacional sobre a utilização das fontes de energia renovável e não renovável.					