

Presented by: Akshaya, Bindu, Vamshika

WHAT IS PHASE MODULATION?

In digital communication, Phase Modulation (PM) is a technique where the phase of a carrier signal is altered based on digital data. It is widely used in wireless systems, satellite communication, and modern digital transmission techniques.

HOW DOES IT WORK?

• A high-frequency carrier wave is used to transmit data.

- The phase of this carrier wave is changed according to the incoming binary data (0s and 1s).
- The receiver detects these phase changes and decodes the original data.

TYPES OF DIGITAL PHASE MODULATION

- Binary Phase Shift Keying (BPSK)
- Quadrature Phase Shift Keying (QPSK)
- 8 PSK and Higher Order PSK

BINARY PHASE SHIFT KEYING (BPSK)

Binary Phase Shift Keying (BPSK) is the simplest form of digital phase modulation, where the carrier signal's phase is shifted by 0° or 180° based on the input binary data (0 or 1). It is also known as 2-PSK since it uses two distinct phase states.

WORKING PRINCIPLE

- 1. A carrier wave is generated at a fixed frequency.
- 2. The digital input data (0s and 1s) determine the phase of the carrier wave:

Bit 'l' \rightarrow Carrier phase remains 0°.

Bit '0' \rightarrow Carrier phase shifts by 180°.

3. The receiver detects phase changes and decodes the original binary data.

BLOCK DIAGRAM

WAVE DIAGRAM

CONSTELLATION DIAGRAM

QUADRATURE PHASE SHIFT KEYING (QPSK)

Quadrature Phase Shift Keying (QPSK) is a digital modulation scheme that encodes two bits per symbol by shifting the phase of a carrier wave among four different phase states (0°, 90°, 180°, and 270°). This allows QPSK to transmit twice the data rate of BPSK while using the same bandwidth.

WORKING PRINCIPLE

- A high-frequency carrier wave is used for transmission.
- Two consecutive bits (a symbol) determine the phase shift of the carrier:

$$00 \rightarrow 0^{\circ}$$

$$01 \rightarrow 90^{\circ}$$

$$10 \rightarrow 180^{\circ}$$

$$11 \rightarrow 270^{\circ}$$

• At the receiver, the phase of the incoming signal is detected and mapped back to the corresponding bit pair.

BLOCK DIAGRAM

WAVE DIAGRAM

CONSTELLATION DIAGRAM

OFFSET QPSK

- Also known as Staggered QPSK.
- The I (In-phase) and Q (Quadrature) components are offset by half a symbol period to reduce sudden phase transitions.
- This reduces signal fluctuations (amplitude variations), making it more power-efficient and reducing signal distortion.

CONSTELLATION DIAGRAMS

π/4-QPSK (Pi/4 Shift QPSK)

• Each symbol transition changes by $\pm 45^\circ$ or $\pm 135^\circ$, rather than jumping directly between 0° , 90° , 180° , and 270° .

• This ensures smoother phase transitions, reducing signal distortion in nonlinear channels (like mobile communication).

CONSTELLATION DIAGRAMS

8-PSK and HIGHER-ORDER PSK

• Uses 8 or more phase shifts to encode 3 or more bits per symbol, improving spectral efficiency.

• Used in high-speed digital communications like Wi-Fi and 5G networks.

APPLICATIONS

- Wi-Fi (802.11 standards) uses QPSK and 16-QAM (which includes phase modulation).
- 4G LTE and 5G networks rely on QPSK and higher-order PSK for efficient data transmission.
- Satellite and deep-space communication use phase modulation for long-distance, low-power signals.

Thank You