Seminar in Statistics: Survival Analysis

Chapter 2

Kaplan-Meier Survival Curves and the Log-Rank Test

Linda Staub & Alexandros Gekenidis

March 7th, 2011

7

1 Review

- Outcome variable of interest: time until an event occurs
- Time = survival time
 Event = failure
- Censoring: Don't know survival time exactly

M

1 Review

- \blacksquare T = failure time with distribution F, density f
- lacksquare C = censoring time with distribution G, density g
- Assume that the censoring time C is independent of the variable of interest T
- $\blacksquare X = \min(T, C), \ \Delta = 1_{\{T \leq C\}}$
- We observe n i.i.d. copies of (X, Δ)

Survivor function

$$S(t) = \Pr(T > t)$$

м

Alternative (Ordered) Data Layout

Ordered failure times, $t_{(j)}$	$\#$ of failures m_j	# censored in $[t_{(j)}, t_{(j+1)}), q_j$	Risk set, $R(t_{(j)})$
$t_{(0)} = 0$	$m_0 = 0$	q_0	$R(t_0)$
$t_{(1)}$	m_1	q_{1}	$R(t_{(1)})$
$t_{(2)}$	m_2	q_2	$R(t_{(2)})$
•	•	•	•
•	•	•	•
•	•	•	•
$t_{(k)}$	m_k	q_k	$R(t_{(k)})$

Risk set: collection of individuals who have survived at least to time $t_{(j)}$

M

2 Kaplan-Meier Curves

Example

The data: remission times (weeks) for two groups of leukemia patients

Group 1 (n=21) treatment	Group 2 (n=21) placebo	# failed	# censored	Total
6, 6, 6, 7, 10, 13, 16, 22, 23,	1, 1, 2, 2, 3, 4, 4, 5, 5,	Group 1 9 Group 2 21	12 0	21 21
6+, 9+, 10+, 11+, 17+, 19+, 20+,	8, 8, 8, 8, 11, 11, 12, 12,	Descriptive statisti	c.	
25+, 32+, 32+, 34+, 25+	15, 17, 22, 23	$\overline{T_1}(ignoring + 's) = 1$		3.6

+ denotes censored

7

■ Table of ordered failure times

Group 1 (treatment)

$t_{(j)}$	n_{j}	m_{j}	q_{j}
0	21	0	0
6	21	3	1
7	17	1	1
10	15	1	2
13	12	1	0
16	11	1	3
22	7	1	0
23	6	1	5
>23	-	-	-

	Group 1 (treatment)	Group 2 (placebo)
-	6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 25+	1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

+ denotes censored

Group 2 (placebo)

$t_{(j)}$	n_{j}	m_{j}	q_{j}
0	21	0	0
1	21	2	0
2	19	2	0
3	17	1	0
4	16	2	0
5	14	2	0
8	12	4	0
11	8	2	0
12	6	2	0
15	4	1	0
17	3	1	0
22	2	1	0
23	1	1	0

→ Remark: no censorship in group 2

■ Computation of KM-curve for group 2 (no censoring)

$t_{(j)}$	n_{j}	m_{j}	q_{j}	$\hat{S}\big(t_{(j)}\big)$		
0	21	0	0	1		
1	21	2	0			
2	19	2	0			
3	17	1	0			
4	16	2	0			
5	14	2	0		$S(t_{C}) =$	pas
8	12	4	0		21	
11	8	2	0			
12	6	2	0			
15	4	1	0			
17	3	1	0			
22	2	1	0			
23	1	1	0			
	0 1 2 3 4 5 8 11 12 15 17	0 21 1 21 2 19 3 17 4 16 5 14 8 12 11 8 12 6 15 4 17 3	0 21 0 1 21 2 2 19 2 3 17 1 4 16 2 5 14 2 8 12 4 11 8 2 12 6 2 15 4 1 17 3 1 22 2 1	0 21 0 0 1 21 2 0 2 19 2 0 3 17 1 0 4 16 2 0 5 14 2 0 8 12 4 0 11 8 2 0 12 6 2 0 15 4 1 0 17 3 1 0 22 2 1 0	0 21 0 0 1 1 21 2 0 2 19 2 0 3 17 1 0 4 16 2 0 5 14 2 0 8 12 4 0 11 8 2 0 12 6 2 0 15 4 1 0 17 3 1 0 22 2 1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Computation of KM-curve for group 2 (no censoring)

	$\hat{S}\big(t_{(j)}\big)$	q_{j}	m_{j}	n_{j}	$t_{(j)}$
	1	0	0	21	0
	19/21 = .90	0	2	21	1
		0	2	19	2
		0	1	17	3
		0	2	16	4
$_{(j)}) = \frac{\# surviving po}{21}$		0	2	14	5
21		0	4	12	8
		0	2	8	11
		0	2	6	12
		0	1	4	15
		0	1	3	17
		0	1	2	22

23 1 1

Computation of KM-curve for group 2 (no censoring)

$t_{(j)}$	n_{j}	m_{j}	q_{j}	$\hat{S}\big(t_{(j)}\big)$	
0	21	0	0	1	
1	21	2	0	19/21 = .90	
2	19	2	0	17/21 = .81	
3	17	1	0		
4	16	2	0		
5	14	2	0		$\hat{S}(t_{(j)}) = \frac{\# surviving past t}{21}$
8	12	4	0		$S(\iota_{(j)}) = 21$
11	8	2	0		
12	6	2	0		
15	4	1	0		
17	3	1	0		
22	2	1	0		

23

Computation of KM-curve for group 2 (no censoring)

	$\hat{S}(t_{(j)})$	q_{j}	m_{j}	$n_{_{j}}$	$t_{(j)}$
	1	0	0	21	0
	19/21 = .90	0	2	21	1
	17/21 = .81	0	2	19	2
	16/21 = .76	0	1	17	3
		0	2	16	4
$\hat{S}(t_{(j)}) = \frac{\# surviving \ past \ t_{(j)}}{21}$		0	2	14	5
21		0	4	12	8
		0	2	8	11
		0	2	6	12
		0	1	4	15
		0	1	3	17
		0	1	2	22

23

■ Computation of KM-curve for group 2 (no censoring)

$t_{(j)}$	n_{j}	m_{j}	q_{j}	$\hat{S}ig(t_{(j)}ig)$	
0	21	0	0	1	
1	21	2	0	19/21 = .90	
2	19	2	0	17/21 = .81	
3	17	1	0	16/21 = .76	
4	16	2	0	14/21 = .67	
5	14	2	0	12/21 = .57	$\hat{S}(t_{(j)}) = \frac{\# surviving \ past \ t_{(j)}}{21}$
8	12	4	0	8/21 = .38	21
11	8	2	0	6/21 = .29	
12	6	2	0	4/21 = .19	
15	4	1	0	3/21 = .14	
17	3	1	0	2/21 = .10	
22	2	1	0	1/21 = .05	
23	1	1	0	0/21 = .00	

KM Curve for Group 2 (Placebo)

KM Curve for Group 2 (placebo)

м

General KM formula

- Alternative way to calculate the survival probabilities
- KM formula = product limit formula

$$\hat{S}(t_{(j)}) = \prod_{i=1}^{j} \hat{P}r(T > t_{(i)} \mid T \ge t_{(i)})$$

$$= \hat{S}(t_{(j-1)}) \times \hat{P}r(T > t_{(j)} \mid T \ge t_{(j)})$$

Proof: blackboard

$t_{(j)}$	n_{j}	m_{j}	q_{j}	$\hat{S}(t_{(j)})$	
0	21	0	0	1	Fraction at $t_{(j)}$: $\Pr(T > t_{(j)} \mid T \ge t_{(j)})$
6	21	3	1	1×18/21=.8571	$\Gamma(I > \iota_{(j)} \mid I \geq \iota_{(j)})$
7	17	1	1		
10	15	1	2		
13	12	1	0		
16	11	1	3		Not available at $t_{(j)}$
22	7	1	0	faile	ed prior to $t_{(j)}$
23	6	1	5		Censored prior to $t_{(j)}$

$t_{(j)}$	n_{j}	m_{j}	q_{j}	$\hat{S}(t_{(j)})$	
0	21	0	0	1	Fraction at $t_{(j)}$: $\Pr(T > t_{(j)} \mid T \ge t_{(j)})$
6	21	3	1	1×18/21=.8571	$\Gamma\Gamma(\Gamma > \iota(j) \mid \Gamma \geq \iota(j))$
7	17	1	1	.8571×	
10	15	1	2		
13	12	1	0		
16	11	1	3		Not available at $t_{(j)}$
22	7	1	0		failed prior to $t_{(j)}$
23	6	1	5		Censored prior to $t_{(j)}$

$t_{(j)}$	n_{j}	m_{j}	q_{j}	$\hat{S}(t_{(j)})$
0	21	0	0	1 Fraction at $t_{(j)}$: $\Pr(T > t_{(j)} \mid T \ge t_{(j)})$
6	21	3	1	$1 \times 18/21 = .8571$
7	17	1	1	.8571× <mark>16/17</mark> =.8067
10	15	1	2	
13	12	1	0	
16	11	1	3	Not available at $t_{(j)}$
22	7	1	0	failed prior to $t_{(j)}$
23	6	1	5	Censored prior to $t_{(j)}$

$t_{(j)}$	n_{j}	m_{j}	q_{j}	$\hat{S}(t_{(j)})$
0	21	0	0	1 Fraction at $t_{(j)}$:
6	21	3	1	$\Pr(T > t_{(j)} T \ge t_{(j)})$ 1×18/21=.8571
7	17	1	1	.8571×16/17=.8067
10	15	1	2	$=\frac{n_j-m_j}{n_i}$
13	12	1	0	
16	11	1	3	Not available at $t_{(j)}$
22	7	1	0	failed prior to $t_{(j)}$
23	6	1	5	Censored prior to

 $t_{(j)}$

$t_{(}$	n_j	m_{j}	q_{j}	$\hat{S}ig(t_{(j)}ig)$	
0	21	0	0	1	Fraction at $t_{(j)}$:
6	21	3	1	1×1 <mark>8/21</mark> =.8571	$\Pr(T > t_{(j)} \mid T \ge t_{(j)})$
7	17	1	1	.8571× <mark>16/17</mark> =.8067	
1	0 15	1	2	.8067× <mark>14/15</mark> =.7529	
1	3 12	1	0	.7529× <mark>11/12</mark> =.6902	
1	6 11	1	3	.6902× <mark>10/11</mark> =.6275	Not available at $t_{(j)}$
2	2 7	1	0	.6275× <mark>6/7</mark> =.5378	failed prior to $t_{(j)}$
2	3 6	1	5	.5378× <mark>5/6</mark> =.4482	Censored prior to

 $t_{(j)}$

KM-curve for group 1 (treatment)

KM Curve for Group 1 (treatment)

м

KM-estimator = Nonparametric MLE

Model

T =failure time distr. function F, density f

C =censoring time distr. function G, density g

Assume that C is independent of T

$$X = \min(T, C) \qquad \Delta = 1_{\{T \le C\}}$$

We observe n i.i.d. copies of (X, Δ)

Derivation of the likelihood for F

Claim

The density of observing (x, 1) is: f(x)(1 - G(x))

The density of observing (x, 0) is: g(x)(1 - F(x))

Proof of the Claim: Blackboard

 \Rightarrow Density of observing (x, δ) is:

$$\begin{aligned} & \left\{ f(x) \left(1 - G(x) \right) \right\}^{\delta} \cdot \left\{ g(x) \left(1 - F(x) \right) \right\}^{1 - \delta} \\ &= f(x)^{\delta} \left(1 - F(x) \right)^{1 - \delta} \cdot \left(1 - G(x) \right)^{\delta} g(x)^{1 - \delta} \end{aligned}$$

М

 \Rightarrow The likelihood for F and G of n i.i.d. observations $(x_1, \delta_1), ..., (x_n, \delta_n)$ is:

$$\prod_{i=1}^{n} f(x_i)^{\delta_i} (1 - F(x_i))^{1 - \delta_i} (1 - G(x_i))^{\delta_i} g(x_i)^{1 - \delta_i}$$

T and C independent \Rightarrow Ignore part that involves G

In order to find the nonparametric maximum likelihood estimator \widehat{F}_n , we need to maximize this expression over all possible distribution functions F (with corresponding density f).

Optimization problem

$$\sup_{F\in\mathcal{F}}L_n(F)$$

where \mathcal{F} is the class of all distribution functions on \mathbb{R} and

$$L_n(F) = \prod_{i=1}^n f(x_i)^{\delta_i} (1 - F(x_i))^{1 - \delta_i}$$

But: Problem is not well-defined!

M

Solution: Let *f* be a density w.r.t. counting measure on the observed failure times (instead of a density w.r.t. Lebesgue measure)

 \Rightarrow Replace $f(x_i)$ by $F(\{x_i\}) = S(\{x_i\})$, the jump of the distribution / survival function at x_i

Parametrizing everything in terms of the survival function S = 1 - F:

$$\Rightarrow L_n(F) = \prod_{i=1}^n S(\{x_i\})^{\delta_i} S(x_i)^{1-\delta_i}$$

And \hat{S} satisfies

 $L_n(\hat{S}) = \max_{S \in \mathcal{S}} L_n(S)$, where S is the space of all survival functions

One can show that the Kaplan-Meier estimator maximizes the likelihood ⇒ KM-estimator is the NPMLE

Comparison of KM Plots for Remission Data

KM-Curves for Remission Data

```
> time1 <-
c(6,6,6,7,10,13,16,22,23,6,9,10,11,17,19,20,25
,32,32,34,35)
> status1 <-
> time2 <-
c(1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,
22,23)
> status2 <-
> fit1 <- survfit(Surv(time1, status1) ~ 1)</pre>
> fit2 <- survfit(Surv(time2, status2) ~ 1)</pre>
> plot(fit1,conf.int=0, col = 'blue', xlab =
'Time (weeks)', ylab = 'Survival Probability')
> lines(fit2, col = 'red')
> legend(21,1,c('Group 1 (treatment)', 'Group
2 (placebo)'), col = c('blue', 'red'), lty = 1)
> title(main='KM-Curves for Remission Data')
```


→ Question: Do we have any reason to claim that group 1 (treatment) has better survival prognosis than group 2?

3 The Log-Rank Test

- We look at 2 groups → extensions to several groups possible
- When are two KM curves statistically equivalent?
 - → testing procedure compares the two curves
 - → we don't have evidence to indicate that the true survival curves are different
- Nullhypothesis
 - H_0 : no difference between (true) survival curves
- Goal: To find an expression (depending on the data) from which we know the distribution (or at least approximately) under the nullhypothesis

Derivation of test statistic

Remission data: n=42

#	failures	# in ri	sk set	
$t_{(j)}$	m_{1j}	m_{2j}	n_{1j}	n_{2j}
1	0	2	21	21
2	0	2	21	19
3	0	1	21	17
4	0	2	21	16
5	0	2	21	14
6	3	0	21	12
7	1	0	17	12
8	0	4	16	12
10	1	0	15	8
11	0	2	13	8
12	0	12	12	6
13	1	0	12	4
15	0	1	11	4
16	1	0	11	3
17	0	1	10	3
22	1	1	7	2
23	1	1	6	1

Expected cell counts:

$$e_{1j} = \left(\frac{n_{1j}}{n_{1j} + n_{2j}}\right) \times \left(m_{1j} + m_{2j}\right)$$

$$\uparrow \qquad \qquad \uparrow$$
Proportion # of failures over both groups

$$e_{2j} = \left(\frac{n_{2j}}{n_{1j} + n_{2j}}\right) \times \left(m_{1j} + m_{2j}\right)$$

EXAMPLE

Expanded Table (Remission Data)

		# failu	ires	# in r	isk set	# expe	ected	Observed-	-expected
j	$t_{(j)}$	m_{1j}	m_{2j}	n_{1j}	n_{2j}	$\overline{e_{1j}}$	e_{2j}	$m_{1j}-e_{1j}$	$m_{2j}-e_{2j}$
1	1	0	2	21	21	$(21/42) \times 2$	$(21/42) \times 2$	-1.00	1.00
2	2	0	2	21	19	$(21/40) \times 2$	$(19/40) \times 2$	-1.05	1.05
3	3	0	1	21	17	$(21/38) \times 1$	$(17/38) \times 1$	-0.55	0.55
4	4	0	2	21	16	$(21/37) \times 2$	$(16/37) \times 2$	-1.14	1.14
5	5	0	2	21	14	$(21/35) \times 2$	$(14/35) \times 2$	-1.20	1.20
6	6	3	0	21	12	$(21/33) \times 3$	$(12/33) \times 3$	1.09	-1.09
7	7	1	0	17	12	$(17/29) \times 1$	$(12/29) \times 1$	0.41	-0.41
8	8	0	4	16	12	$(16/28) \times 4$	$(12/28) \times 4$	-2.29	2.29
9	10	1	0	15	8	$(15/23) \times 1$	$(8/23) \times 1$	0.35	-0.35
10	11	0	2	13	8	$(13/21) \times 2$	$(8/21) \times 2$	-1.24	1.24
11	12	0	2	12	6	$(12/18) \times 2$	$(6/18) \times 2$	-1.33	1.33
12	13	1	0	12	4	$(12/16) \times 1$	$(4/16) \times 1$	0.25	-0.25
13	15	0	1	11	4	$(11/15) \times 1$	$(4/15) \times 1$	-0.73	0.73
14	16	1	0	11	3	$(11/14) \times 1$	$(3/14) \times 1$	0.21	-0.21
15	17	0	1	10	3	$(10/13) \times 1$	$(3/13) \times 1$	-0.77	0.77
16	22	1	1	7	2	$(7/9) \times 2$	$(2/9) \times 2$	-0.56	0.56
17	23	1	1	6	1	$(6/7) \times 2$	$(1/7) \times 2$	-0.71	0.71
Tota	als	9	21)			19.26	10.74	-10.26	+10.26

$$O_i - E_i = \sum_{j=1}^{\# failure\ times} (m_{ij} - e_{ij})$$

$$O_1 - E_1 = -10.26$$

$$O_2 - E_2 = 10.26$$

Log-rank statistic =
$$\frac{(O_2 - E_2)^2}{Var(O_2 - E_2)}$$

Remark: We could also work with $O_1 - E_1$ and would get the same statistic! Why?

M

Distribution of log-rank statistic

 H_0 : no difference between survival curves

Log-rank statistic for two groups =
$$\frac{(O_2 - E_2)^2}{Var(O_2 - E_2)} \sim \chi_1^2$$

Idea of the Proof:

- If X is standard normal disitributed then X^2 has a χ^2 distribution with 1 df (assuming X to be one-dim)
- Set $X = \frac{O_2 E_2}{\sqrt{Var(O_2 E_2)}}$
- Then *X* is standardized and appr. normal distributed for large samples
- Hence X^2 , which is exactly our statistic, has appr. a χ^2 distribution.

Log-Rank Test for Remission data

R-code

Result

p-value is the probability of obtaining a test statistic at least as extreme as the one that was actually observed!

What does this tell us?

The Log-Rank Test for Several Groups

- \blacksquare H_0 : All survival curves are the same
- Log-rank statistics for > 2 groups involves variances and covariances of $O_i E_i$
- G (\geq 2) groups: log-rank statistic $\sim \chi^2$ with G-1 df

Remarks

Alternatives to the Log-Rank Test

Wilcoxen

Tarone-Ware

Peto

Flemington-Harrington

Variations of the log rank test, derived by applying different weights at the jth failure time

Weighting the Test statistic:

$$\frac{\left(\sum_{j} w(t_{j})(m_{ij} - e_{ij})\right)^{2}}{Var\left(\sum_{j} w(t_{j})(m_{ij} - e_{ij})\right)}$$

Weight at jth failure time

Remarks

- Choosing a Test
 - → Results of different weightings usually lead to similar conclusions
 - → The best choice is test with most power
 - → There may be a clinical reason to choose a particular weighting
 - → Choice of weighting should be a priori! Not fish for a desired p-value!

м

Stratified log rank test

- Variation of log rank test
- Allows controlling for additional ("stratified") variable
- Split data into stratas, depending on value of stratified variable
- Calculate O E scores within strata
- Sum O E across strata

м

Stratified log rank test - Example

- Remission data
- Stratified variable: 3-level variable (LWBC3) indicating low, medium, or high log white blood cell count (coded 1, 2, and 3, respectively)

->1wbc3 = 1					
rx	Events observed	Events expected			
+					
0	0	2.91			
1	4	1.09			
Total ∣	//	4.00			

->1wbc3 = 2					
	Events	Events			
rx	observed	expected			
+					
0	5	7.36			
1	5	2.64			
+					
Total	10	10.00			

->lwbc3	= 3	
1	Events	Events
rx	observed	expected
+		
0	4	6.11
1	12	9.89
+		
Total	16	16.00

-> Total		
		Events
	Events	expected
rx	observed	(*)
+		
0	9	16.38
1	21	13.62
+		
Total	30	30.00

(*) sum over calculations within lwbc3 chi2 (1) = 10.14, Pr > chi2 = 0.0014

Treated Group: rx = 0Placebo Group: rx = 1

Recall: Non-stratified test $\rightarrow \chi^2$ -value of 16.79 and corresponding p-value rounded to 0.0000

10

Stratified Log-Rank Test for Remission data

R-code

```
> data <- read.table("http://www.sph.emory.edu/~dkleinb/surv2datasets/anderson.dat")
> lwbc3 <-
c(1,1,1,2,1,2,2,1,1,1,3,2,2,2,2,2,3,3,2,3,3,1,2,2,1,1,3,3,1,3,3,2,3,3,3,2,3,3,3,2,3)
> fit <- survdiff(Surv(data$V1,data$V2)~data$V5+strata(lwbc3))</pre>
```

Result

M

Stratified vs. unstratified approach

Log rank unstratified

$$O_i - E_i = \sum_j (m_{ij} - e_{ij})$$

 $i = \text{group } \#, \quad j = jth \text{ failure time}$

Log rank stratified

$$O_i - E_i = \sum_{s} \sum_{j} (m_{ijs} - e_{ijs})$$

Stratified or unstratified (G groups) Under H₀:

log rank statistic $\sim \chi^2$ with G - 1 df

м

Stratified vs. unstratified approach

Log rank unstratified

$$O_i - E_i = \sum_j (m_{ij} - e_{ij})$$

 $i = \text{group } \#, \quad j = jth \text{ failure time}$

Log rank stratified

$$O_i - E_i = \sum_{s} \sum_{j} (m_{ijs} - e_{ijs})$$

i = group #, j = jth failure time,s = stratum #

Stratified or unstratified (G groups) Under H₀:

log rank statistic $\sim \chi^2$ with G-1 df

Limitation: Sample size may be small within strata

м

Stratified vs. unstratified approach

Log rank unstratified

$$O_i - E_i = \sum_j (m_{ij} - e_{ij})$$

i = group #, j = jth failure time

Log rank stratified

$$O_i - E_i = \sum_{s} \sum_{j} (m_{ijs} - e_{ijs})$$

i = group #, j = jth failure time,s = stratum #

Stratified or unstratified (G groups) Under H₀:

log rank statistic $\sim \chi^2$ with G - 1 df

Limitation: Sample size may be small within strata

In next chapter: controlling for other explanatory variables!

References

- KLEINBAUM, D.G. and KLEIN, M. (2005). Survival Analysis. A self-learning text. Springer.
- Maathuis, M. (2007). Survival analysis for interval censored data. Part I.