Probability and Statistics

Department of Mathematics

Questions

Q1. Descriptive Statistics & Probability

- (a) Given the oxidation-induction time data (in minutes): 87, 103, 105, 130, 132, 145, 160, 180, 195, 211
 - Calculate the sample variance and standard deviation.
 - Convert these measures to hours.

(6 marks)

- (b) For events A and B:
 - Prove $P(A \cap B') = P(A) P(A \cap B)$ using axioms of probability.
 - If P(A) = 0.4, P(B) = 0.3, and $P(A \cup B) = 0.6$, find $P(A \cap B)$.

(6 marks)

(c) Construct a stem-and-leaf plot for the data: 31, 35, 36, 36, 37, 38, 40, 40, 54, 55, 58, 62, 66, 66, 67, 68, 75 Identify two key features of the distribution. (4 marks)

(d) Find the median and quartiles for the dataset:

$$16, 20, 26, 30, 35, 39, 45, 46, 48, 50$$
 (4 marks)

Q2. Probability Distributions

- (a) A discrete random variable Y represents the trial number of the first success in independent Bernoulli trials with success probability $p = \frac{1}{3}$.
 - Derive the PMF of Y.
 - Sketch the line graph of the PMF for Y = 1, 2, 3, 4.

(6 marks)

(b) For a continuous random variable X with CDF:

$$F(x) = \begin{cases} 0 & x < 0\\ \frac{3}{2}(x - \frac{x^3}{3}) & 0 \le x \le 1\\ 1 & x > 1 \end{cases}$$

- Find E(X) and V(X).
- Calculate P(0.2 < X < 0.8).

(8 marks)

(c) Prove that for any random variable X and constants a, b:

$$V(aX + b) = a^2V(X)$$

(6 marks)

Q3. Bayesian Inference & Normal Distribution

- (a) An aircraft emergency locator has:
 - 70% detection rate (P(D) = 0.7).
 - 60% of detected planes have locators (P(L|D) = 0.6).
 - 10% of undetected planes have locators (P(L|D') = 0.1).

Find the probability that a plane with a locator was *not* detected (P(D'|L)). (6 marks)

- (b) Reaction times X (in seconds) follow $N(1.25, 0.46^2)$. Calculate:
 - $P(1.00 \le X \le 1.75)$.
 - The time t such that $P(X \le t) = 0.99$.

(6 marks)

- (c) Water dispenser output $X \sim N(64, 0.78^2)$ oz. Find the cutoff c where only 0.5% of outputs exceed c. (4 marks)
- (d) Visitors to a store make purchases with probabilities:
 - $\bullet~$ Day visitors: 10%
 - One-night visitors: 30%
 - Two-night visitors: 20%

Given that a purchase was made, what is the probability it was by a day visitor? (4 marks)

Q4. Correlation & Regression

- (a) For asparagus quality data (n = 10):
 - Given $\sum x = 707$, $\sum y = 23.59$, $\sum xy = 1759.11$, $\sum x^2 = 54961$, $\sum y^2 = 56.3135$, compute the correlation coefficient r.
 - Interpret the strength and direction of the relationship.

(6 marks)

(b) Cheese elongation data (n = 7) yields the regression line:

$$\hat{y} = 88.31 + 1.208x$$

- Predict elongation (%) when x = 70.
- If elongation is measured in decimals (e.g., 1.72 instead of 172%), how does this affect the regression slope?

(6 marks)

- (c) State the *invariance property* of the correlation coefficient and verify it for part (a) if shear force is converted to pounds. (4 marks)
- (d) For the dataset:

Q5. Sampling Distributions & Binomial Models

- (a) Piston ring diameters $X \sim N(12, 0.04^2)$ cm. For n = 16:
 - Find $E(\bar{X})$ and $\sigma_{\bar{X}}$.
 - Calculate $P(\bar{X} > 12.01)$.

(6 marks)

- (b) Credit card purchases $X \sim \text{Binomial}(10, 0.75)$:
 - Compute E(X) and V(X).
 - Find $P(|X \mu| \le \sigma)$.

(8 marks)

(c) Prove that for $X \sim \text{Binomial}(n, p)$:

$$E(X) = np$$

(6 marks)