树与二叉树

胡船长

初航我带你, 远航靠自己

本章题目

- 1-应试. Leetcode-589:N叉树的前序遍历
- 2-应试. Leetcode-105:从前序遍历与中序遍历构造二叉树
- 3-应试. Leetcode-102:二叉树的层序遍历
- 4-应试. Leetcode-226:翻转二叉树
- 5-校招. Leetcode-107:二叉树的层序遍历 Ⅱ
- 6-校招. Leetcode-103:二叉树的锯齿形层序遍历
- 7-校招. 剑指 Offer 26: 树的子结构
- 8-竞赛. HZOJ-287: 合并果子
- 9-竞赛. HZOJ-245: 货仓选址

本期内容

- 一. 计算机中的树形结构
- 二. 二叉树:结构讲解
- 三. 二叉树:遍历与线索化
- 四. 二叉树的广义表表示法
- 五. 最优变长编码: 哈夫曼编码

一. 计算机中的树形结构

计算机中的树形结构

现实中的树

计算机中的树

计算机中的树形结构

现实中的树

计算机中的树

树-结构定义


```
typedef struct Node{
    int data;
    struct Node *next;
}Node, *LinkedList;
```

树-结构定义


```
typedef struct Node{
    int data;
    struct Node *next;
}Node, *LinkedList;
```



```
typedef struct Node{
    int data;
    struct Node *next[3];
} Node, *Tree;
```

树-深度、高度和度

- 1、树的深度(高度)为5
- 2、节点4的深度为1,高度为3
- 3、节点2的度为1,节点1的度为3
- 4、节点数量等于边数+1

树结构: 深入理解

树的节点代表【集合】,树的边代表【关系】

进入序列

退出序列

树-遍历总结

栈	树的深度遍历、深度优先搜索(图算法基础)
队列	树的层序遍历,广度优先搜索(图算法基础)

二. 二叉树: 结构讲解

二叉树: 结构讲解

二叉树: 特殊种类

完全二叉树 (complete binary tree) (full binary tree)

满二叉树

完美二叉树 (perfect binary tree)

二叉树: 完全二叉树

完全二叉树
(complete binary tree)

1、编号为 i 的子节点:

左孩子编号: 2 * i

右孩子编号: 2 * i + 1

2、可以用连续空间存储(数组)

作用一:理解高级数据结构的基础

作用二: 练习递归技巧的最佳选择

设计/理解递归程序:

- 1. 数学归纳法 → 结构归纳法
- 2. 赋予递归函数一个明确的意义
- 3. 思考边界条件
- 4. 实现递归过程

二叉树的前序遍历:

- 1. 函数意义: 前序遍历以 root 为根节点的二叉树
- 2. 边界条件: root 为空时不需要遍历
- 3. 递归过程: 前序遍历左子树, 前序遍历右子树

作用三: 左孩子右兄弟表示法节省空间

```
39
40
                    node
41
42
43
44
45
46
                 <- parent
                  v- sibling +----+
           <- children
47
48
49
50
      TODO: Performance would benefit from a reorganization:
52
      (i) Allocate all children of a node within a single block.
53
      (ii) Keep all u stats together, and all amaf stats together.
      Currently, rave_update is top source of cache misses, and
      there is large memory overhead for having all nodes separate. */
```

```
1. vim
          #1 X
   vim
                    bash
                           #2 X
                                    bash
                                            23
39 }
40
41 Node *insert_maintain(Node *root) {
42
       if (!hasRedChild(root)) return root;
43
       if (root->lchild->color == RED && root->rchild->color == REL____
44
           if (!hasRedChild(root->lchild) && !hasRedChild(root->rchild)) return root;
45
           root->color = RED;
46
           root->lchild->color = root->rchild->color = BLACK;
47
           return root;
48
49
       if (root->lchild->color == RED) {
50
           if (!hasRedChild(root->lchild)) return root;
51
52
53
       } else {
54
           if (!hasRedChild(root=>rchild)) return root;
55
56
57
```

二叉树: 代码演示

Ol Node -_Insert(Node Froot, Int Key)

62 if (root == NIL) return getNewNode(key);

<-6班资料/X.现场撸代码/15.RBT.cpp [FORMAT=unix] [TYPE=CPP] [POS=54,30][62%] 21/09/19 - 20:21

三. 二叉树: 遍历与线索化

二叉树: 遍历

前序遍历	根左右
中序遍历	左 根 右
后序遍历	左右根

二叉树: 遍历

前序遍历		_	2	4	5	3	6	
中序遍历	4	1	2	5	1	3	6	
后序遍历	4	1	5	2	6	3	1	

二叉树:线索化

左边空指针 → 前驱

右边空指针 → 后继

前序遍历	1	2	4	5	3	6
中序遍历	4	2	5	1	3	6
后序遍历	4	5	2	6	3	1

二叉树:线索化

左边空指针→前驱

右边空指针 → 后继

中序遍历

4 2 5 1 3 6

二叉树:线索化

左边空指针 → 前驱

右边空指针 → 后继

中序遍历

4 2 5 1 3 6


```
1. vim
          #1 X
   vim
                    bash
                           #2 X
                                    bash
                                            23
39 }
40
41 Node *insert_maintain(Node *root) {
42
       if (!hasRedChild(root)) return root;
43
       if (root->lchild->color == RED && root->rchild->color == REL____
44
           if (!hasRedChild(root->lchild) && !hasRedChild(root->rchild)) return root;
45
           root->color = RED:
46
           root->lchild->color = root->rchild->color = BLACK;
47
           return root;
48
49
       if (root->lchild->color == RED) {
50
           if (!hasRedChild(root->lchild)) return root;
51
52
53
       } else {
54
           if (!hasRedChild(root=>rchild)) return root;
55
56
57
```

线索化: 代码演示

62 if (root == NIL) return getNewNode(key);

<-6班资料/X.现场撸代码/15.RBT.cpp [FORMAT=unix] [TYPE=CPP] [POS=54,30][62%] 21/09/19 - 20:21

四. 二叉树的广义表表示法

二叉树: 广义表表示法

A / A() A(B,) / A(B)A(B,C)Α Α 空树 В В

《船说:算法与数据结构》 第4章-树与二叉树

二叉树: 广义表表示法


```
1. vim
          #1 X
   vim
                    bash
                           #2 X
                                    bash
                                            23
39 }
40
41 Node *insert_maintain(Node *root) {
42
       if (!hasRedChild(root)) return root;
43
       if (root->lchild->color == RED && root->rchild->color == REL____
44
           if (!hasRedChild(root->lchild) && !hasRedChild(root->rchild)) return root;
45
           root->color = RED:
46
           root->lchild->color = root->rchild->color = BLACK;
47
           return root;
48
49
       if (root->lchild->color == RED) {
50
           if (!hasRedChild(root->lchild)) return root;
51
52
53
       } else {
54
           if (!hasRedChild(root=>rchild)) return root;
55
56
57
```

广义表: 代码演示

62 if (root == NIL) return getNewNode(key);

<-6班资料/X.现场撸代码/15.RBT.cpp [FORMAT=unix] [TYPE=CPP] [POS=54,30][62%] 21/09/19 - 20:21

五. 最优变长编码: 哈夫曼编码

传输: a-z 范围的100个字符

传输: a-z 范围的100个字符

编码方式: ASCII 编码

数据传输量: 800 bits

传输时间: 8s

传输: a-z 范围的100个字符

编码方式: 自定义

数据传输量: 500 bits

传输时间:5s

传输: a-z 范围的100个字符

编码方式: ASCII 编码

数据传输量: 800 bits

传输时间:8s

数据传输量:500 bits

传输时间:5s

前置知识: 为什么会有变长编码?

传输:a-d 范围的100个字符

其中 (a,0.5),(b,0.2),(c,0.1),(d,0.2)

前置知识: 如何衡量两套编码的优劣?

平均编码长度:

 l_i : 第 i 种字符,编码长度

 p_i : 第 i 种字符,出现概率

$$avg(l) = \sum l_i imes p_i$$

(a, 0.5), (b, 0.2)

(c, 0.1), (d, 0.2)

哈夫曼编码

哈夫曼编码生成过程:

- 1.首先,统计得到每一种字符的概率
- 2.每次将最低频率的两个节点合并成一棵子树
- 3.经过了 n-1 轮合并,就得到了一棵哈夫曼树
- 4.按照左0,右1的形式,将编码读取出来

(a, 0.5), (b, 0.2)

(c, 0.1), (d, 0.2)

哈夫曼编码

哈夫曼编码生成过程:

- 1.首先,统计得到每一种字符的概率
- 2.每次将最低频率的两个节点合并成一棵子树
- 3.经过了 n-1 轮合并,就得到了一棵哈夫曼树
- 4.按照左0,右1的形式,将编码读取出来

(a, 0.5), (b, 0.2)

(c, 0.1), (d, 0.2)

结论:哈弗曼编码,是最优的变长编码

$$2^{H-L_1} + 2^{H-L_2} + 2^{H-L_3} + \ldots + 2^{H-L_n} <= 2^H$$

$$2^{H-L_1} + 2^{H-L_2} + 2^{H-L_3} + \ldots + 2^{H-L_n} <= 2^H$$

同时除 2^H

$$\frac{1}{2^{l_1}} + \frac{1}{2^{l_2}} + \frac{1}{2^{l_3}} + \dots + \frac{1}{2^{l_n}} \le 1$$

设 $l_i' = -l_i$, 得到: $2^{l_1'} + 2^{l_2'} + \ldots + 2^{l_n'} \mathrel{<=} 1$

所以得证明公式的约束条件: $\sum 2^{l_i'}$ <= 1

证明: $\sum p_i * l_i$ 最小

又因为 $l_i' = -l_i$ 所以等价于 $-\sum p_i * l_i'$

在设 $I_i=2^{l_i'}$ => $l_i'=log_2I_i$ => $-\sum p_i*log_2I_i$

让这个式子达到最小值

同时得到:约束 $\sum I_i <= 1$

目标: $-\sum p_i * log_2 I_i$ 达到最小值

目标函数展开: $-(P_1log_2I_1 + P_2log_2I_2 + \ldots + P_nlog_2I_n)$

约束条件为 : $\sum I_i <= 1$

证明当目标函数达到最小值的时候, 想想看看什么情况下目标函数能达到最优解, 让他最小

是不是需要让括号里面尽可能大, 需要让 $\sum I_i$ = 1

目标: $-\sum p_i * log_2 I_i$ 达到最小值

目标函数展开: $-(P_1log_2I_1 + P_2log_2I_2 + \ldots + P_nlog_2I_n)$

约束条件为: $\sum I_i <= 1$

证明当目标函数达到最小值的时候, 想想看看什么情况下目标函数能达到最优解, 让他最小

是不是需要让括号里面尽可能大, 需要让 $\sum I_i$ = 1

反证: 如果 $\sum I_i < 1$ 的时候目标函数有最小的解

那么 $I_1 + I_2 + I_3 + \ldots + I_n < 1$, 但是我们可以让他变成=1

 $I_1+I_2+I_3+\ldots+I_n+I_x'=1$ 整个式子多了一个 I_x' ,并且是大于0的值

将 I_x' 加到目标函数 $-(P_1log_2I_1 + P_2log_2I_2 + \ldots + P_nlog_2I_n)$ 里面

括号里面的内容变的更大了,那么整体就变的更小了

所以得到 $\sum I_i = 1$

继续证明

目标函数: $-(P_1log_2I_1 + P_2log_2I_2 + \ldots + P_nlog_2I_n)$

当目标函数达到条件: $I_1 + I_2 + I_3 + \ldots + I_n = 1$

设
$$I_n = 1 - II$$

目标函数变成:

$$-(P_1log_2I_1 + P_2log_2I_2 + \ldots + P_nlog_2(1-II))$$

想让这个式子达到最小值,对每一项求偏导,让每一项偏导等于0

对 I_1 求偏导:

$$\frac{P_1}{I_1 ln2} - \frac{P_n}{(1 - II) ln2} = 0$$

对 I_2 求偏导:

$$\frac{P_2}{I_2 ln2} - \frac{P_n}{(1-II)ln2} = 0$$

对 I_3 求偏导:

$$\frac{P_3}{I_3 ln2} - \frac{P_n}{(1 - II) ln2} = 0$$

整理后得到:

$$\frac{P_1}{I_1} = \frac{P_2}{I_2} = \frac{P_3}{I_3} = \dots = \frac{P_n}{I_n}$$

$$P_i=I_i=2^{l_i'}=rac{1}{2^{l_i}}$$

li是编码长度, P_i 是字符概率

得到结论,编码越大,概率越小

为什么 会出一样的题目?