Index

A/B testing, 86	average link, 340
Aaron Schwartz case, 68	
AB testing, 137	Babbage, Charles, 57, 90
academic data, 66	backpropagation, 382
accuracy, 215, 228	Bacon, Kevin, 9
activation function, 380	bag of words, 14
AdaBoost, 364	bagging, 362
add-one discounting, 357	balanced training classes, 295
agglomerative cluster trees, 338	bar charts, 179
aggregation mechanisms, 83	best practices, 181
Akaike information criterion, 289,	stacked, 181
335	Barzun, Jacques, 5
algorithm analysis, 397	baseball encyclopedia, 5
Amazon Turk, 67, 84	baseline models, 210
tasks assigned, 85	for classification, 210
Turkers, 84	for value prediction, 212
American basketball players, 97	Bayes' theorem, 150, 205, 299
analogies, 312	Baysian information criteria, 289
anchoring, 82	bell-shaped, 123, 141
angular distance, 310	distribution, 101
Anscombe's Quartet, 159	bias, 202, 417
AOL, 64	lexicographic, 405
API, 65	numerical, 405
Apple iPhone sales, 34	temporal, 405
application program interfaces, 65	bias-variance trade-off, 202
area under the ROC curve, 219	big data, 391
Aristotle, 326, 327	algorithms, 397
Arrow's impossibility theorem, 84,	bad data, 392
114	statistics, 392
artifacts, 69	big data engineer, 4
Ascombe quartet, 272	big oh analysis, 397
asking interesting questions, 4	binary relations, 320
associativity, 244	binary search, 398
autocorrelation, 46	binomial distribution, 123

hisinformatician 50	aralization 012
bioinformatician, 50	evaluating, 213
Blumenstock, Josh, 27	one-vsall, 298
Body Mass Index, 96, 177	perfect, 218
Bonferroni correction, 141	Clinton, Bill, 326
boosting, 363, 364	Clinton, Bill], 326
algorithms, 364	closest pair of points, 398
bootstrapping, 374	cloud computing services, 410
Borda's method, 108	cluster
box plots, 175	conductance, 343
Box, George, 201	distance, 337
box-and-whisker plots, 176	clustering, 327, 373
bubble plots, 179	agglomerative, 336
bupkis, 391	applications, 328
Bush, George W., 326	biological, 337
C 1 50	cut-based, 341
C-language, 59	k-means, 330
cache memory, 401	single link, 339
canonical representation, 400	visualization of, 337
canonization, 400	clusters
CAPTCHAs, 89	number of, 333
Carroll, Lewis, 423	organization of, 337
cartograms, 189	Clyde, 111, 112
Center for Disease Control, 204	coefficient vector, 270
center of mass, 332	Cohen's d, 136
centrality measures, 34	collaborative filtering, 9
centroids, 331	communication, 408, 416
character code unification, 74	commutativity, 243
characteristic equation, 256	company data, 64
characterizing distributions, 39	- *
	computer scientist, 2
chart types, 170	conditional probability, 30, 31
bar charts, 179	Condorcet jury theorem, 84
data maps, 187	confusion matrix, 214, 220
dot and line plots, 174	connected components, 324
histograms, 183	contingency table, 214
pie charts, 179	convex, 280
scatter plots, 177	convex hull, 368
tabular data, 170	coordination, 408
cicada, 46	correlation
classification, 16, 210, 289	analysis, 40
binary, 290, 314	interpretation, 43
multi-class, 297	significance, 45
regression, 290	correlation and causation, 45, 135
classification and regression trees,	cosine similarity, 309
357	cross validation, 227
classifiers	advantages, 227
balanced, 217	CrowdFlower, 67, 84, 86
Dalanceu, 217	O10wur 10wer, 01, 04, 00

crowdsourcing, 67, 80	data sources, 64
bad uses, 87	data visualization, 155
crowdsourcing services, 84	data-driven, 156
cryptographic hashing, 400	models, 207
CSV files, 62	de Méré, Chevalier, 29
cumulative density function, 33,	decision boundaries, 291
132, 186	decision tree classifiers, 299, 357
currency conversion, 75	decision trees, 357
cut, 343	advantages, 358
,	construction, 359
damping factor, 325	ensembles of, 362
Darwin, Charles, 81	deep learning, 202, 352, 377
data, 237, 391	models, 209
quantitative vs. categorical, 15	network, 378
big vs. little, 15	DeepWalk, 385
cleaning, 69	degree of vertex, 325
collecting, 64	depth, 378
compatibility, 72	derivative, 281
errors, 69	partial, 282
for evaluation, 225	second, 281
for testing, 225	descriptive statistics, 34
for training, 225	deterministic sampling algorithms
logging, 68	404
properties, 14	developing scoring systems, 99
scraping, 67	dictionary maintenance, 399
structured, 14	DiMaggio, 148
types, 14	dimension reduction, 277, 376
unstructured, 14	dimensional egalitarianism, 308
visualizing, 155	dimensions, 384
data analysis, 404	dinosaur vertebra, 78
data centrism, 2	directed acyclic graph, 110
data cleaning, 376	directed graph, 321
data errors, 417	discounting, 209, 356
data formats, 61	disk storage, 401
data hygiene	distance methods, 303
evaluation, 225	distance metrics, 304
data munging, 57	L_k , 305
data parallelism, 409	euclidean, 305
data partition, 404	manhattan distance, 305
data processing, 10	maximum component, 305
data reduction, 329	distances, 319
data science, 1	measuring, 303
	<u> </u>
languages, 57 models, 210	distributed file system, 396
	distributed processing, 407
data science television, 17 data scientist, 2	divide and conquer, 411 DNA sequences, 402
uata scientist, 2	DNA sequences, 402

dot product, 241	experiment, 27
duality, 268	exploratory data analysis, 155, 156
duplicate removal, 400	visualization, 160
, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,
E-step, 335	F-score, 216
edge cuts, 324	Facebook, 21
edges, 319	false negatives, 214
effect size, 136	false positives, 214
eigenvalues, 255	fast Fourier transform, 47
computation, 256	fault tolerance, 408
decomposition, 257	feature engineering, 375
properties of, 255	feature scaling, 274
Elizabeth II, 326	sublinear, 275
Elo rankings, 104	z-scores, 275
embedded graph, 323	features
embedding, 321	highly-correlated, 277
Emoji Dick, 86	Fermat, Pierre de, 30
Engels, Friedrich, 391	Feynman, Richard, 229
ensemble learning, 363	FFT, 47
entropy, 310	filtering, 403
equations	financial market, 126
determined, 251	financial unification, 75
underdetermined, 251	fit and complexity, 288
error, 202, 221	FoldIt, 89
absolute, 221	football, 111
detection, 155	American players, 97
mean squared, 223, 331	game prediction, 111
relative, 222	forecasting
residual, 269	time series, 212
root mean squared, 223	formulation, 354
squared, 222	Freedom of Information Act, 12, 65
statistics, 221	frequency counting, 400
errors vs. artifacts, 69	frequency distributions, 184
ethical implications, 416	furthest link, 340
Euclidean metric, 303	
evaluation	Galton, Francis, 81
environments, 224	games with a purpose, 88
statistics, 214	gamification, 88
event, 28	garbage in, garbage out, 3, 69
Excel, 59	Gates, Bill, 130
exclusive or, 361	Gaussian
exercises, 23, 53, 90, 119, 151, 199,	elimination, 250
234, 263, 301, 346, 388,	Gaussian distribution, 124
419	Gaussian noise, 125
expectation maximization, 335	General Sentiment, 20
expected value, 28	genius, 19

geometric mean, 35	hedge fund, 1
geometric point sets, 238	hierarchy, 298
geometry, 240	higher dimensions, 307, 370
Gini impurity, 360	histograms, 32, 183, 222
Global Positioning System, 12	best practices, 186
gold standards, 99	bin size, 184
good scoring functions, 101	
Goodhart's law, 303	Hitler, Adolf, 326
Goodhart, Charles, 303	HTML, 67
	hypothesis development, 328
Google	hypothesis driven, 156, 392
AlphaGo, 372	Imagenet, 379
TensorFlow, 377	IMDb, 7
Google Flu Trends, 394	imputation
Google News, 219	_
Google Ngrams, 10	by interpolation, 78
Google Scholar, 66	by mean value, 77
government data, 65	by nearest neighbor, 78
gradient boosted decision trees,	by random value, 77
359, 366	heuristic-based, 77
gradient descent search, 281	independence, 30, 123, 354
graph embeddings, 384	inflation rates, 76
graph theory, 323	information gain, 360
graphs, 238, 319, 321	information theoretic entropy, 360
cuts, 342	infrastructure, 396
dense, 322	inner product, 243
directed, 321	institutional review board, 88
embedded, 323	Internet Movie Database, 7
labeled, 323	Internet of Things, 68
non-simple, 322	inverse transform sampling, 132
simple, 322	IPython, 61
sparse, 322	IQ testing, 89
topological, 323	
undirected, 321	Jaccard distance, 341
unlabeled, 323	Jaccard similarity, 341
unweighted, 322	Jackson, Michael [136], 262
weighted, 320, 322	Java, 59
Gray, Dorian, 251	Jesus, 326
grid indexes, 315	JSON, 63
grid search, 409	1
77	k-means clustering, 343, 409
Hadoop distributed file system, 414	k-mediods algorithm, 332
Hamming, Richard W., 1	k-nearest neighbors, 313
hash functions, 399	Kaggle, viii
applications, 399	kd-trees, 316
hashing, 399	kernels, 371
heatmaps, 178	Kolmogorov-Smirnov test, 139

Kruskal's algorithm, 339	algorithms, 375
Kullback-Leibler divergence, 311	classifiers, 85
,	models, 208
labeled graphs, 323	main memory, 401
Lang, Andrew, 267	major league baseball, 6
Laplace, 356	MapReduce, 407, 410
Laplacian, 343	programming, 412
large-scale question, 9	MapReduce runtime system, 415
latent Dirichlet allocation, 373	matchings, 324
learning rate, 283, 383	Mathematica, 59, 61
learning to rank, 119	Matlab, 58
least squares regression, 270	matrix, 14, 237, 270, 373
lie factor, 164	addition, 242
Lincoln, Abraham, 242	adjacency, 246, 320
line charts, 174	covariance, 245, 257, 271
advantages, 174	determinant, 249, 254
best practices, 175	eigenvalues, 255
line hatchings, 177	eigenvectors, 255
linear algebra, 237	factoring, 252
power of, 237	identity, 246, 248
linear algebraic formulae	inversion, 248
interpretation, 238	linear combinations of, 242
linear equation, 238	multiplication, 243
linear programming, 369	multiplicative inverse of, 249
linear regression, 212, 267	non-singular, 249
error, 269	permutation, 247
solving, 270	rank, 251
linear support vector machines, 369	reasons for factoring, 252
linear systems, 250	rotation, 248
Linnaeus, Carl, 326	singular, 249
live data, 395	transpose of, 242
locality, 401	triangular, 254
locality sensitive hashing, 317	underdetermined, 256
logarithm, 47	matrix multiplication, 243, 398
logistic classification	applications, 244
issues, 295	matrix operations
logistic function, 381	visualizing, 241
logistic regression, 366	maximum margin separator, 367
logit, 381	mean, 34, 83, 125, 132, 138, 212,
logit function, 106, 292	227, 403
loss function, 280, 294	arithmetic, 35
LU decomposition, 254	geometric, 35
lumpers, 329	measurement error, 125
	median, 35, 83, 132, 212, 403
M-step, 335	mergesort, 398
machine learning, 351	metadata, 7

method centrism, 2	Monte Carlo
metric, 304	sampling, 134
identity, 304	simulations, 229
positivity, 304	Mosteller, Frederick, 121
symmetry, 304	multiclass systems
triangle inequality, 304	evaluating, 219
minima	multiedge, 322
global, 284	multinomial regression, 299
local, 284	multiplying probabilities, 48
minimum spanning tree, 324, 339	,,,
missing values, 76, 376	naive Bayes, 354, 363
mixture model, 333	name unification, 74
Moby Dick, 86	Napoleon, 326
mode, 36	NASA, 73
model-driven, 417	National Football League, 112
modeling, 201, 328, 416	natural language processing, 20
philosophies of, 201	nearest centroid, 340
principles for effectiveness, 203	nearest neighbor, 339, 397
models	nearest neighbor classification, 311
ad hoc, 208	advantages, 311
baseline, 210	nearest neighbors
blackbox, 206	finding, 315
data science, 210	negative class, 213
data-driven, 207	Netflix prize, 9
deep learning, 209	network
descriptive, 206	depth, 379
deterministic, 208	network methods, 303
evaluating, 212	networks, 109, 238, 319, 378
first-principle, 207	induced, 320
flat, 209	learning, 379
Google's forecasting, 204	neural networks, 377
hierarchical, 209	new data set, 156
linear, 206	New York, 277
live, 204	Nixon, Richard, 326
machine learning, 208	NLP-based system, 21
neural network, 206	no free lunch theorem, 353
non-linear, 206	node
overfit, 203	bias of, 381
simplifying, 286	non-linear classifiers, 366
simulation, 229	non-linear functions
stochastic, 208	fitting, 273
taxonomy of, 205	non-linear support vector
underfit, 202	machines, 369
Moneyball, 5	non-linearity, 358, 377, 380
monkey, 215	norm, 287
monotonic, 307	normal, 125
110110001110, 001	1101111011, 120

normal distribution, 79, 109, 124,	periodic table, 188
141	Perl, 58
implications, 126	permutation, 246
normality testing, 141	randomly generating, 147
normalization, 103, 376	tests, 145
normalizing skewed distribution, 49	personal wealth, 130
norms, 309	pie charts, 179
NoSQL databases, 415	bad examples, 183
notebook environments, 59	best practices, 181
numerical conversions, 73	point spread, 112
Ohama Barada 326	points
Obama, Barack, 326	rotating, 248
Obama, Barack [91], 327	points vs. vectors, 309
Obama, Barack], 326	Poisson distribution, 127
Occam's razor, 201, 211, 286	position evaluation function, 372
Occam, William of, 202	positive class, 213
Oh G-d, 177	power law distribution, 129
optimization	power law function, 276
local, 284	precision, 3, 215, 221
Oracle of Bacon, 9	prefetching, 401
outlier, 118	principal components, 260
detection, 78	analysis, 260
outlier detection, 329	prior probability, 354
outliers	privacy, 418
removing, 272	probabilistic, 203
overfitting, 202, 296	probability, 27, 29, 354
overlap percentage, 137	probability density function, 32,
ownership, 417	132, 186
	probability distribution, 32
p-values, 145	probability of an event, 28
packing data, 402	probability of an outcome, 28
PageRank, 100, 111, 325	probability vs. statistics, 29
pairwise correlations, 158	program flow graph, 322
parallel processing, 407	programming languages, 57
parallelism, 406	protocol buffers, 63
parameter fitting, 279	proxies, 99
parameter spaces	psychologists, 89
convex, 280	Pubmed, 70
partition function, 299	pure partition, 360
Pascal's triangle, 123	Pythagorean theorem, 306
Pascal, Blaise, 30	Python, 58, 67
paths, 246	
Pearson correlation coefficient, 41,	Quant Shop, 17
136	
penalty function, 293	R, 58
performance of models, 39	Rand index, 341

1 1: 207	1
random access machine, 397	scalar
random sampling, 403, 406	multiplication, 242
random variable, 28	scale invariant, 132
ranking systems	scales
class rank, 100	Likert, 298
search results, 100	ordinal, 297
top sports teams, 100	scaling constant, 293
university rankings, 100	scatter plots, 98, 177
rankings, 95	best practices, 177
digraph-based, 109	three-dimensional, 179
historical, 117	Schaumann, Jan, 351
merging, 108	scientist, 2
techniques, 104	scores, 95
ratio, 48	threshold, 218
ray	scores vs. rankings, 100
unit, 241	scoring functions, 95
Reagan, Ronald, 326	security, 418
rearrangement operations, 238	self-loop, 322
recall, 216, 221	semi-supervised learning, 374
receiver-operator characteristic	Shakespeare, William, 326
curve, 218	sharp, 215
rectified linear units, 381	Sheep Market, 86
rectifier, 381	shortest paths, 324
redundancy, 393	signal to noise ratio, 37
regression, 16	significance level, 139
application, 359	Silver, Nate, 203
for classification, 290	similarity graphs, 341
LASSO, 287	similarity matrix, 342
logistic, 289, 292	simple graph, 322
ridge, 286	single-command program, 224
regression models, 272	single-pass algorithm, 402
removing outliers, 272	singular value decomposition, 258
regularization, 286, 376	sketching, 403
reinforcement learning, 372	skew, 413
Richter scale, 131	Skiena, Len, ix
right-sizing training data, 404	small evaluation set, 226
road network, 322	social media, 392
robustness, 3, 96, 359	analysis, 21
Roosevelt, Franklin D., 326	data, 394
Rota, Gian-Carlo, 237	Social Network–movie, 105
rtota, Gran-Carlo, 291	spam, 393
sabermetrics, 22	spam filtering, 393
sample space, 27	Spearman rank correlation
sampling, 132, 403, 404	coefficient, 42, 108
beyond one dimension, 133	Spears, Britney [566], 262
by truncation, 404	spectral clustering, 343
by 11 unication, 404	specurar crusicring, 949

spidering, 67	topological sorting, 110, 324
splitters, 329	transparency, 417
sports performance, 38	tree, $298, 336$
SQL databases, 63	trees
standard deviation, 36, 125, 132,	agglomerative, 337
138, 227, 403	true negatives, 214
statistical analysis, 121, 230	true positives, 214
statistical distributions, 122	truncation, 405
statistical proxy, 7	Tufte, Edward, 155, 162
statistical significance, 135	Twitter, 392, 404, 405
statistics, 29	, , ,
stochastic gradient descent, 285,	U.S. presidential elections, 187, 203
296, 382	uncertainty, 175
stock market, 37, 79, 126	undirected graph, 321
Stony Brook University, 20	uniform distribution, 406
stop words, 414	uniform sampling, 405
storage hierarchy, 401	uninvertible, 400
streaming, 402	unit conversions, 72
summary statistics, 157, 159	UNIX time, 75
supervised learning, 372	unlabeled graphs, 323
supervision, 372	unrepresentative participation, 393
degrees of, 372	unsupervised learning, 372
support vector machines, 352, 366	unweighted graph, 322
support vectors, 368	urban transportation network, 11
Surowiecki, James, 82	
sweat equity, 66	validation data, 95
	value prediction, 210
T-test, 137	value prediction models
tangent line, 282	evaluating, 221
target scaling, 274	variability measures, 36
sublinear, 276	variance, 36, 202, 403
taxi	interpretation, 37
records from New York, 11	variation coefficient, 137
tipping model, 286	variety, 394
tipping rate, 13, 277	vectors, 240
taxi driver, 277	unit, 240
terms of service, 68	velocity, 394
test statistic, 138	veracity, 395
text analysis, 253	vertex, 319
theory of relativity, 144	vertices, 319
Tikhonov regularization, 287	visualization, 404
time unification, 75	chart types, 170
Titanic, 183, 358	critiquing, 189
top-k success rate, 219	interactive, 195
topic modeling, 373	tools, 160
topological graph, 323	visualization aesthetic, 162

chartjunk, 162, 165
colors, 163, 168
data-ink ratio, 162, 163
lie factor, 162, 164
repetition, 163, 169
scaling and labeling, 162, 167
volume, 394
Voronoi diagrams, 315
voting, 363
with classifiers, 363

web crawling, 68 weighted average, 84

weighted graph, 322 Welch's t-statistic, 138 Wikipedia, 20, 79, 116, 326 wisdom, 19 wisdom of crowds, 81 Wolfram Alpha, 59, 144 word embeddings, 254, 383 word2vec, 384

XML, 62

Z-score, 103, 308, 376 Zipf's law, 131, 357