

FRISHAUF, HOLTZ, GOODMAN, LANGER & CHICK, P.C.
ATTORNEYS AT LAW

Express Mail Mailing Label
No.: EL 615 576 192 US

767 THIRD AVENUE, NEW YORK, N.Y. 10017-2023

Date of Deposit: June 27, 2000

I hereby certify that this paper is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Commissioner of Patents and Trademarks, Washington, D.C. 20231

Barbara Villani
Barbara Villani

Attorney Docket No. 00465/LH

Pursuant to 37 CFR 1.53(b), transmitted herewith for filing is the patent application of

Inventor(s): **Takashi KONDOH**

Title: "INFORMATION PROCESSING SYSTEM AND CAMERA SYSTEM"

JC858 U.S. PTO
06/27/00
004652

Priority Claim (35 U.S.C. 119) is made, based upon:

Japan No. **11-181599** June 28, 1999

Enclosed herewith are:

- [X] Specification (Description, Claims, Abstract): Pages 1 - 62; Number of claims 1 - 19
- [X] Declaration and Power of Attorney [X] executed; [] unexecuted (supplied for information purposes)
- [X] 12 Sheets of drawings, Figures 1 - 12 [X] Formal [] Informal
- [X] Assignment and "Patents" Recordation Form Cover Sheet (PTO-1595) AND \$40. RECORDATION FEE.
- [X] Certified copy (ies) of priority document(s) identified above
- [X] Information Disclosure Statement; [X] Form PTO-1449
- [] Preliminary Amendment
- [] Verified Statement(s) Claiming Small Entity Status
- [X] Receipt Postcard

	Number Filed	Number Extra	Rate	Calculations
Total Claims	<u>19</u>	- <u>20</u> = <u>0</u>	x \$18.00	= \$ _____
Independent Claims	<u>4</u>	- 3 = <u>1</u>	x \$78.00	= \$ <u>78.00</u>
MULTIPLE DEPENDENT CLAIMS			+ \$260.00	= \$ _____
			BASIC FEE	\$ 690.00
Total of above Calculations				\$ 768.00

To the extent not tendered by check, authorization is given to charge any fees under 37 CFR 1.16 and 1.17 during pendency of the application, or to credit any overpayment, to Deposit Account No. 06-1378. Duplicate copy of this letter is enclosed.

FRISHAUF, HOLTZ, GOODMAN, LANGER & CHICK, P.C.

By:

Robert P. Michal
Robert P. Michal, Reg. No. 35,614
for Leonard Holtz, Reg. No. 22,974

TITLE OF THE INVENTION

INFORMATION PROCESSING SYSTEM AND CAMERA SYSTEM

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is based upon and claims the
5 benefit of priority from the prior Japanese Patent
Application No. 11-181599, filed June 28, 1999, the
entire contents of which are incorporated herein by
reference.

BACKGROUND OF THE INVENTION

10 The present invention relates to an information processing system and a camera system, and more particularly to an information processing system comprising a radio (or wireless) communication terminal and an information appliance communicable with the
15 radio communication terminal, for example, within a predetermined distance, such as about one meter, and a camera system comprising a radio (or wireless) communication medium and a camera communicable with the radio communication medium within a predetermined
20 distance wherein each information processing system and camera system authorizes an information appliance user and a camera user, or a subject, or both of them.

Conventionally, as methods taking photographer information in an image photographed by means of
25 a camera, the method in which a password is inputted at the time of camera photographing (Jpn. Pat. Appln. KOKAI Publication No. 08-315106) and the method in

which biological information, such as fingerprint information, is utilized other than a password (Jpn. Pat. Appln. KOKAI Publication No. 05-127246) have been proposed.

5 However, in the conventional methods described above, the operation in which a password is actually inputted is not convenient to do by the reasons that the size of a camera equipment body is small and a user interface for inputting a password, such as a keyboard, 10 operation buttons, or a display device, is insufficient as characteristics of a camera as a device.

15 Although the problem regarding a user interface can be cleared in the method in which biological information is employed, a problem exists in which an analysis means for authorizing a camera user and various kinds of data therefor have to be taken into a camera, thereby resulting in great difficulty in the realization in terms of mounting.

20 This type of problem is also derived in an information processing system comprising a radio communication terminal and an information appliance communicable with the radio communication terminal, 25 for example, within a predetermined distance, such as about one meter, and a camera system comprising a radio communication medium and a camera communicable with the radio communication medium within a predetermined distance wherein each information processing system and

camera system authorizes an information appliance user and a camera user, or a subject, or both of them.

Keeping the point mentioned above in mind, it is a problem of the present invention to propose a method 5 in which a user can perform the process for authorizing an information appliance user and a camera user, or a subject, or both of them through a simple operation and by which mounting in a camera can be easily executed.

BRIEF SUMMARY OF THE INVENTION

10 The present invention is developed concerning the above mentioned circumstances, and it is an object of the present invention to provide an information processing system comprising a radio communication terminal and an information appliance communicable with the radio communication terminal within a predetermined distance and a camera system comprising a radio communication medium and a camera communicable with the radio communication medium within a predetermined 15 distance wherein each information processing system and camera system authorizes an information appliance user and a camera user, a subject, or both of them.

20

(1) In order to achieve the above described object, according to one embodiment of the present invention, provided is an information processing system 25 comprising a radio communication terminal and an information appliance communicable with the radio communication terminal within a predetermined distance,

the information appliance comprising: a storing part
for storing information peculiar to a user of the
information appliance; a radio communication part for
reading information from the radio communication
terminal; and an authorization part for authorizing
5 the user of the information appliance by collating
information from the radio communication terminal read
at the radio communication part with information
peculiar to the user of the information appliance
10 stored in the storing part, and the radio communication
terminal comprising a storing part for storing
predetermined information and a transmission part
for receiving a radio signal transmitted from the
information appliance and transmitting the predeter-
mined information stored in the storing part as a radio
15 signal.

(2) In order to achieve the above described
object, according to another embodiment of the present
invention, provided is a camera system comprising a
radio communication medium and a camera communicable
20 with the radio communication medium within a predeter-
mined distance, the camera comprising: an image pickup
part for obtaining image data by photographing a
subject; a storing part for storing information
peculiar to a user of the camera; a radio communication
25 medium reading part for transmitting a predetermined
radio signal and reading information from the radio

communication medium; an authorization part for
authorizing the camera user by collating information
read at the radio communication medium reading part
with the camera user's own information stored in
5 the storing part; and a record part for recording
information related to the camera user authorized at
the authorization part while connecting the information
related to the camera user with the image data
photographed at the image pickup part, and the radio
10 communication medium comprising a storing part for
storing predetermined information and a transmission
part for receiving the predetermined radio signal
transmitted from the radio communication medium reading
part of the camera and transmitting the predetermined
15 information stored in the storing part as a radio
signal.

(3) Further, in order to achieve the above
described object, according to another embodiment of
the present invention, provided is a camera system
20 comprising a radio communication medium in the side of
a subject and a camera communicable with the radio
communication medium within a predetermined distance,
the camera comprising: an image pickup part for
obtaining image data by photographing the subject;
25 a radio communication medium reading part for
transmitting a predetermined radio signal and reading
information from the radio communication medium;

an information maintenance part for temporarily maintaining information from the radio communication medium of the subject side read at the radio communication medium reading part as information peculiar to the subject; and an information record part for recording, while relating to a file of image data photographed, information peculiar to the subject maintained in the information maintenance part when an image is photographed employing the image pickup part, and the radio communication medium comprising a storing part for storing predetermined information containing the subject's own information and a transmission part for receiving the predetermined radio signal transmitted from the radio communication medium reading part of the camera and transmitting the predetermined information stored in the storing part as a radio signal.

(4) Furthermore, in order to achieve the above described object, according to another embodiment of the present invention, provided is a camera system comprising a radio communication medium in the side of a camera user, a radio communication medium in the side of a subject, and a camera communicable with each radio communication medium within a predetermined distance, the camera comprising: an image pickup part for obtaining image data by photographing the subject; a storing part for storing in advance information peculiar to the camera user; a subject information

acquisition mode setting part for setting the camera
to a mode for acquiring information peculiar to the
subject; a radio communication medium reading part for
transmitting a predetermined radio signal and reading
5 information from each radio communication medium;
an authorization part for authorizing the camera user
by collating information from the radio communication
medium of the camera user side read at the radio
communication medium reading part with the camera
user's own information stored in the storing part;
10 an information maintenance part for temporarily
maintaining information from the radio communication
medium of the subject side read at the radio
communication medium reading part as information
peculiar to the subject; and an information record part
15 for recording, while relating to a file of image data
photographed, the subject's own information maintained
in the information maintenance part along with
information related to the camera user authorized at
the authorization part when an image is photographed
20 employing the image pickup part in the case in which
the subject information acquisition mode is set
employing the subject information acquisition mode
setting part, and each the radio communication medium
comprising a storing part for storing predetermined
25 information containing the camera user's own
information or the subject's own information and a

transmission part for receiving the predetermined radio signal transmitted from the radio communication medium reading part of the camera and transmitting the predetermined information stored in the storing part
5 as a radio signal.

(5) Moreover, in order to achieve the above described object, according to another embodiment of the present invention, provided is the camera system of any one of (2) to (4) described above, wherein the
10 camera further comprises: a radio communication medium writing part; a random number generating part; an updating part for updating the camera user's own information stored in the storing part; and a processing part for performing a series of processing in which random numbers generated by the random number generating part are obtained, information based on the random numbers is transmitted to the radio communication medium side for being recorded in the radio communication medium, employing the radio communication
15 medium writing part, and the camera user's own information stored in the storing part is updated, employing the updating part when the camera user is authorized by the authorization part.
20

Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects
25

and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

5 The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate presently preferred embodiments of the invention, and together with the general description given above and the detailed description of the preferred embodiments given below, serve to explain the principles of
10 the invention.

15 FIGS. 1A, 1B, 1C are schematic views for explaining an outline of a information processing system according to the first embodiment of the present invention.

FIGS. 2A, 2B are schematic views for explaining an outline of a camera system according to the second embodiment of the present invention.

20 FIG. 3 is a block diagram showing a constitution of the information processing system according to the first embodiment of the present invention.

25 FIG. 4 is a block diagram showing the constitution of a first concrete example of a camera system according to the second embodiment of the present invention.

FIG. 5A is a view showing an example of a camera user's own information list stored in a user

information storing part 14 of the side of a camera 301 of a camera system according to the second embodiment of the present invention.

FIG. 5B is a view showing an example of the camera user's own authorization information of the user ID=1 of FIG. 5A stored in a non-contact IC card as a radio communication medium 303.

FIG. 6 is a block diagram showing the constitution of a second concrete example of a camera system according to the second embodiment of the present invention.

FIG. 7 is a view diagrammatically showing a series of processing flow of the second concrete example of the camera system according to the second embodiment of the present invention.

FIG. 8A is a view showing an example of a camera user's own information list stored in the user information storing part 14 of the camera 301 side and a camera's serial number corresponding to the camera user's own information of a camera system according to the second embodiment of the present invention.

FIG. 8B is a view showing an example of the serial number of the camera corresponding to the camera user's own information of the user ID=1 of FIG. 8A recorded in the non-contact IC card as the radio communication medium 303.

FIG. 8C is a view showing an example of the serial

number of the camera corresponding to the camera user's own information stored in the non-contact IC card.

FIG. 9A is a view showing an example of a camera user's own information list stored in the user information storing part 14 of the camera 301 side and group's own information corresponding to the camera user's own information of a camera system according to the second embodiment of the present invention.

FIG. 9B is a view showing an example of the group's own information corresponding to the camera user's own information of the user ID=1 of FIG. 9A recorded in the non-contact IC card as the radio communication medium 303.

FIG. 10 is a schematic view for explaining an outline of a camera system according to the third embodiment of the present invention.

FIG. 11 is a schematic view for explaining another example of a camera system according to the third embodiment of the present invention.

FIG. 12 is a block diagram showing a constitution of an information processing system according to the third embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the presently preferred embodiments of the invention as illustrated in the accompanying drawings, in which like reference numerals designate like or corresponding

parts.

In the following, embodiments according to the present invention will be explained referring to drawings.

5 FIG. 1 is a schematic view for explaining an outline of an information processing system according to the first embodiment of the present invention.

That is, FIG. 1A exemplifies an information processing system 100 performing information processing by a radio communication (e.g., BlueTooth, IrDA 10 employing an infrared ray, PHS/radio wave for a portable telephone or the like) between a transmission/reception part 101a of a radio communication of an information appliance 101, for example, such as a stationary type personal computer (PC), and a radio communication terminal 103 that a user 102 carries.

15 FIG. 1B exemplifies an information processing system 200 performing information processing by a radio communication between a transmission/reception part 201a of a radio communication of an information appliance 201, for example, such as a camera, and a radio communication terminal 203 that a user 202 carries.

20 FIG. 1C shows a flow of a performing procedure 25 of the information processing by the information processing system 100 or 200 as described above along a time base.

Suppose that the user 201 or 202 carrying the
radio communication terminal 103 or 203 approaches the
information appliance 101 or 201 while transmitting an
information readout request from the
5 transmission/reception part 101a or 201a of the radio
communication is repeated as processing in the side of
the information appliance 101 or 201.

Then, as processing in the side of the radio
communication terminal 103 or 203, the information
10 readout request is received so as to transmit
information appliance user's own information (e.g.,
a telephone number or the like).

Next, as processing in the side of the information
appliance 101 or 201, the information appliance user's
15 own information is received so as to perform a
collation process for authorizing whether or not the
user 102 or 202 is the true person, and according to
the result of the collation process, the process of
allowing use or rejecting use of the information
20 appliance 101 or 201 is performed.

FIGS. 2A, 2B are schematic views for explaining
an outline of a camera system according to the second
embodiment of the present invention.

That is, FIG. 2A exemplifies a camera system 300
25 performing an authorization processing by a radio
communication between a radio communication medium 301,
such as a non-contact IC card that a user 302 carries,

and a camera 303 with a user authorization function, for example, within a predetermined distance, such as about one meter.

In this case, there are a rod type, a button type, 5 a ring type, or the like as a non-contact tag of the radio communication medium 301 other than the non-contact IC card.

FIG. 2B exemplifies the case in which the user 302 carries the radio communication medium 301, such as the 10 non-contact IC card, in the state in which the user 302 puts the radio communication medium in his wallet inside his pocket of trousers. However, carrying condition is not limited to this, and the user 302 may stores the radio communication medium 301 by a non-contact tag or the like on a button of clothing, 15 a ring, a necktie pin, or the like.

(First Embodiment)

The information processing system according to the first embodiment of the present invention will be 20 explained using FIG. 3.

In each drawings described below, the parts allotted to like reference numerals have like functions.

FIG. 3 is a block diagram showing a constitution 25 of the information processing system according to the first embodiment of the present invention.

That is, the information processing system 100 is

constituted of the information appliance 101, a storage medium 104 of an outer part, and the radio communication terminal 103 radio communicating with the information appliance 101.

5 The radio communication between the information appliance 101 and the radio communication terminal 103 is performed via each antenna part 17 and 57.

The information appliance 101 is constituted of
10 a GUI part 80, a file creating part 2, a header information creating part 3, a fixed disk 70, an image display part 5, a user interface part 6, a control part 7, a processor part 8, a working memory part 9, a program ROM part 10, a filing management part 11, a storage medium control part 12, an authorization information part 13, a user information storing part 14, an authorization processing part 15, and a radio communication terminal reading part 16, each connected to the antenna part 17 via an internal bus.

The radio communication terminal 103 is
20 constituted of a memory part 581, a control part 582, a voice input part 59, a voice output part 60, and a user operation part 61, each connected to the antenna part 57 via an internal bus.

In this case, in order to enable radio communication between the information appliance 101 and the radio communication terminal 103 within a predetermined distance, such as about one meter, a communicable

distance can be adjusted by, for example, a method employing a standard, such as BlueTooth employing 2.45 GHz band, that is a micro wave, or IrDA employing an infrared ray.

5 The working memory part 9 is a memory for buffering the data transmitted from the radio communication terminal reading part 16 or the like via the antenna part 17 and the data in a halfway step of every kind of processing and loading a program stored
10 in the program ROM part 10.

The control part 7 is a part controlling an entire processing of the information appliance 101.

That is, according to the constitution of the information processing system 100, provided is the
15 information processing system characterized in that said system comprising the radio communication terminal 103 and the information appliance 101 communicable with the radio communication terminal, for example, within a predetermined distance, such as about one meter,
20 wherein the information appliance 101 comprises the user information storing part 14 as a storing part storing the information appliance user's own information, the antenna part 17 and the radio communication terminal reading part 16 as a radio communication part for reading information from the radio communication terminal 103, and the authorization information part 13 and the authorization processing

part 15 as an authorization part for authorizing the user by collating information from the radio communication terminal 103 read at the antenna part 17 and the radio communication terminal reading part 16 as the 5 radio communication part with the information appliance user's own information stored in the user information storing part 14 as the storing part, and radio communication terminal 103 comprises the memory part 581 as a storing part for storing predetermined 10 information and the antenna part 57 and the control part 582 as a transmission part for receiving a radio signal transmitted from the information appliance 101 and transmitting the predetermined information stored in the memory part 581 as the storing part as a radio 15 signal.

By the information processing system 100 like the above, information processing can be performed through a flow of the procedure as shown in FIG. 1A.

Suppose that the user 201 or 202 carrying the 20 radio communication terminal 103 approaches the information appliance 101 while transmitting the information readout request from the antenna part 17 as the transmission/reception part 101a of the radio communication is repeated as processing in the side of 25 the information appliance 101.

Then, as processing in the side of the radio communication terminal 103, the information readout

request is received at the antenna part 57 so as to
read and transmit predetermined information of the
information appliance user's own information (e.g.,
a telephone number or the like) from the memory part
5 581 as the storing part for storing the predetermined
information of the information appliance user's own
information (e.g., a telephone number or the like) by
control of the control part 582.

Next, as processing in the side of the information
10 appliance 101, by the processing of the authorization
information part 13 and the authorization processing
part 15 as the authorization part for authorizing the
user by collating the information from the radio
communication terminal 103 read at the antenna part 17
15 and the radio communication terminal reading part 16
as the radio communication part with the information
appliance user's own information stored in the user
information storing part 14 as the storing part,
the information appliance user's own information is
received so as to perform a collation process for
20 authorizing whether or not the user 102 is the true
person, and according to the result of the collation
process, the process of allowing use or rejecting use
of the information appliance 101 is performed.

25 In a concrete information processing system, in
a user authorization system employing a portable
telephone, a PHS, or the like, a telephone number is

used as the user's own information.

That is, characterized is that the radio communication terminal may be a portable telephone, the information appliance user's own information may be 5 a telephone number, the telephone number differs for each user, and that the portable telephone hereafter can be a part for specifying an individual is utilized.

In a concrete information processing system, when a camera or the like as an information appliance is concerned, since there is, of course, no key board, 10 a mouse, or the like, inputting a code number is difficult if only a camera is used. Thus, the code number is inputted by employing push buttons of the portable telephone, and further by using 15 a communication function.

That is, the radio communication terminal is characterized in that the code number, in addition to the information appliance user's own information, is transmitted, employing an operation part (push buttons 20 or the like) of the portable telephone.

According to a concrete example of an information processing system according to the first embodiment of the present invention described above, provided is a information processing system characterized in that 25 the radio communication terminal reading part 16 as the radio communication terminal reading part of the information appliance 101 has a means by which a

directivity of an electromagnetic wave transmitted is made high.

Through the information processing system like this, a misoperation, such as a response of the radio communication terminal 103 of an adjacent person, can be prevented by making the electromagnetic wave transmitted in a predetermined direction without spread in various directions by making the directivity of the electromagnetic wave transmitted by the radio communication terminal reading part 16 as the radio communication terminal reading part high.

(Second Embodiment)

Next, a camera system according to the second embodiment of the present invention will be explained employing FIGS. 4 to 9A, 9B.

In each drawings described below, the parts allotted to like reference numerals have like functions.

FIG. 4 is a block diagram showing the constitution of a first concrete example of the camera system according to the second embodiment of the present invention.

That is, this camera system 300 is constituted of the camera 301, the storage medium 104 of the outer part, and the radio communication medium 303 radio communicating with the camera 301.

Radio communication between the camera 301 and the

radio communication medium 303 is performed via each antenna part 17 and 57.

The camera 301 is constituted of an image pickup part 1, the file creating part 2, the header information creating part 3, an image memory part 4, the image display part 5, the user interface part 6, the control part 7, the processor part 8, the working memory part 9, the program ROM part 10, the filing management part 11, the storage medium control part 12, the authorization information part 13, the user information storing part 14, the authorization processing part 15, and a radio communication medium reading part 16a, each connected to the antenna part 17 via an internal bus.

The radio communication medium 303 is constituted of the memory part 581 and the control part 582, each connected to the antenna part 57 via an internal bus.

In this case, in order to enable radio communication between the camera 301 and the radio communication medium 303 within a predetermined distance, such as about one meter, there is a method employing a non-contact IC (e.g., ISO/IEC14443 or ISO/IEC15693) employing a long wavelength band or the frequency band of 13.56 MHz, or a standard, such as BlueTooth employing 2.45 GHz band, that is a micro wave, or IrDA employing an infrared ray.

In the case of the non-contact IC utilizing

an electromagnetic induction, in the method in which
a standard, such as BlueTooth employing 2.45 GHz band,
that is a micro wave, or IrDA employing an infrared
ray, is employed, the communicable distance can be
5 adjusted by also making the number of turns of a coil
of communication antenna of a part where the
information of the radio communication medium
(terminal) is read and written an appropriate number.

The working memory part 9 is a memory for
10 buffering data transmitted from the radio communication
terminal reading part 16 or the like via the antenna
part 17 and data in a halfway step of every kind of
processing and loading a program stored in the program
ROM part 10.

15 The control part 7 is a part for controlling
an entire processing of the camera 301.

That is, according to the constitution of the
camera system 300, provided is the camera system
characterized in that said system comprises a radio
20 communication medium 303 and the camera 301
communicable with the radio communication medium 303,
for example, within a predetermined distance, such as
about one meter, wherein the camera 301 comprises the
image pickup part 1 for obtaining image data by photo-
graphing a subject, the user information storing part
25 14 as a storing part for storing in advance the camera
user's own information, the radio communication medium

reading part 16a for transmitting a predetermined radio signal via the antenna part 17 and reading information from the radio communication medium 301 via the antenna part 17, the authorization information part 13 and the
5 authorization processing part 15 as an authorization part for authorizing the camera user by collating information read at the radio communication medium reading part 16a with the camera user's own information stored in the user information storing part 14 as
10 the storing part, and the control part 7 and the image memory part 4 as a record part for recording information related to the camera user authorized at the authorization information part 13 and the authorization processing part 15 as the authorization part while connecting the information related to the camera user with the image data photographed at the
15 image pickup part 1, and radio communication medium 303 comprises the memory part 581 as a storing part for storing predetermined information and the antenna part
20 57 and the control part 582 as a transmission part for receiving the predetermined radio signal transmitted from the radio communication medium reading part 16a and the antenna part 17 of the camera 301 and transmitting the predetermined information stored in
25 the memory part 581 as the storing part as a radio signal.

By the camera system 300 like the above,

information processing can be performed through a flow of the procedure as shown in FIG. 1C.

Suppose that while transmitting the information readout request from the antenna part 17 as the transmission/reception part of the radio communication is repeated as processing in the side of the camera 301, the information readout request is received at the radio communication medium terminal 303 that the user 202 of the camera 301 carries.

Then, as processing in the side of the radio communication medium 303, the information readout request is received at the antenna part 57 so as to read and transmit predetermined information of the camera user's own information from the memory part 581 as the storing part for storing the predetermined information of the camera user's own information by control of the control part 582.

Next, as processing in the side of the camera 301, by the processing of the authorization information part 13 and the authorization processing part 15 as the authorization part for authorizing the camera user by collating the information from the radio communication medium 303 read at the radio communication medium reading part 16 via the antenna part 17 as the transmission/reception part of the radio communication with the camera user's own information stored in the user information storing part 14 as the storing part,

the information of the camera user's own information
is received so as to perform a collation process for
authorizing whether or not the user 202 is the true
person, and according to the result of the collation
process, the process of allowing use or rejecting use
of the camera 301 is performed.

When the user 202 is authorized as the true person
at the authorization information part 13 and the
authorization processing part 15 as the authorization
part, the information related to the camera user is
recorded in the image memory part 4 for recording the
camera user's related information while connecting it
with the image data photographed at the image pickup
part 1 by the control of the control part 7 as
processing of allowing use of the camera 301.

FIG. 5A is a view showing an example of a camera
user's own information list stored in the user
information storing part 14 of the camera 301 side.

That is, in this example, the camera user's own
information (authorization information: 19dle9awkf,
z2tnfower;3, Yzev8&fd2, ... \$ekfg9sde3) is stored
corresponding to the users IDs (1, 2, 3, ... n).

FIG. 5B is a view showing an example of the camera
user's own authorization information of the user ID=1
of FIG. 5A, 19dle9awkf, recorded in a non-contact IC
card as the radio communication medium 303.

FIG. 6 is a block diagram showing the constitution

of a second concrete example of the camera system according to the second embodiment of the present invention.

That is, this camera system 300 is constituted of
5 the camera 301, the storage medium 104 of the outer part, and the radio communication medium 303 radio communicating with the camera 301.

The radio communication between the camera 301 and
10 the radio communication medium 303 is performed via each antenna part 17 and 57.

The camera 301 is constituted of an image pickup part 1, the file creating part 2, the header information creating part 3, the image memory part 4, the image display part 5, the user interface part 6, the control part 7, the processor part 8, the working memory part 9, the program ROM part 10, the filing management part 11, the storage medium control part 12, the authorization information part 13, the user information storing part 14, the authorization processing part 15, and the radio communication medium reading part 16a, a radio communication medium writing part 18, a random number generating part 19, and a user information updating part 20, each connected to the antenna part 17 via an internal bus.
15
20

25 The radio communication medium 303 is constituted of the memory part 581 and the control part 582, each connected to the antenna part 57 via an internal bus.

The second concrete example of the camera system
is different in that the radio communication writing
part 18, the random number generating part 19, and the
user information updating part 20 are added to the
5 first concrete example of the camera system mentioned
above.

That is, according to the second concrete example
of the camera system, provided is a camera system
characterized in that in the first concrete example
10 of the camera system described above, the camera 301
further comprises the radio communication medium
writing part 18 as a radio communication medium writing
part, the random number generating part 19 as a random
number generating part, the user information updating
part 20 as an updating part for updating the
information recorded in the user information storing
part 14 as a storing part for storing the camera user's
own information, and the control part 7 as a processing
part for performing a series of processing in which
15 random numbers generated by the random number
generating part 19 as the random number generating part
are obtained, information based on the random numbers
is transmitted to the side of the radio communication
medium 303 for being recorded in the radio communica-
tion medium 303 via the antenna part 17, employing the
radio communication medium writing part 18 as the radio
communication medium writing part, and the camera
20
25

user's own information recorded in the user information storing part 14 as the storing part for storing the camera user's own information is updated, employing the user information updating part 20 as the updating part 5 when the user 202 is authorized as the true person by the authorization information part 13 and the authorization processing part 15 as the authorization part.

FIG. 7 is a view diagrammatically showing a series 10 of processing flow of the second concrete example of this camera system.

That is, before authorization processing, the camera user's own information (authorization information: Sasdf834kf, z2tnfower;3, Yzev8&fd2, ... \$ekfg9sde3) is stored corresponding to the users IDs 15 (1, 2, 3, ... n) in the user information storing part 14 of the camera 301 side as one example of a camera user's own information list, and the camera user's own authorization information of the user ID=1, Sasdf834kf, is recorded in the radio communication medium 303 that 20 the user carries.

During the process of authorization processing, random numbers, "Ue8ssa9351" is generated by the random number generating part 19 in the side of the camera 301.

25 After the authorization processing, "Ue8ssa9351" corresponding to the random numbers generated by the random number generating part 19 of the side of the

camera 301 is recorded as information after updating in the radio communication medium 303, and a list in which the user ID=1 in the camera user's own information list is updated to "Ue8ssa9351" is stored in the user
5 information storing part 14 in the side of the camera 301.

In the second concrete example of the camera system according to the second embodiment of the present invention, security can be improved through
10 a so-called one time password like method by changing the camera user's own information as a password (information) every time the camera 301 is used.

Although the case in which the so-called one time password like means is employed is explained in order to improve the security since the IC card in which
15 a CPU is not provided is supposed in the present embodiment, in the case of employing the IC card in which a CPU is provided, e.g., a Smart IC card with a code number processor, a means for improving security,
20 such as a challenge response method which has performed in a information processing system which generally aims at an improvement in security, can be applied by providing a code number processing part even in a camera.

25 According to the first and the second concrete examples of the camera system according to the second embodiment of the present invention described above,

provided is the camera system characterized in that the
camera 301 comprises the user interface part 6 as an
input part by which the camera user requires that the
authorization processing of the camera user is started
5 and the control part 7 as a control part for supplying
power to the radio communication medium reading part
16a as the radio communication medium reading part when
the authorization processing of the camera user is
required through the user interface part 6 as the input
part so that the process for authorizing the camera
10 user is performed through the method described in the
first and the second concrete embodiments of the camera
system according to the second embodiment of the
present invention described above and finishing
supplying power to the radio communication medium
15 reading part 16a as the radio communication medium
reading part after a predetermined time passes.

Through this camera system, in the case in which
the radio communication medium 303 is a non-contact IC
20 card, consumption reduction of a battery power supply
and energy saving can be attempted by supplying power
to the camera 301 with a non-contact IC card reader
function part only at the time of authorizing the
camera user so as to usually.

25 That is, if the camera with the non-contact IC
card reader function part is set so that electro-
magnetic wave is always radiated/detected, in the case

in which the non-contact IC card reader function part like this is mounted on the camera, there is a necessity that power is always turned on, thereby causing a large amount of power consumption which is
5 a problem.

Therefore, as described above, in the present camera system, only when the user employing the camera 301 pushes the button of an operation requirement that requires authorization processing, power is temporarily supplied to the non-contact IC card reader function
10 part.
15

In this case, various types of timing may be considered as the operation requiring the authorization processing. For example, power is supplied to the non-contact IC card reader function part for only a second immediately after the power-on of the camera 301, and if the user cannot be authorized during this period of time, authorization may be considered as a failure.
20

Considered as other timing are that power is supplied to the non-contact IC card reader function part so as to perform the authorization processing when a shutter of the image pickup part 1 of the camera 301 is pressed, or a button or the like only for authorization is provided in the camera, and power is supplied to the non-contact IC card reader function part so as to perform the authorization processing when the button is pushed, or the like.
25

According to the first and the second concrete examples of the camera system according to the second embodiment of the present invention described above, provided is a camera system characterized in that the
5 camera 301 comprises the image memory part 4 as a record part for creating and recording at the header information creating part 3 information showing that the camera user is unclear on a header part of image data photographed at the image pickup part 1 of the
10 camera 301 when authorization of the camera user by the authorization processing part 15 is failed.
15

By the camera system like the above, even when authorization of the camera user is failed, photographing itself of a picture or the like by means of the image pickup part 1 is possible.

In this case, since photographing parson information is not added on the image data obtained by the image pickup part 1, that the photographing is of the case in which authorization of the camera user is failed is recognized.
20

According to the first and the second concrete examples of the camera system according to the second embodiment of the present invention described above, provided is a camera system characterized in that the
25 camera 301 comprises the control part 7 as a control part for controlling so that photographing using the camera 301 is not performed until authorization of the

camera user succeeds by the authorization processing part 15.

By the camera system like this, when authorization is failed, since photographing using the camera 301 cannot be executed, photographing by a wrong camera user cannot be executed.

According to the first and the second concrete examples of the camera system according to the second embodiment of the present invention described above, provided is a camera system characterized in that the camera 301 comprises the authorization information part 13 as an entry processing and entry cancellation processing part of the camera user and the control part 7 as a control part for controlling so that entry processing and entry cancellation processing can be performed by the authorization information part 13 as the entry processing and entry cancellation processing part of the camera user only when a predetermined camera user is authorized by the authorization processing part 15.

By the camera system like this, in the case in which the radio communication medium 303 is the non-contact IC card, a so-called non-contact IC card for a system manager is prepared, and it can be made that user entry/deletion processing or the like cannot be executed other than by the system manager.

In this case, substantially, in the manager side,

the mode in which allowing/rejecting use of the camera is determined according to success/failure of authorization of the camera user can be chosen.

According to the first and the second concrete examples of the camera system according to the second embodiment of the present invention described above, provided is a camera system characterized in that the camera 301 comprises the user interface part 6 as a switching part for selectively switching a first mode in which information showing that the camera user is unclear on a header part of image data photographed at the image pickup part 1 of the camera 301 is created at the header information creating part 3 and recorded in the image memory part 4 as the record part when authorization of the camera user by the authorization processing part 15 is failed and a second mode in which control is executed by the control part 7 as the control part so that photographing using the camera 301 is not performed until authorization of the camera user by the authorization processing part 15 succeeds.

By the camera system like this, either of the first mode or the second mode in which allowing/rejecting use of the camera is determined according to success/failure of authorization of the camera user can be chosen in the user side (or the manager side).

According to the first and the second concrete

examples of the camera system according to the second embodiment of the present invention described above, provided is a camera system characterized in that the camera system 300 contains information peculiar to the camera 301 as the camera user's own information stored in the radio communication medium 303, and the camera 301 contains the information peculiar to the camera 301 as information stored in the user information storing part 14 as the storing part for storing the camera user's own information.

By the camera system like this, in the case in which the radio communication medium 303 is the non-contact IC card, in order to avoid batting with other camera's user entry information (the information peculiar to the user using the camera), each camera individually can be managed by recording also information peculiar to the camera to be registered (e.g., camera's serial number) as information recorded in the non-contact IC card.

FIG. 8A is a view showing an example of the camera user's own information list stored in the user information storing part 14 of the side of the camera 301 and a camera's serial number corresponding to the camera user's own information of a camera system according to the second embodiment of the present invention.

FIG. 8B is a view showing an example of the serial

number of the camera corresponding to the camera user's own information of the user ID=1 of FIG. 8A recorded in the non-contact IC card as the radio communication medium 303.

- 5 In this case, as shown in FIG. 8C, if the camera serial number (123456) part is used for authorization as information peculiar to the camera to be registered corresponding to the camera user's own information (Ks#die934), each camera individually can be managed.
- 10 However, if the serial number part is not used for authorization, one non-contact IC card can be used for authorization in a plurality of cameras.

According to the first and the second concrete examples of the camera system according to the second embodiment of the present invention described above, provided is a camera system characterized in that the camera system 300 contains information peculiar to a group jointly using the camera 301 as the camera user's own information stored in the radio communication medium 303, and the camera 301 contains the information peculiar to the group jointly using the camera 301 as information stored in the user information storing part 14 as the storing part for storing the camera user's own information.

25 By the camera system like this, setting a so-called sharing group becomes possible by expanding information peculiar to a user who uses a camera, and

a camera (or a plurality of cameras) can be used by a plurality of users of the sharing group.

FIG. 9A is a view showing an example of a camera user's own information list stored in the user information storing part 14 in the side of the camera 301 of a camera system according to the second embodiment of the present invention and group's own information corresponding to the camera user's own information.

FIG. 9B is a view showing an example of the group's own information corresponding to the camera user's own information of the user ID=1 of FIG. 9A recorded in the non-contact IC card as the radio communication medium 303.

According to the first and the second concrete examples of the camera system according to the second embodiment of the present invention described above, provided is a camera system characterized in that the camera 301 comprises the control part 7 as a control part for controlling so that when a part of information peculiar to a group using the camera coincides by collating information read at the radio communication medium reading part 16a as the radio communication medium reading part with the camera user's own information stored in the user information storing part 14 as the storing part for storing the camera user's own information in the authorization processing part,

photographing using the camera becomes possible, and when it does not coincide, photographing using the camera is prohibited.

By the camera system like this, at the time of authorizing a user, only when information peculiar to the group in the information peculiar to the user using the camera coincides, the camera can be used (photographing becomes possible), thereby improving convenience for a guest user.

10 In this case, if a part other than the information peculiar to the group in the information peculiar to the user using the camera (i.e., information peculiar to a specific user using the camera) does not coincide, information showing that the photographer is not clear is recorded on the header of the image data as described above.

According to the first and the second concrete examples of the camera system according to the second embodiment of the present invention described above, provided is a camera system characterized in that the camera 301 comprises a control part for controlling so that the directivity of the electromagnetic wave transmitted from the radio communication medium reading part 16a as the radio communication medium reading part becomes high.

By the camera system like this, by making the directivity of the electromagnetic wave transmitted

from the radio communication medium reading part 16a
as the radio communication medium reading part high
so that the electromagnetic wave does not spread in
various directions and transmits in a specific
5 direction, a misoperation, such as a response of the
radio communication medium 303 of an adjacent person,
can be prevented.

(Third Embodiment)

Next, a camera system according to the third
10 embodiment of the present invention will be explained
employing FIGS. 10 to 12.

FIG. 10 is a schematic view for explaining an
outline of a camera system according to the third
embodiment.

15 This camera system according to the third
embodiment shown in FIG. 10 is made supposing a medical
examination authorization system applied when a doctor
examines a patient at a hospital or the like.

FIG. 10 shows an example in which at the time of
20 photographing employing a camera 403 with a user
authorization function by a radio communication and
a subject information acquisition function, the doctor
as a camera photographer 408 has the photographer
authorized by holing a non-contact IC card/tag 401
25 which he owns to a camera 403. Then, he switches to
a subject information acquisition mode by means of
a subject information acquisition mode set button 403a

or the like attached to the camera 403. A non-contact IC card/tag 402, such as a patient's registration card in which information peculiar to the patient as the subject 409 is recorded, that the patient as a subject 5 409 owns, is held to the camera 403 so that an image 406a photographed by the camera 403 in connection with distinguishment information 406b of the camera 10 photographer 408 along with the subject 409 is recorded as an image file 406.

10 A doctor or a medical consulting engineer or the like is supposed as the photographer 408, who carries the non-contact IC card 401 for authorization of himself.

15 In this example, this non-contact IC card 401 works also as an access card to an in-hospital information system not shown in the drawing, and a doctor can access the data base of the in-hospital information system and the like, using this card.

20 The patient as the subject 409 can have a non-contact IC card/tag 402 peculiar to each patient.

This non-contact IC card/tag 402 may serve as a patient's registration card issued at each hospital.

25 The doctor as the photographer 408 holds the IC card 401 to the camera 403 in order to authorize himself first when photographing the patient as the subject 409.

Then, the doctor as the photographer 408 switches

to the subject information acquisition mode by means of the subject information acquisition mode set button 403a or the like attached to the camera 403 and has the patient hold the IC card 402 of the patient 409 as the subject to the camera 403.

In the image file 406 photographed, the information 406b containing doctor's information and patient's information as shown in the drawing is added to the image 406a photographed.

In this case, as methods for adding information, information may be recorded on a header of a file, such as JPEG, or TIFF, or may be recorded in the image 406a as a digital watermark.

Further, as another method of adding information, information may be stored and managed in a different file from an image file related to the image file 406.

By these kinds of methods, managing the image file 406 becomes easy for the doctor as the photographer 408 later, and further an accident in which an image of the subject 409 as a patient is taken by mistake for a diagnosis can be prevented.

Moreover, the non-contact IC card 402 of the subject 409 as the patient, for example, can be employed for inputting the name of the patient in a clinical chart 407 without mistake by holding it to an information terminal 405 at the time of creating the clinical chart, or can be utilized for a delivery of

a medicine or a confirmation of a patient at the time of operation.

In the explanation described above, although the patient as the subject 409, that is, a human, is exemplified, the subject is not necessary to be a human.

For example, as shown in FIG. 11, information of photographing part can be recorded at the time of photographing along with information of the photographer 410 by setting an IC tag 411 for each place to be checked as in the case of checking a body of an airplane 412 as a subject.

FIG. 12 is a block diagram showing a constitution of a camera system according to the third embodiment of the present invention.

That is, this camera system 400 is constituted of a camera 403, a storage medium 104 of an outer part, a radio communication medium 401 for a photographer radio communicating with the camera 403, and radio communication medium 402 for a subject.

The radio communication between the camera 403 and each radio communication medium 401, 402 is executed via the antenna parts 17, 57.

The camera 403 is constituted of the image pickup part 1, the file creating part 2, the header information creating part 3, the image memory part 4, the image display part 5, the user interface part 6,

the control part 7, the processor part 8, the working memory part 9, a program ROM part 10A, a filing management part 11A, the storage medium control part 12, the authorization information part 13, the user information storing part 14, the authorization processing part 15, the radio communication medium reading part 16a, the radio communication medium writing part 18, the random number generating part 19, and a mode setting part 21, each connected to the antenna part 17 via an internal bus.

Each radio communication medium 401, 402 is constituted of the memory part 581 and the control part 582, each connected to the antenna part 57 via an internal bus.

In the constitution of the present camera system, the difference from the constitution of the camera system of FIG. 6 described above is that the mode setting part 21 corresponding to the subject information acquisition mode set button 403a is added to the camera 403 part. Other than that, a radio communication function with the radio communication medium 401, 402 for a photographer and a subject is provided in the antenna part 17. Further, since a procedure in a process and a method of a file management for temporarily storing subject information in the working memory part 9 (in the case of storing the photographer's and subject's information in a

different file from an image file) differ, the program ROM part 10A and the filing management part 11A differ.

That is, according to this constitution of the camera system, provided is a camera system characterized in that the camera system comprises the radio communication medium 401 in the side of the camera user 408 or 410, the radio communication medium 402 or 411 in the side of the subject 409 or 412, and the camera 403 communicable with the radio communication medium 401, 402, or 411 within a predetermined distance, wherein the camera 403 comprises the image pickup part 1 for obtaining image data by photographing the subject 409 or 412, the user information storing part 14 as a storing part for storing in advance the information peculiar to the camera user 408, 410, the image memory part 4 as an information record part for recording, while relating to a file of the image data, information peculiar to the subject 409 or 412 photographed employing the camera 403, the radio communication medium reading part 16a as a radio communication medium reading part for transmitting a predetermined radio signal via the antenna part 17 and reading information from each radio communication medium 401, 402, 411 via the antenna part 17, the authorization information part 13 and the authorization processing part 15 as an authorization part for authorizing the camera user by collating information from the radio communication

medium 401 of the camera user 408, 410 side read at the
radio communication medium reading part 16a as the
radio communication medium reading part with the camera
user's own information stored in the user information
storing part 14 as the storing part, the working memory
part 9 as an information maintenance part for
temporarily maintaining information from the radio
communication medium 402 or 411 of the subject 409 or
412 side read at the radio communication medium reading
part 16a as the radio communication medium reading part
as information peculiar to the subject 409 or 412, and
the control part 7 as a means for recording information
peculiar to the subject 409 or 412 that is information
read from the radio communication mediums 402, 411
10 maintained in the working memory part 9 as the
information maintenance part, employing the image
memory part 4 as the information record part while
relating the subject's own information to a file of
image data photographed when an image is photographed
15 employing the image pickup part 1, and wherein each
radio communication medium 401, 402, 411 comprises the
memory part 581 as a storing part for storing predeter-
mined information containing the information peculiar
to the camera user 408, 410 or the information peculiar
20 to the subject 409 or 412 and the antenna part 57
and the control part 582 as a transmission part for
receiving the predetermined radio signal transmitted
25

from the radio communication medium reading part
16a and the antenna part 17 of the camera 403 and
transmitting the predetermined information stored in
the memory part 581 as the storing part as a radio
5 signal.

According to a constitution of a camera system,
provided is a camera system characterized in that the
camera system comprises the radio communication medium
401 in the side of the camera user 408 or 410, the
10 radio communication medium 402 or 411 in the side of
the subject 409 or 412, and the camera 403 communicable
with the radio communication medium 401, 402, or 411
within a predetermined distance, wherein the camera 403
comprises the image pickup part 1 for obtaining image
15 data by photographing the subject 409 or 412, the user
information storing part 14 as a storing part for
storing in advance the information peculiar to the
camera user 408, 410, the image memory part 4 as an
information record part for recording, while relating
20 to a file of the image data, information peculiar to
the subject 409 or 412 photographed employing the
camera 403 along with the information peculiar to the
camera user 408 or 412, the mode setting part for
21 as a subject information acquisition mode setting part
for setting the camera 403 to a mode for acquiring
25 information peculiar to the subject 409 or 412, the
radio communication medium reading part 16a as the

00000000000000000000000000000000

radio communication medium reading part for transmitting a predetermined radio signal via the antenna part 17 and reading information from each radio communication medium 401, 402, 411 via the antenna part 17, the authorization information part 13 and the authorization processing part 15 as the authorization part for authorizing the camera user by collating the information from the radio communication medium 401 of the camera user 408, 410 side read at the radio communication medium reading part 16a as the radio communication medium reading part with the camera user's own information stored in the user information storing part 14 as the storing part, the working memory part 9 as the information maintenance part for temporarily maintaining the information from the radio communication medium 402 or 411 of the subject 409 or 412 side read at the radio communication medium reading part 16a as the radio communication medium reading part as the information peculiar to the subject 409 or 412, and the control part 7 as a means for recording the information peculiar to the subject 409 or 412 that is the information read from the radio communication mediums 402, 411 maintained in the working memory part 9 as the information maintenance part, employing the image memory part 4 as the information record part along with the information related to the camera user authorized at the authorization information part 13 and

the authorization processing part 15 as the authorization part while relating the information to a file of image data photographed when an image is photographed employing the image pickup part 1 in the case in which
5 the subject information acquisition mode is set employing the mode setting part 21 as the subject information acquisition mode setting part, and wherein each radio communication medium 401, 402, 411 comprises the memory part 581 as the storing part for storing
10 predetermined information containing the information peculiar to the camera user 408, 410 or the information peculiar to the subject 409 or 412 and the antenna part 57 and the control part 582 as the transmission part for receiving the predetermined radio signal transmitted from the radio communication medium reading part 16a and the antenna part 17 of the camera 403 and transmitting the predetermined information stored in
15 the memory part 581 as the storing part as a radio signal.

20 Included in the realm as the information appliance in the above are not only a PC and a workstation, of course, but also an automobile, a household electric appliance, a digital camera, a digital video camera, digital recording/reproducing apparatus, and the like
25 which are considered to be progressed informationally hereafter.

As explained in the above, according to the

present invention, it is possible to provide an information processing system and a camera system authorizing an information appliance user and a camera user, or a subject, or both of them in the information processing system comprising a radio communication terminal and an information appliance communicable with the radio communication terminal within a predetermined distance and in the camera system comprising a radio communication medium and a camera communicable with the radio communication medium within a predetermined distance.

Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.

WHAT IS CLAIMED IS:

1. An information processing system comprising:
a radio communication terminal and an information
appliance communicable with said radio communication
terminal within a predetermined distance,
said information appliance comprising:
a storing part for storing information peculiar to
a user of said information appliance;
a radio communication part for reading information
from said radio communication terminal; and
an authorization part authorizing said user of the
information appliance by collating information from
said radio communication terminal read at said radio
communication part with information peculiar to the
user of said information appliance stored in said
storing part, and
said radio communication terminal comprising:
a storing part for storing predetermined
information; and
a transmission part for receiving a radio signal
transmitted from said information appliance and
transmitting said predetermined information stored in
said storing part as a radio signal.
2. The information processing system according
to claim 1, wherein said radio communication terminal
contains a portable telephone, the information
appliance user's own information contains a telephone

number, the telephone number differs for each user, and that the portable telephone hereafter can be a part specifying an individual is utilized.

3. The information processing system according
5 to claim 1, wherein said radio communication terminal
transmits a code number, employing an operation part of
a portable telephone, in addition to the information
appliance user's own information.

4. The information processing system according
10 to claim 1, wherein said information appliance has
a control part for controlling so that the directivity
of an electromagnetic wave transmitted from the radio
communication terminal reading part is made high.

5. A camera system comprising:

15 a radio communication medium and a camera
communicable with said radio communication medium
within a predetermined distance,

said camera comprising:

20 an image pickup part for obtaining image data by
photographing a subject;

a storing part for storing information peculiar to
a user of said camera;

25 a radio communication medium reading part for
transmitting a predetermined radio signal and reading
information from the radio communication medium;

an authorization part for authorizing the camera
user by collating information read at the radio

communication medium reading part with the camera user's own information stored in the storing part; and a record part for recording information related to the camera user authorized at the authorization part while connecting said information related to the camera user with the image data photographed at the image pickup part, and

5 said radio communication medium comprising:
10 a storing part for storing predetermined information; and
15 a transmission part for receiving the predetermined radio signal transmitted from the radio communication medium reading part of the camera and transmitting the predetermined information stored in the storing part as a radio signal.

6. The camera system according to claim 5, wherein said camera further comprises:
20 a radio communication medium writing part;
 a random number generating part;
 an updating part for updating the camera user's own information stored in the storing part; and
25 a processing part for performing a series of processing in which random numbers generated by the random number generating part are obtained, information based on the random numbers is transmitted to the radio communication medium side for being recorded in the radio communication medium, employing the radio

communication medium writing part, and the camera user's own information stored in the storing part is updated, employing the updating part when the camera user is authorized by the authorization part.

- 5 7. The camera system according to claim 5,
wherein said camera further comprises:

an input part by which the user of said camera requires that authorization processing of the camera user is started; and

- 10 a control part for supplying power to said radio communication medium reading part when said authorization processing of the camera user is required through said input part so that said authorization processing of the camera user is performed by the authorization part and finishing supplying power to said radio communication medium reading part after a predetermined time passes.

- 15 8. The camera system according to claim 5,
wherein said camera further comprises a record part creating and recording information showing that the camera user is unclear on a header part of image data photographed at the image pickup part of the camera when authorization of the camera user by the authorization part is failed.

- 20 25 9. The camera system according to claim 5,
wherein said camera further comprises a control part for controlling so that photographing using the camera

is not performed until authorization of the camera user succeeds by the authorization processing part.

10. The camera system according to claim 5, wherein said camera further comprises:

5 an entry processing and entry cancellation processing part of the camera user; and

10 a control part for controlling so that entry processing and entry cancellation processing of the camera user can be performed by the entry processing and entry cancellation processing part only when a predetermined camera user is authorized by the authorization processing part.

15 11. The camera system according to claim 5, wherein said camera further comprises a switching part selectively switching a first mode in which information showing that the camera user is unclear on a header part of image data photographed at the image pickup part of the camera is created and recorded in said record part when authorization of the camera user by the authorization part is failed and a second mode in which control is executed by the control part so that photographing using the camera is not performed until authorization of the camera user by the authorization processing part succeeds.

20 25 12. The camera system according to claim 5, wherein said radio communication medium comprises information peculiar to the camera corresponding to

said camera user's own information as said predetermined information stored in said storing part, and said camera comprises said camera's own information as information stored in said storing part.

5 13. The camera system according to claim 5,
wherein said radio communication medium comprises
information peculiar to a group jointly using the
camera corresponding to said camera user's own
information as said predetermined information stored
in said storing part, and said camera comprises the
information peculiar to the group jointly using the
camera as information stored in said storing part.
10

14. The camera system according to claim 5,
wherein said camera further comprises
15 a control part for controlling so that when a part
of information peculiar to a group using said camera
coincides by collating information read at said radio
communication medium reading part with the camera
user's own information stored in said storing part in
said authorization processing part, photographing using
20 the camera becomes possible, and when it does not
coincide, photographing using the camera becomes
impossible.

15. The camera system according to claim 5,
25 wherein said camera further comprises a control part
for controlling so that the directivity of the
electromagnetic wave transmitted from said radio

communication medium reading part becomes high.

~~16. A camera system comprising:~~

a radio communication medium in the side of
a subject and a camera communicable with said radio
5 communication medium within a predetermined distance,

said camera comprising:

an image pickup part for obtaining image data by
photographing the subject;

10 a radio communication medium reading part for
transmitting a predetermined radio signal and reading
information from the radio communication medium;

15 an information maintenance part for temporarily
maintaining information from said radio communication
medium of the side of the subject read at the radio
communication medium reading part as information
peculiar to said subject; and

20 an information record part recording for, while
relating to a file of image data photographed,
information peculiar to the subject maintained in
said information maintenance part when an image is
photographed employing said image pickup part, and

said radio communication medium comprising:

25 a storing part for storing predetermined
information containing said subject's own information;
and

a transmission part for receiving said
predetermined radio signal transmitted from the radio

communication medium reading part of the camera and transmitting the predetermined information stored in the storing part as a radio signal.

17. The camera system according to claim 16,
5 wherein said camera further comprises
a radio communication medium writing part;
a random number generating part;
an updating part for updating the camera user's
10 own information stored in the storing part; and
a processing part for performing a series of
processing in which random numbers generated by the
random number generating part are obtained, information
based on the random numbers is transmitted to the radio
communication medium side for being recorded in the
radio communication medium, employing the radio
15 communication medium writing part, and the camera
user's own information stored in the storing part is
updated, employing the updating part when the camera
user is authorized by the authorization part.

- 20 18. A camera system comprising:
a radio communication medium in the side of
a camera user, a radio communication medium in the side
of a subject, and a camera communicable with each said
radio communication medium within a predetermined
25 distance,
said camera comprising:
an image pickup part for obtaining image data by

photographing the subject;

a storing part for storing in advance information peculiar to said camera user;

5 a subject information acquisition mode setting part setting said camera to a mode for acquiring information peculiar to said subject;

10 a radio communication medium reading part for transmitting a predetermined radio signal and reading information from each said radio communication medium;

15 an authorization part for authorizing the camera user by collating information from the radio communication medium of the camera user side read at the radio communication medium reading part with the camera user's own information stored in the storing part;

20 an information maintenance part for temporarily maintaining information from said radio communication medium of the subject side read at the radio communication medium reading part as information peculiar to said subject; and

25 an information record part for recording, while relating to a file of image data photographed, said subject's own information maintained in said information maintenance part along with information related to the camera user authorized at said authorization part when an image is photographed employing said image pickup part in the case in which

said subject information acquisition mode is set employing said subject information acquisition mode setting part, and

each said radio communication medium comprising:

- 5 a storing part for storing predetermined information containing said camera user's own information or said subject's own information; and
10 a transmission part for receiving said predetermined radio signal transmitted from the radio communication medium reading part of the camera and transmitting the predetermined information stored in the storing part as a radio signal.

19. The camera system according to claim 18, wherein said camera further comprises

- 15 a radio communication medium writing part;
 a random number generating part;
 an updating part for updating the camera user's own information stored in the storing part; and
 a processing part for performing a series of processing in which random numbers generated by the random number generating part are obtained, information based on the random numbers is transmitted to the radio communication medium side for being recorded in the radio communication medium, employing the radio communication medium writing part, and the camera user's own information stored in the storing part is updated, employing the updating part when the camera
- 20
25

user is authorized by the authorization part.

ABSTRACT OF THE DISCLOSURE

An information processing (camera) system comprises a radio communication terminal (medium) and an information appliance (camera) communicable the 5 radio communication terminal (medium) within a predetermined distance. The information appliance (camera) comprises (an image pickup part for obtaining image data by photographing a subject,) a storing part for storing information peculiar to a user of the 10 information appliance (camera), a radio communication part (medium reading part) (transmitting a predetermined radio signal and) reading information from the radio communication terminal (medium), and an authorization part for authorizing the information 15 appliance (camera) user by collating information from the radio communication terminal read at the radio communication part (medium reading part) with information peculiar to the information appliance (camera) user stored in the storing part (and a record part for recording the information related to the 20 camera user authorized at the authorization part while relating the information related to the camera user authorized at the authorization part to the image data photographed at the image pickup part). The radio 25 communication terminal (medium) comprises a storing part for storing predetermined information and a transmission part for receiving a radio signal

generated at the information appliance (the predetermined radio signal generated at a radio communication medium reading part of the camera) and transmitting the predetermined signal stored in the storing part as
5 a radio signal.

RADIO COMMUNICATION
(IrDA, BLUETOOTH,
PHS/RADIO WAVE FOR
A PORTABLE TELEPHONE
OR THE LIKE)

FIG. 1A

FIG. 1B

PROCESSING IN SIDE
OF PORTABLE
COMMUNICATION
TERMINAL

USER (PORTABLE
COMMUNICATION
TERMINAL)
APPROACHES
INFORMATION
APPLIANCE

RECEIVING
TRANSMITTING
INFORMATION
APPLIANCE
USER'S OWN
INFORMATION
(TELEPHONE
NUMBER)

(TIME BASE)

PROCESSING IN SIDE
OF INFORMATION
APPLIANCE

TRANSMITTING INFORMATION
READOUT REQUEST
TRANSMITTING INFORMATION
READOUT REQUEST
TRANSMITTING INFORMATION
READOUT REQUEST
TRANSMITTING INFORMATION
READOUT REQUEST

RECEIVING
COLLATING
ALLOWING USE OR
REJECTING USE
PROCESSING

(TIME BASE)

FIG. 1C

FIG. 2A

FIG. 2B

101 INFORMATION APPLIANCE

FIG. 3

301 CAMERA

FIG. 4

USER ID CAMERA USER'S OWN INFORMATION (AUTHORIZATION INFORMATION)	
1	19d1e9awkf
2	z2tnfower;3
3	Yzev8&fd2
⋮	⋮
n	\$ekfg9sde3

EXAMPLE OF LIST IN CAMERA STORING USER INFORMATION

FIG. 5A

INFORMATION OF USER ID=1 RECORDED
IN NON-CONTACT ID CARD

FIG. 5B

FIG. 6

FIG. 7

USER ID CAMERA USER'S OWN INFORMATION (AUTHORIZATION INFORMATION)	
1	19d1e9awkf
2	z2tnfower;3
3	Yzev8&fd2
:	
n	\$ekfg9sde3
CAMERA'S SERIAL NUMBER=123456	

EXAMPLE OF LIST IN CAMERA STORING USER INFORMATION

FIG. 8A

19d1e9awkf	1234567
------------	---------

INFORMATION OF USER ID=1 RECORDED
IN NON-CONTACT ID CARD

FIG. 8B

USER'S OWN	CAMERA'S SERIAL NUMBER
Ks#die934	123456

(INFORMATION PECULIAR TO USER USING
CAMERA RECORDED IN IC CARD)

FIG. 8C

USER ID CAMERA USER'S OWN INFORMATION
(AUTHORIZATION INFORMATION)

1	19d1e9awkf
2	z2tnfower;3
3	Yzev8&fd2
⋮	
n	\$ekfg9sde3

GROUP'S OWN INFORMATION=7654321

EXAMPLE OF LIST IN CAMERA STORING USER INFORMATION

FIG. 9A

INFORMATION OF USER ID=1 RECORDED
IN NON-CONTACT ID CARD

FIG. 9B

IMAGE FILE PHOTOGRAPHED

FIG. 11

FIG. 12

Declaration Power of Attorney For Patent Application

特許出願宣言書及び委任状
Japanese Language Declaration
日本語宣言書

下記の氏名の発明者として、私は以下の通り宣言します。

As a below named inventor, I hereby declare that:

私の住所、私書箱、国籍は下記の私の氏名の横に記載された通りです。

My residence, post office address and citizenship are as stated below next to my name,

下記の名称の発明に関して請求範囲に記載され、特許出願している発明内容について、私が最初かつ唯一の発明者（下記の氏名が一つの場合）もしくは最初かつ共同発明者であると（下記の名称が複数の場合）信じています。

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

情報処理システム及びカメラシステムINFORMATION PROCESSING SYSTEM AND
CAMERA SYSTEM

上記発明の明細書（下記の欄で×印がついていない場合は、本書に添付）は、

The specification of which is attached hereto unless the following box is checked:

 _____月____日に
提出され米国出願番号または特許協定条約 was filed on _____
as United States Application Number or
PCT international Application Number国際出願番号を_____とし、
(該当する場合) _____月____日に訂正されました。and was amended on _____
_____ (if applicable).私は、特許請求範囲を含む上記訂正後の明細書を検討し、
内容を理解していることをここに表明します。

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

私は、連邦規則法典第37編第1条56項に定義されるとおり、特許資格の有無について重要な情報を開示する義務があることを認めます。

I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56

Japanese Language Declaration

(日本語宣言書)

私は、合衆国法典第35編第119条(a) - (d)項又は第365条(b)に基づき下記の、米国以外の国の少なくとも一ヵ国を指定している特許協力条約365(a)項に基づく国際出願、又は外国での特許出願もしくは発明者証の出願についての外国優先権をここに主張するとともに、優先権を主張している、本出願の前に出願された特許または発明者証の外国出願を以下に、枠内をマークすることで、示しています。

I hereby claim foreign priority under Title 35, United States Code, Section 119(a)-(d) or 365(b) of any foreign application(s) for patent or inventor's certificate, or 365(a) of any PCT international application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT international application having a filing date before that of the application on which priority is claimed:

Prior Foreign Application(s)
外国での先行出願11-181599
(Number)
(番号)

JAPAN

(Country)
(国名)

28/06/1999

(Day/Month/Year Filed)
(出願年月日)Priority Not Claimed
優先権の主張なし

私は、第35編米国法典119条(e)項に基いて下記の米国特許規定に記載された権利をここに主張いたします。

I hereby claim the benefit under Title 35, United States Code, Section 119(e) of any United States provisional application(s) listed below.

(Application No.)
(出願番号)(Filing Date)
(出願日)(Application No.)
(出願番号)(Filing Date)
(出願日)

私は、下記の米国法典第35編120条に基いて下記の米国特許出願に記載された権利、又は米国を指定している特許協力条約365条(c)に基づく権利をここに主張します。また、本出願の各請求範囲の内容が米国法典第35編112条第1項又は特許協力条約で規定された方法で先行する米国特許出願に開示されていない限り、その先行米国出願書提出日以降で本出願書の日本国内または特許協力条約提出日までの期間中に入手された、連邦規則法典第37編1条56項で定義された特許資格の有無に関する重要な情報について開示義務があることを認識しています。

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) or 365(c) of any PCT international application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT Information application in the manner provided by the first paragraph of Title 35, United States Code, Section 112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56 which become available between the filing date of the prior application and the national or PCT international filing date of application:

(Application No.)
(出願番号)(Filing Date)
(出願日)(Status: Patented, Pending, Abandoned)
(現況:特許許可済、係属中、放棄済)(Application No.)
(出願番号)(Filing Date)
(出願日)(Status: Patented, Pending, Abandoned)
(現況:特許許可済、係属中、放棄済)

私は、私自身の知識に基づいて本宣言書中で私が行う表明が真実であり、かつ私の入手した情報と私の信じるところに基づく表明が全て真実であると信じていること、さらに故意になされた虚偽の表明及びそれと同等の行為は米国法典第18編第1001条に基づき、罰金または拘禁、もしくはその両方により処罰されること、そしてそのような故意による虚偽の声明を行なえば、出願した、又は既に許可された特許の有効性が失われることを認識し、よってここに上記のごとく宣誓を致します。

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Japanese Language Declaration

(日本語宣言書)

委任状：私は、下記の発明者として、本出願に関する一切の手続きを米特許商標局に対して遂行する弁理士または代理人として、下記の者を指名いたします。
(弁理士、または代理人の氏名及び登録番号を明記のこと)

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith (list name and registration number)

Leonard Holtz (Reg. No. 22,974), Herbert H. Goodman (Reg. No. 17,081),
Thomas Langer (Reg. No. 27,264), Marshall J. Chick (Reg. No. 26,853),
Richard S. Barth (Reg. No. 28,180), Douglas Holtz (Reg. No. 33,902), and
Robert P. Michal (Reg. No. 35,614).

書類送付先：

Send Correspondence to
Frishauf, Holtz, Goodman,
Langer & Chick, P.C.

767 Third Avenue - 25th Floor,
New York, N.Y. 10017-2023

直通電話連絡先：

Direct Telephone Calls to: (name and telephone number)
Telephone No. (212) 319-4900
Facsimile No. (212) 644-4834

唯一のまたは第一発明者の氏名 近藤 隆	Full name of sole or first inventor Takashi Kondoh	
同発明者の署名 日付	Inventor's signature <i>T. Kondoh</i>	Date 2000/6/16
住 所 日本国調布市	Residence Chofu-shi, Japan	
国 種 日本	Citizenship JAPAN	
郵便の宛先 日本国東京都八王子市久保山町2-3	Post Office Address c/o Intellectual Property Department, OLYMPUS OPTICAL CO., LTD.	
オリンパス光学工業株式会社 知的財産部内	2-3, Kuboyama-cho, Hachioji-shi, Tokyo, Japan	

(第二以降の共同発明者に対しても同様に記載し、署名をすること。)

(Supply similar information and signature for second and subsequent joint inventors.)