§1. Метрические пространства

Всякое правильное рассуждение можно свести к систематическому применению небольшого числа неизменных правил, не зависящих от конкретной природы объектов, о которых цдет речь.

Н. Бурбаки

Пусть X — произвольное непустое множество. Функция

$$\rho: X \times X \to [0; \infty),$$

определенная на декартовом произведении $X \times X$, принимающая неотрицательные вещественные значения и удовлетворяющая следующим условиям:

$$(\underline{M}1) \ \rho(x,y) = 0 \Longleftrightarrow x = y;$$

(M2) $\rho(x,y)=\rho(y,x)$ для любых $x,y\in X$;

$$(M3)$$
 $\rho(x,y)\leqslant
ho(x,z)+
ho(z,y)$ для любых $x,y,z\in X,$

называется метрикой на множестве X.

Условия (M1) — (M3) называются аксиомами метрики; (M1) — аксиома тождества; (M2) — аксиома симметрии; (M3) — аксиома треугольника, или неравенство треугольника.

Число $\rho(x,y)$ называется расстоянием между элементами x и y, принадлежащими множеству X.

Метрическим пространством (сокращенно МП) называется пара (X, ρ) , состоящая из множества X и заданной на нем метрики ρ . При этом элементы множества X (в соответствии с удобной геометрической терминологией) обычно называют точками пространства (X, ρ) , а его подмножества — подмножествами пространства (X, ρ) или множествами в пространстве (или из пространства) (X, ρ) .

Пусть (X,ρ) — МП, x_0 — некоторая точка из (X,ρ) и r — положительное число. Множество

$$B(x_0, r) := \{x \in X : \rho(x_0, x) < r\}$$

называется открытым шаром (или просто шаром) с центром в точке x_0 радиуса r. Множество

$$\overline{B}(x_0,r)$$
: $= \{x \in X : \rho(x_0,x) \leqslant r\}$

называется замкнутым шаром c центром b точке x_0 радиуса r. Множество

$$S(x_0,r)$$
: = $\{x \in X : \rho(x_0,x) = r\}$

называется сферой c центром в точке x_0 радиуса r.

Для множества A из пространства (X, ρ) и r > 0 множество

$$B(A,r) \colon = \bigcup \{B(x,r) : x \in A\}$$

называется шаровой окрестностью множества A, или r-шаром множества A. Так как для любой точки $x \in A$ справедливо соотношение $x \in B(A,r)$, то получаем включение $A \subset B(A,r)$.

Предложение 1.1. (a) Для любой точки $x_1 \in B(x_0, r)$ существует положительное число r_1 , такое, что $B(x_1, r_1) \subset B(x_0, r)$.

- (б) Пусть x_0 есть точка пространства (X, ρ) . Тогда для любых чисел r_1 и r_2 , таких, что $0 < r_1 < r_2$, справедливо включение $\overline{B}(x_0, r_1) \subset B(x_0, r_2)$.
- \blacktriangleleft (a) Положим $r_1=rho(x_1,x_0)$. Тогда для произвольной точки $x\in B(x_1,r_1)$, в силу неравенства треугольника, имеем

$$\rho(x,x_0) \leqslant \rho(x_1,x_0) + \rho(x_1,x) < \rho(x_1,x_0) + r_1 = r.$$

Итак, если $x \in B(x_1, r_1)$, то $\rho(x, x_0) < r$, и тем самым требуемое включение доказано.

(б) Возьмем произвольную точку $x \in \overline{B}(x_0,r_1)$. Тогда $\rho(x,x_0) \leqslant r_1$, и так как $r_1 < r_2$, то $\rho(x,x_0) < r_2$. Значит, $x \in B(x_0,r_2)$.

Диаметром непустого множества A из пространства (X,ρ) называется число

$$d(A) \colon = \sup \{ \rho(x_1, x_2) : x_1, x_2 \in A \},\$$

причем полагают $d(\emptyset)$: = 0.

Множество $A\subset X$ называется *ограниченным* в пространстве (X,ρ) , если $d(A)<\infty$.

Метрика ρ на множестве X называется ограниченной числом r (ограниченной), если $d(X) \leq r$ (если $d(X) < \infty$).

Расстоянием $ho(x_0,A)$ от точки x_0 до множества A в пространстве (X,ρ) называется величина

$$ho(x_0,A):=\inf\{
ho(x_0,x):x\in A\},$$
 если $A
eq\varnothing$ и $ho(x,\varnothing):=\infty.$

Так как $\rho(x_0,x)=\rho(x,x_0)$, в силу аксиомы (M2), для каждого $x\in A$, то положим $\rho(x_0,A)=\rho(A,x_0)$.

Ясно, что если $x_0 \in A$, то $\rho(x_0,A)=0$. Подобным образом для двух множеств A и B из пространства (X,ρ) расстояние $\rho(A,B)$ от множества A до множества B есть число

$$ho(A,B):=\inf\{
ho(x,y):\ x\in A,y\in B\},\ {
m cc}$$
ли $A
eq\varnothing
eq B,$

и полагаем

$$\rho(A,\varnothing) := \infty =: \rho(\varnothing,B).$$

Предложение 1.2. Пусть A, B — произвольные непустые множества в пространстве (X, ρ) . Тогда имеют место равенства

$$\rho(A, B) = \inf\{\rho(x, B) : x \in A\} = \inf\{\rho(A, y) : y \in B\}.$$

$$\inf_{\substack{x \in A \\ y \in B}} f(x, y) = \inf_{x \in A} \left(\inf_{y \in B} f(x, y) \right) = \inf_{y \in B} \left(\inf_{x \in A} f(x, y) \right).$$

Действительно, поскольку $\inf_{\substack{x\in A\\y\in B}}f(x,y)\leqslant \inf_{y\in B}f(x,y)$ для произвольно-

го $x\in A$, то $\inf_{\substack{x\in A\\y\in B}}f(x,y)\leqslant \inf_{x\in A}(\inf_{y\in B}f(x,y))$. Далее, для каждого $\varepsilon>0$

существует пара $(x_{\varepsilon},y_{\varepsilon})\in A imes B$, такая, что $f(x_{\varepsilon},y_{\varepsilon})<\inf_{\substack{x\in A\\y\in B}}f(x,y)+\varepsilon.$

С другой стороны, из неравенства

$$\inf_{x \in A} \left(\inf_{y \in B} f(x, y) \right) \leqslant \inf_{y \in B} f(x_{\varepsilon}, y) \leqslant f(x_{\varepsilon}, y_{\varepsilon}),$$

имеем: $\inf_{x\in A}(\inf_{y\in B}f(x,y))\leqslant \inf_{\substack{x\in A\\y\in B}}f(x,y)+\varepsilon.$ Отсюда, ввиду произвольного

выбора ε , получаем, что

$$\inf_{x \in A} \left(\inf_{y \in B} f(x, y) \right) \leqslant \inf_{\substack{x \in A \\ y \in B}} f(x, y)$$

и (с учетом предыдущего)

$$\inf_{x \in A} \left(\inf_{y \in B} f(x, y) \right) = \inf_{\substack{x \in A \\ y \in B}} f(x, y).$$

Аналогично доказывается равенство

$$\inf_{y \in B} \left(\inf_{x \in A} f(x, y) \right) \leqslant \inf_{\substack{x \in A \\ y \in B}} f(x, y).$$

Для получения утверждения рассматриваемого предложения достаточно положить $f(x,y) = \rho(x,y)$.

Предложение 1.3. Пусть (X, ρ) — произвольное МП. Тогда для любых точек $x,\,y\in X$ и любого непустого множества $A\subset X$ справедливо неравенство

$$|\rho(x, A) - \rho(y, A)| \le \rho(x, y).$$

 \blacktriangleleft Для каждой точки $z\in A$ в силу неравенства треугольника имеем $\rho(x,z) \leqslant \rho(x,y) + \rho(y,z)$, поэтому

$$\begin{split} \rho(x,A) &= \inf_{z \in A} \rho(x,z) \leqslant \inf_{z \in A} (\rho(x,y) + \rho(y,z)) = \\ &= \rho(x,y) + \inf_{z \in A} \rho(y,z) = \rho(x,y) + \rho(y,A). \end{split}$$

Аналогично рассуждая, получаем, что $\rho(y,A) \leqslant \rho(x,y) + \rho(x,A)$. \blacktriangleright

Отображение $\mathbb{N}\ni n\mapsto x_n\in X$, которое каждому числу $n\in\mathbb{N}$ ставит в соответствие точку x_n пространства (X, ρ) , называется последовательность точек этого пространства и обозначается символом (x_n) или как семейство с индексом $(x_n)_{n\in\mathbb{N}}$ (см. 0.6).

Говорят, что последовательность точек (x_n) пространства (X, ρ) сходится к точке $x_0 \in X$, если числовая последовательность $(\rho(x_n, x_0))$ сходится к нужю при $n\to\infty, \lim_{n\to\infty}\rho(x_n,x_0)=0,$ и пишут $x_n\to x_0$ или $\lim_{n\to\infty}x_n=x_0.$ Точка x_0 называется пределом последовательности $(x_n).$

Из определения сходимости числовой последовательности имеем: последовательность (x_n) пространства (X,ρ) сходится к точке x_0 , если для любого $\varepsilon>0$ существует такой номер $n_0=n_0(\varepsilon)$, что $\rho(x_n,x_0)<\varepsilon$ при $n>n_0$.

Предложение 1.4. Всякая сходящаяся последовательность точек МП ограничена и имеет не более одного предела. ▶

Предложение 1.5. Если $\lim_{n\to\infty}x_n=x_0$, то $\lim_{n\to\infty}x_{n_k}=x_0$ для любой подпоследовательности (x_{n_k}) последовательности (x_n) . \blacktriangleright

Две метрики ρ_1 и ρ_2 на множестве X называются эквивалентными, если они индуцируют одну и ту же сходимость, т.е. для каждой точки $x_0 \in X$ и каждой последовательности (x_n) точек пространства (X,ρ_1) условие $\lim_{n \to \infty} \rho_1(x_n,x_0) = 0$ выполняется тогда и только тогда, когда $\lim_{n \to \infty} \rho_2(x_n,x_0) = 0$.

Теорема 1.1. Для каждого пространства (X, ρ) существует метрика ρ_1 на множестве X, эквивалентная метрике ρ и ограниченная числом I.

■ Положим

$$\rho_1(x, y) = \min\{1, \rho(x, y)\}, \ \forall x, y \in X.$$

Покажем, что ρ_1 — метрика на множестве X. Ясно, что ρ_1 удовлетворяет условиям (M1) и (M2). Пусть x,y и z — произвольные точки множества X. Положим $a=\rho(x,y),\ b=\rho(y,z),\ c=\rho(x,z).$ Так как каждое из чисел 2,1+a,1+b и a+b больше или равно 1 либо c, то

$$\min(2, 1+a, 1+b, a+b) \geqslant \min(1, c),$$

поэтому

$$\rho_1(x,y) + \rho_1(y,z) = \min(1,a) + \min(1,b) = = \min(2,1+a,1+b,a+b) \geqslant \min(1,c) = \rho_1(x,z).$$

Следовательно, ρ_1 удовлетворяет и условию (M3). Непосредственно из определения метрики ρ_1 заключаем, что она ограничена числом 1 и эквивалентна метрике ρ .

§2. Примеры метрических пространств

... полет в область абстрактной общности должен исходить из конкретного и частного и завершается конкретным и частным.

Р. Курант

Приведем примеры наиболее часто встречающихся пространств.

Пример 2.1. Дискретное метрическое пространство (или пространство изолированных точек) — произвольное множество X, для которого

$$\rho(x,y) = \begin{cases} 0, \text{ если } x = y, \\ 1, \text{ если } x \neq y, \end{cases} \quad \forall \, x, \, y \in X.$$

Пример 2.2. Числовая прямая, или пространство, \mathbb{R} — множество всех вещественных чисел с евклидовой метрикой ρ :

$$\rho(x,y) = |x - y|.$$

Пример 2.3. Пространство \mathbb{R}^n — множество упорядоченных наборов из n действительных чисел с евклидовой метрикой ρ :

$$\rho(x,y) = \sqrt{\sum_{k=1}^{n} (\xi_k - \eta_k)^2},$$

где $x = (\xi_1, \xi_2, \dots, \xi_n)$ и $y = (\eta_1, \eta_2, \dots, \eta_n)$.

Пример 2.4. *Пространство* m — множество всех ограниченных последовательностей, с расстоянием

$$\rho(x,y) = \sup_{n} |\xi_n - \eta_n|,$$

где
$$x = (\xi_n)$$
 и $y = (\eta_n)$.

Пример 2.5. Пространство c — множество всех сходящихся числовых последовательностей, с расстоянием

$$\rho(x,y) = \sup_{n} |\xi_n - \eta_n|,$$

где $x = (\xi_n)$ и $y = (\eta_n)$.

Пример 2.6. Пространство l_p $(1\leqslant p<\infty)$ состоит из всех числовых последовательностей $x=(\xi_n)$, для которых $\sum\limits_{n=1}^{\infty}|\xi_n|^p<\infty$, а расстояние определяется по формуле

$$\rho(x,y) = \left(\sum_{i=1}^{\infty} |\xi_i - \eta_i|^p\right)^{1/p}, \quad 1 \leqslant p < \infty.$$

(В случае $p=\infty$ полагают $l_\infty:=m$.)

Пример 2.7. Пространство l_p^m $(1\leqslant p\leqslant \infty)$ — множество упорядоченных наборов из m действительных (комплексных) чисел с расстоянием

$$ho(x,y) = \left\{ egin{array}{ll} \displaystyle \left(\sum_{i=1}^m |\xi_i - \eta_i|^p
ight)^{1/p}, & ext{при } 1 \leqslant p < \infty, \ \displaystyle \sup_{1 \leqslant i \leqslant n} |\xi_i - \eta_i|, & ext{при } p = \infty, \end{array}
ight.$$

где
$$x = (\xi_1, \ldots, \xi_m)$$
 и $y = (\eta_1, \ldots, \eta_m)$.

Пример 2.8. Пространство s — множество всех числовых последовательностей, в котором метрика определяется функцией

$$\rho(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|\xi_n - \eta_n|}{1 + |\xi_n - \eta_n|},$$

где $x=(\xi_n)$ и $y=(\eta_n).$

Пример 2.9. Пространство C[a,b] — множество всех непрерывных действительных функций, определенных на отреже [a,b], с чебышевской метрикой, которая определяется функцией

$$\rho(x,y) = \max_{t \in [a,b]} |x(t) - y(t)|.$$

Пример 2.10. Пространство $C^k[a,b]$ — множество k раз непрерывно дифференцируемых на отрезке [a,b] функций с расстоянием

$$\rho(x,y) = \sum_{i=0}^{k} \max_{t \in [a,b]} |x^{(i)}(t) - y^{(i)}(t)|.$$

Пример 2.11. Пространство M[a,b] — множество всех ограниченных на отрезке [a,b] функций с расстоянием

$$\rho(x,y) = \sup_{t \in [a,b]} |x(t) - y(t)|.$$

Пример 2.12. Пространство $\widetilde{L}_p[a,b]$ $(1\leqslant p<\infty)$ — множество непрерывных на отрезке [a,b] функций с расстоянием

$$\rho(x,y) = \left(\int_a^b |x(t) - y(t)|^p dt\right)^{1/p}.$$

(Часто полагают, что $\widetilde{L}_{\infty}[a,b] := M[a,b]$.)

Пример 2.13. Пространство $\widetilde{W}_p^l[a,b]$ $(l\in\mathbb{N},\ 1\leqslant p<\infty)$ — множество l раз непрерывно дифференцируемых функций на отрезке [a,b] с расстоянием

$$\rho(x,y) = \left(\sum_{k=0}^{l} \int_{a}^{b} |x^{(k)}(t) - y^{(k)}(t)|^{p} dt\right)^{1/p}$$

Пример 2.14. Пусть (X, ρ_X) , (Y, ρ_Y) — два метрических пространства. Для любой пары точек $z_1=(x_1,y_1),\ z_2=(x_2,y_2)$ декартова произведения $Z=X\times Y$ положим

$$\rho_Z(z_1, z_2) := \max\{\rho_X(x_1, x_2), \rho_Y(y_1, y_2)\}.$$

Функция $\rho_Z\colon Z\times Z\to [0,\infty)$ является метрикой на множестве Z и называется произведением метрик ρ_X , ρ_Y , и пишут $\rho_Z=\rho_X\times \rho_Y$. Полученное МП (Z,ρ_Z) называется произведением пространств (X,ρ_X) и (Y,ρ_Y) .

Задачи и упражнения

2.1. Проверить аксиомы метрики в примерах 2.1–2.14 и показать, что сходимость по метрике в пространствах из примеров 2.2-2.8, 2.14 есть схо-

§3. Структура подмножеств метрического пространства

Структура вещи — совсем не что-то такое, что мы могли бы «изобрести». Мы можем лишь выводить ее на свет терпеливо, смиренно; знакомясь с ней, ее раскрывать.

А. Гротендик

Точка x_0 пространства (X, ρ) называется внутренней точкой множества $A \subset X$, если существует такое число r > 0, что $B(x_0, r) \subset A$.

Множество $A \subset X$ называется *открытым* в пространстве (X,ρ) , если каждая точка из A является внутренней. Таким образом, то, что A — открытое множество пространства (X,ρ) , означает, что с каждой точкой $x_0 \in A$ связано положительное число r, для которого из условий $\rho(x_0,x) < r$, $x \in X$, следует включение $x \in A$.

Пустое множество \varnothing (вообще не содержит точек и поэтому может считаться удовлетворяющим определению открытого множества) и само множество X являются открытыми множествами в пространстве (X, ρ) .

Свойства открытых множеств в МП описывает

Теорема 3.1. В произвольном МП справедливы следующие утверждения:

- (а) любой открытый шар является открытым множеством;
- (б) объединение любого семейства открытых множеств открыто;
 - (в) пересечение конечного числа открытых множеств открыто. >

Открытой окрестностью, или просто окрестностью, непустого множества $A \in X$ (точки $x_0 \in X$) будем называть любое открытое множество в пространстве (X, ρ) , содержащее множество A (точку x_0). Очевидно, что r-шар B(A, r) множества A (открытый шар $B(x_0, r)$) является окрестностью множества A (точки x_0).

3 а м е ч а и и е 3.1. Из определения окрестности точки и утверждения (а) теоремы 3.1 получаем, что x_0 — внутренняя точка множества A, если для нее существует окрестность, содержащаяся в A.

Теорема 3.2. Для любого непустого множества A из пространства (X,ρ) и любого числа r>0 множество

$$V_r(A) = \{x \in X : \rho(x, A) < r\}$$

является окрестностью А.

 \blacktriangleleft Непосредственно из определения множества $V_r(A)$ имсем включение $A\subset V_r(A)$. Покажем, что множество $V_r(A)$ открыто. Пусть x_0 — произвольная точка множества $V_r(A)$. Рассмотрим открытый шар $B(x_0,r_0)$, где $r_0=r-\rho(x_0,A)$, и произвольную точку $y\in B(x_0,r_0)$. Используя неравенство

$$|\rho(x_0, A) - \rho(y, A)| \leq \rho(x_0, y)$$

из предложения 1.3 и определение числа r_0 , получаем, что

$$\rho(y, A) \leqslant \rho(x_0, y) + \rho(x_0, A) < r.$$

Отсюда заключаем, что $B(x_0,r_0)\subset V_r(A)$, т. е. множество $V_r(A)$ открыто. Внутренняя точка множества $X\setminus A$ называется внешней точкой множества A. Яспо, что точка $x_0\in X$ является внешней для множества A в (X,ρ) тогда и только тогда, когда $\rho(x_0,A)>0$.

Точка x_0 пространства (X,ρ) называется точкой прикосновения множества $A\subset X$, если $\rho(x_0,A)=0$. Совокупность всех точек прикосновения множества $A\subset X$ в пространстве (X,ρ) называется замыканием множества A и обозначается символом \overline{A} , т. е.

$$\overline{A} := \{x \in X : \rho(x, A) = 0\}.$$

Так как $\rho(x,A)=0$ для любой точки $x\in A$, то заключаем, что $A\subset \overline{A}$, т. е. каждая точка множества A является для него точкой прикосновения.

Точка прикосновения множества A может не принадлежать A. Например, если A=(0,1) — интервал числовой прямой $\mathbb R$, то точки 0 и 1 являются точками прикосновения для A (в пространстве $\mathbb R$), причем они не принадлежат ему.

Теорема 3.3. Пусть x_0 — точка прикосновения множества A и пусть $x_0 \notin A$. Тогда пересечение $V \cap A$ множества A с любой окрестностью V точки x_0 есть бесконечное множество.

 \blacktriangleleft Предположим противное, и пусть $V \cap A = \{x_1, x_2, \dots, x_n\}$ — конечное множество. По предположению, число

$$r_0 = \min\{\rho(x_0, x_k) : k = \overline{1, n}\} > 0.$$

Тогда, в силу открытости V, найдется такое число $0 < r < r_0$, что шар $B(x_0,r) \subset V$ и $B(x_0,r) \cap A = \varnothing$, т.е. $\rho(x_0,A) > 0$, а это противоречит условию теоремы. \blacktriangleright

Непосредственно из определения замыкания множества и теоремы 3.3 следует

Предложение 3.1. Имеют место следующие утверждения:

- (a) $(x_0 \in \overline{A}) \iff (\forall r > 0, B(x_0, r) \cap A \neq \emptyset)$;
- $(6) \ (x_0 \in \overline{A}) \Longleftrightarrow (\exists \{x_n : n \in \mathbb{N}\} \subset A : x_n \to x_0 \ npu \ n \to \infty).$
- ◀ (б) Для каждого $n\in\mathbb{N}$ существует точка $x_n\in A$ такая, что $\rho(x_n,x_0)<\frac{1}{n}.$ По произвольно заданному числу $\varepsilon>0$ выберем n_0 так, чтобы $\varepsilon<1$. Тогла $\rho(x_n,x_0)<\varepsilon$ при всех $n>n_0$, т.е. $x_n\to x_0$ при $n\to\infty$. ▶

Предложение 3.2. Для любой точки $x_0 \in X$ и любого множества A из пространства (X, ρ) справедливо равенство

$$\rho(x_0, A) = \rho(x_0, \overline{A}).$$

 \blacktriangleleft Непосредственно из определения расстояния от точки x_0 до множества A и включения $A\subset \overline{A}$ имеем неравенство

$$\rho(x_0, \overline{A}) \leqslant \rho(x_0, A). \tag{3.1}$$

C другой стороны, для любого $\varepsilon>0$ существует такая $\overline{a}_{\varepsilon}\in\overline{A}$, что

$$\rho(x_0, \overline{a}_{\varepsilon}) < \rho(x_0, \overline{A}) + \frac{\varepsilon!}{2}.$$

Учитывая, что $\overline{a}_{\varepsilon}$ является точкой прикосновения множества A, то найдется такая точка $a_{\varepsilon} \in A$, что $\rho(\overline{a}_{\varepsilon}, a_{\varepsilon}) < \frac{\varepsilon}{2}$. Следовательно,

$$\rho(x_0, a_{\varepsilon}) \leqslant \rho(x_0, \overline{a}_{\varepsilon}) + \rho(\overline{a}_{\varepsilon}, a_{\varepsilon}) < \rho(x_0, \overline{A}) + \varepsilon.$$

Отсюда, с учетом произвольного выбора числа $\varepsilon > 0$, заключаем, что

$$\rho(x_0, A) \leqslant \rho(x_0, \overline{A}). \tag{3.2}$$

Из полученных неравенств (3.1) и (3.2) следует справедливость нашего предложения. >

Следствие 3.1. Пусть A, B — произвольные множества из пространства (X, ρ) . Тогда справедливы равенства

$$\rho(A, B) = \rho(A, \overline{B}) = \rho(\overline{A}, B) = \rho(\overline{A}, \overline{B}).$$

◄ Непосредственно из предложений 1.2 и 3.2 имеем

$$\rho(A,B) = \inf_{x \in A} \rho(x,B) = \inf_{x \in A} \rho(x,\overline{B}) = \rho(A,\overline{B}),$$

и первое равенство доказано.

Аналогично устанавливается справедливость остальных равенств. >

Точка x_0 пространства (X, ρ) называется предельной точкой множества $A \subset X$, если $x_0 \in \overline{A \setminus \{x_0\}}$ (т.е. согласно предложению 3.1.(а), для любого числа r > 0 множество $B(x_0, r) \cap (A \setminus \{x_0\}) \neq \emptyset$). Совокупность всех предельных точск множества A называется производным множеством (или производной) множества A и обозначается A'.

Из определения предельной точки и предложения 3.1. (б) следует следующий критерий принадлежности точки производном у множеству: точка $x_0 \in A' \neq \varnothing$ тогда и только тогда, когда существует последовательность точек (x_n) множества A такая, что $x_n \to x_0$, где $x_n \in A \setminus \{x_0\}$ для всех $n \in \mathbb{N}$ и $x_n \neq x_m$ для всех $n \neq m$.

Каждая предельная точка множества является его точкой прикосновения. Обратное утверждение, вообще говоря, не верно. При этом справедливо

Предложение 3.3. Для любого множества A из $M\Pi$ (X, ρ) имеет место равенство $\overline{A} = A \cup A'$.

◄ Если $x_0 \in \overline{A}$, то либо $x_0 \in A$, либо $x_0 \notin A$, и тогда произвольная окрестность точки x_0 содержит точку из A, отличную от x_0 , т. е. $x_0 \in A'$. Следовательно, $\overline{A} \subset A \cup A'$. Отсюда и из включения $A \cup A' \subset \overline{A}$ (так как $A \subset \overline{A}$ и $A' \subset \overline{A}$) получаем справедливость требуемого равенства. ▶

Точка x_0 пространства (X,ρ) называется изолированной точкой множества $A\subset X$, если существует открытый шар $B(x_0,r_0)$, такой, что $B(x_0,r_0)\cap A=\{x_0\}$. Множество, состоящее из изолированных точек, называется дискретным.

Ясно, что совокупность всех изолированных точек множества A совнадает с множеством $A\setminus A'$.

Очевидно, что если x_0 — изолированная точка множества A, то $x_0 \in \overline{A}$. Следовательно, с учетом определения предельной точки, заключаем, что

замыкание \overline{A} множества A состоит из точек трех типов: изолированные точки множества A; предельные точки множества A, принадлежащие A; предельные точки множества A, не принадлежащие A.

Множество $A\subset X$ называется *замкнутым* в пространстве (X,ρ) , если $A=\overline{A}$. Например, из определения производной множества A имеем, что A' — замкнутое множество.

Замкнутое множество в МП характеризует

Теорема 3.4. Множество $A \subset X$ замкнуто в пространстве (X, ρ) тогда и только тогда, когда его дополнение $X \setminus A$ открыто.

◀ Пусть A — замкнутое множество и x_0 — произвольная точка из $X \setminus A$. Тогда из соотношения $x_0 \notin A$, согласно предложению 3.1.(a), найдется такое $\varepsilon > 0$, что $B(x_0, \varepsilon) \cap A' = \varnothing$, т.е. $\rho(x_0, A) = \varepsilon > 0$. Покажем справедливость включения $B(x_0, \varepsilon) \subset X \setminus A$. Допустим противное, т.е. существует элемент $y \in B(x_0, \varepsilon) \cap A$. Тогда имеем неравенство $\rho(x_0, y) \geqslant \rho(x_0, A) = \varepsilon$, которое противоречит тому, что $y \in B(x_0, \varepsilon)$. Следовательно, $B(x_0, \varepsilon) \subset X \setminus A$, а значит, множество $X \setminus A$ — открыто.

Обратно, пусть $X\setminus A$ — открытое множество. Тогда для любой точки $x_0\in X\setminus A$ существует такое число $\varepsilon>0$, что $B(x_0,\varepsilon)\subset X\setminus A$. Следовательно, для каждой точки $y\in A$ имеем неравенство $\rho(x_0,y)\geqslant \varepsilon$, т. е. $\rho(x_0,A)\geqslant \varepsilon$, значит, $x_0\notin \overline{A}$. Таким образом, если $x_0\in \overline{A}$, то $x_0\notin X\setminus A$, т. е. имеем включение $\overline{A}\subset A$. Отсюда, учитывая то, что $A\subset \overline{A}$, нолучаем равенство $A=\overline{A}$. \blacktriangleright

Непосредственно из теоремы 3.4 получаем, что пустое множество \varnothing и само множество X являются замкнутыми в (X, ρ) .

Следствие 3.2. Пересечение любого семейства и объединение конечного числа замкнутых миожеств замкнуто. ▶

Точка x_0 пространства (X,ρ) называется граничной точкой множества $A\subset X$, если она является точкой прикосновения множеств A и $X\setminus A$. Совокупность всех граничных точек множества A называют границей множества A и обозначают $\operatorname{Fr} A$, т. е. $\operatorname{Fr} A:=\overline{A}\cap (\overline{X\setminus A})$.

Из этого определения следует, что характеристическое свойство граничной точки множества состоит в том, что в любой ее окрестности имеются как точки этого множества, так и точки, ему не принадлежащие, а с учетом предложения 3.1 имеем

Предложение 3.4. Условие $x_0 \in \operatorname{Fr} A$ эквивалентно тому, что существует последовательность (x_n) из $X \setminus A$, сходящаяся к x_0 , и существует последовательность (\tilde{x}_n) из A, сходящаяся к x_0 .

◄ Пусть выполнено условие $x_0 \in \operatorname{Fr} A$. Тогда для любого r>0 $B(x_0,r)\cap A\neq\varnothing$ и $B(x_0,r)\cap (X\setminus A)\neq\varnothing$. Положим $r=r_n$, где $r_0\to 0$. В результате получим последовательности $(x_n),x_n\in A$, и $(\tilde{x}_n),x_n\in X\setminus A$, такие, что $x_n\to x_0$ и $\tilde{x}_n\to x_0$.

Обратно, если $x_n \to x_0, x_n \in A$, и $\widetilde{x}_n \to x_0, \widetilde{x}_n \in X \setminus A$, то из определения предела последовательности следует, что любой открытый шар $B(x_0,r)$ содержит как точку x_n , так и точку \widetilde{x}_n при достаточно большом n=n(r). Отсюда и из определения $\operatorname{Fr} A$ следует, что $x \in \operatorname{Fr} A$.

Задачи и упражнения

- 3.1. (а) Пусть M произвольное непустое подмножество МП (X,ρ) , для которого Int $M \neq \varnothing$. Доказать, что для любой точки $x_0 \in \operatorname{Int} M$ существует такое число $\varepsilon > 0$, что справедливо включение $\overline{B}(x_0,\varepsilon) \subset M$.
- (б) Доказать, что множество $A = \{x \in C[a,b]: |x(t)| < x_0(t), t \in [a,b]\}$, где $x_0(t)$ фиксированная функция из C[a,b], является открытым множеством в пространстве C[a,b].
- (в) Пусть A открытое множество в (X, ρ) и $\{x_1, \dots, x_n\} \subset X$. Показать, что множество $A \setminus \{x_1, \dots, x_n\}$ также открыто.
- **3.2.** Пусть A произвольное непустое множество в пространстве (X, ρ) и пусть $0 < r_1 < r_2$. Показать, что множества

$${x \in X : \rho(x, A) > r_1}, \quad {x \in X : r_1 < \rho(x, A) < r_2}$$

открыты, а множества

$$\{x \in X : \rho(x,A) \leqslant r_1\}, \qquad \{x \in X : \rho(x,A) \geqslant r_2\},$$

$$\{x \in X : r_1 \leqslant \rho(x,A) \leqslant r_2\}, \quad \{x \in X : \rho(x,A) = r_1\}$$

замкнуты в пространстве (X, ρ) .

- 3.3. Доказать, что (а) любое подмножество дискретного пространства (см. пример 2.1) является одновременно открытым и замкнутым; (б) в ультраметрическом пространстве любой открытый (замкнутый) шар является одновременно открытым и замкнутым множеством, причем выполнено равенство $B(x_0,r)=B(x,r)$ для любой точки $x\in B(x_0,r)$.
- 3.4. Доказать, что конечное множество открыто в МП тогда и только тогда, когда каждая его точка является изолированной.
- **3.5.** На множестве X заданы две метрики ρ_1 , ρ_2 и существует постоянная c>0, такая, что $\rho_1(x,y)\leqslant c\rho_2(x,y)$ для любых $x,y\in X$. Доказать,

§4. Операторы взятия внутренности, замыкания и граничный оператор

Определение по существу сводится к тому, что вместо какой-то комбинации старых символов используется один новый символ.

Г. Штейнгауз

Пусть A — произвольное множество в пространстве (X,ρ) . Внутренностью (или открытой частью) множества A в пространстве (X,ρ) называется совокупность всех внутренних точек множества A; это множество обозначается A или, подробнее, A Отсюда, с учетом замечания A, имеем

$$\operatorname{Int} A := \cup \{U - \operatorname{открыто} : U \subset A\}.$$

Так кач объединение любого семейства открытых множеств открыто (см. теорему 3.1(6)), то получаем, что внутренность множества представляет собой наибольшее открытое множество, содержащееся в A. Очевидно, что множество A открыто тогда и только тогда, когда A = Int A,

Отображение $A\mapsto \operatorname{Int} A$, в силу которого каждому множеству $A\subset X$ сопоставляется его внутренность $\operatorname{Int} A$ в пространстве (X,ρ) , называется оператором взятия внутренности.

Теорема 4.1. Оператор Int обладает следующими свойствами:

- (a) Int X = X;
- (6) Int $A \subset A$;
- (в) $(A \subset B) \Rightarrow (\operatorname{Int} A \subset \operatorname{Int} B) c$ войство монотонности:
- (c) $Int(A \cap B) = Int A \cap Int B$;
- (a) Int(Int A) = Int A.
- ◄ (г) Из очевидных включений

 $\operatorname{Int} A \cap \operatorname{Int} B \subset A, \ \operatorname{Int} A \cap \operatorname{Int} B \subset B,$

имеем

Int
$$A \cap \operatorname{Int} B \subset A \cap B$$
.

Так как левая часть последнего соотношения — открытое множество, то

$$\operatorname{Int} A \cap \operatorname{Int} B \subset \operatorname{Int}(A \cap B). \tag{4.1}$$

С другой стороны, из свойства монотонности оператора Int получаем

$$\operatorname{Int}(A \cap B) \subset \operatorname{Int} A, \ \operatorname{Int}(A \cap B) \subset \operatorname{Int} B.$$

Отсюда следует

$$Int(A \cap B) \subset Int A \cap Int B. \tag{4.2}$$

Из включений (4.1) и (4.2) получаем требуемое равенство. >

Отображение $A \mapsto \overline{A}$, сопоставляющее каждому множеству $A \subset X$ его замыкание \overline{A} в пространстве (X, ρ) , называется оператором замыкания. Согласно теореме 3.4 и определении множества Int A имеем

$$\overline{A}=\cap \{F\subset X: F=\overline{F}, F\supset A\}.$$

Так как пересечение любого семейства замкнутых множеств замкнуто (следствие 3.2), то получаем, что замыкание \overline{A} множества A является наименьшим замкнутым множеством, содержащим A.

Теорема 4.2. Оператор замыкания обладает следующими свойствами:

- $(a) \ \overline{\varnothing} = \varnothing;$
- (6) $A \subset \overline{\overline{A}}$:
- (в) $(A \subset B) \Rightarrow (\overline{A} \subset \overline{B})$ свойство монотонности; (г) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- (∂) $\overline{(\overline{A})} = \overline{A}$;
- ∢ (г) Из очевидных включений

$$A \subset A \cup B$$
, $B \subset A \cup B$

и монотонности оператора замыкания

$$\overline{A} \subset \overline{A \cup B}, \ \overline{B} \subset \overline{A \cup B}$$

получаем

$$\overline{A} \cup \overline{B} \subset \overline{A \cup B}$$
. (4.3)

С другой стороны, из включений $A\subset \overline{A}$ и $B\subset \overline{B}$ вытекает, что $A\cup B\subset \overline{A}\cup \overline{B}$. Так как множество $\overline{A}\cup \overline{B}$ замкнуто, то из определения замыкания имеем

$$\overline{A \cup B} \subset \overline{A} \cup \overline{B}. \tag{4.4}$$

Из включений (4.3) и (4.4) следует справедливость равенства (г).

(д) Непосредственно из свойства монотоннности оператора замыкания имеем: $\overline{A}\subset (\overline{A})$. Покажем справедливость обратного включения: $\overline{(A)}\subset \overline{A}$. Пусть x_0 — произвольная точка множества $\overline{(A)}$, т.е. x_0 — точка прикосновения множества \overline{A} . Значит, в любом шаре $B(x_0,r)$ найдется точка $x_1\in \overline{A}$ (в силу предложения 3.1). Пусть $r_1=r-\rho(x_0,x_1)$. Рассмотрим шар $B(x_1,r_1)$. Для любого элемента y из $B(x_1,r_1)$, с учетом неравенства треугольника, имеем

$$\rho(x_0, y) \leqslant \rho(x_0, x_1) + \rho(x_1, y) = r - r_1 + \rho(x_1, y) < r.$$

Следовательно, $B(x_1,r_1)\subset B(x_0,r)$. Поскольку $x_1\in\overline{A}$, то в множестве A найдется точка x_2 , принадлежащая шару $B(x_1,r_1)$. Тогда $x_2\in B(x_0,r)$. Таким образом, в произвольном шаре $B(x_0,r)$ содержится точка из A, т. е. $x_0\in\overline{A}$.

Связь оператора взятия внутренности с оператором замыкания устанавливает

Теорема 4.3. Для любого множества A из пространства (X, ρ) справедливо равенство

Int
$$A = X \setminus \overline{(X \setminus A)}$$
.

▶ Из включения $X\setminus A\subset \overline{X\setminus A}$ следует, что $A\supset X\setminus \overline{(X\setminus A)}$. Так как множество $X\setminus \overline{(X\setminus A)}$ открыто, а $\operatorname{Int} A$ представляет собой наибольшее открытое множество, содержанцееся в A, то получаем

$$\operatorname{Int} A \supset X \setminus \overline{(X \setminus A)}. \tag{4.5}$$

Пусть U — произвольное открытое множество в пространстве (X, ρ) , содержащееся в A. Тогда $X \setminus A \subset X \setminus U$. Учитывая свойство монотонности оператора замыкания и замкнутость множества $X \setminus U$, имеем

$$\overline{X \setminus A} \subset \overline{X \setminus U} = X \setminus U$$
.

Следовательно, справедливо включение

$$U \subset X \setminus \overline{(X \setminus A)}. \tag{4.6}$$

Положив U = Int A в соотношении (4.6), получим

$$\operatorname{Int} A \subset X \setminus \overline{(X \setminus A)}. \tag{4.7}$$

Итак, из включений (4.5) и (4.7) следует справедливость искомого равенства. ►

Следствие 4.1. Для любого множества A из пространства (X, ρ) имеет место равенство

$$\overline{A} = X \setminus \operatorname{Int}(X \setminus A)$$
.

Отображение $A \mapsto \operatorname{Fr} A$, сопоставляющее каждому множеству $A \subset X$ множество всех сго граничных точек $\operatorname{Fr} A$ в пространстве (X, ρ) , называется граничным оператором.

Теорема 4.4. Оператор Гт обладает следующими свойствами:

- (a) Fr $A = X \setminus (\operatorname{Int} A \cup \operatorname{Int}(X \setminus A))$;
- (6) Fr $A = \operatorname{Fr}(X \setminus A)$;
- (e) Fr $A = \overline{A} \setminus \operatorname{Int} A$;
- (ϵ) $\overline{A} = A \cup \operatorname{Fr} A$;
- (δ) Int $A = A \setminus \operatorname{Fr} A$.

Задачи и упражнения

- **4.1.** Найти в пространстве $\mathbb R$ замыкание, внутренность и границу следующих его подмножеств:
 - $\{a\}; \quad (a,b); \quad (a,b]; \quad [a,b); \quad [a,b]; \quad [a,b) \cup \{c\}; \quad [a,b) \cup (b,c].$
- **4.2.** (а) Доказать, что в произвольном МП справедливо включение $\overline{B(x_0,r)}\subset \overline{B}(x_0,r)$. Приведите пример, когда $\overline{B}(x_0,r)$ не совпадает с $\overline{B}(x_0,r)$.
- (б) Доказать, что в пространстве \mathbb{R}^n для всякой точки $x_0 \in \mathbb{R}^n$ и любого числа r>0 справедливы следующие равенства:

$$\overline{B}(x_0, r) = \overline{B(x_0, r)} = (B(x_0, r))';$$

$$S(x_0, r) = \operatorname{Fr}(B(x_0, r)) = \operatorname{Fr}(\overline{B}(x_0, r)).$$

4.3. Доказать следующие свойства оператора взятия внутренности и оператора замыкания:

§5. Подпространство метрического пространства

Всякое рассуждение должно проводиться в определенной, четко ограниченной области предметов, которую следует заранее указить и которая не может быть всеобъемлющей.

Э. Шредер

Пусть (X, ρ) — произвольное МП и M — некоторое его непустое подмножество. Для всякой пары точек $x, y \in M$ положим

$$\rho_M(x,y) := \rho(x,y). \tag{5.1}$$

Тем самым на множестве $M \times M$ определена функция $\rho_M = \rho\big|_{M \times M}$, для которой, очевидным образом, выполнены все аксиомы метрики. Значит, ρ_M является метрикой на M и называется *индуцированной метрикой* на множестве M из пространства (X,ρ) . Полученное МП (M,ρ_M) называется подпространством пространства (X,ρ) . Если M — открытое (замкнутое) подмножество в (X,ρ) , то (M,ρ_M) называется открытым (замкнутым) подпространством.

Открытый шар с центром в точке $x_0 \in M$ радиуса r в подпространстве (M, ρ_M) пространства (X, ρ) будем обозначать символом $B_M(x_0, r)$, т. е.

$$B_M(x_0, r) := \{ x \in M : \rho_M(x_0, x) < r \}.$$

Отсюда, принимая во внимание определение индуцированной метрики ρ_M (5.1), следует

Предложение 5.1. Пусть (M, ρ_M) — подпространство МП (X, ρ) . Тогда для всякой точки $x_0 \in M$ и любого числа r>0 открытый шар $B_M(x_0, r)$ в (M, ρ_M) допускает представление

$$B_M(x_0, r) = M \cap B(x_0, r), \tag{5.2}$$

где $B(x_0,r)$ — открытый шар в (X,ρ) .

◀ Для произвольной точки $x \in B_M(x_0,r)$ одновременно выполнены соотношения: $x \in M$, $\rho(x,x_0) < r$, т. е. $x \in M \cap B(x_0,r)$. Значит, справедливо включение

$$B_M(x_0, r) \subset B(x_0, r) \cap M. \tag{5.3}$$

Обратно, если $x \in B(x_0,r) \cap M$, то из определения шара $B_M(x_0,r)$ имеем, что $x \in B_M(x_0,r)$. Отсюда заключаем, что

$$B(x_0, r) \cap M \subset B_M(x_0, r). \tag{5.4}$$

Из полученных соотношений (5.3) и (5.4) следует равенство (5.2). >

Из определения открытого множества в МП имсем, что множество $A\subset M$ открыто в подпространстве (M,ρ_M) (или относительно множества M), если для всякой точки $x_0\in A$ существует число r>0, такое, что $B_M(x_0,r)\subset A$.

Критерии открытости множества в подпространстве устанавливает следующая

- **Теорема 5.1.** Для того чтобы множество $A\subset M$ было открыто в подпространстве (M,ρ_M) пространства (X,ρ) , необходимо и достаточно, чтобы существовало такое множество G, открытое в пространстве (X,ρ) , что $A=M\cap G$.
- ◀ Н е о б х о д и м о с т ь. Пусть множество A открыто в (M, ρ_M) . Тогда для любой точки $a \in A$ существует положительное число $r_a > 0$, такое, что $B_M(a, r_a) \subset A$, где $B_M(a, r_a)$ открытый шар подпространства (M, ρ_M) . Поэтому, принимая во внимание равенство (5.2), имеем

$$\cup \{B_M(a, r_a) : a \in A\} = [\cup \{B(a, r_a) : a \in A\}] \cap M.$$

Тогда из теоремы 3.1(б) заключаем, что множество $G=\cup\{B(a,r_a):a\in A\}$ открыто в (X,ρ) и $A\subset G$. Следовательно, $M\cap G\supset A$. С другой стороны, согласно выбору шара $B(a,r_a)$ имеем $B(a,r_a)\cap M\subset A$ при каждом $a\in A$. Значит, $G\cap M\subset A$. Отсюда и из полученного выше включения, $M\cap G\supset A$, вытекает требуемое равенство: $A=M\cap G$.

Д о с т а т о ч н о с т ь. Если G — открытое множество пространства (X,ρ) и $A=M\cap G$, то для каждой точки $a\in A$ найдется шар $B(a,r_a)\subset G$, в силу очевидного включения $A\subset G$. Тогда $B(a,r_a)\cap M\subset A$. Итак, для каждой точки $a\in A$ нашелся открытый шар $B_M(a,r_a)=B(a,r_a)\cap M$ в (M,ρ_M) , такой, что $B_M(a,r_a)\subset A$, а это значит, что A — открытое множество в (M,ρ_M) . \blacktriangleright

Из критерия замкнутости множества в МП (теорема 3.4) и теоремы 5.1 следует

Теорема 5.2. Для того чтобы множество $B \subset M$ было замкнутым в подпространстве (M, ρ_M) пространства (X, ρ) , пеобходимо и достаточно, чтобы существовало замкнутое множество F пространства (X, ρ) , такое, что $B = M \cap F$.

Теорема 5.3. Всякое открытое (замкнутое) множество A подпространства (M, ρ_M) открыто (замкнуто) в пространстве (X, ρ) тогда и только тогда, когда подпространство (M, ρ_M) открыто (замкнуто) в (X, ρ) .

▶ Необходимость очевидна, так как множество M само является открытым множеством в (M, ρ_M) . Пусть теперь множество M открыто в (X, ρ) и пусть $A \subset M$ — произвольное открытое подмножество в (M, ρ_M) , т. е. $A = M \cap G$, где G — некоторое открытое множество в (X, ρ) . Таким образом, A есть пересечение двух открытых множеств в (X, ρ) . Значит, в силу теоремы 3.1(в), множество A открыто в (X, ρ) . ▶

3 а м е ч а н и е 5.1. Из доказанных теорем 5.1–5.3 заключаем, что множество A может быть открытым в подпространстве (M, ρ_M) , не будучи открытым в самом пространстве (X, ρ) (например, если (X, ρ) совпадает с пространством \mathbb{R}^2 , $M = \{(x,0): x \in \mathbb{R}\}$ и $A = \{(x,0): x \in (c,d)\}$, то множество A открыто в подпространстве (M, ρ_M) , но не в \mathbb{R}^2). Следовательно, свойство множества A быть открытым зависит от пространства, в котором оно содержится. То же верно и в отношении свойства множества быть замкнутым.

Теорема 5.4. Замыкание \overline{B}^M множества $B\subset M$ в подпространстве $(M,\ \rho_M)$ представимо в виде пересечения замыкания \overline{B}^X множества B в пространстве (X,ρ) с множеством M, т. е. справедливо равенство $\overline{B}^M=\overline{B}^X\cap M$.

◄ Согласно определению замыкания имеем, что

$$\overline{B}^M = \cap \{F$$
 — замкнуто в $(M, \rho_M) : F \supset B\}.$

Так как каждое множество F, замкнутое в подпространстве (M, ρ_M) , представимо, в силу теоремы 5.2, в виде

$$F = F_1 \cap M$$
,

где F_1 — замкнутое множество в пространстве (X, ρ) , окончательно получаем:

$$\overline{B}^M = \cap \{F_1 \cap M = F : F_1 \supset B\} =$$

$$= M \cap [\cap \{F_1 - \text{замкнуто в } (X, \rho) : F_1 \supset B\}] = M \cap \overline{B}^X. \blacktriangleright$$

Задачи и упражнения

5.1. (а) Пусть $\overline{B}_M(x_0,r)$ $\left(S(x_0,r)\right)$ — замкнутый шар (сфера) с центром в точке $x_0\in M$ радиуса r в подпространстве (M,ρ_M) . Установить справедливость следующих равенств:

$$\overline{B}_M(x_0,r) = \overline{B}(x_0,r) \cap M,$$
 $S_M(x_0,r) = S(x_0,r) \cap M,$

где $\overline{B}(x_0,r)(S(x_0,r))$ — замкнутый шар (сфера) в пространстве (X,ρ) .

- (б) Пусть [a,b] и (c,d) подмножества пространства \mathbb{R} . Описать все замкнутые и открытые множества в подпространствах $((c,d),\rho_{(c,d)})$, $([c,d],\rho_{[c,d]})$, где a < c < d < b, и указать, какие из этих множеств будут открытыми (замкнутыми) в пространстве \mathbb{R} .
- (в) Пусть $([a,b], \rho_{[a,b]})$ подпространство пространства \mathbb{R} . Найти замыкание, границу и внутренность множеств $[c,d), (c,d), \{c\}, [c,d]$ $(a \leqslant c < d \leqslant b)$ в этом подпространстве.
- **5.2.** Пусть (Z,d) произведение пространств (X,ρ) и (Y,σ) . Доказать, что для любой пары множеств $A\subset X$ и $B\subset Y$ имеют место следующие соотношения:
 - (a) $\operatorname{Int}_Z(A \times B) = \operatorname{Int}_X A \times \operatorname{Int}_Y B$;
 - (6) $\overline{A \times B}^Z = \overline{A}^X \times \overline{B}^Y$;
 - (B) $\operatorname{Fr}_Z(A \times B) = (\overline{A}^X \times \operatorname{Fr}_Y B) \cup (\operatorname{Fr}_X A \times \overline{B}^Y).$

Из соотношения (б), в частности, получаем, что для замкнутости множества $A \times B$ в пространстве (Z,d) необходимо и достаточно, чтобы A было замкнуто в (X,ρ) и B было замкнуто в (Y,σ) .

- **5.3.** Пусть A, B два непустых множества из пространства (X, ρ) и U подмножество множества $A \cap B$, открытое (или, соответственно, замкнутое) в подпространствах (A, ρ_A) и (B, ρ_B) . Показать, что тогда множество U открыто (замкнуто) в подпространстве $(A \cap B, \rho_{A \cap B})$.
- **5.4.** Пусть B множество в подпространстве (M, ρ_M) пространства (X, ρ) . Доказать следующие формулы:

§6. Различные классы подмножеств

Математики — как французы: все, что вы им говорите, они переводят на свой язык, и это тотчас же становится чем-то совершенно иным.

И. Гете

Множество, представимое в виде пересечения счетного числа открытых множеств пространства (X,ρ) , называется множеством типа G_{δ} , или G_{δ} -множеством.

Множество, представимое в виде объединения счетного числа замкнутых множеств пространства (X,ρ) , называется множеством типа F_{σ} , или F_{σ} -множеством. Очевидно, что дополнение к $F_{\sigma}(G_{\delta})$ -множеству относительно множества X является $G_{\delta}(F_{\sigma})$ -множеством в (X,ρ) . Связь между замкнутыми (открытыми) множествами и $G_{\delta}(F_{\sigma})$ -множествами устанавливает

Теорема 6.1. Всякое непустое замкнутое множество в МП есть множество типа G_{δ} , а всякое непустое открытое множество — множество типа F_{σ} .

◀ Пусть F — замкнутое множество в (X, ρ) . Для каждого натурального числа n рассмотрим окрестность $V_n = V_{\frac{1}{n}}(F)$ множества F (см. теорему 3.2). Так как при всяком n справедливо соотношение $F \subset V_n$, то получаем включение $F \subset \cap \{V_n : n \in \mathbb{N}\}$. С другой стороны, произвольная точка $x \in \cap \{V_n : n \in \mathbb{N}\}$ является точкой прикосновения множества F, а в силу замкнутости F заключаем, что $x \in F$. Отсюда, с учетом полученного выше включения, имеем равенство $F = \cap \{V_n : n \in \mathbb{N}\}$, т. е. F есть множество типа $G_{\mathcal{S}}$.

Пусть U — открытое множество в (X, ρ) . Тогда $X \setminus U = F$ замкнуто и является G_{δ} -множеством. Учитывая, что дополнение к G_{δ} -множеству есть F_{σ} -множество, получаем, что U есть F_{σ} -множество. \blacktriangleright

Множество $A\subset X$ называется всюду плотным (или просто плотным) в пространстве (X,ρ) , если $\overline{A}=X$, т. е. если каждая точка из X является

точкой прикосновения для A. Очевидно (см. теорему 4.3), что множество A всюду плотно в (X, ρ) в том и только в том случае, когда $\operatorname{Int} \overline{A} = X$.

Множество $A\subset X$ называется коплотным (или граничным) в пространстве (X,ρ) , если $X\setminus A$ всюду плотно в (X,ρ) , т. е. $\mathrm{Int} A=\varnothing$.

Множество $A\subset X$ называется нигде не плотным (или разреженным) в пространстве (X,ρ) , если его замыкание \overline{A} коплотно в (X,ρ) , т. е. $\operatorname{Int} \overline{A}=\varnothing$. Итак, множество A нигде не плотно в (X,ρ) тогда и только тогда, когда его замыкание не содержит никаких непустых открытых множеств пространства (X,ρ) .

Теорема 6.2. Пусть A — множество в пространстве (X, ρ) . Тогда справедливы следующие утверждения:

- (a) (A всюду плотно в (X, ρ)) \Leftrightarrow (для любого непустого открытого множества U в (X, ρ) множество $A \cap U \neq \emptyset$);
- (б) (A коплотно в (X, ρ)) \Leftrightarrow (для любого непустого открытого множества U в (X, ρ) множество $U \cap (X \setminus A) \neq \emptyset$);
- (в) (A нигде не плотно в (X, ρ)) \Leftrightarrow (для любого непустого открытого множества U существует непустое открытое множество $V \subset U$, такое, что $V \cap A = \emptyset$);
- (r) (A нигде не плотно в (X, ρ)) \Rightarrow $(\overline{A} нигде не плотно);$
- (д) (открытое множество A всюду плотно в (X,ρ)) \Leftrightarrow $(X\setminus A-$ нигде не плотно);
- (e) (замкнутое множество F нигде не 'плотно в (X, ρ)) \Leftrightarrow (открытое множество $X \setminus F$ всюду плотно в (X, ρ)).
- \blacktriangleleft (a) Пусть $\overline{A}=X$, и пусть существует открытое непустое множество U, такое, что $A\cap U=\varnothing$. Тогда $A\subset X\setminus U$. Отсюда в силу замкнугости множества $X\setminus U$ имеем включение $\overline{A}\subset X\setminus U$, т. е. $X\subset X\setminus U$. Это противоречит тому, что $U\neq\varnothing$.

Обратно, для произвольной точки $x_0 \in X$ и произвольной ее окресности U по условию имеем, что $A \cap U \neq \varnothing$. Следовательно, $x_0 \in \overline{A}$. Значит, в силу произвольного выбора точки x_0 получаем, что $\overline{A} \supset X$, т. е. $X = \overline{A}$.

(в) В силу определения нигде не плотного множества для любого непустого открытого множества U имеем: $(X\setminus \overline{A})\cap U\neq\varnothing$. Положив $V=(X\setminus \overline{A})\cap U$, получаем, что $V\subset U$ и $V\subset X\setminus \overline{A}\subset X\setminus A$, т. е. $V\cap A=\varnothing$.

Обратно, допустим, что $U=\operatorname{Int}\overline{A}\neq\varnothing$. По условию, существует такое непустос открытое подмножество V множества U, что $V\cap A=\varnothing$. Но тогда $V\cap\overline{A}=\varnothing$, что невозможно в силу определения множества U. \blacktriangleright

МП называется сепарабельным, если в нем существует счетное и всюду плотное подмножество, или другими словами: в (X,ρ) существует последовательность точек (x_n) , такая, что для любого $\varepsilon>0$ и любого $x\in X$ найдется элемент x_{n_0} последовательности (x_n) , для которого выполняется неравенство $\rho(x,x_{n_0})<\varepsilon$.

Семейство $\{G_t: t\in T\}$ непустых открытых множеств в (X,ρ) называется базой пространства (X,ρ) , если любое непустое открытое множество в (X,ρ) можно представить в виде объединения некоторого подсемейства $\{G_t: t\in T_0\}, T_0\subset T$, семейства $\{G_t: t\in T\}$. Ясно, что совокупность всех открытых шаров с центром во всевозможных точках из X является базой МП (X,ρ) .

Предложение 6.1. Семейство $\{G_t:t\in T\}$ непустых открытых множеств $G_t\subset X$ будет базой пространства (X,ρ) тогда и только тогда, когда для любой точки $x_0\in X$ и любой ее окрестности V существует такой индекс $t_0\in T$, что $x_0\in G_{t_0}\subset V$.

◀ Необходимость непосредственно следует из определения базы. Для доказательства достаточности рассмотрим произвольное открытое множество U в (X,ρ) и x — некоторую точку множества U. Тогда по условию найдется такой индекс $t(x) \in T$, что $x \in G_{t(x)} \subset U$. Следовательно, $U \subset \bigcup \{G_{t(x)}: x \in U\} \subset U$, т.е. U есть объединение подсемейства $\{G_{t(x)}: x \in U\}$ семейства $\{G_t: t \in T\}$, а это значит, что $\{G_t: t \in T\}$ — база пространства (X,ρ) . ▶

Теорема 6.3. МП сепарабельно тогда и только тогда, когда оно обладает счетной базой.

$$\rho(x,y)\leqslant \rho(x,a_n)+\rho(a_n,y)<\frac{1}{m}+\frac{1}{m}=\frac{2}{m}< r.$$

Таким образом, для произвольного шара B(x,r) найдется шар $B(a_n,\frac{1}{m})$ из рассматриваемого семейства, такой, что $B(a_n,\frac{1}{m})\subset B(x,r)$. Отсюда на основании предложения 6.1 заключаем, что семейство открытых шаров $\{B(a_n,\frac{1}{m}):n,m\in\mathbb{N}\}$ является базой пространства (X,ρ) .

Обратно, пусть $\{G_n\}$ — счетная база пространства (X,ρ) . Образуем счетное множество $M=\{a_n\}$, выбрав по одной точке $a_n\in G_n$. Покажем, что множество M всюду плотно в (X,ρ) . Пусть $x_0\in X$ — произвольная точка и U_0 — произвольная ее окрестность. Тогда из определения базы пространства имеем, что существует такой элемент $G_{n_0}\in \{G_n\}$, что $G_{n_0}\subset U_0$, а потому $a_{n_0}\in U_0$. Таким образом, каждая окрестность точки $x_0\in X$ содержит точку из M, т. е. $\overline{M}=X$. \blacktriangleright

Следствие 6.1. Каждое открытое покрытие сепарабельного МП содержит счетное покрытие.

∢ Пусть $U = \{U_{\alpha}\}$ — некоторос открытие сепарабельного МП (X, ρ) . Тогда каждая точка $x \in X$ содержится в некотором U_{α} . Обозначим через $\{G_k : k \in \mathbb{N}\}$ счетную базу МП (X, ρ) . Согласно предположению 6.1, имеем соотношение $x \in G_{k(x)} \subset U_{\alpha}$. Тогда система множеств $\{G_{k(x)} : x \in X\}$ счетна как подмножество счетной системы $\{G_k : k \in \mathbb{N}\}$ (см. пункт 0.5), причем она образует открытое покрытие (X, ρ) . Выберем для каждого $G_{k(x)}$ одно из содержащих его множеств $U_{\alpha} \in U$. В результате получим счетное подпокрытие покрытия U. ▶

Следствие 6.2. Любое подмножество сепарабельного МП сепарабельно.

▶ Пусть (X, ρ) — сепарабельное МП, $M \subset X$, и пусть $\{G_n\}$ — счетная база в (X, ρ) . Тогда, в силу теоремы 5.1, $\{G_n \cap M\} \setminus \{\varnothing\}$ — счетная база подпространства (M, ρ_M) . Следовательно, на основании теоремы 6.3 получаем справедливость нашего утверждения. ▶

Объединяя следствия 6.1 и 6.2, получаем

Следствие 6.3. Любое открытое покрытие любого подмножества сепарабельного МП имеет счетное подпокрытие. ▶

Множество в МП называется множеством первой категории (или тощим), ссли оно представимо в виде счетного объединения нигде не плотных подмножеств в исходном МП. В противном случае оно называется множеством второй категории.

Теорема 6.4. Всякое множество первой категории содержится в некотором F_{σ} -множестве первой категории.

◀ Пусть M — произвольное множество первой категории в (X, ρ) , и пусть $M = \bigcup \{A_n : n \in \mathbb{N}\}$, где каждое из A_n нигде не плотно в (X, ρ) . Очевидно, что $M \subset \cup \{\overline{A}_n : n \in \mathbb{N}\}$. Следовательно, M оказывается подмножеством множеством $\bigcup \{\overline{A}_n : n \in \mathbb{N}\}$, являющегося, в силу теоремы 6.2.(г), F_σ -множеством первой категории. ▶

Теорема 6.5. Если дополнение к F_{σ} -множеству всюду плотно, то оно относится к первой категории.

▶ Пусть $M = \bigcup \{F_n : n \in \mathbb{N}\}$, F_n — замкнутые множества в (X, ρ) , и пусть множество $X \setminus M$ всюду плотно в (X, ρ) . Докажем, что каждое из множеств F_n нигде не плотно. В силу замкнутости множества F_n имсем, что $X \setminus F_n$ — открытое множество. Кроме того, из включения $X \setminus M \subset X \setminus F_n$ и монотонности оператора замыкания получаем равенство $X \setminus F_n = X$. Следовательно, множество F_n нигде не плотно, а значит, M — множество первой категории. ▶

Задачи и упражнения

- **6.1.** Доказать следующие свойства $F_{\sigma}(G_{\delta})$ -множеств:
- (a) объединение счетного числа F_{σ} -множеств есть F_{σ} -множество;
- (б) пересечение конечного числа F_{σ} -множеств есть F_{σ} -множество;
- (в) всякое F_{σ} -множество есть объединение возрастающей последовательности замкнутых множеств;
- (г) пересечение счетного числа и объединение конечного числа G_{δ} -множеств есть G_{δ} -множество;
- (д) всякое G_{δ} -множество есть пересечение убывающей последовательности открытых множеств.
- **6.2.** Доказать, что в произвольном МП всякое счетное множество есть F_{σ} -множество.
 - 6.3. Показать, что в пространстве $\mathbb R$
 - (a) множество $\left\{\frac{1}{n}:n\in\mathbb{N}\right\}$ является одновременно F_{σ} -множеством и G_{δ} -множеством;
 - (б) множество рациональных чисел является F_{σ} -множеством;
 - (в) множество иррациональных чисел есть G_{δ} -множество.

§7. Непрерывные отображения

Для математики существенна лишь форма соответствия (связи) между двумя переменными величинами, которые она рассматривает.

Р. Курант, Г. Роббинс. Что такое математика?

Пусть $(X,\rho),\ (Y,\sigma)$ — два произвольных метрических пространства. Говорят, что f — отображение пространства (X,ρ) в пространство (Y,σ) , и пишут $f\colon (X,\rho)\to (Y,\sigma)$, имея в виду отображение f множества X в множество Y (обозначаемое $f\colon X\to Y$) с фиксированными на них метриками ρ и σ , соответственно.

Приведем следующие определения непрерывности отображения в точке:

- (i) (на языке окрестностей) отображение $f:(X,\rho) \to (Y,\sigma)$ называется непрерывным в точке $x_0 \in X$, если для любой окрестности V точки $f(x_0) \in Y$ существует такая окрестность U точки x_0 , что $f(U) \subset V$;
- (ii) (п о Γ е й н е) отображение $f\colon (X,\rho)\to (Y,\sigma)$ называется непрерывным в точке $x_0\in X$, если для любой последовательности точек $(x_n),\,x_n\in X$, сходящейся к x_0 в (X,ρ) , последовательность $(f(x_n))$ сходится к $f(x_0)$ в (Y,σ) ;
- (iii) (по Коши) отображение $f:(X,\rho)\to (Y,\sigma)$ называется непрерывным в точке $x_0\in X$, если для любого $\varepsilon>0$ существует $\delta>0$, такое, что из неравенства $\rho(x,x_0)<\delta$ следует $\sigma(f(x),f(x_0))<\varepsilon$.

Теорема 7.1. Определения (i), (ii) и (iii) эквивалентны.

 \blacktriangleleft Пусть задано отображение $f\colon (X,\rho)\to (Y,\sigma)$; покажем справедливость следующих импликаций: (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i).

Докажем, что (i) \Rightarrow (ii). Пусть $x_0, x_n \in X, n=1,2,\ldots$, такие, что $x_n \to x_0$. Для каждой окрестности $V \subset Y$ точки $f(x_0)$, существует

окрестность $U\subset X$ точки x_0 такая, что $f(U)\subset V$. Так как $x_n\to x_0$, то все точки x_n , начиная с некоторого номера n_0 , содержатся в окрестности $U\colon x_n\in U$ при $n\geqslant n_0$. Но тогда $f(x_n)\in f(U)\subset V$ для $n\geqslant n_0$, т. с. $f(x_n)\to f(x_0)$.

Теперь покажем, что (ii) \Rightarrow (iii). Пусть определение (iii) не выполнено, т. е. существует такое $\varepsilon>0$, что для любого $\delta>0$ найдется точка $x\in X$, для которой $\rho(x,x_0)<\delta$, однако $\sigma(f(x_0),f(x))\geqslant \varepsilon$. Выбирая $\delta=\frac{1}{n}$, где $n=1,2,\ldots$, получим последовательность (x_n) в (X,ρ) , которая сходится к точке x_0 и $\sigma(f(x_0),f(x_n))\geqslant \varepsilon$. Это противоречит условию (ii).

Остается доказать, что (iii) \Rightarrow (i). Пусть V — произвольная окрестность точки $f(x_0)$ в (Y,σ) . Тогда найдется шар $B_Y(f(x_0),\varepsilon)\subset V$. Из (iii) имеем, что существует такое $\delta>0$, что $\sigma(f(x_0),f(x))<\varepsilon$, как только $x\in B_X(x_0,\delta)$. Но тогда $f(B_X(x_0,\delta))\subset B_Y(f(x_0),\varepsilon)\subset V$, что означает непрерывность отображения f в точке x_0 в смысле определения (i).

Отображение $f\colon (X,\rho)\to (Y,\sigma)$, непрерывное в каждой точке множества X, называется непрерывным отображением пространства (X,ρ) в пространство (Y,σ) , или просто непрерывным отображением на пространстве (X,ρ) . Множество всех непрерывных отображений из (X,ρ) в (Y,σ) обозначают символом C(X,Y), причем при $Y=\mathbb{R}$ будем писать C(X).

Теорема 7.2 (критерий непрерывности отображения). Отображение $f:(X,\rho)\to (Y,\sigma)$ непрерывно тогда и только тогда, когда прообраз $f^{-1}(V)$ открыт в (X,ρ) для любого открытого множества V из пространства (Y,σ) .

◀ Не о б х о д и м о с т ь. Пусть отображение $f\colon (X,\rho)\to (Y,\sigma)$ непрерывно и V — произвольное открытое множество в (Y,σ) . Если $f^{-1}(V)=\varnothing$, то открытость множества $f^{-1}(V)$ очевидна, так как пустое множество \varnothing открыто.

Пусть $f^{-1}(V) \neq \varnothing$, и положим $U = f^{-1}(V)$. Для произвольной точки $x_0 \in U$ имеем, что $f(x_0) \in V$, следовательно, V можно рассматривать как окрестность точки $f(x_0)$. В силу непрерывности отображения f найдется окрестность U_{x_0} точки x_0 , такая, что $f(U_{x_0}) \subset V$, т. е. $U_{x_0} \subset U$. Итак, для любой точки $x_0 \in U$ найдется окрестность U_{x_0} , такая, что $U_{x_0} \subset U$. Поскольку $U = \cup \{U_{x_0} : x_0 \in U\}$, то множество U открыто как объединение открытых множеств U_{x_0} . Таким образом, прообраз $f^{-1}(V)$ любого открытого множества из (Y, σ) открыт в (X, ρ) .

Д о с т а т о ч н о с т ь. Пусть x_0 — произвольная точка из (X, ρ) . Положим, $y_0 = f(x_0)$ и V — произвольная окрестность точки y_0 . Тогда $U = f^{-1}(V)$ будет, по условию, окрестностью точки x_0 , причём $f(U) \subset V$.

Спедовательно, отображение f непрерывно в точке x_0 , а в силу произвольного выбора точки x_0 заключаем, что f — непрерывное отображение пространства (X, ρ) в (Y, σ) .

Из определения замкнутого множества и теоремы 7.2 следует

Теорема 7.2' (критерий непрерывности отображения). Отображение $f:(X,\rho)\to (Y,\sigma)$ непрерывно тогда и только тогда, когда прообраз $f^{-1}(V)$ замкнут в (X,ρ) для любого замкнутого множества V из (Y,σ) . \blacktriangleright

Пусть задана функция $f\colon X \to \mathbb{R}$ и некоторое число $a\in \mathbb{R}$. Тогда множества вида

$$\begin{split} X(f > a) &:= \{x \in X : f(x) > a\}, \\ X(f < a) &:= \{x \in X : f(x) < a\}, \\ X(f = a) &:= \{x \in X : f(x) = a\}, \\ X(f \geqslant a) &:= X(f > a) \cup X(f = a), \\ X(f \leqslant a) &:= X(f < a) \cup X(f = a) \end{split}$$

называются множествами Лебега функции f, определенной на множестве X.

Теорема 7.3. Для непрерывности функции $f\colon (X,\rho)\to \mathbb{R}$ необходимо и достаточно, чтобы для любого $a\in \mathbb{R}$ множества $X(f< a),\, X(f>a)$ были открыты, а множества $X(f\leqslant a),\, X(f\geqslant a)$ и X(f=a)— замкнуты в (X,ρ) .

◀ Необходимость. Пусть x_0 — произвольная точка множества X(f < a) и $\varepsilon = a - f(x_0)$. Так как отображение f непрерывно в точке x_0 , то существует шар $B(x_0, \delta)$, в котором выполняется неравенство $|f(x) - f(x_0)| < \varepsilon$. Для любой точки $x \in B(x_0, \delta)$, с учетом определения числа ε , имеем

$$f(x) < f(x_0) + \varepsilon = a$$
.

Следовательно, справедливо включение $B(x_0, \delta) \subset X(f < a)$. Отсюда в силу произвольного выбора точки x_0 заключаем, что множество X(f < a) открыто.

Д о с т а т о ч н о с т ь. Для любой точки $x_0\in X$ и любого $\varepsilon>0$ рассмотрим множества $X(f< f(x_0)+\varepsilon)$ и $X(f>f(x_0)-\varepsilon)$, которые по условию открыты. Пересечение этих множеств

$$X(-\varepsilon < f(x) - f(x_0) < \varepsilon) = X(f(x_0) - \varepsilon < f < f(x_0) + \varepsilon)$$

также открыто и содержит точку x_0 , а вместе с ней и некоторый шар $B(x_0,\delta)$, причем в нем выполняется неравенство $|f(x)-f(x_0)|<\varepsilon$ для любой точки $x\in B(x_0,\delta)$, которое означает непрерывность f в точке x_0 .

Доказательство замкнутости множеств $X(f\leqslant a),\ X(f\geqslant a)$ и X(f== а) получаем из теоремы 3.4 путем перехода к дополнениям. >

Отображение $f\colon (X,\rho)\to (Y,\sigma)$ называется равномерно непрерывным относительно метрик ρ и σ (или просто равномерно непрерывным на пространстве (X,ρ)), если для любого $\varepsilon>0$ существует такое $\delta>0$, что $\sigma(f(x_1),f(x_2))<arepsilon$ для любой пары точек $x_1,\,x_2\in X$, удовлетворяющих условию $\rho(x_1, x_2) < \delta$.

Очевидно, что каждое равномерно непрерывное отображение непрерывно, однако обратное не имеет места.

3 а м с ч а н и е 7.1. В отличие от понятия непрерывности, равномерная непрерывность есть, во-первых, свойство отображения на множестве X, тогда как непрерывность определяется в одной точке; во-вторых, если f непрерывно на (X, ρ) , то для каждого $\varepsilon > 0$ и для каждой точки x_0 множества X можно найти $\delta>0$, обладающее свойством, указанным в определении (iii) (т. е. δ зависит от ε и от точки x_0), а в случае равномерной непрерывности f на (X, ρ) для каждого $\varepsilon > 0$ найдется одно число $\delta > 0$, которое годится для всех точек x множества X.

Теорема 7.4. Для любого непустого множества $A \subset X$ отображение $x \mapsto \rho(x, A)$ равномерно непрерывно. \blacktriangleright

Отображение $f\colon (X,\rho)\to (Y,\sigma)$ называется изометрией (X,ρ) на $(Y,\sigma),$ если f — сюръективное отображение X на Y и $\rho(x_1,x_2)==\sigma(f(x_1),f(x_2))$ для любых $x_1,x_2\in X.$ Если существует изометрия (X,ρ) на (Y, σ) , то говорят, что эти пространства изометричны.

Ясно, что изометрические пространства не отличимы по тем свойствам, которые определяются метрикой.

3 а м е ч а н и е 7.2. Определение изометричности пространств (X,ρ) и (Y,σ) не исключает случай, когда X=Y и $\rho=\sigma$. При этом изометрия называется метрическим преобразованием или движением пространства (X, ρ) .

Отображение $f\colon (X,\rho)\to (Y,\sigma)$ называется ограниченным, если множество f(X) ограничено в (Y,σ) . Множество всех непрерывных ограниченных отображений из (X,ρ) в (Y,σ) обозначают символом $C_b(X,Y)$. Пусть $f_n,\ f\colon (X,\rho)\to (Y,\sigma)$, где $n\in\mathbb{N}$. Говорят, что последовательность (f_n) сходится равномерно на множестве $M\subset X$ к f, если для любого $\varepsilon>0$ существует номер $n_0=n_0(\varepsilon)$, такой, что $\sigma(f(x),f_n(x))<\varepsilon$ для любого $x \in M$ и любого $n \geqslant n_0$.

Теорема 7.5. Множество $C_b(X,Y)$ с метрикой

$$\hat{\rho}(f,g) = \sup\{\sigma(f(x),g(x)) : x \in X\}$$

является МП, причем сходимость в нем совпадает с равномерной сходимостью. ►

Построенное МП в теореме 7.5 будем обозначать также символом $C_b(X,Y)$.

Теорема 7.6. Если последовательность непрерывных отображений $f_n: (X, \rho) \to (Y, \sigma)$ сходится равномерно на множестве X к отображению f, то $f \in C(X, Y)$.

◀ Пусть x_0 — произвольная точка из (X, ρ) , ε — любое положительное число, а $B_Y(f(x_0), \varepsilon)$ — открытый шар в (Y, σ) . Покажем, что существует окрестность U точки x_0 , такая, что для всех $x \in U$ будем иметь $\sigma(f(x), f(x_0)) < \varepsilon$, т. е. отображение f непрерывно в точке $x_0 \in X$. Действительно, из равномерной сходимости последовательности (f_n) существует такой номер $n_0 = n_0(\varepsilon)$, что для всех $n \ge n_0$ и для всех $x \in X$ имеет место неравенство $\sigma(f(x), f_n(x)) < \frac{\varepsilon}{3}$. Зафиксировав некоторый номер $n_1 \ge n_0$ и пользуясь неравенством треугольника, получим

$$\sigma(f(x), f(x_0)) \leq \sigma(f(x), f_{n_1}(x)) +
+ \sigma(f_{n_1}(x), f_{n_2}(x_0)) + \sigma(f_{n_2}(x_0), f(x_0)).$$
(*)

В силу непрерывности отображения f_{n_1} в точке x_0 существует такая окрестность U точки x_0 , что справедливо включение $f_{n_1}(U) \subset B_Y(f(x_0), \frac{\varepsilon}{3})$ для всех $x \in U$, т.е. $\sigma \big(f_{n_1}(x), f_{n_1}(x_0) \big) < \frac{\varepsilon}{3}$ для каждого $x \in U$. Таким образом, каждое слагаемое в правой части (*) меньше $\frac{\varepsilon}{3}$ для всех $x \in U$, что равносильно включению $f(U) \subset B_Y(f(x_0), \varepsilon)$.

Следствие 7.1. Если последовательность непрерывных ограниченных отображений $f_n\colon (X,\rho) \to (Y,\sigma)$ равномерно сходится на множестве X κ f, то $f\in C_b(X,Y)$.

Согласно теореме 7.2, если отображение f непрерывно, то прообраз открытого множества является открытым, а прообраз замкнутого множества — замкнутым. Однако для образов это утверждение неверно. В связи с этим рассматривают два важных класса непрерывных отображений: замкнутые и открытые.

Непрерывное отображение $f:(X,\rho)\to (Y,\sigma)$ называется *открытым* (замкнутым), если образ открытого (замкнутого) множества из пространства (X,ρ) является открытым (замкнутым) в (Y,σ) .

Отображение $f\colon (X,\rho)\to (Y,\sigma)$ называется гомеоморфизмом (или взаимно непрерывным), если оно биективно, $f\in C(X,Y)$ и $f^{-1}\in C(Y,X)$. Пространства (X,ρ) и (Y,σ) в этом случае называются гомеоморфными.

Предложение 7.1. Гомеоморфное отображение является одновременно открытым и замкнутым отображением.

◀ Пусть $f:(X,\rho) \to (Y,\sigma)$ — гомеоморфное отображение и $g:(Y,\sigma) \to (X,\rho)$ — обратное к нему отображение. Тогда для каждого множества $A \subset X$, очевидно, будем иметь $f(A) = g^{-1}(A)$, т. е. образ множества A при отображении f является прообразом A при отображении g и поэтому открытость (соответственно замкнутость) f следует из непрерывности отображений f и g. ▶

Предложение 7.2. Открытое (и, соответственно, замкнутое) биективное отображение является гомеоморфизмом.

◀ Пусть $f\colon (X,\rho)\to (Y,\sigma)$ — открытос (замкнутос) биективное отображение и $g\colon (Y,\sigma)\to (X,\rho)$ — обратное к f отображение, существующее в силу биективности f. Тогда из равенства $g^{-1}(A)=f(A)$, справедливого для каждого множества A из (X,ρ) , получаем, что прообразы открытых (и, соответственно, замкнутых) множеств из (X,ρ) при отображении g будут открытыми (и, соответственно, замкнутыми) в (Y,σ) по условию. Следовательно, из теоремы 7.2 получаем, что $g\in C(Y,X)$. ▶

Задачи и упражнения

- **7.1.** Пусть $(x,y)\mapsto \rho(x,y)$ отображение пространства $(X\times X,\rho\times\rho)$ в пространство $\mathbb R.$ Показать непрерывность этого отображения.
- **7.2.** (a) Пусть отображения $f,g\colon (X,\rho)\to \mathbb{R}$ непрерывны. Доказать непрерывность следующих отображений:

$$f\pm g,\; f\cdot g,\; \frac{f}{g}\; (g\neq 0),\; \max\{f,g\},\; \min\{f,g\}.$$

(б) Доказать, что композиция $f\circ g$ непрерывных отображений $f\colon (X,\rho)\to (Y,\sigma)$ и $g\colon (Y,\sigma)\to (Z,\tau)$ является непрерывным отображением пространства (X,ρ) в (Z,τ) .

§8. Полные метрические пространства

О глубине идеи, заложенной в формулировке нового математического понятия, можно судить лишь впоследствии по тому, насколько искуссно удается использовать это понятие.

Е. Вигнер. Этюды о симметрии

Последовательность (x_n) точек пространства (X,ρ) называется фундаментальной последовательностью (или последовательностью Коши, или последовательностью, сходящейся в себе), если она удовлетворяет условию Коши

$$\lim_{i \to \infty, j \to \infty} \rho(x_i, x_j) = 0,$$

которое означаст, что для любого числа $\varepsilon>0$ существует такой номер k_{ε} , что для всех номеров i и j, удовлетворяющих условию $i\geqslant k_{\varepsilon},\ j\geqslant k_{\varepsilon},$ справедливо неравенство

$$\rho(x_i, x_i) < \varepsilon. \tag{*}$$

Условие (*) можно сформулировать в следующем виде: для любого $\varepsilon>0$ существует такой номер $n_{\varepsilon},$ что для всех номеров $i>n_{\varepsilon}$ и всех целых неотрицательных чисел p имеет место неравенство

$$\rho(x_i, x_{i+p}) < \varepsilon. \tag{**}$$

Для того чтобы убедиться в равносильности условий (*) и (**), достаточно положить p=i-j, если $i\geqslant j$, и p=j-i, если $j\geqslant i$.

Предложение 8.1. Любая сходящаяся последовательность является фундаментальной последовательностью. ▶

Из последнего предложения заключаем, что понятие фундаментальной последовательности есть более общее понятис, чем сходящаяся последовательность (т. е. существуют фундаментальные последовательности, которые не являются сходящимися).

Предложение 8.2. Пусть $(x_n) - \phi$ ундаментальная последовательность в (X, ρ) . Тогда для любой последовательности (ε_n) , $\varepsilon_n > 0$, найдется подпоследовательность (x_{k_n}) , удовлетворяющая условию

$$\rho(x_{k_n}, x_{k_{n+1}}) < \varepsilon_n, \ n = 1, 2, \dots$$

 \blacktriangleleft В силу фундаментальности последовательности (x_n) имеем:

$$\forall \varepsilon_n > 0 \; \exists k_n : \rho(x_m, x_{m'}) < \varepsilon_n, \; \forall m, m' \geqslant k_n.$$

Полагая в последней формуле $m=k_n, m'=k_{n+1}$ при m'>m, заключаем, что (x_{k_n}) — требуемая последовательность. \blacktriangleright

Предложение 8.3. Если фундаментальная последовательность (x_n) имеет сходящуюся подпоследовательность $(x_{k_n}), x_{k_n} \to x_0$, то и сама последовательность (x_n) сходится к $x_0: x_n \to x_0$.

 \blacktriangleleft Пусть $\varepsilon>0$. Тогда существует натуральное число n_0 , такое, что $\rho(x_i,x_j)<\frac{\varepsilon}{2}$ для любых $i,j\geqslant n_0$. С другой стороны, из $x_{k_n}\to x_0$ следует, что найдется такой номер n_1 , что $\rho(x_{k_n},x_0)<\frac{\varepsilon}{2}$ при $n\geqslant n_1$. Полагая $n_2=\max\{n_0,n_1\}$ при $k_n\geqslant n\geqslant n_2$, получим

$$\rho(x_n, x_{k_n}) < \frac{\varepsilon}{2}, \ \rho(x_{k_n}, x_0) < \frac{\varepsilon}{2}.$$

Отсюда, в силу неравенства треугольника, имеем

$$\rho(x_n, x_0) \leqslant \rho(x_n, x_{k_n}) + \rho(x_{k_n}, x_0) < \varepsilon, \ n > n_2.$$

Это означает, что $x_n \to x_0$ при $n \to \infty$. \blacktriangleright

МП называется *полным* (сокращенно ПМП), если в нем любая фундаментальная последовательность сходится к некоторой точке этого пространства. При этом если (X, ρ) — ПМП, то метрика ρ называется *полной*.

С учетом предложения 8.1 можно сказать, что МП является полным, если в нем имеется тождественность между фундаментальными и сходящимися последовательностями, или, другими словами, последовательность будет сходящейся в ПМП тогда и только тогда, когда она фундаментальна.

З а м е ч а н и е 8.1. Важность понятия полноты проистекает из того, что нет необходимости в отыскании предела для последовательности, достаточно показать, что она фундаментальна. Полноту пространства характеризует

Теорема Кантора. МП (X, ρ) полно тогда и только тогда, когда каждая убывающая последовательность (F_n) , $F_{n+1} \subset F_n$, непустых замкнутых множеств в (X, ρ) , таких, что $\lim_{n \to \infty} d(F_n) = 0$, имеет непустое пересечение $\cap \{F_n : n \in \mathbb{N}\} \neq \emptyset$.

◄ Пусть (X, ρ) — ПМП и (F_n) — последовательность непустых замкнутых множеств в (X, ρ) , таких, что

$$\lim_{n \to \infty} d(F_n) = 0, \ F_{n+1} \subset F_n, \ n \in \mathbb{N}. \tag{8.1}$$

Выберем точку $x_k \in F_k$, $k=1,2,\ldots$ Тогда все члены последовательности (x_k) , начиная с n-го, содержатся в множестве F_n . Из соотношения $d(F_n) \to 0$ при $n \to \infty$ получаем, что (x_k) — фундаментальная последовательность и, в силу полноты (X,ρ) , существует точка $x_0 \in X$, что $x_k \to x_0$. Так как множества F_n замкнуты, то $x_0 \in F_n$ для каждого номера $n \in \mathbb{N}$. Следовательно, $\cap \{F_n : n \in \mathbb{N}\} \neq \emptyset$.

Обратно, пусть в пространстве (X, ρ) выполнено условие теоремы и (x_n) — фундаментальная последовательность в (X, ρ) . Положим

$$F_n = \overline{\{x_n, x_{n+1}, \ldots\}}, \ n = 1, 2, \ldots$$

Учитывая, что множества F_n являются замкнутыми в (X,ρ) и удовлетворяют соотношениям (8.1), имеем $\cap \{F_n:n\in\mathbb{N}\}\neq\varnothing$, т.е. существует точка $x_0\in F_n$, для любого $n\in\mathbb{N}$, которая является пределом последовательности (x_{k_n}) , где $x_{k_n}\in F_n$ для каждого $n=1,2,\ldots$ Таким образом, (x_{k_n}) есть подпоследовательность последовательности (x_n) и $x_n\to x_0\in X$. Отсюда, согласно предложению 8.3, окончательно получаем, что $(X,\rho)-\Pi M\Pi$.

Следствие 8.1. Пространство \mathbb{R} (т. е. множество всех действительных чисел \mathbb{R} с евклидовой метрикой $\rho(x,y) = |x-y|$) является полным.

(Для доказательства достаточно воспользоваться замкнутостью отрезка [a,b] в пространстве $\mathbb R$ и теоремой Кантора о стягивающейся системе отрезков (см., например, [13], [27]).)

Теорема 8.1. Пусть $(X, \rho) - \Pi M \Pi$. Для того чтобы подпространство (A, ρ_A) пространства (X, ρ) было полным, необходимо и достаточно, чтобы множество A было замкнутым в (X, ρ) .

◀ Н е о б х о д и м о с т ь. Пусть подпространство (A, ρ_A) полно и x — произвольная точка множества \overline{A} . Для каждого числа $n \in \mathbb{N}$ положим

$$F_n = A \cap \overline{B_X(x, n^{-1})},$$

где $B_X(x,n^{-1})$ — открытый шар в пространстве (X,ρ) .

Ясно, что последовательность (F_n) из (A, ρ_A) удовлетворяет условию теоремы Кантора. Следовательно, в силу полноты подпространства (A, ρ_A) имеем: $\bigcap_{n=1}^{\infty} F_n \neq \varnothing$. Так как справедливо включение $\bigcap_{n=1}^{\infty} F_n \subset \{x\}$, то $x \in A$, и потому $\overline{A} \subset A$, т. е. имеет место равенство $A = \overline{A}$.

Д о с т а т о ч н о с т ь. Пусть множество $A \subset X$ замкнуто в ПМП (X,ρ) , т.е. $A = \overline{A}$. Из определения индуцированной метрики ρ_A имеем, что каждая последовательность Коши в подпространстве (A,ρ_A) является последовательностью Коши и в пространстве (X,ρ) . Следовательно, в силу полноты (X,ρ) она будет сходится к некоторой точке $x \in X$, а в силу замкнутости множества A получим, что $x \in A$.

3 а м с ч а н и е 8.2. Отметим, что при доказательстве необходимости теоремы 8.1 не использовали полноту пространства (X,ρ) , т. е. доказано более сильное утверждение: если подпространство (A,ρ_A) пространства (X,ρ) полно, то множество A замкнуто в этом пространстве.

Теорема 8.2. Если
$$(Y, \sigma) - \Pi M \Pi$$
, то $C_b(X, Y) - \Pi M \Pi$.

◀ Пусть (f_n) — последовательность Коши в пространстве $C_b(X,Y)$ (см. теорему 7.5). Тогда последовательность $(f_n(x))$ является фундаментальной последовательностью в полном пространстве (Y,σ) для любой точки $x \in X$ и, следовательно, имеет в нем предел. Тем самым определено отображение $f\colon (X,\rho)\to (Y,\sigma)$, которое каждой точке $x\in X$ ставит в соответствие $\lim_{n\to\infty} f_n(x)\in Y$. Так как последовательность (f_n) равномерно сходится на пространстве (X,ρ) к f, то, в силу теоремы 7.6(б), получаем, что f — ограниченное и непрерывное отображение, т. е. $f\in C_b(X,Y)$. ▶

Теорема 8.3 (теорема Куратовского). Каждое МП изометрично подпространству ПМП.

◀ Пусть (X, ρ) — произвольное МП. Зафиксируем некоторую точку $a \in X$. Поставим в соответствие каждой точке $x \in X$ функцию f_x , которая определена на множестве X и задана формулой

$$f_x(z) = \rho(z, x) - \rho(z, a), \ z \in X.$$
 (8.2)

Так как $|f_x(z)| \leqslant \rho(a,x)$, то $f_x \in C_b(X,\mathbb{R})$ для любого $x \in X$, где $C_b(X,\mathbb{R})$ — ПМП, в силу следствия 8.1 и теоремы 8.2, с метрикой

$$\hat{\rho}(f,g) = \sup\{|f(x) - g(x)| : x \in X\}. \tag{8.3}$$

Докажем равенство

$$\hat{
ho}(f_x, f_y) =
ho(x, y)$$
 для всех $x, y \in X.$ (8.4)

Для любого $z \in X$ имеет место неравенство

$$f_x(z) - f_y(z) = \rho(z, x) - \rho(z, a) - \rho(z, y) + \rho(z, a) \leqslant \rho(x, y).$$

Из условия симметрии вытекает, что

$$|f_x(z) - f_y(z)| \le \rho(x, y).$$

Отсюда, в силу (8.3), получаем

$$\hat{\rho}(f_x, f_y) \leqslant \rho(x, y). \tag{8.5}$$

С другой стороны, так как

$$f_x(y) - f_y(y) = \rho(y, x) - \rho(y, a) + \rho(y, a) = \rho(x, y),$$

то из определения метрики $\hat{\rho}$ заключаем, что

$$\hat{\rho}(f_x, f_y) \geqslant \rho(x, y), \ x, y \in X. \tag{8.6}$$

Из неравенств (8.5) и (8.6) следует справедливость (8.4), т. е. изометричность (X, ρ) и подпространства функции из ПМП $C_b(X, \mathbb{R})$, представимых в виде равенства (8.2). \blacktriangleright

Задачи и упражнения

- **8.1.**(а) Установить следующие свойства фундаментальной последовательности (x_n) :
 - (i) для любого положительного числа ε найдется элемент x_{n_0} фундаментальной последовательности (x_n) , такой, что в открытом щаре $B(x_{n_0},\varepsilon)$ находятся все элементы x_n этой последовательности с номерами n, удовлетворяющими условию $n \geqslant n_0$ (или другими словами: для любого $\varepsilon > 0$ найдется элемент фундаментальной последовательности x_{n_0} , такой, что вне открытого шара $B(x_{n_0},\varepsilon)$ лежит не более чем конечное число элементов этой последовательности);

§9. Теорема Бэра о категории

«Серьезность» теоремы кроется не в практических следствиях из нее (обычно они ничтожны), а в значимости математических идей, между которыми устанавливается взаимосвязь.

Г. Харди

В теории полных пространств важную роль играет следующая

Теорема 9.1. Если $(X, \rho) - \Pi M \Pi$ и $(G_n) -$ последовательность непустых открытых всюду плотных подмиожеств пространства (X, ρ) , то множество $G = \bigcap_{n=1}^{\infty} G_n$ непусто и всюду плотно в (X, ρ) .

■ Заметим, что, согласно теореме 6.2(а), всюду плотное множество имеет непустое пересечение с любым открытым множеством (шаром). Рассмотрим шар $B(x_1,r_1)\subset G_1$, который существует в силу того, что множество G_1 открыто и непусто. В непустом открытом множестве $B(x_1,\frac{r_1}{2})\cap G_2$ выберем шар $B(x_2,r_2)$, где $r_2<\frac{r_1}{4}$. Аналогично, выберем шар $B(x_3,r_3)$ в перессчении $B(x_2,\frac{r_2}{4})\cap G_3$, причем возьмем $r_3<\frac{r_2}{8}$ и т. д. В результате получим убывающую последовательность замкнутых шаров $(\overline{B}(x_k,\frac{r_k}{2}))$, для которых выполнены включения

$$\overline{B}(x_k, \frac{r_k}{2}) \subset B(x_k, r_k) \subset \overline{B}(x_{k-1}, \frac{r_{k-1}}{2}), k = 2, 3, \ldots,$$

и их радиусы стремятся к нулю. Согласно теореме Кантора, существует точка $x_0 \in X$, такая, что $x_0 \in \overline{B}(x_k,\frac{r_k}{2})$ для любого $k=1,2,\ldots$, а в силу построения шаров $B(x_k,r_k)$ заключаем, что $x_0 \in G$, т.е. $G \neq \varnothing$.

Покажем, что множество G всюду плотно в (X,ρ) . Предположим противное, т.е. существует открытый шар $B(x,r)\subset X$, для которого $G\cap B(x,r)=\varnothing$, а значит, $G\cap \overline{B}(x,r)=\varnothing$ (см. задачу 6.5). В полном подпространстве $(\overline{B}(x,\frac{r}{2}),\rho_{\overline{B}(x,\frac{r}{2})})$ множества $U_n=G_n\cap \overline{B}(x,\frac{r}{2})$ открыты и всюду плотны для каждого $n=1,2,\ldots$ Следовательно, по доказанному, $\bigcap_{r=1}^\infty U_n\neq\varnothing$. Получили противоречис. \blacktriangleright

Так как дополнение открытого и всюду плотного множества есть замкнутое множество без внутренних точек, то, переходя к дополнениям, получим эквивалентную формулировку доказанной теоремы, а именно: справедлива

Теорема 9.2. Пусть $(X, \rho) - \Pi M \Pi \ u \ (F_n)$ — последовательность замкнутых множеств без внутренних точек в (X, ρ) . Тогда множество $F = \bigcup_{n=1}^{\infty} F_n$ также лишено внутренних точек. \blacktriangleright

Теорема Бэра. Если ПМП является счетным объединением замкнутых подмножеств, то хотя бы одно из этих подмножеств содержит непустое открытое множество.

∢ Пусть (X,ρ) — ПМП и (F_n) — последовательность его замкнутых множеств, таких, что $X=\bigcup\limits_{n=1}^{\infty}F_n$. Предположим противное, т. е. Int $F_n=\varnothing$ для каждого $n\in\mathbb{N}$. Тогда $(X\setminus F_n)$ — последовательность открытых всюду плотных подмножеств в (X,ρ) , удовлетворяющих (согласно теореме 9.1) условию $\bigcap\limits_{n=1}^{\infty}(X\setminus F_n)\neq\varnothing$. Но это противоречит равенству $X=\bigcup\limits_{n=1}^{\infty}F_n$. Значит, хотя бы одно из множеств $X\setminus F_n$ не является всюду плотным. Поэтому Int $F_n\neq\varnothing$ для некоторого n. ▶

Ответ на вопрос о существовании множеств второй категории даст следующая теорема, известная как

Теорема Бэра о категории. $\Pi M\Pi (X, \rho)$ нельзя представить в виде объединения счетного числа нигде не плотных его подмножеств, т. е. X есть множество второй категории.

◀ Предположим противное: пусть X — непустое множество первой категории, т. е. $X=\bigcup\limits_{k=1}^\infty E_k$, где E_k — нигде не плотные множества. Так как Int $\overline{E}_k=\varnothing$ для любого $k\in\mathbb{N}$, то последовательность (\overline{E}_k) удовлетворяет

условиям георемы 9.2. Значит, $\operatorname{Int}\left(igcup_{k=1}^\infty\overline{E}_k\right)=\varnothing$. С другой стороны, имеем

$$\operatorname{Int}\left(\bigcup_{k=1}^\infty \overline{E}_k\right) \supset \operatorname{Int}\left(\bigcup_{k=1}^\infty E_k\right) = \operatorname{Int}X = X \neq \varnothing.$$

Получили противоречие. >

Непосредственно самой теоремой Бэра редко приходится пользоваться. Обычно используют одно из се следствий, известное как принцип равномерной ограниченности:

Теорема 9.3. Пусть $\mathscr{F}=\{f:(X,\rho)\to\mathbb{R}\}$ — семейство непрерывных функций, определенных на ПМП (X,ρ) , и пусть для каждого $x\in X$ существует такое число $m_x>0$, что $|f(x)|\leqslant m_x$ для любого $f\in \mathscr{F}$. Тогда существуют непустое открытое множество $G\subset X$ и число m>0, такие, что $|f(x)|\leqslant m$ для всех $x\in G$ и всех $f\in \mathscr{F}$.

 \blacktriangleleft Для функции $f \in \mathscr{F}$ рассмотрим множество Лебега (см. §7)

$$X_{k,f} = \{x \in X : |f(x)| \le k\}, \quad k = 1, 2, \dots$$

Так как функция $f \in C(X)$, то, согласно теореме 7.3, множества $X_{k,f}$ замкнуты. Значит, для каждого $k \in \mathbb{N}$ множество

$$X_k = \bigcap \{X_{k,f} : f \in \mathscr{F}\}$$

замкнуто как пересечение замкнутых множеств.

По условию, для каждой точки $x \in X$ найдется натуральное число k, такое, что $|f(x)| \leqslant k$ при всех $f \in \mathscr{F}$. Следовательно, имеем представление

$$X = \bigcup_{k=1}^{\infty} X_k.$$

Отсюда, с учетом полноты МП (X, ρ) , по теореме Бэра заключаем, что найдется по крайней мере одно множество X_m из системы множеств X_k , которое содержит непустое открытое множество $G \subset X_m$, такое, что неравенство $|f(x)| \leqslant m$ выполняется для всех $x \in G$ и всех $x \in \mathcal{F}$.

Задачи и упражнения

9.1. Приведите пример неполного пространства (X, ρ) , где X является множеством первой категории.

§10. Принцип сжимающих отображений

Именно математика...дает надежнейшие правила; кто им следует — тому не опасен обман чувств.

Л. Эйлер

Отображение $f\colon (X,\rho)\to (X,\rho)$ называется *сжимающим*, если существует такое число $c\in (0,1)$, что для любых точек $x,\,y\in X$ выполняется неравенство

$$\rho(f(x), f(y)) \le c\rho(x, y).$$

При этом число c называют коэ ϕ фициентом сжатия отображения f.

Непосредственно из определения сжимающего отображения следует, что если для каждого $\varepsilon>0$ взять $\delta=\frac{\varepsilon}{c}$, то для любых точек $x\in X$, $y\in X$, для которых $\rho(x,y)<\delta$, выполняется неравенство

$$\rho(f(x), f(y)) \leqslant c\rho(x, y) < c\delta = \varepsilon,$$

т.е. сжимающее отображение равномерно непрерывно, а следовательно, непрерывно в каждой точке пространства (X, ρ) .

Точка x_0 пространства (X, ρ) называется неподвижной точкой отображения $f: (X, \rho) \to (X, \rho)$, если $f(x_0) = x_0$.

Теорема 10.1 (принцип сжимающих отображений). Сжимающее отображение ПМП в себя имеет единственную неподвижную точку.

$$x_1 = f(x),$$
 $x_2 = f(x_1) = (f \circ f)(x),$
 \dots
 $x_n = f(x_{n-1}) = (\underbrace{f \circ f \circ \dots \circ f}_{n \text{ pas}})(x),$

Покажем, что полученная последовательность (x_n) фундаментальна. Из определения сжимающего отображения имеем:

$$\rho(x_1, x_2) = \rho(f(x), f(x_1)) \leqslant c\rho(x, x_1) = c\rho(x, f(x)),
\rho(x_2, x_3) = \rho(f(x_1), f(x_2)) = \rho(f(x_1), f(f(x_1))) \leqslant
\leqslant c\rho(x_1, f(x_1)) \leqslant c^2\rho(x, f(x)),
\dots
\rho(x_n, x_{n+1}) \leqslant c^n\rho(x, f(x)),$$

Отсюда, для любого $p \in \mathbb{N}$, с помощью неравенства треугольника получаем

$$\rho(x_n, x_{n+p}) \leqslant \frac{c^n - c^{n+p}}{1 - c} \rho(x, f(x)).$$

Так как $c \in (0,1)$, то

$$\rho(x_n, x_{n+p}) \leqslant \frac{c^n}{1-c} \rho(x, f(x)).$$

Итак, последовательность (x_n) фундаментальна и в силу полноты пространства (X,ρ) существует точка $x_0\in X$, являющаяся пределом последовательности (x_n) , причем x_0 — неподвижная точка отображения f. Действительно, с учетом непрерывности отображения f, имеем

$$x_0 = \lim_{n \to \infty} x_n = \lim_{n \to \infty} f(x_{n-1}) = f\left(\lim_{n \to \infty} x_n\right) = f(x_0).$$

Покажем единственность неподвижной точки. Предположим, что существуют две точки x_0 и y_0 , такие, что

$$f(x_0) = x_0, \ f(y_0) = y_0, \ x_0 \neq y_0.$$

Тогда имеем неравенство

$$\rho(x_0, y_0) = \rho(f(x_0), f(y_0)) \leqslant c\rho(x_0, y_0) < \rho(x_0, y_0),$$

что невозможно. >

З а м е ч а н и е 10.1. Так как неподвижные точки отображения f являются решениями уравнения f(x)=x, то принцип сжимающих отображений можно сформулировать в следующем виде: если (X,ρ) — ПМП и f —

сжимающее отображение (X, ρ) в себя с коэффициентом сжатия $c \in (0, 1)$, то уравнение f(x) = x имеет в пространстве (X, ρ) одно и только одно решение, которое может быть получено как предел итсрационной последовательности

$$x_1 = f(x), x_2 = f(x_1), \dots, x_n = f(x_{n-1}), \dots,$$

построенной при любом выборе исходного элемента x, причем оценка сходимости последовательности (x_n) к решению уравнения x_0 задается формулой

$$\rho(x_n, x_0) \leqslant \frac{c^n}{1 - c} \rho(x, f(x)). \tag{10.2}$$

Построение последовательности (x_n) и исследование вопроса ее еходимости называют методом последовательных приближений.

Следствие 10.1 (локальный принцип сжимающих отображений). Пусть $(X,\rho)-\Pi M\Pi$ и отображение $\underline{f}:(X,\rho)\to (X,\rho)$ является сжимающим на некотором замкнутом шаре $\overline{B}(x_0,r)$ из (X,ρ) , с коэффициентом сжатия $c\in (0,1)$, и выполнено неравенство $\rho(x_0,f(x_0))\leqslant (1-c)r$. Тогда в замкнутом шаре $\overline{B}(x_0,r)$ существует единственная неподвижная точка отображения f.

◄ Рассмотрим подпространство $(\overline{B}(x_0,r), \rho_{\overline{B}(x_0,r)})$ полного пространства (X,ρ) . Так как $\overline{B}(x_0,r)$ — замкнутое множество, то рассматриваемое подпространство $(\overline{B}(x_0,r), \rho_{\overline{B}(x_0,r)})$ — полное, в силу теоремы 8.1.

Покажем, что f отображает $\overline{B}(x_0,r)$ в себя. Пусть x — произвольная точка замкнутого шара $\overline{B}(x_0,r)$, т.е. $\rho(x_0,x)\leqslant r$. Тогда, учитывая то, что f — сжимающее отображение на $\overline{B}(x_0,r)$, имеем следующую оценку

$$\rho(x_0, f(x)) \leq \rho(x_0, f(x_0)) + \rho(f(x_0), f(x)) \leq \\ \leq (1 - c)r + c\rho(x_0, x) \leq (1 - c)r + cr = r.$$

Следовательно, $f(x)\in \overline{B}(x_0,r)$ и к отображению $f\colon \overline{B}(x_0,r)\to \overline{B}(x_0,r)$ применим принцип сжимающих отображений. \blacktriangleright

Следствие 10.2. Если некоторая степень отображения ПМП в себя является сжимающей, то само отображение имеет единственную неподвижную точку.

◀ Пусть $(X, \rho) - 11M11$ и отображение $f: (X, \rho) \to (X, \rho)$ таково, что его n-я степень $f^n := f \circ f \circ \ldots \circ f, \ n \geqslant 1$, является сжимающим

отображением. Предположим, что x_0 — неподвижная точка отображения f^n , т. е. $f^n(x_0) = x_0$. Тогда

$$f(x_0) = f(f^n(x_0)) = f^n(f(x_0)).$$

Таким образом, $f(x_0)$ — неподвижная точка отображения f^n . Но такая точка, согласно принципу сжимающих отображений, единственная и, следовательно, $f(x_0) = x_0$.

Следствие 10.3 (о непрерывной зависимости неподвижной точки). Пусть $(X,\rho)-\Pi M\Pi$ и $f,g\colon (X,\rho)\to (X,\rho)-\partial$ ва сжимающих отображения c коэффициентами сжатия c_f и c_g , соответственно. Если $\rho(f(x),g(x))<\varepsilon$ для любого $x\in X$, то неподвижные точки отображений f и g находятся друг от друга на расстоянии, не превышающем величину $\frac{\varepsilon}{1-c}$, где $\varepsilon=\sup\{\rho(f(x),g(x)):x\in X\}$ и $c=\min\{c_f,c_g\}$.

$$\rho(x_0, x_n) \leqslant \rho(x_0, x_1) + \rho(x_1, x_2) + \dots + \rho(x_{n-1}, x_n) \leqslant$$

$$\leqslant \rho(x_0, g(x_0))[1 + c_g + \dots + c_g^{n-1}] \leqslant \frac{\rho(x_0, g(x_0))}{1 - c_g}.$$

Отсюда, при переходе $n \to \infty$ окончательно получаем, что

$$\rho(x_0, x^*) \leqslant \frac{\rho(x_0, g(x_0))}{1 - c_{\sigma}} = \frac{\rho(f(x_0), g(x_0))}{1 \div c_{\sigma}} < \frac{\varepsilon}{1 - c}.$$

В дополнение к доказанной теореме приведем следующее

Предложение 10.1 (об устойчивости неподвижной точки). Пусть (X, ρ) — полное, а (T, σ) — произвольное МП (играющее роль пространства параметров), и пусть каждому значению $t \in T$ отвечает сжимающее отображение $f_t \colon (X, \rho) \to (X, \rho)$, причем выполнены следующие условия:

- (i) семейство $\{f_t: t \in T\}$ равномерно сжимающее, т. е. существует такое число $c, \ 0 < c < 1$, которая является коэффициентом сжатия каждого отображения f_t ;
- (ii) при каждом $x \in X$ отображение $f_t(x): (T, \sigma) \to (X, \rho)$ как функция от t непрерывно в некоторой точке $t_0 \in T$, т. е. $f_t(x) \to f_{t_0}(x)$ (в (X, ρ)) при $t \to t_0$ (в (T, σ)).

Тогда решение $a(t) \in X$ уравнения $x = f_t(x)$ в точке t_0 непрерывно зависит от t, т. е. $a(t) \to a(t_0)$ (в (X, ρ)) при $t \to t_0$ (в (T, σ)).

$$\rho(a(t), a(t_0)) = \rho(a(t), x_0) \le \frac{1}{1 - c} \rho(x_1, x_0) = \frac{1}{1 - c} \rho(f_t(a(t_0)), f_{t_0}(a(t_0))).$$

Последний член в этом соотоношении, в силу условия (б), стремится к нулю при $t \to t_0$. Таким образом, доказано, что

$$\lim_{t\to t_0}\rho(a(t),a(t_0))=0, \text{ r.e. } \lim_{t\to 0}a(t)=a(t_0). \blacktriangleright$$

Задачи и упражнения

- 10.1. (a) Пусть f отображение пространства $\mathbb R$ в себя, определенное формулой $f(x)=x^3$. Найти все его неподвижные точки и показать, в окрестности каких неподвижных точек отображение f будет сжимающим.
- (б) Установить, что отображение $f: \mathbb{R} \to \mathbb{R}$, заданное равенством f(x) = sign x + 2, разрывно, а $f \circ f: \mathbb{R} \to \mathbb{R}$ сжимающее отображение, и найти его неподвижную точку.
- (в) Доказать, что отображение f(x)=Ax пространства \mathbb{R}^2 (см. пример 2.3) в себя, где матрица $A=\begin{pmatrix} \frac{1}{2} & 0 \\ 10 & \frac{1}{2} \end{pmatrix}$, не является сжимающим в \mathbb{R}^2 , а его некоторая натуральная степень является сжимающим.
- (г) Пусть f(x)=Ax+b отображение пространства $l_\infty^n=(\mathbb{R}^n,\rho_1)$ в себя, где $\rho_1(x,y)=\max_{1\leqslant i\leqslant n}|x_i-y_i|$, заданное системой линейных уравнений

$$y_k = \sum_{j=1}^n a_{kj} x_j + b_k, \ k = 1, 2, \dots, n.$$

Доказать, что f — сжимающее отображение с коэффициентом сжатия $\alpha \in (0,1)$ тогда и только тогда, когда выполнено условие

$$\sum_{j=1}^{n} |a_{kj}| \leqslant \alpha < 1, \ k = 1, 2, \dots, n.$$

§11. Пополнение метрического пространства

Ценность утверждений математики заключается в их абстрактности и общности.

A. Yaŭmxed

В этом параграфе описывается конструкция, позволяющая для каждого неполного МП (X,ρ) построить соответствующее ему ПМП (Y,σ) с помощью присоединения к множеству X «недостающих» элементов, которые являются пределами фундаментальных последовательностей точек МП (X,ρ) , не сходящимися в нем. При этом МП (X,ρ) рассматривается как подпространство полученного ПМП (Y,σ) , что позволяет использовать все преимущества полноты.

МП (Y, σ) называется пополнением пространства (X, ρ) , если оно удовлетворяет следующим условиям:

- (1) $(Y, \sigma) \Pi M \Pi$;
- (2) пространство (Y, σ) содержит подпространство (Y_0, σ_{Y_0}) , изометричное пространству (X, ρ) ;
- (3) множество Y_0 всюду плотно в пространстве (Y, σ) .

Теорема 11.1. Каждое МП имеет пополнение.

◀ Рассмотрим множество $\mathscr F$ всех фундаментальных последовательностей в (X,ρ) . Если $\xi=(x'_n)$ и $\eta=(x''_n)$ две точки из $\mathscr F$, то числовая последовательность $(\rho(x'_n,x''_n))$ будет фундаментальной в силу неравенства четырехугольника (см. задачу 1.2)

$$|\rho(x'_n, x''_n) - \rho(x'_m, x''_m)| \leqslant \rho(x'_n, x'_m) + \rho(x''_n, x''_m).$$

Поэтому, учитывая полноту пространства $\mathbb R$ имеем, что существует предел числовой последовательности $(\rho(x_n',x_n''))$, который обозначим через $\tilde{\rho}(\xi,\eta)$, т. е.

$$\tilde{\rho}(\xi, \eta) := \lim_{n \to \infty} \rho(x'_n, x''_n). \tag{11.1}$$

Легко видеть, что величина $\tilde{\rho}(\xi,\eta)$ обладает следующими свойствами:

$$egin{aligned} ilde{
ho}(\xi,\eta)&\geqslant 0,\ ilde{
ho}(\xi,\xi)&=0,\ ilde{
ho}(\xi,\eta)&= ilde{
ho}(\eta,\xi),\ ilde{
ho}(\xi,\eta)&\leqslant ilde{
ho}(\xi,\zeta)+ ilde{
ho}(\zeta,\eta), \end{aligned}$$

где $\xi,\,\eta,\,\zeta$ — произвольные точки множества $\mathscr{F}.$ Заметим, что равенство' $\tilde{\rho}(\xi,\eta)=0$ не означает, вообще говоря, что $\xi=\eta,$ т. е. $\tilde{\rho}$ не является метрикой на $\mathscr{F}.$

Введем на множестве $\mathscr F$ отношение $E=\{(\xi,\eta): \tilde\rho(\xi,\eta)=0\}$. Это отношение, в силу приведенных свойств $\tilde\rho(\xi,\eta)$, является отношением эквивалентности и, следовательно, разбивает множество $\mathscr F$ на непересекающиеся классы эквивалентных фундаментальных последовательностей.

Обозначим через $Y = \mathscr{F}/E$ фактор-множество множества \mathscr{F} по отношению E (см. пункт 0.4). Введсм на множестве Y метрику. Если $y = [(x_n)]$ и $y' = [(x_n')]$ — классы эквивалентности, содержащие фундаментальные последовательности (x_n) и (x_n') , то положим

$$\sigma(y, y') = \lim_{n \to \infty} \rho(x_n, x'_n). \tag{11.2}$$

Как было доказано выше, предел в правой части (11.2) существует. Кроме того, он не зависит от выбора последовательностей в классах y и y'. Действительно, пусть (\tilde{x}_n) и (\tilde{x}'_n) — другие представители классов y и y', соответственно. Тогда из неравенства четырехугольника

$$|\rho(x_n, x_n') - \rho(\hat{x}_n, \hat{x}_n')| \leqslant \rho(x_n, \hat{x}_n') + \rho(\hat{x}_n, x_n')$$

следует равенство

$$\lim_{n\to\infty}\rho(x_n,x_n')=\lim_{n\to\infty}\rho(\tilde{x}_n,\tilde{x}_n').$$

Далее из свойств величины $\tilde{\rho}(\xi,\eta)$, определенной равенством (11.1), получаем, что функция σ удовлетворяет аксиомам метрики. Таким образом, множество классов эквивалентных фундаментальных последовательностей из Y с метрикой σ является МП.

Рассмотрим отображение $p\colon X \to Y$, которое каждой точке $x\in X$ ставит в соответствие класс эквивалентности [(x)], содержащий стационарную последовательность (x). Этот класс будет содержать также все фундаментальные последовательности, сходящиеся к точке x. Положим $Y_0=p(X)$. Тогда функция

$$\sigma_{Y_0}([(x)],[(x')]) = \rho(x,x')$$

определяет метрику, индуцированную метрикой σ на множество Y_0 . Следовательно, (Y_0, σ_{Y_0}) — подпространство пространства (Y, σ) , а отображение $p \colon (X, \rho) \to (Y_0, \sigma_{Y_0})$ является изометрией.

Покажем, что Y_0 — всюду плотное множество в (Y,σ) . Пусть y — некоторый элемент множества Y и (x_n) — произвольная последовательность из класса y. Тогда для любого $\varepsilon>0$ найдется число $k_0\in\mathbb{N}$, такое, что для всех номеров $n>k_0$ и $m>k_0$ выполняется неравенство

$$\rho(x_n, x_m) < \frac{\varepsilon}{2}. \tag{11.3}$$

Рассмотрим элемент $y_0 \in Y_0$, определенный равенством $y_0 = p(x_{m_0})$, где x_{m_0} — элемент последовательности (x_n) с номером $m_0 > k_0$. Тогда, переходя в неравенстве

$$\rho(x_n,x_{m_0})<\frac{\varepsilon}{2},\ n>k_0$$

к пределу при $n \to \infty$, получим

$$\sigma(y,y_0)\leqslant \frac{\varepsilon}{2}<\varepsilon.$$

т. е. элемент y является точкой прикосновения множества Y_0 . Таким образом, для каждого элемента $y\in Y$ существует последовательность (x_n) в пространстве (X,ρ) , такая, что $\sigma(y,p(x_n))\to 0$ при $n\to\infty$. Значит, $\overline{Y_0}=Y$.

Остается доказать полноту пространства (Y,σ) . Пусть (y_n) — фундаментальная последовательность в (Y,σ) . Возьмем последовательность положительных чисел (ε_n) : $\varepsilon_n \to 0$. Так как множество Y_0 всюду плотно в (Y,σ) , то для каждого $y_n \in Y$ найдется элемент $y_0^{(n)} \in Y_0$, такой, что $\sigma(y_n,y_0^{(n)})<\varepsilon_n$. Из неравенства

$$\sigma(y_0^{(n)}, y_0^{(m)}) \leq \sigma(y_0^{(n)}, y_n) + \sigma(y_m, y_0^{(m)}) + \sigma(y_n, y_m) < \varepsilon_n + \varepsilon_m + \sigma(y_n, y_m)$$

следует, что последовательность $(y_0^{(n)})$ фундаментальна в (Y,σ) . Построим последовательность точек $x_0^{(1)}, x_0^{(2)}, \ldots$ множества X, где каждая из стационарных последовательностей $(x_0^{(1)}), (x_0^{(2)}), \ldots$ принадлежит классу $y_0^{(1)}, y_0^{(2)}, \ldots$ Эта последовательность фундаментальна в (X,ρ) , и поэтому она определяет некоторый класс $y \in Y$. Используя неравенство треугольника, получаем

$$\sigma(y_n, y) \leqslant \sigma(y_n, y_0^{(n)}) + \sigma(y_0^{(n)}, y) < \varepsilon_n + \sigma(y_0^{(n)}, y).$$

Отсюда, с учетом соотношения $\sigma(y_0^{(n)},y)\to 0$ при $n\to\infty$, заключаем, что $y_n\to y$ в (Y,σ) и полнота пространства (Y,σ) доказана. \blacktriangleright

Теорема 11.2. Пусть (Y_1, σ_1) и (Y_2, σ_2) — любые два пополнения пространства (X, ρ) . Тогда существует изометрия $f: (Y_1, \sigma_1) \to (Y_2, \sigma_2)$ такая, что f(x) = x для всех $x \in X$ (т. е. изометрия f оставляет на месте точки из множества X).

$$\begin{split} \sigma_1(y_1, y_1') &= \lim_{n \to \infty} \sigma_1(p_1(x_n), p_2(x_n')) = \lim_{n \to \infty} \rho(x_n, x_n') = \\ &= \lim_{n \to \infty} \sigma_2(p_2(x_n), p_2(x_n')) = \sigma_2(y_2, y_2') = \sigma_2(f(y_1), f(y_1')), \end{split}$$

где $f(y_1) = y_2$ и $f(y_1') = y_2'$. Отсюда следует, что отображение $f\colon Y_1 \to Y_2$ определено корректно. При этом f является взаимно одназначным соответствием. То, что отображение f оставляет на месте точки из множества X, непосредственно следует из его определения. \blacktriangleright

3 а м е ч а н и е 11.1. Рассмотрим теорию иррациональных чисел, известную как канторовская теория вещественных чисел. Возьмем неполное пространство рациональных чисел $(\mathbb{Q}, \rho_{\mathbb{Q}})$ с евклидовой метрикой $\rho(x,y)==|x-y|$, и пусть (Y,σ) — его пополнение. «Недостающие» точки пространства $(\mathbb{Q}, \rho_{\mathbb{Q}})$ назовем иррациональными числами. Иначе говоря, согласно конструкции, приведенной в доказательстве теоремы 11.1, иррациональным числом считают класс эквивалентных фундаментальных последовательностей рациональных чисел, не имсющих предела в пространстве $(\mathbb{Q}, \rho_{\mathbb{Q}})$. Например, класс эквивалентных фундаментальных последовательностей, содержащий последовательность

$$x_n = 1 + \frac{1}{2!} + \ldots + \frac{1}{n!},$$

есть иррациональное число e, а класс, содержащий последовательность рациональных чисел $x_1=3;\,x_2=3,1;\,x_3=3,141;\ldots$, есть иррациональное число число $\pi=3,1459259\ldots$ (т. е. запись иррационального числа в виде

бесконечной непериодической десятичной дроби представляет собой выбор класса фундаментальных последовательностей).

В множестве действительных (иррациональных и рациональных) чисел введем отношение линейного порядка. Пусть $\xi \in Y$ и (x_n) — произвольная фундаментальная последовательность точек $x_n \in \mathbb{Q}$, при этом положим $\xi_x = x$, если класс ξ_x содержит стационарную последовательность $(x), x \in \mathbb{Q}$. Если ξ и ξ_x — различные классы, то из определения метрики σ (см. формулу (11.2)) получим, что либо $x_n > x$, либо $x_n < x$ для достаточно больших n. В этом случае полагаем $\xi > x$, а во втором — $\xi < x$, при этом результат не зависит от выбора последовательности (x_n) .

Если $\xi_1,\,\xi_2$ — два иррациональных числа, то при любом выборе последовательностей $(x_n^{(1)})$ из ξ_1 и $(x_n^{(2)})$ из ξ_2 для достаточно больших n имеем либо $x_n^{(1)} < x_n^{(2)}$, либо $x_n^{(1)} > x_n^{(2)}$. В первом случае полагаем $\xi_1 < \xi_2$, а во втором $\xi_1 > \xi_2$.

Так как для каждого $\xi \in Y$ существует фундаментальная последовательность (x_n) точек из $(\mathbb{Q}, \rho_{\mathbb{Q}})$, такая, что $\sigma(\xi, p(x_n)) \to 0$ при $n \to \infty$ (т. е. всякое иррациональное число есть предел некоторой последовательности рациональных чисел), то это позволяет определить действия над действительными числами. Рассмотрим для примера сумму действительных чисел ξ_1 и ξ_2 . Пусть $(\xi_n^{(1)}), (\xi_n^{(2)})$ — две последовательности из $(\mathbb{Q}, \rho_{\mathbb{Q}})$, такие, что $\sigma(\xi_1, p(x_n^{(1)})) \to 0$ и $\sigma(\xi_2, p(x_n^{(2)})) \to 0$. Из фундаментальности последовательности $(\xi_n^{(1)})+(\xi_n^{(2)})$ и полноты (Y,σ) имеем, что найдется элемент $\xi \in Y$, для которого $\sigma(\xi, p(x_n^{(1)}+x_n^{(2)})) \to 0$. Этот элемент называют суммой данных чисел ξ_1 и ξ_2 .

Задачи и упражнения

- **11.1.** Доказать, что если (X, ρ) ПМП, то пополнением подпространства (A, ρ_A) , $A \subset X$, является пространство $(\overline{A}, \rho_{\overline{A}})$.
- **11.2.** Доказать неполноту и построить пополнения следующих пространств:
 - (a) множество \mathbb{R} с расстоянием $\rho(x,y) = |\arctan y|$;
 - (б) множество \mathbb{R} с расстоянием $\rho(x,y) = |e^x e^y|$.
- **11.3.** На множестве $\{[a,b]: a,b\in \mathbb{R}, a< b\}$ отрезков пространства \mathbb{R} определим расстояние формулой

$$\rho([a,b],[c,d]) = |a-c| + |b-d|.$$

Доказать неполноту и найти пополнение полученного пространства.

§12. Вполне ограниченные пространства

... свойство, общее для слишком многих объектов, вряд ли может быть очень интересным, и математические идеи также становятся скучными, если не обладают индивидуальностью в достаточной мере.

Г. Харди

Система подмножеств $\mathscr{A}=\{U_s:s\in S\}$ множества X называется покрытием пространства (X,ρ) , сели $X=\bigcup\{U_s:s\in S\}$.

Покрытие $\mathscr A$ называется *открытым* (или, соответственно, *замкнутым*), если каждое из множеств $U_s \in \mathscr A$ открыто (или, соответственно, замкнуто) в пространстве (X,ρ) .

Подсистема \mathscr{A}_0 покрытия \mathscr{A} пространства (X,ρ) называется nodno- крытием покрытия \mathscr{A} , если сама система \mathscr{A}_0 образует покрытие (X,ρ) .

Пространство (X,ρ) называется вполне ограниченным, если для любого числа $\varepsilon>0$ существует конечное открытое покрытие пространства (X,ρ) множествами диаметра меньше ε , т. е. для любого $\varepsilon>0$ найдется конечное семейство открытых множеств $\{U_i^\varepsilon: i=\overline{1,k}\}$, таких, что $X=\bigcup\{U_i^\varepsilon: i=\overline{1,k}\}$ и $d(U_i^\varepsilon)<\varepsilon$ для любого $i=\overline{1,k}$.

Теорема 12.1. Для того чтобы пространство (X, ρ) было вполне ограниченным, необходимо и достаточно, чтобы каждому $\varepsilon > 0$ соответствовало конечное множество $A_{\varepsilon} \subset X$, такое, что $\rho(x, A_{\varepsilon}) < \varepsilon$, какова бы ни была точка $x \in X$.

◀ Н е о б х о д и м о с т ь. Пусть (X, ρ) — вполне ограниченное МП и число $\varepsilon > 0$. Тогда для каждого $n \in \mathbb{N}$ найдется конечное семейство непустых открытых подмножеств $\{U_1^n, U_2^n, \ldots, U_{k_n}^n\}$ МП (X, ρ) , такос, что

$$X=U_1^n\cup U_2^n\cup\ldots\cup U_{k_n}^n,\quad d(U_i^n)<rac{1}{n}$$
 для $1\leqslant i\leqslant k_n.$

Из каждого множества U_i^n выберем по одной точке x_i^n . Тогда множество $A_{\frac{1}{n}}=\{x_1^n,\dots,x_{k_n}^n\}$ есть искомое множество (при $\varepsilon>\frac{1}{n}$).

Д о с т а т о ч н о с т ь. Если $A_{\frac{\varepsilon}{2}}$ — множество, удовлетворяющее условию теоремы, то система открытых шаров радиуса $\frac{\varepsilon}{2}$ с центрами, принадлежащими множеству $A_{\frac{\varepsilon}{2}}$, представляет собой искомое покрытие пространства (X,ρ) .

Множество $A\subset X$ называется ε -сетью пространства (X,ρ) , или говорят, что множество $A-\varepsilon$ -плотно в пространстве (X,ρ) , если для любой точки $x\in X$ существует точка $a\in A$, такая, что $\rho(x,a)<\varepsilon$. При этом множество A называется конечной ε -сетью, если оно состоит из конечного числа точек.

На основании данного определения теорему 12.1 можно сформулировать в следующем виде: $M\Pi$ (X,ρ) вполне ограниченное тогда и только тогда, когда при любом $\varepsilon>0$ в пространстве (X,ρ) существует конечная ε -сеть.

Предложение 12.1. Любое вполне ограниченное МП сепарабельно и ограничено.

◀ Пусть (X, ρ) — произвольное вполне ограниченное МП. Тогда, в силу теоремы 12.1, для любого $k \in \mathbb{N}$ существует конечное подмножество $A_k \subset X$, такое, что $\rho(x, A_k) < \frac{1}{k}$ для любого $x \in X$.

Положим $B=\cup\{A_k:k\in\mathbb{N}\}.$ Ясно, что множество B не более чем счетно, причем для каждой точки $x\in X$ при любом $k\in\mathbb{N}$ справедливо неравенство

$$\rho(x,B) \leqslant \rho(x,A_k) < \frac{1}{k}.$$

Следовательно, $\rho(x,B)=0$. Отсюда, с учетом произвольного выбора точки x, получаем равенство $X=\overline{B}$, что означает сепарабельность (X,ρ) .

Покажем, что пространство (X,ρ) ограничено. Пусть $\{x_1,\dots,x_n\}$ есть 1-сеть пространства (X,ρ) и x_0 — фиксированный элемент из (X,ρ) . Положим $d=\max\{\rho(x_0,x_i):i=\overline{1,n}\}$. Отсюда для произвольной точки $x\in X$ имеем неравенство

$$\rho(x, x_0) \le \rho(x, x_i) + \rho(x_i, x_0) < 1 + d,$$

где x_i — центр открытого шара $B(x_i,1)$, который содержит точку x. \blacktriangleright

Непустое множество $M\subset X$ называется вполне ограниченным в пространстве (X,ρ) , если подпространство (M,ρ_M) — вполне ограниченное МП.

Пусть M — некоторое непустое подмножество пространства (X, ρ) и ε — произвольно заданное положительное число. Множество $A \subset X$ называется ε -сетью для множества M в (X, ρ) , если для любой точки $x \in M$ существует $a \in A$, такое, что $\rho(x, a) < \varepsilon$.

Ясно, что множество $M\subset X$ вполне ограничено в пространстве (X,ρ) тогда и только тогда, когда для него при любом $\varepsilon>0$ в (X,ρ) существует конечная ε -сеть. Следовательно, вполне ограниченное множество есть множество, к которому можно с любой степенью точности приблизиться конечными множествами.

Отметим, что если множество A есть конечная ε -сеть множества M, то оно не обязано содержаться в M и может даже не имегь с M ни одной общей точки (см. задачу 12.6(a)).

Примеры вполне ограниченных множеств доставляет

Предложение 12.2. Если (X, ρ) — вполне ограниченное МП, то любое его подмножество M также вполне ограниченное.

∢ Зафиксируем число $\varepsilon>0$. Согласно тсореме 12.1 выберем конечное множество $A=\{x_1,x_2,\ldots,x_k\},\ \frac{\varepsilon}{2}$ -плотное в пространстве (X,ρ) . Пусть подмножество $\{x_{m_1},\ldots,x_{m_l}\}$ множества A такос, что $\rho(x_{m_1},M)<\frac{\varepsilon}{2}$ для каждого $j=\overline{1,l}$. Обозначим через x_1',x_2',\ldots,x_l' точки из множества M, подчиненные условиям:

$$\rho(x_{m_j}, x_j') < \frac{\varepsilon}{2}, \ j = \overline{1, l}. \tag{12.1}$$

Покажем, что $B=\{x_1',x_2',\ldots,x_l'\}-\varepsilon$ -сеть множества M. Принимая во вниманис определение множества A, для произвольной точки $x\in M$ найдется такое $x_i\in A$, что

$$\rho(x, x_i) < \frac{\varepsilon}{2}.\tag{12.2}$$

Следовательно, полагая $x_i = x_{m_j}$ для некоторого $j \leqslant l$ и учитывая неравенства (12.1), (12.2), окончательно получаем

$$\rho(x, x_i') \leq \rho(x, x_i) + \rho(x_i, x_i') < \varepsilon,$$

т. е. B является конечной ε -сетью для M.

Свойства вполне ограниченных множеств в МП характеризует следующее

Предложение 12.3. (a) Всякое вполне ограниченное множество является ограниченным множеством.

- (б) Если M- вполне ограниченное множество пространства (X,ρ) , то его замыкание \overline{M} также вполне ограниченное в (X,ρ) .
- \blacktriangleleft (б) Достаточно заметить, что $\frac{\varepsilon}{2}$ -плотное множество в подпространстве (M, ρ_M) будет ε -плотно в $(\overline{M}, \rho_{\overline{M}})$. \blacktriangleright

Эквивалентное определение вполне ограниченных МП на языке последовательностей дает

Теорема 12.2. МП будет вполне ограниченным тогда и только тогда, когда каждая последовательность его точек содержит фундаментальную подпоследовательность.

◀ Пусть (X, ρ) — вполне ограниченное пространство и (x_n) — произвольная последовательность точек в (X, ρ) . Зафиксируем произвольно $\varepsilon > 0$. Тогда в пространстве (X, ρ) существует конечная $\frac{\varepsilon}{2}$ -сеть $A = \{a_1, \ldots, a_n\}$, т. е.

$$X = \bigcup_{i=1}^n B\left(a_i, \frac{\varepsilon}{2}\right).$$

Выберем номер i таким, что шар $B(a_i,\frac{\varepsilon}{2})$ содержит бесконечно много элементов последовательности (x_n) . Тогда существует подпоследовательность (x_{n_m}) последовательности (x_n) , такая, что $x_{n_m} \in B(a_i,\frac{\varepsilon}{2})$ для любого $m \in \mathbb{N}$ и тем самым удовлетворяет условию $d(\{x_{n_m}: m \in \mathbb{N}\}) < \varepsilon$.

Положим $\varepsilon=1$ и из заданной последовательности выделим подпоследовательность

$$x_{11}, x_{12}, \dots, x_{1m}, \dots; d(\{x_{1m} : m \in \mathbb{N}\}) < 1,$$
 (12.3)

где $x_{1m} = x_{n_m}$ для каждого $m \in \mathbb{N}$. Так как $B(a_i, \frac{1}{2})$ — вполне ограниченное множество (согласно предложнению 12.2), содержащее последовательность (12.3), то из (12.3) можно выделить подпоследовательность

$$x_{21}, x_{22}, \dots, x_{2m}, \dots; d(\{x_{2m} : m \in \mathbb{N}\}) < \frac{1}{2}.$$

Продолжая этот процесс, для каждого $p=1,2,\ldots$ получим последовательность

$$x_{p1}, x_{p2}, \dots, x_{pm}, \dots; d(\{x_{pm} : m \in \mathbb{N}\}) < \frac{1}{p}.$$

Составим диагональную последовательность

$$x_{11}, x_{22}, \dots, x_{mm}, \dots$$
 (12.4)

Отсюда, в силу диагонального процесса Кантора (см. пункт 0.6), получаем, что последовательность (12.4) является подпоследовательностью каждой из построенных последовательностей. Поэтому каково бы ни было $\varepsilon>0$, выбрав m_0 так, чтобы $\frac{1}{m_0}<\varepsilon$, получим, что для любых $m_1>m_0$, $m_2>m_0$ выполняется неравенство

$$\rho(x_{m_1m_1}, x_{m_2m_2}) < \frac{1}{m_0} < \varepsilon,$$

т. е. последовательность (12.4) фундаментальна.

Обратно, пусть пространство (X,ρ) не является вполне ограниченным, т. с. существует такое $\varepsilon>0$, что пространство (X,ρ) не имеет конечной ε -сети. Пусть x_1 — произвольная точка множества X. По предположению, она не образует ε -сети. Поэтому существует такая точка $x_2\in X$, что $\rho(x_1,x_2)\geqslant \varepsilon$. Пусть в (X,ρ) уже выбраны такие точки x_1,\ldots,x_n , что $\rho(x_i,x_j)\geqslant \varepsilon$ при $i\neq j$. Так как множество этих точек не является ε -сетью для (X,ρ) , то в множестве X существует такая точка (обозначим се через x_{n+1}), что $\rho(x_i,x_{n+1})\geqslant \varepsilon$, $i=\overline{1,n}$. Продолжая этот процесс, получим последовательность точек $x_n\in X$, таких, что

$$\rho(x_n, x_m) \geqslant \varepsilon$$
, при $n \neq m$.

Ясно, что эта последовательность не содержит фундаментальной подпоследовательности. ►

Задачи и упражнения

12.1. (а) Пусть $\mathscr{A} = \{A_s : s \in S\}$ и $\mathscr{B} = \{B_t : t \in T\}$ — открытые покрытия пространства (X, ρ) . Показать, что семейство множеств

$$\mathscr{A}\cap\mathscr{B}=\{A_s\cap B_t:(s,t)\in S\times T\}$$

является открытым покрытием пространства (X, ρ) .

(б) Пусть (X, ρ) , (Y, σ) — два произвольных пространства, и пусть $\mathscr{A} = \{A_s : s \in S\}$, $\mathscr{B} = \{B_t : t \in T\}$ — открытые покрытия пространств (X, ρ) и (Y, σ) , соответственно. Показать, что

$$\mathscr{A} \times \mathscr{B} = \{A_s \times B_t : (s, t) \in S \times T\}$$

§13. Компактные пространства

Почти бессмысленно говорить об открытых пространствах или о замкнутых пространствах, имеет смысл говорить о компактных метрических пространствах.

У. Рудин

МП называется компактным, если оно удовлетворяет условию Бореля—Лебега: всякое его открытое покрытие содержит конечное подпокрытие, т. е. если $\{U_s:s\in S\}$ — произвольное открытое покрытие пространства (X,ρ) , то существует конечный набор индексов $\{s_1,s_2,\ldots,s_n\}\subset S$, такой, что $X=\cup\{U_{s_k}:k=\overline{1,n}\}$.

Лемма 13.1. Если МП полно и вполне ограничено, то оно компактно.

∢ Пусть МП (X, ρ) полно и вполне ограничено. Допустим, что $\mathscr{U} = \{U_s: s \in S\}$ — произвольное открытое покрытие пространства (X, ρ) , никакое конечное подсемейство которого не покрывает (X, ρ) . Для положительного числа $\frac{1}{2^{n-1}}$, где $n \in \mathbb{N}$, существует, в силу того, что МП (X, ρ) вполне ограничено, конечная $\frac{1}{2^{n-1}}$ -сеть $\{x_1, \ldots, x_k\}$. Следовательно, $X = \cup \{B(x_i, \frac{1}{2^{n-1}}): i = \overline{1,k}\}$. Обозначим через B_{n-1} тот из шаров $B(x_i, \frac{1}{2^{n-1}})$, который нельзя покрыть конечным семейством из \mathscr{U} . Для числа $\frac{1}{2^n}$ существует конечное покрытие (X, ρ) шарами $\{B(x_i^1, \frac{1}{2^n}): i = \overline{1,m}\}$. Среди этих шаров, имеющих непустое пересечение с B_{n-1} , найдется по крайней мере один шар B_n , который нельзя покрыть конечным семейством множеств из \mathscr{U} . Действительно, поскольку

$$B_{n-1}\subset\bigcup_{i=1}^m B(x_i^1,\frac{1}{2^n}),$$

в противном случае нашлось бы конечное подсемейство семейства \mathscr{U} , покрывающее $B_{n-1}.$

Обозначим через x_n центр открытого шара $B_n, n=1,2,\ldots$ Так как $B_n\cap B_{n-1}\neq\varnothing$ для каждого $n=2,3,\ldots$, то

$$\rho(x_{n-1}, x_n) \leqslant \frac{1}{2^{n-1}} + \frac{1}{2^n} < \frac{1}{2^{n-2}}.$$

Поэтому, если $n\leqslant p\leqslant q$, то

$$\rho(x_p, x_q) \leqslant \rho(x_p, x_{p+1}) + \ldots + \rho(x_{q-1}, x_q) < \frac{1}{2^{p-1}} + \ldots + \frac{1}{2^{q-2}} < \frac{1}{2^{n-2}}.$$

Это значит, что (x_n) :— фундаментальная последовательность в (X, ρ) и, следовательно, в силу полноты (X, ρ) сходится к точке $x_0 \in X$.

Пусть $s_0 \in S$ — индекс, при котором $x_0 \in U_{s_0}$. Так как U_{s_0} — открытое множество, то существует число r>0, такое, что $B(x_0,r)\subset U_{s_0}$. Из определения точки x_0 следует, что найдется номер n, для которого

$$\rho(x_n, x_0) < \frac{r}{2}, \ \frac{1}{2^n} < \frac{r}{2}.$$

Отсюда для указанного n получаем соотношение

$$B_n \subset B(x_0,r) \subset U_{s_0},$$

что противоречит определению шара B_n . \blacktriangleright

Лемма 13.2. Если (X, ρ) — компактное МП, то любая последовательность точек из (X, ρ) содержит сходящуюся в нем подпоследовательность.

 \blacktriangleleft Пусть (x_n) — произвольная последовательность в (X,ρ) . Положим

$$F_n = \overline{\{x_n, x_{n+1}, \ldots\}}, \ n = 1, 2, 3, \ldots$$

Покажем, что $\cap \{F_n: n \in \mathbb{N}\} \neq \emptyset$. Предположим противное, т. е. $\cap \{F_n: n \in \mathbb{N}\} = \emptyset$. Тогда, полагая $X \setminus F_n = U_n$, получим, что семейство $\{U_n: n \in \mathbb{N}\}$ является открытым покрытием пространства (X, ρ) , которое, в силу компактности (X, ρ) , содержит его конечное подпокрытие $\{U_{n_i}: i = \overline{1,k}\}$. Но это значит, что $\cap \{F_{n_i}: i = \overline{1,k}\} = \emptyset$, что невозможно, так как если $n > \max\{n_i: i = \overline{1,k}\}$, то непустое множество F_n содержится в F_{n_i} для каждого $i = \overline{1,k}$. Таким образом, $\cap \{F_n: n \in \mathbb{N}\}$ содержит

хотя бы одну точку x_0 , т. е. x_0 является точкой прикосновения каждой последовательности $(x_n,x_{n+1},\ldots),n=1,2,\ldots$ Возьмем последовательность шаров $B(x_0,\frac{1}{k})$ и в каждом шаре выберем входящую в него точку x_{n_k} так, чтобы выполнялось условие $n_k < n_{k+1}$ для каждого $k=1,2,\ldots$ В результате получим подпоследовательность (x_{n_k}) последовательности (x_n) . Так как $\rho(x_{n_k},x_0)<\varepsilon$ при любом $k\geqslant \frac{1}{\varepsilon}$, то заключаем, что эта подпоследовательность сходится к точке x_0 . \blacktriangleright

Из доказанных лемм 13.1 и 13.2 следует критерий компактности МП на языке последовательностей, а именно: справедлива

Теорема 13.1. $M\Pi(X, \rho)$ компактно тогда и только тогда, когда каждая последовательность точек из (X, ρ) содержит сходящуюся в нем подпоследовательность (или другими словами: $M\Pi$ компактно тогда и только тогда, когда оно полно и вполне ограничено). \blacktriangleright

Непосредственно из предложения 12.1 и теоремы 13.1 следует

Предложение 13.1. Компактное МП сепарабельно и ограничено. >

Теорема 13.2. Если f — непрерывное отображение компактного пространства (X, ρ) на пространство (Y, σ) , то (Y, σ) — компактное пространство.

▶ Рассмотрим произвольную последовательность точек (y_n) пространства (Y,σ) . Для каждой точки $y_n\in Y$ возьмем один из его прообразов $x_n\in X$. Так как (X,ρ) компактно, то, в силу леммы 13.2, последовательность (x_n) содержит подпоследовательность (x_{n_k}) , такую, что $x_{n_k}\to x_0\in X$. Отсюда, с учетом того, что $f\in C(X,Y)$, имеем

$$f(x_{n_k}) = y_{n_k} \rightarrow y_0 = f(x_0) \in f(X) = Y, \ k \rightarrow \infty.$$

Следовательно, подпоследовательность (y_{n_k}) последовательности (y_n) сходится к точке $y_0 \in Y$. Значит, согласно теореме 13.1, пространство (Y, σ) компактно. \blacktriangleright

Понятия непрерывности и равномерной непрерывности для отображения $f\colon (X,\rho)\to (Y,\sigma)$, в случае, когда (X,ρ) — компактное пространство, равносильны (см. замечание 7.1), а именно: имеет место

Теорема 13.3. Пусть $f\colon (X,\rho)\to (Y,\sigma)$ — непрерывное отображение компактного МП (X,ρ) в произвольное МП (Y,σ) , тогда оно равномерно непрерывно на X.

◀ Пусть $f\colon (X,\rho)\to (Y,\sigma)$ не является равномерно непрерывным, т. е. существует такос $\varepsilon>0$, что для любого $\delta>0$ найдутся точки $x,x'\in X$, для которых выполняются неравенства

$$\rho(x, x') < \delta, \quad \sigma(f(x), f(x')) \geqslant \varepsilon.$$

Рассмотрим числовую последовательность (δ_n) , $(\delta_n)>0$, $\delta_n\to 0$, и для каждого δ_n выберем соответствующие точки $x_n,x_n'\in X$, такие, что $\rho(x_n,x_n')<\delta_n$, $\sigma(f(x_n),f(x_n'))\geqslant \varepsilon$. В силу компактности (X,ρ) из последовательности (x_n) , выделим подпоследовательность (x_{n_k}) такую, что $x_{n_k}\to x_0\in X$. Тогда согласно неравенству треугольника имеем

$$\rho(x_0, x'_{n_k}) \le \rho(x_0, x_{n_k}) + \rho(x_{n_k}, x'_{n_k}) \to 0, \ k \to \infty.$$

Таким образом, $x'_{n_k} \to x_0$ и в силу непрерывности f получаем, что

$$f(x_{n_k}) \to f(x_0), \ f(x'_{n_k}) \to f(x_0).$$

Следовательно, $\sigma(f(x_{n_k}),f(x'_{n_k}))\to 0$, а это противоречит неравенству $\sigma(f(x_n),f(x'_n))\geqslant \varepsilon$, справедливому при любом n.

Задачи и упражнения

- 13.1. Пусть (X,ρ) компактное пространство и M множество всех изометричных отображений пространства (X,ρ) в себя с метрикой $\hat{\rho}(x,y)=\max\{\rho(x(t),y(t)):t\in X\}$. Доказать, что $(M,\hat{\rho})$ компактное пространство.
- **13.2.** Доказать, что сепарабельное МП компактно тогда и только тогда, когда любая последовательность непустых замкнутых множеств, последовательно вложенных друг в друга, имеет непустое пересечение.
- **13.3.** Доказать, что произведение двух пространств компактно тогда и только тогда, когда каждое из них компактно.
- **13.4.** Пусть $(X, \rho) \text{M}\Pi$, в котором каждое бесконечное подмножество имеет предельную точку. Доказать, что пространство (X, ρ) компактно.
 - 13.5. Установить справедливость следующих утверждений;
- (a) если пространство (X, ρ) компактно, то существуют такие точки $a,b \in X$, что $\rho(a,b) = d(X)$;
- (б) если для всякой пары непересекающихся замкнутых множеств A и B пространства (X,ρ) выполняется неравенство $\rho(A,B)>0$, то пространство (X,ρ) компактно.

§14. Компактные и предкомпактные множества

Для понятий, которые кажутся близкими к чувственной интуиции, соответствующие математические объекты, в сущности, очень отличаются от того, что мы о них думаем.

Ж. Дьедонне

Множество $M \subset X$ называется компактным в пространстве (X, ρ) , если подпространство (M, ρ_M) — компактное МП.

Теорема 14.1. Для компактности множества $M\subset X$ в пространстве (X,ρ) необходимо и достаточно, чтобы каждое покрытие множества M открытыми в (X,ρ) множествами содержало конечное подпокрытие.

◀ Н е о б х о д и м о с т ь. Пусть M — компактное множество в (X, ρ) и $\{U_s: s \in S\}$ — произвольное его покрытие открытыми в (X, ρ) множествами, т. е. $M \subset \cup \{U_s: s \in S\}$. Положим $V_s = M \cap U_s$ для каждого $s \in S$. В силу теоремы 5.1, имеем, что $\{V_s: s \in S\}$ — открытое покрытие множествами из (M, ρ_M) . Из компактности (M, ρ_M) получаем, что найдется конечное подпокрытие $\{V_{s_1}, \ldots, V_{s_n}\} \subset \{V_s: s \in S\}$, а тогда система $\{U_{s_1}, \ldots, U_{s_n}\}$ будет служить конечным подпокрытием исходного покрытия $\{U_s: s \in S\}$.

Д о с т а т о ч н о с т ь. Пусть выполнено условие теоремы и $\{V_s\colon s\in S\}$ — произвольное открытое покрытие пространства (M,ρ_M) . Из теоремы 5.1 имеем, что для каждого V_s найдется открытое множество U_s в (X,ρ) , такое, что $V_s=M\cap U_s$. Ясно, что $\{U_s\colon s\in S\}$ образует покрытие пространства (M,ρ_M) открытыми в (X,ρ) множествами. По условию, существует конечное подпокрытие $\{U_{s_1},\ldots,U_{s_n}\}$. Тогда $\{V_{s_1},\ldots,V_{s_n}\}$ — конечное подпокрытия $\{V_s\colon s\in S\}$, поэтому пространство (M,ρ_M) — компактно. \blacktriangleright

Предложение 14.1. Пусть $M \subset A \subset X$. Множество M компактно в пространстве (X, ρ) в том и только том случае, когда оно компактно в подпространстве (A, ρ_A) . \blacktriangleright

З а м е ч а н и е 14.1. Из предложения 14.1 имеем, что свойство множества быть компактным не зависит от пространства, в которое оно положено.

Предложение 14.2. (a) Пусть $\{F_1, F_2, \ldots, F_n\}$ — семейство замкнутых множеств в пространстве (X, ρ) . Множество $F = \bigcup_{k=1}^n F_k$ компактно в пространстве (X, ρ) тогда и только тогда, когда все множества F_k компактны.

- (б) Любое компактное множество в ПМП замкнуто.
- (в) В компактном пространстве всякое замкнутое множество компактно.
- **◄** (б) Пусть M компактное множество в (X, ρ) , т. е. МП (M, ρ_M) компактно. Тогда, в силу теоремы 13.1, оно полно, а из теоремы 8.1 имеем, что M замкнутое множество в (X, ρ) .
- (в) Согласно теореме 13.1, компактное МП (X,ρ) является вполне ограниченным, а тогда множество $M\subset X$ также вполне ограничено (см. предложение 12.2). С учетом замкнутости множества M, из теоремы 8.1 имсем, что $(M,\rho_M)-\Pi$ МП. Таким образом, (M,ρ_M) есть вполне ограниченное и полное МП, т. е. (M,ρ_M) компактное МП.

Теорема 14.2. Для того, чтобы множество в ПМП было компактным, необходимо и достаточно, чтобы оно было замкнутым и вполне ограниченным. ▶

Из теоремы 14.2, в частности, получаем следующее утверждение: подмножество пространства \mathbb{R}^n компактно тогда и только тогда, когда оно ограничено и замкнуто.

Предложение 14.3. Всякое непустое компактное множество в пространстве \mathbb{R} ограничено и имеет наименьший и наибольший элементы.

◄ Допустим, что M — непустое компактное множество в \mathbb{R} . Тогда в силу частного случая теоремы 14.2 имеем, что множество M ограничено, т. є. существуют $a = \inf M$, $b = \sup M$.

Из определения чисел a и b, для каждого числа $n \in \mathbb{N}$ найдутся такие точки $x_n \in M$ и $y_n \in M$, что выполняются следующие неравенства

$$a \leqslant x_n < a + \frac{1}{n}, \quad b - \frac{1}{n} < y_n \leqslant b.$$

Отсюла, при $n \to \infty$, получаем: $x_n \to a$, $y_n \to b$. Теперь, учитывая замкнутость множества M, имеем, что $a \in M$ и $b \in M$.

Множество $M\subset X$ называется npeдкомпактным (или относительно компактным) в пространстве (X,ρ) , если его замыкание \overline{M} компактно в пространстве (X,ρ) .

Свойства предкомпактных множеств в МП характеризует

Предложение 14.4. (a) Любое подмножество предкомпактного множества предкомпактно.

- (б) Предкомпактное множество вполне ограничено.
- (в) Вполне ограниченное множество в полном пространстве предкомпактно.
 - (г) Объединение двух предкомпактных множеств предкомпактно.
- \blacktriangleleft (a) Пусть $A\subset M\subset X$, где множество M предкомпактно. Тогда множество \overline{A} замкнуто в компактном пространстве $(\overline{M},\rho_{\overline{M}})$. Отсюда, с учетом предложения 14.2(в), заключаем, что оно компактно в $(\overline{M},\rho_{\overline{M}})$, а в силу предложения 14.1(б), оно будет компактным в (X,ρ) . Значит, множество A предкомпактно в (X,ρ) .
- (б) Если множество M предкомпактно в (X, ρ) , то из компактности подпространства $(\overline{M}, \rho_{\overline{M}})$, в силу теоремы 13.1, получаем, что $(\overline{M}, \rho_{\overline{M}})$ вполне ограничено, а тогда M как подмножество вполне ограниченного пространства (см. предложение 12.2(a)) также вполне ограничено.
- (в) Пусть множество A вполне ограничено в ПМП (X,ρ) . Тогда (в силу теоремы 8.1) $(\overline{A},\rho_{\bar{A}})$ есть ПМП, а из предложения 12.2(б) заключаем, что пространство $(\overline{A},\rho_{\bar{A}})$ вполне ограничено. Таким образом, согласно лемме 13.1, имеем, что множество A предкомпактно.
 - (г) Утверждение вытекает из предложения 14.2(а). ▶

Теорема 14.3 (критерий Хаусдорфа). Подмножество M полного пространства (X,ρ) предкомпактно тогда и только тогда, когда оно вполне ограничено (или другими словами: для предкомпактности подмножества M полного пространства (X,ρ) необходимо и достаточно, чтобы при любом $\varepsilon>0$ существовала конечная. ε -сеть для множества M в (X,ρ)). \blacktriangleright

Грубо говоря, критерий Хаусдорфа о предкомпактности подмножества ПМП устанавливает, что предкомпактное множество можно представлять как «приближенно конечномерное» множество в том смысле, что для всякого $\varepsilon>0$ имеется конечное множество точек x_1,\ldots,x_n , такое, что каждая точка M лежит не дальше чем на ε от одной точки x_i .

Аналогом теоремы Вейерштрасса о наибольшем и наименьшем значениях непрерывной функции на отрезке [a,b] множества \mathbb{R} (см., например, [20], т. 1, стр. 193) является следующая

Теорема 14.4. Если $f:(X,\rho)\to\mathbb{R}$ — непрерывная действительная функция, определенная на компактном множестве $M\subset X$ МП (X,ρ) , то она ограничена на M и принимает на нем наибольшее и наименьшее значения, т. е. множество f(M) ограничено в пространстве \mathbb{R} и существуют две точки $a,b\in M$, такие, что

$$f(a) = \min_{x \in M} f(x), \ f(b) = \max_{x \in M} f(x).$$

 \blacktriangleleft Из теорсмы 13.2(a) следует, что множество f(M) компактно в пространстве \mathbb{R} , а тогда, согласно предложению 14.3, множество f(M) имеет наименьший и наибольший элементы.

Пусть $p=\min_{x\in M}f(x),\ q=\max_{x\in M}f(x)$, и пусть $a\in M$ и $b\in M$ таковы, что $f(a)=p,\ f(b)=q.$ Так как для каждой точки $x\in M$ справедливо включение $f(x)\in f(M)$, то

$$f(a) \leqslant p \leqslant f(x) \leqslant q \leqslant f(b)$$
.

Отсюда видно, что f является ограниченной функцией и в точке a принимает наименьшее значение, а в точке b — наибольшее значение на множестве M. \blacktriangleright

Следствие 14.1. Если f — заданная на компактном подмножестве K пространства (X, ρ) непрерывная и положительная функция, то существует число c > 0, такое, что $f(x) \geqslant c$ для всех $x \in K$.

◀ Так как f(x)>0 для любого $x\in K$ (по условию), то, в силу теоремы 14.4, найдется точка $a\in K$, в которой $f(a)=\inf_{x\in K}f(x)$. Следовательно, $f(x)\geqslant f(a)=c>0$ при любом $x\in K$. ▶

Задачи и упражнения

- 14.1. Доказать следующие утверждения:
- (а) объединение конечного числа компактных множеств компактно (в частности, множество, состоящее из конечного числа точек, компактно);
 - (б) пересечение любой совокупности компактных множеств компактно.
- **14.2.** (а) Доказать, что любое неограниченное множество $A\subset X$ пространства (X,ρ) не компактно.

§15. Критерии предкомпактности в конкретных пространствах

Частное вечно подчиняется общему, общее же все время подлаживается к частному.

И. Гете

В математическом анализе очень часто встречается задача о предкомпактности того или иного множества, рассматриваемого в некотором заданном МП. Поэтому большой интерес представляют легко применимые критерии предкомпактности множеств в некоторых пространствах, позволяющие узнавать такие множества. Это позволяет также сделать более прозрачным важное понятие компактности.

Семейство отображений $\mathscr{F} = \{f: (X, \rho) \to (Y, \sigma)\}$ называется равномерно ограниченным на множестве X, ссли множество

$$V = \{ y \in Y : \exists f \in \mathscr{F}, \exists x \in X, y = f(x) \}$$

значений функций семейства ${\mathscr F}$ ограничено в (Y,σ) .

Для семейства $\mathscr F$ числовых функций $f:(X,\rho)\to\mathbb R$ это означает существование такого числа $c\in\mathbb R$, что для всех $f\in F$ и всех $x\in X$ выполняется неравенство $|f(x)|\leqslant c$.

Семейство отображений $\mathscr{F}=\{f:(X,\rho)\to (Y,\sigma)\}$ называется равностепенно непрерывным на множестве X, если для любого $\varepsilon>0$ существует $\delta>0$, такое, что для всех $f\in\mathscr{F}$ и всех точек $x_1,x_2\in X$, для которых $\rho(x_1,x_2)<\delta$, выполняется неравенство $\sigma(f(x_1),f(x_2))<\varepsilon$.

Ясно, что каждое отображение f, входящее в состав равностепенно непрерывного семейства \mathscr{F} , равномерно непрерывно.

С помощью равностепенной непрерывности и равномерной ограниченности устанавливается критерий предкомпактности множества в пространстве C[a,b], известный как

Теорема Арцела – **Асколи.** Для того чтобы множество $M \subset C[a,b]$ было предкомпактно в пространстве C[a,b], необходимо и достаточно,

чтобы множество M было равномерно ограничено и равностепенно непрерывно.

 \blacktriangleleft Н е о б х о д и м о с т ь. Пусть множество M предкомпактно в пространстве C[a,b]. Тогда, в силу теоремы 14.3, оно вполне ограничено, а значит, множество M равномерно ограничено.

Покажем, что множество M равностепенно непрерывно. Согласно вполне ограниченности M для данного $\varepsilon>0$ существует конечная $(\varepsilon/3)$ -сеть $\{f_1,f_2,\ldots,f_n\}\subset M$. Так как функции $f_k\in C[a,b],\ k=\overline{1,n},$ то они равномерно непрерывны. Следовательно, для каждой функции f_k найдется такое $\delta_k>0$, чтобы

$$|f_k(x_1) - f_k(x_2)| < \frac{\varepsilon}{3},\tag{15.1}$$

для всех $x_1, x_2 \in [a, b]$, для которых $|x_1 - x_2| < \delta_k$.

Непосредственно из определения $(\varepsilon/3)$ -сети, для любой функции $f\in M$ существует функция f_k из множества $\{f_1,f_2,\ldots,f_n\}$, такая, что

$$\rho(f, f_k) = \max_{x \in [a, b]} |f(x) - f_k(x)| < \frac{\varepsilon}{3}.$$

$$(15.2)$$

Поэтому, если $\delta = \min\{\delta_k: k=1,\ldots,n\}$ и $|x_1-x_2|<\delta$, то для любой функции $f\in M$ из неравенств (15.1) и (15.2) имеем

$$\begin{split} |f(x_1) - f(x_2)| &\leq |f(x_1) - f_k(x_1)| + |f_k(x_1) - f_k(x_2)| + \\ &+ |f(x_2) - f_k(x_2)| \leq \max_{x \in [a,b]} |f(x) - f_k(x)| + |f_k(x_1) - f_k(x_2)| + \\ &+ \max_{x \in [a,b]} |f(x) - f_k(x)| < 2\rho(f,f_k) + \frac{\varepsilon}{3} < \frac{2}{3}\varepsilon + \frac{\varepsilon}{3} = \varepsilon, \end{split}$$

а это означает, что множество M равностепенно непрерывно.

Д о с т а т о ч н о с т ь. Пусть множество M равномерно ограничено и равностепенно непрерывно. C[a,b] — ПМП, поэтому для того, чтобы доказать предкомпактность множества M, достаточно установить, что оно вполне ограничено (теорема 14.3), т. е. для множества M в пространстве C[a,b] при любом $\varepsilon>0$ существует конечная ε -сеть. Для произвольной функции $f\in M$ и фиксированного $\varepsilon>0$ выбрано $\delta>0$ так, чтобы для любых точек $x_1,x_2\in [a,b]$, для которых $|x_1-x_2|<\delta$, выполнялось неравенство

$$|f(x_1) - f(x_2)| < \frac{\varepsilon}{5}.$$

Из равномерной ограниченности множества M имсем, что существует c>0, такое, что $|f(x)|\leqslant c$ для любого $f\in M$ и для всех $x\in [a,b].$ Возьмем точки $\{x_i:i=0,1,\ldots,n\}$ отрезка [a,b] и $\{y_j:j=0,1,\ldots,m\}$ отрезка $\{-c,c\}$, такие, что

$$a = x_0 < x_1 < \ldots < x_n = b, \ x_i - x_{i-1} < \delta, \ i = \overline{1, n};$$

 $-c = y_0 < y_1 < \ldots < y_m = c, \ y_j - y_{j-1} < \frac{\varepsilon}{5}, \ j = \overline{1, m}.$

Через точки $(x_i,0)$, $i=0,1,\ldots,n$, проведем прямые, параллельные оси Oy, а через точки $(0,y_j)$, $j=0,1,\ldots,m$, прямые, параллельные оси Ox. В результате этого получим разбиение τ прямоугольника

$$\{(x,y): a \leqslant x \leqslant b, -c \leqslant y \leqslant c\},\$$

в котором лежат графики функций $f\in M$, на прямоугольники с длинами сторон, параллельными оси Ox, меньшими δ , и параллельными оси Oy, меньшими $\frac{\varepsilon}{\kappa}$.

Рассмотрим множество A всех непрерывных на [a,b] функций, графиками которых являются ломаные, вершины которых лежат в вершинах (x_i,y_j) прямоугольников разбиения τ . Множество A конечно, так как конечным является множество всех вершин (x_i,y_j) , где $i=0,1,\ldots,n,\ j=0,1,\ldots,m$.

Докажем, что A является ε -сетью для M. Выберем произвольную $f\in M$, и для каждого $x_i,\ i=0,1,\dots,n$, обозначим через (x_i,y_i) ближайшую к точке $(x_i,f(x_i))$ точку вида (x_i,y_j) , лежащую на прямой $x=x_i$, тогда $|f(x_i)-y_{j_i}|<\frac{\varepsilon}{5}$. Сопоставим f функцию $f_0\in A$, графиком которой является ломаная, проходящая через вершины $(x_0,y_{j_0}),\ (x_1,y_{j_1}),\dots,\ (x_n,y_{j_n}),\ \text{т. e. } f_0(x_i)=y_{j_1}$, причем

$$|f_0(x_i) - f_0(x_{i-1})| \leq |f_0(x_i) - f(x_i)| + |f(x_i) - f(x_{i-1})| + |f(x_{i-1}) - f_0(x_{i-1})| < \frac{\varepsilon}{5} + \frac{\varepsilon}{5} + \frac{\varepsilon}{5} = \frac{3\varepsilon}{5}.$$

В силу линейности функции f_0 на отрезке $[x_{i-1},x_i]$ для любой точки $x\in [x_{i-1},x_i]$ имеем

$$|f_0(x) - f_0(x_{i-1})| \le |f_0(x_i) - f_0(x_{i-1})| < \frac{3\varepsilon}{5}.$$

Для каждой точки $x \in [a, b]$, найдется содержащий ее отрезок $[x_{i-1}, x_i]$, а для произвольной точки этого отрезка будем иметь

$$\begin{split} |f(x) - f_0(x)| \leqslant |f(x) - f(x_{i-1})| + |f(x_{i-1}) - f_0(x_{i-1})| + \\ + |f_0(x_{i-1}) - f_0(x)| < \frac{\varepsilon}{5} + \frac{\varepsilon}{5} + \frac{3}{5}\varepsilon = \varepsilon. \end{split}$$

Отсюда и из определения чебышевской метрики ρ в пространстве C[a,b] (см. пример 2.9) получаем, что $\rho(f,f_0)<\varepsilon$, т.е. множество A является конечной ε -сетью для M, \blacktriangleright

3 а м е ч а н и е 15.1. Теорема Арцела — Асколи допускает обобщение на случай отображения компактов, а именно: если \mathscr{F} — семейство отображений $f:(X,\rho)\to (Y,\sigma)$, определенных на компактном МП (X,ρ) со значениями в ПМП (Y,σ) , то для предкомпактности \mathscr{F} в пространстве C(X,Y) необходимо и достаточно, чтобы \mathscr{F} было вполне ограниченным и равномерно непрерывным (см., например, [12], ч. II, стр. 470).

Теорема 15.1. Миожество $M \subset \mathbb{R}^n$ предкомпактно в пространстве \mathbb{R}^n тогда и только тогда, когда оно ограничено.

◀ Необходимость очевидна, так как всякое вполне ограниченное множество ограничено.

Обратно, если множество M ограничено в пространстве \mathbb{R}^n , то его можно поместить внутрь некоторого достаточно большого куба. Если разбить такой куб на кубики с ребром $\frac{2\varepsilon}{\sqrt{n}}$, то вершины этих кубиков будут образовывать конечную ε -сеть в исходном кубе и, значит, в любом множестве, лежащем внутри этого куба. \blacktriangleright

Теорема 15.2. Множество $M \subset l_p \ (1 \leqslant p < \infty)$ предкомпактно в пространстве l_p тогда и только тогда, когда выполнены следующие условия:

(a) существует такое число c > 0, что

$$\sum_{i=1}^{\infty} |x_i|^p \leqslant c$$

для любого $x \in M$, $x = (x_i)$ (т. е. множество M ограничено);

(б) для любого $\varepsilon > 0$ существует такой номер $n_0 = n_0(\varepsilon)$, что

$$\sum_{i=n_0+1}^{\infty} |x_i|^p < \varepsilon^p$$

для всех $x \in M$, $x = (x_i)$.

 \blacktriangleleft Пусть M предкомпактно, тогда, в силу теоремы 14.3, множество M вполне ограничено, а значит, M ограничено и условие (а) выполнено.

Докажем справедливость условия (б). Для точки $x\in M, x=(x_n),$ положим

$$S_n(x) = (x_1, \ldots, x_n, 0, \ldots), R_n(x) = (0, \ldots, 0, x_{n+1}, \ldots).$$

Отсюда и из определения пространства l_p (см. пример 2.6) имеем

$$x = S_n(x) + R_n(x),$$

$$\rho(R_n(x),0) = \left(\sum_{i=n+1}^{\infty} |x_i|^p\right)^{\frac{1}{p}} = \rho(x, S_n(x)).$$

Ясно, что $R_n(x) o 0$ при $n o \infty$. Для любых $x,y \in l_p$ получаем

$$\rho(S_n(x), S_n(y)) = \left(\sum_{k=1}^n |x_k - y_k|^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{k=1}^\infty |x_k - y_k|^p\right)^{\frac{1}{p}} = \rho(x, y).$$

Пусть $\varepsilon>0$ — произвольно, и выберем $\frac{\varepsilon}{3}$ -сеть $\{z_1,z_2,\ldots,z_n\}\subset M$ для множества M. Тогда для любой точки $x\in M$ найдется такая z_{\imath_0} , что $\rho(x,z_{\imath_0})<\frac{\varepsilon}{2}$. Кроме того,

$$\begin{split} \rho(R_n(x),0) &= \rho(x,S_n(x)) \leqslant \rho(x,z_{i_0}) + \rho(z_{i_0},S_n(x)) \leqslant \\ &\leqslant \rho(x,z_{i_0}) + \rho(z_{i_0},S_n(z_{i_0})) + \rho(S_n(z_{i_0}),S_n(x)) < \\ &< 2\rho(x,z_{i_0}) + \rho(R_n(z_{i_0}),0) < \frac{2}{3}\varepsilon + \rho(R_n(z_{i_0}),0). \end{split}$$

Поскольку $\rho(R_n(z_{i_0}),0) \to 0$, $n \to \infty$, то найдется такой номер n_0 , что $\rho(R_n(z_{i_0}),0) < \frac{\varepsilon}{3}$ при $n > n_0$ и всех $i_0 = \overline{1,n}$. Следовательно, справедливо неравенство $\rho(R_n(x),0) < \varepsilon$, для всех $x \in M$, т.е. выполнено условие (б).

Обратно, пусть выполнены условия (а) и (б). Докажем, что для заданного $\varepsilon>0$ множество M имеет конечную ε -ссть. Выберем номер n_0 так, чтобы $\rho(R_{n_0}(x),0)<\frac{\varepsilon}{2}$ для всех $x\in M$. Рассмотрим конечное множество

$$M_1=\{y\in l_p\colon y=(y_1,\ldots,y_{n_0},0,\ldots),\; y_i=k\delta,\; \delta=\frac{\varepsilon}{2n_0^{\frac{1}{p}}},\; k\in\mathbb{Z},\; |k|\leqslant\frac{c}{\delta}\}.$$

Для точки $x\in M$ выберем $y=([rac{x_1}{\delta}]\delta,\ldots,[rac{x_{n_0}}{\delta}]\delta,0,\ldots)\in M_1$, где [x] целая часть числа х. Тогла

$$\rho(x,y) = \left(\sum_{k=1}^{n_0} \left| \left[\frac{x_k}{\delta} \right] \delta - x_k \right|^p + \sum_{k=n_0+1}^{\infty} |x_k|^p \right)^{1/p} \leq \left[n_0 \delta^p + \left(\frac{\varepsilon}{2} \right)^p \right]^{\frac{1}{p}} = \varepsilon.$$

Отсюда, по теореме 14.3, с учетом полноты пространства l_p , получаем предкомпактность множества M.
ightharpoonup

Задачи и упражнения

- **15.1.** Доказать предкомпактность в пространстве C[0,1] следующих множеств:

 - (a) $\{x\in C^2[0,1]:|x''(t)|\leqslant 1,\ x(0)=x(1)=0\};$ (б) $\{x\in C^1[0,1]:|x'(t)|\leqslant 1,\ x(0)=a\},\ a$ некоторое число;

(B)
$$\{x \in C^1[0,1] : x(0) = 0, \int_0^1 |x'(t)|^2 dt \le 1\};$$

(r)
$$\{x \in C^2[0,1] : x(0) = 0, \ x'(0) = 0, \ \int_0^1 |x''(t)|^2 dt \leqslant 1\};$$

(д)
$$\{x: x(\tau)=\int\limits_0^\tau \varphi(t)dt, \ \varphi\in C[0,1]\}.$$

- **15.2.** В пространстве C[a,b] рассмотрим следующие семейства функций
 - (a) t^n , $n \in \mathbb{N}$: (6) $\sin nt$, $n \in \mathbb{N}$:
 - (B) $\sin(n+t)$, $n \in \mathbb{N}$; (r) $e^{t-\alpha}$, $\alpha \in \mathbb{R}$, $\alpha > 0$

Какие из них предкомпактны в пространстве C[a, b] и при каких a и b?

- 15.3. Какие из нижеперечисленных множеств предкомпактны в пространстве C[0, 1]:
 - (a) $\{x \in C[0,1] : |x(t)| \le B\}$.
 - (6) $\{x \in C^1[0,1] : |x(t)| \leq B_0, |x'(t)| \leq B_1\},$
 - (B) $\{x \in C^2[0,1] : |x'(t)| \leq B_1, |x''(t)| \leq B_2\},\$
 - (r) $\{x \in C[0,1] : |x(t)| \le B, |x(t_1) x(t_2)| \le L|t_1 t_2|\}$
 - (A) $\{x \in C^1[0,1] : |x(t)| \leq B, |x'(t_1) x'(t_2)| \leq L|t_1 t_2|\},$

где B, B_0, B_1, B_2, L — некоторые постоянные? Указать, какие из этих множеств компактны.