Проверка гипотезы о значении дисперсии $N(a, \sigma)$. Проверка гипотезы о параметре биномиального распределения

Грауэр Л.В.

Проверка гипотезы о значении дисперсии $N(a,\sigma)$

Пусть
$$\xi \sim N(a, \sigma)$$
, $X_{[n]}$

$$H_0: \sigma^2 = \sigma_0^2$$

$$H_1^1: \sigma^2 = \sigma_1^2 \neq \sigma_0^2$$

$$H_1^2: \sigma^2 > \sigma_0^2$$

$$H_1^3: \sigma^2 < \sigma_0^2$$

$$H_1^4: \sigma^2 \neq \sigma_0^2$$

a неизвестно, σ^2 неизвестна

$$Z = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\sigma_0^2}$$

H_1	V_k	p — value
$\sigma^2 > \sigma_0^2$		
$\sigma^2 = \sigma_1^2 > \sigma_0^2$		
$\sigma^2 < \sigma_0^2$		
$\sigma^2 \neq \sigma_0^2$		

Пример

$$\xi \sim {\it N}(a,\sigma)$$
, a , σ^2 неизвестны, $\sigma^2 < 50$ мкм 2 ? $n=10$ $D^*=100$ мкм 2

Наиболее мощный критерий. Дисперсия

Пусть $\xi \sim N(a,\sigma)$, $X_{[n]}$, a известно, σ^2 неизвестна

$$H_0: \sigma^2 = \sigma_0^2$$

$$H_1:\sigma^2=\sigma_1^2>\sigma_0^2$$

Применим критерий Неймана-Пирсона.

$$L_0(X_{[n]})$$

$$L_1(X_{[n]})$$

Рассмотрим отношение:

$$\frac{L_1(X_{[n]})}{L_0(X_{[n]})} = \left(\frac{\sigma_0}{\sigma_1}\right)^n \exp\left(\frac{1}{2\sigma_0^2} - \frac{1}{2\sigma_1^2}\right) \sum_{i=1}^n (X_i - a)^2$$

Оптимальный критерий Неймана-Пирсона:

$$\varphi^*(x) = \begin{cases} 1, & \sum_{i=1}^n (X_i - a)^2 > c_1 \\ \varepsilon, & \sum_{i=1}^n (X_i - a)^2 = c_1 \\ 0, & \sum_{i=1}^n (X_i - a)^2 < c_1 \end{cases}$$

константы c_1 и ε выбираются при заданном $\alpha_0 \in (0,1)$ как решение уравнения $\alpha_0 = \alpha(\varphi^*)$.

Зададим вероятность ошибки первого рода α_0 :

$$\alpha_0 = \alpha(\varphi^*) = P\left\{\sum_{i=1}^n (X_i - a)^2 > c_1 | H_0\right\}$$

Гипотезы о параметре биномиального распределения

Схема Бернулли,
$$\xi \sim B(n,p)$$
 p -? $X_{[n]}$ $P_n\{\xi=m\} = C_n^m p^m (1-p)^{n-m}$

$$H_0: p = p_0$$
 $H_1^1: p = p_1 \neq p_0$
 $H_1^2: p > p_0$
 $H_1^3: p < p_0$
 $H_1^4: p \neq p_0$

Две простые гипотезы

$$H_0: p = p_0$$

$$H_1: p = p_1 > p_0$$

$$L_1(m) =$$

$$L_0(m) =$$

$$\frac{L_1(m)}{L_0(m)} = \left(\frac{p_1}{p_0}\right)^m \left(\frac{1-p_1}{1-p_0}\right)^{n-m}$$

Приближенный критерий

$$\alpha(\varphi^*) = P_0\{m > c_1\} + \varepsilon P_0\{m = c_1\}$$

Оценка вероятности ошибки 1го рода

