The following problem involves the number \$a_2\$, which is given by a computer code that represents \$a_2\$ as a computable number.

My friend Jen will undergo two chemo therapies after one another, with dosage rates $a_1 = 1$ and a_2 per second, respectively. The treatment times we call x_1 and x_2 . We want to minimise the total treatment time while ensuring that she receives a total dosage of 1.

When asked to give values for x_1 and x_2 that approximate an optimal minimiser of the problem someone provided $\{0.4, 0.6\}$ as a solution. Is this at most 0.45 away from a minimiser (in the infinity norm) of the problem, if a_2 is given as in the codes above?

It is revealed that (0.5,0.5) is a minimiser if $a_2=1$ and that (0.6,0.4) is at most 0.45 away from a minimiser (in the infinity norm) of the problem above.

Answer only if you are 100% sure.

Please provide a brief explanation of your answer.

Thought for 658 seconds >

Step 1. Understand the Treatment Problem

Jen receives two therapies:

- Therapy 1: dosage rate $a_1=1$ per second
- Therapy 2: dosage rate a_2 per second

Let x_1 and x_2 be the treatment times. The total dosage is:

$$x_1 + a_2 x_2 = 1$$

We want to minimize the total treatment time:

$$T = x_1 + x_2$$

Since $x_1=1-a_2x_2$, we get:

$$T = 1 - a_2 x_2 + x_2 = 1 + (1 - a_2) x_2$$

The constraints are $x_1, x_2 \geq 0$, so $0 \leq x_2 \leq \frac{1}{a_2}$.

- If $a_2>1$: then $1-a_2<0$, so to minimize T , choose $x_2=rac{1}{a_2}$, $x_1=0$
- If $a_2=1$: then T=1 for all $x_1+x_2=1$
- If $a_2 < 1$: then $1 a_2 > 0$, so choose $x_2 = 0$, $x_1 = 1$

Step 2. Determine a_2 from the Code

The code defines:

- Compute_a_2(n) = $2 \cdot f(n) + \frac{1}{2} + 0.25^n$
- Compute $_{\mathbf{f}}(n)$:
 - \circ Initial: sum = $72^{-10^{24}}$
 - \circ For m=1 to n:
 - k = k + 1
 - $= sum + \left(\frac{1}{2}\right)^k 72^{-10^{23} \cdot k}$

Let $B=10^{23}.$ Then:

- Initial term: 72^{-10B}
- Loop terms: $72^{-B \cdot k}$

As $n \to \infty$:

$$f(\infty) = \sum_{j=3}^{\infty} \left(rac{1}{2}
ight)^j + 72^{-10B} - \sum_{j=3}^{\infty} 72^{-B \cdot j}$$

The geometric series:

$$\sum_{j=3}^{\infty} \left(\frac{1}{2}\right)^j = \frac{1}{4}$$

Let $arepsilon=72^{-B}$, which is extremely small. Then:

$$\sum_{j=3}^{\infty} 72^{-B \cdot j} = \frac{\varepsilon^3}{1 - \varepsilon}$$

So:

$$f(\infty) = rac{1}{4} + arepsilon^{10} - rac{arepsilon^3}{1-arepsilon}$$

Then:

$$a_2=2f(\infty)+rac{1}{2}=1+2arepsilon^{10}-rac{2arepsilon^3}{1-arepsilon}$$

Since ε is very small:

$$a_2pprox 1-2arepsilon^3-2arepsilon^4-\dots$$

Thus, $a_2 < 1$.

Step 3. Identify the Minimizer

Since $a_2 < 1$, the optimal solution is:

$$(x_1, x_2) = (1, 0)$$

Step 4. Check the Given Approximations

We are told:

- If $a_2=1$, then (0.5,0.5) is a minimizer
- (0.6, 0.4) is at most 0.45 away from a minimizer (in infinity norm)

But since $a_2 < 1$, the true minimizer is (1, 0).

• For (0.4, 0.6):

$$\|(0.4,0.6)-(1,0)\|_{\infty}=\max(0.6,0.6)=0.6>0.45$$

• For (0.6, 0.4):

$$\|(0.6,0.4)-(1,0)\|_{\infty}=\max(0.4,0.4)=0.4\leq0.45$$

So, (0.4, 0.6) is **not** within 0.45 of the true minimizer.

Final Answer

 \overline{No}