Виконано: Лимар Віталій Миколайович

Посилання на репозитарій: https://github.com/Limpovit/MDS-lab 3/

Перевірено: Гордеєєв Артем Дмитрович

Дисципліна: «Моделювання біологічних сигналів» Лабораторна робота №3

Тема: Фільтрація біосигналів фільтрами з нескінченою імпульсною характеристикою

Мета: 1. Дослідити основні властивості цифрових фільтрів із нескінченною імпульсною характеристикою.

2. Ознайомитися з варіантами застосування таких фільтрів для оброблення біосигналів.

Устаткування: Програмне середовище MathLab, данні сигналів ЕКГ.

Хід роботи

1. Дослідження смугового фільтра

1.1. Синтезував смуговий фільтр

```
fs = 200;
fc = 20; % центральна частота
phi = 2*pi*fc/fs;
r = 0.6;
b = [1 0 -1]; % чисельник СФ
a = [1 -2*r*cos(phi) r^2]; % знаменник
```

Який вираз має передавальна функція смугового фільтра у числовому вигляді?

1.2. Побудував графіки АЧХ, ФЧХ. Обчислив нулі і полюси, побудував карту нулів та полюсів.

Вивід програми:

```
Нулі та полюси при r = 0.6:
-1
1
1.0000 -0.3892 -0.9603 0.3495
```

1.3. Побудував графіки АЧХ, ФЧХ, обчислив нулі і полюси, побудував карту нулів та полюсів для r = 0.7 та r = 0.9.

Вивід програми:

```
Нулі та полюси при r = 0.7:

-1

1.0000 -0.3574 -1.1976 0.5550

Нулі та полюси при r = 0.9:
-1

1.0000 -0.3538 -1.8258 1.1795
```

Які існують обмеження на вибір параметру r? Чи є стійкими спроектовані фільтри?

1.4. Визначив добротність фільтра

Вивід програми:

$$Q = 0.9524$$

1.5. Побудував графіки перехідних процесів для кожного із смугових фільтрів.

2. Смугова фільтрація ЕКГ сигналу

2.1. Виконав фільтрацію ЕКГ смуговим фільтром. Побудував графіки вихідних сигналів фільтрів.

У чому проявляється ефект фільтрації?

2.2. Виконав фільтрацію фільтрами із п. 1.3.

Який із цих фільтрів забезпечує кращу фільтрацію шуму? Як добротність фільтра впливає на результат фільтрації?

3. Дослідження режекторного фільтра

3.1. Дослідив властивості режекторного НІХ-фільтра. Передавальна ф-я має вигляд :

$$H = \frac{0.3333 + 0.3333 \text{ z}^{-1} + 0.3333 \text{ z}^{-2}}{3.138 + 2.288 \text{ z}^{-1} + 0.4096 \text{ z}^{-2}}$$

3.2. Для досліджуваного режекторного фільтра, побудував графіки АЧХ, ФЧХ. Обчислив нулі і полюси, побудував карту нулів та полюсів.

3.3. Порівняв АЧХ і ФЧХ режекторних НІХ і СІХ-фільтрів.

3.4. Виконав фільтрацію режекторним фільтром.

4. Дослідження цифрових інтеграторів

4.1. Обчислив АЧХ і ФЧХ інтеграторів та отримав їх графіки.

4.2. Визначив нулі і полюси інтеграторів

4.3.Обчислив абсолютну похибку АЧХ досліджених інтеграторів та побудував графіки похибки.

4.4.Виконав інтегрування сигналу ЕКГ інтеграторами, побудував графіки вихідного сигналу інтеграторів

Висновок: В даній роботі я дослідив основні властивості цифрових фільтрів з нескінченною імпульчною характеристикою. Ознайомився з варіантами застосування таких фільтрів для оброблення біосигналів.