FCC PART 15.231 MEASUREMENT AND TEST REPORT FOR

QED FACTORY, INC.

631 N LARCHMONT U-1, LOS ANGELES, CALIFORNIA 90004, USA

FCC ID: ZMPWMA1104

Report Concerns:	Equipment Type:		
Original Report	WIRELESS MODULE		
Model:	WMA1104		
Report No.:	STR11058035I		
Test Date:	2011-05-06 to 2011-05-25		
Issue Date:	2011-06-10		
Tested By:	Jason Chen / Engineer		
Reviewed By:	Jason Chen / Engineer Lahm Peng / EMC Manager Jandy so / PSQ Manager		
Approved & Authorized By:	Jandy so / PSQ Manager		
Prepared By:			
SEM.Test Compliance Service Co., Ltd 3/F, Jinbao Commerce Building, Xin'an Fanshen Road, Bao'an District, Shenzhen, P.R.C. (518101)			

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by SEM.Test Compliance Service Co., Ltd.

Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.2 Test Standards	
1.3 TEST METHODOLOGY	
1.4 TEST FACILITY	
1.5 EUT Exercise Software	4 1
1.7 EUT CABLE LIST AND DETAILS	
2. SUMMARY OF TEST RESULTS	
3. §15.203 ANTENNA REQUIREMENT	
3.1 STANDARD APPLICABLE	
3.2 TEST RESULT	
4. §15.207 (A) CONDUCTED EMISSION	7
4.1 Measurement Uncertainty	
4.2 TEST EQUIPMENT LIST AND DETAILS	
4.3 Test Procedure	
4.4 BASIC TEST SETUP BLOCK DIAGRAM	
4.6 TEST RECEIVER SETUP	
4.7 SUMMARY OF TEST RESULTS/PLOTS	
4.8 CONDUCTED EMISSIONS TEST DATA	8
5. §15.205, §15.209, §15.231 (B) RADIATED EMISSION	
5.1 Measurement Uncertainty	
5.1 MEASUREMENT UNCERTAINTY	
5.3 TEST EQUIPMENT LIST AND DETAILS	
5.4 Test Procedure	
5.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	
5.6 Environmental Conditions	
5.7 SUMMARY OF TEST RESULTS/PLOTS	13
6. §15.231(C) 20DB BANDWIDTH TESTING	16
6.1 STANDARD APPLICABLE	16
6.2 TEST EQUIPMENT LIST AND DETAILS	16
6.3 Test Procedure	
6.4 ENVIRONMENTAL CONDITIONS	
6.5 SUMMARY OF TEST RESULTS/PLOTS	
7. §15.231(A) DEACTIVATION TESTING	18
7.1 STANDARD APPLICABLE	
7.2 TEST EQUIPMENT LIST AND DETAILS	
7.3 TEST PROCEDURE	
7.4 ENVIRONMENTAL CONDITIONS	
	_
8. §15.231(B) DUTY CYCLE	
8.1 STANDARD APPLICABLE	
8.3 TEST PROCEDURE	
8.4 ENVIRONMENTAL CONDITIONS	
8 5 SUMMARY OF TEST RESULTS/PLOTS	20

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: QED FACTORY, INC.

Address of applicant: 631 N LARCHMONT U-1, LOS ANGELES, CALIFORNIA

90004, USA

Manufacturer: QED FACTORY, INC.

Address of manufacturer: 631 N LARCHMONT U-1, LOS ANGELES, CALIFORNIA

90004, USA

General Description of E.U.T

Items	Description		
EUT Description:	WIPELESS MODULE		
Trade Name:	QED		
Model No.:	WMA1104		
Rated Voltage:	USB 5V		
Frequency Range:	433.92MHz		
Antenna Type:	External Antenna		
Size:	6.9X4.5X7.3 cm		
Comment:	1		
For more information refer to the circuit diagram form and the user's manual.			

The test data is gathered from a production sample, provided by the manufacturer,

1.2 Test Standards

The following report is prepared on behalf of the QED FACTORY, INC. in accordance with FCC Part 15, Subpart C, and section 15.231, 15.203, 15.205 and 15.209 of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC Part 15, Subpart C, and section 15.231, 15.203, 15.205 and 15.209 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission/immunity, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions. The EUT was set to keep transmitting during the test.

1.4 Test Facility

• FCC – Registration No.: 994117

SEM.Test Compliance Services Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files and the Registration is 994117.

• Industry Canada (IC) Registration No.: 7673A

The 3m Semi-anechoic chamber of SEM.Test Compliance Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 7673A.

• CNAS Registration No.: L4062

Shenzhen SEM. Test Electronics Service Co., Ltd. is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L4062. All measurement facilities used to collect the measurement data are located at 3/F, Jinbao Commerce Building, Xin'an Fanshen Road, Bao'an District, Shenzhen, P.R.C (518101)

1.5 EUT Exercise Software

The EUT exercise program used during the testing was designed to exercise the system components. The test software, provided by the customer, is started while the whole system is running.

1.6 Accessories Equipment List and Details

Description	Manufacturer	Model	Serial Number
PC	DELL	DCSM1F	JX5HW2X
Display	DELL	170SC	/
Mouse	DELL	MOC5UQ	/
Keyboard	DELL	SK8115	CN-ODJ331-71616-06A-01Q4

1.7 EUT Cable List and Details

Cable Description	Length (M)	Shielded/Unshielded	With Core/Without Core	
Signal Cable	Signal Cable 0.25		Without Core	
/	/	/	/	

REPORT NO.: STR11058035I PAGE 4 OF 21 FCC PART 15.231

2. SUMMARY OF TEST RESULTS

Description of Test	Result
§15.203 Antenna Requirement	Compliant
§15.205 Restricted Band	Compliant
§15.207 Conducted Emission	Compliant
§15.209 General Requirement	Compliant
§15.231 (a) Deactivation Testing	Compliant
§15.231 (c) 20dB Band Width Testing	Compliant
§15.231 (b) Radiated Emission	Compliant

3. §15.203 ANTENNA REQUIREMENT

3.1 Standard Applicable

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has a unique antenna with a reverse screw thread antenna connector, fulfill the requirement of this section.

REPORT NO.: STR11058035I PAGE 6 OF 21 FCC PART 15.231

4. §15.207 (a) CONDUCTED EMISSION

4.1 Measurement Uncertainty

Base on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement is ± 2.88 dB.

4.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
EMI Test Receiver	Rohde & Schwarz	ESPI	101611	2010-12-20	2011-12-19
L.I.S.N	Schwarz beck	NSLK8126	8126-224	2010-12-20	2011-12-19
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100911	2010-12-20	2011-12-19

4.3 Test Procedure

The setup of EUT is according with per ANSI C63.4-2003 measurement procedure. The specification used was with the FCC Part 15.207 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

4.4 Basic Test Setup Block Diagram

4.5 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

4.6 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency	. 150 kHz
Stop Frequency	. 30 MHz
Sweep Speed	. Auto
IF Bandwidth	. 10 kHz
Quasi-Peak Adapter Bandwidth	.9 kHz
Quasi-Peak Adapter Mode	. Normal

4.7 Summary of Test Results/Plots

According to the data in section 3.8, the EUT <u>complied with the FCC Part 15.207</u> Conducted margin for a Class B device, with the *worst* margin reading of:

-15.13 $dB\mu V$ at 23.982 MHz in the Neutral mode, Average detector, 0.15-30MHz

4.8 Conducted Emissions Test Data

LINE CONDUCTED EMISSIONS			FCC PAR	кт15.207	
Frequency	Amplitude	Detector	Phase	Limit	Margin
MHz	dBμV	QP/Ave/Pk	Line/Neutral	dBμV	dB
23.982	34.86	AV	Neutral	50.00	-15.13
23.982	34.39	AV	Line	50.00	-15.60
0.266	36.13	Peak	Neutral	61.23	-25.10
0.202	36.37	Peak	Line	63.52	-27.15

Note: Emission attenuated more than 20dB is not reported.

Plot of Conducted Emissions Test Data

Conducted Disturbance
EUT: WIRELESS MODULE

M/N: WMA1104

Operating Condition: Operating

Test Specification: N

Comment: AC 120V/60Hz; USB 5V

Plot of Conducted Emissions Test Data

Conducted Disturbance
EUT: WIRELESS MODULE

M/N: WMA1104

Operating Condition: Operating

Test Specification: L

Comment: AC 120V/60Hz; USB 5V

5. §15.205, §15.209, §15.231 (b) RADIATED EMISSION

5.1 Measurement Uncertainty

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement is ± 5.10 dB.

5.2 Standard Applicable

According to §15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	\1\1,250 to 3,750	.\1\ 125 to 375
174-260	3,750	. 375
260-470	\1\3,750 to 12,500	\1\ 375 to 1,250
Above 470	12,500	1,250

^{\1\} Linear interpolations.

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.

REPORT NO.: STR11058035I PAGE 11 OF 21 FCC PART 15.231

5.3 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	R&S	FSP	836079/035	2010-12-20	2011-12-19
EMI Test Receiver	R&S	ESVB	825471/005	2010-12-20	2011-12-19
Positioning Controller	C&C	CC-C-1F	N/A	2010-12-20	2011-12-19
RF Switch	EM	EMSW18	SW060023	2010-12-20	2011-12-19
Pre-amplifier	Agilent	8447F	3113A06717	2010-12-20	2011-12-19
Pre-amplifier	Compliance Direction	PAP-0118	24002	2010-12-20	2011-12-19
Trilog Broadband Antenna	SCHWARZBECK	VULB9163	9163-333	2011-01-09	2012-01-08
Horn Antenna	ETS	3117	00086197	2011-01-09	2012-01-08

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

5.4 Test Procedure

The setup of EUT is according with per ANSI C63.4-2003 measurement procedure. The specification used was with the FCC Part 15.205 15.231(b) and FCC Part 15.209 Limit.

5.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading +Ant.Loss +Cab. Loss - Ampl.Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – FCC Part 15.231 Limit

5.6 Environmental Conditions

Temperature:	21° C
Relative Humidity:	50%
ATM Pressure:	1011 mbar

5.7 Summary of Test Results/Plots

According to the data below, the FCC Part 15.205, 15.209 and 15.231 standards, and had the worst margin of:

-4.07 dBμV at 434.065MHz in the Vertical, Peak Detector polarization, 30 MHz to 5 GHz, 3Meters

Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Plot of Radiation Emissions Test

Horizontal:

No.	Frequency	Reading	Correct	Dutycycle	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	Factor	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
				(dB)						
1	433.9200	83.50	11.93	N/A	95.43	100.83	-5.40	360	100	peak
2	433.9200	/	/	-20.00	75.43	80.83	-5.40	360	100	Ave
3	869.1302	34.95	20.32	N/A	55.27	80.83	-25.56	0	200	peak
4	869.1302	/	/	-20.00	35.27	60.83	-25.56	0	200	Ave

Above 1GHz

No.	Frequency	Reading	Corr.	Dutycycle	Result	Limit	Margin	Deg.	Height	Remark
	MHz	dBuV/m	Factor	Factor	dBuV/m	dBuV/m	dB	(°)	(cm)	
			(dB)	(dB)						
1	1302.30	27.31	26.95	N/A	54.26	74.00	-19.74	45	100	Peak
2	1736.40	27.64	27.77	N/A	55.41	74.00	-18.59	310	100	Peak
	1302.30	/	/	-15.26	39.00	54.00	-15.00	360	100	Ave
·	1736.40	/	/	-15.26	40.15	54.00	-13.85	360	100	Ave

Vertical:

No.	Frequency	Reading	Correct	Dutycycle	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	Factor	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
				(dB)						
1	433.9200	84.83	11.93	N/A	96.76	100.83	-4.07	360	100	peak
2	433.9200	/	/	-20.00	76.76	80.83	-4.07	0	100	Ave
3	869.1302	38.86	20.32	N/A	59.18	80.83	-21.65	0	200	peak
4	869.1302	/	/	-20.00	39.18	60.83	-21.65	360	200	Ave

Above 1GHz

No.	Frequency	Reading	Corr.	Dutycycle	Result	Limit	Margin	Deg.	Height	Remark
	MHz	dBuV/m	Factor	Factor	dBuV/m	dBuV/m	dB	(°)	(cm)	
			(dB)	(dB)						
1	1302.30	27.31	26.95	N/A	54.26	74.00	-19.74	45	100	Peak
2	1736.40	27.64	27.77	N/A	55.41	74.00	-18.59	310	100	Peak
	1302.30	/	/	-15.26	39.00	54.00	-15.00	360	100	Ave
	1736.40	/	/	-15.26	40.15	54.00	-13.85	360	100	Ave

Note: The EUT was tested in all three orthogonal planes and frequency rang 30MHz to the tenth harmonics. Emissions attenuated closely to the noise base are not reported.

The fundamental frequency is 433.92MHz, so the fundamental and spurious emissions radiated limit base on the the operating frequency 433.92MHz.

6. §15.231(c) 20dB BANDWIDTH TESTING

6.1 Standard Applicable

According to FCC 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

6.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	Agilent	E4402B	US41192821	2010-12-20	2011-12-19
Attenuator	ATTEN	ATS100-4-20	/	2010-12-20	2011-12-19

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

6.3 Test Procedure

With the EUT's antenna attached, the EUT's 20dB Bandwidth power was received by the test antenna, which was connected to the spectrum analyzer with the START, and STOP frequencies set to the EUT's operation band.

6.4 Environmental Conditions

Temperature:	21° C
Relative Humidity:	52%
ATM Pressure:	1011 mbar

6.5 Summary of Test Results/Plots

Frequency	20dB Bandwidth	Limit
MHz	KHz	kHz
433.92	77.31	1084

Limit=Fundamental Frequency×0.25%=433.92×0.25%=1084kHz

Test Result Pass

Refer to the attached plots.

7. §15.231(a) DEACTIVATION TESTING

7.1 Standard Applicable

According to FCC 15.231 (a)(1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

7.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	Agilent	E4402B	US41192821	2010-12-20	2011-12-19
Attenuator	ATTEN	ATS100-4-20	/	2010-12-20	2011-12-19

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

7.3 Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 433.94MHz, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.

7.4 Environmental Conditions

Temperature:	20° C
Relative Humidity:	52%
ATM Pressure:	1011 mbar

7.5 Summary of Test Results/Plots

Refer to the attached plots.

The transmission time <5s

Result: Pass

8. §15.231(b) Duty Cycle

8.1 Standard Applicable

According to FCC 15.231 (b)(2) and 15.35 (c), For pulse operation transmitter, the averaging pulsed emissions are calculated by peak value of measured emission plus duty cycle factor.

8.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	Agilent	E4402B	US41192821	2010-12-20	2011-12-19
Attenuator	ATTEN	ATS100-4-20	/	2010-12-20	2011-12-19

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

8.3 Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 433.92MHz, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.

8.4 Environmental Conditions

Temperature:	20° C
Relative Humidity:	52%
ATM Pressure:	1011 mbar

8.5 Summary of Test Results/Plots

Tp = 100 ms

Ton = Ton1 * Number + Ton2 * Number = 10 ms

Duty Cycle = Ton / Tp * 100% = 10%

Factor = 20*Log (Ton/Tp) = -20

Refer to the attached plots.

***** END OF REPORT *****