

YOUN
THE QUESTION PAPERS
ON TELEGRAM

School of Electronics Engineering

B. Tech (ECE) – CAT-II Examination – FS 2019-20, Electromagnetic Field Theory, (ECE1003)

Time: 90 Min.

Marks: 50

F1-Slot

Answer all the questions

	Allswei all the t	questions	
1	 a) Atomic hydrogen contains 5.5 × 10²⁵ atoms/m³ at a certain temperature and pressure. When an electric field of 4 kV/m is applied, each dipole formed by the electron and the positive nucleus has an effective length of 7.1 × 10⁻¹⁹ m. Find (a) Polarization and (b) Dielectric constant of the material. [7] b) For x<0, the polarization is 5 sin (βy) a_x. Calculate the ρ_{ps} and ρ_{pv}. Here, β is constant. [3] 		[10]
2	 In an semiconductor device the volume charge density is ρ_v = ρ_{vo} (x/a)r^{- x a}. Find the electric filed intensity (Ex) if V(0)=0 and Ex→0 as x→∞. [5] In an aluminum the drift velocity of 5.3×10⁻⁴ m/s is found. What is the corresponding current density and electric field intensity in aluminum? (Assume conductivity is 3.82×10⁷ m/s and mobility is 0.0014 m²/V.s). [5]. 		[10]
3/	The surface $x=0$ separates two perfect dielectrics. For $x>0$, $\mathcal{E}_{r1}=3$, while $\mathcal{E}_{r2}=5$ where $x<0$. If $\mathcal{E}_1=80a_x-60a_y-30a_z$ V/m. Calculate: (a) tangential and normal components of electric filed in two dielectric regions. (b) the angle between the \mathcal{E}_1 and normal to the surface.		[7]
A	In the capacitor shown in figure. The region between the plates filled with the dielectric having the Er=4.5.Find: (a) the capacitance between the plates. [10] (b) the resistance for the given question. [3]		[13]
	Here, $h=5mm$, $r1=1mm$, $r2=30mm$ and $\alpha=5^{\circ}$	$h = 5 nm$ $r_1 = 1 mm$ $\alpha = 5^{\circ}$	
5	A circular conductor of radius $r_0 = 1cm$ has an interred $H = \frac{10^4}{r} \left(\frac{1}{a^2} \sin ar - \frac{r}{a} \cos ar \right) a_{\phi} \text{ A/m},$ where $a = \pi/2 r_0$. Find the total current in the condu		[10
	7270. I the the total current in the condu	ctor.	

64

ale 4

SPARCH YIT QUESTION PAPERS ON TELEGRAM YO JOIN

yexku us