विज्ञान तथा वातावरण

कक्षा ८

नेपाल सरकार शिक्षा ,विज्ञान तथा <mark>प्रविधि</mark> मन्त्रालय

पाठ्यक्रम विकास केन्द्र

सानोठिमि, भक्तपुर

विज्ञान तथा वातावरण

कक्षा र

नेपाल सरकार शिक्षा, विज्ञान तथा प्रविधि मन्त्रालय **पाठ्यक्रम विकास केन्द्र** सानोठिमी, भक्तपुर

प्रकाशक

नेपाल सरकार शिक्षा, विज्ञान तथा प्रविधि मन्त्रालय पाठ्यक्रम विकास केन्द्र सानोठिमी, भक्तपुर

© सर्वाधिकार पाठ्यक्रम विकास केन्द्र

यस पाठ्य पुस्तकसम्बन्धी सम्पूर्ण अधिकार पाठ्यक्रम विकास केन्द्र सानोठिमी, भक्तपुरमा निहित रहेको छ। पाठ्यक्रम विकास केन्द्रको लिखित स्वीकृतिबिना व्यापारिक प्रयोजनका लागि यसको पुरै वा आंशिक भाग हुबहु प्रकाशन गर्न, परिवर्तन गरेर प्रकाशन गर्न, कुनै विद्युतीय साधन वा अन्य प्रविधिबाट रेकर्ड गर्न र प्रतिलिपि निकाल्न पाइने छैन।

प्रथम संस्करण : वि.सं २०७२

संशोधित संस्करण : वि.सं २०७६

मुद्रणः जनक शिक्षा सामग्री केन्द्र लि.

सानोठिमी, भक्तपुर।

मूल्य रु.

पाठ्यपुस्तकसम्बन्धी पाठकहरूका कुनै पिन प्रकारका सुझावहरू भएमा पाठ्यक्रम विकास केन्द्र, समन्वय तथा प्रकाशन शाखामा पठाइदिनुहुन अनुरोध छ । पाठकहरूबाट आउने सुझावहरूलाई केन्द्र हार्दिक स्वागत गर्दछ । तपाइँले किनेको पाठ्यपुस्तकमा कुनै त्रुटि भएमा निजकको वितरकबाट उक्त पुस्तक साट्न सक्नुहुने छ ।

हामो भनाइ

शिक्षालाई उद्देश्यमूलक, व्यावहारिक र समसामियक बनाउन पाठ्यक्रम विकास केन्द्रले विद्यालय तहका पाठ्यक्रमतथा पाठ्यपुस्तक विकास तथा परिमार्जन गर्ने कार्यलाई निरन्तरता दिँदै आएको छ । विद्यार्थीमा राष्ट्रप्रेम, राष्ट्रियता प्रतिको समर्पण र लोकतान्त्रिक पद्धतिलाई आत्मसात गर्ने भावनाको विकास गराई नैतिकवान्, अनुशासित, स्वावलम्बी तथा सिर्जनशील भई समावेशी समाज निर्माणमा योगदान दिन सक्ने क्षमता विकास हुन आवश्यक छ । उनीहरूमा भाषिक तथा गणितीय सिपका साथै विज्ञान, सूचना तथा सञ्चार प्रविधि, वातावरण, स्वास्थ्य तथा जनसङ्ख्यासम्बन्धी आधारभूत ज्ञान तथा जीवनोपयोगी सिपको विकास हुन जरुरी छ । त्यसै गरी विद्यार्थीहरूमा कला तथा सौन्दर्य प्रतिको अनुराग र मानवीय मूल्य मान्यता, आदर्श तथा वैशिष्ट्यहरूप्रतिको सचेतता सिहत तिनको संरक्षण, संवर्धन गर्ने भावनाको विकास आवश्यक छ । समता मूलक समाजको निर्माणमा सहयोग पुऱ्याउन उनीहरूमा विभिन्न जातजाति, लिङ्ग, भाषा, धर्म, संस्कृति र क्षेत्रलगायतका विविधताहरूको सम्मान गर्ने र मानव अधिकार तथा समाजिक मूल्य मान्यता प्रति सचेत भई जिम्मेवारी वहन गर्ने भावनाको विकास गराउनु आवश्यक छ । उल्लिखित आवश्यकतालाई दृष्टिगत गरी आधारभूत शिक्षा पाठ्यक्रम (कक्षा ६-६), २०६९ लाई मूल आधारमानी शिक्षासम्बन्धी विभिन्न आयोगका सुभाव, शिक्षक, विद्यार्थी तथा अभिभावकलगायत शिक्षासँग सम्बद्ध विभिन्न व्यक्ति सम्मिलत गोष्ठी र अन्तरक्रियाका निष्कर्ष र विभिन्न विद्यालयमा परीक्षण गरी प्राप्त पृष्ठपोषण समेतलाई समेटी यो पाठ्य पुस्तक तयार पारिएको हो ।

पाठ्यपुस्तकलाई यस स्वरूपमा ल्याउने कार्यमा पाठ्यक्रम विकास केन्द्रका कार्यकारी निर्देशक दिवाकर ढुङ्गेल तथा डा. बालकृष्ण रिञ्जित, रामप्रसाद सुवेदी, डा. हृदयरत्न बजाचार्य, डा. चिदानन्द पण्डित, उमानाथ लम्साल, पार्वती भट्टराई, उत्तरा श्रेष्ठ, सुरेन्द्र आचार्य र विजय मिश्रको विषेश योगदान रहेको छ । यसको विषय वस्तु सम्पादन डम्बरध्वज आङ्देम्बे, भाषा सम्पादन लोकप्रकाश पण्डितबाट भएको हो । पाठ्यपुस्तकलाई अध्यावधिक तथा परिमार्जन गरी प्रकाशित गर्न कार्यमा यस केन्द्रका महानिर्देशक डा. लेखनाथ पौडेल, श्री गणेशप्रसाद भट्टराई, श्री चिनाकुमारी निरौला र श्री युवराज अधिकारीको योगदान रहेको छ । यस पुस्तकको चार रङमा विकास गर्नका लागि कला सम्पादन कार्य श्रीहरि श्रेष्ठबाट भएको हो । यस पाठ्यपुस्तकको विकास तथा परिमार्जन कार्यमा संलग्न सबैप्रति पाठ्यक्रम विकास केन्द्र धन्यवाद प्रकट गर्दछ ।

पाठ्यपुस्तकलाई शिक्षण सिकाइको महत्त्वपूर्ण साधनका रूपमा लिइन्छ । यस पाठ्यपुस्तकको प्रयोगबाट पाठ्यक्रमद्वारा लक्षित सक्षमता हासिल गर्न विद्यार्थीलाई सहयोग पुग्ने अपेक्षा गरिएको छ । पाठ्यपुस्तकलाई सकेसम्म क्रियाकलापमुखी र रुचिकर बनाउने प्रयत्न गरिएको छ । यस पाठ्यपुस्तकलाई अभै परिष्कृत पार्नका लागि शिक्षक, विद्यार्थी, अभिभावक, बुद्धिजीवी एवम् सम्पूर्ण पाठकहरूको समेत महत्त्वपूर्ण भूमिका रहने हुँदा सम्बद्ध सबैको रचनात्मक सुभावका लागि पाठ्यक्रम विकास केन्द्र हार्दिक अन्रोध गर्दछ ।

नेपाल सरकार शिक्षा, विज्ञान तथा प्रविधि मन्त्रालय पाठयक्रम विकास केन्द्र

वि. सं. २०७६

विषय सूची

एकाइ	शीर्षक	पृष्ठ सङ्ख्या
	भौतिक विज्ञान (Physics)	
٩.	नाप	٩
₹.	गति र प्रवेग	9
₹.	सरल यन्त्र	२०
٧.	चाप	२७
ሂ.	शक्ति, कार्य र सामर्थ्य	३८
€.	ताप	५०
9 .	प्रकाश	५९
5 .	ध्वनि	७४
9.	चुम्बकत्व	50
90.	विद्युत्	5 1
	रसायन विज्ञान (Chemistry)	
99.	पदार्थ	९१
9 २.	मिश्रण	१०५
१ ३.	धातु र अधातु	११०
٩४.	अम्ल, क्षार र लवण	११७
ባሂ.	केही उपयोगी रसायनहरू	१२४
	जीव विज्ञान (Biology)	
१६.	सजीवहरू	१३३
૧૭.	कोष र तन्तु	१४८
৭ ፍ.	जीवन प्रक्रिया	१५७
	भू तथा अन्तरिक्ष विज्ञान (Geology and Astr	onomy)
9 ९.	पृथ्वीको बनोट	૧૭૧
२०.	मौसम र हावापानी	१७९
२१.	पृथ्वी र अन्तरिक्ष	१८६
	वातावरण विज्ञान (Environment Science)	
२२.	वातावरण र यसको सन्तुलन	989
२३.	वातावरणीय ह्रास तथा यसको संरक्षण	२०८
२४.	वातावरण र दिगो विकास	२२९

जाप (Measurement)

हामीले दैनिक जीवनमा विभिन्न प्रकारका नापहरू लिइरहेका हुन्छौँ । कुनै वस्तुको निश्चित परिमाण पत्ता लगाउने प्रक्रिया नै नाप हो । हामीले नापेका वस्तुको परिमाणलाई गणितीय रूपमा व्यक्त गर्दछौँ । नापेर गणितीय रूपमा व्यक्त गर्न सिकनेलाई भौतिक परिमाण (physical quantity) भनिन्छ, जस्तै : क्षेत्रफल, पिण्ड, समय, लम्बाइ आदि । तर नापेर गणितीय रूपमा व्यक्त गर्न नसिकनेहरू भौतिक परिमाण होइनन्, जस्तै : दया, माया, चाहना, इच्छा, अनुभव आदि ।

भौतिक परिमाण मुख्य दुई प्रकारका हुन्छन् :

- आधारभूत भौतिक परिमाण (Fundamental Physical Quantity)
- २. तत्जन्य भौतिक परिमाण (Derived Physical Quantity)

आधारभूत भौतिक परिमाण (Fundamental Physical Quantity)

केही भौतिक परिमाणहरू अन्य भौतिक परिमाणसँग स्वतन्त्र हुन्छन् । अन्य भौतिक परिमाणसँग भर नपर्ने यस्ता स्वतन्त्र परिमाणलाई आधारभूत भौतिक परिमाण (fundamental physical quantity) भनिन्छ । वस्तुको पिण्ड, लम्बाइ र समयले आपसमा कुनै सम्बन्ध राख्दैनन्, जस्तै : कित लम्बाइको एक किलोग्राम पिण्ड हुन्छ भनेर हेर्दा कुनै अर्थ रहँदैन ।

तत्जन्य भौतिक परिमाण (Derived Physical Quantity)

अन्य भौतिक परिमाणसँग भर पर्ने परिमाणलाई तत्जन्य परिमाण (derived quantity) भिनन्छ । वस्तुको क्षेत्रफल, आयतन, घनत्व आदि तत्जन्य परिमाण हुन्, जस्तै : क्षेत्रफलको परिमाण लम्बाइ तथा चौडाइको परिमाणमा भर पर्दछ ।

एकाइ (Unit)

नापिबना भौतिक परिमाणको निश्चित मात्रा पत्ता लगाउन सिकँदैन । भौतिक परिमाणको

नापका लागि कुनै एक निश्चित परिमाण तोकिएको हुन्छ । निश्चित परिमाणलाई प्रामाणिक एकाइ (standard unit) भनिन्छ । मान थाहा नभएका भौतिक परिमाणहरूलाई त्यही प्रामाणिक एकाइसँग तुलना गरी व्यक्त गरिन्छ । यसरी तुलना गर्दा प्रामाणिक एकाइको कित गुणा छ भनी व्यक्त गरिन्छ । त्यसैले नाप भनेको थाहा नभएको परिमाणलाई थाहा भएको परिमाणसँग तुलना गर्नु हो । भौतिक परिमाणको नापलाई अङ्क र एकाइ एकै साथ राखी गणितीय रूपमा व्यक्त गरिन्छ, जस्तै : एउटा वस्तुको पिण्ड 5 kg छ भन्नाले पिण्डको एकाइ kg हो । उक्त वस्तुको पिण्ड 1 Kg को 5 गुणा छ भन्ने बुभिन्छ । त्यसैले भौतिक परिमाण नाप लेख्दा अङ्कसँग एकाइ अनिवार्य हुन्छ ।

भौतिक परिमाणका एकाइहरूलाई विश्वव्यापी रूपमा मान्यता दिइएका हुन्छन् । भौतिक परिमाणलाई फरक फरक एकाइहरूले नाप्ने गरिन्छ । एकाइ मुख्य दुई प्रकारका हुन्छन् :

- 9. आधारभूत एकाइ (Fundamental Unit)
- २. तत्जन्य एकाइ (Derived Unit)

आधारभूत एकाइ (Fundamental Unit)

परिमाण नाप्दा अन्य नापका एकाइमा निर्भर नरहने अर्थात् स्वतन्त्र एकाइलाई आधारभूत एकाइ भिनन्छ, जस्तै : लम्बाइको मिटर, पिण्डको किलोग्राम, समयको सेकेन्ड । भौतिक विज्ञानमा निम्नलिखित सात ओटा आधारभूत परिमाणका एकाइहरू प्रयोग गरिन्छ :

क्र.स.	भौतिक परिमाण	आधारभूत एकाइ	एकाइको सङ्केत
٩.	लम्बाइ (length)	मिटर (meter)	m
٦.	पिण्ड (mass)	किलोग्राम (kilogram)	kg
₹.	समय (time)	सेकेन्ड (second)	S
٧.	तापक्रम (temperature)	केल्भिन (kelvin)	K
ሂ.	विद्युत्धारा (electricity)	एम्पियर (ampere)	Α
ξ.	प्रकाशको चिम्कलोपना	क्यान्डला (candela)	Cd
	(intensity of light)		
9 .	पदार्थको मात्रा	मोल (mole)	mol
	(amount of matter)		

तत्जन्य एकाइ (Derived Unit)

आधारभूत एकाइको संयोजनबाट बनेको एकाइलाई तत्जन्य एकाइ भिनन्छ, जस्तै : एउटा गाडीको वेग थाहा पाउन त्यसले पार गरेको दुरी र लागेको समय नाप्नुपर्ने हुन्छ । दुरी र समयको एकाइअनुसार वेगको एकाइ भर पर्दछ । त्यसैले दुरी अथवा लम्बाइ र समयका एकाइ आधारभूत एकाइ हुन् । वेगको एकाइ तत्जन्य एकाइ हो ।

केही तत्जन्य एकाइहरू

क्र.स.	भौतिक परिमाण	तत्जन्य एकाइ	एकाइको सङ्केत
٩.	क्षेत्रफल (area)	वर्गमिटर (square meter)	m²
٦.	आयतन (volume)	घनमिटर (cubic meter)	m^3
न्थ.	घनत्त्व (density)	किलोग्राम प्रतिघनमिटर (kilogram per cubic meter)	kg/m³
٧.	वेग ∕ गति (speed/velocity)	मिटर प्रतिसेकेन्ड (meter per second)	m/s
ሂ.	प्रवेग (acceleration)	मिटर प्रतिसेकेन्ड प्रतिसेकेन्ड (meter per second per second)	m/s²
Ę.	बल (force)	न्युटन (newton)	N
9 .	कार्य / शक्ति (work/energy)	जुल (joule)	J
ಽ.	सामर्थ्य (power)	वाट (watt)	W
9.	चाप (pressure)	पास्कल (pascal)	ра

पिण्डको नाप (Measurment of Mass)

वस्तुमा भएको पदार्थको परिमाण (quantity of matter) लाई पिण्ड भिनन्छ । पिण्ड त्यस वस्तुमा भएका परमाणुहरूको सङ्ख्या र ती परमाणुहरूको पिण्डमा भर पर्दछ । कुनै वस्तुमा रहेको पिण्ड संसारको सबै ठाउँमा एउटै हुन्छ । पिण्ड ठाउँअनुसार घटबढ हुँदैन । वस्तुको पिण्डलाई भौतिक तराजु (physical balance वा beam balance) ले नापिन्छ । भौतिक तराजुमा दुईओटा पाला (pan) हुन्छन् । एउटा पालामा वस्तु र अर्को पालामा ढक राख्नुपर्छ । दुवैतिरको पिण्ड बराबर भएपछि डन्डी सन्तुलनमा हुन्छ र त्यसमा रहेको सूचकले सिधा

देखाउँछ । ढकहरूमा भएको जम्मा पिण्ड नै त्यसको अर्कोतर्फ राखिएको वस्तुको पिण्ड हुन्छ ।

पिण्डको प्रामाणिक एकाइ (standard unit) किलोग्राम हो । साना र कम पिण्ड भएका वस्तुको पिण्ड ग्राम (gram) र मिलिग्राम (milligram) मा नापिन्छ । यसैगरी ठुला वस्तुको पिण्ड क्विन्टल (quintal) र टन (tonne) मा नापिन्छ ।

चित्र नं. 1.1

```
1000 मिलिग्राम (mg) — 1 ग्राम (g)
```

1000 ग्राम (g) ____ 1 किलोग्राम (kg)

100 किलोग्राम (kg) — 1 क्विन्टल (Quintal)

1000 किलोग्राम (kg) — 1 टन (Tonne)

कति पिण्डलाई एक किलोग्राम मानिन्छ ?

संसारका सबै देशमा नापिने किलोग्रामको परिमाण बराबर हुनुपर्दछ । यसका लागि फ्रान्समा रहेको अन्तर्राष्ट्रिय नाप तौल विभागमा राखिएको प्लाटिनम र इरिडियम धातुबाट बनेको ढकको पिण्डलाई एस.आई. प्रणाली (SI system) मा एक किलोग्राम मानिन्छ । यही ढकसँग नापेर संसारका अरू देशहरूको एक किलोग्राम ढक बनाइएको हुन्छ । हाम्रो देशमा चलनचल्तीमा ल्याइएको एक किलोग्रामको ढक नाप तौल विभागमा राखिएको एक किलोग्रामको ढक बराबर हुन्पर्दछ ।

कियाकलाप १

एउटा भौतिक तराजु र विभिन्न पिण्डका ढकहरू लेऊ । यसको सहायताले तिम्रो विज्ञान तथा वातावरण किताबको पिण्ड पत्ता लगाऊ । अब, तिम्रो र साथीहरूको किताबको पिण्डको तुलना गर । के फरक पायौ ? कारण के हो ?

तौलको नाप (Measurement of Weight)

हामीले वस्तुलाई आकाशितर हुत्यायौँ भने सो वस्तु केही बेरपछि जिमनितर नै खस्छ, किन ? पृथ्वीले सबै वस्तुलाई आफ्नो केन्द्रितर तान्छ । त्यसैले आकाशितर हुत्याइएको वस्तु पृथ्वीको सतहितर नै आउँछ । बोटिबरुवामा फलेका फलफूल, वर्षाको पानी, हिउँ, असिना आदि तलितर भर्नुको कारण पिन पृथ्वीको आकर्षण बल हो । पृथ्वीले आफ्नो केन्द्रितर तान्ने बललाई गुरुत्त्व बल (gravity) भिनन्छ । वस्तुमा लाग्ने गुरुत्त्वबल भनेको त्यस वस्तुको तौल हो ।

वस्तुलाई पृथ्वीले आफ्नो केन्द्रतिर तान्ने बलको नाप नै त्यस वस्तुको तौल हो ।

वस्तुको तौल न्युटन (N) एकाइमा नापिन्छ । तौल एक प्रकारको बल हो । त्यसैले तौल नाप्न कमानी तराजु (spring balance) प्रयोग गरिन्छ । पृथ्वीतिर वस्तु खस्दा त्यसमा गुरुत्व प्रवेग उत्पन्न हुन्छ । त्यस ठाउँमा उत्पन्न हुने गुरुत्व प्रवेग र वस्तुको पिण्डको गुणनफल नै त्यस वस्तुको तौल हुन्छ ।

वस्तुको तौल (W) = पिण्ड (m) \times गुरुत्व प्रवेग (g)

पृथ्वी पूर्ण रूपले गोलो छैन । त्यसैले पृथ्वीको सबै भागमा गुरुत्व प्रवेग समान हुँदैन । गुरुत्व प्रवेगको मान फरक भएकाले वस्तुको तौल पिन ठाउँअनुसार फरक हुन्छ । वस्तुको पिण्डलाई हाम्रो दैनिक जीवनमा तौल भन्ने गरिन्छ । तर वस्तुको पिण्ड र तौल फरक फरक कुराहरू हुन् । भौतिक तराजुमा पिण्ड नाप्दा सन्तुलन भएको अवस्थामा ढकमा पर्ने र वस्तुमा पर्ने गुरुत्व बल बराबर हुन्छ । त्यसैले

चित्र नं. 1.2

दैनिक जीवनमा लिइने तौललाई प्राय:जसो यति किलोग्रामको तौल भनी व्यक्त गरिन्छ, जस्तै : 5kg आलुको तौल आदि ।

समयको नाप (Measurement of Time)

दुईओटा घटनाहरू (events) बिचको अवधिलाई समय भिनन्छ । पृथ्वीले आफ्नो अक्षमा घुम्न लाग्ने समयका आधारमा समयको एकाइ निर्धारण गरिएको छ । पृथ्वीले आफ्नो अक्षमा एक पटक घुम्न लाग्ने समयलाई एक सौर्य दिन मानिन्छ । एक दिनलाई 24 बराबर भागमा बाँड्दा आउने प्रत्येक भागलाई एक घण्टा मानिन्छ । एक घण्टालाई 60 बराबर भागमा बाँडिएको छ । यसरी बाँड्दा आउने प्रत्येक भागलाई एक मिनेट भिनन्छ । प्रत्येक मिनेटलाई 60

बराबर भागमा बाँड्दा आउने एक भागलाई एक सेकन्ड भिनन्छ । त्यसैले, 1 दिन = 1×24 घण्टा = $24 \times 60 \times 60$ सेकेन्ड = 86.400 सेकेन्ड

त्यसकारण, 1 दिनमा 86,400 सेकेन्ड हन्छ ।

1 दिनको 86,400 खण्डको 1 खण्ड समयलाई 1 सेकन्ड भनिन्छ ।

1 सेकेन्ड = 1/86, 400 दिन हुन्छ ।

विभिन्न प्रकारका घडीहरू समय नाप्न प्रयोग गरिन्छ, जस्तै : साधारण घडी, डिजिटल घडी, एटोमिक घडी आदि । हामीले प्रयोग गर्ने साधारण घडीमा समय केही सेकेन्ड ढिलो वा चाँडो हुन सक्छ । त्यसैले वैज्ञानिकहरू ठिक समय नाप्न एटोमिक घडी प्रयोग गर्दछन ।

चित्र नं. 1.3

क्रियाकलाप २

रेडियोले समाचार भन्ने बेलामा प्रसारण गरेको समयअनुसार तिम्रो घरमा रहेको घडीको समय मिलाऊ । एक महिनापछि रेडियोले भनेको समय र तिम्रो घरमा रहेको घडीको समयमा परेको फरक तुलना गरी हेर । कक्षामा साथीहरूबिच छलफल गरी शिक्षकलाई आफ्नो निष्कर्ष सुनाऊ ।

प्रयोगात्मक क्रियाकलाप

- १. तिम्रो शरीरको पिण्ड कति छ, नाप ।
- २. एउटा सेतो बाक्लो कागजलाई मध्याह्न समयमा घाममा राख । त्यसको बिचमा भन्डै ३/४ इन्च लामो किला ठोकेर अड्याऊ । तिम्रो घडीमा ठिक 12 बज्दा त्यस किलाको छायाको टुप्पोमा चिह्न लगाऊ । भोलिपल्ट दिउँसो किलाको छायाको टुप्पो अघिल्लो दिनको चिह्नमा पुग्दा कित बज्यो, समयको अन्तर पत्ता लगाऊ ।

सारांश

- गणितीय रूपमा नापेर व्यक्त गर्न सिकने परिमाणलाई भौतिक परिमाण भिनन्छ ।
- २. एकाइ भनेको एउटा निश्चित प्रामाणिक परिमाण हो । त्यससँग तुलना गरी अन्य परिमाणको नाप लिइन्छ ।

- ३. आधारभूत र तत्जन्य गरी एकाइ म्ख्य द्ई प्रकारका ह्न्छन् ।
- ४. अन्य नापका एकाइमा भर नपर्ने एकाइलाई आधारभूत एकाइ भनिन्छ, जस्तै : मिटर, किलोग्राम, सेकेन्ड ।
- प्र. आधारभूत एकाइबाट बनेका एकाइलाई तत्जन्य एकाइ भिनन्छ, जस्तै : जुल, न्युटन,वाट, पास्कल ।
- कुनै वस्तुमा भएको पदार्थको परिमाणलाई पिण्ड भिनन्छ । वस्तुको पिण्ड भौतिक तराजुले नापिन्छ ।
- ७. अन्तर्राष्ट्रिय नापतौल विभागमा राखिएको प्लाटिनम र इरिडियम धातुबाट बनेको ढकको पिण्डलाई एक किलोग्राम मानिन्छ ।
- वस्तुलाई पृथ्वीले आफ्नो केन्द्रितर तान्ने बललाई तौल भिनन्छ ।
- ९. क्नै दुईओटा घटनाबिचको अवधिलाई समय भनिन्छ । समयलाई घडीले नापिन्छ ।
- १०. एक दिनको ८६.४०० खण्डको १ खण्ड समयलाई १ सेकन्ड भनिन्छ ।

अभ्यास ।

٩.	खाली ठाउँमा मिल्ने शब्द भ	र :
	(क) अन्य नापका एकाइमा निर्भ	र नरहने एकाइलाई भिनन्छ ।
	(ख) पिण्डको एकाइ	हो ।
	(ग) कुनै वस्तुमा लाग्ने गुरुत्वब	ल नै त्यस वस्तुको हो ।
	(३) एक दिनको	. खण्डको 1 खन्ड समयलाई 1 सेकन्ड भनिन्छ ।
	(ङ) वस्तुको पिण्डलाई	ले नापिन्छ ।
₹.	तल दिइएका उत्तरहरूमध्ये स	ाही उत्तर छान :
	(क) पिण्डको आधारभूत प्रामाणि	क एकाइ कुन हो ?
	(अ) ग्राम	(आ) किलोग्राम
	(इ) क्विन्टल	(ई) टन

	(ख) वस्तुको तौल कुन उपकरणबाट न	ापिन्छ ?
	(अ) भौतिक तराजु	(आ) कमानी तराजु
	(इ) बिम तराजु	(ई) टपप्यान तराजु
	(ग) वैज्ञानिकहरूले सही समय नाप्न व	कुन घडी प्रयोग गर्दछन् ?
	(अ) साधारण घडी	(आ) डिजिटल घडी
	(इ) एटोमिक घडी	(ई) क्वार्ज घडी
	(घ) तलकामध्ये कुन तत्जन्य एकाइ हं	Τ?
	(अ) मिटर	(आ) किलोग्राम
	(इ) सेकेन्ड	(ई) जुल
₹.	फरक छुट्याऊ :	
	(क) आधारभूत एकाइ र तत्जन्य एका	इ
	(ख) पिण्ड र तौल	
8.	छोटो उत्तर लेख :	
	(क) भौतिक परिमाण भनेको के हो ?	
	(ख) पिण्ड केलाई भनिन्छ ?	
	(ग) एक किलोग्राम भन्नाले कित परि	माणलाई जनाउँछ ?
	(३) वेगको एकाइ के हो ?	
ሂ.	तल दिइएको परिमाणलाई तोकिए	को एकाइमा बदल :
	(क) 4.5 घण्टालाई सेकेन्डमा	
	(ख) 2.5 किलोग्रामलाई ग्राममा	
	(ग) 1 दिनलाई सेकेन्डमा	
દ્દ.	मनिताको पिण्ड 40 kg छ भने	उनको तौल कति हुन्छ ? (g = 9.8m/s²
	हिसाब गर । (392N)	

गति २ प्रवेग

(Velocity and Acceleration)

हाम्रो विरपिर केही वस्तुहरू एकै स्थानमा रहिरहेका हुन्छन् । यस्ता वस्तुलाई हामी स्थिर वस्तु भन्छौँ । केही वस्तुहरू चिलरहेका अर्थात् स्थान परिवर्तन गरिरहेका हुन्छन् । यस्ता वस्तुहरूलाई चाल अवस्थाका वस्तु भिनन्छ, जस्तै : हिँडिरहेको मानिस, गुडिरहेको गाडी, उिडरहेको चरा । वस्तुको चाल समान र असमान गरी दुई प्रकारका हुन्छन् । समान चाल भएको वस्तुको गित निश्चित हुन्छ । तर असमान चाल भएको वस्तुको गित किहले बढी र किहले कम हुन्छ । यस्तो अवस्थामा वस्तुको औसत गित निकालिन्छ ।

औसत गति (average velocity)

एक एकाइ समयमा निश्चित दिशातिर पार गरेको द्रीलाई औसत गति भनिन्छ ।

औसत गति (average velocity) =

| निश्चित दिशामा पार गरेको जम्मा दुरी |
| जम्मा लागेको समय

$$\overline{V} = \frac{s}{t}$$

यहाँ $\sqrt{}$ = औसत गति

S = जम्मा स्थानान्तरण (निश्चित दिशामा पार गरेको दुरी)

t = जम्मा लागेको समय हो ।

यदि एउटा वस्तुले निश्चित दिशामा 2 सेकेन्डमा 10 मिटर दुरी पार गरेछ र अर्कोले 5 सेकेन्डमा 32 मिटर दुरी पार गरेछ भने,

औसत गति =
$$\frac{\overline{\text{जम्मा पार गरेको दुरी}}}{\overline{\text{जम्मा लागेको समय}}}$$

औसत गति
$$=\frac{10m+32m}{2s+5s}=\frac{42m}{7s}=6m/s$$

औसत गति 6 m/s हुन्छ ।

यदि कुनै वस्तुको सुरुको गति u र अन्तिम गति v भएमा त्यसको,

औसत गित
$$(\overline{V}) = \frac{ \text{सुरुको गित (u)} + अन्तिम गित (v)}{2}$$

$$\overline{V} = \frac{u+v}{2}$$

उदाहरण १

एउटा मानिस मोटरसाइकल चढेर 4 मिनेटमा 6 km टाढा रहेको आफ्नो कार्यालयमा पुग्छ भने उसको औसत गति कति होला ?

यहाँ, जम्मा लागेको समय (t)
$$= 4$$
 मिनेट $= 4 \times 60$ sec $= 240$ s

जम्मा पार गरको दुरी (s) = 6km = 6 x 1000m = 6000m

_ 000

औसत गति \overline{V} = ?

सूत्रानुसार,
$$\overline{V} = \frac{s}{t} = \frac{6000m}{240s} = 25 \text{ m/s}$$

उक्त मोटरसाइकलको औसत गति 25 m/s हुन्छ ।

सापेक्षिक गति (Relative Velocity)

गुडिरहेको बसको सिटमा बसिरहेको मानिस स्थिर अवस्थमा हुन्छ कि चाल अवस्थामा हुन्छ, किन ?

गुडिरहेको बसमा रहेको मानिसले बसको तुलनामा स्थान परिवर्तन गरेको हुँदैन । तसर्थ स्थिर अवस्थामा रहेको हुन्छ तर सडकको तुलनामा स्थान परिवर्तन गरिरहेको हुन्छ अर्थात् चाल अवस्थामा हुन्छ । त्यसैले स्थिर र चाल भन्ने कुरा सापेक्षिक अथवा तुलना गरिएको वस्तुको दाँजोमा भर पर्ने कुरा हुन् । यहाँ तुलना गरिने वस्तुहरूको चाललाई व्यक्त गर्न निश्चित बिन्दु आवश्यक हुन्छ । यसलाई सापेक्षिक बिन्दु (relative point) भिनन्छ ।

सापेक्षिक बिन्दु (relative point) को तुलनामा व्यक्त गरिएको कुनै वस्तुको गतिलाई सापेक्षिक गति (relative velocity) भनिन्छ ।

- 9. दिइएको चित्र नं. 2.1 को 'क' हेरौँ । सुरुको अवस्थामा दुई ओटा गाडी एउटै सिधा रेखा MN मा अडिएका छन् । MN सापेक्षिक बिन्दु (relative point) हो । गाडी A, 10m/s को गतिले पश्चिमतिर र गाडी B, 15m/s को गतिमा पूर्वितर लागेको छ । चित्र 'ख' मा 1 sec पछिको अवस्था देखाइएको छ । यस अवस्थामा A ले 10 m र B ले 15 m दुरी पार गरेको छ । गाडी A बाट गाडी B हेर्दा 1 sec मा 25 m दुरी पार गरेको देखिन्छ । यसमा A को सापेक्षमा B को गति 25 m/s हुन्छ ।
- २. चित्र नं. 2.2 को 'ग' मा सुरुको अवस्था देखाइएको छ । गाडी A, 10 m/s र गाडी B, 15 m/s

को गतिले एउटै दिशातिर गुडिरहेका छन्। चित्र 'घ' मा $15\,\mathrm{m}$ पछिको अवस्था देखाइएको छ । यस अवस्थामा गाडी A ले $10\mathrm{m}$ τ B ले $15\,\mathrm{m}$ दुरी पार गरेका छन्। तर गाडी A बाट गाडी B हेर्दा $15\,\mathrm{m}$ $5\mathrm{m}$ दुरी पार गरेको देखिन्छ । यसमा A को सापेक्षमा B को गित $5\mathrm{m/s}$ हन्छ ।

३. चित्र नं. 2.3 को 'ङ' मा सुरुको अवस्था देखाइएको छ । गाडी A र B दुवै 10m/s को

गतिमा एउटै दिशातिर गुडिरहेका छन् । चित्र (च) मा 1s पछिको अवस्था देखाइएको छ । यस अवस्थामा दुवैले 10m दुरी पार गरेका छन् । यहाँ, A बाट हेर्दा B ले कुनै दुरी पार गरेको देखिँदैन अर्थात् A को सापेक्षमा B को गति शून्य हुन्छ ।

त्यसैगरी, एउटै दिशामा गुडिरहेका दुईओटा गाडीहरूको सापेक्षिक गति सरुको अवस्था १ सेकेन्डपछिको अवस्था

= एउटाको गति - दोस्रोको गति हुन्छ ।

$$\therefore V_{AB} = V_{A} - V_{B}$$

यहाँ, $V_A = A$ वस्तुको गति

 $V_{R} = B$ वस्तुको गति

V_{AP}= A को B वस्त्सँगको सापेक्षिक गति

त्यसैगरी दुई विपरीत दिशामा गुडिरहेका वस्तुको

सापेक्षिक गति = एउटा गति + अर्कोको गति

उदाहरण २

दुईओटा गाडी A र B क्रमश: 12 m/s र 8 m/s को गतिमा एउटै दिशातिर गुडिरहेका छुन् भने A को B सँगको सापेक्षिक गति कित होला, यदि तिनीहरू विपरीत दिशातिर लागेका भए सापेक्षिक गित कित होला ?

यहाँ, गाडी A को गित $(V_A) = 12 \text{ m/s}$ गाडी B को गित $(V_B) = 8 \text{m/s}$ सापेक्षिक गित $(V_{AB}) = ?$ एउटै दिशामा जाँदा सापेक्षिक गित $(V_{AB}) = V_A - V_B$ वा $(V_{AB}) = 12 \text{ m/s} - 8 \text{ m/s}$ $\therefore (V_{AB}) = 4 \text{ m/s}$ विपरीत दिशामा जाँदा सापेक्षिक गित $(V_{AB}) = V_A + V_B$ वा $(V_{AB}) = 12 \text{ m/s} + 8 \text{ m/s}$ $\therefore (V_{AB}) = 20 \text{ m/s}$

त्यसैले, एउटै दिशामा सापेक्षिक गति 4 m/s र विपरीत दिशामा सापेक्षिक गति 20 m/s हुन्छ ।

विचारणीय प्रश्न

बसमा यात्रा गर्दा हामी चढेको बसले अर्को बसलाई उछिनेर अगाडि जाँदा बिस्तारै गुडेको जस्तो लाग्छ तर विपरीत दिशाबाट आएको बस छिटो अगाडि बढेको जस्तो लाग्छ, किन ?

प्रवेग र गतिहास (Acceleration and Retardation)

गुडिरहेको साइकल, मोटरसाइकल, गाडीहरूको गित सधैँ एकनासको हुँदैन । यिनीहरूको गित किहले बढ्छ त किहले घट्छ । ओरालो बाटामा साइकलको गित क्रमशः बढ्दै जान्छ । कुनै वस्तुलाई अग्लो ठाउँबाट तल पृथ्वीको सतहितर खसाल्दा यसको गित क्रमशः बढ्दै जान्छ । गित बढ्ने दरलाई प्रवेग (acceleration) भिनन्छ ।

एक एकाइ समयमा गतिमा भएको परिवर्तनलाई प्रवेग (acceleration) भिनन्छ । यसलाई मिटर प्रतिसेकेन्ड प्रतिसेकेन्ड (m/s²) एकाइमा नापिन्छ ।

मानौँ, एउटा साइकलको सुरुको गित (u) m/s छ र (t) सेकेन्ड समयमा यसको गित (v) m/s मा परिवर्तन हुन्छ भने यसको गितमा भएको परिवर्तन = (v-u) m/s हुन्छ र लागेको समय = t हुन्छ ।

समान गित भएको अवस्थामा प्रवेग उत्पन्न हुँदैन । यस्तो अवस्थामा प्रवेग शून्य हुन्छ । गुडिरहेको वस्तुको गित कहिलेकाहीँ क्रमशः घट्दै जान्छ । उकालो बाटामा हिँड्दा वा कुनै वस्तुलाई पृथ्वीको सतहबाट माथितिर हुत्याउँदा त्यसको गित क्रमशः घट्दै जान्छ । गुडिरहेको गाडीलाई रोक्नुपर्दा ब्रेक लगाइन्छ । यस अवस्थामा वस्तुको गित क्रमशः घट्दै जान्छ । गितहास भनेको ऋणात्मक प्रवेग हो ।

गति घट्ने दर (rate of decrease of velocity) लाई गतिहास भिनन्छ । यसलाई ऋणात्मक प्रवेगका रूपमा जनाइन्छ ।

उदाहरण १

एउटा स्थिर अवस्थाबाट चल्न सुरु गरेको गाडीको गति 5 सेकेन्डपछि 10m/s पुगेछ भने यसको प्रवेग कित पुग्छ, हिसाब गर ।

यहाँ, सुरुको गति (u) = 0

अन्तिम गति (u) =10 m/s

लागेको समय (t) = 5s.

प्रवेग (a) = ?

सुत्रानुसार,
$$a = \frac{v - u}{t}$$

or, $a = \frac{10 - 0}{5}$
 $\therefore a = 2m/s^2$ प्रछ ।

उदाहरण २

एउटा 15 m/s को गतिमा गुडिरहेको कार 5s पछि स्थिर अवस्थामा आउँछ भने त्यसको गतिहास कित हन्छ ?

यहाँ, स्रको गति (u) = 15m/s अन्तिम गति (v) = 0लागेको समय (t) = 5s गतिह्नास (a) = ? सूत्रानुसार, $a = \frac{v - u}{t}$

सूत्रानुसार,
$$a = \frac{v - u}{t}$$

$$a = \frac{0 - 15}{5}$$

वा. $a = -3 \text{ m/s}^2$

गतिहास (-a) = 3 m/s²

जक्त गाडीको गतिहास 3 m/s² रहेछु ।

गति र प्रवेगसम्बन्धी समीकरण (Equation Related to Velocity and Acceleration)

वस्तको सुरुको गति, अन्तिम गति, प्रवेग, समय र पार गरेको दुरीबिच आपसी सम्बन्ध हुन्छ । ती सम्बन्धलाई तल दिइएअनुसार सुत्रबद्ध गर्न सिकन्छ :

उदाहरण १

क्नै वस्त्को स्रको गति = u, अन्तिम गति = v, प्रवेग = a, लागेको समय = t र पार गरेको द्री = s भएमा

प्रवेगको परिभाषाअन्सार,

$$a = \frac{v - u}{t}$$
 (i) or, $v - u = at$

उक्त वस्तुको औसत गित = $\frac{\text{पार गरेको दुरी}}{\text{लागेको समय}} = \frac{\text{s}}{\text{t}}$

फेरि, औसत गति
$$= \frac{u+v}{2}$$
 वा,
$$\frac{s}{t} = \frac{u+v}{2}$$

$$\therefore s = \frac{u + v}{2} \times t \dots (iii)$$

समीकरण (i) बाट t को मान समीकरण (iii) मा राख्दा,

$$s = \frac{u+v}{2} \times \frac{(v-u)}{a}$$

$$s = \frac{v^2 - u^2}{2a}$$

वा,
$$2as = v^2 - u^2$$

$$v^2 = u^2 + 2as (iv)$$

समीकरण (ii) बाट v को मान समीकरण (iii) मा राख्दा,

$$s = \frac{u + (u + at)}{2} \times t$$

$$s = \frac{2u + at}{2} \times t$$

$$s = \frac{2ut + at^2}{2}$$

$$s = ut + \frac{1}{2}at^2$$
 (v)

उपर्युक्त सूत्रहरूद्वारा गति र प्रवेगका विभिन्न गणितीय समस्याहरू समाधान गर्न सिकन्छ ।

उदाहरण २

स्थिर अवस्थाबाट चल्न सुरु गरेको कारको प्रवेग $0.3~\text{m/s}^2$ छ भने 1 मिनेटपछि त्यसको गति कित हुन्छ ? त्यस अविधमा गाडीले कित दुरी पार गर्ला ?

यहाँ, सुरुको गति (u) = 0 (स्थिर अवस्था भएकाले)

प्रवेग (a) = 0.3m/s²

समय (t) = 1 min. = 1 x 60s = 60s

अन्तिम गति (v) = ?

पार गरेको द्री (s) = ?

सूत्रानुसार,
$$v = u + at$$

or, $v = 0 + 0.3 \times 60$
 $v = 18 \text{m/s}$
फेरि, $s = \frac{u + v}{2} \times t$
or, $s = \frac{0 + 18}{2} \times 60$

 \therefore s = 540m

उक्त कारको अन्तिम गति 18m/s र पार गरेको दुरी 540m हुन्छ ।

प्रयोगात्मक कार्य

- १. विद्यालय निजको खुला चउरमा 50 मिटर वा 100 मिटरको दुरीमा चिह्न लगाऊ । केही साथी जम्मा भएर पालैपालो उक्त दुरी दौड । प्रत्येकलाई कित समय लाग्यो नाप । यसबाट प्रत्येकको गित निकाल ।
- २. खुला चउरमा 100m को दुरीमा दुईओटा चिह्न लगाऊ । त्यसको ठिक बिचमा एउटा चिह्न लगाऊ । त्यस चिह्नबाट विपरीत दिशातिर दुई जना साथीलाई दौडन लगाऊ । उनीहरूलाई 50m दुरी पार गर्न लाग्ने समय पत्ता लगाऊ । दुवै जनाको गति निकाल । एक अर्कासँग सापेक्षित गति पिन निकाल ।

सारांश

- १. एकाइ समयमा निश्चित दिशातिर पार गरेको द्रीलाई औसत गति भनिन्छ ।
- सापेक्षिक बिन्दु एउटा निश्चित बिन्दु हो । त्यससँग तुलना गरी अन्य वस्तुको चाललाई व्यक्त गरिन्छ ।
- ३. सापेक्षिक बिन्दुको तुलनामा व्यक्त गरिएको कुनै वस्तुको गतिलाई सापेक्षिक गति भनिन्छ ।
- ४. वस्तुको विभिन्न वस्तुहरूसँग सापेक्षिक चाल फरक फरक हुन सक्छ ।
- ५. प्रतिएकाइ समयमा हुने गतिको परिवर्तन दरलाई प्रवेग भनिन्छ ।
- ६. ऋणात्मक प्रवेगलाई गतिह्नास भनिन्छ ।
- ७. गतिसम्बन्धी समीकरणहरू

(i)
$$a = \frac{v - u}{t}$$

(ii)
$$v = u + at$$

(ii)
$$s = \frac{u+v}{2} \times t$$

(iv)
$$v^2 = u^2 + 2as$$

(V)
$$s = ut + \frac{1}{2}at^2$$

खाली ठाउँमा मिल्ने शब्द भर :

- (क) एकाइ समयमा निश्चित दिशातिर पार गरेको द्रीलाईभिनन्छ ।
- (ख) एकाइ समयमाभएको परिवर्तनलाई प्रवेग भनिन्छ ।
- (ग) ऋणात्मक प्रवेगलाईभिनन्छ ।

२. परिभाषा लेखः

- (क) औसत गति
- (ख) सापेक्षिक गति
- (ग) गति

३. फरक छुट्याऊ :

- (क) औसत गति र सापेक्षिक गति(ख) प्रवेग र गतिहास

४. एक शब्दमा उत्तर देऊ :

- (क) एकाइ समयमा भएको स्थानान्तरणमा परिवर्तन
- (ख) गति परिवर्तनको दर
- (ग) प्रवेगको एकाइ

प्र. छोटो उत्तर देऊ :

- (क) प्रवेग भनेको के हो ?
- (ख) गतिहास भन्नाले के ब्भिन्छ ?
- (ग) सापेक्षिक चाललाई उदाहरणसहित व्याख्या गर ।
- (३) सापेक्षिक बिन्द् (relation point) लाई परिभाषित गर ।

तलका गणितीय समस्याहरू समाधान गर:

(क) एउटा गाडीको गति 20m/s पूर्व र अर्को गाडीको गति 15m/s पश्चिमतिर छ । दुई ओटा गाडीहरू एकै समयमा एउटै ठाउँबाट गुड्दा 2 मिनेटपछि तिनीहरूले कति कति द्री पार गर्दछन्, ती दुई गाडीबिचको दुरी कति हुन्छ ?

(2400m पूर्व, 1800m पश्चिम, 4200m)

- (ख) एउटा मोटरसाइकलले 5 मिनेटमा 2.4km दुरी पार गर्छ भने यसको औसत गति निकाल । (8m/s)
- (ग) स्थिर अवस्थाबाट चल्न सुरु गरेको गाडीको गति 10 सेकेन्डपछि 20m/s पुगेछ भने त्यसको प्रवेग कति होला ? (2m/s²)
- (घ) स्थिर अवस्थाबाट चल्न सुरु गरेको गाडीको प्रवेग 5 सेकेन्डपछि 4m/s² पुगेछ भने यसको अन्तिम गित कित होला ? उक्त अविधमा कित दुरी पार गरेछ ? हिसाब गर । (20m/s, 50m)
- (ङ) समान गतिमा रहेको एउटा कारले ब्रेक लगाउँदा 1m/s² गतिहास भई 5s मा कार रोकियो भने सुरुको गति कति होला ? (5m/s)
- (च) एउटा कार 70 km/hr को गतिमा पूर्वितर र अर्को कार 50 km/hr को गतिमा पश्चिमितर गुडेछ भने तिनीहरूबिचको सापेक्षिक गति निकाल । (120 km/hr)
- (छ) एउटा कार 60 km/hr को गतिमा र अर्को कार 80 km/hr को गतिमा एउटै दिशातिर गुडिरहेका छन् भने तिनीहरूबिचको सापेक्षिक गति निकाल । (20 km/hr)

3

सर्ल यन्त्र

(Simple Machine)

हामीले कामहरू गर्न अनेक प्रकारका ज्यावल तथा उपकरणहरू प्रयोग गर्दछौँ । यस्ता उपकरणहरूको प्रयोगले काम सजिलो, छिटो र सरल तिरकाले सम्पन्न हुन्छ । यस्ता उपकरणहरूलाई सरल यन्त्र भिनन्छ, जस्तै : गल, कैँची, चिम्टा, चक्कु, चम्चा, घिनी, पेचकस ।

सरल यन्त्रका विशेषताहरू

- 1. थोरै बल (effort) ले धेरै तौल (load) उठाउन सिकन्छ ।
- 2. कामलाई छिटो सम्पन्न गर्न सिकन्छ ।
- 3. बलको दिशा परिवर्तन गर्न सिकन्छ ।

उत्तोलक (Lever)

दिइएको चित्रमा एउटा सानो मानिसले ठुलो मानिसलाई सिजलै उठाउन सकेको छ । कसरी यस्तो सम्भव भयो ? यदि हामीले चित्रमा राम्रोसँग अवलोकन गऱ्यौँ भने लामो फल्याकको बिचितर एउटा आड लगाएको वस्तु देख्छौँ । हामी यसलाई फलक्रम भन्छौँ । फलक्रमबाट ठुलो मानिस निजक र सानो

चित्र नं. 3.1

मानिस टाढा रहेको देखिन्छ । त्यसैले यो कार्य हुन सकेको छ । त्यसो भए उत्तोलकले कुन सिद्धान्तमा कार्य गर्दछ ?

उत्तोलकको कार्य सिद्धान्त (Working Principle of Lever)

उत्तोलक सबैभन्दा साधारण उपकरण हो । यो एउटा लामो डन्डी वा फल्याक हो जसले निश्चित बिन्दु फलक्रम (fulcrum) मा आड लिएर यसको वरिपरि घुम्न सक्छ ।

उत्तोलकको एउटा निश्चित ठाउँमा बल (effort) लगाइएको हुन्छ । बल अथवा इफोर्ट लगाएको ठाउँदेखि फलक्रमसम्मको दुरीलाई इफोर्ट दुरी (effort distance) भिनन्छ । उक्त इफोर्टले कुनै बिन्दुमा रहेको लोड (load) का विरुद्धमा कार्य गर्दछ । लोडदेखि फलक्रमसम्मको दुरीलाई लोड दुरी (load distance) भिनन्छ । यसरी उत्तोलकमा इफोर्ट, लोड, फलक्रम, लोड दुरी र इफोर्ट दुरी हुन्छन् । त्यसैगरी, फलक्रमदेखि इफोर्टसम्मको भागलाई इफोर्ट बाहु (effort arm) र लोडितरको भागलाई लोडबाहु (load arm) पिन भिनन्छ ।

कियाकलाप १

एउटा 30 cm लामो बाक्लो प्लास्टिकको स्केल लेऊ । त्यसको ठिक बिच (15 cm) मा पर्ने गरी डटपेनको टुप्पो छिर्ने प्वाल बनाऊ । एउटा तारको टुक्रा उक्त प्वालमा छिराएर चित्रमा देखाए भैँ एउटा स्ट्यान्ड (stand) मा अड्याएर स्केललाई सन्तुलन गर । स्केलको दायाँ र बायाँ विभिन्न पिण्डहरू भुन्ड्याई सन्तुलन गर । पिण्डलाई इफोर्टमा रूपान्तरण गर । 100g पिण्ड बराबर 1N इफोर्ट हुन्छ । दायाँतिरको पिण्डलाई लोड र बायाँतिरको पिण्डलाई इफोर्ट मान । लोडलाई फलक्रमबाट

चित्र नं. 3.3

विभिन्न दुरीमा राखी इफोर्टले सन्तुलन गर । यस प्रयोगको नितजा तलको जस्तै तालिका बनाई भर :

उदाहरण

क्र.स.	बायाँतिर			दायाँतिर		
	इफोर्ट (N)	इ.दु.	इ x इ. दु.	लोड (N)	लो. दु.	लोड x लो. दु.
1.	5N	4	20	2N	10	20
2.						
3.						
4.						

उपर्युक्त प्रयोगबाट निम्नलिखित निष्कर्षमा पुग्न सिकन्छ :

उत्तोलक सन्तुलन हुँदा

इफोर्ट x इफोर्ट दुरी = लोड x लोड दुरी हुन्छ ।

इफोर्ट दुरी छोटो भएमा बढी इफोर्ट लाग्छ । लोड दुरी छोटो भएमा बढी लोड उठाउन कम इफोर्ट भए पिन हुन्छ । त्यसैले सबै उत्तोलकले इफोर्ट X इफोर्ट दुरी = लोड X लोड दुरीको सिद्धान्तमा कार्य गर्दछन् ।

हामीले कपडा काट्ने कैँची, धातु काट्ने कैँची, कागती निचोर्ने, सुपारी काट्ने सरौँतो, ढुङ्गा पल्टाउने गल आदि देखेका छौँ । यी उपकरणहरूले कामलाई सजिलो बनाउँछ ।

यान्त्रिक फाइदा (Mechanical Advantage)

उत्तोलक सन्तुलन भइरहेको अवस्थामा लोड र इफोर्टिबच हुन आउने अनुपातलाई यान्त्रिक फाइदा भनिन्छ ।

यान्त्रिक फाइदा (M.A) =
$$\frac{\text{लोड (L)}}{\text{इफोर्ट (E)}}$$
 or, M.A = $\frac{L}{E}$

साधारण यन्त्रको यान्त्रिक फाइदाले इफोर्टले कित गुणा बढी लोड उठाउँछ भन्ने बताउँछ ।

दिइएको चित्रमा 500N लोड भएको ढुङ्गालाई 200N इफोर्टले उठाउन खोजिएको छ । लोड दुरी 30cm र इफोर्ट दुरी 90cm छ । यहाँ, उत्तोलकले इफोर्टलाई बढाएर (magnify) धेरै लोडलाई सजिलै उठाउन सक्ने बनाउँछ । इफोर्ट कित गुणा बढ्यो भन्ने थाहा पाउन यान्त्रिक फाइदा पत्ता लगाउन्पर्दछ ।

चित्र नं. 3.4

यहाँ, यान्त्रिक फाइदा (M.A.) =
$$\frac{\text{लोड}}{\text{इफोर्ट}} = \frac{500\text{N}}{200\text{N}} = 2.5$$

यसबाट मानिसले लगाएको इफोर्टभन्दा 2.5 गुणा लोडलाई उचाल्न सिकन्छ भन्ने कुरा थाहा हुन्छ । यान्त्रिक फाइदालाई घर्षणले असर पुऱ्याउँछ । घर्षण बल बढेमा यान्त्रिक फाइदा कम हन्छ ।

गति अनुपात (Velocity Ratio)

उत्तोलकको सहायताले लोडलाई इफोर्टले उठाउँदा लोड र इफोर्ट दुवैले केही दुरी पार गर्दछ । लोड र इफोर्टले पार गर्ने दुरी बराबर हुँदैन । इफोर्टभन्दा बढीको लोड उठाउनुपर्दा लोडले भन्दा इफोर्टले बढी दुरी पार गर्नुपर्दछ ।

सरल यन्त्रमा इफोर्टले पार गरेको दुरी र लोडले पार गरेको दुरीबिचको अनुपातलाई गति अनुपात (velocity ratio) भनिन्छ ।

गित अनुपात
$$(V.R) = \frac{$$
 इफोर्टले पार गरेको दुरी लोडले पार गरेको दुरी

उत्तोलकमा गति अनुपात पत्ता लगाउँदा इफोर्ट दुरी र लोड दुरीबिचको अनुपात निकालिन्छ ।

माथिको चित्रमा ढुङ्गा पल्टाउँदा लोड दुरी 30cm र इफोर्ट दुरी 90cm छ ।

गित अनुपात (V.R.) =
$$\frac{$$
 इफोर्ट दुरी $}{$ लोड दुरी $}$ = $\frac{90 \text{cm}}{30 \text{cm}}$ $∴ V.R. = 3$

चित्र नं. 3.5

गित अनुपात 3 भएकाले लोडले भन्दा इफोर्टले 3 गुणा दुरी पार गर्दछ । सरल यन्त्रको गित अनुपातलाई घर्षणले असर गर्दैन । गित अनुपातलाई घर्षणले असर नगर्ने तर यान्त्रिक फाइदालाई घर्षणले असर गर्ने भएकाले यान्त्रिक फाइदा जिहले पिन गित अनुपातभन्दा कम हुन्छ ।

कार्यक्षमता (Efficiency)

यन्त्रमा इफोर्ट प्रयोग गर्दा केही कार्य हुन्छ जसलाई लागत कार्य (input work) भिनन्छ । लागत कार्य = इफोर्ट x इफोर्ट दुरी

यन्त्रमा इफोर्ट प्रयोग गर्दा यन्त्रले गर्ने कार्यलाई उत्पादित कार्य (output work) भिनन्छ । उत्पादित कार्य = लोड \times लोड दुरी

प्रतिशतमा व्यक्त गरिएको उत्पादित कार्य र लागत कार्यिबचको अनुपातलाई कार्यक्षमता (efficiency) भिनन्छ । यसलाई (η) (eta) इटाले जनाइन्छ ।

कार्यक्षमता =
$$\frac{3 \text{ crul} \text{ cr} \cdot \text{ r}}{\text{लागत कार्य}}$$
 \times 100% \times 100% = $\frac{\text{लोड } \times \text{लोड } \text{ cg} \cdot \text{ cg}}{\text{sph} \cdot \text{f}} \times 100\%$ = $\frac{\text{लोड }}{\text{sph} \cdot \text{f}} \times 100\%$ = $\frac{\text{ends}}{\text{sph} \cdot \text{f}} \times 100\%$ = $\frac{\text{ends}}{\text{sph} \cdot \text{f}} \times 100\%$ = $\frac{\text{ends}}{\text{sph} \cdot \text{f}} \times 100\%$ = $\frac{\text{ends}}{\text{ends}} \times 100\%$

कार्यक्षमता
$$(\eta) = \frac{\text{यान्त्रिक फाइदा}}{\text{गित अनुपात}} \times 100\%$$

घर्षणले गर्दा यान्त्रिक फाइदा गति अनुपातभन्दा जिहले पनि कम हुन्छ । त्यसैले कार्यक्षमता जिहले पनि 100 प्रतिशतभन्दा कम हुन्छ ।

उदाहरण १

एउटा उत्तोलकमा 200 न्युटनको लोड उठाउन 50 न्युटन इफोर्ट लाग्छ । यदि इफोर्टले 5m दुरी पार गर्दा लोडले 1 m दुरी पार गर्दछ भने त्यसको यान्त्रिक फाइदा, गति अनुपात र कार्य क्षमता कृति कृति होला ?

यहाँ,

लोड = 200 N
$$= 50 \, \text{N}$$
 $= 50 \, \text{N}$ $= 50 \, \text{M}$ लोड दुरी = 5m $= 50 \, \text{M}$ यान्त्रिक फाइदा = ? $= 50 \, \text{M}$ $= 50 \, \text{$

सूत्रानुसार,
$$\frac{1}{200}$$
 स्वानुसार, $\frac{1}{200}$ स्वानुसार, $\frac{1}{200}$ स्वानुसार, $\frac{1}{200}$ स्वानुसार, $\frac{1}{200}$ स्वानुसार, $\frac{1}{200}$ स्वानुसार, $\frac{200N}{50N} = 4$ $\frac{200N}{50N} = 4$ $\frac{1}{200}$ स्वानुसार, $\frac{1}{200}$ स्व

कार्यक्षमता = 80%

त्यसैले, यान्त्रिक फाइदा (M.A) = 4, गति अनुपात (V.R.) = 5 र कार्यक्षमता (n) = 80% हुन्छ । पर्योगात्मक कार्य

उत्तोलकमा, इफोर्ट X इफोर्ट दुरी = लोड X लोड दुरी हुन्छ भनी प्रमाणित गरी देखाऊ । स्मारांश

- निश्चित ठाउँमा आड लिएर स्वतन्त्रपूर्वक घुम्न सक्ने लामो फल्याक वा डन्डीलाई
 उत्तोलक भिनन्छ ।
- २. इफोर्ट x इफोर्ट दुरी = लोड x लोड दुरीको सिद्धान्तमा उत्तोलक आधारित हुन्छ ।
- ३. लोड र इफोर्टबिचको अन्पातलाई यान्त्रिक फाइदा भनिन्छ ।
- ४. इफोर्ट दुरी र लोड दुरीबिचको अनुपातलाई गति अनुपात भनिन्छ ।
- प्रान्त्रिक फाइदा र गति अनुपातिबचको प्रतिशतमा व्यक्त गरिएको अनुपातलाई कार्यक्षमताभनिन्छ ।

अ∂यास

- खाली ठाउँमा मिल्ने शब्द लेख :
 - (क) उत्तोलकले आड लिएको ठाउँलाई......भिनन्छ ।
 - (ख) उत्तोलकमा इफोर्ट X इफोर्ट द्री = लोड Xहन्छ ।

- (ग) यान्त्रिक फाइदा = लोड
- २. परिभाषा लेख:
 - (क) यान्त्रिक फाइदा
- (ख) गति अनुपात
- (ग) कार्यक्षमता

- ३. कारणसहित लेख:
 - (क) उत्तोलकको कार्यक्षमता जहिले पनि 100 प्रतिशतभन्दा कम हुन्छ ।
 - (ख) फलामको पाता काट्ने कैँचीको धार छोटो हुन्छ भने कपडा काट्ने कैँचीको धार लामो हुन्छ ।
 - (ग) एक पाङ्ग्रे ठेलागाडामा लोडलाई जित पाङ्ग्रातिर सारियो उति नै उचाल्न सजिलो हुन्छ ।
- ४. यान्त्रिक फाइदा र गति अनुपातबिच दुईओटा फरक लेख।
- ५. एउटा उत्तोलकको यान्त्रिक फाइदा ४ छ भन्नुको अर्थ के हो, लेख ।
- ६. एउटा बिलयो मानिस र अर्को दुब्लो मानिस मिलेर एउटा काठको खम्बा बोकेर लैजानु पऱ्यो । अब, कमजोर मानिसलाई कम लोड र बिलयो मानिसलाई बढी लोड पर्ने गरी उक्त खम्बा कसरी बोक्न सिकन्छ, कारणसिहत लेख ।
- ७. तलका गणितीय समस्याहरू समाधान गर :
 - (क) 400N को लोडलाई 100N को इफोर्टले उठाउन खोजिएको छ । लोडदेखि फलक्रम सम्मको दुरी 20cm भए फलक्रमबाट इफोर्ट कित दुरीमा लगाउनुपर्ला ? (80cm)
 - (ख) 600N तौल भएको श्रृजन र 300N तौल भएको श्रृजेश मिलेर ढिकिच्याउँ (sea saw) खेल्न थाले । श्रृजन फलक्रमबाट 2m टाढा बसेको भए उसलाई सन्तुलन गर्न श्रृजेश फलक्रमबाट कित टाढा बस्नुपर्ला ? (4m)
 - (ग) 1 मिटर लामो उत्तोलक प्रयोग गरी 600N लोड उठाउन 200N इफोर्ट लाग्यो । यदि फलक्रम लोडबाट 20cm टाढा भएमा त्यसको यान्त्रिक फाइदा, गित अनुपात र कार्यक्षमता कित कित होला ? (MA = 3, VR = 4, η = 75%)

0.5m.

(घ) तलको चित्र अध्ययन गरी दिइएको लोड उठाउन आवश्यक इफोर्ट पत्ता लगाऊ । (120N)

8

चाप

(Pressure)

पृथ्वीको वरिपरि हावाले ढाकेको छ । हावाले ढाकेको पृथ्वीको वरिपरिको भागलाई वायुमण्डल भिनन्छ । पृथ्वीको सतहबाट लगभग 1000 km माथिसम्म हावा फैलिएको हुन्छ । हावाको पिन तौल हुन्छ । हावाको तौलले गर्दा यसले जिमनितर चाप दिन्छ । यसलाई वायुमण्डलीय चाप भिनन्छ ।

वायुमण्डलीय चाप (Atmospheric Pressure)

पृथ्वीको सतहको एकाइ क्षेत्रफलमा पर्ने हावाको चापलाई वायुमण्डलीय चाप भनिन्छ । पृथ्वीको सतहमा वायुको चाप बढी हुन्छ भने पृथ्वीको सतहबाट जित जित माथि गयो वायुमण्डलीय चाप घट्दै जान्छ । समुद्र सतहमा वायुमण्डलीय चाप 101300 N/m² अर्थात् 760 mmHg हुन्छ । पृथ्वीको सतहको वायुमण्डलीय चापमा हुने परिवर्तनले गर्दा हावा एक ठाउँबाट अर्को ठाउँमा बहन्छ । हावाको चाप थाहा पाउन तलको प्रयोग गरेर हेरौँ ।

कियाकलाप १

एउटा गिलास लेऊ । गिलासलाई पानीले भर । त्यस गिलासलाई एउटा कार्ड बोर्ड वा बाक्लो कागजको टुक्राले हावा निछर्ने गरी राम्ररी छोप । एउटा हातले गिलासको पिँधमा र अर्को हातले कागज माथि समात र गिलासलाई घोप्ट्याऊ । बिस्तारै कार्ड बोर्डलाई थिचेको हात हटाऊ । अब के हुन्छ, हेर ।

चित्र नं. 4.1

गिलासको मुखमा राखेको कार्ड बोर्ड खस्दैन । यसले पानीलाई अड्याएर राख्छ । हावाको चापले गर्दा नै पानी नखसीकन कार्ड बोर्ड अंडिन सकेको हो ।

विचारणीय प्रश्न

खाली गिलासलाई सिधा घोप्टो पारेर पानीमा डुबाउँदा डुब्दैन, किन ?

कियाकलाप २

सानो बिर्को लगाउन मिल्ने एउटा टिनको बट्टा लेऊ । त्यसमा बिर्को खोलेर अलिकित पानी राख र तताऊ । बट्टा भित्रको पानी उम्लेर बाफ बाहिर जान थालेपछि त्यसमा हावा निष्ठेने गरी राम्ररी बिर्को लगाऊ । बट्टालाई तताउन छोडेर बाहिर राख र त्यसको बाहिर चिसो पानी खन्याऊ । के हन्छ, हेर ।

चित्र नं. 4.2

तिमीले हेर्दा हेर्दे बट्टा कुच्चिन थाल्छ । बट्टाभित्र र बाहिरको हावाको चाप फरक परेर बट्टा कुच्चिएको हो । बट्टालाई तताउनुभन्दा पहिले यसभित्र र बाहिरको चाप बराबर थियो । त्यसैले बट्टामा कुनै असर परेको थिएन । जब बट्टामा पानी भरेर तताइयो तब त्यस भित्रको वाफले धकेलेर हावा बाहिर निस्कियो र हावा कम भयो । बट्टामा बिर्को लगाएपछि बाहिरबाट हावा भित्र छिर्न पाएन । बट्टा चिस्याएपछि भित्रको चिसो हावाको आयतन घट्यो र भित्रको चाप कम हुन गयो । फलस्वरूप बट्टाभित्रको हावाको चापभन्दा बाहिरको हावाको चाप बढी भयो र हावा भित्र पस्न खोज्दा बट्टा कुच्चियो ।

क्रियाकलाप ३

एउटा गिलासमा पानी लेऊ । एउटा प्लास्टिक वा छ्वालीको सानो पाइप गिलासमा राख । पाइपभित्रको हावा मुखले बिस्तारै तान । अब के हुन्छ, हेर ।

पाइपिभत्रको हावा मुखले तान्दा पाइपमा हावाको चाप कम हुन जान्छ । बाहिरी वायुमण्डलीय चापले गर्दा गिलासको पानी पाइपिभत्र पस्छ । यसले गर्दा तान्ने मानिसको मुखमा पानी आउँछ । यसैगरी कलममा मसी भर्दा वा डाक्टरले सिरिन्जमा औषधी भर्दा पाइपको भित्र र बाहिरको चापमा भिन्नता हुन्छ । यसले गर्दा कलममा मसी तथा सिरिन्जमा औषधी भरिन्छ ।

वायुमण्डलीय चापको महत्त्व (Importance of Atmospheric Pressure)

वायुमण्डलीय चापका कारणले गर्दा नै हामीले विभिन्न उपकरणहरू व्यवहारमा ल्याउन सकेका छौँ, जस्तै :

- 9. कलममा मसी भर्न
- ३. साइकलमा हावा भर्ने पम्प चलाउन
- २. सिरिन्जमा औषधी भर्न
- ४. पानी तान्ने पम्प बनाउन आदि

यी सबै उपकरणहरू वायुमण्डलीय चापमा आधारित छन् । यदि वायुमण्डलीय चाप नभएको भए हामीले यी उपकरणहरू प्रयोगमा ल्याउन सक्ने थिएनौँ । त्यसैले वायुमण्डलीय चाप हाम्रा लागि महत्त्वपूर्ण छ ।

तरल पदार्थको चाप (Pressure of Liquid)

चाप भनेको प्रतिएकाइ क्षेत्रफलमा लगाइएको बल हो । ठोस वस्तुलाई कुनै ठाउँमा राख्दा त्यसको तौलले गर्दा सतहमा चाप दिन्छ । त्यस्तै तरल पदार्थले पिन आफ्नो तौलको कारणले गर्दा पिँधमा चाप दिन्छ ।

भाँडामा राखिएको तरल पदार्थले आफ्नो तौल (weight) ले गर्दा प्रतिएकाइ क्षेत्रफलमा पैदा गर्ने बल (force per unit area) लाई तरलको चाप भनिन्छ ।

नियमित वस्तुले उत्पन्न गर्ने चाप (p) =
$$\frac{\text{बल (F)}}{\text{क्षेत्रफल (A)}}$$

तरल पदार्थको चापको मापन (Measurement of Prersure of Liquid)

चित्रमा देखाइए भैँ एउटा भाँडो लेऊ । यसको आधार क्षेत्रफल A मानौँ । यस भाँडामा उचाइ h सम्म हुने गरी कुनै तरल पदार्थ राखौँ । तरल पदार्थको घनत्व d र यस स्थानको गुरुत्व प्रवेग g मानौँ । अब, उक्त तरल पदार्थको आयतन V = A x h हुन्छ । यहाँ. तरल पदार्थले भाँडाको पिँधमा दिने बल नै यसको तौल हो ।

हामीलाई थाहा छ, तरल पदार्थले यसको पिँधमा दिने चाप भनेको प्रति एकाइ क्षेत्रफलमा लम्ब रूपले पर्ने बल हो ।

त्यसैले,

चाप (p) =
$$\frac{\pi \sqrt{\pi} \sqrt{\pi}}{\pi}$$
 (w) $\frac{\pi}{\pi}$ (पँधको सतहको क्षेत्रफल (A)

$$p = \frac{w}{\Delta} = \frac{\text{पिण्ड (m) X गुरुत्व प्रवेग (g)}}{\Delta} (:: w = mg)$$

त्यसैले, तरल पदार्थको चाप बराबर तरलको घनत्व (d), तरलको गिहराइ वा उचाइ (h) र गुरुत्व प्रवेग (g) को गुणन फल हुन्छ । तरल पदार्थको गिहराइ बढेमा चाप पिन बढ्छ । त्यसैगरी तरलको घनत्व बढेमा त्यसले दिने चाप पिन बढ्छ ।

उदाहरण १

एउटा पानी ट्याङ्कीको उचाइ 1.5m छ । यदि सो ट्यां्कीभरि पानी छ भने त्यसले पिँधमा दिने चाप कित होला ? (पानीको घनत्व = 1000 kg/m³)

यहाँ, तरलको उचाइ (h)=
$$1.5m$$
 सूत्रानुसार, (p) = $h \times d \times g$ पानीको घनत्व (d)= 1000 kg/m^3 = $1.5 \times 1000 \times 9.8$ गुरुत्व प्रवेग (g)= 9.8 m/s^2 = 14700 N/m^2 = $14,700 \text{ pascal}$

उदाहरण २

एउटा ड्रममा राखिएको तरल पदार्थको गिहराइ 2m र यसले पिँधमा दिने चाप 500 N/m² छ भने उक्त तरलको घनत्व कित हुन्छ ?

सूत्रानुसार, $p = h \times d \times g$

or,
$$d = \frac{p}{hg}$$

or,
$$d = \frac{500}{2 \times 9.8}$$

$$d = 25.51 \text{ kg/m}^3$$

उक्त तरलको घनत्व 25.51 kg/m³ हुन्छ ।

तरल पदार्थका गुणहरू (Characteristics of Liquid)

१. तरल पदार्थको गहिराइ बढेअनुसार यसले दिने चाप पनि बढ्छ ।

क्रियाकलाप ४

एउटा पानी राख्ने पोलिथिनको भाँडो वा मिनरल वाटरको बोटल वा गोल्टिनको बट्टा लेऊ । त्यसको विभिन्न उचाइमा तीनओटा प्वालहरू बनाऊ । ती प्वाललाई टेपले राम्रोसँग बन्द गर र त्यस भाँडामा पानी भर । अब, सबै प्वालहरू एकैसाथ खोलिदेऊ । अब के हुन्छ, अवलोकन गर ।

यस प्रयोगमा सबैभन्दा तलको प्वालबाट पानी जोडले बाहिर आउँछ । त्यसपछि क्रमशः माथिको प्वालमा कम जोडले आएको देखिन्छ । यस प्रयोगले तरल पदार्थको चाप गहिराइ बढेअनुसार बढ्दै जान्छ भन्ने कुरा पृष्टि गर्दछ । त्यसैले धेरै गहिरा नदीहरूमा बाँध बनाउँदा पिँध फराकिलो र बलियो बनाइन्छ ।

चित्र नं. 4.5

२. तरल पदार्थले चारैतिर लम्ब रूपले चाप दिन्छ ।

क्रियाकलाप ५

एउटा प्लास्टिकको पानी राख्ने बोटल (मिनरल वाटरको बोटल) लेऊ । त्यसमा सियोले चारैतिर मिसना प्वाल बनाऊ । अब त्यसमा पानी भर र बिस्तारै हातले अठ्याउँदै लैजाऊ । अब के हुन्छ, हेर ।

सबै प्वालबाट जोडले पानी आएको देखिन्छ । यसबाट तरल पदार्थले चारैतिर चाप दिन्छ भन्ने कुरा थाहा हुन्छ । एउटा प्लास्टिकको भोलामा सियोले मसिना प्वाल पारेर पनि यो प्रयोग गर्न सिकन्छ ।

वस्तुको घनत्व (Density)

एक बोरा सिमेन्ट उचाल्दा गरौँ लाग्छ तर त्यही सिमेन्टको बोरामा धान वा मकै भरेर उचाल्दा हलुका लाग्छ । यस्तो किन हुन्छ, छलफल गर ।

पानी भरेको प्लास्टिकको भोला चित्र नं 4.6

विभिन्न वस्तुहरूमध्ये कुन गरौँ छ भनेर छुट्याउन के गर्न सिकन्छ, उदाहरणका लागि काठ र मैनमध्ये कुन गरौँ छ भनेर कसरी पत्ता लगाउने, के तिनीहरूलाई जोखेर पत्ता लगाउन सिकन्छ, जोख्दा काठको टुक्रा ठुलो भएमा त्यसको पिण्ड धेरै हुन सक्छ । फेरि मैनको टुक्रा ठुलो भएमा त्यसको पिण्ड धेरै हुन सक्छ । त्यसैले बराबर आयतन भएका वस्तुहरू जोखेर हेर्दा पिण्ड बढी भएको वस्तु गरौँ हुन्छ । तर बराबर आयतन र पिण्ड भएका वस्तुहरू नपाउन सिकन्छ । त्यसैले वस्तुको पिण्ड र आयतन दुवै नापेर एकाइ आयतनको पिण्ड हिसाब गरेर निकाल्नुपर्दछ । एकाइ आयतनको पिण्ड निकाल्न वस्तुको पिण्डलाई वस्तुको आयतनले भाग गर्नुपर्दछ ।

कुनै वस्तुको एकाइ आयतनको पिण्डलाई त्यसको घनत्व (density) भिनन्छ । त्यसकारण,

वस्तुको घनत्वलाई त्यसको आकार र साइजले कुनै असर पर्दैन । पदार्थको गुणअनुसार घनत्व फरक हुन्छ । वास्तवमा वस्तुको खँदिलोपना नै घनत्व हो । जित खँदिलोपना बढ्छ त्यसको घनत्व त्यित नै बढी हुन्छ, जस्तै : काठभन्दा फलाम गरौँ हुन्छ भन्नुको अर्थ काठभन्दा फलाम बढी खँदिलो हुन्छ भन्नु हो ।

उदाहरण ३

2 घनिमटर आयतन भएको एउटा फलामको पिण्ड 16000 kg छ भने फलामको घनत्व कति होला ?

तसर्थ, फलामको घनत्व = 8000 kg/m³ हुन्छ ।

घनत्वको एकाइ (Unit of Density)

यदि पिण्डलाई किलोग्राम (kg) र आयतनलाई घनिमटर (m³) एकाइमा नापिन्छ भने घनत्वको एकाइ किलोग्राम प्रतिघनिमटर (kg/m³) हुन्छ । तर पिण्डलाई ग्राम एकाइमा र आयतनलाई घनसेन्टिमिटरमा नापियो भने घनत्वको एकाइ ग्राम प्रतिघन सेन्टिमिटर (gm/cm³) हुन्छ ।

क्रियाकलाप ६

बराबर साइजका र नियमित आकारका दुई ओटा भाँडाहरू लेऊ । ती दुई भाँडाहरूमध्ये एउटामा पानी र अर्कोमा बालुवा भर । अब दुवै भाँडाहरूलाई बेग्लाबेग्लै जोखेर तिनीहरूको पिण्ड पत्ता लगाऊ । ती दुई भाँडाहरूको आयतन निकाल । अब, पानी र बालुवाको घनत्व कित कित हुन्छ, हिसाब गरी निकाल ।

सापेक्षिक घनत्व (Relative Density)

एक वस्तुको घनत्व र अर्को वस्तुको घनत्विषचको अनुपातलाई सापेक्षिक घनत्व (relative density) भिनन्छ । पानीलाई प्रामाणिक (standard) वस्तु मानी अन्य वस्तुको घनत्व पानीको घनत्वसँग तुलना गरिन्छ । त्यसैले कुनै पिन वस्तुको घनत्व र पानीको घनत्विषचको अनुपातलाई त्यस वस्तुको सापेक्षिक घनत्व भिनन्छ ।

सापेक्षिक घनत्व = वस्तुको घनत्व पानीको घनत्व

क्रियाकलाप ७

क्रियाकलाप ६ दोहोऱ्याऊ । बालुवाको सापेक्षिक घनत्व कित होला, हिसाब गरी निकाल । उत्रने र डुब्ने क्रिया (Floating and Sinking)

कुनै वस्तु पानीमा डुब्छ भने कुनै उत्रन्छ । यस्तो किन हुन्छ, साथीहरूसँग छलफल गरी शिक्षकलाई आफ्नो निष्कर्ष सुनाऊ । सामान्यतया पानीभन्दा गरौँ वस्तु पानीमा डुब्छ । पानीभन्दा हलुका वस्तुहरू पानीमा उत्रन्छ । कुन कुन वस्तुहरू पानीमा डुब्छन्, कुन कुन वस्तु पानीमा उत्रन्छन्, एउटा क्रियाकलाप गरी हेरौँ ।

क्रियाकलाप ट

काठको टुक्रा, प्लास्टिक, इरेजर, फलामका टुक्रा, ढुङ्गाका टुक्राहरू सङ्कलन गर । एउटा बिकरमा पानी लिई पालैपालो ती वस्तुहरूलाई पानीमा राखेर हेर । कुन वस्तु पानीमा डुब्छ र कुन उत्रन्छ, दिइएको तालिका बनाई भर ।

क्र .स.	वस्त्	पानीमा डुब्छ/डुब्दैन	पानीको भन्दा घनत्व बढी/कम
٩.	काठको दुक्रा		
₹.	प्लास्टिक		
₹.	इरेजर		
8.	फलामको दुक्रा		
ሂ.	ढुङ्गाको टुक्रा		

पानीमा डुब्ने वस्तुहरूको घनत्व पानीको भन्दा बढी हुन्छ । त्यस्तै पानीमा उत्रने वस्तुहरूको घनत्व पानीको भन्दा कम हुन्छ ।

विचारणीय प्रश्न

पानीमा मटितेल मिसाउँदा कुन पदार्थ तैरिन्छ, किन ?

क्रियाकलाप ९

एउटा बिकर लेऊ र त्यसमा केही सफा पानी राख । एउटा अन्डा लेऊ र बिकरको पानीमा बिस्तारै राख । अन्डा पिँधमा रहन्छ अर्थात् डुब्छ । अब, बिकरको पानीमा नुन घोल्दै जाऊ । नुन बढी घोलेपछि अन्डा उत्रन

चित्र नं. *4.7*

थाल्छ । नुनपानीको गाढा घोलमा अन्डा उत्रन्छ । यहाँ, पानीको भन्दा अन्डाको घनत्व बढी भएकाले अन्डा पानीमा डुब्छ । त्यसैगरी नुनपानीको भन्दा अन्डाको घनत्व कम भएकाले नुनपानीमा अन्डा उत्रन्छ । यसरी उत्रने र डब्ने क्रिया वस्तुको घनत्वमा भर पर्दछ ।

प्रयोगात्मक क्रियाकलाप

- १. एउटा प्लास्टिकको भोला लेऊ । त्यसमा पानी भर र त्यसको मुखमा टम्म हुने गरी धागोले बाँध । अब, एउटा सियो लिएर त्यस भोलाको विभिन्न भागमा प्वाल पार । बिस्तारै त्यस भोलालाई अठ्याऊ । के हुन्छ, अवलोकन गर । यसको निष्कर्ष के हो, लेख ।
- २. एउटा बाल्टिनमा पानी भर । त्यस बाल्टिनमा एउटा खाली सिसीको मुखलाई बिस्तारै डुबाऊ । सिसीमा पानी भरिँदा के के हुन्छ, अवलोकन गर । यस प्रयोगको निष्कर्ष के होला ?
- ३. एउटा बेलुनलाई मुखले फुकी ठुलो बनाऊ । अभ बढी फुकेमा बेलुन फुट्छ । किन यस्तो हुन्छ, कारण लेख ।

यारांश

- पृथ्वीको वरिपरि हावाले ढाकेको भागलाई वायुमण्डल भनिन्छ ।
- २. पृथ्वीको सतहमा एकाइ क्षेत्रफलमा पर्ने हावाको चापलाई वायुमण्डलीय चाप भनिन्छ ।
- ३. हावालाई कोच्न सिकन्छ ।
- ४. वायुमण्डलीय चापले गर्दा कलममा मसी भर्न, सिरिन्जमा औषधी भर्न, पानी तान्ने पम्प सञ्चालन गर्न मदत गर्दछ ।
- ५. तरल पदार्थको चाप (P) = hxdxg हुन्छ ।
- ६. बललाई न्युटन (N) मा नापिन्छ । चापलाई पास्कल वा N/m² मा नापिन्छ ।
- ७. तरल पदार्थको गहिराइ बढेमा चाप पनि बढ्छ ।

- तरल पदार्थले चारैतिर लम्ब रूपले चाप दिन्छ ।
- एक एकाइ आयतनमा भएको क्नै वस्तुको पिण्डलाई त्यो वस्तुको घनत्व भनिन्छ ।
- १०. वस्तुको घनत्व र पानीको घनत्विबचको अनुपातलाई सापेक्षिक घनत्व भनिन्छ ।
- ११. पानीको भन्दा बढी घनत्व भएको वस्तु पानीमा डुब्छ तर पानीको भन्दा कम घनत्व भएको वस्तु पानीमा उत्रिन्छ ।

7	ГΩ		\boldsymbol{T}	П
- 14		יטי	<i>1</i> -	ч

	_	ت	0			
q	खाली	ठाउँमा	मिल्दो	शहद	भर	

- (क) हावाले गर्दा वायुमण्डलमा हुने चापलाई भिनन्छ ।
- (ख) चाप भनेको प्रतिएकाइ क्षेत्रफलमा लगाइएको हो ।
- (ग) तरल पदार्थको गहिराइ बढेमा त्यसको चाप पनि।
- (घ) घनत्वको एकाइ हो ।
- (ङ) पानीको भन्दा कम भएको वस्तु पानीमा उत्रन्छ ।

तल दिइएका उत्तरहरूमध्ये सही उत्तर छान :

- (क) घनत्वको एकाइ कुन हो :
 - (अ) किलोगाम प्रतिघनमिटर

- (आ) किलोग्राम प्रतिलिटर
- (इ) किलोग्राम प्रतिघनसेन्टिमिटर
- (ई) किलोग्राम प्रतिमिटर

(ख) घनत्वको सुत्र कुन हो ?

$$(3)$$
 M = M \times V

$$(आ) V = D x M$$

(इ) D =
$$\frac{V}{M}$$

$$(\xi) D = \frac{M}{V}$$

(ग) तरल पदार्थमा कस्तो वस्तु उत्रन्छ?

- (अ) तरलको भन्दा कम घनत्व भएको वस्त् (आ) घनत्व भएको वस्त्
- (इ) तरलको भन्दा बढी घनत्व भएको वस्तु (ई)
 - बढी पिण्ड भएको वस्त्

- (घ) तरल पदार्थले चाप कतातिर दिन्छ?
 - (अ) माथितिर मात्र दिन्छ
- (आ) तलतिर मात्र दिन्छ
- (इ) छेउतिर मात्र दिन्छ
- (ई) चारैतिर दिन्छ
- (ङ) 100 m गहिराइ र 9.8 m/s² गरुत्व प्रवेग भएको ठाउँमा पानीको चाप कति हन्छ ?

 - (अ) 980 pa (अ) 9800 pa
- (इ) 98000 pa
- (ई) 980000 pa

कारण लेख: ₹.

- (क) तरल पदार्थको चाप यसको गहिराइअनुसार फरक फरक हुन्छ ।
- (ख) खोलामा बाँध बनाउँदा बाँधको पिँध बाक्लो बनाइन्छ ।
- (ग) बेल्नमा धेरै हावा भर्दै गएमा बेल्न फ्ट्छ ।

४ छोटो उत्तर लेख:

- (क) वायमण्डलीय चाप भनेको के हो, उदाहरणसहित लेख ।
- (ख) तरल पदार्थको चाप हुन्छ भनी कसरी थाहा पाउन सिकन्छ ?
- (ग) वायुमण्डलको चाप हुन्छ भनी कसरी थाहा पाउन सिकन्छ ?
- (घ) घनत्व भनेको के हो ?
- (ङ) कस्तो वस्त पानीमा उत्रन्छ ?
- (च) सापेक्षिक घनत्व भनेको के हो ?

५. तलका समस्याहरू हल गर:

- (क) एउटा इनारमा 10m गहिराइसम्म पानी छ भने उक्त पानीले दिने चाप कति हन्छ, हिसाब गर । $(g = 9.8 \text{ m/s}^2)$ (98000 pa)
- (ख) दिइएको चित्रमा तरल पदार्थले पिँधमा दिने चाप पत्ता लगाऊ । (11,760 pa)
- d= 300kg/m
- (ग) 5m³ आयतन भएको बरफको ढिक्काको पिण्ड कति हुन्छ ? (बरफको घनत्व 920kg/m³)

- (4600 kg)
- (घ) एउटा पानी राख्ने ट्याङ्कीको नाप 3mx2mx2m छ । त्यसमा आधा पानी मात्र हँदा द्याङ्कीको पिँधमा कति चाप पर्दछ ? (पानीको घनत्व = 1000kg/m³ र $q = 9.8 \text{ m/s}^2 \ \overline{8} \ 1)$ (9800 pa)

शक्ति, कार्य न सामर्थ्य (Energy, Work and Power)

शक्ति (Energy)

सम्पूर्ण सजीवहरूका लागि खाना आवश्यक पर्दछ । खानाबाट शक्ति प्राप्त हुन्छ । त्यही शिक्तबाट प्राणीहरूले विभिन्न कार्यहरू गर्दछन् । त्यसैगरी विभिन्न सवारीका साधनहरू, मोटर, मोटरसाइकल, हवाईजहाज आदिले इन्धनबाट शिक्त प्राप्त गर्दछन् । कितपय उपकरणहरू विद्युत् शिक्तले सञ्चालन हुन्छन् । शिक्तले कार्य गर्न बल प्रदान गर्दछ । त्यसैले शिक्त भनेको कार्य गर्न सक्ने क्षमता हो । जुन वस्तुमा शिक्त छैन त्यसले कार्य गर्न सक्दैन ।

कार्य गर्न सक्ने क्षमतालाई शक्ति भनिन्छ । शक्तिलाई जुल (joule) एकाइमा नापिन्छ ।

शक्तिका किसिमहरू (Kinds of Energy)

प्रकृतिमा शक्तिका विभिन्न रूप छन् । यान्त्रिक शक्ति, ताप शक्ति, ध्विन शक्ति, चुम्बकीय शक्ति, प्रकाश शक्ति, विद्युत् शक्ति, रासायिनक शक्ति, पारमाणविक शक्ति आदि शक्तिका विभिन्न रूपहरू हुन् । यस एकाइमा हामी यान्त्रिक शक्तिका बारेमा अध्ययन गर्दछौँ ।

यान्त्रिक शक्ति (Mechanical Energy)

वस्तुको चाल वा स्थिर अवस्थाका कारणले उत्पन्न हुने शक्तिलाई यान्त्रिक शक्ति भनिन्छ । यसका दुईओटा रूप हुन्छन् ।

(क) स्थिति शक्ति (Potential Energy)

क्रियाकलाप १

मट्याङ्ग्रासिहतको एउटा गुलेली लेऊ । गुलेलीलाई कोही नभएको खुला ठाउँतिर तानेर मट्याङ्ग्रा छोड । मट्याङ्ग्रा परसम्म जान्छ । मट्याङ्ग्रालाई परसम्म पुऱ्याउन कुन शिक्तले कार्य गऱ्यो ? त्यो शिक्त कहाँबाट आयो ? साथीहरूबिच छलफल गर । गुलेलीलाई तन्काउँदा मांसपेशीमा रहेको शिक्त गुलेलीको रबरमा सिञ्चत हुन्छ । यसरी तिन्कएको रबरमा जम्मा भएको शिक्त नै स्थिति शिक्त (potential energy) हो ।

वस्तुमा त्यसको स्थान वा स्थिति परिवर्तनका कारणले सञ्चित रहने शक्तिलाई स्थिति शक्ति भनिन्छ ।

अग्लो स्थानमा उठाएर राखिएको ढुङ्गा, इँटा, बाँधमा जम्मा भएको पानी आदिमा स्थानका कारणले शक्ति सञ्चित हुन्छ । त्यसैगरी कुनै स्प्रिङलाई बङ्याउँदा, तन्काउँदा वा बेर्दा त्यसको स्थितिमा परिवर्तन हुन्छ र शक्ति सञ्चित हुन्छ । भकुन्डो हान्न गोडा उचाल्दा पनि गोडाका मांसपेशीको स्थितिमा परिवर्तन आई शक्ति सञ्चित हुन्छ ।

मानौँ, कुनै वस्तुको पिण्ड m छ । त्यस वस्तुलाई जिमनबाट h उचाइमा उठाउँदा लाग्ने बल बराबर त्यस वस्तुको तौल हुन्छ । वस्तुको तौल (F) = mg हुन्छ । अब, त्यसमा भएको कार्य = mg mg mg mg mg । यहाँ, वस्तुमा भएको जम्मा कार्य नै त्यस वस्तुमा सिञ्चित शिक्त हुन्छ । त्यसैले, स्थिति शिक्त = mg हुन्छ ।

उदाहरण १

एउटा 5 kg को ढुङ्गालाई 3 m उचाइमा पुऱ्याउन कित शिक्त आवश्यक पर्दछ ? $(g = 9.8 \text{ m/s}^2)$

यहाँ, पिण्ड (m) = 5 kg

उचाइ (h) = 3 m

गुरुत्व प्रवेग (g) = 9.8 m/s^2

स्थिति शक्ति (potential energy) = m g h

 $= 5 \times 3 \times 9.8$

∴ स्थिति शक्ति = 147 जुल (joule)

(ख) गति शक्ति (Kinetic Energy)

हामीले एउटा ढुङ्गालाई उचालेर माटामा फाल्दा ढुङ्गाले माटामा केही खाल्डो पार्दछ । त्यसैगरी गुडिरहेको मोटर अन्य कुनै वस्तुमा ठोकियो भने अगाडिको भाग फुट्छ । यस्तो किन हुन्छ ? कुनै पिन चालमा रहेको वस्तुमा शिक्त हुन्छ । गुडिरहेको बल, बन्दुकबाट छोडिएको गोली, बगेको पानी आदिमा पिन चाल शिक्त हुन्छ । त्यसैले बिगरहेको पानीबाट बिजुली निकाल्न सिकन्छ । त्यसैगरी बिहरहेको हावा (बतास) बाट पङ्खा घुमाएर पिन बिजुली निकाल्न सिकन्छ ।

वस्तुमा हुने चालले गर्दा उत्पन्न हुने शक्तिलाई चाल शक्ति (kinetic energy) भनिन्छ ।

कियाकलाप २

एउटा बल लेऊ । एक जनाले बल बिस्तारै फाल र अर्कोले समात । फेरि सोही बललाई अलि बढी गतिमा फाल र अर्काले बल समात । बिस्तारै फालेको बल समात्दा र छिटो फालेको बल समात्दा के फरक पायौ, बताऊ । त्यसैगरी एउटा गरौँ बल (क्रिकेट बल)

र अर्को हलुका बल (टेनिस बल) पालैपालो फाल्ने र समात्ने गर । गह्रौँ बल र हलुका बल समात्दा के अन्तर पायौ, छलफल गर ।

बलको गित बढ्दा यसको चाल शिक्त पिन बढ्छ । त्यसैले बढी गितिमा आएको बल समात्न गाह्रो हुन्छ । त्यसैगरी हलुकोभन्दा गह्रौँमा पिन चाल शिक्त बढी हुन्छ र समात्न गाह्रो हुन्छ । यसैले चाल शिक्त वस्तुको पिण्ड र गितमा भर पर्दछ ।

वस्तुको चाल शक्ति त्यसको पिण्ड र गतिको वर्गको गुणनफलको आधा हुन्छ । कुनै वस्तुको गति (v) र पिण्ड (m) भए,

गति शक्ति (kinetic energy)= $\frac{1}{2}x$ पिण्ड (m) x गति 2 (v) 2 अर्थात् K.E = $\frac{1}{2}$ mv 2 हुन्छ ।

उदाहरण २

एउटा 200 kg को मोटरसाइकल 20 m/s को गतिले गुडिरहेको छ भने त्यसको गति शक्ति कित होला ?

यहाँ, वस्तुको पिण्ड (m) = 200kg गित शिक्त (K.E.) =
$$\frac{1}{2}$$
mv² = $\frac{1}{2}$ x 200 x (20)² गित शिक्त (K.E.) = ? = $\frac{1}{2}$ x 200 x 400 = 4000J = 40kJ

उक्त मोटरसाइकलको गति शक्ति 40000 जुल अथवा 40 किलो जुल रहेछ ।

कार्य (Work)

कर्य भनेको के हो ? एउटा मानिस भारी बोकेर उभिरहेको छ भने उसले कार्य गरिरहेको छ त ? हामीले दैनिक जीवनमा विभिन्न कार्यहरू गरिरहेका हुन्छौँ । तर वैज्ञानिक परिभाषाअनुसार ती सबै कार्यलाई कार्य मानिँदैन । कार्य हुनका लागि बलको प्रयोग भई वस्तुले दुरी पार गरिरहेको हुनुपर्दछ । त्यसैले स्थिर अवस्थामा रहेको वस्तुले कार्य गरेको मानिँदैन । निश्चित बिन्दुमा बल प्रयोग गरी कुनै वस्तुलाई केही दुरी पार गराउँदा त्यस वस्तुमा कार्य भएको मानिन्छ, जस्तै : कुनै वस्तुलाई उठाएर माथि राख्नु वा घिसारेर तान्दा चाल उत्पन्न हुन्छ ।

कार्य हुनका लागि निम्नलिखित दुई अवस्थाको आवश्यकता पर्दछ :

वस्तुमा बल लगाउनु र २. वस्तुले दुरी पार गर्नु

कार्य (w) = बल (f)
$$x$$
 द्री (d) हन्छ ।

 \therefore w = f x d

बललाई न्युटन र दुरीलाई मिटर एकाइमा नापियो भने कार्यको एकाइ जुल (joule) हुन्छ । 1 न्युटन बल लगाएर कुनै वस्तुलाई 1 मिटर पर धकेल्दा हुने कार्यलाई 1 जुल भनिन्छ ।

कार्यको प्रकार (Types of Work)

कार्यलाई मुख्य दुई प्रकारमा विभाजन गर्न सिकन्छ :

(क) घर्षण बल विरुद्धको कार्य

(ख) ग्रुत्व बल विरुद्धको कार्य

(क) घर्षण बल विरुद्धको कार्य (Work done Against the Friction)

वस्तुलाई घचेड्दा वा तान्दा त्यसमा विपरीत बल लागेको हुन्छ । विपरीत बललाई घर्षण (friction) भनिन्छ । त्यसैले कुनै वस्तुलाई तानेर वा घचेटेर गतिमा लैजाँदा त्यसमा घर्षण विरुद्ध कार्य हुन्छ ।

क्रियाकलाप ३

एउटा कमानी तराजु (spring balance) र काठको चरपाटे टुक्रा लेऊ । काठको टुक्रालाई मिसनो डोरीले बलियोसँग बाँध । अनि कमानी तराजुलाई डोरीमा बाँध ।

काठको दुक्रालाई समतल सतहमा राखेर कमानी तराजुले एकनासले तानेर लैजाऊ । यसलाई तान्दा समतल सतहमा घर्षण विरुद्धमा बल लगाएपछि मात्र अगाडि बढ्छ । यदि कमानी तराजुले 3 kg बराबरको बल देखायो र काठको दुक्रालाई 5m टाढासम्म प्ऱ्याइयो भने कित कार्य भयो ?

चित्र नं. 5.2

यहाँ, घर्षण बल (f) = mg =
$$3 \text{ kg x } 9.8 \text{ m/s}^2 = 29.4 \text{ N}$$
 दुरी (d) = 5 m कार्य (w) =?
सूत्रानुसार, w = F x d

त्यसैले काठको टुक्रालाई 5m पर पुऱ्याउँदा 147J कार्य भयो ।

उदाहरण ३

एउटा भरियाले 1000N तौल भएको भारी बोकेर 50m टाढा पुऱ्याउँदा कित कार्य गर्दछ, हिसाब गर ।

यहाँ, वस्तुको तौल (बल) (F) = 1000N

सूत्रान्सार, W = F x d

पार गरेको दुरी (d) = 50m

 $= 1000N \times 50m$

गरेको कार्य (w) = ?

∴ W = 50000J

उक्त मानिसले 50000J कार्य गर्दछ ।

(ख) गुरुत्व बल विरुद्धको कार्य (Workdone against Gravity)

वस्तुलाई माथि उठाउँदा त्यसमा गुरुत्व बल (gravity) ले तलितर तानिरहेको हुन्छ । त्यसैले जिमनबाट वस्तुलाई माथि उठाउँदा गुरुत्वबल विरुद्ध कार्य हुन्छ ।

क्रियाकलाप ४

एउटा कमानी तराजु (spring balance) लेऊ । एउटा सानो ढुङ्गा लेऊ र त्यसलाई डोरीले बिलयोसँग बाँध । कमानी तराजुलाई ढुङ्गा बाँधेको डोरीमा अड्काऊ । कमानी तराजुलाई बिस्तारै माथि उचाल । कमानी तराजुले ढुङ्गालाई माथितिर उचाल्दा गुरुत्व बलले ढुङ्गालाई तलितर तानिरहेको हुन्छ । गुरुत्वबलका विरुद्ध माथितिर बल लगाउँदा वस्तु माथितिर उचालिन्छ । यसलाई गुरुत्व विरुद्ध कार्य भनिन्छ ।

मानौँ, कमानी तराजुले ढुङ्गाको तौल 4kg देखाएको छ । ढुङ्गालाई 4m माथि उठाउँदा कति कार्य होला ? (g = 9.8 m/s²)

यहाँ, ढुङ्गाको पिण्ड (m) = 4 kg

चित्र नं. 5.3

गुरुत्व प्रवेग (g) =
$$9.8 \text{m/s}^2$$

गुरुत्व विरुद्धको कार्य (w) = mgh

$$= 4 \times 9.8 \times 4$$

यहाँ, 156.8J कार्य भयो ।

उदाहरण ४

श्रृजनको पिण्ड 50kg छ । उसले 20m उचाइ भएको सिँढी चढेर माथि पुग्दा कित कार्य गर्छ, हिसाब गर ।

यहाँ, श्रृजनको पिण्ड (m) = 50kg

सूत्रानुसार, w = mgh

सिँढीको उचाइ (h) = 20 m

 $= 50 \times 9.8 \times 20$

गुरुत्व प्रवेग (g) = 9.8 m/s^2

∴ W = 9800J

गुरुत्व विरुद्धको कार्य (w) = ?

श्रृजनले 9800J कार्य गर्दछ ।

शक्तिको रूपान्तरण (Transformation of Energy)

शिक्तको विनाश हुँदैन, न त यसको निर्माण गर्न सिकन्छ । बरु एक रूपको शिक्तलाई अर्को रूपको शिक्तमा रूपान्तरण गर्न सिकन्छ । यसलाई शिक्त संरक्षणको सिद्धान्त (law of conservation of energy) भिनन्छ । दैनिक जीवनमा हामीलाई विभिन्न रूपमा शिक्तको आवश्यकता पर्दछ । त्यसैले हामी आफूलाई उपलब्ध भएको शिक्तलाई रूपान्तरण गरी चाहिएको रूपमा बदल्ने गर्दछौँ किनभने कुनै उपकरणको सहायताले एउटा रूपको शिक्तलाई अन्य रूपमा बदल्न सिकन्छ ।

एउटा रूपको शिक्तलाई अन्य रूपमा बदल्ने प्रिक्तियालाई शिक्तिको रूपान्तरण (transformation of energy) भिनन्छ । सोलार प्यानेल (Pannel) ले सौर्य शिक्तलाई विद्युत् शिक्तमा रूपान्तरण गर्दछ । विद्युत् शिक्तलाई हिटर, चिम आदिले ताप र प्रकाश शिक्तमा रूपान्तरण गर्दछ । यस्तैगरी टर्चलाइटमा राखिएको ब्याट्रीले रासायिनक शिक्तलाई प्रकाश शिक्तमा रूपान्तरण गर्दछ ।

सामर्थ्य (Power)

हामीले विभिन्न उपकरणहरूले एक प्रकारको शिक्तलाई अन्य शिक्तमा रूपान्तिरत गर्दछ भन्ने कुरा त थाहा पायौँ । शिक्त रूपान्तरण गर्ने दरलाई सामर्थ्य (power) भिनन्छ । सबै उपकरणले एकै प्रकारले शिक्त रुपान्तरण गर्न सक्दैनन् । शिक्तको रूपान्तरण भन्नु नै कार्य हो । कुनैले छिटो र कुनैले ढिलो कार्य गर्दछ । त्यसैले कुनै पिन यन्त्रको कार्य गर्ने दरलाई त्यसको सामर्थ्य भिनन्छ ।

सामर्थ्य (p) =
$$\frac{1}{\text{nin}} \frac{1}{\text{nin}} \frac{1}{\text{min}} \frac{1}{\text{min}}$$

यहाँ, कार्यको एकाइ जुल र समयको एकाइ सेकेन्ड भएकाले सामर्थ्यको एकाइ जुल प्रतिसेकेन्ड वा वाट (watt) हुन्छ । कुनै यन्त्रले 1 सेकेन्डमा 1 जुल कार्य गर्दछ भने त्यसको सामर्थ्यलाई 1 वाट (watt) मानिन्छ । बढी सामर्थ्य भएका यन्त्रहरूको सामर्थ्यलाई किलोवाट (kw) अथवा मेगावाट (Mw) मा नापिन्छ । इन्जिनहरूको सामर्थ्यलाई अश्व शक्ति अथवा हर्स पावर (horse power) मा पनि नाप्ने चलन छ ।

1000 वाट (w) = 1 किलोवाट (Kw)

1000 किलोवाट (Kw) = 1 मेगावाट (Mw)

746 वाट (w) = 1 अश्व शक्ति (h.p.)

शक्ति, कार्य र सामर्थ्यको अन्तर सम्बन्ध (Relation between Energy, Work and Power)

शिक्त, कार्य र सामर्थ्य आपसमा अन्तरसम्बिन्धित हुन्छन् । वास्तवमा कार्य गर्न सक्ने क्षमता नै शिक्त हो । जब कुनै मानिसले कुनै वस्तुमाथि कार्य गर्दछ त्यस वस्तुको शिक्त बढ्छ । शिक्तको सिद्धान्तअनुसार त्यस वस्तुमा बढेको शिक्त र मानिसले गुमाएको शिक्त बराबर हुन्छ, जस्तै : कुनै मानिसले टेबुलमा राखिएको किताबलाई धकेलेर चालमा ल्याउँदा कार्य हुन्छ । यस कार्यमा धकेल्ने मानिसले केही शिक्त गुमाउँछ । किताबले गित शिक्त प्राप्त गर्दछ र चालमा जान्छ । त्यसैले कुनै प्रणालीमा हुने कार्य भनेको त्यसमा बढेको शिक्त हो ।

हामी शिक्तिका लागि खाना खान्छौँ । खानामा रासायिनक शिक्त हुन्छ । रासायिनक शिक्त हाम्रो शरीरिभत्र मांसपेशीय शिक्तिमा परिणत हुन्छ । यही शिक्तिले हामी विभिन्न कार्य गर्न सक्छौँ । त्यसैले हामीले खाना नखाएको बेलामा कमजोर अनुभव गर्छौँ र कुनै कार्य गर्न सक्दैनौँ ।

त्यसैगरी हामीले कार्य गर्दा कित छिटो शिक्तलाई रूपान्तर गर्न सक्छौँ त्यसलाई सामर्थ्य भिनन्छ । त्यसैले सामर्थ्य भनेको शिक्त रूपान्तरको दर हो । जित कम समयमा धेरै शिक्तलाई अन्य शिक्तमा रूपान्तर गर्न सिकन्छ त्यित नै सामर्थ्य पिन बढी हुन्छ । कुनै कार्य गर्न लगाएको शिक्त र त्यस कार्यमा लागेको समयिबचको अनुपात नै सामर्थ्य हो । निश्चित समयमा लागेको शिक्त बढेमा सामर्थ्य पिन बढी हुन्छ र कार्य छिटो हुन्छ । त्यसैले कार्य, शिक्त र सामर्थ्य आपसमा अन्तरिनहित हुन्छन् ।

उदाहरण ६

स्पर्शको पिण्ड 40kg छ । उसले एउटा भऱ्याङको 15cm अग्ला 14 ओटा खुड्किलो चढ्न 10 सेकेन्ड लगाउँछ भने उसको सामर्थ्य कित होला ? (g = 9.8 m/s²)

यहाँ, स्पर्शको पिण्ड (m) = 40kg स्पर्शको तौल (बल) (f) = $mg = 40 \times 9.8 = 392 \text{ N}$ जम्मा भऱ्याङको उचाइ (दुरी) (d) = 15cm \times 14 = 210 cm = 2.1m लागेको समय (t) = 10s

अब, कार्य (w) = F x d
$$\frac{w}{t}$$
 $= \frac{832.2}{10}$ $= 832.2 \text{ J}$ $\therefore P = 83.22 \text{ watt}$

प्रयोगात्मक कार्य

तिम्रो शरीरको पिण्ड नाप । तिम्रो विद्यालयको सिँढीको एउटा खुड्किलाको उचाइ नाप, एक तला माथिसम्मका खुड्किलाहरू गन र पहिलो तलाको उचाइ पत्ता लगाऊ । तल्लो खुड्किलामा तिमी उभिऊ । माथिल्लो तलामा साथीलाई घडी (stop watch) लिएर उभिन लगाऊ । अब, साथीलाई सिठी बजाउन लगाई घडी हेर्न भन । साथीले सिठी बजाउना साथ दौडेर सिँढीहरू पार गर । कित समय लाग्यो हेर । यसबाट तिम्रो सामर्थ्य निकाल । यसरी नै पालैपालो सबै साथीको सामर्थ्य निकालेर हेर ।

सारांश

- १. कार्य गर्न सक्ने क्षमतालाई शक्ति भनिन्छ । शक्तिलाई ज्ल एकाइमा नापिन्छ ।
- वस्तुमा त्यसको स्थान वा स्थिति परिवर्तनका कारणले सञ्चित हुने शिक्तलाई स्थिति शिक्ति भिनन्छ । स्थिति शिक्ति = mgh हुन्छ ।
- ३. वस्तुको चालका कारणले गर्दा उत्पन्न हुने शक्तिलाई चाल शक्ति भिनन्छ । चाल शक्ति $=\frac{1}{2}$ mv² हुन्छ ।
- ४. बल र बलले पार गरेको दुरीको गुणनफललाई कार्य भिनन्छ । यसलाई जुल एकाइमा नापिन्छ । कार्य मुख्य दुई प्रकारका हुन्छन् । घर्षण विरुद्धको कार्य (w) = $F \times d \times d$ गुरुत्व विरुद्धको कार्य (w) = mgh हुन्छ
- प्र. 1 न्युटन बलले कुनै वस्तुलाई 1m पर पुऱ्याउँदा हुने कार्यलाई 1 जुल कार्य भिनन्छ ।
- ६. 'शक्तिलाई निर्माण गर्न वा नाश गर्न सिकँदैन, बरु एक रूपबाट अर्को रूपमा परिवर्तन गर्न सिकन्छ ।
- प्रतिसेकेन्ड गरिने कार्यलाई सामर्थ्य भिनन्छ । सामर्थ्यलाई शक्ति परिवर्तनको दर पिन भिनन्छ । सामर्थ्यलाई वाट (watt) एकाइमा नापिन्छ ।

- द. 1 सेकेन्डमा 1 जुल कार्य गर्दछ भने त्यसको सामर्थ्यलाई 1 वाट (watt) भनिन्छ ।
- ९. इन्जिनहरूको सामर्थ्यलाई अश्व शक्ति (horse power –hp) मा पनि नापिन्छ ।

(1 H.P = 746 watt)

201	м			П
. 44		וטי	1	4

<i>31∂</i>)यास	
٩.	खाली ठाउँमा मिल्दो शब्द लेख :	
	(क) शक्ति भनेको	गर्न सक्ने क्षमता हो ।
	(ख) कार्य भनेको	रूपान्तरण हो ।
	(ग) कार्यलाई	एकाइमा नापिन्छ ।
	(घ) ढुङ्गालाई उचाल्दा त्यसमा	सञ्चित हुन्छ ।
	ंङ) बतासमा शक्ति हुन्छ ।	
₹.	तल दिइएका उत्तरहरूमध्ये सही उत्तर	छान :
	(क) कुनमा कार्य हुन्छ ?	
	(अ) हलो जोत्दा	(आ) गार्डले पहरा दिँदा
	(इ) भारी बोकेर उभिरहँदा	(ई) मोटरलाई धकेलेर गुडाउन नसक्दा
	(ख) भकुन्डो हान्न उचालेको गोडामा व	हुन शक्ति हुन्छ ?
	(अ) गति शक्ति	(आ) स्थिति शक्ति
	(इ) रासायनिक शक्ति	(ई) यान्त्रिक शक्ति
	(ग) यान्त्रिक शक्तिबाट विद्युत् शक्तिमा	परिणत गर्ने उपकरण कुन हो ?
	(अ) सेल	(आ) विद्युत् मोटर
	(इ) जेनेरेटर	(ई) विद्युत् पङ्खा
	(घ) बढी सामर्थ्य भएको यन्त्रमा कस्तो	गुण हुन्छ ?
	(अ) काम धेरै गर्न सक्ने	(आ) काम थोरै गर्ने
	(द) काम किटो गर्न सक्ने	(ई) काम दिलो गर्ने

(ক্ত)	यदि एउटा मानि भने कति कार्य		ो पिण्ड जिमनबा	ट 1m माथि बं	ग्रेकेर	उभिरहेको ह	3
	(अ) 24.5 J	(आ) 25	5J (इ) 50J		(ई)	0J	
छोट	ो उत्तर लेख :						
(क)	शक्ति भनेको व	हे हो ?					
(ख)	कार्य भनेको के	हो, कार्य कति	किसिमका हुन्छन्	[;			
(ग)	सामर्थ्य भनेको व	के हो, एउटा उ	दाहरण देऊ ।				
(घ)	1 जुल कार्य भने	को के हो ?					
(ङ)	100 वाट सामध	र्य भन्नुको अर्थ	के हो ?				
(च)	शक्तिको रूपान्त	तरण भनेको के	हो, उदाहरणसहि	त लेख ।			
टर्चल	नाइटमा ब्याट्री प्र	ायोग गरेर बर्त	ो बाल्दा हुने शक्	त रूपान्तरण	लेख ।	l	
कार्य	र सामर्थ्यबिच	के सम्बन्ध छ,	उदाहरण दिई ले	ोख ।			
हामी	ले खाना नखाई	लामो समय क	ार्य गर्न सक्दैनौँ,	किन ?			
निम्न	निखित वस्तुहरू	मा कुन कुन श	क्ति छ, लेख :				
(क)	ब्याट्री (र	ब) घाम	(ग) बाँध	मा जम्मा गरि	एको	पानी	
(घ)	बन्दुकबाट छोडि	एको गोली	(ङ) तन्वि	कएको रबर			
(च)	चिप्लेटी खेलने भ	ाऱ्याङको टुप्पा	ना रहेको ढुंगा				
निम्न	गानुसार शक्ति र	पान्तरण गर्ने	उपकरण वा साध	प्रनको नाम लेर	ब :		
(क)	प्रकाशबाट विद्यु	त्	(ख) रासायनिकब	ाट विद्युत्			
(ग)	यान्त्रिकबाट विद्	गु त्	(घ) विद्युत्बाट त	ाप			
(ক্ত)	विद्युत्बाट प्रकाश	π	(च) रासायनिकब	ाट ताप र प्रव	गश		

₹.

8.

ሂ.

દ્દ.

9.

۲.

९. तलको तालिकामा कार्य, शक्ति र सामर्थ्यको भिन्नता देखाउने बुँदाहरू लेख :

कार्य	शिक्त	सामर्थ्य
۹.	٩.	٩.
₹.	₹.	٦.
₹.	₹.	₹.

१०. तल दिइएका गणितीय समस्याहरू समाधान गर :

- (क) 25kg पिण्ड भएको वस्तुलाई 10m उचाइमा पुऱ्याउँदा कित शिक्त आवश्यक पर्दछ ? $(g = 9.8 \text{ m/s}^2)$ (2450J जुल)
- (ख) एउटा 0.5 kg को ढुङ्गालाई 5 m/s को गतिले फ्याँक्दा त्यसको गति शक्ति कित होला ? (6.25J)
- (ग) एउटा चिप्लेटी खेल्ने भऱ्याङको उचाइ 3m छ । 40 kg पिण्ड भएको एउटा विद्यार्थी त्यसको टुप्पामा पुग्यो भने कित शिक्त सिञ्चित हुन्छ ? ($g = 9.8 \text{ m/s}^2$) (1176 J)
- (घ) एक जना व्यक्तिले 20 N बल लगाएर कुनै वस्तुलाई 20 m पर पुऱ्याउँदा कित कार्य गर्दछ, यदि सो कार्य गर्न 2 s लाग्छ भने त्यसको सामर्थ्य कित होला ? (400 J, 200 w)
- (ङ) एक जना भरियाले 20 ओटा इँटा बोक्न सक्छ । प्रत्येक इँटाको तौल 10N छ, उसले ती 20 ओटा इँटाको भारीलाई 100 m टाढा पुऱ्याउन 50 s लगाएछ भने उसको सामर्थ्य कित होला ? (400 w)

ताप (Heat)

ताप र तापक्रम (Heat and Temperature)

हामीले बरफ छोएमा चिसो र तताएको पानी छोएमा तातो अनुभव गर्दछौँ । चिसो वा तातो अनुभव गर्नाको कारण के होला ?

चिसो वा तातो अनुभव गर्नाको मुख्य कारण ताप शक्ति एउटा वस्तुबाट अर्को वस्तुमा सर्नु हो । तातो पानीबाट हाम्रो शरीरमा ताप शक्ति प्रवाह हुँदा तातो अनुभव गर्दछौँ । त्यसैगरी शरीरबाट बरफमा ताप शक्ति प्रवाह हुँदा चिसो अनुभव गर्दछौँ । यसरी एउटा वस्तुबाट अर्को वस्तुमा ताप सर्दछ । यही ताप शक्तिले तातोपना वा चिसोपनाको अनुभव गराउँछ ।

हामीले हाम्रा दुई हातहरू आपसमा रगडेमा ताता हुन्छन् । यदि एउटा फलामको किलालाई ढुङ्गामा रगडेमा त्यो पनि तातो हुन्छ । यस्तो किन हुन्छ ?

अणुहरू मिली पदार्थ बनेको हुन्छ । ती अणुहरूमा स्थिति शक्ति सञ्चित हुन्छ । वस्तुलाई तताउँदा त्यसका अणुहरू कम्पन हुन थाल्छन् । अणुहरूको कम्पनबाट गित शिक्ति उत्पन्न हुन्छ । यही अणुहरूको गित शिक्तबाट ताप उत्पन्न हुन्छ । त्यसैले, वस्तुमा भएका सम्पूर्ण अणुहरूमा हुने गित शिक्तिको योग नै ताप शिक्त हो । ताप बढेपिछ अणुहरूको कम्पन छिटो र ताप कम भएपिछ अणुहरूको कम्पन ढिलो हुन्छ । वस्तुको यही तातोपनको नाप नै तापक्रम हो । बढी तापक्रम भएको वस्तुमा अणुहरूको कम्पनको तीव्रता बढी हुन्छ ।

क्रियाकलाप १

एउटा गिलासमा तातोपानी लेऊ । त्यसको तापक्रम नाप र नोट गर । फेरि अर्को गिलासमा चिसो पानी लेऊ । त्यसको पनि तापक्रम नाप र नोट गर । अब दुवै पानीलाई एउटा ठुलो भाँडामा मिसाएर राख । अब त्यस मिश्रणको पनि तापक्रम नाप । मिश्रणको तापक्रम कित हुन्छ ?

तातोपानी र चिसोपानी मिसाएमा त्यसको मिश्रणको तापक्रम फरक हुन्छ । मिश्रणको तापक्रम तातो पानीको भन्दा कम र चिसो पानीको भन्दा बढी हुन्छ । यसैले तातो वस्तुले ताप गुमाउँछ भने चिसो वस्तुले ताप प्राप्त गर्दछ । ताप जिहले पिन उच्च तापक्रमबाट निम्न तापक्रमितर सर्दछ ।

ताप र तापक्रमको सम्बन्ध (Relation between Heat and Temperature)

वस्तुलाई तताउँदा तापक्रम बढ्दै जान्छ । त्यसैगरी वस्तुलाई चिस्याउँदा तापक्रम घट्दै जान्छ । त्यसैले ताप भनेको वस्तुको तापक्रम बढाउने वा घटाउने कारण हो । तापक्रम तापको असर हो ।

विचारणीय प्रश्न

एक लिटर उम्लिरहेको पानी र एउटा तातेर रातो भएको फलामको सानो किलामध्ये कुनमा ताप शक्ति बढी हुन्छ, किन ?

ताप र तापक्रममा फरक (Difference between Heat and Tempereture)

ताप	तापक्रम
 ताप शक्ति हो जसले तातोपना वा चिसोपनाको अनुभव दिन्छ । 	 तापक्रम वस्तुको तातोपनाको नाप हो । तापक्रम तापको असर हो ।
२. ताप कारण हो ।	३. तापक्रम वस्तुको अणुहरूको गति
३. ताप वस्तुको अणुहरूको गति शक्ति र त्यसको पिण्डमा भर पर्दछ ।	शक्तिमा मात्र भर पर्दछ । ४. तापक्रमलाई डिग्री सेल्सियस (°C), डिग्री
४. तापलाई जुल एकाइमा नापिन्छ ।	फरेनहाइट (°F) र केल्भिन (K) एकाइमा नापिन्छ ।

तापक्रम मापक यन्त्र (Thermometer)

हामीले कुनै वस्तु छोएर त्यसको तातोपना अनुभव गर्दछौँ । तर त्यसको तातोपना नाप्न सक्दैनौँ । वस्तुको तातोपना अर्थात् तापक्रम नाप्नका लागि तापक्रम मापक यन्त्र प्रयोग गरिन्छ । यसलाई थर्मोमिटर भनिन्छ ।

तापक्रम मापक यन्त्रको बनावट (Structure of Thermometer)

साधारण तापक्रम मापक यन्त्रमा एउटा बाक्लो काँचको भित्र मिसनो केसिका नली (capillary tube) हुन्छ । यसको दुवै छेउ बन्द हुन्छ । यसको एउटा छेउ फुकेको हुन्छ । यसलाई बल्ब भिनन्छ ।

चित्र नं. 6.1

बल्बमा पारो राखिएको हुन्छ । पारो चाँदी जस्तै सेतो र टिल्किन पदार्थ हो । यो धातु भएकाले सुचालक हुन्छ । तापक्रम मापक यन्त्रको बल्ब तातो वस्तुको सम्पर्कमा आएपछि यसभित्रको पारो तात्छ र यसको आयतन बढ्छ । बढेको पारो केस नलीतिर जान्छ । जित बढी तात्यो उति नै बढी पारो नलीमा चढ्छ । नलीमा चढेको पारोको उचाइका आधारमा तापक्रमको मान निकालिन्छ । तरल पदार्थलाई तताउँदा यसको आयतन वृद्धि हुन्छ भन्ने सिद्धान्तमा आधारित भई तापक्रम मापक यन्त्र बनाइन्छ ।

तापक्रम मापक यन्त्रमा राखिने तरल पदार्थहरू

(क) पारो (Mercury)

पारो एउटा धातु हो । यो तरल अवस्थामा हुन्छ । तापक्रमको वृद्धिअनुसार यसको आयतन एकनासले वृद्धि हुन्छ । चाँदी जस्तै टल्कने भएकाले नलीमा चढेको पारो सिजलै देखन सिकन्छ । पारोको उम्लिने तापक्रम करिब 357°C भएकाले धेरै उच्च तापक्रम पिन नाप्न सिकन्छ । पारोको जम्ने तापक्रम करिब –39°C भएकाले धेरै न्यून तापक्रम नाप्न सिकँदैन ।

(ख) अल्कोहल (Alcohol)

अल्कोहल रङहीन तरल पदार्थ हो । तापक्रमको वृद्धिअनुसार पारोभन्दा अल्कोहलको आयतन 6 गुणा बढी वृद्धि हुन्छ । यो पारोभन्दा धेरै सस्तो पनि हुन्छ । यसलाई रङ्गाएर सजिलै देख्न सक्ने बनाइन्छ । यसको जम्ने तापक्रम करिब -115°C भएकाले धेरै न्यून तापक्रममा पनि नाप्न सिकन्छ । यसको उम्लने तापक्रम 78°C भएकाले यसबाट उच्च तापक्रम नाप्न सिकँदैन ।

विचारणीय प्रश्न

उम्लिरहेको पानीको तापक्रम नाप्न पारो थर्मोमिटर प्रयोग गरिन्छ । हिमाल आरोहण गर्न जाने यात्रीले अल्कोहल थर्मोमिटर प्रयोग गर्दछन्, किन होला ?

तापक्रम मापक यन्त्रमा स्केल निर्धारण (Calibration of Thermometer)

तापक्रम मापक यन्त्रमा तापक्रमका अङ्कहरूको चिह्न ठिक ठिक ठाउँमा लगाउने कार्यलाई स्केल निर्धारण गर्ने (calibration) भनिन्छ । यसका लागि पहिले दुई ओटा अचल बिन्दुहरू (fixed points) निर्धारण गरी चिह्न लगाइन्छ ।

माथिल्लो अचल बिन्दु (Upper Fixed Point)

प्रामाणिक वायुमण्डलीय चाप (standard atmospheric pressure, 760mm Hg) मा शुद्ध पानी उम्लने तापक्रम निश्चित हुन्छ । यसलाई माथिल्लो अचल बिन्दु भनिन्छ । उक्त

तापक्रम नै 100°C अथवा 212°F हो ।

कियाकलाप २

एउटा राउन्ड बटम फ्लाक्स (R.B. flask) मा आधा जित पानी लेऊ । दुईओटा प्वाल भएको रबर कर्कले मुख बन्द गर । एउटा प्वालमा तापक्रम मापक यन्त्र घुसाऊ । अर्को प्वालमा ८ आकारको काँचको नली घुसाऊ । फ्लास्कको पानी तताऊ । पानी उम्लेपछि तापक्रम मापक यन्त्रमा कित तापक्रम छनोट गर । पानीलाई लगातार तताइरहँदा पनि त्यसको तापक्रम निश्चित रहेमा त्यो नै पानी उम्लने तापक्रम (100°C) हो । यसैलाई माथिल्लो अचल बिन्द भिनन्छ ।

माथिल्लो अचल बिन्दुको निधारण

चित्र नं. 6.2

तल्लो अचल बिन्दु (Lower Fixed Point)

प्रामाणिक वायुमण्डलीय चाप (standard atmospheric pressure, 760 mm Hg) मा शुद्ध बरफ पग्लने तापक्रम निश्चित हुन्छ । यसलाई तल्लो अचल बिन्दु भनिन्छ । उक्त तापक्रम 0°C वा 32°F हो ।

क्रियाकलाप ३

एउटा सानो सोलीलाई स्टान्ड (stand) मा अड्काऊ । त्यसको मुनि एउटा बिकर राख । बरफलाई मिसना मिसना टुक्रा पारी सोलीमा भर । सोलीको बिचमा तापक्रम मापक यन्त्रको बल्ब घुसाऊ । यसमा रहेको पारो बिस्तारै तलितर भर्दछ र अन्त्यमा एक ठाउँमा अडिन्छ । त्यो नै बरफ पग्लने तापक्रम हो । यसलाई तल्लो अचल बिन्दु भिनन्छ ।

माथिल्लो अचल बिन्दु र तल्लो अचल बिन्दु पत्ता लगाइसकेपछि सेल्सियस स्केलमा यी दुईबिचको लम्बाइलाई 100 बराबर भागमा बाँडिन्छ ।

चित्र नं. 6.3

प्रत्येक 1 भाग बराबर 1°C तापक्रम हुन्छ । फरेनहाइट स्केलमा 180 बराबर भागमा बाँडिन्छ । प्रत्येक 1 भाग बराबर 1° F तापक्रम हुन्छ ।

तापक्रमका एकाइहरूको रूपान्तरण (Transformation of Unit of Temperature)

साधारणतया तापक्रम मापक यन्त्रमा दुई प्रकारका स्केलहरू प्रयोग गरिन्छ ।

- (क) सेल्सियस स्केल (Celsius Scale): सेल्सियस स्केलमा तल्लो अचल बिन्दु 0°c र माथिल्लो अचल बिन्दु 100°C मानिन्छ ।
- (ख) फरेनहाइट स्केल (Fahrenheit Scale) : फरेनहाइट स्केलमा तल्लो अचल बिन्दु 32°F र माथिल्लो अचल बिन्दु 212°F मानिन्छ ।

सेल्सियस स्केलमा बरफ पग्लने र पानी उम्लने बिन्दुहरू बिचको तापक्रमलाई 100 बराबर खण्डमा बाँडिन्छ । तर फरेनहाइट स्केलमा ती दुई बिन्दुहरू बिचको तापक्रमलाई 180 बराबर खण्डमा बाँडिन्छ । सेल्सियस स्केलको 0°C बराबर फरेनहाइटमा 32°F हुन्छ । सेल्सियस र फरेनहाइट बिचको सम्बन्ध समीकरणका रूपमा निम्नानुसार व्यक्त गर्न सिकन्छ :

$$\frac{c-0}{100} = \frac{F-32}{180}$$

उदाहरण १

37°C लाई फरेनहाइटमा रूपान्तरण गर ।

यहाँ,
$$\frac{C-0}{100} = \frac{F-32}{180}$$
 or, $\frac{37-0}{100} = \frac{F-32}{180}$ or, $F = \frac{37}{100} \times 180 + 32$ or, $F = 66.6 + 32$

तसर्थ 37°c बराबर 98.6°F हुन्छ ।

उदाहरण २

- 40°F बराबर कति सेल्सियस हुन्छ ?

यहाँ,
$$\frac{C-0}{100} = \frac{F-32}{180}$$
 or, $\frac{C}{100} = \frac{-40-32}{180}$ or, $C = \frac{-72}{180} \times 100$ or $C = -40^{\circ}$ C

त्यसैले -40° F बराबर -40° c हुन्छ ।

तापक्रम मापक यन्त्रका किसिमहरू

बनावटअनुसार तापक्रम मापक यन्त्र धेरै प्रकारका हुन्छन् । ती तापक्रम मापक यन्त्रहरू फरक फरक कामका लागि प्रयोग गरिन्छ ।

(क) क्लिनिकल तापक्रम मापक यन्त्र (Clinical Thermometer)

मानिसको शरीरको तापक्रम नाप्न प्रयोग गरिने उपकरणलाई क्लिनिकल तापक्रम मापक यन्त्र अर्थात् क्लिनिकल थर्मोमिटर भनिन्छ । सेल्सियस र फरेनहाइट गरी दुवै स्केलमा क्लिनिकल थर्मोमिटर बनाइन्छ । सेल्सियस क्लिनिकल थर्मोमिटरमा 35°c देखि 42°c सम्मको स्केल हुन्छ । फरेनहाइट क्लिनिकल थर्मोमिटरमा 94°F देखि 108°F सम्मको स्केल हुन्छ । मानिसको शरीरको तापक्रम 37°c अर्थात् 98.6°F हुन्छ ।

थर्मोमिटरमा बल्बिनर साँघुरो घाँटी (constriction) हुन्छ । यसले गर्दा नलीमा चढेको पारो आफैँ तल भर्देन । हातले भड्का दिइएपछि मात्र तल भर्दछ । क्लिनिकल थर्मोमिटर गोलो नभई प्रिज्मेटिक अर्थात् तिन कुने आकारको हुन्छ । यसले गर्दा पारोको मिसनो केस नली मोटो देखिन्छ र तापक्रम हेर्न सिजलो हुन्छ । आजभोलि डिजिटल थर्मोमिटर पिन प्रयोग गर्न थालिएको छ । यसमा पारो वा अल्कोहल प्रयोग गरिएको हुँदैन ।

(ख) प्रयोगशालाको तापक्रम मापक यन्त्र (साधारण थर्मोमिटर)

यो साधारण तापक्रम मापक यन्त्र हो । यो साधारणतया गोलो र लाम्चो आकारको हुन्छ । यस प्रकारको थर्मोमिटरमा पारो राखिएको हुन्छ । यसमा बल्ब तातेपछि पारो माथि चढ्ने र चिसो भएपछि आफैँ तल भर्ने हुन्छ । यो प्राय: सेल्सियस स्केलमा बनाइएको हुन्छ । सामान्यतया यसमा –10°C देखि 110°C सम्मको स्केल हुन्छ । ठिकसँग तापक्रम नाप्न र तापक्रममा हुने परिवर्तन छिटो देखाउनका लागि भित्रको नलीलाई रौँ जस्तै मिसनो बनाइएको हुन्छ । बल्बलाई पिन पातलो बनाइएको हुन्छ । यसले गर्दा सिजलै तापभित्र सर्न सक्छ ।

प्रयोगात्मक कार्य

- क्लिनिकल थर्मोमिटर लेऊ र तिम्रो शरीरको तापक्रम नाप ।
- २. क्रियाकलाप 2 र 3 का आधारमा पानी उम्लने र बरफ पग्लने तापक्रम पत्ता लगाऊ ।

सारांश

- वस्तुमा रहेका अणुहरूको गित शिक्तको योग नै ताप हो ।
- २. वस्तुको तातोपनाको मात्रालाई तापक्रम भनिन्छ ।
- ३. ताप जिहले पनि उच्च तापक्रमितरबाट निम्न तापक्रम भएतिर बहन्छ ।
- ४. ताप कारण हो भने तापक्रम त्यसको असर हो ।
- प्र. वस्तुको तापक्रम मापन गर्ने उपकरणलाई तापक्रम मापक यन्त्र (thermometer)भनिन्छ ।

- ६. साधारणतया तापक्रम मापक यन्त्रमा दुई प्रकारका स्केलहरू प्रयोग गरिन्छ ।
 (1) सेल्सियस (Celsius) (2) फरेनहाइट (Fahrenheit)
- ७. मानिसको शरीरको तापक्रम नाप्ने उपकरणलाई क्लिनिकल थर्मोमिटर भनिन्छ ।
- प्रयोगशालामा प्रयोग गरिने तापक्रम मापक यन्त्रलाई साधारण थर्मोमिटर भिनन्छ ।
- ९. तरल पदार्थ तताउँदा यसको आयतन वृद्धि हुन्छ भन्ने सिद्धान्तमा आधारित भई थर्मोमिटर बनाइन्छ ।
- 90. $\frac{C-0}{100} = \frac{F-32}{180^{\circ}}$ हुन्छ ।

अ∂ग्रस

٩.	खाली ठाउँमा मिल्ने शब्द लेख :	
	(क) वस्तुको अणुहरूकोको योगलाई	ताप भनिन्छ ।
	(ख) वस्तुको तातोपना वा चिसोपनाको गुणलाई	भिनन्छ ।
	(ग) मानिसको शरीरको तापक्रम नाप्न	प्रयोग गरिन्छ ।
	(घ) सेल्सियस स्केलमा पानी उम्लने तापक्रम	हुन्छ ।
	(ङ) मानिसको शरीरमा डिग्री फरेनहाइट	तापक्रम हुन्छ ।
₹.	तल दिइएका उत्तरहरूमध्ये सही उत्तर छान :	
	(क) ताप पदार्थका अणुहरूको कुन शक्तिमा आधारित हुन्छ ?	
	(अ) स्थिति शक्ति (आ) गति शक्ति (इ) यान्त्रिक शक्ति	(ई) ताप शक्ति
	(ख) ताप शक्तिलाई कुन एकाइमा नापिन्छ ?	
	(अ) न्युटन (आ) केल्भिन (इ) डिग्री सेल्सियस	(ई) जुल
	(ग) पारोको उम्लने तापक्रम कित हुन्छ ?	
	(अ) 78°c (आ) 100°c (इ) 212°c	(ई) 357°c

	(घ) ग	मानिसको शरीरमा व	कृति डिग्री सेलि	सयस तापक्रम ह्	न्छ ?		
	((अ) 35°C	(आ) 37°C	(इ) 42°C	(ਵੂੰ	(a) 108°C	
	(- /	साधारण थर्मोमिटरम गरिएको हुन्छ ?	ा कतिदेखि की	ते डिग्री सेल्सिय	स तापक्रमको	स्केल निर्धारण	Ţ
	((अ) 0°C देखि 100°	С	(आ) 10°C	देखि100°C		
	((इ) –10°C देखि 11	0°C	(ई) 10°C दे	खि 110°C		
₹.	फरक	लेख :					
	(क) त	ताप र तापक्रम		(ख) क्लिनिकल	र साधारण थ	र्मोमिटर	
	(ग) से	ोल्सियस र फरेनहाडू	ट स्केल	(घ) तल्लो र म	ाथिल्लो अचल	बिन्दु	
8.	छोटो	उत्तर लेख :					
	(क) त	ताप भनेको के हो ?					
	(ख) त	नापक्रम भन्नाले केल	ाई जनाउँछ ?				
	(ग) त	गपक्रम मापक यन्त्र	मा कुन कुन त	रल पदार्थ प्रयोग	गरिन्छ ?		
	(घ) रे	नेल्सियसलाई फरेनह	इट स्केलमा रू	पान्तरण गर्ने सृ	त्र के हो ?		
ሂ.	तल वि	देइएका तापक्रम रूप	गन्तरण गर :				
	(क) ९	98.6°F लाई सेल्सिय	ासमा	(ख) - 40°C ल	ाई फरेनहाइट	मा	
	(ग) 3	32°F लाई सेल्सियस	मा	(घ) 100°C ला	ई फरेनहाइटम	ना	
દ્દ.	थर्मोमि	नटरको बनावटबारे	छोटकरीमा चि	ात्रसहित लेख।			
૭.	कारण	ा देऊ :					
	(क) 3	अल्कोहल थर्मोमिटर	ने उम्लिरहेको ।	पानीको तापक्रम	नाप्न सिकँदैन	ा, किन ?	
		हेमाल आरोहण गर्ने प्रयोग गर्छन्, किन ?	मानिसले पार	ो थर्मोमिटर र	अल्कोहल थर्मो	मिटरमध्ये कुन	Ŧ
	(ग) वि	क्लिनिकल थर्मोमिटर	को घाँटी साँघ्	रो बनाइएको हुन	छ, किन ?		
		पर्मोमिटरको बल्बको	· ·			, किन ?	
					=		

पकाश

(Light)

प्रकाश एक प्रकारको शक्ति हो । यसले वस्तुलाई देख्न सक्ने बनाउँछ । प्रकाशको सहायताले नै हामी हाम्रो वरिपरिका वस्त्हरू देख्छौँ र प्राकृतिक सौन्दर्यताको आनन्द लिन्छौँ । क्नै एउटा माध्यममा प्रकाश सधैँ सिधा हिँड्छ । त्यसैले प्रकाशको सानो भागलाई सरल रेखाले जनाइन्छ । यसलाई प्रकाशको सबै भन्दा सानो बाटो पनि भनिन्छ । प्रकाशको दिशालाई बाण चिहन (\rightarrow) ले जनाइन्छ । सरल रेखाले जनाउने प्रकाशको सानो भाग वा बाटालाई किरण (ray) भिनन्छ । धेरैओटा किरणहरूको सम्हलाई किरण प्ञ्ज (beam) भनिन्छ ।

चित्र नं 71

ऐना र यसका प्रकारहरू (Mirror and its Types)

तिमीहरूले घरमा आफ्नो अन्हार हेर्न, कपाल कोर्न ऐना हेर्ने गरेका छौ, ऐना कस्तो हुन्छ त? ऐना काँचबाट बनाइएको हुन्छ । यसको एउटा सतह प्रकाशलाई परावर्तन गर्ने गरी टल्काइएको हुन्छ भने अर्कोतर्फ प्रकाश निछर्ने बनाइएको हन्छ । ऐनाको अगाडि क्नै वस्त् राख्दा त्यसको आकृति ऐनामा बन्छ । वस्तुलाई ऐना अगांडि राख्दा त्यसबाट आएको प्रकाश परावर्तन भई वस्तुको आकृति बन्छ । वस्तुबाट आएको प्रकाशलाई परावर्तन गरी त्यस वस्तुको आकृति बनाउने उपकरणलाई ऐना भनिन्छ ।

ऐना म्ख्यतया द्ई प्रकारका हुन्छन् ती हुन् :

चित्र नं 7.2

(क) समतल ऐना (Plane Mirror) (ख) गोलाकार ऐना (Spherical Mirror)

(क) समतल ऐना (Plane Mirror)

वस्तुबाट आएको प्रकाशलाई परावर्तन गर्ने सतह समतल (flat) भएको ऐनालाई समतल ऐना भनिन्छ । यस प्रकारको ऐना हामीले घरमा आफनो अनहार हेर्न र नहाउने कोठा (bathroom) मा प्रयोग गर्दछौँ ।

ऐनाको चित्र कोर्न् पर्दा एउटा रेखाखण्ड तानिन्छ र त्यसको पछाडि नटल्कने सतह जनाउन छड्के धर्साहरू राखिन्छ ।

कियाकलाप १

एउटा समतल ऐना लेऊ र भित्तामा अड्याऊ । त्यसको अगांडि उभिएर तिम्रो आकृति ऐनामा हेर । तिम्रो आकृति कत्रो र कस्तो देखिन्छ ? फोरि केही पछाडि हटेर हेर, आकृति पनि पछि सर्दछ ? अलि अगाडि सरेर हेर । आकृति कतातिर सर्दछ ? अब तिम्रो बायाँ हात उठाऊ र ऐनामा हेर । ऐनामा कुन हात उठाएको देखिन्छ, यस्तो किन हुन्छ ?

समतल ऐनाबाट बन्ने आकृतिका गुणहरू (Characteristics of Image Formed by Plane Mirror)

समतल ऐनाबाट बन्ने आकृति ठाडो, पर्दामा देखिन नसिकने अर्थात् अवास्तविक, वस्तुको बराबर साइजको र ऐनाबाट वस्तुको जित नै दुरीमा बन्छ । यसरी देखिने आकृति दायाँ बायाँ उल्टो (laterally inverted) हुन्छ अर्थात् दायाँको बायाँ र बायाँको दायाँ हुन्छ ।

(ख) गोलाकार ऐनाहरू (Spherical Mirrors)

समतल सतह भएका ऐनाहरू हामीले आफ्नो अनुहार हेर्न प्रयोग गर्दछौँ । तर सबै ऐनाहरूको सतह समतल हँदैन । कुनै ऐनाहरूको बिचको भाग देखिएको हुन्छ । कुनै ऐनाहरूको बिचको भाग उठेको हुन्छ । यस्ता ऐनाहरू मुख्य दुई प्रकारका हुन्छन् ।

- (१) कन्केभ ऐना (Concave Mirror) (२) कन्भेक्स ऐना (Convex Mirror)

कियाकलाप २

एउटा स्टिलको चम्चा लेऊ । यसको सतह हेर । बिचको भाग दिबएको हन्छ । यस्तो सतहलाई कन्केभ (concave) सतह भनिन्छ । चम्चाको पछाडिको सतह हेर । बिचको भाग उठेको हन्छ । यस्तो सतहलाई कन्भेक्स (convex) सतह भनिन्छ ।

चित्र नं. 7.4

१. कन्केभ ऐना (Concave Mirror)

छेउ छेउको भाग उठेको र बिचका भाग नियमित रूपले दिबएको ऐनालाई कन्केभ ऐना (concave mirror) भनिन्छ । यस प्रकारको ऐनामा समानान्तर प्रकाशका किरणहरू परावर्तन भई एउटै बिन्द्मा केन्द्रित हन्छन् । उक्त बिन्दलाई केन्द्रीकरण बिन्द (focus) भनिन्छ । कन्केभ ऐनाले यसमा

चित्र नं. 7.**5**

परेका प्रकाशका किरणहरूलाई केन्द्रित गर्ने भएकाले यसलाई केन्द्रीकरण ऐना (converging mirror) भिनन्छ । त्यसैगरी केन्द्रीकरण बिन्द्बाट आएका प्रकाशका किरणहरू परावर्तन हुँदा समानान्तर भएर फर्कन्छन् ।

विचारणीय प्रश्न

टर्च लाइटमा प्रकाशको परावर्तन गर्न कन्केभ ऐना राखिएको हन्छ र यसको केन्द्रीकरण बिन्द्मा बल्ब राखिएको हुन्छ । यसबाट टर्च लाइटको प्रयोग गर्दा के फाइदा पुऱ्याउँछ, किन ?

२. कन्भेक्स ऐना (Convex Mirror)

छेउ छेउको भाग दिबएको र बिचको भाग नियमित रूपले उठेको ऐनालाई कन्भेक्स ऐना (convex mirror) भनिन्छ । यस प्रकारको ऐनामा समानान्तर प्रकाशका किरणहरू परावर्तन भई छरिएर अर्थात् विकेन्द्रित भई जान्छन् । त्यसैले कन्भेक्स ऐनालाई विकेन्द्रित ऐना (diverging mirror) पनि भनिन्छ । कन्भेक्स ऐनाबाट परावर्तित भएका

किरणहरू ऐना पछाडिको एउटै बिन्दुबाट आएको जस्तो देखिन्छ । उक्त बिन्दुलाई केन्द्रीकरण बिन्दु (focus) भनिन्छ । कन्भेक्स ऐनाले ठाडो र सानो आकृति बनाउँछ । यसले ठुलो र टाढाको दृश्यलाई सानो बनाई नजिक देखाउँछ ।

विचारणीय प्रश्न

ड्राइभरले गाडीको दायाँ र बायाँतिर पछािडको भाग हेर्न साइड ऐनाका रूपमा कन्भेक्स ऐना प्रयोग गर्दछन्, किन ?

क्रियाकलाप ३

एउटा कन्केभ ऐना लेऊ । त्यसलाई लगभग 50cm जित टाढा राखेर त्यसमा आफ्नो अनुहार हेर, कस्तो देखिन्छ ? अब ऐनालाई केही निजक ल्याऊ र हेर । पिहले र अहिले के फरक देखिन्छ ? लेख । ऐनालाई अभ निजक ल्याऊ र फेरि हेर । अब के फरक पायौ, अनुहार ठुलो देखिन्छ कि सानो, अनुहार सुल्टो देखिन्छ कि उल्टो, टाढाबाट निजक ल्याउँदा आकृतिमा के फरक पाइन्छ, यसबाट के क्रा सिक्न सिकन्छ, लेख ।

वास्तविक र अवास्तविक आकृति (Real and Virtual Image)

क्रियाकलाप ४

एउटा कन्केभ ऐना लेऊ । यसलाई झ्याल बाहिर फर्काऊ । ऐनाको अगांडि 20-30cm को दुरीमा एउटा सेतो बाक्लो कागज राख । अब ऐनाबाट परावर्तन भएका किरणहरू उक्त कागजमा पार । ऐनालाई अगांडि वा पछांडि सारेर बाहिरका वस्तुको आकृति कागजमा प्रस्ट देखिने बनाऊ । यस अवस्थामा कागज र ऐना बिचको दुरी नाप । यस दुरीलाई केन्द्रीकरण दुरी भिनन्छ । यसरी कन्केभ ऐनाद्वारा कागजमा बनेको आकृति वास्तविक (real image) आकृति हो । यसैगरी कन्केभ ऐनाको सट्टामा कन्भेक्स ऐना र समतल ऐना पालैपालो प्रयोग गरी हेर । के यस्तो आकृति बनाउन सिकन्छ ?

आकृतिलाई पर्दामा उतार्न सिकन्छ भने त्यसलाई वास्तविक आकृति (real image) भिनन्छ । यस प्रकारको आकृति परावर्तित किरणहरू आपसमा काटिएर बन्दछन् ।

आकृतिलाई पर्दामा उतार्न सिकँदैन भने त्यसलाई अवास्तिविक आकृति (virtual image) भिनन्छ । यस प्रकारको आकृति परावर्तित किरणहरू काटिएको जस्तो देखिएर बन्छन् । वास्तवमा परावर्तित किरणहरू काटिएका हुँदैनन् । कन्केभ ऐनाले वास्तिविक आकृति बनाउन सक्छ । तर कन्भेक्स ऐना र समतल ऐनाले वास्तिविक आकृति बनाउन सक्दैनन् ।

वास्तविक र अवास्तविक आकृतिमा फरक

वास	तविक आकृति	अवास्तविक आकृति
٩.	यसलाई पर्दामा उतार्न सिकन्छ ।	१. यसलाई पर्दामा उतार्न सिकँदैन ।
٦.	यो परावर्तित किरणहरू भेटिएको बिन्दुमा बन्छ ।	२. यो परावर्तित किरणहरू भेटिएको जस्तो देखिने बिन्दुमा बन्छ ।
₹.	यो उल्टिएको देखिन्छ ।	३. यो ठाडो अर्थात् सुल्टो देखिन्छ ।
8.	यो ऐनाको अगाडि बन्छ ।	४. यो ऐनाको पछाडि बन्छ ।

गोलाकार ऐनासाग सम्बन्धित केही महत्त्वपूर्ण शब्दावलीहरू (Some Important Terms Related to Spherical Mirror)

गोलाकार ऐनाको प्रयोग गरी विभिन्न क्रियाकलाप गर्दा यस सम्बन्धी विभिन्न शब्दावलीहरू प्रयोग गरिन्छ । यहाँ यिनै शब्दावली बारेमा व्याख्या गरिएको छ :

- १. ऐनाको केन्द्र (Pole of the Mirror): गोलाकार ऐनाको परावर्तन गर्ने सतहको केन्द्रिबन्दुलाई ऐनाको केन्द्र (pole of the mirror) भिनन्छ । यसलाई P ले जनाइन्छ । सबै दुरीहरू यसै बिन्दुबाट नापिन्छ ।
- २. वक्रताको केन्द्र (Center of Curvature): गोलाकार ऐना (कन्केभ वा कन्भेक्स) भनेको पूर्ण गोलाको एक खण्ड जस्तै हो । त्यसैले गोलाकार ऐनाबाट बन्ने पूर्ण गोलाको केन्द्रबिन्दुलाई वक्रताको केन्द्र (center of curvature) भिनन्छ । यसलाई ८ ले जनाइन्छ ।

3. वक्रताको अर्धव्यास (Radius of Curvature): गोलाकार ऐनाबाट बन्ने गोलाको अर्धव्यासलाई वक्रताको अर्धव्यास (radius of curvature) भनिन्छ । यो वास्तवमा वक्रताको केन्द्र (c) र ऐनाको केन्द्र (p) बिचको द्री हो । यसलाई R ले जनाइन्छ ।

- ४. प्रमुख अक्ष (Principal Axis) : ऐनाको केन्द्र (p) र बक्रताको केन्द्र (c) लाई जोडेर जाने सिधा रेखालाई प्रमुख अक्ष (principal axis) भनिन्छ ।
- ५. केन्द्रीकरण विन्दु (Principal Focus): समानान्तर प्रकाशका किरणहरू कन्केभ ऐनाबाट परावर्तन हुँदा एउटै बिन्दुमा केन्द्रित हुन्छन् । यस बिन्दुलाई केन्द्रीकरण बिन्दु (focus) भिनन्छ । यो बिन्दु ऐनाको अगाडि प्रमुख अक्षमा पर्दछ । कन्भेक्स ऐनाले समानान्तर प्रकाशका किरणहरू परावर्तन गरी विकेन्द्रीत गर्दा ऐनाको पछाडि एउटै बिन्दुबाट आएको जस्तो देखिन्छ, जुन बिन्दुलाई केन्द्रीकरण बिन्दु (principal) भिनन्छ । कन्भेक्स ऐनाको केन्द्रीकरण बिन्दु ऐनाको पछाडि पर्दछ । यस बिन्दुलाई ह ले जनाइन्छ ।
- ६. केन्द्रीकरण दुरी (Focal Length): ऐनाको केन्द्र (P) र केन्द्रीकरण बिन्दु (F) बिचको दुरीलाई केन्द्रीकरण दुरी (focal length) भनिन्छ । यसलाई f ले जनाइन्छ र मिटरमा नाप्ने गरिन्छ ।

गोलाकार ऐनाबाट बन्ने आकृति (Image Formed by Spherical Mirror)

गोलाकार ऐनाबाट बन्ने आकृति जनाउने चित्रलाई किरण रेखाचित्र भनिन्छ । किरण रेखा चित्रले गोलाकार ऐनाबाट बन्ने आकृतिको आकार, स्थान र दुरी निश्चित गर्दछ ।

कन्केभ ऐनाको रेखाचित्र खिच्न आवश्यक नियमहरू (Rules Used to Draw Ray Diagrams in Concave Mirror)

- प्रमुख अक्षसँग समानान्तर प्रकाशका किरणहरू कन्केभ ऐनाबाट परावर्तन भई केन्द्रीकरण बिन्दुबाट जान्छन् ।
- केन्द्रीकरण बिन्दुबाट आएका प्रकाशका किरणहरू कन्केभ ऐनाबाट परावर्तन हुँदा प्रमुख अक्षसँग समानान्तर भएर जान्छन् ।
- वक्रताको केन्द्रबाट आएको प्रकाशको किरण सोही बाटो फर्कन्छ ।

चित्र नं. 7.8

चित्र नं. 7.9

कन्केभ ऐनाको रेखाचित्र खिच्ने तरिका (Procedure to Draw Ray Diagram for Concave Mirror)

क्रियाकलाप ५

- 9. कम्पासको सहायताले वृत्ताकार चाप XY खिच ।
- २. कम्पासको सियो अडेको बिन्द्मा C चिह्न लगाऊ ।
- ३. XY को मध्यबिन्द् P मा चिहन लगाऊ ।
- ४. बिन्दु P र C जोड्ने गरी सरल रेखा खिच ।
- ५. XY को बाहिरी सतहमा छाया पार ।

चित्र नं. 7.10

- ६. CP को मध्य बिन्दु पत्ता लगाऊ र त्यसलाई F ले जनाऊ ।
- वस्तुलाई प्रमुख अक्षको तोकिएको बिन्दुमा राख ।
 जस्तै : वस्तुलाई C भन्दा पर राख्दा चित्रमा जस्तै AB वस्तु बनाऊ ।
- अब उल्लिखित कुनै उपयोगी दुईओटा नियम प्रयोग गर :
 - (क) बिन्दु A बाट प्रमुख अक्षसँग समानान्तर हुने गरी रेखा AM खिच ।
 - (ख) बिन्द् M र F जोडेर अर्को सिधा रेखा खिच ।
 - (ग) A र F जोडेर अर्को सिधा रेखा खिच । AN केन्द्रीकरण बिन्दुबाट गएको आपितत किरण हो । त्यसैले यो किरण N बाट PC सँग समानान्तर हुने गरी फर्कन्छ । अब N बाट PC सँग समानान्तर रेखा खिच जसले MF रेखालाई A' बिन्दुमा भेट्छ ।
 - (घ) अब A' बाट प्रमुख अक्षमा लम्ब हुने गरी A'B' खिच । A'B' नै वस्तु AB को आकृति हो ।
 - (ङ) A'B' को साइज र स्थिति नाप ।

यो वस्तुभन्दा सानो, उल्टो र वास्तविक आकृति हो । यो आकृति F र C का बिचमा पर्दछ ।

कन्केभ ऐनाको रेखाचित्र (Ray Diagram for Concave Mirror)

कन्केभ ऐनाबाट बन्ने आकृतिको साइज, स्थान र प्रकृति वस्तु राखिएको स्थानसँग भर पर्दछ । त्यसैले कन्केभ ऐनाको अगाडि विभिन्न स्थानमा वस्तुलाई राख्दा त्यस वस्तुको आकृति कहाँ, कस्तो र कुन साइजको बन्छ भन्ने कुरा किरण रेखा चित्रसहित तल प्रस्तुत गरिएको छ :

- वस्तुलाई अनन्तमा राख्दा

 कुनै वस्तुलाई कन्केभ ऐनाको धेरै टाढा राख्दा त्यस

 वस्तुको आकृति केन्द्रीकरण बिन्दुमा बन्छ । उक्त

 आकृति वास्तविक, उल्टिएको र असाध्यै सानो हुन्छ ।
- २. वस्तुलाई वक्रताको केन्द्र C भन्दा पर राख्दा कुनै वस्तुलाई कन्केभ ऐनाको C भन्दा पछाडि राख्दा त्यस वस्तुको आकृति C र F को बिचमा उल्टिएको, वास्तविक र सानो हन्छ ।

कन्भेक्स ऐनाको रेखा चित्र खिच्न आवश्यक नियमहरू (Rules Used to Draw Ray Diagram in Convex Mirror)

- कन्भेक्स ऐनामा केन्द्रीकरण बिन्दु र वक्रताको केन्द्र ऐनाको पछाडितिर पर्दछ ।
- प्रमुख अक्षसँग समानान्तर प्रकाशको किरण ऐनाबाट परावर्तन हुँदा केन्द्रीकरण बिन्दुबाट आएको जस्तो देखिन्छ ।
- वक्रताको केन्द्रतिर गएको प्रकाशको किरण सोही बाटो परावर्तन हुन्छ ।

चित्र नं. 7.13

कन्भेक्स ऐनाको रेखाचित्र (Ray Diagram for Convex Mirror)

कन्भेक्स ऐनाको अगांडि कुनै वस्तुलाई राख्दा त्यसको आकृति ऐनाको पछांडि बन्छ । कन्भेक्स ऐनाले सधैँ अवास्तविक, सुल्टो र वस्तुभन्दा सानो आकृति बनाउँछ ।

- वस्तुलाई अनन्तमा राख्दा र कुनै वस्तुलाई कन्भेक्स
 ऐनाको अगाडि अनन्तमा राख्दा त्यसको आकृति
 ऐनाको पछाडि केन्द्रीकरण बिन्दुमा बन्छ । उक्त
 आकृति अवास्तविक, सुल्टो र असाध्यै सानो हुन्छ ।
- २. वस्तुलाई ऐनाको P र अनन्तका बिचमा राख्दा र कुनै वस्तुलाई कन्भेक्स ऐनाको अगाडि राख्दा त्यसको आकृति ऐनाको पछाडि P र F को बिचमा सुल्टो, अवास्तविक र सानो हुन्छ ।

चित्र नं. 7.14

चित्र नं. 7.15

गोलाकार ऐनाको उपयोगिता (Uses of Spherical Mirrors)

कन्केभ ऐनाको उपयोगिता (Uses of Concave Mirror)

- टर्च लाइट, सर्च लाइट, गाडीहरूको हेड लाइटमा प्रकाशलाई टाढासम्म पुऱ्याउन कन्केभ ऐनाको प्रयोग गरिन्छ ।
- २. यसलाई डाक्टरले बिरामीको शरीरका नाक, कान, मुख, घाँटी आदिको भित्री भाग अवलोकन गर्न प्रयोग गर्दछन् ।
- ३. यसलाई दारी काट्दा र मेकअप गर्दा अन्हार ठुलो बनाइ हेर्न प्रयोग गरिन्छ ।
- ४. टेलिस्कोपहरूमा प्रकाशको परावर्तकका रूपमा प्रयोग गरिन्छ ।
- ५. यसलाई सूर्यको ताप शक्ति जम्मा गर्न सौर्य चुलोमा प्रयोग गरिन्छ ।

कन्भेक्स ऐनाको उपयोगिता (Uses of Convex Mirror)

- १. यसलाई गाडीको दायाँ बायाँतिर पछािडको भाग हेर्न साइड ऐनाका रूपमा प्रयोग गरिन्छ ।
- २. सडक बत्तीहरूमा प्रकाशलाई धेरै क्षेत्रफलमा छरिदिनका लागि प्रयोग गरिन्छ ।

प्रकाशको आवर्तन (Refraction of Light)

नदी, ताल, पोखरी, इनार, कुवाहरूमा हेर्दा पानीको गिहराइ वास्तविक गिहराइभन्दा कम देखिन्छ । त्यसैगरी एउटा लट्ठीलाई पानीमा आधा डुबायौँ भने पानीभित्रको भाग बाङ्गो देखिन्छ, यस्तो किन हुन्छ ?

प्रकाश जुन वस्तुबाट जान्छ, त्यसलाई प्रकाशको माध्यम भिनन्छ । हावा, पानी, मिटतेल, काँच, प्लास्टिक आदि वस्तुहरूबाट प्रकाश जान सक्छ । त्यसैले उक्त वस्तुहरू प्रकाशका माध्यम हुन् । प्रकाश बिनामाध्यम पिन जान सक्छ । प्रकाश एउटै माध्यममा जाँदा सिधा जान्छ । तर प्रकाश एक माध्यमबाट अर्को माध्यममा जाँदा दुई माध्यमलाई छुट्याउने सतहनेर बाङ्गिएर जान्छ । यसरी प्रकाश एक माध्यमबाट अर्को माध्यममा जाँदा बाङ्गिएर जाने प्रक्रियालाई प्रकाशको आवर्तन भिनन्छ ।

आवर्तनको कारण (Cause of Refraction)

फरक फरक माध्यममा प्रकाशको वेग पिन फरक फरक हुन्छ । बढी घनत्व भएको माध्यममा प्रकाशको वेग कम र कम घनत्व भएको माध्यममा प्रकाशको वेग बढी हुन्छ । त्यसैले एउटा माध्यमबाट प्रकाश अर्को माध्यममा जाँदा यसको वेग फरक पर्ने भएकाले बाङ्गिएर जान्छ । बढी घनत्व भएको माध्यमलाई सघन (denser) र कम घनत्व भएकालाई बिरल (rarer) माध्यम भिनन्छ । हावाको तुलनामा पानी, काँच सघन माध्यम हन् ।

क्रियाकलाप ६

- एउटा समतल टेबुलमा सेतो कागज
 फिँजाएर राख ।
- २. कागजको बिचमा काँचको स्ल्याब राख ।
- ३. पेन्सिलको सहायताले काँचको चारैतिर धर्को तान । यसले काँचको स्ल्याबको बाह्य आकृति ABCD बन्छ ।

चित्र नं. 7.16

- ४. काँचको स्ल्याबको AB साइडितर चित्रमा देखाए जस्तै दुईओटा पिनहरू P र Q लगभग 8 cm को द्रीमा ठाडो हुने गरी गाड ।
- ५. काँचको स्ल्याबको अर्को साइड CD तिरबाट हेर्दा ती दुवै पिनहरू P र Q सँग एउटै सिधा रेखामा पर्ने गरी राख । अनि क्रमश: अर्का दुई ओटा पिनहरू R र S पिन लगभग 8 cm को दुरीमा पर्ने गरी गाड । S पिनबाट हेर्दा सबै पिनहरू (PQR) छेकेको हुनुपर्छ ।

- ६. अब काँचको स्ल्याब र पिनहरू हटाऊ ।
- ७. बिन्दु P र Q जोड र स्ल्याबको साइड AB को X मा छुने गरी लम्ब्याऊ ।
- प्त. बिन्दु R र S लाई जोड र स्ल्याबको साइड CD को Y मा छुने गरी लम्ब्याऊ ।
- ९. बिन्दु X र Y लाई जोड ।
- 90. रेखा PQ लाई Z सम्म लम्ब्याऊ ।
- 99. बिन्दु X मा लम्ब MN र बिन्दु Y मा लम्ब M'N' खिच ।

यहाँ, हावाबाट काँचमा आएको प्रकाशको किरण PX लाई आपितत किरण (incident ray) भिनन्छ । काँचको स्ल्याबभित्रको किरण XY लाई आवर्तित किरण (refracted ray) भिनन्छ । काँचबाट बाहिर आएको किरण YS लाई इमर्जेन्ट किरण भिनन्छ । XZ आपितत किरणको वास्तिवक बाटो हो । यहाँ प्रकाशको किरण PX बिन्दु X बाट काँचभित्र प्रवेश गर्दा बाङ्गिएको छ र फेरि काँचबाट हावामा निस्कदा Y बिन्दुबाट पुन: बाङ्गिएको छ । यसरी प्रकाश एक माध्यमबाट अर्को माध्यममा जाँदा बां्गिन्छ भन्ने कुरा पुष्टि हुन्छ ।

प्रकाशको आवर्तनका नियमहरू (Laws of Refraction)

- प्रकाशको किरण कोण बनाई बिरल माध्यमबाट सघन माध्यममा जाँदा नर्मलितर बाङ्गिन्छ । तर सघन माध्यमबाट बिरल माध्यममा जाँदा नर्मलबाट टाढा बाङ्गिन्छ ।
- २. आपितत किरण, नर्मल र आवर्तित किरण एउटै सतहमा पर्दछन् ।
- ३.) लम्ब रूपले गएको प्रकाश नबाङ्गीकन सिधै जान्छ ।

क्रियाकलाप ७

एउटा बिकर वा काँचको गिलासमा आधा जित पानी लेऊ । त्यसमा एउटा सिसाकलम आधा जित छड्के पारेर डुबाऊ । अब पानीभित्रको सिसाकलमलाई माथिबाट हेर । कस्तो देखिन्छ, लेख ।

चित्र नं. 7.17

क्रियाकलाप ट

एउटा कचौरा वा गिलास लेऊ । त्यसमा एउटा सिक्का राख । अब, उक्त कचौरा वा गिलासमा पानी राख । पानी राखेपछि सिक्का माथि उठेको जस्तो देखिन्छ, किन, लेख ।

वस्तुलाई पानीमा राखेर बाहिरबाट हेर्दा त्यस वस्तुलाई वास्तविक स्थानमा देख्न सिकँदैन किनभने पानीभित्र रहेको वस्तुबाट आएको प्रकाशको किरण पानीको सतहमा

आएपछि बाङ्गिएर हाम्रो आँखामा पर्दछ । त्यसैले सो वस्तु केही माथि उठेको देखिन्छ । पानीभित्र आधा डुबाइएको सिसाकलमको टुप्पाबाट आएका प्रकाशका किरण पानीको सतहबाट बाङ्गिएर हाम्रो आँखामा आउँछन् । त्यसैले सिसाकलमको टुप्पो केही माथि उठेको देखिन्छ र पानीभित्रको भाग बांगो देखिन्छ । यसैगरी पानी रहेको भाँडाको पिँधबाट आएका प्रकाशका किरण पानीको सतहमा आएपछि बाङ्गिएर हाम्रो आँखामा पर्दछन् । यसैले भाँडाको पिँध माथि उठेको र कम गहिरो देखिन्छ । यी सबै प्रकाशको आवर्तनका असरहरू हुन् ।

विचारणीय प्रश्न

पानीभित्र रहेको माछालाई भालाले हानेर रोप्न सिकएला, किन ?

प्रयोगात्मक कार्य

क्रियाकलाप ४ अध्ययन गरी एउटा कन्केभ ऐनाबाट पर्दामा वास्तविक आकृति बनाई देखाऊ । उक्त ऐनाको केन्द्रीकरण दुरी पनि नापेर देखाऊ ।

परियोजना कार्य

तिम्रो विद्यालय, गाउँ, सहर वा बसोबास स्थानको निजक गोलाकार ऐनाको उपयोग कुन कुन काममा भएको छ ? अध्ययन गरी छोटो टिपोट लेख ।

सारांश

- १. वस्तुबाट आएको प्रकाशलाई परावर्तन गरी आकृति बनाउने उपकरणलाई ऐना भनिन्छ ।
- २. ऐना मुख्य दुई प्रकारका हुन्छन्, ती हुन् :
 - (क) समतल ऐना

- (ख) गोलाकार ऐना
- ३. ऐनाको प्रकाशलाई परावर्तन गर्ने सतह समतल (plane) हुन्छ भने त्यसलाई समतल ऐना भिनन्छ । यसले जहिले पिन अवास्तविक आकृति बनाउँछ ।
- ४. गोलाकार ऐना मुख्य दुई प्रकारका हुन्छन्, ती हुन् :
 - (क) कन्केभ ऐना

(ख) कन्भेक्स ऐना

- ५. छेउ छेउको भाग उठेको र बिचको भाग नियमित रूपले दिबएको ऐनालाई कन्केभ ऐना भिनन्छ । समानान्तर प्रकाशका किरणलाई परावर्तन गरी एउटै बिन्दुमा केन्द्रित गर्ने भएकाले कन्केभ ऐनालाई केन्द्रीकरण ऐना (converging mirror) भिनन्छ ।
- ६. छेउ छेउको भाग दिबएको र बिचको भाग नियमित रूपले उठेको ऐनालाई कन्भेक्स ऐना भिनन्छ । समानान्तर प्रकाशका किरणलाई परावर्तन गरी छिरिदिने अर्थात् विकेन्द्रित गर्ने भएकाले कन्भेक्स ऐनालाई विकेन्द्रित ऐना (diverging mirror) भिनन्छ ।
- ७. समानान्तर प्रकाशका किरणहरू कन्केभ ऐनाबाट परावर्तन हुँदा एउटै बिन्दुमा केन्द्रित हुन्छन् तर कन्भेक्स ऐनाबाट परावर्तन हुँदा एउटै बिन्दुबाट आएको जस्तो देखिने बिन्दुहरूलाई केन्द्रीकरण बिन्दु भिनन्छ ।
- द. पर्दामा उतार्न सिकने आकृतिलाई वास्तिवक आकृति (real image) र उतार्न नसिकने आकृतिलाई अवास्तिवक आकृति (virtual image) भिनन्छ ।
- कन्केभ ऐनाले वास्तविक, अवास्तविक, ठुला र साना सबै किसिमका आकृति बनाउँछ ।
- १०. कन्भेक्स ऐनाले जिहले पनि सानो र अवास्तविक आकृति बनाउँछ ।
- 99. कन्केभ ऐनालाई टर्च लाइट, सर्च लाइट, गाडीहरूको हेड लाइट, सैलुनमा दारी काट्दा, मेकअप गर्दा, अनुहार हेर्न, टेलिस्कोप, सौर्य चुलो आदिमा प्रयोग गरिन्छ ।
- १२. कन्भेक्स ऐनालाई गाडीको साइड ऐनाका रूपमा र सडक बत्तीहरूमा प्रयोग गरिन्छ ।
- १३. प्रकाश एक माध्यमबाट अर्को माध्यममा जाँदा बाङ्गिने क्रियालाई प्रकाशको आवर्तन भनिन्छ ।
- १४. प्रकाश बिरल माध्यमबाट सघन माध्यममा जाँदा नर्मलितर र सघन माध्मबाट विरल माध्यममा जाँदा नर्मलबाट टाढा बाङ्गिन्छ । लम्ब भएर गएको किरण नबाङ्गीकन सिधा जान्छ ।

*अ∂*यास

१. खाली ठाउँमा उपयुक्त शब्द भर :

- (क) प्रकाश हिँड्ने सबैभन्दा सानो बाटालाई भिनन्छ ।
- (ख) कन्केभ ऐनाले समानान्तर प्रकाशका किरणलाई केन्द्रित गर्ने बिन्दुलाई भिनन्छ ।

(ग) कन्भेक्स ऐनाले जिहले पनि सानो र	आकृति बनाउँछ ।
(घ) गाडीको साइड ऐनाका रूपमा	ऐना प्रयोग गरिन्छ ।
(ङ) प्रकाश एक माध्यमबाट अर्को माध्यम भनिन्छ ।	नमा जाँदा प्रक्रियालाई प्रकाशको आवर्तन
तल दिइएका उत्तरहरूमध्ये सही उत्तर ह	शन :
(क) अनुहार हेर्न कुन प्रकारको ऐना प्रयो	ाग गरिन्छ ?
(अ) समतल ऐना	(आ) कन्केभ ऐना
(इ) कन्भेक्स ऐना	(ई) गोलाकार ऐना
(ख) कुन प्रकारको ऐनाले वास्तविक आव	চृ ति बनाउन स क्छ ?
(अ) समतल ऐना	(आ) कन्केभ ऐना
(इ) कन्भेक्स ऐना	(ई) कुनै पनि होइन
(ग) कस्तो आकृतिलाई वास्तविक आकृति	भिनन्छ ?
(अ) पर्दामा उर्तान नसकिने	(आ) पर्दामा उतार्न सिकने
(इ) ठाडो आकृति	(ई) उल्टिएको आकृति
(घ) कन्केभ ऐनालाई कस्तो ऐना पनि भ	निन्छ ?
(अ) समतल ऐना	(आ) विकेन्द्रित ऐना
(इ) केन्द्रीकरण ऐना	(ई) कुनै पनि होइन
(ङ) प्रकाश एक माध्यमबाट अर्को माध्य	ममा जाँदा बाङ्गिने क्रियालाई के भनिन्छ ?
(अ) परावर्तन	(आ) आवर्तन
(इ) केन्द्रीकरण	(ई) विकेन्द्रित

₹.

उ. फरक लेख:

- (क) कन्केभ र कन्भेक्स ऐना
- (ख) वास्तविक र अवास्तविक आकृति
- (ग) बिरल र सघन माध्यम
- (३) परावर्तन र आवर्तन

४ तलका शब्दावलीको परिभाषा लेख:

- (क) प्रमुख अक्ष (ख) केन्द्रीकरण बिन्द् (ग) वक्रताको केन्द्र

प्र. कारण देऊ :

- (क) समतल ऐनालाई अनुहार हेर्न प्रयोग गरिन्छ ।
- (ख) कन्भेक्स ऐनालाई गाडीको साइड ऐनाका रूपमा प्रयोग गरिन्छ ।
- (ग) पानीमा आधा ड्बाइएको सिसाकलम बाङ्गो देखिन्छ ।
- (घ) पोखरीको गहिराइ वास्तविक गहिराइभन्दा कम देखिन्छ ।
- (ङ) कन्भेक्स ऐनालाई विकेन्द्रित ऐना पनि भनिन्छ ।

६. छोटो उत्तर लेख:

- (क) प्रकाशको आवर्तन भनेको के हो ?
- (ख) कस्तो ऐनालाई गोलाकार ऐना भनिन्छ ?
- (ग) कन्केभ ऐनालाई सौर्य च्लो बनाउन प्रयोग गरिन्छ, किन ?

७. चित्रसहित उत्तर लेख:

निम्नलिखित स्थानमा वस्तु राख्दा कन्केभ ऐनाले कस्तो आकृति बनाउँछ , रेखाचित्रसहित लेख :

- (क) वक्रताको केन्द्र (C) भन्दा टाढा
- (ख) अनन्तमा

द. दिइएको चित्र पुरा गरी तल सोधिएका प्रश्नहरूको उत्तर लेख:

- (क) चित्रमा क्न प्रक्रिया देखाइएको छ ?
- (ख) यस प्रक्रियाका द्ईओटा नियम लेख ।

ह्यति (Sound)

ध्विन एक प्रकारको शिक्त (energy) हो । हाम्रो विरिपरिका विभिन्न स्रोतहरूबाट ध्विनहरू आइरहन्छन् । ध्विन वस्तुको कम्पनबाट उत्पित्त हुन्छ । वस्तुको कम्पन हुँदा तरङ्गहरू उत्पित्त हुन्छन् । ध्विन शिक्तिको प्रसारण तिनै तरङ्ग (wave) बाट हुन्छ । वस्तुमा कम्पन बन्द हुनासाथ ध्विन पिन बन्द हुन्छ ।

ध्वनि तरङ्ग (Sound Wave)

ठोस, तरल वा ग्यासको कम्पनबाट ध्विन तरङ्ग उत्पत्ति हुन्छ । ध्विन तरङ्ग प्रसार हुनका लागि माध्यम (ठोस, तरल र ग्याँस) को आवश्यकता पर्दछ । ध्विन कसरी प्रसारण हुन्छ ?

क्रियाकलाप १

एउटा लामो स्प्रिङलाई तन्काएर दुई जनाले दुई छेउमा समात । स्प्रिङ समातेको एक छेउमा बिस्तारै हिर्काऊ । स्प्रिङमा के देखिन्छ, अर्को छेउ समात्नेले के अन्भव गर्दछ ?

हिर्काएको छेउमा तरङ्ग उत्पत्ति हुन्छ । ती तरङ्गहरू छेउतिर प्रसारण हुन्छन् र अर्को छेउमा धक्का महसुस हुन्छ । त्यहाँबाट तरङ्ग परावर्तन भई सुरुको ठाउँमा नै फर्कन्छ । यसरी तरङ्गहरू प्रसारण हुँदा स्प्रिङका चक्काहरू दायाँ बायाँ कम्पन भइरहन्छन् । तरङ्ग उत्पत्ति भएको ठाउँका चक्काहरू र त्यसपछिका चक्काहरू फुकेका हुन्छन् । यो क्रम क्रमशः छेउसम्म हुन्छ । त्यसपछि खाँदिएका चक्काहरू पिन फुक्छन् र फुकेका चक्काहरू खाँदिन्छन् । यो क्रम चिलरहन्छ । यी चक्काहरूको कम्पन र तरङ्ग प्रसारणको दिशा एउटै हुन्छ । यस्तो प्रकारको तरङ्गलाई लङ्गिचुनल तरङ्ग भिनन्छ । ध्विन प्रसारण हुँदा शक्ति मात्र एक छेउदेखि अर्को छेउमा पुग्छ तर चक्काहरू जहाँको त्यहीँ रहन्छन् ।

तरङ्ग लम्बाइ (Wave Length)

तरङ्ग प्रसारण हुँदा एउटा खाँदिएको अणुबाट सबैभन्दा निजकको अर्को खाँदिएको अणुसम्मको दुरीलाई वा फुकेको अणुबाट सबैभन्दा निजकको फुकेको अणुसम्मको दुरीलाई एक तरङ्ग लम्बाइ (wave length) भिनन्छ । तरङ्गको लम्बाइलाई λ (ल्याम्दा) ले जनाइन्छ । यसलाई मिटर एकाइमा नापिन्छ ।

आवृत्ति (Frequency)

प्रतिसेकेन्ड उत्पत्ति हुने तरङ्गको सङ्ख्यालाई आवृत्ति (frequency) भिनन्छ । यसलाई f ले जनाइन्छ । आवृत्तिको एकाइ हर्ज (hertz) हो । हर्जभन्दा ठुलो एकाइ किलोहर्ज र मेगाहर्ज हुन् । 1000 हर्ज (Hz) = 10^3 हर्ज = 1 किलोहर्ज (KHz)

1000000 हर्ज (Hz) = 10^6 Hz = 1 मेगाहर्ज (MHz)

विचारणीय प्रश्न

ध्विन तरङ्गको आवृत्ति 50 Hz छ भन्नाले के बुिभन्छ ?

ध्वनिको वेग (Speed of Sound)

यदि ध्विन तरङ्गको आवृत्ति 50 Hz छ भने प्रत्येक सेकेन्डमा 50 ओटा तरङ्ग प्रसारण हुन्छन् । त्यसैले ध्विनले प्रत्येक सेकेन्डमा 50 ओटा तरङ्गको लम्बाइ बराबर दुरी पार गर्दछ । मानौँ तरङ्ग लम्बाइ 6.6 m भए उक्त ध्विनले 1 सेकेन्डमा 50 ओटा तरङ्गको लम्बाइ बराबर ($50 \times 6.6 \text{ m}$) दुरी पार गर्दछ ।

त्यसैले, सो ध्विनको वेग = 50x 6.6m/s = 330 m/s हुन्छ । अथवा, ध्विनको वेग (V) = आवृत्ति (f) x तरङ्ग लम्बाइ (λ) \therefore V = $f \times \lambda$

उदाहरण १

100 हर्ज आवृत्ति भएको ध्वनिको तरङ्ग लम्बाइ 3.3m भए ध्वनिको वेग कति हुन्छ ?

यहाँ, आवृत्ति (f) = 100Hz सूत्रअनुसार, लम्बाइ (λ) = 3.3m $V = f \times \lambda$ ध्विनको वेग (v) = ? =100 \times 3.3

=330 m/s

∴ ध्वनिको वेग 330m/s हुन्छ ।

उदाहरण २

यदि ध्वनिको वेग 360 m/s र आवृत्ति 45 Hz भए तरङ्गको लम्बाइ कति हुन्छ ?

यहाँ, ध्विनको वेग (v) = 360 m/s सूत्रानुसार,
$$v = f \times \lambda$$
 आवृत्ति (f) = 45 Hz
$$\lambda = \frac{v}{f}$$
 तरङ्ग लम्बाइ (λ) = ?
$$\frac{360}{45}$$

$$\lambda = 8 \text{ m}$$

उक्त ध्वनिको तरङ्ग लम्बाइ 8 m हन्छ ।

ध्वनिको परावर्तन (Reflection of Sound)

अग्लो पहाड वा पहराको अगाडि वा सुनसान जङ्गलको बिचमा बसेर कराउँदा हामीले आफ्नो आवाज फोरि सुन्छौँ । यस्तो किन हुन्छ ?

हामीले बोलेको आवाज कुनै ठाउँमा ठक्कर खाएमा पुन: फर्केर आउँछ । यसरी कुनै वस्तुबाट निस्केको ध्विन फर्केर आउने क्रियालाई ध्विनको परावर्तन भनिन्छ । परावर्तित ध्विनलाई प्रतिध्विन (echo) भनिन्छ ।

प्रतिध्वनि (Echo)

गिहरो इनार, लामो सुरुङ, पहाडको खोँच, घना जङ्गल आदि ठाउँमा ठुलो स्वरले बोल्दा हामीले बोलेको ध्विन परावर्तन भई दोहोरिन्छ । एक पटक सुनेको ध्विन परावर्तन भई फेरि सुनिन्छ भने त्यस ध्विनलाई प्रतिध्विन (echo) भिनन्छ । ध्विनको स्रोतबाट परावर्तन गर्ने सतह 17 मिटरभन्दा टाढा भएमा मात्र प्रतिध्विन सुनिन्छ । ध्विन धेरै टाढा गएर फिकिँदा त्यसले धेरै शिक्त गुमाइसकेको हुन्छ । यसैले प्रतिध्विन सानो सुनिन्छ ।

गुञ्जायमान (Reverberation)

के तिमी खाली कोठामा बोलेका छौ, खाली र ठुला कोठाहरूमा बोल्दा आवाज कस्तो स्निन्छ, चउरमा र खाली कोठामा बोल्दा के फरक पर्छ ?

ध्विनको स्रोतबाट 17 मिटरभन्दा निजक ध्विन परावर्तन भएमा परावर्तन भएको ध्विन पहिलेको ध्विनसँग मिसिन्छ । यसो हुँदा पहिलेको ध्विन अर्थात् मूल ध्विन लिम्बन्छ । यसरी ध्विन लिम्बने प्रक्रियालाई गुञ्जायमान (reverberation) भिनन्छ । प्राय: ठुला ठुला कोठा वा हलहरूमा ध्विन गुञ्जायमान हुन्छ । नयाँ बन्दै गरेको वा खाली कोठाहरूमा पिन ध्विन गुञ्जायमान सुन्छ । तर सामान भएका कोठाहरूमा गुञ्जायमान हुँदैन किनभने त्यस्ता कोठाहरूमा

सामानले ध्विन सोस्छन् । ठुला ठुला हलहरूमा ध्विन गुञ्जायमान बढी भएमा बोलेका कुराहरू प्रस्ट सुनिँदैन । त्यसैले यस्ता हलहरूको भित्तामा ध्विन सोस्ने वस्तुहरूले ढाकेको हुन्छ । सिनेमा हल र सङ्गीत रेकर्ड गर्ने कोठा उचित मात्रामा गुञ्जायमान हुने गरी बनाइएको हुन्छ । उचित मात्रामा गुञ्जायमान भएमा सङ्गीत मिठास बन्छ ।

प्रतिध्वनिसम्बन्धी सरल गणितीय समस्या

मानौँ, कुनै स्रोतबाट निस्केको ध्वनिको प्रतिध्वनि सुनियो । ध्वनिको स्रोत र परावर्तन गर्ने सतह बिचको दुरी dm छ । प्रतिध्वनि हुनका लागि ध्वनिले दुई पटक दुरी पार गर्दछ । त्यसैले प्रतिध्वनि हुँदा ध्वनिले पार गरेको दुरी 2dm हुन्छ । प्रतिध्वनि सुनिन लागेको समय t र ध्वनिको वेग \vee भए,

ध्विनको वेग =
$$\frac{\text{ध्विन ले पार गरेको दुरी}}{\text{लागेको समय}}$$
 or,
$$v = \frac{2d}{t}$$
 or,
$$d = \frac{vt}{2} \quad \overline{g}$$
 हुन्छ ।

उदाहरण ३

स्वस्थ मानिसको कानले ध्विन निस्केको 0.1 सेकेन्ड समयपछि मात्र प्रतिध्विन सुन्न सक्छ भने ध्विनको स्रोत र परावर्तन गर्ने सतह बिचको दुरी कम्तीमा कित होला, हावामा ध्विनको वेग 332 m/s हुन्छ ।

यहाँ, ध्विनको वेग (v) =
$$332\text{m/s}$$
 सूत्रानुसार, $d = \frac{\text{vt}}{2}$ लागेको समय (t) = 0.1 s or, $d = \frac{332 \times 0.1}{2}$ दुरी (d) = ? \therefore d = 16.6 m

त्यसैले ध्विनको स्रोत र परावर्तन गर्ने सतहिबच कम्तीमा 16.6 m (लगभग 17m) दुरी हुनुपर्छ ।

प्रयोगात्मक क्रियाकलाप

तिमो विद्यालय वा बसोबास स्थानको निजक रहेको जङ्गल वा पहाडको खाँच वा अग्लो पर्खालको अगाडि उभिएर ठुलो स्वरमा ध्विन निकाल । अब प्रतिध्विन सुनिन्छ । ध्विन निस्केको कित समयपिछ प्रतिध्विन सुनियो, यसबाट तिम्रो र परावर्तन गर्ने वस्तुबिचको दुरी निकाल ।

सारांश

- १. वस्तुको कम्पनबाट ध्वनि उत्पत्ति हुन्छ ।
- २. ध्वनिको प्रसारण तरङ्गका रूपमा हुन्छ ।
- ३. तरङ्ग प्रसारण हुने दिशा र वस्तुका अणुहरूको कम्पनको दिशा एउटै भएको तरङ्गलाई लङ्गिचुनल तरङ्ग भनिन्छ ।
- ४. तरङ्ग प्रसारण हुँदा कुनै एउटा खाँदिएका अणुदेखि सबैभन्दा नजिकको अर्को खाँदिएका अणुसम्मको दुरीलाई एक तरङ्ग लम्बाइ भनिन्छ ।
- ५. प्रतिसेकेन्ड उत्पत्ति हुने तरङ्गको सङ्ख्यालाई आवृत्ति भनिन्छ ।
- ६. ध्वनिको वेग = आवृत्ति x तरङ्ग लम्बाइ हुन्छ ।
- ७. परावर्तित ध्विन मूल ध्विनसँग मिसिएर ध्विन लिम्बएको सुनिने प्रक्रियालाई गुञ्जयमान भिनन्छ ।
- परावर्तित ध्विन मूल ध्विनसँग निमिसएर छुट्टै सुनियो भने त्यसलाई प्रतिध्विन भिनन्छ ।
- ९. प्रतिध्विन सुन्नका लागि परावर्तन गर्न सतह ध्विनको स्रोतबाट किम्तमा 17 मिटरभन्दा टाढा हुनुपर्दछ ।
- १०. गुञ्जयमान हुन ध्विन परावर्तन गर्ने सतह ध्विनको स्रोतबाट 17 मिटरभन्दा निजक हन्पर्दछ ।

अभ्यास-

_			\sim		_	
q	खाला	ठाउँमा	THAT	शहर	त्रख	
ı.	जाला	01341	1464	4104	पा अ	•

- (क) वस्तुको कम्पनबाटउत्पन्न हुन्छ ।
- (ख) ध्विन लिम्बने प्रक्रियालाई भिनन्छ ।
- (ग) परावर्तित ध्वनिलाई भिनन्छ ।

(घ) प्रतिध्विन उत्पन्न हुनका लागि ध्विनको स्रोत र परावर्तन गर्ने सतहिबच कम्तीमा मिटर द्री हन्पर्दछ ।

२. छोटो उत्तर लेख:

- (क) तरङ्ग लम्बाइ भनेको के हो, यसको एकाइ लेख ।
- (ख) आवृत्ति भनेको के हो ?
- (ग) ध्विन लिम्बएको स्निने प्रक्रियालाई के भिनन्छ ?
- (३) गुञ्जायमानका असरहरू के के हुन्छन् ?
- (ङ) एउटा ध्वनिको आवृत्ति 70 Hz छ भन्नुको अर्थ के हो ?
- ३. प्रतिध्वनि र गुञ्जायमानबिच के फरक छ, तालिका बनाई बुँदागत रूपमा लेख।
- ४. यदि हावामा ध्विनको वेग 332 m/s छ र ध्विनको आवृत्ति 10 Hz छ भने उक्त ध्विनको तरङ्ग लम्बाइ कित हुन्छ ? (33.2m)
- ५. 3.3 मिटर तरङ्ग लम्बाइ भएको ध्विनको वेग 330m/s भए आवृत्ति कित हुन्छ ? (100Hz)
- ६. 15m तरङ्ग लम्बाइ भएको ध्विनको आवृत्ति 100 Hz भए सो ध्विनको वेग कित हुन्छ ? (1500m/s)
- ७. एक जना मानिसले पहाडको खोँचमा बसी सिटी बजाउँदा 0.2 सेकेन्डमा प्रतिध्विन सुनियो भने मानिस र पहाडिबचको दुरी कित होला ? (V=332m/s) (33.2m)

(Magnetism)

चुम्बकत्वको आणविक सिद्धान्त (Molecular Theory of Magnetism)

छड चुम्बकलाई बिचमा काटेर दुई टुक्रा पारियो भने के यसका ध्रवहरू छुट्टिन्छन् ?

च्म्बकलाई दुई ट्क्रा पार्दा यसका ध्वहरू छुट्याउन सिकँदैन किनिक च्म्बकका दुवै ट्क्रामा नयाँ ध्रवहरू बन्दछन् । चुम्बकलाई जित टुक्रा पार्दै लगे पिन अन्तिम सानो कणसम्म पिन उत्तर र दक्षिण धुव रहिरहन्छ । यस्तो किन हुन्छ ?

चम्बकको आणविक सिद्धान्त

- १. प्रत्येक च्म्बक वा च्म्बकीय वस्त्का अण्हरू स्वतन्त्र च्म्बक हुन् । च्म्बकीय वस्त्बाट मात्र चुम्बक बन्छ ।
- २. चुम्बकीय वस्तु तर चुम्बक नबनेको अवस्थामा एउटा अणुको उत्तरी धुव अर्को अणुको दक्षिण ध्रवसँग जोडिएर बन्द चक्रीय क्रम (closed ring form) मा

३. च्म्बकमा च्म्बकीय अण्हरू समानान्तर रूपले निश्चित दिशामा फर्केर रहेका हुन्छन् । चुम्बकका अणुहरूका उत्तरी धुवहरू एक छेउतिर र दक्षिणी धुवहरू [।] अर्को छेउतिर फर्केर रहेका हुन्छन् । चुम्बकका ती छेउहरू क्रमश: उत्तर र दक्षिण ध्रव बन्छन् । यिनै उत्तर र दक्षिण ध्रवमा चुम्बकीय शक्ति केन्द्रित हुन्छ ।

$S \rightarrow N$	S-N	$S \rightarrow N$	S-N	$S \rightarrow N$
$S \rightarrow N$	$S \rightarrow N$	S-N	S-N	S-N
$S \rightarrow N$	S-N	$S \rightarrow N$	S-N	$S \rightarrow N$
$S \rightarrow N$	S-N	$S \rightarrow N$	$S \rightarrow N$	$S \rightarrow N$
S-N	S-N	S-N	S-N	S→ N

चित्र नं. 9.2

चित्र नं. 9.3

४. चुम्बकको चुम्बकीय ध्रुव छुट्याउन वा टुक्र्याउन सिकँदैन । चुम्बकीय वस्तुका अणुहरूमा चुम्बकीय गुण हुन्छ । त्यसलाई अणु चुम्बक भिनन्छ । ती अणुहरू क्रमशः लहरै मिलेर बस्दा त्यस वस्तुले चुम्बकीय गुण देखाउँछ अर्थात् चुम्बक बन्छ । ती अणुहरू जथाभावी बस्दा त्यस वस्तुले चुम्बकीय गुण देखाउँदैन । यसलाई चुम्बकत्वको आणिवक सिद्धान्त भिनन्छ ।

क्रियाकलाप १

एउटा ब्लेड लेऊ र त्यसलाई चित्रमा देखाए भैँ दुई टुक्रा पार । एउटा टुक्रा ब्लेडलाई चुम्बक बनाऊ । अब चुम्बक बन्यो वा बनेन जाँच । चुम्बक बनिसकेपछि त्यस ब्लेड चुम्बकलाई सावधानीपूर्वक दुई टुक्रा पार । प्रत्येक टुक्रा पूर्ण चुम्बक हो कि होइन जाँच । उक्त दुई टुक्रा चुम्बकलाई फेरि दुई टुक्रा पार । अब उक्त दुई टुक्रा चुम्बकलाई फेरि दुई दुक्रा पार । अब उक्त चारै टुक्राहरू चुम्बक हन् कि होइनन्, जाँच । यसबाट के निष्कर्षमा प्रन सिकन्छ, लेख ।

चित्र नं. 9.4

चुम्बकका धुवहरू जिहले पिन जोडामा हुन्छन् । एक मात्र धुव भएको चुम्बक हुँदैन । चुम्बकका धुवहरूलाई छुट्याउन सिकँदैन ।

चुम्बकीय उपपादन (Magnetic Induction)

क्रियाकलाप २

फलामको किला टेबुलमा राख । त्यसको निजक पिन राख । के पिनलाई किलाले आकर्षण गर्छ, हेर । अब फलामको किलाको पिन राखेको भन्दा अर्कोतर्फ निजकै एउटा छड चुम्बक राख । के अब किलाले पिनलाई आकर्षण गर्दछ, यसको कारण के होला, छलफल गर र निष्कर्ष लेख । चुम्बकको प्रभावले फलामको

चित्र नं. 9.5

किलामा चुम्बकीय गुण विकसित हुन्छ । त्यसैले उक्त किलाले पिनलाई आकर्षण गर्दछ । यस अवस्थामा फलामको किला अस्थायी चुम्बक बनेको हुन्छ । यसमा पिन चुम्बकका जस्तै उत्तर र दक्षिणी धुवहरू बन्दछन् । यस क्रियाकलापमा चुम्बकको शक्ति कमजोर भएमा चुम्बकले किलालाई छुवाएपछि मात्र त्यो किला चुम्बकीय गुणयुक्त बन्छ ।

चुम्बकको प्रभावले कुनै पनि चुम्बकीय वस्तुमा अस्थायी चुम्बकत्व विकसित गर्ने क्रियालाई चुम्बकीय उपपादन (magnetic induction) भनिन्छ ।

चुम्बकले किलालाई आकर्षण गर्नु अगाडि उक्त किलामा चुम्बकीय उपपादन हुन्छ । यसरी उक्त किला अस्थायी चुम्बक बन्छ । चुम्बकीय उपपादन हुँदा चुम्बकको उत्तरी ध्रुव निजक रहेको किलाको छेउमा दक्षिण ध्रुव बन्छ । अब विपरीत ध्रुवहरू आकर्षण हुने हुँदा चुम्बकले किलालाई आकर्षण गर्छ । त्यसैगरी किलाले पिनलाई आकर्षण गर्दछ ।

चुम्बकीय शक्तिको हास (Demagnetization)

चुम्बकीय गुण नाश हुने प्रक्रियालाई चुम्बकीय शक्तिको ह्रास भिनन्छ । चुम्बकीय शक्तिको ह्रास हुनुको प्रमुख कारण त्यसमा रहेका अणु चुम्बकहरूको क्रम बिग्रनु हो । चुम्बकमा रहेका अणु चुम्बकहरू एउटा निश्चित दिशामा फर्केर रहेका हुन्छन् । यदि कुनै तरिकाले ती अणुहरूको क्रम बिग्रन गएमा त्यसको चुम्बकीय गुण नाश हुन्छ । निम्नलिखित क्रियाकलापले चुम्बकको चुम्बकीय गुण ह्रास हुन जान्छ :

- १. च्म्बकलाई तताउँदा
- २. चुम्बकलाई भुइँमा खसाल्दा
- ३. चुम्बकलाई घनले पिट्दा
- ४. समान ध्रव आपसमा रगड्दा
- ५. समान धुव एकैतर्फ पारेर लामो समयसम्म राख्दा

चुम्बकीय शक्ति संरक्षणका उपायहरू

चुम्बकीय शक्ति जोगाइ राख्न निम्नलिखित उपायहरू अपनाउनुपर्दछ :

- १. च्म्बकलाई तताउन् वा तातो वस्त्को नजिक राख्न् हँदैन ।
- २. चुम्बकलाई भुइँमा खसाल्नु हुँदैन ।
- ३. चुम्बकलाई पिट्नु वा रगड्नु हुँदैन ।
- ४. चुम्बकलाई राख्दा विपरीत धुवहरू एकैतर्फ हुने गरी मिलाएर राख्नुपर्दछ । दुई चुम्बकका विपरीत धुवहरूको छेउमा फलामका सानो टुक्राले जोडेर राख्नुपर्छ ।
- ५. चुम्बकलाई खिया लाग्नुबाट जोगाउनुपर्छ ।

प्रयोगात्मक कार्य

- १. एउटा चुम्बक, कम्पास र फलामको किला लेऊ । किलालाई टेबलमा राख । किलाको एउटा छेउ निजक चुम्बकको उत्तरी ध्रुव लैजाऊ । किलाको अर्को छेउमा कुन ध्रुव बन्यो, कम्पासको सहायताले पत्ता लगाऊ । फेरि चुम्बकको दक्षिण ध्रुव किलाको अघि कै छेउतिर लैजाऊ । अर्को छेउमा कुन ध्रुव बन्छ, हेर । यसबाट के सिक्यौ, लेख ।
- २. क्रियाकलाप १ का आधारमा चुम्बकका ध्रुवहरूलाई छुट्याउन वा टुक्रयाउन सिकँदैन भन्ने क्रा प्रयोगात्मक तरिकाले पुष्टि गर ।

सारांश

- १. चुम्बक वा चुम्बकीय वस्तुहरू अणु चुम्बकबाट बनेका हुन्छन् ।
- २. चुम्बकमा अणु चुम्बकहरू निश्चित दिशामा फर्केर बसेका हुन्छन् ।
- ३. चुम्बकीय वस्तुमा अणुहरू बन्द चक्रीय क्रममा रहेका हुन्छन् ।
- ४. चुम्बकको प्रभावले चुम्बकीय वस्तुमा अस्थायी चुम्बकत्व विकास गर्ने क्रियालाई चुम्बकीय उपपादन भनिन्छ ।
- ५. चुम्बकीय शक्ति नाश हुने प्रक्रियालाई चुम्बकीय शक्तिको ह्रास भनिन्छ ।
- ६. च्म्बकलाई तताउँदा, पिट्दा, खसाल्दा र रगड्दा शक्ति ह्रास हन्छ ।

अ∂ग्रस

(क) चुम्बकका अणुहरू स्वतन्त्रहुन् ।
(ख) चुम्बकका धुवहरूलाईसिकँदैन ।
(ग) चुम्बकको प्रभावले चुम्बकीय वस्तुमा चुम्बकत्व विकास गर्ने क्रियालाई भिनन्छ ।
(घ) चुम्बकलाई तताउँदा यसको नाश हुन्छ ।

खाली ठाउँमा मिल्ने शब्द लेख:

२. फरक लेख:

- (क) च्म्बक र च्म्बकीय वस्त्
- (ख) चुम्बकीय उपपादन र चुम्बकीय ह्रास

३. छोटो उत्तर लेख:

- (क) चुम्बकत्वको आणविक सिद्धान्त के हो ?
- (ख) अण् चुम्बक भनेको के हो ?
- (ग) चुम्बकीय उपपादन भनेको के हो ?
- (घ) चुम्बकीय शक्तिको हास हुनाका कारणहरू के के हुन् ?
- (ङ) चुम्बकीय शक्तिको संरक्षणका उपायहरू लेख ।

४. कारण देऊ :

- (क) चुम्बकलाई जित टुक्रा पारे पिन यसका धुवहरू छुट्याउन सिकँदैन ।
- (ख) चुम्बकलाई तताउँदा वा भुइँमा खसाल्दा यसको शक्ति ह्रास हुन्छ ।
- प्र. तलको चित्रमा अणु चुम्बकहरूको स्थित देखाइएको छ । चित्रका आधारमा तल सोधिएका प्रश्नको उत्तर देऊ :

(ক)

- (अ) कुन चित्रमा चुम्बकको बनावट देखाइएको छ ?
- (आ) चित्र "ख" मा रहेका अण्हरूको स्थितिलाई के भिनन्छ ?
- (इ) यी चित्रले कुन सिद्धान्तलाई देखाउँछ ?
- ६. चुम्बकीय उपपादनलाई एउटा प्रयोगात्मक क्रियाकलाप गरी पुष्टि गर।

साधारण सेल (Simple Cell)

के तिमीले सेल देखेका छौ, सेलको बनावट कस्तो हुन्छ, यसले कसरी विद्युत् उत्पादन गर्दछ ?

क्रियाकलाप १

एउटा सफा बिकर लेऊ । बिकरमा 100 ml जित सफा पानी राख । त्यसमा 10 ml जित कडा सल्फुरिक अम्ल (sulphuric acid) बिस्तारै थोपा थोपा गरी खन्याऊ । यसरी फिक्का सल्फुरिक अम्ल बन्छ । अब फिका अम्ल राखिएको बिकरमा एउटा तामाको पाता र अर्को जस्ताको पाता डुबाऊ । ती पाताहरूलाई सुचालक तारले एउटा सानो टर्चको लिड बल्बसँग चित्रमा देखाए भैँ जोड । के बत्ती बल्छ, ऋण ध्रुव र धन ध्रुव कुन कुन हुन् ?

यसरी तामाको पाता, जस्ताको पाता र फिक्का सल्फुरिक अम्लबाट साधारण सेल बनाउन सिकन्छ । जस्ताको पाताले ऋण धुव (negative pole) को काम गर्दछ । तामाको पाताले धन धुव (positive pole) को काम गर्दछ । जस्ताले सल्फुरिक अम्लसँग प्रतिक्रिया गरी अम्लमा घोलिन जान्छ र इलेक्ट्रोनहरू जस्ता पातामा नै छोड्छ । त्यसैले यो ऋण चार्ज युक्त बन्छ । सल्फुरिक अम्लमा भएको हाइड्रोजन धन चार्ज भई तामाको पाता वरिपरि रहन्छ । सुचालक तारले जस्ताको पाता र तामाको पातालाई जोड्दा इलेक्ट्रोनहरू जस्ताको पाताबाट चिम हुँदै तामातिर लाग्छन् र चिम बल्छ । यस प्रकारको सेलबाट धेरै बेरसम्म विद्युत् उत्पादन गर्न सिकँदैन किनभने यसमा दुई प्रकारका त्रिटहरू हन्छन् ।

(क) ध्रुवीकरण (Polarization)

सेलभित्र रासायनिक प्रतिक्रिया हुँदा हाइड्रोजन ग्यास उत्पन्न हुन्छ र तामाको पाताको विरिपरि जम्मा हुन्छ । यो ग्यासको कुचालक पत्रले तामालाई ढाक्दा विद्युत् प्रवाह बन्द हुन्छ । यस प्रकारको असरलाई ध्रुवीकरण भनिन्छ ।

ध्वीकरण हटाउने उपायहरू

तामाको पातालाई ब्रसले बेला बेलामा सफा गर्ने र पोटासियम डाइक्रोमेट (potassium dichromate— $K_2Cr_2O_7$) लाई घोलमा मिसाएर ध्रुवीकरण हटाउन सिकन्छ ।

(ख) स्थानीय क्रिया (Local Action)

साधारण सेलमा प्रयोग गरिने जस्ताको पातामा अरू धातुका कणहरू अशुद्धिका रूपमा मिसिएका हुन्छन् । यसले गर्दा सेल प्रयोग नगर्दा पिन जस्ताको पाता खिइँदै जान्छ र सेलको आयु घट्छ । यसलाई स्थानीय क्रिया भिनन्छ ।

स्थानीय किया रोक्ने उपाय

शुद्ध जस्ताको पाता प्रयोग गर्ने वा जस्ताको पातालाई बाहिरबाट पारोले लेपन गर्ने ।

उपयोगिता

कम मात्रामा विद्युत् आवश्यक पर्दा सजिलै निर्माण गर्न र प्रयोग गर्न सिकन्छ । तर यसमा तरल अम्ल प्रयोग भएकाले यताउता लैजान अप्ठेरो पर्छ । यसमा भएको अम्ल पोखिने सम्भावना

हुन्छ ।

शुष्क सेल (Dry Cell)

तरल पदार्थको प्रयोग नगरीक नबनाइएको सेललाई शुष्क सेल भनिन्छ । साधारण ड्राइ सेल जस्ताको भाँडामा बनाइन्छ । यसमा कार्बन रड जस्ताको भाँडालाई नछुने गरी बिच भागमा राखिएको हुन्छ । त्यस रडको वरिपरि कार्बनको धुलो

र म्यागिनज डाइअक्साइड ($\mathrm{MnO_2}$) को धुलो मिसाएर राखिन्छ । यसभन्दा बाहिर एमोनियम क्लोराइड ($\mathrm{NH_4Cl}$) को लेदो (paste) राखिएको हुन्छ । जस्ताको भाँडाले ऋण धुवको काम गर्दछ । जस्ताको भाँडाभित्रको पदार्थ बाहिर आउन निदन मैन, अल्कत्रा, प्लास्टिक आदिले मुख बन्द गरिन्छ । कार्बन रडको टुप्पामा पित्तलको ढकनी राखिन्छ । कार्बन रडले धन धुवको काम गर्दछ ।

उपयोगिता

यसमा तरल पदार्थ प्रयोग नभएकाले यता उता लैजान र प्रयोग गर्न सजिलो हुन्छ । यसलाई विभिन्न साइज (size) मा बनाउन सिकन्छ । टर्च लाइट, रेडियो, टेलिभिजनको रिमोट, खेलौना आदिमा प्रयोग गर्न सुविधाजनक हुन्छ ।

यस प्रकारको सेलमा म्यान्गनिज डाइअक्साइड (MnO_2) राखिएकाले ध्रुवीकरण हुन पाउँदैन । तर स्थानीय क्रिया हुने भएकाले सेललाई प्रयोग नगरिकन राख्दा पनि बिस्तारै आयु घटेर जान्छ ।

गार्हस्थ विद्युतीकरण (House Wiring System)

विद्युत् गृहबाट विद्युत् उत्पादन गरिन्छ । विद्युत् गृह प्रायः बसोबास स्थलभन्दा टाढा रहेको हुन्छ । विद्युत्लाई विद्युत् गृहबाट लामो दुरीमा तारबाट प्रसारण गरिन्छ र ग्राहकको घरसम्म पुऱ्याइन्छ । हाम्रो घरमा ल्याइने विद्युत्मा दुईओटा तारहरू रहेका हुन्छन् । एउटालाई लाइभ (live) वा फेज (phase) भिनन्छ । अर्कोलाई न्युट्रल (neutral) भिनन्छ । ग्राहकको घरमा पुऱ्याएपछि मिटरमा जोड्नु अघि फ्युज (fuse) जोडिन्छ । यसलाई प्राधिकरण फ्युज भिनन्छ । मिटरबाट निस्केको तारमा मुख्य स्विच जोडिन्छ । मुख्य स्विच (switch) ले घरको सम्पूर्ण विद्युत् रोक्ने वा प्रवाह गर्ने कार्य गर्दछ । मुख्य स्विचमा पछि ग्राहक फ्युज राखिन्छ । मुख्य स्विचको बट्टामा जोडेर एउटा तार जिमनमुनि पुऱ्याइन्छ जसले गर्दा बढी करेन्ट आएमा जिमनमा पठाई करेन्ट लाग्नबाट जोगाउँछ । यसलाई अर्थिङ भिनन्छ । मुख्य स्विचबाट निकालेको लाइनलाई वितरण बोर्डमा जोडिएको हुन्छ । त्यसपछि घरका विभिन्न स्थानमा तारद्वारा विद्युत् पुऱ्याइन्छ । यसलाई गार्हस्थ विद्युतीकरण भिनन्छ । घरको विद्युत् जडान कार्यमा सबै विद्युत् उपकरणहरू छुट्टाछुट्टै पिरपथसहित समानान्तर रूपमा जडान गरिन्छ । प्रत्येक उपकरणलाई छुट्टाछुट्टै स्विचद्वारा सञ्चालन गरिन्छ ।

केही गार्हस्थ विद्युत् उपकरणहरू (Some Electrical Devices)

विद्युत् एउटा बहुपयोगी शक्ति हो । यसबाट विभिन्न उपकरणहरू सञ्चालन गर्न सिकन्छ । ती उपकरणहरूले विद्युत् शिक्तिलाई अन्य शिक्तिमा रूपान्तरण गर्दछन् । त्यस्ता उपकरणहरूलाई विद्युत् उपकरण भिनन्छ ।

हाम्रो दैनिक जीवनमा प्रयोगमा ल्याइने केही महत्त्वपूर्ण विद्युत् उपकरणहरू यस प्रकार रहेका छन् :

9. विद्युत् वत्ती (Electric Lamp) : विद्युत् शक्तिलाई प्रकाश शक्तिमा परिवर्तन गर्ने

- उपकरणलाई विद्युत्य बत्ती (electric lamp) भिनन्छ । यी मुख्य दुई प्रकारका हुन्छन् । (क) पित्र लामे न्ट बत्ती (filament lamp) अथवा चिम र (ख) फ्लोरेसेन्ट बत्ती (fluorescent lamp) अथवा ट्युबलाइट (tube light) ।
- २. हिटर (Heater) : विद्युत् शक्तिलाई ताप शक्तिमा परिवर्तन गर्ने उपकरणहरूलाई हिटर भनिन्छ, जस्तै : खाना पकाउने हिटर, कोठा न्यानो बनाउने हिटर, लुगामा लगाउने इस्त्री, पानी तताउने इमर्सन हिटर (immersion heater), पानी तताउने इलेक्ट्रिक जग वा केट्ली (electric kettle) आदि ।
- ३. विद्युत् घन्टी (Electric Bell): यो विद्युत् चुम्बकबाट सञ्चालित हुने उपकरण हो । यसमा सर्वप्रथम विद्युत्को सहायताले अस्थायी चुम्बक बनाइन्छ । त्यही चुम्बकीय शिक्तद्वारा चाल उत्पन्न गराई ध्विन उत्पन्न गराइन्छ । विद्युत् घन्टीको स्विच घरको गेटबाहिर राखिन्छ र बाहिरबाट आएको मानिसले घन्टी बजाएर आफू आएको सङ्केत गर्दछ । आजभोलि विद्यालयमा पिन विद्युत् घन्टी प्रचलनमा ल्याइन्छ ।
- ४. रेडियो / टेलिभिजन : रेडियो एउटा महत्त्वपूर्ण सञ्चारको साधन हो । यसलाई विद्युत्बाट वा ब्याट्रीद्वारा सञ्चालन गर्न सिकन्छ । त्यसैगरी टेलिभिजन अर्को महत्त्वपूर्ण श्रव्य दृश्य सामग्री हो । यसलाई पनि विद्युत्बाट सञ्चालन गरिन्छ ।
- प्र. टेलिफोन/मोबाइल : दूर सञ्चारको क्षेत्रमा टेलिफोन, मोबाइल आदि विद्युत् शक्तिबाट नै सञ्चालन गरिन्छ ।
- ६. कम्प्युटर (Computer): कम्प्युटर आजभोलि महत्त्वपूर्ण साधन बनेको छ । यसले सञ्चार जगतमा इमेल (e-mail), इन्टरनेट (internate) सञ्चालन गर्न मदत गर्दछ । पुस्तक लेख्न वा कम्प्युटरमा लेखेर राखिएका कुराहरू पढ्न पिन यसको प्रयोग गरिन्छ । यी सबै उपकरणहरू विद्युत्बाट नै सञ्चालन गरिन्छ ।

फ्युज (Fuse)

विद्युत् परिपथमा त्यसको क्षमताभन्दा बढी विद्युत् प्रवाह भएमा परिपथको तार तातेर बल्न सक्छ र विद्युत् उपकरणहरू बिग्रन सक्छन् । यस प्रकारको दुर्घटनाबाट बचाउन विद्युत् परिपथमा सुरक्षात्मक उपाय गरिएको हुन्छ । यसका लागि विद्युत् परिपथमा कमजोर स्थान बनाइएको हुन्छ । विद्युत् परिपथमा बहने विद्युत्लाई एउटा मिसनो कम तापक्रममा पिन पिग्लने तारको टुक्राबाट पिन बहने गरी जडान गरिन्छ । केही गरी परिपथमा बढी विद्युत् प्रवाह हुन खोजेमा उक्त तार पग्लेर विद्युत् परिपथ खुला हुन्छ र विद्युत् प्रवाह बन्द हुन्छ । यस्तो मिसनो तारको टुक्रालाई फ्युज (fuse) भिनन्छ । सिसा (lead) र टिन

चित्र नं. 10.4

(tin) धातु मिसाएर फ्युज तार बनाइन्छ । फ्युजलाई बट्टामा राखेर प्रयोग गरिन्छ । फ्युज तार प्रयोग गर्दा कम क्षमताको तार प्रयोग गरिन्छ । यसले गर्दा अत्यधिक विद्युत् प्रवाह हुन गएमा तार जल्नु अगांडि नै फ्युज पग्लेर विद्युत् परिपथ टुटाइदिन्छ र दुर्घटनाबाट बच्न सिकन्छ । त्यसैले उपयुक्त फ्युजको प्रयोग गर्नुपर्छ । कित क्षमताको फ्युज प्रयोग गर्ने भनेर थाहा पाउन त्यस विद्युत् परिपथमा बहने करेन्टको मात्रा थाहा पाउनुपर्छ । उक्त परिपथमा बहने विद्युत् धार (current) भन्दा केही बढी क्षमताको फ्युज प्रयोग गर्नुपर्छ । फ्युज तार पग्लेर गएपछि त्यसको ठाउँमा अर्को फ्युज तार फेर्नुपर्दछ ।

एम.सी.बी. (Miniature Circuit Breaker- MCB)

एम.सी.बी. फ्युजको विकसित रूप हो । यसले पनि आवश्यकताभन्दा बढी विद्युत् धार (current) प्रवाह भएमा स्वतः स्विच बन्द (switch off) गरिदिन्छ र विद्युत् प्रवाहलाई रोकी दुर्घटना हुनबाट जोगाउँछ । यो विद्युत् चुम्बक सिद्धान्तमा आधारित हुन्छ । फ्युज तार पग्लेमा तार फेरेर प्रयोगमा ल्याइन्छ । तर MCB मा तार फेर्नु पर्दैन । स्विच अन (switch on) गर्नासाथ यसले काम गर्न थाल्छ ।

चित्र नं. 10.5

प्रयोगात्मक क्रियाकलाप

- १. क्रियाकलाप 1 अध्ययन गरी एउटा साधारण सेल बनाऊ ।
- २. टर्चलाइट वा रेडियोमा प्रयोग गरिने साधारण शुष्क (ड्राइ) सेल लेऊ । यसलाई ठाडो पारेर विस्तारै सावधानीपूर्वक काटेर खोल । यसको बनावट कस्तो छ ? यस सेलभित्र पाइने पदार्थहरूको नाम लेख । यसको बनावटको चित्र बनाऊ ।

सारांश

१. तामाको पाता, जस्ताको पाता र फिक्का सल्फुरिक अम्लबाट साधारण सेल बनाइन्छ ।

- २. साधारण विद्युत् सेलमा धुवीकरण र स्थानीय क्रिया जस्ता त्रुटिहरू हुन्छन् ।
- ३. ड्राइ सेलमा ध्रुवीकरण हटाउन म्यान्गनिज डाइअक्साइड प्रयोग गरिन्छ ।
- ४. घर, विद्यालय, कारखाना, उद्योग आदिमा गरिने विद्युत्। करणलाई गार्हस्थ विद्युत्। भिनन्छ ।
- प्र. बिजुली बत्ती, हिटर, विद्युत् घन्टी, रेडियो, टेलिभिजन, टेलिफोन, मोबाइल, कम्प्युटर आदि गार्हस्थ विद्युत् उपकरणहरू हुन् ।
- ६. विद्युत् परिपथमा प्रयोग गरिने सिसा र टिनबाट बनाइएका मसिना तारको टुक्रालाई फ्यूज भनिन्छ ।
- ७. फ्य्जको विकसित रूप MCB हो ।

अभ्यास-

खाली ठाउँमा मिल्ने शब्द लेख :

- (क) साधारण सेलमा जस्ताको पातालेधुवको काम गर्दछ ।
- (ख) ड्राइ सेलमा कार्बनको रडले ध्रुवको काम गर्दछ ।
- (ग) ड्राइ सेलमा राखिएकाले ध्रुवीकरण हुन पाउँदैन ।
- (घ) फ्युज तार सिसा रको मिश्रणबाट बनाइन्छ ।
- (ङ) हिटरले विद्युत् शक्तिलाई शक्तिमा बदल्छ ।

२. छोटो उत्तर देऊ:

- (क) साधारण सेलका त्र्टिहरू के के ह्न्, नाम लेख ।
- (ख) ड्राइ सेलमा धुवीकरण हुँदैन, किन ?
- (ग) फुयुज भनेको के हो ?
- (घ) MCB को पुरा रूप के हो ?
- (ङ) तिम्रो घरमा प्रयोग गरिने विद्युत् उपकरणहरू के के छन्, नाम लेख ।
- ३. साधारण सेल कसरी बनाइन्छ, सचित्र लेख।
- ४. ड्राइ सेलको बनावट सचित्र वर्णन गर।
- ५. फ्युजले कसरी कार्य गर्दछ, लेख।
- ६. फ्युज र MCB मा के फरक छ, लेख । हाम्रो वरिपरि विभिन्न पदार्थहरू पाइन्छन् । ती पदार्थहरूमध्ये केही सरल र केही जटिल छन् । जटिल पदार्थलाई विभिन्न सरल पदार्थमा ट्रक्रयाउन सिकन्छ तर सरल पदार्थलाई

पद्धि (Matter)

सोभन्दा सरल पदार्थमा परिवर्तन गर्न सिकँदैन । यस्ता पदार्थलाई तत्त्व भिनन्छ , जस्तै : हाइड्रोजन, अक्सिजन, तामा, सुन आदि । तामालाई टुक्र्याएर अन्य पदार्थ बनाउन नसिकने भएकाले तत्त्व भिनएको हो । हालसम्म प्रकृतिमा 92 प्रकारका तत्त्वहरू पाइएका छन् । अन्य 26 ओटा तत्त्वहरू वैज्ञानिकले बनाएका छन् । यसरी प्राकृतिक र कृत्रिम गरी हालसम्म 118 ओटा तत्त्व पत्ता लागिसकेका छन् । दुई वा दुईभन्दा बढी प्रकारका तत्त्वहरूबिच रासायिनक प्रतिक्रिया भई बनेको पदार्थलाई यौगिक (compound) भिनन्छ, जस्तै : पानी, नृन, तेल आदि ।

परमाणु (Atom)

रासायनिक प्रतिक्रियामा भाग लिन सक्ने तत्त्वको सबैभन्दा सानो कणलाई परमाणु भिनन्छ । एउटै तत्त्वका परमाणुहरू समान किसिमका हुन्छन् । तर फरक फरक तत्त्वका परमाणुहरू फरक फरक हुन्छन्, जस्तै : हाइड्रोजन तत्त्वको परमाणु हिलियमको भन्दा फरक हुन्छ । यसरी 118 ओटा तत्त्वका 118 प्रकारका परमाणुहरू हुन्छन् ।

अणु (Molecule)

तत्त्व वा यौगिकका सबै गुणहरू यथावत् रहेको सबैभन्दा सानो कणलाई अणु (molecule) भिनन्छ । तत्त्वका अणुहरू समान प्रकारका परमाणुहरू मिलेर बनेका हुन्छन् । यौगिकका अणुहरू फरक फरक परमाणुहरू मिलेर बनेका हुन्छन्, जस्तै : अक्सिजनका दुई परमाणुहरू मिली अक्सिजनको एउटा अणु बन्छ भने हाइड्रोजनका दुई र अक्सिजनको एउटा परमाण मिली पानीको अण बन्छ ।

परमाणुको बनोट (Structure of an Atom)

परमाणु तत्त्वको सबैभन्दा सानो कण हो । यसलाई अन्य पदार्थमा टुक्र्याउन सिकँदैन । तर परमाणु तीनओटा उपपारमाणिवक कणहरू (subatomic particles) मिली बनेको हुन्छ । ती हुन् : प्रोटोन, न्युट्रोन र इलेक्ट्रोन ।

प्रोटोन र न्युट्रोन परमाणुको केन्द्रमा खाँदिएर रहेका हुन्छन् । यसलाई न्युक्लियस भनिन्छ । इलेक्ट्रोनहरू न्युक्लियसको वरिपरि निश्चित बाटामा घुमिरहेका हुन्छन् । इलेक्ट्रोन घुम्ने बाटालाई कक्ष (orbit) अथवा सेल (shell) भनिन्छ ।

प्रोटोन (Proton)

प्रोटोन धनात्मक चार्ज भएको कण हो । यो परमाणुको न्युक्लियसमा रहेको हुन्छ । एउटा प्रोटोनको पिण्ड एउटा हाइड्रोजन परमाणुको पिण्डसँग बराबर हुन्छ । यसको

चित्र नं. 11.1

पिण्डलाई 1 पारमाणविक पिण्ड एकाइ (atomic mass unit, amu) मानिन्छ ।

न्युट्रोन (Neutron)

न्युट्रोन तटस्थ (neutral) अर्थात् चार्जिवहीन कण हो । यो परमाणुको न्युक्लियसमा रहेको हुन्छ । एउटा न्युट्रोनको पिण्ड एउटा हाइड्रोजन परमाणुको पिण्डसँग बराबर हुन्छ । त्यसैले एउटा न्युट्रोनको पिण्डलाई 1 पारमाणिवक पिण्ड एकाइ (atomic mass unit—amu) मानिन्छ । हाइड्रोजनबाहेक सबै तत्त्वहरूमा न्युट्रोन हुन्छ ।

इलेक्ट्रोन (Electron)

इलेक्ट्रोन ऋणात्मक चार्ज भएको कण हो । यो परमाणुको न्युक्लियसको वरिपरि निश्चित बाटामा घुमिरहेको हुन्छ । इलेक्ट्रोन घुम्ने बाटालाई कक्ष (orbit) अथवा सेल (shell) भिनन्छ । इलेक्ट्रोनको पिण्ड प्रोटोन र न्युट्रोनको तुलनामा असाध्यै कम हुन्छ । एउटा इलेक्ट्रोनको पिण्ड एउटा प्रोटोनको पिण्डको करिब $\frac{1}{1837}$ amu हुन्छ ।

पारमाणविक पिण्डको एकाइ (Atomic Mass Unit-amu)

पारमाणिवक कणहरूको पिण्ड अत्यन्तै कम हुन्छ । यसलाई ग्राम (gram) वा मिलिग्राम (milligram) मा व्यक्त गर्न सिकँदैन । त्यसैले प्रोटोन, न्युट्रोन र इलेक्टोनको पिण्डलाई पारमाणिवक पिण्डको एकाइ (atomic mass unit, amu) मा व्यक्त गरिन्छ । एउटा हाइड्रोजन परमाणुको पिण्ड 1 amu हुन्छ । $1 \text{ gm} = 6 \times 10^{23} \text{ amu}$ हुन्छ ।

एउटा प्रोटोनको पिण्ड करिब 1 amu हुन्छ । त्यसैले 6x10²³ ओटा प्रोटोनहरूको पिण्डको

योग 1 gm हुन्छ । एउटा प्रोटोनको र एउटा न्युट्रोनको पिण्ड करिब करिब बराबर हुन्छ । तर एउटा इलेक्ट्रोनको पिण्ड भने एउटा प्रोटोनको पिण्डको $\frac{1}{1837}$ हुन्छ । अर्थात् 1837 ओटा इलेक्ट्रोनको पिण्ड एउटा प्रोट्रोनसँग बराबर हुन्छ । तसर्थ 1 p⁺ = 1n = 1837e = 1 amu हुन्छ ।

विद्युत् चार्ज (Electric Charge)

प्रोटोन र इलेक्टोनमा विद्युतीय चार्ज हुन्छ । विद्युतीय चार्ज कोलम्ब (coulomb) मा नापिन्छ । यसलाई छोटकरीमा coul लेखिन्छ । 1 कोलम्ब = 6.25×10^{18} इलेक्ट्रोन हुन्छ । तटस्थ परमाणुमा प्रोटोनको सङ्ख्या र इलेक्ट्रोनको सङ्ख्या बराबर हुन्छ । त्यसैले साधारणतया परमाणुमा विद्युतीय चार्ज देखिँदैन । प्रोटोनको धन विद्युत् र इलेक्ट्रोनको ऋण विद्युत् बराबर मात्रामा रहेकाले यस्तो भएको हो ।

प्रोटोन, न्युट्रोन र इलेक्ट्रोनको तुलनात्मक अध्ययन

उपपारमाणविक कणहरू	सङ्केत	पिण्ड	चार्ज	रहने स्थान
(sub-atomic particle)	(symbol)	(mass)	(charge)	(location)
प्रोटोन (proton)	p ⁺	1amu	+	न्युक्लियस
इलेक्ट्रोन (electron)	e ⁻	$\frac{1}{1837}$ amu	-	सेल
न्युट्रोन (neutron)	nº	1amu	0	न्युक्लियस

पारमाणविक सङ्ख्या (Atomic Number)

तत्त्वको परमाणुको पारमाणिक सङ्ख्या भन्नाले त्यस परमाणुमा रहेको प्रोटोनको सङ्ख्यालाई जनाउँछ । तटस्थ परमाणुमा प्रोटोनको सङ्ख्या र इलेक्ट्रोनको सङ्ख्या बराबर हुन्छ । त्यसैले, पारमाणिक सङ्ख्या (z) = प्रोटोनको सङ्ख्या (p^+) = इलेक्ट्रोनको सङ्ख्या (e^-)

पारमाणविक पिण्ड अथवा पारमाणविक भार (Atomic Mass or Atomic Weight)

तत्त्वको परमाणुको पारमाणिवक पिण्ड वा पारमाणिवक भार भन्नाले त्यस परमाणुको न्युक्लियसमा रहेको प्रोटोन सङ्ख्या र न्युट्रोन सङ्ख्याको जोडलाई जनाउँछ किनभने इलेक्ट्रोनको पिण्ड नगन्य हुन्छ ।

पारमाणिवक भार = प्रोटोनको सङ्ख्या (p^+) + न्युट्रोनको सङ्ख्या (n^-) त्यसैले, न्युट्रोनको सङ्ख्या = पारमाणिवक भार - प्रोटोनको सङ्ख्या = पारमाणिवक भार - पारमाणिवक सङ्ख्या = n^0 = At.wt. – At.no.

उदाहरण १

पोटासियम तत्त्वको परमाणुको पारमाणिवक सङ्ख्या 19 र पारमाणिवक भार 39 भए यसमा रहेको p^+, n^0 र e^- को सङ्ख्या कित कित होला ?

यहाँ, पारमाणिवक सङ्ख्या $(p^+) = 19$

पारमाणविक भार (e-) = 39

अब, पारमाणविक सङ्ख्या = प्रोटोनको सङ्ख्या (p+) = इलेक्ट्रोनको सङ्ख्या (e-) = 19

$$p^{+} = 19, e^{-} = 19$$

फेरि, पारमाणिवक भार = $p^+ + n^0$

 $39 = 19 + n^0$

or, $n^0 = 39 - 19 = 20$

∴ p⁺ =19, e⁻ = 19 र n⁰ = 20 रहेछ ।

परमाणुमा इलेक्ट्रोनको रचना (Electronic Configuration of an Atom)

परमाणुमा प्रोटोन र न्युट्रोन न्युक्लियसमा रहेका हुन्छन् । इलेक्ट्रोनहरू न्युक्लियसको विरपिर दीर्घ वृत्ताकार (elliptical) कक्ष (shell) हरूमा तीव्र वेगले घुमिरहेको हुन्छ । यसरी घुम्दा इलेक्ट्रोनहरूले दीर्घ वृत्ताकार कक्ष (shell) हरू बनाउँछन् । न्युक्लियसको दुरीअनुसार यी क्षेत्रहरूको नामकरण K, L, M, N आदि राखिएको हुन्छ । यसरी घुम्दा कुन कक्ष (shell) मा कितओटासम्म इलेक्ट्रोन अटाउन सक्छन् भन्ने कुरा $2n^2$ को सूत्रबाट निकालिन्छ, जसमा n भनेको कक्षको सङ्ख्या हो, जस्तै :

गोलाकार क्षेत्र	n को सङ्ख्या	इलेक्ट्रोनको सङ्ख्या
(shell)		
पहिलो सेल = K	n =1	$2n^2 = 2 \times 1^2 = 2$
दोस्रो सेल = ∟	n = 2	$2n^2 = 2 \times 2^2 = 8$
तेस्रो सेल = M	n = 3	$2n^2 = 2 \times 3^2 = 18$
चौथो सेल = N	n = 4	$2n^2 = 2 \times 4^2 = 32$

इलेक्ट्रोनको सङ्ख्या

यो नियम केही तत्त्वहरूसम्म मात्र लागु हुन्छ किनभने बाहिरी कक्षमा ८ ओटाभन्दा बढी इलेक्ट्रोनहरू रहन सक्दैनन् ।

पहिलो 20 ओटा तत्त्वको सङ्केत, पारमाणिवक सङ्ख्या, पारमाणिवक पिण्ड, प्रोटोन, इलेक्ट्रोन र न्युट्रोनको सङ्ख्या एवम् इलेक्ट्रोनको रचना यस प्रकार रहेको छ :

तत्त्व	सङ्केत	पा.सङ.	पा.भा.	p+	e-	n ^o	इलेक्ट्रोनको रचना			
(Element)	(symbol)						K	L	М	N
Hydrogen	Н	1	1	1	1	0	1			
Helium	He	2	4	2	2	2	2			
Lithium	Li	3	7	3	3	4	2	1		
Beryllium	Ве	4	9	4	4	5	2	2		
Boron	В	5	11	5	5	6	2	3		
Carbon	С	6	12	6	6	6	2	4		
Nitrogen	N	7	14	7	7	7	2	5		
Oxygen	0	8	16	8	8	8	2	6		
Fluorine	F	9	19	9	9	10	2	7		
Neon	Ne	10	20	10	10	10	2	8		
Sodium	Na	11	23	11	11	12	2	8	1	
Magnesium	Mg	12	24	12	12	12	2	8	2	
Aluminium	Al	13	27	13	13	14	2	8	3	
Silicon	Si	14	28	14	14	14	2	8	4	
Phosphorus	Р	15	31	15	15	16	2	8	5	
Sulphur	S	16	32	16	16	16	2	8	6	
Chlorine	CI	17	35	17	17	18	2	8	7	
Argon	Ar	18	40	18	18	22	2	8	8	

Potassium	К	19	39	19	19	20	2	8	8	1
Calcium	Ca	20	40	20	20	20	2	8	8	2

केही तत्त्वको परमाणुमा इलेक्ट्रोनको रचना

हाइड्रोजन (H)
 पारमाणिवक सङ्ख्या = 1
 पारमाणिवक भार = 1

सेल	K	L	М	N
e- सङ्ख्या	1	х	х	х

४. लिथियम (Li)पारमाणिवक सङ्ख्या = 3पारमाणिवक भार = 7

सङ्ख्या = 3	e (3p)
भार = 7	

सेल	K	┙	М	Ν
e- सङ्ख्या	2	1	Х	Х

प्रारमाणिवक सङ्ख्या = 11पारमाणिवक भार = 23

सेल	K	L	М	N
e- सङ्ख्या	2	8	1	х

७. पोटासियम (K)पारमाणिवक सङ्ख्या = 19पारमाणिवक भार = 39

सेल	K	L	М	N
e-सङ्ख्या	2	8	8	1

हिलियम (He)
 पारमाणिवक सङ्ख्या = 2
 पारमाणिवक भार = 4

सेल	K	L	1	N
e⁻ को सङ्ख्या	2	х	х	Х

४. नियोन (Ne) पारमाणविक सङ्ख्या = 10

पारमाणविक भार = 20

सेल	K	L	М	N
e- सङ्ख्या	2	8	х	Х

६. आर्गन (Ar)

पारमाणविक सङ्ख्या = 18

पारमाणविक भार = 40

117.		गरगागायक गार =				
सेल	K	L	М	Ν		
e-सङ्ख्या	2	8	8	Х		

द. क्याल्सियस (Ca)पारमाणिवक सङ्ख्या = 20

पारमाणविक भार = 40

सेल	K	L	М	Ν	
e-सङ्ख्या	2	8	8	2	

वास्तवमा परमाणुको न्युक्लियस वरिपरि रहेका सेलहरू माथिका चित्रहरूमा जस्तै वृत्ताकार (circular) नभई सँगै रहेको चित्र जस्तै दीर्घ वृत्ताकार (elliptical) रहेका हुन्छन् । तर सजिलै देखाउन र बुभ्निका लागि सेलहरू वृत्ताकार बनाउने गरिन्छ ।

क्रियाकलाप १

अक्सिजन परमाणुको मोडेल बनाउने तरिका

आवश्यक सामग्रीहरू : माटो (कालो माटो), धातुको तार वा मोटो धागो, पानी, विभिन्न रङहरू, ब्रस, टाँस्ने गम (glue), कार्ड बोर्ड आदि ।

विधि

- 9. माटाका ससाना डल्ला बनाएर प्रोटोन, न्युट्रोन र इलेक्ट्रोनका रूपमा फरक फरक रङ (तीन थरी रङ) प्रयोग गरी ८/८ ओटाका दरले २४ ओटा रङ्गीन डल्ला बनाऊ ।
- २. एउटा कार्ड बोर्ड वा कुनै बाक्लो कागजको बिच भागमा एउटा तार वा मोटो धागाले न्युक्लियस बनाएर टाँस ।
- कागजमा बनाइएको न्युक्लियसिभत्र प्रोटोनका रूपमा 8 ओटा र न्युट्रोनका रूपमा 8
 ओटा माटाका डल्लाहरू राखेर टाँस ।
- ४. न्युक्लियस वरिपरि तार वा मोटो धागोद्वारा दुई ओटा फरक फरक गोलो चक्का बनाऊ । पहिलो चक्कामा 2 ओटा र दोस्रो चक्कामा 6 ओटा माटाका डल्लाहरू इलेक्ट्रोनका रूपमा राख । ती चक्काहरू कागजमा मिलाएर टाँस । यसरी अक्सिजन परमाणुको मोडल बनाउन सिकन्छ ।

द्रष्टब्य : माटाको डल्लाको सट्टा टाँक, पोते, टिका आदि पनि प्रयोग गर्न सिकन्छ ।

संयुज्यता (Valancy)

तत्त्वहरू अन्य तत्त्वहरूसँग मिली यौगिक बनाउने क्षमतालाई संयुज्यता (valancy) भिनन्छ । संयुज्यतालाई अङ्कले जनाइन्छ । कुनै तत्त्वको परमाणुले अर्को तत्त्वको परमाणुसँग रासायिनक प्रतिक्रिया गरी यौगिक बनाउँदा लिने वा दिने वा साभेदारी गर्ने इलेक्ट्रोनको सङ्ख्या नै उक्त तत्त्वको संयुज्यता हो, जस्तै : सोडियमको परमाणुले रासायिनक प्रतिक्रिया गर्दा एउटा इलेक्ट्रोन दिन्छ । त्यसैले सोडियमको संयुज्यता 1 हुन्छ । त्यसैगरी अक्सिजन परमाणुले 2 ओटा इलेक्ट्रोन लिने भएकाले यसको संयुज्यता 2 हुन्छ । तत्त्वको परमाणुको संयुज्यता त्यस परमाणुको बाहिरी सेलमा रहेको इलेक्ट्रोनको

सङ्ख्यामा भर पर्दछ । परमाणुको बाहिरी सेलमा k भएमा 2 ओटा र अन्य भएमा 8 ओटा इलेक्ट्रोन रहेर परमाणु तटस्थ बन्न खोज्छ । परमाणुको बाहिरी सेलमा 1, 2, 3 ओटा इलेक्ट्रोन भएमा अरूलाई दिएर, 4 ओटा भएमा साभेदारी गरेर र 7,6 तथा 5 भएमा अरूबाट लिएर 8 ओटा बनाउन खोज्छन् । यस नियमलाई अक्टेटको नियम (octate rule) भिनन्छ । परमाणुको बाहिरी कक्षमा k सेल बाहेक इलेक्ट्रोनको सङ्ख्या क्रमशः 1, 2, 3 वा 4 भएमा संयुज्यता पिन त्यित नै हुन्छ । यदि बाहिरी कक्षमा 5, 6 वा 7 भएमा संयुज्यता क्रमशः 3, 2 र 1 हुन्छ । त्यसैले, परमाणुको सबैभन्दा बाहिरी सेलमा रहेको इलेक्ट्रोनलाई संयुज्यता सूचक इलेक्ट्रोन (valance electron) भिनन्छ । यदि परमाणुको बाहिरी सेल K छ र त्यसमा 2 ओटा इलेक्ट्रोन भएमा त्यसले रासायिनक प्रतिक्रियामा भाग लिँदैन । यसको संयुज्यता ० (शून्य) हुन्छ । यस्तो अवस्थालाई डुप्लेट (duplet) भिनन्छ, जस्तै : हिलियम । यदि परमाणुको बाहिरी सेलमा 8 ओटा इलेक्ट्रोन छन् भने पिन तिनीहरूको संयुज्यता शून्य हुन्छ । तिनीहरूले पिन रासायिनक प्रतिक्रियामा भाग लिँदैनन्, जस्तै : नियोन, आर्गन । यस्तो अवस्थालाई अक्टेट (octate) भिनन्छ ।

अणु सूत्र (Molecular Formula)

रासायिनक पदार्थमा मिलेर रहेका तत्त्वहरूको सङ्केतहरूलाई सामूहिक रूपमा लेखेर जनाउन सिकन्छ । त्यसैले सोडियम क्लोराइडलाई यसमा रहेका तत्त्वहरू सोडियम (Na) र क्लोरिन (Cl) को सङ्केत समूह NaCl द्वारा जनाइन्छ । NaCl लाई सोडियम क्लोराइडका अणु सूत्र भिनन्छ । रासायिनक पदार्थ तत्त्व वा यौगिकलाई जनाउने तत्त्वहरूको सङ्केत समूहलाई अणु सूत्र (molecular formula) भिनन्छ । अणु सूत्र लेख्न सबैभन्दा पिहले त्यो रासायिनक पदार्थ कुन कुन तत्त्वहरू मिली बनेका हुन्छन् भन्ने कुरा थाहा पाउनुपर्छ । त्यसपिछ ती तत्त्वहरूको संयुज्यता थाहा पाउनुपर्छ । संयुज्यताको साटफेरले सिजलैसँग आणिवक सूत्र बनाउन सिकन्छ ।

जस्तै :

आणविक भार (Molecular Weight)

अणुको भारलाई आणिवक भार भिनन्छ । अणुमा रहेका परमाणुहरूको पारमाणिवक भार जोडेर आणिवक भार पत्ता लगाउन सिकन्छ, जस्तै: हाइड्रोजन अणुमा दुईओटा हाइड्रोजन परमाणु रहेका हुन्छन् । त्यसैले हाइड्रोजन अणुको भार 2 amu हुन्छ । त्यसै गरी,

9. पानीको आणिवक भार
$$(H_2O)$$
 = $2 \times H + 1 \times 0$ = $2 \times 1 + 1 \times 16$ = $2 + 16 = 18$ amu

2. कार्बनडाइ अक्साइडको आणिवक भार $(CO_2) = 1 \times C + 2 \times 0$ = $1 \times 12 + 2 \times 16$ = $12 + 32 = 44$ amu

3. खाने नुन (सोडियम क्लोराइड) (NaCl) = $1 \times Na + 1 \times Cl$ = $1 \times 23 + 1 \times 35$ = $23 + 35 = 58$ amu

4. चक (क्याल्सियम कार्बोनेट) $(CaCO_3)$ = $1 \times Ca + 1 \times C + 3 \times 0$ = $1 \times 40 + 1 \times 12 + 3 \times 16$ = $40 + 12 + 48 = 100$ amu

पेरियोडिक तालिका (Periodic Table)

संसारमा हालसम्म प्राकृतिक र कृत्रिम गरी 118 ओटा तत्त्वहरू पत्ता लागिसकेका छन्। यी प्रत्येक तत्त्वहरूका बारेमा बेग्लाबेग्लै रूपमा अध्ययन गर्न गाह्रो हुन्छ । त्यसैले तत्त्वहरू पत्ता लागेदेखि नै वैज्ञानिकहरूले यी तत्त्वहरूलाई व्यवस्थित तरिकाले राखेर अध्ययन गर्ने कोसिस गर्दे आए । यसै क्रममा समान गुण भएका तत्त्वहरूलाई एउटा समूह (group) मा राख्न थालियो । यसरी तत्त्वका भौतिक एवम् रासायनिक गुणको समानता र असमानताका आधारमा एउटा तालिका निर्माण गरियो । यस तालिकालाई पेरियोडिक तालिका (periodic table) भनिन्छ ।

मेन्डेलिभको पेरियोडिक तालिका (Mendeleev's Periodic Table)

मेन्डेलिभले तत्त्वहरूका पारमाणिवक भारको बढ्दो क्रममा एउटा तालिका बनाए । यस तालिकामा समान गुण भएमा तत्त्वहरूलाई एउटै समूहमा पर्ने गरी राखेका थिए । उनले बनाएको तालिकामा कहीँ खाली ठाउँ पिन थियो । यसले थाहा नभएका तत्त्वहरू पिछ पत्ता लगाउन सिजलो भयो । यसरी पेरियोडिक तालिकाको निर्माण भयो । यस क्रममा अध्ययन गर्दै जाँदा मेन्डेलिभको पेरियोडिक तालिकामा पिन केही त्रुटिहरू फेला परे । ती त्रुटिहरूलाई सच्याउने क्रममा आधुनिक पेरियोडिक तालिका (modern periodic table) को निर्माण भयो ।

आधुनिक पेरियोडिक तालिका

Period Shell IA(1)	1	S	S-Block elements	lements	- 3												Noble g	Noble gas elements	1	/
18	Period	Valence Shell	IA(I)	1													Blocke	ements		} ∞∘
38.3p Li 12 4 4 42 43 46 47 48 49 50 67 7 8 9 48.3d4p K Ca Sc Ti V Cr Mn Fc Co Ni Cu Zn 38 39 38 39 38 39 40 41 42 43 46 47 48 49 50 31 33 38 39 40 41 42 43 46 47 48 49 50 51 50 71 78<	且	Is	1 H	IIA(2)	2	chrescun	ווואכ כווכו							u cor	#IIA(13)	Repres	VA(15)	vIA(16)	VIIA(I7)	2 He
353p Na Mg IIIB (3) NB (4) NB (5) NB (5) NB (7) NB (7) 8 y 10 (10 (11) (110) (12) A1 (13) (14 (14) (14) (14) (14) (14) (14) (14)	n=2	2s2p	3 Li	4 8g	1			- F	asition cl	ements	1			1	S B	٥٥	Z	∞ O	ο П	Ne 20
4s3d4p K Ca Sc II 22 23 24 25 Km Fe Co Ni Cu Zn Ga Ge Fe As 33 34 35 Se Br Ss4d5p Rb Sr Y Zr Nb Mo Te Ru Rh Pd Ag Cd In Sn Sn Sb Sp	n=3	3s3p	= 2	Mg Mg	IIB (3)	IVB(4)	VB(5)	- d-Bk	ock eleme	Sign	- MIN-	Tª	IB(II)	IB (12)		Si Si	15 P	S 6	12 CI	18 Ar
554d5p 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 554d5p Rb Sr Y Zr Nb Mo Te Ru Rh Ph Ag Ag Call Rh Ag Call Rh Ag Call Rh Ag Call Rh Ag	Ī	4s3d4p	E 74	88	Sc	12	< 23	47	Nn Mn	26 Fe	Sa	Z 28	នភ	Zn Zn	31 Ga	83	33 As	8.8	35 Br	36 Rr
5545 d6 C5 Ba Lantanaide elements (57-71)	n=5	5s4d5p	37 Rb	38 Sr	39 Y	42	₹ 8	42 Mo	43. Te	Ru B	Rh Rh	46 Pd	47 Ag	& B	49 In .	Sn	SP	S2 Te	53 I	Xe X
755f6d7p Fr Ra Actinide elements (89-103) 90 91 92 93 94 95 PV This is a sequence of the control	9=0	6s4f5d6p		56 Ba	S7-71 Læntsænkis	72 Hf	73 Ta	47 W	75 Re	88	77	78 Pt	79 Au	% Hg	∞ □	82 Pb	83 B: 83	P. 82	85 At	% Rn
58 59 60 61 62 63 64 65 67 68 69 70 90 91 92 93 94 85 96 97 86 67 68 69 70 Th Pr Nd Pr Md Am Cm 85 99 100 101 102 Th Pa Np Pu Am Cm Bk Cf Es Fm Md No	n=7	7s5f6d7p	87 Fr	88 Ra	89-103 Actinides	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	Rg	112 Cu	113 Uut	114 Fi	115 Uup	116 Lv	Uus	118 Uuo
58 59 60 61 62 63 64 65 66 67 68 69 70 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb 90 91 92 93 94 95 96 97 98 99 100 101 102 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No											f- block	element	1					1		
90 91 92 93 94 95 96 97 98 99 100 101 102 Th Pa Np Pu Am Cm Bk Cf Es Fm Md No		Lanthanide ele	ements ((11-15	೫೮	P. S.	S P	Pm Pm	62 Sm	63 Eu	2 B	25 T	86	67 Ho	88日	69 Tm	7.P	F.3		
		Actinide elem	ents (89.	-103)	8·E	91 Pa	92 U	S d	ZZ	88 Am	% E	97 Bk	% 5	8 S	Fm F	101 PW	102 No	≅7.		

रासायनिक प्रतिक्रिया (Chemical Reaction)

रासायिनक परिवर्तन हुँदा कुनै पदार्थबाट भिन्न नयाँ पदार्थको निर्माण हुन्छ । यही रासायिनक परिवर्तन हुने क्रममा पदार्थका परमाणु तथा अणुहरूबिच साटफेर, सङ्गठन वा विघटन प्रिक्रिया हुन्छ । यही प्रक्रियालाई रासायिनक प्रतिक्रिया भिनन्छ ।

रासायनिक प्रतिक्रियालाई शब्द समीकरण (word equation) र सूत्र समीकरण (formula equation) ले जनाउन सिकन्छ ।

शब्द समीकरण (Word Equation) : शब्दहरूमा रासायनिक पदार्थको नाम प्रयोग गरी लेखिएको समीकरणलाई शब्द समीकरण भनिन्छ, जस्तै :

हाइड्रोजन + अक्सिजन -> पानी

पोटासियम क्लोरेट \rightarrow पोटासियम क्लोराइड + अक्सिजन

सूत्र समीकरण (Formula Equation): रासायनिक सूत्र अथवा आणविक सूत्रद्वारा व्यक्त गरिएको समीकरणलाई सूत्र समीकरण भनिन्छ, जस्तै:

$$2H_2 + O_2 \rightarrow 2H_2O$$

$$2KCIO_3 \rightarrow 2KCI + 3O_2$$

रासायनिक समीकरण लेख्दा ध्यान दिनुपर्ने कुरा

- १. रासायनिक प्रतिक्रियामा भाग लिने तत्त्व वा यौगिकलाई बाण चिह्न (→)को बायाँतर्फ लेख्ने
- २. प्रतिक्रियापछि बन्ने (उत्पादित) पदार्थलाई बाण चिहनको दायाँतर्फ लेख्ने
- ३. रासायनिक प्रतिक्रियाको अवस्थालाई बाण चिह्न (ightarrow) माथि लेख्ने
- ४. बाण चिह्नले रासायनिक प्रतिक्रिया हुने दिशा देखाउने

जस्तै : प्रतिक्रियारत पदार्थ → उत्पादित पदार्थ

शब्द समीकरण : पानी ightarrow अक्सिजन + हाइड्रोजन

सूत्र समीकरण $2H_2O \rightarrow O_2 + 2H_2$

परियोजना कार्य

- प्रियाकलाप १ अध्ययन गरी त्यसका आधारमा हिलियम (He) कार्बन (C), सोडियम
 (Na) को परमाणुको मोडेल बनाऊ ।
- २. तत्त्वको परमाणु सङ्ख्या 1 देखि 20 सम्मका परमाणुको बनावट देखाई एउटा चार्ट बनाऊ ।

सारांश

- परमाणुमा इलेक्ट्रोन, प्रोटोन र न्युट्रोन नामका उपपारमाणिवक कणहरू हुन्छन् ।
 यिनीहरूमा भएको पिण्डलाई amu र चार्जलाई कोलम्ब (coulomb) एकाइमा नापिन्छ ।
- २. परमाणुमा एउटा प्रोटोनको पिण्डलाई करिब 1 amu मानिन्छ । एउटा न्युट्रोनको पिण्डलाई पनि 1 amu मानिन्छ । इलेक्ट्रोनको पिण्डलाई करिब 1/1837 amu मानिन्छ ।
- प्रोटोनमा धनात्मक चार्ज हुन्छ । इलेक्ट्रोनमा ऋणात्मक चार्ज हुन्छ भने न्युट्रोन चार्जिवहीन हुन्छ ।
- ४. पारमाणिवक सङ्ख्या (atomic number) = प्रोटोनको सङ्ख्या = इलेक्ट्रोनको सङ्ख्या ।
- ५. पारमाणविक भार (atomic weight) = प्रोटोनको सङ्ख्या + न्युट्रोनको सङ्ख्या ।
- ६. परमाणुको केन्द्रमा प्रोटोन र न्युट्रोन रहेका हुन्छन् भने इलेक्ट्रोनहरू चारैतिर विभिन्न दुरीमा घुमिरहेका हुन्छन् ।
- ५. इलेक्ट्रोनहरूले परमाणुको न्युक्लियसलाई विरिपिर घुम्दा बनाएको सेललाई K,L,M,N आदि नामले जनाइन्छ । यी सेलहरूमा क्रमश: 2,8,18,32 ओटा इलेक्ट्रोनहरू अटाउन सक्छन् । यस कुरालाई 2n² को सूत्रले निर्धारण गर्दछ ।
- द. तत्त्वको संयोजन गर्न सक्ने क्षमतालाई संयुज्यता (valancy) भनिन्छ ।
- ९. यौगिकमा रहेको परमाणुका सङ्केतको समूहलाई अणु सूत्र भिनन्छ । परमाणुको संयुज्यताको साटफेर गरी अणु सूत्र लेखिन्छ ।
- १०. अणुमा रहेका परमाणुहरूको पारमाणिवक भार जोडेर आणिवक भार पत्ता लगाइन्छ ।
- 99. तत्त्वहरूलाई तिनको समान र असमान गुणका आधारमा मिलाएर राखिएको तालिकालाई पेरियोडिक तालिका भनिन्छ ।
- १२. रासायिनक परिवर्तनका क्रममा पदार्थहरूका अणुहरू तथा परमाणुहरूबिच साटफेर, सङ्गठन वा विघटन हुने प्रक्रियालाई रासायिनक प्रतिक्रिया भिनन्छ ।
- १३. शब्दहरूमा रासायनिक पदार्थको नाम प्रयोग गरी लेखिएको समीकरणलाई शब्द समीकरण भनिन्छ ।
- १४. आणविक सुत्रद्वारा व्यक्त गरिएको समीकरणलाई सुत्र समीकरण भनिन्छ ।

201	ГΩ		\boldsymbol{T}	т
. ъ		-	ı	-

_		<u> </u>	\sim		_	
9	खाला	ठाउमा	ामल्दा	शब्द	लख	:

- (क) परमाण्मा प्रोटोन, न्य्ट्रोन र रहेका ह्न्छन् ।
- (ख) परमाणुको कुन सेलमा कित ओटा इलेक्ट्रोन अटाउन सक्छन् भन्ने कुरा को सूत्रबाट निकालिन्छ ।
- (ग) अन्य तत्त्वसँग मिली यौगिक तत्त्व बनाउने क्षमतालाई...... भिनन्छ ।
- (घ) यौगिकलाई जनाउने तत्त्वहरूको सङ्केत समूहलाई भिनन्छ ।
- (ङ) रासायनिक प्रतिक्रियालाई शब्द समीकरण र समीकरणले जनाउन सिकन्छ ।

२. एउटै शब्दमा उत्तर लेख:

- (क) तत्त्वको सबैभन्दा सानो कण कुन हो ?
- (ख) यौगिकको ग्ण यथावत् कायम रहेको सबैभन्दा सानो भाग क्न हो ?
- (ग) धनात्मक चार्ज भएको उपपारमाणविक कण के हो ?
- (घ) ऋणात्मक चार्ज भएको उपपारमाणविक कण क्न हो ?
- (ङ) विद्युतीय चार्जको एकाइ लेख ।
- (च) ८ सेलमा हुने अधिकतम इलेक्ट्रोनको सङ्ख्या कति हो ?
- (छ) तत्त्वको अन्य तत्त्वसँग मिली यौगिक बनाउने क्षमतालाई के भिनन्छ ।
- (ज) अणुको जम्मा भारलाई के भनिन्छ ?

३. जोडा मिलाऊ :

परमाणुहरू	पारमाणविक सङ्ख्याहरू
(क) H	()12
(ख) Li	()8
(ग) O	() 20
(घ) Na	()1
(ङ) Mg	()3
(च) Ca	() 11
	() 17

४. फरक लेख :	
(क) परमाणु र अणु	(ख) इलेक्ट्रोन र प्रोटोन
(ग) पारमाणविक सङ्ख्या र पारमाणविक भार	(३) अणु सूत्र र आणविक भार
५. परिभाषा लेख :	
(क) संयुज्यता (ख) अणु सूत्र (ग) शब्द स	तमीकरण (३) सूत्र समीकरण
६. छोटो उत्तर लेख :	
(क) 2n² ले के जनाउँछ, कुनै तीन ओटा उदाहर	णसहित लेख ।
(ख) उपपारमाणिवक कणहरू केलाई भिनन्छ, यी विद्युत् चार्जलाई देखाउने एउटा तालिका बना	•
(ग) परमाणुको इलेक्ट्रोन रहने स्थानलाई के भनिन	छ ?
(घ) पेरियोडिक तालिका भनेको के हो, यसको वि	कास किन भयो ?
७. निम्नलिखित न्युक्लियसहरू कुन कुन तत्त्वहरूको प	
$ \begin{array}{cccc} (\overline{ap}) & 1p & (\overline{eq}) & 8p & (\overline{\eta}) & 11p \\ 0n & 8n & 12n \end{array} $	(ਬ) (17p) (종) (19p) 20n
द. पहिलो 20 ओटा तत्त्वहरूको परमाणुको बनोट चि	त्रद्वारा देखाऊ ।
९. परमाणुको बनावट सचित्र व्याख्या गर ।	
9o. क्लोरिन तत्त्वको परमाणुको पारमाणिवक सङ्ख्य यसमा रहेको p, n र e को सङ्ख्या निकाल।	ा 17 र पारमाणविक भार 35 भए
११. अणु सूत्र लेख	
(क) सोडियम क्लोराइड (ख) पानी	(ग) कार्बनडाइअक्साइड
१२. आणविक भार हिसाब गरी निकाल	
(क) खाने नुन (NaCl) (ख) म्याग्नेसियम सल्पे	तेट (MgSO ₄) (ग) अक्सिजन (O ₂)
१३. तलका शब्द समीकरण पूरा गर :	
(क) हाइड्रोजन + अक्सिजन →	
(ख) पोटासियम क्लोरेट $ ightarrow$ पोटासियम क्लोराइड	· +
(ग) पानी → हाइड्रोजन +	

55

सिश्रण (Mixture)

हामी दिनहुँ विभिन्न प्रकारका पदार्थहरू प्रयोग गर्दछौँ । ती पदार्थहरूमध्ये केही शुद्ध र केही मिश्रण हुन्छन् । शुद्ध पदार्थको आवश्यकता पर्दा मिश्रणलाई छुट्याउनुपर्ने हुन्छ । पदार्थहरूको गुणका आधारमा मिश्रणलाई छुट्याएपछि शुद्ध पदार्थ प्राप्त गर्न सिकन्छ । मिश्रण छुट्याउने विभिन्न तिरिकाहरू हुन्छन् । तीमध्ये यस एकाइमा केही तिरिकाको व्याख्या गरिएको छ ।

विचारणीय प्रश्न

समुद्रको नजिक बसोबास गर्ने मानिसले शुद्ध पिउने पानी कसरी प्राप्त गर्न सक्छन् ?

आसवन क्रिया (Distillation)

तरल पदार्थलाई उम्लने तापक्रमसम्म तताउँदा बाफमा परिणत हुन्छ । यसरी बनेको बाफलाई चिस्याउँदा पुन: तरल पदार्थमा परिणत हुन्छ । यसरी परिणत भएको तरल पदार्थ शुद्ध हुन्छ । यस प्रक्रियालाई आसवन क्रिया (distillation) भनिन्छ । यस प्रक्रियाबाट तरल पदार्थको शुद्धीकरण गर्न सिकन्छ ।

क्रियाकलाप १

नुनपानीको घोलबाट नुन र पानी छुट्याउने तरिका

आवश्यक सामग्रीहरू: आर.बि. फ्लास्क (R.B. flask), स्टान्ड (stand), तापक्रम मापक यन्त्र (thermometer), बत्ती (burner), ओदान (tripod stand), तारको जाली (wire gauge), मेजरिङ सिलिन्डर, कन्डेन्सर (condenser) आदि ।

विधि

- एउटा फ्लास्क लेऊ र त्यसमा आधा जित नुन र पानीको घोल राख ।
- २. फ्लास्कलाई ओदानमाथि राख र स्टान्डमा अड्याऊ ।
- ३. चित्रमा देखाए भैँ फ्लास्कलाई कन्डेन्सरमा जोड ।
- ४. कन्डेन्सरको भित्र चित्रमा देखाए भैँ चिसोपानी बग्ने व्यवस्था मिलाऊ ।
- ५. कन्डेन्सरको अर्को छेउमा कोनिकल फ्लास्क जोड । यसमा तरल पदार्थ जम्मा हुन्छ ।
- ६. फ्लास्कको माथि तापक्रम मापक यन्त्र (थर्मोमिटर) जोड ।
- ७. अब बत्तीले फ्लास्कलाई तताऊ र घोललाई उमाल ।

अवलोकन

घोललाई तताउँदा घोलमा रहेको पानी बाफ बनेर कन्डेन्सरिभत्रको नलीमा जान्छ । त्यहाँ पानीको चिसोले गर्दा बाफ चिस्सिएर पुन: पानीको थोपा बन्छ र फ्लास्कमा जम्मा हुन्छ । जब सम्पूर्ण पानी उम्लेर बाफ बन्छ, त्यहाँ नुन मात्र बाँकी रहन्छ ।

निस्कर्ष : नुन र पानीको घोललाई तताएर त्यसमा रहेको पानी बाफ बनाई पुन: चिस्याएर शुद्ध रूपमा प्राप्त गर्न सिकन्छ । साथै नुनलाई बेग्लै जम्मा गर्न पिन सिकन्छ ।

अरबको खाडी र समुद्री किनारमा बसोबास गर्ने मानिसले आसवन क्रिया (distallation) बाट समुद्रको नुनिलो पानीबाट शुद्ध पिउने पानी बनाउँछन् ।

फ्र्याक्सनल आसवन क्रिया (Fractional Distillation)

मिश्रणमा रहेका पदार्थहरू तरल भएमा तिनीहरूलाई छुट्याउन गाह्रो हुन्छ । यस्तो अवस्थामा ती तरल पदार्थको उम्लने तापक्रम पत्ता लगाइन्छ र तिनीहरूलाई फ्याक्सनल आसवन क्रियाद्वारा छुट्याइन्छ । यस विधिद्वारा पहिले कम उम्लने तापक्रम भएको र पछि बढी उम्लने तापक्रम भएको तरल पदार्थलाई छुट्याइन्छ । यस विधिमा फ्याक्सनल नली (fractionating column) को प्रयोग गरिन्छ ।

चित्र न. 12.2

यस विधिमा उम्लने तापक्रम कम भएको तरल पदार्थ चाँडै बाफ बन्छ र बढी उम्लने तापक्रम भएको तरल पदार्थ पछि बाफ बन्छ । पहिले एउटा तरल पदार्थ छट्याइसकेपछि पछि अर्को छटयाइन्छ । खनिज तेलबाट यही विधिद्वारा पेटोल शद्ध गरिन्छ ।

क्रोमाटोग्राफी (Chromatography)

क्रोमाटोग्राफी ग्रिक भाषाको क्रोमा (kroma) र ग्राफी (graphy) मिलेर बनेको हो । ग्रिक भाषामा क्रोमाको अर्थ रङ र ग्राफीको अर्थ लेख्नु हो । त्यसैले यसको उपयोग विभिन्न रङहरू छट्याउन प्रयोग गरिन्छ । सन् 1906 मा रिसयन वनस्पति शास्त्री स्वेट (tswett) ले वनस्पतिको रङ्गीन पिग्मेन्ट (pigments) छटयाउन यस विधि प्रयोग गरेका थिए । आजभोलि विभिन्न रङ्गीन तथा रङ्हीन मिश्रित पदार्थलाई छटयाउन, शद्धीकरण गर्न र पहिचान गर्न पनि यसको प्रयोग गरिन्छ ।

क्रोमाटोग्राफीको उपयोगिता (Application of Chromatography)

यो विधि विभिन्न किसिमका रसायनहरू छुट्याउन र पहिचान गर्न अस्पताल, प्रयोगशाला तथा अनुसन्धान केन्द्रहरूमा प्रयोग गरिन्छ । यसका मुख्य प्रयोग यस प्रकार छन् :

- १. विभिन्न प्रकारका रङहरूलाई मिश्रणबाट छुट्याउन
- २. पिसाब तथा रगतमा मिसिएका औषधीहरू पहिचान गर्न र छट्याउन
- ३. प्राकृतिक तथा कृत्रिम रङ्गाउने पदार्थको मिश्रणबाट रङ छुट्याउन

कियाकलाप २

एउटा फिल्टर पेपर लेऊ र त्यसको बिचमा प्वाल पार । अर्को फिल्टर पेपरको एक ट्क्रालाई मोडेर सानो मुठ्ठा (रोल) बनाऊ र प्वालमा अड्याएर राख । प्वालनेर एक थोपा कालो मसी राख र सुकन देऊ । अब एउटा बिकर वा रिकापीमा पानी फिल्टर कार्गज राख । फिल्टर पेपर र रोललाई

चित्र न. 12.3

चित्रमा जस्तै गरी करिब 1-2 घण्टा जित राख । केही समयपछि फिल्टर पेपर को बिचबाट क्रमश: कालो मसीमा भएका विभिन्न रङ्गीन पदार्थहरू छट्टिएको देख्ने छौँ । केही रङ्गीन पदार्थ फिल्टर पेपरमा छिटो फैलन् र केही ढिलो फैलन्को कारणबाट छट्टिन गएको हो ।

छिटो फैलने रङ केन्द्रबाट टाढा र ढिलो फैलने रङ केन्द्रबाट नजिक जान्छ । केन्द्रबाट चारैतिर फैलिरहेको पानीको माध्यममा रङ्गीन पदार्थहरू छिटो र ढिलो फैलने गुण भएकाले तिनीहरू छुट्टिएका हुन् । यस प्रक्रियालाई कागज क्रोमाटोग्राफी (paper chromatography) भिनन्छ ।

क्रियाकलाप ३

एउटा सानो बिकर वा गिलास लेऊ । त्यसमा दुई थोपा रातो र दुई थोपा निलो मसीलाई अलिकित पानी (5m जित) मा मिसाएर राख । अब, एउटा फिल्टर पेपरको टुक्रालाई पानीमा आधा डुब्ने र आधा नडुब्ने गरी राख । यसरी राख्दा कागजले भाँडाको भित्तामा नछुने गरी राख्नुपर्छ ।

केही समयपछि रातो र निलो मसी फिल्टर कागजमा छुट्टिएको देखिन्छ ।

कियाकलाप ४

एउटा छोटो (5-7cm लामो) सानो काँचको नली लेऊ । त्यसको एउटा छेउ तताएर सानो बनाऊ । अब, त्यसको अर्का भागबाट आधा चकको धुलो वा आल्मोनियम अक्साइड राख । त्यसको माथि विभिन्न रङ मिसिएको मिश्रण (रातो, निलो, कालो मसी) राख । केही समयपछि तलको भागबाट एउटा रङ तल भर्दछ । अब एउटा भाँडा थापेर रङ जम्मा गर । केही समयपछि अर्को रं आउँछ त्यसलाई पिन अर्को भाँडामा राख । यसरी विभिन्न रङलाई फरक फरक भाँडामा राखेर छुट्याउन सिकन्छ ।

प्रयोगात्मक क्रियाकलाप

- १. क्रियाकलाप १ अध्ययन गरी आसवन क्रियाद्वारा नुन र पानीको मिश्रण छुट्याऊ ।
- एउटा बिरुवाको फूल तथा पात ल्याऊ र त्यसलाई खलमा पिँध । पिँधेर निस्केको भोललाई पेपर क्रोमाटोग्राफी गरेर हेर । कित प्रकारका रङहरू छुट्टिन्छन्, छोटो टिपोट लेख ।

सारांश

- भिश्रणमा रहेको तरल पदार्थलाई तताएर बाफ बनाई पुन: चिस्याएर तरल पदार्थको रूपमा छुट्याउने प्रक्रियालाई आसवन क्रिया भनिन्छ ।
- २. दुई वा दुईभन्दा बढी तरल पदार्थको मिश्रणलाई फ्रयाक्सनल आसवन क्रिया (fractional distillation) द्वारा छुट्याइन्छ ।
- ३. समुद्रको नुनिलो पानीबाट आसवन क्रियाद्वारा शुद्ध पिउने पानी बनाइन्छ ।
- ४. विभिन्न रङ्गीन पदार्थको मिश्रणबाट रङहरू छुट्याउने विधिलाई क्रोमाटोग्राफी (chromatography) भनिन्छ ।
- प्रतेमाटोग्राफी विधिद्वारा, रङहरू, रगत, पिसाब आदिमा भएका रसायनहरू छुट्याउन र तिनको पहिचान गर्न सिकन्छ ।

अभ्यास ____

१. छोटो उत्तर देऊ :

- (क) आसवन क्रिया भनेको के हो ?
- (ख) फ्रयाक्सनल आसवन क्रियाद्वारा कस्ता मिश्रण छुट्याइन्छ ?
- (ग) समान उम्लने तापक्रम भएका तरल पदार्थको मिश्रणबाट तरल पदार्थलाई आसवन क्रियाद्वारा छुट्याउन सिकँदैन, किन ?
- (घ) क्रोमाटोग्राफी विधिद्वारा कस्ता मिश्रणहरू छुट्याइन्छन् ?
- २. साधारण फिल्टर कागज प्रयोग गरी क्रोमाटोग्राफी विधिलाई कसरी प्रदर्शन गर्छौँ ? सचित्र लेख।
- ३. आसवन क्रियाद्वारा कसरी मिश्रणलाई छुट्याउन सिकन्छ, सिचत्र वर्णन गर।
- ४. फ्रयाक्सनल आसवन क्रिया भनेको के हो, यस विधिद्वारा कस्ता मिश्रण छुट्याउन सिकन्छ, चित्रसिहत व्याख्या गर ।
- प्रतिक प्रतिक मात्रामा अगाडि बढ्छन् भने क्रोमाटोग्राफी विधि किन उपयुक्त हुँदैन, कारण लेख ।
- ६. अशुद्ध पानीको मिश्रणबाट शुद्ध पानी कसरी बनाउन सिकन्छ, प्रयोगसहित लेख।

शातु न अधातु (Metal and Non-Metal)

प्राकृतिक 92 र कृत्रिम 26 गरी 118 ओटा तत्त्वहरू पत्ता लागिसकेका छन् । ती प्रत्येक तत्त्वका आफ्नै प्रकारका गुणहरू हुन्छन् । तत्त्वका गुणका आधारमा तिनीहरूलाई धातु, अधातु र अर्धधातु गरी तीन भागमा विभाजन गरिएको छ । यसको मुख्य आधार विद्युत् प्रवाह गर्ने गुणलाई लिइएको छ । साधारणतया धातुहरूले विद्युत् राम्ररी प्रवाह गर्छेन् । अर्धधातुहरूले केही मात्रामा विद्युत् प्रवाह गर्दछन् भने अधातुहरूले विद्युत् प्रवाह गर्दैनन् ।

पेरियोडिक तालिकामा धातु, अधातु र अर्धधातुको स्थान

पेरियोडिक तालिकाको बायाँतर्फ धातुहरू रहेका छन् । मुख्यतया समूह ।, ॥ र ॥। मा रहेका तत्त्वहरू धातु हुन् । समूह । र ॥ मा रहेका धातुहरू अति सिक्रिय हुन्छन्, जस्तै : सोडियम, पोटासियम, म्याग्नेसियम आदि । पेरियोडिक तालिकाको दाहिनेतिर रहेका तत्त्वहरू अधातु हुन् । अन्तिम समूहमा रहेका तत्त्वहरू निष्क्रिय ग्यास हुन् । त्यसैगरी नाइट्रोजन, अक्सिजन, क्लोरिन ग्याँसहरू अधातु हुन् । अर्धधातुहरू पेरियोडिक तालिकाको बिचमा पर्दछन्, जस्तै : सिलिकन, जर्मेनियम । अर्धधातुले धातु र अधातु दुवैको गुण देखाउँछन् ।

केही उपयोगी धात्, अधात् र अर्धधातुहरू

हामीले दैनिक जीवनमा धातु, अधातु र अर्धधातुहरू विभिन्न काममा प्रयोग गर्दै आइरहेका छौँ । तीमध्ये केही उपयोगी धातु, अधातु र अर्धधातुको परिचय, गुण र उपयोगिता यस प्रकार रहेका छन् :

सुन (Gold - Au)

सुन चहिकलो पहेँलो रङको हुन्छ । यो प्रकृतिमा शुद्ध अवस्थामा पाइन्छ । यो चट्टानहरूका बिचमा र नदीको बालुवामा पाइन्छ । यसलाई सुनयुक्त बलौटे माटोबाट प्रशोधन गरिन्छ ।

गुणहरू

- १. सुन चहिकलो पहेँलो रङको हुन्छ ।
- २. यो ताप र विद्युत्को सुचालक हुन्छ ।
- ३. यो निष्क्रिय धातु हो ।
- ४. यसले हावा र पानीसँग प्रतिक्रिया गर्दैन ।
- ५. यसले साधारण अम्लसँग पनि प्रतिक्रिया गर्दैन ।

उपयोगिता

- १. सुन गहना बनाउन प्रयोग गरिन्छ ।
- २. सिक्का, तक्मा र मूर्ति बनाउन यसको प्रयोग गरिन्छ ।
- ३. यसलाई औषधी बनाउन पनि प्रयोग गरिन्छ ।

चाादी (Silver - Ag)

चाँदी प्रकृतिमा शुद्ध तथा यौगिकका रूपमा पाइन्छ । धातुको खनिज अवस्थालाई धाउ (ore) भनिन्छ । यसको मुख्य धाउ अर्जेन्टाइट हो । यसैबाट चाँदीको प्रशोधन गरिन्छ ।

गुणहरू

- १. चाँदी सेतो टलक भएको धात् हो ।
- २.) यो अरू धातुभन्दा बढी सुचालक हुन्छ ।
- यसलाई हावा र पानीले असर गर्दैन ।
- ४. यसले फिक्का अम्लसँग प्रतिक्रिया गर्दैन । तर गाढा अम्लसँग प्रतिक्रिया गरी यौगिक बनाउँछ ।

उपयोगिता

- बहुमूल्य भाँडाकुँडा, सिक्का, तक्मा बनाउन चाँदी प्रयोग गरिन्छ ।
- २. गहनाहरू बनाउन यसको प्रयोग गरिन्छ ।
- ३. अन्य धातुमाथि विद्युत् लेपन गर्न र टल्कने बनाउन यसको प्रयोग गरिन्छ ।
- ४. इलेक्ट्रोनिक उपकरणहरू बनाउन प्रयोग गरिन्छ ।
- ५. यो दाँतमा भएका खाली ठाउँ भर्न उपयोगी हुन्छ ।
- ६. औषधी बनाउन पनि यसको प्रयोग गरिन्छ ।

तामा (Copper -Cu)

तामा प्रकृतिमा शुद्ध अवस्थामा र धाउका रूपमा पिन पाइन्छ । विभिन्न धाउ (ores) बाट प्रशोधन गरी तामा प्राप्त गर्न सिकन्छ । यसको मुख्य धाउ चाल्कोपाइराइट हो । तामा मानिसले धेरै पहिलेदेखि भाँडाकुँडा बनाउन प्रयोग गर्दै आएको धातु हो ।

गुणहरू

- १. यो रातो खैरो रङको हुन्छ ।
- २. यो ताप र विद्युत्को राम्रो स्चालक हो ।
- ३. यसमा खिया लाग्दैन तर चिसोमा मलिन हुँदै जान्छ ।
- ४. यसलाई तताउँदा कालो अक्साइड हुन्छ ।
- ५. यसले अम्लसँग प्रतिक्रिया गर्दछ ।

उपयोगिता

- १. तामा भाँडाकुडाँहरू बनाउन प्रयोग गरिन्छ ।
- २. विद्युत्का तार तथा अन्य विद्युतीय सामग्री बनाउन यसको प्रयोग गरिन्छ ।
- ३. पित्तल, काँस जस्ता मिश्रित धातुहरू बनाउन प्रयोग गरिन्छ ।
- ४. यसबाट सिक्का, तक्मा र मूर्तिहरू बनाइन्छ ।
- ५. विभिन्न रासायनिक पदार्थ र औषधीहरू बनाउन यसको प्रयोग गरिन्छ ।

फलाम (Iron-Fe)

फलाम प्रकृतिमा स्वतन्त्र रूपले कम मात्रामा पाइन्छ । यो मुख्य धाउ (ore) का रूपमा पाइन्छ । हेमाटाइट (haematite), म्याग्नेटाइट (magnetite) यसका प्रमुख धाउहरू हुन् । यिनै धाउहरूबाट प्रशोधन गरी फलाम निकालिन्छ । हाम्रो दैनिक जीवनमा यसको धेरै महत्त्व छ । मानिसको शरीर र वनस्पतिहरूमा पनि फलाम पाइन्छ ।

गुणहरू

- १. फलाम कालो, खरानी रङको हुन्छ ।
- २. यसलाई घोटदा टलक आउँछ ।
- ३. यो चुम्बकीय गुणयुक्त हुन्छ ।
- ४. यसमा हावा तथा पानीले सजिलै असर गर्दछ र खिया लाग्छ ।
- ५. यसले अम्लसँग प्रतिक्रिया गर्दछ ।

उपयोगिता

- कुटो, कोदालो, हलो, खुकुरी, बन्चरो, हाँसिया र भाँडाकुँडा बनाउन यसको प्रयोग गरिन्छ ।
- २. यसका विभिन्न औजारहरू तथा हातहतियार बनाइन्छ ।
- ३. विभिन्न प्रकारका छड, पाइप, तार आदि बनाउन यसको प्रयोग गरिन्छ ।
- ४. घर,पुल तथा बस, ट्रक लगायत विभिन्न यातायातका साधन बनाउन यसको प्रयोग गरिन्छ ।
- ५. स्टिल (steel) उत्पादन गर्न पनि यसको प्रयोग गरिन्छ ।

आल्मोनियम (Aluminium-Al)

यो तत्त्व प्रकृतिमा शुद्ध रूपमा पाइँदैन तर यौगिक र धाउका रूपमा प्रशस्त पाइन्छ । यसको प्रमुख धाउ वक्साइट (bauxite) हो । यसबाट नै आल्मोनियमको प्रशोधन गरिन्छ ।

गुणहरू

- १. आल्मोनियम सेतो हलुका धातु हो ।
- २. यो ताप र विद्युत्को स्चालक हो ।
- ३. यसमा हावा र पानीले सजिलै असर गर्दैन ।
- ४. यसमा खिया लाग्दैन ।
- ५. यसलाई अरू धात्भन्दा कम तापक्रममा पगाल्न सिकन्छ ।

उपयोगिता

- यसलाई घरायसी भाँडाकुँडा (प्रेसर कुकर, राइसकुकर आदि) बनाउन प्रयोग गरिन्छ ।
- २. यो हलुका भएकाले हवाईजहाज बनाउन प्रयोग गरिन्छ ।
- ३. यो विद्युत् तारहरू र विद्युतीय सामग्री बनाउन प्रयोग गरिन्छ ।
- ४. यसको धुलो रङ बनाउन प्रयोग गरिन्छ ।
- ५. पाता वा तार बनाई सामान बेर्न यसको प्रयोग गरिन्छ ।
- ६.) तारको जाली बनाई विभिन्न काममा यसको प्रयोग गरिन्छ ।
- ७. यसको सिक्का बनाउन र मिश्रित धातु बनाउन प्रयोग गरिन्छ ।
- द. यो खाद्य वस्तु सुरक्षा गर्ने बाहिरी खोल बनाउन र प्याकिङ (packing) गर्ने (जस्तै : बिस्कृट, चकलेट) खोलमा भित्रपट्टि लेपन गरिन्छ ।

सिलिकन (Silicon-Si)

सिलिकन प्रकृतिमा शुद्ध रूपमा पाइँदैन । यो यौगिकका रूपमा प्रशस्त मात्रामा पाइन्छ । यसको प्रमुख स्रोत बालुवा वा सिलिका (silicon dioxide— SiO_2) हो । यो विभिन्न धातुको सिलिकेट यौगिकका रूपमा माटामा पिन पाइन्छ । यो एउटा अर्ध धातु हो । यसले धातु र अधातु दुवैको गुण देखाउँछ ।

गुणहरू

- १. सिलिकन अर्ध धात् हो ।
- २. यो ठोस र खैरो हन्छ ।
- ३. यसको बनावट मणिभ (crystalline) र धुलो (amorphous) दुवै प्रकारको हुन्छ ।
- ४. सिलिकनको मणिभ विद्युत्को कमजोर चालक हुन्छ तर यसको धुलो विद्युत्को कुचालक हुन्छ ।
- ५. यसले हावा, पानी र अम्लसँग प्रतिक्रिया गर्दैन ।

उपयोगिता

- काँच (glass) बनाउन यसको प्रयोग गरिन्छ ।
- २. विभिन्न प्रकारका माटाका भाँडाहरू बनाउन यसको प्रयोग गरिन्छ ।
- ३. यसको यौगिकका चट्टानहरू, स्यान्डस्टोन (sandstone) घर, मूर्ति बनाउन प्रयोग गरिन्छ ।
- ४. यसलाई इलेक्ट्रोनिक उपकरणहरूमा अर्धचालक (semi-conductor) का रूपमा प्रयोग गरिन्छ ।
- ५. विभिन्न उपकरणलाई बाहिरबाट पोलिस (polish) गर्न र रंहरू बनाउन यसको प्रयोग गरिन्छ ।

गन्धक (Sulphur-S)

गन्धक प्रकृतिमा शुद्ध रूपमा पाइन्छ । प्रायः ज्वालामुखी जाने क्षेत्रमा प्राकृतिक रूपमा पाइन्छ । यौगिकका रूपमा विभिन्न धातुको सल्फाइडका रूपमा सल्फर पाइन्छ । प्याज, लसुन, तोरीको तेलमा पनि सल्फर पाइन्छ । सल्फर एउटा अधातु हो ।

गुणहरू

१. गन्धक पराल जस्तो पहेँलो रङको टल्कने ठोस पदार्थ हो ।

- २. यो पानीमा अघुलनशील हुन्छ ।
- ३. यो ताप र विद्युत्को क्चालक हुन्छ ।
- ४. यो हावामा बाल्दा सल्फर डाइअक्साइड बन्छ ।
- ५. यसले अम्लसँग सजिलै प्रतिक्रिया गर्दैन ।

उपयोगिता

- 9. गन्धक सल्फ्रिक अम्ल (sulphuric acid) बनाउन प्रयोग गरिन्छ ।
- २. यो औषधीका रूपमा प्रयोग गरिन्छ ।
- ३. यो बन्द्कमा बारुद बनाउन, सलाईको काँटीमा बारुद बनाउन प्रयोग गरिन्छ ।
- ४. यसलाई कीटनाशक औषधी (insecticide) बनाउन पनि प्रयोग गरिन्छ ।
- ५. यसलाई पटकाहरू बनाउन प्रयोग गरिन्छ ।

परियोजना कार्य

तिम्रो गाउँघरमा कुन कुन धातु, अर्ध धातु र अधातुहरू प्रयोगमा ल्याइएका छन्, ती पदार्थहरू कुन कामका लागि प्रयोग गरिन्छ, तिनीहरूको सूची बनाऊ ।

सारांश

- पेरियोडिक तालिकाको बायाँतर्फ धातु, दायाँतर्फ अधातु र बिचमा अर्ध धातु
 रहेका हुन्छन् ।
- २. अर्ध धातुले धातु र अधातु दुवैको गुण देखाउँछन् ।
- ३. सुन निस्क्रिय, पहेँलो र टलकदार धातु हो । यो गहना बनाउन प्रयोग गरिन्छ ।
- ४.) तामा रातो, खैरो सुचालक धातु हो । यो बिजुलीका तार बनाउन प्रयोग गरिन्छ ।
- ५. चाँदी सेतो, टल्कने र अति सुचालक धातु हो ।
- फलाम कालो, खैरो र कडा धातु हो । यो विभिन्न भाँडाकुँडा र छड बनाउन प्रयोग गरिन्छ ।
- आल्मोनियम सेतो, हलुका र खिया नलाग्ने धातु हो । यो हवाईजहाज बनाउन, सामान बाँध्ने डोरी, पाता बनाउन प्रयोग गरिन्छ ।
- सिलिकनलाई अर्धचालकका रूपमा इलेक्ट्रोनिक उपकरणमा प्रयोग गरिन्छ ।
- ९. सल्फर (गन्धक) औषधी बनाउन र बाख्द, पटका बनाउन प्रयोग गरिन्छ ।

٦.	खाला ठाउमा ।मल्दा शब्द मर् :
	(क) पेरियोडिक तालिकाको बायाँतर्फ रहेका हुन्छन् ।
	(ख) अर्ध धातुले धातु र दुवैको गुण देखाउँछ ।
	(ग) सुन रङको टल्किने धातु हो ।
	(घ) सबैभन्दा राम्रो सुचालक धातु हो ।
	(ङ) हवाईजहाज बनाउन प्रयोग गरिन्छ ।
₹.	छोटो उत्तर लेख :
	(क) सुन कस्तो अवस्थामा कहाँ पाइन्छ ?
	(ख) हेमाटाइट धाउबाट कुन धातु निकालिन्छ ?
	(ग) दाँतको खाली ठाउँमा कुन धातु राखेर भरिन्छ ?
	(घ) विद्युतीय तारहरू बनाउन प्राय: कुन धातु प्रयोग गरिन्छ ?
	(ङ) गन्धक भनेको के हो, यो कुन कुन काममा प्रयोग गरिन्छ ?
	(च) सिलिकनको मुख्य उपयोगिता लेख ।
₹.	पेरियोडिक तालिकामा धातु, अधातु र अर्ध धातुको स्थानबारे लेख।
8.	निम्नलिखित धातुका तीन तीनओटा गुणहरू लेख :
	सुन, चाँदी, तामा, फलाम, आल्मोनियम ।
ሂ.	निम्नलिखित तत्त्वका उपयोगिता लेख :
	सिलिकन, गन्धक, फलाम, तामा ।
દ્દ.	हवाईजहाजका सामान बनाउन किन आल्मोनियम धातुको प्रयोग गरिन्छ ?

अञ्ल, क्षार र लवण

(Acid, Base and Salt)

हामीले खाने स्याउ, सुन्तला, कागती, अमलामा अम्ल हुन्छ । हामीले घर पोत्न वा रङ्गाउन प्रयोग गरिने चुन क्षार हो । त्यसैगरी खाने नुन लवण हो । यसरी हामीले विभिन्न अम्ल, क्षार र लवण प्रयोगमा ल्याइरहेका छौँ ।

अम्ल (Acid)

अम्ल भन्नाले साधारणतया अमिलो पदार्थलाई जनाउँछ । रसायन विज्ञानमा यसको अर्थ अमिलो मात्र होइन । केही अम्लहरू अमिलो नहुन पिन सक्छन् । तर अधिकांश अम्लहरू अमिलो नै हुन्छन्, जस्तै : साइट्रिक अम्ल, हाइड्रोक्लोरिक अम्ल, टार्टिरिक अम्ल, ल्याक्टिक अम्ल । सबै अम्लको स्वाद लिनु हुँदैन किनभने कडा अम्लले छाला जलाउन सक्छ । कडा अम्ललाई तेजाब पिन भन्ने गरिन्छ । वास्तवमा अम्ल भनेको के हो त ?

पानीमा घुल्दा धन विद्युतीय चार्जयुक्त हाइड्रोजन (H+) दिने पदार्थलाई अम्ल भिनन्छ । H+ लाई हाइड्रोजन आयोन भिनन्छ । अम्ल मुख्य दुई प्रकारका हुन्छन् ।

(क) प्राङ्गारिक अम्ल (organic acid) (ख) अप्राङ्गारिक अम्ल (inorganic acid)

जीवजन्तु वा वनस्पतिमा पाइने अम्ललाई प्राङ्गारिक अम्ल भिनन्छ, जस्तै : साइट्रिक अम्ल, ल्यािक्टक अम्ल, टार्टिरिक अम्ल । प्रयोगशालामा बनाइने अम्ललाई अप्राङ्गािरिक अम्ल भिनन्छ, जस्तै : हाइड्रोक्लोिरिक अम्ल (HCI), सल्फ्युरिक अम्ल (H_2SO_4), नाइट्रिक अम्ल (HNO $_2$) ।

अम्लका गुणहरू (Properties of Acid)

भौतिक गुणहरू (Physical Properties)

- १. अम्लको स्वाद प्राय: अमिलो हुन्छ । कडा अम्लहरू हानीकारक हुने भएकाले स्वाद लिनु हुन्न ।
- २. अम्लले निलो लिटमस कागजलाई रातो रङमा परिणत गर्दछ ।

- ३. अम्लले मिथाइल अरेन्जलाई रातो रङमा परिणत गर्दछ ।
- ४. अम्लले फेनोल्फथालिनको रङमा परिवर्तन ल्याउँदैन ।

रासायनिक गुणहरू (Chemical Properties)

- अम्लले धात्सँग प्रतिक्रिया गर्दा हाइडड्रोजन ग्यास बन्छ ।
- २. अम्ल र क्षारिबच प्रतिक्रिया हँदा लवण र पानी बन्छ ।
- ३. अम्लले पानीमा H+ आयोन दिन्छ ।

अम्लको उपयोगिताहरू (Uses)

अम्ललाई विभिन्न कार्य गर्न प्रयोगमा ल्याइन्छ । अम्लका केही महत्त्वपूर्ण उपयोगिताहरू यस प्रकार छन् :

अम्ल	प्रयोग
(क) सल्फ्युरिक अम्ल (H ₂ SO ₄₎ हाइड्रोक्लोरिक अम्ल (HCI)	उद्योग, कलकारखाना तथा प्रयोगशालामा विभिन्न कामका लागि प्रयोग गर्न
नाइट्रिक अम्ल (HNO_3)	विश्वमन्त्र कामका लागि प्रवाग गर्ग
(ख) कार्बोनिक अम्ल (H_2CO_3)	सोडापानी, कोकाकोला, बियरलगायत पेय पदार्थमा प्रयोग गर्न
	पय पदायमा प्रयाग गन
(ग) एसिटिक अम्ल / भेनेगर (CH3COOH)	अचार बनाउन

दैनिक जीवनमा प्रयोगमा आउने केही अम्लहरू र तिनका स्रोत

अम्लको नाम	स्रोत
१. साइट्रिक अम्ल	१. कागती, गोलभैंडा
२. टार्टरिक अम्ल	२. भोगटे जस्ता फलफूल
३. अक्जालिक अम्ल	३. चरी अमिलो
४. एस्कर्विक अम्ल	४. अमिलो फलफूल
५. ल्याक्टिक अम्ल	५. दुध, दही
६. फर्मिक अम्ल	६. कमिलाले हामीलाई चिल्दा निकाल्ने अम्ल

क्षार (Base)

धातुको अक्साइड वा हाइड्रोक्साइडलाई क्षार भिनन्छ । क्षारले अम्लसँग प्रतिक्रिया गरी लवण र पानी बनाउँछ । पानीमा घुल्ने क्षारलाई अल्काली भिनन्छ । पानीमा अल्कालीले (OH)- आयोन दिन्छ ।

केही महत्त्वपूर्ण क्षारहरू

क्षारको नाम अण् सूत्र

सोडियम अक्साइड Na₂O

सोडियम हाइड्रोक्साइड NaOH

पोटासियम अक्साइड K₂O

पोटासियम हाइड्रोक्साइड KOH

म्याग्नेसियम अक्साइड MgO

म्याग्नेसियम हाइड्रोक्साइड Mg(OH),

क्षारका गुणहरू (Properties of Base)

भौतिक गुणहरू (Physical Properties)

- क्षारको स्वाद प्राय: टर्रो हुन्छ । तर सबै क्षारको स्वाद लिनु हुँदैन । कडा क्षारले पोल्न वा जलाउन सक्छ ।
- २. केही क्षारको घोललाई छुँदा चिप्लो हुन्छ ।
- ३. क्षारले रातो लिटमसलाई निलो रङमा परिणत गर्दछ ।
- ४. क्षारले मिथाइल अरेन्जलाई पहेँलो रङमा परिणत गर्दछ ।
- ५. क्षारले फेनोल्फथालिनलाई गुलाफी रङमा परिणत गर्दछ ।

रासायनिक गुणहरू (Chemical Properties)

- क्षार र अम्लिबच रासायिनक प्रतिक्रिया हुँदा लवण र पानी बन्छ ।
- २. क्षार र कार्बनडाइअक्साइडबिच प्रतिक्रिया भई कार्बोनेट बन्छ ।

क्षारका उपयोगिताहरू (Uses)

क्षारका केही महत्त्वपूर्ण उपयोगिताहरू यस प्रकार छन् :

	क्षारको नाम		उपयोग
٩.	सोडियम हाइड्रोअक्साइड (NaOH)	٩.	साबुन र कागज बनाउन
٦.	पोटासियम हाइड्रोअक्साइड (KOH)	٦.	लुगा धुन र बिरुवामा मलका रूपमा
જ.	एल्मुनियम हाइड्रोअक्साइड $Al(OH)_3$ र म्याग्नेसियम हाइड्रोअक्साइड $Mg(OH)_2$	₹.	अम्लपित्त (ग्यास्टिक) रोगको औषधीका रूपमा
8.	चुनपानी (क्याल्सियम हाइड्रोअक्साइड) Ca(OH) ₂	٧.	प्रयोगशालामा प्रयोग गर्न, पानीको कडापन हटाउन
ሂ.	एमोनियम हाइड्रोअक्साइड (NH ₄ OH)	ሂ.	रासायनिक मल, प्लास्टिक बनाउन

लवण (Salt)

लवण एक प्रकारको तटस्थ (neutral) पदार्थ हो । यसमा अम्लीय वा क्षारीय गुणहरू हुँदैनन् । केही लवणहरू नुनिला र केही तिता हुन्छ । कुनै स्वादिवहीन पिन हुन्छन् । प्रायः अम्ल र क्षार मिली लवण बन्छ ।

लवणका गुणहरू (Properties of Salt)

- १. लवणको स्वाद न्निलो हुन्छ । धेरैजसो लवण तिता हुन्छन् ।
- २. लवणले लिटमस कागज, मिथाइल अरेन्ज र फेनोल्फथालिनमा असर पुऱ्याउँदैन ।
- ३. लवणहरू प्राय: पानीमा घुलनशील हुन्छन् ।
- ४. लवणहरू केही सेतो र केही रङ्गीन हुन्छन् ।

लवणको उपयोगिता (Uses of Salt)

दैनिक जीवनमा लवणलाई विभिन्न काममा प्रयोग गरिन्छ । ती यस प्रकार छन् :

लवणको नाम	उपयोग
 सोडियम क्लोराइड (NaCl) 	१. खानका लागि
२. कपरसल्फेट (CuSO ₄) (निलोतुथो)	२. कीटनाशक औषधीका रूपमा प्रयोग गर्न
३. म्याग्नेसियम सल्फेट (MgSO₄)	३. कब्जियत हुँदा औषधीका रूपमा प्रयोग गर्न
४. क्याल्सियम सल्फेट (CaSO₄)	४. भाँचिएको हाड जोड्ने (प्लास्टर गर्ने), सिमेन्टमा मिसाउन
५. सोडियम कार्बोनेट (Na ₂ CO ₃)	५. साबुन, डिटरजेन्ट तथा ग्लास बनाउन
६. सोडियम बाइकार्बोनेट (NaHCO3)	६. बेकिङ पाउडर बनाउन
७. एमोनियम सल्फेट $(NH_4)_2SO_4$	७. रासायनिक मलका रूपमा प्रयोग गर्न

सूचक पदार्थ (Indicator)

हामीले दैनिक जीवनमा विभिन्न रसायनहरू प्रयोग गर्दछौँ । ती रसायनहरू अम्लीय, क्षारीय वा तटस्थ भनेर सजिलै चिन्न सिकँदैन । यसका लागि केही रसायनको प्रयोग गर्नुपर्दछ । यी रसायनलाई सूचक पदार्थ भनिन्छ ।

कुनै वस्तु अम्ल वा क्षार के हो भनी छुट्याउनका लागि प्रयोग गरिने रसायनलाई सूचक पदार्थ (indicator) भिनन्छ, जस्तै : लिटमस कागज, मिथाइल अरेन्ज, फेनोल्फथालिन । यी पदार्थले आफ्नो रङमा परिवर्तन ल्याई अम्ल, क्षार वा तटस्थ पदार्थ छुट्याउन सहयोग गर्दछन्, जस्तै :

सूचक पदार्थ	अम्ल	क्षार	लवण
रातो लिटमस	रातो	निलो	तटस्थ
निलो लिटमस	रातो	निलो	तटस्थ
मिथाइल अरेन्ज	रातो	पहेँल <u>ो</u>	तटस्थ
फेनोल्फथालिन	रङ्हीन	गुलाफी	तटस्थ

सूचक पदार्थले रसायनलाई अम्लीय वा क्षारीय मात्र छुट्याउन सक्छ तर त्यसको कडा पन थाहा दिन सक्दैन । अम्ल र क्षारको कडापन थाहा पाउन युनिभर्सल सूचक पदार्थ (universal indicator) को प्रयोग गर्नुपर्दछ । धेरै प्रकारका रङ भएका सूचक पदार्थहरू मिलाई युनिभर्सल सूचक पदार्थ बनाइएको हन्छ ।

सूचक पदार्थमा रातो र गाढा रातो रङले अम्ललाई जनाउँछ भने निलो र गाढा निलो रङले क्षारलाई जनाउँछ । हिरयो रङले तटस्थ जनाउँछ । युनिभर्सल सूचकका रङहरूलाई p^{μ} स्केलले जनाइन्छ ।

pH स्केल (pH Scale)

यस स्केलमा 1 देखि 14 सम्म सङ्ख्याहरू हुन्छन् । अति कडा अम्ललाई स्केलमा 1,2 अङ्कले र अति कडा क्षारलाई 13,14 ले जनाइन्छ । तटस्थ पदार्थको p^H मान 7 हुन्छ ।

 p^{μ} लाई p^{μ} मिटरले पिन नाप्न सिकन्छ । p^{μ} मिटरमा कुनै घोलको p^{μ} सिधा देखाउँछ । यसरी p^{μ} स्केलले अम्ल वा क्षारको कडा पन देखाउँछ ।

क्रियाकलाप १

तीन ओटा सफा परीक्षण नली (test tube) लेऊ । एउटा परीक्षण नलीमा अम्ल, दोस्रोमा क्षार र तेस्रोमा लवणको घोल राख । अब, एउटा रातो लिटमस कागजको टुक्रा क्रमशः तीनओटै परीक्षण नलीमा राख र हेर । कुन कुनमा के के परिवर्तन भयो, यसैगरी प्रत्येकमा निलो लिटमस कागज राखेर हेर । अब के परिवर्तन पायौ, निष्कर्ष लेख ।

क्रियाकलाप २

फूलहरूका रङ्गीन केही पुष्पदलहरू लेऊ । यी फूलहरू र बालुवा मिसाई खलमा राम्रोसँग पिँध । त्यसपछि त्यसमा अल्कोहल मिसाऊ । फूलको रङ्गीन तत्त्व अल्कोहलमा घोलिन्छ । अब, छान्ने कागज (filter paper) को सहायताले बालुवा र नघोलिने पदार्थ छुट्याऊ । छानेर आएको भोललाई बोतलमा जम्मा गरेर राख । यो घोलमा कागजका टुक्राहरू डुबाएर भिकी सुकाऊ । यसरी लिटमस कागज बनाउन सिकन्छ । त्यसैगरी एउटा परीक्षण नली (test tube) मा अम्ल र अर्कोमा क्षार राख । यी प्रत्येक परीक्षण नलीमा एक एक टुक्रा लिटमस राखेर हेर । यिनको रङमा के परिवर्तन आउँछ, लेख ।

प्रयोगात्मक क्रियाकलाप

- क्रियाकलाप १ गरी लिटमसको सहायताले अम्ल, क्षार र लवण छुट्याएर देखाऊ ।
- क्रियाकलाप २ का आधारमा लिटमस कागज तयार पार । अम्ल र क्षारको घोलमा उक्त कागज राख्दा कुन कुन रङमा परिवर्तन भयो, अवलोकन गर र निष्कर्ष लेख ।

सारांश

- 9. पानीको घोलमा H+ आयोन दिने रसायनलाई अम्ल भनिन्छ ।
- २. धातुको अक्साइड वा हाइड्रोअक्साइडलाई क्षार भनिन्छ ।
- अम्ल र क्षार मिली बनेको तटस्थ पदार्थ नै लवण हो ।
- ४. साधारणतया अम्ल अमिलो, क्षार टर्रो र लवण नुनिलो, तीतो वा स्वादहीन हुन्छ ।
- ५. अम्लमा लिटमस कागज रातो हुन्छ भने क्षारमा निलो रङमा बदलिन्छ ।
- ६. अम्ल, क्षार र लवण चिन्न प्रयोग गरिने पदार्थलाई सूचक पदार्थ भनिन्छ ।
- ७. अम्ल वा क्षारको कडापन p^H स्केलद्वारा नापिन्छ ।

अ∂यास

१. छोटो उत्तर लेख:

- (क) अम्ल भनेको के हो ?
- (ख) प्रयोगशालामा बनाइने तीनओटा अम्लहरूको नाम लेख ।
- (ग) क्षार भनेको के हो, क्नै चारओटा उदाहरण देऊ ।
- (३) सूचक पदार्थ भनेको के हो, कुनै तीनओटा सूचक पदार्थको नाम लेख ।
- (ङ) p^H स्केल भनेको के हो, यसको मान कतिदेखि कतिसम्म हुन्छ, लेख ।
- (च) तटस्थ पदार्थको p^н मान कति हुन्छ ?

२. फरक लेख:

- (क) अम्ल र क्षार (ख) सूचक पदार्थ र युनिभर्सल सूचक पदार्थ
- ३. कारण देऊ :
 - (क) किन कागती र अमला अमिलो हुन्छु ?
 - (ख) किन अम्ललाई सावधानीपूर्वक चलाउन्पर्दछ ?
 - (ग) किन सिस्नु छुँदा पोल्छ ?
 - (घ) किन कमिलाले चिल्दा पोल्छ ?
 - (ङ) ग्यास्ट्रिक हुँदा किन एलुमिनियम हाइड्रोअक्साइड भएको औषधी खाइन्छ ?
- ४. अम्लका कुनै चारओटा गुणहरू लेख।
- ५. क्षारका कुनै चारओटा गुणहरू लेख।
- ६. दैनिक जीवनमा प्रयोग गरिने तीन तीनओटा अम्ल, क्षार र लवणहरूको नाम र काम लेख।
- ७. लवण कसरी बन्छ, लेख।
- द. फुलबाट लिटमस कसरी बनाउन सिकन्छ, लेख।
- ९. लवणका कुनै तीनओटा गुणहरू लेख।
- १०. अम्ल, क्षार र लवणले विभिन्न सूचक पदार्थहरूमा के प्रभाव पार्छ, तालिका बनाई देखाऊ।
- ११. निम्नलिखित रसायनहरू कुन कुन काममा प्रयोग गरिन्छ, लेख :
 - (क) कार्बोनिक अम्ल (ख) एसिटिक अम्ल (ग) सोडियम हाइड्रोअक्साइड
 - (घ) सोडियम क्लोराइड (ङ) एमोनियम सल्फेट

केही उपयोगी नुसायनहरू (Some Useful Chemicals)

पानी (Water)

पृथ्वीमा पाइने सबैभन्दा उपयोगी पदार्थ पानी हो । पृथ्वीको लगभग ७९ प्रतिशत भूभाग पानीले ढाकेको छ । पानी ठोस, तरल र ग्याँस तीन ओटै अवस्थामा पाइन्छ । हावामा बाफ, तुसारो तथा बादलका रूपमा पानी रहन्छ । अग्ला पहाडको टुप्पामा हिउँका रूपमा पाइन्छ । जिमनको सतहमा ताल, पोखरी, नदी तथा समुद्रमा तरल रूपमा रहेको हुन्छ । जिमनमुनिको पानी कुवा, इनार, धारा, चापकल (ट्युबेल) बाट बाहिर ल्याई प्रयोग गरिन्छ । पानीलाई पिउन, नुहाउन, लुगा धुन, खाना पकाउन, बोटिबिरुवामा हाल्न, कारखानाको काममा प्रयोग गरिन्छ ।

पानीका गुणहरू (Properties of Water)

भौतिक गुणहरू (Physical Properties)

- शृद्ध पानी रङ्हीन, गन्धहीन र स्वादरिहत हुन्छ ।
- २. ठोस. तरल र ग्याँस तीनओटा अवस्थामा पानी पाइन्छ ।
- ३. पानी पारदर्शक हुन्छ ।
- ४. पानी तापको क्चालक हुन्छ ।
- ५. पानी 0°C तापक्रममा जमेर बरफ र 100°C तापक्रममा उम्लेर बाफ बन्छ ।
- ६. पानी बढी प्रयोग हुने घोलक पदार्थ हो ।

रासायनिक गुणहरू (Chemical Properties)

- 9. दुई भाग हाइड्रोजन र एक भाग अक्सिजन मिलेर पानी (H2O) बन्छ ।
- २. पानी तटस्थ पदार्थ हो । शुद्ध पानीमा अम्लीय वा क्षारीय गुण हँदैन ।

कड़ा र नरम पानी (Hard and Soft Water)

क्वा, इनार वा ट्युबेलबाट निकालेको पानीले न्हाउने र ल्गा धुने गरेका छौ ? क्वा, मुल वा इनारबाट भिकेको पानीले नहाउँदा कपाल च्याप च्याप लाग्ने. मयल नजाने. लगा धँदा फिँज नआउने पनि हन सक्छ । यस्तो किन हन्छ होला ?

पानी मख्य दई प्रकारका हन्छन् :

- (१) नरम पानी (soft water) (२) कडा पानी (hard water)
- 9. नरम पानी (Soft Water): साधारणतया लुगा धुँदा साबुनिसत सजिलै फिँज आउने पानीलाई नरम पानी (soft water) भनिन्छ, जस्तै : वर्षाको पानी, श्द्ध पानी (distilled water) ı
- २. कडा पानी (Hard Water): साब्नसँग सजिलै फिँज नआउने पानीलाई कडा पानी (hard water) भनिन्छ, जस्तै : कवा, इनार, पहाडबाट निस्केको मलको पानी ।

पानीको कडापन (Hardness of Water)

पानी महत्त्वपूर्ण घोलक पदार्थ हो । त्यसैले धेरै रासायनिक पदार्थहरू पानीमा घुलेर रहेका हुन्छन् । पानीमा घुलेर रहेका कतिपय पदार्थहरू जन्तु तथा वनस्पतिलाई उपयोगी र कतिपय हानिकारक पनि हुन्छन् । पानीमा धातुका लवणहरू पनि घ्लेर रहेका हुन्छन् । यिनै पानीमा घुलनशील धात्का लवणहरूले पानीमा कडापन ल्याउँछ । मुख्यतया पानीमा क्याल्सियम र म्याग्नेसियमका लवणहरू घलेर रहँदा कडापन आउँछ ।

कियाकलाप १

तिम्रो वासस्थान वरपरका स्रोतहरूबाट पानी सङ्कलन गर ।

सङ्कलन गरिएका पानीको नम्नालाई चित्रमा देखाए जस्तै फरक फरक टेस्ट ट्य्बमा समान मात्रामा राख । एउटा बिकरमा स्याम्प् वा साबुनको घोल बनाऊ । एउटा ड्रपरको सहायताले प्रत्येक टेस्ट ट्युबमा पाँच पाँच थोपा जित साब्नको घोल राख । अब सबै टेस्ट टयवलाई पालैपालो हल्लाएर हेर । सजिलोसँग फिँज आउने टेस्ट ट्यूबमा

चित्र नं. 15.1

रहेको पानी सबैभन्दा नरम हुन्छ । यदि टेस्ट ट्युबको पानीमा कम फिँज आउँछ वा फिँज आउँदैन भने त्यो कडा पानी हो । यसरी कडा र नरम पानी छुट्याउन सिकन्छ ।

पानीको कडापनका प्रकारहरू (Types of Hardness of Water)

पानीको कडापन दुई प्रकारका हुन्छन् :

- (क) अस्थायी कडापन (Temporary Hardness)
- (ख) स्थायी कडापन (Permanent Harness)
- (क) अस्थायी कडापन (Temporary Hardness) : पानीमा क्याल्सियम बाइकार्बोनेट र म्याग्नेसियम बाइकार्बोनेट लवणहरू घुलेर रहेको कडापनलाई अस्थायी कडापन भनिन्छ ।
- (ख) स्थायी कडापन (Permanent Hardness): पानीमा क्याल्सियम सल्फेट, क्याल्सियम क्लोराइड, म्याग्नेसियम सल्फेट, म्याग्नेसियम क्लोराइड लवणहरू घुलेर रहेको कडापनलाई स्थायी कडापन भनिन्छ ।

कडापन हटाउने तरिका (Removal of Hardness)

पानीमा घुलेर रहेका घुलनशील लवणहरूलाई अघुलनशील पदार्थमा परिवर्तन गरेर पानीको कडापन हटाउन सिकन्छ ।

पानीको अस्थायी कडापन हटाउने तरिका

अस्थायी कडापन भएको पानीलाई उमालेर कडापन हटाउन सिकन्छ । अस्थायी कडापन भएको पानीमा क्याल्सियम बाइकार्बोनेट र म्याग्नेसियम बाइकार्बोनेट लवणहरू घुलेर रहेका हुन्छन् । यस्तो पानीलाई उमाल्दा त्यहाँ रहेका क्याल्सियम बाइकार्बोनेट र म्याग्ने सियम बाइकार्बोनेट लवणहरू टुक्रिएर अघुलनशील पदार्थ बन्छ । यी अघुलनशील पदार्थहरू थिग्रिएर जानाले पानीको कडापन हट्छ र साब्नसँग सिजलै फिँज दिन्छ ।

क्रियाकलाप २

एउटा बिकर लेऊ र आधा जित पानी राख । त्यसमा एक चम्चा जित क्याल्सियम बाइकार्बोनेट वा म्याग्नेसियम बाइकार्बोनेट मिसाएर चलाऊ । अब त्यसको केही भाग टेस्ट ट्युबमा राख । अर्को बिकरमा साबुनको घोल बनाऊ । उक्त साबुनको घोलबाट केही थोपा टेस्ट ट्युवमा राख । अब टेस्ट

चित्र नं. 15.2

ट्युबलाई जोडले हल्लाऊ । त्यहाँ फिँज आउँछ कि आउँदैन हेर । यसमा फिँज आउँदैन किनभने त्यहाँ कडापन भएको पानी छ । अब पहिलो बिकरमा रहेको पानीलाई उमालेर चिसो हुन देऊ । चिसो भएपछि त्यसमा फेरि साबुनको घोलका केही थोपा राखेर हल्लाएर हेर । अब साबुनको फिँज आउँछ । यसरी अस्थायी कडापन भएको पानीलाई तताएर त्यसको कडापन हटाउन सिकन्छ भन्ने कुरा थाहा पाउन सिकन्छ ।

पानीको स्थायी कडापन हटाउने तरिका

स्थायी कडापन भएको पानीलाई तताएर यसको कडापन हटाउन सिकँदैन । यस्तो कडापन भएको पानीलाई लुगा धुने सोडा (सोडियम कार्बोनेट, (Na_2CO_3) सँग मिसाएर कडापन हटाउन सिकन्छ । सोडियम कार्बोनेटले पानीमा घुलिरहेको क्याल्सियम र म्याग्नेसियम लवणसँग प्रतिक्रिया गरी अघुलनशील क्याल्सियम र म्याग्नेसियम कार्बोनेटहरू तयार हुन्छ जुन थिग्रिन गई पानीको कडापन हट्छ ।

क्रियाकलाप ३

बिकरमा आधा जित पानी राख । त्यसमा अलिकित क्याल्सियम क्लोराइड वा म्याग्नेसियम क्लोराइड मिसाएर घोल बनाऊ । यसको केही भाग टेस्ट ट्युबमा लिएर त्यसमा साबुनको घोलको केही थोपा मिसाएर चलाऊ । त्यहाँ फिँज आउँदैन किनभने यो कडापन भएको पानी हो । अब बिकरको पानीमा एक चम्चा जित लुगा धुने सोडा मिसाएर चलाऊ । फेरि यसबाट अलिकित पानी टेस्ट ट्युबमा लिएर त्यसमा साबुनको 2/4 थोपा घोल राखेर हेर । त्यहाँ साबुनको फिँज आउँछ । यसरी स्थायी कडापन भएको पानीमा लुगा धुने सोडा मिसाउँदा कडापन हराउँछ भन्ने क्रा प्रदर्शन गर्न पिन सिकन्छ ।

सोडियम कार्बोनेट (Sodium Carbonate)

सोडियम कार्बोनेट बहुउपयोगी रसायन हो । यसलाई लुगा धुने सोडा (washing soda) पिन भिनन्छ । यो सोडियम धातुको यौगिक हो । यसको अणु सूत्र Na_2CO_3 हो । यो सेतो धुलोका रूपमा पाइन्छ । यसमा क्षारीय गुण हुन्छ ।

उपयोगिता (Uses)

- १. यसलाई साब्न बनाउन प्रयोग गरिन्छ ।
- २. कागज निर्माण गर्न यसको प्रयोग गरिन्छ ।

- ३. विभिन्न प्रकारका काँच बनाउन यसको प्रयोग गरिन्छ ।
- ४. पानीको कडापन हटाई नरम पानी बनाउन पनि प्रयोग गरिन्छ ।
- ५. प्रयोगशालामा कास्टिक सोडा बनाउने लगायत विभिन्न कार्यमा यसको प्रयोग गरिन्छ ।

सोडियम बाइकार्बोनेट (Sodium Bicarbonate)

यो सोडियम धातुबाट बनेको उपयोगी रसायन हो । यसलाई खाने सोडा पिन भिनन्छ । यसको आणिविक सूत्र $NaHCO_3$ हो । यो सेतो ठोस पदार्थका रूपमा पाइन्छ । यो पानीमा घुलनशील हुन्छ । सोडियम बाइकार्बोनेटलाई पोटासियम हाइड्रोजन टार्ट्रेटसँग मिसाएर बेकिङ पाउडर (baking powder) बनाइन्छ । यो बेकिङ पाउडर बेकरी उद्योगहरूमा बिस्कुट, केक, पाउरोटी फुलाउनका लागि प्रयोग गरिन्छ ।

उपयोगिता (Uses)

- १. बैकिङ पाउडर बनाउन यसको प्रयोग गरिन्छ ।
- २. औषधीका रूपमा पेट (stomach) मा कार्बन डाइअक्साइड ग्यास उत्पादन गर्न अम्लीयपना हटाउन यसको प्रयोग गरिन्छ ।
- ३. नरम पेय पदार्थ बनाउन पनि प्रयोग गरिन्छ ।
- ४. यसलाई आगो निभाउने यन्त्र (fire extinguisher) मा प्रयोग गरिन्छ ।

विचारणीय प्रश्न

होटलहरूमा भात पकाउँदा खाने सोडा प्रयोग गरेको पाइन्छ, किन होला ?

ग्लिसेरोल (Glycerol)

गिलसेरोललाई गिलिसिरिन पिन भिनन्छ । यो प्राङ्गारिक यौगिक प्रोपेनबाट बनाइन्छ । यो अल्कोहल (alcohol) समूहमा पर्दछ । यसको अणु सूत्र $C_3H_5(OH)_3$ हो । यो रङ्हीन गुलियो स्वाद भएको बाक्लो तरल पदार्थ हो । यो पानीमा घुल्छ ।

उपयोगिता (Uses)

- गिलसेरोल औषधी बनाउन, प्रिन्टिङ मसी (छाप्ने मसी) र स्ट्याम्प प्याडको मसी बनाउन प्रयोग गरिन्छ ।
- २. छाला फुट्नबाट जोगाउन यसको प्रयोग गरिन्छ ।

- ३. उच्च स्तरको न्हाउने साब्न बनाउन यसको प्रयोग गरिन्छ ।
- ४. मिठाई बनाउन प्रयोग गरिन्छ ।
- प्र. फलफूल र खाद्य पदार्थलाई नसुकाई तथा नकुहाई ओसिलो बनाउन यसको प्रयोग गरिन्छ ।

क्रियाकलाप ४

अलिकित ग्लिसेरोल लेऊ । यसलाई हातगोडामा दलेर हेर कस्तो देखिन्छ । यसलाई जिब्रोमा लगाई स्वाद लिएर हेर । कस्तो स्वाद हुन्छ, लेख ।

विचारणीय प्रश्न

जाडोको समयमा मानिसले हातगोडामा ग्लिसेरोल लगाउँछन्, किन?

परियोजना कार्य

तिम्रो घरमा कुन कुन रसायनहरू प्रयोग गरिन्छ, नाम लेख र ती रसायनहरू कुन कुन प्रयोजनका लागि उपयोग गरिन्छ, तालिका बनाई लेख ।

क्र.स.	रसायनहरू	उपयोगिता
٩.	सोडियम कार्बोनेट	लुगा धुन
₹.		
३ .		

प्रयोगात्मक कियाकलाप

- १. क्रियाकलाप १ अध्ययन गरी नरम पानी र कडा पानी छुट्याऊ ।
- २. क्रियाकलाप २ र ३ अध्ययन गरी पानीको कडापन हटाउने विधिको प्रदर्शन गर ।

सारांश

- १. पानी महत्त्वपूर्ण घोलक पदार्थ हो ।
- २. श्द्ध पानी रङ्हीन, गन्धहीन र स्वादरिहत हुन्छ ।
- ३. पानी मुख्य दुई प्रकारका हुन्छन् नरम र कडा पानी ।

- ४. साब्नसँग सजिलै फिँज दिने पानीलाई नरम पानी भनिन्छ ।
- ५. साब्नसँग सजिलै फिँज निदने पानीलाई कडा पानी भनिन्छ ।
- ६. पानीको कडापन दुई प्रकारको हुन्छ अस्थायी र स्थायी ।
- ७. क्याल्सियम र म्याग्नेसियमको बाइकार्बोनेट घुलेको पानीमा अस्थायी कडापन हुन्छ ।
- क्याल्सियम र म्याग्नेसियमको क्लोराइड वा सल्फेट डुलेको पानीमा स्थायी कडापन हुन्छ ।
- ९. अस्थायी कडापन भएको पानीलाई उमालेर कडापन हटाउन सिकन्छ ।
- १०. स्थायी कडापन भएको पानीलाई लुगा धुने सोडासँग प्रतिक्रिया गराएर कडापन हटाउन सिकन्छ ।
- ११. सोडियम कार्बोनेटलाई लुगा धुने सोडा पनि भनिन्छ ।
- १२. सोडियम बाइकार्बोनेटलाई खाने सोडा भिनन्छ । यसलाई अम्लियपना हटाउन, नरम पेय पदार्थ बनाउन र बेकिङ पाउडर बनाउन प्रयोग गरिन्छ ।
- १३. ग्लिसेरोल प्राङ्गारिक अल्कोहल समूहमा पर्ने रसायन हो । यो छालालाई नरम र मुलायम बनाउन प्रयोग गरिन्छ ।

~~	-		т. и
·	"	$\boldsymbol{\varepsilon}$	דעו

٩.	खाली	ठाउँमा	मिल्दो	शब्द	भर	:
	~ 1 1 1 1	91911	4 - 4 - 4 - 4	71-7	.,,	•

- (क) शुद्ध पानी तापको हुन्छ ।
- (ख) साब्नसँग सजिलै फिँज नआउने पानीलाई पानी भनिन्छ ।
- (ग) अस्थायी कडापन भएको पानीलाई कडापन हटाउन सिकन्छ ।
- (घ) हातगोडाको छालालाई फ्ट्नबाट जोगाउन प्रयोग गरिन्छ ।
- (ङ) सोडियम बाइकार्बोनेटलाई सोडा पनि भनिन्छ ।

२. तल दिइएका उत्तरमध्ये सही उत्तर छान :

- (क) पृथ्वीमा पानी कुन अवस्थामा पाइन्छ ?
 - (अ) तरल
- (आ) ठोस

(इ) ग्यास

(ई) ठोस, तरल र ग्यास सबै अवस्थामा

- (ख) अस्थायी कडापन भएको पानीमा कुन लवण घुलेको हुन्छ ?
 - (अ) क्याल्सियम क्लोराइड (आ) क्याल्सियम सल्फेट
 - (इ) क्याल्सियम कार्बोनेट
 - (ई) क्याल्सियम बाइकार्बोनेट
- (ग) स्थायी कडापन भएको पानीको कडापन कसरी हटाउन सिकन्छ ?
 - (अ) उमालेर

- (आ) छानेर
- (इ) ल्गा ध्ने सोडा मिसाएर (ई) च्न हालेर
- (३) बेकिङ पाउडर बनाउन कुन रसायन प्रयोग गरिन्छ ?
 - (अ) सोडियम क्लोराइड
- (आ) सोडियम कार्बोनेट
- (इ) सोडियम बाइकार्बोनेट (ई) ग्लिसेरोल

उ. फरक लेख:

- (क) नरम पानी र कड़ा पानी (ख) अस्थायी कड़ापन र स्थायी कड़ापन
- (ग) सोडियम कार्बोनेट र सोडियम बाइकार्बोनेट

४ छोटो उत्तर लेख:

- (क) कस्तो पानीलाई नरम पानी भनिन्छ ?
- (ख) पानीको कडापन कति प्रकारका हुन्छन्, ती के के हुन् ?
- (ग) ग्लिसेरोलका क्नै तीनओटा ग्णहरू लेख ।
- (घ) पानीका कुनै पाँचओटा स्रोतहरूको नाम लेख । यीमध्ये कुन स्रोतको पानी सबैभन्दा नरम हुन्छ, किन ?
- (इ) पानीमा कुन कुन पदार्थ मिसिएमा यसको कडापन अस्थायी हुन्छ ?
- ५. पानीमा अस्थायी र स्थायी कडापन ल्याउने पदार्थहरूको सूची तयार गर।
- ६. पानीमा अस्थायी कडापन हटाउन के गर्नुपर्दछ, रासायनिक प्रतिक्रियासहित बयान गर।
- ७. विभिन्न स्रोतहरूबाट सङ्कलन गरिएका पानीका नमुनाहरूको कडापन कसरी पत्ता लगाउन सकिन्छ, चित्रसहित बयान गर।

श्रितिहरू (Living Beings)

केही सूक्ष्म जीवहरू (Some Microscopic Organisms)

पृथ्वीमा अनेक प्रकारका जीवहरू पाइन्छन् । प्लाज्मा भिल्ली तिनीहरूमध्ये कुनै अति साना र कुनै धेरै ठुला आकारका हुन्छन् । अति साना जीवहरूलाई हाम्रो आँखाले देख्न सिकँदैन तर सूक्ष्मदर्शक यन्त्रको सहायताबाट मात्र देख्न सिकन्छ । त्यस्ता जीवलाई सूक्ष्म जीवहरू भिनन्छ । यस एकाइमा हामी यस्तै सूक्ष्म जीवहरूमध्ये ब्याक्टेरिया, भाइरस र फन्जाइका बारेमा अध्ययन गर्दछौँ ।

चित्र नं. 16.1

ब्याक्टेरिया (Bacteria)

ब्याक्टेरिया अति सूक्ष्म जीव हुन् । ब्याक्टेरियालाई सर्वप्रथम सन् 1676 मा एन्टोन भान लिउवेनहक (anton van leeuwenhoek) ले पत्ता लगाएका हुन् । ब्याक्टेरिया हावा, पानी, माटो, जन्तु, बोटिबिश्वामा बाँच्न सक्छ । पृथ्वीको प्राय: सबै भागमा ब्याक्टेरिया पाइन्छ । यिनीहरू कुनै अति चिसो बरफमा त कुनै उम्लेको पानीमा पिन बाँच्न सक्छन्। ब्याक्टेरियाको आकार अति सूक्ष्म हुन्छ । यिनीहरूको आकारअनुसार साइज पिन फरक फरक हुन्छ । यिनीहरू गोलाकार (spherical), छड आकार (rod shaped), घुँघारिएको (coilled), अर्धविराम (comma), धागो (thread) आकारका हुन्छन् । जस्तै : कोकस (coccus), बेसिलस (bacillus), हेलिकल (helical) भिब्नियो (vibrio) ।

ब्याक्टेरियामा वास्तविक न्युक्लियस हुँदैन । यसको बाहिर कोष फिल्लीले घेरेको हुन्छ । कुनै ब्याक्टेरियाको बाहिरी कोषमा भित्ता पिन हुन्छ । यिनीहरूमध्ये केहीमा हरितकण हुन्छ र आफ्नो खाना आफैँ बनाउन सक्छन्। कुनै परजीवी हुन्छन् र अन्य सजीवको खाना सोसेर लिन्छन् । कुनै मरेका जीवबाट खाना प्राप्त गर्ने मृतपोजीव (saprophytic) हुन्छन् । कुनै

ब्याक्टेरिया कोसे बालीको जरामा पाइन्छ, जस्तै : राइजोवियम (rhizobium) । यिनीहरूले वातावरणमा नाइट्रोजन चक्रको सन्तुलनमा सहयोग गर्दछन् । कतिपय ब्याक्टेरियाले हामीलाई धेरै रोगहरू ल्याउँछन, जस्तै : हैजा, निमोनिया, भाडापखाला, टाइफाइड । केही ब्याक्टेरियाले धान, मकै, आल जस्ता बालीलाई नाश गर्दछ ।

भाइरस (Virus)

भाइरस अत्यन्तै सूक्ष्म विषाणु हो । भाइरस ल्याटिन (latin) शब्दबाट आएको हो । भाइरस जीवमाथि पूर्ण रूपमा आश्रित हुन्छन् । यिनीहरू जीवित कोषबाहिर बाँच्न सक्दैनन् । यिनीहरूले सजीव र निर्जीव दुवैको गुण देखाउँछन् । यिनीहरू अति सूक्ष्म हुन्छन् । यिनीहरूमध्ये कुनैमा न्युक्लियस र कुनैमा साइटोप्लाज्म हुँदैन । कुनै डी. एन. ए. (De- oxyribonucleic acid –

DNA) र कुनै आर. एन. ए. (Ribonucleic acid –RNA) बाट बनेका हुन्छन् ।

भाइरसका प्रकार

भाइरसलाई आश्रयस्थल (host) का आधारमा तीन भागमा बाँडिएको छ ।

- (क) वनस्पति भाइरस (Plant Viruses) : वनस्पतिमा पाइने भाइरस जस्तै : TMV (Tobacco Mosaic virus)
- (ख) जन्तु भाइरस (Animal Virus) : जन्तुमा असर गर्ने भाइरसजस्तै : रेबिज (Rabies), राइनो भाइरस (Rhino Virus)
- (ग) ब्याक्टेरियोफेज भाइरस (Bacteriophase Virus) : ब्याक्टेरियालाई असर पुऱ्याउने भाइरसलाई न्युक्लिक एसिड (nucleic acid) का आधारमा DNA भाइरस र RNA गरी दुई प्रकारका हुन्छन् ।

हावा, पानी, खानाबाट मानिसमा भाइरस सर्दछ र रुघा, हाँडे, दादुरा, पोलियो, रेबिज जस्ता रोग ल्याउँछ । एड्स (AIDS) रोग पनि भाइरसकै कारणले लाग्छ ।

फन्जाइ (Fungi)

फन्जाइ हरितकणविहीन सूक्ष्म वनस्पति हुन् । यिनीहरू कुनै एक कोषीय (unicellular) हुन्छन्, जस्तै :

मर्चा (yeast) । कुनै बहुकोषीय हुन्छन् । बहुकोषीयमा लामा त्यान्द्राहरू रहेका हुन्छन् । यिनीहरूले आफ्नो खाना आफैँ बनाउन सक्दैनन् । त्यसैले धेरै जसो अन्य बिरुवामा टाँसिएर रहन्छन् र तिनै बिरुवाको खाना सोसेर लिन्छन् । कुनै फन्जाइ परजीवी (parasitic) र कुनै मृतपोजीवी (saprophytic) हुन्छन् । यिनीहरूमा जरा, काण्ड, पातको कुनै पनि भाग विकसित हुँदैन ।

फन्जाइले मरेका र सडेका वस्तुबाट आफ्नो खाना प्राप्त गर्दछन् । यस प्रकारका फन्जाइलाई मृतपोजीवी (saprophytic) भनिन्छ । कतिपय फन्जाइ रुख बिरुवामा रहेर आफ्नो जीवन निर्वाह गर्दछन् तर बिरुवालाई हानि नोक्सानी गर्दैनन् ।

फन्जाइ त्यान्द्रा जोडिएर बनेको हुन्छ । यी त्यान्द्रा (filament) लाई हाइफी (hyphae) भिनन्छ । यसका कोषहरू धागो जस्तै लामा र आपसमा जोडिएका हुन्छन् । यिनका कोषमा धेरै ओटा न्युक्लियस हुन सक्छन्।

यिनीहरूको सन्तान वृद्धि मुख्यत: अमैथुनिक हुन्छ । यिनीहरूको टुक्रिने (fragmentation), टुसा पलाउने (budding), विभाजन (fission), स्पोरुलेसन (sporulation) विधिबाट सन्तान वृद्धि हुन्छ । मर्चा (yeast) लाई मादक पदार्थ (जाँड, रक्सी) बनाउन प्रयोग गरिन्छ । च्याउ खाद्य पदार्थका रूपमा प्रयोग गरिन्छ ।

बिरुवाका विभिन्न रूपान्तरित अङ्गहरू (Modification of Different Parts of Plant)

बिरुवाहरू धेरै प्रकारका हुन्छन् । बिरुवाहरू ससाना र कुनै धेरै ठुला आकारका हुन्छन् । त्यसैगरी बिरुवाहरू पानीमा र कुनै जिमनमा पिन पाइन्छन् । बनावटका आधारमा बिरुवामा धेरै समानता पाइन्छ । बिरुवामा मुख्य अङ्गहरू जरा, काण्ड र पात रहेका हुन्छन् । यी अङ्गहरूले पिन स्थान, बनावट र कार्यअनुसार विभिन्न रूपमा परिवर्तन भई कार्य गर्दछन् । यसलाई रूपान्तरण (modification) भिनन्छ ।

जराको रूपान्तरण (Modification of Roots)

बिरुवाको जिमनमुनिको भागलाई जरा (root) भिनन्छ । यसको रङ प्राय: सेतो, खैरो र हल्का पहेंलो हुन्छ । जरा मुख्य दुई प्रकारका हुन्छन् । ती हुन् :

(क) मूल जरा प्रणाली (tap root system) (ख) ग्च्छे जरा प्रणाली (fibrous root system)

बिरुवाहरूले वरिपरिको वातावरणमा हुर्कन तथा बढ्नका लागि आफ्ना साधारण अङ्गहरूको बनावटलाई विभिन्न रूपमा बदल्छन् र त्यसैअनुरूप फरक फरक कार्य गर्दछन् । बिरुवाको जरामा रूपान्तरण पनि मुख्य तीन कार्यका लागि भएको पाइन्छ :

- १. खाद्य वस्त् सञ्चय गर्न (for storage of food)
- २. बिरुवालाई आधार दिन (for mechanical support)
- ३. विभिन्न जीवन प्रक्रिया गर्न (for vital functions)

१. खाद्य वस्तु सञ्चय गर्न (For Storage of Food)

तिमीहरूले मुला, गाजर, गान्टे मुला खाएका छौँ ? तिनीहरूमा खाद्य वस्तुको सञ्चय गर्नका लागि बिरुवाका जराहरूको साइज र आकारमा रूपान्तरण हुन्छ । मूल जरा (tap root) को रूपान्तरण यस प्रकार हुन्छन् :

- (क) बिचको भाग फूलेको र तल माथिको भाग साँघुरिएको हुन्छ, जस्तै : मुला (radish)
- (ख) माथिल्लो भाग गोलो, फूलेको र तल्लो भाग साँघुरिएको हुन्छ, जस्तै : गान्टे मुला(turnip)
- (ग) माथिल्लो भाग फराकिलो र तल्लो भाग तिखारिएको हुन्छ, जस्तै : गाजर (carrot)

२. बिरुवालाई आधार दिन (For Mechanical Support)

तिमीहरू वर वा पिपलको चौतारीमा बसेका छौ ? वरको रुखका हाँगाबाट जिमनितर जरा आएको देखेका छौ ? यसले ठुलो वरको रुखलाई अड्याउन मद्दत गरेको हुन्छ । कहिले काहीँ वरको रुखको विरिपरि धेरै जराहरू आई ठाउँ ओगटेको हुन्छ । बाँसको काण्डबाट पिन जराहरू आई जिमनितर गएको हुन्छ । बाँसको काण्डबाट पिन जराहरू आई जिमनितर गएको हुन्छ । यसले खम्बा जस्तो आकृति दिन्छ । त्यसैगरी मकै, उखु जस्ता वनस्पतिमा जिमनमाधिको काण्डबाट चारैतिर जराहरू निस्केर जिमनमुनि गएका हुन्छन् । कुनै बिरुवाका जराहरू लहरा जस्तै भएर अन्य बिरुवामाथि चढेर जान्छन् । यसरी जराहरू विभिन्न रूपमा रूपान्तरण भई बिरुवालाई आधार (support) दिएका हुन्छन् ।

चित्र नं. 16.5

विभिन्न जीवन प्रक्रिया गर्न (For Vital Function)

वनस्पतिको बनावटअन्सार विभिन्न कार्य गर्नका लागि जराको रूपान्तरण हन्छ । केही परजीवी वनस्पतिमा अन्य वनस्पतिको खाना सोसेर लिने जराको विकास हुन्छ । धापिलो क्षेत्र (marshy place) मा हुर्कने बिरुवाको जरा

जिमन माथि आई श्वास प्रश्वास गर्न मदत गर्दछ । केही बिरुवाको काण्डबाट निस्कने जरामा हरितकण हन्छ । यिनीहरूले प्रकाश संश्लेषण क्रिया (photosynthesis) गर्दछन् । केही पानीमा हुने बिरुवाका जराहरूले पानीमा तैरिन मदत गर्दछन ।

तिनीहरूमा हावा सञ्चय गर्ने अङ्गहरू हुन्छन्, जस्तै : हाइडिला, जलक्म्भी ।

काण्डको रूपान्तरण (Modification of Stem)

बिरुवाको जिमनमाथिको भाग काण्ड हो । यसबाट हाँगा, पात, फुल र फलका भागहरू निस्कन्छन् । बिरुवाको विकास क्रममा यसको वातावरण अनुसार काण्ड पनि विभिन्न रूपमा रूपान्तरित हन्छ ।

जिमनम्निको काण्डको रूपान्तरण (Underground Modification)

जिमनम्निको काण्ड क्नैमा बाक्लो, रिसलो, स्टार्चका रूपमा खाद्य पदार्थ जम्मा गर्ने हुन्छन्, जस्तै : आल् । कुनैको काण्ड आँखा भएको, सुख्खा, काँडा जस्तो हुन्छ, जस्तै : अद्वा । प्याज, लसुनको काण्डले खाद्य पदार्थ सञ्चित गर्दछ ।

२. जिमन सतहमा हने काण्डको रूपान्तरण (Sub-aerial Modification)

केही बिरुवाका काण्डहरू नरम, कमजोर, जिमनसँग समानान्तरभई गएका हन्छन् । क्नैको केही भाग जिमनम्नि र केही माथि हुन्छन् । यी भागबाट नयाँ बिरुवा बन्दछन्, जस्तै : घाँसहरू । केही काण्डबाट टुसा पलाउँछन् र जिमनमा गडेर नयाँ बिरुवा उम्रन्छन् ।

प्याज

चित्र नं. 16.8

३. जिमन सतहमाथि अर्थात् हावामा हुने रूपान्तरण (Aerial Modification)

जिमनमाथि हुने बिरुवाको काण्ड विभिन्न आकारमा रूपान्तरण भएको हुन्छ । कुनै मा काण्ड नै पात जस्तो हुन्छ र खाद्य वस्तु सञ्चित गर्दछ, जस्तै : सिउँडी । यस्ता बिरुवाको पात काँडाका रूपमा विकसित हुन्छ । कुनै बिरुवाको काण्ड धागो जस्तो

चित्र नं. 16.9

हुन्छ । कुनै बिरुवाको काण्ड काठ जस्तो कडा बटारिएको, लामो, बेलनाकार हुन्छ । हरिया रङका काण्डले खाना बनाउने र सञ्चित गर्ने गर्दछन् । कुनै बिरुवाले काण्डमा पानी जम्मा पनि गर्दछन् ।

पातको रूपान्तरण (Modification of Leaf)

बिरुवाको काण्ड तथा हाँगाहरूबाट पात निस्केका हुन्छन् । पात मुख्यतया बिरुवाको खाना बनाउने अङ्गहरू हुन् । बिरुवाका पातहरू विभिन्न किसिमले रूपान्तरित भई विशेष कार्यहरू गर्दछन् ।

केही बिरुवाको पातमा आङिशक रूपले लहरा (tendril) बन्छ, जस्तै : केराउको पात । यस्ता लहराहरू तार जस्तो घुँघारिएका (coiled) हुन्छन् । कितपय बिरुवाको पात काँडाका रूपमा परिवर्तन भएका हुन्छन् । मुख्यतया मरुभूमिमा पाइने बिरुवाहरूका पात र सिउँडीका पात काँडाका रूपमा रूपान्तरित हुन्छन् । यिनीहरूले उत्स्वेदन (transpiration) क्रिया घटाउँछन् । काँडाले बिरुवाको सुरक्षा पिन गर्दछ । कुनै बिरुवाको पात सुक्खा र कागज जस्तो हुन्छ । कुनैमा पात नै डाँठ जस्तो हुन्छ । मांसहारी बिरुवामा पातको थैली (bladder) बन्छ । यिनले साना किराहरू छोप्ने र पचाउन मदत गर्दछन् । यसरी बिरुवाका जरा, काण्ड र पात विभिन्न काममा रूपान्तरित हन्छन् ।

बिउ (Seed)

बिउहरू विभिन्न आकार तथा प्रकारका हुन्छन् । कुनै बिउ मुस्किलले आँखाले देख्न सिकन्छ भने कुनै ठुला हुन्छन् । बिउको रङ पिन फरक फरक प्रकारको हुन्छ । चना, केराउ, सिमी, गहुँ, मकै, धान, तोरी, आँपको बियाँ बिउका उदाहरण हुन् । साधारणतया बिउ दुई प्रकारका हुन्छन् ।

चित्र नं. 16,10

क्रियाकलाप १

गहुँ, मकै, चना, केराउ, सिमीको बिउलाई एउटा भाँडामा राखेर एक दिनभरि भिजाऊ । अर्को दिन पानी सोसेर ती बिउ ठुला आकारका बनेका हुन्छन् । कापीमा यिनको चित्र कोर । विस्तारै बिउको बोक्रा निकाल । प्रत्येक बिउ कित दलीय छन्, हेर र तिनको चित्र बनाऊ ।

बिउको बनावट (Structure of Seed)

बिरुवाका बिउहरूको आकार, प्रकार र बनोट फरक भएतापिन आधारभूत बनावट उस्तै हुन्छन् ।

एक दलीय बिउ (Monocotyledonous Seed)

धान, गहुँ, मकै एक दलीय बिरुवा हुन् । यिनीहरूको बिउमा एउटै मात्र फक्लेटा हुन्छ । मकैको दानाको एकातिर हलुका सेतो रङको सानो अन्डाकार क्षेत्र हुन्छ जसमा भ्रूण रहेको हुन्छ । यसको बाँकी भाग पहेँलो वा सेतो रङको खाद्य पदार्थले ढाकेको हुन्छ, जसलाई इन्डोस्पर्म

(endosperm) भिनन्छ । मकै इन्डोस्पर्म भएको बिउ हो । मकै को दानाकोचुच्चो परेको भागमा रेडिकल हुन्छ । मकैको चौडा भागपट्टि प्लुमुल (plumule) अर्थात् भावी काण्ड हुन्छ । मकै, धान, गहुँ, जौ, कोदा एक दलीय इन्डोस्पर्मयुक्त बिउहरू हुन् ।

दुई दलीय बिउ (Dicotyledonous Seed)

चना, केराउ, सिमीका बिउ दुई दलीय हुन् । बिउको बाहिरी चित्र न. 16.11 आवरणलाई बिउको बोक्रा (seed coat) भिनन्छ । यसको मुख्य कार्य बिउको कमजोर अङ्गलाई बचाउनु तथा ब्याक्टेरिया, ढुसी र किराहरूबाट जोगाउनु हो । बिउको खाल्डो परेको भागितर रहने एउटा सेतो दाग (scar) जस्तो भागलाई हाइलम (hilum) भिनन्छ । यही ठाउँबाट बिउ फलमा टाँसिएको हन्छ ।

हाइलम निजक सानो प्वाल हुन्छ जसलाई माइक्रोपाइल (micropyle) भिनन्छ । यही माइक्रोपाइलबाट पानी भित्र पसी बिउलाई अङ्कुराउन मदत गर्छ । बिउको बोक्राभित्र दुई ओटा बाक्ला फक्ल्लेटा (cotyledons) हुन्छन् । यहाँ भ्रूणका लागि खाना सञ्चय भएको

हुन्छ । दुईओटा फक्लेटालाई बिस्तारै फट्याउँदा सानो भ्रूण एउटा फक्लेटामा टाँसिएको हुन्छ । भ्रूणका दुई भाग हुन्छन् ।

- 9. रेडिकल (radicle) अर्थात् भावी जरा
- २. प्लुमुल (plumule) अर्थात् भावी काण्ड

रेडिकल जरामा र प्लुमुल काण्डमा विकसित हुन्छ । बिउका फक्लेटाले हुर्कन लागेको भ्रूणका लागि खाद्य पदार्थ सञ्चय गरे को हुन्छ । खाद्य पदार्थ इन्डोस्पर्म (endosperm) बाट प्राप्त हुन्छ । प्रायः जसो बिउमा इन्डोस्पर्म हुँदैन । त्यसैले बिउ परिपक्व हुने समयमा नै खाद्य पदार्थ फक्लेटामा सञ्चय हुन्छ । यस्तो बिउलाई इन्डोस्पर्मरहित बिउ (non endospermic seed) भनिन्छ । चना, केराउ, बोडी यस्तै बिउ हुन् ।

एकदलीय र दुईदलीय बिउमा भिन्नता

	एकदलीय बिउ		दुईदलीय बिउ
٩.	एउटा मात्र फक्लेटा हुन्छ ।	٩.	दुईओटा फक्लेटा हुन्छन् ।
٦.	इन्डोस्पर्म हुन्छ ।	₹.	इन्डोस्पर्म हुँदैन ।
₹.	हाइलम र माइक्रोपाइल आँखाले देखिँदैन ।	₹.	हाइलम र माइक्रोपाइल देखिन्छ ।
٧.	भ्रूण सानो हुन्छ ।	٧.	भ्रूण ठुलो हुन्छ ।
ሂ.	प्लुमुल धेरै सानो हुन्छ ।	ሂ.	प्लुमुल ठुलो हुन्छ ।
€.	बिउको बोक्रा र फलको बोक्रा जोडिएर	ξ.	बिउ अलग्गै बनेर कोसाभित्र
	सिङ्गो दाना बनेकाले बेग्लै बिउ हुँदैन ।		रहेको हुन्छ ।

बिउको काम (Funtion of Seed)

बिउ गर्भाधान भएको रजकण (ovule) हो । यसलाई सुषुप्त अवस्थामा रहेको भ्रूण पनि भनिन्छ । बिउका मुख्य कामहरू निम्नलिखित छन् :

- (क) उमार्नु : बिउबाट नयाँ बिरुवा उम्रन्छ । बिउमा रहेको भ्रूणबाट नै नयाँ बिरुवाको जरा र काण्ड निस्कन्छ ।
- (ख) खाद्य पदार्थ सञ्चय : बिउमा खाद्य पदार्थ सञ्चय हुन्छ । बिउले अङ्कुराउँदा यसैमा भएको खाद्य पदार्थ प्रयोग गर्दछ ।
- (ग) सुरक्षा : बिउको बोक्राले भ्रूणको सुरक्षा गर्दछ ।

बिउको छराइ (Dispersal of Seed)

नयाँ बिरुवा उम्रनका लागि बिउ छर्नुपर्दछ । बिउ नछरिएमा बिरुवा उम्रदैँन । बिउ विभिन्न तरिकाबाट छरिन्छ । ती यसप्रकार छन् :

१. हावाद्वारा

- २. पानीद्वारा
- ३. फल आफैँ जोडसँग फूल्नाले
- ४. मानिस तथा जीवजन्तुबाट
- १. हावाद्वारा : कुनै बिरुवाको सानो र हलुका बिउ एवम् कुनैको भुवा र प्वाँख भएको बिउ हुन्छ । यस प्रकारका बिउहरू हावामा उडेर एक ठाउँबाट अर्को ठाउँमा छिरन्छन् । सिमल, कपास, घाँस जस्ता बिरुवाका बिउहरू हावाबाट छिरन्छन् ।
- २. पानीद्वारा : पानीको माध्यमबाट पिन बिउहरू एक ठाउँबाट अर्को ठाउँमा छिरन्छन् । निरवल, सुपारी, कमल जस्ता बिरुवाका बिउहरू धेरै दिनसम्म नसडीकन पानीमा तैरेर बग्छन् । त्यसपिछ कतै अनुकूल पिरिस्थिति पाएमा उम्रन्छन् र बिरुवा बन्दछन् ।
- इ. फल आफैँ जोडसँग फूल्नाले : केही बिख्वा फल पाकेपछि आफैँ जोडसँग फुल्दछ र त्यसमा रहेका बिउहरू विरपिर छिरिन्छन् जस्तै : तिउरी, केराउ, आलस, तिल । यसरी छिरिएका बिउले उचित वातावरण पाएपछि बिख्वा उम्रन्छ ।
- ४. मानिस तथा जीवजन्तुद्वारा : मानिसले एक ठाउँबाट अर्को ठाउँमा विभिन्न बिउहरू ओसार पसार गरी बिरुवा उमार्छन् । कितपय बिउका बाहिर काँडा हुन्छन् । यस्ता बिउको निजकबाट हिँड्ने जीवजन्तुको शरीरमा टाँसिएर बिउ धेरै छाढासम्म पुग्छन् । ती बिउ जहाँ खस्छन् त्यहीँ अनुकूल वातावरण पाएपछि उम्रन्छन् । अम्बा, गोलभेडा जस्ता फल खाँदा त्यसका बिउहरू सिङ्गै निलिन्छन् र दिसा गर्दा बाहिर निस्कन्छन् । त्यसै गरी चराचुरुङ्गीले एक ठाउँमा फल खाई अर्को ठाउँमा बिस्ट्याउँछन् । यसरी बिउ अन्य ठाउँमा छिरन्छ । हावा, पानी, मानिस, जन्तु तथा चराचुरुङ्गी र फल आफँबाट बिउ छिरन्छ ।

विचारणीय प्रश्न

नदीनालाका छेउछाउमा विभिन्न प्रकारका बोटबिरुवा पाइन्छन्, किन ?

बिउको अङ्कुरण (Germination of Seed)

प्रायः बिउभित्र रहेको भ्रूण (embryo) सुषुप्तावस्थामा रहन्छ । यसलाई सिक्रिय बनाउन सकेमा मात्र बिउबाट नयाँ बिरुवा उम्रन्छ । सुहाउँदो र अनुकूल परिस्थितिमा मात्र बिउबाट बिरुवा उम्रन्छ । बिरुवा उम्रनका लागि उचित हावा, पानी र तापक्रम हुनुपर्दछ । यसरी अनुकूल वातावरणमा बिउबाट बिरुवा बन्ने प्रक्रियालाई नै बिउ अङ्कुरण भनिन्छ । बिउ अङ्कुरण हुन आवश्यक मात्रामा हावा, पानी र तापक्रमको आवश्यकता पर्दछ भन्ने बारे निम्नलिखित प्रयोगबाट प्ष्टि गर्न सिकन्छ ।

प्रयोग १

काँचको एउटा गिलास वा बिकर लेऊ । मैन लगाएको एउटा लाम्चो आकारको काठको छुक्रामा तल, बिचमा र माथि पर्ने गरी एक एक ओटा चना वा सिमीको बिउ धागाले नखस्ने गरी बाँध । त्यसलाई गिलासमा राख र बिचको बिउको आधा भाग पानीभित्र

र आधा भाग पानी बाहिर पर्ने गरी गिलासमा पानी हाल । यस अवस्थामा गिलासलाई 3/4 दिनसम्म अलि अलि घाम आउने ठाउँमा राख । त्यसपछि अलिअलि पानी राख्दै गर किनिक गिलासमा पानी घट्न नपाओस् । केही दिनपछि ती तीनओटा बिउमा तिमीले देखेका यथार्थ अवस्था राम्ररी अवलोकन गरी तलका प्रश्नहरूको उत्तर लेख:

- १. पानीभित्र पूरा डुबेको बिउमा किन एउटा सानो दसा आयो ?
- २. किन बिचको बिउमा ठुलो टुसा उम्रेर पातहरू पनि देखियो ?
- ३. माथिको बिउमा किन केही पनि परिवर्तन आएन ?

विचारणीय प्रश्न

 खेत बारीमा पानी नपरेका बेला सुक्खा ठाउँमा बिउ रोप्दा बिरुवा उम्रँदैन, किन ?

२. बिउलाई अति चिसो बरफ जस्तो ठाउँमा छुऱ्यो भने पनि उम्रँदैन, किन ?

बिउ अङ्कुराउन उचित हावा, पानी र तापक्रमको आवश्यकता पर्दछ ।

फूल फुल्ने बिरुवाको जीवन चक्र (Life Cycle of Flowering Plant)

तिमीले वरिपरि विभिन्न किसिमका बिरुवाहरू देखका छौ होला । तीमध्ये कितपय बिरुवामा फूल फुल्छन् र कितपयमा फूल्दैनन् । अधिकांश फूल फुल्ने बिरुवाको फूल, कोपिला, पात, हाँगा, जरा हुन्छन् । यस किसिमका बिरुवाहरूबाट बिउ उत्पादन हुन्छन् र त्यही बिउबाट बिरुवा उम्रन्छन् । हामीले प्राप्त गर्ने खाद्यान्न तथा फलफूल पिन यिनै फूल फुल्ने वनस्पतिबाट प्राप्त हुन्छ । फूल बिरुवाको प्रजनन अङ्ग हो । यसबाट सन्तान उत्पादन क्रिया सुरु हुन्छ ।

फूल (Flower)

फूलमा मुख्य चार भागहरू हुन्छन्, ती हुन् : पत्रदल (calyx), पुष्पदल(corolla), पुङ्केशर (androecium) र स्त्रीकेशर (gynoecium) ।

पत्रदल (Calyx): फूलको सबैभन्दा बाहिरी घेरालाई पत्रदल भनिन्छ । यो एकल पत्र (sepals) मिलेर बनेको हुन्छ । यो प्राय: हरियो रङको हुन्छ । यसले फूलको कोपिला अवस्थामा भित्री अङ्गलाई जोगाएर राख्छ ।

पुष्पदल (Corolla): पत्रदलभित्र रहेका रङ्गीन एकल पुष्पहरू (petals) मिली पुष्पदल बन्छ । यसमा सुगन्धित रस निकाल्ने ग्रन्थी हुन्छन् । पुष्पदलले नै फूल आकर्षक देखिन्छ ।

पुड्केशर (Androecium): यो फूलको भाले अङ्ग हो । यो स्टामेनहरू (stamens) मिलेर बनेको हुन्छ । स्टामेनको तल्लो पातलो भागलाई फिलामेन्ट (filament) र माथिको

फुलेको भागलाई परागकोष (anther) भनिन्छ । एन्थरमा भाले लैङ्गिक कोष (male gamet) र परागकण (pollen grains) बन्छ ।

स्त्रीकेशर (Gynoecium): यो फूलको पोथी अङ्ग हो । यो एक वा एकभन्दा बढी कार्पेल (carpel) वा पिस्टिल (pistil) मिलेर बनेको हुन्छ । प्रत्येक कार्पेलमा ओभरी, स्टाइल र स्टिग्मा हुन्छन् । तल्लो फुलेको भागलाई गर्भासय (ovary), बिचको लाम्चो भागलाई स्टाइल (style) र माथिल्लो केही फुलेको भागलाई स्टिग्मा (stigma) भिनन्छ । ओभरी परिपक्व भएपछि यसले ओभम (ovum) अर्थात् अन्ड उत्पादन गर्दछ । यो नै पोथी लिङ्ग कोष (female gamet) हो ।

पराग सेचन (Pollination): भाले अङ्गको एन्थरमा बनेको पराग कण पोथी अङ्गको स्टिग्मासम्म पुग्ने प्रक्रियालाई पराग सेचन क्रिया भनिन्छ । परागसेचन दुई किसिमले हुन्छ । स्वपराग सेचन (Self Pollination): एउटै फूलको पराग कण त्यही फूलको स्टिग्मासम्म पग्ने क्रियालाई स्वपराग सेचन भनिन्छ ।

परपराग सेचन (Cross Pollination): एउटा फूलका पराग कणहरू अर्को फूलको स्टिग्मामा पुग्ने प्रक्रियालाई परपराग सेचन भनिन्छ ।

गर्भाधान (Fertilization)

भाले लिङ्गकोष र पोथी लिङ्ग कोषको मिलन भई जाइगोट (zygote) बन्ने प्रक्रियालाई गर्भाधान क्रिया भनिन्छ । पराग सेचनपछि प्रत्येक पराग कणबाट मसिनो पराग नली

(pollen tube) निस्कन्छ र पराग नली आफ्नो बाटो बनाई गर्भासय (ovary) मा पुग्छ । ओभ्युलमा पराग नलीको टुप्पो पुउट्छ र बिलाएर जान्छ । त्यसपछि पराग नलीको टुप्पामा रहेको भाले लिङ्ग कोष र ओम्युलमा रहेको पोथी लिङ्ग कोषको मिलन भई जाइगोट (zygote) बन्छ । यस प्रक्रियालाई गर्भाधान (fertilization) भनिन्छ ।

चित्र नं. 16.19

जाइगोटमा आवश्यक परिवर्तन भई भ्रण (empryo) बन्छ । अनि प्रत्येक गर्भाधान भएको डिम्बकोष (ovule) बिउको रूपमा विकसित हन्छ । बिउमा रहेको भ्रुण नै भावी बिरुवाको रूप हो । उचित वातावरण पाएपछि उक्त बिउ अङ्कराएर पन: बिरुवा बन्छ। पर्ण विकसित बिरुवा भई फुलबाट फल बने पछि बिउ लाग्छ । यसरी बिउबाट जीवन सुरु हुन्छ । यसरी बिरुवामा एक जीवन चक्र पुरा हुन्छ ।

फल फल्ने बिरुवाको जीवन चक्र

प्रयोगात्मक कियाकलाप

- १. एउटा बिरुवाको फूल टिपेर ल्याऊ । त्यसको पत्रदल, पृष्पदल, पृङ्केशर, स्त्रीकेशरलाई राम्रोसँग हेर र तिनको चित्र बनाऊ ।
- एकदलीय बिरुवाको बिउ र दुई दलीय बिरुवाको बिउलाई अङ्कुरण हुन सक्ने वातावरणमा राख । अङ्क्रण हुन थालेपछि हरियो पात नआउन्जेल त्यसको अवलोकन गर । के के भिन्नता र समानता पाउँछौ, टिपोट गर ।

सारांश

- 9. अति सरल बनावट भएका कम विकसित र आँखाले देख्न गारो पर्ने जीवलाई सूक्ष्म जीव भनिन्छ ।
- २. ब्याक्टेरिया र भाइरस अति सूक्ष्म जीवहरू हुन् ।
- बिरुवाले जरा, काण्ड, पात, स्थान, बनावट र कार्यअनुसार विभिन्न रूपमा परिवर्तन भई कार्य गर्दछन् । यसलाई रूपान्तरण भनिन्छ ।
- ४. बिरुवाका मुख्य अङ्गहरू जरा, काण्ड र पातको रूपान्तरण मुख्यतया खाद्यवस्त् सञ्चय गर्न, सुरक्षा गर्न, आधार दिन र विभिन्न जीवन प्रक्रिया सञ्चालन गर्नका लागि हुन्छ ।
- प्र. बिउ नै भावी बिरुवाको रूप हो ।
- बिउहरू एक दलीय र दुई दलीय हुन्छन् ।
- िबिउ अङ्क्रण हुन हावा, पानी र तापक्रम सुहाउँदो हुनुपर्दछ ।
- बिउ हावा, पानी, मानिस, जनावरद्वारा र आफैँ पनि छरिन्छन् ।

- ९. बिरुवाको जीवन चक्र बिउ, बिरुवा, फूल, फल हुँदै पुन: बिउ बनेर पूरा हुन्छ ।
- १०. फूल फुल्ने बिरुवाको प्रजनन अङ्ग फूल हो । यसमा नै भाले लिङ्गकोष र पोथी लिङ्गकोषको विकास भई भ्रूण बनेर बिउ बन्छ ।

זכ	- O-	_	
•	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ıM

OI T	थात		
	ंंं खाली ठाउँमा मिल्दो शब्द लेख		
	(क) बिरुवाका जामनमुनिका भाग	को भागलाई भिनन्छ ।	
	(ख) अनुकूल वातावरणमा मात्र बिउ हुन्छ ।		
	(ग) फूलको एन्थरमाबन्छ ।		
	(घ) पराग कणहरू एन्थरबाट स्टिग्मासम्म पुग्ने प्रक्रियालाई भिनन		
	(ङ) गर्भाधानपछि जाइगोट (zyg	ot) मा परिणत हुन्छ ।	
₹.	बिउका निम्नलिखित भागहरूको	काम के हो ?	
	(क) बिउको बोक्रा	(ख) माइक्रोपाइल	
	(ग) इन्डोस्पर्म	(घ) रेडिकल	
₹.	छोटकरीमा टिप्पणी लेख :		
	(क) बिउ अङ्कुरण	(ख) बिउ छरिनु	
	(ग) पराग सेचन	(घ) गर्भाधान	
8.	फरक लेख :		
	(क) रेडिकल र प्लुमुल	(ख) एकदलीय र दुईदलीय बिउ	
	(ग) हाइलम र माइक्रोपाइल	(घ) एन्ड्रोसियम र गाइनोसियम	
ሂ.	कारण देऊ :		
	(क) बन्द गरिएको बट्टा वा सि	सीमा राखिएको बिउबाट नयाँ बिरुवा उम्रदैँन ।	
	(ख) कुनै कुनै बिउहरूमा प्वाँख	वा भुवा हुन्छन् ।	

- (ग) पानी कम पाइने स्थानका बिरुवाको पात काँडामा रूपान्तरित हन्छन् ।
- (ग) खोला, नदीनालाका किनारमा विभिन्न प्रकारका वनस्पति पाइन्छन् ।

६. छोटो उत्तर देऊ :

- (क) बिरुवाको जरा रूपान्तरण कुन कुन कामका लागि हुन्छ, उदाहरणसहित लेख ।
- (ख) काण्डको रूपान्तरणबाट खाद्य वस्तु सञ्चित हुने बिरुवाहरू कुन कुन हुन्, उदाहरण देऊ ।
- (ग) बिउ कति प्रकारबाट छरिन्छन्, उल्लेख गर ।
- (घ) अङ्क्राउन लागेको बिउले कहाँबाट खाना प्राप्त गर्दछ ?
- (ङ) नयाँ बिउले उचित वातावरण पाए पनि उम्रदैन, किन ?
- ७. छोटो परिचय देऊ :
 - (क) ब्याक्टेरिया
- (ख) भाइरस
- (ग) फन्जाइ
- द. बिरुवाको रूपान्तरण भनेको के हो ? बिरुवाका विभिन्न भागहरू किन रूपान्तरित हुन्छन्, लेख ।
- ९. एउटा बिउको चित्र लेख र प्रत्येक भागको नाम लेख।
- १०. बिरुवाको अङ्कुरण हुन हावा, पानी र तापक्रमको उचित व्यवस्था हुनुपर्दछ भन्ने कुरा एउटा प्रयोग गरी पुष्टि गर ।
- ११. चना वा सिमीको बिउको अङ्कुरण चित्र कोरेर देखाऊ ।
- १२. तिमीले दैनिक खाने खानामा प्रयोग हुने एक दलीय र दुईदलीय बिउको सुची बनाऊ ।
- १३. तल दिइएका चित्रहरूका भागहरूको नाम लेख:

सिमीको बिउ

मकैको बिउ

कोष २ तन्तु

(Cell and Tissue)

सजीवहरूको शरीर कोषबाट बनेको हुन्छ । अति सूक्ष्म जीवहरू एउटा कोषले मात्र बनेको हुन्छ । यस्ता जीवलाई एक कोषीय जीव भिनन्छ । एक कोषीय जीवका श्वासप्रश्वास, खाना, निष्कासन, वृद्धि, हिँड्डुल र प्रजनन जस्ता जीवन प्रक्रियाहरू एउटै कोषभित्र पूरा हुन्छन् । विकसित र बहु कोषीय जीवमा यी विभिन्न कार्यहरू छुट्टाछुट्टै कोषहरूबाट सम्पन्न हुन्छन् । बहुकोषीय जीवमा एक प्रकारका कोषहरूका समूहले एकै प्रकारको र अर्को प्रकारका कोषका समूहले अर्को कार्य गर्दछ । कामको प्रकृति हेरी यी कोषका समूहले आफ्नो साइज र आकार बनाएका हुन्छन् । एउटै आकार र प्रकारको निश्चित कार्य गर्ने कोषहरूको समूहलाई तन्तु (tissue) भिनन्छ । तन्तुहरू मुख्य दुई प्रकारका हुन्छन् ।

जनावर तन्तु (Animal Tissue)

जनावरमा सामान्यता निम्नलिखित प्रकारका तन्त्हरू हुन्छुन् :

- 9. इपिथेलियल तन्तु (Epithelial tissue)
- २. मांसल तन्तु (Muscular tissue)
- ३. संयोजी तन्तु (Connective tissue)
- ४. स्नायु तन्तु (Nerve tissue)

उपर्युक्त विभिन्न प्रकारका तन्तुहरूमध्ये शरीरका विभिन्न अङ्गहरूको बाहिरी पत्र बन्ने तन्तु इपिथेलियल तन्तु हो । यस पाठमा इपिथेलियल तन्तुका बारेमा अध्ययन गर्दछौँ ।

इपिथेलियल तन्तु (Epithelial Tissue)

शरीर वा यसका अङ्गहरूको सबैभन्दा बाहिरी पत्र बन्ने कोषहरूको समूहलाई इपिथेलियल तन्तु भनिन्छ । यी तन्तु हेर्दा भुइँमा इँटा, ढुङ्गा वा टायल छोपेको जस्तो देखिन्छन् । इपिथेलियल तन्तुमा निम्नलिखित विशेषताहरू पाइन्छ :

 थी तन्तुहरू एकप्रकारको भिल्ली बेसमेन्ट मेम्ब्रेन (basement membrane) मा टाँसिएर रहेका हुन्छन् ।

- २. इपिथेलियम कोषहरू एक तह र कुनैमा धेरै तहमा पनि रहेका हुन्छन् ।
- ३. यसमा रक्त नलीहरू पाइँदैनन् ।
- ४. यसमा विशेष प्रकारका ग्रन्थीहरू पाइन्छन् ।

इपिथेलियल तन्तुका मुख्य कार्यहरू निम्नानुसार छन् :

(क) ढाक्नु (covering)

- (ख) बचाउनु (protecting)
- (ग) साव गर्न् (secreting)
- (३) निष्कासन गर्नु (excreting)

(ङ) सोस्नु (absorbing)

कोषको प्रकृति र मोटाइका आधारमा इपिथेलियल तन्तुलाई विभिन्न भागमा बाँड्न सिकन्छ । यीमध्ये महत्त्वपूर्ण इपिथेलियल तन्तु निम्नानुसार छन् :

- १. पेभमेन्ट इपिथेलियम (pavement epithelium)
- २. क्युबिकल इपिथेलियम (cubical epithelium)
- ३. कोलम्नार इपिथेलियम (columnar epithelium)
- ४. ग्ल्यान्डुलर इपिथेलियम (glandular epithelium)

१. पेभमेन्ट इपिथेलियम (Pavement Epithelium)

यी तन्तुमा चेप्टा (flat) प्लेट जस्ता बहुभुजीय कोषहरू आपसमा टम्म मिलेर बसेका हुन्छन् । भुइँमा ओछ्याइने ढुङ्गा वा टाइलको मिलेको छेउ जस्तै कोषहरू जोडिएर रहेका हुन्छन् । यसमा कोषहरूको एक पत्र तहमात्र हुन्छ । यसप्रकारका तन्तुहरूबाट मुटु, फोक्सो, मिगौंला र यसका रक्त नलीका बाहिरी आवरण बनेको हुन्छ ।

चित्र नं. 17.1

यसका कार्यहरू ढाक्नु (covering), बचाउनु (protecting) र छान्नु (filtrate) हो । साथै तरल र ग्याँस पदार्थलाई बहन दिनु आदि पनि हो ।

घनाकार वा क्यबिकल इपिथेलियम (Cubical Epithelium)

क्युबिकल अर्थात् घनाकार (cubical) आकारका कोषहरूको एक पत्रले ढाकिएर क्युबिकल इपिथेलियम तन्तु बन्छ । यो तन्त छेउ छेउको सतहबाट एक अर्कोसँग जोडिएर रहेको हन्छ । यसप्रकारका तन्तुहरूबाट मिर्गौला भित्रका नलीहरू, थाइरोइड ग्रन्थी र निष्कासन ग्रन्थीका विभिन्न नलीहरू, गर्भाशयको भित्री भाग र श्वास नलीको मख आदि बनेको

चित्र नं. 17.2

हुन्छ । यसले ढाक्ने, बचाउने, स्राव (secreting) आदि कार्य गर्दछ ।

स्तम्भी वा कोलम्नार इपिथेलियम (Columnar Epithelium) 3.

लाम्चा आकारका कोषहरू बेसमेन्ट मेम्ब्रेनमा रहेर यो तन्तु बनेको हन्छ । यसमा कोषहरूको एक पत्रे तह रहेको हुन्छ । मिर्गौलाका ठुला नलीहरू, आमाशय र सानो आन्द्राको भित्री सतहमा स्तम्भी अर्थात् कोलम्नार इपिथेलियम तन्त् रहेको हन्छ । श्वास प्रणाली, प्रजनन

चित्र नं. 17.3

प्रणालीका मार्गहरूको भित्री पत्र घनाकार र स्तम्भी दुवै प्रकारका तन्तुले ढािकएको हुन्छ । यिनीहरूको सतह ससाना रौँ जस्ता सिलियाले ढाकेको हुन्छ । यो सिलियाले नजिकै रहेको तरल पदार्थलाई यताउता चलाउने कार्य गर्दछ । यस प्रकारका तन्तु पित्तथैली, न्याल ग्रन्थी जस्ता स्राव गर्ने अङ्गहरूमा पाइन्छ । यसको मुख्य कार्य स्राव गर्ने र सोस्न हो ।

४. ग्रन्थीमय वा ग्ल्यान्डलर इपिथेलियम (Glandular Epithelium)

शरीरमा पाइने ग्रन्थीलाई साव इपिथोलियम कोषहरूले ढाकेका हुन्छन् । यस्ता कोषहरूबाट बनेको तन्तुलाई ग्ल्यान्ड्लर इपिथेलियल भिनन्छ । यी कोषहरूले शरीरलाई आवश्यक पर्ने हर्मोन, इन्जाइम, म्युकस (mucus), ऱ्याल, पाचन रस जस्ता पदार्थहरू उत्पादन गर्दछ ।

चित्र नं. 17.4

कियाकलाप १

इपिथेलियम तन्तुको अवलोकन

- एउटा सिन्काले भ्यागुतो वा कुखुराको छालाको एक टुक्रा लिई त्यसको बाहिरी सतह कोट्याऊ ।
- २. कोट्याएर आएको वस्तु सफा स्लाइडमा राख ।
- ३. त्यसमा एक थोपा आयोडिन राखेर कभर स्लिपले छोप ।
- ४. यसलाई सूक्ष्मदर्शक यन्त्रमा राखी हेर ।
- ५. सूक्ष्मदर्शक यन्त्रबाट देखिएको क्रालाई चित्र बनाई देखाऊ ।
- ६. माथि पाठमा दिइएको इपिथेलियम तन्तुको चित्रसँग यो चित्र तुलना गरी हेर ।

वनस्पति तन्त् (Plant Tissue)

बिरुवाहरूमा पाइने तन्तुहरू मुख्यतया दुई प्रकारका हुन्छन् :

- १. मेरिस्टमेटिक तन्तु (meristematic tissue)
- २. स्थायी तन्तु (permanent tissue)

मेरिस्टमेटिक बिरुवाहरूमा वृद्धि र विकास भइरहने तन्तु हो । यस पाठमा हामी मेरिस्टमेटिक तन्तुका बारेमा अध्ययन गर्दछौँ :

मेरिस्टमेटिक तन्तु (Meristematic Tissue)

बिरुवाको टुप्पाका भागहरूमा रहेका कोषहरू छिटो छिटो विभाजन भइरहेका हुन्छन् । कोषहरूको विभाजनबाट नै बिरुवाको वृद्धि भइइहेको हुन्छ । यी कोषहरू आपसमा टम्म मिलेर रहेका हुन्छन् । यसैले यी कोषहरूका बिचमा खाली ठाउँ हुँदैन । यी कोषहरूका भित्ता पातला हुन्छन् । साइटोप्लाज्म बाक्लो हुन्छ र स्पष्ट न्युक्लियस रहेको हुन्छ । पातला भित्ता र न्युक्लियस तथा साइटोप्लाज्म स्पष्टसँग रहेका कोषहरू मिली बनेको तन्तुलाई मेरिस्टमेटिक तन्तु भनिन्छ । यी तन्तुहरूलाई स्थानअनुसार वर्गीकरण गरिएको छ ।

चित्र नं. 17.5

 पदि मेरिस्टमेटिक तन्तु जरा वा काण्डको टुप्पामा रहेको छ भने यसलाई एपिकल (apical) मेरिस्टिम भनिन्छ । यसले जरा र काण्डलाई लम्बाइतिर वृद्धि गर्दछ । २. यदि मेरिस्टमेटिक तन्तु जरा वा काण्डको छेउतिर छ भने यसलाई लेटरल (lateral) मेरिस्टिम भनिन्छ । यसले जरा वा काण्डलाई मोटाइतिर वृद्धि गर्दछ ।

क्रियाकलाप २

चना, केराउ वा मिसनो केराउलाई भिजाएर केही दिन राख । त्यसबाट मिसनो टुसा पलाउँछ । त्यस टुसाको टुप्पाको भाग ब्लेडले काटेर स्लाइडमा राख । माथिबाट अर्को स्लाइडले त्यसलाई थिचेर पातलो बनाऊ । त्यसमा एक थोपा सफ्रानिन राख र कभरिस्लिपले हावा निछर्ने गरी छोप । स्लाइडलाई सूक्ष्मदर्शक यन्त्रमा राखेर हेर । सूक्ष्मदर्शक यन्त्रबाट देखिएको कुरालाई चित्र बनाई देखाऊ ।

मानव शरीरमा कोष, तन्तु र अङ्गको अन्तरसम्बन्ध (Interrelationship between Cell, Tissue and Organs in Human Body)

कोष (cell)

कोष सजीवको शरीर निर्माण गर्ने सबैभन्दा सानो भाग हो । सबै प्रकारका जीवहरूको शरीर कोषबाट बनेको हुन्छ । एक कोषीय जीवले आफ्नो सम्पूर्ण जीवन प्रक्रिया त्यही कोषबाट पूरा गर्दछ । बहुकोषीय जीवमा विभिन्न जीवन प्रक्रिया पूरा गर्नका लागि कोषहरूले समूह बनाउँछ । यसरी कोषहरू मिली बनेको समूहलाई तन्तु भनिन्छ ।

तन्तु (Tissue)

निश्चित कार्य गर्नका लागि एकै आकार प्रकारका कोषहरू मिली बनेको समूहलाई तन्तु भिनन्छ । जस्तै : रगत, हाड, छाला । मानिसका शरीरभित्रका विभिन्न क्रियाकलाप गर्नका लागि फरक विशेषता भएका तन्तुहरू समूहमा मिलेर रहेका हुन्छन् । यसरी समूहमा मिलेर रहेका तन्तुको समूहलाई अङ्ग भिनन्छ ।

अङ्ग (Organ)

निश्चित कार्य गर्नका लागि मिलेर बसेका विभिन्न प्रकारका तन्तुहरूको समूहलाई अङ्ग भिनन्छ, जस्तै : मुटु, फोक्सो, कलेजो, मिर्गोला, आँखा, नाक, मुख । अङ्ग एउटा जटिल बनावट भएको र खास काम गर्ने अंश हो । कुनै अङ्गले खास प्रकारको काम मात्र गर्दछ भने कुनैले एकभन्दा बढी काम पिन गर्दछ । जस्तै : मुटुले शरीरमा भएको रगतलाई चाप दिएर सञ्चालन गर्दछ । मिर्गोलाले शरीरमा अनावश्यक पदार्थ छानेर पिसाबका रूपमा फाल्न सहयोग गर्दछ । यसले शरीरलाई चाहिने पानीको मात्रा नियन्त्रण गर्दछ ।

मानव शरीरमा विभिन्न कार्यहरू पूरा गर्नका लागि अङ्गहरू मिलेर समूहमा कार्य गर्दछन् । यस्ता अङ्गहरूको समूह मिलेर प्रणाली बन्छ ।

प्रणाली (System)

कार्य सम्पन्न गर्नका लागि विभिन्न अङ्गहरू मिली बनेको समूहलाई प्रणाली (system) भिनन्छ । मानव शरीरमा जम्मा नौ प्रकारका प्रणालीहरू हुन्छन् । प्रणालीमा विभिन्न अङ्गहरूले समूहमा कार्य गरिरहेका हुन्छन् जस्तै : पाचन प्रणालीमा मुख, खाना नली, आमाशय, सानो आन्द्रा, ठुलो आन्द्रा, मलाशय, कलेजो, पित्त थैली, प्याङ्क्रियाजले मिलेर कार्य गर्दछन् । मानिसको शरीरमा पाइने प्रणाली, यसका मुख्य अङ्गहरू र कार्य तलको तालिकामा दिइएको छ :

क्र.स.	प्रणाली	अङ्गहरू	मुख्य कार्यहरू
٩.	अस्थि प्रणाली	हाडहरू र कुरकुरे हाड	शरीरलाई थाम्नु र नरम अङ्गलाई सुरक्षा गर्न
٦.	मांसल प्रणाली	मांसल, छाला	शरीरलाई चलाउन र शरीरलाई ढाक्न
m².	पाचन प्रणाली	आमाशय, आन्द्रा कलेजो र प्याङ्क्रियाज	खाना पचाउन र सोस्न
8.	श्वास प्रश्वास प्रणाली	श्वास नली र फोक्सो	अक्सिजन र कार्बन डाइअक्साइडको आदान प्रदान गर्न
ሂ.	रक्त सञ्चार प्रणाली	मुटु र रक्त नली	रक्त सञ्चार गर्न
Ę.	निष्कासन प्रणाली	मिर्गौला, कलेजो र मूत्र थैली	अनावश्यक पदार्थ शरीर बाहिर फाल्न
૭.	ग्रन्थी प्रणाली	ऱ्याल ग्रन्थी, पिटुटरी ग्रन्थी र थाइरोइड ग्रन्थी	हर्मोन र इन्जाइम उत्पादन गर्न
ፍ.	स्नायु प्रणाली	मस्तिष्क, सुषुम्ना र स्नायु	सञ्चार गर्न
9.	प्रजनन प्रणाली	अन्डकोष, अन्डाशय	सन्तान उत्पादन गर्न

प्रयोगात्मक कार्य

- तिम्रो घर निजको मासु पसलमा जाऊ । फोक्सो, कलेजो, मुटु, मिर्गौला, आँखा जस्ता विभिन्न अङ्गहरू अवलोकन गरी ती अङ्गहरूले के के कार्य गर्दछन्, लेख ।
- २. क्रियाकलाप १ अध्ययन गरी इपिथेलियम तन्तुको चित्र बनाऊ ।
- ३. क्रियाकलाप २ अध्ययन गरी मेरिस्टमेटिक तन्तुको चित्र बनाऊ ।

सारांश

- एउटै आकार प्रकारका कोषहरू मिली बनेको समूहलाई तन्तु भिनन्छ । यसले खास प्रकारको कार्य गर्दछ ।
- २. जनावरको शरीरका अङ्गहरूको बाहिरी भाग इपिथेलियम तन्तुले बनेको हुन्छ ।
- इपिथेलियम तन्तु मुख्य चार प्रकारका हुन्छन् । ती हुन् : पेभमेन्ट, क्युविकल, कोलम्नार र ग्ल्यान्डुलर ।
- ४. इपिथेलियम तन्तुले ढाक्ने, बचाउने, स्राव गर्ने, सोस्ने र निष्कासन गर्ने कार्य गर्दछन् ।
- ५. वनस्पतिका विभिन्न भागका टुप्पामा रहेको तन्तुलाई मेरिस्टमेटिक तन्तु वा मेरिस्टिम (meristem) भनिन्छ ।
- ६. मेरिस्टमेटिक तन्तु मुख्य दुई प्रकारका हुन्छन् । ती हुन् : एपिकल र लेटेरल मेरिस्टिम ।
- ७. एपिकल मेरिस्टमेटिक तन्तुले बिरुवाको लम्बाइ बढाउँछ भने लेटेरल मेरिस्टमेटिक तन्तुले मोटाइ बढाउँछ ।
- मानिसको शरीरभित्रका क्रियाकलाप गर्नका लागि विभिन्न तन्तुहरू मिली बनेको समूहलाई
 अङ्ग भनिन्छ ।
- ९. कुनै अङ्गले एउटा मात्र र कुनैले धेरै कार्य गर्दछन् ।
- १०. हाम्रो शरीरको कलेजो सबैभन्दा बढी काम गर्ने अङ्ग हो ।
- ११. विभिन्न अङ्गहरू मिली बनेको समूहलाई प्रणाली भनिन्छ ।
- १२. मानव शरीरमा नौ प्रकारका प्रणाली हुन्छन् ।

ો.	खाली ठाउँमा मिल्दो शब्द भर :		
	(क) सजीवको शरीरको सबैभन्दा सान	ो भागलाई	भनिन्छ ।
	(ख) कोषहरू मिली बनेको समूहलाई	भिनन्द	छ ।
	(ग) अङ्ग भनेको खास कार्य गर्न	मिली बनेको	समूह हो ।
	(घ) मेरिस्टमेटिक तन्तुले बिरुवाको	गर्दछ ।	
	(ङ) जनावरका विभिन्न अङ्गहरूलाई	बाहिरबाट ढाक्ने तन्तुलाई	भनिन्छ ।
۲.	तल दिइएका उत्तरहरूमध्ये सही उत्त	र छान :	
	(क) वनस्पतिको वृद्धि गर्ने तन्तुलाई व	के भनिन्छ ?	
	(अ) इपिथेलियम तन्तु (३	भा) मेरिस्टमेटिक तन्तु	
	(इ) स्थायी तन्तु (इ	ई) ग्ल्यान्डुलर तन्तु	
	(ख) चेप्टा प्लेट जस्ता बहु भुजीय को तन्तुलाई के भनिन्छ ?	यहरू मिली भुइँमा टायल छापे ज	ास्तै मिली बनेको
	(अ) पेभमेन्ट (३	भा) क्युबिकल	
	(इ) कोलम्नार (इ	ई) ग्ल्यान्डुलर	
	(ग) मानिसको शरीरको सबैभन्दा बढ	SI कार्य गर्ने अङ्ग कुन हो ?	
	(अ) मुटु	भा) फोक्सो	
	(इ) कलेजो (इ	ई) मिर्गौला	
	(घ) हर्मोन, इन्जाइम स्लेष्मा जस्ता उ	त्पादन गर्ने ग्रन्थीमा कुन तन्तु प	गइन्छ ?
	(क) पेभमेन्ट (र	व) क्युबिकल	
	(ग) कोलम्नार (व	३) ग्ल्यान्डुलर	

३. छोटो उत्तर देऊ :

- (क) तन्त् भनेको के हो ?
- (ख) इपिथेलियल तन्तु कहाँ रहेको हुन्छ ?
- (ग) मेरिस्टमेटिक तन्तुको मुख्य काम के हो ?
- (घ) मेरिस्टमेटिक तन्तु मुख्य कित प्रकारका हुन्छन्, ती के के हुन् ?
- ४. मानव शरीरमा कोष, तन्तु र अङ्गको अन्तरसम्बन्धको व्याख्या गर ।
- ५. इपिथेलियल तन्तुका मुख्य कार्यहरू बुँदागत रूपमा लेख।
- ६. छोटकरीमा लेख:
 - (क) पेभमेन्ट इपिथेलियम
 - (ख) कोलम्नार इपिथेलियम
 - (ग) क्युबिकल इपिथेलियम
 - (घ) ग्ल्यान्ड्लर इपिथेलियम
- ७. चित्रमा दिइएको भागको नामकरण गर :

द. दिइएको चित्रमा कुन तन्तु देखाइएको छ, यो तन्तु कहाँ पाइन्छ, यसको मुख्य एउटा कार्य लेख :

९. इपिथेलियम तन्तु र मेरिस्टमेटिक तन्तुबिच दुईओटा फरक लेख।

जीवन प्रक्रिया

(Life Process)

सजीवले जीवित रहनका लागि विभिन्न प्रक्रियाहरू सञ्चालन गरेका हुन्छन् । श्वास प्रश्वास, पाचन, निष्कासन, प्रजनन जस्ता प्रक्रियाहरू सजीवहरूमा सञ्चालन भइरहेका हुन्छन् । यिनै प्रक्रियाहरूलाई जीवन प्रक्रिया (life process) भिनन्छ ।

प्रजनन (Reproduction)

सजीवहरूको जीवन काल सीमित हुन्छ । पृथ्वीमा रहेका हरेक जीवको मृत्यु हुन्छ । त्यसैले सजीवहरूले आफ्नो जातिको अस्तित्व बचाउन सन्तानहरू उत्पादन गरी वंशलाई निरन्तरता दिने गर्दछन् । यसरी आफू जस्तै नयाँ जीव उत्पादन गरी वंशको निरन्तरता दिने प्रक्रियालाई प्रजनन भनिन्छ । सरल एक कोषीय जीवहरूलगायत विकसित जीवहरू सबैमा प्रजनन हुन्छ । जीवहरूमा प्रजनन क्रिया दुई प्रकारबाट हुन्छ :

१. अमैथुनिक (Asexual)

२. मैथुनिक (Sexual)

अमैथुनिक प्रजनन (Asexual Reproduction)

भाले र पोथी प्रजनन कोषहरूको मिलनिबना हुने प्रजननलाई अमैथुनिक प्रजनन भिनन्छ । यस प्रिक्रिया एउटा माउ जीव (parent) बाट मात्र हुन्छ । यस प्रिक्रियाबाट बनेका जीवहरू माउ जीव जस्तै हुन्छन् र छोटो समयमा नै यो प्रिक्रिया पूरा हुन्छ । प्राय: सरल र कम विकिसत जीवमा मात्र अमैथुनिक प्रजनन हुन्छ । अमैथुनिक प्रजननका प्रकार निम्नानुसार छन् :

(क) फिसन (Fission)

सरल एककोषीय जीवहरू सामान्य कोष विभाजन प्रक्रियाबाट एकबाट दुई र दुईबाट चार हुँदै सङ्ख्यामा वृद्धि हुन्छन् । यस प्रकारको अमैथुनिक प्रजननलाई फिसन (fission) भनिन्छ । यदि एउटा कोष विभाजन भई दुई ओटा सन्तित कोषहरू बन्छन् भने त्यसलाई बाइनरी फिसन (binary fission) भनिन्छ,

जस्तै : ब्याक्टेरिया, डाइएटम जस्ता सूक्ष्म वनस्पति तथा अमिबा,

चित्र नं. 18.1

पारामेसियम जस्ता जीवहरूमा यो प्रक्रिया हुन्छ ।

यदि एउटा कोष विभाजन भई धेरै ओटा सन्तित कोष बन्छन् भने त्यसलाई मिल्टिपल फिसन (multiple fission) भिनन्छ । जस्तै : क्लामाडोमोनस (chlamydomones), प्लाज्मोडियम (plasmodium) ।

(ख) बडिङ (Budding)

कोष वा शरीरको एकातिरबाट टुसो (bud) पलाएर विकसित भई अलग्गिएर नयाँ सन्तानका रूपमा विकसित हुने प्रक्रियालाई बिडिङ भिनन्छ । जस्तै : हाइड्रा (hydra), यिस्ट (yeast)

चित्र नं. 18.3

(ग) रिजेनेरेसन (Regeneration)

जीवको शरीर दुई वा दुईभन्दा बढी टुक्रिन गई प्रत्येक टुक्रा नयाँ जीवका रूपमा विकसित हुने क्रियालाई रिजेनेरेसन (regeneration) भनिन्छ । जस्तै : हाइड्रा, टेपवर्म, प्लेनेरिया ।

चित्र नं. 18.4

(घ) फ्रागमेन्टेसन (Fragmentation)

सरल वनस्पति दुक्रिन गई प्रत्येक दुक्रा फेरि पूर्ण वनस्पतिमा विकसित हुने प्रिक्रियालाई फ्रागमेन्टेसन (fragmentation) भनिन्छ । जस्तै : स्पाइरोगाइरा

चित्र नं. 18.5

(ङ) स्पोरुलेसन (Sporulation)

सरल बिरुवाहरूमा स्पोरेन्जिया (sporangia) भित्र बीजाणुहरू (spores) बन्छन् । परिपक्व बीजाणुहरू अनुकूल वातावरणमा अङ्कुराउँछन् र नयाँ बिरुवा बन्छन् । यस्तो अमैथुनिक प्रजननलाई स्पोरुलेसन (sporulation) भनिन्छ ।

चित्र नं. 18.6

(च) भेजिटेटिभ प्रोपागेसन (Vegetative Propagation)

विकसित बिरुवाहरूको जरा, काण्ड, पात आदिबाट नयाँ बिरुवा बन्छ । यस्तो प्रक्रियालाई भेजिटेटिभ प्रोपागेसन (vegetatiove

propagation) भनिन्छ ।

जस्तै : जराबाट सखरखण्ड, लाहुरे फूल तथा काण्डबाट आलु, अदुवा, गुलाफ र पातबाट बेगोनिया, ब्रायोफाइलम आदि ।

अमैथुनिक प्रजननका फाइदा

१. सरल र छिटो हुन्छ ।

- २. एउटै जीव मात्र भए पुग्छ ।
- ३. पैतुक गुण यथावत् रहन्छ ।
- ४. सन्तानमा एकरूपता आउँछ ।

मैथुनिक प्रजनन (Sexual Reproduction)

जीवहरूमा भाले प्रजनन कोष (sperm) र पोथी प्रजनन कोष (ovum) को मिलन भई सन्तान उत्पादन हुने क्रियालाई मैथुनिक प्रजनन भनिन्छ । धेरै जसो जनावरहरू र विकिसत बिरुवाहरूमा मैथुनिक प्रजनन हुन्छ । यिनीहरूमा प्राय: भाले र पोथी अलग अलग हुन्छन् । यस्ता जीवलाई एक लिङ्गी (unisexual) भनिन्छ । जस्तै : मानिस, चरा, भ्यागुता आदि । कुनै कुनै जीवहरूले भाले र पोथी प्रजनन कोष दुवै उत्पादन गर्दछन् । यस्ता जीवलाई द्विलिङ्गी (bisexual) वा उभयलिङ्गी (hermaphrodite) भनिन्छ । जस्तै : हाइड्रा, गँड्यौला । वनस्पितका फूलहरू पिन कुनै एक लिङ्गी (unisexual) र कुनै द्विलिङ्गी (bisexual) हुन्छन् । जस्तै : फर्सी, मेवा एक लिङ्गीय हुन् भने तोरी, केराउ, फापर दुईलिङ्गीय हुन् ।

बिरुवाहरूमा मैथुनिक प्रजनन (Sexual Reproduction in Plants)

विकिसत बिरुवाको प्रजनन अङ्ग फूल हो । फूलको भाले अङ्गलाई एन्ड्रोसियम भिनन्छ । फूलको पोथी अङ्गलाई गाइनोसियम भिनन्छ । एन्ड्रोसियमले परागकण बनाउँछ भने गाइनोसियममा अण्ड उत्पादन हुन्छ । एन्ड्रोसियममा बनेको परागकण गाइनोसियमसम्म पुग्ने प्रक्रियालाई परागसेचन भिनन्छ । त्यसपिछ परागकण र अण्डको मिलन हुन्छ । यस प्रक्रियालाई गर्भाधान भिनन्छ । गर्भाधानपिछ बन्ने युग्मज (zygote) को वृद्धि भई बिउ बन्छ । यसबाट वनस्पति उम्रन्छ ।

जनावरमा हुने मैथुनिक प्रजनन (Sexual Reproduction in Animals)

मैथुनिक प्रजननमा भाले र पोथी प्रजनन कोषहरूको संयोग वा मिलन (fusion) हुन्छ । यस प्रिक्रियालाई गर्भाधान भनिन्छ । जनावरमा गर्भाधान दुई प्रकारले हुन्छ ।

(क) बाह्य गर्भाधान (external fertilization) (ख) भित्री गर्भाधान (internal fertilization)

जनावरको शरीर बाहिर भाले र पोथी प्रजनन कोषको संयोग हुने क्रियालाई बाह्य गर्भाधान र शरीरिभन्न संयोग हुने क्रियालाई भिन्नी गर्भाधान भिनन्छ । माछा, भ्यागुतामा बाह्य गर्भाधान हुन्छ भने मानिस, चरा, किरा आदिमा भिन्नी गर्भाधान हुन्छ । भाले र पोथी प्रजनन कोषको संयोगबाट युग्मज (zygote) बन्छ । यो नै भ्रूण (embryo) का रूपमा विकसित भई निश्चित समयपछि बच्चाका रूपमा विकसित हुन्छ ।

मैथुनिक प्रजननका फाइदा

- जीवको सङ्ख्या वृद्धि भई पछिसम्म वंश कायम हुन्छ ।
- २. सन्ततिहरूमा नयाँ गुणहरू विकसित हुन्छ ।

मानव रक्त सञ्चार प्रणाली (Human Blood Circulatory System)

मानव शरीरमा आवश्यक पर्ने पौष्टिक तत्त्वहरू, अक्सिजन, हर्मोन आदि रगतको माध्यमबाट विभिन्न अङ्गहरूमा पुऱ्याइन्छ । त्यसै गरी शरीरमा काम नलाग्ने वस्तुहरू (कार्बडाइअक्साइड, युरिया, युरिक एसिड) निष्कासन अङ्गसम्म पुऱ्याउने काम पनि रगतको माध्यमबाट हुन्छ । यी कार्य गर्नका लागि मानव शरीरमा रगत निरन्तर सञ्चालन भइरहेको हुन्छ । यसै प्रणालीलाई रक्त सञ्चार प्रणाली भिनन्छ ।

मानव रक्त सञ्चार प्रणालीमा मुख्य तीन भाग रहेका हुन्छन्, ती हुन् :

- (क) रगत (ख) मुटु
- (ग) रक्त नलीहरू

(क) **रगत** (Blood)

रातो तरल संयोजी तन्त् रगत हो । यसमा मुख्य दुई भाग प्लाज्मा र रक्तकोष रहेका हुन्छन् ।

प्लाज्मा (plasma): प्लाज्मा फिक्का पहेँलो रङको तरल पदार्थ हो । रगतमा भन्डै 55 प्रतिशत प्लाज्मा रहेको हुन्छ । यसमा 90 प्रतिशत पानी र 10 प्रतिशत प्रोटिन, बोसो, लवण र कार्बोहाइड्रेट रहेको हुन्छ । प्लाज्माले आन्द्राबाट छिरेर (diffuse) आएका पोषक तत्त्वलाई

शरीरका विभिन्न भागमा पुऱ्याउने कार्य गर्दछ । त्यसै गरी कोषमा हुने श्वासप्रश्वास क्रियाबाट निस्कने कार्बनडाइअक्साइडलाई फोक्सोसम्म पुऱ्याउन मदत गर्दछ । यसले हर्मोनलाई विभिन्न तन्तुहरूसम्म पुऱ्याउँछ ।

रक्तकोष (Blood Cell): रक्त कोष प्लाज्मामा घोलिएर रहेका हुन्छन् । यी ठोस पदार्थ हुन् । रक्त कोष पिन मुख्य तीन प्रकारका हुन्छन् । जस्तै : राता रक्त कोष, सेता रक्त कोष र प्लेटेलेट्स ।

राता रक्त कोष (Red Blood Cells): राता रक्त कोषहरू रगतमा अरू रक्त कोषभन्दा बढी सङ्ख्यामा हुन्छन् । यी रक्त कोषहरू धेरै साना हुन्छन् । यिनीहरूमा न्युक्लियस हुँदैन । राता रक्त कोषमा हेमोग्लोबिन (haemoglobin) हुन्छ । यसैले गर्दा रगत रातो भएको हो । हेमोग्लोबिनले फोक्सोबाट अक्सिजन सोस्ने काम गर्दछ । राता रक्त कोषहरू रातो मासी (bone marrow) मा बन्छन् । पुराना रक्त कोषहरू कलेजो र फियोमा गएर नासिन्छन् । यिनको आयु लगभग चार महिना जित हुन्छ । राता रक्त कोषको कमी भएमा रक्त अल्पता (anaemia) रोग लाग्छ ।

सेता रक्त कोष (White Blood Cells): सेता रक्त कोषहरू राता रक्त कोषभन्दा ठुला र रङहीन हुन्छन् । यिनीहरूको आकार निश्चित हुँदैन । यिनीहरूमा न्युक्लियस हुन्छ । यिनीहरू पिन रातो मासी (bone marrow) मा नै बन्छन् । सेता रक्त कोषले शरीरमा रोगका कीटाणुहरूलाई नाश गर्दछन् । हाम्रो शरीरमा यसको सङ्ख्या अत्यधिक बढेमा ल्युकेमिया (leukemia) अर्थात् रक्त क्यान्सर (blood cancer) रोग लाग्छ ।

प्लेटलेट्स (Platelets): प्लेटलेट्स न्युक्लियस नभएका साना रक्त कोष हुन् । यिनीहरूले घाउ, चोटपटक लाग्दा रगत जमाउन मदत गर्दछन् । यिनीहरू पनि रातो मासी (bone marrow) मा नै बन्छन् । यिनको आयु २ देखि ३ दिनसम्म मात्र हन्छ । यसको कमी

भएमा चोटपटक लाग्दा धेरै रगत बाहिर बग्छ र रगतको कमी हन सक्छ ।

(ख) मुटु (Heart)

मुटु शक्तिशाली मांसपेशीले बनेको अङ्ग हो । यो शरीरमा छातीभित्र दुई फोक्सोका बिचमा रहेको हुन्छ । यसको एकतिहाइ भाग दायाँ र दुई तिहाइ भाग

बायाँपर्टि रहेको हुन्छ । यसलाई पेरिकार्डियम (pericardium) नाम गरेको पातलो भिल्लीले ढाकेको हुन्छ । यसभित्र केही बाक्लो पारदर्शक तरल पदार्थ (pericardial fluid) हुन्छ । उक्त तरल पदार्थले मुटुलाई बाहिरबाट दबाब पर्नबाट जोगाउँछ । मुटुभित्र चार कोठाहरू हुन्छन्, ती

हुन् :

- 9. दायाँ अरिकल (Right Auricle)
- २. दायाँ भेन्ट्रिकल (Right Ventricle)
- ३. बायाँ अरिकल (Left Auricle)
- ४. बायाँ भेन्ट्रिकल (Left Ventricle)

चित्र नं. 18.9

दायाँ अरिकल र दायाँ भेन्ट्रिकल एकापट्टि माथि तल भएर रहेका हुन्छन् भने बायाँ अरिकल र बायाँ भेन्ट्रिकलको अर्कोपट्टि माथि तल भएर रहेका हुन्छन् । यी दायाँ र बायाँका कोठाहरूको बिचमा मोटो मांसपेशीको भित्ता हुन्छ । यसले गर्दा दायाँको रगत बाँयातर्फ र बायाँको रगत दायाँतर्फ जान सक्दैन । यी चारै कोठाहरू एक अङ्ग भएर काम गर्दछन् । दायाँ अरिकलमा शरीरका विभिन्न भागबाट आएको अशुद्ध रगत जम्मा हुन्छ । बायाँ अरिकलमा फोक्सोबाट आएको अक्सिजनयुक्त शुद्ध रगत जम्मा हुन्छ । मुटुमा भएको मांसपेशीमा एक प्रकारको खुम्चने र फैलने हुन्छ । यसलाई मुटुको धड्कन भिनन्छ । यही चालले गर्दा नै मुटुले रगत पम्प गरी शरीरको सम्पूर्ण भागमा पुऱ्याउन मदत गर्दछ । मुटुबाट फोक्सोमा रगत लैजाने नली पल्मोनरी धमनी हो । फोक्सोबाट मुटुतर्फ ल्याउने पल्मोनरी शिरा हो । मुटुले रगत पम्प गर्दा अरिकलबाट भेन्ट्रिकलितर रगत जान्छ तर भेन्ट्रिकलबाट अरिकलितर फर्कन सक्दैन । किनभने अरिकल र भन्ट्रिकलिबचमा भल्भ हुन्छन् । मुटुभित्र चार ओटा भल्भ (valve) हुन्छन् ।

- १. टाइकस्पिड भल्भ दायाँ अरिकल र दायाँ भेन्टिकल बिचमा
- २. माइट्रल भल्भ बायाँ अरिकल र बायाँ भेन्ट्रिकल बिचमा
- ३. पल्मोनिक भल्भ दायाँ भेन्ट्रिकल र पल्मोनरी धमनी बिचमा
- ४. एओर्टिक भल्भ बायाँ भेन्टिकल र एओर्टा बिचमा

(ग) रक्त नलीहरू (Blood Vessels)

हाम्रो शरीरमा रगतको सञ्चार गर्नका लागि रक्त नलीहरू हुन्छन् । ती रक्त नलीहरू

पनि तीन प्रकारका हन्छन :

- १. धमनी (arteris)
- २. शिरा (veins)
- ३. केशिका (capillaries)
- धमनी (Arteris): मृट्बाट रगत शरीरका विभिन्न ٩. भागमा पुऱ्याउने रक्त नलीलाई धमनी भनिन्छ । यिनीहरू छालाको भित्री भागमा रहेका हुन्छन् । धमनीहरू शिराभन्दा बाक्लो मांसपेशीद्वारा बनेका हन्छन् ।

चित्र नं. 18.10

यिनीहरू ससाना धमनीका हाँगा (arterioles) मा बाँडिएका हन्छन् ।

शिरा (Veins): शरीरको विभिन्न भागबाट रगत ₹. सङ्कलन गरी मृट्सम्म ल्याउने रक्त नलीलाई शिरा भनिन्छ । यिनीहरू धमनीभन्दा पातलो मांसपेशीबाट बनेका हन्छन् ।

चित्र नं. 18.11

केशिका(Capillaries): धमनीको टप्पामा मसिना रक्त ₹. नलीहरू रहेका हुन्छुन् । यिनीहरूले रगतलाई विभिन्न को षमा पुऱ्याउन गर्दछन् । त्यसै गरी फिँजिएको रगतलाई जम्मा गरी शिरामा रगत लैजाने मसिना रक्त नलीहरू पनि हन्छन । यी रक्त नलीलाई केशिका भनिन्छ ।

चित्र नं. 18.12

रक्त सञ्चार प्रक्रिया (Blood Circulation)

शरीरका विभिन्न भागबाट शिरा हुँदै आएको अशुद्ध रगत सुपेरियर र इन्फेरियर भेनेकाभा (superior venacava and inferior venacava) बाट मुटुको दायाँ अरिकलमा जम्मा हुन्छ । दायाँ अरिकलबाट भल्भ खुलेर रगत दायाँ भेन्ट्रिकलमा जान्छ । त्यहाँबाट पल्मोनरी धमनी (pulmonary artery) हुँदै फोक्सोमा पुग्छ । फोक्सोमा रगतले कार्बनडाइअक्साइड छोडी अक्सिजन ग्यास प्राप्त गर्दछ । यसरी अक्सिजनयुक्त रगत पल्मोनरी शिरा (pulmonary vein) हुँदै बायाँ अरिकलमा आउँछ । बायाँ अरिकलबाट रगत बायाँ भेन्ट्रिकलमा आउँछ । बायाँ भेन्ट्रिकलमा पग्छ । यसरी शरीरको विभिन्न भागमा पुग्छ । यसरी शरीरको विभिन्न भागमा पुग्छ । यसरी शरीरको विभिन्न भागमा पुगेको रगत केशिकाबाट सङ्कलित भई शिराको बाटो हुँदै पुनः मुटुको दायाँ अरिकलमा आइपुग्छ । यसरी मानव रक्त सञ्चार क्रिया पूरा हुन्छ ।

प्रकाश संश्लेषण क्रिया (Photosynthesis)

सजीवहरूलाई बाँच्नका लागि खाना चाहिन्छ । तर हरिया बिरुवाहरूले मात्र आफ्नो खाना आफैँ बनाउन सक्छन्। अन्य प्राणी खानाका लागि प्रत्यक्ष वा अप्रत्यक्ष रूपमा वनस्पतिमा

भर पर्दछन् । हरिया बिरुवाहरूले हावामा भएको कार्बनडाइअक्साइड र माटामा रहेको पानीबाट सूर्यको प्रकाशको उपस्थितिमा हरितकणको सहायताले खाना बनाउँछन् । यसरी बिरुवाले खाना बनाउने प्रक्रियालाई प्रकाश संश्लेषण क्रिया (photosynthesis) भिनन्छ । यो प्रक्रिया हरियो पातमा हुन्छ । यस प्रक्रियाका लागि आवश्यक पर्ने शिक्त हरियो पातमा भएको हरितकण (chlorophylls) ले सूर्यको प्रकाशबाट लिन्छ । यस प्रक्रियामा ग्लुकोज (glucose) र अक्सिजन बन्छ ।

चित्र नं. 18.14

कार्बनडाइअक्साइड + पानी + प्रकाश ightarrow ग्लुकोज + अक्सिजन

$$6C0_2 + 6H_2O \xrightarrow{\text{light}} C_6H_{12}O_6 + 6O_2$$

प्रकाश संश्लेषणका लागि बिरुवाले जराद्वारा जिमनको पानी र पातमा रहेको छिद्र (stomata) द्वारा हावामा रहेको कार्बनडाइहक्साइड लिन्छन् । बिरुवाले बनाएको ग्लुकोज (glucose) स्टार्चमा बदल्छ र कोषहरूमा जम्मा गर्दछ । यस प्रिक्रयामा बनेको अक्सिजन श्वासप्रश्वास भई हावामा फाल्छ ।

प्रकाश संश्लेषण प्रक्रियाका लागि वनस्पतिलाई आवश्यक कुराहरू (Needs of Plants for Photosynthesis)

- १. हरितकण (Chlorophylls): हरितकण भएको बिरुवामा मात्र प्रकाश संश्लेषण प्रक्रिया हुन्छ । हरियो बिरुवामा क्लोरोप्लास्टमा क्लोरोफिल अर्थात् हरितकण हुन्छ । यसले नै सौर्य शिक्त उपयोग गरी रासायिनक शिक्तमा परिणत गर्दछ । हरितकणिबना प्रकाश संश्लेषण प्रक्रिया सम्भव हँदैन । त्यसैले हरितकण अत्यावश्यक पदार्थ हो ।
- २. कार्बनडाइअक्साइड (Carbondioxide): कार्बनडाइअक्साइड प्रकाश संश्लेषण प्रक्रियामा आवश्यक पर्ने कच्चा पदार्थ हो । बिरुवाले लिने कार्बनको स्रोत नै हावामा रहेको कार्बनडाइअक्साइड हो । बिरुवाले पातमा रहेका मिसना छिद्र (stomata) द्वारा वायुमण्डलमा रहेको कार्बडाइअक्साइड लिन्छ । कार्बनडाइअक्साइडबिना अन्य कार्बनयुक्त यौगिकहरूमा बिरुवा बाँच्न सक्दैन ।
- ३. पानी र खनिज वस्तुहरू (Water and Minerals): पानी अर्को महत्त्वपूर्ण कच्चा पदार्थ हो । पानीमा भएको हाइड्रोजनले नै कार्बनडाइअक्साइडसँग मिली कार्बोहाइट्रेड बनाउँछ । बिरुवाले जराद्वारा जिमनको पानी सोस्छ र काण्ड हुँदै पातमा पुऱ्याउँछ । बिरुवामा प्रोटिनयुक्त पदार्थहरू बन्न आवश्यक पर्ने खनिज पदार्थ पिन पानीसँगै जिमनबाट बिरुवाले लिन्छ ।
- ४. सौर्य शक्ति (Solar Energy): सूर्य नै शक्तिको मूल स्रोत हो । हरियो बिरुवाले खाना बनाउँदा सौर्य शक्तिलाई रासायनिक शक्तिमा परिवर्तन गर्दछ । बिरुवाको पातमा रहेको हरितकणले सौर्य शक्तिलाई शोषण गर्दछ र खाना बनाउन उपयोग गर्दछ ।

हरियो बिरुवाको पातमा रहेको स्टार्चको परीक्षण

क्रियाकलाप १

आवश्यक सामग्रीहरू : हरियो पात, चिम्टा (forcep), तातो पानी राख्ने भाँडो, 90 प्रतिशत इथानोल. आयोडिन. रिकापी. पानी. स्पिरिट ल्याम्प. डपर. बिकरहरू आदि ।

विधि

एउटा बिरुवाको हरियो स्वस्थ पात टिप र पाँच मिनेटसम्म उमालिएको पानीमा डुबाऊ । यसो गर्दा पात नरम हन्छ । त्यसपछि केही समय पातलाई मनतातो अल्कोहल 90 प्रतिशत इथानोलमा डुबाएर राख । त्यसपछि त्यस पातलाई बाहिर भिकेर सफा पानीले राम्ररी पखाल । एउटा रिकापीमा आयोडिनको घोल राखी त्यसलाई डबाऊ । यो कालो निलो रङमा परिणत भएको दिखने छ । स्टार्चको उपस्थितिले गर्दा नै आयोडिन राख्दा पातको रङ बदलिएको हो ।

पकाश संश्लेषण प्रक्रियामा प्रकाशको आवश्यकता

कियाकलाप २

आवश्यक सामग्रीहरू: गमलासहितको बिरुवा, कालो कागज, चिम्टा, तातोपानी राख्ने भाँडो, विकरहरू, 90 प्रतिशत इथानोल, आयोडिन, रिकापी, पानी, स्पिरिट, ल्याम्प, इपर आदि ।

विधि

एउटा गमलासहितको बिरुवा दुई दिनसम्म अँध्यारो ठाउँमा चित्र नं. 18.16 राख । त्यस बिरुवाको एउटा पात टिप र क्रियाकलाप १ मा जस्तै स्टार्चको परीक्षण गर । पातको रङ कस्तो भयो, अवलोकन गर । के पातको रङमा केही फरक पायौ ?

माथिको गमलाको बिरुवाको एउटा पातको बिचमा कालो कागज (चित्रमा जस्तै) टाँसी त्यस गमलासहितको बिरुवालाई केही घण्टा घाममा राख । अनि त्यो पात टिपेर टाँसेको कालो कागज भिकी पातलाई स्टार्चको परीक्षण गर । पातको कुन कुन भागको रङ बदलिएको पायौ राम्ररी अवलोकन गर । छोपिएको भागमा स्टार्च दिखँदैन तर अन्य भागमा स्टार्च देखिन्छ । प्रकाशको उपस्थितिमा मात्र हरियो पातले स्टार्च बनाउँछ भन्ने क्रा यसबाट प्रमाणित हुन्छ ।

प्रकाश संश्लेषण प्रक्रियामा कार्बनडाइअक्साइडको आवश्यकता

कियाकलाप ३

आवश्यक सामग्रीहरू : गमलासिहतको बिरुवा, प्लास्टिकको भोला, सानो डोरी, कास्टिक पोटास (पोटासियम हाइडोअक्साइड) र क्रियाकलाप १ मा जस्तै स्टार्च परीक्षण गर्ने सामग्रीहरू ।

विधि

गमलासहितको बिरुवालाई अँध्यारो ठाउँमा दुई दिन राख । एउटा प्लास्टिक भोलामा अलिकति पोटासियम हाइड्रोअक्साइडलाई गमलाको त्यस पात भित्र (चित्रमा देखाए जस्तै) राख र प्लास्टिक भोलाभित्र हावा निछर्ने गरी राम्रोसँग बाँध । अब केही घण्टा घाममा राख । केही घण्टापछि भोलाभित्रको पात र बिरुवाको अर्को पात टिपी स्टार्च परीक्षण गर । कृन पातमा

स्टार्च भएको पायौ र किन, कारणसहित निष्कर्ष लेख । पोटासियम हाइड्रोअक्साइडलाई भोलाभित्र किन राखेको होला, पत्ता लगाऊ ।

प्रकाश संश्लेषण प्रक्रियामा अक्सिजन

क्रियाकलाप ४

आवश्यक सामग्रीहरू : बिकर, परीक्षण नली, काँचको फनेल, पानीमा उम्रने बिरुवा (हाइड्रिला) पानी, स्टेन्ड आदि ।

विधि

ताजा हाइड्रिला वा पानीमा उम्रने बिरुवाका केही हाँगाहरू पानी भएको एउटा ठुलो बिकर वा काँचको भाँडामा राख । चित्रमा जस्तै सबै बिरुवा छोप्ने गरी फनेललाई उल्टो पारी घोप्ट्याऊ । एउटा परीक्षण नली पानीले पूरा भरी फनेलको टुप्पामा घोप्ट्याई अड्याऊ । यसरी राख्दा परीक्षण नली (test tube) भित्र हावा रहेको हुनु हुँदैन । यी सामग्रीहरूलाई केही समय घाममा राख । केही समयपछि बिरुवाबाट ग्याँसका फोकाहरू निस्केर परीक्षण नलीमा जम्मा हुन्छन् र परीक्षण नलीको पानी बिस्तारै घटेर तल गएको देखिन्छ ।

चित्र नं. 18.18

ग्याँसको परीक्षण

सर्वप्रथम सलाईको काँटी बाल । अब ग्याँस भएको परीक्षण नलीतिर लैजाँदा सलाईको काँटी बढी चहकिलो भएर बल्छ । यसबाट यो ग्याँस अक्सिजन नै हो भन्ने ब्भिन्छ ।

प्रयोगात्मक क्रियाकलाप

- 9. आफ्नो हातको नाडी बिस्तारै छाम, के नाडीको धड्कन पत्ता लगाउन सक्यौ, एक मिनेटमा नाडीको धड्कन कित छ, गन । एकैछिन दौडिएर उभिई फेरि एक मिनेटमा नाडीको धड्कन कित हुन्छ, गनेर हेर । के फरक पायौ र किन, छलफल गर ।
- २. बिहान सबेरै उठेर एउटा बिरुवाको पात टिप र दिउँसो २/३ बजेतिर त्यही बिरुवाको अर्को पात टिप । अब, दुवै पातको स्टार्च परीक्षण गरी हेर । के फरक पायौ ?
- ३. बिरुवासिहतको एउटा गमला घाममा र अर्को अँध्यारो ठाउँमा राख । दुई हप्तापिछ कुनको वृद्धि छिटो भएको छ, हेर । यसो हुनाको कारण के होला, निष्कर्षसिहत लेख ।

सारांश

- १. आफू जस्तै नयाँ सन्तान उत्पादन गरी वंशको निरन्तरता कायम गर्ने प्रक्रियालाई प्रजनन भनिन्छ ।
- २. अमैथ्निक र मैथ्निक गरी प्रजनन दुई प्रकार हुन्छन् ।
- ३. अमैथुनिक प्रजनन क्रियामा भाले र पोथी लैङ्गिक कोषको आवश्यकता पर्दैन । अमैथुनिक प्रजनन फिसन, बिडिङ, रिजेनेरेसन, फ्राग्मेनटेसन, स्पोरुलेसन र भेजेटेटिभ प्रोपागेसन जस्ता क्रियाहरूबाट हुन्छ ।
- ४. भाले र पोथी प्रजनन कोषको संयोजनबाट हुने प्रजननलाई मैथ्निक प्रजनन भनिन्छ ।
- ५. रक्त सञ्चार प्रणालीमा भाग लिने अङ्गहरू रगत, मुटु र रक्त नलीहरू हुन् ।
- ६. रगतमा प्लाज्मा, राता रक्त कोष, सेता रक्त कोष र प्लेटलेट्स हुन्छ ।
- ७. राता रक्त कोषमा न्युक्लियस हुँदैन । यसमा भएको हेमोग्लोबिनले अक्सिजन लिने काम गर्दछ ।
- सेता रक्त कोषमा न्य्क्लियस ह्न्छ । यिनीहरूले रोगका कीटाण्हरू नाश गर्दछन् ।
- ९. प्लेटलेट्सले घाउ हुँदा रगत जम्ने काममा मदत गर्छ ।
- १०. मुटुमा चार ओटा कोठाहरू हुन्छन् । ती हुन् : दायाँ अरिकल, दायाँ भेन्ट्रिकल, बायाँ अरिकल, बायाँ भेन्ट्रिकल ।

- ११. शरीरका विभिन्न अङ्गहरूमा अक्सिजनयुक्त रगत पुऱ्याउने नलीलाई धमनी भनिन्छ ।
- १२.शरीरका विभिन्न भागबाट अशुद्ध रगत मुटुसम्म ल्याउने रक्त नलीलाई शिरा भनिन्छ । केशिकाले धमनी र शिरालाई जालीका रूपमा जोड्ने काम गर्दछ ।
- १३. हरितकणयुक्त बिरुवाले प्रकाशको उपस्थितिमा कार्बनडाइअक्साइड र पानीद्वारा आफ्नो खाना बनाउने प्रक्रियालाई प्रकाश संश्लेषण क्रिया भनिन्छ ।
- १४. प्रकाश संश्लेषण क्रियामा ग्लुकोज र अक्सिजन ग्यास बन्छ । यसरी बनेको ग्लुकोज स्टार्चका रूपमा बदलिएर कोषहरूमा जम्मा हुन्छ ।

अभ	यास
٩.	खाली ठाउँमा मिल्ने शब्द लेख :
	(क) वंशको निरन्तरता दिने प्रक्रियालाईभिनन्छ ।
	(ख) बिरुवाको जरा, काण्ड वा पातबाट नयाँ सन्तान बन्ने प्रक्रियालाई भिनन्छ ।
	(ग) रगत रातो तरल तन्तु हो ।
	(घ) हाम्रो मुटुमा ओटा कोठाहरू हुन्छन् ।
	(ङ) मुट्बाट शरीरका विभिन्न भागमा रगत पुऱ्याउने नलीलाई भनिन्छ ।
	(च) बिरुवाले खाना बनाउने प्रक्रियालाई भनिन्छ ।
₹.	तल दिइएका उत्तरहरूमध्ये सही उत्तर छान :
	(क) कुनै सजीवको शरीर टुक्रिएर नयाँ सन्तित बन्ने प्रक्रियालाई के भनिन्छ ?
	(अ) फिसन (आ) बडिङ (इ) रिजेनेरेसन (ई) स्पोरुलेसन
	(ख) राता रक्त कोषको कमी भएमा कुन रोग लाग्छ ?
	(अ) सुकेनाश (आ) फुकेनाश (इ) रक्त क्यान्सर
	(ई) रक्त अल्पता
	(ग) कुन रक्त कोषले गर्दा घाउमा रगत जम्न मदत गर्दछ ?
	(अ) राता रक्त कोष (आ) सेता रक्त कोष (इ) प्लेटलेट्स (ई) माथिका सबै
	(घ) शुद्ध रगत बोक्ने रक्त नलीलाई के भिनन्छ ?
	(अ) धमनी (आ) शिरा (द) महाशिरा (र्द) केशिका

- (ङ) प्रकाश संश्लेषण क्रियामा क्न ग्यास निस्कन्छ ?
 - (अ) कार्बनडाइअक्साइड (आ) अक्सिजन

- (इ) नाइट्रोजन (ई) निष्क्रिय ग्यास

फरक लेख:

- (क) मैथ्निक र अमैथ्निक प्रजनन(ख) एक लिङ्गीय र दुई लिङ्गीय जीव
- (ग) बाइनरी फिसन र मिलटपल फिसन (घ) बाहय गर्भाधान र भित्री गर्भाधान
- (ङ) राता रक्त कोष र सेता रक्तकोष (च) धमनी र शिरा

४. छोटकरीमा लेख:

- (क) फिसन (ख) बडिङ (ग) रिजेनेरेसन (घ) स्पोरुलेसन

- (ङ) धमनी (च) शिरा (छ) केशिका
- (ज) प्रकाश संश्लेषण

छोटो उत्तर देऊ : ሂ.

- (क) भेजेटेटिभ प्रोपागेसन भनेको के हो, उदाहरणसहित लेख ।
- (ख) अमैथ्निक प्रजननका विशेषताहरू के के हुन् ?
- (ग) मैथ्निक प्रजननका फाइदाहरू के के हन् ?
- (घ) हेमोग्लोबिन कहाँ रहेको हन्छ, यसले के कार्य गर्दछ ?
- (ङ) प्रकाश संश्लेषण क्रियाका लागि आवश्यक पर्ने वस्तृहरू के के हुन्, लेख ।
- मुद्रको बनावट चित्रसहित वर्णान गर।
- मानव शरीरमा रक्त सञ्चार प्रक्रिया कसरी सञ्चालन हुन्छ, लेख।
- प्रकाश संश्लेषण प्रक्रियामा प्रकाशको भूमिका देखाउने एउटा प्रयोगको चित्रसहित वर्णान गर।
- प्रकाश संश्लेषण प्रक्रियामा कार्बनडाइअक्साइडको भूमिका देखाउने एउटा प्रयोग सचित्र बयान गर।
- १०. प्रकाश संश्लेषण प्रक्रियामा अक्सिजन ग्यास निस्कन्छ भन्ने प्रयोग चित्रसहित लेख।
- ११. स्टार्च परीक्षण भनेको के हो, यो कसरी गरिन्छ, लेख।

पृथ्वीको बनोट

(Structure of the Earth)

पृथ्वीको भूमण्डल चट्टान, बालुवा, माटो आदिबाट बनेको छ । पृथ्वीको सतहमा रहेका चट्टानहरू एकैनासका नभएर फरक फरक प्रकारका हुन्छन् । यिनीहरूको रङ, बनावट, गह्रौँपना फरक फरक हुन्छ । चट्टान विभिन्न खनिजहरू मिली बन्छ । खनिजहरू र ह्युमस (humus) वस्तुहरूबाट माटो बनेको हुन्छ ।

खनिज (Mineral)

खिनज प्रकृतिमा पाइने आफैँ बनेका ठोस पदार्थहरू हुन् । यसका भौतिक र रासायिनक गुणहरू समान हुन्छन् । खिनजहरू धेरैजसो यौगिकका रूपमा रहन्छन् । किलेकाहीँ तत्त्वको रूपमा पिन रहन्छन् । हेमाटाइट (hematite), चाल्कोपाइराइट (chalcopyrite) यौगिक हुन् भने सुन, गन्धक, हीरा तत्त्वका रूपमा पाइन्छन् । खिनजलाई धातुयुक्त खिनज र धातुरिहत खिनज गरी दुई समूहमा वर्गीकरण गर्न सिकन्छ ।

- १. धातुयुक्त खनिज (Metallic Minerals): खनिजबाट धातु निकालिएमा तिनीहरूलाई धातुयुक्त खनिज (metallic minerals) भनिन्छ । यी खनिजहरू धातुका यौगिक हुन् । लाभदायक रूपमा धातु निकाल्न सिकने खनिजलाई धाउ (ore) भनिन्छ, जस्तै : हेमाटाइट फलामको धाउ र चाल्कोपाइराइट तामाको धाउ हो ।
- शातुरिहत खिनज (Non-Metallic Minerals) : धातु उत्पादन नगिरने खिनजलाई धातुरिहत खिनज (non-metallic minerals) भिनन्छ । यी खिनजहरू सिमेन्ट, रासायिनक मल आदि बनाउन प्रयोग गिरन्छ । यी खिनजहरूमा क्याल्सियम, सोडियम, पोटोसियम जस्ता धातुहरू भए पिन त्यसबाट धातुको उत्पादन लाभदायक रूपमा निकाल्न सिक्दिन । धातुरिहत खिनजहरू रासायिनक पदार्थ बनाउन र घर, पुल, सडक बनाउन प्रयोग गिरन्छ । गहनामा पत्थरका रूपमा सजाउन, मूर्ति बनाउन तथा इन्धनका रूपमा पिन यसको प्रयोग गिरन्छ ।

खनिजका गुणहरू (Characteristics of Minerals)

खनिजका आफ्नै किसिमका गुणहरू हुन्छन् । ती गुणहरूको अध्ययनबाट नै खनिजहरू चिनिन्छन् ।

- खिनजको आफ्नै रङ हुन्छ । हेमाटाइट रातो, खैरो हुन्छ भने चाल्कोपाइराइट सुनौलो हिरयो हुन्छ ।
- २. खनिजको आफ्नै टलक हुन्छ । प्राय: धातुजन्य सबै खनिजको टलक हुन्छ ।
- ३. खनिज प्राय: कडा हुन्छ ।
- ४. खनिजका कणहरू मणिभ (crystal) आकारका हुन्छन् ।

खनिजको उपयोगिता (Uses of Minerals)

- १. खनिजहरूबाट धातु प्राप्त गर्न सिकन्छ ।
- २. यिनीहरूबाट विभिन्न रासायनिक पदार्थ बनाउन सिकन्छ ।
- ३. खनिजबाट सजावटका सामग्री बनाउन सिकन्छ ।
- ४. घर, पुल, सडक आदि बनाउन यसको प्रयोग गरिन्छ ।
- ५. इन्धनका रूपमा पनि यसको प्रयोग गर्न सिकन्छ ।

नेपालमा पाइने केही प्रमुख खनिजहरू (Some Important Minerals found in Nepal)

औद्योगिक विकासका लागि आवश्यक साधनहरूमध्ये खनिज पनि एक हो । देशको विकासका लागि खनिजहरूको महत्त्वपूर्ण स्थान रहेको हुन्छ । फलाम, इस्पात, सिमेन्ट तथा धातुसम्बन्धी उद्योगको स्थापना र विकास खनिजको उपलब्धि र सदुपयोगमा भर पर्दछ । हालसम्म नेपालमा पाइने केही प्रमुख खनिजहरूबारे तल प्रस्तुत गरिएको छ :

फलाम (Iron): नेपालमा फलामको उपयोग धेरै पहिलेदेखि घरायसी भाँडाकुँडा र हातहितयार बनाउन प्रयोग गिरन्थ्यो । रामेछाप र रोल्पा जिल्लामा परम्परागत विधिबाट फलामलाई खानीबाट निकालेर प्रशोधन गर्ने चलन थियो । हाल नेपालमा फलामको मुख्य धाउ हेमाटाइट (hematite) र म्याग्नेटाइट (magnetite) पाइएका छन् । फलाम लिलतपुर जिल्लाको फुलचोकी, रामेछापको ठोसे, तनहँको लब्दी, चितवनको जीखाबाङमा पाइएको छ ।

तामा (Copper): तामा नेपालमा परम्परागत रूपबाट उत्खनन भएको प्रमुख धातु हो । यसको प्रमुख धाउ चाल्कोपाइराइट (chalcopyrite) हो । धेरै पहिले ग्रामीण भेगका पहाडी इलाकाका व्यक्तिहरूको आर्थिक उपार्जनको माध्यम नै तामा खानी थियो । यसबाट मूर्ति, भाँडाकुँडा, मन्दिर आदि बनाउने प्रचलन थियो । तामा मकवानपुरको कालीटार, धादिङ, सोलुखुम्बु, उदयपुर, तनहुँ, वाग्लुङ, भोजपुर र डडेलधुरामा पाइन्छ । बिजुलीको तार, घरायसी प्रयोजनका भाँडाकुँडा र मन्दिर, मूर्ति, तक्मा आदि बनाउन यसको उपयोग गरिन्छ ।

सिसा (Lead): नेपालमा सिसा खानी गणेश हिमाल, लिलतपुरको फुलचोकी, खैरावाङ मकवानपुर र सोलुखुम्बुमा पाइएको छ । यसको प्रमुख धाउ ग्यालेना (galena) हो । यसलाई हिमाली भेगमा मानिसले धेरै पहिलेदेखि प्रयोगमा ल्याएको पाइन्छ ।

जस्ता (zinc): जस्तालाई प्राचीन रूपमा प्रयोगमा ल्याइएको पाइँदैन । तर यो हिजो आज एउटा महत्त्वपूर्ण धातुका रूपमा रहेको छ । जस्ताको खानी गणेश हिमाल, फुलचोकी, मकवानपुर, सङ्खुवासभा आदि स्थानमा पाइएको छ । फलामलाई लेपन गर्न तथा विभिन्न मिश्रित धातुहरू (जस्तै : पित्तल) बनाउन प्रयोग गरिन्छ ।

चुनढुङ्गा (Iimestone): चुनढुङ्गा धेरै पहिलेदेखि प्रयोग हुँदै आएको खनिज हो । नेपालमा खनिज स्रोतमा आधारित मुख्य उद्योग नै सिमेन्ट र चुन हुन् । चुनढुङ्गाका खानीहरू नेपालको विभिन्न भागमा पाइन्छ । चुनढुङ्गाका मुख्य खानीहरू उदयपुर, मकवानपुर, चोभार, सुर्खेत, अर्घाखाँची, धादिङ, काभ्रे, दाङ, सिन्धुली आदि ठाउँमा रहेका छन् ।

ग्रेफाइट (Graphite): ग्रेफाइटका खानीहरू नेपालका विभिन्न भागमा छिरिएर रहेका छन्। हालको सर्वेक्षणमा इलाम, धनकुटा, सिन्धुपाल्चोक र सङ्खुवासभामा ग्रेफाइट पाइएको छ। यसको मुख्य उपयोग पेन्सिल, रङहरू, लुब्रिकेन्ट बनाउन गरिन्छ।

माटो (Soil)

पृथ्वीको धेरैजसो भाग माटाले ढािकएको छ । माटाले नै जीवजन्तु तथा वनस्पतिलाई आश्रयस्थल प्रदान गरेको छ । माटाबाट नै वनस्पतिले आफ्नो खाना बनाउन आवश्यक पदार्थ पाउँछ । ससाना किराहरू घस्रने जीव, ब्याक्टेरिया, फन्जाइ आदिले आफ्नो जीवन चक्र नै माटामा पूरा गर्दछन् । तसर्थ माटाले पृथ्वीमा पाइने सजीवलाई अनुकूल वातावरण प्रदान गर्दछ । माटो चट्टानका ससाना टुक्रा, बालुवा, खनिज पदार्थ, जीवित वस्तु र मृत वस्तुको अवशेष मिसिएर बनेको एक किसिमको सम्मिश्रण हो ।

माटो बन्ने प्रक्रिया

- १. नदीनाला, खोला, भरना आदिले पहाडबाट ठुला ठुला ढुङ्गा बगाएर ल्याउँछ । त्यसरी पानीमा बगेर आएका ढुङ्गाहरू आपसमा ठोकिएर टुक्रिन्छन् । यस प्रक्रिया लामो समयसम्म चिलरहन्छ । यसबाट ससाना कणहरू, गिर्खा आदि बन्छन् । यस प्रक्रियाबाट माटो बन्न प्ग्छ ।
- २. दिनको तातो र रातको चिसोले गर्दा चट्टानहरू तात्ने र सेलाउने भइरहन्छन् । धेरै वर्षसम्म यो क्रिया हुँदा चट्टान टुक्रिन गई ससाना टुक्राहरू बन्छन् । यी टुक्राहरूबाट माटो बन्छ ।
- चट्टानको छिद्र वा प्वालमा नदीनालाको पानी छिद्छ । त्यसैगरी वर्षा हुँदा पर्ने पानी पिन चट्टानको छिद्रमा पस्छ । यसले चट्टानलाई टुक्र्याउन मदत गर्दछ र बिस्तारै चट्टान टुक्रँदै जान्छ । यसरी टुक्रिएर बनेका ससाना कणहरूबाट माटो बन्छ ।
- ४. चट्टान फाटेको ठाउँमा केही बोटिबरुवाहरू उम्रन थाल्छन् । ती बोटिबरुवाले बिस्तारै चट्टानलाई कमजोर बनाउँछ र चट्टान टुक्रिन थाल्छ । यसरी चट्टान टुक्रिएर माटो बन्न मदत गर्दछ ।
- ४. जोडसँग हावा बहँदा चट्टानको सतह खिइन गई बालुवा जस्ता कणहरू निस्कन्छन् र माटामा परिणत हुन्छन् ।

माटाको बनावट

टुक्रिएका चट्टान र जैविक पदार्थ मिलेर माटो बन्छ । साधरणतया चट्टानका ससाना कण, खिनज पदार्थ मिलेर माटो बन्छ । माटोमा हावा, पानी र जैविक पदार्थ पिन हुन्छन् । माटाको किसिमअनुसार माटामा पाइने तत्त्वहरू फरक फरक हुन्छन् । माटाको बनोटमा विभिन्न तहहरू हुन्छन् । माथिल्लो तहमा धेरै जैविक पदार्थ र दोस्रो

तहमा केही जैविक पदार्थ, बोटिबरुवाका जरा, किराफट्याङ्ग्रा र अन्य वस्तुहरू हुन्छन् । तेस्रो तहमा खिनज तत्त्वहरू फलाम, आल्मोनिय आदि हुन्छन् । अन्तिम तहमा मूल चट्टानी पदार्थ रहेको हुन्छ । यसरी कुहिएका रुख, पात, अन्य जैविक पदार्थ, हावा, पानी, चट्टान आदि मिलेर माटो बनेको हुन्छ ।

चित्र नं. *19.1*

क्रियाकलाप १

एउटा सफा सिसी लेऊ । त्यसमा आधा जित सफा पानी राख । अलिकित माटो ल्याऊ र सिसीमा हाल । सिसीलाई बिस्तारै केही समयसम्म हल्लाऊ । त्यसपछि त्यसलाई कुनै ठाउँमा नचलाई राख । केही समयपछि सिसीमा हेर । के के देख्छौ ? सिसीमा हालेको माटो

विभिन्न तहमा छुट्टिने छ । गहौँ किसिमका चट्टानका टुक्राहरू सिसीको पिँध र सो भन्दा माथि साना टुक्राहरू रहन्छन् । त्यसभन्दा माथि बालुवा रहन्छ । बालुवाभन्दा माथि माटाको तह रहन्छ । माटोभन्दा माथि पानी र ह्युमस रहन्छ । यसरी माटो विभिन्न पदार्थहरू मिली बनेको हुन्छ भन्ने कुरा प्रयोगले स्पष्ट पार्छ ।

माटाको प्रोफाइल (Soil Profile)

कुनै ठाउँको जिमनको सतहदेखि तल भित्री भागसम्मको माटोको प्रकार देखाई खिचिएको चित्रलाई सो ठाउँको माटाको प्रोफाइल भिनन्छ । सामान्यतया कुनै ठाउँको माटाको सतहमा मिसनो माटो, सडेगलेका जीवजन्तु तथा वनस्पितहरूका अवशेषहरू हुन्छन् । जिमन सतहभन्दा सतहमुनिको माटो केही कालो हुन्छ । जिमनमुनि बढी किस्सिएको माटो, चट्टान र भन् कडा चट्टान रहेको हुन्छ । ठाउँ हेरी माटाको प्रोफाइल फरक हुन्छ ।

भूक्षय र निक्षेपण (Erosion and Deposition)

तिमीहरूले पहिरो गएको देखेका छौ, त्यहाँ के के हुन्छ ? वर्षाको समयमा खोला किनारमा जिमन भत्केको, पानीले माटो बगाएको त देखेका छौ होला । यसरी पहिरो

जानु, खोला, नदी, नहर कुलो आदिले जिमन भत्काएर बगाई लैजानुलाई भूक्षय (erosion) भिनन्छ । त्यसैगरी खोलानाला, नदी आदिले माटो कुनै ठाउँमा लगेर थुपारिदिन्छ । यस क्रियालाई निक्षेपण (deposition) भिनन्छ । भूक्षय र निक्षेपण साथसाथै भइरहने प्रक्रिया हुन् । हावा, नदी, समुद्र, वर्षा आदिको तीव्र वेगले भूक्षय हुन्छ ।

हावा, हुरी, बतासले एक ठाउँको माटो र बालुवालाई उडाएर अर्को ठाउँमा पुऱ्याइदिन्छ । त्यसलाई फेरि वर्षा वा नदीको पानीले बगाएर अन्तै पुऱ्याइदिन्छ । यस्तो असर चट्टानमा र रुख नभएका नाङ्गा डाँडापाखाको सतहमा भइरहन्छ । त्यसैगरी नदीले तेजसँग बग्दा दायाँ बायाँको जिमनलाई काटेर बगाउँछ र कुनै ठाउँमा पुऱ्याएपछि छोडिदिन्छ । नदीहरू घुमेको ठाउँमा सम्म मैदान बनाएको हुन्छ । यसैगरी अग्ला भर्नाहरूले पनि पहाडलाई काटेर जिमनलाई बगाइरहेका हुन्छन् । नदीले बाढी आएको समयममा बगाएर लगेको माटो, बालुवा र बिरुवा तथा जनावरको शरीरलाई समुद्रमा पुऱ्याएका हुन्छन् ।

वर्षाले नरम चट्टानी माटालाई बगाएर अर्को ठाउँमा र धेरै जसो समुद्रसम्म बाढीका रूपमा पुऱ्याइदिन्छ । वर्षाका बेला खोलानालामा बिगरहेको पानी धिमलो हुन्छ किनभने यसले भूक्षय गराउँदै लगेको हुन्छ । वर्षाको पानीले भिरालो जिमनमा रहेको माटालाई कमजोर बनाएर पिहरो जान्छ । माथितिरबाट बग्दै गएको माटो, बालुवा आदि तल गएर जम्मा हुन्छ र मैदान बन्छ ।

समुद्रले यसको निजक रहेको माटालाई काटेर बगाउँछ र समुद्रिभित्र लैजान्छ । समुद्री आँधीले समुद्र निजक रहेका जिमनका चट्टानहरू फुटाउने तथा बगाउने गर्दछ र कुनै ठाउँमा लगेर जम्मा गर्दछ । यसरी हावा, पानी, वर्षा, नदी, समुद्रले भू क्षय र निक्षेपण गर्दछन् ।

माटाको संरक्षण

माटो प्रमुख प्राकृतिक साधन हो । यसको उचित संरक्षण हुनु आवश्यक छ । हाम्रो देशको अधिकांश भाग पहाडी धरातल भएकाले वर्षाको पानीले माटो धेरै क्षय भइरहेको छ । त्यसैगरी अवैज्ञानिक तरिकाको खेती र जङ्गल फँडानीले पनि बर्सेनि हजारौँ टन माटो पानीले बगाउँछ । त्यसैले यसको संरक्षण गर्न निम्नलिखित उपायहरू अपनाउन सिकन्छ :

- जङ्गल फँडानीलाई रोक्नुपर्दछ ।
- २. खाली चौर र नाङ्गा डाँडाहरूमा वृक्षरोपण गर्नुपर्दछ ।
- ३. पहाडी भिरालो क्षेत्रमा फलफुल तथा घाँसहरूका बिरुवा रोप्नु उपयुक्त हुन्छ ।
- ४. पहाडी क्षेत्रमा सकेसम्म तह तह गरा बनाएर खेती गर्नुपर्दछ ।

- प्र. नदीनालाको दायाँ बायाँ किनारमा बाँस जस्ता बिलयो जरा भएका बिरुवाहरू लगाउन्पर्छ ।
- ६. नाङ्गा डाँडा र भिरालो क्षेत्रमा पशु चरण गर्ने कार्य रोक्नुपर्दछ ।
- ७. पहाड फोडेर सडक, उद्योग, कलकारखाना र घर बनाउँदा ठुलो बिस्फोट गराउने कार्य गर्नु हुँदैन ।
- नदी कटान हुने क्षेत्रमा ढुङ्गाको ठुलो पर्खाल लगाउनुपर्दछ र नदी कटान रोक्नुपर्दछ ।
 यसरी माटोको संरक्षण गर्न सिकन्छ ।

परियोजना कार्य

- १. तिम्रो विद्यालय निजक रहेको नदी किनारमा तथा चट्टान निस्केको ठाउँमा शिक्षकसिहत शैक्षिक भ्रमण जाऊ । यसरी घुम्न जाँदा बालुवा, चट्टान आदिमा खिनज कसरी रहेका हुन्छन्, अवलोकन गर । केही चट्टानका नमुनाहरू विद्यालयमा ल्याएर त्यसको अध्ययन गर ।
- २. तिम्रो बसोबास स्थल नजिक पहाडमा वा नदी किनारमा कसरी भूक्षय भइरहेको छ, त्यसको अध्ययन गरी प्रतिवेदन तयार गर ।

प्रयोगात्मक कार्य

क्रियाकलाप १ राम्ररी अध्ययन गर । तिम्रो वासस्थान वरपर रहेको माटाको बनावट कस्तो छ, क्रियाकलाप १ जस्तै प्रयोग गरी देखाऊ ।

सारांश

- १. धात् उत्पादन गरिनेलाई धात्युक्त र नगरिनेलाई धात्रहित खनिज भनिन्छ ।
- २. खनिजमा रङ, टलक, कडापन हुन्छ । यसमा मणिभ आकारका कणहरू हुन्छन् ।
- ३. नेपालमा फलाम, तामा, जस्ता, सिसा, चुन ढुङ्गा, ग्रेनाइट आदि खनिजहरू पाइन्छन् ।
- ४. खिनज पदार्थ, चट्टान, बालुवा, जीवित वस्तु र मृत वस्तुको अवशेष मिली माटो बनेको हुन्छ ।
- ५. पिहरो, बाढी आदिले जिमन भत्काउनुलाई भूक्षय भिनन्छ भने एक ठाउँको माटो अर्को ठाउँमा जम्मा गर्नुलाई निक्षेपण भिनन्छ ।
- ६. वृक्षरोपण गरेर, गरैगरा बनाई खेती गरेर, नदी किनारमा बाँध बनाएर, भिरालो जिमनमा फलफूल तथा घाँस रोपेर माटोको संरक्षण गर्न सिकन्छ ।

१. खाली ठाउँमा मिल्दो शब्द भर :

- (क) खनिजका कणहरू..... आकारका हन्छन् ।
- (ख) फलामको मुख्य धाउ हो ।
- (ग) चुन ढुङ्गामा आधारित उद्योग र चुन हुन्।
- (घ) भूक्षय र साथसाथै भइरहने प्रक्रिया हुन् ।

२. छोटो उत्तर लेख:

- (क) नेपालमा पाइने प्रमुख खनिजहरू के के हुन् ?
- (ख) खनिजका उपयोगिताहरू लेख ।
- (ग) माटो कसरी बन्छ, लेख ।
- (घ) भूक्षय भनेको के हो ?
- (ङ) निक्षेपण केलाई भनिन्छ ?
- ३. धातुयुक्त खनिज र धातुरिहत खनिजिबच फरक छुट्याई लेख।
- ४. माटो कुन कुन वस्तुहरू मिली बन्छ, माटाको प्रोफाइल देखाउने एउटा चित्रसहित व्याख्या गर ।
- प्र. खिनजहरू नेपालको कुन कुन ठाउँमा पाइन्छन् र ती के कामका लागि प्रयोग गरिन्छ,चार्ट बनाई लेख ।

मीसम न हावापानी

(Weather and Climate)

तिमी बसेको ठाउँको हावापानी कस्तो छ, धेरै वर्षा हुन्छ वा थोरै, वास्तवमा हावापानीमा तातोपन र वर्षाको स्थिति जस्ता कुराहरू समावेश हुन्छन् ।

हावापानी ठाउँअनुसार फरक फरक हुन्छ । हाम्रो देशको हावापानी र अरेबियन तथा अन्य देशको हावापानीमा भिन्नता पाइन्छ । हाम्रे देशको पिन तराई, पहाड, हिमालको हावापानीमा अन्तर छ । कुनै ठाउँमा बढी गर्मी हुन्छ । कुनै ठाउँमा बढी जाडो हुन्छ । कुनै ठाउँमा धेरै वर्षा र कुनैमा कम हुन्छ ।

हावापानीको सूक्ष्म रूप मौसम हो । मौसम परिवर्तन भइरहन्छ । एउटै क्षेत्रको फरक ठाउँमा फरक मौसम हुन सक्छ । एक ठाउँमा पानी पर्दा अर्को ठाउँमा घाम लागिरहेको हुन सक्छ । त्यस्तै कुनै ठाउँ ओसिलो कुनै पारिलो हुन सक्छ । मौसम समयअनुसार पिन फरक पर्छ । एकै ठाउँमा पिन कुनै समयमा जाडो त कुनै समयमा गर्मी हुन सक्छ । कहिले वर्षा त कहिले सुक्खा हुन्छ ।

निश्चित क्षेत्रको निश्चित समयाविधको वायुमण्डलीय अवस्थालाई मौसम भनिन्छ । कुनै क्षेत्रको वर्षभरिको मौसमको औसत रूपलाई हावापानी भनिन्छ ।

मुख्यत: विश्वको हावापानीलाई उष्ण (tropical), समशीतोष्ण (temperate) र शीत (cold or tundra) गरी तीन भागमा विभाजन गर्न सिकन्छ । यसका पनि विभिन्न उपविभाजनहरू छन् । हावापानीले वनस्पति र जनावरका साथै मानिसको जनजीवनलाई प्रत्यक्ष प्रभाव पार्दछ ।

हावापानीलाई प्रभाव पार्ने तत्त्वहरू (Factors Effecting Climate)

हावापानीलाई विभिन्न तत्त्वहरूले प्रभाव पारिरहेको हुन्छ । भूमध्य रेखादेखिको दुरी, उचाइ, ढाल, समुद्री दुरता, समुद्री धार, वन जङ्गल, नदी तथा ताल, स्थानीय वाय, मानवीय क्रियाकलापहरू आदिले हावापानीलाई प्रभाव पार्दछ । यसमध्ये मुख्य तीन तत्त्वहरूको छोटो जानकारी तल प्रस्तुत गरिएको छ :

(क) भूमध्य रेखादेखिको दुरी (Distance from Equator)

पृथ्वीलाई दक्षिणी र उत्तरी दुई गोलार्धमा विभाजन गर्ने बिचको पूर्ण वृत्ताकार काल्पिनक रेखालाई भूमध्य रेखा भनिन्छ । पृथ्वी गोलो भएकाले सूर्यको किरण भूमध्य रेखीयक्षेत्रमा बाह्रै महिना सिधा पर्दछ । त्यसैले यस क्षेत्रमा गर्मी हुन्छ । भूमध्य रेखाबाट जित उत्तर वा दक्षिणितर लाग्यो उत्तिनै सूर्यको किरण छड्के पर्छ । छड्के किरणले वायमण्डलको

बाक्लो सतह पार गर्नुपर्ने र धेरै फैलने भएकाले ताप कम हुन्छ । यसरी भूमध्य रेखाबाट जित टाढा भयो त्यित जाडो बढ्दै जान्छ । धुर्वीय प्रदेशमा त भन् बाह्रै महिना हिउँले ढाकेको हुन्छ ।

हावाको चाप र हरित गृहको प्रभावले उचाइ बढ्दै जाँदा तापक्रम घट्दै जान्छ । त्यस्तै उचाइ घट्दै जाँदा तापक्रम बढ्दै जान्छ । सामान्यतया समुद्री सतहबाट प्रत्येक 160–165 मिटरको उचाइमा 1°c तापक्रम कम हुन्छ । नेपालको तराई क्षेत्रमा गर्मी र हिमाली क्षेत्रमा जाडो हुनाको कारण पिन यही हो । मनसुनी वायुको सम्मुख पर्ने पहाडको ढालमा बढी वर्षा रिबमुख पर्ने ढालमा कम वर्षा हुन्छ । नेपाल भूमध्य रेखाबाट उत्तरमा पर्ने भएकाले यहाँको पहाडको दक्षिणी ढाल पारिलो हुन्छ । उत्तरको ढालमा तुलनात्मक रूपमा जाडो हुन्छ ।

समुद्री दुरी (Distance from Sea)

पानी ढिलो तात्छ र ढिलै सेलाउँछ । जिमन छिटो तात्छ र छिट्टै सेलाउँछ । जिमन

चिसो हुँदा समुद्र तातै हुन्छ । त्यस्तै जिमन तातिसक्दा पनि समुद्र चिसै हुन्छ । समुद्र निजकैको ठाउँहरूमा जाडोमा समुद्रबाट तातो र गर्मीमा चिसो हावा बहने भएकाले धेरै जाडो र धेरै गर्मी हँदैन । समशीतोष्ण र रमणीय हावापानी हुन्छ । समुद्र नजिकै जलवाय युक्त वाय बहने भएकाले बेला बेलामा पानी परिरहन्छ ।

सम्द्रबाट टाढा हँदै जाँदा खासगरी महादेशका भित्री भागहरूमा जाडोमा अत्यन्त जाडो र गर्मीमा अत्यन्त गर्मी हुन्छ । यस्तो हावापानीलाई विसम (extreme) हावापानी भनिन्छ ।

नेपालको हावापानी (Climate of Nepal)

नेपाल करिब 26° देखि 30° उत्तरी अक्षांशमा पर्दछ । भूमध्य रेखादेखि 30° उत्तरीदेखि 30° दक्षिणी अक्षांशसम्मको भागलाई उष्ण (tropical) प्रदेश मानिन्छ । यसैले नेपाल उष्ण प्रदेशमा पर्दछ । अक्षाङश (latitude) का हिसाबले नेपाल उष्ण प्रदेशमा पर्ने भए पनि उचाइका कारणले नेपालको हावापानीमा विविधता पाइन्छ । समुद्र सतहबाट 60 मिटरदेखि 1200 मिटरसम्म तराई मधेसमा उष्ण (tropical) हावापानी पाइन्छ । यहाँ ग्रीष्ममा 40°c भन्दा बढी तापक्रम प्रख भने हिउँदमा 6°c भन्दा कम तापक्रममा भर्छ । मङ्सिर तथा पुसमा शीतलहर चल्ने भए पनि अरू बेला गर्मी हुन्छ । उर्बर जिमन भएको यस क्षेत्रमा उष्ण सदाबहार (evergreen) जङ्गल पाइन्छ ।

समुद्री सतहबाट 1200-2100 मिटरको उचाइमा पर्ने बेसीँ तथा उपत्यकाहरूमा न्यानो हावापानी पाइन्छ । यहाँ ग्रीष्ममा 30°C सम्म ताप प्ग्छ भने हिउँदमा तापक्रम हिमाङ्कसम्म भर्छ । यस क्षेत्रमा पतभरड (deciduous) वनस्पति पाइन्छ ।

समुद्री सतहबाट 2100-3300 मिटरसम्मको मध्य पहाडी प्रदेशमा समशीतोष्ण हावापानी पाइन्छ । ग्रीष्ममा 20°C र हिउँदमा 0°C भन्दा कम तापक्रम पुग्छ । यहाँ कोणधारी (coniferous) प्रकारका वनस्पति पाइन्छ ।

समुद्री सतहबाट 3300-5000 मिटरको उच्च पहाडी भेगमा जाडो (cold) हावापानी पाइन्छ । यहाँ ग्रीष्ममा 15°C सम्म र हिउँदमा हिमाङ्कभन्दा केही कम तापक्रम पुग्छ । 5000 मिटरभन्दा माथि बारै महिना हिउँ पर्छ । यहाँको तापक्रम बाह्रै महिना हिमाङ्कभन्दा कम हुन्छ । यहाँ कुनै किसिमको वनस्पति पाइँदैन । यस्तो हावापानीलाई tundra पनि भनिन्छ ।

ग्रीष्म (summer) मा मनसुनले प्रशस्त वर्षा गराउँछ । हिउँदमा भने सुक्खा हुन्छ । तर पनि भूमध्य सागरबाट आउने वायुले हिउँदमा पनि केही वर्षा गराउँछ । यो वायु पश्चिमबाट आउने भएकाले पश्चिम नेपालमा बढी र पूर्वतिर कम पानी पर्छ ।

नेपालको पश्चिमितर भारत, पाकिस्तानको थार मरुभूमि र अरेबियन मरुभूमि पर्छ । त्यहाँबाट आउने तातो वायुले पूर्वको तुलनामा पश्चिम नेपालमा बढी गर्मी हुन्छ । हिमालय पर्वतले नेपालको हावापानीमा धेरै प्रभाव पारेको छ । यसले स्थायी नदीहरू जन्म दिएर देशलाई सुक्खा हुनबाट जोगाएको छ । यसकै कारणले प्रशस्त वर्षा हुन्छ । हिउँदमा धुर्वीय क्षेत्रबाट आउने चिसो हावालाई छेक्छ । ग्रीष्ममा चिसो हावा दिएर धेरै गर्मी हुनबाट रोकेको छ ।

मनसुन (Monsoon)

मनसुन सुरु भएपछि वर्षा हुन थाल्छ । नेपालमा चैत/वैशाख (april) देखि असोज/कार्तिक (october) सम्म मनसुनी वायु (pre-mensoon) ले केही मात्रामा पानी पार्छ । असार, साउन र भाद्र महिनालाई मध्य मनसुन मानिन्छ । यस बेला नेपालमा प्रशस्त पानी पर्छ । त्यसपछि उत्तर मनसुन (late monsoon) मा पनि कमै पानी पर्छ । यसरी हेर्दा मनसुन भनेको वर्षा जस्तो लागे पनि मनसुन भनेको आवधिक (seasonal or periodic) वायु हो ।

हिउँदमा जिमन चिसो भए पिन समुद्र तातै हुन्छ । त्यसैले जिमनको वायुको चाप बढी र समुद्रको वायुको चाप कम हुन्छ । हिउँदमा वायु जिमनबाट समुद्रितर बहन्छ । जिमनबाट बहने भएकाले सुक्खा हुन्छ र पानी पार्दैन । यसलाई हिउँदे मनसुन भिनन्छ । ग्रीष्ममा जिमन तातो र समुद्र चिसो हुन्छ । वायुको चाप समुद्रमा बढी र जिमनमा कम हुन्छ । समुद्रबाट जिमनितर वायु बहन्छ । यसमा जलवाष्प भएकाले प्रशस्त पानी पार्छ । यसलाई ग्रीष्मकालीन मनस्न भिनन्छ । मनस्न ६ महिना जिमनितर र ६ महिना समुद्रितर बहन्छ । त्यसैले यसलाई

आविधक वायु भिनएको हो । दक्षिणपूर्व एसिया, चीन, कोरिया आदि ठाउँमा मनसुनी हावापानी पाइन्छ । ग्रीष्ममा वर्षा र हिउँद सुक्खा हुने मनसुनको प्रमुख विशेषता हो ।

नेपालमा दक्षिण पूर्वमा पर्ने बङ्गालको खाडीबाट मनसुनी वायु आउँछ । यसले गर्दा नेपालको पूर्वी क्षेत्रमा बढी पानी पर्छ । पश्चिम नेपालमा तुलनात्मक रूपमा कम पानी पर्छ । मध्य पहाडी भेगमा 150–250 से.मी. मात्र वर्षा हुन्छ । यी क्षेत्र मनसुनी वायुको विमुखमा पर्दछ । दक्षिण पूर्वी भाग खुलेको र उत्तरी भागमा हिमालय पर्वत भएको पोखरा उपत्यका नेपालको सबैभन्दा बढी पानी पर्ने ठाउँ हो । त्यसकै छायामा पर्ने (rain shadow) मनाङ नेपालको सबैभन्दा कम पानी पर्ने क्षेत्र हो ।

मनसुनका असरहरू (Effects of Mosoon)

मनसुनमा निर्भर देशमा सिँचाइको प्रमुख आधार वर्षा हुन्छ । कृषि व्यवसायका लागि मनसनुको निकै महत्त्व हुन्छ । यसले सिँचाइको काम गर्छ र कृषि उत्पादन बढाउँछ । भूमिगत पानीको सतह बढाएर खानेपानीको आपूर्ति गर्छ । पानीको मूल फुटाउँछ । नदीमा जलप्रवाह बढ्न गई विद्युत् उत्पादन हुन्छ । मध्य गर्मीमा शीतलता दिन्छ ।

मनसुनले ल्याउने अत्यधिक वर्षाले बाढी पिहरो जाने, सम्म मैदानी भाग डुबानमा पर्ने र भूक्षय हुने गर्दछ । यसले बर्सेनि ठुलो धनजनको क्षित गराइरहेको हुन्छ । तटबन्ध निर्माण गरेर, वृक्षरोपण गरेर, वन जङ्गलको संरक्षण गरेर यसको असरलाई न्यूनीकरण गर्ने सिकन्छ ।

परियोजना कार्य

हावापानीको विविधतासँगै वनस्पतिमा के प्रभाव पर्दछ, तिम्रो वासस्थान वरिपरिको हावापानीको अवस्था र त्यसले वनस्पतिमा पारेको प्रभाव अध्ययन गरी टिपोट तयार पार ।

सारांश

- १. वायुमण्डलीय अवस्थाको वार्षिक औसत रूप नै हावापानी हो ।
- हावापानीलाई प्रभाव पार्ने प्रमुख तत्त्व भूमध्य रेखादेखिको दुरी, उचाइ, ढाल र समुद्री दुरी हुन् ।
- ३. नेपाल उष्ण मनसुनी हावापानीको प्रदेशमा पर्छ । तर उचाइको विविधताले यहाँ उष्ण, उपोष्ण, समशीतोष्ण जाडो र अति जाडो हावापानी पाइन्छ ।

- ४. मनसुन समुद्रबाट जिमनितर र जिमनबाट समुद्रितर बहने आविधक वायु हो । समुद्रबाट जिमनितर बहने वायुले वर्षा गराउँछ ।
- ५. दक्षिण पूर्वको बङ्गालको खाडीबाट नेपालमा मनसुनी वायु आउँछ ।
- ६. मनसुनले गराउने अत्यधिक वर्षाले बाढी पहिरो, भूक्षय जस्ता समस्या ल्याउँछ ।

यक	ли

		0	ت		
9	खा	ला	ठाउ	भर	:

- (क) वर्षभरिको मौसमको औसत रूपलाई भिनन्छ ।
- (ख) भूमध्य रेखीय क्षेत्रमा सूर्यको किरण वर्षभिर नै पर्दछ ।
- (ग) प्रत्येक देखि सम्मको उचाइमा 1°c तापक्रम घट्छ ।
- (घ) नेपालको सन्दर्भमापट्टिको पाखामा पारिलो घाम लाग्छ ।
- (ङ) नेपालमा मनस्न बाट आउँछ ।

२. दिइएका उत्तरमध्ये ठिक उत्तर छान :

- (क) तलका भनाइमा कुन ठिक हो ?
 - (अ) मौसम र हावापानी एउटै हो ।
 - (आ) मौसमले हावापानी निर्धारण गर्छ ।
 - (इ) हावापानीले मौसम निधारण गर्छ ।
 - (ई) मौसम र हावापानीको सम्बन्ध छैन ।
- (ख) भूमध्य रेखाले के गर्छ ?
 - (अ) पृथ्वीलाई पूर्व र पश्चिम दुई गोलार्धमा विभाजन गर्छ ।
 - (आ) समय बताउँछ ।
 - (इ) उत्तर र दक्षिण दुई गोलार्धमा विभाजन गर्छ ।
 - (ई) पानी पार्छ ।

(ग)	मनसुन कुन वायु हो ?				
	(अ) स्थानीय वायु	(आ) पर्वतीय वायु			
	(इ) बाढी पहिरो ल्याउने वायु				
	(ई) समुद्रबाट जिमनतर्फ र ज	मिनबाट समुद्रतर्फ जाने आवधिक वायु			
(घ)	मनसुनी वायुको विमुखमा पर्ने	ढालमा (पाखामा) कति वर्षा हुन्छ ?			
	(अ) कम वर्षा हुन्छ ।	(आ) बढी वर्षा हुन्छ ।			
	(इ) समान वर्षा हुन्छ ।	(ई) वर्षा हुँदैन ।			
(ङ)	नेपालमा सबैभन्दा बढी वर्षा ह	हुने ठाउँ हो ।			
	(अ) इलाम	(आ) गोरखा			
	(इ) मनाङ	(ई) पोखरा			
छोट	ो उत्तर देऊ :				
(क)	हावापानीको परिभाषा लेख ।				
(ख)	समुद्री दुरताले हावापानीमा के	प्रभाव पार्छ ?			
(ग) धुर्वीय प्रदेशमा जाडो हुनाको कारण के हो ?					
(घ) नेपालको हावापानीमा केले प्रभाव पारेको छ ?					
(ङ) नेपालको पहाडी प्रदेशमा कस्तो हावापानी पाइन्छ ?					
कार	एण देऊ :				
(क) पश्चिम नेपालमा हिउँदे बाली राम्रो हुन्छ ।					
(ख) भापामा धान उत्पादन राम्रो हुन्छ ।					
(ग) मनाङमा कम पानी पर्छ ।					
(घ)	पूर्वी पहाडी क्षेत्रमा बाढी पहिर	रोको प्रकोप बढी हुन्छ ।			
लाम	गे उत्तर देऊ :				
(क)	हावापानीमा असर पार्ने तत्त्वह	रूको बयान गर ।			
(ख)	(ख) मनसुन कसरी उत्पन्न हुन्छ, यसका असरहरू के के हुन्, उल्लेख गर ।				

₹.

8.

ሂ.

पृथ्वी न अन्तिनिक्ष

(Earth and space)

मानिसलाई चेतना भएदेखि नै पृथ्वी कसरी बन्यो होला, सूर्य, चन्द्रमा, ग्रह, ताराहरू कसरी बने होलान्, ती कित होलान्, कहाँसम्म फैलिएका होलान्, जस्ता जिज्ञासाहरू रिहआएको पाइन्छ । यसैगरी पृथ्वीको सृष्टि कसरी किहले भयो होला, पृथ्वीको सतहमा देखिने सुन्दर पहाड, पर्वत, नदीनाला, ताल, समुद्र, मैदान कसरी बने होलान्, आदि विषयमा गिहरो चिन्तन गर्दै आएको पाइन्छ । पृथ्वीको उत्पत्तिबारे एकमत पाइँदैन ।

पृथ्वीको उत्पत्तिबारे परिकल्पनाहरू (Some Hypotheses About the Origin of the Earth)

पृथ्वीको उत्पत्तिबारे सर्वमान्य सिद्धान्त प्रतिपादन भइसकेको छैन । यस सम्बन्धमा वैज्ञानिकहरूले आआफ्नै मत प्रस्तुत गरेका छन् । केही परिकल्पनाहरू यस प्रकार छन् :

सूर्य दुक्रिएर पृथ्वीलगायत ग्रहहरू बनेको परिकल्पना (Plantesimial Hypothesis)

सर्वप्रथम सन् 1749 मा फ्रान्सका जर्ज बफन (George Buffon) ले पृथ्वीको उत्पत्तिबारे सिद्धान्त प्रस्तुत गरे । उनको सिद्धान्तअनुसार धेरै पहिले ब्रम्हमाण्डमा घुम्दै गरेको एउटा तारा सूर्यसँग ठक्कर खाएर सूर्यको भाग दुक्रिएपछि पृथ्वीलगायत अन्य ग्रह र उपग्रहहरू बने ।

२. निहारिका परिकल्पना (Nebular Hypothesis)

सन् 1755 मा जर्मन दार्शनिक कान्ट (Kant) ले प्रस्तुत गरेको निहारिका परिकल्पनालाई सन् 1796 मा लेप्लास (Laplace) ले सुधार गरे । उनको भनाइअनुसार भन्डै साढे चार अर्ब वर्ष पहिले अन्तरिक्षमा वाष्पपूर्ण पिण्ड घुमिरहेको थियो । यसरी घुम्ने क्रममा यो पिण्ड सेलाउँदै खुम्चन थालेपश्चात् यसबाट ससाना पिण्डहरू टुक्रिएर बाहिर उछिट्टिए । ती टुक्राहरू घुम्दै ठुलो पिण्डलाई परिक्रमा गर्न थाले । यसरी ठुलो पिण्ड सूर्य र अन्य ससाना पिण्ड ग्रहका रूपमा स्थापित भए ।

३. ज्वार सिद्धान्त (Tidal Theory)

सन् 1917 मा जिन्स (Jeans) र जेफ्रे (Jeffrey) ले प्रतिपादन गरेको परिकल्पनाअनुसार प्राचीन कालमा एउटा ठुलो तारा घुम्दाघुम्दै सूर्यको नजिक पुग्यो । यस ताराको आफ्नो आकर्षण बलले सूर्यबाट ज्वार उत्पन्न गरायो । उक्त ज्वारीय पदार्थ सेलाएर चिसो भई टुक्रिदा ग्रह, उपग्रह आदि बने । यसरी नै पृथ्वी पनि बनेको हो ।

४. आकाश गङ्गाबाट सौर्यमण्डल बनेको सिद्धान्त (Solar System from Milky Way) यस सिद्धान्तअनुसार आकाश गङ्गामा भएका साना ठुलो धुलाका कणहरू आपसमा आकर्षित हुँदै जोडिँदा ठुलो पिण्ड सूर्य बन्यो । यसै गरी अन्य ग्रहहरू पनि बने ।

पृथ्वीमा जीवहरू उत्पत्ति हुनाका कारणहरू

पृथ्वीको उत्पति 4.5 अर्ब वर्ष पहिले भएको अनुमान गरिन्छ । पृथ्वीको उत्पत्ति हुँदा जीवलाई अनुकूल हुने वातावरण थिएन । पृथ्वीमा विभिन्न किसिमका हलचल र परिवर्तन हुँदै गई जीवलाई अनुकूल वातावरण सिर्जना भयो । पृथ्वीमा जीवहरू उत्पत्ति हुनाका मुख्य कारणहरू निम्नानुसार छन् :

- 9. जीवलाई आवश्यक पर्ने हावा (O_2, N_2, CO_2) आदि अनुकूल हुनु
- २. जीवलाई चाहिने मात्रामा पानीको प्राप्यता
- ३. जीवलाई आवश्यक पर्ने तापक्रम आदि ।

पृथ्वी र सूर्यको स्थिति परिवर्तन

पृथ्वीलाई आफ्नो अक्षको वरिपरि घुम्न 24 घण्टा लाग्छ भने सूर्यको वरिपरि घुम्न 365 दिन लाग्छ । पृथ्वीको केन्द्र भई उत्तरी र दक्षिणी ध्रुवलाई जोड्ने काल्पनिक रेखालाई अक्ष भिनन्छ । पृथ्वीले सूर्यलाई परिक्रमा गर्ने मार्गलाई कक्ष (orbit) भिनन्छ । पृथ्वीको यही कक्षीय धरातल (orbital plane) मा पृथ्वीको अक्ष लम्ब रूपमा नरही 66.5° कोणमा ढिल्किएको छ । त्यसैले पृथ्वीको अक्षले कक्षको सतहलाई 66.5° को कोण पारी घुम्छ । यसरी अक्ष सिधा नभई 66.5° को कोण पारी ढल्केको हुनाले पृथ्वीमा निम्नलिखित प्रभाव परेको पाइन्छ :

- भूमध्य रेखामा बाहेक अन्य स्थानमा दिन र रात सधैँ बराबर हुँदैन । कहिले दिन लामो तर रात छोटो र कहिले दिन छोटो तर रात लामो हुन्छ ।
- २. पृथ्वीमा ऋतुको परिवर्तन भइरहन्छ ।

- ३. सूर्यको किरण जिहले पिन एकै ठाउँमा लम्ब रूपले पर्दैन । यसबाट हावापानीमा ठुलो प्रभाव परेको छ ।
- ४. सूर्य सधैँ ठिक पूर्वबाट उदाएर ठिक पश्चिममा अस्ताउँदैन ।
- पूर्वको मध्याह्न बेलाको उचाइ दिनदिनै घटबढ भइरहन्छ ।

ऋत् परिवर्तन

पृथ्वीले सूर्यलाई 365 दिनमा एक पटक घुम्छ । पृथ्वीले सूर्यलाई दीर्घ वृत्ताकार कक्षमा घुम्दा कहिले सूर्यबाट नजिक र कहिले टाढा पर्दछ । पृथ्वी आफ्नो कक्षको विभिन्न स्थानमा पर्न आउँदा विभिन्न भागमा तातिने र चिसिने भएकाले नै ऋतु परिवर्तन हुन्छ । एक वर्षलाई चार ऋतुमा विभाजन गरिएको छ : (१) ग्रीष्म (summer) (२) शरद (autumn) (३) शिशिर (winter) (४) वसन्त (spring)

जुन 21 को दिन (लगभग असार 7/8 गतेतिर) सूर्यको किरण कर्कट रेखामाथि लम्ब रूपले पर्दछ । त्यस बेला उत्तरी गोलार्धको धेरै भाग सूर्यतिर फर्केको हुन्छ । त्यसैले त्यस बेला उत्तरी गोलार्धमा दिन लामो र रात छोटो हुन्छ । यस समयमा उत्तरी गोलार्धमा गर्मी र दक्षिणी गोलार्धमा जाडो हुन्छ । त्यसैले उत्तरी गोलार्धमा ग्रीष्म र दक्षिणमा शिशिर ऋतु हुन्छ ।

सेप्टेम्बर 23 को दिन (लगभग असोज 7 गतेतिर) सूर्यको किरण ठिक भूमध्य रेखामाथि लम्ब रूपले पर्दछ । यस बेला पृथ्वीको सबै ठाउँमा दिन र रात बराबर हुन्छ । यस बेला न जाडो न गर्मी अर्थात् ठिक्कको वातावरण हुन्छ । यस बेला उत्तरी गोलार्धमा शरद् ऋतु र दिक्षणी गोलार्धमा वसन्त ऋतु हुन्छ ।

डिसेम्बर 22 का दिन (लगभग पुस 7 गतेतिर) सूर्यको किरण मकर रेखामाथि लम्ब रूपले पर्दछ । त्यस बेला उत्तरी गोलार्धमा दिन छोटो र रात लामो हुन्छ भने दक्षिणी गोलार्धमा दिन लामो र रात छोटो हुन्छ । यस समयमा उत्तरी गोलार्धमा जाडो र दक्षिणीमा ग्रीष्म ऋतु हुन्छ ।

यसैगरी मार्च 21 का दिन (लगभग चैत 8 गतेतिर) सूर्य फेरि भूमध्य रेखामाथि पर्दछ । पृथ्वीको सबै ठाउँमा दिन र रात बराबर हुन्छ । दुवै गोलार्धमा न गर्मी बढी न जाडो बढी हुन्छ । उत्तरी गोलार्धमा वसन्त र दक्षिणी गोलार्धमा शरद् ऋतु हुन्छ । यो क्रम चक्रका रूपमा निरन्तर चलिरहन्छ ।

चन्द्रमाको कला (Phases of the Moon)

तिमीहरूले आकाशमा राती चन्द्रमाको आकार घटबढ भएको देखेकै छौ होला । कहिले चन्द्रमाको आकार गोलो, कहिले आधा गोलो र कहिले हाँसिया जस्तो देखिन्छ । यस्तो किन हुन्छ, थाहा छ ?

ग्रह र उपग्रहको आफ्नै प्रकाश हुँदैन । यिनीहरू सूर्यको प्रकाशलाई परावर्तन गरी उज्यालो देखिन्छन् । चन्द्रमाको पिन आफ्नो प्रकाश हुँदैन । यसले पिन सूर्यको प्रकाश परावर्तन गरी पृथ्वीतिर फर्काउँछ र उज्यालो देखिन्छ । सूर्यको प्रकाश चन्द्रमाको जित भागमा पर्दछ त्यित नै भाग पृथ्वीबाट देखिन्छ ।

चित्र नं. 21.2

पुर्णिमाको दिनमा पश्चिममा सुर्यास्त हुने समयमा नै पूर्वतिर पूर्ण चन्द्र देखिन्छ । चन्द्रमाले पृथ्वीलाई एक पटक घ्म्न 27 दिन लगाउँछ । चन्द्रमाले पृथ्वीलाई घुमिरहेको अवस्थामा पृथ्वीले पिन सूर्यको परिक्रमा गरिरहेको हुन्छ । त्यसैले चन्द्रमाले पृथ्वीको परिक्रमा गरी पहिलेको स्थितिमा आउन २९.५ दिन लाग्छ । त्यसैले चन्द्रमा अघिल्लो दिन भन्दा भोलिपल्ट 50 मिनेट ढिलो देखिन्छ । यसै क्रममा 15 दिनसम्म 50 मिनेट प्रतिदिन ढिलो हुँदै जाँदा सूर्य उदाउने र चन्द्रमा उदाउने समय एउटै हुन्छ । यस अवस्थामा चन्द्रमा पृथ्वीबाट देख्न सिकँदैन । चन्द्रमाको यस्तो स्थितिलाई औँसी (new moon) भनिन्छ । औँसीको भोलिपल्टबाट चन्द्रमा उदाएको नदेखे पनि पश्चिममा अस्ताएको देखिन्छ । यसको उज्यालो भाग क्रमश: बढ्दै गएर 15 दिनपछि सूर्य अस्त हुँदा चन्द्रमा उदय हुन्छ र पृथ्वीबाट चन्द्रमाको पूरा उज्यालो भाग देखिन्छ । चन्द्रमाको यस्तो स्थितिलाई पूर्णिमा (full moon) भिनन्छ । चन्द्रमाको उज्यालो भागको आकार प्रत्येक दिन बदलिरहन्छ । पृथ्वीबाट देखिने चन्द्रमाको विभिन्न आकारलाई चन्द्रमाको कला (phases of the moon) भनिन्छ । औँसीको भोलिपल्टबाट चन्द्रमाको उज्यालो भाग क्रमशः बढ्दै गई उच्चतम अवस्था (पूर्णिमा) मा प्ग्ने अवधिलाई शुक्ल पक्ष (bright half) भनिन्छ । पूर्णिमाको भोलिपल्टबाट चन्द्रमाको उज्यालो भाग घट्दै गई चन्द्रमा नदेखिने अवस्थालाई कृष्ण पक्ष (dark half) भनिन्छ । एक औँसीबाट अर्को औंसी वा एक पूर्णिमाबाट अर्को पूर्णिमासम्मको अवधिलाई एक चन्द्रमास भिनन्छ ।

परियोजना कार्य

एक महिनासम्म चन्द्रमाको अवलोकन दिनहुँ गर र चन्द्रमाको कला स्पष्ट हुने एउटा चार्ट बनाऊ । उक्त चार्ट बनाएर कक्षामा साथीहरूसँग छलफल गर र शिक्षकलाई देखाऊ ।

सारांश

- पृथ्वीको उत्पत्तिको वास्तविक कारण पत्ता लागिसकेको छैन तापनि जर्ज बफनको परिकल्पना, कान्ट लेप्लासको निहारिका परिकल्पना, जिन्स र जेफ्रेको ज्वारीय सिद्धान्तलाई विश्वसनीय रूपमा लिइएको छ ।
- पृथ्वीमा जीवलाई आवश्यक पर्ने हावा, पानी र उचित तापक्रम उपलब्ध भएकाले नै ₹. जीवको उत्पत्ति हुन सकेको हो ।
- पृथ्वी र सूर्यको स्थिति परिवर्तनका कारणले नै ऋत् परिवर्तन हुन्छ । ₹.
- चन्द्रमाको आकार घटबढ भएको देखिने प्रक्रियालाई चन्द्रमाको कला भनिन्छ ।
- चन्द्रमाको आकार पूर्ण देखिन्लाई पूर्णिमा र नदेखिन्लाई औँसी भनिन्छ । ¥.

SLO.	т	гэт
O4 4-	ш	ıM

- खाली ठाउँमा मिल्दो शब्द भर : ٩.
 - (क) पृथ्वीको उत्पत्ति..... वर्ष पहिले भएको अनुमान गरिन्छ ।
 - (ख) पृथ्वीको अक्षले कक्षीय धरातलमा डिग्रीको कोण बनाएको छ ।
 - (ग) चन्द्रमाको उज्यालो भाग बढ्दै गई उच्चतम अवस्थामा प्रने अवधिलाई पक्ष भनिन्छ ।
 - (घ) सेप्टेम्बर 23 र का दिन पृथ्वीको सबै ठाउँमा दिन र रात बराबर हुन्छ ।
- छोटो टिप्पणी लेख:
 - (क) निहारिका परिकल्पना (ख) ऋत् परिवर्तन
- - (ग) चन्द्रमाको कला
- आकास गङ्गाको सिद्धान्त (घ)
- पृथ्वीमा जीवहरू उत्पत्ति हनाका कारणहरू के के हन्, लेख। ₹.
- जिन्स र जेफ्रेको ज्वारीय सिद्धान्तको व्याख्या गर।
- पृथ्वीको अक्षले कक्षासँग लम्ब नभई 66.5 डिग्रीको कोण बनाएर ढल्केका ¥. कारणले पृथ्वीमा कुन कुन असरहरू देखा परेका छन्, लेख।
- चन्द्रमाको कला भनेको के हो, सचित्र व्याख्या गर। €.
- फरक लेख: 9
 - (क) औँसी र पूर्णिमा
- (ख) श्कल पक्ष र कृष्ण पक्ष

(ग) अक्ष र कक्ष

(घ) ग्रीष्म (summer) र शिशिर (winter) ऋत्

तातावरण र यसको सन्तृलन (Environment and its Balance)

प्राकृतिक सम्पदा र यसमा मानिसको निर्भरता (Natural Resources and Human Dependency)

पृथ्वी मानिस र विभिन्न जीवहरूको साभा वासस्थान हो । त्यसैले सबै जीवहरूले आफ्नो खाद्यान्न तथा आश्रयस्थल पृथ्वीमा रहेका प्राकृतिक वस्तुबाट प्राप्त गर्दछन् । मानिसले आफ्नो जीवन यापन गर्न प्राकृतिक स्रोतबाट हावा, पानी, खाद्यान्न, आश्रयस्थल, जडीबुटी आदि प्राप्त गर्दछन् । यसबाट मानिस र प्राकृतिक स्रोतहरूबिच सम्बन्ध तथा निर्भरता देखाउँछ । प्राकृतिक सम्पदा र मानिसिबचको सम्बन्धबारे तल प्रस्तुत गरिएको छ :

(क) खाद्यान्न (Food)

प्राणीहरूलाई बाँच्नका लागि शक्ति आवश्यक पर्दछ । जीवले आफ्नो शक्ति खानाबाट प्राप्त गर्दछन् । मानिसले जिमनमा खेतीपाती गरेर खाद्यान्न उत्पादन गरी जीवन निर्वाह गर्दछन् । मानिसले धान, गहुँ, मकै, तोरी, फापर आदि खेती गर्दछन् । यी वनस्पतिहरूले प्रकाश संश्लेषण क्रियाद्वारा आफ्नो खाना बनाउँछन् । तिनै खाद्य वस्तुबाट मानिसले आफ्नो खाना प्राप्त गर्दछन् । त्यसैले मानिस पूर्ण रूपमा खाद्यान्नका लागि प्राकृतिक स्रोतमा भर पर्दछन् ।

(ख) बासस्थान (Habitate)

मानिसको बसोबास जिमनमा हुन्छ । जिमन नभएमा मानिसको बस्ने ठाउँ हुँदैन । मानिसले बासस्थान बनाउनका लागि जिमन, बोट बिरुवा, खिनज आदि प्रयोग गर्दछ । बासस्थानका लागि बोटिवरुवाबाट काठ, जिमनबाट इँटा, ढुङ्गा, बालुवा, मार्बल आदि प्रयोग गर्दछन् । यी विभिन्न स्रोतहरू पिन प्राकृतिक स्रोत नै हुन् ।

(ग) जडीबुटी (Medicinal Plants)

जडीबुटी मानिसका लागि अत्यावश्यक वनस्पति हुन् । जडीबुटीबाट मानिसले विभिन्न औषधी बनाउन सक्छ । हर्रो, बर्रो, अमला, बोभो, सर्पगन्धा, जटामसी, पाँचऔँले, यार्चागुम्बा आदि महत्त्वपूर्ण जडीबटी हुन् । यी जडीबुटीहरू प्राकृतिक स्रोतका रूपमा प्राप्त हुन्छन् । बढ्दो जनसङ्ख्या र आवश्यकताले यी जडीबुटीहरू हास हुन थालेका छन् । नेपालमा करिब

800 किसिमका जडीबुटी भएको अनुमान गरिएको छ । नेपालबाट औषधीका लागि लगभग 70 जातका जडीबुटीहरू विदेशमा निकासी हुन्छन् । वनजङ्गलको विनाशसँगै जडीबुटीको उत्पादनमा समेत हास आउन थालेको छ । कितपय जडीबुटीहरू लोप हुने अवस्थामा पुगेका छन् ।

(घ) हावा (Air)

हावा जीवनका लागि अति महत्त्वपूर्ण तत्त्व हो । मानिसलाई बाँच्न हावा आवश्यक पर्दछ । स्वच्छ हावाले नै मानिसलाई स्वस्थ राख्छ । मानिसले श्वास प्रश्वासका लागि वातावरणबाट अक्सिजन ग्यास लिने र कार्बनडाइअक्साइड फाल्ने गर्दछ । मानिसले उद्योग, निमार्ण, यातायात, कृषि आदि व्यवसाय गर्दा विभिन्न रसायन प्रयोग गर्दछन् । यस्ता रसायनले वातावरणलाई विषाक्त बनाउँछ । त्यसैगरी उद्योग, कलकारखाना, घर, होटल आदिबाट निस्कने दूषित हावाले वातावरण प्रदूषण गर्दछ । हामीले श्वास प्रश्वास गर्दा दूषित हावा शरीरभित्र प्रवेश गरी विभिन्न रोगहरू निम्त्याउन सक्छ ।

(ङ) पानी (Water)

पानी एक महत्त्वपूर्ण प्राकृतिक स्रोत हो । पानीबिना जीवको अस्तित्व नै रहँदैन । मानिसको शरीर निमार्णका लागि पनि पानी आवश्यक पर्दछ । मानव शरीरको लगभग ६० प्रतिशत भाग पानीले बनेको हुन्छ । पानीको कमीले मानिस, बोटिबरुवा र जीवजन्तुमा नकारात्मक असर पर्दछ । मानिसका खानपान, सरसफाइ, कृषि, सिँचाइ आदि कार्यमा पनि पानीकै प्रयोग हुन्छ । मानिसले धेरै ठुलो सहरहरू नदीकै किनार अर्थात् पानीको स्रोत निजक बनाएका छन् । यसबाट पनि मानिसको सभ्यताको विकास क्रममा पानीको सम्बन्ध स्पष्ट हुन्छ । स्वस्थ जीवनका लागि शुद्ध पानीको आवश्यकता पर्दछ । त्यसैले मानिसले पानीको स्रोतलाई बचाइ राख्नुपर्छ । उद्योग, कलकारखानाबाट निस्कने रसायन, फोहोर, दिसा पिसाब आदि पानीको स्रोतमा मिसिँदा पानी दूषित हुन्छ । दूषित पानीको प्रयोगले मानिसलाई अनेक रोगहरू लाग्छ र जीवन कष्टप्रद हुन्छ ।

(च) जिमन (Land)

पृथ्वीमा भएका सम्पूर्ण जीवहरू माटामा नै निर्भर रहन्छन् । मानिसका लागि वासस्थानलगायत खाद्यान्न माटोबाट नै उत्पादन हुन्छ । अन्न, फलफूल, सागपात आदि उत्पादन गर्न मानिस माटोमा निर्भर हुन्छ । माटाबाट आवश्यक खाद्यान्न उत्पादन नभएमा मानिसलगायत अन्य जीवलाई समेत खानेकुराको अभाव हुन्छ । त्यसैले जिमन मानिसको अति आवश्यक स्रोत हो । मानिसले आफूलाई जोगाइराख्न

जिमनलाई पिन जोगाउनुपर्छ । जिमनको प्राकृतिक अवस्था बिग्रँदै गएमा बोटिबिरुवा, कृषि उत्पादन, हावापानी आदिको स्थितिमा पिन फरक पर्दछ । यसको असर बढ्दै गएमा मानिसलाई समेत नकारात्मक असर पर्दछ ।

राष्ट्रिय निकुञ्ज, आरक्ष र संरक्षण क्षेत्रको सङ्क्षिप्त विवरण

नेपालमा प्राकृतिक स्रोतको संरक्षणका लागि संरक्षित क्षेत्रहरू (protected area) र संरक्षण क्षेत्र (conservation area) हरू छुट्याइएको छ । संरक्षित क्षेत्रअन्तर्गत राष्ट्रिय निकुञ्ज तथा वन्यजन्तु आरक्षहरू पर्छन् । नेपालमा विभिन्न क्षेत्रमा अवस्थित संरक्षित क्षेत्रहरू यस प्रकार रहेका छन् :

(क) राष्ट्रिय निकुञ्ज (National Park)

प्राकृतिक वातावरणका साथै यसभित्र पाइने वन्यजन्तु, पक्षी, वनस्पित तथा तिनको वासस्थान र भूदृश्यको संरक्षण, व्यवस्थापन तथा उपयोग गर्नका लागि छुट्याइएको क्षेत्रलाई राष्ट्रिय निकुञ्ज भनिन्छ । यस क्षेत्रभित्र अनुमित लिएर र प्रवेश शुल्क तिरेर मात्र घुम्न, मनोरञ्जन लिन, अध्ययन तथा अनुसन्धान गर्न पाइन्छ । नेपालमा हालसम्म 12 ओटा राष्ट्रिय निकुञ्जहरू स्थापना भएका छन् । ती यस प्रकार छन् :

१. चितवन राष्ट्रिय निकुञ्ज

यस निकुञ्जको स्थापना वि.सं. २०३० सालमा भएको हो । यसको क्षेत्रफल 932 वर्ग कि.मि. छ । यो निकुञ्ज चितवन, मकवानपुर र पर्सा जिल्लामा फैलिएको छ । यो नेपालको पहिलो राष्ट्रिय निकुञ्ज हो । यस निकुञ्जलाई वि.सं. २०४१ सालमा विश्व सम्पदा सूचीमा समावेश गरिएको छ । यस क्षेत्रमा बढी मात्रामा सालका रुख पाइन्छन् । यहाँ पाटे बाघ, गैँडा, हात्ती, भालु, चितुवा, घडियाल गोही, मगर गोही, अजिङ्गर, चित्तल, रतुवा, लगुना र रातो बाँदर एवम् लङ्गुरहरू पाइन्छन् ।

२. सगरमाथा राष्ट्रिय निकुञ्ज

यस निकुञ्जको स्थापना वि.सं. २०३२ सालमा भएको हो । यसको क्षेत्रफल 1148 वर्ग कि.मि. छ । यो निकुञ्ज सोलुखुम्बु जिल्लामा पर्छ । यस निकुञ्जमा विश्वको सर्वोच्च टाकुरा सगरमाथा, ल्होत्से, नुप्से, पुमोरी, आमादब्लम र थामसेर्कु हिमचुचुराहरू रहेका छन् । यहाँ गोब्रेसल्ला, ठिग्रेसल्ला, धुपी, भोजपत्र र गुराँस जातका रुखहरू पाइन्छन् । यहाँ कस्तुरी मृग, हिमाली भालु, थार, घोरल, भारल आदि वन्यजन्तु पाइन्छन् । विभिन्न किसिमका

चराचुरुङ्गीहरू, जस्तै : डाँफे, चिलिमे, कालिज, हिम कुखुरा, लालचुच्चे, हिमचुच्चे चरा पाइन्छन् । वि.सं. २०३९ सालदेखि यस राष्ट्रिय निकुञ्जलाई विश्व सम्पदा सूचीमा समावेश गरिएको छ ।

३. लाङटाङ राष्ट्रिय निकुञ्ज

यस निकुञ्जको स्थापना वि.सं. २०३२ सालमा भएको हो । यसको क्षेत्रफल 1710 वर्ग कि.मि. छ । यो निकुञ्ज रसुवा, नुवाकोट र सिन्धुपाल्चोक जिल्लामा फैलिएको छ । यहाँ साल, खोटेसल्ला, लौठ सल्ला, लाङटाङ सल्ला, गोब्रेसल्ला, खर्सु, गुराँस आदि वनस्पतिहरू पाइन्छन् । यस निकुञ्जमा हिउँ चितुवा, रातोपान्डा, कस्तुरी मृग, हिमाली भालु, थार, घोरल, रातो बाँदर, लङ्गुर आदि वन्यजन्तुहरू र विभिन्न जातका चराचुरुङ्गीहरू पाइन्छन् । पवित्र तीर्थस्थल गोसाइँकण्ड पनि यहीँ पर्छ ।

४. रारा राष्ट्रिय निकुञ्ज

यस निकुञ्जको स्थापना वि.सं. २०३२ सालमा भएको हो । यसको क्षेत्रफल 106 वर्ग कि.मि. छ । यो निकुञ्ज कर्णाली प्रदेशको मुगु र जुम्ला जिल्लामा पर्छ । यस निकुञ्जभित्र रारा ताल पर्छ । यो नेपालको सबैभन्दा ठुलो ताल हो । ताल विरपिर कोणधारी वन पाइन्छ । यो क्षेत्र चराचुरुङ्गीका लागि उपयुक्त वासस्थान हो । यस क्षेत्रमा हिउँद्मा साइबेरिया र मानसरोवरबाट समेत चराहरू आउने गर्छन् । यस राष्ट्रिय निकुञ्जमा हिमाली भाल, थार, घोरल, कस्त्री मृग, बँदेल आदि वन्यजन्त् पाइन्छन् ।

५. बर्दिया राष्ट्रिय निक्ञज

यस निकुञ्जको स्थापना वि.सं.२०३२ सालमा भएको हो । यसको क्षेत्रफल 968 वर्ग कि.मि. छ । यो निकुञ्ज नेपालको बर्दिया जिल्लामा पर्दछ । यस निकुञ्जको धेरैजसो भाग सालको जङ्गलले ढाकेको छ र बिच बिचमा घाँसका मैदानहरू छन् । यस निकुञ्जमा बाघ, चितुवा, कृष्णसार, निलगाई, जरायो, चित्तल, लगुना, बारसिङ्गे, घडियाल गोही, मगर गोही, डिल्फन, जङ्गली हात्तीलगायत विभिन्न प्रजातिका चराहरू पाइन्छन् ।

६. से फोक्सुन्डो राष्ट्रिय निकुञ्ज

यस निकुञ्जको स्थापना वि.सं. २०४० सालमा भएको हो । यसको क्षेत्रफल 3555 वर्ग कि.मि. छ । यो निकुञ्ज डोल्पा र मुगु जिल्लामा फैलिएको छ । यो नेपालको सबैभन्दा ठुलो राष्ट्रिय निकुञ्ज हो । यो क्षेत्रमा हिउँ चितुवा, तिब्बती खरायो, हिमाली भालु, थार, घोरल, कस्तुरी मृग, नाउर जस्ता वन्यजन्तुहरू पाइन्छन् । यस निकुञ्जमा फोक्सुन्डो

ताल रहेको छ । यसले राष्ट्रिय निकुञ्जलाई प्राकृतिक सुन्दरता प्रदान गरेको छ । यहाँ से ग्म्बालगायत अन्य ग्म्बाहरू पनि छन् ।

७. खप्तड राष्ट्रिय निकुञ्ज

यस निकुञ्जको स्थापना वि.सं. २०४२ सालमा भएको हो । यसको क्षेत्रफल 225 वर्ग कि.मि. छ । यो निकुञ्ज बक्षाङ, बाजुरा, डोटी र अछाम जिल्लामा फैलिएको छ । सल्ला, खुसु, निगालोका जङ्गलहरू र घाँसे मैदानले यस निकुञ्जको शोभा बढाएको छ । यहाँ रतुवा, कस्तुरी मृग, घोरल, चितुवा, जङ्गली कुकुर, जङ्गली बिरालो, रातो बाँदर जस्ता वन्यजन्तुहरू र डाँफे, मुनाल जस्ता सुन्दर चराचुरुङ्गीहरू पनि पाइन्छन् ।

द. मकालु वरुण राष्ट्रिय निकुञ्ज

यस निकुञ्जको स्थापना वि.सं. २०४९ सालमा भएको हो । यसको क्षेत्रफल 1500 वर्ग किलोमिटर छ । यो क्षेत्र सङ्खुवासभा र सोलुखुम्बु जिल्लामा फैलिएको छ । यहाँ सुनपाती तथा सुगन्धित भारपात, जङ्गली फूलहरू, सुनगाभा, जङ्गली गुलाफ, गोब्रेसल्लो, ठिग्रेसल्लो, भोजपत्र, लालीगुराँस, अरखौली, फिरफिरे र चाँप पाइन्छन् । यहाँ हाब्रे, हिउँ चितुवा, तिब्बती खरायो, हिमाली भालु, थार, कस्तुरी मृग, नाउर, घोरल, हिमाली थार, चितुवा आदि पाइन्छन् ।

९. शिवपुरी नागार्जुन राष्ट्रिय निकुञ्ज

शिवपुरी नागार्जुन राष्ट्रिय निकुञ्ज काठमाडौँ, नुवाकोट, धादिङ र सिन्धुपाल्चोक जिल्लामा अवस्थित छ । यसको स्थापना वि.सं. २०५८ सालमा भएको हो । यस निकुञ्जको क्षेत्रफल 159 वर्ग कि.मि. छ । यहाँ विभिन्न प्रजातिका च्याउ र पुतलीहरू पाइन्छन् । यस क्षेत्रमा ध्वाँसे चितुवा, चितुवा, विभिन्न प्रजातिका सालक, वन बिरालो, हिमाली भालु, घोरल, रातो बाँदर, लङ्गुर, न्याउरी मुसा, बँदेल, रतुवा, चित्तल, चराहरू आदि पाइन्छन् । यो क्षेत्र एक जलाधार क्षेत्र हो ।

१०. बााके राष्ट्रिय निक्ञ्ज

बाँके राष्ट्रिय निकुञ्ज वि.सं. २०६७ सालमा स्थापना भएको हो । यो बाँके जिल्लामा रहेको छ । यस निकुञ्जको क्षेत्रफल 550 वर्ग कि.मि. छ । यस क्षेत्रमा मुख्यतया साल, सिसौ, खयरको जङ्गल र घाँसे मैदान रहेका छन् । यस क्षेत्रमा बाघ, घडियाल गोही, हात्ती, चितुवा, बँदेल, चित्तल, जरायो, निलगाई, रतुवा, लगुना आदि वन्यजन्तु पाइन्छन् । विभिन्न जातका रैथाने तथा बसाइँ सरेर आउने चराहरू पनि यहाँ पाइन्छन् ।

११. शुक्लाफााटा राष्ट्रिय निक्ञ्ज

यस निकुञ्जको स्थापना वि.सं. 2073 सालमा भएको हो । यसको क्षेत्रफल 305 वर्ग कि.मि. छ । यो निकुञ्ज कञ्चनपुर जिल्लामा पर्छ । यहाँ साल, सिसौ र खयरको जङ्गल र घाँसे मैदान पनि छन् । यहाँ बँदेल, पाटेबाघ, भालु, चितुवा निलगाई, बारसिङ्गे, जरायो, चित्तल आदि वन्यजन्तुहरू रहेका छन् । विश्वबाट लोप हुन लागेका बारसिङ्गे जातिका मृगहरू यहाँ संरक्षित छन् । यहाँ रानीताल र अन्य ससाना तालहरूमा मगर जातका गोहीहरू प्रशस्त पाइन्छन् । रैथाने र बसाइँ सरी आउने गरेका विभिन्न जातका चराचुरुङ्गीहरू पनि यहाँ पाइन्छन् ।

१२. पर्सा राष्ट्रिय निकुञ्ज

यस निकुञ्जको स्थापना वि.सं. २०७४ सालमा भएको हो । यसको क्षेत्रफल ६३७.३७ वर्ग कि.मि छ । यो चितवन, मकवानपुर, पर्सा र बारा जिल्लामा फैलिएको छ । यो चितवन राष्ट्रिय निकुञ्जको पूर्वपट्टिको विस्तारित क्षेत्र हो । यहाँका प्रमुख जनावरहरू जङ्गली हात्ती, बाघ, गौरी गाई, चितुवा, जरायो, बँदेल आदि हुन् ।

(ख)वन्यजन्तु आरक्ष (Wildlife Reserves)

निश्चित प्रजातिका वन्यजन्तु र तिनीहरूको वासस्थान संरक्षण र व्यवस्थापन गर्नका लागि छुट्याइएको क्षेत्रलाई वन्यजन्तु आरक्ष भिनन्छ । प्राकृतिक वातावरण, वन्यजन्तु तथा वनस्पतिको संरक्षण र व्यवस्थापन, दुर्लभ तथा लोप हुन लागेका वन्यजन्तु एवम् तिनीहरूको वासस्थानको संरक्षण तथा वैज्ञानिक अध्ययन अनुसन्धान गर्ने उद्देश्यले वन्यजन्तु आरक्षको स्थापना भएको हो । वन्यजन्तु आरक्षमा स्वीकृति लिएर मात्र अध्ययन तथा अनुसन्धान गर्न पाइन्छ । तर मनोरञ्जनका लागि घुमिफर गर्न पाइँदैन । हालसम्म नेपालमा एकओटा मात्र वन्यजन्तु आरक्ष रहेको छ ।

१. कोसीटप्पु वन्यजन्तु आरक्ष

यस आरक्षका स्थापना वि.सं. २०३२ सालमा भएको हो । यसको क्षेत्रफल 175 वर्ग कि.मि. छ । यो आरक्ष सुनसरी र सप्तरी जिल्लामा रहेको छ । पूर्व र पिश्चम दुवैतिरबाट यस आरक्षलाई नदीले घेरेको छ । यस आरक्षको मुख्य उद्देश्य नेपालमा अति दुर्लभ मानिने अर्ना (जङ्गली भैँसी) को संरक्षण गरी वृद्धि गराउनु रहेको छ । यस आरक्षमा प्रायः सिसौ र खयरको जङ्गल पाइन्छ । यो आरक्ष विभिन्न किसिमका वन्यजन्तुहरू, बँदेल, लगुना, घडियाल, सोंस र स्थानीय बसाइँ सराइ गरी आउने चराहरूको पिन मुख्य वासस्थान हो ।

(ग) सिकार आरक्ष (Hunting Reserve)

निश्चित वन्यजन्तुको जनस्ंख्या नियन्त्रण तथा दिगो प्रयोग गर्नका लागि सिकार आरक्षको स्थापना गरिएको हो । यस क्षेत्रमा अनुमित पत्र लिएर समयभित्र तोकेको जनावर तोकेको क्षेत्रमा सिकार गर्न पाइने व्यवस्था छ । उचित व्यवस्थापनका लागि धेरै भएका पशुपक्षीहरूको सङ्ख्या निर्धारण गरी सिकार गराइन्छ । राष्ट्रिय निकुञ्ज तथा वन्यजन्तु संरक्षण विभागले वन्यजन्तुको सदुपयोगका साथै संरक्षण होस् भन्ने उद्देश्यले सिकार आरक्ष घोषणा गरेको हो । नेपालमा एउटा मात्र सिकार आरक्ष छ ।

ढोरपाटन सिकार आरक्ष

यस आरक्षको स्थापना वि.सं. २०४४ सालमा भएको हो । यसको क्षेत्रफल 1325 वर्ग कि.मि. छ । यो आरक्ष रुकुम, बाग्लुङ र म्याग्दी जिल्लाको केही भागमा फैलिएको छ । यस आरक्षमा पाइने प्रमुख जनावरहरू नाउर, भारल, थार र हिमाली भालु आदि हुन् । यहाँ धेरै भएका पशुपक्षीहरूको सङ्ख्या निर्धारण गरी सिकार गराइन्छ । यसलेपशुपन्छीको वासस्थानलाई जोगाउन पनि मदत पुग्छ । व्यवस्थित किसिमले सिकार गर्ने व्यवस्था मिलाउनाले विदेशी मुद्राको आर्जन गर्न सिकन्छ ।

संरक्षण क्षेत्र (Conservation Area)

प्राकृतिक स्रोत, वन्यजीव तथा यिनीहरूको वासस्थान संरक्षण गर्ने, स्थानीय बासिन्दाको आर्थिक, सांस्कृतिक तथा धार्मिक सम्पदाको संरक्षण गर्ने र उनीहरूलाई प्राकृतिक स्रोतको दिगो उपयोग तथा संरक्षण गराउने अभिप्रायले संरक्षण क्षेत्रको स्थापना भएको हो । अन्नपूर्ण संरक्षण नेपालको पहिलो संरक्षण क्षेत्र हो । हालसम्म नेपालमा 6 ओटा संरक्षण क्षेत्रहरू स्थापना भएका छन् । ती यस प्रकार छन् :

१. अन्नपूर्ण संरक्षण क्षेत्र

अन्नपूर्ण संरक्षण क्षेत्र पोखरा सहरदेखि उत्तर पश्चिममा रहेको छ । प्रकृति संरक्षण कोषअन्तर्गत अन्नपूर्ण संरक्षण क्षेत्रको स्थापना वि.सं. २०४३ सालमा भएको हो । यसको क्षेत्रफल करिब 7,629 वर्ग किलोमिटर छ । यो क्षेत्र जैविक विविधतामा धनी मानिन्छ । प्रकृति संरक्षण कोषले यस क्षेत्रको संरक्षणका लागि म्रोत संरक्षण, सामुदायिक विकास, पर्यटन व्यवस्थापन, संरक्षण, शिक्षा तथा विस्तार कार्यक्रम आदि सञ्चालन गर्दै आएको छ ।

२. कन्चनजङ्घा संरक्षण क्षेत्र

कञ्चनजङ्घा संरक्षण क्षेत्रको स्थापना वि.सङ. २०५४ सालमा भएको हो । यसको क्षेत्रफल २०३५ वर्ग कि.मि. छ । यो क्षेत्र ताप्लेजुङ जिल्लाको उत्तरमा तिब्बत र पूर्वमा भारतसम्म फैलिएको छ । यो क्षेत्र सङ्कटापन्न स्थितिमा पुगेका वन्य जीवजन्तुहरूको बासस्थान हो । यस क्षेत्रमा हिमाली लार्च, गोब्रेसल्लो, ठिँग्रेसल्लो, धुपीसल्लो, लालीगुराँस र अन्य वनस्पतिहरू पाइन्छन् । नेपालमा पाइने 30 थरीका लालीगुराँसमध्ये २४ प्रजातिहरू यहाँ पाइन्छन् । यहाँ विभिन्न किसिमका वन्यजन्तुहरू, जस्तै : हिउँ चितुवा, कस्तुरी मृग, हिमाली कालो भालु, ब्वाँसो, नाउर, घोरल आदि रहेका छन्

३. मनास्लु संरक्षण क्षेत्र

मनास्लु संरक्षण क्षेत्रको स्थापना वि.सं. २०५५ सालमा भएको हो । यसको क्षेत्रफल 1663 वर्ग किलोमिटर छ । यो गोर्खा जिल्लामा रहेको छ । यसको पिश्चममा अन्नपूर्ण संरक्षण क्षेत्र र उत्तरमा तिब्बत रहेको छ । कस्तुरी मृग, हिउँ चितुवा, हिमालयन थार, नाउर जस्ता स्तनधारी जीव यस क्षेत्रका महत्त्वपूर्ण जीव हुन् । मनास्लु हिमाल यस क्षेत्रको सबैभन्दा आकर्षणको केन्द्र रहेको छ ।

४. अपि नम्पा संरक्षण क्षेत्र

अपिनम्पा संरक्षण क्षेत्र वि.सं. २०६७ सालमा स्थापना भएको हो । यसको क्षेत्रफल 1903 कि.मि. छ र यो दार्चुला जिल्लामा अवस्थित छ । उच्च हिमाली शृङ्खला अपि र नाम्पा यस क्षेत्रका मुख्य विशेषता हुन् । उच्च हिमाली शृङ्खलाहरू, हिमाली जडीबुटी र विभिन्न जातका चराचुरुङ्गीहरू यहाँका विशेषता रहेका छन् । यहाँ कस्तुरी मृग, हिउँ चितुवा, हिमालयन थार, नाउर, हिमाली कालो भालु, ब्वाँसो, ध्वाँसे चितुवा, चितुवाका साथै विभिन्न जातका चराचुरुङ्गीहरू पाइन्छन् ।

५. गौरीशङ्कर संरक्षण क्षेत्र

गौरीशङ्कर संरक्षण क्षेत्रको स्थापना वि.सं. २०६६ सालमा भएको हो । यसको क्षेत्रफल 2179 वर्ग किलोमिटर छ । यो दोलखा, सिन्धुपाल्चोक र रामेछाप जिल्लामा अवस्थित छ । यो खिम्ती, भोटेकोसी, सुनकोसी, तामाकोसी जस्ता नदीहरूको उद्गम स्थल पिन हो । यस क्षेत्रमा विभिन्न जातिका चराहरू, हिउँ चितुवा, रातोपाण्डा (हाब्रे), खेरौ ब्वाँसो, कस्तुरी मृग, अजिङ्गर जस्ता दुर्लभ जनावरहरू पाइन्छन् । यहाँ विभिन्न प्रकारका वनस्पति तथा जडीब्टीहरू पिन पाइन्छन् ।

६. कृष्णसार संरक्षण क्षेत्र

कृष्णसार संरक्षण क्षेत्रको स्थापना वि.सं. २०६५ सालमा भएको हो । यसको क्षेत्रफल १६.९५ वर्ग किलोमिटर छ । दुर्लभ कृष्णसारको संरक्षण गर्नका लागि यस क्षेत्रको स्थापना गरिएको हो । यो संरक्षण क्षेत्र बर्दिया जिल्लामा रहेको छ ।

कियाकलाप १

तिम्रो वासस्थान निजकको संरक्षण क्षेत्र, राष्ट्रिय निकुञ्ज वा वन्यजन्तु आरक्षमध्ये कुनै एउटा क्षेत्रको भ्रमण गरी त्यस क्षेत्रका विशेषताहरू उल्लेख गर्दै टिपोट तयार गर ।

वन जङ्गलको स्थिति

'हरियो वन नेपालको धन' भन्ने प्रचलन क्नै समयमा थियो । वि.सं. २०२६-२७ सालतिर नेपालको आधाभन्दा बढी (53.5 प्रतिशत) भुभाग वन जङ्गलले ढाकेको थियो । हाल आएर वन जङ्गलको क्षेत्रफल 40.36 प्रतिशत र भाडी बुट्यान 4.38 प्रतिशत रहेको छ । तराई र उच्च हिमाली क्षेत्रमा जम्मा जङ्गल क्षेत्रको ११ प्रतिशत वन जङ्गल पाइन्छ भने बाँकी 50 प्रतिशत वन जङ्गल पहाडी क्षेत्रमा रहेको छ । नेपालको तराई र भित्री मधेसमा पहिले प्रशस्त मात्रमा साल, सिसौ, खयर, सिमल आदि रुखहरू पाइन्थे । अहिले तिनको सङ्ख्या घटदै गएको छ । बढदो जनसङ्ख्याका कारणले वन जङ्गल दिनानदिन मासिँदै गएको छ । मानिसको बसाइँसराइ तराई र मधेसतिर बढेकाले यस क्षेत्रको वन जङ्गल मासिन पुगेको हो । गाउँघरितर घर, गोठ बनाउँदा काठ, बाँस, खर आदि प्रयोग गरिन्छ । त्यस्तै बेतलाई फल्ङ्गो, क्सी, ल्गा राख्ने भाँडो, ल्गा फ्न्ड्याउने स्ट्यान्ड, किताब, जुत्ता राख्ने ऱ्याक आदि बनाउन प्रयोग गरिन्छ । हिजोआज बेत, बाँस, खर वन जङ्गलमा पाउन मुस्किल हुँदै गएको छ । नेपालको पहाडी भागमा चाँप, कट्स, चिलाउने, बाँस, तेजपात आदि जातका रुखहरू पाइन्छन् । हाम्रो देशको उत्तरी हिमाली भागमा सल्लो, धुपी गुराँस, भोजपत्र आदि वनस्पति पाइन्छन् । हिमाली क्षेत्रमा पातलो बस्ती छ । उच्च पहाडी र हिमाली भेगका बोटबिरुवा प्राय: भिरपाखामा हुने भएकाले मानिसले सजिलै विनाश गर्न सक्दैनन् । त्यसैले यी क्षेत्रमा प्राकृतिक वन सुरक्षित रहेको छ । जनसङ्ख्याको वृद्धिसँगै मानिसका आवश्यकताहरू बढ्दै गएका छन् । यी आवश्यकता पूरा गर्न मानिसले वन जङ्गलको जथाभावी फँडानी गर्दछन् । दाउरा, घाँसपात, स्याउला, काठ र खेतीपाती गर्न वन जङ्गल फँडानी भइरहेका छन् । त्यसैगरी पशु पालनबाट हुने अति चरणले पनि वन विनाश भइरहेको छ । यसरी वन जङ्गलको विनाशले मरुभिमकरण बढदै गएको छ ।

वन जङ्गलको महत्त्व र आवश्यकता

नेपालको प्राकृतिक स्रोतहरूमा वन जङ्गलको विशेष महत्त्व रहेको छ । वन जङ्गलबाट घाँसपात, स्याउला, काठ, दाउरा, जडीबुटी, फलफूल आदि प्राप्त गर्न सिकन्छ । चराचुरुङ्गी र जङ्गली जनावरको वासस्थान पिन वन जङ्गल नै हो । वन जङ्गले नै पहाडी क्षेत्रका भिर पाखाको माटालाई संरक्षण गरेको हुन्छ । यसले भूक्षय हुनबाट जोगाउँछ । बोटिबरुवाले जिमनलाई ओसिलो र मिललो बनाउँछ । यसबाट उत्पादन बढाउन सहयोग पुग्छ । बोटिबरुवाले नै वातावरणमा अक्सिजन ग्यास फाल्छन् र कार्बनडाइअक्साइडलाई शोषण गरी खाना बनाउँछन् । यसले गर्दा वातावरणमा अक्सिजन चक्र र कार्बनडाइअक्साइड चक्र सन्तुलनमा मदत पुग्छ । यसरी बोटिबरुवाले वातावरण सन्तुलनमा महत्त्वपूर्ण भूमिका खेल्छ । वन जङ्गलमा पाइने विभिन्न चराचुरुङ्गी तथा वन्यजन्तुको अवलोकन र अध्ययन गर्न सिकन्छ । यसबाट पर्यटन उद्योगलाई समेत सहयोग पुग्छ । यसैले हाम्रो जनजीवनमा वन जङ्गलको महत्त्व रहेको हो ।

वन पैदावार (Forest Products)

वन पैदावर मानिसका लागि महत्त्वपूर्ण प्राकृतिक साधन हो । वन जङ्गलबाट मानिसले काठ, दाउरा, जडीबुटी, घाँसपात आदि प्राप्त गर्दछन् । वन जङ्गलले नै पानीलाई सोसेर राखिदिन्छ । वन जङ्गलले जिमन सतहको मिललो माटोलाई बग्न निदई रोकेर राख्छ । यसले भूक्षय हुनबाट जोगाउँछ । त्यसैगरी वायुमण्डलमा अक्सिजन फ्याक्ने र कार्बनडाइअक्साइड सोसेर लिई वायुमण्डलीय सन्तुलन ल्याउने काम गर्दछ । यसले वन्यजन्तु तथा पशुपक्षीलाई आश्रयस्थल प्रदान गर्दछ ।

(क) प्रकाष्ठ बिरुवाहरू (Timber Trees)

भौगोलिक दृष्टिमा नेपाललाई तराई, पहाड र हिमाली क्षेत्रमा विभाजन गर्न सिकन्छ । यी क्षेत्रहरूमा फरक फरक किसिमको भूबनोट र हावापानी पाइन्छ । यी ठाउँमा विभिन्न किसिमका बोटिबिश्वाहरू पाइन्छन् । तराई क्षेत्रको माटो मिललो हुन्छ । तराईमा साल, सिसौ, सिमल, जामुन, साज, हर्रो, बर्रो आदि बोटिबिश्वा पाइन्छन् । पहाडी क्षेत्रका वन जङ्गलहरूमा बाँभ, फलाँट, कटुस, चाँप, ओखर, चिलाउने आदि रुखहरू पाइन्छन् । उच्च हिमाली भागमा राई सल्लो, ठिँगुरे सल्लो, भोजपत्र आदि पाइन्छन् । यी बोटिबिश्वामध्ये केहीबाट फर्निचर बनाउने काठ प्राप्त हुन्छ भने कितिपय दाउरा, घर, गोठ बनाउने काठका रूपमा प्रयोग गरिन्छ । कमजोर किसिमका काठहरू

दाउराका लागि प्रयोग गरिन्छ । ससाना बिरुवाहरू बढेपछि ठुलो रुखहरू हुन्छन् । रुखबाट नै काठ पाइन्छ । त्यसैले काठका लागि जथाभावी बिरुवा काट्नु हुँदैन । कुनै ठाउँको रुख काटेमा त्यस ठाउँमा नयाँ बिरुवा रोप्नुपर्दछ । ती बिरुवाबाट नै पछि काठ, दाउरा बनाउन सिकन्छ ।

क्रियाकलाप २

तिमी बसेको ठाउँ वरपर कस्ता बोटबिरुवाहरू छन्, ती बिरुवाहरू के के कामका लागि प्रयोग भइरहेका छन्, अवलोकन गरी तलको जस्तै तालिका बनाई लेख :

क्र. स.	बिरुवाको नाम	उपयोग हुने भाग	उपयोग
٩			
ا ع			
) na			

(ख) जडीबुटीहरू (Medicinal Plants)

नेपालको जङ्गलमा विभिन्न किसिमका बोटिबिरुवा पाइन्छ । तीमध्ये केही औषधी बनाउने काममा प्रयोग गरिन्छ । यस्ता बोटिबिरुवालाई जडीबुटी भिनन्छ । नेपालमा करिब 800 किसिमका जडीबुटी भएको अनुमान गरिएको छ । नेपालको तराई जस्तो गर्मी ठाउँमा हर्रो, बर्रो, अमला, राजवृक्ष, सर्पगन्धा, असुरो आदि जडीबुटीहरू पाइन्छ । महाभारत पर्वत श्रृङ्खलामा तथा चिसो हावापानी भएका क्षेत्रमा चुत्रो, धतुरो, चिराइतो, बोभ्रो, सुगन्धवाला, टिमुर आदि जडीबुटी पाइन्छ । सधैँ चिसो र हने उच्च पहाडी र हिमाली भागमा पाँचऔँले, पदमचाल, जटामसी, यार्चागुम्बा आदि जडीबुटी पान्इछ । हिजोआज जडीबुटीको खेती पिन गरिन्छ । हाम्रो देशमा भएका केही जडीबुटी विदेशमा पिन पैठारी गरिन्छ । भन्डै 70 जातका जडीबुटीहरू विदेशमा निकासी हुने अनुमान गरिएको छ । सर्पगन्धा, जटामसी, लघुपत्र, पाँचऔँले, भ्याकुर, एक्लेविर आदि जडीबुटीहरू विदेश पठाइन्छ । वनजङ्गलको विनाशका कारणले जडीबुटी उत्पादनमा समेत हास आएको छ । जथाभावी रूपमा जडीबुटीको सङ्कलन गरी चोरी निकासी गर्ने प्रवृत्तिले पिन बहुमुल्य जडीबुटीको अस्तित्व सङ्कटमा परेको छ ।

क्रियाकलप ४

तिमी बसेको ठाउँमा कस्ता जडीबुटीहरू पाइन्छ, ती जडीबुटीहरू कस्तो औषधीका रूपमा

प्रयोग गरिन्छ, आफूभन्दा ठुलो र जानेका मानिससँग सोधी लेख :

क्र. स.	जडीबुटीको नाम	उपयोग हुने भाग	काम

नेपालमा संरक्षित वन पैदावारहरू (Protected Plants)

जीवजन्तु तथा वनस्पतिको सङ्ख्या घट्दै गई लोप हुने स्थितिमा पुगेमा त्यस्तो अवस्थालाई दुर्लभ अवस्था भिनन्छ । त्यस्ता जीवजन्तु तथा वनस्पतिहरू पृथ्वीबाट नै लोप हुन थाल्छन् । उदाहरणका लागि चाँप, जटामसी, यार्चागुम्बा आदिलाई लिन सिकन्छ । यस्ता सजीवको अस्तित्व बचाइराख्नका लागि कानुनले नै संरक्षण गर्नुपर्दछ । हाम्रो देशमा कानुनले संरक्षित गरेका विभिन्न बोटिबिश्वाहरू रहेका छन् । तीमध्ये केहीलाई सङ्कलन गर्न निषेध गरिएको छ । केहीलाई विदेश निर्यात गर्न प्रतिबन्ध लगाइएको छ । हाम्रो देशमा पाँचऔँले, कुट्की, जटामसी, सर्पगन्धा, सुगन्धकोकिला, सुगन्धवाल, लौठसल्ला, यार्चागुम्बा, चाँप, खयर, साल, सत्तीसाल, विजयसाल, सिमल आदिलाई विदेश निर्यातमा रोक लगाइएको छ । यीमध्ये केहीलाई अनुमित लिएर निर्यात गर्ने व्यवस्था गरिएको छ ।

पशुपक्षीहरू

(क) वर्तमान स्थिति

वन्यजन्तुहरूको वासस्थान जङ्गल हो । वनजङ्गलको विनाशले पशुपक्षीहरूको अस्तित्व सङ्कटमा पर्न थालेको छ । नेपालमा करिब 170 भन्दा बढी जातका वन्यजन्तु पाइन्छ । तीमध्ये बाघ, गैँडा, हात्ती, हिउँ चितुवा, भालु, जरायो, मृग, कस्तुरी, अर्ना, घोरल, बँदेल, खरायो, चौसिङ्गे, स्याल आदि प्रमुख जङ्गली जनावर हुन् । नेपालमा 879 भन्दा बढी जातका चराहरू पाइन्छ । तीमध्ये धेरैजसो चराचुरुङ्गीको वासस्थान वन जङ्गल नै हो । तित्रा, डाँफे, मुनाल, कालिज, लुईँचे, च्याखुरा, लामपुच्छे, ढुकुर, न्याउली, कोइली, मुजुर,चिल, बाज, धनेस, बकुल्ला, मैना, गिद्ध आदि चराचुरुङ्गीहरू वन जङ्गलमा नै बस्छन् । वन्यजन्तु तथा पन्छीहरूका बासस्थानको दिनदिनै विनाश क्रम बढेको हुनाले यी जीवलाई असर पुऱ्याएको छ । त्यसैले बाघ, हिउँ

चितुवा, गैँडा, हात्ती, बारिसङ्गे, कस्तुरी मृग आदिको सङ्ख्या दिनानुदिन घट्दै गइरहेको छ । त्यसैगरी चोरी निकासी र अवैध सिकारले पिन पशुपन्छीको सङ्ख्या घट्दै गइरहेको छ । हाल नेपालमा कृष्णसार र जङ्गली खरायो लोप हुने अवस्थामा छन् । त्यस्तै हात्ती, गैँडा, बाघ, अर्ना, हिउँ चितुवा, बाइसिङ्गे, कस्तुरी मृग आदि पिन दुर्लभ हुँदैछन् । नेपालमा पाइने 27 थरिका स्तनधारी जन्तु, 9 जातिका चरा र 3 जातिका घस्रने जन्तुहरू सङरिक्षत घोषित गरिएका छन् ।

(ख) महत्त्व र आवश्यकता

वन्यजन्तु तथा पक्षीहरू वन जङ्गलका सौन्दर्यका प्रतीक हुन् । यिनीहरूले प्राकृतिक सौन्दर्यतालाई बचाउँछन् । यिनीहरूले वातावरण र पारिस्थितिक प्रणालीमा सन्तुलन ल्याउँछन् । पशुपक्षीहरूको विनाश तथा लोप हुनाले प्रकृतिको सुन्दर संरचना बिग्रन गई भविष्यका सन्तानलाई समेत बेफाइदा हुन्छ । वन्यजन्तुहरूले पर्यटन व्यवसायलाई टेवा पुऱ्याउँछ । पर्यटकहरू दुर्लभ र आफ्नो देशमा नपाइने वन्यजन्तुहरू हेर्न उत्सुक हुन्छन् । यसका लागि उनीहरू धेरै पैसा खर्च गरी हाम्रो देशमा आउँछन् । यसबाट हाम्रो देशमा आर्थिक उन्नित गर्न टेवा मिल्छ । स्थानीय जनताहरूमा रोजगारी वृद्धि भई जीवन स्तरमा सुधार हुन्छ । त्यसैले प्राकृतिक सौन्दर्य र लोप हुन लागेका वन्यजन्तुलाई संरक्षण गर्नुपर्छ ।

लोप हुन लागेका केही पश्पक्षीहरू

वन विनाश र वासस्थानको नाशले केही वन्यजन्तु लोप हुन थालेका र केही दुर्लभ हुँदै गइरहेका छन् । नेपालमा कृष्णसार, पुड्के बँदेल, जङ्गली गधा, जङ्गली खरायो जस्ता जनजावरहरू लोप हुन लागेका छन् । त्यस्तै गरी जङ्गली हात्ती, गैँडा, बाघ, अर्ना, हिउँ चितुवा, बारिसङ्गे, कस्तुरी मृग, डिल्फिन आदि जनावरहरू दुर्लभ हुँदै गएका छन् । यस्ता जीवलाई संरक्षित जीवको सूचीमा राखिएको छ । नेपालमा संरक्षित घोषित गरिएका केही वन्यजीवहरू यस प्रकार छन् :

(क) एक सिङ्गे गाँडा (One-Horned Rhinoceros)

एक सिङ्गे गैँडा नेपालको चितवन राष्ट्रिय निकुञ्ज र बर्दिया राष्ट्रिय निकुञ्जमा पाइन्छ । यो दुर्लभ जनावर भएकाले यसलाई संरक्षण गरिएको हो । धापिलो घाँसे मैदान र सालको वन जङ्गल भएको स्थानमा यो बस्छ । यसले घाँसपात खाएर जीवन निर्वाह गर्दछ । यसले एक बेतमा एउटा मात्र बच्चा

जन्माउँछ । मानिसले यसको खाग, खुर, छालाका लागि चोरी सिकार गर्छन् । त्यसैले यो जन्तु सङ्कटापन्न अवस्थामा छ ।

(ख) पाटे बाघ (Bengal Tiger)

पाटे बाघ नेपालको तराईको वनजङ्गलमा पाइन्छ । मुख्यतया चितवन राष्ट्रिय निकुञ्ज, पर्सा राष्ट्रिय निकुञ्ज, बर्दिया राष्ट्रिय निकुञ्ज र शुक्लाफाँटा राष्ट्रिय निकुञ्जमा पाटे बाघ पाइन्छ । घना जङ्गल, घाँसे मैदान र प्रशस्त पानी भएको ठाउँमा बाघ बस्छ । यसले चित्तल, बँदेल, जरायो, लगुना, रतुवा मृग आदि मारेर खान्छ । यसले एक बेतमा दुईदेखि 6 ओटासम्म बच्चा जन्माउँछ ।

चित्र नं. 22.1

चित्र नं. 22.2

चोरी सिकारीले गर्दा बाघ पनि सङ्कटापन्न अवस्थामा पुगेको छ ।

(ग) हात्ती (Asiatic Elephant)

हात्ती नेपालको तराई क्षेत्रमा पाइन्छ । चुरे पहाडभन्दा तलको समथर जङ्गली भाग हात्तीको प्रमुख वासस्थान हो । पूर्वमा भापादेखि पर्सा, चितवन, बर्दिया र शुक्लाफाँटासम्म हात्ती पाइन्छ । यो 3.5 मिटरसम्म अग्लो हुन्छ । यसले रुख, घाँसपात, बाँस, अन्न बाली आदि खान्छ । यसले एक बेतमा एउटा मात्र बच्चा जन्माउँछ । यसको लामो दारा हुन्छ । मानिसले दाराका लागि चोरी सिकारी गरेको पाइन्छ । यो पनि दुर्लभ सङरक्षित जन्तु हो ।

चित्र नं. 22.3

(घ) हाब्रे (पाण्डा) (Red Panda)

यो करिब 3500 मिटर उचाइमा रहेको बाँस, खसु र निगालो धेरै भएको वन जङ्गलमा पाइन्छ । यो बिरालोभन्दा केही ठुलो आकर्षक जन्तु हो । यो फलफूल, घाँसपात, बाँस, निगालाको मुना आदि खाएर बाँच्छ । यसको भुवादार राम्रो छालाका लागि मानिसले चोरी सिकारी गर्दछन् । त्यसैले यसको संख्या घट्दै गएर

चित्र नं. 22.4

लोप हुने अवस्थामा पुगेको छ । यो कन्चनजङ्गा, ताप्लेजुङ क्षेत्रमा पाइन्छ ।

(ङ) अजिङ्गर (Python)

अजिङ्गर ठुलो सर्प हो । यो प्राय: घना जङ्गलको रुखको मुढामा र सुकेका पातहरूमा बस्छ । यो कहिलेकाहीँ नदी, ताल नजिकका घाँसे मैदानमा पिन बस्छ । यसको शरीर सेतो, कालो र छिरिबरे रङको हुन्छ । यसको लम्बाइ करिब ७ मिटरसम्म हुन्छ । यो विषालु हुँदैन । यसले ससाना जनावरहरू, मृगका पाठा, खरायो, बाखाका पाठा आदि निल्छ । यसको टाउको ठुलो र आँखा सानो हुन्छ । यसलाई छालाका लागि चोरी सिकारी गर्ने भएकाले लोपोन्मुख हुँदै गएको छ

चित्र नं. 22.5

(च) ठुलो धनेस (Giant Pied Hornbill)

ठुलो धनेस चरा तराईको जङ्गलमा पाइन्छ । यसको टाउकामा चुच्चोभन्दा माथि एउटा फराकिलो भाग हुन्छ । यसले गर्दा यो आकर्षक देखिन्छ । तराईमा अग्ला रुखहरूको विनाशसँगै यसको वासस्थान विनाश भएको छ । यो चरा पिन सङ्कटमा परेको छ । हाड र बोसोका लागि चोरी सिकार गने भएकाले पिन यसको सङ्ख्या घट्दै गएको छ ।

परियोजना कार्य

तिम्रो वासस्थान निजकको वन जङ्गल, निकुञ्ज, आरक्ष वा संरक्षण क्षेत्र वा चिडियाखानाको भ्रमण गरी त्यहाँ रहेका पशुपक्षीहरूको अवलोकन गर । त्यहाँ रहेका प्रमुख पशुपक्षीहरूको नाम, वासस्थान, वर्तमान स्थिति, खाना, संरक्षणका लागि भइरहेका कार्यहरू र अपनाउनुपर्ने कार्यहरूबारे छोटकरीमा लेख ।

सारांश

- मानिस हावा, पानी, वासस्थान र खाद्यान्नका लागि प्राकृतिक स्रोतमा निर्भर रहन्छन् ।
- २. प्राकृतिक वातावरणका साथै जीवजन्तु, वनस्पतिको संरक्षण गर्नका लागि राष्ट्रिय निकुञ्ज, वन्यजन्तु आरक्ष, सिकार आरक्ष तथा संरक्षण क्षेत्रहरू बनाइएका छन् ।
- ३. नेपालमा हालसम्म 12 ओटा राष्ट्रिय निकुञ्ज, एकओटा वन्यजन्तु आरक्ष, एक सिकार आरक्ष र 6 ओटा संरक्षण क्षेत्र स्थापना भएका छन् ।
- ४. वनजङ्गलबाट घाँसपात, काठ, दाउरा, जडीबुटी आदि प्राप्त गर्न सिकन्छ ।
- प्र. नेपालको तराईमा साल, सिसौ, खयर, सिमल तथा पहाडमा चाँप, कटुस, चिलाउने,ओखर र हिमाली भागमा राई सल्लो, ठिङ्गुरे सल्लो, भोजपत्र आदि पाइन्छ ।
- ६. नेपालको हिमाली भागमा पाँचऔँले, पद्मचाल, जटामसी, यार्चागुम्बा आदि जडीबुटी पाइन्छ ।
- वासस्थान विनाशले गर्दा बाघ, गैँडा, हात्ती, हिउँ चितुवा, अजिङ्गर, धनेस, गिद्ध आदि पशुपक्षी लोपोन्मुख बनेका छन् ।
- द. नेपालमा 27 स्तनधारी, 9 पन्छी र 3 जातिका घस्रने जन्तुलाई संरक्षित सूचीमा राखिएको छ ।

अभ्यास

	•	ت				
٩.	खाला	ठाउमा	उपयक्त	शब्द	भर	:

- (क) वन जङ्गल वन्यजन्तुको हो ।
- (ख) नेपालमा जम्मा ओटा वन्यजन्तु आरक्ष स्थापना भएका छन् ।
- (ग) हाम्रो देशमा जातिका पक्षीलाई संरक्षित घोषित गरिएका छन् ।
- (घ) उच्च हिमाली भागमा राइसल्लो, ठिङ्ग्रे सल्लो र आदि पाइन्छन् ।
- (ङ) पाटे बाघ नेपालको जङ्गलमा पाइन्छ ।

२. कारण लेख:

- (क) वन जङ्गल र वन्यजन्तुको घनिष्ठ सम्बन्ध छ ।
- (ख) मानिसका विभिन्न क्रियाकलापले वन्यजन्त्लाई बाँच्न कठिन हुन्छ ।
- (ग) वन्यजन्त्को संरक्षणका लागि राष्ट्रिय निक्ञ्ज तथा आरक्षले सहयोग प्ऱ्याउँछ ।

३. छोटो उत्तर लेख:

- (क) वन जङ्गलको विनाश किन हन्छ ?
- (ख) वन जङ्गल जोगाउन के के गर्न्पर्छ ?
- (ग) हाम्रो देशमा कस्ता जडीब्टी पाइन्छन् ?
- (घ) जडीबुटीको महत्त्व वर्णन गर ।
- (ङ) हाम्रो देशमा वन्यजन्तु संरक्षणका लागि कस्ता प्रयासहरू भएका छन् ?
- ४. राष्ट्रिय निकुञ्ज र वन्यजन्तु आरक्षबिच के फरक छ, लेख ।
- ५. तिमी बसेको ठाउँमा पाइने जडीबटीको नाम र तिनको उपयोगिता पत्ता लगाई लेख।
- ६. राष्ट्रिय निकुञ्ज भनेको के हो, नेपालमा भएका राष्ट्रिय निकुञ्जहरूको सूची बताऊ।
- ७. वन्यजन्तु आरक्ष भनेको के हो, नेपालमा भएका वन्यजन्तु आरक्षको नाम लेख।
- द. सिकार आरक्ष भनेको के हो ?
- ९. नेपालका कुन कुन संरक्षण क्षेत्रहरू रहेका छन्, लेख ।
- १०. तिम्रो बासस्थान निजकको वन जङ्गल र वातावरण जोगाउनका लागि तिमीले के के कार्य गर्न सक्छौ, छोटकरीमा लेख।

3 वातावनणीय द्वास तथा यसको संनक्षण (Environmental Degradation and its conservation)

वातावरण सम्पूर्ण जीवका लागि बाँच्ने आधार हो । हावा, पानी, माटो आदि वातावरणीय तत्त्वसँग मानिसको प्रत्यक्ष सम्बन्ध रहेको छ । मानिसले आफ्नो वासस्थान, उद्योग, कलकारखाना, सडक, कुलो, नहर आदि विकास निमार्ण गतिविधि पृथ्वीको सतहमा गर्दछ । मानिसका यी गतिविधिले हावा, पानी, माटोलगायत अन्य प्राकृतिक स्रोतहरूको गुण स्तरमा कमी आउन थालेको छ । यी वातावरणीय तत्त्वको गुण स्तरमा कमी आउनु अर्थात् नकारात्मक असर पुग्नु नै वातावरणीय हास हो ।

मानिसको क्रियाकलापबाट वातावरणमा पर्ने असर

मानिसले आफ्नो आवश्यकता पूरा गर्न विभिन्न प्राकृतिक स्रोत र साधनको उपयोग गर्दछन् । बढ्दो जनसङ्ख्याको आवश्यकता पूरा गर्न मानिसले अत्यधिक मात्रामा हावा, पानी, माटो, वन जङ्गल आदिको उपयोग गर्दछन् । त्यसैगरी मानिसले विकास गतिविधि गर्दा वातावरणमा भएका विभिन्न स्रोतहरूको प्रयोग हुन्छ । वातावरणलाई बेवास्ता गरी जथाभावी किसिमले विकास कार्यहरू सञ्चालन गर्दा वातावरणमा प्रतिकूल असरहरू पर्छन् । यसलाई वातावरणीय प्रदूषण भनिन्छ ।

वातावरणीय प्रदूषण (Environmental Pollution)

वातावरणमा प्रत्यक्ष वा अप्रत्यक्ष रूपले परिवर्तन गरी वातावरणमा उल्लेखनीय हास ल्याउने, क्षिति वा वातावरणको लाभदायी वा उपयोगी प्रयोजनमा हानि नोक्सानी पुऱ्याउने क्रियाकलाप नै वातावरणीय प्रदूषण हो । प्रदूषणलाई निम्न लिखित समूहमा वर्गीकरण गर्न सिकन्छ :

१. वायु प्रदूषण (Air Pollution)

वायुमण्डलमा नाइट्रोजन, अक्सिजन, कार्बनडाइअक्साइड, आर्गन जस्ता ग्यासहरू छन् । यी ग्यासहरूमा बाह्य तत्त्व तथा दूषित वस्तुहरू मिलेमा यिनीहरूको वास्तविक अवस्था बिग्रन्छ । यातायातका साधन, उद्योग, कलकारखानाबाट निस्कने धुवाँ, धुलो, कार्बनडाइअक्साइड, सल्फरडाइअक्साइड, कार्बनमनोअक्साइड आदि वायुमण्डलमा मिसिएर वायु प्रदूषित हुन्छ । स्वच्छ हावा दुर्गन्धित र धिमलो हुनुलाई वायु प्रदूषण भनिन्छ ।

वाय प्रदुषणका कारणहरू

वायु प्रदूषण विभिन्न कारणले गर्दा हुन्छ । तीमध्ये केही प्रमुख कारणहरू यस प्रकार छन् :

- (क) सवारी साधनबाट निस्कने ध्वाँ, धुलो र फोहोर मैलाले वाय प्रदुषण गराउँछ ।
- (ख उद्योग, कलकारखानाबाट निस्कने ध्वाँ, ध्लो र विषाल् ग्यासले वाय् प्रदुषण गराउँछ ।
- (ग) ग्रामीण क्षेत्रमा इन्धनको स्रोतका रूपमा दाउरा, गुइँठा, ढोड, छ्वाली बाल्दा निस्कने धुवाँले वाय प्रदूषण गराउँछ ।
- (घ) खानीबाट खनिज पदार्थ निकाल्दा र बाटो बनाउँदा निस्कने धुलोले पनि वायु प्रदूषण गराउँछ ।
- (ङ) सहर बजारमा जथाभावी फोहोर मैला फाल्नाले सडेगलेका फोहोरबाट निस्कने दुर्गन्धले वायु प्रदूषण हुन्छ ।

वायु प्रदूषणका असरहरू

- (क) वायु प्रदूषणले मानिसको स्वास्थ्यमा नराम्रो असर पार्दछ । श्वासप्रश्वास, आँखा, फोक्सो र छातीसम्बन्धी रोगहरू लाग्छ ।
- (ख) बोट बिरुवा र साङस्कृतिक सम्पदालाई पनि नोक्सान पुऱ्याउँछ ।
- (ग) मानिसलाई आँखा पोल्ने र दम बढ्ने जस्ता रोग लाग्छ ।

- (घ) पृथ्वीको तापक्रम वृद्धि हुन जान्छ ।
- (ङ) अम्ल वर्षा हुन्छ ।

२. जल प्रदूषण (Water Pollution)

नदीनाला, पँधेरा, ताल, पोखरी, भूमिगत पानी आदि पानीका प्रमुख स्रोतहरू हुन् । मानवीय विभिन्न क्रियाकलापहरूले गर्दा पानीका स्रोतहरू प्रदूषित हुन्छन् । उद्योगबाट निष्कासन हुने फोहोर मैला, खेती बारीमा प्रयोग गरिने रासायनिक मल तथा कीटनाशक विषादी, ढल निकास, अन्य फोहोर वस्तुका अवशेष आदि फोहोरका स्रोत हुन् । यी फोहोर मैला पानीका स्रोतहरूमा मिसिँदा पानीको गुणमा प्रत्यक्ष वा अप्रत्यक्ष रूपमा परिवर्तन आउँछ । यसरी हानिकारक वस्तुहरू पानीको स्रोतमा मिसिँदा पानीको वास्तविक गुणमा प्रतिकूल असर परी त्यसको विद्यमान स्थितिमा परिवर्तन हुन्छ । यसलाई जल प्रदूषण भनिन्छ ।

जल प्रदूषणका कारणहरू

जल प्रदूषणका विभिन्न कारणहरू छन् । तीमध्ये केही प्रमुख कारणहरू यस प्रकार छन् :

- (क) सहरी क्षेत्रको कतिपय ठाउँमा पिउने पानीको पाइप र ढलको पाइप एकै ठाउँबाट लिगएको पाइन्छ । अचानक ढल फुट्दा खानेपानीको पाइपमा फोहोर पानी मिसिएमा खाने पानी दूषित हुन्छ ।
- (ख) धारा, कुवा, पँधेरो जस्ता पिउने पानीका स्रोतहरू निजक लुगा धुने, भाँडाकुँडा माज्ने, गाईवस्तुलाई पानी खुवाउने, नुहाउने आदि कार्यहरू गर्नाले पानीका स्रोतहरू दूषित हुन्छन् ।
- (ग) उद्योग र विभिन्न ठाउँहरूबाट निस्कने फोहोर मैला, अन्य दूषित वस्तुहरू, ढल निकास आदि नदी, ताल, दह, पोखरी जस्ता पानीका स्रोतहरूमा सोफै मिसाएमा यिनीहरू दूषित हुन्छन् ।
- (घ) कृषिजन्य उत्पादन वृद्धि गर्नका लागि किसानहरूले रासायिनक मल, कीटनाशक विषादीहरूको प्रयोग गर्छन् । रासायिनक मल र विषादीको रस जिमनबाट बिस्तारै चुहिएर जलस्रोतमा मिसिन पुग्छ । यसले जलस्रोतहरूलाई प्रदूषित पार्छ ।
- अस्पताल, प्रयोगशाला, उद्योग, सवारी साधन मर्मत केन्द्र आदिबाट फोहोर मैला
 एवम् रासायनिक वस्तुहरू निष्कासन हुन्छन् । यी वस्तुहरू पानीका स्रोतहरूमा मिसिँदा
 जल प्रदूषण हुन्छ ।

जल प्रदूषणका असरहरू

जल प्रदूषणबाट पर्ने विभिन्न असरहरू यस प्रकार छन् :

- (क) दूषित पिउने पानीबाट हैजा, आउँ, कमल पित्त, विषम ज्वर आदि रोगहरू लाग्छन् ।
- (ख) दूषित पानीले बोट बिरुवा र जलीय प्राणीलाई हानि पुऱ्याउँछ ।
- (ग) बोटबिरुवाको खाना बनाउने काममा बाधा पुग्छ ।
- (घ) दूषित पानीले दुर्गन्ध फैलाउँछ ।
- (ङ) कतिपय कलिला बिरुवा तथा जल प्राणीहरू मर्दछन् ।

(घ) भूप्रदूषण (Land Pollution)

साधारणतया माटोको गुणमा प्रतिकूल परिवर्तन आउनु नै भूप्रदूषण हो । भूप्रदूषणले जिमनको माथिल्लो सतहमा रहेको मिललो माटोलाई बिगार्छ । माटो प्रदूषण हुनाका विभिन्न कारणहरू हुन्छन् ।

भ्प्रद्षणाका कारणहरू

- (क) खेत बारीमा रासाययनिक मल बढी प्रयोग गर्नु
- (ख) खेतीमा कीटनाशक औषधीको प्रयोग बढी गर्न्
- (ग) फोहोर मैला र अनावश्यक पदार्थ माटोमा फाल्नु
- (घ) प्लास्टिक, काँच र धातुबाट बनेका नकुहिने वस्तु माटोमा मिलाउँदा भूप्रदूषण हुनु
- (ङ) अस्पताल, स्वास्थ्य केन्द्र, प्रयोगशाला, कलकारखानाबाट फालेको नकुहिने फोहोर वस्तुले पनि भूप्रदूषण गराउनु ।

भूप्रदूषणका असरहरू

- (क) माटाको गुणमा सुधार ल्याउने गँड्यौला र सूक्ष्म जीवहरू मर्दछन् ।
- (ख) माटाको उर्वरा शक्तिमा हास आउँछ ।
- (ग) कृषि उत्पादन घट्छ ।
- (घ) प्रदूषित भूमिबाट दुर्गन्ध फैलिई वरपरको स्थानलाई दूषित पार्दछ ।
- (ङ) जिमनको स्थितिलाई बिगार्छ । त्यहाँबाट उत्पन्न हुने पानीलाई समेत प्रदूषण गर्दछ ।

४. ध्वनि प्रदूषण (Noise Pollution)

वातावरणमा मानिस लगायत अन्य जीवलाई नकारात्मक असर पुर्याउने तथा ठुलो ठुलो आवाजहरू आउनुलाई ध्विन प्रदूषण भिनन्छ । अनावश्यक ध्विन उत्पादन हुनु पिन ध्विन प्रदूषण नै हो ।

ध्वनि प्रदूषणका कारणहरू

- (क) बजार क्षेत्र, घना बस्ती भएको ठाउँ, यातायात बढी भएको सहरी ठाउँ कलकारखाना बढी भएको ठाउँबाट अनावश्यक आवाज र होहल्ला निस्कन्छ र ध्विन प्रदूषण हुन्छ ।
- (ख) सडक निमार्ण, भवन निर्माण आदि ठाउँबाट ध्वनि प्रदूषण हुन्छ ।
- (ग) रेडियो, टेलिभिजन, सङ्गीतका साधनहरू ठूलो स्वरले बजाउँदा पनि ध्वनि प्रदूषण हुन्छ ।
- (घ) सिमेन्ट उद्योग, मैदा मिलहरू, धातुका उद्योग आदिबाट अनावश्यक आवाज उत्पन्न भई ध्वनि प्रदूषण हुन्छ ।
- (ङ) सहर बजरमा मानिसको होहल्ला, माइकबाट प्रचारप्रसार आदिले पनि ध्वनि प्रदूषण हुन्छ ।

ध्वनि प्रदूषणका असरहरू

ध्विन प्रदूषणबाट विभिन्न असरहरू पर्दछन् । तीमध्ये केही प्रमुख असरहरू यस प्रकार रहेका छन् :

- (क) श्रवण शक्ति कमजोर हुँदै जान्छ ।
- (ख) मानिसको रक्त चाप बढ्छ ।
- (ग) ज्यादै ठुलो आवाजले कानको जाली फुट्ने र कान नसुन्ने हुन सक्छ ।
- (घ) निद्रा नलाग्ने, पाचन क्रिया बिग्रने जस्ता स्वास्थ्य समस्याहरू उत्पन्न हुन्छन् ।
- (ङ) एक चित्त भएर पढ्न, लेख्न वा कुनै कार्य गर्न गारो हुन्छ ।

हरित गृह प्रभाव (Green House Effect)

पृथ्वीको विरिपिर वायुमण्डलले घेरेको छ । वायुमण्डलमा विभिन्न ग्याँसहरू रहेका छन् । कार्बनडाइअक्साइड, कार्बनमनोअक्साइड, मिथेन, ओजोन, नाइट्रसअक्साइड, सल्फरडाइअक्साइड तथा पानीको बाफले पृथ्वीलाई बाक्लो रूपमा ढाकेको हुन्छ । यी ग्याँसहरूलाई हरित गृह ग्यास भिनन्छ । जब सूर्यको ताप पृथ्वीको सतहमा आइपुग्छ तब यसले वायुमण्डल र पृथ्वीको सतहलाई न्यानो पार्छ । यसका साथै पृथ्वीले सूर्यको तापको केही भाग परावर्तन गरी फिर्ता पठाउँछ । हरित गृह ग्याँसले सूर्यको ताप र प्रकाशलाई पृथ्वीमा आउन दिन्छ तर पृथ्वीबाट परावर्तन भएर गएको ताप र प्रकाशलाई वायुमण्डलबाट बाहिर जान दिँदैन र पृथ्वीतिर नै फर्काइदिन्छ । यसले गर्दा पृथ्वीको वायुमण्डलमा सूर्यको ताप थिपँदै जान्छ र गर्मी बढ्छ । यसरी पृथ्वीको वायुमण्डलमा रहेका हरित गृह ग्याँसले तापलाई सञ्चय गरी पृथ्वीको तापक्रम विद्व गर्ने प्रिक्रयालाई हरित गह प्रभाव भिनन्छ ।

पृथ्वीको वायुमण्डलमा हरित गृह ग्यासहरू नभएको भए ताप शक्ति सञ्चय हुँदैनथ्यो । फलस्वरूप पृथ्वीको तापक्रम अत्यन्त न्यून हुन्थ्यो । पृथ्वी बरफले ढाकेर रहन्थ्यो । कुनै जीवको सम्भावना हुँदैनथ्यो । त्यसैले पृथ्वीको प्राकृतिक हरित गृह प्रभावले जीवन सम्भव बनाएको छ । त्यसैले हरित गृह ग्याँसहरू निश्चित मात्रामा भएसम्म वायुमण्डलको तापक्रम सन्तुलनमा खासै अन्तर पर्दैन । तर मानवीय क्रियाकलापका कारण हरित गृह ग्यासको मात्रामा वृद्धि भएमा हरित गृह प्रभाव बढ्न जान्छ । हरित गृह प्रभाव बढेमा पृथ्वीको तापक्रम वृद्धि हन जान्छ र जलवाय परिवर्तन हन्छ ।

वायुमण्डलमा हरित गृह ग्याँसहरू बढ्ने कारणहरू

- (क) डढेलो लागेर बोटबिरुवामा सञ्चित कार्बन कार्बनडाइअक्साइडका रूपमा वाय्मण्डलमा जान्छ ।
- (ख) वन विनाश हुँदा बोटबिरुवाले सञ्चित गर्ने कार्बन सिधै वायुमण्डलमा जान्छ ।
- (ग) उद्योग, कलकारखाना, सवारी साधनबाट निस्कने ग्यासले पनि हरित गृह प्रभाव बढाउँछ ।
- (घ) फोहोर मैला जथाभावी फाल्दा कुहेर निस्कने मिथेन ग्यास वायुमण्डलमा पुग्छ ।
- (ङ) हवाइजहाजबाट निस्कने ग्याँस पनि हरित गृह ग्याँस हो ।
- (च) पृथ्वीको सतहको तापक्रम वृद्धिले पृथ्वीको सतहको पानी बाफ बनेर आकासमा पुग्छ । यसले पनि हरित गृह प्रभाव बढाउँछ ।

हरित गृह प्रभावका असरहरू

- (क) पृथ्वीको तापक्रम वृद्धि हुन्छ ।
- (ख) हावापानीको स्थितिमा बिस्तारै परिवर्तन आउँछ ।
- (ग) जलचक्रमा असर प्ऱ्याउँछ ।
- (घ) ध्वीय क्षेत्रमा रहेको बरफ पग्लेर समुद्रको सतह माथि बढ्छ ।
- (ङ) हिमालमा रहेको हिउँ पग्लेर हिमालको उचाइ घट्छ ।

विचारणीय प्रश्न

जाडोको समयमा तरकारी खेती गर्दा प्लास्टिकले ढाकेर हरित गृह बनाइन्छ, किन ?

जलवायु परिवर्तन (Climate Change)

जलवायु परिवर्तन प्राकृतिक घटना क्रम हो । पृथ्वीको जलवायु स्थिर छैन । पृथ्वीमा भइरहने विभिन्न प्राकृतिक घटनाका कारण धेरै पटक जलवायु परिवर्तन भएको छ । जलवायु परिवर्तन भन्नाले मानवीय क्रियाकलाप तथा प्राकृतिक अस्थिरताका कारण लामो समयाविधमा जलवायुमा हुने परिवर्तन हो । हावापानीको नियमित चक्रीय प्रणाली बिथोलिनु जलवायु परिवर्तन हो । कुनै पिन स्थानको अवस्थिति, हावा, पानी, तापक्रम र भौतिक पदार्थहरूको संरचना आदिको अन्तरिक्रयाबाट खास किसिमको हावापानी बनेको हुन्छ । दशकौँ वर्षभन्दा बढी समयमा भएको औसतको घटबढ र फरक पनका विभिन्न लक्षणहरूको अध्ययनबाट जलवायु परिवर्तनको पहिचान गर्न सिकन्छ । समग्रमा जलवायु परिवर्तन भनेको लामो समय अविधमा मौसमको तथ्याङ्कीय परिमाणमा परिवर्तन हुन् हो ।

जलवाय परिवर्तनको असर

- (क) तापक्रममा भएको वृद्धिले हिमाली क्षेत्रको हिउँ पग्लेर जानाले भविष्यमा पानीको स्रोतको कमी हुन्छ ।
- (ख) समुद्र सतहको पानी तीव्र रूपमा माथि उठ्दै गइरहेको हुन्छ ।
- (ग) अतिवृद्धि र अनावृष्टिले कतै धेरै पानी पर्ने र कतै पानी नै नपर्ने हुन थालेको छ ।
- (घ) बेमौसमी वर्षाले पानी चाहिएको बेला नपर्ने तर नचाहिएको बेलामा पर्ने हन थालेको छ ।
- (ङ) कृषि उत्पादनमा गिरावट आएको छ ।
- (च) तातो हावा, शीतलहर, महामारी आदिले मानव स्वास्थ्यमा नकारात्मक असर बढ्न थालेको छ ।
- (छ) जैविक विविधतामा हास आएको छ ।

अम्लीय वर्षा (Acid Rain)

वायुमण्डलमा रहेको जलवाष्प रासायिनक र भौतिक प्रक्रियाद्वारा अम्लीय पदार्थहरूसँग मिलेर पृथ्वीको सतहमा भर्ने प्रक्रियालाई अम्ल वर्षा (acid rain) भिनन्छ । सामान्यतया अम्ल वर्षा भन्नाले आकासको पानीमा अम्लीय पदार्थ मिसिएर हुने वर्षालाई बुभिन्छ । अम्ल वर्षाको पानीमा अन्य वर्षाको पानीमा भन्दा अम्लीयपना सामान्यतया बढी हुन्छ ।

अम्ल वर्षा हुने कारण (Causes of Acid Rain)

मानिसले आफ्नो आवश्यकता पूरा गर्ने क्रममा धेरै विकास निर्माण गतिविधि सञ्चालन गर्दै आइरहेका छन् । यस्तै विकासमध्ये औद्योगिक विकास पिन एक हो । औद्योगिक उत्पादन प्रिक्रियामा विभिन्न किसिमका विषालु ग्यासहरू (toxic gases) निस्कन्छन् । विभिन्न किसिमका उद्योगहरूबाट सल्फरडाइअक्साइड, कार्बनडाइअक्साइड, कार्बनमनोअक्साइड, नाइट्रसअक्साइड आदि ग्यास निस्कन्छन् । उद्योगबाट निस्कने यस्ता प्रदूषित ग्यासहरूबाट प्रतिक्रिया भई अन्य प्रदूषक पदार्थ बन्छन्, जस्तै : सल्फरडाइअक्साइड र अक्सिजन मिली सल्फरटाइ अक्साइड बन्छ ।

यो पानीसँग प्रतिक्रिया भई सल्फुरिक अम्लमा परिणत हुन्छ । यसरी बनेको सल्फुरिक अम्ल वर्षाको पानीसँग मिलेर अम्ल वर्षा (acid rain) बन्छ ।

यसैगरी उद्योग कलकारखानाबाट निस्कने कार्बनडाइअक्साइडले पानीसँग रासायनिक प्रतिक्रिया गरी कार्बोनिक अम्ल बनाउँछ ।

अम्ल वर्षाको असर

- (क) अम्ल वर्षाले बोट बिरुवा तथा जीवहरूमा अनेक स्वास्थ्य समस्या ल्याउँछ ।
- (ख) चट्टानहरू खिइन्छन् ।
- (ग) मूर्ति, घरका जस्ताका छाना, मन्दिरका धातु (पित्तल, तामा) का छानाहरू खिइन्छन् ।
- (घ) स्थलीय तथा जलीय पारिस्थितिक पद्धितमा असन्तुलन ल्याउँछ ।
- (ङ) माटोको अम्लीयपना बढ्छ र कृषि उत्पादन घट्छ ।
- (च) वनस्पतिको वृद्धिमा हास ल्याउँछ ।

अम्ल वर्षा नियन्त्रणका प्रयास

- (क) प्रदूषकको उत्सर्जन घटाउने
- (ख) वैकल्पिक ऊर्जाको खोजी एवम् प्रयोग गर्ने

- (ग) SO2, CO2 ग्यास उत्पादन गर्ने उद्योगबाट यी ग्यासलाई पुन: प्रयोग गर्ने
- (घ) वायुमण्डलमा निष्कासन नगर्ने प्रविधि भित्र्याउनुपर्दछ

प्रकोप र प्रकोप व्यवस्थापन (Disaster and Disaster Managemenrt)

तिमीहरूले बाढी, पिहरो, आगलागी, भूकम्प आदिले धेरै जनधनको नाश गरेको सुनेका छौ, या देखेका पिन छौ, यस्ता घटनालाई प्रकोप भिनन्छ । यी घटनाले मानिस, पशु, पन्छी, खेतीपाती आदिलाई नोक्सान पुऱ्याउँछ । यस्ता घटनाबाट प्रभावित व्यक्तिहरू आफैंले मात्र पिरिस्थितिको सामना गर्न सक्दैनन् र सामाजिक जनजीवनमा प्रतिकूल असर पर्दछ । त्यसैले अकस्मात कुनै घटना भएर जनधनको ठुलो क्षिति भई सामाजिक जनजीवनमा प्रतिकूल असर पुऱ्याउने घटनालाई प्रकोप भिनन्छ । प्रकोप मुख्यतया दुई कारणले हुन्छ ।

- (क) प्राकृतिक प्रकोप : प्राकृतिक कारणले जन धनको ठुलोक्षिति भई सामाजिक जीवनमा दीर्घकालीन असर पुऱ्याउँछ भने त्यस्ता घटनालाई प्राकृतिक प्रकोप भनिन्छ, जस्तै : भूकम्प, ज्वालामुखी, बाढी, पिहरो, आँधीबेरी, हुरी, बतास, असिना, चट्याङ आदि ।
- (ख) मानव सिर्जित प्रकोप : मानिसका विविध क्रियाकलापका कारणले उत्पन्न हुने घटनाबाट क्षिति भई जनजीवनमा असर पुऱ्याउँछ भने त्यस्तो प्रकोपलाई मानव सिर्जित प्रकोप भनिन्छ, जस्तै : मरुभूमीकरण, रासायनिक दुर्घटना, प्राविधिक दुर्घटना, यातायात दुर्घटना आदि ।

प्रकोपका कारणहरू

नेपालमा कमजोर तथा भिरालो भूवनोट र अकस्मात् धेरै पानी पर्नाले नदीको जल प्रवाहमा वृद्धि हुनु तथा वन जङ्गल विनाश आदिले प्रकोप निम्त्याइरहेका हुन्छन् । यसै गरी अवैज्ञानिक ढङ्गबाट खानीको उत्खनन गर्दा, कुलो नहर बनाउँदा, सडक बनाउँदा, कलकारखानाको निमार्ण गर्दा पनि प्रकोप निम्त्याइरहेको हुन्छ । जनसङ्ख्याको वृद्धि, सहरीकरण, अव्यवस्थित बसोबास, अव्यवस्थित औद्योगीकरण, यातायातका साधनको अव्यवस्थित प्रयोग, फोहोरमैलाको व्यवस्थापनमा कमी, जनचेतनाको कमी जस्ता कारणले पनि प्रकोप निम्त्याइइरहेका छन् । नेपालमा मुख्यतया बाढी, पिहरो, आगलागी, हावा हुरी, असिना, चट्याङ, हिउँ पिहरो, हिमताल विस्फोट, महामारी, भूकम्प जस्ता प्रकोपहरू बढी मात्रामा भइरहन्छ ।

प्रकोपको जोखिम न्यूनीकरण गर्ने उपायहरू र व्यवस्थापनका उपायहरू

प्रकोपहरू विभिन्न कारणले गर्दा हुने घटना हुन् । त्यसैले प्रकोपको कारणअनुसार त्यसको

व्यवस्थापन तथा जोखिम न्यूनीकरण गर्नुपर्दछ । केही प्रकोपहरू र त्यसका जोखिम न्यूनीकरण तथा व्यवस्थापनका उपायहरू यस प्रकार रहेका छन् :

प्रकोप व्यवस्थापन गर्ने उपायहरू

- (क) पूर्वतयारी गर्ने
- (ख) प्रभावितको उद्धार गर्ने
- (ग) पीडितलाई राहत, पुनर्स्थापन र सहयोग गर्ने
- (घ) सहयोगको परिचालन सही ढङ्गबाट गर्ने
- (ङ) जनचेतनाको विकास गर्ने

१. भूकम्प व्यवस्थापन र जोखिम न्यूनीकरणका उपायहरू

जिमनको कम्पनलाई भूकम्प वा भुइँचालो भिनन्छ । विभिन्न कारणले गर्दा भूकम्प जान्छ । भूकम्पले मानिसको प्राण जानुका साथै पशु, पन्छी, विकास निमार्ण संरचना आदि नाश गर्दछ । त्यसैले यसको असरबाट बच्न विभिन्न उपायहरू अपनाउनुपर्दछ ।

भूकम्प आउनुभन्दा पहिले अपनाउनुपर्ने उपायहरू

- (क) घरिभत्र राखिएका दराज, पुस्तकका ऱ्याक, फ्रिज, टेलिभिजन, ऐना, गरौँ फोटो राख्ने फ्रेम आदिलाई नढल्ने गरी भित्तामा अड्याएर राख्ने
- (ख) फुट्ने वस्तुहरू, जस्तै : बोतल, ग्लास, ऐना आदिलाई नखस्ने गरी राख्ने
- (ग) टर्चलाइट, रेडियो, प्राथमिक उपचार बाकस आदि स्रक्षित रूपमा राख्ने
- (घ) घरका जग, सिलिङ, भित्ता, बिजुलीका तार आदि बिग्रिएका छन् भने समयमा नै मर्मत गर्ने
- (ङ) घरभित्र तथा बाहिर सुरक्षित ठाउँ पहिचान गरी राख्ने

भूकम्प गइरहेको अवस्थामा अपनाउनुपर्ने उपायहरू

- (क) घरबाहिर निस्कने ढोका नजिक भएमा बाहिर स्रक्षित स्थानमा जाने
- (ख) घरिभत्र भएको अवस्थामा घरिभत्रको सुरक्षित स्थानमा बस्ने
- (ग) घरबाहिर भएमा खुला ठाउँमा गएर बस्ने
- (घ) गाडी वा सवारी साधन भएमा खुला ठाउँमा रोकेर बस्ने

भूकम्प गइसकेपिको अवस्थामा अपनाउनुपर्ने उपायहरू

- (क) भूकम्प रोकिनासाथ घर बाहिर सुरक्षित स्थानमा जाने र तत्काल घरभित्र नपस्ने
- (ख) आफूलाई चोटपटक लागेको भए उपचारतर्फ लाग्ने
- (ग) कोही च्यापिएर रहेको पाइएमा बाहिर निकालन सहयोग गर्ने र उद्धार टोलीलाई खबर गर्ने
- (घ) घरभित्र जानुभन्दा अगांडि घरको जग, पर्खाल, भ्यालढोका आदिको अवस्था निरीक्षण गर्ने
- (ङ) रेडियो, टेलिभिजन आदिबाट प्रसारण भएका आपत्कालीन समाचार सुन्ने र सो अनुसार व्यवहार गर्ने ।

२. बाढी पहिरोको व्यवस्थापन र जोखिम न्युनीकरण

नदी वा खोलामा पानीको आयतन सामान्य अवस्थाभन्दा बढी हुनुलाई नै बाढी भिनन्छ । अत्यिधिक वर्षा, हिउँ पग्लेर, हिमताल फुटेर, पिहरोले थुनिएको खोला, नदी आदिको पानी पिहरोको माटोलाई नाघेर बाढी आउन सक्छ । जिमनको सतहमा रहेको माटोका ढिक्का वा लेदो अग्लो स्थानबाट होचो स्थानतर्फ बग्ने प्रिक्रियालाई पिहरो भिनन्छ । बाढी पिहरोले व्यापक जन, धनको नाश गर्दछ । त्यसैले बाढी पिहरोको असरबाट बच्न यसको जोखिम न्यूनीकरण तथा व्यवस्थापन गर्न निम्नलिखित उपायहरू अपनाउनुपर्दछ :

- (क) नआत्तिईकन संयमित भएर सुरक्षित स्थानमा बस्ने
- (ख) बढेको खोलानाला नतर्ने

- (ग) बाढी पहिरोमा कोही परेको देखेमा आफूभन्दा ठुलो मानिसलाई तुरुन्त खबर गर्ने
- (घ) बाढी पहिरोले खोलानाला थुनिएको देखेमा सबैलाई खबर गर्ने
- (ङ) असहायलाई सुरक्षित ठाउँमा राख्न सहयोग गर्ने
- (च) घाइते र पीडितको प्राथिमक उपचार गर्ने एवम् अवस्था हेरी स्वास्थ्य केन्द्र वा अस्पताल पुऱ्याउने
- (छ) बाढी पहिरो गइसकेपछिको अवस्थामा पीडितलाई आवश्यक सहयोग गर्ने
- (ज) मरेका पशु पक्षी, सडेगलेका जीवजन्तु तथा वनस्पतिलाई पुरिदिने ।

बाढी पहिरोको व्यवस्थापन

- (क) नदी किनारमा तटबन्ध निमार्ण गर्ने र नदी किनारमा मानव बस्ती हटाउने
- (ख) नदी किनार, पानीले खियाउने ठाउँ आदिमा जरा धेरै हुने बाँस जस्ता बिरुवाहरू रोप्ने
- (ग) भिरालो जिमनमा गरा बनाई खेती गर्ने
- (घ) भिरालो र कमजोर माटो भएको ठाउँमा घर, गोठ निमार्ण नगर्ने
- (ङ) घर वरिपरि पानी निकासको व्यवस्था गर्ने
- (च) बाढी, पिहरो गइरहने स्थानको पिहचान गरी त्यसबाट सावधान रहने
- (छ) जोखिममा परेकालाई आवश्यक र सक्दो सहयोग गर्ने ।

आगलागीको जोखिम न्यूनीकरण र व्यवस्थापन

कहिलेकाहीँ आगाले मानिसका घर, गोठ, कलकारखाना उद्योग आदि जलाएर नष्ट पारिदिन्छ । यस्तो घटनालाई आगलागी भिनन्छ । आगलागीले घर, गोठ मात्र नभएर खेतीपाती र वन जङ्गल पिन नाश गर्दछ । यदि वन जङ्गलमा आगलागी भएमा बोटिबरुवा, चराचुरुङ्गी तथा जीवजन्तु पिन जलेर नाश हुन्छन् । आगलागी मानिसका कारण उत्पन्न हुने प्रकोप हो । यसबाट बच्न निम्नलिखित उपायहरू अपनाउन सिकन्छ :

- (क) सलाइ, लाइटर जस्ता आगो लाग्ने वस्त्हरू केटाकेटीले नभेट्ने ठाउँमा राख्ने
- (ख) चुरोट, बिँडी निपउने र पिउनेले पनि निभाएर फाल्ने
- (ग) गाउँ, घर, बस्ती नजिक पोखरी वा पानीको स्रोत व्यवस्थापन गर्ने
- (घ) दमकल र अग्नि नियन्त्रकलाई तयारी अवस्थामा राख्ने
- (ङ) स्रक्षित विद्युत् जडान (wiring) गर्ने

- (च) आगलागीबाट बच्ने उपायहरूको चेतना जगाउने
- (छ) आगलागी भइसकेको अवस्थामा यसको सूचना समुदाय र आगो नियन्त्रण गर्ने संस्थामा गर्ने
- (ज) आगो निभाउने प्रयत्न गर्ने
- (भ) आगलागी क्षेत्रमा परेका व्यक्तिहरूको उद्धार गर्ने
- (ञ) घाइतेको प्राथमिक उपचार गर्ने
- (ट) आगो फैलन निदने उपायहरू अपनाउने
- (ठ) पीडितलाई सक्दो सहयोग गर्ने ।

४. महामारीको व्यवस्थापन र जोखिम न्युनीकरण

रोग तीव्र गतिमा फैलिएर धेरै मानिसको स्वास्थ्यमा नकारात्मक प्रभाव पर्नु, ज्यान जानु वा ज्यान जाने अवस्था उत्पन्न हुने अवस्थालाई महामारी भनिन्छ । महामारीले धेरै धन जनको नाश गर्ने भएकाले यसको असरबाट बच्न निम्नलिखित उपायहरू अपनाउनुपर्दछ :

- (क) जनचेतना तथा शिक्षाको व्यवस्था गर्ने
- (ख) रोग र सरसफाइ सम्बन्धी कार्यक्रम सञ्चालन गर्ने
- (ग) वातावरण सफा राख्ने
- (घ) पानीको स्रोतको संरक्षण र सफाइमा ध्यान दिने
- (ङ) महामारी फैलिसकेको अवस्थामा बिरामीलाई उपचारको व्यवस्था गर्ने
- (च) रोगका कारण, असर र बच्ने उपायहरू सम्बन्धमा जानकारी राखी त्यसबाट सावधानी अपनाउने ।

वातावरण संरक्षण गर्ने उपायहरू

विकास र वातावरण एकअर्कासँग सम्बन्धित हुन्छन् । विकास कार्य गर्दा प्राकृतिक स्रोत र साधनको उचित रूपले उपयोग हुनुपर्छ । तिनको विवेकपूर्ण उपयोग गरेमा मात्र दिगो र दिरलो विकास हुन्छ । यसले वातावरण संरक्षणमा टेवा पुऱ्याउँछ । वातावरण सबैको साभा सम्पत्ति हो । यसलाई जोगाउने र संरक्षण गर्ने जिम्मेवारी पिन हामी सबैको हो । वातावरण संरक्षणका लागि जनचेतना, वृक्षरोपण, जल तथा भूसंरक्षण, प्रदूषण नियन्त्रण, वातावरणीय सफाइ, सांस्कृतिक सम्पदाको संरक्षण आदि कार्यहरू गर्नुपर्दछ । वातावरण संरक्षणका केही मुख्य उपायहरू तल प्रस्तुत गरिएको छ ।

(क) जनचेतना अभिवृद्धि

वातावरणलाई स्वच्छ, सफा, हराभरा र आकर्षक बनाइराख्न सरकारी प्रयासहरू मात्र पर्याप्त हुँदैन । यस्ता कार्यक्रमहरूमा जनताको प्रत्यक्ष संलग्नता हुनुपर्दछ । आर्थिक तथा मनोवैज्ञानिक दृष्टिमा कुनै पनि विकास कार्यमा जनसहभागितालाई महत्त्वपूर्ण स्थान दिइन्छ । यसको अभावमा वातावरण संरक्षण गर्न सिकँदैन । जनतालाई शिक्षाको माध्यमबाट जनचेतना जगाउनुपर्दछ । चेतनाको अभिवृद्धि भएपछि मात्र मानिसहरू वातावरण संरक्षणका प्रयास र कार्यहरूमा जुट्छन् । जनचेतना जगाउन सार्वजनिक सूचना, प्रचार प्रसार, शिक्षा, गोष्ठी, तालिम आदि कार्यक्रमहरू सञ्चालन गर्नुपर्दछ ।

(ख) वृक्षरोपण

वन विनाश अहिले प्रमुख समस्या भएको छ । हाम्रो देशका विभिन्न भागमा नाङ्गा पाखा, डाँडाहरू, चउरहरू देखिन्छन् । यी चउर, फाँट, नाङ्गा डाँडाहरूमा वृक्षरोपण गरी वन जङ्गल बढाउन्पर्छ । यसले वातावरण संरक्षणमा सघाउ प्ऱ्याउँछ ।

(ग) जलस्रोत संरक्षण

नदीनाला, हिउँ, ताल पोखरी, मूल, कुवा, पँधेरा आदि हाम्रा प्रमुख जल स्रोतहहरू हुन् । यस्ता स्रोतहरूलाई बचाउनु नै जलस्रोत संरक्षण हो । यसको संरक्षणका लागि वृक्षरोपण गर्ने, भू:क्षय, पिहरो, बाढी जस्ता प्रकोपबाट बचाउनुपर्दछ । कुलो र खहरे को पानीलाई व्यवस्थित गर्नुपर्छ । पोखरी, ताल, धापिलो क्षेत्र आदिलाई पुरिनबाट जो गाउनुपर्दछ । पानीको स्रोतमा औद्योगिक फोहोरमैला, विषादी, रासायिनक मल आदि मिसिन दिनु हुँदैन । पानीको स्रोत निजक लुगा धुने, नुहाउने, भाडाँकुँडा माभ्र्ने र दिसा पिसाब गर्नु हुँदैन ।

(घ) भूसंरक्षण

भूसंरक्षण भन्नाले जिमन या माटोको संरक्षण गर्नु हो । माटोको मौलिक गुण कायम राख्न र उर्वरा शिक्ति जोगाइराख्न यसको संरक्षण गर्नुपर्दछ । माटोको संरक्षणले कृषि भूमिको उत्पादकत्त्व बढ्छ । माटोको संरक्षणले वातावरणलाई संरक्षण गर्न सघाउँछ । भूसंरक्षण गर्नका लागि नाङगो डाँडा, खुला फाँट, चउर, भिराला जिमन आदि ठाउँमा वृक्षरोपण गर्नुपर्दछ । नदी, ताल, पोखरी, खोला खोल्सा किनारमा बाँस, ठुलो रुख तथा घाँसहरू रोप्नुपर्दछ । वन जङ्गलिभत्र अव्यवस्थित चिरचरन नियन्त्रण गर्नुपर्दछ । घुम्ती चरणको व्यवस्था गन्पर्दछ । भिरालो क्षेत्रमा

गरा बनाई खेती गर्नुपर्दछ । पानी बग्ने ठाउँमा छेकबार, तटबन्ध र बाँध बाँध्नुपर्छ । यसरी भूक्षयलाई रोक्न सिकन्छ ।

(ङ) प्रदूषण नियन्त्रण

हिजोआज प्रदूषण जिटल समस्याका रूपमा देखा परेको छ । यसले वातावरणको स्थितिलाई बिगारेर जीवलाई बाँच्न किठन तुल्याउँछ । त्यसैले प्रदूषणालाई नियन्त्रण गर्नुपर्दछ । प्रदूषण नियन्ण गर्नका लागि घर, अफिस, उद्योग, कलकार खानाआदिबाट निस्केका फोहोरमैलाको उचित व्यवस्था गर्नुपर्दछ । ढल निकासको राम्रो व्यवस्था गर्नुपर्दछ । पूराना सवारी साधनहरू र कलकारखानाका यन्त्रहरू नियमित मर्मत सम्भार गरी धुवाँ कम आउने बनाउनुपर्छ । सड्ने र नसड्ने फोहोरमैला छुट्याएर तिनको उचित विसर्जन गर्नुपर्दछ । सड्ने अर्थात् कुहिने फोहोरमैलाको कम्पोस्ट (compost) मल बनाई प्रयोग गर्नुपर्दछ । नसड्ने वा नकुहिनेलाई पुनः प्रयोग वा पुनः चक्रण गर्नुपर्छ । जथाभावी कीटनाशक औषधीको प्रयोग गर्नु हुँदैन । पानीको स्रोत निजक फोहोरमैला फाल्नु हुँदैन । खेती योग्य जिमनमा नसड्ने फोहोरमैला जथाभावी नफाली तिनको उचित व्यवस्था गर्नुपर्दछ ।

(च) सांस्कृतिक सम्पदाको संरक्षण

मन्दिर, गुम्बा, विहार, स्मारक, धर्मशाला, पाटी, पौवा आदि सांस्कृतिक सम्पदा हुन् । यिनको समयमा नै मर्मत सम्भार तथा संरक्षण गर्नुपर्दछ । यिनको मौलिक स्वरूपलाई जोगाइ राख्नुपर्दछ । सांस्कृतिक सम्पदा रहेको क्षेत्र वरपर सरसफाइ गर्नुपर्दछ । पूराना वस्तु, धार्मिक स्थल आदिको महत्त्व र उपयोगिता सबैलाई बताएर यसको संरक्षणमा सहभागिता जुटाउन सिकन्छ ।

(छ) वातावरणीय सरसफाइ

हाम्रो वरपरको वातावरण स्वच्छ र सफा राख्नुपर्दछ । सहर, गाउँ, टोल छिमेकमा फोहोर हुँदा वातावरण दूषित हुन्छ । यसले मानिस, पशु, पक्षीमा अनेक रोगहरू ल्याउँछ । त्यसैले हामी सबै मिलेर आआफ्नो स्थानको वातावरण सफा राख्नुपर्दछ । यसका लागि फोहरमैलाको उचित विसर्जन गर्ने र ढल निकासको व्यवस्था गर्नुपर्दछ । त्यसैगरी सार्वजिनक स्थान, मठमिन्दर, पाटीपौवा, चौतारो, चोक आदिको संरक्षण र सफाइ गर्ने, पानीका स्रोतहरू सफा राख्ने एवम् घर, गोठ, बाटो, गल्ली आदिको सफाइ गर्ने जस्ता कार्यहरू गर्न्पर्दछ ।

(ज) जनसहभागिता

वातावरण संरक्षण र संवर्धन कार्यमा जनसहभागिताको महत्त्वपूर्ण स्थान रहेको छ । आफ्नो गाउँ घर, टोल, सहर आदिमा वातावरणलाई सफा र स्वस्थ राख्न सबै मिलेर काम गर्नुपर्दछ । आपसी सहयोग, सरसल्लाह, सुभ्रबुभ्र आदिबाट वातावरण संरक्षण र संवर्धनमा सहयोग पुग्छ ।

क्रियाकलाप १

तिमी बसेको स्थानमा फोहोरमैला व्यवस्थापन तथा तह लगाउन कस्ता उपायहरू अपनाइएको छ, आफ्नो स्थानका मानिसहरूलाई सोधेर पत्ता लगाऊ र फोहोरमैलाका प्रकार तथा तिनको व्यवस्थापन गर्न अपनाइएका उपायहरूबारे छोटकरीमा लेख ।

वातावरण संरक्षण र संवर्धनमा सङ्लग्न राष्ट्रिय तथा अन्तर्राष्ट्रिय सङ्घसंस्थाहरू वातावरण संरक्षणकका कार्यक्रमहरू सञ्चालन गर्न राष्ट्रिय तथा अन्तर्राष्ट्रिय सङ्घसंस्थाहरूको गहन भूमिका रहेको छ । यी निकायहरूबाट हाम्रो देशको वातावरण क्षेत्रका नीति र कार्यक्रमहरू तर्जुमा गर्न पनि सहयोग पुग्दै आएको छ । वातावरण संरक्षण र संवर्धनमा सहयोग पुऱ्याउने केही सङ्घसंस्थाहरू यस प्रकार छन् :

9. राष्ट्रिय प्रकृति संरक्षण कोष (National Trust of Nature Convenation -NTNC)

नेपालको प्रकृति तथा प्राकृतिक सम्पदाको संरक्षण एवम् व्यवस्थापन गरी वातावरणीय प्रितकूल परिस्थितिबाट बचाउन सहायक र पुरकको भूमिका निर्वाह गरी अन्तर्राष्ट्रिय क्षेत्रमा समेत योगदान पुऱ्याउने यस संस्थाको प्रमुख लक्ष्य रहेको छ । राष्ट्रिय प्रकृति संरक्षण कोषको स्थापना वि.सं.२०३९ सालमा भएको हो । यस संस्थाले प्रकृति संरक्षण, अनुसन्धान र वातावरण शिक्षासँग सम्बन्धित परियोजनालाई सहयोग पुऱ्याउँदै आएको छ । यसको मुख्य उद्देश्य मानवीय दैनिक आवश्यकता र प्राकृतिक स्रोतिबच सन्तुलन ल्याउनु हो । यसैअनुरूप वातावरण संरक्षण कार्यमा यसले आफ्नो सिक्रया भूमिका निभाएको छ । यसले आफ्नो उद्देश्य पूरा गर्न बर्दिया संरक्षण आयोजना, जैविक विविधता संरक्षण केन्द्र चितवन, केन्द्रीय चिडियाखाना जस्ता संस्थाबाट कार्यक्रमहरू गर्दे आएको छ । साथै मनास्लु संरक्षण क्षेत्र आयोजना र अन्नपूर्ण संरक्षण क्षेत्र आयोजना कार्यक्रमहरू पनि यस संस्थाले सञ्चालन गरेको छ ।

२. विश्व संरक्षण सङ्घ (IUCN)

यो सन् 1948 मा इन्टरनेसनल युनियन फर कन्जर्भेसन अफ नेचर एन्ड नेचुरल रिसोर्सेज (International Union for Conservation of Nature and Natural Resources - IUCN) को नामले स्थापना गरिएको अन्तर्राष्ट्रिय गैर सरकारी संस्था हो । हाल यसलाई विश्व संरक्षण सङ्घ (IUCN- the world conservation union) नामकरण गरिएको छ । सन् 1973 मा नेपालले IUCN को सदस्यता लिएको हो । यस संस्थामा शिक्षा तथा सञ्चार, वातावरणीय रणनीति र योजना, वातावरणीय कानुन, राष्ट्रिय निकुञ्ज तथा सङरक्षित क्षेत्र र प्रजाति एवम् बचावट जस्ता उच्चस्तरीय आयोगहरू छन् । यी आयोगहरूले विश्वव्यापी नीति तथा कार्यक्रमहरू तय गर्दछन् । यस संस्थाका मुख्य उद्देश्यहरू निम्नलिखित छन् :

- (अ) प्रकृतिको स्वाभाविक अखण्डता र तिनका विविधता जगेर्ना गर्ने
- (आ) प्राकृतिक संसाधनको उपयोग गर्दा समन्यायिक र पर्यावरणीय दिगोपनको आधार स्निश्चित पार्ने र
- (इ) निर्धारित लक्ष्य पूरा गर्न देश, समाज र समुदायलाई प्रेरणा दिने तथा प्रोत्साहित गर्ने एवम् सहयोग जुटाउने

प्रकृतिको पूर्णता तथा विविधता संरक्षण र प्राकृतिक स्रोतहरूको दिगो प्रयोग सुनिश्चित गर्न विश्व समुदायलाई प्रेरणा, प्रोत्साहन र सहयोग गर्नु आई.यु.सी.एन को प्रमुख कार्य हो । यसले वातावरणीय स्थिति अध्ययन, नीति निमार्ण दिगो विकासलाई जोड दिएको छ । सङ्कटापन्न तथा दुर्लभ जीवहरूको रातो तथ्याङ्क सूची (IUCN red list of threatened animals) प्रकाशित गरी वासस्थान विनाश वा अन्य कारणले गर्दा सङ्कटमा परेका जीवजन्तुहरूको वैज्ञानिक जानकारी दिने कार्य यसले गर्दछ । यसले राष्ट्रिय तथा अन्तर्राष्ट्रिय क्षेत्रमा वातावरण संरक्षण नीति, कार्यक्रम बनाई कार्यान्वयनमा सहयोग गर्दछ । नेपालमा पाठ्यक्रम तथा पाठ्यपुस्तक निमार्ण गर्न, शौक्षिक सामग्री निर्माण गर्न, वातावरणीय नीति, कार्यक्रम तथा योजना निमार्ण गर्न, वन जङ्गल, वन्यजन्तु संङक्षण गर्न, राष्ट्रिय निकुञ्ज वन्यजन्तु आरक्षको उचित व्यवस्थापनमा सहयोगी कार्यहरू यस संस्थाबाट हँदै आएका छन् ।

३. विश्व प्रकृति कोष (World Wide Fund of Nature-WWF)

यो अन्तर्राष्ट्रिय गैरसरकारी प्राकृतिक संरक्षण सङ्गठन हो । सन् 1961 मा यसको

स्थापना भएको हो । स्थापनाकालमा विश्व वन्यजन्तु कोष नाम गरेको यस संस्थाको नाम सन् 1986 मा परिवर्तन गरी विश्व प्रकृति कोष राखिएको हो । नेपालमा यसलाई विश्व वन्यजन्तु कोष (world widlife fund) भनिन्छ । यसको मुख्य कार्यालय स्विट्जरल्यान्डमा छ । यस संस्थाले पृथ्वीमा दुर्लभ तथा प्राकृतिक स्रोतहरूको जगेर्ना गर्ने कार्य गर्दछ । यसका मुख्य उद्देश्यहरू निम्नानुसार छन् :

- (अ) वंशाण्, जीव प्रजाति तथा पर्यावरणीय प्रणालीको विविधता संरक्षण गर्ने
- (आ) पुनरुत्थान हुने प्राकृतिक स्रोतहरूको वर्तमान र भविष्यका लागि दिगो प्रयोग सुनिश्चित गर्ने
- (इ) फोहोर मैला सिर्जना गर्ने गरी स्रोत एवम् शक्तिको अन्धाधुन्ध प्रयोग कम गर्न विविध कार्यक्रम गर्ने

यस संस्थाले संसारभरिका कितपय दुर्लभ वन्यजन्तु र वनस्पितलाई लोप हुनबाट जोगाउन सहयोग गरेको छ । नेपालमा जलाधारको रेखदेख, सङ्कटापन्न जन्तु तथा वनस्पितको संरक्षण, गैह्नकानुनी व्यापारको रोकथाम, वैज्ञानिक अध्ययन तथा अनुसन्धान र वातावरणीय चेतना फैलाउने कार्यहरू गरेको छ । यसले बाघ, गैँडा, हाब्रे जस्ता महत्त्वपूर्ण वन्यजन्तु जोगाउन विशेष कार्यक्रम ल्याएको छ ।

४. संयुक्त राष्ट्र सङ्घीय वातावरण कार्यक्रम (UNEP)

संयुक्त राष्ट्र सङ्घले सन् 1972 को जुनमा स्विडेनको स्टक्होममा मानव वातावरणसम्बन्धी सम्मेलनको आयोजना गरेको थियो । यस सम्मेलनले मानिसको स्वस्थ वातावरणमा बाँच्ने हक र वर्तमान पिँढीले भावी सन्तितका लागि यसको जगेर्ना गर्नुपर्दछ भन्ने अवधारणको प्रतिपादन गऱ्यो । यस सम्मेलनले जुन छ लाई हरेक वर्ष विश्व वातावरण दिवसका रूपमा मनाउने निर्णय गऱ्यो । सन् 1972 को अन्त्यमा सङ्युक्त राष्ट्र सङ्घको महासभाले संयुक्त राष्ट्र वातावरण कार्यक्रम (united nations environment programme) को स्थापना गऱ्यो । विभिन्न देशका सरकार, वैज्ञानिक तथा व्यापारी समुदाय, गैरसरकारी सङ्घ संस्था र महिला तथा युवा समूहहरू यसका विभिन्न कार्यक्रममा सहभागी हुँदै आएका छ । यसले विश्वभरिका विकासका गतिविधिहरूलाई वातावरणीय दृष्टिकोणले स्वस्थकर र दिगो बनाउन विशेष ध्यान दिएको छ ।

५. अन्तर्राष्ट्रिय एकीकृत पर्वतीय विकास केन्द्र

(International Center for Integraterd Mountain Development or ICIMOD) सन् 1983 मा अन्तर्राष्ट्रिय एकीकृत पर्वतीय विकास केन्द्रको स्थापना भएको हो । यसलाई छोटकरीमा इसिमोड (icimod) भनिन्छ । यस केन्द्रमा चीन, भारत, पाकिस्तान, बङ्गलादेश, भ्टान, म्यानमार, अफगानिस्तान र नेपाल गरी जम्मा आठ देशहरू सदस्य छन् । यसको केन्द्रीय कार्यालय नेपालको ललितप्रको खुमलटारमा छ । यो पहाडी क्षेत्रको विकासका लागि पहिलो अन्तर्राष्ट्रिय संस्था हो । हिन्दुक्स हिमालय क्षेत्रका बासिन्दाको आर्थिक स्तर वृद्धि गरी यस क्षेत्रको पहाडी वा हिमाली पारिस्थितिक प्रणालीलाई जोगाइराख्ने यस केन्द्रको प्रमुख उद्देश्य रहेको छ । यस संस्थाले जनचेतना जगाई पानी. ऊर्जा र जैविक विविधता जोगाउन तथा वातावरणीय ह्रासबाट बचाउन विभिन्न कार्यक्रमहरू सञ्चालन गर्दछ । यसले पहाडी क्षेत्रको विकास र पहाडी वातावरणको व्यवस्थापनलाई एकीकृत रूपले अगांडि बढाएको छ । यसले पहाडी क्षेत्रको दिगो विकासका लागि स्थानीय सम्दायको सहभागिता, उनीहरूको भूमिका र कर्तव्यसिहत जनचेतना जगाई कार्यक्रमहरू गरेको छ । यसले पहाडी क्षेत्रको वातावरणीय, सामाजिक, सास्कृतिक विविधता जोगाउने कार्यक्रमहरू सञ्चालन गरेको छ । यसले पहाडी भागमा रहेका सीमाङ्कित जनसम्दायको विकासका लागि जोड दिएको पाइन्छ । साथै भविष्यसम्म पहाडी पारिस्थितिक प्रणालीलाई जोगाउन पनि जोड दिएको छ । उपर्युक्त विभिन्न राष्ट्रिय, अन्तर्राष्ट्रिय सङ्घ संस्थाहरूले नेपाल सरकारका सम्बन्धित मन्त्रालयहरूसँग समन्वय गरी विभिन्न विभाग तथा कार्यालयहरूसँग सहकार्य गर्दै आफ्ना कार्यक्रमहरू सञ्चालन गरेका छन् ।

परियोजना कार्य

तिम्रो बसोबास क्षेत्रको वातावरणीय पक्षमध्ये जिमन, जलस्रोत, वन जङ्गल वा सांस्कृतिक सम्पदामध्ये कुनै एक छनोट गर । आफूले छनोट गरेका पक्षको नाम, त्यसको उपयोग, त्यसको संरक्षणमा स्थानीय समुदायबाट भए गरेका प्रयासहरू र गर्नुपर्ने प्रयासहरू तथा त्यसको संर क्षणबाट स्थानीय व्यक्तिलाई हुने फाइदाबारेमा वर्णन गर ।

सारांश

१. वातावरणको मौलिक गुणमा परिवर्तन ल्याई त्यसमा हानि नोक्सानी पुऱ्याउने, क्षिति पुऱ्याउने क्रियाकलापलाई वातावरणीय प्रदूषण भनिन्छ । यसलाई वायु प्रदूषण, जल प्रदूषण, भू प्रदूषण र ध्विन प्रदूषण गरी चार प्रकारमा विभाजन गर्न सिकन्छ ।

- २. वायुमण्डलमा रहेका विभिन्न ग्यासहरूले सूर्यको ताप र प्रकाश सोसेर पृथ्वीको तापक्रम बढाउने प्रक्रियालाई हरित गृह प्रभाव भनिन्छ ।
- ३. जलवायु परिवर्तनले तापक्रम वृद्धि, अतिवृष्टि, अनावृष्टि, बेमौसमी वर्षा, शीतलहर, जैविक विविधतामा ह्नास, कृषि उत्पादनमा गिरावट जस्ता असर गर्दछ ।
- ४. कलकारखानाबाट निस्केका ग्यासहरू आकासमा पुगेपछि पानीसँग प्रतिक्रिया गरी अम्लर बन्छ र अम्ल वर्षा हुन्छ ।
- ५. जनचेतना, वृक्षरोपण, भूसंङक्षण, जलस्रोत संरक्षण, प्रदूषण नियन्त्रण, सांस्कृतिक सम्पदाको संरक्षण, वातावरणीय सरसफाइ तथा जनचेतनाद्वारा वातावरण संरक्षण गर्न सिकन्छ ।
- ६. राष्ट्रिय प्रकृति संरक्षण कोष, विश्व संरक्षण सङ्घ, विश्व प्रकृति कोष, संयुक्त राष्ट्रिय वातावरण कार्यक्रम, इसिमोड संस्थाहरूले वातावरण संरक्षण गतिविधि गर्दै आएका छन् ।

अभ्यास_

٩.	खाली ठाउँमा मिल्दो शब्द भर :		
	(क) जनचेतनाले वातावरण	गर्न मदत गर्दछ ।	
	(ख) वातावरणमा ह्रास ल्याउने गतिवि	विधि नै वातावरणीय ह	हो ।
	(ग) कार्बनडाइअक्साइडले पानीसँग प्र	प्रतिक्रिया गरी अम्ल ब	ानाउँछ ।
	(घ) राष्ट्रिय प्रकृति संरक्षण कोषले	संरक्षण सम्बन्धी क	गर्य गर्दछ ।
₹.	संक्षेपमा लेख :		
	(क) विश्व वन्यजन्तु कोष (व	ख) विश्व संरक्षण सङ्घ	
	(ग) राष्ट्रिय प्रकृति संरक्षण कोष (घ) जलवायु परिवर्तन	(ङ) जनचेतना
₹.	कारण लेख :		
	(क) वातावरण संरक्षण तथा संवर्धन	नका लागि जनचेतनाले सहयोग	प्ऱ्याउँछ ।

(ख) वातावरण संरक्षणका लागि वृक्षरोपण महत्त्वपूर्ण उपाय हो ।

- (ग) वातावरण बिग्रनाले उत्पादन घटछ ।
- (घ) वातावरण ह्वास गर्ने कारण मानवीय क्रियाकलाप नै हन् ।
- छोटो उत्तर लेख: 8.
 - (क) वातावरणीय प्रदूषण भनेका के हो ?
 - (ख) जल प्रदूषण ह्नाका कारणहरू के के ह्न्, ब्ँदागत रूपमा लेख ।
 - (ग) ध्विन प्रदूषणले मानिसमा के के समस्या ल्याउँछ, लेख ।
 - (घ) हरित गृह ग्यासहरू कुन कुन हुन्, उल्लेख गर ।
 - (ङ) जलवाय परिवर्तन भनेको के हो ?
 - (च) जलवाय परिवर्तनको असरहरू के के हन्, लेख ।
 - (छ) वातावरण संरक्षण गर्ने उपायहरू उल्लेख गर ।
- नेपालमा वातावरण संरक्षण र संवर्धनमा संलग्न राष्ट्रिय तथा अन्तर्राष्ट्रिय सङ्घ ሂ. संस्थाहरूको सूची बनाउ।
- विद्यालयनजिक रहेको कुनै मठ, मन्दिर वा धार्मिक स्थलको अवलोकन गरी तलका बुँदाका आधारमा त्यसको वर्णन गर।
 - (क) धार्मिक स्थलको परिचय (ख) धार्मिक महत्त्व

- (ग) हालको स्थिति
- (घ) संरक्षण तथा संवर्धनका लागि भएका प्रयासहरू
- तिम्रो क्षेत्रमा रहेका वातावरण सम्बन्धी कार्य गर्ने सङ्घसंस्थाहरूले कस्ता कामहरू गर्दै आएका छन् वर्णन गर।
- आफ्नो क्षेत्र र इलाकाको वातावरण जोगाउन तिमी के के गर्न सक्छौ, लेख।
- वातावरणीय हास कारण मानिस भएकाले यसको संरक्षण गर्नुपर्ने दायित्व पनि मानिसको नै हो, पुष्टि गर।

र बातावरण र दिगो विकास (Environment and Sustainable Development)

पृथ्वी सम्पूर्ण सजीवहरूको साभा बासस्थान हो । सजीवहरूले आफू बाँच्नका लागि आवश्यक पर्ने हावा, पानी, खाद्य पदार्थ आदि पृथ्वीबाट प्राप्त गर्दछन् । पृथ्वीमा रहेका सम्पूर्ण सजीव र निर्जीव वस्तुहरूको सङयुक्त रूपलाई वातावरण भनिन्छ ।

जैविक विविधता (Biodiversity)

तिमीहरूले प्रकृतिमा विभिन्न प्रकारका चराचुरुङ्गी तथा पशुपक्षीहरू त देखेकै छौ । पृथ्वीमा मानिसलगायत विभिन्न प्रकारका जीवजन्तु, पशुपक्षी, बोटिबरुवा, सूक्ष्म जीव आदि रहेका छन् । तिनीहरूका बिचमा धेरै कुराहरूमा विविधता पाइन्छ । हरेक जीवित प्राणी एवम् वनस्पतिको आकार, प्रकार, नाप, स्वभाव एवम् विशेषता फरक पर्ने भएकाले यिनीहरू छुट्टाछुट्टै वासस्थानमा पाइन्छन् । यिनै जैविक वस्तुहरूको सङ्ख्या, किसिम, वंशाणु पारिस्थितिक प्रणालीको समिष्ट रूप नै जैविक विविधता हो । समिष्टगत रूपमा जैविक विविधताले पृथ्वीमा रहेका जीवित सम्पदाको कुल सङ्ख्या एवम् तिनको भिन्नता जनाउँछ ।

जैविक विविधताको प्रकार (Types of Biodiversity)

जैविक विविधतालाई मुख्य तीन भागमा बाँड्न सिकन्छ :

९. पारिस्थितिक प्रणाली विविधता (Ecosystem Diversity)

सजीव, निर्जीव तथा भौतिक वातावरणिबच घनिष्ट सम्बन्ध रहेको हुन्छ । यही सम्बन्धले गर्दा कुनै पनि स्थानमा निश्चित प्रकारको पारिस्थितिक प्रणालीको निर्माण हुन्छ । पृथ्वीमा जलीय पारिस्थितिक प्रणाली र स्थलीय पारिस्थितिक प्रणाली गरी मुख्यतया दुई प्रकारका प्रणालीहरू हुन्छन् । भूबनोट र हावापानीको हिसाबले यी प्रणालीहरूमा पनि विविधता पाइन्छ । जलीय पारिस्थितिक प्रणाली समुद्र, नदीनाला, खोला, ताल, पोखरी र सिमसार गरी विभिन्न प्रकारका हुन्छन् । यसैगरी पहाड, उपत्यका, तराई, मरुभूमि आदि स्थानको पारिस्थितिक प्रणाली पनि फरक फरक हुन्छ । भूबनोट र हावापानीको भिन्नताले नेपालको स्थलीय र जलीय पारिस्थितिक प्रणालीमा निकै विविधता पाइन्छ । यस पारिस्थितिक प्रणालीको विविधताले हाम्रो देशमा जीवजन्तु तथा वनस्पतिहरूमा निकै विविधता पाइन्छ ।

२. प्रजाति विविधता (Species Diversity)

पृथ्वीमा पाइने सजीवहरू एकै हुँदैनन् । सबै सजीवहरूबिच कुनै न कुनै रूपले भिन्नता रहेको हुन्छ । एक प्रजातिका वनस्पति वा जन्तु अर्कोभन्दा भिन्न रहेका हुन्छन् । हामीले हाम्रो वरपर रहेका वनस्पतिलाई रुख, भाडी, लेउ, भ्याउ, लहरा आदि नामका आधारमा छुट्याउने गरिन्छ । भिन्नताका आधारमा पिन यिनीहरूको नाम र किसिममा फरकपना आउँछ । यसैगरी जन्तुहरूको किसिम तथा प्रजातिलाई छुट्याउने क्रममा उनीहरूलाई गाई, भैंसी, बाखा, कुखुरा, फट्याङ्ग्रा आदि नामकरण गरिन्छ । बाहिरी रूपमा हेर्दा कितपय गुणहरू उस्तै लागे पिन हरेक प्रजातिमा केही न केही फरकपना हुन्छ । उदाहरणका लागि स्तनधारी प्राणीलाई लिन सिकन्छ । गाई र भैंसी दुवै स्तनधारी प्राणी हुन् तर यिनीहरू बिच पाइएको विविध फरक गुणका कारण भिन्न प्रजातिका रूपमा वर्गीकरण गरिएको छ । प्रजाति प्रजातिबिच हुने यस किसिमको फरकपना एवम् भिन्नतालाई नै प्रजाति विविधता भिनन्छ ।

३. वंशाणुगत विविधता (Genetic Diversity)

प्रत्येक जीवमा तिनीहरूका आमाबुबाबाट पैतृक गुणहरू सरेर आएका हुन्छन् । सजीवमा आमा बाबु (parents) बाट नयाँ सन्तितमा पैतृक गुण सर्ने रासायिनक एकाइलाई वंशाणु (gene) भिनन्छ । प्रजातिभित्रका सम्पूर्ण वंशाणुहरूको समूह, किसिम तथा फरक पनालाई नै वंशाणुगत विविधता (Genetic diversity) भिनन्छ । वंशाणुगत विविधता जीवको जनसङ्ख्यामा भर पर्दछ । जनसङ्ख्या वृद्धिसँगै वंशाणु विविधता पिन बढ्दै जान्छ । वंशाणु विविधताले निश्चित प्रजातिभित्रको भिन्नतालाई बुभ्राउँछ, जस्तै : मानिसअन्तर्गत निग्रो, आर्यन, मङ्गोल आदि ।

कियाकलाप १

तिम्रो बसोबास स्थल वरिपरि पाइने जैविक विविधताको अध्ययन गर । उक्त अध्ययन गर्दा आफ्नो क्षेत्रका वनस्पति र पशुपक्षीका बारेमा स्थानीय व्यक्तिसँग सोधपुछ गर । आफैँले आफ्नो क्षेत्रमा देखेको कुनै पाँचओटा वनस्पति र पाँचओटा पशुपक्षीको नाम, तिनीहरूबाट हुने फाइदा र संरक्षण गर्ने तरिका तलको तालिकामा लेख :

क्र.स.	वनस्पतिको नाम	फाइदा	संरक्षण गर्ने तरिका
٩.			
₹.			

क्र.स.	पशुपक्षीको नाम	फाइदा	संरक्षण गर्ने गरिका
٩.			
₹.			

माथिका बुँदाहरूका आधारमा आफ्नो ठाउँको जैविक विविधताबारे लेख र कक्षामा प्रस्तुत गर ।

दिगो विकासका सिद्धान्तहरू (Principles of Sustainable Development)

विषय वा क्षेत्रमा सुधार ल्याउनुलाई विकास भिनन्छ । मानिसले आफ्नो हितका लागि विभिन्न सुधारात्मक कार्यहरू गर्दछन् । यस प्रक्रियमा मानिसले प्राकृतिक वातावरणलाई परिवर्तण गर्दें कृत्रिम वातावरणको निर्माण गर्दछ । यसरी प्राकृतिक वातावरण बिग्रन जान्छ । यदि प्राकृतिक वातावरणलाई असर पुग्न गएमा त्यसले मानव निर्मित वातावरणलाई पिन नोक्सान पुऱ्याउँछ । विकास संरचनाहरू नाश हुन पुग्छन् । त्यसैले प्राकृतिक वातावरणलाई जोगाउँदै विकास निमार्णका कार्य गर्नुपर्दछ । यस प्रकारको विकासलाई दिगो विकास भिनन्छ । दिगो विकासले हालको पुस्ता र भविष्यको पुस्तालाई समेत फाइदा पुऱ्याउँछ । त्यसैले दिगो विकासलाई "टिकाउ विकास" पिन भिनन्छ । दिगो विकासले एथ्वी र मानिस दुवैको संरक्षण र संवर्धन गर्दछ । त्यसैले मानिसले गर्ने सबै विकास निर्माण क्रियाकलापहरू वातावरण अनुकूल हुनुपर्दछ । दिगो विकासका प्रमुख सिद्धान्तहरू यस प्रकार छन् :

(क) पारिस्थितिक पद्धितको संरक्षण (Conservation of Ecosystem)

दिगो विकासको प्रमुख लक्ष्य पृथ्वीलाई संरक्षण गर्नु र टिकाइराख्नु हो । यसका लागि पृथ्वीको स्थलीय, जलीय जस्ता विभिन्न पारिस्थितिक पद्धितहरूको जगेर्ना गर्नुपर्दछ ।

(ख) जैविक विविधताको संरक्षण (Conservation of Biodiversity)

दिगो विकासका लागि पृथ्वीमा रहेका सबै जीवहरूको संरक्षण गर्नुपर्दछ । मानिसले प्राकृतिक स्रोतहरूको संरक्षण गरी जीवहरूलाई जगेर्ना गर्न सक्छ । जीवहरूको संरक्षण गर्न राष्ट्रिय तथा अन्तर्राष्ट्रिय कार्यक्रमहरू सञ्चालन गर्नुपर्दछ ।

(ग) समाजको दिगो विकास (Sustainable Development of Society)

दिगो विकासका लागि सामाजिक विकासका कार्यहरू सञ्चालन गर्नुपर्दछ । यसका लागि मानिसको जीवन स्तरलाई सुधार्नुपर्दछ । शिक्षा, स्वास्थ्य, रोजगारी, सुरक्षा आदि सुविधाहरू प्रदान गरी समाजको दिगो विकास गर्न सिकन्छ ।

- (घ) जनसङ्ख्या नियन्त्रण (Population Control)
 मानिसले पृथ्वीमा भएका सीमित साधन र स्रोतहरू उपयोग गरी आफ्नो जीवन निर्वाह
 गर्दछ । जनसङ्ख्या वृद्धिले मानवीय आवश्यकता बढ्दै जान्छ तर यस धर्तीमा भएका
 स्रोत र साधनहरू मानिसको आवश्यकताअनुसार बढाउन सिकँदैन । त्यसैले बढ्दो
 जनसङ्ख्यालाई नियन्त्रण गरी वातावरण सन्तुलन राख्न आवश्यक पर्दछ ।
- (ङ) मानवीय स्रोतको विकास (Development of Human Resources) वातावरणलाई उपयोग र संरक्षण गर्ने कार्यमा मानिसको गहन भूमिका हुन्छ । पृथ्वीको स्याहार सम्बन्धी ज्ञान, सिप आदिको विकास मानिसमा गराउनुपर्दछ । शिक्षा, स्वास्थ्य जस्ता सुविधा प्रदान गरी मानवीय स्रोतको विकास गर्नुपर्दछ ।
- (च) जनसहभागितामा वृद्धि (Increase in Peoples Participation) दिगो विकास कुनै एक व्यक्तिले मात्र गरेर हुँदैन । यसमा सबै मानिसको सहभागिता आवश्यक हुन्छ । दिगो विकासको धारणालाई व्यवहारमा उतार्न हरेक कार्यक्रमहरूमा जनसहभागिता बदाउँदै लैजानुपर्छ । दिगो विकासका सम्बन्धमा मानिसको सकारात्मक धारणा अभिवृद्धि गर्नुपर्दछ ।
- (छ) सांस्कृतिक सम्पदाको संरक्षण (Conservation of Cultural Heritage) मानव निर्मित सामाजिक मूल्यमान्यता, परम्परा, रीतिरिवाज, धार्मिक स्थल, संस्कृति आदिलाई सांस्कृतिक सम्पदा भनिन्छ । दिगो विकासले सांस्कृतिक सम्पदाको संरक्षणमा जोड दिएको छ । अन्धविश्वासलाई त्यागेर सांस्कृतिक परम्परालाई संरक्षण गर्नु हाम्रो कर्तव्य हो । यसको संरक्षणले दिगो विकासका लागि टेवा पुऱ्याउँछ ।
- (ज) पृथ्वीको वहन क्षमताभित्र रहने (Included Within Carrying Capacity of Earth) मानिसले गर्ने निर्माण कार्यहरू पृथ्वीमा भएका साधन र स्रोतहरूले धान्न सक्ने हुनुपर्दछ । मानिसलाई चाहिएका जित वस्तुहरू पृथ्वीबाट प्राप्त हुँदैनन् । पृथ्वीको थाम्न र धान्न सक्ने क्षमता सीमित हुन्छ । मानिसको असीमित आवश्यकतालाई पृथ्वीमा विद्यमान सीमित स्रोत र साधनले धान्न सक्दैन । यी प्राकृतिक स्रोतको अधिक उपयोगले वातावरणमा नकारात्मक असर पार्दछ । त्यसैले हामीले पृथ्वीको वहन क्षमतालाई दृष्टिगत गरी विकास निमार्णका कार्यहरू गर्नुपर्दछ ।

कियाकलाप २

तिम्रो बासस्थान वरपर भएका मानिसले गर्ने विभिन्न क्रियाकलापहरू एक हप्तासम्म अवलोकन गर । आफूले देखेका कुराहरू कपीमा टिप्दै जाऊ । ती क्रियाकलापमध्ये कुन कुन दिगो विकासको अवधारणाअनुसार छन् र कुन कुन छैनन्, कारणसहित लेख :

क्रलापहरू दिगो वि	दिगो विकासको धारणासँग			
मेल खान्छन्	मेल खाँदैनन्	किन		
•••••	******	•••••		
	मेल खान्छन्	मेल खान्छन् मेल खाँदैनन्		

विश्वको सन्दर्भमा दिगो विकासका प्रयासहरू

सन् 1983 मा संयुक्त राष्ट्र संघको साधारण सभाले नर्वेकी तत्कालीन प्रधानमन्त्री ग्रो हार्लेम बुन्टल्यान्डको अध्यक्षतामा वातावरण र विकास सम्बन्धी विश्व आयोगका गठन गऱ्यो । यस आयोगले सन् 1987 मा दिगो विकासको धारणा ल्याएको हो । यस आयोगले दिगो विकासको अवधारणालाई समावेश गरी "हाम्रो साभ्रा भविष्य" (our common future) नामको प्रतिवेदन प्रकाशमा ल्याएको थियो । यस आयोगका अनुसार "भविष्यका पिँढीका आवश्यकताहरूसँग सम्भौता नगरीकन वर्तमान पिँढीका आवश्यकता परिपूर्ति गर्नु नै दिगो विकास हो" ।

त्यसैगरी सन् 1992 मा रियो दि जेनेरियोमा सम्पन्न वातावरण र विकास सम्बन्धी सम्मेलनले दिगो विकास प्राप्त गर्नका लागि वातावरण संरक्षणलाई जोड दिनुपर्ने उल्लेख गरेको छ । विश्व खाद्य सङ्गठनले पनि भावी सन्तितको आवश्यकता पूरा गर्न संरक्षण र व्यवस्थापनलाई जोड दिएको छ । यसरी विश्वव्यापी रूपले दिगो विकासका लागि निम्न लिखित कुरामा जोड दिएको पाइन्छ :

- (क) प्रकृतिको सुरक्षा र प्राकृतिक स्रोतको व्यवस्थापन
- (ख) वातावरणीय पक्षमा लगानी गर्न जोड (ग) जैविक विविधताको संरक्षण
- (घ) पारिस्थितिक प्रणालीको संरक्षण (ङ) प्रदूषण नियन्त्रण
- (च) जनसङ्ख्या नियन्त्रण र गरिबी निवारण
- (छ) जनसहभागिता बढाउने
- (ज) गैरसरकारी संस्था र सामूहिक समूह निमार्ण
- (भ) भविष्यका सन्ततिका लागि संरक्षण

दिगो विकास लक्ष्य (Sustainable Development Goals-SDGs)

विश्व विकासको साभा प्रतिवद्धता स्वरुप विकासको दिगोपनाको निम्ति सन् 2016 देखि 2030 सम्मका लागि निर्धारण गरिएका लक्ष्यहरु नै दिगो विकासका लक्ष्य हुन् । 193 ओटा राष्ट्र

सहभागी संयुक्त राष्ट्रसङ्घको ७० औं महासभाले सन् 2015 मा दिगो विकासका लक्ष्यहरु स्वीकृत गरेको हो । सन् 2016 देखि कार्यान्वयनमा आएको दिगो विकासका लक्ष्यमा 17 ओटा लक्ष्य, 169 ओटा गन्तव्य र सूचकहरु समावेश गरिएका छन् । दिगो विकासको आर्थिक, सामाजिक र वातावरणीय पक्षलाई समेटेर तयार पारिएको दिगो विकासको लक्ष्य विश्वव्यापी विकासको समय र लक्ष्यसिहतको साभा मार्गिचित्र हो । दिगो विकासका लक्ष्यहरु प्राप्तिको लागि नेपाललले समेत थप सूचकहरुसहित कार्य योजनाको मार्गिचित्र तयार गरेको छ ।

दिगो विकासको महत्त्व (Importance of Sustainable Development)

वातावरणलाई जोगाइराख्नका लागि दिगो विकासको आवश्यकता पर्दछ । विकास निमार्णका कार्यले वातावरणमा प्रतिकूल असर पार्नु हुँदैन । यदि यस्ता असर परेमा विकास निमार्ण कार्य असफल हुन्छन् । दिगो विकासको महत्त्वलाई निम्नानुसार उल्लेख गर्न सिकन्छ :

(क) स्रोतको उचित प्रयोग

स्रोत साधनको कम प्रयोग गरी बढी फाइदा लिने प्रविधि अपनाउनुपर्दछ । खिनज इन्धन, खानेपानी, कीटनाशक विषादी, रासायिनक मल, वन पैदावर आदिको कम प्रयोग गर्नुपर्दछ । तिनीहरूको प्रयोग गर्दा खेर फाल्नु हुँदैन भन्ने धारणा दिगो विकासबाट प्राप्त हुन्छ ।

(ख) दायित्वको बोध

दिगो विकासको मदतले मानिसको ज्ञान, सिप र दृष्टिकोणमा परिवर्तन ल्याउँछ । प्राकृतिक स्रोतको उपयोग र संरक्षणको दायित्व बोध गराउँछ । यसले ती सम्पत्तिहरू साभा हुन् र सबै मिली प्राकृतिक साभा सम्पत्तिको संरक्षण र सदुपयोग गर्नुपर्ने दायित्वको बोध गराउँछ ।

(ग) आधारभृत पक्षहरूको विकास

दिगो विकासले मानवीय उत्थानका लागि अत्यावश्यक पर्ने क्षेत्रहरू स्वास्थ्य, शिक्षा, कृषि, पर्यटन, सामाजिक सुधारमा जोड दिन्छ । यी पक्षहरूको विकास गर्दा वातावरण संरक्षण र संवर्धनलाई एकीकृत रूपमा अगाडि बढाउनुपर्दछ ।

(घ) जनसहभागितामा आधारित विकास

दिगो विकासले जनसहभागिता बढाउन जोड दिन्छ । यसले स्थानीय व्यक्तिहरूको विकास कार्य र वातावरणको संरक्षणमा चासो बढाउँछ । साथै वातावरण संरक्षण र संवर्धनमा पिन टेवा पुऱ्याउँछ ।

(इ) विकासको सीमा निर्धारण

मानिसले आफ्नो आवश्यकता परिपूर्तिका लागि असीमित स्रोत र साधनलाई प्रयोगमा ल्याउन खोज्छ । यसले अनिवकरणीय स्रोत साधन रित्तिदै जान्छ । त्यसैले पृथ्वीले धान्न सक्ने किसिमको विकास कार्य गर्नुपर्दछ । दिगो विकासले कित विकास गर्ने भनी सीमा निर्धारण गर्दछ ।

(च) दीर्घकालीन सोचाइ

दिगो विकासले आज गरेको विकास निमार्ण कार्य भविष्यसम्म टिकाइराख्ने र प्राकृतिक स्रोतका साथै साधनलाई भविष्यसम्म टिकाइराख्नुपर्ने सोचाइको विकास गराउँछ । यसरी दिगो विकासले पृथ्वी र समग्र पारिस्थितिक प्रणालीलाई जोगाउन मदत गर्दछ ।

परियोजना कार्य

तिम्रो बसोबास स्थल निजक भएका विकास निमार्ण गितविधिको अवलोकन गर । ती विकास निमार्ण गितविधिले वातावरणमा पुऱ्याएका असरहरू के के छन्, के ती गितविधिहरू दिगो विकासको अवधारणाअनुसार छन्, कारणसहित छोटो प्रतिवेदन लेख ।

अभ्यास -

 खाली ठाउँमा उपयक्त शब्द भर 	
1. 91/11 010/11 0494/1 4194 11/	•
	•

(क)	जैविक	वस्तुहरूको	सङ्ख्या,	किसिम,	वङशाणु,	पारिस्थितिक	प्रणालीको	समष्टि
	रूप नै		हो ।					

- (ख) जैविक विविधतालाई मुख्य भागमा बाँड्न सिकन्छ ।
- (ग) दिगो विकासलाई विकास पनि भनिन्छ ।
- (घ) मानिसको विकास निमार्ण गतिविधिहरू पृथ्वीमा भएका स्रोतहरूले..... सक्ने हन्पर्दछ ।
- (ङ) दिगो विकासले सांस्कृतिक सम्पदाको मा जोड दिन्छ ।

२. तल दिइएका उत्तरहरूमध्ये सही उत्तर छान :

- (क) जीवमा पैत्रिक गुण नयाँ सन्ततिमा सार्ने तत्त्व कुन हो ?
 - (अ) कोष
- (आ) वंशाणु
- (इ) रगत
- (ई) तन्तु

- (ख) एक प्रजातिका जीवहरू अर्को प्रजातिका जीवहरूभन्दा फरक हन्लाई के भिनन्छ ?

 - (अ) पारिस्थितिक विविधता (आ) वंशाणुगत विविधता
 - (इ) प्रजाति विविधता
- (ई) वासस्थान विविधता
- (ग) दिगो विकासले कसको संरक्षण र संवर्धनमा जोड दिन्छ?
- (अ) पशु पक्षीको (आ) बोट बिरुवाको (इ) मानिसको (ई) सबैको
- (घ) जनसहभागितामा वृद्धि भन्नाले के ब्भिन्छ ?

 - (अ) मानिसको चासो बढाउन् (आ) मानिसको उपस्थिति बढाउन्
 - (इ) मानिसमा सकारात्मक धारणा बनाउन् (ई) माथिका सबै
- (ङ) दीर्घकालीन सोचाइ भन्नाले के बुिभन्छ ?

 - (अ) विकास निमार्ण गर्न (आ) भविष्यका लागि जोगाएर राख्नु
 - (इ) आफ्नो आकाङ्क्षाअन्सारको विकास गर्न्
 - (ई) तत्काल प्रयोगमा ल्याउन्

३. छोटो उत्तर देऊ :

- (क) जैविक विविधता भनेको के हो ?
- (ख) पारिस्थितिक प्रणालीको विविधता भन्नाले के बुिभन्छ ?
- (ग) जैविक विविधताको संरक्षण कसरी गर्न सिकन्छ ?
- (घ) दिगो विकासको के महत्त्व छ, क्नै दुई ओटा बुँदा लेख ।
- ४. दिगो विकासका सिद्धान्तहरू बुँदागत रूपमा लेख।
- विश्वको सन्दर्भमा दिगो विकासका प्रयासहरू के के भइरहेका छन्, बुँदागत टिपोट गर।
- छोटकरीमा लेख:

 - (क) प्रजाति विविधता (ख) सांस्कृतिक सम्पदाको संरक्षण

 - (ग) जनसङ्ख्या नियन्त्रण (घ) स्रोतको उचित प्रयोग
- ७. विकासको सीमा निर्धारण भनेको के हो, प्रस्ट पार।
- द फरक देखाई लेख:
 - (क) विकास गतिविधि र वातावरण संरक्षण
 - (ख) विकास र दिगो विकास