Коллоквиум №1 (20.11.2019)

GROUPS №19137,№19144

2019

- 1. Множество: способы задания, операции над множествами Не существует явного определения множества. Пусть А некоторое мн-во, тогда существует 2 способа задания мн-ва

 - (a) $A = \{1,2,3,4,5\}$ явное задание эл-тов мн-ва
 - (b) Пусть $\Phi(x)$ некоторое условие, тогда $A = \{x \mid \Phi(x)\}$ - Задание множествами с помощью некоторого условия $\Phi(x)$

Пусть А, В- некоторые множества

Обозначение (Подмножетсво). А - подмножетсво B, если $A \subseteq B = \{x \mid x \in A \Rightarrow x \in B\}$

Обозначение (Собстевенное подмножетсво). А - собстевенное подмножетсво B, если $A \subset B$, если $A \subseteq B$ и $A \neq B$

Обозначение (Пустое множество). ∅ - множество, не содержащее элтов ("Пустое множество")

Обозначение (Множество всех подмножетсв множества A). $P(A) = \{ C \mid C \subseteq A \}$

Обозначение (Универсум). Универсум (условное множество все множеств) U

Операции над множествами:

- Объединение множеств: $A \cup B = \{x \mid x \in A \lor x \in B\}$
- Пересечение множеств: $A \cap B = \{x \mid x \in A \land x \in B\}$
- Разность множеств: $A \setminus B = \{x \mid x \in A \land x \notin B\}$
- Дополнение множества: $\neg A = \{ \ x \mid x \in \ U \land x \notin A \}$
- Симметрическая разность множеств: $A \Delta B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (B \cup A)$

Пусть S - семейство множеств:

- Объединение семейства множеств $\bigcup S = \{ x \mid \exists A_i \in S : x \in A_i \}$
- Пересечение семейства множеств $\bigcap S = \{ x \mid \forall A_i \in S : x \in A_i \}$
- 2. Упорядоченный набор (кортеж), предложение о равенстве п-ок, декартово произведение, декартова степень.

Определение (Упорядоченный набор (кортеж)). Упорядоченный набор (кортеж) длинны n определяется по индукции

$$<>=\emptyset$$

$$\langle a \rangle = a$$

$$\langle a, b \rangle = \{\{a\}, \{a, b\}\}$$

$$\langle a_1, a_2, ..., a_{n-1}, a_n \rangle = \langle \langle a_1, a_2, ..., a_{n-1} \rangle \rangle, a_n \rangle$$

Определение (пара). Набор < a, b > длинны 2 называют *парой*

Теорема (Предложение о равенстве n-ок). Если

$$\langle a_1, ..., a_n \rangle = \langle b_1, ..., b_n \rangle \Leftrightarrow a_1 = b_1, ..., a_n = b_n$$

n=2:

$$\langle a_1, a_2 \rangle = \langle b_1, b_2 \rangle \Leftrightarrow \{\{a_1\}, \{a_1, a_2\}\} = \{\{b_1\}, \{b_1, b_2\}\}$$

$$< a_1, a_2 > = < b_1, b_2 > \Leftrightarrow \{\{a_1\}, \{a_1, a_2\}\} = \{\{b_1\}, \{b_1, b_2\}\}$$
 Пусть $a_1 = a_2 \Rightarrow \begin{bmatrix} \{a_1\} = \{b_1, b_2\} \\ \{a_1, a_2\} = \{b_1, b_2\} \end{bmatrix} \Rightarrow a_1 = a_2 = b_1 = b_2$

для $b_1 = b_2$ аналогично.

Расмотрим $a_1 \neq a_2, b_1 \neq b_2$

$$\Rightarrow \begin{bmatrix} \{a_1\} = \{b_1\} \\ \{a_1\} = \{b_1, b_2\} \end{bmatrix} \Rightarrow \{a_1\} = \{b_1\} \Rightarrow a_1 = b_1$$

По аналогии для $\{a_1, a_2\} = \{b_1, b_2\}$

Т.к справледливо для n=2, а определение n-ок индуктивно следовательно верно для п

Определение (Декартово произведение). Пусть даны множества $A_1, ..., A_n$, тогда их декартовым произведением называют

$$A_1 \times A_2 \times ... \times A_n = \{ \langle a_1, ..., a_n \rangle \mid \forall i \in \{1, ..., n\} \ a_i \in A_i \}$$

Определение (Декартова степень). В случае, если $A_1 = A_2 = ... = A_n$, тогда $A_1 \times A_2 \times ... \times A_n$ называют декартовой степенью и обозначают, как $A^n = A_1 \times A_2 \times ... \times A_n$

3. Бинарные отношения, обратное отношение, произведение отношений, лемма о бинарных отношениях.

Определение. Бинарным отношением между элементами множеств A и B называется произвольное подмножество $C \subseteq A \times B$

Определение. Обратным бинарным отношением называется $R^{-1} = \{ < y; x > | < x; y > \in R \}$

Определение. Произведением бинарных отношений называется $R_1 \times R_2 = \{ \langle x; z \rangle | \exists z | \langle x; y \rangle \in R_1 \land \langle y; z \rangle \in R_2 \}$

Лемма (Лемма о бинарных отношениях). Для любых бинарных отношений R_1, R_2, R_3 :

(a)
$$R_1 \cdot (R_2 \cdot R_3) = (R_1 \cdot R_2) \cdot R_3$$

(b)
$$(R_1 \cdot R_2)^{-1} = R_2^{-1} \cdot R_1^{-1}$$

Доказательство. (а) Покажем, что $R_1 \cdot (R_2 \cdot R_3) \subseteq (R_1 \cdot R_2) \cdot R_3$. Пусть $< x; t > \in R_1 \cdot (R_2 \cdot R_3)$, тогда существует y такое, что $< x; y > \in R_1$ и $< y; t > \in R_2 \cdot R_3$. Далее существует z такое, что $< y; z > \in R_2$ и $< z; t > \in R_3$. Получаем, что $< x; z > \in R_1 \cdot R_3$. Обратное включение доказывается аналогично

(b) Покажем, что $(R_1 \cdot R_2)^{-1} \subseteq R_2^{-1} \cdot R_1^{-1}$. Пусть $< z; x > \in (R_1 \cdot R_2)^{-1}$, тогда существует y такое, что $< x; y > \in R_1$ и $< y; z > \in R_2$. Тогда $< y; x > \in R_1^{-1}$ и $< z; y > \in R_2^{-1}$. Получаем, что $< z; x > \in R_2^{-1} \cdot R_1^{-1}$. Обратное включение доказывается аналогично.