Key concepts on Deep Neural Networks

Quiz, 10 questions

~	Congratulations! You passed!	Next Item		
~	1 / 1 point			
1. What is	s the "cache" used for in our implementation of forward propagation and back	kward propagation?		
	We use it to pass variables computed during backward propagation to the corpropagation step. It contains useful values for forward propagation to comp			
	It is used to keep track of the hyperparameters that we are searching over, t	o speed up computation.		
	It is used to cache the intermediate values of the cost function during training	ng.		
0	We use it to pass variables computed during forward propagation to the corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives.			
Correct Correct, the "cache" records values from the forward propagation units and sends it to the backward propagation units because it is needed to compute the chain rule derivatives.				
~	1 / 1 point			
2. Among	the following, which ones are "hyperparameters"? (Check all that apply.)			
Corre	learning rate $lpha$			
	weight matrices $W^{[l]}$			

Un-selected is correct

4.

Key concepts on Deep Neural Networks

$a_{ m liz}$, $a_{ m liz}$
Un-selected is correct
number of iterations Correct
bias vectors $b^{[l]}$ Un-selected is correct
number of layers L in the neural network
size of the hidden layers $n^{[l]}$ Correct
 3. Which of the following statements is true? The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers. The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers. This should not be selected
1/1 point

https://www.coursera.org/learn/neural-networks-deep-learning/exam/v5sVo/key-concepts-on-deep-neural-networks-deep-learning/exam/v5sVo/key-concepts-on-deep-neural-networks-deep-learning/exam/v5sVo/key-concepts-on-deep-neural-networks-deep-learning/exam/v5sVo/key-concepts-on-deep-neural-networks-deep-learning/exam/v5sVo/key-concepts-on-deep-neural-networks-deep-learning/exam/v5sVo/key-concepts-on-deep-neural-networks-deep-learning/exam/v5sVo/key-concepts-on-deep-neural-networks-deep-learning/exam/v5sVo/key-concepts-on-deep-neural-networks-deep-learning/exam/v5sVo/key-concepts-on-deep-neural-networks-deep-learning/exam/v5sVo/key-concepts-on-deep-neural-networks-deep-learning/exam/v5sVo/key-concepts-on-deep-neural-networks-deep-neural-n

Vectorization allows you to compute forward propagation in an L-layer neural network without an explicit for-Key Congretis Capille Control Neural Networks=1, 2,L. True/False?

Quiz,	10 c	uestions
-		True

False

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines ($a^{[2]}=g^{[2]}(z^{[2]})$, $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: ($a^{[l]}=g^{[l]}(z^{[l]})$, $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$, ...).

1/1 point

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

```
for(i in range(1, len(layer_dims))):
    parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1]))
        * 0.01
    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

Correct

Key concepts on Deep Neural Networks

Quiz, 10 questions

1/1 point

6.

Consider the following neural network.

How many layers does this network have?

igcup The number of layers L is 4. The number of hidden layers is 3.

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

- The number of layers L is 3. The number of hidden layers is 3.
- The number of layers L is 4. The number of hidden layers is 4.
- The number of layers L is 5. The number of hidden layers is 4.

0/1 point

7.

During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False?

() True

False

This should not be selected Key Concepts on Deep Neural Networks No, as you've seen in the week's each activation has a different derivative. Thus, during backpropagation Quiz, 1900 which activation was used in the forward propagation to be able to compute the correct derivative.

	1/1
	point
8.	
There ar	e certain functions with the following properties:
by the n	npute the function using a shallow network circuit, you will need a large network (where we measure size umber of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an tially smaller network. True/False?
0	Frue
Correc	t

False

1/1 point

9.

Consider the following 2 hidden layer neural network:

Key concepts on Deep Neural Networks

Which of the following statements are True? (Check all that apply).

 $W^{[2]}$ will have shape (3, 4)

${f Key}^{f Cepts}$ on ${f Deep\ Neural\ Networks}$ Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]},n^{[l-1]})$. Quiz, 10 questions		
$b^{[2]}$ will have shape (1, 1)		
Un-selected is correct		
$oxed{W}^{[2]}$ will have shape (3, 1)		
Un-selected is correct		
$b^{[2]}$ will have shape (3, 1)		
Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.		
$oxed{W}^{[3]}$ will have shape (3, 1)		
Un-selected is correct		
$b^{[3]}$ will have shape (1, 1)		
Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.		
$W^{[3]}$ will have shape (1, 3)		
Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.		
$b^{[3]}$ will have shape (3, 1)		
Un-selected is correct		

1/1

point

10.

Whereas the previous question used a specific network, in the general case what is the dimension of W^{[l]}, the $Ke_{N}=0$ whereas the previous question used a specific network, in the general case what is the dimension of W^{[l]}, the $Ke_{N}=0$ whereas the previous question used a specific network, in the general case what is the dimension of W^{[l]}, the $Ke_{N}=0$ whereas $Ke_{N}=0$ and $Ke_{N}=0$ whereas $Ke_{N}=0$ and $Ke_{N}=0$ whereas $Ke_{N}=0$ and $Ke_{N}=0$ are $Ke_{N}=0$ are $Ke_{N}=0$ and Ke_{N}

Quiz, 10 questions $W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$

Correct

True

- $W^{[l]}$ has shape $(n^{[l]},n^{[l+1]})$
- $igcup W^{[l]}$ has shape $(n^{[l+1]}, n^{[l]})$
- $igcup W^{[l]}$ has shape $(n^{[l-1]},n^{[l]})$

