PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

Facultad de Matemática

Momentos y Centros de Masa

Dr. Claudio Rivera

Resumen: En este documento encontrará ejercicios de longitud de arco. Estos ejercicios fueron tomados en su mayoría del libro guía del curso MAT1620.

Copyright © 2015 Actualizado el: 18 de Junio de 2015

Momento

Si m es la masa de una partícula localizada en el punto x, el número mx es denominado **momento** (respecto al origen).

CENTRO DE MASA UNIDIMENSIONAL

Si se tiene un sistema de n partículas con masas m_1, \ldots, m_n localizadas en los puntos x_1, \ldots, x_n se define el **centro de masa** del sistema conformado por las n partículas como

$$\overline{x} = \frac{\sum_{k=1}^{n} m_k x_k}{\sum_{k=1}^{n} m_k} = \frac{\sum_{k=1}^{n} m_k x_k}{m}$$

donde $m = \sum_{k=1} m_k$ es la masa total del sistema, y la suma de los momentos individuales

$$M = \sum_{k=1}^{n} m_k x_k$$

es denominada momento del sistema respecto al origen.

CENTRO DE MASA BIDIMENSIONAL

Si se tiene un sistema de n partículas con masas m_1, \ldots, m_n localizadas en los puntos $(x_1, y_1), \ldots, (x_n, y_n)$ se definen

$$M_y = \sum_{k=1}^n m_k x_k$$

$$M_x = \sum_{k=1}^n m_k y_k$$

momento del sistema respecto al eje Y

momento del sistema respecto al eje X

El **centro de masa** $(\overline{x}, \overline{y})$ se define

$$\overline{x} = \frac{M_y}{m}$$
 y $\overline{y} = \frac{M_x}{m}$

donde
$$m = \sum_{k=1}^{n} m_k$$
.

CENTROIDE

Sea f función continua en el intervalo [a,b] y $\mathcal R$ la región de la siguiente figura:

Si la región \mathcal{R} representa una placa con densidad constante ρ se define el **centroide** (o centro de masa) de la placa como el punto $(\overline{x}, \overline{y})$, donde

$$\overline{x} = \frac{1}{A} \int_a^b x f(x) dx$$
 y $\overline{y} = \frac{1}{A} \int_a^b \frac{1}{2} (f(x))^2 dx$

donde
$$A = \int_a^b f(x) dx$$
.

Determine el momento M del sistema respecto al origen y el centro de masa \overline{x} , del sistema que se presenta en la siguiente imagen

- 1. M =
- $2. \ \overline{x} =$

Las masas $m_1 = 6$, $m_2 = 5$, $m_3 = 1$, $m_4 = 4$ se localizan en los puntos $P_1 = (1, -2)$, $P_2 = (3, 4)$, $P_3 = (-3, -7)$, $P_4 = (6, -1)$. Determine los momentos M_x y M_y , y el centro de masa del sistema.

- 1. $M_x =$
- 2. $M_y =$
- $3. \ (\overline{x}, \overline{y}) =$

Bosqueje la región acotada por las curvas

$$y = e^x$$
, $y = 0$, $x = 0$, $x = 1$,

y determine las coordenadas del centroide.

$$(\overline{x}, \overline{y}) =$$

Determine las coordenadas del centroide de la región acotada por las curvas

$$y = \sin(x), \quad y = \cos(x), \quad x = 0, \quad x = \pi/4$$

- \bullet $\overline{x} =$
- \bullet $\overline{y} =$

Calcule los momentos M_x y M_y , y el centro de masa de la placa con densidad $\rho = 3$ que se muestra en la siguiente figura:

$$\bullet$$
 $M_x =$

$$M_x =$$

$$M_y =$$

$$\bullet$$
 \overline{x} =

$$\bullet$$
 $\overline{y} =$

Determine las coordenadas del centro de masa de la región delimitada por un triángulo de vértices $A=(a,0),\,B=(b,0)$ y C=(0,c).

Respuesta.

$$\bullet$$
 $\overline{x} =$

$$\bullet$$
 $\overline{y} =$

Nota

El centro de masa de un triángulo con vértices en $A=\vec{a},\,B=\vec{b}$ y $C=\vec{c}$ es

$$\frac{\vec{a} + \vec{b} + \vec{c}}{3}$$

Usando el ejercicio anterior, determine las coordenadas del centro de masa de la región delimitada por un triángulo de vértices $A=(1,-1),\,B=(2,6)$ y C=(3,1).

Respuesta. $(\overline{x}, \overline{y}) =$

Sabiendo conocidos los centros de masa de los triángulos y rectángulos, determinar el centroide de la región

Respuesta. $(\overline{x}, \overline{y}) =$

Use el teorema de Pappus para determinar el volumen del sólido que resulta de hacer girar el triángulo de la figura en torno al eje X.

Respuesta.

Volumen:

Use el teorema de Pappus para determinar el volumen de un cono de altura h y radio de base r.

Respuesta.

Volumen: