Radio Frequency Identification (RFID) Technology

Presentation

- RFID Technology
- RFID System
 - Types of RFIDs
 - Frequencies
 - RFID Communication
 - RFID Data
 - Security and Privacy
- Applications
- Distance
- Building an RFID System

RFID Technology

- Radio Frequency Identification
- Provides the ability to identify objects through radio waves
- Location: Line of Sight
- Optimal for Tracking

RFID System

Types of RFID Tags

- Passive RFID Tags
 - Antenna & Integrated Chip
- Semi-Passive RFID Tags
 - Battery, Antenna & Integrated Chip
- Active RFID tags
 - Battery, Antenna & Integrated Chip

Frequencies

Passive Tags

- LF, HF, & UHF
- Read Range: 10 m

- Low Frequencies (LF): 125 kHz (30-300 kHz)
- High Frequencies (HF): 13.56 MHz (3-30MHz)
- Ultra High Frequencies (UHF): 866-960 MHz (300 MHz 3 GHz)

Semi-Passive Tags

- LF, HF, & UHF
- Read Range: 100 m

Active Tags

- HF & Larger
- Read Range: +100 m

RFID Communication (Near Field vs. Far Field)

Near Field Communication

- Load Modulation
- Less than 100 MHz
 - LF & HF
- Orientation Independent

Using induction for power coupling from reader to tag and load modulation to transfer data from tag to reader

RFID Communication (Near Field vs. Far Field)

Far Field Communication

- Back Scatter
- Greater than 100 MHz
 - UHF & Larger Frequencies
- Orientation Dependent

RFID Data

Electronic Product Code (EPC)

- 96 Bits (24 Hexadecimal Characters)
 - 268 million companies with unique identifies
 - 16 million object classes
 - 68 billion serial number for objects.

EPC Type

Manufacturer Product Type

Unique Item

01.1234567.891011.001122DBC

Header 8-bits

EPC Manager 28-bits

Object Class 24-bits

Serial Number 36-bits

Security and Privacy

Vulnerabilities

- Cloning/Spoofing
- Data Tampering
- Deactivation
- Eavesdropping

Security Methods

- Cryptography
 - Hashing
 - Elliptical Curve Cryptography
- Multiple ID's
- Blocking Tags
- Two Factor Authentication

Application

- Supply Chain
 - Walmart
- Inventory Management
 - Hospitals
 - Livestock
 - Department of Defense
- Cashierless Grocery Stores
- Tolls
- Payment Methods
- Passports

Distance

• Friis Equation

$$P_r = \frac{P_t G_t G_r \lambda^2}{(4\pi R)^2}$$

Where,

 P_r = Power at the receiving antenna

 P_t = Output power of transmitting antenna

 G_t = Gain of the transmitting antenna

 G_r = Gain of the receiving antenna

 λ = Wavelength

R = Distance between the antennas

Distance

- Received Signal Strength Indicator (RSSI)
- dBm (decibel milliwatt)

$$R_{\rm x}=R_0(10^{\frac{P_r(R_0)-P_r(R_{\rm x})}{10N}})$$

 $R_x = Estimated Distance of Tag$

 $R_0 = Initial Distance of Tag$

 $P_r(R_0) = RSSI$ Value for a Tag at the Initial Distance

 $P_r(R_x) = RSSI$ Value for a Tag at the new Distance

N = Path loss factor for waves in the environment

Building RFID System

- macOS Application: C# Visual Studio for Mac
- Impinj RFID Reader and Antenna
- UHF RFID Tags

Estimating Distance

• Average Distance: 1.079 m

Estimating Distance

• Average Distance: 1.971 m

Estimating Distance

• Average Distance: 2.889 m

Analysis of Experiment

- Accuracy
- Limitations
 - RFID Reader
 - RSSI Value Step Size
 - Antenna
 - Environmental Factors
- Improve algorithms for calculating distance
 - Error Estimations

Future of RFID

SPORTS

PAYMENT METHODS

SECURITY

Questions