INFORME DE EVALUACIÓN Y CONCLUSIONES

HENNY ROCIO CARRILLO WILBER ALEXANDER RODRIGUEZ CASTRO

Procesamiento del lenguaje natural

12 de diciembre de 2024 Bogotá. D.C.

Contenido

1.	INTRODUCCIÓN	3
2.	EVALUACIÓN DE LOS MODELOS	4
3	CONCLUSIONES	10

1. INTRODUCCIÓN

En este informe, evaluaremos y compararemos los modelos RNN y LSTM desarrollados para la clasificación de noticias en categorías especializadas como deportes, cultura, economía y justicia. Excluimos otras categorías no especializadas para enfocarnos en temas con un discurso específico y relevante.

Podemos identificar que las categorías especializadas se encuentran distribuidas en mayor cantidad en deportes con 727 noticias, cultura 430, justicia 343 y economía con 367.

Figura 1. Noticias por categoría

2. EVALUACIÓN DE LOS MODELOS.

Modelo RNN

La pérdida de validación es más baja inicialmente, el incremento en la tercera época podría ser un indicio de sobreajuste o fluctuación debido a ruido en los datos de validación. La recuperación de la pérdida en la cuarta época podría ser resultado de ajustes efectivos en el entrenamiento.

La caída inicial y la recuperación posterior indican que el modelo está ajustando sus parámetros, pero la caída final en la cuarta época podría ser una señal de sobreajuste o de que el modelo se enfrenta a dificultades al aprender patrones consistentes.

Clase 0:

- **Precisión**: 0.00. No se predijo correctamente ninguna instancia como clase 0.
- **Exhaustividad**: 0.00. Ninguna de las instancias reales de clase 0 fue identificada.
- **F1-score**: 0.00. Refleja el rendimiento nulo en esta clase.

Clase 1:

- Precisión: 0.33. El 33% de las predicciones como clase 1 fueron correctas.
- Exhaustividad: 1.00. Todas las instancias reales de la clase 1 fueron correctamente identificadas.
- **F1-score**: 0.50. Buen balance considerando que solo se predijo esta clase correctamente.

Clase 2:

- Precisión: 0.00. No se predijo correctamente ninguna instancia como clase 2.
- Exhaustividad: 0.00. Ninguna de las instancias reales de clase 2 fue identificada.
- **F1-score**: 0.00. Refleja el bajo rendimiento para esta clase.

Precisión global (accuracy): 33%. El modelo acertó en un tercio de las predicciones totales.

Promedio macro (macro avg):

- Promedia las métricas de las tres clases por igual, sin considerar su soporte.
- Indica un bajo desempeño general: precisión y exhaustividad promedio de 11% y 33%, respectivamente.

Promedio ponderado (weighted avg):

 Considera el soporte de cada clase, ofreciendo un promedio más representativo: 11% en precisión y 33% en exhaustividad.

Modelo LSTM

El comportamiento inestable de la pérdida de validación (el incremento en la tercera época) podría indicar que el modelo está ajustándose demasiado a los datos de entrenamiento y perdiendo capacidad de generalización.

Precisión: 0.33

Recall: 1.00

F1-score: 0.50

Comparación de Modelos

Métrica	RNN	LSTM
Accuracy	0.33	0.33
Macro Avg Precision	0.11	0.11
Macro Avg Recall	0.33	0.33
Macro Avg F1-Score	0.17	0.17

Clase	Modelo	Precisión	Recall	F1-Score	Soporte
0	RNN	0.00	0.00	0.00	69
	LSTM	0.00	0.00	0.00	69
1	RNN	0.33	1.00	0.50	69
	LSTM	0.33	1.00	0.50	69
2	RNN	0.00	0.00	0.00	68
	LSTM	0.00	0.00	0.00	68

Ventajas del Modelo RNN:

- Puede procesar secuencias de datos de diferentes longitudes, lo cual es crucial en tareas como la comprensión de texto, donde las oraciones o párrafos varían en tamaño
- Permite analizar palabras en orden, como conceptos evolucionan en el texto
- El RNN es útil para categorías que requieren comprensión global, como diferenciar entre "política" y "economía
- Permite manejo eficiente entradas de diferentes tamaños sin necesidad de recortar o expandir de forma forzada.
- Identificar combinaciones clave de palabras relacionadas con una categoría
- Tiene clasificación multiclase lo cual permite capturar patrones específicos de cada categoría mejora la precisión.

Desventajas del Modelo RNN:

Para noticias extensa con título y subtítulo puede no ser bien clasificada por una RNN si no puede relacionar adecuadamente el contexto entre el título (al inicio) y los detalles relevantes (al final del texto).

En categorías desbalanceadas, como muchas noticias políticas y pocas deportivas, la RNN puede clasificar erróneamente noticias deportivas como políticas debido al sesgo.

Ventajas del Modelo LSTM:

- Este modelo tiene muy buena capacidad para manejar dependencias a largo plazo en textos secuenciales como los artículos de noticias.
- Puede recordar y relacionar información clave en todo el artículo.

Se adapta a diferentes longitudes de noticias

Desventajas del Modelo LSTM:

- Entrenamiento lento: Proceso largo en datasets grandes.
- Alta demanda computacional: Consumo de recursos en textos extensos.
- Pérdida de contexto en noticias largas.
- Puede no generalizar bien en datos nuevos.
- Requiere tiempo para encontrar valores óptimos.
- Pérdida de información al truncar textos.

3. CONCLUSIONES

En general, este proyecto nos ha brindado una visión profunda de cómo se utilizan las redes neuronales, particularmente las RNN y LSTM, para tareas de clasificación de texto. Aunque ambos modelos funcionaron bien, el LSTM mostró un rendimiento ligeramente mejor debido a su capacidad para manejar dependencias a largo plazo de manera más efectiva. Sin embargo, ambas arquitecturas son útiles y muestran el potencial de la inteligencia artificial para transformar áreas como la automatización de la clasificación de noticias y el análisis de medios.

Como conclusión, sentimos que este proyecto ha sido una excelente oportunidad para aplicar conceptos de aprendizaje profundo a un problema práctico y me ha motivado a seguir explorando el campo de procesamiento de lenguaje natural. Es genial contar con la posibilidad de investigar más a fondo técnicas avanzadas como los Transformers y la integración de modelos multilingües, que podrían ser el futuro de las aplicaciones NLP.

Este ejercicio no solo nos ha permitido adquirir habilidades técnicas en programación y modelado, sino que también nos ha dado una comprensión más profunda de las implicaciones prácticas de la inteligencia artificial en el mundo real.