Cryptography: Homework 5 (Deadline: Nov 1, 2018)

- 1. (30 points) Let $G: \{0,1\}^n \to \{0,1\}^{l(n)}$ be a polynomial-time computable function, where l(n) > n. Consider the following experiment $\mathsf{PRG}_{\mathcal{A},G}(n)$:
 - (a) The challenger chooses a bit $b \in \{0,1\}$ uniformly. If b=0, it chooses $r \in \{0,1\}^{l(n)}$ uniformly; if b=1, it chooses $s \in \{0,1\}^n$ uniformly and set r=G(s). The challenger gives r to the adversary A.
 - (b) Given $r \in \{0,1\}^{l(n)}$, the adversary \mathcal{A} will guess the value of b and outputs a bit $b' \in \{0,1\}$.
 - (c) The output of the experiment, denoted by $\mathsf{PRG}_{\mathcal{A},G}(n)$, is 1 if b'=b, and 0 otherwise.

Show that if G is a PRG, then for any PPT algorithm \mathcal{A} , there is a negligible function negl such that $|\Pr[\mathsf{PRG}_{\mathcal{A},G}(n)=1]-\frac{1}{2}| \leq \mathsf{negl}(n)$.

2. (20 points) Prove that if f is a one-way function, then the function g defined by $g(x_1, x_2) = (f(x_1), x_2)$, where $|x_1| = |x_2|$, is also a one-way function.