

#### **Previous Units**

- Transmission medium/Channel
- Signals
- Impairments of channels on signal
  - Losses (attenuation, path loss)
  - Noise
- Channel capacity

#### Objectives of This Unit

- Describe main processing in the physical layer
- Why we need encoding
- Why we need sampling
- What is quantization
- Baseband line codes
- Explain modulation (more about it next unit)

#### References:

- Textbook, Agrawal, chapter 2
- Fitzgerald et al., Business Data Communication & Networking, Chapter 3

#### **Origins of Data**

 Analog data: come from sensors of various kinds (e.g., microphones)

 Digital data: come from computers and digital devices of various kinds





#### **Analog and Digital Signaling of Analog and Digital Data**

#### **Data and Transmission**

Data is analog (from microphones) or digital (file on computer)

#### Data type

|                                       |         | Analog                                  | Digital                |
|---------------------------------------|---------|-----------------------------------------|------------------------|
| Transmission<br>type<br>= Signal type | Analog  | Modulation                              | Modulation<br>(Modems) |
|                                       | Digital | Signal<br>Conversion<br>(CODEC),<br>PCM | Line Codes             |

In this unit, we will talk about digital transmission of digital and analog data

Digital signal for analog of digital data

#### Advantages of Digital Systems

Different kinds of information are treated the same way



- More immune to noise.
  - Efficient regeneration of signal (can be done with repeaters)



 Advances in digital signal processing and coding makes digital transmission more efficient. E.g. data compression

# Typical Baseband Digital Communication System – Physical Layer Processing



### Encoding

- Problem: How can we send text? how to ensure that the sender and receiver understand messages?
  - Coding scheme is needed to ensure sender and receiver understand messages
  - Examples of coding schemes: ASCII, Unicode

# Encoding

#### Mapping

#### Object set



Lower case: a-z

Upper case: A-Z

• Numbers: 0-9

- Special characters
   (`~!@#\$%^&\*() \_=+\|{[}}:;"",<.>/?)
- Control characters

#### Code set

- Binary codes: Sequence of {0,1}
- Can be anything in principle
- Code types
  - Fixed Length codes(e.g., ASCII)
  - Variable length codes (e.g., Morse)

# **ASCII Encoding**

- ASCII stands for: American Standard
   Code for Information Interchange
- Developed by the American National Standards Institute (ANSI)
- Convert characters to binary
- A character is represented by a group of bits (8 bits)
  - Can represent  $2^8 = 256$  characters

| Letter | Binary   |
|--------|----------|
| h      | 01101000 |
| е      | 01100101 |
| I      | 01101100 |
| 0      | 01101111 |

- Used in most microcontrollers
- http://www.asciitable.com

# **Example Using 8-bit ASCII**

Each character is mapped to 8 bits with ASCII

**Jones** 

J o n e <sup>S</sup> 01001010 01101111 01101110 01100101 01110011

#### **Unicode Encoding**

- Many versions of Unicode
  - UTF-16: use 16 bits per character
     (UTF: <u>U</u>nicode <u>T</u>ransformation <u>F</u>ormat)
    - How many characters can UTF-16 represent? What about UTF-32?
- Used in operating systems, e.g. Windows

- Represent characters in almost all languages
  - Including over 75,000 Chinese characters
  - Incudes other characters
    - Greek characters α ω

# Analog Transmission over Digital System

What about if the data is analog?

 To transmit it with a digital system we need to first convert it into digital

This is called Analog to Digital conversion

CoDec (coder/decoder): Analog data to digital format

# **Analog to Digital**

- Analog to Digital Conversion is made over steps
  - Sampling
  - Quantization
  - Encode



# Sampling

- Sample the analog signal at regular time intervals
  - Ts = sampling time
  - $F_s = sampling rate = 1/(Ts)$ 
    - Also called sampling frequency

 Take a sample every 1/Ts seconds of the analog signal



# Sampling Theorem

 Nyquist's Theorem: Signal must be sampled at least at a rate that is twice the maximum frequency component of the signal

- If F<sub>m</sub> is the maximum frequency component in a signal
- To capture variation in signal, sampling frequency (F<sub>s</sub>) must be F<sub>s</sub> ≥ 2 F<sub>m</sub>

### **Examples on Sampling**



Signal has a frequency 1 Hz and is sampled at 2 Hz (sample every ½ seconds).

Variations can be captured at the receiver (since Fs = 2Fm)

What if the sampling frequency is less than twice the maximum frequency  $F_s < 2 F_m$ , e.g.



Recovered signal is distorted version of the original signal

This is known as Aliasing: Signal is misidentified when sampled at a rate lower than twice its maximum frequency

# **Tophat**



To avoid aliasing, a signal of  $cos(20\pi t)$  should be sampled at a rate no less than

A 40 samples/sec

B 20 samples/sec

C 10 samples/sec

### Example

- The frequency components of a signal are at:
   1Hz, 2Hz, 3 Hz (obtained by Fourier series)
- What is the minimum sampling frequency?

$$Fs=2F_m=6$$
 Hz



#### Quantization

After sampling the data, quantization takes place

• Main objective: arbitrary values of samples are mapped to a finite set of amplitudes

Any values => finite set of values

#### Quantization

#### Quantize the samples into a finite number of levels



- Dashed lines represents the quantization levels

#### Example

• For the sequence: {1.2, -0.2, -0.5, 0.4, 0.89, 1.3}. Quantize it using uniform quantizer with range of (-1.5, 1.5) with 4 levels. What is the quantized sequence?

### Example

- The size of each quantization interval
  - -S=(H-L)/N=(1.5-(-1.5))/4=3/4=0.75
- The quantization levels are at midpoint of interval



Map the sequence to quantization levels.

Given sequence is {1.2, -0.2, -0.5, 0.4, 0.89, 1.3}. Then quantized sequence is:

 $\{1.125, -0.375, -0.375, 0.375, 1.125, 1.125\}$ 

#### **Quantization Types**

- Uniform (covered)
  - Quantization regions are of same length
  - Quantization levels are at midpoints

- Non-uniform (out of scope)
  - Quantization region need not be of same length

### After Quantization – Encoding

- After we quantized the signal, we do encoding
  - Convert the finite quantization levels into bits

Encoding is to represent the quantized values in bits

 If we have M quantization levels, then the number of bits to represent each level is

$$b = Log_2(M)$$

# After Quantization – Encoding: Pulse Code Modulation (PCM)

- The conversion of a quantized signal into bits is called "pulse code modulation" or PCM
  - We use n-bits to represent the samples
  - In the figure we have 8 quantization levels
    - Need  $log_2(8) = 3$  bits to represent each level



**PCM** 

#### Telephone Network

- Common carriers (telephone companies) now convert phone networks to digital using PCM
- Local loop (last mile to user) is analog
  - Wires from home to telephone switch carries analog signal

Switch contains CODEC to convert signals to digital then transmit it over telephone network



Reference: FitzGerald et al., Business Data Communications & Networking

#### Voice over Internet Protocol

- Digital phones with built-in CODECs to convert signals into digital
- Use packet switching
- Can be directly connected to the LAN network
  - Similar to any computer
  - No need for separate network for voice
- Many protocol standards
  - E.g. standard G.722
    - Sample 8000 times per sec
    - 8 bits per sample (encoding)



# Revisit: Typical Digital Baseband Communication System



#### **Transmission Approaches**

- Two primary transmission approaches
  - Baseband: supports frequency = 0
    - Signals have frequency close to zero
    - Example: Ethernet, Voice on copper cable in landlines

- Passband: <u>does not</u> support frequency = 0
  - AM/FM radio, Cellular Telephone Signals, Coaxial cable

#### Baseband Pulse Modulation: Line Coding

- Now, we got the bits (through sampling, quantization, encoding), we need to generate the signals
- In baseband, we use line codes
- Characteristics of line codes:
  - Unipolar
    - Signal values are positive voltage or zero
  - Bipolar (or Antipodal)
    - Both positive and negative voltage values (usually identical in magnitude) exist
  - Non Return-to-Zero (NRZ)
    - Each digital value is represented by a voltage pulse that is constant for the entire symbol (or bit) duration
  - Return-to-Zero (RZ)
    - Voltage pulses return to zero before the end of the symbol (or bit) duration

### **Line Coding**

- Unipolar: Signal values are positive or zero voltage
- Unipolar & non-return-to-zero (NRZ)



- Unipolar & return to zero (RZ) ..
  - Transition to zero helps in decoding the signal (now it is clearer how many zeros)



#### **Line Coding**

- Bipolar NRZ voltage is positive or negative, but not zero
  - Fewer errors than unipolar because signals are more distinct



Bit '1' is represented by 5 Volts and '0' is represented by -5 Volts

Bipolar RZ - voltage is positive or negative, returning to zero between each bit



### Comparison

- Less errors with bipolar
  - Sampling threshold for distinguishing '1' from '0'
    - Bipolar has a zero threshold for binary



#### Bandwidth

- RZ needs more bandwidth
- More transitions => higher frequency => more bandwidth



#### Manchester Code

- Used in Ethernet
- Special type of bipolar
- Transitions from high to low in the middle for '0' and from low to high for '1' (Or vise versa)



Bandwidth like RZ



# **Tophat**



Q\_Manchester encoding

The bandwidth of a signal coded using Manchester encoding is

A Higher than that encoded with bipolar non-return-to-zero

B Lower than that encoded with bipolar non-return-to-zero

#### **Transmission Modes**

- Two transmission modes: parallel and serial
- **Serial transmission:** bits are transmitted sequentially over a link (e.g. wire)



- Parallel transmission: multiple bits transmitted simultaneously
  - Used inside computers

8 bit structure computers: 8 bits are transferred in parallel between memory
 & processing unit using 8 separate wires



#### Key takeaways

- Digital transmission of digital data
  - Encoding
    - Example: ASCII, Unicode
- Digital transmission of analog data
  - Sampling
  - Quantization
  - Pulse code modulation
- Baseband digital transmission: Line codes (bipolar, unipolar, RZ, NRZ, Manchester)
- Parallel and serial transmission modes