Reference for cnt, reg

Generated by mfscanner On June 25, 2010

Contents

cr	nt																								
	average						 																		
	ex_nealhint						 																		
	ex_sim						 																		
	plt_sim						 																		
	pm_nealhint						 																		
	pm_rem						 																		
	pm_rem_step						 																		
	pm_titt						 																		
	pm_titt_step						 																		
re	g																								
	ex_toy						 																		
	reg_batch																								
	reg_e						 																		
	reg_info																								
	reg_m						 																		
	rea online	_		_				_		_	_	_	 _	_	_	_	_	_	_		_	_	_	_	

cnt

average

```
use: average(est, param[, mode]);
$Id: average.m,v 1.1 2006/04/04 17:05:39 oKp Exp $
```

ex_nealhint

```
Script to illustrate the behavior of the REM algorithm on simulated data Id: ex_nealhint.m, v 1.1 2006/07/12 16:51:31 cappe Exp $
```

ex sim

```
Script to illustrate the behavior of the REM algorithm on simulated data Id: ex_sim.m, v 1.3 2006/04/06 08:36:52 oKp Exp $
```

plt_sim

```
Script to plot the results of ex_sim
$Id: plt_sim.m,v 1.1 2006/04/06 08:36:52 oKp Exp $
```

pm_nealhint

pm_nealhint Estimates the parameters of a Poisson mixture using the incremenatl EM algor
Use: [wght,rate,log1] = pm_nealhint(count,wght_0,rate_0,Nit,alpha).

pm_rem

```
pm_rem Estimates the parameters of a Poisson mixture using the REM algorithm.
    Use: [wght,rate,log1] = pm_rem(count,wght_0,rate_0,gamma,update)
    where wght and rate are the estimated model parameters, log1
    contains the log-likehood values for the successive
    iterations.
```

\$Id: pm_rem.m,v 1.3 2006/04/06 08:40:10 oKp Exp \$

pm_rem_step

pm_titt

\$Id: pm_titt.m,v 1.2 2006/04/06 08:40:10 oKp Exp \$

pm_titt_step

reg

ex_toy

Script to run EM on the toy example taken from flexmix (1 and 6 used to produce figures the paper)

```
$Id: ex_toy.m,v 1.6 2007/10/01 15:40:27 cappe Exp $
```

reg_batch

```
reg_batch     The usual (batch) EM algorithm.
Use: [w, beta, sigma2, log1] = reg_batch(Y, Z, w_0, beta_0, sigma2_0, nit) where
     Y: responses (1 x n)
     Z: covariates (d x n)
and
     w: (1 x m x nit+1)
     beta: (d x m x nit+1)
     sigma2 (1 x m x nit+1)
Note that the last iteration is here just to compute the likelihood.
$Id: reg_batch.m,v 1.1 2007/09/04 16:37:10 cappe Exp $
```

reg_e

reg_info

```
reg_info
                Computes the observed information matrix for one data point (on
                regression parameter only)
Use: [inf1, inf2] = reg_info(Y, Z, w, beta, sigma2) where
               response (scalar)
       Y:
       Z:
               covariates (d x 1)
               weights (1 x m)
       w:
               regression coeffs. (d x m)
       sigma2: variances (1 x m)
 $Id: reg_info.m,v 1.1 2007/09/21 16:39:01 cappe Exp $
reg_m
               The M-step
reg_m
Use: [w, beta, sigma2] = reg_m(bS1, bS2, bS3, bS4).
 $Id: reg_m.m,v 1.1 2007/09/04 16:37:10 cappe Exp $
reg_online
                The on-line EM algorithm.
      Y: responses (1 x n)
```

```
Use: [w, beta, sigma2, log1] = reg_batch(Y, Z, w_0, beta_0, sigma2_0, gam) where
      Z: covariates (d x n)
      gam: step size (1 x n)
and
      w: (1 \times m \times n + 1)
      beta: (d \times m \times n + 1)
      sigma2 (1 x m x n + 1)
```

\$Id: reg_online.m,v 1.3 2008/03/17 11:13:18 cappe Exp \$