SEA-CROGS

SEA-CROGS: THRUST III SPIKING NEURAL NETWORKS

- Priya Panda, Yale University
- Panos Stinis (PNNL)
- George Karniadakis (Brown/ PNNL)
- Thomas Serre, Jerome Darbon (Brown)
- Eric Cyr (SNL)

AI & Environmental Sustainability

Scaling Laws with No Bounds

Scale Argument – More FLOPs, Higher performance

Vision: ImageNet-1k Benchmark Accuracy vs. FLOPs

Lee et al., Vision transformer models for mobile/edge devices: a survey, Multimedia Systems (2024)

NLP: MMLU Benchmark Performance vs. Computing cost

https://www.interconnects.ai/p/llama-3-and-scaling-open-llms

Approaching Sustainability with Spike-based Machine Intelligence

Human Brain

- Performing impressive feats with a power budget of nearly 20 W
- Spike-driven communication
- Co-located neurons and synapses

Spiking Neural Network (SNN)

Neuromorphic Hardware

- Use Spiking Neural Networks as a means to integrate brain-inspired cues to harness energy-efficiency as well as improved learning capability
- Use Neuromorphic Hardware (Intel Loihi, SpiNNaker) for more efficient computations

SNN vs. ANN: Fundamental Differences

Features

- (+) High Performance
- (+) Various Applications
- (+) Easy to train with gradient descent and platform support

- (+) Spatio-Temporal Encoding
- (+) Activation Sparsity (>90%)
- (-) Training with surrogate gradients and customized function writing on Pytorch, JAX

SNN vs. ANN: Fundamental Differences

Features

- (+) High Performance
- (+) Various Applications
- (-) High computational cost with FP/INT

 Multiplier

- (+) Low computational cost Multiplier-less
- → Energy-efficient and suitable for Edge AI

Challenge I: Can we efficiently train deep SNNs?

SNN Training

STDP Learning

Pros: Unsupervised local learning

Cons: Limited accuracy and shallow networks

SOTA	MNIST Accuracy
Lee <i>et al</i> . TCDS 2018	91.10%

ANN-SNN Conv

Pros: Takes advantage of standard ANN training

Cons: Long time-steps

SOTA	ImageNet Accuracy
Li et al. ICML 2021 (UESTC)	75.45%

Backprop in SNN

Pros: Lower Time-steps

Cons: Limited scalability, Discontinuous spike

activities

SOTA	ImageNet Accuracy
Guo et al. NeurIPS 2022 (Peking)	70.65%

Forwardprop in SNN

Pros: Lower Time-steps, No Backprop!!

Cons: Limited Scaling

SOTA	DeepONet
Zhang et al	Regression
(Brown)	Tasks

Training from scratch with Backprop Through Time or Forwardprop leverages time statistics – **Efficiency, Accuracy, Robustness**

Challenge II: Loss of Accuracy on Regression Tasks

Spiking Neural Operators on 1D Poisson Equation

Challenge III: Input Coding Techniques

Rate coding

Spike frequency represents information

Direct coding

Learnable encoding layer before LIF neurons

Temporal coding

Early spike – important information **Late** spike – less important information

Thrust III: SNN Research Overview

Sci-ML application with SNNs

Application Benefits and Cost analysis on Real Hardware

Regression

Research subThrust 2

PDE solver Initial Solution after N_t steps

Physics informed machine intelligence

Algorithm driven applications establishing new SOTA

Till Year 2 Goals & Accomplishments

Exploring fundamental SNN algorithm for spike-based SciML

- Developing generic neuromorphic resource model and mapping onto hardware (Sandia, Brown)
 - Energy scaling with spike count / neuron connectivity
 - Loihi/Lava SNN framework for benchmarking regression tasks
 - Quantized Spiking PINN implementation on Loihi
- Developing new spiking graph neural network (Sandia, UPenn, Brown)
 - Connecting spikes to graphs
- Exploring optimal SNN architectures for stable & efficient learning (Yale, Brown, PNNL)
 - Spatio-temporal Attention in Spike Transformers
 - Sparse Matrix-Sparse Matrix Hardware Accelerator for SNNs
 - Temporally Coded & Dynamic Timestep SNNs
 - Quantized SNNs
- Applying various coding schemes, neuron models to SNN regression tasks (Brown, Sandia, Yale)

Sparser SNN and

Low Latency

Converting PINN into spiking PINN (Brown, Yale, Sandia)

Till Year 2 Goals & Accomplishments

 \rightarrow Brad,

Sandia

Exploring fundamental SNN algorithm for spike-based SciML

- Developing generic neuromorphic resource model and mapping onto hardware (Sandia, Brown)
 - Spiking PINN and Spiking DeepONet implementation on neuromorphic hardware (Loihi 2)
 - Energy and throughput profiling on Loihi 2
 - Improved hardware-aware quantization for spiking DeepONets.
- Exploring optimal SNN architectures for stable & efficient learning (Yale, Brown, PNNL)
 - Spatio-temporal attention in spiking transformers
 - Sparse Matrix-Sparse Matrix Hardware Accelerator for SNNs√
- Forward model training for spiking DeepONets (Brown)
- Converting PINN into spiking PINN (Brown, Yale)

Spiking Transformer

Bottlenecks of Self-Attention in Standard Transformer

ViT

- QKV Generation
- Projection
- QK^T and SM·V

Softmax

- Sequential Ops
- Complex Ops

Spiking Transformer

Key

- (+) MAC Operations converted to Mux & Accumulations
- (+) No Softmax Required

Accuracy Drop with Spiking Transformer

Zhou, Zhaokun, et al. "Spikformer: When spiking neural network meets transformer." *arXiv preprint arXiv:2209.15425* (2022).

Zhou, Chenlin, et al. "Spikingformer: Spike-driven residual learning for transformer-based spiking neural network." *arXiv preprint arXiv:2304.11954* (2023).

Yao, Man, et al. "Spike-driven transformer." *Advances in neural information processing systems* 36 (2024).

Spike Patterns in Self-Attention

✓ Spike features are various across the timestep

White: high similarity Blue: low similarity

→ Q, K, V information are different across the timesteps

Spatio-Temporal Attention (STAtten)

- Spatio-Temporal Attention (STAtten)
- 1) Divide K and V into two groups (K_1, K_2, V_1, V_2)
- Cross-attention between different timestep

Lee, Donghyun, et al. "Spiking Transformer with Spatial-Temporal Attention." arXiv:2409.19764 (2024).

Spatio-Temporal Attention (STAtten)

Experiments on ImageNet

Grad-Cam

→ Consistent information capture across the timestep

Summary

Spiking Transformer with Spatial-Temporal Attention

Spiking Activation based Efficient Transformer (1) Memory Bottleneck **↓** 1-bit Precision QKV by Leaky-Integrated Fire (LIF) neuron LIF Neuron Key ValueQuery (2) No Softmax $Attn = LIF\{(Q \odot K^{\mathsf{T}}) \odot V\}$

Future Work

 Implementation on FPGA

https://www.xilinx.com/products/boar ds-and-kits.html#resources

SNNs are Energy-efficient at Inference

With our in-house hardware benchmarking tools for SNNs (e.g., **SATA** [1]), we compare the energy-efficiency of various SNN workloads vs. their ANN counterparts.

On average, **2.3x** ~ **6.8x** of energy efficiency improvements can be observed [2]

SATA hardware simulation

[1] Yin, Ruokai et al. "SATA: Sparsity-Aware Training Accelerator for Spiking Neural Networks." *IEEE TCAD* (2022).

[2] Bhattacharjee, Abhiroop, et al. "Are SNNs Truly Energy-efficient?—A Hardware Perspective." *IEEE ICASSP* (2024).

Further Improvements?

Memory accesses to DRAM & SRAM for weights & membrane potentials are expensive!

It is possible for the memory operations to dilute the computation efficiency brought by unary spikes.

Further Improvements?

To mitigate the data movement overheads, we can compress the size of the data. Two popular algorithm solutions are there:

Quantization

Year 1:Yin et al., ASP-DAC 2024 (Best Paper Award Nominee)

Packing spikes along temporal dimension: Silent Neuron Sparsity based Acceleration

Only store the compressed non-silent neurons Compression efficiency is now (8/4=2)

LoAS: A Dual Sparse SNN Accelerator

We propose LoAS, a dual-sparse SNN accelerator that employs our compression method together with a fully temporal parallel dataflow.

Experimental Results

With the help of FTP dataflow and compression, LoAS is more efficient

vs. dual-sparse ANNs

On average 1.9x more energy efficient

vs. existing dense SNN accelerators

On average 2.8x more energy efficient, >45x speedup

Spiking SciML: Developing Spiking Workflow

(Brad, Sandia)

UNO Framework for fast mapping and compilation on Loihi (Brown, Sandia)

Key Takeaway from Thrust III

- We are the first to comprehensively explore SPIKES for scientific computations
- We are the first to demonstrate Spiking PINNs on Intel Loihi

Intel Loihi2

SpiNNaker2

SpiNNaker1

Intel Loihi1

IBM TrueNorth*

Intel Loihi

Kapoho Bay USB

Inilabs DAVIS **240C DVS**

Prophesee **Event-Sensor**

GraphCore

Groq

Benefits:

- Unique Access to Neuromorphic Hardware (Intel Loihi1, Loihi2) through partnership with Sandia National Labs and Intel Labs
- Opportunities to lead and explore SciML in future platforms (SpiNNaker and others)

5 Year Trajectory & Interaction

5 Year Trajectory Team: Yale, Sandia, Brown, PNNL

Objective: Advance the utility of Neuromorphic architectures in SciML

- Develop generic neuromorphic resource model
- Develop spiking graph neural network
- Explore optimal SNN architectures for stable learning
- Exploring efficient SNNs
- Apply various coding schemes to regression tasks
- Convert PINN into spiking PINN

- Develop loss functions from formal resource model
- Apply SNN inference in a distributed model
- Optimization beyond backprop (Hebbian Learning)

3

2

- Apply local learning ideas to spiking GNNs
- Spiking marching scheme
- Hybrid training (conversion and finetuning)

- Transformer-based embeddings for spiking representations
- Simulation of advanced backpropless training algorithm on hardware
- Direct training algorithm for spiking PINN

- Run Graph SNNs on neuromorphic architectures
- Demonstrate ability to minimize power needs
- Simulation of distributed training and inference on neuromorphic

Thank You!!

Questions??

