IEMS 5780 Building and Deploying Scalable Machine Learning Services

Lecture 4 - Text Classification (2)

Albert Au Yeung 27th September, 2019

Advanced Topics in Document Representation

Limitations

- Bag-of-word (BoW) and vector space models are very commonly used in text classification
- However, they has certain limitations:
 - 1. Ignoring the **order** of the words
 - Consider a tea bag vs. a bag of tea
 - 2. Ignoring the **context** of the words
 - "... take the earliest **train** tomorrow morning ..."
 - "... will **train** a new model tomorrow morning ..."
 - 3. Ignoring **compound nouns**
 - dress shirt vs. dress
 - 4. Do not handle words with **similar** meanings
 - cellphones vs. smartphones
 - 5. Cannot handle new words

Advanced Topics

- To address these problems, we will consider:
 - o Consider **n-grams**
 - Consider character n-grams
 - Use **dimensionality reduction** techniques
 - Word embeddings

N-grams

N-grams

- In our previous examples, we break a document into tokens, which are individual words
- We call these tokens of individual words **unigrams**

```
sentence = "London is the capital and most populous city of England and the United Kingdom"
sentence.lower().split(" ")
# [
# 'london', 'is', 'the', 'capital', 'and',
# 'most', 'populous', 'city', 'of', 'England',
# 'and', 'the', 'united', 'kingdom'
# ]
```

- In this example, it would be desirable to capture the existence of the phrase United Kingdom
 (both united and kingdom can appear separately and have different meanings)
- Such kind of features may be useful when performing text classification

N-grams

• Instead of treating every single token as a feature, we can also treat **every two consecutive pair of tokens** as a feature (i.e. **bi-grams**)

```
sentence = "London is the capital and most populous city of England and the United Kingdom"
tokens = sentnce.lower().split(" ")
bigrams = []
for i in range(len(tokens)-1):
    bigrams.append("{} {}".format(tokens[i], tokens[i+1]))
# bigrams = [
# 'london is',
# 'is the',
# ...
# 'the united',
# 'united kingdom.'
# ]
```

N-grams: Number of Features

- Somtimes, we may also consider **tri-grams** or more
- But be **cautious** when adding n-gram features
- Using n-grams significantly increase the number of features
 - More parameters to learn in your model
 - May not give significant improvement but requires longer time to train
- (Right: number of features agains n-grams used for the SMS Spam dataset)

N-gram: Feature Sparsity

- Another potential problem of using large n-grams is data sparsity
- Each n-gram (other than unigrams) may only be found in very few documents
- You are more likely to have unseen n-grams in the test data
- You also will use up a lot of **memory** and **storage**
- (Right: Number of non-zero elements in all feature vectors for the SMS Spam dataset)

N-gram

- Given the advantages and disadvantages of n-gram features, **when** shall we use them?
- Answering this usually requires **doing experiments**, and depends on the problem(s) at hand
- Something to consider:
 - Do we see any **significant** or **desirable** increase in classification performance?
 - How much more **computing resources** are required (e.g. RAM)
 - **Time** required to train the model
 - Is the amount of data **large enough** to make the n-gram features meaningful?

Using N-gram in Scikit-learn

• You can easily enable n-gram features when using the **CountVectorizer** or the **TfidfVectorizer**

• Set the ngram_range parameter using a tuple (e.g. (1, 3) means that we want to use unigrams, bi-grams and tri-grams as features)

```
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
clf = Pipeline([
    ('vec', CountVectorizer(ngram_range=(1, 3))),
    ('nb', MultinomialNB())
])
clf.fit(X_train, y_train)
```

Character N-grams

- In addition to n-grams of words, we sometimes may even consider character n-grams
- Using character n-grams allow us to capture subwords information
- E.g. compu inside computation and computer may indicate that the input is about the same topic to a certain extent
- A more general approach compared to stemming

```
# some character n-grams
# for "an apple"
{
    'an',
    'ap',
    'app',
    ...
    'ppl',
    'pple'
}
```

Character N-grams in Scikit-learn

- You can also easily generate character-level n-grams in scikit-learn by setting the analyzer parameter
- There are two different modes: char and char_wb
 - o char treats the whole document as a string
 - char_wb generates n-grams that does NOT cross word boundaries

```
docs = [
    "an apple"
]
vectorizer = CountVectorizer(analyzer='char_wb', ngram_range=(2, 4))
vectorizer.fit(docs)
vectorizer.vocabulary_
# {' a': 0, ' an': 1, ' an ': 2, ' ap': 3, ' app': 4, ... }
# Note that n-grams on the edges of the words are padded with spaces
```

Dimensionality Reduction

Dimensionality of Feature Vectors

- Feature vectors in text classification are usually very long (high dimensional)
 - o Commonly used words in the order of thousands
 - New words, names and abbreviations
 - Will be longer if we use **n-grams**
- **Problems** of high dimensionality
 - Model is very complex
 - Models with many features require a lot of data to train
 - Require more **memory** during training/prediction
 - Require more storage space to persist the model
- Hence, it is desirable if we can represent the data with fewer dimensions

Problems with Bag-of-Words Model

- In additional to the problem of high dimensionality, the bag-of-words model also suffers from other problems
- Synonyms:
 - Words with same or similar meanings occupy different dimensions
 - They are totally **orthogonal** in the vector space
- Consider:

$$car = (0,0,0,0,0,0,1,0,0)$$

 $vehicle = (0,1,0,0,0,0,0,0,0)$

• Image two documents, one with the word car, another with the word vehicle, we can never tell that they are somehow related with the above representation.

Dimensionality Reduction

 There are two major ways of finding dense vectors with fewer dimensions to represent words or documents

Method 1: Co-occurrence

- Words that appears together tend to be similar
- Converting a one-hot vector into a dense vector by finding common topics among words
- o Example: Latent Semantic Analysis

Method 2: Context

- Words that have similar contexts are similar
- Converting a one-hot vector into a dense vector by optimizing values in vector based on similar contexts
- Example: Word embeddings

Distributional Representation

- Counting **co-occurrence** between words allow us to understand how similar they are
- Example:
 - "networking" usually appears with **protocols**
 - "football" usually appears with goals
- Words having the same **probability distributions** are similar
- We can then represent words and documents in terms of topics instead of high dimensional vectors

Distributed Representation

- Words having similar context are considered similar
- Context refers to the words that appear before and after the target word
- Example:
 - "deep learning using GPU": "deep", "learning",
 "using" forms the context of "GPU"
 - "Beijing is a city in China" vs. "Shanghai is a city in China": "Beijing" and "Shanghai" have similar contexts
- We can optimize vectors of words such that words that have similar contexts have vectors close to each other

Cosine Similarity

- We can calculate **similarity** between two vectors using **cosine similarity**
- It measures how **close** the two vectors' **directions** are

$$sim(v_1,v_2) = \cos(heta) = rac{v_1 \cdot v_2}{||v_1|| imes ||v_2||}$$

Cosine Similarity in Python

• Example: computing similarity between documents

```
from numpy import array, dot
from numpy.linalg import norm

words = ["chinese", "medicine", "doctor", "food", "restaurants"]
d1 = array([0.8, 0.9, 0.0, 0.1, 0.0])  # about chinese medicine
d2 = array([0.0, 1.2, 1.5, 0.2, 0.0])  # about doctor & medicine
d3 = array([1.3, 0.1, 0.0, 2.0, 1.5])  # about chinese food

dot(d1, d2) / (norm(d1) * norm(d2))  # 0.47136989433874532
dot(d1, d3) / (norm(d1) * norm(d3))  # 0.39038367556371473
dot(d2, d3) / (norm(d2) * norm(d3))  # 0.09549164248532343
```

Latent Semantic Analysis (LSA)

- One way to obtain a dense vector representation of words and documents is latent semantic analysis
- Assume that we have a set of training data, in which we have 5 documents, and our vocabulary size is 10
- Using the bag-of-word model, we can represent this training data set as a **term-document matrix**

	d_0	d_1	d_2	d_3	d_4	d_5	d_6	d_7	d_8	d_9
W_0	0	1	0	0	2	0	0	3	2	0
w_{I}	0	0	1	0	0	0	1	0	0	2
w_2	0	1	2	0	0	1	0	0	0	1
w_3	2	0	0	1	1	0	0	1	0	0
W_4	1	1	0	0	0	1	1	0	1	0

- LSA uses a mathematical tool called **singular value decomposition** to factorize the termdocument matrix into **three** matrices
- In Σ , the values on the diagonal are called *singular values**, which indicates how important the topics are in the data

- LSI tries to group documents with similar words, as well as words that usually appear together
- Check the animation on https://en.wikipedia.org/wiki/Latent semantic analysis
- These groups can be considered as some **topics** in the data
- Intuitively, the number of **topics** should be fewer than the number of **words**
- We can then use **topics** to represent words and documents

- After the decomposition, the size of ∑ actually represents the number of topics that can be found in the data (it is always smaller or equal to the number of words)
- However, some topics may only be noise (words that appear less frequently and are not able to be grouped)
- To reduce the dimension of the data, we can choose only to keep the $\operatorname{top} k$ singular values, and to represent words and documents using the k dimensions

Document in reduced dimension = $U_k \Sigma_k V_k^T$

Example

• Let's consider running LSA on a simple data set

Performing SVD in Python

- Singular value decomposition can be done using the function scipy.linalg.svd in the SciPy package (documentation)
- ullet It returns the matrices U and V, as well as the singular values

```
from sklearn.feature_extraction.text import CounterVectorizer
from scipy.linalg import svd

vectorizer = CountVectorizer()
A = vectorizer.fit_transform(docs)
A.vocabulary_
# {'chinese': 0, 'companies': 1, 'doctor': 2, 'hospital': 3, 'market': 4,
# 'medicine': 5, 'option': 6, 'price': 7, 'stock': 8}

U, ss, V = svd(A.todense().transpose(), full_matrices=True)
```

Performing SVD in Python

```
U = array([[-0.41, 0.21, -0.54, -0.41, 0.35, -0.21, 0.35, 0.16, 0.16])
            \begin{bmatrix} -0.27, -0.08, -0.43, 0.39, 0.05, 0.17, 0.05, -0.52, -0.52 \end{bmatrix}
            \begin{bmatrix} -0.22, & 0.58, & 0.15, & -0.09, & -0.32, & -0.55, & -0.32, & -0.2 & 1. \end{bmatrix}
            [-0.08, 0.3, 0.26, 0.71, 0.35, -0.21, 0.35, 0.16, 0.16].
            \begin{bmatrix} -0.24 & -0.17 & 0.45 & -0.24 & 0.7 & -0.02 & -0.3 & -0.18 & -0.18 \end{bmatrix}
            \begin{bmatrix} -0.22 & 0.58 & 0.15 & -0.09 & -0.03 & 0.76 & -0.03 & 0.04 & 0.04 \end{bmatrix}
            [-0.24, -0.17, 0.45, -0.24, -0.3, -0.02, 0.7, -0.18, -0.18]
            [-0.52, -0.25, 0.03, 0.15, -0.2, 0.02, -0.2, 0.68, -0.32].
            [-0.52, -0.25, 0.03, 0.15, -0.2, 0.02, -0.2, -0.32, 0.68]]
ss = arrav([2.5, 2.21, 1.46, 0.86])
V = array([[-0.34, -0.69, -0.21, -0.61],
            [ 0.62, -0.17, 0.66, -0.38].
            [-0.17, -0.62, 0.38, 0.66],
            [-0.69, 0.34, 0.61, -0.21]])
```

 You can also perform latent semantic analysis easily using the TruncatedSVD class in scikitlearn

```
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.decomposition import TruncatedSVD

vectorizer = CountVectorizer()
X = vectorizer.fit_transform(docs)  # X is a term-document matrix (transposed)

svd = TruncatedSVD(n_components=2)  # Apply SVD on the matrix, keep 2 dimensions
svd.fit(X)
```

Now the svd model can be used to transform the documents

```
for doc, (i, j) in enumerate(svd.transform(X)):
    print("Doc {}: ({:7.3f}, {:7.3f})".format(doc+1, i, i))
# Prints the following:
# Doc 1: ( 0.846. 1.370)
# Doc 2: ( 1.720, -0.368)
# Doc 3: ( 0.519, 1.465)
# Doc 4: ( 1.522. -0.845)
# The documents for reference
\# docs = [
    "chinese medicine doctor", # about chinese medicie
   "chinese companies stock price", # about stock price of chinese companies
   "medicine doctor hospital", # about medicine
    "stock market option price" # about stock market
# ]
```

Word Embeddings

Word Embeddings

- Word vectors or embeddings are **dense vector** representation of words
- A type of **distributed representation** of words
- Word embeddings can be obtained by training a neural network on a large corpus of text data
- Training samples are genrated from the corpus usually using a sliding window to define contexts
- Commonly used algorithms:
 - Word2Vec https://code.google.com/archive/p/word2vec/
 - GloVe https://nlp.stanford.edu/projects/glove/
 - fastText https://fasttext.cc/

Introduction to Word2Vec

- Basic idea: A word's meaning is given by the words that frequently appear around it
- For a word w in a document, its context is the set of words that appear near it
- "Near" can be defined by a sliding window of certain size
- Word2vec (Mikolov et al. 2013) is an algorithm for learning word vectors

Word2Vec

 Word2vec obtains word embeddings by creating a new way of supervised training out of unlabelled data

Basic concept:

- \circ Assume that we have a vocabulary of size N
- \circ For each word in this vocabulary, we initialize a random vector of dimension D (Usually D is about 100 to 300)
- For each context window, we compute the probability of each context word given the target word using the similarity between their vectors
- We keep adjusting the values of the vectors to maximize these probabilities

Word2Vec

- It turns out that **training** word vectors can be done using a neural network
- To train a neural network in a supervised way, we need to have some labelled data
- There are two ways to train a word vectors:
 - 1. Skip-gram (SG)
 - For each context window, the **target word** (or **center word**) is the **input**
 - The context words on the left and right are the output
 - 2. Continuous Bag of Words (CBoW)
 - For each context window, the **context words** are the **input**
 - The target word is the output

Skip-gram Mode

- In the Skip-gram mode, the neural network is trained by using the **target word as input**, and the **context words as output**
- Task: train the model to output most likely context words given a target word

Continuous Bag-of-Words Mode

- In the CBoW mode, the neural network is trained by using the **context words as input**, and the **target word as output**
- Task: using the context words to **predict** which would be the missing target word

Word Embeddings

• The trained word vectors show some interesting characteristics

Ref: <u>Distributed Representations of Words and Phrases and their Compositionality</u> (Mikolov et. al 2013)

Word2Vec in Python

- You can play with word vectors using the **gensim** Python package
- Obtain pre-trained word vectors from https://drive.google.com/file/d/0B7XkCwpI5KDYNINUTTISS21pQmM/edit?usp=sharing (Note: the file is 1.5GB compressed)

```
from gensim.models.KeyedVectors import load_word2vec_format

model = load_word2vec_format('GoogleNews-vectors-negative300.bin', binary=True)

# Get vector similarity
model.similarity("big", "huge")

# Get the vector of the word "great" (a 300-d vector)
model["great"]

# Find another word that is most similar to the given words
model.most_similar(["apple", "orange"])
```

- <u>fastText</u> is a library for **text classification** and **representation learning**
- An efficient implementation of a shallow neural network for text classification using word embeddings
- Comes with command line programs for training, testing and generating predictions
- Python API available
- Functions
 - Supervised learning: support multi-class classification
 - o Unsupervised learning: learning word embeddings from input texts

- Supervised learning: fastText can be used to train a text classification model for binary or multi-class classification
- The model is a shallow neural network, which first converts n-grams into word embeddings, takes the average of the vectors, and passes that to a softmax function to generate predictions
- Ref: <u>Bag of Tricks for Efficient Text Classification</u>
- "We can train fastText on more than one billion words in less than ten minutes using a standard multicore-CPU, and classify half a million sentences among 312K classes in less than a minute."

• The **softmax function** is a generalized **logistic function**, it converts a vector of real values into another vector whose entries have values ranges from **0 to 1**, and all the entries **sum to 1**

$$\sigma(\mathbf{z})_j = rac{e^{z_j}}{\sum e^{z_i}}$$

- The word embedding layer can be trained using the training data, or can be initialized with pre-trained word vectors
- Example of pre-trained vectors:

https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

```
香港 0.45552 -0.15176 -0.1004 0.24804 -0.27378 -0.11551 -0.020922 ...
英國 0.46771 0.047616 -0.28287 0.52437 0.34216 -0.1907 0.28798 ...
足球隊 -0.15141 -0.26691 -0.22635 0.19575 0.32993 -0.45426 -0.24766 ...
足球 -0.37035 -0.27073 -0.033765 0.4996 0.62468 -0.35905 -0.087886 ...
```

```
soccer -0.27709 -0.42679 0.070863 0.64454 0.17607 -0.27767 0.031067 ...
football -0.52819 -0.39955 -0.014546 0.22658 0.13472 -0.48197 0.17063 ...
country -0.025361 -0.26752 0.35494 0.081725 -0.022434 -0.030652 -0.15959 ...
bicycle 0.063549 0.032542 -0.019717 0.1974 -0.11146 -0.3778 0.059583 ...
```

- To try a text classifier using fastText, you need to preprocess your data into a specific format:
 - Each line contains a single document
 - The label (class) of the document should have the prefix __label__
- Note that all symbols and punctunations will be preserved (texts are tokenized using spaces or tabs)
- For example:

```
__label__sports top 100 nba players for 2018-19
__label__finance stock market update: over 150 stocks hit 52-week lows on NSE
__label__travel gap year holidays: 11 reasons to take a year off to travel in your 30s
...
```

fastText in Python

• Assuming that your training data is stored in a file named train.txt

```
from fastText import train_supervised  # import the supervised training function

model = train_supervised(
    input="train.txt", # training data file
    epoch=25, # epoch: number of times going through the data
    lr=1.0, # learning rate
    wordNgrams=2, # n-gram features
    verbose=2, # whether to print out more messages
    minCount=1 # minimum number of times a token should appear
)
model.save_model("model.bin") # save model to a file named "model.bin"
```

• Refer to the <u>full documentaton</u> for the list of parameters

fastText in Python

Predicting using fastText

```
from fastText import load_model

# load a trained model named "model.bin"
model = load_model("model.bin")

# text data
text = "Manchester United revenues hit record of £590m"

# Ask for the top 2 predicted classes
labels, scores = model.predict(text, k=2)

# labels is a tuple of labels e.g. (('__label__sports', '__label__finance'))
# scores is an array of scores e.g. array([0.9997472, 0.00000234])
```

Assignment 1

Assignment 1

- Text classification + Telegram Bot
- Deadline: 19th October, 2019 (Saturday)
- Two tasks:
 - 1. Train a **text classifier** for movie review classification
 - 2. Deploy the text classifier as a **Telegram Bot**

Assignment 1

Task 1

- Train classifier using 1) naive Bayes, 2) logistic regression, 3) fastText
- Submit a Jupyter notebook with all the steps and results

Task 2

- Make your model available to other people via Telegram
- Write a script that keeps receiving message from users, and use the model to generate predictions

References

Application of text classification:
 Globally Scalable Web Document Classification Using Word2Vec
 (From SmartNews)

End of Lecture 4