Games 1:

Minimax, Evaluation function, Alpha-beta pruning

Hwanjo Yu

POSTECH

http://di.postech.ac.kr/hwanjoyu

A simple game

Example: game 1

- You choose one of the three bins.
- I choose a number from that bin.
- Your goal is to maximize the chosen number.

• Your action depends on your mental model of me: me working with you, against you, or at random?

Roadmap

Games, minimax

Evaluation functions

Alpha-beta pruning

Game tree

Key idea: game tree

- Each node is a decision point for a player.
- Each root-to-leaf path is a possible outcome of the game.

Two-player zero-sum games

Players = {agent (your program); opp (opponent)}

Definition: two-player zero-sum game (e.g., chess)

- $s_{\text{start}} \in \text{States}$: starting state
- Actions(s): possible actions from state s
- Succ(s, a): resulting state if choose action a in state s
- IsEnd(s): end of game (game over)
- Utility(s): agent's utility for end state s
- Player(s) \in Players: player who controls state s
- Transition()?
- Reward()?

Example: chess

- Players = {white, black}
- State s: (position of all pieces, whose turn it is)
- Actions(s): legal chess moves that Player(s) can make
- IsEnd(s): whether s is checkmate or draw
- Utility(s): $+\infty$ if white wins, 0 if draw, $-\infty$ if black wins

Characteristics of games

• All the utility is at the end state

• Different players in control at different states

Policies

Deterministic policies: $\pi_p(s) \in Actions(s)$

action that player p takes in state s

Stochastic policies: $\pi_p(s, a) \in [0,1]$

• probability of player p taking action a in state s

* We can think of MDP as a game between the agent and nature where the agent acts on state s according to π and the nature acts on the chance nodes according to T(s, a, s').

Game evaluation example

Given two policies $\pi_{\rm agent}$ and $\pi_{\rm opp}$, what is the (agent's) expected utility?

• $\pi_{\text{agent}}(s) = A$

• $\pi_{\text{opp}}(s, a) = \frac{1}{2} \text{ for } a \in \text{Actions}(s)$

Game evaluation recurrence

Analogy: recurrence for policy evaluation in MDPs

Value of the game:

$$V(s) = \begin{cases} \text{Utility}(s) & \text{IsEnd}(s) \\ \sum_{a \in A \text{ cions}} \pi_{\text{agent}}(s, a) V(\text{Succ}(s, a)) & \text{Player}(s) = \text{agent} \\ \sum_{a \in A \text{ cions}} \pi_{\text{opp}}(s, a) V(\text{Succ}(s, a)) & \text{Player}(s) = \text{opp} \end{cases}$$

Expectimax example

Example: expectimax

• $\pi_{\text{opp}}(s, a) = \frac{1}{2} \text{ for } a \in \text{Actions}(s)$

$$V_{\text{m axopp}}(s_{\text{start}}) = 5$$

Expectimax recurrence

Analogy: recurrence for value iteration in MDPs

$$V(s) = \begin{cases} \text{Utility}(s) & \text{IsEnd}(s) \\ \max_{a \in A \text{ obns}} V(\text{Succ}(s, a)) & \text{Player}(s) = \text{agent} \\ \sum_{a \in A \text{ obns}} \pi_{\text{opp}}(s, a) V(\text{Succ}(s, a)) & \text{Player}(s) = \text{opp} \end{cases}$$

Problem: don't know opponent's policy

Approach: assume the worst case

Minimax example

Example: minimax

$$V(s_{\text{start}}) = 1$$

Minimax recurrence

No analogy in MDPs

$$V(s) = \begin{cases} \text{Utility}(s) & \text{IsEnd}(s) \\ \max_{a \in A \text{ dons}} V(\text{Succ}(s, a)) & \text{Player}(s) = \text{agent} \\ \min_{a \in A \text{ dons}} V(\text{Succ}(s, a)) & \text{Player}(s) = \text{opp} \end{cases}$$

Extracting minimax policies

- $\pi_{\max}(s) = \arg \max_{a \in A \text{ dions } (s)} V(\text{Succ}(s, a))$
- $\pi_{\min}(s) = \arg\min_{a \in Actions(s)} V(Succ(s, a))$

Minimax property 1

Proposition: best against minimax opponent

- $V_{\text{m ax,m in}}(s_{\text{start}}) \ge V_{\text{agent,m in}}(s_{\text{start}})$ for all π_{agent}
 - $V_{
 m m~axm~in}(s) = V(s)$ when $\pi_{
 m agent} = \pi_{
 m m~ax}$ and $\pi_{
 m opp} = \pi_{
 m min}$
 - $V_{\rm agent\ ,m\ in}(s) = V(s)$ when $\pi_{\rm agent} \neq \pi_{\rm m\ ax}$ and $\pi_{\rm opp} = \pi_{\rm m\ in}$

Minimax property 2

Proposition: lower bound against any opponent

- $V_{\text{m ax,m in}}(s_{\text{start}}) \le V_{\text{m ax,opp}}(s_{\text{start}})$ for all π_{opp}
 - $V_{
 m m\ ax,m\ in}(s) = V(s)$ when $\pi_{
 m agent} = \pi_{
 m m\ ax}$ and $\pi_{
 m opp} = \pi_{
 m m\ in}$
 - $V_{\mathrm{m \; ax, opp}}(s) = V(s)$ when $\pi_{\mathrm{agent}} = \pi_{\mathrm{m \; ax}}$ and $\pi_{\mathrm{opp}} \neq \pi_{\mathrm{m \; in}}$

Hwanjo Yu, POSTECH

Minimax non-property 3

Proposition: not optimal against all opponents

- $V_{\text{m ax,opp}}(s_{\text{start}}) \ge V_{\text{agent ,opp}}(s_{\text{start}})$ for all π_{agent}
 - $V_{\text{m ax,opp}}(s) = V(s)$ when $\pi_{\text{agent}} = \pi_{\text{m ax}}$ and $\pi_{\text{opp}} \neq \pi_{\text{m in}}$
 - $V_{\rm agent\ ,opp}(s) = V(s)$ when $\pi_{\rm agent} \neq \pi_{\rm m\ ax}$ and $\pi_{\rm opp} \neq \pi_{\rm m\ in}$

A modified game

Example: game 2

- You choose one of the three bins.
- Flip a coin; if heads, then move one bin to the right (with wrap around).
- I choose a number from that bin.
- Your goal is to maximize the chosen number.

Expectiminimax example

Example: expectiminimax

• $\pi_{con}(s, a) = \frac{1}{2}$ for $a \in Actions(s)$

$$V(s_{\text{start}}) = -2$$

Expectiminimax recurrence

Players = {agent, opp, coin}

Summary so far

Primitives: max nodes, chance nodes, min nodes

Composition: alternate nodes according to model of game

Value function V(s): recurrence for expected utility

Scenarios to think about:

- What if you are playing against multiple opponents?
- What if you and your partner have to take turns (table tennis)?
- Some actions allow you to take an extra turn?

Computation

Approach: tree search

Complexity:

- Branching factor b, depth d (2d plies)
- O(d) space, $O(b^{2d})$ time

Chess: $b \cong 35$, $d \cong 50$

2551552067298685292412115015142558763019041448816101932417677844077146725823993736584373298704355578978233619563773665328554329789767507463693618774414062

Speeding up minimax

- Evaluation functions: use domain-specific knowledge, compute approximate answer
- Alpha-beta pruning: general-purpose, compute exact answer

Roadmap

Games, minimax

Evaluation functions

Alpha-beta pruning

Depth-limited search

Limited depth tree search (stop at maximum depth d_{m} ax):

$$V(s, d) = \begin{cases} \text{Utility}(s) & \text{IsEnd}(s) \\ \text{Eval}(s) & d = 0 \\ \max_{a \in \text{Actions}(s)} V(\text{Succ}(s, a), d) & \text{Player}(s) = \text{agent} \\ \min_{a \in \text{Actions}(s)} V(\text{Succ}(s, a), d - 1) & \text{Player}(s) = \text{opp} \end{cases}$$

Use: at state s, call $V(s, d_{\text{m ax}})$

Convention: decrement depth at last player's turn

Evaluation functions

Definition: Evaluation function

• An evaluation function Eval(s) is a (possibly very weak) estimate of the value V(s).

Analogy: FutureCost(s) in search problems

Evaluation functions

Example: chess

- Eval(s) = material + mobility + king-safety + center-control
- material = $10^{100} (K K') + 9(Q Q') + 5(R R') + 3(B B' + N N') + 1(P P')$
 - K and K': the number of kings that the agent and the opponent have
- mobility = 0.1(num-legal-moves num-legal-moves')

• ...

Function approximation

Key idea: parameterized evaluation functions

• Eval(s; w) depends on weights $\mathbf{w} \in \mathbb{R}^d$

Example: Linear evaluation function

where
$$\phi(s) = \mathbb{R}^d$$
, e.g.,

$$\mathrm{Eval}(s) = \mathbf{w} \cdot \phi(s)$$

$$\phi_1(s) = K - K'$$

$$\phi_2(s) = Q - Q'$$

•••

How to learn w?

Approximating the true value function

• If knew optimal policies π_{max} and $\pi_{m\,n}$, game tree evaluation provides best evaluation function:

$$\text{Eval}(s) = V(s)$$

Intractable!

Two approximations:

- Replace optimal policies with heuristic (stochastic) policies
- Use Monte Carlo approximation

Approximation 1: stochastic policies

Replace π_{\max} , π_{\min} with stochastic π_{agent} , π_{opp} :

Example: game 1

Eval(s) = V(s) is still hard to compute...

Approximation 2: Monte Carlo

Approach:

- ullet Simulate n random paths by applying the policies
- Average the utilities of the n paths

Example: game 1

Eval(s) =
$$V(s) = \frac{1}{10}[(1) + (3) + (50) + (50) + (50) + (-50) + (-50) + (50) + (50) + (-5$$

- Go has branching factor of 361, depth of 361
- Example heuristic policy: if stone is threatened, try to save it; otherwise move randomly
- Monte Carlo is responsible for recent successes

Google's AlphaGo (March 2016)

- Monte Carlo Tree Search: for exploring the game tree
- Policy network (CNN): used as the stochastic policy to guide the search
- Value network (CNN): used as the evaluation function.

Summary: evaluation functions

Depth-limited exhaustive search: $O(b^{2d})$ time

Rely on evaluation function:

- ullet Function approximation: parameterize by $oldsymbol{w}$ and features
- Monte Carlo approximation: play many games heuristically (randomize)

Roadmap

Games, minimax

Evaluation functions

Alpha-beta pruning

Pruning principle

Choose A or B with maximum value:

A: [3, **5**] B: [**5**, 100]

Key idea: branch and bound (refer to BnB in Wiki)

- Maintain lower and upper bounds on values.
- If intervals don't overlap non-trivially, then can choose optimally without further work.

Alpha-beta pruning is a specialization of BnB for minimax tree search.

Pruning game trees

Once see 2, we know that value of right node must be ≤ 2 Root computes $\max(3, \leq 2) = 3$ Since branch doesn't affect root value, can safely prune

Alpha-beta pruning

Key idea: optimal path

- The optimal path is path that minimax policies take.
- Values of all nodes on the optimal path are the same.

While doing DFS, maintaining a_s or b_s

- a_s : lower bound on value of max node s
- b_s : upper bound on value of min node s

Prune a node if its interval doesn't have non-trivial overlap with <u>every ancestor</u>

• Implementation note: for each max or min node, store $\alpha_s = \max_{s' \leq s} a_{s'}$ and $\beta_s = \min_{s' \leq s} b_{s'}$ (s' is every ancestor.)

Alpha-beta pruning example


```
01 function alphabeta(node, depth, \alpha, \beta, maximizingPlayer)
      if depth = 0 or node is a terminal node
02
03
         return the heuristic value of node
      if maximizingPlayer
04
05
         v := -∞
06
         for each child of node
07
           v := max(v, alphabeta(child, depth - 1, \alpha, \beta, FALSE))
           \alpha := \max(\alpha, v)
80
           if \beta \le \alpha (* if lowerbound is larger than upperbound *)
09
10
              break
11
         return v
12
      else
13
         v := ∞
14
         for each child of node
           v := min(v, alphabeta(child, depth - 1, \alpha, \beta, TRUE))
15
16
           \beta := \min(\beta, v)
           if \beta \le \alpha (* if lowerbound is larger than upperbound *)
17
18
              break
19
         return v
alphabeta(origin, depth, -\infty, +\infty, TRUE)
```

Move ordering

Pruning depends on order of actions.

Can't prune the 5 node:

Move ordering

Which ordering to choose?

- Worst ordering: $O(b^{2 \cdot d})$ time (= O(b * b * b * b ...))
- Best ordering: $O(b^{2\cdot 0.5d})$ time (= O(b * 1 * b * 1 ...))
- Random ordering: $O(b^{2 \cdot 0.75d})$ time

In practice, can use evaluation function Eval(s):

- Max nodes: order successors by decreasing Eval(s)
- Min nodes: order successors by increasing Eval(s)
- But need time for computing Eval(s) and sorting nodes according to Eval(s)