TRES

So log-arithmic. (Get it!?)

TREE

Set of nodes and edges (references to child nodes) without any cycles

TREES

NOT TREES

BINARY TREE

Tree in which each node has at most two children

Size 9 Height 3

root unique topmost node of tree that can reach all other nodes

ancestor node reachable from child to parent, grandparent, etc.

parent → child node above → node below

leaf / external node node with no children

descendant node reachable from parent to child, grandchild, etc.

branch / internal node node with at least one child size (tree) number of nodes in the tree

height (tree) number of edges on *longest* downward path from *root* to leaf

height (node) number of edges on *longest* downward path from *node* to leaf depth (node)
number of edges between the
node and the root

level (node)
1 + number of edges between
the node and the root

COMPLETE TREE

Every level except possibly last is completely filled and nodes are as far left as possible

BALANCED TREE

All leaves are at minimum possible depth

Balanced

Unbalanced

BINARY SEARCH TREE

Always sorted

For each node

Left children are smaller

Right children are larger

No duplicate keys (usually)

WHY USE A BST?

Fast search, insertion, deletion - especially when balanced

Sort as you go instead of all at once

Fairly simple implementation for good performance

WHY USE A BST?

Only allocates memory as it's needed

Doesn't have to reallocate memory to grow (like a hash table)

ANOTE ON LOG N

When discussing time and space complexity of algorithms, log n usually means log₂n

BINARY LOGARITHM

$$log_2n = x \leftrightarrow 2^x = n$$

the power by which 2 must be raised by to obtain n

$$log_2 16 = 4$$
 $log_2 32 = 5$ $log_2 143 = 7.15987$

WHY IS LOG N GOOD?

Imagine a binary search tree with 232 nodes

2³² is 4,294,967,296 (that's over 4 billion!)

When searching, we only have to visit a maximum of 32 nodes to find the node containing the data we're looking for (assuming the tree is perfectly balanced)

SEARCH

```
# Call initially with node == root node
def find_recursive(key, node):
    if node is None or node.key == key:
        return node
    elif key < node.key:
        return find_recursive(key, node.left)
    else:
        return find_recursive(key, node.right)</pre>
```

INSERTION

Same as search except once you find a node without a child on the next side you're traversing, add it there.

DELETION

Three cases

No children

One child

Two children

NO CHILDREN

ONE CHILD

TWO CHILDREN

COMPLEXITY

	Average Case	Worst Case
Space	O(n)	O(n)
Search	O(log n)	O(n)
Insert	O(log n)	O (n)
Delete	O(log n)	O(n)