

Guía 9: Circuitos en régimen alterno permanente.

- 1. Un circuito está formado por una resistencia $R=400 \Omega$ y una inductancia L=1 H. El mismo es alimentado por un generador de voltaje $v_g(t)=311 \cos(2\pi 50 \text{ Hz } t)$ V. Determinar, en régimen permanente: a) la corriente i(t) que circula, b) la caída de tensión $v_R(t)$ sobre R y $v_L(t)$ sobre L, c) Calcular la potencia instantánea $P(t)=v_g(t)i(t)$.
- 2. En el circuito anterior se reemplaza la inductancia por un capacitor C=10 μ F. Recalcular las consignas (a), (b) y (c) del problema anterior.
- 3. Un circuito RLC serie con L = 0.5 H, R= 300 Ω y C = 10 μ F es alimentado por un generador $v_g(t)$. Se mide una corriente i(t) = 5.2 A $\cos(100 \ t + 60^\circ)$. a) Encontrar la ecuación diferencial que describe el comportamiento del circuito con los coeficientes numéricos, b) calcular $v_g(t)$, c) la potencia instantánea $P(t)=v_g(t)i(t)$, d) El valor de C que lleve el circuito a resonancia.
- **4.** El circuito de la figura está alimentado por la red domiciliaria de nuestro país. Considerando régimen alterno permanente, se pide:
 - a) Calcular la reactancia y la impedancia compleja de cada elemento y del circuito serie total, expresándolas en sus formas binómica y exponencial. Indicar si el circuito tiene comportamiento inductivo, capacitivo o resistivo.
 - b) Indicar en forma exponencial los valores complejos asociados a la corriente y los voltajes sobre cada elemento y su relación con las respectivas impedancias complejas.
 - c) Calcular los valores de potencia activa y potencia reactiva.
 - d) (D) Calcular potencia aparente y factor de potencia.
 - e) Dibujar el diagrama fasorial de corriente y voltajes.
 - f) Calcular la frecuencia de resonancia. Describir el comportamiento del circuito en la condición de resonancia.
- 5. El circuito de la figura ($R=500~\Omega$) está alimentado por la red domiciliaria de nuestro país. Un voltímetro conectado sobre el capacitor mide $V_C=120~V$. Calcular:
 - a) la corriente que circula.
 - b) la capacidad C.
 - c) la potencia activa P.
 - d) la potencia reactiva Q.
 - e) **(D)** la potencia aparente *S*.
- **6.** En el circuito de la figura (V=200 V, f=50 Hz) dos voltímetros ideales V_R y V_C miden las caídas de voltaje sobre R y C respectivamente
- a)¿Cuál es la lectura del voltímetro V_C si V_R = 150V ?
- b); Qué relación hay entre R y X_C ?

- c) Si la corriente eficaz es I = 1A, calcular R y C.
- d); Qué ocurre con $\cos \varphi$ si se duplica R?
- 7. En un circuito RLC serie (L= 50 mH), se aplica una tensión eficaz de 100 V y frecuencia 50 Hz, y circula una corriente de 25 A atrasada 45 grados respecto de la tensión. Calcular:
 - a) los valores de R y de C.
 - b) la tensión sobre cada elemento.
 - c) verificar la segunda ley de Kirchoff con un diagrama fasorial
 - d) (D) Evaluar el triángulo de potencias.
- **8.** El circuito de la figura está alimentado por la red domiciliaria de nuestro país. El acoplamiento entre las inductancias se puede variar ajustando la distancia d entre ellas según $k=(1+d^2)^{-1}$ con d medida en cm. Se desea que la corriente atrase 45°

- respecto al voltaje del generador. ¿Cómo deben conectarse los puntos homólogos de las inductancias? ¿Cuál debe ser la distancia entre las mismas?
- 9. El circuito de la figura es alimentado por un generador de 120 V, 60 Hz. Dentro de la caja punteada hay componentes (R y/o L y/o C) conectados en serie. La potencia aparente medida es S= 50.9 VA y la reactiva |Q|= 36 VAR (inductiva) ¿Qué hay dentro de la caja?

