科技 立立成 规模模 基志 想 图图 2013 4/7 ECH UNIT

Group Theory

Homework Assignment 02

Spring, 2019

- 1. Show that the intersection S of two invariant subgroups S_1 and S_2 of a group G is an invariant subgroup. $S = S_1 \cap S_2$, for $T \in S$, $X \in G$, $S \in S_1, S_2$, thus $XTX^{-1} \in S_1, S_2 \implies XTX^{-1} \in S$.
- 2. The multiplication table of a finite group G is given by

	$\mid E \mid$	A	B	C	D	F	I	J	K	L	M	N
\overline{E}	E	\overline{A}	B	C	D	F	I	J	K	L	M	\overline{N}
A	A	E	F	I	J	B	C	D	M	N	K	L
B	B	F	A	K	L	E	M	N	I	J	C	D
C	C	I	L	A	K	N	\boldsymbol{E}	M	J	F	D	B
D	D	J	K	L	A	M	N	E	F	I	B	C
F	F	B	E	M	N	A	K	L	C	D	I	J
I	I	C	N	E	M	L	A	K	D	B	J	F
J	J	D	M	N	E	K	L	A	B	C	F	I
K	K	M	J	F	I	D	B	C	N	E	L	A
L	L	N	I	J	F	C	D	B	E	M	A	K
M	M	K	D	B	C	J	F	I	L	\boldsymbol{A}	N	E
N	N	L	C	D	B	I	J	F	A	K	E	M

(a) Find the inverse of each element of G.

$$E^{-1} = E$$

$$A^{-1} = A$$

$$B^{-1} = F$$

$$C^{-1} = I$$

$$D^{-1} = J$$

$$F^{-1} = B$$

$$I^{-1} = C$$

$$J^{-1} = D$$

$$K^{-1} = L$$

$$L^{-1} = K$$

$$M^{-1} = N$$

$$N^{-1} = M$$

(b) Find the elements in each class of G.

$${E}, {A}, {B, C, D}, {F, I, J}, {K, L, M}, {N}.$$

(c) Find all invariant subgroups of G.

$$\{E\},\ \{E,A\},\ \{E,A,K,L,M,N\}\ \{E,A,B,C,D,F,I,J,K,L,M,N\}$$

- 3. Consider the group D_3 .
 - (a) List all the classes of D_3 .

$$\{E\}, \{D, F\}, \{A, B, C\}$$

(b) Find the right and left cosets of the subgroup $S = \{E, A\}$ of D_3 .

Right cosets:

$$SE = SA = \{E, A\}$$

 $SD = SC = \{D, C\}$
 $SF = SB = \{F, B\}$

Left cosets:

$$ES = AS = \{E, A\}$$

$$DS = BS = \{D, B\}$$

$$FS = CS = \{F, C\}$$

4. For the group D_3 and its invariant subgroup $S = \{E, D, F\}$, find the factor group D_3/S . Construct the multiplication table for the factor group. Right cosets:

$$SE = SD = SF = S$$

$$SA = SB = SC = \{A, B, C\}$$

Multiplication table:

$$\begin{array}{c|cccc} & SE & SA \\ \hline SE & SE & SA \\ SA & SA & SE \end{array}$$

5. Consider $C_6 = \{E, a, a^2, a^3, a^4, a^5\}$ and its two subgroups $S_1 = \{E, a^3\}$ and $S_2 = \{E, a^2, a^4\}$. Show that $C_6 = S_1 \otimes S_2$.

$$EE = E \\ Ea^{2} = a^{2} \\ Ea^{4} = a^{4} \\ a^{3}E = a^{3} \\ a^{3}a^{2} = a^{5} \\ a^{3}a^{4} = a$$

$$\implies C_6 = S_1 \otimes S_2.$$