phyloflows: Calculating sources, onward transmissions and flow ratios

Xiaoyue Xi and Oliver Ratmann

2019-09-10

This vignette describes how a number of key summary statistics of inferred transmission flows can be easily calculated with **phyloflows** source.attribution.mcmc.getKeyQuantities function. Please work through the vignette phyloflows: Estimating transmission flows under heterogeneous sampling – a first example before you go ahead here.

Getting started

We continue our "First_Example". The following code chunk contains all code needed, up to running **phyloflows** MCMC routine. The only change is that the number of iterations is now 50,000. The MCMC should take about 2 minutes to run.

```
require(data.table)
require(phyloflows)
data(twoGroupFlows1, package="phyloflows")
dobs <- twoGroupFlows1$dobs
dprior <- twoGroupFlows1$dprior
mcmc.file <- file.path(getwd(),'twoGroupFlows1_mcmc.RData')
control <- list(seed=42, mcmc.n=5e4, verbose=0)
mc <- phyloflows:::source.attribution.mcmc(dobs, dprior, control)</pre>
```

Sources of transmission for each group

OK, so now we have samples from posterior distribution of transmission flows within and between the two population groups,

$$\pi = (\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}).$$

One important summary statistic are the sources of transmissions into each recipient group, defined by

$$\eta = (\eta_{11}, \eta_{21}, \eta_{12}, \eta_{22})$$

where $\eta_{ij} = \pi_{ij} / \sum_{s} \pi_{sj}$.

Onward transmissions from each group

Another important summary statistic are the proportions of transmissions that originate from each group, defined by

$$\nu = (\nu_{11}, \nu_{21}, \nu_{12}, \nu_{22})$$

where $\nu_{ij} = \pi_{ij} / \sum_s \pi_{is}$.

Transmission flow ratios

Yet another important summary statistic are ratios of transmission flows, defined by

$$\rho_{ij} = \pi_{ij}/\pi_{ji}.$$

Calculating key quantities

phyloflow has a function to calculate the above summary statistics. The basic syntax is as follows:

```
#
    specify list of user options
    burnin.p: proportion of samples to discard as burn-in
#
#
              (only needed when the burn-in was not already removed)
#
#
    thin: keep every thin-nth iteration
#
          (only needed when thinning was not already performed)
#
#
    quantiles: quantiles of the marginal posterior distributions
#
               that will be computed
#
#
   flowratios: list of vectors of 3 elements. The 3 elements
#
                specify the name of the flow ratio (first element),
#
                the enumerator of the flow ratio (second element),
#
                and the denominator of the flow ratio (third element)
control <- list( burnin.p=0.05,</pre>
                  thin=NA_integer_,
                  quantiles= c('CL'=0.025,'IL'=0.25,'M'=0.5,'IU'=0.75,'CU'=0.975),
                  flowratios= list( c('1/2', '1 2', '2 1'), c('2/1', '2 1', '1 2'))
ans <- source.attribution.mcmc.getKeyQuantities(mc=mc,</pre>
        dobs=dobs, control=control)
#> Removing burnin in set to 5 % of chain, total iterations= 625
#> Computing flows...
#> Computing WAIFM...
#> Computing sources...
#> Computing flow ratios...
ans
       TR TARGETCAT REC TARGETCAT
#>
                                                     CU
                                                                IL
                                                                           IU
#> 1:
                                1 0.28195785 0.39197078 0.31601498 0.35443253 0.33486791 33.5%\n[28.2%]
                 1
#> 2:
                 1
                                2 0.02758612 0.07486695 0.04005584 0.05609872 0.04762430
                                                                                            4.8%\n[2.8%
#> 3:
                 2
                                1 0.04018723 0.09412431 0.05469187 0.07330903 0.06347945
                                                                                              6.3\% \ n[4\%]
#> 4:
                 2
                                2 0.49018456 0.61277059 0.52964502 0.57339978 0.55150290 55.2%\n[49%
                                1 0.80990329 0.92567905 0.85462460 0.89464407 0.87550587 87.6%\n[81%
#> 5:
                 1
#> 6:
                 1
                                2 0.07432095 0.19009671 0.10535593 0.14537540 0.12449413
                                                                                            12.4\% \n[7.4]
#> 7:
                                1 0.06529071 0.15353627 0.08875570 0.11934096 0.10311869 10.3%\n[6.5%
                  2
#> 8:
                  2
                                2 0.84646373 0.93470929 0.88065904 0.91124430 0.89688131 89.7%\n[84.6%
#> 9:
                  1
                                1 0.77239794 0.89672712 0.81795244 0.86118964 0.84087458 84.1%\n[77.2%
                  2
                               1 0.10327288 0.22760206 0.13881036 0.18204756 0.15912542 15.9%\n[10.3%
#> 10:
#> 11:
                  1
                                2 0.04608185 0.12514978 0.06677337 0.09366908 0.07952006
                                                                                             8%\n[4.6%
#> 12:
                 2
                                2 0.87485022 0.95391815 0.90633092 0.93322663 0.92047994
                                                                                           92\% \n [87.5\%]
#> 13:
                 NA
                               NA 0.37863188 1.45436845 0.59242003 0.94657717 0.75002692
                                                                                            0.75 \ n[0.38]
#> 14:
                NA
                               NA 0.68758367 2.64108877 1.05643790 1.68799153 1.33328548
                                                                                            1.33 \n[0.69]
                    LABEL2
                                STAT FLOWRATIO_CAT
#>
#> 1: 33.5% (28.2%-39.2%)
                                               <NA>
                               flows
#> 2:
         4.8% (2.8%-7.5%)
                               flows
                                               <NA>
#> 3:
            6.3% (4%-9.4%)
                                flows
                                               <NA>
#> 4:
        55.2% (49%-61.3%)
                                flows
                                               <NA>
#> 5:
       87.6% (81%-92.6%)
                                waifm
                                               <NA>
#> 6:
       12.4% (7.4%-19%)
                                waifm
                                               <NA>
```

```
#> 7: 10.3% (6.5%-15.4%)
                               waifm
                                              <NA>
#> 8: 89.7% (84.6%-93.5%)
                                              <NA>
                               waifm
#> 9: 84.1% (77.2%-89.7%)
                                              <NA>
                             sources
#> 10: 15.9% (10.3%-22.8%)
                             sources
                                              <NA>
         8% (4.6%-12.5%)
#> 11:
                             sources
                                              <NA>
#> 12:
        92% (87.5%-95.4%)
                             sources
                                              <NA>
#> 13:
       0.75 (0.38-1.45) flow_ratio
                                               1/2
         1.33 (0.69-2.64) flow_ratio
#> 14:
                                               2/1
```

Note

Note it is also possible to specify a file name to MCMC output or aggregated MCMC output, and it is also possible to input aggregated MCMC output. Please look up the package help for further instructions.

?phyloflows:::source.attribution.mcmc.getKeyQuantities