120 121

Measurements and Calculations from TARFOX and ACE-2 Radiative Flux Changes by Aerosols from North America, Europe, and Africa over the Atlantic Ocean:

P. B. Russell¹, P. Hignett², J. M. Livingston³, B. Schmid⁴, A. Chien⁵, R. Bergstrom⁴, P. A. Durkee⁶, P. V. Hobbs⁻, T. S. Bates⁶, and P. K. Quinn⁶

²United Kingdom Meteorological Office, Meteorological Research Flight, DRA Farnborough, 'NASA Ames Research Center, Moffett Field, CA 94035-1000 USA Hampshire, GU146TD, UK

³SRI International, Menlo Park, CA 94025 USA ⁴Bay Area Environmental Research Institute, San Francisco, CA 94122 USA *NOAA-Pacific Marine Environmental Laboratory, Seattle, WA 98115 USA ⁶Naval Postgraduate School, Monterey, CA 93943-5114 USA ⁷University of Washington, Seattle, WA 98195 USA Symtech Corporation, Moffett Field, CA 94035-1000 USA

Fifth International Aerosol Conference Edinburgh, September 1998 5IAC Edinburgh DF Poster Layout of panels (pages)

Banner (panel #1); 6"						
2 Abstract		3 Atlantic AODs		4 Focus of this Poster		
				7		
TARFOX Cartoon		6 AATS-6		A,B,C Method		
7a		8	9		10	
Refr Index	Е	B, C Δ F	ΗΔF	!	A,B,C,H Methods	
, part gar.					Wiethous	
1.1 ACE-2 map		12 ACE-2 Ops Cross section		13 AVHRR AOD w Dust		
14 AATS-14 Profiles		15 AATS-14 τ(λ) & size dists		18 Conclusions #1		
16 ACE-2 ∆F		17 Atlantic ∆F		19 Conclusions #2		

function that is a major source of uncertainty in understanding the past climate Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the 1997 second Aerosol Characterization Experiment (ACE-2) measured Abstract. Aerosol effects on atmospheric radiative fluxes provide a forcing and predicting climate change. To help reduce this uncertainty, the 1996 the properties and radiative effects of American, European, and African aerosols over the Atlantic. In TARFOX, radiative fluxes and microphysics of the American aerosol were measured from the UK C-130 while optical depth spectra, aerosol composition, and other properties were measured by the University of Washington C-131A and the CIRPAS Pelican. Closure studies show that the measured flux changes agree with those derived from the aerosol measurements using several modeling approaches. The best-fit midvisible single-scatter albedos (~0.89 to 0.93) obtained from the TARFOX flux comparisons are in accord with values derived by independent techniques.

urban-marine aerosols and free-tropospheric African dust aerosols, using sunphotometers on the R/V Vodyanitskiy and the Pelican. Preliminary values for the radiative flux sensitivities (ΔFlux + ΔOptical depth) computed for ACE-2 aerosols (boundary layer and African dust) over ocean are similar to those found in TARFOX. Combining a satellite-derived optical depth climatology with the aerosol optical model validated for flux sensitivities in TARFOX provides In ACE-2 we measured optical depth and extinction spectra for both European first-cut estimates of aerosol-induced flux changes over the Atlantic Ocean.

Aerusur Uptical Depth Derived from Upward Scattered Solar Radiance

AVHRR/NOAA 11

Jun, Jul, Aug

Estimated Aerosol Optical Depth (0.5 μm)

0.28 0.22 0.15 0.09

28 0.35

Husar et al., J. Geophys. Res., 102, 16,889, 1997.

P.B. Russell, et al. Fifth International Aerosci Conference Edinburgh, Sept. 1998

Focus of this Poster:

Radiative flux sensitivity ≡ ΔFlux ÷ Δ0ptical depth

Needed to determine aerosol radiative forcing of climate

Can depend strongly on

- Aerosol composition and size

(single-scattering albedo and scattering asymmetry)

Surface albedo

- Sun angle

(Can even change sign, from cooling to heating)

Plate 2. Schematic overview of TARFOX platforms, instruments, and experimental approach.

P.B. Russell, et al. Fifth International Aerosol Conference, Edinburgh, Sept. 98

AIRBORNE SUNPHOTOMETER

P.B. Russell, et al. Fifth International Aerosol Conference Edinburgh, Sept. 1998

MODEL REFRACTIVE INDEX SPECTRA

COMPARISON BETWEEN AEROSOL-INDUCED RADIATIVE FLUX CHANGES

- Calculated from Sunphotometer Optical Depth Spectra (METHODS B', C')
- Derived from C-130 Flux Measurements

Edinburgh, Sept. 199

Aerosol-Induced Change in Net Shortwave Flux at Tropopause (λ < 4 μ m, 24-hr Average, No Clouds)

Jun, Jul, Aug

Net Flux Change (W m⁻²)

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

Based on:

- AVHRR/NOAA Aerosol Optical Depths
 Husar et al. [J. Geophys. Res., 102, 16,889, 1997]

 - Data period: July 1989-June 1991
- •TARFOX Flux Sensitivities, ΔF/Δτ
- Calculated for TARFOX model aerosol with $\omega_{\text{500}}\approx0.9$
- Validated by comparison to C-130 flux measurements

SIAC Leaduryl, Lyn 1898 P. Rusell & Bergelrom it as

COMPARISON BETWEEN AEROSOL-INDUCED RADIATIVE FLUX CHANGES

- Calculated by METHOD H
 Derived from C-130 Flux Measurements

SUMMARY OF OPTICAL/RADIATIVE CALCULATION METHODS

	Methods A, B, C	Method H
Optical Depth	Measured by tracking sunphotometer (380, 453, 525, 1020 nm)	Measured by occulted pyranometer (300-700 nm avg)
Size Distribution	Inverted from optical depth spectrum	Measured by optical particle counter
Real Refractive Index	62% H2O, 38% H2SO4 [Palmer & Williams 1975] based on composition from Novakov et al. [1997], Hegg et al. [1997]	ELSIE [Lowenthal et al., 1995] based on composition from Novakov et al. [1997], Hegg et al. [1997]
Imaginary Refractive Index	As above, but increased to yield	As above
	ω(500 nm)≈0.86 to 0.96 [Remer et al., 1997; Hegg et al., 1997; Hignett et al., 1998]	
Flux Changes	A) Russell et al. [1997] B) Coakley and Chylek [1975], Russell et al. [1979] C) Chylek and Wong [1997], Coakley and Chylek [1975]	Edwards and Slingo [1996]

EC/DG XII Environment and Climate Programme, NERC (UK), NSF (USA), NOAA (USA) Meteo France, UK Meteorological Office, Instituto Nacional de Meteorologia (ES) International Global Atmospheric Chemistry Project (IGAC)

ACE-2 North Atlantic Regional Aerosol Characterization Experiment June 16 - July 25, 1997

- radiative effects and controlling processes of anthropogenic aerosols from Europe and desert dust from the Africa as they are transported over the North Atlantic Ocean
- 250 research scientists
- 60 coordinated aircraft missions with 6 aircraft (for a total of 450 flight hours), one ship, and ground stations on Tenerife, Portugal and Madeira.

P.B. Russell, et al. Fifth International Aerosol Conference Edinburgh, Sept. 1998

P.B. Russell, et al. Fifth International Aerosoi Conference Edinburgh, Sept. 1998

Downward Shortwave Flux Change Below Layer Computed for

Boundary Layer Aerosol and Elevated Dust Aerosol

Sampled by Pelican

TARFOX-derived aerosol properties

modeling techniques

radiative flux measurements

provided the aerosols are modeled as moderately absorbing (0.89 $\leq \omega_{\text{midvis}} \leq 0.93$). ullet These $\omega_{\sf midvis}$ values are in accord with independent measurements of the TARFOX aerosol (e.g., Hegg et al., 1997).

This closure was obtained by two approaches, which differed in methods used to:

Measure optical depth

Determine aerosol size distribution

Model aerosol composition & complex refractive index

Compute radiative transfer

CONCLUSIONS (Cont'd)

Radiative flux sensitivity (AFlux + AOptical depth) computed for ACE-2 aerosols (boundary layer and African dust) over ocean similar to TARFOX.

$$\Delta F \uparrow_{24-hr}/\delta(550 \text{ nm}) \approx 40 \text{ W m}^{-2}$$

 $\Delta F \downarrow_{24-hr}/\delta(550 \text{ nm}) \approx -70 \text{ W m}^{-2}$

 $\Delta F \downarrow_{24-hr} / \delta(550 \text{ nm}) \approx -70 \text{ W m}^{-2}$

derive regional ΔF from a climatology of O.D. (e.g., from AVHRR). An aerosol model that gives validated ∆F ÷ ∆0.D. can be used to