Remote Par	el Comm	unication	Protocol
Kenne rai	161 ('0)11111		

5048MG & 5048MGX Remote Panel Communication Protocol

1	Col	mmunication format	<i>1</i>
2	Inq	quiry Command	1
	2.1	QPI <cr>: Device Protocol ID Inquiry</cr>	1
	2.2	QID <cr>: The device serial number inquiry</cr>	1
	2.3	QSID <cr>: The device serial number inquiry (the length is more than 14)</cr>	1
	2.4	QVFW <cr>: Main CPU Firmware version inquiry</cr>	2
	2.5	QVFW2 <cr>: Scc CPU Firmware version inquiry</cr>	2
	2.6	QVFW3 <cr>: Remote Panel CPU Firmware version inquiry</cr>	2
	2.7	VERFW: <cr>: BLE CPU Firmware version inquiry (DSP get other cpu FV)</cr>	2
	2.8	QPIRI <cr>: Device Rating Information inquiry</cr>	2
	2.9	QFLAG <cr>: Device flag status inquiry</cr>	4
	2.10	QPIGS <cr>: Device general status parameters inquiry</cr>	4
	2.11	QMOD <cr>: Device Mode inquiry</cr>	7
	2.12	QPIWS <cr>: Device Warning Status inquiry</cr>	8
	2.13	QDI <cr>: The default setting value information</cr>	9
	2.14	QMCHGCR <cr>: Enquiry selectable value about max charging current</cr>	11
	2.15	QMUCHGCR <cr>: Enquiry selectable value about max utility charging current</cr>	11
	2.16	QOPPT <cr>: The device output source priority time setting table</cr>	11
	2.17	QCHPT <cr>: The device charger source priority time setting table</cr>	11
	2.18	QOPCHT <cr>: The device output source priority & charger source priority time setting</cr>	12
	2.19	QT <cr>: Time inquiry (remote)</cr>	13
	2.20	QMN <cr>: Query model name</cr>	13
	2.21	QGMN <cr>: Query general model name</cr>	13
	2.22	QBEQI <cr>: Battery equalization status parameters inquiry</cr>	15
	2.23	QPGSn <cr>: Parallel Information inquiry—(only for KING & MKSII)—</cr>	15
	2.24	Q2PGSn <cr>: Parallel Information inquiry (QGMN return 025)</cr>	17
	<mark>2.25</mark>	QET <crc><cr>: Query total PV generated energy (remote)</cr></crc>	17
	<mark>2.26</mark>	QEYyyyy <crc><cr>: Query PV generated energy of year (remote)</cr></crc>	17
	<mark>2.27</mark>	QEMyyyymm <crc><cr>: Query PV generated energy of month (remote)</cr></crc>	18
	<mark>2.28</mark>	QEDyyyymmdd <crc><cr>: Query PV generated energy of day (remote)</cr></crc>	18
	2.29	QLT <crc><cr>: Query total output load energy (remote)</cr></crc>	18

	2.30	QLYyyyy <crc><cr>: Query output load energy of year (remote)</cr></crc>	18
	2.31	QLMyyyymm <crc><cr>: Query output load energy of month (remote)</cr></crc>	18
	2.32	QLDyyyymmdd <crc><cr>: Query output load energy of day (remote)</cr></crc>	18
	2.33	QBATCD <cr>: Discharge status and Charge status inquiry (QGMN return 031,038,039)</cr>	18
	2.34	QBMS <crc><cr>: BMS message</cr></crc>	18
	2.35	PBMS <crc><cr>: BMS message</cr></crc>	19
	2.36	QLED <crc><er>: LED status parameters inquiry</er></crc>	19
3	Set	ting parameters Command	. 20
	3.1	ATE1 <crc><cr>: Start ATE test, remote panel stop polling</cr></crc>	20
	3.2	ATE0: End ATE test, remote panel polling	20
	3.3	PE <xxx>/PD<xxxx><crc><cr>: setting some status enable/disable</cr></crc></xxxx></xxx>	20
	3.4	PF <cr>: Setting control parameter to default value</cr>	20
	3.5	MNCHGC <nnn><cr>: Setting max charging current</cr></nnn>	21
	3.6	MUCHGC <nnn><cr>: Setting utility max charging current</cr></nnn>	21
	3.7	F <nn><cr>: Setting Inverter output rating frequency</cr></nn>	21
	3.8	POPV <nnnn><cr>: Setting device output rating voltage</cr></nnnn>	22
	3.9	POP <nn><cr>: Setting device output source priority</cr></nn>	22
	3.10	POPM <nn><cr>: Setting output mode</cr></nn>	22
	3.11	POPLG <nn><er>: Setting operation logic (only for KING)</er></nn>	22
	3.12	PBCV <nn.n><cr>: Battery voltage back to utility</cr></nn.n>	22
	3.13	PBDV <nn.n><cr>: Battery voltage back to battery</cr></nn.n>	22
	3.14	PCP <nn><cr>: Setting device charger priority</cr></nn>	22
	3.15	PPCP <mnn><cr>: Setting device charger priority</cr></mnn>	23
	3.16	PGR <nn><cr>: Setting device grid working range</cr></nn>	23
	3.17	PBT <nn><cr>: Setting battery type</cr></nn>	23
	3.18	PSDV <nn.n><cr>: Setting battery cut-off voltage (Battery under voltage)</cr></nn.n>	23
	3.19	PCVV <nn.n><cr>: Setting battery C.V. (constant voltage) charging voltage</cr></nn.n>	23
	3.20	PBFT <nn.n><cr>: Setting battery float charging voltage</cr></nn.n>	23
	3.21	BTA1 <nnn.nn><cr>: Battery voltage adjust point one</cr></nnn.nn>	23
	3.22	BTA2 <nnn.nn><cr>: Battery voltage adjust point two</cr></nnn.nn>	24
	3.23	BTA0 <cr>: Set battery voltage adjust parameters to be default value</cr>	24
	3.24	PPVOKC <n><cr>: Setting PV OK condition</cr></n>	24

3.25	PSPB <n><cr>: Setting Solar power balance</cr></n>	24
3.26	RTEY <cr>: Reset all stored data for PV/load energy (remote)</cr>	24
3.27	RTDL <cr>: Erase all data log (remote)</cr>	24
3.28	PDL <nn><cr>: Data log stored period (remote)</cr></nn>	24
3.29	PBEQE <n><cr>: Enable or disable battery equalization</cr></n>	24
3.30	PBEQT <nnn><cr>:Set battery equalization time</cr></nnn>	24
3.31	PBEQP <nnn><cr>:Set battery equalization period</cr></nnn>	24
3.32	PBEQV <nn.nn><cr>:Set battery equalization voltage</cr></nn.nn>	25
3.33	PBEQOT <nnn><cr>:Set battery equalization over time</cr></nnn>	25
3.34	PBEQA <n><cr>: Active or inactive battery equalization now</cr></n>	25
3.35	PCVT <nnn><cr>: Set max charging time at C.V stage</cr></nnn>	25
3.36	SRS <nn><cr>: Set country customized regulation</cr></nn>	25
3.37	DAT <yymmddhhmmss><er>: Date and time</er></yymmddhhmmss>	25
3.38	PBATMAXDISC <nnn><cr>: Setting max discharging current (QGMN return 031,038,039)</cr></nnn>	25
3.39	PBATCD <abc><cr>: Battery charge/discharge controlling command (QGMN return 031,038,0)</cr></abc>	39) 25
3.40	PLEDE <n><cr>: Enable/disable LED function</cr></n>	26
3.41	PLEDS <n><er>: set LED speed</er></n>	26
3.42	PLEDM <n><cr>: set LED effect</cr></n>	26
3.43	PLEDB <n><er>: set LED brightness</er></n>	26
3.44	PLEDT <n><cr>: set LED total number of colors</cr></n>	26
3.45	PLEDC <n><aaabbbccc><cr>: set LED color</cr></aaabbbccc></n>	27
Ap_{j}	pendix	27
4.1	CRC calibration method	27

RJ45 to RS232 cable between computer and device

1 Communication format

Baud	Start	Data	Parity	Stop
rate	bit	bit	bit	bit
2400	1	8	N	1

2 Inquiry Command

2.1 QPI<cr>: Device Protocol ID Inquiry

Computer: QPI<CRC><cr>

Device: (PI<NN><CRC><cr>

N is an integer number ranging from 0 to 9. Function: To request the device Protocol ID. Protocol ID distribution: 30 for series

2.2 QID<cr>: The device serial number inquiry

Computer: QID<CRC><cr>

Device: (XXXXXXXXXXXXXXCRC><cr>

2.3 QSID<cr>: The device serial number inquiry (the length is more than 14)

Computer: QSID<CRC><cr>

Device: (NNXXXXXXXXXXXXXXXXXXXXXXCRC><cr>

NN: Serial number valid length, X: Serial number, invalid part is filled as '0', total X is 20.

2.4 QVFW<cr>: Main CPU Firmware version inquiry

Computer: QVFW<CRC><cr>

Device: (VERFW:<NNNNN.NN><CRC><cr>

N is a HEX number from 0...9 or A...F.

Example:

Computer: QVFW<CRC><cr>

Device: (VERFW:00123.01<CRC><cr>

00123: firmware series number; 01: version

2.5 QVFW2<cr>: Scc CPU Firmware version inquiry

Computer: QVFW2<CRC><cr>

Device: (VERFW2:<NNNNN.NN><CRC><cr>

<N> is a HEX number from 0...9 or A...F.

2.6 QVFW3<cr>: Remote Panel CPU Firmware version inquiry

Computer: QVFW3<CRC><cr>

Device: (VERFW:<NNNNN.NN><CRC><cr>

<N> is a HEX number from 0...9 or A...F.

2.7 VERFW:<er>: BLE CPU Firmware version inquiry (DSP get other cpu FV)

Computer: VERFW:<CRC><cr>

Device: (VERFW: <NNNNN.NN><CRC><cr>

<N> is a HEX number from 0...9 or A...F.

2.8 QPIRI<cr>: Device Rating Information inquiry

Computer: QPIRI<CRC><cr>

Device: (BBB.B CC.C DDD.D EE.E FF.F HHHH IIII JJ.J KK.K JJ.J KK.K LL.L O PPP QQQ

OPQRSSTUVV.VWXYYYZCCC<CRC><cr>

Date	Description	Notes
(Start byte	
BBB.B	AC output rating voltage	B is an integer ranging from 0 to 9. The units is V.
CC.C	AC output rating current	C is an Integer ranging from 0 to 9. The units is A.
DDD.D	AC output rating voltage	D is an Integer ranging from 0 to 9. The units is V.
EE.E	AC output rating frequency	E is an Integer ranging from 0 to 9. The units is Hz.
FF.F	AC output rating current	F is an Integer ranging from 0 to 9. The unit is A.
НННН	AC output rating apparent power	H is an Integer ranging from 0 to 9. The unit is VA.
IIII	AC output rating active power	I is an Integer ranging from 0 to 9. The unit is W.
JJ.J	Battery rating voltage	J is an Integer ranging from 0 to 9. The

		units is V.
1717 17	D	K is an Integer ranging from 0 to 9. The
KK.K	Battery re-charge voltage	units is V.
TT T	D (1 1 1)	J is an Integer ranging from 0 to 9. The
JJ.J	Battery under voltage	units is V.
KK.K	Battery bulk voltage	K is an Integer ranging from 0 to 9. The
KK.K	Battery bunk voltage	units is V.
LL.L	Battery float voltage	L is an Integer ranging from 0 to 9. The
EE.E	Buttery Hour voltage	units is V.
		0: AGM
		1: Flooded
О	Battery type	2: User
		3: PYL
		4: SH
		P is an Integer ranging from 0 to 9 The
PPP	Current max AC charging	units is A.(PPP:only for MKS II/III
	current	to100A,
		PP: MKS II/III to 80A)
QQ <mark>Q</mark>	Current max charging current	Q is an Integer ranging from 0 to 9. The
		units is A.
О	Input voltage range	0: Appliance
	1 0 0	1: UPS
_		0: Utility first
P	Output source priority	1: Solar first
		2: SBU first
		0: Utility first
Q	Charger source priority	1: Solar first
		2: Solar + Utility
D	D	3: Only solar charging permitted
R	Parallel max number	R is an Integer ranging from 0 to 9.
aa	36.11	00: Grid tie;
SS	Machine type	01: Off Grid;
		10: Hybrid.
Т	Topology	0: transformerless
	1 02	1: transformer
		00: single machine output
		01: parallel output
U	Output mode	02: Phase 1 of 3 Phase output
		03: Phase 2 of 3 Phase output
		04: Phase 3 of 3 Phase output
		V is an Integer ranging from 0 to 9. The
VV.V	Battery re-discharge voltage	unit is V.
W	PV OK condition for parallel	0: As long as one unit of inverters has
		O C O O

		connect PV, parallel system will consider PV OK;	
		1: Only All of inverters have connect PV, parallel system will consider PV OK	
		0: PV input max current will be the max charged current;	
X	PV power balance	1: PV input max power will be the sum	
		of the max charged power and loads	
		power.	
	May charging time at CV	Y is an Integer ranging from 0 to 9. The	
YYY	Max. charging time at C.V	unit is minute.	
	stage	(only for KING & MKSII)	
		0: Automatically	
Z	Operation Logic	1: On-line mode	
		2: ECO mode	
		(only for KING)	
CCC	May discharging aurent	C is an integer ranging from 0 to 9. The	
	Max discharging current	units is A. (QGMN return 031)	

2.9 QFLAG<cr>: Device flag status inquiry

ExxxDxxx is the flag status. E means enable, D means disable

X	Control setting
a	Enable/disable silence buzzer or open buzzer
b	Enable/Disable overload bypass function
e	Enable/Disable overload bypass function2 (only for KING)
d	Enable/Disable solar feed to grid (QGMN return 025)
k	Enable/Disable LCD display escape to default page after 1min timeout
m	Battery connect status(only for KING & MKSII)
u	Enable/Disable overload restart
v	Enable/Disable over temperature restart
X	Enable/Disable backlight on
y	Enable/Disable alarm on when primary source interrupt
Z	Enable/Disable fault code record

Example:

Computer: QFLAG <CRC><cr>
Device: (ExxxDxxx <CRC><cr>

2.10 QPIGS<cr>: Device general status parameters inquiry

Computer: QPIGS <CRC><cr>

Device: (BBB.B CC.C DDD.D EE.E FFFF GGGG HHH III JJ.JJ KKK OOO TTTT EE.E UUU.U

WW.WW PPPPP b7b6b5b4b3b2b1b0 QQ VV MMMMM b10b9b8 Y ZZ AAAA<CRC><cr>

Data	Description	Notes
(Start byte	
BBB.B	Grid voltage	B is an Integer number 0 to 9. The units is V.
CC.C	Grid frequency	C s an Integer number 0 to 9. The units is Hz.
DDD.D	AC output voltage	D is an Integer number 0 to 9. The units is V.
EE.E	AC output frequency	E is an Integer number from 0 to 9. The units is Hz.
FFFF	AC output apparent power	F is an Integer number from 0 to 9. The units is VA
GGGG	AC output active power	G is an Integer ranging from 0 to 9. The units is W.
ННН	Output load percent	DEVICE: HHH is Maximum of W% or VA%.
		VA% is a percent of apparent power.
		W% is a percent of active power.
		The units is %.
III	BUS voltage	I is an Integer ranging from 0 to 9. The units is V.
JJ.JJ	Battery voltage	J is an Integer ranging from 0 to 9. The units is V.
KKK	Battery charging current	K is an Integer ranging from 0 to 9. The units is A.
000	Battery capacity	X is an Integer ranging from 0 to 9. The units is %.
TTTT	Inverter heat sink temperature	T is an integer ranging from 0 to 9. The units is °C.
EE.E	PV Input current	E is an Integer ranging from 0 to 9. The units is A. EEEE(only for KING) EE.E(only for VMIII & MKSII)
UUU.U	PV Input voltage	U is an Integer ranging from 0 to 9. The units is V.
WW.W W	Battery voltage from SCC	W is an Integer ranging from 0 to 9. The units is V.
PPPPP	Battery discharge current	P is an Integer ranging from 0 to 9. The units is A.
b7b6b5	Device status	b7: PV or AC feed the load, 1:yes,0:no

b4b3b2		b6: configuration status: 1: Change 0:
b1b0		unchanged
		b5: SCC firmware version 1: Updated 0:
		unchanged
		b4: Load status: 0: Load off 1:Load
		on
		b3: reserved
		b2: Charging status(Charging on/off)
		b1: Charging status(SCC charging
		on/off)
		b0: Charging status(AC charging on/off)
		b2b1b0:
		000: Do nothing
		110: Charging on with SCC charge on
		101: Charging on with AC charge on
		111: Charging on with SCC and AC
		charge on
QQ	Battery voltage offset for fans	Q is an Integer ranging from 0 to 9. The
	on	unit is 10mV.
VV	EEPROM version	V is an Integer ranging from 0 to 9.
MMM	PV Charging power	M is an Integer ranging from 0 to 9. The
MM		unit is watt.
b10b9b	Device status	b10: flag for charging to floating mode
8		b9: Switch On
		b8: flag for dustproof
		installed(1-dustproof installed,0-no
X 7		dustproof)
¥	Solar feed to grid status	0: normal 1: solar feed to grid
		OGMN return 025
77	Set country oustomized	00: India
ZZ	Set country customized regulation	00: maia 01: Germany
	regulation	02: South America
		· - · · · · · · · · · · · · · · · · · ·
A A A A	Calar for 1	QGMN return 025
AAAA	Solar feed to grid power	A is an Integer ranging from 0 to 9. The units is W.
		QGMN return 025
		VOIMIN ICIUIII UZ3

Fault Code	Fault Event	Icon on
01	Fan is locked	

02	Over temperature	
03	Battery voltage is too high	
04	Battery voltage is too low	
05	Output short circuited or Over temperature	
06	Output voltage is too high	06
07	Over load time out	
08	Bus voltage is too high	
09	Bus soft start failed	
10	PV charger current over	
11	PV Over Volt	
12	DC-DC Over Current	
51	Over current inverter	5
53	Inverter soft start failed	[5]
55	Over DC voltage on output of inverter	55
57	Current sensor failed	[5]
58	Output voltage is too low	58
59	PV voltage high	59,
60	Inverter negative power	
71	Parallel version different	
72	Output circuit failed	
73	Output Volt Different	
80	CAN communication failed	
81	Parallel host line lost	(only for KING)
82	Parallel synchronized signal lost	
83	Parallel battery voltage detect different	
84	Parallel Line voltage or frequency detect different	
85	Parallel Line input current unbalanced	
86	Parallel output setting different	

2.11 QMOD<cr>: Device Mode inquiry

Computer: QMOD<CRC><cr>

Device: (M<CRC><cr>

MODE	CODE(M)
Power On Mode	P
Standby Mode	S
Line Mode	L
Battery Mode	В
Fault Mode	F
Shutdown Mode	D
Charge Mode	С
Bypass Mode	Y
ECO mode	Е

Example:

Computer: QMOD<CRC><cr>

Device: (L<CRC><cr>

Means: the current device mode is Line mode.

2.12 QPIWS<cr>: Device Warning Status inquiry

Computer: QPIWS<CRC> <cr>

Device: (a0a1.....a34a35<CRC><cr>

a0... a35 is the warning status. If the warning is happened, the relevant bit will set 1, else the relevant bit will set 0. The following table is the warning code.

bit	Warning	Description
a0	PV loss(Reserved)	Warning
a1	Inverter fault	Fault
a2	Bus Over	Fault
a3	Bus Under	Fault
a4	Bus Soft Fail	Fault
a5	LINE_FAIL	Warning
a6	OPVShort	Fault
a7	Inverter voltage too low	Fault
a8	Inverter voltage too high	Fault
a9	Over temperature	Compile with a1, if a1=1,fault, otherwise warning
a10	Fan locked	Compile with a1, if a1=1,fault, otherwise warning
a11	Battery voltage high	Compile with a1, if a1=1,fault, otherwise warning
a12	Battery low alarm	Warning
a13	Reserved	
a14	Battery under shutdown	Warning

a15	Battery derating	Warning
a16	Over load	Compile with a1, if a1=1,fault, otherwise warning
a17	Eeprom fault	Warning
a18	Inverter Over Current	Fault
a19	Inverter Soft Fail	Fault
a20	Self Test Fail	Fault
a21	OP DC Voltage Over	Fault
a22	Battery Open	Fault
a23	Current Sensor Fail	Fault
a24	Battery Short(Reserved)	Fault(only for KING)
a25	Power limit(Reserved)	Warning(only for KING)
a26	PV voltage high	Warning/Fault(only for KING)
a27	MPPT overload fault PV Over Current	Fault(only for KING)
a28	MPPT overload warning (Reserved)	Warning(only for KING)
a29	Battery too low to charge (Reserved)	Warning(only for KING)
a30	DC/DC Over Current	Fault (only for KING)
a31	D(remote)	a32a33 is fault code(only for MKSIII)
a32	D(remote)	a31a32 is fault code(only for VMIII)
a33	Low PV energy/D(remote)	Warning(only for VMIII)
a34	High AC input during BUS soft start(remote)	Warning(only for VMIII)
a35	Battery equalization(remote)	Warning(only for VMIII)

2.13 QDI<cr>: The default setting value information

Computer: QDI<CRC><cr>

Device: (BBB.B CC.C 00DD EE.E FF.F GG.G HH.H II J K L M N O P Q R S T U V W YY.Y X Z AAA $^{\mathbf{B}}$ <CRC><cr>

Data Description Notes Inverter (Start byte B is an Integer ranging from 0 to 9. ACoutput BBB.B Default 230.0 voltage The units is V. C is an Integer ranging from 0 to 9. ACoutput CC.C Default 50.0 The units is Hz. frequency D is an Integer ranging from 0 to 9. ACMax 00DDDefault 30.0 charging current The unit is A. E is an Integer ranging from 0 to 9. Battery Under EE.E The unit is V. voltage

FF.F	Charging float voltage	F is an Integer ranging from 0 to 9. The unit is V.	
GG.G	Charging bulk voltage	G is an Integer ranging from 0 to 9. The unit is V.	
НН.Н	Battery default re-charge voltage	H is an Integer ranging from 0 to 9. The units is V.	
II	Max charging current	I is an Integer ranging from 0 to 9. The units is A.	60A
J	AC input voltage range	J is an Integer ranging from 0 to 1. No unit	Default 0 for appliance range
K	Output source priority	K is an Integer ranging from 0 to 1. No unit	Default 0 for utility first
L	Charger source priority	L is an Integer ranging from 0 to 1. No unit	Default 2 for Utility and Solar first
M	Battery type	M is an Integer ranging from 0 to 1. No unit	Default 0 for AGM
N	Enable/disable silence buzzer or open buzzer	N is an Integer ranging from 0 to 1. No unit	Default 0 for enable buzzer
О	Enable/Disable power saving	O is an Integer ranging from 0 to 1. No unit	Default 0 for disable power saving
Р	Enable/Disable overload restart	P is an Integer ranging from 0 to 1. No unit	Default 0 for disable overload restart
Q	Enable/Disable over temperature restart	Q is an Integer ranging from 0 to 1. No unit	Default 0 for disable over temperature restart
R	Enable/Disable LCD backlight on	R is an Integer ranging from 0 to 1. No unit	Default 1 for enable LCD backlight on
S	Enable/Disable alarm on when primary source interrupt	S is an Integer ranging from 0 to 1. No unit	Default 1 for enable alarm on when primary source interrupt
Т	Enable/Disable fault code record	T is an Integer ranging from 0 to 1. No unit	Default 0 for disable fault code record
U	Overload bypass	U is an Integer ranging from 0 to 1. No unit	Default 0 for disable overload bypass function

V	Enable/Disable LCD display escape to default page after 1 min timeout	V is an Integer ranging from 0 to 1. No unit	Default 1 for LCD display escape to default page
W	Output mode	W is an Integer ranging from 0 to 4. No unit	Default 0 for single output
YY.Y	Battery re-discharge voltage	W is an Integer ranging from 0 to 9. The unit is V	
X	PV OK condition for parallel	X is an Integer ranging from 0 to 1	0: As long as one unit of inverters has connect PV, parallel system will consider PV OK;
Z	PV power balance	X is an Integer ranging from 0 to 1	0: PV input max current will be the max charged current;
AAA	Max. charging time at C.V stage	A is an Integer ranging from 0 to 9. The unit is Minutes.	0: means automatically (only for KING & MKSII)
₽	Operation logic	B is an Integer ranging from 0 to 1	0: automatically (only for KING)

2.14 QMCHGCR<cr>: Enquiry selectable value about max charging current

Computer: QMCHGCR<CRC><cr>

Device: (AAA BBB CCC DDD......<CRC><cr>

More value can be added, make sure there is a space character between every value.

2.15 QMUCHGCR<cr>: Enquiry selectable value about max utility charging current

Computer: QMUCHGCR<CRC><cr>

Device: (AAA BBB CCC DDD......<CRC><cr>

More value can be added, make sure there is a space character between every value.

2.16 QOPPT<cr>: The device output source priority time setting table

Computer: QOPPT<CRC><cr>

M: 24 hour correspond to the output source priority (0: Utility first, 1: Solar first, 2: SBU)

2.17 OCHPT<cr>: The device charger source priority time setting table

Computer: QCHPT<CRC><cr>

M: 24 hour correspond to the charger source priority (1: Solar first, 2: Solar + Utility, 3: Only solar charging permitted)

2.18 QOPCHT<cr>: The device output source priority & charger source priority time setting Computer: QOPCHT<CRC><cr>

Device: (A BB CC DD EE FF GG H II JJ KK LL MM NN a2a1a0 b2b1b0<CRC><cr>

Data	Description	Notes Notes
(Start byte	
A	Output source priority	0: Utility first 1: Solar first 2: SBU first
BB	USB starting time	B is an Integer number from 00 to 23 The units is Hour.
CC	USB end time	C s an Integer number from 00 to 23 The units is Hour.
ĐĐ	SUB starting time	D is an Integer number from 00 to 23 The units is Hour.
EE	SUB end time	E is an Integer number from 00 to 23 The units is Hour.
FF	SBU starting time	F is an Integer number from 00 to 23 The units is Hour.
GG	SBU end time	G is an Integer number from 00 to 23 The units is Hour.
H	Charger source priority	1: Solar first 2: Solar + Utility 3: Only solar charging permitted
H	Solar first starting time	I is an Integer number from 00 to 23 The units is Hour.
Ħ	Solar first end time	J s an Integer number from 00 to 23. Th units is Hour.
KK	Solar + Utility starting time	K is an Integer number from 00 to 23 The units is Hour.
LL	Solar + Utility end time	L is an Integer number from 00 to 23. The units is Hour.
MM	Only solar starting time	M is an Integer number from 00 to 23. The units is Hour.
NN	Only solar end time	N is an Integer number from 00 to 23. The units is Hour.
a2a1a0	Output source priority order	a2: highest a1: medium a0: lowest

b2b1b0	Charger source priority order	b2: highest
		b1: medium
		b0: lowest

2.19 QT<cr>: Time inquiry (remote)

Computer: QT<cr>

Device: (YYYYMMDDHHMMSS<cr>

Example:

Computer: QT<cr>

Device: (20180101111120<cr>

Means: The time is 2018/01/01 11:11:20.

Data	Description	Notes
(Start byte	
YYYYMMDD	Date	Y, M and D are an Integer number 0 to 9.
HHMMSS	Time	H, M and S are an Integer number 0 to 9.

2.20 QMN<cr>: Query model name

Computer: QMN<CRC><cr>

Device: (MMMMM-NNNN<CRC><cr> if device accepts this command, otherwise, responds

(NAK<cr>

MMMM: model name, NNNN: Rated output VA

2.21 QGMN<cr>: Query general model name

Computer: QGMN<CRC><cr>

Device: (NNN<CRC><cr> if Inverter accepts this command, otherwise, responds (NAK<cr>>

NNN: model name number, list as below:

	· · · · · · · · · · · · · · · · · · ·	
001	VP-5000	
002	VM-5000	
003	VP-3000	
004	VM-3000	
005	MKS+-2000-48-LV-LY	
006	MLV 3KVA	MLV 3K-24
007	PLV 3KVA	PLV 3K-24
008	MKS HV 24V 3KVA	MKS 3KP
009	KS HV 24V 3KVA	KS 3KP
010	MKS HV 24V 5KVA	MKS 5KP
011	KS HV 24V 5KVA	KS 5KP
012	MKS HV 48V 4K/5KVA/64V	4K/5K 64VDC

013	KS HV 48V 4/5KVA/64V	KS 4K/5K 64VDC
014	MKS 4/5KVA	MKS 4K/5K
015	KS 4/5KVA	KS 4K/5K
016	ALFA M-5000	ALFA M-5000
017	ALFA P-5000	ALFA P-5000
018	Plus Duo/Tri 5KVA	Plus Duo/Tri 5KVA
019	EPS 5KVA	EPS 5KW
020	EPS M5K	EPS M-5KW
021	EPS 3/3 5KW	EPS 33-5KW
022	MKS II 5KW	MKS II 5KW
023	KING 5KW	KING 5KW
024	KING 3KW	KING 3KW
025	MKS II 5KW	APT MKS II 5KW(Feed-in grid function)
026	MLV 5KW	MLV 5KW-48V
027	VMIII	VMIII
028	VMIII	APT VMIII 3.2KW (Feed-in grid function)
029	VMII	VMII
030	VMII	Fusion VMII (Feed-in grid function)
031	MKS II 5KW	Phocos MKS II 5KW(Discharge current time function)
032	MKS	MKS Zero LV 0.7KW
033	MKS	MKS Zero LV 1.4KW
034	MKS	MKS Zero LV 2.6KW
035	KING 5KW	KING 5KW(Query PV generated and
033	THI (O SILV)	output load energy)
036	KING 3KW	KING 3KW(Query PV generated and
		output load energy)
037	VMIII	VMIII(Query PV generated and output
		load energy)
038	MKS II 5KW	Phocos MKS II 5KW(Discharge current time
		function) (Query PV generated and output load
		energy)
039	MKS II 5KW LV	Phocos MKS II 5KW LV(Discharge current time
0.40	0E 2 #W	function)
040	SE 3.5K	
041	SE 5.5K	
042	MKS III 5KW	
043	MAX3.6K	
044	MAX7.2K	

045

2.22 QBEQI<cr>: Battery equalization status parameters inquiry

Computer: QBEQI<CRC><cr>

Device: (B CCC DDD EEE FFF GG.GG HHH III J KKKK<CRC><cr>

	Data	Description	Notes
a	(Start byte	
b	В	Enable or Disable equalization	B is an Integer number 0 to 1.
С	CCC	equalization time	C s an Integer number 0 to 9. The unit is Minute.
D	DDD	equalization period	D is an Integer number 0 to 9. The unit is day.
E	EEE	equalization max current	E is an Integer number from 0 to 9. The unit is A.
F	FFF	reserved	reserved
G	GG. GG	equalization voltage	G is an Integer ranging from 0 to 9. The units is V.
Н	ННН	reserved	reserved
I	III	equalization over time	I is an Integer ranging from 0 to 9. The unit is Minute.
j	J	equalization active status	J is an Integer ranging from 0 to 1.
k	KKK K	equalization elapse time	K is an Integer ranging from 0 to 9. The units is Hour.

2.23 QPGSn<cr>: Parallel Information inquiry—(only for KING & MKSII)—

Computer: QPGSn<CRC><cr>

Inverter: (A BBBBBBBBBBBBBB C DD EEE.E FF.FF GGG.G HH.HH IIII JJJJ KKK LL.L MMM NNN OOO.O PPP QQQQQ RRRRR SSS b7b6b5b4b3b2b1b0 T U VVV WWW ZZZ XX YYY<CRC><cr>

	Date	Description	Notes
A	(Start byte	
В	A	The parallel num whether exist	0: No exist. 1: Exist.
С	BBBBBBBB BBBBBB	Serial number	B is an Integer ranging from 0 to 9.
D	С	Work mode	C is an character, refer to QMOD
Е	DD	Fault code	D is an Integer ranging from 0 to 9.
F	EEE.E	Grid voltage	E is an Integer ranging from

			0 to 9. The units is V.	
			F is an Integer ranging from	
G	FF.FF	Grid frequency	0 to 9. The unit is Hz.	
Н	GGG.G	AC output voltage	G is an Integer ranging from 0 to 9. The units is V.	
I	нн.нн	AC output frequency	H is an Integer ranging from 0 to 9. The unit is Hz.	
J	IIII	AC output apparent power	I is an Integer number from 0 to 9. The units is VA	
K	JJJJ	AC output active power	J is an Integer ranging from 0 to 9. The units is W.	
L	KKK	Load percentage	K is an Integer ranging from 0 to 9. The units is %.	
М	LL.L	Battery voltage	L is an Integer ranging from 0 to 9. The unit is V.	
N	MMM	Battery charging current	M is an Integer ranging from 0 to 9. The units is A.	
О	NNN Battery capacity		N is an Integer ranging from 0 to 9. The units is %.	
P	000. O	PV Input Voltage	O is an Integer ranging from 0 to 9. The units is V.	
Q	PPP	Total charging current	P is an Integer ranging from 0 to 9. The units is A.	
R	QQQQQ	Total AC output apparent power	Q is an Integer ranging from 0 to 9. The units is VA.	
S	RRRRR	Total output active power	R is an Integer ranging from 0 to 9. The units is W.	
Т	SSS	Total AC output percentage	S is an Integer ranging from 0 to 9. The units is %.	
U	b7b6b5b4b3b2b1b0	Inverter Status	b7: 1 SCC OK, 0 SCC LOSS b6: 1 AC Charging 0 AC no charging b5: 1 SCC Charging 0 SCC no charging b4b3: 2 battery open, 1 battery under, 0 battery normal b2: 1 Line loss, 0 Line ok b1: 1 load on, 0 load off b0: configuration status: 1: Change 0: unchanged	

V	Т	Output mode	0: single machine1: parallel output2: Phase 1 of 3 phase output
	_		3: Phase 2 of 3 phase output
			4: Phase 3 of 3 phase output
			0: Utility first
W	U	Charger source	1: Solar first
**	U	priority	2: Solar + Utility
			3: Solar only
X	X VVV Max charger curren		V is an Integer ranging from
Λ	VVV	Max charger current	0 to 9. The units is A.
Y	www	May aharaar ranga	W is an Integer ranging from
I	VV VV VV	Max charger range	0 to 9. The units is A.
Z	ZZZ	Max AC charger	Z is an Integer ranging from
L	LLL	current	0 to 9. The units is A.
	XX	DV input ourrant	X is an Integer ranging from
a		PV input current	0 to 9. The units is A.
b	YYY	Battery discharge	Y is an Integer ranging from
		current	0 to 9. The units is A.

2.24 Q2PGSn<cr>: Parallel Information inquiry (QGMN return 025)

Computer: Q2PGSn<CRC><cr>

Inverter: (A BBBB C DDDD CRC> cr>

	Date	Description	Notes
A	(Start byte	
В	A	The parallel num	0: No exist.
D	A	whether exist	1: Exist.
C	BBBB	DV input power	B is an Integer ranging from
<u> </u>	DDDD	PV input power	0 to 9. The unit is W.
7	C	Solar feed to grid status	0: normal
Đ	E		1: solar feed to grid
Г	DDDD	Solar feed to grid	A is an Integer ranging from
E	DDDD	power	0 to 9. The units is W.

2.25 QET<CRC><cr>: Query total PV generated energy (remote)

Computer: QET<CRC><cr>

Device: (NNNNNNNN<CRC><cr>

NNNNNNNN: Generated energy, N: 0~9, unit: Wh

2.26 QEYyyyy<CRC><cr>: Query PV generated energy of year (remote)

Computer: QEYyyyy<cr>

Device: (NNNNNNNN<CRC><cr>

yyyy: Year, y: 0~9

NNNNNNNN: Generated energy, N: 0~9, unit: Wh

2.27 QEMyyyymm<CRC><cr>: Query PV generated energy of month (remote) Computer: QEMyyyymm <CRC><cr> Device: (NNNNNNNN<CRC><cr> yyyy: Year, y: 0~9 mm: Month, m: 0~9 NNNNNNNN: Generated energy, N: 0~9, unit: Wh 2.28 QEDyyyymmdd<CRC><cr>: Query PV generated energy of day (remote) Computer: QEDyyyymmdd<CRC><cr> Device: (NNNNNNNN<CRC><cr> yyyy: Year, y: 0~9 mm: Month, m: 0~9 dd: Day, d: 0~9 NNNNNNNN: Generated energy, N: 0~9, unit: Wh 2.29 QLT<CRC><cr>: Query total output load energy (remote) Computer: QLT<CRC><cr> Device: (NNNNNNNN<CRC><cr> NNNNNNNN: Output load energy, N: 0~9, unit: Wh 2.30 QLYyyyy<CRC><cr>: Query output load energy of year (remote) Computer: QLYyyyy<CRC><cr> Device: (NNNNNNNN<CRC><cr> yyyy: Year, y: 0~9 NNNNNNNN: Output load energy, N: 0~9, unit: Wh 2.31 QLMyyyymm<CRC><cr>: Query output load energy of month (remote) Computer: QLMyyyymm<CRC><cr> Device: (NNNNNNNN<CRC><cr> yyyy: Year, y: 0~9 mm: Month, m: 0~9 NNNNNNNN: Output load energy, N: 0~9, unit: Wh 2.32 QLDyyyymmdd<CRC><cr>: Query output load energy of day (remote) Computer: QLDyyyymmdd<CRC><cr> Device: (NNNNNNNN<CRC><cr> yyyy: Year, y: 0~9 mm: Month, m: 0~9 dd: Day, d: 0~9 NNNNNNNN: Output load energy, N: 0~9, unit: Wh 2.33 QBATCD<cr>: Discharge status and Charge status inquiry (QGMN return 031,038,039) Computer: QBATCD<CRC><cr> Device: (abc<CRC><cr> a = Discharge completely on/off b = Discharge on/off, but standby allowed (so small discharge allowed) c = Charge completely on/off 2.34 QBMS<CRC><cr>: BMS message Computer: QBMS<CRC><cr>

Device: (AAAA BBB C DDDD EE F GGGG HHHH IIII J K LLLL MMMM<CRC><cr>

2.35 PBMS<CRC><cr>: BMS message

Remote box: PBMSa bbb c d e fff ggg hhh iiii jjjj<CRC><cr>

Device: (ACK<CRC><cr>

Data	Description	Notes
(Start byte	
a	Battery connect status	0: connect, 1: disconnect.
bbb	Battery percentage	b is an Integer ranging from 0 to 9. The units is %.
С	Force AC charge battery in any case	0: Do not force, 1: Force.
d	Battery stop discharge flag	0: Enable discharge, 1: disable discharging
e	Battery stop charge flag	0: Enable charge, 1: disable charging
fff	Battery C.V. charging voltage	f is an Integer ranging from 0 to 9. The units is V.
ggg	Battery floating charging voltage	g is an Integer ranging from 0 to 9. The units is V.
hhh	Battery cut-off voltage	h is an Integer ranging from 0 to 9. The units is V.
iiii	Battery max. charging current	i is an Integer ranging from 0 to 9. The units is A.
jjjjj	Battery max. discharging current	j is an Integer ranging from 0 to 9. The units is A.

2.36 QLED<CRC><cr>: LED status parameters inquiry

Computer: QLED <CRC><cr>

Device: (A B C D E aaabbbccc1 ... aaabbbcccd <CRC><cr>

Data	Description	Notes
(Start byte	
A	Enable or Disable	A is an Integer number 0 to 1.
B	LED speed	B is an Integer ranging from 0 to 3. 0 means low; 1 means medium; 2 means fast
E		C is an Integer ranging from 0 to 6. 0 means breathing; 1 means flashing; 2 means solid; 3 means right scrolling; 4 means left scrolling; 5 means right spark; 6 means left spark
Đ	LED brightness	E is an Integer ranging from 1 to 9.
E	Total number of colors	D is an Integer ranging from 1 to 3.

έ	aabbbce	aa means red, bb means green, cc	aaa1, bbb1, ccc1 aaad, bbbd, cccd is an Integer
(21	means blue	ranging from 0 to 255.
έ	aabbbcc		
6	ed		

3 Setting parameters Command

3.1 ATE1<CRC><cr>: Start ATE test, remote panel stop polling

3.2 ATE0: End ATE test, remote panel polling

3.3 PE<XXX>/PD<XXXX><CRC><cr>: setting some status enable/disable

Computer: PE<XXX>/PD<XXX><CRC><cr>

Device: (ACK<CRC><cr> if DEVICE accepts this command, otherwise, responds (NAK<cr>

PExxxPDxxx set flag status. PE means enable, PD means disable

X	Control setting
a	Enable/disable silence buzzer or open buzzer
b	Enable/disable overload bypass
С	Enable/Disable overload bypass function2 (only for KING)
d	Enable/Disable solar feed to grid
k	Enable/Disable LCD display escape to default page after 1min timeout
u	Enable/Disable overload restart
u	Eliable/Disable Overload restart
v	Enable/Disable over temperature restart
X	Enable/Disable backlight on
y	Enable/Disable alarm on when primary source interrupt
Z	Enable/Disable fault code record

3.4 PF<cr>: Setting control parameter to default value

Computer: PF<CRC><cr>

All Device parameters set to default value.

X	Parameter setting	
	Parameter	Default value
1	AC output voltage	230.0V
2	AC output frequency	50.0Hz
3	Max charging current	60A
	Max utility charging current	30A
4	AC input voltage range	0: Appliance range
5	Output source priority	0: Utility first
6	Battery re-charge voltage	11.5/23/46 for 12/24/48V unit.

7	Charger source priority	2: Utility and Solar first
8	Battery type	0: AGM
9	Enable/disable buzzer alarm	1: Enable buzzer alarm
10	Enable/Disable power saving	0: Disable power saving
11	Enable/Disable overload restart	0: Disable overload restart
12	Enable/Disable over temperature restart	0: Disable over temperature restart
13	Enable/Disable LCD backlight on	1: Enable LCD backlight on
14	Enable/Disable alarm on when primary source interrupt	1: Enable beep on when primary source interrupt
15	Enable/Disable overload bypass when overload happened in battery mode	0: Disable overload bypass
16	Enable/Disable LCD display escape to default page after 1min timeout	1: Enable LCD display escape to default page
17	Output mode	0: Reserved
18	float charging voltage	13.5/27/54 for 12/24/48V unit.
19	Bulk charging voltage	14.1/28.2/56.4 for 12/24/48V unit.
20	Battery cut-off voltage	10.5/21/42 for 12/24/48V unit.
21	Battery re-discharge voltage	13.5/27/54 for 12/24/48V unit.

Note: The correct default value can be gain by QDI command.

3.5 MNCHGC<nnn><cr>: Setting max charging current

Computer: MNCHGC<nnn><CRC><cr> (only for VMIII)

Computer: MNCHGC<mnnn><CRC><cr> (only for KING & MKSII)

Computer: MNCHGC<mnnn><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<CRC><cr>

Setting value can be gain by QMCHGCR command.

nnn is max charging current, m is parallel number.

3.6 MUCHGC<nnn><cr>: Setting utility max charging current

Computer: MUCHGC<nnn><CRC><cr> (only for VMIII)

Computer: MUCHGC<mnn><CRC><cr> (only for KING)

Computer: MUCHGC<mnnn><CRC><cr> (only for MKSII)

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<CRC><cr>

Setting value can be gain by QMUCHGCR command.

nn is max charging current m is parallel number

3.7 F<nn><cr>: Setting Inverter output rating frequency

Computer: F<nn><CRC><cr>

Device: (ACK<CRC><cr> if Inverter accepts this command, otherwise, responds (NAK<CRC><cr>

Set UPS output rating frequency to 50Hz.or 60Hz

3.8 POPV<nnnn><cr>: Setting device output rating voltage

Computer: POPV<nnnn><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<CRC><cr>

Set inverter output rating voltage to 220V/230V/240V(2200/2300/2400)

3.9 POP<NN><cr>: Setting device output source priority

Computer: POP<NN><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<CRC><cr>

Set output source priority, 00 for utility first, 01 for solar first, 02 for SBU priority

3.10 POPM<nn><cr>: Setting output mode

Computer: POPM<nn><CRC><cr>

Device: (ACK<CRC><cr> if Inverter accepts this command, otherwise, responds (NAK<CRC><cr>>

nn:00: single machine output, 01: parallel output, 02: Phase 1 of 3 Phase output, 03: Phase 2 of 3 Phase output, 04: Phase 3 of 3 Phase output

3.11 POPLG<nn><cr>: Setting operation logic (only for KING)

Computer: POPLG<nn>CRC>cr>

Device: (ACK<CRC><cr> if Inverter accepts this command, otherwise, responds (NAK<CRC><cr>

nn:00: automatically, 01: On-line mode, 02: ECO mode

3.12 PBCV<nn.n><cr>: Battery voltage back to utility

Computer: PBCV<nn.n><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<CRC><cr>

24V unit: 22V~25.5V (only for VMIII); 22V~28.5V (only for KING)

48V unit: 44V~51V (only for VMIII); 44V~57V (only for KING & MKSII)

3.13 PBDV<nn.n><cr>: Battery voltage back to battery

Computer: PBDV<nn.n><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<CRC><cr>>

24V unit: 24V~29V (only for VMIII); 24V~33V (only for KING)

48V unit: 48V~58V (only for VMIII); 48V~64V (only for KING & MKSII)

00.0V means battery is full (charging in float mode).

3.14 PCP<NN><cr>: Setting device charger priority

Computer: PCP<NN><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<CRC><cr>

01 for solar first, 02 for solar and utility, 03 for only solar charging (only for VMIII-& MKSII); 00 for SBL/UCB, 01 for SBL/UDC, 02 for SLB/UCB, 03 for SLB/UDC (only for KING)

3.15 PPCP<MNN><cr>: Setting device charger priority

Computer: PPCP<MNN><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<CRC><cr>

m is parallel number.

01 for solar first, 02 for solar and utility, 03 for only solar charging (only for MKSII); 00 for SBL/UCB, 01 for SBL/UDC, 02 for SLB/UCB, 03 for SLB/UDC (only for KING)

3.16 PGR<NN><cr>: Setting device grid working range

Computer: PGR<NN><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<cr>>

Set device grid working range, 00 for appliance, 01 for UPS

3.17 PBT<NN><cr>: Setting battery type

Computer: PBT<NN><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<CRC><cr>

Set device grid working range, 00 for AGM, 01 for Flooded, 02 for user-define battery type, 03 for Pylontech, 04 for Shinheung, 05 for WECO, 06 for Soltaro

3.18 PSDV<nn.n><cr>: Setting battery cut-off voltage (Battery under voltage)

Computer: PSDV<nn.n><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<CRC><cr>

24V unit: 21V~24V (only for VMIII); 20V~27V (only for KING)

48V unit: 42V~48V (only for VMIII); 40V~54V (only for KING-& MKSII)

3.19 PCVV<nn.n><cr>: Setting battery C.V. (constant voltage) charging voltage

Computer: PCVV<nn.n><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<CRC><cr>

24V unit: 25V~31.5V (only for VMIII); 24V~32V (only for KING)

48V unit: 48V~61V (only for VMIII); 48V~64V (only for KING & MKSII)

3.20 PBFT<nn.n><cr>: Setting battery float charging voltage

Computer: PBFT<nn.n><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<CRC><cr>

24V unit: 25V~31.5V (only for VMIII); 24V~32V (only for KING)

48V unit: 48V~61V (only for VMIII); 48V~64V (only for KING-& MKSII)

3.21 BTA1<nnn.nn><cr>: Battery voltage adjust point one

Computer: BTA1<nnn.nn><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<cr>>

3.22 BTA2<nnn.nn><cr>: Battery voltage adjust point two

Computer: BTA2<nnn.nn><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<cr>>

When: when Inverter accepts this command, Inverter adjust battery voltage by point one and point two.

3.23 BTA0<cr>: Set battery voltage adjust parameters to be default value

Computer: BTA0<CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<cr>

3.24 PPVOKC<n ><cr>: Setting PV OK condition

Computer: PPVOKC <n><CRC><cr>

Device: (ACK<CRC><cr> if Inverter accepts this command, otherwise, responds (NAK<CRC><cr>>

0: As long as one unit of inverters has connected PV, parallel system will consider PV OK;

1: Only all of inverters have connected PV, parallel system will consider PV OK.

3.25 PSPB<n ><cr>: Setting Solar power balance

Computer: PSPB<n><CRC><cr>

Device: (ACK<CRC><cr> if Inverter accepts this command, otherwise, responds (NAK<CRC><cr>>

0: PV input max current will be the max charged current;

1: PV input max power will be the sum of the max charged power and loads power.

3.26 RTEY<cr>: Reset all stored data for PV/load energy (remote)

Computer: RTEY < CRC > < cr>

Device: (ACK <CRC><cr> if device accepts this command, otherwise, responds (NAK<cr>>

3.27 RTDL<cr>: Erase all data log (remote)

Computer: RTDL <CRC><cr>

Device: (ACK <CRC><cr> if device accepts this command, otherwise, responds (NAK<cr>>

3.28 PDL<nn><cr>: Data log stored period (remote)

Computer: PDLnn<CRC><cr>

Device: (ACK <CRC><cr> if device accepts this command, otherwise, responds (NAK<cr> nn is 3, 5, 10, 20, 30, 60. The units is Minutes.

3.29 PBEQE<n><cr>: Enable or disable battery equalization

Computer: PBEQE<n><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<cr>>

Enable or Disable battery equalization, n=1 means enable; n=0 means disable;

3.30 PBEQT<nnn><cr>:Set battery equalization time

Computer: PBEQT<nnn><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<cr>>

Set equalization time, nnn is in the range of 5 to 900minute, every click increase or decrease 5minute.

3.31 PBEQP<nnn><cr>:Set battery equalization period

Computer: PBEQP<nnn><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<cr> Set equalization period, nnn is in the range of 0 to 90day, every click increase or decrease 1day.

3.32 PBEQV<nn.nn><cr>:Set battery equalization voltage

Computer: PBEQV<nn.nn><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<cr>>

Set equalization time, nn.nn is in the range as below.

24V unit: 25V~31.5V (only for VMIII); 24V~32V (only for KING)

48V unit: 48V~61V (only for VMIII); 48V~64V (only for KING & MKSII)

3.33 PBEQOT<nnn><cr>:Set battery equalization over time

Computer: PBEQOT<nnn><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<cr>

Set equalization time, nnn is in the range of 5 to 900minute, every click increase or decrease 5minute.

3.34 PBEQA<n><cr>: Active or inactive battery equalization now

Computer: PBEQA<n><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<cr>

Active or inactive battery equalization now, n=1 means active; n=0 means inactive;

3.35 PCVT<nnn><cr>: Set max charging time at C.V stage

Computer: PCVT<nnn><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<cr>

3.36 SRS<nn><cr>: Set country customized regulation

Computer: SRS<nn><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<cr> nn:00: India, 01: Germany, 02: South America

3.37 DAT<vymmddhhmmss><er>: Date and time

Computer: DAT<yymmddhhmmss><CRC><cr> <Y, M, D, H, S> is an integer number 0 to 9 Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<cr>

3.38 PBATMAXDISC<nnn><cr>: Setting max discharging current (QGMN return 031,038,039)

Computer: PBATMAXDISC<nnn>CRC><cr>

Device: (ACK<CRC><er> if device accepts this command, otherwise, responds (NAK<CRC><er> nnn is max discharging current, and the unit is A. The acceptable value of the setting is 0A, 30A, 40A, 50A, 60A, 70A, 80A, 90A, 100A, 110A, 120A. The system sets 000 as the default value of max discharging current, and the protection of this function disables at the same time. The protection enables if users set the acceptable value (030, 040, 050, 060, 070, 080, 090, 100, 110, 120) of max discharging current. On the other hand, the protection disables if users set the acceptable value (000) of max discharging current.

3.39 PBATCD<abc><cr>: Battery charge/discharge controlling command (QGMN return 031,038,039)

Computer: PBATCD<abc><CRC><cr>

Device: (ACK<CRC><cr> if device accepts this command, otherwise, responds (NAK<CRC><cr> a = Discharge completely on/off

b = Discharge on/off, but standby allowed (so small discharge allowed)

c = Charge completely on/off

Detail:

-		
2	ha	٠

	Charger	Discharger
111	N/A	N/A
0 1 1	Enabled charger, depends on Prog16 setting if AC	Enabled discharger and shut down unit completely
	source valid, charge 2A from AC, even if prog. 16 is	when insufficient PV or Grid is present.
	"only solar". If prog. 16 is any other setting, ignore and	
	let charging from AC source continue normally.	
101	Enabled charger, depends on Prog16 setting if AC	Enabled discharger but keep unit stay at standby mode.
	source valid, charge 2A from AC, even if prog. 16 is	
	"only solar". If prog. 16 is any other setting, ignore and	
	let charging from AC source continue normally.	
110	Disabled charger	N/A
0 1 0	Disabled charger	Enabled discharger and shut down unit completely
		when no PV or Grid is present.
100	Disabled charger	Enabled discharger but keep unit stay at standby mode.
001	N/A	N/A
000	N/A	N/A

3.40 PLEDE<n><er>: Enable/disable LED function

Computer: PLEDE<n><cr>

UPS: (ACK<cr> if UPS accepts this command, otherwise, responds (NAK<cr> n: 0 means disable; 1 means enable

3.41 PLEDS<n><cr>: set LED speed

Computer: PLEDS<n><cr>

UPS: (ACK<cr> if UPS accepts this command, otherwise, responds (NAK<cr> n: 0 means low; 1 means normal; 2 means fast

3.42 PLEDM<n><er>: set LED effect

Computer: PLEDM<n><cr>

UPS: (ACK<cr> if UPS accepts this command, otherwise, responds (NAK<cr> n: 0 means breathing; 2 means solid; 3 means scrolling

3.43 PLEDB<n><er>: set LED brightness

Computer: PLEDB<n><cr>

UPS: (ACK<cr> if UPS accepts this command, otherwise, responds (NAK<cr> n: 1 means low; 5 means normal; 9 means fast

3.44 PLEDT<n><er>: set LED total number of colors

Computer: PLEDT<n><cr>

UPS: (ACK<cr> if UPS accepts this command, otherwise, responds (NAK<cr>>

n means total number of colors, 2 means battery discharge/charge status; 3 means energy source

3.45 PLEDC<n><aaabbbcce><cr>: set LED color

Computer: PLEDC<n><aaabbbccc><cr>

UPS: (ACK<cr> if UPS accepts this command, otherwise, responds (NAK<cr>>

n means total number of colors, 2 means battery discharge/charge status; 3 means output source

aaa, bbb, ccc means RGB, between 0 and 255

For example:

Computer: PLED1148000211<cr>, mean set C01 (Violet White Sky blue)</ri>

UPS: (ACK<cr>

Computer: PLED1255255255<cr>, mean set C02 (White Yellow Green)

UPS: (ACK<cr>

Computer: PLED1255000147<cr>, mean set C01 (Pink-Honey)

UPS: (ACK<cr>

Computer: PLED1000000255<cr>, mean set C02 (Royal blue Lime yellow)

UPS: (ACK<cr>

4 Appendix

4.1 CRC calibration method

