Example 5.4

Page 220 Text/Notes

A police video radar unit is supported by a tripod. Determine the weight of the radar unit and the compressive force in legs AB and AC if we know the compression in leg AD of the tripod is 220 N.

STEP 1 - DRAW THE FBD !!!

FBD of POINT A

STEP 2 – Write Coordinates of Two Points on the Line of Action of Each Force

FBD of POINT A

$$C:(0,0,-0.5)$$

$$D:(-0.4,0,0.2)$$

STEP 3 – Put all forces in the FBD in Component Form

$$(2) \mathbf{F}_{\mathbf{DA}} = \mathbf{F}_{\mathbf{DA}} \lambda_{\mathbf{DA}} = 220 \lambda_{\mathbf{DA}}$$

$$\lambda_{DA} = \frac{DA}{DA}$$
 $DA = 0.4i + 1.2j - 0.2k$ and $DA = \sqrt{0.4^2 + 1.2^2 + (-0.2)^2} = \sqrt{1.64}$

$$\mathbf{F_{DA}} = 220 \left(\frac{0.4\mathbf{i} + 1.2\mathbf{j} - 0.2\mathbf{k}}{\sqrt{1.64}} \right)$$

$$\mathbf{F}_{DA} = 68.72\mathbf{i} + 206.15\mathbf{j} - 34.36\mathbf{k}$$

$$(3) F_{BA} = F_{BA} \lambda_{DA}$$

$$\lambda_{BA} = \frac{BA}{BA}$$
 $BA = -0.5i + 1.2j + 0k$ and $BA = \sqrt{(0.5)^2 + 1.2^2} = 1.3$

$$\mathbf{F}_{\mathbf{B}\mathbf{A}} = \mathbf{F}_{\mathbf{B}\mathbf{A}} \left(\frac{-0.5\mathbf{i} + 1.2\mathbf{j}}{1.3} \right)$$

$$\mathbf{F}_{BA} = \frac{-0.5\mathbf{F}_{BA}\mathbf{i}}{1.3} + \frac{1.2\mathbf{F}_{BA}\mathbf{j}}{1.3}$$

$$(4) \mathbf{F}_{CA} = \mathbf{F}_{CA} \lambda_{CA}$$

$$\lambda_{CA} = \frac{CA}{CA}$$
 $CA = 0i + 1.2j + 0.5k$ and $CA = \sqrt{(1.2)^2 + 0.5^2} = 1.3$

$$\mathbf{F}_{CA} = \mathbf{F}_{CA} \left(\frac{1.2\mathbf{j} + 0.5\mathbf{k}}{1.3} \right)$$

$$\mathbf{F}_{CA} = \frac{1.2\mathbf{F}_{CA}\mathbf{j}}{1.3} + \frac{0.5\mathbf{F}_{CA}\mathbf{k}}{1.3}$$

STEP 4 – Write Equilibrium Equations

$$\sum_{x} F_{x} = 0$$

$$\sum_{y} F_{y} = 0$$

$$\sum_{z} F_{z} = 0$$

EquilibriumEquations:

$$\sum F_{x} = 0$$
 68.72 $-\frac{0.5}{1.3}F_{DA} = 0$ (1)

$$\sum F_y = 0$$
 $-W + 206.15 + \frac{1.2}{1.3}F_{BA} + \frac{1.2}{1.3}F_{CA} = 0$ (2)

$$\sum F_z = 0$$
 -34.36 + $\frac{0.5}{1.3}F_{CA} = 0$ (3)

From (1)
$$F_{DA} = 68.72 \left(\frac{1.3}{0.5} \right) = 178.67 \text{ N}$$

From (3)
$$F_{CA} = 34.36 \left(\frac{1.3}{0.5} \right) = 89.34 \text{ N}$$

From (2)
$$F_{BA} = -W + 206.15 + \frac{1.2}{1.3} (178.67) + \frac{1.2}{1.3} (89.34) = 0$$

$$W = 453.54 \text{ N}$$