(12) UK Patent Application (19) GB (11) 2 173 798 A

(43) Application published 22 Oct 1986

(21) Application No 8609661

(22) Date of filing 21 Apr 1986

(30) Priority data

(31) 725871

(32) 22 Apr 1985

(33) US

(71) Applicant
Bristol-Myers Company (USA-Delaware),
345 Park Avenue, New York 10154, United States of
America

(72) Inventors
Hideaki Hoshl,
Jun Okumura,
Yoshio Abe,
Takayuki Naito,
Shimpei Aburaki

(74) Agent and/or Address for Service Carpmaels & Ransford, 43 Bloomsbury Square, London WC1A 2RA (51) INT CL4 C07D 501/00

(52) Domestic classification (Edition H): C2C 1314 200 214 220 226 22Y 256 25Y 292 29X 29Y 321 32Y 351 352 366 367 368 699 AA LX U1S 1347 C2C

(56) Documents cited

(58) Field of search C2C

(54) Cephalosporanic acid derivatives

(57) This invention provides novel cephalosporin intermediates, 7β-amino-3-[(Z)-1-propen-1-yl]-3-cephem-4-carboxylic acid and esters thereof having the general formula

wherein the configuration of the 3-propenyl group is Z sometimes referred to as *cis*- and R is hydrogen or a conventional carboxy-protecting group, and acid addition salts thereof and the metal salts of the foregoing substance wherein R is hydrogen. These compounds are useful as intermediates for preparation of orally active cephalosporins.

SPECIFICATION

Cephalosphoranic acid derivatives

5 This application relates to 7-amino-3-propenyl cephalosporanic acid and esters thereof.

5

Description of the prior art

U.K. Patent Specification 1,342,241 published January 3, 1974 (corresponding U.S. Patent Nos. 3,769,277, and 3,994,884, granted October 30, 1973, and November 30, 1976) discloses the Compound VI but there is no description of 7β-amino-3-[(Z)-1-propen-1-yl]-3-cephem-4-carboxylic acid as an intermediate in the preparation thereof.

10

15

20

25

20

U.S. Patent No. 4,409,214 patented October 11, 1983 discloses the preparation of Compound VII via the Wittig reaction on diphenylmethyl 7-benzylideneamino-3-triphenyl-phosphoniomethylceph-3-em-4-carboxylate in Preparations 38 and 39, but there is no description of 7β-amino-3-[(Z)-1-propen-1-yl]-3-cephem-4-carboxylic acid, or of an other 3-(1-propen-1-yl)cephalosporin compound.

25

VII

U.S. Patent No. 4,110,534 patented April 29, 1978 is particularly concerned with preparation of compounds such as VI and VII by the Wittig reaction. Refer particularly to columns 8, 9, and 49 (Example 21). H. O. House et al. Jour. Org. Chem. 29, 3327-3333 (1964) have studied the effect of solvents and additives including lithium salts on the proportions of *cis*- and *trans*- olefins produced in the Wittig reaction

35

30

with aldehydes.

Summary of the invention

This invention relates to cephalosporin intermediates having Formula I, the synthetically useful acid addition and metal salts thereof, and to processes for their preparation.

40

In the compounds of Formula I, the configuration of the 3-propenyl group is Z- or cis-. R is hydrogen or a conventional carboxy-protecting group. The latter expression refers to protecting group of the sort conventionally used for amino or carboxyl groups in the synthesis of cephalosporin compounds. Suitable carboxyl protecting groups include aralkyl groups such as benzyl, p-methoxybenzyl, p-nitrobenzyl, and diphenylmethyl (benzhydryl), alkyl groups such as t-butyl; haloalkyl groups such as 2,2,2-trichloroethyl, alkenyl groups such as allyl, 2-chloroallyl, alkoxymethyl groups such as methoxymethyl, 2-(trimethylsilyl) tert.-butyldimethylsilyl, tert.-butyldiphenylsilyl, and other carboxyl pro-

iyl, 2- **5**5 | proo | pzhv-

55 trichloroethyl, alkenyl groups such as allyl, 2-chloroallyl, alkoxymethyl groups such as methoxymethyl, 2-(trimethylsilyl)ethyl, trimethylsilyl, tert.-butyldimethylsilyl, tert.-butyldiphenylsilyl, and other carboxyl protecting groups described in the literature, for instance, in British Specification 1,399,086. We prefer to utilize carboxyl-protecting groups which are readily removed by treatment with acid, particularly benzhydryl or t-butyl. The acid addition salts and the metal salts of the foregoing substance where R is hydrofogen are also part of the present invention.

60

50

The Z-, or *cis*- configuration of the 3-propenyl group is a critical aspect of the present compounds. This is the characteristic which determines the advantageous Gram negative antibacterial properties of the cephalosporin end products which are the subject of the parent application Serial No. 564,604.

The synthetically useful acid addition salts include the salts of Formula I with mineral acids such as 65 hydrochloric acid, sulfuric acid and phosphoric acid, with organic sulfonic acids such as p-toluenesulfonic

65

acid and other acids known and used in the cephalosporin arts.

Those substances of Formula I wherein R is hydrogen also form metal salts. Synthetically suitable metal salts include the sodium, potassium, calcium, magnesium, aluminum, and zinc salts.

The most preferred compounds of the invention are:

- 1. Diphenylmethyl 7β-amino-3-[(Z)-1-propen-1-yl]-3-cephem-4-carboxylate.
 - 2. Diphenylmethyl 7β-amino-3-[(Z)-1-propen-1-yl]-3-cephem-4-carboxylate hydrochloride.
 - 3. Diphenylmethyl 7β-amino-3-[(Z)-1-propen-1-yl]-3-cephem-4-carboxylate sulfate.
 - 4. Sodium 7β-amino-3-[(Z)-1-propen-1-yl]-3-cephem-4-carboxylate.
 - 5. Potassium 7β-amino-3-[(Z)-1-propen-1-yl]-3-cephem-4-carboxylate.
- 10 6. 7β-Amino-3-[(Z)-1-propen-1-yl]-3-cepehm-4-carboxylic acid.

10

20

25

30

5

Detailed description of the invention

In another aspect, this invention relates to processes for the preparation of the compounds of Formula I. Preferred procedures are shown in Reaction Schemes 1 and 2.

In reaction Scheme 1, the diphenylmethyl group is shown as the preferred carboxy-protecting group. It will be appreciated by those skilled in the art that other carboxyl-protecting groups, well-known in the ert, may be used.

In the Wittig reaction of Compound III with acetaldehyde, we have found that addition of an appropriate lithium halide such as lithium chloride, lithium bromide or lithium iodide improves the yield and proportion of Z/E isomer of the reaction product IIa. The reaction is preferably carried out with 5 to 15 chemical equivalents, preferably 10 equivalents of lithium bromide.

Methylene chloride is the preferred reaction medium preferably containing a cosolvent such as dimethylformamide or isopropanol in minor proportions of from about 1/10 to 1/3 part by volume per part of methylene chloride. Reaction temperatures in the renge of -10°C to +25°C are appropriate with 0° to 25°C being preferred. The Wittig product IIa is extracted into a suitable organic solvent such as ethyl

25 C being preferred. The Wittig product has extracted into a suitable organic solvent such as early accepted and the extract is treated with Girard's reagent T to afford the 7-aminoceph-3-em compound of the present invention, Ia. Refer to Procedure 3 hereof. Subsequent treatment of Ia with trifluoroacetic acid (TFA) yields 7β-amino-3-[(Z)-1-propen-1-yi]-3-cephem-4-carboxylic acid (Ib, Procedure 7) in the ratio of Z/E = 9/1. Acylation of Ib with p-hydroxyphenylglycine by a conventional acid chloride method or an acti-vated ester method yields the orally effective cephalosporin V of the parent application Serial No. 564,604.

An alternative route, acylation of 7β-amino-3-propen-1-yl cephalosporin ester la with the N-BOC (tert.-butoxycarbonyl) blocked p-hydroxyphenylglycine in the presence of DCC (dicyclohexylcarbodiimide) and followed by deblocking with TFA (trifluoroacetic acid) also yields the cephalosporin V.

Scheme 2 Scheme 1 PhCH2CONE PHCH=N 5 5 COOCHPh2 III COOCHPh2 VIII Procedure 3 10 Procedure 10 10 PhCH=N PhCH₂CONH 15 15 coocheh2 COOCHPh2 TTa IX Procedure 3 Procedure 11 20 20 H_N CH=CH+CH3 COOCHPh, 25 25 Procedure 5 Procedure 7, or 8 Ia H₂N 30 сн=сн-сн 30 NEBOC COOH COOCHPh, Ιb IV 35 35 Procedure 6 Procedure H-CH-CH3 40 40 COOH BMY-28100 45

45
Description of specific embodiments

The following abbreviations which appear in the experimental procedures have the meaning indicated below:

Procedure 1

Diphenylmethyl 7-benzylideneamino-3-triphenylphosphoniomethyl-3-cephem-4-carboxylate chloride

To a suspension of diphenylmethyl 7-amlno-3-chloromethyl-3-cephem-4-carboxylate hydrochloride (200 g, 0.44 mole) in CH₂Cl₂ (940 ml) was added 1 N NaOH (440 ml) at room temperature. The mixture was shaken for 10 minutes and the organic layer was separated. To this organic layer were added MgSO₄ (75 g) and benzaldehyde (51 g), 0.48 mole) and the mixture was allowed to stand for 3 hours at room temperature. The reaction mixture was filtered and the insolubles were washed with CH₂Cl₂ (200 ml). To the combined filtrate and washings was added triphenylphosphine (126 g, 0.48 mole). The mixture was con-

65

NMR: $\delta^{\text{DMSO-d}_{8}}$ ppm 1.47 (27/10H, d-d, J=7, 2 Hz, =CHC H_{3} , cis, 1.74 (3/10H, d, J=7 Hz, =CHC H_{3} , trans), 3.47 & 3.8 (each 1H, d, J=16 Hz), 5.13 1H, d, J=4.5 Hz, 6-H), 5.23 (1H, d, J=4.5 Hz, 7-H), 5.62 (1H, d-q, J=10 & 7 Hz, 3-CH=CH), 6.24 (1H, d-d J=10 & 2 Hz, 3-CH), 6.81 (1H, s, CHPH₂), 7.35 (10H, m, Ph-H).

Procedure 4

60

Diphenylmethyl 7-amino-3-((Z)-1-propen-1-yl)-3-cephem-4-carboxylate (la) To a stirred suspension of the hydrochloride of diphenylmethyl 7-amino-3-((Z)-1-propen-1-yl)-3-cephem-65 4-carboxylate (5 g, 11.3 m moles) in H₂O (20 mol) and ethyl acetate (40 ml) was added NaHCO₃ until the

65

pH of the mixture became 8. The organic layer was washed with sat. aq. NaCl (5 ml), dried over MgSO₄ and concentrated to ca. 20 ml of volume. The resulting solution was diluted with isopropyl ether (10 ml) and seeded with crystalline la. Additional isopropyl ether (30 ml) was added slowly to the mixture with stirring. After 15 minutes the separated colorless crystals were collected by filtration, washed with iso-5 propyl ether (10 ml) and dried over P₂O₈ in vacuo to give 4.3 g (94%) of the title compound (Z/E=9/1 by 5 HPLC) (Lichrosorb RP-18 80% methanol - pH 7.2 phosphate buffer, 254 nm, 1 ml/min). IR: ν^{KBr}_{max} cm⁻¹ 3450, 1765, 1730. 10 UV: λ^{EtOH} nm (E 1% 289 (185). 10 NMR: δ^{coog} ppm 1.43 (3H, d-d, J=2 & 7 Hz, CH=CHCH₃), 1.66 (2H, br, s, disappeared by D₂O, NH₂), 3.23 & 3.55 (each 1H, d, J=17 Hz, 2-H), 4.73 (1H, d, J=4.5 Hz, 6-H), 4.96 (1H, d, J=4.5 Hz, 7-H), 5.46 (1H, d-q, J=10 & 7 Hz, 3-CH=CH), 6.06 (1H, br, d, J=10 Hz, 3-CH), 6.94 (1H, s, CHPh2), 7.3 (10H, m, Ph-H). 15 15 Procedure 5 Diphenylmethyl 7-[(D)-α-(t-butoxycarbonylamino)-α-(4-hydroxyphenyl)acetamido]-3-((Z)-1-propen-1-yl)-3cephem-4-carboxylate (IV) A mixture of diphenylmethyl 7-amino-3-((Z)-1-propen-1-yl)-3-cephem-4-carboxylate (la) (4.2 g, 10.4 m 20 moles), (D)-α-(t-butoxycarbonylamino)-α-(4-hydroxyphenyl)acetic acid (3.3 g, 12.5 m moles) and DCC (2.6 g, 12.5 m moles) in ethyl acetate (104 ml) was stirred for 1.5 hours at room temperature. The mixture was filtered and insolubles were washed with ethyl acetate (10 ml). The filtrate and the washings were combined and washed with sat. ag. NaHCO₃ (3×5 ml), brine (5 ml), 10% HCl (5 ml) and brine succes-25 25 sively, dried over MgSO4, treated with charcoal and filtered. The filtrate was concentrated to ca. 10 ml and diluted with n-heptane (20 ml). The precipitate was collected by filtration and dried over P2O5 in vacuo. Yield 7.8 g (90% pure, quantitative in weight) as colorless powder (Z/E=9/1 based on HPLC) (Lichrosorb RP-18, 80% methanol-pH 7.2 phosphate buffer, 254 nm, 1 ml/min.). 30 30 IR: ν^{KBr}_{max} cm⁻¹ 3400, 1790, 1720, 1690. UV: λ_{max} nm (Ε 1%_m) 278 (113), 289 (115), 295 (95). NMR: 80003 ppm 1.3-1.45 (12H), m, BOC-H & =CH-CH₃), 3.08 & 3.33 (each 1H, d, J=18 Hz, 2-H), 4.92 (1H, 35 35 d, J=4.5 Hz, 6-H), 5.06 (1H, d, J=6 Hz. by D₂O, CHN), 5.5 (1H, d-q, J=10 & 7 Hz, 3-CH=CH), 5.68 (1H, d-d, J=4.5 & 8 Hz. d, J=4.5 Hz by D_2O , 7-H), 6.01 (1H, d, J=10 Hz, 3-CH), 6.65 & 7.08 (each 2H, d, J=8 Hz, HO=10 Hz) 6.71 (1H, d, J=8 Hz, disappered by D₂O, 7-NH₂). 6.88 (1H, s, CHPh₂), 7.3 (10H, m, Ph-H). 40 40 Procedure 6 BMY-28100; 7-[(D)-2-amino-2-(4-hydroxyphenyl)acetamido]-3-(propen-1-yl)-3-cephem-4-carboxylic acid (V) A mixture of diphenylmethyl 7-[(D)-α-(t-butoxycarbonylamino)-α-(4-hydroxyphenyl)acetamido]-3-((Z)-1-45 propen-1-yl-3-cephem-4-carboxylate (IV) which was prepared in Procedure 5 (90% pure, 7.7 g, 10.6 m 45 moles), anisole (7.7 ml) and trifluoroacetic acid (77 ml) was stirred for 1 hour at room temperature. The mixture was concentrated in vacuo. Toluene (50 ml) was added to the concentrate and the mixture was evaporated in vacuo. Ether (200 ml) was added to the residual oil. The separated solid was collected by filtration, washed with ether (20 ml) and dried over KOH in vacuo to afford 5.3 g of trifluoroacetic acid 50 (TFA) salt of BMY-28100. The salt (5.3 g) was dissolved in H₂O (100 ml), treated with charcoal and placed on a column packed with Diaion HP-20 (0.6 I). The column was washed with H₂O (4 I) and eluted with 40% aqueous MeOH. The methanolic fractions (1.7 I) containing the desired product were collected and evaporated to ca. 20 ml of volume. The concentrate was diluted slowly with acetone (100 ml). The separated colorless crystalline powder was collected by filtration, washed with acetone (20 ml) and dried over 55 P_2O_5 in vacuo to give 4 g (97%) of BMY-28100 (Z/E=9/1, Zwitterion) (Lichrosorb RP-18, 20% methanol - pH 7.2 phosphate buffer, 254 nm, 1 ml/min.

Procedure 7

60 7-amino-3-[(Z)-1-propen-1-yl]ceph-3-em-4-carboxylic acid, Ib
To a stirred solution of 260 ml anisole and 1.38 l of trifluoroacetic acid (TFA) cooled to 0°C was added
149.7 g (0.338 mole) of diphenylmethyl 7-amino-3-[(Z)-1-propen-1-yl]-3-cephem-4-carboxylic acid hydrochloride (0.338 mole, Procedure 3 or 11). The resulting slurry was then stirred at room temperature for 1
hour. Most excess of TFA was removed in vacuo on the rotary evaporation. The residual supernatant
65 solution was decanted and the residual slurry was triturated with 1.5 l of dry ether during 1 hour. The

10

15

45

50

55

crystalline product was filtered and dried over P₂O₅ to give 87.24 g lb trifluoroacetate. These 87.24 g of the trifluoroacetate were suspended and stirred into 900 ml of water (pH ce. 2.5). The mixture was cooled to +5°C and then edjusted to pH 0.6 with 12 N HCl. The yellow solution was charcoal treated and the slurry was filtered on a diatomaceous filter aid pad. The resulting solution was cooled to +5°C and the 5 pH was adjusted to 2.0 with 20% NaOH. The suspension was kept 1 hour in a refrigerator to aid crystallization. The crystals were collected, washed with 800 ml of water, 800 ml of acetone and vacuum dried at room temperature. Yield 69.4 g (85.5%). Contains 9.7% of trans isomer (determined by HPLC column RP18 MERCK; H₂(NH₄)PO₄, 0.1 mole 95 ml + CH₃ CN 5 ml; detected at 290 nm).

10 Procedure 8

7-amino-3-((Z)-1-propen-1-yl)-3-cephem-4-carboxylic acid, lb

A solution of the phosphoranyl compound III as produced by Procedure 2 (50.0 g, 68.7 m mole) in CH₂Cl₂ (500 ml) was mixed with a solution of lithium bromide (29.8 g), 343 m mole) in dry DMF (170 ml) 15 containing a small amount of CH2Cl2 (10 ml) and then with anhydrous acetaldehyde (39 ml, 687 m mole; prepared from paraldehyde and toluenesulfonic acid by distillation, eccording to the procedure of N.L. Drake and G.B. Cook, Org. Syn. Col. Vol. II, p. 407). The mixture was placed in a sealed vessel and kept at 20°C for 2 days. The reaction mixture being evaporated, the residual liquid was diluted with EtOAc (800 ml), washed with water (3×300 ml) and a saturated NaCl solution (300 ml), and evaporated to give the 20 blocked 3-propenyl solution (300 ml), and evaporated to give the block 3-propenyl derivative lla as foamy solid (34 g), which was used for the next reaction without further purification.

The crude IIa obtained above was treated with 98% formic acid (35 ml) and concentrated HCl (17 ml, 206 m mole) et room temperature for 1 hour. To the reaction mixture wes edded water (350 ml) to separate an oily layer, which was washed out with EtOAc (3×100 ml). The pH of the aqueous layer was ad-25 justed to about 3 with 4N NaOH (ca. 65 ml) under stirring to give crystalline solid, which was collected by filtration and washed with water (50 ml) to afford the title compound (lb, 9.7 g, 59%). HPLC [Lichrosorb RP-18, 4×300 mm, MeOH: phosphate buffer (pH 7) = 15: 85] showed that this product was an 83:17 mixture of Z and E isomers about the double bond of the 3-propenyl group. M.p. 200°C (dec.).

30 IR: ν_{max} (KBr) in cm⁻¹ 3420, 1805, 1620. 30

UV: λ_{max} (pH 7 phosphate buffer) in nm (ϵ) 283 (8900).

PMR: δ (D₂O + NaHCO₃) in ppm 1.69 and 1.88 (3H, each d, J=6.0 Hz, Z and E of -CH=CH-CH₃), 3.38 and 35 3.72 (2H, Abq, J=17 Hz, H-2), 5.18 (1H, d, $J_{\alpha\gamma}$ =5.0 Hz, H-6), 5.51 (1H, d, H-7), ca. 5.8 (1H, m, -CH=CH-CH₃) 35 and 6.06 (1H, d, J=11 Hz, $-CH=CH-CH_3$).

C, 49.44; H, 5.03; N, 11.66; S, 13.34%. Anal. Calcd. for C₁₀H₁₂N₂O₃S: 40 C, 50.20; H, 4.94; N, 10.93; S, 12.82%. 40 Found:

Procedure 9

7-[(D)-2-amino-2-(4-hydroxyphenyl)acetamido]-3-((Z)-1-propen-1-yl)-3-cephem-4-carboxylic acid, V Dimethylaniline (1.7 ml, 13.1 m mole), trimethylsilyl chloride (2.1 ml, 16.4 m mole) and triethylamine (TEA, 2.3 ml, 16.4 m mole) were added successivley to a suspension of lb produced by Procedure 8 (1.58 g, 6.56 m mole) in CH₂Cl₂ (16 ml) under ice-cooling. The mixture was stirred at room temperature for 30 minutes. To the mixture was added portionwise under stirring D-p-hydroxyphenylglycyl chloride hydrochloride (1.46 g 6.56 m mole) and the reaction was monitored by HPLC [Lichrosorb RP-18, 4×300 mm, 50 MeOH: phosphate buffer (pH 7) = 25:75]. An additional amount of the glycyl chloride was added to the

mixture 3 times at 15 minute intervals (291 mg each) to complete the acylation. After the addition of dry MeOH (2.0 ml) containing dry DMF (0.1 ml), the resulting clear solution was neutralized with TEA (3.2 ml) to pH 6 and then diluted with CH₂Cl₂ (30 ml) to give a precipitate, which was collected by filtration and washed with CH₂Cl₂ (10 ml) to give the title compound as the dimethylformamide solvate (2.39 g, yield

55 94%; ca. 50% pure; Z/E = 47:12 by HPLC).

Procedure 10

25

40

45

65

MW = 758.8

10
$$\underbrace{\begin{array}{c} O \\ H \\ CH_2 \\ \hline \end{array}}_{N}$$
 S 10
$$\underbrace{\begin{array}{c} I \\ MW = 524.6 \\ \hline \end{array}}_{N}$$
 COODPM 15

A stirred solution of 18 l of CCl₄, methanol and 12 g p-benzoyl benzoic acid was cooled to 8°C 970 ml of acetaldehyde were added. The temperature of the resulting solution rose to +14°C. After five minutes, 588 g (0.7749 mole) of diphenylmethyl 7-phenylacetamido-3-[(triphenylphoranylidene)methyl]-3-cephem-20 4-carboxylate was added. The cooling bath was removed and the mixture vigorously stirred for 4 hours at 35°C shaded from light under an N₂ atmosphere until complete dissolution of the phosphorane had occurred.

The resulting solution was vacuum concentrated and the residue was dissolved in 2 I of ethanol, and the solution was vacuum concentrated to a semi-crystallized residue which was slurried with 3 I of ethanol.

The mixture was stirred for 2 hours at +5°C and let stand overnight, crystals were collected twice, washed with ethanol, and vacuum dried at room temperature. Yield 191 g (47%). M.p. 124-128°C contains 7.5% of trans isomer (determined by HPLC column Lichrosorb Si 60 5 μm Merck eluted with 85% toluene, 15% ethyl acetate.

30

Procedure 11

30

Diphenylmethyl 7-amino-3-((Z)-propen-1-yl)ceph-3-em-4-carboxylate hydrochloride, la

To a stirred solution of 159.7 g (0.767 mole) of PCI_s in 2.8 l CH₂CI₂ were added 56.7 ml (0.700 mole) of pyridine in 280 ml CH₂CI₂ over a 20 minute period. Under a nitrogen atmosphere the slurry was cooled to 2°C while 256 g of IX produced by Procedure 10 (0.488 mole) was added. The mixture was stirred for 40 minutes and the resulting slurry was poured rapidly into a vigorously stirred solution of 1.4 l of CH₂CI₂, and 209 ml (2.33 moles) of 1,3-butanediol at -20°C, so that the temperature did not rise above -5°C. The cooling bath was removed and after 45 minutes the temperature rose to 10°C and was held there for 35 minutes. Water (1.0 liter) was added and stirring continued for 5 minutes after which the layers were allowed to separate. The organic layer was washed with 600 ml HCl 2N and then 400 ml saturated brine. The combined aqueous extracts were back-washed with 2 × 600 ml of CH₂Cl₂ and combined with the original CH₂Cl₂ extract.

The solution was dried over anhydrous MgSO₄. The MgSO₄ slurry was filtered and the MgSO₄ washed with 2 × 500 ml CH₂Cl₂. The combined filtrates were concentrated *in vacuo* on the rotary evaporator to a volume of 2.4 liters and diluted with 2.5 liters of ethyl acetate. The solution was concentrated again to a volume of ca. 1.3 liters. The resulting crystal - slurry was filtered, washed with 3 × 300 ml ethyl acetate. After air and vacuum drying over P₂O₅ there was obtained 149.8 g of the title compound as beige crystals. Yield 69.3%.

50

CLAIMS

50

1. A compound of the formula

wherein the 3-propenyl group has the Z-configuration and R is hydrogen or a conventional carboxy-protecting group, and acid addition salts thereof and metal salts of the foregoing substance wherein R is hydrogen.

2. The compound of Claim 1 wherein R is a group selected from hydrogen, methoxymethyl, 2,2,2-

10

45

50

35

40

trichloroethyl, 2-(trimethylsilyl)ethyl, t-butyl, benzyl, diphenylmethyl, o-nitrobenzyl, p-nitrobenzyl, trimethylsilyl, t-butyldimethyl-silyl, t-butyldiphenylsilyl, allyl, and 2-chloroallyl and acid addition salts thereof.

- 3. The compound of claim 1 or 2 wherein the acid addition salt is selected from of hydrochloride, sulfate, p-toluenesulfate, and phosphate.
- 4. The compound of Claim 1 or 2 wherein the metal salt is sodium, potassium, calcium, or aluminum salt.
 - 5. The compound of Claim 2 which is diphenylmethyl 7β-amino-3-[(Z)-1-propen-1-yl]-3-cephem-4-car-boxylate and the hydrochloride thereof.
- 6. The compound of Claim 2 which is 7β -amino-3-[(Z)-1-propen-1-yl]-3-cephem-4-carboxylic acid and 10 the hydrochloride thereof.
 - 7. The compound of Claim 4 which is sodium 7β-amino-3-[(Z)-1-propen-1-yl]-3-cephem-4-carboxylate.
 - 8. The process for preparing a compound as claimed in Claim 1 which comprises reacting the intermediate of the formula

wherein R has the same meaning as in Claim 1, Ph is the phenyl group, with acetaldehyde in an Inert organic reaction medium comprising dichloromethane, N, N'-dimethylformamide, isopropanol or a mixture thereof at a reaction temperature between 0°C and 25°C to provide a compound of the formula

and thereafter removing the benzylidene group or both the benzylidene group and the carboxy-protecting group and, if desired, separating the 3-(Z) and 3-(E) isomers to provide the compound of the formula

wherein R has the same meaning as in Claim 1.

- 9. The process of Claim 8 wherein the reaction with acetaldehyde is carried out in the presence of a 45 lithium halide.
 - 10. The process of Claim 9 wherein the lithium halide is lithium chloride, lithium bromlde, or lithium iodide.
 - 11. The process of Claim 9 wherein the lithium halide is lithium bromide.
- 12. A process as claimed in claim 8, substantially as described in the foregoing Experimental Proce-50 dures section.
 - 13. A compound as claimed in claim 1, prepared by a process as claimed in claim 8, 9, 10, 11 or 12.