н 2) сферическую систему координат φ , ψ , r, где $x = r \cos \varphi \cos \psi$, $y = r \sin \varphi \cos \psi$, $z = r \sin \psi$,

$$\frac{D(x, y, z)}{D(r, \varphi, \psi)} = r^2 \cos \psi.$$

Вычислить следующие тройные интегралы:

4076. $\iint_V xy^2z^3dx \ dy \ dz$, где область V ограничена поверхностями $z=xy,\ y=x, \cdot x=1,\ z=0.$ 4077. $\iint_V \int_{(1+x+y+z)^3}^{dx\ dy\ dz}$, где область V ограничена

поверхностями x + y + z = 1, x = 0, y = 0, z = 0. 4078. $\iiint xyz \, dx \, dy \, dz$, где область V ограничена

поверхностями $x^2 + y^2 + z^2 = 1$, x = 0, y = 0, z = 0. 4079. $\iint_{V} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \right) dx dy dz$, где область V

ограничена поверхностью

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

4080. $\int_V \int \sqrt{x^2 + y^2} \ dx \ dy \ dz$, где область V ограничена повер хностями

$$x^2 + y^2 = z^2$$
, $z = 1$.

Различными способами расставить пределы интеграции в следующих тройных интегралах:

4081.
$$\int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{x+y} f(x, y, z) dz.$$
4082.
$$\int_{-1}^{1} dx \int_{-\sqrt{1-x^{2}}}^{1-x^{2}} dy \int_{x^{2}+y^{2}}^{1} f(x, y, z) dz.$$
4083.
$$\int_{0}^{1} dx \int_{0}^{1} dy \int_{0}^{x^{2}+y^{2}} f(x, y, z) dz.$$

Заменить тройные интегралы однократными:

4084.
$$\int_{0}^{\infty} d\xi \int_{0}^{\infty} d\eta \int_{0}^{\infty} f(\zeta) d\zeta.$$
 4085.
$$\int_{0}^{\infty} dx \int_{0}^{\infty} dy \int_{0}^{\infty} f(z) dz.$$