AAI 500: Final Project

Lauren Taylor Ruben Velarde Jeffrey Thomas

Project Overview

Data set: Redfin data about house sales

Our goal

Predict the price of a house using multiple linear regression

Data Set Overview

Data Set Size: 300 rows, 27 columns

Data Types

Categorical: Zip Code, City, Location, Property Type, State

Numerical: Price, Beds, Baths, Square Feet, Lot Size, Year Built

Data Set Details

Data Set Size: 300 rows, 27 columns

Categoricals			
Zip	5 zips: 92037, 92127, 91942, 92122, 92067		
City	5 cities: La Jolla, San Diego, La Mesa, Rancho Santa Fe, Rancho Bernardo		
Location	Provided by two columns: longitude and latitude		
Property Type	5 types: Single Family, Condo, Townhouse, Vacant Land, Multi-Family		
State	All in California		

Data Set Details

Data Set Size: 300 rows, 27 columns

Numericals					
Category	Mean	Min	Min Max Std De		
Price	\$3,237,747	\$369,000	\$45,000,000	\$4,735,400	
Sq Feet	2806.9	432	22,897	2410.73	
Beds	3.49	0	10	1.62	
Baths	3.2	1	12.5	1.85	
Year Built	1984	1920	2022	23.16	

Data Cleaning

Dropping Data

- Drop columns with data that is irrelevant to the price (eg. time of next open house, state)
- Drop columns missing information (eg. Sold Date)
- Drop columns that have redundant information (eg. Address, since location is the same information, and easier to work with)
- Drop instances of vacant land, as it is a different type of asset. All other properties include a dwelling.

Data Cleaning

Removing outliers

In order to account for outliers we removed all observations where the value was greater than 2.5 standard deviations from the mean

Normalizing data

We normalized the price and square feet columns by using Numpy log function

Square Feet vs Price

Data Set Details After Cleaning

Data Set Size: 300 rows, 27 columns

Numericals					
Category	Mean	Min	lin Max Std D		
Price	\$2,338,521	\$369,000	\$10,500,000	\$2,006,316	
Sq Feet	2473.64	432	7,722	1604.33	
Beds	3.41	0	7	1.39	
Baths	3	1	7.5	1.47	
Home Age	36.71	0	90	22.82	

Data Cleaning

Variable Transformations:

- -Transform year built into house age by subtracting the value from 2022.
- -Create dummy categorical variable for house age → New houses and old houses.
- -Create dummy categorical variable for longitude and latitude→3 categories

DESCRIPTIVE DATA

Square Feet

Home Age

Longitude

Latitude

House Price

Type of Distributions

Multimodal:

- Home Age (Bimodal),
- Longitude
- Latitude (Bimodal)

Log-Normal:

- Square Feet
- Price

Variable Relationships

Correlation Heat-Map

VIF Scores

	VIF	variable
0	157.620893	Intercept
1	1.189228	sq_feet
2	1.340798	home_age
3	1.259221	location_2
4	1.356345	location_3

Based on these results we can conclude that there is little multicollinearity and that the independent variables have a relationship to the dependent variable for our final model.

Model Results

Model Summary

		OLS Regres	sion Result	s		
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Sun,	price OLS ast Squares 23 Oct 2022 05:36:51 209 204 4 nonrobust	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		R-squared: 0.86 atistic: 334 (F-statistic): 2.26e-8	
	coef	std err	t	P> t	[0.025	0.975]
sq_feet home_age_50.0	1.0569 0.1484 -0.7354	0.257 0.034 0.050 0.059 0.050	31.463 2.967 -12.483	0.000	6.058 0.991 0.050 -0.852 -0.623	1.123
Omnibus: Prob(Omnibus): Skew: Kurtosis:		48.556 0.000 1.058 5.877	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.			1.815 11.105 48e-25 97.6

- $R^2 = 0.868$
- P-values are less than 0.05 for all variables

Equation:

 $y = X_1 \\ 1.0569 + X_2 \\ 0.1484 - X_3 \\ 0.7354 - X_4 \\ 0.5243 + 6.5647$

Partial Regression Graph

Conclusion

Interpretation

- -Overall the high R² and the low p-values indicate the statistical significance of the model.
- However outliers evident in the residual plots have decreased the predictive power of the model in some situations.

Improvements

- -In order to improve this model there needs to be a closer examination of outliers and our filtering of those extreme values
- -Analyzing for leverage on certain variables could help reduce outliers since these values could have a negative impact on our model
- -One type of predictor that would have been valuable is economic data (eg. inflation rates), this would help improve accuracy overtime because changing economic conditions can affect house prices.

Thank You For Listening!