

Introduction

The COVID-19 pandemic has placed an unprecedented strain on health systems, with rapidly increasing demand for healthcare in hospitals and intensive care units (ICUs) worldwide. As the pandemic escalates, determining the resulting needs for healthcare resources (beds, staff, equipment) has become a key priority for many countries. Projecting future demand requires estimates of how long patients with COVID-19 need different levels of hospital care.

salary at least \$50,000

Dataset Description

This parameter helps hospitals to identify patients of high LOS risk (patients who will stay longer) at the time of admission. Once identified, patients with high LOS risk can have their treatment plan optimized to miminize LOS and lower the chance of staff/visitor infection. Also, prior knowledge of LOS can aid in logistics such as room and bed allocation planning.

```
root
 -- case id: string (nullable = true)
-- Hospital: string (nullable = true)
-- Hospital type: string (nullable = true)
 -- Hospital city: string (nullable = true)
-- Hospital region: string (nullable = true)
 -- Available Extra Rooms in Hospital: string (nullable = true)
 -- Department: string (nullable = true)
 -- Ward Type: string (nullable = true)
 -- Ward Facility: string (nullable = true)
 -- Bed Grade: string (nullable = true)
-- patientid: string (nullable = true)
 -- City Code Patient: string (nullable = true)
 -- Type of Admission: string (nullable = true)
 -- Illness Severity: string (nullable = true)
 -- Patient Visitors: string (nullable = true)
 -- Age: string (nullable = true)
 -- Admission Deposit: string (nullable = true)
 -- Stay Days: string (nullable = true)
```


Data observation

+	+
stay_days	count
T	
21-30	87491
11-20	78139
31-40	55159
51-60	35018
0-10	23604
41-50	11743
71–80	10254
More than 100 Days	6683
81-90	4838
91–100	2765
61-70	2744
+	+

+	+
illness_severity	count
+	++
Moderate	175843
Minor	85872
Extreme	56723
+	++

+	+
age	count
+	+
41-50	63749
31-40	63639
51-60	48514
21-30	40843
71-80	35792
61-70	33687
11-20	16768
81-90	7890
0-10	6254
91-100	1302
+	· +

+	+
department	count
+	+
gynecology	249486
anesthesia	29649
radiotherapy	28516
TB & Chest disease	9586
surgery	1201
+	+

Counts of rows/samples: 318438 Counts of columns/features: 18

Filtering/Method/Parameter Setting

First, Split the data 80/20, train/test, In order to train ML models in Spark later, I use the VectorAssembler() to combine a given list of columns into a single vector column. Next, we standardize the features by StandardScaler(), After the preprocessing step, I fit the PCA() (Principal Component Analysis) model to reduce the dimensionality of large data sets.

Parameters of DecisionTreeClassifier Impurity - Gini maxBins - 24,32 minInfoGain - 0.0, 0.2 maxDepth - 5,10 Cross-validator 10 fold

Result

case_id	illness_severity	type_of_admission	department	stay_days	predictedLabel
1	Extreme	Emergency	radiotherapy	0-10	21-30
10001	Minor	Trauma	gynecology	11-20	21-30
100011	Minor	Trauma	gynecology	21-30	21-30
100013	Minor	Trauma	gynecology	31-40	51-60
100014	Minor	Urgent	gynecology	81-90	51-60
100018	Moderate	Emergency	gynecology	41-50	51-60
10002	Minor	Trauma	gynecology	21-30	11-20
100022	Moderate	Trauma	gynecology	11-20	21-30
100029	Moderate	Trauma	gynecology	21-30	21-30
10003	Minor	Trauma	gynecology	21-30	21-30
100031	Moderate	Emergency	gynecology	0-10	11-20
100033	Extreme	Trauma	gynecology	51-60	21-30
100034	Extreme	Trauma	gynecology	91-100	51-60
100038	Extreme	Trauma	gynecology	41-50	21-30
100040	Moderate	Trauma	gynecology	21-30	21-30
100045	Extreme	Trauma	gynecology	11-20	21-30
100047	Extreme	Trauma	anesthesia	51-60	31-40
100049	Moderate	Trauma	radiotherapy	11-20	21-30
100052	Moderate	Trauma	gynecology	21-30	21-30
100054	Moderate	Trauma	gynecology	21-30	21-30

```
Model name: DecisionTreeClassifier
   Accuracy = 0.392973
   F1 = 0.350573
   Test Error = 0.607027
   True Positive Rate By Label = 0.693876
   False Positive Rate By Label = 0.399571
   Precision By Label = 0.398808
   Recall By Label = 0.693876
   FMeasure By Label = 0.506502
   Weighted Recall = 0.392973
   Weighted Precision = 0.362352
   Weighted True Positive Rate = 0.392973
   Weighted FMeasure = 0.350573
   Log Loss = 1.77738
   Hamming Loss = 0.607027
```


Result

TO DO/Solution

Since my data is more features and less samples. This situation greatly increases the difficulty of training. Despite my attempts to reduce the dimensionality of the data and more cross-validations, I improved the accuracy from 20% to 40%. After my research, maybe Pruning or post-pruning is a good way to improve.