Analysis of Recent DDoS Attacks

Case Study: The Aisuru 29.6 Tbps Attack (October 2025)

Prepared by: AKHIL NS

October 17, 2025

Contents

2		e Study: The Aisuru 29.6 Tbps Attack
	2.1	Target
	2.2	Target
	2.3	Attacker Motive
	0.4	O11 I t
3	Defe	ense Strategies and Mitigation Techniques
3	Defe 3.1	Network and Traffic Controls
3	Defe 3.1 3.2	ense Strategies and Mitigation Techniques Network and Traffic Controls IoT and Botnet Prevention
3	Defe 3.1 3.2 3.3	ense Strategies and Mitigation Techniques Network and Traffic Controls

1. Overview of Recent DDoS Threats

Distributed Denial of Service (DDoS) attacks continue to evolve in scale and sophistication. Below is a snapshot of five major DDoS incidents reported in 2025:

- 1. **Aisuru 29.6 Tbps (October 2025):** Massive TCP-based carpet-bombing attacks targeting gaming platforms and ISPs.
- 2. Cloudflare Mitigation 7.3 Tbps (May 2025): Short-duration hyper-volumetric attack mitigated by Cloudflare.
- 3. Gcore Attack 6 Tbps (October 2025): Large volumetric attack neutralized by Gcore's mitigation infrastructure.
- 4. Aisuru Early Blasts (May 2025): Smaller but powerful attacks of 6–11 Tbps observed earlier in the same campaign.
- 5. Microsoft/Azure Outage (2025): Service degradation and downtime linked to heavy DDoS traffic and mitigation issues.

Among these, the **Aisuru 29.6 Tbps attack** stands out as one of the most significant and technically advanced DDoS campaigns ever recorded.

2. Case Study: The Aisuru 29.6 Tbps Attack

2.1 Target

The primary targets were major **online gaming platforms** and associated **Internet Service Providers (ISPs)**. Platforms such as Steam, Riot Games, and PlayStation Network experienced login failures and latency due to severe network congestion.

2.2 Technology and Attack Vectors

- Botnet-Driven Volumetric Flood: A large botnet composed of compromised routers and IoT devices generated over 29.6 Tbps of traffic.
- TCP Carpet-Bombing: Attackers flooded networks with randomized TCP packets to exhaust bandwidth and overwhelm routers.
- Direct Traffic (No Reflection): Unlike traditional amplification attacks, this campaign used direct device-to-target flooding.

2.3 Attacker Motive

- **Disruption:** Likely intended to cause downtime and chaos for high-traffic gaming networks.
- Botnet Testing: The campaign may have been a stress test of Aisuru's growing infrastructure.
- Possible Extortion: While not confirmed, DDoS attacks of this scale often precede ransom demands.

2.4 Overall Impact

- Service Outages: Temporary disruption of login and gameplay services for millions of users.
- **Network Congestion:** Collateral bandwidth saturation across ISPs and cloud providers.
- Economic Losses: Increased operational and mitigation costs for service providers.

3. Defense Strategies and Mitigation Techniques

3.1 Network and Traffic Controls

- Deploy **Anycast-based CDN/DDoS scrubbing** to distribute attack load globally.
- Collaborate with ISPs for **BGP blackholing** and upstream filtering.
- Implement rate limiting, SYN cookies, and connection caps on public-facing servers.

3.2 IoT and Botnet Prevention

- Enforce secure defaults and automatic firmware updates for routers and IoT devices.
- Encourage ISPs to quarantine devices exhibiting DDoS traffic patterns.

3.3 Operational Preparedness

- Maintain **DDoS response playbooks** and conduct regular simulation exercises.
- Establish **real-time traffic monitoring** to detect anomalies early.
- Prepare legal escalation and evidence logging procedures for potential extortion cases.

3.4 Long-Term Resilience

- Use multiple cloud and CDN providers to prevent single points of failure.
- Ensure extra **network capacity and redundancy** in high-risk infrastructure.
- Harden control-plane systems (e.g., APIs, dashboards) to prevent internal outages.

4. Summary and Recommendations

The Aisuru 29.6 Tbps attack demonstrates the growing scale and danger of IoT-based botnets. Future defenses must combine **technical controls**, **ISP cooperation**, and **industry-wide IoT hardening**. Organizations—especially gaming and cloud providers—must adopt multi-layered defenses, continuous monitoring, and DDoS readiness planning to stay resilient.

Key References

- 1. FastNetMon Report on Aisuru Botnet (2025)
- 2. CSO Online: "Aisuru Botnet Overwhelms ISPs with 29.6 Tbps Flood"
- 3. KrebsOnSecurity (May 2025): Early Aisuru Activity
- 4. Cloudflare DDoS Mitigation Report (May 2025)
- 5. Gcore Security Blog (October 2025)
- 6. Microsoft Azure DDoS Protection Notes (2025)