CSC411H1 FALL 2018

HOMEWORK 4

LINO LASTELLA 1001237654

1)		# Marts	# Weights	# Connections
	Convolution Layer 1	290,400	34,848	105,415,200
	Convolution Layer 2	186,624	614,400	111,974,400
	Convolution Loyer 3	64,896	884,736	149,520,384
	Convolution Layer 4	64,896	1,327,104	112,140,288
	Convolution Layer 5	43,264	884,736	74,760,132
Fully	Consected Loyer 1	4036	39,748,736	37,748,736
Fully	Corrected Loyer 2	4096	16,777,216	16,777,216
	Out put Layer	1000	4,096,000	4,096,000

(b)
i. In order to reduce the number of porometers (number of weights)
it would be sufficient to reduce the number of kernels on the
orchitecture from 96 to, soy, 90 of every loyer.

Then, some both fully corrected leyers and consolution layers
lake number of weights x + y terrels, the number of porometers
would be reduced.

the some or the number of weights.

For convolutional loyers, the number of corrections is equal to the number of weights times the site of the imput (without ne-brunking the channels).

Then, again it would be sufficient to reduce the number of Kernels in every loyer to reduce the number of corrections overall.

2) $P(Y=k | X, \mu, \sigma) = \frac{P(X | Y=k, \mu, \sigma) \cdot P(Y=k | \mu, \sigma) \cdot P(\mu, \sigma)}{P(X | \mu, \sigma) \cdot P(\mu, \sigma)}$ $= \frac{\alpha_{K} \cdot \left(\prod_{i=1}^{M} 2\pi \sigma_{i}^{2} \right)^{k_{i}} \cdot exp \left\{ -\sum_{i=1}^{M} \frac{1}{2\sigma_{i}^{2}} (X_{i} - \mu_{Ki})^{2} \right\}}{\sum_{K'} P(X | Y=k', \mu, \sigma) P(Y=k')}$ $= \frac{\alpha_{K} \cdot \left(\prod_{i=1}^{M} 2\pi \sigma_{i}^{2} \right)^{k_{i}} \cdot exp \left\{ -\sum_{i=1}^{M} \frac{1}{2\sigma_{i}^{2}} (X_{i} - \mu_{Ki})^{2} \right\}}{2\pi P(X_{i} - \mu_{Ki})^{2}}$

 $\sum_{k'} \left[\left(\prod_{i=1}^{D} 2\pi \sigma_{i}^{2} \right)^{-1/2} exp \left\{ -\sum_{i=1}^{D} \frac{1}{2\sigma_{i}^{2}} \left(\chi_{i} - M_{k'i} \right)^{2} \right\} \cdot \alpha_{k}$

= $\frac{\langle k \cdot exp \{ -\sum_{i=1}^{D} \frac{1}{20i^2} (x_i - \mu_{hi})^2 \}}{\sum_{k'} x_{k'} up \{ -\sum_{i=1}^{D} \frac{1}{20i^2} (x_i - \mu_{hi})^2 \}}$

b) Let
$$D = \{(x^{(i)}, y^{(i)}), i = 1, 2, ..., N\}$$
 be a determination $D = \{(x, y, x^{(i)}), i = 1, 2, ..., N\}$ be a determination $D = \{(x, y, x^{(i)}), i = 1, 2, ..., N\}$ be a determination $D = \{(x, y^{(i)}, x^{(i)}), i = 1, 2, ..., N\}$ by boxe perpendy of legs
$$= -\sum_{i=1}^{N} \log (P(X^{(i)}|Y^{(i)}, X^{(i)}|D))$$

$$= -\sum_{i=1}^{N} \sum_{k'} \log (P(X^{(i)}|Y^{(i)}, y^{(i)}, y^{(i)}, y^{(i)}))$$

$$= -\sum_{i=1}^{N} \sum_{k'} \log (P(X^{(i)}|Y^{(i)}, y^{(i)}))$$

k -

$$\frac{\partial l(\theta; D)}{\partial \mu_{k's}} = \frac{\partial}{\partial \mu_{k's}} \left[-\sum_{i=1}^{N} \sum_{k'} 11 \left\{ y^{(i)} = k' \right\} \cdot \left(\log \left(\alpha_{k'} \right) - \frac{1}{2} \sum_{j=1}^{N} \log \left(2\pi \sigma_{j}^{2} \right) \right) - \sum_{j=1}^{N} \frac{1}{2\sigma_{j}^{2}} \left(X_{j}^{(i)} - \mu_{k's}^{2} \right)^{2} \right)$$

$$= -\sum_{i=1}^{N} \sum_{k'} 1 \{ y^{(i)} = k' \} \cdot \left(-\sum_{j=1}^{D} \frac{1}{G_{j}^{*}} (x_{0}^{*} - \mu_{k's}) \cdot (-1) \right)$$

$$= -\sum_{i=1}^{N} \sum_{k'} 1 \{ y^{(i)} = k' \} \cdot \sum_{j=1}^{D} \frac{1}{G_{j}^{*}} (x_{0}^{*} - \mu_{k's}) \cdot (-1) \right)$$

$$\frac{\partial \mathcal{L}(\theta; D)}{\partial \sigma_{5}^{2}} = \frac{\partial}{\partial \sigma_{5}^{2}} \left[-\sum_{i=1}^{N} \sum_{h'} \mathcal{L}\{y''' = h'\} \left(\log (\alpha_{h'}) - \frac{1}{2} \sum_{J=1}^{D} \log (2\pi \sigma_{5}^{2}) - \sum_{J=1}^{D} \frac{(\mathcal{L}_{3}^{(i)} - \mu_{k'5})^{2}}{2\sigma_{5}^{2}} \right) \right]$$

$$= -\sum_{i=1}^{N} \sum_{k'} 1 \left\{ y^{(i)} = k' \right\} \left(-\frac{1}{2} \sum_{j=1}^{D} \frac{1}{\sigma_{j}^{2}} - \sum_{j=1}^{D} (-1) \cdot \left(\frac{\chi_{3}^{(i)} - \chi_{k'3}}{2} \right)^{2} \cdot \frac{1}{\sigma_{3}^{4}} \right)$$

$$= -\sum_{i=1}^{N} \sum_{k'} 1 \{ y^{(i)} = k' \} \left(-\frac{1}{2} \sum_{j=1}^{D} \frac{1}{\sigma_{j}^{*}} + \sum_{j=1}^{D} \frac{1}{2\sigma_{j}^{*}} (x_{j}^{(i)} - \mu_{k',j})^{2} \right)$$

To find MLE, get denotes to zero:

$$\frac{\partial L}{\partial \mu_{N_{3}}} = 0 \implies -\sum_{i=1}^{N} \frac{1}{2} \left[y^{(i)} + h \right] \frac{X_{3}^{(i)} - M_{N_{3}}}{\sigma_{3}^{(i)}} = 0, \quad \text{for a given } K = 0$$

$$\implies M_{N_{3}} = \frac{\sum_{i=1}^{N} X_{3}^{(i)} 1 \left[y^{(i)} + h \right]}{\sum_{i=1}^{N} 1 \left[y^{(i)} + h \right]}$$

$$\implies M_{N_{3}} = \frac{\sum_{i=1}^{N} X_{3}^{(i)} 1 \left[y^{(i)} + h \right]}{\sum_{i=1}^{N} 1 \left[y^{(i)} + h \right]} \left(\frac{-1}{2\sigma_{3}^{(i)}} + \frac{1}{2\sigma_{3}^{(i)}} \frac{1}{2} X_{3}^{(i)} - M_{N_{3}}^{(i)} \right)^{2} = 0$$

$$\implies \frac{1}{2\sigma_{3}^{(i)}} \sum_{i=1}^{N} \sum_{K'} 1 \left[y^{(i)} + h' \right] \left(\frac{1}{2\sigma_{3}^{(i)}} + \frac{1}{2\sigma_{3}^{(i)}} \frac{1}{2} X_{3}^{(i)} - M_{N_{3}}^{(i)} \right)^{2}$$

$$\implies \sigma_{3}^{2} = \frac{\sum_{i=1}^{N} \sum_{K'} 1 \left[y^{(i)} + h' \right] \left(\frac{1}{2\sigma_{3}^{(i)}} + \frac{1}{2\sigma_{3}^{(i)}} + \frac{1}{2\sigma_{3}^{(i)}} \frac{1}{2} X_{3}^{(i)} - M_{N_{3}}^{(i)} \right)^{2}}{\sum_{i=1}^{N} \sum_{K'} 1 \left[y^{(i)} + h' \right] \left(\frac{1}{2\sigma_{3}^{(i)}} + \frac{1}{2\sigma_{3}^{(i)}} + \frac{1}{2\sigma_{3}^{(i)}} + \frac{1}{2\sigma_{3}^{(i)}} \frac{1}{2} X_{3}^{(i)} + \frac{1}{2\sigma_{3}^{(i)}} \right)^{2}}$$

$$\implies \sigma_{3}^{2} = \frac{\sum_{i=1}^{N} \sum_{K'} 1 \left[y^{(i)} + h' \right] \left(\frac{1}{2\sigma_{3}^{(i)}} + \frac{1}{2\sigma_{3}^{(i)}} + \frac{1}{2\sigma_{3}^{(i)}} + \frac{1}{2\sigma_{3}^{(i)}} + \frac{1}{2\sigma_{3}^{(i)}} \right)^{2}}{\sum_{i=1}^{N} \sum_{K'} 1 \left[y^{(i)} + h' \right] \left(\frac{1}{2\sigma_{3}^{(i)}} + \frac{1}{2\sigma_{3}^{(i)}} + \frac{1}{2\sigma_{3}^{(i)}} + \frac{1}{2\sigma_{3}^{(i)}} + \frac{1}{2\sigma_{3}^{(i)}} + \frac{1}{2\sigma_{3}^{(i)}} \right)^{2}}$$

$$\implies \sigma_{3}^{2} = \frac{1}{2\sigma_{3}^{(i)}} \sum_{K'} 1 \left[y^{(i)} + h' \right] \left(\frac{1}{2\sigma_{3}^{(i)}} + \frac{1}{2\sigma_{3}^$$

mox NLL
subject to $\sum_{h} \alpha_{h} = 1$

$$\frac{\partial l}{\partial \mu_{ks}} = 0 - 7 \quad \mu_{ks} = \frac{\sum_{i=1}^{N} \chi_{s}^{(i)} 1 \{ \gamma^{(i)} = k \}}{\sum_{i=1}^{N} 1 \{ \gamma^{(i)} = k \}} \quad \text{from } (C).$$

then, by Lagrange multiplier theren,

$$\frac{\partial l}{\partial \alpha_{n}} + \lambda \frac{\partial \sum_{k} \alpha_{k}}{\partial \alpha_{k}} = 0 - 7 - \sum_{i=1}^{N} \frac{11\{y^{(i)} = k\}}{\alpha_{n}} + \lambda = 0$$

$$- 7 \lambda = \sum_{i=1}^{N} \frac{11\{y^{(i)} = k\}}{\alpha_{n}}$$

From the constraint $\sum_{k} d_{k} = 1$ we get $\lambda = N$ [Since every class appearance by ommeption].

Then,
$$d_{K} = \frac{1}{N} \sum_{i=1}^{N} 11 \left\{ y^{(i)} = K \right\}$$