- 1 Negate the following statements:
 - a. If pigs had wings, they would fly.
 - b. If that planes leaves and you are not on it, then you will regret it.
 - c. For every problem there is a solution that is neat, plausible, and wrong.

Solution a. Pigs have wings, and they do not fly.

- b. The plane left and you are not on it, but you don't regret it.
- c. There exists a problem that does not have a solution that is neat, plausible, and wrong.
- 2 Let X and Y be statements. If we want to DISPROVE the claim that "At least one of X and Y are true", which one of the following do we need to show?
 - a. At leaset one of X and Y are false.
 - b. X and Y are both false.
 - c. Exactly one of X and Y are false.
 - d. Y is false.
 - e. X does not imply Y, and Y does not imply X.
 - f. X is true if and only if Y is false.
 - g. X is false.

Solution We need to know (b).

- **3** Let P(x) be a property about some object x of type X. If we want to DISPROVE the claim that "P(x) is true for all x of type X", which one of the following do we have to do?
 - a. Show that for every x in X, P(x) is false.
 - b. Show that for every x in X, there is a y not equal to x for which P(y) is true.
 - c. Show that P(x) being true does not necessarily imply that x is of type X.
 - d. Show that there are no objects x of type X.
 - e. Show that there exists an x of type X for which P(x) is false.
 - f. Show that there exists an x which is not of type X, but for which P(x) is still true.
 - g. Assume there exists an x of type X for which P(x) is true, and a derive a contradiction.

Solution We need to do (e).

- 4 Let X, Y, Z be statements. Suppose we know that "X is true implies Y is true", and "X is false implies Z is true". If we know that Z is false, then which one of the following can we conclude?
 - a. X is false.
 - b. X is true.
 - c. Y is true.
 - d. (b) and (c).
 - e. (a) and (c).
 - f. (a), (b), and (c).
 - g. None of the above conclusions can be drawn.

Solution We can conclude (d).

- 5 Let P(n, m) be a property about two integers n and m. If we want to DISPROVE the claim that "There exists an integer n such that P(n, m) is true for all integers m", then which one of the following do we need to prove?
 - a. If P(n, m) is true, then n and m are not ingers.
 - b. For every integer n, there exists an integer m such that P(n,m) is false.
 - c. For every integer n and every integer m, the property P(n,m) is false.
 - d. For every integer m, there exists an integer n such that P(n,m) is false.
 - e. There exists an integer n such that P(n,m) is false for all integers m.
 - f. There exists integers n, m such that P(n, m) is false.
 - g. There exists an integer m such that P(n,m) is false for all integers n.

Solution We need to prove (b).

- 6 Let X and Y be statements. If we know that X implies Y, which one of the following can we conclude?
 - a. X cannot be false.
 - b. X is true, and Y is also true.
 - c. If Y is false, then X is false.
 - d. Y cannot be false.
 - e. If X is false, then Y is false.
 - f. If Y is true, then X is true.
 - g. At least one of X and Y is true.

Solution We know (c).

7 Prove the following statement by induction:

$$1+3+5+\cdots+(2n-1)=n^2$$
 for all $n \ge 1$.

Solution Let P(n) denote the statement $1+3+5+\cdots+(2n-1)=n^2$, for $n\geq 1$.

Step 1: (Base step)

P(1): $1 = 1^2 \implies P(1)$ holds.

Step 2: (Inductive step)

Suppose P(n) holds. We wish to show that P(n+1) holds.

We have shown that $P(n) \implies P(n+1)$. Taking both steps and invoking the principle of mathematical induction, we conclude that P(n) holds for all natural numbers $n \ge 1$.

8 Prove the following statement by induction: The expression

$$4^n + 15n - 1$$

is divisible by 9 for all $n \geq 1$.

Solution Let P(n) be the statement that $9 \mid 4^n + 15n - 1$.

Step 1: (Base step)

$$P(1)$$
: $4 + 15 - 1 = 18 = 9 \cdot 2 \implies P(1)$ holds.

Step 2: (Inductive step)

Suppose P(n) holds. Then $4^n + 15n - 1 = 9c$, for some $c \in \mathbb{Z}$. We want to prove that P(n+1) holds.

$$4^{n+1} + 15(n+1) - 1$$

$$= 4 \cdot 4^{n} + 60n - 4 - 45n + 18$$

$$= 4(4^{n} + 15n - 1) - 45n + 18$$

$$= 4 \cdot 9c + 9(-5n + 2)$$

$$= 9(4c - 5n + 2)$$

which is divisible by 9. Thus, P(n+1) holds.

If we take both steps, then by the principle of mathematical induction, P(n) holds for all $n \geq 1$.

9 Decide for which natural numbers the inequality $3^n > n^3$ is true. Prove your claim using mathematical induction.

Solution The inequality appears to be true for all $n \ge 4$. I will prove my hypothesis through mathematical induction. Let P(n) denote the expression $3^n > n^3$.

Step 1: (Base step)

$$P(4)$$
: $3^4 = 81 > 64 = 4^3 \implies P(4)$ holds.

Step 2: (Inductive step)

Suppose P(n) holds. We will show that P(n+1) holds.

$$3^{n} > n^{3}$$

$$3^{n+1} > (n+1)^{3} + 2n^{3} - 3n^{2} - 3n - 1$$

$$3^{n+1} > (n+1)^{3} + n(2n^{2} - 3n - 3) - 1$$

$$3^{n+1} > (n+1)^{3} + n[(2n+3)(n-3) + 6] - 1$$

Since $n \ge 4$, (2n+3)(n-3)+6 > 0. (2n+3)(n-3)+6 is also a natural number, so $n\lceil (2n+3)(n-3)+6 \rceil \ge 4 > 1$. Thus, $n\lceil (2n+3)(n-3)+6 \rceil -1 > 0$, and it follows that

$$3^{n+1} > (n+1)^3 + n[(2n+3)(n-3)+6] - 1 > (n+1)^3$$

Collecting steps 1 and 2, P(n) holds for all $n \ge 4$ by the principle of mathematical induction.

10 Prove that there is no rational number whose square is 6.

Solution First consider an odd integer c, which can be written in the form 2n+1 for some $n \in \mathbb{Z}$. Then

$$c^2 = 4n^2 + 4n + 1 = 2(2n^2 + 2n) + 1,$$

meaning c^2 is also odd. It follows that if c^2 is even, then c must also be even.

Suppose $\exists r \in \mathbb{Q}$ such that $r^2 = 6$. Then we can find $a, b \in \mathbb{Z}$ such that a and b are coprime and $r = \frac{a}{b}$. Then

$$\frac{a^2}{b^2} = 6$$
$$a^2 = 6b^2$$

From the expression, a^2 must be even, which means a is also even, so we can find $m \in \mathbb{Z}$ such that a = 2m. Substituting this in yields

$$4m^2 = 6b^2 \implies 2m^2 = 3b^2$$
.

which means that b is also even. This is a contradiction because a and b must be coprime. Thus, we cannot find a and b as described above, so there is no such $r \in \mathbb{Q}$ such that $r^2 = 6$.