Une introduction à l'allocation séquentielle de ressources

Emilie Kaufmann

3ème journées YSP, IHP, 30 janvier 2015

Plan

- Exemples et modèle statistique
- 2 Maximisation des récompense : l'algorithme UCB
- 3 Identification du meilleur bras : l'algorithme LUCB
- Perspectives

Plan

- Exemples et modèle statistique
- Maximisation des récompense : l'algorithme UCB
- 3 Identification du meilleur bras : l'algorithme LUCB
- 4 Perspectives

Allocation séquentielle de ressources : des exemples

Essais cliniques

K traitements possibles (d'effet inconnu)

• Quel traitement allouer à chaque patient en fonction des effets observés sur les patients précédents?

Allocation séquentielle de ressources : des exemples

Essais cliniques

K traitements possibles (d'effet inconnu)

• Quel traitement allouer à chaque patient en fonction des effets observés sur les patients précédents?

Publicité en ligne

K publicités pouvant être affichées

• Quelle publicité montrer à chaque utilisateur en fonction des clics des utilisateurs précédents?

Un cadre général : le modèle de bandit à plusieurs bras

- K options possibles
- option a : loi de probabilité ν_a de moyenne μ_a

A l'instant t, un agent

- choisit une option A_t
- observe un réalisation X_t de la loi associée ν_{A_t}

L'agent adopte une **stratégie séquentielle** (A_t) , telle que

$$A_{t+1} = "F"(A_1, \ldots, A_t, X_1, \ldots, X_t)$$

Pourquoi "bandit"?

Bandit manchot = machine à sous.

Si chaque bras a donne des récompenses tirées sous une loi ν_a , quelle stratégie de tirage des bras faut-il adopter?

Un cadre général : le modèle de bandit à plusieurs bras

- K bras
- ullet bras a : loi de probabilité u_a de moyenne μ_a

A l'instant t, un agent

- tire un bras A_t
- ullet observe un réalisation X_t de la loi associée u_{A_t}

L'agent adopte une stratégie séquentielle (A_t) (ou **algorithme de bandit**), telle que

$$A_{t+1} = "F"(A_1, \ldots, A_t, X_1, \ldots, X_t)$$

Une stratégie séquentielle : pour quel objectif?

Objectif global: apprendre quels sont les meilleurs bras

$$\mu^* = \max_a \ \mu_a \qquad \quad a^* = \operatorname{argmax}_a \ \mu_a.$$

Maximiser ses récompenses	Identifier le meilleur bras
maximiser $\sum_{t=1}^{T} X_t$	proposer $\hat{a^*}$ tel que $\mathbb{P}(\hat{a^*}=a^*)\geq 1-\delta$
Compromis exploration - exploitation	Exploration optimale

Plan

- Exemples et modèle statistique
- 2 Maximisation des récompense : l'algorithme UCB
- 3 Identification du meilleur bras : l'algorithme LUCB
- 4 Perspectives

L'agent cherche à trouver une stratégie qui maximise

$$\mathbb{E}\left[\sum_{t=1}^T X_t\right]$$

ou de manière équivalente minimise le regret :

$$R_T = \mathbb{E}\left[T\mu^* - \sum_{t=1}^T X_t\right].$$

Des stratégies optimales

L'agent cherche à trouver une stratégie qui maximise

$$\mathbb{E}\left[\sum_{t=1}^T X_t\right]$$

ou de manière équivalente minimise le regret :

$$R_T = \mathbb{E}\left[T\mu^* - \sum_{t=1}^T X_t\right].$$

Une réécriture :

$$R_{\mathcal{T}} = \sum_{a=1}^{K} (\mu^* - \mu_a) \mathbb{E}[N_a(\mathcal{T})]$$

où $N_a(T)$ est le nombre de tirages du bras a jusqu'à l'instant T.

Des stratégies optimales

$$R_T = \sum_{a=1}^K (\mu^* - \mu_a) \mathbb{E}[N_a(T)].$$

[Lai et Robbins 1985] : tout algorithme de bandit 'uniformément bon' doit tirer tous les bras une infinité de fois :

$$\mu_{\mathsf{a}} < \mu^* \Rightarrow \liminf_{T o \infty} \frac{\mathbb{E}[N_{\mathsf{a}}(T)]}{\log T} \geq \frac{1}{\mathsf{KL}(\nu_{\mathsf{a}}, \nu_{\mathsf{a}*})}$$

Definition

Un algorithme de bandit est asymptotiquement optimal si

$$\mu_{\textit{a}} < \mu^* \Rightarrow \limsup_{T \to \infty} \frac{\mathbb{E}[\textit{N}_{\textit{a}}(T)]}{\log T} \leq \frac{1}{\mathsf{KL}(\nu_{\textit{a}}, \nu_{\textit{a}^*})}$$

Des exemples de stratégies

• **Idée 1 :** Tirer chaque bras T/K fois

⇒ EXPLORATION

Des exemples de stratégies

- Idée 1 : Tirer chaque bras T/K fois
- ⇒ EXPLORATION
 - Idée 2 :Toujours choisir le bras qui a donné les meilleures récompenses jusqu'ici

$$A_{t+1} = \operatorname*{argmax}_{a} \hat{\mu}_{a}(t)$$

⇒ EXPLOITATION

Des exemples de stratégies

• Idée 1 : Tirer chaque bras T/K fois

⇒ EXPLORATION

 Idée 2 :Toujours choisir le bras qui a donné les meilleures récompenses jusqu'ici

$$A_{t+1} = \operatorname*{argmax}_{a} \hat{\mu}_{a}(t)$$

- ⇒ EXPLOITATION
 - Idée 3 : Tirer les bras uniformément pendant T/2 instants (EXPLORATION)
 Puis tirer le meilleur bras empirique jusqu'à la fin (EXPLOITATION)
- ⇒ EXPLORATION puis EXPLOITATION

Des algorithmes optimistes

• Pour chaque bras a, construire un intervalle de confiance sur la moyenne inconnue μ_a :

$$\mu_a \leq UCB_a(t)$$
 w.h.p

FIGURE: Intervalles de confiance sur les bras après t instants

Des algorithmes optimistes

Utiliser le principe d'optimisme :

"agir comme si le meilleur des modèles possible était le vrai modèle"

FIGURE: Intervalles de confiance sur les bras après t instants

• Ceci revient à choisir à l'instant t+1

$$A_{t+1} = \underset{a}{\operatorname{arg max}} \ \ UCB_a(t)$$

Hypothèse : pour tout a, ν_a est à support dans [0,1].

L'algorithme UCB1 inspiré par [Auer et al. 02] utilise l'indice :

$$\mathsf{UCB}_{a}(t) = \hat{\mu}_{a,N_{a}(t)} + \sqrt{\frac{\alpha \log(t)}{2N_{a}(t)}}$$

avec

- $N_a(t)$: nombre de tirages du bras a entre les instants 1 et t
- $\hat{\mu}_{a,s} = \frac{1}{s} \sum_{i=1}^{s} Y_{a,i}$ moyenne empirique des s premières observations du bras a

UCB1 en action

UCB1 en action

Construction des intervalles de confiance

$$\mathsf{UCB}_{\mathsf{a}}(t) = \hat{\mu}_{\mathsf{a}, \mathsf{N}_{\mathsf{a}}(t)} + \sqrt{rac{lpha \log(t)}{2 \mathsf{N}_{\mathsf{a}}(t)}}$$

• L'inégalité de Hoeffding donne

$$\mathbb{P}\left(\hat{\mu}_{\mathsf{a},\mathsf{s}} + \sqrt{\frac{\alpha \log(t)}{2\mathsf{s}}} \leq \mu_{\mathsf{a}}\right) \leq \exp\left(-2\mathsf{s}\left(\frac{\alpha \log(t)}{2\mathsf{s}}\right)\right) = \frac{1}{t^{\alpha}}.$$

• Il reste à gérer le nombre aléatoire d'observations

Construction des intervalles de confiance

$$\mathsf{UCB}_{\mathsf{a}}(t) = \hat{\mu}_{\mathsf{a}, \mathsf{N}_{\mathsf{a}}(t)} + \sqrt{rac{lpha \log(t)}{2 \mathsf{N}_{\mathsf{a}}(t)}}$$

• L'inégalité de Hoeffding donne

$$\mathbb{P}\left(\hat{\mu}_{\mathsf{a},s} + \sqrt{\frac{\alpha \log(t)}{2s}} \leq \mu_{\mathsf{a}}\right) \leq \exp\left(-2s\left(\frac{\alpha \log(t)}{2s}\right)\right) = \frac{1}{t^{\alpha}}.$$

- Il reste à gérer le nombre aléatoire d'observations
- ⇒ Borne de l'union?

$$\mathbb{P}(\mathsf{UCB}_{\mathsf{a}}(t) \leq \mu_{\mathsf{a}}) \leq \mathbb{P}\left(\exists s \in \{1, t\} : \hat{\mu}_{\mathsf{a}, s} + \sqrt{\frac{\alpha \log(t)}{2s}} \leq \mu_{\mathsf{a}}\right)$$
$$\leq \sum_{s=1}^{t} \frac{1}{t^{\alpha}} \leq \frac{1}{t^{\alpha-1}}$$

Construction des intervalles de confiance

$$\mathsf{UCB}_{a}(t) = \hat{\mu}_{a, N_{a}(t)} + \sqrt{rac{lpha \log(t)}{2N_{a}(t)}}$$

• L'inégalité de Hoeffding donne

$$\mathbb{P}\left(\hat{\mu}_{\mathsf{a},s} + \sqrt{\frac{\alpha \log(t)}{2s}} \leq \mu_{\mathsf{a}}\right) \leq \exp\left(-2s\left(\frac{\alpha \log(t)}{2s}\right)\right) = \frac{1}{t^{\alpha}}.$$

- Il reste à gérer le nombre aléatoire d'observations
- ⇒ On peut faire mieux : argument de 'peeling'

$$\mathbb{P}(\mathsf{UCB}_{\mathsf{a}}(t) \leq \mu_{\mathsf{a}}) \leq \mathbb{P}\left(\exists s \in \{1, t\} : \hat{\mu}_{\mathsf{a}, s} + \sqrt{\frac{\alpha \log(t)}{2s}} \leq \mu_{\mathsf{a}}\right)$$
$$\leq e\alpha \frac{\log(t)^2}{t^{\alpha}}$$

Résultat théorique

Théorème

Pour tout $\alpha>1$ et tout bras sous-optimal a, il existe une constante $C_{\alpha}>0$ telle que

L'algorithme UCB

0000000000000000

$$\mathbb{E}[N_a(T)] \le \frac{2\alpha}{(\mu^* - \mu_a)^2} \log(T) + C_\alpha.$$

Preuve : 1/3

Notation : $a^* = 1$ et contrôlons $N_2(T)$ pour $\mu_2 < \mu_1$.

$$\begin{array}{lcl} \mathcal{N}_{2}(T) & = & \displaystyle \sum_{t=0}^{T-1} \mathbb{1}_{(A_{t+1}=2)} \\ & = & \displaystyle \sum_{t=0}^{T-1} \mathbb{1}_{(A_{t+1}=2) \cap (\mathsf{UCB}_{1}(t) \leq \mu_{1})} + \sum_{t=0}^{T-1} \mathbb{1}_{(A_{t+1}=2) \cap (\mathsf{UCB}_{1}(t) > \mu_{1})} \\ & \leq & \displaystyle \sum_{t=0}^{T-1} \mathbb{1}_{(\mathsf{UCB}_{1}(t) \leq \mu_{1})} + \sum_{t=0}^{T-1} \mathbb{1}_{(A_{t+1}=2) \cap (\mathsf{UCB}_{2}(t) > \mu_{1})} \end{array}$$

Preuve : 1/3

Notation : $a^* = 1$ et contrôlons $N_2(T)$ pour $\mu_2 < \mu_1$.

$$N_{2}(T) = \sum_{t=0}^{T-1} \mathbb{1}_{(A_{t+1}=2)}$$

$$= \sum_{t=0}^{T-1} \mathbb{1}_{(A_{t+1}=2)\cap(\mathsf{UCB}_{1}(t)\leq\mu_{1})} + \sum_{t=0}^{T-1} \mathbb{1}_{(A_{t+1}=2)\cap(\mathsf{UCB}_{1}(t)>\mu_{1})}$$

$$\leq \sum_{t=0}^{T-1} \mathbb{1}_{(\mathsf{UCB}_{1}(t)\leq\mu_{1})} + \sum_{t=0}^{T-1} \mathbb{1}_{(A_{t+1}=2)\cap(\mathsf{UCB}_{2}(t)>\mu_{1})}$$

$$\mathbb{E}[N_2(T)] \leq \underbrace{\sum_{t=0}^{T-1} \mathbb{P}(\mathsf{UCB}_1(t) \leq \mu_1)}_{A} + \underbrace{\sum_{t=0}^{T-1} \mathbb{P}(A_{t+1} = 2, \mathsf{UCB}_2(t) > \mu_1)}_{B}$$

Preuve: 2/3

$$\mathbb{E}[N_2(T)] \leq \underbrace{\sum_{t=0}^{I-1} \mathbb{P}(\mathsf{UCB}_1(t) \leq \mu_1)}_{A} + \underbrace{\sum_{t=0}^{I-1} \mathbb{P}(A_{t+1} = 2, \mathsf{UCB}_2(t) > \mu_1)}_{B}$$

Contrôle du terme A

$$\begin{split} \sum_{t=0}^{T-1} \mathbb{P}(\mathsf{UCB}_1(t) \leq \mu_1) & \leq & 1 + e\alpha \sum_{t=1}^{T-1} \frac{\log(t)^2}{t^{\alpha}} \\ & \leq & 1 + e\alpha \sum_{t=1}^{\infty} \frac{\log(t)^2}{t^{\alpha}} := C_{\alpha}/2. \end{split}$$

Preuve: 3/3

Contrôle du terme B

(B)
$$\leq \sum_{t=0}^{T-1} \mathbb{P}(A_{t+1} = 2, \mathsf{UCB}_2(t) > \mu_1, \mathsf{LCB}_2(t) \leq \mu_2) + C_{\alpha}/2$$

avec

$$LCB_2(t) = \hat{\mu}_{2,N_2(t)} - \sqrt{\frac{\alpha \log t}{2N_2(t)}}.$$

$$(\mathsf{LCB}_2(t) < \mu_2 < \mu_1 \leq \mathsf{UCB}_2(t))$$

$$\Rightarrow (\mu_1 - \mu_2) \le 2\sqrt{\frac{\alpha \log(T)}{2N_2(t)}}$$

$$\Rightarrow N_2(t) \le \frac{2\alpha}{(\mu_1 - \mu_2)^2} \log(T)$$

Preuve: 3/3

Contrôle du terme B

$$(B) \leq \sum_{t=0}^{T-1} \mathbb{P}(A_{t+1} = 2, \mathsf{UCB}_2(t) > \mu_1, \mathsf{LCB}_2(t) \leq \mu_2) + C_{\alpha}/2$$

$$\leq \sum_{t=0}^{T-1} \mathbb{P}\left(A_{t+1} = 2, N_2(t) \leq \frac{2\alpha}{(\mu_1 - \mu_2)^2} \log(T)\right) + C_{\alpha}/2$$

$$\leq \frac{2\alpha}{(\mu_1 - \mu_2)^2} \log(T) + C_{\alpha}/2$$

Conclusion

$$\mathbb{E}[N_2(T)] \leq \frac{2\alpha}{(\mu_1 - \mu_2)^2} \log(T) + C_{\alpha}.$$

UCB1 est-il optimal?

Théorème

Pour tout $\alpha > 1$ et tout bras sous-optimal a, il existe une constante $C_{\alpha} > 0$ telle que

$$\mathbb{E}[N_a(T)] \leq \frac{2\alpha}{(\mu^* - \mu_a)^2} \log(T) + C_{\alpha}.$$

UCB1 est-il optimal?

Théorème

Pour tout $\alpha>1$ et tout bras sous-optimal a, il existe une constante $C_{\alpha}>0$ telle que

$$\mathbb{E}[N_a(T)] \leq \frac{2\alpha}{(\mu^* - \mu_a)^2} \log(T) + C_{\alpha}.$$

Pour des modèles où les récompenses sont binaires (Bernoulli)

$$\frac{2\alpha}{(\mu^* - \mu_{\mathsf{a}})^2} > \frac{4\alpha}{\mathsf{KL}(\nu_{\mathsf{a}}, \nu^*)}$$

donc l'algorithme n'est pas asymptotiquement optimal...

L'algorithme KL-UCB : un algorithme optimal

KL-UCB [Cappé et al. 13] utilise

$$\mathsf{UCB}_{a}(t) = \operatorname*{argmax}_{q > \hat{\mu}_{a, N_{a}(t)}} \left\{ d\left(\hat{\mu}_{a, N_{a}(t)}, q\right) \leq \frac{\alpha \log(t)}{N_{a}(t)} \right\}$$

avec
$$d(p,q) = \mathsf{KL}(\mathcal{B}(p),\mathcal{B}(q)).$$

On peut montrer (inégalité de Chernoff) que

$$\mathbb{P}(\mathsf{UCB}_{\mathsf{a}}(t) \leq \mu_{\mathsf{a}}) \leq e\alpha \frac{\log(t)^2}{t^{\alpha}}$$

Pour les bandits binaires, $\mathbb{E}[N_a(T)] \leq \frac{\alpha}{\mathsf{KL}(\nu_a, \nu^*)} \times \log T + C_{\alpha}$

Plan

- Exemples et modèle statistique
- Maximisation des récompense : l'algorithme UCB
- 3 Identification du meilleur bras : l'algorithme LUCB
- 4 Perspectives

Identification du meilleur bras : le cadre

Bras ordonnés tels que $\mu_1 > \mu_2 \ge \cdots \ge \mu_K$

Paramètres :

- ullet $\delta \in]0,1[$ un paramètre de risque
- $a^* = 1$ le bras optimal

La stratégie de l'agent consiste en :

- ullet une **règle d'échantillonnage** : bras A_t choisi à l'instant t
- ullet une **règle d'arrêt** : à l'instant au, il arrête l'échantillonnage
- une règle de recommendation, indiquant le bras choisi

$$\hat{a^*} = \underset{a=1...K}{\operatorname{argmax}} \hat{\mu}_{a,N_a(\tau)}$$

Son objectif:

- $\mathbb{P}(\hat{a^*} = a^*) \ge 1 \delta$ (algorithme δ -PAC)
- La nombre moyen d'échantillons $\mathbb{E}[au]$ est faible

L'algorithme utilise un intervalle de confiance $\mathcal{I}_{a}(t)$ sur μ_{a} :

$$\mathcal{I}_{a}(t) = [L_{a}(t), U_{a}(t)]$$

 $L_a(t)$ = Lower Confidence Bound $U_a(t)$ = Upper Confidence Bound

On utilisera

$$U_a(t) = \hat{\mu}_a(t) + \sqrt{\frac{\beta(t,\delta)}{2N_a(t)}}$$

$$L_a(t) = \hat{\mu}_a(t) - \sqrt{\frac{\beta(t,\delta)}{2N_a(t)}}$$

où $\beta(t, \delta)$ est un taux d'exploration.

A l'instant t, l'algorithme :

- tire deux bras bien choisis, u_t et l_t (en gras)
- s'arrête quand l'IC du bras optimal et ceux des bras sous-optimaux sont séparés

meilleur bras empirique, l_t bras sous-optimaux, u_t en gras

A l'instant t, l'algorithme :

- tire deux bras bien choisis, u_t et l_t (en gras)
- s'arrête quand l'IC du bras optimal et ceux des bras sous-optimaux sont séparés

meilleur bras empirique, l_t bras sous-optimaux, u_t en gras

Propriétés théoriques de LUCB

Théorème [Kalyanakrishnan et al. 2012]

Avec le taux d'exploration

$$\beta(t,\delta) = \log\left(\frac{2Kt^2}{\delta}\right),$$

l'algorithme LUCB vérifie

$$\mathbb{P}\left(\hat{a^*} = a^*
ight) \geq 1 - \delta \quad ext{et} \quad \mathbb{E}[au] = O\left(H\lograc{1}{\delta}
ight),$$

οù

$$H = \frac{1}{(\mu_1 - \mu_2)^2} + \sum_{s=2}^{K} \frac{1}{(\mu_1 - \mu_s)^2}.$$

- Exemples et modèle statistique
- Maximisation des récompense : l'algorithme UCB
- 3 Identification du meilleur bras : l'algorithme LUCB
- Perspectives

Conclusion et perspectives

Bilan

L'utilisation d'intervalles de confiance est cruciale pour l'obtention de bons algorithmes de bandits pour la minimisation du regret ou l'identification du meilleur bras, mais ceux-ci ne sont pas utilisés de la même façon dans les deux cas

Pour aller plus loin :

- La notion de meilleur bras peut être modifiée : la moyenne est-elle toujours un bon critère?
 [exposé d'Odalric]
- Peut-on incorporer de l'information sur les bras pour identifier le meilleur plus rapidement?
 [exposé de Marta]

