ÜBUNGEN ZU "C*-ALGEBREN UND K-THEORIE" ÜBUNGSBLATT 11 ABGABE: 16.01.2017

VL: PD DR. A. ALLDRIDGE; ÜBUNGEN: CH. MAX, MSC, D. OSTERMAYR, MSC

Aufgabe 1. Es seien $\mathcal{H}_1, \mathcal{H}_2$ Banachräume. Es seien V, W Unterräume von \mathcal{H}_2 (6 Punkte) mit $\dim(W) < \infty$, s.d. $V \oplus W = \mathcal{H}_2$. Dann ist die *Kodimension von V* definiert als

$$\operatorname{codim}(V) = \dim(W).$$

Sei nun $T \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$. Der Operator T heisst Fredholmoperator, wenn

- $\ker(T)$ endlich-dimensional ist,
- das Bild ran(T) endliche Kodimension in \mathcal{H}_2 hat.

Der Fredholmindex für einen Fredholmoperator T ist definiert als

$$\operatorname{Ind}(T) := \dim(\ker(T)) - \operatorname{codim}(\operatorname{ran}(T)).$$

Beweisen Sie folgende Aussagen.

- (1) Sei $T \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ ein Fredholmoperator von Banchräumen $\mathcal{H}_1, \mathcal{H}_2$. Dann ist ran(T) abgeschlossen. (Hinweis: Sie können zunächst zeigen, dass T nach unten beschränkt ist, d.h. es existiert ein $\delta > 0$, s.d. $||T(x)|| \ge \delta ||x|| \quad \forall x \in \mathcal{H}_1$.)
- (2) Es seien $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3$ Banachräume und $T \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$, $S \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_3)$ beschränkte Operatoren. Wenn zwei der drei Operatoren S,T und ST Fredholm sind, dann ist auch der dritte Operator Fredholm. Desweiteren gilt

$$\operatorname{Ind}(ST) = \operatorname{Ind}(T) + \operatorname{Ind}(S).$$

(3) Es seien $\mathcal{H}_1, \mathcal{H}_2$ Hilberträume und $T \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ ein Fredholmoperator. Dann ist auch T^* ein Fredholmoperator und es gilt

$$\operatorname{Ind}(T) = -\operatorname{Ind}(T^*).$$

Insbesondere gilt

$$\operatorname{Ind}(T) = \dim(\ker(T)) - \dim(\ker(T^*)).$$

Aufgabe 2. Sei \mathcal{H} ein Hilbertraum und $T \in \mathcal{L}(\mathcal{H})$.

(6 Punkte)

- (1) Sei $K \in \mathcal{K}(\mathcal{H})$. Dann ist 1+K ein Fredholmoperator. Zeigen Sie dazu, dass $\ker(1+K)$ und $\operatorname{ran}(1+K)^{\perp}$ endlich-dimensional sind und $\operatorname{ran}(1+K)$ abgeschlossen ist.
 - (2) Zeigen Sie die Äquivalenz der folgenden Aussagen.
 - (i) T ist Fredholm.
 - (ii) Es existiert ein Operator $G \in \mathcal{L}(\mathcal{H})$, s.d. TG-1 und GT-1 kompakt sind.
- (iii) Es sei $\pi: \mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H})/\mathcal{K}(\mathcal{H})$ die kan. Projektion. Dann ist $\pi(T)$ ein invertierbarer Operator.

(Hinweis: Für (i) \rightarrow (ii): Konstruieren Sie zunächst einen stetigen Operator \tilde{G} : $\operatorname{ran}(T) \rightarrow \ker(T)^{\perp}$. Für (ii) \rightarrow (i) können Sie das Ergebnis aus (1) benutzen.)

(6 Punkte)

Aufgabe 3. Beweisen Sie folgende Aussagen.

(1) Sei \mathcal{H} ein Hilbertraum. Die Fredholmoperatoren $\mathcal{F}(\mathcal{H})$ bilden eine offene Untermenge von $\mathcal{L}(\mathcal{H})$ und der Fredholmindex

Ind :
$$\mathfrak{F}(\mathcal{H}) \to \mathbb{Z}$$

ist lokal konstant.

(2) Es seien $f_1, f_2 \in \mathcal{C}_0(\mathbb{S}^1)$. Die Toeplitzoperatoren T_{f_1} und T_{f_2} sind Fredholm g.d.w. f_1 und f_2 keine Nullstellen haben, d.h. $f_1, f_2 \in \mathcal{C}_0(\mathbb{S}^1, \mathbb{C} \setminus \{0\})$ und in diesem Fall gilt

$$\operatorname{Ind}(T_{f_1}) = \operatorname{Ind}(T_{f_2}) \quad \Leftrightarrow \quad f_1 \sim_h f_2$$

wobei

 $f_1 \sim_h f_2 :\Leftrightarrow f_1 \text{ ist homotop zu } f_2 \text{ in } \mathcal{C}_0(\mathbb{S}^1, \mathbb{C} \setminus \{0\})$

: \$\Rightarrow\$ Es ex. eine stetige Abbildung \$F: \mathbb{S}^1 \times [0,1] \to \mathbb{C} \setminus \{0\}, \ \text{s.d.}:\$

$$F(\cdot,t) \in \mathcal{C}_0(\mathbb{S}^1,\mathbb{C}\setminus\{0\}) \,\forall \, t \in [0,1];$$

$$F(z,0) = f_1(z), F(z,1) = f_2(z) \forall z \in \mathbb{S}^1.$$

(3) Für beliebiges $f \in \mathcal{C}_0(\mathbb{S}^1, \mathbb{C} \setminus \{0\})$ existiert ein $n \in \mathbb{Z}$ s.d. $f \sim_h p_n$ wobei $p_n(z) = z^n$ und es gilt

$$\operatorname{Ind}(T_f) = -n.$$

(Hinweis: Benutzen Sie für die Homotopie, dass f durch ein trigonometrisches Polynom approximiert werden kann und verwenden Sie den Fundamentalsatz der Algebra.)