ディープラーニングの仕組みを知ろう!

第2回 人工知能勉強会

Shion MORISHITA

June 25, 2024

目次

はじめに

勾配降下法

勾配降下法の基本概念

勾配降下法の式

ニューラルネットワークと勾配降下法

ニューラルネットワークのパラメータと変数

ニューラルネットワークのコスト関数

はじめに

目的

- 勾配降下法の概念を理解する
- ニューラルネットワークの各層の変数やパラメータの表記を理解する
- ニューラルネットワークのコスト関数に勾配降下法を適用する方法を理解する
- 勾配降下法を適用する上で発生する問題点について理解する

勾配降下法

勾配降下法

勾配降下法の基本概念

勾配降下法とその目的

- 機械学習や最適化の分野で広く用いられる最適化アルゴリズム
- 目的:最小化(または最大化)したい関数の最適なパラメータを見つけること

勾配降下法のアイデア

どのように関数が最小となるパラメータを見つけるか?

- ■【重要】多変数関数の最小条件を利用(第1回)
- 斜面を転がるボールのイメージ

【重要】多変数関数の最小条件(第1回)

関数
$$z=f(x,y)$$
 が最小になる必要条件は、 $\frac{\partial f}{\partial x}=0$ かつ $\frac{\partial f}{\partial y}=0$

ポイント

どの成分から見ても傾きが 0 なら、最小値の可能性あり!

多変数関数の最小条件のイメージ

斜面を転がるボールのイメージ

斜面を転がるボール(多変数関数 ver.)

• 最速で転がる (Δz が最小になる) には Δx , Δy をどう決める?

勾配降下法

勾配降下法の式

【重要】勾配降下法の基本式(2変数関数)

 η を正の小さな定数として、変数 $x,\ y$ が $x+\Delta x,\ y+\Delta y$ に変化するとき、関数 z=f(x,y) が最も減少するのは次の関係を満たすときである:

$$\begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = -\eta \begin{bmatrix} \frac{\partial z}{\partial x} \\ \frac{\partial z}{\partial y} \end{bmatrix}.$$

勾配降下法の基本式の導出 i

「関数の近似公式 簡潔 ver.」(第1回)より、

$$\Delta z \simeq \left\langle \begin{bmatrix} \frac{\partial z}{\partial x} \\ \frac{\partial z}{\partial y} \end{bmatrix}, \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} \right\rangle.$$

「ベクトルの基本公式」(第1回)の内積の式

$$\langle \boldsymbol{a}, \boldsymbol{b} \rangle \triangleq \|\boldsymbol{a}\| \|\boldsymbol{b}\| \cos \theta$$

および、コーシー・シュワルツの不等式

$$-\|a\|\|b\| \le \langle a,b \rangle \le \|a\|\|b\|$$

勾配降下法の基本式の導出 ii

より、内積が最小となるのは $\cos\theta=-1$ のとき、すなわち、ベクトルの向きが反対 のとき($\theta=180^\circ$)。

ベクトルの向きが反対というのは、ベクトルの符号が異なるという意味なので、

$$a = -kb$$
 (k :正の定数)

と表せる。今回の表記に合わせれば、

$$\begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = -\eta \begin{bmatrix} rac{\partial z}{\partial x} \\ rac{\partial z}{\partial y} \end{bmatrix}$$
 (η : 正の定数)

と導かれる。

結局どういうこと??

ポイント Δx , Δy の値を、偏微分の値で決定できる!

【重要】勾配降下法の基本式(n変数)

 η を正の小さな定数として、変数 $x_1,\ x_2,\ \dots,\ x_n$ が $x_1+\Delta x_1,\ x_2+\Delta x_2,\ \dots,\ x_n+\Delta x_n$ に変化するとき、関数 f が最も減少するのは次の関係を満たすときである:

$$\begin{bmatrix} \Delta x_1 \\ \vdots \\ \Delta x_n \end{bmatrix} = -\eta \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}.$$

この式に従って点 (x_1, \ldots, x_n) を次々と移動させることで、関数 f が最小になるパラメータを探索する方法を<mark>勾配降下法</mark>という。

ニューラルネットワークと勾配降下法

ニューラルネットワークのパラメータと変数

ニューラルネットワークと勾配降下法

ユニットの復習

重み付き入力:
$$z=w_1x_1+w_2x_2\cdots+w_nx_n+b$$

出力: $y = \sigma(z)$

層に番号付けする

変数名・パラメータ名

- \bullet x_i
 - 入力層(層 1)にある i 番目のユニットの入力を表す変数。入力層では、出力と入力は同一値なので、出力の変数にもなる。また、該当するユニットの名称としても利用。
- w_{ji}^l
 - 層 l-1 の i 番目のユニットから層 l の j 番目のユニットに向けられた矢の重み。 i と j の順序に注意。ニューラルネットワークを定めるパラメータ。
- \bullet z_j^l
 - 層 *l* の *j* 番目にあるユニットが処理する重み付き入力を表す変数。
- ullet b_j^l
 - 層 l の j 番目にあるユニットのバイアス。ニューラルネットワークを定めるパラメータ。
- \bullet a_j^l
 - $\mathbf{R} l \mathbf{o} j$ 番目にあるユニットの出力変数。また、そのユニットの名称としても利用。

変数名・パラメータ名の図示

ニューラルネットワークの変数の関係式:入力層 i

※必要な時に見返してください。

入力層の i 番目のユニットの入力 x_i と出力 a_i^1 は同一値になる。

$$x_i = a_i^1 \quad (i = 1, \dots, 12)$$

ニューラルネットワークの変数の関係式:中間層 i

※必要な時に見返してください。

$a(\cdot)$ を活性化関数とする。

$$\begin{cases} z_1^2 = w_{11}^2 x_1 + w_{12}^2 x_2 + \dots + w_{1,12}^2 x_{12} + b_1^2 \\ z_2^2 = w_{21}^2 x_1 + w_{22}^2 x_2 + \dots + w_{2,12}^2 x_{12} + b_2^2 \\ z_3^2 = w_{31}^2 x_1 + w_{32}^2 x_2 + \dots + w_{3,12}^2 x_{12} + b_3^2 \\ a_1^2 = a(z_1^2), \ a_2^2 = a(z_2^2), \ a_3^2 = a(z_3^2) \end{cases}$$

ニューラルネットワークの変数の関係式:中間層 ii

行列表現にすると、

$$\begin{bmatrix} z_1^2 \\ z_2^2 \\ z_3^2 \end{bmatrix} = \begin{bmatrix} w_{11}^2 & \cdots & w_{1,12}^2 \\ \vdots & \ddots & \vdots \\ w_{31}^2 & \cdots & w_{3,12}^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{12} \end{bmatrix} + \begin{bmatrix} b_1^2 \\ b_2^2 \\ b_3^2 \end{bmatrix}$$

$$\begin{bmatrix} a_1^2 \\ a_2^2 \\ a_3^2 \end{bmatrix} = a \begin{pmatrix} \begin{bmatrix} z_1^2 \\ z_2^2 \\ z_3^2 \end{bmatrix} \end{pmatrix}$$

簡略化すると、

$$z_2 = \mathbf{W}_2 x + b_2, \quad a_2 = a(z_2)$$

ニューラルネットワークの変数の関係式:出力層 i

※必要な時に見返してください。

$a(\cdot)$ を活性化関数とする。

$$\begin{cases} z_1^3 = w_{11}^3 a_1^2 + w_{12}^3 a_2^2 + w_{13}^3 a_3^2 + b_1^3 \\ z_2^3 = w_{21}^3 a_1^2 + w_{22}^3 a_2^2 + w_{23}^3 a_3^2 + b_2^3 \\ a_1^3 = a(z_1^3), \ a_2^3 = a(z_2^3) \end{cases}$$

ニューラルネットワークの変数の関係式:出力層 ii

行列表現にすると、

$$\begin{bmatrix} z_1^3 \\ z_2^3 \end{bmatrix} = \begin{bmatrix} w_{11}^3 & w_{12}^3 & w_{13}^3 \\ w_{21}^3 & w_{22}^3 & w_{23}^3 \end{bmatrix} \begin{bmatrix} a_1^2 \\ a_2^2 \\ a_3^2 \end{bmatrix} + \begin{bmatrix} b_1^3 \\ b_2^3 \end{bmatrix}$$
$$\begin{bmatrix} a_1^3 \\ a_2^3 \end{bmatrix} = a \begin{pmatrix} \begin{bmatrix} z_1^3 \\ z_2^3 \end{bmatrix} \end{pmatrix}$$

簡略化すると、

$$z_3 = \mathbf{W}_3 a_3 + b_3, \quad a_3 = a(z_3)$$

ニューラルネットワークのコスト関数

ニューラルネットワークと勾配降下法

【参考】ギリシャ文字一覧

文字	名称	文字	名称
α	アルファ	ν	ニュー
β	ベータ	ξ	グザイ
γ	ガンマ	0	オミクロン
δ	デルタ	π	パイ
ϵ	イプシロン	ρ	\Box -
ζ	ゼータ	σ	シグマ
η	イータ	au	タウ
θ	シータ	v	ウプシロン
ι	イオタ	ϕ	ファイ
κ	カッパ	χ	カイ
λ	ラムダ	ψ	プサイ
μ	ミュー	ω	オメガ