Quiz-5 Solution (Point Processes)

Questions

- 1. (a) $\{Sn \leq t\}$ is the event that the n^{th} arrival occurs at some epoch $\tau \leq t$. This event implies that $N(\tau) = n$, and thus that $\{N(t) \geq n\}$. Similarly, $\{N(t) = m\}$ for some $m \geq n$ implies $\{S_m \leq t\}$, and thus that $\{S_n \leq t\}$.
 - (b) for n=2:

$$f_{S_1,S_2}(s_1,s_2) = f_{X_1,S_2}(x_1,s_2) = f_{X_1}(x_1)f_{S_2|X_1}(s_2|x_1) = \lambda e^{-\lambda x_1} \times \lambda e^{-\lambda(s_2-x_1)} = \lambda^2 e^{-\lambda s_2}$$
(1)

Then we suppose we have:

$$f_{S_1, S_2, \dots, S_n}(s_1, s_2, \dots, s_n) = \lambda^n e^{-\lambda s_n}, \text{ for some } n > 1$$
 (2)

Then we can write:

$$f_{S_1,\dots,S_n,S_{n+1}}(s_1,\dots,s_n,s_{n+1}) = f_{S_1,\dots,S_n}(s_1,\dots,s_n)f_{S_{n+1}|S_1,\dots,S_n}(s_{n+1}|s_1,\dots,s_n) = \lambda^n e^{-\lambda s_n} f_{S_{n+1}|S_1,\dots,S_n}(s_{n+1}|s_1,\dots,s_n)$$
(3)

We know that $S_{n+1} = S_n + X_{n+1}$. So:

$$f_{S_{n+1}|S_1,...,S_n}(s_{n+1}|s_1,...,s_n) = \lambda e^{-\lambda(s_{n+1}-s_n)}$$
 (4)

Then

$$f_{S_1,...,S_n,S_{n+1}}(s_1,...,s_n,s_{n+1}) = \lambda^n e^{-\lambda s_n} \lambda e^{-\lambda(s_{n+1}-s_n)}$$

$$= \lambda^{n+1} e^{-\lambda s_{n+1}}$$
(5)

2. The likelihood function is the joint density function of all the points in the observed point pattern $(t_1, ..., t_n) \in [0, T)$, and can therefore be factorised into all the conditional densities of each points given all points before it. This yields

$$L = f^*(t_1)...f^*(t_n)(1 - F^*(T)),$$
(6)

where the last term $(1 - F^*(T))$ appears since the unobserved point $t_n + 1$ must appear after the end of the observation interval. So we can write:

$$L = \left(\prod_{i=1}^{n} f^{*}(t_{i})\right) \frac{f^{*}(T)}{\lambda^{*}(T)}$$

$$= \left(\prod_{i=1}^{n} \lambda^{*}(t_{i}) \exp\left(-\int_{t_{i-1}}^{t_{i}} \lambda^{*}(s)ds\right)\right) \exp\left(-\int_{t_{n}}^{T} \lambda^{*}(s)ds\right)$$

$$= \left(\prod_{i=1}^{n} \lambda^{*}(t_{i})\right) \exp\left(-\int_{0}^{T} \lambda^{*}(s)ds\right)$$

$$(7)$$

where t0 = 0.

3. (a) $Z \leq t$ if and only if $X_i \leq t$ for each i, $1 \leq n$, so

$$Pr\{Z \le t\} = \prod_{i=1}^{n} Pr\{X_i \le t\} = [1 - \exp(-\lambda t)]^n$$
 (8)

(b) You can view T_1 as the time of the first arrival out of n Poisson processes each of rate λ . Thus T_1 is exponential with parameter $n\lambda$. More directly yet, $T_1 > t$ if and only if $X_i > t$ for $1 \le i \le t$, so $Pr\{T_1 > t\} = [exp(-\lambda t)]^n = exp(-n\lambda t)$. The time T_2 is the remaining time until the next student out of the remaining n-1 finishes. Because of the memorylessness of the exponential distribution, each of these n-1 students has an exponential time to go, so $Pr\{T_2 > t_2\} = \exp(-(n-1)\lambda t_2)$. Each of these times-to-go are independent of T_1 , so T_2 is independent of T_1 . In the same way T_i is exponential wih parameter $(n-i+1)\lambda$ and is independent of the earlier T_i s.