

Master of Science HES-SO in Engineering Av. de Provence 6 CH-1007 Lausanne

Master of Science HES-SO in Engineering

Orientation: Information and Communication Technologies (ICT)

NEW METHODS FOR TRANSACTIONS IN BLOCKCHAIN SYSTEMS

Joël Gugger

Under the direction of: Prof. Alexandre Karlov HEIG-VD

External expert: Pierre-Mathieu Alamy Bity

Information about this report

Contact information

Author: Joël Gugger

	MSE Student
	HES-SO//Master
	Switzerland
Email:	joel.gugger@master.hes-so.ch
Declaration of	honor
	I, undersigned, Joël Gugger, hereby declare that the work sub- mitted is the result of a personal work. I certify that I have not resorted to plagiarism or other forms of fraud. All sources of information used and the author quotes were clearly mentioned.
Place, date:	
Signature:	
Validation Accepted by the l	HES-SO//Master (Switzerland, Lausanne) on a proposal from:
	Karlov, Thesis project advisor lamy, Bity, Main expert
Place, date:	

Acknowledgments

I especially want to acknowledge Thomas Shababi and Daniel Lebrecht for their helpful contribution and rereading of this work.

Abstract

Bitcoin is a decentralized peer-to-peer currency that allow users to to pay for things electronically. Bitcoin was created by a pseudonymous software developer going by the name of Satoshi Nakamoto in 2008, as an electronic payment system based on mathematical proof. Yet the largest challenge in Bitcoin for the coming years is scalability. Currently, Bitcoin can only handle a few transactions per second on the network. This is not sufficient in comparison to large payment infrastructures, which allow tens of thousands of transactions per second. As a potential scalability solution, the idea of payment channels was suggested by Satoshi in an email to Mike Hearn. A one-way payment channel specific for retail commercial transactions is presented, analyzed and optimized with threshold cryptography. The threshold scheme selected has been adapted and implemented into the Bitcon cryptographic library to compute a special two-party threshold ECDSA signature.

Keywords: Crypto-currencies, Bitcoin, Payment channels, Cryptography, Threshold ECDSA signatures, Curve secp256k1, Elliptic Curve Cryptography

Contents

A	cknowledgements	V
Al	bstract	vii
1	Introduction	1
2	Bitcoin, a peer-to-peer payment network	3
	2.1 The blockchain	4
	2.2 Transactions	5
	2.3 Scalability of Bitcoin	10
3	Payment channels, a micropayment network	11
	3.1 Types of payment channel	12
	3.2 One-way channel (Shababi-Gugger-Lebrecht)	14
	3.3 Optimizing payment channels	14
4	ECDSA asymmetric threshold scheme	17
	4.1 Reminder	18
	4.2 Threshold scheme	. 21
	4.3 Threshold Hierarchical Determinitic Wallets	29
	4.4 Threshold deterministic signatures	34
5	Implementation in Bitcoin-core secp256k1	35
	5.1 Configuration	37
	5.2 DER parser-serializer	39
	5.3 Paillier cryptosystem	
	5.4 Zero-knowledge proofs	45
	5.5 Threshold module	49
6	Further research	55
	6.1 Side-channel attack resistant implementation and improvements	55
	6.2 Hardware wallets	56
	6.3 More generic threshold scheme	56
	6.4 Schnorr signatures	56
7	Conclusions	59
\mathbf{A}	Experimental implementation in Python	61
Lis	st of Figures	87

${\bf Contents}$

List of Tables	89
List of Sources	91
Bibliography	93
Glossary	97

1 | Introduction

Bitcoin is a decentralized peer-to-peer currency that allows users to pay for things electronically. Thousands of other cryptocurrencies exist, but only some of them are really interesting from a political, economical or technical point of view. Bitcoin was created by a pseudonymous software developer going by the name of Satoshi Nakamoto in 2008, as an electronic payment system based on mathematical proof. The idea was to produce a means of exchange, independent of any central authority, which could be transferred electronically in a secure, verifiable and immutable way. The blockchain is the output of this secure, verifiable and immutable mathematical proof.

The most significant challenge in Bitcoin for the coming years is scalability. Currently, Bitcoin enforces a block-size limit which is equivalent to only a few transactions per second on the network. This amount is not sufficient in comparison to large payment infrastructures, which allow tens of thousands of transactions per second and even more at peak times such as Christmas. To address this there are some proposals to modify the transaction structure (like SegWit), some to modify the block-size limit (such as SegWit2x) and others to create a second layer on top of the Bitcoin protocol (such as Lightning Network). In the same idea of a second layer, this paper proposes a new implementation of a unidirectional payment channel for retail commercial transactions. A unidirectional payment channel allows two parties to transact over the blockchain while minimizing the number of transactions needed on the blockchain in a secure and trustless way. Every kind of channel needs multi-signature addresses to secure the funds. A cryptographic threshold scheme might improve these schemes significantly. Finding such a threshold scheme that fulfills the requirements is not trivial. The threshold scheme selected is adapted and implemented into the Bitcoin cryptographic library to compute a particular two-party threshold ECDSA signature.

2 | Bitcoin, a peer-to-peer payment network

The Bitcoin ecosystem is composed of multiple actors. Users of the network access information via software on their laptop or mobile phone. These users can see the amounts present in their addresses. An address is the digest of a public key, itself being the representation of a private key. An address is owned by a user if this user has the associated private key in his possession. Users can transfer funds from some of their addresses to other addresses owned by other users or themselves. When funds are transferred a transaction is created and sent to the network. The network is composed of nodes, and these nodes take care of its proper functioning. Some of these nodes are called miners, they listen to new transactions and try to include them into the blockchain. This blockchain is the output, the necessary result, of the Bitcoin protocol and can be compared to a distributed public ledger. Nodes are software running all over the world. This software is maintained and improved by a group of developers present all over the world and for Bitcoin, the original and reference implementation is Bitcoin-core (previously referred to as bitcoind). Bitcoin-core allows interacting with the blockchain, and it is possible to retrieve information such as current unconfirmed transactions, information present in the blockchain, the amount available for an address, and more. Unconfirmed transactions are transactions that have not been yet included in the blockchain but have already been broadcast to the network.

In the following, some building blocks needed to figure out how payment channels work and how we can improve them, with some cryptography, are explored. If you are a master of Bitcoin and you already know how blocks are created, how transactions are structured, how fees are calculated and how segregated witness works, this chapter will just be a reminder. For further explanation, the best resource today is the book "Mastering Bitcoin" by Andreas Antonopoulos [1].

Contents

2.1	The blo	ockchain
	2.1.1	A chain of blocks
	2.1.2	A list of transactions
2.2	Transa	ctions
	2.2.1	A list of inputs & outputs
	2.2.2	Transaction fees
	2.2.3	Scripting language
	2.2.4	Segregated witness
	2.2.5	Transaction malleability
2.3	Scalab	ility of Bitcoin
	2.3.1	Layer-two applications

2.1 The blockchain

The blockchain, as indicated by the name, is a chain of blocks. Blocks are created by miners in a race to find the next valid block. A block is valid if its identifier, i.e., the double hash of its header, is lower than the current difficulty target. It is worth noting that the validity of a block is based on several other criteria which are not mentioned here. For further information, please refer to the book "Mastering Bitcoin". The header of a block is composed of a version number, a creation timestamp, a nonce, ??or the difficulty target used as the boundary??.

The difficulty target is adjusted every 2016 blocks, so that on average, a valid block is found in the network every ten minutes. The probability of finding a block can be modelled as a Poisson process, i.e., the probability of a given number of events occurring in a fixed interval of time or space, if these events occur with a known constant rate, is independent of the time since the last event. A miner will create a candidate block and compute its identifier if this identifier is lower than the current difficulty target then the block is valid and the miner notifies the network that he found the next block. Then the process starts again. If the block identifier is not valid, the miner can change the nonce value in the header and check with the new identifier. Enumerating these identifies to find the next valid block requires an enormous amount of power. All of the miners, round the clock, keep searching for the next valid block.

2.1.1 A chain of blocks

As mentioned before, the blockchain is a chain which must be secure, verifiable, and immutable. To achieve immutability, modification of previous blocks must invalidate the chain. The block identifier is affected by information like the creation timestamp or the nonce used to adapt the modifier but also from the previous block identifier in the chain. That means that if the previous block identifier is changed for example because its content changed, the child block will become invalid as well as its child, and so on.

Modifying the blockchain without invalidating the chain requires recomputing all the block identifiers after the changed block. It requires a quantity of power that can be estimated and for which the costs represent a certain safety threshold. It is established that a transaction included in a block can be considered as safe after six child blocks. The amount of power needed to erase this transaction became statistically too high to be probable, but it does not mean that it will never happen since there is the same probability of finding a valid block with the first nonce than with the thousandth.

2.1.2 A list of transactions

To be useful a block needs content. In Bitcoin, transactions compose the content of a block. As mentioned before, a transaction is called *confirmed* when it is included in a block. The number of confirmations, also called *depth*, is related to the number of blocks mined after the inclusion of the transaction.

A Merkle tree is created to keep track of all the transactions included in a block. This Merkle tree, or hash tree, is a is a structure in which every leaf node is labeled with the hash of a data block, and every non-leaf node is labeled with the cryptographic hash of the labels of its child nodes.

Figure 2.1 Merkle tree construction

Source: https://en.wikipedia.org/wiki/Merkle_tree

Given the top hash, known as the Merkle root, and a leaf, it is possible to prove the membership by giving the path for each complementary hash. E.g given the Merkle root and L1, the proof is Hash 0-1 and Hash 1. The verifier can then compute the hash of L1, the result of this hash with Hash 0-1, and then with Hash 1. If the result is the same as the Merkle root, then L1 is a part of the tree.

In a block, the miner creates a Merkle tree of all included transaction identifiers and puts the Merkle root into the header of the block. To validate if a transaction is included in a block the path must be provided. Then the resulting hash is compared to the Merkle root registered in the block's header.

2.2 Transactions

Transactions allow users to move Bitcoins from one address to another and are the content of Bitcoin's blockchain. In Bitcoin, the blockchain does not store a balance for each user; the blockchain keeps only the history of all transactions made since the beginning.

2.2.1 A list of inputs & outputs

A transaction is composed of a list of inputs and a list of outputs. In other words, where the Bitcoins come from and where they go. An input refers to an unspent output at the address from where funds will be spent, and output refers to an address where the funds will go. To spend funds the user needs to control the addresses where unspent outputs are present. These unspent outputs are called UTXOs and, combined, represent the total amount owned by a user.

Figure 2.2 A chain of transactions where inputs and outputs are linked

Source: https://github.com/bitcoinbook/bitcoinbook/blob/second_
edition/ch02.asciidoc

Each input has a value (the value specified in the output to which the input points). The sum of the value of all inputs in a transaction must be less than the sum of the values specified in the outputs, with the difference being the fee, meaning an input must be spent entirely.

The most straightforward transaction is composed of one input and one output with the same amount of money in and out if we include the fee. However, the most typical transaction is composed of one input, referring to where the funds come from, and two outputs as it is rare to have the right amount available in one UTXO. In this case, the first output is the user who will receive the funds, with the amount transferred, and the second output is another address owned by the sender to gather the change, i.e., the remaining amount.

As with blocks, transactions also have an identifier. These identifiers are created in the same way as blocks, by taking the double hash of the data, i.e., the signed transaction. This means that, in the original design, a transaction does not have its final transaction identifier (TXID) before it is wholly signed (every input).

2.2.2 Transaction fees

The sum of all outputs of a transaction is constrained by the sum of the inputs, but the difference is implicitly considered as a fee (as shown in Figure 2.2.) Fees were not required in the beginning, but today a transaction will not be relayed, nor included in a block without paying fees. A miner, when he finds a block, can create the first transaction without inputs, where a fixed amount of new coins is created plus the total amount of fees collected in all the included transactions. A miner will, therefore, select the transactions that pay the most fees given the space they consume

in the block. Fees are calculated with the weight of the transaction, the weight is equal to the transaction size in bytes. A ratio of fee per byte/weight is then selected to find the fee for a transaction.

2.2.3 Scripting language

As described before, outputs or UTXOs are related to addresses and proof of ownership is required to spend them. For spending, the Bitcoin protocol uses digital signatures. To spend a UTXO, a valid signature for the address from which the it is being spent is required and, to sign, the private key is required. Thus, while signing a transaction corresponding to the right address, it is possible to prove that the user owns the address. However, the protocol does not just require signatures and public keys, conditions to *unlock* a UTXO are structured in scripts. Bitcoin has a stack-based script language called "Bitcoin Script".

Figure 2.3 Example of simple Bitcoin script program execution

Source: https://github.com/bitcoinbook/bitcoinbook/blob/second_
edition/ch06.asciidoc

The list of all the OP_CODES available in Bitcoin's scripting language is in the documentation. Among them are OP_CHECKSIG, which verifies a given signature with a public key provided onto the stack, OP_IF, OP_ELSE, OP_ENDIF create execution branches with a boolean on the stack, OP_DUP duplicates the value on the stack or OP_HASH160, OP_SHA256 which compute hashes of values on the stack.

Each input and output have a script. For outputs, the script establishes the requirement to be fulfilled in order to be able to spend it. An address is the result of the public key hashed with a SHA256 and then hashed with a RIPEMD160 encoded with a checksum in a more human-readable format. A user can decode the human-readable format of an address to retrieve the hash and create an output script called Pay To Public Key Hash (P2PKH). With the script, the address is retrieved, and given the address and the script, only the user who holds the private key of that address will be able to sign the transaction and spend the funds. The user controlling that address can create a transaction where that input points to the UTXO and, to unlock the funds, the user needs to sign the transaction and give the signature with the public key in the input's unlocking script. Before including a transaction in a candidate block, a miner validates all the inputs. He needs to check if the outputs are in fact UTXOs, so ensuring the outputs are unspent, and execute the locking script with the unlocking script. Both scripts are concatenated to validate input; the unlocking script first (as shown in Figure 2.4).

Figure 2.4 Example of pay to public key hash script

Source: https://github.com/bitcoinbook/bitcoinbook/blob/second_

edition/ch06. asciidoc

The script in Figure 2.4, when executed, put the signature on top of the stack, then the public key. The public key is duplicated, hashed, and the public key hash present in the locking script is put on top of the stack, then the two first elements on top of the stack are then compared. If the comparison fails, the script fails and the transaction is rejected. If the test passes, the signature will be checked with the two remaining parameters on the stack: the public key and the signature. If the signature is valid, the value True is put on top of the stack. Otherwise, the value False put on top of the stack. If the value True is present on top of the stack at the end of the script the transaction is valid, otherwise the transaction is invalid.

2.2.4 Segregated witness

Segregated Witness (SegWit) is the Bitcoin Improvement Proposal (BIP) 141 that proposed changing the transaction structure to fix transaction malleability, add script versioning, and improve other aspects [2, 3]. In fact, SegWit changed the way outputs

are structured. The malleability is fixed if all inputs use SegWit only. A transaction can have SegWit inputs and non-SegWit inputs at the same time. The BIP abstract explains the purpose of SegWit:

This BIP defines a new structure called a "witness" that is committed to blocks separately from the transaction merkle tree. This structure contains data required to check transaction validity but not required to determine transaction effects. In particular, scripts and signatures are moved into this new structure.

The witness is committed in a tree that is nested into the block's existing merkle root via the coinbase transaction for the purpose of making this BIP soft fork compatible. A future hard fork can place this tree in its own branch.

With SegWit, a transaction has two TXIDs. The first is determined without all the witness data, so it is deterministic at transaction creation. The second one is related to the witness data and changes when signatures appear. This separation fixes the transaction malleability issue. The second big change is the way the size is calculated to determine the fees. The transaction weight Tx Weight becomes Base Tx * 3 + Total Size where BaseTx is the size without the witness data and Total Size is the serialized transaction with all the data, including the witness data. With this new structure the fee calculation changes. The new structure introduces a virtual transaction size such as virtual size is equal to Tx Weight/4. Thus, SegWit reduces the weight of the witness data in the calculus of the fees.

2.2.5 Transaction malleability

The fact that the transaction identifier depends on the hash of the whole serialized transaction while the signature does not currently cover all the data in a transaction introduces what is called transaction malleability. A miner could tweak the transaction to change is identifier before including it into a block without invalidating it nor changing the claiming output conditions. This malleability means that an unconfirmed chain of transactions must not be trusted (because the following transactions will depend on the hashes of the previous transactions.)

The first way to achieve malleability is to tweak the signatures themselves. For every signature (r, s), the signature $(r, -s \pmod{n})$ is a valid signature for the same message. As mentioned in the Bitcoin wiki about transaction malleability:

As of block 363724, the BIP66 soft fork has made it mandatory for all new transactions in the block chain to strictly follow the DER-encoded ASN.1 standard. Further efforts are still under way to close other possible malleability within DER signatures.

However, even if the format is standardized and enforced, signatures can still be changed by anyone who has access to the corresponding private keys. When the user signs a transaction, the unlocking script (scriptSig) contains, e.g., for a standard P2PKH, the signature and the public key. These data are present in the signed transaction, but cannot be present during the signing process because they do not yet exist. This presence of signatures in the script means that the content of unlocking

Chapter 2. Bitcoin, a peer-to-peer payment network

scripts are not part of the signing data, but part of the hashing data for the TXID. E.g., by introducing an additional OP_CODE, it is possible to change the TXID without invalidating the signature.

Nevertheless, with SegWit activated, now the transaction malleability with signatures and scripts is no longer possible. As mentioned in the BIP:

It allows creation of unconfirmed transaction dependency chains without counterparty risk, an important feature for offchain protocols such as the Lightning Network.

2.3 Scalability of Bitcoin

Improvements in the consensus layer have been made and will continue to appear to answer the problem of scalability. However, modifying the consensus layer is not easy, usually soft forks are needed, and in some cases hard forks, both of which can be a lengthy and painful process as majority adoption of the changes is required. With SegWit, the latest significant improvement on-chain, all the prerequisites to construct a robust layer-two application, such as fixing malleability, are fulfilled.

2.3.1 Layer-two applications

The layer-two is an architectural concept where a blockchain is used as a source of truth and only for resolving disagreements. Usually, the construction that uses this architectural concept is called payment channels or micropayment channels. These channels enable scalability because they reduce the number of transactions needed on the blockchain if two users exchange often.

3 | Payment channels, a micropayment network

Payment channels or micropayment channels, as mentioned previously, are one part of the scalability solution. There are various propositions to construct such structures. To have a better understanding of the differences, strengths, and weaknesses of some of them the author proposes a classification and definitions in the white paper in the following appendices. Those definitions are repeated starting now.

Definition 3.0.1 (Trustless) A channel is trustless if and only if the safety of funds for every player $p_i \in \mathcal{P} = \{\mathcal{P}_0, \dots, \mathcal{P}_n\}$ at each step \mathcal{S} of the protocol does not depend on player $\Delta p = \mathcal{P} - p_i$'s behavior.

Definition 3.0.2 (Optimal) A channel is optimal if and only if the number of transactions $\mathcal{T}(\mathcal{C})$ needed to claim the funds for a given constraint \mathcal{C} is equal to the number of moves $\mathcal{M}(\mathcal{C})$ needed to satisfy the constraint at any time without breaking the first definition.

For a constraint C in a channel $\mathcal{P}_1 \to \mathcal{P}_2$, refunding \mathcal{P}_1 requires $\mathcal{M}(C) = 1$, thus an optimal scheme requires $\mathcal{T}(C) = \mathcal{M}(C) = 1$. Note: in a channel $\mathcal{P}_1 \to \mathcal{P}_2$ refund and settlement both require $\mathcal{M}(C) = 1$.

Definition 3.0.3 (Endless) A channel is endless if and only if there is no predetermined lifetime at the setup.

Definition 3.0.4 (Pulseless) A channel is pulseless if and only if there is no need to refresh or close the channel on-chain while at least one player $p_i \in \mathcal{P} = \{\mathcal{P}_0, \dots, \mathcal{P}_n\}$ where the available amount to send is $A(p_i) > 0$. By definition a pulseless channel must be also endless.

Definition 3.0.5 (Undelayed) A channel is undelayed if and only if each player $p_i \in \mathcal{P} = \{\mathcal{P}_0, \dots, \mathcal{P}_n\}$ can trigger the process to get their money back at any time.

These definitions are used in the following to compare different commonly exposed payment channel constructions. It is worth noting that the list does not contain all the payment channel propositions and some of them might be missing. However, the list contains a fairly good representation of the different types existing.

Contents

3.1	Types	of payment channel	2
	3.1.1	Unidirectional	2
	3.1.2	Bidirectional	2
	3.1.3	Summary	3
3.2	One-v	vay channel (Shababi-Gugger-Lebrecht)	4
3.3	Optim	izing payment channels	4

3.1 Types of payment channel

We can distinguish two type of channels, the unidirectional channel that allows one user to send money to another user in a channel and the bidirectional channel that allows two users to send in either direction in a channel. Usually, a bidirectional channel is more optimal than two unidirectional channels.

3.1.1 Unidirectional

In unidirectional channels, there is a payer, later referred to as player-one or client, and a payee, later referred to as player-two or provider. It is not possible to transfer money back in the reverse direction in the channel.

Spilman-style payment channels

Spilman-style payment channels, proposed by Jeremy Spilman in 2013 [4], are the most simple construction of a unidirectional payment channel. They have a finite lifetime predefined at the setup phase and the client, i.e., the payer, cannot trigger their refund before the end of the channel lifetime (but he can receive his funds back if the payee settles the channel before the end of the lifetime). The channel is one-time use. When the payer or the payee get their funds, the channel is closing. Neither the payer nor the payee need to watch the blockchain to react to events during the lifetime of the channel because only the payee can broadcast a transaction, so both do not need to watch the blockchain to be safe. It is worth noting that, without a proper fix to transaction malleability [3, 5, 6, 7], this scheme is not secure.

According to the previous definitions, Spilman-style payment channels are trustless (assuming that a suitable solution for transaction malleability has been implemented), and optimal but not endless nor undelayed.

CLTV-style payment channels

Introduced in 2015, CLTV-style payment channels are a solution to the malleability problem in Spilman-style payment channels. With the new OP_CODE check locktime verify (OP_CHECKLOCKTIMEVERIFY), redefining the OP_NOP2, it is possible to enforce the non-spending of a transaction output until some time in the future. With OP_CHECKLOCKTIMEVERIFY a transaction output can enforce the spending transaction to have a nLockTime later or equal to the specified value in the script [8].

Instead of creating a funding transaction and a refund transaction vulnerable to transaction malleability attacks, the client creates the funding transaction output with a script that allows the provider and the client to spend the funds with co-operation or, after a lock time, the client can spend the funds without the co-operation of the provider.

CLTV-style payment channels have the same properties as Spilman-style payment channels following the previous definition but are not subject to transaction malleability attacks.

3.1.2 Bidirectional

In a bidirectional channel C, the player A and the player B can send funds in direction C_{AB} and C_{BA} . A bidirectional channel can be a specific scheme or a pairing of existing unidirectional channels.

Listing 3.1 Locking script (scriptPubKey) with CHECKLOCKTIMEVERIFY

Decker-Wattenhofer duplex payment channels

Decker-Wattenhofer duplex payment channels [9], also called Duplex Micropayment Channels (DMC), proposed in 2015, are bidirectional channels based on pairs of Spilman-style unidirectional channels. The construction has a finite lifetime predefined at the setup phase but can be refreshed on-chain to keep the channel open with an updated state. During the refresh process, it is possible to refill the channel, and the scheme allows payment routing with Hashed Timelock Contracts (HTLC).

Duplex payment channels are trustless and endless, but not optimal. The uncooperative close of the channel requires d+2 transactions. They are not pulseless (it requires a refresh transaction when the lifetime runs over, to keep the channel open) and not undelayed (without other players cooperation the funds are recovered after nLockTime values).

Poon-Dryja payment channels

Poon-Dryja payment channels, also called Lightning Network, is a proposed implementation of HTLC with bidirectional payment channels which allow payments to be securely routed across multiple peer-to-peer payment channels [10].

Their scheme is trustless (assuming that SegWit has been implemented), endless, pulseless, and undelayed but not optimal when the channel closes without co-operation.

3.1.3 Summary

Channel	Type	Optimal	Endless	Pulseless	Undelayed
Spilman-style	Uni	Yes	No	No	No
CLTV-style	Uni	Yes	No	No	No
Decker-Wattenhofer DMC	Bi	No	Yes	No	No
Poon-Dryja	Bi	No	Yes	Yes	Yes
Shababi-Gugger-Lebrecht	Uni	No	Yes	Yes	Yes

Table 3.1 Summary of different payment channels

This table summarizes the different properties of the proposed definitions of central channel schemes. The last row refers to the next presented scheme.

3.2 One-way channel (Shababi-Gugger-Lebrecht)

Our one-way payment channel for Bitcoin is a modified version of other layer-two applications, such as "Yours Lightning Protocol" or Lightning Network [10, 11]. The scheme is specially designed for a client to provider scenario, where the provider has multiple clients through multiple channels. The core design aims to be as cheap as possible for the provider while being flexible for settlement. The white paper describing the core design more in-depth is in the following appendices.

Our payment channel requires SegWit, and is trustless, endless, pulseless, and undelayed but not optimal when the channel closes without co-operation.

A part of this thesis was devoted to writing the white paper describing our channel scheme while working on the scheme itself. During this work, we found a possible attack, described in the white paper, which we fixed.

The next step has been to analyze how it is possible to optimize the channel with threshold cryptography. As it is possible to see, every channel construction depends on a funding transaction that locks funds in a 2-out-of-2 multi-signature script. This funding transaction is always on-chain, so if it's possible to replace this script with a standard P2PKH output the savings should be attractive.

3.3 Optimizing payment channels

Three transactions are compared with SegWit¹ and without. Optimization is expressed in percentage of size or virtual-size economized. The Script Hash (SH) consumes a multi-signature script, and the Public Key Hash (PKH) consumes a standard public key. Noted that size can vary few bytes with SegWit.

		Non-SegWit		SegWit		
		R-Size	О	R-Size	V-Size	О
First Refund SH PKH	SH	302	36.75%	340	174	22.99%
	PKH	191	30.7370	216	134	
Refund Normal	SH	335	32.54%	372	207	20.29%
	PKH	226		246	165	
Settlement	SH	335	32.54%	372	207	20.29%
	PKH	226		246	165	

Table 3.2 Summary of transaction size optimization

The average fee per byte in the last three months is around 292 Satoshis. This optimization allows saving until 32,412 Satoshis for the first refund transaction without SegWit, and 12,264 Satoshis for a refund or a settlement transaction with SegWit. At the current price, these amounts represent between USD \$1 and USD \$2.65². If the channel is used for micropayments such as a couple of cents each time, this optimization makes the difference and lower the required threshold for rentability. The first refund transaction being less expensive, this also makes the client commitment easier.

¹ The transaction size is calculated with nested-SegWit and not with native mode.

 $^{^2}$ Feb 2018

Requirements need to be defined to be able to replace the multi-signature script with a threshold scheme. Analyze the protocol and the signing process for a multi-signature script allows to define these requirements. A multi-signature script can be unlock with two different public keys and their signature. These signatures can be ordered in both directions, and signers order does not matter. The protocol uses this observation. A transaction is usually held fully signed only by one player. The threshold scheme must follow these requirements (i) 2 players need to co-operate to generate a valid signature, (ii) both must be able to start the signing process, and (iii) only one player must be able to retrieve the signature at the end of the process. If both need the signature a sharing is always feasible, and the current protocol is not better in this case.

4 | ECDSA asymmetric threshold scheme

Threshold cryptography has been discussed for a long time already, many cryptographic schemes like RSA or Paillier [12, 13] exist, but the difficulty is to use them in a real case application. Since Bitcoin become famous, people have lost funds because they lose keys or get hacked. Since then research has been done to secure Bitcoin wallets [14, 15], however, the most significant problem today in Bitcoin that slows down the adoption of a threshold cryptosystem is the complexity of creating an efficient and flexible scheme for Elliptic Curve Digital Signature Algorithm (ECDSA). Recently, researchers have focused on finding more efficient and more generic systems, but fortunately, a protocol perfectly fulfilling the needs described in the previous chapter required to improve payment channels in Bitcoin already exists. Nevertheless, this scheme explains how to perform a Digital Signature Algorithm (DSA) threshold signature and not ECDSA. So the protocol needs to be adapted.

The scheme analyzed, transformed, and implemented in the following has been proposed by MacKenzie and Reiter in their paper "Two-Party Generation of DSA Signatures" [16]. This scheme is also the basis of several other papers previously cited. They base their construction of a threshold signature scheme with DSA based on a simple multiplicative shared secret and homomorphic encryption to keep the individual values unknown by the other player. The homomorphic encryption used as an example in the paper and chosen for the implementation is the Paillier cryptosystem [17]. The following chapter describes how to adapt the scheme from DSA to ECDSA and introduces some fundamental building blocks needed for a real case scenario like hierarchical deterministic threshold wallet or deterministic signatures.

Contents

4.1	Remin	der
	4.1.1	Elliptic curves
	4.1.2	Paillier cryptosystem
	4.1.3	Signature schemes
4.2	Thres	nold scheme
	4.2.1	Adapting the scheme
	4.2.2	Adapting zero-knowledge proofs
4.3	Thres	nold Hierarchical Determinitic Wallets
	4.3.1	Private parent key to private child key
	4.3.2	Public parent key to public child key
	4.3.3	Child key share derivation
	4.3.4	Proof-of-concept implementation
4.4	Thres	nold deterministic signatures

4.1 Reminder

Before introducing the threshold scheme, reminders of basic components used in the scheme are presented. These reminders are composed of Elliptic Curves (EC) basic mathematics, Paillier homomorphic encryption scheme, and digital signature protocols, in particular DSA and ECDSA.

4.1.1 Elliptic curves

Bitcoin uses EC cryptography for securing its transaction. ECDSA, based on the DSA proposal by the National Institute of Standards and Technology (NIST), over the curve secp256k1, proposed by the Standards for Efficient Cryptography Group (SECG), is used [18].

Secp256k1 curve

The curve secp256k1 is defined over the finite field \mathbb{F}_p of 2^{256} bits with a Koblitz curve $y^2 = x^3 + ax + b$ where a = 0 and b = 7.

$$y^2 = x^3 + 7$$

The curve order n defines the number of elements (points) generated by the generator G on the curve. Exponentiation of the generator $g^a \mod p$ becomes a point multiplication with the generator $a \cdot G$.

Points addition

With two distinct points P and Q on the curve \mathcal{E} , geometrically the resulting point of the addition is the inverse point, (x, -y) of the intersection point with a straight line between P and Q. An infinity point \mathcal{O} represents the identity element in the group. Algebraically the resulting point is obtained with:

$$P + Q = Q + P = P + Q + \mathcal{O} = R$$

$$(x_p, y_p) + (x_q, y_q) = (x_r, y_r)$$

$$x_r \equiv \lambda^2 - x_p - x_q \pmod{p}$$

$$y_r \equiv \lambda(x_p - x_r) - y_p \pmod{p}$$

$$\lambda = \frac{y_q - y_p}{x_q - x_p}$$

$$\equiv (y_q - y_p)(x_q - x_p)^{-1} \pmod{p}$$

$$(4.1)$$

Point doubling

For P and Q equal, the formula is similar, the tangent to the curve \mathcal{E} at point P determines R.

$$P + P = 2P = R$$

$$(x_p, y_p) + (x_p, y_p) = (x_r, y_r)$$

$$x_r \equiv \lambda^2 - 2x_p \pmod{p}$$

$$y_r \equiv \lambda(x_p - x_r) - y_p \pmod{p}$$

$$\lambda = \frac{3x_p^2 + a}{2y_p}$$

$$\equiv (3x_p^2 + a)(2y_p)^{-1} \pmod{p}$$

$$(4.2)$$

Point multiplication

A point P can be multiplied by a scalar d. The straightforward way of computing a point multiplication is through repeated addition where $dP = P_1 + P_2 + \cdots + P_d$.

Lemma 4.1.1 (Elliptic Curve Discrete Logarithm Problem) Given a multiple Q of P where Q = nP it is infeasible to find n if n is large.

Lemma 4.1.2 (Point Order) A point P has order 2 if $P + P = \mathcal{O}$, and therefore P = -P. A point Q has order 3 if $Q + Q + Q = \mathcal{O}$, and therefore Q + Q = -Q.

4.1.2 Paillier cryptosystem

Wikipedia: The Paillier cryptosystem, invented by and named after Pascal Paillier in 1999, is a probabilistic asymmetric algorithm for public key cryptography. The problem of computing *n*-th residue classes is believed to be computationally difficult. The decisional composite residuosity assumption is the intractability hypothesis upon which this cryptosystem is based.

Encryption

With a public key (n, g) and a message m < n, select a random r < n and compute the ciphertext $c = q^m \cdot r^n \mod n^2$ to encrypt the plaintext.

Decryption

With a private key (n, g, λ, μ) and a ciphertext $c \in \mathbb{Z}_{n^2}^*$ compute the plaintext as $m = L(c^{\lambda} \mod n^2) \cdot \mu \mod n$ where $L(x) = \frac{x-1}{n}$.

4.1.3 Signature schemes

Digital Signature Algorithm

Wikipedia: The Digital Signature Algorithm (DSA) is a Federal Information Processing Standard for digital signatures. In August 1991 the National Institute of Standards and Technology (NIST) proposed DSA for use in their Digital Signature Standard (DSS) and adopted it as FIPS 186 in 1993.

Chapter 4. ECDSA asymmetric threshold scheme

Signing With public parameters (p, q, g), hash the hashing function, m the message, and $x \in \mathbb{Z}_q$ the private key.

- Generate a random $k \in \mathbb{Z}_q$
- Calculate $r \equiv (g^k \pmod{p}) \pmod{q} : r \neq 0$
- Calculate $s \equiv k^{-1}(\operatorname{hash}(m) + xr) \pmod{q} : s \neq 0$
- The signature is (r, s)

Verifying With public parameters (p, q, g), hash the hashing function, m the message, (r, s) the signature, and $y = g^x \mod p$ the public key.

- Reject the signature if $r, s \notin \mathbb{Z}_q$
- Calculate $w \equiv s^{-1} \pmod{q}$
- Calculate $u_1 \equiv \mathtt{hash}(m) \cdot w \pmod{q}$
- Calculate $u_2 \equiv rw \pmod{q}$
- Calculate $v \equiv (g^{u_1}y^{u_2} \pmod{p}) \pmod{q}$
- The signature is valid if v = r

Elliptic Curve Digital Signature Algorithm

ECDSA is a variant of DSA which uses elliptic curve cryptography and requires a different set of parameters and smaller keys.

Signing With public parameters (\mathcal{E}, G, n) , hash the hashing function, m the message, and $x \in \mathbb{Z}_n$ the private key.

- Generate a random $k \in \mathbb{Z}_n$
- Calculate $(x_1, y_1) = k \cdot G$
- Calculate $r \equiv x_1 \pmod{n} : r \neq 0$
- Calculate $s \equiv k^{-1}(\texttt{hash}(m) + xr) \pmod{n} : s \neq 0$
- The signature is (r, s)

Verifying With public parameters (\mathcal{E}, G, n) , hash the hashing function, m the message, (r, s) the signature, and $Q = x \cdot G$ the public key.

- Reject the signature if $r, s \notin \mathbb{Z}_n$
- Calculate $w \equiv s^{-1} \pmod{n}$
- Calculate $u_1 \equiv \mathtt{hash}(m) \cdot w \pmod{n}$
- Calculate $u_2 \equiv rw \pmod{n}$
- Calculate the curve point $(x_1, y_1) = u_1 \cdot G + u_2 \cdot Q$ if $(x_1, y_1) = \mathcal{O}$ then the signature is invalid
- The signature is valid if $r \equiv x_1 \pmod{n}$

Schemes' analysis

In (r, s) the computation of the part s remains the same in each signature scheme, the only difference for s is the modulus applied. In DSA modulo q is used, i.e. the order of the generator g modulo p, while in ECDSA modulo n is used, i.e. the order of the generator G on the curve \mathcal{E} .

The biggest adaptation is on how to calculate the part r from the private random k. In DSA the generator g is used with, at first, modulo p and then modulo q while in ECDSA the curve is used. The signer generates a point and uses the coordinate x_1 modulo n.

Postulate 4.1.3 This statement $a \equiv g^b \pmod{p}$ is equivalent in terms of security to $a = b \cdot G$ and $a \equiv (g^b \pmod{p}) \pmod{q}$ is equivalent to $a \equiv x \pmod{n} : (x, y) = b \cdot G$.

The previous postulate is used to adapt zero-knowledge proofs from DSA to ECDSA hereafter. Lack of time has not permitted further research into this postulate.

4.2 Threshold scheme

The "Two-party generation of DSA signatures" scheme presented by MacKenzie and Reiter, as mentioned before, is an asymmetric scheme, i.e., at the end of the protocol, only the initiator can retrieve the full signature. The scheme proposed is a cryptographic (1,2)-threshold, i.e., one corrupted player can occur out of the two players, and the scheme remains safe. It is worth noting that this is qualified as an optimal (t, n)-threshold scheme, i.e., t = n - 1 because if only one honest player remains the safety is guaranteed.

As also mentioned before, the scheme adheres to the same requirements as a Bitcoin 2-out-of-2 multi-signature script. This means that it is possible to use it to improve the payment channels. However, it is necessary to adapt the scheme and particularly the construction of the zero-knowledge proofs. The following explains the chosen adaptation.

The presented scheme in the original paper uses a multiplicative shared secret and a multiplicative shared private random value. The secret x is shared between Alice and Bob, so that Alice holds the secret value $x_1 \in \mathbb{Z}_q$ and Bob $x_2 \in \mathbb{Z}_q$ such that $x \equiv x_1x_2$

(mod q). Along with the public key y, $y_1 \equiv g^{x_1} \pmod{p}$ and $y_2 \equiv g^{x_2} \pmod{p}$ are public. Alice holds a private key, from now on mentioned as sk, corresponding to a public encryption key pk. Alice also knows a public encryption key pk' for which she does not know the private key sk'. Here the Paillier homomorphic cryptosystem is used as the encryption scheme, but it is worth noting that other homomorphic encryption systems can be used to implement the scheme. Alice and Bob know a set of parameters used for both zero-knowledge proofs.

Starting now the initialization is not taken into account, and the author assumes that reader has a good understanding of the original scheme [16]. The choice was made to focus the work on the signing protocol and because the implementation is not directly part of the cryptographic C library. This initialization can be further researched for another thesis.

4.2.1 Adapting the scheme

Except for the zero-knowledge proofs, the adaptation is trivial and just requires the same adaptation of the DSA signature scheme and ECDSA signature scheme, i.e., compute the r value with the curve. The following figures describe the adapted scheme. The adapted protocol keeps the same messages, so they are not repeated. The postulate 4.1.3 is used to perform the adaptation.

The secret remains shared multiplicatively so that so that Alice holds the secret value $x_1 \in \mathbb{Z}_n$ and Bob $x_2 \in \mathbb{Z}_n$ such that $x \equiv x_1x_2 \pmod{n}$. Alice holds her public key $Q_1 = x_1 \cdot G$ and Bob $Q_2 = x_2 \cdot G$ such that $Q = x_1 \cdot Q_2$ for Alice or $Q = x_2 \cdot Q_1$ for Bob. The notation \cdot is used to denote the point multiplication over EC.

All the random values k are chosen in \mathbb{Z}_n instead of \mathbb{Z}_q , also in the case of deterministic signature. All the computation modulo q is replaced by modulo n, as shown in the previous digital signature recap. Values R_2 and R become points. Verifications of values R_2 and R become point verifications on the curve and r' is calculated by Alice and Bob as shown in the other reminder. The value cq added to the homomorphic encrypted signature is transformed into cn to hide values z_2 and x_2z_2 .

The author noticed an error of notation in the original paper. On the second line Alice computes $z_1 \equiv (k_1)^{-1} \pmod{n}$ and the original paper uses the random value selection \xleftarrow{R} instead of a standard assignation \leftarrow . This error is corrected in the following version of the protocol.

```
alice
                                                                                                                                                                                                  bob
 k_1 \stackrel{R}{\leftarrow} \mathbb{Z}_n
  z_1 \leftarrow (k_1)^{-1} \mod n
 \alpha \leftarrow E_{pk}(z_1)
 \zeta \leftarrow E_{pk}(x_1 z_1 \mod n)
                                                                                                          abort if(\alpha \notin C_{pk} \lor \zeta \notin C_{pk})
                                                                                                          k_2 \stackrel{R}{\longleftarrow} \mathbb{Z}_n
                                                                                                          \mathcal{R}_2 \leftarrow k_2 \cdot \mathcal{G}
 abort if(\mathcal{R}_2 \notin \mathcal{E})
 \mathcal{R} \leftarrow k_1 \cdot \mathcal{R}_2
\Pi \leftarrow \mathtt{zkp} \begin{bmatrix} \exists \eta_1, \eta_2 : & \eta_1, \eta_2 \in [-n^3, n^3] \\ \land & \eta_1 \cdot \mathcal{R} = \mathcal{R}_2 \\ \land & (\eta_2/\eta_1) \cdot \mathcal{G} = \mathcal{Q}_1 \\ \land & D_{sk}(\alpha) \equiv_n \eta_1 \\ \land & D_{sk}(\zeta) \equiv_n \eta_2 \end{bmatrix}
                                                                                                          abort if (\mathcal{R} \notin \mathcal{E})
                                                                                                          abort if(Verifier(\Pi) = 0)
                                                                                                          m' \leftarrow h(m)
                                                                                                          r' \leftarrow x \mod n : (x, y) = \mathcal{R}
                                                                                                          z_2 \leftarrow (k_2)^{-1} \mod n
                                                                                                          c \stackrel{R}{\leftarrow} \mathbb{Z}_{n^5}
                                                                                                           \mu \leftarrow (\alpha \times_{pk} m'z_2) +_{pk}
                                                                                                      \begin{split} & (\zeta \times_{pk} r' x_2 z_2) +_{pk} \, \mathbb{E}_{pk}(\mathbb{C}^n) \\ & \mu' \leftarrow E_{pk'}(z_2) \\ & \left[ \begin{array}{cccc} \exists \eta_1, \eta_2, \eta_3 : & \eta_1, \eta_2 \in [-n^3, n^3] \\ & & \eta_3 \in [-n^5, n^5] \\ & \wedge & \eta_1 \cdot \mathcal{R}_2 = \mathcal{G} \\ & \wedge & (\eta_2/\eta_1) \cdot \mathcal{G} = \mathcal{Q}_2 \\ & \wedge & D_{sk'}(\mu') \equiv_n \eta_1 \\ & \wedge & D_{sk}(\mu) \equiv_n D_{sk}((\alpha \times_{pk} m' \eta_1) +_{pk} \\ & & (\zeta \times_{pk} r' \eta_2) +_{pk} E_{pk}(n\eta_3)) \end{array} \right] \end{split}
                                                                                                                          (\zeta \times_{pk} r' x_2 z_2) +_{pk} E_{pk}(cn)
 abort if(\mu \notin C_{pk} \vee \mu' \notin C_{pk'})
 abort if(Verifier(\Pi') = 0)
 s \leftarrow D_{sk}(\mu) \mod n
 r \leftarrow x \mod n : (x, y) = \mathcal{R}
 publish \langle r, s \rangle
```

Figure 4.1 Adapted protocol for ECDSA

4.2.2 Adapting zero-knowledge proofs

Initially, the protocol designs proofs for the DSA architecture, so the values tested in the proofs are values in \mathbb{Z}_q . These values are used to create a challenge e with two hash functions, a different one per proof. For ECDSA some of these values become points, so some equations need to be adapted. The adapted protocol serializes points

in the long form, 65 bytes starting with 0x04, and two 32 byte coordinates for (x, y). As mentioned in the original paper, the variables names are not consistent with the first part of the paper. Starting now the variable names follow the same notation as the original paper and are therefore no longer consistent with the previous pages.

Zero-knowledge proof Π

The first zero-knowledge proof Π is created by Alice to prove to Bob that she acted correctly and has encrypted coherent data with Paillier encryption, proving the ownership and the validity of the two encrypted values in relation to the public address Q_1 with $(x_1z_1/z_1)\cdot G=Q_1$. The proof states that the encrypted value α is related to R and R_2 such that $(k_1)^{-1}\cdot R=((k_1)^{-1}k_1k_2)\cdot G=k_2\cdot G=R_2$.

$$\Pi \leftarrow \mathtt{zkp} \left[\begin{array}{l} \exists x_1, x_2: \quad x_1, x_2 \in [-n^3, n^3] \\ \land \qquad \qquad x_1 \cdot \mathcal{C} = \mathcal{W}_1 \\ \land \qquad \qquad (x_2/x_1) \cdot \mathcal{D} = \mathcal{W}_2 \\ \land \qquad \qquad D_{sk}(m_1) \equiv_n x_1 \\ \land \qquad \qquad D_{sk}(m_2) \equiv_n x_2 \end{array} \right]$$

Figure 4.2 The proof Π

$$x_1 = z_1$$
 $\mathcal{C} = \mathcal{R}$
 $x_2 = x_1 z_1 \mod n$ $\mathcal{D} = \mathcal{G}$
 $m_1 = \alpha$ $\mathcal{W}_1 = \mathcal{R}_2$
 $m_2 = \zeta$ $\mathcal{W}_2 = \mathcal{Q}_1$

Table 4.1 Mapping between the protocol's variable names and the ZKP Π

$$\langle z_1, z_2, \mathcal{Y}, e, s_1, s_2, s_3, t_1, t_2, t_3, t_4 \rangle \leftarrow \Pi$$
 Verify $s_1, t_1 \in \mathbb{Z}_{n^3}$
$$\mathcal{V}_1 \leftarrow (t_1 + t_2) \cdot \mathcal{D} + (-e) \cdot \mathcal{Y}$$

$$\mathcal{U}_1 \leftarrow s_1 \cdot \mathcal{C} + (-e) \cdot \mathcal{W}_1 \qquad \qquad \mathcal{V}_2 \leftarrow s_1 \cdot \mathcal{W}_2 + t_2 \cdot \mathcal{D} + (-e) \cdot \mathcal{Y}$$

$$u_2 \leftarrow g^{s_1}(s_2)^N(m_1)^{-e} \mod N^2 \qquad \qquad v_3 \leftarrow g^{t_1}(t_3)^N(m_2)^{-e} \mod N^2$$

$$u_3 \leftarrow (h_1)^{s_1}(h_2)^{s_3}(z_1)^{-e} \mod \tilde{N} \qquad \qquad v_4 \leftarrow (h_1)^{t_1}(h_2)^{t_4}(z_2)^{-e} \mod \tilde{N}$$
 Verify $e = \operatorname{hash}(\mathcal{C}, \mathcal{W}_1, \mathcal{D}, \mathcal{W}_2, m_1, m_2, z_1, \mathcal{U}_1, u_2, u_3, z_2, \mathcal{Y}, \mathcal{V}_1, \mathcal{V}_2, v_3, v_4)$

Figure 4.3 Adaptation of Π 's verification in ECDSA

```
\alpha \stackrel{R}{\leftarrow} \mathbb{Z}_{n^3}
                                                                                                             \delta \stackrel{R}{\leftarrow} \mathbb{Z}_{n^3}
\beta \stackrel{R}{\leftarrow} \mathbb{Z}_N^*
                                                                                                             \mu \stackrel{R}{\leftarrow} \mathbb{Z}_N^*
\gamma \xleftarrow{R} \mathbb{Z}_{n^3\tilde{N}}
                                                                                                             \nu \stackrel{R}{\leftarrow} \mathbb{Z}_{n^3 \tilde{N}}
                                                                                                             \rho_2 \stackrel{R}{\leftarrow} \mathbb{Z}_{n\tilde{N}}
                                                                                                             \rho_3 \stackrel{R}{\leftarrow} \mathbb{Z}_n
                                                                                                             \epsilon \stackrel{R}{\leftarrow} \mathbb{Z}_n
z_1 \leftarrow (h_1)^{x_1} (h_2)^{\rho_1} \mod \tilde{N}
                                                                                                             z_2 \leftarrow (h_1)^{x_2} (h_2)^{\rho_2} \mod \tilde{N}
\mathcal{U}_1 \leftarrow \alpha \cdot \mathcal{C}
                                                                                                             \mathcal{Y} \leftarrow (x_2 + \rho_3) \cdot \mathcal{D}
u_2 \leftarrow g^{\alpha} \beta^N \mod N^2
                                                                                                             \mathcal{V}_1 \leftarrow (\delta + \epsilon) \cdot \mathcal{D}
u_3 \leftarrow (h_1)^{\alpha} (h_2)^{\gamma} \mod \tilde{N}
                                                                                                             \mathcal{V}_2 \leftarrow \alpha \cdot \mathcal{W}_2 + \epsilon \cdot \mathcal{D}
                                                                                                             v_3 \leftarrow g^{\delta} \mu^N \mod N^2
                                                                                                             v_4 \leftarrow (h_1)^{\delta} (h_2)^{\nu} \mod \tilde{N}
e \leftarrow \mathtt{hash}(\mathcal{C}, \mathcal{W}_1, \mathcal{D}, \mathcal{W}_2, m_1, m_2, z_1, \mathcal{U}_1, u_2, u_3, z_2, \mathcal{Y}, \mathcal{V}_1, \mathcal{V}_2, v_3, v_4)
s_1 \leftarrow ex_1 + \alpha
                                                                                                             t_1 \leftarrow ex_2 + \delta
s_2 \leftarrow (r_1)^e \beta \mod N
                                                                                                             t_2 \leftarrow e\rho_3 + \epsilon \mod n
                                                                                                             t_3 \leftarrow (r_2)^e \mu \mod N^2
s_3 \leftarrow e\rho_1 + \gamma
                                                                                                             t_4 \leftarrow e\rho_2 + \nu
                                                  \Pi \leftarrow \langle z_1, z_2, \mathcal{Y}, e, s_1, s_2, s_3, t_1, t_2, t_3, t_4 \rangle
```

Figure 4.4 Adaptation of Π 's construction in ECDSA

Zero-knowledge proof Π'

The second zero-knowledge proof is created by Bob to prove to Alice that he acted honestly according to the protocol. The proof states that the point \mathcal{R}_2 is generated accordingly to the value z_2 and so to the value k_2 . That the public key \mathcal{Q}_2 is related to the values z_2 and z_2z_2 , and that the encrypted values μ and μ' are correctly composed.

$$x_1 = z_2$$
 $\mathcal{C} = \mathcal{R}_2$
 $x_2 = x_2 z_2 \mod n$ $\mathcal{D} = \mathcal{G}$
 $x_3 = c \mod n$ $\mathcal{W}_1 = \mathcal{G}$
 $m_1 = \mu'$ $\mathcal{W}_2 = \mathcal{Q}_2$
 $m_2 = \mu$ $m_3 = \alpha$
 $m_4 = \zeta$

Table 4.2 Mapping between the protocol's variable names and the ZKP Π'

$$\Pi' \leftarrow \mathbf{zkp} \begin{bmatrix} \exists x_1, x_2, x_3 : & x_1, x_2 \in [-n^3, n^3] \\ \land & x_3 \in [-n^5, n^5] \\ \land & x_1 \cdot \mathcal{C} = \mathcal{W}_1 \\ \land & (x_2/x_1) \cdot \mathcal{D} = \mathcal{W}_2 \\ \land & D_{sk'}(m_1) \equiv_n x_1 \\ \land & D_{sk}(m_2) \equiv_n D_{sk}((m_3 \times_{pk} m'x_1) +_{pk} \\ & (m_4 \times_{pk} r'x_2) +_{pk} E_{pk}(nx_3)) \end{bmatrix}$$

Figure 4.5 The proof Π'

Correcting the verification of Π' If $x_1 = z_2$, $x_2 = x_2 z_2$, $x_3 = c$, and $m_2 = \mu$ such that $\mu = (\alpha)^{m'x_1}(\zeta)^{r'x_2}g^{nx_3}(r_2)^N$, then the equation v_3 in the validation process does not correspond to construction of v_3 in the original paper. The result in the verification process Π' need to match $v_3 \leftarrow (m_3)^{\alpha}(m_4)^{\delta}g^{n\sigma}\mu^N \mod N^2$. The original equation proposed $v_3 \leftarrow (m_3)^{s_1}(m_4)^{t_1}g^{nt_5}(t_3)^N(m_2)^{-e} \mod N^2$ does not include m' and r' present in μ , so m_2 cannot be used correctly as showed next.

$$v_{3} \equiv (m_{3})^{s_{1}} (m_{4})^{t_{1}} g^{nt_{5}} (t_{3})^{N} (m_{2})^{-e} \pmod{N^{2}}$$

$$\equiv (m_{3})^{ex_{1}+\alpha} (m_{4})^{ex_{2}+\beta} g^{n(ex_{3}+\sigma)} ((r_{2})^{e} \mu)^{N} ((m_{3})^{m'x_{1}} (m_{4})^{r'x_{2}} g^{nx_{3}} (r_{2})^{N})^{-e}$$

$$\equiv (m_{3})^{ex_{1}+\alpha} (m_{4})^{ex_{2}+\beta} g^{n(ex_{3}+\sigma)} (r_{2})^{eN} \mu^{N} (m_{3})^{-em'x_{1}} (m_{4})^{-er'x_{2}} g^{-enx_{3}} (r_{2})^{-eN}$$

$$\equiv (m_{3})^{ex_{1}+\alpha-em'x_{1}} (m_{4})^{ex_{2}+\beta-er'x_{2}} g^{enx_{3}+n\sigma-enx_{3}} (r_{2})^{eN-eN} \mu^{N}$$

$$\equiv (m_{3})^{ex_{1}+\alpha-em'x_{1}} (m_{4})^{ex_{2}+\beta-er'x_{2}} g^{n\sigma} \mu^{N}$$

$$(4.3)$$

The equation v_3 needs to be adapted to include $x_4 = m'$ and $x_5 = r'$ (m' and r' cannot be include directly in x_1 and x_2 without breaking equations u_1, u_2, u_3, v_2 .) Two new parameters $s_4 \leftarrow ex_1x_4 + \alpha$ and $t_7 \leftarrow ex_2x_5 + \delta$ are added into the proof to correct the equation.

$$v_{3} \equiv (m_{3})^{s_{4}} (m_{4})^{t_{7}} g^{nt_{5}} (t_{3})^{N} (m_{2})^{-e} \pmod{N^{2}}$$

$$\equiv (m_{3})^{ex_{1}x_{4} + \alpha} (m_{4})^{ex_{2}x_{5} + \beta} g^{n(ex_{3} + \sigma)} ((r_{2})^{e} \mu)^{N} ((m_{3})^{x_{1}x_{4}} (m_{4})^{x_{2}x_{5}} g^{nx_{3}} (r_{2})^{N})^{-e}$$

$$\equiv (m_{3})^{ex_{1}x_{4} + \alpha} (m_{4})^{ex_{2}x_{5} + \beta} g^{n(ex_{3} + \sigma)} (r_{2})^{eN} \mu^{N} (m_{3})^{-ex_{1}x_{4}} (m_{4})^{-ex_{2}x_{5}} g^{-enx_{3}} (r_{2})^{-eN}$$

$$\equiv (m_{3})^{ex_{1}x_{4} + \alpha - ex_{1}x_{4}} (m_{4})^{ex_{2}x_{5} + \beta - ex_{2}x_{5}} g^{enx_{3} + n\sigma - enx_{3}} (r_{2})^{eN - eN} \mu^{N}$$

$$\equiv (m_{3})^{\alpha} (m_{4})^{\beta} g^{n\sigma} \mu^{N}$$

$$(4.4)$$

```
\alpha \stackrel{R}{\leftarrow} \mathbb{Z}_{n^3}
                                                                                                                 \delta \stackrel{R}{\leftarrow} \mathbb{Z}_{n^3}
\beta \stackrel{R}{\leftarrow} \mathbb{Z}_{N'}^*
                                                                                                                 \mu \stackrel{R}{\leftarrow} \mathbb{Z}_N^*
\gamma \xleftarrow{R} \mathbb{Z}_{n^3 \tilde{N}}
                                                                                                                 \nu \xleftarrow{R} \mathbb{Z}_{n^3\tilde{N}}
 \rho_1 \stackrel{R}{\leftarrow} \mathbb{Z}_{n\tilde{N}}
                                                                                                                 \rho_2 \xleftarrow{R} \mathbb{Z}_{n\tilde{N}}
                                                                                                                 \rho_3 \stackrel{R}{\leftarrow} \mathbb{Z}_n
                                                                                                                 \rho_4 \stackrel{R}{\leftarrow} \mathbb{Z}_{n^5 \tilde{N}}
                                                                                                                 \epsilon \stackrel{R}{\leftarrow} \mathbb{Z}_n
                                                                                                                 \sigma \stackrel{R}{\leftarrow} \mathbb{Z}_{n^7}
                                                                                                                 \tau \xleftarrow{R} \mathbb{Z}_{n^7 \tilde{N}}
z_1 \leftarrow (h_1)^{x_1} (h_2)^{\rho_1} \mod \tilde{N}
                                                                                                                 z_2 \leftarrow (h_1)^{x_2} (h_2)^{\rho_2} \mod \tilde{N}
U_1 \leftarrow \alpha \cdot C
                                                                                                                 \mathcal{Y} \leftarrow (x_2 + \rho_3) \cdot \mathcal{D}
u_2 \leftarrow (g')^{\alpha} \beta^{N'} \mod (N')^2
                                                                                                                 \mathcal{V}_1 \leftarrow (\delta + \epsilon) \cdot \mathcal{D}
u_3 \leftarrow (h_1)^{\alpha} (h_2)^{\gamma} \mod \tilde{N}
                                                                                                                 \mathcal{V}_2 \leftarrow \alpha \cdot \mathcal{W}_2 + \epsilon \cdot \mathcal{D}
                                                                                                                 v_3 \leftarrow (m_3)^{\alpha} (m_4)^{\delta} g^{n\sigma} \mu^N \mod N^2
                                                                                                                 v_4 \leftarrow (h_1)^{\delta} (h_2)^{\nu} \mod \tilde{N}
                                                                                                                 z_3 \leftarrow (h_1)^{x_3} (h_2)^{\rho_4} \mod \tilde{N}
                                                                                                                 v_5 \leftarrow (h_1)^{\sigma} (h_2)^{\tau} \mod \tilde{N}
e \leftarrow \mathtt{hash'}(\mathcal{C}, \mathcal{W}_1, \mathcal{D}, \mathcal{W}_2, m_1, m_2, z_1, \mathcal{U}_1, u_2, u_3, z_2, z_3, \mathcal{Y}, \mathcal{V}_1, \mathcal{V}_2, v_3, v_4, v_5)
 s_1 \leftarrow ex_1 + \alpha
                                                                                                                 t_1 \leftarrow ex_2 + \delta
 s_2 \leftarrow (r_1)^e \beta \mod N'
                                                                                                                 t_2 \leftarrow e\rho_3 + \epsilon \mod n
 s_3 \leftarrow e\rho_1 + \gamma
                                                                                                                 t_3 \leftarrow (r_2)^e \mu \mod N
 s_4 \leftarrow ex_1x_4 + \alpha
                                                                                                                 t_4 \leftarrow e\rho_2 + \nu
                                                                                                                 t_5 \leftarrow ex_3 + \sigma
                                                                                                                 t_6 \leftarrow e\rho_4 + \tau
                                                                                                                 t_7 \leftarrow ex_2x_5 + \delta
                                         \Pi' \leftarrow \langle z_1, z_2, z_3, \mathcal{Y}, e, s_1, s_2, s_3, s_4, t_1, t_2, t_3, t_4, t_5, t_6, t_7 \rangle
```

Figure 4.6 Adaptation of Π' 's construction in ECDSA

$$\langle z_1, z_2, z_3, \mathcal{Y}, e, s_1, s_2, s_3, s_4, t_1, t_2, t_3, t_4, t_5, t_6, t_7 \rangle \leftarrow \Pi'$$
 Verify $s_1, t_1 \in \mathbb{Z}_{n^3}$ $\mathcal{V}_1 \leftarrow (t_1 + t_2) \cdot \mathcal{D} + (-e) \cdot \mathcal{Y}$ Verify $t_5 \in \mathbb{Z}_{n^7}$ $\mathcal{V}_2 \leftarrow s_1 \cdot \mathcal{W}_2 + t_2 \cdot \mathcal{D} + (-e) \cdot \mathcal{Y}$ $\mathcal{U}_1 \leftarrow s_1 \cdot \mathcal{C} + (-e) \cdot \mathcal{W}_1$ $v_3 \leftarrow (m_3)^{s_4} (m_4)^{t_7} g^{nt_5} (t_3)^N (m_2)^{-e}$
$$\mod N^2$$

$$u_2 \leftarrow (g')^{s_1} (s_2)^{N'} (m_1)^{-e} \mod (N')^2 \qquad v_4 \leftarrow (h_1)^{t_1} (h_2)^{t_4} (z_2)^{-e} \mod \tilde{N}$$

$$u_3 \leftarrow (h_1)^{s_1} (h_2)^{s_3} (z_1)^{-e} \mod \tilde{N}$$

$$v_5 \leftarrow (h_1)^{t_5} (h_2)^{t_6} (z_3)^{-e} \mod \tilde{N}$$
 Verify $e = \text{hash'}(\mathcal{C}, \mathcal{W}_1, \mathcal{D}, \mathcal{W}_2, m_1, m_2, z_1, \mathcal{U}_1, u_2, u_3, z_2, z_3, \mathcal{Y}, \mathcal{V}_1, \mathcal{V}_2, v_3, v_4, v_5)$

Figure 4.7 Adaptation of Π' verification to ECDSA

4.3 Threshold Hierarchical Determinitic Wallets

Hierarchical deterministic wallets are sophisticated wallets in which new keys can be generated from a previous key. Adapting hierarchical deterministic wallets with a threshold scheme can be achieved by sharing the private key additively:

$$pk_i = sk_i \cdot G$$

$$sk_{mas} = \sum_{i=1}^{s} sk_i \mod n$$

$$pk_{mas} = \left[\sum_{i=1}^{s} sk_i \mod n\right] \cdot G$$

$$= \sum_{i=1}^{s} (sk_i \cdot G) = \sum_{i=1}^{s} pk_i$$

or multiplicatively:

$$sk_{mas} = \prod_{i=1}^{s} sk_i \bmod n$$

$$pk_{mas} = \left[\prod_{i=1}^{s} sk_i \bmod n\right] \cdot G$$

$$= (((G \cdot sk_1) \cdot sk_2) \dots) \cdot sk_i$$

In the additive case, the master public key pk_{mas} is also the sum of all the points pk_i , which means that if each player publishes his share point, everyone can compute the master public key. The multiplicative sharing is more communication intensive because the computation of the public key is sequential instead of parallel.

An extended private key share is a tuple of (sk_i, c) with sk_i the regular private key and c the chain code, such that c is the same for each player. In the following, it is assumed that the private key is shared multiplicatively.

4.3.1 Private parent key to private child key

The function CKDpriv computes a child extended private key from the parent extended private key. The derivation can be *hardened*. This proposal differs from the BIP32 [19] standard in the chain derivation process. The ser function and point function are the same as described in BIP.

$$f(l) = \begin{cases} \texttt{HMAC-SHA256}(c_{par}, \texttt{0x00} \mid | \texttt{ser}_{256}(sk_i^{par}) \mid | \texttt{ser}_{32}(k)) & \text{if } k \geq 2^{31} \\ \texttt{HMAC-SHA256}(c_{par}, \texttt{ser}_p(\texttt{point}(sk_{mas}^{par})) \mid | \texttt{ser}_{32}(k)) & \text{if } k < 2^{31} \\ sk_i \equiv l \cdot sk_i^{par} \pmod{n} \end{cases}$$

The function f(l) computes the partial share l at index k, such that multiplied with the parent private key share sk_i^{par} for the player i the result is sk_i .

4.3.2 Public parent key to public child key

The function CKDpub computes a child extend public key from the parent extended public key. It is worth noting that it is not possible to compute a *hardened* derivation without the private parent key. It is worth noting that every player updates the master public key for the threshold, not the public key share.

$$\begin{split} f(l) &= \begin{cases} \texttt{failure} & \text{if } k \geq 2^{31} \\ \texttt{HMAC-SHA256}(c_{par}, \texttt{ser}_p(pk_{mas}^{par}) \mid\mid \texttt{ser}_{32}(k)) & \text{if } k < 2^{31} \end{cases} \\ pk_{mas} &= l \cdot pk_{mas}^{par} \\ &= l \cdot (sk_{mas}^{par} \cdot G) \\ &= (l \cdot sk_{mas}^{par} \bmod n) \cdot G \end{split}$$

4.3.3 Child key share derivation

The protocol assumes that one of the players P_i is designated as the leader L. The function CKSD computes a threshold child extended key share from the threshold parent extended key share for the derivation index k. It is worth noting that only the leader L uses CKDpriv and if the derivation is hardened, i.e., if $k \geq 2^{31}$, a special case occurred and a round of communication is needed. Let's define CKSD for $k < 2^{31}$:

$$\forall i \in P_i : f(t) = \begin{cases} \texttt{CKDpriv}(k) & \text{if } i = L \\ \texttt{CKDpub}(k) & \text{if } i \neq L \end{cases} \tag{4.5}$$

such that:

$$sk_{i=L} = sk_i^{par} \cdot t$$

$$sk_{i\neq L} = sk_i^{par}$$

$$sk_{mas} = \left[\prod_{j=1}^{i} sk_j^{par}\right] \cdot t$$

$$= sk_{mas}^{par} \cdot t$$

$$(4.6)$$

and then $\forall i \in P_i$:

$$pk_{mas} = pk_{mas}^{par} \cdot t$$

$$= (sk_{mas}^{par} \cdot G) \cdot t$$

$$= \left[\prod_{j=1}^{i} sk_{j}^{par} \right] \cdot G$$

$$(4.7)$$

At each derivation index, each player updates their chain code. The derivation does not depend on the secret key because the chain code must remain deterministic and have the same value for each player, without requiring communication round.

$$c_i = \text{HMAC-SHA256}(c_i^{par}, \text{ser}_{32}(k)) \tag{4.8}$$

If the index $k \geq 2^{31}$ the new master public key, only calculable by the master player L, must be revealed to other players. A round of communication is then needed to continue derivation.

In this threshold HD scheme only one private share changes at each derivation. In other words, the master private share is derived either with public information or with private information, i.e., *hardened* derivation. If the derivation is private, then a communication round between the players is necessary, more specifically we assume that a secure broadcast channel is open from the master player to the other players.

This scheme is sufficient for the payment channels. Players negotiate a threshold key used for the $\texttt{Multisig}_i$ address with a root derivation path m/44'/0'/a'/0' at the opening of the channel (variable **a** is related to the channel account number

between the client and the provider as shown in the paper). Then the index i in the paper is used to derive each address without requiring any communication. It is worth noting that the root derivation path can also be simplified at m/a' or even m/because the compatibility with a standard wallet is no longer a requirement. Noted that the version m/a' is more flexible and allows multiple channels between a client and a provider with only one threshold key.

4.3.4 Proof-of-concept implementation

A proof-of-concept implemented in Python is made. A share can be tagged as master share as previously described. The result of the script is presented after that, three shares are created, and the first one is tagged as the master share. The root threshold public key m/ is computed and displayed, then individual shares' addresses are displayed. The share s_1 is derived with and without hardened path, as expected the resulting address is different. The master public key resulting from each share derivation for the path m/44/0/1 is the same as computing the private key with all individual secret shares and getting the associated address, as expected. To note that only the master individual address for m/ and m/44/0/1 has changed.

```
=== Threshold addresses ===
                          : 1BF5ZpQMCg3eGDEm51rkiwcKR12UnFu
{\tt Master\ root\ public\ key\ m/}
*** Individual addresses m/ ***
s1: 1tRFxbAfKKowtqrSC3bVUi491hTXqg1
s2: 16uCytSc9oAJyi5FbxmH6NyTJuYkCLj
s3: 1TcYLZUZYd86AFaT58tzFGBW1BVVw7K
*** Hardened derivation for one share ***
s1 m/44/0/1 : 128PvDGSbZuNpz1zG1Mh1fjJFN3eNaTb
s1 m/44/0/1' : 12883vUsA2gyCAcSNogGUMFuCJsrj58
*** Master public key m/44/0/1 ***
s1: 128PvDGSbZuNpz1zG1Mh1fjJFN3eNaTb
s2: 128PvDGSbZuNpz1zG1Mh1fjJFN3eNaTb
s3: 128PvDGSbZuNpz1zG1Mh1fjJFN3eNaTb
Master public key m/44/0/1 : 128PvDGSbZuNpz1zG1Mh1fjJFN3eNaTb
*** Individual addresses m/44/0/1 ***
s1: 1nNL1gozCk4J1agV667kJFmsyu4RvF5
s2: 16uCytSc9oAJyi5FbxmH6NyTJuYkCLj
s3: 1TcYLZUZYd86AFaT58tzFGBW1BVVw7K
```

Listing 4.1 Result of using threshold HD wallet

A share is composed of four main pieces of information: (i) the secret share, (ii) the chain code, (iii) the tag for the master share, and (iv) the threshold public key. Players can set the threshold public key address after computation. The derive function d derives with CKDpub or CKDpriv depending on the master tag and returns a new share for a given index. The path derivation function derive takes a path and generates the chain of shares. In this Implementation, if a share not tagged as master tries to derive a path with a hardened index, an exception is raised, and the process stops. However, in a real-world case, a communication process must take place to complete the derivation.

```
if __name__ == "__main__":
252
         print("=== Threshold addresses ===")
253
254
          chain = ecdsa.gen_priv()
255
          # Shares
          s1 = Share(chain, True, ecdsa.gen_priv())
257
          s2 = Share(chain, False, ecdsa.gen_priv())
258
          s3 = Share(chain, False, ecdsa.gen_priv())
260
261
          sec = (s1.secret * s2.secret * s3.secret) % ecdsa.n
          pub = ecdsa.get_pub(sec)
^{262}
          add = get(pub)
263
          print "Master root public key m/ :", add
265
          s1.set_master_pub(pub)
266
          s2.set_master_pub(pub)
          s3.set_master_pub(pub)
268
269
          print "\n*** Individual addresses m/ ***"
270
          print "s1:", s1.address()
271
          print "s2:", s2.address()
print "s3:", s3.address()
272
273
274
          print "\n*** Hardened derivation for one share ***"
276
          print "s1 m/44/0/1 :", get(s1.derive("m/44/0/1").master_pub)
          print "s1 m/44/0/1' :", get(s1.derive("m/44/0/1').master_pub)
277
278
          print "\n*** Master public key m/44/0/1 ***"
279
280
          s1 = s1.derive("m/44/0/1")
          s2 = s2.derive("m/44/0/1")
281
          s3 = s3.derive("m/44/0/1")
282
          print "s1:", get(s1.master_pub)
          print "s2:", get(s2.master_pub)
print "s3:", get(s3.master_pub)
284
285
286
          sec = (s1.secret * s2.secret * s3.secret) % ecdsa.n
287
288
          pub = ecdsa.get_pub(sec)
          add = get(pub)
289
          print "\nMaster public key m/44/0/1:", add
290
291
          print "\n*** Individual addresses m/44/0/1 ***"
292
         print "s1:", s1.address()
print "s2:", s2.address()
print "s3:", s3.address()
293
295
```

Listing 4.2 Demonstration of using threshold HD wallet

```
163
     class Share(object):
164
         def __init__(self, chain, master, secret=ecdsa.gen_priv()):
             super(Share, self).__init__()
165
              self.chain = chain
166
             self.master = master
167
168
             self.secret = secret
169
              self.master_pub = None
170
171
         def pub(self):
              return ecdsa.get_pub(self.secret)
172
173
         def address(self):
174
             return get(self.pub())
175
176
         def set_master_pub(self, pub):
177
             self.master_pub = pub
178
179
         def d_pub(self, i):
180
             if i >= pow(2, 31): # Only not hardened
181
                 raise Exception("Impossible to hardened")
182
             k = "%x" % self.chain
183
             data = "00%s%08x" % (ecdsa.expand_pub(self.master_pub), i)
184
              hmac = hashlib.pbkdf2_hmac('sha256', k, data, 100)
185
             point = ecdsa.point_mult(self.master_pub, long(binascii.hexlify(hmac), 16))
186
             data = "%08x" % (i)
187
188
              hmac = hashlib.pbkdf2_hmac('sha256', k, data, 100)
              c = long(binascii.hexlify(hmac), 16)
189
190
              share = Share(c, self.master, self.secret)
              share.set_master_pub(point)
191
192
              return share
193
         def d_priv(self, i):
194
             k = "%x" % self.chain
195
             hmac = hashlib.pbkdf2_hmac('sha256', k, data, 100)
197
198
              c = long(binascii.hexlify(hmac), 16)
              if i >= pow(2, 31): # Hardened
199
                 data = "00\%32x\%08x" % (self.secret, i)
200
201
              else: # Not hardened
                 data = "00%s%08x" % (ecdsa.expand_pub(self.master_pub), i)
202
             hmac = hashlib.pbkdf2_hmac('sha256', k, data, 100)
203
              key = long(binascii.hexlify(hmac), 16) * self.secret
              point = ecdsa.point_mult(self.master_pub, long(binascii.hexlify(hmac), 16))
205
206
              share = Share(c, self.master, key)
207
              share.set_master_pub(point)
             return share
208
         def d(self, index):
210
211
              if self.master:
                 return self.d_priv(index)
              else:
213
214
                 return self.d_pub(index)
215
216
         def derive(self, path):
              path = string.split(path, "/")
217
              if path[0] == "m":
218
                 path = path[1:]
219
                  share = self
220
                 for derivation in path:
221
222
                      if "'" in derivation:
                          i = int(derivation.replace("', "")) + pow(2, 31)
                          share = share.d(i)
224
225
226
                          i = int(derivation)
227
                          share = share.d(i)
228
                 return share
229
              else:
230
                 return False
```

Listing 4.3 Construction of a share for a threshold HD wallet

4.4 Threshold deterministic signatures

One of the simplest ways to compromise the private key in ECDSA, or in DSA, is to select a weak pseudo-random number generator for k or even worse, select a static value for k. This problem already affected Sony in December 2010 when a group of hackers calling itself fail0verflow announced the recovery of the ECDSA private key used to sign software for the PlayStation 3.

Given two signatures (r, s) and (r, s') employing the same unknown k for different messages m and m'. Let's define x as the private key, z as the hash of m and z' of m', an attacker can calculate:

$$s \equiv k^{-1}(z + rx) \pmod{n}$$

$$s' \equiv k^{-1}(z' + rx) \pmod{n}$$

$$s - s' \equiv k^{-1}(z + rx) - k^{-1}(z' + rx) \pmod{n}$$

$$\equiv k^{-1}(z - z') \pmod{n}$$

$$k \equiv \frac{z - z'}{s - s'} \pmod{n}$$

$$x \equiv \frac{sk - z}{r} \pmod{n}$$

However, this issue can be prevented by a deterministic generation of k, as described by RFC 6979 [20]. The random value k can be generated deterministically by using a HMAC function such that the parameters are the private key and the message to sign.

The other positive side is that signatures for the same key pair and the same message are deterministic, i.e., if we sign the same message multiple times, the signature remains the same. This determinism is also a significant advantage in Bitcoin to reduce transaction malleability (nevertheless, the signer can still choose to sign with non-deterministic nonce). The threshold scheme can also enjoy the same properties through a deterministic signature system.

$$k_1 = \texttt{HMAC}(m, x_1)$$

$$k_2 = \texttt{HMAC}(m, x_2)$$

$$k = k_1 k_2 \mod n$$

The values k_1 and k_2 remain secret as well as the value x_1 and x_2 but the signature will always be the same for the given message and threshold key.

5 | Implementation in Bitcoin-core secp256k1

As mentioned before, Bitcoin uses elliptic curve cryptography (ECC) for signing transactions. When the first release of Bitcoin core appeared in early 2009, OpenSSL library was used to perform the cryptographic computations. Some years after a project started with the goal of replacing OpenSSL and creating a custom and minimalistic C library for cryptography over the curve secp256k1. This library is now available on GitHub at bitcoin-core/secp256k1 project and it is one of the most optimized library, if not the most optimized, for the curve secp256k1. It is worth noting that other significant crypto-currencies like Ethereum also use this library, so extending the capabilities of this library is an excellent choice to attract other cryptographers to have a look and increase the number of reviews for this thesis.

The implementation is spread into four main components (i) a DER parser-serializer, (ii) a textbook implementation of Paillier homomorphic cryptosystem, (iii) implementation of the Zero-Knowledge Proofs adaptation, and (iv) the threshold public API. It is worth noting that the current implementation is NOT production ready and NOT side-channel attack resistant. Paillier and ZKP are not constant time computation and use libgmp for all arithmetic computations, even when secret values are used. This implementation is a textbook implementation of the scheme and needs to be reviewed and more tested before being used in production. It is also worth noting that this library does not implement the functions needed to initialize the setup. Only the functions needed to parse existing keys and compute a distributed signature are implemented.

This chapter refers to the implementation available on GitHub at https://github.com/GuggerJoel/secp256k1/tree/threshold at the time when these lines are written. Note that the sources can evolve after that this report is written, to be sure to read the latest version of the code checks out the sources directly on GitHub.

Contents

5.1	Config	guration				
	5.1.1	Add new experimental module				
	5.1.2	Configure compilation				
5.2	DER parser-serializer					
	5.2.1	Sequence				
	5.2.2	Integer				
	5.2.3	Octet string				
5.3	Paillie	r cryptosystem				
	5.3.1	Data structures				
	5.3.2	Encrypt and decrypt				
	5.3.3	Homomorphism				
5.4	Zero-k	knowledge proofs $\dots \dots \dots$				
	5.4.1	Data structures				
	5.4.2	Generate proofs				
	5.4.3	Validate proofs				

Chapter 5. Implementation in Bitcoin-core secp256k1

5.5	Thresh	old module
	5.5.1	Create call message
	5.5.2	Receive call message
	5.5.3	Receive challenge message
	5.5.4	Receive response challenge message
	5.5.5	Receive terminate message

5.1 Configuration

The library use autotools to manage the compilation, installation, and uninstallation. A system of modules is already present in the structure with an ECDH experimental module for shared secret computation and a recovery module for recover ECDSA public key. A module can be flag as experimental, then, at the configuration time, an explicit parameter enabling experimental modules must be passed, and a warning is shown to warn that the build contains experimental code.

5.1.1 Add new experimental module

In this structure, the threshold extension is all indicated to be an experimental module also. A new variable <code>module_recovery</code> is declared with a m4 macro defined by autoconf in the <code>configure.ac</code> file with the argument <code>--enable-module-threshold</code>. The default value is set to <code>no</code>.

```
137 AC_ARG_ENABLE(module_threshold,

138 AS_HELP_STRING([--enable-module-threshold],[enable Threshold ECDSA computation with

Paillier homomorphic encryption system and zero-knowledge proofs (experimental)]),

139 [enable_module_threshold=$enableval],

140 [enable_module_threshold=no])
```

Listing 5.1 Add argument into configure.ac to enable the module

If the variable \$enable_module_recovery is set to yes into configure.ac (lines 443 to 445) a compiler constant is declared, again with a m4 marco defined by autoconf, and set to 1 in libsecp256k1-config.h (lines 20 and 21.) This header file is generated when ./configure script is run and is included in the library.

Listing 5.2 Define constant ENABLE_MODULE_THRESHOLD if module enable

The main file secp256k1.c (lines 586 to 590) and the tests file tests.c include headers based on the compiler constant definition.

```
586 #ifdef ENABLE_MODULE_THRESHOLD
587 # include "modules/threshold/paillier_impl.h"
588 # include "modules/threshold/eczkp_impl.h"
589 # include "modules/threshold/threshold_impl.h"
590 #endif
```

Listing 5.3 Include implementation headers if ENABLE_MODULE_THRESHOLD is defined

The module is set as experimental to avoid enabling it without explicitly agree to build experimental code. If the parameter experimental is set to yes a warning is displayed during the configuration process to warn the user. If the parameter experimental is not set and an experimental module is enabled an error message is displayed, and the process failed.

Chapter 5. Implementation in Bitcoin-core secp256k1

```
if test x"$enable_experimental" = x"yes"; then
465
       AC_MSG_NOTICE([*****])
466
        AC_MSG_NOTICE([WARNING: experimental build])
467
        AC_MSG_NOTICE([Experimental features do not have stable APIs or properties, and may not be
468
        \hookrightarrow safe for production use.])
        AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh])
469
470
        AC_MSG_NOTICE([Building Threshold module: $enable_module_threshold])
        AC MSG NOTICE([*****])
471
472
        if test x"$enable_module_ecdh" = x"yes"; then
473
         AC_MSG_ERROR([ECDH module is experimental. Use --enable-experimental to allow.])
474
        fi
475
        if test x"$enable_module_threshold" = x"yes"; then
476
         AC_MSG_ERROR([Threshold module is experimental. Use --enable-experimental to allow.])
477
478
        if test x"$set_asm" = x"arm"; then
479
          AC_MSG_ERROR([ARM assembly optimization is experimental. Use --enable-experimental to
480
           \hookrightarrow allow.1)
       fi
481
482
     fi
```

Listing 5.4 Set threshold module to experimental into configure.ac

5.1.2 Configure compilation

A module is composed of one or many include/ headers that contain the public API with a small description of each function, these headers are copied in the right folders when sudo make install command is run. The file Makefile.am defines which headers need to be installed, which not and how to compile the project. This file is parsed by Autoconf to generate the final Makefile with all the functionalities expected.

Each module has its Makefile.am.include which describe what to do with all the files present in the module folder. This file is included in the main Makefile.am (lines 179 to 181) if the module is enabled.

```
179 if ENABLE_MODULE_THRESHOLD
180 include src/modules/threshold/Makefile.am.include
181 endif
```

Listing 5.5 Include specialized Makefile if threshold module is enable

The specific Makefile.am.include declare the header requisite to be include and declare the list of all the headers that must not be installed on the system when sudo make install command is run.

```
include_HEADERS += include/secp256k1_threshold.h
noinst_HEADERS += src/modules/threshold/der_impl.h
noinst_HEADERS += src/modules/threshold/paillier.h
noinst_HEADERS += src/modules/threshold/paillier_impl.h
noinst_HEADERS += src/modules/threshold/paillier_tests.h
noinst_HEADERS += src/modules/threshold/eczkp.h
noinst_HEADERS += src/modules/threshold/eczkp_impl.h
noinst_HEADERS += src/modules/threshold/eczkp_tests.h
noinst_HEADERS += src/modules/threshold/threshold_impl.h
noinst_HEADERS += src/modules/threshold/threshold_tests.h
```

Listing 5.6 Specialized Makefile for threshold module

It is possible to build the library and enable the threshold module with the command below.

./configure --enable-module-threshold --enable-experimental

5.2 DER parser-serializer

Transmit messages and retrieve keys are an essential part of the scheme. Because between all steps a communication on the network is necessary, a way to export and import data is required. Bitcoin private key is a simple structure because of the fixed curve and their intrinsic nature, a single 2^{256} bits value. Threshold private keys are composed of multiple parts like (i) the private share, (ii) a Paillier private key, (iii) a Paillier public key, and (iv) Zero-Knowledge Proof parameters. To serialize these complex structures the DER standard is chosen. Three simple data types are implemented in the library (i) sequence, (ii) integer, and (iii) octet string.

5.2.1 Sequence

The sequence data structure holds a sequence of integers and/or octet strings. The sequence starts with the constant 0x30 and is followed by the content length and the content itself. A length could be in the short form or the long form. If the content number of bytes is shorter to 0x80 the length byte indicate the length, if the content is equal or longer than 0x80 the seven lower bits 0 to 6 where byte = $\{b_7, \ldots, b_1, b_0\}$ indicate the number of followed bytes which are used for the length.

```
void secp256k1_der_parse_len(const unsigned char *data, unsigned long *pos, unsigned long
10
     → *lenght, unsigned long *offset) {
        unsigned long op, i;
11
12
        op = data[*pos] & 0x7F;
        if ((data[*pos] & 0x80) == 0x80) {
13
             for (i = 0; i < op; i++) {
14
                 *lenght += data[*pos+1+i]<<8*(op-i-1);
15
16
             *offset = op + 1;
        } else {
18
19
             *lenght = op;
             *offset = 1;
20
21
22
         *pos += *offset:
    }
23
```

Listing 5.7 Implementation of a DER length parser

The sequence parser checks the first byte with the constant 0x30 and extracts the content length. Position in the input array are held in the *pos variable, extracted length is stored in *length, and the offset holds how many bytes in the data are used for the header and the length. A coherence check is performed to ensure that the current offset and the retrieved length result in the same amount of bytes passed in argument.

When a sequence holds other sequences, retrieving their total length (including header and content length bytes) is needed to parse them recursively. A specific function is created to retrieve the total length of a struct given a pointer to its first byte.

```
25
    int secp256k1_der_parse_struct(const unsigned char *data, size_t datalen, unsigned long *pos,
        unsigned long *lenght, unsigned long *offset) {
        unsigned long loffset;
26
27
         if (data[*pos] == 0x30) {
             *pos += 1;
28
             secp256k1_der_parse_len(data, pos, lenght, &loffset);
29
30
             *offset = 1 + loffset;
             if (*lenght + *offset != datalen) { return 0; }
31
32
             else { return 1; }
        }
33
        return 0:
34
    }
35
```

Listing 5.8 Implementation of a DER sequence parser

The serialization of a sequence is implemented as a serialization of an octet string with the sequence header 0x30 without integrity check of the content. The content length is serialized first, then the header is added.

The result of a content length serialization can be ≥ 1 bytes. If the content is shorter than 0x80, then one byte is enough to store the length. Else multiple bytes (≥ 2) are used. Because the number of bytes is undefined before the computation a memory allocation is necessary and a pointer is returned with the length of the array.

```
155
     unsigned char* secp256k1_der_serialize_sequence(size_t *outlen, const unsigned char *op,
      156
         unsigned char *data = NULL, *len = NULL;
         size_t lensize = 0;
157
         len = secp256k1_der_serialize_len(&lensize, datalen);
158
159
         *outlen = 1 + lensize + datalen;
160
         data = malloc(*outlen * sizeof(unsigned char));
         data[0] = 0x30:
161
162
         memcpy(&data[1], len, lensize);
163
         memcpy(&data[1 + lensize], op, datalen);
164
         free(len):
         return data;
165
     }
166
```

Listing 5.9 Implementation of a DER sequence serializer

If the content length is longer than 0x80, then mpz is used to serialize the length into a bytes array in big-endian most significant byte first. The length of this serialization is stored into longsize and is used to create the first byte with the most significant bit set to 1 (line 93).

5.2.2 Integer

Integers are used to store the most values in the keys and Zero-Knowledge Proofs. An integer can be positive, negative or zero and are represented in the second complement form. The header starts with 0x02, followed by the length of the data. Parsing and serializing integer are already implemented in libgmp, functions are just wrapper to extract information from the header and start the mpz importation at the right offset.

```
81
     unsigned char* secp256k1_der_serialize_len(size_t *datalen, size_t lenght) {
         unsigned char *data = NULL; void *serialize; size_t longsize; mpz_t len;
82
         if (lenght \geq 0x80) {
83
              mpz_init_set_ui(len, lenght);
84
              serialize = mpz_export(NULL, &longsize, 1, sizeof(unsigned char), 1, 0, len);
85
             mpz_clear(len);
86
87
              *datalen = longsize + 1;
         } else {
88
89
              *datalen = 1;
90
         data = malloc(*datalen * sizeof(unsigned char));
91
         if (lenght \geq 0x80) {
92
              data[0] = (uint8_t)longsize | 0x80;
93
              memcpy(&data[1], serialize, longsize);
94
              free(serialize);
95
96
         } else {
              data[0] = (uint8_t)lenght;
97
         return data:
99
100
     }
```

Listing 5.10 Implementation of a DER length serializer

5.2.3 Octet string

Octet strings are used to holds serialized data like points/public keys. An octet string is an arbitrary array of bytes. The header starts with 0x04 followed by the size of the content. The serialization implementation retrieves the length of the content, copy the header and the octet string into a new memory space, and return the pointer with the total length. The parser implementation copies the content and set the content length, the position index, and the offset.

5.3 Paillier cryptosystem

Homomorphic encryption is required in the scheme and Paillier is proposed in the white paper. Paillier homomorphic encryption is simple to implement in a textbook way, this implementation is functional but not optimized and needs to be reviewed.

5.3.1 Data structures

Encrypted message, public and private keys are transmitted. As mentioned before, the DER standard format is used to parse and serialize data. A der schema for all data structures is defined to ensure portability over different implementations.

Public keys

The public key is composed of a public modulus and a generator. The implementation data structure adds a big modulus corresponding to the square of the modulus. A version number is added for future compatibility purposes.

Listing 5.11 DER schema of a Paillier public key

libgmp is used for all the arithmetic in Paillier implementation, all numbers are stored in mpz_t type. The parser takes in input an array of bytes with a length and the public key to create.

```
typedef struct {
   mpz_t modulus;
   mpz_t generator;
   mpz_t bigModulus;
} secp256k1_paillier_pubkey;
int secp256k1_paillier_pubkey_parse(
   secp256k1_paillier_pubkey *pubkey,
   const unsigned char *input,
   size_t inputlen
);
```

Listing 5.12 DER parser of a Paillier public key

Private keys

The private key is composed of a public modulus, two primes, a generator, a private exponent $\lambda = \varphi(n) = (p-1)(q-1)$, and a private coefficient $\mu = \varphi(n)^{-1}$ mod n. Again, a version number is added for future compatibility purposes.

```
HEPrivateKey ::= SEQUENCE {
                     INTEGER,
   version
   modulus
                     INTEGER,
                               -- p * q
                     INTEGER, -- p
   prime1
   prime2
                     INTEGER,
   generator
                     INTEGER,
   privateExponent
                     INTEGER, -- (p - 1) * (q - 1)
   coefficient
                     INTEGER
                              -- (inverse of privateExponent) mod (p * q)
```

Listing 5.13 DER schema of a Paillier private key

The parser takes in input an array of bytes with a length and the private key to filling. The big modulus is computed after the parsing to accelerate encryption and decryption.

```
typedef struct {
    mpz_t modulus;
    mpz_t prime1;
    mpz_t prime2;
    mpz_t generator;
    mpz_t bigModulus;
    mpz_t privateExponent;
    mpz_t coefficient;
} secp256k1_paillier_privkey;
int secp256k1_paillier_privkey *privkey,
    secp256k1_paillier_privkey,
    secp2
```

Listing 5.14 DER parser of a Paillier private key

Encrypted messages

An encrypted message with Paillier cryptosystem is a big number $c \in \mathbb{Z}_{n^2}^*$. No version number is added in this case. The implementation structure contains a nonce value that could be set to 0 to stores the nonce used during encryption.

Listing 5.15 DER schema of an encrypted message with Paillier cryptosystem

An encrypted message can be serialized and parsed and they are used in messages exchange during the signing protocol by both parties.

5.3.2 Encrypt and decrypt

Like all other encryption schemes in public key cryptography, the public key is used to encrypt and the private key to decrypt. To encrypt the message $\mathtt{mpz_t}$ m where m < n, a random value r where r < n is selected with the function pointer noncefp and set into the nonce value $\mathtt{res->nonce}$. This nonce is stored because his value is needed to create Zero-Knowledge Proofs. Then, the cipher $c = g^m \cdot r^n \mod n^2$ is putted into $\mathtt{res->message}$ to complete the encryption process. All intermediary states are wipe out before returning the result.

Listing 5.16 Implementation of encryption with Paillier cryptosystem

If the random value selection process failed the encryption fail also. The random function of type secp256k1_paillier_nonce_function must use a good CPRNG and his implementation is not part of the library.

```
typedef int (*secp256k1_paillier_nonce_function)(
    mpz_t nonce,
    const mpz_t max
):
```

Listing 5.17 Function signature for Paillier nonces generation

To decrypt the cipher $c \in \mathbb{Z}_{n^2}^*$ with the private key, the function compute $m = L(c^{\lambda} \mod n^2) \cdot \mu \mod n$ where L(x) = (x-1)/n. The cipher is raised to the lambda $c^{\lambda} \mod n^2$ in line 4 and the result is put to an intermediary state variable. Then the L(x) function is applied to the intermediary state in lines 5-6. Finally, the multiplication with μ and the modulo of n are taken (lines 7-8) to lead to the result. It is worth noting that, in line 6, only the quotient of the division is recovered.

Listing 5.18 Implementation of decryption with Paillier cryptosystem

5.3.3 Homomorphism

The choice of this scheme is not hazardous, homomorphic addition and multiplication are used to construct the signature composant $s = D_{sk}(\mu) \mod q$: $\mu = (\alpha \times_{pk} m'z_2) +_{pk} (\zeta \times_{pk} r'x_2z_2) +_{pk} E_{pk}(cn)$ where $+_{pk}$ denotes homomorphic addition over the ciphertexts and \times_{pk} denotes homomorphic multiplication over the ciphertexts.

Addition

Addition $+_{pk}$ over ciphertexts is computed with $D_{sk}(E_{pk}(m_1, r_1) \cdot E_{pk}(m_2, r_2) \mod n^2) = m_1 + m_2 \mod n$ or $D_{sk}(E_{pk}(m_1, r_1) \cdot g^{m_2} \mod n^2) = m_1 + m_2 \mod n$ where D_{sk} denotes descryption with private key sk and E_{pk} denotes encryption with public key pk. Only the first variant is implemented, where two ciphertexts are added together to result in a third ciphertext.

Listing 5.19 Implementation of homomorphic addition with Paillier cryptosystem

Multiplication

Multiplication \times_{pk} over ciphertexts can be performed with $D_{sk}(E_{pk}(m_1, r_1)^{m_2} \mod n^2) = m_1 m_2 \mod n$, the implementation is straight forward in this case. The nonce value from the ciphertext is copied in the resulted encrypted message for not lose information after opperations.

Listing 5.20 Implementation of homomorphic multiplication with Paillier cryptosystem

5.4 Zero-knowledge proofs

Two Zero-Knowledge Proofs are used in the scheme, each party generate a proof and validates the other one. A proof is generated and verified under some ZKP parameters, these parameters are fixed at the initialization time and don't change over the time.

5.4.1 Data structures

Three data structures are created, one for each ZKP and one for storing the parameters. Zero-Knowledge Proofs are composed of big numbers and points and need to be serialized and parsed to be included in the messages exchange protocol.

Zero-Knowledge Parameters

Zero-Knowledge parameter is composed of three numeric values (i) \tilde{N} a public modulus, (ii) h_2 a value selected randomly $\in \mathbb{Z}_{\tilde{N}}^*$, and (iii) h_1 a value where $\exists x, \log_x(h_1) = h_2 \mod \tilde{N}$. One function is provided in the module to parse a ZKPParameter DER schema.

Listing 5.21 DER schema of a Zero-Knowledge parameters sequence

Zero-Knowledge Proof Π

Zero-Knowledge Proof II is composed of numeric values and one point. The point is stored in a public key internal structure inside the implementation and is exported through the secp256k1 library as a 65 bytes uncompressed public key. The uncompressed public key is then stored as an octet string in the schema. A version number is added for future compatibility purposes. Two functions are provided in the module to parse and serialize a ECZKPPi DER schema.

Zero-Knowledge Proof Π'

Zero-Knowledge Proof Π' is composed of the same named values as ZKP Π plus five new ones. The construction of the proof is based on Π but needs more than values to express all the proven statements. Again, the point y is a point serialized

Chapter 5. Implementation in Bitcoin-core secp256k1

```
ECZKPPi ::= SEQUENCE {
                         INTEGER,
    version
                         INTEGER.
    z1
    z2
                         INTEGER,
                         OCTET STRING,
    У
    е
                         INTEGER,
    s1
                         INTEGER,
                         INTEGER.
    s2
    s3
                         INTEGER,
                         INTEGER,
    t1
                         INTEGER.
    t.2
    t3
                         INTEGER,
    t4
                         INTEGER
}
```

Listing 5.22 DER schema of a Zero-Knowledge Π sequence

as an uncompressed public key in an octet string and a version number is added for future compatibility purposes. Two functions are provided in the module to parse and serialize a ECZKPPiPrim DER schema.

```
ECZKPPiPrim ::= SEQUENCE {
    version
                         INTEGER.
    z1
                         INTEGER,
    7.2
                         INTEGER.
    z3
                         INTEGER,
                         OCTET STRING,
    У
                         INTEGER,
                         INTEGER,
    s1
    s2
                         INTEGER.
    s3
                         INTEGER,
    s4
                         INTEGER,
    t.1
                         INTEGER.
    t2
                         INTEGER,
                         INTEGER,
    t3
    t4
                         INTEGER.
                         INTEGER,
                         INTEGER,
    t6
    t7
                         INTEGER
```

Listing 5.23 DER schema of a Zero-Knowledge Π' sequence

5.4.2 Generate proofs

Proofs are generated in relation to a specific setup and a specific in progress signature. which makes them linked to a large number of values (points, encrypted messages, secrets, parameters, etc.) The complexity of these constructions is strongly felt in the code. Heavy mathematic computations are needed with two hash functions.

A CPRNG function is required to generate both proofs. This function generate random number in \mathbb{Z}_{max} and \mathbb{Z}_{max}^* . The flag argument indicate which case is treated, STD or INV. If the function has no access to a good source of randomness or cannot generate a good random number a zero is returned, otherwise a one is returned.

```
typedef int (*secp256k1_eczkp_rdn_function)(
    mpz_t res,
    const mpz_t max,
    const int flag
);
#define SECP256K1_THRESHOLD_RND_INV 0x01
#define SECP256K1_THRESHOLD_RND_STD 0x00
```

Listing 5.24 Function signature for ZKP CPRNG

Zero-Knowledge Proof Π

As shown in figure 4.2, the proof states that (i) it exists a known value by the proover that link $r \to r_2$, (ii) it exists a second known value by the proover that, related to the first one, link $G \to y_1$, (iii) the result of $D_{sk}(\alpha)$ is this first value, and (iv) the result of $D_{sk}(\zeta)$ is this second value.

To do computation on the curve a context object need to be passed in argument, then the ZKP object to fill, the ZKP parameters, the two encrypted messages α and ζ , scalar values sx_1 and sx_2 representing $z_1 = (k_1)^{-1} \mod n$ and x_1z_1 , then the point r, the point r_2 , the partial public key y_1 , the proover Paillier public key which has been used to encrypt α and ζ , and finally a pointer to a CPRNG function used to generate all needed random values.

```
int secp256k1_eczkp_pi_generate(
    const secp256k1_context *ctx,
    secp256k1_eczkp_pi *pi,
    const secp256k1_eczkp_parameter *zkp,
    const secp256k1_paillier_encrypted_message *m1,
    const secp256k1_paillier_encrypted_message *m2,
    const secp256k1_scalar *sx1,
    const secp256k1_scalar *sx2,
    const secp256k1_pubkey *c,
    const secp256k1_pubkey *w1,
    const secp256k1_pubkey *w2,
    const secp256k1_paillier_pubkey *pubkey,
    const secp256k1_eczkp_rdn_function rdnfp
);
```

Listing 5.25 Function signature to generate ZKP Π

The function implementation can be splited in four main parts (i) generate all the needed random values v, (ii) compute the challenge values, (iii) compute the hash of these values v, and (iv) compute the ZKP values with e = hash(v).

Zero-Knowledge Proof Π'

As shown in figure 4.5, the proof states that (i) it exists a known value by the proover x_1 that link $r_2 \to G$, (ii) it exists a second known value by the proover that, related to the first one, link $G \to y_2$, (iii) the result of $D_{sk'}(\mu')$ is this first value, and (iv) it exists a third known value by the proover x_3 and the result of $D_{sk}(\mu)$ is the homomorphic operation of $(\alpha \times x_1) + (\zeta \times x_2) + x_3$.

The function implementation can also be splited in four main parts (i) generate all the needed random values v, (ii) compute the proof values, (iii) compute the hash' of these values v, and (iv) compute the ZKP values with $e = \mathtt{hash'}(v)$.

```
int secp256k1_eczkp_pi2_generate(
   const secp256k1_context *ctx,
   secp256k1_eczkp_pi2 *pi2,
   const secp256k1_eczkp_parameter *zkp,
   const secp256k1_paillier_encrypted_message *m1,
   const secp256k1_paillier_encrypted_message *m2,
   const secp256k1_paillier_encrypted_message *m3,
   const secp256k1_paillier_encrypted_message *m4,
   const secp256k1_paillier_encrypted_message *r,
   const mpz_t x1,
   const mpz t x2.
   const mpz_t x3,
   const mpz_t x4,
   const mpz_t x5,
   const secp256k1_pubkey *c,
   const secp256k1_pubkey *w2,
   const secp256k1_paillier_pubkey *pairedkey,
   const secp256k1_paillier_pubkey *pubkey,
   const secp256k1_eczkp_rdn_function rdnfp
);
```

Listing 5.26 Function signature to generate ZKP Π'

It is worth noting that hash and hash' must be different hashing function to avoid reusing Π proofs, even not satisfying the predicate, to construct fraudulent Π' proofs.

5.4.3 Validate proofs

Validation of proofs Π and Π' can be done with (i) the Paillier public keys, (ii) the ZKP parameters, and (iii) the exchanged messages. The process can be split into three steps: compute the proof values, retrieve the candidate value e', and compare if e = e'. If the values match the proof is valid.

```
int secp256k1_eczkp_pi_verify(
   const secp256k1_context *ctx,
   secp256k1_eczkp_pi *pi,
   const secp256k1_eczkp_parameter *zkp,
   const secp256k1_paillier_encrypted_message *m1,
   const secp256k1_paillier_encrypted_message *m2,
   const secp256k1_pubkey *c,
   const secp256k1_pubkey *w1,
   const secp256k1_pubkey *w2,
   const secp256k1_paillier_pubkey *pubkey
);
int secp256k1_eczkp_pi2_verify(
   const secp256k1_context *ctx,
   secp256k1_eczkp_pi2 *pi2,
   const secp256k1_eczkp_parameter *zkp,
   const secp256k1_paillier_encrypted_message *m1,
   const secp256k1_paillier_encrypted_message *m2,
   const secp256k1_paillier_encrypted_message *m3,
   const secp256k1_paillier_encrypted_message *m4,
   const secp256k1_pubkey *c,
   const secp256k1_pubkey *w2,
   const secp256k1_paillier_pubkey *pubkey,
   const secp256k1_paillier_pubkey *pairedkey
);
```

Listing 5.27 Function signature to validate ZKP Π and Π'

5.5 Threshold module

The threshold module exposes the public API used to create an application that wants to use the distributed signature protocol. The public API includes all functions needed to parse-serialize keys, messages, and signature parameters. Signature parameters holds the values k, $z = k^{-1}$, and $r = k \cdot G$, these values are—in a normal signature mode—computed, used, and destroy in one time. However, a mechanism to save et restore these values is required in the distributed mode because the context can be destroyed and re-created between each step.

The public API also includes the five functions that implement the protocol. One function is one step in the protocol and between two functions, the generated message is serialized by the caller and parsed by the sender. The signature parameters could also be serialized and parsed during the response waiting time.

Nomenclature

A proposal for exchanged messages names and actions is done in this report. Players P_1 and P_2 represent the initiator and collaborator. Player P_1 initialize the communication and ask P_2 to collaborate on a signature, if P_2 collaborates and the protocol end successfully P_1 retrieve the signature.

Four messages are necessary between the five steps. In order, the proposed names are (i) call message, (ii) challenge message, (iii) response challenge, and (iv) terminate message. The functions are named after the corresponding action and message name.

5.5.1 Create call message

The call_create function, as indicated by his name, create the call message. Arguments are checked to be non-null if one of them is the function will fail. The secret share is loaded in a 32 bytes array and the nonce (k) is retrieved with the noncefp function pointer. It is worth noting that this function could be called multiple times until a nonce that is not zero and which doesn't overflow is found. However, this function as a limited number of calls and if the limit is reached the function will fail. The signatures parameters are then set and encrypted in the call message. The parameters k and k are set for k. The noncefp can point to an implementation of a deterministic signature mode or a random [20] signature mode. If the deterministic model is chosen, the counter indicates the number of rounds done by the function.

```
int secp256k1_threshold_call_create(const secp256k1_context *ctx,
247
           secp256k1_threshold_call_msg *callmsg, secp256k1_threshold_signature_params *params,
           const secp256k1_scalar *secshare, const secp256k1_paillier_pubkey *paillierkey, const
           unsigned char *msg32, const secp256k1_nonce_function noncefp, const
           secp256k1_paillier_nonce_function pnoncefp) {
         int ret = 0;
248
          int overflow = 0;
         unsigned char nonce32[32];
250
251
         unsigned char sec32[32];
252
         unsigned int count = 0;
         secp256k1_scalar privinv;
253
254
255
         ARG_CHECK(ctx != NULL);
         ARG_CHECK(callmsg != NULL);
256
257
         ARG_CHECK(params != NULL);
         ARG_CHECK(secshare != NULL);
258
         ARG_CHECK(paillierkey != NULL);
259
         ARG_CHECK(msg32 != NULL);
260
         secp256k1_scalar_get_b32(sec32, secshare);
261
262
         while (1) {
```

```
263
              ret = noncefp(nonce32, msg32, sec32, NULL, NULL, count);
264
              if (!ret) {
                  break;
265
266
267
              secp256k1_scalar_set_b32(&params->k, nonce32, &overflow);
              if (!overflow && !secp256k1_scalar_is_zero(&params->k)) {
268
                  secp256k1_scalar_inverse(&params->z, &params->k); /* z1 */
269
270
                  secp256k1_scalar_mul(&privinv, &params->z, secshare); /* x1z1 */
                  if (secp256k1_paillier_encrypt_scalar(callmsg->alpha, &params->z, paillierkey,
271
                      pnoncefp)
                      && secp256k1_paillier_encrypt_scalar(callmsg->zeta, &privinv, paillierkey,
                          pnoncefp)) {
273
                      break;
274
             }
275
276
              count++;
         }
277
         memset(nonce32, 0, 32);
278
         memset(sec32, 0, 32);
         secp256k1_scalar_clear(&privinv);
280
281
         return ret;
282
```

Listing 5.28 Implementation of call_create function

5.5.2 Receive call message

The call_received function set the parameter k and r of P_2 and prepare the challenge message with r. Again, the pointer can point to a deterministic implementation for generating the nonce.

```
int secp256k1_threshold_call_received(const secp256k1_context *ctx,
           {\tt secp256k1\_threshold\_challenge\_msg~*challengemsg,~secp256k1\_threshold\_signature\_params}
           *params, const secp256k1_threshold_call_msg *callmsg, const secp256k1_scalar *secshare,
           const unsigned char *msg32, const secp256k1_nonce_function noncefp) {
         int ret = 0;
285
          int overflow = 0;
286
         unsigned int count = 0;
287
          unsigned char k32[32];
288
          unsigned char sec32[32];
290
291
          ARG_CHECK(ctx != NULL);
          ARG_CHECK(challengemsg != NULL);
292
         ARG_CHECK(params != NULL);
293
          ARG_CHECK(callmsg != NULL);
          ARG_CHECK(secshare != NULL);
295
         ARG_CHECK(msg32 != NULL);
296
          secp256k1_scalar_get_b32(sec32, secshare);
298
          while (1) {
              ret = noncefp(k32, msg32, sec32, NULL, NULL, count);
299
              if (!ret) {
300
                  break:
301
302
              secp256k1_scalar_set_b32(&params->k, k32, &overflow);
303
304
              if (!overflow && !secp256k1_scalar_is_zero(&params->k)) {
                  if (secp256k1_ec_pubkey_create(ctx, &params->r, k32)) {
305
                      memcpy(&challengemsg->r2, &params->r, sizeof(secp256k1_pubkey));
306
307
                      break:
                  }
308
              }
309
310
              count++;
311
         memset(k32, 0, 32);
312
         memset(sec32, 0, 32);
313
         return ret:
314
     }
315
```

Listing 5.29 Implementation of call_received function

5.5.3 Receive challenge message

The challenge_received function is called by P_1 to compute the final public point r of the signature and create the first Zero-Knowledge Proof.

```
int secp256k1_threshold_challenge_received(const secp256k1_context *ctx,
317
           secp256k1_threshold_response_challenge_msg *respmsg,
           secp256k1_threshold_signature_params *params, const secp256k1_scalar *secshare, const
      \ \hookrightarrow \ \ \texttt{secp256k1\_threshold\_call\_msg} \ \ \texttt{*challengemsg, const secp256k1\_threshold\_call\_msg}
          *callmsg, const secp256k1_eczkp_parameter *zkp, const secp256k1_paillier_pubkey
       → *paillierkey, const secp256k1_eczkp_rdn_function rdnfp) {
318
          int ret = 0;
          unsigned char k32[32];
319
          secp256k1_pubkey y1;
320
321
          secp256k1_scalar privinv;
322
323
          ARG_CHECK(ctx != NULL);
          ARG_CHECK(respmsg != NULL);
324
          ARG_CHECK(params != NULL);
325
326
          ARG_CHECK(challengemsg != NULL);
          secp256k1_scalar_get_b32(k32, &params->k);
          \verb|memcpy(&respmsg->r|, &challengemsg->r2, sizeof(secp256k1_pubkey));|\\
328
329
          ret = secp256k1_ec_pubkey_tweak_mul(ctx, &respmsg->r, k32);
          secp256k1_scalar_get_b32(k32, secshare);
330
          if (ret && secp256k1_ec_pubkey_create(ctx, &y1, k32)) {
331
              memcpy(&params->r, &respmsg->r, sizeof(secp256k1_pubkey));
332
              secp256k1_scalar_mul(&privinv, &params->z, secshare);
333
334
              VERIFY_CHECK(secp256k1_eczkp_pi_generate(
                  respmsg->pi,
336
337
                  zkp,
                  callmsg->alpha,
338
339
                   callmsg->zeta,
340
                  &params->z,
                  &privinv,
341
342
                  &params->r,
                  &challengemsg->r2,
343
                  &v1,
344
                  paillierkey,
345
346
                  rdnfp
              ) == 1);
347
          }
348
          memset(k32, 0, 32);
349
          secp256k1_scalar_clear(&privinv);
350
          return ret;
351
352
```

Listing 5.30 Implementation of challenge_received function

5.5.4 Receive response challenge message

The response_challenge_received function is called by P_2 and validates the first Zero-Knowledge Proof, Π . The final ciphertext which contains the s part of the distributed signature is computed and the second Zero-Knowledge Proof Π' is created.

The point r is normalized and the coordinate r.x is get (modulo n). The hash is multiplied with z_2 and the coordinate r.x is multiplied with x_2z_2 . A value x_3 where $n|x_3$ is added to the cipher to hide information about the secret share and the secret random. In ECDSA $s = k^{-1}(m + rx) \mod n$, so the ciphertext match the requirement as demonstrated below:

```
D_{sk}(\mu) \equiv (\alpha \times mz_2) + (\zeta \times rx_2z_2) + (x_3) \pmod{n}
\equiv (z_1 \times mz_2) + (x_1z_1 \times rx_2z_2) \pmod{n}
\equiv (z_1z_2m) + (x_1z_1rx_2z_2) \pmod{n}
\equiv z_1z_2(m + rx_1x_2) \pmod{n}
\equiv z(m + rx) \pmod{n}
\equiv k^{-1}(m + rx) \pmod{n}
```

```
ret = secp256k1_eczkp_pi_verify(
379
380
              ctx,
              respmsg->pi,
381
382
              zkp,
              callmsg->alpha,
383
384
              callmsg->zeta,
385
              &respmsg->r,
              &challengemsg->r2,
386
              pairedshare,
387
              pairedkey
388
          ):
389
              mpz_inits(m1, m2, c, n5, n, nc, m, z, rsig, inv, NULL);
391
              secp256k1_scalar_inverse(&params->z, &params->k); /* z2 */
392
              secp256k1_scalar_mul(&privinv, &params->z, secshare); /* x2z2 */
              mpz_import(n, 32, 1, sizeof(n32[0]), 1, 0, n32);
394
395
              secp256k1_scalar_set_b32(&msg, msg32, &overflow);
              if (!overflow && !secp256k1_scalar_is_zero(&msg)) {
396
                  secp256k1_pubkey_load(ctx, &r, &respmsg->r);
397
                  secp256k1_fe_normalize(&r.x);
398
                  secp256k1_fe_normalize(&r.y);
399
                  secp256k1_fe_get_b32(b, &r.x);
400
                  secp256k1_scalar_set_b32(&sigr, b, &overflow);
                   /* These two conditions should be checked before calling */
402
                  VERIFY_CHECK(!secp256k1_scalar_is_zero(&sigr));
403
                  VERIFY_CHECK(overflow == 0);
404
                  mpz_import(rsig, 32, 1, sizeof(b[0]), 1, 0, b);
405
                  secp256k1_scalar_get_b32(b, &params->z);
                  mpz_import(z, 32, 1, sizeof(b[0]), 1, 0, b);
407
408
                  secp256k1_scalar_get_b32(b, &privinv);
                  mpz_import(inv, 32, 1, sizeof(b[0]), 1, 0, b);
                  secp256k1_scalar_get_b32(b, &msg);
410
                  mpz_import(m, 32, 1, sizeof(msg32[0]), 1, 0, msg32);
411
                  mpz_mul(m1, m, z); /* m'z2 */
412
                  \label{eq:mpz_mul(m2, rsig, inv); /* r'x2z2 */} \\ \text{mpz_mul(m2, rsig, inv); /* } r'x2z2 */
413
                  mpz_pow_ui(n5, n, 5);
414
                  noncefp(c, n5);
415
                  mpz_mul(nc, c, n); /* cn */
416
                  secp256k1_paillier_mult(m3, callmsg->alpha, m1, pairedkey);
417
                  secp256k1_paillier_mult(m4, callmsg->zeta, m2, pairedkey);
418
                  secp256k1_paillier_add(m5, m3, m4, pairedkey);
419
420
                  ret = secp256k1_paillier_encrypt_mpz(enc, nc, pairedkey, noncefp);
                  secp256k1_scalar_get_b32(sec32, secshare);
421
422
                  if (ret && secp256k1_ec_pubkey_create(ctx, &y2, sec32)) {
                       secp256k1_paillier_add(termsg->mu, m5, enc, pairedkey);
423
                       ret = secp256k1_paillier_encrypt_mpz(termsg->mu2, z, p2, noncefp);
424
                       VERIFY_CHECK(secp256k1_eczkp_pi2_generate(
425
                                                    /* ctx */
426
                           ctx.
                                                     /* pi2 */
427
                           termsg->pi2,
```

```
428
                           zkp,
                                                      /* zkp */
429
                           termsg->mu2,
                                                      /* m1 */
                           termsg->mu,
                                                      /* m2 */
430
                                                      /* m3 */
                           callmsg->alpha,
431
                                                      /* m4 */
432
                           callmsg->zeta,
433
                           enc,
                                                      /* x1 */
434
                           z.
                                                      /* x2 */
                           inv,
435
                                                      /* x3 */
436
                           с,
                                                      /* x4 */
437
                           m,
                                                      /* x5 */
438
                           rsig,
                                                      /* c */
                           &challengemsg->r2,
439
                                                      /* w2 */
440
                           &y2,
                                                      /* pairedkey */
441
                           pairedkey,
                           p2,
                                                      /* pubkey */
442
                                                      /* rdnfp */
443
                           rdnfp
                       ) == 1);
444
                  }
445
              }
```

Listing 5.31 Core function of response_challenge_received

5.5.5 Receive terminate message

The terminate_received function is called by P_1 and validates the second Zero-Knowledge Proof, Π' . After validation of the proof, the ciphertext is decrypted and the signature is composed. The signature is then tested and the protocol ends. Only P_1 can decrypt the ciphertext so the protocol is asymetric. If P_2 also needs the signature, P_1 must share it. There is now way for P_2 to know the signature without a cooperative P_1 .

```
unsigned char n32[32] = {
460
              Oxff, Oxff,
461
               \hookrightarrow 0xff, 0xfe,
              Oxba, Oxae, Oxdc, Oxe6, Oxaf, Ox48, OxaO, Ox3b, Oxbf, Oxd2, Ox5e, Ox8c, OxdO, Ox36,
462
                   0x41, 0x41
         };
463
         unsigned char b[32];
464
465
          void *ser;
         int ret = 0;
466
467
         int overflow = 0;
468
         size_t size;
         mpz_t m, n, sigs;
469
         secp256k1_ge sigr, pge;
470
         secp256k1_paillier_pubkey *p1;
471
         secp256k1_scalar r, s, mes;
472
473
         ARG_CHECK(ctx != NULL);
474
         ARG_CHECK(sig != NULL);
475
         ARG_CHECK(termsg != NULL);
476
         ARG_CHECK(params != NULL);
477
         ARG_CHECK(p != NULL);
478
         ARG_CHECK(pub != NULL);
479
         ARG_CHECK(msg32 != NULL);
480
         p1 = secp256k1_paillier_pubkey_get(p);
         ret = secp256k1_eczkp_pi2_verify(
482
483
              ctx.
                                        /* ctx */
                                        /* pi2 */
484
              termsg->pi2,
                                        /* zkp */
              zkp,
485
486
              termsg->mu2,
                                        /* m1 */
              termsg->mu,
                                        /* m2 */
487
                                        /* m3 */
              callmsg->alpha,
488
              callmsg->zeta,
              &challengemsg->r2,
                                        /* c */
490
                                         /* w2 */
491
              pairedpub,
```

Chapter 5. Implementation in Bitcoin-core secp256k1

```
p1,
492
                                        /* pubkey */
              -
pairedkey
                                        /* pairedkey */
493
494
         if (ret) {
495
              secp256k1_scalar_set_b32(&mes, msg32, &overflow);
496
             ret = !overflow && secp256k1_pubkey_load(ctx, &pge, pub);
497
              if (ret) {
498
                  secp256k1_pubkey_load(ctx, &sigr, &params->r);
499
                  secp256k1_fe_normalize(&sigr.x);
500
                  secp256k1_fe_normalize(&sigr.y);
501
                  secp256k1_fe_get_b32(b, &sigr.x);
                  secp256k1_scalar_set_b32(&r, b, &overflow);
503
                 VERIFY_CHECK(!secp256k1_scalar_is_zero(&r));
504
                 VERIFY_CHECK(overflow == 0);
505
                 mpz_inits(m, n, sigs, NULL);
506
507
                 secp256k1_paillier_decrypt(m, termsg->mu, p);
                 mpz_import(n, 32, 1, sizeof(n32[0]), 1, 0, n32);
508
                 mpz_mod(sigs, m, n);
509
510
                 ser = mpz_export(NULL, &size, 1, sizeof(unsigned char), 1, 0, sigs);
                 secp256k1_scalar_set_b32(&s, ser, &overflow);
511
                 if (!overflow
512
513
                      && !secp256k1_scalar_is_zero(&s)
                      && secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &r, &s, &pge, &mes)) {
514
515
                      secp256k1_ecdsa_signature_save(sig, &r, &s);
516
                 } else {
                      memset(sig, 0, sizeof(*sig));
517
                 }
             }
519
             mpz_clears(m, n, sigs, NULL);
520
              secp256k1_scalar_clear(&r);
521
              secp256k1_scalar_clear(&s);
522
523
              secp256k1_scalar_clear(&mes);
524
         secp256k1_paillier_pubkey_destroy(p1);
525
526
         return ret;
```

Listing 5.32 Core function of terminate_received

6 Further research

It is possible to list an enormous amount of idea or further research in a field like crypto-currencies or blockchain. But some of them more related to the work done in this paper are listed in the following. Some of them are improvements of the work already done but not yet ready for production, and some of them are entirely exploratory.

6.1 Side-channel attack resistant implementation and improvements

The proposed implementation into the library secp256k1 rely on libgmp for all complicated mathematical calculus and libgmp is not robust against side-channel attacks, and it is normal, the library has not been developed for that particular purpose. Therefore, another implementation needs to take place and handle, in constant time and constant memory if possible, the mathematical calculus part. This is a significant improvement that can be done, or must be done, before hoping to use the module is some real case scenario.

6.1.1 Second hash function

The current implementation use the hash function SHA256 implemented into the library secp256k1 for Π and Π' . This is not complient with the original paper requirements, a other hash function must be implemented and used for Π' .

6.1.2 Paillier cryptosystem

Two major improvements or modifications could be performed specifically on the Paillier cryptosystem implementation. As shown in the original paper, the Chinese Remainder Theorem can be used to optimize the decryption. In the standard approach, with a private key (n, g, λ, μ) and a ciphertext $c \in \mathbb{Z}_{n^2}^*$ it is possible to compute the plaintext $m = L(c^{\lambda} \mod n^2) \cdot \mu \mod n$ where $L(x) = \frac{x-1}{n}$. With the CRT two function L_p and L_q are define by

$$L_p(x) = \frac{x-1}{p}$$
 and $L_q(x) = \frac{x-1}{q}$

Decryption can, therefore, be performed with modulo p and modulo q and recombining modular residues afterward:

$$m_p = L_p(c^{p-1} \mod p^2) \ h_p \mod p$$

 $m_q = L_q(c^{q-1} \mod p^2) \ h_q \mod q$
 $m = \operatorname{CRT}(m_p, m_q) \mod pq$

with precomputations

$$h_p = L_p(g^{p-1} \mod p^2)^{-1} \mod p \quad \text{and}$$

$$h_q = L_q(g^{q-1} \mod p^2)^{-1} \mod q$$

Paillier cryptosystem can be adapted to EC cryptography as shown in the paper "Trapdooring Discrete Logarithms on Elliptic Curves over Rings" by Pascal Paillier [21]. It is worth noting however that the curve construction is different from the curve used to sign and so the code base cannot necessarily be reused.

6.1.3 Zero-knowledge proofs

Non-interactive zero-knowledge proofs are a significant research field. The article "From Extractable Collision Resistance to Succinct Non-interactive Arguments of Knowledge, and Back Again" by Bitansky, Nir and Canetti, Ran and Chiesa, Alessandro and Tromer, and Eran [22] introduced the acronym zk-SNARK for zero-knowledge Succinct Non-interactive ARgument of Knowledge that is the backbone of the Zcash protocol [23]. In the recent paper "Bulletproofs: Efficient Range Proofs for Confidential Transactions" [24] a new non-interactive zero-knowledge proof protocol with concise proofs and without a trusted setup is proposed. Further research could be done to adapt the zero-knowledge proof construction and migrate to a more generic approach, to remember that the zero-knowledge proof construction proposed in the original paper dates from the early 2000s and advancement has been made.

6.2 Hardware wallets

Hardware wallet devices have become increasingly popular with people and society. They promise to keep the keys safe and, at least, expose less the keys thanks to a dedicated and controlled environment. Thus, keys can be stored safely and, in an organization, for example, multiple hardware wallets can be used to create a multi-signature and control the funds.

The development of this threshold library, even if it is just a 2-out-of-2 multisignature script equivalent, can be used to create threshold hardware wallet devices. Two hardware wallet devices can be set up together to create a multi-user setup, or a hardware wallet device can be coupled with a phone to secure a web-wallet.

Usually, when a new Bitcoin wallet is created, a list of words called mnemonic is shown to the user as a backup of his wallet key. The mnemonics are between twelve and twenty-four, and each word represents 11 bits of the initial seed [25], for a threshold key, it is not possible to represent all the data in the same way given the size of the key (near 4.5 Kb). Another way to display and transmit this information is needed to increase usability. Further research could be done to find a better way to represent and display a threshold key.

The master tag is not included in the DER schema. Is the key itself responsible for storing this information or this information is a part of the setup and can be stored outside? This question can be developed.

6.3 More generic threshold scheme

As previously mentioned, research have been done to generalize and find an optimal (t, n)-threshold in ECDSA [12, 13]. These papers base their work on the scheme chosen by the implementation, so a deeper analysis could be performed to assess the needed changes to adapt the current implementation to a generic threshold.

6.4 Schnorr signatures

In the paper "Efficient Identification and Signatures for Smart Cards" published in CRYPTO 1989, C.P. Schnorr propose the "Schnorr signature algorithm" [26]. The Schnorr signature is considered the simplest digital signature scheme to be provably secure in a random oracle model [27, 28]. Thus, Bitcoin developers and researchers

have a strong interest in this specific scheme since some years now. Schnorr signatures could greatly reduce the size of the signature from 65 bytes (ECDSA in DER format) to 40 bytes.

With the arrival of SegWit, it is now possible to have script version, thus it is easier to introduce new OP_CODE and so introduce a new signature validation scheme. However, this will not invalidate the present work and research because of the specific nature of its application.

Nevertheless, Schorr signatures are tipped to be the next scheme used in Bitcoin and maybe in other crypto-currencies. Further research could be done to find a protocol that fulfills the requirements defined for payment channels optimization.

7 | Conclusions

Basics mechanisms of Bitcoin have been explained to introduce two significant issues in Bitcoin today, i.e., the scalability problem and the latency problem. These problems already have existing drafted solutions like consensus changes or payment channel. Payment channels are not new to Bitcoin, multiple implementations of the Lightning Network specification already exist. Another scheme, with different capabilities, is proposed to handle a specific context explain in the white paper. This system can be improved with threshold cryptography by reducing the size of the transactions. This reduction is made by replacing the multi-signature script in Bitcoin by a single signature computed with threshold cryptography. The threshold scheme is analyzed and adapted to ECDSA before been implemented inside the existing library used in Bitcoin-core implementation, the library secp256k1. Finally, further research about payment channels, Bitcoin, and threshold signature scheme are exposed.

The Bitcoin payment channel implementation will be released in open source soon, and testing will begin in the next months. The threshold implementation will be part of a current project comprising the creation of a free BTM machine using payment channel to withdraw cash and threshold signature to buy crypto-coins to avoid storing full private keys on the device.

A | Experimental implementation in Python

A Python implementation fully working for testing threshold ECDSA signature and zero-knowledge proofs is available on GitHub at https://github.com/GuggerJoel/poc-threshold-ecdsa-secp256k1.

```
#!/usr/bin/env python
    import hashlib
    import paillier
    import ecdsa
    import eczkp
    import eczkp_pem
    import pem
    import utils
10
    def alice_round_1(m, x1, y1, ka_pub, ka_priv):
11
        k1 = utils.randomnumber(ecdsa.n-1, inf=1)
12
        z1 = utils.invert(k1, ecdsa.n)
        alpha, r1 = paillier.encrypt(z1, ka_pub)
13
        zeta, r2 = paillier.encrypt(x1 * z1 % ecdsa.n, ka_pub)
return k1, z1, alpha, zeta, r1, r2
15
16
    def bob_round_1(alpha, zeta):
        k2 = utils.randomnumber(ecdsa.n-1, inf=1)
18
19
        r2 = ecdsa.point_mult(ecdsa.G, k2)
        return k2, r2
20
21
    def alice_round_2(alpha, zeta, r2, k1, y1, z1, x1, zkp, ka_pub, rr1, rr2):
       Ntild, h1, h2 = zkp
23
24
        eta1 = z1
        eta2 = (x1 * z1) \% ecdsa.n
        r = ecdsa.point_mult(r2, k1)
26
27
        c = r \# POINT
28
        d = ecdsa.G # POINT
29
        w1 = r2 \# POINT
        w2 = y1 # POINT
31
32
        m1 = alpha
33
        m2 = zeta
        x1 = eta1
34
        x2 = eta2
        r1 = rr1 # RANDOM ALPHA ENC
36
        r2 = rr2 # RANDOM ZETA ENC
37
        pi = eczkp.pi(c, d, w1, w2, m1, m2, r1, r2, x1, x2, zkp, ka_pub)
39
40
        return r, pi
    def bob_round_2(pi, m, alpha, zeta, r, k2, x2, r2, y1, y2, ka_pub, kb_pub, zkp):
42
43
        n, g = ka_pub
        n2 = n * n
44
45
        rq = r[0] \% ecdsa.n
46
        if rq == 0:
47
48
             print("signature failed, retry")
             exit(1)
50
        z2 = utils.invert(k2, ecdsa.n)
        x2z2 = (x2 * z2) \% ecdsa.n
52
        x3 = utils.randomnumber(pow(ecdsa.n, 5)-1, inf=1)
53
        if not eczkp.pi_verify(pi, r, ecdsa.G, r2, y1, alpha, zeta, zkp, ka_pub):
55
             print "Error: zkp failed"
56
             exit(1)
58
        mu1 = paillier.mult(alpha, m * z2, n2)
```

```
60
         mu2 = paillier.mult(zeta, rq * x2z2, n2)
         mu3, rnumb = paillier.encrypt(x3 * ecdsa.n, ka_pub)
61
         mu = paillier.add(paillier.add(mu1, mu2, n2), mu3, n2)
 62
63
         muprim, rmuprim = paillier.encrypt(z2, kb_pub)
 64
65
         c = r2
66
 67
         d = ecdsa.G
         w1 = ecdsa.G
68
         w2 = y2
69
         m1 = muprim # ENCRYPTED Z2
70
         m2 = mu # ENCRYPTED RESULT
71
         m3 = alpha \# ENCRYPTED Z1
72
         m4 = zeta # ENCRYPTED X1Z1
73
         r1 = rmuprim
74
75
         r2 = rnumb
         x1 = z2
76
         x2 = x2z2
77
         x4 = m
 78
         x5 = rq
79
 80
81
         pi2 = eczkp.pi2(c, d, w1, w2, m1, m2, m3, m4, r1, r2, x1, x2, x3, x4, x5, zkp, ka_pub,
          \hookrightarrow kb_pub)
 82
         if not pi2:
             print "Error: zkp failed"
83
             exit(1)
84
         return mu, muprim, pi2
86
87
     def alice_round_3(pi2, r, r2, y2, mup, mu, alpha, zeta, zkp, ka_priv, kb_pub):
88
         n, p, q, g, lmdba, mupaillier = ka_priv
89
90
         ka_pub = (n, g)
         rf = r[0] \% ecdsa.n
91
92
 93
         c = r2
         d = ecdsa.G
94
95
         w1 = ecdsa.G
         w2 = y2
96
         m1 = mup
97
98
         m2 = mu
         m3 = alpha
99
         m4 = zeta
100
101
         if not eczkp.pi2_verify(pi2, c, d, w1, w2, m1, m2, m3, m4, zkp, ka_pub, kb_pub):
102
             print "Error: zkp 2 failed"
103
              exit(1)
104
105
         s = paillier.decrypt(mu, ka_priv) % ecdsa.n
106
107
         if s == 0:
              print("signature failed, retry")
108
109
              exit(1)
110
         return rf. s
111
113
114
     def run_secdsa():
         # Aclice
115
         x1 = utils.randomnumber(ecdsa.n, inf=2)
116
117
         y1 = ecdsa.get_pub(x1)
         ka_pub, ka_priv = paillier.gen_key()
118
119
120
         # Bob
         x2 = utils.randomnumber(ecdsa.n, inf=2)
121
122
         y2 = ecdsa.get_pub(x2)
123
         kb_pub, kb_priv = paillier.gen_key()
124
125
         zkp = eczkp.gen_params(1024)
126
         pub = ecdsa.get_pub(x1 * x2 % ecdsa.n)
127
```

```
128
         # Message hash
129
130
         message = "hello"
         h = hashlib.sha256()
131
         h.update(message.encode("utf-8"))
132
         m = long(h.hexdigest(), 16)
133
         print "Message to sign: ", message
134
         print "Hash: ", m
135
136
         # ALICE ROUND 1
137
138
         k1, z1, alpha, zeta, rr1, rr2 = alice_round_1(m, x1, y1, ka_pub, ka_priv)
         # BOB ROUND 1
139
         k2, r2 = bob_round_1(alpha, zeta)
140
         # ALICE ROUND 2
141
         r, pi = alice_round_2(alpha, zeta, r2, k1, y1, z1, x1, zkp, ka_pub, rr1, rr2)
142
143
          # BOB ROUND 2
         mu, mup, pi2 = bob_round_2(pi, m, alpha, zeta, r, k2, x2, r2, y1, y2, ka_pub, kb_pub,
144
          \hookrightarrow zkp)
          # ALICE ROUND 3 (final)
         sig = alice_round_3(pi2, r, r2, y2, mup, mu, alpha, zeta, zkp, ka_priv, kb_pub)
146
147
148
         print "Signature:"
         print sig
149
150
         r, s = sig
         print "Sig status: ", ecdsa.verify(sig, m, pub, ecdsa.G, ecdsa.n)
151
152
     if __name__ == "__main__":
    print("S-ECDSA")
154
155
         run_secdsa()
156
```

Listing A.1 Main file of threshold ECDSA proof-of-concept

Trustless Endless Pulseless and Undelayed One-way Payment Channel for Bitcoin

Thomas Shababi¹, Joël Gugger², and Daniel Lebrecht¹

 DigiThink, Neuchâtel, Switzerland info@digithink.ch
 HES-SO Master, Lausanne, Switzerland joel.gugger@master.hes-so.ch

Abstract. The greatest challenge for Bitcoin in the coming years is scalability. Currently, Bitcoin enforces a 1 Megabyte block-size limit which is equivalent to ~ 7 transactions per second on the network. This is not sufficient in comparison to big payment infrastructure such as credit card processors, which allows tens of thousands of transactions per second and even more in peaks like Christmas. To address this, there are some proposals to modify the transaction structure (like SegWit), some to modify the block-size limit (such as SegWit2x) and others to create a second layer on top of the Bitcoin protocol (such as Lightning Network). In the same idea of the Lightning Network, we propose a one-way payment channel that allows two parties to transact off-chain while minimizing the number of transactions needed in the blockchain in a secure and trustless way.

Keywords: Crypto-currencies, Bitcoin, Payment channels, State channels, Threshold ECDSA signatures

1 Introduction

Decentralized crypto-currencies such as Bitcoin [5] and its derivatives employ a special decentralized public append-only log based on proof-of-work called the blockchain to protect against equivocation in the form of double-spending, i.e., spending the same funds to different parties. In a decentralized crypto-currency, users transfer their funds by publishing digitally signed transactions. Transactions are confirmed only when they are included in the blockchain, which is generated by currency miners who solve proof-of-work puzzles. Although a malicious owner can sign over the same funds to multiple receivers through multiple transactions, eventually only one transaction will be approved and added to the publicly verifiable blockchain.

But the blockchain is slow and potentially expensive in fees when the time comes to broadcast transactions. Scalability is one of the biggest challenges in blockchain systems these days, and as mentionned before, some proposals are focused on the blockchain data structures and the consensus layer, others such as the Lightning Network [6] are focused on a second layer of transactions where

transactions are created off-chain and the blockchain itself is used as a conflict resolution system and source of truth. These proposals are called payment channels and provide a wide number of advantages.

1.1 Our contribution

Most retail commecrial transactions are unidirectional, therefore bidirectional channels are not always necessary. Streaming payments in a consumer context are mostly unidirectional and bidirectional channels impose the burden upon both parties to police the channel by listening to the network and submitting transactions to enforce correct state, which greatly increases the complexity for participants. In this paper we propose a simplified scheme aimed to be used in a consumer context with a service provider offering goods or services to many clients and receiving the payments into payment channels for rapidity and convenience.

In our scheme, inspired by by the Lightning Network and "Yours Lightning Protocol" [6, 1], the client, hereinafter Carol, wants to buy goods or services from the provider Bob. Bob is likely to sell goods or services to Carol several times and wants to receive payments into a channel to minimize transaction costs and have instant transaction finality. For this scheme to be realistic, some requirements are assumed. The channel must stay open for an undefined amount of time and the client must not be obliged to stay online and watch the blockchain to be safe, only the receiver, i.e., the provider, must stay online to be safe. The provider does not want to lock any funds for the clients, if he needs to send money to some clients, it is assumed that these transactions are regular on-chain transactions or via other channels. When clients send money via channels, the provider must be able to manage when and how funds are settled from which channels, so he must be able to settle a channel without closing it. A client, who has blocked funds specifically for the provider, must be able to, with the providers cooperation, withdraw an arbitrary amount out of the channel without closing it.

We propose several definitions to qualify a payment channel and generalize the analysis of different implementations. These definitions are not standard nor official in any manners.

Definition 1 (Trustless). A channel is trustless if and only if the funds' safety for every player $p_i \in \mathcal{P} = \{\mathcal{P}_0, \dots, \mathcal{P}_n\}$ at each step \mathcal{S} of the protocol does not depend on players' $\Delta p = \mathcal{P} - p_i$ behavior.

Definition 2 (Optimal). A channel is optimal if and only if the number of transactions $\mathcal{T}(\mathcal{C})$ needed to claim the funds for a given constraint \mathcal{C} is equal to the number of moves $\mathcal{M}(\mathcal{C})$ needed to satisfy the constraint at any time without breaking the first definition.

For a constraint \mathcal{C} in a channel $\mathcal{P}_1 \to \mathcal{P}_2$, refunding \mathcal{P}_1 requires $\mathcal{M}(\mathcal{C}) = 1$, thus an optimal scheme requires $\mathcal{T}(\mathcal{C}) = \mathcal{M}(\mathcal{C}) = 1$. Note: in a channel $\mathcal{P}_1 \to \mathcal{P}_2$ refund and settlement both require $\mathcal{M}(\mathcal{C}) = 1$.

Definition 3 (Endless). A channel is endless if and only if there is no predetermined lifetime at the setup.

Definition 4 (Pulseless). A channel is pulseless if and only if there is no need to refresh or close the channel on-chain while at least one player $p_i \in \mathcal{P} = \{\mathcal{P}_0, \ldots, \mathcal{P}_n\}$ where the available amount to send is $A(p_i) > 0$. By definition a pulseless channel must be also endless.

Definition 5 (Undelayed). A channel is undelayed if and only if each player $p_i \in \mathcal{P} = \{\mathcal{P}_0, \dots, \mathcal{P}_n\}$ can trigger the process to get their money back at any time.

2 Building Blocks

In the following, the concepts and sub-protocols used in this work are described in more detail.

2.1 Channel State

The channel state is expressed by two indexes i and n, hereinafter also ${\tt Channel}_{i,n}$. Both indexes are independent and can only be positively incremented. Index i represents the offset of the multisig address where the channel's funds are locked. Index n represents the offset used to create the revocation secrets, this secret is used after in smart contracts.

A channel state always depends on an account a, this account is defined when the channel is created between the client and the server and never changes during its life. We need to share public hierarchical deterministic addresses between the client and the server. Let's define the hierarchical deterministic Bitcoin account path as:

$$\forall a \geq 2, \exists x Priv_a \mid x Priv_a = m/44'/0'/a'$$

 $\forall a \geq 2, \exists x Pub_a \mid x Pub_a = m/44'/0'/a'$

For a given account a at Channel_{i,n}, the protocol and transactions depend on the private multi-signature node Π , the public multi-signature node π , the private revocation node Ω , the public revocation node ω , and the private secret node Θ . Let's define these nodes as:

$$\Pi_i = \mathrm{xPriv}_a / 0/\mathrm{i}$$

 $\pi_i = \mathrm{xPub}_a / 0/\mathrm{i}$
 $\Omega_i = \mathrm{xPriv}_a / 1/\mathrm{i}$
 $\omega_i = \mathrm{xPub}_a / 1/\mathrm{i}$
 $\Theta_n = \mathrm{xPriv}_a / 2' / n'$

It is worth noting that Π_i , π_i , Ω_i , and ω_i aren't hardened derivations, instead of Θ_n . This because we need to be able to compute the public keys π_i and ω_i from the \mathtt{xPub}_a .

Channel Dimensions The channel dimension, noted |Channel|, depends of the number of indexes present in the state. Let's define the channel dimension:

$$N = |\mathtt{Channel}_{i,n}| = 2$$

Revocation Secret The revocation sercret $\Phi_{i,n}$ corresponds to the state Channel_{i,n} and depends on the secret Θ_n and the revocation key Ω_i .

$$\Phi_{i,n} = \mathrm{HMAC}(\Theta_n, \Omega_i)$$

The secret is the HMAC of Θ_n and Ω_i . Both indexes are used to protect Carol from the Old Settlement Attack With Weak Secret (see 4.3).

2.2 Smart Contracts

Two types of smart contract are used in the payment channel scheme. The first one is a standard 2-out-of-2 multi-signature script and the second is a custom script used to prevent the client from broadcasting old transactions.

Multisig Contract The multi-signature contract at Channel_{i,n}, hereinafter Multisig_i, can be constructed with Carol's π_i key, and Bob's π_i key. Let's define the Multisig_i script:

OP_2
$$\langle \pi_i^{carol} \rangle$$
 $\langle \pi_i^{bob} \rangle$ OP_2 OP_CHECKMULTISIG

Revocable PubKey Contract Bob and Carol may wish make an output to Carol which Carol can spend after a timelock and Bob can revoke if it is an old state. The next contract, for Channel_{i,n}, uses Carol's ω_i key, Bob's ω_i key, and Carol's secret $\Phi_{i,n}$.

```
OP_IF <\omega_i^{carol}> \text{ OP\_CHECKSIG} \\ <\text{timelock> OP\_CHECKSEQUENCEVERIFY OP\_DROP} \\ \text{OP\_ELSE} \\ <\omega_i^{bob}> \text{ OP\_CHECKSIGVERIFY} \\ \text{OP\_HASH160 } <\text{Hash160}(\varPhi_{i,n})> \text{ OP\_EQUAL} \\ \text{OP\_ENDIF} \\
```

With this contract Carol can spend this output after the timelock with the script signature:

```
<\Omega_i^{carol} signature> OP_TRUE
```

In the case if Carol broadcasts an older transaction Bob can revoke it with the script signature: Bob has a head start during which, if he knows the secret $\Phi_{i,n}$ generated by Carol, he can spend the money while Carol cannot. This mechanism prevents Carol from broadcasting older transactions which do not match the current Channel_{i,n}.

2.3 Transactions

A transaction is noted $\mathtt{Transaction}^{i,n}_{<>}$ to denote the name of the transaction, on which indexes this transaction depends—here on indexes i and n—and who has already signed this transaction—denoted by the <>. If a transaction is signed by Carol the transaction is noted $\mathtt{Transaction}^{i,n}_{< carol>}$. Transactions that appear in blue on figures are only owned fully signed by Carol and red ones only by Bob, i.e., only the owner can broadcast the transaction.

Funding Transaction The funding transaction, hereinafter Funding $Tx_{<>}^i$, is the transaction sending funds to the first multisig address. This transaction depends only on the state index i used by the multisig contract and is fully signed as soon as Carol signs it.

A funding transaction is never broadcast by Carol until she possesses the corresponding refund transaction that allows her to get her money back off the channel. This refund transaction has only one output that goes to the revocation contract. To be able to revoke this contract Bob has to know the secret $\Phi_{i,n}$, so if no transactions have been made Bob cannot revoke the contract.

Fig. 1. Funding transaction that starts the channel by sending money in the first multisig address with the first refund transaction that allows Carol to close the channel if no transaction is made.

Refund Transaction The refund transaction, hereinafter $\mathsf{RefundTx}_{<>}^{i,n}$, is a transaction that keeps track of the balances of Carol and Bob at $\mathsf{Channel}_{i,n}$ and allows Carol to close the channel if Bob does not repsond or does not cooperate anymore. This transaction has one input or more—which come from the multisig address corresponding to the state index i—and two outputs. The first output represents the amount still owned by Carol, and the second—which can be nonpresent in the transaction if the balance is equal to zero—is the amount owned by Bob. This second output is not present when the channel is open and each time Bob settles the channel.

Carol's balance is sent to a revocation contract corresponding to the channel state. This prevents Carol from broadcasting an old refund transaction such as $\mathtt{RefundTx}^{i,n-1}_{<>}$. The amount owned by Bob is sent directly to Bob's address. The refund transaction is broadcast by Carol so the fees are substracted from the first output, owned by Carol.

Fig. 2. Refund transaction based on the current multisig address with the associated spend and revoke transactions that allows Carol to get her money back and Bob to revoke the contract if he knows the secret.

Because a refund transaction spends funds from a multisig address, it must be signed by both Carol and Bob to be considered valid. The revocation contract used in the Carol's output can be spent with a spend refund transaction after a timelock delay. She just needs to sign the output with her Ω_i key to unlock the funds. Bob can directly revoke the contract, without delay, if he knows the secret $\Phi_{i,n}$ and sign with his Ω_i key.

Settlement Transaction The settlement transaction, hereinafter also mentioned as SettlementTx $_{<>}^{i,n}$, is a transaction that keeps track of Carol and Bobs balances at Channel $_{i,n}$ and allows Bob to settle the channel without closing it. Because the settlement transaction spends the funds from the multisig address, both Carol and Bob need to sign to consider the transaction as valid. Fees are substracted from Bob's output, because he is responsible for broadcasting the transaction and settling the channel.

A settlement transaction always has one output that sends Bob's balance directly to Bob's address and one output that send the remaining funds to the next multisig address $Channel_{i+1,n}$. Because the funds are sent to the next multisig address a post settlement refund transaction is created—Carol needs a way to get her money back off the channel. This transaction has the same structure as the first refund transaction—one output to the next revocation contract—because the funds owned by Bob, in this case, are already settled.

If Bob broadcasts the fully signed settlement transaction, Carol has two choices (i) continue to transact on the channel with the new multisig address and (ii) close the channel with her post settlement refund transaction. It is worth noting that the secret for the revocation contract is $\Phi_{i+1,n}$, so in the case of a new transaction ${\tt Channel}_{i+1,n}$ becomes ${\tt Channel}_{i+1,n+1}$ and then, the secret for ${\tt Channel}_{i,n-1}$ is shared:

$$\varPhi_{i,n-1}(\mathtt{Channel}_{i+1,n+1}) = \varPhi_{i+1,n}$$

Post Settlement Refund Transaction The post settlement refund transaction aims to spend funds from the next multisig address directly to a revocation contract. As explained before, this contract is not revocable by Bob if no transaction is made after the settlement transaction, but when Carol sends an amount to Bob she shares the secret needed to revoke the contract, thus she cannot broadcast this transaction that is now attached to an old state.

Withdraw Transaction The withdraw transaction, hereinafter Withdraw Tx_i , is a transaction that allows Carol to take an arbitrary amount of money out the channel. This amount is sent to an arbitrary address specified by Carol. For this, she has to ask Bob for his cooperation. This transaction is not autogenerated when Carol sends money to Bob, both have to be online to create this transaction.

This transaction automatically settles the channel with the amount owned by Bob at $\mathtt{Channel}_{i,n}$ and changes the remaining amount available for Carol for the state $\mathtt{Channel}_{i+1,n}$, thus, remaining funds are moved to the next channel address.

Closed Channel Transaction The close channel transaction, hereinafter also mentioned as $ClosedChannelTx_i$, is also a cooperative transaction, that allows Carol or Bob to close the channel in the most effective way (less fee and quicker). This transaction has two outputs, one for Bob with the amount owned by Bob

Fig. 3. Settlement transaction that allows Bob to settle the channel, moving the remaining funds to the next multisig address with the post settlement refund transaction that allows Carol to close the channel directly after the settlement.

to his address and a second one for Carol with the remaining amount of money in the channel. When a $ClosedChannelTx_i$ is created, no more transactions can be created or accepted on the channel.

Pay To Channel Transaction The pay to channel transaction, hereinafter PayToChannelTx $_i$, allows Carol or Bob to send money directly to the current channel address. This transaction is usefull for Carol if there is not enough money on the channel and she wants to send more money to Bob without opening another payment channel. It is also usefull for Bob in the case he wants to send money to Carol—he can send money directly to Carol's address, but the payment can be related to a channel event or action—and allows her to reuse it in the channel, e.g fidelity points.

Before broadcasting the pay to channel transaction or before accepting that payment as part of the usable funds for Carol, an interim refund transaction needs to be created. This interim refund transaction is a safty garauntee for Carol until the merge occures.

For a state ${\tt Channel}_{i,n}$ without any pay to channel transaction, the multisig address has, normaly, one unspent output. This unspent output is used as an input for each transaction and these transactions split it to track the balances of each party. After a pay to channel transaction, the multisig address has more than one unspent output. When Carol sends money to Bob they have to check if a pay to channel transaction occurred and if it is the case they need to merge the interim refund and use all the unspent outputs. It is worth noting that the more pay to channel transactions occur the more (fee) cost incurred.

Fig. 4. Withdraw transaction that allows Carol to take money out the channel, pay Bob, and move the remaining funds into the next multisig address. A refund transaction is created to allow Carol to recover her funds after the withdraw if no transaction is made. The refund transaction can be spent by Carol with a spend refund transaction and cannot be contested with the revoke refund transaction if no other transaction is made. If the state moves to $Channel_{i+1,n+1}$, again, the secret for $Channel_{i,n-1}$ is shared, then Bob knows $\Phi_{i,n-1}(Channel_{i+1,n+1}) = \Phi_{i+1,n}$ and can revoke.

Fig. 5. Pay to channel transaction by Carol with the interim refund transaction. The interim refund transaction acts like a standard refund transaction but aims to be merged in the next round of transactions. The interim refund transaction has the same spending requirements as a standard refund transaction, if no transaction is made Carol can spend the interim refund, otherwise Bob can revoke the interim refund.

Fig. 6. Simplified view of possibilites for a standard state $Channel_{i,n}$ without second layer dependency transactions like spend and revoke. The content of a multisig can be settled by Bob or can be refunded to Carol.

Interim Refund Transaction The interim refund transaction, hereinafter InterimRefundTx $_{i,n}$, is a temporary transaction used by Carol to get her money out of the channel. This transaction is created to protect Carol from Bob invalidating the current refund transaction.

Definition 6. A channel merge occurs each time an interim refund transaction is merged into the regular refund transaction and the regular settlement transaction

Definition 7. A channel reduce occurs each time a non-closing channel transaction is broadcast and included in the blockchain. The channel is then in reduced mode when one and only one UTXO is available in the current multisig address.

3 Trustless One-way Payment Channel

3.1 Channel Setup

Before opening the channel Carol and Bob need to exchange keys for the channel account a and negotiate the relative timelock value.

1. Carol:

- (a) sends a request to open a channel with:
 - i. the account a

Fig. 7. Result of a merged pay to channel transaction after Carol sends 0.3 more Bitcoin to Bob. The $\mathtt{Multisig}_i$ contains two \mathtt{UTXOs} , (i) from the funding transaction or the last move from $\mathtt{Multisig}_{i-1}$, and (ii) from the pay to channel transaction adding 1 BTC into the channel. Both the settlement transaction and refund transaction contain the two \mathtt{UTXOs} as inputs to sign and spend the totality with the adjusted balances.

- ii. Carol's xPub_a
- iii. the relative timelock parameter

2. Bob:

- (a) if Bob agrees with the request and timelock is whithin acceptable range, respond with:
 - i. Bob's $xPub_a$

3.2 Channel Opening

To open the channel, Carol and Bob must cooperate to generate and fund a multi-signature address, hereinafter also referred to as $\mathtt{Multisig}_i$ address. This multi-signature address acts as the channel address and stores the totality of the channel's funds. This address holds normaly only one <code>UTXO</code>, but with pay to channel transactions, this could be different.

- 1. Bob
 - (a) generates ${\tt Multisig}_i$ with Bob's $\mathcal{\Pi}_i$ and Carol's π_i and sends it
- 2. Carol:

- (a) creates $FundingTx_{<>}^i$ that funds the $Multisig_i$ address
- (b) generates $\Phi_{i,n}$
- (c) creates $\mathtt{RefundTx}_{<>}^{i,n}$ with $\mathtt{Multisig}_i$ and $\varPhi_{i,n}$ sending the full amount back to herself via the $\mathtt{RevPubKey}_{i,n}$ contract
- (d) initiates the channel by sending:
 - i. $\operatorname{hash}(\varPhi_{i,n})$
 - ii. Refund $Tx_{<}^{i,n}$
- 3. Bob:
 - (a) receives RefundTx $_{<>}^{i,n}$, signs it and returns RefundTx $_{< bob>}^{i,n}$
- 4. Carol:
 - (a) broadcasts FundingTx $^{i}_{< carol>}$
- 5. Bob:
 - (a) waits for transaction's confirmations
 - (b) consider the channel as open

If Bob stops responding after step 2, Carol has created transactions which she is unable to use. If Carol stops responding after step 3, Bob has signed a transaction which will probably never be used. After a while, Bob must consider the channel opening as failed. If Bob stops responding after step 4, Carol can broadcast her refund transaction and she is safe. If Carol stops responding after opening the channel Bob does not lose anything.

3.3Transact

Carol to Bob The Carol to Bob protocol allows Carol to send an arbitrary amount of money throught the channel. Carol desires to authorize a payment of M satisfies to Bob at Channel_{i,n} state.

If there is an unconfirmed Bob to Carol transaction and we need to use it because there are no more funds in the regular refund output, we have to merge that refund in that new $Channel_{i,n+1}$ state. Bob can trust this unconfirmed output because it comes from himself.

- 1. Carol:
 - (a) derives $\Phi_{i,n+1}$ and $\Phi_{i+1,n+1}$

 - (b) generates the $\mathtt{RefundTx}^{i,n+1}_{<>}$ with two outputs: i. Refund Output: Carol's new balance to $\mathtt{RevPubKey}_{i,n+1}$ contract
 - ii. Settlement Output: Bob's new balance to settlement address
 - (c) sends a message to Bob containing:
 - i. RefundTx $^{i,n+1}$
 - ii. $hash(\Phi_{i,n+1})$ and $hash(\Phi_{i+1,n+1})$

iii. the amount of M satisfies being paid

2. Bob:

- (a) generates the Settlement $Tx_{<>}^i$ with two outputs:
 - i. Settlement Output: Bob's new balance
 - ii. Change Output: Carol's new balance to $Multisig_{i+1}$ with Bob's Π_{i+1} and Carol's π_{i+1}
- (b) generates the PostSettlementRefundTx $^{i+1,n+1}_{< bob>}$ with: i. Refund Output: sends Carol's funds to the associated RevPubKey $_{i+1,n+1}$ contract with the secret = $hash(\Phi_{i+1,n+1})$
- (c) sends:
 - i. RefundTx $_{< bob >}^{i,n+1}$
 - ii. Settlement $Tx_{<>}^i$
 - iii. PostSettlementRefundTx $^{i+1,n+1}_{< bob>}$
- 3. Carol:
 - (a) sends:
 - i. SettlementTxⁱ < carol>
 - ii. the shared secret $\Phi_{i,n}$
- 4. Bob:
 - (a) upates state channel to Channel_{i,n} \Rightarrow Channel_{i,n+1} and the payment can now be considered as final

If Bob stops responding after step 2, Carol can broadcast the refund transaction but she has no incentives to do that because she will lose part of her balance compared to broadcasting the previous state refund transaction. Because she has not yet shared the secret $\Phi_{i,n}$, Bob cannot yet revoke the current Channel_{i,n} state. If Carol does not respond at step 3, Bob can settle the current Channel_{i,n} state, but cannot settle the Channel_{i,n+1} state in negotiation, Carol is safe. After step 3, Carol can refund herself and Bob can revoke the old $Channel_{i,n}$ state and settle the new $Channel_{i,n+1}$ state, the transaction is complete.

Channel Topop The channel topop protocol allows Bob or Carol to send an output directly to the current channel multisig address and allows Carol to include this output as part of usable funds immediately if it's from Bob. If the funds come from Carol, they can be immediately used for a withdraw transaction

To protect Carol, the refund for this additional amount is separate to the existing refund output to prevent Bob from invalidating Carol's refund transaction by sending an output which becomes invalid or not accepted by the network (lower fee, double spend, invalid script, etc.)

In subsequent transactions, once this output has confirmed, the refund should be merged into a single refund output as before, to be more efficient with refund transaction size.

- 1. Initiator:
 - (a) create the PayToChannelTx $_{\langle initiator \rangle}^i$ that funds the Multisig $_i$ address
 - (b) create $\mathtt{InterimRefundTx}_{<>}^{i,n}$ with $\mathtt{Multisig}_i$ and $\mathtt{hash}(\varPhi_{i,n})$ sending the full amount back to Carol via the $\mathtt{RevPubKey}_{i,n}$ contract
 - (c) sends:
 - i. InterimRefundTx $^{i,n}_{< initiator>}$
- 2. Receiver:
 - (a) validate InterimRefundTx^{i,n}_{<initiator>}
 - (b) sends if the payment is accepted or not
- 3. Initiator:
 - (a) if the payment is accepted broadcast PayToChannelTxⁱ_{initiator>}
- 4. Receiver:
 - (a) wait for $PayToChannelTx_{< initiator>}^{i}$ transaction's confirmations

If the receiver does not validate the payment the initiator has no incentive to broadcast the transaction, if it is accepted, then the initiator can send money into the channel safely because of the interim refund transaction. Without negotiating a new state, Bob cannot revoke $\mathtt{InterimRefundTx}_{< initiator>}^{i,n}$ and Carol can spend the refund. When a new $\mathtt{Channel}_{i,n+1}$ state is negotiated, Bob can revoke the $\mathtt{InterimRefundTx}_{< initiator>}^{i,n}$ if Carol tries to broadcast it. At $\mathtt{Channel}_{i,n+1}$, the refund transaction and the settlement transaction contain the merged refund transaction.

It is worth noting that the initiator does need to know the secret to create the pay to channel transaction and the interim refund transaction. An external player can ask the needed information to topop the channel knowing only public information.

Withdrawing The withdraw protocol allows Bob to authorize a withdrawal of M satoshis at Carol's request and with her cooperation for $Channel_{i,n}$ state. Bob needs to validate the withdrawal amount and can set up a set of rules internally to manage the channel economics. It is worth noting that when the withdraw takes place Bob funds get automatically settled without him paying fee.

- 1. Carol:
 - (a) derives $\Phi_{i+1,n}$
 - (b) generates the $\mathtt{Multisig}_{i+1}$ address with Bob's π_{i+1} and Carol's Π_{i+1}
 - (c) generates the WithdrawTx $_{<>}^i$ with:
 - i. Settlement Output: sends Bob's funds to the settlement address
 - ii. Withdraw Output: withdrawal amount M to specified address
 - iii. Change Output: new balance into Multisig,

- (d) generates the $\mathtt{RefundTx}^{i+1,n}_{<>}$ from address $\mathtt{Multisig}_{i+1}$ with: i. Refund Output: Carol's new balance into $\mathtt{RevPubKey}_{i+1,n}$ contract with the secret = $hash(\Phi_{i+1,n})$
- (e) sends:
 - i. RefundTx $^{i+1,n}$
 - ii. WithdrawTxⁱ
 - iii. $hash(\Phi_{i+1,n})$
- 2. Bob:
 - (a) verifies, signs and returns: i. $\operatorname{RefundTx}_{< bob>}^{i+1,n}$

 - ii. Withdraw $Tx_{< hob}^i$
- 3. Carol:
 - (a) shares:
 - i. $\Phi_{i,n}$ to invalidate the current state
 - ii. WithdrawTxⁱ_{<bob.carol>}
- 4. Bob:
 - (a) broadcast WithdrawTx $_{< bob, carol>}^i$
 - (b) upates state channel to Channel_{i,n} \Rightarrow Channel_{i+1,n} and validate exchange

If Bob does not respond in step 2, Carol has not disclosed any important information. If Bob stops responding after step 2, Carol can withdraw the amount and safely refund her funds if no transaction is negotiated. If Carol does not respond after step 2, Bob must wait a while and if the withdraw transaction is not broadcasted, he must broadcast the settlement transaction to force the transition to the next $Channel_{i+1,n}$ state.

Settlement The settlement protocol allows Bob to broadcast at $Channel_{i,n}$ state the $SettlementTx_{i,n}$ to get the settlement output and move the remaining funds into the next $\mathtt{Multisig}_{i+1}$ address. In this case the channel stays open and Carol can create new transactions or close the channel.

If the $SettlementTx_{i,n}$ is broadcast and Carol wants to close the channel, she can broadcast the PostSettlementRefundTx $_{i,n}$ and wait the timelock to get her money back. Carol has to query the network to know if the SettlementTx_{in} is broadcast, she can only query the blockchain before each new transaction to be sure that the settlement transaction has not been broadcasted yet.

Channel Closing

Cooperative Closing the channel cooperatively allows Carol—or Bob if Carol is online—to ask if Bob agrees to close the channel efficiently, withdrawing the full remaining balance, at $Channel_{i,n}$ state. The following steps 3 and 4 can be merged and executed by the same player depending on the implementation.

- 1. Carol:
 - (a) generates the ${\tt ClosedChannelTx}^{n+1}_{< carol}>$ with:
 - i. Settlement Output: sends Bob's funds to Bob address
 - ii. Change Output: sends Carol's funds to Carol address
 - (b) sends ${\tt ClosedChannelTx}^{n+1}_{< carol>}$
- 2. Bob:
 - (a) verifies and signs ClosedChannelTxⁿ⁺¹_{< carol>}
 - (b) sends ${\tt ClosedChannelTx}^{n+1}_{< carol, bob>}$
- 3. Carol:
 - (a) broadcasts $ClosedChannelTx_{< carol, bob}^{n+1}$

Contentious The contentious channel closing protocol allows Carol to close the channel alone, i.e., without Bob's cooperation or response, at $\mathtt{Channel}_{i,n}$ state. Carol can broadcast her fully signed refund transaction sending her funds to $\mathtt{RevPubKey}_{i,n}$ address. Carol would then need to spend from the revocation public key contract after the timelock delay with the spend refund transaction.

It is worth noting that only Carol can close the channel, but Bob can get his money by broacasting his settlement transaction at any time.

4 Evidence of Trustlessness

In the following, axioms, possible edge-cases, and discovered attacks, with an evidence of trustlessness for the channel protocol, are exposed. *Liveness* in the blockchain, i.e. transactions can be included in the next blocks, is assumed to guarantee the security model.

4.1 Axioms

Refund Transaction For Channel_{i,n} state, if Carol broadcasts the current refund transaction, Bob cannot revoke it without knowing $\Phi_{i,n}$. After the timelock, Carol can generate and broadcast a spend refund transaction.

$$\forall i \land n, \exists \Phi_{i,n}: \forall \Phi_{i,n}, \text{bob knows } \Phi_{i,n-1} \land \mathtt{hash}(\Phi_{i,n})$$

The same rule is applied to interim refund transactions, if Carol broadcasts the current interim refund transaction, Bob cannot revoke it without knowing $\Phi_{i,n}$, and Carol can spend the interim refund after the timelock.

Old Refund Transaction For Channel_{i,n} state, if Carol broadcasts an old refund transaction, e.g. n-1, then Bob has the time during the timelock to generate and broadcast the revoke transaction for the state Channel_{i,n-1} with $\Phi_{i,n-1}$ secret.

$$\forall 0 \leq x < n, \exists \varPhi_{i,x}: \quad \forall \varPhi_{i,x}, \exists \mathtt{RevokeTx}_{< bob}^{i,x}$$

The same rule is applied to old interim refund transactions, if Carol broadcasts an old interim refund transaction, e.g. n-1, Bob can revoke it with $\Phi_{i,n-1}$ secret.

Settlement Transaction For Channel_{i,n} state, if Bob broadcasts his SettlementTx_{i,n} transaction, Carol has the choice to close the channel or transact on top of the new Multisig_{i+1} address.

$$\forall \mathcal{C} = \mathtt{Channel}_{i,n}, \exists \varPhi_{i,n} \land \varPhi_{i+1,n} : \quad \mathrm{bob} \ \mathrm{knows} \ \varPhi_{i+1,n} \ \mathrm{iff} \ \mathcal{C} = \mathtt{Channel}_{i+1,n+1}$$

Contentious Channel Closing By contentious it means that all players are not communicating anymore and/or do not agree on a valid state. Let's define the way for Carol to close the $Channel_{i,n}$ state.

$$\forall \mathtt{Channel}_{i,n}, \exists \mathtt{RefundTx}_{< carol, bob >}^{i,n} \mathtt{only} \ \mathtt{owned} \ \mathtt{by} \ \mathtt{Carol}$$

and

$$\forall \texttt{RefundTx}_{< carol, bob>}^{i,n}, \exists \texttt{SpendRefundTx}_{< carol>}^{i,n} \texttt{only owned by Carol}$$

so:

$$\forall \texttt{Channel}_{i,n}, \exists \texttt{SpendRefundTx}_{< carol>}^{i,n} \texttt{only owned by Carol}$$

4.2 Edge Cases

Someone does not broadcast Cooperative Transaction If one player does not share a fully signed cooperative transaction and the secret $\Phi_{i,n}$ attached to the current $\mathtt{Channel}_{i,n}$ state, then the other player need to force after a while the transition into the new $\mathtt{Channel}_{i+1,n}$ state with his own fully signed transaction, i.e $\mathtt{RefundTx}_{i,n}$ or $\mathtt{SettlementTx}_{i,n}$ transaction.

4.3 Attacks

In this section, attack vectors discovered and fixes are discussed. Attacks exposed are no longer valid in the current scheme, but a deep analysis has been carried out to generalize the protocol construction and improve the scheme.

Old Settlement Attack With Weak Secret It is possible for Bob to lock the funds in the multisig or steal the money if the secret construction is too weak. For a channel at N dimensions the secret is considered weak if:

$$|\Phi| < N$$

Let's assume that the revocation secret Φ depends only on n and not on i for Channel_{i,n}. Thus, the secret can be expressed by:

$$|\mathtt{Channel}_{i,n}| = N = 2: |\varPhi_n| = 1 \implies |\varPhi_n| < N$$

Then, for $\mathtt{Channel}_{i,n}$, if Bob broadcast an old settlement transaction, e.g. n-1, then Carol cannot use her post settlement refund transaction because she previously shared the secret \varPhi_{n-1} . So the remaining funds are blocked in the $\mathtt{Multisig}_{i+1}$ address. To be able to get her funds back, Carol would have to transact with Bob, if Bob does not cooperate, Carol has no way to recover her funds. If she tries to refund the $\mathtt{Multisig}_{i+1}$, then Bob can revoke with \varPhi_{n-1} secret.

If the secret dimension is equal to the channel dimension, i.e. $|\Phi_{i,n}| = |\mathtt{Channel}_{i,n}|$, then the previous shared secret is $\Phi_{i,n-1}$ and the secret for refunding the $\mathtt{Multisig}_{i+1}$ address at $\mathtt{Channel}_{i,n-1}$ state is $\Phi_{i+1,n-1}$ and then:

$$\Phi_{i,n-1} \neq \Phi_{i+1,n-1}$$

Game theory is not sufficient to ensure the security of the channel if, when a player acts dishonestly, there exists an incentive to gain, even probabilistically, over the other player. In this case, the provider loses funds by broadcasting the $\mathtt{Channel}_{i,n-1}$ state but can gain all funds if the client does not act correctly and does unlock his funds.

5 Further Improvements

Improvements can be done in two ways: (i) extending channel capabilities or (ii) optimizing the channel costs by reducing the transaction size or their number.

5.1 Threshold Signatures

The ability to settle and withdraw the channel without closing has a downside, each time, a transaction is broadcast on chain which costs fees. Optimizing the channel transaction size or the number of transactions needed is an area of further research.

The principal cost of a transaction comes from it inputs and their type. A channel transaction spends one or more \mathtt{UTXOs} from the $\mathtt{Multisig}_i$ address. These \mathtt{UTXOs} are P2SH of a Bitcoin 2-out-of-2 multi-signature script that requires, obviously, two signatures. Knowing that a signature size is at least 64 bytes and an average transaction size (one simple input and one or two outputs) is a bit

more than 200 bytes, it is easy to see that replacing the P2SH with a 2-out-of-2 multisig UTXOs by P2PKH UTXOs is more efficient in any cases.

To achive this, an ECDSA threshold signature scheme, with the same requirements as the 2-out-of-2 multisig, is required. This scheme exists and can be adapted from the paper "Two-Party Generation of DSA Signatures" by MacKenzie and Reiter [4].

5.2 Pre-authorized Payments

Pre-authorized payments are required in other real case scenarios such as provider acting as a payment processor. The client must be able to set a limit within which the provider can take money during a given time period.

Further research can be done in this area to figure out the achievability and the most effective way to implement this feature in this scheme. Maybe a third layer, on top of layer two, is necessary and achievable, maybe the channel dimension can be increased.

6 Related Work

Simple micropayment channels were introduced by Hearn and Spilman [3]. The Lightning Network by Poon and Dryja [6], also creates a duplex micropayment channel. However it requires exchanging keying material for each update in the channels, which results in either massive storage or computational requirements in order to invalidate previous transactions. Finally, Decker and Wattenhofer introduced a payment network with duplex micropayment channels [2].

7 Conclusion

Trustless one-way payment channels for Bitcoin resolve many problems. Scalability is near infinite and costs of the channel decrease linearly with the number of transactions in the channel. Delays to consider a transaction as valid are brought back to network delay and minimal check time. Clients do not need to be online to keep their funds safe in the channel and can withdraw arbitrary amounts and refill the channel at any time. The provider does not need to lock funds to receive money and has no cost to setup a channel with a client.

We describe an unidirectional channel scheme trustless, endless, pulseless, and undelayed, but not optimal following the previous definitions. The lack of optimality is due to the intermediary revocation state, where refunding takes $\mathcal{T}(\mathcal{C}) = 2$ instead of $\mathcal{M}(\mathcal{C}) = 1$.

8 Acknowledgement

Loan Ventura and Thomas Roulin are acknowledged for their helpful contribution and comments during the completion of this work.

References

- [1] Ryan X. Charles and Clemens Ley. Yours Lightning Protocol. 2016. URL: https://github.com/yoursnetwork/yours-channels/blob/master/docs/yours-lightning.md.
- [2] Christian Decker and Roger Wattenhofer. "A Fast and Scalable Payment Network with Bitcoin Duplex Micropayment Channels". In: *Stabilization*, *Safety, and Security of Distributed Systems*. Ed. by Andrzej Pelc and Alexander A. Schwarzmann. Cham: Springer International Publishing, 2015, pp. 3–18. ISBN: 978-3-319-21741-3.
- [3] Mike Hearn and Jeremy Spilman. *Bitcoin contracts*. URL: https://en.bitcoin.it/wiki/Contracts.
- [4] Philip MacKenzie and Michael K. Reiter. "Two-Party Generation of DSA Signatures". In: Advances in Cryptology CRYPTO 2001. Ed. by Joe Kilian. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 137–154. ISBN: 978-3-540-44647-7.
- [5] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009. URL: http://bitcoin.org/bitcoin.pdf.
- [6] Joseph Poon and Thaddeus Dryja. "The bitcoin lightning network: Scalable off-chain instant payments". In: draft version 0.5 9 (2016).

List of Figures

2.1	Merkle tree construction	5
2.2	A chain of transactions where inputs and outputs are linked	6
2.3	Example of simple Bitcoin script program execution	7
2.4	Example of pay to public key hash script	8
4.1	Adapted protocol for ECDSA	23
4.2	The proof Π	24
4.3	Adaptation of II's verification in ECDSA	24
4.4	Adaptation of II's construction in ECDSA	25
4.5	The proof Π'	26
4.6	Adaptation of Π' 's construction in ECDSA	27
4.7	Adaptation of Π' verification to ECDSA	28

List of Tables

	Summary of different payment channels	
	Mapping between the protocol's variable names and the ZKP II	
4.2	Mapping between the protocol's variable names and the ZKP Π'	2

List of sources

3.1	Locking script (scriptPubKey) with CHECKLOCKTIMEVERIFY	13
4.1	Result of using threshold HD wallet	31
4.2	Demonstration of using threshold HD wallet	32
4.3	Construction of a share for a threshold HD wallet	33
5.1	Add argument into configure.ac to enable the module	37
5.2	Define constant ENABLE_MODULE_THRESHOLD if module enable	37
5.3	Include implementation headers if ENABLE_MODULE_THRESHOLD is defined	37
5.4	Set threshold module to experimental into configure.ac	38
5.5	Include specialized Makefile if threshold module is enable	38
5.6	Specialized Makefile for threshold module	38
5.7	Implementation of a DER lenght parser	39
5.8	Implementation of a DER sequence parser	40
5.9	Implementation of a DER sequence serializer	40
5.10	Implementation of a DER lenght serializer	41
5.11	DER schema of a Paillier public key	41
5.12	DER parser of a Paillier public key	42
5.13	DER schema of a Paillier private key	42
5.14	DER parser of a Paillier private key	42
5.15	DER schema of an encrypted message with Paillier cryptosystem	43
5.16	Implementation of encryption with Paillier cryptosystem	43
5.17	Function signature for Paillier nonces generation	43
5.18	Implementation of decryption with Paillier cryptosystem	44
5.19	Implementation of homomorphic addition with Paillier cryptosystem	44
5.20	Implementation of homomorphic multiplication with Paillier cryptosystem	45
5.21	DER schema of a Zero-Knowledge parameters sequence	45
5.22	DER schema of a Zero-Knowledge Π sequence	46
5.23	DER schema of a Zero-Knowledge Π' sequence	46
5.24	Function signature for ZKP CPRNG	47
5.25	Function signature to generate ZKP Π	47
5.26	Function signature to generate ZKP Π'	48
5.27	Function signature to validate ZKP Π and Π'	48
5.28	Implementation of call_create function	50
5.29	Implementation of call_received function	51
5.30	Implementation of challenge_received function	51
5.31	Core function of response_challenge_received	53
5.32	Core function of terminate_received	54
A.1	Main file of threshold ECDSA proof-of-concept	63

Bibliography

- Andreas M. Antonopoulos. Mastering Bitcoin: Unlocking Digital Crypto-Currencies.
 1st. O'Reilly Media, Inc., 2014. ISBN: 1449374042, 9781449374044.
- [2] SegWit. URL: https://en.wikipedia.org/wiki/SegWit (visited on 02/02/2018).
- [3] Eric Lombrozo, Johnson Lau, and Pieter Wuille. Segregated Witness. URL: https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki (visited on 02/02/2018).
- [4] Jeremy Spilman. [Bitcoin-development] Anti DoS for tx replacement. 2013. URL: https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html (visited on 02/04/2018).
- [5] Pieter Wuille. Dealing with malleability. 2014. URL: https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki (visited on 02/04/2018).
- [6] Marcin Andrychowicz et al. "How to deal with malleability of BitCoin transactions". In: CoRR abs/1312.3230 (2013). arXiv: 1312.3230. URL: http://arxiv.org/abs/1312.3230.
- [7] Christian Decker and Roger Wattenhofer. "Bitcoin Transaction Malleability and MtGox". In: *CoRR* abs/1403.6676 (2014). arXiv: 1403.6676. URL: http://arxiv.org/abs/1403.6676.
- [8] Peter Todd. CHECKLOCKTIMEVERIFY. 2014. URL: https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki (visited on 02/05/2018).
- [9] Christian Decker and Roger Wattenhofer. "A Fast and Scalable Payment Network with Bitcoin Duplex Micropayment Channels". In: 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), Edmonton, Canada. Aug. 2015.
- [10] Joseph Poon and Thaddeus Dryja. "The bitcoin lightning network: Scalable off-chain instant payments". In: draft version 0.5 9 (2016).
- [11] Ryan X. Charles and Clemens Ley. Yours Lightning Protocol. 2016. URL: https://github.com/yoursnetwork/yours-channels/blob/master/docs/yours-lightning.md.
- [12] Dan Boneh and Matthew Franklin. "Efficient generation of shared RSA keys". In: Advances in Cryptology — CRYPTO '97. Ed. by Burton S. Kaliski. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 425–439. ISBN: 978-3-540-69528-8.
- [13] Carmit Hazay et al. "Efficient RSA Key Generation and Threshold Paillier in the Two-Party Setting". In: *Topics in Cryptology CT-RSA 2012*. Ed. by Orr Dunkelman. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 313–331. ISBN: 978-3-642-27954-6.
- [14] Steven Goldfeder et al. "Securing Bitcoin wallets via a new DSA/ECDSA threshold signature scheme". In: 2015.

- [15] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. "Threshold-Optimal DSA/ECDSA Signatures and an Application to Bitcoin Wallet Security". In: Applied Cryptography and Network Security 14th International Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings. 2016, pp. 156-174. DOI: 10.1007/978-3-319-39555-5_9. URL: https://doi.org/10.1007/978-3-319-39555-5_9.
- [16] Philip D. MacKenzie and Michael K. Reiter. "Two-Party Generation of DSA Signatures". In: Advances in Cryptology CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings. Vol. 2139. Lecture Notes in Computer Science. Springer, 2001, pp. 137–154. DOI: 10.1007/3-540-44647-8_8.
- [17] Pascal Paillier. "Public-key Cryptosystems Based on Composite Degree Residuosity Classes". In: Proceedings of the 17th International Conference on Theory and Application of Cryptographic Techniques. EUROCRYPT'99. Prague, Czech Republic: Springer-Verlag, 1999, pp. 223–238. ISBN: 3-540-65889-0. URL: http://dl.acm.org/citation.cfm?id=1756123.1756146.
- [18] SEC 2: Recommended Elliptic Curve Domain Parameters. Version 2. 2010.
- [19] Pieter Wuille. Hierarchical Deterministic Wallets. 2017. URL: https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki (visited on 02/01/2018).
- [20] Thomas Pornin. Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA). RFC 6979. Aug. 2013. DOI: 10.17487/RFC6979. URL: https://rfc-editor.org/rfc/rfc6979.txt.
- [21] Pascal Paillier. "Trapdooring Discrete Logarithms on Elliptic Curves over Rings". In: *Advances in Cryptology ASIACRYPT 2000*. Ed. by Tatsuaki Okamoto. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 573–584. ISBN: 978-3-540-44448-0.
- [22] Nir Bitansky et al. "From Extractable Collision Resistance to Succinct Non-interactive Arguments of Knowledge, and Back Again". In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference. ITCS '12. Cambridge, Massachusetts: ACM, 2012, pp. 326-349. ISBN: 978-1-4503-1115-1. DOI: 10.1145/2090236.2090263. URL: http://doi.acm.org/10.1145/2090236.2090263.
- [23] Eli Ben-Sasson et al. Zerocash: Decentralized Anonymous Payments from Bitcoin. Cryptology ePrint Archive, Report 2014/349. https://eprint.iacr.org/2014/349. 2014.
- [24] Benedikt Bünz et al. Bulletproofs: Efficient Range Proofs for Confidential Transactions. Cryptology ePrint Archive, Report 2017/1066. https://eprint.iacr.org/2017/1066. 2017.
- [25] Marek Palatinus et al. Mnemonic code for generating deterministic keys. 2013. URL: https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki (visited on 02/01/2018).
- [26] C. P. Schnorr. "Efficient Identification and Signatures for Smart Cards". In: Advances in Cryptology — CRYPTO' 89 Proceedings. Ed. by Gilles Brassard. New York, NY: Springer New York, 1990, pp. 239–252. ISBN: 978-0-387-34805-6.

- [27] Mihir Bellare and Phillip Rogaway. "Random Oracles Are Practical: A Paradigm for Designing Efficient Protocols". In: Proceedings of the 1st ACM Conference on Computer and Communications Security. CCS '93. Fairfax, Virginia, USA: ACM, 1993, pp. 62–73. ISBN: 0-89791-629-8. DOI: 10.1145/168588.168596. URL: http://doi.acm.org/10.1145/168588.168596.
- [28] Yannick Seurin. "On the Exact Security of Schnorr-Type Signatures in the Random Oracle Model". In: *Advances in Cryptology EUROCRYPT 2012*. Ed. by David Pointcheval and Thomas Johansson. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 554–571. ISBN: 978-3-642-29011-4.

Glossary

BIP Bitcoin Improvement Proposal. 8-10, 29

DMC Duplex Micropayment Channels. 13

DSA Digital Signature Algorithm. 17, 18, 20–22, 34

EC Elliptic Curves. 18, 22, 55

ECDSA Elliptic Curve Digital Signature Algorithm. 17, 18, 20–22, 34, 56, 57, 59

HTLC Hashed Timelock Contracts. 13

National Institute of Standards and Technology (NIST) is a unit of the U.S. Commerce Department. Formerly known as the National Bureau of Standards, NIST promotes and maintains measurement standards.. 18

P2PKH Pay To Public Key Hash. 8, 9, 14

SegWit Segregated Witness. 8–10, 13, 14

Standards for Efficient Cryptography Group (SECG) is an international consortium founded by Certicom in 1998. The group exists to develop commercial standards for efficient and interoperable cryptography based on elliptic curve cryptography (ECC). 18