

ADS ADD TO POSTUM

www.aduni.edu.pe

QUÍMICA

FUNCIONES OXIGENADAS II Y COMPUESTOS AROMÁTICOS Semana 39

www.aduni.edu.pe

I. OBJETIVOS

Los estudiantes, al término de la sesión de clase serán capaces de:

1. Identificar a las cetonas, ácidos carboxílicos y ésteres según su grupo funcional.

2. Nombrar y formular a las cetonas, ácidos carboxílicos y ésteres aplicando las reglas de la IUPAC.

3. Reconocer a los hidrocarburos aromáticos y nombrarlos según las reglas aceptadas por la IUPAC.

II. INTRODUCCIÓN

Cetonas, ácidos carboxílicos y ésteres son **compuestos orgánicos oxigenados** con amplio uso en el sector industrial y uso cotidiano.

Veamos algunos ejemplos:

Las cetonas, se usan ampliamente como disolvente de pinturas.

Propanona:

Los ácidos carboxílicos, están presentes en nuestra dieta diaria, el vinagre está constituido principalmente por ácido acético:

CH₂-COOH

Los ésteres, forman parte de fragancia de perfumes, flores y sabores de muchas frutas, en las peras encontramos al éster **butirato de metilo:**

CH₃CH₂CH₂-COO-CH₃

III. CETONAS

Son compuestos oxigenados que tienen como grupo funcional al carbonilo (-CO-).

Se obtienen por oxidación de un alcohol secundario.

Su fórmula general es:

R-: grupo alquilo o arilo.

NOMENCLATURA COMÚN

orden alfabético

$$CH_3 - CO - CH_2 - CH_3$$

etil metil cetona

NOMENCLATURA SISTEMÁTICA

(nombre del hidrocarburo) + ona

4,4-dimetil-2-pentanona (4,4-dimetilpentan-2-ona)

metil

$$\begin{array}{c|cccc}
\hline
CH_3 & & & \\
\hline
CH_3 - CO - CH - CH = CH_2
\end{array}$$

3-metil-4-penten-2-nona

(3-metilpent-4-en-2-ona)

1-hepten-6-ino-4-ona

(hept-1-en-6-ino-4-ona)

IV. ÁCIDO CARBOXÍLICO

Son compuestos oxigenados que tienen como grupo funcional carboxilo (-COOH). Se obtienen por la oxidación de un aldehído o la oxidación severa de un alcohol primario.

$$H-CHO \xrightarrow{[O]} H-COOH$$
Metanal Ácido metanoico

Su fórmula general es:

R-: grupo alquilo o arilo.

ácido (raíz común) + ico

H—**COOH**: ácido **fórm**ico **CH**₃—**COOH**: ácido **acét**ico

*Segregado por las hormigas * Presente en el vinagre

CH₂—CH₂—COOH: ácido propiónico

*Presente en el queso

CH₃-CH₂-COOH : ácido butírico

*Presente en la mantequilla

NOMENCLATURA SISTEMÁTICA

ácido (nombre del hidrocarburo) + oico

H—**COOH**: ácido **metan**oico

CH₂—**COOH**: ácido **etan**oico

Ácido-4-isopropil-4,6,6-trimetiloctanoico

Ácido-5-etil-5-metil-3,6-heptadienoico (Ácido-5-etil-5-metilhepta-3,6-dienoico)

HOOC-COOH: Ácido etanodioico (Ácido oxálico)

HOOC-CH₂-COOH : Ácido propanodioico (Ácido malónico)

HOOC-CH=CH-COOH: Ácido butenodioico

Presenta isomería geométrica:

V. ÉSTERES

Son compuestos oxigenados que tienen como grupo funcional **carboalcoxi** (-COO-), se caracterizan por olor agradable a flores o frutas.

Se obtiene mediante la reacción de esterificación.

Fórmula general:

R-: grupo alquilo o arilo.

Muchas de las fragancias de perfumes y flores, y los sabores de frutas, se deben a los ésteres. Por ejemplo, en las peras encontramos al éster **Etanoato de propilo**: CH₃COOCH₂CH₂CH₃

NOMENCLATURA COMÚN

NOMENCLATURA SISTEMÁTICA

HCOOCH₃ : metanoato de metilo

CH₃COOCH₂CH₃: etanoato de etilo

$$CH_3$$
 $CH_3COO-CH-CH_3$: etanoato de isopropilo

4,4-dimetilpentanoato de metilo

VI. COMPUESTOS POLIFUNCIONALES

Cuando presentan dos o más grupos funcionales en su estructura molecular.

GRUPO FUNCIONAL	SUFIJO (cuando es grupo principal)	PREFIJO (Cuando es sustituyente)
-соон	ácidooico	carboxi
-COOR	oato de	carboalcoxi
-CONH ₂	amida	amido
-CN	nitrilo	ciano
-СНО	al	oxo (formil)
-CO-	ona	oxo
-ОН	ol	hidroxi
-NH ₂	amina	amino
>c=c<	eno	
—c≡c—	ino	- ACAUTAIA - NAABII

disminuye prioridad

Esta tabla muestra los **prefijos** y **sufijos** que se usan cuando un grupo actúa como grupo principal o sustituyente, respectivamente.

ANUAL SAN MARCOS 2021 metil

ácido-3-hidroxi-4,4-dimetil-5-hexenoico

ácido-3-hidroxi-4,4-dimetilhex-5-enoico

ácido-5-hidroxi-4,4-dimetil-3-oxohexanoico

UNMSM 2011 II

El nombre del compuesto

- A) ácido 4-cloro-3-metil hexanal-2,5dicarboxílico.
- B) ácido 4-cloro-2-formil-3,5-dimetil hexanodioico.
- C) ácido 3-cloro-2,4-dimetil-5-formil hexanodioico.
- D) ácido 3 cloro 5 formil 2,4 dimetil hexadioico.
- E) ácido 4-cloro-2-formil-3,5-metil hexa-1,5-dioico.

RESOLUCIÓN

ácido-4-cloro-2-formil-3,5-dimetilhexanodioico

Respuesta: B

VII. COMPUESTOS AROMÁTICOS

BENCENO

El benceno es el hidrocarburo aromático más sencillo, usado como solvente orgánico (naturaleza apolar), su fuente de obtención es el petróleo y el alquitrán de hulla.

Benceno, C₆H₆

Propiedades del benceno:

- Liquido incoloro de olor agradable.
- Temperatura de ebullición 80 °C.
- Menos denso que el agua (0,88 g/mL).
- Violentamente inflamable.
- Al quemarse arde con abundante humo debido a su alto contenido de carbono.

Características estructurales del benceno

(propuesto por August Kekulé 1865)

- Su formula molecular C_6H_6
- De estructura cíclica plana hexagonal
- Los átomos de carbono tienen O. híbridos sp²
 con enlaces dobles alternados (presenta resonancia y mayor estabilidad que los alquenos).
- Con ángulo de enlace entre C-C 120°
- De igual longitud de enlaces entre C-C
- Reacciona sustituyendo sus átomos de hidrogeno.

DERIVADOS MONOSUSTITUIDOS DEL BENCENO

El **benceno** al reaccionar sustituye uno de sus átomos de hidrogeno por otro átomo o radical.

Nomenclatura IUPAC: Radical (-X) benceno

EJEMPLOS

Árenos: son hidrocarburos aromáticos

Oxigenados: No son hidrocarburos

DERIVADOS MONOSUSTITUIDOS ESPECIALES DEL BENCENO

Benzaldehido

DERIVADOS DISUSTITUIDOS DEL BENCENO

El **benceno** al reaccionar puede sustituir dos átomos de hidrogeno por otro átomo o radicales formando así tres isómeros de posición.

Cuando hay mas de un sustituyente en el anillo de benceno, se utilizan números para indicar la posición de los sustituyentes.

Isómeros	ORTO (o-)	META (m-)	PARA (p-)
Estructura	X	x—()	×
COMÚN: IUPAC:	o —benceno 1,2benceno	<i>m</i> −benceno 1,3benceno	p —benceno 1,4benceno

Nomenclatura sistemática:

1,2-diclorobenceno

Nomenclatura común:

o-diclorobenceno

Nomenclatura sistemática:

1,3-diclorobenceno

Nomenclatura común:

m-diclorobenceno

Nomenclatura sistemática:

1,4-diclorobenceno

Nomenclatura común:

p-diclorobenceno

Nomenclatura sistemática:

1,2-bromoclorobenceno

Nomenclatura común:

o-bromoclorobenceno

Br

Nomenclatura sistemática:

4-bromotolueno

Nomenclatura común:

p-bromotolueno

Nomenclatura sistemática:

2-nitrotolueno

Nomenclatura común:

o-nitrotolueno

ADUNI

VIII. BIBLIOGRAFÍA

- Química, colección compendios académicos UNI; Lumbreras editores
- Química orgánica, David Klein
- Química orgánica, Paula Yurkani
- Química un proyecto de la ACS; Editorial Reverte; 2005
- Química general, Mc Murry-Fay quinta edición

