

Properties of O(n)

Properties of the O notation

- Constant factors may be ignored
 - $\forall k > 0$, kf is O(f)
- Higher powers grow faster
 - n^r is $O(n^s)$ if $0 \le r \le s$
- Fastest growing term dominates a sum
 - If f is O(g), then f + g is O(g)
 - $eg \ an^4 + bn^3 \ is \ O(n^4)$
- Polynomial's growth rate is determined by leading term
 - If f is a polynomial of degree d, then f is $O(n^d)$

Properties of the O notation

- f is O(g) is transitive
 - If f is O(g) and g is O(h) then f is O(h)
- Product of upper bounds is upper bound for the product
 - If f is O(g) and h is O(r) then fh is O(gr)
- Exponential functions grow faster than powers
 - n^k is $O(b^n) \forall b > 1$ and $k \ge 0$ e.g. n^{20} is $O(1.05^n)$

Important!

- Logarithms grow more slowly than powers
 - $\log_b n$ is $O(n^k) \ \forall \ b > 1$ and k > 0e.g. $\log_2 n$ is $O(n^{0.5})$
- All logarithms grow at the same rate
 - $\log_b n$ is $O(\log_d n) \forall b, d > 1$

Order of growth

- We usually consider one algorithm to be more efficient than another if its worst case running time has a lower order of growth.
- Due to constant factors and lower order terms, an algorithm whose running time has a higher order of growth might take less time for small inputs than an algorithm whose running time has a lower order of growth. But for large enough inputs, $\Theta(n^2)$ algorithm, for example, will run more quickly in the worst case than $\Theta(n^3)$ algorithm

The Sorting Problem

- Input:
 - A sequence of **n** numbers a_1, a_2, \ldots, a_n
- Output:
 - A permutation (reordering) a_1', a_2', \ldots, a_n' of the input sequence such that $a_1' \le a_2' \le \cdots \le a_n'$

Why Study Sorting Algorithms?

- There are a variety of situations that we can encounter
 - Do we have randomly ordered keys?
 - Are all keys distinct?
 - How large is the set of keys to be ordered?
 - Need guaranteed performance?
- Various algorithms are better suited to some of these situations

- Idea: like sorting a hand of playing cards
 - Start with an empty left hand and the cards facing down on the table.
 - Remove one card at a time from the table, and insert it into the correct position in the left hand
 - compare it with each of the cards already in the hand, from right to left
 - The cards held in the left hand are sorted
 - these cards were originally the top cards of the pile on the table

- The list is divided into two parts: sorted and unsorted
- In each pass, the following steps are performed
 - First element of the unsorted part (i.e., sub-list) is picked up
 - Transferred to the sorted sub-list
 - Inserted at the appropriate place
- A list of n elements will take at most n-1 passes to sort the data

To insert 12, we need to make room for it by moving first 36 and then 24.

8 2 4 9 3 6

at each iteration, the array is divided in two sub-arrays:

Best Case

Worst Case

5 | 4 | 3 | 2 | 1

Running time of Insertion Sort

- The running time depends on the input: an already sorted sequence is easier to sort.
- Parameterize the running time by the size of the input,
 - short sequences are easier to sort than long ones.
- Generally, we seek upper bounds on the running time, because everybody likes a guarantee.

Kinds of Analyses

- Worst-case: (Usually)
 - T(n) = (maximum time of algorithm) on any input of size n.
- Average-case (Sometimes):
 - T(n) = (expected time of algorithm) over all inputs of size n.
 - Need assumption of statistical distribution of inputs
- Best-case: (bogus)
 - Cheat with a slow algorithm that works fast on some input

INSERTION-SORT

Alg.: INSERTION-SORT(A) a₅ 1 a_6 for $j \leftarrow 2$ to n do key $\leftarrow A[j]$ β Insert A[j] into the sorted sequence A[1..j-1] $i \leftarrow j - 1$ while i > 0 and A[i] > key do $A[i + 1] \leftarrow A[i]$ $i \leftarrow i - 1$ $A[i + 1] \leftarrow \text{key}$

 a_8

Insertion sort – sorts the elements in place

Analysis of Insertion Sort INSERTION-SORT(A)

t_i: # of times the while statement is executed at iteration j

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

Best Case Analysis

• The array is already sorted

- "while i > 0 and A[i] > key"
- A[i] ≤ key upon the first time the while loop test is run (when i = j -1)
- $t_j = 1$ $T(n) = c_1 • n + (c_2 + c_4) • (n-1) + c_5 • (n-1) + c_8 • (n-1)$ $= n • (c_1 + c_2 + c_4 + c_5 + c_8)$ $+ (-c_2 - c_4 - c_5 - c_8)$ $= c_9 n + c_{10}$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

Comparisons and Exchanges in Insertion Sort

INSERTION-SORT(A)	cost	times
for j ← 2 to n	c_1	n
do key \leftarrow A[j]	c_2	n-1
Insert A[j] into the sorted sequence A[1 j -1]	0	n-1
$i \leftarrow j - 1$ $\approx n^2/2$ comparisons	s C ₄	n-1
while i > 0 and A[i] > key	C ₅	$\sum_{j=2}^{n} t_{j}$
$do A[i+1] \leftarrow A[i]$	C ₆	$\sum_{j=2}^{n} (t_j - 1)$
i ← i − 1 ≈ $n^2/2$ exchange	S C ₇	$\sum_{j=2}^{n} (t_j - 1)$
$A[i + 1] \leftarrow key$	c ₈	n-1

Worst Case Analysis

- The array is in reverse sorted order "while i > 0 and A[i] > key"
 - Always A[i] > key in while loop test
 - Have to compare key with all elements to the left of the j-th position \Rightarrow compare with j-1 elements \Rightarrow t_i = j

using
$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2} \Rightarrow \sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1 \Rightarrow \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$
 we have:
$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right) + c_6 \frac{n(n-1)}{2} + c_7 \frac{n(n-1)}{2} + c_8 (n-1)$$

$$= an^2 + bn + c \qquad \text{a quadratic function of n}$$

• $T(n) = \Theta(n^2)$ order of growth in n^2

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

Best/Worst/Average Case (2)

Insertion Sort Analysis

- Is insertion sort a fast sorting algorithm?
 - Moderately so, for small n
 - Not at all, for large n
 - sorting "almost sorted" lists

Reference

- Introduction to Algorithms
- Chapter # 2
 - Thomas H. Cormen
 - 3rd Edition
- https://visualgo.net/bn/sorting