Classification Rule Mining for a Stream of Perennial Objects

Zaigham Faraz Siddiqui and Myra Spliopoulou

Otto-von-Guericke Universitaet

RuleML 2011, Barcelona, Spain.

Overview

- Introduction
 - Problem Definition
 - Motivation
- Mining Classification Rules
 - Rule Learning
 - Feature Generation
 - Tree Induction
- 3 Experiments
 - Settings
 - Results
- 4 Conclusion

Conventional Stream Mining

- Objects come from single stream
- Objects arrive as an ordered sequence
 - \bullet $X_1, X_2, \ldots, X_i, \ldots$
- Objects are independent of each other
 - Unique identifiers
- Objects are static
 - can be forgotten when they grow old

Stream of Perennial Objects

- What are perennial objects?
 - are from a relational stream
 - are linked to other objects
 - are dynamic
 - can change their definition
 - can change their class label
 - cannot be forgotten

Mining Perennial Objects

- Determine the perennial stream T
 - Customer, Accounts, etc.
- A perennial object may be linked more than one object in the neighbouring streams that provides an extensional definition for a perennial object.
- Traditional relational algorithms are limited to static mining and are usually very expensive.
- The two approaches that work over streams SRPT & TrIP use aggregated or summarised information to build their model.

Incremental Propositionalisation

- Memory Management
 - Windows for fast/ephemeral streams.
 - Caches for slower/perennial streams.

CID	Age	Gender
1	50	М
2	24	F

PID	CID	Color	Price				
1	1	R	500				
2	1	В	40				
3	2	G	5				
4	2	G	10				

CID Age	Gender	Count Color		Summ Price			
		R	В	G	Min	Max	Avg
50	М	1	1	0	40	500	270
24	F	0	0	2	5	10	7.5
	50		50 M 1	50 M 1 1	R B G 50 M 1 1 0	R B G Min 50 M 1 1 0 40	R B G Min Max 50 M 1 1 0 40 500

Motivation

- Aggregates make very simplistic assumptions
 - Every attributes is independent
 - Numerical attributes are normally distributed

- Propositionalisation generates too many aggregates
 - Information content in aggregates is low
 - Results in very deep decision trees

Basics

- Rules are are learned on fast streams
- Labels are propagated from the perennial stream
- ullet Rules are stored in a concept lattice ${\cal L}$
- Each rule I has:
 - the form $\mathcal{I}: X \wedge Y \rightarrow [p_1, \dots, p_l]$ e.g., $A_{red} \wedge B_{big} \rightarrow [10^+, 90^-]$
 - a creation timepoint
 - a lower bound on the missed examples

Rule Discoverey: CRMPES Algorithm

- 1 increment \mathcal{L} for new tuples in S_j
- 2 $\textit{grow } \mathcal{L}$ once all tuples have arrived

- 3 decrement \mathcal{L} for old tuples in S_i
- 4 shrink \mathcal{L}

Grow Lattice

- L is grown pro-actively
- lacktriangle a new rule \mathcal{I}' is added to \mathcal{L} , if
 - its parents have min support
 - its parents are not locked
- such rule is marked as tentative

Shrink Lattice

- Remove redundant rules
- Lock rules that offers no improvement
- Lock rules that do not meet the min support
 - delete its children
 - re-introduce redundant rules

Using rules to generate new features

Rules are first ranked for uninterestingness

$$d(\mathcal{I}) = support(\mathcal{I}) \times e(\mathcal{I})$$

- ullet Top ranked rule from list ${\mathcal R}$ is selected and added to the set ${\mathcal F}$
- \bullet $\, {\cal R}$ is traversed and the rules with min intersection with ${\cal F}$ are incorporated into ${\cal F}$
- ullet Termination condition: either ${\cal F}$ or rule list exhausts
- ullet Antecedent of each rule in ${\mathcal F}$ is converted into an attribute

Decision tree Induction

- Initialize root node R
- for $i = 1 \rightarrow END$
 - $\mathcal{L} \leftarrow \mathsf{CRMPES}(\mathcal{L}, \mathcal{X}_i)$
 - $\mathcal{F} \leftarrow \mathsf{FGen}(\mathcal{L}, \mathcal{F})$
 - $W_i \leftarrow \operatorname{IncProp}(\hat{X}_i)$
 - $\zeta \leftarrow \mathsf{AdaptDecisionTree}(\zeta, \mathcal{W}_i, \mathcal{F})$
- The node splits are decided using Hoeffding bound

Evaluation Setting

Dataset

- Sythetic dataset: simulates users' buying behaviour for different items.
- Financial dataset: accounts information for a period of years

Strategies

- P: uses simple aggregates only.
- R: uses rule-based attribute.
- PR: uses simple aggregates and rule-based attributes.

Objectives

• The performance of strategies P, R and PR with respect to the information content they hold.

Learning User Profiles

Learning User Profiles

Learning Bank Accounts

- Labels become applicable once the accounts have matured
- Rules with predictive power were discovered quite later

Summary and Future Work

Summary

- Algorithms for perennial objects are scarce
- Uses classification rules to enhance the tree induction
- Results in shorter trees with better performance

Future Work

- More experiments on real dataset required
- Classification rules can help reduce the number of generated features

Questions?

