- 414. The method of Claim 413 wherein step (d) or steps (d) and (f) are repeated one or more times and the change in conductivity is detected.
 - The method of Claim 407 further comprising:
- (d) contacting the first type of nanoparticles bound to the substrate with an aggregate probe having oligonucleotides attached thereto, the nanoparticles of the aggregate probe being made of a material which can conduct electricity, at least one of the types of oligonucleotides on the aggregate probe comprising a sequence complementary to the sequence of one of the types of oligonucleotides on the first type of nanoparticles, the contacting taking place under conditions effective to allow hybridization of the oligonucleotides on the aggregate probe with the oligonucleotides on the first type of nanoparticles;
 - (e) and detecting the change in conductivity.
 - 416. A method of detecting nucleic acid having at least two portions comprising:
- (a) contacting a nucleic acid with a substrate having oligonucleotides attached thereto, the oligonucleotides being located between a pair of electrodes, the oligonucleotides having a sequence complementary to a first portion of the sequence of said nucleic acid, the contacting taking place under conditions effective to allow hybridization of the oligonucleotides on the substrate with said nucleic acid;
- (b) contacting said nucleic acid bound to the substrate with an aggregate probe having oligonucleotides attached thereto, at least one of the types of oligonucleotides on the aggregate probe comprising a sequence complementary to the sequence of a second portion of said nucleic acid, the nanoparticles of the aggregate probe being made of a material which can conduct electricity, the contacting taking place under conditions effective to allow hybridization of the oligonucleotides on the aggregate probe with the nucleic acid; and
 - (c) detecting a change in conductivity.

- 417. A method of detecting a nucleic acid wherein the method is performed on a substrate, the method comprising detecting the presence, quantity, or both, of the nucleic acid with an optical scanner.
 - 418. The method of Claim 417 wherein the device is a flatbed scanner.
- 419. The method of Claim 417 wherein the scanner is linked to a computer loaded with software capable of calculating greyscale measurements, and the greyscale measurements are calculated. to provide a quantitative measure of the amount of nucleic acid detected.
- 420. The method of Claim 417 wherein the scanner is linked to a computer loaded with software capable of providing an image of the substrate, and a qualitative determination of the presence of the nucleic acid, the quantity of the nucleic acid, or both, is made.
- 421. A kit comprising a container holding nanoparticle-oligonucleotide conjugates according to any one of Claims 237-242.
- 422. A kit comprising a container holding nanoparticles according to any one of Claims 243-265.
- 423. A kit comprising a substrate having attached thereto at least one pair of electrodes with oligonucleotides attached to the substrate between the electrodes.
- 424. The kit of Claim 423 wherein the substrate has a plurality of pairs of electrodes attached to it in an array, to allow for the detection of multiple portions of a single nucleic acid, the detection of multiple different nucleic acids, or both.

425. A method of nanofabrication comprising

providing at least one type of linking oligonucleotide having a selected sequence, the sequence of each type of linking oligonucleotide having at least two portions;

providing one or more types of nanoparticle-oligonucleotide conjugates according to any one of Claims 237-242, the oligonucleotides attached to the nanoparticles of each of the types of conjugates having a sequence complementary to the sequence of a portion of a linking oligonucleotide; and

contacting the linking oligonucleotides and conjugates under conditions effective to allow hybridization of the oligonucleotides attached to the nanoparticles of the conjugates to the linking oligonucleotides so that a desired nanomaterial or nanostructure is formed wherein the nanoparticles of the conjugates are held together by oligonucleotide connectors.

426. A method of nanofabrication comprising

providing at least one type of linking oligonucleotide having a selected sequence, the sequence of each type of linking oligonucleotide having at least two portions; providing one or more types of nanoparticles according to any one of Claims 243-265, the recognition oligonucleotides on each of the types of nanoparticles comprising

a sequence complementary to the sequence of a portion of a linking oligonucleotide; and

contacting the linking oligonucleotides and nanoparticles under conditions effective to allow hybridization of the oligonucleotides on the nanoparticles to the linking oligonucleotides so that a desired nanomaterial or nanostructure is formed wherein the nanoparticles are held together by oligonucleotide connectors.

427. A method of nanofabrication comprising:

providing at least two types of nanoparticle-oligonucleotide conjugates according to any one of Claims 237-242,