indica este hecho acerca de la matriz de coeficientes? Pruebe su conclusión: primero dé un vector x con coordenadas distintas y encuentre V = vander(x); después pruebe V. Repita el mismo procedimiento para otros tres vectores x.

6. Considere las siguientes matrices.

$$AI = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & -1 & 2 & -1 & 2 \\ 1 & 0 & 0 & 2 & -1 \\ 1 & 1 & -1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix} \qquad A2 = \begin{pmatrix} 1 & 2 & -1 & 7 & 5 \\ 0 & -1 & 2 & -3 & 2 \\ 1 & 0 & 3 & 1 & -1 \\ 1 & 1 & 1 & 4 & 1 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix}$$

$$A3 = \begin{pmatrix} 3 & 9 & 5 & 5 & 1 \\ 4 & 9 & 5 & 3 & 2 \\ 2 & 1 & 3 & 1 & 3 \\ 5 & 9 & 10 & 9 & 4 \\ 0 & 0 & 0 & 0 & -5 \end{pmatrix} \qquad A4 = \begin{pmatrix} 1 & 2 & -3 & 4 & 5 \\ -2 & -5 & 8 & -8 & -9 \\ 1 & 2 & -2 & 7 & 9 \\ 1 & 1 & 0 & 6 & 12 \\ 2 & 4 & -6 & 8 & 11 \end{pmatrix}$$

$$A5 = \begin{pmatrix} 2 & -4 & 4 & 5 & -1 \\ 0 & 0 & 5 & 1 & -9 \\ 7 & -14 & 8 & 7 & -2 \\ 7 & -14 & 0 & 4 & 11 \\ 9 & 18 & 1 & 7 & 14 \end{pmatrix}$$

- a) Haciendo uso de comando rref, pruebe si las matrices A1 a A5 son o no invertibles. Pruebe la invertibilidad de A1*A2, A1*A3, A1*A4, A1*A5, A2*A3, A2*A4, A2*A5, A3*A4, A3*A5 y A4*A5. Obtenga una conclusión sobre la relación entre la invertibilidad de dos matrices y la invertibilidad de su producto. Explique la forma en la cual la evidencia soporta su conclusión.
- b) Para cada par de matrices A y B del problema anterior tales que AB es invertible, encuentre

$$inv(A*B)-inv(A)*inv(B)$$
 e $inv(A*B)-inv(B)*inv(A$

Obtenga una fórmula para $(AB)^{-1}$ en términos de A^{-1} y B^{-1} . Explique.

7. Perturbaciones: matrices cercanas a una matriz no invertible

Introduzca la matriz

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

Verifique que A no es invertible. En lo que sigue A se cambia a una matriz invertible C que es cercana a A, modificando uno de los elementos de A:

$$C = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 + f \end{pmatrix}$$

donde f es un número pequeño.