TME 9 LRC – Réseaux de Petri

Exercice 2:

3.

Exercice 3:

2.1 Fichier r_b0.ndr Non borné

2.2 Fichier r_b1s0.ndr Borné avec blocage

2.3 Fichier r_b1s1r1.ndr

Borné, sans blocage, réversible, pas vivant ni quasi-vivant :

2.4 Fichier r_b1s1r0.ndr

Borné, sans blocage, non réversible, pas vivant ni quasi-vivant :

3.1 Fichier r_b1s0r0q1v0.ndr

Borné, quasi-vivant, avec blocage:

3.2 Fichier r_b1s1r0q1v0.ndr

Borné, sans blocage, sans blocage, non réversible, non vivant : (pas réussi)

3.3 Fichier r b1s1r1q1v0.ndr

Borné, quasi-vivant, réversible, sans-blocage, non vivant :

On ne peut pas construire un tel graphe : si le graphe est réversible, quasi-vivant et sans blocage, alors on peut depuis chaque état revenir à l'état initial, et il existe pour chaque transition une séquence permettant de la traverser. Dans ce cas, il est possible de boucler entre ces séquences et l'état initial, et ainsi le graphe est vivant.

3.4 Fichier r_all1.ndr

Borné, vivant, réversible :

Exercice 4:

1.

Le nombre de scénarios possibles est

$$\frac{6!}{4!} - C_6^2 = 30 - 15 = 15$$

 $\frac{6!}{4!}$ car c'est le nombre de mots possibles avec les lettres : RRRRSP (R pour Roue, S pour Sculpter et P pour Peindre)

 $-C_6^2$ car on soustrait les états qui ne vérifient pas la contrainte où S doit être avant P

On peut le déduire du graphe des marquages accessibles en regardant le nombre de chemins possibles entre le marquage initial et le marquage final.