Dynamische Systeme urzengt van
Onforamin DET
x = x(t) X - die unbekannde Funktion
t-die unab. Var. & die Zeit.
Wir bitrachden die folgende DGL 1. Irdnung
x'(t) = f(t,x), nobei x(t) die gesuchte trule Funktion ist.
x'= f(t,x) - D wicht autonome 16L.
$\frac{2 \cdot B \cdot x^{1}}{2 \cdot B \cdot x^{2}} = \frac{12}{12} \times 12 \times$
/x=f(x) - D die autonome BGL.
$X' = X - X^3$
Det Eine DGL huißt audonam, wenn die Funktion if wicht explipit von der Var-t
Junktion it with explicit von dur voir-t
abhängt. Dir betrachten das Cauchy problem: .) $\chi' = f(x)$
$(1) \begin{cases} x' = f(x) \\ x(0) = 7, & m \in \mathbb{Z} \end{cases}$
Satz: Sei f & C'(R). Dann hat das Bauchy problem (1) eine evidentige maximale

Def Eine Funktion X: I max -> 12 height nuaximale Làsung des Bauchy problems (1), falls X eine Losung des Pb: (1) ist, und jede auder Låsung eine Einschraukung Von X auf ein kleinerer Indervall 1 C Treax ist. Sei Ineax = (dy By), dy <0 < By dar maximale Existentimborall. Dar C.P. (1) hat eine enidentige Läsung auf I wax. Dir definier x (t, m): Imax -> R und: f: Twax x R -> R / ((t, m) = x(t, m))/ Doler Fluss ergeugt von einer autonomen SGL. (oder das dynamische System erzeugt von DGZ). Eigenschaften: 1) $f(0, \eta) = \gamma$, $f \eta \in \mathbb{R}$. 2) ((t+1), m) = ((t, ((1, m)), fm ER 3) Pust strong

Set Dor Broph einer Lösung einer SGL,
sef du Bragh einer Lösung einer SGL, d.h. die Keuge ? (t, x(t)): t∈I? heißt
Lösungskuhre.
· Die Prosephion der läsumaskeurve auf Don
· Die Projektion der Lösungskerre auf den Zusbandraum R, d-h. die Bildmenge:
3x(t), teI3 cR
heißt Træjeklonie der Läsung.
Die Insejektonien:
- du positive Halbhajektorie
$8 (\eta) = 1) (t(\eta))$ $t \in [0, P_{\eta})$
- die negative Halbtrajektrie
$\mathcal{F}(\gamma) = \mathcal{F}(\xi, \mathcal{M})$ $\mathcal{F}(\xi, \mathcal{M})$
Die Trouikdone: & (m) = & (m) U & (m)
Def: Das Phasen Johat eil die Verein nigung
aller Trajektorieu surammen met den Pleiser
die die Richtungen zunehmender Zeit
zeigen.

Die Trojektruit:

1.
$$\eta = 0 \Rightarrow \ell(t, 0) = 0$$
 $\ell(t, 0) = 0$
 $\ell(t, 0) = 0$
 $\ell(t, 0) = 20$
 $\ell($

Det Eine konstante 2 à sang don BGL x'=f(x) von dur Form x(t)=x* heißt Stationare (zeit unabhäugnze) Läsung. Dor Wort XXER heißt Sleichgewichtspunkt. Sef. Der Egg xt ER hujst lokal skall genau dann menn : FESO, 7 8200 b.g. 1x+-m1<5=>(T(t,m)-x*/<E) ¥ t ≥0. Die 20 sungen die in der Nahe von x Honten, bleiten ur der Nahr von x.

· Son Got X ETZ heißt lokal asymptotisch Stabil genau dann winn X stabil ist mg: 1614, 2) - x 1 -> 0, + >0. Løsungen gegen x konvergureu. Der Gop X * CR heißt imslabil genau dann wenn x wicht lokal (falls es Læsungen gibt die zich von X* entfermen, auch wenn sie in der Næhe von X* starten).

Satz: Sei x'=f(x), $f \in C'(I)$. Sei $x' \in \mathbb{R}$ lui Ggp den ΔGL , $\Delta \cdot d$. $f'(x^{+})\neq 0$. a) Nemn $f'(x^{+}) < 0 => x'$ ist lokal asy. Glabil b) Wenn f'(x*)>0 => x* ist modeil 151P 1 7 = X - 2 X $f(x) = x^2 - 2x = 0$ f(x) = 0 $X_2 = 2$. [x=2] - die 8gp f'(x) = 2x - 2 $f'(0) = -2 < 0 \Rightarrow /x, = 0 \Rightarrow \text{ ist lokal}$ $f'(2) = 2 > 0 \Rightarrow /x_2 = 2 \Rightarrow \text{ ist instabil}$