PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	A1	(11) International Publication Number: WO 99/57981
A01N 37/18	AI	(43) International Publication Date: 18 November 1999 (18.11.99)
(21) International Application Number: PCT/US (22) International Filing Date: 7 May 1999 (CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
(30) Priority Data: 60/084,870 8 May 1998 (08.05.98) (71) Applicant (for all designated States exceps SLOAN-KETTERING INSTITUTE FOR CRESEARCH [US/US]; 1275 York Avenue, New 10021 (US).	ot US	ÉR
(72) Inventors; and (75) Inventors/Applicants (for US only): AGUS, D [US/US]; 9 Pierrepont Street, Brooklyn, N' (US). SCHEINBERG, David [US/US]; 325 Cen West, New York, NY 10025 (US). ROBERTS [US/US]; 1233 York Avenue, New York, NY 100 ZELENETZ, Andrew, D. [US/US]; 31 Moheg. Larchmont, NY 10538 (US). (74) Agent: LARSON, Marina, T.; Oppedahl & Larson I Box 5270, Frisco, CO 80443 (US).	Y 112 ntral Pa S, Wen 021 (Us an Roa	O1 lurk dy S). lad,

(54) Title: COMPOSITIONS AND METHODS FOR ACTIVE VACCINATION

(57) Abstract

Non-Hodgkin's lymphoma (NHL) is treated, not by administration of an anti-CD20 monoclonal antibody, but by the administration of CD20 itself, or an immunogenic fragment of the extracellular portion thereof, coupled to or administered with an antigenic carrier moiety such as keyhole limpet hemocyanin (KLH). This results in the stimulation of the production of polyclonal antibodies against CD20 (or an immunogenic fragment thereof) which has the effect of reducing the number of B-cells, including malignant B-cells, and thus provides an active vaccine. The same approach can be used for therapeutics for other diseases and conditions in which target cells possess a transmembrane protein, and is particularly applicable to those diseases and conditions for which administration of antibodies to transmembrane proteins or peptides (i.e., passive therapy) have been shown to provide therapeutic benefits, and especially in the situations where the target is also capable of transducing or receiving a signal important for cell growth or function. This would include, for example, Her2/neu, VEGF receptor, epidermal growth factor receptor, the CD19 molecule, interleukin-2-receptor, interleukin-4-receptor, and the P-glycoprotein, also known as the multidrug-resistance protein.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	$\mathbf{z}\mathbf{w}$	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK.	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

COMPOSITIONS AND METHODS FOR ACTIVE VACCINATION

BACKGROUND OF THE INVENTION

5

10

15

20

25

This application relates to an active vaccine approach to the treatment of cancer and other diseases. The approach is applicable to a number of cancers and diseases, although a preferred embodiment provides an active vaccine for treatment of B cell Non-Hodgkin's Lymphoma (NHL).

NHL is characterized by a clonal proliferation of malignant B cells. The treatment of NHL across a broad spectrum of patients remains a challenge, although numerous therapeutic approaches have been proposed and tried.

The most common therapeutic approach being used today is chemotherapy. While chemotherapy is effective for some period of time in most patients, a significant percentage of patients are not cured and experience a relapse.

Treatments have been proposed based on anti-idiotype therapy. In anti-idiotype therapy, a cell surface molecule which is expressed by malignant cells but not by normal cells is used to create patient-specific antibodies which are then administered to the patient. See, Miller, et al., *New Engl. J. Med.* 306: 517-522 (1982). Autologous patient-derived idiotype proteins have also been conjugated with keyhole limpet hemocyanin to produce a vaccine which has demonstrated efficacy and can elicit B and T cell immune responses. Kwak et al., *New Engl. J. Med.* 327: 1209-1215 (1992). Hybridoma-derived idiotype was co-cultured with patient-derived dendritic cells which acted as antigen presenters upon re-infusion into the patient and showed clinical efficacy. Hsu et al., *Nature Medicine* 2: 52-58 (1996). Idiotypic vaccines made in lipid-based carriers are disclosed in International Patent Publication WO98/14170.

Treatments have also been proposed using antibodies directed to CD20, a transmembrane protein that is expressed by both normal and malignant B-cells during parts of the B cell development cycle. Using single-dose infusions with anti-CD20 monoclonal antibodies, partial or minor tumor regressions were observed in 6 of 15 patients in a Phase I clinical study. Maloney et al., *Blood* 84: 2457-2466 (1994). In Phase II studies, 17 of 37 patients showed complete or partial remissions. In December 1997, the FDA approved the

first antibody-based therapy for NHL. Rituximab (Ritvaxan, IDEC/Genentech) is a chimeric human/murine antibody approved for the treatment of patients with relapsed or refractory low-grade or follicular CD20⁺ B cell NHL. Maloney et al., *Blood* 90: 2188-2195 (1997).

Combinations of chemotherapy and anti-CD20 therapy have been reported as having better therapeutic efficacy, with 11 of 11 patients showing complete or partial remission. Czuczman et al., Abstract 53, *Ann. Oncol.* 7, Supp. 1: 56 (1996).

While therapeutic regimens using anti-CD20 concepts are potentially effective, all of these therapies have the drawback of being passive therapies, i.e., they do not directly involve the immune system of the patient. Thus, these therapies may require the continued administration of the therapeutic agent for efficacy and do not provide any long-term protection against recurrence. In addition, the passive therapy is monoclonal in nature, therefore escape is possible. It would therefore be desirable to have an active therapy, that is a therapeutic agent which when administered to the patient stimulates an immune response against CD20 found in B-cells.

It is an object of the present invention to provide such a therapy. It is a further object of the invention to provide an active polyclonal therapy that is difficult to evade.

SUMMARY OF THE INVENTION

5

10

15

20

25

30

In accordance with the present invention, NHL is treated, not by administration of an anti-CD20 monoclonal antibody, but by the administration of CD20 itself, or an immunogenic fragment of the extracellular portion thereof, coupled to or administered with an antigenic carrier moiety such as keyhole limpet hemocyanin (KLH). This results in the stimulation of the production of polyclonal antibodies against CD20 (or an immunogenic fragment thereof) which has the affect of reducing the number of B-cells, including malignant B-cells. Thus, the invention provides an active vaccine. The same approach can be used for therapeutics for other diseases and conditions in which target cells possess a transmembrane protein, and is particularly applicable to those diseases and conditions for which administration of antibodies to transmembrane proteins or peptides (i.e., passive therapy) have been shown to provide therapeutic benefits, and especially in the

situations where the target is also capable of transducing or receiving a signal important for cell growth or function. This would include, for example, Her2/neu, VEGF receptor, epidermal growth factor receptor, the CD19 molecule, interleukin-2-receptor, interleukin-4-receptor, and the P-glycoprotein, also known as the multidrug-resistance protein.

5

10

15

BRIEF DESCRIPTION OF THE FIGURES

Figs. 1A and B show ELISA results for formation of antibodies to human and mouse CD20 in vaccinated mice;

Figs. 2A and B shows results for binding of control B1 antibodies or antibodies in plasma from a mouse treated with human CD20-KLH conjugate with Raji B NHL cells;

Fig. 3 shows CP19⁺B cell levels in mice treated with human or mouse CD20-KLH conjugate;

Fig. 4 shows the domain structure of human Her2;

Fig. 5 shows the domain structure of human EGFR;

Figs. 6A-D shows the cross-reactivity of antibodies generated in response to human or mouse CD20 fragments;

Figs. 7A-D show the importance of carrier protein and adjuvant in generating an immune response;

20

30

and

Figs. 8A-D shows the immune response generated using different adjuvants;

Figs. 9A-I shows CP19⁺B cell levels in mice treated with human or mouse CD20-KLH conjugate.

25 <u>DETAILED DESCRIPTION OF THE INVENTION</u>

The present invention provides an active vaccine therapy which can be used in the treatment of a variety of cancers and related conditions in which it is desirable to bring about the death of a target group of cells. Conventionally, immunotherapies targeting cells have sought to obtain a cellular immune response (T-cells that recognize the target cells), since a humoral immune response (antibodies that recognize the target cells) alone is not

WO 99/57981 PCT/US99/10065

-4-

deemed sufficient to achieve the desired result of cell death. The present invention departs from this conventional wisdom, and effectively utilizes a humoral immune response against the target cells to provide therapeutic benefit. The targets for therapy include cell surface proteins that when bound by a ligand signal to the cell. The vaccine induced antibody response will mimic ligand binding and cause similar signaling events which can imitate the process of programmed cell death (apoptosis) or halt the cell from growing or change the cancer cell's sensitivity to chemotherapy.

5

10

15

20

25

30

By way of example, the invention is suitably employed in the treatment of NHL and other B cell diseases such as chronic lymphocytic leukemia, auto-immune disorders and B-cell regulatory disorders. In accordance with this embodiment of the invention, a peptide antigen is prepared which contains at least an immunogenic portion of the extracellular domain of CD20 coupled to or administered with an antigenic carrier protein. The CD20 component of the peptide antigen may be syngeneic or it may be xenogeneic. Thus, for example, human patients may be treated with a peptide vaccine containing a human or a mouse CD20-fragment. There is evidence that strong immune responses can be elicited against xenogeneic proteins. Naftzger et al., Proc. Natl. Acad. Sci. (USA) 93: 14809-14814 (1996); International Patent Application PCT/US97/22669, filed December 10 1997, incorporated herein by reference. A suitable fragment is the 44 amino acid peptide spanning amino acids 136 to 179 of the sequence of mouse or human CD20. (Seq. ID Nos. 1 and 2) Other immunogenic fragments derived from the extracellular domain of CD20, or the entire CD20 molecule may also be used. Seq. ID. Nos. 3 and 4 shows the nucleic acid and amino acid sequences, respectively, of exon VI (the extracellular domain) of human CD20 as reported by Tedder et al., J. Immunol. 142: 2560-2568 (1989).

As used in the specification and claims hereof, an "immunogenic fragment" is a molecule which includes at least a portion of the extracellular domain of a transmembrane protein to direct and immunological response to that transmembrane protein when the immunogenic fragment is coupled to or administered with an antigenic carrier protein effective to break tolerance and administered with an adjuvant. It is not required that the immunogenic fragment alone be effective to stimulate an immune response, although such stimulation would not take a given fragment outside the scope of the present invention.

WO 99/57981

- 5 -

PCT/US99/10065

A preferred antigenic carrier protein is keyhole limpet hemocyanin which can be coupled to peptides using techniques described in Pierce Catalog Protocol. Other antigenic carrier proteins which can be used to break tolerance might be used in the invention include immunoglobulins, tuberculin, tetanus toxin and others well known in the art.

5

The peptide antigen containing the CD20 component and the antigenic carrier protein is formulated with a pharmaceutically acceptable adjuvant in a liquid carrier and administered to a patient suffering from NHL or another B cell disease. The composition will generally be administered by injection, for example, intramuscular, subcutaneous or intradermal injection, but might also be administered by way of a DNA vaccine (See US Patent No. 5,580,859, incorporated herein by reference) or a viral vaccine, or after mixing with antigen presenting cells (APC's) such as dendritic cells, *ex vivo*. Alternatively, the antigen may be administered without adjuvant by injection into a host prepared by prior or simultaneous injection of an immune adjuvant. Specific amounts to be administered to a patient can be determined by monitoring the titer of anti-CD20 antibodies developed by the patient, or by an average group of patients using well-known technology.

15

20

10

When a peptide of the extracellular domain of human or mouse CD20 is coupled to KLH and administered with an adjuvant to mice, antibodies which react with CD20 are found in plasma. (Figs. 1A and B) These antibodies bind to Raji cells, a human lymphoma cell line, indicating the ability to bind to a cell expressing CD20. (Figs. 2A and B). Moreover, the number of CD19⁺ B cells present in mice injected with either of the two CD20-KLH conjugates declines substantially (~30% decrease relative to controls). (Figs. 3 and 9). The assay used to quantitate B cell depletion detects CD19 which is also expressed on immature B cells that are CD20⁻. Thus, the 30% depletion actually underestimates the efficacy of the vaccine against CD20⁺ B cells.

25

Antibodies generated in mice after vaccination with human or mouse-derived CD20 fragments are specific for the peptides used, yet are capable of inducing immunity to the corresponding peptide from other species (Figs. 6A-D). Studies showed that in most instances the peptide, carrier protein and adjuvant are all needed for optimal response, although some responses were detected using less than all of the components. (Figs. 7A-D).

WO 99/57981 PCT/US99/10065

- 6 -

Several different adjuvants were also tested, and QS21 was found to be the most effective of those tested. (Fig. 8A-D).

While not intending to be bound by any particular mechanism, it is believed that the vaccines of the present invention are effective via at least two pathways. First, the generation of a humoral immune response to CD20 is effective to some extent to reduce the numbers of B cells bearing CD20 antigen in a manner consistent with normal immunological response to a target antigen. In addition, however, because CD20 has a signaling function, the binding of antibody to the CD20 moiety activates this signaling function to trigger apoptotic cell death. Such stimulation of apoptosis has been demonstrated to occur *in vitro* following passive treatments with a chimeric anti-CD20 antibody. Maloney et al., *Blood* 88 (Supp. 1): 637a (1996).

5

10

15

20

25

30

It is also possible that T cell mediated effector mechanisms are involved in the immune response. As evidence of this, we illustrate in Table 1 the mouse and human peptide sequences capable of binding to the corresponding mouse and human histocompatability antigens. This information was derived from a search of the NIH Bioinformatics and Molecular Analysis Section HLA Binding Predictions database using the mouse and human CD20 amino acid sequences. (Parker et al., *J. Immunol.* 152: 163 (1994)).

While the method of the invention is illustrated here using CD20 or CD20-derived peptides as the antigen to target B cells, the invention is not limited to this embodiment. Rather, the inventions encompasses the use of vaccine compositions comprising an immunogenic portions of the extracellular domain of transmembrane protein or peptide, particularly a transmembrane protein or peptide having signaling function, coupled to or administered with an antigenic protein and/or adjuvant to break tolerance.

A non-limiting example of another transmembrane protein which can be used in whole or in part in the method of the invention is Her-2/neu. The Her-2/neu oncogene is a receptor-like tyrosine kinase that is expressed on the cell surface of a significant portion of solid tumors. It has been shown that patients with early stage breast cancer have a high titer of antibodies to Her-2/neu. Disis et al., *J. Clin. Oncol.* 15: 3363-3367 (19967). The amino acid sequence and domain structure of human Her-2/neu are shown in Seq. OD. No. 5 and Fig. 4, and isolation and expression of the extracellular domain has been disclosed.

WO 99/57981 PCT/US99/10065

International Patent Publication No. WO 90/14357, which is incorporated herein by reference. There is clinical data showing efficacy of monoclonal antibodies against Her-2-neu in the treatment of patients with Her-2/neu⁺ tumors, and potential synergism with chemotherapy. Thus, in accordance with the present invention, a vaccine composition comprising at least an immunogenic portion of the extracellular domain of Her-2-neu (amino acids 22 to 652) coupled to or administered with an antigenic protein or peptide such a KLH can be used as a vaccine to provide the same therapeutic benefits using an active as opposed to a passive approach.

5

10

15

20

25

A further non-limiting example of a transmembrane protein which can be used in whole or in part in the method of the invention is epidermal growth factor receptor (EGFR). The amino acid sequence and domain structure of human EGFR are shown in Seq. ID. No. 6 and Fig. 5. There is significant data showing that antibodies to EGFR can have anti-tumor activity in breast and prostate cancer, as well as several head and neck tumors. Prewett et al., *J. Immunother. Emphasis Tumor Humoral* 19: 419-27 (1996). The mechanism by which antibody therapy against EGFR may be efficacious can be through the ability to down-regulate vascular endothelial growth factor production by tumor cells and thereby decrease angiogenesis. Petit et al., *Am. J. Pathol.* 151: 1523-30 (1997). In accordance with the present invention, a vaccine composition comprising at least an immunogenic portion of the extracellular domain of EGFR (amino acids 25 to 645) coupled to or administered with an antigenic protein or peptide such a KLH can be used as a vaccine to provide the same therapeutic benefits using an active as opposed to a passive approach. Preferred immunogenic peptides would be selected from regions not deleted in the various types of truncated EGFR mutants associated with some cancers.

A further non-limiting example of a transmembrane protein which can be used in whole or in part in the method of the invention is VEGF receptor. There are significant data showing that antibodies to VEGF receptor can inhibit angiogenesis and thereby halt tumor progression. In accordance with the present invention, a vaccine composition comprising at least an immunogenic portion of the extracellular domain of VEGF receptor coupled to or administered with an antigenic protein or peptide such a KLH can be used as a

vaccine to provide the same therapeutic benefits using an active as opposed to a passive approach.

Still a further non-limiting example of a transmembrane protein which can be used in whole or in part in the method of the invention is the IL-2 receptor. The IL-2 receptor is expressed on most T-cells malignancies, and there is a data showing that antibodies to the IL-2 receptor can be used in the treatment of T-cell malignancies and autoimmune disorders. In the present invention, a composition is made comprising at least an immunogenic portion of the extracellular domain of the IL-2 receptor (e.g., P55 or P75), coupled to or administered with an antigenic carrier protein or peptide such as KLH. and used as a vaccine.

The vaccine compositions of invention can be used alone or in combination (concurrently or sequentially) with drugs or chemotherapy agents that provide therapeutic benefit for the condition being treated. In the case of NHL, suitable chemotherapy agents which can be used in combination with the CD20 based vaccine include alkylating agents, anthrocyclines, cis-platinum, fludarabine, corticosteroids and vinca alkaloids. These same chemotherapy agents which might be used in combination with other vaccine compositions for other forms of cancer.

EXAMPLE 1

20

25

30

5

10

15

44 amino acid fragments of the extracellular domains of humans and murine CD20 (amino acids 136-179, Seq. ID Nos. 1 and 2) were synthesized using a solid-phase FMOC peptide synthesizer and coupled to KLH using the methodology described in the Pierce Catalog Protocol. The peptide coupled to KLH was then prepared for injection by formulation with QS-21 adjuvant. Balb/c mice were injected according to one of the following protocols on days 1, 8, 15, 22 and 50 of the experiment:

- A. Murine CD20 fragment-KLH with QS-21 adjuvant
- B. Human CD20 fragment-KLH with QS-21 adjuvant
- C. KLH with QS-21 adjuvant
- D. QS-21 adjuvant

5

10

15

20

30

- E. P190 (irrelevant protein) coupled to KLH with QS-21 adjuvant
- F. B3A2 (irrelevant peptide) coupled to KLH with QS-21 adjuvant.

The animals were sacrificed on day 62 of the experiment.

Serum samples from the mice were diluted 1:200 and evaluated by BSA-blocked ELISA using goat-anti-mouse antibody conjugated to alkaline phosphatase for antibodies which bind to human CD20, mouse CD20 and KLH. As shown in Figs 1A and B, mice injected with human CD20 coupled to KLH (Fig. 1A) or mouse CD20 coupled to KLH (Fig. 1B) administration of xenogeneic antibody produced a significant polyclonal antibody response to both human and mouse CD20, while the response following administration of syngeneic antibody was principally limited to antibodies to the syngeneic form of CD20. Either xenogeneic or syngeneic peptide can therefore be used to generate an immune response.

To confirm the ability of the antibodies to bind to B cells, Raji cells (a form of human B-cell lymphoma that expresses CD20 on its surface) were blocked with human IgG, washed and then incubated for 30 minutes on ice with a 1:10 dilution of plasma from a mouse vaccinated with P-190-KLH control or huCD20-KLH. As a positive control, Raji cells were incubated with B1 antibody, or IgG2 as an isotypic negative control. After washing, the cells were incubated with goat-anti-mouse antibody, washed and fixed with 1% paraformaldehyde. Flow cytometry analysis was performed in a Becton-Dickinson FACScan. The results are shown in Figs 2A and 3B, wherein the shaded data set are the experimental data set and the outlined data set is the negative controls. As is apparent, there is a strong binding of mouse antibodies and Raji cells, comparable to that observed with B1 antibody.

25 <u>EXAMPLE 2</u>

To assess the number of B cells present in vaccinated mice, an evaluation was made of cells expressing CD19, a standard phenotypic marker for B cells. Spleens were harvested from the animals vaccinated in Example 1 and put into a single-cell suspension. After counting the total number of cells, the cells were stained with FITC-labeled anti-mouse CD19 and the samples were analyzed by flow cytometry with a FACScan. 10,000 events

were collected. The percentage of CD19 positive cells minus the control gate was multiplied by the total number of cells to determine the number of CD19 positive cells in mice treated with the mouse and human CD20 peptide conjugates, and the P190 irrelevant peptide conjugate control.

5

10

15

20

25

30

As shown in Fig. 3, the absolute number of CD19 positive cells was significantly reduced in mice treated with either of the CD20 peptide conjugates. The level of CD19 positive cells is a reflection of the number of CD20 positive B cells, and the number of immature CD19⁺, CD20⁻ B cells in the samples. The absolute number of CD19⁺ B cells actually underestimates the therapeutic efficacy of the treatment for elimination of CD20⁺ B cells, however, since CD19 is expressed on B cell progenitor cells before expression of CD20.

EXAMPLE 3

Mice were injected five times over two months with one of four treatment protocols as follows:

human CD20 (44 aa fragment)-KLH plus QS1 human CD20 (44 aa fragment)-KLH human CD20 (44 aa fragment) plus QS21 KLH plus QS21

Blood was collected on week 9 for analysis by ELISA. Sera from the vaccinated mice were diluted 1:200 and incubated on BSA blocked plates coated with msCD20, huCD20, P190 or KLH. Secondary goat anti-mouse antibody conjugated to alkaline phosphatase was added, and the color change of p-nitrophenyl phosphate substrate was measured at 405 nm. The results are summarized in Figs. 7A-D. In most instances the peptide, carrier protein and adjuvant are all needed for optimal response, although some responses were detected using less than all of the components.

EXAMPLE 4

Mice were vaccinated according to the schedule of Example 3 using one of four treatment protocols: human CD20 (44 aa fragment)-KLH plus QS21 adjuvant, mouse

CD20 (44 amino acid fragment)-KLH plus QS21, P190 (irrelevant protein)-KLH +QS21 and KLH and QS21 alone. Mouse serum samples were evaluated by ELISA for the presence of antibodies reactive with msCD20, huCD20, P190 and KLH. The results are shown in Figs. 6A-D. Antibodies generated in mice after vaccination with human or mouse-derived CD20 fragments are specific for the peptides used, yet are capable of inducing immunity to the corresponding peptide from other species.

5

10

15

20

EXAMPLE 5

Mice were vaccinated five times over two months with huCD20 fragment-KLH conjugate with no adjuvant or in combination with one of three adjuvants: QS21, BCG or Alum. Serum samples from the vaccinated mice were tested by ELISA. The results are summarized in Figs. 8A-D. QS21 was found to be the most effective of those tested.

EXAMPLE 6

To confirm the observations of Example 2, nucleated spleen cells were recovered by centrifugation in a density gradient from mice vaccinated with a CD20-KLH conjugate (human or mouse) in the presence of QS21 adjuvant. 1 X 10^6 cells from each mouse were incubated with 2 μ g of rat anti-mouse CD19 FITC-labeled antibody or with isotope-matched FITC labeled rat antibody. Cells were washed, fixed and analyzed with a Becton Dickinson FACScaliber cytometer. Figs 9A-C, D-F and G-I show the results for three exemplary mice of each vaccination group. The decrease in the peak reflecting levels of CD19 positive spleen cells in each of the mice is apparent.

Score (T _{1/2} of Dissociation of Molecule Containing this Subsequence)	1600 48 21.2 1600 60 89.4 28.7
HLA Molecule	Kd Kd A_0201 Kd Kd A_0201 A_0201
Peptide Sequence	NFIRAHTPYI FIRAHTPYI FLKMESLNFI HFLKMRRLEL IYDCePSNSS LIQTSKPYV ELIQTSKPYV
Species	human human mouse mouse mouse

CLAIMS

A method for active vaccination against autologous cells expressing 1. 1 transmembrane proteins comprising administering to a patient a vaccine composition 2 comprising at least an immunogenic portion of the extracellular domain of the 3 transmembrane protein, or a xenogeneic homolog thereof, coupled to or administered with an 4 carrier protein effective to break tolerance to the transmembrane protein and a 5 pharmaceutically acceptable adjuvant. 6 2. The method of claim 1, wherein the transmembrane protein is selected 1 from the group consisting of CD20, Her2-neu, VEGF receptor, epidermal growth factor 2 receptor, the CD19 molecule, interleukin-2-receptor, interleukin-4-receptor, and the P-3 glycoprotein. 4 The method of claim 1, wherein the transmembrane protein is CD20. 3. 1 The method of claim 1, wherein the vaccine composition comprises a 4. 1 peptide having the sequence given by Seq. ID No 1 or 2. 2 The method claim 1, wherein the carrier protein is keyhole limpet 5. 1 hemocyanin. 2 The method of claim 5, wherein the transmembrane protein is selected 1 6. from the group consisting of CD20, Her2-neu, VEGF receptor, epidermal growth factor 2 receptor, the CD19 molecule, interleukin-2-receptor, interleukin-4-receptor, and the P-3 glycoprotein. 4 The method of claim 5, wherein the transmembrane protein is CD20. 7. 1

1	8. The method of claim 7, wherein the vaccine composition comprises a
2	peptide having the sequence given by Seq. ID No 1 or 2.
1	9. A method for active vaccination against B cells expressing CD20
2	comprising administering to a patient a vaccine composition comprising at least an
3	immunogenic portion of the extracellular domain of CD20, or a xenogeneic homolog thereof,
4	coupled to or administered with an carrier protein effective to break tolerance to the
5	transmembrane protein and a pharmaceutically acceptable adjuvant.
1	10. The method claim 9, wherein the carrier protein is keyhole limpet
2	hemocyanin.
1	11. The method of claim 9, wherein the vaccine composition comprises a
2	peptide having the sequence given by Seq. ID No 1 or 2.
1	12. A method for treatment of B cell non-Hodgkin's lymphoma,
2	comprising administering to a patient suffering from B cell non-Hodgkin's lymphoma a
3	vaccine composition comprising at least an immunogenic portion of the extracellular domain
4	of CD20, or a xenogeneic homolog thereof, coupled to or administered with an carrier protein
5	effective to break tolerance to the transmembrane protein and a pharmaceutically acceptable
6	adjuvant.
1	13. A vaccine composition comprising at least an immunogenic portion of
2	the extracellular domain of the transmembrane protein, or a xenogeneic homolog thereof,
3	coupled to or administered with an carrier protein effective to break tolerance to the
4	transmembrane protein and a pharmaceutically acceptable adjuvant.
1	14. The composition of claim 13, wherein the transmembrane protein is
2	selected from the group consisting of CD20, Her2-neu, VEGF receptor, epidermal growth

3	factor receptor, the CD19 molecule, interleukin-2-receptor, interleukin-4-receptor, and the
4	P-glycoprotein.
1	15. The composition of claim 13, wherein the transmembrane protein is
2	CD20.
1	16. The composition of claim 15, wherein the vaccine composition comprises a peptide having the sequence given by Seq. ID No 1 or 2.
2	comprises a peptide having the sequence given by seq. 15 10 1 of 2.
1	17. The composition of claim 13, wherein the carrier protein is keyhole
2	limpet hemocyanin.
1 2	18. The composition of claim 17, wherein the transmembrane protein is selected from the group consisting of CD20, Her2-neu, VEGF receptor, epidermal growth
3	factor receptor, the CD19 molecule, interleukin-2-receptor, interleukin-4-receptor, and the P-
4	glycoprotein.
1	19. The composition of claim 17, wherein the transmembrane protein is
2	CD20.
1	20. The composition of claim 19, wherein the vaccine composition
2	comprises a peptide having the sequence given by Seq. ID No 1 or 2.

FIG. 1B

TOTAL EVENTS: 10000

IUIALEVE	1113.10000		or TOTAL
MARKER	LEFT, RIGHT	EVENTS_	% TOTAL
	1. 9910	10000	100.00
ALL	7, 5510	7525	75.25
M1	5, 17	1201	12.01
M2	1, 3	1201	12.01

FIG. 2A

TOTAL EVENTS: 10000

101MF FA	_ N O O O O		
MARKER	LEFT, RIGHT	EVENTS	% TOTAL
	1 9910	10000	100.00
ALL	3 12	7327	73.27
M1	1 1	1454	14.54
M2	1,	1454	

FIG. 2B

FIG. 3

SUBSTITUTE SHEET (RULE 26)

FIG. 6A

FIG. 6B

FIG. 6C

FIG. 6D

FIG. 7A

FIG. 7B

FIG. 7C

FIG. 7D

msCD20 P190 KLH

FIG. 8A

FIG. 8B

FIG. 8C

FIG. 8D

SEQUENCE LISTING

```
<110> Agus, David B.
      Scheinberg, David
      Zelenetz, Andrew D.
      Roberts, Wendy
<120> Compositions and Methods for Active Vaccination
<130> MSKP039US
<140>
<141>
<150> 60/084,870
<151> 1998-05-08
<160> 6
<170> PatentIn Ver. 2.0
<210> 1
<211> 44
<212> PRT
<213> HUMAN
<220>
<223> human CD20 fragment
<400> 1
Lys Ile Ser His Phe Leu Lys Met Glu Ser Leu Asn Phe Ile Arg Ala
                                                       15
                               10
 1
His Thr Pro Tyr Ile Asn Ile Tyr Asn Cys Glu Pro Ala Asn Pro Ser
                                               30
                                25
            20
Glu Lys Asn Ser Pro Ser Thr Gln Tyr Cys Tyr Ser
                            40
        35
<210> 2
<211> 44
<212> PRT
<213> Murine
<220>
<223> murine CD20 fragment
```

```
<400> 2
Thr Leu Ser His Phe Lou Lys Met Arg Arg Leu Glu Leu Ile Gln Thr
                                     10
Ser Lys Pro Tyr Val Asp Ile Tyr Asp Cys Glu Pro Ser Ash Ser Ser
                                25
             20
Glu Lys Asn Ser Pro Ser Thr Gln Tyr Cys Asn Ser
<210> 3
<211> 79
<212> PRT
<213> HUMAN
<220>
<223> exon VI of human CD20 gene
<400> 3
Val Lys Gly Lys Met Ile Met Asn Ser Leu Ser Leu Phe Ala Ala Ile
                                     10
                 5
 1
Ser Gly Met Ile Leu Ser Ile Met Asp Ile Leu Asn Ile Lys Ile Ser
                               2.5
             20
His Phe Leu Lys His Glu Ser Leu Asn Phe Ile Arg Ala His Thr Pro
                            40
Tyr Ile Asn Ile Tyr Asn Cys Glu Pro Ala Asn Pro Ser Glu Lys Asn
                    55
Ser Pro Ser Thr Glm Tyr Cys Tyr Ser Ile Glm Ser Leu Phe Leu
                                       75
                   70
<210> 4
<211> 237
<212> DNA
<213> HUMAN
<220>
<223> exon VI of human CD20 gene
<400> 4
gtcaaaggaa aaatgataat gaattcattg agcetetttg etgecattte tggaatgatt 60
ettteaatea tggacataet taatattaaa attteeeatt ttttaaaaat ggagagtetg 120
aattttatta gageteasas accatatatt aacatataca aetgtgaace agetaateec 180
```

tetgagaada actececate tacceaatac tgttacagea tacaatetet gttettg 237 <210> 5 <211> 1255 <212> PRT <213> HUMAN <220> <223> human Her2 Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu Leu 10 5 Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys 25 Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His 40 35 Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr 55 50 Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val 75 70 65 Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu 90 85 Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr 105 100 Ala Leu Ala Val Leu Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr Pro 120 115 Val Thr Gly Ala Ser Pro Gly Gly Leu Arg Glu Leu Gln Leu Arg Ser 135 Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Gln Arg Asn Pro Gln 155 150 Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn 165 Asn Gln Leu Ala Deu Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys 180 His Pro Cys Ser Pro Met Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser

		195					200					205			
Ser	Glu 210	Asp	Cys	Gln	Ser	Leu 215	Thr	Arg	Thr	Val	Cys 220	Ala	Gly	Gly	Cys
225		Cys			230										
Ala	Ala	Gly	Cys	Thr 245	Gly	Pro	Lys	His	Ser 250	Asp	Cys	Leu	Ala	Cys 255	Leu
His	P'ne	Asn	His 260	Ser	Gly	Ile	Cys	Glu 265	Leu	His	Cys	Pro	Ala 270	Leu	Val
Thr	Tyr	Asn 275	Thr	Asp	Thr	Phe	Glu 280	Ser	Met	Pro	Asn	Pro 285	Glu	Gly	Arg
Туг	Thr 290	Phe	Gly	Ala	Ser	Суз 295	Val	Thr	Ala	Cys	Pro 300	Tyr	Asn	Tyr	Leu
Ser 305	Thr	Asp	Val	Gly	Ser 310	CAa	Thr	Leu	Val	Cys 315	Pro	Leu	His	Asn	Gln 320
Glu	Val	Thr	Ala	Glu 325	Asp	Gly	Thr	Gln	Arg 330	Cys	Glu	Lys	Cys	Ser 335	Lys
Pro	Суз	Λla	Arg 340	Val	Cys	Tyr	Gly	Leu 345	Gly	Met	Glu	His	Leu 350	Arg	Glu
Val	Arg	Ala 355	Val	Thr	Ser	Ala	Asn 360	Ile	.Gln	Glu	Pho	Ala 365	Gly	Cys	Lys
Lys	11e		Gly	Ser	Leu	Ala 375	Phe	Leu	Pro	Glu	Ser 380	Phe	Asp	Gly	Asp
Pro 385		Ser	Asn	Thr	Ala 390	Pro	Leu	Gln	Pro	Glu 395	Gln	Leu	Gln	Val	Phe 400
		· Leu	Glu	Glu 405	Ile	Thr	· Gly	Tyr	Leu 410	Tyr	Ile	Ser	· Ala	Trp 415	Pro
Asp	Sor	: Leu	Pro 420	Asp	Leu	Ser	· Val	Phe 425	Gln	Asn	Leu	Gln	Val 430	. Il∈	e Arg
Gly	/ Arg	; Il∈ 435		His	. Asn	Gly	, Ala	. Tyr	· Ser	Leu	Thr	Leu 445	Glr	ı Gly	/ Leu
Gly	/ Ile			Leu	ı Gly	/ Let	ı Arç	, Ser	Leu	ı Arg	Glu	Let	ı Gly	/ Sei	g Gly

460 455 450 Leu Ala Leu Ile His His Asn Thr His Leu Cys Phe Val His Thr Val 470 475 Pro Trp Asp Gln Leu Phe Arg Asn Pro His Gln Ala Leu Leu His Thr 490 485 Ala Asn Arg Pro Glu Asp Glu Cys Val Gly Glu Gly Leu Ala Cys His 510 505 500 Gln Leu Cys Ala Arg Gly His Cys Trp Gly Pro Gly Pro Thr Gln Cys 520 515 Val Asn Cys Ser Gln Phe Leu Arg Gly Gln Glu Cys Val Glu Glu Cys 535 530 Arg Val Leu Glm Gly Leu Pro Arg Glu Tyr Val Asn Ala Arg His Cys 555 550 545 Leu Pro Cys His Pro Glu Cys Gln Pro Gln Asn Gly Ser Val Thr Cys 570 565 Phe Gly Pro Glu Ala Asp Gln Cys Val Ala Cys Ala His Tyr Lys Asp 585 590 Pro Pro Phe Cys Val Ala Arg Cys Pro Ser Gly Val Lys Pro Asp Leu 600 605 Ser Tyr Met Pro Ile Trp Lys Phe Pro Asp Glu Glu Gly Ala Cys Gln 615 620 Pro Cys Pro Ile Asn Cys Thr His Ser Cys Val Asp Leu Asp Asp Lys 635 630 Gly Cys Pro Ala Glu Gln Arg Ala Ser Pro Leu Thr Ser Ile Ile Ser 650 645 Ala Val Val Gly Ile Leu Leu Val Val Leu Gly Val Val Phe Gly 670 665 660 Ile Leu Ile Lys Arg Arg Gln Gln Lys Ile Arg Lys Tyr Thr Met Arg 675 680 Arg Leu Leu Glm Glu Thr Glu Leu Val Glu Pro Leu Thr Pro Ser Gly 700 695 690 Ala Met Pro Asn Gln Ala Gln Met Arg Ile Leu Lys Glu Thr Glu Leu

705					710					715					720
λrg	Lys	Val	Lys	Val 725	Leu	Gly	Ser	Gly	лlа 730	Phe	Gly	Thr	Val	туг 735	Lys
Gly	Ile	Trp	Ile 740	Pro	Asp	Gly	Glu	Asn 745	Val	Lys	Ile	Pro	Val 750	Ala	Ile
Lys	Val	Ľeu 755	Arg	Glu	Asn	Thr	Ser 760	Pro	Lys	Ala	Asn	Lys 765	Glu	Ile	Leu
Asp	Glu 770	Ala	Tyr	Val	Met	Ala 775	Gly	Val	Gly	Ser	Pro 780	Tyr	Val	Ser	Arg
Leu 785	Leu	Gĺy	Ile	CÀa	Leu 790	Thr.	Ser	Thr	Val	Gln 795	Leu	Val	Thr	Gln	Leu 800
Met	Pro	Tyr	Gly	Cys 805	Leu	Leu	Asp	His	Val 810	Arg	Glu	Asn	Arg	Gly 815	Arg
Leu	Gly	Ser	Gln 820	Asp	Leu	Leu	Asn	Trp 825	Суѕ	Met	Gln	Ile	Ala 830	Lys	Gly
Met	Ser	Tyr 835	Leu	Glu	Asp	Val	Arg 840	Leu	Val	His	Arg	Asp 845	Leu	Ala	Λla
Arg	Asn 850	Val	Leu	Val	Lys	Ser 855	Pro	Asn	His	Val	Lys 860	Ile	Thr	Asp	Phe
Gly 865	Leu	Ala	Arg	Leu	Leu 870	Asp	Ile	Asp	Glu	Thr 875	Glu	Tyr	His	Ala	Asp 880
Gly	Gly	Lys	Val	Pro 885	Ile	Lys	Trp	Met	Ala 890	Leu	Glu	Ser	Ile	Leu 895	Arg
Arg	Arg	Phe	Thr 900	His	Gln	Ser	Asp	Val 905	Trp	Ser	Туг	Gly	Val 910	Thr	Val
Trp	Glu	Leu 915	Met	Thr	Phe	Gly	Ala 920	Lys	Pro	Tyr	Asp	Gly 925	Ile	Pro	Ala
Arg	Glu 930	Ile	Pro	Asp	Leu	Leu 935	Glu	Lys	Gly	Glu	Arg 940	Leu	Pro	Gln	Pro
Pro 945		Cys	Thr	īle	Asp 950	Val	Tyr	Met	Ile	Met 955	Val	Ľуs	Cys	Trp	Met 960
	Asp	Ser	Glu	Cys	Arg	Pro	Arg	Phe	Arg	Glu	Leu	Val	Ser	Glu	Phe

965 970	975
Ser Arg Met Ala Arg Asp Pro Gln Arg Phe Va	l Val Ile Gln Asn Glu 990
Asp Leu Gly Pro Ala Ser Pro Leu Asp Ser Th	r Phe Tyr Arg Ser Leu 1005
Leu Glu Asp Asp Asp Met Gly Asp Leu Val Ac 1010 1015	p Ala Glu Glu Tyr Leu 1020
Val Pro Gln Gln Gly Phe Phe Cys Pro Asp Pr 1025 1030 103	o Ala Pro Gly Ala Gly 5 1040
Gly Met Val His His Arg His Arg Ser Ser Sc 1045 1050	r Thr Arg Ser Gly Gly 1055
Gly Asp Leu Thr Leu Gly Leu Glu Pro Ser Gl	u Glu Glu Ala Pro Arg 1070
Ser Pro Leu Ala Pro Ser Glu Gly Ala Gly Se	r Asp Val Phe Asp Gly 1085
Asp Leu Gly Met Gly Ala Ala Lys Gly Leu Gl 1090 1095	n Ser Leu Pro Thr His 1100
Asp Pro Ser Pro Leu Gln Arg Tyr Ser Glu As 1105 1110 111	p Pro Thr Val Pro Leu 5 1120
Pro Ser Glu Thr Asp Gly Tyr Val Ala Pro Lo	u Thr Cys Ser Pro Gln 1135
Pro Glu Tyr Val Asn Gln Pro Asp Val Arg Pr 1140 1145	o Gln Pro Pro Ser Pro 1150
Arg Glu Cly Pro Leu Pro Ala Ala Arg Pro Al 1155 1160	a Gly Ala Thr Leu Glu 1165
Arg Pro Lys Thr Leu Ser Pro Gly Lys Asn Gl 1170 1175	y Val Val Lys Asp Val 1180
Phe Ala Phe Gly Gly Ala Val Glu Asn Pro Gl 1185 1190 119	u Tyr Leu Thr Pro Gln 5 1200
Gly Gly Ala Ala Pro Gln Pro His Pro Pro Pro 1205	o Ala Phe Ser Pro Ala 1215

8

1230 1225 1220

Pro Pro Ser Thr Phe Lys Gly Thr Pro Thr Ala Glu Asn Pro Glu Tyr 1245 1240 1235

Leu Gly Leu Asp Val Pro Val 1255 1250

<210> ú

<211> 1210

<212> PRT

<213> HUMAN

<220>

<223> human EGFR

<400> 6

Met Arg Pro Ser Gly Thr Ala Gly Ala Ala Leu Leu Ala Leu Leu Ala 1 5

Ala Leu Cys Pro Ala Ser Arg Ala Leu Glu Glu Lys Lys Val Cys Gln 20

Gly Thr Ser Asn Lys Leu Thr Gln Leu Gly Thr Phe Glu Asp His Phe 45 40 35

Leu Ser Leu Gln Arg Met Phe Asn Asn Cys Glu Val Val Leu Gly Asn 60 55 50

Leu Glu Ile Thr Tyr Val Gln Arg Asn Tyr Asp Leu Ser Phe Leu Lys 75 70 65

Thr Ile Gln Glu Val Ala Gly Tyr Val Leu Ile Ala Leu Asn Thr Val 90 85

Glu Arg Ile Pro Leu Glu Asn Leu Gln Ile Ile Arg Gly Asn Met Tyr 105 100

Tyr Glu Asn Ser Tyr Ala Leu Ala Val Leu Ser Asn Tyr Asp Ala Asn 120

Lys Thr Gly Leu Lys Glu Leu Pro Met Arg Asn Leu Gln Glu Ile Leu 135 130

His Gly Ala Val Arg Phe Ser Asn Asn Pro Ala Leu Cys Asn Val Glu 155 150

				165					1.0	Asp					
Ser	Met	Asp	Phe 130	Gln	Asn	His	Leu	Gly 185	Ser	Cys	Gln	Lys	Cys 190	Asp	Pro
Ser	Cys	Pro 195	Asn	Gly	Ser	Cys	Trp 200	Gly	Ala	Gly	Glu	Glu 205	Asn	Càa	Gln
Lys	Leu 210	Thr	Lys	Ile	Ile	Cys 215	Ala	Gln	Gln	Cys	Ser 220	Gly	Arg	Cys	Arg
Gly 225		Ser	Pro	Ser	Asp 230	Суѕ	Cys	His	Asn	Gln 235	Cys	Ala	Ala	Gly	Cys 240
	Gly	Pro	Arg	Glu 245	Ser	Asp	Cys	Leu	Val 250	Cys	Arg	Lys	Phe	Arg 255	Asp
Glu	Ala	Thr	Cys 260	Ĺys	Asp	Thr	Cys	Pro 265	Pro	Leu	Met	Leu	Tyr 270	Asn	Pro
Thr	Thr	Tyr 275	Gln	Met	Asp	Val	Asn 280	Pro	Glu	Gly	Lys	туr 285	Ser	Phe	Gly
Ala	Thr	Cys	Val	Гуs	Lys	Cys 295	Pro	Arg	Asn	Tyr	Val 300	Val	Thr	Asp	His
Gly 305			Val	Arg	Ala 310	Суѕ	Gly	Ala	Asp	Ser 315	Tyr	Glu	Met	Glu	Glu 320
	Gly	Val	Arg	Ьуз 325	Cys	Lys	Lys	Суз	Glu 330	Gly	Pro	Cys	Arg	Lys 335	Val
Cys	Asn	Gly	· Ile	Gly	Ile	Gly	· Glu	Phe	Lys	Asp	Ser	Leu	Ser 350	Ile	Asn
Ala	Thr	Asn 355		Lys	His	Phe	: Lys	Asn	Cys	Thr	Ser	Ile 365	ser	Gly	Asp
Leu	His	; Ile		Pro	Val	Ala 375	n Phe	. Arg	Gly	, Asp	Ser 380	Phe	e Thr	His	Thr
Prc 385	Pro		ı Asp) Pro	Gln 390	Glu	ı Lev	Asp	ıle	Leu 395	Lys	Thr	· Val	. Lys	Glu 400
		c Gly	/ Phe	e Leu 405	Leu	ı Ile	≘ Glr	n Ala	Trp	Pro	Glu	ı Asr	n Arg	7 Th: 415	Asp

Leu	His	Ala	Phe 420	Glu	Asn	Leu	Glu	Ile 425	īle	Arg	Gly	Arg	Thr 430	Lys	Gln
His	Gly	Gln 435	Phe	Ser	Leu	Ala	Val 440	Val	Ser	Leu	Asn	Ile 445	Thr	Ser	Leu
Gly	Leu 450	Arg	Ser	Leu	Lys	Glu 455	Ile	Ser	Asp	Gly	Λsp 460	Val	Ile	Ile	Ser
Gly 465	Asn	Lys	Asn	Leu	Cys 470	Tyr	Ala	Asn	Thr	Ile 475	Asn	Trp	Lys	Lys	Leu 480
Phe	Gly	Thr	Ser	Gly 485	Gln	Lys	Thr	Lys	Ile 490	Ile	Ser	Asn	Arg	Gly 495	Glu
Asn	Ser	Cys	Lys 500	Ala	Thr	Gly	Gln	Val 505	Cys	His	Ala	Leu	Cys 510	Ser	Pro
Glu	Gly	Cys 515	Trp	Gly	Pro	Glu	Pro 520	Arg	Asp	Cys	Val	Ser 525	Cys	Arg	Asn
Val	Ser 530	Arg	Ġly	Arg	Glu	Cys 535	Val	Asp	Lys	Cys	Lys 540	Leu	Leu	Glu	Gly
Glu 545	Pro	Arg	Glu	Phe	Val 550	Glu	Asn	Ser	Glu	Cys 555	Ile	Gln	Cys	His	Pro 560
Glu	Cys	Leu	Pro	Gln 565	Ala	Met	Asn	Ile	Thr 570	Cys	Thr	Gly	Arg	Gly 575	Pro
Asp	Asn	Суз	Ile 580	Gln	Cys	Ala	His	Tyr 585	Ile	Asp	Gly	Pro	His 590	Суз	Val
Lys	Thr	Cys 595	Pro	Ala	Gly	Val	Met 600	Gly	Glu	Asn	Asn	Thr 605	Leu	Val	Trp
Lys	Tyr 610	Ala	Asp	∴ia	Gly	His 615	Val	Cys	His	Leu	Cys 620	His	Pro	Asn	Cys
Thr 625	Tyr	Gly	Cys	Thr	Gly 630	Pro	Gly	Leu	Glu	Gly 635	Cys	Pro	Thr	Asn	Gly 640
Pro	Lys	Ile	Pro	Ser	Ile	Ala	Thr	Gly	Met 650	Val	Gly	Ala	Leu	Leu 655	Leu
Leu	Leu	Val	Val 660	Ala	Leu	Gly	Ile	Gly 665	Leu	Phe	Met	Arg	Arg 670	Arg	His

Ile \		675					000								
Val (31u 390	Pro	Leu	Thr	Pro	Ser 695	Gly	Glu	Ala	Pro	Asn 700	Gln	Ala	Leu	Leu
Arg :	Ile	Leu	Lys	Glu	Thr 710	Glu	Phe	Lys	Lys	Ile 715	Lys	Val	Leu	Gly	Ser 720
Gly	Ala	Phe	Gly	Thr 725	Val	Tyr	Lys	Gly	Leu 730	Trp	Ile	Pro	Glu	Gly 735	Glu
Lys	Val	Lys	Ile 740	Pro	Väl	Ala	Ile	Lys 745	Glu	Leu	Arg	Glu	Ala 750	Thr	Ser
Pro	Lys	Ala 755	Asn	Lys	Glu	Ile	Leu 760	Asp	Glu	Ala	Tyr	Val 765	Met	Ala	Ser
Val	Asp 770	Asn	Pro	His	Val	Cys 775	Arg	Leu	Leu	Gly	Ile 780	Cys	Leu	Thr	Ser
Thr 785	Val	Gln	Leu	Ile	Thr 790	Gln	Leu	Met	Pro	Phe	Gly	Cys	Leu	Leu	Asp 800
	Val	Arg	Glu	His	Lys	Asp	Asn	Ile	Gly 810	Ser	Gln	Tyr	Leu	Leu 815	Asn
Trp	Cys	Val	Gl::	Ile	Ala	Lys	Gly	Met 825	Āsn	туг	Leu	Glu	Asp 830	Arg	Arg
Leu	Val	His 835		Asp	Leu	Ala	Ala 840	Arg	Asn	Val	. Leu	Val 845	Lys	Thr	Pro
Gln	His 850		Lys	; Ile	. Thr	Asp 855	Phe	Gly	Leu	a Ala	860	; Leu)	Leu	Gly	Ala
Glu 865	Glu	ГÀЗ	; Gl:	: Tyr	His	s Alá	ı Glu	. Gly	· Gly	/ Lys	s Val	. Pro) Ile	Lys	880
	Ala	Lev	ı Gl:	. Sei 885	: Ile	e Let	ı His	Arg	890	э Туі)	c Thi	: His	; Gln	Ser 895	Asp
Val	Trp	Sei	ту: 90:	e Gly	y Val	l Thi	r Val	Trg 905	Glu	ı Le	ı Met	: Thi	910	gly	/ Ser
Lys	Pro	91:		p Gly	y Ile	e Pro	o Ala 920	a Sei	: Glu	ı Il	e Se	r Ser 925	r Ile	e Let	ı Glu

PCT/US99/10065

930	
Met Ile Met Val Lys Cys Trp	Met Ile Asp Ala Asp Ser Arg Pro Lys
945 950	955 960
Phe Arg Glu Leu Ile Ile Glu	Phe Ser Lys Met Ala Arg Asp Pro Gln
965	970
Arg Tyr Lou Val Ile Gln Gly	/ Asp Glu Arg Met His Leu Pro Ser Pro
980	985 990
Thr Asp Ser Asn Phe Tyr Arg	g Ala Leu Met Asp Glu Glu Asp Met Asp 1000 1005
Asp Val Val Asp Ala Asp Glu 1010 1015	Tyr Leu Ile Pro Gln Gln Gly Phe Phe
	g Thr Pro Leu Leu Ser Ser Leu Ser Ala 1035 1040
	l Ala Cys Ile Asp Arg Asn Gly Leu Gln 1055
Ser Cys Pro Ile Lys Glu Asp	p Ser Phe Leu Gln Arg Tyr Ser Ser Asp
1060	1065 1070
Pro Thr Gly Ala Leu Thr Glu	u Asp Ser Ile Asp Asp Thr Phe Leu Pro
1075	1080 1085
Val Pro Glu Tyr Ile Asn Gln	n Ser Val Pro Lys Arg Pro Ala Gly Ser
1090 1095	5 1100
Val Gln Asn Pro Val Tyr His	s Asn Gln Pro Leu Asn Pro Ala Pro Ser 1115 1120
	p Pro His Ser Thr Ala Val Gly Asn Pro 1130 1135
Glu Tyr Leu Asn Thr Val Glr	n Pro Thr Cys Val Asn Ser Thr Phe Asp
1140	1145 1150
Ser Pro Ala His Trp Ala Glr	n Lys Gly Ser His Gln Ile Ser Leu Asp
1155	1160 1165
Asn Pro Asp Tyr Gln Gln Asp	p Phe Phe Pro Lys Glu Ala Lys Pro Asn
1170 1175	5 1180

Gly Ile Phe Lys Gly Ser Thr Ala Glu Asn Ala Glu Tyr Leu Arg Val 1185 1190 1195

Ala Pro Gln Ser Ser Glu Phe Ile Gly Ala 1205 1210

International application No.
PCT/US99/10065

	<u> </u>							
A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :A01N 37/18 US CL :514/2, 12								
According to International Patent Classification (IPC) or to both national classification and IPC								
B. FIELDS SEARCHED								
Minimum documentation searched (classification system followed by classification symbols) U.S.: 514/2, 12								
Documentation searched other t	than minimum documentation to th	e extent that such documents are included	in the fields searched					
			m the notes sectioned					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)								
Please See Extra Sheet.								
C. DOCUMENTS CONSIDERED TO BE RELEVANT								
Category* Citation of do	Citation of document, with indication, where appropriate, of the relevant passages							
X Database BIO Syngeneic To Specific for Immunoth. 1 Abstract.	1-11							
X US 5,550,21 cols 17-22.	, , , , , , , , , , , , , , , , , , , ,							
X US 5,726,02 cols 3, 13, 1		0 March 1998, see especially	1,2,5,6					
Further documents are I	isted in the continuation of Box C	See patent family annex.						
 Special categories of cited 	rnational filing date or priority							
"A" document defining the gene to be of particular relevance	date and not in conflict with the appl the principle or theory underlying the	invention						
"E" earlier document published	on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step						
	w doubts on priority claim(s) or which is ication date of another citation or other	when the document is taken alone						
special reason (as specified	•	"Y" document of particular relevance; the considered to involve an inventive	step when the document is					
"O" document referring to an means	oral disclosure, use, exhibition or other	combined with one or more other such being obvious to a person skilled in th						
"P" document published prior to the priority date claimed	the international filing date but later than	*&" document member of the same patent family						
Date of the actual completion of	of the international search	Date of mailing of the international sea	rch report					
10 AUGUST 1999		29 SEP 1999						
Name and mailing address of t Commissioner of Patents and Tra Box PCT Washington, D.C. 20231		Authorized politicer SUSAN UNGAR						
Facsimile No. (703) 305-323	60	Telephone No. (703) 308-0196						

International application No. PCT/US99/10065

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)					
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:					
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:					
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:					
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).					
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)					
This International Searching Authority found multiple inventions in this international application, as follows:					
Please See Extra Sheet.					
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.					
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.					
3. X As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: 1-11					
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:					
Remark on Protest The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.					

International application No. PCT/US99/10065

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

GENESEQ, SWISS-PROT, SPTREMBL, APS, EMBASE, BIOSIS, MEDLINE, CAPLUS, DRUGU, PROMT, SCISEARCH, CANCERLIT, LIFESCI, TOXLINE, PHIN search terms: vaccin?, CD20, her2, neu, erbb2

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s)1-11, drawn to a method for active vaccination against autologous cells expressing transmembrane

Group II, claim(s) 12 drawn to a method for treatment of B cell non-Hodgkin's lymphoma.

Group III, claim(s) 13-20, drawn to a vaccine composition.

The inventions listed as Groups I-III do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

The technical feature linking groups I-III appears to be that they all relate to a method for active vaccination with at least an immunogenic portion of the extracellular domain of a transmembrane protein.

However, Hooijberg et al (J. Immunother. Emphasis Tumor Immunol, 1996, 19(5), 346-356 specifically teaches a method of active immunization with at least an immunogenic portion of the extracellular domain of a transmembrane protein wherein that protein is CD19, wherein that protein is CD20 (see abstract).

Therefore, the technical feature linking the inventions of Groups I-III does not constitute a special technical feature as defined by PCT Rule 13.2, as it does not define a contribution over the prior art.

The special technical feature of Group I is considered to be a method for active vaccination.

The special technical feature of Group II is considered to be a method of treatment.

The special technical feature of Group III is considered to be a vaccine composition.

Accordingly Groups I-III are not so linked by the same or a corresponding special technical feature as to form a single general inventive concept.

This application contains claims directed to more than one species of the generic invention. These species are deemed to lack Unity of Invention because they are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for more than one species to be searched, the appropriate additional search fees must be paid. The species are as follows:

Group I

Claim 1 is generic to a plurality of distinct species which are transmembrane proteins that are different in structure and function wherein the transmembrane proteins are:

Species A - CD20 (claims 2-11)

Species B - Her2-neu (claims 2 and 6)

Species C - VEGF Receptor (claims 2 and 6)

Species D - epidermal growth factor receptor (claims 2 and 6)

Species E - CD19 (claims 2 and 6)

Species F - interleukin-2-receptor (claims 2 and 6)

Species G - interleukin-4-receptor (claims 2 and 6)

Species H - P-glycoprotein (claims 2 and 6)

International application No. PCT/US99/10065

Group III

Claim 13 is generic to a plurality of distinct species which are transmembrane proteins that are different in structure and function wherein the transmembrane proteins are:

- Species A CD20 (claims 14-20)
- Species B Her2-neu (claims 14 and 18)
- Species C VEGF Receptor (claims 14 and 18)
- Species D epidermal growth factor receptor (claims 14 and 18)
- Species E CD19 ((claims 14 and 18)
- Species F interleukin-2-receptor (claims 14 and 18)
- Species G interleukin-4-receptor (claims 14 and 18)
- Species H P-glycoprotein (claims 14 and 18)