Algebra Autumn 2025 Frank Sottile 16 October 2025

Eighth Homework

Write your answers neatly, in complete sentences. I highly recommend recopying your work before handing it in. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

The last two problems were partially done in class. This is an opportunity to polish your skills at writing mathematics in a clear and organized manner.

Hand in at the start of class, Thursday 23 October:

- 43. How many elements of order seven are there in a simple group of order 168?
- 44. Free abelian groups and the rational numbers.
 - (a) Show that the additive group of the rational numbers is not a free abelian group.
 - (b) Show that the multiplicative group of the positive rational numbers is a free abelian group of countable rank.
- 45. Show that \mathbb{Q}/\mathbb{Z} has a unique subgroup of order n, for each integer n > 1, and that this subgroup is cyclic.
- 46. Let \mathbb{C}^{\times} be the group of nonzero complex numbers under multiplication. Write \mathbb{T} for the set of unit complex numbers, those $z \in \mathbb{C}^{\times}$ such that $\overline{z} = z^{-1}$.

Find the torsion subgroup \mathbb{T}_{tor} of this circle group \mathbb{T} .

47. Prove that the group \mathbb{Q}/\mathbb{Z} is divisible. That is, if $x \in \mathbb{Q}/\mathbb{Z}$, then for every $n \in \mathbb{N} \setminus \{0\}$ there is an element $y \in \mathbb{Q}/\mathbb{Z}$ with ny = x.

Let A be an abelian group with a subgroup B and suppose that $\varphi \colon B \to \mathbb{Q}/\mathbb{Z}$ is group homomorphism. Show that there exists a group homomorphism $\psi \colon A \to \mathbb{Q}/\mathbb{Z}$ such that $\psi|_B = \varphi$.

If ψ unique? Why or why not?

- 48. Show that a finite abelian p-group is generated by its elements of maximal order.
- 49. Let p be a prime.
 - (a) How many subgroups of order p does $\mathbb{Z}_p \oplus \mathbb{Z}_p$ have?
 - (b) How many subgroups H isomorphic to \mathbb{Z}_{p^2} does $\mathbb{Z}_{p^2}\oplus \mathbb{Z}_{p^2}$ have?
 - (c) If $H \simeq \mathbb{Z}_{p^2}$ is a subgroup of $G := \mathbb{Z}_{p^3} \oplus \mathbb{Z}_{p^2}$, what type does G/H have?
- 50. Let p be a prime. Recall that the Tate group $T_p(\mathbb{Q}/\mathbb{Z})$ of \mathbb{Q}/\mathbb{Z} is the inverse limit of the p^n -torsion subgroups of \mathbb{Q}/\mathbb{Z} . What are the possible orders of elements of $T_p(\mathbb{Q}/\mathbb{Z})$?

Compare $T_p(\mathbb{Q}/\mathbb{Z})$ to the Tate subgroup $T_p(\mathbb{T})$ of the circle group. What about $T_p(\mathbb{C}^\times)$?