On the locality of arb-invariant first-order logic with modulo counting quantifiers

F. Harwath N. Schweikardt Goethe-Universität Frankfurt am Main, Germany

Our aim: understanding the expressive power of first-order logic (FO) extended with

```
numerical relations (< + \times)
```

over structures that are finite and relational.

in this talk

we consider only colored finite directed graphs $G = (V, E, C_1, \dots, C_\ell)$ viewed as structures with signature $\sigma := \{E, C_1, \dots, C_\ell\}$.

Modulo counting

FO+MOD_m: FO + modulo counting quantifiers $\exists^{j \mod m}$

$$G \models \exists^{j \, mod \, m} x \, \varphi(x)$$

Our aim: understanding the expressive power of first-order logic (FO) extended with

modulo m counting (FO+MOD $_m$)

numerical relations $(<,+,\times,...)$

over structures that are finite and relational

in this talk:

we consider only colored finite directed graphs $G = (V, E, C_1, ..., C_\ell)$ viewed as structures with signature $\sigma := \{E, C_1, ..., C_\ell\}$.

Modulo counting

FO+MOD_m: FO + modulo counting quantifiers $\exists^{j \mod m}$

 $G \models \exists^{J \, mod \, m} x \, \varphi(x)$

Our aim: understanding the expressive power of first-order logic (FO) extended with

modulo m counting (FO+MOD $_m$)

numerical relations $(<,+,\times,...)$

over structures that are finite and relational

in this talk:

we consider only colored finite directed graphs $G = (V, E, C_1, ..., C_\ell)$ viewed as structures with signature $\sigma := \{E, C_1, ..., C_\ell\}$.

Modulo counting

FO+MOD_m: FO + modulo counting quantifiers $\exists^{j \mod m}$

 $G \models \exists^{J \, mod \, m} x \, \varphi(x)$

Our aim: understanding the expressive power of first-order logic (FO) extended with

modulo
$$m$$
 counting (FO+MOD $_m$)
numerical relations ($<$, +, \times , ...)

over structures that are finite and relational.

in this talk

we consider only colored finite directed graphs $G = (V, E, C_1, \dots, C_\ell)$ viewed as structures with signature $\sigma := \{E, C_1, \dots, C_\ell\}$.

Modulo counting

FO+MOD_m: FO + modulo counting quantifiers
$$\exists^{f \mod m}$$

$$G \models \exists^{J \mod m} x \varphi(x)$$

Our aim: understanding the expressive power of first-order logic (FO) extended with

modulo
$$m$$
 counting (FO+MOD $_m$)
numerical relations ($<$, +, \times , ...)

over structures that are finite and relational.

in this talk

we consider only colored finite directed graphs $G = (V, E, C_1, \dots, C_\ell)$ viewed as structures with signature $\sigma := \{E, C_1, \dots, C_\ell\}$.

Modulo counting

FO+MOD_m: FO + modulo counting quantifiers
$$\exists^{f \mod m}$$

$$G \models \exists^{J \mod m} x \varphi(x)$$

Our aim: understanding the expressive power of first-order logic (FO) extended with

modulo m counting (FO+MOD $_m$)

numerical relations $(<,+,\times,...)$

over structures that are finite and relational.

in this talk:

we consider only colored finite directed graphs $G = (V, E, C_1, \dots, C_\ell)$ viewed as structures with signature $\sigma := \{E, C_1, \dots, C_\ell\}$.

Modulo counting

FO+MOD_m: FO + modulo counting quantifiers $\exists^{f \mod m}$ where

$$G \models \exists^{J \mod m} x \varphi(x)$$

Our aim: understanding the expressive power of first-order logic (FO) extended with

```
modulo m counting (FO+MOD_m)
numerical relations (<, +, \times, ...)
```

over structures that are finite and relational.

in this talk:

we consider only colored finite directed graphs $G = (V, E, C_1, \dots, C_\ell)$ viewed as structures with signature $\sigma := \{E, C_1, \dots, C_\ell\}$.

Modulo counting

FO+MOD_m: FO + modulo counting quantifiers $\exists^{j \mod m}$ where

$$G \models \exists^{J \mod m} x \varphi(x)$$

Our aim: understanding the expressive power of first-order logic (FO) extended with

modulo m counting (FO+MOD $_m$) numerical relations (<, +, \times , ...)

over structures that are finite and relational.

in this talk:

we consider only colored finite directed graphs $G = (V, E, C_1, \dots, C_\ell)$ viewed as structures with signature $\sigma := \{E, C_1, \dots, C_\ell\}$.

Modulo counting

FO+MOD_m: FO + modulo counting quantifiers $\exists j \mod m$

where

$$G \models \exists^{j \mod m} x \varphi(x)$$

Our aim: understanding the expressive power of first-order logic (FO) extended with

modulo m counting (FO+MOD $_m$) numerical relations (<, +, \times , ...)

over structures that are finite and relational.

in this talk:

we consider only colored finite directed graphs $G = (V, E, C_1, \dots, C_\ell)$ viewed as structures with signature $\sigma := \{E, C_1, \dots, C_\ell\}$.

Modulo counting

FO+MOD_m: FO + modulo counting quantifiers $\exists j \mod m$

where

$$G \models \exists^{j \, mod \, m} x \, \varphi(x)$$

Allowing arithmetic in formulas

k-ary numerical relation: subset of \mathbb{N}^k .

ARB: set of all ("arbitrary") numerical relations.

Examples: $\langle +, \times, \text{HALT etc.}, \text{ where e.g.} \rangle$

```
    + := {(x, y, z) ∈ N° : x + y = z},
    HALT = {i ∈ N : TM i halts on ε}...
```

embedding (G, f) of G: f is a bijection of V and $\{1, \ldots, |V|\}$. Consider a set $\mathcal{N} \subseteq \mathcal{ARB}$ of numerical relations. Interpret $\mathsf{FO}[\sigma, \mathcal{N}]$ -formulas φ in embeddings of graphs.

Allowing arithmetic in formulas

k-ary numerical relation: subset of \mathbb{N}^k . \mathcal{ARB} : set of all ("arbitrary") numerical relations.

```
Examples: <, +, \times, HALT etc., where e.g.

• + := \{(x, y, z) \in \mathbb{N}^3 : x + y = z\},

• HALT = \{i \in \mathbb{N} : \text{TM } i \text{ halts on } c\}.
```

embedding (G, f) of G: f is a bijection of V and $\{1, \ldots, |V|\}$. Consider a set $\mathcal{N} \subseteq \mathcal{ARB}$ of numerical relations. Interpret $\mathsf{FO}[\sigma, \mathcal{N}]$ -formulas φ in embeddings of graphs.

Allowing arithmetic in formulas

k-ary numerical relation: subset of \mathbb{N}^k .

 \mathcal{ARB} : set of all ("arbitrary") numerical relations.

Examples: <, +, \times , HALT etc., where e.g.

- $+ := \{(x, y, z) \in \mathbb{N}^3 : x + y = z\},$
- HALT = $\{i \in \mathbb{N} : \mathsf{TM} \ i \text{ halts on } \epsilon\}.$

embedding (G, f) of G: f is a bijection of V and $\{1, \ldots, |V|\}$. Consider a set $\mathcal{N} \subseteq \mathcal{ARB}$ of numerical relations. Interpret $\mathsf{FO}[\sigma, \mathcal{N}]$ -formulas φ in embeddings of graphs.

Allowing arithmetic in formulas

k-ary numerical relation: subset of \mathbb{N}^k .

 \mathcal{ARB} : set of all ("arbitrary") numerical relations.

Examples: <, +, \times , HALT etc., where e.g.

- $+ := \{(x, y, z) \in \mathbb{N}^3 : x + y = z\},$
- HALT = $\{i \in \mathbb{N} : TM \ i \text{ halts on } \epsilon\}.$

embedding (G, f) of G: f is a bijection of V and $\{1, \ldots, |V|\}$. Consider a set $\mathcal{N} \subseteq \mathcal{ARB}$ of numerical relations. Interpret $\mathsf{FO}[\sigma, \mathcal{N}]$ -formulas φ in embeddings of graphs.

Allowing arithmetic in formulas

k-ary numerical relation: subset of \mathbb{N}^k .

 \mathcal{ARB} : set of all ("arbitrary") numerical relations.

Examples: <, +, \times , HALT etc., where e.g.

- $+ := \{(x, y, z) \in \mathbb{N}^3 : x + y = z\},$
- HALT = $\{i \in \mathbb{N} : \mathsf{TM}\ i \text{ halts on } \epsilon\}.$

embedding (G, f) of G: f is a bijection of V and $\{1, \ldots, |V|\}$. Consider a set $\mathcal{N} \subseteq \mathcal{ARB}$ of numerical relations. Interpret $\mathsf{FO}[\sigma, \mathcal{N}]$ -formulas φ in embeddings of graphs.

Allowing arithmetic in formulas

k-ary numerical relation: subset of \mathbb{N}^k .

 \mathcal{ARB} : set of all ("arbitrary") numerical relations.

Examples: <, +, \times , HALT etc., where e.g.

- $+ := \{(x, y, z) \in \mathbb{N}^3 : x + y = z\},$
- HALT = $\{i \in \mathbb{N} : \text{TM } i \text{ halts on } \epsilon\}.$

embedding (G, f) of G: f is a bijection of V and $\{1, \ldots, |V|\}$.

Consider a set $\mathcal{N} \subseteq \mathcal{ARB}$ of numerical relations. Interpret $\mathsf{FO}[\sigma, \mathcal{N}]$ -formulas φ in embeddings of graphs.

Allowing arithmetic in formulas

k-ary numerical relation: subset of \mathbb{N}^k .

 \mathcal{ARB} : set of all ("arbitrary") numerical relations.

Examples: <, +, \times , HALT etc., where e.g.

- $+ := \{(x, y, z) \in \mathbb{N}^3 : x + y = z\},$
- HALT = $\{i \in \mathbb{N} : \text{TM } i \text{ halts on } \epsilon\}.$

embedding (G, f) of G: f is a bijection of V and $\{1, \ldots, |V|\}$. Consider a set $\mathcal{N} \subseteq \mathcal{ARB}$ of numerical relations.

Interpret $FO[\sigma, \mathcal{N}]$ -formulas φ in embeddings of graphs.

Allowing arithmetic in formulas

k-ary numerical relation: subset of \mathbb{N}^k .

 \mathcal{ARB} : set of all ("arbitrary") numerical relations.

Examples: <, +, \times , HALT etc., where e.g.

- $+ := \{(x, y, z) \in \mathbb{N}^3 : x + y = z\},$
- HALT = $\{i \in \mathbb{N} : \mathsf{TM}\ i \text{ halts on } \epsilon\}.$

embedding (G, f) of G: f is a bijection of V and $\{1, \ldots, |V|\}$. Consider a set $\mathcal{N} \subseteq \mathcal{ARB}$ of numerical relations. Interpret $\mathsf{FO}[\sigma, \mathcal{N}]$ -formulas φ in embeddings of graphs.

Allowing arithmetic in formulas

k-ary numerical relation: subset of \mathbb{N}^k .

 \mathcal{ARB} : set of all ("arbitrary") numerical relations.

Examples: <, +, \times , HALT etc., where e.g.

- $+ := \{(x, y, z) \in \mathbb{N}^3 : x + y = z\},$
- HALT = $\{i \in \mathbb{N} : \text{TM } i \text{ halts on } \epsilon\}$.

embedding (G, f) of G: f is a bijection of V and $\{1, \ldots, |V|\}$.

Consider a set $\mathcal{N} \subseteq \mathcal{ARB}$ of numerical relations.

Interpret $\mathsf{FO}[\sigma,\mathcal{N}]$ -formulas φ in embeddings of graphs.

Making arithmetic well-behaved

Definition (\mathcal{N} -invariance):

A formula $\varphi \in FO[\sigma, \mathcal{N}]$ is \mathcal{N} -invariant if for all finite graphs G and all embeddings E_1 , E_2 of G:

$$E_1 \models \varphi \iff E_2 \models \varphi.$$

 \mathcal{N} -inv-FO[σ]: set of all \mathcal{N} -invariant $\varphi \in \mathsf{FO}[\sigma, \mathcal{N}]$.

For $arphi \in \mathcal{N}$ -inv-FO[σ], define $\emph{\textbf{G}} \models arphi$ as

$$E \models \varphi$$
, for some embedding $E = (G, f)$,

$$\varphi := \exists x \exists z (x + x = z \land \forall y (y < z \lor y = z))$$

Making arithmetic well-behaved

Definition (\mathcal{N} -invariance):

A formula $\varphi \in FO[\sigma, \mathcal{N}]$ is \mathcal{N} -invariant if for all finite graphs G and all embeddings E_1 , E_2 of G:

$$E_1 \models \varphi \iff E_2 \models \varphi.$$

 \mathcal{N} -inv-FO[σ]: set of all \mathcal{N} -invariant $\varphi \in FO[\sigma, \mathcal{N}]$.

For $arphi \in \mathcal{N}$ -inv-FO[σ], define $\emph{\textbf{G}} \models arphi$ as

$$E \models \varphi$$
, for some embedding $E = (G, f)$

$$\varphi := \exists x \exists z (x + x = z \land \forall y (y < z \lor y = z))$$

Making arithmetic well-behaved

Definition (\mathcal{N} -invariance):

A formula $\varphi \in FO[\sigma, \mathcal{N}]$ is \mathcal{N} -invariant if for all finite graphs G and all embeddings E_1 , E_2 of G:

$$E_1 \models \varphi \iff E_2 \models \varphi.$$

 \mathcal{N} -inv-FO[σ]: set of all \mathcal{N} -invariant $\varphi \in FO[\sigma, \mathcal{N}]$.

For $\varphi \in \mathcal{N}$ -inv-FO[σ], define $G \models \varphi$ as

$$E \models \varphi$$
, for some embedding $E = (G, f)$.

$$\varphi := \exists x \exists z (x + x = z \land \forall y (y < z \lor y = z))$$

Making arithmetic well-behaved

Definition (\mathcal{N} -invariance):

A formula $\varphi \in \mathsf{FO}[\sigma, \mathcal{N}]$ is \mathcal{N} -invariant if for all finite graphs G and all embeddings E_1 , E_2 of G:

$$E_1 \models \varphi \iff E_2 \models \varphi.$$

 \mathcal{N} -inv-FO[σ]: set of all \mathcal{N} -invariant $\varphi \in FO[\sigma, \mathcal{N}]$.

For $\varphi \in \mathcal{N}$ -inv-FO[σ], define $G \models \varphi$ as

$$E \models \varphi$$
, for some embedding $E = (G, f)$,

$$\varphi := \exists x \exists z (x + x = z \land \forall y (y < z \lor y = z))$$

Making arithmetic well-behaved

Definition (\mathcal{N} -invariance):

A formula $\varphi \in \mathsf{FO}[\sigma, \mathcal{N}]$ is \mathcal{N} -invariant if for all finite graphs G and all embeddings E_1 , E_2 of G:

$$E_1 \models \varphi \iff E_2 \models \varphi.$$

 \mathcal{N} -inv-FO[σ]: set of all \mathcal{N} -invariant $\varphi \in FO[\sigma, \mathcal{N}]$.

For $\varphi \in \mathcal{N}$ -inv-FO[σ], define $G \models \varphi$ as

$$E \models \varphi$$
, for some embedding $E = (G, f)$,

$$\varphi := \exists x \exists z (x + x = z \land \forall y (y < z \lor y = z))$$

k-ary query q: mapping of graphs G to k-ary relations q(G), which is closed under isomorphism.

r-Ball at \tilde{a} in G: vertices at distance $\leq r$ to some a_i

r-Neighborhood at \vec{a} : subgraph induced by the r-ball at \vec{a} , with distinguished

vertices *a*

Definition (Gaifman locality):

Let $f: \mathbb{N} \to \mathbb{N}$.

A k-ary query q is Gaifman f(n)-local if

for sufficiently large numbers n, and

all graphs G on n vertices

and all k-ary tuples \vec{a}, b of vertices,

If \tilde{s} and \tilde{b} have isomorphic $\ell(n)$ -neighborhoods

then $\vec{a} \in q(G) \iff b \in q(G)$.

k-ary query q: mapping of graphs G to k-ary relations q(G), which is closed under isomorphism.

r-Ball at \vec{a} in G: vertices at distance $\leq r$ to some a_i

r-Neighborhood at \vec{a} : subgraph induced by the r-ball at \vec{a} , with distinguished vertices \vec{a}

Definition (Gaifman locality):

Let $f: \mathbb{N} \to \mathbb{N}$.

A k-ary query q is Gaifman f(n)-local if

for sufficiently large numbers *n*, and all graphs *G* on *n* vertices

all graphs G on n vertices

and all k-ary tuples \vec{a}, \vec{b} of vertices

If β and β have isomorphic $\ell(n)$ -neighborhoods, then β and β is set β and β .

k-ary query q: mapping of graphs G to k-ary relations q(G), which is closed under isomorphism.

r-Ball at \vec{a} in G: vertices at distance $\leq r$ to some a_i

r-Neighborhood at \vec{a} : subgraph induced by the r-ball at \vec{a} , with distinguished

vertices \vec{a}

Definition (Gaifman locality):

Let $f: \mathbb{N} \to \mathbb{N}$.

A k-ary query q is Gaifman f(n)-local if

for sufficiently large numbers n, and

all graphs G on n vertices

and all *k*-ary tuples *a*, *b* of vertices,

k-ary query q: mapping of graphs G to k-ary relations q(G), which is closed under isomorphism.

r-Ball at \vec{a} in G: vertices at distance $\leq r$ to some a_i

r-Neighborhood at \vec{a} : subgraph induced by the r-ball at \vec{a} , with distinguished

vertices \vec{a}

Definition (Gaifman locality):

Let $f: \mathbb{N} \to \mathbb{N}$.

A k-ary query q is Gaifman f(n)-local if

for sufficiently large numbers n, and

all graphs G on n vertices

and all *k*-ary tuples *a*, *b* of vertices,

k-ary query q: mapping of graphs G to k-ary relations q(G), which is closed under isomorphism.

r-Ball at \vec{a} in G: vertices at distance $\leq r$ to some a_i

r-Neighborhood at \vec{a} : subgraph induced by the r-ball at \vec{a} , with distinguished

vertices a

Definition (Gaifman locality):

```
Let f: \mathbb{N} \to \mathbb{N}.
```

A k-ary query q is Gaifman f(n)-local if

for sufficiently large numbers n, and

all graphs G on n vertices

and all k-ary tuples \vec{a}, \vec{b} of vertices,

k-ary query q: mapping of graphs G to k-ary relations q(G), which is closed under isomorphism.

r-Ball at \vec{a} in G: vertices at distance $\leq r$ to some a_i

r-Neighborhood at \vec{a} : subgraph induced by the r-ball at \vec{a} , with distinguished

vertices a

Definition (Gaifman locality):

Let $f : \mathbb{N} \to \mathbb{N}$.

A k-ary query q is Gaifman f(n)-local if

for sufficiently large numbers *n*, and

all graphs G on n vertices

and all k-ary tuples \vec{a} , \vec{b} of vertices

k-ary query q: mapping of graphs G to k-ary relations q(G), which is closed under isomorphism.

r-Ball at \vec{a} in G: vertices at distance $\leq r$ to some a_i

r-Neighborhood at \vec{a} : subgraph induced by the r-ball at \vec{a} , with distinguished

vertices \vec{a}

Definition (Gaifman locality):

Let $f : \mathbb{N} \to \mathbb{N}$.

A k-ary query q is Gaifman f(n)-local if

for sufficiently large numbers n, and

all graphs G on n vertices, and all k-ary tuples \vec{a}, \vec{b} of vertices

if \vec{a} and \vec{b} have isomorphic f(n)-neighborhoods then $\vec{a} \in q(G) \iff \vec{b} \in q(G)$.

k-ary query q: mapping of graphs G to k-ary relations q(G), which is closed under isomorphism.

r-Ball at \vec{a} in G: vertices at distance $\leq r$ to some a_i

r-Neighborhood at \vec{a} : subgraph induced by the r-ball at \vec{a} , with distinguished

vertices a

Definition (Gaifman locality):

Let $f : \mathbb{N} \to \mathbb{N}$.

A k-ary query q is Gaifman f(n)-local if

for sufficiently large numbers n, and all graphs G on n vertices,

and all k-ary tuples \vec{a} , \vec{b} of vertices

if \vec{a} and \vec{b} have isomorphic f(n)-neighborhoods

k-ary query q: mapping of graphs G to k-ary relations q(G), which is closed under isomorphism.

r-Ball at \vec{a} in G: vertices at distance $\leq r$ to some a_i

r-Neighborhood at \vec{a} : subgraph induced by the r-ball at \vec{a} , with distinguished

vertices a

Definition (Gaifman locality):

```
Let f: \mathbb{N} \to \mathbb{N}.
A k-ary query q is Gaifman f(n)-local if for sufficiently large numbers n, and all graphs G on n vertices, and all k-ary tuples \vec{a}, \vec{b} of vertices,
```

if \vec{a} and \vec{b} have isomorphic f(n)-neighborhoods then $\vec{a} \in g(G) \iff \vec{b} \in g(G)$.

k-ary query q: mapping of graphs G to k-ary relations q(G), which is closed under isomorphism.

r-Ball at \vec{a} in G: vertices at distance $\leq r$ to some a_i

r-Neighborhood at \vec{a} : subgraph induced by the r-ball at \vec{a} , with distinguished

vertices a

Definition (Gaifman locality):

```
Let f: \mathbb{N} \to \mathbb{N}.
A k-ary query q is Gaifman f(n)-local if for sufficiently large numbers n, and all graphs G on n vertices, and all k-ary tuples \vec{a}, \vec{b} of vertices,
```

if \vec{a} and \vec{b} have isomorphic f(n)-neighborhoods,

then $\vec{a} \in q(G) \iff \vec{b} \in q(G)$

k-ary query q: mapping of graphs G to k-ary relations q(G), which is closed under isomorphism.

r-Ball at \vec{a} in G: vertices at distance $\leq r$ to some a_i

r-Neighborhood at \vec{a} : subgraph induced by the r-ball at \vec{a} , with distinguished

vertices a

Definition (Gaifman locality):

```
Let f: \mathbb{N} \to \mathbb{N}.

A k-ary query q is Gaifman f(n)-local if for sufficiently large numbers n, and all graphs G on n vertices, and all k-ary tuples \vec{a}, \vec{b} of vertices, if \vec{a} and \vec{b} have isomorphic f(n)-neighborhoods, then \vec{a} \in q(G) \iff \vec{b} \in q(G).
```

k-ary query q: mapping of graphs G to k-ary relations q(G), which is closed under isomorphism.

r-Ball at \vec{a} in G: vertices at distance $\leq r$ to some a_i

r-Neighborhood at \vec{a} : subgraph induced by the r-ball at \vec{a} , with distinguished

vertices ā

Definition (Weak Gaifman locality):

```
Let f: \mathbb{N} \to \mathbb{N}.

A k-ary query q is weakly Gaifman f(n)-local if for sufficiently large numbers n, and all graphs G on n vertices, and all k-ary tuples \vec{a}, \vec{b} of vertices with disjoint f(n)-balls, if \vec{a} and \vec{b} have isomorphic f(n)-neighborhoods, then \vec{a} \in q(G) \iff \vec{b} \in q(G).
```

Each query q that is FO[σ]-definable is Gaifman c-local for some constant c=c(q). (Hella, Libkin, Nurmonen 1990s; Gaifman '82)

Each query q that is <-inv-FO[σ]-definable is Gaifman c-local for some constant c = c(q).

(Grohe, Schwentick '98)

Each query q that is ARB-inv-FO[σ]-definable is Gaifman (log n) c -local for some constant c = c(q).

(Anderson, van Melkebeek, Schweikardt, Segoufin '11)

```
Each query q that is FO[\sigma]-definable is Gaifman c-local for some constant c=c(q). (Hella, Libkin, Nurmonen 1990s; Gaifman '82)
```

Each query q that is <-inv-FO[σ]-definable is Gaifman c-local for some constant c = c(q).

(Grohe, Schwentick '98)

```
Each query q that is \mathcal{ARB}-inv-FO[\sigma]-definable is Gaifman (log n)^c-local for some constant c=c(q).

(Anderson, van Melkebeek, Schweikardt, Segoufin '11
```

```
Each query q that is FO[\sigma]-definable is Gaifman c-local for some constant c=c(q). (Hella, Libkin, Nurmonen 1990s; Gaifman '82)
```

```
Each query q that is <-inv-FO[\sigma]-definable is Gaifman c-local for some constant c = c(q).
```

(Grohe, Schwentick '98)

```
Each query q that is \mathcal{ARB}-inv-FO[\sigma]-definable is Gaifman (log n)^{\sigma}-local for some constant c=c(q). (Anderson, van Melkebeek, Schweikardt, Segoufin '11)
```

```
Each query q that is FO[\sigma]-definable is Gaifman c-local for some constant c=c(q). (Hella, Libkin, Nurmonen 1990s; Gaifman '82)
```

```
Each query q that is <-inv-FO[\sigma]-definable is Gaifman c-local for some constant c = c(q).
```

(Grohe, Schwentick '98)

```
Each query q that is \mathcal{ARB}-inv-FO[\sigma]-definable is Gaifman (log n)^{\circ}-local for some constant c = c(q).

(Anderson, van Melkebeek, Schweikardt, Segoufin '11)
```

```
Each query q that is FO[\sigma]-definable is Gaifman c-local for some constant c=c(q). (Hella, Libkin, Nurmonen 1990s; Gaifman '82)
```

```
Each query q that is <-inv-FO[\sigma]-definable is Gaifman c-local for some constant c = c(q).
```

(Grohe, Schwentick '98)

```
Each query q that is \mathcal{ARB}-inv-FO[\sigma]-definable is Gaifman (log n)^c-local for some constant c = c(q). (Anderson, van Melkebeek, Schweikardt, Segoufin '11)
```

Each query q that is FO+MOD $_m[\sigma]$ -definable, for some m, is Gaifman c-local for some constant c=c(q). (Hella, Libkin, Nurmonen 1990s)

Each query q that is <-inv-FO[σ]-definable is Gaifman c-local for some constant c = c(q).

(Grohe, Schwentick '98)

Each query q that is \mathcal{ARB} -inv-FO[σ]-definable is Gaifman (log n) $^{\circ}$ -local for some constant c = c(q).

(Anderson, van Melkebeek, Schweikardt, Segoufin '11)

Each query q that is FO+MOD $_m[\sigma]$ -definable, for some m, is Gaifman c-local for some constant c=c(q). (Hella, Libkin, Nurmonen 1990s)

Each query q that is <-inv-FO[σ]-definable is Gaifman c-local for some constant c = c(q).

Each query q that is \mathcal{ARB} -inv-FO[σ]-definable is Gaifman (log n) $^{\circ}$ -local for some constant c = c(q).

(Anderson, van Melkebeek, Schweikardt, Segoufin '11)

Each query q that is FO+MOD $_m[\sigma]$ -definable, for some m, is Gaifman c-local for some constant c=c(q). (Hella, Libkin, Nurmonen 1990s)

Each query q that is <-inv-FO[σ]-definable is Gaifman c-local for some constant c = c(q).

Each query q that is \mathcal{ARB} -inv-FO[σ]-definable is Gaifman (log n) $^{\sigma}$ -local for some constant c = c(q).

(Anderson, van Melkebeek, Schweikardt, Segoufin '11)

Question: Are all $FO+MOD_m$ -definable queries Gaifman local?

For each $m \ge 2$, there exists an <-inv-FO+MOD $_m[\sigma]$ -definable unary query that is not o(n)-local.

(Niemistö 2007; H., Schweikardt)

Each query q that is FO+MOD $_m[\sigma]$ -definable, for some m, is Gaifman c-local for some constant c=c(q). (Hella, Libkin, Nurmonen 1990s)

Each query q that is <-inv-FO[σ]-definable is Gaifman c-local for some constant c = c(q).

Each query q that is \mathcal{ARB} -inv-FO[σ]-definable is Gaifman (log n) $^{\sigma}$ -local for some constant c = c(q).

(Anderson, van Melkebeek, Schweikardt, Segoufin '11)

Question: Are all $FO+MOD_m$ -definable queries Gaifman local?

For each $m \ge 2$, there exists an <-inv-FO+MOD $_m[\sigma]$ -definable unary query that is not o(n)-local.

(Niemistö 2007; H., Schweikardt)

Each query q that is FO+MOD $_m[\sigma]$ -definable, for some m, is Gaifman c-local for some constant c=c(q). (Hella, Libkin, Nurmonen 1990s)

Each query q that is <-inv-FO[σ]-definable is Gaifman c-local for some constant c = c(q).

Each query q that is \mathcal{ARB} -inv-FO[σ]-definable is Gaifman (log n) c -local for some constant c = c(q). (Anderson, van Melkebeek, Schweikardt, Segoufin '11)

Question: Are all FO+MOD_m-definable queries Gaifman local? Weakly Gaifman local?

For each $m \ge 2$, there exists an <-inv-FO+MOD $_m[\sigma]$ -definable unary query that is not o(n)-local.

(Niemistö 2007; H., Schweikardt)

Each query q that is FO+MOD $_m[\sigma]$ -definable, for some m, is Gaifman c-local for some constant c=c(q). (Hella, Libkin, Nurmonen 1990s)

Each query q that is <-inv-FO[σ]-definable is Gaifman c-local for some constant c = c(q).

Each query q that is \mathcal{ARB} -inv-FO[σ]-definable is Gaifman (log n) c -local for some constant c = c(q). (Anderson, van Melkebeek, Schweikardt, Segoufin '11)

Question: Are all $FO+MOD_m$ -definable queries Gaifman local? Weakly Gaifman local?

For each $m \ge 2$, there exists an <-inv-FO+MOD $_m[\sigma]$ -definable unary query that is not o(n)-local.

For even m there exists an <-inv-FO+MOD $_m[\sigma]$ -definable unary query that is not weakly o(n)-local. (Niemistö 2007; H., Schweikardt)

Negative results:

```
<-inv-FO+MOD<sub>p</sub>[\sigma] is not Gaifman o(n)-local. (not even for unary queries).
```

<-inv-FO+MOD₂[σ] is not weakly Gaifman o(n)-local (not even for unary queries on strings).

We introduce a new notion of locality, called **shift locality**. Positive results:

ARB-inv-FO+MOD_p[σ] is shift local, for **prime powers** p

Shift locality is easily applied to derive non-expressibility results. \mathcal{ARB} -inv-FO+MOD $_p[\sigma]$ is weakly Gaifman polylog-local, if p is an odc prime power.

Extending our results beyond prime powers p should be very hard, because the would imply NLOGSPACE p ACC⁰, and the

Negative results:

```
<-inv-FO+MOD<sub>p</sub>[\sigma] is not Gaifman o(n)-local. (not even for unary queries).
```

<-inv-FO+MOD₂[σ] is not weakly Gaifman o(n)-local (not even for unary queries on strings).

We introduce a new notion of locality, called **shift locality**. Positive results:

 \mathcal{ARB} -inv-FO+MOD_p[σ] is shift local, for **prime powers** p

Shift locality is easily applied to derive non-expressibility results. \mathcal{ARB} -inv-FO+MOD $_p[\sigma]$ is weakly Gaifman polylog-local, if p is an odd prime power.

Negative results:

```
<-inv-FO+MOD<sub>p</sub>[\sigma] is not Gaifman o(n)-local. (not even for unary queries).
```

<-inv-FO+MOD₂[σ] is not weakly Gaifman o(n)-local (not even for unary queries on strings).

We introduce a new notion of locality, called **shift locality**. Positive results:

 \mathcal{ARB} -inv-FO+MOD_p[σ] is shift local, for **prime powers** p

Shift locality is easily applied to derive non-expressibility results. \mathcal{ARB} -inv-FO+MOD $_p[\sigma]$ is weakly Gaifman polylog-local, if p is an odd prime power.

Negative results:

```
<-inv-FO+MOD<sub>p</sub>[\sigma] is not Gaifman o(n)-local. (not even for unary queries).
```

<-inv-FO+MOD₂[σ] is not weakly Gaifman o(n)-local (not even for unary queries on strings).

We introduce a new notion of locality, called shift locality.

Positive results:

ARB-inv-FO+MOD_n[σ] is shift local, for **prime powers** ρ

Shift locality is easily applied to derive non-expressibility results. \mathcal{ARB} -inv-FO+MOD $_p[\sigma]$ is weakly Gaifman polylog-local, if p is an **odd** prime power.

Negative results:

```
<-inv-FO+MOD<sub>p</sub>[\sigma] is not Gaifman o(n)-local. (not even for unary queries).
```

<-inv-FO+MOD₂[σ] is not weakly Gaifman o(n)-local (not even for unary queries on strings).

We introduce a new notion of locality, called shift locality.

Positive results:

 \mathcal{ARB} -inv-FO+MOD_p[σ] is shift local, for **prime powers** p.

The proof uses lower bounds from circuit complexity.

Shift locality is easily applied to derive non-expressibility results.

 \mathcal{ARB} -inv-FO+MOD_p[σ] is weakly Gaifman polylog-local, if p is an **odd** prime power.

Follows easily from shift locality.

Negative results:

```
<-inv-FO+MOD<sub>p</sub>[\sigma] is not Gaifman o(n)-local. (not even for unary queries).
```

<-inv-FO+MOD₂[σ] is not weakly Gaifman o(n)-local (not even for unary queries on strings).

We introduce a new notion of locality, called shift locality.

Positive results:

 \mathcal{ARB} -inv-FO+MOD_p[σ] is shift local, for **prime powers** p.

The proof uses lower bounds from circuit complexity.

Shift locality is easily applied to derive non-expressibility results. \mathcal{ARB} -inv-FO+MOD $_p[\sigma]$ is weakly Gaifman polylog-local, if p is an **odd prime power**.

Follows easily from shift locality.

Negative results:

```
<-inv-FO+MOD<sub>p</sub>[\sigma] is not Gaifman o(n)-local. (not even for unary queries).
```

<-inv-FO+MOD₂[σ] is not weakly Gaifman o(n)-local (not even for unary queries on strings).

We introduce a new notion of locality, called shift locality.

Positive results:

 \mathcal{ARB} -inv-FO+MOD_p[σ] is shift local, for **prime powers** p.

The proof uses lower bounds from circuit complexity.

Shift locality is easily applied to derive non-expressibility results.

 \mathcal{ARB} -inv-FO+MOD_p[σ] <u>is</u> weakly Gaifman polylog-local, if p is an **odd prime power**.

Follows easily from shift locality.

Negative results:

```
<-inv-FO+MOD<sub>p</sub>[\sigma] is not Gaifman o(n)-local. (not even for unary queries).
```

<-inv-FO+MOD₂[σ] is not weakly Gaifman o(n)-local (not even for unary queries on strings).

We introduce a new notion of locality, called **shift locality**.

Positive results:

 \mathcal{ARB} -inv-FO+MOD_p[σ] is shift local, for **prime powers** p.

The proof uses lower bounds from circuit complexity.

Shift locality is easily applied to derive non-expressibility results.

 \mathcal{ARB} -inv-FO+MOD_p[σ] is weakly Gaifman polylog-local, if p is an **odd** prime power.

Follows easily from shift locality.

Negative results:

```
<-inv-FO+MOD_p[\sigma] is not Gaifman o(n)-local. (not even for unary queries).
```

<-inv-FO+MOD₂[σ] is not weakly Gaifman o(n)-local (not even for unary queries on strings).

We introduce a new notion of locality, called **shift locality**.

Positive results:

 \mathcal{ARB} -inv-FO+MOD_p[σ] is shift local, for **prime powers** p.

The proof uses lower bounds from circuit complexity.

Shift locality is easily applied to derive non-expressibility results.

 \mathcal{ARB} -inv-FO+MOD_p[σ] is weakly Gaifman polylog-local, if p is an **odd** prime power.

Follows easily from shift locality.

Negative results:

```
<-inv-FO+MOD_p[\sigma] is not Gaifman o(n)-local. (not even for unary queries).
```

<-inv-FO+MOD₂[σ] is not weakly Gaifman o(n)-local (not even for unary queries on strings).

We introduce a new notion of locality, called **shift locality**.

Positive results:

 \mathcal{ARB} -inv-FO+MOD_p[σ] is shift local, for **prime powers** p.

The proof uses lower bounds from circuit complexity.

Shift locality is easily applied to derive non-expressibility results.

 \mathcal{ARB} -inv-FO+MOD $_p[\sigma]$ is weakly Gaifman polylog-local, if p is an **odd** prime power.

Follows easily from shift locality.

Extending our results beyond prime powers *p* should be very hard, because

this would imply NLOGSPACE ⊈ ACC^o, and the state-of-the-art is NEXP ⊈ ACC^o! (Williams '11)

Negative results:

```
<-inv-FO+MOD_p[\sigma] is not Gaifman o(n)-local. (not even for unary queries).
```

<-inv-FO+MOD₂[σ] is not weakly Gaifman o(n)-local (not even for unary queries on strings).

We introduce a new notion of locality, called shift locality.

Positive results:

```
\mathcal{ARB}-inv-FO+MOD<sub>p</sub>[\sigma] is shift local, for prime powers p.
```

The proof uses lower bounds from circuit complexity.

Shift locality is easily applied to derive non-expressibility results.

 \mathcal{ARB} -inv-FO+MOD_p[σ] is weakly Gaifman polylog-local, if p is an **odd** prime power.

Follows easily from shift locality.

Extending our results beyond prime powers p should be very hard, because this would imply NLOGSPACE $\not\subseteq$ ACC⁰, and the

Negative results:

```
<-inv-FO+MOD_p[\sigma] is not Gaifman o(n)-local. (not even for unary queries).
```

<-inv-FO+MOD₂[σ] is not weakly Gaifman o(n)-local (not even for unary queries on strings).

We introduce a new notion of locality, called **shift locality**.

Positive results:

```
\mathcal{ARB}-inv-FO+MOD<sub>p</sub>[\sigma] is shift local, for prime powers p.
```

The proof uses lower bounds from circuit complexity.

Shift locality is easily applied to derive non-expressibility results.

 \mathcal{ARB} -inv-FO+MOD_p[σ] is weakly Gaifman polylog-local, if p is an **odd** prime power.

Follows easily from shift locality.

Extending our results beyond prime powers p should be very hard, because this would imply NLOGSPACE $\not\subseteq$ ACC⁰, and the state-of-the-art is NEXP $\not\subseteq$ ACC⁰! (Williams '11)

<-inv-FO+MOD₂[σ] is more expressive than FO+MOD₂[σ].

For odd prime powers p, \mathcal{ARB} -inv-FO+MOD $_p[\sigma]$ is Hanf polylog-local,

```
<-inv-FO+MOD<sub>2</sub>[\sigma] is more expressive than FO+MOD<sub>2</sub>[\sigma]. For odd prime powers p, \mathcal{ARB}-inv-FO+MOD_p[\sigma] is Hanf polylog-local, and hands
```

```
<-inv-FO+MOD<sub>2</sub>[\sigma] is more expressive than FO+MOD<sub>2</sub>[\sigma]. For odd prime powers p, \mathcal{ARB}-inv-FO+MOD_p[\sigma] is Hanf polylog-local, and hence
```

```
<-inv-FO+MOD<sub>2</sub>[\sigma] is more expressive than FO+MOD<sub>2</sub>[\sigma]. For odd prime powers p, \mathcal{ARB}-inv-FO+MOD_p[\sigma] is Hanf polylog-local, and hence
```

```
<-inv-FO+MOD<sub>2</sub>[\sigma] is more expressive than FO+MOD<sub>2</sub>[\sigma]. For odd prime powers p, \mathcal{ARB}-inv-FO+MOD_p[\sigma] is Hanf polylog-local, and hence Gaifman polylog-local.
```