Logica cu predicate de ordinul I Curs 3 - Rezolutie

Ștefan Ciobâcă

12 Decembrie 2016

Note organizatorice

1. Cursurile din partea a II-a:

http://profs.info.uaic.ro/~stefan.ciobaca/logica/ Verificați periodic această pagină.

Raportare eventuale greșeli: stefan.ciobaca@gmail.com

Reminder - Sintaxa

O nouă logică, mai expresivă decât LP.

Mulțimea termenilor (\mathcal{T}):

$$t ::= x \mid c \mid f(\underbrace{t, \dots, t}_{n})$$
 $x \in \mathcal{X}, c \in \mathcal{F}_{0}, f \in \mathcal{F}_{n}$

Mulțimea formulelor atomice (At):

$$a := P \mid Q(\underbrace{t, \dots, t}_{n}) \qquad P \in \mathcal{P}_{0}, Q \in \mathcal{P}_{n}$$

Mulțimea formulelor de ordinul I (LP1):

$$F ::= a \mid (\neg F) \mid (F) \mid (F \lor F) \mid (F \land F) \mid (F \to F) \mid (\forall x.F) \mid (\exists x.F) \quad a \in At, x \in \mathcal{X}$$

Reminder - Sintaxa - Exemple

$$P \in LP1$$

$$Q(x) \in LP1 \qquad R\left(h(x), f(x, y)\right) \in LP1 \qquad (\neg Q(f(x, y))) \in LP1$$

$$(P \land Q(x)) \in LP1 \qquad \left(Q(x) \lor R\left(h(x), f(x, y)\right)\right) \in LP1$$

$$(Q(x) \to R(x, y)) \in LP1 \qquad ((Q(x) \land P) \lor Q(y)) \in LP1$$

$$(\forall x.(Q(x) \lor P)) \in LP1 \qquad ((\exists x.Q(x)) \lor (\neg P)) \in LP1$$

Reminder - Semantica LP1 - Noțiunea de structură

Definiție (Structură)

O structură este o pereche S = (U, I), formată din:

- 1. o mulțime nevidă U, numită univers (sau domeniu) al structurii;
- 2. o funcție I, care asociază:
 - 2.1 fiecărui simbol constant $c \in \mathcal{F}_0$ din signatură un element al universului $I_c \in U$;
 - 2.2 fiecărui simbol funcțional $f \in \mathcal{F}_n$ de aritate n o funcție n-ară peste univers: $I_f : U \times ... \times U \rightarrow U$;
 - 2.3 fiecărui simbol predicativ $P \in \mathcal{P}_0$ de aritate 0 o valoare de adevăr $I_P \in \mathbb{B}$;
 - 2.4 fiecărui simbol predicativ $P \in \mathcal{F}_n$ de aritate n un predicat n-ar peste univers: $I_P : U \times ... \times U \to \mathbb{B}$;
 - 2.5 fiecărei variabile $x \in \mathcal{X}$ un element al universului: $I_x \in U$.

Reminder - Semantica LP1 - Exemplu de structură

Fie $\mathcal{F}_0 = \{e\}$, $\mathcal{F}_1 = \{i\}$, $\mathcal{F}_2 = \{f\}$ și $\mathcal{P}_2 = \{equals\}$. Vom considera structura S = (U, I), unde $U = \mathbb{Z}$ si:

1. $I_e:\mathbb{Z}^0 o\mathbb{Z}$, definită prin

$$I_{e}=0;$$

2. $I_i:\mathbb{Z}^1 o\mathbb{Z}$, definită prin

$$I_i(u) = -u,$$

 $I_f(u,v)=u+v,$

pentru orice $u \in \mathbb{Z}$;

3.
$$I_f: \mathbb{Z}^2 \to \mathbb{Z}$$
, definită prin

pentru orice
$$u, v \in \mathbb{Z}$$
;

4. $I_{equals}: \mathbb{Z}^2 \to \mathbb{B}$, definit prin

$$I_{equals}(u,v) = \left\{egin{array}{ll} 1 & \mathsf{dac}reve{a} \ 0 & \mathsf{dac}reve{a} \ u
eq v; \end{array}
ight.$$

5. $I_x \in \mathbb{Z}$, definită prin $I_x = 7$, pentru orice variabilă $x \in \mathcal{X}$.

Reminder - Interpretarea termenilor/formulelor într-o structură

- 1. S(f(f(x,e),i(x))) = 0;
- 2. S(equals(x, y)) = 1;
- 3. S(equals(x, e)) = 0;
- 4. $S[x \mapsto 0](equals(x, e)) = 1;$
- 5. $S(\exists x.(equals(x,e))) = 1;$
- 6. $S(\forall x.(equals(x,e))) = 0;$

Reminder - Forme normale Skolem

O formulă F este în formă normală Skolem dacă există variabilele distincte $\{x_1, \ldots, x_n\}$ astfel încât:

$$F = \forall x_1. \forall x_2. \ldots \forall x_n. G$$

pentru o formulă $G \in LP1$ astfel încât $free(G) = \{x_1, \dots, x_n\}$ și $bound(G) = \emptyset$.

Exemplu

Formule în FNS:

- 1. $\forall x. \forall y. (P(x, y))$
- 2. $\forall x. \forall y. (P(x,y) \land Q(x))$
- 3. $\forall x. \forall y. \forall z. ((P(x, y) \land Q(x)) \lor R(x, y, z))$
- 4. $P(c) \wedge Q(f(a,b))$

Formula F este în FNSC dacă, în plus, G este în FNC (conjuncție de clauze).

Reminder - Aducerea unei formule în FNSC

Pentru orice formulă F, există o formulă F_{FNSC} , slab echivalentă cu F, aflată în FNSC.

F	orice formulă \in LP1
$\equiv F_p$	o formulă în FN prenex
\equiv_s F_s	o formulă în FN Skolem
\equiv F_{FNSC}	o formulă în FN Skolem clauzală

Planul cursului

- 1. Domeniul Hebrand
- 2. Rezoluția de bază în LP1
- 3. Unificare
- 4. Rezoluția "pură" în LP1

Domeniul Herbrand

Definiție

Domeniul Herbrand asociat mulțimii \mathcal{F} este mulțimea de termeni notată cu $\mathcal{D}(\mathcal{F})$ și definită inductiv astfel:

- 1. dacă $\mathcal{F}_0 \neq \emptyset$, atunci $\mathcal{F}_0 \subseteq \mathcal{D}(\mathcal{F})$;
- 2. $dac\check{a} \mathcal{F}_0 = \emptyset$, atunci $c \in \mathcal{D}(\mathcal{F})$ (c este un simbol constant pe care îl adăugăm "forțat");
- 3. $dac \check{a} t_1, \ldots, t_n \in \mathcal{D}(\mathcal{F})$ și $f \in \mathcal{F}_n$, atunci $f(t_1, \ldots, t_n) \in \mathcal{D}(\mathcal{F})$.

Definitie

Termen de bază (engl. ground term) = termen fără variabile. Domeniu Hebrand = mulțimea termenilor de bază.

Structuri Herbrand

Definitie

O structură S = (U, I) se numește structură Herbrand dacă:

- 1. $U = \mathcal{D}(\mathcal{F})$; $(\mathcal{D}(\mathcal{F}) = domeniul Herbrand)$
- 2. S(t) = t pentru orice termen $t \in \mathcal{T} \cap \mathcal{D}(\mathcal{F})$.

Motivatie:

Teoremă (Herbrand)

O formulă F, aflată în FNS, este satisfiabilă dacă și numai dacă F admite model Herbrand.

Reprezentarea ca mulțimi

Fie $F = \forall x_1 \forall x_n . (C_1 \land ... \land C_m)$ o formulă în FNSC. Scriem și

$$F = \{C_1, \ldots, C_m\}.$$

Dacă
$$C_1 = L_1^1 \vee ... \vee L_{k_1}^1$$
, $C_2 = L_1^2 \vee ... \vee L_{k_2}^2$, ..., $C_n = L_1^m \vee ... \vee L_{k_m}^m$, scriem și

$$C_i = \{L_i^i, \ldots, L_{k_i}^i\}$$

si respectiv:

$$F = \{\{L_1^1, \dots, L_{k_1}^1\}, \dots, \{L_1^m, \dots, L_{k_m}^m\}, \}.$$

Fie
$$F = \forall x. \forall y. (P(x) \land (\neg Q(x) \lor R(y)))$$
. Mai notăm $F = \{ \{P(x)\}, \{\neg Q(x), R(y)\} \}$.

Extensia Herbrand

Definitie

Fie $F = \forall x_1 \forall x_n .G$, cu $G = F^*$, o formulă în FNS. Atunci extensia Hebrand a lui F este mulțimea:

$$E(F) = \{G\sigma \mid dom(\sigma) = \{x_1, \dots, x_n\}, \sigma(x_i) \in \mathcal{D}(\mathcal{F})\}.$$

Fie
$$\mathcal{F}_0 = \{c\}, \mathcal{F}_1 = \{h\}, \mathcal{F}_2 = \{f\}$$
. Atunci:

$$\mathcal{D}(\mathcal{F}) = \{c, h(c), h(h(c)), f(c, c), f(h(c), c), \ldots\},\$$

$$E(\forall x. P(x)) = \{P(c), P(h(c)), P(h(h(c))), P(f(c,c)), P(f(h(c),c)), \ldots\}$$

Extensia Herbrand generalizată

Definitie

Fie $F = \forall x_1 \forall x_n .G$, cu $G = F^* = C_1 \land ... \land C_m$, o formulă în FNSC. Atunci extensia Hebrand a lui F este mulțimea:

$$E'(F) = \bigcup_{i \in \{1...m\}} E(\forall x_1....\forall x_n.C_i).$$

Fie
$$\mathcal{F}_0=\{c\},\mathcal{F}_1=\{h\},\mathcal{F}_2=\{f\}$$
. Atunci:

$$E'(\forall x.(P(x) \land Q(x)) = \Big\{ P(c), P(h(c)), P(h(h(c))), P(f(c,c)), \\ Q(c), Q(h(c)), Q(h(h(c))), Q(f(c,c)), Q(f(h(c),c)), \ldots \Big\}.$$

Rezolutia de bază

$$\frac{P(t_1,\ldots,t_n)\vee C \quad \neg P(t_1,\ldots,t_n)\vee D}{C\vee D} \text{ Rezolutie de baza}$$

Exemplu

$$F = \forall x. \forall y. \forall z. (P(x) \land (\neg P(y) \lor Q(y)) \land \neg Q(z)).$$

Avem că

$$E'(F) = \{P(c), \neg P(c) \lor Q(c), \neg Q(c), \ldots\}.$$

- 1. P(c)
- 2. $\neg P(c) \lor Q(c)$
- 3. $\neg Q(c)$
- 4. Q(c) rezoluție între 1 și 2
- 5. □ rezoluție între 3 și 4

Rezoluția de bază

Teoremă (Herbrand)

F nu este satisfiabilă dacă și numai dacă există o submulțime finită M a lui E'(F) astfel încât se poate obține \square din M aplicând regula rezoluției de bază.

Rezoluția de bază - semialgoritmul lui Gilmore

- ▶ Input: o formulă F în FNSC
- Output: da, dacă formula nu este satisfiabilă (altfel rulează la infinit)
- 1. $M \leftarrow \emptyset$ o mulțime de clauze
- 2. $i \leftarrow 0$
- 3. cât timp $\square \notin Res^i(M)$:
 - 3.1 alege $C \in E'(F) \setminus M$
 - 3.2 $M \leftarrow M \cup \{C\}$
 - 3.3 $i \leftarrow i + 1$
- 4. întoarce DA

A step back

- 1. Vrem să determinăm dacă o formulă F este validă
- 2. Construim $\neg F$ (F este validă dacă și numai dacă $\neg F$ nu este satisfiabilă)
- 3. Calculăm F', o formă normală Skolem clauzală pentru $\neg F$
- 4. Aplicăm semialgoritmul lui Gilmore
 - ▶ Dacă algoritmul se termină, atunci ¬F nu este satisfiabilă şi deci F este validă (suntem bucuroşi)
 - ► Altfel...

Exercitiu

Arătați că $\forall x.(P(x) \rightarrow Q(x)) \land P(s) \rightarrow Q(s)$ este validă.

Rezoluție în LP1

- 1. semialgoritmul lui Gilmore este doar de interes teoretic
- 2. avem nevoie de o metodă mai... practică

Reminder - Substituții

Definiție

O substituție este o funcție $\sigma: \mathcal{X} \to \mathcal{T}$, cu proprietatea că $\sigma(x) \neq x$ pentru un număr finit de variabile $x \in \mathcal{X}$.

Definiție

Dacă $\sigma: \mathcal{X} \to \mathcal{T}$ este o substituție, atunci mulțimea $dom(\sigma) = \{x \mid \sigma(x) \neq x\}$ se numește domeniul substituției σ . Fie funcția $\sigma: \mathcal{X} \to \mathcal{T}$, astfel încât: $\sigma(x) = h(x)$, $\sigma(y) = f(h(x), a)$, $\sigma(z) = z$, pentru orice variabilă $z \in \mathcal{X} \setminus \{x, y\}$. Conform definiției de mai sus, σ este o substituție de domeniu $dom(\sigma) = \{x, y\}$. Noutate: vom nota $\sigma = \{x \mapsto h(x), y \mapsto f(h(x), a)\}$.

Reminder - Substituții - aplicare

Fie
$$\sigma = \{x \mapsto h(x), y \mapsto f(h(x), a)\}$$
. Avem:

- 1. $g(x)\sigma = g(h(x))$.
- 2. $(\forall x.(P(x) \land Q(h(y))))\sigma = \forall x.(P(x) \land Q(h(f(h(x),a)))).$

Unificare

Definitie

O substituție σ este unificator pentru t_1 și t_2 dacă $t_1\sigma=t_2\sigma$.

Exemplu

Fie termenii $t_1 = f(x, h(y))$ și $t_2 = f(h(z), z')$. Un unificator pentru t_1 și t_2 ar fi:

$$\sigma = \{x \mapsto h(z), z' \mapsto h(y)\}$$
 $(t_1 \sigma = f(h(z), h(y)) = t_2 \sigma)$

Un altul:

$$\sigma' = \{z \mapsto a, x \mapsto h(a), z' \mapsto h(y)\}$$
 $(t_1 \sigma' = f(h(a), h(y)) = t_2 \sigma').$

Termenii $t_1 = f(x,y)$ și $t_2 = h(z)$ nu au unificator. (De ce? Pentru orice substituție σ avem $t_1\sigma = f(x,y)\sigma = f(x\sigma,y\sigma) \neq h(z\sigma) = h(z)\sigma = t_2\sigma$.)
Termenii $t_1 = x$ și $t_2 = h(x)$ nu au unificator (De ce? Pentru orice

substitutie σ , avem că len $(x\sigma) < \text{len}(h(x\sigma)) = \text{len}(h(x)\sigma)$.

Problemă de unificare

Definitie

O problemă de unificare P este:

▶ sau o multime

$$P = \{t_1 \doteq t_1', \ldots, t_n \doteq t_n'\}$$

formată din n perechi de termeni

sau simbolul special

$$P = \bot$$
.

Definitie

O problemă de unificare are soluție (sau are unificator) dacă este de forma

$$P = \{t_1 \doteq t'_1, \ldots, t_n \doteq t'_n\}$$

și există o substituție σ care să fie unificator pentru t_i și t_i' pentru orice $i \in \{1, \ldots, n\}$, adică $t_1 \sigma = t_1' \sigma, \ldots, t_n \sigma = t_n' \sigma$.

Unificatori mai generali

Exemplu

Dacă σ și σ' sunt doi unificatori pentru termenii t_1 și t_2 , σ este un unificator mai general decât σ' dacă există o substituție σ'' astfel încât $t_1\sigma'=t_1\sigma\sigma''=t_2\sigma\sigma''=t_2\sigma'$.

Exemplu

Fie $t_1 = f(x, a)$ și $t_2 = f(y, a)$. Unificatorul $\{y \mapsto x\}$ este mai general decât $\{x \mapsto a, y \mapsto a\}$.

Cel mai general unificator (most general unifier)

Definition

Substituția σ este cel mai general unificator pentru o problemă de unificare $P = \{t_1 \doteq t'_1, \dots, t_n \doteq t'_n\}$ dacă:

- 1. σ este unificator pentru P: $t_i \sigma = t'_i \sigma$, pentru orice $1 \le i \le n$;
- 2. σ este mai general decât orice alt unificator pentru P.

Definiție

Cu mgu(P) notăm mulțimea unificatorilor cei mai generali pentru P. Pentru $P = \bot$, mgu(P) = \emptyset .

Example

Fie
$$P = \{f(x, a) \doteq f(y, a)\}$$
. Avem că $mgu(P) = \{\{x \mapsto z, y \mapsto z\}, \{x \mapsto y\}, \ldots\}$.

Problemă de unificare - formă rezolvată

Definitie

O problemă de unificare P este în formă rezolvată dacă $P = \bot$ sau $P = \{x_1 \doteq t_1', \ldots, x_n \doteq t_n'\}$ și $x_i \notin vars(t_j)$ pentru orice $i, j \in \{1, \ldots, n\}$.

Lemă

Dacă $P = \{x_1 \doteq t_1', \dots, x_n \doteq t_n'\}$ este în formă rezolvată, atunci $\{x_1 \mapsto t_1', \dots, x_n \mapsto t_n'\} \in mgu(P)$.

Aducerea unei probleme de unificare în formă rezolvată

STERGERE
$$P \cup \{t = t\} \Rightarrow P$$

DESCOMPUNERE $P \cup \{f(t_1, \dots, t_n) = f(t'_1, \dots, t'_n)\} \Rightarrow$
 $P \cup \{t_1 = t'_1, \dots, t_n = t'_n\}$
ORIENTARE $P \cup \{f(t_1, \dots, t_n) = x\} \Rightarrow P \cup \{x = f(t_1, \dots, t_n)\}$
ELIMINARE $P \cup \{x = t\} \Rightarrow P\{x \mapsto t\} \cup \{x = t\}$
daca $x \notin vars(t), x \in vars(P)$
CONFLICT $P \cup \{f(t_1, \dots, t_n) = g(t'_1, \dots, t'_m)\} \Rightarrow \bot$
OCCURS CHECK $P \cup \{x = f(t_1, \dots, t_n)\} \Rightarrow \bot$
daca $x \in vars(f(t_1, \dots, t_n))$

Proprietățile regulilor de rescriere de mai sus

Lemă

Dacă P nu este în formă rezolvată, atunci există P' astfel încât $P \Rightarrow P'$.

Lemă

 $Dac \check{a} P \Rightarrow P'$, atunci mgu(P) = mgu(P').

Lemă

Nu există o secvență infinită $P \Rightarrow P_1 \Rightarrow P_2 \Rightarrow \ldots \Rightarrow P_i \Rightarrow \ldots$

Corolar

Regulile precedente constituie un algoritm de calcul al celui mai general unificator pentru o problemă de unificare, dacă acesta există.

Exemplu 1

$$P = \{f(g(x_1, a), x_2) \doteq x_3, f(x_2, x_2) \doteq f(a, x_1)\} \overset{\text{Descompunere}}{\Rightarrow}$$

$$\{f(g(x_1, a), x_2) \doteq x_3, x_2 \doteq a, x_2 \doteq x_1\} \overset{\text{Eliminare}}{\Rightarrow}$$

$$\{f(g(x_1, a), a) \doteq x_3, x_2 \doteq a, a \doteq x_1\} \overset{\text{Orientare}}{\Rightarrow}$$

$$\{f(g(x_1, a), a) \doteq x_3, x_2 \doteq a, x_1 \doteq a\} \overset{\text{Eliminare}}{\Rightarrow}$$

$$\{f(g(a, a), a) \doteq x_3, x_2 \doteq a, x_1 \doteq a\} \overset{\text{Orientare}}{\Rightarrow}$$

$$\{f(g(a, a), a) \Rightarrow x_3, x_2 \Rightarrow a, x_1 \Rightarrow a\} \overset{\text{Orientare}}{\Rightarrow}$$

$$\{x_3 \Rightarrow f(g(a, a), a), x_2 \Rightarrow a, x_1 \Rightarrow a\}$$

Exemplu 2

$$P = \{f(g(x_1, a), x_2) \doteq x_3, f(x_2) \doteq f(x_3)\} \overset{\text{Descompunere}}{\Rightarrow}$$

$$\{f(g(x_1, a), x_2) \doteq x_3, x_2 \doteq x_3\} \overset{\text{Orientare}}{\Rightarrow}$$

$$\{x_3 \doteq f(g(x_1, a), x_2), x_2 \doteq x_3\} \overset{\text{Eliminare}}{\Rightarrow}$$

Explicati de ce nu se mai poate aplica orientare

$$\{x_3 \doteq f(g(x_1, a), x_3), x_2 \doteq x_3\} \stackrel{\text{OCCURS CHECK}}{\Rightarrow}$$

 \perp

Concluzie: $mgu(P) = \emptyset$.

Exemplu 3

$$P = \{f(g(x_1, a), x_2) \doteq x_3, f(g(x_4, x_5)) \doteq f(x_3)\} \overset{\text{Descompunere}}{\Rightarrow}$$

$$\{f(g(x_1, a), x_2) \doteq x_3, g(x_4, x_5) \doteq x_3\} \overset{\text{Orientare}}{\Rightarrow}$$

$$\{f(g(x_1, a), x_2) \doteq x_3, x_3 \doteq g(x_4, x_5)\} \overset{\text{Eliminare}}{\Rightarrow}$$

$$\{f(g(x_1, a), x_2) \doteq g(x_4, x_5), x_3 \doteq g(x_4, x_5)\} \overset{\text{Conflict}}{\Rightarrow}$$

$$\bot$$

Concluzie: $mgu(P) = \emptyset$.

Back to resolution

(Binary) Resolution

$$P(t_{1},...,t_{n}) \lor C \neg P(t'_{1},...,t'_{n}) \lor D \quad \sigma \in mgu\{t_{1} \doteq t'_{1},...t_{n} \doteq t'_{n}\}$$

$$var(P(t_{1},...,t_{n}) \lor C) \cap var(\neg P(t'_{1},...,t'_{n}) \lor D) = \emptyset$$

$$(C \lor D)\sigma$$

(Positive) Factoring

$$(P(t_1,\ldots,t_n)\vee C)\sigma$$
1. $P(x)$

2. $\neg P(h(x)) \lor Q(f(x))$

3.
$$\neg Q(f(g(a)))$$

rezoluție între 3 și 4:

4.
$$Q(f(x))$$
 rezoluție între 1 și 2: $P(x') ext{ } \neg P(h(x)) \lor Q(f(x)) ext{ } \{x' \mapsto h(x)\} \in mgu\{x' \doteq h(x)\}$

 $Q(f(x))\{x'\mapsto h(x)\}$

Q(f(g(a))) Q(f(x)) $\{x \mapsto g(a)\} \in mgu\{f(g(a)) \stackrel{.}{=} f(x)\}$ $\square\{x\mapsto \sigma(a)\}$

(Positive) Factoring
$$P(t_1, \ldots, t_n) \vee P(t_1', \ldots, t_n') \vee C \qquad \sigma \in mgu\{t_1 \doteq t_1', \ldots, t_n \doteq t_n'\}$$

A step back

- 1. Fie F în FNSC reprezentată ca mulțime de clauze: $F = \{C_1, \dots, C_n\}$.
- 2. F este nesatisfiabilă dacă și numai dacă \square se poate obține din $\{C_1, \ldots, C_n\}$ aplicând regulile RESOLUTION și FACTORING.

Exemplu

Arătați că $\forall x.(P(x) \rightarrow Q(x)) \land P(s) \rightarrow Q(s)$ este validă folosind rezoluția.