I - Généralités sur les polynômes

Définition 1:

Un polynôme à coefficients dans \mathbb{R} est une expression de la forme $P(X) = a_n X_n + a_{n-1} X_{n-1} + \ldots + a_2 X_2 + a_1 X + a_0$, avec $n \in \mathbb{N}$ et $a_0, a_1, \ldots, a_n \in \mathbb{R}$.

L'ensemble des polynômes à coefficient réels est noté $\mathbb{R}[X].$

Vocabulaire:

- Les a_i sont appelés les coefficients du polynôme ;
- Si pour tous $i \in \mathbb{N}$, on a $a_i = 0$, P est appelé le polynôme nul, il est noté 0;
- On appelle le degré de P le plus grand entier i tel que $a \neq 0$;
- Un polynôme de la forme $P = a_0$ avec $a_0 \in \mathbb{R}$ est appelé un polynôme constant.

Exemple:

- (a) $X^3 5X + \frac{3}{4}$ est un polynôme de degré 3 ;
- (b) $X^n + 1$ est un polynôme de degré n;
- (c) $aX^2 + bX + c$ est un polynôme de degré 2;
- (d) X est un monôme unitaire de degré 1.

II - Fonction polynôme du second degré

Définition 1:

On appelle fonction polynôme du second degré toute fonction f définie sur $\mathbb R$ par une expression de la forme :

$$f(x) = ax^2 + bx + c$$

avec $a \in \mathbb{R}^*$ et $(b, c) \in \mathbb{R}^2$.

Exemple:

- $a(x) = 3x^2 + 4x + 7$
- $b(x) = \frac{1}{2}x^2 + \frac{5}{9}x + \frac{7}{8}$
- $c(x) = 5 2x^2$
- d(x) = (12 x)(x + 3)
- e(x) = ax + b
- $f(x) = 4x^4 + 7x^2 + x + 0$

III - Forme canonique

Propriété 1:

Toute fonction polynôme f du second degré définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ peut s'écrire sous sa forme canonique :

$$f(x) = a(x - \alpha)^2 + \beta$$

avec $(\alpha, \beta) \in \mathbb{R}$

Démonstration:

 $a \neq 0$, donc:

$$f(x) = ax^{2} + bx + c$$

$$= a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left[x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right] + c$$

$$= a\left[\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right] + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - a\frac{b^{2}}{4a^{2}} + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a} + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a}$$

$$= a(x - \alpha)^{2} + \beta$$

avec
$$\alpha = -\frac{b}{2a}$$
 et $\beta = -\frac{b^2 - 4ac}{4a}$

Exercice 1 : (Exemple corrigé)

Soit la fonction polynôme g du second degré définie sur $\mathbb R$ par : $g(x) = 2x^2 - 20x + 10$ Écrire g sous sa forme canonique.

Correction.

On cherche α et β tels que $g(x) = a(x - \alpha)^2 + \beta$

$$g(x) = 2x^{2} - 20x + 10$$

$$= 2(x^{2} - 10x) + 10$$

$$= 2(x^{2} - 10x + 25 - 25) + 10$$

$$= 2[(x - 5)^{2} - 25] + 10$$

$$= 2(x - 5)^{2} - 50 + 10$$

$$= 2(x - 5)^{2} - 40$$

g(x) = $2(x-5)^2$ – 40 est la forme canonique de g avec α = 5 et β = -40

IV - Variations, extremum et représentation graphique

1 - Sens de variations

Propriété 1:

Soit f une fonction polynôme du second degré définie sur \mathbb{R} , telle que $f(x) = ax^2 + bx + c$, (avec $a \in \mathbb{R}^*$, $(a,b) \in \mathbb{R}^2$)

- (a) Si a > 0, alors f est d'abord décroissante \searrow puis croissante \nearrow ;
- (b) Si a < 0, alors f est d'abord croissante \nearrow puis décroissante \searrow .

2 - Extremum

Propriété 1:

Soit f une fonction polynôme du second degré définie sur \mathbb{R} , donée sous sa forme canonique, telle que $f(x) = a(x - \alpha)^2 + \beta$, (avec $a \in \mathbb{R}^*$)

- (a) Si a > 0, alors f admet un minimum en $x = \alpha$, avec $f(\alpha) = \beta$;
- (b) Si a < 0, alors f admet un maximum en $x = \alpha$, avec $f(\alpha) = \beta$.

Propriété 2:

Soit f une fonction polynôme du second degré définie sur \mathbb{R} , telle que $f(x) = ax^2 + bx + c$, (avec $a \in \mathbb{R}^*$, $(a,b) \in \mathbb{R}^2$) On a :

(a)
$$\alpha = -\frac{b}{2a}$$
;

(b)
$$\beta = f\left(-\frac{b}{2a}\right)$$
.

Définition 1:

La représentation graphique d'une fonction f polynôme du second degré s'appelle une **parabole**. Le point de coordonnées $(\alpha; \beta)$ s'appelle le **sommet** de la parabole. Il correspond à l'**extremum** de la fonction f.

Propriété 3:

La parabole admet pour axe de symétrie la droite (verticale) d'équation $x = \alpha$.

Exercice 2 : (Exemple corrigé)

Soit la fonction polynôme du second degré défini par $f(x) = 2x^2 - 12x + 1$

- (a) Déterminer les coordonnées du sommet de la représentation graphique de la fonction f;
- (b) déterminer l'équation de l'axe de la symétrie de la parabole

Correction.

(a) Les coordonnées du sommet sont données par (α, β) , avec :

$$\alpha = -\frac{b}{2a}$$

$$\beta = f\left(-\frac{b}{2a}\right)$$

$$f(x) = 2x^2 - 12x + 1, \text{ donc } a = 2, b = -12 \text{ et } c = 1, \text{ il vient}$$

$$\alpha = 3 \text{ et } \beta = -17$$

Le sommet de la parabole est donc le point de coordonnées (3,-17)

(b) L'équation de l'axe de symétrie de la parabole est données par $x=\alpha$, or $\alpha=3$ (cf. (a)) donc l'axe de symétrie est la droite d'équation x=3

3 - Représentation graphique

Exercice 3:

Représenter graphiquement la fonction f polynôme du second degré définie sur \mathbb{R} par $f(x) = -x^2 + 4x$

Correction.

On commence par exprimer f sous sa forme canonique :

$$f(x) = -x^{2} + 4x$$

$$= -(x^{2} - 4x)$$

$$= -(x^{2} - 4x + 4 - 4)$$

$$= -[(x - 2)^{2} - 4]$$

$$= -(x - 2)^{2} + 4$$

Donc, α = 2 et β = 4

Les variations de f sont données dans le tableau suivant :

x	$-\infty$	2	+∞
f(x)	7	4	×

On calcul f(0) = 0, f(1) = 3, on sait que f(2) = 4, f(3) = 3 et f(4) = 0. On trace la courbe représentative de la fonction f ci-dessous :

