USN					

R. V. COLLEGE OF ENGINEERING

Autonomous Institution affiliated to VTU V Semester B. E. Examinations Nov/Dec-18 Computer Science and Engineering

ARTIFICIAL INTELLIGENCE (ELECTIVE)

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B.In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1	1.1	An agent is an entity which interacts with environment through				
		and	02			
	1.2	Define a rational agent.	01			
	1.3	Give the purpose of utility function.	01			
	1.4	Differentiate uniformed search and informed search.	01			
	1.5	What is admissible heuristic?	01			
	1.6	For a given 8 puzzle actions, construct three relaxed problems.				
		"A tile can move from square A to square B if A is horizontally or				
		vertically adjacent to B and B is blank".	01			
	1.7	Define constraint satisfaction problem.	01			
	1.8	In a competitive environment, in which the agents' goals are				
		conflicting, gives rise to search problems.	01			
	1.9	Translate the following into First Order logic				
		 Every bag contains at least one coin 				
		 Tom's sister knows Mary's brother. 	02			
	1.10	Prove using first order logic, the following sentence is ambiguous,				
		"Everyone loves someone".	02			
	1.11	Give the meaning of logical entailment and provide an example.	01			
	1.12	Differentiate supervised and unsupervised learning.	02			
	1.13	Given a collection of examples of f , return a function h that				
		approximates f , the h is called	01			
	1.14	Given the following full joint distribution				
		Toothache ¬tootheache				
		$ catch \neg catch catch \neg catch $				
		Cavity 0.108 0.012 0.072 0.008				
		$\neg Cavity \mid 0.016 \mid 0.064 \mid 0.144 \mid 0.576$				
		Find:				
		i) P (cavity / toothache)				
		ii) $P(\neg cavity \mid toothache)$	02			
	1.15	Give the conditional independence of two variables X and Y given				
		variable Z.	01			

PART-B

			1
2	a	"Buying a week's worth of groceries on the web is an AI problem". Examine the truthness of this statement.	06
	b	Compare with necessary block diagrams and functions a model-based, reflex agent with a model-based, goal-based agent.	06
	С	Compare depth – first search with depth – limited search with respect to principle of working and complexities.	04
3	a b	For 8 – puzzle problem, define any two admissible heuristics. Analyze the effect of heuristic accuracy on performance. Given a map with principal states and territories. Explain how the coloring of map can be viewed as a constraint satisfaction problem. The goal is to assign colors to each region so that no neighboring regions have the same color. The color set has { red, green, blue}.	06
		S1 52 54 5; state	06
	С	Write a simple backtracking algorithm for constraint satisfaction problems.	04
		problems.	04
		OR	
4	a b	Write various components of a game problem, when it is formally defined as a search problem. Perform both left-to-right and right-to-left prune on the given maximum game time.	04
		A MAR	
		D 3 5 T K MIN MIN MIN MIN O 7	
	С	Discuss the working of online search agents which uses depth – first	04
		exploration.	08
5		Show that the following centence is a tental arranging males	
3	а	Show that the following sentence is a tantology using rules $[p \land (p \rightarrow q)] \rightarrow q$	06
		Th., (h., A)1 . A	

	b	Give Modus Ponens rule, and AND – elimination rule. If the knowledge base contains following rules for Wumpus world problem. $R_1: \neg P_{1,1}; No \ pit \ in \ [1,1]$ $R_2: B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1}); A$ square is breezy if there is a pit in neighboring square $R_3: B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})$ $R_4: \neg B_{1,1}$ $R_5: B_{2,1}$ Using logical-equivalence, Modus Ponens, And-elimination and De Morgan's rule, prove that there is no pit in $[1,2]$ i.e., $\neg P_{1,2}$.	06
	С	Relate proportional versus first order influence and give an illustration.	04
		OR	
6	a	Discuss the following with suitable examples: i) Generalized Modus Ponens ii) Unification.	06
	b	Write forward-chaining algorithm, illustrate the working of forward chaining to prove	0.5
	c	American $(x) \land Weapon(y) \land Sells(x,y,z) \land Hostile(z) \Rightarrow Criminal(x)$ How the working of backward – chaining differs as compared to	06
		forward-chaining.	04
7	a b c	For a problem of whether to wait for a table at a restaurant, we have the following attributes. • Alternate: option of restaurant • Bar: attached/not • Fir/Sat: opens on these days • Hungry: Are you? • Patrons: No. of people inside (none, Some, Full) • Price: \$, \$\$, \$\$\$ • Raining: is it raining outside? • Reservation: whether we have reserved? • Type: French, Italian, Thai • Wait Estimate: 0 - 10 min, 10 - 30 min, 30 - 60 min, > 60 min Construct a decision tree for an example, we will wait for a table with patrons = Full and Wait estimate = 0 - 10 mins Discuss the working of inductive learning. Give suitable applications for the following: i) Supervised learning ii) Unsupervised learning iii) Painforcements learning	06 06
		iii) Reinforcements learning.	04

8	a	Explain the working of decision theoretic agents.				
	b	Consider a Bayesian network given below				
		Alarm1 Burglary				
		$P(Alarm\ 1) = 0.1, P(Alarm\ 2) = 0.2$				
		P(Burglary/Alarm1, Alarm2) = 0.8				
		$P(Burglary/Alarm1, \neg Alarm2) = 0.7$				
		$P(Burglary/\neg Alarm1, Alarm2) = 0.6$				
		$P(Burglary/\neg Alamr1, \neg Almarm2) = 0.5$				
		Find $P(Alarm2/Burglary, Alarm1)$.	06			
	С	Define and give suitable examples for the following:				
		i) Deterministic nodes				
		ii) Noisy –OR				
		iii) Discretization.	06			