

Schletter, Inc.		20° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, $P_g =$
(ASCE 7-05, Eq. 7-2)	20.62 psf	Sloped Roof Snow Load, $P_s =$
	1.00	I _s =
	0.91	$C_s =$
	0.90	$C_e =$

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	100 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 15.70 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.050	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.400	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , or
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.05	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R (ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2) 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>1049.84</u>	<u>5344.35</u>	k
Compressive Load =	4480.39	<u>4868.18</u>	k
Lateral Load =	343.87	2441.83	k
Moment (Weak Axis) =	0.69	0.38	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi Overturning Check $M_0 =$ 134586.6 in-lbs Resisting Force Required = 2039.19 lbs A minimum 132in long x 29in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3398.65 lbs to resist overturning. Minimum Width = Weight Provided = 5781.88 lbs Sliding Force = 586.76 lbs Use a 132in long x 29in wide x 18in tall Friction = 0.4 Weight Required = 1466.90 lbs ballast foundation to resist sliding. Resisting Weight = 5781.88 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 586.76 lbs Cohesion = 130 psf Use a 132in long x 29in wide x 18in tall 26.58 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2890.94 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. f'c = 2500 psi Length = 8 in

	1.0D ·	+ 1.0S		1.0D + 1.0W			1	1.0D + 0.75L + 0.75W + 0.75S				0.6D + 1.0W			
	30 in	31 in	32 in	29 in	30 in	31 in	32 in	29 in	30 in	31 in	32 in	29 in	30 in	31 in	32 in
8	1592 lbs	1592 lbs	1592 lbs	1521 lbs	1521 lbs	1521 lbs	1521 lbs	2203 lbs	2203 lbs	2203 lbs	2203 lbs	-498 lbs	-498 lbs	-498 lbs	-498 lbs
3	1625 lbs	1625 lbs	1625 lbs	1829 lbs	1829 lbs	1829 lbs	1829 lbs	2457 lbs	2457 lbs	2457 lbs	2457 lbs	-2563 lbs	-2563 lbs	-2563 lbs	-2563 lbs
	182 lbs	182 lbs	182 lbs	1052 lbs	1052 lbs	1052 lbs	1052 lbs	912 lbs	912 lbs	912 lbs	912 lbs	-1174 lbs	-1174 lbs	-1174 lbs	-1174 lbs
5	9198 lbs	9397 lbs	9597 lbs	9132 lbs	9332 lbs	9531 lbs	9730 lbs	10442 lbs	10642 lbs	10841 lbs	11040 lbs	407 lbs	527 lbs	647 lbs	766 lbs
ft	4024 lbs-ft	4024 lbs-ft	4024 lbs-ft	4489 lbs-ft	4489 lbs-ft	4489 lbs-ft	4489 lbs-ft	6053 lbs-ft	6053 lbs-ft	6053 lbs-ft	6053 lbs-ft	2071 lbs-ft	2071 lbs-ft	2071 lbs-ft	2071 lbs-ft
	0.44 ft	0 42 ft	0.42 ft	0.40 ft	0.49 ft	0.47 ft	0.46 ft	0 E0 ft	0 E7 ft	0 E6 ft	O EE ft	E 00 ft	2.02.64	2 20 ft	2.70.ft

1.83 ft

268.6 psf

517.0 psf

31 in

32 in

1.83 ft

266.9 psf

507.0 psf

1.83 ft

265.3 psf

Ballast Width

5782 lbs 5981 lbs 6181 lbs 6380 lbs

30 in

1.83 ft

248.2 psf

415.2 psf

29 in

1.83 ft

249.2 psf

421.6 psf

Maximum Bearing Pressure = 517 psf Allowable Bearing Pressure = 1500 psf

1.83 ft

250.3 psf

1.83 ft

251.4 psf

435.7 psf

 $P_{fta} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.42 \text{ ft}) =$

1.83 ft

252.3 psf

402.0 psf

Use a 132in long x 29in wide x 18in tall ballast foundation for an acceptable bearing pressure.

1.83 ft

263.8 psf

1.83 ft

0.0 psf

1.83 ft

0.0 psf

1.83 ft

0.0 psf

1.83 ft

0.0 psf

ASD LC Width

FB

P_{total}

М

L/6

fmin

Bearing Pressure

29 in 1592 lbs

1625 lbs

8998 lbs

4024 lbs-ft 0.45 ft

1.83 ft

255.9 psf

421.1 psf

1.83 ft

254.7 psf

414.3 psf

1.83 ft

253.5 psf

407.9 psf

Seismic Design

Overturning Check

 $M_0 = 2540.5 \text{ ft-lbs}$

Resisting Force Required = 2102.49 lbs S.F. = 1.67

Weight Required = 3504.15 lbs Minimum Width = 29 in in Weight Provided = 5781.88 lbs A minimum 132in long x 29in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		29 in		29 in			29 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	270 lbs	656 lbs	222 lbs	906 lbs	2640 lbs	869 lbs	96 lbs	192 lbs	48 lbs	
F _V	217 lbs	213 lbs	219 lbs	160 lbs	155 lbs	170 lbs	217 lbs	214 lbs	218 lbs	
P _{total}	7428 lbs	7814 lbs	7380 lbs	7720 lbs	9454 lbs	7683 lbs	2189 lbs	2285 lbs	2141 lbs	
М	866 lbs-ft	857 lbs-ft	874 lbs-ft	653 lbs-ft	649 lbs-ft	685 lbs-ft	863 lbs-ft	855 lbs-ft	866 lbs-ft	
е	0.12 ft	0.11 ft	0.12 ft	0.08 ft	0.07 ft	0.09 ft	0.39 ft	0.37 ft	0.40 ft	
L/6	0.40 ft	0.40 ft	0.40 ft	0.40 ft	0.40 ft	0.40 ft	0.40 ft	0.40 ft	0.40 ft	
f _{min}	198.5 psf	213.9 psf	196.0 psf	229.5 psf	295.0 psf	225.1 psf	1.7 psf	6.1 psf	0.0 psf	
f _{max}	360.3 psf	374.0 psf	359.2 psf	351.4 psf	416.3 psf	353.0 psf	163.0 psf	165.8 psf	161.4 psf	

Maximum Bearing Pressure = 416 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 29in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 29in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.446 k	Maximum Axial Load = 3.668 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>46%</u>	Utilization = 49%
Diagonal Strut		
Maximum Axial Load =	1.691 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	23%	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

$$\label{eq:main_main_main} \begin{split} \text{Mean Height, h}_{\text{sx}} &= & 40.12 \text{ in} \\ \text{Allowable Story Drift for All Other} & & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta &= \{ & & 0.802 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} &= & 0.56 \text{ in} \\ & & 0.56 \leq 0.802, \text{ OK.} \end{split}$$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 123 \text{ in} \\ \mathsf{J} = & 0.432 \\ & 340.276 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = \mathsf{\phib[Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L}_b &= 123 \\ \mathsf{J} &= 0.432 \\ 216.395 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \varphi \mathsf{F}_L &= \varphi \mathsf{b}[\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F}_L &= 28.6 \end{split}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.3 \text{ ksi}$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$\phi F_L = 1.17 \phi y F c y$

$$\varphi F_{L} = 38.9 \text{ ksi}$$

Rb/t =

S2 = 141.0

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr^*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 45.5$$

$$C_0$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$k = 897074 \text{ mm}^4$$

$$2.155 \text{ in}^4$$

$$y = 41.015 \text{ mm}$$

$$Sx = 1.335 \text{ in}^3$$

$$M_{max} St = 2.788 \text{ k-ft}$$

$$\begin{array}{ccc} \phi F_L W k = & 23.1 \text{ ksi} \\ l y = & 446476 \text{ mm}^4 \\ & & 1.073 \text{ in}^4 \\ x = & 45.5 \text{ mm} \\ S y = & 0.599 \text{ in}^3 \\ M_{max} W k = & 1.152 \text{ k-ft} \end{array}$$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 = 29.2$

Rev. 11.05.2015

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$
$$S1 = 1.1$$
$$S2 = C_t$$
$$S2 = 141.0$$

 $\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$

31.1 ksi

29.4 ksi

2.366 in⁴

1.375 in³

3.363 k-ft

 $lx = 984962 \text{ mm}^4$

y = 43.717 mm

 $\phi F_L =$

16.2

36.9

 $\frac{\theta_y}{\theta_b} 1.3 Fcy$

3.4.18

h/t =

S1 =

Bbr -

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{rcl} m = & 0.65 \\ C_0 = & 40 \\ Cc = & 40 \\ S2 = \frac{k_1 Bbr}{m Dbr} \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{\text{max}} W k = & 3.904 \text{ k-ft} \\ \end{array}$$

Compression

 $M_{max}St =$

Sx =

 $\phi F_L St =$

3.4.9

$$\begin{array}{lll} \textbf{b}/\textbf{t} = & 16.2 \\ \textbf{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \textbf{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi \textbf{F}_{L} = & \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_{L} = & 31.6 \text{ ksi} \\ \\ \textbf{b}/\textbf{t} = & 7.4 \\ \textbf{S1} = & 12.21 \\ \textbf{S2} = & 32.70 \\ \phi \textbf{F}_{L} = & \phi \textbf{yFcy} \\ \phi \textbf{F}_{L} = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

 $P_{max} =$

Rev. 11.05.2015

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.5146$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$51 = 12.2$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t =
$$\frac{\text{Not Used}}{0.0}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$S1 = 36.9$$

$$m = 0.65$$

 $C_0 = 27.5$

$$C_0 = 27.5$$

 $Cc = 27.5$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$

$$0.672 \text{ in}^4$$

y = 27.5 mm

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3 Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\psi \Gamma_L = 43.2 \text{ KS}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$x = 27.5 \text{ mm}$$

 $Sy = 0.621 \text{ in}^3$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

y =

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_{b} = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942	J = 0.942
135.148	135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$
$\phi F_L = 29.6 \text{ ksi}$	$\phi F_{L} = 29.6$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

S.4.16
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\psi = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

x =

Sy=

 $M_{max}Wk =$

27.5 mm

0.621 in³

1.460 k-ft

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 55.91 \text{ in}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.4 \text{ ksi}$$

Weak Axis:

$$L_b = 55.91$$

 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 30.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18

S14.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.29339 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.76107 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 15.9235 \text{ ksi} \end{array}$$

3.4.9

$$\begin{array}{lll} \textbf{9} \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \textbf{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \textbf{\phiF}_{L} = & \textbf{\phic}[\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phiF}_{L} = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \\ \textbf{S2} = & 32.70 \\ \textbf{\phiF}_{L} = & \textbf{\phic}[\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phiF}_{L} = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_{y}}{\theta_{b}} Fcy}{Dt} \right)^{2} \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{\phiF}_{\text{L}} &= & \text{\phiyFcy} \\ \text{\phiF}_{\text{L}} &= & 33.25 \text{ ksi} \\ \text{\phiF}_{\text{L}} &= & 15.92 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^{2} \\ & & 1.03 \text{ in}^{2} \\ \text{P}_{\text{max}} &= & 16.39 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-54.031	-54.031	0	0
2	M14	Υ	-54.031	-54.031	0	0
3	M15	Υ	-54.031	-54.031	0	0
4	M16	Υ	-54 031	-54 031	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-45.975	-45.975	0	0
2	M14	٧	-45.975	-45.975	0	0
3	M15	V	-72.246	-72.246	0	0
4	M16	V	-72.246	-72.246	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	105.085	105.085	0	0
2	M14	V	80.565	80.565	0	0
3	M15	V	43.785	43.785	0	0
4	M16	У	43.785	43.785	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Z	6.693	6.693	0	0
2	M14	Ζ	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Ζ	6.693	6.693	0	0
5	M13	Ζ	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	<u>Fa</u>
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	. Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	451.93	2	1105.791	1	.902	1	.004	1	0	1	0	1
2		min	-593.076	3	-1252.901	3	-64.106	5	289	4	0	1	0	1
3	N7	max	.038	9	1220.93	1	446	12	0	12	0	1	0	1
4		min	118	2	-225.889	3	-264.517	4	531	4	0	1	0	1
5	N15	max	.026	9	3446.451	1	0	10	0	10	0	1	0	1
6		min	-1.509	2	-807.566	3	-253.801	4	517	4	0	1	0	1
7	N16	max	1750.355	2	3744.752	1	0	2	0	2	0	1	0	1
8		min	-1878.332	3	-4111.035	3	-63.832	5	291	4	0	1	0	1
9	N23	max	.039	14	1220.93	1	9.871	1	.021	1	0	1	0	1
10		min	118	2	-225.889	3	-258.087	4	52	4	0	1	0	1
11	N24	max	451.93	2	1105.791	1	048	12	0	12	0	1	0	1
12		min	-593.076	3	-1252.901	3	-64.652	5	291	4	0	1	0	1
13	Totals:	max	2652.468	2	11844.645	1	0	10						
14		min	-3065.053	3	-7876.18	3	-963.738	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	104.755	1	491.305	1	-6.513	12	0	3	.25	1	0	4
2			min	4.802	12	-626.94	3	-165.679	1	013	1	.011	12	0	3
3		2	max	104.755	1	344.222	1	-5.121	12	0	3	.096	4	.608	3
4			min	4.802	12	-441.187	3	-127.391	1	013	1	.005	12	476	1
5		3	max	104.755	1	197.139	1	-3.73	12	0	3	.05	5	1.005	3
6			min	4.802	12	-255.434	3	-89.103	1	013	1	04	1	784	1
7		4	max	104.755	1	50.057	1	-2.338	12	0	3	.026	5	1.19	3
8			min	4.802	12	-69.68	3	-50.816	1	013	1	12	1	925	1
9		5	max	104.755	1	116.073	3	938	10	0	3	.004	5	1.164	3
10			min	4.802	12	-97.026	1	-21.14	4	013	1	156	1	898	1
11		6	max	104.755	1	301.826	3	25.76	1	0	3	006	12	.926	3
12			min	3.973	15	-244.109	1	-15.934	5	013	1	149	1	704	1
13		7	max	104.755	1	487.58	3	64.047	1	0	3	004	12	.476	3
14			min	-5.523	5	-391.192	1	-13.781	5	013	1	097	1	342	1
15		8	max	104.755	1	673.333	3	102.335	1	0	3	0	10	.187	1
16			min	-17.214	5	-538.275	1	-11.628	5	013	1	048	4	185	3
17		9	max	104.755	1	859.086	3	140.623	1	0	3	.136	1	.884	1
18			min	-28.905	5	-685.358	1	-9.475	5	013	1	058	5	-1.058	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	104.755	1	832.441	1	-6.011	12	.004	14	.318	1	1.748	1
20			min	4.802	12	-1044.839	3	-178.91	1	013	1	.009	12	-2.142	3
21		11	max	104.755	1	685.358	1_	-4.62	12	.013	1_	.136	1	.884	1
22			min	4.802	12	-859.086	3	-140.623	1	0	3	.003	12	-1.058	3
23		12	max	104.755	1	538.275	1_	-3.228	12	.013	1	.046	4	.187	1
24			min	4.802	12	-673.333	3	-102.335	1	0	3	003	1	185	3
25		13	max	104.755	1	391.192	_1_	-1.837	12	.013	1	.021	5	.476	3
26			min	4.802	12	-487.58	3	-64.047	1	0	3	097	1	342	1
27		14	max	104.755	1	244.109	1_	445	12	.013	1	0	15	.926	3
28			min	3.645	15	-301.826	3	-25.76	1	0	3	149	1	704	1
29		15	max	104.755	1	97.026	_1_	12.528	1	.013	1	006	12	1.164	3
30			min	-6.102	5	-116.073	3	-16.647	5	0	3	156	1	898	1
31		16	max	104.755	1	69.68	3	50.816	1	.013	1	004	12	1.19	3
32			min	-17.793	5	-50.057	1_	-14.494	5	0	3	12	1	925	1
33		17	max	104.755	1	255.434	3	89.103	1_	.013	1	0	3	1.005	3
34			min	-29.484	5	-197.139	1_	-12.341	5	0	3	064	4	784	1
35		18	max	104.755	1	441.187	3	127.391	1_	.013	1	.083	1	.608	3
36			min	-41.175	5	-344.222	1_	-10.188	5	0	3	068	5	476	1
37		19	max	104.755	1	626.94	3_	165.679	1	.013	1_	.25	1_	0	1
38			min	-52.866	5	-491.305	1_	-8.035	5	0	3	078	5	0	3
39	M14	1	max	61.72	4	518.364	_1_	-6.689	12	.008	3	.284	1	0	1
40		_	min	2.036	12	-489.184	3	-170.707	1_	011	1	.013	12	0	3
41		2	max	50.029	4	371.282	1_	-5.298	12	.008	3	.137	4	.477	3
42			min	2.036	12	-348.112	3	-132.419	1	011	1	.006	12	507	1
43		3	max	47.989	1	224.199	1_	-3.906	12	.008	3	.074	5	.793	3
44			min	2.036	12	-207.04	3	-94.132	1	011	1	018	1	846	1
45		4	max	47.989	1	77.116	_1_	-2.515	12	.008	3	.04	5	.948	3
46			min	2.036	12	-65.967	3	-55.844	1_	011	1	103	1	-1.017	1
47		5	max	47.989	1	75.105	3	-1.123	12	.008	3	.008	5	.943	3
48		_	min	2.036	12	-69.967	1_	-31.296	4	011	1	145	1	-1.021	1
49		6	max	47.989	1	216.178	3	20.731	1	.008	3	005	12	.777	3
50		_	min	-6.854	5	-217.05	_1_	-24.837	5_	011	1	143	1	858	1
51		7	max	47.989	1	357.25	3	59.019	1	.008	3	004	12	.451	3
52			min	-18.545	5	-364.133	1_	-22.684	5	011	1	098	1	527	1
53		8	max	47.989	1	498.322	3	97.307	1	.008	3	0	10	0	15
54			min	-30.236	5	-511.216	1_	-20.531	5	011	1	077	4	038	2
55		9	max	47.989	1	639.395	3	135.594	1	.008	3	.124	1	.637	1
<u>56</u>		4.0	min	-41.927	5	-658.298	1_	-18.378	5	011	1	096	5	684	3
57		10	max	68.747	4	805.381	1_	-5.835	12	.008	3	.3	1	1.471	1
58		44	min	2.036	12	-780.467	3	-173.882	1	011	1	.008	12	-1.493	3
59		11	max		4	658.298	1	-4.443	12	.011	1	.137	4	.637	1
60		40	min	2.036	12	-639.395	3	-135.594	1	008	3	.003	12	684	3
61		12	max	47.989	1	511.216	1	-3.052	12	.011	1	.072	5	0	15
62		40	min	2.036 47.989	12	-498.322 364.133	3	-97.307	1	008	<u>3</u>	009 .038	1	038	3
63 64		13	max	2.036	12	-357.25	3	-1.66 -59.019	<u>12</u>	.011 008	3	098	5	.451 527	1
		11	min	47.989					_						
65 66		14	max min	2.036	12	217.05 -216.178	<u>1</u> 3	269 -31.987	12 4	.011 008	3	.006 143	5	.777 858	3
		15								.011					
67 68		15	max	47.989 .16	15	69.967 -75.105	<u>1</u> 3	17.556 -24.985	<u>1</u> 5	008	3	005 145	12	.943 -1.021	3
69		16	min	47.989	1	65.967	3	55.844	<u>5</u> 1	.011	1	145	12	.948	3
		10	max min		_	-77.116	-	-22.832		008	3		1	-1.017	1
70 71		17		47.989	<u>5</u> 1	207.04	1_2	94.132	<u>5</u> 1	.011	1	103 .001	3	.793	3
72		17	max min	-23.092	5	-224.199	<u>3</u> 1	-20.679	5	008	3	081	4	846	1
		10					_		<u>5</u> 1		1	.111	1		
73 74		18	max	47.989 -34.783	5	348.112 -371.282	<u>3</u> 1	132.419 -18.526	5	.011 008	3	098	5	.477 507	3
		10	min										1		
75		19	max	47.989	1	489.184	3	170.707	1	.011	1	.284		0	1

Model Name

: Schletter, Inc. : HCV

110 V

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
76			min	-46.473	5	-518.364	1	-16.373	5	008	3	118	5	0	3
77	M15	1	max	83.26	5	605.126	2	-6.652	12	.011	1	.284	1	0	2
78			min	-50.501	1	-263.189	3	-170.683	1	006	3	.013	12	0	12
79		2	max	71.569	5	431.89	2	-5.261	12	.011	1	.173	4	.258	3
80			min	-50.501	1	-189.138	3	-132.395	1	006	3	.006	12	591	2
81		3	max	59.878	5	258.654	2	-3.869	12	.011	1	.1	5	.431	3
82			min	-50.501	1	-115.087	3	-94.107	1	006	3	018	1	984	2
83		4	max	48.187	5	86.076	1	-2.477	12	.011	1	.056	5	.52	3
84			min	-50.501	1	-41.036	3	-55.82	1	006	3	103	1	-1.18	2
85		5	max	36.496	5	33.015	3	-1.086	12	.011	1	.013	5	.524	3
86			min	-50.501	1	-87.819	2	-40.238	4	006	3	145	1	-1.178	2
87		6	max	24.805	5	107.066	3	20.756	1	.011	1	005	12	.445	3
88			min	-50.501	1	-261.055	2	-33.765	5	006	3	143	1	98	2
89		7	max	13.114	5	181.117	3	59.043	1	.011	1	004	12	.28	3
90			min	-50.501	1	-434.291	2	-31.612	5	006	3	098	1	588	1
91		8	max	1.423	5	255.168	3	97.331	1	.011	1	0	10	.032	3
92			min	-50.501	1	-607.527	2	-29.459	5	006	3	102	4	008	9
93		9	max	-2.373	12	329.219	3	135.619	1	.011	1	.124	1	.8	2
94			min	-50.501	1	-780.763	2	-27.306	5	006	3	131	5	301	3
95		10	max	-2.373	12	953.999	2	-5.872	12	.011	1	.3	1	1.788	2
96			min	-50.501	1	-403.27	3	-173.906	1	006	3	.009	12	718	3
97		11	max	4.294	5	780.763	2	-4.48	12	.006	3	.172	4	.8	2
98			min	-50.501	1	-329.219		-135.619	1	011	1	.003	12	301	3
99		12	max	-2.373	12	607.527	2	-3.089	12	.006	3	.097	5	.032	3
100			min	-50.501	1	-255.168	3	-97.331	1	011	1	009	1	008	9
101		13	max	-2.373	12	434.291	2	-1.697	12	.006	3	.052	5	.28	3
102			min	-50.501	1	-181.117	3	-59.043	1	011	1	098	1	588	1
103		14	max	-2.373	12	261.055	2	306	12	.006	3	.01	5	.445	3
104			min	-50.501	1	-107.066	3	-40.948	4	011	1	143	1	98	2
105		15	max	-2.373	12	87.819	2	17.532	1	.006	3	005	12	.524	3
106		10	min	-53.664	4	-33.015	3	-33.915	5	011	1	145	1	-1.178	2
107		16	max	-2.373	12	41.036	3	55.82	1	.006	3	003	12	.52	3
108		10	min	-65.355	4	-86.076	1	-31.762	5	011	1	103	1	-1.18	2
109		17	max	-2.373	12	115.087	3	94.107	1	.006	3	.001	3	.431	3
110		- ' '	min	-77.046	4	-258.654	2	-29.609	5	011	1	107	4	984	2
111		18	max	-2.373	12	189.138	3	132.395	1	.006	3	.111	1	.258	3
112		10	min	-88.737	4	-431.89	2	-27.456	5	011	1	135	5	591	2
113		19	max	-2.373	12	263.189	3	170.683	1	.006	3	.284	1	0	2
114		13	min	-100.428		-605.126		-25.303	5	011	1	165	5	0	5
115	M16	1	max	82.169	5	580.568	2	-6.39	12	.012	1	.251	1	0	2
116	IVITO					-246 225		-165.893		009	3		12	0	3
117		2		70.478	5	407.332	2	-4.999	12	.012	1	.13	4	.238	3
118			min		1	-172.174		-127.605	1	009	3	.004	12	563	2
119		3	max		5	234.096	2	-3.607	12	.012	1	.074	5	.392	3
120			min	-111.213	1	-98.123	3	-89.318	1	009	3	04	1	928	2
121		4	max		5	60.86	2	-2.215	12	.012	1	.041	5	.462	3
122		4			1	-24.072	3	-51.03	1	009	3	12	1	-1.096	2
123		5	max		5	49.979	3	824	12	.012	1	.01	5	.447	3
124		- O				-112.376		-29.205	4		3	156	1	-1.066	2
125		6		-111.213			2			009					
126		6	max		<u>5</u> 1	124.03 -285.612	2	25.545 -23.905	5	.012 009	3	006 149	12	.348 84	2
127		7				198.082							_		
		/	max		5		3	63.833	1	.012	3	004	12	.164	3
128		0				<u>-458.848</u>		-21.752	5	009		098	10	<u>416</u>	2
129		8	max	.333	5	272.133	3	102.121	1	.012	1	0	10	.209	1
130		0	min	-111.213	1	-632.085	2	-19.599	5	009	3	07	4	103 1.024	3
131		9	max		12	346.184	3	140.408	1	.012	1	.135	1	1.024	2
132			HIII	-111.213	1	-805.321	2	-17.446	5	009	3	089	5	4 <u>55</u>	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]					LC		LC		LC
133		10	max	-4.863	12	978.557	2	-6.134	12	.012	1	.317	1	2.04	2
134			min	-111.213	1_	-420.235	3	-178.696	1_	009	3	.01	12	892	3
135		11	max	563	<u> 15</u>	805.321	2	-4.742	12	.009	3	.135	1	1.024	2
136			min	-111.213	1_	-346.184	3	-140.408	1	012	1	.003	12	455	3
137		12	max	-4.863	12	632.085	2	-3.351	12	.009	3	.068	4	.209	1
138			min	-111.213	1	-272.133	3	-102.121	1	012	1	003	1	103	3
139		13	max	-4.863	12	458.848	2	-1.959	12	.009	3	.033	5	.164	3
140			min	-111.213	1_	-198.082	3	-63.833	1	012	1	098	1	416	2
141		14	max	-4.863	12	285.612	2	568	12	.009	3	.002	5	.348	3
142			min	-111.213	1	-124.03	3	-32.478	4	012	1	149	1	84	2
143		15	max	-4.863	12	112.376	2	12.742	1	.009	3	006	12	.447	3
144			min	-111.213	1	-49.979	3	-24.605	5	012	1	156	1	-1.066	2
145		16	max	-4.863	12	24.072	3	51.03	1	.009	3	004	12	.462	3
146			min	-111.213	1	-60.86	2	-22.452	5	012	1	12	1	-1.096	2
147		17	max	-4.863	12	98.123	3	89.318	1	.009	3	0	12	.392	3
148				-111.213	1	-234.096	2	-20.299	5	012	1	088	4	928	2
149		18	max		12	172.174	3	127.605	1	.009	3	.084	1	.238	3
150				-111.213	1	-407.332	2	-18.146	5	012	1	101	5	563	2
151		19	max	-4.863	12	246.225	3	165.893	1	.009	3	.251	1	0	2
152				-118.885	4	-580.568	2	-15.993	5	012	1	12	5	0	5
153	M2	1		1084.378	1	2.071	4	.977	1	0	3	0	3	0	1
154	IVIZ		min		3	.507	15	-61	4	0	4	0	1	0	1
155		2		1084.757	1	2.037	4	.977	1	0	3	0	1	0	15
156				-1118.126	3	.499	15	-61.33	4	0	4	016	4	0	4
157		3		1085.136	_ <u></u>	2.004	4	.977	1	0	3	0	1	0	15
158				-1117.842	3	.491	15	-61.659	4	0	4	031	4	001	4
159		4		1085.515	1	1.971	4	.977	1	0	3	0	1	<u>001</u> 0	15
160		4		-1117.557	3	.483	15	-61.989	4	0	4	047	4	002	4
		5	_	1085.895	<u> </u>	1.937	4	.977	1	0	3	047	1		15
161 162		- S	min	-1117.273	3	.476	15	-62.318	4	0	4	063	4	0 002	4
163		6		1086.274	<u> </u>	1.904	4	.977	1	0	3	.003	1	<u>002</u> 0	15
		0		-1116.988	3		15						4		
164		7	min			.468		-62.648	4	0	4	079	_	003	4
165		7		1086.653	1	1.87	4	.977	11	0	3	.001	1	0	15
166				-1116.704	3	.46	15	-62.977	4	0	4	095	4	003	4
167		8		1087.032	1_	1.837	4	.977	1	0	3	.002	1	0	15
168				-1116.419	3	.452	15	-63.307	4	0	4	111	4	004	4
169		9		1087.412	1_	1.804	4	.977	1_	0	3	.002	1	0	15
170		4.0		-1116.135	3	.444	15	-63.636	4	0	4	128	4	004	4
171		10		1087.791	1_	1.77	4	.977	1_	0	3	.002	1	001	15
172				-1115.851	3	.436	15	-63.966	4	0	4	144	4	004	4
173		11		1088.17		1.737	4	.977	1	0	3	.002	1	001	15
174				-1115.566	3	.428	15	-64.295	4	0	4	161	4	005	4
175		12		1088.549	_1_	1.703	4_	.977	_1_	0	3	.003	1	001	15
176				-1115.282	3	.421	15	-64.624	4	0	4	177	4	005	4
177		13		1088.929	_1_	1.67	4	.977	1_	0	3	.003	1	001	15
178				-1114.997	3	.413	15	-64.954	4	0	4	194	4	006	4
179		14	max	1089.308	1_	1.637	4	.977	1	0	3	.003	1	002	15
180			min	-1114.713	3	.405	15	-65.283	4	0	4	21	4	006	4
181		15	max	1089.687	1	1.603	4	.977	1	0	3	.003	1	002	15
182				-1114.428	3	.397	15	-65.613	4	0	4	227	4	007	4
183		16		1090.066	1	1.57	4	.977	1	0	3	.004	1	002	15
184				-1114.144	3	.389	15	-65.942	4	0	4	244	4	007	4
185		17		1090,446	1	1.537	4	.977	1	0	3	.004	1	002	15
186				-1113.859	3	.379	12	-66.272	4	0	4	261	4	007	4
187		18		1090.825	1	1.503	4	.977	1	0	3	.004	1	002	15
188				-1113.575	3	.366	12	-66.601	4	0	4	278	4	008	4
189		19		1091.204	1	1.47	4	.977	1	0	3	.004	1	002	15
100		10	παλ	1001.204		1.71		.011				.004		.002	<u> </u>

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
190			min	-1113.291	3	.353	12	-66.931	4	0	4	295	4	008	4
191	M3	1	max	402.193	2	8.009	4	1.31	4	0	3	0	1	.008	4
192			min	-536.396	3	1.895	15	.004	12	0	4	021	4	.002	15
193		2	max	402.023	2	7.239	4	1.851	4	0	3	0	1	.005	4
194			min	-536.524	3	1.714	15	.004	12	0	4	02	4	0	12
195		3	max	401.853	2	6.469	4	2.391	4	0	3	0	1	.002	2
196			min	-536.651	3	1.533	15	.004	12	0	4	019	4	0	3
197		4	max	401.682	2	5.699	4	2.932	4	0	3	0	1	0	2
198			min	-536.779	3	1.352	15	.004	12	0	4	018	4	002	3
199		5	max	401.512	2	4.929	4	3.472	4	0	3	0	1	0	15
200			min	-536.907	3	1.171	15	.004	12	0	4	017	4	003	3
201		6	max	401.342	2	4.159	4	4.013	4	0	3	0	1	001	15
202			min	-537.035	3	.99	15	.004	12	0	4	015	4	005	6
203		7	max	401.171	2	3.389	4	4.553	4	0	3	0	1	001	15
204			min	-537.162	3	.809	15	.004	12	0	4	014	4	006	6
205		8	max	401.001	2	2.619	4	5.094	4	0	3	0	1	002	15
206			min	-537.29	3	.628	15	.004	12	0	4	012	5	007	6
207		9	max	400.831	2	1.849	4	5.635	4	0	3	0	1	002	15
208			min	-537.418	3	.447	15	.004	12	0	4	009	5	008	6
209		10	max	400.66	2	1.079	4	6.175	4	0	3	0	1	002	15
210			min	-537.546	3	.266	15	.004	12	0	4	007	5	009	6
211		11	max	400.49	2	.364	2	6.716	4	0	3	0	1	002	15
212			min	-537.673	3	033	3	.004	12	0	4	004	5	009	6
213		12	max	400.32	2	096	15	7.256	4	0	3	0	1	002	15
214			min	-537.801	3	483	3	.004	12	0	4	001	5	009	6
215		13	max	400.149	2	277	15	7.797	4	0	3	.002	4	002	15
216			min	-537.929	3	-1.232	6	.004	12	0	4	0	12	009	6
217		14	max	399.979	2	458	15	8.337	4	0	3	.005	4	002	15
218			min	-538.057	3	-2.002	6	.004	12	0	4	0	12	008	6
219		15	max	399.809	2	639	15	8.878	4	0	3	.009	4	002	15
220			min	-538.184	3	-2.772	6	.004	12	0	4	0	12	007	6
221		16	max	399.638	2	82	15	9.418	4	0	3	.013	4	001	15
222			min	-538.312	3	-3.542	6	.004	12	0	4	0	12	006	6
223		17	max	399.468	2	-1.001	15	9.959	4	0	3	.017	4	0	15
224			min	-538.44	3	-4.312	6	.004	12	0	4	0	12	004	6
225		18	max	399.298	2	-1.182	15	10.5	4	0	3	.021	4	0	15
226			min	-538.568	3	-5.082	6	.004	12	0	4	0	12	002	6
227		19	max	399.127	2	-1.363	15	11.04	4	0	3	.026	4	0	1
228			min	-538.695	3	-5.852	6	.004	12	0	4	0	12	0	1
229	M4	1	max	1217.864	1	0	1	444	12	0	1	.016	4	0	1
230			min	-228.189	3	0	1	-263.438	4	0	1	0	12	0	1
231		2	max	1218.034	1	0	1	444	12	0	1	0	12	0	1
232			min	-228.061	3	0	1	-263.585	4	0	1	014	4	0	1
233		3	max	1218.205	1	0	1	444	12	0	1	0	12	0	1
234			min	-227.933	3	0	1	-263.733	4	0	1	044	4	0	1
235		4	max	1218.375	1	0	1	444	12	0	1	0	12	0	1
236			min	-227.805	3	0	1	-263.88	4	0	1	075	4	0	1
237		5	max	1218.545	1	0	1	444	12	0	1	0	12	0	1
238				-227.678	3	0	1	-264.028	4	0	1	105	4	0	1
239		6		1218.716	1	0	1	444	12	0	1	0	12	0	1
240			min	-227.55	3	0	1	-264.176		0	1	135	4	0	1
241		7	max	1218.886	1	0	1	444	12	0	1	0	12	0	1
242				-227.422	3	0	1	-264.323		0	1	166	4	0	1
243		8		1219.056	1	0	1	444	12	0	1	0	12	0	1
244			min	-227.294	3	0	1	-264.471	4	0	1	196	4	0	1
245		9		1219.227	1	0	1	444	12	0	1	0	12	0	1
246				-227.167	3	0	1	-264.619		0	1	226	4	0	1
_															

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
247		10	max	1219.397	_1_	0	1	444	12	0	1	0	12	0	1
248			min	-227.039	3	0	1	-264.766	4	0	1	257	4	0	1
249		11	max	1219.567	1	0	1	444	12	0	1	0	12	0	1
250			min	-226.911	3	0	1	-264.914	4	0	1	287	4	0	1
251		12	max	1219.738	1	0	1	444	12	0	1	0	12	0	1
252			min	-226.783	3	0	1	-265.061	4	0	1	318	4	0	1
253		13	max	1219.908	1	0	1	444	12	0	1	0	12	0	1
254			min	-226.656	3	0	1	-265.209	4	0	1	348	4	0	1
255		14	max	1220.078	1	0	1	444	12	0	1	0	12	0	1
256			min	-226.528	3	0	1	-265.357	4	0	1	379	4	0	1
257		15		1220.249	1	0	1	444	12	Ö	1	0	12	0	1
258		1	min	-226.4	3	0	1	-265.504	4	0	1	409	4	0	1
259		16		1220.419	1	0	1	444	12	0	1	0	12	0	1
260		10	min	-226.272	3	0	1	-265.652	4	0	1	44	4	0	1
261		17		1220.589		0	1	444	12	0	1	0	12	0	1
262		17	min		3	0	1	-265.8	4	0	1	47	4	0	1
263		18	max		1	0	1	444	12	0	1	0	12	0	1
264		10	min	-226.017	3	0	1	-265.947	4	0	1	501	4	0	1
		40					1				1		12		
265		19	max		1	0		444	12	0		0		0	1
266	MC	4	min	-225.889	3	0 450	1	-266.095	4	0	1	531	4	0	1
267	M6	1		3495.575	1_	2.458	2	0	1	0	1	0	4	0	1
268			min	-3667.513	3	.137	12	-61.593	4	0	4	0	1	0	1
269		2		3495.954	1_	2.432	2	0	1	0	1	0	1	0	3
270			min	-3667.229	3_	.12	3	-61.923	4	0	4	016	4	0	2
271		3		3496.333	1_	2.406	2	0	1	0	1	0	1	0	3
272			min	-3666.944	3_	.101	3	-62.252	4	0	4	032	4	001	2
273		4		3496.713	1	2.38	2	0	1	0	1	0	1	0	3
274			min	-3666.66	3_	.081	3	-62.582	4	0	4	048	4	002	2
275		5		3497.092	_1_	2.354	2	0	1	0	1	0	1	0	3
276			min	-3666.375	3	.062	3	-62.911	4	0	4	064	4	002	2
277		6		3497.471	_1_	2.328	2	0	1	0	1	0	1_	0	3
278			min	-3666.091	3	.042	3	-63.241	4	0	4	08	4	003	2
279		7	max		_1_	2.302	2	0	1	0	1	0	1_	0	3
280			min	-3665.806	3	.023	3	-63.57	4	0	4	096	4	004	2
281		8	max	3498.23	_1_	2.276	2	0	1	0	1	0	1_	0	3
282			min	-3665.522	3_	.003	3	-63.899	4	0	4	113	4	004	2
283		9	max	3498.609	<u>1</u>	2.25	2	0	1	0	1	0	1	0	3
284			min	-3665.237	3	016	3	-64.229	4	0	4	129	4	005	2
285		10	max	3498.988	1	2.224	2	0	1	0	1	0	1	0	3
286			min	-3664.953	3	036	3	-64.558	4	0	4	145	4	005	2
287		11	max	3499.367	1	2.198	2	0	1	0	1	0	1	0	3
288			min		3	055	3	-64.888	4	0	4	162	4	006	2
289		12	max	3499.747	1	2.172	2	0	1	0	1	0	1	0	3
290				-3664.384	3	075	3	-65.217	4	0	4	179	4	007	2
291		13	1	3500.126	1	2.146	2	0	1	0	1	0	1	0	3
292			min		3	094	3	-65.547	4	0	4	195	4	007	2
293		14		3500.505	1	2.12	2	0	1	0	1	0	1	0	3
294			min		3	114	3	-65.876	4	0	4	212	4	008	2
295		15	+	3500.884	1	2.094	2	0	1	0	1	0	1	0	3
296		'	min		3	133	3	-66.206	4	0	4	229	4	008	2
297		16		3501.264	1	2.068	2	0	1	0	1	0	1	0	3
298		10	min		3	153	3	-66.535	4	0	4	246	4	009	2
299		17		3501.643	<u> </u>	2.042	2	0	1	0	1	0	1	0	3
300		17	min		3	172	3	-66.865	4	0	4	263	4	009	2
301		12		3502.022	<u>ა</u> 1	2.016	2	0	1	0	1	0	1	0	3
302		10	min		3	192	3	-67.194	4	0	4	281	4	01	2
303		10			<u> </u>		2	_	1		1		1		3
JUJ		19	шах	3502.401		1.99		0		0		0		0	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]			LC	Torque[k-ft]	LC		LC	z-z Mome	LC
304			min	-3662.393	3	211	3	-67.524	4	0	4	298	4	01	2
305	M7	1	max		2	8.021	6	1.172	4	0	1	0	1	.01	2
306			min	-1688.911	3_	1.882	15	0	1	0	4	021	4	0	3
307		2		1602.251	2	7.251	6	1.713	4	0	1	0	1	.008	2
308			min	-1689.039	3	1.701	15	0	1	0	4	021	4	002	3
309		3	max		2	6.481	6	2.253	4	0	1	0	1	.005	2
310			min	-1689.167	3_	1.52	15	0	1	0	4	02	4	003	3
311		4	max	1601.91	2	5.711	6	2.794	4	0	1_	0	1_	.003	2
312			min	-1689.295	3	1.339	15	0	1	0	4	019	4	004	3
313		5	max	1601.74	2	4.941	6	3.334	4	0	1_	0	1_	0	2
314			min	-1689.422	3	1.158	15	0	1	0	4	017	4	005	3
315		6	max		2	4.171	6	3.875	4	0	1	0	1	0	2
316			min	-1689.55	3	.977	15	0	1	0	4	016	4	006	3
317		7	max	1601.399	2	3.401	6	4.415	4	0	1	0	1	001	15
318			min	-1689.678	3	.796	15	0	1	0	4	014	4	007	3
319		8	max		2	2.631	6	4.956	4	0	1	0	1_	002	15
320			min	-1689.806	3	.612	12	0	1	0	4	012	4	007	4
321		9	max	1601.059	2	1.955	2	5.496	4	0	1	0	_1_	002	15
322			min	-1689.933	3	.312	12	0	1	0	4	01	4	008	4
323		10	max	1600.888	2	1.355	2	6.037	4	0	1	0	1	002	15
324			min	-1690.061	3	022	3	0	1	0	4	008	4	009	4
325		11	max	1600.718	2	.755	2	6.577	4	0	1	0	1	002	15
326			min	-1690.189	3	472	3	0	1	0	4	005	4	009	4
327		12	max	1600.548	2	.155	2	7.118	4	0	1	0	1	002	15
328			min	-1690.317	3	922	3	0	1	0	4	002	5	009	4
329		13	max	1600.377	2	29	15	7.659	4	0	1	.001	4	002	15
330			min	-1690.444	3	-1.372	3	0	1	0	4	0	1	009	4
331		14	max	1600.207	2	471	15	8.199	4	0	1	.004	4	002	15
332			min	-1690.572	3	-1.989	4	0	1	0	4	0	1	008	4
333		15	max	1600.036	2	652	15	8.74	4	0	1	.008	4	002	15
334			min	-1690.7	3	-2.759	4	0	1	0	4	0	1	007	4
335		16	max	1599.866	2	833	15	9.28	4	0	1	.012	4	001	15
336			min	-1690.828	3	-3.529	4	0	1	0	4	0	1	006	4
337		17	max	1599.696	2	-1.014	15	9.821	4	0	1	.016	4	001	15
338			min	-1690.955	3	-4.299	4	0	1	0	4	0	1	004	4
339		18	max	1599.525	2	-1.195	15	10.361	4	0	1	.02	4	0	15
340			min	-1691.083	3	-5.069	4	0	1	0	4	0	1	002	4
341		19	max	1599.355	2	-1.376	15	10.902	4	0	1	.024	4	0	1
342			min	-1691.211	3	-5.839	4	0	1	0	4	0	1	0	1
343	M8	1	max	3443.385	1	0	1	0	1	0	1	.015	4	0	1
344				-809.865	3	0	1	-256.318	4	0	1	0	1	0	1
345		2		3443.556	1	0	1	0	1	0	1	0	1	0	1
346			min		3	0	1	-256.466	4	0	1	014	4	0	1
347		3		3443.726		0	1	0	1	0	1	0	1	0	1
348			min		3	0	1	-256.613	4	0	1	044	4	0	1
349		4		3443.896	1	0	1	0	1	0	1	0	1	0	1
350				-809.482	3	0	1	-256.761	4	0	1	073	4	0	1
351		5		3444.067	1	0	1	0	1	0	1	0	1	0	1
352				-809.354	3	0	1	-256.909	_	0	1	103	4	0	1
353		6		3444.237	1	0	1	0	1	0	1	0	1	0	1
354				-809.227	3	0	1	-257.056		0	1	132	4	0	1
355		7		3444.407	1	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	-257.204		0	1	162	4	0	1
357		8		3444.578	1	0	1	0	1	0	1	0	1	0	1
358				-808.971	3	0	1	-257.352		0	1	191	4	0	1
359		9		3444.748		0	1	0	1	0	1	0	1	0	1
360				-808.843		0	1	-257.499	_	0	1	221	4	0	1
000			1111111	000.073				201.700	т				т.		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]	LC	11 1	LC_		
361		10		3444.918	1_	0	1	0	1	0	_1_	0	1	0	1
362		4.4	min	-808.715	3	0	1	-257.647	4	0	1	25	4	0	1
363		11		3445.089	1_	0	1	0	1	0	1	0	1	0	1
364		40		-808.588	3	0	1	-257.794	4	0	1	28	4	0	1
365		12		3445.259	1_	0	1	0	1	0	1	0	1	0	1
366		4.0	min		3	0	1	-257.942	4	0	1	31	4	0	1
367		13		3445.429	_1_	0	1	0	1	0	1	0	1	0	1
368			min	-808.332	3	0	1	-258.09	4	0	1	339	4	0	1
369		14	max		_1_	0	1	0	1	0	1	0	1	0	1
370			min	-808.204	3	0	1	-258.237	4	0	1	369	4	0	1
371		15	max	3445.77	_1_	0	1	0	1	0	_1_	0	1_	0	1
372			min	-808.077	3_	0	1	-258.385	4	0	1	398	4	0	1
373		16	max		_1_	0	1	0	1	0	1	0	1	0	1
374				-807.949	3	0	1	-258.533	4	0	1	428	4	0	1
375		17		3446.111	1_	0	1	0	1	0	_1_	0	1	0	1
376				-807.821	3	0	1	-258.68	4	0	1	458	4	0	1
377		18		3446.281	_1_	0	1	0	1	0	1	0	1	0	1
378				-807.693	3	0	1	-258.828	4	0	1	488	4	0	1
379		19		3446.451	1_	0	1	0	1	0	_1_	0	1	0	1
380		_		-807.566	3	0	1	-258.975	4	0	1_	517	4	0	1
381	<u>M10</u>	1		1084.378	_1_	1.983	6	041	12	0	_1_	0	1	0	1
382			min	-1118.411	3	.448	15	-61.519	4	0	5	0	3	0	1
383		2		1084.757	_1_	1.949	6	041	12	0	_1_	0	10	0	15
384				-1118.126	3	.44	15	-61.849	4	0	5	016	4	0	6
385		3		1085.136	_1_	1.916	6	041	12	0	_1_	0	12	0	15
386			min	-1117.842	3	.432	15	-62.178	4	0	5	032	4	0	6
387		4	max	1085.515	<u>1</u>	1.882	6	041	12	0	_1_	0	12	0	15
388			min	-1117.557	3	.424	15	-62.508	4	0	5	048	4	001	6
389		5	max	1085.895	_1_	1.849	6	041	12	0	_1_	0	12	0	15
390			min	-1117.273	3	.416	15	-62.837	4	0	5	064	4	002	6
391		6	max	1086.274	1_	1.816	6	041	12	0	1	0	12	0	15
392			min	-1116.988	3	.408	15	-63.167	4	0	5	08	4	002	6
393		7	max	1086.653	_1_	1.782	6	041	12	0	_1_	0	12	0	15
394			min	-1116.704	3	.401	15	-63.496	4	0	5	096	4	003	6
395		8	max	1087.032	1	1.749	6	041	12	0	1	0	12	0	15
396			min	-1116.419	3	.393	15	-63.826	4	0	5	112	4	003	6
397		9		1087.412	1	1.715	6	041	12	0	1	0	12	0	15
398			min	-1116.135	3	.385	15	-64.155	4	0	5	129	4	004	6
399		10		1087.791	1	1.682	6	041	12	0	1	0	12	0	15
400			min	-1115.851	3	.377	15	-64.485	4	0	5	145	4	004	6
401		11	max	1088.17	1	1.649	6	041	12	0	1	0	12	001	15
402			min	-1115.566	3	.369	15	-64.814	4	0	5	162	4	005	6
403		12		1088.549	1	1.615	6	041	12	0	1	0	12	001	15
404				-1115.282	3	.361	15	-65.143	4	0	5	179	4	005	6
405		13		1088.929	1	1.582	6	041	12	0	1	0	12	001	15
406			_	-1114.997	3	.354	15	-65.473	4	0	5	195	4	005	6
407		14		1089.308	1	1.549	6	041	12	0	1	0	12	001	15
408				-1114.713	3	.346	15	-65.802	4	0	5	212	4	006	6
409		15		1089.687	1	1.515	6	041	12	0	1	0	12	001	15
410			min	-1114.428	3	.338	15	-66.132	4	0	5	229	4	006	6
411		16		1090.066	1	1.482	6	041	12	0	1	0	12	001	15
412			min	-1114.144	3	.33	15	-66.461	4	0	5	246	4	007	6
413		17		1090.446	1	1.448	6	041	12	0	1	0	12	002	15
414				-1113.859	3	.322	15	-66.791	4	0	5	263	4	007	6
415		18		1090.825	1	1.415	6	041	12	0	1	0	12	002	15
416				-1113.575	3	.314	15	-67.12	4	0	5	28	4	007	6
417		19	_	1091.204	1	1.382	6	041	12	0	1	0	12	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
418			min	-1113.291	3	.306	15	-67.45	4	0	5	297	4	008	6
419	M11	1	max	402.193	2	7.955	6	1.268	4	0	1	0	12	.008	6
420			min	-536.396	3	1.859	15	08	1	0	4	021	4	.002	15
421		2	max	402.023	2	7.185	6	1.809	4	0	1	0	12	.005	2
422			min	-536.524	3	1.678	15	08	1	0	4	021	4	0	12
423		3	max	401.853	2	6.415	6	2.349	4	0	1	0	12	.002	2
424			min	-536.651	3	1.497	15	08	1	0	4	02	4	0	3
425		4	max	401.682	2	5.645	6	2.89	4	0	1	0	12	0	2
426			min	-536.779	3	1.316	15	08	1	0	4	019	4	002	3
427		5	max	401.512	2	4.875	6	3.43	4	0	1	0	12	0	15
428			min	-536.907	3	1.135	15	08	1	0	4	017	4	003	4
429		6	max	401.342	2	4.105	6	3.971	4	0	1	0	12	001	15
430			min	-537.035	3	.954	15	08	1	0	4	016	4	005	4
431		7	max	401.171	2	3.335	6	4.511	4	0	1	0	12	002	15
432			min	-537.162	3	.773	15	08	1	0	4	014	4	006	4
433		8	max	401.001	2	2.565	6	5.052	4	0	1	0	12	002	15
434			min	-537.29	3	.592	15	08	1	0	4	012	4	008	4
435		9	max	400.831	2	1.795	6	5.593	4	0	1	0	12	002	15
436			min	-537.418	3	.411	15	08	1	0	4	01	4	009	4
437		10	max	400.66	2	1.025	6	6.133	4	0	1	0	12	002	15
438			min	-537.546	3	.23	15	08	1	0	4	007	4	009	4
439		11	max	400.49	2	.364	2	6.674	4	0	1	0	12	002	15
440			min	-537.673	3	033	3	08	1	0	4	004	4	01	4
441		12	max	400.32	2	132	15	7.214	4	0	1	0	12	002	15
442			min	-537.801	3	516	4	08	1	0	4	002	4	009	4
443		13	max	400.149	2	313	15	7.755	4	0	1	.002	5	002	15
444			min	-537.929	3	-1.286	4	08	1	0	4	0	1	009	4
445		14	max	399.979	2	494	15	8.295	4	0	1	.005	5	002	15
446		17	min	-538.057	3	-2.056	4	08	1	0	4	0	1	008	4
447		15	max	399.809	2	675	15	8.836	4	0	1	.009	5	002	15
448		13	min	-538.184	3	-2.826	4	08	1	0	4	0	1	007	4
449		16	max	399.638	2	856	15	9.376	4	0	1	.012	4	001	15
450		10	min	-538.312	3	-3.596	4	08	1	0	4	0	1	006	4
451		17	max	399.468	2	-1.037	15	9.917	4	0	1	.016	4	001	15
452		17	min	-538.44	3	-4.366	4	08	1	0	4	0	1	004	4
453		18	max	399.298	2	-1.218	15	10.457	4	0	1	.021	4	0	15
454		10	min	-538.568	3	-5.136	4	08	1	0	4	0	1	002	4
455		19		399.127	2	-1.399	15	10.998	4	0	1	.025	4	0	1
456		19	max	-538.695	3	-5.906	4	08	1	0	4	0	1	0	1
457	M12	1	min		<u>ა</u> 1		1	10.25	1	0	1	.016	4	0	1
	IVIIZ			1217.864		0	1	-257.977			1		4		1
458 459		2		<u>-228.189</u> 1218.034		0	1	10.25	1	0	1	0	1	0	1
460			min		<u>1</u> 3	0	1	-258.125		0	1	014	4	0	1
461		3	+	1218.205		0	1	10.25	1	0	1	.002	1	0	1
462		J		-227.933			1				1		4		1
		1				0	1	<u>-258.272</u>	4	0		044	1	0	_
463		4		1218.375	1	0	1	10.25	1	0	1	.003		0	1
464		E		-227.805		0	-	-258.42	4	0	1	073 .004	1	0	1
465		5		1218.545	1	0	1	10.25	1	0	1			0	1
466		_		-227.678		0		-258.567	4	0		103	4	0	
467		6		1218.716	1	0	1	10.25	1	0	1	.005	1	0	1
468		7		-227.55	3_	0	1	-258.715		0	1	133	4	0	1
469		7		1218.886	1_	0	1	10.25	1	0	1	.007	1	0	1
470			min		3_	0	1	-258.863		0	1_	162	4	0	1
471		8		1219.056	1_	0	1	10.25	1	0	1	.008	1	0	1
472			min		3	0	1	-259.01	4	0	1_	192	4	0	1
473		9		1219.227	1_	0	1	10.25	1	0	1	.009	1	0	1
474			min	-227.167	3	0	1	-259.158	4	0	1	222	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1219.397	_1_	0	1	10.25	1	0	1	.01	1	0	1
476			min	-227.039	3	0	1	-259.306	4	0	1	252	4	0	1
477		11	max	1219.567	1	0	1	10.25	1	0	1	.011	1	0	1
478			min	-226.911	3	0	1	-259.453	4	0	1	281	4	0	1
479		12	max	1219.738	1	0	1	10.25	1	0	1	.012	1	0	1
480			min	-226.783	3	0	1	-259.601	4	0	1	311	4	0	1
481		13	max	1219.908	1	0	1	10.25	1	0	1	.014	1	0	1
482			min	-226.656	3	0	1	-259.749	4	0	1	341	4	0	1
483		14	max	1220.078	1	0	1	10.25	1	0	1	.015	1	0	1
484			min	-226.528	3	0	1	-259.896	4	0	1	371	4	0	1
485		15		1220.249	1	0	1	10.25	1	0	1	.016	1	0	1
486		1	min	-226.4	3	0	1	-260.044	4	0	1	401	4	0	1
487		16		1220.419	1	0	1	10.25	1	0	1	.017	1	0	1
488		10	min	-226.272	3	0	1	-260.191	4	0	1	431	4	0	1
489		17				0	1	10.25	1	0	1	.018	1	0	1
490		17	min	-226.144	3	0	1	-260.339	4	0	1	46	4	0	1
491		18	max	1220.76		0	1	10.25	1	0	1	.019	1	0	1
492		10		-226.017	3	0	1	-260.487	4	0	1	49	4	0	1
		40	min				1							1	
493		19	max		1	0		10.25	1	0	1	.021	1	0	1
494	N 4 4		min	-225.889	3	0	1	-260.634	4	0	1	52	4	0	1
495	M1	1	max	165.683	_1_	626.921	3	52.846	5	0	1	.25	1	0	3
496			min	-8.035	5_	-489.919	1	-104.634	1_	0	3	078	5	013	1
497		2	max	166.173	_1_	625.911	3	54.088	5	0	1	.195	1	.246	1
498			min	-7.806	5	-491.265	1	-104.634	1	0	3	05	5	33	3
499		3	max	320.911	3_	546.995	1_	-2.788	15	0	3	.139	1	.493	1
500			min	-195.327	2	-451.272	3	-103.904	1	0	1	022	5	647	3
501		4	max	321.278	3	545.649	1	-1.952	15	0	3	.084	_1_	.204	1
502			min	-194.837	2	-452.281	3	-103.904	1	0	1	024	5	409	3
503		5	max	321.646	3	544.303	1	-1.117	15	0	3	.03	1	003	15
504			min	-194.347	2	-453.291	3	-103.904	1	0	1	025	5	17	3
505		6	max	322.013	3	542.957	1	281	15	0	3	001	12	.07	3
506			min	-193.857	2	-454.3	3	-103.904	1	0	1	031	4	37	1
507		7	max	322.381	3	541.611	1	.692	5	0	3	004	12	.31	3
508			min	-193.367	2	-455.31	3	-103.904	1	0	1	08	1	656	1
509		8	max	322.748	3	540.265	1	1.933	5	0	3	006	12	.55	3
510			min	-192.877	2	-456.319	3	-103.904	1	0	1	135	1	942	1
511		9	max	333.196	3	40.93	2	49.573	5	0	9	.079	1	.643	3
512			min	-125.353	2	.406	15	-151.924	1	0	3	127	5	-1.073	1
513		10	max		3	39.584	2	50.815	5	0	9	0	10	.626	3
514		'	min	-124.863	2	0	5	-151.924	1	0	3	101	4	-1.085	1
515		11		333.931	3	38.238	2	52.056	5	0	9	004	12		3
516			min	-124.373	2	-1.677	4	-151.924		0	3	09	4	-1.095	1
517		12	max		3	295.658	3	142.366	5	0	2	.133	1	.53	3
518		14	min		10	-583.494	1	-101.476		0	3	191	5	967	1
519		13		344.687	3	294.648	3	143.608	5	0	2	.08	1	.374	3
520		13	min		10	-584.84	1	-101.476		0	3	116	5	659	1
521		14		345.055		293.639		144.849	5		2	.026	<u> </u>	.219	3
521		14		-77.905	<u>3</u> 10	-586.187	<u>3</u>	-101.476		0	3	04	5	35	1
		4.5	min							_					
523		15		345.422	3	292.629	3	146.091	5	0	2	.037	5	.065	3
524		40	min	-77.497	10	-587.533	1	-101.476		0	3	028	1	04	1
525		16	max		3	291.62	3	147.332		0	2	.114	5	.288	2
526			min	-77.088	<u> 10</u>	-588.879	1	-101.476		0	3	081	1_	09	3
527		17	max		3	290.61	3	148.574	5	0	2	.193	5	.591	2
528			min	-76.68	<u> 10</u>	-590.225	1	-101.476		0	3	135	1_	243	3
529		18	max		_5_	582.375	2	-4.863	12	0	5	.17	5	.297	2
530			min		1_	-245.262	3	-120.202		0	2	192	1	12	3
531		19	max	15.992	5	581.029	2	-4.863	12	0	5	.12	5	.009	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC			z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
532			min	-165.889	1	-246.271	3	-118.961	4	0	2	251	1	012	1
533	M5	1	max	357.812	1	2089.61	3	92.995	5	0	1	0	1_	.026	1
534			min	12.023	12	-1656.65	1	0	1	0	4	175	4	0	3
535		2	max	358.302	1	2088.601	3	94.236	5	0	1	0	1	.901	1
536			min	12.268	12	-1657.996	1	0	1	0	4	126	4	-1.103	3
537		3	max	1032.77	3	1675.18	1	39.223	4	0	4	0	1	1.736	1
538			min	-701.396	2	-1452.906	3	0	1	0	1	077	4	-2.162	3
539		4	max	1033.138	3	1673.834	1	40.464	4	0	4	0	1	.852	1
540			min	-700.906	2	-1453.915	3	0	1	0	1	056	4	-1.396	3
541		5	max	1033.505	3	1672.488	1	41.706	4	0	4	0	1	.01	9
542			min	-700.416	2	-1454.925	3	0	1	0	1	035	4	628	3
543		6	max	1033.873	3	1671.142	1	42.947	4	0	4	0	1	.14	3
544			min	-699.926	2	-1455.935	3	0	1	0	1	012	5	913	1
545		7	max		3	1669.796	1	44.188	4	0	4	.011	4	.908	3
546			min	-699.436	2	-1456.944	3	0	1	0	1	0	1	-1.794	1
547		8	max		3	1668.45	1	45.43	4	0	4	.034	4	1.677	3
548			min	-698.946	2	-1457.954	3	0	1	0	1	0	1	-2.675	1
549		9	_	1052.387	3	136.191	2	159.214	4	0	1	0	1	1.932	3
550			min	-560.065	2	.407	15	0	1	0	1	176	4	-3.027	1
551		10		1052.754	3	134.845	2	160.456	4	0	1	0	1	1.87	3
552		10	min	-559.575	2	.001	15	0	1	0	1	092	5	-3.065	1
553		11		1053.121	3	133.499	2	161.697	4	0	1	0	1	1.809	3
554			min	-559.085	2	-1.51	6	0	1	0	1	008	5	-3.103	1
555		12		1071.018	3	939.116	3	200.218	4	0	1	0	1	1.588	3
		12			2	-1813.526			1		<u> </u>				
556		40	min	-420.23			1	0	· · ·	0	4	274	4	-2.765	1
557		13		1071.385	3	938.107	3	201.46	4	0	1	0	1_	1.092	3
558		4.4	min	-419.74	2	-1814.872	1	0	1	0	4	168	4_	-1.808	1
559		14	max		3	937.097	3	202.701	4	0	1	0	1	.598	3
560			min	-419.251	2	-1816.218	1	0	1	0	4	061	4_	85	1
561		15	max	1072.12	3	936.088	3	203.943	4	0	1	.046	4_	.177	2
562		4.0	min	-418.761	2	-1817.564	1	0	1	0	4	0	1_	004	13
563		16		1072.488	3	935.078	3	205.184	4	0	1	.154	4_	1.11	2
564			min	-418.271	2	-1818.91	1	0	1	0	4	0	1_	39	3
565		17		1072.855	3	934.069	3	206.426	4	0	1	.262	4	2.045	2
566			min	-417.781	2	-1820.256	1	0	1	0	4	0	1_	883	3
567		18	max	-12.512	12	1961.115	2	0	1_	0	4	.272	_4_	1.054	2
568			min	-357.889	1	-839.74	3	-34.898	5	0	1	0	1_	462	3
569		19	max	-12.267	12	1959.769	2	0	1	0	4	.255	4_	.023	1
570			min	-357.399	1	-840.749	3	-33.656	5	0	1	0	1	018	3
571	M9	1	max	165.683	1	626.921	3	104.634	1	0	3	011	12	0	3
572			min	6.512	12	-489.919	1	4.802	12	0	4	25	1	013	1
573		2	max		1	625.911	3	104.634	1_	0	3	009	12	.246	1
574			min	6.757	12	-491.265	1	4.802	12	0	4	195	1	33	3
575		3	max	320.911	3	546.995	1	103.904	1	0	1	006	12	.493	1
576			min	-195.327	2	-451.272	3	4.759	12	0	3	139	1	647	3
577		4		321.278	3	545.649	1	103.904	1	0	1	004	12	.204	1
578			min		2	-452.281	3	4.759	12	0	3	084	1	409	3
579		5		321.646	3	544.303	1	103.904	1	0	1	001	12	004	15
580				-194.347	2	-453.291	3	4.759	12	0	3	035	4	17	3
581		6		322.013	3	542.957	1	103.904	1	0	1	.025	1	.07	3
582				-193.857	2	-454.3	3	4.759	12	0	3	023	5	37	1
583		7		322.381	3	541.611	1	103.904	1	0	1	.023	1	.31	3
584			min		2	-455.31	3	4.759	12	0	3	016	5	656	1
585		8		322.748	3	540.265	1	103.904	1	0	1	.135	<u> </u>	.55	3
586		U	min		2	-456.319	3	4.759	12	0	3	01	5	942	1
587		9		333.196	3	40.93	2	151.924	1	0	3	004	<u> </u>	.643	3
588		3			2		15	6.792	12		9		4		1
200			1111111	-125.353		.412	ID	0.792	12	0	9	154	4	-1.073	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	333.563	3	39.584	2	151.924	1	0	3	0	1	.626	3
590			min	-124.863	2	.006	15	6.792	12	0	9	101	4	-1.085	1
591		11	max	333.931	3	38.238	2	151.924	1	0	3	.081	1	.609	3
592			min	-124.373	2	-1.63	6	6.792	12	0	9	064	5	-1.095	1
593		12	max	344.32	3	295.658	3	177.202	4	0	3	006	12	.53	3
594			min	-78.721	10	-583.494	1	4.422	12	0	2	237	4	967	1
595		13	max	344.687	3	294.648	3	178.444	4	0	3	004	12	.374	3
596			min	-78.313	10	-584.84	1	4.422	12	0	2	143	4	659	1
597		14	max	345.055	3	293.639	3	179.685	4	0	3	001	12	.219	3
598			min	-77.905	10	-586.187	1	4.422	12	0	2	048	4	35	1
599		15	max	345.422	3	292.629	3	180.927	4	0	3	.047	4	.065	3
600			min	-77.497	10	-587.533	1	4.422	12	0	2	.001	12	04	1
601		16	max	345.79	3	291.62	3	182.168	4	0	3	.143	4	.288	2
602			min	-77.088	10	-588.879	1	4.422	12	0	2	.003	12	09	3
603		17	max	346.157	3	290.61	3	183.41	4	0	3	.239	4	.591	2
604			min	-76.68	10	-590.225	1	4.422	12	0	2	.006	12	243	3
605		18	max	-6.635	12	582.375	2	111.33	1	0	2	.235	4	.297	2
606			min	-166.379	1	-245.262	3	-83.542	5	0	3	.008	12	12	3
607	·	19	max	-6.39	12	581.029	2	111.33	1	0	2	.251	1	.009	3
608			min	-165.889	1	-246.271	3	-82.301	5	0	3	.011	12	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.108	1	.006	3	8.686e-3	1	NC	1	NC	1
2			min	582	4	016	3	003	2	-1.316e-3	3	NC	1	NC	1
3		2	max	0	1	.303	3	.041	1	1.001e-2	1	NC	5	NC	2
4			min	582	4	12	1	018	5	-1.362e-3	3	771.507	3	6216.76	1
5		3	max	0	1	.561	3	.099	1	1.134e-2	1	NC	5	NC	3
6			min	582	4	301	1	022	5	-1.408e-3	3	426.399	3	2535.337	1
7		4	max	0	1	.717	3	.149	1	1.266e-2	1	NC	5	NC	3
8			min	582	4	402	1	015	5	-1.454e-3	3	335.437	3	1674.864	1
9		5	max	0	1	.753	3	.174	1	1.399e-2	1	NC	5	NC	3
10			min	582	4	41	1	003	5	-1.5e-3	3	319.836	3	1424.937	1
11		6	max	0	1	.671	3	.169	1	1.531e-2	1	NC	5	NC	3
12			min	582	4	326	1	.007	15	-1.546e-3	3	358.099	3	1474.348	1
13		7	max	0	1	.495	3	.133	1	1.664e-2	1	NC	5	NC	3
14			min	582	4	172	1	.007	10	-1.592e-3	3	481.112	3	1876.738	1
15		8	max	0	1	.272	3	.078	1	1.796e-2	1	NC	4	NC	2
16			min	582	4	003	9	0	10	-1.638e-3	3	852.754	3	3241.486	1
17		9	max	0	1	.186	2	.025	4	1.929e-2	1	NC	4	NC	1
18			min	583	4	.005	15	005	10	-1.684e-3	3	2844.3	3	9937.399	4
19		10	max	0	1	.258	1	.018	3	2.061e-2	1	NC	3	NC	1
20			min	583	4	021	3	012	2	-1.73e-3	3	1642.944	1_	NC	1
21		11	max	0	12	.186	2	.023	1	1.929e-2	1	NC	4	NC	1
22			min	583	4	.005	15	015	5	-1.684e-3	3	2844.3	3	NC	1
23		12	max	0	12	.272	3	.078	1	1.796e-2	1	NC	4	NC	2
24			min	583	4	003	9	015	5	-1.638e-3	3	852.754	3	3241.486	1
25		13	max	0	12	.495	3	.133	1	1.664e-2	1	NC	5	NC	3
26			min	583	4	172	1	005	5	-1.592e-3	3	481.112	3	1876.738	1
27		14	max	0	12	.671	3	.169	1	1.531e-2	1	NC	5	NC	3
28			min	583	4	326	1	.006	15	-1.546e-3	3	358.099	3	1474.348	1
29		15	max	0	12	.753	3	.174	1	1.399e-2	1	NC	5	NC	3
30			min	583	4	41	1	.013	10	-1.5e-3	3	319.836	3	1424.937	1
31		16	max	0	12	.717	3	.149	1	1.266e-2	1	NC	5	NC	3
32			min	583	4	402	1	.011	10	-1.454e-3	3	335.437	3	1674.864	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				
33		17	max	0	12	.561	3	.099	1	1.134e-2	1_	NC	5_	NC	3
34			min	583	4	301	1	.007	10	-1.408e-3	3	426.399	3	2535.337	1
35		18	max	0	12	.303	3	.041	1_	1.001e-2	_1_	NC	_5_	NC	2
36			min	583	4	12	1	.002		-1.362e-3	3	771.507	3	6216.76	1
37		19	max	0	12	.108	1	.006	3	8.686e-3	1_	NC	_1_	NC	1
38		4	min	583	4	016	3	003	2	-1.316e-3	3	NC	1_	NC NC	1
39	M14	1	max	0	1	.19	3	.005	3	5.416e-3	1_	NC	1_	NC NC	1
40			min	448	4	352	1	002	2	-3.428e-3	3	NC NC	1_	NC NC	1
41		2	max	0	1	.494	3	.029	1	6.513e-3	1	NC COO 454	5	NC 0004 00	2
42		2	min	<u>448</u>	1	709	1	027	5	-4.183e-3	3	690.454 NC	1_	9084.99 NC	1
		3	max	0 448		.75	3	.08 032	5	7.609e-3 -4.939e-3	1	371.676	<u>15</u> 1	3155.868	3
44 45		4	min	446 0	1	<u>-1.014</u> .926	3	032 .128	1	8.705e-3	3	NC	15	NC	3
46		4	max	448	4	-1.234	1	021	5	-5.694e-3	<u>1</u>	278.963	1	1953.372	1
47		5		446 0	1	1.006	3	.155	1	9.802e-3	<u> </u>	9724.543	15	NC	3
48		1 5	max	448	4	-1.351	1	003	5	-6.449e-3	3	246.36	1	1603.932	1
49		6	max	0	1	.99	3	.153	1	1.09e-2	1	9646.136	15	NC	3
50		T .	min	448	4	-1.364	1	.011		-7.205e-3	3	243.191	1	1622.513	
51		7	max	0	1	.895	3	.123	1	1.199e-2	1	NC	15	NC	3
52			min	448	4	-1.29	1	.007	10	-7.96e-3	3	262.344	1	2032.375	
53		8	max	0	1	.755	3	.073	1	1.309e-2	1	NC	15	NC	2
54			min	448	4	-1.163	1	.001	10	-8.716e-3	3	303.313	1	3462.971	1
55		9	max	0	1	.621	3	.036	4	1.419e-2	1	NC	15	NC	1
56			min	448	4	-1.035	1	004	10	-9.471e-3	3	360.233	1	6824.828	4
57		10	max	0	1	.558	3	.016	3	1.528e-2	1	NC	5	NC	1
58			min	448	4	974	1	011	2	-1.023e-2	3	395.63	1	NC	1
59		11	max	0	12	.621	3	.022	1	1.419e-2	1	NC	15	NC	1
60			min	448	4	-1.035	1	026	5	-9.471e-3	3	360.233	1	9694.15	5
61		12	max	0	12	.755	3	.073	1	1.309e-2	1_	NC	15	NC	2
62			min	448	4	-1.163	1	03	5	-8.716e-3	3	303.313	1_	3462.971	1
63		13	max	0	12	.895	3	.123	1	1.199e-2	_1_	NC	15	NC	3
64			min	448	4	-1.29	1	019	5	-7.96e-3	3	262.344	<u>1</u>	2032.375	
65		14	max	0	12	.99	3	.153	1	1.09e-2	1_	9645.774	<u>15</u>	NC	3
66			min	448	4	-1.364	1	0		-7.205e-3	3	243.191	_1_	1622.513	
67		15	max	0	12	1.006	3	.155	1	9.802e-3	1_	9724.082	<u>15</u>	NC	3
68		40	min	448	4	<u>-1.351</u>	1	.011	10		3	246.36	1_	1603.932	1
69		16	max	0	12	.926	3	.128	1	8.705e-3	1_	NC	<u>15</u>	NC 1050.070	3
70		4.7	min	448	4	-1.234	1	.009		-5.694e-3	3	278.963	1_	1953.372	
71		17	max	0	12	.75	3	.08	1	7.609e-3	1_	NC 074 C7C	<u>15</u>	NC O4FF 0C0	3
72		10	min	448	12	<u>-1.014</u>	3	.005	10	-4.939e-3 6.513e-3	3	371.676	<u>1</u> 5	3155.868	2
73		18	max			.494		.037				NC COO 454	<u>5</u> 1		
74 75		19	min	448 0	12	<u>709</u> .19	3	<u> </u>	10 3	-4.183e-3 5.416e-3	3	690.454 NC	1	6583.216 NC	1
76		19	max min	448	4	352	1	002	2	-3.428e-3	<u>1</u> 3	NC NC	1	NC NC	1
77	M15	1	max	448 0	12	.194	3	.005	3	2.894e-3	3	NC	1	NC	1
78	IVITO		min	371	4	352	1	002	2	-5.536e-3	1	NC	1	NC	1
79		2	max	0	12	.384	3	.029	1	3.535e-3	3	NC	5	NC	2
80			min	371	4	749	1	037	5	-6.662e-3	1	619.2	1	6435.171	5
81		3	max	0	12	.548	3	.08	1	4.177e-3	3	NC	15	NC	3
82		1	min	371	4	-1.088	1	045	5	-7.789e-3	1	334.223	1	3147.013	
83		4	max	0	12	.669	3	.128	1	4.818e-3	3	NC	15	NC	3
84			min	371	4	-1.328	1	032	5	-8.915e-3	1	252.027	1	1949.038	
85		5	max	0	12	.736	3	.156	1	5.46e-3	3	9735.714	15	NC	3
86		Ť	min	371	4	-1.449	1	008	5	-1.004e-2	1	224.182		1600.638	
87		6	max	0	12	.751	3	.154	1	6.101e-3	3	9659.359	15	NC	3
88		Ĭ	min	371	4	-1.451	1	.011		-1.117e-2	1	223.702	1	1618.969	
89		7	max	0	12	.72	3	.123	1	6.743e-3	3	NC	15		3
		_								,	_				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

91		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					LC
92	90			min	371	4	<u>-1.355</u>	1	.007	10 -1.229e-2	1_	245.231	1_	2026.773	1
99			8												
94													_		
95			9								3		15		
99			40								1		1_		_
98			10												
98			4.4												
99			11												
100			12								•		•		
101			12			_									1
102			12								_		•		2
103			13												
104			1/												-
105			14												1
106			15					_			•		•		2
107			13												1
108			16								_				2
109			10		-										
110			17										•		
111			17			_									
112			18								_				_
113			10												
114			10										•		
115			19								1		1		1
116		M16	1								3		+		1
117		IVITO	<u>'</u>										_		
118			2												_
119															
120			3							0 0.20.00					
121															
122			4			_					_				
123															
124			5												
125			Ť		-										1
126			6								•				3
127 7 max 0 12 .05 3 .133 1 1.064e-2 3 NC 5 NC 3 128 min 147 4 284 2 .008 10 -1.51e-2 1 653.043 2 1865.563 1 129 8 max 0 12 .004 4 .079 1 1.156e-2 3 NC 3 NC 3 130 min 147 4 067 2 .002 10 -1.627e-2 1 1542.173 2 3195.58 1 131 9 max 0 12 .161 1 .032 4 1.249e-2 3 NC 4 NC 1 132 min 147 4 133 3 003 10 -1.745e-2 1 3549.508 3 7569.651 4 133 10 max 0 1 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>					-										
128			7												3
129 8 max 0 12 .004 4 .079 1 1.156e-2 3 NC 3 NC 3 130 min 147 4 067 2 .002 10 -1.627e-2 1 1542.173 2 3195.58 1 131 9 max 0 12 .161 1 .032 4 1.249e-2 3 NC 4 NC 1 132 min 147 4 133 3 003 10 -1.745e-2 1 3549.508 3 7569.651 4 133 10 max 0 1 .247 1 .013 3 1.341e-2 3 NC 5 NC 1 134 min 147 4 172 3 009 2 -1.862e-2 1 1724.941 1 NC 1 135 11 max 0 1 .161 1 .024					-										
130 min 147 4 067 2 .002 10 -1.627e-2 1 1542.173 2 3195.58 1 131 9 max 0 12 .161 1 .032 4 1.249e-2 3 NC 4 NC 1 132 min 147 4 133 3 003 10 -1.745e-2 1 3549.508 3 7569.651 4 133 10 max 0 1 .247 1 .013 3 1.341e-2 3 NC 5 NC 1 134 min 147 4 172 3 009 2 -1.862e-2 1 1724.941 1 NC 1 135 11 max 0 1 .161 1 .024 1 1.249e-2 3 NC 4 NC 1 136 min 147 4 13			8			12		4			3	NC	3		3
131 9 max 0 12 .161 1 .032 4 1.249e-2 3 NC 4 NC 1 132 min 147 4 133 3 003 10 -1.745e-2 1 3549.508 3 7569.651 4 133 10 max 0 1 .247 1 .013 3 1.341e-2 3 NC 5 NC 1 134 min 147 4 172 3 009 2 -1.862e-2 1 1724.941 1 NC 1 135 11 max 0 1 .161 1 .024 1 1.249e-2 3 NC 4 NC 1 136 min 147 4 133 3 023 5 -1.745e-2 1 3549.508 3 NC 1 137 12 max 0 1 .004										10 -1.627e-2	1	1542.173	2	3195.58	
132 min 147 4 133 3 003 10 -1.745e-2 1 3549.508 3 7569.651 4 133 10 max 0 1 .247 1 .013 3 1.341e-2 3 NC 5 NC 1 134 min 147 4 172 3 009 2 -1.862e-2 1 1724.941 1 NC 1 135 11 max 0 1 .161 1 .024 1 1.249e-2 3 NC 4 NC 1 136 min 147 4 133 3 023 5 -1.745e-2 1 3549.508 3 NC 1 137 12 max 0 1 .004 6 .079 1 1.156e-2 3 NC 3 NC 3 138 min 147 4 067 <td></td> <td></td> <td>9</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>			9					1							1
133 10 max 0 1 .247 1 .013 3 1.341e-2 3 NC 5 NC 1 134 min 147 4 172 3 009 2 -1.862e-2 1 1724.941 1 NC 1 135 11 max 0 1 .161 1 .024 1 1.249e-2 3 NC 4 NC 1 136 min 147 4 133 3 023 5 -1.745e-2 1 3549.508 3 NC 1 137 12 max 0 1 .004 6 .079 1 1.156e-2 1 3549.508 3 NC 3 138 min 147 4 067 2 024 5 -1.627e-2 1 1542.173 2 3195.58 1 139 13 max 0 1					147			3					3		4
134 min 147 4 172 3 009 2 -1.862e-2 1 1724.941 1 NC 1 135 11 max 0 1 .161 1 .024 1 1.249e-2 3 NC 4 NC 1 136 min 147 4 133 3 023 5 -1.745e-2 1 3549.508 3 NC 1 137 12 max 0 1 .004 6 .079 1 1.156e-2 3 NC 3 NC 3 138 min 147 4 067 2 024 5 -1.627e-2 1 1542.173 2 3195.58 1 139 13 max 0 1 .05 3 .133 1 1.064e-2 3 NC 5 NC 3 140 min 147 4 284			10			1					3				1
135 11 max 0 1 .161 1 .024 1 1.249e-2 3 NC 4 NC 1 136 min 147 4 133 3 023 5 -1.745e-2 1 3549.508 3 NC 1 137 12 max 0 1 .004 6 .079 1 1.156e-2 3 NC 3 NC 3 138 min 147 4 067 2 024 5 -1.627e-2 1 1542.173 2 3195.58 1 139 13 max 0 1 .05 3 .133 1 1.064e-2 3 NC 5 NC 3 140 min 147 4 284 2 011 5 -1.51e-2 1 653.043 2 1865.563 1 141 max 0 1 .131					147	4		3			1	1724.941	1		1
136 min 147 4 133 3 023 5 -1.745e-2 1 3549.508 3 NC 1 137 12 max 0 1 .004 6 .079 1 1.156e-2 3 NC 3 NC 3 138 min 147 4 067 2 024 5 -1.627e-2 1 1542.173 2 3195.58 1 139 13 max 0 1 .05 3 .133 1 1.064e-2 3 NC 5 NC 3 140 min 147 4 284 2 011 5 -1.51e-2 1 653.043 2 1865.563 1 141 14 max 0 1 .131 3 .169 1 9.713e-3 3 NC 5 NC 3 142 min 147 4 46 <td></td> <td></td> <td>11</td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td>3</td> <td>NC</td> <td>4</td> <td></td> <td>1</td>			11			1		1			3	NC	4		1
137 12 max 0 1 .004 6 .079 1 1.156e-2 3 NC 3 NC 3 138 min 147 4 067 2 024 5 -1.627e-2 1 1542.173 2 3195.58 1 139 13 max 0 1 .05 3 .133 1 1.064e-2 3 NC 5 NC 3 140 min 147 4 284 2 011 5 -1.51e-2 1 653.043 2 1865.563 1 141 14 max 0 1 .131 3 .169 1 9.713e-3 3 NC 5 NC 3 142 min 147 4 46 2 .006 15 -1.393e-2 1 445.032 2 1470.42 1 143 15 max 0 1					147	4	133	3	023		1	3549.508	3	NC	1
138 min 147 4 067 2 024 5 -1.627e-2 1 1542.173 2 3195.58 1 139 13 max 0 1 .05 3 .133 1 1.064e-2 3 NC 5 NC 3 140 min 147 4 284 2 011 5 -1.51e-2 1 653.043 2 1865.563 1 141 14 max 0 1 .131 3 .169 1 9.713e-3 3 NC 5 NC 3 142 min 147 4 46 2 .006 15 -1.393e-2 1 445.032 2 1470.42 1 143 15 max 0 1 .177 3 .174 1 8.788e-3 3 NC 5 NC 3 144 min 147 4 551	137		12	max	0	1	.004	6	.079		3	NC	3	NC	3
139 13 max 0 1 .05 3 .133 1 1.064e-2 3 NC 5 NC 3 140 min 147 4 284 2 011 5 -1.51e-2 1 653.043 2 1865.563 1 141 14 max 0 1 .131 3 .169 1 9.713e-3 3 NC 5 NC 3 142 min 147 4 46 2 .006 15 -1.393e-2 1 445.032 2 1470.42 1 143 15 max 0 1 .177 3 .174 1 8.788e-3 3 NC 5 NC 3 144 min 147 4 551 2 .012 12 -1.275e-2 1 381.932 2 1423.927 1 145 16 max 0 1 .177 3 .148 1 7.863e-3 3 NC 5 NC 3					147	4	067	2	024		1	1542.173	2	3195.58	1
140 min 147 4 284 2 011 5 -1.51e-2 1 653.043 2 1865.563 1 141 14 max 0 1 .131 3 .169 1 9.713e-3 3 NC 5 NC 3 142 min 147 4 46 2 .006 15 -1.393e-2 1 445.032 2 1470.42 1 143 15 max 0 1 .177 3 .174 1 8.788e-3 3 NC 5 NC 3 144 min 147 4 551 2 .012 12 -1.275e-2 1 381.932 2 1423.927 1 145 16 max 0 1 .177 3 .148 1 7.863e-3 3 NC 5 NC 3			13			1					3		5		3
141 14 max 0 1 .131 3 .169 1 9.713e-3 3 NC 5 NC 3 142 min 147 4 46 2 .006 15 -1.393e-2 1 445.032 2 1470.42 1 143 15 max 0 1 .177 3 .174 1 8.788e-3 3 NC 5 NC 3 144 min 147 4 551 2 .012 12 -1.275e-2 1 381.932 2 1423.927 1 145 16 max 0 1 .177 3 .148 1 7.863e-3 3 NC 5 NC 3					147	4					1		2		1
142 min 147 4 46 2 .006 15 -1.393e-2 1 445.032 2 1470.42 1 143 15 max 0 1 .177 3 .174 1 8.788e-3 3 NC 5 NC 3 144 min 147 4 551 2 .012 12 -1.275e-2 1 381.932 2 1423.927 1 145 16 max 0 1 .177 3 .148 1 7.863e-3 3 NC 5 NC 3			14		0	1	.131	3			3		5		
143 15 max 0 1 .177 3 .174 1 8.788e-3 3 NC 5 NC 3 144 min 147 4 551 2 .012 12 -1.275e-2 1 381.932 2 1423.927 1 145 16 max 0 1 .177 3 .148 1 7.863e-3 3 NC 5 NC 3					147	4					1				
144 min 147 4 551 2 .012 12 -1.275e-2 1 381.932 2 1423.927 1 145 16 max 0 1 .177 3 .148 1 7.863e-3 3 NC 5 NC 3			15								3				3
145 16 max 0 1 .177 3 .148 1 7.863e-3 3 NC 5 NC 3					147	4					1		2		1
			16								3		5		3
1000 E 1010 E 1010	146			min	147	4	535	2	.01	12 -1.158e-2		392.129	2	1676.396	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
147		17	max	0	1	.131	3	.098	1	6.938e-3	3	NC	5	NC	3
148			min	147	4	407	2	.007	12	-1.041e-2	_1_	492.49	2	2542.51	1
149		18	max	0	1	.045	3	.043	4	6.013e-3	3_	NC	5	NC TOO	2
150		40	min	147	4	185	2	.002	10	-9.234e-3	1_	885.351	2	5770.769	
151		19	max	.001	1	.105	1	.004	3	5.088e-3	3	NC NC	1	NC NC	1
152	MO	1	min	<u>147</u>	4	<u>064</u>	3	002	2	-8.061e-3	1_	NC NC	1	NC NC	2
153	M2	1	max	.006	3	.004	3	.008	1	1.366e-3 -2.162e-4	5	NC NC	1		
154 155		2	min	006 .005	1	008 .004	2	<u>548</u> .007	1	1.463e-3	<u>1</u> 5	NC NC	1	100.958 NC	2
156			max min	006	3	008	3	503	4	-2.017e-4	1	NC NC	1	109.967	4
157		3	max	.005	1	.003	2	.007	1	1.561e-3	5	NC NC	1	NC	2
158		<u> </u>	min	005	3	007	3	459	4	-1.872e-4	1	NC	1	120.671	4
159		4	max	.005	1	.002	2	.006	1	1.658e-3	5	NC	1	NC	2
160			min	005	3	007	3	415	4	-1.727e-4	1	NC	1	133.514	4
161		5	max	.005	1	.002	2	.005	1	1.756e-3	5	NC	1	NC	1
162			min	005	3	007	3	371	4	-1.581e-4	1	NC	1	149.097	4
163		6	max	.004	1	.001	2	.005	1	1.853e-3	5	NC	1	NC	1
164			min	004	3	006	3	329	4	-1.436e-4	1	NC	1	168.254	4
165		7	max	.004	1	0	2	.004	1	1.95e-3	5	NC	1	NC	1
166			min	004	3	006	3	288	4	-1.291e-4	1	NC	1	192.17	4
167		8	max	.004	1	0	2	.004	1	2.048e-3	5	NC	1	NC	1
168			min	004	3	006	3	249	4	-1.146e-4	1	NC	1	222.572	4
169		9	max	.003	1	0	2	.003	1	2.149e-3	4	NC	1	NC	1
170			min	003	3	005	3	211	4	-1.001e-4	1	NC	1	262.061	4
171		10	max	.003	1	0	15	.003	1	2.252e-3	4	NC	1	NC	1
172			min	003	3	005	3	176	4	-8.557e-5	1	NC	1	314.704	4
173		11	max	.003	1	0	15	.002	1	2.355e-3	4	NC	1	NC	1
174			min	003	3	005	3	143	4	-7.105e-5	1_	NC	1	387.158	4
175		12	max	.002	1	0	15	.002	1	2.458e-3	4_	NC	1	NC	1
176			min	002	3	004	3	113	4	-5.653e-5	_1_	NC	1_	490.944	4
177		13	max	.002	1	0	15	.001	1	2.56e-3	_4_	NC	1	NC	1
178			min	002	3	004	3	085	4	-4.202e-5	_1_	NC	1	647.459	4
179		14	max	.002	1	0	15	0	1	2.663e-3	4_	NC NC	1	NC 000.074	1
180		4.5	min	002	3	003	3	061	4	-2.75e-5	1_	NC	1	900.271	4
181		15	max	.001	1	0	15	0	1	2.766e-3	4_	NC NC	1	NC	1
182		4.0	min	<u>001</u>	3	003	3	041	4	-1.299e-5	1	NC NC	1	1349.938	
183		16	max	0	3	0 002	15	0 024	1	2.869e-3 -3.245e-7	<u>4</u> 3	NC NC	1	NC 2274.912	1
184		17	min	0	1		15		1		<u> </u>		1		4
185 186		17	max min	<u> </u>	3	0 001	3	0 012	4	2.972e-3 4.761e-7	12	NC NC	1	NC 4710.534	4
187		1Ω	max	0	1	<u>001</u> 0	15	012 0	1	3.074e-3		NC NC	1	NC	1
188		10	min	0	3	0	6	004	4	1.152e-6	12	NC	1	NC	1
189		19	max	0	1	0	1	004	1	3.177e-3	4	NC	1	NC	1
190		13	min	0	1	0	1	0	1	1.828e-6	12	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-5.837e-7	12	NC	1	NC	1
192	IVIO		min	0	1	0	1	0	1	-7.479e-4	4	NC	1	NC	1
193		2	max	0	3	0	15	.015	4	1.037e-5	1	NC	1	NC	1
194			min	0	2	002	6	0	12	-8.088e-5	5	NC	1	NC	1
195		3	max	0	3	0	15	.029	4	5.9e-4	4	NC	1	NC	1
196		Ĭ	min	0	2	003	6	0	12	1.502e-6	12	NC	1	NC	1
197		4	max	0	3	001	15	.043	4	1.259e-3	4	NC	1	NC	1
198			min	0	2	005	6	0	12	2.545e-6	12	NC	1	9113.381	5
199		5	max	.001	3	002	15	.055	4	1.928e-3	4	NC	1	NC	1
200			min	0	2	007	6	0	12	3.588e-6	12	NC	1	7835.998	
201		6	max	.001	3	002	15	.067	4	2.597e-3	4	NC	1	NC	1
202			min	0	2	009	6	0	12	4.63e-6	12	NC	1	7291.668	5
203		7	max	.002	3	002	15	.078	4	3.266e-3	4	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
204			min	001	2	01	6	0	12	5.673e-6	12	9085.16	6	7190.706	
205		8	max	.002	3	002	15	.089	4	3.935e-3	4	NC	1_	NC 7447.000	1
206			min	001	2	011	6	0	12	6.716e-6		8117.841	6	7447.928	5
207		9	max	.002	3	003	15	.099	4	4.604e-3	4	NC	2	NC	1
208		40	min	002	2	012	6	0	12	7.759e-6	12	7541.622	6	8082.783	5
209		10	max	.002	3	003	15	.108	4	5.273e-3	4	NC 7254.84	2	NC	1
210		11	min	002	3	013	6	0	12	8.802e-6	12	7254.84 NC	6	9214.07 NC	5
211			max	.003	2	003	15	.118	4	5.942e-3	4	7214.778	2		1
212		12	min	002		013	6	127	12	9.844e-6			6	NC NC	
213 214		12	max	.003 002	3	003 012	15	127 0	12	6.61e-3 1.089e-5	<u>4</u> 12	NC 7421,217	6	NC NC	1
215		13	min	.002	3	012	15	.136	4	7.279e-3	4	NC	1	NC NC	1
216		13	max		2			0	12	1.193e-5		7918.389	6	NC NC	1
		1.1	min	002		012	15				12		1		1
217 218		14	max	.003	3	002		.145 0	12	7.948e-3 1.297e-5	4	NC 8818.344		NC NC	1
219		15	min	003 .004	3	011 002	15	.154	4	8.617e-3	<u>12</u> 4	NC	<u>6</u> 1	NC NC	1
220		10	max	003	2	002 009	6	0	12	1.402e-5	12	NC NC	1	NC NC	1
221		16	min	.003	3	009 001	15	.164	4			NC NC	1	NC NC	1
222		10	max min	003	2	001	1	164 0	12	9.286e-3	<u>4</u> 12	NC NC	1	NC NC	1
223		17		.003	3	<u>008</u> 0	15	.174	4	1.506e-5 9.955e-3	4	NC NC	1	NC NC	1
224		17	max min	003	2	006	1	0	12	1.61e-5	12	NC NC	1	NC NC	1
225		18	max	.003	3	<u>000</u> 0	15	.186	4	1.062e-2	4	NC	1	NC	1
226		10	min	003	2	005	1	0	12	1.714e-5	12	NC NC	1	NC NC	1
227		19		.005	3	<u>005</u> 0	5	.198	4	1.714e-3 1.129e-2	4	NC NC	1	NC NC	1
228		19	max		2		1			1.129e-2 1.819e-5	12	NC NC	1	NC NC	1
229	M4	1	min	004 .003	1	003 .003	2	<u> </u>	12	2.062e-5	<u>12</u> 1	NC NC	1	NC NC	3
	IVI4		max	0	3	005	3	198	4	-6.78e-4	4	NC NC	1	125.531	4
230		2	min		_		2					NC NC	1	NC	3
231			max	.003	3	.003	3	0 182	12	2.062e-5	1_4	NC NC	1		4
232		3	min	.003	1	004 .003	2	<u>102</u> 0	12	-6.78e-4 2.062e-5	<u>4</u> 1	NC NC	1	136.603 NC	3
233 234		3	max min	.003	3	004	3	166	4	-6.78e-4	4	NC NC	1	149.773	4
235		4	max	.002	1	.002	2	<u>100</u> 0	12	2.062e-5	1	NC	1	NC	2
236		4	min	0	3	004	3	15	4	-6.78e-4	4	NC	1	165.589	4
237		5		.002	1	.002	2	<u>15</u> 0	12	2.062e-5	1	NC	1	NC	2
238		5	max min	.002	3	004	3	134	4	-6.78e-4	4	NC	1	184.792	4
239		6	max	.002	1	.002	2	134 0	12	2.062e-5	1	NC	1	NC	2
240			min	0	3	003	3	119	4	-6.78e-4	4	NC	1	208.411	4
241		7	max	.002	1	.002	2	0	12	2.062e-5	1	NC	1	NC	2
242			min	0	3	003	3	104	4	-6.78e-4	4	NC	1	237.908	4
243		8	max	.002	1	.002	2	0	12	2.062e-5	1	NC	1	NC	2
244		- 0	min		3	003	3	09		-6.78e-4		NC	1	275.414	4
245		9	max	.002	1	.002	2	<u>09</u>	12	2.062e-5	1	NC	1	NC	2
246			min	0	3	003	3	077	4	-6.78e-4	4	NC	1	324.136	4
247		10	max	.001	1	.003	2	0	12	2.062e-5	1	NC	1	NC	1
248		10	min	0	3	002	3	064	4	-6.78e-4	4	NC	1	389.092	4
249		11	max	.001	1	.002	2	<u>.004</u>	12	2.062e-5	1	NC	1	NC	1
250			min	0	3	002	3	052	4	-6.78e-4	4	NC	1	478.485	4
251		12	max	.001	1	.002	2	0	12	2.062e-5	1	NC	1	NC	1
252		12	min	0	3	002	3	041	4	-6.78e-4	4	NC	1	606.511	4
253		13	max	0	1	0	2	0	12	2.062e-5	1	NC	1	NC	1
254		13	min	0	3	002	3	031	4	-6.78e-4	4	NC	1	799.52	4
255		14	max	0	1	0	2	<u>031</u> 0	12	2.062e-5	1	NC	1	NC	1
256		17	min	0	3	001	3	022	4	-6.78e-4	4	NC	1	1111.121	4
257		15	max	0	1	<u>001</u> 0	2	022	12	2.062e-5	1	NC	1	NC	1
258		13	min	0	3	001	3	015	4	-6.78e-4	4	NC	1	1664.907	4
259		16	max	0	1	<u>001</u> 0	2	013 0	12	2.062e-5	1	NC NC	1	NC	1
260		10	min	0	3	0	3	009	4	-6.78e-4	4	NC	1	2802.57	4
200			1111111	U	J	U	J	003	+	0.706-4	7	INC		2002.07	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

004	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
261		17	max	0	1	0	2	0	12	2.062e-5	1	NC NC	1	NC 5704 005	1
262		10	min	0	3	0	3	004	4	-6.78e-4	4	NC	1_	5791.235	4
263		18	max	0	1	0	2	0	12	2.062e-5	1	NC	1_	NC	1
264			min	0	3	0	3	001	4	-6.78e-4	4	NC	1_	NC	1
265		19	max	0	1	00	1	0	1_	2.062e-5	1_	NC	_1_	NC	1_
266			min	0	1	0	1	0	1	-6.78e-4	4	NC	1_	NC	1
267	M6	1	max	.019	1	.017	2	0	1_	1.438e-3	4	NC	3_	NC	1
268			min	02	3	025	3	553	4	0	1	3233.84	2	100.052	4
269		2	max	.018	1	.016	2	0	1_	1.534e-3	4	NC	3_	NC	1_
270			min	018	3	023	3	508	4	0	1	3542.72	2	108.981	4
271		3	max	.017	1	.014	2	0	1	1.629e-3	4	NC	3	NC	1_
272			min	017	3	022	3	463	4	0	1	3913.929	2	119.591	4
273		4	max	.016	1	.013	2	0	1	1.725e-3	4	NC	3	NC	1_
274			min	016	3	02	3	418	4	0	1	4364.832	2	132.321	4
275		5	max	.014	1	.011	2	0	1	1.821e-3	4	NC	1_	NC	1
276			min	015	3	019	3	375	4	0	1	4919.486	2	147.767	4
277		6	max	.013	1	.01	2	0	1	1.917e-3	4	NC	1	NC	1
278			min	014	3	018	3	332	4	0	1	5612.002	2	166.757	4
279		7	max	.012	1	.009	2	0	1	2.013e-3	4	NC	1	NC	1
280			min	013	3	016	3	291	4	0	1	6492.053	2	190.465	4
281		8	max	.011	1	.007	2	0	1	2.109e-3	4	NC	1	NC	1
282			min	012	3	015	3	251	4	0	1	7634.299	2	220.603	4
283		9	max	.01	1	.006	2	0	1	2.205e-3	4	NC	1	NC	1
284			min	011	3	014	3	213	4	0	1	9155.232	2	259.752	4
285		10	max	.009	1	.005	2	0	1	2.301e-3	4	NC	1	NC	1
286			min	01	3	012	3	177	4	0	1	NC	1	311.944	4
287		11	max	.008	1	.004	2	0	1	2.396e-3	4	NC	1	NC	1
288			min	009	3	011	3	144	4	0	1	NC	1	383.781	4
289		12	max	.007	1	.003	2	0	1	2.492e-3	4	NC	1	NC	1
290		12	min	008	3	01	3	114	4	0	1	NC	1	486.691	4
291		13	max	.006	1	.002	2	0	1	2.588e-3	4	NC	1	NC	1
292		13	min	007	3	008	3	086	4	0	1	NC	1	641.901	4
293		14	max	.005	1	.001	2	000	1	2.684e-3	4	NC	1	NC	1
294		14	min	005	3	007	3	062	4	0	1	NC NC	1	892.639	4
295		15		.003	1	<u>007</u> 0	2	002 0	1	2.78e-3	4	NC	1	NC	1
296		15	max	004	3	005	3	041	4	2.700-3	1	NC NC	1	1338.699	4
		16			1				1	2.876e-3		NC NC	1	NC	1
297		16	max	.003	3	0	2	0			4	NC NC			
298		47	min	003		004	3	025	4	0	1_4		1_	2256.512	4
299		17	max	.002	1	0	2	0	1	2.972e-3	4	NC	1	NC 4074 445	1
300		40	min	002	3	003	3	012	4	0	1	NC NC	1	4674.445	4
301		18		.001	1	0	2	0	1	3.068e-3	4	NC NC	1	NC NC	1
302		40	min	001	3	001	3	004	4	0	1_4	NC NC	1_	NC NC	1
303		19	max	0	1	0	1	0	1	3.163e-3	4	NC NC	1_	NC NC	1
304	N 4-7		min	0	1	0	1	0	1	0	1	NC NC	1_	NC NC	1
305	M7	1_	max	0	1	0	1	0	1	7 10 1	1	NC	1	NC NC	1
306			min	0	1	0	1	0	1	-7.43e-4	4	NC	1_	NC	1
307		2	max	0	3	0	15	.015	4	0	1	NC	1	NC	1
308			min	0	2	002	3	0	1	-8.939e-5	4	NC	1_	NC	1
309		3	max	.002	3	0	15	.029	4	5.642e-4	4	NC	1_	NC	1
310			min	002	2	004	3	0	1	0	1	NC	1	NC	1
311		4	max	.002	3	001	15	.043	4	1.218e-3	4	NC	_1_	NC	1_
312			min	002	2	006	3	0	1	0	1	NC	1	8590.736	4
313		5	max	.003	3	002	15	.055	4	1.871e-3	4	NC	_1_	NC	1
314			min	003	2	008	3	0	1	0	1	NC	1	7353.831	4
315		6	max	.004	3	002	15	.067	4	2.525e-3	4	NC	1	NC	1
316			min	004	2	01	3	0	1	0	1	9939.655	3	6806.22	4
317		7	max	.005	3	002	15	.078	4	3.179e-3	4	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
318			min	005	2	011	3	0	1	0	1_	8821.315	3	6667.539	
319		8	max	.006	3	003	15	.088	4	3.832e-3	4	NC	1_	NC	1
320			min	005	2	012	3	0	1	0	1_	8151.015	3	6848.491	4
321		9	max	.007	3	003	15	.098	4	4.486e-3	4	NC	1_	NC	1
322			min	006	2	013	4	0	1	0	<u>1</u>	7600.418	4	7352.121	4
323		10	max	.007	3	003	15	.107	4	5.139e-3	4	NC	<u>1</u>	NC	1
324			min	007	2	013	4	0	1	0	_1_	7307.936	4_	8260.002	4
325		11	max	.008	3	003	15	.116	4	5.793e-3	4	NC	1_	NC	1
326			min	008	2	013	4	0	1	0	1	7264.701	4	9768.185	
327		12	max	.009	3	003	15	.125	4	6.447e-3	4	NC	1_	NC	1
328		10	min	009	2	<u>013</u>	4	0	1	0	1	7470.085	4	NC	1
329		13	max	.01	3	003	15	.134	4	7.1e-3	4	NC	1_	NC NC	1
330		4.4	min	009	2	012	4	0	1	0	1_	7968.317	4	NC	1
331		14	max	.011	3	003	15	.142	4	7.754e-3	4	NC	1_	NC	1
332		4.5	min	01	2	011	4	0	1	0	1_	8871.904	4	NC NC	1
333		15	max	.011	3	002	15	.151	4	8.407e-3	4	NC	1	NC NC	1
334		40	min	011	2	01	1	0	1	0	1_1	NC NC	1_	NC NC	1
335		16	max	.012	3	002	15	.161	4	9.061e-3	4	NC NC	1	NC NC	1
336		47	min	012	2	01	1	0	1	0 745 - 0	1_1	NC NC	1_	NC NC	1
337		17	max	.013	3	001	15	.17	4	9.715e-3	4	NC NC	1_	NC NC	1
338		40	min	012	2	009	1	0	1	0	1_1	NC NC	1	NC NC	1
339		18	max	.014	3	0	15	.181	4	1.037e-2	4	NC NC	1_	NC NC	1
340		40	min	013		008	1	<u> </u>	1	0 1.102e-2	1_1	NC NC	1		1
341		19	max	.015	3	0	15		1		<u>4</u> 1	NC NC	1	NC NC	1
342	MO	1	min	014	1	006	2	0	1	0	1	NC NC	1	NC NC	1
343	<u>M8</u>		max	.008	3	.013		0 192	-	7 2720 4		NC NC	1		
344		2	min	002 .008	1	015 .012	2		1	-7.273e-4 0	<u>4</u> 1	NC NC	1	128.878 NC	1
346			max	002	3	014	3	0 177	4	-7.273e-4	4	NC NC	1	140.248	4
		3	min	.002	1	014 .011	2		1			NC NC	1	NC	1
347		3	max	002	3	013	3	0 161	4	0 -7.273e-4	<u>1</u> 4	NC NC	1	153.774	4
349		4	max	.002	1	013 .01	2	<u>161</u> 0	1	0	1	NC	1	NC	1
350		4	min	002	3	012	3	146	4	-7.273e-4	4	NC NC	1	170.017	4
351		5	max	.002	1	.012 .01	2	<u>140</u> 0	1	0	1	NC	1	NC	1
352		5	min	002	3	012	3	131	4	-7.273e-4	4	NC NC	1	189.737	4
353		6	max	.002	1	.009	2	0	1	0	1	NC	1	NC	1
354		-	min	001	3	011	3	116	4	-7.273e-4	4	NC	1	213.993	4
355		7	max	.005	1	.008	2	0	1	0	1	NC	1	NC	1
356			min	001	3	01	3	102	4	-7.273e-4	4	NC	1	244.285	4
357		8	max	.005	1	.008	2	0	1	0	1	NC	1	NC	1
358			min	001	3	009	3	088	4	-7.273e-4	4	NC	1	282.801	4
359		9	max	.005	1	.007	2	<u>.000</u>	1	0	1	NC	1	NC	1
360			min	001	3	008	3	075	4	-7.273e-4	4	NC	1	332.836	4
361		10	max	.004	1	.006	2	0	1	0	1	NC	1	NC	1
362			min	0	3	007	3	062	4	-7.273e-4	4	NC	1	399.542	4
363		11	max	.004	1	.006	2	<u>.002</u>	1	0	1	NC	1	NC	1
364			min	0	3	007	3	05	4	-7.273e-4	4	NC	1	491.344	4
365		12	max	.003	1	.005	2	0	1	0	1	NC	1	NC	1
366			min	0	3	006	3	04	4	-7.273e-4	4	NC	1	622.82	4
367		13	max	.003	1	.004	2	<u>.0-</u>	1	0	1	NC	1	NC	1
368			min	0	3	005	3	03	4	-7.273e-4	4	NC	1	821.032	4
369		14	max	.002	1	.003	2	0	1	0	1	NC	1	NC	1
370			min	0	3	004	3	022	4	-7.273e-4	4	NC	1	1141.034	4
371		15	max	.002	1	.003	2	0	1	0	1	NC	1	NC	1
372		'	min	0	3	003	3	015	4	-7.273e-4	4	NC	1	1709.753	
373		16	max	.001	1	.002	2	0	1	0	1	NC	1	NC	1
374			min	0	3	002	3	009	4	-7.273e-4	4	NC	1	2878.107	_

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC	· ,	LC
375		17	max	0	1	.001	2	0	1	0	1_	NC	_1_	NC	1
376			min	0	3	002	3	004	4	-7.273e-4	4	NC	_1_	5947.436	4
377		18	max	0	1	0	2	0	1	0	1_	NC	<u>1</u>	NC	1
378			min	0	3	0	3	001	4	-7.273e-4	4	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1_	NC	1
380			min	0	1	0	1	0	1	-7.273e-4	4	NC	1	NC	1
381	M10	1	max	.006	1	.004	2	0	12	1.442e-3	4	NC	1	NC	2
382			min	006	3	008	3	553	4	1.034e-5	12	NC	1	100.174	4
383		2	max	.005	1	.004	2	0	12	1.537e-3	4	NC	1	NC	2
384			min	006	3	008	3	507	4	9.665e-6	12	NC	1	109.114	4
385		3	max	.005	1	.003	2	0	12	1.632e-3	4	NC	1	NC	2
386			min	005	3	007	3	462	4	8.989e-6	12	NC	1	119.737	4
387		4	max	.005	1	.002	2	0	12	1.727e-3	4	NC	1	NC	2
388			min	005	3	007	3	418	4	8.313e-6	12	NC	1	132.482	4
389		5	max	.005	1	.002	2	0	12	1.822e-3	4	NC	1	NC	1
390			min	005	3	007	3	374	4	7.637e-6	12	NC	1	147.948	4
391		6	max	.004	1	.001	2	0	12	1.917e-3	4	NC	1	NC	1
392			min	004	3	006	3	332	4		12	NC	1	166.962	4
393		7	max	.004	1	0	2	0	12	2.012e-3	4	NC	1	NC	1
394			min	004	3	006	3	29	4	6.285e-6	12	NC	1	190.699	4
395		8	max	.004	1	0	2	0	12	2.107e-3	4	NC	1	NC	1
396		<u> </u>	min	004	3	006	3	251	4	5.609e-6	12	NC	1	220.875	4
397		9	max	.003	1	0	2	0	12	2.202e-3	4	NC	1	NC	1
398		Ť	min	003	3	005	3	213	4	4.932e-6	12	NC	1	260.072	4
399		10	max	.003	1	<u>005</u>	2	0	12	2.298e-3	4	NC	1	NC	1
400		10	min	003	3	005	3	177	4	4.256e-6	12	NC	1	312.33	4
401		11	max	.003	1	<u>005</u> 0	2	0	12	2.393e-3	4	NC	1	NC	1
402			min	003	3	005	3	144	4	3.58e-6	12	NC	1	384.259	4
403		12		.002	1	005 001	15	144 0	12	2.488e-3		NC	1	NC	1
404		12	max		3		3	114		2.466e-3 2.904e-6	4	NC NC	1	487.301	4
405		13	min	002 .002	1	004 0	15	114 0	12	2.583e-3	<u>12</u> 4	NC NC	1	NC	1
		13	max		3		3								
406		4.4	min	002		004		086	4	2.228e-6	12	NC NC	1	642.711	4
407		14	max	.002	1	0	15	0	12	2.678e-3	4	NC NC	1	NC	1
408		4.5	min	002	3	003	3	062	4	1.552e-6	12	NC NC	1_	893.779	4
409		15	max	.001	1	0	15	0	12	2.773e-3	4	NC	1	NC	1
410		40	min	<u>001</u>	3	003	4	041	4	8.76e-7	12	NC	1	1340.438	4
411		16	max	0	1	0	15	0	12	2.868e-3	4_	NC	_1_	NC	1
412			min	0	3	002	4	024	4	-1.53e-6	1_	NC	_1_	2259.524	4
413		17	max	0	1	0	15	0	12	2.963e-3	4	NC	1_	NC	1
414			min	0	3	002	4	012	4	-1.605e-5	1	NC	1_	4680.991	4
415		18	max	0	1	0	15	0	12	3.058e-3	4	NC	1	NC	1
416			min	0	3	0	4	004	4	-3.056e-5	1	NC	_1_	NC	1
417		19	max	0	1	00	1	0	1	3.153e-3	4	NC	_1_	NC	1_
418			min	0	1	0	1	0	1	-4.508e-5	1_	NC	1_	NC	1
419	M11	1	max	0	1	0	1	0	1	1.42e-5	1_	NC	_1_	NC	1_
420			min	0	1	0	1	0	1	-7.403e-4	4	NC	1_	NC	1
421		2	max	0	3	0	15	.015	4	-4.591e-7	12	NC	1_	NC	1
422			min	0	2	002	4	0	1	-8.443e-5	4	NC	1	NC	1
423		3	max	0	3	0	15	.029	4	5.714e-4	4	NC	1	NC	1
424			min	0	2	004	4	0	1	-3.493e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	.043	4	1.227e-3	4	NC	1	NC	1
426			min	0	2	006	4	0	1	-5.949e-5	1	NC	1	8852.33	4
427		5	max	.001	3	002	15	.055	4	1.883e-3	4	NC	1	NC	1
428			min	0	2	007	4	0	1	-8.405e-5	1	NC	1	7603.683	4
429		6	max	.001	3	002	15	.067	4	2.539e-3	4	NC	1	NC	1
430		Ĭ	min	0	2	009	4	001	1	-1.086e-4	1	NC	1	7066.129	4
431		7	max	.002	3	003	15	.078	4	3.195e-3	4	NC	1	NC	1
			man	.002		.000		.0.70	_	3000	•	.,,	_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC				LC
432			min	001	2	011	4	002	1	-1.332e-4	1_	8763.237	4	6956.381	4
433		8	max	.002	3	003	15	.088	4	3.851e-3	4_	NC	_1_	NC	1
434			min	001	2	012	4	002	1	-1.577e-4	_1_	7851.414	4_	7189.091	4
435		9	max	.002	3	003	15	.098	4	4.507e-3	_4_	NC	2	NC NC	1
436		40	min	002	2	013	4	002	1	-1.823e-4	1_	7310.438	4_	7778.488	4
437		10	max	.002	3	003	15	.107	4	5.162e-3	4	NC	2	NC	1
438		44	min	002	2	013	4	003	1	-2.069e-4	1_	7045.576	4	8830.39	4
439		11	max	.003	3	003	15	.116	4	5.818e-3	4_	NC	2	NC NC	1
440		40	min	002	2	014	4	003	1	-2.314e-4	1_4	7017.636	4	NC NC	1
441		12	max	.003	3	003	15	.125 004	4	6.474e-3	4	NC 7227.922	2	NC NC	1
442		13	min	002	3	013	15	.134	4	-2.56e-4	<u>1</u> 4	NC	<u>4</u> 1	NC NC	1
444		13	max min	.003 002	2	003 013	4	004	1	7.13e-3 -2.805e-4	1	7720.631	4	NC NC	1
444		14		.002	3	013 003	15	.143	4	7.786e-3	4	NC	1	NC NC	1
446		14	max min	003	2	003 011	4	005	1	-3.051e-4	1	8605.956	4	NC NC	1
447		15	max	.003	3	002	15	.152	4	8.442e-3	4	NC	1	NC	1
448		10	min	003	2	002	4	005	1	-3.297e-4	1	NC	1	NC	1
449		16	max	.003	3	002	15	.161	4	9.098e-3	4	NC	1	NC	1
450		10	min	003	2	008	4	006	1	-3.542e-4	1	NC	1	NC	1
451		17	max	.004	3	002	15	.171	4	9.753e-3	4	NC	1	NC	1
452		<u> </u>	min	003	2	006	1	006	1	-3.788e-4	1	NC	1	NC	1
453		18	max	.004	3	0	15	.182	4	1.041e-2	4	NC	1	NC	1
454			min	003	2	005	1	007	1	-4.034e-4	1	NC	1	NC	1
455		19	max	.005	3	0	15	.193	4	1.107e-2	4	NC	1	NC	1
456			min	004	2	003	1	008	1	-4.279e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.003	2	.008	1	-1.06e-6	12	NC	1	NC	3
458			min	0	3	005	3	193	4	-6.887e-4	4	NC	1	128.19	4
459		2	max	.003	1	.003	2	.007	1	-1.06e-6	12	NC	1	NC	3
460			min	0	3	004	3	178	4	-6.887e-4	4	NC	1	139.496	4
461		3	max	.003	1	.003	2	.006	1	-1.06e-6	12	NC	1_	NC	3
462			min	0	3	004	3	162	4	-6.887e-4	4	NC	1_	152.945	4
463		4	max	.002	1	.002	2	.006	1	-1.06e-6	12	NC	1_	NC	2
464			min	0	3	004	3	147	4	-6.887e-4	4	NC	1_	169.095	4
465		5	max	.002	1	.002	2	.005	1	-1.06e-6	12	NC	_1_	NC	2
466			min	0	3	004	3	131	4	-6.887e-4	4_	NC	1_	188.704	4
467		6	max	.002	1	.002	2	.005	1	-1.06e-6	12	NC	_1_	NC	2
468		<u> </u>	min	0	3	003	3	<u>117</u>	4	-6.887e-4	4	NC	1_	212.822	4
469		7	max	.002	1	.002	2	.004	1	-1.06e-6	12	NC	1_	NC	2
470			min	0	3	003	3	102	4	-6.887e-4	4_	NC	1_	242.943	4
471		8	max	.002	1	.002	2	.004	1	-1.06e-6	12	NC NC	1_	NC 204 044	2
472			min		3	003	3	088		-6.887e-4		NC NC	1	281.241	4
473		9	max	.002	3	.002	2	.003	1	-1.06e-6	<u>12</u>	NC NC	1_1	NC	2
474		10	min	0		003	2	075	1	-6.887e-4	4	NC NC	<u>1</u> 1	330.993	1
475		10	max	.001	3	.001	3	.002		-1.06e-6	12	NC NC	1	NC	
476 477		11	min max	.001	1	002 .001	2	062 .002	1	-6.887e-4 -1.06e-6	<u>4</u> 12	NC NC	1	397.321 NC	1
478			min	0	3	002	3	051	4	-6.887e-4	4	NC	1	488.604	4
479		12	max	.001	1	.002	2	.002	1	-1.06e-6	12	NC	1	NC	1
480		12	min	0	3	002	3	04	4	-6.887e-4	4	NC	1	619.336	4
481		13		0	1	<u>002</u> 0	2	.001	1	-1.06e-6	12	NC	1	NC	1
482		13	max min	0	3	002	3	03	4	-6.887e-4	4	NC NC	1	816.423	4
483		14	max	0	1	<u>002</u> 0	2	<u>03</u> 0	1	-1.06e-6	12	NC	1	NC	1
484		14	min	0	3	001	3	022	4	-6.887e-4	4	NC	1	1134.608	_
485		15	max	0	1	<u>001</u> 0	2	<u>022</u> 0	1	-1.06e-6	12	NC	1	NC	1
486		10	min	0	3	001	3	015	4	-6.887e-4	4	NC	1	1700.093	4
487		16	max	0	1	0	2	<u>013</u> 0	1	-1.06e-6	12	NC	1	NC	1
488		1.0	min	0	3	0	3	009	4	-6.887e-4	4	NC	1	2861.789	
+ 00			11/011	<u> </u>	J		J	.003		J.0076-4	7	110		2001.703	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
489		17	max	0	1	0	2	0	1	-1.06e-6	12	NC	1	NC	1
490			min	0	3	0	3	004	4	-6.887e-4	4	NC	1	5913.582	4
491		18	max	0	1	0	2	0	1	-1.06e-6	12	NC	1	NC	1
492			min	0	3	0	3	001	4	-6.887e-4	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-1.06e-6	12	NC	1	NC	1
494			min	0	1	0	1	0	1	-6.887e-4	4	NC	1	NC	1
495	M1	1	max	.006	3	.108	1	.583	4	1.739e-2	1	NC	1	NC	1
496			min	003	2	016	3	0	12	-2.42e-2	3	NC	1	NC	1
497		2	max	.006	3	.053	1	.565	4	8.926e-3	4	NC	4	NC	1
498			min	003	2	007	3	006	1	-1.197e-2	3	2069.283	1	NC	1
499		3	max	.006	3	.008	3	.548	4	1.436e-2	4	NC	5	NC	1
500			min	003	2	007	2	008	1	-1.559e-4	1	990.303	1	7470.498	5
501		4	max	.006	3	.036	3	.53	4	1.262e-2	4	NC	5	NC	1
502			min	003	2	076	1	008	1	-4.339e-3	3	618.99	1	5221.355	5
503		5	max	.006	3	.072	3	.513	4	1.088e-2	4	NC	15	NC	1
504			min	002	2	15	1	005	1	-8.562e-3	3	443.037	1	4086.057	5
505		6	max	.005	3	.111	3	.495	4	1.482e-2	1	NC	15	NC	1
506			min	002	2	221	1	002	1	-1.278e-2	3	346.717	1	3409.863	5
507		7	max	.005	3	.149	3	.476	4	1.981e-2	1	9825.594	15	NC	1
508			min	002	2	286	1	0	12	-1.701e-2	3	290.157	1	2957.162	4
509		8	max	.005	3	.18	3	.456	4	2.48e-2	1	8728.129	15	NC	1
510			min	002	2	337	1	0	12	-2.123e-2	3	256.829	1	2640.498	4
511		9	max	.005	3	.201	3	.435	4	2.737e-2	1	8156.095	15	NC	1
512			min	002	2	369	1	0	1	-2.129e-2	3	239.526	1	2454.85	4
513		10	max	.005	3	.208	3	.412	4	2.834e-2	1	7981.917	15	NC	1
514			min	002	2	38	1	0	12	-1.859e-2	3	234.352	1	2404.816	4
515		11	max	.005	3	.203	3	.387	4	2.932e-2	1	8155.886	15	NC	1
516			min	002	2	369	1	0	12	-1.588e-2	3	239.855	1	2467.582	4
517		12	max	.005	3	.186	3	.359	4	2.773e-2	1	8727.649	15	NC	1
518			min	002	2	336	1	0	1	-1.32e-2	3	257.855	1	2660.713	4
519		13	max	.005	3	.158	3	.328	4	2.23e-2	1	9824.675	15	NC	1
520			min	002	2	283	1	0	1	-1.057e-2	3	292.693	1	3136.915	4
521		14	max	.005	3	.123	3	.296	4	1.686e-2	1	NC	15	NC	1
522			min	002	2	218	1	0	12	-7.935e-3	3	352.181	1	4118.283	4
523		15	max	.004	3	.083	3	.262	4	1.143e-2	1	NC	15	NC	1
524			min	002	2	145	1	0	12	-5.301e-3	3	454.337	1	6235.398	4
525		16	max	.004	3	.042	3	.229	4	9.553e-3	4	NC	5	NC	1
526			min	002	2	072	1	0	12	-2.667e-3	3	642.883	1_	NC	1
527		17	max	.004	3	.003	3	.198	4	1.059e-2	4	NC	5	NC	1
528			min	002	2	005	2	0	12	-3.218e-5	3	1044.558	1	NC	1
529		18	max	.004	3	.053	1	.171	4	1.053e-2	2	NC	4	NC	1
530			min	002	2	032	3	0	12	-4.119e-3	3	2207.428	1	NC	1
531		19	max	.004	3	.105	1	.147	4	2.114e-2	2	NC	1	NC	1
532			min	002	2	064	3	001	1	-8.362e-3	3	NC	1	NC	1
533	M5	1	max	.018	3	.258	1	.583	4	0	1_	NC	1	NC	1
534			min	012	2	021	3	0	1	-3.293e-6	4	NC	1_	NC	1
535		2	max	.018	3	.126	1	.569	4	7.362e-3	4	NC	5	NC	1
536			min	012	2	008	3	0	1	0	1	865.961	1	NC	1
537		3	max	.018	3	.027	3	.553	4	1.45e-2	4	NC	15	NC	1
538			min	012	2	024	1	0	1	0	1	405.159	1	6117.73	4
539		4	max	.018	3	.102	3	.535	4	1.181e-2	4	9364.563	15	NC	1
540			min	012	2	207	1	0	1	0	1	246.127	1	4580.962	4
541		5	max	.017	3	.205	3	.516	4	9.127e-3	4	6554.99	15	NC	1
542			min	011	2	406	1	0	1	0	1	172.199	1	3809.087	4
543		6	max	.017	3	.321	3	.496	4	6.441e-3	4	5047.644	15	NC	1
544			min	011	2	605	1	0	1	0	1_	132.517	1_	3330.428	4
545		7	max	.017	3	.434	3	.476	4	3.755e-3	4	4176.962	15	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio I			
546			min	011	2	785	1	0	1	0	1_	100.001	1	2978.935	
547		8	max	.016	3	.529	3	.456	4	1.07e-3	4		15	NC	1
548			min	011	2	<u>93</u>	1	0	1	0	1_	00:=:0	1_	2679.899	
549		9	max	.016	3	.59	3	.436	4	0	1_		<u>15</u>	NC 0450.50	1
550		40	min	011	2	<u>-1.021</u>	1	0	1	-2.076e-6	5	00.100	1_	2452.58	4
551		10	max	.016	3	.612	3	.412	4	0	1		<u>15</u>	NC 2421.44	4
552		11	min	01	3	-1.052	3	0	4	-1.989e-6	5		1_	NC	1
553 554		+	max	.015	2	.597 -1.021	1	.387 0	1	0 -1.901e-6	<u>1</u> 5		<u>15</u> 1	2494.078	<u> </u>
555		12	max	01 .015	3	.545	3	.36	4	7.584e-4	4		15	NC	1
556		12	min	01	2	927	1	<u></u> 0	1	0	1		1 1	2616.844	4
557		13	max	.015	3	.462	3	.329	4	2.663e-3	4		15	NC	1
558		13	min	01	2	778	1	0	1	0	1		1	3086.618	<u> </u>
559		14	max	.014	3	.357	3	.295	4	4.567e-3	4		15	NC	1
560		17	min	01	2	594	1	0	1	0	1		1	4270.163	4
561		15	max	.014	3	.24	3	.259	4	6.471e-3	4		15	NC	1
562			min	01	2	392	1	0	1	0	1		1	7527.771	4
563		16	max	.014	3	.121	3	.225	4	8.376e-3	4		15	NC	1
564			min	009	2	192	1	0	1	0	1		1	NC	1
565		17	max	.013	3	.009	3	.193	4	1.028e-2	4		15	NC	1
566			min	009	2	014	2	0	1	0	1		1	NC	1
567		18	max	.013	3	.127	1	.167	4	5.221e-3	4		5	NC	1
568			min	009	2	086	3	0	1	0	1	946.397	1	NC	1
569		19	max	.013	3	.247	1	.147	4	0	1	NC	1	NC	1
570			min	009	2	172	3	0	1	-1.639e-6	4	NC	1	NC	1
571	M9	1	max	.006	3	.108	1	.582	4	2.42e-2	3		1_	NC	1
572			min	003	2	016	3	001	1	-1.739e-2	1_		1	NC	1
573		2	max	.006	3	.053	1	.568	4	1.197e-2	3		4	NC	1
574			min	003	2	007	3	0	12	-8.457e-3	1_	2000.200	1	NC	1
575		3	max	.006	3	.008	3	.552	4	1.446e-2	4_		5_	NC	1
576			min	003	2	007	2	0	12	-2.513e-5	<u>10</u>	000.000	1_	6240.814	
577		4	max	.006	3	.036	3	.534	4	1.134e-2	5		5	NC	1
578		-	min	003	2	076	1	0	12	-4.835e-3	1_	0.0.00	1_	4623.808	
579		5	max	.006	3	.072	3	.516	4	8.562e-3	3_		<u>15</u>	NC 0000 045	1
580			min	002	2	15	1	0	12	-9.825e-3	1_	1 10.001	1_	3808.845	4
581		6	max	.005	3	.111	3	.496	4	1.278e-2	3		<u>15</u>	NC	1
582		7	min	002	3	221	3	<u>0</u>	12	-1.482e-2	1		1_	3308.377	4
583			max	.005	2	.149	1	.476	1	1.701e-2 -1.981e-2	<u>3</u>		<u>15</u> 1	NC 2952.212	4
584 585		8	min	002 .005	3	<u>286</u> .18	3	<u> </u>	4	2.123e-2	3	_000.	1 <u> </u>	NC	1
586		0	max min		2	337	1	<u>.436</u>	1	-2.48e-2	1			2663.936	
587		9	max	.005	3	.201	3	.436	4	2.129e-2	3		15	NC	1
588		-	min	002	2	369	1	<u>.430</u>	12	-2.737e-2	1		1	2448.249	
589		10	max	.005	3	.208	3	.412	4	1.859e-2	3		15	NC	1
590		10	min	002	2	38	1	0	1	-2.834e-2	1		1	2405.886	4
591		11	max	.005	3	.203	3	.387	4	1.588e-2	3		15	NC	1
592			min	002	2	369	1	0	1	-2.932e-2	1		1	2475.987	4
593		12	max	.005	3	.186	3	.36	4	1.32e-2	3		<u>.</u> 15	NC	1
594			min	002	2	336	1	0	12	-2.773e-2	1		1	2637.302	_
595		13	max	.005	3	.158	3	.329	4	1.057e-2	3		15	NC	1
596			min	002	2	283	1	0	12	-2.23e-2	1		1	3138.122	4
597		14	max	.005	3	.123	3	.295	4	7.935e-3	3		15	NC	1
598			min	002	2	218	1	002	1	-1.686e-2	1		1	4245.959	_
599		15	max	.004	3	.083	3	.259	4	6.068e-3	5		15	NC	1
600			min	002	2	145	1	005	1	-1.143e-2	1		1	6882.817	5
601		16	max	.004	3	.042	3	.225	4	8.165e-3	5		5	NC	1
602			min	002	2	072	1	007	1	-5.99e-3	1	642.883	1	NC	1

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.004	3	.003	3	.194	4	1.032e-2	4	NC	5	NC	1
604			min	002	2	005	2	008	1	-5.545e-4	1	1044.558	1	NC	1
605		18	max	.004	3	.053	1	.168	4	4.866e-3	5	NC	4	NC	1
606			min	002	2	032	3	005	1	-1.053e-2	2	2207.428	1	NC	1
607		19	max	.004	3	.105	1	.147	4	8.362e-3	3	NC	1	NC	1
608			min	002	2	064	3	0	12	-2.114e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 21-30 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f_c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle extstyle NA} arPhi_{ extstyle ec,Na} arPhi_{ extstyle p,Na} extstyle N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378.00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-30 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.