Η εξίσωση (1) είναι της μορφής $\frac{\chi^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1$, όπου $\alpha^2 = 9$ και $\beta^2 = 4$. Η μορφή αυτής της εξίσωσης παριστάνει τα σημεία του επιπέδου που βρίσκονται σε έλλειψη με εστίες στον άξονα x'x. Οι εστίες έχουν συντεταγμένες $E(\gamma, 0)$, και $E'(-\gamma, 0)$, όπου $\gamma = \sqrt{\alpha^2 - \beta^2} = \sqrt{5}$. Η εκκεντρότητα της έλλειψης είναι $\epsilon = \frac{\gamma}{\alpha} = \frac{\sqrt{5}}{3}$.

Το μήκος του μεγάλου άξονα της έλλειψης είναι ίσο με $2\alpha = 2.3 = 6$

α) «Τα σημεία του επιπέδου που επαληθεύουν την εξίσωση (1) βρίσκονται σε μια καμπύλη που ονομάζεται **έλλειψη**. Οι εστίες της Ε και Ε', έχουν συντεταγμένες $E(\sqrt{\bf 5}, {\bf 0})$ και $E'(-\sqrt{\bf 5}, {\bf 0})$. Το μήκος του μεγάλου άξονα είναι ίσο με ${\bf 6}$ και η εκκεντρότητα της είναι ίση με $\frac{\sqrt{\bf 5}}{\bf 3}$ ».

β)

Η εφαπτόμενη ευθεία σε σημείο με συντεταγμένες (x_1, y_1) της έλλειψης είναι της μορφής ε: $\frac{x \, x_1}{9} + \frac{y \, y_1}{4} = 1 \Leftrightarrow 4 \cdot x x_1 + \ 9 \cdot y y_1 = 36$. Δίνεται το σημείο επαφής B(0, -2), οπότε αν θέσουμε στην εξίσωση της ευθείας ε όπου $x_1 = 0$ και $y_1 = -2$ θα έχουμε ε: $4 \, x \cdot 0 + \ 9 \, y \cdot (-2) = 36$ ή ε: $-18 \, y = 36$ ή ε: y = -2.