KUTUPLAMA DEVRELERİ

Kutuplama devrelei:

 Bu bölümde ortak-base, ortak-emiter ve ortak-collector kutuplama devreleri detaylı bir şeklinde incelenecektir.

Ortak-base kutuplama devresi:

✓ Ortak-base kutuplama devresinde <u>base-emiter</u> (VBE) uygulanırken çıkış ise <u>collector-base</u> (VCB) arasından alınır. RE direnci emiter direnci, Rc direnci ise collector direncidir. Bu konfigürasyonda iki adet gerilim kaynağı kullanılır.

Ortak-base:

KUTUPLAMA DEVRELERİ(DEVAM)

Ortak-base:

✓ NPN transistörün ortak-base kutuplama devresinden yararlanarak aşağıdaki denklemler yazılabilir.

NPN ortak-base kutuplama

Devrenin giriş denklemi

$$V_{EE} = V_{BE} + I_E R_E \quad (1)$$

Devrenin çıkış denklemi

$$V_{CC} = I_C R_C + V_{CB}$$
 (2)

Yük doğrusu analizi:

- ✓ Devrenin yük doğrusunu çizmek için doyum ve kesim koşulları çıkış denklemine uygulanır.
- ✓ <u>I-Doyum koşulu</u> transistörden alınabilecek maksimum çıkış akımını temsil eder. Akım maksimumda iken idealde çıkış gerilimi VcB=0 olur.

1-
$$V_{CB} = 0$$
 iken $I_{Cdoyum} = \frac{V_{CC}}{R_C}$

✓ <u>II- Kesim koşulu</u> transistörden alınabilecek maksimim çıkış gerilimini temsil eder. Çıkış gerilimi maksimum iken çıkış akımı lc=0 olur.

2-
$$I_C = 0$$
 iken $V_{CBkesim} = V_{CC}$

✓ Yük doğrusu analizi ile çıkış akımının ve çıkış geriliminin hangi aralıklarda değiştiği veya transistörün çıkış sınırları belirlenir.

KUTUPLAMA DEVRELERİ(DEVAM)

Yük doğrusu analizi:

✓ Bu koşulları sağlayan yük doğrusu aşağıda gösterilmiştir.

Çalışma noktasını bulmak için çıkış akımı ve çıkış gerilimi bulunur.

Çıkış akımını bulmak içinse giriş akımı bulunur. Denklem 1'den giriş akımı I_E cekilirse.

$$V_{EE} = V_{BE} + I_E R_E$$
 (1) ise $I_{EQ} = \frac{V_{EE} - V_{BE}}{R_E}$

 $I_{C} pprox I_{E}$ olduğundan ortak emiter devrede giriş akımını bulmak çıkış akımını bulmak demektir. Çıkış gerilimi de denklem II'den bulunur.

$$V_{CC} = I_C R_C + V_{CB}$$
 (2) ise $V_{CBQ} = V_{CC} - I_C R_C$

Ortak-base devrenin yük doğrusu

Yük doğrusu analizi:

✓ Bulunan bu değerler yük doğrusunda gösterilir.

⁹ Ortak-base devrenin yük doğrusu

ÖRNEK

Örnek Soru:

 Şekildeki devrenin yük doğrusunu çizip çalışma noktasını bulunuz.

10

ÖRNEK (DEVAM)

Çözüm:

✓ Öncelikle yük doğrusunun elemanlarını bulalım.

$$V_{CB}=0$$
 ise $I_{Cdoyum}=rac{V_{CC}}{R_C}$ $I_{Cdoyum}=rac{20V}{4K}=5mA$
$$I_C=0 \quad \text{ise} \quad V_{CBkesim}=V_{CC} \quad V_{CBkesim}=V_{CC}=20V$$

Şimdi de çalışma noktasını bulalım.

ÖRNEK (DEVAM)

Çözüm:

✓ Bulduğumuz bu değerleri grafikle gösterelim.

Ortak-Emiter kutuplama devresi:

✓ Ortak emiter kutuplama devresinde sadece bir tane gerilim kaynağı kullandığından ortak-base düzenleşime göre daha üstündür. R_B ve Rc dirençleri öyle seçilmeli ki R_B üzerine düşen gerilim Rc üzerine düşen gerilimden daha büyük olsun. Böylece collector-base arası ters kutuplu bir şekilde kalsın.

13

KUTUPLAMA DEVRELERİ (DEVAM)

Ortak-Emiter kutuplama devresi:

PNP transistör

1.Ortak-Emiter Sabit kutuplama devresi:

KUTUPLAMA DEVRELERİ(DEVAM)

Yük doğrusu analizi:

✓ <u>I-Doyum koşulu</u> transistörden alınabilecek maksimum çıkış akımını temsil eder. Akım maksimumda iken idealde çıkış gerilimi VcE=0 olur.

$$\mbox{1-} \qquad V_{\it CE} = 0 \qquad \mbox{iken} \qquad I_{\it Cdoyum} = \frac{V_{\it CC}}{R_{\it C}}$$

✓ <u>II- Kesim koşulu</u> transistörden alınabilecek maksimim çıkış gerilimini temsil eder. Çıkış gerilimi maksimum iken çıkış akımı lc=0 olur.

2-
$$I_C = 0$$
 iken $V_{\it CEkesim} = V_{\it CC}$

16

Yük doğrusu analizi:

- Çalışma noktasını bulmak için çıkış akımı ve çıkış gerilimi bulunur.
- Âıkış akımını bulmak için denklem 1'den giriş akımı bulunur.

$$V_{CC} = I_{\scriptscriptstyle B} R_{\scriptscriptstyle B} + V_{\scriptscriptstyle BE} \ \ \text{(1)} \qquad \text{ise} \qquad I_{\scriptscriptstyle BQ} = \frac{V_{\scriptscriptstyle CC} - V_{\scriptscriptstyle BE}}{R_{\scriptscriptstyle B}} \qquad \text{ve} \qquad I_{\scriptscriptstyle CQ} = \beta I_{\scriptscriptstyle B}$$

Âıkış gerilimi de denklem 2'den bulunur.

$$V_{\rm CC} = I_{\rm C} R_{\rm C} + V_{\rm CE}$$
 (2) ise $V_{\rm CEQ} = V_{\rm CC} - I_{\rm CQ} R_{\rm C}$

KUTUPLAMA DEVRELERİ(DEVAM)

Yük doğrusu analizi:

✓ Bulunan bu değerler yük doğrusunda gösterilir.

Ortak-emiter sabit kutuplamå devresinin yük doğrusu

ÖRNEK

Örnek Soru:

✓ Şekildeki devrenin yük doğrusunu çizip çalışma noktasını bulunuz.

ÖRNEK (DEVAM)

Çözüm:

✓ Öncelikle yük doğrusunun elemanlarını bulalım.

$$V_{CE} = 0$$
 ise $I_{Cdoyum} = \frac{V_{CC}}{R_C}$ $I_{Cdoyum} = \frac{12V}{2K} = 6mA$

$$I_{C} = 0$$
 ise $V_{CEkesim} = V_{CC}$ $V_{CEkesim} = V_{CC} = 12V$

Çalışma noktasını bulmak için önce IBQ giriş ve sonra ICQ çıkış akımı bulunur.

$$I_{BQ} = \frac{V_{CC} - V_{BE}}{R_B} = \frac{12V - 0.7V}{367.7K} = 30 \,\mu A \quad I_{CQ} = \beta I_{BQ} = 100 \cdot 30 \,\mu A = 3mA$$

Denklem 2'den çıkış gerilimini bulunur.

$$V_{CEQ} = V_{CC} - I_C R_C = 12V - 3mA \cdot 2K\Omega = 6V$$

ÖRNEK (DEVAM)

Çözüm:

✓ Bulduğumuz bu değerleri grafikle gösterelim.

Sabit kutuplamalı ortak-emiter devrenin yük doğrusu ve çalışma noktası

ÖRNEK (DEVAM)

Çözüm:

✓ R_B direnç değerini 161.4K olarak değiştirelim

$$I_{BQ} = \frac{12V - 0.7V}{161.4K} \cong 70 \mu A$$
 ise $I_{CQ} = 100 \cdot 70 \mu A = 7 m A$

Çıkış akımı
$$V_{CEO} = 12V - 7mA2K = -2V$$

Görüldüğü gibi $R_{\rm B}$ direncinin 161.4K seçilmesi sonucunda transistör aktif bölgeden doyum bölgesine kaydı. Transistör bu bölgede çalışmaz.

Emiter dirençli sabit kutuplama devresi:

Sabit kutuplama devresinde sıcaklık ve diğer etkilerden dolayı transistörün değerinin değişmesiyle devrenin kararlılığı etkilenir. Bu tip arzu edilmeyen değişimleri engellemek için emiter-şase arasına bir direnç bağlanır. Bu dirence de emiter direnci denir. Aşağıda böyle bir devre görülmektedir. Bu devreden faydalanarak bazı gerilim ifadelerini açıklayalım. Bu devrede

KUTUPLAMA DEVRELERİ(DEVAM)

Emiter dirençli sabit kutuplama devresi :

Şekilde emiter dirençli sabit kutuplama devresi görülmektedir.

V_{CE}: Collector-emiter arası gerilim.

 ${\bf V_E}$: Emiter-şase arası gerilim. $V_{E} = I_{E} R_{E}$

 ${
m V}_{
m RC}$: ${
m R}_{
m C}$ direnci üzerindeki gerilim. ${
m V}_{
m RC} = {
m I}_{
m C} {
m R}_{
m C}$

 ${
m V}_{
m RB}$: ${
m R}_{
m B}$ direnci üzerindeki gerilim. ${
m V}_{
m RB} = {
m I}_{
m B} {
m R}_{
m B}$

 ${
m V}_{
m RE}$: ${
m R}_{
m E}$ direnci üzerindeki gerilim. ${
m V}_{\it RE} = {
m I}_{\it E} {
m R}_{\it E}$

 $\boldsymbol{V}_{\text{BE}}$:base-emiter arası gerilim.

 ${
m V_{\scriptscriptstyle B}}$:Base-şase arası gerilim $V_{\scriptscriptstyle B}=V_{\scriptscriptstyle BE}+V_{\scriptscriptstyle E}$

 V_{BC} :Base collector arası gerilim $V_{BC} = V_B - V_C$

Emiter dirençli sabit kutuplama devresi:

 \checkmark Giriş denklemi $V_{CC} = V_{RB} + V_{BE} + V_{RE}$, $V_{RB} = I_B R_B$ ve $V_{RE} = I_E R_E$ ise

$$V_{CC} = I_B R_B + V_{BE} + I_E R_E$$
 (1)

 \checkmark Çıkış denklemi $V_{\rm CC}=V_{\rm RC}+V_{\rm CE}+V_{\rm E}$, $V_{\rm RC}=I_{\rm C}R_{\rm C}$ ve $V_{\rm E}=I_{\rm E}R_{\rm E}$

$$V_{CC} = I_C R_C + V_{CE} + I_E R_E$$
 (2a) $I_C \cong R_E$ $V_{CC} = I_C (R_C + R_E) + V_{CE}$ (2b)

✓ Doyum ve kesim koşulu (denklem 2b)

$$V_{CE} = 0$$
 ise $I_{Cdoyum} = \frac{V_{CC}}{R_C + R_E}$

$$I_C = 0$$
 ise $V_{CEkesim} = V_{CC}$

KUTUPLAMA DEVRELERİ(DEVAM)

Emiter dirençli sabit kutuplama devresi:

 \checkmark Giriş denklemi $V_{CC} = V_{RB} + V_{BE} + V_{RE}$, $V_{RB} = I_B R_B$ ve $V_{RE} = I_E R_E$ ise

$$V_{CC} = I_{\scriptscriptstyle B} R_{\scriptscriptstyle B} + V_{\scriptscriptstyle BE} + I_{\scriptscriptstyle E} R_{\scriptscriptstyle E} \ \ (1)$$

 \checkmark Çıkış denklemi $V_{CC} = V_{RC} + V_{CE} + V_E$, $V_{RC} = I_C R_C$ ve $V_E = I_E R_E$

$$V_{CC} = I_C R_C + V_{CE} + I_E R_E$$
 (2a) $I_C \cong I_E$ $V_{CC} = I_C (R_C + R_E) + V_{CE}$ (2b)

✓ Doyum ve kesim koşulu (denklem 2b)

$$V_{\rm CE} = 0 \quad {\rm ise} \quad I_{\rm Cdoyum} = \frac{V_{\rm CC}}{R_{\rm C} + R_{\rm E}}$$

$$I_{C} = 0$$
 ise $V_{\mathit{CEkesim}} = V_{\mathit{CC}}$

Emiter dirençli sabit kutuplama devresi:

✓ Çalışma noktasını bulmak için önce IBQ giriş ve sonra IcQ çıkış akımı bulunur. Denklem 1'de le yerine $(\beta + 1)$ IB yazalım.

$$V_{CC} = I_B R_B + V_{BE} + (\beta + 1)I_B \quad I_{BQ} = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E} \cong \frac{V_{CC} - V_{BE}}{R_B + \beta R_E} \qquad I_{CQ} = \beta I_{BQ}$$

Denklem 2b'den çıkış gerilimini bulunur.

$$V_{CEQ} = V_{CC} - I_C (R_C + R_E)$$

KUTUPLAMA DEVRELERİ(DEVAM)

Emiter dirençli sabit kutuplama devresi:

I_c(mA) $I_{Cdoy} = \frac{V_{CC}}{R_C + R_E}$ Emiter dirençli sabit kutuplama devresinin yük $Q(I_{CQ}, V_{CEQ})$ doğrusu ve çalışma noktası

ÖRNEK V_{CC}=20V R_B=430K $\beta = 50$

ÖRNEK (DEVAM)

Çözüm:

Örnek Soru:

√ a)IBQ ve IcQ

✓ B)VCEQ √ c)Vc √ d)VE √ e)VB √ f)VBC

✓ Şekildeki devrede

a)
$$I_{BQ} = \frac{V_{CC} - V_{BE}}{R_B + \beta R_E} = \frac{20V - 0.7V}{430K + 50 \cdot 1K} = 40 \mu A$$
 $I_{CQ} = \beta I_{BQ} = 50 \cdot 40 \mu A = 2mA$

$$(b)V_{CEO} = V_{CC} - I_{CO}(R_C + R_E) = 20V - 2mA(2K + 1K) = 14V$$

c)
$$V_C = V_{CC} - I_{CO}R_C = 20V - 2mA \cdot 2K = 16V$$

$$d)V_C = V_{CE} + V_E$$
 $V_E = V_C - V_{CE} = 16V - 14V = 2V$

$$V_E = I_E R_E \approx I_C R_E = 2mA \cdot 1K = 2V$$

$$e)V_{B} = V_{BE} + V_{E}$$
 $V_{B} = 0.7V + 2V = 2.7V$

$$g(V_{BC}) = V_B - V_C$$
 $V_{BC} = 2.7V - 16V = -13.3V$ oldwightan transistör aktif

Ters kutuplama gerilimi (-) bölgededir.

ÇALIŞMA SORUSU

Örnek Soru:

V Devrede $\beta = 100$ alarak yük doğrusunu çizip çalışma noktasını bulunuz?

✓ Cevap: