

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

к лабораторной работе №19
По курсу: «Функциональное и логическое программирование»

Студентка ИУ7-65Б Оберган Т.М.

Преподаватели Толпинская Н.Б. Строганов Ю.В.

Оглавление

Задание	3
Вопросы	3
Листинг	6
Таблица	7

Задание

Используя хвостовую рекурсию, разработать эффективную программу, (комментируя назначение аргументов), позволяющую:

- Найти длину списка (по верхнему уровню);
- Найти сумму элементов числового списка
- Найти сумму элементов числового списка, стоящих на нечетных позициях исходного списка (нумерация от 0)

Убедиться в правильности результатов

Для одного из вариантов ВОПРОСА и одного из заданий составить таблицу, отражающую конкретный порядок работы системы:

Т.к. резольвента хранится в виде стека, то состояние резольвенты требуется отображать в столбик: <u>вершина – сверху!</u> Новый шаг надо начинать с нового состояния резольвенты! Для каждого запуска алгоритма унификации, требуется указать № выбранного правила и дальнейшие действия – и почему.

Текст процедуры, Вопрос:....

№	Текущая	ТЦ, выбираемые правила:	Дальнейшие действия с
шаг	резольвент	сравниваемые термы,	комментариями
a	a – TP	подстановка	
шаг			
1			
•••		::	

Вопросы

Что такое рекурсия?

Рекурсия – это ссылка на описываемый объект при описании объекта.

Как организуется хвостовая рекурсия в Prolog?

- Рекурсивный вызов единственен и расположен в конце тела правила
- Не должно быть возможности сделать откат до вычисления рекурсивного вызова

Как организовать выход из рекурсии в Prolog?

С помощью отсечения.

Какое первое состояние резольвенты?

Заданный вопрос (goal).

В какой момент, и каким способом системе удается получить доступ к голове списка?

Получить голову или хвост списка можно при унификации списка с [H|T], H- голова списка, T- хвост списка.

Каково назначение и результат использования алгоритма унификации?

Унификация – механизм логического вывода. Результат – подстановка.

В каких пределах программы переменные уникальны?

Именованная переменная уникальна в рамках предложения, в котором она используется. Анонимные переменные всегда уникальны.

Как формируется новое состояние резольвенты?

Преобразования резольвенты выполняются с помощью редукции. Редукцией цели G с помощью программы P называется замена цели G телом того правила из P, заголовок которого унифицируется с целью. Новая резольвента образуется в два этапа:

- 1. в текущей резольвенте выбирается одна из подцелей и для неё выполняется редукция;
- 2. к полученной конъюнкции целей применяется подстановка, полученная как наибольший общий унификатор цели и заголовка сопоставленного с ней правила.

Как применяется подстановка, полученная с помощью алгоритма унификации? Как глубоко?

Подстановка применяется к целям в резольвенте путем замены текущей переменной на соответствующий терм. В результате применения подстановки некоторые переменные конкретизируются значениями, которые (значения) могут и будут далее использованы при доказательстве истинности тела выбранного правила.

В каких случаях запускается механизм отката?

Механизм отката запустится в случае неудачи алгоритма унификации.

Когда останавливается работа системы?

Работа системы останавливается, когда найдены все возможные ответы на вопрос.

Как это определяется на формальном уровне?

Когда в резольвенте находится исходный вопрос, для которого пройдена вся БЗ.

Листинг

```
domains
       list = integer*.
predicates
       listLen(list, integer).
       listLen(list, integer, integer).
       listSum(list, integer).
       listSum(list, integer, integer).
       sumOdd(list, integer).
       sumOdd(list, integer, integer).
clauses
       listLen(List, Len) :- listLen(List, 0, Len).
       listLen([], Len, Len) :- !.
       listLen([ |T], CurLen, Len) :-
               NewLen = CurLen + 1,
               listLen(T, NewLen, Len).
       listSum(List, Sum) :- listSum(List, 0, Sum).
        listSum([], Sum, Sum) :- !.
       listSum([H|T], CurSum, Sum) :-
               NewSum = CurSum + H,
               listSum(T, NewSum, Sum).
        sumOdd(List, Sum) :- sumOdd(List, 0, Sum).
        sumOdd([], Sum, Sum) :- !.
        sumOdd([_], Sum, Sum) :- !.
        sumOdd([ [H|T]], CurSum, Sum) :-
               NewSum = CurSum + H,
               sumOdd(T, NewSum, Sum).
goal
        %listLen([0, 1, -2, 10], Len).
       % listSum([0, -2, 10], Sum).
        %sumOdd([1, 2, 1, 2, 1], Sum).
        %sumOdd([1, 2, 1, 2], Sum).
```

Эффективность достигнута за счет использования хвостовой рекурсии и использования отсечения.

Таблица

Текст процедуры

```
listLen(List, Len) :- listLen(List, 0, Len).
listLen([], Len, Len) :- !.
listLen([_|T], CurLen, Len) :-
    NewLen = CurLen + 1,
    listLen(T, NewLen, Len).
```

Boпрос: listLen([1,], Len)

№ шага	Текущая резольвента – ТР	ТЦ, выбираемые правила: сравниваемые термы, подстановка	Дальнейшие действия с комментариями
1	listLen([1], Len)	listLen([1], Len) = listLen(List, Len) Успех List = [1] Len = Len	Прямой ход. Тело правила заносится в резольвенту.
2	listLen(List, 0, Len)	listLen([1], 0, Len) = listLen([], Len, Len) Неудача	Переход к следующему предложению
3	listLen(List, 0, Len)	listLen([1], 0, Len) = listLen([_ T], CurLen, Len) Успех T = [] CurLen = 0 Len = Len	Прямой ход. Тело правила заносится в резольвенту.
4	NewLen = CurLen +1 listLen(T, NewLen, Len)	NewLen = $0 + 1 = 1$	Прямой ход.
5	listLen(T, NewLen, Len)	listLen([], 1, Len) = listLen([], Len, Len) Успех Len = Len = 1	Прямой ход. Тело правила заносится в резольвенту.
6	!		Резольвента пуста. Найдено решение: Len = 1 Ввиду отсечения не будет попыток найти другие решения listLen([], 1, Len) Откат к 1. Конец listLen арности 2. Система завершает работу

Текст процедуры

```
listSum(List, Sum) :- listSum(List, 0, Sum).
listSum([], Sum, Sum) :- !.
listSum([H|T], CurSum, Sum) :-
    NewSum = CurSum + H,
    listSum(T, NewSum, Sum).
```

Boπpoc: listSum([1], Sum)

№ шага	Текущая резольвента – ТР	ТЦ, выбираемые правила: сравниваемые термы, подстановка	Дальнейшие действия с комментариями
1	listSum([1], Sum)	listSum([1], Sum) = listSum(List, Sum) Успех List = [1] Sum = Sum	Прямой ход. Тело правила заносится в резольвенту.
2	listSum(List, 0, Sum)	listSum([1], 0, Sum) = listLen([], Len, Len) Неудача	Переход к следующему предложению
3	listSum(List, 0, Sum)	listSum([1], 0, Sum) = listSum([H T], CurSum, Sum) Успех H = 1 T = [] CurSum = 0 Sum = Sum	Прямой ход. Тело правила заносится в резольвенту.
4	NewSum = CurSum +H listSum(T, NewSum, Sum)	NewSum = 0 + 1 = 1	Прямой ход.
5	listSum(T, NewSum, Sum)	listSum([], 1, Sum) = listSum([], Sum, Sum) Успех Sum = Sum = 1	Прямой ход. Тело правила заносится в резольвенту.
6	!		Резольвента пуста. Найдено решение: Sum = 1 Ввиду отсечения не будет попыток найти другие решения listSum([], 1, Len) Откат к 1. Конец listSum арности 2. Система завершает работу

Текст процедуры

```
sumOdd(List, Sum) :- sumOdd(List, 0, Sum).
sumOdd([], Sum, Sum) :- !.
sumOdd([_], Sum, Sum) :- !.
sumOdd([_|[H|T]], CurSum, Sum) :-
    NewSum = CurSum + H,
    sumOdd(T, NewSum, Sum).
```

Bonpoc: sumOdd([1, 2], Sum)

№ шага	Текущая резольвента – ТР	ТЦ, выбираемые правила: сравниваемые термы, подстановка	Дальнейшие действия с комментариями
1	sumOdd([1, 2], Sum)	sumOdd([1, 2], Sum) = sumOdd (List, Sum) Vcnex List = [1, 2] Sum = Sum	Прямой ход. Тело правила заносится в резольвенту.
2	sumOdd(List, 0, Sum)	sumOdd([1, 2], 0, Sum) = sumOdd (List, Sum) Неудача	Переход к следующему предложению
3	sumOdd(List, 0, Sum)	sumOdd([1, 2], 0, Sum) = sumOdd ([], Sum, Sum) Неудача	Переход к следующему предложению
4	sumOdd(List, 0, Sum)	sumOdd([1, 2], 0, Sum) = sumOdd ([_], Sum, Sum) Неудача	Переход к следующему предложению
5	sumOdd(List, 0, Sum)	sumOdd([1, 2], 0, Sum) = sumOdd ([_ [H T]], CurSum, Sum) Успех H = 2 T = [] CurSum = 0 Sum = Sum	Прямой ход. Тело правила заносится в резольвенту.
6	NewSum = CurSum +H sumOdd(T, NewSum, Sum)	NewSum = $0 + 2 = 2$	Прямой ход.
7	sumOdd(T, NewSum, Sum)	sumOdd([], 2, Sum) = sumOdd (List, Sum) Неудача	Переход к следующему предложению
8	sumOdd(T, NewSum, Sum)	sumOdd([], 2, Sum) = sumOdd ([], Sum, Sum) Успех. Sum = Sum = 2	Прямой ход. Тело правила заносится в резольвенту.
9	!		Резольвента пуста. Найдено решение: Sum = 2

	Ввиду отсечения не будет попыток найти другие решения sumOdd([], 2, Sum)
	Откат к 5. Конец sumOdd арности 3.
	Откат к 1. Конец sumOdd арности 2.
	Система завершает работу