Lembar Jawaban Kalkulasi Neural Network

Pada lembar jawaban ini, kamu dapat menuliskan cara mengkalkulasikan nilainilai yang diminta pada arsitektur neural network sesuai soal, ya, semangat! 😄

Pertama, masukkan dulu nilai initial value dan randomnya ya ...

Initial Value

X 1	X ₂	X ₃	α	Threshold	Y _{d,6}
0.7	0.8	0.9	0.1	-1	0

Initial Random

W 14	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	W ₄₆	W ₅₆	θ4	θ_5	θ_6
0.5	0.6	0.3	1.1	-1.0	0.1	-1.1	-0.7	0.2	0.3	0.4

Jika sudah selesai, kita akan masuk ke langkah-langkah kalkulasi, sebagai berikut:

Forward Pass

Forward Pass merupakan hasil dari langkah 1 pada proses kalkulasi di challenge deck. Oleh karena itu kamu tuliskan langkah kalkulasi yang kamu lakukan untuk mencari nilai-nilai di bawah ini, ya 🙌

<u>Langkah 1: Menghitung output Neuron 4 (y_4), Neuron 5 (y_5), Neuron 6 (y_6), dan Error menggunakan sigmoid function</u>

$$\begin{array}{ll} \mathsf{Y}_{4} & = \mathsf{sigmoid}(x_{1} \, W_{14} + x_{2} \, W_{24} + x_{3} \, W_{34} + Threshold \, \theta_{4}) \\ & = \frac{1}{[1 + e^{-(0.7 \times 0.5 + 0.8 \times 0.3 + 0.9 \times (-1) + (-1) \times 0.2}]} \\ & = 0.3751935 \\ \mathsf{Y}_{5} & = \mathsf{sigmoid}(x_{1} \, W_{15} + x_{2} \, W_{25} + x_{3} \, W_{35} + Threshold \, \theta_{5}) \\ & = \frac{1}{[1 + e^{-(0.7 \times 0.6 + 0.8 \times 1.1 + 0.9 \times 0.1 + (-1) \times 0.3}]} \\ & = 0.7483817 \\ \mathsf{Y}_{6} & = \frac{1}{[1 + e^{-(0.3751935 \times (-1.1) + 0.7483817 \times (-0.7) + (-1) \times 0.4}]} \\ & = 0.208073 \end{array}$$

e =
$$(Y_{d,6} - Y_6)$$

=0 - 0.208073
=- 0.208073

Lalu isi rangkuman hasilnya di tabel ini ya ...

Y ₄	Y ₅	Y ₆	е	
0.3751935	0.7483817	0.208073	- 0.208073	

Backward Pass

Sementara itu, nilai-nilai dari backward pass didapatkan dengan menjalankan langkah 2, 3, dan 4. Jangan lupa tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya 👍

<u>Langkah 2: Hitung error gradient untuk Neuron 6 di Output Layer dan weight corrections</u>

$$\delta_6 = Y_6(1 - Y_6)e$$

$$= 0.208073 \times (1 - 0.208073) \times (-0.208073)$$

$$= -0.0342859832$$

$$\nabla_{46} = \alpha \times Y_4 \times \delta_6$$

$$= 0.1 \times 0.3751935 \times (-0.0342859832)$$

$$= -0.0012863878$$

$$\nabla_{56} = \alpha \times Y_5 \times \delta_6$$

$$= 0.1 \times 0.7483817 \times (-0.0342859832)$$

$$= -0.00256590024$$

$$\nabla\theta_6 = \alpha \times Threshold \times \delta_6$$

$$= 0.1 \times (-1) \times (-0.0342859832)$$

$$= 0.00342859832$$

Lalu isi rangkuman hasilnya di tabel ini ya ...

δ_6	δ_6 ∇_{46}		$ abla heta_6$	
-0.0342859832	-0.0012863878	-0.00256590024	0.00342859832	

<u>Langkah 3: Hitung error gradients untuk Neuron 4 dan Neuron 5 di Middle</u> <u>Layer/Hidden Layer</u>

$$\delta_4 = Y_4 \times (1 - Y_4) \times \delta_6 \times W_{46}$$

$$= 0.3751935 \times (1 - 0.3751935) \times (-0.0342859832) \times (-1.1)$$

$$= 0.00884117807$$
 $\delta_5 = Y_5 \times (1 - Y_5) \times \delta_6 \times W_{56}$

$$= 0.7483817 \times (1 - 0.7483817) \times (-0.0342859832) \times (-0.7)$$

$$= 0.00451939219$$

Lalu isi rangkuman hasilnya di tabel ini ya ...

δ4	δ ₅			
0.00884117807	0.00451939219			

Langkah 4: Hitung weight corrections

$$\nabla W_{14} = \alpha \times x_1 \times \delta_4$$

$$= 0.1 \times 0.7 \times 0.00884117807$$

$$= 0.0006189$$

$$\nabla W_{24} = \alpha \times x_2 \times \delta_4$$

$$= 0.1 \times 0.8 \times 0.00884117807$$

$$= 0.000707$$

$$\nabla W_{34} = \alpha \times x_3 \times \delta_4$$

$$= 0.1 \times 0.9 \times 0.00884117807$$

$$= 0.0008$$

$$\nabla \theta_4 = \alpha \times Threshold \times \delta_4$$

$$= 0.1 \times (-1) \times 0.00884117807$$

$$= -0.000884$$

$$\nabla W_{15} = \alpha \times x_1 \times \delta_5$$

$$= 0.1 \times 0.7 \times 0.00451939219$$

$$= 0.000316$$

$$\nabla W_{25} = \alpha \times x_2 \times \delta_5$$

$$= 0.1 \times 0.8 \times 0.00451939219$$

$$= 0.000362$$

$$\nabla W_{35} = \alpha \times x_3 \times \delta_5$$

$$= 0.1 \times 0.9 \times 0.00451939219$$

$$= 0.000407$$

$$\nabla \theta_5 = \alpha \times Threshold \times \delta_5$$

$$= 0.1 \times (-1) \times 0.00451939219$$

$$= -0.000452$$

Lalu isi rangkuman hasilnya di tabel ini ya ...

∇w ₁₄	∇w ₂₄	∇w ₃₄	∇θ₄	∇w ₁₅	∇w ₂₅	∇w ₃₅	∇θ₅
0.000619	0.000707	0.0008	-0.000884	0.000316	0.000362	0.000407	-0.000452

Backward Pass

Last but not least, adalah nilai-nilai dari updated weight didapatkan dengan menjalankan langkah nomor 5. Seperti biasa, tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya 🖔

Langkah 5: Hitung semua weights dan theta pada arsitektur yang telah diperbarui

$$\begin{aligned} & = W_{14} + \Delta W_{14} \\ & = 0.5 + 0.000619 \\ & = 0.500619 \\ & = W_{15} + \Delta W_{15} \\ & = 0.6 + 0.000316 \\ & = 0.600316 \\ & = W_{24} + \Delta W_{24} \\ & = 0.3 + 0.000707 \\ & = 0.300707 \end{aligned}$$

$$\begin{aligned} & = W_{25} + \Delta W_{25} \\ & = 1.1 + 0.000362 \\ & = 1.100362 \end{aligned}$$

$$& = W_{34} + \Delta W_{34} \\ & = (-1) + 0.0008 \\ & = -0.99920 \end{aligned}$$

$$& = W_{35} + \Delta W_{35} \\ & = 0.1 + 0.000407 \\ & = 0.100407 \end{aligned}$$

$$& = \theta_4 + \Delta \theta_4 \\ & = 0.2 + (-0.000884) \\ & = 0.199116 \end{aligned}$$

$$& \theta_5 = \theta_5 + \Delta \theta_5 \\ & = 0.3 + (-0.000452) \\ & = 0.299548$$

$$& \theta_6 = \theta_6 + \Delta \theta_6 \\ & = 0.4 + 0.003429 \\ & = 0.403429 \end{aligned}$$

Lalu isi rangkuman hasilnya di tabel ini ya ...

W 14	W 15	W 24	W 25	W 34	W 35	Θ4	Θ ₅	Θ ₆
0.500619	0.600316	0.300707	1.100362	-0.99920	0.100407	0.199116	0.299548	0.403429

Hore, kamu sudah menyelesaikan satu dari tiga proyek challenge, semoga mendapatkan hasil yang maksimal dan selamat bersenang-senang~