Brett Levenson, Andy Poulos, Rishabh Shah, John Stefan October 2, 2017 Lab $2\,$

Exercise One:

Exercise Two:

Figure 1: $f_3(0,0) = 0$ will make the function f_3 continuous at the origin. This works because the limit as you approach this point along the x axis, where the y value is held to zero, the limit approaches z = 0. By the same token, as you approach along the y-axis, where the x value is kept at zero, it too approaches z = 0. While this does not show that the limit works for all possible ways of approaching the point (0,0), it is enough for us to assume $f_3(0,0) = 0$.

Exercise Three:

If it is accepted that $0^0 = 1$, then the graph of f(x, y) will be (0, 0, 1). This means that the function is not continuous. Assigning a value of f(0, 0) = 0 to the function will make f(x, y) continuous.

Exercise Four:

Exercise Five:

