Memory Subsystem

For UMass Lowell 16.480/552 Prof. Yan Luo

Outline

- Overview of x86 memory and software architecture
- Memory types
- Memory interfacing
- Virtual memory

Acknowledgment:

Some of the figures used in the slides are from Brey's "Intel Microprocessors", 8th ed. Copyrights are with the author of the book and the publisher.

Isolated memory and I/O

Memory mapped I/O

A Memory Component

Figure 10-1 in Brey's book

Types of Memory Components

- ROM, PROM, EPROM, EEPROM
- RAM:
 - SRAM
 - DRAM (DDR, DDR2, DDR3)
- Flash memory (EEPROM, NOVRAM)
 - requires more time to erase than RAM

EPROM

MODE SELECTION PINS V_{CC} VPP OUTPUTS PD/PGM CS (9-11, 13-17) (20)(21)(24)(18)MODE VIL Read VIL +5 +5 DOUT PIN CONFIGURATION VIH +5 +5 High Z Deselect Don't care 24 VCC A7 [1 Power Down VIH +5 +5 Don't care High Z A6 2 A5 3 23 DAg VIH Pulsed VIL to VIH +5 DIN +25 22 DAg Program A4 | 4 A3 | 5 21 DVpp Program Verify VIL VIL DOUT +25 +5 20 D CS Program Inhibit VIL VIH +25 +5 High Z A2 | 6 A1 | 7 19 A10 18 PD/PGM A0 0 8 17 07 BLOCK DIAGRAM 00 0 9 16 06

PIN NAMES

01 10

00 11

GND | 12

A0-A10	ADDRESSES
PD/PGM	POWER DOWN/PROGRAM
CS	CHIP SELECT
00-07	OUTPUTS

15 05

14 04

13 03

FIGURE 10-2 The pin-out of the 2716, 2K × 8 EPROM. (Courtesy of Intel Corporation.)

Timing of EPROM 2716

A.C. Characteristics

 $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC}^{[1]} = +5V \pm 5\%$, $V_{PP}^{[2]} = V_{CC} \pm 0.6V^{[3]}$

Symbol	-		Limits			
	Parameter	Min.	Typ.[4]	Max.	Unit	Test Conditions
tACC1	Address to Output Delay		250	450	ns	PD/PGM = CS = VIL
tACC2	PD/PGM to Output Delay		280	450	ns	CS = VIL
tco	Chip Select to Output Delay			120	ns	PD/PGM = VIL
tpF	PD/PGM to Output Float	0		100	ns	CS = VIL
tor	Chip Deselect to Output Float	0		100	ns	PD/PGM = VIL
tон	Address to Output Hold	0			ns	PD/PGM = CS = VIL

Capacitance [5] TA = 25°C, f = 1 MHz

Symbol	Parameter	Тур.	Max.	Unit	Conditions
CIN	Input Capacitance	4	6	pF	V _{IN} = 0V
COUT	Output Capacitance	8	12	pF	V _{OUT} = 0V

A.C. Test Conditions:

Output Load: 1 TTL gate and C_L = 100 pF Input Rise and Fall Times: ≤20 ns Input Pulse Levels: 0.8V to 2.2V Timing Measurement Reference Level:

Inputs 1V and 2V Outputs 0.8V and 2V

WAVEFORMS

FIGURE 10–3 The timing diagram of AC characteristics of the 2716 EPROM. (Courtesy of Intel Corporation.)

SRAM

FIGURE 10–4 The pin-out of the TMS4016, 2K × 8 static RAM (SRAM). (Courtesy of Texas Instruments Incorporated.)

PIN NOMENCLATURE						
A0 - A10	Addresses					
DQ1 - DQ8	Data In/Data Out					
G	Output Enable					
\$	Chip Select					
Vcc	+5-V Supply					
Vss	Ground					
W	Write Enable					

DRAM

FIGURE 10–7 The pin-out of the TMS4464, 64K × 4 dynamic RAM (DRAM). (Courtesy of Texas Instruments Incorporated.)

- retains data only 2 or 4ms on integrated capacitor
- needs rewritten (refreshed)
- too many address pins!
 - 64K x 4 DRAM (16-bit address required)
 - use 8 address pins in two 8-bit increments
 - require: column address strobe (CAS*) and row address strobe (RAS*)
 - CAS* is also chip select

PIN NOMENCLATURE					
A0-A7	Address Inputs				
CAS	Column Address Strobe				
DQ1-DQ4	Data-In/Data-Out				
G	Output Enable				
RAS	Row Address Strobe				
VDD	+5-V Supply				
Vss	Ground				
W	Write Enable				

(b)

DRAM timing

FIGURE 10–8 RAS, CAS, and address input timing for the TMS4464 DRAM. (Courtesy of Texas Instruments Incorporated.)

Address Multiplexer for DRAM

FIGURE 10-9 Address multiplexer for the TMS4464 DRAM.

Single Inline
 Memory Module
 (SIMM)

FIGURE 10–11 The pin-outs of the 30-pin and 72-pin SIMM. (a) A 30-pin SIMM organized as $4M \times 9$ and (b) a 72-pin SIMM organized as $4M \times 36$.

Dual Inline Memory Module (DIMM)

FIGURE 10-12 The pin-out of a 168-pin DIMM.

Flash Memory

- To store information changed occasionally
 - Fast read, slow write
- Requires 12V to erase and write data
 - Newer ones require 5V or even 3.3V
- Operation
 - Signals similar to SRAM, e.g. CE*, OE*, WE*
 - Erase and write data: V_{PP} (12V) and PWD*

Serial EEPROM

FIGURE 10-23 A serial EEPROM interface.

Serial Data Transfer Protocol

Write Address

Followed by for a Read Byte

or Followed by for a Write Byte

S = Start P = Stop ACK = acknowledge

FIGURE 10-24 The data signals to the serial EEPROM for a read or a write.

Address Decoding

- the number of address pins mismatch
 - e.g. 8088 20-bit address vs EPROM2716 with 11bit address
 - 8088 thinks it has 1MB, but only a 2KB EPROM is available
 - A10-A0 are connected directly
 - what about A19-A11?
 - decode the address pins that do not connect to memory components

Example

FIGURE 10–13 A simple NAND gate decoder that selects a 2716 EPROM for memory location FF800H–FFFFFH.

3-8 decoder

Inputs						0.11								
Enable			S	Select		Outputs								
G2A	G2B	G١	C	В	A	$\bar{0}$	ī	$\bar{2}$	3	4	5	6	7	
1	X	X	X	X	X	1	1	1	1	1	1	1	1	
X	1	X	X	X	X	1	1	1	1	1	1	1	1	
X	X	0	X	X	X	1	1	l	1	1	1	1	1	
0	0	1	0	0	0	0	1	1	1	1	1	1	1	
()	0	1	0	0	1	1	0	1	1	1	1	1	1	
0	0	1	0	1	0	1	1	0	1	1	1	1	1	
0	0	1	()	1	1	1	1	1	0	1	1	1	1	
0	0	1	1	0	0	1	1	1	1	0	1	1	1	
0	0	1	1	0	1	1	1	1	1	1	0	1	1	
0	0	1	1	1	0	1	1	1	ī	1	1	0	1	
0	0	1	1	1	1	1	1	1	1	1	1	1	0	

Exercise [30 minutes]

Problem: given enough 2764 EPROMs, build a 64K x 8 section of memory starting from **E0000H**.

Hints:

- 2764 has 8K bytes : ?-bit address bus, 8-bit data bus
- signals coming from the processor: A19-A0, RD*, M*/IO
- use 3-8 decoder(s)

DRAM revisited

- Benefits
 - Higher density than SRAM
 - Less expensive than SRAM
- Requires address multiplexing
 - Break long address into Row and Column
- refreshing
 - Refresh needed as internal capacitor lose charge in a short period of time
 - Any read or write automatically refresh a section
 - Special refresh cycle (i.e. hidden refresh or cycle stealing)
- Often works with DRAM controller

Internal Structure of DRAM

FIGURE 10-39 The internal structure of a 256K × 1 DRAM. Note that each of the internal 256 words are 1024 bits wide.

Refreshing DRAM

- Refresh counter supplies a refresh address
 - Counter size determined by type of DRAM
 - Increment counter after every refresh
 - E.g. 256 rows in 4ms -> one row per 15.6us. Assuming a 5MHz 8088 processor, 800ns per read. So every 19 memory read or write, the memory needs to run a refresh cycle. About 5% performance loss for 8088.

FIGURE 10–40 The timing diagram of the RAS refresh cycle for the TMS4464 DRAM. (Courtesy of Texas Instruments Corporation.)

SDRAM, DDR, DRAM controller

Burst reads

- Reading the first 64-bit is as fast(slow) as standard DRAM,
 4 bus cycles including a wait state
- 2nd, 3rd and 4th number can be read in one bus cycle each
- Total 7 bus cycles for four 64-bit numbers vs 12 bus cycles for standard DRAM

DDR

- Transfer data on each edge of the clock
- Doubles the transfer rate, but the access time still exists

DRAM controller

- Handle address multiplexing and signal generation
- Often built into the processors.

Quiz

- 1. What types of connections are common to all memory devices?
- List the number of words found in each memory device for the following numbers of address connections:
 - (a) 8
 - (b) 11
 - (c) 12
 - (d) 13
 - (e) 20
- List the number of data items stored in each of the following memory devices and the number of bits in each datum:
 - (a) $2K \times 4$
 - (b) 1K×1
 - (c) 4K×8
 - (d) 16K×1
 - (e) $64K \times 4$
- 4. What is the purpose of the \overline{CS} or \overline{CE} pin on a memory component?
- 5. What is the purpose of the OE pin on a memory device?
- 6. What is the purpose of the WE pin on a SRAM?