Homework 3

RT Hatfield

12 September 2016

1.

The GCD of 210 and 588 is therefore $2 \bullet 3 \bullet 7 = 42$. Or, using Euclid's algorithm,

- Euclid(588, 210)
 - Euclid(210, 168)
 - * Euclid(168, 42)
 - \cdot Euclid(42,0)
 - · return 42;
 - * return 42;
 - return 42;
- return 42;
- 2. Find the inverse of: 20 mod 79, 3 mod 62, 21 mod 91, 5 mod 23.
 - $20 20^{-1} \equiv 1 \mod{79}$
 - $3 \cdot 3^{-1} \equiv 1 \mod 62$ (Honestly, I wasn't sure what to make of this one, as 62 isn't prime and 3 and 62 aren't relatively prime)
 - $21 \cdot 21^{-1} \equiv 1 \mod 91$ (Same as above)
 - $5 \bullet 5^{-1} \equiv 1 \mod 91$
- 3. Consider an RSA key set with p=17, q=23, N=391, and e=3. What value of d should be used for the secret key? What is the encryption of the message M=41?

First, we compute $3d^{-1} \equiv 1 \mod 352$

- eEuclid(352, 3)
 - eEuclid(3,1)
 - * eEuclid(1,1)
 - \cdot eEuclid(1,0)

```
 \begin{array}{c} \cdot \ (1,0,1) \\ * \ (0,1,1) \\ - \ (1,-3,1) \\ \bullet \ (-3,353,1) \end{array}
```

Therefore, d=3. To encrypt, we perform $M^3 \mod 391$. (LaTeX doesn't like such deeply nested lists, so this is ugly)

```
modexp(3, 41, 391)
modexp(3, 20, 391)
modexp(3, 10, 391)
modexp(3, 5, 391)
modexp(3, 2, 391)
modexp(3, 1, 391)
modexp(3, 0, 391)
1
3
9
243
8
64
167
```

The encrypted message is 167.