

Prim's Algorithm For MST. a) A spanning tree of a connected of a which is a sub-graph connects all vertices together.

ii) A MST is defined as a spanning tree with weight less than or equal to the weight of every other spanning. iii) Prim's algorithm is a greedy algorithm that used to form MST For a connected weighted undirected graph. ii) In other words, the algorithm builds a tree that includes every vertex and a subset of the edges in such a way that the total weight of all the edges in the tree is minimized. · Algorithm: PRIM (GIN) cost ← o for i < 1 to n-1 do MST[0] < 2

for K < 1 to n do min dist < 0 for it to noldo for jet to heldo if acij] AND((MST [i] AND-MST Cj) OR (MST (i) AND MST [j])) that ha page of tapique of 2 if a [i, i] < min-dist than min dist C a Cinjo Mak it book bodts with a ly to to be because limple att 125 and atto To (i print (41Vi min-dist) MST [u) & MST[v] (1600 cost < cost + min-dist print ("Total cost = " 1 (cost) The time complexity is O(n2).

Dote Poge

			7
Partial Solution	Set of neighbour	Gos t	Opdalpd
1 - 11,2,3 4, 64	edges		U
			€ 2,3,4,54
Tritial portial colution	<1,37	3	
-0-3-3	13 3		
3 0	1-1,.,,		
(1) (2)	<1,3>	3	23,4,54
1 Validion)		3	[3/4,3]
(2)	< 2,47	6	
and lon and	- ac + . l .	1 1 4	
1 2	<213>	13	1 4,54
3			
a raille dille			,
la la analit			
1) 2			5 / 7.
3	< 3,4>		643
2 (5)			-
0 1 0			
5 0			
(3)		.)	
2 (5)			
	Uv = {1,2,3,4,5 } Thitial partial solution D 2 3 3		

: Cost of solution = W(1,2) + W(1,3) + W(3,4) + W(3,5)= 1+3+5+2= 10 9.7 Kmskal's Algorithm is used to find the

i) Knuskal's algorithm is used to find the

Mst for a connected weighted graph

ii) This algorithm first soxts all the

edges in non-decreasing order of

their weight.

iii) Edge within minimum weight is

selected and its feasibility is tested

iv) IF inclusion of the edge to a

partial solution does not form the

cycle, then the edge is feasible

and added to the partial solution

u) IF it is not feasible then skip it

and check for the next edge

Cost = 10 /

#

Difference between

	Prim's Algarithm	Kniskal's Algorithm
	i) Prim's algorithm always	i) The kniskal algorithm
	chooses the next edge	chooses the edge
	which is a neighbour	having a minimum
	of vertices in partially	weight.
-	generated solution.	
	ii) Prim's algorithm	ii) In Kniskal's algorithm
	ensures that partial	a partial solution can
	solution is always	be a forest.
١	a tree.	
ł		
		iii) Sorting of edges is
	iii) Sorting of edges is	iii) Sorting of edges is
	iii) Sorting of edges is	compulsory.
	iii) Sorting of edges is not required. iv) In prim's algorithm	iv) Kniskal's can b
	iii) Sorting of edges is not required. iv) In prim's algorithm graph must be a	iv) Kniskal's can be function on disconnada
	iii) Sorting of edgos is not required. iv) In prim's algorithm graph must be a connected graph. v) Time complexity	iv) Kniskal's can be function on disconnadal groph.
	iii) Sorting of edgos is not required. iv) In prim's algorithm graph must be a connected graph. v) Time complexity of O(n2)	compulsory. iv) Knuskal's can b Function on disconnadad graph. u) Time complexity of O(log V).
	iii) Sorting of edgos is not required. iv) In prim's algorithm graph must be a connected graph. v) Time complexity of O(n2)	iv) Kniskal's can be function on disconnadad groph. I'me complexity of O(log V).
	iii) Sorting of edgos is not required. iv) In prim's algorithm graph must be a connected graph. v) Time complexity	iv) Kniskal's can to function on disconnadad groph. Jime complexity