Tema 14. Mulţimea lui Mandelbrot

1. Mulţimea lui Mandelbrot reparametrizată. In figura următoare este

Figura 1

reprezentată mulțimea acelor $\omega \in \mathbb{C}$ pentru care

$$c = (1 - (\omega - 1)^2)/4$$

apaține mulțimii lui Mandelbrot. Modificați funcția de desenare Mandelbrot() dată la curs pentru a obține această reprezentare.

2. Mulţimea lui Mandelbrot generalizată. Definiţi o funcţie care să traseze mulţimea

$$\mathcal{M} = \{ c \in \mathbb{C} \mid \text{sirul } (f_c^{\circ n}(0)) \text{ este m\"{a}rginit} \}, \tag{1}$$

pentru $f_c(z) = z^p + c$ cu p = 4. Rezultatul trebuie să fie cel din Figura 2.

FIGURA 2. $f_c(z) = z^4 + c$

Studiați apoi invarianța rotațională a mulțimii $\mathcal M$ în cazurile $p=5,\,p=6$ și p=7. Ce constatați?

3. Mulțimea MandelBar. Reprezentați mulțimea \mathcal{M} definită de relația (1) corespunzătoare funcției $f_c(z) = \bar{z}^2 + c$. Rezultatul, cunoscut sub denumirea de tricorn sau mulțimea MandelBar, este dat de Figura 3. Căutați să măriți imaginea în vecinătatea unui punct de pe frontieră.

FIGURA 3. Mulţimea MandelBar

4. Mulţimea MandelSinus. Reprezentaţi mulţimea

 $S = \{ c \in \mathbb{C} \mid \text{şirul } z_{n+1} = c \sin z_n \text{ pentru orice } n \ge 0, \text{ cu } z_0 = c, \text{ este m\"{a}rginit} \},$ (2)

unde funcția complexă sinus este definită de seria de puteri

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \cdots,$$

convergentă pentru orice $z \in \mathbb{C}$.

FIGURA 4. Multimea MandelSinus