Ejercicios

Realizaremos algunos ejercicios prácticos relacionados con la notación matemática en álgebra lineal.

1. Considere los siguientes vectores $x, y \in \mathbb{R}^3$ definidos como:

$$x = \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix}, \quad y = \begin{bmatrix} 5 \\ 10 \\ 3 \end{bmatrix}$$

El producto punto entre ellos es $x^Ty = -3$.

- 2. De las siguientes funciones, identifique el tipo de mapeo que se realiza:
 - a) Sea $x = [x_1, x_2]^T$, y $f(x) = x_1^2 + 3x_2^2$. Entonces, se sabe que $f: \mathbb{R}^2 \to \mathbb{R}$.
 - b) Sea $x = [x_1, x_2, \dots, x_{20}]^T$, y $f(x) = 4x_1$. Entonces, se sabe que $f: \mathbb{R}^{20} \to \mathbb{R}$.
 - c) Sea $x \in \mathbb{R}$, y sea [x] el número entero más grande no mayor a x. La función la definimos como f(x) = [x]. Entonces, se sabe que $f: \mathbb{R} \to \mathbb{Z}$.
- 3. Considere las siguientes matrices:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mathsf{B} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}, \quad C = \begin{bmatrix} -3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}, \quad E = \begin{bmatrix} 5 & 2 & 1 \\ 2 & -1 & 3 \\ 1 & 3 & 2 \end{bmatrix}$$

De estas matrices podemos decir lo siguiente:

- Las matrices A y C son matrices diagonales.
- La matriz A es la matriz identidad de 2x2.
- Las matrices A, C, y E son matrices simétricas y cuadradas.
- Las matrices B y D son matrices rectangulares.
- $B^T = D$.

Ejercicios adicionales:

4. Sea $x=[x_1,x_2,\cdots,x_n]\in\mathbb{R}^n$. Considere la siguiente operación:

$$x^T O x$$

donde Q es una matriz de $n \times n$ con elementos reales.

- a) Resuelva el producto x^TQx (es decir, déjelo expresados términos de x_1 , x_2 , etc.) si n=2, y $Q=\begin{bmatrix}10&-1\\1&5\end{bmatrix}$.
- b) Resuelva el producto x^TQx si n=2, y $Q=\begin{bmatrix}10&0\\0&5\end{bmatrix}$.
- c) Resuelva el producto x^TQx si n=2, y $Q=\begin{bmatrix}10&1\\-1&5\end{bmatrix}$.
- d) Resuelva el producto x^TQx si n=2, y $Q=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
- e) Si n = 2, encuentre una matriz Q tal que el producto x^TQx satisface

$$x^T Q x = x_1^2 - 3x_2^2 + 8x_1x_2.$$

© - Derechos Reservados: la presente obra, y en general todos sus contenidos, se encuentran protegidos por las normas internacionales y nacionales vigentes sobre propiedad Intelectual, por lo tanto su utilización parcial o total, reproducción, comunicación pública, transformación, distribución, alquiler, préstamo público e importación, total o parcial, en todo o en parte, en formato impreso o digital y en cualquier formato conocido o por conocer, se encuentran prohibidos, y solo serán lícitos en la medida en que se cuente con la autorización previa y expresa por escrito de la Universidad de los Andes.

De igual manera, la utilización de la imagen de las personas, docentes o estudiantes, sin su previa autorización está expresamente prohibida. En caso de incumplirse con lo mencionado, se procederá de conformidad con los reglamentos y políticas de la universidad, sin perjuicio de las demás acciones legales aplicables.

