AD-A082 164 UNCLASSIFIED	JAN 80	ER SIM	COLUMBI ULATION KOTRAS	OF GR	EAT LAK ETER	LAWRENG	CE SEAW DOT-	AY ICEE CG-81-7	F/6 1: REAK '8-1953 NL	FTC(II)	
1 + 3 4042 = 4											

Thomas V. Kotras James J. Peter 7. Performing Organization Name and Address ARCTEC, Incorporated 9104 Red Branch Road Columbia, Maryland 21045 12. Sponsoring Agency Name and Address Department of Transportation U.S. Coast Guard R&D Center Avery Point Graton, CT 06340 15. Supplementary Notes 16. Abstract This report describes is computer simulation developed as a planning tool to aid establishing future icebreaker requirements for the Great Lakes-St. Lawrence Set as a function of projected cargo tonnage, trade routes, winter severity, vessel transiting capabilities, vessel operating restrictions, and alternate icebreaking plans and operating concepts (direct assistance, convoying, and channel ice cler the simulation allows the user to determine benefits in terms of reduced commerce transit time, reduced shipping costs, and to investigate alternate fleet mixes of icebreakers and icebreaking tugs and their assigned areas of operation. The simulation has the following two operating modes: (1) a fixed fleet of icebreakers; and (2) maximum response time where the required icebreaker fleet is determined internally. In addition to describing the simulation, this report also presents validation of the simulation based on U.S. Coast Guard records for the 1975-76 winter navigation season, and the results, conclusions, and recommendations of ten (10) production runs performed to examine the effect on icebreaker requirements of: (1) 202 increase in cargo over the year 2000 projections; (2) convoys; (3) winter severity (4) imposed vessel restrictions; (5) channel ice clearing; and (6) prohibiting threaking tugs from convoying. Based on these runs, a preliminary icebraker flefor the Great Lakes was generated to handle the projected cargo in the year 2000 Projections; (2) convoys; (3) winter severity (4) imposed vessel restrictions; (5) channel ice clearing; and (6) prohibiting threaking tugs from convoying.	/ ^ I		<i>f</i>	
2. Government Accession No. 1. Thomas V. Actra James J. Peter 2. Fertoming Organization Name and Address ARCTEC, Incorporated 9104 Red Branch Road Columbia, Maryland 21045 12. Separation Agreement of Transportation U.S. Coast Guard R&D Center Avery Point Granting Capabilities, vessel operating capabilities, vessel operating perstrictions, and alternate febreaker stansiting capabilities, vessel operating prestrictions, and alternate febreakers and icebreaking tugs and their assigned areas of operation The simulation has the following two operating modes: (1) a fixed fleet of icebreaker simulation to describing the simulation operating modes: (2) convoys; (3) winter severity (4) imposed vessel restrictions; (5) channel ice clearing; and (6) production of the great Lakes of (10) production to the simulation based on U.S. Coast Guard records for the 1975-76 winter navigative season, and the results, conclusions, and recommendations of ten (10) production crus performed to examine the effect on incebreaker requirements of the simulation has the following two operating modes: (1) a fixed fleet of icebreaker seamine the effect on incebreaker requirements of the simulation based on U.S. Coast Guard records for the 1975-76 winter navigative season, and the results, conclusions, and recommendations of ten (10) production crus performed to examine the effect on incebreaker requirements of (1) 205 increase in cargo over the year 2000 projections; (2) convoys; (3) winter severity (4) imposed vessel restrictions; (5) channel ice clearing; and (6) prohibiting breaking tugs from convoying. Based on these runs, a preliminary icebreaker fleet for the Great Lakes was generated to handle the projected cargo in the year 2000 Unclassified 19. Security Classif. (al Mins repair) 10. Unclassified 10. Supplied to the U.S. Publichassified 10. Supplied to the U.S. Publichassified 11. No. of Peges 12. Proc. Unclassified 12. No. of Peges 12. Proc. Unclassified	(18) 71566, 0	CGR/IC		Technical Report Documentati
A Title and Submitts COMPUTER SIMULATION OF GREAT LAKES-ST. LAWRENCE SEAMAY ICEBREAKER BEQUIREMENTS Thomas V. Kotras James J. Peter Performing Organization Report No. ARCTEC, Incorporated 9104 Red Branch Road Columbia, Maryland 21045 12. Spensoring Agency Name and Address Department of Transportation U.S. Coast Guard R&D Center Avery Point Groton, CT 06340 15. Supplementary Noise 16. Abstreet This report describes is computer simulation) developed as a planning tool to aid establishing future icebreaker requirements for the Great Lakes-St. Lawrence Set as a function of projected cargo tonnage, trade routes, winter severity, vessis transiting capabilities, vessel operating restrictions, and alternate icebreakin plans and operating concepts (direct assistance, convoying, and channel ice cler he simulation allows the user to determine benefits in terms of reduced comment transit time, reduced shipping cost and increased fleet tonnage capacity; to assist in impact of user charges on shipping costs; and to investigate alternate fleet mixes of icebreakers and icebreaking tugs and their assigned areas of operation. The simulation hased on U.S. Coast Guard records for the 1975-76 winter navigation and the results, conclusions, and recommendations of ten (10) production to describing the simulation, this report also presents validation the simulation based on U.S. Coast Guard records for the 1975-76 winter navigation and the results, conclusions, and recommendations of ten (10) production to describing the simulation, this report also presents validation to the simulation based on U.S. Coast Guard records for the 1975-76 winter navigation and the results, conclusions, and recommendations of ten (10) production to describing the simulation, the requirements of: (1) 20% increase in cargo over the year 2000 projections; (2) convoys; (3) winter severity for the Great Lakes was generated to handle the projected cargo in the year 2000 projections; (2) convoys; (3) winter severity for the Great Lakes St. Lawrence Se		2. Government Acces	ssion No.	
COMPUTER SIMULATION OF GREAT LAKES-ST. LAWRENCE SAMAY ICEBREAKER BEQUIREMENTS SAMAY ICEBREAKER BEQUIREMENTS SAMAY ICEBREAKER BEQUIREMENTS SAMAY ICEBREAKER BEQUIREMENTS SAMAY ICEBREAKER BEQUIREMENTS SAMAY ICEBREAKER BEQUIREMENTS		<u></u>	company to the control	5 Pancy Co.
Thomas V. Kotras James J. Peter 296C-4 R&DC-2 P. Performing Organization Name and Address ARCTEC, Incorporated 9104 Red Branch Road Columbia, Maryland 21045 12. Spensoring Agancy Name and Address Department of Transportation U.S. Coast Guard R&D Center Avery Point Granton, CT 06340 15. Supplementery Meres 16. Abstract This report describes a computer simulation developed as a planning tool to aid establishing future icebreaker requirements for the Great Lakes-St. Lawrence Sea as a function of projected cargo tonnage, trade routes, winter severity, vessel transiting capabilities, vessel operating restrictions, and alternate icebreaker transit time, reduced shipping cost and increased fleet tonnage capacity; to ass the impact of user charges on shipping costs; and to investigate alternate flee mixes of icebreakers and icebreaking tugs and their assigned areas of operation. The simulation has the following two operating modes: (1) a fixed fleet of icebreakers; and (2) maximum response time where the required icebreaker fleet is determined internally. In addition to describing the simulation, this report also presents validation of the simulation based on U.S. Coast Guard records for the 1975-76 winter navigation runs performed to examine the effect on icebreaker requirements of: (1) 20% increase in cargo over the year 2000 projections; (2) convoys; (3) winter severity for the Great Lakes was generated to handle the projected cargo in the year 2000 projections; (2) convoys; (3) winter severity for the Great Lakes was generated to handle the projected cargo in the year 2000 projections; (2) convoys; (3) winter severity brown and the Results. Computer Simulation is available to the U.S. Published the Great Lakes was generated to handle the projected cargo in the year 2000 projections; (2) convoys; (3) winter severity for the Great Lakes was generated to handle the projected cargo in the year 2000 projections; (2) convoys; (3) winter severity for the Great Lakes was generated to handle the projected cargo in the		FAT LAKES ST	AWRENCE	and the same of th
Performing Organization Name and Address ARCTEC, Incorporated 9104 Red Branch Road Columbia, Maryland 21045 12. Separating Agency Name and Address Department of Transportation U.S. Coast Guard R&D Center Avery Point Graton, CT 06:340 13. Supplementary Notes 14. Separating Agency Notes This report describes a computer simulation developed as a planning tool to aid establishing future icebreaker requirements for the Great Lakes-St. Lawrence Sea as a function of projected cargo tonnage, trade routes, winter severity, vessel transiting capabilities, vessel operating restrictions, and alternate icebreaking plans and operating concepts (direct assistance, convoying, and channel ice clear transit time, reduced shipping cost and increased fleet tonnage capacity; to ass the impact of user charges on shipping costs; and to investigate alternate fleet mixes of icebreakers and icebreaking tugs and their assigned areas of operation. The simulation has the following two operating modes: (1) a fixed fleet of icebreakers; and (2) maximum response time where the requirements of: (1) 20% increase in cargo over the year 2000 projections; (2) convoys; (3) winter severity (4) imposed vessel restrictions; (5) channel ice clearing; and (6) prohibiting in breaking tugs from convoying. Based on these runs, a preliminary icebreaker (12) for the Great Lakes was generated to handle the projected cargo in the year 2000 progettions; (2) convoys; (3) winter severity (4) imposed vessel restrictions; (5) channel ice clearing; and (6) prohibiting in breaking tugs from convoying. Based on these runs, a preliminary icebreaker (12) for the Great Lakes was generated to handle the projected cargo in the year 2000 for the Great Cargo in the year 2000 for the Great Lakes of the G	SEAWAY ICEBREAKER REQUIRE	MENTS .	WILLION WILLIAM	
RCTEC, Incorporated 9104 Red Branch Road Columbia, Maryland 21045 12. Spensoring Agency Home and Address Department of Transportation U.S. Coast Guard R&D Center Avery Point Graton, CT 06340 13. Supplementary Noise 14. Separating Agency Home and Address Graton, CT 06340 15. Supplementary Noise 16. Abstract This report describes is computer simulation developed as a planning tool to aid establishing future icebreaker requirements for the Great Lakes-St. Lawrence Sea as a function of projected cargo tonnage, trade routes, winter severity, vessel transiting capabilities, vessel operating restrictions, and alternate icebreaking plans and operating concepts (direct assistance, convoying, and channel ice clear transit time, reduced shipping cost and increased fleet tonnage capacity; to ass the impact of user charges on shipping costs; and to investigate alternate fleet mixes of icebreakers and icebreaking tugs and their assigned areas of operation. The simulation has the following two operating modes: (1) a fixed fleet of icebreakers; and (2) maximum response time where the required icebreaker fleet is determined internally. In addition to describing the simulation, this report also presents validation of the simulation based on U.S. Coast Guard records for the 1975-76 winter navigation becaking tugs from convoying. Based on these requirements of: (1) 20% increase in cargo over the year 2000 projections; (2) convoys; (3) winter severity (4) imposed vessel restrictions; (5) channel ice clearing; and (6) prohibiting in breaking tugs from convoying. Based on these runs, a preliminary icebreaker flee for the Great Lakes was generated to handle the projected cargo in the year 2000 for the Great Lakes was generated to handle the projected cargo in the year 2000 for the Great Lakes was generated to handle the projected cargo in the year 2000 for the greating tugs from convoying. Based on these runs, a preliminary icebreaker flee for the Great Lakes was generated to handle the projected cargo in the year 2000 for the g				8 Performing Organization Report No.
RRCTEC, Incorporated 9104 Red Branch Road Columbia, Maryland 21045 12. Spensoring Agency Nome and Address Department of Transportation U.S. Coast Guard R&D Center Avery Point Graton, CT 06340 13. Supplementary Noise 14. Spensoring Agency Nome and Address Graton, CT 06340 15. Supplementary Noise 16. Abstract This report describes is computer simulation) developed as a planning tool to aid establishing future icebreaker requirements for the Great Lakes-St. Lawrence Sea as a function of projected cargo tonnage, trade routes, winter severity, vessel transiting capabilities, vessel operating restrictions, and alternate icebreakin plans and operating concepts (direct assistance, convoying, and channel ice clear transitime, reduced shipping cost and increased fleet tonnage capacity; to ass the impact of user charges on shipping costs; and to investigate alternate fleet mixes of icebreakers and icebreaking tugs and their assigned areas of operation. The simulation has the following two operation modes: (1) a fixed fleet of icebreakers; and (2) maximum response time where the required icebreaker fleet is determined internally. In addition to describing the simulation, this report also presents validation of the simulation based on U.S. Coast Guard records for the 1975-76 winter navigati season, and the results, conclusions, and recommendations of ten (10) production runs performed to examine the effect on icebreaker requirements of: (1) 20% increase in cargo over the year 2000 projections; (2) convoys; (3) winter severity (4) imposed vessel restrictions; (5) channel ice clearing; and (6) prohibiting in breaking tugs from convoying. Based on these runs, a preliminary icebreaker flee for the Great Lakes was generated to handle the projected cargo in the year 2000 for the Great Lakes was generated to handle the projected cargo in the year 2000 for the great in available to the U.S. Publisher Sterment Document is available to the U.S. Publisher Novice of the projected cargo in the year 2000 for the great in the projec			(14	
9104 Red Branch Road Columbia, Maryland 21045 12. Sponsoring Agency Name and Address Department of Transportation U.S. Coast Guard R&D Center Avery Point Graton, CT 06340 13. Supplementary Mores 14. Sponsoring Agency Notes 15. Supplementary Mores 16. Abstract This report describes a computer simulation developed as a planning tool to aid establishing future icebreaker requirements for the Great Lakes-St. Lawrence Sea as a function of projected cargo tonnage, trade routes, winter severity, vessel transiting capabilities, vessel operating restrictions, and alternate icebreakin plans and operating concepts (direct assistance, convoying, and channel ice clea The simulation allows the user to determine benefits in terms of reduced commerc transit time, reduced shipping cost and increased fleet tonnage capacity; to ass the impact of user charges on shipping costs; and to investigate alternate fleet mixes of icebreakers and icebreaking tugs and their assigned areas of operation. The simulation has the following two operating modes: (1) a fixed fleet of ice- breakers; and (2) maximum response time where the required icebreaker fleet is determined internally. In addition to describing the simulation, this report also presents validation of the simulation based on U.S. Coast Guard records for the 1975-76 winter navigati season, and the results, conclusions, and recommendations of ten (10) production runs performed to examine the effect on icebreaker requirements of: (1) 20% in- crease in cargo over the year 2000 projections; (2) convoys; (3) winter severity (4) imposed vessel restrictions; (5) channel ice clearing; and (6) prohibiting i breaking tugs from convoying. Based on these runs, a preliminary icebreaker flee for the Great Lakes was generated to handle the projected cargo in the year 2000 17. Key Words 18. Dismissions Statement Unclassified 19. Dismissions Statement Unclassified 19. Dismissions Statement Unclassified 20. Security Clease, (of this page) Unclassified 21. Ne. of Poges 22. Price 195	1 /	ess		
12. Spensoring Agency Name and Address Department of Transportation U.S. Coast Guard R&D Center Avery Point Groton, CT 06340 15. Supplementary Notes 16. Abstract This report describes a computer simulation developed as a planning tool to aid establishing future icebreaker requirements for the Great Lakes-St. Lawrence Sea as a function of projected cargo tonnage, trade routes, winter severity, vessel transiting capabilities, vessel operating restrictions, and alternate icebreaking plans and operating concepts (direct assistance, convoying, and channel ice clea The simulation allows the user to determine benefits in terms of reduced commerc transit time, reduced shipping cost and increased fleet tonnage capacity; to ass the impact of user charges on shipping costs; and to investigate alternate fleet mixes of icebreakers and icebreaking tugs and their assigned areas of operation. The simulation has the following two operating modes: (1) a fixed fleet of icebreakers; and (2) maximum response time where the required icebreaker fleet is determined internally. In addition to describing the simulation, this report also presents validation of the simulation based on U.S. Coast Guard records for the 1975-76 winter navigati season, and the results, conclusions, and recommendations of ten (10) production runs performed to examine the effect on icebreaker requirements of: (1) 20% increase in cargo over the year 2000 projections; (2) convoys; (3) winter severity (4) imposed vessel restrictions; (5) channel ice clearing; and (6) prohibiting in breaking tugs from convoying. Based on these runs, a preliminary icebreaker fle for the Great Lakes was generated to handle the projected cargo in the year 2000 Computer of the Security Cleaser (6) prohibiting in the Security Cleaser (6) prohibiting in Service, Springfield, VA 22161 Unclassified 19. Security Cleaser (6) first pages 12. Price 195				II. Commercial N
12. Spensering Agency Name and Address Department of Transportation U.S. Coast Guard R&D Center Avery Point Groton, CT 06340 15. Supplementary Notes 16. Abstract This report describes a computer simulation developed as a planning tool to aid establishing future icebreaker requirements for the Great Lakes-St. Lawrence Sea as a function of projected cargo tonnage, trade routes, winter severity, vessel transiting capabilities, vessel operating restrictions, and alternate icebreaking plans and operating concepts (direct assistance, convoying, and channel ice clea The simulation allows the user to determine benefits in terms of reduced commerc transit time, reduced shipping cost and increased fleet tonnage capacity; to ass the impact of user charges on shipping costs; and to investigate alternate fleet mixes of icebreakers and icebreaking tugs and their assigned areas of operation. The simulation has the following two operating modes: (1) a fixed fleet of icebreakers; and (2) maximum response time where the required icebreaker fleet is determined internally. In addition to describing the simulation, this report also presents validation of the simulation based on U.S. Coast Guard records for the 1975-76 winter navigati season, and the results, conclusions, and recommendations of ten (10) production runs performed to examine the effect on icebreaker requirements of: (1) 20% increase in cargo over the year 2000 projections; (2) convoys; (3) winter severity (4) imposed vessel restrictions; (5) channel ice clearing; and (6) prohibiting in breaking tugs from convoying. Based on these runs, a preliminary icebreaker fle for the Great Lakes was generated to handle the projected cargo in the year 2000 [12, Key Words] 18. Distribution Stetement [18] Distribution Stetement [18] Distribution Stetement [18] Document is available to the U.S. Publices Real Lakes Requirements [18] Document is available to the U.S. Publices Real Lakes [18] Distribution Stetement [18] Document is available to the U.S. Publices [18] Document is avai	IL CONTRACTOR OF THE CONTRACTO		(15)	DOT-CG-81-78-1953
Department of Transportation U.S. Coast Guard R&D Center Avery Point Graton, CT 06340 13. Supplementary Notes 14. Sponsoring Agency Code U.S. Coast Guard R&D Center Arety Point Graton, CT 06340 15. Supplementary Notes 16. Abstract This report describes a computer simulation developed as a planning tool to aid establishing future icebreaker requirements for the Great Lakes-St. Lawrence Sea as a function of projected cargo tonnage, trade routes, winter severity, vessel transiting capabilities, vessel operating restrictions, and alternate icebreakin plans and operating concepts (direct assistance, convoying, and channel ice clear The simulation allows the user to determine benefits in terms of reduced commerc transit time, reduced shipping cost and increased fleet tonnage capacity; to ass the impact of user charges on shipping costs; and to investigate alternate fleet mixes of icebreakers and icebreaking tugs and their assigned areas of operation. The simulation has the following two operating modes: (1) a fixed fleet of icebreakers; and (2) maximum response time where the required icebreaker fleet is determined internally. In addition to describing the simulation, this report also presents validation of the simulation based on U.S. Coast Guard records for the 1975-76 winter navigations performed to examine the effect on icebreaker requirements of: (1) 20% increase in cargo over the year 2000 projections; (2) convoys; (3) winter severity (4) imposed vessel restrictions; (5) channel ice clearing; and (6) prohibiting in breaking tugs from convoying. Based on these runs, a preliminary icebreaker fle for the Great Lakes was generated to handle the projected cargo in the year 2000 Tocument is available to the U.S. Publithrough the National Technical Information for the Great Lakes was generated to handle the projected cargo in the year 2000 Unclassified 17. Key Words 18. Distribution Statement 19. Security Classif. (of this seport) 19. Security Classif. (of this seport) 19. Security Classif. (of this seport)	Columbia, Maryland 21045			<u> </u>
Department of Transportation U.S. Coast Guard R&D Center Avery Point Groton, CT 06340 15. Supplementary Notes 16. Abstract This report describes a computer simulation developed as a planning tool to aid establishing future icebreaker requirements for the Great Lakes-St. Lawrence Sea as a function of projected cargo tonnage, trade routes, winter severity, vessel transiting capabilities, vessel operating restrictions, and alternate icebreakin plans and operating concepts (direct assistance, convoying, and channel ice clea The simulation allows the user to determine benefits in terms of reduced commer transit time, reduced shipping cost and increased fleet tonnage capacity; to ass the impact of user charges on shipping costs; and to investigate alternate fleet mixes of icebreakers and icebreaking tugs and their assigned areas of operation. The simulation has the following two operating modes: (1) a fixed fleet of icebreakers; and (2) maximum response time where the required icebreaker fleet is determined internally. In addition to describing the simulation, this report also presents validation of the simulation based on U.S. Coast Guard records for the 1975-76 winter navigation season, and the results, conclusions, and recommendations of ten (10) production runs performed to examine the effect on icebreaker requirements of: (1) 20% increase in cargo over the year 2000 projections; (2) convoys; (3) winter severity (4) imposed vessel restrictions; (5) channel ice clearing; and (6) prohibiting in breaking tugs from convoying. Based on these runs, a preliminary icebreaker fle for the Great Lakes was generated to handle the projected cargo in the year 2000 (1) CEBREAKER REQUIREMENTS (1) Convoys; (2) Convoys; (3) winter severity clease. (4) imposed vessel restrictions; (5) channel ice clearing; and (6) prohibiting in breaking tugs from convoying. Based on these runs, a preliminary icebreaker fle for the Great Lakes was generated to handle the projected cargo in the year 2000 (1) CEBREAKER REQUIREMENTS (1) Convoys; (2	12. Sponsoring Agency Name and Address		(0)	\i
U.S. Coast Guard R&D Center Avery Point Groton, CT 06340 15. Supplementary Mores 16. Abstract This report describes is computer simulation, developed as a planning tool to aid establishing future icebreaker requirements for the Great Lakes-St. Lawrence Sea as a function of projected cargo tonnage, trade routes, winter severity, vessel transiting capabilities, vessel operating restrictions, and alternate icebreakin plans and operating concepts (direct assistance, convoying, and channel ice clear The simulation allows the user to determine benefits in terms of reduced commerc transit time, reduced shipping cost and increased fleet tonnage capacity; to ass the impact of user charges on shipping costs; and to investigate alternate fleet mixes of icebreakers and icebreaking tugs and their assigned areas of operation. The simulation has the following two operating modes: (1) a fixed fleet of icebreakers; and (2) maximum response time where the required icebreaker fleet is determined internally. In addition to describing the simulation, this report also presents validation of the simulation based on U.S. Coast Guard records for the 1975-76 winter navigation and the results, conclusions, and recommendations of ten (10) production runs performed to examine the effect on icebreaker requirements of: (1) 20% increase in cargo over the year 2000 projections; (2) convoys; (3) winter severity (4) imposed vessel restrictions; (5) channel ice clearing; and (6) prohibiting in breaking tugs from convoying. Based on these runs, a preliminary icebreaker fle for the Great Lakes was generated to handle the projected cargo in the year 2000 CMPUTER SIMULATION 10. Distribution Statement Document is available to the U.S. Publithrough the National Technical Information Service, Springfield, VA 22161 11. No. of Poges 122. Price Unclassified 12. No. of Poges 122. Price Unclassified			7	
Groton, CT 06340 15. Supplementary Notes 16. Abstract This report describes is computer simulation developed as a planning tool to aid establishing future icebreaker requirements for the Great Lakes-St. Lawrence Sea as a function of projected cargo tonnage, trade routes, winter severity, vessel transiting capabilities, vessel operating restrictions, and alternate icebreaking plans and operating concepts (direct assistance, convoying, and channel ice cleat the simulation allows the user to determine benefits in terms of reduced commerc transit time, reduced shipping cost and increased fleet tonnage capacity; to ass the impact of user charges on shipping costs; and to investigate alternate fleet mixes of icebreakers and icebreaking tugs and their assigned areas of operation. The simulation has the following two operating modes: (1) a fixed fleet of icebreakers; and (2) maximum response time where the required icebreaker fleet is determined internally. In addition to describing the simulation, this report also presents validation of the simulation based on U.S. Coast Guard records for the 1975-76 winter navigation capacity; to assimulation based on U.S. Coast Guard records for the 1975-76 winter navigation capacity; to assimulation of the simulation of	U.S. Coast Guard R&D Cente			The state of the s
16. Abstract This report describes a computer simulation developed as a planning tool to aid establishing future icebreaker requirements for the Great Lakes-St. Lawrence Sea as a function of projected cargo tonnage, trade routes, winter severity, vessel transiting capabilities, vessel operating restrictions, and alternate icebreaking plans and operating concepts (direct assistance, convoying, and channel ice clea The simulation allows the user to determine benefits in terms of reduced commerc transit time, reduced shipping cost and increased fleet tonnage capacity; to assist the impact of user charges on shipping costs; and to investigate alternate fleet mixes of icebreakers and icebreaking tugs and their assigned areas of operation. The simulation has the following two operating modes: (1) a fixed fleet of icebreakers; and (2) maximum response time where the required icebreaker fleet is determined internally. In addition to describing the simulation, this report also presents validation of the simulation based on U.S. Coast Guard records for the 1975-76 winter navigation season, and the results, conclusions, and recommendations of ten (10) production runs performed to examine the effect on icebreaker requirements of: (1) 20% increase in cargo over the year 2000 projections; (2) convoys; (3) winter severity (4) imposed vessel restrictions; (5) channel ice clearing; and (6) prohibiting in breaking tugs from convoying. Based on these runs, a preliminary icebreaker flefor the Great Lakes was generated to handle the projected cargo in the year 2000 (COMPUTER SIMULATION 10. Seventy Clease (10) (10) (11) (10) (11) (10) (11) (10) (11) (10) (11) (10) (11) (11				U.S. Coast Guard Pan Cor
16. Abstract This report describes a computer simulation developed as a planning tool to aid establishing future icebreaker requirements for the Great Lakes-St. Lawrence Sea as a function of projected cargo tonnage, trade routes, winter severity, vessel transiting capabilities, vessel operating restrictions, and alternate icebreaking plans and operating concepts (direct assistance, convoying, and channel ice clear The simulation allows the user to determine benefits in terms of reduced commerc transit time, reduced shipping cost and increased fleet tonnage capacity; to ass the impact of user charges on shipping costs; and to investigate alternate fleet mixes of icebreakers and icebreaking tugs and their assigned areas of operation. The simulation has the following two operating modes: (1) a fixed fleet of icebreakers; and (2) maximum response time where the required icebreaker fleet is determined internally. In addition to describing the simulation, this report also presents validation of the simulation based on U.S. Coast Guard records for the 1975-76 winter navigations season, and the results, conclusions, and recommendations of ten (10) production runs performed to examine the effect on icebreaker requirements of: (1) 20% increase in cargo over the year 2000 projections; (2) convoys; (3) winter severity (4) imposed vessel restrictions; (5) channel ice clearing; and (6) prohibiting ibreaking tugs from convoying. Based on these runs, a preliminary icebreaker fle for the Great Lakes was generated to handle the projected cargo in the year 2000 (2) (2) (2) (2) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (5) (4) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6				wai y nau cel
16. Abstract This report describes a computer simulation developed as a planning tool to aid establishing future icebreaker requirements for the Great Lakes-St. Lawrence Sea as a function of projected cargo tonnage, trade routes, winter severity, vessel transiting capabilities, vessel operating restrictions, and alternate icebreaking plans and operating concepts (direct assistance, convoying, and channel ice cleating the simulation allows the user to determine benefits in terms of reduced commerc transit time, reduced shipping cost and increased fleet tonnage capacity; to assist the impact of user charges on shipping costs; and to investigate alternate fleet mixes of icebreakers and icebreaking tugs and their assigned areas of operation. The simulation has the following two operating modes: (1) a fixed fleet of icebreakers; and (2) maximum response time where the required icebreaker fleet is determined internally. In addition to describing the simulation, this report also presents validation of the simulation based on U.S. Coast Guard records for the 1975-76 winter navigation season, and the results, conclusions, and recommendations of ten (10) production runs performed to examine the effect on icebreaker requirements of: (1) 20% increase in cargo over the year 2000 projections; (2) convoys; (3) winter severity (4) imposed vessel restrictions; (5) channel ice clearing; and (6) prohibiting in breaking tugs from convoying. Based on these runs, a preliminary icebreaker fle for the Great Lakes was generated to handle the projected cargo in the year 2000 (17. Key Words COMPUTER SIMULATION Inclassified 18. Distribution Statement Document is available to the U.S. Published the Great Lakes was generated to handle the projected cargo in the year 2000 (19. Security Cleases (19. Inclassified) (19. No. of Poges) (22. Price of Unclassified) (19. Security Clease (19. Inclassified) (19. No. of Poges) (22. Price of Unclassified) (19. Security Clease (19. Inclassified) (19. Security Clease (19. Inclassified) (19. Security			4	
16. Abstract This report describes a computer simulation developed as a planning tool to aid establishing future icebreaker requirements for the Great Lakes-St. Lawrence Sea as a function of projected cargo tonnage, trade routes, winter severity, vessel transiting capabilities, vessel operating restrictions, and alternate icebreaking plans and operating concepts (direct assistance, convoying, and channel ice cleating the simulation allows the user to determine benefits in terms of reduced commerc transit time, reduced shipping cost and increased fleet tonnage capacity; to assist the impact of user charges on shipping costs; and to investigate alternate fleet mixes of icebreakers and icebreaking tugs and their assigned areas of operation. The simulation has the following two operating modes: (1) a fixed fleet of icebreakers; and (2) maximum response time where the required icebreaker fleet is determined internally. In addition to describing the simulation, this report also presents validation of the simulation based on U.S. Coast Guard records for the 1975-76 winter navigation season, and the results, conclusions, and recommendations of ten (10) production runs performed to examine the effect on icebreaker requirements of: (1) 20% increase in cargo over the year 2000 projections; (2) convoys; (3) winter severity (4) imposed vessel restrictions; (5) channel ice clearing; and (6) prohibiting in breaking tugs from convoying. Based on these runs, a preliminary icebreaker fle for the Great Lakes was generated to handle the projected cargo in the year 2000 (17. Key Words COMPUTER SIMULATION Inclassified 18. Distribution Statement Document is available to the U.S. Published the Great Lakes was generated to handle the projected cargo in the year 2000 (19. Security Cleases (19. Inclassified) (19. No. of Poges) (22. Price of Unclassified) (19. Security Clease (19. Inclassified) (19. No. of Poges) (22. Price of Unclassified) (19. Security Clease (19. Inclassified) (19. Security Clease (19. Inclassified) (19. Security	/	J (12/195	7
COMPUTER SIMULATION ICEBREAKER REQUIREMENTS GREAT LAKES-ST. LAWRENCE SEAWAY NAVIGATION Document is available to the U.S. Publisher of the Discours of the U.S. Publisher of the Discours of t	plans and operating concept The simulation allows the itransit time, reduced shipp the impact of user charges mixes of icebreakers and icebreakers and icebreakers and icebreakers and icebreakers; and (2) maximum idetermined internally. In addition to describing the simulation based on U.S season, and the results, coruns performed to examine crease in cargo over the yeal (4) imposed vessel restrictions breaking tugs from convoying the simulation of the performance	ts (direct assi- user to determi- ping cost and i- on shipping co- cebreaking tugs lowing two oper response time we the simulation, S. Coast Guard onclusions, and the effect on i- ear 2000 projec- tions; (5) chan- ng. Based on t	stance, convoyine benefits in ncreased fleet sts; and to invand their assiating modes: (here the requirement alrecords for the recommendation cebreaker requitions; (2) conval ice clearinhese runs, a pr	ng, and channel ice cleaterms of reduced commerce tonnage capacity; to assessing at a liternate fleet gned areas of operation. 1) a fixed fleet of iceded icebreaker fleet is so presents validation of 1975-76 winter navigations of ten (10) production rements of: (1) 20% incoys; (3) winter severity and (6) prohibiting iteliminary icebreaker fleet
ICEBREAKER REQUIREMENTS GREAT LAKES-ST. LAWRENCE SEAWAY NAVIGATION 19. Security Classif. (of this report) Unclassified 10. Security Classif. (of this page) Unclassified	1			
Unclassified Unclassified 195	1			
	COMPUTER SIMULATION ICEBREAKER REQUIREMENTS GREAT LAKES-ST. LAWRENCE SI	EAWAY	Document is av	ailable to the U.S. Publ tional Technical Informa
Form DOT F 1700.7 (8-72)	COMPUTER SIMULATION ICEBREAKER REQUIREMENTS GREAT LAKES-ST. LAWRENCE SI NAVIGATION 19. Security Classif. (of this report)	20. Security Class	Document is avec through the Nation Service,	ailable to the U.S. Publ tional Technical Informa Springfield, VA 22161
The same was a support of the same of the same was a support of the same of th	COMPUTER SIMULATION ICEBREAKER REQUIREMENTS GREAT LAKES-ST. LAWRENCE SI NAVIGATION 19. Security Classif. (of this report)	20. Security Class	Document is avec through the Nation Service,	ailable to the U.S. Publ tional Technical Informa Springfield, VA 22161

METRIC CONVERSION FACTORS

7			# I I		፮፮፮		<u>2</u>		2 2 2 g. 3			<u> </u>
ic Afe asures To find		anches inches	feet yards miles		square inches square yeds square miles		ounces pounds short tons		fluid ounces pinus quarts garlon s cubic feet cubic yards	[] Fabranbait	temperature	00
irsions from Metri	LENGTH	70.0	3.3 0.6	AREA	0.16 1.2 0.4	MASS (weight)	0.035 2.2 1.1	VOLUME	0.03 2.1 1.06 0.26 36 1.3	TEMPERATURE (exact)	a :	02 02 02
Approximate Conversions from Metric Mossuces		millimatera centimetera	moters moters hildmeters	1	square centimaters square maters square kilometers hectares (10,600 m²)	71	grams hitograms towns (1000 kg)	l	militions litters liters liters cubic meters cubic meters	Colons	temperature of 32	002-00-00-
•		1 5	1		~ £~ £ 2		a 2 -		ī îe îe	္နပ		
11111111111111111111111111111111111111		DE 61		42 92 								Cem 2
1,1,1		 11 11	7	1,1,1,1]' ' <u> </u> ' ' s	ניןיניןיניין •	'¦'''¦		''' ''' ''' '' '' '' ''	''' ''' '' 	inches
	Sympton		55 e	1	~6~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	, 34 -		₹ ₹ :	_~E~E	Ç	7,486, 2,580,
Measures	To Find		Contimeters Contimeters maters	h i formater s	squado continetars squado motors squado maters square kifondidis	heclares	grans kilograns tunces		multituers multituers multituers tuers tuers	Liters Cubic meters Cubic meters	Celsius tenperatue	1 Judie - Ser 1985 Mass - Pudal - 280,
Approximate Conversions to Metric	Muhiph by	LENGTH	.2.5 30 9.9	1.6 AREA	6.5 0.08 0.8 2.6	0.4 MASS (weight)	85 6.0 6.0 8.0 9.0 9.0	VOLUME	5 56 30 30 9.24 9.47	3.8 0.03 15 TEMPERATURE (skact)	6 9 (after subtracting 32)	or come and mare detailed SO coming No. 613.14 28
Approximate Can	When You Know	}	inches fact yada	T T T T T T T T T T T T T T T T T T T	square reches square feet square yards square miles		ounces pounds shut tuns (2000 lbs)		Leespoons Leblespoons flund ounces cups parts	gations cubic fact cubic yards	f.Ahrenkeit temperature	of an 3-254 reviews, for other rank recovery were and here detailed truths of fleelphia and Measures, flee 52.25, Sect. Hilling No. C13.10.280
	į		127	1	ጉ ድጀዝ		3 4		The control of the co	Įž	, -	ings 2 the transfer of the collection

TABLE OF CONTENTS

		Page
1.	SUMMARY OF GREAT LAKES-ST. LAWRENCE SEAWAY ICEBREAKER REQUIREMENTS STUDY	1-1
2.	INTRODUCTION	2-1
	2.1 Objectives	2-1 2-2 2-5
3.	DESCRIPTION OF GREAT LAKES-ST. LAWRENCE SEAWAY NAVIGATION SIMULATION	3-1
	3.1 Overview	3-1 3-3 3-11 3-21 3-28
4.	REACH SELECTION	4-1
5. 6.	ICEBREAKER AND SHIP CLASS SELECTION	5-1 : 6-1
0.	6.1 Overview	6-1 6-3 6-22 6-38
7.	CONCLUSIONS	7-1
8.	RECOMMENDATIONS	8-1
9.	REFERENCES	9-1
	LIST OF FIGURES	
Figi	ure	Page
	.1 Conceptual Block Diagram for Total Program	2-3
3	Simulation	3-2 3-7 3-15

LIST OF FIGURES (Continued)

Figure		Page
3.4 3.5	Typical Thrust and Resistance Characteristics Required Turn Width vs Channel Turn Radius and Turn	3-18
4.1 4.2	Width vs Preventive Icebreaking Transits	3-20 4-2 4-3
5.1	Speed of Advance vs Unconsolidated Brash Ice Thickness (O inches Refrozen Brash Ice)	5-8
5.2	Speed of Advance vs Unconsolidated Brash Ice Thickness	
5.3	(5 inches Refrozen Brash Ice)	5~9 5~10
5.4	Speed of Advance vs Unconsolidated Brash Ice Thickness (15 inches Refrozen Brash Ice)	5-11
5.5	Speed of Advance vs Unconsolidated Brash Ice Thickness (20 inches Refrozen Brash Ice)	5-12
6.1	Round Trip Time From Two Harbors to Gary for Class 5 Laker Vessel	6-19
6.2	Round Trip Time From Two Harbors to Gary for Class 8	6-20
6.3	Inland Vessel	6-21
	LIST OF TABLES	
Table		Page
1.1	Production Runs for Simulation of GL-SLS Icebreaker	
1.2	Requirements	1-4
1.3	with Coast Guard Estimated Fleet for Normal Winter Comparison of Simulation Generated Icebreaker Fleet	1-6
3.1 4.1 4.2	with Coast Guard Estimated Fleet for Severe Winter Calendar Dates of Simulation Periods	1-7 3-4 4-5 4-6
4.3	Freezing Degree Day Coefficients (α) and Brash Ice Porosity (β) for Each Reach	4-9
5.1 5.2 5.3 5.4 6.1	Laker Bulk Vessel Characteristics	5-2 5-3 5-4 5-5
6.2	and Heavy Traffic	6-4
6.3	and Moderate Traffic	6-5 6-6

LIST OF TABLES (Continued)

6.4 Occurrences of Lakers Becoming Stuck for Normal Winter and Moderate Traffic . 6-7 6.5 1975-76 Validation Icebreaker Assignments . 6-11 6.6 Laker Routes and Tonnages for 1975-76 Validation . 6-12 6.7 Summary of 1975-76 Validation Run . 6-14 6.8 Summary of 1975-76 Validation Run (MRT Mode) . 6-16 6.9 Icebreaker Fleet Generated by 1975-76 Validation Run (MRT Mode) . 6-18 6.10a Production Runs for Simulation of GL-SLS Icebreaker Requirements . 6-23 6.10b USCG Estimated Fleet for Year 2000 . 6-24 6.11 Major Laker Trade Routes Projected for Year 2000 . 6-25 6.12 Simulation Salty Trade Routes Projected for Year 2000 . 6-25 6.13 Effect of Increased Cargo Tonnage on System . 6-29 6.14 Effect of Increased Maximum Response Time on Icebreaker Requirements	Table		Page
6.6 Laker Routes and Ionnages for 1975-76 Validation	6.4	Occurrences of Lakers Becoming Stuck for Normal Winter	
6.6 Laker Routes and Ionnages for 1975-76 Validation		and Moderate Traffic	
6.6 Laker Routes and Ionnages for 1975-76 Validation		1975-76 Validation Icebreaker Assignments	
G.9 Icebreaker Fleet Generated by 1975-76 Validation Run (MRT Mode)		Laker Routes and lonnages for 1975-/6 Validation	6-12
G.9 Icebreaker Fleet Generated by 1975-76 Validation Run (MRT Mode)	6.7	Summary of 1975-76 Validation Run	
G.9 Icebreaker Fleet Generated by 1975-76 Validation Run (MRT Mode)	6.8	Summary of 1975-76 Validation Run (MRT Mode)	6-16
Run (MRT Mode)	6.9	Icebreaker Fleet Generated by 1975-76 Validation	
Requirements		Run (MRT Mode)	6-18
Requirements	6.10a	Production Runs for Simulation of GL-SLS Icebreaker	
6.10b USCG Estimated Fleet for Year 2000 . 6-24 6.11 Major Laker Trade Routes Projected for Year 2000 . 6-25 6.12 Simulation Salty Trade Routes Projected for Year 2000 . 6-28 6.13 Effect of Increased Cargo Tonnage on System . 6-29 6.14 Effect of Increased Maximum Response Time on Icebreaker Requirements 6-30 6.15 Effect of Convoying on Icebreaker Requirements		Requirements	6-23
6.11 Major Laker Trade Routes Projected for Year 2000 . 6-25 6.12 Simulation Salty Trade Routes Projected for Year 2000 . 6-28 6.13 Effect of Increased Cargo Tonnage on System 6-29 6.14 Effect of Increased Maximum Response Time on Icebreaker Requirements	6.10b	USCG Estimated Fleet for Year 2000	
6.12 Simulation Salty Trade Routes Projected for Year 2000 6-28 6.13 Effect of Increased Cargo Tonnage on System 6-29 6.14 Effect of Increased Maximum Response Time on Icebreaker Requirements 6-30 6.15 Effect of Convoying on Icebreaker Requirements 6-31 6.16 Comparison of Maximum Response Time Mode with Fixed Icebreaker Fleet for a Normal Winter 6-32 6.17 Effect of Winter Severity on Icebreaker Requirements 6-33 6.18 Effect of Prohibiting Class C Icebreakers from Convoying 6-34 6.19 Effect of Increased Low SHP/Length Restriction on Icebreaking Requirements 6-36 6.20 Effect of Channel Clearing on Icebreaker Requirements 6-36 6.21 Comparison of Maximum Response Time Mode with Fixed Icebreaker Fleet for a Severe Winter 6-37 6.22a Summary of Input Conditions for Run No. 1 6-39 6.22b USGG Estimated Fleet for Normal Winter for Run No. 1 6-40 6.22c Results of Run No. 1 for Taconite Task Command 6-41 6.22d Results of Run No. 1 for Oil Can Task Command 6-42 6.22d Results of Run No. 1 for Coal Shovel Task Command 6-43 6.23d Results of Run No. 1 for Seaway Task Command 6-43 6.23d Extended Season Tonnage by Route for Run No. 1 6-45 6.23a Summary of Input Conditions for Run No. 2 6-46 6.23a Results of Run No. 2 for Taconite Task Command 6-49 6.23b Results of Run No. 2 for Oil Can Task Command 6-49 6.23c Results of Run No. 2 for Taconite Task Command 6-49 6.23d Results of Run No. 2 for Seaway Task Command 6-50 6.23f Results of Run No. 2 for Seaway Task Command 6-50 6.23f Results of Run No. 2 for Seaway Task Command 6-50 6.23f Results of Run No. 2 for Seaway Task Command 6-50 6.23f Results of Run No. 2 for Seaway Task Command 6-50 6.24d Results of Run No. 3 for Taconite Task Command 6-55 6.24d Results of Run No. 3 for Taconite Task Command 6-55 6.24d Results of Run No. 3 for Taconite Task Command 6-55 6.24d Results of Run No. 3 for Oil Can Task Command 6-56 6.24d Results of Run No. 3 for Oil Can Task Command 6-56 6.24d Results of Run No. 3 for Seaway Task Command 6-56			
6.13 Effect of Increased Cargo Tonnage on System			
6.14 Effect of Increased Maximum Response Time on Icebreaker Requirements			
Requirements			0-29
6.15 Effect of Convoying on Icebreaker Requirements	0.14		c 00
Comparison of Maximum Response Time Mode with Fixed Icebreaker Fleet for a Normal Winter		Requirements	
Icebreaker Fleet for a Normal Winter			6-31
6.17 Effect of Winter Severity on Icebreaker Requirements	6.16	Comparison of Maximum Response Time Mode with Fixed	
6.18 Effect of Prohibiting Class C Icebreakers from Convoying . 6-34 Effect of Increased Low SHP/Length Restriction on Icebreaking Requirements		Icebreaker Fleet for a Normal Winter	
6.19 Effect of Increased Low SHP/Length Restriction on Icebreaking Requirements	6.17	Effect of Winter Severity on Icebreaker Requirements	6-33
6.19 Effect of Increased Low SHP/Length Restriction on Icebreaking Requirements	6.18	Effect of Prohibiting Class C Icebreakers from Convoying	6-34
Icebreaking Requirements	6.19		
6.20 Effect of Channel Clearing on Icebreaker Requirements 6-36 Comparison of Maximum Response Time Mode with Fixed Icebreaker Fleet for a Severe Winter 6-37 Summary of Input Conditions for Run No. 1 6-39 USCG Estimated Fleet for Normal Winter for Run No. 1 6-40 6.22c Results of Run No. 1 for Taconite Task Command 6-41 Results of Run No. 1 for Oil Can Task Command 6-42 Results of Run No. 1 for Coal Shovel Task Command 6-43 6.22f Results of Run No. 1 for Seaway Task Command 6-44 6.22g Extended Season Tonnage by Route for Run No. 1 6-45 6.23b Predicted Icebreaker Fleet by Home Port and Period for Run No. 2 6-46 Predicted Icebreaker Fleet by Home Port and Period 6-48 6.23d Results of Run No. 2 for Oil Can Task Command 6-49 Results of Run No. 2 for Coal Shovel Task Command 6-50 Results of Run No. 2 for Coal Shovel Task Command 6-50 Results of Run No. 2 for Coal Shovel Task Command 6-50 Results of Run No. 2 for Seaway Task Command 6-50 Results of Run No. 2 for Seaway Task Command 6-50 Results of Run No. 2 for Seaway Task Command 6-50 Results of Run No. 3 for Seaway Task Command 6-50 Results of Run No. 3 for Taconite Task Command 6-50 Results of Run No. 3 for Taconite Task Command 6-50 Results of Run No. 3 for Taconite Task Command 6-55 Results of Run No. 3 for Coal Shovel Task Command 6-56 Results of Run No. 3 for Coal Shovel Task Command 6-56 Results of Run No. 3 for Coal Shovel Task Command 6-56 Results of Run No. 3 for Seaway Task Command 6-57 Results of Run No. 3 for Seaway Task Command 6-58			6-35
6.21 Comparison of Maximum Response Time Mode with Fixed Icebreaker Fleet for a Severe Winter	6 20	Effect of Channel Clearing on Icebreaker Requirements	
Icebreaker Fleet for a Severe Winter			0 30
6.22a Summary of Input Conditions for Run No. 1	0.21		6_27
6.22b USCG Estimated Fleet for Normal Winter for Run No. 1	6 22-	Summary of Input Conditions for Dun No. 1	
6.22c Results of Run No. 1 for Taconite Task Command			
6.22d Results of Run No. 1 for Oil Can Task Command			-
6.22e Results of Run No. 1 for Coal Shovel Task Command		Results of Run No. I for laconite lask Command	
6.22f Results of Run No. 1 for Seaway Task Command 6-44 6.22g Extended Season Tonnage by Route for Run No. 1		Results of Run No. I for U11 Can Task Command	
6.22g Extended Season Tonnage by Route for Run No. 1			
6.23a Summary of Input Conditions for Run No. 2			-
6.23b Predicted Icebreaker Fleet by Home Port and Period for Run No. 2	6.22g	Extended Season Tonnage by Route for Run No. 1	
6.23b Predicted Icebreaker Fleet by Home Port and Period for Run No. 2	6.23a	Summary of Input Conditions for Run No. 2	6-46
6.23c Results of Run No. 2 for Taconite Task Command 6-48 6.23d Results of Run No. 2 for Oil Can Task Command	6.23b	Predicted Icebreaker Fleet by Home Port and Period for	
6.23c Results of Run No. 2 for Taconite Task Command 6-48 6.23d Results of Run No. 2 for Oil Can Task Command 6-49 6.23e Results of Run No. 2 for Coal Shovel Task Command 6-50 6.23f Results of Run No. 2 for Seaway Task Command 6-51 6.23g Extended Season Tonnage by Route for Run No. 2		Run No. 2	6-47
6.23d Results of Run No. 2 for Oil Can Task Command 6-49 6.23e Results of Run No. 2 for Coal Shovel Task Command 6-50 6.23f Results of Run No. 2 for Seaway Task Command	6.23c	Results of Run No. 2 for Taconite Task Command	6-48
6.23e Results of Run No. 2 for Coal Shovel Task Command 6-50 6.23f Results of Run No. 2 for Seaway Task Command 6-51 6.23g Extended Season Tonnage by Route for Run No. 2 6-52 6.24a Summary of Input Conditions for Run No. 3			
6.23f Results of Run No. 2 for Seaway Task Command 6-51 6.23g Extended Season Tonnage by Route for Run No. 2			
6.23g Extended Season Tonnage by Route for Run No. 2 6-52 6.24a Summary of Input Conditions for Run No. 3 6-53 6.24b Predicted Icebreaker Fleet by Home Port and Period for Run No. 3			
6.24a Summary of Input Conditions for Run No. 3			
6.24b Predicted Icebreaker Fleet by Home Port and Period for Run No. 3			
Run No. 3			0-53
6.24c Results of Run No. 3 for Taconite Task Command 6-55 6.24d Results of Run No. 3 for Oil Can Task Command 6-56 6.24e Results of Run No. 3 for Coal Shovel Task Command 6-57 6.24f Results of Run No. 3 for Seaway Task Command 6-58	0.24D	a u a	
6.24d Results of Run No. 3 for Oil Can Task Command 6-56 6.24e Results of Run No. 3 for Coal Shovel Task Command 6-57 6.24f Results of Run No. 3 for Seaway Task Command 6-58		Run No. 3	
6.24e Results of Run No. 3 for Coal Shovel Task Command 6-57 6.24f Results of Run No. 3 for Seaway Task Command 6-58		Results of Run No. 3 for Taconite Task Command	
6.24f Results of Run No. 3 for Seaway Task Command 6-58		Results of Run No. 3 for Oil Can Task Command	6-56
6.24f Results of Run No. 3 for Seaway Task Command 6-58	6.24e	Results of Run No. 3 for Coal Shovel Task Command	6-57
	6.24f		6-58
			6-59

LIST OF TABLES (Continued)

Table		Page
6.25a	Summary of Input Conditions for Run No. 4	5-60
6.25b	USCG Estimated Fleet for Normal Winter for Run No. 4 · · · ·	6-61
6.25c	Results of Run No. 4 for Taconite Task Command	6-62
6.25d	Results of Run No. 4 for Oil Can Task Command · · · · · ·	6-63
6.25e	Results of Run No. 4 for Coal Shovel Task Command · · · · ·	6-64
6.25f	Results of Run No. 4 for Seaway Task Command	6-65
6.25g	Extended Season Tonnage by Route for Run No. 4	6-66
6.26a	Summary of Input Conditions for Run No. 5 · · · · · · · ·	6-67
6.26b	Predicted Icebreaker Fleet by Home Port and Period for	
	Run No. 5	6-68
6.26c	Results of Run No. 5 for Taconite Task Command · · · · · ·	6-69
6.26d	Results of Run No. 5 for Oil Can Task Command · · · · · · ·	6-70
6.26e	Results of Run No. 5 for Coal Shovel Task Command · · · · ·	6-71
6.26f	Results of Run No. 5 for Seaway Task Command · · · · · · · ·	6-72
6.26g	Extended Season Tonnage by Route for Run No. 6 · · · · · ·	6-73
6.27a	Summary of Input Conditions for Run No. 6	6-74
6.27b	Predicted Icebreaker Fleet by Home Port and Period for	
	Run No. 6	6-75
6.27c	Results of Run No. 6 for Taconite Task Command · · · · · ·	6-76
6.27d	Results of Run No. 6 for Oil Can Task Command · · · · · · ·	6-77
6.27e	Results of Run No. 6 for Coal Shovel Task Command · · · · ·	6-78
6.27f	Results of Run No. 6 for Seaway Task Command	6-79
6.27g	Extended Season Tonnage by Route for Run No. 6 · · · · · ·	6-80
6.28a	Summary of Input Conditions for Run No. 7 · · · · · · · · ·	6-81
6.28b	Predicted Icebreaker Fleet by Home Port and Period for	
	Run No. 7 · · · · · · · · · · · · · · · · · ·	6-82
6.28c	Results of Run No. 7 for Taconite Task Command · · · · · ·	6-83
6.28d	Results of Run No. 7 for Oil Can Task Command · · · · · · ·	6-84
6.28e	Results of Run No. 7 for Coal Shovel Task Command · · · · ·	6-85
6.28f	Results of Run No. 7 for Seaway Task Command	6-86
6.28g	Extended Season Tonnage by Route for Run No. 7 · · · · · ·	6-87
6.29a	Summary of Input Conditions for Run No. 8 · · · · · · · ·	6-88
6.29b	Predicted Icebreaker Fleet by Home Port and Period for	
	Run No. 8	6-89
6.29c	Results of Run No. 8 for Taconite Task Command · · · · · ·	6-90
6.29d	Results of Run No. 8 for Oil Can Task Command · · · · · ·	6-91
6.29e	Results of Run No. 8 for Coal Shovel Task Command · · · · ·	6-92
6.29f	Results of Run No. 8 for Seaway Task Command	6-93
6.29g	Extended Season Tonnage by Route for Run No. 8 · · · · · ·	6-94
6.30a	Summary of Input Conditions for Run No. 9 · · · · · · · ·	6-95
6.30b	Predicted Icebreaker Fleet by Home Port and Period for	
	Run No. 9	6-96
6.30c	Results of Run No. 9 for Taconite Task Command · · · · · ·	6-97
6.30d	Results of Run No. 9 for Oil Can Task Command · · · · · ·	6-98
6.30e	Results of Run No. 9 for Coal Shovel Task Command · · · · ·	6-99
6.30f	Results of Run No. 9 for Seaway Task Command	6-100
6.30g	Extended Season Tonnage by Route for Run No. 9 · · · · · ·	6-10
6.31a	Summary of Input Conditions for Run No. 10 · · · · · · · ·	6-102
6.31b	USCG Estimated Fleet for Severe Winter for Run No. 10	6-103

LIST OF TABLES (Continued)

Table		Page
6.31c	Results of Run No. 10 for Taconite Task Command	6-104
6.31d	Results of Run No. 10 for Oil Can Task Command	6-109
6.31e	Results of Run No. 10 for Coal Shovel Task Command	6-106
6.31f	Results of Run No. 10 for Seaway Task Command	6-107
6.31g	Extended Season Tonnage by Route for Run No. 10	6-108
7.1	Comparison of Simulation Generated Icebreaker Fleet with	
	Coast Guard Estimated Fleet for Normal Winter	7-2
7.2	Comparison of Simulation Generated Icebreaker Fleet with	
	Coast Guard Estimated Fleet for Severe Winter	7-3

1. SUMMARY OF GREAT LAKES-ST. LAWRENCE SEAWAY ICEBREAKER REQUIREMENTS STUDY

OBJECTIVES

The overall objective of this study was to develop a planning tool for use by the U.S. Coast Guard to aid in establishing their future icebreaking requirements for the Great Lakes-St. Lawrence Seaway (GL-SLS) Navigation System as a function of projected cargo tonnage, trade routes, winter severity, vessel ice transiting capabilities, vessel operating restrictions, and alternate ice-breaking plans and concepts of operation (direct assistance, convoys, channel maintenance, and channel ice clearing). More specifically, the objectives were to modify the existing GREAT LAKES-ST. LAWRENCE SEAWAY NAVIGATION SIMULATION so that it could be used as a tool to aid in:

- Determining Coast Guard icebreaker requirements for the Great Lakes-St. Lawrence Seaway.
- Determining benefits in terms of reduced commercial vessel transit time and shipping cost and increased fleet tonnage capacity derived from the presence of icebreakers.
- Determining the impact of user charges to help defray costs of icebreaking assistance and channel maintenance during extended navigation season operations.*
- Determining the impact of establishing minimum ship operating requirements, such as SHP/length for ships operating during the extended season.
- Investigating proposed alternate icebreaking plans and concepts of operation (direct assistance, convoys, channel maintenance, and channel ice clearing).
- Examining different fleet mixes of icebreakers and icebreaking tugs and their assigned areas.
- Determining the impact of short term variations in ice conditions on icebreaking effectiveness and requirements.

METHOD OF APPROACH

The GREAT LAKES-ST. LAWRENCE SEAWAY NAVIGATION SIMULATION was developed by ARCTEC for the North Central Division of the U.S. Army Corps

^{*} Capability included but not examined in this study.

of Engineers and subsequently expanded for the St. Lawrence Seaway Development Corporation to model the movement of ships and cargo within the Great Lakes-St. Lawrence Seaway Navigation System and to and from world areas, during both normal and winter navigation seasons. In simulating the movement of ships and cargo, the model incorporates the following interactions between ships and the system, as well as the interactions between the ships themselves:

- · Port and lock limitations and constraints
- Draft limitations
- · Speed limits
- Daylight only navigation
- Queues forming, expanding, and diminishing at lock and port facilities
- Increased transit, lockage, and port times due to the presence of ice during extended season operations
- Ships getting stuck in ice and having to wait for icebreaker assistance
- · Ships having to convoy and wait for icebreaker escort.

To accomplish the stated objectives, the following modifications were made to the existing simulation:

- Revised ice conditions data in the simulation to better reflect normal and severe winter conditions for light, moderate, and heavy commercial navigation.
- Developed and incorporated a complete set of icebreaker operating subroutines capable of modeling the following modes of icebreaking operations: preventive icebreaking, convoying, and direct assistance for vessels stuck in ice.
- Modified the simulation to include the capability for icebreaker user charges in vessel operating costs.
- Modified the simulation to generate icebreaker statistics, such as number of vessels assisted, total time assisting vessels, response time, and operating hours, to be used to assess icebreaker efficiency and cost of operations.
- Revised icebreaker characteristics in the simulation to better reflect existing, planned, and proposed icebreakers.
- Revised the program to permit two study options: in the first, a fixed fleet of icebreakers is defined; in the second, a maximum response time (variable with area of operation) is defined and the icebreaking fleet determined accordingly.

- Provided data files which can be modified to assess the effect of short term variations in ice conditions on the ability of the icebreaker fleet to maintain commercial navigation.
- Modified the computer simulation as needed to clearly identify all savings in commercial vessel transit times attributable to icebreaker operations when comparing simulation runs with and without icebreaker support.

Once the modifications were incorporated, the simulation was validated using U.S. Coast Guard icebreaking records for the 1975-1976 winter navigation season. Upon completion of the simulation validation, a series of ten (10) production runs, listed in Table 1.1, were performed and analyzed to assess the following:

- Effect of a 20% increase in cargo tonnage with a fixed fleet of icebreakers (normal winter).
- Effect of a 12-hour variation in maximum response time on icebreaker requirements (normal winter).
- Effect of convoys on icebreaker requirements (normal winter).
- Comparison of the maximum response time (MRT) generated icebreaker fleet to the USCG estimated fleet (normal winter).
- Effect of winter severity (normal vs severe) on icebreaker requirements.
- Effect of having only Class B icebreakers escort convoys, as opposed to both Class B and Class C icebreakers, on icebreaker requirements (severe winter).
- Effect of prohibiting vessels with low SHP from operating in the extended season on icebreaker requirements (severe winter).
- Effect of conducting channel clearing in certain channels on icebreaker requirements (severe winter).
- Comparison of the maximum response time (MRT) generated icebreaker fleet to the USCG estimated fleet (severe winter).

TABLE 1.1

PRODUCTION RUNS FOR SIMULATION OF GL-SLS ICEBREAKER REQUIREMENTS

RUN 110.	WINTER TYPE	MINIMU LAKER CLASS	M RUN MODE 1	USCG ESTIMATED FLEET	MRT (hr)	CONVOYING IB TYPES ²	CHANNEL CLEARING ² (in/2wks)	CARGO TONNAGE (year)
1	Normal	5	FIBF	liorma 1 ⁵		C P		2000
2	Normal	5	MRT	HOTHIA I	Min ³	C,B C,B		2000
3	Norma 1	5	MRT		Min+12			
-		_			MINTIZ	C,B		2000
4	Normal	5	FIBF	Normal ⁵		C,B		2000+20%
6	Normal	5	MRT		Min+12	No Convoys		2000
5	Severe	5	MRT		Min+12	В		2000
7	Severe	5	MRT		Min+12	C,B		2000
8	Severe	6	MRT		Min+12	C,B		20004
9	Severe	6	MRT		Min+12	C,B	12	20004
10	Severe	6	FIBF	Severe ⁵		C,B		20004

NOTES:

¹ FIBF = Fixed icebreaker fleet; MRT = Maximum response time.

² Convoys and channel clearing in: St. Marys River/Whitefish Bay, Straits of Mackinac, Detroit/St. Clair Rivers, Welland Canal, St. Lawrence Seaway.

Minimum time is that required to get to furthest point in reach from closest home port at 5 mph.

* Cargo tonnage on restricted ships assumed carried in normal season.

⁵ USCG estimated icebreaker fleet listed in Table 6.10b.

COMPARISONS:

- 1,4 -Effect of increased cargo tonnage (20%)(normal winter).
- 2,3 -Effect of variation in maximum response time (normal winter).
- 3,1 -Difference between MRT generated icebreaker fleet and fixed icebreaker fleet (normal winter)
- 3,6 -Effect of convoys (normal winter).
- 3,7 -Effect of winter severity.
- 5,7 -Effect of not allowing Class C icebreakers to convoy (severe winter).
- 7,8 -Effect of vessel class restriction (severe winter).
- 8,9 -Effect of channel clearing (severe winter).
- 8,10-Difference between MRT generated icebreaker fleet and fixed icebreaker fleet (severe winter).

A summary of the results of the production runs, along with a discussion of the above items, are presented in Section 6 of this report. Based on those results and discussions, the following conclusions and recommendations were drawn:

CONCLUSIONS

- 1. <u>Usefulness of the Simulation</u> Based on the validation presented in Section 6.2 and the experience and knowledge we have gained from working with the model, from conversations with ship operators, port officials, and personnel at Coast Guard, MarAd, Corps of Engineers, and the St. Lawrence Seaway Development Corporation, we believe the simulation, as developed, realistically models the Great Lakes-St. Lawrence Seaway System. As a result, it can be used as a valuable tool to aid in the planning process of the Coast Guard in establishing their future icebreaking requirements and alternate icebreaking plans and concepts of operation.
- 2. Normal and Severe Winter Icebreaker Fleets* Using the results of the simulation for the fixed icebreaker fleet runs and the generated icebreaker fleet runs, simulation estimated icebreaker fleets were prepared and are presented in Tables 1.2 and 1.3 along with the Coast Guard estimated fleets for normal and severe winters. In finalizing the simulation fleet, consideration was given to additional icebreaking demands, such as preventive icebreaking and channel maintenance. In comparing the results of the simulation to those of the Coast Guard, it is interesting to note how closely they compared in number with some shifting in location. It is important to note that the size and location of the fleet is completely dependent upon the magnitude of the projected tonnage during the extended navigation season and the projected trade routes. A change in either the magnitude of tonnage or trade route can alter the icebreaker requirements significantly.
- 3. Formation of New Task Command for Duluth/Superior Ice-breakers in the simulation for the fixed fleet mode continually traveled across Lake Superior to provide assistance in both Duluth/Superior and at the Soo since assistance was provided on a first come-first serve basis. As a result, a large amount of time was spent transiting Lake Superior compared to time spent either assisting or convoying. For example, in Run 1 for the normal winter, the fixed fleet of 7 Class C and 3 Class B icebreakers operated at 100% utilization performing 781 direct assists and escorting 629 convoys. Of the 100% utilization in periods 5, 6, and 7, only 10%,

^{*} Rationale for simulation generated fleet presented in Section 7

TABLE 1.2

COMPARISON OF SIMULATION GENERATED

ICEBREAKER FLEET WITH COAST GUARD ESTIMATED FLEET

FOR NORMAL WINTER

U.S. COAST GUARD ESTIMATED SIMULATION GENERATED ICEBREAKER FLEET ICEBREAKER FLEET Icebreaker Class Icebreaker Class Task Command & TOTAL Home Port D TOTAL Taconite Command Duluth/Superior 2 2 2 Presque Isle Sault Ste. Marie 2 6 6 St. Ignace 2 2 TOTAL 3 7 10 3 10 Oil Can Command Escanaba 1 Green Bay Mi lwaukee 1 Chicago 1 Grand Haven TOTAL 2 Coal Shovel Command Saginaw Port Huron/Detroit/ Toledo 1 2 5 Sandusky 1 1 3 Buffalo 1 2 3 1 TOTAL Seaway Command 0swego 3 Alexandria Bay TOTAL 3 3 **TOTAL** 5 17 22 20 24

TABLE 1.3

COMPARISON OF SIMULATION GENERATED

ICEBREAKER FLEET WITH COAST GUARD ESTIMATED FLEET

FOR SEVERE WINTER

	U.S. COAST GUARD ESTIMATED SIMULATION GE ICEBREAKER FLEET ICEBREAKER									
Task Command &		Icebre	aker Cl	ass		Icebreaker Class				
Home Port	В	<u>C</u>	D	TOTAL	В	<u> </u>	D	TOTAL		
Taconite Command										
Duluth/Superior	1	2	-	3	2	2	-	4		
Presque Isle	-	6	-	-	-	-	-	0		
Sault Ste. Marie St. Ignace	3 2 6	2	2	9 6	2	6 3	-	8 4		
•			_2				<u> </u>			
TOTAL	6	10	2	18	5	11	-	16		
Oil Can Command										
Escanaba	-	1	-	1	1	-	1	2		
Green Bay	-	-	-	-	-	1	-	1		
Mi lwaukee	ī	2	-	3	-	- 1	-	- 1		
Chicago Grand Haven	i -	_	-	3	-	<u> </u>	-	-		
	_	<u> </u>	- -	<u> </u>				<u> </u>		
TOTAL	1	3	-	4	1	2	1	4		
Coal Shovel Command										
Saginaw	2	3	-	5	-	-	-	-		
Port Huron/Detroit/	_			_	_	_	_	_		
Toledo	1	4	-	5 3 <u>5</u>	1	5	2	8 2 <u>8</u>		
Sandusky Buffalo]	2 4	-	3 E	3	2 <u>5</u>	_	2		
				-			-			
TOTAL	5	13	-	18	4	12	2	18		
Seaway Command										
Oswego	-	3	-	3	-	-	-	-		
Alexandria Bay		_		<u>-</u>	1	_3		_4		
TOTAL	-	3	-	3	1	3	-	4		
TOTAL	12	29	2	43	11	28	3	42		

20%, and 29% of the total direct assist miles and 20%, 58% and 44% of the total convoy miles were spent in actual assistance and convoying for each period, respectively. In comparison, the somewhat larger MRT generated fleet, which was restricted to operating within assigned areas near the icebreaker's home port, averaged 61%, 74%, and 75% of total direct assistance miles and 74%, 70%, and 66% of total convoy miles performing actual direct assistance and convoying in periods 5, 6, and 7, respectively. Future runs should have a 200 mile limitation placed on an icebreaker's area of operation to prohibit crossing Lake Superior, thereby effectively making Duluth/Superior a separate task command.

- Effect of Increased Tonnage For the fixed normal winter icebreaker fleet, the designated icebreakers in Oil Can and Coal Shovel could handle the 20% increased tonnage above the projected year 2000 tonnage with no significant problems. For the Seaway, the 3 Class C icebreakers operated at 100% utilization in periods 5 through 8 escorting 173 convoys between Alexandria Bay and Cornwall. Based on the MRT runs 2 and 3, 5 or 6 Class C icebreakers or 1 Class B plus 3 Class C icebreakers are probably required to escort all vessels in convoys at a reasonable icebreaker utilization rate. In Taconite, the fixed fleet operated at 100% utilization because a large portion of the time was spent by icebreakers transiting between Duluth/Superior and the Soo. Based on the MRT runs 2 and 3, in which icebreakers are restricted to operating within assigned areas near the icebreaker's home port, the specified fixed fleet of 7 Class C and 3 Class B icebreakers needs to be increased to 9 Class C and 4 Class B icebreakers with Duluth/Superior being treated as a separate task command.
- 5. Effect of Increased Maximum Response Time For Taconite, Oil Can and Coal Shovel Task Commands, there appeared to be only a slight effect on the generated icebreaker fleet due to increasing the MRT by 12 hours. For the Seaway, the maximum number of required Class C icebreakers dropped from 6 to 5.
- 6. Effect of Convoying For Oil Can and Coal Shovel, where there were no convoys, the effect of convoying was a change in the arrival of ships from other commands which altered the generated icebreaker fleet slightly. For the Seaway, the elimination of convoying reduced the icebreaker requirements significantly since salties, which were capable of proceeding on their own, were being forced to convoy, thereby requiring more icebreakers. In Taconite, elimination of convoying caused the generated icebreaker fleet to double in periods 5 through 10.

- Effect of Winter Severity As one would expect, the icebreaking requirements increased with increasing winter severity. In Taconite, the total number of direct assists increased from 792 to 1032 and the total number of convoys increased from 699 to 937, resulting in an increase of required icebreakers from an average of 11 to 20, with an increase in Class B icebreakers from an average of 4 to approximately 6. In Oil Can, the total number of direct assists increased from 86 to 102, but because the location of the problem reach was closer to the icebreaker home port of Escanaba, fewer icebreakers were required during the severe year. The reason for this seemingly contradictory trend is a result of the use of actual historical weather and ice data which is sometimes inconsistent. In Coal Shovel, the number of direct assists increased by almost 200% from 198 to 573 with 347 convoys being escorted during the severe winter. This resulted in the number of icebreakers being doubled with an average of 4 Class B icebreakers being required during the severe winter while none were required during the normal winter. For the Seaway, the total number of direct assists increased from zero in the normal winter to 40 in the severe winter, but the total number of convoys decreased from 185 to 154. This reduction was due to Class B icebreakers being generated instead of Class B icebreakers (Class B icebreakers can handle twice as many ships per convoy as can Class C icebreakers). For the normal winter, between 3 and 5 Class C icebreakers were required, while for the severe winter the icebreaker fleet ranged from 1 Class D and 4 Class C icebreakers to 4 Class B icebreakers.
- 8. Effect of Prohibiting Class C Icebreakers from Convoying For Oil Can and Coal Shovel, restricting Class C icebreakers from convoying did not significantly reduce the number of icebreakers generated. For Coal Shovel, however, it did tend to replace each Class C icebreaker eliminated with an equal number of Class B icebreakers, indicating that the increased convoying capability of Class B icebreakers was not utilized. For the Seaway, the maximum generated icebreaker fleet changed from 11 Class C icebreakers to 1 Class C and 4 Class B icebreakers for period 6. At Taconite, for all periods, the average total number of icebreakers required decreased by 21%, with Class C icebreakers almost completely eliminated and 1 additional Class B icebreaker added for every 2 Class C icebreakers eliminated.
- 9. Effect of Increased SHP/Length Restriction The removal of Class 5 laker vessels (SHP/lengths = 6.25) from the fleet reduced the icebreaking requirements significantly in all task commands. In Taconite, the number of direct assists dropped from 1032 to 671 and the number of convoys escorted dropped from 937 to 587. This resulted in a reduction of

the generated icebreaker fleet by more than 50%. In Oil Can the number of direct assists decreased from 102 to 11, resulting in a reduction in the number of icebreakers from an average of 5 icebreakers in periods 3 through 7 to an average of 1 icebreaker in periods 6 and 7. In Coal Shovel, with the exception of period 7, the number of required icebreakers decreased by a factor of 2 due to the total number of direct assists dropping from 573 to 337 and the elimination of 347 convoys. In the Seaway, the total number of direct assists decreased from 40 to 20 and the total number of convoys decreased slightly from 160 to 154, resulting in a reduction in icebreaking requirements by approximately one third.

10. Effect of Channel Clearing - The primary effect of channel clearing which, in run 9, was performed in reaches where convoying occurred, was to: (1) decrease the size of icebreakers required for convoying, and (2) increase icebreaker speeds which allowed each icebreaker to effectively handle more convoys, at times comprised of fewer ships due to ship arrival frequency. For Oil Can and Coal Shovel where there was no convoying, almost no effect from channel clearing was observed. In the Seaway, both the size and number of icebreakers were reduced. For example, in period 6, 8 Class C icebreakers were replaced by 5 Class C icebreakers with channel clearing. In period 7, 5 Class B icebreakers were replaced with 3 Class B icebreakers and 1 Class C. For Taconite, a similar condition occurred in that both the number and size of icebreakers were reduced. In period 8, the required 12 icebreakers (8 Class C and 4 Class B) were replaced by 7 icebreakers (5 Class C and 2 Class B).

RECOMMENDATIONS

The GL-SLS NAVIGATION SIMULATION should be kept current by revising the input data files and changing the basic rules and assumptions as required. We believe this simulation is an excellent planning tool which can be used as an aid to the U.S. Coast Guard in establishing their future icebreaking requirements and evaluating alternate icebreaker plans and concepts of operation, such as direct assistance, convoying, channel maintenance and channel ice clearing, as to their impact on extended commercial navigation operations and economics. In addition, the simulation can be used by the Corps of Engineers as a planning tool to aid in their assessment of the potential benefits and impacts of various proposed GL-SLS System improvements for normal navigation season operations as well as extended navigation season operations.

- 2. We also recommend that, as additional extended navigation season operations continue and more icebreaker operational data is gathered, additional validation runs be performed to ensure the continued credibility of the simulation.
- 3. To gain further insight and a more comprehensive understanding of the impacts on icebreaker requirements and commercial navigation operations and economics, we recommend that additional sensitivity runs be performed on:
 - Variations of fixed icebreaker fleets and home ports
 - Variations in channel clearing and preventive icebreaking
 - · Variations in MRT mode conditions
 - · Variations in ice conditions
 - Variations in low SHP/length restriction
- 4. During the course of modifying the simulation and conducting the runs, we found that the following revisions to the simulation should be considered:
 - Revise Fixed Fleet Mode to prohibit icebreakers from traveling over long distances within a task command, such as an icebreaker continually traversing Lake Superior between Duluth/Superior and the Soo.
 - Incorporate a probability basis for ships getting or not getting stuck rather than the current assumption of all ships of a given class getting stuck if their speed of advance is less than 2 mph; that is, apply a probability distribution which would vary linearly with the speed of advance between a probability of getting stuck equal to 1 at some designated speed, and a probability equal to 0.0 at some higher designated speed. In this manner, the "off-on" switch for all ships in a given class either being or not being stuck would be eliminated.
 - For ease of data analysis, revise the REPORT GENERATING MODEL to provide summary tables similar to those listed in Section 6.4 for each run.

2. INTRODUCTION

2.1 Objectives

The overall objective of this study was to develop a planning tool for use by the U.S. Coast Guard to aid in establishing their future icebreaking requirements for the Great Lakes-St. Lawrence Seaway (GL-SLS) Navigation System as a function of projected cargo tonnage, trade routes, winter severity, vessel ice transiting capabilities, vessel operating restrictions and alternate icebreaking plans and concepts of operation (direct assistance, convoys, channel maintenance, and channel ice clearing). More specifically, the objectives were to modify the existing GREAT LAKES-ST. LAWRENCE SEAWAY NAVIGATION SIMULATION so that it could be used as a tool to aid in:

- Determining Coast Guard icebreaker requirements for the Great Lakes-St. Lawrence Seaway.
- Determining benefits in terms of reduced commercial vessel transit time and shipping cost and increased fleet tonnage capacity derived from the presence of icebreakers.
- Determining the impact of user charges to help defray costs of icebreaking assistance and channel maintenance during extended navigation season operations.
- Determining the impact of establishing minimum ship operating requirements, such as SHP/length for ships operating during the extended season.
- Investigating proposed alternate icebreaking plans and concepts of operation (direct assistance, convoys, channel maintenance, and channel ice clearing).
- Examining different fleet mixes of icebreakers and icebreaking tugs and their assigned areas.
- Determining the impact of short term variations in ice conditions on icebreaking effectiveness and requirements.

2. INTRODUCTION

2.2 Background

The existing GREAT LAKES-ST. LAWRENCE SEAWAY NAVIGATION SIMULATION was developed by ARCTEC for the North Central Division of the U.S. Army Corps of Engineers under Contract No. DACW-23-75-C-0043 [1]* and subsequently expanded for the St. Lawrence Seaway Development Corporation under Contract No. DOT-SL-70-467 [2] to model the movement of ships and cargo within the Great Lakes-St. Lawrence Seaway Navigation System and to and from world areas, during both the normal and winter navigation seasons. This existing simulation was developed as one part (Phase II) of a total program referred to as the GREAT LAKES-ST. LAWRENCE SEAWAY NAVIGATION SYSTEM STUDY, which was comprised of the following phases:

PHASE I: TRAFFIC FORECAST STUDY

A. Preliminary Traffic Forecast 1980-2040

B. Shipper Preference Study

C. Development of a CARGO FLOW MODEL

PHASE II: RATE AND COST STUDY

A. Normal Season
B. Extended Season

PHASE III: SYSTEM INTERRELATIONSHIP STUDY

A. System Capacity
B. System Optimization

In Phase I, the primary objective was to develop a method of estimating future traffic suitable for waterborne movement in the GL-SLS System. This phase consisted of a Preliminary Traffic Forecast of U.S. and Canadian general cargo, grain, and mineral bulk commodities for the years 1980-2040, followed by a Shipper Preference Survey and development of a CARGO FLOW MODEL. The output from Phase I were then used as input into Phase II (Development of the GREAT LAKES-ST. LAWRENCE SEAWAY NAVIGATION SIMULATION) to provide an estimate of the impact on annual vessel operating costs and the associated required freight rates.

Using the results of Phases I and II, an overall computer model of the GL-SLS System was to be developed in Phase III to study the system's capacity and to evaluate the potential benefits of proposed improvements. A conceptual flow diagram [3] depicting the model is given in Figure 2.1. The WINTER RATE STUDY contained in Figure 2.1 corresponds to the model (GL-SLS SIMULATION) described in this report. As seen from the flow diagram, the CARGO FLOW MODEL converts the hinterland cargo forecast information, length of the navigation season and initial rate and cost data into cargo forecast data. This cargo forecast data, in the form of cargo origin and destination data, along with the

^{*} Numbers in brackets denote references listed in Section 9 of the report.

FIGURE 2.1 CONCEPTUAL BLOCK DIAGRAM FOR TOTAL PROGRAM

length of the navigation season, fleet mix, vessel characteristics, winter severity, and improvement levels, is entered into the GL-SLS SIMULATION which models the movement of ships and cargo through the system and to and from overseas ports. The SIMULATION computes statistics for each class of ship operating on each route and converts these statistics into annual vessel operating costs and the associated annual required freight rates for each route. In simulating the movements of ships and cargo, the model incorporates the following interactions between ships and the system, as well as the interaction between the ships themselves:

- · Port and lock limitations and constraints
- Draft limitations
- Speed limits
- Daylight only navigation
- Queues forming, expanding, and diminishing at lock and port facilities
- Increased transit, lockage, and port times due to presence of ice during extended season operations
- Ships getting stuck in ice and having to wait for icebreaker assistance
- · Ships having to convoy and wait for icebreaker escort.

The Corps of Engineers model, as seen from the flow diagram, is an iterative one in which the output from the CARGO FLOW MODEL is required as input to the SIMULATION and vice versa. The program can therefore be thought of as a spiral in which several iterations are required to achieve a final solution. Where the spiral is entered is relatively unimportant as long as reasonable initial input data is available and a sufficient number of iterations are performed. Once a solution within the required accuracy is obtained, the annual required freight rates and annual vessel operating costs are fed back into the CARGO FLOW MODEL and the cycle is repeated until an overall solution is achieved within the desired accuracy limits on annual cargo throughput and required freight rates. The final results are then entered into the IMPACT MODEL of the Bureau of Economic Analysis (BEA) to determine the direct and indirect benefits.

2. INTRODUCTION

2.3 Method of Approach

To accomplish the stated objectives, the method of approach was to modify the existing simulation in the following ways:

- Revised ice conditions data in the simulation to better reflect normal and severe winter conditions for light, moderate, and heavy commercial navigation.
- Developed and incorporated a complete set of icebreaker operating subroutines capable of modeling the following modes of icebreaking operations: preventive icebreaking, convoying, and direct assistance for vessels stuck in ice.
- Modified the simulation to include the capability for icebreaker user charges in vessel operating costs.
- Modified the simulation to generate icebreaker statistics, such as number of vessels assisted, total time assisting vessels, response time, and operating hours, to be used to assess icebreaker efficiency and cost of operations.
- Revised icebreaker characteristics in the simulation to better reflect existing, planned, and proposed icebreakers.
- Revised the program to permit two study options: in the first, a fixed fleet of icebreakers is defined; in the second, a maximum response time (variable with area of operation) is defined and the icebreaking fleet determined accordingly.
- Provided data files which can be modified to assess the effect of short term variations in ice conditions on the ability of the icebreaker fleet to maintain commercial navigation.
- Modified the computer simulation as needed to clearly identify all savings in commercial vessel transit times attributable to icebreaker operations when comparing simulation runs with and without icebreaker support.

Once the modifications were incorporated, the simulation was validated using U.S. Coast Guard icebreaking records for the 1975-1976 winter navigation

season. Upon completion of the simulation validation, a series of ten (10) runs, listed in Section 6.3, were performed and analyzed to assess the impact of winter severity, vessel restrictions, icebreaker fleet, use of convoys, and channel ice clearing. The results, along with the conclusions and recommendations drawn from these runs, are presented in Sections 6, 7, and 8 of this report.

3. DESCRIPTION OF GREAT LAKES-ST. LAWRENCE SEAWAY NAVIGATION SIMULATION

3.1 Overview

As stated in the Introduction, the GL/SLS NAVIGATION SIMULATION was developed initially as the Winter Rate Study [1] for the North Central Division of the U.S. Army Corps of Engineers. The purpose of this computer simulation was to model the movement of ships and cargo, during both the normal and winter navigation seasons within the Great Lakes-St. Lawrence Seaway System, and to and from overseas ports. In simulating the movement of ships and cargo, the model incorporated both the interactions between ships and the system, and the interactions between the ships themselves, such as:

- · Port and lock limitations and constraints
- · Draft limitations
- · Speed limits
- · Daylight only navigation
- Queues forming, expanding, and diminishing at lock and port facilities
- Increased transit, lockage, and port times due to presence of ice during extended season operations
- Ships getting stuck in ice and having to wait for icebreaker direct assistance
- Ship convoying with icebreaker escort through critical areas.

During the running of the simulation, statistics are compiled for each class of ship operating on each route. These statistics, along with vessel data, are converted into icebreaker performance measures, annual vessel operating costs, annual required freight rates, and performance measures for each route.

In order to develop a computer simulation which has sufficient detail to yield reasonable results while requiring a minimum of computer time, the total simulation model was divided into the following four individual models:

- · ICE GROWTH MODEL
- · SHIP SPEED GENERATING MODEL
- SHIP PROCESSING MODEL
- FREIGHT RATE/REPORT GENERATING MODEL

The relationship of these four models to one another and to the input data is illustrated by the block diagram shown in Figure 3.1. By dividing the total simulation model in this manner, repetitive calculations, such as determining the transit speed with which a particular vessel class traverses a given reach, need only be performed once and stored in a data file for use every time a ship of that vessel class traverses the reach. Each of these models is described briefly in the following subsections.

Figure 3.1. Conceptual Block Diagram for GL-SLS Navigation Simulation

3. DESCRIPTION OF GREAT LAKES-ST. LAWRENCE SEAWAY NAVIGATION SIMULATION

3.2 Ice Growth Model

3.2.1 Purpose

For simulation runs that extend into winter operations, the purpose of the ICE GROWTH MODEL is to prepare a data file which contains

- Ice type as a function of level of traffic
- Ice thickness as a function of temperature, location, and level of traffic
- Channel width in a turn as a function of preventive icebreaking

in each reach for every two week time period. This data file is then used by the SHIP SPEED GENERATING MODEL to determine the speed of advance of each vessel class in each reach for every time period in the simulation. The calender dates of the simulation time periods are given in Table 3.1.

3.2.2 Method of Approach

As described in Section 4, ice conditions for every channel and lock reach are defined for each two-week time period in the simulation by dividing each reach into five (5) sections corresponding to the existence of different ice conditions along the length of the reach. Each of these sections, with the exception of the middle one (Section 3), is described by a length and the existing level ice thickness, refrozen brash ice thickness, and brash ice thickness. The middle section (Section 3) is reserved for open water and only its length is denoted.

The ice conditions for any reach and time period are thus defined by:

ICE CONDITIONS IN A REACH

Section 1

$$L_1$$
 h_{1L} h_{1RB} h_{1B}

Section 2

$$L_2$$
 h_{2L} h_{2RB} h_{2B}

Section 3 (Open Water)

 L_{a}

Section 4

$$L_{\mathbf{4}} \quad h_{\mathbf{4}L} \quad h_{\mathbf{4}RB} \quad h_{\mathbf{4}B}$$

Section 5

$$L_5$$
 h_5 h_{5RB} h_{5B}

TABLE 3.1
CALENDAR DATES OF SIMULATION PERIODS

PERIOD	NORMAL YEAR 1975-76	SEVERE YEAR 1976-77
1	Normal Season	Normal Season
2	8 Dec - 21 Dec	6 Dec - 19 Dec
3	22 Dec - 4 Jan	20 Dec - 2 Jan
4	5 Jan - 18 Jan	3 Jan - 16 Jan
5	19 Jan - 1 Feb	17 Jan - 30 Jan
6	2 Feb - 15 Feb	31 Jan - 13 Feb
7	16 Feb - 29 Feb	14 Feb - 27 Feb
8	1 Mar - 14 Mar	28 Feb - 13 Mar
9	15 Mar - 28 Mar	14 Mar - 27 Mar
10	29 Mar - 11 Apr	28 Mar - 10 Apr

Note: Periods start on a Monday to coincide with ice data sources.

where

```
L_i = length of subreach (mi)

h_{iL} = thickness of level ice (in)

h_{iRB} = thickness of refrozen brash (in)

h_{iB} = thickness of unconsolidated brash (in)

i = section
```

The selection of representative normal and severe winters was based on a comparison of cumulative freezing degree days with historical weather records for different portions of the Great Lakes area. In addition to the above criteria, it was required that recent winters be selected in order to obtain historical ice condition data as well as icebreaker support data during extended navigation season operations. The winters of 1975-76 and 1976-77 met the above conditions and were judged to be representative of normal and severe winters on the Great Lakes. In fact, as stated by Quinn and Leshkevich of GLERL* "...the 1975-76 winter season can be characterized as near normal for all of the Great Lakes.... The winter of 1976-77 was the fifth coldest in the past 200 years." [12, 13]. To define ice conditions, all available ice data for the winters 1975-76 and 1976-77 were gathered and analyzed to provide a description of ice conditions for a normal and a severe winter, respectively, on the Great Lakes-St. Lawrence Seaway. The sources of data included:

SLAR Ice Charts

- Prepared by USCG/NWS/NASA

Satellite Photographs

- Prepared by NOAA/NESS

Ice Condition Charts

Prepared by Ice Forecasting Central,
 Department of the Environment, Canada

Great Lakes Ice Summaries - Prepared by the Ninth Coast Guard District

"Great Lakes Ice Cover, Winter 1975-76"

Prepared by George A. Leshkevich,
 NOAA Technical Memorandum, ERL-GLERL-12

This data provided an excellent method for estimating the type and extent of coverage on the Great Lakes-St. Lawrence Seaway during the two winters being analyzed. However, this data did not provide the needed values of level ice thickness, brash ice thickness, or refrozen brash ice thickness in the ship navigation channels. In order to make these estimates, separate mathematical models for level ice growth, brash ice formation in a navigation channel, and refrozen brash ice thickness were developed. Each of these models is described in detail below.

<u>Level Ice Thickness Estimate</u> - For each subreach in each time period, the level ice thickness is estimated using the traditional method of defining level ice thickness as a function of the square root of cumulative freezing degree days since the first formation of ice [4]:

^{*}Great Lakes Environmental Research Laboratory

$$h_{iLj} = \alpha \left[\sum_{m=k}^{j} \operatorname{FDD}_{m} \right]^{1/2} = \left[h^{2}_{iL(j-1)} + \alpha^{2} \operatorname{FDD}_{j} \right]^{1/2}$$
 (3-1)

where

 h_{iLj} = level ice thickness for period j

 α = freezing degree day coefficient for each reach

FDD; = freezing degree days during period j

k = period K when ice first appeared

If the air temperature is above freezing, the ice will melt at a rate assumed directly proportional to freezing degree days expressed by:

$$h_{iLj} = h_{iL(j-1)} + (0.2187 \text{ X FDD}_{i})$$
 (3-2)

Refrozen Brash Ice Growth Estimate - When a ship passes through an ice field, it leaves a mixture of broken ice pieces and water in its track. If the air temperature is below freezing, the water at the surface in the spaces between ice pieces will start to freeze. The crust, which forms at the surface, consists of old broken pieces frozen together by new ice, and is referred to as refrozen brash ice. Figure 3.2 depicts brash and refrozen brash ice in a ship track with level ice on both sides of the navigation channel.

The ice growth models assume that the air temperature is constant during each of the 14 day periods in the simulation. The ice growth models further assume that the ship transits along each reach are uniformly distributed in time within each time period. Utilizing these two assumptions, the refrozen brash ice thickness in a ship track can be calculated by the equation:

$$h_{Ri} = \alpha \left[\frac{\text{FDD}_{i}}{\text{NSPP}} \right]^{1/2} \tag{3-3}$$

where

 $\textit{h}_{\textit{Ri}}$ = refrozen brash ice thickness during period i

NSPP = number of ship transits per period.

NSPP, the number of ship transits per period, is defined by the traffic level: light, moderate or heavy.

Figure 3.2. Broken and Refrozen Ice in a Ship Track

Unconsolidated Brash Ice Growth Estimate - As stated previously, when a ship passes through an ice field it leaves a mixture of broken ice pieces and water in its track. The amount of ice is the same as before the ship passage; however, the newly formed ice-water mixture occupies more volume than the ice alone did prior to the ship passage. The thickness of the mixture after a ship passes through a level ice field is:

$$h_B = \frac{h_L}{(1-\beta)} \tag{3-4}$$

where

 h_p = unconsolidated brash ice thickness

$$\beta$$
 = porosity = $\frac{\text{volume of voids}}{\text{total volume}}$

In each case where the surface refreezes before the next ship comes along, each ship breaks up the refrozen crust and turns it into unconsolidated brash ice. Therefore, each succeeding ship sees a slightly thicker unconsolidated brash ice layer.

Ashton [5] and Michel and Lafleur [6] have proposed similar models for the growth of ice in a ship track. The model used in the simulation for growth of unconsolidated brash ice is based upon these two models, but incorporates the assumptions of constant temperature and uniform distribution of ships in a period.

The first ship in period i will encounter a total depth of ice slightly thicker than that left by the last ship in the previous period:

$$D_1 = \begin{bmatrix} D_{Bi-1}^2 + \alpha^2 & \frac{\text{FDD}_i}{\text{NSPP}} \end{bmatrix}^{1/2}$$
 (3-5)

where

 D_1 = depth of ice that the first ship in the period sees

 D_{Bi-1} = depth of brash ice at the end of period i-1

$$D = h_R + h_B = \int D_{Bi-1}^2 + h_{Ri}^2 \Big]^{1/2}$$
 (3-6)

The second ship in the period encounters additional ice thickness due to breaking up the refrozen crust and the ice growth under the broken pieces at the surface.

$$D_{2} = \left[\left(D_{1} + \frac{\beta h_{Ri}}{(1-\beta)} + \frac{\beta(1-\beta)}{(1-\beta)} \right) \left((h_{Ri}^{2} + h_{Ri}^{2})^{1/2} - h_{Ri} \right) \right]$$
(3-7)

$$\frac{\beta(1-\beta)^2}{(1-\beta)}\left(((2h_{Ri})^2 + h_{Ri}^2)^{1/2} - 2h_{Ri}^2\right) + \ldots + h_{Ri}^2\right]^{1/2}$$

The long expression which makes the first squared term is, itself, composed of terms which represent different contributions to the growth of the ice. The first term, D_1 , is the depth of unconsolidated brash ice sheet by the previous ship. The second term is the additional thickness due to breakup of the refrozen crust. The third term is the additional thickness due to the breakup of the ice forming under the first layer of ice pieces. The fourth term is the additional thickness due to the breakup of the ice forming under the second layer of ice pieces.

As the total amount of ice grows, more ice floats above the waterline due to the density difference between ice and water. As these ice pieces emerge from the water, they act as an insulator and slow down the rate at which new ice is generated. Effectively, a layer of ice is added above the waterline. The effective thickness of this layer, h_{ue} , is:

$$h_{ue} = D(1 - \rho_i/\rho_w) (1 - \beta)$$
 (3-8)

Equation (3-7) changes to:

$$D_{2} = \left[\left(D_{1} + \frac{\beta}{(1-\beta)} \left((h_{ue}^{2} + h_{Ri}^{2})^{1/2} - h_{ue} \right) + \frac{\beta(1-\beta)}{(1-\beta)} \left(((h_{ue} + h_{Ri})^{2} + h_{Ri}^{2})^{1/2} - h_{ue} + h_{Ri} \right) + \right]$$
(3-9)

$$\frac{\beta(1-\beta)^{2}}{(1-\beta)}\left(\left(\left(h_{ue}+2h_{Ri}\right)^{2}+h_{Ri}^{2}\right)^{1/2}-\left(h_{ue}+2h_{Ri}\right)\right)^{2}+\left(\left(h_{ue}^{2}+h_{Ri}^{2}\right)^{1/2}-h_{ue}^{2}\right)^{1/2}$$

The calculation of the unconsolidated brash ice depth by this method is an iterative procedure. Due to the insulation effect, the refrozen brash ice thickness is not constant as the insulating layer grows. The refrozen brash ice thickness that the ship experiences is no longer defined by equation (3-3) but rather by:

$$h_{Ri} = (h_{ue}^2 + h_{Ri}^2)^{1/2} - h_{ue}$$
 (3-10)

Melting of the unconsolidated brash ice is treated much the same as the melting of the level ice. Since the temperature is above freezing, no refrozen brash ice can form and the unconsolidated brash ice melts according to:

$$h_{Bi} = h_{Bi-1} + (0.2187 \times FDD_i)/(1 - \beta)$$
 (3-11)

3. DESCRIPTION OF GREAT LAKES-ST. LAWRENCE SEAWAY NAVIGATION SIMULATION

3.3 Ship Speed Generating Model

3.3.1 Purpose

The purpose of the SHIP SPEED GENERATING MODEL is to:

- Convert the ship characteristics, reach characteristics, ice conditions, and improvement levels, into the speed for each class of ship in each reach for open water (during normal season operations) and for every two-week season extension period. This information is stored in three (3) data files for light, moderate and heavy traffic levels.
- Generate an increased service time factor based on ice conditions for each port and lock facility for every two-week season extension period.
- Determine the maximum ship length and maximum allowable ship draft permitted to move from each port to every other port.
- Assemble the data in an appropriate format required by the SHIP PROCESSING MODEL.

In addition, the SHIP SPEED GENERATING MODEL also indicates in which reaches a particular class of ship will become stuck in ice. Delay times due to a ship's becoming stuck and then waiting for icebreaker assistance are not determined in this model but rather in the SHIP PROCESSING MODEL, since these delays are related to the availability of icebreaker support. Similarly, delay times due to ships waiting in queues for a port or lock facility are also determined in the SHIP PROCESSING MODEL.

3.3.2 Method of Approach

The average speed of advance for a particular class of ship to traverse a given reach is equal to the total length of the reach divided by the transit time required for the ship to traverse each section of the reach; that is:

$$V_{\text{average}} = 88.00 \quad \frac{d_1 + d_2 + d_3 + d_4 + d_5}{t_1 + t_2 + t_3 + t_4 + t_5}$$
 (3-12)

 $v_{average}$ = average speed of advance (fps) for a ship to traverse the *i*th reach

 t_j = transit time (minutes) for a ship to traverse the jth section of the reach (j = 1, 2, 3, 4, 5)

 d_j = length (miles) of the jth section of the reach (j = 1, 2, 3, 4, 5)

To use equation (3-12), t_j must be determined. In general, t_j is a function of the ship's thrust capability, its resistance characteristics, the ice conditions, river current, winds, visibility, and imposed speed limits. The delaying effects of high winds and low visibility are accounted for by using an average weather delay factor of 1.08 based on historical data provided by United States Steel Corporation, while the effect of river current has been neglected. Equation (3-12) can therefore be expressed as:

$$t_{j} = \left(88.0 \frac{d_{j}}{V_{j}}\right) \times 1.08$$

$$= 95.04 \frac{d_{j}}{V_{j}}$$
(3-13)

where

 V_j = average speed of advance of a ship traversing the *j*th section of the reach neglecting weather delays (fps)

One of the basic assumptions in developing the simulation is that ships would attempt to proceed at their maximum speed capability provided it is less than any imposed speed limit. If a ship's maximum speed capability is greater than the speed limit, the ship would reduce its speed accordingly. Expressed mathematically,

$$v_{j} = \begin{cases} v_{\text{max}} : & \text{if } v_{\text{max}} < v_{sl} \\ v_{sl} : & \text{if } v_{\text{max}} < v_{sl} \end{cases}$$

$$v_{j} = \text{minimum of } \begin{cases} v_{\text{max}} \\ v_{sl} \end{cases}$$

$$(3-14)$$

or

 V_{max} = maximum speed capability of the ship in the *j*th section of reach (fps)

 V_{sl} = imposed speed limit

For steady state motion, the available thrust of a ship T(V), is equal to the ship's resistance, R(V), where both the thrust and resistance are functions of the ship's speed:

$$T(V) = R(V) \tag{3-15}$$

To determine the thrust-speed relationship for a given ship, the propulsion system of the ship must be analyzed. Most ships, with the exception of ice-breakers or ships equipped with controllable pitch propellers, can be assumed to operate along constant torque curves independent of propeller RPM. Ice-breakers, because of their need for extra thrust capability at low speeds, and ships equipped with controllable pitch propellers operate along constant horsepower curves permitting higher torques to be attained at lower speeds. Using these assumptions, the thrust-speed relationships can be determined from representative propeller curves* for the following typical propulsion systems:

Steam Turbine Propulsion System

$$T(V) = (1.59-0.398 (V/V_{\text{design}})-0.192 (V/V_{\text{design}})^2)T_{\text{design}}$$
 (3-16)

Diesel Propulsion System

$$T(V) = (1.32-0.196 (V/V_{\text{design}})-0.124 (V/V_{\text{design}})^2)_{T_{\text{design}}}$$
 (3-17)

Class D Icebreakers

$$T(V) = (2.21-1.06 (V/V_{\text{design}})-0.140 (V/V_{\text{design}})^2)T_{\text{design}}$$
 (3-18)

Class C Icebreakers

$$T(V) = (1.49-0.206 (V/V_{\text{design}})-0.284 (V/V_{\text{design}})^2)T_{\text{design}}$$
 (3-19)

Class B Icebreakers

$$T(V) = (2.08-1.02 (V/V_{\text{design}})-0.060 (V/V_{\text{design}})^2)T_{\text{design}}$$
 (3-20)

^{*} Icebreaker propeller performance is based on analysis of the MACKINAW, WTGB and 110's propeller data provided by USCG. Laker and salty propeller performance is based on an analysis of propeller data provided by U.S. Steel and MARINER CLASS VESSEL, respectively.

$$T_{\rm design} = 550 \, \frac{(P.C.) \, (\rm shp)}{V_{\rm design}}$$

$$T = \rm thrust \, of \, ship \, (pounds)$$

$$T_{\rm design} = \rm design \, thrust \, (pounds)$$

$$V = \rm speed \, of \, ship \, (fps)$$

$$V_{\rm design} = \rm design \, speed \, of \, ship \, (fps)$$

$$P.C. = \rm propulsive \, coefficient = \eta_O \cdot \eta_R \cdot \eta_H \cdot \eta_T$$

$$\rm shp = installed \, rate \, of \, shaft \, horsepower$$

$$\eta_O = \rm propeller \, efficiency = 0.57$$

$$\eta_R = \rm relative \, rotative \, efficiency = 1.0$$

$$\eta_H = 1 - t/1 - w = \rm hull \, efficiency = 1.0$$

$$\eta_H = 1 - t/1 - w = \rm hull \, efficiency = 1.0$$

$$\eta_H = 1 - t/1 - w = \rm hull \, efficiency = 1.0$$

These relationships are presented graphically in nondimensional form in Figure 3.3.

Resistance of a given ship is a function of the ship's characteristics, its speed, and the ice conditions (type and thickness). For the purposes of this simulation, the resistance of a given vessel is assumed equal to:

$$R_{T} = R_{OW} + R_{LI} + R_{RB} + R_{B} . {(3-22)}$$

On a more consisted that the state of the second consisted at the second second

where

 R_T = total resistance (pounds) R_{OW} = open water resistance (pounds) R_{LI} = level ice resistance (pounds) R_{RB} = refrozen brash ice resistance (pounds) R_B = brash ice resistance (pounds)

As a first order approximation, the open water resistance is assumed to obey a velocity squared relation passing through the design-speed point.

$$R_{OW} = T_{\text{design}} \left(\frac{V}{V_{\text{design}}} \right)^2$$
 (3-23)

Figure 3.3. Thrust - Velocity Relation

 $T_{\text{design}} = \frac{\text{design thrust required to overcome the resistance at design speed (pounds)}}{\text{speed (pounds)}}$

 v_{design} = design speed (fps)

From model and full-scale resistance tests of the MACKINAW, WIND CLASS, WGTB, RYERSON, and NEW 1000' GL BULK CARRIERS, the resistance of ships in level ice, brash ice, and refrozen brash ice are estimated to be:

Level Ice

$$R_{LI} = \rho_{\omega} g B h_{LI}^{2} \left[(0.273 + 1.96\mu_{0}) (1 + 4.51f) + (0.0011 + 0.0116\mu_{0}^{2}/\eta_{2}) (1 + 2.92f) \left(\frac{V}{\sqrt{gh_{LI}}} \times \frac{\sigma_{f}}{\rho_{\omega} g h_{LI}} \right) \right]$$
(3-24)

Refrozen Brash Ice

$$R_{RB} = 0.8 R_{LI}$$

$$h_{LI} = h_{RB}$$
(3-25)

Brash Ice

$$R_B = \rho_w g B h_B^2 \left[0.320 + 1.51 \mu_0 + (0.0369 + 0.0745 \frac{\mu_0^2}{\eta_2}) \frac{v^2}{g h_B} \right]$$
 (3-26)

where

 $g = acceleration of gravity = 32.2 ft/sec^2$

 ρ_{23} = mass density of water = 1.94 slugs/ft³

 σ = flexural strength of ice = 18,000 psf

f = hull-ice friction factor = 0.25

 h_{LT}, h_{RR}, h_{R} = level ice, refrozen brash ice, and brash ice thickness (ft)

 μ_0 , n_2 = hull shape geometric coefficients (obtained from analysis of vessel lines drawings)

	μο_	n_2
Ocean-Going Vessels	2.06	5.53
Lakers	5.56	· 1.94
Icebreakers: Class	B 1.45	2.85
Class	C 1.45	2.96
Class	D 1.61	2.79

It should be noted that while equation (3-22) shows total resistance to be additive of the independent ice resistance components, the current stateof-the-art in predicting ice resistance has not proven or disproven this assumption. It is felt, however, that this assumed additive condition provides a good first approximation since in the limit the total resistance reduces to the individual components. For example, if there is no ice, then the total resistance equals the open water resistance and similarly if the brash ice thickness and refrozen brash ice thickness are zero, the ice resistance equals that of the level ice resistance. The only discrepancy occurs in that the open water resistance has been incorporated twice when the ship is operating in ice. While this gives a slight overestimate to the total resistance, the current-state-of-the-art in ice model testing has not developed a verified methodology to remove the open water resistance portion from the total measured resistance. Thus equation (3-22) is somewhat conservative, predicting a slightly higher resistance than one would expect in the real world. The open water resistance R_{OW} is included in equation (3-22) to enable the total resistance to be a continuous function at zero ice thickness (open water); expressed mathematically:

$$R_{OW} = \lim_{t \to c} |(R_T)| \tag{3-27}$$

In ice, the error introduced by including open water resistance twice is slight since ice resistance is much greater than R_{OU} .

Since both T(V) and R(V) are of quadratic form, equation (3-15) can be solved for the ship's maximum speed capability (v_{max}) in the *i*th section of the reach using the standard quadratic formula. The procedure is illustrated graphically in Figure 3.4. In solving this quadratic equation, two roots are obtained, consisting of positive and negative real roots, two negative real roots, or two complex roots, depending on the value of ice thickness for a given ship. If positive and negative real roots are obtained, the ship can proceed through the ice at a speed equal to the positive root, while the negative root is an extraneous solution to the equation. If two negative real roots or two complex roots are obtained, the ice is too thick for the ship to proceed through; that is, the ship does not have enough available thrust to overcome the resistance and its speed of advance will therefore correspond to zero. In practice, a minimum speed of advance of approximately 2 mph exists below which ships will not proceed and can be assumed stuck. Thus, if v_{max} is less than 2 mph, the ship is assumed to be stuck in ice and an icebreaker must be called to free the ship. If this occurs, the speed of advance of the ship is set to the speed in the remaining sections of the reach and an appropriate stuck code is added to the indicated speed.

Figure 3.4. Typical Thrust and Resistance Characteristics

In addition to transit times, delay factors are calculated for each port and lock facility to indicate increased service time due to the following problems caused by the presence of ice:

- Turning in port basins
- · Maneuvering into docks
- · Need for ice lockages
- · Removal of ice from lock walls
- · Removal of ice from gate recesses

The problems associated with locks operating during winter are discussed in detail in reference [7]. These delays are assumed to be proportional to the ice thickness existing at the facility and to increase linearly at the rate of 1% per inch of ice based upon the results from the SPAN Study [7, 8] and discussions with fleet operators.

Thus.

$$f_{\text{delay}} = 1.0 + h/100.$$
 (3-28)

where

$$f_{\text{delay}}$$
 = delay factor
 h = ice thickness (inches) = $h_{LI} + h_{RB} + h_{B}$

Another ice problem which can restrict the movement of large ships in river reaches is their capability to maneuver around a turn in a river in a broken ice channel. The computer program simulates a ship becoming stuck in a tight turn by comparing the broken channel width required by the vessel to negotiate the turn to the radius of the turn as shown in Figure 3.5. Also shown in the figure is the effect on the turn radius of preventive icebreaking expressed as the widening of the turn versus the number of preventive icebreaker transits per period. It is assumed that the channel is widened from 150 ft by one-third of the icebreaker's beam per transit. The preventive icebreaking is simulated in the Ice Growth Model, which outputs the broken channel width for each reach by period, along with the ice conditions. The Speed Generating Model flags any vessel class that will become stuck in a given turn. The actual freeing of the stuck ship by an icebreaker is performed in the Ship Processing Model, which calculates how many passes of an icebreaker will be required to meet the minimum turn width, assuming the broken channel is widened one icebreaker beam per transit.

3. DESCRIPTION OF GREAT LAKES-ST. LAWRENCE SEAWAY NAVIGATION SIMULATION

3.4 Ship Processing Model

3.4.1 Purpose

The SHIP PROCESSING MODEL uses the output from SHIP SPEED GENERATING MODEL, cargo origin and destination data, fleet mix, ship and reach characteristics, and improvement levels, to simulate the movement of ships and cargo while compiling the following statistics for each vessel class on every route for normal season operations and for every two-week season extension period.

- · Tons of cargo transported
- · Time underway with cargo
- · Time stopped with cargo
- Total number of trips
- Number of trips made by ships equipped with bow thrusters
- Number of trips made by self-unloaders
- · Time underway during empty backhaul
- · Time stopped during empty backhaul
- · Number of trips through the Seaway with cargo
- · Number of trips through the Seaway without cargo
- · Number of trips through the Welland with cargo
- · Number of trips through the Welland without cargo
- Icebreaker assistance and convoy statistics

In processing ships from port to port, queues at ports and locks are allowed to form, expand, and diminish as necessary. The time spent in a queue waiting to be serviced is allocated to the route the ship is transiting. Similarly, when a ship becomes stuck and requires icebreaker assistance, the ship's waiting time is allocated to its current route. If an icebreaker is not immediately available, this additional waiting time is included.

3.4.2 Method of Approach

In order to meet the cargo tonnage criteria, ships are dispatched from port of origin at a required frequency rate and then proceed toward their port of destination. In the process, they obey the following basic rules and assumptions.

Commercial Ships

- 1. All ships in the fleet are represented by specific ship classes whose properties are specified for typical ships.
- 2. All ships attempt to maintain their maximum capable speed at all times except where speed limits exist.

- 3. A ship's maximum speed capability is determined by equating the ship's thrust capability to its resistance characteristics.
- 4. Ship delays due to bad weather are accounted for by decreasing the speed by a weather delay factor based on historical data.
- 5. A ship may be stuck due to resistance or it may become stuck because it is too long to turn within the required radius of a given channel width.
- 6. A ship is assumed to be stuck due to resistance if its maximum capable speed of advance is less than 2 mph in any subreach.
- 7. A ship is said to become stuck at the upper end of the reach, at the lower end of the reach, or both. This information, and how the ship became stuck, is encoded into the speed.
- 8. No accidents involving ships are assumed to occur in the system and no time delays due to accidents are considered.
- All ships observe winter draft restrictions during extended season operations.
- 10. All lakers are assumed to lay-up at the end of the navigation season, while all ocean-going ships are assumed to operate elsewhere.
- 11. All ships are treated on an equal basis.
- 12. All ships operate only during daylight hours in areas where nighttime navigation is prohibited.
- 13. Once stuck, a ship calls on an icebreaker for assistance and waits until the icebreaker arrives at the ship's location.
- 14. If an icebreaker is not available and a ship becomes stuck, the ship must wait until one becomes available.
- 15. Ships are "created" by the simulation on a frequency basis as required to carry the specified tonnage on a particular route. Ships complete a round trip on a specified route, and are then "destroyed" by the simulation.
- 16. The number of vessels in the system floats according to the delays encountered since the tonnage to be carried is fixed.
- 17. Ships queue up at ports and locks and are serviced on a first-come first-served basis.
- 18. The frequency of ship generation varies as a function of time to simulate the seasonal tonnage variation that occurs with a fixed fleet as transit times increase during the extended season.

- 19. The speed of a ship in a reach depends on the type of ice conditions (level ice/brash ice with thick refrozen crust/thicker brash ice with thin refrozen crust) which, in turn, depends on the level of traffic (light/moderate/heavy).
- 20. The level of traffic for a given reach in any period is determined by the number of ship transits in the previous period: 0-2 light, 3-30 moderate, $31-\infty$ heavy.
- 21. Lakers are assigned to one route (origin/destination/commodity grouping) or two routes if on a triangular pattern. One round trip is made which includes an empty backhaul.
- 22. Salty General Cargo ships follow preassigned itineraries, spending two days in each port of call in the Great Lakes-St. Lawrence Seaway System and 2.5 days in the overseas ports.
- 23. Ships are routed only to ports which can accommodate their length.
- 24. The ship's draft is adjusted to meet the minimum requirements of the origin or destination.
- 25. Ships cannot go through locks which are shorter than their length.

Icebreakers - General

- 1. Icebreakers are assigned to one of seven task commands. In the fixed fleet mode, each icebreaker is free to respond anywhere within the task command. In the maximum response time mode, an icebreaker may respond only in reaches that have the same designated home port as the icebreaker.
- 2. When released from a specific task, an icebreaker is assigned to a direct assistance (DA) task, to escort a convoy, or to proceed back to home port reach-by-reach if not needed.
- When both convoy and DA queues are waiting to be processed, the icebreaker is assigned to the ship which has been waiting the longest.
- 4. Icebreaker transits through reaches containing locks do not include lock queuing time since it is assumed icebreakers will be given top priority and will be locked through ahead of commercial vessels.
- 5. An icebreaker becomes stuck if its speed is less than 5 mph in any subreach. A ramming speed of 2 mph is then used.
- 6. If an icebreaker must ram in any subreach, a flag is encoded into the speed.

<u>Icebreaker Selection and Response</u>

- 1. When selecting an icebreaker for a task, two decision criteria are used: icebreaker capability and response time, as defined in rules and assumptions associated with convoying and direct assistance. In the fixed fleet mode, the soonest capable icebreaker is selected. A class is capable by default if the task command has no icebreakers of a higher class. In the MRT mode, the lowest capable class is selected.
- 2. If it is at its home port, an icebreaker's response time includes a standby time which is specified on a class basis (for production runs all icebreakers were assumed on an alert status and the standby time was input as 15 minutes).
- 3. When looking for an icebreaker for direct assistance duty, the convoy queues first have icebreakers "reserved" for all ships arriving within 12 hours. This gives priority to the convoys based on the assumption that a ship's master can radio ahead the ETA for a convoy point, whereas he would not be predicting where and when his ship will get stuck in the ice and require direct assistance.

Icebreaker Convoying

- 1. An icebreaker is "capable" of responding to a convoying task if the icebreaker does not have to ram through any of the reaches comprising the convoy route and if the time to transit the convoy route is less than the maximum endurance for that class icebreaker.
- 2. The icebreaker escorts the convoy at 80 percent of the calculated speed in each reach of the convoy route.
- All ships in the convoy travel at the same speed as the icebreaker.
- Convoys begin and end at reach nodes.
- The escorting icebreaker is freed as soon as it completes the convoy route.
- 6. No ships will get stuck while traveling in a convoy.
- 7. After the icebreaker transit time to a convoy point is computed, it is decremented by the amount of time that the icebreaker has been free to account for icebreakers having been reserved for convoy duty. In this manner, the simulation models the assumption that task commands have prior knowledge of upcoming convoy requirements.
- 3. The following algorithm is used to determine if and when a convoy will leave. A convoy is checked for processing whenever a ship arrives at the convoy point and whenever an icebreaker in the same task command becomes free. If, at the time the icebreaker arrives at the convoy, the queue has enough ships to meet or exceed the escort capacity of the icebreaker, the convoy is deemed ready to leave. In addition, if at the

time the icebreaker arrives, the first ship in the queue has waited longer than its maximum allowable delay, the convoy is deemed ready to leave. In the fixed icebreaker fleet mode, this delay is equal to six hours; in the maximum response time mode, it is equal to the maximum response time of the downstream reach.

9. The size of a convoy is the number of ships in the convoy queue at the time the icebreaker arrives or the escort capacity of the icebreaker, whichever is less.

Icebreaker Direct Assistance - General

- 1. An icebreaker is "capable" of assisting a stuck ship if the icebreaker does not have to ram in the same reach that the ship is stuck in.
- 2. Each reach has four possible "stuck points". Points 1 and 4 are at the reach nodes; points 2 and 3 are 20% of the reach length from the nodes.

Icebreaker Direct Assistance - Ship Stuck Due to Resistance

- The direct assistance deployment time when a ship is stuck due to resistance includes breakout time, which is defined as the time for the assisting icebreaker to travel ten miles in level ice in the reach that the ship is stuck in (maximum time is four hours). Breakout mileage is not included in the statistics.
- 2. Once the ship is free, the icebreaker escorts the ship to the end of the reach, traveling at 80 percent of its calculated speed in that reach.
- 3. The escorting icebreaker is deallocated when one of the following conditions are met:
 - · a convoy point is reached
 - a port is reached
 - the next reach is passable by the ship without escort, or
 - the icebreaker reaches the task command boundary.

<u>Icebreaker Direct Assistance - Ship Stuck in a Turn</u>

- Direct assistance deployment time for this case includes breakout time, which is defined as the time for the icebreaker to make the number of passes required to sufficiently widen the turn using the speed in level ice, assuming that the turn is widened one beam width each pass (maximum time is four hours).
- 2. The icebreaker is freed as soon as the ship is broken out of the turn.

Maximum Response Time (MRT) Mode*

- The value of the maximum response time is input data specified by reach. (Note that this time must be greater than the time required for an ice-breaker to get to the reach from the nearest home port.)
- 2. The lowest capable class of icebreaker is selected for a task (even if a higher class icebreaker has a shorter response time) to ensure that a minimum number of large icebreakers are created in the MRT mode.
- When an icebreaker must be created to meet the maximum response time for a specific task, the lowest capable class is chosen and assigned to the nearest home port.
- 4. In the MRT mode, a free icebreaker is not deployed if it cannot reach its destination by the time the waiting ship has passed its maximum delay time.
- 5. The icebreaker fleet is zeroed at the beginning of each period, and grows as required to meet the demands for assistance.

Icebreaker Statistics

- 1. Statistics accumulated by reach reflect icebreaker escort (either direct assistance or convoy) within each reach.
- 2. Statistics accumulated by commercial vessel route include the time required for the icebreaker to get to the point of assistance from wherever it was when it was called.
- 3. Statistics accumulated by icebreaker class/task command include time getting to the point of assistance and returning to home port, as well as time for the assistance itself.
- 4. The direct assistance and convoy counters are incremented when the request is processed, not when it is requested.

Lock Reaches

- 1. Night operations are permitted except where restricted.
- 2. Ships are locked through in a manner which maximizes the lock's utilization.
- 3. If queues exist on both sides of the lock, the lock alternates in processing upbound and downbound ships.
- 4. Ships are processed out of each queue on a first-come first-served basis.

^{*} The MRT mode is described in detail as to its logic in the USERS MANUAL AND DOCUMENTATION in subroutines NEWIB, IBFREE, STKVS, PROSTK, PROCVY, ALLOC, ICEBRK, and CAPBLE.

- 5. If a queue exists on one side of the lock and the time of arrival of a ship at the other side of the lock is less than the turnback time of the lock. the lock waits to process the arriving ship. Otherwise, it turns back to process the next ship in the queue.
- 6. Only one ship at a time is locked through.
- 7. Locking times are assumed to increase equally for all classes of ships at the rate of one percent for each inch of ice existing in the reach.

Port Reaches

- 1. Port facilities are assumed to operate 24 hours a day.
- 2. Ships are loaded (unloaded) on a first-come first-served basis.
- 3. Ships are loaded with only one type of cargo at a time.
- 4. Stockpiles are assumed to exist all ports of origin and all ships are loaded to capacity or to some draft limitation with the exception of general cargo ships.
- 5. Stockpiles are assumed to exist at all ports of destination and all ships are unloaded completely with the exception of general cargo ships.
- 6. General cargo ships are loaded and unloaded depending on the cargo destined for each port.
- 7. The port turnaround times are assumed to increase equally for all classes of ships at the rate of one percent for each inch of ice in the next downbound reach.
- 8. Ocean-going ships carrying grain stop in Baie Comeau to top-off before proceeding overseas.

Channel Reaches

- 1. Ships are not permitted to exceed a speed limit if one exists in a particular reach.
- Passing is permitted in all reaches.
- 3. Night operation is permitted except in areas where restricted.

3. DESCRIPTION OF GREAT LAKES-ST. LAWRENCE SEAWAY NAVIGATION SIMULATION

3.5 Freight Rate/Report Generating Model

3.5.1 Purpose

The FREIGHT RATE/REPORT GENERATING MODEL translates the statistics collected by the SHIP PROCESSING MODEL, along with vessel data, into the following icebreaker statistics, vessel operating costs, performance measures, and required freight rates.

ICEBREAKING DATA

- Direct assistance queue size by task command every 2 days (7 times per time period)
- Convoy queue size by direction every 2 days (7 times per time period)
- Icebreaker statistics by icebreaker class, task command, home port, and reach for every time period:
 - number of icebreakers
 - channel clearing (inches/period)
 - preventive icebreaking (hours/period)
 - number of direct assists
 - hours of direct assists
 - miles of direct assists
 - direct assistance average response time (hours)
 - direct assistance maximum response time (hours)
 - hours of convoys escorted
 - miles of convoys escorted

VESSEL TRADE ROUTE DATA

For each route and every time period, the following information is output on a cumulative basis for the fleet on each route as well as for each individual ship class:

- Total tonnage
- Time underway (domestic and world-wide)
- Time stopped (domestic and world-wide)
- Number of trips (total, and broken into ships with bow thrusters and ships that are self-unloaders)
- · Crew Costs
- · Maintenance and repair costs
- Store and supply costs

- · Insurance costs
- · Overhead costs
- · Towing costs
- · Lay-up charges
- · Fuel costs
- · Gallons of fuel consumed
- Tolls

- Total operating costs
- · Operating cost per ton
- · Operating cost per hour
- · Operating cost per ton-mile
- · Revenues per ton-mile
- · Taxes per ton-mile
- · Depreciation per ton-mile
- · Profit per ton-mile
- Required freight rate (dollars/ton)
- Per-unit required freight rate (normalized to the normal season value)
- Revenue ton-miles (ton-miles on which cargo was carried)
- · Total miles with cargo
- · Total miles backhaul
- Dollar-miles (the value of the cargo times distance moved)
- Average trip time per trip (including loading/unloading time)
- Average trip time per ton-mile (including loading/unloading time)
- · Average length of haul (miles)
- Icebreaker direct assistance required (number, hours, miles)
- · Number of convoys with icebreaker escort.

PORT AND LOCK DATA

- · Number of ships in port and lock queues every 2 days
- · Number of events by port and cargo commodity
- · Number of events at each lock
- · Average delays at ports and locks.

4. REACH SELECTION

In the simulation, the GL-SLS Navigation System is represented as the series of reaches shown in Figures 4.1 and 4.2, and listed in Tables 4.1 and 4.2 at the end of this section. Also shown in Figures 4.1 and 4.2 are the designated icebreaker commands and designated icebreaker home ports. In describing these reaches, each reach is initially classified as either a port reach, lock reach, or channel reach with boundaries defined as listed in Table 4.2. For port and lock reaches, boundaries were chosen to correspond to the entrance and exit points of the facility, while boundaries for adjacent channel reaches were chosen to correspond to points where trade routes joined, where characteristics of the system changed significantly, or where the U.S. Coast Guard task command boundaries existed.

Once selected, every reach was described by a series of attributes. Port reaches, which were defined as any facility where ships moving over specified trade routes could either load or unload cargo, were described by:

- · Maximum Allowable Ship Draft
- · Maximum Allowable Ship Length
- · Port Turnaround Time

and, for each type of cargo (iron ore, coal, grain, stone, and general cargo), by:

- Stockpile Level
- Number of Docks
- Cargo Arrival (Usage Rate)
- · Cargo Loading/Unloading Rate
- Dock Restrictions (Self-Unloaders Only)

where the port turnaround time is the time for a ship to move to and from the docks, excluding time spent in a queue waiting for a dock to become available.

Lock reaches, which were defined as any reach containing a single lock or a system of locks, such as the Welland Canal or St. Lawrence Seaway, were described by the following attributes:

- · Ice Conditions
- Maximum Allowable Ship Draft
- · Maximum Allowable Ship Length
- · Imposed Speed Limit
- Beginning of Daylight Only Navigation

FIGURE 4.1 REACHES COMPRISING THE GL-SLS MAVIGATION SYSTEM

FIGURE 4.2 REACHES COMPRISING THE GL-SLS NAVIGATION SYSTEM

- · End of Daylight Only Navigation
- · Number of Locks
- · Lock Turnback Time

The remaining reaches comprising the lakes and rivers were defined as channel reaches and described by:

- · Ice Conditions
- · Maximum Allowable Ship Draft
- · Maximum Allowable Ship Length
- · Imposed Speed Limits
- · Beginning of Daylight Only Navigation
- · End of Daylight Only Navigation

Ice conditions for every channel and lock reach were defined for each two-week time period in the simulation by dividing each reach into five (5) sections corresponding to the existence of different ice conditions along the length of the reach. Each of these sections, with the exception of the middle one (section 3), was described by a length and the existing level ice thickness, refrozen brash ice thickness, and brash ice thickness. The middle section (section 3) was reserved for open water and only its length was denoted. The elimination of any section was achieved by equating its length to zero. For example, a totally open water reach has the length of section 3 equal to the total length of the reach while the lengths of the other sections equal zero. Similarly, the elimination of any type of ice condition was achieved by setting its respective ice thickness equal to zero. Thus, for example, a reach which contained only brash and refrozen brash ice and did not contain a level ice section has the level ice thickness of all sections set equal to zero. Ice conditions for each reach were prepared for every two week time period for a representative normal and severe winter assuming light, moderate, and heavy ship traffic levels. A more detailed description of the methodology used in defining the ice conditions is presented in Section 3.2 of this report. The values for freezing degree day coefficients (α) and the brash ice porosity (β) for each reach is listed in Table 4.3.

TABLE 4.1
LIST OF PORT REACHES

Port Number	Port Name	Port <u>Number</u>	Port Name
1	Thunder Bay	21	Detroit
2	Taconite Harbor	22	Rouge River
3	Silver Bay	23	Trenton Ch.
4	Two Harbors	24	Toledo
5	Duluth	25	Sandusky
6	Superior	26	Lorain
7	Presque Isle	27	Cleveland
8	Sault Ste. Marie	28	Ashtabula
9	St. Ignace	29	Conneaut
10	Escanaba	30	Port Colborne
11	Green Bay	31	Buffalo
12	Milwaukee	32	Toronto
13	Chicago & Calumet	33	Oswego
14	Indiana Harbor	34	Alexandria Bay
15	Gary	35	Cornwall
16	Burns Harbor	36	Montreal
17	Muskegon & Grand Haven	37	Quebec
18	Calcite	38	Baie-Comeau
19	Bay City & Saginaw	39	Sept-Iles
20	Port Huron	40	Overseas Ports

NOTE: Icebreaker home ports are in italics.

TABLE 4.2

LIST OF CHANNEL AND LOCK REACHES

NODE	LANDMARK								Whitefish Pt.	Whitefish Pt.	Sault Ste. Marie	DeTour Reef	DeTour Reef	Round Island	Lansing Shoal	Lansing Shoal	,										
DOWNSTREAM NODE	N. LAT W. LONG.	46°56' - 91°29'	46°56' - 91°29'	47°10' - 90°48'	47°10' - 90°48'	47°17' - 90°31'	۱ -	47°35' - 87°30'	1		46°30' - 84°21'	, _	_'	-	45°53' - 85°34'	ı _	45°24' - 87°00'	45°24' - 87°00'	ا -	44°05' - 87°10'	43°06' - 87°14'	ا -	43°06' - 87°14'	۱ -	42°12' - 87°18'	1	45°11' - 83°02'
00E	LANDMARK	Minnesota Pt.	Two Harbors		Silver Bay		Taconite		Thunder Bay	Presque Isle	Whitefish Pt.	Sault Ste. Marie	Round Island	Lansing Shoal	•		Escanaba	Green Bay			Milwaukee	Muskegon	•			Round Island	DeTour Reef
UPSTREAM NODE	N. LAT W. LONG.	46°45' - 92°00'	•	,	1	ı	1	1	ı	ı	1	ı	í	1	1	•	t	ſ	44°05' - 87°10'	ſ	f	ł	ł	ı	1	,	45°57' - 83°54'
	LENGTH (mi)																										89 99

TABLE 4.2 (CONTINUED)

ODE	LANDMARK		Port Huron	North Channel Detroit	Rouge River Rouge River		Pelee Passage		Pelee Passage			Welland Canal			Alexandria bay
DOWNSTREAM NODE	N. LAT W. LONG.	1 1 1		42°37' - 82°31' 42°20' - 83°01'	1 1	41°54' - 83°06' 41°54' - 83°06'	' '	١.	1 1	42°03' - 81°30' 42°03' - 81°30'	42°03' - 81°30' 42°49' - 79°17'		· ·		44.21 75.55.
10DE	LANDMARK	Calcite	Mouth of Saginaw River	Port Huron North Channel	Detroit Trenton Ch.	Rouge River Toledo	Vacabaes	Lorain	Cleveland Pelee Passage	Pelee Passage Lorain	Cleveland	Buffalo	Toronto Toronto	Welland Oswego	
UPSTREAM NODE	N. LAT W. LONG.	45°26' - 83°48' 45°33' - 83°39' 45°11' - 83°02'	1 1	1 1	42°20' - 83°01' 42°09' - 83°11'	42°15' - 83°08' 41°42' - 83°28'	1 (41°32' - 81°44' 41°49' - 82°28'	1 1	41°32' - 81°44' 42°03' - 81°30'		1 1	43°16' - 79°13' 43°29' - 76°32'	43-49 16-49.
	LENGTH (mi)	11 40 63	82 94	28 34	6 /	24 23	34	52	40 91	52 54	37 125	22 43	29	129 29	09
	REACH	67 68 69	07	72 73	74 75	76 77	78	80	81 82	83 84	86 86 87	8 8 6	986	92	5

TABLE 4.2 (CONTINUED)

ODE	LANDMARK	Cornwall	Quebec	Baie Comeau			To Overseas Ports		Whitefish Pt.
DOWNSTREAM NODE	N. LAT W. LONG.	45°00' - 74°40'	46.47' - 71.13'	49°04' - 68°02'	49°47' - 66°00'	49°47' - 66°00'	48°18' - 62°16'	47°35' - 87°30'	46°48' - 84°56'
ODE	LANDMARK	Alexandria Bay	Montreal	Quebec	Baie Comeau	Sept-Iles	•	Presque Isle	
UPSTREAM NODE	N. LAT W. LONG.	44°21' - 75°55'	45°34' - 73°29'	46.47' - 71.13'	49°04' - 68°02'	50°12' - 66°20'	49°47' - 66°00'	46°34' - 87°22'	47°35' - 87°30'
	LENGTH (mi)	145	273	435	203	20	406	69	131
	REACH	95	9.6	86	66	100	101	102	103

TABLE 4.3 $\mbox{FREEZING DEGREE DAY COEFFICIENTS } (\alpha) \\ \mbox{AND BRASH ICE POROSITY } (\beta) \mbox{ FOR EACH REACH}$

		NOR	MAL WINTER	<u> </u>				SEV	ERE WINTE	<u>R</u>	
REACH	<u>a</u>	β	REACH	α	β	 REACH	α	β	REACH	α	β
41 42 44 44 45 46 47 48 49 51 51 52 53 54 55 55 56 67 68 67 77 77 77 78 79 80	.74 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20	.25 .25 .25 .25 .25 .25 .25 .25 .25 .25	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103	.66 .82 .66 .87 .82 .84 .84 .84 .63 .63 .63 .77 .62	.25 .25 .25 .25 .25 .25 .25 .25 .25 .25	41 42 44 44 44 45 51 52 53 45 55 55 56 61 62 63 64 65 66 67 77 77 77 77 78 79 80	.68 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20	.255.255.255.255.255.255.255.255.255.25	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103	.97 .79 .97 .79 .84 .84 .84 .84 .84 .63 .63 .63 .57	.25 .25 .25 .25 .25 .25 .25 .25 .25 .25

5. ICEBREAKER AND SHIP CLASS SELECTION

In the simulation, ships which transit the GL/SLS Navigation System were divided into four major types:

- · Laker Bulk Vessels
- · Ocean-Going Bulk Vessels
- · Ocean-Going General Cargo Vessels
- · Icebreakers

These major vessel types, with the exception of icebreakers, were further divided into classes to distinguish between different vessel sizes, carrying capacities, and characteristics using the following standard Corps of Engineers Classification based on ship length:

CORPS OF ENGINEERS VESSEL CLASSIFICATION BY LENGTH

<u>Class</u>	Vessel Length (feet)
1 2 3 4 5 6 7 8 9	Under 400 400 - 499 500 - 549 550 - 599 600 - 649 650 - 699 700 - 730 731 - 849 850 - 949 950 - 1000
· -	300

For icebreakers, three (3) vessel classes were used corresponding to the U.S. Coast Guard's classification of Class B, C, and D icebreakers. Each vessel type and class, other than icebreakers, used in the simulation to represent the vessels operating in the extended navigation season are described in Tables 5.1, 5.2, and 5.3 by the following characteristics listed below. In a similar manner, each icebreaker class is described by the series of characteristics in Table 5.4.

Characteristic	<u>Description</u>
Length	Overall length of ship (feet).
Beam	Maximum width of ship at the waterline (feet).
Horsepower	Maximum shaft horsepower generated by engines (hp).
Engine Type	Type of propulsion system.

TABLE 5.1

LAKER BULK VESSEL CHARACTERISTICS

CHARACTERISTICS			SHIP CLASS		
	5	9	7	æ	10
Length (feet)	640	669	730	. 767	1,000
Beam (feet)	29	70	75	70	105
Horsepower	4,000	7,700	8,800	7,000	14,000
Engine Type	Steam	Steam	Steam	Steam	Diesel
	Turbine	Turbine	Turbine	Turbine	
	14.5	16.5	16.5	16.5	18.0
Locking Time SLS (minutes)	37	39	41	41	59
Locking Time WELLAND (minutes)	36	37	39	40	43
Locking Time SOO (minutes)	99	22	22	99	87
Midsummer Draft (feet)	24.6	26.3	27.9	26.2	28.6
Winter Draft (feet)	22.0	24.5	26.0	24.5	28.6
Long Tons/Foot Immersion	966	1,206	1,452	1,404	2,542
Self-Unloading Rate (long tons/hr.)	3,000	4,000	2,000	2,000	8,500
MS Iron Ore (long tons)	18,150	22,400	27,600	26,500	57,500
MS Coal (long tons)	16,340	20,160	24,840	23,850	51,750
MS Grain (long tons)	16,340	20,160	24,840	23,850	51,750
Ice Class	11	21	II	II	OI
Number of Crew	27	32	32	38	21
Total Sale Price (10^6)	6.97	12.15	17.29	17.28	33.60
Cubic Number	15,526	18,817	21,710	22,008	50,946
Gross Registered Tons	10,291	10,317	13,390	15,483	24,199
Capital Recovery Factor	0.157	0.139	0.134	0.139	0.131
Horsepower/Length Ratio	6.25	11.02	12.05	9.13	14.00

TABLE 5.2

OCEAN-GOING BULK VESSEL CHARACTERISTICS

CHARACTERISTICS		SHIP CLASS	LASS		
	4	2	9	7	}
() () () ()	999	200	[0]	400	
Length (reet)	000	033	120	60/	
Beam (feet)	72	75	75	75	
Horsepower	000,6	009,6	11,500	12,800	
Engine Type	Diesel	Diesel	Diesel	Diesel	
	19.0	17.3	18.4	17.3	
Locking Time SLS (minutes)	33	37	39	41	
Locking Time WELLAND (minutes)	35	36	37	39	
Locking Time S00 (minutes)	56	26	57	55	
Midsummer Draft (feet)	31.0	33.4	35.1	36.0	
Winter Draft (feet)	31.0	33.4	35.1	36.0	
Long Tons/Foot Immersion	1,125	106	1,266	1,290	
MS Grain (long tons)	16,257	19,698	21,870	32,105	
Ice Class	IB	C)I	IB	
Number of Crew	30	30	30	30	
Total Sale Price (10 ⁶)	2.38	7.20	10.27	11.31	
Cubic Number	13,510	17,148	19,312	20,671	
Gross Registered Tonnage	14,468	12,100	19,644	21,288	
Capital Řecovery Factoř	0.33	0.20	0.17	0.17	

TABLE 5.3 OCEAN-GOING GENERAL CARGO CHARACTERISTICS

CHARACTERISTICS		SHIP CLASS	
	-	2	က
Longth (foot)	307	777	528
Doam (foot)	700	14	320 75
Beam (Teet) Horsepower	5,400	10,000	18,400
Engine Type	Diesel	Diesel	Diesel
V_{design} (mph)	18.4	19.6	23.6
Locking Time SLS (minutes)	30	31	32
Locking Time WELLAND (minutes)	31	32	34
Locking Time S00 (minutes)	42	48	54
Midsummer Draft (feet)	25.3	28.6	31.5
Winter Draft (feet)	25.3	28.6	31.5
Long Tons/Foot Immersion	420	720	. 662
MS Ğeneral (long tons)	5,313	10,863	10,226
Ice Class	IA	IA	IA
Number of Crew	30	30	30
Total Sale Price (10 ⁶)	5,310	5.525	8.670
Cubic Number	5,523	8,908	12,473
Gross Registered Tons	5,419	9,003	10,846
Capital Recovery Factor	0.17	0.17	0.16

TABLE 5.4
ICEBREAKER CHARACTERISTICS

Characteristics	Class B	Class C	Class D	
Length (feet)	280	130	107	
Beam (feet)	70	34	25	
Horsepower	10,000	2,500	1,000	
V _{design} (mph)	19.2	17.1	14.7	
Maximum Number of Ships in Convoy	6	3		
Maximum Endurance for Convoy (hr)	. ~	36		

OH THE COLLEGE COLLEGE	DESCRIPTION CONC.
^V design	Maximum speed capability of the ship in open water (mph)
Locking Time - SLS	Time required for ship to lock through one lock at the St. Lawrence Seaway excluding delays (minutes)
Locking Time - WELLAND	Time required for ship to lock through one lock at the Welland Canal excluding delays (minutes)
Locking Time - S00	Time required for ship to lock through a lock at Sault Ste. Marie excluding delays (minutes)
Midsummer Draft	Draft to which a vessel can load amid-ships during the designated Midsummer Season (feet)
Winter Draft	Draft to which a vessel can load amid-ships during the designated Winter Season

DESCRIPTION - Cont.

CHARACTERISTIC - Cont.

Long Tons/Foot Immersion

Long tons required to increase draft of vessel one foot (long tons per foot)

(feet)

Self-Unloading Rate Rate at which cargo can be unloaded by on-board unloading devices (long tons per hour)

MS Iron Ore Maximum iron ore capacity required to achieve Midsummer Draft (long tons)

MS Coal Maximum coal capacity (long tons) at Midsummer Draft

MS Grain Maximum grain capacity (long tons) at Midsummer Draft

MS General Cargo Maximum general cargo capacity at Midsummer Draft (long tons)

CHARA	ACTER	ISTIC -	Cont.
-------	-------	---------	-------

DESCRIPTION - Cont.

Ice Class

Rating as to the ice condition the ship can proceed through:

IA: Extremely severe ice conditions

IB: Severe ice conditionsIC: Mild ice conditionsII: Light ice conditions

Number of Crew

Number of working personnel

aboard vessel

Total Sale Price

Estimated current sale price

of vessel

Cubic Number

Product of the vessel's length, beam and depth divided by 100

 (ft^3)

Gross Registered Tonnage

Cubic feet of interior space

divided by 100

Capital Recovery Factor

Factor by which the initial investment is multiplied in order to find the annual cost

of capital recovery

These vessel characteristics were obtained by selecting representative ships for each class and gathering data for each from <code>Greenwood's Guide to Great Lakes Shipping [9]</code> and from discussions with owners. Once the data was gathered, certain characteristics were adjusted to more accurately reflect ships operating in specific trades. For example, lakers operating in the grain and coal trade generally have deeper cargo compartments than the usual iron ore ship because of the lower cargo density (lbs per cubic foot) of grain and coal compared to iron ore. These ships thus require more cubic volume capacity per ton of grain or coal than per ton of iron ore. To reflect this condition, the maximum grain and coal capacities indicated for laker bulk vessels were defined as 90% of the maximum iron ore capacities.

In discussing individual ship classes, an important measure of performance is their ice transiting capability or icebreaking performance. Numerous measures of icebreaking performance have been proposed in the past. Two of the more frequently encountered measures are thickness of sheet ice which can be broken in either a continuous or ramming mode of operation, and penetration distance after impact during ramming. These measures are not very meaningful in terms of cargo ships whose primary purpose is to move cargo from one point to another and not to break ice per se. Therefore, a much more meaningful measure of icebreaking or ice navigability is the speed a ship can attain through a given ice field. In Figures 5.1 through 5.5 the maximum speed of advance versus brash ice thickness for various refrozen brash ice thicknesses is given for representative ship classes. The method used in producing these figures is described in Section 3.3 of this report.

FIGURE 5.1 SPEED OF ADVANCE VS UNCONSOLIDATED BRASH ICE THICKNESS (0 inches Refrozen Brash Ice)

FIGURE 5.2 SPEED OF ADVANCE VS UNCONSOLIDATED BRASH ICE THICKNESS (5 inches Refrozen Brash Ice)

FIGURE 5.3 SPEED OF ADVANCE VS UNCONSOLIDATED BRASH ICE THICKNESS (10 inches Refrozen Brash Ice)

FIGURE 5.4 SPEED OF ADVANCE VS UNCONSOLIDATED BRASH ICE THICKNESS (15 inches Refrozen Brash Ice)

FIGURE 5.5 SPEED OF ADVANCE VS UNCONSOLIDATED BRASH ICE THICKNESS (20 inches Refrozen Brash Ice)

6. RESULTS OF SIMULATION RUNS

6.1 Overview

In the following subsections, the results of the validation and production runs are presented and discussed. The validation of the simulation, which is presented in Section 6.2, consisted of three (3) separate phases: (1) Series of step-by-step planned debugging procedures; (2) Comparison of 1975-76 "normal" winter with historical USCG icebreaker statistics; and, (3) Comparison of 1975-76 fixed icebreaker fleet statistics with icebreaker statistics generated by maximum response time mode. The production runs listed in Section 6.3 consisted of ten (10) executions of the simulation with input data varied to assess the following:

- Effect of a 20% increase in cargo tonnage with a fixed fleet of icebreakers (normal winter).
- Effect of a 12-hour variation in maximum response time on icebreaker requirements (normal winter).
- Effect of convoys on icebreaker requirements (normal winter).
- Comparison of the maximum response time (MRT) generated icebreaker fleet to the USCG estimated fleet (normal winter).
- Effect of winter severity (normal vs severe) on icebreaker requirements.
- Effect of having only Class B icebreakers escort convoys, as opposed to both Class B and Class C, on icebreaker requirements (severe winter).
- Effect of prohibiting vessels with low SHP from operating in the extended season on icebreaker requirements (severe winter).
- Effect of conducting channel clearing in certain channels on icebreaker requirements (severe winter).
- Comparison of the maximum response time (MRT) generated icebreaker fleet to the USCG estimated fleet (severe winter).

A comparison of the results assessing the above items is presented in Section 6.3. Detailed summaries of the results of the ten production runs are summarized in tabular form in Section 6.4.

6. RESULTS OF SIMULATION RUNS

6.2 Validation

There were three phases to the validation process:

- PHASE 1 Detailed simulation module checkout
- PHASE 2 Fixed icebreaker fleet run using historic 1975-76 data
- PHASE 3 Maximum response time run to compare with Phase 2

6.2.1 Phase 1 of the Validation - Checkout of Simulation Modules

Input Data to Ship Processing Model

The two most important aspects of the simulation are the ice conditions and the maximum speed capability of the commercial vessels, since these translate directly into icebreaker support requirements. Figures 5.1 through 5.5 illustrate the maximum speed of advance versus ice type and thickness for various vessel classes. From these plots, the performance in ice of each ship class can easily be established. For example, a Class 5 Laker can proceed through approximately 40 inches of brash ice with zero refrozen thickness at a speed of advance of 5 mph, but it will become stuck in 50 inches of brash ice assuming a vessel speed of less than 2 mph corresponds to a vessel being stuck. For a Class 10 Laker, the maximum brash ice thickness it can proceed through is 69 inches with zero refrozen thickness, and 33 inches of brash with a 5 inch refrozen cover. These curves, particularly the maximum ice thickness at 2 mph, appear to be reasonable and consistent with experience.

The ice conditions data files were reviewed reach-by-reach to ensure that the predicted occurrences of ships becoming stuck and the trouble areas identified were also consistent with operating experience. The input data files for normal and severe winters contained ice growth calibration factors by reach, which were adjusted to obtain realistic ice conditions. For example, it is well known that brash ice accumulates to greater depths in the confined river channels than it does in the open lakes. Since the same equations and temperatures are used for both in the Ice Growth Model, these calibration factors provided the necessary differentiation in brash ice buildup. In Tables 6.1 through 6.4, the final results of this analysis are presented showing what class vessels will be stuck where, and when, for the laker fleet. These tables agree with operating experience in identifying the trouble areas as a function of winter severity and traffic level. By using the reach calibration factors, environmental aspects not directly accounted for in the Ice Growth Model, such as the effect of winds, currents, and channel widths, were included.

TABLE 6.1

OCCURRENCES OF LAKERS BECOMING STUCK FOR SEVERE WINTER AND HEAVY TRAFFIC

	CLASS 5	CLASS 6	CLASS 7	CLASS 8	CLASS 10
Reach	<u>Period</u>	Period	Period	Period	Period
Number	2 3 4 5 6 7 8 9 10	2 3 4 5 6 7 8 9 10	2 3 4 5 6 7 8 9 10	2 3 4 5 6 7 8 9 10	2 3 4 5 6 7 8 9 10
41 42 43 44 45 46	x x x x x x x	x x x x x x	x x:x x x x	x x x x x x x x	x x x x x
47 48	x x x x x x	x x x	x x x	x x x x x	x x x
49 50 51	X	x x x x x	x x x x	X X X X X X X X X X X X X X X X X X X	xxxx
52 53	x x x x x x	x x x x	ххх	x x x x	x x
54 55 56	X X X X X	x x x x	XX	x x x x	XX
57 58 59	X X X;X X X	X X X X	X X iX X	X X X X X	X X į X X
60 61 62		1			
63 64		1			
65 66 67	X X X				
68 69 70	X X X X X	xxxx	x x x x	X X X X X	XXXX
71 72 73	X X X X X X X X X X X X X X X X X X X				
74 75	1	x		X	
76 77 78 79 80 81	X X X X X X X X X X X X X X X	X X X		X X X X X	
32 83 84	X X X X X X X X X X X X X X X X X X X	X X		X	
95 36 87 38 89	X X X X X X X X X X X X X X X X X X X	X	x x x x x x x x	X X X X X X X X X X X X X X X X X X X	X
90 91 92					
93 94 95 96	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X	X X X X X X X X X X X X X X X X X X X
97 98 99 100 101	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	x x `

TABLE 6.2 OCCURRENCES OF LAKERS BECOMING STUCK FOR SEVERE MINTER AND MODERATE TRAFFIC

	CLASS 5	CLASS 6	CLASS 7	CLASS 8	CLASS 10
Reach	Period	Period	Period	Period	Period
Number	2345678910	2 3 4 5 6 7 8 9 10	2 3 4 5 6 7 8 9 10	2345678910	2345678910
41 42 43 44 45 46 47	* * * * * * * * * *	x x x	. X	x	х
48	X X X X X X X X X X X X X X X X X X X	X		x x x x	
49 50 51 52 53 54 55 56 57 58 59	X	; x , x	x x	x x x	X
59 60 61 62 63 64 65 66 67	X X X	,			
65 66 67 68 69 70	X X X X X X X X X X X X X X X X X X X	х х х х	X X X, X	x x x x	X X X X
72 73 74 75 76 77	X X X X X X X X X X X X X X X X X X X	;		:	
78 79 80	X X X X X X X X X X X X X X X X X X X				
81 82 83 84 85 86 67 88 89	X X X X X X X X X X X X X X X X X X X	x x x x	x x x	X X X X	x x x
90 91 92 93 94 95 96	x x x x x x x x x x x x	x	¥	x x x x x x x	
96 97 98 99 100		X i X X i X : X	X X X	* * * * * * * * * * * * * * * * * * *	x x
102 103		; ;			

TABLE 6.3

OCCURRENCES OF LAKERS BECOMING STUCK FOR NORMAL WINTER AND HEAVY TRAFFIC

	CLASS 5	CLASS 6	CLASS 7	CLASS 8	CLASS 10
Reach	Perioa	Period	Period	Period	Period
Number	2 3 4 5 6 7 8 9 10	2 3 4 5 6 7 8 9 10	2 3 4 5 6 7 8 9 10	2 3 4 5 6 7 8 9 10	2 3 4 5 6 7 8 9 10
41 42 43 44 45	x x x x x	x x;x x x :	X X X X	x x x x x	x x x x x
46				·	
46 47 48 49 50 51	X X X X X X X X X X X X X X X X X X X		X X X	x x x x x x x x	хх
52 53 54 55 56 57	X	X X	X	X X	; X
59 60 61 62 63			;	i	
65 66 67 68 69 70					
50 51 52 53 55 55 56 57 58 59 61 62 63 64 56 66 67 77 77 77 77 77 77 77 77 77 77 77	X	. ;	: •		
35 36 37 88 39	У X Х X Х X	X ;	X1	X X	χ .
90 91 92 93 94 95 96 97 100 101 103	X > X X > X X > X X Y Y > Y > X X Y X X > X Y X X X > X X X X Y	X	* * * * * * * * * * * * * * * * * * *	X X X X X X X X	X X X X X X X X X X X X X X X X X X X

TABLE 6.4

OCCURRENCES OF LAKERS BECOMING STUCK FOR NORMAL WINTER AND MODERATE TRAFFIC

			CI	_A:	SS	5					(CLA	SS	6						CL	ASS	7			1		CL	.AS	8			}		(LAS	SS	10	
h	1		-1	e.	~i(od			1			Pe	ri	od			_			P	eri	od			1			er	od					_	Per	rio	d	
r	2	3	4	5 (6	7 8	3 9	10		2 3	4	5	5	7	8 9	9 10	0	2	3 4	5	6	7 8	9	10		2 3	4 5	6	7	8 9	10)	2 3	4	5 6	5 ?	દ	9 1
	Х.	χ	Χ :	X :	X :	()	(<u>X</u>						X	X	χ)	Κ.					X	,	x x				Х	(X	X	X)	(Х	X.
																									-													
]						
			Χ)									X															X		ł						
			,	X :	X :	() ()	(X (X																										Х					
					: ;	χ)	(X																															
			- 7	()	X : X	() ((X		}						
			X	Χ :	X)	(1													
			1	ķ		,	(
																									-													
			X		:		,											}																				
)												1							}													
					,																																	
			,	(,																																	
)	((1																				
			,	()									i								1																	
					1																,																	
			X																		٠																	
			X X)	()	(,								,					}																				
			()	()	(
		:	()	(•																																	
)	([İ						
		į	()	()		(X												1																				
	X)	, ,			() ())	X	X						x ;	X)	(X			-				X	X					X	X	(X							X	¥
	x ;		(X	, X	() () X	X	X						,	(۸ ((X (X (X			ł				X	X					Χ,	X)	(X (X (X							X	X
	;	()	(X	, X	() X	X	X)	ιX			ĺ							ł)	(X								
			X						Í																İ													

Specific problem areas, which were identified and modeled in the simulation, are:

Duluth, Minnesota/Superior, Wisconsin - Some of the coldest air temperatures on the Great Lakes occur here because predominantly northwest winds reach the water only after passing over large expanses of land. The Apostle Islands east of the harbor entrance prevent ice from moving into open Lake Superior and occasional easterly winds may actually cause an ice jam at the harbor entrance. Currently there is no year-round shipping because of the ice conditions, while only a few miles to the northeast, Two Harbors does not experience blockage by ice.

Whitefish Bay, Lake Superior - This small area at the southeast corner of the lake is the first part of Lake Superior to experience problems. Ice accumulations occur here due to wind-driven ice from Lake Superior being trapped within the confines of the bay.

St. Marys River, Michigan - Heavy shipping in this shallow, narrow channel causes brash ice buildups, particularly just downstream of Sault Ste. Marie in Little Rapids Cut and Lake Nicolet. Some of the problems are due to ice moving with the current being trapped in narrow sections. Increased future traffic should be expected to bring more water to the surface, thus causing thicker brash accumulations.

<u>Straits of Mackinac, Michigan</u> - Wind-driven ice from Lake Michigan accumulates between St. Ignace and Lansing Shoal due to the constriction at this point.

Detroit/St. Clair System and Western Lake Erie - Shallow water leads to a low thermal inertia in the area so that ice forms here early in the season. Islands in the lake stabilize the ice cover, minimize waves, and thus prevent wind from moving the ice away from the western shore. Ice floes from Lake Huron pass through the St. Clair River, but stop in Lake St. Clair and the upper Detroit River, causing problems for shipping.

Buffalo, New York - The situation at Buffalo is similar in origin to that in Whitefish Bay, but much worse due to the shallow water in Lake Erie. Predominantly west winds concentrate all the ice formed on Lake Erie into heavily rafted windrows at the harbor entrance at the far eastern end of Lake Erie.

Welland Canal, Ontario - Although no winter shipping takes place now, heavy winter traffic would cause problems here similar to those in the St. Marys River.

St. Lawrence Seaway - The situation here is similar to that of the Welland Canal and St. Marys River. Brash buildups will occur in the shallow channels.

<u>Lower St. Lawrence River, Quebec</u> - Cold temperatures here cause a heavy ice growth.

Execution of Ship Processing Model

As part of the module checkout, a new or modified code in the Ship Processing Model was "computed" by hand by a debugging team to check the logic and mathematics of each subroutine. Then, special debugging input speed files were prepared such that each ship or icebreaker class traveled at 10 mph in every reach. A very detailed printout during the program execution was examined while a prepared sequence of runs for the Ship Processing Model was followed to exercise the model in a progressively more elaborate execution:

- Fixed icebreaker fleet mode; small commercial fleet; convoy flags off. Five runs to check stuck codes 1, 2, 3, 4, 5 (stuck at upper end of reach due to resistance, stuck at upper end of reach in a turn, stuck at lower end of reach due to resistance, stuck at lower end of reach in a turn, stuck at either end of the reach) in reach 103.
- Five runs, same as above, but stuck in reaches 103, 59, 47, 97.
- One run, with stuck code 1 in reach 103, 2 in reach 59, 3 in reach 47, 4 in reach 86, 5 in reach 97.
- One run with no ships stuck, but convoy in reaches 50-51.
- Same as preceding step, but also with convoys in 53, and 72-73-74-76.
- Same as preceding step, but also with stuck code 1 in reach 103, 2 in reach 59, 3 in reach 47, 4 in reach 86, 8 in reach 97.
- Maximum response time mode; small commercial fleet, convoy flags off. Five runs to check stuck codes 1, 2, 3, 4, 5 (stuck at upper end of reach due to resistance, stuck at upper end of reach in a turn, stuck at lower end of reach due to resistance, stuck at lower end of reach in a turn, stuck at either end of the reach) in reach 103.
- Five runs, same as above, but stuck in reaches 103, 59, 47, 97.

- One run, with stuck code 1 in reach 103, 2 in reach 59, 3 in reach 47, 4 in reach 86, 5 in reach 97.
- One run with no ships stuck, but convoy in reaches 50-51.
- Same as preceding step, but with large commercial fleet, also with convoys in reaches 53 and 72-73-74-76.
- Same as preceding step, but also with stuck code 1 in reach 103, 2 in reach 59, 3 in reach 47, 4 in reach 86, 5 in reach 97.

6.2.2 Phase 2 of the Validation - 1975-76 Run

As with any computer simulation, the results obtained are only as good as the basic input data and rules and assumptions. Every effort was made to ensure the simulation represented the Great Lakes-St. Lawrence Seaway System as realistically as possible. In doing so, use was made of knowledge and experience collected by interviewing USCG operations personnel at the outset of this contract and, in addition, of knowledge gained as a result of the SPAN Study [8], ice model testing in our towing basin, full-scale test programs on the Great Lakes, the Great Lakes Harbor Study [10], and conversations with ship operators, port officials, and personnel at the Coast Guard, MarAd, U.S. Army Corps of Engineers, and St. Lawrence Seaway Development Corporation. As much detail as possible was included in the algorithms while keeping execution of the simulation inexpensive enough to be used as a planning tool to identify problem areas and bottlenecks to extended season navigation and to evaluate potential improvements, particularly the allocation of ice-breaker support.

The real test of how realistically the simulation represents the Great Lakes-St. Lawrence Seaway System is by validation—and the degree to which the simulation is validated is a direct measure of its credibility. Much effort had already been given to validating the original simulation, particularly in regard to the commercial vessel transit times and freight rates, which is described in Volume II of Reference [1]. In validating any simulation, one would naturally like to have as much available historical data, as possible, not only for use in the validation but also for use in developing and refining the algorithms themselves. For this particular simulation, only limited data exists and, in fact, for parts of the system, the data is practically non-existent; the simulation should therefore be periodically revalidated as more data becomes available through continued shipping in the extended season. With these thoughts in mind, both ship and icebreaker performance were validated by comparing their performance to available historical data, since both play an equally important role in the simulation.

The 1975-76 severe winter was run with the Coast Guard icebreaker fleet listed in Table 6.5 and the cargo routes and tonnages listed in Table 6.6 For

TABLE 6.5
1975-76 VALIDATION ICEBREAKER ASSIGNMENTS

Home Port	Icebreaker	Class
Thunder Bay (Canadian)	ALEXANDER HENRY	D
Sault Ste. Marie	ARUNDEL NAUGATUCK RARITAN MACKINAW	D D D B
St. Ignace	SUNDEW WOODRUSH WIND	D D B
Green Bay	MESQUITE	О
Port Huron	BRAMBLE	D
Detroit	KAW MARIPOSA	D D
Toledo	OJIBWA	. 0
Toronto (Canadian)	NORMAN MCLEOD ROGERS	D
Oswego	(Dummy)	D
Quebec (Canadian)	LOUIS ST. LAURENT	В

TABLE 6.6

LAKER ROUTES AND TONNAGES
FOR 1975-76 VALIDATION

Route	<u>Origin</u>	Destination	Cargo (Thousands of Short Tons)
	IY	ron Ore	
1	Escanaba	Cleveland	832
3	Escanaba	Chicago	724
6	Two Harbors	Toledo	546
7	Two Harbors	Detroit	609
8	Two Harbors	Chicago/Gary	6981
9	Thunder Bay	Cleveland	81
12	Thunder Bay	Chicago	320
		TOTAL IRON ORE	10093
		-Coal	
18	Toledo	Detroit	3000
		TOTAL COAL	3000

validation purposes, the Coast Guard provided copies of its 1975-76 Great Lakes Icebreaking Assistance Reports. These logs showed:

- · Date of assistance
- · Name of ship assisted
- · User of ship assisted
- · Cargo data (type, tonnage)
- Port of departure and port of destination
- Name of assisting icebreaker
- Geographical area of assistance
- · Hours underway
- Mission miles
- · Miscellaneous remarks

If one (or more) icebreakers simultaneously escorted more than one ship (i.e., a convoy), this was noted under "remarks". These logs were analyzed on an icebreaker-by-icebreaker basis to compile the statistics for comparing the validation run to historical data.

Table 6.7 summarizes these statistics on the lines labeled "USCG Log", grouped by task command and by period. The line labled "Simulation" is the validation run output for comparison. Data given includes:

- · Number of direct assists
- Number of convoyed (simultaneous) assists
- Hours of assistance (direct plus convoyed)
- Miles of assistance (direct plus convoyed)
- Average time per assist (hours/assist)

The agreement between the Coast Guard log and the simulation is best in the Taconite task command where the commercial traffic is most accurately modeled. In particular, the average hours per assist of 8.98 is very close to the USCG Log's 8.40. Agreement in the other task commands is not as good because traffic (primarily tug/barge transits) existed and was not included in the simulation. This significantly alters the icebreaking statistics. For example, in the Coal Shovel Task Command, many assists were logged to the fuel barge traffic on the Sarnia to Detroit route. Of the 934 hours, a total of 640 hours were by two or more icebreakers simultaneously assisting tows operated by the Hannah Waterways Company in the St. Clair River. In a similar manner, the hours per assist in the Oil Can Task Command is high because Green

TABLE 6.7 SUMMARY OF 1975-76 VALIDATION RUN

					Average	Hours/Assist	8.98 8.40	9.71 26.08	12.45 1.53				
	TOTAL	DA C	134 52 4 167	14 0 24 0	666 9 0 129		1670 1436	136 626	934 197		9690 13186	762 7064	3346 1692
				000			27 37	00	27 L		1926 408	90	45
				2 0 0			348 309	 12	0 88		1737 2166	239 158	0 756
				0 0			190 126	233	37		763 1066	0 2352	315
	7	DA C	10 6 0 21	000	00		157 171	24	0 9		907 1578	308	54
PER 10D	9	DA	24 15 0 22	2 12 0	80		423 181	301	106 2		1616 1768	178 3462	213 18
	5	DA C	39 11 0 35	40	16 4 0 17		395 262	56 0	447 24		1741 2582	133	1233 207
	4	DA C	27 0 4 42	- 4	28 2 0 26		97 350	78	268 39		665 3618	4 784	1347 333
	8	DA C	-0	00	0 0		-0	00	98 0		20	00	508 · 0
	2	DA C	-0	40	00		35	£°0	00		330 0	202 0	00
			USCG Log Simul ation	USCG Log Simulation	USCG Log Sinulation		USCG Log Simulation	USCG Log Símulation	USCG Log Simulation		USCG Log Simulation	USCG Log Simulation	USCG Log Simulation
		Assists	Taconite	011 Can	Coal Shovel	Hours	Taconite	Oil Can	Coal Shovel USCG Log Simulation	Miles	Taconite	Oil Can	Coal Shovel USCG Log Simulation

Notes: 1. Convoys in reaches 51, 74, periods 1 to 9. 2. DA = Direct Assist; C = Convoy.

Bay was used for the icebreaker home port, whereas Escanaba was actually used in the extended season because the traffic out of Northern Lake Michigan (during the extended season) was entirely out of Escanaba in the validation year.

It should also be noted that a "convoy" on the Coast Guard log is not as rigorously categorized as in the simulation; that is, once the simulation defines a reach as a convoy reach, all ships must convoy through it, and a convoy of one ship is still called a convoy. On the other hand, a convoy of one ship in the Coast Guard log looks like a direct assist. For this reason, comparing the number of direct assists and number of convoys between the log and the simulation is not as accurate a comparison as comparing the total number of assists as shown below:

	USCG Log	<u>Simulation</u>
Taconite	186	171
Oil Can	14	24
Coal Shovel	75	129

Examining the above and the time per transit, it was concluded after review with U.S. Coast Guard representatives, that the simulation satisfactorily modeled icebreaker support on the Great Lakes.

6.2.3 Phase 3 of the Validation - Maximum Response Time

The same input conditions as for Phase 2 were run in the maximum response time (MRT) mode. The MRT for each reach which is tabulated below:

MRT (HOURS) VALUES FOR VALIDATION

REACH	MRT	REACH	MRT	REACH	MRT	REACH	MRT	REACH	MRT
41	7	54	33	67	15	80	13	93	7
42	9	55	49	68	21	81	9	94	13
43	15	56	23	69	31	82	25	95	31
44	19	57	17	70	19	83	17	96	31
45	17	58	37	71	21	84	19	97	57
46	23	59	19	72	7	85	9	98	89
47	45	60	9	73	9	86	31	99	129
48	47	61	11	74	3	87	25	100	143
49	25	62	21	75	5	88	7	101	211
50	9	63	9	76	9	89	11	102	15
51	11	64	17	77	7	90	7	103	31
52	9	65	13	78	13	91	29		
53	11	66	23	79	7	92	33		

was equal to the time that an icebreaker would require to get to the furthest point in the reach from the closest home port traveling at 10 mph. Table 6.8

TABLE 6.8 SUMMARY OF 1975-76 VALIDATION RUN (MRT MODE)

	TOTAL	DA C	134 52 4 164	14 0 25 0	0E1 0 0 130		1670 1615	136 662	934 231		9690	762 8326	3346 1789
				000			27 24	00	27 6		1926 212	00	45 52
				2 1 0				33 23			1737 1518	239 324	0 738
				0 0 7			190 199	0 221	0 44			0 2868	
				00				00			907 1334	00	0 8
PER10L				2 13 0			423 195	47	106 2			178 4350	
	2	DA C	39 11 0 35	0 6	16 4 0 16		395 294	92 0	447 26		1741 2300	133	1233 198
				1 4 0			97 388	1 97	268 46		665 3527	784	1347 360
	<u>س</u> ا	DA C	00	00	0 0		-0	00	98		2	00	508 0
	2	DA C	0 0	4 0	0 0			۳ ٥			330 0	202 0	00
			USCG Log Simulation	USCG Log Simulation	USCG Log Simulation		USCG Log Simulation	USCG Log Simulation	USCG Log Simulation		USCG Log Simulation	USCG Log Simulation	USCG Log Simulation
		Assists	Taconite	Oil Can	Coal Shovel USCG Log Simulation	Hours	Taconite	Oil Can	Coal Shovel	Miles	Tacunite	Oil Can	Coal Shovel

shows the number of assists, total hours, and total miles for the Taconite, Oil Can, and Coal Shovel task commands as a function of time. These results are essentially the same as those in the fixed fleet mode run (Table 6.7) which indicates that the same assistance pattern was reproduced in the MRT mode. That is, the same ships were stuck in the same places at the same time. Specifically, in Taconite there were a total of 4 direct assists and 167 convoys in the fixed fleet mode run versus 4 direct assists and 164 convoys in the MRT mode run. Similarly, in Oil Can there were 24 direct assists and no convoys in the fixed fleet mode run and 25 direct assists and no convoys in the MRT mode run, while in Coal Shovel there were no direct assists and 129 convoys in the fixed fleet mode run and no direct assists and 130 convoys in the MRT mode run. The time and mileage of the assists changed somewhat due to the different fleet mix/home port combinations that the MRT mode run produced. It also should be noted that in the convoy mode of operations the MRT and the fixed fleet modes are almost identical.

Table 6.9 shows the icebreaker fleet that was generated by the MRT simulation run, by Task Command, icebreaker class, and period. The maximum icebreaker requirements were 4 in Taconite Task Command in period 4, 2 in the Oil Can Task Command in periods 6 and 8, and 1 in the Coal Shovel Task Command in periods 4 through 10. As discussed previously, commercial traffic was best modeled in Taconite, where there were fewer barge transits during the extended season. The MRT run produced a maximum of 2 icebreakers in Sault Ste. Marie, and 2 in St. Ignace, for a total of 4 in Taconite. The Coast Guard assignments in Table 6.5 had 4 in Sault Ste. Marie and 3 in St. Ignace. It should be noted that only Class D icebreakers were generated by the simulation. This is because the simulation generates the least capable icebreaker that can still perform the required task. To prevent this from occurring on future runs will require a slight modification to MRT module to prohibit Class D icebreakers from being generated. Without barge traffic and realizing additional icebreaker support would be used for preventive icebreaking and channel maintenance, the MRT output appears reasonable. and it was concluded that the MRT mode functioned correctly.

6.2.4 Phase 4 of the Validation - Transit Times

Another source of validation data for the simulation is a ship's calculated round trip time on a route for which there is historic data readily available. The only readily available data showing exact vessel transit time of a significant portion of the extended navigation season and for several years was the Two Harbor-to-Gary iron ore route from reference [1], updated from reference [11]. This historical data is superimposed on the predictions obtained from production runs of the simulation in Figures 6.1 through 6.3 for laker ship classes 5, 8, and 10 respectively. While there is a large amount of fluctuation in the data, good agreement existed for the normal season, and there was no substantial disagreement in the extended season, recognizing the large amount of scatter in the historical data. Note for example that the peak transit times indicated by the simulation to occur in periods 5-6 of the normal winter (1975-76) actually occurred in the 1975-76 data points.

TABLE 6.9

ICEBREAKER FLEET GENERATED BY
1975-76 VALIDATION RUN (MRT MODE)

					PERI	OD				
	1	2	3	4	5	6	7	8	9	10
Taconite										
Class D Class C Class B	0 0 0	0 0 0	0 0 0	4 0 0	2 0 0	1 0 0	1 0 0	2 0 0	2 0 0	1 0 0
Oil Can										
Class D Class C Class B	0 0 0	0 0 0	0 0 0	1 0 0	0 0 0	2 0 0	0 0 0	2 0 0	1 0 0	0 0 0
Coal Shovel										
Class D Class C Class B	0 0 0	0 0 0	0 0 0	1 0 0						

Figure 6.1 Round Trip Time From Two Harbors to Gary for Class 5 Laker Vessel

AD-A082 164	JAN 80	FER SIM	COLUMBI ULATION KOTRAS	OF GR	EAT LAK ETER			DOT-	AY ICEB 06-81-7	8-1953	5/5 TC(U)	
UNCLASSIFIED 2 # 3	2960-4		_		_	USCG-D	-56-79	_		NL.		
208.264												
	=											
			ŀ									
											-	-
											-	
												أشت

Figure 6.2 Round Trip Time From Two Harbors to Gary for Class 8 Inland Vessel

Figure 6.3 Round Trip Time From Two Herbors to Gary for Class 10 Laker Vessel

6. RESULTS OF SIMULATION RUNS

6.3 Summary of Production Run Results

In order to assess the nine effects and comparisons listed in Section 6.1, ten (10) production runs tabulated in Table 6.10a, b were executed. The commercial vessel fleet used in those runs was tonnage driven; that is, vessels on each route were generated on a frequency basis to carry a specified amount of cargo over the extended season. Tables 6.11 and 6.12 give a list of the cargo routes and tonnages to be carried over the 126 days (4.14 months) of the simulation's extended season. These extended season tonnage projections were calculated from data supplied by the North Central Division of the U.S. Army Corps of Engineers and correspond to the most recent tonnage projection for the year 2000 made as part of the Great Lakes-St. Lawrence Seaway Navigation Season Extension Program. Detailed output of each simulation run has been provided to the Coast Guard separately as computer printout. Summary tables of the production runs outlining the input run conditions, fixed icebreaker fleet or MRT generated icebreaker fleet (by icebreaker class, task command and time period), icebreaker operating statistics for each icebreaker task command (by icebreaker class and period), and extended navigation season tonnage (by commodity and route) are presented in Section 6.4.

The comparisons of those ten (10) production runs are made in Tables 6.13 through 6.21 to assess the following nine effects and comparisons:

Run Numbers	Effect of Comparison	Table Number	Page <u>Number</u>
1,4	Effect of Increased Cargo Tonnage (20%)	6.13	6-29
2,3	Effect of Increased Maximum Response Time	6.14	6-30
3,6	Effect of Convoying	6.15	6-31
3,1	Comparison of MRT and Fixed Fleet for Normal Winter	6.16	6-32
3,7	Effect of Winter Severity	6.17	6-33
7,5	Effect of Prohibiting Class C Icebreakers from Convoying	6.18	6-34
7,8	Effect of Increased Low SHP/Length Restrictions	6.19	6-35
8,9	Effect of Channel Clearing	6.20	6-36
8,10	Comparison of MRT and Fixed Fleet for Severe Winter	6.21	6-37

TABLE 6.10a

PRODUCTION RUNS FOR SIMULATION OF GL-SLS ICEBREAKER REQUIREMENTS

RUN NO.	WINTER TYPE	MINIMU LAKER CLASS	M RUN .MODE ¹	USCG ESTIMATED FLEET	MRT (hr)	CONVOYING IB TYPES ²	CHANNEL CLEARING ² (in/2wks)	CARGO TONNAGE (year)
1	Norma 1	5	FIBF	Normal ⁵		C,B		2000
2	Norma]	5	MRT		Min³	C,B		2000
3	Norma?	5	MRT		Min+12	C,B		2000
4	Norma 1	5	FIBF	Normal ⁵		C,B		2000+20%
6	Normal	5	MRT		Min+12	No Convoys		2000
5	Severe	5	MRT		Min+12	В		2000
7	Severe	5	MRT		Min+12	C,B		2000
8	Severe	6	MRT		Min+12	C,B		2000*
9	Severe	6	MRT		Min+12	C,B	12	20004
10	Severe	6	FIBF	Severe ⁵		C,B		20004

NOTES:

¹ FIBF = Fixed icebreaker fleet; MRT = Maximum response time.

² Convoys and channel clearing in: St. Marys River/Whitefish Bay, Straits of Mackinac, Detroit/St. Clair Rivers, Welland Canal, St. Lawrence Seaway.

3 Minimum time is that required to get to furthest point in reach from

closest home port at 5 mph. -

* Cargo tonnage on restricted ships assumed carried in normal season.

5 USCG estimated icebreaker fleet listed in Table 6.10b.

COMPARISONS:

- 1,4 -Effect of increased cargo tonnage (20%)(normal winter).
- 2,3 -Effect of variation in maximum response time (normal winter).
- 3,1 -Difference between MRT generated icebreaker fleet and fixed icebreaker fleet (normal winter)
- 3,6 -Effect of convoys (normal winter).
- 3,7 -Effect of winter severity.
- 5,7 -Effect of not allowing Class C icebreakers to convoy (severe winter).
- 7,8 -Effect of vessel class restriction (severe winter).
- 8,9 -Effect of channel clearing (severe winter).
- 8,10-Difference between MRT generated icebreaker fleet and fixed icebreaker fleet (severe winter).

TABLE 6.10b
USCG ESTIMATED FLEET FOR YEAR 2000*

•		Normal	Winter	<u>Se</u>	vere Win	ter
<u>Area</u>	Home Port	<u>B</u>	<u>C</u>	<u>B</u>	<u> </u>	D
S-1 C-1 C-2 C-3 M-1 M-2 M-3A H E-1 E-3 SL-0	Duluth Sault Ste. Marie St. Ignace Port Huron, Detroit, Toledo Escanaba Chicago (NE Lake Michigan) Saginaw Sandusky Buffalo Oswego	- 2 1 1 - - - 1	2 4 1 2 1 1 - 1 2 3	1 3 2 1 - 1 - 2 1	2 6 2 4 1 2 - 3 2 4 3	2
	SUBTOTAL	5	17	12	29	2
	TOTAL		22		43	

Note: Principal ports; operations limited to vessels of reasonably high capability (SHP/L > 6); 12 hrs per day per icebreaker.

^{*}Letter dated 8 June 1977 from Commander, Ninth Coast Guard District to the Commandant (G-0).

TABLE 6.11 MAJOR LAKER TRADE ROUTES PROJECTED FOR YEAR 2000

Route No.	Origin Port	Destination Port	Cargo* (thousands of short tons)
	IRON ORE		
1	Two Harbors	Calumet/Indiana Harbor	636
2		Gary/Burns Harbor	877
3		Detroit/Windsor	483
3 4 5 6 7 8		Toledo	160
. 5		Cleveland	759
6		Ashtabula/Conneaut	763
7		SPARE	
8	Duluth/Sup: rior	Calumet/Indiana Harbor	1249
9		Gary/Burns Harbor	1324
10		Sandusky	757
11		Lorain	844
12		Cleveland	1476
13		Ashtabula/Conneaut	1483
14		Buffalo	750
15		Toronto/Hamilton	572
16		SPARE	
17	Presque Isle	Detroit	1086
· 18		SPARE	•
19	Taconite	Calumet/Indiana Harbor	743
20		Gary/Burns Harbor	422
21		Detroit/Windsor	262
22		Lorain	610
23		Cleveland	759
24		Ashtabula/Conneaut	884
25		SPARE	
26	Silver Bay	Calumet/Indiana Harbor	530
27	·	Gary/Burns Harbor	388
28		Toledo	. 522
29		Cleveland	972
30		Ashtabula/Conneaut	1267
31		SPARE	
32	Thunder Bay	Sault Ste. Marie	551
33	•	Gary/Burns Harbor	757
34		Port Colbourne	567
35		Toronto/Hamilton	471
36		SPARE	
37	Escanaba	Calumet/Indiana Harbor	955
38	· 	Detroit/Windsor	808
39		Toledo	838
40		SPARE	

^{*} Tonnage projection for nine 14-day periods of season extension (4.14 mos.)

TABLE 6.11 MAJOR LAKER TRADE ROUTES PROJECTED FOR YEAR 2000 (CON'T)

Route No.	Origin Port	Destination Port	Cargo* (thousands of short tons)
	IRON ORE CON'T		
41** 42** 43	Sept. Isle	Calumet/Indiana Harbor Cleveland SPARE TOTAL IRON ORE	610 893 27028
	COAL		27.020
44 45 46 47 48 49 50	Duluth/Superior	Milwaukee/Port Washington Port Huron/St. Clair Detroit/Windsor Cleveland Buffalo Toledo/Monroe	969 944 944 416 2497 907
50 51 52	Thunder Bay	SPARE Port Colbourne/Nanticoke SPARE	1026
53 54 55	Calumet/Indiana Harbor		184 849
56 57 58 59 60 61	Toledo	Duluth/Superior Presque Isle/Marquette Green Bay Escanaba Buffalo Sault St. Marie SPARE	115 108 221 210 507 1698
63 64 65 66 67	Sandusky	Presque Isle/Marquette Escanaba Buffalo Toronto/Hamilton SPARE	153 246 204 1260
68 69 70 71 72 73	Ashtabula/Conneaut	Duluth/Superior Presque Isle/Marquette Green Bay Buffalo Toronto/Hamilton SPARE TOTAL COAL	193 188 380 537 2417
		TOTAL OUTE	

^{*} Tonnage projection for nine 14-day periods of season extension (4.14 mos.)
** Triangular route

TABLE 6.11 MAJOR LAKER TRADE ROUTES PROJECTED FOR YEAR 2000 (CON'T)

Route No.	Origin Port	Destination Po	ort		Cargo* (thousands of short tons)
	GRAIN				
74 75 76 77 78** 79	Duluth/Superior	Calumet/Indiana H Detroit/Windsor Cleveland Buffalo Baie Comeau SPARE	Harbor		32 35 18 599 1916
80 81 82	Milwaukee/Port Wash.	Buffalo Baie Comeau SPARE			44 84
83 84	Calumet/Indiana Harbor	Buffalo SPARE			35
85 86	Toledo	Baie Comeau SPARE			50
			TOTAL	GRAIN	2813

^{*} Tonnage projection for nine 14-day periods of season extension (4.14 mos.)
** Triangular route

TABLE 6. 12
SIMULATION SALTY TRADE ROUTES
PROJECTED FOR YEAR 2000

ROUTE NO.	ORIGIN PORT	DESTINATION PORT	CARGO (THOUSANDS OF SHORT TONS)
	General Cargo		
87	World Area 1	Schedule 1	485
	Ballast In/Grain Export-		
88	Duluth/Superior	World Area No. 1	3183
89	Thunder Bay	World Area No. 1	2123
90	Calumet/Indiana Harbor	World Area No. 1	590
	TOTAL (including tri	angular routes below)	5986
	Iron & Steel Import/Grai	in Export (Triangular Rout	e)
91	World Area No. 1	Milwaukee/Port Washingto	n 279
92	World Area No. 1	Detroit/Windsor	388
93	World Area No. 1	Toledo	545
	TOTAL		1112

TABLE 6.13

The state of the s

EFFECT OF INCREASED CARGO TONNAGE ON SYSTEM¹

	•						
Extended Nav. Season Cargo Tonnage	e ~63,000,000 Short Tons e ~74,900,000 Short Tons		SEAWAY	For both runs, a fixed fleet of 3 Class C icebreakers were utilized 100% during periods 5 through 8 convoying ships through the Seaway.	There were no direct assists in this task command.	The number of convoys increased by 8.7% from 173 (Run 1) to 188 (Run 4). This is much less than the increase in tonnage, and indicates that many convoys in Run 1 consisted of fewer ships than those in Run 4.	The average convoy queues increased significantly from an average of 5.5 ships for Run l to almost 12 ships for Run 4.
Channel Clearing	None None			of fleet of s C and 2 of handl-sir ser- on no of on were	increased al) to crease is e as the	in this	istance fod 6 from file in queues
Convoying Icebreaker	Classes C & B Classes C & B	COMMANDS	COAL SHOVEL	for both runs, a fixed fleet of 7 icebreakers (5 Class C and 2 Class B) were capable of handling the demand for their services with the exception of period 6 when all seven were utilized 100%.	The number of assists increased by 17.5% from 200 (Run 1) to 235 (Run 4). This increase is approximately the same as the tonnage increase.	There were no convoys in this task command.	The average Direct Assistance queue increased in period 6 from 2 ships to 6 ships, while in all other periods the queues were very small.
Max, Resp. Time	N.A.	ICEBREAKER TASK COMMANDS	OIL CAN	For both runs, a fixed fleet of 2 Class C icebreakers were capable of handling the demand for their services with an average (cebreaker utilization of 44% (kun l) and 46% (kun 4) for periods 5-9. It should be noted that during 2-week periods 6 and 8, the utilization increased significantly to 95% and 80% for Run l and 95% and	The total number of assists increased by 10% from 80 (Run 1) to 88 (Run 4). This increase is significantly below the tonage increase due to large queues in Taconite Command.	inere were no convoys in this task command.	The Direct Assistance queues were small, having only 1 or 2 ships in both runs during periods 6 and 8.
Icebreaker Fleet	USCG Est. Normal Winter USCG Est. Normal Winter		0	For both runs, 2 Class C iceb able of handli their services icebreaker uti (Run 1) and 60 periods 5-9. noted that dur noted that dur noted that dur noted so and 8, increased sign and 80% for Ru 84% for Run 4.	The total nucreased by 1 to 88 (Run 4 is significange increas	There were no task command	The Direct As were small, h ships in both iods 6 and 8.
Icebrea	USCG Est. USCG Est.			fixed fleet rs (7 Class C were utilized periods 5-9. en tonnage was nost 20%, the leues (Run 1) ficantly.	4% from 781 4% from 781 (Run 4). This roximately the rease in ton-	sed by 16.1%) to 730 (Run increase in omewhat less se in tonnage, val rate of voy points rips to be es- roy before the	tonnage caused to greatly. Distantly. Distantly in queues infrom an average to 9 (Run 4).
Min. Laker Class	ഹ ഹ		TACONITE	For both runs, a fixed fleet of 10 icebreakers (7 Class C and 3 Class B) were utilized almost 100% in periods 5-9. As a result, when tonnage was increased by almost 20%, the already large queues (Run 1) increased significantly.	The total number of assists increased by 17.4% from 781 (Run 1) to 917 (Run 4). This increase is approximately the same as the increase in tonnage.	The total number of convoys escorted increased by 16.1% from 629 (Run 1) to 730 (Run 4). Since this increase in percentage is somewhat less than the increase in tonnage, the faster arrival rate of vessels at convoy points enables more ships to be escorted per convoy before the first ship.	The increase in tonnage causer the average size of queues to increase significantly. Direct Assistance queues increased by 32% from an average of 6.8 (Run 1) to 9 (Run 4).
Run Winter	Normal			Icebreakers	Direct Assists	Convoys	quenes
e	- !	i		Z =	9 4	J	ō

In the fixed icebreaker fleet mode, an icebreaker is free to respond anywhere in the task command, while for the maximum response time
mode an icebreaker may respond only in those reaches with the same home port. As a result, the fixed fleet in Taconite is utilized inefficiently because a major amount of time is spent travelling between Duluth/Superior area and the Soo.

TABLE 6.14

EFFECT OF INCREASED MAXIMUM RESPONSE TIME ON ICEBREAKER REQUIREMENTS

Run	Winter	Min. Laker Class	Icebrea	Icebreaker Fleet	Max. Resp. Tine	Convoying Icebreaker	Channel Clearing	Extended Nav. Season Cargo Tonnage
~ m	Norma ! Norma !	so so	Max. Response Time Max. Response Time	Max. Response Time Mode Max. Response Time Mode	Minimum Minimum + 12 hours	æ œ •8 •5		_63,000,000 Short Tons _63,000,000 Short Tons
					ICEBREAKER TASK COMMANDS			
		TACONITE		10	OIL CAN	COAL SHOVEL		SEAWAY
Number of Icebreakers	akers	The effect of increasing the MRI by 12 hours tended to reduce the number of icebreakers generated in periods 5, 6, and 7 (9, 8, and 13 vs 6, 12 and 12) but increased the number in periods 8 and 9 (12 and 14 vs 17 and 16). In an overall sense there appears to be little difference in the generated icebreaker fleets when vessel utilization is considered; that is, for the entire winter both fleets appeared to operate at approximately 50% utilization.	ours tended to re- ber of icebreak- de in periods 5, de in periods 5, de in periods 8 and 9 so I and 13 vs in periods 8 and 9 so I and 15 ln sense there appears difference in the sense there in the sense there is the that is, for the reboth fleets operate at approx- utilization.	The effects of increasing MRT by 12 hours had almost affect on the generated is breaker fleet with 4 Clas icebrakers generated in periods 5, 7 and 9 and be tween 14 to 16 Class D icebrakers operating at 16% ization in periods 6 and	The effects of increasing the MRI by 12 hours had almost no affect on the generated icebreaker fleet with 4 Class D periods 5, 7 and 9 and between 14 to 16 Class D icebreakers operating at 16% utilization in periods 6 and 8.	The effect of increasing the MRT by 12 hours had a slight effect of increasing the generated icebreaker fleet. In operating at 24% utilization were increased to 20 Class D utilization. In period 6, 24 Class D and 4 Class C icebreakers operating at 27% utilization were increased to 25 Class D and 5 Class C icebreakers operating at 27% utilization were increased to 25 Class D and 5 Class C icebreakers operating at 2% utilization. This somewhat unitilization. This somewhat unexpected result is due to the difference in arrival of vessels requiring direct assistance queues.	W	A maximum of 6 icebreakers was required in period 7 of Run 2, versus 5 in period 5 of Run 3. The fleet mix was 100% Class of icebreakers in both runs. The decrease in the number of Class C icebreakers was due to the decrease in the number of condovys escorted. In both runs, icebreaker utilization averaged approximately 80% in periods 5 through 8.
Direct Assists	, vs	A total of 789 direct assists occurred in Run 2, and 792 in Run 3.	t assists d 792 in	There were 90 in Run 2, and	There were 90 direct assists in Run 2, and 86 in Run 3.	There were 198 assists in both runs.	·	There were no direct assists in this task command.
Convays	и	A total of 717 convoys were escorted in Run 2 versus 699 in Run 3, indicating that, due to the additional waiting time, some convoys consisted of a larger number of ships in Run 3.	ys were rsus 699 itional onvoys r number	There were no this task com	There were no convoy routes in this task command.	No convoy routes were defined in the normal winter for this task command.	_	A total of 200 convoys were escorted in Run 2 versus 185 in Run 3, indicating that, with the longer MRT, some convoys may have carried more ships.
(Juenes		The direct assistance queue was empty in Run 2, and aver- aged I ship in Run 3.	e queue and aver-	The direct as ranged from 1 Run 2 and 1 t	The direct assistance queues ranged from 1 to 2 ships for Run 2 and 1 to 3 ships for Run 3.	The direct assistance queue averaged 1 ship in periods 6 and 7 for Run 2, and 2 and 3 ships in periods 6 and 7 respectively for Run 3.		There were no direct assistance queues in this task command.

TABLE 6.15

EFFECT OF CONVOYING ON ICEBREAKER REQUIREMENTS

	Run Winter	er Min. Laker Class	Icebrea	Icebreaker Fleet	Max. Resp. Time	Convoying Icebreaker	Channel Clearing	earing	Extended Nav. Season Cargo Tonnage
·	3 Normal 6 Normal	S S	Max. Response Time Max. Response Time	Max. Response Time Mode Max. Response Time Mode	Minimum + 12 hours Classes C & B Minimum + 12 hours No Convoys	Classes C & B No Convoys	None None	# 2 2 3 3 4 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4	63,200,000 Short Tons 63,200,000 Short Tons
					ICEBREAKER TASK COMMANDS	COMMANDS			
		TACONITE		10	OIL CAN	COAL SHOVEL			SEAWAY
	Icebreakers	The elimination of convoying increases the required icebrader fleet from an average of 14 icebreakers (2 Class 0, 8 Class C, 4 Class B) to 30 icebreakers (11 Class B) for periods 6 through 10. It is important to note that when convoying was used, the average icebreaker utilization was 52% while, when convoying was eliminated, the average icebreaker utilization was 32%.	required ice- from an average from an average ers (2 Class 0, lass B) to (11 Class D, (11 Class D, Class B) for uused, the average uused, the average novoying was elim- erage ice- ation was 32%.	Because there in this task generated app same (cebreak Class D (cebra 1 16% utilize 6 and 8, and breakers oper imately 10% i and 9.	Because there were no convoys in this task command, both runs generated approximately the same cebreaker fleet with 15 Class D icebreakers operating at 16% utilization in periods 6 and 8, and 4 Class D icebreakers operating at approximately 10% in periods 5, 7, and 9.	For both runs, significant ice-breaker assistance was required during periods 5 and 6 to provide direct assistance aid. In Run 3, 20 Class D icebreakers were generated in period 5, and 25 Class D and 5 Class D icebreakers were 19 Class D icebreakers were generated in period 6. In Run 6, 19 Class D and 5 Class C icebreakers in period 6. It is important to note that while a large number of icebreakers were of icebreakers in period 6. It is important to note that while a large number of icebreakers were operating at between 20% and 30% utilization.		The maximum numbe dropped from 5 Cl 5 for Run 3, to 4 period 7 for Run flects the fact which were capabl on their own, wer to convoy thereby more icebreakers.	The maximum number of icebreakers dropped from 5 Class C in period 5 for Run 3, to 4 Class C in period 7 for Run 6. This reflects the fact that salties, which were capable of proceeding on their own, were being forced to convoy thereby requiring more icebreakers.
•	Direct Assists	Without convoys the total number of direct assists increase from 792 to 1422, an increase of almost 80%.	s the total num- assists increased 122, an increase	Because there were no con in this task command, the number of direct assists the same (86 assists for Run 3 and 85 for Run 6).	Because there were no convoys in this task command, the number of direct assists were the same (86 assists for Run 3 and 85 for Run 6).	The total number of direct assists was approximately the same (198 for Run 3 and 193 for Run 6).	2	There werding Run 3 detection there was 6 when conformed.	There were no direct assists in Run 3 due to convoying, while there was a total of 16 in Run 6 when convoying was not per- formed.
	Convoys	In Run 3 a total of 699 convoys were escorted while in Run 6 none were escorted.	699 con- while in orted.	There were no task command.	There were no convoys in this task command.	There were no convoys in this task command during a normal winter.		In Run 3 a tot were escorted. were escorted.	In Run 3 a total of 185 convoys were escorted. In Run 6, none were escorted.
-	Quenes	The average direct a queues in Run 3 rang O to 1, while in Run ranged from 1 to 2.	rect assistance 3 ranged from in Run 6 they to 2.	for both runs. assistance que I ship to 3 sh assistance.	for both runs, average direct assistance queues ranged from 1 ship to 3 ships waiting for assistance.	The average direct assistance queue was slightly smaller in Run 6 (1 ship in period 5 and 2 ships in period 6) compared to Run 3 (2 ships in period 5 and 3 ships in period		In Run 6, tance que	In Run 6, average direct assis- tance queues were negligible.

TABLE 6.16

CONCARISM OF MAXIMM RESPONSE FINE WIDE WITH FIXED ECERPEAKER FLEET FOR A MIRNAL WINTER

e e	Minter	Min. Laker Class	lcebreal	liebreaker Fleet	Max. Resp. Time	e Convoying Icebreater	Changel Clearing	learing	Extended Nav. Season Cargo Tonnage
	Morre Morre	vnin :	USCG Est. M. Max. Respons	eral Winter	N.A. Naximum + 12 hours	Classes C & B	None		61,000,000 Short Tons 61,000,000 Short Yous
					ICE BREAKER 1				
		IACOMITE		5	OIL CAN	CIMI SHOVEI	_		SEALAY
Rember of Iceb sed ers	ra-	issue de technoster (tect con- sisting of 2 Class C and 3 Class B rechreakers operated Class B rechreakers operated tods 5 through 9 performing fod 3 through 9 performing darker statis and accord- ing 629 conveys. Its should breakers spent a large amount to the moving around bour the moving around bour the Performance and convinys. In perform 6 through the Pill feets ranged from the Pill feets of assistance and convinys. In perform 6 through the Pill feets of assistance and convins. In perform 6 through the Pill feets of assistance and convins. In perform 8 through the Pill feets of	i	the fired ichtesaber files visted of Z Class C ichemistrian in all per both operated at less that operated at less that operated at less that operated as and 8. Into your performing 80% of the tot hunder of direct assistic. The 80% operated at less that operated at less that operated at less that operated at less that operated a maximum of 4 Class 10 technologies and 8. Is and Liss 10 technologies and 8. Is and Liss 10 technologies are direct at the 40 perform 63 direct at at an average utilization of 10%.	the fired icebreaker fleet con- sisted of 2 Class C icebreakers which operated at less than 25 utilization in all perious other than 6 and 8. In periods 6 and 8 thry operated at 955 and 801 respectively, performing 800 of the total marker of direct assists. In periods other than 6 and 8, the foll who generated a antime of 4 Class D ice- breakers which operated at an antime of 4 Class D ice- breakers which operated at an action of 100.	n- the flued icebreaker fleet constituted of Stats C and 2 Constituted of Stats C and 2 constituted of Stats C and 2 declaration of the state of the	fleet C and 2 operating utiliza- utiliza- tilox 0 f 6 to 5551515. The file of 75 opera- 68 direct 68 direct 76 operating 50 and	sisted of which of the fixed of which operate to the handle 17 handle 18 chrough generated for ranged for 18 class C S Class C S Class C to handle to handle ways.	The fixed icebreaker fleet consisted of 3 Cleas Cicebreakers tion in periods 5 though 8 to handle 13 conveys. In periods 5 through 8 the Will Pode 5 through 8 the Will Pode powerated icebreaker fleets rouged from 3 Class C Lleets tillization in period 8, to 5 Clebreakers operating 5 Class C Clebreakers operating 5 Class C Clebreakers operating 5 Class C Clebreakers operating 5 Class C Clebreakers operating 6 Class C Clebreakers operating 7 Class C Clebreakers operating 6 Class C Clebreakers operating 7 Class C Clebreakers operating 8 6 ZL LILIZATION In period 8, to 8 Class C Clebreakers operating 8 6 ZL Class Class 1 Class Class Class 1 Class Class 1 Class Class 1 Class Class 1 Class Class 1 C
Direct Assists		The total masher of direct assists in the NRI Mode run was 792, while in the fised like the fired the NRI Mode run (for all itself run if was 781. In the NRI Mode run (for all itself spectral portion of the alleage spent actually the alleage spent actually 552 (periods 5, 6, and 7) (LIV, 253, and 295 for the LIV, 254, and 295 for the LIV, 254, and 295 for the critical fleet run. The rest of the alleage spent actually spent of the alleage spent of the point of the miles were four formed or returning to home post.	direct bode van bode van bode van i. In i. In bon all Ice- litually fix, and and ? i. in i. in ted to r the r rest curred fix	There were 86 by Class D fc. 3 and 486 by D be be be be be be be been breakers in R	There were 86 direct assists Offiss D febreaters in Run 3 and 80 by Class C (ce- breakers in Run 1.	There were 198 direct assists in Run 3 as compared to 200 in Run 1.	to 200 in	In this is	There were an disect assists. In this task commund.
Convoys		for the MRT Mode run a total of 659 conveys were processed, while the fixed fleet escurted 629. In the MRT Made vun (for all techrolaers), the portion of the milesapes spent athally es- certing was AR, 703, and 668 (perfolaers, 5, 6, and 7 respective— 19), compared to 2035, 531, and 442 for the fixed fleet ran.	a total of occised, it estorted in the purition of it thanks and 663 in the specifier. SAI, and eet run.	lkere were mo task command.	llece were no convoys in this fask cumand.	These were no convoys specified in this task command for the normal winter.	t Command	There were a voys process pared to 173 that the MRI that the MRI escorting confewer ships.	Neve were a total of His con- voys percessed in Rm 3 con- pared to 173 h km 1, indicating that the MOT Aude fleet was excerting communs of slightly fewer ships.
Queries		the direct assistance queue, which was negligible in the MMT Mode run, was as high as It ships in the fixed itertion.	o queue, In the Migh as	The direct assistance queue averaged 2 ships in Run 3 and zero in Run 1.	istance queue ps in Run 3 m i.	The direct assistance queue size was essentially the same.	the	There were queues in	there were no direct assistance queues in the Seaway Communic.

In the fixed tebrvaler fleet mode, an tebreaber is free to respond any where in the task command, while for the maximum response that
mode an iccheroler may respond only in those reaches with the seme home port. As a result, the fixed fleet in Laconite is utilized
inefficiently because a major amount of time is spent travelling between buluth/superfor area and the Suo.

THE MENT OF THE PROPERTY OF TH

EFFECT OF NINTER SEVENITY ON ICEBNEAKER REQUIREMENTS

Extended May, Season Cargo Tomage	63,000,000 Shart Tons 67,900,000 Shart Fous		for the normal winter. between a land \$Class C (chercalers. operating at 802 utilization, were generated for periods for the severa winter, the generated feterated refer and evera winter, the and \$Class \$C) in period \$1. It has \$C (chercalers in period \$1. It has \$C (chercalers in period \$1. It has \$C (chercalers in period \$1. It has \$C (chercalers in period \$1. It has \$1	ir and 40 in	ds in both des in both where escorted is a compared re whiter required shreakers were st. 7 and 8, e as many	ied, averanting fp:
_	63,000.00 87,900,00	SFAUAY	for the mornal printer, between 1 and 5 Class C (coheeders, owers generated for periods 5 for the severe uniter, the for the severe uniter, the form 6 Class 6 Class 6 Class 6 Class 6 Class 8 Class 8 Class 8 Class 8 Class 8 Class 8 Class 8 Class 9 Lebreshers (Class 9 Class 8 Class 8 Class 9 Lebreshers (Class 9 Class 8 Class 8 Class 9	There were no direct assists in the momal winter and do in the severe winter.	the convoy route was detland in the came time periods in noth morest wifer as compared in the morest wifer as compared to 154 in the convoy serve winter. Freer convoy serve required includes Class Believaliners were generated in periods. Jan 6 as and 6	the size of the county quants wat escutfally unclaimen, averafiling aptroximately 3 ships.
Channel Clearing	None		tranged land (185 mere) (185 mere			
Convoying Icebreaker	Classes C & B	COMMANDS	or the no or the no cor the no cor the no cor the 20 il lass D. 5 il lass D. 5 il lass D. 5 il lass D. 5 il lass D. 5 il lass D. 5 il lass D. 5 il lass C. 5 il corrected to corrected the technology of the technology of the technology of the technology of	There were 188 direct assists In the armal binter as compared 18 53) in the severe winter, an increase of 1891.	Commys in the Detrolt/St. Class New System were opens ted any in the sewere uniter when 347 commys were escorted.	In the messal winter there were no contay spelens and the direct assistance quemes no larger than 3 ships. In the severe winter the hereage direct acts time queme reached 5 ships.
Man, Resp. Time	Minimum + 12 hours Minimum + 12 hours	ICEBRIAKER TASK COMMANDS	in tec. 16, 4, 16, 16, 4, 16, 17, 56, 7, 18, 10, 10, 18, 10, 10, 18,	there were 86 direct assists in the normal wider run and 102 in the severe run. However, these required a total of 1936 hours (for 1930 miles) in the normal wider and enty 1340 (for 7734 miles) in the several wider. In the area is the wider. In the area is the wider wider wider wide and the near 55, where is the reverer was ships most often required assistance in rests for which is much 55, where is the required assistance in rests for which is much 50, which is much 50, which is much 50, which is much 50, which is much 50, which is much 50, which is much 50, which is much 50, which is much 50, which is much 50, which is such 50, which 50, wh	there were no convoy routes defined in this task command.	the average direct assistance quency forceased from a mast- mme for ship for the severe whiter to a maximum of a ships for the normal winter.
- Jeet	1 Time Rivde		for the norn for the norn for the norn flag game of the f	There were the normal for the seve four four four four four four four four	the freed in	the average queues fac- man of one whiter to a for the nor
Scebreater fleet	Max. Response Time Made Max. Response Time Mode		Inc. and Inc		nere defined in the int the rese of ine 699 inf 341.	in the average present naximum of
Min. Laker Class	ww.		for the normal uinter, an average Icebraier fleet of Hustists (2 Citass 0, 8 Lisss 1, 20 Mills 2, 20 M	the total mamber of direct assists increased from 792 in the normal winter to 1022 in the sawer winter, an increase of 302.	The convoy routes were defined over funger periods of the correct which revulted to an increase of errorted convoyr from 699 to \$13, an increase of \$13, an increase of \$14.	Queues were higher in the severe whiter with average direct assistance queues bureaching from a maximum of ships.
Rus Winter			Icehradors	Assists Assists	Convoys	lpana's

TABLE 6.18

EFFECT OF PROHIBITING CLASS C ICEBREAKERS FROM CONVOYING

Extended Nav. Season Cargo Tonnage	-62,900,000 Short Tons -62,900,000 Short Tons		SEAWAY	The maximum number of ice- breakers required changed from 11 Class C operating at 71% utilitation in period 6 for Run 7, to 5 icebreakers (1 Class C and 4 Class B) opera- ting at 75% utilization in period 6 for Run 5.	The number of direct assists were essentially the same in both runs (40 versus 42).	The number of convoys decreased from 154 to 133, again reflecting the increased convoying capacity of the Class B icebreakers.	The queue sizes remained approx- imately the same with maximum direct assistance queues of l ship.
Channel Clearing	None None						
Convoying Icebreaker Chan	Classes C & B	COMMANDS	COAL SHOVEL	Prohibiting convoying by Class C icebreakers did not significantly reduce the total number of icebreakers generated during the severe part of the winter (periods 5, 6, and 7), but did replace the number of Class C icebreakers with an almost equal number of Class B icebreakers. This indicated that the increased convoying capacity of Class B icebreakers.	The number of direct assists was almost the same, 573 in Run 7 and 583 in Run 5.	The number of convoys escorted was reduced from 347, all by Class C icebreakers, in Run 7 to 177, all by Class B icebreakers, in Run 5, reflecting that more ships were escorted per convoy.	The average queue sizes remained approximately the same with direct assistance queues ranging from I ship to 6 ships.
Max. Resp. Time	Minimum + 12 hours Minimum + 12 hours	ICEBREAKER TASK COMMANDS	OIL CAN	Since there are no convoys in Oil Can, the generated ice-breaker fleet was approximate-breakers. Use Same with 2 Class D ice-breakers, 8 Class D ice-breakers (1 Class D, 3 Class C) and 7 icebreakers (3 Class C and 4 Class B) in periods 3 through 7 respectively. For Run 5 in period breakers was replaced with a Class D icebreaker. Ice-breaker utilization ranged from 11% to 34% with an average from 11% to 34% with an average	The number of direct assists was essentially the same (102 versus 103).	There were no convoy routes defined in this task command.	The queue size was negligible.
Icebreaker Fleet	Max. Response Time Mode Max. Response Time Mode		0	Since there on the same of the	The number owas essentla versus 103).	There were in fined in thi	The queue st
Icebrea	Max. Respor			f required icebreak- rom a maximum of 41 of Run 2 to 39 in e of the larger pability of Class s. Over all per- rage number of ragerred was 21%.	illy the ct assists versus it time assists in assists in 7.	f convoys de- 937 to 581 be- larger convoy- of the Class B s versus 3).	the queues re- ximately the same direct assis- ranging from l ips.
Min. Laker Class	LO LO		TACONITE	The number of required icebres ers varies from a maximum of 4 in period 7 of Run 2 to 39 in Run 5 because of Ruh larger convoying capability of Class 8 icebreakers. Over all pericebreakers required was decreased by 21%.	There were essentially the same number of direct assists in both runs (1032 versus 1036). 64% as much time was spent in direct assists as convoying in Run 7.	The number of convoys decreased from 937 to 581 because of the larger convoing capacity of the Classicebreaker (6 versus 3).	The size of the queues remained approximately the same with average direct assistance queues ranging from labin to 6 ships.
Run Winter	S Severe			Icebreakers	Direct Assists	Convoys	Quenes

TABLE 6.19

EFFECT OF INCREASED LOW SHP/LENGTH RESTRICTION ON ICEBREAKING REQUIREMENTS

Run Winter		Min. Laker Class	Iceb	Icebreaker Fleet	Max. Resp. Time	Convoying Icebreaker	Channel Clearing	Extended Nav. Season Gargo Tonnage
7 Severe 8 Severe	5 6	9	Max. Re	Response Time Mode Response Time Mode	Minimum + 12 hours Minimum + 12 hours	Classes C & B Classes C & B	None None	-62,900,000 Short Tons -54,800,000 Short Tons
					ICEBREAKER TASK COMMANDS	COMMANDS		
		TACONITE		0	OIL CAN	COAL SHOVEL		SEAWAY
Jebreakers Jebreakers		The maximum number of ice- breakers required decreased significantly from 41 in period 7 when Class 5 Lakers are allowed to operate, to 12 in period 8 when Class 5 Lakers are not allowed to operate.	f ice- creased in in fod s are	The restriction of Clas lakers from operating rathe required icebreaker from a maximum of 8 Clas from a maximum of 8 Class and Bb in period 7, to 1 Class breakers (1 Class D, 3 in period 7. The icebreaker in period 5 breakers (1 Class D, 3 in period 7. The icebruilization for both rutilization for both rusperaged less than 25%.	The restriction of Class 5 Lakers from operating reduced the required icebreaker fleet breakers in period 8 Class D ice- breakers (3 Class C and 4 Class B) in period 7, to 1 Class D breakers (1 Class D, 3 Class C) breakers (1 Class D, 3 Class C) in period 7. The icebreaker in period 7. The icebreaker averaged less than 25%.	for all periods other than 7, the number of required icebreakers decreased by a factor of 2 by restricting the movement of class 5 Lakers and the elimination of convoying in the Detroit/St. Clair System. In period 7 the number of icebreakers were approximately the same (50 for Run 7 and 52 for Run 8) due to a 45% icebreaker utilization in Run 8 ice	= a m	The restriction of Class 5 Lakers from operating reduced the required icebreaker fleet from a maximum of 11 Class C icebreakers in period 6. It should be noted that in period 7 more icebreakers in period 7 more icebreakers required in Run 8 due to an increased number of convoys. Also it should be noted that in period 8, I Class D and 2 Class B icebreakers were required in Run 7, while 2 Class D and 3 Class B icebreakers were required in Run 8. This apparent discrepancy can be explained by looking at the icebreaker utillooking at the icebreaker are operating at 82% while in run 8 the 3 Class B icebreakers are operating at 82% while in run 8 the 3 Class B icebreakers are
Direct Assists	The to assist in Rur due to 5 Lake	The total number of direct assists decreased from 1032 in Run 8, due to prohibiting Class 5 Lakers from operating.	firect on 1032 on 8. In 8.	The number of d decreased from Class 5 Lakers (from operating.	The number of direct assists decreased from 102 to 11 when Class 5 Lakers were restricted from operating.	The total number of direct assists decreased from 573 to 337 due to prohibiting Class 5 Lakers from operating.		The total number of direct assists decreased from 40 to 23 with the restriction placed on Class 5 Lakers.
Convoys	For the forth for the period of the management of the management the management of t	for Run B, the starting time for the convoys was delayed 2 periods and the length of the St. Marys River convoy was cut by half. As a result the number of convoys escorted decreased from 937 to 567, and the number of hours spent convoying decreased from 13651 to 6511 hours.	ing time lelayed 2 th of the y was sult escorted 587, and		There were no convoy routes defined for this task command.	A total of 347 convoys were escorted in Run 7. No convoy route was defined for Run 8 so none were escorted.		The total number of convoys escorted decreased only slightly from 160 to 154 with the imposed restriction on Class 5 Lakers.
(Juenes	The si tance a maxi	The size of the direct assistance queue was reduced from a maximum of 5 to 2.	ced from	The direct assi was negligible	The direct assistance queue was negligible.	In Run 7, average direct assistance queues were approx- imately 4 ships while average direct assistance queues were approximately 3 ships in Run 8		In Run 7, direct assistance queues averaged I ship in periods 6 and 7, while in Run R no direct assistance queues nccurred.

TABLE 6.2

EFFECT OF CHANNEL CLEARING ON ICEBREAKER REQUIREMENTS

Extended Nav. Season Cargo Tonnage	-54,800,000 Short Tons -55,000,000 Short Tons		SEAMAY	Both the number of icebreakers and icebreaker size were reduced significantly due to channel clearing. For example in period 6, 8 Class C icebreakers operating at 91% utilization were required, while only 5 Class C icebreakers operating at 86% utilization were required when channel clearing was performed. Similarly in period 7, 5 Class operate at 6% utilization, while with channel clearing only 3 Class B icebreakers were required to operating at 27% and 1 Class contains at 27% and 1 Class cicebreaker operating at 98% were required.	The total number of direct assists decreased from 23 to 19.	The number of convoys increased from 160 to 177 indicating that the number of 57 indicating that the number of convoys per convoy was lower due to convoys being escorted at higher speeds.	The size of the convoy queue decreased slightly from an average of 3.1 in Run 8 to 2.8 in Run 9.
Channel Clearing*	None 12 inches/period			Both the and ice signific clearing of ting at trequire icebres utilization operate while would appear to operate where referes were refered to the angle of the angle operate while while were refered to the angle of the angle o	The tot assists 19.	The number of th	The size decrease average in Run
Channel	None 12 inches/period			ers 1 tce- 1 tce- 2 2 2 1 tce- 5 6 5 6 1 tce- inch inch inch inch	ssists 292 he- be- troit/	in this ass 5 from	no the in in
Convoying Icebreaker	00 es		COAL SHOVEL	The number of icebreakers required changed only slightly with 2 Class D tebreakers; 4 Class B feebreakers; 47 Class B icebreakers; 47 Class B icebreakers; 47 Class B icebreakers; 47 Class Class Class Class Class B, and 2 Class C icebreakers; 10 Class C icebreakers; 10 Class C icebreakers; 10 Class C icebreakers; 10 Class C icebreakers; 10 Perspectively. Channel clearing appears to have the most effect on icebreaker utilization which was reduced from an average of 24% to 21%.	The number of direct assists decreased from 337 to 292 he- cause fewer ships were be- coming stuck in the Detroit/ St. Clair Rivers.	There were no convoys in this command because the Class 5 Lakers were restricted from operating.	There was essentially no change in the size of the direct assistance queue with an average of 3 ships in periods 6 through 8.
Max. Resp. Time	Minimum + 12 hours Classes C	ICEBREAKER TASK COMMANDS	OIL CAN	There In the Prakers ker in d 3 period S S D Lion	There were 11 direct assists in both runs.	There were no convoys in this task command.	The direct assistance queue was zero.
fleet			5	There was no channel c in this task command. Mas Virtually no chang number of required cla with I Class D Techreal period 6, I Class D an Class C Techrealers in 7 and for Rub 9 1 Clast icebreaker in period 8 age teebreaker utiliza was approximately 13%.	There were 11 in both runs.	task command.	The direct as was zero.
Icebreaker fleet	Nox. Response Time Mode Max. Response Time Mode			ر. د	ring to		
Min. Laker Class	•		TACONITE	Both the number of icebreaker and icebreaker size were reduced significantly due to channel clearing. For example in period 6, the required 9 icebreakers (2 Class D, 4 Class C, 3 Class B, operareduced to 5 icebreakers (3 icebreakers (3 icebreakers (3 icebreakers (4 icebreakers (8 Class C, 4 icebreakers (8 Class C, 4 icebreakers (8 Class C, 4 icebreakers (5 Class B) operating at 55% utilization were reduced to 7 icebreakers (5 Class C, 4 icebreakers (5 Class C, 4 icebreakers (5 Class C, 4 icebreakers (5 Class C, 4 icebreakers (5 Class C, 4 icebreakers (5 Class C, 4 icebreakers (5 Class C, 4 icebreakers (5 Class C, 4 icebreakers (5 Class C, 4 icebreakers (5 Class C, 4 icebreakers (5 Class C, 4 icebreakers (5 Class C, 4 icebreakers (5 Class C, 4 icebreakers (5 Class C, 4 icebreakers (5 Class C, 4 icebreakers (5 Class C)	The total number of direct assists decreased from 671 to 572 due to channel clearing allowing more ships to go to Sault Ste. Marie without becoming stuck.	The total number of convoys escorted increased from \$81 to \$53 with channel clearing. This was due to increased icebreaker speeds which could handle more convoys consisting of fewer vessels and in periods 9 and 10, due to the use of both Class C and B icebreakers for convoying instead of only Class B icebreakers.	The direct assistance queues were small with a maximum of 2 ships for both cases.
Winter	Severe			Icebreakers	Direct Assists	Convoys	nes
3	.			I Ce	Dir	Con.	Quenes

* Channel Clearing in the St. Marys River, Whitefish Bay, Straits of Mackinac, Detroit/St. Clair System, Welland Canal, and St. Lawrence Seaway.

14MLE 6.21

CHAPARISM OF MALINUM MESPONSE THE MONE WITH FINED ICLOSERAGN (LEET FUN A SEPTIN WITHIR?)

Eleasing Caryo lumage	ne 54,800,800 Shart Toes ne 54,460,000 Shart Toes		AT WHAT IS	the MRI Made van required a maximum of R Class Credenators in periods is and 5 icoloradors in periods is and 5 icoloradors in periods is and 5 icoloradors in the fact of 10 icoloradors in the Class of 10 icoloradors in the 11 icoloradors in the 11 icoloradors in the 11 icoloradors in the 11 icoloradors in the 11 icoloradors in the 12 icoloradors in t	there were 23 direct, estitis to flow 8 and 14 in flow 10. (African decrease is cassed by the large member of Johns half up in the comment of Johns half the mest puried, which was considerably less severe.	A total of 160 commons were escorted in Ban Reversal 131 in fan 10. Hat decrease was lessed to the 100 to 111 in 1	The convey quemes in the fixed fleet run grew excessively large, mattenharly in periods 2 and 8.
bufreet3 tommen) Johnstafes Bigliones	Clatyer C & B Hone		COM, SHOPEL	for period 3, which was the man man teacher that for and Citization (1) that it and Citization (1) that it and Citization (2) that it and Citization (2) that it and Citization (3) that it and Citization (3) that it and Citization (3) operated at Max teachers (2) that it and Citization (3) operated at Max teachers (2) that it and (3) that it and the citization (3) operated at Max teachers (3) that it and (1) the citization (3) that it and (1) the citization (3) the man the final first item.	The total mander of direct assists was 316 in New 19 and 326 in New 7. This, Ne- cross was consided by the new ber of Salps Andle of in the Second control queers, resulting in more conveys of fewer salps.	there were no convey trates defined in this task commend that the Class 5 (after restric- tion.	The direct assistance queues were as high as 5 (on the wereage) in Man Bult were zero in Nam 10. Ruture
icobrating floot Ma. Pag. line	Was fire Severe Uniter William + 12 hours USG fire, Severe Uniter William	SCFONEAUER TASK CANDAMINS	ON CAN	lie markeum annéer of for- broaders repulsed in 1881 Finite rem van et (1 Char) in 1881 Class (2 marchine at 1884 et (112ation in pariod). The semant of (1 char) et (2 cm - listing of 3 Chars (2 cm - listing of 3 Chars (2 cm - et (112ation in pariod). In edition to pariod). In edition to pariod). In edition to pariod). In edition (2 pariod 2) the edition of the pariod of the entities (2 cm - 2 cm - the pariod d to perform 3 direct estitis.	Nace were il direct assists to bolb rues eccurring in periods 6 and 7.	there were no convoy routes defined in this task command.	No stantficant direct assistance queues accurred.
Min. Laker Class	40 40		114CGB 1E	the MEI Rade generated fear- tendedary to benedic the manned than deve tweetited in the fined finet two is mail- man of 12 increasing to an in- man of 12 increasing the and their all 18. In addition, with the acception of periods in the acception of Class & Increasing to the G. Class & Increasing to the G. Class & Increasing to the G. Class & Increasing to the G. Class & Increasing to the G. Class & Increasing to the G. Class & Increasing to the G. Class & Increasing to the first of the companies of a transfer of the companies of the Class & Canadian D. Of Class & C. and Z. Class & Increasing & C. and Z. Class	The tatal number of assisting use extensially the same (6/1) serves (6/1) for both rues.	The total number of conveys escribed in the Block was all as compared to \$21 for the discharder fleet, budgated that fewer vessel, per convey were excepted by the fixed (cebraker fleet.)	the direct assistance queue in the Well Mer Will Mer wanted be become and a state of the periods. In its let fraid fleet in the versage size direct assistance queue constitued to ever the periods. However the periods, taypesting the computer queue was helped handled; it was not queue was helped handled;
New Winter	and Services				Direct Assists	CHANNE	Annues

In the fixed technesher first mode, iterizaters are tree to respond anywhere in the last command, white in the maximum response time made,
itedicaters may respond only in those reaches with the same hame port. As a result, the fixed fixed the launite is utilized inefficiently
because a major amount of time is spent traveling between failulify Superior area and the Son.

6. RESULTS OF SIMULATION RUNS

6.4 <u>Discussion of Production Run Results</u>

On the following pages, tables for each of the ten (10) production runs listed in Section 6.3 present a summary of:

- Input Run Condition
- Fixed Icebreaker Fleet or MRT Generated Icebreaker Fleet by Icebreaker Class, Task Command, and Period
- Statistics for Each Icebreaker Task Command (Taconite, Oil Can, Coal Shovel, Seaway)
 - Number of Icebreakers by Class and Period
 - Number of Icebreaker Direct Assists by Class and Period
 - Number of Icebreaker Hours Associated with Direct Assistance by Period
 - Number of Icebreaker Miles Associated with Direct Assistance by Period
 - Number of Icebreaker Convoys Escorted by Class and Period
 - Number of Icebreaker Hours Associated with Convoying by Period
 - Number of Icebreaker Miles Associated with Convoying by Period
 - Size of Direct Assistance and Convoy Queues
- Extended Navigation Season Tonnages by Commodity and Route

Detailed output from each of these production runs has been provided to the U.S. Coast Guard separately as computer print-outs.

For ease of reference, the summary tables for each of the runs listed in Table 6.10 in Section 6.3 are on the following pages.

Run Number	Table <u>Number</u>	Page <u>Number</u>
1	6.22a-g	6-39 - 6-45
2	6.23a-g	6-46 - 6 - 52
3	6.24a-g	6-53 - 6-59
4	6.25a-g	6-60 - 6-66
5	6.26a-g	6-67 - 6-73
6	6.27a-g	6-74 - 6-80
7	6.28a-g	6-81 - 6-87
8	6.29a-g	6-88 - 6-94
9	6.30a-g	6-95 - 6-101
10	6.31a-g	6-102- 6-108

TABLE 6.22a

SUMMARY OF INPUT CONDITIONS FOR RUN NO. 1

Winter Type: Normal Minimum Laker Class: 5

Run Mode: Fixed Icebreaker Fleet

USCG Estimated Fleet: Normal MRT (hr): N.A.

Convoying Icebreaker Types: C,B Channel Clearing (in/per): None

Cargo Tonnage (year): 2000

Convoy Routes:

Location	Reaches	Periods
St. Marys River	51	5
St. Marys River/Whitefish Bay	50,51	6-10
Straits of Mackinac	53	8
Detroit/St. Clair River System	72,73	None
Welland Canal	89	None
U.S. St. Lawrence Seaway	95	5-8
Canadian St. Lawrence Seaway	96	5-8

Data Files Used: SPDNRL, SPDNRM, SPDNRH, SHIPPRO, EAGDFIB, RCH2NR5, RCH1S,

CLASS

Archived Output File Name: PROJA

TABLE 6.22b

USCG ESTIMATED FLEET* FOR NORMAL WINTER
FOR RUN NO. 1

Home Port	Class B	<u>Class C</u>
Duluth Sault Ste. Marie St. Ignace Port Huron, Detroit, Toledo Escanaba Chicago Saginaw Sandusky Buffalo Oswego	2 1 1 1	2 4 1 2 1 1 2 3
SUBTOTAL	5	17
TOTAL	22	

NOTE: Principal ports; operations limited to vessels of reasonably high capability (SHP/L > 6); 12 hrs per day per icebreaker.

^{*} Letter dated 8 June 1977 from Commander, Ninth Coast Guard District to the Commandant (G-O).

FOR TACONITE TASK COMMAND RESULTS OF RUN NO. 1 TABLE 6.22c

					Period				
ITEM	2	6	4	2	9	7	8	6	10
Number of Icebreakers ¹									
Class D	•	٠	•	1	•	•	•	•	ı
Class C	7-0%	7-0%	79-7	7-102%	7-92%	7-97%	7-97%	7-101%	7-62%
Class B	3-0%	3-0%	3-5%	3-97%	3-101%	3-99%	3~100%	3-100%	3-49%
TOTAL	10-01	10-0%	10-5%	10-100%	10-94%	10-98%	10-98%	10-100%	10-58%
Direct Assists									
by Class D	•	•		•			·	ι	ı
by Class C	•	•	35	82	3	9	4	4	9
by Class B	,	•	٣	35	128	147	96	133	2
TOTAL	1	•	32	120	159	177	100	174	91
Total Time (hr)	•	•	176	1621	1125	1118	772	1570	227
Total Miles	•	•	1703	21502	12522	11973	9557	14606	3189
Convoys Escorted									
by Class D		,	•	•	1	•	1	•	1
by Class C	•	ı	•	99	113	66	104	85	79
by Class B	•	,	1	32	80	7	6	.c	22
TOTAL		•	•	101	121	106	113	87	101
Total Time (hr)	1	1	1	1744	2045	2162	2511	1797	1710
Total Miles	1	•	ı	21544	17970	20839	22638	13474	15915
Avg. Size of Queues ²									
Direct Assistance	•	•		4	2	=	ِّ ص	6	_;
St. Marys R. Convoy Straits Convoy	1 I			27/3	24/11	15/11	2/2	15/8	18/11

5

Second number is average percent time utilized; values greater than 100% sometimes result because time for assists and convoys not completed during previous period are included.

First entry is upbound, second is downbound; DA Queues indicate vessels which are waiting, while convoy Queues denote vessels which have established an ETA at convoy points and in general are not waiting. In the fixed icebreaker fleet mode, an icebreaker is free to respond anywhere in the task command, while for the maximum response time mode an icebreaker may respond only in those reaches with the same home port. As a result, the fixed fleet in Taconite is utilized inefficiently because a major amount of time is spent travelling between Duluth/Superior area and the Soo. ۳,

TABLE 6.22d RESULTS OF RUN NO. 1 FOR OIL CAN TASK COMMAND

					Period				
ITEM	2	3	4	52	9	7	æ	6	10
Number of Icebreakers ¹									
Class D	ſ	ţ	ſ	t	•	1			
Class C	2-0%	2~0%	2~0%	2-23%	2-95%	2-17%	2-80%	2,6%	, C
Class B	t	ſ	ľ	ŧ		2 - 1		2 N	40-7
T0TAL	2-0%	2-0%	2~0%	2-23%	2-95%	2-17%	2-80%	2-6%	2-0%
Direct Assists									
by Class D			1						
by Class C	•	1	ļ	ıc	۱ ۲	1 (• (1	•
by Class B	l (ı		ø	3/	9	27	2	•
TOTA!	•	1	•	1	ı	•		•	•
101AL Takal Time (List	ı	•	•	∞	37	9	27	~	•
total fime (nr)	1	1	1	154	639	111	536	41	,
lotal Miles			1	1935	7841	1265	6413	593	. 1
Convoys Escorted									
by Class D	1	•	ı						
by Class C	ı	•	1 1		ı	•	ı	•	1
by Clace B		ı	•	•	ı	•	1	•	1
TOTA!	•	ì	ı	t	ı	•	•	•	,
IOIAL	•	•	1	1	1	•		I	
Total Time (hr)	1	ı	1	1	•	•		l 1	•
Total Miles	ı	•	ı	1	ı	•	1	1 1	1 1
Avg. Size of Queues									
Direct Assistance		1	ı	0	2	0	0	0	t

NOTE: 1. Second number is average percent time utilized.

FOR COAL SHOVEL TASK COMMAND RESULTS OF RUN NO. 1 TABLE 6.22e

2	,	•	•	•	Period	•	•	•	Ş
LICA	2		4	4	٥		8	5	2
Number of Icebreakers ¹									
Class D	,	,	•		•	•			•
Class C	5-0%	5-0%	2-1%	5-54%	5-102%	5-5%	2-0%	2-0%	2-0%
Class B	2-0%	2-0%	2-0%	2-51%	2-97%	2-5%	2-0%	2-0%	2-0%
TOTAL	7-0%	7-0%	7-18	7-53%	7-101%	7-5%	7-0%	7-0%	7-0%
Direct Assists									
by Class D	,	,	,	•	,	,	,	,	•
by Class C	,	,	_	46	11	4	ı	•	1
by Clare B	,	,		24	42	9	,	•	•
TOTAL	,	,	_	2	119	2	,	,	ı
Total Time (hr)	1	,	18	1246	2365	123	,	,	•
Total Miles	•	,	208	11576	20806	1393		,	
Convoys Escorted									
by Class D	•	J	•	ı	•		•	;	•
by Class C	,	•	,	ı	•		ı	1	
by Class B	1	ı		•	,	,			•
TOTAL	1	ı		•	•	,	•	•	•
Total Time (hr)	•	J	1	ı	•			1	1
Total Miles		,	,	•	•		•	ı	•
Avg. Size of Queues ²									
Direct Assistance		,	0	0	2	0	,	•	ı
Detroit/St. Clair Convoy	1	1	ı	•	•	.	i	•	
•									

∼ં

Second number is average percent time utilized; values greater than 100% sometimes result because time for assists and convoys not completed during previous period are included.

First entry is upbound, second is downbound; DA Queues indicate vessels which are waiting, while Convoy Queues denote vessels which have established an ETA at convoy points and in general are not waiting. In the fixed icebreaker fleet mode, an icebreaker is free to respond anywhere in the task command, while for the maximum response time mode an icebreaker may respond only in those reaches with the same home port. As a result, the fixed fleet in Taconite is utilized inefficiently because a major amount of time is spent travelling between Duluth/Superior area and the Soo. ۳.

FOR SEAWAY TASK COMMAND RESULTS OF RUN NO. 1 TABLE 6.22F

					Period				
ITEM	2	6	4	9	9	7	80	6	20
Number of Icebreakers¹									
Class D			•	•		•	1	•	1
Class C	3-0%	3-0%	3-0%	3-109%	3-99%	3-97%	3-94%	3-2%	3-0%
Class B	•	•			1	•	ı	•	٠
TOTAL	3-0%	3-0%	3-0%	3-109%	3-99%	3-97%	3-94%	3-2%	3-0%
Ofrect Assists									
by Class D	1	•	1	•	•	ı	1		•
by Class C	•	•	٠,	•	٠	ľ		,	•
by Class B	,	ı	ı	•	ι	,	1	•	•
TOTAL	ι	•	•	ι	•	ı		٠	
Total Time (hr)	ı	•	•	•	ı	ı	ı	•	ı
Total Miles	1	•	t	t	1			1	1
Convoys Escorted									
by Class D	,	t	•	•	•	•	ı	ı	ı
by Class C	•	1	ı	25	45	44	32	ı	1
by Class B	,	ı			•	ı	1	•	
TOTAL	ι	ı	1	25	45	44	35	•	•
Total Time (hr)	•	,	ı	1099	1000	977	945	1	ŧ
Total Miles		•	1	10301	8188	8846	8537	•	•
Avg. Size of Queues?									
Direct Assistance		•	•	ı	•	,	•	ı	ı
St. Lawrence Seaway Convoy	1	t	1	2/4	5/6	2/4	0/5	t	1

NOTES: 1.

∻

Second number is average percent time utilized; values greater than 100% sometimes result because time for assists and convoys not completed during previous period are included.

First entry is upbound, second is downbound; DA Queues indicate vessels which are waiting, while Convoy Queues denote vessels which have established an ETA at convoy points and in general are not waiting. In the fixed icebreaker fleet mode, an icebreaker is free to respond anywhere in the task command, while for the maximum response time mode an icebreaker may respond only in those reaches with the same home port. As a result, the fixed fleet in Taconite is utilized inefficiently because a major amount of time is spent travelling between Duluth/Superior area and the Soo. ب

TABLE 6.22g EXTENDED SEASON TONNAGE BY ROUTE FOR RUN NO. 1

IRON ORE	E-LAKER	IRON OR	E-LAKER	COAL-I	LAKER	GRAIN-	-LAKER
Route	Tons	Route	Tons	Route	Tons	Route	Tons
1 2 3 4 5 6 8 9 10 11 12 13 14 15	647 1024 574 158 878 877 1406 1459 874 999 1724 1661 877 602 1193	22 23 24 26 27 28 29 30 32 33 34 35 37 38 39	649 877 1023 599 438 606 1043 1440 542 875 613 488 1034 913	44 45 46 47 48 49 51 53 56 57 59 60	1071 1089 1092 449 2862 1038 1191 181 978 121 100 226 224 597 1943	74 75 76 77 78 80 81 83 85 TOTAL	- 641 1319 50 99 - 50 2159
19 20 21	879 476 283	41 42 TOTAL	640 929 30299	63 64 65 66 68 69 70 71 72 TOTAL	155 293 221 1357 201 201 439 607 2531 19167	GENERAL SAI <u>Route</u> 87	CARGO- TY Tons 466

	BULK CAR	GO-SALTY
	Route	Tons
Maximum Number of Vessels:	88 89 90 91 92	6220 2621 708 327 445
Lakers: 159 Salty General Cargo: 28 Salty Bulk: 126	93 TOTAL GRAND TOTAL	606 10927 63018

NOTES: 1. Units are thousands of short tons.
2. Extended season consists of nine 14-day periods.

TABLE 6.23a

SUMMARY OF INPUT CONDITIONS FOR RUN NO. 2

Winter Type: Normal Minimum Laker Class: 5

Run Mode: Maximum Response Time

USCG Estimated Fleet: N.A. MRT (hr): Minimum*

Convoying Icebreaker Types: C,B Channel Clearing (in/per): None

Cargo Tonnage (year): 2000

Convoy Routes:

Location	Reaches	<u>Periods</u>
St. Marys River	51	5
St. Marys River/Whitefish Bay	50,51	6-10
Straits of Mackinac	53	8
Detroit/St. Clair River System	72,73	None
Welland Canal	89	None
U.S. St. Lawrence Seaway	95	5-8
Canadian St. Lawrence Seaway	96	5-8

Data Files Used: SPDNRL, SPDNRM, SPDNRH, SHIPPRO, EAGDMRT, RCH2NR5, RCHIN,

CLASS

Archived Output File Name: PRO2Z

^{*} The minimum value of the maximum response time is calculated as the time required to get to the furthest point in the reach from the closest home port, at 5 mph.

TABLE 6.23b

PREDICTED ICEBREAKER FLEET BY HOME PORT AND PERIOD FOR RUN NO. 2

				CLASS									CLASS	SS C	4.1						3	CLASS	B			
LOCATION	2	8	4	S)	9	7	8	9 10		2	m	4	2	9	8	6	10	7	m	4	2	9	7	8	9 10	\overline{a}
THUNDER BAY TC	ı		,	4	•			_		•	1	•	1	3 5	1	1	(1	1	ŧ	ı	ı	ı	4	,	
Buluth			<u>س</u>					-			1		5		•	1		•				4	m	رب س	رب س	
Presque Isle	•	,	_	1		ı	_	'		1		,	•	1	ı	١	•	'	ı	1	ı	ı	ı	•	•	
Sault Ste. Marie	•	,		ı	~		· —	'	_	ι		,	<u></u>	7 7	വ	_	9	1	ı	ı	ı	ı		•	•	
St. Ignace	1	,	ı	ı			0		_		1	١			7	4	1	<u>.</u>	•	1				}		_
TACONITE TC	-		4	1		က	2	- 2	<u>.</u>	•		,	6	7	7	=	9	1	ı	t	ı	4	က	m	3	
Escanaba	ı			4	9	4	4	4	-					,	1	ı		-	,	١	ı	,	,	į		
Green Bay	1	,	1	1	ı			,	_	1	,	,	,	,	ı	•	,	'	ı	1	ı	,			,	 -
Milwaukee	ı	ı	ı	ı	,	,	•			ι				,	1	1	,	١	ı	ı	•	,	1	•	'	_
Chicado	ı	,	ı	1	,		•	,	_		ı		,	1	ı	1	,	1	1	ı	ι	,	,		•	<u> </u>
Grand Haven	1	ı	,	ı	ı	ì	Ì	,		r			•	1	1	1	,	1	1	•			1			-
oll CAN TC	1		,	4	9	4	4	4						,	•	•	,	1	,	1	ı	,			,	
Sacinaw														'	1	1	,	•		•		,				-
Port Hiron	1	1	•	ı	,	ı	,	,		ı				'	1	1	,	١	١	1	ı	ı	1	i	•	<u> </u>
Detroit	1	,	ı	S.	9	m		,		ı	i	1	ı	1	•	1	J	١	ı	•		i	ľ	1		 -
Toledo	ı			9	و			,		ı	,	,	•	1	1	1)	١	ı	ſ	•	1	ſ			
Sandusky	•	ı	1 1	ı	ı	ı		•	_	ı	1			1	1	ı	ı	١	•	1	ı	ı	•		•	- -
Cleveland	ı	ı	_	1 1	1 0			,		ŧ				! ! *	1	•	1	1	•	ı			•	1		-
Buffalo	•			7 2	7 4	- P			+					1 4	1 6	•	•	' '	• •	•						
COAL SHOVEL IC	ا ا		-	. !	-				+			1		.												_
Port Colborne	•			1	1	ı		'	_	ı	ı		,	'	ı	1	ı	١	•	•	1	,	,		•	
Toronto	•										İ					•	•	1	•		. }					
WELLAND TC	1					1									•	1		•	•		•		.			
Оѕмедо	ı		,	•	ı	,		•		,	,				•	ı	ı	ı	•	,	ı		,		•	- -
Alexandria Bay	1		,	1	ı			'		ı	1	1			4			'	•	•	1					
SEAWAY TC								'	,		,	_	2	4 6	4	-	-	1	•	,	1					-
Montreal	١	}		, ,			ĺ			1		,	9.	5	က		1	ı	1	J	1		0		0	
Quebec	•	4	4	4 4	4 4	2 0	m (r	2/2	רות		1 1			1 R	1 (~	-	1 1	' '	1 1			ی در	ء اح	20	$\infty \propto$	
doepec 1c			1	1 .	-	-	1		, ,			-		-	-	- 2	¥	'				, -	,			_
J.S.	1	1	2		-	_			_	1		<u>-</u>	-	-	=	7	Þ	ı —	ı	•	1	+	၁	_		-

FOR TACONITE TASK COMMAND RESULTS OF RUN NO. 2 **TABLE 6.23c**

					Period				
ITEM	2	3	4	S	9	7	8	6	10
Number of Icebreakers ¹									
Class D	1	1	4-13%		7-12%	3-25%	2-10%	1	2-2%
	•	1	1	9-28%	7-87%	7-83%	7-80%	11-70%	6-85%
Clace B	ı	•	•	I	4-33%	3-40%	3-33%	3-37%	1
TOTAL	ı	1	4-13%	9-28%	18-46%	13-60%	12-56%	14-63%	8-64%
Direct Assists									
by Class D	J	ı	35	ı	34	28	4	1	S
by Class C	ı	•	•	133	_	_	7	48	_
by Class B	•	ı	ı	ı	144	128	107	118	•
TOTAL	ı	ı	35	133	179	157	113	166	9
Total Time (hr)	ı	1	181	478	736	663	417	962	24
Total Miles	1	ı	1379	3081	4286	3997	2943	5819	187
Convoys Escorted									
by Class D	1	ı	ı	•	ı	•	ı	ı	1
by Class C	ı	1	ı	148	129	121	115	92	109
by Class B	ı	ı	ı	•	•	•	ı	•	•
TOTAL	ı	ı	ı	148	129	121	115	92	109
Total Time (hr)	ı	1	ı	1234	2024	1934	1848	1946	1703
Total Miles	ı	ı		90/6	17309	15901	13149	7277	14428
Avg. Size of Queues ²									
Direct Assistance	ı	1	1	1,00	- 1	- 1	, 9		- 60.51
St. Marys K. Convoy Straits Convoy	1 1	1 1		7/67	-	-	3/8 3/2	//7	- /9

Second number is average percent time utilized. First entry is upbound, second is downbound; DA Queues indicate vessels which are waiting, while Convoy Queues denote vessels which have established an ETA at convoy points and in general are not waiting.

TABLE 6.23d RESULTS OF RUN NO. 2 FOR OIL CAN TASK COMMAND

					Period				
ITEM	2	က	4	5	9	7	8	6	10
Number of Icebreakers ¹									
Class D	ı		ı	4-10%	16-16%	4-11%	14-17%	4-7%	•
Class C	1	ı	•	ì	•	•	ı	ı	•
Class B	•	1	1	ı	•		1	ı ,	•
TOTAL		1	1	4-10%	%9 1-91	4-11%	14-17%	4-7%	f
Direct Assists									
by Class D		1	•	80	35	7	30	10	ı
by Class C	•	ı	ı	•	1	1	•	ı	•
by Class B	1	1	ı	ı		1	ı	•	1
TOTAL	ı	1	1	8	35	7	30	2	•
Total Time (hr)	ı	1	1	129	820	152	811	93	f
Total Miles	ı	ı	1	1129	8512	1368	7531	1041	•
Convoys Escorted									
by Class D	•	ı	,	ı	ı	ı	1	1	•
by Class C	1	ı	ı	1	1	•	•	1	1
by Class B	ı	•	1	ı	,	•	ı	1	•
TOTAL	1	1	ı	ı	•	ł	•		ſ
Total Time (hr)	1	1	t	ι	ı	1	1	ı	ſ
Total Miles	1	•	ı	ı		•	1	•	ſ
Avg. Size of Queues					,			•	
Direct Assistance	1		•	0	5	-	2	_	ſ

NOTE: 1. Second number is average percent time utilized.

FOR COAL SHOVEL TASK COMMAND RESULTS OF RUN NO. 2 **TABLE 6.23e**

					Period				
ITEM	2	3	4	2	9	7	æ	6	10
Number of Icebreakers ¹									
0	ı	ı	1-3%	18-24%	24-26%	4-6%	ı	1	1
C1855 U	i	•	. '		4-37%	•	ı	1	•
Class c) [ı	•	: :	•	ı	1	ı
Class B)	ŀ	1 29	10_21%	28-27%	4-6%	ı	•	ı
TOTAL	•	•	9C-	9+7-0I	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	P F			
Direct Assists									
hy Class D	•	•	_	68	11	10	1	ı	•
by Class of	1	ı	. ,	•	42	ı	t	ı	•
by Class B	1	•	•	•	ı	1	•	1	•
Dy Class B	ı ı	ı	_	68	119	10	•	1	•
Total Time (hw)	•	1	0	1434	2574	78	ı	ı	1
Total Miles	1	•	74	8441	11305	386	i	ı	1
convoys escorted									
by Class D	•		1	•	1	•	ı	1	•
by Class C	•	•	ı	•	•	1	•	1	t
by Class B	1	•	1	1	1	ı	1	•	1
TOTAL	1	ı	1	•	•	•	ı	•	ı
Total Time (hr)	ı	•	•	t	1	ı	•	1	•
Total Miles	1	ı	•	r	1	1	ı		1
Avg. Size of Queues ²									
Direct Assistance	•	•	0	-	_	0	•	ı	•
Detroit/St. Clair									
Convoy	1	ı	•	1	1	•	•	1	ı

NOTES:

Second number is average percent time utilized. First entry is upbound, second is downbound; DA Queues indicate vessels which are waiting, while Convoy Queues denote vessels which have established an ETA at convoy points and in general are <u>not</u> waiting.

FOR SEAWAY TASK COMMAND RESULTS OF RUN NO. 2 **TABLE 6.23f**

					Period				
ITEM	2	3	4	22	9	7:	8	6	10
Number of Icebreakers ¹									
Class D	ı	i	•	ı	i	•	ı	1	•
Class C	,	ı	•	2-89%	4-91%	86-9	4-51%	1-10%	
Class B	J	1	•	•		•	•	•	1
TOTAL	1	•	1	2-89%	4-91%	6-89%	4-51%	1-10%	1
Direct Assists									
by Class D	ı	ı	1	•	t	1	ı	•	1
by Class C	•	1	•	1	•	1	1	ſ	•
by Class B	1	i	•	1	•	ı	ı	1	•
TOTAL	•	•	•	•	•	1	ı	ı	1
Total Time (hr)	ı	1	1	ı	ı	1	i	ı	ı
Total Miles	•	•	ı	ı	•	ı	1	•	•
Convoys Escorted									
by Class D	1	ı	•	1	1		,	,	ı
by Class C	ı	1	1	19	49	64	52	-	•
by Class B	1	•	1		,	, ;	, (, ,	•
TOTAL		1	ı	[9	49	64	52	- ;	ı
Total Time (hr)	•	1	ı	1492	1223	1799	989	33	ı
Total Miles	1	1	ı	14210	10150	16530	5945	230	ı
Avg. Size of Queues ²				,					
Direct Assistance		•	•	I	ı	1	1	ı	1
St. Lawrence Seaway				,		•	;		
Convoy	1	ŧ	1	1/4	5/2	1/4	1/0	ı	1

NOTES:

Second number is average percent time utilized. First entry is upbound, second is downbound; DA Queues indicate vessels which are waiting, while Convoy Queues denote vessels which have established an ETA at convoy points and in general are <u>not</u> waiting.

TABLE 6.23g EXTENDED SEASON TONNAGE BY ROUTE FOR RUN NO. 2

IRON OR	E-LAKER	IRON OR	E-LAKER	COAL-	LAKER	GRAIN-	-LAKER
Route	Tons	Route	Tons	Route	Tons	Route	Tons
1 2 3 4 5 6 8 9 10 11 12 13 14 15 17 19 20	649 1024 572 161 873 875 1409 1457 876 1000 1727 1661 876 602 1193 881 476	22 23 24 26 27 28 29 30 32 33 34 35 37 38 39 41 42	649 875 1023 601 438 606 1045 1441 541 877 612 485 1035 915 999 640 938	44 45 46 47 48 49 51 53 54 56 57 58 60 61 63 64	1071 1089 1091 449 2866 1040 1189 181 978 121 100 226 224 597 1942 155 293	74 75 76 77 78 80 81 83 85 TOTAL	- - 651 1349 50 99 - 51 2200
21	283	TOTAL	30315	65 66	221 1357	SAI <u>Route</u>	LTY
				68 69 70 71 72 TOTAL	201 201 439 607 2531 19169	<u>87</u>	<u>Tons</u> 440

	BULK CAR	GO-SALTY
	Route	Tons
	88	6223
	89	2620
	90	707
Maximum Number of Vessels:	91	331
1 aliana a mam	92	445
Lakers: 145	93	604
Salty General Cargo: 27 Salty Bulk: 111	TOTAL	10930
outer butter it!	GRAND TOTAL	63054

NOTES: 1. Units are thousands of short tons.
2. Extended season consists of nine 14-day periods.

TABLE 6.24a

SUMMARY OF INPUT CONDITIONS FOR RUN NO. 3

Minimum Laker Class: 5 Winter Type: Normal

Run Mode: Maximum Response Time

MRT (hr): Minimum + 12 USCG Estimated Fleet: N.A.

Channel Clearing (in/per): None Convoying Icebreaker Types: C,B

Cargo Tonnage (year): 2000

Convoy Routes:

Location	Reaches	<u>Periods</u>
St. Marys River	51	5
St. Marys River/Whitefish Bay	50,51	6-10
Straits of Mackinac	53	8
Detroit/St. Clair River System	72,73	None
Welland Canal	89	None
U.S. St. Lawrence Seaway	95	5 - 8
Canadian St. Lawrence Seaway	96	5-8

SPDNRL, SPDNRM, SPDNRH, SHIPPRO, EAGDMRT, RCH2NR5, RCH1S, CLASS Data Files Used:

Archived Output File Name: PRO3Z

TABLE 6.24b

PREDICTED ICEBREAKER FLEET BY HOME PORT AND PERIOD FOR RUN NO. 3

				CLASS	SS D	<u></u>						디	CLASS	SC							CLASS		æ			
LOCATION	7	3	4	5	9	7	8	의	7	2	4	5	9	7	8	6	2	7	m	4	2	9	7	8	9 10	-
THUNDER BAY TC			1	ო	' '			1	'	•	•	1	4	7		ı	•	•	ı	1	ı				·	
Duluth	,	1	2		'			-	'	1	•	2	1	•	1	١	1	ı	1	1	1	4	m	5 (. 9	
Presque Isle	•			1	1	_	1	•	-	•	ı	•	1	•	ı	ı	,	•	•	1	•		•		•	
Sault Ste. Marie	•	,		,		. <u> </u>		1	1	•	1	4	9	7	7	က	က	ı	•	ı	ı			·	•	<u> </u>
St. Ignace	r				3		1	-	-	•	•	•	'	•	~	2	ı	•	•	•		,	Ì	ĺ		1
TACONITE TC	•		9		3 2	<u>س</u>	_	7	<u> </u>	•	1	စ	9	<u> </u>	6	10	5	•	•			4	- .	2	9	
Escanaba		,		4	5 4	_	16 3		1	•	٠	•	•	,	1		1	•	•	•	,					
Green Bay	•				1	•	1	1	1	•	1	1	1	1	ı	1	1	•	ı	ı	1			•	•	<u> </u>
Milwaukee	•	,	,		,			•		•	•	1	ı	1	ı	ı	,	i	1	1	ı	ı				
Chicago	•		,					•	<u>'</u>	•	F	ı	ŧ	ı	•	ı	,	ı	ı	•		ı		•	•	
Grand Haven	1						•	•	'		1	•	•	•	1	١	•	1	•							
OIL CAN TC	•	·		4	5 4	•	16 3	1	_	ł	ı	•	1	ı	ı	ı	ı	1	ı	t	ı	ı		•		
Saginaw			,	,				•	'	,	•	'	•	•	١.		ı	'	•		١,				١.	
Port Huron	i		1	•	'					•	1	ı	1	1	ı	1	ı	1	1	ı	ı	ı	,	•		
Detroit	•		ı	9	7	<u>'</u>	1		.!	ı	ı	ı	ı	•	1	ı	,	ı	1	•	ı	•	1	•		
Toledo	•	í		9	9			•		1	1	•	•	ı	ı	ı	,	í	ı	•	ı	ı	ı			
Sandusky	•								1	•	•	ı	ı	ı	1	1		1	ı	t		ı			•	
Cleveland	1				. '	•		1		1	•	•	•	ı	1	1	1	•	1	•		1		,		<u> </u>
Buffalo	1				2	•	'	•	-	•	1	•	വ	•	•	•		•	•		ı					
COAL SHOVEL TC	•			20 2	25 5			١	'	•	1	•	വ	•	•		ı	1	•	•	•					
Port Colborne			1					1		•	1	1	1	1	1	ı	ı	1	ı	ı	1	1				 -
Toronto					'	[1	1	1	8 /	1	1	'	•		•	ı	1	•	·						
WELLAND TC	•	,		1				1	<u> </u>	'	•	•	1	•	•	•		•	ı	•	1	1	1			
Oswego	•		ı					1			1	1	ı	1	•	•	,	•	ı	•				•		
Alexandria Bay	•		,	·				•		•	ı	S	4	4	က	_	,	1	1	•	1	ı				
SEAWAY TC	•				1		1	1	-		1	2	4	4	က	-		•		ı	,	ı				
Montreal			 						1.	'	•	5	4	4	က	_	ı	•	t							
Quebec		ر س	4	4	3 2	3	3 2	9	1	1	•	-	က	9	ı	1		•	ı	8	1		9	6	6	
QUEBEC TC	•			1			į	!				9	_	2	က	-	,	1	•			4			,	
U.S.		_	9	24 4	43 1		9	. 2	1	1	ı	Ξ	15		12	Ξ	2	ı	ı	1	4	4	3	2	. 9	

FOR TACONITE TASK COMMAND RESULTS OF RUN NO. 3 TABLE 6.24c

					Period				
ITEM	2	3	4	2	9	7	8	6	10
Number of Icebreakers ¹									
Class D	1	1	%6-9	1	3-24%	2-39%	3-8%	ı	2-3%
Class C	1	1	í	%8-9	%16-9	7-83%	819-6	10-63%	2-96%
Class B	1	•	ı	,	4-34%	3-40%	5-19%	6-19%	•
TOTAL		1	%6-9	%8-9	13-58%	12-65%	17-39%	16-46%	7-69%
Direct Assists									
by Class D	•	•	35	1	28	30	co.	ı	9
by Class C	1	1	ſ	129	ব	_	7	20	-
by Class B	1	1	ı	ı	144	130	105	122	ŧ
TOTAL	ı	•	35	129	176	161	112	172	7
Total Time (hr)	1	1	181	497	741	674	425	1024	52
Total Miles	ı	•	1379	3637	4737	3893	2920	2868	205
Convoys Escorted									
by Class D	•	1	•	ſ	,	1	1	1	ı
by Class C	1	1	1	149	123	120	110	87	110
by Class B	•	1	,	í	ŧ	i	ı	ı	,
TOTAL	•	1	ı	149	123	120	110	87	110
Total Time (hr)	1	ı	ı	1179	1777	1932	1821	1456	1596
Total Miles	•	1		9200	14951	15889	12967	9174	13339
Avg. Size of Queues ²				•					
Direct Assistance	ı	•	_	_	 -	0	0	~	0
St. Marys R. Convoy	ı	•	1	23/5	24/12	17/13	6/6	14/10	17/15
Straits Convoy	ı	1	•	ſ	1	•	3/3	1	ı

Second number is average percent time utilized. First entry is upbound, second is downbound; DA Queues indicate vessels which are waiting, while Convoy Queues denote vessels which have established an ETA at convoy points and in general are not waiting.

TABLE 6.24d
RESULTS OF RUN NO. 3
FOR OIL CAN TASK COMMAND

					Period				
ITEM	2	က	4	22	9	7	8	6	10
Number of Icebreakers ¹									
Class D	,	ſ	1	4-10%	15-16%	4-10%			•
Class C	ı	1	•	i	1	1			1
Class B	i	ı	1	•	ı	1			1
TOTAL	ı	ſ	•	4-10%	15-16%	4-10%			•
Direct Assists									
by Class D	J	•	1	œ	33	9			1
by Class C	1	ı	•	1	ı	1			ı
by Class B	ı	ţ	1	•	i	•			•
TOTAL	1	•	•	8	33	9			ı
Total Time (hr)	ı	·	1	129	812	134			ı
Total Miles	1	t	ı	1129	8101	1212			1
Convoys Escorted									
by Class D	1	ı	ı	•	•	ı	ı	ŀ	1
by Class C	1	ı	•	1	1	ı	•	1	•
by Class B	1	ı	•	•	i	•	ı	i	ı
TOTAL	•	•	ł	ı	ı	1	ı	1	•
Total Time (hr)	1	ı	1	ı	ı	1	•	i	ı
Total Miles	•		1	•	•			1	•
Avg. Size of Queues									
Direct Assistance	•	,	ı	_	2	_	က	~	•

NOTE: 1. Second number is average percent time utilized.

FOR COAL SHOVEL TASK COMMAND RESULTS OF RUN NO. 3 TABLE 6.24e

	c	r	~	Ľ	Period	^	œ	60	10
Nimbon of Tophroakore ¹	7		r						
Number of technicans	1	•	ı	20-21%	25-25%	5-7%	ı	•	1
Class U	1	•	ı	•	5-29%	ŧ	•	1	•
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	•	J	t	•	ı	ı	•	ı
TOTAL	1	•	,	20-21%	30-26%	2-1%	1	ı	•
1:									
Direct Assists									
by Class D	1	•	1	89	78	=	ı	ı	ı
J see J	ı	ı	J	1	4۱	,	ı	•	ı
מיייני לא	•	ı	,	1	ı	,	1		t
Dy Class D		1	1	89	119]]	•	1	•
IOIAL I I I I I	1			1302	2610	120	1	•	1
Total Time (hr)	1	ı	•	0173	11424	683	1	•	•
Total Miles		1	1	6/10	† -	3			
Convoys Escorted									
hy Class D	t	1	ı	ı	t	ı	1	i	1
J see J v4	1	•	ı	1	,	,	ı	ı	ı
by class c	•	1	1	•	•		1	•	1
by class b		ı	ı	•	1	1	ı	1	ı
IOIAL		ı	1	,	•	,	1	•	1
Total Time (hr)	ı	ı	1	ı 1	1	1	ı	ı	ı
Total Miles	•	1	•	•	I				
Avg. Size of Queues ²									
Direct Assistance	1	1	1	2	က	0	•		ı
Detroit/St. Clair									
Convoy	1	1	1	•	1	ı		•	ı

Second number is average percent time utilized. First entry is upbound, second is downbound; DA Queues indicate vessels which are waiting, while Convoy Queues denote vessels which have established an ETA at convoy points and in general are <u>not</u> waiting. NOTES:

FOR SEAWAY TASK COMMAND RESULTS OF RUN NO. 3 TABLE 6.24f

					Period				
ITEM	2	8	4	2	9	7	80	6	10
Number of Icebreakers ¹									
Class D	,	,	1	1	,	ı	•	ı	1
Class C	1	1	•	5-82%	4-76%	4-87%	3-72%	1-10%	,
Class B	1	•	ı	1	ı	ı	ı	ı	1
TOTAL	1	•	ı	2-85%	4-76%	4-87%	3-72%	1-10%	ı
Direct Assists									
by Class D	1	1	ı	1	ı	1	•	ı	ı
by Class C	1		1	1	•	•	1	1	1
by Class B	ı	ı	1	ı	ı	1	•	1	
TOTAL	ı		ı	1	ı	,		1	ı
Total Time (hr)	1	1	•	ı	ı	ı	1	ı	1
Total Miles	1	1	t	ı	1	ı	•	ı	ı
Convoys Escorted									
by Class D	1	ı	ı	•	,	ı	1	ı	,
by Class C	ı	ı	•	09	46	52	56	_	•
by Class B	1	ı	ı	ı	t			•	i
TOTAL	1	1	1	09	46	52	56	_	,
Total Time (hr)	,	,	•	1382	1019	1172	722	33	,
Total Miles	ŧ	1	ı	13050	8265	10440	6235	290	ı
Avg. Size of Queues ²				÷					
Direct Assistance	ı	ı	ı	1	ı	1	ı	ı	ı
St. Lawrence Seaway Convoy	1	ı	1	1/4	9/9	5/6	0/2	ı	ı

Second number is average percent time utilized. First entry is upbound, second is downbound; DA Queues indicate vessels which are waiting, while Convoy Queues denote vessels which have established an ETA at convoy points and in general are not waiting.

TABLE 6.24g EXTENDED SEASON TONNAGE BY ROUTE FOR RUN NO. 3

IRON OR	E-LAKER	IRON OR	E-LAKER	COAL-	LAKER	GRAIN-	-LAKER
Route	Tons	Route	<u>Tons</u>	Route	<u>Tons</u>	Route	Tons
1 2 3 4 5 6 8 9 10 11 12 13 14 15	649 1023 571 161 873 878 1409 1455 876 999 1726 1655 878 602 1191	22 23 24 26 27 28 29 30 32 33 34 35 37 38	649 877 1025 601 437 605 1044 1438 541 878 612 494 1035 915 999	44 45 46 47 48 49 51 53 54 56 57 58 59 60	1070 1089 1091 449 2866 1038 1192 181 978 121 100 226 224 597 1890	74 75 76 77 78 80 81 83 85 TOTAL	651 1349 50 99 - 50 2199
19 20 21	877 476 283	41 42 TOTAL	641 934 30307	63 64 65 66 68 69 70 71 72 TOTAL	155 293 221 1357 201 201 438 606 2531	GENERAL SAI <u>Route</u> 87	CARGO- TY Tons 446

DIII	ν	CAR	CO	CVI	TV

	DULK CAR	GU-SAL I I
	<u>Route</u>	Tons
Maximum Number of Vessels:	88 89 90 91	6224 2632 708 330
Lakers: 150 Salty General Cargo: 28 Salty Bulk: 114	92 93 TOTAL GRAND TOTAL	445 603 10942 63009

NOTES: 1. Units are thousands of short tons.
2. Extended season consists of nine 14-day periods.

TABLE 6.25a

SUMMARY OF INPUT CONDITIONS FOR RUN NO. 4

Winter Type: Normal Minimum Laker Class: 5

Run Mode: Fixed Icebreaker Fleet

USCG Estimated Fleet: Normal MRT (hr): N.A.

Convoying Icebreaker Types: C,B Channel Clearing (in/per): None

Cargo Tonnage (year): 2000 + 20%

Convoy Routes:

Location	Reaches	<u>Periods</u>
St. Marys River	51	5
St. Marys River/Whitefish Bay	50,51	6-10
Straits of Mackinac	5 3	8
Detroit/St. Clair River System	72,73	None
Welland Canal	89	None
U.S. St. Lawrence Seaway	95	5-8
Canadian St. Lawrence Seaway	96	5-8

Data Files Used: SPDNRL, SPDNRM, SPDNRH, SHIPP2O, EAGDFIB,

RCH2NR5, RCH1S, CLASS

Archived Output File Name: PRO4A

TABLE 6.25b
USCG ESTIMATED FLEET* FOR NORMAL WINTER
FOR RUN NO. 4

Home Port	<u>Class B</u>	Class C
Duluth Sault Ste. Marie St. Ignace Port Huron, Detroit, Toledo Escanaba Chicago Saginaw Sandusky Buffalo Oswego	2 1 1 1	2 4 1 2 1 1 2 3
SUBTOTAL	5	17
TOTAL	2	2

NOTE: Principal ports; operations limited to vessels of reasonably high capability (SHP/L > 6); 12 hrs per day per icebreaker.

^{*} Letter dated 8 June 1977 from Commander, Ninth Coast Guard District to the Commandant (G-0).

FOR TACONITE TASK COMMAND RESULTS OF RUN NO. 4 TABLE 6.25c

					Pertod				
ITEM	2	6	4	2	9	7	8	6	20
Number of Icebreakers ¹									
Class D		•	•	•	•		•	i	1
Class C	7-	7-	7-6%	7-99%	7-98%	7-101%	7-98%	7-101%	7-84%
Class B	. .	ب	3-16%	3-96%	3-98%	3-100%	3-102%	3-102%	3-62%
TOTAL	-01	-01	10-9%	10-98%	10-98%	10-100%	10-99%	%101 - 01	10-7/%
Direct Assists									
								4	,
by Class D	•	•	. :	. :	. :	. ?	, ,	. :	. :
by Class C	•	•	36	35	æ,	95	2	<u>.</u>	2 ;
by Clace B	٠	•	S	43	155	280	127	911	13
10181	,	•	4	135	193	219	137	167	52
Total Time (he)	,	•	315	1663	1197	1227	818	1783	41
total lime (nr.))		3000	91760	12517	12140	8884	16302	5903
Total Miles		•	3033	00/17	/1631	2	5	1000	
Convoys Escorted									
hy Clace D	(ı	•	•	•		ı	1	•
C 2013 C)		ı	75	134	126	124	2	100
י פון ה	ı	•	ı	2 8		α	=		2
by Class B	ı	•	ı	2 5		2.5	1 26	. 60	126
TOTAL	•	1		S	-43	÷ ;	5	10	07.0
Total Time (hr)	ı	•	•	1637	2093	2142	2514	1613	218/
Total Miles	•	ı	•	20048	19501	19442	21267	12343	21168
Ava. Size of Duelies									
			•	·	• •	13	a	13	~
Direct Assistance	•	•	0	C	4.5	71 00	0 0,01	וניסו	23123
St. Marys R. Convoy	,	ı		33/9	34/18	50/13	8/01	19/11	(3/63
Straits Convoy	ı	•	,	١	•	•	3/5	0/-	

NOTES: 1.

ς;

Second number is average percent time utilized; values greater than 100% sometimes result because time for assists and convoys not completed during previous period are included.

First entry is upbound, second is downbound; DA Queues indicate vessels which are waiting, while Convoy Queues denote vessels which have established an ETA at convoy points and in general are not waiting. In the fixed icebreaker fleet mode, an icebreaker is free to respond anywhere in the task command, while for the maximum response time mode an icebreaker may respond only in those reaches with the same home port. As a result, the fixed fleet in Taconite is utilized inefficiently because a major amount of time is spent travelling between Duiuth/Superior area and the Soo. ب

TABLE 6.25d RESULTS OF RUN NO. 4 FOR OIL CAN TASK COMMAND

					Period				
ITEM	2	3	4	2	9	7	8	6	10
Number of Icebreakers 1									
Class D	, O C	2.0%	, 0 - 0	2_10%	2_05%	2.26%	7-844	2. 2. 2. 3.	2-0%
Class C	, ,	ا ر	2) 1		, , ,	י נ	ָ ֭֭֭֓֞֞֞֞	, ,) 1
TOTAL	2-0%	2-0%	2-0%	2-19%	2-95%	2-26%	2-84%	2-8%	2-0%
Direct Assists									
by Class D	ı	1	1	,	1	,	,	•	1
by Class C	ť	,		10	40	ω	27	က	1
by Class B	,	,	•	,	1	•	,	,	1
TOTAL	•	1	•	01	40	ω	27	က	١
Total Time (hr)	t	ı	1	127	639	173	563	53	•
Total Miles	•		•	1394	7697	2162	6934	764	t
Convoys Escorted									
by Class D	ı	,		•	1	ı	,	ì	•
by Class C	1	,	ı	•	1	1	,	3	1
by Class B	i	j	ı	ı	•	ı	,	,	1
TOTAL		1	ı	ł	ŧ	•	•		•
Total Time (hr)	i	1	ı	ı	ŧ	•	,	ŧ	1
Total Miles	í	J	•	,	ı	•		•	ı
Avg. Size of Queues									
Direct Assistance	t	,	1	0	,	0	 -	0	,

NOTE: 1. Second number is average percent time utilized.

FOR COAL SHOVEL TASK COMMAND RESULTS OF RUN NO. 4 **TABLE 6.25e**

NO.	c	ć	•	į	Period	r	c	ć	.
LIEM	2	3	4	\$	9		∞	6	10
Number of Icebreakers ¹									
Class D	ı	ı	•	•	•	•	ı	•	•
Class C	2-0%	2-0%	5-2%	5-64%	5-102%	5-14%	2-0%	2-0%	2-0%
Class B	2-0%	2-0%	2-0%	2-67%	2-101%	2-11%	2-1%	2-0%	2-0%
TOTAL	7-0%	2-0%	7-1%	7-65%	7-102%		7-0%	7-0%	7-0%
Direct Assists									
by Class D	ı	1	1	ı	1	1	ı	ı	•
by Class C	ı	ı	2	53	77	14	ı		•
by Class B	,	•	1	28	49	=	_		•
TOTAL		t	2	81	126	25	,	ı	•
Total Time (hr)	ı	ı	35	1525	2392	314	4	ı	ı
Total Miles	ì		416	14410	21220	3632	44	•	1
Convoys Escorted				•					
by Class D	1	ı	ı	ı	ı	ı	ı	1	ı
by Class C	ı	ı	•	ı	ı		ı	•	•
by Class B	1	ı	1	ı	1	1	ſ	ı	•
TOTAL	•	ı	ı	t	1	1	r	•	•
Total Time (hr)	•	1	ı	ı	ı	•	ı	ı	ı
Total Miles	•		•	•		•	•		ı
Avg. Size of Queues ²			•						
Direct Assistance	ı	ı	0	0	9	_	_	•	1
Convoy	ı	1	ı	i	•	1	•	•	ı

Second number is average percent time utilized; values greater than 100% sometimes result because time for assists and convoys not completed during previous period are included.

First entry is upbound, second is downbound; DA Queues indicate vessels which are waiting, while Convoy Queues denote vessels which have established an ETA at convoy points and in general are not waiting.

TABLE 6.25f RESULTS OF RUN NO. 4 FOR SEAWAY TASK COMMAND

					Period				
ITEM	2	3	4	2	9	7	80	6	10
Number of Icebreakers¹ Class D Class C Class B TOTAL	3-0%	3-0%	3-0%	3-107%	3-103% 3-103%	3-100%	3-87%	3-4%	3-0%
Direct Assists by Class D by Class C by Class B TOTAL Total Time (hr) Total Miles	1 1 1 1 1 1	11111	1 1 1 1 1 1			1 1 1 1 1 1	1 1 1 1 1 1		
Convoys Escorted by Class D by Class C by Class B TOTAL Total Time (hr)	11111		11111	54 54 54 1076 9927	50 50 50 1041 8355	50 50 50 1009 8790	33 33 33 871 7738	- 1 38 412	11111
Avg. Size of Queues ² Direct Assistance St. Lawrence Seaway Convoy		· • •	1.1	5/2	5/10	6/12	1/3	1 1	1 1

Second number is average percent time utilized; values greater than 100% sometimes result because time for assists and convoys not completed during previous period are included. NOTES:

First entry is upbound, second is downbound; DA Queues indicate vessels which are waiting, while Convoy Queues denote vessels which have established an ETA at convoy points and in general are not waiting.

TABLE 6.25g EXTENDED SEASON TONNAGE BY ROUTE FOR RUN NO. 4

IRON OR	E-LAKER	IRON OF	E-LAKER	COAL-	LAKER	GRAIN	-LAKER
Route	Tons	Route	<u>Tons</u>	Route	Tons	Route	Tons
1 2 3 4 5 6 8 9 10 11 12 13 14 15	872 1141 632 210 1017 1013 1687 1802 1024 1041 2047 1919 1028 748 1436	22 23 24 26 27 28 29 30 32 33 34 35 37 38 39	814 1071 1140 648 548 648 1310 1742 761 1019 718 589 1271 1040 1070	44 45 46 47 48 49 51 53 54 56 57 58 59 60	1309 1322 1326 587 3330 1284 1406 226 1179 141 141 283 262 739 2327	74 75 76 77 78 80 81 83 85 TOTAL	41 25 - 782 1483 50 123 25 74 2603
19 20 21	1030 576 299	41 42 TOTAL	768 1109 35734	63 64 65 66 68 69 70 71 72 TOTAL	181 372 262 1640 242 222 527 744 3045 23097	GENERAL SAI <u>Route</u> 87	CARGO- LTY <u>Tons</u> 548

BULK CARGO-SALTY	RH	K	CAI	ദഹ.	IAP-	TV
------------------	----	---	-----	-----	------	----

Route	Tons
88	7201
89	3178
90	868
91	373
92	526
93	739
TOTAL	12885
GRAND TOTAL	74867

Maximum Number of Vessels:

Lakers: 198

Salty General Cargo: 35 Salty Bulk: 157

NOTES: 1. Units are thousands of short tons.
2. Extended season consists of nine 14-day periods.

TABLE 6.26a

SUMMARY OF INPUT CONDITIONS FOR RUN NO. 5

Winter Type: Severe Minimum Laker Class: 5

Run Mode: Maximum Response Time

USCG Estimated Fleet: N.A. MRT (hr): Minimum + 12

Convoying Icebreaker Types: B only Channel Clearing (in/per): None

Cargo Tonnage (year): 2000

Convoy Routes:

Location	Reaches	Periods
St. Marys River	51	4
St. Marys River/Whitefish Bay	50,51	5-10
Straits of Mackinac	53	5-10
Detroit/St. Clair River System	72,73	5-7
Welland Canal	89	5-7
U.S. St. Lawrence Seaway	95	5-8
Canadian St. Lawrence Seaway	96	5-8

Data Files Used: SPDSVL, SPDSVM, SPDSVH, SHIPPRO, EAGDMRT, RCH2SV5, RCH1S, CLASSNC

Archived Output File Name: PRO5A

TABLE 6.26b

PREDICTED ICEBREAKER FLEET BY HOME PORT AND PERIOD FOR RUN NO. 5

TC122366 6 8 6 6 8			CLASS	SD	٠						3	CLASS	၁						Ö	CLASS	SB				
- 1 2 2 3 2 3 6 - 6 8 8	LOCATION	3 4	1	ł	8	6	의	2	6	4	2	9	_	ω		-	1		- }	ı	7	8	9	2	
3 2912 4 3 3 4 4 3 3 3 3	THUNDER BAY TC	-			1	7	က	ı		•		စ					1]					•	•	
2 3 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Duluth	ო	,	ı	1	1	•		ı		4	,	Ì	Ċ	•					4	4	2	4	4	
2 3 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2	Presque Isle		1	52	12	ı	ı	1	1		ı	,	•	•	•		į			ı	١	ı		ı	
2 3 2 1 2	Sault Ste. Marie	1	ا د	1	_	ı	ı	1	ı	ı		,	_	•	•				<u>ო</u>		က	က	က	m	
2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	St. Ignace	ı		1	7	_	7	1	,	•						_		•		l	7	7	7	-	
2 3 2 1 -	TACONITE TC	- 3			-	_	7	ı	1	ı	4		_			_		ص ا		10	6 (7	6	ω	
	Escanaba	ო	2	•	•	,	ı	1			1			ľ	1	<u> </u>				1	4	1	ı	1	
- 5 1 4 3	Green Bay	1	_	1	ı	ı	ı	'	1	ı	,	i			1			'.		•	1	1	,	1	
- 2 8 3 2 4 3 4 4 3	Milwaukee	1	1	1	ı	•	ı	•	ı	ı		,	·	•			•		1	1	١	ı	ı	1	
- 2 8 3 2 4 3 4 3	Chicago		, 	ı	ı	ı	,	•	ı	ı		ı			•			•	1	1	•	ı	1	1	
- 2 8 3 2 4 3 4 4 4 4	Grand Haven	ı			١	1		•	,	,		,			•	_		'	•	'	•		1	1	
29 6 2 8 - 2 2 2 1 2 2 8 - 2 2 2 1 2 2 8 - 2 2 2 1 2 1 20 1 20 2 2 1 2 1 2 2 1 2 2 1 2 2 2 1 2 2 1 4 6 3 2 2 2 1 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2	OIL CAN TC	2 8			1	ı	ı	1	•	ı			m	•	•	_					4	1	•	1	
2 8 - 2 10 3 3 2 1 2 1 2 2 2 1 2 1 4 6 3 10 3 3 40 44 4 14 2 1 43 - 1 9 11 10 4 9 11 10 4 9 11 10 4	Saqinaw	5	!	•	1	•	1	1	•		ı	,		i					'	1	1	1	1	1	
2 8 - 2 3 3 2 1 1 20 3 3 2 1 1 20 3 3 2 1 1 20 1 20 1 20 1 1 1 1 2 2 1	Port Huron	1 1		1	1	•	1	ı	1	ı	1	ı	,	Ċ		_	•		~	7	7	_	j	7	
- 2 1 4 6 3	Detroit	1			7	1	ı	ı	ı	ı		<u>,</u>	0						ლ	m	7	_	ı	1	
- 2 1 4 6 3 3 4 - 4 - 6 2 2 - 1 1 12 2 1 2 4 - 1 4 6 6 2 2 - 1 1 12 2 1 4 3 - 1 9 11 10 4 4 3 - 1 9 11 10 4 9 11 10 4 3 3 4 1 3 3 4 1 3 3 4 1 3 3 4 1 3 3 4 1 3 3 4 5 3	Toledo			- (ı	•	•	,	ı	ı	•	1	i S	Ì						ı	1	ı	•	1	
- 1 - 4 3 24 - 1 4 6 6 2 6 11 10 4 9 11 10 4 9 11 10 4 9 11 10 4 9 11 10 4 9 11 10 4 9 11 10 4 9 11 10 4 9 11 10 4 9 11 10 4 9 11 10 4 9 11 10 4 9 11 10 4 9 11 10 4 9 11 10 4 9 11 10 4	Sandusky			က	1	•	ı	ı	ŧ	ı	ı	ı			•			1	'		ı	1	1	1	
- 2 - 1 1 12 2 1 24 - 1 4 6 6 2 6 2 - 6 3 3 40 44 4 14 2 1 43 - 1 9 11 10 4 3 3 4 1 3 3 4 1 3 3 4 1 3 3 4 1 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 3 4 5 3 3 4 5 3 3 4 5 3 3 4 6 5 4 2 4 6 5 4 2	Cleveland			1	ı	1	1	<u> </u>	i	ı		1	ຕ່	•	•		•						ı	1	
- 3 3 40 44 4 14 2 1 43 - 1 9 11 10 4 9 11 10 4 9 11 10 4 9 11 10 4 3 3 4 1 3 3 4 1	Buffalo	7		1	12	7		•	•	1		1	4		•				4		į	- 1	•	•	
	COAL SHOVEL TC	3			14	7	-					7 -	i	_	1	-			ر و	=	2	_ [1	1	
Bay =	Port Colborne	1			ı	ı	1			ı	1	,		·					ر ب			_	ı	ı	
Bay	Toronto	•	_	•	1	•	•		1	,	•	1			9	- 1			•	ĺ	ļ	1	•	1	
Bay 1 1 1	WELLAND TC	1			•	•	,		•		ı				!	-			ლ 		-	-	1	•	
Bay 1 1 1	Jswedo		1	ı	1	ı	•		1	1		ı		•	1	_		'	'	ı.	١	ı	ı	•	
1 1 1 4 5 3 4 6 5 4 2 3 4 5 5 2 3 5 4 6 5 2 5 2 5	iria		' 	1	_	ı	•	١	1	1	ı	_			1				س		2	က	ŧ	•	
1			_		-	•	ı	•	1			_			1				(T)		ည	က	•	1	
- 3 4 5 5 2 3 5 4 6 2 5 2 5 5 15 46 46 33 30 3 3 4 5 47 - 1 3 17 25 28 14 9	Montreal	-				ı	က	1	•										4			_	7	1	
- 3 5 5 5 2 3 5 3 4 6 4 8 10 4 2 - 5 15 46 46 33 30 3 3 4 5 47 - 1 3 17 25 28 14 9	Juebec	4		į		ιΟί	•	1		1			4		•					7	Ï	İ		1	
5 15 46 46 33 30 3 3 4 5 47 - 1 3 17 25 28 14 9	QUEBEC TC	3	1	- 1	i	വ	က		•	t	•		4			_			4	ω	.	_	~	•	
		5 15				~	~	1	•		7	7			•			۳.		7 25			6	<u></u>	

FOR TACONITE TASK COMMAND RESULTS OF RUN NO. 5 TABLE 6.26c

					Period				
ITEM	2	3	4	5	9	7	8	6	10
Number of Icebreakers ¹									
Class D	•	ı	3-23%	2-13%	ı	29-34%	15-09%	1-28%	2-22%
Class C	•	1	•	4-76%	1	1-20%	ı	•	•
Class 8	1	ı	3-83%	2-60%	10-53%	89-26	399- 2	9-51%	8-61%
TOTAL	1	1	6-53%	11-57%	10-53%	39-39%	22-27%	10-49%	10-53%
Direct Assists									
by Class D	1	1	39	7	ı	69	34	15	23
hy Clace C	•	1	1	122	•	ഹ	ı	•	•
by Class R	1	•	1	ო	154	154	135	147	139
TOTAL	1	1	39	132	154	218	169	162	162
Total Time (hr)	ı	•	235	1131	637	4033	1100	69/	803
Total Miles	•		944	4451	3797	19471	7410	4322	4894
Convoys Escorted									
by Class D	ι	t	ı	ı	1	ı	1	ı	,
by Class C	ı	ı	•	1	1	ı	ı	,	
by Class B	1	ı	96	78	95	84	9/	72	80
1018	t	ı	96	78	95	84	9/	72	80
Total Time (hr)	ı	ı	840	896	1161	1063	927	877	978
Total Miles	1	t	0299	7870	10372	9557	7773	7847	8853
Avg. Size of Queues ²									
Direct Assistance	ı	ı	0	_	~	4	4	_	,
St. Marys R. Convoy	1	ı	32/1	21/18	19/24	14/19	13/11	15/13	16/14
Straits Convoy	•	ı	ı	4/6	2/8	4/8	4/6	5/3	4/4

TABLE 6.26d RESULTS OF RUN NO. 5 FOR OIL CAN TASK COMMAND

					Period				
ITEM	2	က	4	5	9	7	80	6	10
Number of Icebreakers ¹									
Class D	•	2-11%	8-10%	3-21%	2-16%	ı		•	•
Class C	i	ı	ı	1	4-26%	3-15%	1	ı	t
Class B	ı	ı	J	1	ı	4-13%	1		ı
TOTAL		2-11%	8-10%	3-21%	6-23%	7-14%	1	1	1
Direct Assists									
by Class D	•	6	21	12	ო	ı	ı	1	ı
by Class C		ı	ı	•	29	9	•	•	•
by Class B	ı	1	ı	ı	•	23	i	ı	1
TOTAL	ı	6	21	12	32	29	ı	ı	1
Total Time (hr)	1	77	252	208	454	326	ı	•	ı
Total Miles	1	312	2228	1022	1524	2208		•	1
Convoys Escorted									
by Class D	•	ı	ı	ı		•	1		1
by Class C	ı	•	,	1	1		1	1	1
by Class B	1	t	ı	Į	ı	ı	ı	,	•
TOTAL		1	•	,	•	•	•		•
Total Time (hr)		1	ı	ı	ı	•	1	ı	
Total Miles	ı	ı	i	1	ı	ı	1	ı	1
Avg. Size of Queues									
Direct Assistance	•	0		0	0	0		1	•

NOTE: 1. Second number is average percent time utilized.

FOR COAL SHOVEL TASK COMMAND RESULTS OF RUN NO. 5 TABLE 6.26e

					Period				
ITEM	2	8	4	5	9	7	8	6	10
Number of Icebreakers ¹									
Class D	•	3-10%	3-19%	40-34%	44-36%	4-58%	14-22%	2-13%	1-04%
Class C	1	ı	ı	1	r	43-32%	ı	1-29%	
Class B	1	•	•	9-45%	11-51%	10-42%	4-15%	0	•
TOTAL	1	3-10%	3-19%	49-36%	25-39%	57-36%	18-21%	3-18%	1-04%
Direct Assists									
hy Class D	•	10	20	92	119	ω	22	2	4
by Class C	1	•	•	•	1	123	ı	22	1
by Class &	1	ı	ı	54	47	34	56	1	1
TOTAL	,	10	20	146	166	165	48	24	4
Total Time (hr)	ı	86	190	5263	6304	6919	1250	183	13
Total Miles	ı	731	889	26331	32468	30057	6027	1047	09
Convoys Escorted			,						
by Class D	,	ı	ı	1	1	1	1	1	•
by Class C	•	•	1	1	ı	,		,	ı
by Class B	1	ı	ı	51	99	22	က	ı	ı
TOTAL	ı	•	1	51	99	57	က	ı	1
Total Time (hr)	•	1	1	099	854	695	20	ı	t
Total Miles	•	ı	1	5463	9269	2260	389	•	•
Avg. Size of Queues ²									
Direct Assistance	1	0	0	9	4	വ	2	0	0
Detroit/St. Clair Convoy	ı	1	1	14/15	17/13	14/11	í	1	ı

FOR SEAWAY TASK COMMAND RESULTS OF RUN NO. 5 TABLE 6.26f

					Period				
ITEM	2	3	4	5	9	7	80	6	10
Number of Icebreakers ¹									
Class D	1	1	1-25%	1-32%	ı	•	1-24%	ı	•
Class C		ı	•	ı	1-36%	ı	ı	t	•
Class B	ı	ı	ı	3-77%	4-85%	5-57%	3-62%	i	ı
TOTAL	ı	ı	1-25%	4-66%	2-75%	2-57%	4-52%	ı	ı
Direct Assists									
	1	1	c	5			¥		
by class u	1	ı	J	t	, (1	9	•	t
by Class C	1	ı	•	,	ת	•	1	ı	1
by Class B	ı		•	ı	9]3	2	•	1
TOTAL	ı	ı	2	4	15	13	∞	•	1
Total Time (hr)	•	i	83	106	201	144	103	1	ı
Total Miles	ı	ı	519	458	1065	888	216	,	ı
convoys escorted									
by Class D	1	f	ı	ı	1	1	ı	1	1
by Class C	1	•	•	ı	ı	ı	ı	1	ı
by Class B	1	•	•	32	44	32	25	•	ı
TOTAL	ı	,	1	32	44	32	25	1	1
Total Time (hr)	•	ı	ı	778	1060	809	109	1	1
Total Miles	•	1	ı	7395	10095	7575	5685	1	1
Avg. Size of Queues ²									
Direct Assistance	ſ	ı	0	0	0	0	0	ı	r
St. Lawrence Seaway									
Convoy	ı		1	1/3	3/2	1/3	0/4	1	1

TABLE 6,26g **EXTENDED SEASON TONNAGE** BY ROUTE FOR RUN NO. 5

IRON OR	E-LAKER	IRON OF	RE-LAKER	COAL-	LAKER	GRAIN-	-LAKER
Route	Tons	Route	Tons	Route	Tons	Route	<u>Tons</u>
1 2 3 4 5 6 8 9 10 11 12 13 14 15	645 1026 569 161 872 876 1399 1429 872 995 1721 1643 863 602 1160 869	22 23 24 26 27 28 29 30 32 33 34 35 37 38	649 874 1023 602 438 605 1041 1445 542 859 610 489 1034 912 998 628	44 45 46 47 48 49 51 53 54 56 57 58 59 60	1072 1089 1088 449 2856 1039 1187 181 978 121 100 226 224 594 1890 155	74 75 76 77 78 80 81 83 85 TOTAL	- 641 1372 50 100 - 50 2213
19 20 21	475 283	41 42 TOTAL	937 30146	63 64 65 66 68 69	293 221 1357 201 201	GENERAL SAI <u>Route</u> 87	CARGO- TY Tons 455
				70 71 72 TOTAL	427 607 2532 19089	67	+00

	BULK CAF	RGO-SALTY
	Route	Tons
	88	6226
	89 90	2639 710
Maximum Number of Vessels:	90	331
Lakers: 209	92	444
Salty General Cargo: 30	93	606
Salty Bulk: 129	TOTAL	10956
52.5, 52.m	GRAND TOTAL	62859

NOTES: 1. Units are thousands of short tons.
2. Extended season consists of nine 14-day periods.

TABLE 6.27a

SUMMARY OF INPUT CONDITIONS FOR RUN NO. 6

Winter Type: Normal Minimum Laker Class: 5

Run Mode: Maximum Response Time

USCG Estimated Fleet: N.A. MRT (hr): Minimum + 12

Convoying Icebreaker Types: No Convoys Channel Clearing (in/per): None

Cargo Tonnage (year): 2000

Convoy Routes:

Location	Reaches	Periods
St. Marys River	51	-
St. Marys River/Whitefish Bay	50,51	-
Straits of Mackinac	53	-
Detroit/St. Clair River System	72,73	-
Welland Canal	89	-
U.S. St. Lawrence Seaway	95	-
Canadian St. Lawrence Seaway	96	-

Data Files Used: SPDNRL, SPDNRM, SPDNRH, SHIPPRO, EAGDMRT, RCH2NC, RCH1S,

CLASS

Archived Output File Name: PRO6A

TABLE 6.27b

「大きな人を作りません」というできませんというできない。 かいました かっちょう しょうしん

PREDICTED ICEBREAKER FLEET BY HOME PORT AND PERIOD FOR RUN NO. 6

				리	CLASS	۵							CLASS	SS	ပါ						귕	CLASS	<u>a</u>			
LOCATION	~	က	4	5	9	7	ω	9	일	2	m	4	2	9	7	8	9	2	m	4	2	9	7	8	9	2
THUNDER BAY TC	ı	1	1	က	1			_	1	1			1	3 4	· ·	1	ı	ı	ı	•	ı			4		, -
Duluth	ı	•	2	, ,	1	. 1		ı	_			-	0	1		1	ı	'	ı	ı		=	9	0	2	1
Presque Isle	1	ı	_	ı	•	,		ı	1	t	1	•	ı	1		1		'	1	1	ι	,		1	1	
Sault Ste. Marie	•	ı	ı	7	6	33	ω	1	∞	ı	1	1	1	'	ω.	14	1	'	1	i	ı	1	,	ı	1	_
St. Ignace	•	•	1	'	က	4	7		7	1		,		'		2	•	<u>'</u>	1	١	•	,	1			П
TACONITE TC	1		9	7	15	7	9	-	_	ı	1	7	0		∞	24	1	1	ı	1	1	=	6	0	2	1
Escanaba	, 	ı	1	4	15	4	3	2	1	t		,	ı	1		ı	ı	ı	ı	ı	ı	i	1		ı	
Green Bay	ı 	1	ı	1	ı	ı	•	ı	1	ı	ı	ı	ı	,		1	1	1	ı	t	ı	1	ı	ı	,	_
Milwaukee	١	ı	ι	ı	ı	3	,	ı	· · ·	ı	ŧ	,	ı	'		1	ı	1	•	ı	ı	,	ı	ı		
Chicago	1	•	1	1	1	J	ı	1	ı	1	ı	ı	1	'	!	•		ı	1	1	ı	,	ı	ı		
Grand Haven	1	:	١	ı	1	1	,		•	1	ı		1	1	1	ı	•	'	'	1	٠	,				_
OIL CAN TC			,	4	15	4	3	2	,	ı	ı	ı				1	•	'	•	ı	ı	,	ı			_
Saginaw	1	ı	ı	•	ı	ı	ı	1	1			ι	1	· '		ı	ı	'	1	1	1		ı	,	,	
Port Huron	•	ı	ı	1	ı	1	ı	1	ı	1	ı	ı		'		١	ı	<u>'</u>	ı	•	ı	ı	ı		1	
Detroit	,	ı	ŧ	ည	9	7	1	ı	,	ı		ı		1		ŧ	•	1	ı	1	1	ı	ı	,	ı	_
Toledo	ı	•	1	9	4	ı	ı	,	1	ı	1	,		,		1	ı		1	1	1	ı	ı	1	ı	 -
Sandusky	1	ı	ı	1	ı	ı	ı	ı	1	1	ı	1	,	'		1	i	1	ı	ı	ı	ı	1	ı		_
Cleveland		ı	1	<u>—</u> г	L		t	ı	1	ı	1	1			1	1	ı	<u>'</u>	1	ı	1	ı		,	,	_
Buffalo		1	1 (-	_:	-i	; • ;	•	1	1		-		ດ	'	'	•	'	•	•						. 1
COAL SHOVEL TC	1	1	•	19	51	m '	1 :	1	1	1	i		į	2		•	•	'	1	•	•				,	1
Port Colborne		ŧ	1	ı	1	•	1	1	ı	ı	•	1		'		1	ı	'	1	1	1	1	1		ı	
Toronto	1	•		1	ı	1	ı	1	1		ı	1	 	1	t l	•	•	'	1	'	ι				,	1
WELLAND TC	1	1	1	1		 • • •			ı	ı	ı	,		1	• j	'		'	•	-	ı			,		1
Oswego	ı	ı	ı	•	ı	ı	1	1				1	1	1		1	ı	<u>'</u>	•	ı	•	ı				
Alexandria Bay	ı	ı	ı	ı	က	4	_	,	,	ı	ı	ı		'		1	ı	1	i	J	ı	ı	1	ı	ı	_
SEAWAY TC	1	•	1		က	4	-	1	,			•		• •	•	1		'	•	1	٠			,	,	
Montreal	1	ı	ı	1	7	4	1	ı	,		ı		1			•	ı	<u>'</u>	1	ı	•	,				
Quebec	ıi i	m.	4	ည	က	2	က	7	4	1		ı,	4	3		1 i	•	· '	1 {	1	1	9	2	5	_ ,	
QUEBEC IC	•	က	4	ြည	2	9	က	2	4	1		1	4		- 1		1 :	1	1	1	1	و	2	2	_	11
U.S.	1	ı	9	30	51	. 82	30	2]	=	ı	ı	-	0		ω.	24	ı	Ī	1	ı	1	Ξ	9 1	0 1	~	-

FOR TACONITE TASK COMMAND RESULTS OF RUN NO. 6 TABLE 6.27c

					Period				
ITEM	2	3	4	5	9	7	8	6	10
Number of Icebreakers ¹									
Class D	•	•	%6-9	7-44%	12-48%	17-38%	16-44%	ı	11-37%
Class C	•	1	1	10-13%	1	ı	8-54%	24-44%	ſ
Class B	ı	ı	1	ı	11-11%	9-13%	10-9%	12-10%	1
TOTAL	ı	t	%6 - 9	17-26%	23-31%	26-29%	34-36%	36-33%	11-37%
Direct Assists									
by Class D		•	35	83	117	123	79	•	16
by Class C	,	1	i	132	ı	ı	74	190	ı
by Class B	,	ı	1	ı	137	135	100	126	ı
TOTAL	,	1	35	215	254	258	253	316	91
Total Time (hr)	,	1	181	1470	2364	2554	4123	3935	1431
Total Miles	,	ı	1379	7610	12427	12535	16628	20611	8446
Convoys Escorted									
by Class D	,	1	•	1	1		1	•	•
by Class C	,	1	ı	1	1	ı	1	1	ı
by Class B	,	1	ŧ	1	1	ı	ı	1	,
TOTAL	1	•	ŧ	ı	1	ı	,	1	,
Total Time (hr)	,	ı	ı	1	1	1	1	ı	,
Total Miles	1	ı	•		•	•	1	•	,
Avg. Size of Queues ²									
Direct Assistance	1	1	_	2	2	_	2	2	_
St. Marys R. Convoy	1	1	ı	1	ı	1	ı	ı	,
Straits Convoy	1		•	1	1	ı	ı		ı

TABLE 6.27d
RESULTS OF RUN NO. 6
FOR OIL CAN TASK COMMAND

ITEM	2	m	4	ည	Period 6	7	ھ	6	10
Number of Icebreakers¹ Class D Class C Class B TOTAL	111	1111	1 1 1 1	4-10%	15-17% - 15-17%	4-10%	13-17%	2-8%	1 1 1 1
Direct Assists by Class D	1	1 1		ω,	35	9 .	- 28	ω,	1 1
by Class C by Class B TOTAL Total Time (hr) Total Miles				. 8 129 1129	35 832 8320	- 6 128 1164	- 28 730 6811	- 8 53 537	
Convoys Escorted by Class D by Class C by Class B TOTAL Total Time (hr)		1 1 1 1 1	1 1 4 4 12 1	, , , , , , ,	1 1 1 1 1 1	1 1 1 1 1 1		1 1 1 1 1 1	1 1 2 1 1 1
Avg. Size of Queues Direct Assistance	1	1	ı	-	က	_	2	0	ı

NOTE: 1. Second number is average percent time utilized.

FOR COAL SHOVEL TASK COMMAND RESULTS OF RUN NO. 6 **TABLE 6.27e**

FOR SEAWAY TASK COMMAND RESULTS OF RUN NO. 6 TABLE 6.27f

					Period				
ITEM	2	3	4	5	9	7	8	6	10
Number of Icebreakers ¹									
Class D	•	1	ı	•	3-23%	4-12%	1-43%	ı	1
Class C	ı	•	1		1	ı	ı		•
Class B	1	•	•	ı	i	3 ,	•	ı	1
TOTAL	1	ı	•	1	3-23%	4-12%	1-43%	ı	ı
Direct Assists									
by Class D	ı	•	,	•	9	9	ಶ	•	ı
by Class C	ı	•	ł	ı	ſ	1	ı	ı	ı
by Class B	ı	•	,	•	4	i	ı	ı	•
TOTAL	•	1	,	1	9	9	4	1	1
Total Time (hr)	1	ı	,	ı	229	158	143	ı	•
Total Miles	•	•	,	•	1305	1160	1015	ı	1
Convoys Escorted									
by Class D	1	•	ı	ı	,	ı	ı	ı	ı
by Class C	•	ı	ı	ı	•	ı	Ī		•
by Class B	ı	1	ı	1	•	ı		ı	ı
TOTAL	1	1	ı	1	,	•	1	ı	
Total Time (hr)	1	ſ	1	ı	,	ı	•	ı	1
Total Miles		i		1	ı	•		ı	•
Avg. Size of Queues ²									
Direct Assistance	ı	r	1		0	 -	0		•
St. Lawrence Seaway Convoy	ı	•	ı	•	ı	•	ι	•	1

TABLE 6.27g **EXTENDED SEASON TONNAGE** BY ROUTE FOR RUN NO. 6

		•					
IRON OR	E-LAKER	IRON OR	E-LAKER	COAL-	LAKER	GRAIN	-LAKER
Route	Tons	Route	Tons	Route	Tons	Route	Tons
1 2 3 4 5 6 8 9 10 11 12 13 14 15	647 1027 572 162 873 876 1408 1484 878 1000 1731 1660 878 605	22 23 24 26 27 28 29 30 32 33 34 35 37 38	649 875 1026 601 438 605 1044 1443 559 878 613 497 1035 915	44 45 46 47 48 49 51 53 54 56 57 58 60 61	1081 1089 1092 448 2879 1040 1190 978 121 100 226 224 597	74 75 76 77 78 80 81 83 85 TOTAL	- 652 1350 50 99 - 50 2201
19 20 21	881 476 283	41 42 TOTAL	641 934 30394	63 64 65 66 68 69 70 71 72 TOTAL	155 293 221 1357 201 201 439 606 2531	GENERAL SAI <u>Route</u> 87	CARGO- LTY <u>Tons</u> 430

	BULK CAR	RGO-SALTY
	Route	Tons
	88 89	6265 2644
Maximum Number of Vessels:	90 91 92	708 330 443
Lakers: 153 Salty General Cargo: 26 Salty Bulk: 100	93 TOTAL	602 10992
	GRAND TOTAL	63198

NOTES: 1. Units are thousands of short tons.
2. Extended season consists of nine 14-day periods.

TABLE 6.28a

SUMMARY OF INPUT CONDITIONS FOR RUN NO. 7

Winter Type: Severe Minimum Laker Class: 5

Run Mode: Maximum Response Time

USCG Estimated Fleet: N.A. MRT (hr): Minimum + 12

Convoying Icebreaker Types: C,B Channel Clearing (in/per): None

Cargo Tonnage (year): 2000

Convoy Routes:

Location	Reaches	Periods
St. Marys River	51	4
St. Marys River/Whitefish Bay	50,57	5-10
Straits of Mackinac	53	5-10
Detroit/St. Clair River System	72,73	5-7
Welland Canal	89	5-7
U.S. St. Lawrence Seaway	95	5-8
Canadian St. Lawrence Seaway	96	5-8

Data Files Used: SPDSVL, SPDSVM, SPDSVH, SHIPPRO, EAGDMRT, RCH25V5, RCH1S,

CLASS

Archived Output File Name: PRO7A

TABLE 6.28b

PREDICTED ICEBREAKER FLEET BY HOME PORT AND PERIOD FOR RUN NO. 7

_	9 10	1	4	1	m m	1	7	1	,	•	,	1	1	,	1		ı	ı	ı	1	1	-	1	1	ı	·		2 -	1 1	7	7 8
	8	•	2	ı	ı	1	7	1	1	ı	1	ı	•	1	ı	•	1	1	ı	7	7	1	1	1	ı	~	2	2		9	9
8	7	7	က	1	1	١	က	4	í	1	i	1	4	}	ı	1	ı	1	•	ည	ഹ	3	,	က	,	4	*	9	က	0	16
ASS	စ	1	4	1	1	•	4	•	ı	ı	ı	ı	•		ı	ı	1	•	ŧ	3	ഹ	ı	1	•	1	1		9	1	/	6
리	5	ı İ	ı	ı	1	ı	1	•	ı	ı	ı	ı	١	1	ı	•	1	•	í	4	4	1	1		1	4		. 1	1 .	1	4
	4	1	1	ı	ı	,	,		1	J	1	ı	1	1	1	•	ı	١	1	•	٠	ı	ı	1	1	•		1	•	1	٠
	က	1	1	1	ı	1		•	1	1	1	ı	ı	1	1	١	•	ı	1			ı	ŧ.		1	1	1	•	•	t ,	ı
	7	1	•	•	•	•	•		ı	:	1	1	,	,	ı	ı	ı	ı	١	ı	1	ı	•	1	1	ı	1		1	•	ı
-	2		,	,	ı	3	3	ı	,	,	ı	1	1		,	ı	ı	1	,	1	,	1	•	ı	ı	ı			1		က
	0	1	1	ı		က	က		ı	ı	ı	ı	1		,	ı	ı	ı		4	4		1	,		1					7
	æ	5	1	ı	∞	4	12		ı	ı	ı	ı	,		က	_	1	ı	ı	,	4	က	ı	က		ι	ı	ļ 1	9	9	9[
2	7	•	1	•	∞	က	=	1	က	ı	ı	1	က	1	က	6	9	_	4	19	42	ı	ŧ		ı	ı		•	3	က	99
CLASS	9	က	,		7	~	6	က	ı	1	,	1	m	ı	က	4	ı	ı	ı	1	_	ည	I.	ഹ	ı	=	=	•	•	•	30
리	2	ı	2	ı	9	2	13		ı	1	ı	ı	•	•	က	4	1	ı	1	•	~	က	L	က	1	Ŋ	က	7	1	~	25
	4		1	!	4	• •	4		ı	ı	1	ı		ı	1	1	1	1	ı	ľ		•	1		ı	ı		•	T	1	4
	က	,	J	1	ı	ı	1		1	1	١	1	t	•	1	•	ı	١	1	ı	,	•	t	ı	ı	ı		ı	1	1 .	ı
	2	1	ı	1	1	ι	1	1	1	1	1	t	ı		1	ı	ı	ı	ı	ı	,	ı	1	L	ı	ı	١	ı	1	1	1.
	2	က	•	ı	ı	7	7	ı	ı	ı	1	ı	1	•	6	1	•	ı	ı	_	~	,	ı	1	ı	1	,	2	1	2	ω
	9	ı	ı	•	ı	~	~	ı	ı	ı	ı	•	1	ı	ı	ı	ı	ı	1	က	က	١	ı	ı	1	ı			/	~	2
	∞	ı	ı]3	_	_	5	1	ı	ı	ı	•	ı	ı	ı	_		ι	ı	14	91	ı	ı		ı	_	_		က	က	32
	~	ı	1	. 72	ŧ	ı	27	J	ı	ı	1	1	1	ı	1	1		0	ı	_	က	ı	١	ι	1	i	ı		2	ر	30
CLASS	9	1	ı	ı	•	ı	ı	ı	_	•	•	ı		9	1	∞	9	2	က	-	42	1	ı į	1	ı	ı	ı	ı	വ	ည	43
귕	2	7	ı	1	4	1	4	2	ı	ı	_	,	က	30	ı	4		က	4	1	42		1		1	_	_	•	ည	S.	20
	4	-	က	ı	ı	1	က	က	1	ı	5	ı	æ	ı	ı	1	1		ı	_	2	ı	1	• !	1	_		,	4	ည	14
	က	1	ı	ı	ı	ı	1	2	1	ı	ı	r	7	ı	ı	ı		~	_	1	က	,	1	•	1	ı		1	က		2
	2	,	ı	1	ı	ı		ı	•	1	1	1	ı	ı	ŧ	ı	ı	ı	ı	•	1	•	ı	•	ı	ı	t	ı	1	1	ŧ
	LOCATION	THUNDER BAY TC	Duluth	Presque Isle	Sault Ste. Marie	St. Iqnace	TACONITE TC	Escanaba	Green Bay	Milwaukee	Chicago	Grand Haven	OIL CAN TC	Saginaw	Port Huron	Detroit	Toledo	Sandusky	Cleveland	Buffalo	COAL SHOVEL TC	Port Colborne	Toronto	WELLAND TC	Oswego	Alexandria Bay	SEAWAY TC	Montreal	Quebec	QUEBEC IC	U.S.

FOR TACONITE TASK COMMAND RESULTS OF RUN NO. 7 TABLE 6.28c

					Period				
ITEM	2	3	4	LC.	9	7	8	6	10
Number of Icebreakers ¹									
Class D	ſ	1	3-24%	4-10%	ı	27-34%	15-9%	2-19%	7-10%
Class C	1	1	4-89%	13-66%	898-6	11-82%	12-70%	3-57%	3-54%
Class B	,	•	ı	ı	4-44%	3-55%	2-87%	7-55%	8-52%
TOTAL	ı	1	2-61%	17-53%	13-73%	41-49%	29-40%	12-50%	18-36%
Direct Assists									
by Class D	ŧ	ŧ	40	10	1	57	32	19	34
by Class C	•	ı	r	120	4	28	13	2	ı
by Class B	ı	t	r	•	148	127	130	132	133
TOTAL	ı	•	40	130	152	212	175	156	167
Total Time (hr)	ı	,	241	1102	658	3914	1196	788	821
Total Miles	ı	ı	922	3966	3825	19073	7681	4174	4234
Convoys Escorted									
by Class D	ı	ı	,	ſ	t	ı	1	ı	ι
by Class C	•	1	146	146	177	158	129	38	42
by Class B	1	ı	1	,	•	ı	1	46	52
TOTAL	1	ı	146	146	17.7	158	129	84	97
Total Time (hr)	ı	,	1188	1914	2522	2786	2680	1212	1349
Total Miles	ı	1	9292	16060	18276	17024	14442	8098	9899
Avg. Size of Queues ²									
Direct Assistance	1	•	0	0	_	#	S	0	
St. Marys R. Convoy	1	•	31/2	20/19	17/24	14/18	15/12	15/14	17/13
Straits Convoy	i		i	a/c	0/6	0/6	C / F	۲/7	t ()

۳. % NOTES:

TABLE 6.28d RESULTS OF RUN NO. / FOR OIL CAN TASK COMMAND

					Period				
ITEM	2	3	4	5	9	7	8	6	10
Number of Icebreakers ¹									
Class D	ı	2-11%	8-11%	3-23%	1-24%	,	ı	ı	1
Class C	ı	,	,	,	3-34%	3-15%	ı	1	ı
Class B	ı	,	,	,	1	4-13%	•	•	1
TOTAL		2-11%	8-11%	3-23%	4-32%	7-14%	1	ı	1
Direct Assists									
by Class D	ı	6	21	. 12	m		ı	,	1
by Class C	•	,	•		29	9	•	•	•
by Class B	1	1	ı	1	•	22	ı	,	ı
TOTAL	•	6	21	12	32	5 7 8	ı	ı	ı
Total Time (hr)	•	77	286	230	427	320	1	ı	ı
Total Miles	,	312	2263	1123	1376	2160	ı	r	ı
Convoys Escorted									
by Class D	1	•	ı	•	ı	ı	1	ı	•
by Class C	•	ı	1	•	1	ı	ı	•	ı
by Class B	•	ı	ı	•	1	ı	,	ı	•
TOTAL	1	ı	ı	•	ı	,	,	ı	ı
Total Time (hr)	1	ı	ı	,	1	1	ı	•	•
Total Miles	ı	ı	ı	ŧ		1	ı	1	1
Avg. Size of Queues									
Direct Assistance	1	0	_	0	0	_	1	1	1

NOTE: 1. Second number is average percent time utilized.

FOR COAL SHOVEL TASK COMMAND RESULTS OF RUN NO. 7 **TABLE 6.28e**

					Period				
ITEM	2	3	4	5	9	7	8	6	10
Number of Icebreakers ¹									
Class D	1 1	3-10%	2-29%	42-35%	42-36%	3-78%	16-21%	3-13%	1-4%
Class B	•	ı	. ,	4-36%	5-58%	5-38%	2-24%	2	1
TOTAL	ı	3-10%	2-29%	52-38%	54-44%	50-45%	22-20%	7-9%	1-4%
Direct Assists									
by Class D	ı	10	20	66	117	7	24	ო	4
by Class C	•	ı	•	4	2	120	1	22	ı
by Class B	ţ		ı	42	46	27	56	1	1
TOTAL	ı	10	20	145	165	154	20	25	4
Total Time (hr)	•	66	192	5479	6143	5629	1317	220	13
Total Miles		731	702	26597	31507	26817	6342	1284	09
Convoys Escorted									
by Class D	•		ı	•	•	ı	1	•	
by Class C	•	ı	ı	101	126	Ξ	6	ŀ	ı
by Class B	1	1	ı	1	1	1	ł	ı	
TOTAL	ı	1	1	101	126	111	6	,	•
Total Time (hr)	r	•	1	1277	1791	1934	143	ı	
Total Miles	ı	1		10283	13467	13377	1121		1
Avg. Size of Queues ²									
Direct Assistance	1	0	0	5	4	2	2	_	0
Detroit/St. Clair				,	; ; ;				
Convoy	•		1	15/14	15/15	12/15	ı	ı	•

TABLE 6.28f

FOR SEAWAY TASK COMMAND RESULTS OF RUN NO. 7

					Period				
ITEM	2	3	4	5	9	,	8	6	02
Number of Icebreakers ¹									
Class D	1	1	1-25%	1-32%	t	ı	1-28%	1	ı
Class C	1	J	i	5-84%	11-71%	1	1	ı	ı
Class B	ı	1	1	ı	1	4-71%	2-82%	ı	•
TOTAL		1	1-25%	6-75%	11-71%	4-71%	3-64%	•	•
Direct Assists									
hy Class D	ı	,	^	4	ı	1	7	ı	1
by Class C	ı	ı	1	. 1	12	•	. 1	1	1
by Class B	1	ı	ı	1		75	1	1	ı
TOTAL	1	ı	2	4	12	15	7	ı	ı
Total Time (hr)	ı	ı	83	106	224	175	94	•	ı
Total Miles	•	1	519	458	972	1104	408	•	t
Convoys Escorted									
by Class D	ı	•	ı	! !	, ;	ı	ı	ı	ı
by Class C	ı	1	ı	4/	54	, ;	ı	ı	1
by Class B	1	1	•	•	í	<u>.</u>	22	1	•
TOTAL	1	•	ı	47	54	33	22	ı	1
Total Time (hr)	1	1	•	1403	2415	920	549		ı
Total Miles	ı	1	ı	9570	311115	7780	5220	1	1
Avg. Size of Queues ²									
Direct Assistance	1	١	0	0	_	_	0	1	ı
St. Lawrence Seaway Convoy		ı	ı	2/4	3/4	1/3	0/1	1	•
					•	•	•		

NOTES:

Second number is average percent time utilized. First entry is upbound, second is downbound; DA Queues indicate vessels which are waiting, while Convoy Queues denote vessels which have established an ETA at convoy points and in general are not waiting.

TABLE 6.28g EXTENDED SEASON TONNAGE BY ROUTE FOR RUN NO. 7

IRON OR	E-LAKER	IRON OR	E-LAKER	COAL-	LAKER	GRAIN-	-LAKER
Route	Tons	Route	Tons	Route	Tons	Route	Tons
1 2 3 4 5 6 8 9 10 11 12 13 14 15	647 1022 569 159 874 874 1403 1428 875 994 1706 1640 863 592 1155 872	22 23 24 26 27 28 29 30 32 33 34 35 37 38	649 874 1022 603 437 606 1041 1440 542 870 612 490 1034 913 996 630	44 45 46 47 48 49 51 53 54 56 57 58 60	1069 1088 1090 450 2861 1039 1186 181 978 121 100 226 224 594	74 75 76 77 78 80 81 83 85 TOTAL	- 640 1376 50 101 - 50 2217
19 20 21	473 283	41 42 TOTAL	938 30126	63 64 65 66 68 69 70 71 72 TOTAL	155 293 221 1357 201 201 434 607 2533 19148	GENERAL SAI <u>Route</u> 87	CARGO- LTY <u>Tons</u> 453

	BULK CA	RGO-SALTY
	Route	Tons
Maximum Number of Vessels: Lakers: 206 Salty General Cargo: 30 Salty Bulk: 130	88 89 90 91 92 93 TOTAL GRAND TOTAL	6214 2638 703 332 444 602 10933 62877

NOTES: 1. Units are thousands of short tons.
2. Extended season consists of nine 14-day periods.

TABLE 6.29a

SUMMARY OF INPUT CONDITIONS FOR RUN NO. 8

Winter Type: Severe Minimum Laker Class: 6

Run Mode: Maximum Response Time

USCG Estimated Fleet: N.A. MRT (hr): Minimum + 12

Convoying Icebreaker Types: C,B Channel Clearing (in/per): None

Cargo Tonnage (year): 2000 (Class 5 Laker tonnage assumed carried in

normal season)

Convoy Routes:

Location	Reaches	Periods
St. Marys River	51	6-10
St. Marys River/Whitefish Bay	50,51	-
Straits of Mackinac	53	7-10
Detroit/St. Clair River System	72,73	None
Welland Canal	89	6-7
U.S. St. Lawrence Seaway	95	5-8
Canadian St. Lawrence Seaway	96	5-8

Data Files Used: SPDSVL, SPDSVM, SPDSVH, SHIPNC5, EAGDMRT,

RCH2SV6, RCH1S, CLASS

Archived Output File Name: PRO8A

TABLE 6.29b

日本の一般にないという 一大人の一大人の一人となり

PREDICTED ICEBREAKER FLEET BY HOME PORT AND PERIOD FOR RUN NO. 8

	2		4	1	4	1	ω	1	1	1	7	•	1	1	1	1	1	7	7		1	1	1	1	1	7	1		1	1 1	Ţ	8
	6	1	9	ı	က	ı	6	ı	ı	,	1	ι	ı	1	ı	ŧ	ı	1	1	ı ļ	ı	ı	1	1	ı	ı		; ; ;	7	١	1	6
	8	•	4	•	1	ŧ	4	1	•	1	ı	1			1	ı		ı	1 (7	~	ı	1	1	1	3	က	! <	4	٠ ٧	-	0
8	7	2	က	ı	ı	•	က	1	1	ı	1	•	1	,	1	ſ	•	ı		ဂျ်	വ	က	1	m		5	ြင	L	n n	ກ α	,]3
CLASS	9	ŧ	က	ı	,	,	က	,	,	1	ı	,	1	,	ı	ı	ı	ı		4	4	1	1		ı	ı	. 1	Ų	n	ו ער)	7
긩	2	1	ı	1	1	ι			•	ι	ı	1	ı	ı	1	ı	ı	•	. •	4	4	1	1	1	1	ı			ι	1 . 1	•	4
	4	1	ı	ı	ı	ı		•	ı	ı	ı	ı	ı	•	1	ı	ı	ı	1	•	ı	ι	•	r	,	ı			ı	e ja		1
	8	1	ı	•	•	•	•		•	,	ı		t	,	,	,	ı	ı	,	1	,	1		1	ı	•	1		ı			1
	2	1	1	ı	ı	ı		•	ı	ı	ı	ı	ı	ļ .	ı	ı	1	•	1	1		ı	1 ;	•	ı	1	:		1			•
_	_						-					_								- 	- 1							-	_			
	2	1	1	1	_	7	က	•	1	ı	1	1	1	1	1	1	1	١	t	1	•	1	1 1	1	1	•	1		•			က
	0	ı,	ı	1	_	7	က	1	1	1	ı	ı	•	1	•	1	•	1	1 (ا در	m	1	• /	•	,	_	_		1	, ,		/
	8	က	•	1	9	8	∞	,	•	1	1	1	ı	1	1	,	•	ı	ı	,	ı	က	1	m,	1	ı	•		1 4	ນ ດ		8
S	7	1	•	1	2	N	/		က	ŀ	•	1	က	1	4	ω	ω	1	~ ;	ς ₇	47	1	1	1	1	1	ŧ		1 0	70	1	57
CLASS	9	4	ı	ı	4	1	4	1	1	ı	1	1	1		1	1	1	1	1	ı ;	1	9	• ()	9	ſ	œ	ာ		1 0	ソロ	J	12
ଅ∤	2	1	6	ı	1	1	9	1	ſ	•	ſ	1	ı	•	ı	,	,	,	•	:	,	1	ı	1	1	4	4	٢	_	- 1	•	13
	4	1	1	5	ı	ı	1	ı	1	ı	1	1	1		1	1	•	•	1	1 :	1 .	ı	1.	•	•	ı	. 1		ı	• •		•
	က	1	1	ı	•	1	,	1	1	1	ı	1	ı	•	1	ı	1	1	ı	1	1	1	1	•	1	1	1		1	, ,		1
÷	2	1	1		<u>'</u>	١	•	'	•	1	1	. 1	_	1	•	1	•	'	_	1	•	1		,	1	,	,		,	, ,		
	9	ı	ı	ı		1	,	ı	1	1	ı	ı	ı	1	1			ı		:	1 4	1	ı	ı	1	1	1		ı			•
	6	,	1	ı	1	ı	ı			1	ı	1	t	1	ι	i	ŧ	ŧ	•	d		1	ı	,	,	1	1		, ,	വ	,	
	ω		,	,	,	ı	,	,	,	J	,	1	1	1	1	7	_	ı		Ω	<u> </u>	1	,	1		<	2		1	, ,]3
	_	1		ı	ı	,				ı	•	ı		ı	ι	1	,	ı		• ;		ı	ı		1	ı	1		ı	, ,		_
CLASS	9	1		ı	1	2	7		_	ŧ	ı	1			ı		38	7	2	1	22	t	ı	1	,	ı	,		,	, ,	. 1	25
2	2	_	ı	ı	ı	,		,	ı	ì	ł	1	,		1	,	,	ı	ı		ı	ı	ı	1		ı			1			1
	4	1	2	1	ı	1	2	,	,	ı	1	1	1			ı	1	ı		- }	-	ı	•	1	•	ı			1	1 1		က
	3	1	ı	1	•	1		1	ı	•	ı	•			ı	ı	ı	1	1	1	1	,	1.	1	1	•	, r					ı
	2			ı	1	i		1	1	ſ	ſ	•			,	,	,	,	,		ı	,	1	,	ı	1	1		1	1 (•
_	LOCATION	THUNDER BAY TC	Duluth	Presque Isle	Sault Ste. Marie	St. Ignace	TACONITE TC	Escanaba	Green Bay	Milwaukee	Chicago	Grand Haven	OIL CAN TC	Sacinaw	Port Huron	Detroit	Toledo	Sandusky	Cleveland	Buffalo	COAL SHOVEL TC	Port Colborne	Toronto	WELLAND TC	Operation	Alexandria Bay	SFAWAY TC		Montreal	Quebec	מתבפבר זר	U.S.

FOR TACONITE TASK COMMAND RESULTS OF RUN NO. 8 TABLE 6.29c

					Period				
ITEM	2	3	4	5	9	7	8	6	10
Number of Icebreakers ¹									
Class D		1	2-8%	ı	2-17%	•	,	1	ı
Class C	1	ı		9-21%	4-71%	7-79%	8-68%	3-48%	3-55%
Class B	1	•	ı		3-41%	3-39%	4-29%	9-37%	8-48%
TOTAL		ı	2-8%	9-21%	9-49%	10-67%	12-55%	12-39%	11-50%
Direct Assists									
by Class D	,	ı	6	ı	Ξ	1	1	•	1
by Class C	ı	1		83	ı		17	12	22
by Class B		ı	ı	1	104	93	94	104	115
TOTAL	•	ı	თ	83	115	94	111	116	137
Total Time (hr)	1	1	56	639	524	403	599	211	757
Total Miles	0	0	225	1861	2700	2071	2778	2923	4255
Convoys Escorted									
by Class D	1	•	ı	•	•	ı	ı	•	ı
by Class C	ı	1	•	ı	66	154	113	29	31
by Class B	ι	ı	ı	ı	ι	1	1	78	83
101A1	•	1		1	66	154	113	107	114
Total Time (hr)	•	1	1	•	958	1833	1613	1009	1098
Total Miles	1	•	ı	1	6026	0996	7580	6922	7898
Avg. Size of Queues ²									
Direct Assistance	•	ı	0	0	0	0	-	_	7
St. Marys R. Convoy		•	1	ı	18/4	18/2	12/1	12/0	15/1
Straits Convoy	ı	•	t	ı	ı	4/4	3/3	1/7	4/3

TABLE 6.29d RESULTS OF RUN NO. 8 FOR OIL CAN TASK COMMAND

ITEM	2	m	4	വ	Period 6	7	æ	6	10
Number of Icebreakers ¹					·				
Class D	1 1	1 1	1 1	1 1	1-24%	1-7%	1	t	1
Class C	1 1	ı 1	1 1	1 1	1 1	%C-1C		1 1	, ,
TOTAL	•	ı	ı	ı	1-24%	4-13%	•	•	1
Direct Assists									
by Class D	•	1	1		က	2	,	1	•
by Class C	ı	•	ı	•	1	9	ı	•	ı
by Class B	1	1	1	ı	1	1	ı	ı	1
TOTAL	1	1	1	•	က	æ	ı	1	ı
Total Time (hr)	ı	ı	1	ı	82	169	1	•	,
Total Miles	1	1	1	ı	320	792		•	1
Convoys Escorted									
by Class D		1	ı	1	1	1		ı	,
by Class C	ı	t	1	1	í	•	ı	ı	•
by Class B	1	1	1		•	1	1	•	ı
TOTAL	•	1	1	•	1	ı	•	1	ı
Total Time (hr)	1	1	ı	1	1	ŀ	ı	•	ı
Total Miles	•		ı	1	1	•	ı	1	1
Avg. Size of Queues									
Direct Assistance	ı	ı	ı	ı	0	0	•	ı	1

NOTE: 1. Second number is average percent time utilized.

FOR COAL SHOVEL TASK COMMAND RESULTS OF RUN NO. 8 **TABLE 6.29e**

					Period				
ITEM	2	3	4	2	9	7	8	6	2
Number of Icebreakers ¹									
Class D	•	,	1-25%	ı	22-20%	ı	11-15%	ı	ı
Class C	1	ı	ı	ı	4	47-27%	ı	3-6%	•
Class B	1	1	1	4-11%	4-47%	5-29%	2-18%	ı	•
TOTAL		•	1-25%	4-11%	26-24%	52-27%	13-16%	3-6%	ı
Direct Assists									
hy Class D	ı	ı	וו	•	43	١		1	ı
a serio fa	•	1	: ,	ı) - 1	138	: ,	18	•
hy Class B	ı	ı	1	33	37	22	24)	•
TOTAL	•	ı	_	333	5 88 80	160	35	18	•
Total Time (hr)	ι	ı	83	152	2119	4752	701	64	1
Total Miles	•	ı	172	926	11069	22080	3372	270	1
Convoys Escorted									
by Class D	•	ı	1	ı	•	1	ı	1	t
by Class C	i	1	1	ı	•	1	•	ı	•
by Class B	1	r	ı	1	1	1	•	ı	t
TOTAL	ı	1	ı	1	í	1	r	ı	t
Total Time (hr)	ı	ı	ı	ı	ı	1	í	1	1
Total Miles		í	•	ı	ı	1	,	•	1
Avg. Size of Queues ²									
Direct Assistance	1	•	0	0	2	2	,	0	t
Detroit/St. Clair									
Convoy			ı	•	•	ı	1	ı	t

TABLE 6.29f

FOR SEAWAY TASK COMMAND RESULTS OF RUN NO. 8

					Period				
ITEM	2	3	4	2	9	7	8	6	02
Number of Icebreakers ¹									
Class D	1	i	f	3	1	•	2-4%	•	1
Class C	1	1	•	4-89%	8-91%	1	1	1-5%	•
Class B		ı	•	3		2-76%	3-50%	1	•
TOTAL	1	1	ı	4-89%	8-91%	5-76%	5-32%	1-5%	•
Direct Assists							,		
by Class D	ı	ſ	,	ι	1	1	2	t	ı
by Class C	,	•	,	1	9	•	ı	·	•
by Clack B	•	•	,	•	1	15	ı	,	1
TOTAL	1	ı	,	1	9	15	2	,	1
Total Time (hr)	1	ı	ı	•	103	188	29	1	•
Total Miles	•	r	ı	ı	456	1236	120	,	•
Convoys Escorted									
hv Class D	1	,	•	•	•	1	ı	,	1
hy Class C	1	ı	ı	44	51	•	ı	,	ı
by Class B	ı	1	•	•	1	43	21	1	•
TOTAL	1	ı	•	44	53	43	21		ı
Total Time (hr)	ı	,	ı	1198	2340	1183	504	33	ı
Total Miles	1	,	•	7975	10820	10535	4785	290	ı
Avg. Size of Queues ²									
Direct Assistance	•	,	•	1	0	0	0	1	ı
St. Lawrence Seaway Convoy	,	,	•	3/6	4/3	9/0	0/4	,	f

Second number is average percent time utilized. First entry is upbound, second is downbound; DA Queues indicate vessels which are waiting, while Convoy Queues denote vessels which have established an ETA at convoy points and in general are not waiting.

TABLE 6.29g EXTENDED SEASON TONNAGE BY ROUTE FOR RUN NO.8

IRON OR	E-LAKER	IRON OR	E-LAKER	COAL-	LAKER	GRAIN-	-LAKER
Route	Tons	Route	Tons	Route	Tons	Route	Tons
1 2 3 4 5 6 8 9 10 11 12 13 14 15	489 794 435 672 673 1063 1077 673 766 1321 1251 675 450 861	22 23 24 26 27 28 29 30 32 33 34 35 37 38	490 673 791 460 314 463 790 1102 399 676 471 364 782 701 765	44 45 46 47 48 49 51 53 54 56 57 58 60 61	1070 1088 1088 450 2749 1038 1186 182 978 121 100 226 224 594 1864	74 75 76 77 78 80 81 83 85 TOTAL	- 641 1029 50 100 - 50 1870
19 20 21	662 368 144	41 42 TOTAL	486 700 22801	63 64 65 66 68 69 70 71 72 TOTAL	155 291 221 1310 201 201 430 607 2424 18798	GENERAL SAI <u>Route</u> 87	CARGO- TY <u>Tons</u> 450

	BULK CAR	GO-SALTY
	Route	Tons
Maximum Number of Vessels:	88 89 90 91 92	6224 2621 703 331 445
Lakers: 142 Salty General Cargo: 29 Salty Bulk: 119	93 TOTAL GRAND TOTAL	604 10928 54847

NOTES: 1. Units are thousands of short tons.
2. Extended season consists of nine 14-day periods.

TABLE 6.30a

SUMMARY OF INPUT CONDITIONS FOR RUN NO. 9

Winter Type: Severe Minimum Laker Class: 6

Run Mode: Maximum Response Time

USCG Estimated Fleet: N.A. MRT (hr): Minimum + 12

Convoying Icebreaker Types: C,B Channel Clearing (in/per)* 12

Cargo Tonnage (year): 2000 (Class 5 laker tonnage assumed carried in

normal season)

Convoy Routes:

Location	Reaches	Periods
St. Marys River	51	6-10
St. Marys River/Whitefish Bay	50,51	-
Straits of Mackinac	53	7-10
Detroit/St. Clair River System	72,73	None
Welland Canal	89	6-7
U.S. St. Lawrence Seaway	95	5-8
Canadian St. Lawrence Seaway	96	5-8

Data Files Used: SPDSVLC, SPDSVMC, SPDSVHC, SHIPNC5, EAGDMRT, RC25V6C, RCH1S,

CLASS

Archived Output File Name: PRO9A

^{*} Channel clearing was in the following reaches: 50, 51, 53, 72, 73, 74, 76, 89, 95, 96 periods 2 through 10.

TABLE 6.30b

PREDICTED ICEBREAKER FLEET BY HOME PORT AND PERIOD FOR RUN NO. 9

		•	CLASS								리	CLASS							리	S	. 1			
LOCATION	2 3 4	4	5 6	1	8	6	의	2	2	4	2	9	7	8	9 10	7	6	4	2	9	7	8	9 10	ਨਾ
THUNDER BAY TC	1	,	_	•	ı	١	t	1	1	1	•	1	1	_	1	ı	•	ı	ı	-	4	,	•	
Duluth	1	က			,	1	١	1	ı	ı	σ	ı	ı		ı	1	•	,	ı	2	3	(1)	2	
Presque Isle		•	'	'	•	ı	ı	1	1	,	ı	ı		•	1	1	1	ı	,		•			_
Sault Ste. Marie	1		•		,	ı	•	١	ı	,	•	က	4	~	-	ı	ı	1	ı		,	'		
St. Ignace	1	. 1	1		1	1 :	1	1		•	•	-	~	~	-	•	•	1		1	ŀ	İ		
TACONITE TC	1	က		1		1	ı		٠	,	σ	က	9	?	က	•	•		,	2	 m	2	- 2	-
Escanaba				· —	: • 1	' I	. 1		1	. 1	•					•	•	1	,				'	
Green Bay	1			_	_	1	ı		ı	ı	í	1	ო	•	1	•	1	1	,	,				
Milwaukee	1	,	•		1	ı	1	<u> </u>	1	ı	1	1	,	,	1	•	ı	•	,	1	•			
Chicago	,		,	1	J	1	ı	<u> </u>	ı	•	•	ı		·	1	1	•	•	,		•	•		
Grand Haven	1		,	1	1	1	ı	1	•	1	1	ı		•	1	1	Ł	•	,	•		•		_
OIL CAN TC	•				_	i		įι	•				က		-	1	1	ı	,	ı		'		
2000			:	,	1	1	ļ	-				1					 						'	
Say I naw	1		ı		1	1	1	1	•	t i	t i						• 1	• 1	, ,					
Port nuron	! !		,	1	1	1	1	•	1	ı	ı													_
Detroit Tolodo	1 !	1		ا ا	10	1	1 1		1 1	1 1	1 (1 1			- I		: 1	۱ ۱	, ,					_
Candidate	\		J	, I	1 (1	•		•	•	•	•	י ו כְ		•	1	1	ı	ı	•	,	•	•	
Cleveland	, ,)]		l i	•			ı ı	1			~		•	,	ı	ı	ı					
Buffalo	1	2	,		7	1	1		ı	,	,	1	Ski	- 2	1	,	•	1	4	4	9	٠ ~		
COAL SHOVEL TC		2	- 2	က	9			1	•	•		-	17		•	1	1	•	4	4	9	m		, .
Port Colborne	,	1		1 1		1	ı		ı	1	1 \$	4	ည	· ·		1	1	. 1	ı					
Toronto	1			11	1:	1;	•	1	1	• [J	1	1		1	1	•	1	1	11			1	7
WELLAND TC	1	,	1	1	ı	•	ı	٠,	ı	t '	ı	4	2	۳	1	1	•	1	1			•	. 1	-
Oceano	1			. '		•	•		1	١	ı	ı		•	,	1	(ı	ı	,	•	,	•	
Alexandria Rav	1 1				1		•		. 1	1	4	2	_	· ·	ı	1	ı	1		,				
SEAWAY TC	1				1	,	1	<u>'</u> ,			₽	വ	-	·	1	1		•				1 .		
Montreal	: I		· ·	. I	. 1	1		'	1	. 1	5	4	4	! =+		ı		1	í i			; •		
Quebec	1	,	1	1		5	1	1	1	1	ı	ı	1	J.	ا	ı	,	ı	•	4	9	რ	•	
QUEBEC TC				. . .	1 :	S.	•	1	t	١	S.	4	4	6	1	1	,		ı	4	و	~		
U.S.		2	- 2	ر 4:	20	1	•	ı	1	1	13	ω	22	m	<u>س</u>	١		1	4	9	2	5	~	

FOR TACONITE TASK COMMAND RESULTS OF RUN NO. 9 TABLE 6.30c

					Period				
ITEM	2	3	4	2	9	7	8	6	10
Number of Icebreakers¹									
Class D		ı	3-17%	1	1	ı	•	1	1
Class C	•	1	1	9-23%	3-89%	6-62%	2-60%	4-73%	3-77%
Class B	ı	ı	ı	1	2-64%	3-40%	2-59%	3-39%	2-57%
TOTAL	1		3-17%	9-23%	2-79%	9-55%	%09-2	7-59%	2-69%
Direct Assists									
by Class D		ı	6	1	1	1	1	1	•
by Class C	ı	•	ı	96	•	ı	ı	ı	,
by Class B	ı		ı	1	102	96	95	88	89
TOTAL	ı	ı	6	96	102	96	95	88	88
Total Time (hr)	ı	1	26	682	430	401	393	397	383
Total Miles	•	•	225	1956	2760	2072	2147	2136	2204
Convoys Escorted									
by Class D	•	1	ı	1	ſ	ı	1	1	ı
by Class C	•	1	1	ı	ווו	168	133	126	115
by Class B	•	1	•		ı	ı	ı	1	1
TOTAL	ı	ı	ı	1	=======================================	168	133	126	115
Total Time (hr)	1	ı	,	1	891	1252	1007	978	775
Total Miles	ı	•	ı	1	6946	10304	8694	8234	6578
Avg. Size of Queues ²									
Direct Assistance	ı	1	0	0	0	0	2	0	0
St. Marys R. Convoy		ı	ı	1	19/1	15/1	10/0	0/11	12/2
Straits Convoy	•	ı	ı	ı	,	4/4	2/3	<u> </u>	3/2

TABLE 6.30d RESULTS OF RUN NO. 9 FOR OIL CAN TASK COMMAND

					Period				
ITEM	2	3	4	2	9	7	8	6	10
Number of Icebreakers ¹									
Class D	ı	1	1	,	1-19%	1-7%	1-10%	,	•
Class C	ı	ı	1	1	•	3-15%	•	ı	•
Class B	ı	ı	•	1	1	•	1	1	ı
TOTAL		•	1	1	1-19%	4-13%	1-10%	•	1
Direct Assists									
by Class D	•	ı	•	1	2	2	_	1	•
by Class C	ı	ı	,	•	1	9		1	1
by Class B	1	ı	1	ı	•	ı	ı	1	1
TOTAL	1	•	1	•	2	ω	,-	ı	1
Total Time (hr)	1	1	•	ı	59	169	32	1	
Total Miles			1	1	240	792	160	•	•
Convoys Escorted									
by Class D	ı	•	•	•	ı		ı	•	•
by Class C	ı	r	1	ı	•	ı	ı	ı	ı
by Class B	ı	1	ı	•	1	ı	ı	•	ı
TOTAL	ı	1	ı	1	•	•	•	•	1
Total Time (hr)	1	1	ı	•	1	ı	ı	ı	ı
Total Miles		ı	ı		1	•	ı	,	•
Avg. Size of Queues									
Direct Assistance	ı	1	1	1	0	0	0	1	ı

NOTE: 1. Second number is average percent time utilized.

TOR COAL SHOVEL TASK COMMAND RESULTS OF RUN NO. 9 TABLE 6.30e

	10	i i i	1 1 1 1 1 1	1 1 1 1 1 1	1 1
	6	2-19%	- 18 - 18 64 270	1 1 1 1 1 1	0
	8	9-16% - 3-12% 12-17%	10 -25 35 667 3100	11111	2
	7	47-22% 6-24% 53-22%	90 24 114 3971 18073	1 1 1 1 1 1	4
Period	9	23-20% - 4-43% 27-23%	44 34 78 2092 10733		8 1
	2	- - 4-13% 4-13%	- 36 36 169 1036	11111	0 1
	4	2-12%		1 1 1 1 1 1	0 1
	8		1 1 1 1 1	1 1 1 1 1 1	1 1
	2	, , , ,	1 1 1 1 1 1	1 1 1 1 1 1	4 1
	ITEM	Number of Icebreakers ¹ Class D Class C Class B TOTAL	Direct Assists by Class D by Class C by Class B TOTAL Total Time (hr)	Convoys Escorted by Class D by Class C by Class B TOTAL Total Time (hr)	Avg. Size of Queues ² Direct Assistance Detroit/St. Clair

FOR SEAWAY TASK COMMAND RESULTS OF RUN NO. 9 TABLE 6.30f

<u>od</u> 7 8 9 10	5-86% 1-98% 3-63% 1-5% - 5-86% 4-86% 3-63% 1-5% -	10	57	- 0 0
Period 5 6	4-85% 5-		52 57 - 52 57 1147 1256 10730 11665	0
4	1 1 1 1			1
က	1 1 1 1	11111	1 1 1 1 1 1	1
2	1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	t
ITEM	Number of Icebreakers ¹ Class D Class C Class B TOTAL	Direct Assists by Class D by Class C by Class B TOTAL Total Time (hr)	Convoys Escorted by Class D by Class C by Class B TOTAL Total Time (hr)	Avg. Size of Queues ² Direct Assistance

TABLE 6.30g EXTENDED SEASON TONNAGE BY ROUTE FOR RUN NO. 9

IRON ORE-LAKER		IRON OR	IRON ORE-LAKER		COAL-LAKER		GRAIN-LAKER	
Route	Tons	Route	Tons	Route	Tons	Route	Tons	
1 2 3 4 5 6 8 9 10 11 12 13 14 15	490 794 434 - 671 673 1069 1111 673 765 1320 1248 673 461	22 23 24 26 27 28 29 30 32 33 34 35 37	23 673 24 792 26 458 27 315 28 462 29 789 30 1109 32 413 33 673 34 472 35 369 37 782	44 45 46 47 48 49 51 53 54 56 57 58 59	1080 1090 1090 448 2763 1038 1186 181 978 121 100 226 224 594	74 75 76 77 78 80 81 83 85 TOTAL	- 651 1036 50 99 - 50 1886	
17 19 20 21	890 672 369 144	39 41 42 TOTAL	766 483 697 22902	61 63 64 65 66 68 69 70 71 72	1864 155 293 221 1310 201 201 428 607 2424 18823	GENERAL SAI <u>Route</u> 87	CARGO- LTY <u>Tons</u> 443	

	BULK CAI Route	BULK CARGO-SALTY Route Tons	
Maximum Number of Vessels: Lakers: 130 Salty General Cargo: 28 Salty Bulk: 114	88 89 90 91 92 93 TOTAL GRAND TOTAL	6250 2641 710 330 444 603 10978 55032	

NOTES: 1. Units are thousands of short tons.
2. Extended season consists of nine 14-day periods.

TABLE 6.31a

SUMMARY OF INPUT CONDITIONS FOR RUN NO. 10

Winter Type: Severe Minimum Laker Class: 6

Run Mode: Fixed Icebreaker Fleet

USCG Estimated Fleet: Severe MRT (hr): N.A.

Convoying Icebreaker Types: C,B Channel Clearing (in/per): None

Cargo Tonnage (year): 2000 (Class 5 laker tonnage assumed carried

in normal season)

Convoy Routes:

Location	Reaches	Periods
St. Marys River	51	6-10
St. Marys River/Whitefish Bay	50,51	-
Straits of Mackinac	53	7-10
Detroit/St. Clair River System	72,73	None
Welland Canal	89	6-7
U.S. St. Lawrence Seaway	95	5-8
Canadian St. Lawrence Seaway	96	5-8

Data Files Used: SPDSVL, SPDSVM, SPDSVH, SHSVNC5, EAGDFIB, RCH2SV6, RCH1S, CLASS

Archived Output File Name: PRO10

TABLE 6.31b
USCG ESTIMATED FLEET* FOR SEVERE WINTER
FOR RUN NO. 10

Home Port	<u>Class B</u>	Class C	<u>Class D</u>
Duluth	1	2	-
Sault Ste. Marie	3	6	-
St. Ignace	3	6	-
Port Huron, Detroit, Toledo	1	4	-
Escanaba	-	1	-
Chicago	1	2	-
Saginaw	2	3	-
Sandusky	1	2	-
Buffalo	1	4	-
Oswego	-	3	-
•			
SUBTOTAL	12	29	2
TOTAL		43	

NOTE: Principal ports; operations limited to vessels of reasonably high capability (SHP/L > 6); 12 hrs per day per icebreaker.

^{*} Letter dated 8 June 1977 from Commander, Ninth Coast Guard District to the Commandant (G-0).

FOR TACONITE TASK COMMAND RESULTS OF RUN NO. 10 TABLE 6.31c

					Period				
ITEM	2	က	4	5	9	7	8	6	10
Number of Icebreakers ¹									
Class D	2-0%	2-0%	2-0%	2~0%	2-15%	2-0%	7-68%	2-8%	2-0%
Class C	10-0%	10-0%	10-1%	10-9%	10-55%	10-64%	10-73%	10-56%	10-99%
Class B	%0-9	%0 - 9	%0-9	6-29%	6-102%	%86-9	6-103%	%96-9	%0L-9
TOTAL	18-0%	18-0%	18-1%	18-15%	18-66%	9-81	18-82%	18-64%	18-88%
Direct Assists									
by Class D	ı	ſ	•	,	10	1	10	ı	ı
by Class C	ŧ	í	7	41	ſ	1	ა	14	26
by Class B	ı	í	2	48	101	88	83	83	104
TOTAL	ı	1	6	88	111	83	104	66 6	160
Total Time (hr)	,	t	40	894	1350	1007	1691	1378	2360
Total Miles	ı	ı	225	9606	16168	11547	16115	14096	18581
Convoys Escorted									
hy flace n	\$	ı	ı	,	ı	ı	ı	1	ı
by Class C	1	ŧ	1	ı	129	126	114	37	41
by Class B		,	•	1	27	29	56	42	20
TOTAL	ι	,	ı	ı	156	155	140	79	9
Total Time (hr)	ı	ı	1	ı	2641	3089	3284	2488	2976
Total Miles	1	,	t	1	26713	27742	28046	19018	20204
Avg. Size of Queues ²									
Direct Assistance	t	ı	0	0	 -	က	7	က	2
St. Marys R. Convoy	1	,	r	ı	11/0	12/0	0/6	16/3	19/3
Straits Convoy	1	ı	ı	1	•	2/2	2/2	3/5	1

NOTES:

Second number is average percent time utilized. First entry is upbound, second is downbound; DA Queues indicate vessels which <u>are</u> waiting, while Convoy Queues indicate vessels which have established an ETA at convoy points and in general are <u>not</u> waiting.

TABLE 6.31d
RESULTS OF RUN NO. 10
FOR OIL CAN TASK COMMAND

					Period				
ITEM	2	3	4	5	9	7	8	6	10
Number of Icebreakers ¹									
Class D	•	•	ı	1	1	•	1	1	•
Class C	3-0%	3-0%	3-0%	3-0%	3-8%	3-24%	3-0%	3-0%	3-0%
Class B	1-0%	1-0%	1-0%	1-0%	1-0%	1-12%	30-L	1-0%	1-0%
TOTAL	4-0%	4-0%	4-0%	4-0%	4-6%	4-21%	4-0%	4-0%	4-0%
Direct Assists				•					
by Class D	•	ı	1	1	ı	1		ı	•
by Class C	ı	ı	ı	ı	က	7	1	1	ı
by Class B	ı	1	,	ı	•	_	ī	ı	ı
TOTAL	ı	ı	ı	ı	က	8		ı	•
Total Time (hr)	1	1	ı	ı	82	284	ı	1	ı
Total Miles	1	•	1	ı	544	2698	1	1	ı
Convoys Escorted									
by Class D	1	i	•	ı	ı	ı	ı	i	
by Class C	,	1	1	1	1	ı	ı	i	•
by Class B	1	t		1	i	ı	ı	ı	1
TOTAL	•	•	ı	•	1	ı	ı	1	•
Total Time (hr)	ī	ı	1	ı	,	1	ı	ı	ı
Total Miles	ı	•	•	1	1	1	ı	1	•
Avg. Size of Queues									
Direct Assistance	1	•	ı	•	0	0	1	ı	1

NOTE: 1. Second number is average percent time utilized.

FOR COAL SHOVEL TASK COMMAND RESULTS OF RUN NO. 10 TABLE 6.31e

					Period				
ITEM	2	3	4	5	9	7	8	6	10
Number of Icebreakers ¹									
Class D	' 5	' 6	1 6	' 6	1 0	1 0	' 6	- 6	1 0
Class C	-21	-71	%1-71	%0-Z1	12-23%	12-84%	12-0% 5 25 5	%0-21 %C-3	%0-Z1
Class B	-2-	-2- 17-	3-0% 17-1	3-10% 17-5%	3-62% 17-40%	3-91% 17-86%	%CZ-C	%U-CL	30-C 17-0%
יסואר	:	:	? -	2			2	2	-
Direct Assists									
by Class D	,	ı	, '	1	1	1 9	1	1	
by Class C	1	1	ا ب	1	<u></u>	101	<u>ر</u> ا	ı	ı
by Class B	•	1	ئ ت	33	20	62 163	25 26	ı	ı
TOTAL	ı		- 6	333	81	103	87 E	ı	1
Total Time (hr)		ı	339	2/2	2300	4914	1/9	ı	ı
Total Miles	ı	ı	132	2692	19080	341/4	9888	•	
Convoys Escorted									
by Class D	•	1	1	1	•	ı	1	1	t
by Class C	,	ı	ı	•	i	ı	1	•	1
by Class B	•	1	t	ı	1	ı	ι	1	1
TOTAL	1	•	1	ı	1	1	•	1	ι
Total Time (hr)		ı	•	1	1	1	1	ı	•
Total Miles	ı	•	ı	ı		•	1	1	1
Avg. Size of Queues ²									
Direct Assistance	1	ı	0	0	0	0	0	ı	ı
Convoy	ı	1	1	1	ı	•	ı	ı	•

NOTES:

Second number is average percent time utilized. First entry is upbound, second is downbound; DA Queues indicate vessels which are waiting, while Convoy Queues denote vessels which have established an ETA at convoy points and in general are not waiting.

FOR SEAWAY TASK COMMAND RESULTS OF RUN NO. 10 TABLE 6.31f

NOTES:

Second number is average percent time utilized; values greater than 100% sometimes result because time for assists and convoys not completed during previous period are included.
First entry is upbound, second is downbound; DA Queues indicate vessels which are waiting, while Convoy Queues denote vessels which have established an ETA at convoy points and in general are not waiting. ج:

TABLE 6.31g EXTENDED SEASON TONNAGE BY ROUTE FOR RUN NO. 10

IRON OR	E-LAKER	IRON OR	E-LAKER	COAL-I	_AKER	GRAIN-	LAKER
Route	Tons	Route	Tons	Route	Tons	Route	Tons
1 2 3 4 5 6 8 9 10 11 12 13 14 15 17 19 20	489 794 434 - 672 673 1045 1077 675 765 1320 1253 670 449 860 616 369	22 23 24 26 27 28 29 30 32 33 34 35 37 38 39 41 42	490 673 792 460 313 463 783 1063 399 664 464 364 782 701 765 484 698	44 45 46 47 48 49 51 53 54 56 59 60 61 63	1068 1072 1073 450 2691 1040 1176 182 978 121 100 226 224 595 1812 155 291	74 75 76 77 78 80 81 83 85 TOTAL	- 626 1016 50 100 - 50 1842
21	144	TOTAL	22663	65 66	221 1310		LTY
				6 8	201 201	<u>Route</u>	Tons
				69 70 71 72 TOTAL	435 606 2424 18652	87	473

	BULK CAR Rou <u>t</u> e	GO-SALTY <u>Tons</u>
Maximum Number of Vessels: Lakers: 140 Salty General Cargo: 29 Salty Bulk: 123	88 89 90 91 92 93 TOTAL GRAND TOTAL	6083 2615 703 332 446 609 10788 54418

NOTES: 1. Units are thousands of short tons.
2. Extended season consists of nine 14-day periods.

7. CONCLUSIONS

Based on the results and discussion of the ten (10) production runs presented in Section 7, the following conclusions were drawn:

- 1. <u>Usefulness of the Simulation</u> Based on the validation presented in Section 6.2 and the experience and knowledge we have gained from working with the model, from conversations with ship operators, port officials, and personnel at Coast Guard, MarAd, Corps of Engineers, and the St. Lawrence Seaway Development Corporation, we believe the simulation, as developed, realistically models the Great Lakes-St. Lawrence Seaway System. As a result, it can be used as a valuable tool to aid in the planning process of the Coast Guard in establishing their future icebreaking requirements and alternate icebreaking plans and concepts of operation.
- 2. Normal and Severe Winter Icebreaker Fleets Using the results of the simulation for the fixed icebreaker fleet runs and the generated icebreaker fleet runs, simulation estimated icebreaker fleets were prepared and are presented in Tables 7.1 and 7.2 along with the Coast Guard estimated fleet for normal and severe winters. In finalizing the simulation fleet, consideration was given to additional icebreaking demands, such as preventive icebreaking and channel maintenance. In comparing the results of the simulation to those of the Coast Guard it is interesting to note how closely they compared in number with some shifting in location.

The procedure used for development of the "simulation generated icebreaker fleet" was a subjective process in which we tried to weigh the results of the 10 simulation runs to come up with a fleet we could recommend to the Coast Guard as a starting point for further sensitivity studies of the icebreaker requirements as discussed in the recommendations. Specifically the rationale we used to generate the fleets tested in Tables 7.1 and 7.2 were as follows:

TACONITE: For the severe winter, based on the results of runs 8 and 10 and noting the time spent by icebreakers transiting Lake Superior, it was concluded that 2 Class B and 2 Class C icebreakers in Duluth/Superior, 2 Class B and 6 Class C icebreakers in Sault Ste. Marie and 1 Class B and 3 Class C icebreakers in St. Ignace could handle the projected traffic. Similarly for the normal winter based on the results of runs 1 and 3 and the time spent by icebreakers transiting Lake Superior, it was concluded that

TABLE 7.1

COMPARISON OF SIMULATION GENERATED

ICEBREAKER FLEET WITH COAST GUARD ESTIMATED FLEET

FOR NORMAL WINTER

	U.S		T GUARI EAKER F	ESTIMATED FLEET			ATION G BREAKER	ENERATED FLEET
Task Command &		Icebre	aker Cl	ass		Icebre	aker Cl	ass
Home Port	В	С	D	TOTAL	В	<u> </u>	D	TOTAL
Taconite Command								
Duluth/Superior	-	2	-	2	2	-	-	2
Presque Isle	_	4	-	-	-	-	-	-
Sault Ste. Marie St. Ignace	2 1	4 1	-	6 2	1	5 2 7	-	6 2
•	<u>·</u>	 7		10	3			<u>_</u>
TOTAL	3	/	-	10	3	/	-	10
Oil Can Command								
Escanaba	-	1	-	1	-	2	_	2
Green Bay	-	_	-	•	-	-	-	-
Milwaukee	-	-	-	-	-	-	-	•
Chicago	-	1	-	1	-	-	-	-
Grand Haven			<u>-</u>					
TOTAL	-	2	-	2	-	2	-	2
Coal Shovel Command								
Saginaw	-	-	-	-	-	-	_	-
Port Huran/Detroit/								
Toledo	1	2`	-	3	-	5	-	5
Sandusky	-	1	~	1	-	-	-	-
Buffalo		2		3	1	_2		_3
TOTAL	2	5	-	7	1	7	-	8
Seaway Command								
Oswego	-	3	_	3	_	-	~	-
Alexandria Bay		_=	_			4		_4
TOTAL	-	3	•	3	-	4	-	4
TOTAL	5	17	-	22	4	20	~	24

TABLE 7.2

COMPARISON OF SIMULATION GENERATED

ICEBREAKER FLEET WITH COAST GUARD ESTIMATED FLEET

FOR SEVERE WINTER

	U.S		T GUARE EAKER F	ESTIMATED FLEET	,		ATION O BREAKER	ENERATED R FLEET
Task Command &		Icebre	aker C	lass		Icebre	aker Cl	ass
Home Port	B	С	D	TOTAL	В	<u>C</u>	D	TOTAL
Taconite Command								
Duluth/Superior	1	2	-	3	2	2	-	4
Presque Isle	-	-	-	-	-	-	-	-
Sault Ste. Marie	3	6	-	9	2	6	-	8 <u>4</u>
St. Ignace	3 2 6	_2	_2	_6	1	_3		_4
TOTAL	6	10	2	18	5	11	-	16
Oil Can Command								·
Escanaba	_	1	_	1	1	-	1	2
Green Bay	-	_	-	-	-	1	-	1
Mi lwaukee	-	-	-	-	-	-	-	-
Chicago	1	2	-	3	-	1	-	1
Grand Haven						<u> </u>		-
TOTAL	1	3	-	. 4	1	2	7	4
Coal Shovel Command								
Saginaw	2	3	-	5	_	-	_	-
Port Huron/Detroit/								
Toledo	1	4	-	5 3	1	5	2	8
Sandusky	3	2	-	3	-	2	-	2
Buffalo	_1	4		_5	_3	_5		8 2 <u>8</u>
TOTAL	5	13	-	18	4	12	2	18
Seaway Command								
Oswego	_	3	-	3	-	_	-	
Alexandria Bay		•••			1	_3	-	4
TOTAL		3	-	3	1	3	-	4
TOTAL	12	29	2	43	11	28	3	42

2 Class B icebreakers in Duluth/Superior, 1 Class B and 5 Class C icebreakers in Sault Ste. Marie, and 2 Class C icebreakers in St. Ignace could handle the projected traffic. In generating both of these fleets, it was assumed that icebreakers would be prohibited from traversing Lake Superior between Duluth/Superior and the Soo.

OIL CAN: For the severe winter, based on the results of runs 8 and 10, and, in particular, the magnitude of the ice-breaker utilization, it was concluded that 1 Class B and 1 Class D icebreaker in Escanaba, 1 Class C icebreaker in Green Bay and 1 Class C icebreaker in Chicago could handle the projected traffic. In a similar manner, for the normal winter based on the results of runs 1 and 3 it was concluded that 2 Class C icebreakers in Escanaba could handle the projected traffic.

COAL SHOVEL: For the severe winter based on results of runs 8 and 10 and looking particularly at icebreaker utilization and the locations where assistance was needed within the command, it was concluded that 1 Class B, 5 Class C and 2 Class D icebreakers in the Detroit area, 2 Class C icebreakers in Sandusky and, 3 Class B and 5 Class C in Buffalo could handle the projected traffic. In a similar manner for the normal winter, it was concluded that 5 Class C icebreakers in the Detroit area and 1 Class B and 2 Class C icebreakers in Buffalo could handle the projected traffic.

SEAWAY: Based on the results of runs 8 and 10 for the severe winter and runs 1 and 3 for the normal winter, and looking particularly at icebreaker utilization, the location of direct assists and the number of conovys escorted, it was concluded that 1 Class B and 3 Class C icebreakers could handle the projected traffic in a severe winter and the 4 Class C icebreakers could handle the projected traffic in a normal winter.

3. Formation of New Task Command for Duluth/Superior - Icebreakers in the simulation for the fixed fleet mode continually traveled across Lake Superior to provide assistance in both Duluth/Superior and at the Soo since assistance was provided on a first come-first serve basis. As a result, a large amount of time was spent transiting Lake Superior compared to time spent either assisting or convoying. For example, in Run 1 for the normal winter, the fixed fleet of 7 Class C and 3 Class B icebreakers operated at 100% utilization performing 781 direct assists and escorting 629 convoys. Of the 100% utilization in periods 5, 6, and 7, only 10%, 20%, and 29% of the total direct assist miles and 20%, 58% and 44% of the total convoy miles were spent in actual assistance and convoying

for each period, respectively. In comparison, the somewhat larger MRT generated fleet, which was restricted to operating within assigned areas near the icebreaker's home port, averaged 61%, 74%, and 75% of total direct assistance miles and 74%, 70%, and 66% of total convoy miles performing actual direct assistance and convoying in periods 5, 6, and 7, respectively. Future runs should have a 200 mile limitation placed on the icebreaker's area of operation to prohibit transiting Lake Superior, thereby effectively making Duluth/Superior a separate task command.

- Effect of Increased Tonnage For the fixed normal winter icebreaker fleet, the designated icebreakers in Oil Can and Coal Shovel could handle the 20% increased tonnage above the projected year 2000 tonnage with no significant probblems. For the Seaway, the 3 Class C icebreakers operated 100% utilization in periods 5 through 8 escorting 173 convoys between Alexandria Bay and Cornwall. Based on the MRT runs 2 and 3, 5 or 6 Class C icebreakers or 1 Class B plus 3 Class C icebreakers were probably required to escort all vessels in convoys at a reasonable icebreaker utilization rate. In Taconite, the fixed fleet operated at 100% utilization because a large portion of the time was spent by icebreakers transiting between Duluth/Superior and the Soo. Based on the MRT runs 2 and 3, in which icebreakers were restricted to operating within assigned areas near the icebreaker's home port, the specified fixed fleet of 7 Class C and 3 Class B icebreakers needs to be increased to 9 Class C and 4 Class B icebreakers with Duluth/Superior being treated as a separate task command.
- 5. Effect of Increased Maximum Response Time For Taconite, Oil Can and Coal Shovel Task Commands, there appeared to be only a slight effect on the generated icebreaker fleet due to increasing the MRT by 12 hours. For the Seaway, the maximum number of required Class C icebreakers dropped from 6 to 5.
- 6. Effect of Convoying For Oil Can and Coal Shovel, where there were no convoys, the effect of convoying was a change in the arrival of ships from other commands which altered the generated icebreaker fleet slightly. For the Seaway, the elimination of convoying reduced the icebreaker requirements significantly since salties, which were capable of proceeding on their own, were being forced to convoy, thereby requiring more icebreakers. In Taconite, elimination of convoying caused the generated icebreaker fleet to double in periods 5 through 10.
- 7. Effect of Winter Severity As one would expect, the icebreaking requirements increased with increasing winter

severity. In Taconite, the total number of direct assists increased from 792 to 1032 and the total number of convoys increased from 699 to 937, resulting in an increase of required icebreakers from an average of 11 to 20, with an increase in Class B icebreakers from an average of 4 to approximately 6. In Oil Can, the total number of direct assists increased from 86 to 102, but because the location of the problem reach was closer to the icebreaker home port of Escanaba, fewer icebreakers were required during the severe year. The reason for this seemingly contradictory trend is a result of the use of actual historical weather and ice data which is sometimes inconsistent. In Coal Shovel, the number of direct assists increased by almost 200% from 198 to 573 with 347 convoys being escorted during the severe winter. This resulted in the number of icebreakers being doubled with an average of 4 Class B icebreakers being required during the severe winter while none were required during the normal winter. For the Seaway, the total number of direct assists increased from zero in the normal winter to 40 in the severe winter, but the total number of convoys decreased from 185 to 154. This reduction was due to Class B icebreakers being generated instead of Class C icebreakers (Class B icebreakers can handle twice as many ships per convoy as can Class C icebreakers). For the normal winter, between 3 and 5 Class C icebreakers were required while for the severe winter the icebreaker fleet ranged from 1 Class D and 4 Class C icebreakers to 4 Class B icebreakers.

- 8. Effect of Prohibiting Class C Icebreakers from Convoying For Oil Can and Coal Shovel, restricting Class C icebreakers
 from convoying did not significantly reduce the number of
 icebreakers generated. For Coal Shovel, however, it did tend
 to replace each Class C icebreaker eliminated with an equal
 number of Class B icebreakers, indicating that the increased
 convoying capability of Class B icebreakers was not utilized.
 For the Seaway, the maximum generated icebreaker fleet
 changed from 11 Class C icebreakers to 1 Class C and 4 Class
 B icebreakers for period 6. At Taconite, for all periods,
 the average total number of icebreakers required decreased
 by 21%, with Class C icebreakers almost completely eliminated
 and 1 additional Class B icebreaker added for every 2 Class
 C icebreakers eliminated.
- 9. Effect of Increased SHP/Length Restriction The removal of Class 5 laker vessels (SHP/lengths = 6.25) from the fleet reduced the icebreaking requirements significantly in all task commands. In Taconite, the number of direct assists dropped from 1032 to 671 and the number of convoys escorted dropped from 937 to 587. This resulted in a reduction in the generated icebreaker fleet by more than 50%. In 0il Can the number of direct assists decreased from 102 to 11,

resulting in a reduction in the number of icebreakers from an average of 5 icebreakers in periods 3 through 7 to an average of one icebreaker in periods 6 and 7. In Coal Shovel, with the exception of period 7, the number of required icebreakers decreased by a factor of 2 due to the total number of direct assists dropping from 573 to 337 and the elimination of 347 convoys. In the Seaway, the total number of direct assists decreased from 40 to 20 and the total number of convoys decreased slightly from 160 to 154, resulting in a reduction in icebreaking requirements by approximately one third.

10. Effect of Channel Clearing - The primary effect of channel clearing which, in run 9, was performed in reaches where convoying occurred, was to: (1) decrease the size of icebreakers required for convoying, and (2) increase icebreaker speeds which allowed each icebreaker to effectively handle more convoys, at times comprised of fewer ships due to ship arrival frequency. For Oil Can and Coal Shovel where there was no convoying, almost no effect from channel clearing was observed. In the Seaway, both the size and number of icebreakers were reduced. For example, in period 6, 8 Class C icebreakers were replaced by 5 Class C icebreakers with channel clearing. In period 7, 5 Class B icebreakers were replaced with 3 Class B icebreakers and 1 Class C. For Taconite, a similar condition occurred in that both the number and size of icebreakers were reduced. In period 8, the required 12 icebreakers (8 Class C and 4 Class B) were replaced by 7 icebreakers (5 Class C and 2 Class B).

8. RECOMMENDATIONS

Based on the conclusions and general discussions included in this report, as well as the knowledge we have gained during the course of this study, we recommend the following:

- The GL-SLS NAVIGATION SIMULATION should be kept current by revising the input data files and changing the basic rules and assumptions as required. We believe this simulation is an excellent planning tool which can be used as an aid to the U.S. Coast Guard in establishing their future icebreaking requirements and evaluating alternate icebreaker plans and concepts of operation, such as direct assistance, convoying, channel maintenance and channel ice clearing, as to their impact on extended commercial navigation operations and economics. In addition, the simulation can be used by the Corps of Engineers as a planning tool to aid in their assessment of the potential benefits and impacts of various proposed GL-SLS System improvements for normal navigation season operations as well as extended navigation season operations.
- 2. We also recommend that, as additional extended navigation season operations continue and more icebreaker operational data is gathered, additional validation runs be performed to ensure the continued credibility of the simulation.
- 3. To gain further insight and a more comprehensive understanding of the impacts on icebreaker requirements and commercial navigation operations and economics, we recommend that additional sensitivity runs be performed on:
 - Variations of fixed icebreaker fleets and home ports
 - Variations in channel clearing and preventive icebreaking
 - · Variations in MRT mode conditions
 - · Variations in ice conditions
 - Variations in low SHP/length restriction
- 4. During the course of modifying the simulation and conducting the runs, we found that the following revisions to the simulation should be considered.

 Revise Fixed Fleet Mode to prohibit icebreakers from traveling over long distances within a task command, such as an icebreaker continually traversing Lake Superior between Duluth/Superior and the Soo.

- Incorporate a probability basis for ships getting or not getting stuck rather than the current assumption of all ships of a given class getting stuck if their speed of advance is less than 2 mph; that is, apply a probability distribution which would vary linearly with the speed of advance between a probability of getting stuck equal to 1 at some designated speed, and a probability equal to 0.0 at some higher designated speed. In this manner, the "off-on" switch for all ships in a given class either being or not being stuck would be eliminated.
- For ease of data analysis, revise the REPORT GENERATING MODEL to provide summary tables similar to those listed in Section 6.4 for each run.

9. REFERENCES

- 1. Kotras, T. V. and J. J. Peter, "Winter Rate Study for Great Lakes-St. Lawrence Seaway System, Final Report," ARCTEC, Incorporated Report No. 246C, U.S. Army Corps of Engineers, Chicago, Illinois, December 1975.
- 2. Kotras, T. V., "Simulation of Commercial Navigation on the Great Lakes-St. Lawrence Seaway System, Final Report," ARCTEC, Incorporated Report No. 341C, St. Lawrence Seaway Development Corporation, Washington D.C., February 1976.
- 3. Enclosure to letter from W. O. Gelston of St. Lawrence Seaway Development Corporation to R. M. McIntyre, dated 23 December 1974.
- 4. Michel, Bernard, "Winter Regime of Rivers and Lakes," U.S. Army Corps of Engineers, CRREL, Monograph III-Bla, Hanover, N.H., April 1971.
- 5. Ashton, George, "Evaluation of Ice Management Problems Associated with Operation of a Mechanical Ice Cutter on the Mississippi River," U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, N.H., Special Report 214, October 1974.
- 6. Michel, B. and P. Lafleur, "Ice Management at Marine Terminal Hershel Island," Department of Public Works, Government of Canada, February 1971.
- 7. Kotras, T. V. and J. J. Peter, "Simulation of Lock Operations During Winter Ice Months," Paper presented at the Third International Symposium on Ice Problems, Hanover, N.H., November 1975.
- 8. Lewis, J. W., et al., "St. Lawrence Seaway System Plan for All Year Navigation," ARCTEC, Incorporated Report No. 105C, Department of Transportation, Washington, D.C., 1973.
- 9. J. Greenwood, <u>Guide to Great Lakes Shipping</u>, Freshwater Press, Incorporated, Cleveland, Ohio, 1975.
- 10. Kotras, T. V., "Great Lakes Navigation Season Extension Harbor Study, Final Report," Volumes I, II, and III, ARCTEC, Icorporated Report No. 392C, U.S. Army Corps of Engineers, Detroit, Michigan, June 1978.
- 17. Voelker, R. P., "Ice Transiting Bow Forms For Great Lakes Bulk Carriers," Paper presented at Joint Meeting Eastern Canadian Section and Great Lakes-Great Rivers Section of Society of Naval Architects and Marine Engineers, Toronto, Canada, May 1979.
- 12. Leshkevich, George A., "Great Lakes Ice Cover, Winter 1975-76," NOAA Technical Memorandum ERL GLERL-12, Great Lakes Environmental Research Laboratory, Ann Arbor, MI, June 1977.
- 13. Quinn, F. H., et. al., "Summary of Great Lakes Weather and Ice Conditions, Winter 1976-77," NOAA Technical Memorandum ERL GLERL-20, Great Lakes Environmental Research Laboratory, Ann Arbor, MI, October 1978.