

Segundo Fariña - 56176 Martin Victory - 56086 Sebastian Favaron - 57044 Ximena Zuberbuhler - 57287

Descripción del Problema

Descripción del Problema

- Tablero de dimensión NxN
- En cada celda se coloca un edificio de altura entre 1 y N
- Al estilo Sudoku, no pueden haber alturas repetidas en una misma fila o columna
- En el exterior del tablero se colocan restricciones que muestran la cantidad de edificios que se pueden ver desde ese extremo.

Estado inicial

Elección del estado inicial

- Se inicia con el tablero completo
- No se repiten alturas en una fila
- Las alturas en una misma fila no están ordenadas
- Por ende no se respetan la restricción de columnas con diferentes valores o cantidad de edificios que se pueden ver (¡Sino el único estado posible sería la solución!)

1	3	2	4	5
2	5	4	3	1
3	5	1	2	4
1	4	3	5	2
2	1	5	3	4

Ejemplo tablero inicial

Reglas

Elección de las reglas

- Como las filas no tienen alturas repetidas podemos swapear las alturas entre sí y no quebrar esta condición.
- Definimos las reglas como los swaps entre celdas contiguas en una misma fila
- Tenemos n-1 reglas por fila.
- En total n * (n-1) reglas

Elección del costo

- En este problema todos los movimientos tienen el mismo costo.
- Inicialmente fijamos el valor del costo en 2,
 representando la cantidad de edificios que se mueven por movimiento.
- Luego se optó por incrementar este valor a 8, para así poder generar heurísticas más precisas.

1+	→ 3←	> 2←) 4	> 5
2	→ 5←	→4 ←) 3 () 1
3€	→5 ←) 1+	> 2←) 4
1+	→4 ←	→3 ←	> 5←) 2
2	→1 ←	> 5←	→3 ←) 4

Heurísticas

Heurísticas

- Valor de la 1era heurística: cantidad de columnas con repetidos - 1 (si hay columnas con repetidos) + 1 (si alguno de los observadores no ve lo que debería ver)
- Valor de la 2da heurística: cantidad de columnas con repetidos + cantidad de observadores que no ven lo correcto)

Resultados

Grupo 1: Edificios

Resultados - Tableros 3 x 3

Estrategia	Tam	Profundidad	Costo total	Nodos visitados	Explosiones	Tiempo(ms)
BFS	3x3	4.2	33.6	133.4	95.8	2
DFS	3x3	30.66	245.28	177.92	106.24	0
IDDFS	3x3	4.7	37.6	89.2	320.3	4
GREEDY	3x3	9.1	72.8	40.4	9.1	3
A*	3x3	4.6	36.8	111.2	72.1	5

Resultados - Tableros 3 x 3

Resultados - Tableros 3 x 3

Grupo 1: Edificios

Resultados - Tableros 4 x 4

Estrategia	Tam	Profundidad	Costo total	Nodos visitados	Explosiones	Tiempo(ms)
BFS	4x4	11.5	92	181735.5	146108.3	2499
DFS	4x4	23774.4	190195.2	299773.1	160299.7	4806
IDDFS	4x4	11.5	92	130091.1	893552	20301
GREEDY	4x4	135.6	1084.8	1304	135.6	17
A *	4x4	12	96	145511.8	105976.2	4797

Resultados - Tableros 4 x 4

Resultados - Tableros 4 x 4

Grupo 1: Edificios

Resultados - Tableros 5 x 5

Estrategia	Tam	Profundidad	Costo total	Nodos visitados	Explosiones	Tiempo(ms)
GREEDY	5x5	42353.6	338828.8	704463	42353.6	9744

Conclusiones

- En la resolución de este problema, existen algoritmos claramente mejores que otros. Principalmente por no ser un problema en el que se requiera una solución con el menor costo posible.
- Se observó como una buena heurística puede ayudar a mejorar la resolución del problema.
- Se observó cómo reducir el conjunto de reglas puede ser beneficioso al momento de expandir el árbol.