Transformées de Hough denses pour la reconnaissance de formes paramétrées

Antoine Manzanera ENSTA-ParisTech

Cours C10-3 "Vision pour la Robotique"

Reconnaissance de Formes paramétrées dans les Images

Forme analytique

- Droites, cercles, coniques,...
- Définies par une équation

Objet

- Voiture, visage,...
- Paramètres définis par l'utilisateur
- Fondée sur Exemples / Apprentissage

- Introduction
 - Travaux et Outils existant
- Que Géométrie Différentielle Multiéchelles
 - Mesures Différentielles
 - Dérivées multiéchelles
- Reconnaissance de Formes Analytiques
 - Ordre 1 : Droites
 - Ordre 2 : Cercles
- Reconnaissance d'objets
 - Modèles Implicites de Formes
 - Transformée de Hough Dense Généralisée
- Conclusion

Transformée de Hough : Vue globale

- L'une des applications les plus anciennes en Vision par Ordinateur (Images de chambres à bulles, fin des années 50).
- Utilisable à la fois pour des formes analytiques (courbes) et non analytiques (objets).
- Fondée sur un mécanisme d'accumulation (vote) de l'espace image (pixels) à un espace de paramètres multidimensionnel.

Dualité des espaces Image / Paramètre

Courbe analytique paramétrée dans l'espace Image $\mathcal{E} = \mathbb{R}^n$

$$\mathcal{C}^{\mathbf{a_0}} = \{ \mathbf{x} \in \mathbb{R}^n; \phi(\mathbf{x}, \mathbf{a_0}) = 0 \}, \text{ avec } \mathbf{a_0} \in \mathbb{R}^m$$

Surface paramétrique duale dans l'espace des paramètres $\mathcal{P}=\mathbb{R}^m$

$$\mathcal{D}^{\mathbf{x_0}} = \{\mathbf{a} \in \mathbb{R}^m; \phi(\mathbf{x_0}, \mathbf{a}) = \mathbf{0}\}, \text{ avec } \mathbf{x_0} \in \mathbb{R}^n$$

Transformée de Hough théorique d'un ensemble $I\subset\mathbb{R}^n$

Ensembliste

$$\Gamma_I^{\phi} = \bigcup_{\mathbf{x} \in I} \mathcal{D}^{\mathbf{x}}$$

Fonctionnelle

$$\Gamma_I^\phi = \sum_{\mathbf{x} \in I} \mathbb{1}_{\mathcal{D}^{\mathbf{x}}}$$

Cas des droites et des cercles

Droites: équation polaire

- Équation : $\phi(x, y, \theta, \rho) = x \cos \theta + y \sin \theta \rho = 0$
- Courbe image $C^{(\theta,\rho)}$: droite.
- Courbe duale $\mathcal{D}^{(x,y)}$: sinusoïde.

Cercles : équation cartésienne

- Équation : $\phi(x, y, \mathbf{c}_x, \mathbf{c}_y, r) = (x \mathbf{c}_x)^2 + (y \mathbf{c}_y)^2 r^2 = 0$
- Courbe image $C^{(\mathbf{c}_x,\mathbf{c}_y,r)}$: cercle.
- Surface duale $\mathcal{D}^{(x,y)}$: cône.

Transformée de Hough : détails (1)

Chaque point de l'espace des paramètres (dimension = nombre de paramètres) correspond à une unique forme dans l'espace image. Exemple : Un point dans l'espace des coordonnée polaires (θ, ρ) correspond à une droite.

Transformée de Hough : détails (2)

Chaque courbe de l'espace des paramètres correspond à un unique point ou, de manière équivalente, à un faisceau de formes dans l'espace image.

Exemple : Une sinusoïde correspond à un faisceau de droites, i.e. un point.

Transformée de Hough : détails (3)

Réciproquement, différents points appartenant à la même forme dans l'espace image forment un faisceau de courbes dans l'espace des paramètres, qui converge vers un unique point qui définit la forme correspondante.

Transformée de Hough : en pratique

En pratique les espaces image $\mathcal E$ et paramètre $\mathcal P$ sont tous deux discrétisés.

Classiquement, la transformée de Hough (i.e. le résultat de la projection de tous les points de l'espace image dans l'espace des paramètres) est calculée à partir d'un nombre limité de points : les contours.

La projection est habituellement réalisée selon l'une des deux techniques duales:

- La projection many-to-one
- La projection one-to-many

One-to-many vs Many-to-one

La projection many-to-one ou divergente

Elle est définie par $\Gamma_I^\phi = \sum_{\mathbf{x} \in I} \mathbb{1}_{\mathcal{D}^{\mathbf{x}}},$

soit l'union (somme des fonctions indicatrices) de toutes les courbes duales associées aux points du contour.

One-to-many vs Many-to-one

La projection one-to-many ou convergente

Elle est définie par $\hat{\Gamma}_I^\phi = \sum_{S \subset I, |S| = \dim(\mathcal{P})} \mathbb{1}_{\{\mathbf{a}_S\}},$

où $\{\mathbf{a}_S\} = \bigcap_{\mathbf{x} \in S} \mathcal{D}^{\mathbf{x}}$, est un point unique de \mathcal{P} , qui représente la seule courbe de \mathcal{E} contenant tous les points de S.

Détection : Maxima de la Transformée de Hough

Une fois l'ensemble des points (ou des m-uplets) de / (1) projetés (2), les meilleures formes candidates sont détectées (4) en calculant les maxima de la transformée de Hough (3).

TH one-to-many

Complexité des TH classiques

- n: nombre d'échantillons / dimension (image).
- p: nombre de pixels du contour binaire.
- m : dimension de l'espace des paramètres.
- k : nombre d'échantillons / dimension (paramètres).

Type Algo	Préliminaires	Transformée	Sélec. Maxima	
TH 1-to-many	Détection de contours	vote 1-to-many $\mathcal{O}(\mathit{pk}^{m-1})$		
TH many-to-1	$\mathcal{O}(n^2) + \mathcal{O}(p)$	vote many-to-1 $\mathcal{O}(\binom{p}{m})$	$\mathcal{O}(k^m)$	

Solutions classiques ? Sous-échantillonner les points du contour :

- TH 1-to-many: TH probabilistes (PHT).
- TH many-to-one : TH aléatoires (RHT).

Plan de la présentation

- - Travaux et Outils existant
- Que Géométrie Différentielle Multiéchelles
 - Mesures Différentielles
 - Dérivées multiéchelles
- - Ordre 1 : Droites
 - Ordre 2 : Cercles
- - Modèles Implicites de Formes
 - Transformée de Hough Dense Généralisée

Le modèle différentiel

- En traitement d'images et vision par ordinateur, beaucoup d'algorithmes sont fondés sur des caractéristiques locales utilisant des dérivées partielles : Contraste, Contours, Segmentation...
- Dans le modèle différentiel, une image est assimilée à une fonction continue et différentiable
- Le comportement local de l'image au voisinage d'un point peut être prédit grâce aux dérivées partielles (Formule de Taylor).

Notations

$$I_x=rac{\partial I}{\partial x},\ I_y=rac{\partial I}{\partial y},\ I_{xx}=rac{\partial^2 I}{\partial x^2},\ I_{xy}=rac{\partial^2 I}{\partial x\partial y},$$
 etc.

Ordre 1: Gradient et Isophote

A l'ordre 1, la grandeur fondamentale est le vecteur gradient :

$$\nabla I = (Ix, Iy)^T$$

- Son argument $\Phi = \arg \nabla I$ correspond à la direction de plus forte pente.
- Son module $||\nabla I||$ est une mesure de contraste.

Ordre 1: Gradient et Isophote

Soit v un vecteur unitaire. La valeur de la dérivée première selon v est donnée par :

$$I_{\mathbf{v}} = \mathbf{v}^T \cdot \nabla I$$

En particulier, la dérivée dans la direction orthogonale au gradient est nulle (direction de l'isophote t).

A l'ordre 2, la grandeur fondamentale est la matrice hessienne :

$$H_I = \left(\begin{smallmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{smallmatrix}\right)$$

- Ses vecteurs propres (resp. valeurs propres Λ_H and λ_H) correspondent aux directions (resp. intensités) principales de courbures.
- Sa norme de Frobenius $||H_I||_F = \sqrt{\Lambda_H^2 + \lambda_H^2}$ est une mesure de l'intensité de la courbure globale.

Ordre 2: Hessienne et Courbure

Soit **u** et **v** deux vecteurs unitaires. La valeur de la dérivée seconde selon u puis v est donnée par :

$$I_{uv} = \mathbf{u}^T H_I \mathbf{v}$$

En particulier, la dérivée seconde dans la direction de l'isophote t fournit la courbure de l'isophote, i.e. l'inverse du rayon du cercle osculateur au contour, par la formule :

$$\kappa_I = -\frac{I_{tt}}{||\nabla I||} = -\frac{I_{xx}I_y^2 - 2I_{xy}I_xI_y + I_{yy}I_x^2}{||\nabla I||^3}$$

Dérivées multiéchelles

Selon la théorie des espaces d'échelles, une dérivée dans une image discrète n'a de sens qu'à un paramètre d'échelle près. La dérivée est estimée à l'échelle σ par une convolution avec la dérivée correspondante de la fonction gaussienne :

$$I_{x^i y^j}^{\sigma} = I \star \frac{\partial^{i+j} G_{\sigma}}{\partial x^i \partial y^j}$$

- G_{σ} est la fonction gaussienne 2d de variance σ^2 .
- σ est l'échelle d'estimation.
- i + j est l'ordre de dérivation.

Dérivées gaussiennes multiéchelles

Plan de la présentation

- Introduction
 - Travaux et Outils existant
- 2 Géométrie Différentielle Multiéchelles
 - Mesures Différentielles
 - Dérivées multiéchelles
- Reconnaissance de Formes Analytiques
 - Ordre 1 : Droites
 - Ordre 2 : Cercles
- 4 Reconnaissance d'objets
 - Modèles Implicites de Formes
 - Transformée de Hough Dense Généralisée
- Conclusion

Dérivées partielles et Transformées de Hough 1-to-1

Approches Classiques

- éparses : Seuls quelques points (contours, points d'intérêt) votent.
- 1-to-many : Chaque point de l'espace image vote uniformément sur une surface de dimension n dans l'espace des paramètres.
- many-to-1 : Chaque *n*-uplet de points de l'espace image vote pour un unique point de l'espace des paramètres.

Dérivées partielles et Transformées de Hough 1-to-1

Transformées de Hough fondées sur les dérivées partielles

- denses : Tous les points votent...
- censitaires : ...mais leurs votes n'ont pas le même poids !
- 1-to-1 : Chaque point de l'espace image vote pour un unique point de l'espace des paramètres.

A l'ordre 1, le gradient $g = \nabla I$ définit la direction de l'isophote t, et donc la direction de la droite candidate.

•
$$\theta(P) = \arg \nabla I(P)$$

Le poids du vote doit être proportionnel à la fiabilité des mesures locales, qui à l'ordre 1 dépend de la norme du gradient.

Gradient et droite

Poids du vote

Principaux votes

20 meilleures droites

transformée 1-to-1 (
ho, heta)

A l'ordre 2 : $\arg g$, la direction du gradient et κ , la courbure de l'isophote définissent le rayon et le centre du cercle osculateur à la courbe isophote, et donc l'équation du cercle candidat.

•
$$r(P) = \frac{1}{|\kappa(P)|}$$

• $C(P) = P - \frac{\nabla I}{|\kappa||\nabla I||}$

Le poids du vote, qui quantifie la fiabilité des mesures locales, est à l'ordre 2 la norme de Frobenius de la matrice hessienne.

Courbure positive

Courbure négative

Poids du vote

Principaux votes

10 meilleurs cercles

Transformée 1-to-1 (
ho,x,y) (plan ho= 19)

Bilan de complexité global

- n : nombre d'échantillons / dimension (image).
- p : nombre de pixels du contour binaire.
- m : dimension de l'espace des paramètres.
- k : nombre d'échantillons / dimension (paramètres).
- s : nombre d'échelles utilisées dans la THD.

Type Algo	Préliminaires	Transformée	Sélec Maxima	
TH 1-to-many			$\mathcal{O}(k^m)$	
TH many-to-1				
THD 1-to-1	1-to-1 Calcul des dérivées + vote 1-to-1 $\mathcal{O}(sn^2)$			

Plan de la présentation

- Introduction
 - Travaux et Outils existant
- 2 Géométrie Différentielle Multiéchelles
 - Mesures Différentielles
 - Dérivées multiéchelles
- Reconnaissance de Formes Analytiques
 - Ordre 1 : Droites
 - Ordre 2 : Cercles
- Reconnaissance d'objets
 - Modèles Implicites de Formes
 - Transformée de Hough Dense Généralisée
- Conclusion

Représentation d'un objet par une R-Table

Les transformées de Hough généralisées classiques sont éparses : elles sont calculées à partir d'un nombre réduit de points caractéristiques :

contours [Ballard 81], ou points d'intérêt [Leibe 04].

La R-table est un modèle de forme, construit à partir d'un prototype. Soit Ω le centre (arbitraire) du prototype. Chaque point M du prototype est indexé par une caractéristique géometrique i, correspondant aux indices de ligne de la R-table.

La R-table est construite en ajoutant le vecteur déplacement $M\Omega$ dans la ligne index i.

Par exemple considérons les points du contour suivant comme prototype, indexé par la direction de la normale au contour, quantifiée sur 8 valeurs :

Index	Liste de vecteurs					
0	$\begin{pmatrix} -2 \\ -3 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -3 \end{pmatrix}$	end

Index	Liste de vecteurs					
0	$\begin{pmatrix} -2 \\ -3 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -3 \end{pmatrix}$	end
1	$\begin{pmatrix} 2 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 3 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 3\\2 \end{pmatrix}$	end

Index	Liste de vecteurs					
0	$\begin{pmatrix} -2 \\ -3 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -3 \end{pmatrix}$	end
1	$\begin{pmatrix} 2 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 3 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 2\\1 \end{pmatrix}$	$\begin{pmatrix} 3\\2 \end{pmatrix}$	end
2	$\begin{pmatrix} 3 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 3 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 0 \end{pmatrix}$		end	

et ainsi de suite...

R-Tables denses indexées par les dérivées

Dans l'approche dense, les indices i de la R-table sont les valeurs quantifiées des dérivées multiéchelles, qui sont disponibles partout.

R-Table pondérées : $\{i,\{\vec{\delta_i^j},\omega_i^j\}_i\}_i$

Transformée de Hough Généralisée : Détection d'Objet

Initial: $H(\mathbf{x}) = 0$ partout. Pour tout point \mathbf{x} de l'image, soit $\lambda(\mathbf{x})$ la dérivée quantifiée. Pour toute occurrence j de la R-Table associée à $\lambda(\mathbf{x})$, faire : $H(\mathbf{x} + \delta_{\lambda(\mathbf{x})}^j) += \omega_{\lambda(\mathbf{x})}^j$ Les meilleurs objets candidats sont localisés sur les maxima de *H*.

Transparent suivant : Transformée de Hough (à gauche, réduite de 50%), et mosaïque d'images sagittales MRI avec les 20 meilleurs candidats «cervelet» (à droite).

Transformée de Hough Généralisée : Détection d'Objet

Plan de la présentation

- Introduction
 - Travaux et Outils existant
- Qualité de la company de la
 - Mesures Différentielles
 - Dérivées multiéchelles
- Reconnaissance de Formes Analytiques
 - Ordre 1 : Droites
 - Ordre 2 : Cercles
- Reconnaissance d'objets
 - Modèles Implicites de Formes
 - Transformée de Hough Dense Généralisée
- Conclusion

Conclusions: Avantages des TH denses

- Combinaison des approches cumulatives de Hough et des dérivées multiéchelles.
- Rapidité du calcul (plus de segmentation, contours, ou points d'intérêt).
- Fiabilité du vote : plus de points votants, localisation plus précises des votes.

Bibliographie (Pour en savoir plus)

Representation

[Manzanera 11] A. MANZANERA Local Jet Feature Space Framework for Image Processing and

Int. Conf. on Signal Image Technology and Internet Based Systems 261-268 (2011)

[Manzanera 15] A.MANZANERA, T.P. NGUYEN, and X. XU. Evaluation of the one-to-one dense Hough transforms for line and circle detection.

Article soumis, à paraître.

Bibliographie (Espaces d'Echelles)

- [Lindeberg 98] T. LINDEBERG
 - Feature detection with automatic scale selection International Journal of Computer Vision 30(2), 77-116. (1998)
- [Koenderink 87] J.J. KOENDERINK and A.J. VAN DOORN Representation of Local Geometry in the Visual System Biological Cybernetics 55, 367-375. (1987)
- [Frangi 98] R.F. FRANGI, W.J. NIESSEN, K.L. VINCKEN and M.A. VIERGEVER
 - Multiscale vessel enhancement filtering MICCAI'98, LNCS vol. 1496, 130-137. (1998)

Bibliographie (Transformées de Hough 1)

[Hough 59] P. HOUGH

Machine analysis of bubble chamber pictures.

In: Int. Conf. High Energy Accelerators and Instrumentation. (1959)

[Ballard 81] D.H. BALLARD

Generalizing the Hough transform to detect arbitrary shapes.

Pattern Recognition 13 (1981) 111-122

Bibliographie (Transformées de Hough 2)

- [O'Gorman 76] F. O'GORMAN AND B. CLOWES Finding picture edges through collinearity of feature points IEEE Trans. on Computers C-25 449-456 (1976)
- [Leibe 04] B. LEIBE, A. LEONARDIS and B. SCHIELE Combined object categorization and segmentation with an implicit shape model
 - ECCV Workshop on Statistical Learning in Computer Vision (2004)
 - [Valenti 08] R. VALENTI and T. GEVERS

 Accurate eye center location and tracking using isophote curvature Int. Conf. on Computer Vision and Pattern Recognition (2008)