

GW1NSR series of FPGA Products

Datasheet

DS861-1.4.5E, 11/17/2021

Copyright©2021 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

GOWINSEMI are trademarks of Guangdong Gowin Semiconductor Corporation and are registered in China, the U.S. Patent and Trademark Office, and other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders. No part of this document may be reproduced or transmitted in any form or by any denotes, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI assumes no liability and provides no warranty (either expressed or implied) and is not responsible for any damage incurred to your hardware, software, data, or property resulting from usage of the materials or intellectual property except as outlined in the GOWINSEMI Terms and Conditions of Sale. All information in this document should be treated as preliminary. GOWINSEMI may make changes to this document at any time without prior notice. Anyone relying on this documentation should contact GOWINSEMI for the current documentation and errata.

Revision History

Date	Version	Description	
11/15/2018	1.0E	Initial version published.	
1/3/2019	1.1E	 The recommended working voltage list updated; The description about PSRAM reference manual updated. 	
3/12/2019	1.2E	 The environment temperature changed to junction temperature; Part name figures updated; "LV" changed to "LX" and "UV" changed to "UX". 	
11/13/2019	1.3E	Devices of GW1NSR-4 and GW1NSR-4C added.	
02/20/2020	1.4E	 Ordering information improved; Chapter structure of AC/DC Characteristic improved. 	
04/16/2020	1.4.1E	 Package Information updated; CFU view updated. 	
06/28/2020	1.4.2E	The "QN48" package name of GW1NSR-2C/ GW1NSR-2 corrected as "QN48P".	
11/27/2020	1.4.3E	The Max. operating frequency of ARM Cortex-M3 updated.	
07/12/2021	1.4.4E	The description of Cortex-M3 improved.	
11/17/2021	1.4.5E	The I/O standards and ordering information updated.	

i

Contents

List of Tables	
1 About This Guide	
1.1 Purpose	
1.2 Related Documents	
1.3 Abbreviations and Terminology	
1.4 Support and Feedback	
2 General Description	
2.1 Features	
2.2 Product Resources	
2.3 Package Information	
3 Architecture	
3.1 Architecture Overview	
3.2 PSRAM	
3.3 HyperRAM	
3.4 NOR FLASH	
3.5 Configurable Function Unit	
3.5.1 CLU	
3.5.2 CRU	
3.6 IOB	
3.6.1 I/O Buffer	
3.6.2 True LVDS Design	
3.6.3 I/O Logic	
3.6.4 I/O Logic Modes	
3.7 Block SRAM (BSRAM)	
3.7.1 Introduction	
3.7.2 Configuration Mode	
3.7.3 Mixed Data Bus Width Configuration	
3.7.4 Byte-enable	

3.7.6 Synchronous Operation	34
3.7.7 Power up Conditions	34
3.7.8 BSRAM Operation Modes	34
3.7.9 Clock Operations	36
3.8 User Flash (GW1NSR-2C/2)	37
3.9 User Flash (GW1NSR-4C/4)	38
3.10 DSP	38
3.10.1 Introduction	38
3.10.2 Macro	39
3.10.3 DSP Operations	40
3.11 Cortex-M3	40
3.11.1 Introduction	40
3.11.2 Cortex-M3	42
3.11.3 Bus-Matrix	43
3.11.4 NVIC	43
3.11.5 Boot Loader	46
3.11.6 TimeStamp	46
3.11.7 Timer	46
3.11.8 UART	48
3.11.9 Watchdog	51
3.11.10 GPIO	52
3.11.11 Debug Access Port	55
3.11.12 Memory Mapping	56
3.11.13 Application	56
3.12 USB2.0 PHY	56
3.12.1 Features	56
3.12.2 Interfaces and Ports Signal	56
3.13 ADC	61
3.13.1 Features	61
3.13.2 Port Signal	61
3.14 Clock	62
3.14.1 Global Clock	62
3.14.2 PLL	62
3.14.3 HCLK	63
3.15 Long Wire (LW)	64
3.16 Global Set/Reset (GSR)	64
3.17 Programming Configuration	65
3.17.1 SRAM Configuration	65
3.17.2 Flash Configuration	65

3.18 On Chip Oscillator	65
4 AC/DC Characteristic	67
4.1 Operating Conditions	67
4.1.1 Absolute Max. Ratings	67
4.1.2 Recommended Operating Conditions	67
4.1.3 Power Supply Ramp Rates	68
4.1.4 Hot Socket Specifications	68
4.1.5 POR Specifications	68
4.2 ESD	68
4.3 DC Electrical Characteristics	69
4.3.1 DC Electrical Characteristics over Recommended Operating Conditions	69
4.3.2 Static Supply Current	70
4.3.3 Recommended I/O Operating Conditions	70
4.3.4 IOB Single - Ended DC Electrical Characteristic	72
4.3.5 I/O Differential Electrical Characteristics	73
4.4 AC Switching Characteristic	73
4.4.1 IO Speed	73
4.4.2 CFU Switching Characteristics	74
4.4.3 Clock and I/O Switching Characteristics	74
4.4.4 Gearbox Switching Characteristics	74
4.4.5 BSRAM Switching Characteristics	75
4.4.6 DSP Switching Characteristics	75
4.4.7 On chip Oscillator Switching Characteristics	75
4.4.8 PLL Switching Characteristics	76
4.5 Cortex-M3 Electrical Specification	77
4.5.1 DC Characteristic	77
4.5.2 AC Characteristic	77
4.6 User Flash Characteristic (GW1NSR-2C/2)	78
4.6.1 DC Characteristic	78
4.6.2 AC Characteristic	79
4.6.3 Operation Timing Diagrams	80
4.7 User Flash Characteristic (GW1NSR-4C/4)	81
4.7.1 DC Characteristics	81
4.7.2 AC Characteristics	82
4.7.3 Operation Timing Diagrams	83
4.8 ADC Characteristics	84
4.8.1 ADC Timing	84
4.8.2 Electrical Characteristic Parameters	85
4.9 Configuration Interface Timing Specification	86

5 (Ordering Information	87
	5.1 Part Name	. 87
	5.2 Package Mark	80

DS861-1.4.5E iv

List of Figures

Figure 3-1 GW1NSR-2 Architecture Overview	9
Figure 3-2 GW1NSR-2C Architecture Overview	9
Figure 3-3 GW1NSR-4 Architecture Overview	10
Figure 3-4 GW1NSR-4C Architecture Overview	10
Figure 3-5 CFU Structure	15
Figure 3-6 Register in CLS	16
Figure 3-7 IOB Structure View	17
Figure 3-8 GW1NSR-2C/2 I/O Bank Distribution	18
Figure 3-9 GW1NSR-4C/4 I/O Bank Distribution	18
Figure 3-10 True LVDS Design	23
Figure 3-11 I/O Logic Input	24
Figure 3-12 I/O Logic Input	24
Figure 3-13 IODELAY	25
Figure 3-14 Register Structure in I/O Logic	25
Figure 3-15 IEM Structure	25
Figure 3-16 I/O Logic in Basic Mode	26
Figure 3-17 I/O Logic in SDR Mode	27
Figure 3-18 I/O Logic in DDR Input Mode	27
Figure 3-19 I/O Logic in DDR Output Mode	27
Figure 3-20 I/O Logic in IDES4 Mode	28
Figure 3-21 I/O Logic in OSER4 Mode	28
Figure 3-22 I/O Logic in IVideo Mode	28
Figure 3-23 I/O Logic in OVideo Mode	28
Figure 3-24 I/O Logic in IDES8 Mode	29
Figure 3-25 I/O Logic in OSER8 Mode	29
Figure 3-26 I/O Logic in IDES10 Mode	29
Figure 3-27 I/O Logic in OSER10 Mode	29
Figure 3-28 I/O Logic in IDES16 Mode	30
Figure 3-29 I/O Logic in OSER16 Mode	30
Figure 3-30 Pipeline Mode in Single Port, Dual Port and Semi-Dual Port	34
Figure 3-31 Independent Clock Mode	36
Figure 3-32 Read/Write Clock Mode	36

Figure 3-33 Single Port Clock Mode	37
Figure 3-34 Cortex-M3 Architecture	42
Figure 3-35 DEMCR Register	46
Figure 3-36 Timer0/ Timer1 Structure View	47
Figure 3-37 APB UART Buffering	49
Figure 3-38 Watchdog Operation	51
Figure 3-39 Memory Mapping	56
Figure 3-40 PLL Structure	62
Figure 3-41 GW1NSR-2/GW1NSR-2C HCLK Distribution	64
Figure 3-42 GW1NSR-4/GW1NSR-4C HCLK Distribution	64
Figure 4-1 Read Mode	80
Figure 4-2 Write Mode	80
Figure 4-3 Page Erasure Mode	80
Figure 4-4 Module Rrasure Mode	81
Figure 4-5 User Flash Read Operation	83
Figure 4-6 User Flash Program Operation	83
Figure 4-7 User Flash Erase Operation	84
Figure 4-8 ADC Timing	84
Figure 5-1 GW1NSR-2/ GW1NSR-4 Part Naming–ES	87
Figure 5-2 GW1NSR-2C/ GW1NSR-4C Part Naming–ES	88
Figure 5-3 GW1NSR-2/ GW1NSR-4 Part Naming – Production	88
Figure 5-4 GW1NSR-2C/ GW1NSR-4C Part Naming – Production	88
Figure 5-5 GW1NSR-2 Package Mark	89
Figure 5-6 GW1NSR-2C Package Mark	89
Figure 5-7 GW1NSR-4 Package Mark	89
Figure 5-8 GW1NSR-4C Package Mark	89

List of Tables

Table 1-1 Abbreviations and Terminology	2
Table 2-1 Product Resources	7
Table 2-2 Package Information and Max. User I/O	8
Table 3-1 Register Description in CFU	16
Table 3-2 Output I/O Standards and Configuration Options	19
Table 3-3 Input I/O Standards and Configuration Options	21
Table 3-4 Memory Size Configuration	31
Table 3-5 Dual Port Mixed Read/Write Data Width Configuration	33
Table 3-6 Semi Dual Port Mixed Read/Write Data Width Configuration	33
Table 3-7 Clock Operations in Different BSRAM Modes	36
Table 3-8 NVIC Interrupt Vector Table	45
Table 3-9 Timer0/Timer1 Register	48
Table 3-10 UART0/UART1 Register	50
Table 3-11 Watchdog Register	52
Table 3-12 GPIO Register	54
Table 3-13 USB2.0 PHY Ports Signal	57
Table 3-14 USB2.0 PHY Parameters	60
Table 3-15 ADC Port Signal	61
Table 3-16 Channel Selection Truth Table	61
Table 3-17 Definition of the PLL Ports	63
Table 3-18 GW1NSR-2C/2 Oscillator Output Frequency Options	66
Table 3-19 GW1NSR-4C/4 Oscillator Output Frequency Options	66
Table 4-1 Absolute Max. Ratings	67
Table 4-2 Recommended Operating Conditions	67
Table 4-3 Power Supply Ramp Rates	68
Table 4-4 Hot Socket Specifications	68
Table 4-5 POR Specifications	68
Table 4-6 GW1NSR ESD - HBM	68
Table 4-7 GW1NSR ESD – CDM	69
Table 4-8 DC Electrical Characteristics over Recommended Operating Conditions	69
Table 4-9 Static Supply Current	70
Table 4-10 Recommended I/O Operating Conditions	70

Table 4-11 IOB Single - Ended DC Electrical Characteristic	72
Table 4-12 I/O Differential Electrical Characteristics	73
Table 4-13 IO Characteristics	73
Table 4-14 CFU Block Internal Timing Parameters	74
Table 4-15 External Switching Characteristics	74
Table 4-16 Gearbox Internal Timing Parameters	74
Table 4-17 BSRAM Internal Timing Parameters	75
Table 4-18 DSP Internal Timing Parameters	75
Table 4-19 On chip Oscillator Output Frequency	75
Table 4-20 PLL Parameters	76
Table 4-21 Current Characteristic	77
Table 4-22 Clock Parameters	77
Table 4-23 GW1NSR-2C/2 User Flash DC Characteristic	
Table 4-24 GW1NSR-2C/2 User Flash Timing Parameters	79
Table 4-25 GW1NSR-4C/4 User Flash DC Characteristic	
Table 4-26 GW1NSR-4C/4 User Flash Timing Parameters	82
Table 4-27 ADC Timing Parameters	85
Table 4-28 ADC Parameters	85

1 About This Guide 1.1 Purpose

1 About This Guide

1.1 Purpose

This data sheet describes the features, product resources and structure, AC/DC characteristics, timing specifications of the configuration interface, and the ordering information of the GW1NSR series of FPGA product. It is designed to help you understand the GW1NSR series of FPGA products quickly and select and use devices appropriately.

1.2 Related Documents

The latest user guides are available on the GOWINSEMI Website. You can find the related documents at www.gowinsemi.com:

- 1. DS861, GW1NSR series of FPGA Products Data Sheet
- 2. <u>UG290, Gowin FPGA Products Programming and Configuration User</u> Guide
- 3. UG863, GW1NSR series of FPGA Products Package and Pinout
- 4. UG862, GW1NSR-2&2C Pinout
- 5. UG864, GW1NSR-4 Pinout
- 6. UG865, GW1NSR-4C Pinout

DS861-1.4.5E 1(89)

1.3 Abbreviations and Terminology

The abbreviations and terminology used in this manual are as shown in Table 1-1 below.

Table 1-1 Abbreviations and Terminology

Abbreviations and Terminology	Full Name		
FPGA	Field Programmable Gate Array		
SoC	System on Chip		
ARM	Advanced RISC Machine		
AHB	Advanced High performance Bus		
APB	Advanced Peripheral Bus		
Timer	Timer		
UART	Universal Asynchronous Receiver/Transmitter		
NVIC	Nested Vector Interrupt Controller		
DAP	Debug Access Port		
Watchdog	Watchdog		
TimeStamp	TimeStamp		
DWT	Data Watchpoint Trace		
ITM	Instrumentation Trace Macrocell		
TPIU	Trace Port Interface Unit		
USB	Universal Serial Bus		
PHY	Physical Layer		
ADC	Analog to Digital Converter		
SAR	Successive Approximation Register		
SFDR	Spurious-free Dynamic Range		
SINAD	Signal to Noise and Distortion		
LSB	Least Significant Bit		
INL	Integral Nonlinearity		
DNL	Differential Nonlinearity		
CFU	Configurable Function Unit		
CLS	Configurable Logic Section		
CRU	Configurable Routing Unit		
LUT4 4-input Look-up Tables			
LUT5 5-input Look-up Tables			
LUT6	6-input Look-up Tables		
LUT7	7-input Look-up Tables		
LUT8	8-input Look-up Tables		
REG	Register		
ALU	Arithmetic Logic Unit		
IOB	Input/Output Block		

DS861-1.4.5E 2(89)

Abbreviations and Terminology	Full Name		
SSRAM	Shadow Static Random Access Memory		
BSRAM	Block Static Random Access Memory		
SP	Single Port 16K BSRAM		
SDP	Semi Dual Port 16K BSRAM		
DP	True Dual Port 16K BSRAM		
DQCE	Dynamic Quadrant Clock Enable		
DCS	Dynamic Clock Selector		
PLL	Phase-locked Loop		
GPIO	Gowin Programmable IO		
QN	QFN		
MG	MBGA		
TDM	Time Division Multiplexing		

1.4 Support and Feedback

Gowin Semiconductor provides customers with comprehensive technical support. If you have any questions, comments, or suggestions, please feel free to contact us directly using the information provided below.

Website: www.gowinsemi.com
E-mail: support@gowinsemi.com

DS861-1.4.5E 3(89)

2 General Description 2.1 Features

2General Description

The GW1NSR series of FPGA products are the first generation products in the LittleBee® family and represent one form of SIP chip. The main difference between the GW1NS series and the GW1NSR series is that the GW1NSR series integrates abundant PSRAM. The GW1NSR series includes GW1NSR-2C, GW1NSR-2, GW1NSR-4C, and GW1NSR-4. When the ARM Cortex-M3 hard-core processor is employed as the core of GW1NSR-2C and GW1NSR-4C, the needs of the Min. memory can be met. FPGA logic resources and other embedded resources can flexibly facilitate the peripheral control functions, which provide excellent calculation functions and exceptional system response interrupts. They also offer high performance, low power consumption, flexible usage, instant start-up, affordability, nonvolatile, high security, and abundant package types, among other benefits. SoC devices achieve seamless connection between programmable logic devices and embedded processors. They are compatible with multiple peripheral device standards and can, therefore, reduce costs of operation and be widely deployed in industrial control, communication, Internet of Things, servo drive, consumption fields, etc.

GOWINSEMI provides a new generation of FPGA hardware development environment through market-oriented independent research and development that supports the GW1NSR series of FPGA products and applies to FPGA synthesizing, layout, place and routing, data bitstream generation and download, etc.

2.1 Features

- Lower power consumption
 - 55nm embedded flash technology
 - Core voltage: 1.2V
 - GW1NSR-2C/2 supports LX and UX
 - GW1NSR-4C/4 supports LV
 - Clock dynamically turns on and off
- Integrated with HyperRAM/PSRAM
- Integrated with NOR FLASH

DS861-1.4.5E 4(89)

2 General Description 2.1 Features

Hard core processor

- Cortex-M3 32-bit ARM processor
- ARM v7-M Thumb2 instruction set architecture optimized for small-footprint embedded applications
- System timer (SysTick), providing a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism
- Thumb compatible Thumb-2-only instruction set processor core for high code density
- GW1NSR-2C supports up to 30 MHz operating frequency
- GW1NSR-4C supports up to 80 MHz operating frequency
- Hardware-division and single-cycle-multiplication
- Integrated nested vectored interrupt controller (NVIC) providing deterministic interrupt handling
- 26 interrupts with eight priority levels
- Memory protection unit (MPU), providing a privileged mode for protecting operation system functionality
- Unaligned data access, enabling data to be efficiently packed into memory
- Atomic bit manipulation (bit-banding), delivering maximum memory utilization and streamlined peripheral control
- Timer0 and Timer1
- UART0 and UART1
- Watchdog
- Debug port: JTAG and TPIU
- USB2.0 PHY, supported by GW1NSR-2C/2
 - 480Mbps data speed, compatible with USB1.1 1.5/12Mbps data speed
 - Plug and play
 - Hot socket
- ADC, supported by GW1NSR-2C/2
 - Eight channels
 - 12-bit SAR AD conversion
 - Slew Rate: 1MHz
 - Dynamic range: >81 dB SFDR, >62 db SINAD
 - Linear performance: INL<1 LSB, DNL<0.5 LSB, no missing codes
- User Flash
 - GW1NSR-2C/2 supports 1Mb storage space

DS861-1.4.5E 5(89)

2 General Description 2.1 Features

- GW1NSR-4C/4 supports 256Kb storage space
- 32-bit data width
- Multiple I/O Standards
 - LVCMOS33/25/18/15/12; LVTTL33, SSTL33/25/18 I,
 SSTL33/25/18 II, SSTL15; HSTL18 I, HSTL18 II, HSTL15 I; PCI,
 LVDS25, RSDS, LVDS25E, BLVDSE
 - MLVDSE, LVPECLE, RSDSE
 - Input hysteresis option
 - Supports 4mA,8mA,16mA,24mA,etc. drive options
 - Slew Rate option
 - Output drive strength option
 - Individual Bus Keeper, Weak Pull-up, Weak Pull-down, and Open Drain option
 - Hot Socket
 - Supports MIPI interface
 - supports I3C
- Abundant Slices
 - Four input LUT (LUT4)
 - Double-edge flip-flops
 - Supports shifter register
- Block SRAM with multiple modes
 - Supports Dual Port, Single Port, and Semi Dual Port
 - Supports bytes write enable
- Flexible PLLs
 - Frequency adjustment (multiply and division) and phase adjustment
 - Supports global clock
- Built-in Flash programming
 - Instant-on
 - Supports security bit operation
 - Supports AUTO BOOT and DUAL BOOT
- Configuration
 - JTAG configuration
 - Supports on-chip DUAL BOOT configuration mode
 - Multiple GowinCONFIG configuration modes: AUTOBOOT, SSPI, MSPI, CPU, SERIAL

DS861-1.4.5E 6(89)

2 General Description 2.2 Product Resources

2.2 Product Resources

Table 2-1 Product Resources

Device	GW1NSR-2	GW1NSR-2C	GW1NSR-4	GW1NSR-4C
LUT4	1,728	1,728	4,608	4,608
Flip-Flop (FF)	1,296	1,296	3,456	3,456
Block SRAM BSRAM (bits)	72K	72K	180K	180K
BSRAM quantity BSRAM	4	4	10	10
18 x 18 Multiplier			16	16
User Flash (bits)	1M	1M	256K	256K
PSRAM (bits)	32M	32M	64M	64M
HyperRAM(bits)	-	-	-	64M
NOR FLASH (bits)	_	-	-	32M
PLLs+DLLs	1+2	1+2	2+2	2+2
OSC	1,±5% accuracy	1, ±5% accuracy	1,±5% accuracy	1,±5% accuracy
Hard core processor	_	Cortex-M3	-	Cortex-M3
USB PHY	USB 2.0 PHY	USB 2.0 PHY	_	-
ADC ¹	1	1	-	-
Total number of I/O banks	4	4	4	4
Max. I/O	102	102	106	106
Core voltage	1.2V	1.2V	1.2V	1.2V

Note!

[1] Supports up to 8-channel ADC.

DS861-1.4.5E 7(89)

2 General Description 2.3 Package Information

2.3 Package Information

Table 2-3 Memory Information

Device	Package	Memory	Capacity	Bit Width
GW1NSR-2	QN48P	PSRAM	32Mb	8 bits
GW1NSR-2C	QN48P	PSRAM	32Mb	8 bits
GW1NSR-4	MG64P	PSRAM	64Mb	16 bits
GW1NSR-4C	MG64P	PSRAM	GAMb	16 bits
	QN48P	HyperRAM	64Mb	8 bits
	QN48G	NOR Flash	32Mb	1 bit

Table 2-2 Package Information and Max. User I/O

Package	Pitch(mm)	Size(mm)	GW1NSR-2	GW1NSR-2C	GW1NSR-4	GW1NSR-4C
QN48P	0.4	6 x 6	38(7)	38(7)	-	39(4)
MG64P	0.5	4.2 x 4.2	-	-	55(8)	55(8)
QN48G	0.4	6 x 6	-	-	-	39(4)

Note!

- The JTAGSEL_N and JTAG pins cannot be used as I/O simultaneously. The data in
 this table is when the loaded four JTAG pins (TCK, TDI, TDO, and TMS) are used as
 I/O; When mode [2:0] = 001, JTAGSEL_N and the four JTAG pins (TCK, TDI, TDO,
 and TMS) can be used as GPIO simultaneously, and the Max. user I/O plus one. See
 UG863, GW1NSR series of FPGA Products Package and Pinout User Guide for
 more details.
- The package types in this data sheet are written with abbreviations. See 5.1Part Name.
- Please refer to <u>GW1NSR-2&2C Pinout</u>, <u>UG864, GW1NSR-4 Pinout</u>, and <u>UG865, GW1NSR-4C Pinout</u>

DS861-1.4.5E 8(89)

3 Architecture 3.1 Architecture Overview

3 Architecture

3.1 Architecture Overview

Figure 3-1 GW1NSR-2 Architecture Overview

Figure 3-2 GW1NSR-2C Architecture Overview

DS861-1.4.5E 9(89)

3 Architecture 3.1 Architecture Overview

I/OBank0 IOB IOB IOB IOB (Flash CFU **CFU** Flash IOB UserFlash PLL I/OBank1 I/OBank3 User Flash **PLL** IOB DSP PSRAM **CFU** OSC DSP IOB **PSRAM B-SRAM** CFU CFU OSC IOB **CFU** CFU **B-SRAM** IOB I/OBank2 CFU CFU **CFU** IOB (

Figure 3-3 GW1NSR-4 Architecture Overview

Figure 3-4 GW1NSR-4C Architecture Overview

GW1NSR is one form of SIP chip, integrated with the GW1NS series of FPGA products and PSRAM chip. For PSRAM features and overview, see <u>3.2 PSRAM</u>. For HypeRAM features and overview, see <u>3.3 HyperRAM</u>. For NOR FLASH features and overview, see <u>3.4 NOR FLASH</u>.

Except for the basic units of CFU, I/O, GW1NSR series of FPGA products include BSRAM, PLL, User Flash, on-chip oscillator, downloaded flash resources, USB2.0 PHY, and ADC. GW1NSR-2C also includes Cortex-M3, See <u>Table 2-1</u> for more detailed information.

Configurable Function Unit (CFU) is the base cell for the array of the GW1NSR series of FPGA Products. Devices with different capacities have different numbers of rows and columns. CFU can be configured as LUT4 mode and ALU mode, and Memory mode. For more detailed information, see 3.5 Configurable Function Unit.

The I/O resources in the GW1NSR series of FPGA products are arranged around the periphery of the devices in groups referred to as banks, including Bank0, Bank1, Bank2, and Bank3. The I/O resources support multiple level standards, and support basic mode, SRD mode, and generic DDR mode. For more detailed information, see 3.6 IOB.

DS861-1.4.5E 10(89)

3 Architecture 3.1 Architecture Overview

The BSRAM is embedded as a row in the GW1NSR series of FPGA products. In the FPGA array, each BSRAM occupies three columns of CFU. BSRAM has two usages; however, these cannot be employed simultaneously. One is for the Cortex-M3 processor SRAM in SoC devices, which is used for memory data read/write. One BSRAM capacity is 16 Kbits, and the total capacity is 64 Kbits for GW1NSR-2/2C and 128Kbits for GW1NSR-4/4C. One is for user SRAM in GW1NSR-2C and GW1NSR-2 devices. One BSRAM capacity is 18 Kbits, and the total capacity is 72 Kbits for GW1NSR-2/2C and 180Kbits for GW1NSR-4/4C. It supports multiple configuration modes and operation modes. For further details, please refer to 3.7 Block SRAM (BSRAM).

The User Flash is embedded in the GW1NSR series of FPGA products, without loss of data even if power off. The user flash in GW1NSR-2C/2 has three usages; however, these cannot be used simultaneously. One is used to storage the ARM programs of Cortex-M3 processor. In this way, the User Flash can only be read and cannot be written. One is used as the non-volatile memory resource. One is used for the DUAL BOOT mode. The user flash in GW1NSR-4C/4 has two usages, and these cannot be used simultaneously. One is used to storage the ARM programs of Cortex-M3 processor. In this way, the User Flash can only be read and cannot be written. One is used as the non-volatile memory resource. See 3.8 User Flash (GW1NSR-2C/2) and 3.9 User Flash (GW1NSR-4C/4) for more detailed information.

The DSP is embedded in the GW1NSR series of FPGA products. DSP blocks are embedded as a row in the FPGA array. Each DSP occupies nine CFU columns. Each DSP block contains two Macros, and each Macro contains two pre-adders, two multipliers with 18 by 18 inputs, and a three input ALU54. For more detailed information, see <u>3.10 DSP</u>.

GW1NSR series of FPGA products provide one PLL. PLL blocks provide the ability to synthesize clock frequencies. Frequency adjustment (multiply and division), phase adjustment, and duty cycle can be adjusted using the configuration of parameters. There is an internal programmable on-chip oscillator in each of the GW1NSR series of the FPGA product. The on-chip oscillator supports the clock frequencies ranging from 2.5 MHz to 120MHz, providing the clock resource for the MSPI mode. It also provides clock resource for user designs with the clock precision reaching ±5%. For more detailed information, see 3.14 Clock.

The Flash resources embedded in the GW1NSR series of FPGA products are used for built-in Flash programming, support instant start and security bit operation, and support AUTO BOOT and DUAL BOOT programming modes. For more detailed information, see <u>4.9 Configuration Interface Timing Specification</u>.

The Cortex-M3 hard-core processor is embedded in the GW1NSR-2C device. It supports 30 MHz program loading when the system starts up and supports higher speed data/instructions transmission. The AHB expansion bus facilitates communication with external storage devices. The APB bus also facilitates communication with external devices, such as UART. GPIO interfaces are convenient for communicating with the external interfaces.

DS861-1.4.5E 11(89)

3 Architecture 3.2 PSRAM

FPGA can be programmed to realize controller functions across different interfaces / standards, such as SPI, I²C, I³C, etc. For more detailed information, see 3.11Cortex-M3

USB2.0 PHY is embedded in the GW1NSR series of FPGA products. FPGA logics can be programmed to realize USB controllers with specific functions. For more detailed information, see 3.12 USB2.0 PHY.

An ADC is embedded in the GW1NSR-2/2C device. It is a successive-approximation ADC with eight-channel data conversion, high dynamic performance, high precision, low power consumption, and low cost. For more detailed information, see 3.13 ADC.

FPGA provides abundant CRUs, connecting all the resources in FPGA. For example, routing resources distributed in CFU and IOB connect resources in CFU and IOB. Routing resources can automatically be generated by Gowin software. In addition, the GW1NSR series of FPGA Products also provide abundant GCLKs, long wires (LW), global set/reset (GSR), and programming options, etc. For more detailed information, see 3.14 Clock, 3.15 Long Wire (LW) and 3.16 Global Set/Reset (GSR).

3.2 PSRAM

Features

- Clock frequency: 166MHz, the maximum frequency can be DDR332.
- Double Data Rate (DDR)
- Data Width: 8 bits
- Read Write Data Strobe (RWDS)
- Temperature Compensated Refresh
- Partial Array Self Refresh (PASR)
- Hybrid Sleep Mode
- Deep power-down (DPD)
- Drive Strength: 35 ohms, 50 ohms, 100 ohms and 200 ohms
- Legacy wrap burst access
- 16/32/64/128 bytes burst access
- Status/Control Registers
- 1.8V power supply¹

Note!

[1] For the more detailed information about power supply, please refer to Table 4-2 Recommended Operating Conditions.

The supply voltage for the PSRAM interface is 1.8V; the BANK voltage that connects to the PSRAM needs to be 1.8V. For more details, please refer to <u>Table 4-2 Recommended Operating Conditions</u>.

The IP Core Generator in Gowin YunYuan software supports both the embedded and external PSRAM controller IP. This controller IP can be

DS861-1.4.5E 12(89)

3 Architecture 3.3 HyperRAM

used for the PSRAM power-up, initialization, read calibration, etc., by following the controller read/write timing. For the further detailed information, please refer to <u>IPUG525</u>, <u>Gowin PSRAM Memory Interface IP User Guide</u>.

3.3 HyperRAM

Features

- Maximum clock rate: 200MHz
- Double-Data Rate (DDR)
- Clock: Supports single ended clock and differential clock
- Supports chip select
- Data widthe: 8 bits
- Supports hardware reset
- Read-Write Data Strobe (RWDS)
 - Bidirectional Data Strobe / Mask
 - Output at the start of all transactions to indicate refresh latency
 - Output during read transactions as Read Data Strobe
 - Input during write transactions as Write Data Mask
- Die Stack Address

Performance and Power

- Configurable output drive strength
- Power saving modes: Hybrid Sleep Mode and Deep Power Down
- Configurable Burst characteristics
 - Linear burst
 - Wrapped burst lengths: 16 bytes, 32 bytes, 64 bytes, and 128 bytes
 - Hybrid burst: one wrapped burst followed by linear burst
- Array Refresh Modes: Full Array Refresh and Partial Array Refresh
- Power supply voltage: 1.7V~2.0V
 For the HyperRAM power supply voltage, please refer to <u>UG865</u>, <u>GW1NSR-4C Pinout</u>

The IP Core Generator in Gowin YunYuan software supports both the embedded and external HyperRAM controller IP. This controller IP can be used for the HyperRAM power-up, initialization, read calibration, etc., by following the controller read/write timing. For the further detailed information, please refer to IPUG944, Gowin HyperRAM Memory Interface IP User Guide.

3.4 NOR FLASH

The SoC with the package suffix of "G", such as QN48G, is embedded

DS861-1.4.5E 13(89)

with NOR FLASH.

Features

- 32Mb of storage, 256 bytes per page;
- Supports SPI;
- Clock frequency: 120MHz;
- Continuous read with 8/16/32/64 bytes wrap;
- Software/Hardware Write Protection
 - All/Partial write protection via software setting
 - Top/Bottom Block protection
- Minimum 100,000 Program/Erase cycles;
- Fast program/ Erase Speed
 - Page program time: 0.7ms;
 - Sector erase time: 90ms;
 - Block erase time: 0.45s;
 - Chip erase time: 20s
- Flexible Architecture
 - Sector: 4K byte
 - Block: 32/64K byte
 - Erase/Program Suspend/Resume
- Low power
 - Stand-by current: 35uA;
 - Power down current: 0.2uA;
- Security Features
 - 128 bits unique ID for each device;
 - 3x1024Byte security registers with OTP Lock
- Data retention: 20 years

Gowin has designed a SPI Nor Flash Interface IP that provides a common command interface for you to interconnect with the SPI Nor Flash chip to fulfill their memory access needs. For further detailed information, please refer to IPUG945, Gowin SPI Nor Flash Interface IP User Guide.

3.5 Configurable Function Unit

The configurable function unit (CFU) is the base cell for the array of the GW1NSR series of FPGA products. Each CFU consists of a configurable logic unit (CLU) and its routing resource configurable routing unit (CRU). In each CLU, there are four Configurable Logic Sections (CLS). Each CLS contains look-up tables (LUT) and registers, as shown in Figure 3-5 below.

DS861-1.4.5E 14(89)

Carry to Right CLU CFU CLU LUT SREG CLS3 REG/ LUT **SREG** LUT REG CLS₂ LUT REG CRU LUT REG CLS1 LUT REG LUT REG CLS₀ LUT REG Carry from left CLU

Figure 3-5 CFU Structure

Note!

SREG needs special patch supporting. Please contact Gowin technical support or local O ffice for this patch.

3.5.1 CLU

The CLU supports three operation modes: basic logic mode, ALU mode, and memory mode.

Basic Logic Mode

Each LUT can be configured as one four input LUT. A higher input number of LUT can be formed by combining LUT4 together.

- Each CLS can form one five input LUT5.
- Two CLSs can form one six input LUT6.
- Four CLSs can form one seven input LUT7.
- Eight CLSs (two CLUs) can form one eight input LUT8.

ALU Mode

When combined with carry chain logic, the LUT can be configured as the ALU mode to implement the following functions.

- Adder and subtractor
- Up/down counter

DS861-1.4.5E 15(89)

- Comparator, including greater-than, less-than, and not-equal-to
- MULT

Register

Each Configurable Logic Section (CLS0~CLS2) has two registers (REG), as shown in Figure 3-6 below.

Figure 3-6 Register in CLS

Table 3-1 Register Description in CFU

Signal	I/O	Description
D	I	Data input ¹
CE	I	CLK enable, can be high or low effective ²
CLK	I	Clock, can be rising edge or falling edge trigging ²
SR	I	Set/Reset, can be configured as ² : Synchronized reset Synchronized set Asynchronous reset Asynchronous set Non
GSE ^{3,4}	1	Global Set/Reset, can be configured as ⁴ : Asynchronous reset Asynchronous set Non
Q	0	Register

Note!

- [1] The source of the signal D can be the output of a LUT, or the input of the CRU; as such, the register can be used alone when LUTs are in use.
- [2] CE/CLK/SR in CFU is independent.
- [3] In the GW1NSR series of FPGA products, GSR has its own dedicated network.
- [4] When both SR and GSR are effective, GSR has higher priority.

3.5.2 CRU

The main functions of the CRU are as follows:

- Input selection: Select input signals for the CFU.
- Configurable routing: Connect the input and output of the CFUs, including inside the CFU, CFU to CFU, and CFU to other functional blocks in FPGA.

3.6 IOB

The IOB in the GW1NSR series of FPGA products includes IO buffer, IO logic, and its routing unit. As shown in Figure 3-7, each IOB connects to

DS861-1.4.5E 16(89)

two pins (Marked A and B). They can be used as a differential pair or as two single-end input/output.

Figure 3-7 IOB Structure View

IOB Features:

- V_{CCO} supplied with each bank
- Supports multiple levels of LVCMOS, PCI, LVTTL, LVDS, SSTL, and HSTL; The BANK3 of GW1NSR-4C/4 only supports Single Port LVCMOS input/output and LVDS25E differential output.
- Input hysteresis option
- Output drive strength option
- Slew rate option
- Individual Bus Keeper, Weak Pull-up, Weak Pull-down, and Open Drain option
- Supports hot socket, excluding the BANK3 of GW1NSR-4C/4;
- IO logic supports basic mode, SRD mode, and generic DDR mode
- The BANK0 of GW1NSR-2C/2 supports MIPI input
- The BANK2 of GW1NSR-2C/2 supports MIPI output
- The BANK0/BANK1 of GW1NSR-4C/4 supports MIPI input
- The BANK2 of GW1NSR-4C/4 supports MIPI output
- The BANK0 and BANK2 of GW1NSR-2C/2 support I3C
- The BANK0/BANK1/BANK2 of GW1NSR-4C/4 supports I3C

DS861-1.4.5E 17(89)

3.6.1 I/O Buffer

There are four IO Banks in the GW1NSR series of FPGA products, as shown in Figure 3-8. To support SSTL, HSTL, etc., each bank also provides one independent voltage source (V_{REF}) as referenced voltage. The user can choose from the internal reference voltage of the bank (0.5 x V_{CCO}) or the external reference voltage using any IO from the bank.

Figure 3-8 GW1NSR-2C/2 I/O Bank Distribution

Figure 3-9 GW1NSR-4C/4 I/O Bank Distribution

GW1NSR-2C/2 supports LX and UX.

GW1NSR-4C/4 supports LV.

The core voltage of the GW1NSR series of FPGA products is 1.2V;

LX has no linear voltage regulator, and V_{CCX} needs to be set to 1.8V. The I/O Bank voltage V_{CCO} can be set as 1.2 V, 1.5 V, 1.8 V according to requirements.

UX has linear voltage regulator, and $V_{\rm CCX}$ needs to be set to 2.5 V. The I/O Bank voltage $V_{\rm CCO}$ can be set as 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V according to requirements.

DS861-1.4.5E 18(89)

Note!

 V_{CCO0} needs to be set as 1.2V for all LX and UX of GW1NSR-2C/2 devices when BANK0 MIPI input is used. V_{CCO2} needs to be set as 1.2V for all LX and UX of GW1NSR-2C/2 devices when BANK2 MIPI output is used. LX version can only reach 60% of the MIPI output speed of UX version.

- V_{CCO0}/V_{CCO1} needs to be set as 1.2V when BANK0/BANK1 of GW1NSR-4C/4 is used as MIPI input; V_{CCO2} needs to be set as 1.2V when BANK2 is used as MIPI output, and when V_{CCX} is set as 1.8V, the MIPI speed can only reach 60% of that when V_{CCX} is set as 2.5V/3.3V.
- By default, the Gowin Programmable IO (GPIO) is tri-stated input weak pull-up.

For the V_{CCO} requirements of different I/O standards, see Table 3-2 and Table 3-3.

Table 3-2 Output I/O Standards and Configuration Options

I/O output standard	Single/Differ	Bank Vcco (V)	Driver Strength (mA)
LVCMOS33/ LVTTL33	Single end	3.3	4,8,12,16,24
LVCMOS25	Single end	2.5	4,8,12,16
LVCMOS18	Single end	1.8	4,8,12
LVCMOS15	Single end	1.5	4,8
LVCMOS12	Single end	1.2	4,8
SSTL25_I	Single end	2.5	8
SSTL25_II	Single end	2.5	8
SSTL33_I	Single end	3.3	8
SSTL33_II	Single end	3.3	8
SSTL18_I	Single end	1.8	8
SSTL18_II	Single end	1.8	8
SSTL15	Single end	1.5	8
HSTL18_I	Single end	1.8	8
HSTL18_II	Single end	1.8	8
HSTL15_I	Single end	1.5	8
PCI33	Single end	3.3	8/4
LVPECL33E	Differential	3.3	16
MVLDS25E	Differential	2.5	16
BLVDS25E	Differential	2.5	16
RSDS25E	Differential	2.5	8
LVDS25E	Differential	2.5	8
MIPI	Differential (MIPI)	1.2	N/A
LVDS25	Differential (True LVDS)	2.5/3.3	N/A
RSDS	Differential (True LVDS)	2.5/3.3	N/A
MINILVDS	Differential (True LVDS)	2.5/3.3	N/A
PPLVDS	Differential (True LVDS)	2.5/3.3	N/A
SSTL15D	Differential	1.5	8

DS861-1.4.5E 19(89)

I/O output standard	Single/Differ	Bank Vcco (V)	Driver Strength (mA)
SSTL25D_I	Differential	2.5	8
SSTL25D_II	Differential	2.5	8
SSTL33D_I	Differential	3.3	8
SSTL33D_II	Differential	3.3	8
SSTL18D_I	Differential	1.8	8
SSTL18D_II	Differential	1.8	8
HSTL18D_I	Differential	1.8	8
HSTL18D_II	Differential	1.8	8
HSTL15D_I	Differential	1.5	8
LVCMOS12D	Differential	1.2	4,8
LVCMOS15D	Differential	1.5	4,8
LVCMOS18D	Differential	1.8	4,8,12
LVCMOS25D	Differential	2.5	4,8,12,16
LVCMOS33D	Differential	3.3	4,8,12,16,24

DS861-1.4.5E 20(89)

Table 3-3 Input I/O Standards and Configuration Options

I/O Input Standard	Single/Differ	Bank V _{CCO} (V)	Hysteresis	Need V _{REF}
LVCMOS33/ LVTTL33	Single end	1.2/1.5/1.8/2.5/3.3	Yes	No
LVCMOS25	Single end	1.2/1.5/1.8/2.5/3.3	Yes	No
LVCMOS18	Single end	1.2/1.5/1.8/2.5/3.3	Yes	No
LVCMOS15	Single end	1.2/1.5/1.8/2.5/3.3	Yes	No
LVCMOS12	Single end	1.2/1.5/1.8/2.5/3.3	Yes	No
SSTL15	Single end	1.5/1.8/2.5/3.3	No	Yes
SSTL25_I	Single end	2.5/3.3	No	Yes
SSTL25_II	Single end	2.5/3.3	No	Yes
SSTL33_I	Single end	3.3	No	Yes
SSTL33_II	Single end	3.3	No	Yes
SSTL18_I	Single end	1.8/2.5/3.3	No	Yes
SSTL18_II	Single end	1.8/2.5/3.3	No	Yes
HSTL18_I	Single end	1.8/2.5/3.3	No	Yes
HSTL18_II	Single end	1.8/2.5/3.3	No	Yes
HSTL15_I	Single end	1.5/1.8/2.5/3.3	No	Yes
LVCMOS33OD25	Single end	2.5	No	No
LVCMOS330D18	Single end	1.8	No	No
LVCMOS33OD15	Single end	1.5	No	No
LVCMOS250D18	Single end	1.8	No	No
LVCMOS250D15	Single end	1.5	No	No
LVCMOS18OD15	Single end	1.5	No	No
LVCMOS15OD12	Single end	1.2	No	No
LVCMOS25UD33	Single end	3.3	No	No
LVCMOS18UD25	Single end	2.5	No	No
LVCMOS18UD33	Single end	3.3	No	No
LVCMOS15UD18	Single end	1.8	No	No
LVCMOS15UD25	Single end	2.5	No	No
LVCMOS15UD33	Single end	3.3	No	No
LVCMOS12UD15	Single end	1.5	No	No
LVCMOS12UD18	Single end	1.8	No	No
LVCMOS12UD25	Single end	2.5	No	No
LVCMOS12UD33	Single end	3.3	No	No
PCI33	Single end	3.3	Yes	No
VREF1_DRIVER	Single end (Vref Input)	1.2/1.5/1.8/2.5/3.3	No	Yes
MIPI	Differential (MIPI)	1.2	No	No
LVDS25	Differential	2.5/3.3	No	No
RSDS	Differential	2.5/3.3	No	No
L	1	l	_1	1

DS861-1.4.5E 21(89)

I/O Input Standard	Single/Differ	Bank Vcco (V)	Hysteresis	Need V _{REF}
MINILVDS	Differential	2.5/3.3	No	No
PPLVDS	Differential	2.5/3.3	No	No
LVDS25E	Differential	2.5/3.3	No	No
MLVDS25E	Differential	2.5/3.3	No	No
BLVDS25E	Differential	2.5/3.3	No	No
RSDS25E	Differential	2.5/3.3	No	No
LVPECL33E	Differential	3.3	No	No
SSTL15D	Differential	1.5/1.8/2.5/3.3	No	No
SSTL25D_I	Differential	2.5/3.3	No	No
SSTL25D_II	Differential	2.5/3.3	No	No
SSTL33D_I	Differential	3.3	No	No
SSTL33D_II	Differential	3.3	No	No
SSTL18D_I	Differential	1.8/2.5/3.3	No	No
SSTL18D_II	Differential	1.8/2.5/3.3	No	No
HSTL18D_I	Differential	1.8/2.5/3.3	No	No
HSTL18D_II	Differential	1.8/2.5/3.3	No	No
HSTL15D_I	Differential	1.5/1.8/2.5/3.3	No	No
LVCMOS12D	Differential	1.2/1.5/1.8/2.5/3.3	No	No
LVCMOS15D	Differential	1.5/1.8/2.5/3.3	No	No
LVCMOS18D	Differential	1.8/2.5/3.3	No	No
LVCMOS25D	Differential	2.5/3.3	No	No
LVCMOS33D	Differential	3.3	No	No

DS861-1.4.5E 22(89)

3.6.2 True LVDS Design

BANK1/2/3 in the GW1NSR-2C/2 device supports true LVDS output, but BANK1/2/3 does not support internal 100 Ω input differential matched resistance. Bank0 in the GW1NSR-2C/2 device supports internal 100 Ω input differential matched resistance, but does not support true LVDS output.

BANK2 in the GW1NSR-4C/4 device supports true LVDS output, but does not support internal 100Ω input differential matched resistance. Bank0/1 in the GW1NSR-4C/4 device supports internal 100Ω input differential matched resistance, but does not support true LVDS output.

I/Os support LVDS25E, MLVDS25E, BLVDS25E, etc. For more detailed information about different levels, please refer to <u>UG289</u>, <u>Gowin Programmable IO User Guide</u>.

For more detailed information about true LVDS, please refer to UG862, <u>GW1NSR-2&2C Pinout</u>, <u>UG864, GW1NSR-4 Pinout</u>, and <u>UG865,</u> <u>GW1NSR-4C Pinout</u>.

True LVDS input I/O needs external 100Ω terminal resistance for matching. See Figure 3-10for the true LVDS design.

Figure 3-10 True LVDS Design

For more detailed information about LVDS25E, MLVDS25E, and BLVDS25E on IO terminal matched resistance, please refer to <u>UG289</u>, <u>Gowin Programmable IO User Guide</u>.

DS861-1.4.5E 23(89)

3.6.3 I/O Logic

Figure 3-11 shows the I/O logic output of the GW1NSR series of FPGA products.

Figure 3-11 I/O Logic Input

Figure 3-12 shows the I/O logic input of the GW1NSR series of FPGA products.

Figure 3-12 I/O Logic Input

A description of the I/O logic modules of the GW1NSR series of FPGA products is presented below:

IODELAY

See Figure 3-13 for an overview of the IODELAY. Each I/O of the GW1NSR series of FPGA products has an IODELAY cell. A total of 128(0~127) step delay is provided, with one-step delay time of about 30ps.

DS861-1.4.5E 24(89)

Figure 3-13 IODELAY

There are two ways to control the delay cell:

- Static control:
- Dynamic control: usually used to sample delay window together with IEM. The IODELAY cannot be used for both input and output at the same time

I/O Register

See Figure 3-14 for the I/O register in the GW1NSR series of FPGA products. Each I/O provides one input register, INFF, one output register, OUTFF, and a tristate Register, TCFF.

Figure 3-14 Register Structure in I/O Logic

Note!

- CE can be either active ow (0: enable) or active high (1: enable).
- CLK can be either rising edge trigger or falling edge trigger.
- SR can be either synchronous/asynchronous SET or RESET or disable.
- The register can be programmed as register or latch.

IEM

IEM is for sampling clock edge and is used in the generic DDR mode. See Figure 3-15 for the IEM structure.

Figure 3-15 IEM Structure

De-serializer DES

The GW1NSR series of FPGA products provide a simple Serializer SER for each output I/O to support advanced I/O protocols.

DS861-1.4.5E 25(89)

Serializer SER

The GW1NSR series of FPGA products provide a simple Serializer SER for each output I/O to support advanced I/O protocols.

3.6.4 I/O Logic Modes

The I/O Logic in the GW1NSR series of FPGA products supports several modes. In each operation, the I/O (or I/O differential pair) can be configured as output, input, and INOUT or tristate output (output signal with tristate control).

Not all the device pins support I/O logic. The IOL6 (A, B, C.... J) of GW1NSR-2 pins do not support IO logic.

Basic Mode

In basic mode, the I/O Logic is as shown in Figure 3-16, and the TC, DO, and DI signals can connect to the internal cores directly through CRU.

Figure 3-16 I/O Logic in Basic Mode

SDR Mode

In comparison with the basic mode, SDR utilizes the IO register, as shown in Figure 3-17. This can effectively improve IO timing.

DS861-1.4.5E 26(89)

D TCTRL Q CE >CLK SR IO PAD DOUT [D Q CE O_CE [>CLK O_CLK [O_SR SR DIN < D Q CE I_CE [>CLK I_CLK [SR I_SR [

Figure 3-17 I/O Logic in SDR Mode

Note!

- CLK enable O_CE and I_CE can be configured as active high or active low;
- O_CLK and I_CLK can be either rising edge trigger or falling edge trigger;
- Local set/reset signal O_SR and I_SR can be either Synchronized reset, Synchronized set, Asynchronous reset, Asynchronous set, or no-function;
- I/O in SDR mode can be configured as basic register or latch.

Generic DDR Mode

Higher speed I/O protocols can be supported in generic DDR mode.

Figure 3-18 shows the generic DDR input, with a speed ratio of the internal logic to PAD 1:2.

Figure 3-18 I/O Logic in DDR Input Mode

Figure 3-19 shows generic DDR output, with a speed ratio of PAD to FPGA internal logic 2:1.

Figure 3-19 I/O Logic in DDR Output Mode

DS861-1.4.5E 27(89)

IDES4

In IDES4 mode, the speed ratio of the PAD to FPGA internal logic is 1:4.

Figure 3-20 I/O Logic in IDES4 Mode

OSER4 Mode

In OSER4 mode, the speed ratio of the PAD to FPGA internal logic is 4:1.

Figure 3-21 I/O Logic in OSER4 Mode

IVideo Mode

In IVideo mode, the speed ratio of the PAD to FPGA internal logic is 1:7.

Figure 3-22 I/O Logic in IVideo Mode

Note!

IVideo and IDES8/10 will occupy the neighboring I/O logic. If the I/O logic of a single port is occupied, the pin can only be programmed in SDR or BASIC mode.

OVideo Mode

In OVideo mode, the speed ratio of the PAD to FPGA internal logic is 7:1.

Figure 3-23 I/O Logic in OVideo Mode

DS861-1.4.5E 28(89)

IDES8 Mode

In IDES8 mode, the speed ratio of the PAD to FPGA internal logic is 1:8.

Figure 3-24 I/O Logic in IDES8 Mode

OSER8 Mode

In OSER8 mode, the speed ratio of the PAD to FPGA internal logic is 8:1.

Figure 3-25 I/O Logic in OSER8 Mode

IDES10 Mode

In IDES10 mode, the speed ratio of the PAD to FPGA internal logic is 1:10.

Figure 3-26 I/O Logic in IDES10 Mode

OSER10 Mode

In OSER10 mode, the speed ratio of the PAD to FPGA internal logic is 10:1.

Figure 3-27 I/O Logic in OSER10 Mode

IDES16 Mode

In IDES16 mode, the speed ratio of the PAD to FPGA internal logic is 1:16.

DS861-1.4.5E 29(89)

Figure 3-28 I/O Logic in IDES16 Mode

OSER16 Mode

In OSER16 mode, the speed ratio of the PAD to FPGA internal logic is 16:1.

Figure 3-29 I/O Logic in OSER16 Mode

3.7 Block SRAM (BSRAM)

3.7.1 Introduction

GW1NSR series of FPGA products provide abundant SRAM. The Block SRAM (BSRAM) is embedded as a row in the FPGA array and is different from SSRAM (Shadow SRAM).

BSRAM supports two usages:

- Used for Cortex-M3 SRAM, providing high-speed read/write functions for Cortex-M3 to ensure system operation. Cortex-M3 reads/writes the data using AHB bus. The data bit width is 32bits. Each BSRAM provides 8 bits data. The address depth is 2048, and the total capacity is 64Kbits for GW1NSR-2/2C and 128Kbits for GW1NSR-4/4C. In this way, this BSRAM cannot be used as FPGA data storage.
- Used for FPGA data storage of GW1NSR-2C and GW1NSR-2 devices. Each BSRAM can be configured up to 18,432 bits (18Kbits). In this way, this BSRAM cannot be used as Cortex-M3 SRAM. There are 5 operation modes: Single Port, Dual Port, Semi Dual Port, ROM, and FIFO.

An abundance of BSRAM resources provide a guarantee for the user's high-performance design. BSRAM features:

- Max.18,432 bits per BSRAM
- BSRAM itself can run at 190MHz at max
- Single Port
- Dual Port
- Semi Dual Port
- Parity bits

DS861-1.4.5E 30(89)

- ROM
- Data width from 1 to 36 bits
- Mixed clock mode
- Mixed data width mode
- Enable Byte operation for double byte or above
- Normal Read and Write Mode
- Read-before-write Mode
- Write-through Mode

For further details about BSRAM, please refer to <u>UG285, Gowin</u> <u>BSRAM User Guide</u>.

3.7.2 Configuration Mode

The BSRAM mode in the GW1NSR series of FPGA products supports different data bus widths. See Table 3-4.

Table 3-4 Memory Size Configuration

Single Port Mode	Dual Port Mode	Semi-Dual Port Mode	Read Only
16K x 1	16K x 1	16K x 1	16K x 1
8K x 2	8K x 2	8K x 2	8K x 2
4K x 4	4K x 4	4K x 4	4K x 4
2K x 8	2K x 8	2K x 8	2K x 8
1K x 16	1K x 16	1K x 16	1K x 16
512 x 32	-	512 x 32	512 x 32
2K x 9	2K x 9	2K x 9	2K x 9
1K x 18	1K x 18	1K x 18	1K x 18
512 x 36	-	512 x 36	512 x 36

Single Port Mode

In the single port mode, BSRAM can write to or read from one port at one clock edge. During the write operation, the data can show up at the output of BSRAM. Normal-Write Mode and Write—through Mode can be supported. When the output register is bypassed, the new data will show at the same write clock rising edge.

For further information about Single Port Block Memory ports and the related description, please refer to <u>UG285</u>, <u>Gowin BSRAM & SSRAM User Guide</u>.

Dual Port Mode

BSRAM support dual port mode. The applicable operations are as follows:

- Two independent read
- Two independent write

DS861-1.4.5E 31(89)

 An independent read and an independent write at different clock frequencies

For further information about Dual Port Block Memory ports and the related description, please refer to <u>UG285</u>, <u>Gowin BSRAM & SSRAM User Guide</u>.

Semi-Dual Port Mode

Semi-Dual Port supports read and write at the same time on different ports, but it is not possible to write and read to the same port at the same time. The system only supports write on Port A, read on Port B.

For further information about Semi-Dual Port Block Memory ports and the related description, please refer to <u>UG285</u>, <u>Gowin BSRAM & SSRAM User Guide</u>.

Read Only

BSRAM can be configured as ROM. The ROM can be initialized during the device configuration stage, and the ROM data needs to be provided in the initialization file. Initialization completes during the device power-on process.

Each BSRAM can be configured as one 16 Kbits ROM. For further information about Read Only Port Block Memory ports and the related description, please refer to <u>UG285</u>, <u>Gowin BSRAM & SSRAM User Guide</u>.

DS861-1.4.5E 32(89)

3.7.3 Mixed Data Bus Width Configuration

BSRAM in the GW1NSR series of FPGA products supports mixed data bus width operation. In the dual port and semi-dual port modes, the data bus width for read and write can be different. For the configuration options that are available, please see Table 3-5 and Table 3-6 below.

Table 3-5 Dual Port Mixed Read/Write Data Width Configuration

Read	Write Port						
Port	16K x 1	8K x 2	4K x 4	2K x 8	1K x 16	2K x 9	1K x 18
16K x 1	*	*	*	*	*		
8K x 2	*	*	*	*	*		
4K x 4	*	*	*	*	*		
2K x 8	*	*	*	*	*		
1K x 16	*	*	*	*	*		
2K x 9						*	*
1K x 18						*	*

Note!

Table 3-6 Semi Dual Port Mixed Read/Write Data Width Configuration

Read	Write Port								
Port	Port 16K x 1	8K x 2	4K x 4	2K x 8	1K x 16	512 x 32	2K x 9	1K x 18	512 x 36
16K x 1	*	*	*	*	*	*			
8K x 2	*	*	*	*	*	*			
4K x 4	*	*	*	*	*	*			
2K x 8	*	*	*	*	*	*			
1K x 16	*	*	*	*	*	*			
512x32	*	*	*	*	*	*			
2K x 9							*	*	*
1K x 18							*	*	*

Note!

3.7.4 Byte-enable

The BSRAM in the GW1NSR series of FPGA products supports byte-enable. For data longer than a byte, the additional bits can be blocked, and only the selected portion can be written into. The blocked bits will be retained for future operation. Read/write enable ports (WREA, WREB), and byte-enable parameter options can be used to control the BSRAM write operation.

3.7.5 Parity Bit

There are parity bits in BSRAMs. The 9th bit in each byte can be used

DS861-1.4.5E 33(89)

[&]quot;*" denotes the modes supported.

[&]quot;*" denotes the modes supported.

as a parity bit to check the correctness of data transmission. It can also be used for data storage.

3.7.6 Synchronous Operation

- All the input registers of BSRAM support synchronous write;
- The output registers can be used as pipeline register to improve design performance;
- The output registers are bypass-able.

3.7.7 Power up Conditions

BSRAM initialization is supported when powering up. During the power-up process, BSRAM is in standby mode, and all the data outputs are "0". This also applies in ROM mode.

3.7.8 BSRAM Operation Modes

BSRAM supports five different operations, including two read operations (Bypass Mode and Pipeline Read Mode) and three write operations (Normal Write Mode, Write-through Mode, and Read-before-write Mode).

Read Mode

Read data from the BSRAM via output registers or without using the registers.

Pipeline Mode

While writing in the BSRAM, the output register and pipeline register are also being written. The data bus can be up to 36 bits in this mode.

Bypass Mode

The output register is not used. The data is kept in the output of memory array.

Figure 3-30 Pipeline Mode in Single Port, Dual Port and Semi-Dual Port

DS861-1.4.5E 34(89)

Write Mode

NORMAL WRITE MODE

In this mode, when the user writes data to one port, and the output data of this port does not change. The data written in will not appear at the read port.

WRITE-THROUGH MODE

In this mode, when the user writes data to one port, and the data written in will also appear at the output of this port.

READ-BEFORE-WRITE MODE

In this mode, when the user writes data to one port, and the data written in will be stored in the memory according to the address. The original data in this address will appear at the output of this port.

DS861-1.4.5E 35(89)

3.7.9 Clock Operations

Table 3-7 lists the clock operations in different BSRAM modes:

Table 3-7 Clock Operations in Different BSRAM Modes

Clock Operations	Dual Port Mode	Semi-Dual Port Mode	Single Port Mode
Independent Clock Mode	Yes	No	No
Read/Write Clock Mode	Yes	Yes	No
Single Port Clock Mode	No	No	Yes

Independent Clock Mode

Figure 3-31 shows the independent clocks in dual port mode with each port with one clock. CLKA controls all the registers at Port A; CLKB controls all the registers at Port B.

Figure 3-31 Independent Clock Mode

Read/Write Clock Operation

Figure 3-32 shows the read/write clock operations in the semi-dual port mode with one clock at each port. The write clock (CLKA) controls Port A data inputs, write address and read/write enable signals. The read clock (CLKB) controls Port B data output, read address, and read enable signals.

Figure 3-32 Read/Write Clock Mode

DS861-1.4.5E 36(89)

Single Port Clock Mode

Figure 3-33 shows the clock operation in single port mode.

Figure 3-33 Single Port Clock Mode

3.8 User Flash (GW1NSR-2C/2)

GW1NSR-2C/2 offers 128 KB User Flash with the following functions:

- Used for Cortex-M3 programming memory in GW1NSR-2C devices. User Flash can only be read and does not support the other two functions;
- 2. Offers non-volatile memory for users in GW1NSR-2C and GW1NSR-2 devices and does not support the other two functions;
- In DUAL BOOT mode for GW1NSR-2C and GW1NSR-2 devices, on-chip downloaded flash is the primary memory for data bitstream; user flash is used as the secondary memory for data bitstream; The user flash used for this function does not support the other two functions.

Main features are as follows:

- 32 bits data input/output
- Page architecture
 - 128 x 32 bits page size
 - 256 pages in total
- Fast read, write, and erase
 - Read access time 30ns
 - Write time 30us
 - Page erasure time 2ms
 - Macro erasure time 10ms
- Lower power consumption
 - IDLE 100uA
 - Read operation current 60 uA/MHz
 - Write operation current 2.4mA

DS861-1.4.5E 37(89)

- Erase operation current 2.4 mA
- 100,000 write/erase cycles
- Minimum10 years data retention

For further detailed information of the embedded user Flash, please refer to UG295, Gowin User Flash User Guide.

3.9 User Flash (GW1NSR-4C/4)

GW1NSR-4C/4 offers 32 KB User Flash with the following two usages and they cannot be used simultaneously.

- One is used for Cortex-M3 processor ARM programs storage. In this way, the User Flash can only be read and cannot be written.
- One is used as the non-volatile memory resource.

The user Flash memory is composed of row memory and column memory. One row memory is composed of 64 column memories. The capacity of one column memory is 32 bits, and the capacity of one row memory is 64*32=2048 bits. Page erase is supported, and one page capacity is 2048 bytes, i.e., one page includes 8 rows. The features are shown below:

- 10,000 write cycles
- Greater than 10 years Data Retention at +85 ℃
- Data Width: 32
- Capacity: 128 rows x 64 columns x 32 = 256kbits
- Page Erase Capability: 2,048 bytes per page
- Fast Page Erasure/Word Programming Operation
- Clock frequency: 40 MHz
- Word Programming Time: ≤16 µs
- Page Erasure Time: ≤120 ms
- Electric current
 - Read current/duration:2.19 mA/25 ns (Vcc) & 0.5 mA/25 ns (Vccx)
 (MAX)
 - Program / Erase operation: 12/12 mA (MAX)

For further detailed information of the embedded user Flash, please refer to UG295, Gowin User Flash User Guide.

3.10 DSP

3.10.1 Introduction

GW1NSR-4C/4 device offers abundant DSP modules. Gowin DSP solutions can meet user demands for high performance digital signal processing design, such as FIR, FFT, etc. DSP blocks have the advantages of stable timing performance, high-usage, and low-power.

DS861-1.4.5E 38(89)

3 Architecture 3.10 DSP

DSP offers the following functions:

- Multiplier with three widths: 9-bit, 18-bit, 36-bit
- 54-bit ALU
- Multipliers cascading to support wider data
- Barrel shifter
- Adaptive filtering through signal feedback
- Computing with options to round to a positive number or a prime number
- Supports pipeline mode and bypass mode.

3.10.2 Macro

DSP blocks are embedded as rows in the FPGA array. Each DSP occupies nine CFU columns. Each DSP block contains two Macro, and each Macro contains two pre-adders, two 18 x 18 bit multipliers, and one three-input ALU.

PADD

Each DSP macro features two units of pre-adders to implement pre-add, pre-subtraction, and shifting.

PADD locates at the first stage with two inputs.,

- Parallel 18-bit input B or SBI;
- Parallel 18-bit input A or SIA.

Note!

Each input end supports pipeline mode and bypass mode.

GOWINSEMI PADD can be used as function block independently, which supports 9-bit and 18-bit width.

MULT

Multipliers locate after the pre-adder. Multipliers can be configured as 9×9 , 18×18 , 36×18 or 36×36 . Registered mode and bypass mode are supported both in input and output ports. The configuration modes that a macro supports include:

- One 18 x 36 multiplier
- Two 18 x 18 multipliers
- Four 9 x 9 multipliers

Note!

Two adjacent DSP macros can form a 36 x 36 multiplier.

ALU

Each Macro has one 54 bits ALU54, which can further enhance MULT's functions. The registered and bypass mode are supported both in input and output ports. The functions are as following:

DS861-1.4.5E 39(89)

 Multiplier output data / 0, addition/subtraction operations for data A and data B;

- Multiplier output data / 0, addition/subtraction operations for data B and bit C;
- Addition/subtraction operations for data A, data B, and bit C;

3.10.3 DSP Operations

- Multiplier
- Accumulator
- MULTADDALU

For the detailed information, please refer to <u>UG287, Gowin Digital</u> <u>Signal Processing (DSP) User Guide</u>.

3.11 Cortex-M3

3.11.1 Introduction

GW1NSR-2C/GW1NSR-4C is a system-on-chip FPGA device that incorporates a microprocessor system hard core, Gowin FPGA fabric, and other standard peripherals and featured hard cores, including 128 K-Byte Flash, 8 KB Block RAM, PLL, and OSC. Besides that, GW1NSR-2C offers USB2.0 PHY and ADC. The embedded microprocessor system contains a low-power, low-cost and high-performance ARM Cortex-M3 32-bit RISC. The flexible FPGA fabric serves as user programmable peripherals, or soft-core IPs.

The embedded microprocessor system consists of the processor block, with ARM Cortex-M3 32-bit RISC core and associated supporting bus system that connects to harden standard peripherals. The FPGA fabric contains a rich programmable logic resource called a Configured Functional Unit (CFU). This offers a flexible architecture that allows the user to employ peripherals with the microprocessor system. This can be achieved either by parameterized soft-core IPs, I2C or I3C. The microprosessor system only interfaces with the FPGA fabric and JTAG config-core internally with no access to the I/O Blocks of GW1NSR-2C/GW1NSR-4C.

The bus system consists of AHB-Lite Bus, AHB2APB Bridge, and two APB Bus; APB1 and APB2.

The microprocessor system relies on AHB bus to access FPGA side sub-memory system which has a pre-implemented sub-memory system controller for read-only-access 128 KB Flash-ROM and read/write-access up to 8 KB (Can be configured to 2KB, 4KB, or 8KB) BSRAM. Upon Power-On boot loading, Cortex-M3 loads instructions and data that are pre-stored in the Flash-ROM before initiating the execution.

In addition, there are two AHB bus extension ports: INTEXP0 and TARGEXP0. Each of these AHB extension ports provides a 126-bit AHB bus interconnecting to any high-speed User programmable peripherals implemented within the FPGA. A GPIO block interconnects the AHB bus

DS861-1.4.5E 40(89)

with the FPGA fabric to allow the user to implement general purpose I/O functions in FPGA.

In terms of the two APB Bus (APB1 and APB2), APB1 interconnects with two timers (Timer0 and Timer1), two UARTs (Uart0 and Uart1), and one watchdog. Two UARTs connect to the FPGA directly. The two timers and the watchdog are controlled and used within the microprocessor system and are accessed through REG. The APB2 bus connects directly to the FPGA.

The processor block consists of Cortex-M3 core, bus matrix, Nested Vector Interrupt Controller (NVIC), Debug Access Port (DAP), and time stamp, etc.

The Cortex-M3 core relies on the bus-matrix to access its supporting bus system (AHB-Lite Bus, AHB2APB Bridge, and two APB Bus: APB1 and APB2).

GW1NSR-2C NVIC offers USER_INT0 and USER_INT1, serving as interrupt requests to NVIC from user implementing peripherals in FPGA fabric. GW1NSR-4C offers six user interruptions. The DAP contains JTAG DAP and also Trace-Port-Interface-Unit (TPIU).

The GW1NSR-2C Microprocessor System also provides an interrupt monitor signal, which combines GPIO interrupts as well as APB1 peripherals (UART0, UART1, Timer0, Timer1, Watchdog) interrupts, back to the FPGA fabric to report the current run-time interrupt Status of the Microprocessor System.

FPGA fabric takes advantage of its rich Clocking Resource (PLL, OSC) and provides the Main Clock, Power-On Reset and System Reset signals to the embedded microprocessor system.

See Figure 3-34 for the Cortex-M3 architecture.

DS861-1.4.5E 41(89)

Figure 3-34 Cortex-M3 Architecture

Cortex-M3

3.11.2 Cortex-M3

Features

- Compact core
- Thumb-2 instruction set, delivering the high-performance expected of an ARM core in the memory size usually
- Associated with 32 bits and 16 bits devices; typically, in the range of a few kilobytes of memory for microcontroller class applications
- Rapid application execution through Harvard architecture characterized by separate buses for instruction and data
- Achieves exceptional interrupt handling, by implementing the register manipulations required for handling an interrupt in hardware.
- Deterministic, fast interrupt processing.
- Memory protection unit (MPU), providing a privileged mode for protecting operation system functionality

DS861-1.4.5E 42(89)

 Migration from the ARM7[™] processor family for better performance and power efficiency

- Full-featured debug solution
 - JTAG Debug Port (JTAG)
 - Flash Patch and Breakpoint (FPB) unit for implementing breakpoints
 - Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources, and system profiling
 - Instrumentation Trace Macrocell (ITM) for support of print style debugging
 - Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer

3.11.3 Bus-Matrix

The bus-matrix is used to connect the Cortex-M3 processor and debug port with an external AHB bus. Connections between bus-matrix and AHB bus:

- ICode bus: 32bit AHBLite bus, used for fetching instructions and vectors from code space;
- DCode bus: 32bit AHBLite bus, used for data loading/storage and debug access;
- System bus: 32bit AHBLite bus, used for fetching instructions and vectors from system space, data loading/storage and debug access;
- APB: 32bit APB bus, used for external space data loading/storage and debug access.

The bus-matrix controls the following functions as below:

- Unaligned accesses: Converts the unaligned processor access to aligned access;
- Bit-banding: converts the alias access of Bit_band to Bit_band space access;
- Write buffer: Bus-matrix contains one write-buffer, ensuring that the processor core is not affected by bus delay.

3.11.4 NVIC

NVIC features:

- Supports low-latency interrupt processing up to 26 interrupts
- GW1NSR-2C supports two external user defined interrupts
- GW1NSR-4C supports four external user defined interrupts
- A programmable priority level of 0-7 for each interrupts. A higher level corresponds to a lower priority; as such level 0 is the highest interrupt priority

DS861-1.4.5E 43(89)

- Low-latency exception and interrupt handling
- Dynamic reprioritization of interrupts

• The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no instruction overhead.

DS861-1.4.5E 44(89)

Table 3-8 NVIC Interrupt Vector Table

Address	Name	Туре	Description		
0x00000000	_StackTop	Read only	Top of stack interrupt		
0x00000004	Reset_Handler	Read only	Reset interrupt		
0x00000008	NMI_Handler	Read only	NMI interrupt		
0x000000C	HardFault_Handler	Read only	Hard fault interrupt		
0x0000010	MemMange_Handler	Read only	MPU fault interrupt		
0x0000014	BusFault_Handler	Read/Write	Bus fault interrupt		
0x00000018	UsageFault_Handler	Read only	Usage fault interrupt		
0x0000002C	SVC_Handler	Read/Write	SVCall interrupt		
0x00000030	DebugMon_Handler	Read only	Debug monitor interrupt		
0x00000038	PendSV_Handler	Read/ Write/ Read only	Pending interrupt		
0x000003C	SysTick_Handler	Read/Write	System timer interrupt		
External interrupt	1				
0x00000040	UART0_Handler	Read/Write	UART0 reception and sending interrupt		
0x00000048	UART1_Handler	Read/Write	UART1 reception and sending interrupt		
0x00000058	PORT0_COMB_Handler	Read/Write	GPIO0 interrupt		
0x00000060	TIMER0_Handler	Read/Write	TIMER0 interrupt		
0x00000064	TIMER1_Handler	Read/Write	TIMER1 interrupt		
0x00000070	UARTOVF_Handler	Read/Write	UART0/UART1 overflow interrupt		
0x00000074	USER_INT0	Read/Write	Flash system error interrupt		
0x00000078	USER_INT1	Read/Write	Embedded flash interrupt		
0x00000080	PORT0_0_Handler	Read/Write	GPIO0 Pin 0 interrupt		
0x00000084	PORT0_1_Handler	Read/Write	GPIO0 Pin 1 interrupt		
0x00000088	PORT0_2_Handler	Read/Write	GPIO0 Pin 2 interrupt		
0x0000008C	PORT0_3_Handler	Read/Write	GPIO0 Pin 3 interrupt		
0x00000090	PORT0_4_Handler	Read/Write	GPIO0 Pin 4 interrupt		
0x00000094	PORT0_5_Handler	Read/Write	GPIO0 Pin 5 interrupt		
0x00000098	PORT0_6_Handler	Read/Write	GPIO0 Pin 6 interrupt		
0x0000009C	PORT0_7_Handler	Read/Write	GPIO0 Pin 7 interrupt		
0x000000A0	PORT0_8_Handler	Read/Write	GPIO0 Pin 8 interrupt		
0x000000A4	PORT0_9_Handler	Read/Write	GPIO0 Pin 9 interrupt		
0x000000A8	PORT0_10_Handler	Read/Write	GPIO0 Pin 10 interrupt		
0x000000AC	PORT0_11_Handler	Read/Write	GPIO0 Pin 11 interrupt		
0x000000B0	PORT0_12_Handler	Read/Write	GPIO0 Pin 12 interrupt		
0x000000B4	PORT0_13_Handler	Read/Write	GPIO0 Pin 13 interrupt		
0x000000B8	PORT0_14_Handler	Read/Write	GPIO0 Pin 14 interrupt		

DS861-1.4.5E 45(89)

Address	Name	Туре	Description	
0x000000BC	PORT0_15_Handler	Read/Write	GPIO0 Pin 15 interrupt	

3.11.5 Boot Loader

The boot loader loads the initial stack pointer value from the program memory, and branches to the reset handler that the reset vector specifies in the program memory.

The current boot loader is based on UART Message Monitor which is easy to interface as a communication port with PC host. Below is an example of how to deploy the boot loader:

- Power-on reset to enter the reset handler to call the boot loader;
- Setup UART0 registers, such as BAUDIV and CTRL, to program the appropriate TX speed rate for the send and receive function;
- Begin Flash loader subroutine execution such as memory test, timer0, and timer1 tests etc;
- Write a 0x4 character (EOP) to terminate the program.

3.11.6 TimeStamp

A 48 bits timestamp counter is included and connected to the ITM. It is clock gated and enabled by the Trace Enable (TRCENA) bit of DEMCR (0xE000EDFC) Debug Exception and monitor control register, which is a global enable bit that enables both the Data Watch Trace (DWT) and Intrumental Trace Module (ITM) on behalf of the debug of the Cortex-M3 microprocessor. The time stamp generator is used during the debug process to set up the break point and marching step, etc.

Figure 3-35 DEMCR Register

Note!

TRCENA is the global enable for DWT and ITM features:

- 0: DWT and ITM units disabled.
- 1: DWT and ITM units enabled.

3.11.7 Timer

The SoC offers an embedded microprocessor system that contains

DS861-1.4.5E 46(89)

two synchronous standard timers: Timer0 and Timer1. These can be accessed and controlled through APB1 bus.

Timer0 and Timer1 are 32 bits down-counter with the following features:

- Users can generate an interrupt request signal, TIMERINT, when the counter reaches 0. The interrupt request is held until it is cleared by writing to the INTCLEAR Register.
- Users can employ the zero-to-one transition of the external input signal, EXTIN, as a timer enable.
- If the timer count reaches 0 and, at the same time, the software clears a previous interrupt status, the interrupt status is set to 1.
- The external clock, EXTIN, must be slower than half of the peripheral clock because it is sampled by a double flip-flop before going through edge-detection logic when the external inputs act as a clock.
- Timer0: EXTIN is hard-wired to GPIO[1]
- Timer1: EXTIN is hard-wired to GPIO[6]

Figure 3-36 Timer0/Timer1 Structure View

The Timer0/Timer1 register is as shown in Table 3-18. The Timer0 base address is 0x40000000, and the Timer1 base address is 0x40001000.

DS861-1.4.5E 47(89)

Table 3-9 Timer0/Timer1 Register

Name	Base Offset	Туре	Data Width	Reset Value	Description
CTRL	0x000	Read/ Write	4	0x0	[3]: System timer interrupt enable [2]: Select external input as clock [1]: Select external input as enable [0]: Enable
VALUE	0x004	Read/ Write	32	0x00000000	Current value
RELOAD	0x008	Read/ Write	32	0x00000000	Reload value. Write to this register to set the current value.
INTSTATUS /INTCLEAR	0x00C	Read/ Write	1	0x0	[0]: Timer interrupt. Write one to clear.
PID4	0XFD0	Read only	8	0x04	Peripheral ID Register 4
PID5	0XFD4	Read only	8	0x00	Peripheral ID Register 5
PID6	0XFD8	Read only	8	0x00	Peripheral ID Register 6
PID7	0XFDC	Read only	8	0x00	Peripheral ID Register 7
PID0	0XFE0	Read only	8	0x22	Peripheral ID Register 0
PID1	0XFE4	Read only	8	0XB8	Peripheral ID Register 1
PID2	0XFE8	Read only	8	0X1B	Peripheral ID Register 2
PID3	0XFEC	Read only	8	0X00	Peripheral ID Register 3
CID0	0XFF0	Read only	8	0X0D	Component ID Register 0
CID1	0XFF4	Read only	8	0XF0	Component ID Register 1
CID2	0XFF8	Read only	8	0X05	Component ID Register 2
CID3	0XFFC	Read only	8	0XB1	Component ID Register 3

3.11.8 UART

The SoC embedded with microprocessor system contains two UART: UART0 and UART1. These can be accessed and controlled through APB1 bus. The max. baud rate supported is 921.6Kbits/s.

UART0 and UART1support 8 bits communication without parity and one stop bit.

DS861-1.4.5E 48(89)

Figure 3-37 APB UART Buffering

UART0 and UART support a high-speed test mode. When CTRL[6] is set to 1, the serial data is transmitted at one bit per clock cycle. This enables you to send text messages in a much shorter simulation time. The APB interface always sends an "OK" response with no wait state. You must program the baud rate divider register BAUDDIV before enabling the UART.

The BAUDTICK output pulses at a frequency of 16 times that of the programmed baud rate. You can use this external signal for capturing UART data in a synchronous environment. The TXEN output signal indicates the status of CTRL[0]. You can use this signal to switch a bidirectional I/O pin in a silicon device to UART data output mode automatically when the UART transmission feature is enabled.

The buffer overrun status in the STATE field is used to drive the overrun interrupt signals. Therefore, clearing the buffer overrun status de-asserts the overrun interrupt, and clearing the overrun interrupt bit also clears the buffer overrun status bit in the STATE field.

See Table 3-19 for the UART Register Description. The UART0 base address is 0x40004000, and the UART1 base address is 0x40005000.

DS861-1.4.5E 49(89)

Table 3-10 UART0/UART1 Register

Name	Base Offset	Туре	Data Width	Reset Value	Description
DATA	0x000	Read/ Write	8	0x	8 bits data Read: Received data. Write: Transmit data.
STATE	0x004	Read/ Write	4	0x0	[3]: RX buffer overrun, write 1 to clear.[2]: TX buffer overrun, write 1 to clear.[1]: RX buffer full, read-only.[0]: TX buffer full, read-only.
CTRL	0x008	Read/ Write	7	0x00	 [6]: High-speed test mode for TX only. [5]: RX overrun interrupt enable. [4]: TX overrun interrupt enable. [3]: RX interrupt enable. [2]: TX interrupt enable. [1]: RX enable. [0]: TX enable.
INTSTATUS /INTCLEAR	0x00C	Read/ Write	4	0x0	[3]: RX overrun interrupt, write 1 to clear. [2]: TX overrun interrupt, write 1 to clear. [1]: RX interrupt, write 1 to clear. [0]: TX interrupt, write 1 to clear.
BAUDDIV	0x010	Read/ Write	20	0x00000	[19:0]: Baud rate divider. The minimum number is 16.
PID4	0XFD0	Read only	8	0x04	Peripheral ID Register 4
PID5	0XFD4	Read only	8	0x00	Peripheral ID Register 5
PID6	0XFD8	Read only	8	0x00	Peripheral ID Register 6
PID7	0XFDC	Read only	8	0x00	Peripheral ID Register 7
PID0	0XFE0	Read only	8	0x21	Peripheral ID Register 0
PID1	0XFE4	Read only	8	0XB8	Peripheral ID Register 1
PID2	0XFE8	Read only	8	0X1B	Peripheral ID Register 2
PID3	0XFEC	Read only	8	0X00	Peripheral ID Register 3
CID0	0XFF0	Read only	8	0X0D	Component ID Register 0
CID1	0XFF4	Read only	8	0XF0	Component ID Register 1
CID2	0XFF8	Read only	8	0X05	Component ID Register 2
CID3	0XFFC	Read only	8	0XB1	Component ID Register 3

DS861-1.4.5E 50(89)

3.11.9 Watchdog

The SoC embedded with microprocessor system contains one watchdog module. This can be accessed and controlled through the APB1 bus.

The APB watchdog module is based on a 32 bits down-counter that is initialized from the reload register, WDOGLOAD.

The watchdog module generates a regular interrupt, WDOGINT, depending on a programmed value. The counter decrements by one on each positive clock edge of WDOGCLK when the clock enable, WDOGCLKEN, is HIGH. The watchdog monitors the interrupt and asserts a reset request WDOGRES signal when the counter reaches 0, and the counter is stopped. On the next enabled WDOGCLK clock edge, the counter is reloaded from the WDOGLOAD register and the countdown sequence continues.

The watchdog module applies a reset to a system in the event of a software failure, providing a way to recover from software crashes. For example, if the interrupt is not cleared by the time the counter next reaches 0, the watchdog module initiates the reset signal.

Figure 3-39 below depicts the watchdog operation.

Figure 3-38 Watchdog Operation

The watchdog register is as shown in Table 3-20. The watchdog base address is 0x40008000.

DS861-1.4.5E 51(89)

Table 3-11 Watchdog Register

Name	Base Offset	Туре	Data Width	Reset Value	Description
WDOGLOAD	0x00	Read/ Write	32	0xFFFFFFF	Watchdog Load Register
WDOGVALUE	0x04	Read only	32	0xFFFFFFF	Watchdog Value Register
WDOGCONTROL	0x08	Read/ Write	2	0x0	Watchdog Control Register [1]: [0]:
WDOGINTCLR	0x0C	Write only	-	0x-	Watchdog Clear Interrupt Register
WDOGRIS	0x10	Read only	1	0x0	Watchdog Raw Interrupt Status Register
WDOGMIS	0x14	Read only	1	0x0	Watchdog Interrupt Status Register
WDOGLOCK	0xC00	Read/ Write	32	0x0	Watchdog Lock Register
WDOGTCR	0xF00	Read/ Write	1	0x0	Watchdog Integration Test Control Register
WDOGTOP	0xF04	Write only	2	0x0	Watchdog Integration Test Output Set Register
WDOGPERIPHID4	0XFD0	Read only	8	0x04	Peripheral ID Register 4
WDOGPERIPHID5	0XFD4	Read only	8	0x00	Peripheral ID Register 5
WDOGPERIPHID6	0XFD8	Read only	8	0x00	Peripheral ID Register 6
WDOGPERIPHID7	0XFDC	Read only	8	0x00	Peripheral ID Register 7
WDOGPERIPHID0	0XFE0	Read only	8	0x24	Peripheral ID Register 0
WDOGPERIPHID1	0XFE4	Read only	8	0XB8	Peripheral ID Register 1
WDOGPERIPHID2	0XFE8	Read only	8	0X1B	Peripheral ID Register 2
WDOGPERIPHID3	0XFEC	Read only	8	0X00	Peripheral ID Register 3
WDOGPCELLID0	0XFF0	Read only	8	0X0D	Component ID Register 0
WDOGPCELLID1	0XFF4	Read only	8	0XF0	Component ID Register 1
WDOGPCELLID2	0XFF8	Read only	8	0X05	Component ID Register 2
WDOGPCELLID3	0XFFC	Read only	8	0XB1	Component ID Register 3

3.11.10 GPIO

The SoC microprocessor system communicates with the GPIO block through the AHB bus. The GIPO block interconnects with the FPGA. GPIO provides a 16 bits I/O interface with the following properties:

 Programmable interrupt generation capability. You can configure each bit of the I/O pins to generate interrupts;

DS861-1.4.5E 52(89)

- Bit masking support using address values;
- Registers for alternate function switching with pin multiplexing support;

 Thread safe operation by providing separate set and clear addresses for control registers.

The GPIO register is as shown in Table 3-21. The GPIO base address is 0x40010000.

DS861-1.4.5E 53(89)

Table 3-12 GPIO Register

Name	Base Offset	Туре	Data Width	Reset Value	Description
DATA	0x0000	Read/ Write	16	0x	Data value [15:0]
DATAOUT	0x0004	Read/ Write	16	0x0000	Data output register value [15:0]
OUTENSET	0x0010	Read/ Write	16	0x0000	Output enable set [15:0] Write 1: Set the output enable bit. Write 0: No effect. Read 1: Indicates the signal direction as output. Read 0: Indicates the signal direction as input.
OUTENCLR	0x0014	Read/ Write	16	0x0000	Output enable clear [15:0]
ALTFUNCSET	0x0018	Read/ Write	16	0x0000	Alternative function set [15:0] Write 1: Sets the ALTFUNC bit. Write 0: No effect. Read 0: GPIO as I/O Read 1: ALTFUNC Function
ALTFUNCCLR	0x001C	Read/ Write	16	0x0000	Alternative function clear [15:0]
INTENSET	0x0020	Read/ Write	16	0x0000	Interrupt enable set [15:0] Write 1: Sets the enable bit. Write 0: No effect. Read 0: Interrupt disabled. Read 1: Interrupt enabled.
INTENCLR	0x0024	Read/ Write	16	0x0000	Interrupt enable clear [15:0] Write 1: Clear the enable bit. Write 0: No effect. Read 0: Interrupt disabled. Read 1: Interrupt enabled.
INTTYPESET	0x0028	Read/ Write	16	0x0000	Interrupt type set [15:0]
INTTYPECLR	0x002C	Read/ Write	16	0x0000	Interrupt type clear [15:0]
INTPOLSET	0x0030	Read/ Write Read/	16	0x0000	Polarity-level, edge interrupt request configuration [15:0] Polarity-level, edge interrupt
INTPOLCLR	0x0034	Write	16	0x0000	request configuration [15:0]
INTSTATUS/ INTCLEAR	0x0038	Read/ Write	16	0x0000	Read interrupt status register Write 1: Clear the interrupt request
MASKLOWBYTE	0x0400- 0x07FC	Read/ Write	16	0x0000	_
MASKHIGHBYTE	0x0800- 0x0BFC	Read/ Write	16	0x0000	_
Reserved	0x0C00- 0x0FCF	_	_	_	Reserved
PID4	0XFD0	Read only	8	0x04	Peripheral ID Register 4
PID5	0XFD4	Read only	8	0x00	Peripheral ID Register 5
PID6	0XFD8	Read only	8	0x00	Peripheral ID Register 6

DS861-1.4.5E 54(89)

Name	Base Offset	Туре	Data Width	Reset Value	Description
PID7	0XFDC	Read only	8	0x00	Peripheral ID Register 7
PID0	0XFE0	Read only	8	0x20	Peripheral ID Register 0
PID1	0XFE4	Read only	8	0XB8	Peripheral ID Register 1
PID2	0XFE8	Read only	8	0X1B	Peripheral ID Register 2
PID3	0XFEC	Read only	8	0X00	Peripheral ID Register 3
CID0	0XFF0	Read only	8	0X0D	Component ID Register 0
CID1	0XFF4	Read only	8	0XF0	Component ID Register 1
CID2	0XFF8	Read only	8	0X05	Component ID Register 2
CID3	0XFFC	Read only	8	0XB1	Component ID Register 3

3.11.11 Debug Access Port

The Cortex-M3 processor block contains a DAP that consist of a JTAG interface and a TPIU interface. Both interface to the FPGA Fabric. The JTAG-DAP is based on the IEEE1149.1 Joint Test Action Group Boundary-Scan Standard.

JTAG-DP functions consist of the following three parts:

- JTAG-DP sate machine
- Instruction register (IR) and the related IR scan chain, which are used to control JTAG and the current register actions
- DR register and the related DR scan chain, which connect with the JTAG-DP register.

DS861-1.4.5E 55(89)

3.11.12 Memory Mapping

Figure 3-39 Memory Mapping

3.11.13 Application

Gowin YunYuan software supports the "Cortex-M3" IP call. For further detailed information, please refer to IPUG517, Gowin EMPU (GW1NS-4C) Hardware Design Reference Manual.

3.12 USB2.0 PHY

3.12.1 Features

GW1NSR-2C/2 contains USB2.0 PHY, with the features as below:

- 480Mbps data speed, compatible with USB1.1 1.5/12Mbps data speed
- Plug and play
- Hot socket

3.12.2 Interfaces and Ports Signal

The USB2.0 PHY module includes UTMI+digital and UTMI+AFE (Analog Front End), which are mainly used to connect the USB controller and USB PHY.

DS861-1.4.5E 56(89)

Table 3-13 USB2.0 PHY Ports Signal

Port Name	I/O	Description
CLK	0	Used for receiving and sending clock signals Data bit width is 8bit : 60MHz Data bit width is 16bit : 30MHz
RESET	I	Reset signal, active-high.
XCVRSEL	I	Transceiver select. This signal selects between the LS, FS, and HS transceivers: 2'b00: HS Transceiver 2'b01: FS Transceiver 2'b10: LS Transceiver 2'b11: Send a LS packet on a FS bus or receive a LS packet.
TERMSEL	I	Termination select. This signal selects between the FS and HS terminations: 0: HS termination enabled 1: FS termination enabled
SUSPENDM	I	Suspend.
		Line state. These signals reflect the current state of the single ended receivers.
LINESTATE[1:0]	0	2'b00: SE0 2'b01: 'J' state 2'b10: 'K' state 2'b11: SE1
CLKSEL [1:0]	I	Operational mode. These signals select between various operational modes: 2'b00: Normal operation 2'b01: Non-driving 2'b10: Disable bit stuffing and NRZI encoding 2'b11: Normal operation without automatic generation of start and end signals
DP	Ю	USB data pin
DM	Ю	USB data pin
DATAIN[7:0]	I	Lower 8 bits USB sends data input
DATAIN[15:8]	I	Higher 8 bits USB sends data input
TXVLD	I	Lower 8 bits sends data enable signal, DATAIN[7:0] data valid indication
TXVLDH	I	Higher 8 bits sends data enable signal, DATAIN[15:8] data valid indication
TXREADY	0	Transmit data ready.
DATAOUT[7:0]	0	Lower 8 bits USB receives data output
DATAOUT[15:8]	0	Higher 8 bits USB receives data output
RXVLD	0	Lower 8 bits receives data enable signal, DATAIN[7:0] data valid indication
RXVLDH	0	Higher 8 bits receives data enable signal, DATAIN[15:8] data valid indication
RXACTIVE	0	Receive active. Indicates that the receive state machine has detected SYNC and is active.

DS861-1.4.5E 57(89)

Port Name	I/O	Description
RXERROR	0	Receive Error. High-level indicates that a
TOTELLICIT		receive error has been detected.
IDPULLUP	I	Signal that enables the sampling of the analog
		Id line, active-high.
		Indicates whether the connected plug is a mini-A
IDDIG	0	or mini-B.
		0: mini-A 1: mini-B
		Indicates if the session for an A/B-peripheral is
		valid.
SESSVLD	0	0: Vbus < 0.8V
		1: Vbus > 2V
		Indicates if the voltage on Vbus is at a valid level
		for operation (4.4V < Vth < 4.75V).
VBUSVLD	0	0: Vbus < 4.4V
		1: Vbus > 4.75V
		Indicates the voltage on Vbus.
ADPSNS	0	0: Vbus < 0.2 V
		1: Vbus > 0.55V
		Enables/disables the ADP Probe comparator.
ADP_PRBEN	l	1: enable
		0: disable
ADDDDD	0	Indicates the voltage on Vbus. 0: Vbus < 0.6V
ADPPRB		1: Vbus > 0.75V
		This signal enables charging Vbus.
CHARGVBUS	1	0: do not charge Vbus through a resistor
OT IN THE OF BOO	'	1: charge Vbus through a resistor
		This signal enables charging Vbus.
DISCHARGEVBUS	1	0: do not discharge Vbus through a resistor
		1: discharge Vbus through a resistor
	I	This signal enables the 15k Ohm pull-down
DPPD		resistor on the DP line.
DITE		0: Pull-down resistor not connected to DP
		1: Pull-down resistor connected to DP
	I	This signal enables the 15k Ohm pull-down
DMPD		resistor on the DM line.
		Pull-down resistor not connected to DM Pull-down resistor connected to DM
		This signal is used for all types of peripherals
		connected to it. It is only valid when DPPD and DMPD
HOSTDIS	0	are 1.
		0: there is peripherals connected
		1: there is no peripheral connected
		Indicates if the data on the DataOut[7:0] lines
TXBITSTUFFEN	I	needs to be bitstuffed or not.
		0: Bitstuffing is applied
		1: Bitstuffing is enabled
TXBITSTUFFENH	I	Indicates if the data on the DataOut[15:8] lines needs to be bitstuffed or not.
		needs to be bitstuffed of flot.

DS861-1.4.5E 58(89)

Port Name	I/O	Description
		0: Bitstuffing is disabled
		1: Bitstuffing is enabled
		0: FS and LS packets are sent using the parallel
FSLSSERIAL	I	interface.
		1: FS and LS packets are sent using the serial interface.
TVENNI		Active low enable signal. Only used when
TXENN	I	FSLSSERIAL is set to 1b.
TXDAT		Serial data. Only used when FSLSSERIAL is set
		to 1.
TXSE0	I	Force single-ended zero. Only used when FSLSSERIAL is set to 1.
		Single-ended receive data. This signal is only
RXDP	0	valid when FSLSSERIAL is set to 1.
RXDM	0	Single-ended receive data. This signal is only
TOOM		valid when FSLSSERIAL is set to 1.
RXRCV	0	Single-ended receive data. This signal is only valid when FSLSSERIAL is set to 1.
VBUS	10	VBUS signal
ID	I	
טו	I	ID signal Crystal in signals, supported range is
XIN	I	12MHZ~24MHZ.
XOUT	0	Crystal out signals
REXT	I	1% precision 12.7K pull-down register
LBKERR	0	0: no BIST error
		1: Error during BIST occurs
INTCLK	I	Clock signals provided internally of the SoC.
CLKRDY	0	Observation/debug signal to show that the internal PLL has locked and is ready.
CLK480PAD	0	480 MHZ clock output for observation
Scan signals		100 mm in state of the state of
SCANCLK	I	Clock signals for scan mode
SCANEN	1	Select to shift mode
SCANMODE	i	High effective signal to enter scan mode
TRESETN		
	<u> </u>	Low effective reset signal for scan mode.
SCANIN1	1	Scan chain input
SCANIN2	I	Scan chain input
SCANIN3	I	Scan chain input
SCANIN4	I	Scan chain input
SCANIN5	I	Scan chain input
SCANIN6	I	Scan chain input
SCANOUT1	0	Scan chain output
SCANOUT2	0	Scan chain output
SCANOUT3	0	Scan chain output

DS861-1.4.5E 59(89)

Port Name	I/O	Description
SCANOUT4	0	Scan chain output
SCANOUT5	0	Scan chain output
SCANOUT6	0	Scan chain output

Table 3-14 USB2.0 PHY Parameters

Name	Description
DATABUS16_8	Selects between 8 bits and 16 bits data transfers. 1: 16 bits data path operation enabled. CLK is 30MHz.
	0: 8 bits data path operation enabled. CLK is 60MHz.
ADP_PRBEN	Enables/disables the ADP probe comparator.
TEST_MODE[0]	Enables/disables BIST test
TEST_MODE[4] TEST_MODE[1]	BIST modes selection 2'b00: high speed BIST mode 2'b01: full speed BIST mode 2'b10: low speed BIST mode 2'b11: Low speed packet on FSBUS BIST
TEST_MODE[2]	8 bits interface BIST 1: 16 bits interface BIST
TEST_MODE[3]	0: digital loop back BIST 1: analog loop back BIST
HSDRV1	High speed drive adjustment. Please connect to 0 for normal operation.
HSDRV0	High speed drive adjustment. Please connect to 0 for normal operation.
CLK_SEL	Source select for clock 0: external crystal oscillator XIN/XOUT 1: SoC internal clock INTCLK
M[3: 0]	Used for test, M division factor, default value 0 0: 1 frequency division 1: disabled 2: 2 frequency division 3: 3 frequency division
N[5: 0]	Used for test, N division factor, default value 0 Supports 2 - 63 0 and 1: disabled 2: 2 frequency division 3: 3 frequency division
C[1: 0]	Used for test, charge pump current control signal, default 40uA 2'b00: 30uA 2'b01: 40uA 2'b10: 50uA 2'b11: 60uA
FOC_LOCK	Used for test, default 0

DS861-1.4.5E 60(89)

3 Architecture 3.13 ADC

Name	Description
	0: LOCK is generated by PLL lock detector
	1: LOCK is always high(always lock)

3.13 ADC

3.13.1 Features

GW1NSR series of FPGA products integrate an eight-channel single-ended 12 bits SAR ADC. It is a medium-speed ADC with low-power, low-leakage current, and high-speed.

The dynamic performance is as below:

Slew Rate: Max. 1MHz

■ Dynamic range: >81 dB SFDR, >62 db SINAD

• Linear performance: INL<1 LSB, DNL<0.5 LSB, no missing codes

3.13.2 Port Signal

Table 3-15 ADC Port Signal

Port Name	I/O	Description
CLK	I	Clock input signal. fclk is greater than or equal to 16 times of sampling frequency Max. Clock frequency: 16MHz
PD	I	Power down signal, output 0 when the signal value is 1.
SoC	1	Sampling frequency, max. Frequency is 1MHz.
S[2: 0]	I	Channel selection signal
CH[7:0]	I	Eight-channel analog input
EOC	0	End conversion.
B[11: 0]	0	A/D conversion result

Table 3-16 Channel Selection Truth Table

S[2: 0]	Selected Input Channel
3'b111	CH[7]
3'b110	CH[6]
3'b101	CH[5]
3'b100	CH[4]
3'b011	CH[3]
3'b010	CH[2]
3'b001	CH[1]
3'b000	CH[0]

DS861-1.4.5E 61(89)

3 Architecture 3.14 Clock

3.14 Clock

The clock resources and wiring are critical for high-performance applications in FPGA. GW1NSR series of FPGA products provide the global clock network (GCLK) which connects to all the registers directly. Besides the global clock network, the GW1NSR series of FPGA products provide high-speed clock HCLK. PLL, etc are also provided.

For further detailed information, please refer to <u>UG286, Gowin Clock</u> User Guide.

3.14.1 Global Clock

The GCLK is distributed in GW1NSR devices as four quadrants. Each quadrant provides eight GCLKs. The optional clock resources of GCLK can be pins or CRU. Users can employ dedicated pins as clock resources to achieve better timing.

3.14.2 PLL

Phase-locked Loop (PLL) is one kind of a feedback control circuit. The frequency and phase of the internal oscillator signal is controlled by the external input reference clock.

PLL blocks provide the ability to synthesize clock frequencies. Frequency adjustment (multiply and division), phase adjustment, and duty cycle can be adjusted by configuring the parameters.

See Figure 3-40 for the PLL structure.

Figure 3-40 PLL Structure

DS861-1.4.5E 62(89)

3 Architecture 3.14 Clock

Table 3-17 Definition of the PLL Ports

Port Name	Signal	Description
CLKIN [5:0]	Input	Reference clock input
CLKFB	Input	Feedback clock input
RESET	Input	PLL reset
RESET_P	Input	PLL Power Down
IDSEL [5:0]	Input	Dynamic IDIV control: 1~64
FBDSEL [5:0]	Input	Dynamic FBDIV control:1~64
PSDA [3:0]	Input	Dynamic phase control (rising edge effective)
DUTYDA [3:0]	Input	Dynamic duty cycle control (falling edge
DOTTDA [3.0]	прис	effective)
FDLY[3:0]	Input	CLKOUTP dynamic delay control
CLKOUT	Output	Clock output with no phase and duty cycle
OLINOOT	Output	adjustment
CLKOUTP	Output	Clock output with phase and duty cycle
OLIKOOTI	Output	adjustment
CLKOUTD	Output	Clock divider from CLKOUT and CLKOUTP
GEROOTE	Output	(controlled by SDIV)
		clock divider from CLKOUT and CLKOUTP
CLKOUTD3	Output	(controlled by DIV3 with the constant division
		value 3)
		PLL lock status:
LOCK	Output	1: locked,
		0: unlocked

The PLL reference clock source can come from an external PLL pin or from internal routing GCLK, HCLK, or general data signal. PLL feedback signal can come from the external PLL feedback input or from internal routing GCLK, HCLK, or general data signal.

For PLL parameters, please refer to Table 4-20 PLL Parameters.

PLL can adjust the frequency of the input clock CLKIN (multiply and division). The formulas for doing so are as follows:

- 1. fclkout = (fclkin*FBDIV)/IDIV
- 2. fvco = fclkout*odiv
- 3. fCLKOUTD = fCLKOUT/SDIV
- 4. fPFD = fclkin/IDIV = fclkout/FBDIV

Note!

- f_{CLKIN}: The frequency of the input clock CLKIN
- fclkout: The clock frequency of CLKOUT and CLKOUTP
- fclkoutd: The clock frequency of CLKOUTD, and CLKOUTD is the clock CLKOUT after division
- f_{PFD}: PFD Phase Comparison Frequency, and the minimum value of f_{PFD} should be no less than 3MHz

Adjust IDIV, FBDIV, ODIV, and SDIV to achieve the required clock frequency.

3.14.3 HCLK

HCLK is the high-speed clock in the GW1NSR series of FPGA products. It can support high-performance data transfer and is mainly

DS861-1.4.5E 63(89)

3 Architecture 3.15 Long Wire (LW)

suitable for source synchronous data transfer protocols. See Figure 3-41. Figure 3-41 GW1NSR-2/GW1NSR-2C HCLK Distribution

Figure 3-42 GW1NSR-4/GW1NSR-4C HCLK Distribution

3.15 Long Wire (LW)

As a supplement to the CRU, the GW1NSR series of FPGA products provides another routing resource, Long wire, which can be used as clock, clock enable, set/reset,or other high fan out signals.

3.16 Global Set/Reset (GSR)

A global set/rest (GSR) network is built into the GW1NSR series of FPGA product. There is a direct connection to core logic. It can be used as asynchronous/synchronous set or asynchronous/synchronous reset, registers in CFU and I/O can be configured independently.

DS861-1.4.5E 64(89)

3.17 Programming Configuration

The GW1NSR series of FPGA products support SRAM and Flash. Flash programming mode supports on-chip Flash and off-chip Flash. GW1NSR-2C/2 supports on-chip DUAL BOOT, providing a selection for users to backup data to off-chip Flash according to requirements.

Besides JTAG, the GW1NSR series of FPGA products also supports GOWINSEMI's own configuration mode: GowinCONFIG (AUTO BOOT, SSPI, MSPI, DUAL BOOT, SERIAL, and CPU). All the devices support JTAG and AUTO BOOT. For more detailed information, please refer to UG290, Gowin series FPGA Products Programming and Configuration User Guide.

3.17.1 SRAM Configuration

When you adopt SRAM to configure the device, every time the device is powered on, the bit stream file needs to be downloaded to configure the device.

3.17.2 Flash Configuration

The Flash configuration data is stored in the on-chip flash. Each time the device is powered on, the configuration data is transferred from the Flash to the SRAM, which controls the working of the device. This mode can complete configuration within a few ms, and is referred to as "Quick Start". The GW1NSR series of FPGA products also support off-chip Flash configuration and dual-boot. Please refer to UG290, Gowin FPGA Products Programming and Configuration User Guide for more detailed information.

3.18 On Chip Oscillator

There is an internal oscillator in each of the GW1NSR series of FPGA product. This provides programmable user clock with clock precision ±5%. During the configuration process, it can provide a clock for MSPI mode.

The internal oscillator in GW1NSR-4C/4 device supports user configurable power-saving mode.

The on-chip oscillator also provides a clock resource for user designs. Up to 64 clock frequencies can be obtained by setting the parameters.

The following formula is employed to get the output clock frequency for GW1NSR-2C/2 device: fout=240 MHz/Param.

The following formula is employed to get the output clock frequency for GW1NSR-4C/4 device: fout=210 MHz/Param.

Note!

"Param" is the configuration parameter with a range of 2~128. It supports even number only.

The tables below list some frequencies, such as the default frequency, the Max. frequency, and the output decimal frequency for certain parameters.

DS861-1.4.5E 65(89)

3 Architecture 3.18 On Chip Oscillator

Table 3-18 GW1NSR-2C/2 Oscillator Output Frequency Options

Mode	Frequency	Mode	Frequency	Mode	Frequency
0	2.5MHz ¹	8	7.5MHz	16	15.0MHz
1	5.4MHz	9	8.0MHz	17	17.1MHz
2	5.7MHz	10	8.6MHz	18	20.0MHz
3	6.0MHz	11	9.2MHz	19	24.0MHz
4	6.3MHz	12	10.0MHz	20	30.0MHz
5	6.6MHz	13	10.9MHz	21	40.0MHz
6	6.9MHz	14	12.0MHz	22	60.0MHz
7	7.4MHz	15	13.3MHz	23	120MHz ²

Table 3-19 GW1NSR-4C/4 Oscillator Output Frequency Options

Mode	Frequency	Mode	Frequency	Mode	Frequency
0	2.5MHz ¹	8	7.8MHz	16	15.6MHz
1	5.4MHz	9	8.3MHz	17	17.9MHz
2	5.7MHz	10	8.9MHz	18	21MHz
3	6.0MHz	11	9.6MHz	19	25MHz
4	6.3MHz	12	10.4MHz	20	31.3MHz
5	6.6MHz	13	11.4MHz	21	41.7MHz
6	6.9MHz	14	12.5MHz	22	62.5MHz
7	7.4MHz	15	13.9MHz	23	125MHz ²

Note!

- [1] Default frequency
- [2] Not suitable for MSPI programming mode.

DS861-1.4.5E 66(89)

4 AC/DC Characteristic

Note!

Please ensure that you use GOWINSEMI devices within the recommended operating conditions and range. Data beyond the working conditions and range are for reference only. GOWINSEMI does not guarantee that all devices will operate normally beyond the operating conditions and range.

4.1 Operating Conditions

4.1.1 Absolute Max. Ratings

Table 4-1 Absolute Max. Ratings

Name	Description	Min.	Max.
Vcc	Core voltage	-0.5V	1.32V
Vccox	I/O Bank Power	-0.5V	3.75V
	LX Auxiliary voltage	-0.5V	1.98V
Vccx	UX Auxiliary voltage	-0.5V	3.75V
	LV Auxiliary voltage	-0.5V	3.75V
Storage Temperature	Storage Temperature	-65 ℃	+150 ℃
Junction Temperature	Junction Temperature	-40°C	+125℃

4.1.2 Recommended Operating Conditions

Table 4-2 Recommended Operating Conditions

Name	Description	Min.	Max.
Vcc	Core voltage	1.14V	1.26V
	LX Auxiliary voltage	1.71V	1.89V
	UX Auxiliary voltage		
	V _{CCX} of UX device needs to be greater than or		
	equal to V _{CCOx.}	2.375V	3.6V
Vccx	LX Auxiliary voltage	1.71V	3.6V
	LX I/O Bank voltage	1.14V	1.89V
	UX I/O Bank voltage		
	V _{CCX} of UX device needs to be greater than or		
	equal to V _{CCOx.}	1.14V	3.6V
Vccox	LV I/O Bank voltage	1.14V	3.6V

DS861-1.4.5E 67(89)

4 AC/DC Characteristic 4.2 ESD

Name	Description	Min.	Max.
ТЈСОМ	Junction temperature Commercial operation	0℃	+85℃
T _{JIND}	Junction temperature Industrial operation	-40℃	+100℃

Note!

For the power supply information for different packages, please refer to UG862, <u>GW1NSR-2&2C Pinout</u> and UG864, <u>GW1NSR-4&4C Pinout</u>.

4.1.3 Power Supply Ramp Rates

Table 4-3 Power Supply Ramp Rates

Name	Description	Min.	Тур.	Max.
TRAMP	Power supply ramp rates for all power supplies	0.6mV/µs	-	6mV/µs

4.1.4 Hot Socket Specifications

Table 4-4 Hot Socket Specifications

Name	Description	Condition	Max.
Ins	Input or I/O leakage current	V _{IN} =V _{IL} (MAX)	TBD

4.1.5 POR Specifications

Table 4-5 POR Specifications

Name	Description	Min.	Max.
POR Voltage	Power on reset voltage of Vcc	TBD	TBD

4.2 ESD

Table 4-6 GW1NSR ESD - HBM

Device	QN48	MG64
GW1NSR-2C	HBM>1,000V	-
GW1NSR-2	HBM>1,000V	-
GW1NSR-4C	HBM>1,000V	HBM>1,000V
GW1NSR-4	-	HBM>1,000V

DS861-1.4.5E 68(89)

Table 4-7 GW1NSR ESD - CDM

Device	QN48	MG64
GW1NSR-2C	CDM>500V	-
GW1NSR-2	CDM>500V	-
GW1NSR-4C	CDM>500V	CDM>500V
GW1NSR-4	-	CDM>500V

4.3 DC Electrical Characteristics

4.3.1 DC Electrical Characteristics over Recommended Operating Conditions

Table 4-8 DC Electrical Characteristics over Recommended Operating Conditions

Name	Description	Condition	Min.	Тур.	Max.
In Inc.	Input or I/O	V _{CCO} <v<sub>IN<v<sub>IH (MAX)</v<sub></v<sub>	-	-	210µA
I _{IL} ,I _{IH}	leakage	0V <v<sub>IN<v<sub>CCO</v<sub></v<sub>	-	-	10µA
I _{PU}	I/O Active Pull-up Current	0 <vin<0.7vcco< td=""><td>-30 µA</td><td>-</td><td>-150 μA</td></vin<0.7vcco<>	-30 µA	-	-150 μA
I _{PD}	I/O Active Pull-down Current	VIL (MAX) <vin<vcco< td=""><td>30μΑ</td><td>-</td><td>150µA</td></vin<vcco<>	30μΑ	-	150µA
I _{BHLS}	Bus Hold Low Sustaining Current	V _{IN} =V _{IL} (MAX)	30μΑ	-	-
Івнно	Bus Hold High Sustaining Current	V _{IN} =0.7V _{CCO}	-30 µA	-	-
I _{BHLO}	Bud HoldLow Overdrive Current	0≤V _{IN} ≤V _{CCO}	-	-	150µA
Івнно	Bus HoldHigh Overdrive Current	0≤V _{IN} ≤V _{CCO}	-	-	-150 μA
V _{BHT}	Bus hold trip points		V _{IL} (MAX)	-	V _{IH} (MIN)
C1	I/O Capacitance			5pF	8pF
		V _{CCO} =3.3V, Hysteresis= Large	-	482mV	-
		V _{CCO} =2.5V, Hysteresis= Large	-	302mV	-
		V _{CCO} =1.8V, Hysteresis= Large	-	152mV	-
\/	Hysteresis for	V _{CCO} =1.5V, Hysteresis= Large	-	94mV	-
V _H YST	Schmitt Trigge inputs	V _{CCO} =3.3V, Hysteresis= Small	-	240mV	-
		V _{CCO} =2.5V, Hysteresis= Small	-	150mV	-
		V _{CCO} =1.8V, Hysteresis= Small	-	75mV	-
		Vcco=1.5V, Hysteresis= Small	-	47mV	-

DS861-1.4.5E 69(89)

4.3.2 Static Supply Current

Table 4-9 Static Supply Current

Name	Description	LX/UX	Device	Min.	Тур.	Max.
Icc	Core current	UX	GW1NSR-2	TBD	TBD	TBD
loov	Vccx current (Vccx=3.3V)	UX	GW1NSR-2	TBD	TBD	TBD
Iccx	V _{CCX} current (V _{CCX} =2.5V)	UX	GW1NSR-2	TBD	TBD	TBD
Icco	I/O Bank current (Vcco=2.5V)	UX	GW1NSR-2	TBD	TBD	TBD
Icc	Core current under load (Vccx=3.3V)	UX	GW1NSR-2	TBD	TBD	TBD
Iccx	Core current under load (VCCX=3.3V)	UX	GW1NSR-2	TBD	TBD	TBD
Icco	I/O Bank current under load (Vcco=2.5V)	UX	GW1NSR-2	TBD	TBD	TBD
Icc	Core current under load	LV	GW1NSR-4	TBD	TBD	TBD
Iccx	Core current under load	LV	GW1NSR-4	TBD	TBD	TBD
Icco	I/O Bank current under load	LV	GW1NSR-4	TBD	TBD	TBD

4.3.3 Recommended I/O Operating Conditions

Table 4-10 Recommended I/O Operating Conditions

Nama	Output Vcco (V)			Input V _{REF} (V)		
Name	Min.	Тур.	Max.	Min.	Тур.	Max.
LVTTL33	3.135	3.3	3.465	-	-	-
LVCMOS33	3.135	3.3	3.465	-	-	-
LVCMOS25	2.375	2.5	2.625	-	-	-
LVCMOS18	1.71	1.8	1.89	-	-	-
LVCMOS15	1.425	1.5	1.575	-	-	-
LVCMOS12	1.14	1.2	1.26	-	-	-
SSTL15	1.425	1.5	1.575	0.68	0.75	0.9
SSTL18_I	1.71	1.8	1.89	0.833	0.9	0.969
SSTL18_II	1.71	1.8	1.89	0.833	0.9	0.969
SSTL25_I	2.375	2.5	2.645	1.15	1.25	1.35
SSTL25_II	2.375	2.5	2.645	1.15	1.25	1.35
SSTL33_I	3.135	3.3	3.465	1.3	1.5	1.7
SSTL33_II	3.135	3.3	3.465	1.3	1.5	1.7
HSTL18_I	1.71	1.8	1.89	0.816	0.9	1.08
HSTL18_II	1.71	1.8	1.89	0.816	0.9	1.08
HSTL15	1.425	1.5	1.575	0.68	0.75	0.9
PCI33	3.135	3.3	3.465	-	-	-

DS861-1.4.5E 70(89)

Name	Output Vo	co (V)		Input V _{REF} (V)		
Name	Min.	Тур.	Max.	Min.	Тур.	Max.
LVPECL33E	3.135	3.3	3.465	-	-	-
MLVDS25E	2.375	2.5	2.625	-	-	-
BLVDS25E	2.375	2.5	2.625	-	-	-
RSDS25E	2.375	2.5	2.625	-	-	-
LVDS25E	2.375	2.5	2.625	-	-	-
SSTL15D	1.425	1.5	1.575	-	-	-
SSTL18D_I	1.71	1.8	1.89	-	-	-
SSTL18D_II	1.71	1.8	1.89	-	-	-
SSTL25D_I	2.375	2.5	2.625	-	-	-
SSTL25D_II	2.375	2.5	2.625	-	-	-
SSTL33D_I	3.135	3.3	3.465	-	-	-
SSTL33D_II	3.135	3.3	3.465	-	-	-
HSTL15D	1.425	1.575	1.89	-	-	-
HSTL18D_I	1.71	1.8	1.89	-	-	-
HSTL18D_II	1.71	1.8	1.89	-	-	-

DS861-1.4.5E 71(89)

4.3.4 IOB Single - Ended DC Electrical Characteristic

Table 4-11 IOB Single - Ended DC Electrical Characteristic

Name	VıL		ViH		VoL	Vон	loL	Іон		
Name	Min	Max	Min	Max	(Max)	(Min)	(mA)	(mA)		
							4	-4		
							8	-8		
LVCMOS33	-0.3V	0.8V	2.0V	3.6V	0.4V	Vcco-0.4V	12	-12		
LVTTL33	-0.5 V		2.00	3.0 V			16	-16		
							24	-24		
					0.2V	Vcco-0.2V	0.1	-0.1		
							4	-4		
					0.4V	Vcco-0.4V	8	-8		
LVCMOS25	-0.3V	0.7V	1.7V	3.6V	0.40	VCCO-0.4V	12	-12		
							16	-16		
					0.2V	Vcco-0.2V	0.1	-0.1		
							4	-4		
11/01/00/40	-0.3V	0.05	0.05 1/	3.6V	0.4V	Vcco0.4V	8	-8		
LVCMOS18		0.35 x Vcco	0.65 x Vcco				12	-12		
					0.2V	Vcco-0.2V	0.1	-0.1		
	-0.3V					0.4V	V _{CCO} -0.4V	4	-4	
LVCMOS15		0.3V $0.35 \times V_{CCO}$	0.65 x V _{CCO}	3.6V	0.40	VCCO 0.4V	8	-8		
					0.2V	Vcco-0.2V	0.1	-0.1		
					0.4V	V _{CCO} -0.4V	2	-2		
LVCMOS12	-0.3V	0.35 x V _{CCO}	0.65 x V _{CCO}	3.6V	3.6V	3.6V	V 0.17	7000 0111	6	-6
					0.2V	V _{CCO} -0.2V	0.1	-0.1		
PCI33	-0.3V	0.3 x Vcco	0.5 x Vcco	3.6V	0.1x Vcco	0.9 x Vcco	1.5	-0.5		
SSTL33_I	-0.3V	V _{REF} -0.2V	V _{REF} +0.2V	3.6V	0.7	Vcco-1.1V	8	-8		
SSTL25_I	-0.3V	V _{REF} -0.18V	V _{REF} +0.18V	3.6V	0.54V	V _{CCO} -0.62V	8	-8		
SSTL25_II	-0.3V	V _{REF} -0.18V	V _{REF} +0.18V	3.6V	NA	NA	NA	NA		
SSTL18_II	-0.3V	V _{REF} -0.125V	V _{REF} +0.125V	3.6V	NA	NA	NA	NA		
SSTL18_I	-0.3V	V _{REF} -0.125V	V _{REF} +0.125V	3.6V	0.40V	Vcco-0.40V	8	-8		
SSTL15	-0.3V	V _{REF} -0.1V	V _{REF} + 0.1V	3.6V	0.40V	Vcco-0.40V	8	-8		
HSTL18_I	-0.3V	V _{REF} -0.1V	V _{REF} + 0.1V	3.6V	0.40V	Vcco-0.40V	8	-8		
HSTL18_II	-0.3V	V _{REF} -0.1V	V _{REF} + 0.1V	3.6V	NA	NA	NA	NA		
HSTL15_I	-0.3V	V _{REF} -0.1V	V _{REF} + 0.1V	3.6V	0.40V	Vcco-0.40V	8	-8		
HSTL15_II	-0.3V	V _{REF} -0.1V	V _{REF} + 0.1V	3.6V	NA	NA	NA	NA		

DS861-1.4.5E 72(89)

4.3.5 I/O Differential Electrical Characteristics

Table 4-12 I/O Differential Electrical Characteristics LVDS25

Name	Description	Condition	Min.	Тур.	Max.	Unit
VINA, VINB	Input Voltage (Input Voltage)		0	-	2.4	٧
V _{CM}	Input Common Mode Voltage (Input Common Mode Voltage)	Half the Sum of the Two Inputs	0.05	-	2.35	٧
V _{THD}	Differential Input Threshold	Difference Between the Two Inputs	±100	-	-	mV
I _{IN}	Input Current	Power On or Power Off	-	-	± 10	μA
Vон	Output High Voltage for V _{OP} or V _{OM}	$R_T = 100\Omega$	-	-	1.60	V
VoL	Output Low Voltage for V_{OP} or V_{OM}	$R_T = 100\Omega$	0.9	-	-	٧
Vod	Output Voltage Differential	$(V_{OP} - V_{OM}), R_T = 100Ω$	250	350	450	mV
ΔV _{OD}	Change in VoD Between High and Low		-	-	50	mV
Vos	Output Voltage Offset	$(V_{OP} + V_{OM})/2$, R _T = 100 Ω	1.125	1.20	1.375	V
ΔVos	Change in Vos Between High and Low		-	-	50	mV
Is	Short-circuit current	V _{OD} = 0V output short-circuit	-	-	15	mA

4.4 AC Switching Characteristic

4.4.1 IO Speed

Table 4-13 IO Characteristics

Name	Description	Min	Max	Unit
f _{MAX}	IO Max. Frequency	-	150M	Hz
f _{MAX_LVDS}	LVDS Max. Frequency	-	400M	Hz

DS861-1.4.5E 73(89)

4.4.2 CFU Switching Characteristics

Table 4-14 CFU Block Internal Timing Parameters

Name	Description	Speed	Unit	
	Description	Min	Max	Offic
tLUT4_CFU	LUT4 delay	-	0.674	ns
tLUT5_CFU	LUT5 delay	-	1.388	ns
tlut6_cfu	LUT6 delay	-	2.01	ns
tLUT7_CFU	LUT7 delay	-	2.632	ns
tLUT8_CFU	LUT8 delay	-	3.254	ns
tsr_cfu	Set/Reset to Register output	-	1.86	ns
tco_cfu	Clock to Register output	-	0.76	ns

4.4.3 Clock and I/O Switching Characteristics

Table 4-15 External Switching Characteristics

Name	Descr	Dovice	-5		-6		Unit
ivaille	-iption Device		Min	Max	Min	Max	Offic
Clocks	TBD	TBD	TBD	TBD	TBD	TBD	-
Pin-LUT-Pin Delay	TBD	TBD	TBD	TBD	TBD	TBD	-
General I/O Pin Parameters	TBD	TBD	TBD	TBD	TBD	TBD	-

4.4.4 Gearbox Switching Characteristics

Table 4-16 Gearbox Internal Timing Parameters

Name	Description	Тур.	Unit
FMAX _{IDDR}	2:1 Gearbox maximum input frequency	410	MHz
FMAXIDES4	4:1 Gearbox maximum input frequency	410	MHz
FMAXIDES8	8:1 Gearbox maximum input frequency	410	MHz
FMAXIVIDEO	7:1 Gearbox maximum input frequency	390	MHz
FMAXIDES10	10:1 Gearbox maximum input frequency	410	MHz
FMAXoddr	1:2 Gearbox maximum input frequency	355	MHz
FMAXoser4	1:4 Gearbox maximum input frequency	360	MHz
FMAXoser8	1:8 Gearbox maximum input frequency	355	MHz
FMAXovideo	1:7 Gearbox maximum input frequency	355	MHz
FMAXoser10	1:10 Gearbox maximum input frequency	355	MHz
FMAXoser16	1:16Gearbox maximum input frequency	750	MHz

DS861-1.4.5E 74(89)

4.4.5 BSRAM Switching Characteristics

Table 4-17 BSRAM Internal Timing Parameters

Name	Description	Speed	Grade	Unit
Ivairie	Description	Min	Max	Offic
tcoad_bsram	Clock to output from read address/data	-	5.10	ns
tcoor bsram	Clock to output from output register	-	0.56	ns

4.4.6 DSP Switching Characteristics

Table 4-18 DSP Internal Timing Parameters

Name	Description	Speed	Grade	Unit
INAITIE	Description	Min	Max	Offic
tcoir_dsp	Clock to output from output register	-	4.80	ns
tcopr_dsp	Clock to output from output register	-	2.40	ns
tcoor_dsp	Clock to output from output register	-	0.84	ns

4.4.7 On chip Oscillator Switching Characteristics

Table 4-19 On chip Oscillator Output Frequency

Name	Description	Description		Тур.	Max.
	On chip Oscillator Output Frequency (0 ~ +85℃)	GW1NSR-2/2C	114MHz	120MHz	126MHz
	On chip Oscillator Output Frequency (-40 ~ +100°C)	GW1NSR-2/2C	108MHz	120MHz	132MHz
f _{MAX}	On chip Oscillator Output Frequency (0 ~ +85℃)	GW1NSR-4/4C	118.75MHz	125MHz	131.25MHz
	On chip Oscillator Output Frequency (-40 ~ +100°C)	GW1NSR-4/4C	112.5MHz	125MHz	137.5MHz
t _{DT}	Clock Duty Cycle		43%	50%	57%
topJIT	Clock Period Jitter		0.01UIPP	0.012UIPP	0.02UIPP

DS861-1.4.5E 75(89)

4.4.8 PLL Switching Characteristics

Table 4-20 PLL Parameters

Device	Speed Grade	Name	Min.	Max.
		CLKIN	3MHZ	400MHZ
	C7/I6	PFD	3MHZ	400MHZ
	C6/I5	VCO	400MHZ	1200MHZ
GW1NSR-2/		CLKOUT	3.125MHZ	600MHZ
GW1NSR-2C		CLKIN	3MHZ	320MHZ
	C5/I4	PFD	3MHZ	320MHZ
		VCO	320MHZ	960MHZ
		CLKOUT	2.5MHZ	480MHZ
		CLKIN	3MHZ	400MHZ
	C7/I6	PFD	3MHZ	400MHZ
	C6/I5	VCO	400MHZ	1200MHZ
GW1NSR-4/		CLKOUT	3.125MHZ	600MHZ
GW1NSR-4C		CLKIN	3MHZ	320MHZ
	05/14	PFD	3MHZ	320MHZ
	C5/I4	VCO	320MHZ	960MHZ
		CLKOUT	2.5MHZ	480MHZ

DS861-1.4.5E 76(89)

4.5 Cortex-M3 Electrical Specification

4.5.1 DC Characteristic

Table 4-21 Current Characteristic

Name	Description	Spec.	11:4		
Name	Description	Min.	Max.	Unit	
Ivcc	Max. current of VCC	-	100	mA	
Ivss	Max. current of VSS	-	≥100	mA	
I _{INJ}	Leakage current	-	+/-5	mA	

4.5.2 AC Characteristic

Table 4-22 Clock Parameters

Name	Description	Device	Spec.	Unit	
name		Device	Min.	Max.	Offic
f	, AHB	GW1NSR-2C	0	30	MHz
clockfrequency	clockfrequency	GW1NSR-4C	0	80	MHz
APB clock frequency	GW1NSR-2C	0	30	MHz	
	GW1NSR-4C	0	80	MHz	

DS861-1.4.5E 77(89)

4.6 User Flash Characteristic (GW1NSR-2C/2)

4.6.1 DC Characteristic

Table 4-23 GW1NSR-2C/2 User Flash DC Characteristic

Nama	Description	Spec.	I In:i4	
Name	Description	Min.	Max.	Unit
IVCCread	V _{CC} read operation current	-	1.4	mA
IVCCX _{read}	V _{CCX} read operation current	-	0.6	mA
IVCC _{prog}	V _{CC} write operation current	-	0.2	mA
IVCCX _{prog}	V _{CCX} write operation current	-	2.2	mA
IVCC _{erase}	V _{CC} erase operation current	-	0.2	mA
IVCCX _{erase}	V _{CCX} erase operation current	-	2.3	mA
Idle-vcc	Vcc IDLE current	-	10	uA
IDLE-VCCX	V _{CCX} IDLE current	-	100	uA
ILI	Input leakage current	-	0.1	uA
I _{LO}	Output leakage current	-	0.1	uA
V	Before setting configuration register.	1.14	1.26	V
VVREF	After setting configuration register.	1.176	1.224	V
V _{VREF1V}	Before setting configuration register.	0.94	1.06	V
VVREF1V	After setting configuration register.	0.97	1.03	V
VIL	Input low level	-	0.1*Vcc	V
ViH	Input high level	0.9*V _{CC}	-	V
V _{OL}	Output low level	-	0.1*Vcc	V
Vон	Output high level	0.9*V _{CC}	-	V
t _{PROG}	Write operation time	-	30	us
tser	Page erasure time	-	2	mA
t _{MER}	Macro erasure time	-	10	mA

DS861-1.4.5E 78(89)

4.6.2 AC Characteristic

Table 4-24 GW1NSR-2C/2 User Flash Timing Parameters

Nama	Description	Spec.	Lloit	
Name	Description	Min.	Max.	Unit
tAS	Address set up time	2	-	ns
tHS	Address hold-up time	2	-	ns
tS	Write and erase setup time	5	-	ns
tH	Write and erase hold time	5	-	ns
tDS	Data set up time	5	-	ns
tDH	Data hold-up time	5	-	ns
tAC	Data read time	-	30	ns
tACR	Data read time	-	80	ns
tHZ	Time from high resistance to OE turning low	3	-	ns
tAE	High-level time of AE	10	-	ns
tAEL	Low-level time of AE	10	-	ns
tAAD	Delay time from AE to AE during read operation	30	-	ns
tAADR	Delay time from AE to AE in readback state	80	-	ns
tTR	Time of TBIT rising edge after NVSTR rising edge	-	100	ns
tTF	Time from NVSTR rising edge to IBIT falling edge during write operation	-	30	us
tTF	Time from NVSTR rising edge to IBIT falling edge during page erasure operation	-	2	ms
tTF	Time from NVSTR rising edge to IBIT falling edge during macro erasure operation	-	10	ms
tNVSTRH	Hold time from NVSTR rising edge to AE rising edge	10	-	ns
tNVSTRL	Hold time from NVSTR rising edge to IBIT falling edge	50	-	ns
tCS	CS setup time	10	-	ns
tRCH	CS hold-up time during read operation	0	-	ns
tWCH	CS hold-up time during write operation	10	-	ns
tECH	CS hold-up time during erasure operation	10	-	ns
tDOH	Time from AE enabled to data output time	5	-	ns
tOS	Read enable setup time	1	-	ns
tOH	Read enable hold-up time	30	-	ns
tOHR	Read enable hold-up time	80	-	ns

DS861-1.4.5E 79(89)

4.6.3 Operation Timing Diagrams

Figure 4-1 Read Mode

Figure 4-2 Write Mode

Figure 4-3 Page Erasure Mode

DS861-1.4.5E 80(89)

Figure 4-4 Module Rrasure Mode

4.7 User Flash Characteristic (GW1NSR-4C/4)

4.7.1 DC Characteristics

Table 4-25 GW1NSR-4C/4 User Flash DC Characteristic

Name	Param-	Max.		Linit	Wake-up	Condition
Name	eter	Vcc ³	Vccx	Unit	Time	Condition
Read mode (w/l 25ns) ¹		2.19	0.5	mA	NA	Min. Clcok period, duty cycle 100%, VIN = "1/0"
Write mode	Icc1 ²	0.1	12	mA	NA	
Erase mode	ICC1	0.1	12	mA	NA	
Page Erasure Mode		0.1	12	mA	NA	
Read mode static current (25-50ns)	Icc2	980	25	μΑ	NA	XE=YE=SE="1", between T=Tacc and T=50ns, I/O=0mA; later than T=50ns, read mode is turned off, and I/O current is the current of standby mode.
Standby mode	IsB	5.2	20	μA	0	Vss, Vccx, and Vcc

Note!

- [1] Means the average current, and the peak value is higher than the average one.
- [2] Calculated in different T_{new} clock periods.
 - T_{new}< T_{acc} is not allowed
 - Tnew = Tacc
 - $T_{acc} < T_{new} 50ns$: Icc1 (new) = (Icc1 Icc2)(T_{acc}/T_{new}) + Icc2
 - T_{new} >50ns: Icc1 (new) = (Icc1 Icc2)(T_{acc} / T_{new}) + 50ns x Icc2/ T_{new} + IsB
 - t > 50ns, $I_{CC2} = I_{SB}$

DS861-1.4.5E 81(89)

• [3] V_{CC} must be greater than 1.08V from the zero wake-up time.

4.7.2 AC Characteristics

Table 4-26 GW1NSR-4C/4 User Flash Timing Parameters

User Modes	Para	ameter	Name	Min.	Max.	Unit
	WC	1		-	25	ns
	TC			-	22	ns
Access time ²	BC		T _{acc} ³	-	21	ns
	LT			-	21	ns
	WC			-	25	ns
Program/Erase	Program/Erase to data storage			5	-	μs
Data storage ho	ld ti	me	T _{nvh}	5	-	μs
Data storage ho	ld ti	me (Overall erase)	T _{nvh1}	100	-	μs
Time from data setup	a st	orage to program	T _{pgs}	10	-	μs
Program hold tir	me		T_{pgh}	20	-	ns
Write time			T _{prog}	8	16	μs
Write ready time	9		T _{wpr}	>0	-	ns
Erase hold time			T _{whd}	>0	-	ns
Time from contr setup	ol si	gnal to write/Erase	T _{cps}	-10	-	ns
Time from SE to	rea	id setup	Tas	0.1	-	ns
E pulse high lev	el ti	me	T _{pws}	5	-	ns
Adress/data set	up ti	me	T _{ads}	20	-	ns
Adress/data hol	d tin	ne	T _{adh}	20	-	ns
Data hold-up tin	ne		T _{dh}	0.5	-	ns
		WC1	T _{ah}	25	-	ns
Read mo	de	TC		22	-	ns
address he	old	BC		21	-	ns
time ³		LT		21	-	ns
		WC		25	-	ns
SE pulse low lev	vel t	ime	T _{nws}	2	-	ns
Recovery time			Trcv	10	-	μs
Data storage tin	Data storage time			-	6	ms
Erasure time			T _{erase}	100	120	ms
Overall erase time			T _{me}	100	120	ms
Wake-up time from power down to standby mode			Twk_pd	7	-	μs
Standby hold tin	ne		T _{sbh}	100	-	ns
V _{CC} setup time			T _{ps}	0	-	ns
Vccx hold time			T_ph	0	-	ns

Note!

DS861-1.4.5E 82(89)

- [1] The parameter values may change;
- [2] The values are simulation data only.
- [3] After XADR, YADR, XE, and YE are valid, T_{acc} start time is SE rising edge. DOUT is kept until the next valid read operation;
- [4] Thy is the time between write and the next erasure. The same address can not be written twice before erasure, so does the same register. This limitation is for safety;
- [5] Both the rising edge time and falling edge time for all waveform is 1ns;
- [6] TX, YADR, XE, and YE hold time need to be T_{acc} at leaset, and T_{acc} start from SE rising edge.

4.7.3 Operation Timing Diagrams

Figure 4-5 User Flash Read Operation

Figure 4-6 User Flash Program Operation

DS861-1.4.5E 83(89)

4 AC/DC Characteristic 4.8 ADC Characteristics

YE
SE
XADR

YADR

YADR

XE

ERASE

Twpr

Trus

Terase

Truhy

Trecv

NVSTR

Figure 4-7 User Flash Erase Operation

4.8 ADC Characteristics

4.8.1 ADC Timing

In total, 16 clock cycles are needed for ADC to sample analog input signals and convert them to output digital signals. The first four clock cycles are used to sample and hold; the latter twelve clock cycles are used for the SAR algorithm to generate the required output signals. If the ECO signal becomes high at the 16th clock cycle, the conversion is complete, and the converted digital data will output at the EOC rising edge.

DS861-1.4.5E 84(89)

4 AC/DC Characteristic 4.8 ADC Characteristics

Table 4-27 ADC Timing Parameters

Name	Description	Spec.	Unit	
	Description	Min.	Max.	Offic
CLK	Clock cycle	62.5	-	ns
Ts	SOC setup time	0	-	ns
T _H	SOC hold-up time	10	-	ns
T _{D_EOC}	EOC delay time	-	13.5	ns
T _{D_B}	Data-out delay time	-	16	ns

4.8.2 Electrical Characteristic Parameters

Table 4-28 ADC Parameters

Doromotor	Description	Spec.	11		
Parameter	Description	Min.	Тур.	Max.	Unit
DC Precision					
Output	Data output bits		12		bit
INL	Integral nonlinearity		+/- 0.84		LSB
DNL	Differential nonlinearity		+/- 0.46		LSB
Offset error	Offset error		0.45		%FS
Gain error	Gain error		0.02		%FS
Analog Input					
CH[7: 0]	Single-ended input range	0.01*VREF		0.99*VREF	V
CIN	Input capacitance		11.52		pF
Slew Rate					
SoC	Sample frequency			1	MHz
CLK	Main clock			16	MHz
Date-out delay	Date-out delay		12		Clock cycle
Dynamic Char	acteristic Parameters			ı	,
SINAD	Signal Noise Ratio		64.8(Fin=1.47K)		DB
SINAD			62.6(Fin=107K)		DB
SFDR	Spurious-free		84.9(Fin=1.47K)		DB
31 DIX	dynamic range		81.7(Fin=107K)		DB
HD2	Second harmonic		-104(Fin=1.47K)		DB
TIDZ	distortion		-87.1(Fin=107K)		DB
HD3	Third harmonic		-94.1(Fin=1.47K)		DB
1100	distortion		-80.6(Fin=107K)		DB
THD	Total harmonic		-87.2(Fin=1.47K)		DB
1110	distortion (Fifth)		-79.3(Fin=107K)		DB
ENOB	Valid data-out bits		10.5(Fin=1.47K)		bit
LIVOD	valid data-out bits		10.1(Fin=107K)		bit

DS861-1.4.5E 85(89)

Parameter	Description	Spec.			11	
		Min.	Тур.	Max.	- Unit	
Reference Voltag	ge					
VREF	Reference Voltage	0.5*Vccoo		Vccoo	V	
Digital Input						
VIH	Input high level	0.7*Vcc	Vcc		V	
VIL	Input low level		0	0.3*Vcc	V	
Digital output E	B[11: 0]					
Vон	Output high level	0.7*Vcc			V	
Vol	Output low level			0.3*Vcc	V	
Supply voltage	•					
Vccoo	Analog/digital voltage	2.97	3.3	3.63	V	
Vcc	Digital voltage	1.08	1.2	1.32	V	
Ivccoo	Analog/digital current		750(Fin=107K)		uA	
Ivcc	Digital current		4(Fin=107K)		uA	
I _{pd}	Turning off current		0.15		mA	

4.9 Configuration Interface Timing Specification

The GW1NSR series of FPGA products GowinCONFIG support six configuration modes: AUTO BOOT, SSPI, MSPI, DUAL BOOT, SERIAL, and CPU. For detailed information, please refer to <u>UG290</u>, <u>Gowin FPGA Products Programming and Configuration User Guide</u>.

DS861-1.4.5E 86(89)

5 Ordering Information 5.1 Part Name

5Ordering Information

5.1 Part Name

Note!

- For further information about package type and pin number, please refer to 2.2 Product Resources and 2.3 Package Information.
- The LittleBee® family devices and Arora family devices of the same speed level have different speed.
- Both "C" and "I" are used in GOWIN part name marking for one same device. GOWIN devices are screened using industrial standards, so one same device can be used for both industrial (I) and commercial (C) applications. The maximum temperature of the industrial grade is 100℃, and the maximum temperature of the commercial grade is 85℃. Therefore, if the same chip meets the speed level 6 in the commercial grade application, the speed level is 5 in the industrial grade application.

Figure 5-1 GW1NSR-2/ GW1NSR-4 Part Naming-ES

DS861-1.4.5E 87(89)

5 Ordering Information 5.1 Part Name

Figure 5-2 GW1NSR-2C/ GW1NSR-4C Part Naming-ES

Figure 5-3 GW1NSR-2/GW1NSR-4 Part Naming - Production

Figure 5-4 GW1NSR-2C/ GW1NSR-4C Part Naming - Production

DS861-1.4.5E 88(89)

5 Ordering Information 5.2 Package Mark

5.2 Package Mark

The device information of GOWINSEMI is marked on the chip surface, as shown in Figure 5-5 - Figure 5-8.

Figure 5-5 GW1NSR-2 Package Mark

Figure 5-6 GW1NSR-2C Package Mark

Figure 5-7 GW1NSR-4 Package Mark

Figure 5-8 GW1NSR-4C Package Mark

Note!

The first two lines in the Figures above are the "Part Number".

DS861-1.4.5E 89(89)

