

UNIVERSIDAD DE ANTIOQUIA

Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Cursos de Servicios para Ingeniería

Alumno:			Carné:
Asignatura: Álgebra lineal		Profesor: Holmes Chavarria	
Parcial # 4	Valor: 25 %	Fecha:	

Instrucciones: El examen tiene una duración de 1 hora y 50 minutos. No está permitido sacar ningún tipo de documento durante el examen. Realice los procedimientos de forma clara y ordenada.

1. (30%) En los siguientes ejercicios responda falso o verdadero y justifique brevemente.

Sea A una matriz cuadrada tal que el polinomio característico de A^3 es $p(\lambda)=-(\lambda-5)^2(8-\lambda)^3(27\lambda-1)^2(\lambda-3)$

- (a) El tamaño de A es 4×4 .
- (b) 2 es valor propio de A
- (c) Un valor propio de A^2 es 1/9.
- (d) A^3 es diagonalizable.
- (e) A^5 es invertible.
- (f) Un valor propio de A^6 es 27.

2.~(25%)Realice un cambio de variable para identificar la cónica con ecucación

$$x^2 + 6xy + 9y^2 + 2\sqrt{10}x = 0$$

Escriba la ecuación en forma estándar.

- 3. Una población tiene dos clases de edad, de un semestre de duración cada una. Cada hembra de la clase 1 produce 6.5 hembras al semestre y cada hembra de la clase 2 produce 7 hembras al semestre. La tasa de sobrevivencia de las hembras de la clase 1 es del 50%.
 - (a) Plantee un sistema de ecuaciones para la población en el primer semestre.
 - (b) Suponga que hay 10 hembras de la clase 1 y 12 hembras de la clase 2. Calcule la población al cabo de 6 años.
 - (c) Determine la distribuciónón de la población a lo largo del tiempo y encuentre el factor de crecimiento.

4. (10%) Encuentre una matriz de Jordan J y una matriz invertible C tal que $C^{-1}AC=J$ donde $A=\begin{bmatrix}5&1\\-1&3\end{bmatrix}$

5. (10%) Sea $A = \begin{bmatrix} 3 & 6 \\ 4 & 5 \end{bmatrix}$. Encuentre A^{5200} .