Learning to Search for Targets with Deep Reinforcement Learning

Oskar Lundin

Linköping University

June 8, 2022

Outline

Introduction

Theory

Background

Related Work

Method

Environments

Approach

Experiments

Experiment I: Search Performance

Experiment II: Scaling to Larger Search Spaces

Experiment III: Generalization From Limited Samples

Conclusion

Learned autonomous search for a set of targets in a visual environment with a camera.

► Camera views limited region of environment.

- ► Camera views limited region of environment.
- ► Moving camera changes visible region.

- Camera views limited region of environment.
- ► Moving camera changes visible region.
- Detect when targets are visible.

- Camera views limited region of environment.
- ► Moving camera changes visible region.
- Detect when targets are visible.
- ► Locate targets in minimum time.

- Camera views limited region of environment.
- ► Moving camera changes visible region.
- Detect when targets are visible.
- ► Locate targets in minimum time.
- ► Utilize visual cues to find targets quicker.

- Camera views limited region of environment.
- ► Moving camera changes visible region.
- Detect when targets are visible.
- ► Locate targets in minimum time.
- ▶ Utilize visual cues to find targets quicker.
- ▶ Learn control from a set of sample scenarios.

- ► Camera views limited region of environment.
- ► Moving camera changes visible region.
- Detect when targets are visible.
- ► Locate targets in minimum time.
- ▶ Utilize visual cues to find targets quicker.
- ► Learn control from a set of sample scenarios.
- ► Use deep reinforcement learning.

► Random or exhaustive search sufficient in small or random environments [1].

- ▶ Random or exhaustive search sufficient in small or random environments [1].
- ► Most real-world search tasks exhibit structure.

- Random or exhaustive search sufficient in small or random environments [1].
- ► Most real-world search tasks exhibit structure.
- ► Visual cues can be used to find targets quicker.

- Random or exhaustive search sufficient in small or random environments [1].
- ► Most real-world search tasks exhibit structure.
- ► Visual cues can be used to find targets quicker.
 - ▶ Books are in bookshelves, cars on roads...

- Random or exhaustive search sufficient in small or random environments [1].
- ► Most real-world search tasks exhibit structure.
- ▶ Visual cues can be used to find targets quicker.
 - ▶ Books are in bookshelves, cars on roads...
 - ► Targets spread out/close together...

- Random or exhaustive search sufficient in small or random environments [1].
- ► Most real-world search tasks exhibit structure.
- ▶ Visual cues can be used to find targets quicker.
 - ▶ Books are in bookshelves, cars on roads...
 - ► Targets spread out/close together...
- ▶ Patterns and cues may be subtle and difficult to pick up.

► Autonomous systems may reduce risk and cost.

- ► Autonomous systems may reduce risk and cost.
- ► Applications in search and rescue, surveillance, home assistance, etc.

- ► Autonomous systems may reduce risk and cost.
- ► Applications in search and rescue, surveillance, home assistance, etc.
- ► Handcrafted systems using domain knowledge are difficult to design.

- ► Autonomous systems may reduce risk and cost.
- ▶ Applications in search and rescue, surveillance, home assistance, etc.
- ► Handcrafted systems using domain knowledge are difficult to design.
- ► Subtle patterns and difficult planning decisions.

- ► Autonomous systems may reduce risk and cost.
- ► Applications in search and rescue, surveillance, home assistance, etc.
- ► Handcrafted systems using domain knowledge are difficult to design.
- ► Subtle patterns and difficult planning decisions.
- ► Learning system applicable as long as data is available.

► Prioritize regions with high probability of targets based on previous experience.

- Prioritize regions with high probability of targets based on previous experience.
- ▶ Learn correlations between scene appearance and target probability.

- Prioritize regions with high probability of targets based on previous experience.
- ► Learn correlations between scene appearance and target probability.
- ► Search exhaustively while avoiding searching the same region twice.

- Prioritize regions with high probability of targets based on previous experience.
- ► Learn correlations between scene appearance and target probability.
- ► Search exhaustively while avoiding searching the same region twice.
- ► Remember features of searched regions (avoid revisits, scene understanding).

- Prioritize regions with high probability of targets based on previous experience.
- ► Learn correlations between scene appearance and target probability.
- ► Search exhaustively while avoiding searching the same region twice.
- ► Remember features of searched regions (avoid revisits, scene understanding).
- ► Real-world tasks have limited number of training samples.

Research Questions

1. How can an agent that learns to intelligently search for targets be implemented with deep reinforcement learning?

Research Questions

- 1. How can an agent that learns to intelligently search for targets be implemented with deep reinforcement learning?
- 2. How does the learning agent compare to random walk, exhaustive search, and a human searcher with prior knowledge of the searched scenes?

Research Questions

- 1. How can an agent that learns to intelligently search for targets be implemented with deep reinforcement learning?
- 2. How does the learning agent compare to random walk, exhaustive search, and a human searcher with prior knowledge of the searched scenes?
- 3. How well does the learning agent generalize from a limited number of training samples to unseen in-distribution search scenarios?

Agent interacts with environment over discrete time steps. At each step $t = 0, 1, 2 \dots, T$:

 \blacktriangleright Environment is in state s_t that can not be observed by agent.

Agent interacts with environment over discrete time steps. At each step $t = 0, 1, 2 \dots, T$:

- \blacktriangleright Environment is in state s_t that can not be observed by agent.
- ightharpoonup Agent takes action a_t .

Agent interacts with environment over discrete time steps. At each step $t=0,1,2\ldots,T$:

- ightharpoonup Environment is in state s_t that can not be observed by agent.
- ► Agent takes action a_t.
- ▶ Perceives partial *observation* o_t of state.

Agent interacts with *environment* over discrete time steps. At each step $t = 0, 1, 2 \dots, T$:

- ightharpoonup Environment is in state s_t that can not be observed by agent.
- ► Agent takes action a_t.
- ► Perceives partial *observation* o_t of state.
- ightharpoonup Receives scalar reward r_t that indicates whether action is good or bad.

Agent interacts with *environment* over discrete time steps. At each step $t = 0, 1, 2 \dots, T$:

- ightharpoonup Environment is in state s_t that can not be observed by agent.
- ► Agent takes action a_t.
- Perceives partial observation ot of state.
- ightharpoonup Receives scalar reward r_t that indicates whether action is good or bad.
- ▶ New state s_{t+1} depends only on history of interactions.

Agent interacts with *environment* over discrete time steps. At each step $t = 0, 1, 2 \dots, T$:

- \blacktriangleright Environment is in state s_t that can not be observed by agent.
- ► Agent takes action at.
- Perceives partial observation ot of state.
- ightharpoonup Receives scalar reward r_t that indicates whether action is good or bad.
- ▶ New state s_{t+1} depends only on history of interactions.
- lacktriangle State not available to agent, must maintain internal state ightarrow memory.

Reinforcement Learning (RL)

Paradigm for learning from interactions how to achieve a goal.

Policy $\pi(a|s)$ is a mapping from states to action probabilities.

Deep RL: Approximate π with deep neural networks. Used for complex tasks like Atari [2], Go [3], StarCraft II [4], etc.

Reinforcement Learning (RL)

Paradigm for learning from interactions how to achieve a goal.

- ▶ Policy $\pi(a|s)$ is a mapping from states to action probabilities.
- ► Find policy that maximizes cumulative reward $\mathbb{E}\left[\sum_{k=0}^{T} \gamma^{k-t-1} r_k\right]$.

Deep RL: Approximate π with deep neural networks. Used for complex tasks like Atari [2], Go [3], StarCraft II [4], etc.

Reinforcement Learning (RL)

Paradigm for learning from interactions how to achieve a goal.

- ightharpoonup Policy $\pi(a|s)$ is a mapping from states to action probabilities.
- ► Find policy that maximizes cumulative reward $\mathbb{E}\left[\sum_{k=0}^{T} \gamma^{k-t-1} r_k\right]$.
- Several algorithms with different pros and cons.

Deep RL: Approximate π with deep neural networks. Used for complex tasks like Atari [2], Go [3], StarCraft II [4], etc.

Deep RL for similar tasks:

Visual attention:

Deep RL for similar tasks:

- Visual attention:
 - Sequential focus points for foveated vision [5].

Deep RL for similar tasks:

- Visual attention:
 - Sequential focus points for foveated vision [5].
- Visual navigation:

Deep RL for similar tasks:

- Visual attention:
 - Sequential focus points for foveated vision [5].
- Visual navigation:
 - ► Solve random mazes [6].

Deep RL for similar tasks:

- Visual attention:
 - ► Sequential focus points for foveated vision [5].
- ► Visual navigation:
 - Solve random mazes [6].
 - ► Find target object in indoor scenes [7].

Deep RL for similar tasks:

- Visual attention:
 - Sequential focus points for foveated vision [5].
- ► Visual navigation:
 - Solve random mazes [6].
 - ► Find target object in indoor scenes [7].
- ▶ Object detection:

Deep RL for similar tasks:

- Visual attention:
 - Sequential focus points for foveated vision [5].
- ► Visual navigation:
 - Solve random mazes [6].
 - ► Find target object in indoor scenes [7].
- Object detection:
 - ► Region proposals for object localization [8].

Deep RL for similar tasks:

- Visual attention:
 - Sequential focus points for foveated vision [5].
- ► Visual navigation:
 - ► Solve random mazes [6].
 - ► Find target object in indoor scenes [7].
- Object detection:
 - ► Region proposals for object localization [8].
 - ► Contextual reasoning over spatial layout in scenes [9].

Deep RL for similar tasks:

- ▶ Visual attention:
 - ► Sequential focus points for foveated vision [5].
- ► Visual navigation:
 - ► Solve random mazes [6].
 - ► Find target object in indoor scenes [7].
- ► Object detection:
 - ► Region proposals for object localization [8].
 - ► Contextual reasoning over spatial layout in scenes [9].
 - Anatomical landmark detection in medical images [10].

▶ Agent searches scene $S \subset \mathbb{R}^d$.

- ▶ Agent searches scene $S \subset \mathbb{R}^d$.
- ▶ Scene contains set of targets $\{t_0, \ldots t_n\}$, $t_i \in S$.

- ▶ Agent searches scene $S \subset \mathbb{R}^d$.
- ▶ Scene contains set of targets $\{t_0, \ldots t_n\}$, $t_i \in S$.
- ▶ Agent perceives view $V \subset S$.

- ▶ Agent searches scene $S \subset \mathbb{R}^d$.
- ▶ Scene contains set of targets $\{t_0, \ldots t_n\}$, $t_i \in S$.
- ▶ Agent perceives view $V \subset S$.
- ▶ View can be transformed to new subspace.

- ▶ Agent searches scene $S \subset \mathbb{R}^d$.
- ▶ Scene contains set of targets $\{t_0, ... t_n\}$, $t_i \in S$.
- ▶ Agent perceives view $V \subset S$.
- ▶ View can be transformed to new subspace.
- ▶ Indicate when targets are visible, i.e. $V \cup T \neq \emptyset$.

- ▶ Agent searches scene $S \subset \mathbb{R}^d$.
- ▶ Scene contains set of targets $\{t_0, ... t_n\}$, $t_i \in S$.
- ▶ Agent perceives view $V \subset S$.
- ► View can be transformed to new subspace.
- ▶ Indicate when targets are visible, i.e. $V \cup T \neq \emptyset$.
- ► Maximize the probability of finding all targets while minimizing cost in time (NP-complete [11]).

► Three simulated environments used for experiments.

- ► Three simulated environments used for experiments.
- ▶ Search space discretized into $H \times W$ camera positions.

- ► Three simulated environments used for experiments.
- ightharpoonup Search space discretized into $H \times W$ camera positions.
- \blacktriangleright Each camera position has a unique view $V \subset S$.

- ► Three simulated environments used for experiments.
- ▶ Search space discretized into $H \times W$ camera positions.
- ▶ Each camera position has a unique view $V \subset S$.
- ► Three targets in all scenes.

- ► Three simulated environments used for experiments.
- ▶ Search space discretized into $H \times W$ camera positions.
- ▶ Each camera position has a unique view $V \subset S$.
- ► Three targets in all scenes.
- ► Target probability correlated with scene appearance.

- ► Three simulated environments used for experiments.
- ▶ Search space discretized into $H \times W$ camera positions.
- ▶ Each camera position has a unique view $V \subset S$.
- ► Three targets in all scenes.
- ► Target probability correlated with scene appearance.
- ▶ Possible to do better than exhaustive search on average.

- ► Three simulated environments used for experiments.
- ▶ Search space discretized into $H \times W$ camera positions.
- ▶ Each camera position has a unique view $V \subset S$.
- ► Three targets in all scenes.
- ► Target probability correlated with scene appearance.
- ► Possible to do better than exhaustive search on average.
- ► Scenes procedurally generated:

- ► Three simulated environments used for experiments.
- ▶ Search space discretized into $H \times W$ camera positions.
- ▶ Each camera position has a unique view $V \subset S$.
- ► Three targets in all scenes.
- ► Target probability correlated with scene appearance.
- Possible to do better than exhaustive search on average.
- Scenes procedurally generated:
 - Pseudorandom seed determines scene appearance and target positions.

- ► Three simulated environments used for experiments.
- ightharpoonup Search space discretized into $H \times W$ camera positions.
- ▶ Each camera position has a unique view $V \subset S$.
- ► Three targets in all scenes.
- ► Target probability correlated with scene appearance.
- ▶ Possible to do better than exhaustive search on average.
- ► Scenes procedurally generated:
 - ▶ Pseudorandom seed determines scene appearance and target positions.
 - ► Gives control over difficulty to solve.

- ► Three simulated environments used for experiments.
- ▶ Search space discretized into $H \times W$ camera positions.
- ▶ Each camera position has a unique view $V \subset S$.
- ► Three targets in all scenes.
- ► Target probability correlated with scene appearance.
- ▶ Possible to do better than exhaustive search on average.
- ► Scenes procedurally generated:
 - ▶ Pseudorandom seed determines scene appearance and target positions.
 - Gives control over difficulty to solve.
 - Can vary training and test set sizes by limiting seed pool.

At each time step t, the agent:

▶ Receives observation $o_t = \langle x_t, p_t \rangle$, where

- ightharpoonup Receives observation $o_t = \langle x_t, p_t \rangle$, where
 - $ightharpoonup x_t \in \mathbb{R}^{3 \times 64 \times 64}$ is an RGB image of current view, and

- ightharpoonup Receives observation $o_t = \langle x_t, p_t \rangle$, where
 - $ightharpoonup x_t \in \mathbb{R}^{3 \times 64 \times 64}$ is an RGB image of current view, and
 - ▶ $p_t \in \{0, ..., H-1\} \times \{0, ..., W-1\}$ is the position of the camera.

- ightharpoonup Receives observation $o_t = \langle x_t, p_t \rangle$, where
 - $ightharpoonup x_t \in \mathbb{R}^{3 \times 64 \times 64}$ is an RGB image of current view, and
 - ▶ $p_t \in \{0, ..., H-1\} \times \{0, ..., W-1\}$ is the position of the camera.
- ▶ Takes action $a_t \in \{INDICATE, UP, DOWN, LEFT, RIGHT\}$, where

- ightharpoonup Receives observation $o_t = \langle x_t, p_t \rangle$, where
 - $ightharpoonup x_t \in \mathbb{R}^{3 \times 64 \times 64}$ is an RGB image of current view, and
 - ▶ $p_t \in \{0, ..., H-1\} \times \{0, ..., W-1\}$ is the position of the camera.
- ▶ Takes action $a_t \in \{INDICATE, UP, DOWN, LEFT, RIGHT\}$, where
 - ► INDICATE indicates that a target is in view, and

- ightharpoonup Receives observation $o_t = \langle x_t, p_t \rangle$, where
 - $ightharpoonup x_t \in \mathbb{R}^{3 \times 64 \times 64}$ is an RGB image of current view, and
 - ▶ $p_t \in \{0, ..., H-1\} \times \{0, ..., W-1\}$ is the position of the camera.
- ▶ Takes action $a_t \in \{INDICATE, UP, DOWN, LEFT, RIGHT\}$, where
 - ► INDICATE indicates that a target is in view, and
 - UP. DOWN, LEFT, RIGHT move the view in each cardinal direction.

- ightharpoonup Receives observation $o_t = \langle x_t, p_t \rangle$, where
 - $ightharpoonup x_t \in \mathbb{R}^{3 \times 64 \times 64}$ is an RGB image of current view, and
 - ▶ $p_t \in \{0, ..., H-1\} \times \{0, ..., W-1\}$ is the position of the camera.
- ▶ Takes action $a_t \in \{INDICATE, UP, DOWN, LEFT, RIGHT\}$, where
 - ► INDICATE indicates that a target is in view, and
 - UP. DOWN. LEFT. RIGHT move the view in each cardinal direction.
- Receives reward $r_t = h 0.01 + 0.005d + 0.005e$ where

- ightharpoonup Receives observation $o_t = \langle x_t, p_t \rangle$, where
 - $ightharpoonup x_t \in \mathbb{R}^{3 \times 64 \times 64}$ is an RGB image of current view, and
 - ▶ $p_t \in \{0, ..., H-1\} \times \{0, ..., W-1\}$ is the position of the camera.
- ▶ Takes action $a_t \in \{INDICATE, UP, DOWN, LEFT, RIGHT\}$, where
 - ► INDICATE indicates that a target is in view, and
 - ▶ UP, DOWN, LEFT, RIGHT move the view in each cardinal direction.
- ▶ Receives reward $r_t = h 0.01 + 0.005d + 0.005e$ where
 - ▶ $h = |T \cap V|$ if $a_t = INDICATE$, else 0.

- ▶ Receives observation $o_t = \langle x_t, p_t \rangle$, where
 - $ightharpoonup x_t \in \mathbb{R}^{3 \times 64 \times 64}$ is an RGB image of current view, and
 - ▶ $p_t \in \{0, ..., H-1\} \times \{0, ..., W-1\}$ is the position of the camera.
- ▶ Takes action $a_t \in \{INDICATE, UP, DOWN, LEFT, RIGHT\}$, where
 - ► INDICATE indicates that a target is in view, and
 - ▶ UP, DOWN, LEFT, RIGHT move the view in each cardinal direction.
- ▶ Receives reward $r_t = h 0.01 + 0.005d + 0.005e$ where
 - ▶ $h = |T \cap V|$ if $a_t = INDICATE$, else 0.
 - ightharpoonup d=1 if a_t moves closer to nearest target, else 0.

- ightharpoonup Receives observation $o_t = \langle x_t, p_t \rangle$, where
 - \triangleright $x_t \in \mathbb{R}^{3 \times 64 \times 64}$ is an RGB image of current view, and
 - $ightharpoonup p_t \in \{0, \dots, H-1\} \times \{0, \dots, W-1\}$ is the position of the camera.
- ▶ Takes action $a_t \in \{INDICATE, UP, DOWN, LEFT, RIGHT\}$, where
 - ► INDICATE indicates that a target is in view, and
 - ▶ UP, DOWN, LEFT, RIGHT move the view in each cardinal direction.
- Receives reward $r_t = h 0.01 + 0.005d + 0.005e$ where
 - ▶ $h = |T \cap V|$ if $a_t = INDICATE$, else 0.
 - ightharpoonup d = 1 if a_t moves closer to nearest target, else 0.
 - ightharpoonup e = 1 if a_t moves to new position, else 0.

ightharpoonup 2D scene, 10×10 search space.

- ightharpoonup 2D scene, 10×10 search space.
- ► Three gaussian kernels with random center.

- ▶ 2D scene, 10×10 search space.
- ► Three gaussian kernels with random center.
- Sum of kernels determine blue color intensity and probability of targets.

- ▶ 2D scene, 10×10 search space.
- ► Three gaussian kernels with random center.
- Sum of kernels determine blue color intensity and probability of targets.
- Clear correlation between appearance and desired behavior.

- ▶ 2D scene, 10×10 search space.
- ► Three gaussian kernels with random center.
- Sum of kernels determine blue color intensity and probability of targets.
- Clear correlation between appearance and desired behavior.
- Agent should prioritize blue regions.

- ▶ 2D scene, 10×10 search space.
- ► Three gaussian kernels with random center.
- Sum of kernels determine blue color intensity and probability of targets.
- Clear correlation between appearance and desired behavior.
- Agent should prioritize blue regions.

► Similar to previous environment.

- ► Similar to previous environment.
- ► Terrain seen from above.

- ► Similar to previous environment.
- ► Terrain seen from above.
- ► Gradient noise used to generate height map.

- ► Similar to previous environment.
- ► Terrain seen from above.
- Gradient noise used to generate height map.
- ► Color determined by height.

- ► Similar to previous environment.
- ► Terrain seen from above.
- Gradient noise used to generate height map.
- ► Color determined by height.
- ► Targets placed with uniform probability across coastlines.

- Similar to previous environment.
- ► Terrain seen from above.
- Gradient noise used to generate height map.
- ► Color determined by height.
- Targets placed with uniform probability across coastlines.
- ► More realistic, higher variance.

- ► Similar to previous environment.
- ► Terrain seen from above.
- ► Gradient noise used to generate height map.
- ► Color determined by height.
- ► Targets placed with uniform probability across coastlines.
- ► More realistic, higher variance.
- Analogous to search and rescue with UAV.

- ► Similar to previous environment.
- ► Terrain seen from above.
- ► Gradient noise used to generate height map.
- ► Color determined by height.
- ► Targets placed with uniform probability across coastlines.
- ► More realistic, higher variance.
- ► Analogous to search and rescue with UAV.

➤ 3D scene viewed from a perspective projection camera.

- 3D scene viewed from a perspective projection camera.
- ► Height map from terrain environment turned into mesh, same appearance and target probability as before.

- 3D scene viewed from a perspective projection camera.
- Height map from terrain environment turned into mesh, same appearance and target probability as before.
- ► Camera location fixed at center of scene.

- 3D scene viewed from a perspective projection camera.
- Height map from terrain environment turned into mesh, same appearance and target probability as before.
- Camera location fixed at center of scene.
- ► Moving actions control pan and tilt (pitch and yaw).

- 3D scene viewed from a perspective projection camera.
- Height map from terrain environment turned into mesh, same appearance and target probability as before.
- Camera location fixed at center of scene.
- ► Moving actions control pan and tilt (pitch and yaw).
- ► Visually complex, difficult to interpret.

- 3D scene viewed from a perspective projection camera.
- Height map from terrain environment turned into mesh, same appearance and target probability as before.
- Camera location fixed at center of scene.
- Moving actions control pan and tilt (pitch and yaw).
- ► Visually complex, difficult to interpret.

► Function approximation with deep neural networks:

- ► Function approximation with deep neural networks:
 - ▶ Policy $\pi(a|s,\theta)$.

- ► Function approximation with deep neural networks:
 - ▶ Policy $\pi(a|s,\theta)$.
 - ▶ Value $v_{\pi}(s, \theta)$ (predicts future reward).

- ► Function approximation with deep neural networks:
 - ▶ Policy $\pi(a|s,\theta)$.
 - ▶ Value $v_{\pi}(s, \theta)$ (predicts future reward).
- ► Training procedure:

- ► Function approximation with deep neural networks:
 - ▶ Policy $\pi(a|s,\theta)$.
 - ▶ Value $v_{\pi}(s, \theta)$ (predicts future reward).
- ► Training procedure:
 - 1. Collect interactions with environment.

- ► Function approximation with deep neural networks:
 - ▶ Policy $\pi(a|s,\theta)$.
 - ▶ Value $v_{\pi}(s, \theta)$ (predicts future reward).
- ► Training procedure:
 - 1. Collect interactions with environment.
 - 2. Compute loss $\mathcal{L}(\theta)$.

- ► Function approximation with deep neural networks:
 - ▶ Policy $\pi(a|s,\theta)$.
 - ▶ Value $v_{\pi}(s, \theta)$ (predicts future reward).
- ► Training procedure:
 - 1. Collect interactions with environment.
 - 2. Compute loss $\mathcal{L}(\theta)$.
 - 3. Optimize θ wrt. loss.

- ► Function approximation with deep neural networks:
 - ▶ Policy $\pi(a|s,\theta)$.
 - ▶ Value $v_{\pi}(s, \theta)$ (predicts future reward).
- ► Training procedure:
 - 1. Collect interactions with environment.
 - 2. Compute loss $\mathcal{L}(\theta)$.
 - 3. Optimize θ wrt. loss.
 - 4. Optimize \mathcal{L} wrt θ .

- ► Function approximation with deep neural networks:
 - ▶ Policy $\pi(a|s,\theta)$.
 - ▶ Value $v_{\pi}(s, \theta)$ (predicts future reward).
- ► Training procedure:
 - 1. Collect interactions with environment.
 - 2. Compute loss $\mathcal{L}(\theta)$.
 - 3. Optimize θ wrt. loss.
 - 4. Optimize \mathcal{L} wrt θ .
 - 5. Repeat...

- ► Function approximation with deep neural networks:
 - ▶ Policy $\pi(a|s,\theta)$.
 - ▶ Value $v_{\pi}(s, \theta)$ (predicts future reward).
- ► Training procedure:
 - 1. Collect interactions with environment.
 - 2. Compute loss $\mathcal{L}(\theta)$.
 - 3. Optimize θ wrt. loss.
 - 4. Optimize \mathcal{L} wrt θ .
 - 5. Repeat...
- ▶ Loss function from proximal policy optimization [12].

Architecture

► Recurrent step retains state (memory).

Architecture

- Recurrent step retains state (memory).
- ► Agent should remember visual features and associate them with their spatial location.

Architecture

- Recurrent step retains state (memory).
- ► Agent should remember visual features and associate them with their spatial location.
- ► Two memory variants...

1. Temporal memory (long short-term memory [13]):

- 1. Temporal memory (long short-term memory [13]):
 - ► Previously applied to POMDPs [14, 15, 6, 16].

- 1. Temporal memory (long short-term memory [13]):
 - ► Previously applied to POMDPs [14, 15, 6, 16].
 - ► May struggle with remembering over many time steps.

- 1. Temporal memory (long short-term memory [13]):
 - ▶ Previously applied to POMDPs [14, 15, 6, 16].
 - ► May struggle with remembering over many time steps.
 - ▶ Important for exhaustive search and scene understanding.

- 1. Temporal memory (long short-term memory [13]):
 - ▶ Previously applied to POMDPs [14, 15, 6, 16].
 - May struggle with remembering over many time steps.
 - ▶ Important for exhaustive search and scene understanding.
- 2. Spatial memory (inspired by [17]):

- 1. Temporal memory (long short-term memory [13]):
 - ▶ Previously applied to POMDPs [14, 15, 6, 16].
 - ► May struggle with remembering over many time steps.
 - ► Important for exhaustive search and scene understanding.
- 2. Spatial memory (inspired by [17]):
 - ► Map with one slot per camera position.

- 1. Temporal memory (long short-term memory [13]):
 - ▶ Previously applied to POMDPs [14, 15, 6, 16].
 - May struggle with remembering over many time steps.
 - ► Important for exhaustive search and scene understanding.
- 2. Spatial memory (inspired by [17]):
 - ► Map with one slot per camera position.
 - ► Write image representation to current position memory.

- 1. Temporal memory (long short-term memory [13]):
 - ▶ Previously applied to POMDPs [14, 15, 6, 16].
 - ► May struggle with remembering over many time steps.
 - ► Important for exhaustive search and scene understanding.
- 2. Spatial memory (inspired by [17]):
 - ► Map with one slot per camera position.
 - Write image representation to current position memory.
 - Read whole memory with convolutional layers.

1. Search Performance

- 1. Search Performance
- 2. Scaling to Larger Search Spaces

- 1. Search Performance
- 2. Scaling to Larger Search Spaces
- 3. Generalization from Limited Samples

- 1. Search Performance
- 2. Scaling to Larger Search Spaces
- 3. Generalization from Limited Samples
- ► Train for 25M time steps.

- 1. Search Performance
- 2. Scaling to Larger Search Spaces
- 3. Generalization from Limited Samples
- ► Train for 25M time steps.
- ► Results reported across 3 runs with different seeds.

- 1. Search Performance
- 2. Scaling to Larger Search Spaces
- 3. Generalization from Limited Samples
- ► Train for 25M time steps.
- ▶ Results reported across 3 runs with different seeds.
- ► Separate training and test sets.

- 1. Search Performance
- 2. Scaling to Larger Search Spaces
- 3. Generalization from Limited Samples
- ► Train for 25M time steps.
- ▶ Results reported across 3 runs with different seeds.
- ► Separate training and test sets.
- ► Same hyperparameters in all runs.

► OpenAl Gym environment interface.

- ► OpenAl Gym environment interface.
- ► Custom PPO implementation.

- ► OpenAl Gym environment interface.
- ► Custom PPO implementation.
- ▶ PyTorch for models and automatic differentiation.

- ► OpenAl Gym environment interface.
- ► Custom PPO implementation.
- ▶ PyTorch for models and automatic differentiation.
- ► Intel Core i9-10900X CPU.

- ► OpenAl Gym environment interface.
- ► Custom PPO implementation.
- ▶ PyTorch for models and automatic differentiation.
- ► Intel Core i9-10900X CPU.
- ► NVIDIA GeForce RTX 2080 Ti GPU.

► Compare to baselines.

- ► Compare to baselines.
- ► Simple reference behaviors.

- Compare to baselines.
- ► Simple reference behaviors.
- Use held out samples as test set.

- Compare to baselines.
- ► Simple reference behaviors.
- ► Use held out samples as test set.
- Average number of steps on test set.

- Compare to baselines.
- Simple reference behaviors.
- Use held out samples as test set.
- Average number of steps on test set.
- ► Success weighted by inverse path length (SPL) metric [18].

- Compare to baselines.
- Simple reference behaviors.
- Use held out samples as test set.
- Average number of steps on test set.
- ► Success weighted by inverse path length (SPL) metric [18].

Definition

SPL with N as the number of test samples, S_i indicating success, p_i as the number of steps and l_i as the shortest path length:

$$SPL = \frac{1}{N} \sum_{i=1}^{N} S_i \frac{I_i}{\max(p_i, I_i)}$$

► Simple handcrafted policies.

- ► Simple handcrafted policies.
- ► Give a sense of the performance achieved by learning agents.

- ► Simple handcrafted policies.
- ► Give a sense of the performance achieved by learning agents.
- ► All indicate automatically when target visible.

- Simple handcrafted policies.
- ► Give a sense of the performance achieved by learning agents.
- ► All indicate automatically when target visible.
- ► Random: randomly samples actions.

- Simple handcrafted policies.
- ► Give a sense of the performance achieved by learning agents.
- ► All indicate automatically when target visible.
- ► Random: randomly samples actions.
- ► Greedy: greedily selects actions lead to unvisited positions (random if none).

- ► Simple handcrafted policies.
- ▶ Give a sense of the performance achieved by learning agents.
- ► All indicate automatically when target visible.
- ► Random: randomly samples actions.
- Greedy: greedily selects actions lead to unvisited positions (random if none).
- Exhaustive: exhaustively covers search space with minimal revisits.

- Simple handcrafted policies.
- ▶ Give a sense of the performance achieved by learning agents.
- ► All indicate automatically when target visible.
- Random: randomly samples actions.
- Greedy: greedily selects actions lead to unvisited positions (random if none).
- Exhaustive: exhaustively covers search space with minimal revisits.
- Human: human searcher with prior knowledge of environment characteristics.

Baselines

- Simple handcrafted policies.
- ► Give a sense of the performance achieved by learning agents.
- ► All indicate automatically when target visible.
- ► Random: randomly samples actions.
- Greedy: greedily selects actions lead to unvisited positions (random if none).
- Exhaustive: exhaustively covers search space with minimal revisits.
- ► Human: human searcher with prior knowledge of environment characteristics.
- ► Handcrafted (gaussian environment): prioritize actions that lead to higher blue intensity.

Agent	SPL	Success	Length
random	0.06 ± 0.01	0.92 ± 0.06	369.07 ± 24.93
greedy	0.17 ± 0.00	1.00 ± 0.00	147.12 ± 2.38
exhaustive	0.21 ± 0.00	1.00 ± 0.00	83.37 ± 2.88
handcrafted	0.33 ± 0.00	1.00 ± 0.00	65.20 ± 1.41
human	0.23 ± 0.03	1.00 ± 0.00	80.97 ± 13.49
temporal	0.24 ± 0.03	0.99 ± 0.01	101.25 ± 13.32
spatial	0.29 ± 0.02	0.99 ± 0.01	72.16 ± 5.97

Environment sample

Environment sample

Random baseline

Environment sample

Environment sample

Greedy baseline

Experiment I: Search Performance

Environment sample

Environment sample

Exhaustive baseline

Experiment I: Search Performance

Learning to Search for Targets

Environment sample

Handcrafted baseline

Environment sample

Environment sample

Temporal memory

Experiment I: Search Performance

Learning to Search for Targets

Environment sample

Environment sample

Spatial memory

PCA decomposition of spatial memory after episode.

Terrain Environment

Agent	SPL	Success	Length
random	0.06 ± 0.01	0.89 ± 0.04	366.05 ± 26.96
greedy	0.17 ± 0.01	1.00 ± 0.00	141.01 ± 2.31
exhaustive	0.22 ± 0.00	1.00 ± 0.00	84.11 ± 0.84
human	0.26 ± 0.02	1.00 ± 0.00	$\textbf{76.73} \pm \textbf{5.33}$
temporal spatial	$0.25 \pm 0.02 \\ 0.27 \pm 0.01$	$1.00 \pm 0.01 \\ 1.00 \pm 0.00$	$103.76 \pm 11.69 \\ 79.60 \pm 6.88$

video 1, video 2, video 3 (spatial)

Camera Environment

Agent	SPL	Success	Length
random	0.04 ± 0.00	0.62 ± 0.03	545.09 ± 56.25
greedy	0.12 ± 0.01	0.97 ± 0.01	255.60 ± 10.44
exhaustive	0.37 ± 0.00	1.00 ± 0.00	67.03 ± 0.00
human	0.68 ± 0.08	1.00 ± 0.00	38.10 ± 5.72
temporal	0.70 ± 0.02	1.00 ± 0.00	42.36 ± 2.05
spatial	0.66 ± 0.03	1.00 ± 0.00	42.90 ± 1.73

video 1, video 2, video 3 (temporal)

► Larger search spaces take longer to train:

- ► Larger search spaces take longer to train:
 - ► More states to explore and exploit.

- Larger search spaces take longer to train:
 - ► More states to explore and exploit.
 - ► Stronger demands on memory (remember searched positions, scene understanding).

- Larger search spaces take longer to train:
 - ► More states to explore and exploit.
 - Stronger demands on memory (remember searched positions, scene understanding).
- linvestigate impact by comparing agents on 10×10 , 15×15 , and 20×20 versions of gaussian environment.

► Limit number of scene samples seen during training to 500, 1 000, 5 000. 10 000.

- ► Limit number of scene samples seen during training to 500, 1 000, 5 000, 10 000.
- ► Test on held out scenes from full distribution.

- ► Limit number of scene samples seen during training to 500, 1 000, 5 000, 10 000.
- ► Test on held out scenes from full distribution.
- ► Use terrain environment, high appearance variance and somewhat realistic.

- ► Limit number of scene samples seen during training to 500, 1 000, 5 000, 10 000.
- ▶ Test on held out scenes from full distribution.
- ► Use terrain environment, high appearance variance and somewhat realistic.
- ► Fix seed pool used to generate scenes seen during training.

- ► Limit number of scene samples seen during training to 500, 1 000, 5 000, 10 000.
- ► Test on held out scenes from full distribution.
- ► Use terrain environment, high appearance variance and somewhat realistic.
- ► Fix seed pool used to generate scenes seen during training.
- ► Train agents until convergence (or for a fixed number of time steps).

► Proposed a method for solving visual search with reinforcement learning.

- Proposed a method for solving visual search with reinforcement learning.
- ▶ Three environments for evaluating visual search agents.

- Proposed a method for solving visual search with reinforcement learning.
- ► Three environments for evaluating visual search agents.
- ► Compared two neural network architectures with different strengths.

- Proposed a method for solving visual search with reinforcement learning.
- Three environments for evaluating visual search agents.
- ► Compared two neural network architectures with different strengths.
- ► Specialized architectures can provide better performance and generalization.

References I

[1] K. Nakayama and P. Martini, "Situating visual search," vol. 51, no. 13, pp. 1526–1537.

References II

- [4] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou, M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard, D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Wang, T. Pfaff, Y. Wu, R. Ring, D. Yogatama, D. Wünsch, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps, and D. Silver, "Grandmaster level in StarCraft II using multi-agent reinforcement learning," vol. 575, no. 7782, pp. 350–354. Number: 7782 Publisher: Nature Publishing Group.
- [5] V. Mnih, N. Heess, A. Graves, and k. kavukcuoglu, "Recurrent models of visual attention," in *Advances in Neural Information Processing Systems*, vol. 27, Curran Associates, Inc.
- [6] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, D. Kumaran, and R. Hadsell, "Learning to navigate in complex environments,"
- [7] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi, "Target-driven visual navigation in indoor scenes using deep reinforcement learning," in 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3357–3364. 474 citations (Crossref) [2022-05-19].
- [8] J. C. Caicedo and S. Lazebnik, "Active object localization with deep reinforcement learning,"

References III

- [9] X. Chen and A. Gupta, "Spatial memory for context reasoning in object detection," in 2017 IEEE International Conference on Computer Vision (ICCV), pp. 4106–4116, IEEE.
- [10] F.-C. Ghesu, B. Georgescu, Y. Zheng, S. Grbic, A. Maier, J. Hornegger, and D. Comaniciu, "Multi-scale deep reinforcement learning for real-time 3d-landmark detection in CT scans," vol. 41, no. 1, pp. 176–189.
- [11] A. Andreopoulos and J. K. Tsotsos, "A theory of active object localization," in 2009 IEEE 12th International Conference on Computer Vision, pp. 903–910. 15 citations (Crossref) [2022-05-19] ISSN: 2380-7504.
- [12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, "Proximal policy optimization algorithms,"
- [13] S. Hochreiter and J. Schmidhuber, "Long short-term memory," vol. 9, no. 8, pp. 1735–1780.
 Conference Name: Neural Computation.
- [14] M. Hausknecht and P. Stone, "Deep recurrent q-learning for partially observable MDPs,"
- [15] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, "Asynchronous methods for deep reinforcement learning,"

References IV

- [16] S. Gupta, V. Tolani, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, "Cognitive mapping and planning for visual navigation,"
- [17] E. Parisotto and R. Salakhutdinov, "Neural map: Structured memory for deep reinforcement learning,"
- [18] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta, V. Koltun, J. Kosecka, J. Malik, R. Mottaghi, M. Savva, and A. R. Zamir, "On evaluation of embodied navigation agents,"