CLAIMS

A compound of formula (I)

wherein

- ---- represents a single or a double bond;
- R represents a radical selected from:

$$(R_1)p$$
 $(R_1)p$ $(R_1)p$ and $(R_1)p$ and $(R_1)p$

in which R_1 is halogen, cyano, C_{1-4} alkyl, C_{1-4} alkoxy, trifluoromethyl or trifluoromethoxy and p is zero or an integer from 1 to 3;

- R₂ represents hydrogen or C₁₋₄ alkyl;
- R₃ represents hydrogen, hydroxy or C₁₋₄ alkyl;
- R₄ represents hydrogen or R₄ together with R₃ represents =0 or =CH2;
- R₅ represents phenyl, naphthyl, a 9 to 10 membered fused bicyclic heterocyclic group or a 5 or 6 membered heteroaryl group, wherein said groups are optionally substituted by 1 to 3 groups independently selected from trifluoromethyl, C₁₋₄ alkyl, hydroxy, cyano, C₁₋₄ alkoxy, trifluoromethoxy, halogen or S(O)qC₁₋₄ alkyl;
- R₆ and R₇ independently represent hydrogen, cyano, C₁₋₄ alkyl;
- R₈ is (CH₂)rR₁₀;
- R₉ represents hydrogen, halogen, C₃₋₇ cycloalkyl, hydroxy, nitro, cyano or C₁₋₄ alkyl optionally substituted by one or two groups selected from halogen, cyano, hydroxy or C₁₋₄ alkoxy;
- R₁₀ represents hydrogen or C₃₋₇ cycloalkyl;
- n represents 1 or 2;
- q is 0, 1 or 2;
- r is 0 or an integer from 1 to 4;

or a pharmaceutically acceptable salt or a solvate thereof.

2. A compound as claimed in claim 1 wherein n is 2.

3. A compound as claimed in claim 1 or claim 2 wherein R represents:

in which R_1 is halogen, C_{1-4} alkyl, cyano, C_{1-4} alkoxy, trifluoromethyl or trifluoromethoxy p is zero or an integer from 1 to 3.

- 4. A compound as claimed in any claims 1 to 3 wherein R_5 is phenyl or naphthyl optionally substituted by one or two groups selected from trifluoromethyl, cyano, C_{1-4} alkyl or halogen.
- 5. A compound as claimed in any claims 1 to 4 wherein R_8 is $(CH_2)rR_{10}$ in which R_{10} is hydrogen or C_{3-7} cycloalkyl (e.g cyclopropyl) and r is 0 or 1.
- 6. A compound as claimed in any claims 1 to 5, wherein R₉ is hydrogen or C₁₋₄ alkyl optionally substituted by one or two groups selected from halogen.
- 7. A compound as claimed in any claims 1 to 6 wherein R is phenyl substituted by a fluorine, R_2 , R_9 and R_4 are hydrogen, R_3 is hydrogen, hydroxy or methyl, or together with R_4 forms =0 or =CH₂, R_6 and R_7 are independently hydrogen or methyl, R_5 is phenyl or naphthyl optionally substituted by one or two groups independently selected from cyano, methyl, chlorine, bromine or fluorine atom, R_8 is hydrogen, methyl or cyclopropylmethyl, and n is 2.
- 8 A compound as claimed in clam 1 which is
- 1-[(3,5-Dichlorophenyl)methyl]-3-[4-(4-fluorophenyl)-4-piperidinyl]-1,5-dihydro-2H-pyrrol-2-one;
- 1-[(3,5-Dichlorophenyl)methyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-1,5-dihydro-2*H*-pyrrol-2-one;
- 1-[1-(3,5-Dichlorophenyl)ethyl]-3-[4-(4-fluorophenyl)-4-piperidinyl]-1,5-dihydro-2H-pyrrol-2-one (Chain Enantiomer 1);
- 1-[(1S)-1-(3-Chloro-1-naphthalenyl)ethyl]-3-[4-(4-fluorophenyl)-4-piperidinyl]-1,5-dihydro-2*H*-pyrrol-2-one;
- 1-[(3-Chloro-1-naphthalenyl)methyl]-3-[4-(4-fluorophenyl)-4-piperidinyl]-1,5-dihydro-2*H*-pyrrol-2-one;
- 4-({3-[4-(4-Fluorophenyl)-4-piperidinyl]-2-oxo-2,5-dihydro-1*H*-pyrrol-1-yl}methyl)-2-naphthalenecarbonitrile;
- 1-[1-(3,5-Dichlorophenyl)ethyl]-3-[4-(4-fluorophenyl)-4-piperidinyl]-1,5-dihydro-2*H*-pyrrol-2-one (Chain Enantiomer 2);

1-[(1R)-1-(3-Chloro-1-naphthalenyl)ethyl]-3-[4-(4-fluorophenyl)-4-piperidinyl]-1,5-dihydro-2H-pyrrol-2-one;

- 1-[1-(3,5-Dichlorophenyl)ethyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-1,5-dihydro-2*H*-pyrrol-2-one (Chain Enantiomer 1);
- 1-[(1S)-1-(3-Chloro-1-naphthalenyl)ethyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-1,5-dihydro-2*H*-pyrrol-2-one;
- 1-[(3-Chloro-1-naphthalenyl)methyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-1,5-dihydro-2*H*-pyrrol-2-one;
- 1-[1-(3,5-Dichlorophenyl)ethyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-1,5-dihydro-2*H*-pyrrol-2-one (Chain Enantiomer 2);
- 1-[(1*R*)-1-(3-Chloro-1-naphthalenyl)ethyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-1,5-dihydro-2*H*-pyrrol-2-one;
- 4-({3-[4-(4-Fluorophenyl)-1-methyl-4-piperidinyl]-2-oxo-2,5-dihydro-1*H*-pyrrol-1-yl}methyl)-2-naphthalenecarbonitrile;
- 1-[1-(3,5-Dichlorophenyl)ethyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-1,5-dihydro-2*H*-pyrrol-2-one hydrochloride (Chain Enantiomer 1);
- 1-[1-(3,5-Dichlorophenyl)ethyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-1,5-dihydro-2*H*-pyrrol-2-one hydrochloride (Chain Enantiomer 1);
- 1-[(3-Chloro-1-naphthalenyl)methyl]-3-[1-(cyclopropylmethyl)-4-(4-fluorophenyl)-4-piperidinyl]-1,5-dihydro-2*H*-pyrrol-2-one;
- 1-[(3,5-Dichlorophenyl)methyl]-3-[4-(4-fluorophenyl)-4-piperidinyl]-2-pyrrolidinone 1-[(1S)-1-(3-Chloro-1-naphthalenyl)ethyl]-3-[4-(4-fluorophenyl)-4-piperidinyl]-2-pyrrolidinone (Diastereoisomer 1);
- 1-[(1*S*)-1-(3-Chloro-1-naphthalenyl)ethyl]-3-[4-(4-fluorophenyl)-4-piperidinyl]-2-pyrrolidinone;
- 1-[1-(3,5-Dichlorophenyl)ethyl]-3-[4-(4-fluorophenyl)-4-piperidinyl]-2-pyrrolidinone (Diastereoisomer 1 Chain Enantiomer 1);
- 1-[1-(3,5-Dichlorophenyl)ethyl]-3-[4-(4-fluorophenyl)-4-piperidinyl]-2-pyrrolidinone (Diastereoisomer 2 Chain Enantiomer 1);
- 1-[1-(3,5-Dichlorophenyl)ethyl]-3-[4-(4-fluorophenyl)-4-piperidinyl]-2-pyrrolidinone (Diastereoisomer 1 Chain Enantiomer 2);
- 1-[1-(3,5-Dichlorophenyl)ethyl]-3-[4-(4-fluorophenyl)-4-piperidinyl]-2-pyrrolidinone (Diastereoisomer 2 Chain Enantiomer 2);
- 4-({3-[4-(4-Fluorophenyl)-4-piperidinyl]-2-oxo-1-pyrrolidinyl}methyl)-2-naphthalenecarbonitrile (Enantiomer 1);
- 4-({3-[4-(4-Fluorophenyl)-4-piperidinyl]-2-oxo-1-pyrrolidinyl}methyl)-2-naphthalenecarbonitrile (Enantiomer 2);
- 7-Fluoro-4-({3-[4-(4-fluorophenyl)-4-piperidinyl]-2-oxo-1-pyrrolidinyl}methyl)-2-naphthalenecarbonitrile (Enantiomer 2);
- 6-Fluoro-4-({3-[4-(4-fluorophenyl)-4-piperidinyl]-2-oxo-1-pyrrolidinyl}methyl)-2-naphthalenecarbonitrile (Enantiomer 2);
- 7-Fluoro-4-({3-[4-(4-fluorophenyl)-4-piperidinyl]-2-oxo-1-pyrrolidinyl}methyl)-2-naphthalenecarbonitrile (Enantiomer 1);

• 6-Fluoro-4-({3-[4-(4-fluorophenyl)-4-piperidinyl]-2-oxo-1-pyrrolidinyl}methyl)-2-naphthalenecarbonitrile (Enantiomer 1);

- 1-[(3,5-Dichlorophenyl)methyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-2pyrrolidinone;
- 1-[1-(3-Chloro-1-naphthalenyl)ethyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-2-pyrrolidinone (Diastereoisomer 2 Chain Enantiomer 1);
- 1-[1-(3,5-Dichlorophenyl)ethyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-2-pyrrolidinone (Diastereoisomer 1 Chain Enantiomer 1);
- 1-[1-(3,5-Dichlorophenyl)ethyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-2-pyrrolidinone (Diastereoisomer 2 Chain Enantiomer 1);
- 1-[1-(3,5-Dichlorophenyl)ethyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-2-pyrrolidinone (Diastereoisomer 1 Chain Enantiomer 2);
- 1-[1-(3,5-Dichlorophenyl)ethyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-2-pyrrolidinone (Diastereoisomer 2 Chain Enantiomer 2);
- 1-[(3,5-Dichlorophenyl)methyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-2-pyrrolidinone (Enantiomer 1);
- 1-[(3,5-Dichlorophenyl)methyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-2-pyrrolidinone (Enantiomer 2);
- 4-({3-[4-(4-Fluorophenyl)-1-methyl-4-piperidinyl]-2-oxo-1-pyrrolidinyl}methyl)-2-naphthalenecarbonitrile (Enantiomer 1);
- 4-({3-[4-(4-Fluorophenyl)-1-methyl-4-piperidinyl]-2-oxo-1-pyrrolidinyl}methyl)-2-naphthalenecarbonitrile (Enantiomer 2);
- 7-Fluoro-4-({3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-2-oxo-1-pyrrolidinyl}methyl)-2-naphthalenecarbonitrile (Enantiomer 2);
- 6-Fluoro-4-({3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-2-oxo-1-pyrrolidinyl}methyl)-2-naphthalenecarbonitrile;
- 7-Fluoro-4-({3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-2-oxo-1-pyrrolidinyl}methyl)-2-naphthalenecarbonitrile (Enantiomer 1);
- 6-Fluoro-4-({3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-2-oxo-1-pyrrolidinyl}methyl)-2-naphthalenecarbonitrile (Enantiomer 1);
- 1-[(3,5-Dichlorophenyl)methyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-1H-pyrrole-2,5-dione;
- 1-[(3,5-Dichlorophenyl)methyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-5-methylidene-1,5-dihydro-2*H*-pyrrol-2-one;

or a phamaceutically acceptable salt (e.g hydrochloride, fumarate or citrate) or a solvate or amorphous or crystalline forms thereof.

- 9. A compound as claimed in claim 1 which is
- 1-[(3,5-Dichlorophenyl)methyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-1,5-dihydro-2H-pyrrol-2-one;
- 1-[(3,5-Dichlorophenyl)methyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-1,5-dihydro-2*H*-pyrrol-2-one hydrochloride;

• 1-[(3,5-Dichlorophenyl)methyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-1,5-dihydro-2*H*-pyrrol-2-one fumarate;

• 1-[(3,5-Dichlorophenyl)methyl]-3-[4-(4-fluorophenyl)-1-methyl-4-piperidinyl]-1,5-dihydro-2*H*-pyrrol-2-one citrate;

or crystalline forms thereof.

- 10. A process for the preparation of a compound as claimed in claim 1 which process comprises:
- a) cyclisation of a compound of formula (IV), wherein R_{11} is C_{1-4} alkyl (e.g methyl

or ethyl), R_3 is hydrogen or C_{1-4} alkyl, R_{8a} has the meaning defined in formula (I) or is a nitrogen protecting group and R, R_2 , R_5 , R_6 , R_7 , R_9 and n are as defined in claim 1, to yield a compound of formula(I), wherein — is a single bond R_3 represents hydrogen or C_{1-4} alkyl and R_4 represents hydrogen, or

b) cyclisation of a compound of formula (VI), wherein R_{8a} has the

$$R_8$$
a O R_6 R_7 R_9 R_9

meaning defined in formula (I) or is a nitrogen protecting group, R, R_2 , R_5 , R_6 , R_7 , R_9 and n are as defined in claim 1, to yield a compound of formula(I) wherein ----is a single bond, R_3 is hydroxy and R_4 is hydrogen, or

c) cyclisation of a compound of formula (VII), wherein R_{8a} has the meaning defined in formula (I) or is a nitrogen protecting group, L is a leaving group and R, R_2 , R_5 , R_6 , R_7 , R_9 and n are as defined in claim 1,

to yield a compound of formula(I) wherein ---- is a single bond and R₃ together with R₄ represents =0, or

d) reaction of a compound of formula(VIIA), wherein R, R₂, R₅, R₆,R₇,R₉ and n are as defined in claim 1,

with an aldehyde, $CH(O)(CH_2)_mR_{10}$ (VIIIa), wherein m is an integer from 0 to 3 and R_{10} is as defined in claim 1, to yield a compound of formula (I), wherein ---- is a single bond, R_8 represents $(CH_2)_rR_{10}$, wherein r is an integer from 1 to 4 and R_3 together with R_4 represents =O, or

e) cyclisation in the presence of an acid of a compound of formula (VIa), wherein

 R_3 is hydrogen, R_{8a} has the meaning defined in formula (I) or is a nitrogen protecting group, R, R_2 , R_5 , R_6 , R_7 , R_9 and R_8 are as defined in claim 1, to yield compounds of formula (I), wherein ---- is a double bond, R_8 represents hydrogen or C_{1-4} alkyl and R_4 is hydrogen; or

f) N-alkylation of a compound of formula (VIII), wherein R_{8a} has the meaning defined in formula (I) or is a nitrogen protecting group and R, R_2 , R_3 , R_4 , R_9 and n are as defined in claim 1, with a compound of formula (IX)

$$R_8a$$
 R_9
 R_9

in which L is a leaving group, R₅,R₆ and R₇ are as defined in claim 1, to yield a compound of formula(I) wherein ----is a single bond,

and thereafter optionally for any of steps (a) to (f):

- removing any protecting groups and/or
- converting a compound of formula (I) into another compound of formula (I) and/or
- separation of a compound of formula(I) or a derivative thereof into the enantiomers thereof
- forming a pharmaceutically acceptable salt.
- 11. A compound as claimed in any claims 1 to 9 for use in therapy.
- 12. The use of a compound as claimed in any claims 1 to 9 in the preparation of a medicament for use in the treatment of conditions mediated by tachykinins (including substance P and other neurokinins) and/or by selective inhibition of the serotonin reuptake transporter protein.
- 13. The use of a compound as claimed in any claims 1 to 9 in the treatment of conditions mediated by tachykinins (including substance P and other neurokinins) and/or by selective inhibition of the serotonin reuptake transporter protein.
- 14. A pharmaceutical composition comprising a compound as claimed in any claims 1 to 9 in admixture with one or more pharmaceutically acceptable carriers or excipients.
- 15. A method for the treatment of a mammal, including man, in particular in the treatment of conditions mediated by tachykinins, including substance P and other neurokinins and/or by selective inhibition of the serotonin reuptake transporter protein comprising administration of an effective amount of a compound of formula (I) as claimed in any claims 1 to 9.