Taller Anillos y Campos

Carlos Alirio Rico Acevedo

1. Muestre que $S \subset \mathcal{R}$ es un subanillo de \mathcal{R} si y sólo si son validos

 $0 \in S$.

 $(a-b) \in S$ para todo $a, b \in S$,

 $ab \in S$ para todo $a, b \in S$.

- 2. Muestre que la intersección arbitraria de subanillos de un anillo $\mathbb R$ es tambien un subanillo.
- 3. Muestre que si \mathcal{U} es la colección de todas las unidades de un anillo \mathcal{R} con unitario, entonces $\langle U, \cdot \rangle$ es grupo.
- 4. Muestre que $a^2 b^2 = (a + b)(a b)$ para todas las a y b en un anillo \mathcal{R} si y sólo si \mathcal{R} es
- 5. Sea p un primo. Muestre que en el anillo \mathbb{Z}_p , se tiene $(a+b)^p = a^p + b^p$.
- 6. Si para algún anillo \mathcal{R} existe un entero positivo n tal que $n \cdot a = 0 \ \forall a \in \mathcal{R}$, entonces el menor de dichos enteros es llamado característica del anillo R. Caso no exista dicho entero, se dice que \mathcal{R} tiene característica cero. Encuéntrese la característica de cada uno de los siguientes anillos:
 - a) $2\mathbb{Z}$

- b) $\mathbb{Z} \times \mathbb{Z}$
- c) $\mathbb{Z}_3 \times 3\mathbb{Z}$ e) $\mathbb{Z}_3 \times \mathbb{Z}_4$ d) $\mathbb{Z}_3 \times \mathbb{Z}_3$ f) $\mathbb{Z}_6 \times \mathbb{Z}_{15}$

7.

- 8. Muestre que en \mathbb{Z}_p 1 y p-1 son los únicos elementos del campo que son sus propios inversos multiplicativos. Con esto demuestre que $(n-1)! \equiv -1 \pmod{n}$ si y sólo si n es primo (Teorema de Wilson).
- 9. Sea \mathbb{R} un anillo que contiene al menos dos elementos. Suponga que para cada $a \neq 0$, existe una b tal que aba = b.
 - (a) Muestre que \mathbb{R} no tiene divisores de cero
- (c) Muestre que \mathbb{R} tiene unitario.

(b) Muestre que bab = b.

- (d) Muéstrese que \mathbb{R} es un anillo de división.
- 10. Muestre que un anillo conmutativo sin divisores de cero y finito, es un campo.
- 11. Sea A un grupo y Hom(A) el conjunto de todos los endomorfismos de A. Muestre que el anillo $\langle Hom(A), +, \circ \rangle$. Donde la suma de endomorfismos $(\psi + \phi)(a) = \psi(a) + \phi(a)$ para todo $a \in A$. y $\psi \circ \phi$ es la composición.