Instructions: Print your name, student ID number and recitation session in the spaces below.
Name:
Student ID:
Recitation session:
Practice Final Exam, Calculus III (Math 2551)
Show your work clearly and completely!
No calculators are allowed.
You can bring a formula sheet of a one-side letter size paper.
Question Points 1)
2)
3)
4)
5)
6)

Problem 1 (24 points): a) Find $\frac{du}{dt}$, if

$$u(x,y) = 3xy^2 - x^2; \ x = t^2 + 2t, \ y = 3t.$$

b) Write an equation for the tangent plane of the surface

$$z^3 + xyz - 2 = 0$$

at the point P(1,1,1).

c) Calculate the second-order partial derivatives of

$$g(x,y) = xy\sin(xy).$$

Problem 2 (16 points): Closed rectangular boxes 16 cubic feet in volume are to be constructed from three types of metal. The cost of the metal for the bottom of the box is \$0.50 per square foot, for the sides of the box \$0.25 per square foot, for the top \$0.10 per square foot. Find the dimensions that minimize cost of material.

Problem 3 (15 points): Evaluate

$$\int \int_{\Omega} \cos\left(\frac{y-x}{y+x}\right) dxdy,$$

where Ω is the region in the first quadrant bounded by the lines x+y=1 and x+y=2.

(Hint: Use proper change of variables.)

Problem 4 (15 points): Evaluate

$$\int_C y \ dx + yz \ dy + z (x - 1) \ dz$$

where C is the intersection of the sphere $x^2 + y^2 + z^2 = 4$ with the cylinder $(x-1)^2 + y^2 = 1$ traversed from (2,0,0) to (0,0,2).

Problem 5 (15 points): Find the area enclosed by the curve

$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1.$$

(Hint: Use Green's theorem.)

Problem 6 (15 points): Calculate the total flux of

$$\vec{v}(x,y,z) = 2x \mathbf{i} + xz \mathbf{j} + z^2 \mathbf{k}$$

 $\vec{v}\left(x,y,z\right)=2x\ \mathbf{i}+xz\ \mathbf{j}+z^2\ \mathbf{k}$ out of the solid bounded by the paraboloid $z=9-x^2-y^2$ and the xy-plane.