

PHYSICAL CHEMISTRY

ENTHUSIAST | LEADER | ACHIEVER

EXERCISE

Ionic Equilibrium

ENGLISH MEDIUM

EXERCISE-I (Conceptual Questions)

INTRODUCTION

- The formula weight of H₂SO₄ is 98. The weight 1. of the acid in 400mL of 0.1 M solution is:-

 - (1) $2.45 \,\mathrm{g}$ (2) $3.92 \,\mathrm{g}$ (3) $4.90 \,\mathrm{g}$
- (4) 9.8 g

IE0001

- 2. Normality of 2M sulphuric acid is:-
 - (1) 2 N
- (2) 4N
- (3) N/2
- (4) N/4

IE0002

- **3**. If pH = 3.31, then find out $[H^{+}]$ (Approx)
 - $(1) 3.39 \times 10^{-4} \text{ M}$
- (2) $5 \times 10^{-4} \text{ M}$
- $(3) \ 3.0 \times 10^{-3} \ \mathrm{M}$
- (4) $2 \times 10^{-4} \text{ M}$

IE0003

- If $[OH^{-}] = 5.0 \times 10^{-5} M$ then pH will be :-4.
 - $(1) 5 \log 5$
- $(2) 9 + \log 5$
- $(3) \log 5 5$
- $(4) \log 5 9$

IE0004

- 5. Basicity of H₃PO₃ and H₃PO₂ are respectively :-
 - (1) 1 and 2
- (2) 2 and 3
- (3) 3 and 2
- (4) 2 and 1

IE0005

- Find out pH of solution having 2×10^{-3} moles of **6**. OH ions in 2 litre solution:
 - (1) pH = 3
- (2) pH = 3 + log 2
- (3) pH = 3 log 2
- (4) pH = 11

IE0006

- 7. pH of tomato juice is 4.4. Then concentration of H₃O⁺ will be :-
 - $(1) 39 \times 10^{-4} \text{ M}$
- $(2) 3.9 \times 10^{-5} \text{ M}$
- $(3) 3.9 \times 10^{-4} \text{ M}$
- $(4) 3.9 \times 10^5 \text{ M}$

IE0007

- 8. 8 g NaOH is dissolved in one litre of solution, the molarity of the solution is:-
 - (1) 0.2 M
- (2) 0.4 M
- (3) 0.02 M (4) 0.8 M
 - **IE0008**
- The amount of acetic acid present in $100\ mL$ of 9. 0.1M solution is :-
 - (1) 0.30 g (2) 3.0 g
- (3) 0.60 g
- (4) None

IE0009

- 10. The number of milli equivalents of acid in 100 mL of 0.5N HCl solution is:-
 - (1)50
- (2) 100
- (3)25
- (4) 200

IE0010

Build Up Your Understanding

- 11. If the molar concentration of MgCl_o is $1.5\times 10^{^{-3}}\;\text{mol}\;\text{L}^{^{-1}}\!,$ the concentration of chloride ions in g ion L⁻¹ is:-
 - $(1) \ 3.0 \times 10^{-3}$
- (2) 6.0×10^{-3}
- $(3) \ 0.3 \times 10^{-3}$
- $(4) \ 0.6 \times 10^{-6}$

IE0011

OSTWALD'S DILUTION LAW

- **12**. Degree of dissociation of 0.1 N CH₃COOH is :-(Dissociation constant = 1×10^{-5})
 - $(1) 10^{-5}$
- (2) 10^{-4} (3) 10^{-3}
- $(4) 10^{-2}$

IE0012

- The degree of dissociation of acetic acid is given **13**. by the expression $\alpha = 0.1 \times C^{-1}$ (where C = concentration of the acid) What is the pH of the solution :-
 - $(1)\ 1$
- (2)2
- (3) 3
- (4) 4

IE0014

- **14**. Ostwald's dilution law is not applicable for strong electrolytes because:-
 - (1) Strong electrolytes are completely ionised
 - (2) Strong electrolytes are volatile
 - (3) Strong electrolytes are unstable
 - (4) Strong electrolytes often contain metal ions

- **15**. The degree of ionisation of a compound depends upon:
 - (1) Size of the solute molecules
 - (2) Nature of the solute molecules
 - (3) Nature of the container taken
 - (4) The amount of current passed

IE0016

- Find out K_a for 10^{-2} M HCN acid, having **16**. pOH = 10 :-
 - (1) $K_a = 10^{-4}$
- (2) $K_a = 10^{-2}$
- (3) $K_3 = 10^{-5}$
- (4) None of these

- Which of the following will occur if a 1.0 M **17**. solution of a weak acid is diluted to 0.01 M at constant temperature:-
 - (1) Percentage ionisation will increase
 - (2) [H⁺] will decrease to 0.01M
 - (3) K₂ will increase
 - (4) pH will decrease by 2 units

Pre-Medical

- **18.** The extent of ionisation of weak electrolytes increases:-
 - (1) With the increase in concentration of solute
 - (2) On decreasing the temp. of solution
 - (3) On addition of excess of water to the solution
 - (4) On stirring the solution vigorously

IE0020

- **19.** If K_a of HCN = 4×10^{-10} , then the pH of 2.5×10^{-1} molar HCN (ag) is:-
 - (1) 4.2
- (2) 4.7
- (3) 0.47
- (4) 5.0 **IE0021**

20. The molarity of nitrous acid solution at which its pH becomes $2.(K_a = 4.5 \times 10^{-4})$:

(1) 0.3333 (2) 0.4444 (3) 0.6666 (4) 0.2222

IE0022

EXPLANATION OF WATER

- 21. Ionic product of water will increase, if :-
 - (1) Decrease the pressure
 - (2) Add H⁺
 - (3) Add OH
 - (4) Increase the temperature

IE0024

- **22.** For water at 25° C, 2×10^{-7} moles per litre is the correct answer for which one of the following
 - $(1) [H^{\dagger}] + [OH^{-}]$
- (2) $[H^{+}]^{2}$
- (3) $[OH^{-1}]^{2}$
- $(4) [H^{+}] [OH^{-}]$

IE0025

- **23**. At 25°C, the dissociation constant for pure water is given by :-
 - $(1) (55.4 \times 10^{14})^{-1}$
- (2) 1×10^{-14}
- (3) $\frac{1\times10^{-14}}{18}$
- (4) None of these

IE0026

- **24**. Ionic product of water is equal to :-
 - (1) Dissociation constant of water \times [H₂O]
 - (2) Dissociation constant of water $\times [H^{\dagger}]$
 - (3) Product of [H₂O] and [H⁺]
 - (4) Product of $[OH^{-1}]^2$ and $[H^{+1}]$

IE0027

- **25**. For pure water, addition of H^+ and OH^- ion concentrations at $90^{\circ}C$ is :-
 - $(1)\ 10^{-14}$
- (2) 10^{-12}
- (3) 2×10^{-6}
- $(4) \ 2 \times 10^{-7}$

IE0028

- **26.** At a certain temperature, pure water has $[H_3O^+]=10^{-6.7}\ mol\ L^{-1}$. What is the value of K_W at this temperature :-
 - $(1) 10^{-6}$
- $(2)\ 10^{-12}$
- $(3)\ 10^{-67}$
- $(4) \ 10^{-13.4}$

IE0029

- **27.** At 373 K, temp. the pH of pure H₂O can be:-
 - (1) < 7
- (2) > 7
- (3) = 7
- (4) = 0 **IE0030**
- **28.** Which of the following is a true statement :
 - (1) The ionisation constant and ionic product of water are same.
 - (2) Water is a strong electrolyte.
 - (3) The value of ionic product of water is less than that of its ionisation constant.
 - (4) At 298K, the number of H^+ ions in a litre of water is 6.023×10^{16} .

IE0033

SALTS, TYPES OF SALT & CONJUGATE THEORY

- **29**. Which of the following is not an acidic salt :-
 - (1) NaHSO₄
- (2) HCOONa
- (3) NaH₂PO₃
- (4) None of these
 - IE0035
- **30.** Which is a basic salt :-
 - (1) MgCl_o
- (2) KCl
- (3) NaCl
- (4) Mg(OH)Cl

IE0354

- **31.** The process of neutralisation invariably results in the production of :-
 - (1) H^{+} ions
 - (2) OH ions
 - (3) Both H⁺ and OH⁻ ions
 - (4) Molecules of water

IE0037

- **32**. Which of the following is an acidic salt :-
 - (1) Na₂S
- (2) Na₂SO₃
- (3) NaHSO₃
- (4) Na₂SO₄

IE0038

- **33.** The mixed salt among the following is :-
 - (1) CH(OH)COONa
- (2) NaKSO₄
- CH(OH)COONa
- (3) CaCl₂
- (4) All

IE0039

HYDROLYSIS OF SALTS

- **34.** At 90°C, the pH of 0.1M NaCl aqueous solution is:-
 - (1) < 7
- (2) > 7
- (3) 7
- $(4) \ 0.1$

- What will be the pH of $1.0\ M$ ammonium formate **35**. solution, If $K_a = 1 \times 10^{-4}$ acid $K_b = 1 \times 10^{-5}$:
 - (1) 6.5
- (2) 7.5
- (3) 8.0
- (4) 9.0

(4) All

IE0041

- Which salt will not undergo hydrolysis:-
 - (1) KCl
- (2) Na₂SO₄ (3) NaCl

IE0042

37. $HCOO^- + H_2O \Longrightarrow HCOOH + OH^-$

Degree of hydrolysis for above reaction is given

- (1) $h = \sqrt{K_h}$
- (2) h = $\sqrt{\frac{K_h}{C}}$
- (3) $h = \sqrt{\frac{K_h}{V}}$
- $(4) K_h = \sqrt{hC}$

IE0044

- 38. The pH of aqueous solution of sodium acetate is
 - (1) 7

- (2) Very low
- (3) > 7
- (4) < 7

IE0045

- If pK_b for CN⁻ at 25°C is 4.7. The pH of 0.5M **39**. aqueous NaCN solution is :-
 - (1) 12
- (2) 10
- (3) 11.5
- (4) 11

IE0046

- **40**. The highest pH value is of :-
 - (1) 0.1 M NaCl
 - (2) 0.1 M NH₄Cl
 - (3) 0.1 M CH₃COONa
 - (4) 0.1 M CH₃COONH₄

IE0047

- **41.** pH of K₂S solution is:-
 - (1)7

- (2) Less than 7
- (3) More than 7
- (4) 0

IE0048

42. For anionic hydrolysis, pH is given by:-

(1)
$$pH = \frac{1}{2}pK_W - \frac{1}{2}pK_b - \frac{1}{2}logC$$

(2)
$$pH = \frac{1}{2}pK_w + \frac{1}{2}pK_a - \frac{1}{2}pK_b$$

(3) pH =
$$\frac{1}{2}$$
 pK_W + $\frac{1}{2}$ pK_a + $\frac{1}{2}$ logC

(4) None of above

IE0049

- Ionisation constant of a weak acid is 10⁻⁴. Find 43. out equilibrium constant for the reaction of this weak acid with strong base :-
 - (1) 10^{-10}
- $(2)\ 10^{10}$
- $(3) 10^{-9}$
- $(4)\ 10^9$ **IE0050**
- Hydroxyl ion concentration [OHT] in the case of sodium acetate can be expressed as (where K_a is dissociation constant of CH₃COOH and C is the concentration of sodium acetate):-
 - (1) $[OH^{-}] = (CK_w. K_a)^{1/2}$
 - (2) $[OH^{-}] = C.K_w \sqrt{K_a}$
 - (3) $[OH^{-}] = \left(\frac{C.K_w}{K_o}\right)^{1/2}$
 - (4) $[OH^{-}] = C. K_a. K_w$

IE0051

- **45**. ¬ Consider :-
 - (a) FeCl₃ in water Basic
 - (b) NH₄Cl in water Acidic
 - (c) Ammonium acetate in water Acidic
 - (d) Na₂CO₃ in water Basic

Which is/are not correctly matched:-

- (1) b and d
- (2) b only
- (3) a and c
- (4) d only

IE0052

- 46. Which of the following salts undergoes hydrolysis in water:-
 - (1) Na₃PO₄
- (2) CH₂COONa
- (3) NaNO₃
- (4) Both (1) and (2)

- **IE0053**
- **47**. A salt 'X' is dissolved in water of pH = 7. The resulting solution becomes alkaline in nature. The salt is made up of:-
 - (1) A strong acid and strong base
 - (2) A strong acid and weak base
 - (3) A weak acid and weak base
 - (4) A weak acid and strong base

IE0054

SOLUBILITY & SOLUBILITY PRODUCT(K__)

- 48. The solubility product of sparingly soluble uni-univalent salt (AB type) is defined as the product of ionic concentration in a:-
 - (1) 1 M solution
 - (2) Concentration solution
 - (3) Very dilute solution
 - (4) Saturated solution

Chemistry: Ionic Equilibrium

- If solubility of salts M_2X , QY_2 and PZ_2 are equal, then the relation between their K_{sn} will be :-
 - (1) $K_{sp}(M_2X) > K_{sp}(QY_2) > K_{sp}(PZ_2)$
 - (2) $K_{sp}(M_2X) = K_{sp}(QY_2) < K_{sp}(PZ_2)$
 - (3) $K_{sp}(M_2X) > K_{sp}(QY_2) = K_{sp}(PZ_2)$
 - (4) $K_{sp}(M_2X) = K_{sp}(QY_2) = K_{sp}(PZ_2)$

IE0058

- The expression of solubility product of mercurous **50**. iodide is :-
 - (1) $[2 \text{ Hg}^{\dagger}]^2 \times 2 [\Gamma]^2$
- (2) $[Hg^{++}]^2 \times [2\Gamma]^2$ (4) $[Hg^{2+}]^2 \times [\Gamma]^2$
 - (3) $[Hg_2^{2+}] \times [\bar{I}]^2$

IE0059

- **51.** At 25° C, the K_{sp} value of AgCl is 1.8×10^{-10} . If 10^{-5} moles of Ag^{+} are added to solution then K_{sn} will be :-
 - (1) 1.8×10^{-15}
- (2) 1.8×10^{-10}
- (3) 1.8×10^{-5}
- (4) $18 \times 10^{+10}$

IE0060

- At 25°C, the volume of water required to dissolve 1g BaSO₄ ($K_{sp} = 1.0 \times 10^{-10}$) will be (Molecular weight of $BaSO_4 = 233$) :-
 - (1) 820 L.
- (2) 1 L.
- (3) 205 L.
- (4) 430 L.

IE0061

- **53.** Concentration of Ag⁺ ions in saturated solution of $\mathrm{Ag_2CrO_4}$ at $20^{\circ}\mathrm{C}$ is 1.5×10^{-4} mol $\mathrm{L^{-1}}$. At $20^{0}\mathrm{C}$, the solubility product of $\mathrm{Ag_{2}CrO_{4}}$ is :-
 - (1) 3.3750×10^{-12}
- (2) 1.6875×10^{-10}
- (3) 1.68×10^{-12}
- (4) 1.6875×10^{-11}

- If the concentration of CrO₄²⁻ ion in a saturated solution of silver chromate will be 2×10^{-4} M, solubility product of silver chromate will be -
 - $(1) 4 \times 10^{-8}$
- (2) 8×10^{-12}
- (3) 32×10^{-12}
- $(4) 6 \times 10^{-12}$

- 55. If the solubility of AgCl (formula mass=143) in water at 25°C is 1.43×10^{-4} g/100 mL of solution then the value of $K_{_{SD}}$ will be :-
 - (1) 1×10^{-5}
- $(2)^{5p} 2 \times 10^{-5}$
- (3) 1×10^{-10}
- $(4)\ 2\times 10^{-10}$

IE0065

- The solubility product of As₂S₃ is given by the **56**. expression :-
 - (1) $K_{sp} = [As^{3+}] [S^{-2}]$
 - (2) $K_{sp}^{sp} = [As^{3+}]^1 [S^{-2}]^1$

 - (3) $K_{sp} = [As^{3+}]^3 [S^{-2}]^2$ (4) $K_{sp} = [As^{3+}]^2 [S^{-2}]^3$
 - **IE0067**

- **57**. If the solubility of PbBr₂ is 'S' g molecules per litre, considering 100% ionisation its solubility product is :-
 - $(1) 2S^3$
- $(2) 4S^{2}$
- $(3) 4S^3$
- $(4) 2S^4$

IE0068

- **58**. If the solubility of lithium sodium hexafluoro aluminate $\text{Li}_3\text{Na}_3(\text{AlF}_6)_2$ is 'S' mol L⁻¹. Its solubility product is equal to :-
 - $(1) S^8$
- (2) $12 S^3$
- (3) $18S^3$ (4) $2916 S^8$

IE0069

- One litre of saturated solution of CaCO3 is evaporated to dryness, when 7.0 g of residue is left. The solubility product for CaCO₃ is:-
 - $(1) 4.9 \times 10^{-3}$
- (2) 4.9×10^{-5}
- $(3) 4.9 \times 10^{-9}$
- $(4) 4.9 \times 10^{-7}$

IE0070

APPLICATION OF SOLUBILITY PRODUCT(K__)

- **60**. Solubility of AgBr will be minimum in :-
 - (1) Pure water
- (2) 0.1 M CaBr_o
- (3) 0.1 M NaBr
- (4) 0.1 M AgNO

IE0072

- In which of the following, the solution of AgSCN will be unsaturated :-
 - (1) $[Ag^{\dagger}] [SCN^{-}] = K_{gg}$
- (2) $[Ag^{+}][SCN^{-}] < K_{sn}$
- (3) $[Ag^{\dagger}] [SCN^{\bar{}}] > K_{sn}$ (4) $[Ag^{\dagger}] [SCN^{\bar{}}]^2 < K_{sn}$

IE0073

- **62**. If 's' and 'S' are solubility and solubility product of a sparingly soluble binary electrolyte respectively then:-
 - (1) s = S
- (2) $s = S^2$
- (3) $s = S^{1/2}$
- (4) $s = \frac{1S}{2}$

IE0074

- **63**. The solubility product of CuS , Ag_2S and HgSare 10^{-37} , 10^{-44} and 10^{-54} respectively. The solubility of these sulphides will be in the order

 - (1) $HgS > Ag_2S > CuS$ (2) $Ag_2S > HgS > CuS$
 - (3) $CuS > Ag_2S > HgS$ (4) $Ag_2S > CuS > HgS$

IE0075

- If the maximum concentration of PbCl₂ in water is 0.01 M at 298 K, its maximum concentration in 0.1 M NaCl will be:-
 - $(1) 4 \times 10^{-3} \text{ M}$
- (2) 0.4×10^{-4} M
- (3) 4×10^{-2} M
- $(4) 4 \times 10^{-4} M$

- $\rm M_2SO_4~(M^{^+}$ is a monovalent metal ion) has a $\rm K_{sp}$ of $1.2~\times~10^{^{-5}}$ at 298 K. The maximum concentration of M⁺ ion that could be attained in a saturated solution of this solid at 298 K is :-
 - $(1) 3.46 \times 10^{-3} \text{ M}$
- $(2) 2.89 \times 10^{-2} \text{ M}$
- (3) $2.8 \times 10^{-3} \text{ M}$
- (4) $7.0 \times 10^{-3} \text{ M}$

- Which of the following has maximum solubility **66**. (K_{sp} value is given in brackets):-
 - (1) HgS (1.6×10^{-54})
- (2) PbSO₄ (1.3×10^{-8})
- (3) ZnS (7.0×10^{-26})
- (4) AgCl (1.7×10^{-10})

IE0078

- **67**. Maximum soluble is :- $(K_{sp}$ is given)
 - (1) CuS (8.5×10^{-36})
- (2) CdS (3.6×10^{-28})
- (3) ZnS (1.2×10^{-28})
- (4) MnS (1.4×10^{-10})

IE0079

- **68**. In which of the following, the solubility of AgCl will be maximum:-
 - (1) 0.1 M AgNO₃
- (2) Water
- (3) 0.1 M NaCl
- (4) 0.1 M KCl

IE0080

69. The solubility product of three sparingly soluble salts are given below:

No.	Formula	Solubility product
1	PQ	4.0×10^{-20}
2	PQ_2	3.2×10^{-14}
3	PQ_3	2.7×10^{-35}
The c	orrect order of	decreasing molar solublity
is:-		
(1) 1,	2, 3	(2) 2, 1, 3
(3) 3.	2. 1	(4) 2, 3, 1

IE0081

- **70.** The K_{sp} value for $Gd(OH)_3$ is 2.8×10^{-23} . Find the pH of saturated solution of Gd(OH)₃:-
 - (1) 6.08
- (2) 5.08
- (3) 8.47
- (4) 4.08

IE0082

- 71. If the solubility product of AgBrO₃ and Ag₂SO₄ are 5.5×10^{-5} and 2×10^{-5} respectively, the relationship between their solubilities can be correctly represented as :-
 - $(1) S_{AgBrO_2} > S_{Ag_2SO_4}$
- $(2) S_{AgBrO_3} = S_{Aq_2SO_4}$
- (3) $S_{AqBrO_3} < S_{Aq_2SO_4}$
- (4) Unpredictable

IE0083

- Solubility product of Mg(OH), is 1×10^{-11} . At what pH, precipitation of Mg(OH), will begin from 0.1 M Mg²⁺ solution :-
 - (1) 9
- (2)5
- (4)7

IE0085

- A solution, containing $0.01~M~Zn^{^{+2}}$ and **73**. 0.01 M Cu²⁺ is saturated by passing H_2S gas. The S^{-2} concentration is 8.1×10^{-21} M, K_{sp} for ZnS and CuS are 3.0×10^{-22} and 8.0×10^{-36} respectively. Which of the following will occur in the solution:-
 - (1) ZnS will precipitate
 - (2) CuS will precipitate
 - (3) Both ZnS and CuS will precipitate
 - (4) Both Zn^{2+} and Cu^{2+} will remain in the solution

- What will happen if the pH of the solution of $0.001 \text{ M Mg(NO}_3)_2$ solution is adjusted to pH = 9 $(K_{sp}Mg(OH)_2 = 8.9 \times 10^{-12})$
 - (1) precipitation will take place
 - (2) precipitation will not take place
 - (3) Solution will be saturated
 - (4) None of these

IE0088

- The solubility product constant $K_{\rm sp}$ of Mg(OH) $_2$ is 9.0×10^{-12} . If a solution is 0.010 M with respect **75**. to Mg^{2+} ion, what is the maximum hydroxide ion concentration which could be present without causing the precipitation of $Mg(OH)_2$:
 - (1) 1.5×10^{-7} M
- (2) 3.0×10^{-7} M
- (3) $1.5 \times 10^{-5} \text{ M}$
- (4) 3.0×10^{-5} M

IE0089

- **76**. When HCl gas is passed through a saturated solution of common salt, pure NaCl is precipitated because:-
 - (1) The impurities dissolve in HCl
 - (2) HCl is slightly soluble in water
 - (3) The ionic product $[Na^{\dagger}] \times [Cl]$ exceeds the solubility product of NaCl
 - (4) The solubility product of NaCl is lowered by Cl from aq. HCl

IE0090

FEW IMPORTANT POINTS

- **77.** Two monobasic weak acids have the same moles of H⁺ ions. What is the relationship between dissociation constant and dilution:-
 - (1) $Ka_1V_1 = Ka_2V_2$
- (2) $Ka_1V_2 = Ka_2V_1$
- (3) $\left[Ka_1V_1 \right]^{\frac{1}{2}} = Ka_2V_2$ (4) $Ka_1V_1 = \left[Ka_2V_2 \right]^{\frac{1}{2}}$

- **78**. Two solutions having same concentration of H⁺ ions are called:-
 - (1) Isotonic solutions
 - (2) Isohydric solutions
 - (3) Hypotonic solutions
 - (4) Hypertonic solutions

- The pH of a formic acid which is 0.1% **79**. dissociated is equal to 4. What will be the pH of another weak monobasic acid (same concentration) which is 1% dissociated
 - (1) 2
- (2) 3
- (3) 1
- (4) 4

IE0098

pН

- **80**. pH of water is 7. When any substance Y is dissolved in water then pH becomes 13. Substance Y is a salt of :-
 - (1) Strong acid and strong base
 - (2) Weak acid and weak base
 - (3) Strong acid and weak base
 - (4) Weak acid and strong base

IE0099

- **81**. Minimum pH is shown by aqueous solution of :-
 - (1) 0.1 M BaCl₂
- (2) 0.1 M Ba(NO₃)₂
- (3) 0.1 M BeCl₂
- (4) 0.1 M Ba(OH)₂

IE0100

- 82. Given:-
 - (a) $0.005 \text{ M H}_2\text{SO}_4$
- (b) 0.1 M Na₂SO₄
- (c) 10^{-2} M NaOH
- (d) 0.01 M HCl

Choose the correct code having same pH:-

- (1) a, c, d
- (2) b, d
- (3) a, d
- (4) a, c

IE0101

- **83.** In the following solutions, the conc. of different acids are given, which mixture of the acid has highest pH:-
 - (1) $\frac{M}{10}H_2SO_4$, $\frac{M}{20}HNO_3$, $\frac{M}{10}HCIO_4$
 - (2) $\frac{M}{20}H_2SO_4$, $\frac{M}{10}HNO_3$, $\frac{M}{20}HCIO_4$
 - (3) $\frac{M}{20}H_2SO_4$, $\frac{M}{10}HNO_3$, $\frac{M}{40}HCIO_4$
 - (4) $\frac{M}{20}$ H₂SO₄, $\frac{M}{5}$ HNO₃, $\frac{M}{5}$ HClO₄

IE0104

- If 100 mL of pH = 3 and 400 mL of pH = 3solutions are mixed, what will be the final pH of mixture
 - (1) 3.2
- (2) 3.0
- (3) 3.5
- (4) 2.8

IE0105

(4) 9.5

- 10⁻⁶ M HCl is diluted 100 times. Its pH is :-
 - (1) 6.0
- (2) 8.0
- (3)6.95
- **IE0106**
- pH of 0.001M acetic acid would be :-**86**.
 - (1) 2
- (2) > 3
- (3)7
- (4) 14

IE0107

- At 90°C, the pH of 0.001M KOH solution will be **87**.
 - (1) 3
- (2) 11
- (3)5
- (4)9

IE0108

- The pH of solution is increased from 3 to 6. Its **88**. ¬ H⁺ ion concentration will be:-
 - (1) Reduced to half
 - (2) Doubled
 - (3) Reduced by 1000 times
 - (4) Increased by 1000 times

IE0109

- **89**. A solution has pOH equal to 13 at 298 K. The solution will be:-
 - (1) Highly acidic
- (2) Highly basic
- (3) Moderately basic
- (4) Unpredictable

IE0110

- **90**. The pH of the solution containing 10 mL of a 0.1M NaOH and 10 mL of 0.05M H₂SO₄ would be
 - (1) Zero
- (2) 1
- (3) > 7
- (4)7

IE0111

- 91. In a solution of pH = 5, more acid is added in order to reduce the pH upto 2. The increase in hydrogen ion concentration is:-
 - (1) 100 times
- (2) 1000 times
- (3) 3 times
- (4) 5 times

IE0113

- **92**. The hydrogen ion concentration in a given solution is 6×10^{-4} M. Its pH will be :-
 - (1)6

(2) 3.22

(3)4

(4) 2.

The pOH of a solution is 10.0. The hydrogen **93**. ion concentration will be :-

- (a) 10^{-10}
- (b) $\frac{\text{Kw}}{10^{-10}}$ (c) $\frac{\text{Kw}}{10^{-8}}$
- (d) 10^{-4}

- (1) a, d
- (2) b, c
- (3) a, b, c

(4) None **IE0115**

An aqueous solution whose pH = 0 is :-94.

- (1) Basic
- (2) Acidic
- (3) Neutral
- (4) Amphoteric

IE0116

Following five solution of KOH were prepare as-**95**.

- First
- 0.1 moles in 1 L
- Second
- 0.2 moles in 2 L
- Third
- 0.3 moles in 3 L
- Fourth
- 0.4 moles in 4 L
- Fifth \rightarrow
- 0.5 moles in 5 L

The pH of resultant solution is :-

- (1) 2
- $(2)\ 1$
- (3) 13
- (4) 7

IE0118

The pH of a 0.02 M ammonia solution which is **96**. 5% ionised will be :-

- (1) 2
- (2) 11
- (3)5
- (4) 7

IE0119

97. For $\frac{N}{10}$ H₂SO₄, pH value is :-

- (1) 1
- (2) 0.586
- (3) 0.856
- (4) None

IE0120

98. An agueous solution of HCl is 10⁻⁹ M HCl. The pH of the solution should be:-

(1)9

(2) Between 6 and 7

(3)7

(4) Unpredictable

IE0121

How many moles of HCl must be removed from 1 litre of aqueous HCl solution to change its pH from 2 to 3 :-

- $(1)\ 1$
- (2) 0.02
- (3) 0.009
- (4) 0.01

IE0123

100. 8 g NaOH and 4.9 g H₂SO₄ are present in one litre of the solution. What is its pH

- (1) 1
- (2) 13
- (3) 12
 - (4) 2

IE0124

101. Calculate pH of a solution whose 100 mL contains 0.2 g NaOH dissolved in it :-

- (1) 10.699
- (2) 11.699
- (3) 12.699
- (4) 13.699

IE0125

102. What is the quantity of NaOH present in 250 cc of the solution, so that it gives a pH = 13:

- (1) 10^{-13} g (2) 10^{-1} g
- (3) 1.0 g
- (4) 4.0 g

IE0127

103. 0.001 mol of the strong electrolyte M(OH), has been dissolved to make a 20 mL of its saturated solution. Its pH will be : - $[K_w = 1 \times 10^{-14}]$

- (1) 13
- (2) 3.3
- (3) 11
- (4) 9.8

IE0128

104. Choose the wrong statement:

- (1) For a neutral solution : $[H^{+}] = [OH^{-}] = \sqrt{K_{...}}$
- (2) For an acidic solution:

$$[H^{+}] > \sqrt{K_{w}} \& [OH] < \sqrt{K_{w}}$$

(3) For a basic solution:

$$[H^{+}] < \sqrt{K_{w}} \& [OH^{-}] > \sqrt{K_{w}}$$

(4) For a neutral solution:

 $[H^+] = [OH^-] = 10^{-7} M$ (at all temperatures)

IE0129

105. The pH of 0.1 M solution of the following salts increases in order :-

- (1) NaCl < NH₄Cl < NaCN < HCl
- (2) NaCN < NH₄Cl < NaCl < HCl
- (3) HCl < NaCl < NaCN < NH₄Cl
- (4) HCl < NH₄Cl < NaCl < NaCN

IE0130

BUFFER SOLUTIONS and INDICATOR

106. In a buffer solution the ratio of concentration of NH₄Cl and NH₄OH is 1:1. When it changes to 2:1, pH of buffer:-

- (1) Increases
- (2) Decreases
- (3) No effect
- (4) None of these

IE0131

107. To 50 mL of 0.05M formic acid, how much volume of 0.10M sodium formate must be added to get a buffer solution of pH = 4.0?

- (pK_3) of the acid is 3.8)
- (1) 50 mL
- (2) 4 mL
- (3) 39.6 mL
- (4) 100 mL

IE0132

108. In the volumetric estimation of HCl, if we make use of phenolphthalein as an indicator, which base is unsuitable for the titration :-

- (1) NaOH
- (2) RbOH
- (3) KOH (4) NH₄OH
 - **IE0133**

- 109. In a mixture of weak acid and its salt, the ratio of concentration of acid to salt is increased ten-fold. The pH of the solution :-
 - (1) Decreases by one
 - (2) Increases by one-tenth
 - (3) Increases by one
 - (4) Increases ten-fold

- **110**. pK_b for NH₄OH at certain temperature is 4.74. The pH of basic buffer containing equimolar concentration of NH₄OH and NH₄Cl will be:-
 - (1) 7.74
- (2) 4.74
- (3) 2.37
- (4) 9.26

IE0135

- 111. What is the suitable indicator for titration of NaOH and oxalic acid:-
 - (1) Methyl orange
- (2) Methyl red
- (3) Phenolphthalein
- (4) Starch solution

IE0136

- 112. Phenolphthalein does not act as an indicator for the titration between :-
 - (1) KOH and H₂SO₄
 - (2) NaOH and CH₃COOH
 - (3) Oxalic acid and KMnO₄
 - (4) Ba(OH)₂ and HCl

IE0137

- 113. Which can act as buffer :-
 - (1) $NH_4OH + NaOH$
 - (2) HCOOH + CH₂COONa
 - (3) 40 mL 0.1 M NaCN + 20 mL of 0.1 M HCl
 - (4) None of them

IE0138

- **114**. The buffer solution play an important role in :-
 - (1) Increasing the pH value
 - (2) Decreasing the pH value
 - (3) Keeping the pH constant
 - (4) Solution will be neutral

IE0139

- **115**. K_a for HCN is 5 x 10^{-10} at 25° C. For maintaining a constant pH of 9, the volume of 5M KCN solution required to be added to 10mL of 2M HCN solution is-
 - (1) 4 mL
- (2) 7.95 mL
- (3) 2 mL
- (4) 9.3 mL

IE0140

- 116. Buffering action of a mixture of CH₃COOH and CH₃COONa is maximum when the ratio of salt to acid is equal to -
 - (1) 1.0
- $(2)\ 100.0$
- (3) 10.0
- (4) 0.1
 - **IE0141**

- 117 The pink colour of phenolphthalein in alkaline medium is due to -
 - (1) Negative ion
- (2) Positive ion

Chemistry: Ionic Equilibrium

- $(3) OH^-ions$
- (4) Neutral form

IE0142

- **118**. Which indicator works in the pH range 8 9.8
 - (1) Phenolphthalein
- (2) Methyl orange
- (3) Methyl red
- (4) Litmus

IE0143

- 119. A basic buffer will obey the equation $pOH - pK_b = 1$ only under condition:-
 - (1) [Conjugate acid] : [base] = 1:10
 - (2) [Conjugate acid] = [base]
 - (3) [Conjugate acid] : [base] = 10:1
 - (4) None of these

IE0144

- **120.** For weak acid-strong base titration, the indicator used is :-
 - (1) Potassium dichromate
 - (2) Methyl orange
 - (3) Litmus
 - (4) Phenolphthalein

IE0145

- **121.** For which of the following titration, methyl orange is a best indicator :-
 - (1) CH₂COOH + NaOH
 - (2) H₂C₂O₄ + NaOH
 - (3) HCl + NaOH
 - (4) CH₃COOH + NH₄OH

IE0146

- 122. The total number of different kind of buffers obtained during the titration of H₃PO₄ with NaOH are :-
 - (1) 3
- (2) 1
- (3) 2
- (4) 0

IE0147

- 123. A certain acidic buffer solution contains equal concentration of X^- and HX. The K_h for X^- is 10^{-10} . The pH of the buffer is :-(4) 14
 - (1) 4
- (2) 7
- $(3)\ 10$

IE0149

- 124. When 1.0 mL of dil. HCl acid is added to 100 mL of a buffer solution of pH 4.0. The pH of the solution
 - (1) Becomes 7
- (2) Does not change
- (3) Becomes 2
- (4) Becomes 10

- 125. The pH of blood is maintained by CO_2 and H₂CO₃ in the body and chemical constituents of blood. This phenomenon is called :-
 - (1) Colloidal
- (2) Buffer action
- (3) Acidity
- (4) Salt balance

- 126. Phenolphthalein is not a good indicator for titrating
 - (1) NaOH against oxalic acid
 - (2) NaOH against HCl
 - (3) NaOH against H₂SO₄
 - (4) HCl against NH₄OH

IE0152

- 127. Which of the following solutions does not act as buffer:-
 - (1) $H_3PO_4 + NaH_2PO_4$
 - (2) $NaHCO_3 + H_2CO_3$
 - (3) NH₄Cl + HCl
 - (4) CH₃COOH + CH₃COONa

IE0153

- 128. On addition of NaOH to CH₂COOH solution, 60% of the acid is neutralised. If pK₃ of CH₃COOH is 4.7 then the pH of the resulting solution is :-
 - (1) More than 4.7 but less than 5.0
 - (2) Less than 4.7 but more than 4.0
 - (3) More than 5.0
 - (4) Remains unchanged

IE0155

- 129. 500 mL of 0.2 M acetic acid are added to 500 mL of 0.30 M sodium acetate solution. If the dissociation constant of acetic acid is 1.5×10^{-5} then pH of the resulting solution is:-
 - (1) 5.0
- (2) 9.0
- (3) 3.0
- (4) 4.0

IE0156

- 130. Half of the formic acid solution is neutralised on addition of a KOH solution to it. If K_a (HCOOH) = 2×10^{-4} then pH of the solution is: $(\log 2 = 0.3010)$
 - (1) 3.6990
- $(2)\ 10.3010$
- (3) 3.85
- (4) 4.3010

IE0157

solution contains 0.2M NH₄OH and **131**. A 0.2M NH₄Cl. If 1.0 mL of 0.001 M HCl is added to it. What will be the [OHT] of the resulting solution

$$[K_b = 2 \times 10^{-5}] : -$$

- (1) 2×10^{-5}
- (2) 5×10^{-10}
- $(3) 2 \times 10^{-3}$
- (4) None of these

IE0158

- **132**. Henderson equation $pH pK_a = 1$ will be applicable to an acidic buffer when :-
 - (1) [Acid] = [Conjugate base]
 - (2) [Acid] $\times 10 =$ [Conjugate base]
 - (3) [Acid] = [Conjugate base] \times 10
 - (4) None of these

IE0159

- **133**. 0.05 M ammonium hydroxide solution is dissolved in 0.001 M ammonium chloride solution. What will be the OH ion concentration of this solution: $K_h(NH_aOH) = 1.8 \times 10^{-5}$
 - $(1) \ 3.0 \times 10^{-3}$
- $(2) 9.0 \times 10^{-4}$
- $(3) 9.0 \times 10^{-3}$
- $(4)\ 3.0 \times 10^{-4}$

IE0160

- 134. When 0.02 moles of NaOH are added to a litre of buffer solution, its pH changes from 5.75 to 5.80. What is its buffer capacity:
 - (1) 0.4
- (2) 0.05
- (3) -0.05
- (4) 2.5

IE0161

- **135**. Calculate the pH of a buffer prepared by mixing 300 cc of 0.3 M NH_3 and 500 cc of 0.5 M $NH_4Cl. K_b$ for $NH_3 = 1.8 \times 10^{-5} :- (1) 8.1187$ (2) 9.81
- (2) 9.8117
- (3) 8.8117
- (4) None of these

IE0162

136. Calculate the ratio of pH of a solution containing 1 mole of CH₃COONa + 1 mole of HCl per litre and of other solution containing 1 mole CH₂COONa + 1 mole of acetic acid per litre :-(1) 1 : 1(2) 2 : 1(3) 1 : 2(4) 2 : 3

- **137.** When 20 mL of $\frac{M}{20}$ NaOH are added to 10 mL
 - of $\frac{M}{10}$ HCl, the resulting solution will:-
 - (1) Turn blue litmus red
 - (2) Turn phenolphthalein solution
 - (3) Turn methyl orange red
 - (4) Will have no effect on either red or blue litmus

- **138.** 10 mL of a solution contains $0.1 \text{ M NH}_{\bullet}\text{Cl} + 0.01 \text{ M}$ NH₄OH. Which addition would not change the pH of solution :-
 - (1) Adding 1 mL water
 - (2) Adding 5 mL of 0.1 M NH₄Cl
 - (3) Adding 5 mL of 0.1 M NH₄OH
 - (4) Adding 10 mL of 0.1 M NH₄Cl

IE0168

- **139**. $\frac{N}{10}$ acetic acid was titrated with $\frac{N}{10}$ When 25%, 50% and 75% of titration is over then the pH of solution will be :- $[K_a = 10^{-5}]$
 - (1) 5 + $\log 1/3$, 5, 5 + $\log 3$
 - (2) 5 + $\log 3$, 4, 5 + $\log 1/3$
 - $(3) 5 \log 1/3, 5, 5 \log 3$
 - $(4) 5 \log 1/3, 4, 5 + \log 1/3$

IE0169

ACID AND BASE

- **140.** The conjugate acid of O^{-2} is :-
 - $(1) O_{2}^{+}$
- (2) H^{+}
- (3) H_3O^{\dagger}
- (4) OH

IE0170

- 141. Ionization constant of AOH and BOH base are K_{b_1} and K_{b_2} . Their relation is $pK_{b_1} < pK_{b_2}$. Conjugate of following base, does not show maximum pH:
 - (1) AOH
- (2) BOH
- (3) Both of them
- (4) None of these

IE0171

- **142.** Select the species which can function as lewis base, bronsted acid and bronsted base:-
 - (a) H₂O
- (b) NH₄⁺
- (c) N^{-3}

Correct code is :-

- (1) Only a (2) a, b
- (3) a, c
- (4) b, c

IE0172

- **143.** Which ion does not show acid behaviour :-
 - $(1) \left[Al \left(H_2O \right)_6 \right]^{+3}$
- (2) $\left[\text{Fe} \left(\text{H}_2 \text{O} \right)_6 \right]^{+3}$
- (3) HPO₄⁻²
- (4) ClO₂

IE0173

- **144**. An example of Lewis acid is:-
 - (1) CaO
- (2) CH₃NH₂
- (3) SO_{3}
- (4) None of these

IE0174

- **145**. In the reaction $NH_3 + H_2O \implies NH_4^+ + OH^$ water behaves as :-
 - (1) Acid
- (2) Base
- (3) Neutral
- (4) Both acid & Base

IE0175

146. Which acts as Lewis base in the reaction

$$BCl_3 + :PH_3 \rightarrow Cl_3B \leftarrow PH_3$$

- (1) PH₂
- (3) Both 1 & 2
- (4) None
- **IE0176**
- 147. Which acts as Lewis acid in the reaction $SnCl_2 + 2Cl^{-} \longrightarrow [SnCl_4]^{-2}$

 - (1) Cl^- (2) $SnCl_2$
 - (3) SnCl₄
- (4) None

IE0177

- **148.** The conjugate base of $(CH_3)_2$ NH_2 is :-
 - (1) CH₃NH₂
- $(2) (CH_3)_2 N^+$
- $(3) (CH_3)_2 N$
- (4) (CH₃)₂NH

IE0178

- 149. Which equilibrium can be described as Lewis acid base reaction but not Bronsted acid base reaction:-
 - (1) $H_2O + CH_2COOH \rightleftharpoons H_2O^{\dagger} + CH_2COO^{\dagger}$
 - (2) $2NH_3 + H_2SO_4 \implies 2NH_4^+ + SO_4^{2-}$
 - (3) $NH_3 + CH_3COOH \implies NH_4^+ + CH_3COO^-$
 - (4) $Cu^{+2} + 4NH_3 \Longrightarrow [Cu(NH_3)_4]^{2+}$

Join Telegram: @Chalnaayaa

150. Conjugate base of hydrazoic acid is :-

- (1) HN₂
- (2) N_3^-
- (3) N^{3-}
- $(4) N_2^-$

IE0180

151. NH₃ gas dissolves in water to give NH₄OH, in this reaction, water acts as :-

- (1) An acid
- (2) A base
- (3) A salt
- (4) A conjugate base

IE0181

152. When ammonia is added to water, it decreases the concentration of which of the following ion

- (1) OH-
- (2) $H_{2}O^{+}$
- (3) NH⁺₄
- (4) None

IE0183

153. The strongest acid among the following is -

- (1) ClO₃(OH)
- (2) ClO₂(OH)
- (3) SO(OH)₂
- (4) SO₂(OH)₂

IE0184

154. Which of the following is not a Bronsted acid:

- (1) CH₃NH₄⁺
- (2) CH₂COO
- (3) $H_{2}O$
- (4) HSO₄

IE0185

155. Which of the following example behave as a Lewis acid BF₃, SnCl₂, SnCl₄:-

- (1) SnCl₂, SnCl₄
- (2) BF₃, SnCl₂
- (3) Only BF₃
- (4) BF₃, SnCl₂, SnCl₄

IE0186

156. In the reaction

 $HNO_3 + H_2O \Longrightarrow H_3O^+ + NO_3^-$, the conjugate base of HNO₃ is :-

- $(1) H_{2}O$
- (2) H_3O^+
- (3) NO_{3}^{-}
- (4) H_3O^+ and NO_3^-

IE0187

157. The conjugate base of the weak acid in the reaction HBr + $H_9O \rightleftharpoons H_9O^+ + Br^-$ is

- (1) HBr
- (2) $H_{2}O$
- (3) Br
- $(4) H_{2}O^{+}$

IE0188

158. In the reaction, $AlCl_3 + Cl \rightarrow [AlCl_4]$, $AlCl_3$ acts as :-

- (1) Salt
- (2) Lewis base
- (3) Bronsted acid
- (4) Lewis acid

IE0189

159. Mg^{2+} is _____ than Al^{3+} :-

- (1) Stronger Lewis acid
- (2) Stronger Lewis base
- (3) Weaker Lewis acid
- (4) Weaker Lewis base

IE0190

160. The two Bronsted bases in the reaction

$$HC_2O_4^- + PO_4^{3-} \Longleftrightarrow HPO_4^{2-} + C_2O_4^{2-}$$
 are

- (1) $HC_2O_4^-$ and PO_4^{2-}
- (2) $\mathrm{HPO_4}^{2-}$ and $\mathrm{C_2O_4}^{2-}$
- (3) PO_4^{3-} and $C_2O_4^{-2}$
- (4) $HC_2O_4^-$ and HPO_4^{2-}

IE0191

161. The compound HCl behaves as --- in the reaction, HCl + HF \Longrightarrow H_2^+ Cl + F

- (1) Strong acid
- (2) Strong base
- (3) Weak acid
- (4) Weak base

IE0192

162. Which of the following is not a lewis base:-

- (1) NH₃
- (2) O^{2-}
- (3) H₂O
- (4) I⁺

IE0193

163. Which of the following is Bronsted Lowry acid:-

- (1) SO_4^{-2} (2) H_2O^+
- (3) OH
- (4) Cl

IE0194

164. The conjugate base for bicarbonate ion is:-

- $(1) CO_3^{2}$
- (2) HCO₃
- (3) CO₂
- (4) H₂CO₃

IE0195

165. HCl does not behave as acid in :-

- (1) NH_{3}
- $(2) C_2H_5OH$
- (3) H₂O
- $(4) C_6 H_6$

IE0197

166. Which of the following is a base according to Bronsted-Lowry concept:-

- (1) I
- $(2) H_{3}O^{+}$
- (3) HCl

(4) NH₄⁺ **IE0198**

167. In which of the following reactions NH_3 acts as

- (1) $NH_3 + HCl \rightarrow NH_4Cl$
- (2) $NH_3 + H^+ \rightarrow NH_4^+$
- (3) $NH_3 + Na \rightarrow NaNH_2 + \frac{1}{2}H_2$
- (4) NH₃ cannot act as acid

Pre-Medical

- **168**. According to Bronsted concept, the acids in the following reaction $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$ are :-
 - (1) NH_3 and NH_4^+
- (2) H₂O and OH
- (3) H_2O and NH_4^+
- (4) NH₃ and OH

IE0200

- **169**. CH_3COO^- ion is a :-
 - (1) Weak conjugate base
 - (2) Strong conjugate base
 - (3) Weak conjugate acid
 - (4) Strong conjugate acid

IE0202

- **170**. Which of the following is strongest conjugate base
 - (1) ClO₄
- $(2) HCO_3$
- (3) Cl⁻
- (4) HSO₄

IE0203

- **171**. Which of the following species can act as Lewis base:-
 - (1) Cu²⁺
- (2) AlCl₃
- (3) NH₂
- (4) BF₃

IE0204

- **172**. A compound having the formula NH₂CH₂COOH may behave :-
 - (1) Only as an acid
 - (2) Only as a base
 - (3) Both as an acid and base
 - (4) Neither acid nor base

IE0205

- **173**. Which of the following can act both as Bronsted acid and Bronsted base :-
 - (1) Na₂CO₃
- (2) O^{2-}
- (3) CO₃⁻²
- $(4) NH_3$

IE0207

- **174**. The strongest conjugate base is :-
 - (1) NO_3^-
- (2) Cl⁻
- (3) SO_4^{2-}
- (4) CH₃COO

IE0208

- 175. Aluminium chloride is :-
 - (1) Bronsted Lowry acid
 - (2) Arrhenius acid
 - (3) Lewis acid
 - (4) Lewis base

IE0209

- 176. Water is a :-
 - (1) Protogenic solvent
- (2) Protophilic solvent
- (3) Amphiprotic solvent
- (4) Aprotic solvent

IE0210

- **177**. Ammonium ion is :-
 - (1) A conjugate acid
 - (2) A conjugate base
 - (3) Neither an acid nor a base
 - (4) Both an acid and a base

IE0211

- **178**. Species which do not act both as Bronsted acid and base is:-
 - (1) $(HSO_4)^{-1}$
- (2) Na₂CO₃
- (3) NH₃
- (4) OH⁻¹

IE0212

- **179.** Which one of the following is strong Lewis base & Bronsted acid & bronsted base:-
 - (1) NH₂
- (2) PH₃
- (3) CH₄
- (4) BH₃

IE0213

- **180.** Which of the following is not a correct statement
 - (1) Arrhenius theory of acids-bases is capable of explaining the acidic or basic nature of the substances in the solvents other than water
 - (2) Arrhenius theory does not explain acidic nature of AlCl₃
 - (3) The aqueous solution of Na_2CO_3 is alkaline although it does not contain OH^- ions
 - (4) Aqueous solution of CO_2 is acidic although it does not contain H^+ ions

IE0215

- **181**. For the reaction $NH_4^+ + S^{-2} \rightleftharpoons NH_3 + HS^-, NH_3$ and S^{-2} are a group of :-
 - (1) Acids
 - (2) Bases
 - (3) Acid-base pair
 - (4) None of these

IE0216

- **182.** According to Arrhenius theory, acids are substances that dissociate in water to give ...(X) ... ions and bases are substances that produce ...(Y).... ions. Here, (X) and (Y) refer to
 - (1) hydronium, hydroxyl
 - (2) hydroxyl, hydrogen
 - (3) hydrogen, hydroxyl
 - (4) hydroxyl, hydronium

183. 'An acid is substance that is capable of donating a proton (H⁺) and base is a substance capable of accepting a proton (H⁺).

The above statement is justified by

- (1) Arrhenius concept
- (2) Bronsted-Lowry theory
- (3) Lewis concept
- (4) All of these

EXERCISE-II (Previous Year Questions)

AIPMT 2009

- 1. The ionization constant of ammonium hydroxide is 1.77×10^{-5} at 298 K. Hydrolysis constant of ammonium chloride is :-
 - (1) 5.65×10^{-12}
- (2) 5.65×10^{-10}
- (3) 6.50×10^{-12}
- (4) 5.65×10^{-13}

- 2. What is the [OH-] in the final solution prepared by mixing 20.0 mL of 0.050 M HCl with 30.0 mL of 0.10M Ba(OH)₂?
 - (1) 0.12 M
- (2) 0.10 M
- (3) 0.40 M (4) 0.0050M

IE0226

- 3. The dissociation constants for acetic acid and HCN at 25°C are 1.5×10^{-5} and 4.5×10^{-10} , respectively. The equilibrium constant for the equilibrium
 - $CN^- + CH_3COOH \rightleftharpoons HCN + CH_3COO^$ would be :-
 - (1) 3.3×10^4
- $(2) 3.0 \times 10^{5}$
- (3) 3.3×10^{-5}
- $(4) \ 3.0 \times 10^{-4}$

IE0227

AIPMT 2010

- 4. If pH of a saturated solution of Ba(OH), is 12, the value of its K_{sp} is :-
 - (1) $5.00 \times 10^{-7} \text{ M}^3$
- (2) $4.00 \times 10^{-6} \text{ M}^3$
- $(3) 4.00 \times 10^{-7} \text{ M}^3$
- $(4) 5.00 \times 10^{-6} \text{ M}^3$

- Find the pH of a buffer solution containing equal 5. concentration of B^- and HB. $(K_{h}$ for B^- is 10^{-10}):-(4) 6
 - (1) 4
- (2) 10
- (3) 7
- **IE0229**

AIPMT Mains 2011

- 6. In qualitative analysis, the metals of Group I can be separated from other ions by precipitating them as chloride salts. A solution initially contains Ag+ and Pb²⁺ at a concentration of 0.10 M. Agueous HCl is added to this solution until the CI concentration is 0.10 M. What will the concentrations of Ag⁺ and Pb²⁺ be at equilibrium?
 - $(K_{sp} \text{ for AgCl=} 1.8 \times 10^{-10}, K_{sp} \text{ for PbCl}_2 = 1.7 \times 10^{-5})$
 - (1) $[Ag^+] = 1.8 \times 10^{-11} \text{ M}; [Pb^{2+}] = 1.7 \times 10^{-4} \text{ M};$
 - (2) $[Ag^{+}] = 1.8 \times 10^{-7} \text{ M} : [Pb^{2+}] = 1.7 \times 10^{-6} \text{ M}$;
 - (3) $[Ag^+] = 1.8 \times 10^{-11} \text{ M}; [Pb^{2+}] = 8.5 \times 10^{-5} \text{ M};$
 - (4) $[Ag^+] = 1.8 \times 10^{-9} \text{ M}$; $[Pb^{2+}] = 1.7 \times 10^{-3} \text{ M}$;

IE0232

AIPMT/NEET

- 7. A buffer solution is prepared in which the concentration of NH3 is 0.30 M and the concentration of NH₄⁺ is 0.20 M. If the equilibrium constant, K_b for NH₃ equals 1.8×10^{-5} , what is the pH of this solution ? ($\log 2.7 = 0.43$)
 - (1) 9.08
- (2) 9.43
- (3) 11.72
- (4) 8.73

IE0233

AIPMT Mains 2012

- 8. Buffer solutions have constant acidity alkalinity because:
 - (1) they have large excess of H⁺ or OH⁻ ions
 - (2) they have fixed value of pH
 - (3) these give unionised acid or base on reaction with added acid or alkali
 - (4) acids and alkalies in these solutions are shielded from attack by other ions

IE0236

- 9. Equimolar solutions of the following substances were prepared separately. Which one of the these will record the highest pH value?
 - (1) LiCl
- (2) BeCl_o
- (3) BaCl₂
- (4) AlCl₃

IE0237

NEET UG 2013

- 10. Which is the strongest acid in the following?
 - $(1) H_2 SO_3$
- (2) H₂SO₄
- (3) HClO₃
- (4) HClO₄
- **IE0239**

AIPMT 2014

- 11. Which of the following salts will give highest pH in water?
 - (1) KCl
- (2) NaCl
- (3) Na₂CO₃
- (4) CuSO₄

IE0241

AIPMT 2015

- The $\rm K_{sp}$ of Ag_2CrO_4, AgCl, AgBr and AgI are respectively, $1.1\times10^{-12},~1.8\times10^{-10},~5.0\times10^{-13},$ **12**. 8.3×10^{-17} . Which one of the following salts will precipitate last if AgNO3 solution is added to the solution containing equal moles of NaCl, NaBr, NaI and Na₂CrO₄?
 - (1) AgCl
- (2) AgBr
- $(3) Ag_2CrO_4 (4) AgI$

Re-AIPMT 2015

- **13.** Which one of the following pairs of solution is not an acidic buffer?
 - (1) H₂CO₃ and Na₂CO₃
 - (2) H₃PO₄ and Na₃PO₄
 - (3) HClO₄ and NaClO₄
 - (4) CH₃COOH and CH₃COONa

IE0243

- **14.** What is the pH of the resulting solution when equal volumes of 0.1 M NaOH and 0.01 M HCl are mixed?
 - (1) 7.0
- (2) 1.04
- (3) 12.65
- (4) 2.0 **IE0244**

NEET-I 2016

- **15.** MY and NY $_3$, two nearly insoluble salts, have the same K_{sp} values of 6.2×10^{-13} at room temperature. Which statement would be **true** in regard to MY and NY $_3$?
 - (1) The molar solubilities of MY and ${\rm NY_3}$ in water are identical.
 - (2) The molar solubility of MY in water is less than that of NY_3
 - (3) The salts MY and NY_3 are more soluble in 0.5 M KY than in pure water.
 - (4) The addition of the salt of KY to solution of MY and NY₃ will have no effect on their solubilities.

IE0247

NEET-II 2016

- **16.** The percentage of pyridine (C_5H_5N) that forms pyridinium ion ($C_5H_5N^+H$) in a 0.10 M aqueous pyridine solution (K_b for $C_5H_5N = 1.7 \times 10^{-9}$) is (1) 0.77% (2) 1.6%
 - (3) 0.0060%
- (4) 0.013%

IE0248

- 17. The solubility of AgCl(s) with solubility product 1.6×10^{-10} in 0.1 M NaCl solution would be
 - (1) 1.6×10^{-11} M
- (2) zero
- (3) 1.26×10^{-5} M
- (4) 1.6×10^{-9} M

IE0249

NEET(UG) 2017

- **18.** Concentration of the ${\rm Ag}^+$ ions in a saturated solution of ${\rm Ag}_2{\rm C}_2{\rm O}_4$ is 2.2×10^{-4} mol ${\rm L}^{-1}$ Solubility product of ${\rm Ag}_2{\rm C}_2{\rm O}_4$ is :-
 - (1) 2.66×10^{-12}
- (2) 4.5×10^{-11}
- (3) 5.3×10^{-12}
- $(4) 2.42 \times 10^{-8}$

IE0255

NEET(UG) 2018

- **19.** Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations:
 - a. $60\text{mL}\frac{M}{10}\text{HCl} + 40\text{mL}\frac{M}{10}\text{NaOH}$
 - b. $55mL\frac{M}{10}HCl + 45mL\frac{M}{10}NaOH$
 - $c. \quad 75mL\frac{M}{5}HCl + 25mL\frac{M}{5}NaOH$
 - $d. \quad 100 mL \frac{M}{10} HCl + 100 mL \frac{M}{10} NaOH$

pH of which one of them will be equal to 1?

- (1) b
- (2) a
- (3) d
- (4) c

IE0258

20. The solubility of BaSO₄ in water 2.42×10^{-3} gL⁻¹ at 298 K. The value of solubility product (K_{sp}) will be

(Given molar mass of $BaSO_4 = 233 \text{ g mol}^{-1}$)

- (1) $1.08 \times 10^{-10} \text{ mol}^2 \text{ L}^{-2}$
- (2) $1.08 \times 10^{-12} \text{ mol}^2 \text{ L}^{-2}$
- (3) $1.08 \times 10^{-14} \text{ mol}^2 \text{ L}^{-2}$
- (4) $1.08 \times 10^{-8} \text{ mol}^2 \text{ L}^{-2}$

IE0259

NEET(UG) 2019

- **21.** pH of a saturated solution of $Ca(OH)_2$ is 9. The solubility product (K_{sp}) of $Ca(OH)_2$ is :-
 - (1) 0.5×10^{-15}
- (2) 0.25×10^{-10}
- (3) 0.125×10^{-15}
- (4) 0.5×10^{-10}

IE0357

- **22.** Which will make basic buffer?
 - (1) 50 mL of 0.1 M NaOH + 25 mL of 0.1 M CH_3COOH
 - (2) 100 mL of 0.1 M $\mathrm{CH_3COOH}$ + 100 mL of 0.1M NaOH
 - (3) 100 mL of 0.1 M HCl + 200 mL of 0.1 M NH_aOH
 - (4) 100 mL of 0.1 M HCl + 100 mL of 0.1 M NaOH

IE0358

NEET(UG) (Odisha) 2019

- 23. The pH of 0.01 M NaOH (aq) solution will be
 - (1) 7.01
- (2) 2
- (3) 12
- (4) 9

- 24. Which of the following cannot act both as Bronsted acid and as Bronsted base?
 - (1) HCO₃

(2) NH₃

(3) HCl

(4) HSO₄

IE0360

- The molar solubility of CaF_2 ($\text{K}_{\text{sp}} = 5.3 \times 10^{-11}$) in $0.1\ M$ solution of NaF will be
 - (1) $5.3 \times 10^{-11} \text{ mol L}^{-1}$
- (2) $5.3 \times 10^{-8} \text{ mol L}^{-1}$
- (3) $5.3 \times 10^{-9} \text{ mol L}^{-1}$
- (4) $5.3 \times 10^{-10} \text{ mol L}^{-1}$

IE0361

NEET (UG) 2020

- Find out the solubility of Ni(OH)₂ in 0.1M NaOH. **26**. Given that the ionic product of Ni(OH)₂ is 2×10^{-15} .
 - (1) $1 \times 10^8 \,\mathrm{M}$
- (2) $2 \times 10^{-13} \text{ M}$
- (3) 2×10^{-8} M
- (4) $1 \times 10^{-13} \text{ M}$

IE0414

NEET (UG) 2020 (COVID-19)

- **27**. Which among the following salt solutions is basic in nature?
 - (1) Ammonium chloride
 - (2) Ammonium sulphate
 - (3) Ammonium nitrate
 - (4) Sodium acetate

IE0415

- The solubility product for a salt of the type AB is 4×10^{-8} . What is the molarity of its standard solution?
 - (1) $2 \times 10^{-4} \text{ mol/L}$
- (2) $16 \times 10^{-16} \,\text{mol/L}$
- (3) $2 \times 10^{-16} \text{ mol/L}$
- $(4) 4 \times 10^{-4} \text{ mol/L}$

IE0416

NEET (UG) 2021

- The pK_b of dimethylamine and pK_a of acetic acid **29**. are 3.27 and 4.77 respectively at T (K). The correct option for the pH of dimethylammonium acetate solution is:
 - (1) 8.50
- (2) 5.50
- (3) 7.75
- (4) 6.25

IE0417

NEET(UG) 2021 (Paper-2)

30. Silver iodide is used in cloud seeding to produce rain $AgI_{(s)} \longrightarrow Ag^+ (aq) + I^- (aq)$; $K_{sp} = 8.5 \times 10^{-7}$

 $AgNO_3$ and KI are mixed to give $[Ag^+] = 0.010M$;

- $[I^-] = 0.015 \text{ M. Will AgI precipitate?}$
- (1) Yes
- (2) No
- (3) Can't say
- (4) Depends on $[NO_3^-]$ and $[K^+]$

IE0418

- 31. 100 ml of a mixture of NaOH and Na₂SO₄ is neutralised by 10 ml of 0.5 M H₂SO₄. Hence NaOH in 100 ml solution is
 - (1) 0.2g
- (2) 0.4 g
- (3) 0.6 g

Chemistry: Ionic Equilibrium

(4) 0.8 g **IE0419**

- **32**. 200 mL of 0.1 M H₃BO₃ solution on complete neutralisation requires mL of 0.5 M NaOH
 - (1) 20 mL
- (2) 40 mL
- (3) 120 mL
- (4) 80 mL

IE0420

NEET (UG) 2022

33. The pH of the solution containing 50 mL each of 0.10 M sodium acetate and 0.01 M acetic acid is [Given pK₃ of $CH_3COOH = 4.57$] (4) 5.57

(1) 3.57

(2) 4.57

(3) 2.57

IE0421

NEET (UG) 2022 (OVERSEAS)

- 34. The solubility product of BaSO₄ in water is 1.5×10^{-9} . The molar solubility of BaSO₄ in 0.1 M solution of Ba(NO₃)₂ is
 - $(1) 0.5 \times 10^{-8} \text{ M}$
- (2) 1.5×10^{-8} M
- (3) 1.0×10^{-8} M
- $(4) 2.0 \times 10^{-8} \text{ M}$

IE0422

Re-NEET (UG) 2022

- **35**. 0.01 M acetic acid solution is 1% ionised, then pH of this acetic acid solution is:
 - (1) 3
- (2) 2

(4)1**IE0423**

EXERCISE-II (Previous Year Questions))	ANSWER KEY						
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	2	1	1	1	4	2	3	3	4	3	3	3	3	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	4	4	3	4	1	1	3	3	3	3	2	4	1	3	1
Que.	31	32	33	34	35										
Ans.	2	2	4	2	3										

EXERCISE-III (Analytical Questions)

- 1. The concentration of $[H^+]$ and concentration of $[OH^-]$ of a 0.1 M aqueous solution of 2% ionised weak acid is $[K_w = 1 \times 10^{-14}]$:-
 - (1) $0.02 \times 10^{-3} \text{ M} \text{ and } 5 \times 10^{-11} \text{ M}$
 - (2) 1×10^{-3} M and 3×10^{-11} M
 - (3) $2 \times 10^{-3} \text{ M} \text{ and } 5 \times 10^{-12} \text{ M}$
 - (4) 3×10^{-2} M and 4×10^{-13} M

IE0267

- **2**. The solubility of BaSO₄ in water is 2.33×10^{-3} gL⁻¹. Its solubility product will be (molecular weight of BaSO₄ = 233):-
 - (1) 1×10^{-5}
- (2) 1×10^{-10}
- (3) 1×10^{-15}
- (4) 1×10^{-20}

IE0268

- **3**. What will be the H^+ ion concentration when 4 g NaOH dissolved in 1000 mL of water:
 - $(1) 10^{-1}$
- (2) 10^{-13}
- $(3) 10^{-4}$
- $(4) \ 10^{-10}$

IE0269

- **4.** When 10 mL of 0.1 M acetic acid (pK_a =5.0) is titrated against 10 mL of 0.1 M ammonia solution (pK_b = 5.0), the equivalence point occurs at pH:
 - (1) 5.0
- (2) 6.0
- (3) 7.0
- (4) 9.0

IE0270

- **5.** At 25° C, the dissociation constant of a base BOH is 1.0×10^{-8} . The concentration of hydroxyl ions in 0.01M aqueous solution of the base would be:
 - (1) $1.0 \times 10^{-6} \text{ mol L}^{-1}$
- (2) $1.0 \times 10^{-7} \text{ mol L}^{-1}$
- (3) $2.0 \times 10^{-6} \text{ mol L}^{-1}$
- (4) $1.0 \times 10^{-5} \text{ mol L}^{-1}$

IE0271

- **6**. The solubility product of BaSO₄ at 25° C is 1.0×10^{-9} . What would be the concentration of H_2SO_4 necessary to precipitate BaSO₄ from a solution of 0.01 M Ba⁺² ions:-
 - $(1)\ 10^{-9}$
- $(2)\ 10^{-8}$
- $(3) 10^{-7}$
- $(4) \ 10^{-6}$

IE0272

Master Your Understanding

- **7**. pH of the solution of $HCOONH_4$ is 6.48. This can be explained by :-
 - (1) Hydrolysis of both cation and anion
 - (2) Hydrolysis of cation
 - (3) Hydrolysis of anion
 - (4) Hydrolysis of water

IE0273

- **8.** The correct representation of solubility product of SnS_2 is :-
 - (1) $[Sn^{4+}][S^{2-}]^2$
- (2) $[Sn^{4+}][S^{2-}]$
- (3) $[Sn^{4+}][2S^{2-}]$
- $(4) [Sn^{4+}][2S^{2-}]^2$

IE0274

- **9.** A solution of FeCl₃ in water acts as acidic due to:-
 - (1) Acidic impurities
- (2) Ionisation
- (3) Hydrolysis of Fe³⁺
- (4) Dissociation

IE0275

- **10.** The pK_a of HNO₂ is 3.37. The pH of HNO₂ in its 0.01 mol L^{-1} aqueous solution will be :-
 - (1) 5.37
- (2) 2.69
- (3) 1.69
- (4) 0.69

IE0276

- **11.** When 0.01 M HCl is added in aqueous solution of acetic acid then:-
 - (1) [CH₃COO] decreases
 - (2) [CH₃COOH] decreases
 - (3) [CH₃COO⁻] increases
 - (4) None of these

IE0277

12. Solubility of MX_2 type electrolyte is

 $0.5 \times 10^{-4} \text{ mol L}^{-1}$

then find out $K_{\mbox{\tiny sp}}$ of electrolyte:-

- (1) 5×10^{-12}
- (2) 25×10^{-10}
- (3) 1×10^{-13}
- (4) 5×10^{-13}

IE0279

- **13.** A solution of MgCl₂ in water has pH:
 - (1) < 7
- (2) > 7

(3) 7

(4) 14.2

Chemistry: Ionic Equilibrium

Pre-Medical

- **14.** K_{sp} of Ca_3 (PO₄)₂ is :-
 - (1) $[Ca^{+2}][PO_4^{-3}]^2$
- (2) $[Ca^{+2}]^3 [PO_4^{-3}]^2$
- (3) $[Ca^{+2}]^2[PO_4^{-3}]^3$
- (4) $[Ca^{+2}][PO_4^{-3}]$

IE0284

15. An acid HA has dissociated in following manner HA \rightleftharpoons H⁺ + A⁻

It has concentration 1 M and pH = 5 then find out dissociation constant :-

- (1) 1×10^{-10}
- (2) 1×10^{-5}
- (3) 5×10^{-5}
- (4) 5

IE0285

- **16.** Aqueous solution of $Al_2(SO_4)_3$ is :-
 - (1) Basic & acidic
- (2) Neutral
- (3) Basic
- (4) Acidic

IE0288

17. In a saturated solution of the sparingly soluble salt $AgIO_3$ (Molecular mass = 283). The equilibrium which sets in is

$$AgIO_{3(S)} \longrightarrow Ag^{+}_{(aq)} + IO^{-}_{3(aq)}$$

If the solubility product constant K_{sp} of $AgIO_3$ at a given temperature is 1.0×10^{-8} , what is the mass of $AgIO_3$ contained in 100 mL of its saturated solution :

- (1) 2.83×10^{-3} g
- (2) 1.0×10^{-7} g
- (3) 1.0×10^{-4} g
- (4) 28.3×10^{-2} g

IE0289

- **18.** The solubility product of AgCl is 1×10^{-10} , then molar solubility of AgCl is :-
 - (1) 1×10^{-10}
- (2) 1×10^{-7}
- (3) 1×10^{-5}
- (4) 1×10^{-8}

IE0291

- **19.** $\rm K_a$ for $\rm CH_3COOH$ is 1.8×10^{-5} . Find out the percentage dissociation of 0.2M $\rm CH_3COOH$ in 0.1M HCl solution
 - (1) 0.018
- (2) 0.36
- (3) 18
- (4) 36

IE0293

- **20.** The pK_a of a weak acid HA is 4.80. The pK_b of weak base BOH is 4.78. The pH of an aqueous solution of the corresponding salt BA will be :
 - (1) 9.58
- (2) 4.79
- (3) 7.01
- (4) 9.22

IE0294

- **21.** 0.2M solution of HCOOH is 3.2% ionised then find ionisation constant of acid :-
 - $(1) 4.2 \times 10^{-4}$
- (2) 4.2×10^{-5}
- (3) 2.1×10^{-4}
- (4) 2.1×10^{-5}

IE0295

- **22.** Three reactions involving $H_2PO_4^-$ are given below:
 - (i) $H_3PO_4 + H_2O \rightarrow H_3O^+ + H_2PO_4^-$
 - (ii) $H_2PO_4^- + H_2O \rightarrow HPO_4^{2-} + H_3O^+$
 - (iii) $H_2PO_4^- + OH^- \rightarrow H_3PO_4 + O^{2-}$

In which of the above does $H_2PO_4^-$ act as an acid?

- (1) (i) only
- (2) (ii) only
- (3) (i) and (ii)
- (4) (iii) only

IE0296

- **23.** Given that for HA acid, $K_a = 10^{-6}$ and for MOH base $K_b = 10^{-6}$. The pH of 0.1 M MA salt solution will be:-
 - (1) 5

(2) 7

(3)9

(4) 2

IE0297

- **24.** The K_{sp} for $Cr(OH)_3$ is 1.6×10^{-30} . The molar solubility of this compound in water is :-
 - (1) $\sqrt[2]{1.6 \times 10^{-30}}$
- (2) $\sqrt[4]{1.6 \times 10^{-30}}$
- (3) $\sqrt[4]{1.6 \times 10^{-30} / 27}$
- (4) $1.6 \times 10^{-30}/27$

IE0298

25. An acid HA ionises as

$$HA \Longrightarrow H^+ + A^-$$

The pH of 1.0 M solution is 5. Its dissociation constant would be :-

- (1) 1×10^{-10}
- (2)5
- (3) 5×10^{-8}
- (4) 1×10^{-5}

IE0299

- **26.** The pH of a 0.1 molar solution of the acid HQ is 3. The value of the ionization constant, K_a of this acid is :-
 - (1) 1×10^{-7}
- (2) 3×10^{-7}
- (3) 1×10^{-3}
- (4) 1×10^{-5}

- **27.** What volume of $0.1 \text{M} \ \text{H}_2 \text{SO}_4$ is needed to completely neutralize 40 mL of $0.2 \text{M} \ \text{NaOH}$ solution—
 - (1) 10 mL
- (2) 40 mL
- (3) 20 mL
- (4) 80 mL
- IE0302
- **28.** If pH value of a solution is 3 and on adding water, it becomes 6, then the dilution is increased by :
 - (1) 10 times
- (2) 100 times
- (3) 500 times
- (4) 1000 times

- **29.** In the reaction $I_2 + \overline{\Gamma} \rightarrow \overline{I_3}$, the Lewis base is :
 - (1) I⁻

(2) I₂

(3) I_3^-

(4) None of these

IE0305

- **30.** Which one of the following compounds is not a protonic acid:
 - (1) B(OH)₃
- (2) PO(OH)₃
- (3) SO(OH)₂
- (4) SO₂(OH)₂

IE0307

- **31.** Which one of the following is NOT a buffer solution:-
 - $(1) 0.8M H_9S + 0.8M KHS$
 - (2) $2M C_6 H_5 N H_2 + 2M C_6 H_5 N^{\dagger} H_3 Br$
 - (3) 3M H₂CO₃ + 3M KHCO₃
 - (4) $0.05M \text{ KClO}_4 + 0.05M \text{ HClO}_4$

IE0308

- **32.** The rapid change of pH near the end point of an acid-base titration is the basis of indicator detection. pH of the solution is related to ratio of the concentrations of the conjugate acid (HIn) and base (In) forms of the indicator by the expression:-
 - (1) $\log \frac{[HIn]}{[In^{-}]} = pK_{In} pH$
 - (2) $\log \frac{[HIn]}{[In^-]} = pH pK_{In}$
 - (3) $\log \frac{[In^{-}]}{[HIn]} = pH + pK_{In}$
 - (4) $\log \frac{[In^{-}]}{[HIn]} = pK_{In} pH$

IE0309

- **33.** The correct order of acidic strength is
 - (1) HClO₄ < HClO₃ < HClO₂ < HClO
 - (2) HClO₂ < HClO₃ < HClO₄ < HClO
 - (3) HClO₄ < HClO < HClO₂ < HClO₃
 - (4) HClO < HClO₂ < HClO₃ < HClO₄

IE0311

- **34.** Concentrations of NH_4Cl and NH_4OH in a buffer solution are in the ratio 1:10. If K_b for NH_4OH is 10^{-10} , then pH of the buffer is :-
 - (1)
- (2) 5
- (3) 9
- (4) 11

IE0312

35. When HF is dissolved in formic acid, the equilibrium established is :-

$$HF + HCOOH \Longrightarrow F^- + HCOOH_2^+$$

the pair of species acting as [acid, conjugate acid] and [Base, conjugate base] respectively are :-

- (1) (HF, HCOOH) and (HCOOH₂⁺, F⁻)
- (2) (HF, HCOOH, +) and (HCOOH, F)
- (3) (HCOOH₂⁺, HF) and (F⁻, HCOOH)
- (4) (HF, F) and (HCOOH₂+, HCOOH)

IE0314

- **36.** In a mixture of equimolar solutions of NaHCO₃ and NaOH, the species present in solution shall he:-
 - (1) Na₂CO₃
- (2) NaHCO₃ + NaOH
- (3) NaOH
- (4) NaHCO₃ + Na₂CO₃

IE0316

- **37.** An aqueous solution contains $[H^+] = 10^{-4}$. If it is diluted by mixing equal volume of water then the concentration of OH^- in mol dm⁻³ will be :-
 - (1) 0.5×10^{-10}
- (2) 2×10^{-10}
- $(3) 10^{-6}$
- $(4)\ 10^{-8}$

IE0317

- **38.** Which of the following is right for diprotic acid:
 - (1) $K_{a_2} > K_{a_1}$
- (2) $K_{a_1} > K_{a_2}$
- (3) $K_{a_2} > \frac{1}{K_a}$
- (4) $K_{a_2} = K_{a_1}$

- **39.** The first and second dissociation constants of an acid H_2A are 1.0×10^{-5} and 5.0×10^{-10} respectively. The overall dissociation constant of the acid will be:-
 - $(1)\ 5.0 \times 10^{15}$
- (2) 5.0×10^{-15}
- (3) 0.2×10^5
- $(4) 5.0 \times 10^{-5}$

- **40.** 50 mL solution of 0.1M CH₃COOH (pK₃=4.73) is titrated with 0.1M NaOH solution, pH of solution when half of CH₃COOH is neutralized
 - (1) 4.53
- (2)4.63
- (3) 4.73
- (4) 4.83

- The pH of an aqueous solution of a 1×10^{-7} M solution of HCl will be :-
 - (1) 7
 - (2) slightly less than 7
 - (3) slightly greater than 7
 - (4) 1

IE0323

- **42**. What will be the concentration of H^{\oplus} ions in a solution containing 0.1M acetic acid and 0.1M sodium acetate if dissociation constant of acetic acid is 1.8×10^{-5} :
 - (1) 1.8×10^{-7}
- (2) 1.8×10^{-5}
- (3) 1.8×10^{-2}
- (4) 1.8×10^{-3}

IE0324

- **43.** Which of the following pair constitutes a buffer :-
 - (1) HNO₂ & NaNO₂
- (2) NaOH & NaCl
- (3) HNO₃ & NH₄NO₃
- (4) HCl & KCl

IE0218

- 44. The hydrogen ion concentration of a 10-8 M HCl aqueous solution at 298 K ($K_W = 10^{-14}$) is :-
 - (1) 1.0×10^{-6} M
- (2) 1.0525×10^{-7} M
- (3) 9.525×10^{-8} M
- $(4) 1.0 \times 10^{-8} \text{ M}$

IE0219

45. Calculate the pOH of a solution at 25° C that contains 1×10^{-10} M of hydronium ions, i.e., H_2O^+ (1) 7.000 (2) 4.000 (3) 9.000(4) 1.000

IE0221

- **46.** A weak acid HA has a K_a of 1.00×10^{-5} . If 0.100 moles of this acid is dissolved in one litre of water. The percentage of acid dissociated at equilibrium is closest to :-
 - (1) 99.0%
- (2) 1.00%
- (3) 99.9% (4) 0.100%

IE0222

- Equimolar solutions of the following prepared in water separately. Which one of the solutions will record the highest pH?
 - (1) BaCl₂
- (2) MgCl₂

Chemistry: Ionic Equilibrium

- (3) CaCl₂
- (4) SrCl₂

IE0223

- **48**. Equal volumes of three acid solutions of pH 3, 4 and 5 are mixed in a vessel. What will be the H⁺ ion concentration in the mixture?
 - $(1) 3.7 \times 10^{-4} \text{ M}$
- (2) $3.7 \times 10^{-3} \text{ M}$
- (3) $1.11 \times 10^{-3} \text{ M}$
- $(4) 1.11 \times 10^{-4} M$

IE0224

- **49**. NaCl exists in ...(X)... state as a cluster of positively charged sodium ions and negatively charged chloride ions which are held together due to ...(Y).... interactions between oppositely charged species. Here, (X) and (Y) refer to
 - (1) solid, covalent
 - (2) solid, electrostatic
 - (3) gaseous, covalent
 - (4) gaseous, electrostatic

IE0362

- **50**. At 25°C, calculate the pH of 500 mL of aqueous solution containing 0.74 gm of Ca(OH), ?
 - (1) 1.4
- (2) 12.6
- (3) 2.8

(4) 11.2

IE0363

- **51**. Determine the volume of water required to dissolve 20mg of CaSO₄ at 298 K.
 - $(K_{sp} \text{ of } CaSO_4 \text{ at } 298K = 9 \times 10^{-6})$
 - (1) 4.9 ml
- (2) 490 ml
- (3) 0.49 ml
- (4) 49 ml

IE0364

- **52**. 0.01 M NaX solution is 1% hydrolysed. Find the ionisation constant of weak acid HX and pH of NaX solution.
 - $(1) 10^{-6}$. 8
- $(2)\ 10^{-8}$. 9
- $(3) 10^{-8}, 8.5$
- $(4)\ 10^{-8}$. 10

- **53.** Point out the conjugate acids for the following Bronsted bases NH_2^- , NH_3 and $HCOO^-$ respectively
 - (1) NH_3 , NH_2^- and HCOOH
 - (2) $\mathrm{NH_3}$, $\mathrm{NH_4}^+$ and HCOOH
 - (3) N^{-3} , NH_2^{-2} and HCOOH
 - (4) NH_2^- , NH_4^+ and HCOOH

EXERCISE-III (Analytical Questions)									ANSWER KEY						
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	2	2	3	4	4	1	1	3	2	1	4	1	2	1
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	4	1	3	1	3	3	2	2	3	1	4	2	4	1	1
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	4	1	4	2	2	1	2	2	2	3	2	2	1	2	2
Que.	46	47	48	49	50	51	52	53							
Ans.	2	1	1	2	2	4	4	2							