§ 1 Определения

Определение 1. Пусть K — поле. Рассмотрим множество V с двумя операциями

$$+: V \times V \to V$$

 $\cdot: K \times V \to V$

Тогда V — линейное пространство над K, если $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\alpha_i \in K$

1.
$$(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$$

2.
$$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{z}$$

3.
$$\exists 0 \in V : \mathbf{x} + \mathbf{0} = \mathbf{x}$$

4.
$$\exists (-\mathbf{x}) \in V : \mathbf{x} + (-\mathbf{x}) = \mathbf{0}$$

5.
$$(\alpha_1 + \alpha_2)\mathbf{x} = \alpha_1\mathbf{x} + \alpha_2\mathbf{x}$$

6.
$$\alpha(\mathbf{x}_1 + \mathbf{x}_2) = \alpha \mathbf{x}_1 + \alpha \mathbf{x}_2$$

7.
$$1 \cdot \mathbf{x} = \mathbf{x}$$

8.
$$(\alpha_1 \alpha_2) \mathbf{x} = \alpha_1 (\alpha_2 \mathbf{x})$$

Определение 2. Пусть U, V — линейные пространства над $K, U \subset V$. Тогда U — подпространство V.

Определение 3. Пусть V — линейное пространства над K, $\mathbf{x}_1, \dots, \mathbf{x}_n \in V$, $\alpha_1, \dots, \alpha_n \in K$. Тогда $\alpha_1 \mathbf{x}_1 + \dots + \alpha_n \mathbf{x}_n$ — линейная комбинация $\mathbf{x}_1, \dots, \mathbf{x}_n$.

Лемма 1. Пусть U, V — линейные пространства над $K, U \subset V$. Тогда если U замкнуто относительно $+, \cdot$ из V, то U — подпространство V.

▼

Формулировка леммы аналогична тому, что всякая линейная комбинация элементов U лежит в нем же. Нужная дистрибутивность, ассоциативность и т.д. унаследуется от соответствующих операций в надпространстве, так как их свойства заданы на всём множестве V, а значит и на подмножестве U. Однако в некоторых свойствах требовалось существование в множестве чего-нибудь. Покажем, что все эти требования равносильны существованию линейной комбинации.

3.
$$\exists \mathbf{0} \in U \Leftarrow \exists 0 \cdot \mathbf{x}, \ \mathbf{x} \in U$$

4.
$$\exists -\mathbf{x} \in U \Leftarrow \exists (-1) \cdot \mathbf{x}, \ \mathbf{x} \in U$$

•

Определение 4. Пусть V — линейное пространства над $K,\,M\subset V$

$$\langle M \rangle = \left\{ \alpha_1 \mathbf{x}_1 + \dots + \alpha_n \mathbf{x}_n \middle| \left\{ \begin{array}{l} \alpha_1, \dots, \alpha_n \in K \\ \mathbf{x}_1, \dots, \mathbf{x}_n \in M \end{array} \right\} \right.$$

 $\langle M \rangle$ — линейная оболочка M.

Лемма 2. Верны утверждения:

- 1. $\langle M \rangle$ $nodnpocmpaнcmso\ V$
- 2. $\langle M \rangle = \bigcap_i W_i, \ W_i \supset M, \ W_i \ \ nodnpocmpaнcmso \ V$

▼

Доказательства очень похожи на соответствующие в теории групп.

▲ `

§ 2 Линейная независимость системы векторов

Определение 1. Пусть $\mathbf{x}_1, \dots, \mathbf{x}_n \in V, \alpha_1, \dots, \alpha_n \in K$. Тогда если

$$\alpha_1 \mathbf{x}_1 + \dots + \alpha_n \mathbf{x}_n = 0 \Leftrightarrow \forall i \ \alpha_i = 0$$

то система векторов $\mathbf{x}_1,\dots,\mathbf{x}_n$ линейно независима.