Exercises for Module 5: Topology

1. Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$. Prove that

f is Lipschitz continuous $\,\Rightarrow f$ is uniformly continuous $\,\Rightarrow f$ is continuous.

Provide examples to show that the other directions do not hold.

2. Show that the function $f(x) = \frac{1}{2}(x + \frac{5}{x})$ has a unique fixed point on $(0, \infty)$. What is it? (Hint: you will have to restrict the interval.)

3.	Prove	the	following:	If two	metrics	are	strongly	equivalent	t then	thev	are	equivale	ent.

4. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . Show that $\lim_{n\to\infty}x_n=0$ if and only if $\limsup_{n\to\infty}|x_n|=0$.

3. Let (X, \mathcal{T}) be a topological space. Prove that $A \subseteq X$ is closed if and only if $\overline{A} = A$.

4. Let (X,\mathcal{T}) be a topological space and $\{A_i\}_{i\in I}$ be a collection of subsets of X. Show that

$$\bigcup_{i\in I} \overline{A_i} \subseteq \overline{\bigcup_{i\in I} A_i}.$$

Show that if the collection is finite, the two sets are equal.

5. Let (X,\mathcal{T}) be a topological space and $\{A_i\}_{i\in I}$ be a collection of subsets of X. Prove that

$$\overline{\bigcap_{i\in I} A_i} \subseteq \bigcap_{i\in I} \overline{A_i}.$$

Find a counterexample that shows that equality is not necessarily the case.