1	2	3	4	5

APELLIDO Y NOMBRE:

No. de libreta:

Carrera:

ALGEBRA - FINAL (15/5/03)

1.— Sea $(a_n)_{n\in\mathbb{N}}$ la sucesión de números reales definida por

$$a_1 = -1,$$
 $a_{n+1} = 3a_n - (6n+3)3^n - 2^n \quad (n \in \mathbb{N})$

Probar que $a_n = 2^n - n^2 3^n$.

- **2.** Determinar cuántas funciones **inyectivas** $f: \{1, 2, 3, ..., 50\} \longrightarrow \{1, 2, 3, ..., 60\}$ satisfacen simultáneamente las dos condiciones siguientes:
 - i) $f(i) \ge 30$ para todo $i \le 25$
 - ii) $f(i) \le 30$ para todo $i \ge 25$
- **3.** Sea $a \in \mathbb{Z}$ tal que $(a^{182} 26 : 130) = 13$. Calcular $(a^{25} 39 : 2.5^3.13^2)$.
- **4.** Hallar todos los $z \in G_8$ tales que $\sum_{k=0}^{60} z^{2k} = z^{12}$.
- 5.- Sea $f \in \mathbb{C}[X]$ y sea $g = (X-2)^5 f (X-2)^6 f'$. Probar que si 2 es raíz de f con multiplicidad 3 entonces 2 es raíz de g con multiplicidad 8.

Se considerarán sólo las respuestas bien justificadas.