EIRA VAUGHN

High-Performance Computing Specialist

- e.vaughn@email.com
- **1** (123) 456-7890
- Alpharetta, GA
- in LinkedIn

EDUCATION

Master of Science Computational Science and Engineering

Georgia Institute of Technology

- **2016 2018**
- Atlanta, GA

Bachelor of Science Computer Science and Engineering

Massachusetts Institute of Technology

- **2012 2016**
- Cambridge, MA

SKILLS

MPI; Slurm; Lustre; CUDA; Vampir ; Intel Parallel Studio XE; Fortran; BLAS; AWS ParallelCluster; ParaView

CERTIFICATIONS

 Certified HPC Professional (CHPC)

WORK EXPERIENCE

High-Performance Computing Specialist

Hewlett Packard Enterprise

- ## 2021 current
- Alpharetta, GA
- Upgraded storage infrastructure with Lustre, enabling seamless data throughput of 1.2 TB/hour for genomic sequencing workflows
- Improved application runtime monitoring with Vampir, identifying bottlenecks and reducing code execution delays by 2.3 hours per iteration
- Developed advanced numerical algorithms using Fortran for weather modeling, reducing simulation processing time by 13 hours for daily forecasts
- Integrated Intel Parallel Studio XE's compilers for C++ and Fortran, reducing job completion time by 17% across 152 nodes and saving \$14.3K per year in upgrades

Software Developer

Honeywell

- Atlanta, GA
- Expanded application scalability by optimizing GPU acceleration using CUDA, enabling support for 1.2k concurrent users
- Analyzed API performance for distributed systems, enhancing inter-node communication with MPI, cutting latency by nine milliseconds
- Designed cross-platform simulation tools using Lustre, enabling seamless data access for 643+ global users, improving data sharing efficiency
- Processed 196TB of simulation data monthly using AWS
 ParallelCluster, saving \$44k yearly on cloud infrastructure costs

IT Support Technician

IBM

- **==** 2016 2018
- Atlanta, GA
- Spearheaded the deployment of Slurm across new clusters, reducing job scheduling setup time by 12 hours per cluster
- Overhauled GPU resource management using CUDA, accelerating rendering times 8X for multimedia applications
- Approved the adoption of BLAS-based libraries in 12 analytical tools, improving matrix operation processing times for finance and logistics teams
- Monitored visualization tools like ParaView for real-time support during client presentations, enhancing presentation reliability by 96%