Random Forest Classifier: Model Summary

Why Random Forest?

Random Forest is an **ensemble learning method** that combines multiple decision trees to improve classification accuracy and reduce overfitting. It works especially well in high-dimensional spaces like text classification (e.g., TF-IDF-based vectorized text).

We chose Random Forest because:

- It's **robust to noise and overfitting** due to averaging of multiple trees.
- It handles **multiclass problems** (like review ratings: 1–5) efficiently.
- It can model **nonlinear relationships** between text features and ratings.
- It supports class balancing via class_weight='balanced', which is helpful when data is imbalanced.

Model Training Logic

We trained the Random Forest using GridSearchCV to tune hyperparameters and find the best configuration.

Training pipeline:

- 1. Preprocessed the review text (punctuation removal, lowercase, stopword removal, lemmatization).
- 2. Converted text to numerical features using **TF-IDF vectorization**.
- 3. Split the dataset into train/test using **stratified sampling** to preserve class balance.
- 4. Applied GridSearchCV with 3-fold cross-validation to search the best combination of:
 - o n estimators: number of trees
 - o max_depth: how deep each tree grows
 - o min samples split and min samples leaf: tree pruning controls
 - o max features: how many features are considered when splitting
 - o class_weight: automatic balancing of class weights

```
grid = GridSearchCV(rf, param_grid, cv=3, scoring='f1_macro', verbose=2, n_jobs=-1)
grid.fit(X train tfidf, y train)
```

Model Evaluation and Results

After training the model with the best parameters, we evaluated it using the test set:

```
best_model = grid.best_estimator_
y_pred = best_model.predict(X_test_tfidf)
print(classification report(y test, y pred))
```

precision	recall	f1-score	support	
1	0.48	0.58	0.53	400
2	0.35	0.32	0.33	400
3	0.36	0.30	0.33	400
4	0.39	0.37	0.38	400
5	0.52	0.56	0.54	400
accuracy			0.43	2000
macro avg	0.42	0.43	0.42	2000
weighted avg	0.42	0.43	0.42	2000

Interpretation of Results

- **Accuracy:** ~43%, better than random guessing (which would be 20% in a 5-class problem).
- Best performance was seen on **1-star and 5-star ratings**, likely because those reviews contain more polarized language.
- Lower precision/recall on middle ratings (2, 3, 4), which is common in subjective review analysis.

Summary

Feature	Value		
Algorithm	Random Forest		
Vectorization	TF-IDF		
Hyperparameter Tuning	Yes (GridSearchCV)		
Class Handling	Stratification + class_weight=balanced		
Accuracy	~43%		
Strengths	Robust, easy to interpret, good for tabular & text data		
Limitations	Slower for large grid searches, limited performance on fuzzy boundaries (e.g., rating 3 vs 4)		