SHRI S. H. KELKAR COLLEGE OF ARTS, COMMERCE & SCIENCE, DEVGAD SEMESTER IV EXAMINATION, 2022-23

Debattaeur St.

Class: S. Y. P. Sc Duration: 3 hrs

USPH402

Quantum Physics

Marks: 100

Q.1) A. Select the correct alternative

- Waves associated with moving particles are called
 - a. Matter waves
 - b. Probability waves
 - c. De Broglie waves
 - d. All of the above
- All radiations consists of invisible tiny bundles of energy. For light waves these bundles are called
 - a. Phonons
 - b. Plasmons
 - c. Photons
 - d. Phynons
- 3. Phenomenon of emission of electrons from metal surface on incidence of suitable radiations is called
 - a. Photoelectric effect
 - b. Mangeto-striction effect
 - c. Photovoltaic effect
 - d. Dynamic effect

(12)

- 4. Classically, particle with energy less than barrier height must get
 - a. Transmitted
 - b. Reflected
 - c. Annihilated
 - d. Propagated
- 5. Energy of particles gets restricted to certain allowed values is known
 - a. Optimization
 - b. Generalization
 - c. Annihilation
 - d. Quantization
- 6. Expectation value position <x> of a particle in a box is
 - a. 0
 - b. ½
 - c. Infinite
 - d. -1/2

B) Answer in short

(08)

- 1. What is a wave function?
- 2. Write the time-energy uncertainty relation.
- 3. Write one dimensional time dependant Schrodinger equation.
- 4. What is a free particle?

Q.2) A) Attempt any one of the following

(08)

- 1. Derive classical wave equation considering one dimensional SHM.
- 2. Derive schrodinger's time dependent equation. What do you mean by wave function?

B) Attempt any one of the following

(80

- 1. Write the concept of well behaved wave function and state the procedure to normalize a wave function.
- 2. Derive schrodinger's time independent equation.

C) Attempt any one of the following

(04)

- 1. Show that wave function add but not the probability.
- 2. Find expectation value of rnomentum for a wave function $\varphi = \sqrt{\frac{2}{l}} \sin \frac{\pi x}{l}$ for the region 0 < x < 1

Q.3) A) Attempt any one of the following

(08)

- 1. Set up Schrodinger equation for a free particle. Solve the equation to obtain eigen function.
- Set up Schrödinger equation for the particle approaching towards a step potential with energy greater than height of the state. Solve the equation & obtain expression for reflection co-efficient.

B) Attempt any one of the following

1. A classical particle is moving in x direction incident on rectangular barrier of height V₀.

Discuss the motion of particle.

2. Particle is incident on step of height V₀. The energy E of particles is less than V₀. Set up the STIE.

C) Attempt any one of the following

(04)

- 1. Write a note on tunnel effect.
- 2. α particle of energy 10 MeV approaches a potential barrier of height 50 MeV and width 10^{-15} m. Determine the transmission co-efficient. (Mass of α particle = 6.68×10^{-27} kg, \hbar = 1.054×10^{-34} J/s)

Q.4) A) Attempt any one of the following

(08

- 1. Using normalized wave function for particle in one dimensional well find expectation value of position and momentum of the particle.
- 2. Set up Schrödinger equation for a particle in one dimensional box solve it to obtain energy Eigen function and normalization

B) Attempt any one; of the following

(08)

- 1. Set up Schrödinger equation for particle a confined to a cubical rigid box and obtain normalize Eigen function the particle.
- 2. Find energies of five lowest energy levels of a particle in a cubic box. Which of these levels are degenerate? Find their degeneracy.

C) Attempt arry one of the following

(04)

- 1. Find probability of a particle trapped in one dimensional box length L can be found between 0.45 L and 0.55 L in the ground state.
- 2. Show that energy state $E = \frac{66 \text{ h}^2}{8 \text{ mL}^2}$ of a particle in cubical box is 12 fold degenerate.

Q.5) Attem pt any four

(20)

- 1. Find the expectation value of position <x> of a particle in one dimensional box.
- 2. Draw energy level diagram, and diagram showing wave function and probability density on a particle on one dimensional box.
- 3. Write difference between free states and bound states of particle.
- 4. Write any three postulates of quantum mechanics.
- 5. Write operators for
 - i. Momentum
- ii. Total energy
- iii. Kinetic energy

iv. Hamilton operator

6. Derive expression for angular momentum operator, L.

