Содержание

1	Лег	кция от 08.02.17. Случайные блуждания	1
	1.1	Понятие случайного блуждания	1
	1.2	Случайные блуждания	2
	1.3	Исследование случайного блуждания с помощью характери-	
		стической функции	5
2	Лекция от 15.02.17. Ветвящиеся процессы и процессы вос-		
	ста	новления	7
	2.1	Модель Гальтона-Ватсона	7
	2.2	Процессы восстановления	10
3	Лекция от 22.02.17. Пуассоновские процессы		
	3.1	Процессы восстановления (продолжение)	11
	3.2	Сопоставление исходного процесса восстановления со вспомо-	
		гательным	12
	3.3	Элементарная теорема восстановления	13
	3.4	Пуассоновский процесс как процесс восстановления	15
C	писо	к литературы	19
Предметный указатель			

1 Лекция от 08.02.17

Случайные блуждания

1.1 Понятие случайного блуждания

Определение 1.1. Пусть V — множество, а \mathscr{A} — σ -алгебра его подмножеств. Тогда (V,\mathscr{A}) называется измеримым пространством.

Определение 1.2. Пусть есть (V,\mathscr{A}) и (S,\mathscr{B}) — два измеримых пространства, $f\colon V\to S$ — отображение. f называется \mathscr{A}/\mathscr{B} -измеримым, если $\forall\, B\in\mathscr{B}\, f^{-1}(B)\in\mathscr{A}$. Обозначение: $f\in\mathscr{A}/\mathscr{B}$.

Определение 1.3. Пусть есть $(\Omega, \mathscr{F}, \mathsf{P})$ — вероятностное пространство, (S, \mathscr{B}) — измеримое пространство, $Y \colon \Omega \to S$ — отображение. Если $Y \in \mathscr{F}|\mathscr{B}$, то Y называется *случайным элементом*.

Определение 1.4. Пусть $(\Omega, \mathscr{F}, \mathsf{P})$ — вероятностное пространство, (S, \mathscr{B}) — измеримое пространство, $Y \colon \Omega \to S$ — случайный элемент. Pac-пределение вероятностей, индуцированное случайным элементом Y, - это функция на множествах из \mathscr{B} , задаваемая равенством

$$\mathsf{P}_Y(B) := \mathsf{P}(Y^{-1}(B)), \quad B \in \mathscr{B}.$$

Определение 1.5. Пусть $(S_t, \mathcal{B}_t)_{t \in T}$ — семейство измеримых пространств. Случайный процесс, ассоциированный с этим семейством,— это семейство случайных элементов $X = \{X(t), t \in T\}$, где

$$X(t): \Omega \to S_t, \ X(t) \in \mathscr{F}|\mathscr{B}_t \ \forall t \in T.$$

Здесь T — это произвольное параметрическое множество, (S_t, \mathscr{B}_t) — произвольные измеримые пространства.

Замечание. Если $T \subset \mathbb{R}$, то $t \in T$ интерпретируется как время. Если $T = \mathbb{R}$, то время непрерывно; если $T = \mathbb{Z}$ или $T = \mathbb{Z}_+$, то время дискретно; если $T \subset \mathbb{R}^d$, то говорят о случайном поле.

Определение 1.6. Случайные элементы X_1,\ldots,X_n называются nesaeucu-мымu, если $\mathsf{P}\left(\bigcap_{k=1}^n \left\{X_k \in B_k\right\}\right) = \prod_{k=1}^n \mathsf{P}(X_k \in B_k) \ \forall \, B_1 \in \mathscr{B}_1,\ldots,\, B_n \in \mathscr{B}_n.$

Теорема 1.1 (Ломницкого-Улама). Пусть $(S_t, \mathcal{B}_t, \mathsf{Q}_t)_{t \in T}$ — семейство вероятностных пространств. Тогда на некотором $(\Omega, \mathscr{F}, \mathsf{P})$ существует семейство независимых случайных элементов $X_t \colon \Omega \to S_t, \ X_t \in \mathscr{F}|\mathscr{B}_t$ таких, что $\mathsf{P}_{X_t} = \mathsf{Q}_t, \ t \in T$.

Замечание. Это значит, что на некотором вероятностном пространстве можно задать независимое семейство случайных элементов с наперед указанными распределениеми. При этом T по-прежнему любое, как и $(S_t, \mathcal{B}_t, \mathsf{Q})_{t \in T}$ произвольные вероятностные пространства. Независимость здесь означает независимость в совокупности \forall конечного поднабора.

1.2 Случайные блуждания

Определение 1.7. Пусть X, X_1, X_2, \ldots независимые одинаково распределенные случайные векторы со значениями в \mathbb{R}^d . Случайным блужданием в \mathbb{R}^d называется случайный процесс с дискретным временем $S = \{S_n, n \ge 0\}$ $(n \in \mathbb{Z}_+)$ такой, что

$$S_0 := x \in \mathbb{R}^d$$
 (начальная точка); $S_n := x + X_1 + \ldots + X_n, \quad n \in \mathbb{N}.$

Определение 1.8. *Простое случайное блуждание в* \mathbb{Z}^d — это такое случайное блуждание, что

$$P(X = e_k) = P(X = -e_k) = \frac{1}{2d},$$

где
$$e_k = (0, \dots, 0, \underbrace{1}_{k}, 0, \dots, 0), \ k = 1, \dots, d.$$

Определение 1.9. Введем $N:=\sum\limits_{n=0}^{\infty}\mathbb{I}\{S_n=0\}\ (\leqslant\infty)$. Это, по сути, число попаданий нашего процесса в точку 0. Простое случайное блуждание $S=\{S_n,n\geqslant 0\}$ называется возвратным, если $\mathsf{P}(N=\infty)=1;$ невозвратным, если $\mathsf{P}(N<\infty)=1.$

Замечание. Далее считаем, что начальная точка случайного блуждания—

Определение 1.10. Число $\tau := \inf\{n \in \mathbb{N} : S_n = 0\}$ ($\tau := \infty$, если $S_n \neq 0$ $\forall n \in N$) называется моментом первого возвращения в θ .

Замечание. Следует понимать, что хотя определение подразумевает, что $P(N=\infty)$ равно либо 0, либо 1, пока что это является недоказанным фактом. Это свойство будет следовать из следующей леммы.

Лемма 1.2. Для $\forall n \in \mathbb{N}$

$$P(N = n) = P(\tau = \infty) P(\tau < \infty)^{n-1}.$$

Доказатель ство. При n=1 формула верна: $\{N=1\}=\{\tau=\infty\}$. Докажем по индукции.

$$\begin{split} \mathsf{P}(N = n+1, \tau < \infty) &= \sum_{k=1}^{\infty} \mathsf{P}(N = n+1, \tau = k) = \\ &= \sum_{k=1}^{\infty} \mathsf{P}\left(\sum_{m=0}^{\infty} \mathbb{I}\{S_{m+k} - S_k = 0\} = n, \tau = k\right) = \\ &= \sum_{k=1}^{\infty} \mathsf{P}\left(\sum_{m=0}^{\infty} \mathbb{I}\left\{S_m' = 0\right\} = n\right) \mathsf{P}(\tau = k) = \\ &= \sum_{k=1}^{\infty} \mathsf{P}(N' = n) \, \mathsf{P}(\tau = k), \end{split}$$

где N' определяется по последовательности $X_1' = X_{k+1}, \ X_2' = X_{k+2}$ и так далее. Из того, что X_i — независиые одинаково распределенные случайные векторы, следует, что N' и N распределены одинаково. Таким образом, получаем, что

$$P(N = n + 1, \tau < \infty) = P(N = n) P(\tau < \infty).$$

Заметим теперь, что

$$P(N = n + 1) = P(N = n + 1, \tau < \infty) + P(N = n + 1, \tau = \infty),$$

где второе слагаемое обнуляется из-за того, что $n+1\geqslant 2$. Из этого следует, что

$$P(N = n + 1) = P(N = n) P(\tau < \infty).$$

Пользуемся предположением индукции и получаем, что

$$P(N = n + 1) = P(\tau = \infty) P(\tau < \infty)^n$$

что и завершает доказательство леммы.

Следствие. $P(N=\infty)$ равно θ или 1. $P(N<\infty)=1\Leftrightarrow P(\tau<\infty)<1$.

Доказательство. Пусть $P(\tau < \infty) < 1$. Тогда

$$\begin{array}{l} \mathsf{P}(N<\infty) = \sum\limits_{n=1}^{\infty} \mathsf{P}(N=n) = \sum\limits_{n=1}^{\infty} \mathsf{P}(\tau=\infty) \, \mathsf{P}(\tau<\infty)^{n-1} = \frac{\mathsf{P}(\tau=\infty)}{1-\mathsf{P}(\tau<\infty)} = \\ = \frac{\mathsf{P}(\tau=\infty)}{\mathsf{P}(\tau=\infty)} = 1. \end{array}$$

Это доказывает первое утверждение следствия и импликацию справа налево в формулировке следствия. Докажем импликацию слева направо.

$$\mathsf{P}(\tau < \infty) = 1 \Rightarrow \mathsf{P}\left((\tau = \infty) = 0\right) \Rightarrow \mathsf{P}(N = n) = 0 \; \forall \, n \in \mathbb{N} \Rightarrow \mathsf{P}(N < \infty) = 0.$$
 Следствие доказано.

Теорема 1.3. Простое случайное блуждание в \mathbb{Z}^d возвратно \Leftrightarrow $\mathsf{E} N = \infty$ (соответственно, невозвратно \Leftrightarrow $\mathsf{E} N < \infty$).

Доказательство. Если $\mathsf{E} N<\infty,$ то $\mathsf{P}(N<\infty)=1.$ Пусть теперь $\mathsf{P}(N<<\infty)=1.$ Это равносильно тому, что $\mathsf{P}(\tau<\infty)<1.$

$$\begin{split} \mathsf{E} N &= \sum_{n=1}^\infty n \, \mathsf{P}(N=n) = \sum_{n=1}^\infty n \, \mathsf{P}(\tau=\infty) \, \mathsf{P}(\tau<\infty)^{n-1} = \\ &= \mathsf{P}(\tau=\infty) \sum_{n=1}^\infty n \, \mathsf{P}(\tau<\infty)^{n-1}. \end{split}$$

Заметим, что

$$\sum_{n=1}^{\infty} np^{n-1} = \left(\sum_{n=1}^{\infty} p^n\right)' = \left(\frac{1}{1-p}\right)' = \frac{1}{(1-p)^2}.$$

Тогда, продолжая цепочку равенств, получаем, что

$$P(\tau = \infty) \sum_{n=1}^{\infty} n Prob(\tau < \infty)^{n-1} = \frac{P(\tau = \infty)}{(1 - P(\tau < \infty))^2} = \frac{1}{1 - P(\tau < \infty)},$$

что завершает доказательство теоремы.

3амечание. Заметим, что поскольку $N=\sum\limits_{n=0}^{\infty}\mathbb{I}\{S_n=0\},$ то

$$\mathsf{E} N = \sum_{n=0}^{\infty} \mathsf{E} \mathbb{I} \{ S_n = 0 \} = \sum_{n=0}^{\infty} \mathsf{P} (S_n = 0),$$

где перестановка местами знаков матожидания и суммы возможна в силу неотрицательности членов ряда. Таким образом,

$$S$$
 возвратно $\Leftrightarrow \sum_{n=0}^{\infty} \mathsf{P}(S_n=0) = \infty.$

Следствие. S возвратно $npu \ d = 1 \ u \ d = 2.$

Доказатель ство.
$$P(S_{2n}=0)=(\frac{1}{2d})^{2n}\sum_{\substack{n_1,\ldots,n_d\geqslant 0\\n_1+\ldots+n_d=n}}\frac{(2n)!}{(n_1!)^2\ldots(n_d!)^2}$$

Случай
$$d=1$$
: $\mathsf{P}(S_{2n}=0)=rac{(2n)!}{(n!)^2}(rac{1}{2})^{2n}.$

Согласно формуле Стирлинга,

$$m! \sim \left(\frac{m}{e}\right)^m \sqrt{2\pi m}, \quad m \to \infty.$$

Соответственно,

$$\mathsf{P}(S_{2n}=0) \sim \frac{1}{\sqrt{\pi n}} \Rightarrow$$

 \Rightarrow ряд $\sum_{n=0}^{\infty} \frac{1}{\sqrt{\pi n}} = \infty \Rightarrow$ блуждание возвратно. Аналогично рассматривается случай d=2:

$$P(S_{2n} = 0) = \dots = \left\{ \frac{(2n)!}{(n!)^2} \left(\frac{1}{2} \right)^{2n} \right\}^2 \sim \frac{1}{\pi n}$$

 \Rightarrow ряд тоже разойдется \Rightarrow блуждание возвратно (подробнее см. [2], т.1, стр. 354). Теорема доказана.

1.3 Исследование случайного блуждания с помощью характеристической функции

Теорема 1.4. Для простого случайного блуждания в \mathbb{Z}^d

$$\mathsf{E}N = \lim_{c \uparrow 1} \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \frac{1}{1 - c\varphi(t)} \, \mathrm{d}t,$$

где $\varphi(t)-x$ арактеристическая функция $X,\ t\in\mathbb{R}^d$.

Доказатель ство. $\int_{[-\pi,\pi]} \frac{e^{inx}}{2\pi} dx = \begin{cases} 1, & n=0\\ 0, & n \neq 0 \end{cases}$. Следовательно,

$$\mathbb{I}\{S_n = 0\} = \prod_{k=1}^d \mathbb{I}\{S_n^{(k)} = 0\} = \prod_{k=1}^d \int_{[-\pi,\pi]} \frac{e^{iS_n^{(k)}t_k}}{2\pi} dt_k = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} e^{i(S_n,t)} dt.$$

По теореме Фубини

$$\mathsf{EI}(S_n = 0) = \mathsf{E}\frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} e^{i(S_n,t)} \, \mathrm{d}t = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \mathsf{E}e^{i(S_n,t)} \, \, \mathrm{d}t.$$

Заметим, что

$$\mathsf{E}e^{i(S_n,t)} = \prod_{k=1}^n \varphi_{X_k}(t) = (\varphi(t))^n.$$

Тогда

$$\mathsf{EI}(S_n = 0) = \mathsf{P}(S_n = 0) = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} (\varphi(t))^n \, \mathrm{d}t.$$

Из этого следует, что

$$\sum_{n=0}^{\infty} c^n \, \mathsf{P}(S_n = 0) = \frac{1}{(2\pi)^d} \int\limits_{[-\pi,\pi]^d} \sum_{n=0}^{\infty} (c\varphi(t))^n \, \, \mathrm{d}t, \quad \text{где } 0 < c < 1.$$

Поскольку $|c\varphi| \leqslant c < 1$, то

$$\frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \sum_{n=0}^{\infty} (c\varphi(t))^n dt = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \frac{1}{1 - c\varphi(t)} dt$$

по формуле для суммы бесконечно убывающей геометрической прогрессии. Осталось только заметить, что

$$\sum_{n=0}^{\infty} c^n \, \mathsf{P}(S_n=0) \to \sum_{n=0}^{\infty} \mathsf{P}(S_n=0) = \mathsf{E} N, \quad c \uparrow 1,$$

что и завершает доказательство теоремы.

Следствие. При $d\geqslant 3$ простое случайное блуждание невозвратно.

Доказательство. Все как в обязательной задаче 2 к этой лекции; единственное отличие заключается в том, что случайное блуждание одно \Rightarrow знаменатель будет порядка $||t||^2$ и, следовательно, сходимость интеграла будет происходить тогда и только тогда, когда $d \geqslant 3$.

Доказательство (комбинаторное). Заметим, что

$$\begin{split} \mathsf{P}\left(S_{2n} = 0\right) &= \sum_{\substack{n_1, \dots, n_d \geqslant 0 \\ n_1 + \dots + n_d = n}} \frac{2n!}{(n_1!)^2 \dots (n_d!)^2} \left(\frac{1}{2d}\right)^{2n} = \\ &= \frac{(2n)!}{n!n!} \sum_{\substack{n_1, \dots, n_d \geqslant 0 \\ n_1 + \dots + n_d = n}} \left(\frac{n!}{n_1! \dots n_d!}\right)^2 \left(\frac{1}{2d}\right)^{2n} \leqslant \\ &\leqslant \frac{(2n)!}{n!n!} \left(\frac{1}{2d}\right)^{2n} \frac{n!}{\left(\left(n/d\right)!\right)^d} \sum_{\substack{n_1, \dots, n_d \geqslant 0 \\ n_1 + \dots + n_d = n}} \frac{n!}{n_1! \dots n_d!} = \Theta\left(n^{-d/2}\right) \end{split}$$

по формуле Стирлинга. Соответственно, при d=3 ряд из вероятностей сходится, что и требовалось доказать (подробнее см. [2], т.1, стр. 354). \square

Замечание. Можно говорить и о случайных блужданиях в \mathbb{R}^d , если $X_i:\Omega\to\mathbb{R}^d$. Но тогда о возвратности приходится говорить в терминах бесконечно частого попадания в ε -окрестность точки x.

Определение 1.11. Пусть есть случайное блуждание S на \mathbb{R}^d . Тогда *множество возвратности* случайного блуждания S—это множество

 $R(S) = \{x \in \mathbb{R}^d :$ блуждание возвратно в окрестности точки $x\}$.

Определение 1.12. Пусть есть случайное блуждание S на \mathbb{R}^d . Тогда mov- κu , достижимые случайным блужданием S,—это множество P(S) такое,

$$\forall z \in P(S) \ \forall \varepsilon > 0 \ \exists n: \ P(\|S_n - z\| < \varepsilon) > 0.$$

Теорема 1.5 (Чжуна-Фукса). Если $R(S) \neq \emptyset$, то R(S) = P(S).

Следствие. Если $0 \in R(S)$, то R(S) = P(S); если $0 \notin R(S)$, то $R(S) = \varnothing$.

Замечание. Подробнее см. [1], стр. 65.

$\mathbf{2}$ Лекция от 15.02.17

Ветвящиеся процессы и процессы восстановления

2.1Модель Гальтона-Ватсона

Описание модели Пусть $\{\xi, \xi_{n,k}, n, k \in \mathbb{N}\}$ — массив независимых одинаково распределенных случайных величин,

$$P(\xi = m) = p_m \ge 0, \ m \in \mathbb{Z}_+ = \{0, 1, 2, \ldots\}.$$

Такие существуют в силу теоремы Ломницкого-Улама. Положим

$$Z_0(\omega) \coloneqq 1,$$
 $Z_n(\omega) \coloneqq \sum_{k=1}^{Z_{n-1}(\omega)} \xi_{n,k}(\omega)$ для $n \in \mathbb{N}.$

Здесь подразумевается, что если $Z_{n-1}(\omega)=0$, то и вся сумма равна нулю. Таким образом, рассматривается сумма случайного числа случайных величин. Определим $A=\{\omega\colon\exists\, n=n(\omega),\; Z_n(\omega)=0\}$ — событие вырожедения nonyляции. Заметим, что если $Z_n(\omega)=0$, то $Z_{n+1}(\omega)=0$. Таким образом, $\{Z_n=0\}\subset \{Z_{n+1}=0\}$ и $A=\bigcup_{n=1}^\infty \{Z_n=0\}.$ По свойству непрерывности вероятностной меры,

$$\mathsf{P}(A) = \lim_{n \to \infty} \mathsf{P}(Z_n = 0).$$

Определение 2.1. Пусть дана последовательность $(a_n)_{n=0}^{\infty}$ неотрицательных чисел такая, что $\sum_{n=0}^{\infty} a_n = 1$. Производящая функция для этой последо-

$$f(s) := \sum_{k=0}^{\infty} s^k a_k, \quad |s| \leqslant 1$$

(нас в основном будут интересовать $s \in [0, 1]$).

Заметим, что если $a_k = P(Y = k), k = 0, 1, \dots$, то

$$f_Y(s) = \sum_{k=0}^{\infty} s^k P(Y = k) = Es^Y, \quad s \in [0, 1].$$

Лемма 2.1. Вероятность P(A) является корнем уравнения $\psi(p) = p$, где $\psi = f_{\xi}$ и $p \in [0,1]$.

Доказательство.

$$\begin{split} f_{Z_n}(s) &= \mathsf{E} s^{Z_n} = \mathsf{E} \left(s^{\sum_{k=1}^{Z_{n-1}} \xi_{n,k}} \right) = \\ &= \sum_{j=0}^\infty \mathsf{E} \left[\left(s^{\sum_{k=1}^{Z_{n-1}} \xi_{n,k}} \right) \mathbb{I} \{ Z_{n-1} = j \} \right] = \\ &= \sum_{j=0}^\infty \mathsf{E} \left[\left(s^{\sum_{k=1}^j \xi_{n,k}} \right) \mathbb{I} \{ Z_{n-1} = j \} \right]. \end{split}$$

Поскольку $\sigma\{Z_r\}\subset \sigma\{\xi_{m,k},\ m=1,\ldots,r,\ k\in\mathbb{N}\}$, которая независима с $\sigma\{\xi_{n,k},\ k\in\mathbb{N}\}$ (строгое и полное обоснование остается в качестве упражнения (на самом деле все тут понятно: первый множитель под матожиданием является борелевской функцией от $\xi_{n,\bullet}$, а второй — от $\xi_{i,\bullet}$, $i=1,\ldots,n-1$, эти два множества случайных величин независимы)), то

$$\begin{split} \sum_{j=0}^{\infty} \mathsf{E} \left[\left(s^{\sum_{k=1}^{j} \xi_{n,k}} \right) \mathbb{I} \{ Z_{n-1} = j \} \right] &= \sum_{j=0}^{\infty} \mathsf{E} \left(s^{\sum_{k=1}^{j} \xi_{n,k}} \right) \mathsf{E} \mathbb{I} \{ Z_{n-1} = j \} = \\ &= \sum_{j=0}^{\infty} \mathsf{E} \left(s^{\sum_{k=1}^{j} \xi_{n,k}} \right) \mathsf{P} (Z_{n-1} = j) = \sum_{j=0}^{\infty} \prod_{k=1}^{j} \mathsf{E} s^{\xi_{n,k}} \, \mathsf{P} (Z_{n-1} = j) = \\ &= \sum_{j=0}^{\infty} \psi_{\xi}^{j}(s) \, \mathsf{P} (Z_{n-1} = j) = f_{Z_{n-1}} \left(\psi_{\xi} \left(s \right) \right) \end{split}$$

в силу независимости и одинаковой распределенности $\xi_{n,k}$ и определения производящей функции. Таким образом,

$$f_{Z_n}(s) = f_{Z_{n-1}}(\psi_{\xi}(s)), \quad s \in [0, 1].$$

Подставим s = 0 и получим, что

$$f_{Z_n}(0) = f_{Z_{n-1}}(\psi_{\xi}(0))$$

Заметим, что

$$f_{Z_n}(s) = f_{Z_{n-1}}(\psi_{\xi}(s)) = f_{Z_{n-2}}\left(\psi_{\xi}\left(\psi_{\xi}\left(s\right)\right)\right) = \ldots = \underbrace{\psi_{\xi}(\psi_{\xi}\ldots(\psi_{\xi}(s))\ldots)}_{n \text{ итераций}} = \psi_{\xi}(f_{Z_{n-1}}(s)).$$

Тогда при s = 0 имеем, что

$$P(Z_n = 0) = \psi_{\xi} (P(Z_{n-1} = 0)).$$

Но $\mathsf{P}(Z_n=0)\nearrow\mathsf{P}(A)$ при $n\to\infty$ и ψ_ξ непрерывна на [0,1]. Переходим к пределу при $n\to\infty$. Тогда

$$\mathsf{P}(A) = \psi_{\xi}(\mathsf{P}(A)),$$

то есть P(A) — корень уравнения $p = \psi_{\mathcal{E}}(p), p \in [0, 1].$

Теорема 2.2. Вероятность р вырождения процесса Гальтона-Ватсона есть **наименьший** корень уравнения

$$\psi(p) = p, \quad p \in [0, 1], \tag{1}$$

 $r\partial e \ \psi = \psi_{\mathcal{E}}$

Доказатель ство. Пусть $p_0 := P(\xi = 0) = 0$. Тогда

$$\mathsf{P}(\xi\geqslant 1)=1,\quad \mathsf{P}\left(\bigcap_{n,k}\left\{\xi_{n,k}\geqslant 1\right\}\right)=1.$$

Поэтому $Z_n\geqslant 1$ при $\forall\, n,$ то есть $\mathsf{P}(A)$ — наименьший корень уравнения (1). Пусть теперь $p_0=1.$ Тогда $\mathsf{P}(\xi=0)=1\Rightarrow \mathsf{P}(A)$ — наименьший корень уравнения (1). Пусть, наконец, $0< p_0<1.$ Из этого следует, что $\exists\, m\in \mathbb{N}\colon p_m>0,$ а значит, ψ строго возрастает на [0,1]. Рассмотрим

$$\Delta_n = [\psi_n(0), \psi_{n+1}(0)), n = 0, 1, 2, \dots,$$

где $\psi_n(s)$ — это производящая функция Z_n . Пусть $s \in \Delta_n$. Тогда из монотонности ψ на [0,1] получаем, что

$$\psi(s) - s > \psi(\psi_n(0)) - \psi_{n+1}(0) = \psi_{n+1}(0) - \psi_{n+1}(0) = 0,$$

что означает, что у уравнения (1) нет корней на $\Delta_n \ \forall \ n \in \mathbb{Z}_+$. Заметим, что

$$\bigcup_{n=0}^{\infty} \Delta_n = [0, P(A)), \quad \psi_n(0) \nearrow P(A).$$

По лемме 2.1 P(A) является корнем уравнения (1). Следовательно, показано, что P(A) — наименьший корень, что и требовалось доказать.

Теорема 2.3. 1. Вероятность вырождения P(A) есть нуль $\Leftrightarrow p_0 = 0$. 2. Пусть $p_0 > 0$. Тогда при $E\xi \leqslant 1$ имеем P(A) = 1, при $E\xi > 1$ имеем P(A) < 1.

Доказательство. 1. Пусть P(A)=0. Тогда $p_0=0$, потому что иначе была бы ненулевая вероятность вымирания $P(A)>P(Z_1=0)=p_0$. В другую сторону, если $p_0=0$, то вымирания не происходит (почти наверное) из-за того, что у каждой частицы есть как минимум один потомок (почти наверное).

2. (а) Пусть $\mu = \mathsf{E}\xi \leqslant 1$. Покажем, что в таком случае у уравнения (1) будет единственный корень, равный 1.

$$\psi'_{\xi}(z) = \sum_{k=1}^{\infty} k z^{k-1} \, \mathsf{P}(\xi = k) \ \Rightarrow \ \psi'_{\xi}(z) > 0 \ \mathrm{пр} \, u \, z > 0,$$

если только ξ не тождественно равна нулю (в противном случае утверждение теоремы выполнено). Заметим также, что $\psi'_{\xi}(z)$ возрастает на z>0. Воспользуемся формулой Лагранжа:

$$1 - \psi_{\xi}(z) = \psi_{\xi}(1) - \psi_{\xi}(z) = \psi'_{\xi}(\theta)(1 - z) < \psi'_{\xi}(1)(1 - z) \leqslant 1 - z,$$

где $z\in(0,1)$, в силу монотонности $\psi'_{\xi}(z)$. Следовательно, если z<1, то

$$1 - \psi_{\mathcal{E}}(z) < 1 - z,$$

то есть z=1— это единственный корень уравнения (1). Значит, P(A)=1.

(b) Пусть $\mu = \mathsf{E}\xi > 1$. Покажем, что в таком случае у уравнения (1) есть два корня, один из которых строго меньше единицы.

$$\psi_{\xi}''(z) = \sum_{k=2}^{\infty} k(k-1)z^{k-2} P(\xi = k),$$

следовательно, $\psi_\xi''(z)$ монотонно возрастает и больше нуля при z>0. Из этого следует, что $1-\psi_\xi'(z)$ строго убывает, причем

$$1 - \psi'_{\xi}(0) = 1 - P(\xi = 1) > 0,$$

$$1 - \psi'_{\xi}(1) = 1 - \mu < 0.$$

Рассмотрим теперь $z-\psi_{\xi}(z)$ при z=0. Поскольку $1-\psi_{\xi}(1)=0$, производная этой функции монотонно убывает, а $0-\psi_{\xi}(0)=-\mathsf{P}(\xi=0)<0$, то график функции $z-\psi_{\xi}(z)$ пересечет ось абсцисс в двух точках, одна из которых будет лежать в интервале (0,1). Так как вероятность вырождения $\mathsf{P}(A)$ равна наименьшему корню уравнения (1), то $\mathsf{P}(A)<1$, что и требовалось доказать.

Следствие. Пусть $\mathsf{E}\xi<\infty$. Тогда $\mathsf{E}Z_n=(\mathsf{E}\xi)^n,\ n\in\mathbb{N}.$

Доказательство проводится по индукции.

База индукции: $n = 1 \Rightarrow \mathsf{E} Z_1 = \mathsf{E} \xi$.

Индуктивный переход:

$$\mathsf{E} Z_n = \mathsf{E} \left(\sum_{k=1}^{Z_{n-1}} \xi_{n,k} \right) = \sum_{j=0}^{\infty} j \, \mathsf{E} \xi \, \mathsf{P} (Z_{n-1} = j) = \mathsf{E} \xi \, \mathsf{E} Z_{n-1} = (\mathsf{E} \xi)^n \, .$$

Определение 2.2.

При $\mathsf{E}\xi < 1$ процесс называется докритическим.

При $\mathsf{E}\xi = 1$ процесс называется *критическим*.

При $\mathsf{E}\xi > 1$ процесс называется надкритическим.

2.2 Процессы восстановления

Определение 2.3. Пусть $S_n = X_1 + \ldots + X_n, n \in \mathbb{N}, X, X_1, X_2, \ldots$ независимые одинаково распределенные случайные величины, $X \geqslant 0$. Положим

$$Z(0) := 0;$$

$$Z(t) := \sup\{n \in \mathbb{N} : S_n \leqslant t\}, \quad t > 0.$$

(здесь считаем, что $\sup \varnothing := \infty$). Таким образом,

$$Z(t,\omega) = \sup \{ n \in \mathbb{N} : S_n(\omega) \leqslant t \}.$$

Иными словами,

$$\{Z(t) \geqslant n\} = \{S_n \leqslant t\}.$$

Так определенный процесс Z(t) называется npoцессом восстановления.

Замечание. Полезно заметить, что

$$Z(t) = \sum_{n=1}^{\infty} \mathbb{I}\{S_n \leqslant t\}, \ t > 0.$$

Определение 2.4. Рассмотрим вспомогательный процесс восстановления $\{Z^{\star}(t), t \geq 0\}$, который строится по Y, Y_1, Y_2, \ldots независимым одинаково распределенным случайным величинам, где

$$P(Y = \alpha) = p \in (0, 1); P(Y = 0) = q = 1 - p.$$

Исключаем из рассмотрения случай, когда Y=C=const: если C=0, то $Z(t)=\infty \ \forall \, t>0$; если же C>0, то $Z(t)=\left[\frac{t}{c}\right]$.

Лемма 2.4.

$$\mathsf{P}(Z^{\star}(t) = m) = \begin{cases} C_m^j \, p^{j+1} q^{m-j}, \ \mathrm{ide} \ j = \left[\frac{t}{\alpha}\right] &, \ \mathrm{ecnu} \ m \geqslant j; \\ 0 &, \ \mathrm{ecnu} \ m < j, \end{cases}$$

 $r\partial e \ m = 0, 1, 2, \dots$

Определение 2.5. U имеет *геометрическое распределение* с параметром $p \in (0,1)$, если $P(U=k) = (1-p)^k p, \ k=0,1,2,\dots$

Замечание. Наглядная иллюстрация этой случайной величины такова: это число неудач до первого успеха, если вероятность успеха равна p, а вероятность неудачи, соответственно, равна 1-p.

Лемма 2.5. Рассмотрим независимые геометрические величины U_0, \ldots, U_{j+m} с параметром $p \in (0,1)$. Тогда $\forall t \geqslant \alpha$ и $m \geqslant j$

$$P(j + U_0 + ... + U_j = m) = P(Z^*(t) = m).$$

3 Лекция от 22.02.17

Пуассоновские процессы

3.1 Процессы восстановления (продолжение)

Доказательство. Заметим, что

$$P(U_0 + \ldots + U_j = m - j) = \sum_{\substack{k_0, \ldots, k_j \geqslant 0 \\ k_0 + \ldots + k_j = m - j}} P(U_0 = k_0, \ldots, U_j = k_j).$$

В силу независимости U_i получаем, что

$$\sum_{\substack{k_0,\dots,k_j\geqslant 0\\k_0+\dots+k_j=m-j}} \mathsf{P}(U_0=k_0,\dots,U_j=k_j) \ = \\ = \sum_{\substack{k_0,\dots,k_j\geqslant 0\\k_0+\dots+k_j=m-j}} \mathsf{P}(U_0=k_0)\dots\mathsf{P}(U_j=k_j) = \\ = \sum_{\substack{k_0,\dots,k_j\geqslant 0\\k_0+\dots+k_j=m-j}} p(1-p)^{k_0}\dots p(1-p)^{k_j} \ = \sum_{\substack{k_0,\dots,k_j\geqslant 0\\k_0+\dots+k_j=m-j}} p^{j+1}(1-p)^{k_0+\dots+k_j} = \\ = \sum_{\substack{k_0,\dots,k_j\geqslant 0\\k_0+\dots+k_j=m-j}} p^{j+1}(1-p)^{m-j} \ = \ p^{j+1}(1-p)^{m-j}\#M,$$

где M — множество всевозможных упорядоченных наборов целых чисел k_j , удовлетворяющих условию под знаком суммы, а #M — мощность этого множества. Заметим, что задача нахождения #M эквивалентна "задаче о перегородках" из курса теории вероятностей с числом элементов m-j и числом перегородок j. Таким образом,

$$\#M = C_m^j$$

и, соответственно,

$$P(U_0 + \ldots + U_j = m - j) = C_m^j p^{j+1} (1 - p)^{m-j}$$

что и требовалось доказать.

3.2 Сопоставление исходного процесса восстановления со вспомогательным

Лемма 3.1. $\Pi y cmv \ t > \alpha$. $Tor \partial a$

$$\mathsf{E}Z^{\star}(t) \leqslant At$$
, $\mathsf{E}(Z^{\star}(t))^2 \leqslant Bt^2$,

$$e \partial e A = A(p, \alpha) > 0, B = B(p, \alpha) > 0.$$

Доказательство. По лемме 2.5

$$EZ^*(t) = E(j + U_0 + ... + U_i) = j + (j + 1)EU$$

где

$$\mathsf{E} U = \sum_{k=0}^{\infty} k(1-p)^k p = a(p) < \infty.$$

Следовательно,

$$j + (j+1)\mathsf{E}U = j + (j+1)a(p) \leqslant (j+1)\left(a(p)+1\right) \leqslant \frac{2t}{\alpha}\left(a(p)+1\right) = A(t),$$

поскольку $j=\left[\frac{t}{\alpha}\right]\leqslant \frac{t}{\alpha},$ а $t>\alpha;$ здесь $A(t)=\frac{2(a(p)+1)}{\alpha}.$ Рассмотрим теперь $\mathsf{E}\left(Z^\star(t)\right)^2.$

$$\mathsf{E}\left(Z^{\star}(t)\right)^{2} = \mathsf{D}Z^{\star}(t) + \left(\mathsf{E}Z^{\star}(t)\right)^{2} = (j+1)\mathsf{D}U + \left(\mathsf{E}Z^{\star}(t)\right)^{2}.$$

Обозначим через $\sigma^2(p) := \mathsf{D} U.$ Используя оценку выше для $\mathsf{E} Z^\star(t),$ получаем, что

$$(j+1)\mathsf{D} U + \left(\mathsf{E} Z^\star(t)\right)^2 \leqslant (j+1)^2 \left(\sigma^2(p) + \left(a(p)+1\right)^2\right) \leqslant Bt^2,$$

так как $(j+1)^2 \geqslant (j+1)$. Лемма доказана.

 $\it 3a$ мечание. Пусть случайная величина $X\geqslant 0,\ X$ отлична от константы. Тогда

$$\exists \alpha > 0 : \mathsf{P}(X > \alpha) = p \in (0, 1).$$

Определим тогда по X вспомогательный процесс восстановления $Z^\star = \big\{ Z^\star(t), \; t \geqslant 0 \big\}$: пусть

$$Y_n = \begin{cases} \alpha, & X_n > \alpha \\ 0, & X_n \leqslant \alpha \end{cases}$$

По построению $Y_n\leqslant X_n \ \Rightarrow \ Z(t)\leqslant Z^\star(t) \ \forall t\geqslant 0.$ Тогда $\forall \alpha>t$

$$\mathsf{E}Z(t)\leqslant \mathsf{E}Z^{\star}(t)<\infty,\ \mathsf{E}\left(Z(t)\right)^{2}\leqslant \mathsf{E}\left(Z^{\star}(t)\right)^{2}\Rightarrow Z(t)<\infty$$

почти наверное.

Следствие. $P(\forall t \ge 0 \ Z(t) < \infty) = 1.$

Доказательство. Z является неубывающим процессом:

$$s \leqslant t \to Z(s) \leqslant Z(t) \Rightarrow \mathsf{P}\left(Z(n) < \infty \ \forall n \in \mathbb{N}\right) = \mathsf{P}\left(\bigcap_{n=1}^{\infty} \{Z(n) < \infty\}\right).$$

Из непрерывности вероятностной меры получаем, что

$$\mathsf{P}\left(\bigcap_{n=1}^{\infty}\{Z(n)<\infty\}\right) = \lim_{n\to\infty}\mathsf{P}\left(Z(n)<\infty\right) = 1.$$

Следствие. $\mathsf{E} Z(t) \leqslant At; \;\; \mathsf{E} \left(Z(t) \right)^2 < Bt^2, \; t > \alpha.$

3.3 Элементарная теорема восстановления

Пемма 3.2. Пусть X, X_1, X_2, \ldots — независимые одинаково распределенные случайные величины, $X \geqslant 0$. Тогда

$$\frac{S_n}{n} \xrightarrow{n.n.} \mu \in [0, \infty], \ n \to \infty,$$

 $r\partial e \ \mu = \mathsf{E} X.$

Доказатель ство. Если $\mu < \infty$, то утверждение следует из УЗБЧ. Пусть теперь $\mu = \infty$. Положим для c>0

$$V_n(c) := X_n \mathbb{I}\{X_n \leqslant c\}.$$

Тогда по УЗБЧ

$$\liminf_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow{\text{\tiny II.H.}} \mathsf{E} X \mathbb{I} \{ X \leqslant c \}.$$

Возьмем $c=m\in\mathbb{N}$. Тогда

$$\liminf_{n\to\infty}\frac{1}{n}\sum_{k=1}^n X_k\ \geqslant\ \liminf_{n\to\infty}\frac{1}{n}\sum_{k=1}^n V_k\ =\ \mathsf{E}X\mathbb{I}\{X\leqslant m\}\ \text{почти наверное}.$$

Тогда по теореме о монотонной сходимости

$$\liminf_{n\to\infty}\frac{1}{n}\sum_{k=1}^n X_k \ \geqslant \ \mathsf{E}X\mathbb{I}\{X\leqslant m\}=\mathsf{E}X=\mu=\infty,$$

что и завершает доказательство леммы.

Теорема 3.3. Пусть $Z = \{Z(t), \ t \geqslant 0\}$ — процесс восстановления, построенный по последовательности независимых одинаково распределенных случайных величин $X, X_1, X_2, \ldots, X \geqslant 0$. Тогда

$$\frac{Z(t)}{t} \xrightarrow{n.n.} \frac{1}{\mu}, t \to \infty;$$

$$\frac{\mathsf{E}Z(t)}{t} \xrightarrow{n.n.} \frac{1}{u}, t \to \infty,$$

 $r\partial e \frac{1}{0} := \infty, \frac{1}{\infty} := 0.$

Доказательство. Если $\mu=0$, то $X_n=0$ почти наверное, поэтому утверждение теоремы верно $(Z(t)=\infty \ \forall t)$. Далее $\mu>0$. Заметим, что для t>0

$$S_{Z(t)} \leqslant t < S_{Z(t)+1}. \tag{2}$$

Поскольку $Z(t_n, \omega) = n$, если $t_n = S_n(\omega)$, то $Z(t) \to \infty$ почти наверное (Z монотонна по t). Итак, рассмотрим (t, ω) такие, что

$$0 < Z(t, \omega) < \infty$$
 почти наверное.

Тогда для этих (t, ω) поделим обе части неравенства (2) на Z(t):

$$\frac{S_{Z(t)}}{Z(t)} \, \leqslant \, \frac{t}{Z(t)} \, \leqslant \, \frac{S_{Z(t)+1}}{Z(t)+1} \frac{Z(t)+1}{Z(t)}.$$

Согласно лемме 3.2,

$$\frac{S_{Z(t)}}{Z(t)} \xrightarrow[]{\text{п.н.}} \mu, \ \frac{S_{Z(t)+1}}{Z(t)+1} \xrightarrow[]{\text{п.н.}} \mu, \ \frac{Z(t)+1}{Z(t)} \xrightarrow[]{\text{п.н.}} 1.$$

Следовательно,

$$\frac{t}{Z(t)} \xrightarrow{\text{п.н.}} \mu, \ t \to \infty.$$

Таким образом,

$$\frac{Z(t)}{t} \xrightarrow[]{\text{\tiny II.H.}} \frac{1}{\mu}, \ t \to \infty,$$

что завершает доказательство первого утверждения теоремы.

Следует понимать, что второе утверждение из первого нельзя получить, попросту "навесив" на него сверху матожидание: вообще говоря,

$$\xi_t \xrightarrow{\text{п.н.}} \xi \not\Rightarrow \mathsf{E} \xi_t \xrightarrow{\text{п.н.}} \mathsf{E} \xi, \ t \to \infty$$
:

наглядным примером является последовательность

$$\xi_t(\omega) = \begin{cases} t, & \omega \in [0, 1/t] \\ 0, & \omega \notin [0, 1/t] \end{cases}.$$

Для того чтобы завершить доказательство теоремы, введем следующее понятие.

Определение 3.1. Семейство случайных величин $\{\xi_t, t > \alpha\}$ называется равномерно интегрируемым, если

$$\sup_{t \to \alpha} \mathsf{E}\left(|\xi_t| \, \mathbb{I}\left\{|\xi_t| > c\right\}\right) \to 0, \ \ c \to \infty.$$

Без доказательства предлагаются следующие утверждения.

Теорема 3.4. Если $\{\xi_t, t > \alpha\}$ равномерно интегрируемо, то $\mathsf{E}\xi_t \to \mathsf{E}\xi$. Для неотрицательных случайных величин это условие является необходимым и достаточным.

Теорема 3.5 (де ла Валле Пуссена). $\{\xi_t, t > \alpha\}$ равномерно интегрируемо $\Leftrightarrow \exists$ неубывающая функция g такая, что

$$\frac{g(t)}{t} \to \infty, \ t \to \infty \quad u \quad \sup_t \mathsf{E} g\left(|\xi_t|\right) < \infty.$$

Возьмем $g(t) := t^2, \; \xi_t := \frac{Z(t)}{t}, \; t > 0.$ Тогда по лемме 3.1

$$\mathsf{E}\left(\xi_{t}\right)^{2} = \frac{\mathsf{E}\left(Z(t)\right)^{2}}{t^{2}} \leqslant \frac{Bt^{2}}{t^{2}} = B < \infty,$$

что позволяет нам использовать теорему 3.5 и получить по теореме 3.4 второе утверждение теоремы 3.3, что и требовалось сделать.

3.4 Пуассоновский процесс как процесс восстановления

Определение 3.2. Пусть X, X_1, X_2, \ldots независимые одинаково распределенные случайные величины такие, что $X \sim \text{Exp}(\lambda), \ \lambda > 0$, то есть

$$p_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geqslant 0 \\ 0, & x < 0 \end{cases}.$$

Тогда $nyaccoновский процесс\ N=\left\{N(t),\ t\geqslant 0\right\}$ есть процесс восстановления, построенный на $\{X_i\}.$

Определение 3.3. Определим для t > 0

$$X_1^t := S_{N(t)+1} - t,$$

 $X_k^t := S_{N(t)+k} - S_{N(t)+k-1}, \ k \geqslant 2.$

Лемма 3.6. Для $\forall t > 0$ величины $N(t), X_1^t, X_2^t, \dots$ независимы, причем

$$N(t) \sim \text{Poiss}(\lambda), \ k = 1, 2, \dots$$

Доказательство. Для доказательства независимости достаточно показать, что для $\forall k \in \mathbb{N}, \ \forall n \in \mathbb{Z}_+, \ \forall u_1, \dots, u_k \geqslant 0$

$$P(N(t) = n, X_1^t \geqslant u, \dots, X_k^t \geqslant u_k) =$$

$$= P(N(t) = n) P(X_1^t \geqslant u_1) \dots P(X_k^t \geqslant u_k).$$

Будем доказывать это равенство по индукции по k. Докажем базу индукции: k=1:

$$\begin{split} \mathsf{P}\left(N(t) = n, \ X_1^t \geqslant u_1\right) &= \mathsf{P}\left(S_n \leqslant t, \ S_{n+1} > t, \ S_{N(t)+1} - t \geqslant u_1\right) = \\ &= \mathsf{P}\left(S_n \leqslant t, \ S_{n+1} \geqslant t + u_1\right), \end{split}$$

поскольку

$${S_n \le t, \ S_{n+1} > t} = {N(t) = n}.$$

Из курса теории вероятностей известно, что если

$$S_n = X_1 + \ldots + X_n,$$

где X_i независимы и $X_i \sim \text{Exp}(\lambda)$, то

$$p_{S_n}(x) = \begin{cases} \lambda \frac{(\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} , & x \geqslant 0 \\ 0 & , & x < 0 \end{cases}.$$

Следовательно,

$$P\left(S_n \leqslant t, \ S_{n+1} \geqslant t + u_1\right) = P\left(S_n \leqslant t, \ S_n + X_{n+1} \geqslant t + u_1\right) =$$

$$= \iint\limits_{\substack{0 \leqslant x \leqslant t \\ x + y \geqslant t + u_1}} p_{S_n}(x) p_{X_n + 1}(y) \, dx \, dy =$$

$$= \iint\limits_{\substack{0 \leqslant x \leqslant t \\ x + y \geqslant t + u_1 \\ y \geqslant 0}} \lambda \frac{(\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} \lambda y e^{-\lambda y} \, dx \, dy$$

в силу независимости S_n и X_{n+1} . Воспользуемся теоремой Фубини, чтобы вычислить этот интеграл:

$$\iint_{\substack{0 \leqslant x \leqslant t \\ x+y \geqslant t+u_1 \\ y \geqslant 0}} \lambda \frac{(\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} \lambda y e^{-\lambda y} \, dx \, dy = \int_{0}^{t} \frac{\lambda (\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} \, dx \int_{t+u_1-x}^{\infty} \lambda y e^{-\lambda y} \, dy = \int_{t+u_1-x}^{t} \frac{\lambda (\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} e^{-\lambda t} dx = \int_{0}^{t} \frac{\lambda (\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} e^{-\lambda t} e^{-\lambda t} e^{-\lambda t} dx = \int_{0}^{t} \frac{\lambda (\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} e^{-\lambda t} e^{-\lambda t} e^{-\lambda t} e^{-\lambda t}.$$

Таким образом, получаем, что

$$P\left(N(t) = n, \ X_1^t \geqslant u_1\right) = \frac{(\lambda t)^n}{n!} e^{-\lambda t} e^{-\lambda u_1}.$$
 (3)

Возьмем в равенстве (3) $u_1 = 0$ и получим, что

$$P(N(t) = n) = \frac{(\lambda t)^n}{n!} e^{-\lambda t},$$

то есть

$$N(t) \sim \text{Poiss}(\lambda t)$$
.

Теперь просуммируем равенство (3) по всем $n \in \mathbb{Z}_+$:

$$\begin{split} \sum_{n=0}^{\infty} \mathsf{P}\left(N(t) = n, \; X_1^t \geqslant u_1\right) &= \mathsf{P}\left(X_1^t \geqslant u_1\right) = \sum_{n=0}^{\infty} \frac{(\lambda t)^n}{n!} e^{-\lambda t} e^{-\lambda u_1} = \\ &= e^{-\lambda u_1} \sum_{n=0}^{\infty} \frac{(\lambda t)^n}{n!} e^{-\lambda t} = e^{-\lambda u_1}, \end{split}$$

то есть

$$X_1^t \sim \text{Exp}(\lambda)$$
.

Таким образом, полностью доказана база индукции. Перейдем к доказательству индуктивного перехода: пусть $k \geqslant 2$:

$$\begin{split} &\mathsf{P}\left(N(t) = n, \; X_1^t \geqslant u, \dots, \; X_k^t \geqslant u_k\right) = \\ &= \mathsf{P}\left(\underbrace{S_n \leqslant t, \; S_{n+1} > t, \; S_{n+1} - t \geqslant u_1}_{\mathtt{Зависят \; or } \; X_1, \dots, X_{n+1}}, \underbrace{X_{n+2} \geqslant u_2, \dots, \; X_{n+k} \geqslant u_k}_{\mathtt{Зависят \; or } \; X_{1}, \dots, X_{n+1}}\right) = \\ &= \mathsf{P}\left(N(t) = n\right)\underbrace{\mathsf{P}\left(X_1 \geqslant u_1\right)}_{=e^{-\lambda u_1}} e^{-\lambda u_2} \dots e^{-\lambda u_k} = \mathsf{P}\left(N(t) = n\right) e^{-\lambda u_1} \dots e^{-\lambda u_k} \end{split}$$

по предположению индукции. Таким образом, доказано, что

$$X_k^t \sim \text{Exp}(\lambda),$$

а также показана независимость. Теорема доказана.

Следствие (парадокс времени ожидания). Из доказанного следует, что

$$X_1^t \sim \text{Exp}(\lambda), \ X_{N(t)+1} \sim \text{Exp}(\lambda),$$

несмотря на то что отрезок длины $X_{N(t)+1}$ содержит отрезок длины X_1^t по определению.

Список литературы

- [1] Булинский А.В., Ширяев А.Н. Теория случайных процессов. М.: ФИЗ-МАТЛИТ, 2005
- [2] Феллер В. Введение в теорию вероятностей и ее приложения.

Предметный указатель

случайного элемента, 1 Измеримое отображение, 1 Случайный пространство, 1 элемент, 1 Множество процесс, 1 достижимости, 7 Случайное блуждание, 2 возвратности, 6 простое, 2 Модель Гальтона-Ватсона, 7 возвратное, 2 Процесс восстановления, 10 Теорема Производящая функция, 7Чжуна-Фукса, 7 Ломницкого-Улама, 2 Распределение геометрическое, 11 Вырождение, 7