

CS120: Computer Networks

Lecture 17. Congestion Control 1

Zhice Yang

Transmission Control Protocol (TCP)

- RFC: 793,1122,1323, 2018, 2581
- Goal: Reliable, In-order Delivery
 - Connection oriented
 - Flow control
 - ➤ Congestion control
- Core Algorithm: Sliding Window

Congestion in Network

Ideal Case

Congestion in Network

Actual Case

Congestion in Roads

• Traffic Light (Scheduling)

Priority Lane (Reservation)

- Traffic Light => Time Allocation
- Priority Lane => Space Allocation
- Traffic Map => Time and Space Allocation

Congestion Control and Resource Allocation

- Two Sides of the Same Coin
 - Control congestion if (and when) is occurs: reactive
 - Pre-allocate resources so at to avoid congestion: proactive
- Resources in Network
 - Bandwidth
 - Router Queue Buffer

Resource Allocation in Telephone Network

- Call blocking
 - A "session" is blocked if the network resource is not enough
 - No congestion
 - Less effective in utilizing network resources

Discussion Space

- Network Model
 - Packet switched network
 - e.g. IP
 - Connectionless
 - Basic decision element: flow
 - A sequence of packets sent between source/destination pair and following the same route
 - Router is able to keep soft state of the flow
 - Soft state information can be used to make resource reservation decision for the flow, but unlike virtual circuit, providing no strict guarantee
 - Service Model
 - Best effort
 - Qualities of Service (QoS)

Congestion Control and Resource Allocation

- Two Sides of the Same Coin
 - Control congestion if (and when) is occurs: reactive
 - Pre-allocate resources so at to avoid congestion: proactive
- Resources in Network
 - Bandwidth
 - Router Queue Buffer
- Two Places of Implementation
 - Hosts at the edges of the network (transport protocol)
 - Routers inside the network (queuing discipline)

Resource Allocation Methods

Evaluation Criteria

- Performance
 - Throughput
 - Delay
 - Power = Throughput/Delay
- Fairness
 - Fairness Index

$$\bullet f(x_1 \dots x_n) = \frac{(\sum x_i)^2}{n * \sum x_i^2}$$

Congestion Control

- Queuing Disciplines
- TCP Congestion Control Algorithm
 - Congestion Control
 - Congestion Avoidance
- QoS

- Why ?
 - Queuing discipline in routers determines how packets are transmitted
- Network Resource
 - Bandwidth
 - Which packets get transmitted
 - Queue Buffer
 - Which packets get discarded

• First-In-First-Out (FIFO)

• First-In-First-Out (FIFO) with Priority

- Problems in FIFO
 - Too simple to provide resource allocation polices (to avoid congestion)
 - Hard to enforce every network source/flow to follow the same behavior
 - eg. yellow src does not follow congestion control (UDP), can occupy more network source

- Fair Queuing (FQ)
 - Each flow gets 1/4 output bandwidth

- Fair Queuing (FQ)
 - Each flow gets 1/3 output bandwidth

Round-robin

- Weighted Fair Queuing (FQ)
 - Flows with higher weight get more output bandwidth (2/7, 3/7, 1/7, 1/7)

Round-robin

- Bit-Level Fair Queuing (FQ)
 - Schedule according to finish time of packet i: $F_i = \max(F_{i-1}, A_i) + P_i$
 - P_i is the transmitting time of packet i, A_i is the arriving time of packet i

- Bit-Level Fair Queuing (FQ)
 - Schedule according to finish time of packet i: $F_i = \max(F_{i-1}, A_i) + P_i$
 - P_i is the transmitting time of packet i, A_i is the arriving time of packet i

- Bit-Level Fair Queuing (FQ)
 - Schedule according to finish time of packet i: $F_i = \max(F_{i-1}, A_i) + P_i$
 - P_i is the transmitting time of packet i, A_i is the arriving time of packet i

Reference

- Textbook 6.1 & 6.2
- http://www2.ic.uff.br/~michael/kr1999/3-transport/3_06-principles_congestion.htm