Лабораторная работа № 1. Моделирование динамики популяций

Цель работы: получить навык численно-аналитического исследования математических моделей биологии, описывающих динамику популяций.

Задание на лабораторную работу

Задача I. Рассматривается модель Ферхюльста

$$\frac{dN}{dt} = \alpha N \left(1 - \frac{N}{K} \right),\tag{1.1}$$

описывающая динамику численности одиночной популяции с учетом конкуренции за ресурсы в условиях их ограниченности.

- 1) Построить аналитическое решение уравнения (1.1).
- 2) Найти стационарные точки уравнения (1.1) и выполнить анализ их устойчивости в зависимости от исходных данных задачи. Построить графики соответствующих решений.
- 3) Выполнить конечно-разностную дискретизацию уравнения (1.1) по схеме Эйлера и показать, что она сводится к логистическому отображению

$$x_{k+1} = rx_k (1 - x_k). (1.2)$$

- 4) Определить аналитически первые четыре стационарные точки (1.2) и выполнить анализ их устойчивости.
- 5) Построить бифуркационную диаграмму отображения (1.2) и численно определить первые шесть точек бифуркации. По найденным значениям рассчитать приближения к числу Фейгенбаума

$$\delta = \lim_{n \to \infty} \delta_n \approx 4.669, \ \delta_n = \frac{r_{n+1} - r_n}{r_{n+2} - r_{n+1}},$$

где $r_{\scriptscriptstyle n}$ — бифуркационные значения параметра r для n-го цикла удвоения.

6) Найти значения параметра r при которых происходит расщепление решения на три ветви (трифуркация).

Задача II. Рассмотреть обобщенную модель взаимодействия двух популяций типа хищник-жертва

$$\frac{dx}{dt} = a(x)x - b(x, y)xy,$$

$$\frac{dy}{dt} = -c(y)y + d(x, y)xy,$$
(1.3)

где x(t) – размер популяции «жертв», y(t) – размер популяции «хищников». Вид функций a(x), b(x, y), c(y), d(x, y) определяется индивидуально в зависимости от номера варианта в соответствии с приведенной ниже таблицей.

№	a(x)	b(x, y)	<i>c</i> (<i>y</i>)	d(x, y)
варианта				
1	A	$\frac{B}{E+x}$	C(y+M)	$\frac{D}{E+x}$
2	A(x-L)	$\frac{B}{G+y}$	Cy	$\frac{D}{G+y}$
3	$A\frac{K-x}{K}$	$\frac{B}{E+x}$	C	$\frac{D}{E+x}$
4	$\frac{Ax}{N+x}$	В	C	$\frac{D}{P+y}$
5	Ax	$\frac{B}{(E+x)(G+y)}$	C	$\frac{D}{(E+x)(G+y)}$
6	$\frac{Ax}{N+x}\frac{K-x}{K}$	В	Су	D
7	A	$\frac{B}{(E+x)(G+y)}$	Cy	$\frac{D}{(E+x)(G+y)}$
8	A(x-L)	$\frac{B}{E+x}$	С	$\frac{D}{E+x}$
9	$A\frac{K-x}{K}$	В	C(y+M)	D
10	$\frac{Ax}{N+x}$	$\frac{B}{G+y}$	Cy	$\frac{D}{G+y}$
11	Ax	$\frac{B}{E+x}$	C	$\frac{D}{(E+x)(P+y)}$
12	$\frac{Ax}{N+x}\frac{K-x}{K}$	В	С	D

Здесь A, B, C, D, E, G, K, L, M, N, P — положительные постоянные.

Для модели (1.3) со значениями функций, соответствующих индивидуальному заданию, выполнить следующее:

- 1) дать биологическую интерпретацию модели;
- 2) выполнить обезразмеривание модели с целью уменьшения количества значимых коэффициентов;
- 3) численно-аналитически найти стационарные точки модели и определить их тип;
 - 4) исследовать найденные стационарные точки на устойчивость;
- 5) построить в окрестности каждой стационарной точки фазовый портрет.

Отчетность

По результатам решения задач I и II составить отчет по лабораторной работе, который должен содержать постановки решенных задач, все проведенные аналитические выкладки, результаты численных расчетов, необходимые графики (в соответствии с заданием), выводы по работе.