Bakalářské zkoušky (příklady otázek z matematiky)

podzim 2022

1 Spojitost a derivace (3 body)

- 1. Definujte spojitost funkce v bodě.
- 2. Nechť f je definována jako

$$f(x) = \begin{cases} x \sin \frac{1}{x} \text{ pro všechna } x \neq 0, \\ 0 \text{ pro } x = 0. \end{cases}$$

- Ve kterých bodech je funkce f spojitá? Zdůvodněte.
- Spočtěte derivaci funkce f ve všech bodech, ve kterých existuje. (Zejména zdůvodněte, zda existuje v bodě 0, případně jakou tam má hodnotu.)
- 3. Nechť $a \in \mathbb{R}$ a $f, g : \mathbb{R} \to \mathbb{R}$. Jaké implikace platí mezi následujícíma dvěma výroky? Zdůvodněte.
 - **P.** Funkce f a g jsou spojité v bodě a.
 - **Q.** Funkce f + g je spojitá v bodě a.

2 Určitý integrál (3 body)

- 1. Napište definici horní a dolní Riemannovy sumy, horního a dolního Riemannova integrálu a Riemannova integrálu.
- 2. Má následující funkce f Riemannův integrál na intervalu [1,2]? Zdůvodněte.

$$f(x) = \begin{cases} x \text{ pro všechna } x \in \mathbb{Q} \\ -x \text{ pro všechna } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

3. Spočtěte určitý integrál

$$\int_0^\pi x^2 \cos(2x) dx.$$

3 Matice lineárního zobrazení (3 body)

Uvažujme lineární zobrazení v rovině \mathbb{R}^2 , které zobrazí obdélník $[0,2] \times [0,1]$ na obdélník $[-2,0] \times [-1,0]$.

- 1. Určete maticové vyjádření tohoto zobrazení.
- 2. Určete vlastní čísla tohoto zobrazení (tj. této matice).
- 3. Rozhodněte, zda vektor $v = (2,3)^T$ je vlastním vektorem tohoto zobrazení.

4 Zobrazení na (3 body)

- 1. Definujte prosté zobrazení a zobrazení, které je "na" (surjektivní).
- 2. Pro lineární zobrazení $f: \mathbb{R}^3 \mapsto \mathbb{R}^3$ platí, že pro každé tři vektory $x, y, z \in \mathbb{R}^3$ jsou vektory f(x), f(y), f(z) lineárně závislé. Dokažte, že zobrazení f není "na".

5 Skalární součin (3 body)

Uvažujme skalární součin v \mathbb{R}^2 daný předpisem:

$$\langle x, y \rangle = 2x_1y_1 + x_2y_2 + x_1y_2 + x_2y_1.$$

- 1. Pro tento skalární součin zformulujte přesnou podobu Cauchyho-Schwarzovy nerovnosti.
- 2. Pro tento skalární součin určete matici projekce na přímku generovanou vektorem $(1,0)^T$.

6 Princip inkluze a exkluze (3 body)

- 1. Zformulujte, co říká princip inkluze a exkluze.
- 2. Symbolem [n] označme množinu $\{1, 2, \ldots, n\}$.
 - (a) Kolik existuje funkcí $f: [n] \to [n]$ takových, že pro každé sudé $x \in [n]$ platí $f(x) \neq x$?
 - (b) Kolik existuje prostých funkcí $f: [n] \to [n]$ takových, že pro každé sudé $x \in [n]$ platí $f(x) \neq x$?

7 Kostra grafu (3 body)

- 1. Definujte pojem kostra grafu.
- 2. Nechť G=(V,E) je souvislý graf. Nechť má každá hrana $e \in E$ přiřazenu váhu $w(e) \in \mathbb{R}$, přičemž žádné dvě různé hrany nemají stejnou váhu. Nechť T je minimální kostra grafu G, tj. kostra s nejmenším možným součtem vah hran. Dokažte, že pro každou hranu e grafu G jsou následující dvě tvrzení ekvivalentní:
 - (a) Hrana e patří do kostry T.
 - (b) Každá kružnice v grafu G, která obsahuje hranu e, obsahuje také aspoň jednu hranu, která má větší váhu než e.

8 Pravděpodobnost (3 body)

Opakovaně házíme běžnou hrací kostkou (tj. šestistěnnou kostkou očíslovanou $1, \ldots, 6$). Označíme X pořadí hodu, kdy nám poprvé padla šestka. Dále označíme Y počet šestek, které padly při prvních sto hodech.

- 1. Určete $\mathbf{P}(X=10)$. Pojmenujte rozdělení náhodné veličiny X.
- 2. Určete P(Y = 10). Pojmenujte rozdělení náhodné veličiny Y.
- 3. Určete střední hodnoty E(X), E(Y), a E(X+Y).

9 Logika (3 body)

- 1. Uveď te definice pro predikátovou logiku, kdy formule φ platí ve struktuře \mathcal{A} , kdy φ platí v teorii T, a kdy φ je (logicky) platná.
- 2. Uvažme teorii $T = \{P(x,x), P(x,y) \to P(y,x), P(x,y) \to (P(y,z) \to P(x,z))\}$ jazyka $L = \langle P \rangle$ bez rovnosti. Nalezněte formuli φ jazyka L a tříprvkový model $\mathcal A$ teorie T takový, že φ platí v $\mathcal A$ a přitom φ neplatí v T. Uveďte zdůvodnění, proč má φ požadované vlastnosti.
- 3. Nalezněte formuli ψ jazyka L takovou, že ψ platí v T a přitom ψ není logicky platná. Uveďte zdůvodnění, proč má ψ požadované vlastnosti, včetně formálního důkazu její platnosti v T pomocí nějakého dokazovacího systému.