Relations binaires sur un ensemble

Aperçu

- 1. Propriétés d'une relation
- 2. Relation d'ordre
- 3. Relation d'équivalence

- 2. Relation d'ordre
- 3. Relation d'équivalence

D 1 Soit E un ensemble. Définir une relation binaire \mathcal{R} dans E, c'est se donner une partie $\Gamma_{\mathcal{R}}$ de $E \times E$. On écrit alors $x\mathcal{R}y$ pour exprimer que $(x,y) \in \Gamma_{\mathcal{R}}$. Dans ce cas, on dit que x est en relation avec y. L'ensemble $\Gamma_{\mathcal{R}}$ est appelé le graphe de la relation \mathcal{R} .

Une relation binaire est donc une application $E \times E \to \{ \text{Vrai}, \text{Faux} \}$. Dans la $(x,y) \mapsto x\mathcal{R}y$ suite, on parlera simplement de **relation** dans un ensemble E.

D 2 Soit E un ensemble et R une relation binaire sur E. On dit que

 \triangleright \mathcal{R} est réflexive si

$$\forall x \in E, x \mathcal{R} x;$$

R est symétrique si

$$\forall (x, y) \in E^2, x \mathcal{R} y \implies y \mathcal{R} x;$$

R est antisymétrique si

$$\forall (x, y) \in E^2, (x\mathcal{R}y \text{ et } y\mathcal{R}x) \implies x = y;$$

R est transitive si

$$\forall (x, y, z) \in E^3, (xRy \text{ et } yRz) \implies xRz.$$

- E 3
- 1. La relation \leq sur \mathbb{R} est réflexive, transitive et antisymétrique.
- 2. La relation \subset sur $\mathcal{P}(E)$ est réflexive, transitive et antisymétrique.
- 3. Dans l'ensemble $\mathbb Z$ des entiers relatifs, la relation en x et y

$$xRy \iff y-x \in 5\mathbb{Z}$$

est la relation de congruence modulo 5. Cette relation est réflexive, symétrique, non antisymétrique et transitive.

4. Dans l'ensemble des parties de $\mathbb N$ à trois éléments, la relation $\mathcal R$ définie par

$$ARB \iff A \cap B \neq \emptyset$$

est réflexive et symétrique, non antisymétrique, non transitive.

- 5. Sur tout ensemble E, la relation d'égalité = est réflexive, symétrique, antisymétrique et transitive. On peut d'ailleurs vérifier que c'est la seule.
- 6. Soient $\mathcal R$ une relation sur un ensemble E et A une partie de E. En convenant que $x\mathcal R_A y$ signifie $x\mathcal R y$, nous définissons une relation $\mathcal R_A$ sur A qui est dite **induite** par $\mathcal R$. Nous constatons que si $\mathcal R$ est réflexive (resp. symétrique, antisymétrique, transitive), il en est de même pour $\mathcal R_A$. La réciproque n'est pas vraie.

- 2. Relation d'ordre
- 2.1 Petits et grands
- 2.2 Majorants, minorants
- 2.3 Plus grand élément, plus petit élément
- 2.4 Borne supérieure, borne inférieure
- Relation d'équivalence

- 2. Relation d'ordre
- 2.1 Petits et grands
- 2.2 Majorants, minorants
- 2.3 Plus grand élément, plus petit élément
- 2.4 Borne supérieure, borne inférieure
- 3. Relation d'équivalence

- D 4
- Une relation binaire \leq sur un ensemble E est une **relation d'ordre** si elle est réflexive, antisymétrique et transitive.
- ▶ On dit que (E, \leq) est un **ensemble ordonné**.
- Deux éléments x et y de E sont dits comparables si

$$x \le y$$
 ou $y \le x$.

On dit que ≤ est un ordre total sur E si tous les éléments de E sont deux à deux comparables, c'est-à-dire

$$\forall (x, y) \in E^2, x \le y \text{ ou } y \le x.$$

Si \leq n'est pas total, c'est-à-dire s'il existe au moins deux éléments non comparables, on dit que \leq est un **ordre partiel** sur E.

≤ se lit « précède » ou « inférieur ou égal à ».

Dans $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ l'ordre usuel, \leq , est un ordre total.

E 6 Soit
$$\mathcal{E}$$
 un ensemble d'ensembles. Alors la relation d'inclusion est une relation d'ordre dans \mathcal{E} . En effet, elle est réflexive (pour tout $A \in \mathcal{E}$, on a $A \subset A$) anti-symétrique (c'est le principe de double inclusion) et transitive ($A \subset B$ et $B \subset C \implies A \subset C$). C'est pour cette raison qu'on écrit, de façon abrégée,

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$

au lieu d'écrire

E 5

$$\mathbb{N} \subset \mathbb{Z}$$
 et $\mathbb{N} \subset \mathbb{Q}$ et $\mathbb{N} \subset \mathbb{R}$ et $\mathbb{N} \subset \mathbb{C}$ et $\mathbb{Z} \subset \mathbb{Q}$ et $\mathbb{Z} \subset \mathbb{R}$ et ...

Soit
$$E = \{ (a, b, c) \in \mathbb{R}^3 \mid 0 < a \le b \le c \}$$
. On définit une relation d'ordre sur E par
$$(a, b, c) \le (a', b', c') \iff a \le a' \text{ et } b \le b' \text{ et } c \le c'.$$

Autrement dit, E est un ensemble de boîtes et on écrit $(a,b,c) \leq (a',b',c')$ si la boîte (a',b',c') peut contenir la boîte (a,b,c).

- 2. Relation d'ordre
- 2.1 Petits et grands
- 2.2 Majorants, minorants
- 2.3 Plus grand élément, plus petit élément
- 2.4 Borne supérieure, borne inférieure
- Relation d'équivalence

- **D** 11 Soit (E, \leq) un ensemble ordonné.
 - Soit $x \in E$. Si M, élément de E, est tel que $x \leq M$, on dit que M est un majorant de x, ou encore qu'il majore x.
 - Soit A un sous-ensemble de E. On dit que M, élément de E, est un majorant de A si M est un majorant de chaque élément de A, c'est-à-dire si

$$\forall x \in A, x \leq M.$$

Une partie de E dont l'ensemble des majorants est non vide est dite **majorée**.

- **D 12** Soit (E, \leq) un ensemble ordonné.
 - Soit $x \in E$. Si m, élément de E, est tel que $m \le x$, on dit que m est un minorant de x, ou encore qu'il minore x.
 - Soit A un sous-ensemble de E. On dit que m, élément de E, est un **minorant** de A si m est un minorant de chaque élément de A, c'est-à-dire si

$$\forall x \in A, m \leq x.$$

Une partie de E dont l'ensemble des minorants est non vide est dite minorée.

D 13 Une partie de E à la fois majorée et minorée est dite **bornée**.

- 2. Relation d'ordre
- 2.1 Petits et grands
- 2.2 Majorants, minorants
- 2.3 Plus grand élément, plus petit élément
- 2.4 Borne supérieure, borne inférieure
- Relation d'équivalence

- **D 14** Soit (E, \leq) un ensemble ordonné et A une partie de E.
 - On dit que a est le plus grand élément de A si

$$a \in A$$
 et $\forall x \in A, x \leq a$.

Lorsqu'il existe, le plus grand élément de A se note max(A).

ightharpoonup a est le plus petit élément de A si

$$a \in A$$
 et $\forall x \in A, a \leq x$.

Lorsqu'il existe, le plus petit élément de A se note min(A).

L'ensemble A n'admet pas nécessairement de plus grand élément. Néanmoins, si il existe, c'est le **seul** élément de A ayant cette propriété ; car si on a aussi $x \le b$ pour tout $x \in A$, alors $a \le b$ et $b \le a$, d'où b = a.

- 2. Relation d'ordre
- 2.1 Petits et grands
- 2.2 Majorants, minorants
- 2.3 Plus grand élément, plus petit élément
- 2.4 Borne supérieure, borne inférieure
- 3. Relation d'équivalence

D 15 Soient (E, \leq) un ensemble ordonné et A une partie de E.

Ν

- On dit qu'un élément de *E* est la **borne inférieure** de *A* dans *E* si c'est le plus grand élément de l'ensemble des minorants de *A* dans *E*. Lorsque cette borne existe, on la note inf *A*.
- On dit qu'un élément de E est la **borne supérieure** de A dans E si c'est le plus petit élément de l'ensemble des majorants de A dans E. Lorsque cette borne existe, on la note sup A.
- Contrairement au plus grand élément, la borne supérieure d'un ensemble, lorsqu'elle existe, n'appartient pas forcément à l'ensemble considéré.
- La borne supérieure (resp. inférieure) d'un ensemble à deux éléments $\{x,y\}$ se note (lorsqu'elle existe) $\sup(x,y)$ (resp. $\inf(x,y)$); notations analogues pour les bornes supérieure et inférieure d'un ensemble à trois éléments, etc.

Pour prouver que M est la borne supérieure de A, on procède en deux étapes :

- 1. on vérifie que M est un majorant de A (pour tout $x \in A$, $x \leq M$);
- 2. pour tout majorant M' de A, on vérifie que $M \leq M'$.
- **E 16** 1. Dans (\mathbb{R}, \leq) , l'intervalle [0, 1]

М

- a pour minorant tout élément de $]-\infty,0]$,
- ▶ a pour majorant tout élément de $[1, +\infty[$,
- a pour plus petit élément 0,
- a pour plus grand élément 1,
- a pour borne inférieure 0,
- a pour borne supérieure 1.
- 2. Dans (\mathbb{R}, \leq) , l'intervalle [0, 1]
 - a pour minorant tout élément de $]-\infty,0]$,
 - a pour majorant tout élément de $[1, +\infty[$,
 - a pour plus petit élément 0,
 - ne possède pas de plus grand élément,
 - a pour borne inférieure 0,
 - a pour borne supérieure 1.

E 17 Dans $E = \mathbb{N}$ muni de la relation d'ordre d'ordre «divise» :

$$a \mid b \iff \exists q \in \mathbb{N}, aq = b.$$

L'ensemble $A = \{ 15, 21 \}$

- a pour minorant les entiers 1 et 3,
- a pour majorant 0, 105, 210 et les autres multiples de 105,
- n'a pas de plus petit élément,
- n'a pas de plus grand élément,
- a pour borne inférieure 3,
- a pour borne supérieure 105.

- P 19
- 1. Si une partie A de E admet un plus grand élément a, a est borne supérieure de A dans E.
- 2. Si une partie A de E admet une borne supérieure et si sup $A \in A$, alors sup A est le plus grand élément de A.

Démonstration. Laissée en exercice!

P 20 Soient (E, \leq) un ensemble ordonné et A une partie de E, non vide, admettant à la fois une borne inférieure et une borne supérieure dans E. Alors $\inf(A) \leq \sup(A)$.

Démonstration. Laissée en exercice!

P 21 Soient (E, \leq) un ensemble ordonné, A et B deux parties de E, admettant toutes deux une borne supérieure (resp. inférieure) dans E; si $A \subset B$, on a $\sup(A) \leq \sup(B)$ (resp. $\inf(B) \leq \inf(A)$.

Démonstration. Laissée en exercice!

- 1. Propriétés d'une relation
- 2. Relation d'ordre
- 3. Relation d'équivalence

D 22 Une relation sur un ensemble E est une relation d'équivalence si elle est réflexive, symétrique et transitive.

E 23 Soit $\alpha \in \mathbb{R}$. On définit dans \mathbb{R} la relation de congruence modulo α pour tout $(x,y) \in \mathbb{R}^2$: x et y sont congrus modulo α si et seulement si $\exists k \in \mathbb{Z}, x = y + k\alpha$. On note $x \equiv y[\alpha]$. Cette relation est une relation d'équivalence.

D 24 Soit \mathcal{R} une relation d'équivalence sur l'ensemble E. On appelle classe d'équivalence de $x \in E$ l'ensemble des éléments de E équivalents à x:

$$\{ y \in E \mid x \mathcal{R} y \}.$$

- Il n'y a pas de notation au programme, on notera ici \bar{x} ou Classe(x) la classe de x.
- La notation usuelle, mais hors programme, pour l'ensemble des classes d'équivalences est E/\mathcal{R} .
- **P 25** Soit \mathcal{R} une relation d'équivalence sur l'ensemble E. Alors pour tout $x,y\in E$, on a

$$(x\mathcal{R}y) \iff y \in \text{Classe}(x) \iff x \in \text{Classe}(y) \iff \text{Classe}(x) = \text{Classe}(y).$$

Ainsi, deux classes d'équivalence sont ou bien égales, ou bien d'intersection vide.

$$\begin{split} \bar{0} &= \text{Classe}(0) = \{ \dots, -10, -5, 0, 5, 10, 15, \dots \} \\ \bar{1} &= \text{Classe}(1) = \{ \dots, -9, -4, 1, 6, 11, 16, \dots \} \\ \bar{2} &= \text{Classe}(2) = \{ \dots, -8, -3, 2, 7, 12, 17, \dots \} \\ \bar{3} &= \text{Classe}(3) = \{ \dots, -7, -2, 3, 8, 13, 18, \dots \} \\ \bar{4} &= \text{Classe}(4) = \{ \dots, -6, -1, 4, 9, 14, 19, \dots \} . \end{split}$$

On a par exemple Classe(11) = Classe(6) = Classe(1). On note l'ensemble des classe d'équivalence modulo 5

$$\mathbb{Z}/5\mathbb{Z} = \{ \text{ Classe}(0), \text{Classe}(1), \text{Classe}(2), \text{Classe}(3), \text{Classe}(4) \}$$

T 27

- 1. Soit \mathcal{R} une relation d'équivalence sur l'ensemble E. La famille des classes d'équivalence de \mathcal{R} forment une partition de E.
- 2. Réciproquement, si une famille $(A_i)_{i\in I}$ constitue une partition de E, la relation binaire $\mathcal R$ définie par

$$(x\mathcal{R}y) \iff (\exists i \in I, x \in A_i \text{ et } y \in A_i)$$

est une relation d'équivalence. Les classe d'équivalence pour cette relation sont les ensembles $\left(A_i\right)_{i\in I}$.