Advanced Methods in Biostatistics II Lecture 5

November 7, 2017

Linear model

Consider the linear model

$$\mathbf{y} = \mathbf{X}\boldsymbol{eta} + \boldsymbol{arepsilon}$$

where $\varepsilon \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$.

- Today we will revisit the problem where either irrelevant explanatory variables are included, or relevant variables are omitted.
- In addition, we will address the effects of other types of model misspecification.

Model misspecification

- In linear models, we can characterize different forms of model misspecification.
- To illustrate, let us consider the following models:

Model 1:
$$\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \boldsymbol{\varepsilon}$$

Model 2:
$$\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\varepsilon}$$

where the ε are assumed iid normals with variance σ^2 .

Model misspecification

- Let us further differentiate between the assumed and the true model.
- For example, if we assume Model 1 but Model 2 is true, we have underfit the model (i.e., omitted variables that were necessary).
- In contrast, if we assume Model 2 but Model 1 is true, we have overfit the model (i.e., included variables that were unnecessary).

 Let us begin by considering underfitting, i.e., assume Model 2 is true, but we instead use the model:

$$\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \epsilon.$$

In this setting the least-squares estimator is given by

$$\hat{\boldsymbol{\beta}}_1 = (\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{y}.$$

Computing the expectation, we see that

$$E(\hat{\beta}_{1}) = E((\mathbf{X}'_{1}\mathbf{X}_{1})^{-1}\mathbf{X}'_{1}\mathbf{y})$$

$$= (\mathbf{X}'_{1}\mathbf{X}_{1})^{-1}\mathbf{X}'_{1}E(\mathbf{y})$$

$$= (\mathbf{X}'_{1}\mathbf{X}_{1})^{-1}\mathbf{X}'_{1}(\mathbf{X}_{1}\beta_{1} + \mathbf{X}_{2}\beta_{2})$$

$$= \beta_{1} + (\mathbf{X}'_{1}\mathbf{X}_{1})^{-1}\mathbf{X}'_{1}\mathbf{X}_{2}\beta_{2}$$

- Thus, the estimate of β_1 is biased.
- Note that the bias disappears if either $\beta_2 = 0$ or $\mathbf{X}_1' \mathbf{X}_2 = 0$.

- Consider the case where both design matrices are mean-centered.
- Now the term

$$\frac{1}{n-1}\mathbf{X}_1'\mathbf{X}_2$$

represents the empirical variance-covariance matrix between \boldsymbol{X}_1 and \boldsymbol{X}_2 .

 Thus, if the omitted variables are uncorrelated with the included variables, then no bias exists.

Suppose we fit

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x} + \boldsymbol{\varepsilon},$$

when the true model is

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x} + \beta_2 \mathbf{x}^2 + \boldsymbol{\varepsilon}.$$

In this situation

$$\mathbf{X}_1' = \left(\begin{array}{ccc} 1 & \cdots & 1 \\ x_1 & \cdots & x_n \end{array}\right)$$

and

$$\mathbf{X}_2' = \left(\begin{array}{ccc} x_1^2 & \dots & x_n^2 \end{array} \right).$$

Thus, we can write:

$$(\mathbf{X}'_1\mathbf{X}_1)^{-1} = \frac{1}{\sum (x_i - \bar{x})^2} \begin{pmatrix} \sum x_i^2/n & -\bar{x} \\ -\bar{x} & 1 \end{pmatrix}$$

and

$$\mathbf{X}_1'\mathbf{X}_2 = \begin{pmatrix} 1 & \cdots & 1 \\ x_1 & \cdots & x_n \end{pmatrix} \begin{pmatrix} x_1^2 \\ \vdots \\ x_n^2 \end{pmatrix} = \begin{pmatrix} \sum x_i^2 \\ \sum x_i^3 \end{pmatrix}.$$

• Therefore we can express the bias in $\hat{\beta}$ as follows:

bias =
$$(\mathbf{X}'_{1}\mathbf{X}_{1})^{-1}\mathbf{X}'_{1}\mathbf{X}_{2}\beta_{2}$$

= $\frac{\beta_{2}}{\sum(x_{i}-\bar{x})^{2}}\left(\frac{(\sum x_{i}^{2})^{2}/n-\bar{x}\sum x_{i}^{3}}{-\bar{x}\sum x_{i}^{2}+\sum x_{i}^{3}}\right).$

Suppose we fit

$$\mathbf{y}_{ij} = \mu_i + \varepsilon_{ij},$$

when the true model is

$$\mathbf{y}_{ij} = \mu_i + \eta \mathbf{z}_{ij} + \varepsilon_{ij},$$

with
$$i = 1, 2, j = 1, ..., n_i$$
.

 In other words, we are comparing two groups, but ignore the covariate z.

• In matrix form the true model is $\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta} + \mathbf{X}_2 \boldsymbol{\eta} + \boldsymbol{\varepsilon}$, or

$$\begin{pmatrix} y_{11} \\ \vdots \\ y_{1n_1} \\ y_{21} \\ \vdots \\ y_{2n_2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} + \begin{pmatrix} z_{11} \\ \cdots \\ z_{1n_1} \\ z_{21} \\ \cdots \\ z_{2n_2} \end{pmatrix} \eta + \begin{pmatrix} \varepsilon_{11} \\ \cdots \\ \varepsilon_{1n_1} \\ \varepsilon_{21} \\ \cdots \\ \varepsilon_{2n_2} \end{pmatrix}.$$

• Then the bias in $(\hat{\mu}_1, \hat{\mu}_2)'$ is given by

$$(\boldsymbol{X}_1'\boldsymbol{X}_1)^{-1}\boldsymbol{X}_1'\boldsymbol{X}_2\eta = \left(\begin{array}{c} \overline{z}_1 \\ \overline{z}_2 \end{array}\right)\ \eta.$$

Hence, the group comparison given by

$$\hat{\mu}_1 - \hat{\mu}_2$$

is unbiased if $\bar{z}_1 = \bar{z}_2$.

- This example illustrates the effect of randomization.
- Suppose we randomly assign experimental units to the two groups.
- Then we will have $\bar{z}_1 \approx \bar{z}_2$ for any covariate z, as long as groups are fairly large.
- Thus, randomization helps controls for bias due to unfitted covariates.

ullet The theoretical standard errors for \hat{eta}_1 is still correct in that

$$\operatorname{var}(\hat{\boldsymbol{\beta}}_1) = (\mathbf{X}_1'\mathbf{X}_1)^{-1}\sigma^2.$$

• However, we still need to estimate σ^2 .

• The estimate of σ^2 will be biased, with

$$E(s^2) = \sigma^2 + \frac{1}{n-p} \beta_2' \mathbf{X}_2' (\mathbf{I} - \mathbf{X}_1 (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_1') \mathbf{X}_2 \beta_2.$$

This can be seen by noting that:

$$\begin{split} E(\boldsymbol{y}'(\boldsymbol{I}-\boldsymbol{H}_{\boldsymbol{X}_1})\boldsymbol{y}) &= & (\boldsymbol{X}_1\boldsymbol{\beta}_1 + \boldsymbol{X}_2\boldsymbol{\beta}_2)'(\boldsymbol{I}-\boldsymbol{H}_{\boldsymbol{X}_1})(\boldsymbol{X}_1\boldsymbol{\beta}_1 + \boldsymbol{X}_2\boldsymbol{\beta}_2) \\ &+ tr[(\boldsymbol{I}-\boldsymbol{H}_{\boldsymbol{X}_1})\boldsymbol{\sigma}^2\boldsymbol{I})] \\ &= & (\boldsymbol{X}_2\boldsymbol{\beta}_2)'(\boldsymbol{I}-\boldsymbol{H}_{\boldsymbol{X}_1})(\boldsymbol{X}_2\boldsymbol{\beta}_2) + (n-p)\boldsymbol{\sigma}^2 \end{split}$$

- Because the term $I H_{X_1}$ is positive definite, the term s^2 is biased upward.
- In this setting, variation due to unmodeled systematic variation is incorrectly attributed to the error.

Overfitting

- Now, let us consider the case of overfitting.
- Assume the correctly specified model is

$$\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \epsilon.$$

• However, suppose we instead use the model:

$$\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \epsilon$$
$$= \mathbf{X} \boldsymbol{\beta} + \epsilon$$

where $\mathbf{X} = [\mathbf{X}_1 \ \mathbf{X}_2]$ and $\boldsymbol{\beta} = [\boldsymbol{\beta}_1 \ \boldsymbol{\beta}_2]'$.

- In this setting, our estimate of β_1 will be unbiased.
- This holds because the true model is a special case of the fitted model with $\beta_2 = \mathbf{0}$.

Block matrix inversion

Theorem

If A and D are symmetric and all inverses exist,

$$\left(\begin{array}{ccc} {\bm A} & {\bm B} \\ {\bm C} & {\bm D} \end{array} \right)^{-1} \ = \ \left(\begin{array}{ccc} {\bm A}^{-1} + {\bm F}{\bm E}^{-1}{\bm G} & -{\bm F}{\bm E}^{-1} \\ -{\bm E}^{-1}{\bm G} & {\bm E}^{-1} \end{array} \right),$$

where
$$\mathbf{E} = (\mathbf{D} - \mathbf{C} \mathbf{A}^{-1} \mathbf{B})$$
, $\mathbf{F} = \mathbf{A}^{-1} \mathbf{B}$, and $\mathbf{G} = \mathbf{C} \mathbf{A}^{-1}$.

• Using this result and the fact that $\mathbf{G} = \mathbf{F}'$, we can write:

$$\operatorname{var}(\hat{\boldsymbol{\beta}}) = \sigma^{2}(\mathbf{X}'\mathbf{X})^{-1} = \sigma^{2} \begin{pmatrix} \mathbf{X}'_{1}\mathbf{X}_{1} & \mathbf{X}'_{1}\mathbf{X}_{2} \\ \mathbf{X}'_{2}\mathbf{X}_{1} & \mathbf{X}'_{2}\mathbf{X}_{2} \end{pmatrix}^{-1}$$
$$= \sigma^{2} \begin{pmatrix} (\mathbf{X}'_{1}\mathbf{X}_{1})^{-1} + \mathbf{F}\mathbf{E}^{-1}\mathbf{F}' & -\mathbf{F}\mathbf{E}^{-1} \\ -\mathbf{E}^{-1}\mathbf{F}' & \mathbf{E}^{-1} \end{pmatrix},$$

where

$$\boldsymbol{F} = (\boldsymbol{X}_1' \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1' \boldsymbol{X}_2,$$

and

$$\boldsymbol{E} = \boldsymbol{X}_2' \boldsymbol{X}_2 - \boldsymbol{X}_2' \boldsymbol{X}_1 (\boldsymbol{X}_1' \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1' \boldsymbol{X}_2 = \boldsymbol{X}_2' (\boldsymbol{I} - \boldsymbol{P}_{\boldsymbol{X}_1}) \boldsymbol{X}_2.$$

Therefore,

$$\operatorname{var}(\hat{\boldsymbol{\beta}}_1) = \sigma^2[(\mathbf{X}_1'\mathbf{X}_1)^{-1} + \mathbf{F}\mathbf{E}^{-1}\mathbf{F}'],$$

- Compare this to $\sigma^2(\mathbf{X}_1'\mathbf{X}_1)^{-1}$ which would result from fitting the true model where $E[\mathbf{Y}] = \mathbf{X}_1\beta_1$.
- In the above, $\mathbf{F}\mathbf{E}^{-1}\mathbf{F}'$ is positive definite unless $\mathbf{X}'_1\mathbf{X}_2=\mathbf{0}$.

- Therefore, the variance assuming Model 2 will always be greater than the variance assuming Model 1.
- Note at no point did we actually utilize which model was actually true.
- This illustrates the key point that adding more regressors into a linear model necessarily increases the standard error of the ones already included.

- This is called "variation inflation".
- Note that the estimated variances need not go up, since σ^2 will decrease as we include additional variables.

- If we fit Model 2 but Model 1 is correct, then our variance estimate will be unbiased.
- Again, this holds because we fit the correct model, and simply allowed for the possibility that β_2 was non-zero when it is in fact exactly zero.
- Therefore s^2 is an unbiased estimate for σ^2 .

However, recall that

$$\frac{(n-p_1-p_2)s_2^2}{\sigma^2} \sim \chi_{n-p_1-p_2}^2,$$

where s_2^2 is the variance assuming Model 2.

Similarly,

$$\frac{(n-p_1)s_1^2}{\sigma^2} \sim \chi_{n-p_1}^2$$

where s_1^2 is the variance assuming Model 1.

• Using the fact that the variance of a χ^2 -distributed random variable is twice the degrees of freedom, we get that

$$\frac{Var(s_2^2)}{Var(s_1^2)} = \frac{(n-p_1)}{(n-p_1-p_2)}.$$

 Thus, despite both estimates being unbiased, the variance of the estimated variance under Model 2 is higher.

Summary

	Effect of Underfitting	Effect of Overfitting
\hat{eta} $\hat{\mathbf{y}}$ \mathbf{s}^2 $\mathrm{var}(\hat{eta})$	biased biased biased upward still $\sigma^2(\mathbf{X}'\mathbf{X})^{-1}$	unbiased unbiased unbiased > than necessary

Mis-specified variance-covariance

- Next, let us assume that we have specified $E[Y] = X\beta$ correctly, but the variance-covariance matrix incorrectly.
- To illustrate, suppose that $var(\varepsilon) = \sigma^2 V$, but we assume that $var(\varepsilon) = \sigma^2 I$.
- In the full rank case the parameter estimates $\hat{\beta}$ are still unbiased.

Mis-specified variance-covariance

However,

$$\operatorname{var}(\hat{\boldsymbol{\beta}}) = \sigma^2(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}.$$

Also, in most cases s² will be biased, since

$$E[s^2] = \frac{\sigma^2}{n-p} tr[\mathbf{V}(\mathbf{I} - \mathbf{H})].$$

Effects of non-normality

- Finally, let us suppose we have correctly specified the model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \ E[\boldsymbol{\varepsilon}] = \mathbf{0}, \ \operatorname{cov}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I}, \ \text{but}$ suppose that $\boldsymbol{\varepsilon}$ is not necessarily multivariate normal.
- We have seen previously that $\hat{\beta}$ is unbiased, and $var(\hat{\beta}) = \sigma^2(\mathbf{X}'\mathbf{X})^{-1}$, without requiring any distributional assumptions.

Effects of non-normality

- Thus, normality is not required to fit a linear model.
- However, normality of the coefficient estimates $\hat{\beta}$ is needed to compute confidence intervals and perform tests.
- As $\hat{\beta}$ is a weighted sum of \mathbf{y} , the Central Limit Theorem guarantees that it will be normally distributed if the sample size is large enough.
- Thus, tests and confidence intervals can be based on the associated t-statistic in these settings.

Bootstrap

- However, in many settings, bootstrap procedures may be more appropriate.
- There are several alternative ways of performing the bootstrap on linear models.
- The most straightforward approach is to link the response and explanatory variables for each observation and resample observations.
- However, this treats the explanatory variables as random rather than fixed.

Bootstrap

 To circumvent this, an alternative strategy is to select bootstrap samples of the residuals, and use these to create new observations, i.e.

$$y_i^* = \hat{y}_i + e_i^*.$$

 One can now link the bootstrapped y values with the fixed x values to obtain bootstrap model coefficients.