

DISEASES WITH AN INTERACTIVE DASH BOARD

NALAIYA THIRAN PROJECT BASED LEARNING

\mathbf{ON}

PROFESSIONAL READINESS FOR INNOVATION, EMPLOYABILITY AND ENTREPRENEURSHIP

A PROJECT REPORT

KOMMY SAMPATH	410119106025
P. MEENAKSHI	410119106034
M. MONIKA	410119106036
S. NIVETHITHA	410119106042

BACHELOR OF ENGINEERING

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

ADHI COLLEGE OF ENGINEERING AND TECHNOLOGY KANCHEEPURAM – 631 605

NOVEMBER 2022

ADHI COLLEGE OF ENGINEERING AND TECHNOLOGY

6, Munu Adhi Nagar, Sankarapuram, Near Walajabad, Kancheepuram – 631 605

INTERNAL MENTOR MR. RAJINIKANTH

Assistant Professor

Department of Electronics and Communication Engineering

Adhi College of Engineering and Technology,

Kancheepuram – 631 605

INDUSTRY MENTOR
MR. MAHIDHAR,
MS. SAUMYA
IBM

ABSTRACT

Analysis (EDA) detects mistakes, finds appropriate data, checks assumptions and determines the correlation among the explanatory variables. In the context, EDA is considered as analyzing data that excludes inferences and statistical modelling. Analytics is an essential technique for any profession as it forecast the future and hidden pattern. Data analytics is considered as a costeffective technology in the recent past and it plays an essential role in healthcare which includes new research findings, emergency situations and outbreaks of disease. The use of analytics in healthcare improves care by facilitating preventive care and EDA is a vital step while analyzing data. In this paper, the risk factors that causes heart disease is considered and predicted using K-means algorithm and the analysis is carried out using a publicly available data for heart disease. The dataset holds 209 records with 8 attributes such as age, chest pain type, blood pressure, blood glucose level, ECG in rest, heart rate and four types of chest pain. To predict the heart disease, K-means clustering algorithm is used along with data analytics and visualization tool. The paper discusses the preprocessing methods, classifier performances and evaluation metrics. In the result section, the visualized data shows that the prediction is accurate.

TABLE OF CONTENTS

CHAPTER NO	TITLE	PAGE NO
	ABSTRACT	
1.	INTRODUCTION	5
2.	OBJECTIVE	6
3.	IDEATION PHASE	
	3.1 Literature Survey	7
	3.2 Empathy Map	8
	3.3 Ideation	9
	3.4 Brainstorming	9
4.	PROJECT DESIGN PHASE 1	
	4.1 Proposed Solution	10
	4.2 Problem Solution Fit	11
	4.3 Solution Architecture	12
5.	PROJECT DESIGN PHASE 2	
	5.1 Customer Journey Map	13
	5.2 Functional Requirement	14
	5.3 Data Flow Diagrams	15
	5.4 Technology Architecture	16
6.	PROJECT PLANNING PHASE	
	6.1 Prepare Milestone and Activity List	18
	6.2 Sprint Delivery Plan	20

7.	PROJECT DEVELOPMENT PHASE	
	7.1 Project Development – Delivery of Sprint – 1	22
	7.2 Project Development – Delivery of Sprint – 2	31
	7.3 Project Development – Delivery of Sprint – 3	34
	7.4 Project Development – Delivery of Sprint – 4	36
8.	CONCLUSION	38
9.	REFERENCES	39

1. INTRODUCTION

A study in 2016 found that human beings are collectively generated data more than ten exabytes, or 5x1018 bytes from various sources (Lyman and Varian 2003). Exploratory Data Analysis (EDA) is a method to analyze data using advanced techniques to expose hidden structure, enhances the insight into a given dataset, identifies the anomalies and builds parsimonious models to test the underlying assumptions. Exploratory Data Analysis (EDA) is classified into Graphical or non-graphical and Univariate or multivariate Univariate data consider one data column at a time while multivariate method considers more than two variables while analyzing. The diagnostic methods of diseases are of two types namely, Invasive and Non-invasive Invasive diagnostic method includes incise procedures in which instruments are used to cut the skin, mucus membrane and connective tissues. In contrast, non-invasive methods are used to diagnose diseases without opening the skin. Some of the machine learning algorithms based on non-invasive methods are Support Vector Machine (SVM), K- means clustering, K-Nearest neighbor (KNN), Artificial Neural Network (ANN), Naive Bayes, Logistic Regression and rough set [15]. Predicting and diagnosing heart disease is the biggest challenge in the medical industry and it is based on factors like physical examination, symptoms and signs of the patient [1-3]. Factors which influence heart diseases are cholesterol level of the body, smoking habit, and obesity, family history of diseases, blood pressure and working environment. Machine learning algorithms play a vital and accurate role in predicting heart disease [4]. The advancement of technologies allows machine language to pair with big data tools to handle unstructured and exponentially growing data [5].

2. OBJECTIVE

- The objective of this project is to check whether the patient is likely to be diagnosed with any cardiovascular heart disease based on their medical attributes such as gender, age, chest pain, fasting sugar level, etc.
- A dataset is selected from the UCI repository with patient's medical history and attributes.
- To predict the heart disease, K-means clustering algorithm is used along with data analytics and visualization tool. The paper discusses the pre-processing methods, classifier performances and evaluation metrics.
- In the result section, the visualized data shows that the prediction is accurate.

3. IDEATION PHASE

3.1 Literature Survey:

Heart Disease is the one of major causes of death globally. Around17.9millionpeopledie each year. Cardiovascular diseases include disorders of the heart and blood vessels. Four out of five cardiovascular disease deaths are due to heart attacks. One-third of these deaths occur prematurely under the age of seventy. The major number of deaths have occurred in developing countries. India is one of them. For heart disease diagnosis we need cardiologists, which are in limited number in developing countries. Also, the tests for cardiovascular diseases are quite expensive; sometimes out of the budget for common people. Early detection is important in case of heart disease with less expensive prediction techniques. As we know, now-a-days Machine Learning algorithms are used for predicting various diseases. They are also used for predicting heart disease. This paper deals with the survey of Machine Learning algorithms used for predicting heart disease, the importance of attributes to predict the disease and selection of important attributes for prediction.

Machine learning (ML) is the subdomain of artificial intelligence (AI). Today we are using MLindaytodaylife.ML based computer programs can access data and use it to learn themselves. It means past experience is used for prediction in ML. ML algorithms are of four types: Supervised Learning in which direct supervision is involved developer label the dataset restricts the boundaries of algorithm, Unsupervised Learning supervision is not required, semi supervised machine learning both types supervised and unsupervised used in combine format and Reinforcement Learning exploration of thing one by one

fist event take as input for next event. In this paper the focus is on supervised machine learning algorithms.

3.2 Empathy Map:

3.3 Ideation:

4. PROJECT DESIGN PHASE 1

4.1 Proposed

Solution:

Proposed Solution Template:

S.No.	Parameter	Description		
•	Problem Statement (Problem to be solved)	The leading cause of death in the developed world is heart disease. Therefore, there needs to be work done to help prevent the risks of having a heart attack or stroke. Use this dataset to predict which patients are most likely to suffer from a heart disease in the near future using the features given.		
•	Idea / Solution description	In Our Project, we are Planning to develop a dashboard using IBM Cognos Analytics Which express our talent as our Outcomes. We are Using Python Language for backend Database Connection. The Data will be stored in the IBM Cloud Platform.		
•	Novelty / Uniqueness	IBM Cognos Analytics is the platform that we are going to build the Dashboard is something Unique.For visualizing it, we will require the following data: * Sex * Age * Chest Pain		
•	Social Impact / Customer Satisfaction	n By predicting the Heart Diseases where the public will have a knowledge on how they are affecting with heart diseases		
•	Business Model (Revenue Model)	By our dashboard patients can analyze and predict weather they are going to effect with heart diseases regarding the health factor they are facing, which will be more use for hospitals for genrating the revenue.		
•	Scalability of the Solution	We will produce exact information to the patients through Our Project and the functionality of our project will be best in the market.		

4.2 Problem Solution Fit:

4.3 Solution Architecture:

5. PROJECT DESIGN PHASE 2

5.1 Customer Journey Map:

The customer journey map is a visual representation of the steps a customer takes to complete a specific action, such as signing up for a product trial or subscribing to a newsletter .The more steps involved to complete the specific action, the more detailed the customer journey map will be

5.2 Solution Requirements:

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement	Sub Requirement (Story / Sub-Task)
	(Epic)	
FR-1	User Registration	Enables user to make registration for the application
		through Gmail
FR-2	User Confirmation	Once after registration, the user will get confirmation
		via Email
FR-3	Visualizing Data	User can visualize the trends on the heart disease
		through Dashboard created using IBM Cognos
		Analytics
FR-4	Generating Report	User can view his/her health report and can make
	500	decisions accordingly

Non-Functional Requirements:

NFR No.	Non-Functional Requirement	Description		
NFR-1	Usability	The application will have a simple and		
		userfriendlygraphical interface. Users will be		
		able to understand and use all the features of		
		the application easily. Any action has to be		
		performed with just a few clicks		
NFR-2	Security	For security of the application the technique		
		knownas database replication should be used so		
		that all the important data should be kept safe.		
		Incase of crash, the system should be able to		
		backup and recover the data		
NFR-3	Reliability	The application has to be consistent at every		
		scenario and has to work without failure in		
		anyenvironment		
NFR-4	Performance	Performance of the application depends on the		
		response time and the speed of the data		
		submission. The response time of the application		
		is direct and faster which depends on the		
		efficiency of implemented algorithm		
NFR-5	Availability	The application has to be available 24 x 7 for users		
		without any interruption		
NFR-6	Scalability	The application can withstand the increase in the		
		no. of users and has to be able to develop		
		higherversions		

5.3 Data Flow Diagram:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored

Data Flow Diagram for Heart Disease Predi tion Dashboard:

Flow:

- 1) User creates an account in the application.
- 2) User enters the medical records in the dashboard.
- 3) User can view the visualizations of trends in the form of graphs and charts for his/her medical records with the trained dataset.
- 4) User can view the accuracy of probability of occurrence of heart disease in the dashboard.

User Stories:

User Type	Functional	User	User Story / Task	Acceptance criteria	Priority	Release
	Requirement (Epic)	Story Number				
Customer (Webuser)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / Dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
	Login	USN-3	As a user, I can log into the application by entering email & password	I can access my account / Dashboard whenlogged in	High	Sprint-1
Customer (Webuser)	Dashboard	USN-4	User can view his/her complete medical analysis and accuracy of disease prediction	I can view my medical analysis in the dashboard	High	Sprint-2
		USN-5	User can view the accuracy of occurrence of heart disease	I can view the accuracy of heart disease in the dashboard	High	Sprint-2
Customer Care Executive	Helpdesk	USN-6	As a customer care executive, he/she can view the customer queries.	I can post my queries in the dashboard	Medium	Sprint-3
		USN-7	As a customer care executive, he/she can answer the customer queries.	I can get support from helpdesk	High	Sprint-3

Administrator	User Profile	USN-8	As an admin, he/she can update the health details of users.	I can view my updated health details.	High	Sprint-4
User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
	(-F)	USN-9	As an admin, he/she can add or delete users.	I can access my account / Dashboard whenlogged in	High	Sprint-4
		USN-10	As an admin, he/she can manage the user details.	I can view the organized data of myself.	High	Sprint-4

5.4 Technology Stack:

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with application e.g. Web UI, Mobile App, Chatbot etc.	HTML, CSS, JavaScript / Angular Js / React Js etc.
2.	Application Logic-1	Logic for a process in the application	Java / Python
3.	Application Logic-2	Logic for a process in the application	IBM Watson STT service
4.	Application Logic-3	Logic for a process in the application	IBM Watson Assistant
5.	Database	Data Type, Configurations etc.	MySQL, NoSQL, etc.
6.	Cloud Database	Database Service on Cloud	IBM DB2, IBM Cloudant etc.
7.	File Storage	File storage requirements	IBM Block Storage or Other Storage Service or Local Filesystem
8.	External API-1	Purpose of External API used in the application	IBM Weather API, etc.
9.	External API-2	Purpose of External API used in the application	Aadhar API, etc.
10.	Machine Learning Model	Purpose of Machine Learning Model	Object Recognition Model, etc.
11.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud Local Server Configuration: Cloud Server Configuration :	Local, Cloud Foundry, Kubernetes, etc.

Table-2: Applications Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	List the open-source frameworks used	Technology of Opensource framework
2.	Security Implementations	List all the security / access controls implemented, use of firewalls etc.	e.g. SHA-256, Encryptions, IAM Controls, OWASP etc.
3.	Scalable Architecture	Justify the scalability of architecture (3 – tier, Micro-services)	Technology used
4.	Availability	Justify the availability of application (e.g. use of load balancers, distributed servers etc.)	Technology used
5.	Performance	Design consideration for the performance of the application (number of requests per sec, use of Cache, use of CDN's) etc.	Technology used

6. PROJECT PLANNING PHASE

6.1 Prepare Milestone and Activity List:

PROJECT PLANNING PHASE PROJECT MILESTONE

DATE		22 October 2022	
TEAM ID	TEAM ID		
PROJECT NAME	PROJECT NAME		ting Heart diseases
		with an Interactive das	shboard
MAXIMUM		4 Marks	
S.NO	ACTIVITY TITLE	ACTIVITY	DURATION
		DESCRIPTION	
1	Understanding the	Create a	1 WEEK
	project	repository and	
	requirement	assign team	
		members utilising	
		Github, give them	
		the task, all	
		individuals teach	
		students how to	
		use, open, and	
		work on the	
		Github, career at	
		IBM education.	
		iziii caasattorii	

2	Starting of project	Encourage the students to enrol in IBM portal classes and conceive of create a rough depiction based on project detailing and group of details about IBM and IOT task and team	2 WEEKS
		leader delegate a task	
		every participant of the undertaking.	

35			
3	Attend class	Team members and the team captain must observe and discover from the classes offered from IBM and NALAYATHIRAN and must advance entry to MIT permit for their project.	4 WEEKS
4	Budget and scope of project	Data Analytics eliminates guess work and manual tasks. Analyse the project's budget and Data Analytics use and speak of using a team for budget forecast to foresee the favourableness of the client to buy.	1 WEEK

6.2 Sprint Delivery Plan:

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story number	User Story , Tผมห	Story Points	Priority	Team Members
Sprint-1	Registrat c n	USN-i	As a user, I can register for the application by entering my email, password, and confirming my password.	2	High	Sampath K
Sprint-1	Confirmation	USN-2	As a user, I will receive confirmation email once I have registered for the application	1	High	ıv eenakshi P
Sprint-2		USN-3	As a user, I can register for the application through Facebook	2	Low	M- nika M
Sprint-1		USN-4	As a user, I can register for the application through Gmail	2	Medium	Nivethitha S
Sprint-1	Login	USN-5	As a user, I can log into the application by entering email & password	1	High	Sampath K
Sprint-1	User Interface	USN-6	As a user, I should not need any pre requisites to handle the JI	1	Medium	Monika M
Sprint-1	Dashboard		As a user, will use the templates and resources of the dashboard effectively	2	High	Nivethitha S
Sprint-1	Present data		As a user, will present the data in the IBM cognos analytics platform	2	High	Meenakshi P
Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members

Sprint-1	EDA	a user, will perfom the Exploratory Data alytics(EDA) in a correct manner	2	High	Sampath K
Sprint-1	Visualization	a user, data visualization will be performed actively	2	High	Nivethitha S
Sprint-2	Report	a user, I will take responsibility that a report be finally made by our team	2	High	Monika M

PROJECT TRACKER:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planne 1 End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	30	30 Oct 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	49	06 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	50	07 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story point per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown chart:

7.PROJECT DEVELOPMENT PHASE

7.1 Delivery of sprint 1: Heart Disease Prediction

	1	Age	Sex	Chest pain type	BF	Cholester	ol FB	BS over 120	EKG result	s Max	HR	Exercise angin	a	ST depressio	n Slope	of ST	Number of vessels fluro	Th	allium	Heart Disease
	2	70	1	4	13	0 322	0		2	109		0		2.4	2		3	3		Presence
	3	67	0	3	11	5 564	0		2	160		0		1.6	2		0	7		Absence
	4	57	1	2	12	261	0		0	141		0		0.3	1		0	7		Presence
	5	64	1	4	12	8 263	0		0	105		1		0.2	2		1	7		Absence
	6	74	0	2	12	269	0		2	121		1		0.2	1		1	3		Absence
	7	65	1	4	12	177	0		0	140		0		0.4	1		0	7		Absence
	8	56	1	3	13	256	1		2	142		1		0.6	2		1	6		Presence
	9	59	1	4	11	0 239	0		2	142		1		1.2	2		1	7		Presence
	10	60	1	4	14	293	0		2	170		0		1.2	2		2	7		Presence
	11	63	0	4	15	0 407	0		2	154		0		4	2		3	7		Presence
	12	59	1	4	13	5 234	0		0	161		0		0.5	2		0	7		Absence
	13	53	1	4	14	2 226	0		2	111		1		0	1		0	7		Absence
	14	44	1	3	14	0 235	0		2	180		0		0	1		0	3		Absence
	15	61	1	1	13	4 234	0		0	145		0		2.6	2		2	3		Presence
	16	57	0	4	12	8 303	0		2	159		0		0	1		1	3		Absence
	17	71	0	4	11	2 149	0		0	125		0		1.6	2		0	3		Absence
	18	46	1	4	14	0 311	0		0	120		1		1.8	2		2	7		Presence
	19	53	1	4	14	203	1		2	155		1.		3.1	3		0	7		Presence
	20	64	1	1	11	0 211	0		2	144		1		1.8	2		0	3		Absence
	21	40	1	1	14	199	0		0	178		1		1.4	1		0	7		Absence
	22	67	1	4	12	229	0		2	129		1		2.6	2		2	7		Presence
	23	48	1	2	13	0 245	0		2	180		0		0.2	2		0	3		Absence
24	43	1	4		115	303	0	0		181	0		1.2		2	0		3	Abse	ence
25		1	4			204	0	0		143	0		0.1		1	0		3	Abse	
26		0	2			288	1	2		159	1		0		1	1		3	Abse	
27			3			275	0	0		139	0		0.2		1	0		3	Abse	
28	46	0	4		138	243	0	2		152	1		0		2	0		3	Abse	ence
25	51	0	3		120	295	0	2		157	0		0.6		1	0		3	Abse	ence
36	58	1	3		112	230	0	2		165	0		2.5		2	1		7	Presi	ence
33	71	0	3		110	265	1	2		130	0		0		1	1		3	Abse	ence
32	57	1	3		128	229	0	2		150	0		0.4		2	1		7	Prese	ence
33	66	1	4		160	228	0	2		138	0		2.3		1	0		6	Abse	ence
34	37	0	3		120	215	0	0		170	0		0		1	0		3	Abse	ence
35	59	1	4		170	326	0	2		140	1		3.4		3	0		7	Pres	ence
36	50	1	4		144	200	0	2		126	1		0.9		2	0		7	Presi	ence
37	48	1	4		130	256	1	2		150	1		0		1	2		7	Pres	ence
38	61	1	4		140	207	0	2		138	1		1.9		1	1		7	Presi	ence
39	59	1	1		160	273	0	2		125	0		0		1	0		3	Pres	ence
46	42	1	3		130	180	0	0		150	0		0		1	0		3	Abse	ence
4:	48	1	4		122	222	0	2		186	0		0		1	0		3	Abse	ence
42	40	1	4		152	223	0	0		181	0		0		1	0		7	Presi	ence
4	62	0	4		124	209	0	0		163	0		0		1	0		3	Abse	ence
44	44	1	3		130	233	0	0		179	1		0.4		1	0		3	Abse	ence
45	46	1	2		101	197	1	0		156	0		0		1	0		7	Abse	ence
46	59	1	3		126	218	1	0		134	0		2.2		2	1		6	Presi	ence
47	58	1	3		140	211	1	2		165	0		0		1	0		3	Abse	ence

Delivery of Sprint 1: Working with database:

Exploration Of Max Heart Rate During The Chest Pain

Details

The most common value of **Chest pain type - Sex** is 2|1, occurring 129 times, which is 47.8 % of the total.

Over all **chest pain type - sexes**, the average of **Age** is 0.6778.

The average values of Age range from 0, occurring when Chest pain type - Sex is 1|0, to 1, when Chest pain type - Sex is 1|0.

Exploration Of Chorestrol By Age And Gender

Details

For Cholesterol, the most significant value of Sex is 1, whose respective Cholesterol values add up to over 44 thousand, or 65.8 % of the total.

Across all ages and sexes, the sum of Cholesterol is over 67 thousand.

For Cholesterol, the most significant values of Age are 54 and 58, whose respective Cholesterol values add up to nearly eight thousand, or 11.8 % of the total.

The summed values of **Cholesterol** range from 182 to nearly three thousand.

Cholesterol is unusually high when the combinations of Age and Sex are 54 and 1, 59 and 1 and 58 and 1.

Cholesterol is unusually high when Age is 54 and 58.

Details

The most common values of Age are 54 (5.9 %) and 58 (5.6 %), together occurring 31 times, which is 11.5 % of the total.

BP is unusually high when Age is 59.

The most common value of Sex is 1, occurring 183 times, which is 67.8 % of the total.

Over all ages and sexes, the average of BP is 131.3.

The average values of BP range from 94 to 174.

Details

Over all sex - chest pain types, the average of Max HR is 2.174.

The average values of Max HR range from 0, occurring when Sex - Chest pain type is 0|1, to 3, when Sex - Chest pain type is 0|1.

The most common value of Sex - Chest pain type is 0|2, occurring 183 times, which is 67.8 % of the total.

Details

Over all chest pain type - sexes, the average of BP is 0.6778.

The average values of BP range from 0, occurring when Chest pain type - Sex is 1|0, to 1, when Chest pain type - Sex is 1|0.

The most common value of **Chest pain type** - **Sex** is 2|1, occurring 129 times, which is 47.8 % of the total.

Delivery of Sprint 1: Working with Dataset

imp imp %ma	ort port matplot	umpy as andas a atplotl lib inl eaborn	s pd ib.pyplot : ine	as pl	t									
61]: df	= pd.	read_cs	v('Heart_D	iseas	se_Prediction	.csv')								
62]: df														
62]:	Age	Sex	Chest pain type		Cholesterol	FBS over	EKG results	Max HR	Exercise angina	ST depression	Slope of ST	Number of vessels fluro	Thallium	Heart Disease
0	70	1	4	130	322	0	2	109	0	2.4	2	3	3	Presence
1	67	0	3	115	564	0	2	160	0	1.6	2	0	7	Absence
2	57	1	2	124	261	0	0	141	0	0.3	1	0	7	Presence
3	64	1	4	128	263	0	0	105	1	0.2	2	1	7	Absence
4	74	0	2	120	269	0	2	121	1	0.2	1	1	3	Absence
	***	***		***	***		***	***	***	***		***		***
265	52	1	3	172	199	1	0	162	0	0.5	1	0	7	Absence
266	44	1	2	120	263	0	0	173	0	0.0	1	0	7	Absence
267	56	0	2	140	294	0	2	153	0	1.3	2	0	3	Absence
268	57	1	4	140	192	0	0	148	0	0.4	2	0	6	Absence
269	67	1	4	160	286	0	2	108	1	1.5	2	3	3	Presence
BP Ch FB EK Ma Ex ST S1 Nu Th He	nolest nolest 3S ove (G res ax HR kercis I depr Lope (umber nalli	er 120 sults se angi ression of ST of ves um	ina 1 Ssels flur	^ 0	False									
[64]: d	lf.isr	ull().	sum()											
BP	ex nest p nolest	pain ty cerol er 120	/pe		0 0 0 0									

In [65]: df.isna().sum() Out[65]: Age Sex 0 Chest pain type BP Cholesterol FBS over 120 EKG results 0 Max HR Exercise angina ST depression Slope of ST Number of vessels fluro Thallium Heart Disease dtype: int64 In [66]: df.corr()

C:\Users\Lenovo\AppData\Local\Temp\ipykernel_2440\1134722465.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

df.corr()

Out[66]:		Age	Sex	Chest pain type	ВР	Cholesterol	FBS over 120	EKG results	Max HR	Exercise angina	ST depression	Slope of ST	Number of vessels fluro	Thalliun
	Age	1.000000	-0.094401	0.096920	0.273053	0.220056	0.123458	0.128171	-0.402215	0.098297	0.194234	0.159774	0.356081	0.10610
	Sex	-0.094401	1.000000	0.034636	-0.062693	-0.201647	0.042140	0.039253	-0.076101	0.180022	0.097412	0.050545	0.086830	0.39104
	Chest pain type	0.096920	0.034636	1.000000	-0.043196	0.090465	-0.098537	0.074325	-0.317682	0.353160	0.167244	0.136900	0.225890	0.26265
	ВР	0.273053	-0.062693	-0.043196	1.000000	0.173019	0.155681	0.116157	-0.039136	0.082793	0.222800	0.142472	0.085697	0.13204
	Cholesterol	0.220056	-0.201647	0.090465	0.173019	1.000000	0.025186	0.167652	-0.018739	0.078243	0.027709	-0.005755	0.126541	0.02883
	FBS over 120	0.123458	0.042140	-0.098537	0.155681	0.025186	1.000000	0.053499	0.022494	-0.004107	-0.025538	0.044076	0.123774	0.04923
	EKG results	0.128171	0.039253	0.074325	0.116157	0.167652	0.053499	1.000000	-0.074628	0.095098	0.120034	0.160614	0.114368	0.00733
	Max HR	-0.402215	-0.076101	-0.317682	-0.039136	-0.018739	0.022494	-0.074628	1.000000	-0.380719	-0.349045	-0.386847	-0.265333	-0.25339
	Exercise angina	0.098297	0.180022	0.353160	0.082793	0.078243	-0.004107	0.095098	-0.380719	1.000000	0.274672	0.255908	0.153347	0.32144
	ST depression	0.194234	0.097412	0.167244	0.222800	0.027709	-0.025538	0.120034	-0.349045	0.274672	1.000000	0.609712	0.255005	0.32433
	Slope of ST	0.159774	0.050545	0.136900	0.142472	-0.005755	0.044076	0.160614	-0.386847	0.255908	0.609712	1.000000	0.109498	0.28367
	Number of vessels fluro	0.356081	0.086830	0.225890	0.085697	0.126541	0.123774	0.114368	-0.265333	0.153347	0.255005	0.109498	1.000000	0.25564
	Thallium	0.106100	0.391046	0.262659	0.132045	0.028836	0.049237	0.007337	-0.253397	0.321449	0.324333	0.283678	0.255648	1.00000

In [67]: plt.figure(figsize=(20,8))
 sns.heatmap(df.corr(), cmap="Pastel2", annot=True)
 plt.show()

C:\Users\Lenovo\AppData\Local\Temp\ipykernel_2440\d025539413.py:2: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

sns.heatmap(df.corr(), cmap="Pastel2", annot=True)

Age -	1	-0.094	0.097	0.27	0.22	0.12	0.13	-0.4	0.098	0.19	0.16	0.36	0.11	1.0
Sex -	-0.094	1	0.035	-0.063	-0.2	0.042	0.039	-0.076	0.18	0.097	0.051	0.087	0.39	- 0.8
Chest pain type -	0.097	0.035	1	-0.043	0.09	-0.099	0.074	-0.32	0.35	0.17	0.14	0.23	0.26	
BP -	0.27	-0.063	-0.043	1	0.17	0.16	0.12	-0.039	0.083	0.22	0.14	0.086	0.13	- 0.6
Cholesterol -	0.22	-0.2	0.09	0.17	1	0.025	0.17	-0.019	0.078	0.028	-0.0058	0.13	0.029	
FBS over 120 -	0.12	0.042	-0.099	0.16	0.025	1	0.053	0.022	-0.0041	-0.026	0.044	0.12	0.049	- 0.4
EKG results -	0.13	0.039	0.074	0.12	0.17	0.053	1	-0.075	0.095	0.12	0.16	0.11	0.0073	
Max HR -	-0.4	-0.076	-0.32	-0.039	-0.019	0.022	-0.075	1	-0.38	-0.35	-0.39	-0.27	-0.25	- 0.2
Exercise angina -	0.098	0.18	0.35	0.083	0.078	-0.0041	0.095	-0.38	1	0.27	0.26	0.15	0.32	
ST depression -	0.19	0.097	0.17	0.22	0.028	-0.026	0.12	-0.35	0.27	1	0.61	0.26	0.32	- 0.0
Slope of ST -	0.16	0.051	0.14	0.14	-0.0058	0.044	0.16	-0.39	0.26	0.61	1	0.11	0.28	
Number of vessels fluro -	0.36	0.087	0.23	0.086	0.13	0.12	0.11	-0.27	0.15	0.26	0.11	1	0.26	0.2
Thallium -	0.11	0.39	0.26	0.13	0.029	0.049	0.0073	-0.25	0.32	0.32	0.28	0.26	1	
	- Age -	- xəs	Chest pain type -	BP -	Cholesterol -	FBS over 120 -	EKG results -	Max HR -	Exercise angina -	ST depression -	Slope of ST -	umber of vessels fluro -	Thallium -	0.4

```
Out[92]: 0 1 2 3 4 5 6 7 8 9 10 11 12
             0 0.520833 1.0 0.333333 0.924528 0.500000 0.0 1.0 0.946565 0.0 0.000000 0.0 0.333333 1.0
           1 0.500000 1.0 1.000000 0.273585 0.496269 0.0 0.0 0.183206 1.0 0.322581 0.5 0.666667 1.0
             2 0.291667 0.0 1.000000 0.358491 0.716418 1.0 1.0 0.496183 1.0 0.483871 0.5 0.000000 1.0
           3 0.791667 0.0 0.666667 0.547170 0.477612 0.0 0.0 0.770992 0.0 0.000000 0.0 0.333333 0.0
             4 0.645833 1.0 0.666667 0.433962 0.134328 0.0 1.0 0.641221 0.0 0.483871 0.5 0.000000 0.0
           \textbf{184} \quad 0.583333 \quad 1.0 \quad 0.333333 \quad 0.283019 \quad 0.417910 \quad 0.0 \quad 0.0 \quad 0.534351 \quad 0.0 \quad 0.048387 \quad 0.0 \quad 0.000000 \quad 1.0
           185 0.250000 0.0 0.333333 0.301887 0.585821 0.0 0.0 0.702290 0.0 0.000000 0.0 0.000000 0.0
           186 0.250000 1.0 0.666667 0.169811 0.376866 0.0 0.0 0.824427 0.0 0.000000 0.0 0.000000 0.0
           187 0.604167 1.0 1.000000 0.056604 0.317164 0.0 0.0 0.648855 0.0 0.016129 0.0 0.333333 1.0
           188 0.416667 0.0 1.000000 0.339623 0.447761 0.0 0.0 0.702290 0.0 0.000000 0.0 0.000000 0.0
          189 rows × 13 columns
 In [93]: X_train.shape, X_test.shape
Out[93]: ((189, 13), (81, 13))
 In [94]: rfm = RandomForestClassifier()
            rfm.fit(X_train, y_train)
 Out[94]: RandomForestClassifier()
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
 In [95]: pred = rfm.predict(X_test)
 In [96]: accuracy_score(y_test, pred)
In [98]:
           sns.heatmap(cm, annot = True, fmt = 'g', cbar = False, cmap = 'icefire', linewidths= 0.5, linecolor= 'grey')
           plt.title('Confusion Matrix')
plt.ylabel('y_test')
plt.xlabel('Pred')
Out[98]: Text(0.5, 23.522222222222, 'Pred')
```


7.2 Delivery of Sprint 2: Working with Dataset

Successfully created Db2 Service Credential

Successfully connected IBM Cloud Db2 to Cognos Analytics

Data Preparation (Data Module)

Exploration of

Data: Age by Chest pain type

7.3 Delivery of Sprint 3: Data Visualization

11/5/22, 1:29 PM heart disease dashboard

Tab 1
Age by Sex and Chest Pain Type colored by Male and Female
Sex (Average)

11/5/22, 1:29 PM heart disease dashboard

7.4 Delivery of Sprint 4: Dashboard

8.CONCLUSION

Heart stroke and vascular disease are the major cause of disability and premature death. Chest pain is the key to recognize the heart disease. In this work, the heart diseases are predicted by considering major factors with four types of chest pain. K-means clustering is one of the simplest and popular unsupervised machine learning algorithms. Here the datasets are clustered and based upon the clusters the happening of chest pain is predicted. The role of exploratory data using tableau provided a visual appealing and accurate clustering experience.

9. REFERENCE

- [1] V. Manikantan & S. Latha, "Predicting the Analysis of Heart Disease Symptoms Using Medicinal Data Mining Methods", International Journal on Advanced Computer Theory and Engineering, Volume-2, Issue-2, pp.5-10, 2013.
- [2] Dr. A. V. Senthil Kumar, "Heart Disease Prediction Using Data Mining preprocessing and Hierarchical Clustering", International Journal of Advanced Trends in Computer Science and Engineering, Volume-4, No.6, pp.07-18, 2015.
- [3] Uma. K, M. Hanumathappa, "Heart Disease Prediction Using Classification Techniques with Feature Selection Method", Adarsh Journal of Information Technology, Volume-5, Issue-2, pp.22-29, 2016
- [4] Himanshu Sharma, M. A. Rizvi, "Prediction of Heart Disease using Machine Learning Algorithms: A Survey", International Journal on Recent and Innovation Trends in Computing and Communication, Volume5, Issue-8, pp. 99-104, 2017.
- [5] S. Suguna, Sakthi Sakunthala. N, S. Sanjana, S. S. Sanjana, "A Survey on Prediction of Heart Disease using Big data Algorithms", International Journal of Advanced Research in Computer Engineering & Technology, Volume-6, Issue-3, pp. 371-378,2017.