



# R: AN INTRODUCTION

## Week 8

DSI-NYC Triassics, General Assembly

# LEARNING OBJECTIVES

- You will be able to...
  - Compare R and Python
  - Write R scripts in the RStudio IDE
  - Load a dataset, describe it and visualize it

# LESSON GUIDE

| 10 min | Opening              | Contextualizing R                         |
|--------|----------------------|-------------------------------------------|
| 20 min | Introduction         | Syntax, base functions, key libraries     |
| 20 min | Guided practice      | Codealong of basic commands               |
| 30 min | Independent practice | Load a new dataset, explore and visualize |
| 5 min  | Conclusion           |                                           |

# WHY R?

- High-level, interpreted, dynamically typed language (like Python)
- Powerful for statistics, excellent for ad hoc analyses
- Common alternative to Python in data science world
- Open source, vibrant ecosystem
- Hadleyverse

# WHY NOT MORE R, THEN?

- Less suited to production code
- If you need it, you can learn it

# THIS ISN'T JUST ABOUT R

- You're becoming self-sufficient learners within the data science and programming world
- It will take you less time to 'get' R than it took for Python
- This pattern will hold with other new technologies

# THE BASICS

# THE ENVIRONMENT

- R is the language/software
- RStudio is an integrated development environment (IDE). You'll love it.



# THE ENVIRONMENT

 Panels include the console, a text editor, an environment GUI, image viewer and more.

Check: try some arithmetic in the console. Then write it in the editor and run a line with command-enter.

# THE ENVIRONMENT

- Of the many wonderful RStudio features, its inline documentation might be the best:
- Type '?str' (or ?whatever) into the console

- Some motivation:
  - Load packages
    - install.packages(ggplot2)
    - install.packages(GGally)
    - library(ggplot2)
    - library(GGally)
  - Explore data
    - head(iris)
    - ggpairs(iris, mapping = aes(colour=Species))



# SYNTAX

- Whitespace
  - Not syntactical, as in most languages
  - Except newlines
- Assignment operator
  - -, traditionally
  - = to set function parameters
- Indexing
  - Starts at 1
  - No negative indexing (a[-1] returns a without the first element)
- Case sensitive, variables names can include dots
  - · 'my.R.variable.name'

# OBJECTS

# **EVERYTHING IS ONE**

- · class()
- vectors
- lists
- matrices
- arrays
- data.frame

# **TYPES**

- typeof()
- integer
- numeric
- logical
- factor
- character
- complex

# CONTROL FLOW

# **CONTROL FLOW**

- if (condition) {true\_expression else true\_expression}
- for (variable in list) { expression }
- while (condition) {expression}

# **USER-DEFINED FUNCTIONS**

• function.name <- function() {}</pre>

```
myfunction <- function(arg1, arg2, ...){
  statements
  return(object)
}</pre>
```

# DATAFRAMES

- Same tabular concept as pandas' dataframes rows as observations, columns as attributes
- Indexing and reference
  - **\$**
  - **→** [1,]
  - [1]
- df functions
  - read\_csv()
  - head(), tail()
  - summary()

- 'apply' and its variants are similar to using 'map' with functions in pandas / numpy
- A justifiably famed SO answer: <a href="http://stackoverflow.com/">http://stackoverflow.com/</a> questions/3505701/r-grouping-functions-sapply-vs-lapply-vs-apply-vs-tapply-vs-by-vs-aggrega

# GGPL0T2

- Based on a 'grammar of graphics'
  - ggplot() ... geom\_() ... scale\_() ... theme\_()
- Real smooth
- Created by Hadley Wickham, prolific creator of the 'Hadleyverse' (presumably not a term he invented) of R packages

# GUIDED PRACTICE

Open up the codealong script

# INDEPENDENT PRACTICE

# CONCLUSION

#### **FURTHER READING**

- https://cran.r-project.org/doc/contrib/Short-refcard.pdf
- http://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html
- http://www.cookbook-r.com/Graphs/
- http://www.noamross.net/blog/2014/4/16/vectorization-in-r--why.html

# LAB

- 1. There are ML packages galore fit a random forest to the iris dataset and assess the results
- 2. There is a package called 'data.table' which offers speed improvements for large datasets install it, load the liquor sales dataset from project 3 into a data.table object, and tabulate some aggregate sales totals
  - https://www.datacamp.com/community/tutorials/data-table-rtutorial