$ilde{L_1}$ Можна побудувати вирішувач для $ilde{L_1}$

$$ilde{M}_1(x) = egin{cases} M_1(M_{et}(x)) & \text{якщо } x \text{ починається 3 } 0, \text{ де } M_{et}$$
 — "з'їдає" перший символ якщо x починається з 1

 \tilde{M}_1 вирішує $\tilde{L}_1 \Rightarrow \tilde{L}_1 \in R$.

- $ilde{L_2}$ Маємо лише розпізнавач для L_2 , а отже і можемо побудувати розпізнавач і для $ilde{L_2}$. Чи можемо побудувати вирішувач? Очевидно, що ні, оскільки тоді буде існувати вирішувач і для L_2 , що є протиріччям. Тому маємо $ilde{L_2}
 ot\in RE \backslash R$.
- $\tilde{L_3}$ Чи можемо побудувати розпізнавач для $\tilde{L_3}$? Якщо це так, то матимемо змогу розпізнавати і $L_3 \Rightarrow$ протиріччя. Чи можемо розпізнати $\overline{\tilde{L_3}}$? І знову таки ні, бо матимемо змогу використовувати розпізнавач $\overline{L_3}$, якого не існує. Маємо протиріччя, а отже $\tilde{L_3} \in NRNC$.

2 **Problem 4.3**

$$\begin{array}{c} \cup \ L_1 = \overline{INF}_{TM}, \ \overline{INF}_{TM} \in NRNC \\ L_2 = ESEVEN_{TM}, \ ESEVEN_{TM} \in NRNC \\ ESEVEN \subset \overline{INF}_{TM} \Rightarrow L_1 \cup L_2 = \overline{INF}_{TM} \in NRNC. \end{array}$$

3 Problem 4.4

a
$$C_1 = \{\emptyset, \{1\}, \{0\}\}\$$

 $C_2 = \{\emptyset, \{0, 1\}\}\$
 $C_1 \cup C_2 = \{\emptyset, \{1\}, \{0\}, \{0, 1\}\}\$
 $C_1 \vee C_2 = \{\emptyset, \{1\}, \{0\}, \{0, 1\}\}\$
b $C_1 = \{\emptyset, \{1\}\}, C_2 = \{\{0, 1\}, \{1\}, \{0\}\}\$
 $C_1 \cap C_2 = \{\{1\}\}\$
 $C_1 \wedge C_2 = \{\{1\}\}\$

$$\begin{array}{l} \mathbf{c} \ \ \underline{C_1} = \{L_1 \subseteq \{0,1\}^* \mid |L_1| < \infty\} \\ \ \overline{C_1} = \{L_1 \subseteq \{0,1\}^* \mid |L_1| = \infty\} \\ \ \ coC_1 = \{L_1 \subseteq \{0,1\}^* \mid |\overline{L_1}| < \infty\} = \{L_1 \subseteq \{0,1\}^* \mid |L_1| = \infty\} \end{array}$$

- 1. $C_1 \cup C_2 = \{L_1 \subseteq \{0,1\}^* :$ другий символ слів $L_1 1$ або третій символ $0\}$
- 2. $C_1 \cap C_2 = \{L_1 \subseteq \{0,1\}^* :$ другий символ слів $L_1 1$ та третій символ $0\}$
- 3. $C_1 \lor C_2 = \{L_1 \subseteq \{0,1\}^* : \$ 3 L_1 кожне слово має другим символом 1 або третім 0 $\}$
- 4. $C_1 \wedge C_2 = \{L_1 \subseteq \{0,1\}^*: \$ з L_1 кожне слово має другим символом 1 та третім $0\}$
- 5. $\overline{C_1} = \{L_1 \subseteq \{0,1\}^* : L_1$ має хоч одне слово x, у якого другий символ 0 або $|x| < 2\}$
- 6. $\overline{C}_2=\{L_1\subseteq\{0,1\}^*:L_1$ має хоч одне слово x у якого третій символ 1 або |x|<3 $\}$
- 7. $coC_1 = \{L_1 \subseteq \{0,1\}^* :$ кожне слово x маж другим символом 0 або |x| < 2
- 8. $coC_2 = \{L_1 \subseteq \{0,1\}^* :$ кожне слово x маж третім символом 1 або $|x| < 3 \}$

5 Problem 4.6

Припустимо, що існує вирішувач \tilde{M}_{HALT} , який для заданої машини Тюринга і вхідного слова x визначає чи зупиняється машина Тюринга на цьому вхідному слові x. Тоді мова $L_{BB} = \{\langle M \rangle \mid M$ чемпіон класифікації ВВ $\}$ є вирішувальною, оскільки ми можемо взяти всі машини певного класу $\langle M, \varepsilon \rangle \in HALT$ і порівняти їх. А це означає що можна визначити для довільного класу переможця, отже функції Радо є обчислювальними для $n \in \mathbb{N}$. Але функції Радо є необчислюваними, отримали протиріччя.

6 Problem 4.7

 $L_{Champ}=HALT\cap\overline{L_{BB}}$ НАLТ невирішувальна, тоді якщо $L_{BB}\in coRE\backslash R$, то L_{Champ} невирішувальна, так як $HALT,\overline{L_{BB}}\in RE\backslash R\Rightarrow HALT\cap\overline{L_{BB}}\in RE\backslash R$ замкнутий відносно перетину $\Rightarrow L_{Champ}=HALT\cap\overline{L_{BB}}\in RE$. РОзпізнавач для $\overline{L_{BB}}$:

$$M_{L_{BB}}(\langle M \rangle) = egin{cases} 1 & M$$
 чемпіон в класифікації ВВ $oldsymbol{\perp}$ інакше

Якщо МТ М буде зупинятися на пустому слові, то ця МТ М входить до \overline{L}_{BB} , або буде зациклюватися. $\Rightarrow L_{BB} \in coRE, L_{Champ} \in RE$.

$$L_1 \in C_1 \text{ complete } \Rightarrow \forall L_c \in C_1 : L_c \leq_r L_1.$$
 Також $\overline{L}_1 \in coC_1.$ $\forall L_c \in C_1 : L_c \leq_r L_1 \Rightarrow \overline{L}_c \leq_r \overline{L}_1 \Rightarrow \forall L_{coC} \in coC_1 : L_{coC} \leq_r \overline{L}_1 \Rightarrow \overline{L}_1 - \mathbf{coC}_1 complete$

8 Problem 4.9

 $L_1, L_R \subseteq \{0,1\}^*, \ L_R \in R \land L_1 \leq_T L_R \Rightarrow L_1 \in R$ Саме зведення $L_1 \leq_T L_R$ означає, що існує така МТ з оракулом $M(L_1^{L_R})$, яка вирішує L_1 . Також із цього слідує, що ми матимемо змогу побудувати вирішувач M_{LR} для L_R . При запиті до оракула запускаємо МТ M_{LR} . $\Rightarrow L_1 \in R$.

9 Problem 4.10

- **r** При $L_1 \leq_{tt} L_1$ функції f_1, f_2, f_3 будуть повертати результат вхідного слова. А розпізнавач, в свою чергу, буде повертати результат функцій.
- $t L_1 \leq_{tt} L_2, L_2 \leq_{tt} L_3 \Rightarrow L_1 \leq_{tt} L_3$

Маючи L_2 можемо побудувати композицію вирішувачів L_1 та L_2 , використовуючи функції L_2 для звернень до оракула.

10 Problem 4.11

Нехай L_1 повна для класів C_1, C_2 . Тобто:

$$L_1 \in C_1 \Rightarrow \forall L_C \in C_1 L_C \leq_r L_1$$

$$L_1 \in C_2 \Rightarrow \forall L_C \in C_2 L_C \leq_r L_1$$

Тоді:

$$L_1 \in C_2, \ \forall L_C \in C_1 : L_C \in C_2 \Rightarrow C_1 \subseteq C_2$$

 $L_1 \in C_1, \ \forall L_C \in C_2 : L_C \in C_1 \Rightarrow C_2 \subseteq C_1$
 $C_1 = C_2$

- **а** R замкнений за Тюрінгом, $L_1 \in R$.
- **b** L_2 не буде вирішуваною, оскільки є замкнутість класу за тюрінгом та L_1 не є вирішуваною (можна доказати від противного).
- **с** рефлексивність є очевидною просто повертаємо відповідь оракула. Транзитивність можна доказати шляхом композиції.
- **d** будуємо MT з оракулом, що має мову L_1 . Для вирішувача \overline{L}_1 побудуємо таку MT, яка буде повертати протилежний результат оракула MT L_1 .
- е Будуємо розпізнавач з оракулом з мовою L_2 . Оскільки L_1 вирішувана, то також існує розпізнавач без оракула. Для зведення за Тюрінгом ця МТ буде ігнорувати відповіді оракула.

12 **Problem 4.13**

 $L_1 \in RE, \ L_2 \in coRE \Rightarrow \exists$ розпізнавачі для L_1 та \overline{L}_2 .

Тоді із замкнутості класів R, RE, coRE, та припущення, що або зведення $L_1 \leq_m L_2$, або $L_2 \leq_m L_1$ існують, то обидва L_1, L_2 будуть належати якомусь з класів R, RE, coRE. $L_1 \in RE, L_2 \in coRE \Rightarrow L_1, L_2 \in R$. Але ми маємо протиріччя: A_{TM} та E_{TM} не є вирішуваними. Отже наше припущення щодо такого зведення є хибним.