Assignment - 32 - MACHINE LEARNING - 11

By Prakash Ghosh

Problem Statement: Make ARIMA model over shampoo sales data and check the MSE between predicted and actual value.

Student can download data in .csv format from the following link:

https://datamarket.com/data/set/22r0/sales-of-shampoo-over-a-three-year-period#!ds=22r0&display=line (https://datamarket.com/data/set/22r0/sales-of-shampoo-over-a-three-year-period#!ds=22r0&display=line (https://data/set/22r0/sales-of-shampoo-over-a-three-year-period#!ds=22r0&display=line (https://data/set/22r0 over-a-three-year-period#!ds=22r0&display=line)

Hint:

Following is the command import packages and data

from pandas import read csv from pandas import datetime from matplotlib import pyplot from statsmodels.tsa.arima model import ARIMA from sklearn.metrics import mean_squared_error def parser(x): return datetime.strptime('190'+x, '%Y-%m') series = read csv('shampoo-sales.csv', header=0, parse dates=[0], index col=0, squeeze=True, date parser=parser)

```
In [24]: # Loading Libraries
         import numpy as np
         import pandas as pd
         from pandas import read_csv, datetime
         from matplotlib import pyplot
         from statsmodels.tsa.arima model import ARIMA
         from statsmodels.tsa.stattools import adfuller
         from sklearn.metrics import mean_squared_error
         import statsmodels.api as sm
         from pandas.tools.plotting import autocorrelation plot
         import warnings
         warnings.filterwarnings('ignore')
```

Load Data

```
In [10]: # From the link https://datamarket.com/data/set/22r0/sales-of-shampoo-over-a-three-year-period#!ds=22r0&display=line
         # Data has been down loaded to the csv "shampoo-sales.csv"
         FileName = "shampoo-sales.csv"
         ## parser function for parsing date into yyyy-mm-dd format
         def parser(x):
             return datetime.strptime('190'+x, '%Y-%m')
         ## create dataset
          series = read csv(FileName,
                            header=0,
                            parse_dates=[0],
                            index col=0,
                            squeeze=True,
                            date_parser=parser)
In [11]: | series.head(10)
```

```
Out[11]: Month
         1901-01-01
                        266.0
         1901-02-01
                        145.9
                        183.1
         1901-03-01
                        119.3
         1901-04-01
         1901-05-01
                        180.3
         1901-06-01
                        168.5
         1901-07-01
                        231.8
         1901-08-01
                        224.5
         1901-09-01
                        192.8
         1901-10-01
                        122.9
         Name: Sales of shampoo over a three year period, dtype: float64
```

Analyze Data

```
In [14]: | series.describe()
Out[14]: count
                   36.000000
                  312.600000
         mean
         std
                  148.937164
         min
                  119.300000
         25%
                  192.450000
         50%
                  280.150000
         75%
                  411.100000
                  682.000000
         max
         Name: Sales of shampoo over a three year period, dtype: float64
In [17]: | # Check Null
         series.isnull().values.any()
Out[17]: False
In [18]: # Check duplicate
         series.duplicated().values.any()
Out[18]: False
```

Visualize Data

```
In [20]: # Visualize Data in a graph
         series.plot(figsize=(16,9))
         pyplot.title('Shampoo Sales Dataset Plot for 3 years')
         pyplot.xlabel('Month-Year')
         pyplot.ylabel('Sales')
         pyplot.show()
```


• Observation-1 : Year on year increase of sales

Dicker-Fuller test

Check for whether mentioned time series data is stationary or non-stationary using rolling statistic

```
In [23]: df_log = np.log(series)
         rolling_mean = df_log.rolling(window=12).mean()
         rolling_std = df_log.rolling(window=12).std()
         pyplot.figure(figsize=(16,9))
         original = pyplot.plot(series, color='blue',label='Original' )
         mean = pyplot.plot(rolling_mean, color='red', label='Rolling Mean')
         std = pyplot.plot(rolling std, color='black', label = 'Rolling Std')
         pyplot.legend(loc='best')
         pyplot.title('Rolling Mean vs Standard Deviation')
         pyplot.show(block=False)
```

Rolling Mean vs Standard Deviation

- Observation-2 : Difference between rolling mean and standard devaition with time indicates the series is non-stationary
- · Augmented dicker fuller test

Null Hypothesis: The series has a unit root

Alternate Hypothesis: The series has no unit root.

```
In [33]: adftest = adfuller(series, autolag='AIC')
         adfoutput = pd.Series(adftest[0:4],
                                index=['Test Statistic',
                                       'p-value',
                                       'Lags',
                                       'Observation#'])
         for key,value in adftest[4].items():
             adfoutput['Critical Value (%s)'%key] = value
         print(adfoutput)
```

Test Statistic 3.060142 p-value 1.000000 Lags 10.000000 Observation# 25.000000 Critical Value (1%) -3.723863 Critical Value (5%) -2.986489 Critical Value (10%) -2.632800 dtype: float64

Observation-3: Test statistics > Critical value indicates the series is not stationary

Correlation plot using statsmodel

```
In [34]: plot = pyplot.figure(figsize=(12,8))
         ax1 = plot.add_subplot(211)
         plot = sm.graphics.tsa.plot_acf(series.values.squeeze(), lags=35, ax=ax1)
         ax2 = plot.add_subplot(212)
         plot = sm.graphics.tsa.plot_pacf(series, lags=35, ax=ax2)
```


Autocorrelation Plot

• Observation-4: Positive correlation with the first 12 lags(approx). Choose starting point for the AR parameter of the model at 5.

ARIMA Modelling on time series data

ARIMA(p,d,q) where

- p: Lag order.
- d: Degree of differencing.
- q: Order of moving average.

```
In [82]: # Intialize ARIMA model
         p=5 # Lag order
         d=1 # take moving average
         q=0 # take moving average
         arima_model = ARIMA(series , order=(p,d,q))
```

```
In [83]: # fit the model
         arima_model_fit = arima_model.fit(disp=0)
```

In [84]: arima_model_fit.summary()

Out[84]: ARIMA Model Results

Dep. Variable:	D.Sales of shampoo over a three year period	No. Observations:	35
Model:	ARIMA(5, 1, 0)	Log Likelihood	-196.170
Method:	css-mle	S.D. of innovations	64.241
Date:	Sun, 30 Dec 2018	AIC	406.340
Time:	21:13:37	віс	417.227
Sample:	02-01-1901	HQIC	410.098
	- 12-01-1903		

	coef	std err	z	P> z	[0.025	0.975]
const	12.0649	3.652	3.304	0.003	4.908	19.222
ar.L1.D.Sales of shampoo over a three year period	-1.1082	0.183	-6.063	0.000	-1.466	-0.750
ar.L2.D.Sales of shampoo over a three year period	-0.6203	0.282	-2.203	0.036	-1.172	-0.068
ar.L3.D.Sales of shampoo over a three year period	-0.3606	0.295	-1.222	0.231	-0.939	0.218
ar,L4.D.Sales of shampoo over a three year period	-0.1252	0.280	-0.447	0.658	-0.674	0.424
ar,L5.D.Sales of shampoo over a three year period	0.1289	0.191	0.673	0.506	-0.246	0.504

Roots

	Real	Imaginary	Modulus	Frequency
AR.1	-1.0617	-0.5064j	1.1763	-0.4292
AR.2	-1.0617	+0.5064j	1.1763	0.4292
AR.3	0.0816	-1.3804j	1.3828	-0.2406
AR.4	0.0816	+1.3804j	1.3828	0.2406
AR.5	2.9315	-0.0000j	2.9315	-0.0000

```
In [85]: # Plots residual errors
         arima_residuals = pd.DataFrame(arima_model_fit.resid , columns=['Residual Errors'])
         arima_residuals.plot(figsize=(16,9))
         pyplot.ylabel("Error")
         pyplot.title('ARIMA Residuals Errors')
         pyplot.show()
```


In [86]: arima_residuals.describe()

Out[86]:

	Residual Errors
count	35.000000
mean	-5.495218
std	68.132882
min	-133,296637
25%	-42.477890
50%	-7.186512
75%	24.748330
max	133.237936

In [87]: # Density Plot of the residual error values arima_residuals.plot(kind='kde',figsize=(16,9)) pyplot.show()

Evaluate the ARIMA Model

```
In [135]: train_set_len = int(len(series.values) * 0.7)
    train, test = series.values[0:train_set_len], series.values[train_set_len:len(series.values)]

list_train = list(train)
list_predictions = list()

for i in range(len(test)):
    model = ARIMA(list_train, order=(p,d,q))
    model_fit = model.fit(disp=0)
    output = model_fit.forecast()
    list_predictions.append(output[0])
    list_train.append(test[i])
    print('Predicted=%f, Actual=%f' % (output[0], test[i]))
```

```
In [136]: pyplot.figure(figsize=(16,9))
          pyplot.plot(test , label='Actual Sales')
          pyplot.plot(list_predictions, color='red' , label='Predicted Sales')
          pyplot.legend(loc='best')
          pyplot.xlabel("Months")
          pyplot.ylabel("Sales")
          pyplot.show()
```

