Cadre général

- Modélisation des preuves : Axiomatisation par des règles de déduction
- ► Règles nommées et paramétrées : remplacement des méta-variables par des formules lors de l'utilisation
- Approche par chaînage arrière : De la conclusion aux hypothèses
- ▶ Jugement $\Gamma \vdash \psi$ avec $\Gamma = \varphi_1, \dots, \varphi_n$ et $\varphi_1, \dots, \varphi_n, \psi \in \Phi$ φ_i sont les hypothèses disponibles pour prouver ψ
- $lackbox{S\'emantique math\'ematique}: \bigwedge_{i\in[1\cdots n]} \varphi_i\Rightarrow \psi$

Cadre général

- Modélisation des preuves : Axiomatisation par des règles de déduction
- ► Règles nommées et paramétrées : remplacement des méta-variables par des formules lors de l'utilisation
- Approche par chaînage arrière : De la conclusion aux hypothèses
- ▶ Jugement $\Gamma \vdash \psi$ avec $\Gamma = \varphi_1, \dots, \varphi_n$ et $\varphi_1, \dots, \varphi_n, \psi \in \Phi$ φ_i sont les hypothèses disponibles pour prouver ψ
- Sémantique mathématique : $\bigwedge_{i \in [1 \cdots n]} \varphi_i \Rightarrow \psi$
- ightharpoonup Axiome de l'hypothèse (méta-variables : Γ , φ) :

$$\frac{}{\Gamma, \ \varphi \vdash \varphi} \ \textit{Hyp}(\Gamma, \varphi)$$

Implication : $\varphi \to \psi$

► Introduction (méta-variables Γ, φ , ψ)

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi} I_{\to}(\Gamma, \varphi, \psi)$$

 \blacktriangleright Élimination – Modus Ponens (méta-variables Γ , φ , ψ)

$$\frac{\Gamma \vdash \varphi \to \psi \qquad \Gamma \vdash \varphi}{\Gamma \vdash \psi} E_{\to}(\Gamma, \varphi, \psi)$$

Conjonction : $\varphi \wedge \psi$

► Introduction (méta-variables Γ, φ , ψ)

$$\frac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi} I_{\wedge}(\Gamma, \varphi, \psi)$$

ightharpoonup Élimination à gauche (méta-variables Γ, φ , ψ)

$$\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} \ E_{\wedge}^{G}(\Gamma, \varphi, \psi)$$

 \triangleright Élimination à droite (méta-variables Γ, φ , ψ)

$$\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi} \ E^D_{\land}(\Gamma, \varphi, \psi)$$

 $Disjonction: \varphi \lor \psi$

► Introduction à gauche (méta-variables Γ, φ , ψ)

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} \ I_{\vee}^{G}(\Gamma, \varphi, \psi)$$

► Introduction à droite (méta-variables Γ, φ , ψ)

$$\frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi} I^D_{\lor}(\Gamma, \varphi, \psi)$$

• Élimination (méta-variables Γ, φ , ψ , χ)

$$\frac{\Gamma \vdash \varphi \lor \psi \qquad \Gamma, \ \varphi \vdash \chi \qquad \Gamma, \ \psi \vdash \chi}{\Gamma \vdash \chi} \ E_{\vee}(\Gamma, \varphi, \psi, \chi)$$

Négation : $\neg \varphi$ et Absurde : \bot

- ► Négation :
 - Introduction (méta-variables Γ, φ)

$$\frac{\Gamma, \ \varphi \vdash \bot}{\Gamma \vdash \neg \varphi} \ I_{\neg}(\Gamma, \varphi)$$

▶ Élimination – Modus Ponens pour $\neg \varphi = \varphi \rightarrow \bot$ (méta-variables Γ, φ)

$$rac{\Gamma dash arphi \quad \Gamma dash
abla arphi}{\Gamma dash ot} \; E_
eg (\Gamma, arphi)$$

- Absurde:
 - Introduction Modus Ponens pour $\neg \varphi = \varphi \rightarrow \bot$ (méta-variables Γ , φ)

$$\frac{\Gamma \vdash \varphi \qquad \Gamma \vdash \neg \varphi}{\Gamma \vdash \bot} \ I_{\bot}(\Gamma, \varphi)$$

ightharpoonup Élimination (méta-variables Γ , φ)

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi} \; E_{\bot}(\Gamma, \varphi)$$

Règles de déduction constructive

Introduction	Élimination
$\frac{\Gamma, \ \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi} \ I_{\to}(\Gamma, \varphi, \psi)$	$rac{\Gammadasharphi o\psi}{\Gammadash\psi} egin{array}{ccc} arFloor arphi & arphi arphi \ arphidash\psi & \end{array} egin{array}{ccc} arphi arphi & arphi arphi \ arphi arphi & \end{array} egin{array}{ccc} arphi arphi & arphi arphi \ arphi arphi & \end{array} egin{array}{ccc} arphi & arphi arphi \ arphi & arphi \ \end{array} egin{array}{cccc} arphi & arphi \ arphi & arphi \ \end{array} egin{array}{ccccc} arphi & arphi \ arphi & arphi \ \end{array} egin{array}{cccccc} arphi & arphi \ arphi & arphi \ \end{array} egin{array}{cccccccccccccccccccccccccccccccccccc$
$ \frac{\Gamma \vdash \varphi \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi} \ I_{\wedge}(\Gamma, \varphi, \psi) $	$rac{\Gamma dash arphi \wedge \psi}{\Gamma dash arphi} extcolor{black}{\mathcal{E}_{\wedge}^{\mathcal{G}}(\Gamma,arphi,\psi)}$
	$rac{\Gamma dash arphi \wedge \psi}{\Gamma dash \psi} extcolor{black}{\mathcal{E}^{D}_{\wedge}(\Gamma,arphi,\psi)}$
$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} \ \textit{I}_{\vee}^{\textit{G}}(\Gamma, \varphi, \psi)$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$rac{\Gamma dash \psi}{\Gamma dash arphi ee \psi} \ I^D_{ee}(\Gamma, arphi, \psi)$	
$rac{\Gamma,arphidasholdsymbol{arphi} I_{\lnot}(\Gamma,arphi)}{\Gammadash\lnotarphi} I_{\lnot}(\Gamma,arphi)$	$rac{\Gamma dash arphi \Gamma dash \neg arphi}{\Gamma dash ot} \; extcolor{E}_{\neg}(\Gamma, arphi)$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$rac{\Gamma dash oldsymbol{\perp}}{\Gamma dash arphi} oldsymbol{E}_{oldsymbol{\perp}}(\Gamma, arphi)$

Heuristique/Méthode de preuve

- Construire la preuve de bas en haut en appliquant par ordre de préférence :
 - 1. Les axiomes (règle de l'hypothèse, ...);
 - 2. Les régles d'élimination sur les hypothèses pour extraire la conclusion si elle figure dans une hypothèse ;
 - 3. Les règles d'introduction pour décomposer la conclusion jusqu'à obtenir un élément disponible dans les hypothèses ou une variable ;
 - 4. La règle E_{\perp} (preuve par l'absurde constructive) s'il n'est pas possible de faire apparaître en conclusion un élément figurant dans les hypothèses.

Commutativité de la conjonction

$$\frac{\overline{A \wedge B \vdash A \wedge B}}{\underline{A \wedge B \vdash B}} \underbrace{E_{\wedge}^{D}(A \wedge B, A, B)}_{E_{\wedge}^{D}(A \wedge B, A, B)} \underbrace{\frac{\overline{A \wedge B \vdash A \wedge B}}{A \wedge B \vdash A}}_{\underline{A \wedge B \vdash A}} \underbrace{E_{\wedge}^{G}(A \wedge B, A, B)}_{\underline{A \wedge B \vdash B \wedge A}}_{\underline{A \wedge B \vdash B \wedge A}} \underbrace{I_{\wedge}(A \wedge B, B, A)}_{\underline{A \wedge B \vdash B \wedge A}}$$

Commutativité de la conjonction

$$\frac{\overline{A \wedge B \vdash A \wedge B}}{A \wedge B \vdash B} \stackrel{Hyp(\emptyset, A \wedge B)}{E_{\wedge}^{D}(A \wedge B, A, B)} \frac{\overline{A \wedge B \vdash A \wedge B}}{A \wedge B \vdash A} \stackrel{Hyp(\emptyset, A \wedge B)}{E_{\wedge}^{G}(A \wedge B, A, B)} \frac{\overline{A \wedge B \vdash A \wedge B}}{A \wedge B \vdash A} \stackrel{I_{\wedge}(A \wedge B, A, B)}{I_{\wedge}(A \wedge B, B, A)} \frac{A \wedge B \vdash B \wedge A}{\emptyset \vdash A \wedge B \rightarrow B \wedge A} \stackrel{I_{\rightarrow}(\emptyset, A \wedge B, B \wedge A)}{I_{\rightarrow}(\emptyset, A \wedge B, B \wedge A)}$$

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi} I_{\to}(\Gamma, \varphi, \psi)$$

$$\Gamma = \emptyset$$

$$\varphi = A \land B$$

$$\psi = B \land A$$

Commutativité de la conjonction

$$\frac{\overline{A \wedge B \vdash A \wedge B}}{\underline{A \wedge B \vdash B}} \stackrel{Hyp(\emptyset, A \wedge B)}{E_{\wedge}^{D}(A \wedge B, A, B)} \frac{\overline{A \wedge B \vdash A \wedge B}}{\underline{A \wedge B \vdash A}} \stackrel{Hyp(\emptyset, A \wedge B)}{E_{\wedge}^{G}(A \wedge B, A, B)} \frac{\underline{A \wedge B \vdash A \wedge B}}{\underline{A \wedge B \vdash A}} \stackrel{I_{\wedge}(A \wedge B, A, B)}{I_{\wedge}(A \wedge B, B, A)} \frac{\underline{A \wedge B \vdash B \wedge A}}{\emptyset \vdash A \wedge B \to B \wedge A} \stackrel{I_{\rightarrow}(\emptyset, A \wedge B, B \wedge A)}{I_{\rightarrow}(\emptyset, A \wedge B, B \wedge A)}$$

$$\frac{\Gamma \vdash \varphi \qquad \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi} I_{\land}(\Gamma, \varphi, \psi)$$

$$\Gamma = A \land B$$

$$\varphi = B$$

$$\psi = A$$

Commutativité de la conjonction

$$\frac{\overline{A \wedge B \vdash A \wedge B}}{\underline{A \wedge B \vdash B}} \stackrel{Hyp(\emptyset, A \wedge B)}{E_{\wedge}^{D}(A \wedge B, A, B)} \frac{\overline{A \wedge B \vdash A \wedge B}}{\underline{A \wedge B \vdash A}} \stackrel{Hyp(\emptyset, A \wedge B)}{E_{\wedge}^{G}(A \wedge B, A, B)} \frac{\overline{A \wedge B \vdash A \wedge B}}{\underline{A \wedge B \vdash A}} \stackrel{I_{\wedge}(A \wedge B, A, B)}{I_{\wedge}(A \wedge B, B, A)} \frac{A \wedge B \vdash B \wedge A}{\emptyset \vdash A \wedge B \rightarrow B \wedge A} \stackrel{I_{\rightarrow}(\emptyset, A \wedge B, B \wedge A)}{I_{\rightarrow}(\emptyset, A \wedge B, B \wedge A)}$$

$$\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi} \ E^D_{\land}(\Gamma, \varphi, \psi)$$
$$\Gamma = A \land B$$
$$\varphi = A$$
$$\psi = B$$

Commutativité de la conjonction

$$\frac{\overline{A \wedge B \vdash A \wedge B}}{A \wedge B \vdash B} \stackrel{Hyp(\emptyset, A \wedge B)}{E_{\wedge}^{D}(A \wedge B, A, B)} \frac{\overline{A \wedge B \vdash A \wedge B}}{A \wedge B \vdash A} \stackrel{Hyp(\emptyset, A \wedge B)}{E_{\wedge}^{G}(A \wedge B, A, B)} \frac{\overline{A \wedge B \vdash A \wedge B}}{A \wedge B \vdash A} \stackrel{I_{\wedge}(A \wedge B, A, B)}{I_{\wedge}(A \wedge B, B, A)} \frac{\overline{A \wedge B \vdash B \wedge A}}{\emptyset \vdash A \wedge B \to B \wedge A} \stackrel{I_{\rightarrow}(\emptyset, A \wedge B, B \wedge A)}{I_{\rightarrow}(\emptyset, A \wedge B, B \wedge A)}$$

$$\frac{1}{\Gamma, \varphi \vdash \varphi} Hyp(\Gamma, \varphi)$$

$$\Gamma = \emptyset$$

$$\varphi = A \land B$$

Commutativité de la conjonction

$$\frac{\overline{A \wedge B \vdash A \wedge B}}{\underline{A \wedge B \vdash B}} \stackrel{Hyp(\emptyset, A \wedge B)}{E_{\wedge}^{D}(A \wedge B, A, B)} \frac{\overline{A \wedge B \vdash A \wedge B}}{\underline{A \wedge B \vdash A}} \stackrel{Hyp(\emptyset, A \wedge B)}{E_{\wedge}^{G}(A \wedge B, A, B)} \frac{\overline{A \wedge B \vdash A \wedge B}}{\underline{A \wedge B \vdash A}} \stackrel{I_{\wedge}(A \wedge B, A, B)}{I_{\wedge}(A \wedge B, B, A)} \frac{A \wedge B \vdash B \wedge A}{\emptyset \vdash A \wedge B \rightarrow B \wedge A} \stackrel{I_{\rightarrow}(\emptyset, A \wedge B, B \wedge A)}{I_{\rightarrow}(\emptyset, A \wedge B, B \wedge A)}$$

$$\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} \ E_{\land}^{G}(\Gamma, \varphi, \psi)$$

$$\Gamma = A \land B$$

$$\varphi = A$$

$$\psi = B$$

Commutativité de la conjonction

$$\frac{\overline{A \wedge B \vdash A \wedge B}}{\underline{A \wedge B \vdash B}} \stackrel{Hyp(\emptyset, A \wedge B)}{E_{\wedge}^{D}(A \wedge B, A, B)} \frac{\overline{A \wedge B \vdash A \wedge B}}{\underline{A \wedge B \vdash A}} \stackrel{Hyp(\emptyset, A \wedge B)}{E_{\wedge}^{G}(A \wedge B, A, B)} \frac{\overline{A \wedge B \vdash A \wedge B}}{\underline{A \wedge B \vdash A}} \stackrel{I_{\wedge}(A \wedge B, A, B)}{I_{\wedge}(A \wedge B, B, A)} \frac{\underline{A \wedge B \vdash B \wedge A}}{\emptyset \vdash A \wedge B \to B \wedge A} \stackrel{I_{\rightarrow}(\emptyset, A \wedge B, B \wedge A)}{I_{\rightarrow}(\emptyset, A \wedge B, B \wedge A)}$$

$$\frac{1}{\Gamma, \varphi \vdash \varphi} Hyp(\Gamma, \varphi)$$

$$\Gamma = \emptyset$$

$$\varphi = A \land B$$

Traces d'une preuve

- ► Étiquettes des règles de preuve dans un parcours en profondeur de gauche à droite de l'arbre de déduction
- **Exemple**:

$$\frac{A \land B \vdash A \land B}{A \land B \vdash B} \xrightarrow{Hyp(\emptyset, A \land B)} \xrightarrow{E_{\land}^{D}(A \land B, A, B)} \frac{A \land B \vdash A \land B}{A \land B \vdash A} \xrightarrow{Hyp(\emptyset, A \land B)} \xrightarrow{E_{\land}^{G}(A \land B, A, B)} \xrightarrow{A \land B \vdash B \land A} \xrightarrow{I_{\rightarrow}(\emptyset, A \land B, B, A)} \xrightarrow{I_{\rightarrow}(\emptyset, A \land B, B, A)} \xrightarrow{I_{\rightarrow}(\emptyset, A \land B, B, A)}$$

- ► Trace : $I_{\rightarrow}(\emptyset, A \land B, B \land A)$; $I_{\wedge}(A \land B, B \land A)$; $E_{\wedge}^{D}(A \land B, A, B)$; $Hyp(A \land B, A \land B)$; $E_{\wedge}^{G}(A \land B, A, B)$; $Hyp(A \land B, A \land B)$.
- Commandes pour les outils de construction de preuve

Logique constructive et classique

- Logique constructive : Approche philosophique
- ▶ Interdiction du tiers-exclus (Axiome $\varphi \lor \neg \varphi$)
- ► Interdiction de l'axiome du choix

Logique constructive et classique

- ► Logique constructive : Approche philosophique
- ▶ Interdiction du tiers-exclus (Axiome $\varphi \lor \neg \varphi$)
- ► Interdiction de l'axiome du choix
- La logique classique autorise ces principes à travers les règles :

Tiers-exclu	Preuve par l'absurde
	$oxed{ egin{array}{c} \Gamma, egarphiarphi\ \Gammadasharphi\ \end{array}} oxed{Abs}(\Gamma,arphi)$

Logique constructive et classique

- Logique constructive : Approche philosophique
- ▶ Interdiction du tiers-exclus (Axiome $\varphi \lor \neg \varphi$)
- Interdiction de l'axiome du choix
- La logique classique autorise ces principes à travers les règles :

Tiers-exclu	Preuve par l'absurde
	$oxed{ egin{array}{c} \Gamma, egarphiarphi\ \Gammadasharphi\ \end{array}} oxed{ Abs}(\Gamma,arphi)$

La preuve par l'absurde classique exploite le tiers-exclu

$$\frac{\Gamma \vdash \varphi \lor \neg \varphi}{\Gamma \vdash \varphi} \frac{TE(\Gamma, \varphi)}{\Gamma, \varphi \vdash \varphi} \frac{TE(\Gamma, \varphi)}{\Gamma, \varphi \vdash \varphi} \frac{TE(\Gamma, \varphi, \varphi)}{\Gamma, \neg \varphi \vdash \varphi} \frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma, \neg \varphi \vdash \varphi} \frac{E_{\bot}(\Gamma, \neg \varphi, \varphi)}{E_{\lor}(\Gamma, \varphi, \neg \varphi, \varphi)}$$

Logique des propositions

Conclusion

La logique des propositions est :

- Complète sémantiquement et axiomatiquement
- Consistante sémantiquement
- Correcte axiomatiquement
- Décidable mécaniquement
- Mais Très peu expressive
- Introduction des quantificateurs, des relations et des structures : Logique des prédicats

Logique des propositions

Mise en pratique

L'assistant de preuve Coq

- Développé au sein d'INRIA
- Système $F: \lambda$ -calcul typé second ordre (Girard et Reynolds)
- Calcul des constructions inductives (Coquand)
- Correspondance de Curry-Howard
 - ► Formule = Type
 - Preuve = Programme

Le langage de développement prouvé Why3

- Développé au sein du LRI et d'INRIA
- Logique des prédicats du premier ordre et Logique de Hoare
- Passerelle vers de nombreux outils de vérification :
 - Automatique : SAT solver (résolution par saturation), SMT (SAT Modulo Theory)
 - Semi-automatique : Assistants de preuve

