Storytelling Case Study: Airbnb, NYC Methodology Document

Team Members: - Kiran Ghadigaonkar, Prince Chaturvedi, Aadesh Birhade

We have used **Jupiter Notebook** to perform **Data Preparation** and **Tableau** for **Data Analysis and Visualization** to get better insights for this case study.

Dataset used: AB_NYC_2019.csv

Tools used:

• Data Preparation: Jupyter Notebook – Python

• Visualization and analysis: Tableau

• Data Storytelling: Microsoft PPT

We followed the below steps for Data preparation:

- Data Understanding
- **Data Cleaning:** To identify and remove any missing values and duplicate values and dropped insignificant columns.
- · Outliers Treatment: Identified outliers

No. of Rows: 48895

No. of Columns: 16

```
In [4]: # Calculating the missing values in the dataset
         airbnb.isnull().sum()
Out[4]: id
                                                0
         name
                                               16
        host id
                                                8
        host name
                                               21
        neighbourhood group
                                                8
         neighbourhood
                                                Ø
         latitude
                                                Ø
         longitude
                                                Ø
        room_type
                                                8
        price
        minimum_nights
         number of reviews
                                                8
         last review
                                            10052
         reviews per month
                                            18852
         calculated host listings count
                                                8
         availability_365
                                                 8
         dtype: int64
In [5]: #Since, we have the missing values and there are some columns that are not efficient for the analysis, let's drop them.
         airbnb.drop(['id','name','last_review'], axis = 1, inplace = True)
In [6]: #Now Let's check if columns are dropped
         airbnb.head(5)
Out[6]:
            host id host name neighbourhood group neighbourhood labitude longitude room type price minimum nights number of reviews reviews per month
                                                                                     Private
         0
             2787
                         John
                                          Brooklyn
                                                      Kensington 40.84749 -73.97237
                                                                                            149
                                                                                                                                             0.21
                                                                                     Entire
                                                       Midlown 40.75382 -73.98377
              2845
                       Jennifer
                                        Manhattan
                                                                                            225
                                                                                                                             45
                                                                                                                                             0.38
                                                                                   home/spt
                                                                                     Private
              4832
                      Elsabeth
                                        Manhattan
                                                         Harlam 40.80902 -73.94190
                                                                                                                                             Nah
                                                                                     room
                                                                                     Entire
              4889 LisaRoxenne
                                          Brooklyn
                                                      Clinton Hill 40.68514 -73.95978
                                                                                             89
                                                                                                                            270
                                                                                                                                             4.84
                                                                                   home/spt
                                                                                     Entire
              7192
                        Laura
                                         Manhattan
                                                     East Harlem 40.79851 -73.94399
                                                                                                                                             0.10
                                                                                   home/spt
In [7]: #Since, reviews per month contains maximum missing values, let's replace them with 0.
         airbnb.fillna(('reviews_per_month':0),inplace=True)
In [8]: #Now Let's again check if null values are present for reviews per month column.
         airbnb.reviews_per_month.isnull().sum()
Out[8]: 0
```

As we can see that, now there are no missing values present in reviews_per_month column.

As we can see that, now there are no missing values present in reviews_per_month column.

```
In [9]: #Now Let's check for the unique values in room_type column.
airbnb.room_type.unique()
Out[9]: array(['Private room', 'Entire home/apt', 'Shared room'], dtype=object)
In [10]: #Now Let's check for count of the unique values.
          len(airbnb.room_type.unique())
Out[10]: 3
In [11]: #Now let's check for the unique values in neighbourhood_group column.
          airbnb.neighbourhood_group.unique()
Out[11]: array(['Brooklyn', 'Manhattan', 'Queens', 'Staten Island', 'Bronx'], dtype=object)
In [12]: #Now let's check for count of the unique values.
len(airbnb.neighbourhood_group.unique())
Out[12]: 5
In [13]: #Now Let's check for count for the unique values in neighbourhood column.
          len(airbnb.neighbourhood.unique())
Out[13]: 221
In [14]: #Let's check for Value counts for the host_id column
          airbnb.host_id.value_counts().head(10)
Out[14]: 219517861
                        327
          107434423
                        232
          30283594
                        121
          137358866
                        103
          16098958
                         96
          12243051
          61391963
                         91
          22541573
                         87
          200380610
                         65
          7503643
                         52
          Name: host_id, dtype: int64
```

```
In [15]: #Now Let's sort values basis on calculated_host_listings_count
    airbnb2 = airbnb.sort_values(by="calculated_host_listings_count",ascending=False)
    airbnb2.head()
```

Out[15]:		host_ld	host_name	nelghbourhood_group	nelghbourhood	latitude	longitude	room_type	price	minimum_nights	number_of_reviews	reviews_per_
	39773	219517861	Sonder (NYC)	Manhattan	Hell's Kitchen	40.76037	-73.99744	Entire home/apt	185	29	1	
	41463	219517861	Sonder (NYC)	Manhattan	Financial District	40.70782	-74.01227	Entire home/apt	396	2	8	
	41469	219517861	Sonder (NYC)	Manhattan	Financial District	40.70620	-74.01192	Entire home/apt	498	2	8	
	38294	219517861	Sonder (NYC)	Manhattan	Financial District	40.70771	-74.00641	Entire home/apt	229	29	1	
	41468	219517861	Sonder (NYC)	Manhattan	Financial District	40.70726	-74.01060	Entire home/apt	229	2	2	
	4 6	-			_		-					•

Data Analysis and Visualizations using Tableau:

We have used **Tableau** to visualize the data.

Methodology Document PPT 1:

Please find below the steps performed: -

1. Top 10 Host:

We have identified the top 10 Host IDs, Host Names with Count of Host IDs using the Bar Chart.

2. Room type w.r.t. Neighbourhood Group:

- We have created a Pie Chart for understanding the percentage-wise bifurcation of each room type w.r.t. Neighbourhood Group.
- Then added Room Type to the Colours Marks card and count of Host Id to the Size card to highlight the different types of Rooms in different colours.

3. Price of Neighbourhood Groups:

- Created a Bubble Chart with by plotting Neighbourhood Groups in Columns and Prices in Rows.
- Then, we added the Neighbourhood Groups to the colours Marks card to highlight the different neighbourhood Groups in different colours.
- Then, we added the Average Price to Label Marks Card.

4. Price w.r.t. Neighborhood Groups

- For visualizing Price w.r.t. Neighborhood Groups, we used a Box and Whisker plot with Neighbourhood Groups in Columns and Prices in Rows.
- Then, we changed the Price from a Sum Measure to a median measure to get accurate insights.

5. Neighbourhood vs Availability w.r.t. Prices:

We have created a bar chart using Availability 365 and the price for identifying the top 10
 Neighbourhood groups which are sorted by price.

6. Neighbourhood Popularity:

- We have added Neighbourhood in Rows and Sum of reviews in Column.
- Then, we added neighbourhood groups to the colour marks card.
- After that, we used a filter to identify neighbours as per the sum of reviews greater than 10000.

7. Booking w.r.t. Minimum Nights:

- First, we created the bin for Minimum Nights using the calculated field.
- Then, we used these bins to display the Distribution of Minimum Nights based on the count of IDs booked for each Neighbourhood Group.

Methodology Document PPT 2:

1. Room type w.r.t. Neighbourhood Group:

- We have created a Pie Chart for understanding the percentage-wise bifurcation of each room type w.r.t. Neighbourhood Group.
- Then added Room Type to the Colours Marks card and count of Host Id to the Size card to highlight the different types of Rooms in different colours.

2. Neighbourhood vs Availability w.r.t. Prices:

We have created a bar chart using Availability 365 and the price for identifying the top 10
 Neighbourhood groups which are sorted by price.

3. Price Range Analysis:

- We have identified the Customer's Pricing Range Preference based on the volume of bookings done in a price range and the Count of IDs to create a Bar Chart. We have created bins for the Price column with an interval of \$20.
- Then, we created Minimum nights bin.
- We used these bins to display the Distribution of Minimum Nights based on the Count of IDs booked for each Neighbourhood Group.

```
Minimum nights bin

IF [Minimum Nights]=1 THEN "1"

ELSEIF [Minimum Nights]=2 THEN "2"

ELSEIF [Minimum Nights]=3 THEN "3"

ELSEIF 4<=[Minimum Nights] AND [Minimum Nights]<=5 THEN "4-5"

ELSEIF 6<=[Minimum Nights] AND [Minimum Nights]<=7 THEN "6-7"

ELSEIF 8<=[Minimum Nights] AND [Minimum Nights]<=29 THEN "8-29"

ELSEIF 30<=[Minimum Nights] AND [Minimum Nights]<=31 THEN "30-31"

ELSE ">31" END

The calculation is valid.

2 Dependencies * Apply OX
```

4. Price Variation w.r.t. Geography:

• We used the Maps chart to plot Neighbourhood, and Neighbourhood Groups in the map to visualize the Variation of Prices w.r.t. Geography.

5. Price Variation w.r.t. Room Type and Neighbourhood:

- We created a Table chart by adding Room Type in Rows & Neighbourhood Groups in Columns.
- After that, we have added the Average Price in colour Marks card to highlight the different Room Type in different colours.

6. Bookings w.r.t. Minimum Nights:

- First, we created the bin for Minimum Nights using the calculated field.
- Then, we used these bins to display the Distribution of Minimum Nights based on the count of IDs booked for each Neighbourhood Group.

```
Minimum nights bin

IF [Minimum Nights]=1 THEN "1"

ELSEIF [Minimum Nights]=2 THEN "2"

ELSEIF [Minimum Nights]=3 THEN "3"

ELSEIF 4<= [Minimum Nights] AND [Minimum Nights]<=5 THEN "4-5"

ELSEIF 6<= [Minimum Nights] AND [Minimum Nights]<=7 THEN "6-7"

ELSEIF 8<= [Minimum Nights] AND [Minimum Nights]<=29 THEN "8-29"

ELSEIF 30<= [Minimum Nights] AND [Minimum Nights]<=31 THEN "30-31"

ELSE ">31" END

The calculation is valid.

2 Dependencies Apply CK
```

7. Neighbourhood Popularity:

- We have added Neighbourhood in Rows and Sum of reviews in Column.
- Then, we added neighbourhood groups to the colour marks card.
- After that, we used a filter to identify neighbours as per the sum of reviews greater than 10000.