Preliminary PART B

Location	Machine Instruction	Assembly Language Equivalent
0x00	0x20020005	addi \$v0, \$zero, 5
0x04	0x2003000C	addi \$v1, \$zero, 12
0x08	0x2067FFF7	addi \$a3, \$v1, 65527
0x0C	0x00E22025	or \$a0, \$a3, \$v0
0x10	0x00642824	and \$a1, \$v1, \$a0
0x14	0x00A42820	add \$a1, \$a1, \$a0
0x18	0x10A7000A	beq \$a1, \$a3, 40
0x1C	0x0064202A	slt \$a0, \$v1, \$a0
0x20	0x10800001	beq \$a0, \$zero, 4
0x24	0x20050000	addi \$a1, \$zero, 0
0x28	0x00E2202A	slt \$a0, \$a3, \$v0
0x2C	0x00853820	add \$a3, \$a0, \$a1
0x30	0x00E23822	sub \$a3, \$a3, \$v0
0x34	0xAC670044	sw \$a3, 44(\$v1)
0x38	0x8C020050	lw \$v0, 50(\$zero)
0x3C	0x08000011	j 44
0x40	0x20020001	addi \$v0, \$zero, 1
0x44	0xAC020054	sw \$v0, 54(\$zero)
0x48	0x08000012	J 48

```
CS 224
Section 4
Fall 2019
Lab 4
Alperen CAN / 21601740
```

Preliminary Part C : RTL expressions for new instruction

bge:

IM[PC]
if(R[rs] >= R[rt])
 PC <- PC + 4 + BranchAddr
else
 PC <- PC + 4</pre>

sw+:

IM[PC]
M[R[rs] + SignExtImm] <- R[rt]
R[rs] <- R[rs] + 4
PC <- PC + 4</pre>

Preliminary Part D : Datapath

Preliminary Part E : Control Table

Instruction	Opcode	RegWrite	RegDst	ALUSrc	Branch	MemWrite	MemtoReg	ALUOp	Jump	Branch2	Swincrement
R-type	000000	1	1	0	0	0	0	10	0	0	0
lw	100011	1	0	1	0	0	1	00	0	0	0
SW	101011	0	х	1	0	1	х	00	0	0	0
beq	000100	0	х	0	1	0	х	01	0	0	0
addi	001000	1	0	1	0	0	0	00	0	0	0
j	000010	0	х	x	x	0	х	xx	1	0	0
bge	111110	1	X	0	X	0	0	XX	0	1	0
sw+	000001	1	X	X	X	1	0	XX	0	0	1

Preliminary Part F : Test Program

```
0x00: addi $v0, $zero, 5
0x04: or $a0, $a3, $v0
0x08: and $a1, $v1, $a0
0x0C: beq $a1, $a3, 8
                           # jump 2 instructions
0x10: or $a0, $a3, $v0
0x14: and $a1, $v1, $a0
0x18: slt $a0, $v1, $a0
0x1C: sub $a3, $a3, $v0
0x20: sw $a3, 44($v1)
0x24: lw $v1, 50($zero)
0x28: sw+ $a3, 44($v1) # new instruction
0x2C: j
          30
0x30: and $v0, $zero, $zero
0x34: addi $v1, $zero, 5
0x38: bge $v1, $v0, 30  # new instruction
0x3C: sw $a3, 44($v1) # this will not be reached
```

BILKENT UNIVERSITY

COMPUTER SCIENCE

CS 224: COMPUTER ORGANIZATION

PRELIMINARY DESIGN REPORT

LAB 4

SECTION 4

ALPEREN CAN

21601740