§3. Теоремы о среднем для интеграла.

Среднее значение функции на промежутке

Теорема 3.1. Пусть функция f(x) на промежутке [a,b] удовлетворяет неравенствам $m \le f(x) \le M$. Тогда существует число μ , заключенное между теми же пределами m и M, $m \le \mu \le M$, такое, что имеет место равенство

$$\int_{a}^{b} f(x)dx = \mu(b-a). \tag{3.1}$$

▶ Рассмотрим сначала случай, когда a < b,тогда b - a > 0. Применим свойство 7 об оценках интеграла: $m(b - a) \le \int\limits_a^b f(x) dx \le M(b - a)$. Разделим все части

последнего неравенства на b-a: $m \le \frac{1}{b-a} \int\limits_a^b f(x) dx \le M$. Положив $\mu = \frac{1}{b-a} \int\limits_a^b f(x) dx$,

найдём, что $m \le \mu \le M$ и $\mu(b-a) = \int_a^b f(x)dx$.

При a=b формула (3.1) остаётся справедливой, так как тогда обе её части равны нулю. Если a>b, то b<a, и для промежутка [b,a] по доказанному имеем $\int\limits_{b}^{a}f(x)dx=\mu(a-b)$. Отсюда $-\int\limits_{a}^{b}f(x)dx=-\mu(b-a)$ и далее $\int\limits_{a}^{b}f(x)dx=\mu(b-a)$. Все случаи рассмотрены. Теорема доказана. \blacktriangleleft

Геометрический смысл равенства (3.1). Если функция f(x) неотрицательна в промежутке интегрирования, то площадь криволинейной трапеции, выраженной рассматриваемым интегралом, равна площади прямоугольника с основанием (b-a) и высотой μ (рис. 3.1). Высота μ прямоугольника подбирается так, чтобы площадь части трапеции, находящейся вне прямоугольника, равнялась площади части прямоугольника, находящейся вне трапеции.

Теорема 3.2. Если функция f(x) в промежутке интегрирования [a,b] непрерывна то в этом промежутке существует такая точка c, что выполняется равенство

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$
 (3.2)

Геометрическая интерпретация равенства (3.2) показана на рис. 3.1. В этом случае $\mu = f(c)$.

Рис. 3.1. Геометрическая иллюстрация теорем о среднем 3.1 и 3.2 для

Так как по условию функция f(x) непрерывна среднем 3.1 и 3.2 для на замкнутом промежутке [a,b], то по теореме Вейерштрасса она принимает на этом промежутке как свое наименьшее значение m, так и свое наибольшее значение M. Поэтому $m \le f(x) \le M$ на [a,b]. Тогда по предыдущей теореме 3.1 имеет место

формула (3.1): $\int_{a}^{b} f(x)dx = \mu(b-a)$, где μ – промежуточное число, лежащее между значениями функции m и M. По теореме Больцано – Коши, непрерывная функция f(x) принимает это промежуточное значение в некоторой точке c промежутка [a,b]: $\mu = f(c)$ и формула (3.1) переходит в формулу (3.2). \blacktriangleleft

Определение 3.1. Число μ из теоремы о среднем 3.1 для интеграла, определяемое равенством

$$\mu = \frac{1}{b-a} \int_{a}^{b} f(x)dx, \qquad (3.3)$$

называется cpedhum значением функции f(x) на промежутке [a,b] (точнее, uhmerpanbhum cpedhum функции на промежутке).

Замечание 3.1. К формуле (3.3) можно прийти естественным путем, который и объясняет название «среднее» для величины μ . Разобьем промежуток [a,b] на n частей равной длины $\Delta x = (b-a)/n$ точками $a=x_0,x_1,\ldots,x_n=b$. Рассмотрим среднее арифметическое значений функции в точках деления промежутка:

$$y_{\rm cp} = \frac{f(x_0) + \ldots + f(x_{n-1})}{n} = \frac{1}{n} \sum_{k=0}^{n-1} f(x_k) = \frac{1}{b-a} \cdot \frac{b-a}{n} = \frac{1}{b-a} \cdot \frac{$$

$$= \frac{1}{b-a} \sum_{k=0}^{n-1} f(x_k) \Delta x \underset{\Delta x \to 0}{\longrightarrow} \frac{1}{b-a} \int_a^b f(x) dx.$$

Пример 3.1. Найти среднее значение функции $y = x^2$ на промежутке [0,2].

►
$$\mu = \frac{1}{2} \int_{0}^{2} x^{2} dx = \frac{1}{2} \frac{x^{3}}{3} \Big|_{0}^{2} = \frac{1}{6} \cdot 8 = \frac{4}{3}$$
. Здесь $m = 0$; $M = 4$; $0 < \frac{4}{3} < 4$. \blacktriangleleft

* Теорема 3.3 (обобщённая теорема о среднем для интеграла). Пусть функция f(x) в промежутке интегрирования [a,b] удовлетворяет неравенствам $m \le f(x) \le M$, а функция $\rho(x)$, называемая весовой, неотрицательна. Тогда между m и M существует число μ ., $m \le \mu \le M$, такое, что имеет место равенство

$$\int_{a}^{b} \rho(x)f(x)dx = \mu \int_{a}^{b} \rho(x)dx.$$
 (3.4)

▶ Умножим все части неравенств $m \le f(x) \le M$ на $\rho(x)$ и проинтегрируем получившиеся неравенства по промежутку [a,b]. Получаем

$$m \int_{a}^{b} \rho(x)x \le \int_{a}^{b} \rho(x)f(x)dx \le M \int_{a}^{b} \rho(x)dx. \tag{*}$$

Рассмотрим два случая.

1) $\int_{a}^{b} \rho(x)dx = 0$. Тогда из последних неравенств (*) заключаем, что и $\int_{a}^{b} \rho(x)f(x)dx = 0$. В этом случае слева и справа в формуле (3.1) стоят нули, поэтому формула (3.1) верна.

 $2)\int_{a}^{b} \rho(x)dx > 0$. Разделим все части неравенств (*) на положительное число $\int_{a}^{b} \rho(x)dx$. Получаем

$$m \le \int_{a}^{b} \rho(x) f(x) dx / \int_{a}^{b} \rho(x) dx \le M.$$
 (**)

Положим $\mu = \int_a^b \rho(x) f(x) dx / \int_a^b \rho(x) dx$. Отсюда $\int_a^b \rho(x) f(x) dx = \mu \int_a^b \rho(x) dx$. Из неравенств (**) заключаем, что $m \le \mu \le M$.

Определение 3.2. Число µ из обобщенной теоремы 3.3 о среднем для интеграла, определяемое равенством

$$\mu = \int_{a}^{b} \rho(x) f(x) dx / \int_{a}^{b} \rho(x) dx, \qquad (3.5)$$

называется cpedneвзвешенным значением функции f(x) на промежутке [a,b]

при весовой функции $\rho(x)$. Предполагается при этом, что $\int_{a}^{b} \rho(x) dx > 0$.

Замечание 3.2. К формуле (3.5) можно прийти таким же естественным путем предельного перехода, как и для формулы (3.3). Она является более общей, чем (3.3). Формула (3.3) получается из (3.5) при $\rho(x) = C = \text{const.}$ Формула (3.5) применяется в теории вероятностей для нахождения среднего значения случайной величины. Рассмотренные формулы (3.3) и (3.5) указывают еще на одну роль определённого интеграла как оператора усреднения значений функции.

Пример 3.2. $f(x) = x^2$; $\rho(x) = x$. Требуется найти μ по формуле (3.5) для промежутка [0,2].

▶ Заметим, что на [0,2] выполняются неравенства

$$0 \le x^2 \le 4; \quad \int_0^2 \rho(x) dx = \int_0^2 x dx = \frac{x^2}{2} \Big|_0^2 = 2 > 0.$$

Тогда

$$\mu = \int_{0}^{2} x \cdot x^{2} dx / \int_{0}^{2} x dx = \frac{1}{2} \int_{0}^{2} x^{3} dx = \frac{1}{2} \frac{x^{4}}{4} \Big|_{0}^{2} = \frac{1}{2} \cdot \frac{16}{4} = 2.$$

Отметим, что 0 < 2 < 4. ◀