

Unsupervised Learning of Cross-lingual Word Embedding and Its Application to Machine Translation

Jiahui Geng

jiahui.geng@rwth-aachen.de

Master Thesis Mid-term Talk August 8, 2018

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6
Computer Science Department
RWTH Aachen University, Germany

Outline

Introduction

Literature

Cross-lingual word embedding

- Supervised learning
- Unsupervised learning

Sentence Translation with cross-lingual word embedding

- Context-aware beam search
- Denoising autoencoder

Experiments

Outlook

Introduction

Motivation

- ▶ Building a machine translation system requires lots of bilingual data
- Cross-lingual word embedding offers elegant word matches between languages
- Unsupervised MT relies on back-translation which needs a long training time

Goals

- Study training details of cross-lingual word embedding
- ► Build a good unsupervised MT efficiently: combine with other models
- Improve the unsupervised learning algorithm for cross lingual word embedding

Literature

Unsupervised cross-lingual embedding

- ► [Conneau & Lample⁺ 17] Word translation without parallel data
 - ▶ Implementation of GANs: discriminator trained to distinguish between two distributions while generator fools discriminator
- ► [Artetxe & Labaka⁺ 17a] Learning bilingual word embeddings with (almost) no bilingual data
 - A self-learning framework combining embedding mapping and dictionary induction techniques, needs seed dictionary to start
- ► [Hoshen & Wolf 18] An Iterative Closest Point Method for Unsupervised Word Translation
 - ▶ Iterative closest point method for embedding mapping learning

Literature

Unsupervised machine translation

- ► [Artetxe & Labaka⁺ 17b] Unsupervised Neural Machine Translation
- ► [Lample & Denoyer⁺ 17] Unsupervised Machine Translation Using Monolingual Corpora Only
 - Seq2seq model with shared encoder and decoder for both languages, also with denoising autoencoder and back-translation
- ► [Artetxe & Labaka⁺ 17b] Phrase-Based & Neural Unsupervised Machine Translation
 - Simplifies the architecture and loss function for unsupervised NMT and propose a phrase-based SMT with back-translation

Cross-lingual Word Embedding

Definition

- ► Word embedding of multiple languages in a joint embedding space
- Linear mapping from source embedding to target embedding (this work)

Cross-lingual Word Embedding

Roles in unsupervised neural machine translation

- Shared latent representations
 - > Shared encoder for producing a language independent representation
- ► As word or phrase table for translation

This work

► Formulate a straightforward way to combine a language model with crosslingual word similarities

Training Methods

- Mapping-based approaches (this work)
- Pseudo-multi-lingual corpora-based approaches
- Joint methods

Cross-lingual Word Embedding

Mapping based approaches

- ► Learn monolingual embedding separately
 - Skip-gram model
- ► Learn linear mapping between embedding spaces
 - Supervised learning
 - o Procrustes analysis
 - Unsupervised learning
 - Iterative self-learning framework
 - Adversarial learning
- **▶** Synthetic dictionary induction
 - ▶ Nearest neighbor search

Monolingual Embedding

Fasttext [Bojanowski & Grave+ 17]

- ► Essentially an extension of skip-gram/CBOW model
- ightharpoonup Treat each word as compound of character n-grams
- Learn the internal structure of words

Learning with Parallel Dictionary

Assume given

- Word embedding trained independently for each language on monolingual corpora
- lacktriangle Bilingual dictionary a known dictionary with pairs of words $\{f,e\}$ size N

Learn a linear mapping $W \in \mathbb{R}^{d imes d}$ such that

$$W^* = \operatorname*{argmin}_{W \in \mathbb{R}^{d imes d}} \sum_{n=1}^N \|Wf_n - e_n\|^2$$

- ightharpoonup d: Dimension of embedding
- $lackbox f_n, e_n \in \mathbb{R}^d$: the embedding pair of corresponding word pair in the dictionary

Procrustes Analysis

Constrain W to be an orthogonal matrix

- ► Enforce monolingual invariance
- **▶** Simplify the problem as the Procrustes problem
 - A closed-form solution obtained from SVD
 - ho E, $F \in \mathbb{R}^{d imes N}$ denote embedding projection of word pairs $\{e,f\}$

$$egin{aligned} W^* &= rgmin_{W \in \mathbb{R}^{d imes d}} \|WF - E\|_F^2 = UV^T \ U oldsymbol{\Sigma} V^T &= ext{SVD}(EF^T) \end{aligned}$$

ightharpoonup Can be efficiently computed in linear time w.r.t. seed dictionary size N

Learning without Parallel Dictionary

Problem

► Large dictionary not readily available for many language pairs

Self-learning framework [Artetxe & Labaka⁺ 17a]

- 1. Given source and target embedding \mathcal{F} \mathcal{E} , seed dictionary D
- 2. Learn mapping with dictionary D
- 3. Induce dictionary D' according to mapping
- 4. D := D' and repeat step 2, 3 until converges

Performance

- Works with initial dictionary
- Achieves comparable accuracy as supervised method
- ► Stuck in a poor local optimum without initial dictionary

Learning without Parallel Dictionary

Methods

- ► Learn bilingual embeddings without any bilingual evidence (this work)
 - ▶ Adversarial training [Conneau & Lample⁺ 17]
- **▶** Design the seed dictionary
 - ▶ Shared words, digits and cognates [Artetxe & Labaka⁺ 17a]
 - ▶ Design heuristics to build the seed dictionary [Hoshen & Wolf 18] [Artetxe & Labaka⁺ 18]

Adversarial Training

Model

- ullet $\mathcal{F}=\left\{f_1,\ldots f_{V_f}
 ight\}$ and $\mathcal{E}=\{e_1,\ldots e_{V_e}\}$: set of embeddings, not parallel
- ▶ Discriminator is trained to discriminate Wf_n and e_n with f_n , e_n randomly sampled from \mathcal{F}, \mathcal{E}
- lacktriangle Generator W is trained to prevent the discriminator from making accurate prediction

Discriminator loss

$$\mathcal{L}_D(heta_D|W) = -rac{1}{N}\sum_{n=1}^N \log P_{ heta_D}(ext{'source'}|Wf_n) - rac{1}{M}\sum_{m=1}^M \log P_{ heta_D}(ext{'target'}|e_m)$$

Generator loss

$$\mathcal{L}_W(W| heta_D) = -rac{1}{N}\sum_{n=1}^N \log P_{ heta_D}(ext{'target'}|Wf_n) - rac{1}{M}\sum_{m=1}^M \log P_{ heta_D}(ext{'source'}|e_m)$$

Dictionary Induction

Nearest neighbor search

Hubness problem: some points (hubs) tends to be nearest neighbors of many points in high-dimensional space

Cross-domain Similarity Local Scaling (CSLS)

- ▶ Penalize the similarity score of hubs
 - $\triangleright N_T(Wf)$: target neighbours for mapped source embedding
 - $hd r_T(Wf)$: penalty for hubness

$$r_T(Wf) = rac{1}{K} \sum_{e \in N_T(Wf)} \cos(Wf,e)$$
 $ext{CSLS}(Wf,e) = 2 \cos(Wf,e) - r_T(Wf) - r_S(e)$

Bidirection dictionary induction

- Unidirectional dictionary might lead to local optima
- ► Include only the mutual nearest neighbors

Sentence Translation

Context-aware Beam Search

Language model

Denoising Autoencoder

- **▶** Insertion
- Deletion
- **▶** Reordering

Context-aware beam search

Given a history h of target words before e, the score of e to be the translation of f:

$$\hat{e}_{1}^{N} = rgmax_{e_{1}^{N}}^{N} p^{\lambda_{LM}}(e_{n}|e_{n-4}^{n-1}) \cdot q^{\lambda_{emb}}(f_{n},e_{n})$$

▶ Lexicon score $q(f, e) \in [0, 1]$ defined as:

$$q(f,e)=rac{d(f,e)+1}{2}$$

where $d(f,e) \in [-1,1]$ cosine similarity between f and e. In experiments, lexicon score from linear scaling works better than others, e.g. sigmoid or softmax

▶ Empirically set λ_{emb} as 1, λ_{LM} as 0.1

Denoising

Basic idea

- lacktriangle Model noise (e_1^I) by injecting artificial noise into clean sentences e_1^I
- ► Neural network learns to restore more smooth sentence from word-by-word translation

Training criterion

$$\mathcal{L} = \sum_{e_1^I \in E} [-\log p(e_1^I | \mathsf{noise}(e_1^I))]$$

- ► E denotes target corpus.
- ▶ In Seq2Seq training, e_1^I as label, noise (e_1^I) as input
- ► Artificial noise:
 - ▶ insertion, deletion, reordering

Insertion

Insertion

- Motivation
 - ▶ Word-by-word translation always outputs a target word for every position
 - > Some common words are considered as redundant ones
- Method
 - \triangleright For each position in a sentence, insert a frequent word according from set V_{ins} to a probability distribution p_{ins}
 - Denoising network learns to delete the word when translating

Deletion

- Motivation
 - ▶ In contrary case: some words are not related to any source word
- **▶** Realization
 - \triangleright For each position in a sentence, delete the word according to a probability distribution p_{del} as input
 - > Denoising network learns to add some potential words when translating

Reordering

- Motivation
 - ▶ Generated words are not in a correct sequence of the target language
- Method
 - riangleright For each position of a sentence, swap the words within a limited distance d_{per} as input
 - Denoising network learns reordering information when translating

Experiment Settings

- ▶ Word embedding and LM trained on News Crawl 2014-2017 (100M)
- ▶ BLEU evaluated on German ← English newstest2016
- Word accuracy evaluated on dictionaries released by Facebook
 - Dictionary built with internal translation tool
 - ▶ Each word has 1-4 word translation(s)
 - ▶ Top-1 accuracy
- Context-aware beam search
 - ▶ Lexicon candidates: 100
 - ▶ Beam width: 10

Corpus Statistics

Train		German	English	French
	Sentences	100M	100M	100M
	Running Words	1880M	2360M	3017M
	Vocabulary	1254k	523k	660k

		newste	st2016	newstest2014		
		German	English	French	English 3003	
Test	Sentences	2999	2999	3003		
	Running Words	62506	64619	81165	71290	
	Vocabulary Size	11978	8645	10899	9200	
	OOV Rates	4116 (6.6%)	1643 (2.5%)	1731 (2.1%)	1299 (1.8%)	
	LM perplexity	211.0	109.6	51.2	84.6	

Search vocabulary in testing: 50k (src/tgt)

Experiments

Translation results on German↔English newstest2016 and French↔English newstest2014.

	de-en	en-de	fr-en	en-fr
System	BLEU [%]	BLEU [%]	BLEU [%]	BLEU [%]
Word-by-Word	11.1	6.7	10.6	7.8
+ LM (5-gram) + tgt w/ high LM score for OOV	12.9	8.9	12.7	10.0
+ LM (5-gram) + copy from src for OOV	14.5	9.9	13.6	10.9
+ Denoising (RNN)	16.2	10.6	15.8	13.3
+ Denoising (Transformer)	17.2	11.0	16.5	13.9
[Lample & Denoyer ⁺ 17]	13.3	9.6	14.3	15.1
[Artetxe & Labaka ⁺ 17b]	-	-	15.6	15.1

Ablation studies

- ▶ Different sizes of training corpora
- Different vocabularies: BPE and word
- Different vocabulary sizes for cross-lingual training
- **▶** Different denoising parameters
- Phrase embedding
- Vocabulary cut-off

Different Training Corpora

Word-by-word translation from German to English

	ACCURACY [%]	B LEU [%]
5M	44.9	9.7
10M	51.6	10.1
50M	59.4	10.8
100M	61.2	11.2

- ► Larger corpus improves the word translation accuracy
- ► Also improves the word-by-word translation

Different Embeddings and Training Vocabulary Size UNIVERSITY

	Vocabulary	BLEU [%]
	Merges	
	20k	10.4
BPE	50k	12.5
	100k	13.0
	Cross-lingual training	
	20k	14.4
Word	50k	14.4
word	100k	14.5
	200k	14.4

- Word-by-word translation with language model
- Word embedding performs better than BPE embedding
- ► Embedding trained on 20k similar to 200k ⇒ Frequent words matter

Denoising Experiments

$d_{\sf per}$	p_{del}	p_{ins}	V_{ins}	BLEU [%]
2				14.7
3				14.9
5				14.9
3	0.1			15.7
3	0.3			15.1
	0.1 0.1		10	16.8
3		0 1	50	17.2
J		0.1	500	16.8
			5000	16.5

► Each artificial noise improves the translation performance

Phrase Embedding

Motivation

Many phrases have a meaning that is not a simple composition of the meaning of its individual words

Phrase detection

- ► Phrases formed based on the unigram and bigram counts [Mikolov & Sutskever⁺ 13]
 - > Tune a good threshold value for score

$$score(e', e) = \frac{count(e', e) - \delta}{count(e') * count(e)}$$

- ► Process sentences with most common phrases in training corpus
 - \triangleright Count the most frequent bi-gram phrases: score(e', e) = count(e', e)
 - Detect phrases as top frequent phrases in the training corpus

Phrase Embedding Experiments

Vocabulary			No LM	With LM	Denoising
			BLEU [%]	B LEU [%]	BLEU [%]
Word			11.2	14.5	17.2
	threshold	100	11.1	13.7	15.6
[Mikolov & Sutskever ⁺ 13]		500	11.0	13.7	16.2
		2000	10.7	14.0	16.5
Top frequent	count	50k	12.0	15.7	16.8

► Phrase embeddings helps only for WBW and +LM

Source and Target Vocabulary Cut-off

- ► Limit the vocabulary size, copy the OOV directly (mainly name entities)
- ► Column: source vocabulary size/ row: target vocabulary size

Word embedding vocabulary cut-off

BLEU [%]	20k	50k	100k
50k	11.1	11.3	11.2
100k	11.2	11.2	11.1
150k	10.9	10.9	-

Phrase embedding vocabulary cut-off

BLEU [%]	50k	100k	150k
50k	11.3	-	-
100k	11.9	11.9	-
150k	12.0	11.9	11.9
200k	12.0	-	-

► Vocabulary size affects the translation performance slightly

Conclusions

Comprehensive results

- ► Context-aware beam search with LM helps the lexicon choice
- ▶ Denoising networks aimed at insertion/deletion/reordering noise works for such problems in a small range of sentences

Ablation studies

- ► BPE embeddings performs worse than word embeddings, especially with smaller vocabulary size.
- Word-by-word translation with cross-lingual embedding depends highly on the frequent word mappings
- Phrase embedding only helps in word-by-word translation with LM

Outlook

Goal: Improve the unsupervised learning for cross-lingual embedding

- ► Accordingly improves unsupervised MT performance
- ► Other applications: transfer learning for low-resource LM [Adams & Makarucha+

LM supported cross-lingual embedding training

- Straightforward mapping modelling
- ► LM improves the dictionary quality
- Larger dictionary (training data)
- Different mapping types and loss functions

Outlook

Difference

- Training the mapping with SGD instead of Procrustes analysis
- ▶ Dictionary from the sentence translation with LM, instead of induction from embedding

Training procedure

- 1. Translate corpus according to current mapping, get the word pairs $oldsymbol{D}$
- 2. Train the network with ${\cal D}$ to minimize the mapping distance
- 3. Repeat 1, 2 until converges

Thank you for your attention

Jiahui Geng

jgeng@cs.rwth-aachen.de

http://www.hltpr.rwth-aachen.de/

References

- [Adams & Makarucha⁺ 17] O. Adams, A. Makarucha, G. Neubig, S. Bird, T. Cohn: Cross-lingual word embeddings for low-resource language modeling. In *Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers*, Vol. 1, pp. 937–947, 2017.
- [Artetxe & Labaka⁺ 17a] M. Artetxe, G. Labaka, E. Agirre: Learning bilingual word embeddings with (almost) no bilingual data. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, Vol. 1, pp. 451–462, 2017.
- [Artetxe & Labaka⁺ 17b] M. Artetxe, G. Labaka, E. Agirre, K. Cho: Unsupervised neural machine translation. *arXiv preprint arXiv:1710.11041*, Vol., 2017.
- [Artetxe & Labaka⁺ 18] M. Artetxe, G. Labaka, E. Agirre: A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings. *arXiv preprint arXiv:1805.06297*, Vol., 2018.
- [Bojanowski & Grave⁺ 17] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov: Enriching Word Vectors with Subword Information. *Transactions of the Association for Computational Linguistics*, Vol. 5, pp. 135–146, 2017.

- [Conneau & Lample⁺ 17] A. Conneau, G. Lample, M. Ranzato, L. Denoyer, H. Jégou: Word translation without parallel data. *arXiv preprint arXiv:1710.04087*, Vol., 2017.
- [Hoshen & Wolf 18] Y. Hoshen, L. Wolf: An Iterative Closest Point Method for Unsupervised Word Translation. *arXiv preprint arXiv:1801.06126*, Vol., 2018.
- [Lample & Denoyer⁺ 17] G. Lample, L. Denoyer, M. Ranzato: Unsupervised Machine Translation Using Monolingual Corpora Only. *arXiv preprint arXiv:1711.00043*, Vol., 2017.
- [Mikolov & Sutskever⁺ 13] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean: Distributed representations of words and phrases and their compositionality. In *Advances in neural information processing systems*, pp. 3111–3119, 2013.