Age (Covid CNS)

Abigail ter Kuile

13/01/2022

This R markdown: 1) Cleans the variable self-reported age at sign-up 2) Cleans date of birth (DOB) variables (age, month, year) 3) Creates DOB as a variable and calculates the variable age at sign-up from DOB 4) Cleans the variable age at sign-up calculated from DOB

Set up

Delete everything in your global environment

```
remove(list = ls())
```

Add the add_numeric function - used to convert character variables into numeric variables. Add the sumscores function - used to generate sumscores Add the package_check function - used to install and load dependencies

```
source(file = "../functions/add_numeric_1.R")
source(file = "../functions/remove_duplicates.R")
source(file = "../functions/sumscores.R")
source(file = "../functions/package_check.R")
source(file = "../functions/imp_check.R")
```

Note: always load tidyverse last

```
packages = c(
   "summarytools",
   "sjlabelled",
   "data.table",
   "Amelia",
   "lubridate",
   "tidyverse"
   )
package_check(packages)
```

```
Loading required package: summarytools
```

Warning: package 'summarytools' was built under R version 4.0.5

```
Registered S3 method overwritten by 'pryr':
 method
             from
 print.bytes Rcpp
Loading required package: sjlabelled
Attaching package: 'sjlabelled'
The following object is masked from 'package:summarytools':
   unlabel
Loading required package: data.table
Warning: package 'data.table' was built under R version 4.0.5
Loading required package: Amelia
Warning: package 'Amelia' was built under R version 4.0.5
Loading required package: Rcpp
Warning: package 'Rcpp' was built under R version 4.0.5
##
## Amelia II: Multiple Imputation
## (Version 1.8.0, built: 2021-05-26)
## Copyright (C) 2005-2022 James Honaker, Gary King and Matthew Blackwell
## Refer to http://gking.harvard.edu/amelia/ for more information
##
Loading required package: lubridate
Warning: package 'lubridate' was built under R version 4.0.5
Attaching package: 'lubridate'
The following objects are masked from 'package:data.table':
   hour, isoweek, mday, minute, month, quarter, second, wday, week,
   yday, year
The following objects are masked from 'package:base':
   date, intersect, setdiff, union
Loading required package: tidyverse
Warning: package 'tidyverse' was built under R version 4.0.5
```

```
-- Attaching packages ----- tidyverse 1.3.1 --
                            0.3.4
v ggplot2 3.3.5
                   v purrr
v tibble 3.1.5
                   v dplyr
                            1.0.7
v tidyr 1.1.4
                   v stringr 1.4.0
       2.0.2
                   v forcats 0.5.1
v readr
Warning: package 'ggplot2' was built under R version 4.0.5
Warning: package 'tibble' was built under R version 4.0.5
Warning: package 'tidyr' was built under R version 4.0.5
Warning: package 'readr' was built under R version 4.0.5
Warning: package 'purrr' was built under R version 4.0.5
Warning: package 'dplyr' was built under R version 4.0.5
Warning: package 'stringr' was built under R version 4.0.5
Warning: package 'forcats' was built under R version 4.0.5
-- Conflicts ----- tidyverse conflicts() --
x lubridate::as.difftime() masks base::as.difftime()
x forcats::as_factor() masks sjlabelled::as_factor()
x dplyr::as_label()
                          masks ggplot2::as_label(), sjlabelled::as_label()
                          masks data.table::between()
x dplyr::between()
x lubridate::date()
                          masks base::date()
x dplyr::filter()
                          masks stats::filter()
x dplyr::first()
                          masks data.table::first()
x lubridate::hour()
                          masks data.table::hour()
x lubridate::intersect()
                          masks base::intersect()
x lubridate::isoweek()
                          masks data.table::isoweek()
x dplyr::lag()
                          masks stats::lag()
x dplyr::last()
                          masks data.table::last()
x lubridate::mday()
                          masks data.table::mday()
                          masks data.table::minute()
x lubridate::minute()
x lubridate::month()
                          masks data.table::month()
x lubridate::quarter()
                          masks data.table::quarter()
x lubridate::second()
                          masks data.table::second()
x lubridate::setdiff()
                          masks base::setdiff()
x purrr::transpose()
                          masks data.table::transpose()
x lubridate::union()
                          masks base::union()
x tibble::view()
                          masks summarytools::view()
x lubridate::wday()
                          masks data.table::wday()
x lubridate::week()
                          masks data.table::week()
x lubridate::yday()
                          masks data.table::yday()
x lubridate::year()
                          masks data.table::year()
```

Retrieve the recent date

We are using the recent date to save files with paste0() as an extension to not overwrite old versions

```
date = Sys.Date()
date
[1] "2022-02-22"
```

Read in file with path to ilovedata channel on Teams

```
source(file = "../credentials/paths.R")
```

Read in the data: Demographics

COVID CNS data

```
dat <- read_rds(
   file = paste0(ilovedata, "/data_raw/latest_freeze/covid_cns/baseline/dem_covid_cns.rds")
)

# check variable names in dataframe
dat %>%
   colnames()
```

```
[1] "externalDataReference"
 [2] "startDate"
[3] "endDate"
[4] "dem.day"
 [5] "dem.month"
 [6] "dem.year"
 [7] "dem.required_question_eligibility_criteria.txt"
 [8] "dem.what_gender_do_you_identify_with"
 [9] "dem.what_gender_do_you_identify_with.txt"
[10] "dem.do_you_consider_yourself_to_be_transgender"
[11] "dem.have_you_ever_been_pregnant"
[12] "dem.what_is_your_sexual_orientation"
[13] "dem.what_is_your_sexual_orientation.txt"
[14] "dem.what_is_your_current_maritalrelationship_status"
[15] "dem.what_is_your_current_maritalrelationship_status.txt"
[16] "dem.how_would_you_describe_your_vision"
[17] "dem.how_would_you_describe_your_hearing"
[18] "dem.which hand do you usually write with"
[19] "dem.college_or_university_degree"
[20] "dem.a_levelsas_levels_or_equivalent"
[21] "dem.o_levelsgcses_or_equivalent"
[22] "dem.cses or equivalent"
[23] "dem.nvq_or_hnd_or_hnc_or_equivalent"
```

```
[24] "dem.other_professional_qualifications_"
```

- [25] "dem.other_professional_qualifications_text.txt"
- [26] "dem.none of the above"
- [27] "dem.prefer_not_to_say"
- [28] "dem.british_mixed_british"
- [29] "dem.irish"
- [30] "dem.northern irish"
- [31] "dem.any_other_white_background"
- [32] "dem.white_and_black_caribbean"
- [33] "dem.white_and_black_africa"
- [34] "dem.white_and_asian"
- [35] "dem.any_other_mixed_background"
- [36] "dem.indian_or_british_indian"
- [37] "dem.pakistani_or_british_pakistani"
- [38] "dem.bangladeshi_or_british_bangladeshi"
- [39] "dem.any_other_asian_background"
- [40] "dem.caribbean"
- [41] "dem.african"
- [42] "dem.any_other_black_background"
- [43] "dem.chinese"
- [44] "dem.any_other_ethnic_group"
- [45] "dem.other"
- [46] "dem.othertext.txt"
- [47] "dem.english"
- [48] "dem.scottish"
- [49] "dem.welsh"
- [50] "dem.cornish"
- [51] "dem.cypriot_"
- [52] "dem.greek"
- [53] "dem.greek_cypriot"
- [54] "dem.italian"
- [55] "dem.irish_traveller"
- [56] "dem.traveller"
- [57] "dem.gypsyromany"
- [58] "dem.polish"
- [59] "dem.republics_made_ussr"
- [60] "dem.kosovan"
- [61] "dem.albanian"
- [62] "dem.bosnian"
- [63] "dem.croatian"
- [64] "dem.serbian"
- [65] "dem.republics_made_yugoslavia"
- [66] "dem.mixed_white"
- [67] "dem.other_white_european_european_unspecified_european_mix"
- [68] "dem.black_and_asian"
- [69] "dem.black_and_chinese"
- [70] "dem.black_and_white"
- [71] "dem.chinese_and_white"
- [72] "dem.asian_and_chinese"
- [73] "dem.other_mixed_mixed_unspecified"
- [74] "dem.other_mixed_mixed_unspecifiedtext.txt"
- [75] "dem.mixed_asian"
- [76] "dem.punjabi"
- [77] "dem.kashmiri"

```
[78] "dem.east african asian"
 [79] "dem.tamil"
[80] "dem.sinhalese"
[81] "dem.british asian"
[82] "dem.caribbean asian"
[83] "dem.other asian asian unspecified"
[84] "dem.other asian asian unspecifiedtext.txt"
[85] "dem.somali"
[86] "dem.mixed black"
[87] "dem.nigerian"
 [88] "dem.black_british"
[89] "dem.other_black_black_unspecified"
[90] "dem.other_black_black_unspecifiedtext.txt"
[91] "dem.is_english_your_first_language"
[92] "dem.what_is_your_first_language"
[93] "dem.what_is_your_first_language.txt"
[94] "dem.please_select_your_preferred_units_of_measurement"
[95] "dem.what is your current height"
[96] "dem.what_is_your_current_height.1"
[97] "dem.what_is_your_current_height.2"
[98] "dem.pregnant_weigh_weight_provide"
[99] "dem.pregnant_weigh_weight_provide.1"
[100] "dem.pregnant_weigh_weight_provide.2"
[101] "dem.pregnant weighed weight provide"
[102] "dem.pregnant weighed weight provide.1"
[103] "dem.pregnant_weighed_weight_provide.2"
[104] "dem.highest_weight"
[105] "dem.stopped_growing_adult_height"
[106] "dem.stopped_growing_adult_height.1"
[107] "dem.stopped_growing_adult_height.2"
[108] "dem.body_suffered_injury_involving"
[109] "dem.middle_wake_night_covid19"
[110] "dem.middle_wake_night_covid19.1"
[111] "dem.medical_history_birth_relevant"
[112] "dem.affects concerned live memory"
[113] "dem.memory_problem_worse_year"
[114] "dem.based confirm living question"
[115] "dem.diagnosed_required_question_covid19"
[116] "dem.long_ago_diagnosed_required"
[117] "dem.long_ago_diagnosed_required.1"
[118] "dem.diagnosed covid19 experienced similar"
[119] "dem.quality rate life"
[120] "dem.energy everyday life"
[121] "dem.opportunity_leisure_activities"
[122] "dem.money_day"
```

[130] "dem.any_other_group"
[131] "dem.any_other_grouptext.txt"

[127] "dem.vietnamese"
[128] "dem.filipino"
[129] "dem.malaysian"

[123] "dem.middle_wake_night_trouble"
[124] "dem.affects_concerned_live_memory.1"
[125] "dem.affects_concerned_live_memory.2"

[126] "dem.has_your_memory_got_progressively_worse"

```
[132] "dem.lowest_weight_adult_height"
[133] "dem.happy_general_health"
# Inspect dimensions of dataframe (number of rows and columns)
dat %>%
 dim()
[1] 235 133
Select & rename relevant columns
dat_id <- dat %>% # new dataset with ID
  drop_na(externalDataReference) %>% # Drop participants with no ID
  distinct(externalDataReference, .keep_all = TRUE) %>% # Changed to distinct due to NA coercion
  add_column(sample = "COVIDCNS",
             .after = "externalDataReference") %>% # Create new sample column
  select(
         ID = externalDataReference,# ID
         sample,
         startDate,
         endDate,
         dem.how_old_are_you_now.txt = dem.required_question_eligibility_criteria.txt, #self-reported a
         dem.day, # day of birth
         dem.month, # month of birth
         dem.year # year of birth
         ) %>%
 rename_with( ~ paste(.x, "unc", sep = "_"), starts_with("dem"))
# Inspect colnames
dat_id %>%
 colnames()
[1] "ID"
                                       "sample"
[3] "startDate"
                                       "endDate"
[5] "dem.how_old_are_you_now.txt_unc" "dem.day_unc"
[7] "dem.month_unc"
                                       "dem.year_unc"
Look at number of people excluded
# Inspect dimensions of new data set
dat_id %>%
 dim()
[1] 228
# Inspect number of rows dropped
excluded <- dim(dat_id)[1]-dim(dat)[1]</pre>
excluded
```

[1] -7

Check missingness by missmap

```
miss_map <- dat_id %>%
  missmap()
```

Warning: Unknown or uninitialised column: 'arguments'.

Warning: Unknown or uninitialised column: 'arguments'.

Warning: Unknown or uninitialised column: 'imputations'.

NULL

Clean COVID CNS age variables

Age at sign-up (self-reported)

Inspect age variable

dat_id %>%
 freq(dem.how_old_are_you_now.txt_unc)

Frequencies

dat_id\$dem.how_old_are_you_now.txt_unc

Label: How old are you now? *This question is required for eligibility criteria.

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
17	1	0.44	0.44	0.44	0.44
18	1	0.44	0.88	0.44	0.88
20	1	0.44	1.32	0.44	1.32
21	1	0.44	1.76	0.44	1.75
24	1	0.44	2.20	0.44	2.19
25	1	0.44	2.64	0.44	2.63
27	1	0.44	3.08	0.44	3.07
28	2	0.88	3.96	0.88	3.95
29	2	0.88	4.85	0.88	4.82
31	2	0.88	5.73	0.88	5.70
32	3	1.32	7.05	1.32	7.02
33	3	1.32	8.37	1.32	8.33
34	5	2.20	10.57	2.19	10.53
35	2	0.88	11.45	0.88	11.40
36	2	0.88	12.33	0.88	12.28
37	2	0.88	13.22	0.88	13.16
38	2	0.88	14.10	0.88	14.04
39	5	2.20	16.30	2.19	16.23
40	7	3.08	19.38	3.07	19.30
41	4	1.76	21.15	1.75	21.05
42	3	1.32	22.47	1.32	22.37
43	2	0.88	23.35	0.88	23.25
44	8	3.52	26.87	3.51	26.75
45	1	0.44	27.31	0.44	27.19
46	5	2.20	29.52	2.19	29.39
47	7	3.08	32.60	3.07	32.46
48	3	1.32	33.92	1.32	33.77
49	4	1.76	35.68	1.75	35.53
50	3	1.32	37.00	1.32	36.84
51	7	3.08	40.09	3.07	39.91
52	6	2.64	42.73	2.63	42.54
53	4	1.76	44.49	1.75	44.30
54	7	3.08	47.58	3.07	47.37
55	3	1.32	48.90	1.32	48.68
56	5	2.20	51.10	2.19	50.88
57	5	2.20	53.30	2.19	53.07
58	9	3.96	57.27	3.95	57.02
59	4	1.76	59.03	1.75	58.77
60	6	2.64	61.67	2.63	61.40
61	7	3.08	64.76	3.07	64.47
62	5	2.20	66.96	2.19	66.67
63	12	5.29	72.25	5.26	71.93
64	4	1.76	74.01	1.75	73.68

65	9	3.96	77.97	3.95	77.63
66	4	1.76	79.74	1.75	79.39
67	7	3.08	82.82	3.07	82.46
68	7	3.08	85.90	3.07	85.53
69	2	0.88	86.78	0.88	86.40
70	1	0.44	87.22	0.44	86.84
71	2	0.88	88.11	0.88	87.72
72	4	1.76	89.87	1.75	89.47
73	2	0.88	90.75	0.88	90.35
74	2	0.88	91.63	0.88	91.23
75	6	2.64	94.27	2.63	93.86
76	2	0.88	95.15	0.88	94.74
77	1	0.44	95.59	0.44	95.18
78	1	0.44	96.04	0.44	95.61
79	1	0.44	96.48	0.44	96.05
80	1	0.44	96.92	0.44	96.49
81	1	0.44	97.36	0.44	96.93
82	2	0.88	98.24	0.88	97.81
83	1	0.44	98.68	0.44	98.25
84	1	0.44	99.12	0.44	98.68
85	1	0.44	99.56	0.44	99.12
88	1	0.44	100.00	0.44	99.56
<na></na>	1			0.44	100.00
Total	228	100.00	100.00	100.00	100.00

###Convert negative values of age to positive values and convert to numeric

```
dat_id <- dat_id %>%
  mutate(
    dem.how_old_are_you_now.txt_unc =
        abs(
        as.numeric(
        dem.how_old_are_you_now.txt_unc)
    )
)
#Check
dat_id %>%

freq(dem.how_old_are_you_now.txt_unc)
```

${\tt Frequencies}$

 ${\tt dat_id\$dem.how_old_are_you_now.txt_unc}$

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
17	1	0.44	0.44	0.44	0.44
18	1	0.44	0.88	0.44	0.88
20	1	0.44	1.32	0.44	1.32
21	1	0.44	1.76	0.44	1.75
24	1	0.44	2.20	0.44	2.19
25	1	0.44	2.64	0.44	2.63
27	1	0.44	3.08	0.44	3.07

28	2	0.88	3.96	0.88	3.95
29	2	0.88	4.85	0.88	4.82
31	2	0.88	5.73	0.88	5.70
32	3	1.32	7.05	1.32	7.02
33	3	1.32	8.37	1.32	8.33
34	5	2.20	10.57	2.19	10.53
35	2	0.88	11.45	0.88	11.40
36	2	0.88	12.33	0.88	12.28
37	2	0.88	13.22	0.88	13.16
38	2	0.88	14.10	0.88	14.04
39	5	2.20	16.30	2.19	16.23
40	7	3.08	19.38	3.07	19.30
41	4	1.76	21.15	1.75	21.05
42	3	1.32	22.47	1.32	22.37
43	2	0.88	23.35	0.88	23.25
44	8	3.52	26.87	3.51	26.75
45	1	0.44	27.31	0.44	27.19
46	5	2.20	29.52	2.19	29.39
47	7	3.08	32.60	3.07	32.46
48	3	1.32	33.92	1.32	33.77
49	4	1.76	35.68	1.75	35.53
50	3	1.32	37.00	1.32	36.84
51	7	3.08	40.09	3.07	39.91
52	6	2.64	42.73	2.63	42.54
53	4	1.76	44.49	1.75	44.30
54	7	3.08	47.58	3.07	47.37
55	3	1.32	48.90	1.32	48.68
56	5	2.20	51.10	2.19	50.88
57	5	2.20	53.30	2.19	53.07
58	9	3.96	57.27	3.95	57.02
59	4	1.76	59.03	1.75	58.77
60	6	2.64	61.67	2.63	61.40
61	7	3.08	64.76	3.07	64.47
62	5	2.20	66.96	2.19	66.67
63	12	5.29	72.25	5.26	71.93
64	4	1.76	74.01	1.75	73.68
65	9	3.96	77.97	3.95	77.63
66	4	1.76	79.74	1.75	79.39
67	7	3.08	82.82	3.07	82.46
68	7	3.08	85.90	3.07	85.53
69	2	0.88	86.78	0.88	86.40
70	1	0.44		0.44	86.84
71	2	0.44	87.22 88.11	0.44	
72	4	1.76	89.87	1.75	87.72 89.47
73	2	0.88	90.75		90.35
74	2			0.88	
		0.88	91.63	0.88	91.23
75 76	6	2.64	94.27	2.63	93.86
76 77	2	0.88	95.15	0.88	94.74
77 70	1	0.44	95.59	0.44	95.18
78 70	1	0.44	96.04	0.44	95.61
79 80	1	0.44	96.48	0.44	96.05
80	1	0.44	96.92	0.44	96.49
81	1	0.44	97.36	0.44	96.93
82	2	0.88	98.24	0.88	97.81

83	1	0.44	98.68	0.44	98.25
84	1	0.44	99.12	0.44	98.68
85	1	0.44	99.56	0.44	99.12
88	1	0.44	100.00	0.44	99.56
<na></na>	1			0.44	100.00
Total	228	100.00	100.00	100.00	100.00

Age outliers: - Lower: The data set should not have individuals younger than 16 - Upper: The oldest person in the world is 117 years.

Set age limits

```
age_lower_limit = 16
age_upper_limit = 117
```

Check for number of outliers in age variable

```
dat_id %>%
  filter(
    dem.how_old_are_you_now.txt_unc > age_upper_limit | # older than the age limit
    dem.how_old_are_you_now.txt_unc < age_lower_limit # younger than the age limit
    ) %>%
  nrow()
```

[1] 0

Recode age outliers to -666

```
dat_id <- dat_id%>%
  mutate(
    dem.how_old_are_you_now.txt = # remove "_unc" from the end to show that it is now cleaned
    if_else(
        dem.how_old_are_you_now.txt_unc > age_upper_limit |
              dem.how_old_are_you_now.txt_unc < age_lower_limit,
        true = -666,
        false = dem.how_old_are_you_now.txt_unc,
        missing = NA_real_
    )
)</pre>
```

Inspect clean age variable

```
dat_id %>%
  freq(dem.how_old_are_you_now.txt)
```

Frequencies

dat_id\$dem.how_old_are_you_now.txt

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
17	 1	0.44	0.44	0.44	0.44
18	1	0.44	0.88	0.44	0.88
20	1	0.44	1.32	0.44	1.32
21	1	0.44	1.76	0.44	1.75
24	1	0.44	2.20	0.44	2.19
25	1	0.44	2.64	0.44	2.63
27	1	0.44	3.08	0.44	3.07
28	2	0.88	3.96	0.88	3.95
29	2	0.88	4.85	0.88	4.82
31	2	0.88	5.73	0.88	5.70
32	3	1.32	7.05	1.32	7.02
33	3	1.32	8.37	1.32	8.33
34	5	2.20	10.57	2.19	10.53
35	2	0.88	11.45	0.88	11.40
36	2	0.88	12.33	0.88	12.28
37	2	0.88	13.22	0.88	13.16
38	2	0.88	14.10	0.88	14.04
39	5	2.20	16.30	2.19	16.23
40	7	3.08	19.38	3.07	19.30
41	4	1.76	21.15	1.75	21.05
42	3	1.32	22.47	1.32	22.37
43	2	0.88	23.35	0.88	23.25
44	8	3.52	26.87	3.51	26.75
45	1	0.44	27.31	0.44	27.19
46	5	2.20	29.52	2.19	29.39
47	7	3.08	32.60	3.07	32.46
48	3	1.32	33.92	1.32	33.77
49	4	1.76	35.68	1.75	35.53
50	3	1.32	37.00	1.32	36.84
51	7	3.08	40.09	3.07	39.91
52	6	2.64	42.73	2.63	42.54
53	4	1.76	44.49	1.75	44.30
54	7	3.08	47.58	3.07	47.37
55	3	1.32	48.90	1.32	48.68
56	5	2.20	51.10	2.19	50.88
57	5	2.20	53.30	2.19	53.07
58	9	3.96	57.27	3.95	57.02
59	4	1.76	59.03	1.75	58.77
60	6	2.64	61.67	2.63	61.40
61	7	3.08	64.76	3.07	64.47
62 63	5 12	2.20 5.29	66.96 72.25	2.19 5.26	66.67 71.93
64	4	1.76	72.25 74.01	1.75	73.68
65	9	3.96	74.01	3.95	77.63
66	4	1.76	79.74	1.75	79.39
67	7	3.08	82.82	3.07	82.46
68	7	3.08	85.90	3.07	85.53
69	2	0.88	86.78	0.88	86.40
03	_	0.00	00.70	0.00	00.40

70	1	0.44	87.22	0.44	86.84
71	2	0.88	88.11	0.88	87.72
72	4	1.76	89.87	1.75	89.47
73	2	0.88	90.75	0.88	90.35
74	2	0.88	91.63	0.88	91.23
75	6	2.64	94.27	2.63	93.86
76	2	0.88	95.15	0.88	94.74
77	1	0.44	95.59	0.44	95.18
78	1	0.44	96.04	0.44	95.61
79	1	0.44	96.48	0.44	96.05
80	1	0.44	96.92	0.44	96.49
81	1	0.44	97.36	0.44	96.93
82	2	0.88	98.24	0.88	97.81
83	1	0.44	98.68	0.44	98.25
84	1	0.44	99.12	0.44	98.68
85	1	0.44	99.56	0.44	99.12
88	1	0.44	100.00	0.44	99.56
<na></na>	1			0.44	100.00
Total	228	100.00	100.00	100.00	100.00

Age at sign up (based on DOB)

Inspect DOB variables

```
dat_id %>%
  freq(dem.day_unc)
```

Frequencies

dat_id\$dem.day_unc

Label: What is your date of birth? * This question is required. Day

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
1	6	2.64	2.64	2.63	2.63
2	8	3.52	6.17	3.51	6.14
3	6	2.64	8.81	2.63	8.77
4	7	3.08	11.89	3.07	11.84
5	11	4.85	16.74	4.82	16.67
6	8	3.52	20.26	3.51	20.18
7	8	3.52	23.79	3.51	23.68
8	9	3.96	27.75	3.95	27.63
9	9	3.96	31.72	3.95	31.58
10	6	2.64	34.36	2.63	34.21
11	9	3.96	38.33	3.95	38.16
12	9	3.96	42.29	3.95	42.11
13	6	2.64	44.93	2.63	44.74
14	11	4.85	49.78	4.82	49.56
15	4	1.76	51.54	1.75	51.32
16	7	3.08	54.63	3.07	54.39
17	10	4.41	59.03	4.39	58.77
18	3	1.32	60.35	1.32	60.09

19	7	3.08	63.44	3.07	63.16
20	6	2.64	66.08	2.63	65.79
21	7	3.08	69.16	3.07	68.86
22	7	3.08	72.25	3.07	71.93
23	11	4.85	77.09	4.82	76.75
24	6	2.64	79.74	2.63	79.39
25	6	2.64	82.38	2.63	82.02
26	8	3.52	85.90	3.51	85.53
27	8	3.52	89.43	3.51	89.04
28	8	3.52	92.95	3.51	92.54
29	4	1.76	94.71	1.75	94.30
30	10	4.41	99.12	4.39	98.68
31	2	0.88	100.00	0.88	99.56
<na></na>	1			0.44	100.00
Total	228	100.00	100.00	100.00	100.00

dat_id %>%

freq(dem.month_unc)

Frequencies

dat_id\$dem.month_unc

Label: What is your date of birth? \ast This question is required. Month

Type: Numeric

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
1	23	10.13	10.13	10.09	10.09
2	19	8.37	18.50	8.33	18.42
3	15	6.61	25.11	6.58	25.00
4	22	9.69	34.80	9.65	34.65
5	24	10.57	45.37	10.53	45.18
6	17	7.49	52.86	7.46	52.63
7	25	11.01	63.88	10.96	63.60
8	23	10.13	74.01	10.09	73.68
9	14	6.17	80.18	6.14	79.82
10	13	5.73	85.90	5.70	85.53
11	9	3.96	89.87	3.95	89.47
12	23	10.13	100.00	10.09	99.56
<na></na>	1			0.44	100.00
Total	228	100.00	100.00	100.00	100.00

dat_id %>%

freq(dem.year_unc)

Frequencies

dat_id\$dem.year_unc

Label: What is your date of birth? * This question is required. Year

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
14	1	0.44	0.44	0.44	0.44
17	1	0.44	0.88	0.44	0.88

18	1	0.44	1.32	0.44	1.32
19	1	0.44	1.76	0.44	1.75
20	3	1.32	3.08	1.32	3.07
22	2	0.88	3.96	0.88	3.95
24	1	0.44	4.41	0.44	4.39
25	1	0.44	4.85	0.44	4.82
26	3	1.32	6.17	1.32	6.14
27	6	2.64	8.81	2.63	8.77
29	4	1.76	10.57	1.75	10.53
30	3	1.32	11.89	1.32	11.84
31	1	0.44	12.33	0.44	12.28
32	2	0.88	13.22	0.88	13.16
33	3	1.32	14.54	1.32	14.47
34	7	3.08	17.62	3.07	17.54
35	8	3.52	21.15	3.51	21.05
36	5	2.20	23.35	2.19	23.25
37	5	2.20	25.55	2.19	25.44
38	7	3.08	28.63	3.07	28.51
39	13	5.73	34.36	5.70	34.21
40	3	1.32	35.68	1.32	35.53
41	10	4.41	40.09	4.39	39.91
42	3	1.32	41.41	1.32	41.23
43	6	2.64	44.05	2.63	43.86
44	9	3.96	48.02	3.95	47.81
45	2	0.88	48.90	0.88	48.68
46	5	2.20	51.10	2.19	50.88
47	5	2.20	53.30	2.19	53.07
48	5	2.20	55.51	2.19	55.26
49	4	1.76	57.27	1.75	57.02
50	7	3.08	60.35	3.07	60.09
51	7	3.08	63.44	3.07	63.16
52	3	1.32	64.76	1.32	64.47
53	3	1.32	66.08	1.32	65.79
54	3	1.32	67.40	1.32	67.11
55	8	3.52	70.93	3.51	70.61
56	4	1.76	72.69	1.75	72.37
57	1	0.44	73.13	0.44	72.81
58	9	3.96	77.09	3.95	76.75
59	3	1.32	78.41	1.32	78.07
60	2	0.88	79.30	0.88	78.95
61	4	1.76	81.06	1.75	80.70
62	7	3.08	84.14	3.07	83.77
63	4	1.76	85.90	1.75	85.53
64	3	1.32	87.22	1.32	86.84
65	1	0.44	87.67	0.44	87.28
66	3	1.32	88.99	1.32	88.60
67	2	0.88	89.87	0.88	
68	4	1.76	91.63	1.75	89.47 91.23
69	3	1.76	92.95	1.75	92.54
70	3	1.32	94.27	1.32	93.86
	2				
71 73	2	0.88	95.15	0.88	94.74
73 74	2	0.88	96.04	0.88	95.61
74 75		0.88	96.92	0.88	96.49
75	1	0.44	97.36	0.44	96.93

77	1	0.44	97.80	0.44	97.37
78	1	0.44	98.24	0.44	97.81
81	1	0.44	98.68	0.44	98.25
82	1	0.44	99.12	0.44	98.68
84	1	0.44	99.56	0.44	99.12
85	1	0.44	100.00	0.44	99.56
<na></na>	1			0.44	100.00
Total	228	100.00	100.00	100.00	100.00

###Convert day, month, year to numeric and negative values to positive values Day conversion numeric and positive values

```
dat_id <- dat_id %>%
  mutate(
    dem.day_unc =
        abs(
        as.numeric(
        dem.day_unc)
    )
)
#Check
dat_id %>%
  freq(dem.day_unc)
```

Frequencies
dat_id\$dem.day_unc
Type: Numeric

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
1	6	2.64	2.64	2.63	2.63
2	8	3.52	6.17	3.51	6.14
3	6	2.64	8.81	2.63	8.77
4	7	3.08	11.89	3.07	11.84
5	11	4.85	16.74	4.82	16.67
6	8	3.52	20.26	3.51	20.18
7	8	3.52	23.79	3.51	23.68
8	9	3.96	27.75	3.95	27.63
9	9	3.96	31.72	3.95	31.58
10	6	2.64	34.36	2.63	34.21
11	9	3.96	38.33	3.95	38.16
12	9	3.96	42.29	3.95	42.11
13	6	2.64	44.93	2.63	44.74
14	11	4.85	49.78	4.82	49.56
15	4	1.76	51.54	1.75	51.32
16	7	3.08	54.63	3.07	54.39
17	10	4.41	59.03	4.39	58.77
18	3	1.32	60.35	1.32	60.09
19	7	3.08	63.44	3.07	63.16
20	6	2.64	66.08	2.63	65.79
21	7	3.08	69.16	3.07	68.86
22	7	3.08	72.25	3.07	71.93
23	11	4.85	77.09	4.82	76.75

24	6	2.64	79.74	2.63	79.39
25	6	2.64	82.38	2.63	82.02
26	8	3.52	85.90	3.51	85.53
27	8	3.52	89.43	3.51	89.04
28	8	3.52	92.95	3.51	92.54
29	4	1.76	94.71	1.75	94.30
30	10	4.41	99.12	4.39	98.68
31	2	0.88	100.00	0.88	99.56
<na></na>	1			0.44	100.00
Total	228	100.00	100.00	100.00	100.00

Month conversion numeric and positive values

```
dat_id <- dat_id %>%
  mutate(
    dem.month_unc =
        abs(
        as.numeric(
        dem.month_unc)
    )
)
#Check
dat_id %>%
  freq(dem.month_unc)
```

Frequencies

 ${\tt dat_id\$dem.month_unc}$

Type: Numeric

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
1	23	10.13	10.13	10.09	10.09
2	19	8.37	18.50	8.33	18.42
3	15	6.61	25.11	6.58	25.00
4	22	9.69	34.80	9.65	34.65
5	24	10.57	45.37	10.53	45.18
6	17	7.49	52.86	7.46	52.63
7	25	11.01	63.88	10.96	63.60
8	23	10.13	74.01	10.09	73.68
9	14	6.17	80.18	6.14	79.82
10	13	5.73	85.90	5.70	85.53
11	9	3.96	89.87	3.95	89.47
12	23	10.13	100.00	10.09	99.56
<na></na>	1			0.44	100.00
Total	228	100.00	100.00	100.00	100.00

Year conversion numeric and positive values

```
dat_id <- dat_id %>%
  mutate(
    dem.year_unc =
    abs(
        as.numeric(
```

```
dem.year_unc)
  )
#Check
dat_id %>%
  freq(dem.year_unc)
```

Frequencies
dat_id\$dem.year_unc
Type: Numeric

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
14	1	0.44	0.44	0.44	0.44
17	1	0.44	0.88	0.44	0.88
18	1	0.44	1.32	0.44	1.32
19	1	0.44			1.75
20	3	1.32			3.07
22	2	0.88			3.95
24	1	0.44	4.41	0.44	4.39
25	1	0.44	4.85		4.82
26	3	1.32	6.17	1.32	6.14
27	6	2.64	8.81	2.63	8.77
29	4	1.76	10.57	1.75	10.53
30	3	1.32	11.89	1.32	11.84
31	1	0.44	12.33	0.44	12.28
32	2	0.88	13.22	0.88	13.16
33	3	1.32	14.54	1.32	14.47
34	7	3.08	17.62	3.07	17.54
35	8	3.52	21.15	3.51	21.05
36	5	2.20	23.35	2.19	23.25
37	5	2.20	25.55	2.19	25.44
38	7	3.08	28.63	3.07	28.51
39	13	5.73	34.36	5.70	34.21
40	3	1.32	35.68	1.32	35.53
41	10	4.41	40.09		39.91
42	3	1.32	41.41		41.23
43	6	2.64	44.05		43.86
44	9	3.96	48.02		47.81
45	2	0.88	48.90		48.68
46	5	2.20	51.10		50.88
47	5	2.20	53.30		53.07
48	5	2.20	55.51		55.26
49	4	1.76	57.27		57.02
50	7	3.08	60.35		60.09
51	7	3.08	63.44		63.16
52	3	1.32	64.76	1.32	64.47
53	3	1.32	66.08	1.32	65.79
54	3	1.32	67.40	1.32	67.11
55	8	3.52	70.93		70.61
56	4	1.76	72.69		72.37
57	1	0.44	73.13		72.81
58	9	3.96	77.09	3.95	76.75

59	3	1.32	78.41	1.32	78.07
60	2	0.88	79.30	0.88	78.95
61	4	1.76	81.06	1.75	80.70
62	7	3.08	84.14	3.07	83.77
63	4	1.76	85.90	1.75	85.53
64	3	1.32	87.22	1.32	86.84
65	1	0.44	87.67	0.44	87.28
66	3	1.32	88.99	1.32	88.60
67	2	0.88	89.87	0.88	89.47
68	4	1.76	91.63	1.75	91.23
69	3	1.32	92.95	1.32	92.54
70	3	1.32	94.27	1.32	93.86
71	2	0.88	95.15	0.88	94.74
73	2	0.88	96.04	0.88	95.61
74	2	0.88	96.92	0.88	96.49
75	1	0.44	97.36	0.44	96.93
77	1	0.44	97.80	0.44	97.37
78	1	0.44	98.24	0.44	97.81
81	1	0.44	98.68	0.44	98.25
82	1	0.44	99.12	0.44	98.68
84	1	0.44	99.56	0.44	99.12
85	1	0.44	100.00	0.44	99.56
<na></na>	1			0.44	100.00
Total	228	100.00	100.00	100.00	100.00

Add values to birthyear

Birth year coding: Oldest person self-reported age is 88 (born in 1933, calculated using participant startdate) - coded values start from 14 (participant with age 88) which needs to be converted to 1933 (add 1919 years)

```
#add values to birth year
dat_id <- dat_id %>%
  mutate(dem.year_unc = dem.year_unc + 1919) ##add 1919 years

dat_id %>%
  freq(dem.year_unc)
```

Frequencies

dat_id\$dem.year_unc

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
1933	 1	0.44	0.44	0.44	0.44
	1	0.44	0.44		0.88
1936	1			0.44	
1937	1	0.44	1.32	0.44	1.32
1938	1	0.44	1.76	0.44	1.75
1939	3	1.32	3.08	1.32	3.07
1941	2	0.88	3.96	0.88	3.95
1943	1	0.44	4.41	0.44	4.39
1944	1	0.44	4.85	0.44	4.82
1945	3	1.32	6.17	1.32	6.14
1946	6	2.64	8.81	2.63	8.77

1948	4	1.76	10.57	1.75	10.53
1949	3	1.32	11.89	1.32	11.84
1950	1	0.44	12.33	0.44	12.28
1951	2	0.88	13.22	0.88	13.16
1952	3	1.32	14.54	1.32	14.47
1953	7	3.08	17.62	3.07	17.54
1954	8	3.52	21.15	3.51	21.05
1955	5	2.20	23.35	2.19	23.25
1956	5	2.20	25.55	2.19	25.44
1957	7	3.08	28.63	3.07	28.51
1958	13	5.73	34.36	5.70	34.21
1959	3	1.32	35.68	1.32	35.53
1960	10	4.41	40.09	4.39	39.91
1961	3	1.32	41.41	1.32	41.23
1962	6	2.64	44.05	2.63	43.86
1963	9	3.96	48.02	3.95	47.81
1964	2	0.88	48.90	0.88	48.68
1965	5	2.20	51.10	2.19	50.88
1966	5	2.20	53.30	2.19	53.07
1967	5	2.20	55.51	2.19	55.26
1968	4	1.76	57.27	1.75	57.02
1969	7	3.08	60.35	3.07	60.09
1970	7	3.08	63.44	3.07	63.16
1971	3	1.32	64.76	1.32	64.47
1972	3	1.32	66.08	1.32	65.79
1973	3	1.32	67.40	1.32	67.11
1974	8	3.52	70.93	3.51	70.61
1975	4	1.76	72.69	1.75	72.37
1976	1	0.44	73.13	0.44	72.81
1977	9	3.96	77.09	3.95	76.75
1978	3	1.32	78.41	1.32	78.07
1979	2	0.88	79.30	0.88	78.95
1980	4	1.76	81.06	1.75	80.70
1981	7	3.08	84.14	3.07	83.77
1982	4	1.76	85.90	1.75	85.53
1983	3	1.32	87.22	1.32	86.84
1984	1	0.44	87.67	0.44	87.28
1985	3	1.32	88.99	1.32	88.60
1986	2	0.88	89.87	0.88	89.47
1987	4	1.76	91.63	1.75	91.23
1988	3	1.32	92.95	1.32	92.54
1989	3	1.32	94.27	1.32	93.86
1990	2	0.88	95.15	0.88	94.74
1992	2	0.88	96.04	0.88	95.61
1993	2	0.88	96.92	0.88	96.49
1994	1	0.44	97.36	0.44	96.93
1996	1	0.44	97.80	0.44	97.37
1997	1	0.44	98.24	0.44	97.81
2000	1	0.44	98.68	0.44	98.25
2000	1	0.44	99.12	0.44	98.68
2001	1	0.44	99.12	0.44	99.12
2003	1	0.44	100.00	0.44	99.12
<na></na>	1	0.44	100.00	0.44	100.00
		100.00	100 00	100.00	
Total	228	100.00	100.00	100.00	100.00

Set minimum and maximum values

```
# Day
day.min.scale = 1
day.max.scale = 31

# Month
month.min.scale = 1
month.max.scale = 12

# Year
year.min.scale = 1899
year.max.scale = 2021 # note max age set later in age_upper_limit
```

Clean dem.day

[1] 0

[1] "The number of implausible values in the COVID CNS day of birth variable is 0. This is fine."

Check

colnames(dat_id)

Check cleaned variable

dat_id %>%

freq(dem.day)

Frequencies
dat_id\$dem.day
Type: Numeric

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
1	6	2.64	2.64	2.63	2.63
2	8	3.52	6.17	3.51	6.14
3	6	2.64	8.81	2.63	8.77
4	7	3.08	11.89	3.07	11.84
5	11	4.85	16.74	4.82	16.67
6	8	3.52	20.26	3.51	20.18
7	8	3.52	23.79	3.51	23.68
8	9	3.96	27.75	3.95	27.63
9	9	3.96	31.72	3.95	31.58
10	6	2.64	34.36	2.63	34.21
11	9	3.96	38.33	3.95	38.16
12	9	3.96	42.29	3.95	42.11
13	6	2.64	44.93	2.63	44.74
14	11	4.85	49.78	4.82	49.56
15	4	1.76	51.54	1.75	51.32
16	7	3.08	54.63	3.07	54.39
17	10	4.41	59.03	4.39	58.77
		1.32		1.32	
	7	3.08		3.07	
20	6	2.64	66.08	2.63	65.79
21	7	3.08	69.16	3.07	68.86
22	7	3.08	72.25	3.07	71.93
23	11	4.85	77.09	4.82	76.75
24	6	2.64	79.74	2.63	79.39
		2.64			
26		3.52		3.51	85.53
		3.52	89.43	3.51	
28	8	3.52	92.95	3.51	92.54
	4	1.76			94.30
	10	4.41	99.12		
31	2	0.88	100.00		
<na></na>	1			0.44	100.00
Total	228	100.00	100.00	100.00	100.00

Clean dem.month

Frequencies dat_id\$dem.month
Type: Numeric

```
dat_id <- dat_id %>%
 mutate(dem.month_unc_clean =
           case_when(dem.month_unc < month.min.scale | dem.month_unc > month.max.scale ~ -666, # implau
                     TRUE ~ dem.month_unc)
         ) # leave as is
# Check for implausible values
dat_month_imp_n <- dat_id %>%
  filter(dem.month_unc_clean == -666) %>%
 nrow()
# Check
dat_month_imp_n
[1] 0
# If statement
if (dat_month_imp_n == 0) {
 print(paste0("The number of implausible values in the COVID CNS month of birth variable is ", dat_mon
  setnames(dat_id,
         old = "dem.month unc clean",
         new = "dem.month")
} else {
  print(paste0("The number of implausible values in the COVID CNS month of birth variable is ", dat_mon
  setnames(dat_id,
        old = "dem.month_unc_clean",
         new = "dem.month")
}
[1] "The number of implausible values in the COVID CNS month of birth variable is 0. This is fine."
# Check
colnames(dat_id)
 [1] "ID"
                                        "sample"
 [3] "startDate"
                                        "endDate"
 [5] "dem.how_old_are_you_now.txt_unc"
                                       "dem.day_unc"
 [7] "dem.month_unc"
                                        "dem.year_unc"
 [9] "dem.how_old_are_you_now.txt"
                                        "dem.day"
[11] "dem.month"
# Check clean variable
dat id %>%
 freq(dem.month)
```

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
1	23	10.13	10.13	10.09	10.09
2	19	8.37	18.50	8.33	18.42
3	15	6.61	25.11	6.58	25.00
4	22	9.69	34.80	9.65	34.65
5	24	10.57	45.37	10.53	45.18
6	17	7.49	52.86	7.46	52.63
7	25	11.01	63.88	10.96	63.60
8	23	10.13	74.01	10.09	73.68
9	14	6.17	80.18	6.14	79.82
10	13	5.73	85.90	5.70	85.53
11	9	3.96	89.87	3.95	89.47
12	23	10.13	100.00	10.09	99.56
<na></na>	1			0.44	100.00
Total	228	100.00	100.00	100.00	100.00

The month variable should now be clean.

Clean dem.year

[1] 0

[1] "The number of implausible values in the COVID CNS year of birth variable is 0. This is fine."

Check dat_id %>% freq(dem.year)

Frequencies
dat_id\$dem.year
Type: Numeric

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
1933	1	0.44	0.44	0.44	0.44
1936	1	0.44	0.88	0.44	0.88
1937	1	0.44	1.32	0.44	1.32
1938	1	0.44	1.76	0.44	1.75
1939	3	1.32	3.08	1.32	3.07
1941	2	0.88	3.96	0.88	3.95
1943	1	0.44	4.41	0.44	4.39
1944	1	0.44	4.85	0.44	4.82
1945	3	1.32	6.17	1.32	6.14
1946	6	2.64	8.81	2.63	8.77
1948	4	1.76	10.57	1.75	10.53
1949	3	1.32	11.89	1.32	11.84
1950	1	0.44	12.33	0.44	12.28
1951	2	0.88	13.22	0.88	13.16
1952	3	1.32	14.54	1.32	14.47
1953	7	3.08	17.62	3.07	17.54
1954	8	3.52	21.15	3.51	21.05
1955	5	2.20	23.35	2.19	23.25
1956	5	2.20	25.55	2.19	25.44
1957	7	3.08	28.63	3.07	28.51
1958	13	5.73	34.36	5.70	34.21
1959	3 10	1.32	35.68	1.32	35.53
1960 1961	3	4.41 1.32	40.09 41.41	4.39 1.32	39.91 41.23
1961	6	2.64	44.05	2.63	43.86
1963	9	3.96	48.02	3.95	47.81
1964	2	0.88	48.90	0.88	48.68
1965	5	2.20	51.10	2.19	50.88
1966	5	2.20	53.30	2.19	53.07
1967	5	2.20	55.51	2.19	55.26
1968	4	1.76	57.27	1.75	57.02
1969	7	3.08	60.35	3.07	60.09
1970	7	3.08	63.44	3.07	63.16
1971	3	1.32	64.76	1.32	64.47
1972	3	1.32	66.08	1.32	65.79
1973	3	1.32	67.40	1.32	67.11
1974	8	3.52	70.93	3.51	70.61
1975	4	1.76	72.69	1.75	72.37
1976	1	0.44	73.13	0.44	72.81
1977	9	3.96	77.09	3.95	76.75
1978	3	1.32	78.41	1.32	78.07
1979	2	0.88	79.30	0.88	78.95
1980	4	1.76	81.06	1.75	80.70

1001	7	2 00	04 14	2 07	02.77
1981	7	3.08	84.14	3.07	83.77
1982	4	1.76	85.90	1.75	85.53
1983	3	1.32	87.22	1.32	86.84
1984	1	0.44	87.67	0.44	87.28
1985	3	1.32	88.99	1.32	88.60
1986	2	0.88	89.87	0.88	89.47
1987	4	1.76	91.63	1.75	91.23
1988	3	1.32	92.95	1.32	92.54
1989	3	1.32	94.27	1.32	93.86
1990	2	0.88	95.15	0.88	94.74
1992	2	0.88	96.04	0.88	95.61
1993	2	0.88	96.92	0.88	96.49
1994	1	0.44	97.36	0.44	96.93
1996	1	0.44	97.80	0.44	97.37
1997	1	0.44	98.24	0.44	97.81
2000	1	0.44	98.68	0.44	98.25
2001	1	0.44	99.12	0.44	98.68
2003	1	0.44	99.56	0.44	99.12
2004	1	0.44	100.00	0.44	99.56
<na></na>	1			0.44	100.00
Total	228	100.00	100.00	100.00	100.00

dat_id = clean data set, all implausible values are set to -666 However, we need to drop these values to NA in order to calculate DOB (needed for the next steps)

Create a new data set where implausible values are dropped to NA

Drop all -666 to NA

```
dat_no_imps <- dat_id %>%
  mutate_if(is.numeric, ~na_if(., -666)) # Implausible value
```

Drop all variables with "_unc" on the end

```
dat_clean <- dat_no_imps %>%
  select(!contains("_unc")) # selects ID, sample and drops all uncleaned variables
# Check (there should be no variables with "_unc" in the name now)
colnames(dat_clean)
```

```
[1] "ID" "sample"
[3] "startDate" "endDate"
[5] "dem.how_old_are_you_now.txt" "dem.day"
[7] "dem.month" "dem.year"
```

Create age variable from date of birth

Use lubridate for this:

```
# A tibble: 6 x 4
 dem.day dem.month dem.year dem.dob
   <dbl>
           <dbl>
                   <dbl> <date>
                      1962 1962-11-12
1
      12
               11
2
      11
                4
                      1954 1954-04-11
                2
3
      8
                     1956 1956-02-08
4
      27
                3
                      1985 1985-03-27
5
      26
                9
                      1963 1963-09-26
6
      16
                2
                      1960 1960-02-16
```

Calculate age from birth date and startdate

note: using startdate instead of enddate and this increases N (some participants did not reach the end of the questionaire)

```
dat_clean$dem.dob_age <- interval(
    start = dat_clean$dem.dob,
    end = dat_clean$startDate) %/% # use modulo to round down by %/%
        duration(num = 1, units = "years")

# check COVID CNS age variables
dat_clean %>%
    select(dem.dob,
        dem.dob_age,
        dem.how_old_are_you_now.txt) %>%
head()
```

```
# A tibble: 6 x 3
             dem.dob_age dem.how_old_are_you_now.txt
 dem.dob
  <date>
                   <dbl>
                                                <dbl>
1 1962-11-12
                      58
                                                   58
                      66
                                                   66
2 1954-04-11
3 1956-02-08
                      65
                                                   65
4 1985-03-27
                      35
                                                   35
5 1963-09-26
                      57
                                                   57
6 1960-02-16
                      61
                                                   61
```

Inspect difference self-report age and DOB age

```
# A tibble: 17 x 4
           dem.dob_age dem.how_old_are_you_now.txt dem.dob
                  <dbl>
   <chr>
                                               <dbl> <date>
 1 CNS01013
                                                  68 1953-09-12
                     67
2 CNS01018
                     61
                                                  62 1959-07-07
3 CNS02020
                     64
                                                  65 1956-12-04
4 CNS02024
                     74
                                                  75 1946-10-06
5 CNS01036
                     52
                                                  51 1969-06-14
6 CNS01044
                     76
                                                  75 1945-09-06
7 CNS07001
                     53
                                                  54 1967-10-08
8 CNS07011
                     40
                                                  41 1980-12-08
9 CNS01102
                     59
                                                  58 1962-04-25
10 CNS01110
                     84
                                                  85 1936-12-05
11 CNS06034
                     51
                                                  50 1970-01-17
12 CNS01140
                     58
                                                  59 1963-08-01
13 CNS02064
                     73
                                                  74 1948-07-21
14 CNS07023
                     63
                                                  64 1958-07-20
                     70
                                                  71 1951-07-16
15 CNS07025
16 CNS05017
                     64
                                                  65 1957-09-02
17 CNS06021
                     45
                                                  44 1977-01-21
```

diff_age_variabl_n COVID CNS participants self-report a different age to their age calculated from date of birth.

Convert dem.dob_age to numeric and negative values to positive values

```
dat_clean <- dat_clean %>%
  mutate(
    dem.dob_age =
    abs(
        as.numeric(
        dem.dob_age)
    )
)
#Check
dat_clean %>%
  freq(dem.dob_age)
```

Frequencies

dat_clean\$dem.dob_age

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
17	1	0.44	0 44	0.44	0.44
18	1	0.44		0.44	
	1	0.44		0.44	
	1	0.44		0.44	
		0.44			
		0.44			
		0.44			
		0.88			
		0.88			
		0.88			
		1.32			
		1.32			
	5	2.20			
		0.88	11.45		
		0.88	12.33		
		0.88	13.22		
		0.88	14.10		
	5	2.20	16.30		
	8	3.52	19.82		
		1.32	21.15		
		1.32	22.47		
		0.88	23.35		
	7	3.08	26.43		26.32
		0.88	27.31		27.19
	5	2.20	29.52		
	7		32.60		32.46
		3.08 1.32			
		1.76	33.92 35.68		
		0.88			
	7	3.08	36.56 39.65		36.40 39.47
	7	3.08	42.73		42.54
53	5	2.20	44.93		44.74
	6	2.64	47.58		
55 55	3	1.32			47.37 48.68
56	5 5	2.20	48.90 51.10	1.32	50.88
57				2.19 2.19	
58	5 9	2.20 3.96	53.30	3.95	53.07 57.02
59	4	1.76	57.27 59.03	1.75	58.77
60	6	2.64	61.67	2.63	61.40
61	8	3.52	65.20	3.51	64.91
62	4	1.76	66.96	1.75	66.67
63	13	5.73	72.69	5.70	72.37
64	5	2.20	74.89	2.19	
65	7	3.08	77.97	3.07	74.56 77.63
66	4	1.76	79.74	1.75	79.39
67	8	3.52	83.26	3.51	82.89
68	6	2.64	85.90	2.63	85.53
69	2	0.88	86.78	0.88	86.40
09	2	0.00	00.10	0.00	00.40

```
70
                                  87.67
                                                             87.28
                   0.88
                                              0.88
   71
            1
                   0.44
                                  88.11
                                              0.44
                                                             87.72
   72
           4
                   1.76
                                  89.87
                                              1.75
                                                             89.47
   73
           3
                                  91.19
                                                             90.79
                   1.32
                                              1.32
           2
   74
                   0.88
                                  92.07
                                              0.88
                                                             91.67
   75
           4
                   1.76
                                  93.83
                                                             93.42
                                              1.75
   76
           3
                   1.32
                                  95.15
                                              1.32
                                                             94.74
   77
                   0.44
                                  95.59
                                              0.44
                                                             95.18
            1
   78
            1
                   0.44
                                  96.04
                                              0.44
                                                             95.61
   79
                   0.44
                                  96.48
                                              0.44
                                                             96.05
            1
   80
            1
                   0.44
                                  96.92
                                              0.44
                                                             96.49
   81
            1
                   0.44
                                  97.36
                                              0.44
                                                             96.93
   82
           2
                   0.88
                                  98.24
                                              0.88
                                                             97.81
   83
           1
                   0.44
                                  98.68
                                              0.44
                                                             98.25
   84
           2
                   0.88
                                  99.56
                                              0.88
                                                             99.12
   88
            1
                   0.44
                                 100.00
                                              0.44
                                                             99.56
                                              0.44
                                                             100.00
 <NA>
           1
Total
         228
                 100.00
                                 100.00
                                            100.00
                                                             100.00
```

Check for number of outliers in DOB age at sign up variable using age limits

Same age limit as used in earlier chunk for self-reported age: age_lower_limit = 16 age_upper_limit = 117

```
dat_clean %>%
  filter(
   dem.dob_age > age_upper_limit | # older than the age limit
   dem.dob_age < age_lower_limit # younger than the age limit
  ) %>%
  nrow()
```

[1] 0

Recode DOB age at sign up at sign up outliers to -666

```
dat_clean <- dat_clean %>%
  mutate(
    dem.dob_age =
        if_else(
        dem.dob_age > age_upper_limit |
             dem.dob_age < age_lower_limit,
        true = -666,
        false = dem.dob_age,
        missing = NA_real_
        )
    )</pre>
```

Inspect clean DOB age at sign up at sign up variable

dat_clean %>%
 freq(dem.dob_age)

Frequencies

dat_clean\$dem.dob_age

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
17	1	0.44	0.44	0.44	0.44
18	1	0.44	0.88	0.44	0.88
20	1	0.44	1.32		1.32
21	1	0.44	1.76	0.44	1.75
24	1	0.44	2.20	0.44	2.19
25	1	0.44	2.64		2.63
27	1	0.44	3.08	0.44	3.07
28	2	0.88	3.96	0.88	3.95
29	2	0.88	4.85	0.88	4.82
31	2	0.88	5.73	0.88	5.70
32	3	1.32	7.05	1.32	7.02
33	3	1.32	8.37	1.32	8.33
34	5	2.20	10.57	2.19	10.53
35	2	0.88	11.45	0.88	11.40
36	2	0.88	12.33	0.88	12.28
37	2	0.88	13.22	0.88	13.16
38	2	0.88	14.10	0.88	14.04
39	5	2.20	16.30	2.19	16.23
40	8	3.52	19.82	3.51	19.74
41	3	1.32	21.15	1.32	21.05
42	3	1.32	22.47	1.32	22.37
43	2	0.88	23.35	0.88	23.25
44	7	3.08	26.43	3.07	26.32
45	2	0.88	27.31	0.88	27.19
46	5	2.20	29.52	2.19	29.39
47	7	3.08	32.60	3.07	32.46
48	3	1.32	33.92	1.32	33.77
49	4	1.76	35.68	1.75	35.53
50	2	0.88	36.56	0.88	36.40
51	7	3.08	39.65	3.07	39.47
52	7	3.08	42.73	3.07	42.54
53	5	2.20	44.93		44.74
54	6	2.64	47.58	2.63	47.37
55	3	1.32	48.90	1.32	48.68
56	5	2.20	51.10	2.19	50.88
57	5	2.20	53.30	2.19	53.07
58	9	3.96	57.27	3.95	57.02
59	4	1.76	59.03	1.75	58.77
60	6	2.64	61.67	2.63	61.40
61	8	3.52	65.20	3.51	64.91
62	4	1.76	66.96	1.75	66.67
63	13	5.73	72.69	5.70	72.37
64	5	2.20	74.89	2.19	74.56
65	7	3.08	77.97	3.07	77.63

66	4	1.76	79.74	1.75	79.39
67	8	3.52	83.26	3.51	82.89
68	6	2.64	85.90	2.63	85.53
69	2	0.88	86.78	0.88	86.40
70	2	0.88	87.67	0.88	87.28
71	1	0.44	88.11	0.44	87.72
72	4	1.76	89.87	1.75	89.47
73	3	1.32	91.19	1.32	90.79
74	2	0.88	92.07	0.88	91.67
75	4	1.76	93.83	1.75	93.42
76	3	1.32	95.15	1.32	94.74
77	1	0.44	95.59	0.44	95.18
78	1	0.44	96.04	0.44	95.61
79	1	0.44	96.48	0.44	96.05
80	1	0.44	96.92	0.44	96.49
81	1	0.44	97.36	0.44	96.93
82	2	0.88	98.24	0.88	97.81
83	1	0.44	98.68	0.44	98.25
84	2	0.88	99.56	0.88	99.12
88	1	0.44	100.00	0.44	99.56
<na></na>	1			0.44	100.00
Total	228	100.00	100.00	100.00	100.00

Save cleaned data

Check colnames before exporting final dataset

```
colnames(dat_clean)
```

```
[1] "ID" "sample"
[3] "startDate" "endDate"
[5] "dem.how_old_are_you_now.txt" "dem.day"
[7] "dem.month" "dem.year"
[9] "dem.dob" "dem.dob_age"
```

Save variables for exporting in clean dataset - note: DOB variables have been excluded as they contain identifiable information

```
dat_clean %>%
  select(all_of(export_variables)) %>%
  saveRDS(
    file = pasteO(ilovedata, "/data/latest_freeze/covidcns/age_covidcns_clean.rds")
    )
```

SAVED FOR INTERNAL USE ONLY (contains dob)

```
dat_clean %>%
  saveRDS(
    file = pasteO(ilovedata, "/data/latest_freeze/covidcns/age_covidcns_clean_INTERNAL_ONLY.rds")
    )
```