11

Sei
$$B = \{0,1\}$$
 und sei $V = \{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} : a,b,c \in B \}.$

Definieren Sie eine Addition und eine Multiplikation auf B und darauf aufbauend eine Vektoraddition $+:V\times V\to V$ und eine Skalarmultiplikation $\cdot:B\times V\to V$ und zeigen Sie, dass V mit diesen Operationen einen Vektorraum bildet.

Ich definiere die Operationen in B so (Addition als bitweises XOR und Multiplikation als bitweises AND):

\overline{a}	b	a+b	$a \cdot b$
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Die Vektoraddition + sei so definiert:

$$\begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \\ c_2 \end{pmatrix} = \begin{pmatrix} a_1 + a_2 \\ b_1 + b_2 \\ c_1 + c_2 \end{pmatrix}$$

Die Skalarmultiplikation \cdot sei so definiert:

$$\lambda \cdot \left(\begin{array}{c} a \\ b \\ c \end{array}\right) = \left(\begin{array}{c} \lambda \cdot a \\ \lambda \cdot b \\ \lambda \cdot c \end{array}\right)$$

1. zu zeigen: $(B,+,\cdot)$ ist ein Körper

1a. zu zeigen: (B,+) ist eine abelsche Gruppe

- Die Kommutatitvität ist gegeben, da die Zeilen 2 und 3 dieselben Ergebnisse liefern.
- Assoziativität bzgl. + ist gegeben:
 - -(0+0)+0=0=0+(0+0)
 - -(0+1)+0=1=0+(1+0)
 - -(0+1)+1=0=0+(1+1)
 - -(1+1)+1=1=1+(1+1)
 - Alle weiteren Kombinationen lassen sich mittels Kommutativität in die gelisteten umformen.
- Das neutrale Element bzgl. Addition ist 0
- Für jedes Element in B existiert ein inverses Element:
 - -0 für 0

- 1 für 1

1b. zu zeigen: (B^*, \cdot) ist eine abelsche Gruppe

- Kommutativität: $1 \cdot 1 = 1 = 1 \cdot 1 \checkmark$
- Assoziativität: $(1 \cdot 1) \cdot 1 = 1 = 1 \cdot (1 \cdot 1) \checkmark$
- neutrales Element ist 1
- inverses Element bzgl. 1 ist 1

1c. zu zeigen: Distributivgesetze bzgl. + und \cdot gelten

- $0 \cdot (0+0) = 0 = 0 \cdot 0 + 0 \cdot 0$
- $0 \cdot (0+1) = 0 = 0 \cdot 0 + 0 \cdot 0$
- $0 \cdot (1+1) = 0 = 0 \cdot 1 + 0 \cdot 1$
- $1 \cdot (0+0) = 0 = 1 \cdot 0 + 1 \cdot 0$
- $1 \cdot (0+1) = 1 = 1 \cdot 0 + 1 \cdot 1$
- $1 \cdot (1+1) = 0 = 1 \cdot 1 + 1 \cdot 1$
- Alle weiteren Kombinationen lassen sich mittels Kommutativität in die gelisteten umformen.

2. zu zeigen: die Vektorraum-Axiome sind erfüllt

V1 Abgeschlossenheit der Vektoraddition

gilt, da die Addition in B abgeschlossen ist

$$a_1 \in B \land a_2 \in B \Rightarrow a_1 + a_2 \in B$$

und die Vektoraddition feldweise in B geschieht

V2 Assoziativität der Vektoraddition

gilt, da die Addition in ${\cal B}$ assoziativ ist und die Vektoraddition feldweise in ${\cal B}$ durchgeführt wird

V3 neutrales Element bzgl. Vektoraddition

$$\left(\begin{array}{c} a \\ b \\ c \end{array}\right) + \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right) = \left(\begin{array}{c} a+0 \\ b+0 \\ c+0 \end{array}\right) = \left(\begin{array}{c} a \\ b \\ c \end{array}\right)$$

V4 inverses Element bzgl. Vektoraddition

Jeder Vektor ist das inverse Element bzgl. sich selbst: $\begin{pmatrix} a \\ b \\ c \end{pmatrix} + \begin{pmatrix} a \\ b \\ c \end{pmatrix} =$

$$\left(\begin{array}{c} 0\\0\\0\end{array}\right)$$

V5 Kommutativität bzgl. Vektoraddition

ist gegeben, da die Vektoraddition als feldweise Addition in B durchgeführt wird und Addition in B kommutativ ist.

V6 Abgeschlossenheit bzgl Skalarmultiplikation

Da die Skalarmultiplikation als feldweise Multiplikation in B durchgeführt wird und diese abgeschlossen ist, ist auch die Skalarmultiplikation abgeschlossen.

V7 und V8

Die Distributivgesetze bezüglich beider Operationen gelten, da die Operationen feldweise in B durchgeführt werden und dort die Distributivgesetze gelten.

V9

$$\lambda \cdot (\mu \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix}) = \lambda \cdot \begin{pmatrix} \mu \cdot a \\ \mu \cdot b \\ \mu \cdot c \end{pmatrix} = \begin{pmatrix} \lambda \cdot (\mu \cdot a) \\ \lambda \cdot (\mu \cdot b) \\ \lambda \cdot (\mu \cdot c) \end{pmatrix} = \begin{pmatrix} (\lambda \cdot \mu) \cdot a \\ (\lambda \cdot \mu) \cdot b \\ (\lambda \cdot \mu) \cdot c \end{pmatrix} = (\lambda \cdot \mu) \cdot (\lambda \cdot$$

V10

$$1 \cdot \left(\begin{array}{c} a \\ b \\ c \end{array}\right) = \left(\begin{array}{c} 1 \cdot a \\ 1 \cdot b \\ 1 \cdot c \end{array}\right) = \left(\begin{array}{c} a \\ b \\ c \end{array}\right)$$

Alle Voraussetzungen sind erfüllt und V bildet mit den entsprechenden Operationen einen Vektorraum.