PROJECT REPORT

SIGNS WITH SMART CONNECTIVITY FOR BETTER ROAD SAFETY

Team ID: PNT2022TMID39931

Team Size: 4

Team Leader: INDHU K

Team member: KOWSHALYA R

Team member : MALAVIKA M

Team member: VENNILA M

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture

5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7. CODING & SOLUTIONING

(Explain the features added in the project along with code)

- 7.1 Feature 1
- 7.2 Feature 2
- 7.3 Database Schema (if Applicable)

8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9. RESULTS

- 9.1 Performance Metrics
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX Source Code GitHub & Project Demo Link

1. INTRODUCTION

1.1PROJECT OVERVIEW

In this modern world with increased road facilities And advancements in transportation infrastructures, traffic is creating a challenge to day to day passengers . To Lead people, workers , pedestrians and drivers freely and safe travel along the roads under proper traffic regulations. These guide in crossing roads to all the passengers and pedestrians to travel through the sign board directions.

In order to take a well defined solution for the problem, the drivers should have the detailed knowledge about the type of issues and should have the lot experience to make actual decisions.

To over come the above problem, an application on IoT based signs with smart connectivity for better road safety using raspberry pi & openweatherapi to predict weather in earlier stage leading to help the people to slow down the speed, indicating signs using infra red sensors detecting the traffic density, alerting drivers of respected vehicles to avoid accidents, which helps to take diversions in other possible ways.

1.2 PURPOSE

This system recommends us the best suitable techniques to avoid accidents and mechanisms to be used. And also the system used to predict and provides the solution for the Violations of traffic rules, over speed driving, fatigue, drunk & drive, rash driving causes the people to lead death. It also effects the time, efficient work & increase the collision in

environment that problems are over come by using smart connectivity for better road safety.

2. LITERATURE SURVEY

2.1 Existing problem

In times of rainfall the roads get slippery leading To Accidents and death. There are few cases where Accidents occurring due to heavy traffic and violations of traffic rules.

2.2 References

Algorithms like, Min Max Fairness Algorithm, Additive Increase Multiplicative Decrease (Aimd) Algorithm, Principal Component Analysis. The first two Algorithms are based on TCP congestion and implementation of control rates.

2.3 Problem Statement Definition

- i) Kanna is an employee of a MNC who needs digitalized smart sign boards because in some cases when there are some road diversions due to heavy traffic or due to accidents.
 - ii) How to overcome accidents in traffic.

The purposed solution for the problem is, An automated system is introduced to identify different issues on the traffic by checking the symptoms shown on the roads. Internet Of Things's techniques are

used to identify the issues and suggest the precautions that can be taken for the prevention of accidents.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

Empathy Map Canvas

Gain insight and understanding on solving customer problems.

0

Build empathy and keep your focus on the user by putting yourself in their shoes.

3.2 Ideation & Brainstorming

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

3.3 Proposed Solution

S.N o.	Parameter	Description
	Dyahlam Ctatamant	The problem statement sine at
1.	Problem Statement	The problem statement aims at
	(Problem to be solved)	developing a accident prone
		recognition system using Internet Of Things . The accident prone
		recognition system is a way to tackle
		the problem which is caused by
		vehicles and unawareness of drivers
		on roads in traffic.
2.	Idea / Solution description	Developing an IoT predictive model to
		predict the accidents and to alert the
		drivers with a signal in either LED or
		sound buzzer in measuring distace to
		nearby hospitals.
3.	Novelty / Uniqueness	This system achieves to reduce the
		death rates occured due to accidents
		from vehicle to vehicle and prevents
		passengers and pedestrians from accidents.
4.	Social Impact / Customer	The minimum threshold distance of
4.	Satisfaction	the vechicles and passesngers can be
	Cationaction	recognized easily without any
		strenuous efforts. This reduces the
		chance of occurance of accidents.
5.	Business Model (Revenue	It is used in the detection of the
	Model)	distances from vehicles , giving an
		alarm signal prevents accidents.

6. | Scalability of the Solution

To attain higher performances in the domain of objects like vehicles or passengers detection due to its excellence in detection, accidents are reduced on large scale.

3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form Registration through Gmail Registration through LinkedIn
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP
FR-3	User Input	Input as program and sensor
FR-4	Processing of user input	Image acquisition, Voice note ,Image Segmentation
FR-5	Feature extraction of sensor	Data mapping, Machine learning
FR-6	Result of user input	Display the sensor density of traffic .

4.2 Non-Functional requirements

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The proposed system gives good results for detecting vechicls and passengers and prevent accidents.
NFR-2	Security	Any vechile user is allowed to use this application such that safety is ensured.
NFR-3	Reliability	It is frequently updated with the senses of passengers and vechicles. it is user friendly.
NFR-4	Performance	The proposed system is advantageous as it uses fewer features to sense and detect.
NFR-5	Availability	The system functionality and services are available for use with all operations.
NFR-6	Scalability	The website traffic limit must be scalable enough to support 2 lakhs users at a time

5. PROJECT DESIGN

5.1 Data Flow Diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2 Solution & Technical Architecture

5.3 User Stories

S.No	Component	Description	Technology
1.	User Interface	How user interacts with application e.g., Mobile Application	HTML, CSS, JavaScript
2.	Application Logic-1	Logic for a process in the application	Java / Python
3.	Application Logic-2	Logic for a process in the application	IBM Watson STT service
4.	Application Logic-3	Logic for a process in the application	IBM Watson Assistant
5.	Database	Data Type, Configurations etc.	MySQL, NoSQL, etc.
6.	Cloud Database	Database Service on AI in cloud	IBM DB2
7.	File Storage	File storage requirements	IBM Block Storage or Other Storage Service or local file system

8.	External API- 1	Purpose of External API used in the application	IBM Weather API, etc.
9.	Internet of Things Model	Purpose of IoT Model is for integrating the sensors with a user interface	IBM AI Platform
10.	Machine Learning Model	Purpose of Machine Learning Model	sensor detection Model

User Story / Task	Acceptance criteria	Release
As a user, I can register for the application by entering my email, password, and confirming	Access my account / dashboard	Sprint-1
my password.	Cat the weather of that	Cariat 1
As a user,I want to check the weather of that location	Get the weather of that location	Sprint-1
As a user,I ant to use IoT	Get the workdone without	Sprint-2
devices for automation	manually	
purpose		

As a user,I want to give some input to the devices for performing some action to complete the tasks very easily	Get the data workflow	Sprint-1
As a user,I want to deploy these application for public version	Useful for all domain users	Sprint-1
As a user,I want to integrate the applications with hardware	To precise for linear workflow	Sprint-3
As a user,I want to interact with the digital products	To interact with the users	Sprint-2
As a user,I can check the ability and accuracy of the model in obtaining the required information	Check the capability of the model	Sprint-2
As a user,I can retrieve the result data from the application for data storage for further uses	Download the result in the form of data	Sprint-3

Sprint	User Story / Task	Function	User Story
		al	Number

		Requirem	
		ent (Epic)	
Cariat 1	As a user I can register for		LICNI 1
Sprint-1	As a user, I can register for	Registrati	USN-1
	the application by entering	on	
	my email, password, and		
	confirming my password.		
Sprint-1	As a user,I want to check the	openweat	USN-2
	weather of that location	hermap	
Sprint-2	As a user,I ant to use IoT	Automati	USN-3
	devices for automation	on	
	purpose		
Sprint-1	As a user,I want to give some	Random	USN-4
	input to the devices for	data	
	performing some action to		
	complete the tasks very easily		
Sprint-1	As a user,I want to deploy	Cloud	USN-5
	these application for public	services	
	version		
Sprint-3	As a user,I want to integrate	Integrati	USN-6
	the applications with	on	
	hardware		
Sprint-2	As a user,I want to interact	Intraction	USN-7
	with the digital products		
Sprint-2	As a user,I can check the	Checking	USN-8
	ability and accuracy of the	accuracy	
	model in obtaining the		
	required information		
Sprint-3	As a user,I can retrieve the	Obtaining	USN-9
-	result data from the	the data	
	application for data storage		
	for further uses		

Technologies and components

S. No	Component	Description	Technology
1.	User Interface	How user	HTML, CSS,
	feature	interacts	JavaScript
		with	(Web
		application	application)
		e.g. Web	
		UI	
2.	Application Logic-1	Logic for a	Python
		process in the	
		application	
3.	Application Logic-2	Logic for a	IBM Watson
		process in the	STT service
		application	(Cloud)
4.	Application Logic-3	Logic for a	IBM Watson
		process in the	Assistant
		application	(Cloud)
5.	Database	Data Type,	MySQL
		Configurations	
		etc.	
6.	Cloud Database	Database	IBM DB2
		Service on	
		Cloud	
7.	File Storage	File storage	Local
		requirements	Filesystem

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requireme nt (Epic)	User Story/Task	Story Points	Priority
Sprint-1	Registrati on	As a user, I can register for the application by entering my email ,password, and confirming my password	2	High
Sprint-1	Confirmation	As a user, I will receive confirmation email once I have registered for the application	1	High
Sprint-2	Login	As a user, I can log into the application by entering email &password	2	High

Sprint-2	Interface	The		Medium
Spriit 2	micracc	user	1	Wicdiaiii
		interfa		
		ce		
		needs		
		to be		
		straight		
		forward		
		and		
		simple		
		to use		
Sprint-3				High
		Coding is a		J
	Coding	set of	2	
		instructions	_	
		used to		
		manipulate		
		information		
		so that a		
		certain input		
		results in a		
		particular		
		output.		

6.2 Sprint Delivery Schedule

Sprint	Total Story Poin ts	Durati on	Sprint Start Date	Sprint End Date(Plan ned)	Story Points Complete d(Planned End Date)	Sprint Release Date(Act ual)
Sprin	20	6Days	24Oct	29Oct		29Oct
t-1			2022	2022	20	2022
Sprin	20	6Days	31Oct	05Nov20	20	05Nov20
t-2			2022	22		22
Sprin	20	6Days	07Nov20	12Nov20		12Nov20
t-3			22	22	20	22
Sprin	20	6Days	14Nov20	19Nov20		19Nov20
t-4			22	22	20	22

6.3 Reports from JIRA

7. CODING & SOLUTIONING

7.1 Feature 1

7.2 Feature 2

8. TESTING

8.1 Test Cases

■ Dynamicboard mode 3

condition for speed limit near school

Your Prefered Speed

≡ Dynamic board mode 4

Hospital distances in meters

condition for horn

No Horn

9. RESULTS

9.1 Performance Metrics

- **1.** Functional Requirements
- 2. Non-Functional RequirementsImplementation result
- 3. System Implementation results
- **4.** Results of web application ImplementationResource utilization results
- 5. Foreground activities results
- **6.** Memory usage
- 7. Energy usage Background activities results.

We have presented a system, to alert the driver about the speed limits in specific areas and reduce the speed of the vehicles in sensitive public zones without any interference of the drivers where controls are taken automatically by the use of a wireless local area network.

10. ADVANTAGES

- 1. Smart road technology can assist in optimizing traffic flow and managing road condition.
- 2. Reducing the congestion and emissions.
- 3. It helps traffic light to operate in real-time condition.
- 4. Senses and monitors the traffic.
- 5. User friendly.
- 6. Energy Efficient.
- 7. Hands free convenience.
- 8. Enhanced security.
- 9. Save time with Automated Tasks.

DISADVANTAGES

- 1. Cost.
- 2. Internet Reliance.
- 3. Setup and Configuration.
- 4. More Technical Security Threats.
- 5. Different Protocols are used.
- 6. Additional wires and plugs.
- 7. Additional device on wifi is nedded.

11. CONCLUSION

On increasing and growing technologies on a large, coping up with time and balancing work are utmost challenges that any individual face, in addition traffic is targetting each one of the passenger , pedestrian , drivers and all vechicle holders with delay in traffic and some leading to serious deaths.

Using Internet Of Things ,we can change the average waiting time by monitoring the number of vehicles in a lane. The data will be sent to central system through internet, which will decide the timing for signal according to the dumped program. It also, suggests implementing congestion lights at previous intersections, so that drivers can change lanes at the situation of congestion. This is useful in emergencies and also, helps in reducing pollution and traffic congestion.

There are many end user are available for this project. Rather than using static sign boards it has high adaptability and significant protocols. The random values are used instead of imported from weather API .All other cloud credentials are created and verified with displaying them in Web UI. This project was completely IOT related and API also required. This improves the road safety even either small or large Transport system. The weather update are received from the wear API these values are imported into the python script . this code will execute the condition we used and sends the data to the cloud .The

node rerd deals with filtering the required data from cloud and display them in Web UI. After all these process the Web UI linked with mobile app we created to also display in your mobile. This will helps you to get information even after the boards had any technical issues.

12. FUTURE SCOPE

The Safe System goals and strategies focus on providing a road traffic system free from death and serious injury. The Safe System guides the planning, design, management, operation and use of the road traffic system so as to provide safety in spite of human fallibility.

One among the revised and defined systems of IoT are, The ultrasonic sensors will be placed to the vehicles, producing an alarm buzzing and or an LED light signal alerting drivers to be cautions on roads and with co passengers, pedestrians and other vehicles in identifying accidents areas and any sort of other clashes to take them to hopsitals nearby on roads to prevent deaths making a smart connectivity sign for better road safety.

- 1. The real-time sign upgradation helps people to survive in ubdrup road condition
- 2. It will helps people as well as the roads and transport system with traffic clearance

- 3. The user friendly interface achieved with these signage system
- 4. Due to its Implementation in various region can be achieved faster.

13. Appendix

13.1 Source code

```
#IBM Watson
IOT Platform
#pip install
wiotp-sdk
import
wiotp.sdk.devi
ce import time
import random
myConfig = {
  "identity": {
    "orgId": "mpt0iq",
    "typeId": "dynamic board",
    "deviceId":"888"
  },
  "auth": {
    "token": "0987654321"
  }
}
def myCommandCallback(cmd):
  print("Message received from IBM IoT Platform: %s" % cmd.data['command'])
  m=cmd.data['command']
client = wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
client.connect()
```

```
while True:
  temperature=random.randint(-20,125)
 vehicles count=random.randint(0,100)
  rest=random.randint(0,100)
  hospital distance=random.randint(0,500)
 school-time=random.randint(1,24)
  a="Your Preferred Speed"
 b="Speed Limit is 30 km\hr"
 c="Take Diversion"
 d="As Your Wish"
 x={'Condition for Speed':a}
 y={'Condition_for_Speed':b}
  k={'Condition_for_Speed_limit_School':a}
 l={'Condition_for_Speed_limit_School':b}
 z={'Condition for Direction':c}
 w={'Condition for Direction':d}
  p="No Horn"
 q={'caution':p}
 Z={'caution':d}
  distance1={'Distance_for_Hospital':hospital_distance}
  myData1={'Temperature':temperature}
  myData2={'Vehiclescount':vehiclescount}
  myData3={'Restaurant distance': rest}
  myData5={'Hospital_distance':hospital_distance}
  myData4={'Schooltime':schooltime}
client.publishEvent(eventId="status",msgFormat="json",data=myData1,qos=0,onPublish
=None) print("Published:%s",myData1)
  if temperature>=20:
    client.publishEvent(eventId="status",
msgFormat="json",data=x,qos=0,onPublish=None)
    print(x)
    print("\n")
  else:
    client.publishEvent(eventId="status",
msgFormat="json",data=y,qos=0,onPublish=None)
    print(y)
```

```
print("\n")
client.publishEvent(eventId="status",msgFormat="json",data=myData2,qos=0,onPublish
=None) print("Published:%s",myData2)
  if vehiclescount>=50:
client.publishEvent(eventId="status",msgFormat="json",data=z,qos=0,onPublish=None)
print(z)
print("\
n")
else:
client.publishEvent(eventId="status",msgFormat="json",data=w,qos=0,onPublish=None)
    print(w)
    print("\n")
client.publishEvent(eventId="status",msgFormat="json",data=myData4,qos=0,onPublish
=None)
  print("Published:%s",myData4)
 if 8<=schooltime and schooltime<=10 or 15<=schooltime and schooltime<=18:
client.publishEvent(eventId="status",msgFormat="json",data=I,qos=0,onPublish=None)
    print(I)
    print("\n")
 else:
client.publishEvent(eventId="status",msgFormat="json",data=k,qos=0,onPublish=None)
    print(k)
    print("\n")
client.publishEvent(eventId="status",msgFormat="json",data=myData5,qos=0,onPublish
=None)
```

```
if 0<=hospital_distance and hospital_distance<=200:
client.publishEvent(eventId="status",msgFormat="json",data=distance1,qos=0,onPublish
            print(distance1)
=None)
client.publishEvent(eventId="status",msgFormat="json",data=q,qos=0,onPublish=None)
    print(q)
print("\
n")
else:
client.publishEvent(eventId="status",msgFormat="json",data=distance1,qos=0,onPublish
=None)
           print(distance1)
client.publishEvent(eventId="status",msgFormat="json",data=Z,qos=0,onPublish=None)
   print(Z)
   print("\n")
client.publishEvent(eventId="status",msgFormat="json",data=myData3,qos=0,onPublish
          print("Published:%s",myData3)
=None)
  client.commandCallback=myCommandCallback
  time.sleep(10)
client.disconnect()
```

13.2 GIT REPO AND DEMO LINK

GIT REPO

https://github.com/IBM-EPBL/IBM-Project-25436-1659963418

DEMO LINK

https://photos.app.goo.gl/cGdiCmwhSR6Uvy24A