

فن تعليم الآلة

القسم الثاني : التوقع

مثال لأكثر من متغير

تعليم الآلة

محتويات الكورس:

```
• القسم الأول : مقدمة
```

• القسم الثاني : التوقع Regression

• القسم الثالث : التقسيم Classification

• القسم الرابع : الشبكات العصبية NN

• القسم الخامس : نظام الدعم الألي SVM

• القسم السادس : التعليم بدون اشراف Unsupervised ML

• القسم السابع : مواضيع هامة (القيم الشاذة, نظام الترشيحات . . .)

Multiple features (variables).

Size (fee	t ²) Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
*1	×2	×3	*4	9	
2104	5	1	45	460 7	
1416	3	2	40	232	M= 47
1534	3	2	30	315	
852	2	1	36	178	
Notation	*	1	1	,	

Notation:

- $\rightarrow n$ = number of features
 - $x^{(i)}$ = input (features) of i^{th} training example.
 - $x_i^{(i)}$ = value of feature j in i^{th} training example.

التعامل مع اكثر من بعد:

- فنري ان سعر البيت (Y) يتاثر
 بعدد من العوامل (Xs
 - عدد الاكسات نسمیه n, بینما
 عدد الصفوف لاز ال m

سعر السيارات:

X ₁	X ₂	X ₃	Y
العمر	القدرة	الاسطوانات	السعر
5	20	6	12
5	35	6	14
6	38	8	16
7	40	8	15
7	46	10	20

- عدد السيارات 5 (m)
- المعلومات عن كل سيارة (features n) 3

• وقتها الفنكشن, هتكون متعددة الحدود زي كدة,

X ₁	X ₂	X ₃	Y
العمر	القدرة	الاسطوانات	السعر
5	20	6	114
5	35	6	120
6	38	8	123
7	40	8	121
7	46	10	135

X ₁	X ₂	X ₃	Y
العمر	القدرة	الاسطوانات	السعر
5	20	6	114
5	35	6	120
6	38	8	123
7	40	8	121
7	46	10	135

X ₁	X_2
1	1
5	5
20	35
6	6

X ₁	X ₂	X ₃	Y
العمر	القدرة	الاسطوانات	السعر
5	20	6	114
5	35	6	120
6	38	8	123
7	40	8	121
7	46	10	135

X ₁	X_2	X_3
1	1	1
5	5	6
20	35	38
6	6	8

X ₁	X ₂	X ₃	Y
العمر	القدرة	الاسطوائات	السعر
5	20	6	114
5	35	6	120
6	38	8	123
7	40	8	121
7	46	10	135

X ₁	X ₂	X ₃
1 5 20 6	1 5 35 6	1 6 38 8
X ₄		
1 7 40		

X ₁	X ₂	X ₃	Y
العمر	القدرة	الاسطوانات	السعر
5	20	6	114
5	35	6	120
6	38	8	123
7	40	8	121
7	46	10	135

X ₁	X_2	X_3
1 5 20 6	1 5 35 6	1 6 38 8
X ₄	X ₅	
1 7 40 8	1 7 46 10	

X ₁	X ₂	X ₃	Y
العمر	القدرة	الاسطوانات	السعر
5	20	6	114
5	35	6	120
6	38	8	123
7	40	8	121
7	46	10	135

X_1	X_2	X_3	
1	1	1	
5 20	5 35	6 38	Theta
6	6	8	Theta0
			Theta1
X_4	X_5		Theta2
			Theta3
1	1		
7	7		
40	46		
8	10		

X ₁	X ₂	X ₃	Y
العمر	القدرة	الاسطوانات	السعر
5	20	6	114
5	35	6	120
6	38	8	123
7	40	8	121
7	46	10	135

X_1	X_2	X_3		
1	1	1		
5 20	5 35	6 38	Theta	
6	6	8	Theta0	5
			Theta1	2
X_{A}	X_{5}		Theta2	3
7			Theta3	6
1	1			
7	7			
40	46			
8	10			

 لیه بنعمل ترانزبوس ؟ لان الثيتا و الاكس اصلا هما فيكتور (عمود واحد في كذا صف), فلازم اعمل ترانزبوس لواحد فيهم و اضربه في التاني, عشان تكون المصفوفة الاولى صف واحد في 5 عواميد مثلا, والتانية زي ما هي 5 صفوف في عمود واحد, يتضربو يبقو رقم واحد بس

$$h_{\theta}(x) = \underline{\theta_0} + \underline{\theta_1}x_1 + \underline{\theta_2}x_2 + \dots + \underline{\theta_n}x_n$$

$$h(x) = (Theta)^T X$$

```
h(x) = (Theta)^T X
(Theta)^T = 5^T = (5 2 3 6)
2
3
6
```

$$h(x) = (Theta)^T X$$

$$(Theta)^T = 5^T = (5 2 3 6)$$

$$2$$

$$3$$

$$6$$

$$X_1 = 5$$

$$2$$

$$6$$

$$h(x) = (Theta)^T X$$

$$(Theta)^T = 5^T = (5 2 3 6)$$

$$2$$

$$3$$

$$6$$

$$X_1 = 5$$

$$2$$

$$6$$

$$h(x)_1 = (5 \ 2 \ 3 \ 6) = 5*1 + 2*5 + 3*20 + 6*6 = 111$$

$$h(x) = (Theta)^T X$$

$$(Theta)^T = 5^T = (5 2 3 6)$$

$$2$$

$$3$$

$$6$$

$$X_1 = 5$$

$$2$$

$$6$$

$$h(x)_1 = 111$$
 $h(x)_2 = 119$ $h(x)_3 = 127$ $h(x)_4 = 122$ $h(x)_5 = 140$

• القانون الجديد

```
repeat until convergence: {
	heta_0 := 	heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_	heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}
	heta_1 := 	heta_1 - lpha rac{1}{m} \sum_{i=1}^m (h_	heta(x^{(i)}) - y^{(i)}) \cdot x_1^{(i)}
	heta_2 := 	heta_2 - lpha rac{1}{m} \sum_{i=1}^m (h_	heta(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)}
```

$$heta_0 := heta_0 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

Suppose Alpha =
$$0.01$$
 m = 5

$$heta_0 := heta_0 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

Suppose Alpha = 0.01 m = 5

Theta 0 = 5

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

Suppose Alpha =
$$0.01$$
 m = 5

Theta
$$0 = \frac{5}{5} - (0.01/5)$$

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

Suppose Alpha = 0.01 m = 5

Theta $0 = \frac{5}{100} - (0.01/5) [(111-114) + (119-120) + (127-123) + (122-121) + (140-135)]$

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

Theta
$$0 = \frac{5}{100} - (0.01/5) [(111-114) + (119-120) + (127-123) + (122-121) + (140-135) (1)] = \frac{1}{100}$$

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

Theta
$$0 = \frac{5}{100} - (0.01/5) [(111-114) + (119-120) + (127-123) + (122-121) + (140-135) (1)] = \frac{4.9}{100}$$

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

Theta
$$0 = \frac{5}{100} - (0.01/5) [(111-114) + (119-120) + (127-123) + (122-121) + (140-135) (1)] = \frac{4.9}{100}$$

Theta
$$1 = \frac{2}{2} - (0.01/5) [(111-114) + (119-120) + (127-123) + (122-121) + (140-135) (5)] = \frac{2.6}{2.6}$$

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

Theta
$$0 = \frac{5}{100} - (0.01/5) [(111-114) + (119-120) + (127-123) + (122-121) + (140-135) (1)] = \frac{4.9}{100}$$

Theta
$$1 = \frac{2}{2} - (0.01/5) [(111-114) + (119-120) + (127-123) + (122-121) + (140-135) (5)] = \frac{2.6}{2.6}$$

Theta
$$2 = \frac{3}{3} - (0.01/5) [(111-114) + (119-120) + (127-123) + (122-121) + (140-135) (20)] = \frac{3.9}{1.0}$$

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

Theta
$$0 = \frac{5}{5} - (0.01/5) [(111-114) + (119-120) + (127-123) + (122-121) + (140-135) (1)] = \frac{4.9}{5}$$

Theta 1 =
$$\frac{2}{2}$$
 - (0.01/5) [(111-114) + (119-120) + (127-123)+ (122-121)+ (140-135) (5)] = $\frac{2.6}{1}$

Theta
$$2 = \frac{3}{3} - (0.01/5) [(111-114) + (119-120) + (127-123) + (122-121) + (140-135) (20)] = \frac{3.9}{1.0}$$

Theta
$$3 = \frac{6}{100} - (0.01/5) [(111-114) + (119-120) + (127-123) + (122-121) + (140-135) (6)] = \frac{6.4}{100}$$

$$heta_0 := heta_0 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

Suppose Alpha = 0.01 m = 5

Theta 0 = 4.9

Theta 1 = 2.6

Theta 2 = 3.9

Theta 3 = 6.4

$$heta_0 := heta_0 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

Theta
$$0 = \frac{4.9}{1.0}$$
 Theta $0 = \frac{4.7}{1.0}$

Theta
$$1 = \frac{2.6}{1.00}$$

Theta
$$2 = \frac{3.9}{1.00}$$

Theta
$$3 = \frac{6.4}{1}$$
 Theta $3 = \frac{6.36}{1}$

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

Theta
$$0 = \frac{4.9}{1.00}$$
 Theta $0 = \frac{4.7}{1.00}$ Theta $0 = \frac{4.68}{1.00}$

Theta
$$1 = \frac{2.6}{1}$$
 Theta $1 = \frac{2.55}{1}$ Theta $1 = \frac{2.542}{1}$

Theta
$$2 = \frac{3.9}{1.00}$$
 Theta $2 = \frac{3.87}{1.00}$ Theta $2 = \frac{3.863}{1.00}$

Theta
$$3 = \frac{6.4}{100}$$
 Theta $3 = \frac{6.36}{100}$ Theta $3 = \frac{6.357}{100}$

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

Theta
$$0 = \frac{4.9}{4.9}$$
 Theta $0 = \frac{4.7}{4.6236}$ Theta $0 = \frac{4.6236}{4.6236}$

Theta
$$2 = \frac{3.9}{1.00}$$
 Theta $2 = \frac{3.87}{1.00}$ Theta $2 = \frac{3.8605}{1.00}$