Effort estimation

SQZ Accuracy of estimation

Question: How many products are completed

with a <25% variance from the

expected effort?

Source: study conduced by University of Osnabrück in the late 1980ies

Determination of effort during project runtime

SQZ Determination of effort – estimation only?

Estimation is necessary only if it is not possible to measure or calculate!

Basic effort estimation methods

Analogy method

Effort estimation based on similar projects (evaluation of differences)

Multiplier method

Breakdown and classification in uniform parts;
 estimation for only a few parts, followed by multiplication

Weighting method

 Identifying and assessing effort drivers; calculated by means of a formula

Percentage method

Detailed estimation of a phase; extrapolation

Function Point method

How to make an estimation

How to proceed Results **Revised effort** Base document **Estimation report** should detail: Estimation team Reviewer(s) Project estimation as methodical as possible Estimation basis (base documents) Estimation result Estimation method Check of the estimation by means of second, Assumptions/preconditions for independent estimation estimation Identified risks **Revised effort Estimation report**

Siegfried Zopf

Effort estimation

Effort estimation by means of a function point analysis

Basic principles

- SW considered from outside (blackbox), from the user's point of view
- Statistical mean of very simple and highly complex elements
- Simple external interfaces simple processing
 Complex external interfaces complex processing

SQZ What is a function point analysis?

Siegfried Zopf

Effort estimation

SQZ Steps of Function Point Analysis

- New development from scratch or enhancement?
- Define application bounderies
- Evaluate data bases internal, external
- Evaluate Functions input, output, inquiry
- Evaluate 14 factors of influence

Function Points are a measure for the functional scope

SQZ Calculation of Function Points

Function typ			
	Low	Average	High
complexity			
Internal Logical File	7	10	15
ILF			
External Interface File	5	7	10
EIF			
External Input	3	4	6
EI			
External Output	4	5	7
EO			
External Inquiry	3	4	6
EQ			

raw Function Points

SQZ From function points to effort figures

Transformation table (experience from previous projects)

Influencing factors

- ☐ Stability of requirements
- □ Experience of the team
- ☐Productivity of the team
- ☐ Tools and methods
- **□**Reuse
- ☐Special risks

Effort estimation meeting - project-spec.
correction factors

Estimated effort for the project

How to estimate effort by means of a function point analysis

- FP analysis provides interview synergy of project and method know-how between
 - FP expert from the Support Center, and
 - know-how owner from the project
- Organization-unit specific transformation table as basis
- Analysis and consideration of project-specific effort and risk factors:
 - Influencing factors
 - Contents of effort (effort distribution)

How to estimate effort by means of an expert estimation (meeting)

- "Bottom-up" procedure for effort estimation
- Structuring based on project structure (down to work package granularity – depending on implementation)
- Carried out by a team of experts, with the help of a moderator
- Recommended as an alternative to other methods, such as a function point analysis
- Ensures methodological approach and recording of estimations

Results:

- Estimated effort per work package
- Effort for PM, QM, CM
- Total effort
- List of unresolved issues
- List of assumptions made
- List of risks discovered

Siegfried Zopf

SQZ Load factor

Addition to the effort of work packages for PM, QA, CM

Pressure to reduce load factor What is the optimal load factor?

SQZ Pitfalls and tips (1)

Pitfall

- Almost everybody overestimates his own capacities.
- People will often exert pressure upon those making the estimation.

Estimations made by others tend to be accepted without questioning (no verification, no weighting).

Tip

- ⇒ What will it cost if somebody else does it? Take account of HR assignments (and dependencies)
- => Use a tried and tested method, rely on experts from outside the project, provide accurate documentation of the estimation process Function point analysis
- => Verification of estimation through established method Function point analysis Beware of analogies (take account of circumstances and constraints)!

SQZ Pitfalls and tips (2)

Pitfall

- An estimation is made where it would be possible to make a calculation (e.g. percentage method after the end of a phase).
- Frequently, off-the-cuff estimations are given in personal contact with the client.
- If estimated values are very high, people do not try to verify them, but simply decrease them.
- Often nobody knows where an estimated value came from.

Tip

- =>Use adequate methods; function point analysis + 2nd method (e.g.estimation based on experience or percentage method)
- =>Communicate only verified estimations

- => Verify the estimate reduce the requirements, if possible; "design to cost" on the basis of FP work breakdown
- =>Estimation report (stored in CM system)