

开源共享

携手共进

深圳普中科技有限公司

官方网站: www.prechin.cn

技术论坛: www.prechin.net

技术 QQ: 2489019400

咨询电话: 0755-61139052

ESP8266-WIFI 模块使用教程

1.1 ESP8266 简介

ESP8266 是一个完整且成体系的 Wi-Fi 网络解决方案,能够搭载软件应用,或通过另一个应处理器卸载所有 Wi-Fi 网络功能。我们使用的 ESP8266 是串口型 WIFI,速度比较低,不能用来传输图像或者视频这些大容量的数据,主要应用于数据量传输比较少的场合,比如温度信息,一些传感器的开关量等。当然传输的数据量虽说少,但也能一次传输几千字节的数据,而且通信非常稳定,可以满足大多数应用。

1.2 ESP8266-WIFI 模块介绍

安信可推出的 ESP8266-WIFI 模块有很多,它们的使用方法都大同小异,我们普中 STM32 开发板预留的了一个 ESP8266-WIFI 模块接口,大家只要将此模块插入开发板接口即可做此实验,无需额外连线。我们普中推出了1款 WIFI 模块,如图:

与通用的 WIFI 模块一样使用,这里我们就以通用的 WIFI 模块介绍。如图 1.2.1 所示:

图 1.2.1 ESP8266-WIFI 模块

WIFI 模块插在我们开发板上如图:

图 1.2.1 的 WIFI 模块尺寸图如图 1.2.2 所示:

图 1.2.2 ESP8266-WIFI 模块尺寸图

如果大家需要将此模块设计到自己产品内,可能需要参考这个尺寸值。

从 WIFI 模块实物图中可以看到, WIFI 模块提供了一个 2*4 的外接管脚, 让我们连接到自己的电路中控制, 这 8 个管脚两两间距是 2.54mm。管脚功能定义如下:

VCC: 3.3V 电源,开发板上丝印已经标了。

RST: ES8266 复位管脚,可做外部硬件复位使用。

CH_PD: 使能管脚,高电平有效。

UTXD: 串口发送管脚,与开发板上串口2的RXD相连。

URXD: 串口接收管脚,与开发板上串口2的TXD相连。

GPI00: GPI00 为高电平代表从 FLASH 启动, GPI00 为低电平代表进入系统升级状态,此时可以经过串口升级内部固件,这里我们不需要对此管脚操作。

GPI02: 此管脚为 ESP8266 引出的一个 IO 口,这里我们不需要对此管脚操作。GND: GND 管脚,开发板上丝印已经标了。

其实我们不需要使用这么多管脚,只需要使用 WIFI 模块的串口 UTXD、URXD 管脚、RST 和 CH PD 管脚即可,其他的不用管。

WSP8266-WIFI 模块接口与 STM32 芯片管脚连接图如下: (开发板内线路已连接好, 所以直接插上模块即可)

ESP8266-WIFI接口 STM32芯片管	
VCC	3. 3V
RST	PF6
CH_PD	PC7
UTXD	PB11(串口3 RXD)
URXD	PB10(串口3 TXD)
GPI00	PC0(未使用)
GPI02	PG9(未使用)
GND	GND

注意:由于 COM3 模块中使用的串口也是串口 3,开发板已经做好了切换短接片,如果在做 WIFI 实验例程的时候一定要将 COM3 模块旁边的短接片短接到 COM3M 端,这样串口 3 管脚就和 WIFI 模块串口相连。

ESP8266-WIFI 模块支持 STA/AP/STA+AP 三种工作模式。

STA 模式: ESP8266 模块通过路由器连接互联网, 手机或电脑通过互联网实现对设备的远程控制。

AP 模式: 默认模式 ATK_ESP8266 模块作为热点,实现手机或电脑直接与模块通信,实现局域网无线控制。

STA+AP 模式: 两种模式的共存模式,即可以通过互联网控制可实现无缝切换,方便操作。

ESP8266-WIFI 模块仅在单连接状态,支持透传模式 (TCP Client 透传和 UDP 透传)。本教程所讲解的就是采用 TCP Client 透传,其他的模式操作,大家可以在此基础上继续深入了解。

1.3 ESP8266 常用指令

ESP8266-WIFI 模块采用的是 AT 指令操作, ESP8266 的指令非常多, 但是我们不需要全部掌握, 只需把常用的了解即可, 遇到不会的还可以查看"\ESP8266-WIFI 参考资料" ESP8266 AT 指令集文档, 里面详细介绍了各个指令的功能和使用方法。下面就简单介绍下这些指令。

1.3.1 基础 AT 指令

基础 AT 指令如图 1.3.1 所示:

AT	测试指令
AT+RST	重启模块
AT+GMR	查看版本信息
ATE	开关回显功能
AT+RESTORE	恢复出厂设置
AT+UART	设置串口配置

图 1.3.1 基础 AT 指令表

(1) AT 测试指令

AT 测试 AT 启动		
执行指令 AT	响应	
	OK	
	参数说明	

(2) AT+RST

AT+RST 重启模块		
执行指令	响应	
AT+RST		
	OK	
	参数说明	

(3) AT+GMR

AT+GMR 查看版本信息	
执行指令	响应
AT+GMR	<at version="">AT 版本</at>
	<sdk version="">SDK 版本</sdk>
	<company>发布公司</company>
	<date>发布时间</date>
	OK

(4) ATE

ATE 开关回显功能	
执行指令	响应
ATE	ОК
	参数说明
	ATEO 关闭回显
	ATE1 开启回显

(5) AT+RESTORE

AT+RESTORE 恢复出厂设置功能	
执行指令	响应
AT+RESTORE	OK
说明	恢复出厂设置,将所有保存的参数恢复到出厂默认参
	数。
	注意:恢复出厂设置模块会重启

(6) AT+UART

AT+UART 设置串口配置	
执行指令	响应
AT+UART= <baudrate>,<databits>,<st< td=""><td>OK</td></st<></databits></baudrate>	OK
opbits>,	参数说明
<pre><parity>,<flow control=""></flow></parity></pre>	 baudrate> 串口波特率

	<databits> 数据位</databits>
	5: 5 bit 数据位
	6: 6 bit 数据位
	7: 7 bit 数据位
	8: 8 bit 数据位
	<stopbits> 停止位</stopbits>
	1: 1 bit 停止位
	2: 1.5 bit 停止位
	3: 2 bit 停止位
	<pre><parity> 校验位</parity></pre>
	0: None
	1: Odd
	2: EVEN
	<flow control=""> 流控</flow>
	0: 不使能流控
	1: 使能 RTS
	2: 使能 CTS
	3: 同时使能 RTS 和 CTS
说明	1. 本设置将保存在 Flash user parameter 区, 重新上
1元9月	电后 仍生效。
	2. 使用流控需要硬件支持流控, MTCK 为 UARTO
	CTS, MTDO 为 UARTO RTS
	3. 波特率支持范围: 110~921600
光세	5. 伙村平文时花园: 110~921000

1.3.2 WIFI 功能 AT 指令

WIFI 功能 AT 指令如图 1.3.2 所示:

指令	描述
AT+CWMODE	选择 WIFI 应用模式
AT+CWJAP	加入 AP
AT+CWLAP	列出当前可用 AP
AT+CWQAP	退出与 AP 的连接
AT+CWSAP	设置 AP 模式下的参数
AT+CWLIF	查看已接入设备的 IP
AT+CWDHCP	设置 DHCP 开关
AT+CWAUTOCONN	设置 STA 开机自动连接到 wifi
AT+CIPSTAMAC	设置 STA 的 MAC 地址
AT+CIPAPMAC	设置 AP 的 MAC 地址
AT+CIPSTA	设置 STA 的 IP 地址
AT+CIPAP	设置 AP 的 IP 地址
AT+CWSMARTSTART	启动智能连接
AT+CWSMARTSTOP	停止智能连接

图 1.3.2 WIFI 功能 AT 指令表

里面具体的指令大家可以查看"\ESP8266-WIFI 参考资料"ESP8266 AT 指令集文档,里面详细介绍了各个指令的功能和使用方法,这里就不截图出来。

1.4 ESP8266-WIFI 实验

了解了 WIFI 模块的 AT 指令格式及功能,下面我们就可以使用 STM32 串口与 WIFI 模块串口进行通信了。本教程我们要实现 STA 模式的 TCP Client 透传。简单理解就是配置 WIFI 模块为 STA 模式,让 WIFI 模块连接路由器或者笔记本发出的 wifi,然后在网络调试助手上设置好连接 WIFI 的 IP 地址和端口,这时 STM32 串口 3 发送的数据就可以经过 WIFI 模块传输到网络调试助手上显示,即实现了 TCP Client 透传。

这里需要注意: WIFI 模块默认的时候串口波特率是 115200,8 位数据,1 位停止位,因此我们在配置 STM32 串口的时候也要按这个模式配置串口,否则不能进行数据传输。将 COM3 模块旁的短接片短接到 COM3M 端。

1.4.1 ESP8266-WIFI 数据透传实验

本实验所实现的功能: 在局域网中, WIFI 模块配置为 STA 模式, 做客户端, 电 脑 做 服 务 端 , 客 户 端 往 服 务 端 不 断 发 数 据 , 每 间 隔 1 秒 发 送 一 串 "www. prechin. cn"字符, 发送的字节数为 14 字节。

要实现此功能程序,首先要初始化 ESP8266-WIFI 模块所用的 IO 口及时钟,其中包括串口配置,初始化后即进入 STA 模式透传,配置好 STA 模式,连接由电脑或路由器发出的 wifi 后,开始传输数据。

(1) 修改 WIFI 名称、密码及 IP

在下载程序到开发板前,需要看下你所在的局域网的 WIFI 名称和你电脑的 IP , 然后打开工程, 编译后找到 $sta_tcpclent_test.h$ 文件 (在 $sta_tcpclent_test.c$ 内),把里面的宏参数修改为你所在的局域网的 WIFI 名称和你电脑的 IP,代码如下:

#define User_ESP8266_SSID "PUZHONG" //要连接的热点的名称 #define User ESP8266_PWD "puzhong168" //要连接的热点的密码

#define User_ESP8266_TCPServer_IP "192.168.191.1" //要连接的服务器的 IP

#define User_ESP8266_TCPServer_PORT "8080" //要连接的服务器的端口

我们程序里面的这 4 个宏参数,是针对我们使用的局域网 WIFI 名称、密码和电脑 IP,如果你要实现与你的电脑进行透传,就需要将此部分进行修改。至于怎么查看你电脑 IP,请百度。

(2) 设置串口调试助手与网络调试助手

修改完这部分程序后,将工程编译下载到开发板内(记得要插上你的 WIFI 模块)。打开串口调试助手和网络调试助手,此软件在"\调试工具"目录下。将串口调试助手波特率设置为 115200,数据位 8,停止位 1,特别注意,由于此串口助手刚打开会把我们开发板一直拉到复位状态,所以需要勾选下 DTR,然后再取消掉,即可有信息返回到串口助手上,如图 1.4.1 所示:

图 1.4.1 串口调试助手设置

然后打开网络调试助手,选择协议类型为 TCP Server,本地 IP 地址和端口设置为前面 sta_tcpclent_test.h 文件内配置的 IP 地址及端口(要保证前面配置的是你的电脑 IP 地址和端口),选择开始监听,当串口助手上显示配置 ESP8266 OK,如下:

然后就会接收到由开发板串口2发送的"www.prechin.cn"信息,间隔时间为1秒。如果没有接收到,请重新复位下开发板,直到连接成功,接收到数据。

图 1.4.2 网络调试助手设置

具体代码可以打开"\ESP8266-WIFI 实验例程\ESP8266-WIFI 数据透传实验"查看。

1.4.2 ESP8266-WIFI 温度传输实验

其实这个实验和上一个实验基本上是一样的,只不过这个实验传输的是DS18B20 温度传感器检测的温度值,将温度数据通过 WIFI 模块发送到网络调试助手上进行显示(要将 DS18B20 温度传感器插到开发板上 DS18B20 接口处,注意方向)。具体的操作步骤通上,实验现象如图 1.4.3 所示:

图 1.4.3 温度数据显示

具体代码可以打开"\ESP8266-WIFI 实验例程\ESP8266-WIFI 温度传输实验" 查看。