

THERESA (TeraHErtz REadout Sampling)

A Terabit sampling system with a photonics time-stretch ADC

Olena Manzhura

Advisor: Prof. Anke-Susanne Müller

Scientific advisor: *Dr. Michele Caselle*

Motivation: Realizing Ultra-Fast Measurements

- Study of complex dynamics is crucial for understanding numerous physical processes (e.g. in beam diagnostics, laser dynamics, ...)
- Time scale of dynamics: 10 fs to hundreds of ps
- Long time continuous acquisition (1 s to several hours) required

A Terabit sampling system with a photonics time-stretch ADC – O.Manzhura

THERESA (TeraHErtz REadout SAmpling)

THERESA (TeraHErtz REadout SAmpling)

Photonic Time-Stretch Method

Photonic Time-Stretch Method

 $T_1 = 1 \text{ ps} \triangleq 1 \text{ THz} \rightarrow T_2 = 200 \text{ ps} \triangleq 5 \text{ GHz}$

Photonic Time-Stretch Method

A Terabit sampling system with a photonics time-stretch ADC – O.Manzhura

Thesis Objective

Design a DAQ system, operating in continuous acquisition mode, to sample the photodetector (PD) signal and overcome memory limitation

THERESA (TeraHErtz REadout SAmpling)

Sampling Concept: Programmable Time Delay

KAPTURE Concept

4 Samples

Looks like one ADC sampling at fast sample rate

Sampling Concept: Programmable Time Delay

KAPTURE v2 Concept

8 Samples

Sampling Concept: Programmable Time Delay

Characteristics of THERESA

Features	KAPTURE v2	THERESA
# Channels	8	16
Sampling rate per channel	1.8 GS/s per channel	2.5 GS/s per channel
Max. sampling rate (time-interleaved)	4 channels: up to 7.2 GS/s 8 channels: up to 14.4 GS/s	Up to 40 GS/s (16 x 2.5 GS/s)
Operation modes	 Single channel → 1sample/channel Multiple sampling points (up to 8) 	 Photonic Time-Stretch ADC (TS-ADC)
Expected time resolution	3 ps	125 fs (e.g.: stretch factor M=200)
Delay range	3 - 100 ps (→ not suitable for time- stretch)	0 - 11.2 ns (with 511 programmable steps)

Design Challenges in Front-End Card

- Wide bandwidth (Track-and-Hold-Amplifier(THA) limits to 18 GHz)
- Very low-noise conditions (THA limits to 60 dB SINAD¹, ENOB² ≈ 10 bits)
- HF PCB dielectric, metal layer stack-up, RF components/filters, impedance matching, etc.
- High-speed and time skew controlled transmission lines
- Slow-control and calibration circuits

¹ Signal-to-Noise-and-Distortion ratio

² Effective-Number-of-Bits

Karlsruher Institut für Technologie

PCB Design: Substrate & Metal Layer Stackup

PCB Design: Substrate & Metal Layer Stackup

A Terabit sampling system with a photonics time-stretch ADC - O.Manzhura

Clock Distribution PLL for ADC/DAC (up to 15 GHz)

A Terabit sampling system with a photonics time-stretch ADC - O.Manzhura

A Terabit sampling system with a photonics time-stretch ADC - O.Manzhura

PCB Design: Substrate & Metal Layer Stackup

Analog Component Placement (Bottom)

Analog Component Placement (Bottom)

Design: Low Noise

Design: Low Noise

Design: Low Noise

Design: Transmission Lines

$$Z_{0} = \frac{60.0\pi}{\sqrt{\epsilon_{\text{eff}}}} \frac{1.0}{\frac{K(k)}{K(k')} + \frac{K(k_{1})}{K(k'_{1})}}$$

$$k = W1/(2D1 + W1)$$

$$k' = \sqrt{1.0 - k^{2}}$$

$$k_{1} = \frac{\tanh(\frac{\pi W1}{4.0H1})}{\tanh(\frac{\pi(2D1 + W1)}{4.0H1})}$$

$$k'_{1} = \sqrt{1.0 - k_{1}^{2}}$$

$$\epsilon_{\text{eff}} = \frac{1.0 + \epsilon_{r} \frac{K(k')}{K(k)} \frac{K(k_{1})}{K(k'_{1})}}{\frac{1.0 + K(k')}{4.0K(k_{1})} \frac{K(k'_{1})}{K(k'_{1})}}$$

Design: Time Skew

Signal path lengths differ between THA₃ and THA₁₆

RF traces from Track-and-Hold to RF-ADC via RF-connector

Design: Time Skew

Signal path lengths differ between THA₃ and THA₁₆

Name A	Estimated length	Routed length	<u>Tolerance</u>
OUT TH 1 P	197.35682	197.35682	1
OUT TH 2 N	197.48659	197.48659	1
OUT TH 2 P	197.58522	197.58522	1
OUT TH 3 N	197.44362	197.44362	1
OUT TH 3 P	197.42569	197.42569	1
OUT TH 4 N	197.4959	197.4959	1
OUT TH 4 P	197.49939	197.49939	1

Final PCB Layout

THERESA (TeraHErtz REadout SAmpling)

Back-End Readout Card

Zynq US+ RFSoC

Clock connector

RFMC

Xilinx Evaluation Card (ZCU216)

Zynq UltraScale+ RF-SoC

- ARM CPU
- FPGA
- 14-bit, 2.5 GSPS RF-ADC (16x)
- 14-bit, 10 GSPS RF-DAC (16x)
- 112 Gbps optical connections

Ethernet RJ45

USB 3.0

Firmware and Integration with ARM Processor

Results

- Front-end sampling card successfully designed
- Currently under production (ETA mid-Sept. 2021)
- Continuous sampling up to 40 GS/s
- Evaluation of a novel readout RF-SoC system + Xilinx Design Tool (Vitis)
- Firmware and slow-control developed

Conclusions & Outlook

- THERESA is suitable for several applications at KARA
- DAQ infrastructure and firmware suitable for next generation of beam diagnostics instrumentations
- Selected FPGA is compatible with AI (i.e. Reinforcement-Learning) and interfacing with the BBB-feedback at KARA

- Characterization & integration with optical time-stretch setup in collaboration with Lille University
- Final commissioning at KARA

Thank you for your attention!

BACKUP

Photonic Time-Stretch Method

$$T_2 = M \cdot T_1$$

$$M = 1 + L2/L1$$

Example: L1 = 10m, L2 =
$$2km \rightarrow M=200$$

$$T_1 = 1 \text{ ps} \triangleq 1 \text{ THz} \rightarrow T_2 = 200 \text{ ps} \triangleq 5 \text{ GHz}$$

PhD thesis, Eléonore Roussel, Lille University

Table 117: RF-ADC Electrical Characteristics for ZU4xDR Devices

Parameter	Comments/Conditions ¹	Min	Typ ²	Max	Units					
Analog inputs										
Resolution			-	-	Bits					
Sample Rate	Devices using quad ADC tile channel		-	2.5	GS/s					
	Devices using dual ADC tile channel		-	5	GS/s					
Full-scale input	Input 100Ω on-die termination when DSA attenuation = 0	-	1	-	V _{PPD}					
	dB		1	-	dBm					
Maximum allowed input power	Input 100 Ω on-die termination when DSA attenuation \geq 15	-	4.8	-	V _{PPD}					
	dB		14.6	-	dBm					
Digital Attenuation Range		0	-	27	dB					
Attenuator step size		-	1	-	dB					
Auto attenuation	Automatically set when amplitude over-voltage is asserted		15	-	dB					
Analog input bandwidth	Full-power bandwidth (-3 dB)	-	6	-	GHz					
Return loss (R _L) ³	Up to 4 GHz	-	-12	-	dB					
	Up to 6 GHz	-	-10	-	dB					
Optimized common mode voltage range	Performance optimized range. AC and DC coupling modes ⁴	0.68	0.7	0.72	٧					
Maximum common mode voltage range	Available range before triggering over-voltage protection. AC and DC coupling modes ⁴	0.4	0.7	1	٧					
Crosstalk isolation between channels ⁵	F _{IN} = 0-4 GHz	-	-75	-	dBc					
	F _{IN} = 0-6 GHz	-	-70	-	dBc					

15.08.2021

second	Spurious free dynamic range excluding	F _{IN} = 240 MHz	72.0	84.0	ı	82.0	dBc
	second- and third-order harmonic distortion, and including OIS and GTIS	F _{IN} = 1.9 GHz	ı	83.0	ı	81.0	dBc
	spurs.	F _{IN} = 2.4 GHz	1	82.0	-	80.0	dBc
	F _{IN} = 3.5 GHz	72.0	80.0	-	79.0	dBc	
	F _{IN} = 3.5 GHz, CW at -10 dBFS	64.0	77.0	ı	74.0	dBc	
	F _{IN} = 3.5 GHz, CW at -20 dBFS	ı	66.0	ı	65.0	dBc	
	F _{IN} = 4.9 GHz	67.0	77.0	ı	76.0	dBc	
	F _{IN} = 4.9 GHz, CW at -10 dBFS	66.0	75.0	1	74.0	dBc	
		F _{IN} = 4.9 GHz, CW at -20 dBFS	ı	66.0	1	65.0	dBc
		F _{IN} = 5.9 GHz	66.0	75.0	ı	75.0	dBc
		F _{IN} = 5.9 GHz, CW at -10 dBFS	65.0	74.0	-	73.0	dBc
		F _{IN} = 5.9 GHz, CW at -20 dBFS	-	66.0	1	65.0	dBc

HMC5640BLC4B

DC - 18 GHz ULTRA-WIDEBAND, 4 GS/s TRACK-AND-HOLD AMPLIFIER

Features

18 GHz Input bandwidth (1 Vp-p Full Scale)

4 GS/s Maximum Sampling Rate

68 dB SFDR (4 GHz / 0.5 Vp-p Input, CLK = 1 GS/s)

57 dB SFDR (4 GHz / 1 Vp-p Input, CLK = 1 GS/s)

Direct-Coupled I/O

Ultra-Clean Output Waveforms, Minimal Glitching

>60 dB Hold Mode Feedthrough Rejection

1.05 mV RMS Hold Mode Output Noise

Single / Dual Rank Evaluation Boards are Available

A Terabit sampling system with a photonics time-stretch ADC – O.Manzhura

RoHS Compliant 4x4 mm SMT Package

Backup slides

Back-End Readout Card (2)

Backup slides

X19877-120220

Backup slides

- Given: fs pulse
- Task: Measuring the pulse
- How to measure such a short pulse?
 - Requires sampling rate in THz range
 - Problem

Idea/Solution: Photonic Time-Stretch

$$ext{ENOB} = rac{ ext{SINAD} - 1.76}{6.02}, \qquad ext{SINAD} = rac{P_{ ext{signal}} + P_{ ext{noise}} + P_{ ext{distortion}}}{P_{ ext{noise}} + P_{ ext{distortion}}}.$$