认识数据 Getting to Know the Data

01 数据对象与属性类型
Data Objects and Attribute Types

02 数据的基本统计描述
Basic Statistical Descriptions of Data

03 数据可视化
Data Visualization

04 度量数据的相似性和相异性
Measuring Similarity and Dissimilarity

数据对象Data Objects

- 数据集由数据对象组成。
- 一个数据对象代表一个**实体**(entity)。
 - 销售数据库: 顾客, 商品, 销售
 - 医疗数据库:患者
 - 大学数据库: 学生、教授、课程
- 数据对象又称为样本、实例、数据点、或对象。
- 数据对象用**属性**(attribute)描述。
- 若把数据集看作是数据库中的一张表,数据行对应数据对象;列对应属性。

属性Attributes

- **属性**(attribute)是一个数据字段,表示数据对象的一个特征。
 - 切: customer_ID, name, address
- 类型:
 - 标称属性(nominal)
 - 二元属性(binary)
 - 序数属性(ordinal)
 - 数值属性(numeric)
 - 区间标度属性(interval-scaled)
 - 比率标度属性(ratio-scaled)

属性类型Attribute Types

- 标称属性(nominal attribute)
 - 其值是一些符号或者事物的名称。
 - 头发颜色= {黑色,棕色,灰色,白色}
- 二元属性(binary attribute)
 - 又叫布尔(bool)属性
 - 是一种标称属性,只有两个状态: 0或1。
 - 对称的(symmetric): 两种状态具有同等价值,携带相同权重。
 - 如: 性别
 - 非对称的(asymmetric): 其状态的结果不是同样重要。
 - 如:艾滋病毒的阳性和阴性结果。
 - 对重要的结果用1编码,另一个用0编码。

属性类型Attribute Types

- 序数属性(ordinal attribute)
 - 其可能的值之间具有有意义的序或者秩评定(ranking), 但是相继值之间的差是未知的。
 - 成绩={优,良,中,差}
 - 其中心趋势可以用它的众数和中位数表示,但不能定义均值。

注意

标称、二元和序数属性都是定性的,即只描述对象的特征,不给出实际的大小。

属性类型Attribute Types

- 数值属性(numeric attribute)
 - 区间标度(interval-scaled)属性
 - 使用相等的单位尺度度量。
 - 值有序,可以评估值之间的差,不能评估倍数。
 - 没有绝对的零点。
 - 如:摄氏温度,华氏温度,日期
 - 比率标度(ratio-scaled)属性
 - 具有固定零点的数值属性。
 - 值有序,可以评估值之间的差,也可以说一个值是 另一个的倍数。
 - 如: 开式温温标(K), 重量, 高度, 速度

属性类型Attribute Types

- 属性的另一种分类方式
- 离散属性(discrete Attribute)
 - 具有有限或者无限可数个值。
 - •如:邮编、省份数目具有有限个值,customer_Id是无限可数的。
 - ■可以用或者不用整数表示。
- 连续属性(Continuous Attribute)
 - 属性值为实数。
 - 一般用浮点变量表示。

01 数据对象与属性类型
Data Objects and Attribute Types

02 数据的基本统计描述
Basic Statistical Descriptions of Data

03 数据可视化
Data Visualization

04 度量数据的相似性和相异性
Measuring Similarity and Dissimilarity

概述

- ■目的
 - 更好地识别数据的性质,把握数据全貌:中心趋势度量,数据散布
- 中心趋势度量(measures of central tendency)
 - ■均值、中位数、众数、中列数
- 数据的散布(dispersion of the data)
 - ■极差、四分位数极差、五数概括、盒图
- 数据可视化(graphic displays of basic statistical descriptions)
 - 分位数图、分位数-分位数图、直方图、散点图

中心趋势度量

均值 (mean)

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- <u>匀值 (mean)</u> n = n = n n =
- 截尾均值: 丢弃高低端极值

- 中位数(median)
 - ■有序数值的中间值
 - 数据集的中位数可以通过插值(interpolation)估算

$$median = L_1 + (\frac{N/2 - (\sum freq)_l}{freq_{median}}) \times width$$

 L_1 : 中位数区间下界

N: 整个数据集中值的个数

width: 中位数区间的宽度

 $(\Sigma freq)_l$: 低于中位数区间的所有区间

频率和

freq_{median}: 中位数区间的频率

练习

■ 设给定的数据集已经分组到区间,这些区间和对应频率如图。

计算该数据的近似中位数

■确定中位数所在组

$$(\sum freq)_l / 2 = 3194 / 2 = 1597$$

950 < 1597 < 950 + 1500

因此中位数在21~50组

■计算中位数

age	frequency
1 ~ 5	200
6 ~ 15	450
16 ~ 20	300
21 ~ 50	1500
51 ~ 80	700
81 ~ 110	44

$$median = 21 + \frac{3194/2 - 950}{1500} \times 29 = 33.508 \approx 34$$

中心趋势度量

- <u>众数(mode)</u>
 - ■数据集中出现频率最高的值
 - 最高频率对应多个峰值,分为单峰的 (unimodal), 双峰的(bimodal), 三峰的 (trimodal)

age	frequency
$\overline{1-5}$	200
6 - 15	450
16-20	300
21 - 50	1500
51 - 80	700
81-110	44

- 经验公式 (单峰): $median mode = 3 \times (mean median)$
- <u>中列数(midrange)</u>
 - ■最大数和最小数的平均值

在 度 大 学 CHONGQING UNIVERSITY

对称数据和非对称数据

对称、正倾斜、负倾斜数据的中位数、均值和众数

a)对称数据

b) 正倾斜数据

. c) 负倾斜数据

票劳苦 尚俭朴 勤学业 爱国家

度量数据的分散性

- 分位数,离群点、盒图
 - 四分位数 Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
 - 四位分数极差 Inter-quartile range: IQR = Q₃ Q₁
 - 五数概括 Five number summary: min, Q₁, median, Q₃, max
 - **盒图 Boxplot**: 分布直观表示,体现五数概括
 - **离群点 Outlier**: 第三个四分位数之上或者第一个四分位数之下至少1.5×IQR 的值
- 方差和标准差
 - 方差 Variance:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right) \right] \qquad \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

■ 标准差 Standard deviation 方差的平方根

盒图

- 五数概括
 - Minimum, Q1, Median, Q3, Maximum
- - 盒的端点在四分位数上,使得盒长 度为四分位数极差IQR
 - 中位数用盒内线标记
 - 盒外线延伸到最小和最大的观测值

3-D盒图

基本统计图

- **盒图 Boxplot**: 五数概括
- **直方图 Histogram**: x-axis 数值大小, y-axis 频率
- **分位数图 Quantile plot**: 观测单变量数据分布,x₁最小x_n最大
- **分位数-分位数图 Quantile-quantile (q-q) plot**: 两个观测集, 观察一个分布到另一个分布是否漂移
- 散点图 Scatter plot: 每个值视作一个坐标对,作为一个点画 在平面上

分位数图

- 显示给定属性所有数据
- 绘制分位数信息
- 增序排列,每个观测值 x_i 与一个百分数 f_i 配对,百分比0.5 对应中位数,0.75对应**Q**3

分位数-分位数图 (q-q图)

- 对着另一个对应的分位数,绘制一个单变量分布的分位数
- 使得用户可以观测从一个分布到另一个分布
- X,Y轴分别代表不同的观测集,存在两个观测集的值的个数不一致时,不是所有的值都被表示

散点图

- 确定两个数值变量之间看上去是否存在联系
- 观察双变量数据的有用的方法

正相关和负相关的散点图

(a) 正相关

(b) 负相关

不相关的散点图

01 数据对象与属性类型
Data Objects and Attribute Types

02 数据的基本统计描述
Basic Statistical Descriptions of Data

03 数据可视化
Data Visualization

D4 度量数据的相似性和相异性 Measuring Similarity and Dissimilarity

数据可视化概述

- 数据可视化意义
 - 通过将数据映射在图元(graphical primitives)上来表示数据,便于 深刻理解数据信息
 - 便于对大型数据集进行定性描述(qualitative overview)
 - 便于搜索数据间的模式(patterns),倾向(patterns),结构(structure),不规则性(structure)与联系性(relationships)
 - 为进一步的定量分析找到合适的区间与变量

■ 数据可视化的技术

- 基于像素
- 几何投影
- 基于图符
- 层次可视化
- 可视化复杂对象与关系

基于像素可视化技术

- 对于一个m维的数据集,在屏幕上创建m个窗口,每个窗口代表一个维度
- 记录的m个维值映射到这些窗口对应位置上的m个像素
- 像素的颜色反映相对应的值(corresponding values)

a) Income (b) Credit Limit

(c) transaction volume

(d) age

耐劳苦 向俭朴勤学业 爱国家

圆弓分割技术

(a) 在圆弓内表示一个数据记录

(b) 在圆弓内安排像素

圆弓分割技术——示例

对265,000个50维的数据点进行可视化

图片来源: Ankerst, Mihael, Daniel A. Keim, and Hans-Peter Kriegel. "Circle segments: A technique for visually exploring large multidimensional data sets." In *Visualization*. 1996.

耐劳苦 尚俭朴 勤学业 爱国家

几何投影可视化

- 基于像素:对理解多维空间数据分布帮助不大,例如:不能显示在多维子空间是否存在稠密区域
- 将数据几何化,帮助用户发现多维数据在高维空间上的投影
- 技术
 - 直接投影
 - 散点图或散点图矩阵
 - 平行坐标

在 度 大 学 CHONGQING UNIVERSITY

直接投影

Ribbons with Twists Based on Vorticity

散点图矩阵

Matrix of scatterplots (x-y-diagrams) of the k-dim. data [total of k*(k-1) scatterplots]

平行坐标

- 绘制n个等距离,相互平行的轴,每个代表一个维
- 数据记录用折线表示,与每个轴在对应相应维值的点上相交

有 放 大 学 CHONGQING UNIVERSITY

平行坐标

耐劳苦 尚俭朴勤学业 爱国家

基于图符可视化技术

- 将数据值可视化为有不同特征的图符
- 代表技术
 - ■切尔诺夫脸
 - ■人物线条画

基于图符可视化技术

- 用二维的脸表示18维的多维数据(赫尔曼·切尔诺夫)
- 切尔诺夫脸利用脸的眼耳口鼻等要素的不同形状,大小,位置和方向代表维的值。利用人的思维能力,识别面部特征的微小差异来理解许多面部特征,有助于数据的规律性和不规律性的可视化。

人物线条画

X和Y轴映射两 个维

用五段人物线 条画表示其他 维

人口 统计 数据

层次可视化技术

- 把所有维划分成子集(子空间),子空间按层次可 视化
- ■方法
 - 世界中的世界(Worlds-within-Worlds)
 - 树图(Tree-map)

世界中的世界(Worlds-within-Worlds)

- 世界中的世界(又称*n*-Vision)
- 对六维数据集 $(F, X_1, ..., X_5)$ 可视化
- 把 X_3 , X_4 , X_5 作为固定值,例如(c_3 , c_4 , c_5),对另外三维可视化,内世界的点位于外世界(c_3 , c_4 , c_5)处,外世界是另一个三维图

Tree-Map

■ 把层次数据显示成嵌套矩形的集合

Schneiderman@UMD: Tree-Map of a File System

Schneiderman@UMD: Tree-Map to support large data sets of a million items

可视化复杂对象和关系

- 非数值数据的可视化: 文本与社交网络
- 标签云: 用户产生标签的统计量可视化
- 除了文本数据,还有用 于可视化社交网络关系 的技术

耐劳苦 尚俭朴勤学业 爱国家

01 数据对象与属性类型
Data Objects and Attribute Types

02 数据的基本统计描述
Basic Statistical Descriptions of Data

03 数据可视化
Data Visualization

度量数据的相似性和相异性Measuring Similarity and Dissimilarity

概述

- 相似性(Similarity)
 - 两个对象相似程度的数量表示
 - 数值越高表明相似性越大
 - 通常取值范围为[0,1]
- 相异性(Dissimilarity)(例如距离)
 - 两个对象不相似程度的数量表示
 - 数值越低表明相似性越大
 - 相异性的最小值通常为0
 - 相异性的最大值(上限)是不同的
- 邻近性(Proximity):相似性和相异性都称为邻近性

数据矩阵与相异性矩阵

- 数据矩阵-对象-属性结构
 - 行-对象: n个对象
 - 列-属性: p个属性
 - 二模矩阵(Two modes)
- 相异性矩阵

(Dissimilarity matrix)

- n个对象两两之间的邻 近度
- ■对称矩阵
- 単模(Single mode)

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

其中d(i,j)表示对象i与对象j之间的相异性(距离)

耐 劳 勤 学

标称属性的邻近性度量

- 标称属性(Nominal Attributes):可以取两个或多个状态
 - 例如: 颜色属性,可以取值为: 红、黄、蓝、绿
- ■两个对象i和j之间的相异性使用不匹配率来表示

$$d(i,j) = \frac{p-m}{p}$$

■ *m*: 对象匹配数目, *p*: 对象的属性总数

表2.2 包含混合类型属性的样本数据表

对象标识符	Test-1 (标称的)	Test-2 (序数的)	Test-3 (数值的)
1	A	优秀	45
2	В	一般	22
3	С	好	64
4	A	优秀	28

只对标称属性test1计算相异性, 因此p=1,当对象i和j匹配时, d(i,j)=0,当对象不同时d(i,j)=1

$$d(i,j) = \frac{p-m}{p}$$

耐劳苦 尚俭朴勤学业 爱国家

二元属性的邻近性度量

■ 对象*i* 和对象*j* 的频数表

对象
$$j$$

		•	• 0	
		1	0	sum
→ ! 	1	q	r	q+r
对象 i	0	8	t	s+t
	sum	q + s	r+t	p

■ 对称的二元相异性

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

■ 非对称的二元相异性(t被认为不重要,例如: 病理化验呈阴性) $d(i,j) = \frac{r+s}{q+r+s}$

二元属性的邻近性度量

■ Jaccard系数(非对称的二元相似性):

$$sim_{Jaccard}(i,j) = \frac{q}{q+r+s}$$

■ Note: Jaccard系数与"一致性"计算相同:

$$coherence(i,j) = \frac{\sup(i,j)}{\sup(i) + \sup(j) - \sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

二元属性的相异性 (例子)

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Name(姓名)是标称属性, Gender (性别)是对称二元属性
- 其他属性是非对称二元属性,假设只针对非对称二元属性进行相异性计算
- 值 Y 和 P 是 1, 值 N 是 0

数值属性的相异性:闵可夫斯基距离

■ 闵可夫斯基距离(Minkowski Distance): 计算距离的通用的公式:

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

$$i = (x_{i1}, x_{i2}, ..., x_{ip})$$
 和 $j = (x_{j1}, x_{j2}, ..., x_{jp})$ 是p维数据对象

- 距离需要满足的性质:
 - 非负性: d(i, j) > 0 if $i \neq j$, and d(i, i) = 0
 - 对称性: d(i, j) = d(j, i)
 - 三角不等式: $d(i, j) \le d(i, k) + d(k, j)$
- 满足上述条件的测度称为度量(metric)

闵可夫斯基距离的特殊表现形式

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

■ *h* = 1: 曼哈顿距离(或城市块距离Manhattan distance)

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

■ h=2: 欧几里德距离(用的最多的)

$$d(i,j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$$

- $h \to \infty$: 上确界距离(又叫切比雪夫Chebyshev距离)
- 找出两个对象的属性中最大的距离

$$d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{i,f} - x_{j,f}|^h \right)^{1/h} = \max_{f} |x_{i,f} - x_{j,f}|$$

例: 闵可夫斯基距离

point	attribute 1	attribute 2
x 1	1	2
x2	3	5
x 3	2	0
x4	4	5

曼哈顿距离 (L_1)

1117T III./C.PT			
х3	x4		

相异性矩阵

L	x1	x2	x 3	x4
x1	0			
x2	5	0		
х3	3	6	0	
x4	6	1	7	0

欧氏距离 (L₂)

L2	x 1	x2	x3	x4
x1	0			
x2	3.61	0		
x 3	2.24	5.1	0	
x4	4.24	1	5.39	0

上确界距离(切比雪夫距离)

L_{∞}	x1	x2	х3	x4
x1	0			
x2	3	0		
x 3	2	5	0	
耐発 治	公朴 3	1	5	0

勤学业 爱国家

序数属性的邻近性度量

- 序数属性: 值之间是有意义的序或者排位
- 假设f为n个对象的一组序数属性之一,第i个对象的f值为 x_{if} ,属性f有 M_f 个有序状态,表示排位 $r_{if} \in \left\{1, \cdots, M_f\right\}$
 - ■用下面公式实现数据规格化

$$z_{if} \in \frac{r_{if} - 1}{M_f - 1}$$

■ 相异性计算可以用数值属性的距离度量来计算

序数属性的邻近性度量

对象标识符	Test-1 (标称的)	Test-2 (序数的)	Test-3 (数值的)
1	Α	1.0	45
2	В	0.0	22
3	С	0.5	64
4	Α	1.0	28

- *M*=3, 把test2的每个值替换为它的排位,则4个对象将分别被赋值为3、1、2、3
- 实现规格化:将1映射为0.0,2映 射为0.5,3映射为1.0
- 使用欧几里德距离求相异性矩阵

■混合类型属性的相异性

- 数据库中可能包含各种属性类型
 - 标称的、对称二元的、非对称二元的、数值的或序数的
- 分别对每类数据进行数据挖掘分析,可能产生的结果不兼容
- 所有类型一起处理,公式为:

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- 如果 x_{if} 或者 x_{jf} 缺失,即对象i或者对象j没有属性f的度量值,或者 x_{if} = x_{jf} =0,并且f是非对称的二元属性,则 $\delta_{ii}^{(f)}$ =0
- 其他情况指示符 $\delta_{ii}^{(f)}$ = 1

混合类型属性的相异性

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- \blacksquare 若f是标称或二元的:
 - 如果 $x_{if} = x_{jf}$,则 $d_{ij}^{(f)} = 0$,否则 $d_{ij}^{(f)} = 1$
- 若f 是数值的:

$$d_{ij}^{(f)} = \frac{|x_{if} - x_{jf}|}{\max_{h} x_{hf} - \min_{h} x_{hf}}$$

- \blacksquare 其中h 遍取属性f 的所有非缺失对象
- *若f* 是序数的:
 - 计算r_{if} 和z_{if} , 并将z_{if}作为数值属性对待。

$$z_{if} \in \frac{r_{if} - 1}{M_f - 1}$$

混合类型属性的相异性

对象标识符	Test-1 (标称的)	Test-2 (序数的)	Test-3 (数值的)
1	Α	优秀	45
2	В	一般	22
3	С	好	64
4	Α	优秀	28

$$d_{ij}^{(f)} = \frac{|x_{if} - x_{jf}|}{\max_{h} x_{hf} - \min_{h} x_{hf}}$$

0. 55 0 0. 45 1. 00 0

T	est1			Т	est2			Test	3			
$\int 0$												
1	0			1.0	0			0.55	0			
1	1	0		0.5	0.5	0		0. 45	1.00	0		
0	1	1	0		1.0	0.5	0	0.40	0.14	0.86	0_	

对象标识符	Test-1 (标称的)	Test-2 (序数的)	Test-3 (数值的)
1	Α	优秀	45
2	В	一般	22
3	С	好	64
4	Α	优秀	28

对象1和对象4的最相似,对象1和对象2最不相似。

余弦相似性

■ 对文档中的关键词或短语的频度表:

Document	teamcoach		hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

■ 词频向量通常很长,稀疏的,使用余弦相似性作为度量:

 $= sim(x, y) = (x \bullet y) / ||x|| ||y||,$

其中: ●表示向量积, ||x||:向量d的长度

例: 余弦相似性

- $\bullet \quad \sin(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||,$
- 例: 求文档1与文档2的相似性

$$d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$

$$d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$$

$$d_1 \bullet d_2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1=25$$

$$||d_I|| = (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5}$$
 = 6.481

$$||d_2|| = (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)^{0.5} = 4.12$$

 $\sin(d1, d2) = 0.94$

练习

- 给定两个被元组(22, 1, 42, 10)和(20, 0, 36, 8)表示的对象
 - (a)计算这两个对象之间的欧几里得距离。

$$d(i,j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$$
$$= \sqrt{45} = 6.708$$

■ (b)计算这两个对象之间的曼哈顿距离。

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$
$$= |22 - 20| + |1 - 0| + |42 - 36| + |10 - 8| = 11$$

练习

- 给定两个被元组(22, 1, 42, 10)和(20, 0, 36, 8)表示的对象。
 - (c)使用q=3, 计算这两个对象之间的闵可夫斯基距离。

$$d(i,j) = \sqrt[3]{|x_{i1} - x_{j1}|^3 + |x_{i2} - x_{j2}|^3 + \dots + |x_{ip} - x_{jp}|^3}$$
$$= \sqrt[3]{8 + 1 + 216 + 8} = 6.15$$

■ (d)计算这两个对象之间的上确界距离

$$d(i, j) = \max_{f} |x_{if} - x_{jf}| = 6$$

