[03-60-231] Assignment 3

$\begin{array}{c} {\rm Stephen~Nusko} \\ 103693282 \end{array}$

October 28, 2013

1 Question 3.1

hence $A\subset B\wedge B\subseteq C\Rightarrow A\subset C$

1.1 Part b

Prove that if $A \subset B$, and $B \subseteq C$, then $A \subset C$ Proof: (Direct Proof) Suppose $A \subset B$ and $B \subseteq C$ We are to prove $A \subset C$ by definition this is equivalent to $A \subseteq C$ and $A \neq C$

1. First we prove $A \subseteq C$	
(a) $A \subseteq B \land A \neq B$	(assumption $A \subset B$), (definition of \subset)
(b) $A \subseteq B$	a, I2
(c) $A \subseteq C$	(assumpution $B \subseteq C$), b, Lemma 3.2.3 (iii)
$2. \therefore A \subseteq C$	
3. Now we prove $A \neq C$	
(a) $(\exists x)(x \in B \land x \notin A)$	(assumption $A \subset C$), Lemma 3.2.6
(b) $a \in B \land a \notin A$	a, EI, a is a new constant
(c) $a \in B$	b, I2
(d) $a \notin A \land a \in B$	b, E9
(e) $a \notin A$	d, I2
(f) $(\forall x)(x \in B \Rightarrow x \in C)$	(assumption $B \subseteq C$), (definition of \subseteq)
(g) $a \in B \Rightarrow a \in C$	f, UI
(h) $a \in C$	c, g, I3
(i) $a \notin A \land a \in C$	e, h, I6
$(j) (\exists x)(x \notin A \land x \in C)$	i, EQ
(k) $(\exists x)(x \notin A \land x \in C) \lor (\exists x)(x \in A \land x \notin C)$	j, I1
(1) $(\exists x)(x \in A \land x \notin C) \lor (\exists x)(x \notin A \land x \in C)$	k, E10
(m) $A \neq C$	l, (defintion of \neq)
$4. \therefore A \neq C$	
$5. \therefore A \subseteq C \land A \neq C$	2, 4, I6
$6. \therefore A \subset C$	5, (definition of \subset)

2 Question 4.5

2.1 Part c

Prove that $(\overline{A} \cap B \cap \overline{C} \cap D) \cup (A \cap \overline{C}) \cup (\overline{B} \cup \overline{C}) \cup (\overline{C} \cap \overline{D}) = \overline{C}$ Proof: (Bidirectional proof)

1. $\Leftrightarrow (\overline{A} \cap B \cap \overline{C} \cap D) \cup (A \cap \overline{C}) \cup (\overline{B} \cap \overline{C}) \cup (\overline{C} \cap \overline{D})$ 2. $\Leftrightarrow (\overline{A} \cap B \cap \overline{C} \cap D) \cup (\overline{C} \cap A) \cup (\overline{B} \cap \overline{C}) \cup (\overline{C} \cap \overline{D})$

1, Thm 4.2.2 (iii)

 $3. \ \Leftrightarrow (\overline{A} \cap B \cap \overline{C} \cap D) \cup (\overline{C} \cap A) \cup (\overline{C} \cap \overline{B}) \cup (\overline{C} \cap \overline{D})$

2, Thm 4.2.2 (iii)

 $4. \ \Leftrightarrow (\overline{A} \cap B \cap \overline{C} \cap D) \cup (\overline{C} \cap A) \cup (\overline{C} \cap (\overline{B} \cup \overline{D}))$

3, Thm 4.2.3 (ii)

 $5. \ \Leftrightarrow (\overline{A} \cap B \cap \overline{C} \cap D) \cup (\overline{C} \cap A) \cup (\overline{C} \cap (\overline{D} \cup \overline{B}))$

 $4, \ Thm \ 4.2.2 \ (iii)$

6. $\Leftrightarrow (\overline{A} \cap B \cap \overline{C} \cap D) \cup (\overline{C} \cap (A \cup (\overline{D} \cup \overline{B})))$

5, Thm 4.2.3 (ii)

7. $\Leftrightarrow (\overline{C} \cap D \cap \overline{A} \cap B) \cup (\overline{C} \cap ((A \cup \overline{D}) \cup \overline{B}))$

6, Thm 4.2.2 (iv)

8. $\Leftrightarrow (\overline{C} \cap (D \cap \overline{A} \cap B)) \cup (\overline{C} \cap (\overline{D} \cup A \cup \overline{B})))$

7, Thm 4.2.2 (iii)

9. $\Leftrightarrow (\overline{C} \cap (D \cap \overline{A} \cap B)) \cup (\overline{C} \cap (\overline{D} \cup \overline{\overline{A}} \cup \overline{B})))$

8, Thm 4.3.7 (i)

 $10. \, \Leftrightarrow (\overline{C} \cap (D \cap \overline{A} \cap B)) \cup (\overline{C} \cap \overline{(D \cap \overline{A} \cap B)})$

9, Thm 4.3.6 (ii)x2

11. $\Leftrightarrow (\overline{C} \cap ((D \cap \overline{A} \cap B)) \cup \overline{(D \cap \overline{A} \cap B)})$

10, Thm 4.2.3 (ii)

12. $\Leftrightarrow (\overline{C} \cap U)$

11, Thm 4.3.7 (iii)

13. $\Leftrightarrow \overline{C}$

12, definition of \cap and definition of U

Hence, $(\overline{A} \cap B \cap \overline{C} \cap D) \cup (A \cap \overline{C}) \cup (\overline{C} \cap \overline{D}) = \overline{C}$

3 Question 4.6

3.1 Part a

Let $X \cup Y = X$ for and set X, then $(\forall X)(X \cup Y = X)$. Prove that $Y = \emptyset$ Proof: (contridiction)

1. suppose $Y \neq \emptyset$, then $(\exists x)(x \in Y)$

assumption

 $2. x \in Y$

1, EI

3. $x \in Y \lor x \in \emptyset$

2, I1

 $4. \ x \in \emptyset \lor x \in Y$

3, E10

5. $x \in (\emptyset \cup Y)$

4, definition of \cup

6. $\emptyset \cup Y = \emptyset$

definition of sets X and Y, UI

7. $x \in \emptyset$

 $5, 6, sub_{=}$

8. false

7, definition of \emptyset

Hence if $X \cup Y = X$ for all set X, then $Y = \emptyset$

UI

(definition of \cup)

Question 4.8 4

 $4. \Leftrightarrow (x \in A \lor x \in B) \land x \notin C$

4.1 Part c

Prove that $(A \cup B) - C = (A - C) \cup (B - C)$ This is equivalent to proving $(\forall x)(x \in ((A \cup B) - C)) \Leftrightarrow (\forall x)(x \in ((A - C) \cup (B - C)))$ Proof: (Bidirectional proof) 1. $\Leftrightarrow (\forall x)(x \in ((A \cup B) - C))$ $2. \Leftrightarrow x \in ((A \cup B) - C)$ $3. \Leftrightarrow x \in (A \cup B) \land x \notin C$ (definition of -)

5. $\Leftrightarrow x \notin C \land (x \in A \lor x \in B)$ E9

6. \Leftrightarrow $(x \notin C \land x \in A) \lor (x \notin C \land x \in B)$ E13

7. \Leftrightarrow $(x \in A \land x \notin C) \lor (x \in B \land x \notin C)$ E10, E10

8. \Leftrightarrow $(x \in (A - C)) \lor (x \in (B - C))$ (definition of -), (definition of -)

9. $\Leftrightarrow x \in ((A-C) \cup (B-C))$ (definition of \cup)

10. $\Leftrightarrow (\forall x)(x \in ((A-C) \cup (B-C)))$ gen

Hence, $(A \cup B) - C = (A - C) \cup (B - C)$

Question 4.9 5

5.1Part a

Prove that $A \subseteq B \Leftrightarrow A \cap \overline{B} = \emptyset$ We must prove $(A \subseteq B \Rightarrow A \cap \overline{B}) \land (A \cap \overline{B} \Rightarrow A \subseteq B)$ First we will prove that $A \subseteq B \Rightarrow A \cap \overline{B} = \emptyset$ Proof: (contridiction) Assume $A \subseteq B$ and $A \cap \overline{B} \neq \emptyset$

1. $(\forall x)(x \in A \Rightarrow x \in B)$ assumption, (definition of \subseteq)

2. $(\exists x)(x \in A \cap \overline{B})$ assumption, (definition of $\neq \emptyset$)

3. $x \in A \Rightarrow x \in B$ 1, UI

4. $x \in A \cap \overline{B}$ 2, EI

5. $x \in A \land x \in \overline{B}$ 2, (definition of \cap)

6. $x \in A$ 5, I2

7. $x \in B$ 6, 3, I3

8. $x \in \overline{B} \land x \in A$ 4, E9

9. $x \in \overline{B}$ 7, I2

10. $x \in B \land x \in \overline{B}$ 7, 9, I6

11. false 10, E1 03-60-231 Stephen Nusko Assignment 3 103693282

```
\therefore A \subseteq B \Rightarrow A \cap \overline{B} = \emptyset
Now we prove A \cap \overline{B} = \emptyset \Rightarrow A \subseteq B
Proof: (Direct proof)
Assume A \cap \overline{B} = \emptyset
     1. \neg(\exists x)(x \in A \cap \overline{B})
                                                                                                                                                   assumption, (definition of = \emptyset)
     2. (\forall x) \neg (x \in A \cap \overline{B})
                                                                                                                                                                                                  1, FE8
     3. \neg (x \in A \cap x \in \overline{B})
                                                                                                                                                                                                     2, UI
     4. \neg (x \in A \land x \in \overline{B})
                                                                                                                                                                           3, (definition of \cap)
     5. \neg (x \in A) \lor x \notin \overline{B}
                                                                                                                                                                                                   4, E16
     6. \neg (x \in A) \lor x \in \overline{\overline{B}}
                                                                                                                                                                                 5, Lemma 4.3.5
     7. \neg (x \in A) \lor x \in B
                                                                                                                                                                                                            6,
     8. x \in A \Rightarrow x \in B
                                                                                                                                                                                                   7, E18
     9. (\forall x)(x \in A \Rightarrow x \in B)
                                                                                                                                                                                                   8, gen
   10. A \subseteq B
                                                                                                                                                                           9, (definition of \subseteq)
\therefore A \cap \overline{B} = \emptyset \Rightarrow A \subseteq B
\therefore (A \subseteq B \Rightarrow A \cap \overline{B} = \emptyset) \land (A \cap \overline{B} = \emptyset \Rightarrow A \subseteq B)
                                                                                                                                                                                                           I6
Hence, A \subseteq B \Leftrightarrow A \cap \overline{B} = \emptyset
```

6 Question 4.11

6.1 Part b

We are prove or disprove that $P(A \cup B) = P(A) \cup P(B)$ To disprove we must show either $P(A \cup B) \not\subseteq P(A) \cup P(B)$ or $P(A) \cup P(B) \not\subseteq P(A \cup B)$ We will show $P(A \cup B) \not\subseteq P(A) \cup P(B)$ Disproof: (by counter example) Let A = a, b, and B = 0, 1 $A \cup B = \{a, b, 0, 1\}$ $P(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$ $P(B) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{0\}, \{1\}, \{0, 1\}\}\}$ $P(A) \cup P(B) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{0\}, \{1\}, \{0, 1\}, \{a, 0\}, \{a, 1\}, \{b, 0\}, \{b, 1\}, \{a, b, 0\}, \{a, b, 1\}, \{0, 1, a\}, \{0, 1, b\}, \{a, b, 0, 1\}\}$ since $\{a, b, 0, 1\} \in P(A \cup B)$ and $\{a, b, 0, 1\} \notin P(A) \cup P(B)$ $\therefore P(A \cup B) \not\subseteq P(A) \cup P(B)$ Hence, $P(A \cup B) \ne (A) \cup P(B)$

7 Question 4.14

7.1 Part a

Prove $\bigcup_{x \in \{A\}} X = A$ We are to prove $(\forall x)(x \in \bigcup_{x \in \{A\}} X \Leftrightarrow x \in A)$ First we will prove $(\forall x)(x \in \bigcup_{x \in \{A\}} X \Rightarrow x \in A)$ Proof: (Direct proof)

1. Let
$$x \in \bigcup_{x \in \{A\}} X$$
,
then $(\exists X)(X \in \{A\} \land x \in X)$

assumption, UI, (defintion of [])

2. Since
$$A = A$$
, then $A \in \{A\}$

Lemma 3.2.1, (definition of $\{A\}$)

$$3. \ A \in \{A\} \land x \in A$$

1, 2, EI 3, E9

$$4. \ x \in A \land A \in \{A\}$$

5.
$$x \in A$$

4, I2

6.
$$(\forall x)(x \in A)$$

5, gen

$$\therefore (\forall x)(x \in \bigcup_{x \in \{A\}} X \Rightarrow x \in A)$$

Now we prove $(\forall x)(x \in A \Rightarrow x \in \bigcup_{x \in \{A\}} X)$ Proof: (Direct proof)

1. Let $x \in A$

Assumption, UI

2.
$$A \in \{A\}$$

Lemma 3.2.1, (definition of $\{A\}$)

3.
$$A \in \{A\} \land x \in A$$

2, 1, I6

4.
$$(\exists X)(X \in \{A\} \land x \in X)$$

3, EQ

$$5. \ x \in \bigcup_{x \in \{A\}} X$$

4, (definition of [])

6.
$$(\forall x)(x \in \bigcup_{x \in \{A\}} X)$$

5, gen

$$\therefore (\forall x)(x \in A \Rightarrow x \in \bigcup X)$$

$$\begin{split} & \therefore (\forall x)(x \in A \Rightarrow x \in \bigcup_{x \in \{A\}} X) \\ & \therefore (\forall x)((x \in \bigcup_{x \in \{A\}} X \Rightarrow x \in A) \land (x \in A \Rightarrow x \in \bigcup_{x \in \{A\}} X)) \\ & \therefore (\forall x)(x \in \bigcup_{x \in \{A\}} X \Leftrightarrow x \in A) \\ & \text{Hence, } \bigcup_{x \in \{A\}} X = A \end{split}$$

I6

$$\therefore (\forall x)(x \in \bigcup^{x \in \{A\}} X \Leftrightarrow x \in A)$$

E20

Hence,
$$\bigcup_{x \in \{A\}} X = A$$