Mondrian Conformal Prediction of Boosting for Swarm Behavior Recognition

Zepu Xi^{1,2}, Hongbo Chen¹, Xiaoqian Chen², Wen Yao²

¹School of Systems Science and Engineering
Sun Yat-sen University, China
²Defense Innovation Institute
Chinese Academy of Military Science, China
2022 5th IEEE International Conference on Unmanned Systems

October 27, 2022

Content

- Introduction
- 2 Machine Learning Swarm Behavior Classification
- Mondrian Conformal Prediction
- 4 Conclusions

Attributes	Interpretation
(xm, ym) (xAm, yAm) (xSm, ySm) (xCm, yCm) Class	m-th boid X-Y-axis as the separation vector

Attributes	Interpretation
(xm, ym) (xAm, yAm)	m-th boid X-Y-axis position vector m-th boid X-Y-axis as the alignment vector
(xSm, ySm) (xCm, yCm) Class	m-th boid X-Y-axis as the separation vector m-th boid X-Y-axis as the cohesion vector Binary class

Attributes	Interpretation					
(xm, ym)	m-th boid X-Y-axis position vector					
(xAm, yAm)	m-th boid X-Y-axis as the alignment vector					
(xSm, ySm)	m-th boid X-Y-axis as the separation vector					
(xCm, yCm)	m-th boid X-Y-axis as the cohesion vector					
Class	Binary class					

Attributes	Interpretation
(xm, ym)	m-th boid X-Y-axis position vector
(xAm, yAm)	m-th boid X-Y-axis as the alignment vector
(xSm, ySm)	m-th boid X-Y-axis as the separation vector
(xCm, yCm)	m-th boid X-Y-axis as the cohesion vector
Class	Binary class

Binary classification

- 1 Input X: position field of collective swarm agents.
- 2 Input y: classification label of the entire swarm behavior.

Learning-based algorithms

 \Rightarrow How to measure the uncertainty of the machine learning based algorithms?

Learning-based algorithms

 \Rightarrow How to measure the uncertainty of the machine learning based algorithms?

Mondrian Conformal Prediction

Mondrian Conformal Prediction

The Effects of Mondrian Conformal Prediction

0.8 1.0

The Results of MCP: Predicting With Confidence

	0	1	True	МСР	Conf.	Cred.
0	0.001578	0.490446	1	1	0.998422	0.490446
1	0.079073	0.008217	0	0	0.991783	0.079073
2	0.821253	0.000954	0	0	0.999046	0.821253
3	0.002549	0.250972	1	1	0.997451	0.250972
4	0.002752	0.387290	1	1	0.997248	0.387290
5	0.873465	0.000006	0	0	0.999994	0.873465
6	0.645499	0.000051	0	0	0.999949	0.645499
7	0.476809	0.000863	0	0	0.999137	0.476809
8	0.702656	0.002115	0	0	0.997885	0.702656
9	0.062616	0.008220	1	0	0.991780	0.062616

The Results of MCP: Set Prediction

	0	1	.0	.01	.05	.2	.5	.95	True
0	0.001578	0.490446	[0, 1]	[1]	[1]	[1]		[]	1
1	0.079073	0.008217	[0, 1]	[0]	[0]		Ö	Õ	0
2	0.821253	0.000954	[0, 1]	[0]	[0]	[0]	[0]	[]	0
3	0.002549	0.250972	[0, 1]	[1]	[1]	[1]	[]	[]	1
4	0.002752	0.387290	[0, 1]	[1]	[1]	[1]	[]	[]	1
5	0.873465	0.000006	[0, 1]	[0]	[0]	[0]	[0]	[]	0
6	0.645499	0.000051	[0, 1]	[0]	[0]	[0]	[0]	[]	0
7	0.476809	0.000863	[0, 1]	[0]	[0]	[0]	[]	[]	0
8	0.702656	0.002115	[0, 1]	[0]	[0]	[0]	[0]	[]	0
9	0.062616	0.008220	[0, 1]	[0]	[0]		[]	[]	1

The Results of MCP: Set Prediction

	0	1	2	0.15	0.2	0.4	True
0	0.41	0.33	0.26	[0, 1, 2]	[0, 1, 2]	[0]	1
1	0.34	0.44	0.22	[0, 1, 2]	[0, 1, 2]	[1]	2
2	0.19	0.34	0.47	[0, 1, 2]	[1, 2]	[2]	2
3	0.26	0.49	0.25	[0, 1, 2]	[0, 1, 2]	[1]	2
4	0.62	0.23	0.15	[0, 1]	[0, 1]	[0]	1
5	0.37	0.18	0.45	[0, 1, 2]	[0, 2]	[2]	1
6	0.50	0.38	0.12	[0, 1]	[0, 1]	[0]	1
7	0.52	0.30	0.18	[0, 1, 2]	[0, 1]	[0]	2
8	0.24	0.45	0.31	[0, 1, 2]	[0, 1, 2]	[1]	2
9	0.14	0.14	0.72	[2]	[2]	[2]	0

Conclusions

- A conformalized Boosting algorithm, MCP-Boosting, can be learning for swarm position fields, and used for infer the uncertainty of predicated collective swarm behavior.
- Unlike traditional statistics research, we transformed the empirical data into high-dimensional feature space by the methods of Boosting.
- Soth real-life and synthesis datasets are established.
- we propose two kind of prediction paradigms, such as the simple prediction corresponding with confidence and credibility measurements and the set prediction.
- The purposed methods are not need any assumption of distributions.
- The purposed methods can be build on the top of any learning algorithms.