Understanding and Applying Linear Regression

MODELING RELATIONSHIPS BETWEEN VARIABLES USING REGRESSION

Vitthal Srinivasan
CO-FOUNDER, LOONYCORN
www.loonycorn.com

Overview

Introduce regression models as a way to connect the dots

Set up the regression problem

Understand why regression is such a popular tool

See how regression is an example of Machine Learning

Connecting the Dots Using Linear Regression

"My mind is made up. Don't confuse me with the facts."

Some powerful person

Thoughtful, Fact-based Point of View

Fact-based

Built with painstakingly collected data

Thoughtful

Balanced, weighing pros and cons

Point of View

Prediction, recommendation, call to action

Two Sets of Statistical Tools

Descriptive Statistics

Identify important elements in a dataset

Inferential Statistics

Explain those elements via relationships with other elements

Two Hats of a Data Professional

Find the Dots

Identify important elements in a dataset

Connect the Dots

Explain those elements via relationships with other elements

Data in One Dimension

Unidimensional data points can be represented using a line, such as a number line

Data in One Dimension

Unidimensional data is analysed using statistics such as mean, median, standard deviation

Its often more insightful to view data in relation to some other, related data

Bidimensional data can be represented in a plane

We can draw any number of curves to fit such data

We can draw any number of curves to fit such data

A straight line represents a linear relationship

We could either make this curve pass through each point...

...Or in some sense "fit" the data in aggregate

A curve has a "good fit" if the distances of points from the curve are small

Overfitting by finding a very complicated curve often only hurts predictive accuracy

Often, a straight line works just fine

Finding the "best" such straight line is called Linear Regression

Regression not only gives us the equation of this line, it also signals how reliable the line is

High quality of fit

Low quality of fit

Prediction Using Regression

Given a new value of x, use the line to predict the corresponding value of y

Prediction Using Regression

Regression also allows to specify prediction intervals (similar to confidence intervals) around this point estimate

Linear Regression can easily be extended to ndimensional data

Simple and Multiple Regression

Simple Regression

Data in 2 dimensions

Reasons for Using Regression

Regression Is a Great Tool

Powerful

Perfectly suited to two common use-cases

Versatile

Easily extended to nonlinear relationships

Deep

The first "crossover hit" from Machine Learning

Regression Is a Great Tool

Powerful

Perfectly suited to two common use-cases

Versatile

Easily extended to nonlinear relationships

Deep

The first "crossover hit" from Machine Learning

Two Common Applications of Regression

Explaining Variance

How much variation in one data series is caused by another?

Making Predictions

How much does a move in one series impact another?

Rising Stock: Alpha or Beta?

Explanation #1: Beta

Price rise driven by beta, i.e. explained by market rise

Explanation #2: Alpha

Price rise can not be explained by market rise - company really has done something right

X Causes Y

Cause

Explanatory variable: Changes in level of the market as a whole

Effect

Dependent variable: Changes in the level of one particular stock

Minimising Least Square Error

The axes are usually calculated as "excess returns" over bonds, but that's not important here

Minimising Least Square Error

The term α in the equation of the line is the y-intercept

Minimising Least Square Error

The term β is the slope, and gives the sensitivity of y to a change of 1 unit in x

Regression Models in Commodity Trading

Interest Rates are Rising

US government bond yields are now at 2.56%, but could go to 3%

Commodity Traders are Worried

Oil is currently trading at \$50/ barrel - buy or sell?

Prediction Using Regression

Given a new value of x, use the line to predict the corresponding value of y

Regression Is a Great Tool

Powerful

Perfectly suited to two common use-cases

Versatile

Easily extended to nonlinear relationships

Deep

The first "crossover hit" from Machine Learning

Transform Non-linear Data

Transform using logarithms

Polynomial

$$y = A + Cx^2$$

Transform using logarithms or simply regress on x²

Transform Non-linear Data

log y = C + D log xor simply regress y on x^2

Regression Is a Great Tool

Powerful

Perfectly suited to two common use-cases

Versatile

Easily extended to nonlinear relationships

Deep

The first "crossover hit" from Machine Learning

Whales: Fish or Mammals?

Mammals

Members of the infraorder *Cetacea*

Fish

Look like fish, swim like fish, move like fish

Rule-based Binary Classifier

ML-based Binary Classifier

Corpus

Classification Algorithm

ML-based Classifier

ML-based Binary Classifier

ML-based Binary Classifier

Rule-based or ML-based?

ML-based

Rule-based

Dynamic

Static

Experts optional

Experts required

Corpus required

Corpus optional

Training step

No training step

GOOG: Buy or Sell?

Explanation #1: Beta

Price rise driven by beta, i.e. explained by market rise

Explanation #2: Alpha

Price rise can not be explained by market rise - company really has done something right

ML-based Predictor

Corpus

Regression Algorithm ML-based Predictor Regression Line: $y = \alpha + \beta x$

ML-based Predictor

ML-based Predictor

Mean and Variance

Data in One Dimension

Pop quiz: Your thoughtful, fact-based point-of-view on these numbers, please

Data in One Dimension

Boss5-second attention span

Go-to Colleague

10-second attention span

Mean as Headline

The mean, or average, is the one number that best represents all of these data points

$$\frac{1}{x} = \frac{x_1 + x_2 + ... + x_n}{n}$$

Variation Is Important Too

"Do the numbers jump around?"

Range = $X_{max} - X_{min}$

The range ignores the mean, and is swayed by outliers - that's where variance comes in

Variance is the second-most important number to summarise this set of data points

Variance is the second-most important number to summarise this set of data points

Variance is the second-most important number to summarise this set of data points

We can improve our estimate of the variance by tweaking the denominator - this is called Bessel's Correction

Mean and Variance

Mean and variance succinctly summarise a set of numbers

$$\frac{1}{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$
 Variance = $\frac{\sum (x_i - \overline{x})^2}{n-1}$

Variance and Standard Deviation

Standard deviation is the square root of variance

Variance =
$$\sum (x_i - \overline{x})^2$$

$$\frac{\sum (x_i - \overline{x})^2}{n-1}$$
Std Dev = $\sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$

Mean and Variance

These statistics only apply to the sample of data, and so are known as sample statistics

The corresponding figures for all possible data points out there are called population statistics

Probability Distributions and the Bell Curve

"Michael Jordan is a once-in-alifetime player"

A once-in-a-lifetime player is an outlier, a point far from the pack

In reality, most ordinary folks would be clustered around an average level of skill

The NBA players would be outliers

Michael Jordan would be an even greater outlier

In reality, most ordinary folks would be clustered around an average level of skill

The NBA players would be outliers

Michael Jordan would be an even greater outlier

In reality, most ordinary folks would be clustered around an average level of skill

The NBA players would be outliers

Michael Jordan would be an even greater outlier

This chart above tells us how common a specific level of skill is

The shape of this chart resembles a bell

This is a Normal Probability Distribution

This chart above tells us how common a specific level of skill is

The shape of this chart resembles a bell

This is a Normal Probability Distribution

Outliers

This chart above tells us how common a specific level of skill is

The shape of this chart resembles a bell

This is a Normal Probability Distribution

Outliers

Average is common

Very high and very low are both unusual

The bell curve occurs everywhere in nature

Outliers

What is the probability of any specific value x occurring in the data?

The answer lies in a probability distribution function

Probability Distribution Function

Given any value x, how likely is that value to be found in the data?

Probability Distribution Function

A Normal Distribution is a probability distribution that occurs ubiquitously in nature

Average (mean) is μ Standard deviation is σ

68% within 1 standard deviation of mean

95% within 2 standard deviations of mean

99% within 3 standard deviations of mean

"Michael Jordan is a once-in-a-lifetime player"

Connecting the Dots with Regression

Regression Equation:

$$y = A + Bx$$

$$y_1 = A + Bx_1$$
 $y_2 = A + Bx_2$
 $y_3 = A + Bx_3$
...
 $y_n = A + Bx_n$

Connecting the Dots with Regression

Regression Equation:

$$y = A + Bx$$

$$y_1 = A + Bx_1 + e_1$$

 $y_2 = A + Bx_2 + e_2$
 $y_3 = A + Bx_3 + e_3$
...
$$y_n = A + Bx_n + e_n$$

Residuals $y = [y_1, y_2, y_3...y_n]$ (x_i, y_i) $y' = [y'_1, y'_2, y'_3...y'_n]$ $e_i = y_i - y'_i$ $e = [e_1, e_2, e_3...e_n]$ (x_i, y_i) A Regression Line: y = A + Bx

Residuals of a regression are the difference between actual and fitted values of the dependent variable

To find the "best fit" line we need to make some assumptions about regression residuals

Regression Line: y = A + BxX

Ideally, residuals should

- have zero mean
- common variance
- be independent of each other
- be independent of x
- be normally distributed

Summary

Regression is a way to fit a curve through a set of points

It is widely used in quantifying causeeffect relationships and in forecasting

Regression is powerful, versatile and deep

Prediction using regression is an application of Machine Learning