

Universidad Carlos III de Madrid Digital Electronics. 2nd partial exam. May 2013

Groups 65-69-79-95

Question 1

Given the following circuit:

- a) Write the Boolean expressions of the State functions:
- b) Write the Boolean expressions of the Output functions:.
- c) Is it a Moore's Model circuit? Justify why.
- d) Draw the state transitions graph of the circuit.

Question 2

Given the following STG, implement the corresponding synchronous sequential circuit, using T flip-flops.

- a) Which are the inputs and outputs of the FSM?
- b) Encode the states. Justify your decision on the number of flip-flops.
- c) Write the transitions table
- d) Find simplified expressions for the state and output functions
- e) Draw the circuit using T flip-flops and a 3:8 decoder (active high outputs), and the necessary additional logic gates (using the minimum possible number of logic gates).

Universidad Carlos III de Madrid Digital Electronics. 2nd partial exam. May 2013 Groups 65-69-79-95

Question 3

We want to design a sequential circuit which can remotely control the operation of the door of a garage. In order to operate the door of garage, the remote controller sends one of the following cyclic sequences depending on the selection of the switches S0 and S1.

S1	S0	Sequence:
0	0	3-bit binary counter (natural binary code)
0	1	3-bit Gray's code counter
1	0	3-bit Ring counter
1	1	3-bit Johnson's code

Then, draw the state transition graph of a finite state machine using **Moore**'s model for the above described remote control operation.