# MINIMIZING DFAS

# IS THIS MINIMAL?



## IS THIS MINIMAL?



#### **THEOREM**

For every regular language L, there exists a unique (up to re-labeling of the states) minimal DFA M such that L = L(M)

### **NOT TRUE FOR NFAs**





Because of this, minimization of NFA is complicated and is out of scope of current ToC course.

### **EXTENDING** $\delta$

Given DFA M = (Q,  $\Sigma$ ,  $\delta$ , q<sub>0</sub>, F) extend  $\delta$  to  $\stackrel{\wedge}{\delta}$ :  $Q \times \Sigma^* \rightarrow Q$  as follows:

$$\hat{\delta}(\mathbf{q}, \, \mathbf{\epsilon}) = \mathbf{q}$$

$$\hat{\delta}(\mathbf{q}, \, \mathbf{\sigma}) = \delta(\mathbf{q}, \, \mathbf{\sigma})$$

$$\hat{\delta}(\mathbf{q}, \, \mathbf{w}_1 \, ... \, \mathbf{w}_{k+1}) = \delta(\hat{\delta}(\mathbf{q}, \, \mathbf{w}_1 \, ... \, \mathbf{w}_k), \, \mathbf{w}_{k+1})$$

A string  $w \in \Sigma^*$  distinguishes states  $q_1$  from  $q_2$  if  $\delta(q_1, w) \in F \Leftrightarrow \delta(q_2, w) \notin F$ 



ε distinguishes accept from non-accept states

Fix M = (Q,  $\Sigma$ ,  $\delta$ , q<sub>0</sub>, F) and let p, q, r  $\in$  Q

#### **Definition:**

p is distinguishable from q iff there is a  $w \in \Sigma^*$  that distinguishes p from q

p is indistinguishable from q iff p is not distinguishable from q

Fix M = (Q,  $\Sigma$ ,  $\delta$ , q<sub>0</sub>, F) and let p, q, r  $\in$  Q

Define relation "~":

p ~ q iff p is indistinguishable from qp ≠ q iff p is distinguishable from q

Proposition: "~" is an equivalence relation

p~p (reflexive)

 $p \sim q \Rightarrow q \sim p$  (symmetric)

 $p \sim q$  and  $q \sim r \Rightarrow p \sim r$  (transitive)





Fix  $M = (Q, \Sigma, \delta, q_0, F)$  and let  $p, q, r \in Q$ Proposition: "~" is an equivalence relation so "~" partitions the set of states of M into disjoint equivalence classes





### **Algorithm MINIMIZE**

**Input: DFA M** 

Output: DFA M<sub>MIN</sub> such that:

 $M \equiv M_{MIN}$ 

**M**<sub>MIN</sub> has no inaccessible states

M<sub>MIN</sub> is irreducible

states of M<sub>MIN</sub> are pairwise distinguishable

Theorem:  $M_{MIN}$  is the unique minimum

## **Algorithm MINIMIZE**

**Input: DFA M** 

Output: DFA M<sub>MIN</sub>

- (1) Remove all inaccessible states from M
- (2) Apply Table-Filling algorithm to get  $E_M = \{ [q] | q \text{ is an accessible state of } M \}$

$$M_{MIN} = (Q_{MIN}, \Sigma, \delta_{MIN}, q_{0 MIN}, F_{MIN})$$

$$Q_{MIN} = E_M, q_{0 MIN} = [q_0], F_{MIN} = \{ [q] | q \in F \}$$

$$\delta_{MIN}([q],\sigma) = [\delta(q,\sigma)]$$

Input: DFA M = (Q,  $\Sigma$ ,  $\delta$ , q<sub>0</sub>, F)

Output: (1)  $D_M = \{ (p,q) | p,q \in Q \text{ and } p \neq q \}$ 

(2)  $E_M = \{ [q] | q \in Q \}$ 

#### **IDEA!**



- Make best effort to find pairs of states that are distinguishable.
- Pairs left over will be indistinguishable.

Input: DFA M = (Q,  $\Sigma$ ,  $\delta$ ,  $q_0$ , F)

Output: (1)  $D_M = \{ (p,q) | p,q \in Q \text{ and } p \neq q \}$ 

(2)  $E_M = \{ [q] | q \in Q \}$ 



Input: DFA M = (Q,  $\Sigma$ ,  $\delta$ ,  $q_0$ , F)

Output: (1)  $D_M = \{ (p,q) | p,q \in Q \text{ and } p \neq q \}$ 

(2) 
$$E_M = \{ [q] | q \in Q \}$$



Base Case: p accepts and q rejects  $\Rightarrow$  p  $\neq$  q

#### **Recursion:**

$$\begin{array}{ccc}
p & \xrightarrow{\sigma} & p' \\
& & \downarrow & \Rightarrow p \not \downarrow q \\
q & \xrightarrow{\sigma} & q'
\end{array}$$

Input: DFA M = (Q,  $\Sigma$ ,  $\delta$ ,  $q_0$ , F)

Output: (1)  $D_M = \{ (p,q) | p,q \in Q \text{ and } p \neq q \}$ 

(2) 
$$E_M = \{ [q] | q \in Q \}$$



Base Case: p accepts and q rejects  $\Rightarrow$  p  $\neq$  q

**Recursion:** 

$$\begin{array}{ccc}
p & \xrightarrow{\sigma} p' \\
& \downarrow & \Rightarrow p \neq q \\
q & \xrightarrow{\sigma} q'
\end{array}$$













## **MINIMIZE**



## **MINIMIZE**

















# HOW TO PROVE THAT TWO DFAs ARE EQUIVALENT