Analysis of RNA-seq data FOS 2017

Maarten van Iterson

Leiden University Medical Center Department of Molecular Epidemiology

June 14, 2017

A typical RNA-seq experiment

Nature Reviews | Genetics

Experimental Design

- clear simple research question:
 - Good: Which genes are differentially expressed between disease and control, treated and untreated samples
 - Bad: Which genes are differentially expressed between treated and untreated samples with different dosages and different time points after treatment

randomization

 not all the controls on one day with one batch of chemicals and the cases on the other day with another batch of chemicals

- think ahead

- sequencer (mostly Illumina nowadays)
- aligner
- annotation
- statistical analysis

Analysis of RNA-seq data

- Read mapping

- Input: FASTQ file generated by the sequencer

- Output: BAM file

- Summarization

- Input: BAM file

- Output: count table

- Quality control

- Normalization

- Input: count table

- Output: scale factors

Differential Expression Analysis

- Input: count table plus scale factors

- Output: list of differentially expressed genes

FASTQ file

file format for sequences plus quality scores quality score indicates the probability that a given base is called incorrectly by the sequencer

```
GGGGGGGGGGGGGGGCTTTTTTTTTTTTGTAACCGAAAGG
GTTTTGAATTTCAAACCCTTTTCGGTTTCCAACCTTCCAA
AGCAATGCCAATA
+SRR014849.1 EIXKN4201CFU84 length=93
3+&$#"""""""""""7F@71,";C?,B;?6B;:EA1EA
1EA59B:?:#9EAOD@2EA5:>5?:%A;A8A;?9B;D@
/=<?7=9<2A8==
```

@SRR014849.1 EIXKN4201CFU84 length=93

@title and optional description
sequence line(s)
+optional repeat of title line
quality line(s)

Read mapping

```
TATATTTATGCTATTCAGTTCTAAATATAGAAATTGAAACAGCTGTGTTTAGTGCCTTTGTTCA----ACCCCCTTGCAACAACCTTGAGAACCCCAGGGAATTTGT
TRIBTY ATGCTRITCAGTTCTRARTATRIGRARTTGRARCAG GTGTTTRGTGCCTTTGTTCR-----ACCCCCTTGCRACARC
tatatttatgctattcagttctaaatatagaaatt
                                       acagetgtgtttagtgcctttgttca----accecettg aacaacettgagaaceccagggaatttgt
TATAT TATGCTATTCAGTTCTAAATATAGAAATTGAAACA ctqtqtttaqtqcctttqttca----acceccttqcaac ACCTTGAGAACCCCAGGGAATTTGT
TATATTTA qctattcagttctaaattaqaaattqaaacaqct GTTTAGTGCCTTTGTTCACATAGACCCCCTTGCAA aaccttqagaaaccccagqqaatttqt
                             GAAATTGAAACAGCTGTGTTTAGTGCCTTTGTTCA
                                                                        ccccttacaacaaccttgagaaccccagggaattt
TATATTTATGCTATTCAGT
tatatttatgctattcagt
                                                      GCCTTTGTTCACATAGACCCCCTTGCAACAACCTT
tatatttatgctattcagttcta
                                                               AG----ACCCCCTTGCAACAACCTTGAGAACCCCAGGGA
TATATTTATGCTATTCAGTTCTAA
                                                                A----ACCCCCTTGCAACAACCTTGAGAACCCCAGGGAA
TATATTTATGCTATTCAGTTCTAAA
                                                                A----ACCCCCTTGCAACAACCTTGAGAACCCCCAGGGAA
TATATTTATGCTATTCAGTTCTAAA
                                                                             TGCAACAACCTTGAGAACCCCAGGGAATTTGT
TATATTTATGCTATTCAGTTCTAAAT
                                                                             TGCAACAACCTTGAGAACCCCAGGGAATTTGT
TATATTTATGCTATTCAGTTCTAAAT
                                                                             TGCAACAACCTTGAGAACCCCAGGGAATTTGT
tatatttatgctattcagttctaaatatagaaatt
                                                                             tgcaacaaccttgagaaccccagggaatttgt
tatatttatgctattcagttctaaatatagaaatt
                                                                                  CAACCTTGAGAACCCCAGGGAATTTGT
  TATTTATGCTATTCAGTTATAAATATAGAAATTGAAACAG
                                                                                     CCTTGAGAACCCCAGGGAATTTGT
   atttatgctattcagttctaaatatagaaattgaa
                                                                                      CTTGAGAACCCCAGGGAATTTGT
    tttacgctattcagtactaaatatagaaattgaaa
                                                                                      CTTGAGAACCCCAGGGAATTTGT
     ttatgctattcagttctaaatatagaaattgaaac
                                                                                                    gggaatttgt
```

Align against genome or transcriptome

against transcriptome: easier, because no gapped alignment necessary

but: risk to miss possible alignments!

many tools available see e.g.,

http://massgenomics.org/short-read-aligners

Read mapping

Garber et al. Nature Methods 8, 469-477(2011)

Summarizing mapped reads

Count each read at most once Discard a read if

- it cannot be uniquely mapped
- its alignment overlaps with several genes
- the alignment quality score is bad

Summarizing mapped reads: Counting rules

http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

Quality Control: on 'raw' reads

- Basic information (total reads, sequence length, etc.)
- Per base sequence quality
- Overrepresented sequences (e.g., ribosomal RNAs)
- GC content
- Duplication level
- and more ...

Tools: samtools, Fastqc, Fastx, Galaxy fastq tools, · · ·

Quality Control: on 'aligned' reads

- Percentage of reads properly mapped or uniquely mapped
- Among the mapped reads, the percentage of reads in exon, intron, and intergenic regions.
- 5' or 3' bias
- The percentage of expressed genes

Tools: RSeQC¹, RNA-SeqQC, · · ·

Normalization

Each sample different library size/sequencing depth

For example:

	sample A	sample B
gene 1	100	10
gene 2	20	2
• • •	• • •	
gene 100	1000	100
Total Counts:	10.000	1.000

library size sample A $10 \times$ sample B

But normalization cont'd

- intuitive normalization methods: total count, cpm, rpkm
- not appropriate for differential expression

For example:

	sample A	sample B
gene 1	100	80
gene 2	100	80
		• • •
gene 100	100	80
gene 101	0	2.000
Total Counts:	10.000	10.000

sequencing depth the same but a single gene highly differentially expressed

Normalization cont'd

counts per million: $\frac{X_{ij}}{X_{.j}}10^6$ with $X_{.j} = \sum_{i=1}^{101} X_{ij}$

	sample A	sample B
gene 1	10.000	8.000
gene 2	10.000	8.000
gene 100	10.000	8.000
gene 101	0	20.000

All genes are differentially expressed! Is this really true?

Normalization

Using TMM (trimmed mean of M-values)

	sample A	sample B
gene 1	10.000	10.000
gene 2	10.000	10.000
• • •	• • •	• • •
gene 100	10.000	10.000
gene 101	0	250.000

One gene differentially expressed! Seems more realistic

TMM

Figure: (a) technical replicates and (b) liver versus kidney (c) An M versus A plot comparing liver and kidney.

Robinson et al. Genome Biology, 11(3), (2010)

Testing for differential expression

- counts are discrete: $0, 1, 2, \cdots$
- large dynamic range [0, > 100000]
- Poisson or Negative Binomial distributed
- mean is approximately equal to the variance
- generalized linear model
- likelihood ratio test

Tools: edgeR, DESeq2, Cuffdiff, Myrna, · · ·

Mean variance relationship

Anders et al. Genome Biology, 11(10), (2010)

A generic roadmap for RNA-seq computational analyses

Conesa et al. Genome Biology, 17(13), (2016)