UKŁADY CYFROWE – przewodnik po wykładzie

Materiały pomocnicze dla studentów kierunku Informatyka

* * *

Uwaga! Niniejszy materiał zawiera jedynie zarys treści podawanych na wykładzie i w żadnym razie nie zastępuje odpowiednich pozycji literaturowych.

Podstawowe zagadnienia:

- system pozycyjny zapisu liczb,
- podstawowe kody, ich własności i zastosowania,
- aksjomaty i twierdzenia algebry Boole'a oraz przekształcanie funkcji logicznych,
- kanoniczne postaci funkcji logicznych,
- minimalizacja funkcji logicznych,
- podstawowe funktory logiczne i kanoniczna realizacja funkcji logicznych,
- realizacja funkcji logicznych na multiplekserach,
- matematyczny opis układów logicznych,
- opis i synteza układów kombinacyjnych,
- opis i synteza układów iteracyjnych,
- przerzutniki synchroniczne, zasada działania i sposoby wyzwalania,
- projektowanie układów sekwencyjnych synchronicznych,
- wyścigi i hazardy w układach sekwencyjnych asynchronicznych,
- projektowanie układów sekwencyjnych asynchronicznych,
- przykładowe testy egzaminacyjne.

Literatura:

- 1. Barski M., Jedruch W.: Układy cyfrowe i mikroprocesory skrypt. Wyd. PG 1985 (lub 2007).
- 2. Barski M., Jędruch W., Niedźwiecki M., Raczyński P., Sarzyński B.: Układy cyfrowe i mikroprocesory zadania. Wyd. PG 1984.
- 3. Baranowski J., Kalinowski B., Nosal Z.: Układy elektroniczne cz. III układy i systemy cyfrowe. Wyd. 2 (seria Podręczniki Akademickie), WNT 1998.
- 4. Kalisz J.: Podstawy elektroniki cyfrowej. Wyd. 3, WKŁ 1988.
- 5. Majewski W.: Układy logiczne. Wyd. 6 (seria Podręczniki Akademickie), WNT 1999.
- 6. Traczyk W.: Układy cyfrowe. Podstawy teoretyczne i metody syntezy (seria Elektronika-Informatyka-Telekomunikacja), WNT 1982.
- 7. Nelson V.P., Nagle H.T., Carroll B.D., Irwin J.D.: Digital Logic Circuit Analysis and Design. Prentice Hall 1985.
- 8. De Micheli G.: Synteza i optymalizacja układów cyfrowych.

System pozycyjny zapisu liczb

• System o podstawie 10 (dec): cyfry znaczące { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

<u>Przykład</u>: $L = (3954,287)_{10}$

wagi
$$10^3$$
 10^2 10^1 10^0 , 10^{-1} 10^{-2} 10^{-3} cyfry d_3 d_2 d_1 d_0 , d_{-1} d_{-2} d_{-3} $L=$ 3 9 5 4 , 2 8 7

$$L = 3 \cdot 10^{3} + 9 \cdot 10^{2} + 5 \cdot 10^{1} + 4 \cdot 10^{0} + 2 \cdot 10^{-1} + 8 \cdot 10^{-2} + 7 \cdot 10^{-3}$$

• System o podstawie 2 (bin): cyfry znaczące { 0, 1 }

<u>Przykład</u>: $L = (1011,011)_2$

wagi

$$2^3$$
 2^2
 2^1
 2^0
 , 2^{-1}
 2^{-2}
 2^{-3}

 cyfry
 b_3
 b_2
 b_1
 b_0
 , b_{-1}
 b_{-2}
 b_{-3}
 $L =$
 1
 0
 1
 1
 , 0
 1
 1

$$L = 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0} + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3}$$

• System o podstawie 16 (hex): cyfry znaczące {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

Przykład: $L = (12AF,C53)_{16}$

wagi
$$16^3$$
 16^2 16^1 16^0 , 16^{-1} 16^{-2} 16^{-3} cyfry h_3 h_2 h_1 h_0 , h_{-1} h_{-2} h_{-3} $L=$ 1 2 A F , C 5 3

$$L = 1 \cdot 16^{3} + 2 \cdot 16^{2} + A \cdot 16^{1} + F \cdot 16^{0} + C \cdot 16^{-1} + 5 \cdot 16^{-2} + 3 \cdot 16^{-3}$$

• System o podstawie "g": cyfry znaczące $\{0, 1, \dots, g-1\}$

$$L = \dots c_3 \cdot g^3 + c_2 \cdot g^2 + c_1 \cdot g^1 + c_0 \cdot g^0 + c_{-1} \cdot g^{-1} + c_{-2} \cdot g^{-2} + c_{-3} \cdot g^{-3} + \dots$$

Ogólnie liczbę można zapisać w postaci:

$$L = \sum_{i=0}^{n} c_{i} \cdot g^{i} + \sum_{i=1}^{m} c_{-j} \cdot g^{-j}$$

gdzie część całkowita zawiera (n + 1) cyfr, a część ułamkowa zawiera (m) cyfr.

Ile cyfr znaczących posiada liczba zapisana w systemie o podstawie "g"?

Przyjmijmy oznaczenia: L – liczba naturalna,

g – podstawa systemu,

 N_g^k – tyle pozycji zajmuje liczba k.

Wyrażając liczbę (L) jako potęgę podstawy liczenia (g) można zapisać: $L = g^p$.

Logarytmując następnie powyższe wyrażenie otrzymuje się: $\log L = p \cdot \log g$.

Wreszcie pozbywjąc się części ułamkowej z p dostajemy: $N_g^k = \lfloor p \rfloor + 1 = \lfloor \log k / \log g \rfloor + 1$.

Przykład: zapis liczby 100 w różnych systemach.

$$N_2^{100} = \left| \frac{\log 100}{\log 2} \right| + 1 = 7 \text{ cyfr}$$
 (zapis binarny: 1100100_B)

$$N_{10}^{100} = \left| \frac{\log 100}{\log 10} \right| + 1 = 3$$
 cyfry (zapis dziesiętny: 100)

$$N_{16}^{100} = \left| \frac{\log 100}{\log 16} \right| + 1 = 2$$
 cyfry (zapis heksadecymalny: 64_H)

Zamiana liczby dziesiętnej na binarną:

- zamiana części całkowitej: dzielimy liczbę przez dwa i notujemy kolejne reszty
- zamiana części ułamkowej: mnożymy liczbę przez dwa i notujemy wartości całkowite

Uzasadnienie: liczba jest sumą części całkowitej i ułamkowej $(L = L_C + L_U)$

Część całkowita: $L_C = \dots b_4 \cdot 2^4 + b_3 \cdot 2^3 + b_2 \cdot 2^2 + b_1 \cdot 2^1 + b_0 \cdot 2^0$

Dzielenie przez 2: $L_{\rm C}/2 = ... b_4 \cdot 2^3 + b_3 \cdot 2^2 + b_2 \cdot 2^1 + b_1 \cdot 2^0 + b_0 \cdot 2^{-1}$ (reszta b_0)

Część ułamkowa: $L_{\rm U} = b_{-1} \cdot 2^{-1} + b_{-2} \cdot 2^{-2} + b_{-3} \cdot 2^{-3} + \dots$

Mnożenie przez 2: $L_{\rm U} \cdot 2 = b_{-1} \cdot 2^0 + b_{-2} \cdot 2^{-1} + b_{-3} \cdot 2^{-2} + \dots$ (część całkowita b_{-1})

Zatem dzieląc $L_{\mathbb{C}}$ przez 2 otrzymujemy bity (b_0, b_1, \dots) jako kolejne reszty.

Z kolei mnożąc $L_{\rm U}$ przez 2 otrzymujemy bity (b_{-1} , b_{-2} , ...) jako wynikowe wartości całkowite.

<u>Przykład</u>: zamiana liczby dziesietnej L = 23,375 na binarną (L = 10111,011)₂.

Część całkowita –	dzielenie przez 2	Część ułamkowa -	– mnożenie przez 2
dzielne 23	$1 = b_0$ reszty	całkowite 0,	375 ułamki
11	$1 = b_1$	$b_{-1} = 0,$	750
5	$1 = b_2$	$b_{-2}=1,$	500
2	$0 = b_3$	$b_{-3}=1,$	000
1	$1 = b_4$		
0			

Podstawowe kody

- NKB (naturalny kod binarny)
- BCD (binary coded decimal: cyfra dziesiętna zapisana na 4-bitach)
- Z-M (znak-moduł: moduł NKB i bit znaku 0 = plus, 1 = minus)
- U1 (uzupełnienie do 1: negacja liczby $-x = \bar{x}$)
- U2 (uzupełnienie do 2: negacja liczby $-x = \overline{x} + 1$)

Ważne: dodawanie i odejmowanie liczb w kodzie U2 wykonuje się identycznie jak w NKB!

Przykład: interpretacje kodu czterobitowego.

Kod (4 bity)	NKB	BCD	Z-M	U1	U2
0 0 0 0	0	0	+ 0	+ 0	+ 0
0 0 0 1	1	1	+ 1	+ 1	+ 1
0 0 1 0	2	2	+ 2	+ 2	+ 2
0 0 1 1	3	3	+ 3	+ 3	+ 3
0 1 0 0	4	4	+ 4	+ 4	+ 4
0 1 0 1	5	5	+ 5	+ 5	+ 5
0 1 1 0	6	6	+ 6	+ 6	+ 6
0 1 1 1	7	7	+ 7	+ 7	+ 7
1000	8	8	- 0	-7	- 8
1001	9	9	– 1	- 6	-7
1010	10	_	-2	- 5	- 6
1011	11	_	- 3	-4	-5
1 1 0 0	12	_	-4	- 3	-4
1 1 0 1	13		- 5	-2	- 3
1 1 1 0	14		- 6	– 1	-2
1111	15		-7	- 0	– 1

Ważne: na n – bitach możemy zapisać liczby:

NKB z zakresu
$$\langle 0, 2^n - 1 \rangle$$

U2 z zakresu
$$\langle -2^{n-1}, 2^{n-1}-1 \rangle$$

U1 z zakresu
$$\langle -2^{n-1} + 1, 2^{n-1} - 1 \rangle$$

Z-M z zakresu
$$\langle -2^{n-1}+1, 2^{n-1}-1 \rangle$$

Przykład: interpretacje pewnego kodu binarnego (1001011).

$$L = (1\ 0\ 0\ 1\ 0\ 1\ 1\ 1)_{NKB} = 151 \text{ (czyli } 97_{H})$$

$$L = (1\ 0\ 0\ 1\ 0\ 1\ 1\ 1)_{BCD} = 97$$

$$L = (1\ 0\ 0\ 1\ 0\ 1\ 1\ 1)_{Z-M} = -23$$

$$L = (1\ 0\ 0\ 1\ 0\ 1\ 1\ 1)_{U1} = -104$$

$$L = (1\ 0\ 0\ 1\ 0\ 1\ 1\ 1)_{U2} = -105$$

Kod refleksyjny (Gray'a) – sposoby tworzenia

- Metoda lustrzanego odbicia bitów
- Metoda przeplatania ciągów bitowych
- Metoda analityczna

W metodzie lustrzanego odbicia zapisujemy kod Gray'a na znanej liczbie bitów (np. na dwóch bitach, czyli: 00, 01, 11, 10). Następnie przepisujemy symetrycznie ("lustrzanie") kody poniżej poziomej kreski. Nad kreską dopisujemy bity "0", a pod kreską dopisujemy bity "1". Opisaną metodę ilustruje poniższy rysunek.

W metodzie przeplatania ciągów bitowych zapisujemy kolejne kolumny tablicy wg zasady:

w kolumnie bitu g_0 zapisujemy na przemian ciągi $\{0,1\}$ i $\{1,0\}$,

w kolumnie bitu g_1 zapisujemy na przemian ciągi $\{0,0,1,1\}$ i $\{1,1,0,0\}$,

w kolumnie bitu g_n zapisujemy na przemian ciągi $\{2^n \text{ zer}, 2^n \text{ jedynek}\}$ i $\{2^n \text{ jedynek}, 2^n \text{ zer}\}$.

W metodzie analitycznej zamianę NKB na kod Gray'a (i odwronie) dokonujemy wg wzorów:

$$\begin{aligned} \text{NKB} & \to \text{ Gray:} \quad g_N = b_N & \text{ i } \quad g_i = b_i \oplus b_{i+1} & \text{ dla } \quad i = 0, \ 1, \dots, N-1, \\ \text{Gray} & \to \text{ NKB:} \quad b_N = g_N & \text{ i } \quad b_i = g_i \oplus b_{i+1} & \text{ dla } \quad i = N-1, \dots, 0, \end{aligned}$$

gdzie symbol ⊕ oznacza "sumę modulo dwa" ("0" dla bitów równych i "1" dla bitów różnych). Opisaną metodę ilustruje poniższy rysunek (kreską połączono bity sumowane modulo 2).

Ważne: w kodzie Gray'a sąsiednie liczby różnia się dokładnie na jednym bicie.

Przykład: tabela czterobitowego kodu NKB i Gray'a.

Liczba	NKB	Kod Gray'a
zapis dziesiętny	$b_3 b_2 b_1 b_0$	$g_3 g_2 g_1 g_0$
0	0 0 0 0	0 0 0 0
1	0 0 0 1	0 0 0 1
2	0 0 1 0	0 0 1 1
3	0 0 1 1	0 0 1 0
4	0 1 0 0	0 1 1 0
5	0 1 0 1	0 1 1 1
6	0 1 1 0	0 1 0 1
7	0 1 1 1	0 1 0 0
8	1 0 0 0	1 1 0 0
9	1 0 0 1	1 1 0 1
10	1 0 1 0	1 1 1 1
11	1 0 1 1	1 1 1 0
12	1 1 0 0	1 0 1 0
13	1 1 0 1	1 0 1 1
14	1 1 1 0	1 0 0 1
15	1 1 1 1	1 0 0 0

Zastosowanie kodu Gray'a w pomiarach optycznych (liniały i tarcze kodowe)

• Liniał optyczny z NKB (czerwona linia oznacza odczyt optyczny):

• Liniał optyczny z kodem Gray'a (czerwona linia oznacza odczyt optyczny):

Ważne: w przypadku pochylenia linii odczytu optycznego (linia ciągła na rysunkach):

- w NKB może wystąpić chwilowe przekłamanie (na rys. po stanie 0111_B = 7 jest 1111_B = 15),
- w kodzie Gray'a odczyt jest ciagle poprawny (na rys. po stanie $0100_G = 7$ jest $1100_G = 8$).

Algebra Boole'a

Stałe logiczne: 0 - falsz, 1 - prawda

Podstawowe działania	notacja klasyczna	notacja w układach cyfrowych
negacja logiczna – NOT	~ x	\overline{x}
(zaprzeczenie)		
suma logiczna – OR	$x \lor y$	x + y
(alternatywa zwykła)		•
suma moduo 2 – XOR	$x \dot{\lor} y$	$x \oplus y$
(alternatywa rozłączna)	,	
iloczyn logiczny – AND	$x \wedge y$	$x \cdot y$
(koniunkcja)		
implikacja – IF	$x \Rightarrow y$	$x \rightarrow y$
(jeżeli to)	·	
równoważność – EQ	$x \Leftrightarrow y$	$x \equiv y$
(wtedy i tylko wtedy)	_	

Tabela podstawowych funkcji

fi	ınkcja	NOT	OR	XOR	AND	IF	EQ	NOR	NAND
x	y	\overline{x}	x + y	$x \oplus y$	$x \cdot y$	$x \rightarrow y$	$x \equiv y$	$\overline{x+y}$	$\overline{x \cdot y}$
0	0	1	0	0	0	1	1	1	1
0	1	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	0	0	1
1	1	U	1	0	1	1	1	0	0

Ważne: z tabeli wynikają następujące tożsamości:

- $\overline{x+y} = \overline{x} \cdot \overline{y}$; NOR nazywane jest też funkcją Pierce'a (ozn. $\overline{x+y} = x \downarrow y$),
- $\overline{x \cdot y} = \overline{x} + \overline{y}$; NAND nazywane jest też funkcją Sheffera (ozn. $\overline{x \cdot y} = x/y$),
- $\overline{x \oplus y} = (x \equiv y)$; XOR zanegowany oznacza równoważność,
- $\overline{x \to y} = x \cdot \overline{y}$; IF jest fałszywe wtedy i tylko wtedy gdy z prawdy wynika fałsz,
- $x \rightarrow y = \overline{x} + y$; IF jest prawdziwe, gdy x jest fałszem lub y jest prawdą.

Ile można zbudować różnych funkcji n-zmiennych?

- argumenty x_1, x_2, \dots, x_n : liczba wierszy w tabeli 2^n ,
- funkcje $f(x_1, x_2, ..., x_n)$: liczba różnych funkcji 2^{2^n} .

Przykład: liczba funkcji n-zmiennych.

- 1 zmienna: 4 funkcje (tj. f(x) = 0, f(x) = 1, f(x) = x, $f(x) = \overline{x}$),
- 2 zmienne: 16 funkcji,
- 3 zmienne: 256 funkcji.

Aksjomaty i twierdzenia:

Aksjomaty	Twierdzenia
x + 0 = x	x+1=1 , $x+x=x$
$x \cdot 1 = x$	$x \cdot 0 = 0$, $x \cdot x = x$
$x + \overline{x} = 1$	$\overline{\overline{x}} = x$
$x \cdot \overline{x} = 0$	$x + \overline{x} \cdot y = x + y$
przemienność sumy logicznej	$x \cdot (\overline{x} + y) = x \cdot y$
x + y = y + x	prawa de Morgana
przemienność iloczynu logicznego	$\overline{x \cdot y} = \overline{x} + \overline{y}$
$x \cdot y = y \cdot x$	$x + y = \overline{x} \cdot \overline{y}$
rozdzielność sumy względem iloczynu	reguły pochłaniania
$x \cdot y + x \cdot z = x \cdot (y + z)$	$x + x \cdot y = x$
rozdzielność iloczynu względem sumy	$x \cdot (x + y) = x$
$(x+y)\cdot(x+z) = x+y\cdot z$	ragyky aklajanja
	reguły sklejania $x \cdot y + x \cdot \overline{y} = x$
	$(x+y)\cdot(x+\overline{y})=x$

Metody dowodzenie tożsamości logicznych:

- tabela binarna (sprawdzenie wszystkich możliwości),
- schemat Venna (interpretacja operacji logicznych w kategorii rachunku zbiorów),
- przekształcenie analityczne (upraszczanie wyrażeń z wykorzystaniem aksjomatów i twierdzeń).

Zadania: uprościć wyrażenia:

$$x + x \cdot y = \dots$$

$$(x + y) \cdot (x + \overline{y}) = \dots$$

$$x \cdot \overline{y} + z + (\overline{x} + y) \cdot \overline{z} = \dots$$

$$x \cdot y + \overline{x} \cdot y \cdot \overline{z} + y \cdot z = \dots$$

Zadania: podane operacje logiczne wyrazić za pomocą sumy, iloczynu i negacji:

$$x \oplus y = \dots$$

 $x \equiv y = \dots$
 $x \rightarrow y = \dots$

Zadania: zilustrować na schematach Venna podane tożsamości:

$$x + \overline{x} \cdot y = x + y$$

$$x \oplus y = \overline{x} \cdot y + x \cdot \overline{y}$$

$$x \equiv y = \overline{x} \cdot \overline{y} + x \cdot y$$

$$x \to y = \overline{x} + y$$

$$x \oplus y \oplus z = \overline{x} \cdot \overline{y} \cdot z + x \cdot y \cdot z + \overline{x} \cdot y \cdot \overline{z} + x \cdot \overline{y} \cdot \overline{z}$$

Przykłady: wybrane rozwiązania.

- $(x+y)\cdot(x+\overline{y}) = x\cdot x + x\cdot \overline{y} + y\cdot x + y\cdot \overline{y} = x + x\cdot(y+\overline{y}) + 0 = x + x + 0 = x$.
- $\underline{x \to y} = \dots$ Negacja implikacji jest prawdziwa, gdy x jest prawdą i y jest fałszem (tabela). Stąd: $\overline{x \to y} = x \cdot \overline{y}$. Negując obydwie strony tej równości i stosując prawo de Morgana otrzymujemy: $\overline{\overline{x \to y}} = x \to y = \overline{x \cdot \overline{y}} = \overline{x} + \overline{\overline{y}} = \overline{x} + y$.
- $x \oplus y = \overline{x} \cdot y + x \cdot \overline{y}$ (na schemacie Venna obszar zakreskowany ilustruje sumę modulo dwa).

Zadanie: uprościć sieć zestyków stosując metodę ścieżek i metodę cięć:

 W metodzie ścieżek funkcja ma postać sumy, przy czym każdy składnik jest iloczynem zmiennych na danej ścieżce prowadzącej od wejścia do wyjścia.

$$f(x_1, x_2, x_3) = x_1 \overline{x}_2 + x_3 + \overline{x}_1 \overline{x}_2 x_3 = x_1 \overline{x}_2 + x_3 (1 + \overline{x}_1 \overline{x}_2) = x_1 \overline{x}_2 + x_3.$$

• W metodzie cięć funkcja ma postać iloczynu, przy czym każdy czynnik jest sumą zmiennych na przecięciu powodującym rozwarcie całej sieci.

$$f(x_{1}, x_{2}, x_{3}) = (x_{1} + x_{3} + \overline{x}_{1})(x_{1} + x_{3} + \overline{x}_{2})(x_{1} + x_{3} + x_{3})(\overline{x}_{2} + x_{3} + \overline{x}_{1})(\overline{x}_{2} + x_{3} + \overline{x}_{2})(\overline{x}_{2} + x_{3} + x_{3}) =$$

$$= (x_{1} + x_{3} + \overline{x}_{2})(x_{1} + x_{3})(\overline{x}_{2} + x_{3} + \overline{x}_{1})(\overline{x}_{2} + x_{3}) = (x_{1} + x_{3})(1 + \overline{x}_{2})(\overline{x}_{2} + x_{3})(1 + \overline{x}_{1}) =$$

$$= (x_{1} + x_{3})(\overline{x}_{2} + x_{3}) = x_{1}\overline{x}_{2} + x_{1}x_{3} + x_{3}\overline{x}_{2} + x_{3} = x_{1}\overline{x}_{2} + x_{3}(x_{1} + \overline{x}_{2} + 1) =$$

$$= x_{1}\overline{x}_{2} + x_{3}.$$

Z przeprowadzonej minimalizacji widać, że ostatnia gałąź sieci jest zbędna. Stąd sieć optymalna:

Kanoniczna Postać Sumacyjna (KPS lub ZNPS)

Regula przekształcania: $f(x_1, x_2, ..., x_n) = \overline{x}_1 \cdot f(0, x_2, ..., x_n) + x_1 \cdot f(1, x_2, ..., x_n)$

Rozkładamy kolejne składniki wg podanej reguły:

$$f(x_1, x_2, ..., x_n) = \overline{x}_1 \cdot \overline{x}_2 \cdot ... \cdot \overline{x}_n \cdot f(0, 0, ..., 0) + + \overline{x}_1 \cdot \overline{x}_2 \cdot ... \cdot x_n \cdot f(0, 0, ..., 1) + \vdots + x_1 \cdot x_2 \cdot ... \cdot x_n \cdot f(1, 1, ..., 1).$$

KPS:
$$f(x_1, x_2, ..., x_n) = \sum_{i=0}^{2^n - 1} I_i \phi_i = \sum_{\phi_i = 1} I_i$$
, gdzie

 I_i iloczyn zmiennych, np. dla i = 0: $I_0 = \overline{x}_1 \cdot \overline{x}_2 \cdot ... \cdot \overline{x}_n$

 ϕ_i próbka funkcji f(), np. dla i = 0: $\phi_0 = f(0,0,...,0)$

Kanoniczna Postać Iloczynowa (KPI lub ZNPI)

Regula: $f(x_1, x_2,...,x_n) = [x_1 + f(0, x_2,...,x_n)] \cdot [\overline{x}_1 + f(1, x_2,...,x_n)]$

Rozkładamy kolejne czynniki wg. podanej reguły:

$$f(x_1, x_2, ..., x_n) = [x_1 + x_2 + ... + x_n + f(0,0,...,0)] \cdot [x_1 + x_2 + ... + \overline{x}_n + f(0,0,...,1)] \cdot \vdots$$

$$\vdots \cdot [\overline{x}_1 + \overline{x}_2 + ... + \overline{x}_n + f(1,1,...,1)]$$

KPI:
$$f(x_1, x_2, ..., x_n) = \prod_{i=0}^{2^n - 1} (S_i + \phi_i) = \prod_{\phi_i = 0} S_i$$
, gdzie

 S_i sum zmiennych, np. dla i = 0: $S_0 = x_1 + x_2 + ... + x_n$

 ϕ_i próbka funkcji f(), np. dla i = 0: $\phi_0 = f(0,0,...,0)$

<u>Przykład</u>: doprowadzić do postaci kanonicznych funkcję $f(x_1, x_2, x_3) = x_1 + \overline{x}_2 \cdot x_3$.

KPS:
$$f(x_1, x_2, x_3) = x_1 + \overline{x}_2 \cdot x_3 = x_1 \cdot 1 \cdot 1 + 1 \cdot \overline{x}_2 \cdot x_3 = x_1 (\overline{x}_2 + x_2) (\overline{x}_3 + x_3) + (\overline{x}_1 + x_1) \overline{x}_2 \cdot x_3 = x_1 (\overline{x}_2 + x_2) (\overline{x}_3 + x_3) + (\overline{x}_1 + x_1) \overline{x}_2 \cdot x_3 = x_1 (\overline{x}_2 + x_2) (\overline{x}_3 + x_3) + (\overline{x}_1 + x_1) \overline{x}_2 \cdot x_3 = x_1 (\overline{x}_2 + x_2) (\overline{x}_3 + x_3) + (\overline{x}_1 + x_1) \overline{x}_2 \cdot x_3 = x_1 (\overline{x}_2 + x_2) (\overline{x}_3 + x_3) + (\overline{x}_1 + x_1) \overline{x}_2 \cdot x_3 = x_1 (\overline{x}_2 + x_2) (\overline{x}_3 + x_3) + (\overline{x}_1 + x_1) \overline{x}_2 \cdot x_3 = x_1 (\overline{x}_2 + x_2) (\overline{x}_3 + x_3) + (\overline{x}_1 + x_1) \overline{x}_2 \cdot x_3 = x_1 (\overline{x}_2 + x_2) (\overline{x}_3 + x_3) + (\overline{x}_1 + x_1) \overline{x}_2 \cdot x_3 = x_1 (\overline{x}_2 + x_2) (\overline{x}_3 + x_3) + (\overline{x}_1 + x_1) \overline{x}_2 \cdot x_3 = x_1 (\overline{x}_2 + x_2) (\overline{x}_3 + x_3) + (\overline{x}_1 + x_1) \overline{x}_2 \cdot x_3 = x_1 (\overline{x}_2 + x_2) (\overline{x}_3 + x_3) + (\overline{x}_1 + x_1) \overline{x}_2 \cdot x_3 = x_1 (\overline{x}_2 + x_2) (\overline{x}_3 + x_3) + (\overline{x}_1 + x_1) \overline{x}_2 \cdot x_3 = x_1 (\overline{x}_2 + x_2) (\overline{x}_3 + x_3) + (\overline{x}_1 + x_1) \overline{x}_2 \cdot x_3 = x_1 (\overline{x}_2 + x_2) (\overline{x}_3 + x_3) + (\overline{x}_1 + x_1) \overline{x}_2 \cdot x_3 = x_1 (\overline{x}_2 + x_2) (\overline{x}_3 + x_3) + (\overline{x}_1 + x_1) \overline{x}_2 \cdot x_3 = x_1 (\overline{x}_2 + x_2) (\overline{x}_3 + x_3) + (\overline{x}_1 + x_3) (\overline{x}_1 + x_3) (\overline{x}_1 + x_3) (\overline{x}_1 + x_3) + (\overline{x}_1 + x_3) (\overline{x}_1 + x_3)$$

Składniki kodujemy wg zasady: zmienna prosta $x_i \leftrightarrow 1$, zmienna negowana $\bar{x}_i \leftrightarrow 0$. Stąd: $f(x_1, x_2, x_3) = \sum_{i=1}^{n} (1, 4, 5, 6, 7)$ oraz przez dopełnienie $f(x_1, x_2, x_3) = \prod_{i=1}^{n} (0, 2, 3)$.

KPI:
$$f(x_1, x_2, x_3) = x_1 + \overline{x}_2 \cdot x_3 = (x_1 + \overline{x}_2)(x_1 + x_3) =$$

= $(x_1 + \overline{x}_2 + \overline{x}_3)(x_1 + \overline{x}_2 + x_3)(x_1 + \overline{x}_2 + x_3)(x_1 + x_2 + x_3).$

Składniki kodujemy wg zasady: zmienna prosta $x_i \leftrightarrow 0$, zmienna negowana $\overline{x}_i \leftrightarrow 1$. Stąd: $f(x_1, x_2, x_3) = \prod (0,2,3)$ oraz przez dopełnienie $f(x_1, x_2, x_3) = \sum (1,4,5,6,7)$.

Implikant funkcji $f(x_1, ..., x_n)$ to taka funkcja $g(x_1, ..., x_n)$, że jeżeli g = 1, to f = 1.

Implikant prosty: taki iloczyn zmiennych, który jest implikantem i który zmniejszony o dowolną zmienną przestaje nim być.

Implicent funkcji $f(x_1, ..., x_n)$ to taka funkcja $h(x_1, ..., x_n)$, że jeżeli h = 0, to f = 0.

Implicent prosty: taka suma zmiennych, która jest implicentem i która zmniejszona o dowolną zmienną przestaje nim być.

Wnioski:

- Implikant g pokrywa (część lub wszystkie) jedynki funkcji f.
- Implicent h pokrywa (część lub wszystkie) zera funkcji f.
- Każdą funkcję można przedstawić w postaci sumy wszystkich jej implikantów prostych: $f(x_1, ..., x_n) = \sum g_i$.
- Każdą funkcję można przedstawić w postaci iloczynu wszystkich jej implicentów prostych: $f(x_1, ..., x_n) = \prod h_i$.

Własności implikantów i implicentów:

Funkcja logiczna $f(x_1,, x_n)$					
Implikant $g(x_1,\ldots,x_n)$	Implicent $h(x_1,,x_n)$				
$g \to f \equiv 1$	$\overline{h} \to \overline{f} \equiv 1$				
$\overline{g} + f \equiv 1$	$h + \overline{f} \equiv 1$				
$g \cdot \overline{f} \equiv 0$	$\overline{h} \cdot f \equiv 0$				
$g \cdot f \equiv g$	$h+f\equiv h$				

<u>Przykład</u>: funkcję $f(x_1, x_2, x_3) = \overline{x_1} \cdot x_3 + x_1 \cdot x_2$ doprowadzić do KPS i KPI; zbadać, czy $g = x_2 \cdot x_3$ jest implikantem prostym tej funkcji, zbadać, czy $h = x_1 + x_3$ jest implicantem prostym tej funkcji.

$$f(x_1, x_2, x_3) = \overline{x}_1 \cdot x_3 + x_1 \cdot x_2 = \overline{x}_1 \cdot (\overline{x}_2 + x_2) \cdot x_3 + x_1 \cdot x_2 \cdot (\overline{x}_3 + x_3) =$$

$$= \overline{x}_1 \cdot \overline{x}_2 \cdot x_3 + \overline{x}_1 \cdot x_2 \cdot x_3 + x_1 \cdot x_2 \cdot \overline{x}_3 + x_1 \cdot x_2 \cdot x_3 = \sum (1, 3, 6, 7) = \prod (0, 2, 4, 5).$$

Sprawdzenie implikantu:
$$\overline{g} + f = \overline{x_2 \cdot x_3} + \overline{x_1} \cdot x_3 + x_1 \cdot x_2 = \overline{x_2} + \overline{x_3} + \overline{x_1} \cdot x_3 + x_1 \cdot x_2 =$$

$$= (\overline{x_2} + x_2 \cdot x_1) + (\overline{x_3} + x_3 \cdot \overline{x_1}) = (\overline{x_2} + x_1) + (\overline{x_3} + \overline{x_1}) =$$

$$= \overline{x_1} + x_1 + \overline{x_2} + \overline{x_3} = 1 + \overline{x_2} + \overline{x_3} = 1,$$

dla
$$g_1 = x_2$$
: $\overline{x}_2 + f = \overline{x}_2 + \overline{x}_1 \cdot x_3 + x_1 \cdot x_2 = x_1 + \overline{x}_2 + x_3 \neq 1$,

dla
$$g_2 = x_3$$
: $\overline{x}_3 + f = \overline{x}_3 + \overline{x}_1 \cdot x_3 + x_1 \cdot x_2 = \overline{x}_1 + x_2 + \overline{x}_3 \neq 1$, czyli implikant prosty.

Sprawdzenie implicentu:
$$\overline{h} \cdot f = \overline{(x_1 + x_3)} \cdot (\overline{x}_1 \cdot x_3 + x_1 \cdot x_2) = \overline{x}_1 \cdot \overline{x}_3 \cdot (\overline{x}_1 \cdot x_3 + x_1 \cdot x_2) =$$

$$= \overline{x}_1 \cdot \overline{x}_3 \cdot x_3 + \overline{x}_1 \cdot x_1 \cdot x_2 \cdot \overline{x}_3 = \overline{x}_1 \cdot 0 + 0 \cdot x_2 \cdot \overline{x}_3 \equiv 0,$$

dla
$$h_1 = x_1$$
: $\overline{x}_1 \cdot f = \overline{x}_1 \cdot (\overline{x}_1 \cdot x_3 + x_1 \cdot x_2) = \overline{x}_1 \cdot \overline{x}_3 \neq 0$

dla
$$h_2 = x_3$$
: $\overline{x}_3 \cdot f = \overline{x}_3 \cdot (\overline{x}_1 \cdot x_3 + x_1 \cdot x_2) = x_1 \cdot x_2 \cdot \overline{x}_3 \neq 0$, czyli implicent prosty.

<u>Przykład</u>: dla funkcji $f(x_1, x_2, x_3) = \overline{x}_1 \cdot x_3 + x_1 \cdot x_2$ pokazać w tabeli, że $g = x_2 \cdot x_3$ jest implikantem prostym tej funkcji; pokazać w tabeli, że $h = x_1 + x_3$ jest implicantem prostym tej funkcji.

x_1	x_2	x_3	f	$g=x_2\cdot x_3$	$h=x_1+x_3$
0	0	0	0_	0	0
0	0	1	1	0	1
0	1	0	0_	0	0
0	1	1	1◀	1	1
1	0	0	0	0	1
1	0	1	0	0	1
1	1	0	1	0	1
1	1	1	1◀	1	1

Wnioski z tabeli:

Jedynki funkcji $g = x_2 \cdot x_3$ pokrywają niektóre *jedynki* funkcji f (czerwone strzałki).

Uproszczona funkcja $g_1 = x_2$ nie zawsze wskazuje *jedynki* funkcji f.

Uproszczona funkcja $g_2 = x_3$ nie zawsze wskazuje *jedynki* funkcji f.

Funkcja $g = x_2 \cdot x_3$ jest zatem implikantem prostym funkcji f.

Zera funkcji $h = x_1 + x_3$ pokrywają niektóre zera funkcji f (niebieskie strzałki).

Uproszczona funkcja $h_1 = x_1$ nie zawsze wskazuje *zera* funkcji f.

Uproszczona funkcja $h_2 = x_3$ nie zawsze wskazuje *zera* funkcji f.

Funkcja $h = x_1 + x_3$ jest zatem implicentem prostym funkcji f.

Przykład: funkcję f doprowadzić do KPS i KPI; wskazać jej dowolne implikanty i implicenty.

$$f(x_{1},x_{2},x_{3}) = \overline{(x_{1} \oplus x_{2}) \to \overline{x}_{2} \cdot x_{3}} = (x_{1} \oplus x_{2}) \cdot \overline{(\overline{x}_{2} \cdot x_{3})} = (x_{1} \oplus x_{2}) \cdot (\overline{\overline{x}_{2}} + \overline{x}_{3}) =$$

$$= (\overline{x}_{1} \cdot x_{2} + x_{1} \cdot \overline{x}_{2}) \cdot (x_{2} + \overline{x}_{3}) = \overline{x}_{1} \cdot x_{2} + \overline{x}_{1} \cdot x_{2} \cdot \overline{x}_{3} + x_{1} \cdot \overline{x}_{2} \cdot x_{2} + x_{1} \cdot \overline{x}_{2} \cdot \overline{x}_{3} =$$

$$= \overline{x}_{1} \cdot x_{2} \cdot (\overline{x}_{3} + x_{3}) + \overline{x}_{1} \cdot x_{2} \cdot \overline{x}_{3} + x_{1} \cdot 0 + x_{1} \cdot \overline{x}_{2} \cdot \overline{x}_{3} =$$

$$= \overline{x}_{1} \cdot x_{2} \cdot \overline{x}_{3} + \overline{x}_{1} \cdot x_{2} \cdot x_{3} + \overline{x}_{1} \cdot x_{2} \cdot \overline{x}_{3} + x_{1} \cdot \overline{x}_{2} \cdot \overline{x}_{3} = \sum (2,3,4) = \prod (0,1,5,6,7).$$

Implikantami tej funkcji (nie koniecznie prostymi) są jej poszczególne składniki, np.:

$$g_1 = \overline{x}_1 \cdot x_2 \cdot \overline{x}_3$$
, $g_2 = \overline{x}_1 \cdot x_2 \cdot x_3$, $g_3 = x_1 \cdot \overline{x}_2 \cdot \overline{x}_3$.

Implicentami tej funkcji (nie koniecznie prostymi) są jej poszczególne czynniki, np.:

$$h_1 = x_1 + x_2 + x_3$$
, $h_2 = x_1 + x_2 + \overline{x}_3$, $h_3 = \overline{x}_1 + x_2 + \overline{x}_3$, $h_4 = \overline{x}_1 + \overline{x}_2 + x_3$, $h_5 = \overline{x}_1 + \overline{x}_2 + x_3$.

Minimalizacja funkcji logicznych – tablice Karnaugha

- wiersze i kolumny opisujemy kodami Gray'a
- stosujemy reguły sklejania (po jedynkach lub po zerach)

Przykłady: tablice Karnaugha dla funkcji o różnej liczbie zmiennych.

x_1	0	1
0	0	1
1	2	3

x_1 x_2 x_3	0 0	0 1	1 1	1 0
0	0	1	3	2
1	4	5	7	6

x_1 x_2 x_3 x_4	0 0	0 1	1 1	1 0
0 0	0	1	3	2
0 1	4	5	7	6
1 1	12	13	15	14
1 0	8	9	11	10

$x_3 x_4 x_5$ $x_1 x_2$	0 0 0	0 0 1	0 1 1	0 1 0	1 1 0	1 1 1	1 0 1	100
0 0	0	1	3	2	6	7	5	4
0 1	8	9	11	10	14	15	13	12
1 1	24	25	27	26	30	31	29	28
1 0	16	17	19	18	22	23	21	20

Przykłady: zminimalizować podane funkcje.

• Funkcja $f(x_1, x_2, x_3, x_4) = \sum (4,8,11,13,(1,5,10,12,14))$ minimalizowana po jedynkach.

$\chi x_3 x_4$				
$x_1 x_2$	0 0	0 1	1 1	1 0
0 0		X		
0 1	/ 1	x		
)		
1 1	X	1		X
1 0	1/		1	X

Wynik minimalizacji: $f(x_1, x_2, x_3) = x_2 \cdot \overline{x}_3 + x_1 \cdot \overline{x}_4 + x_1 \cdot \overline{x}_2 \cdot x_3$.

• Funkcja $f(x_1, x_2, x_3, x_4) = \sum (0,2,8,11,(1,3,10))$ minimalizowana po *jedynkach*.

$\chi_3 \chi_4$				
$x_1 x_2$	0.0	0 1	1 1	10
0 0	1	X	X	1/
0 1				
1 1				
1 0	1		1	X

Wynik minimalizacji: $f(x_1, x_2, x_3, x_4) = \overline{x}_2 \cdot \overline{x}_4 + \overline{x}_2 \cdot x_3$.

• Funkcja $f(x_1, x_2, x_3, x_4) = \prod (0.2, 6, 7, 9, 15, (1,3,5,10,12,14))$ minimalizowana po zerach.

$\chi x_3 x_4$				
$x_1 x_2$	0 0	0.1	11	1 0
0 0	$\bigcirc 0$	X	X	0
0 1		X	0	0
1 1	X		0	X/
1 0		/0\		X

Wynik minimalizacji: $f(x_1, x_2, x_3) = (\overline{x}_2 + \overline{x}_3) \cdot (x_1 + x_2) \cdot (x_2 + x_3 + \overline{x}_4)$.

Bramki logiczne

BUF	NOT
$x \longrightarrow x$	$x \longrightarrow \overline{x}$
AND	NAND
$x - x \cdot y$	$x \longrightarrow \overline{x \cdot y}$
OR	NOR
$x \longrightarrow x + y$	$x \longrightarrow \overline{x+y}$
XOR	NXOR
$x \longrightarrow x \oplus y$	$x \longrightarrow \overline{x \oplus y}$

Ważne:

• negacja iloczynu (NAND) to suma zanegowanych sygnałów: $\overline{x \cdot y} = \overline{x} + \overline{y}$,

• negacja sumy (NOR) to iloczyn zanegowanych sygnałów: $\overline{x+y} = \overline{x} \cdot \overline{y}$,

• negacja sumy modulo 2 (XOR) to równoważność sygnałów: $\overline{x \oplus y} = (x \equiv y)$,

• bramka BUF jest jedynie wzmacniaczem (buforem) i nie zmienia wartości logicznej sygnału.

System funkcjonalnie pełny (SFP): system, w którym można zbudować każdą funkcję logiczną.

Różne SFP:

- system realizujący operacje: AND, OR, NOT,
- system realizujący operację NAND,
- system realizujący operację NOR,
- system realizujący operację IF oraz stała logiczna fałsz ("0").

Przykład: wykazać, że system NAND jest funkcjonalnie pełny.

Wystarczy pokazać, że za pomocą bramek NAND można wykonać operacje NOT, AND i OR.

Przykład: wykazać, że system NOR jest funkcjonalnie pełny.

Wystarczy pokazać, że za pomocą bramek NOR można wykonać operacje NOT, OR i AND.

Przykład: wykazać, że system IF ze stałą logiczną "0" jest funkcjonalnie pełny.

Wykorzystamy zależności: $(x \to y) = \overline{x} + y$ oraz $\overline{(x \to y)} = x \cdot \overline{y}$.

- realizacja NOT: $(x \rightarrow 0) = \overline{x} + 0 = \overline{x}$,
- realizacja OR: $((x \to 0) \to y) = (\overline{x} \to y) = \overline{x} + y = x + y$,
- realizacja AND: $(((x \to (y \to 0)) \to 0) = \overline{(x \to \overline{y})} = x \cdot \overline{\overline{y}} = x \cdot y$.

Realizacje kanoniczne funkcji logicznych

Jako ilustracja pokazana zostanie realizacja funkcji $f(x_1,x_2,x_3) = \sum (1,3,6,7) = \prod (0,2,4,5)$.

$x_2 x_3$				_
x_1	0 0	0 1	1 1	10
0	0	J	igcup	< 0
1	0	0		

Minimalizacja po *jedynkach* (linie czerwone): $f(x_1, x_2, x_3) = \overline{x}_1 \cdot x_3 + x_1 \cdot x_2$.

Minimalizacja po zerach (linie niebieskie): $f(x_1, x_2, x_3) = (x_1 + x_3) \cdot (\overline{x}_1 + x_2)$.

Działanie poszczególnych sieci bramek:

• Sieć (2×AND i OR): $\overline{x}_1 \cdot x_3 + x_1 \cdot x_2 \equiv f$

• Sieć (3×NAND):
$$\overline{(\overline{x_1} \cdot x_3) \cdot \overline{(x_1 \cdot x_2)}} = \overline{(\overline{x_1} \cdot x_3)} + \overline{(\overline{x_1} \cdot x_2)} = \overline{x_1} \cdot x_3 + x_1 \cdot x_2 \equiv f$$

• Sieć (2×OR i AND): $(x_1 + x_3) \cdot (\overline{x}_1 + x_2) \equiv f$

• Sieć (3×NOR):
$$\overline{(\overline{(x_1+x_3)}+\overline{(\overline{x_1}+x_2)})} = \overline{(\overline{x_1}+x_3)} \cdot \overline{(\overline{x_1}+x_2)} = (x_1+x_3) \cdot (\overline{x_1}+x_2) \equiv f$$

Analiza schematów

Dla sieci zawierającej bramki NAND i NOR tworzymy schemat zastępczy wg podanych reguł:

- licząc od strony wyjścia: nieparzysty (pierwszy, trzeci, ...) NAND zastępujemy bramką OR,
- licząc od strony wyjścia: nieparzysty (pierwszy, trzeci, ...) NOR zastępujemy bramką AND,
- licząc od strony wyjścia: parzysty (drugi, czwarty, ...) NAND zastępujemy bramką AND,
- licząc od strony wyjścia: parzysty (drugi, czwarty, ...) NOR zastępujemy bramką OR,
- licząc od strony wyjścia: zmienna dochodząca do nieparzystej bramki będzie zanegowana,
- licząc od strony wyjścia: zmienna dochodząca do parzystej bramki nie będzie modyfikowana.

Podany sposób postępowania można zestawić w tabeli:

licząc od strony wyjścia:	bramka nieparzysta	bramka parzysta	
NAND	zastąp bramką OR	zastąp bramką AND	
NOR	zastąp bramką AND	zastąp bramką OR	
zmienna	zastąp zmienną zanegowaną	pozostaw zmienną	

<u>Przykład</u>: narysować schemat zastępczy podanej sieci i podać postać funkcji f(x, y, z).

Stosując podane reguły dostaje się sieć zastępczą.

Stąd funkcja: $f(x,y,z) = (\overline{x} + \overline{y}) \cdot (\overline{y} + \overline{z}) \cdot z \cdot \overline{x} = (\overline{x} \cdot \overline{y} + \overline{x} \cdot \overline{z} + \overline{y} \cdot \overline{y} + \overline{y} \cdot \overline{z}) \cdot z \cdot \overline{x} = \overline{x} \cdot \overline{y} \cdot z$.

Multipleksery (2/1, 4/1, 8/1, 16/1, ...)

działanie Mpx 2/1

$$y = \begin{cases} I_0 & \text{dla} & A_0 = 0 \\ I_1 & \text{dla} & A_0 = 1 \end{cases}$$

$$y = I_0 \cdot \overline{A}_0 + I_1 \cdot A_0$$

$$y = (I_1 + A_1) \cdot (I_1 + \overline{A}_1)$$

działanie Mpx 4/1

$$y = \begin{cases} I_0 & \text{dla} \quad A_0 = 0 \\ I_1 & \text{dla} \quad A_0 = 1 \end{cases}$$

$$y = \begin{cases} I_0 & \text{dla} \quad A_1 A_0 = 00 \\ I_1 & \text{dla} \quad A_1 A_0 = 01 \\ I_2 & \text{dla} \quad A_1 A_0 = 10 \\ I_3 & \text{dla} \quad A_1 A_0 = 11 \end{cases}$$

$$y = I_0 \cdot \overline{A}_0 + I_1 \cdot A_0 \qquad y = I_0 \cdot \overline{A}_1 \cdot \overline{A}_0 + I_1 \cdot \overline{A}_1 \cdot A_0 + I_2 \cdot A_1 \cdot \overline{A}_0 + I_3 \cdot A_1 \cdot A_0$$

$$y = (I_0 + A_0) \cdot (I_1 + \overline{A}_0) \qquad y = (I_0 + A_1 + A_0) \cdot (I_1 + A_1 + \overline{A}_0) \cdot (I_2 + \overline{A}_1 + A_0) \cdot (I_1 + \overline{A}_0) \cdot (I_2 + \overline{A}_1 + A_0) \cdot (I_1 + \overline{A}_0) \cdot (I_2 + \overline{A}_0 + \overline{A}_0) \cdot (I_1 + \overline{A}_0) \cdot (I_2 + \overline{A}_0 + \overline{A}_0 + \overline{A}_0) \cdot (I_2 + \overline{A}_0 + \overline{A}_0 + \overline{A}_0) \cdot (I_2 + \overline{A}_0 + \overline{A}_0 + \overline{A}_0 + \overline{A}_0) \cdot (I_2 + \overline{A}_0 + \overline{A}_0$$

$$y = I_0 \cdot A_1 \cdot A_0 + I_1 \cdot A_1 \cdot A_0 + I_2 \cdot A_1 \cdot A_0 + I_3 \cdot A_1 \cdot A_0$$

$$y = (I_0 + A_1 + A_0) \cdot (I_1 + A_1 + \overline{A_0}) \cdot (I_2 + \overline{A_1} + A_0) \cdot (I_3 + \overline{A_1} + \overline{A_0})$$

Demultipleksery (1/2, 1/4, 1/8, 1/16, ...)

Dmpx 1/4

działanie Dmpx 1/2

$$\begin{cases} I_0 = w & \text{dla} \quad A_0 = 0 \\ I_1 = w & \text{dla} \quad A_0 = 1 \end{cases}$$

działanie Dmpx 1/4

$$\begin{cases} I_0 = w & \text{dla} & A_1 A_0 = 00\\ I_1 = w & \text{dla} & A_1 A_0 = 01\\ I_2 = w & \text{dla} & A_1 A_0 = 10\\ I_3 = w & \text{dla} & A_1 A_0 = 11 \end{cases}$$

Realizacja funkcji logicznych na multiplekserach

Jako ilustracja pokazana zostanie realizacja funkcji $f(a,b,c,d) = \sum_{i=1}^{n} (0,1,2,8,9,13)$.

$\searrow c d$				
 a b	0 0	0 1	1 1	1 0
0 0	9	1/		V
 0 1)		
1 1		(1)		
1 0	1	1)		

minimalizacja po jedynkach:

$$f = \overline{b}\,\overline{c} + a\overline{c}\,d + \overline{a}\,\overline{b}\,\overline{d}$$

• Rozwiązanie z Mpx 4/1 (zmienne adresowe: $A_1 = a$, $A_0 = b$)

Multiplekser realizuje funkcję f, zatem: $I_0 \overline{a} \overline{b} + I_1 \overline{a} b + I_2 a \overline{b} + I_3 a b = \overline{b} \overline{c} + a \overline{c} d + \overline{a} \overline{b} \overline{d}$.

Podstawiając do obu stron równania różne wartości zmiennych a i b otrzymujemy:

$$- dla \ a = 0, \ b = 0$$
: $I_0 = f(0,0,c,d) = \overline{c} + \overline{d}$

$$- dla \ a = 0, \ b = 1$$
: $I_1 = f(0,1,c,d) = 0$

$$- dla \ a = 1, b = 0: I_2 = f(1,0,c,d) = \overline{c}$$

- dla
$$a = 1$$
, $b = 1$: $I_3 = f(1,1,c,d) = \overline{c} \cdot d$

• Rozwiązanie z Mpx 8/1 (zmienne adresowe: $A_2 = a$, $A_1 = b$, $A_0 = c$)

Zachodzi: $I_0 \overline{a} \overline{b} \overline{c} + I_1 \overline{a} \overline{b} c + I_2 \overline{a} b \overline{c} + I_3 \overline{a} b c + I_4 a \overline{b} \overline{c} + I_5 a \overline{b} c + I_6 a b \overline{c} + I_7 a b c = \overline{b} \overline{c} + a \overline{c} d + \overline{a} \overline{b} \overline{d}$.

Podstawiając do obu stron równania różne wartości zmiennych a, b i c otrzymujemy:

- dla
$$a=0$$
, $b=0$, $c=0$: $I_0 = f(0,0,0,d) = 1$

- dla
$$a = 0$$
, $b = 0$, $c = 1$: $I_1 = f(0,0,1,d) = \overline{d}$

- dla
$$a=0$$
, $b=1$, $c=0$: $I_2 = f(0,1,0,d) = 0$

$$- dla \ a = 0, b = 1, c = 1$$
: $I_3 = f(0,1,1,d) = 0$

$$- dla \ a = 1, b = 0, c = 0: I_4 = f(1,0,0,d) = 1$$

- dla
$$a=1$$
, $b=0$, $c=1$: $I_5=f(1,0,1,d)=0$

- dla
$$a = 1$$
, $b = 1$, $c = 0$: $I_6 = f(1,1,0,d) = d$

- dla
$$a=1$$
, $b=1$, $c=1$: $I_7 = f(1,1,1,d) = 0$

• Rozwiązanie z Mpx 16/1 (zmienne adresowe: $A_3 = a$, $A_2 = b$, $A_1 = c$, $A_0 = d$)

Zachodzi:
$$\overline{b}\,\overline{c} + a\overline{c}d + \overline{a}\overline{b}\,\overline{d} = I_0\overline{a}\,\overline{b}\,\overline{c}\overline{d} + I_1\overline{a}\,\overline{b}\,\overline{c}d + I_2\overline{a}\,\overline{b}\,c\overline{d} + I_3\overline{a}\,\overline{b}\,cd + I_4\overline{a}\,\overline{b}\,\overline{c}\overline{d} + I_5\overline{a}\,\overline{b}\,\overline{c}d + I_6\overline{a}\,\overline{b}\,\overline{c}\overline{d} + I_{7}\overline{a}\,\overline{b}\,cd + I_{8}a\overline{b}\,\overline{c}\overline{d} + I_{10}a\overline{b}\,\overline{c}\overline{d} + I_{11}a\overline{b}\,cd + I_{12}ab\overline{c}\overline{d} + I_{13}ab\overline{c}d + I_{14}ab\overline{c}\overline{d} + I_{15}abcd$$
.

Podstawiając do obu stron równania różne wartości zmiennych a, b, c i d otrzymujemy:

$$- \operatorname{dla} \ a = 0, \ b = 0, \ c = 0, \ d = 0 \colon I_0 = f(0,0,0,0) = 1 \\ - \operatorname{dla} \ a = 0, \ b = 0, \ c = 0, \ d = 1 \colon I_1 = f(0,0,0,1) = 1 \\ - \operatorname{dla} \ a = 0, \ b = 0, \ c = 1, \ d = 0 \colon I_2 = f(0,0,1,0) = 1 \\ - \operatorname{dla} \ a = 0, \ b = 0, \ c = 1, \ d = 1 \colon I_3 = f(0,0,1,1) = 0 \\ - \operatorname{dla} \ a = 0, \ b = 1, \ c = 0, \ d = 0 \colon I_4 = f(0,1,0,0) = 0 \\ - \operatorname{dla} \ a = 0, \ b = 1, \ c = 0, \ d = 1 \colon I_5 = f(0,1,1,0) = 0 \\ - \operatorname{dla} \ a = 0, \ b = 1, \ c = 1, \ d = 0 \colon I_6 = f(0,1,1,0) = 0 \\ - \operatorname{dla} \ a = 0, \ b = 1, \ c = 1, \ d = 1 \colon I_7 = f(0,1,1,1) = 0 \\ - \operatorname{dla} \ a = 1, \ b = 0, \ c = 0, \ d = 0 \colon I_8 = f(1,0,0,0) = 1 \\ - \operatorname{dla} \ a = 1, \ b = 0, \ c = 0, \ d = 1 \colon I_9 = f(1,0,1,0) = 0 \\ - \operatorname{dla} \ a = 1, \ b = 0, \ c = 1, \ d = 0 \colon I_{10} = f(1,0,1,1) = 0 \\ - \operatorname{dla} \ a = 1, \ b = 1, \ c = 0, \ d = 1 \colon I_{11} = f(1,1,0,0) = 0 \\ - \operatorname{dla} \ a = 1, \ b = 1, \ c = 0, \ d = 1 \colon I_{13} = f(1,1,0,1) = 1 \\ - \operatorname{dla} \ a = 1, \ b = 1, \ c = 1, \ d = 0 \colon I_{14} = f(1,1,1,0) = 0 \\ - \operatorname{dla} \ a = 1, \ b = 1, \ c = 1, \ d = 0 \colon I_{15} = f(1,1,1,1) = 0 \\ - \operatorname{dla} \ a = 1, \ b = 1, \ c = 1, \ d = 1 \colon I_{15} = f(1,1,1,1) = 0 \\ - \operatorname{dla} \ a = 1, \ b = 1, \ c = 1, \ d = 1 \colon I_{15} = f(1,1,1,1) = 0 \\ - \operatorname{dla} \ a = 1, \ b = 1, \ c = 1, \ d = 1 \colon I_{15} = f(1,1,1,1) = 0 \\ - \operatorname{dla} \ a = 1, \ b = 1, \ c = 1, \ d = 1 \colon I_{15} = f(1,1,1,1) = 0 \\ - \operatorname{dla} \ a = 1, \ b = 1, \ c = 1, \ d = 1 \colon I_{15} = f(1,1,1,1) = 0 \\ - \operatorname{dla} \ a = 1, \ b = 1, \ c = 1, \ d = 1 \colon I_{15} = f(1,1,1,1) = 0 \\ - \operatorname{dla} \ a = 1, \ b = 1, \ c = 1, \ d = 1 \colon I_{15} = f(1,1,1,1) = 0 \\ - \operatorname{dla} \ a = 1, \ b = 1, \ c = 1, \ d = 1 \colon I_{15} = f(1,1,1,1) = 0 \\ - \operatorname{dla} \ a = 1, \ b = 1, \ c = 1, \ d = 1 \colon I_{15} = f(1,1,1,1) = 0 \\ - \operatorname{dla} \ a = 1, \ b = 1, \ c = 1, \ d = 1 \colon I_{15} = f(1,1,1,1) = 0 \\ - \operatorname{dla} \ a = 1, \ b = 1, \ c = 1, \ d = 1 \colon I_{15} = f(1,1,1,1) = 0 \\ - \operatorname{dla} \ a = 1, \ b = 1, \ c = 1, \ d = 1 \colon I_{15} = f(1,1,1,1) = 0 \\ - \operatorname{dla} \ a = 1, \ b = 1, \ c = 1, \ d = 1 \colon I_{15} = f(1,1,1,1) = 0 \\ - \operatorname{dla} \ a = 1, \ b = 1, \ c = 1, \ d = 1 \colon I_{15} = I_$$

Wniosek: ponieważ $f(a,b,c,d) = \sum (0,1,2,8,9,13)$ i adresujemy $A_3 = a$, $A_2 = b$, $A_1 = c$, $A_0 = d$, wystarczy do wejść I_n (n = 0,1,2,8,9,13) doprowadzić sygnał "1", a do pozostałych wejść I_m (m = 3,4,5,6,7,10,11,12,14,15) doprowadzić sygnał "0".

Zadania:

- Zbudować Mpx 4/1 na bramkach NAND.
- Zbudować Dmpx 4/1 na bramkach NAND.
- Z kilku Mpx 4/1 zbudować Mpx 16/1.
- Z kilku Dmpx 4/1 zbudować Dmpx 16/1.
- Funkcję $f(a,b,c,d) = \sum (1,3,6,7,8,(5,10,11,13,15))$ zrealizować na Mpx 4/1.

Układy kombinacyjne

Zadanie: zbudować układ kombinacyjny testujący podaną sieć logiczną:

- podać funkcję f(a,b,c) realizowaną przez sieć logiczną,
- podać tabelę projektowanego układu testującego,
- układ zrealizować na Mpx 4/1 i bramkach NAND.

Rozwiązanie: należy stworzyć schemat zastępczy sieci. Ze schematu łatwo odczytać funkcję: $f(a,b,c,d) = \overline{a} \cdot b + a \cdot c + b \cdot c = \sum (2,3,5,7)$. Stąd wynika natychmiast tabela układu testującego.

а	b	С	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

t_{I}	t_2	t_3	t_4	w
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Zadanie: zbudować układ dekodowania czterech znaków (A,b,C,d) z możliwością poprawiania pojedynczych błędów; rozpoznane znaki eksponować na wyświetlaczu.

Protokół transmisji		S ₁ S ₂ S ₃ S ₄ S ₅	a b c d efg h
(kodowanie nadmiarowe)	A	0 0 0 0 0	1 1 1 0 1 1 1 0
	b	0 1 1 1 0	0 0 1 1 1 1 1 0
	C	1 0 1 1 1	10011100
	d	1 1 0 0 1	0 1 1 1 1 0 1 0
	_	błąd gruby	0 0 0 0 0 0 1 0
	•	dioda <i>h</i> zapalana dodatkowo, gdy poprawiono błąd	0 0 0 0 0 0 0 1

Rozwiązanie: kod A = 00000 oraz pojedyncze błędy A. = {00001, 00010, 00100, 01000, 10000}, kod b = 01110 oraz pojedyncze błędy b. = {01111, 01100, 01010, 00110, 11110}, kod C = 10111 oraz pojedyncze błędy C. = {10110, 10101, 10011, 11111, 00111}, kod d = 11001 oraz pojedyncze błędy d. = {11000, 11011, 11101, 10001, 01001}.

Stąd natychmiast wynika tabela układu dekodującego znaki z możliwością korekty błędów.

s_1	s_2	<i>S</i> ₃	S_4	S 5	znak
0	0	0	0	0	A
0	0	0	0	1	A.
0	0	0	1	0	A.
0	0	0	1	1	_
0	0	1	0	0	A.
0	0	1	0	1	_
0	0	1	1	0	b.
0	0	1	1	1	C.
0	1	0	0	0	Α.
0	1	0	0	1	d.
0	1	0	1	0	b.
0	1	0	1	1	_
0	1	1	0	0	b.
0	1	1	0	1	_
0	1	1	1	0	b
0	1	1	1	1	b.

s_1	s_2	S_3	S_4	S 5	znak
1	0	0	0	0	A.
1	0	0	0	1	d.
1	0	0	1	0	_
1	0	0	1	1	C.
1	0	1	0	0	_
1	0	1	0	1	C. C.
1	0	1	1	0	C.
1	0	1	1	1	C
1	1	0	0	0	d.
1	1	0	0	1	d
1	1	0	1	0	_
1	1	0	1	1	d.
1	1	1	0	0	_
1	1	1	0	1	d.
1	1	1	1	0	b.
1	1	1	1	1	C.

Układy iteracyjne – projektowanie układów kombinacyjnych opisanych rekurencyjnie

Etapy projektu:

- podanie tabeli (lub grafu) pojedynczego bloku,
- minimalizacja funkcji przeniesień i wyjść,
- realizacja bloku na bramkach lub multiplekserach,
- określenie przeniesień początkowych.

Układ iteracyjny ma postać kaskady identycznych bloków:

Zadanie: zbudować iteracyjny sumator liczb binarnych.

p	a	b	p'	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Synteza pojedynczego bloku: najłatwiej na dwóch Mpx 8/1 (adresowanie $A_2 = p$, $A_1 = a$, $A_0 = b$):

- realizacja bitu sumy s: $I_0 = I_3 = I_5 = I_6 = 0$, $I_1 = I_2 = I_4 = I_7 = 1$,
- realizacja przeniesienia p': $I_0 = I_1 = I_2 = I_4 = 0$, $I_3 = I_5 = I_6 = I_7 = 1$,
- przeniesienie początkowe: p=0 (na pierwszym bloku).

Przykłady: układy iteracyjne wykonujące różne operacje arytmetyczne i logiczne:

a) układ iteracyjny odejmujący dwie liczby binarne (a - b)

b) układ iteracyjny mnożący liczbę binarną przez 3 $(a \times 3)$

c) układ iteracyjny dzielący liczbę binarną przez 3 (a/3)

d) układ iteracyjny zamieniający NKB na Gray'a (NKB → Gray)

e) układ iteracyjny zamieniający Gray'a na NKB (Gray→NKB)

Zadanie: zaprojektować układ iteracyjny wykrywający w *n*-bitowym słowie wejściowym sekwencję kolejnych bitów 1 x 1; po wykryciu sekwencji wyjście dekodera globalnego zostaje ustawione na stałe w stan wysoki.

Rozwiązanie pierwsze – jeden bit na każdy blok (łącznie *n* bloków):

Stany w grafie: A - nie znaleziono początku sekwencji (...0),

B – znaleziono pierwszy element (...1),

C – znaleziono dwa elementy (...11),

D – znaleziono dwa elementy (...10),

S – sukces, sekwencja znaleziona (...111 lub ...101).

Rozwiązanie drugie – dwa kolejne bity na każdy blok (łącznie n/2 bloków):

Stany w grafie: A - nie znaleziono początku sekwencji (...0),

B – znaleziono pierwszy element (...1),

C – znaleziono dwa elementy (...11),

D – znaleziono dwa elementy (...10),

S – sukces, sekwencja znaleziona (...111 lub ...101).

Zadanie: zbudować układ iteracyjny wykrywający w *n*-bitowym słowie wejściowym sekwencje:

0 1 1 gdy przeniesienia początkowe są równe 0 0 0,

110 gdy przeniesienia początkowe są równe 111.

Po wykryciu wyjście dekodera globalnego pozostaje na stałe w stanie wysokim.

Rozwiązanie – jeden bit na każdy blok:

Stany w grafie: A - nie znaleziono początku sekwencji 011,

B – znaleziono pierwszy element sekwencji 011,

C – znaleziono dwa elementy sekwencji 011,

D – nie znaleziono początku sekwencji 110,

E – znaleziono pierwszy element sekwencji 110,

F – znaleziono dwa elementy sekwencji 110,

S – sukces, znaleziono sekwencję <u>011</u> lub <u>110</u>.

Kodowanie stanów: A = 0.00 (obowiazkowo)

 $\mathbf{B} = 0 \ 0 \ 1$

C = 0.1.0

 $\mathbf{D} = 1 \ 1 \ 1 \ \text{(obowiązkowo)}$

 $E = 1 \ 1 \ 0$

F = 101

S = 100

p_1	p_2	p_3	$\boldsymbol{\mathcal{X}}$	p_1	p_2	p_3
0	0	0	0	0	0	1
0	0	0	1	0	0	0
0	0	1	0	0	0	1
0	0	1	1	0	1	0
0	1	0	0	0	0	1
0	1	0	1	1	0	0
0	1	1	0	•	-	-
0	1	1	1	-	-	-
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	1	1	1
1	1	0	1	1	0	1
1	1	1	0	1	1	1
1	1	1	1	1	1	0

p_1	p_2	p_3	у
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	•
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Realizacja: $3 \times Mpx \ 16/1 \ i \ Mpx \ 8/1$ p_1 ' $(A_3 = p_1, A_2 = p_2, A_1 = p_3, A_0 = x)$ $I_0 = I_1 = I_2 = I_3 = I_4 = 0,$ $I_5 = I_8 = I_9 = I_{10} = 1, I_6 = I_7 = \text{dowolne},$ $I_{11} = I_{12} = I_{13} = I_{14} = I_{15} = 1.$

 p_2 ' $(A_3 = p_1, A_2 = p_2, A_1 = p_3, A_0 = x)$ $I_0 = I_1 = I_2 = 0, I_6 = I_7 = \text{dowolne},$ $I_4 = I_5 = I_8 = I_9 = I_{10} = I_{11} = I_{13} = 0,$ $I_3 = I_{12} = I_{14} = I_{15} = 1.$

 p_3 ' $(A_3 = p_1, A_2 = p_2, A_1 = p_3, A_0 = x)$ $I_1 = I_3 = I_5 = 0, I_6 = I_7 = \text{dowolne},$ $I_8 = I_9 = I_{10} = I_{15} = 0,$ $I_0 = I_2 = I_4 = I_{11} = I_{12} = I_{13} = I_{14} = 1.$ $y (A_3 = p_1, A_2 = p_2, A_1 = p_3, A_0 = x)$ $I_0 = I_1 = I_2 = I_5 = I_6 = I_7 = 0,$ $I_4 = 1, I_3 = \text{dowolne}.$

Układy sekwencyjne – synchroniczne

- układ sekwencyjny, czyli zawierający stany (pamięć),
- układ synchroniczny, czyli zmiany stanu dokonują się w takt sygnału zegarowego,
- układ opisuje się za pomocą grafu lub tabeli przejść stanów (modele: Moore'a i Mealy'ego).

Związek między układami iteracyjnymi i synchronicznymi

Sumator iteracyjny – dane podawane równolegle:

- kaskada identycznych bloków,
- przeniesienie początkowe p=0 (na pierwszym bloku).

<u>p</u>	a	b	p	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Sumator synchroniczny (dane podawane szeregowo):

- sumowane liczby i wynik dodawania zawarte w rejestrach przesuwnych,
- przeniesienie wychodzące podawane na wejście sumatora przez przerzutnik D.

przerzutnik D

Q	Q	D
0	0	0
0	1	1
1	0	0
1	1	1

Ważne:

- zadania z układów iteracyjnych i układów synchronicznych mogą być identyczne,
- w projekcie identyczny jest graf oraz tabela (odpowiednio przeniesień lub przejść stanów),
- przeniesienia początkowe w ukł. iteracyjnym to stan początkowy w ukł. synchronicznym.

Porównanie układów iteracyjnych i synchronicznych:

	układy iteracyjne	układy synchroniczne
podawanie danych:	równolegle	szeregowo
szybkość działania:	n imes czas propagacji bloku	$n \times$ okres zegara
wartości inicjalne:	przeniesienia początkowe	początkowy stan przerzutników

Układy sekwencyjne synchroniczne – schemat blokowy

Oznaczenia:

wejście: $\mathbf{x} = x_1 , x_2 , ... , x_m$ stan: $\mathbf{Q} = Q_1 , Q_2 , ... , Q_n$ wyjście: $\mathbf{y} = y_1 , y_2 , ... , y_p$

Modele układów sekwencyjnych:

- układ Moore'a:
- stan następny (\mathbf{Q}^{k+1}) zależy od stanu bieżącego (\mathbf{Q}^{k}) i wejścia bieżącego (\mathbf{x}^{k}),
- wyjście (\mathbf{y}^{k+1}) zależy tylko od stanu (\mathbf{Q}^{k+1}),
- układ Mealy'ego:
- stan następny (\mathbf{Q}^{k+1}) zależy od stanu bieżącego (\mathbf{Q}^{k}) i wejścia bieżącego (\mathbf{x}^{k}),
- wyjście (\mathbf{y}^{k+1}) zależy od stanu (\mathbf{Q}^{k+1}) i wejścia (\mathbf{x}^{k+1}).

układ Moore'a	układ Mealy'ego
$\mathbf{Q}^{k+1} = f(\mathbf{Q}^k, \mathbf{x}^k)$	$\mathbf{Q}^{k+1} = f(\mathbf{Q}^k, \mathbf{x}^k)$
$\mathbf{y}^{k+1} = g(\mathbf{Q}^{k+1})$	$\mathbf{y}^{k+1} = g(\mathbf{Q}^{k+1}, \mathbf{x}^{k+1})$

Minimalizacja liczby stanów wewnętrznych

Minimalizacja układu: zastąpienie danego układu sekwencyjnego innym identycznie działającym układem, ale posiadającym mniejszą liczbę stanów.

Jako ilustracja pokazana zostanie minimalizacja liczby stanów pewnego układu Mealy'ego.

$\searrow x$	0	1
Q `	U	1
A	E/1	-/-
В	C/1	B/0
С	H/-	D/0
D	-/-	A/1
Е	E/0	A/-
F	H/1	E/-
G	H/1	G/1
Н	H/0	A/1

Tablica trójkątna – analiza par stanów:

- stany **sprzeczne**, gdy mają sprzeczne wyjścia (oznaczamy ×)
- stany **niesprzeczne**, gdy mają zgodne wyjścia i identyczne przejścia (oznaczamy **0**)
- stany **niesprzeczne warunkowo**, gdy tylko zgodne wyjścia (np. warunek EC dla pary A i B)

Wypisywanie par stanów niesprzecznych:

AB, AC, AD, AF, AG, CE, CF, DE, DG, DH, EH.

Grupowanie stanów niesprzecznych:

- łączymy odcinkami znalezione pary stanów niesprzecznych,
- kilka par tworzy jedną grupę stanów niesprzecznych, gdy wielokąt ma wszystkie przekątne.

Grupy stanów niesprzecznych:

ACF, ADG, DEH, AB, CE

Wykreślanie – minimalna rodzina stanów (musi być spełniony warunek zamkniętości):

- w grupach można skreślać tylko stany powtarzające się,
- otrzymane po skreśleniach grupy muszą zawierać wszystkie stany z oryginalnej tabeli,
- po skreśleniach stany wewnątrz tabeli muszą być reprezentowane w opisie jej kolumn.

Pierwszy wariant skreśleń

Q	ı	A C F	ΑI) G	DEH	A	λВ	(C I	3
0	ŀ	ЕНН	Е .	· H	- E H	I	E C	F	ΙI	E
1		DΕ	- A	۱G	AAA	-	В	Ι) A	1

Q x	0	1
$CF = \alpha$	γ/1	$\gamma/0$
$AG = \beta$	γ/1	β/1
DEH= γ	$\gamma/0$	β/1
$B = \delta$	α/1	δ/0

Drugi wariant skreśleń

Q	A C F	Å	D G	DEH	F	λВ	(C I	E
0	ЕНН	E	Н	- E H	I	E C	ŀ	ΙI	Ę
1	- DE	-	A G	AAA	-	В	Ι) A	\

Q x	0	1
$ACF = \alpha$	γ/1	$\gamma/0$
$G = \beta$	γ/1	β/1
DEH= γ	$\gamma/0$	α/1
$\mathbf{B} = \mathbf{\delta}$	α/1	δ/0

Ważne:

- układ minimalny ma 4 stany (kodowanie stanu na 2 bitach),
- układ minimalny można zrealizować na 2 przerzutnikach.

Zmiana rodzaju opisu: układ Moore'a ↔ układ Mealy'ego

Przykład: zamienić podany (minimalny) układ Moore'a na układ Mealy'ego.

Q x	0	1	y
A	A	В	1
В	C	D	1
С	Е	F	1
D	A	В	0
E	C	D	0
F	Е	F	0

Rozwiązanie: należy wpisać wyjścia do środka tablicy i zminimalizować układ.

Q x	0	1	y
A	A/1	B/1	1
В	C/1	D/0	1
С	E/0	F/0	1
D	A/1	B/1	0
Е	C/1	D/0	0
F	E/0	F/0	þ

Przykład: zamienić podany (minimalny) układ Mealy'ego na układ Moore'a.

Q x	0	1
α	$\alpha/0$	β/0
β	$\gamma/0$	α/1
γ	β/1	γ/1

Rozwiązanie: każdy stan układu Mealy'ego to dwa stany układu Moore'a: $\alpha/0=A/0$, $\alpha/1=D/1$, $\beta/0=B/0$, $\beta/1=E/1$, $\gamma/0=C/0$, $\gamma/1=F/1$.

Q x	0	1	y
A	A	В	1
В	C	D	1
С	Е	F	1
D	A	В	0
Е	C	D	0
F	Е	F	0

Przerzutniki synchroniczne

Zadanie: uzupełnić przebiegi czasowe na wyjściu Q przerzutnika D.

Zadanie: uzupełnić przebiegi czasowe na wyjściu Q przerzutnika T.

Zadanie: podać sekwencję $(Q_a \ Q_b \ Q_c)$ kolejnych stanów układu począwszy od 001.

Rozwiązanie: $\rightarrow 001 \rightarrow 100 \rightarrow 010 \rightarrow 101 \rightarrow 110 \rightarrow 111 \rightarrow 011$

Zadanie: zaprojektować licznik modulo 4.

q_0	0	1
0	0 1	10
1	(1)(1)	0 0

Rozwiązanie pierwsze: licznik jako układ sekwencyjny synchroniczny.

$$D_0=q_0\! '=\overline{q}_0 \qquad , \qquad D_1=q_1\! '=q_1\overline{q}_0+\overline{q}_1q_0=q_1\oplus q_0$$

Rozwiązanie drugie: licznik asynchroniczny złożony z "dwójek liczących".

Zadanie: zaprojektować podany układ na przerzutniku D (stan układu q jest wyjściem y).

$$D = q' = \overline{q}a + q\overline{b}$$

Ważne: otrzymany układ to przerzutnik JK zrealizowany na przerzutniku D (tj. J=a, K=b).

Zadanie: zbudować dwubitowy rejestr serial-input-parallel-output (SIPO) z przesuwem w prawo.

Ważne: łącząc w podany sposób *n* przerzutników D otrzymujemy *n*-bitowy rejestr przesuwny.

Zadanie: zaprojektować licznik rewersyjny modulo 4 na różnych przerzutnikach (np. D, T, JK).

$q_1 q_0$	0	1
0 0	0 1	1 1
0 1	1 0	0 0
1 1	0 0	1 0
1 0	1 1	0 1

sterowanie przerzutnikiem J₁K₁ dla q

dla q_1	sterowanie przerzutnikiem J_0K_0 dla q_0
-----------	--

$q_1 q_0$	0	1
0 0	0 x	1/x
0 1	1	0 x
1 1	x 1	x 0
1 0	x 0	$\sqrt{x}\sqrt{1}$

$$J_1 = K_1 = q_0 \cdot \overline{s} + \overline{q}_0 \cdot s = q_0 \oplus s$$

$$J_0 = K_0 = 1$$

Zadanie: zbudować zadany przerzutnik korzystając z innego przerzutnika i bramek logicznych:

- a) korzystając z przerzutnika T i bramek logicznych zbudować przerzutnik D,
- b) korzystając z przerzutnika T i bramek logicznych zbudować przerzutnik JK,
- c) korzystając z przerzutnika JK i bramek logicznych zbudować przerzutnik D,
- d) korzystając z przerzutnika JK i bramek logicznych zbudować przerzutnik T.

Zadanie: zaprojektować układ sekwencyjny synchroniczny obliczający wyrażenia arytmetyczne:

- a) $y = 3 \cdot a + b$
- b) $y = 3 \cdot a b$
- c) $y = 3 \cdot a + 2 \cdot b$

Zadanie: zmierzchowe sterowanie miejskimi lampami ulicznymi.

Zaprojektować układ sekwencyjny synchroniczny zmierzchowego sterowania oświetleniem ulic. Układ w kolejnych taktach sygnału zegarowego odczytuje stany logiczne czujników światła S_1 i S_2 . Załączanie lamp odbywa się poprzez ustawienie wyjścia układu w stan wysoki (Y = 1), a wyłączenie lamp następuje w momencie ustawienia wyjścia układu w stan niski (Y = 0). Pracujące niezależnie czujniki światła słonecznego sygnalizują stanem niskim $(S_i = 0)$ porę nocną, zaś stanem wysokim $(S_i = 1)$ porę dzienną. Włączanie i wyłączanie lamp odbywa się wg następujących zasad:

- załączanie jeżeli lampy są wyłączone (dzień) i w chwili testowania stanu czujników co najmniej jeden z nich wskazuje porę nocną, to lampy zostają załączone;
- wyłączanie jeżeli lampy są załączone (noc) i w kolejnych chwilach testowania stanu czujników obydwa czujniki wskazują zgodnie nastanie pory dziennej, to w momencie stwierdzenia trzeciej z rzędu zgodności wskazań następuje wyłączenie lamp.

Podać schemat realizacyjny układu na przerzutnikach JK i bramkach NAND.

Wskazówka: działanie układu opisuje poniższy graf.

Oznaczenia:

wejście: $\mathbf{x} = x_1, x_2, \dots, x_m$

stan: $\mathbf{Q} = Q_1, Q_2, \dots, Q_n$

wyjście: $y = y_1, y_2, ..., y_p$

Modele układów sekwencyjnych:

- układ Moore'a:
- stan następny (\mathbf{Q}^{k+1}) zależy od stanu bieżącego (\mathbf{Q}^{k}) i wejścia bieżącego (\mathbf{x}^{k}),
- wyjście (\mathbf{y}^{k+1}) zależy tylko od stanu (\mathbf{Q}^{k+1}),
- układ Mealy'ego:
- stan następny (\mathbf{Q}^{k+1}) zależy od stanu bieżącego (\mathbf{Q}^{k}) i wejścia bieżącego (\mathbf{x}^{k}),
- wyjście (\mathbf{y}^{k+1}) zależy od stanu (\mathbf{Q}^{k+1}) i wejścia (\mathbf{x}^{k+1}).

układ Moore'a	układ Mealy'ego
$\mathbf{Q}^{k+1} = f(\mathbf{Q}^k, \mathbf{x}^k)$	$\mathbf{Q}^{k+1} = f(\mathbf{Q}^k, \mathbf{x}^k)$
$\mathbf{y}^{k+1} = g(\mathbf{Q}^{k+1})$	$\mathbf{y}^{k+1} = g(\mathbf{Q}^{k+1}, \mathbf{x}^{k+1})$

Projektowanie układów asynchronicznych – zasady:

- kodowanie stanów bez wyścigów (stany połączone różnią się w kodzie na jednym bicie),
- minimalizacja funkcji stanu bez hazardów (grupy zer/jedynek tworzą w tablicy "łańcuch"),
- możliwe realizacje układu:
 - kanoniczna sieć sprzężeniowa (NAND lub NOR),
 - kanoniczna sieć sprzężeniowa i przerzutniki S R.

Zjawisko wyścigu – przykład:

Analiza zmiany bitów stanu: $00 \rightarrow 11$

Uwagi:

- jednoczesna zmiana bitów stanu (np. $00 \rightarrow 11$) jest niemożliwa (różne czasy propagacji),
- jeśli młodszy bit stanu zmieni się najpierw, to układ zatrzyma się w stanie 01,
- jeśli starszy bit stanu zmieni się najpierw, to układ minie stan 10 i zatrzyma się w stanie 01.
- aby zlikwidować wyścig należy zamienić kody stanów 10 i 11.

Kodowanie stanów – bez wyścigów:

graf typu "gwiazda" (więcej bitów kodu)

graf typu "trójkąt" (dodać pomocniczy stan)

graf typu "kratownica" (kody Gray'a)

Zjawisko hazardu – przykład:

Analiza czasowa: $(q = 1, a = 1, q' = a \cdot b + q \cdot \overline{b}, \Delta - \text{czas propagacji bramki NOT})$

Uwagi:

- zgodnie z tabelą zmiana wejścia b z 1 na 0 (gdy q = 1 i a = 1) nie powinna zmienić wartości q,
- z uwagi na niezerowy czas propagacji bramki NOT nowy stan będzie chwilowo q'=0,
- aby zlikwidować hazard należy uwzględnić grupę bitów "spinającą" rozdzielne grupy,
- \bullet w układzie asynchronicznym hazard może być szkodliwy, gdyż q' jest połączone z q.

Zadanie: zbudować układ asynchroniczny przepuszczający co drugi impuls z wejścia na wyjście.

Rozwiązanie 1: sieć sprzężeniowa NAND.

	$q_1 q_0^S$	0	1	У
A	00	00	01	
В	0			
C	01 0	11	01	
D	11	11	10	

$q_1 q_0^S$	0	1
00	0	0
01	1	0
11	(1)	[1];
10	0	1

$q_1 q_0$	0	1
00	0	1
01		1)
11	1	0
10	0	0

q_1	0	1
0	0	0
1	1	0

$$q_1' = q_0 \overline{s} + q_1 s + q_1 q_0$$

$$q_0' = q_0 \overline{s} + \overline{q}_1 s + \overline{q}_1 q_0$$

$$y = q_1 \overline{q}_0$$

Rozwiazanie 2: wykorzystanie przerzutników asynchronicznych S R.

Q	Q'	\overline{S}	$\overline{\mathbf{R}}$	
0	0	1	×	
0	1	0	1	
1	0	1	0	
1	1	×	1	

sterowanie $S_1 R_1$ dla q_1 :

q_1 q_0	0	1
0 0	1x	1x
0 1	01	1x
1 1	x 1	x1

$$\overline{S}_1 = \overline{q}_0 + s$$

$\begin{array}{ccc} s & \\ q_1 & q_0 \end{array}$	0	1
0 0	1	(1)
0 1	0	1
1 1	X	X
1 0	$\overline{1}$	X

$$\overline{\mathbf{R}}_1 = q_0 + s$$

	$\begin{bmatrix} s \\ y_0 \end{bmatrix}$ ()	1
	0 2	`	X
0	1 /	l	X
1	1 1	Ĺ	1
1 (0 ($\sqrt{1}$

sterowanie $S_0 R_0$ dla q_0 :

10

x1

0

$\begin{array}{c c} & s \\ q_1 & q_0 \end{array}$	0	1
0 0	1x	01
0 1	x1	x1
1 1	x1	10
1 0	1x	1x

$$\overline{S}_0 = q_1 + \overline{s}$$

$$s \mid \qquad \mid$$

q_1 q_0	0	1
0 0	/1	0
0 1	X	X
1 1	X	1
1 0	V	1

$$\overline{\mathbf{R}}_0 = \overline{q}_1 + \overline{s}$$

q_1 q_0	0	1
0 0	(x)	1
0 1	1	1
1 1	1	0
1 0	X	X

realizacja wyjścia jak poprzednio: $y = q_1 \overline{q}_0$

Zadanie: zaprojektować układ bramkujący sygnałem G impulsy podawane z wejścia W:

- jeżeli narastające zbocze impulsu W pojawia się przy stanie niskim sygnału bramkującego (G=0), to impuls W zostaje przepuszczony na wyjście Y,
- jeżeli narastające zbocze impulsu W pojawia się przy stanie wysokim sygnału bramkującego (G=1), to impuls W nie jest przepuszczony na wyjście Y.

$\mathbb{Z}W$	Ī				
Q	00	01	11	10	Y
A	A	В	-	D	0
В	A	В	Е	ı	0
C	A	ı	Е	C	0
D	A	ı	F	D	1
E	ı	В	E	C	0
F	-	В	F	D	1

	W	G	Y	stan Q
	0	0	0 =	A
	0	0	1	niemożliwe
	0	1	0 =	В
٠	0	1	1	niemożliwe
	1	0	0 =	C
	1	0	1 =	D
	1	1	0 =	E
	1	1	1 =	F

Minimalizacja liczby stanów: pary stanów zgodnych (AB, BC, BE, CE, DF)

Wykreślanie zbędnych stanów z grup: { AB, BCE, DF }

WG Q	АВ	ВСЕ	DF
0 0	A A	A A -	A -
0 1	ВВ	В - В	- B
1 1	- E	EEE	F F
1 0	D -	- C C	DD

Stan **B** powtarza się: albo wykreślamy **B** z grupy AB albo wykreślamy **B** z grupy BCE.

Obydwa rozwiązania są poprawne (spełnione warunki zamkniętości).

Dwie rodziny minimalne: { A, BCE, DF } albo { AB, CE, DF }.

Graf minimalny Moore'a: $\alpha = A$, $\beta = BCE$, $\gamma = DF$ (oraz stan δ aby usunąć wyścig)

Zamiana układu Moore'a na układ Mealy'ego: (wyjścia Y wpisujemy do tablicy)

$\setminus WG$	i	Ī	i	i	ı i
Q	0 0	0 1	1 1	10	Y
α	α/0	β/0	-/-	γ/1	0
β	$\alpha/0$	β/0	β/0	β/0	0
γ	$\alpha/0$	β/0	γ/1	γ/1	1

Rodzina minimalna: $\{\alpha\gamma, \beta\}$.

Graf minimalny Mealy'ego: ($\Lambda = \alpha \gamma$, $\Omega = \beta$)

	W	G			
Q		00	01	11	10
	Λ	$\Lambda/0$	$\Omega/0$	$\Lambda/1$	Λ/1
	Ω	$\Lambda/0$	$\Omega/0$	$\Omega/0$	$\Omega/0$

Realizacja: $(\Lambda = 0, \Omega = 1)$

stan:
$$q' = \overline{W} \cdot G + q \cdot W + q \cdot G$$

WG	0 0	0 1	1 1	1 0
q				
0	0	1	0	0
1	0	1		

wyjście: $Y = \overline{q} \cdot W$

WG	0 0	0 1	1 1	1 0
q				
0	0	0		
1	0	0	0	0

Zadanie: zbudować przerzutnik synchroniczny D wyzwalany narastającym zboczem zegara C. Narastające zbocze zegara C wpisuje daną D na wyjście Y – pokazuje to rysunek.

Pary stanów zgodnych: (AC, AE, AG, BF, CG, DF, DH, FH)

 \mathbf{C}

A

В

D

E

F

G

Wykreślanie zbędnych stanów z grup: { ACG, DFH, AE, BF }

Q	A	CG	DI	F H	A	Ε	ВІ	7
DC								
0 0	1	AА-	В	B -	Α	ιA	ВН	3
0 1	(ССС	D.	· D	(C -	C ·	
1 1	•	GG	Н	Η	-	Н	- H	[
1 0		E - E	- F	F	Ι	EΕ	FI	· 1

Stany A oraz F powtarzają się:

- albo wykreślamy A z grupy AE oraz wykreślamy F z grupy BF,
- albo wykreślamy A z grupy ACG oraz wykreślamy F z grupy DFH.

Obydwa rozwiązania są poprawne (spełniony warunek zamkniętości).

Dwie rodziny minimalne: { ACG, DFH, E, B} albo { CG, DH, AE, BF}.

Graf minimalny Moore'a: ($\alpha = ACG$, $\beta = DFH$, $\gamma = E$, $\delta = B$), $\alpha = 00$, $\gamma = 01$, $\beta = 11$, $\delta = 10$.

Realizacja sprzężeniowa na bramkach NAND: $q_1'=q_0C+q_1\overline{C}+q_1q_0$, $q_0'=q_0C+D\overline{C}+q_0D$.

Realizacja na przerzutnikach S R: $\overline{S}_1 = \overline{q}_0 + \overline{C}$, $\overline{R}_1 = q_0 + \overline{C}$, $\overline{S}_0 = \overline{D} + C$, $\overline{R}_0 = D + C$.

Realizacja mieszana (z wyjściowym przerzutnikiem S₁ R₁ i bramkami NAND):

- zachodzi:
$$\overline{S}_1 = \overline{q}_0 + \overline{C}$$
, $\overline{R}_1 = q_0 + \overline{C}$, $\overline{q}_0' = q_0 C + D(q_0 + \overline{C}) = \overline{\overline{S}} + D\overline{R}_1$,

$$-$$
 stąd: $\overline{R}_1 = q_0 + \overline{C} = \overline{\overline{S}}_1 + D\overline{R}_1 + \overline{C}$.

Zadanie: zbudować przerzutnik synchroniczny D wyzwalany poziomem sygnału C (D-zatrzask). Dla C=1 dana D przechodzi na wyjście Y, a dla C=0 wyjście Y nie zmienia się (zatrzask).

DC	7				
Q	00	01	11	10	Y
A	A	C	-	D	0
В	В	C	ı	Е	1
C	A	C	F	ı	0
D	A	ı	F	D	0
E	В	-	F	Е	1
F	-	С	F	Е	1

D	C	Y stan Q
0	0	0 = A
0	0	1 = B
0	1	0 = C
0	1	1 niemożliwe
1	0	0 = D
1	0	1 = E
1	1	niemożliwe
1	1	1 = F

Minimalizacja liczby stanów:

Pary stanów zgodnych: (AC, AE, AG, BF, CG, DF, DH, FH)

Rodzina minimalna (skreślenia nie zachodzą): { ACD , BEF }.

Graf minimalny Moore'a: ($\alpha = ACD$, $\beta = BEF$), $\alpha = 0$, $\beta = 1$.

$$q' = D \cdot C + q \cdot \overline{C} + q \cdot D$$
, $Y = q$

DC	0 0	0 1	1 1	1 0
q				
0	0	0	(1)	0
1	\triangle	0	(1)	(1)

sterowanie S R dla q: $\overline{S} = \overline{D} + \overline{C}$, $\overline{R} = D + \overline{C}$.

DC	0 0	0 1	1 1	1 0
q				
0	1 x	1/x	0 1	1 x
1	x 1	10	x/1	x 1

Sieć sprzężeniowa NAND:

Sieć z przerzutnikiem S R:

Przykładowe testy egzaminacyjne

- 1. Podane liczby uporządkować rosnąco: 11000011_{U2} , 101111110_{U1} , 10011011_{Z-M} , -123.
- 2. Liczbę dziesiętną L = 183,17 zamienić algorytmicznie na liczbę binarną (5 bitów po przecinku).
- 3. Wskazać pary bramek działających identycznie:

- 4. Podać tabelki funkcji: $f(a, b) = a \oplus b$; $g(a, b) = a \rightarrow b$. Podać schematy Venna tych funkcji. Funkcje wyrazić w sposób minimalny za pomocą negacji, sumy i iloczynu logicznego.
- 5. Jaką funkcję f(a,b,c) realizuje podana sieć zestykowa? Funkcję zrealizować w sposób minimalny na bramkach NAND.

- 6. Zbadać, czy $g_1 = a \cdot c$ oraz $g_2 = \overline{a} \cdot c$ są implikantami prostymi funkcji $f(a,b,c) = \Sigma (0,1,4,5,7)$.
- 7. Funkcję $f(a,b,c) = a \cdot \overline{c} + \overline{b}$ sprowadzić do KPI i zrealizować na bramkach NOR.
- 8. Funkcję $f(a,b,c) = (a \to \overline{b}) \to \overline{c}$ sprowadzić do KPS i zrealizować na Mpx 4/1.
- 9. Jaką funkcję f(a,b,c,d) realizuje sieć bramek? Funkcję zminimalizować po "jedynkach".

- 10. Funkcję $f(a,b,c,d) = \Sigma(4,6,8,9,10,11,(12,14))$ zminimalizować po "zerach" bez hazardu.
- 11. Podać graf układu iteracyjnego odejmującego dwie liczby binarne.
- 12. Korzystając z dowolnych bramek logicznych i przerzutnika synchronicznego typu *T* zbudować przerzutnik typu *D*. Podać grafy obydwu przerzutników.
- 13. Odtworzyć pełny graf realizowany przez podany układ (stan: $q_1 q_0$).

- 14. Narysować przebiegi czasowe ilustrujące zasadę działania przerzutnika *D* wyzwalanego narastającym zboczem sygnału *C* oraz przerzutnika *D* wyzwalanego poziomem sygnału *C*.
- 15. Zakodować bez wyścigów stany w grafach układów asynchronicznych. Kody stanów muszą zawierać minimalną liczbę bitów.

16. Układ asynchroniczny przepuszcza na wyjście co trzeci impuls z wejścia. Podać przebieg czasowy i zaznaczyć na nim stany układu. Narysować graf układu i poprawnie go zakodować.