从线性代数到张量计算

Tensor Computations: An Algebraic Perspective

陈新宇

程展鸿

赵熙乐

孙立君

发布时间: 2022 年 12 月 更新时间: 2022 年 12 月

目录

第一章	代数结构	7
1.1	向量与矩阵	7
1.2	张量	7
	1.2.1 张量结构	7
	1.2.2 高阶张量矩阵化	7
1.3	特殊代数结构	7
	1.3.1 循环矩阵	7
	1.3.2 卷积矩阵	8
	1.3.3 Hankel 矩阵	8
第二章	Kronecker 积与 Kronecker 分解	9
2.1	Kronecker 积定义	9
2.2	Kronecker 积基本性质	LO
	2.2.1 结合律与分配律	10
	2.2.2 矩阵相乘	Ι1
	2.2.3 求逆矩阵	12
	2.2.4 向量化	12
2.3	Kronecker 积特殊性质	12
2.4	朴素 Kronecker 分解	12
	2.4.1 定义	12
	2.4.2 引入 permute 概念	12
	2.4.3 求解过程	13
2.5	广义 Kronecker 分解	14
2.6	模型参数压缩	15
第三章	低秩线性回归 1	7
3.1	低秩线性回归	۱7
3.2	高维向量自回归	۱7
3.3	时变低秩向量自回归 1	١7

前言

在过去的数十年间,随着信号处理、机器学习与数值计算等领域的快速发展,张量计算已 从以线性代数为支撑的矩阵计算中逐步拓展开来,相关研究贯穿信号处理、机器学习等众多 领域。随着大量张量计算算法涌现出来,我们不难发现:这些算法大多建立在张量分解的基础 上。本文以张量计算这一概念为核心,将从线性代数出发,讲述张量计算相关的一系列内容。 为了提高读者的阅读体验,笔者进行了以下尝试:

- **化繁为简**。将线性代数以及张量计算的范畴限定在实空间中。另外,严格来说,向量和 矩阵属于低阶张量,为区分概念,我们默认常提到的张量特指高阶张量(阶数大于或等 于 3)。
- **由浅入深**。从基本的线性代数内容展开,通过循序渐进的方式引出一系列矩阵分解与张量分解技术,使读者体会到线性代数的巨大价值。
- **熟能生巧**。本文在撰写过程中尽可能考虑初学者的学习历程,在全文中设计一系列难度 适中的例题让读者更直观理解一系列理论,并通过练习熟练掌握相应内容。

笔者深感自身才疏学浅,对于线性代数和张量计算的认识具有一定的局限性,请广大读者批评指正。另外,全文内容设置的合理性也有待考究,需要等待读者的检验。尽管如此,笔者愿竭心力,在后续版本中逐步更新与完善本文,如有建议或疑问,请在 GitHub 开源项目https://github.com/xinychen/tensor-book的问答区与笔者进行互动交流。

作者声明:

- 撰写本文的初衷在于传播知识,为感兴趣的读者提供参考素材。
- 禁止将本文放在其他网站上,唯一下载网址为https://xinychen.github.io/books/tensor_book.pdf。
- 禁止将本文用于任何形式的商业活动。

6 目录

第一章 代数结构

长期以来,线性代数一直作为机器学习中最为重要的数学工具之一,被人们广泛用于开发各类机器学习算法。线性代数本质上是以向量与矩阵为基本代数结构,本书要讨论的张量分解等模型则主要以张量为基本代数结构。在过去的数十年间,借助线性代数这一基本数学工具,机器学习中涌现出了很多经典的代数模型,这其中不乏矩阵分解、主成分分析,而张量分解在某种程度上可看作是矩阵分解的一种衍生物。

近年来,张量分解在机器学习的众多问题中得到了很好的应用,但关于张量的一些计算与我们所熟悉的线性代数却大相径庭,同时,张量计算相比以矩阵计算为主导的线性代数更为抽象,这使得很多与张量分解相关的内容看起来晦涩难懂。实际上,向量与矩阵都是张量的特例,可以被定义为低阶张量。一般而言,向量是第 1 阶张量,英文表述为 first-order tensor;矩阵是第 2 阶张量,英文表述为 second-order tensor;第 3 阶或者更高阶数的张量被称为高阶张量,英文表述为 higher-order tensor。在各类文献中,通常提到的张量都是特指高阶张量,当然,这在本书的叙述中也不例外。需要注意的是,在各类程序语言中,人们更愿意将张量称为多维数组。

在一个矩阵中,某一元素的位置可以说是"第i行、第j列",即要描述某一元素的位置需用到行和列索引构成的组合 (i,j)。类似地,在一个第3阶张量中,描述某一元素的位置需用到三个索引构成的组合,例如 (i,j,k)。在处理稀疏矩阵或稀疏张量时,用索引来标记元素的位置会节省下一些不必要的存储开支。

1.1 向量与矩阵

1.2 张量

- 1.2.1 张量结构
- 1.2.2 高阶张量矩阵化

1.3 特殊代数结构

1.3.1 循环矩阵

循环矩阵 (circulant matrix) 是一种特殊的代数结构,广泛应用于信号处理等。从定义出发,给定任意向量 $\mathbf{x} = (x_1, x_2, \cdots, x_T)^{\mathsf{T}} \in \mathbb{R}^T$,其对应的循环矩阵可写作如下形式:

$$C(\boldsymbol{x}) \triangleq \begin{bmatrix} x_1 & x_T & \cdots & x_2 \\ x_2 & x_1 & \cdots & x_3 \\ \vdots & \vdots & \ddots & \vdots \\ x_T & x_{T-1} & \cdots & x_1 \end{bmatrix} \in \mathbb{R}^{T \times T}$$

$$(1.1)$$

其中, $\mathcal{C}: \mathbb{R}^T \to \mathbb{R}^{T \times T}$ 表示循环算子 (circulant operator)。该循环矩阵的第一列为向量 \boldsymbol{x} 本身,对角线元素均为 x_1 。

例 1. 给定任意向量 $x = (x_1, x_2, x_3, x_4, x_5)^{\mathsf{T}} \in \mathbb{R}^5$,试写出其对应的循环矩阵。

 \mathbf{M} . 向量 \mathbf{x} 对应的循环矩阵为

$$C(\mathbf{x}) = \begin{bmatrix} x_1 & x_5 & x_4 & x_3 & x_2 \\ x_2 & x_1 & x_5 & x_4 & x_3 \\ x_3 & x_2 & x_1 & x_5 & x_4 \\ x_4 & x_3 & x_2 & x_1 & x_5 \\ x_5 & x_4 & x_3 & x_2 & x_1 \end{bmatrix} \in \mathbb{R}^{5 \times 5}$$

$$(1.2)$$

例 2. 给定任意向量 $\mathbf{x} = (x_1, x_2, \cdots, x_T)^{\top} \in \mathbb{R}^T$ 与 $\mathbf{y} = (y_1, y_2, \cdots, y_T)^{\top} \in \mathbb{R}^T$,若两者之间的循环卷积 (circular convolution) 为 $\mathbf{z} = \mathbf{x} \star \mathbf{y} \in \mathbb{R}^T$,其中,符号 \star 表示卷积运算,则向量 \mathbf{z} 的任意元素为

$$z_{t} = \sum_{k=1}^{T} x_{t-k+1} y_{k}, \forall t \in \{1, 2, \dots, T\}$$
(1.3)

其中,当 $t+1 \le k$ 时,则令 $x_{t-k+1} = x_{t-k+1+T}$ 。试根据循环矩阵的定义写出循环卷积。

解. 在这里,循环卷积可写作如下形式:

$$\boldsymbol{z} = \boldsymbol{x} \star \boldsymbol{y} = \begin{bmatrix} x_{1}y_{1} + x_{T}y_{2} + \dots + x_{2}y_{T} \\ x_{2}y_{1} + x_{1}y_{2} + \dots + x_{3}y_{T} \\ \vdots \\ x_{T}y_{1} + x_{T-1}y_{2} + \dots + x_{1}y_{T} \end{bmatrix} = \begin{bmatrix} x_{1} & x_{T} & \dots & x_{2} \\ x_{2} & x_{1} & \dots & x_{3} \\ \vdots & \vdots & \ddots & \vdots \\ x_{T} & x_{T-1} & \dots & x_{1} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{T} \end{bmatrix} = \mathcal{C}(\boldsymbol{x})\boldsymbol{y} \quad (1.4)$$

1.3.2 卷积矩阵

1.3.3 Hankel 矩阵

第二章 Kronecker 积与 Kronecker 分解

Kronecker 积是张量计算中非常重要的一种运算规则,不同于常见的矩阵运算规则,给定任意两个矩阵,两者之间进行 Kronecker 积得到的是一个分块矩阵。Kronecker 分解是一种以 Kronecker 积为基础的分解形式,又被称为 Kronecker 积分解、Kronecker 积逼近 (Kronecker product approximation)、最近 Kronecker 积 (nearest Kronecker product)等,它是矩阵计算与张量计算中十分重要的逼近问题。本章首先介绍 Kronecker 积的定义与性质,然后引出 Kronecker 分解的一般形式、优化问题、求解过程等,最后给出以 Kronecker 分解为基础的模型参数压缩问题。

2.1 Kronecker 积定义

Kronecker 积是以德国数学家 Leopold Kronecker 的名字命令的运算规则,已广泛应用于各类矩阵计算以及张量计算算法中。从定义出发,给定任意矩阵 $X \in \mathbb{R}^{m \times n}$ 与 $Y \in \mathbb{R}^{p \times q}$,则两者之间的 Kronecker 积为

$$\boldsymbol{X} \otimes \boldsymbol{Y} = \begin{bmatrix} x_{11}\boldsymbol{Y} & x_{12}\boldsymbol{Y} & \cdots & x_{1n}\boldsymbol{Y} \\ x_{21}\boldsymbol{Y} & x_{22}\boldsymbol{Y} & \cdots & x_{2n}\boldsymbol{Y} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1}\boldsymbol{Y} & x_{m2}\boldsymbol{Y} & \cdots & x_{mn}\boldsymbol{Y} \end{bmatrix} \in \mathbb{R}^{(mp)\times(nq)}$$
(2.1)

其中,符号 \otimes 表示 Kronecker 积。这里的 Kronecker 积得到的矩阵大小为 $(mp) \times (nq)$,在写法上符合线性代数中对分块矩阵 (block matrix) 的定义,其中,分块矩阵的子矩阵是由矩阵 X 的每个元素与矩阵 Y 相乘得到。

矩阵 X 与 Y 之间的 Kronecker 积存在前后顺序,根据 Kronecker 积的定义,可得到矩阵 Y 与 X 之间的 Kronecker 积为

$$\boldsymbol{Y} \otimes \boldsymbol{X} = \begin{bmatrix} y_{11}\boldsymbol{X} & y_{12}\boldsymbol{X} & \cdots & y_{1q}\boldsymbol{X} \\ y_{21}\boldsymbol{X} & y_{22}\boldsymbol{X} & \cdots & y_{2q}\boldsymbol{X} \\ \vdots & \vdots & \ddots & \vdots \\ y_{p1}\boldsymbol{X} & y_{p2}\boldsymbol{X} & \cdots & y_{pq}\boldsymbol{X} \end{bmatrix} \in \mathbb{R}^{(mp)\times(nq)}$$

$$(2.2)$$

尽管矩阵 $X\otimes Y$ 与矩阵 $Y\otimes X$ 大小一致,但两者并不相等,因此,Kronecker 积不存在交换律。

例 3. 给定矩阵
$$m{X}=\begin{bmatrix}1&2\\3&4\end{bmatrix}$$
 与 $m{Y}=\begin{bmatrix}5&6&7\\8&9&10\end{bmatrix}$,试写出两者之间的 Kronecker 积 $m{X}\otimes m{Y}$ 与 $m{Y}\otimes m{X}$ 。

解. 根据 Kronecker 积定义, 有

$$\boldsymbol{X} \otimes \boldsymbol{Y} = \begin{bmatrix} 1 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} & 2 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} \\ 3 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} & 4 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 5 & 6 & 7 & 10 & 12 & 14 \\ 8 & 9 & 10 & 16 & 18 & 20 \\ 15 & 18 & 21 & 20 & 24 & 28 \\ 24 & 27 & 30 & 32 & 36 & 40 \end{bmatrix}$$
(2.3)

$$\boldsymbol{Y} \otimes \boldsymbol{X} = \begin{bmatrix} 5 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} & 6 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} & 7 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \\ 8 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} & 9 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} & 10 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 5 & 10 & 6 & 12 & 7 & 14 \\ 15 & 20 & 18 & 24 & 21 & 28 \\ 8 & 16 & 9 & 18 & 10 & 20 \\ 24 & 32 & 27 & 36 & 30 & 40 \end{bmatrix}$$
(2.4)

例 4. 给定矩阵 $\mathbf{X} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 与 $\mathbf{Y} = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}$,试问等式 $(\mathbf{X} \otimes \mathbf{Y})^{\mathsf{T}} = \mathbf{X}^{\mathsf{T}} \otimes \mathbf{Y}^{\mathsf{T}}$ 是否成立。

解. 根据 Kronecker 积定义, 有

$$\boldsymbol{X}^{\top} \otimes \boldsymbol{Y}^{\top} = \begin{bmatrix} 5 & 8 \\ 1 \times \begin{bmatrix} 5 & 8 \\ 6 & 9 \\ 7 & 10 \\ 5 & 8 \\ 2 \times \begin{bmatrix} 5 & 8 \\ 6 & 9 \\ 7 & 10 \end{bmatrix} & 3 \times \begin{bmatrix} 5 & 8 \\ 6 & 9 \\ 7 & 10 \\ 5 & 8 \\ 6 & 9 \\ 7 & 10 \end{bmatrix} = \begin{bmatrix} 5 & 8 & 15 & 24 \\ 6 & 9 & 18 & 27 \\ 7 & 10 & 21 & 30 \\ 10 & 16 & 20 & 32 \\ 12 & 18 & 24 & 36 \\ 14 & 20 & 28 & 40 \end{bmatrix}$$
 (2.5)

在这里, 等式 $(X \otimes Y)^{\top} = X^{\top} \otimes Y^{\top}$ 是成立的。

例 5. 给定向量 $\boldsymbol{x} = (1,2)^{\mathsf{T}}$ 与 $\boldsymbol{y} = (3,4)^{\mathsf{T}}$, 试写出 $\boldsymbol{x} \otimes \boldsymbol{y}$ 与 $\boldsymbol{x} \otimes \boldsymbol{y}^{\mathsf{T}}$ 。

解. 根据 Kronecker 积定义, 有

$$\boldsymbol{x} \otimes \boldsymbol{y} = \begin{bmatrix} 1 \times \begin{bmatrix} 3 \\ 4 \end{bmatrix} \\ 2 \times \begin{bmatrix} 3 \\ 4 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 6 \\ 8 \end{bmatrix}$$
 (2.6)

$$\boldsymbol{x} \otimes \boldsymbol{y}^{\top} = \begin{bmatrix} 1 \times \begin{bmatrix} 3 & 4 \\ 2 \times \begin{bmatrix} 3 & 4 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix}$$
 (2.7)

在这里, $x \otimes y^{\top} = xy^{\top}$, 即向量外积。

2.2 Kronecker 积基本性质

2.2.1 结合律与分配律

在小学数学中,我们学习了加减乘除的运算规则。以乘法为例,不妨重温一下烙印在我们脑海中的基本概念:

- 乘法结合律: $x \times y \times z = x \times (y \times z)$
- 乘法分配律: $x \times z + y \times z = (x + y) \times z$

由于 Kronecker 积本质上也是元素间相乘,所以同样存在结合律与分配律。对于任意矩阵 X、Y 与 Z,结合律可归纳为

$$X \otimes Y \otimes Z = X \otimes (Y \otimes Z) \tag{2.8}$$

分配律可归纳为

$$X \otimes Z + Y \otimes Z = (X + Y) \otimes Z \tag{2.9}$$

例 6. 给定矩阵
$$X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
、 $Y = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$ 与 $Z = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$,试写出 $X \otimes Y \otimes Z$ 与 $X \otimes (Y \otimes Z)$ 。

解. 根据 Kronecker 积定义, 有

$$\mathbf{X} \otimes \mathbf{Y} = \begin{bmatrix} 5 & 6 & 10 & 12 \\ 7 & 8 & 14 & 16 \\ 15 & 18 & 20 & 24 \\ 21 & 24 & 28 & 32 \end{bmatrix}$$
 (2.10)

$$\mathbf{Y} \otimes \mathbf{Z} = \begin{bmatrix} 5 & 5 & 6 & 6 \\ 5 & 5 & 6 & 6 \\ 7 & 7 & 8 & 8 \\ 7 & 7 & 8 & 8 \end{bmatrix}$$
 (2.11)

从而, 可得到

$$\boldsymbol{X} \otimes \boldsymbol{Y} \otimes \boldsymbol{Z} = \begin{bmatrix} 5 & 5 & 6 & 6 & 10 & 10 & 12 & 12 \\ 5 & 5 & 6 & 6 & 10 & 10 & 12 & 12 \\ 7 & 7 & 8 & 8 & 14 & 14 & 16 & 16 \\ 7 & 7 & 8 & 8 & 14 & 14 & 16 & 16 \\ 15 & 15 & 18 & 18 & 20 & 20 & 24 & 24 \\ 15 & 15 & 18 & 18 & 20 & 20 & 24 & 24 \\ 21 & 21 & 24 & 24 & 28 & 28 & 32 & 32 \\ 21 & 21 & 24 & 24 & 28 & 28 & 32 & 32 \end{bmatrix} = \boldsymbol{X} \otimes (\boldsymbol{Y} \otimes \boldsymbol{Z})$$
 (2.12)

例 7. 给定
$$X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
、 $Y = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$ 与 $Z = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$,试写出 $X \otimes Z + Y \otimes Z$ 与 $(X + Y) \otimes Z$ 。

解. 根据 Kronecker 积定义,有

$$(\mathbf{X} + \mathbf{Y}) \otimes \mathbf{Z} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 6 & 8 & 8 \\ 6 & 6 & 8 & 8 \\ 10 & 10 & 12 & 12 \\ 10 & 10 & 12 & 12 \end{bmatrix}$$
(2.14)

2.2.2 矩阵相乘

对于任意矩阵

2.2.3 求逆矩阵

2.2.4 向量化

2.3 Kronecker 积特殊性质

2.4 朴素 Kronecker 分解

2.4.1 定义

一般而言,给定任意矩阵 $X \in \mathbb{R}^{(mp)\times (nq)}$,若 $A \in \mathbb{R}^{m\times n}$, $B \in \mathbb{R}^{p\times q}$ 为朴素 Kronecker 分解中的待定参数,则可将分解过程描述为如下优化问题:

$$\min_{\boldsymbol{A},\boldsymbol{B}} \|\boldsymbol{X} - \boldsymbol{A} \otimes \boldsymbol{B}\|_F^2 \tag{2.15}$$

其中,我们建模的目标是寻找最佳的矩阵 A,B 使得损失函数最小化。

为便于理解该优化问题,不妨用一组小矩阵一窥究竟,令 m=3, n=p=q=2,则此时的目标函数为

$$\|\boldsymbol{X} - \boldsymbol{A} \otimes \boldsymbol{B}\|_{F}^{2} = \left\| \begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ \hline x_{31} & x_{32} & x_{33} & x_{34} \\ x_{41} & x_{42} & x_{43} & x_{44} \\ \hline x_{51} & x_{52} & x_{53} & x_{54} \\ x_{61} & x_{62} & x_{63} & x_{64} \end{bmatrix} - \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \otimes \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \right\|_{F}^{2}$$

$$(2.16)$$

2.4.2 引入 permute 概念

在这里,我们引入 permute 概念是为了对矩阵的维度按照特定规则进行调整,这一做法最早是由 Van Loan 和 Pitsianis 于 1993 年提出的 1 。在公式(2.16)中,首先使用分块矩阵表示矩阵 $\pmb{X} \in \mathbb{R}^{6 \times 4}$:

$$\begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ \hline x_{31} & x_{32} & x_{33} & x_{34} \\ x_{41} & x_{42} & x_{43} & x_{44} \\ \hline x_{51} & x_{52} & x_{53} & x_{54} \\ \hline x_{e1} & x_{e2} & x_{e2} & x_{e4} \end{bmatrix} = \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \\ X_{31} & X_{32} \end{bmatrix}$$

$$(2.17)$$

其中, 分块矩阵的子矩阵分别为

$$\mathbf{X}_{11} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \quad \mathbf{X}_{12} = \begin{bmatrix} x_{13} & x_{14} \\ x_{23} & x_{24} \end{bmatrix}
\mathbf{X}_{21} = \begin{bmatrix} x_{31} & x_{32} \\ x_{41} & x_{42} \end{bmatrix} \quad \mathbf{X}_{22} = \begin{bmatrix} x_{33} & x_{34} \\ x_{43} & x_{44} \end{bmatrix}
\mathbf{X}_{31} = \begin{bmatrix} x_{51} & x_{52} \\ x_{61} & x_{62} \end{bmatrix} \quad \mathbf{X}_{32} = \begin{bmatrix} x_{53} & x_{54} \\ x_{63} & x_{64} \end{bmatrix}$$
(2.18)

¹C. Van Loan, N. Pitsianis (1993). Approximation with Kronecker products. Linear Algebra for Large Scale and Real-Time Applications, 232: 293-314.

有了这些子矩阵之后,需要对这些子矩阵进行向量化,得到的向量依次为

$$\operatorname{vec}(\boldsymbol{X}_{11}) = \begin{bmatrix} x_{11} \\ x_{21} \\ x_{12} \\ x_{22} \end{bmatrix} \quad \operatorname{vec}(\boldsymbol{X}_{21}) = \begin{bmatrix} x_{31} \\ x_{41} \\ x_{32} \\ x_{42} \end{bmatrix} \quad \cdots \quad \operatorname{vec}(\boldsymbol{X}_{32}) = \begin{bmatrix} x_{53} \\ x_{63} \\ x_{54} \\ x_{64} \end{bmatrix}$$
(2.19)

最后,使用这些向量构造如下矩阵:

$$\tilde{\boldsymbol{X}} = \begin{bmatrix} \operatorname{vec}(\boldsymbol{X}_{11})^{\top} \\ \operatorname{vec}(\boldsymbol{X}_{21})^{\top} \\ \operatorname{vec}(\boldsymbol{X}_{31})^{\top} \\ \operatorname{vec}(\boldsymbol{X}_{12})^{\top} \\ \operatorname{vec}(\boldsymbol{X}_{22})^{\top} \\ \operatorname{vec}(\boldsymbol{X}_{32})^{\top} \end{bmatrix} \in \mathbb{R}^{6 \times 4}$$

$$(2.20)$$

在这里,将矩阵 X 构造成矩阵 \hat{X} 的过程通常被称为 permute。 由于

$$\operatorname{vec}(\boldsymbol{X}_{11}) = a_{11} \cdot \operatorname{vec}(\boldsymbol{B})$$

$$\operatorname{vec}(\boldsymbol{X}_{21}) = a_{21} \cdot \operatorname{vec}(\boldsymbol{B})$$

$$\vdots$$

$$\operatorname{vec}(\boldsymbol{X}_{32}) = a_{32} \cdot \operatorname{vec}(\boldsymbol{B})$$

$$(2.21)$$

此时, Kronecker 分解的优化问题可写作如下形式:

$$\underset{\boldsymbol{A},\boldsymbol{B}}{\operatorname{arg\,min}} \|\boldsymbol{X} - \boldsymbol{A} \otimes \boldsymbol{B}\|_F^2 = \underset{\boldsymbol{A},\boldsymbol{B}}{\operatorname{arg\,min}} \|\tilde{\boldsymbol{X}} - \operatorname{vec}(\boldsymbol{A})\operatorname{vec}(\boldsymbol{B})^\top\|_F^2$$
 (2.22)

实际上,向量化之后的待定参数 vec(A) 和 vec(B) 构成了一个标准的矩阵分解问题。

2.4.3 求解过程

对于公式(2.15)中 Kronecker 分解的优化问题,可根据 Eckhart-Young 定理对如下优化问题进行求解:

$$\min_{\boldsymbol{A},\boldsymbol{B}} \|\tilde{\boldsymbol{X}} - \text{vec}(\boldsymbol{A})\text{vec}(\boldsymbol{B})^{\top}\|_F^2$$
 (2.23)

若 $\tilde{\boldsymbol{X}}$ 的奇异值分解为 $\tilde{\boldsymbol{X}} = \sum_{r=1}^{\min\{mn,pq\}} \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^{\top}$, 其中,奇异值为 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min\{mn,pq\}}$,则矩阵 $\boldsymbol{A} = \boldsymbol{B}$ 的最优解为

$$\begin{cases} \operatorname{vec}(\hat{\boldsymbol{A}}) = \sqrt{\sigma_1} \cdot \boldsymbol{u}_1 \\ \operatorname{vec}(\hat{\boldsymbol{B}}) = \sqrt{\sigma_2} \cdot \boldsymbol{v}_1 \end{cases}$$
 (2.24)

这里的最优解恰好是秩为 1 的逼近问题。

例 8. 给定矩阵 $m{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 与 $m{B} = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}$,试写出两者之间的 Kronecker 积 $m{X} = m{A} \otimes m{B}$,并求 Kronecker 分解 $\hat{m{A}}, \hat{m{B}} = \mathop{\arg\min}_{m{A}, m{B}} \|m{X} - m{A} \otimes m{B}\|_F^2$ 。

解. 矩阵 A 与 B 之间的 Kronecker 积为

$$\boldsymbol{X} = \boldsymbol{A} \otimes \boldsymbol{B} = \begin{bmatrix} 1 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} & 2 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} \\ 3 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} & 4 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 5 & 6 & 7 & 10 & 12 & 14 \\ 8 & 9 & 10 & 16 & 18 & 20 \\ 15 & 18 & 21 & 20 & 24 & 28 \\ 24 & 27 & 30 & 32 & 36 & 40 \end{bmatrix}$$
(2.25)

令分块矩阵 X 由如下 4 个子矩阵构成:

$$\mathbf{X}_{11} = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} \qquad \mathbf{X}_{12} = \begin{bmatrix} 10 & 12 & 14 \\ 16 & 18 & 20 \end{bmatrix}
\mathbf{X}_{21} = \begin{bmatrix} 15 & 18 & 21 \\ 24 & 27 & 30 \end{bmatrix} \qquad \mathbf{X}_{22} = \begin{bmatrix} 20 & 24 & 28 \\ 32 & 36 & 40 \end{bmatrix}$$
(2.26)

对这些子矩阵分别进行向量化:

$$vec(\boldsymbol{X}_{11}) = \begin{bmatrix} 5 \\ 8 \\ 6 \\ 9 \\ 7 \\ 10 \end{bmatrix} \quad vec(\boldsymbol{X}_{21}) = \begin{bmatrix} 15 \\ 24 \\ 18 \\ 27 \\ 21 \\ 30 \end{bmatrix} \quad vec(\boldsymbol{X}_{12}) = \begin{bmatrix} 10 \\ 16 \\ 12 \\ 18 \\ 14 \\ 20 \end{bmatrix} \quad vec(\boldsymbol{X}_{22}) = \begin{bmatrix} 20 \\ 32 \\ 24 \\ 36 \\ 28 \\ 40 \end{bmatrix} \quad (2.27)$$

有了这些向量之后,构造如下矩阵:

$$\tilde{\boldsymbol{X}} = \begin{bmatrix} vec(\boldsymbol{X}_{11})^{\top} \\ vec(\boldsymbol{X}_{21})^{\top} \\ vec(\boldsymbol{X}_{12})^{\top} \\ vec(\boldsymbol{X}_{22})^{\top} \end{bmatrix} = \begin{bmatrix} 5 & 8 & 6 & 9 & 7 & 10 \\ 15 & 24 & 18 & 27 & 21 & 30 \\ 10 & 16 & 12 & 18 & 14 & 20 \\ 20 & 32 & 24 & 36 & 28 & 40 \end{bmatrix}$$
(2.28)

由此, Kronecker 分解的优化问题等价于

$$\hat{\boldsymbol{A}}, \hat{\boldsymbol{B}} = \underset{\boldsymbol{A}}{\operatorname{arg \, min}} \| \tilde{\boldsymbol{X}} - vec(\boldsymbol{A})vec(\boldsymbol{B})^{\top} \|_F^2$$
(2.29)

对矩阵 \tilde{X} 进行奇异值分解,则矩阵 \hat{A} 与 \hat{B} 分别为

$$\hat{\mathbf{A}} = \begin{bmatrix} -1.85471325 & -3.7094265 \\ -5.56413975 & -7.418853 \end{bmatrix}$$

$$\hat{\mathbf{B}} = \begin{bmatrix} -2.69583452 & -3.23500142 & -3.77416832 \\ -4.31333523 & -4.85250213 & -5.39166904 \end{bmatrix}$$
(2.30)

在这里、矩阵 \hat{A} 与 \hat{B} 的所有元素均为负数、可将这些元素全部写成相反数。

2.5 广义 Kronecker 分解

在《Convolutional neural network compression through generalized Kronecker product decomposition》中,作者给出了一种广义 Kronecker 分解。形式上说,给定任意矩阵 $X \in \mathbb{R}^{(mp)\times(nq)}$,若 $A_r \in \mathbb{R}^{m\times n}$, $B_r \in \mathbb{R}^{p\times q}$, $r=1,2,\ldots,R$ 为广义 Kronecker 分解中的待定参数,则可将分解过程描述为如下逼近问题:

$$\min_{\{\boldsymbol{A}_r,\boldsymbol{B}_r\}_{r=1}^R} \left\| \boldsymbol{X} - \sum_{r=1}^R \boldsymbol{A}_r \otimes \boldsymbol{B}_r \right\|_F^2$$
(2.31)

其中,我们的建模目标是寻找最佳的矩阵 $\{A_r, B_r\}_{r=1}^R$ 使得损失函数最小化。

与朴素 Kronecker 分解类似,可先将广义 Kronecker 分解的逼近问题写作如下形式:

$$\underset{\{\boldsymbol{A}_r,\boldsymbol{B}_r\}_{r=1}^R}{\operatorname{arg\,min}} \left\| \boldsymbol{X} - \sum_{r=1}^R \boldsymbol{A}_r \otimes \boldsymbol{B}_r \right\|_F^2 = \underset{\{\boldsymbol{A}_r,\boldsymbol{B}_r\}_{r=1}^R}{\operatorname{arg\,min}} \left\| \boldsymbol{X} - \sum_{r=1}^R \operatorname{vec}(\boldsymbol{A}_r) \operatorname{vec}(\boldsymbol{B}_r)^\top \right\|_F^2$$
(2.32)

2.6 模型参数压缩 15

其中, 矩阵 \tilde{X} 是由矩阵 X 进行 permute 构造得到。

根据 Eckhart-Young 定理对上述优化问题进行求解,若矩阵 \tilde{X} 的奇异值分解为 $\tilde{X} = \sum_{r=1}^{\min\{mn,pq\}} \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^{\mathsf{T}}$,其中,奇异值为 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min\{mn,pq\}}$,则矩阵 \boldsymbol{A}_r 和 \boldsymbol{B}_r 的最优解为

$$\begin{cases} \operatorname{vec}(\hat{\boldsymbol{A}}_r) = \sqrt{\sigma_r} \boldsymbol{u}_r \\ \operatorname{vec}(\hat{\boldsymbol{B}}_r) = \sqrt{\sigma_r} \boldsymbol{v}_r \end{cases}$$
 (2.33)

2.6 模型参数压缩

Kronecker 分解的一个重要用途是压缩模型参数。以多元线性回归 (multivariate linear regression) 为例,给定输入、输出数据为 $\mathcal{D} = \{(\boldsymbol{x}_1, \boldsymbol{y}_1), \cdots, (\boldsymbol{x}_N, \boldsymbol{y}_N)\} \in \mathbb{R}^{nq} \times \mathbb{R}^{mp}$,则多元线性回归的优化问题为

$$\min_{\mathbf{W}} \frac{1}{2} \sum_{n=1}^{N} \|\mathbf{y}_n - \mathbf{W} \mathbf{x}_n\|_2^2$$
 (2.34)

令

$$\boldsymbol{X} = \begin{bmatrix} | & & | \\ \boldsymbol{x}_1 & \cdots & \boldsymbol{x}_N \\ | & & | \end{bmatrix} \in \mathbb{R}^{nq \times N}$$
 (2.35)

$$\boldsymbol{Y} = \begin{bmatrix} | & & | \\ \boldsymbol{y}_1 & \cdots & \boldsymbol{y}_N \\ | & & | \end{bmatrix} \in \mathbb{R}^{mp \times N}, \tag{2.36}$$

则此时多元线性回归的等价优化问题为

$$\min_{\boldsymbol{W}} \frac{1}{2} \|\boldsymbol{Y} - \boldsymbol{W}\boldsymbol{X}\|_F^2 \tag{2.37}$$

不妨假设这里的系数矩阵 $\mathbf{W} \in \mathbb{R}^{(mp) \times (nq)}$ 存在一个广义 Kronecker 分解,且由 R 个成分构成,则基于广义 Kronecker 分解的多元线性回归可写作如下形式:

$$\min_{\{\boldsymbol{A}_r,\boldsymbol{B}_r\}_{r=1}^R} \frac{1}{2} \left\| \boldsymbol{Y} - \sum_{r=1}^R (\boldsymbol{A}_r \otimes \boldsymbol{B}_r) \boldsymbol{X} \right\|_F^2$$
(2.38)

将优化问题改写为如下形式即可得到一个标准的广义 Kronecker 分解:

$$\min_{\{\boldsymbol{A}_r,\boldsymbol{B}_r\}_{r=1}^R} \frac{1}{2} \left\| \boldsymbol{Y} \boldsymbol{X}^{\dagger} - \sum_{r=1}^R (\boldsymbol{A}_r \otimes \boldsymbol{B}_r) \right\|_F^2$$
(2.39)

从而可根据广义 Kronecker 分解的求解方法对该多元线性回归问题进行求解。

例 9 (矩阵自回归模型²). 对于多维时间序列 (multidimensional time series), 若任意时刻 t 对应的观测数据为矩阵 $X_t \in \mathbb{R}^{M \times N}$, 则矩阵自回归的表达式为

$$X_t = AX_{t-1}B^{\top} + E_t, t = 2, 3, \dots, T$$
 (2.40)

其中, $\mathbf{A} \in \mathbb{R}^{M \times M}$ 与 $\mathbf{B} \in \mathbb{R}^{N \times N}$ 为自回归过程的系数矩阵 (coefficient matrix); 矩阵 $\mathbf{E}_t \in \mathbb{R}^{M \times N}$ 为自回归过程的残差矩阵 (residual matrix)。若令 $\mathbf{x}_t = vec(\mathbf{X}_t)$ 与 $\mathbf{\epsilon}_t = vec(\mathbf{E}_t)$,试写出与矩阵自回归等价的向量自回归表达式。

²http://www.stat.rutgers.edu/home/rongchen/publications/20JoE_Matrix_AR.pdf

解. 根据 Kronecker 积性质, 矩阵自回归等价于如下向量自回归:

$$vec(\boldsymbol{X}_{t}) = vec(\boldsymbol{A}\boldsymbol{X}_{t-1}\boldsymbol{B}^{\top}) + vec(\boldsymbol{E}_{t})$$

$$= (\boldsymbol{B} \otimes \boldsymbol{A})vec(\boldsymbol{X}_{t-1}) + vec(\boldsymbol{E}_{t})$$

$$\implies \boldsymbol{x}_{t} = (\boldsymbol{B} \otimes \boldsymbol{A})\boldsymbol{x}_{t-1} + \boldsymbol{\epsilon}_{t}$$

$$(2.41)$$

在这里,矩阵自回归的待定参数数量为 M^2+N^2 ,若对观测数据进行向量化且不对系数矩阵进行 Kronecker 分解,则向量自回归的待定参数数量为 $(MN)^2$ 。

第三章 低秩线性回归

线性回归是机器学习中的一个基本模型,常用于各类回归问题,其建模思路是采用线性方程对给定的变量建立线性关系。本章以线性回归模型为基础,将介绍低秩线性回归模型、低秩自回归模型、时变低秩自回归模型等,这些模型的核心是借助矩阵分解或张量分解对模型参数进行压缩。

- 3.1 低秩线性回归
- 3.2 高维向量自回归
- 3.3 时变低秩向量自回归