2-LOCAL DERIVATIONS ON VON NEUMANN ALGEBRAS OF TYPE I

SHAVKAT AYUPOV AND FARKHAD ARZIKULOV

ABSTRACT. In the present paper we prove that every 2-local derivation on a von Neumann algebra of type I is a derivation.

2000 Mathematics Subject Classification: Primary 46L57; Secondary 46L40

Introduction

The present paper is devoted to 2-local derivations on von Neumann algebras. Recall that a 2-local derivation is defined as follows: given an algebra A, a map $\Delta: A \to A$ (not linear in general) is called a 2-local derivation if for every x, $y \in A$, there exists a derivation $D_{x,y}: A \to A$ such that $\Delta(x) = D_{x,y}(x)$ and $\Delta(y) = D_{x,y}(y)$.

In 1997, P. Šemrl [1] introduced the notion of 2-local derivations and described 2-local derivations on the algebra B(H) of all bounded linear operators on the infinite-dimensional separable Hilbert space H. A similar description for the finite-dimensional case appeared later in [2]. In the paper [3] 2-local derivations have been described on matrix algebras over finite-dimensional division rings.

In [4] the authors suggested a new technique and have generalized the above mentioned results of [1] and [2] for arbitrary Hilbert spaces. Namely they considered 2-local derivations on the algebra B(H) of all linear bounded operators on an arbitrary (no separability is assumed) Hilbert space H and proved that every 2-local derivation on B(H) is a derivation.

In the present paper we also suggest another technique and generalize the above mentioned results of [1], [2] and [4] for arbitrary von Neumann algebras of type I. Namely, we prove that every 2-local derivation on a von Neumann algebra of type I is a derivation.

The authors want to thank K.K.Kudaybergenov for many stimulating conversations on the subject.

1. Preliminaries

Let M be a von Neumann algebra.

Definition. A linear map $D: M \to M$ is called a derivation, if D(xy) = D(x)y + xD(y) for any two elements $x, y \in M$.

A map $\Delta: M \to M$ is called a 2-local derivation, if for any two elements $x, y \in M$ there exists a derivation $D_{x,y}: M \to M$ such that $\Delta(x) = D_{x,y}(x)$, $\Delta(y) = D_{x,y}(y)$.

Date: February 21, 2012.

Key words and phrases. derivation, 2-local derivation, von Neumann algebra.

It is known that any derivation D on a von Neumann algebra M is an inner derivation, that is there exists an element $a \in M$ such that

$$D(x) = ax - xa, x \in M.$$

Therefore for a von Neumann algebra M the above definition is equivalent to the following one: A map $\Delta: M \to M$ is called a 2-local derivation, if for any two elements $x, y \in M$ there exists an element $a \in M$ such that $\Delta(x) = ax - xa$, $\Delta(y) = ay - ya$.

Further we will use the latter definition.

Let n be an arbitrary infinite cardinal number, Ξ be a set of indexes of the cardinality n. Let $\{e_{ij}\}$ be a set of matrix units such that e_{ij} is a $n \times n$ -dimensional matrix, i.e. $e_{ij} = (a_{\alpha\beta})_{\alpha\beta\in\Xi}$, the (i,j)-th component of which is 1, i.e. $a_{ij} = 1$, and the rest components are zeros. Let $\{m_{\xi}\}_{\xi\in\Xi}$ be a set of $n \times n$ -dimensional matrixes. By $\sum_{\xi\in\Xi} m_{\xi}$ we denote the matrix whose components are sums of the corresponding components of matrixes of the set $\{m_{\xi}\}_{\xi\in\Xi}$. Let

$$M_n(\mathbf{C}) = \{\{\lambda_{ij}e_{ij}\}: for \ all \ indexes \ i, j \lambda_{ij} \in \mathbf{C}, \}$$

and there exists such number $K \in \mathbf{R}$, that for all $n \in N$

and
$$\{e_{kl}\}_{kl=1}^n \subseteq \{e_{ij}\} \|\sum_{kl=1}^n \lambda_{kl} e_{kl}\| \le K\},$$

where $\| \|$ is a norm of a matrix. It is easy to see that $M_n(\mathbf{C})$ is a vector space.

The associative multiplication of elements in $M_n(\mathbf{C})$ can be defined as follows: if $x = \sum_{ij \in \Xi} \lambda_{ij} e_{ij}$, $y = \sum_{ij \in \Xi} \mu_{ij} e_{ij}$ are elements of $M_n(\mathbf{C})$ then $xy = \sum_{ij \in \Xi} \sum_{\xi \in \Xi} \lambda_{i\xi} \mu_{\xi j} e_{ij}$. With this operation $M_n(\mathbf{C})$ becomes an associative algebra and $M_n(\mathbf{C}) = B(l_2(\Xi))$, where $l_2(\Xi)$ is a Hilbert space over \mathbf{C} with elements $\{x_i\}_{i \in \Xi}$, $x_i \in \mathbf{C}$ for all $i \in \Xi$, $B(l_2(\Xi))$ is the associative algebra of all bounded linear operators on the Hilbert space $l_2(\Xi)$. Then $M_n(\mathbf{C})$ is a von Neumann algebra of infinite $n \times n$ -dimensional matrices over \mathbf{C} .

Similarly, if we take the algebra B(H) of all bounded linear operators on an arbitrary Hilbert space H and if $\{q_i\}$ is an arbitrary maximal orthogonal set of minimal projections of the algebra B(H), then $B(H) = \sum_{ij}^{\oplus} q_i B(H) q_j$ (see [5]).

Let X be a hyperstonean compact, and let C(X) denote the commutative algebra of all complex-valued continuous functions on the compact X and

$$\mathcal{M} = \{ \{\lambda_{ij}(x)e_{ij}\}_{ij\in\Xi} : (\forall ij \ \lambda_{ij}(x) \in C(X))$$
$$(\exists K \in R)(\forall m \in N)(\forall \{e_{kl}\}_{kl=1}^m \subseteq \{e_{ij}\}) \| \sum_{kl=1...m} \lambda_{kl}(x)e_{kl} \| \leq K \},$$

where $\|\sum_{kl=1...m} \lambda_{kl}(x)e_{kl}\| \leq K$ means $(\forall x_o \in X)\|\sum_{kl=1...m} \lambda_{kl}(x_o)e_{kl}\| \leq K$. The set \mathcal{M} is a vector space with point-wise algebraic operations. The map $\| \| : \mathcal{M} \to \mathbf{R}_+$ defined as

$$||a|| = \sup_{\{e_{kl}\}_{kl=1}^n \subseteq \{e_{ij}\}} ||\sum_{kl=1}^n \lambda_{kl}(x)e_{kl}||,$$

is a norm on the vector space \mathcal{M} , where $a \in \mathcal{M}$ and $a = \sum_{ij \in \Xi} \lambda_{ij}(x) e_{ij}$.

Moreover \mathcal{M} is a von Neumann algebra of type I_n and $\mathcal{M} = C(X) \otimes M_n(\mathbf{C})$, where the multiplication is defined as follows $xy = \sum_{ij \in \Xi} \sum_{\xi \in \Xi} \lambda_{i\xi}(x) \mu_{\xi j}(x) e_{ij}$ [6].

Let \mathcal{M} be a von Neumann algebra, $\Delta : \mathcal{M} \to \mathcal{M}$ be a 2-local derivation. Now let us show that Δ is homogeneous. Indeed, for each $x \in \mathcal{M}$, and for $\lambda \in \mathbb{C}$ there exists a derivation $D_{x,\lambda x}$ such that $\Delta(x) = D_{x,\lambda x}(x)$ and $\Delta(\lambda x) = D_{x,\lambda x}(\lambda x)$. Then

$$\triangle(\lambda x) = D_{x,\lambda x}(\lambda x) = \lambda D_{x,\lambda x}(x) = \lambda \triangle(x).$$

Hence, \triangle is homogenous. At the same time, for each $x \in \mathcal{M}$, there exists a derivation D_{x,x^2} such that $\triangle(x) = D_{x,x^2}(x)$ and $\triangle(x^2) = D_{x,x^2}(x^2)$. Then

$$\Delta(x^2) = D_{x,x^2}(x^2) = D_{x,x^2}(x)x + xD_{x,x^2}(x) = \Delta(x)x + x\Delta(x).$$

In [7] it is proved that any Jordan derivation on a semi-prime algebra is a derivation. Since \mathcal{M} is semi-prime, the map \triangle is a derivation if it is additive. Therefore, to prove that the 2-local derivation $\triangle: \mathcal{M} \to \mathcal{M}$ is a derivation it is sufficient to prove that $\triangle: \mathcal{M} \to \mathcal{M}$ is additive in the proofs of theorems 1 and 5.

2. 2-local derivations on von Neumann algebras of type ${\rm I}_n$ with an infinite cardinal number n

The following theorem is the key result of this section.

Theorem 1. Let $\triangle : C(X) \otimes M_n(\mathbf{C}) \to C(X) \otimes M_n(\mathbf{C})$ be a 2-local derivation. Then \triangle is a derivation.

First let us prove lemmata which are necessary for the proof of theorem 1.

Put $\mathcal{M} = C(X) \otimes M_n(\mathbf{C})$, $e_{ij} := \mathbf{1}e_{ij}$ for all i, j, where $\mathbf{1}$ is unit of the algebra C(X). Let $\{a(ij)\} \subset \mathcal{M}$ be the set such that

$$\triangle(e_{ij}) = a(ij)e_{ij} - e_{ij}a(ij).$$

for all i, j, put $a_{ij}e_{ij} = e_ia(ji)e_j$ for all pairs of different indexes i, j and let $\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}$ be the set of all such elements.

Lemma 2. For any pair i, j of different indices the following equality holds

$$\Delta(e_{ij}) = \{a_{\xi\eta}e_{\xi\eta}\}_{\xi \neq \eta}e_{ij} - e_{ij}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi \neq \eta} + a(ij)_{ii}e_{ij} - e_{ij}a(ij)_{jj}, \quad (1)$$

where $a(ij)_{ii}$, $a(ij)_{jj}$ are functions in C(X) which are the coefficients of the Peirce components $e_{ii}a(ij)e_{ii}$, $e_{jj}a(ij)e_{jj}$.

Proof. Let k be an arbitrary index different from i, j and let $a(ij, ik) \in \mathcal{M}$ be an element such that

$$\triangle(e_{ik}) = a(ij,ik)e_{ik} - e_{ik}a(ij,ik)$$
 and $\triangle(e_{ij}) = a(ij,ik)e_{ij} - e_{ij}a(ij,ik)$.

Then

$$e_{kk}a_{ki}e_{ij} - e_{kk}e_{ij}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{jj} = e_{kk}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{ij} - e_{kk}e_{ij}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{jj} = e_{kk}(\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{ij} - e_{ij}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{jj}.$$

Similarly,

$$e_{kk} \triangle (e_{ij})e_{ii} = e_{kk}(a(ij,ik)e_{ij} - e_{ij}a(ij,ik))e_{ii} =$$

$$e_{kk}a(ij,ik)e_{ij}e_{ii} - 0 = 0 - 0 = e_{kk}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{ij}e_{ii} - e_{kk}e_{ij}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{ii} = e_{kk}(\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{ij} - e_{ij}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta})e_{ii}.$$

Let $a(ij, kj) \in \mathcal{M}$ be an element such that

$$\triangle(e_{kj}) = a(ij,kj)e_{kj} - e_{kj}a(ij,kj)$$
 and $\triangle(e_{ij}) = a(ij,kj)e_{ij} - e_{ij}a(ij,kj)$.

Then

$$e_{ii} \triangle (e_{ij})e_{kk} = e_{ii}(a(ij,kj)e_{ij} - e_{ij}a(ij,kj))e_{kk} = 0 - e_{ij}a(ij,kj)e_{kk} = 0 - e_{ij}a(kj)e_{kk} = 0 - e_{ij}a_{jk}e_{kk} = 0 - e_{ij}a_{jk}e_{kk}e_{kk} = 0 - e_{ij}a_{jk}e_{kk}e_{kk} = 0 - e_{ij}a_{jk}e_{kk}e_{kk} = 0 - e_{ij}a_{jk}e_{kk}e_{kk}e_{kk} = 0 - e_{ij}a_{jk}e_{kk$$

Also we have

$$e_{jj} \triangle (e_{ij})e_{kk} = e_{jj}(a(ij,kj)e_{ij} - e_{ij}a(ij,kj))e_{kk} = 0 - 0 = e_{jj}\{a(ij)\}_{i \neq j}e_{ij}e_{kk} - e_{jj}e_{ij}\{a(ij)\}_{i \neq j}e_{kk} = e_{jj}(\{a_{\xi\eta}e_{\xi\eta}\}_{\xi \neq \eta}e_{ij} - e_{ij}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi \neq \eta})e_{kk},$$

$$e_{ii} \triangle (e_{ij})e_{ii} = e_{ii}(a(ij)e_{ij} - e_{ij}a(ij))e_{ii} = 0$$

$$e_{ii} \triangle (e_{ij})e_{ii} = e_{ii}(a(ij)e_{ij} - e_{ij}a(ij))e_{ii} = 0 - e_{ij}a(ij)e_{ii} = 0 - e_{ij}a(ij)e_{ii} = 0 - e_{ij}a_{ji}e_{ii} = 0 - e_{ij}a_{ii}e_{ii} = 0 -$$

$$\begin{split} e_{jj} & \triangle \left(e_{ij} \right) e_{jj} = e_{jj} (a(ij) e_{ij} - e_{ij} a(ij)) e_{jj} = \\ & e_{jj} a(ij) e_{ij} - 0 = e_{jj} a_{ji} e_{ij} - 0 = \\ e_{jj} & \{ a_{\xi\eta} e_{\xi\eta} \}_{\xi \neq \eta} e_{ij} - e_{jj} e_{ij} \{ a_{\xi\eta} e_{\xi\eta} \}_{\xi \neq \eta} e_{jj} = \\ & e_{jj} (\{ a_{\xi\eta} e_{\xi\eta} \}_{\xi \neq \eta} e_{ij} - e_{ij} \{ a_{\xi\eta} e_{\xi\eta} \}_{\xi \neq \eta}) e_{jj}. \end{split}$$

Hence the equality (1) holds. \triangleright

We take elements of the sets $\{\{e_{i\xi}\}_{\xi}\}_i$ and $\{\{e_{\xi j}\}_{\xi}\}_j$ in pairs $(\{e_{\alpha\xi}\}_{\xi}, \{e_{\xi\beta}\}_{\xi})$ such that $\alpha \neq \beta$. Then using the set $\{(\{e_{\alpha\xi}\}_{\xi}, \{e_{\xi\beta}\}_{\xi})\}$ of such pairs we get the set $\{e_{\alpha\beta}\}$.

Let $x = \{e_{\alpha\beta}\}$ be a set $\{v_{ij}e_{ij}\}_{ij}$ such that for all i, j if $(\alpha, \beta) \neq (i, j)$ then $v_{ij} = 0$ else $v_{ij} = 1$. Then $x \in \mathcal{M}$. Let $c \in \mathcal{M}$ be an element such that

$$\triangle(e_{ij}) = ce_{ij} - e_{ij}c$$
 and $\triangle(x) = cx - xc$,

 $i \neq j$ and fix the indices i, j.

Put
$$c = \{c_{ij}e_{ij}\} \in \mathcal{M} \text{ and } \bar{a} = \{a_{ij}e_{ij}\}_{i\neq j} \cup \{a_{ii}e_{ii}\}, \text{ where } \{a_{ii}e_{ii}\} = \{c_{ii}e_{ii}\}.$$

Lemma 3. Let ξ , η be arbitrary different indices, and let $b \in \mathcal{M}$ be an element such that

$$\triangle(e_{\xi\eta}) = be_{\xi\eta} - e_{\xi\eta}b \ and \ \triangle(x) = bx - xb.$$

Then $c_{\xi\xi} - c_{\eta\eta} = b_{\xi\xi} - b_{\eta\eta}$.

Proof. We have that there exist $\bar{\alpha}$, $\bar{\beta}$ such that $e_{\xi\bar{\alpha}}$, $e_{\bar{\beta}\eta} \in \{e_{\alpha\beta}\}$ (or $e_{\bar{\alpha}\eta}$, $e_{\xi\bar{\beta}} \in \{e_{\alpha\beta}\}$, or $e_{\bar{\alpha},\bar{\beta}} \in \{e_{\alpha\beta}\}$), and there exists a chain of pairs of indexes $(\hat{\alpha},\hat{\beta})$ in Ω , where $\Omega = \{(\check{\alpha},\check{\beta}) : e_{\check{\alpha},\check{\beta}} \in \{e_{\alpha\beta}\}\}$, connecting pairs $(\xi,\bar{\alpha})$, $(\bar{\beta},\eta)$ i.e.,

$$(\xi,\bar{\alpha}),(\bar{\alpha},\xi_1),(\xi_1,\eta_1),\ldots,(\eta_2,\bar{\beta}),(\bar{\beta},\eta).$$

Then

$$c_{\xi\xi}-c_{\bar{\alpha}\bar{\alpha}}=b_{\xi\xi}-b_{\bar{\alpha}\bar{\alpha}}, c_{\bar{\alpha}\bar{\alpha}}-c_{\xi_1\xi_1}=b_{\bar{\alpha}\bar{\alpha}}-b_{\xi_1\xi_1},$$

$$c_{\xi_1\xi_1}-c_{\eta_1\eta_1}=b_{\xi_1\xi_1}-b_{\eta_1\eta_1},\ldots,c_{\eta_2\eta_2}-c_{\bar{\beta}\bar{\beta}}=b_{\eta_2\eta_2}-b_{\bar{\beta}\bar{\beta}},c_{\bar{\beta}\bar{\beta}}-c_{\eta\eta}=b_{\bar{\beta}\bar{\beta}}-b_{\eta\eta}.$$
 Hence

$$\begin{split} c_{\xi\xi} - b_{\xi\xi} &= c_{\bar{\alpha}\bar{\alpha}} - b_{\bar{\alpha}\bar{\alpha}}, c_{\bar{\alpha}\bar{\alpha}} - b_{\bar{\alpha}\bar{\alpha}} = c_{\xi_1\xi_1} - b_{\xi_1\xi_1}, \\ c_{\xi_1\xi_1} - b_{\xi_1\xi_1} &= c_{\eta_1\eta_1} - b_{\eta_1\eta_1}, \dots, c_{\eta_2\eta_2} - b_{\eta_2\eta_2} = c_{\bar{\beta}\bar{\beta}} - b_{\bar{\beta}\bar{\beta}}, c_{\bar{\beta}\bar{\beta}} - b_{\bar{\beta}\bar{\beta}} = c_{\eta\eta} - b_{\eta\eta}. \end{split}$$

and
$$c_{\xi\xi} - b_{\xi\xi} = c_{\eta\eta} - b_{\eta\eta}$$
, $c_{\xi\xi} - c_{\eta\eta} = b_{\xi\xi} - b_{\eta\eta}$.
Therefore $c_{\xi\xi} - c_{\eta\eta} = b_{\xi\xi} - b_{\eta\eta}$.

Lemma 4. Let x be an element of the algebra \mathcal{M} . Then $\triangle(x) = \bar{a}x - x\bar{a}$, where \bar{a} is defined as above.

Proof. Let $d(ij) \in \mathcal{M}$ be an element such that

$$\triangle(e_{ij}) = d(ij)e_{ij} - e_{ij}d(ij)$$
 and $\triangle(x) = d(ij)x - xd(ij)$

and $i \neq j$. Then

$$\triangle(e_{ij}) = d(ij)e_{ij} - e_{ij}d(ij) = e_{ii}d(ij)e_{ij} - e_{ij}d(ij)e_{jj} + (1 - e_{ii})d(ij)e_{ij} - e_{ij}d(ij)(1 - e_{jj}) = a(ij)_{ii}e_{ij} - e_{ij}a(ij)_{jj} + \{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{ij} - e_{ij}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}$$

for all i, j by lemma 2.

Since
$$e_{ii}d(ij)e_{ij} - e_{ij}d(ij)e_{jj} = a(ij)_{ii}e_{ij} - e_{ij}a(ij)_{jj}$$
 we have

$$(1 - e_{ii})d(ij)e_{ii} = \{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{ii}, e_{jj}d(ij)(1 - e_{jj}) = e_{jj}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}$$

for all different i and j.

Hence by lemma 3 we have

$$\begin{split} e_{jj} \bigtriangleup (x) e_{ii} &= e_{jj} (d(ij)x - x d(ij)) e_{ii} = \\ e_{jj} d(ij) (1 - e_{jj}) x e_{ii} + e_{jj} d(ij) e_{jj} x e_{ii} - e_{jj} x (1 - e_{ii}) d(ij) e_{ii} - e_{jj} x e_{ii} d(ij) e_{ii} = \\ e_{jj} \{a_{\xi\eta} e_{\xi\eta}\}_{\xi \neq \eta} x e_{ii} - e_{jj} x \{a_{\xi\eta} e_{\xi\eta}\}_{\xi \neq \eta} e_{ii} + e_{jj} d(ij) e_{jj} x e_{ii} - e_{jj} x e_{ii} d(ij) e_{ii} = \\ e_{jj} \{a_{\xi\eta} e_{\xi\eta}\}_{\xi \neq \eta} x e_{ii} - e_{jj} x \{a_{\xi\eta} e_{\xi\eta}\}_{\xi \neq \eta} e_{ii} + c_{jj} e_{jj} x e_{ii} - e_{jj} x e_{ii} c_{ii} e_{ii} \\ \text{since } d(ij)_{jj} - d(ij)_{ii} = b_{jj} - b_{ii}. \end{split}$$

Hence

$$e_{ii} \triangle (x)e_{ii} = e_{ii}(d(ij)x - xd(ij))e_{ii} =$$

$$e_{ii}d(ij)(1 - e_{ii})xe_{ii} + e_{ii}d(ij)e_{ii}xe_{ii} - e_{ii}x(1 - e_{ii})d(ij)e_{ii} - e_{ii}xe_{ii}d(ij)e_{ii} =$$

$$e_{ii}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}xe_{ii} - e_{ii}x\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{ii} + e_{ii}d(ij)e_{ii}xe_{ii} - e_{ii}xe_{ii}d(ij)e_{ii} =$$

$$e_{ii}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}xe_{ii} - e_{ii}x\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{ii} + 0 = c_{ii}e_{ii}xe_{ii} - e_{ii}xc_{ii}e_{ii}.$$

Hence

$$\triangle(x) = (\sum_{i} c_{ii}e_{ii})x - x(\sum_{i} c_{ii}e_{ii}) + \{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}x - x\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta} = \bar{a}x - x\bar{a}$$

for all $x \in \mathcal{M}$. \triangleright

Proof of theorem 1. Let $V = \{\{\lambda_{ij}e_{ij}\}_{ij} : \{\lambda_{ij}\} \subset C(X)\}$ (the set of all infinite $n \times n$ -dimensional function-valued matrices). Then V is a vector space with componentwise algebraic operations and \mathcal{M} is a vector subspace of V.

By lemma $4 \triangle (e_{ii}) = \bar{a}e_{ii} - e_{ii}\bar{a} \in \mathcal{M}$. Hence

$$\sum_{\xi} a_{\xi i} e_{\xi i} - \sum_{\xi} a_{i\xi} e_{i\xi} \in \mathcal{M}.$$

Then

$$e_{ii}(\sum_{\xi} a_{\xi i} e_{\xi i} - \sum_{\xi} a_{i\xi} e_{i\xi}) = a_{ii} e_{ii} - \sum_{\xi} a_{i\xi} e_{i\xi} \in \mathcal{M}$$

and

$$(\sum_{\xi} a_{\xi i} e_{\xi i} - \sum_{\xi} a_{i\xi} e_{i\xi}) e_{ii} = \sum_{\xi} a_{\xi i} e_{\xi i} - a_{ii} e_{ii} \in \mathcal{M}.$$

Therefore $\sum_{\xi} a_{\xi i} e_{\xi i}$, $\sum_{\xi} a_{i\xi} e_{i\xi} \in \mathcal{M}$ i.e., $\bar{a}e_{ii}, e_{ii}\bar{a} \in \mathcal{M}$. Hence $e_{ii}\bar{a}x, x\bar{a}e_{ii} \in \mathcal{M}$ for any i and

$$\bar{a}x, x\bar{a} \in V$$

for any element $x = \{x_{ij}e_{ij}\} \in \mathcal{M}$, i.e.,

$$\sum_{\xi} a_{i\xi} x_{\xi j} e_{ij}, \sum_{\xi} x_{i\xi} a_{\xi j} e_{ij} \in \mathbb{C} e_{ij}$$

for all i, j. Therefore for all $x, y \in \mathcal{M}$ we have that the elements $\bar{a}x, x\bar{a}, \bar{a}y, y\bar{a}, \bar{a}(x+y), (x+y)\bar{a}$ belong to V. Hence

$$\triangle(x+y) = \triangle(x) + \triangle(y)$$

by lemma 4.

Similarly for all $x, y \in \mathcal{M}$ we have

$$(\bar{a}x + x\bar{a})y = \bar{a}xy - x\bar{a}y \in \mathcal{M}, \bar{a}xy = \bar{a}(xy) \in V.$$

Then $x\bar{a}y = \bar{a}xy - (\bar{a}x - x\bar{a})y$ and $x\bar{a}y \in V$. Therefore

$$\bar{a}(xy) - (xy)\bar{a} = \bar{a}xy - x\bar{a}y + x\bar{a}y - xy\bar{a} = (\bar{a}x - x\bar{a})y + x(\bar{a}y - y\bar{a}).$$

Hence

$$\triangle(xy) = \triangle(x)y + x \triangle(y)$$

by lemma 4. Now we show that \triangle is homogeneous. Indeed, for each $x \in \mathcal{M}$, and for $\lambda \in \mathbb{C}$ there exists a derivation $D_{x,\lambda x}$ such that $\triangle(x) = D_{x,\lambda x}(x)$ and $\triangle(\lambda x) = D_{x,\lambda x}(\lambda x)$. Then

$$\triangle(\lambda x) = D_{x,\lambda x}(\lambda x) = \lambda D_{x,\lambda x}(x) = \lambda \triangle(x).$$

Hence, \triangle is homogenous and therefore it is a linear operator and a derivation. The proof is complete.

 \triangleright

3. The main theorem

Theorem 5. Let M be a von Neumann algebra of type I and let $\triangle: M \to M$ be a 2-local derivation. Then \triangle is a derivation.

Proof. We have that

$$M = \sum_{j}^{\oplus} M_{I_{n_j}},$$

where $M_{I_{n_j}}$ is a von Neumann algebra of type I_{n_j} , n_j is a cardinal number for any j. Let $x_j \in M_{I_{n_j}}$ for any j and $x = \sum_j x_j$. Note that $\Delta(x_j) \in M_{I_{n_j}}$ for all $x_j \in M_{I_{n_j}}$. Hence

$$\triangle|_{M_{I_{n_i}}}:M_{I_{n_i}}\to M_{I_{n_i}}$$

and \triangle is a 2-local derivation on $M_{I_{n_j}}$. There exists a hyperstonean compact X such that $M_{I_{n_j}} \cong C(X) \otimes M_{n_j}(\mathbf{C})$. Hence by theorem $1 \triangle$ is a derivation on $M_{I_{n_j}}$.

Let x be an arbitrary element of M. Then there exists $d(j) \in M$ such that $\triangle(x) = d(j)x - xd(j)$, $\triangle(x_j) = d(j)x_j - x_jd(j)$ and

$$z_j \triangle (x) = z_j (d(j)x - xd(j)) = z_j \sum_i (d(j)x_i - x_i d(j)) =$$
$$d(j)x_i - x_i d(j) = \triangle (x_i),$$

for all j, where z_j is unit of $M_{I_{n_i}}$. Hence

$$\triangle(x) = \sum_{j} z_{j} \triangle(x) = \sum_{j} \triangle(x_{j}).$$

Since x was chosen arbitrarily \triangle is a derivation on M by the last equality. Indeed, let $x, y \in M$. Then

$$\triangle(x) + \triangle(y) = \sum_{j} \triangle(x_j) + \sum_{j} \triangle(y_j) = \sum_{j} [\triangle(x_j) + \triangle(y_j)] =$$
$$\sum_{j} \triangle(x_j + y_j) = \sum_{j} z_j \triangle(x + y) = \triangle(x + y).$$

Similarly,

$$\triangle(xy) = \sum_{j} \triangle(x_j y_j) = \sum_{j} [\triangle(x_j) y_j + x_j \triangle (y_j)] =$$

$$\sum_{j} \triangle(x_j) y_j + \sum_{j} x_j \triangle (y_j) = \sum_{j} \triangle(x_j) \sum_{j} y_j + \sum_{j} x_j \sum_{j} \triangle (y_j) =$$

$$\triangle(x) y + x \triangle (y).$$

By the proof of the previous theorem \triangle is homogenous. Hence \triangle is a linear operator and a derivation. The proof is complete. \triangleright

References

- [1] P. Šemrl, Local automorphisms and derivations on B(H), Proc. Amer. Math. Soc. 125 (1997), 26772680.
- [2] S. O. Kim, J. S. Kim, Local automorphisms and derivations on M_n , Proc. Amer. Math. Soc. 132 (2004), 13891392.
- [3] Y. Lin, T. Wong, A note on 2-local maps, Proc. Edinb. Math. Soc. 49 (2006), 701708.
- [4] Sh. A. Ayupov, K. K. Kudaybergenov, 2-local derivations and automorphisms on B(H), arxiv 1111.2928v1 [math.OA] 12 nov 2011.
- [5] F. N. Arzikulov, Infinite order and norm decompositions of C*-algebras, Int. Journal of Math. Analysis, Vol. 2, no. 5-8, pp. 255-262.(2008) (www.m-hikari.com)
- [6] F. N. Arzikulov, Infinite order decompositions of C*-algebras, arXiv:1008.0243v1 [math.OA], 2 Aug 2010.
- [7] M.Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.

Institute of Mathematics and Information Technologies, Tashkent, Uzbekistan and the Abdus Salam International Centre for Theoretical Physics (ICTP) Trieste, Italy *E-mail address*: sh_ayupov@mail.ru

Institute of Mathematics and Information Technologies, Tashkent, Andizhan State University, Andizhan, Uzbekistan

E-mail address: arzikulovfn@rambler.ru

2-LOCAL DERIVATIONS ON VON NEUMANN ALGEBRAS OF TYPE I

SHAVKAT AYUPOV AND FARKHAD ARZIKULOV

ABSTRACT. In the present paper we prove that every 2-local derivation on a von Neumann algebra of type I is a derivation.

2000 Mathematics Subject Classification: Primary 46L57; Secondary 46L40

Introduction

The present paper is devoted to 2-local derivations on von Neumann algebras. Recall that a 2-local derivation is defined as follows: given an algebra A, a map $\Delta: A \to A$ (not linear in general) is called a 2-local derivation if for every x, $y \in A$, there exists a derivation $D_{x,y}: A \to A$ such that $\Delta(x) = D_{x,y}(x)$ and $\Delta(y) = D_{x,y}(y)$.

In 1997, P. Šemrl [1] introduced the notion of 2-local derivations and described 2-local derivations on the algebra B(H) of all bounded linear operators on the infinite-dimensional separable Hilbert space H. A similar description for the finite-dimensional case appeared later in [2]. In the paper [3] 2-local derivations have been described on matrix algebras over finite-dimensional division rings.

In [4] the authors suggested a new technique and have generalized the above mentioned results of [1] and [2] for arbitrary Hilbert spaces. Namely they considered 2-local derivations on the algebra B(H) of all linear bounded operators on an arbitrary (no separability is assumed) Hilbert space H and proved that every 2-local derivation on B(H) is a derivation.

In the present paper we also suggest another technique and generalize the above mentioned results of [1], [2] and [4] for arbitrary von Neumann algebras of type I. Namely, we prove that every 2-local derivation on a von Neumann algebra of type I is a derivation.

The authors want to thank K.K.Kudaybergenov for many stimulating conversations on the subject.

1. Preliminaries

Let M be a von Neumann algebra.

Definition. A linear map $D: M \to M$ is called a derivation, if D(xy) = D(x)y + xD(y) for any two elements $x, y \in M$.

A map $\Delta: M \to M$ is called a 2-local derivation, if for any two elements $x, y \in M$ there exists a derivation $D_{x,y}: M \to M$ such that $\Delta(x) = D_{x,y}(x)$, $\Delta(y) = D_{x,y}(y)$.

Date: February 21, 2012.

Key words and phrases. derivation, 2-local derivation, von Neumann algebra.

It is known that any derivation D on a von Neumann algebra M is an inner derivation, that is there exists an element $a \in M$ such that

$$D(x) = ax - xa, x \in M.$$

Therefore for a von Neumann algebra M the above definition is equivalent to the following one: A map $\Delta: M \to M$ is called a 2-local derivation, if for any two elements $x, y \in M$ there exists an element $a \in M$ such that $\Delta(x) = ax - xa$, $\Delta(y) = ay - ya$.

Further we will use the latter definition.

Let n be an arbitrary infinite cardinal number, Ξ be a set of indexes of the cardinality n. Let $\{e_{ij}\}$ be a set of matrix units such that e_{ij} is a $n \times n$ -dimensional matrix, i.e. $e_{ij} = (a_{\alpha\beta})_{\alpha\beta\in\Xi}$, the (i,j)-th component of which is 1, i.e. $a_{ij} = 1$, and the rest components are zeros. Let $\{m_{\xi}\}_{\xi\in\Xi}$ be a set of $n \times n$ -dimensional matrixes. By $\sum_{\xi\in\Xi} m_{\xi}$ we denote the matrix whose components are sums of the corresponding components of matrixes of the set $\{m_{\xi}\}_{\xi\in\Xi}$. Let

$$M_n(\mathbf{C}) = \{\{\lambda_{ij}e_{ij}\}: for \ all \ indexes \ i, j \lambda_{ij} \in \mathbf{C}, \}$$

and there exists such number $K \in \mathbf{R}$, that for all $n \in N$

and
$$\{e_{kl}\}_{kl=1}^n \subseteq \{e_{ij}\} \|\sum_{kl=1}^n \lambda_{kl} e_{kl}\| \le K\},$$

where $\| \|$ is a norm of a matrix. It is easy to see that $M_n(\mathbf{C})$ is a vector space.

The associative multiplication of elements in $M_n(\mathbf{C})$ can be defined as follows: if $x = \sum_{ij \in \Xi} \lambda_{ij} e_{ij}$, $y = \sum_{ij \in \Xi} \mu_{ij} e_{ij}$ are elements of $M_n(\mathbf{C})$ then $xy = \sum_{ij \in \Xi} \sum_{\xi \in \Xi} \lambda_{i\xi} \mu_{\xi j} e_{ij}$. With this operation $M_n(\mathbf{C})$ becomes an associative algebra and $M_n(\mathbf{C}) = B(l_2(\Xi))$, where $l_2(\Xi)$ is a Hilbert space over \mathbf{C} with elements $\{x_i\}_{i \in \Xi}$, $x_i \in \mathbf{C}$ for all $i \in \Xi$, $B(l_2(\Xi))$ is the associative algebra of all bounded linear operators on the Hilbert space $l_2(\Xi)$. Then $M_n(\mathbf{C})$ is a von Neumann algebra of infinite $n \times n$ -dimensional matrices over \mathbf{C} .

Similarly, if we take the algebra B(H) of all bounded linear operators on an arbitrary Hilbert space H and if $\{q_i\}$ is an arbitrary maximal orthogonal set of minimal projections of the algebra B(H), then $B(H) = \sum_{ij}^{\oplus} q_i B(H) q_j$ (see [5]).

Let X be a hyperstonean compact, and let C(X) denote the commutative algebra of all complex-valued continuous functions on the compact X and

$$\mathcal{M} = \{ \{\lambda_{ij}(x)e_{ij}\}_{ij\in\Xi} : (\forall ij \ \lambda_{ij}(x) \in C(X))$$
$$(\exists K \in R)(\forall m \in N)(\forall \{e_{kl}\}_{kl=1}^m \subseteq \{e_{ij}\}) \| \sum_{kl=1...m} \lambda_{kl}(x)e_{kl} \| \leq K \},$$

where $\|\sum_{kl=1...m} \lambda_{kl}(x)e_{kl}\| \leq K$ means $(\forall x_o \in X)\|\sum_{kl=1...m} \lambda_{kl}(x_o)e_{kl}\| \leq K$. The set \mathcal{M} is a vector space with point-wise algebraic operations. The map $\| \| : \mathcal{M} \to \mathbf{R}_+$ defined as

$$||a|| = \sup_{\{e_{kl}\}_{kl=1}^n \subseteq \{e_{ij}\}} ||\sum_{kl=1}^n \lambda_{kl}(x)e_{kl}||,$$

is a norm on the vector space \mathcal{M} , where $a \in \mathcal{M}$ and $a = \sum_{ij \in \Xi} \lambda_{ij}(x) e_{ij}$.

Moreover \mathcal{M} is a von Neumann algebra of type I_n and $\mathcal{M} = C(X) \otimes M_n(\mathbf{C})$, where the multiplication is defined as follows $xy = \sum_{ij \in \Xi} \sum_{\xi \in \Xi} \lambda_{i\xi}(x) \mu_{\xi j}(x) e_{ij}$ [6].

Let \mathcal{M} be a von Neumann algebra, $\Delta : \mathcal{M} \to \mathcal{M}$ be a 2-local derivation. Now let us show that Δ is homogeneous. Indeed, for each $x \in \mathcal{M}$, and for $\lambda \in \mathbb{C}$ there exists a derivation $D_{x,\lambda x}$ such that $\Delta(x) = D_{x,\lambda x}(x)$ and $\Delta(\lambda x) = D_{x,\lambda x}(\lambda x)$. Then

$$\triangle(\lambda x) = D_{x,\lambda x}(\lambda x) = \lambda D_{x,\lambda x}(x) = \lambda \triangle(x).$$

Hence, \triangle is homogenous. At the same time, for each $x \in \mathcal{M}$, there exists a derivation D_{x,x^2} such that $\triangle(x) = D_{x,x^2}(x)$ and $\triangle(x^2) = D_{x,x^2}(x^2)$. Then

$$\Delta(x^2) = D_{x,x^2}(x^2) = D_{x,x^2}(x)x + xD_{x,x^2}(x) = \Delta(x)x + x\Delta(x).$$

In [7] it is proved that any Jordan derivation on a semi-prime algebra is a derivation. Since \mathcal{M} is semi-prime, the map \triangle is a derivation if it is additive. Therefore, to prove that the 2-local derivation $\triangle: \mathcal{M} \to \mathcal{M}$ is a derivation it is sufficient to prove that $\triangle: \mathcal{M} \to \mathcal{M}$ is additive in the proofs of theorems 1 and 5.

2. 2-local derivations on von Neumann algebras of type ${\rm I}_n$ with an infinite cardinal number n

The following theorem is the key result of this section.

Theorem 1. Let $\triangle : C(X) \otimes M_n(\mathbf{C}) \to C(X) \otimes M_n(\mathbf{C})$ be a 2-local derivation. Then \triangle is a derivation.

First let us prove lemmata which are necessary for the proof of theorem 1.

Put $\mathcal{M} = C(X) \otimes M_n(\mathbf{C})$, $e_{ij} := \mathbf{1}e_{ij}$ for all i, j, where $\mathbf{1}$ is unit of the algebra C(X). Let $\{a(ij)\} \subset \mathcal{M}$ be the set such that

$$\triangle(e_{ij}) = a(ij)e_{ij} - e_{ij}a(ij).$$

for all i, j, put $a_{ij}e_{ij} = e_ia(ji)e_j$ for all pairs of different indexes i, j and let $\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}$ be the set of all such elements.

Lemma 2. For any pair i, j of different indices the following equality holds

$$\Delta(e_{ij}) = \{a_{\xi\eta}e_{\xi\eta}\}_{\xi \neq \eta}e_{ij} - e_{ij}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi \neq \eta} + a(ij)_{ii}e_{ij} - e_{ij}a(ij)_{jj}, \quad (1)$$

where $a(ij)_{ii}$, $a(ij)_{jj}$ are functions in C(X) which are the coefficients of the Peirce components $e_{ii}a(ij)e_{ii}$, $e_{jj}a(ij)e_{jj}$.

Proof. Let k be an arbitrary index different from i, j and let $a(ij, ik) \in \mathcal{M}$ be an element such that

$$\triangle(e_{ik}) = a(ij,ik)e_{ik} - e_{ik}a(ij,ik)$$
 and $\triangle(e_{ij}) = a(ij,ik)e_{ij} - e_{ij}a(ij,ik)$.

Then

$$e_{kk}a_{ki}e_{ij} - e_{kk}e_{ij}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{jj} = e_{kk}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{ij} - e_{kk}e_{ij}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{jj} = e_{kk}(\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{ij} - e_{ij}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{jj}.$$

Similarly,

$$e_{kk} \triangle (e_{ij})e_{ii} = e_{kk}(a(ij,ik)e_{ij} - e_{ij}a(ij,ik))e_{ii} =$$

$$e_{kk}a(ij,ik)e_{ij}e_{ii} - 0 = 0 - 0 = e_{kk}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{ij}e_{ii} - e_{kk}e_{ij}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{ii} = e_{kk}(\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{ij} - e_{ij}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta})e_{ii}.$$

Let $a(ij, kj) \in \mathcal{M}$ be an element such that

$$\triangle(e_{kj}) = a(ij,kj)e_{kj} - e_{kj}a(ij,kj)$$
 and $\triangle(e_{ij}) = a(ij,kj)e_{ij} - e_{ij}a(ij,kj)$.

Then

$$e_{ii} \triangle (e_{ij})e_{kk} = e_{ii}(a(ij,kj)e_{ij} - e_{ij}a(ij,kj))e_{kk} = 0 - e_{ij}a(ij,kj)e_{kk} = 0 - e_{ij}a(kj)e_{kk} = 0 - e_{ij}a_{jk}e_{kk} = 0 - e_{ij}a_{jk}e_{kk}e_{kk} = 0 - e_{ij}a_{jk}e_{kk}e_{kk} = 0 - e_{ij}a_{jk}e_{kk}e_{kk} = 0 - e_{ij}a_{jk}e_{kk}e_{kk}e_{kk} = 0 - e_{ij}a_{jk}e_{kk$$

Also we have

$$e_{jj} \triangle (e_{ij})e_{kk} = e_{jj}(a(ij,kj)e_{ij} - e_{ij}a(ij,kj))e_{kk} = 0 - 0 = e_{jj}\{a(ij)\}_{i \neq j}e_{ij}e_{kk} - e_{jj}e_{ij}\{a(ij)\}_{i \neq j}e_{kk} = e_{jj}(\{a_{\xi\eta}e_{\xi\eta}\}_{\xi \neq \eta}e_{ij} - e_{ij}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi \neq \eta})e_{kk},$$

$$e_{ii} \triangle (e_{ij})e_{ii} = e_{ii}(a(ij)e_{ij} - e_{ij}a(ij))e_{ii} = 0$$

$$e_{ii} \triangle (e_{ij})e_{ii} = e_{ii}(a(ij)e_{ij} - e_{ij}a(ij))e_{ii} = 0 - e_{ij}a(ij)e_{ii} = 0 - e_{ij}a(ij)e_{ii} = 0 - e_{ij}a_{ji}e_{ii} = 0 - e_{ij}a_{ii}e_{ii} = 0 -$$

$$\begin{split} e_{jj} & \triangle \left(e_{ij} \right) e_{jj} = e_{jj} (a(ij) e_{ij} - e_{ij} a(ij)) e_{jj} = \\ & e_{jj} a(ij) e_{ij} - 0 = e_{jj} a_{ji} e_{ij} - 0 = \\ e_{jj} & \{ a_{\xi\eta} e_{\xi\eta} \}_{\xi \neq \eta} e_{ij} - e_{jj} e_{ij} \{ a_{\xi\eta} e_{\xi\eta} \}_{\xi \neq \eta} e_{jj} = \\ & e_{jj} (\{ a_{\xi\eta} e_{\xi\eta} \}_{\xi \neq \eta} e_{ij} - e_{ij} \{ a_{\xi\eta} e_{\xi\eta} \}_{\xi \neq \eta}) e_{jj}. \end{split}$$

Hence the equality (1) holds. \triangleright

We take elements of the sets $\{\{e_{i\xi}\}_{\xi}\}_i$ and $\{\{e_{\xi j}\}_{\xi}\}_j$ in pairs $(\{e_{\alpha\xi}\}_{\xi}, \{e_{\xi\beta}\}_{\xi})$ such that $\alpha \neq \beta$. Then using the set $\{(\{e_{\alpha\xi}\}_{\xi}, \{e_{\xi\beta}\}_{\xi})\}$ of such pairs we get the set $\{e_{\alpha\beta}\}$.

Let $x = \{e_{\alpha\beta}\}$ be a set $\{v_{ij}e_{ij}\}_{ij}$ such that for all i, j if $(\alpha, \beta) \neq (i, j)$ then $v_{ij} = 0$ else $v_{ij} = 1$. Then $x \in \mathcal{M}$. Let $c \in \mathcal{M}$ be an element such that

$$\triangle(e_{ij}) = ce_{ij} - e_{ij}c$$
 and $\triangle(x) = cx - xc$,

 $i \neq j$ and fix the indices i, j.

Put
$$c = \{c_{ij}e_{ij}\} \in \mathcal{M} \text{ and } \bar{a} = \{a_{ij}e_{ij}\}_{i\neq j} \cup \{a_{ii}e_{ii}\}, \text{ where } \{a_{ii}e_{ii}\} = \{c_{ii}e_{ii}\}.$$

Lemma 3. Let ξ , η be arbitrary different indices, and let $b \in \mathcal{M}$ be an element such that

$$\triangle(e_{\xi\eta}) = be_{\xi\eta} - e_{\xi\eta}b \ and \ \triangle(x) = bx - xb.$$

Then $c_{\xi\xi} - c_{\eta\eta} = b_{\xi\xi} - b_{\eta\eta}$.

Proof. We have that there exist $\bar{\alpha}$, $\bar{\beta}$ such that $e_{\xi\bar{\alpha}}$, $e_{\bar{\beta}\eta} \in \{e_{\alpha\beta}\}$ (or $e_{\bar{\alpha}\eta}$, $e_{\xi\bar{\beta}} \in \{e_{\alpha\beta}\}$, or $e_{\bar{\alpha},\bar{\beta}} \in \{e_{\alpha\beta}\}$), and there exists a chain of pairs of indexes $(\hat{\alpha},\hat{\beta})$ in Ω , where $\Omega = \{(\check{\alpha},\check{\beta}) : e_{\check{\alpha},\check{\beta}} \in \{e_{\alpha\beta}\}\}$, connecting pairs $(\xi,\bar{\alpha})$, $(\bar{\beta},\eta)$ i.e.,

$$(\xi,\bar{\alpha}),(\bar{\alpha},\xi_1),(\xi_1,\eta_1),\ldots,(\eta_2,\bar{\beta}),(\bar{\beta},\eta).$$

Then

$$c_{\xi\xi}-c_{\bar{\alpha}\bar{\alpha}}=b_{\xi\xi}-b_{\bar{\alpha}\bar{\alpha}}, c_{\bar{\alpha}\bar{\alpha}}-c_{\xi_1\xi_1}=b_{\bar{\alpha}\bar{\alpha}}-b_{\xi_1\xi_1},$$

$$c_{\xi_1\xi_1}-c_{\eta_1\eta_1}=b_{\xi_1\xi_1}-b_{\eta_1\eta_1},\ldots,c_{\eta_2\eta_2}-c_{\bar{\beta}\bar{\beta}}=b_{\eta_2\eta_2}-b_{\bar{\beta}\bar{\beta}},c_{\bar{\beta}\bar{\beta}}-c_{\eta\eta}=b_{\bar{\beta}\bar{\beta}}-b_{\eta\eta}.$$
 Hence

$$\begin{split} c_{\xi\xi} - b_{\xi\xi} &= c_{\bar{\alpha}\bar{\alpha}} - b_{\bar{\alpha}\bar{\alpha}}, c_{\bar{\alpha}\bar{\alpha}} - b_{\bar{\alpha}\bar{\alpha}} = c_{\xi_1\xi_1} - b_{\xi_1\xi_1}, \\ c_{\xi_1\xi_1} - b_{\xi_1\xi_1} &= c_{\eta_1\eta_1} - b_{\eta_1\eta_1}, \dots, c_{\eta_2\eta_2} - b_{\eta_2\eta_2} = c_{\bar{\beta}\bar{\beta}} - b_{\bar{\beta}\bar{\beta}}, c_{\bar{\beta}\bar{\beta}} - b_{\bar{\beta}\bar{\beta}} = c_{\eta\eta} - b_{\eta\eta}. \end{split}$$

and
$$c_{\xi\xi} - b_{\xi\xi} = c_{\eta\eta} - b_{\eta\eta}$$
, $c_{\xi\xi} - c_{\eta\eta} = b_{\xi\xi} - b_{\eta\eta}$.
Therefore $c_{\xi\xi} - c_{\eta\eta} = b_{\xi\xi} - b_{\eta\eta}$.

Lemma 4. Let x be an element of the algebra \mathcal{M} . Then $\triangle(x) = \bar{a}x - x\bar{a}$, where \bar{a} is defined as above.

Proof. Let $d(ij) \in \mathcal{M}$ be an element such that

$$\triangle(e_{ij}) = d(ij)e_{ij} - e_{ij}d(ij)$$
 and $\triangle(x) = d(ij)x - xd(ij)$

and $i \neq j$. Then

$$\triangle(e_{ij}) = d(ij)e_{ij} - e_{ij}d(ij) = e_{ii}d(ij)e_{ij} - e_{ij}d(ij)e_{jj} + (1 - e_{ii})d(ij)e_{ij} - e_{ij}d(ij)(1 - e_{jj}) = a(ij)_{ii}e_{ij} - e_{ij}a(ij)_{jj} + \{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{ij} - e_{ij}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}$$

for all i, j by lemma 2.

Since
$$e_{ii}d(ij)e_{ij} - e_{ij}d(ij)e_{jj} = a(ij)_{ii}e_{ij} - e_{ij}a(ij)_{jj}$$
 we have

$$(1 - e_{ii})d(ij)e_{ii} = \{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{ii}, e_{jj}d(ij)(1 - e_{jj}) = e_{jj}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}$$

for all different i and j.

Hence by lemma 3 we have

$$\begin{split} e_{jj} \bigtriangleup (x) e_{ii} &= e_{jj} (d(ij)x - x d(ij)) e_{ii} = \\ e_{jj} d(ij) (1 - e_{jj}) x e_{ii} + e_{jj} d(ij) e_{jj} x e_{ii} - e_{jj} x (1 - e_{ii}) d(ij) e_{ii} - e_{jj} x e_{ii} d(ij) e_{ii} = \\ e_{jj} \{a_{\xi\eta} e_{\xi\eta}\}_{\xi \neq \eta} x e_{ii} - e_{jj} x \{a_{\xi\eta} e_{\xi\eta}\}_{\xi \neq \eta} e_{ii} + e_{jj} d(ij) e_{jj} x e_{ii} - e_{jj} x e_{ii} d(ij) e_{ii} = \\ e_{jj} \{a_{\xi\eta} e_{\xi\eta}\}_{\xi \neq \eta} x e_{ii} - e_{jj} x \{a_{\xi\eta} e_{\xi\eta}\}_{\xi \neq \eta} e_{ii} + c_{jj} e_{jj} x e_{ii} - e_{jj} x e_{ii} c_{ii} e_{ii} \\ \text{since } d(ij)_{jj} - d(ij)_{ii} = b_{jj} - b_{ii}. \end{split}$$

Hence

$$e_{ii} \triangle (x)e_{ii} = e_{ii}(d(ij)x - xd(ij))e_{ii} =$$

$$e_{ii}d(ij)(1 - e_{ii})xe_{ii} + e_{ii}d(ij)e_{ii}xe_{ii} - e_{ii}x(1 - e_{ii})d(ij)e_{ii} - e_{ii}xe_{ii}d(ij)e_{ii} =$$

$$e_{ii}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}xe_{ii} - e_{ii}x\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{ii} + e_{ii}d(ij)e_{ii}xe_{ii} - e_{ii}xe_{ii}d(ij)e_{ii} =$$

$$e_{ii}\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}xe_{ii} - e_{ii}x\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}e_{ii} + 0 = c_{ii}e_{ii}xe_{ii} - e_{ii}xc_{ii}e_{ii}.$$

Hence

$$\triangle(x) = (\sum_{i} c_{ii}e_{ii})x - x(\sum_{i} c_{ii}e_{ii}) + \{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta}x - x\{a_{\xi\eta}e_{\xi\eta}\}_{\xi\neq\eta} = \bar{a}x - x\bar{a}$$

for all $x \in \mathcal{M}$. \triangleright

Proof of theorem 1. Let $V = \{\{\lambda_{ij}e_{ij}\}_{ij} : \{\lambda_{ij}\} \subset C(X)\}$ (the set of all infinite $n \times n$ -dimensional function-valued matrices). Then V is a vector space with componentwise algebraic operations and \mathcal{M} is a vector subspace of V.

By lemma $4 \triangle (e_{ii}) = \bar{a}e_{ii} - e_{ii}\bar{a} \in \mathcal{M}$. Hence

$$\sum_{\xi} a_{\xi i} e_{\xi i} - \sum_{\xi} a_{i\xi} e_{i\xi} \in \mathcal{M}.$$

Then

$$e_{ii}(\sum_{\xi} a_{\xi i} e_{\xi i} - \sum_{\xi} a_{i\xi} e_{i\xi}) = a_{ii} e_{ii} - \sum_{\xi} a_{i\xi} e_{i\xi} \in \mathcal{M}$$

and

$$(\sum_{\xi} a_{\xi i} e_{\xi i} - \sum_{\xi} a_{i\xi} e_{i\xi}) e_{ii} = \sum_{\xi} a_{\xi i} e_{\xi i} - a_{ii} e_{ii} \in \mathcal{M}.$$

Therefore $\sum_{\xi} a_{\xi i} e_{\xi i}$, $\sum_{\xi} a_{i\xi} e_{i\xi} \in \mathcal{M}$ i.e., $\bar{a}e_{ii}, e_{ii}\bar{a} \in \mathcal{M}$. Hence $e_{ii}\bar{a}x, x\bar{a}e_{ii} \in \mathcal{M}$ for any i and

$$\bar{a}x, x\bar{a} \in V$$

for any element $x = \{x_{ij}e_{ij}\} \in \mathcal{M}$, i.e.,

$$\sum_{\xi} a_{i\xi} x_{\xi j} e_{ij}, \sum_{\xi} x_{i\xi} a_{\xi j} e_{ij} \in \mathbb{C} e_{ij}$$

for all i, j. Therefore for all $x, y \in \mathcal{M}$ we have that the elements $\bar{a}x, x\bar{a}, \bar{a}y, y\bar{a}, \bar{a}(x+y), (x+y)\bar{a}$ belong to V. Hence

$$\triangle(x+y) = \triangle(x) + \triangle(y)$$

by lemma 4.

Similarly for all $x, y \in \mathcal{M}$ we have

$$(\bar{a}x + x\bar{a})y = \bar{a}xy - x\bar{a}y \in \mathcal{M}, \bar{a}xy = \bar{a}(xy) \in V.$$

Then $x\bar{a}y = \bar{a}xy - (\bar{a}x - x\bar{a})y$ and $x\bar{a}y \in V$. Therefore

$$\bar{a}(xy) - (xy)\bar{a} = \bar{a}xy - x\bar{a}y + x\bar{a}y - xy\bar{a} = (\bar{a}x - x\bar{a})y + x(\bar{a}y - y\bar{a}).$$

Hence

$$\triangle(xy) = \triangle(x)y + x \triangle(y)$$

by lemma 4. Now we show that \triangle is homogeneous. Indeed, for each $x \in \mathcal{M}$, and for $\lambda \in \mathbb{C}$ there exists a derivation $D_{x,\lambda x}$ such that $\triangle(x) = D_{x,\lambda x}(x)$ and $\triangle(\lambda x) = D_{x,\lambda x}(\lambda x)$. Then

$$\triangle(\lambda x) = D_{x,\lambda x}(\lambda x) = \lambda D_{x,\lambda x}(x) = \lambda \triangle(x).$$

Hence, \triangle is homogenous and therefore it is a linear operator and a derivation. The proof is complete.

 \triangleright

3. The main theorem

Theorem 5. Let M be a von Neumann algebra of type I and let $\triangle: M \to M$ be a 2-local derivation. Then \triangle is a derivation.

Proof. We have that

$$M = \sum_{j}^{\oplus} M_{I_{n_j}},$$

where $M_{I_{n_j}}$ is a von Neumann algebra of type I_{n_j} , n_j is a cardinal number for any j. Let $x_j \in M_{I_{n_j}}$ for any j and $x = \sum_j x_j$. Note that $\Delta(x_j) \in M_{I_{n_j}}$ for all $x_j \in M_{I_{n_j}}$. Hence

$$\triangle|_{M_{I_{n_i}}}:M_{I_{n_i}}\to M_{I_{n_i}}$$

and \triangle is a 2-local derivation on $M_{I_{n_j}}$. There exists a hyperstonean compact X such that $M_{I_{n_j}} \cong C(X) \otimes M_{n_j}(\mathbf{C})$. Hence by theorem $1 \triangle$ is a derivation on $M_{I_{n_j}}$.

Let x be an arbitrary element of M. Then there exists $d(j) \in M$ such that $\triangle(x) = d(j)x - xd(j)$, $\triangle(x_j) = d(j)x_j - x_jd(j)$ and

$$z_j \triangle (x) = z_j (d(j)x - xd(j)) = z_j \sum_i (d(j)x_i - x_i d(j)) =$$
$$d(j)x_i - x_i d(j) = \triangle (x_i),$$

for all j, where z_j is unit of $M_{I_{n_i}}$. Hence

$$\triangle(x) = \sum_{j} z_{j} \triangle(x) = \sum_{j} \triangle(x_{j}).$$

Since x was chosen arbitrarily \triangle is a derivation on M by the last equality. Indeed, let $x, y \in M$. Then

$$\triangle(x) + \triangle(y) = \sum_{j} \triangle(x_j) + \sum_{j} \triangle(y_j) = \sum_{j} [\triangle(x_j) + \triangle(y_j)] =$$
$$\sum_{j} \triangle(x_j + y_j) = \sum_{j} z_j \triangle(x + y) = \triangle(x + y).$$

Similarly,

$$\triangle(xy) = \sum_{j} \triangle(x_j y_j) = \sum_{j} [\triangle(x_j) y_j + x_j \triangle (y_j)] =$$

$$\sum_{j} \triangle(x_j) y_j + \sum_{j} x_j \triangle (y_j) = \sum_{j} \triangle(x_j) \sum_{j} y_j + \sum_{j} x_j \sum_{j} \triangle (y_j) =$$

$$\triangle(x) y + x \triangle (y).$$

By the proof of the previous theorem \triangle is homogenous. Hence \triangle is a linear operator and a derivation. The proof is complete. \triangleright

References

- [1] P. Šemrl, Local automorphisms and derivations on B(H), Proc. Amer. Math. Soc. 125 (1997), 26772680.
- [2] S. O. Kim, J. S. Kim, Local automorphisms and derivations on M_n , Proc. Amer. Math. Soc. 132 (2004), 13891392.
- [3] Y. Lin, T. Wong, A note on 2-local maps, Proc. Edinb. Math. Soc. 49 (2006), 701708.
- [4] Sh. A. Ayupov, K. K. Kudaybergenov, 2-local derivations and automorphisms on B(H), arxiv 1111.2928v1 [math.OA] 12 nov 2011.
- [5] F. N. Arzikulov, Infinite order and norm decompositions of C*-algebras, Int. Journal of Math. Analysis, Vol. 2, no. 5-8, pp. 255-262.(2008) (www.m-hikari.com)
- [6] F. N. Arzikulov, Infinite order decompositions of C*-algebras, arXiv:1008.0243v1 [math.OA], 2 Aug 2010.
- [7] M.Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.

Institute of Mathematics and Information Technologies, Tashkent, Uzbekistan and the Abdus Salam International Centre for Theoretical Physics (ICTP) Trieste, Italy *E-mail address*: sh_ayupov@mail.ru

Institute of Mathematics and Information Technologies, Tashkent, Andizhan State University, Andizhan, Uzbekistan

E-mail address: arzikulovfn@rambler.ru