

10111110

数字逻辑基础

主讲:何宾

Email: hebin@mail.buct.edu.cn

2014.06

组合逻辑电路--概念

我们都知道人的大脑具有复杂的推理和记忆功能,人的大脑可以指挥人的四肢进行工作。人是在不断地记忆新知识的过程中成长的。

- 数字系统和人的大脑和四肢有些相似,即:一个完整的数字系统应该包含有推理部分,又应该包含有记忆(存储)部分,还有执行部分。
- 在数字系统中,所谓的推理和执行部分称之为组合逻辑电路;而记忆(存储)部分称之为时序逻辑电路。

组合逻辑电路 --概念

组合逻辑电路(combinational logic)是一种逻辑电路,它的任一时刻的输出,仅仅与当前时刻的逻辑输入变量的取值有关。

组合逻辑电路

--概念

组合逻辑电路的输入和输出可以用下面的关系描述:

$$y_0 = f_0(x_0, x_1, ..., x_{M-1})$$

 $y_1 = f_1(x_0, x_1, ..., x_{M-1})$

.

$$y_{N-1} = f_{N-1}(x_0, x_1, ..., x_{M-1})$$

其中:

- x₀,x₁,...,x_{M-1}为M个逻辑输入变量。
- y₀,y₁,...,y_{N-1}为N个逻辑输出变量。
- f₀() , f₁() , ... , f_{N-1}()表示M个输入和N个输出的布尔逻辑表达式。

组合逻辑电路 --概念

时序逻辑电路是一种特殊的组合逻辑电路。

■ 它的任何一个时刻的输出,不仅与当前时刻的逻辑输入变量的 取值有关,而且还和前一时刻的输出有关。其具体的原理将在 后面详细说明。

组合逻辑电路 --类型

组合逻辑电路包含:

- 编码器
- 译码器
- 数据选择器
- 数据比较器
- ■加法器
- 减法器
- 乘法器

组合逻辑电路

在数字系统中,编码器用于对原始逻辑信息进行变换。

■ 以74LS148 8-3线编码器为例,说明编码器的实现原理。

其中:

- EI(芯片上的第5个引脚),选通输入端,低电平有效。
- EO(芯片的第15引脚),选通输出端,高电平有效。
- GS(芯片的第14引脚)组选择输出有效信号,用作片优先编码输出端。当EI有效,并且有优先编码输入时,该引脚输出为低。
- A0、A1、A2 (芯片的第9、7和6引脚),编码输出端,低电平有效。

8-3线编码器的真值表

E₁	0	1	2	3	4	5	6	7	A_2	A_1	A_0	GS	E0
1	\times	1	1	1	1	1							
0	1	1	1	1	1	1	1	1	1	1	1	1	0
0	\times	\times	, ,	\times	\times	\times	\times	0	0	0	0	0	1
0				\times	\times	\times	0	1	0	0	1	0	1
0	\times	\times	\times	\times	\times	0	1	1	0	1	0	0	1
0	\times	\times	\times	\times	0	1	1	1	0	1	1	0	1
0	\times	\times	\times	0	1	1	1	1	1	0	0	0	1
0	\times	\times	0	1	1	1	1	1	1	0	1	0	1
0	\times	0	1	1	1	1	1	1	1	1	0	0	1
0	0	1	1	1	1	1	1	1	1	1	1	0	1

- 当EI为低有效时,编码器才能正常工作。
- 74LS148输入端优先级别的次序依次为7,6,...,0。当某一输入端有低电平输入,且比它优先级别高的输入端没有低电平输入时,输出端才输出相应该输入端的代码。
 - 例如:当输入5为逻辑0,且输入6和输入7为逻辑高时,则此时输出代码 010,为5(101)的反码表示。

对真值表使用布尔代数进行化简,得到下面的逻辑表达式:

$$A0 = (\bar{1} \cdot 2 \cdot 4 \cdot 6 + \bar{3} \cdot 4 \cdot 6 + \bar{5} \cdot 6 + \bar{7}) \cdot \bar{E}_{1}$$

$$A1 = (\bar{2} \cdot 4 \cdot 5 + \bar{3} \cdot 4 \cdot 5 + \bar{6} + \bar{7}) \cdot \bar{E}_1$$

$$A2 = (\bar{4} + \bar{5} + \bar{6} + \bar{7}) \cdot \bar{E}_1$$

$$E0 = 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot E_1$$

$$GS = E \ 0 \cdot \bar{E}_1$$

译码器是电子技术中的一种多输入多输出的组合逻辑电路。负责将二进制代码翻译为特定的对象(如逻辑电平等)。

- 功能与编码器相反。
- 典型的,3-8译码器,7段码译码器。

3-8译码器

编码从C, B, A引脚输入。输出

Y7~Y0用来表示输入编码的组合。

74LS138 3-8译码器的真值表

G ₁	G _{2A}	G _{2B}	C	В	Α	Y_0	Y ₁	Y_2	Y_3	Y_4	Y_5	Y ₆	Y ₇
X	1	X	X	X	X	1	1	1	1	1	1	1	1
\times	\times	1	X	X	X	1	1	1	1	1	1	1	1
0	\times	\times	X	X	X	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	0	1	1	0	1	1	1	1	1	1
1	0	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	0	0	1	1	1	1	0	1	1	1
1	0	0	1	0	1	1	1	1	1	1	0	1	1
1	0	0	1	1	0	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0

当
$$CBA = n$$
时, $n \subseteq \{0,1,2,3,4,5,6,7\}$

输出满足:

$$Y_{m} = 0', Y_{m} = 1', m \subseteq \{0,1,2,3,4,5,6,7\} \perp m \neq n$$

74LS138译码器正常工作的前提条件是:

$$G_1 = '1', \bar{G}_{2A} = '0', \bar{G}_{2B} = '0'$$

同时有效。

$$Y0 = (G_1 \cdot \overline{G_{2A}} \cdot \overline{G_{2B}}) \cdot \overline{C} \cdot \overline{B} \cdot \overline{A}$$

$$Y1 = (G_1 \cdot \overline{G_{2A}} \cdot \overline{G_{2B}}) \cdot \overline{C} \cdot \overline{B} \cdot A$$

$$Y2 = (G_1 \cdot \overline{G_{2A}} \cdot \overline{G_{2B}}) \cdot \overline{C} \cdot B \cdot \overline{A}$$

$$Y3 = (G_1 \cdot \overline{G_{2A}} \cdot \overline{G_{2B}}) \cdot \overline{C} \cdot A \cdot B$$

$$Y4 = (G_1 \cdot \overline{G_{2A}} \cdot \overline{G_{2B}}) \cdot C \cdot \overline{B} \cdot \overline{A}$$

$$Y5 = (G_1 \cdot \overline{G_{2A}} \cdot \overline{G_{2B}}) \cdot C \cdot \overline{B} \cdot A$$

$$Y6 = (G_1 \cdot \overline{G_{2A} \cdot G_{2B}}) \cdot C \cdot B \cdot A$$

$$Y7 = (G_1 \cdot \overline{G_{2A}} \cdot \overline{G_{2B}}) \cdot C \cdot B \cdot A$$

74LS138内部结构

七段码译码器

共阴极 7 段数码管原理

7段数码管亮灭控制的最基本原理:

当有电流流过7段数码管a,b,c,d,e,f,g的某一段时,该段就发光。

- (1) Vca-V公共端 < Vth 时,A段灭。否则,A段亮。
- (2) VCB-V公共端 < Vth 时, B段灭。否则, B段亮。
- (3) Vcc-V公共端 < Vth 时, C段灭。否则, C段亮。
- (4) VcD-V公共端 < Vth 时, D段灭。否则, D段亮。
- (5) VCE-V公共端 < Vth 时, E段灭。否则, E段亮。
- (6) VCF-V公共端 < V_{th}时,F段灭。否则,F段亮。
- (7) Vcg-V公共端 < Vth 时, G段灭。否则, G段亮。

注:Vth为七段数码管各段的门限电压。

X ₃	X_2	X ₁	x_{o}	g	f	е	d	С	b	a
0	0	0	0	0	1	1	1	1	1	1
0	0	0	1	0	0	0	0	1	1	0
0	0	1	0	1	0	1	1	0	1	1
0	0	1	1	1	0	0	1	1	1	1
0	1	0	0	1	1	0	0	1	1	0
0	1	0	1	1	1	0	1	1	0	1
0	1	1	0	1	1	1	1	1	0	1
0	1	1	1	0	0	0	0	1	1	1
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	0	1	1	1	1
1	0	1	0	1	1	1	0	1	1	1
1	0	1	1	1	1	1	1	1	0	0
1	1	0	0	0	1	1	1	0	0	1
1	1	0	1	1	0	1	1	1	1	0
1	1	1	0	1	1	1	1	0	0	1
1	1	1	1	1	1	1	0	0	0	1

根据这个真值表的描述,使用卡诺图表示7段码和二进制码的对应关系,并进行化简。

3

组合逻辑电路 --译码器

(d) d 输出的卡诺图

(-) - m	,	, ,,,,	-	
x1 x0		g		
x3 x2	00	01	.11	10
00	0	0	1	
01	1	1	0	1
11	0	1	1	1
10	1	1	\mathbf{L}	1

(g)g输出的卡诺图

(e)e输出的卡诺图

(f) f输出的卡诺图

使用卡诺图化简后,得到a,b,c,d,e,f,g和x3,x2,x1,x0对应关系的逻辑表达式为:

$$a = \bar{x_2} \ \bar{x_0} + x_3 \ \bar{x_2} \ \bar{x_1} + x_3 \ \bar{x_0} + x_2 x_1 + \bar{x_3} \ \bar{x_1} + \bar{x_3} \ \bar{x_2} x_0$$

$$b = \bar{x_3} \ \bar{x_2} + \bar{x_2} \ \bar{x_1} + \bar{x_2} \ \bar{x_0} + \bar{x_3} \ \bar{x_1} x_0 + \bar{x_3} \ \bar{x_1} \ \bar{x_0} + \bar{x_3} \ \bar{x_1} \ \bar{x_0}$$

$$c = \bar{x_2} \ \bar{x_1} + x_3 \ \bar{x_2} + \bar{x_1} \ \bar{x_0} + \bar{x_3} \ \bar{x_2} + \bar{x_3} \ \bar{x_0}$$

$$d = \bar{x_2} \ \bar{x_1} + \bar{x_0} + \bar{x_3} \ \bar{x_1} + \bar{x_2} \ \bar{x_1} x_0 + \bar{x_2} \ \bar{x_1} x_0 + \bar{x_3} \ \bar{x_2} \ \bar{x_1} + \bar{x_2} x_1 \ \bar{x_0}$$

$$e = \bar{x_2} \ \bar{x_0} + \bar{x_1} \ \bar{x_0} + \bar{x_3} x_2 + \bar{x_3} x_1$$

$$f = \bar{x_1} \ \bar{x_0} + \bar{x_3} \ \bar{x_2} + \bar{x_3} x_1 + \bar{x_3} \ \bar{x_2} + \bar{x_3} x_2 + \bar{x_3} x_1$$

$$g = \bar{x_2} \ \bar{x_1} + \bar{x_1} \ \bar{x_0} + \bar{x_3} \ \bar{x_2} + \bar{x_3} x_0 + \bar{x_3} \ \bar{x_2} + \bar{x_3} x_1$$

组合逻辑电路 --码转换器

格雷码转换器

Gray(格雷码)的编码特点是相邻的两个编码中,只有一位不同。

二进制码对应的Gray码真值表映射关系

X_3	X ₂	X ₁	\mathbf{X}_{0}	g3	g2	g1	g0	X_3	X_2	X ₁	X_0	g3	g2	g1	g0
0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0
0	0	0	1	0	0	0	1	1	0	0	1	1	1	0	1
0	0	1	0	0	0	1	1	1	0	1	0	1	1	1	1
0	0	1	1	0	0	1	0	1	0	1	1	1	1	1	0
0	1	0	0	0	1	1	0	1	1	0	0	1	0	1	0
0	1	0	1	0	1	1	1	1	1	0	1	1	0	1	1
0	1	1	0	0	1	0	1	1	1	1	0	1	0	0	1
0	1	1	1	0	1	0	0	1	1	1	1	1	0	0	0

组合逻辑电路--码转换器

对上面的真值表进行化简,得到二进制码到gray码转换的逻辑表达式:

$$g_i = x_{i+1} \oplus x_i$$

组合逻辑电路 --二进制数到BCD码转换器

	A				二进制码十进制数(BCD)					
	二进制	数					二进	制码十	一进制刻	数(BCD)
十六进制	b3	b2	b1	b0	p4	р3	p2	p1	p0	BCD
0	0	0	0	0	0	0	0	0	0	00
1	0	0	0	1	0	0	0	0	1	01
2	0	0	1	0	0	0	0	1	0	02
3	0	0	1	1	0	0	0	1	1	03
4	0	1	0	0	0	0	1	0	0	04
5	0	1	0	1	0	0	1	0	1	05
6	0	1	1	0	0	0	1	1	0	06
7	0	1	1	1	0	0	1	1	1	07
8	1	0	0	0	0	1	0	0	0	08
9	1	0	0	1	0	1	0	0	1	09
Α	1	0	1	0	1	0	0	0	0	10
В	1	0	1	1	1	0	0	0	1	11
С	1	1	0	0	1	0	0	1	0	12
D	1	1	0	1	1	0	0	1	1	13
E	1	1	1	0	1	0	1	0	0	14
F	1	1	1	1	1	0	1	0	1	15

组合逻辑电路 --二进制数到BCD码转换器

(a) p0 的·	卡诺图
-----------	-----

b1 b0		p1		
b3 b2	00	01	11	10
00	0	0	1	1
01	0	0	1	1
11	1	1	0	0
10	0	0	0	0

(b)p1 的卡诺图

b1 b0		p 2					
b3 b2	00	01	11	10			
00	0	0	0	0			
01	1	1	1	1			
11	0	0	1	1			
10	0	0	0	0			
(c)p2 的卡诺图							

b1 b0		p 3		
b3 b2	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	0	0	0
10	1	1	0	0

b1 b0		P4			
b3 b2	00	01	11	10	
00	0	0	0	0	
01	0	0	0	0	-
11	1	1	(1	1	_
10	0	0	1	1	

组合逻辑电路 --二进制数到BCD码转换器

$$p_{0} = b_{0}$$

$$p_{1} = b_{3}b_{2} \ \overline{b_{1}} + \overline{b_{3}} \ b_{1}$$

$$p_{2} = \overline{b_{3}} \ b_{2} + b_{2}b_{1}$$

$$p_{3} = b_{3} \ \overline{b_{2}} \ \overline{b_{1}}$$

$$p_{4} = b_{3}b_{2} + b_{3}b_{1}$$

在数字逻辑中,数据选择器(multiplexer, MUX), 也称为多路复用器。它从多个输入的逻辑信号中选择一个 逻辑信号输出。

2:1多路复用器

2-1多路复用器真值表

S	a	b	y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

多路复用器的最简逻辑表达式:

$$y = a \cdot \bar{s} + b \cdot s$$

4:1 多路复用器的实现原理

4-1多路复用器真值表

s1	s0	У
0	0	c0
0	1	c1
1	0	c2
1	1	с3

组合逻辑电路

$$v = c_0 \cdot \bar{s_0} + c_1 \cdot s_0$$

$$w = c_2 \cdot \bar{s_0} + c_3 \cdot s_0$$

$$z = v \cdot \bar{s_1} + w \cdot \bar{s_1}$$

$$z = (c_0 \cdot \overline{s_0} + c_1 \cdot s_0) \cdot \overline{s_1} + (c_2 \cdot \overline{s_0} + c_3 \cdot s_0) \cdot s_1$$

= $c_0 \cdot \overline{s_0} \cdot \overline{s_1} + c_1 \cdot s_0 \cdot \overline{s_1} + c_2 \cdot \overline{s_0} \cdot s_1 + c_3 \cdot s_0 \cdot s_1$

典型的数据选择器专用集成电路

数据选择器	功能	输出状态	
74LS157	四个2选1数据选择器	输出原变量	
74LS158	四个2选1数据选择器	输出反变量	
74LS153	两个4选1数据选择器	输出原变量	
74LS352	两个4选1数据选择器	输出反变量	
74LS151	一个8选1数据选择器	输出反变量	
74LS150	一个16选1数据选择器	输出反变量	

组合逻辑电路 --数据比较器

多位数字比较器的实现通过两步实现:

- 首先实现1位的数字比较器。
- 然后通过级联1位的数字比较器,实现多位的数字比较器。

组合逻辑电路 --数据比较器

比较器的功能满足下面的条件:

- 如果x>y,或者x=y且G_{in}=1,则G_{out}=1。
- 如果x=y且G_{in}=0,L_{in}=0,则E_{out}=1。
- 如果x<y,或者x=y且L_{in}=1,则L_{out}=1。

组合逻辑电路 --数据比较器

一位比较器的真值表描述

X	У	Gin	L _{in}	Gout	E _{out}	Lout
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	1	0	0
0	0	1	1	1	0	1
0	1	0	0	0	0	1
0	1	0	1	0	0	1
0	1	1	0	0	0	1
0	1	1	1	0	0	1

X	У	Gin	L _{in}	G _{out}	E _{out}	Lout
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	1	0	0
1	0	1	1	1	0	0
1	1	0	0	0	1	0
1	1	0	1	0	0	1
1	1	1	0	1	0	0
1	1	1	1	1	0	1

G _{in} L _{in}		\mathbf{G}_{out}		
xy	00	01	11	10
00	0	0	1	1
01	0	0	0	0
11	0	0	1	1
10	1	1	1	1

(a) G _{oot} 卡诺图映射	(a)) G	卡诺	图映射
----------------------------	-----	-----	----	-----

G _{in} L _{in}		Eout		
xy	00	01	11	10
00	1	0	0	0
01	0	0	0	0
11	1	0	0	0
10	0	0	0	0

(b) Eout 卡诺图映射

$$G_{out} = x \cdot \bar{y} + x \cdot G_{in} + \bar{y} \cdot G_{in}$$

$$E_{out} = \bar{x} \cdot \bar{y} \cdot \bar{G}_{in} \cdot \bar{L}_{in} + x \cdot y \cdot \bar{G}_{in} \cdot \bar{L}_{in}$$

$$L_{out} = \bar{x} \cdot y + \bar{x} \cdot L_{in} + y \cdot L_{in}$$

组合逻辑电路 --数据比较器

多位比较器的实现原理

■多位比较器可以由一位比较器级联得到。

组合逻辑电路 --数据比较器

74LS85是一个专用的4位比较器芯片。

	比较	输入		4	及连输。	λ		输出	
A3, B3	A2, B2	A1, B1	A0, B0	A > B	A <b< th=""><th>A=B</th><th>A>B</th><th>A<b< th=""><th>A=B</th></b<></th></b<>	A=B	A>B	A <b< th=""><th>A=B</th></b<>	A=B
A3>B3	×	×	×	×	×	×	Н	L	L
A3 <b3< th=""><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>L</th><th>Н</th><th>L</th></b3<>	×	×	×	×	×	×	L	Н	L
A3=B3	A2>B2	×	×	×	×	×	Н	L	L
A3=B3	A2 <b2< th=""><th>×</th><th>×</th><th>×</th><th>×</th><th>×</th><th>L</th><th>Н</th><th>L</th></b2<>	×	×	×	×	×	L	Н	L
A3=B3	A2=B2	A1>B1	×	×	×	×	Н	L	L
A3=B3	A2=B2	A <b1< th=""><th>×</th><th>×</th><th>×</th><th>×</th><th>L</th><th>Н</th><th>L</th></b1<>	×	×	×	×	L	Н	L
A3=B3	A2=B2	A1=B1	A0>B0	×	×	×	Н	L	L
43=B3	A2=B2	A1=B1	A0 <b0< th=""><th>×</th><th>×</th><th>×</th><th>L</th><th>Н</th><th>L</th></b0<>	×	×	×	L	Н	L
43=B3	A2=B2	A1=B1	A0=B0	Н	L	L	Н	L	L
A3=B3	A2=B2	A1=B1	A0=B0	L	Н	L	L	Н	L
A3=B3	A2=B2	A1=B1	A0=B0	×	×	Н	L	L	Н
A3=B3	A2=B2	A1=B1	A0=B0	Н	Н	L	L	L	L
A3=B3	A2=B2	A1=B1	A0=B0	L	L	L	Н	Н	L

В3 ☐	1	U ₁₆]v _{cc}
A< Bin 🛚	2	15	A3
$A = Bin \square$	3	14	B2
A> Bin 🛚	4	13	A2
A> Bout 🛚 !	5	12] A1
A = Bout 🔲	6	11	B1
A< Bout 🛚	7	10] A0
GND 🛚	8	9	B0

在电子学中,加法器(adder)是一种用于执行加法运算的数字电路部件,是构成中央处理单元(CPU)中算术逻辑单元的基础。

- 在中央处理单元中,加法器主要负责计算地址、索引等数据。
- 加法器也是其他一些硬件,例如二进制数乘法器的重要组成部分。

一位半加器的实现

根据真值表可以得到半加器的最简逻辑表达式:

半加器真值表

a_0	b ₀	S ₀	C ₁
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$s_0 = \bar{a_0} \cdot b_0 + a_0 \cdot \bar{b_0} = a_0 \oplus b_0 \qquad c_1 = a_0 \cdot b_0$$

一位全加器的实现

全加器真值表

Ci	a _i	b _i	s _i	C _{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(a) S_i卡洛图映射

(b) C_{i+1} 卡诺图映射

可以得到全加器的最简逻辑表达式:

$$s_{i} = \overline{a_{i}} \cdot b_{i} \cdot \overline{c_{i}} + a_{i} \cdot \overline{b_{i}} \cdot \overline{c_{i}} + \overline{a_{i}} \cdot \overline{b_{i}} \cdot c_{i} + a_{i} \cdot b_{i} \cdot c_{i}$$

$$= \overline{c_{i}} \cdot (a_{i} \oplus b_{i}) + c_{i} \cdot \overline{(a_{i} \oplus b_{i})}$$

$$= (a_{i} \oplus b_{i} \oplus c_{i})$$

$$c_{i+1} = a_{i} \cdot b_{i} + b_{i} \cdot c_{i} + a_{i} \cdot c_{i}$$

$$= a_{i} \cdot b_{i} + c_{i} \cdot (a_{i} + b_{i})$$

$$= a_{i} \cdot b_{i} + c_{i} \cdot (a_{i} \cdot (b_{i} + \overline{b_{i}}) + b_{i} \cdot (a_{i} + \overline{a_{i}}))$$

$$= a_{i} \cdot b_{i} + c_{i} \cdot (a_{i} \cdot \overline{b_{i}} + b_{i} \cdot \overline{a_{i}})$$

$$= a_{i} \cdot b_{i} + c_{i} \cdot (a_{i} \oplus b_{i})$$

根据最简的逻辑表达式,可以得到全加器逻辑图

串行进位加法器

- 多位全加器可以由一位全加器级联而成。
- 前一级全加器的进位做为下一级进位的输入。
- 串行进位加法器需要一级一级的进位,有很大的进位延迟。

超前进位加法器 为了减少多位二进制数加减计算所需的时间,出现了一种比串行进位加法器速度更快的加法器,这种加法器称为超前进位加法器。

■ 假设二进制加法器的第i为输入为ai和bi,输出为si,进位输入为ci, 进位输出为ci+1。则有:

$$s_i = a_i \oplus b_i \oplus c_i$$

$$c_{i+1} = a_i \cdot b_i + a_i \cdot c_i + b_i \cdot c_i = a_i \cdot b_i + c_i \cdot (a_i + b_i)$$

 $\Rightarrow : g_i = a_i \cdot b_i , p_i = a_i + b_i$

则: $c_{i+1} = g_i + p_i \cdot c_i$

- 当a_i和b_i都为1的时候,g_i=1,产生进位c_{i+1}=1
- 当a_i或b_i为1的时候,p_i=1,传递进位c_{i+1}=c_i
- g_i定义为进位产生信号, p_i定义为进位传递信号。
- g_i的优先级高于p_i,也就是说:
 - 当g_i=1的时候,必然存在p_i=1,不管c_i多少,必然存在进位。
 - 当g_i=0,而p_i=1时,进位输出为c_i,跟c_i之前的逻辑有关。

以4位超前进位加法器为例

- 假设四位被加数和加数为a和b,进位输入为c_{in},进位输出为c_{out}
- 对于第i位产生的进位:

$$g_i = a_i \cdot b_i$$
 , $p_i = a_i + b_i$ (i=0 , 1 , 2 , 3)

$$c_{0} = c_{in}$$

$$c_{1} = g_{0} + p_{0} \cdot c_{0}$$

$$c_{2} = g_{1} + p_{1} \cdot c_{1} = g_{1} + p_{1} \cdot (g_{0} + p_{0} \cdot c_{0}) = g_{1} + p_{1} \cdot g_{0} + p_{1} \cdot p_{0} \cdot c_{0}$$

$$c_{3} = g_{2} + p_{2} \cdot c_{2} = g_{2} + p_{2} \cdot g_{1} + p_{2} \cdot p_{1} \cdot g_{0} + p_{2} \cdot p_{1} \cdot p_{0} \cdot c_{0}$$

$$c_{4} = g_{3} + p_{3} \cdot c_{3} = g_{3} + p_{3} \cdot g_{2} + p_{3} \cdot p_{2} \cdot g_{1} + p_{3} \cdot p_{2} \cdot p_{1} \cdot g_{0} + p_{3} \cdot p_{2} \cdot p_{1} \cdot p_{0} \cdot c_{0}$$

$$c_{out} = c_{4}$$

可以看出,各级的进位彼此独立,只与输入数据和Cin有关,将各级之间的进位级联传播给去掉了。因此,大大降低了进位产生的延迟。

- 每个等式与只有三级延迟的电路对应,第一级延迟对应进位产生信号和进位传递信号,后两级延迟对应上面的积之和。
- 同时,可以得到第i为的和为:

$$s_i = a_i \oplus b_i \oplus c_i = g_i \oplus p_i \oplus c_i$$

74LS283超前进位加法器

--减法器

一位半减器的实现原理

减法器的设计很类似加法器的设计过程,可以通过真值表实现。一旦设计了一个位片减法器电路,就可以将其复制N次,创建一个N位的减法器。

半加器真值表

$\mathbf{a_0}$	\mathbf{b}_0	\mathbf{d}_0	$\mathbf{c_1}$
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

$$d_{0} = \bar{a_{0}} \cdot b_{0} + a_{0} \cdot \bar{b_{0}} = a_{0} \oplus b_{0}$$

$$c_{1} = \bar{a_{0}} \cdot b_{0}$$

--减法器

一位全减器的实现原理

Ci	a _i	b _i	d _i	C _{i+1}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	0
1	1	1	1	1

(a) d_i卡诺图映射

(b) c_{i+1} 卡诺图映射

--减法器

$$d_{j} = \bar{a_{i}} \cdot b_{j} \cdot \bar{c_{i}} + a_{j} \cdot \bar{b_{i}} \cdot \bar{c_{j}} + \bar{a_{j}} \cdot \bar{b_{j}} \cdot c_{j} + a_{j} \cdot b_{j} \cdot c_{j}$$

$$= \bar{c_{j}} \cdot (a_{i} \oplus b_{j}) + c_{j} \cdot (\overline{a_{j}} \oplus \overline{b_{j}})$$

$$= (a_{j} \oplus b_{i} \oplus c_{j})$$

$$c_{j+1} = c_{j} \cdot b_{j} + \bar{a_{j}} \cdot b_{j} + \bar{a_{j}} \cdot c_{j}$$

$$= \bar{a_{j}} \cdot b_{j} + c_{j} \cdot (\bar{a_{j}} + b_{j})$$

$$= \bar{a_{j}} \cdot b_{j} + c_{j} \cdot (\bar{a_{j}} \cdot (b_{j} + \bar{b_{j}}) + b_{j} \cdot (a_{j} + \bar{a_{j}}))$$

$$= \bar{a_{j}} \cdot b_{j} + c_{j} \cdot (\bar{a_{j}} \cdot (\bar{b_{j}} + b_{j}) + b_{j} \cdot (\bar{a_{j}} + \bar{a_{j}}))$$

$$= \bar{a_{j}} \cdot b_{j} + c_{j} \cdot (\bar{a_{j}} \cdot (\bar{a_{j}} \cdot b_{j} + b_{j} \cdot a_{j}))$$

$$= \bar{a_{j}} \cdot b_{j} + c_{j} \cdot (\bar{a_{j}} \cdot b_{j} + b_{j} \cdot a_{j})$$

$$= \bar{a_{j}} \cdot b_{j} + c_{j} \cdot (\bar{a_{j}} \cdot b_{j} + b_{j} \cdot a_{j})$$

组合逻辑电路 --负数的表示

在数字电路中,用于执行算术功能的部件经常需要处理负数。所以,必须要定义一种表示负数的方法。

- \blacksquare 一个N位的系统总共可以表示 2^N 个数,一个有用的编码就是使用
 - 一半可用的编码 $(2^N/2)$ 表示正数,另一半表示负数。
 - □ 可以将一个比特位设计成一个符号位,用于区分正数和负数。如果符号位是'1',则所表示的数为负数;否则,所表示的数为正数。
 - □ 最高有效位(most significant bit, MSB)作为符号位。如果该位为0,表示是一个正数,则配置数的幅度时,可以将其忽略。

组合逻辑电路 --负数的表示

在所有可能的负数编码方案中,经常使用两种:符号幅度和二进制补码。

■ 符号幅度表示法

- □ 在一个八位的符号幅度系统中, (16)10表示为(00010000)2
- □ (-16)10表示为(10010000)2。

■ 二进制补码表示法

- □ 在二进制补码表示法中,MSB仍是符号位。MSB为1时表示负数,MSB 为0时表示正数。
- \Box 在二进制补码表示法中,整数0由一个字长为N位的全零二进制数表示。 其余的 $2^N - 1$ 个数表示正整数和负整数。

组合逻辑电路 --负数的表示

数的表示不连续

符号幅度表示法

补码表示法

组合逻辑电路 --负数的表示

- +17转换为-17的二进制补码计算公式:
- □ +17对应的原码为00010001。

原码按位取反,加1就得到负数的补码

- □ 所有位按位取反后变成11101110。
- □ 结果加1,得到-17的补码为11101111。

组合逻辑电路 --负数的表示

- -35转换为+35的二进制补码计算公式:
- □ -35对应的补码为11011101。
- □ 所有位按位取反后变成00100010。
- □ 结果加1,得到+35的补码为00100011。

组合逻辑电路 ---负数的表示

- -127转换为+127的二进制补码计算公式:
- □ -127对应的补码为10000001。
- □ 所有位按位取反后变成01111110。
- □ 结果加1,得到+127的补码为01111111。

组合逻辑电路 --负数的表示

- +1转换为-1的二进制补码计算公式:
- □ +1对应的原码为0000001。
- □ 所有位按位取反后变成11111110。
- □ 结果加1,得到-1的补码为11111111。

- 一位加法器/减法器的实现原理
- 假设一个逻辑变量E,用来选择是半加器还是半加器功能,规定:
 - E=0时,为半加器;
 - E=1时,为半减器。
- 二者之间的差别可以用下面的逻辑关系式表示:

$$\bar{E} \cdot a + E \cdot \bar{a}$$

半加器和半减器就可以使用一个逻辑结构实现。

其中:

- SD0为半加器/半减器的和/差结果;
- CB1为半加器/半减器的进位/借位。

全减器真值表

Ci	a _i	b _i	d _i	C _{i+1}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	0
1	1	1	1	1

重排的全加器真值表

Ci	a _i	b _i	S _i	C _{i+1}
1	0	1	0	1
1	0	0	1	0
1	1	1	1	1
1	1	0	0	1
0	0	1	1	0
0	0	0	0	0
0	1	1	0	1
0	1	0	1	0

重要:全减器和全加器的c_i和c_{i+1}互补,b_i也互补。

如果对ci和bi进行求补,则全加器可以用作全减器使用。

如果把上图的结构级联可以生成一个4位的减法器。 但是将取消进位输出和下一个进位输入的取补运算。

- 这是因为最终的结果只是需要对最初的进位输入c₀取补。
 - 对于加法器来说c₀为0;
 - 对于减法器来说, c₀为1。
- 等效于a和b的和加1。这其实就是补码的运算。这样,使用加法器进行相减运算,只需要用减数的补码,然后相加。

多位加法器/减法器的实现原理

注意: 当用作减法时(E=1),则输出进位 c_4 是输出借位的补。

- 二进制的乘法器是数字电路的一种元件,它可以将两个
- 二进制数相乘。乘法器是由更基本的加法器组成的。

乘法运算的本质实际上是"部分乘积移位求和"的过程。

(b) 部分积相加得到结果