Algorithm used to find optimal routes for electric vehicles

María Paulina Ocampo Duque Jose Manuel Fonseca Palacio Medellín, Date of the oral presentation

Data Structures

Figure 1: We use an undirected graph to represent a map where the client and the station will be shown. Each node contains a client and a station.

Route 1	Route 2	Route 3	Route 4	Route 5	
---------	---------	---------	---------	---------	--

Figure 2: An arraylist to save the routes. Each route contains the distances

Algorithm and Complexity

Figure 2: optimal choice of cost in greedy algorithm

Subproblems	Complexity
Create the graph	O(n)
Check which nodes are left to visit	O(m)
Find the shortest distance from one node	O(m)
Total complexity	O(n+m ²)

Table 1: Complexity of each subproblem that is part of the algorithm. Let n be the amount of nodes, m the number of clients.

Algorithm design criteria

The algorithm was designed in terms of time consumption, is considerably faster than other options like backtracking or brute force, which might find a better solution, but they are considerably slower, and will possibly occupy more memory, due to the recursive cases in backtracking. This method provides a fast, efficient solution which can also be modified to optimize its answer.

Time and Memory Consumption

	Dataset 1	Dataset 2	Dataset 3	Dataset 4
Best case	0.004 s	0.004 s	0.004 s	0.004 s
Average case	0.00705 s	0.00676 s	0.00655 s	0.00636 s
Worst case	0.016 s	0.014 s	0.014 s	0.015 s

Table 2: Execution time of the data structure for different datasets.

Time and Memory Consumption

	Dataset 1	Dataset 2	Dataset 3	Dataset 4
Memory usage	1.597 MB	1.596 MB	1.596 MB	1.596 MB

Table 2: Memory consumption of the data structure for different datasets.

Software prototype

Figure 4: System of optimal delivery routing

Include your own figures

C. Patiño-Forero, M. Agudelo-Toro, and M. Toro. Planning system for deliveries in Medellín. ArXiv e-prints, Nov. 2016. Available at: https://arxiv.org/abs/1611.04156

Include the link of your report in arXiv

