Safe Sequential Path Planning of Multi-Vehicle Systems Under Presence of Disturbances and Measurement Noise

Somil Bansal*, Mo Chen*, Claire J. Tomlin

Abstract—

I. INTRODUCTION

II. PROBLEM FORMULATION

Consider N vehicles whose joint dynamics described by the time-varying ordinary differential equation

$$\dot{x}_i = f_i(t, x_i, u_i, d_i)
|u_i| \in \mathcal{U}
|d_i| \in \mathcal{D}
i = 1, ..., N$$
(1)

where $x_i \in \mathbb{R}^{n_i}$ is the state of the *i*th vehicle, u_i is the control and of the *i*th vehicle, and d_i is the disturbance experienced by the *i*th vehicle. In general, the physical meaning of x_i and the dynamics f_i depend on the specific dynamic model of vehicle i, and need not be the same across the different vehicles.

We assume that the control functions $u_i(\cdot)$, $d_i(\cdot)$ are drawn from the set of measurable functions¹. Furthermore, we assume $f_i(t, x_i, u_i, d_i)$ is bounded, Lipschitz continuous in x_i for any fixed t, u_i, d_i , and measurable in t, u_i, d_i for each x_i . Therefore given any initial state x_i^0 and any control function $u_i(\cdot)$, there exists a unique, continuous trajectory $x_i(\cdot)$ solving (1) [1].

For convenience, let $p_i \in \mathbb{R}^p$ denote the position of vehicle i; note that p_i in most practical cases would be a subset of the state x_i . Under the worst case disturbance, each vehicle aims to get to some set of target states, denoted $\mathcal{T}_i \subset \mathbb{R}^{n_i}$ at some scheduled time of arrival t_{STA} . On its way to the target set \mathcal{T}_i , each vehicle must avoid the danger zones $\mathcal{A}_{ij}(t)$ of all other vehicles $j \neq i$ for all time. In general, the danger zone can be defined to capture any undesirable configuration between vehicle i and vehicle j. For simplicity, in this paper we define $\mathcal{A}_{ij}(t)$ as

$$\mathcal{A}_{ij}(t) = \{ x_i \in \mathbb{R}^{n_i} : ||p_i - p_j(t)|| \le R_c \},$$
 (2)

This work has been supported in part by NSF under CPS:ActionWebs (CNS-931843), by ONR under the HUNT (N0014-08-0696) and SMARTS (N00014-09-1-1051) MURIs and by grant N00014-12-1-0609, by AFOSR under the CHASE MURI (FA9550-10-1-0567). The research of J.F. Fisac has received funding from the "la Caixa" Foundation.

* Both authors contributed equally to this work. All authors are with the Department of Electrical Engineering and Computer Sciences, University of California, Berkeley. {mochen72, somil, tomlin}@eecs.berkeley.edu

 1 A function $f: X \to Y$ between two measurable spaces (X, Σ_X) and (Y, Σ_Y) is said to be measurable if the preimage of a measurable set in Y is a measurable set in X, that is: $\forall V \in \Sigma_Y, f^{-1}(V) \in \Sigma_X$, with Σ_X, Σ_Y σ -algebras on X, Y.

the interpretation of which is that a vehicle is another vehicle's danger zone if the two vehicles are within a distance of R_c apart.

The problem of driving each of the vehicles in (1) into their respective target sets \mathcal{T}_i would be in general a differential game of dimension $\sum_i n_i$. Due to the exponential scaling of the complexity of the state space with the problem dimension, an optimal solution is computationally intractable.

In this paper, we impose a mild structure to the general problem in order to trade complexity for optimality: we assign a priority to each vehicle. While traveling to its target set, a vehicle may ignore the presence of lower priority vehicles, but must take full responsibility for avoiding higher priority vehicles. Such a joint path planning scheme makes intuitive and practical sense, and the priorities can be assigned, for example, on a first-come first-serve basis.

Recently, [2] described how such a sequential path planning algorithm can be implemented using a HJ reachability approach without taking into account the presence of the disturbances d_i and limited information available to each vehicle. In this paper, we extend the work in [2] to consider these practically important aspects of the problem. In particular, we answer the following inter-dependent questions that were not previously addressed:

- 1) How can each vehicle guarantee that it will reach its target set without getting into any danger zones, despite the disturbances it experiences?
- 2) How can each vehicle take into account the disturbances that other vehicles experience?
- 3) How should each vehicle robustly handle situations with limited information about the state and intention of other vehicles?
- 4) How can each vehicle perform trajectory re-planning given updated information about the state of other vehicles?

III. SOLUTION VIA DOUBLE-OBSTACLE HJI VI AND SPP

- A. Double-Obstacle Hamilton-Jacobi Variational Inequality
 - Reachability general theory (backwards, then forwards)
- B. Sequential Path Planning
 - Priorities Treat higher priority vehicles as obstacles
- C. Obstacle Generation
 - Forward reachable set
 - 1) Centralized Planning:
 - 2) Distributed Planning:

D. State Measurement Updates

IV. NUMERICAL IMPLEMENTATION

V. CONCLUSIONS AND FUTURE WORK

REFERENCES

- E. A. Coddington and N. Levinson, *Theory of ordinary differential equations*. Tata McGraw-Hill Education, 1955.
 M. Chen, J. Fisac, C. J. Tomlin, and S. Sastry, "Safe sequential path
- [2] M. Chen, J. Fisac, C. J. Tomlin, and S. Sastry, "Safe sequential path planning of multi-vehicle systems via double-obstacle hamilton-jacobiisaacs variational inequality," in *European Control Conference*, 2015.