Оглавление

Теоретические вопросы
Типовой расчет №1
Теоретические упражнения
Практические задания
Задача 1 8
Задача 2 8
Задача 3
Задача 4
Задача 511
Задача 6
Задача 7
Контрольные вопросы15
Типовой расчет №2
Теоретические упражнения18
Практические задания
Задача 1
Задача 2
Задача 3
Задача 4
Задача 5
Задача 6
Задача 7
Примеры решения задач
Контрольные вопросы

Теоретические вопросы

Типовой расчет №1 охватывает следующие темы:

- **1. Определители** (см. [2; гл.1, §§1-6], [3; гл. 3, §§1, 4.1], [4; гл. I, §§2, 3, гл. VI, §§1, 2])
- 1.1. Свойства определителей. Понятие определителя n-го порядка. Правило Саррюса для n=2, 3. Основные свойства определителей.
- 1.2. Разложение определителя по строке и столбцу. Миноры и алгебраические дополнения. Разложение определителя по строке и столбцу и следствие из него. Треугольный и диагональный определители. Определитель Вандермонда. Решение систем по правилу Крамера.
- **2. Комплексные числа и многочлены** (см. [1; §§5.3-5.5]; [2; гл. II §2]; [3; гл.1 §5])
- 2.1. Понятие комплексного числа (к.ч.) Определение комплексных чисел и действия с ними. Алгебраическая запись к.ч., его геометрическое изображение. Модуль и аргумент, тригонометрическая форма к.ч. Умножение, деление к.ч. в тригонометрической форме.
- 2.2. Комплексные числа в показательной форме. Формулы Эйлера, показательная форма к.ч. Умножение, деление, возведение в степень и извлечение корня из к.ч. в показательной форме. Сопряжение к.ч. и его свойства. Формула Муавра.
- 2.3. Разложение многочленов на множители. Сложение и умножение многочленов. Деление многочленов с остатком. Теорема Безу. Кратность корня. Основная теорема алгебры. Разложение многочлена с вещественными коэффициентами на линейные и квадратичные множители. Разложение многочлена на линейные множители.
 - **3. Алгебра матриц** (см. [2; гл. 1 §§7, 8]; [3; гл. 3 §2]; [4; гл. V §3])
- 3.1. Умножение матриц. Сложение матриц и умножение их на числа. Умножение матриц и его свойства (роль единичной матрицы, дистрибутивность, транспонирование произведения, ассоциативность). Свойства умножения квадратных матриц. Теорема об определителе квадратных матриц.
- 3.2. Обратная матрица. Определение обратной матрицы и ее свойства (единственность, обратная матрица для произведения). Критерий существования и вычисление обратной матрицы. Решение с ее помощью матричных уравнений и систем линейных уравнений.
- **4. Линейные пространства** (см. [2; гл.II §§3, 4], [3; гл. 4 §1], [4; гл.V §2])
- 4.1. Понятие линейного пространства. Аксиомы линейного пространства и следствия из них. Примеры линейных пространств: $V^3, R^n, P_n, M_{mn}, C[\alpha, \beta]$. Линейное подпространство, линейная оболочка системы векторов.

- 4.2. Линейная зависимость и независимость системы векторов. Свойства линейной зависимости и независимости. Критерий линейной зависимости. Геометрический смысл линейной зависимости двух и трех геометрических векторов.
- 4.3. *Ранг системы векторов*. Определение ранга и базы для системы векторов. Линейная оболочка системы и ее базы, их совпадение. Сохранение ранга системы при добавлении к ней вектора из линейной оболочки. Критерий базы.
- 4.4. Сохранение ранга системы векторов при элементарных преобразованиях. Взаимосвязь рангов двух систем, когда векторы одной системы линейно выражаются через векторы другой. Элементарные преобразования системы векторов и сохранение ранга системы при их выполнении.
- 4.5. Базис и размерность линейного пространства. Определение базиса и размерности. Критерий базисности системы векторов (линейная независимость и полнота). Примеры линейных пространств и базисы в них (V^3, R^n, P_n, M_{mn}) . Пример бесконечномерного линейного пространства.
- 4.6. *Координаты векторов в базисе*. Однозначность разложения вектора по базису. Координаты вектора. Линейные операции над векторами в координатах.
- 4.7. Линейное подпространство и линейная оболочка системы векторов (как подпространство). Базис и размерность линейной оболочки и подпространства. Дополнение базиса подпространства до базиса линейного пространства.

Типовой расчет №2 охватывает следующие темы:

- **5. Теория систем линейных уравнений** (см. [2; гл.1 §§9-11], [3; гл. 3 §§3,4], [4; гл.VII §§1-3])
- 5.1. *Ранг матрицы*. Понятие ранга матрицы. Сохранение его при транспонировании. Теорема о базисном миноре. Критерий равенства определителя нулю. Совпадение ранга матрицы с рангом системы строк (столбцов) матрицы.
- 5.2. Приведение матрицы к ступенчатому и простейшему виду. Сохранение ранга матрицы при элементарных преобразованиях. Матрица ступенчатого вида и ее ранг. Приведение матрицы к ступенчатому виду (прямой ход метода Гаусса). Приведение ступенчатой матрицы к простейшему виду (обратный ход метода Гаусса).
- 5.3. Решение систем линейных уравнений методом Гаусса. Матрица системы и ее расширенная матрица. Элементарные преобразования системы и ее расширенной матрицы по методу Гаусса. Критерий совместности системы (теорема Кронекера-Капелли) и единственности решения.

- 5.4. Построение общего решения однородной системы. Критерий существования ненулевых решений однородной системы линейных уравнений (выделить случай квадратной системы). Линейное пространство решений однородной системы, его размерность и базис (фундаментальная система решений). Структура общего решения.
- **6. Линейные операторы** (см. [2; гл. III, §§1-4, 6-9], [3; гл. IV, §2], [4; гл. IX, §§5,6])
- 6.1. Линейные операторы и их матрицы. Понятие линейного оператора, его свойства и примеры. Матрица линейного оператора в данном базисе. Векторно-матричная запись действия линейного оператора.
- 6.2. Действия с операторами и их матрицами. Умножение линейных операторов на число, сложение и умножение операторов. Соответствующие действия с матрицами операторов. Обратный оператор и обратная матрица.
- 6.3. Замена базиса. Матрица перехода от одного базиса к другому. Преобразование координат вектора при переходе к новому базису.
- 6.4. *Матрицы линейного оператора в разных базисах*. Преобразование матрицы линейного оператора при переходе к новому базису. Подобие матриц и его свойства. Инвариантность определителя матрицы линейного оператора при замене базиса.
- 6.5. Собственные значения и собственные векторы. Понятия собственного значения и собственного вектора линейного оператора, их общие свойства. Линейная независимость собственных векторов, отвечающих разным собственным значениям. Оператор простого типа, диагонализуемость его матрицы. Достаточное условие оператора простого типа. Пример оператора непростого типа.
- 6.6. Нахождение собственных значений и собственных векторов. Характеристический многочлен, нахождение собственных значений и собственных векторов с помощью характеристического уравнения. Инвариантность собственных значений, следа и определителя матрицы линейного оператора.
- **7. Билинейные и квадратичные формы** (см. [2; гл. VI, §§1-5], [3; гл. IV, §3], [4; гл. IX, §§2-4])
- 7.1. Билинейная форма и ее матрица. Понятие билинейной формы. Матрица формы. Координатная и векторно-матричная запись формы. Преобразование матрицы формы при замене базиса. Квадратичная форма, порожденная симметричной билинейной формой, ее координатная и векторно-матричная запись.
- 7.2. Приведение квадратичной формы к каноническому и нормальному виду. Канонический и нормальный вид квадратичной формы. Приведение формы к каноническому виду методом Лагранжа. Закон инерции квадратичных форм. Положительный и отрицательный индексы формы,

ранг формы.

- 7.3. Знакоопределенная квадратичная форма, ее индексы и ранг. Критерий Сильвестра положительной (отрицательной) определенности квадратичной формы.
- **8. Евклидовы пространства** (см. [2; гл. IV, §§1-3, гл. V, §§2-4], [3; гл. IV, §§1, 2], [4; гл. X, §§1-4])
- 8.1. *Евклидово пространство*. Евклидово скалярное произведение. Примеры евклидовых пространств. Неравенство Коши-Буняковского. Длины векторов и углы между ними. Свойства длины вектора.
- 8.2. *Матрица Грама*. Матрица Грама скалярного произведения, его координатная и векторно-матричная записи. Критерий матрицы Грама. Преобразование матрицы Грама при замене базиса.
- 8.3. Ортогормированный базис. Линейная независимость ортогональной системы векторов. Ортогональный и ортонормированный базисы. Запись матрицы Грама, скалярного произведения, длины вектора в ортогональном и ортонормированном базисах. Метод ортогонализации базиса.
 - 8.4. Сопряженные и самосопряженные операторы. Их матрицы.
- 8.5. Ортогональное преобразование. Его матрица, свойства. Приведение квадратичной формы к каноническому виду с помощью ортогонального преобразования.

Указания по выполнению и сдаче типового расчета

- 1. Типовой расчет состоит из трех разделов: "Теоретические упражнения"; "Практические задания"; "Контрольные вопросы".
- 2. В начале раздела "Теоретические упражнения" приведена таблица распределения упражнений по вариантам. Указанные в ней упражнения выполняются студентом письменно; кроме того, студент должен быть готов к выполнению остальных упражнений при сдаче типового расчета.
- 3. Все **практические задания** выполняются студентом **письменно** в соответствии с определенным вариантом.
- 4. При сдаче типового расчета студенту предлагаются некоторые κone -*трольные вопросы* из приведенного списка.
- 5. При сдаче типового расчета обязательным является знание *основных определений и формулировок теорем* по перечисленным выше темам.
- 6. По результатам сдачи типового расчета студенту выставляется оценка.
- 7. Знаком "*" помечены дополнительные теоретические упражнения, практические задания и контрольные вопросы. Они рассчитаны на студентов, претендующих на отличную оценку, и не являются обязательными для остальных студентов.

ТИПОВОЙ РАСЧЕТ №1

Теоретические упражнения

Упражнения 1, 4, 5, 6 - для всех вариантов; остальные задачи распределяются преподавателем.

- 1. Вывести формулу Саррюса для вычисления определителя третьего порядка, исходя из общего определения.
- 2. Вывести формулы Крамера для решения системы трех линейных уравнений с тремя неизвестными, опираясь на теорему о разложении определителя по строкам и столбцам.
- 3. Доказать следующие следствия из аксиом линейного пространства L:
- а) единственность противоположного элемента;
- б) $\alpha \cdot \vec{0} = \vec{0}$ для любого $\alpha \in R$;
- в) $(-\alpha)\vec{x} = -\alpha\vec{x}$; $\alpha(-\vec{x}) = -\alpha\vec{x}$ для любых $\alpha \in R, \ \vec{x} \in L$;
- г) $(\alpha \beta)\vec{x} = \alpha \vec{x} \beta \vec{x}; \ \alpha(\vec{x} \vec{y}) = \alpha \vec{x} \alpha \vec{y}$ для любых $\alpha \in R; \ \vec{x}, \ \vec{y} \in L.$
- 4. Доказать, что линейно зависима всякая система векторов, которая содержит: а) нулевой вектор; б) два равных вектора; в) два пропорциональных вектора; г) линейно зависимую подсистему. Какое из этих утверждений самое общее? Показать, что всякая подсистема линейно независимой системы тоже линейно независима.
- 5. Найти размерность и указать какой-нибудь базис линейного пространства M_{mn} всех прямоугольных матриц размером $m \times n$.
- 6. Доказать, что множество M образует линейное подпространство в пространстве всех прямоугольных матриц данного размера:

$N_{\overline{0}}$	М - множество всех матриц указанного вида
вар.	
1-4,	${ m a)}$ решения матричного уравнения $AX=0$ с данной матрицей
14,17,	$\mid A;$
27-30	
	порядка (т.е. $AX = XA$)
5-7,	а) матрицы, антиперестановочные с данной матрицей A n -го
15,16,	порядка (т.е. $AX = -XA$);
24-26	б) симметричные матрицы n -го порядка (т.е. $X^T = X$)

8, 9,	а) кососимметричные матрицы n -го порядка (т. е. $X^T = -X$);						
22,23	б) верхнетреугольные матрицы n -го порядка с нулевым следом						
10,11,	a) матрицы n -го порядка с нулевыми суммами элементов вдоль						
20,21	главной и вдоль побочной диагонали;						
	б) матрицы $m \times n$ с одинаковыми суммами элементов вдоль						
	любой строки и вдоль любого столбца						
12,13,	а) матрицы $m \times n$ с нулевыми суммами элементов вдоль любой						
18,19	строки и вдоль любого столбца;						
	б) матрицы $m imes n$ с одинаковыми суммами элементов вдоль						
	любой строки						

- 7. Доказать дистрибутивность умножения прямоугольных матриц: A(B+C) = AB + AC.
- 8. Доказать свойства транспонирования прямоугольных матриц: а) $(A^T)^T = A;$ _6) $(AB)^T = B^T A^T;$
- в) $A = B \cdot B^T$ симметричная матрица;
- Γ) пусть A, B симметричные матрицы, тогда
 - $A \cdot B$ симметрична $\Leftrightarrow AB = BA$;
- $д^*)$ любую квадратную матрицу A можно единственным образом представить в виде A=B+C, где B симметрична, C кососимметрична.
- 9. Доказать свойства обратной матрицы: а) единственность; б) $(A^{-1})^{-1} = A$; в) $(AB)^{-1} = B^{-1}A^{-1}$.
- 10^* . Пусть $A=(a_{ij}),\ 1\leqslant i,j\leqslant n,\ -(n\times n)$ матрица. След матрицы $\operatorname{tr} A$ это сумма диагональных элементов: $\operatorname{tr} A=a_{11}+a_{22}+\cdots+a_{nn}$.
- а) Доказать, что след произведения не зависит от порядка сомножителей: $\operatorname{tr} AB = \operatorname{tr} BA$.
- б) Доказать, что не существует матриц A и B таких, что AB-BA=E, где E единичная $(n\times n)$ -матрица.
- 11^* . Опираясь на теорему о дополнении базиса подпространства до базиса всего пространства, доказать, что для любого подпространства M линейного пространства L существует дополнительное подпространство N, такое, что: а) $M \cap N = \{\vec{0}\}$; б) $\dim M + \dim N = \dim L$; в) любой вектор $\vec{x}, \vec{x} \in L$, однозначно представим в виде $\vec{x} = \vec{m} + \vec{n}$, где $\vec{m} \in M$, $\vec{n} \in N$.

Практические задания

Задача 1. Поверхность второго порядка σ задана своим уравнением в прямоугольной декартовой системе координат.

- 1) Определить тип поверхности σ .
- 2) Изобразить поверхность σ .
- 3) Нарисовать сечения поверхности σ координатными плоскостями. Найти фокусы и асимптоты полученных кривых.
- 4) Определить, по одну или по разные стороны от поверхности σ лежат точки M_1 и M_2 .
- 5) Определить, сколько точек пересечения с поверхностью σ имеет прямая, проходящая через точки M_1 и M_2 .

$N_{\overline{0}}$	Уравнение поверхности σ	M_1	M_2
1,22	$(x-1)^2 + (y+1)^2 + 2z^2 = 4$	1, -1, 1	3, 1, 1
2,23	$2(z+1) = 2x^2 + y^2$	0, 0, 1	-1, -2, -2
3,24	$(x-1)^2/2 + y^2 - z^2/4 = 0$	1, 2, 0	-1, 3, 0
4,25	$9(x-1)^2 + 4y^2 - 36z^2 = 36$	1,0,0	3, 1, 1
5,26	$x^{2} + (y+1)^{2} + 2z^{2} = 4$	$0, 0, \sqrt{2}$	$0,1,\sqrt{2}$
6,27	$2(1-z) = 2x^2 + y^2$	$0, -\sqrt{2}, 4$	0, 0, 2
7,28	$2x^2 + 4(y-1)^2 - z^2 = 0$	0, 1, 0	-1, 3, 4
8, 29	$9x^2 + 4(y-1)^2 - 36z^2 = 36$	0, 1, 0	3, 1, 4
9,30	$(x-1)^2 + (y+1)^2 + 2z^2 = 4$	1, -1, 0	3, -3, 2
10, 16	$36z = 4x^2 + 9(y+3)^2$	1, 2, 3	0, -3, 2
11, 17	$2(2-z) = x^2 + 2y^2$	0, 0, 2	1, 2, 3
12, 18	$2x^2 + 4y^2 = (z - 1)^2$	0, 0, 1	3, -2, 1
13, 19	$x^2/4 - y^2/9 - (z-1)^2 = 1$	1, 1, 0	2, 1, -1
14,20	$1 - z = x^2/4 + y^2/9$	2, 1, 0	2, 1, 8
15,21	$x^2/4 + y^2/9 = z^2$	2, 1, 3	2, -1, 4

$\bf 3адача \ 2.$ Дано комплексное число z.

- 1) Записать число z в показательной, тригонометрической и алгебраической форме, изобразить его на комплексной плоскости.
- 2) Записать в показательной, тригонометрической и алгебраической форме число $u=z^n$, где $n=(-1)^N(N+3)$ при $N\leqslant 15,\ n=(-1)^N(N-12)$ при $N\geqslant 16,\ N$ номер варианта.

- 3) Записать в показательной и тригонометрической форме каждое значение w_k ($k=0,\ 1,\ \ldots,\ m-1$) корня степени m=3 (нечетные варианты) или m=4 (четные варианты) из числа z.
- 4) Изобразить число z и числа w_k на одной комплексной плоскости.

N	z	N	z	N	z
1	$\frac{1+3i\sqrt{3}}{3-5i\sqrt{3}}$	2	$\frac{1+i\sqrt{3}}{3-3i\sqrt{3}}$	3	$\frac{1+i\sqrt{3}}{3-3i}$
4	$\frac{-2+10i}{3-2i}$	5	$\frac{-5+5i}{3-i\sqrt{3}}$	6	$\frac{-5+5i}{2-2i\sqrt{3}}$
7	$\frac{\sqrt{6} - i\sqrt{50}}{\sqrt{15} + i\sqrt{20}}$	8	$\frac{\sqrt{6} - i\sqrt{18}}{(\sqrt{15} - \sqrt{5}) + i(\sqrt{15} + \sqrt{5})}$	9	$\frac{\sqrt{6} - i\sqrt{6}}{\sqrt{30} + i\sqrt{10}}$
10	$\frac{-\sqrt{3}-i}{1+i\sqrt{3}}$	11	$\frac{-\sqrt{3}-3i}{1+i}$	12	$\frac{-3-3i}{1+i\sqrt{3}}$
13	$\frac{\sqrt{11} + i\sqrt{33}}{\sqrt{21} + i\sqrt{7}}$	14	$\frac{\sqrt{11} + i\sqrt{11}}{(\sqrt{21} - \sqrt{7}) + i(\sqrt{21} + \sqrt{7})}$	15	$\frac{\sqrt{11} + i\sqrt{33}}{\sqrt{7} + i\sqrt{7}}$
16	$\frac{-7\sqrt{3}-7i}{\sqrt{3}-i}$	17	$\frac{-7 - i\sqrt{3}}{6 - i\sqrt{3}}$	18	$\frac{-7 - 7i\sqrt{3}}{1 - i}$
19	$\frac{3+i}{6-3i}$	20	$\frac{4+4i}{3-3i\sqrt{3}}$	21	$\frac{4+4i}{3-i\sqrt{3}}$
22	$\frac{-\sqrt{2} - i\sqrt{18}}{\sqrt{5} - i\sqrt{20}}$	23	$\frac{-\sqrt{2} - i\sqrt{2}}{(\sqrt{15} - \sqrt{5}) - i(\sqrt{15} + \sqrt{5})}$	24	$\frac{-\sqrt{2} - i\sqrt{2}}{\sqrt{15} - i\sqrt{5}}$
25	$\frac{\sqrt{3}+i}{\sqrt{3}-i}$	26	$\frac{\sqrt{3}+i}{1-i}$	27	$\frac{1+i}{1-i\sqrt{3}}$
28	$\frac{-\sqrt{39} + i\sqrt{13}}{\sqrt{7} - i\sqrt{21}}$	29	$\frac{-\sqrt{39} + i\sqrt{13}}{(\sqrt{21} - \sqrt{7}) - i(\sqrt{21} + \sqrt{7})}$	30	$\frac{-\sqrt{39} + i\sqrt{13}}{\sqrt{7} - i\sqrt{7}}$

Задача 3. Дан многочлен $p(z) = az^4 + bz^3 + cz^2 + dz + e$.

- 1) Найти все корни многочлена p(z). Записать каждый корень в алгебраической форме, указать его алгебраическую кратность.
- 2) Разложить многочлен p(z) на неприводимые множители: а) в множестве $\mathbb C$ комплексных чисел; б) в множестве $\mathbb R$ действительных чисел.

$N_{\overline{0}}$	a	b	c	d	e	$N_{\overline{0}}$	a	b	c	d	e
1	3	-1	-7	-5	-2	2	1	3	1	0	4
3	1	2	-10	-11	-12	4	2	11	13	-3	9
5	5	-8	3	-2	2	6	1	1	10	9	9
7	4	20	41	40	16	8	4	4	5	2	1
9	5	-2	22	-8	8	10	3	-5	6	-3	1
11	1	0	2	0	4	12	1	0	$4\sqrt{3}$	0	12
13	9	0	-6	0	4	14	1	0	$3\sqrt{3}$	0	-12
15	4	0	-2	0	1	16	1	-3	-8	- 9	-5
17	1	1	-3	-4	-4	18	1	1	-2	-4	-8
19	1	2	-7	-18	-18	20	1	-3	-5	-21	-20
21	3	-1	5	3	2	22	1	2	7	6	5
23	1	3	8	8	8	24	1	1	10	9	9
25	1	-2	8	3	18	26	1	0	1	0	1
27	1	0	3	0	9	28	1	0	-1	0	1
29	1	0	-9	0	81	30	1	0	4	0	16

Указания.

- 1) В вариантах 1-5, 16-20 найти целые корни многочлена.
- 2) В вариантах 6–10, 21–25 известен корень z_1 :

$N_{\overline{0}}$	6	7	8	9	10
z_1	3i	$\begin{array}{ c c } \hline -5 - i\sqrt{7} \\ \hline 4 \end{array}$	$\frac{-1+i\sqrt{7}}{4}$	-2i	$\frac{1+i\sqrt{3}}{2}$
$N_{\overline{0}}$	21	22	23	24	25
z_1	$\frac{-1+i\sqrt{2}}{3}$	$\frac{-1+i\sqrt{19}}{2}$	$-1+i\sqrt{3}$	$\frac{-1+i\sqrt{3}}{2}$	$\frac{3+3i\sqrt{3}}{2}$

Задача 4. Пусть P_n — линейное пространство многочленов степени не выше n с действительными коэффициентами. Множество $M \subset P_n$ состоит из всех тех многочленов p(t), которые удовлетворяют указанным условиям.

- 1) Доказать, что множество M подпространство в P_n .
- 2) Найти размерность и какой-либо базис подпространства M.
- 3) Дополнить базис подпространства M до базиса P_n .

Замечание. Знак p(t) : q(t) означает, что многочлен p(t) делится на многочлен q(t) без остатка.

$N_{\overline{0}}$	n	Условия на $p(t) \in M$	$N_{\overline{0}}$	n	Условия на $p(t) \in M$
1	3	p(-1) = p(1)	2	3	p'(-1) = p'(1)
3	3	p(-2) = 0	4	4	p(-2) = p(3) = 0
5	4	p(2-i) = 0	6	3	p'(1) = 0
7	3	p(0) + p'(-1) = 0	8	4	p(i-1) = 0
9	4	$p(t) : (t-3)^2$	10	3	p''(1) = 0
11	4	$p(t) \vdots (t^2 + t + 1)$	12	3	p(1) = p(2) = 0
13	3	2p(0) + p(1) = 0	14	3	p(-1) + p(0) + p(1) = 0
15	3	p(0) + p'(2) = 0	16	3	p(2) = p(-2)
17	4	p(1) = p''(0) = 0	18	3	p(2) = 0
19	4	p(2) = p'(0) = 0	20	4	p(1+i) = 0
21	3	p'(-1) = 0	22	3	p'(0) + p(1) = 0
23	4	p(2+i) = 0	24	4	p(-1) = p'(-1) = 0
25		p''(1) + p'(0) = 0			$p(t)$: $(t^2 + 4t + 5)$
27	3	p(-1) + p''(0) = 0	28	3	p(-1) = 2p(0)
29	3	p(-1) + p'(0) + p(1) = 0	30	4	p''(0) = p(-1) = 0

Задача 5. Доказать, что множество M образует подпространство в пространстве $M_{m\times n}$ всех матриц данного размера. Найти размерность и построить базис M. Проверить, что матрица B принадлежит M и разложить ее по базису в M.

$N_{\overline{0}}$	М – множество матриц указанного вида	$\mid B \mid$
1	Решения $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ ypasheния \end{pmatrix} \cdot X = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$	$ \left(\begin{array}{cc} -1 & -1 \\ 3 & 1 \\ 1 & 1 \end{array}\right) $
2	Решения $\begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ -3 & -3 & -3 \end{pmatrix} \cdot X = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$ уравнения	$ \left(\begin{array}{ccc} 2 & -3 \\ -1 & 0 \\ -1 & 3 \end{array}\right) $
3	Матрицы, перестановочные $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$	$ \left(\begin{array}{ccc} 1 & 2 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right) $

$N_{\overline{0}}$	М – множество матриц указанного вида	B
4	Матрицы, перестановочные $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ с матрицей	$ \left(\begin{array}{ccc} 2 & -1 & 1 \\ 3 & 0 & 3 \\ 1 & -1 & 2 \end{array}\right) $
5	Матрицы, антиперестановочные $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ с матрицей	$ \left(\begin{array}{ccc} 1 & 2 & 3 \\ -2 & -1 & -3 \\ -1 & 1 & 0 \end{array}\right) $
6	Матрицы, антиперестановочные $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ с матрицей	$ \left(\begin{array}{ccc} 2 & -2 & 3 \\ 0 & -2 & 2 \\ 0 & 0 & 2 \end{array}\right) $
7	Симметричные матрицы 3-го порядка	$ \left \begin{pmatrix} 1 & 2 & 0 \\ 2 & 3 & -2 \\ 0 & -2 & 0 \end{pmatrix} \right $
8	Кососимметричные матрицы 3-го порядка	$ \left(\begin{array}{ccc} 0 & 3 & -1 \\ -3 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right) $
9	Верхнетреугольные матрицы 3-го порядка с нулевым следом	$ \left(\begin{array}{ccc} 1 & 4 & 0 \\ 0 & -2 & 2 \\ 0 & 0 & 1 \end{array}\right) $
10	Матрицы 3-го порядка с нулевыми суммами элементов вдоль главной и побочной диагоналей	$ \begin{pmatrix} 3 & 1 & 0 \\ -1 & 0 & 2 \\ 0 & 4 & -3 \end{pmatrix} $
11	Матрицы 3-го порядка, у которых суммы элементов вдоль любой строки и вдоль любого столбца одинаковы	$ \begin{array}{ c c c c c } \hline (2 & -3 & 3 \\ -1 & 1 & 2 \\ 1 & 4 & -3 \end{array} $
12	Матрицы 3-го порядка, у которых суммы элементов вдоль любой строки и вдоль любого столбца равны нулю	$ \begin{pmatrix} 3 & 0 & -3 \\ -2 & 4 & -2 \\ -1 & -4 & 5 \end{pmatrix} $
13	Матрицы (2 × 3), у которых суммы элементов в обеих строках одинаковы	$\left(\begin{array}{ccc} 4 & 7 & -8 \\ -3 & 3 & 3 \end{array}\right)$
14	Матрицы, перестановочные $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ с матрицей	$ \left(\begin{array}{ccc} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array}\right) $
15	Матрицы, $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ с матрицей	$ \left(\begin{array}{ccc} 0 & -1 & 1 \\ 1 & 2 & 3 \\ -1 & -3 & -2 \end{array}\right) $

$N_{\overline{0}}$	М – множество матриц указанного вида	B
	Решения $\begin{pmatrix} 1 & 0 & -1 \end{pmatrix}$	(0 1 0)
16	матричного $X \cdot \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$\left(\begin{array}{cc} -2 & 1 & -2 \\ 1 & 3 & 1 \end{array} \right)$
	уравнения $\begin{pmatrix} -1 & 0 & 1 \end{pmatrix}$	
	Решения $\begin{pmatrix} 1 & -1 & 1 \end{pmatrix}$	/_1 _2 _1 \
17	матричного $X \cdot \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$\left \begin{pmatrix} -1 & -2 & -1 \\ 1 & -2 & 1 \end{pmatrix} \right $
	уравнения $\begin{pmatrix} -1 & 1 & -1 \end{pmatrix}$	(121)
	M атрицы, $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	$\begin{bmatrix} 3 & 0 & 0 \end{bmatrix}$
18	перестановочные $A = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} -2 & 3 & 0 \end{bmatrix}$
	с матрицей \ \ 0 1 0 /	$\begin{pmatrix} 2 & -2 & 3 \end{pmatrix}$
	M атрицы, $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$	$\left \begin{pmatrix} 3 & 2 & 0 \\ 0 & 1 & 0 \end{pmatrix} \right $
19	перестановочные $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & -1 & 2 \\ 0 & 2 & 2 \end{bmatrix}$
	с матрицей \ \ 0 0 1 /	$\begin{pmatrix} 0 & 2 & 3 \end{pmatrix}$
	M атрицы, $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$	$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \end{bmatrix}$
20	антиперестановочные $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} -1 & -2 & 0 \\ 1 & 1 & 0 \end{bmatrix}$
	с матрицей \ \ 0 1 0 /	$\begin{pmatrix} -1 & 1 & 2 \end{pmatrix}$
$\begin{vmatrix} 21 \end{vmatrix}$	M атрицы, $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$	$\left(\begin{array}{ccc} 2 & 0 & -2 \\ 0 & 0 & 0 \end{array} \right)$
	антиперестановочные $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\left[\left(egin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} ight) \left[\right.$
	с матрицей \ \ 0 0 1 / Симметричные матрицы 3-го порядка с	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$
$ _{22} $	нулевыми суммами элементов из первого	$\begin{bmatrix} 2 & -1 & -1 \\ -1 & 1 & -2 \end{bmatrix}$
	и третьего столбцов	$\left \begin{array}{ccc} 1 & 1 & 2 \\ -1 & -2 & 3 \end{array} \right $
	Кососимметричные матрицы 3-го порядка	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$
$ _{23} $	с нулевой суммой элементов из первой	$\begin{bmatrix} -2 & 0 & -3 \end{bmatrix}$
	строки	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Нижнетреугольные матрицы 3-го порядка	/ 1 0 0 \
24	с нулевым следом и нулевой суммой	$\begin{bmatrix} 4 & 2 & 0 \end{bmatrix}$
	элементов по побочной диагонали	$\left \begin{array}{ccc} -2 & 5 & -3 \end{array} \right $
	Симметричные матрицы 3-го порядка, у	/ 0 1 1 1
25	которых одинаковы суммы элементов в	$\left \left(\begin{array}{ccc} 0 & 1 & -1 \\ 1 & 1 & 0 \end{array} \right) \right $
20	строках, а суммы элементов в столбцах	$\left[\left[\left[\begin{array}{ccc} 1 & -1 & 0 \\ -1 & 0 & 1 \end{array} \right] \right]$
	знакочередуются	
	Симметричные матрицы 3-го порядка, у	(0 0 0)
26	которых одинаковы суммы элементов в	$\left \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & -1 \end{array} \right) \right $
20	столбцах, а суммы элементов в строках	$\left[\left[\left[\begin{array}{ccc} 0 & -1 & 1 \\ 0 & -1 & 1 \end{array} \right] \right] \right]$
	знакочередуются	

$N_{\overline{0}}$	М – множество матриц указанного вида	B
27	Симметричные матрицы 3-го порядка, у которых сумма элементов любого столбца равна 0	$ \left(\begin{array}{cccc} 3 & -3 & 0 \\ -3 & 2 & 1 \\ 0 & 1 & -1 \end{array}\right) $
28	Матрицы 3×2 , у которых суммы элементов в обоих столбцах равны 0	$ \left \begin{pmatrix} 2 & -3 \\ -1 & 0 \\ -1 & 3 \end{pmatrix} \right $
29	Симметричные матрицы, перестановочные $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ с матрицей	$ \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 2 \end{array}\right) $
30	Симметричные матрицы, антиперестановочные $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ с матрицей	$ \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{array}\right) $

Задача 6*. Доказать, что множество M функций $x\left(t\right)$, заданных на области D, образует линейное пространство. Найти его размерность и базис.

№ap.	Mножество M	D
л-вар.	$(lpha,eta,\gamma,\delta$ - любые вещественные числа)	
1, 18	$M = \{\alpha + \beta \mathrm{ch}t + \gamma \mathrm{sh}t + \delta e^t \}$	$(-\infty; +\infty)$
2, 19	$M = \{\alpha e^t + \beta e^{2t} + \gamma e^{3t}\}$	$(-\infty; +\infty)$
3, 20	$M = \{\alpha + \beta \cos t + \gamma \sin t + \delta \cos^2(t/2)\}\$	$(-\pi;\pi)$
4, 21	$M = \{\alpha e^{-t} + \beta \operatorname{sh} t + \gamma e^t + \delta\}$	$(-\infty; +\infty)$
5, 22	$M = \{\alpha e^t + \beta t e^t + (\beta - \alpha)t^2 e^t + \gamma t^3 e^t\}$	$(-\infty; +\infty)$
6, 23	$M = \{\alpha/t + \beta + \gamma t + \delta(2t^2 - 1)/2\}$	(0;1)
7, 24	$M = \{\alpha \cos t + \beta \sin t + \gamma \sin 2t\}$	$\left(-\pi/2,\pi/2\right)$
8, 25	$M = \{\alpha + \beta tgt + \gamma ctgt\}$	$(0, \pi/2)$
9, 26	$M = \{\alpha e^{-t} + \beta \operatorname{ch} t + \gamma \operatorname{sh} t + \delta\}$	$(-\infty; +\infty)$
10, 27	$M = \{\alpha e^{-t} + (\beta - \alpha)te^{-t} + \gamma t^2 e^{-t} + \alpha t^3 e^{-t}\}$	$(-\infty; +\infty)$
11, 28	$M = \{\alpha \cos 2t + \beta \sin 2t + \gamma \sin^2 t + \delta\}$	$\left[(-\pi/2,\pi/2) \right]$
12, 29	$M = \{\alpha \ln t + \beta + \gamma t + \delta \ln 3t\}$	$(0; +\infty)$
13, 30	$M = \{\alpha + \beta \operatorname{tg}^2 t + \gamma \operatorname{sec}^2 t + \delta \operatorname{ctg}^2 t\}$	$(0; \pi/2)$
14, 16	$M = \{\alpha \ln t + \beta + \gamma \ln(2/t)\}\$	$(0; +\infty)$
15, 17	$M = \{\alpha e^{2t} + \beta t e^{2t} + \gamma t^2 e^{2t} + \delta t^3 e^{2t}\}$	$(-\infty; +\infty)$

Задача 7. Даны векторы $\vec{a}=\overrightarrow{OA},\ \vec{b}=\overrightarrow{OB},\ \vec{c}=\overrightarrow{OC},\ \vec{d}=\overrightarrow{OD}.$ Лучи $OA,\ OB$ и OC являются ребрами трехгранного угла T.

- 1) Доказать, что векторы $\vec{a}, \, \vec{b}, \, \vec{c}$ линейно независимы.
- 2) Разложить вектор \vec{d} по векторам \vec{a} , \vec{b} , \vec{c} (возникающую при этом систему уравнений решить с помощью обратной матрицы).
- 3) Определить, лежит ли точка D внутри T, вне T, на одной из границ T (на какой?).
- 4) Определить, при каких значениях действительного параметра λ вектор $\vec{d} + \lambda \vec{a}$, отложенный от точки O, лежит внутри трехгранного угла T.

$N_{\overline{0}}$	1, 19	2, 20	3, 21	4, 22	5, 23	6, 24	7, 25	8, 26
a	1 1 2	1 3 2	2 4 1	1 2 -1	1 -2 5	1 2 1	3 2 1	2 1 3
b	2 -1 2	-2 1 -1	1 3 -5	1 -1 3	3 1 -2	-1 2 2	1 -1 -2	-1 -2 1
c	-1 3 1	5 -2 3	1 2 1	2 2 1	2 -1 3	3 1 -1	-2 3 5	3 5 -2
d	3 4 7	10 -7 5	-1 -1 -4	2 -5 11	6 3 -5	7 3 -2	7 4 1	18 23 1

$N_{\overline{0}}$	9, 27	10, 28	11, 29	12, 30	13, 16	14, 17	15, 18
a	2 -1 1	-2 1 5	2 1 1	4 3 2	1 4 2	-1 1 2	5 1 -2
b	-1 3 1	1 3 -2	2 2 -1	3 -5 1	-5 3 1	3 1 -1	-2 3 1
c	2 1 2	-1 2 3	1 -1 3	2 1 1	1 2 1	1 2 2	3 2 -1
d	1 18 11	-1 14 5	4 2 1	4 -1 2	-3 20 9	15 4 -6	7 15 -2

Контрольные вопросы

1. Определители

- 1.1. Как вычисляются определители 2-го, 3-го порядков? Каковы их основные свойства?
- 1.2. Что называется перестановкой? Что такое инверсия в перестановке? Какие перестановки называются четными (нечетными)? Каково общее число перестановок натуральных чисел от 1 до n? Каково количество четных (нечетных) перестановок?
- 1.3. Что называется определителем n-го порядка? Каковы его свойства?
- 1.4. Входят ли в определитель 5-го порядка следующие произведения: а) $a_{15}a_{24}a_{33}a_{42}a_{51}$; б) $a_{32}a_{13}a_{25}a_{51}a_{44}$; в) $a_{23}a_{12}a_{41}a_{15}a_{34}$? Если да, то с какими знаками?
- 1.5. Чем отличается минор данного элемента от его алгебраического дополнения? Сравните M_{12} и A_{12} ; M_{33} и A_{33} .

- 1.6. Фиксирована строка определителя. Что произойдет с минорами ее элементов, если: а) умножить элементы этой строки на число; б) умножить элементы другой строки на число; в) заменить элементы этой строки нулями; г) заменить элементы другой строки нулями; д) заменить элементы этой строки на любые другие числа? Объясните результат. Ответьте на аналогичные вопросы об алгебраических дополнениях.
- 1.7. Что такое треугольная матрица, диагональная матрица? Чему равен определитель треугольной, диагональной матрицы? Объясните результат.
- 1.8. Сформулируйте теорему о разложении определителя по строке. Чему равна сумма произведений элементов какой-либо строки (столбца) на алгебраические дополнения элементов другой строки (столбца)?
 - 1.9. Сформулируйте правила Крамера. Всегда ли они применимы?

2. Комплексные числа и многочлены

- 2.1. Что такое модуль, аргумент, тригонометрическая и показательная формы комплексного числа? Как записать в тригонометрической и показательной формах числа: $1, -1, i, -i, 1+i, 1-i, -1+i\sqrt{3}$?
- 2.2. Как производится умножение и деление комплексных чисел в алгебраической и тригонометрической формах?
 - 2.3. Что такое операция сопряжения? Каковы ее свойства?
 - 2.4. Приведите формулу Муавра.
- 2.5. Сколько значений принимает корень n-й степени из комплексного числа? Как они вычисляются? Как эти значения располагаются на комплексной плоскости и почему?
- 2.6. Как изобразить на комплексной плоскости числа z, удовлетворяющие условиям: а) Re $z\geqslant 0$; б) $|\mathrm{Im}\,z|\leqslant 2$; в) $|z|\leqslant 1$; г) $0,5<|z+i|\leqslant 1$; д) $0<\arg z\leqslant \pi/4$; е) |z-i|=|z+2|?
- 2.7. Как формулируется теорема Безу, основная теорема алгебры многочленов? Сколько корней у многочлена степени n?
- 2.8. Многочлен P(z) со старшим коэффициентом $P_0=2$ имеет корни $z_1=1$ кратности 3 и $z_{2,3}=1\pm i$ кратности 2. Выпишите этот многочлен. Объясните результат.
- 2.9. Многочлен с вещественными коэффициентами имеет корень z = 2 + i. На какой квадратный трехчлен он делится? Объясните результат.

3. Алгебра матриц

- 3.1. Сформулируйте правило умножения матриц. Объясните, как изменится произведение AB, если переставить i-ю и j-ю строки матрицы A; i-й и j-й столбцы матрицы B? Чему равна i-я строка AB; j-й столбец AB?
- 3.2. Покажите, что если AB=BA, то A и B квадратные матрицы одного порядка. Верно ли обратное?

- 3.3. Верны ли формулы $(A+B)^2=A^2+2AB+B^2$; $(A+B)(A-B)=A^2-B^2$ для квадратных матриц?
- 3.4. Что такое обратная матрица? Каков критерий ее существования, как она вычисляется? Выделите случай матриц 2-го порядка.
- 3.5. Чему равно произведение двух диагональных матриц? Как найти обратную матрицу для диагональной матрицы?
- 3.6. Как решить матричное уравнение вида AXB = C, где X неизвестная матрица; A, B невырожденные квадратные матрицы? Как получить отсюда решение уравнения AX = C; уравнения XB = C?
 - 3.7^* . Верна ли формула $(A^{-1})^T = (A^T)^{-1}$?
- 3.8. Пусть $E_{ij} \in M_{nn}$ матрица, у которой на (i,j) месте стоит 1, а на остальных местах нули. Доказать, что

$$E_{ij} \cdot E_{kl} = \left\{ egin{array}{ll} 0, \ {
m eсли} \ j
eq k \ E_{il}, \ {
m eсли} \ j = k \end{array}
ight.$$

- 3.9^* . Привести пример ненулевой матрицы X, удовлетворяющей условию $X^2=0$; условию $X^2=X$. Существуют ли такие примеры с $\det X \neq 0$?
- 3.10^* . Матрица X удовлетворяет условию: а) $X^2=E$, б) $X^3=E$, где E единичная матрица. Чему может равняться $\det X$? Привести пример таких недиагональных матриц.

4. Линейные пространства

- 4.1. Что называется линейным пространством? Приведите примеры линейных пространств.
 - 4.2. Являются ли линейными пространствами:
- а) множество геометрических радиус-векторов, оканчивающихся на данной плоскости;
- б) множество всех сходящихся последовательностей; последовательностей, сходящихся к числу a; расходящихся последовательностей;
- в) множество всех функций, дифференцируемых на интервале (a, b);
- г) множество многочленов 3-й степени; степени не выше 3;
- \mathbf{z}^*) множество всех положительных функций с операциями "сложения": $f(t)\cdot g(t)$ и "умножения на число": $f(t)^{\alpha}$. Объясните результаты.
- 4.3. Что такое линейное подпространство? Являются ли линейными подпространствами соответствующих линейных пространств множества: а) векторов из \mathbb{R}^n , у которых сумма координат равна a; координаты с четными номерами совпадают; координаты целые числа; б) радиусвекторов плоскости, оканчивающихся в I четверти; в I или III четвертях; в) всех функций, непрерывных на отрезке [a,b] и равных нулю на концах отрезка; Γ) всех симметричных матриц n-го порядка?
- 4.4. Что называется линейной оболочкой системы векторов? Является ли она подпространством? Почему?

- 4.5. Дайте определение линейной зависимости системы векторов. Каков критерий линейной зависимости системы, состоящей из одного вектора; из двух векторов? Объясните свой ответ. Сформулируйте общий критерий линейной зависимости системы векторов.
- 4.6. Верно ли утверждение: если любые два вектора системы из n > 2 векторов линейно независимы, то и вся система линейно независима. Почему?
- 4.7. Верно ли утверждение: если система содержит вектор, который не выражается линейно через остальные векторы системы, то она линейно независима. Ответ обоснуйте.
- 4.8. Каков геометрический смысл линейной зависимости системы 2-х векторов; 3-х векторов? Существуют ли линейно независимые системы из 4-х и более геометрических векторов; а линейно зависимые?
- 4.9. Что такое ранг системы векторов, что такое максимальная линейно независимая подсистема? Как связаны ранги двух систем векторов, одна из которых линейно выражается через другую? Что происходит с рангом системы векторов при выполнении элементарных преобразований?
- 4.10. Что называется базисом n-мерного линейного пространства? Приведите примеры. Как определяются координаты вектора в данном базисе? Как выражаются линейные операции над векторами в координатах?
- 4.11. Что такое полная система векторов в линейном пространстве? Сформулируйте теорему об эквивалентном описании базиса как линейно независимой полной системы векторов.
- 4.12. Что является базисом линейной оболочки системы векторов и какова ее размерность?
- 4.13. Привести пример одномерного и двухмерного подпространств в пространстве: а) R^3 ; б) M_{23} ; в) P_3 .

ТИПОВОЙ РАСЧЕТ №2

Теоретические упражнения

- 1. Доказать утверждения о связи решений однородной и неоднородной систем линейных уравнений:
- а) разность двух решений неоднородной системы является решением однородной системы;
- б) сумма решений неоднородной и однородной систем является решением неоднородной системы;

- в) общее решение неоднородной системы имеет вид $X=X_0+X_{\rm H}$, где $X_{\rm H}$ частное решение неоднородной системы, X_0 общее решение однородной системы;
- г*) каков геометрический смысл последнего утверждения для системы уравнений с тремя неизвестными?
- 2. Доказать, что для любых различных чисел x_1 , x_2 , x_3 и любых чисел y_1 , y_2 , y_3 существует, причем единственный, многочлен y=f(x) степени не больше 2, для которого $f(x_i)=y_i,\ i=1,\,2,\,3$. Когда степень этого многочлена меньше 2, равна 1, равна 0?
- 3. Пусть A прямоугольная матрица. Докажите, что $r(A) = 1 \Leftrightarrow A = B \cdot C$, где B вектор-столбец, C вектор-строка (r(A) ранг матрицы A; матрицы B, C ненулевые).
- 4. Пусть A прямоугольная матрица. Докажите, что всякое элементарное преобразование строк матрицы A можно представить в виде умножения матрицы A слева на некоторую матрицу X, а всякое элементарное преобразование столбцов матрицы A в виде умножения матрицы A справа на некоторую матрицу Y.
- 5. Действие оператора \hat{A} в n-мерном пространстве задается формулой преобразования координат векторов в некотором базисе:

$$\bar{y} = \hat{A}\bar{x} \Leftrightarrow \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}.$$

Доказать, что \hat{A} – линейный оператор и найти его матрицу в этом базисе.

- 6. Пусть \hat{A} линейный оператор. Доказать, что если $\{\bar{x}_1,\ldots,\bar{x}_n\}$ линейно зависимая система, то система $\{\hat{A}\bar{x}_1,\ldots,\hat{A}\bar{x}_n\}$ тоже линейно зависима. Верно ли обратное?
- 7. Доказать, что матрицы оператора в двух разных базисах совпадают тогда и только тогда, когда матрица оператора в одном базисе перестановочна с матрицей перехода от этого базиса ко второму.
- 8. Является ли оператор дифференцирования невырожденным в линейном пространстве L: а) $L = P_n$; б) $L = L[\cos t, \sin t]$?
 - 9*. В пространстве всех многочленов заданы операторы \hat{A} и \hat{B} :

$$\hat{A}(a_0 + a_1t + \dots + a_nt^n) = a_1 + a_2t + \dots + a_nt^{n-1};$$

$$\hat{B}(a_0 + a_1t + \dots + a_nt^n) = a_0t + a_1t^2 + \dots + a_nt^{n+1}.$$

Доказать линейность операторов и проверить, что $\hat{A}\hat{B}=\hat{I},\,\hat{B}\hat{A}\neq\hat{I}.$

10. Пусть \bar{x}, \bar{y} – собственные векторы оператора \hat{A} , отвечающие различным собственным значениям. Доказать, что вектор $\bar{z} = \bar{x} + \bar{y}$ не является собственным вектором этого оператора.

- 11. Матрица A удовлетворяет условию $A^2=I$. Докажите, что всякая подобная ей матрица обладает тем же свойством. Что можно сказать о собственных числах матрицы A? Приведите пример такой недиагональной матрицы.
- 12. Ненулевая матрица A удовлетворяет условию $A^2=0$. Показать, что любая подобная ей матрица удовлетворяет этому условию. Диагонализуема ли матрица A? Каковы ее собственные значения? Привести пример такой матрицы.
- 13. Функция $B(\bar{x}, \bar{y})$ задается через координаты векторов в некотором базисе n-мерного пространства по формуле:

$$B(\bar{x}, \bar{y}) = (x_1, ..., x_n) \begin{pmatrix} b_{11} & ... & b_{1n} \\ ... & ... & ... \\ b_{n1} & ... & b_{nn} \end{pmatrix} \begin{pmatrix} y_1 \\ ... \\ y_n \end{pmatrix}.$$

Доказать, что $B(\bar{x},\bar{y})$ – билинейная форма; найти ее матрицу в этом базисе.

- 14. Доказать, что симметричная билинейная форма $B(\bar{x}, \bar{y})$ однозначно восстанавливается по порожденной ею квадратичной форме $\varphi(\bar{x})$ по формуле: $B(\bar{x}, \bar{y}) = [\varphi(\bar{x} + \bar{y}) \varphi(\bar{x}) \varphi(\bar{y})]/2$.
- 15. Доказать, что если ненулевые векторы евклидова пространства $\bar{x}_1,...,\bar{x}_n$ попарно ортогональны, то они линейно независимы.
- 16. Доказать, что в евклидовом пространстве справедливо неравенство треугольника: $\|\bar{x} + \bar{y}\| \leq \|\bar{x}\| + \|\bar{y}\|$. Когда оно превращается в равенство?
- 17^* . Доказать, что если \hat{A} линейный оператор в n-мерном пространстве, имеющий n различных собственных значений, и $\hat{A}\hat{B}=\hat{B}\hat{A}$, то \hat{B} обладает базисом из собственных векторов.
- 18*. Пусть линейный оператор \hat{A} удовлетворяет условию $\hat{A}^2 \hat{A} + \hat{I} = \hat{0}$. Доказать, что \hat{A} обратим, и выразить \hat{A}^{-1} через \hat{A} .
- 19^* . Пусть C невырожденная матрица. Доказать, что квадратичная форма, заданная в некотором базисе матрицей $B=C^TC$ (см. упр.10), положительно определена.
- 20^* . Пусть \hat{A} и \hat{B} линейные операторы в конечномерном пространстве L такие, что $\hat{A}\hat{B}=\hat{I}$. Доказать, что \hat{A} обратим, и найти \hat{A}^{-1} . (Указание: вопрос сводится к аналогичному вопросу для квадратных матриц.) Верно ли аналогичное утверждение в бесконечномерном пространстве?

Практические задания

Задача 1. Найти фундаментальную систему решений и общее решение однородной системы уравнений.

№ вар.	Система уравнений
1	$x_1 + 2x_2 + 4x_3 - 3x_4 = 0$
1 20	$3x_1 + 5x_2 + 6x_3 - 4x_4 = 0$
1, 20	$4x_1 + 5x_2 - 2x_3 + 3x_4 = 0$
	$3x_1 + 8x_2 + 24x_3 - 19x_4 = 0$
	$2x_1 - 4x_2 + 5x_3 + 3x_4 = 0$
2, 21	$3x_1 - 6x_2 + 4x_3 + 2x_4 = 0$
2, 21	$4x_1 - 8x_2 + 17x_3 + 11x_4 = 0$
	$5x_1 - 10x_2 + 9x_3 + 5x_4 = 0$
	$3x_1 + 2x_2 + x_3 + 3x_4 + 5x_5 = 0$
3, 22	$6x_1 + 4x_2 + 3x_3 + 5x_4 + 7x_5 = 0$
0, 22	$9x_1 + 6x_2 + 5x_3 + 7x_4 + 9x_5 = 0$
	$3x_1 + 2x_2 + 4x_3 + 8x_4 + 8x_5 = 0$
	$6x_1 - 2x_2 + 2x_3 + 5x_4 + 7x_5 = 0$
4, 23	$9x_1 - 3x_2 + 4x_3 + 8x_4 + 9x_5 = 0$
_,	$6x_1 - 2x_2 + 6x_3 + 7x_4 + x_5 = 0$
	$3x_1 - x_2 + 4x_3 + 4x_4 - x_5 = 0$
	$x_1 - x_3 + x_5 = 0$
5, 24	$x_2 - x_4 + x_6 = 0$
,	$x_1 - x_2 + x_5 - x_6 = 0$
	$x_1 - x_4 + x_5 = 0$
	$5x_1 + 6x_2 - 2x_3 + x_4 + 4x_5 = 0$
6, 25	$2x_1 + 3x_2 - x_3 + 4x_4 + 2x_5 = 0$
	$ \begin{vmatrix} 7x_1 + 9x_2 - 3x_3 + 5x_4 + 6x_5 = 0 \\ 5x_1 + 9x_2 - 3x_3 + x_4 + 6x_5 = 0 \end{vmatrix} $
	$3x_1 + 3x_2 - 3x_3 + x_4 + 0x_5 = 0$ $3x_1 + 4x_2 + x_3 + 2x_4 + 3x_5 = 0$
	$\begin{vmatrix} 5x_1 + 4x_2 + x_3 + 2x_4 + 5x_5 = 0 \\ 5x_1 + 7x_2 + x_3 + 3x_4 + 4x_5 = 0 \end{vmatrix}$
7, 26	$\begin{vmatrix} 3x_1 + 7x_2 + x_3 + 3x_4 + 4x_5 = 0 \\ 4x_1 + 5x_2 + 2x_3 + x_4 + 5x_5 = 0 \end{vmatrix}$
	$\begin{vmatrix} 4x_1 + 6x_2 + 2x_3 + x_4 + 6x_5 = 0 \\ 7x_1 + 10x_2 + x_3 + 6x_4 + 5x_5 = 0 \end{vmatrix}$
	$3x_1 + x_2 - 8x_3 + 2x_4 + x_5 = 0$
	$\begin{vmatrix} 3x_1 + x_2 & 3x_3 + 2x_4 + x_5 \\ 2x_1 - 2x_2 - 3x_3 - 7x_4 + 2x_5 = 0 \end{vmatrix}$
8, 27	$\begin{bmatrix} 2x_1 & 2x_2 & 3x_3 & 3x_4 + 2x_3 & 3x_4 \\ x_1 + 11x_2 - 12x_3 + 34x_4 - 5x_5 = 0 \end{bmatrix}$
	$\begin{bmatrix} 5x_1 - x_2 - 11x_3 - 3x_4 + 3x_5 = 0 \end{bmatrix}$
	$7x_1 + 2x_2 - x_3 - 2x_4 + 2x_5 = 0$
0 00	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
9, 28	$2x_1 + 5x_2 + 2x_3 + x_4 + x_5 = 0$
	$5x_1 + 2x_2 + x_3 - x_4 + x_5 = 0$

№ вар.	Система уравнений
	$x_1 + x_2 + 10x_3 + x_4 - x_5 = 0$
10 20	$5x_1 - x_2 + 8x_3 - 2x_4 + 2x_5 = 0$
10, 29	$3x_1 - 3x_2 - 12x_3 - 4x_4 + 4x_5 = 0$
	$6x_1 + 18x_3 - x_4 + x_5 = 0$
	$6x_1 - 9x_2 + 21x_3 - 3x_4 - 12x_5 = 0$
11, 30	$-4x_1 + 6x_2 - 14x_3 + 2x_4 + 8x_5 = 0$
	$2x_1 + 3x_2 + 7x_3 - x_4 - 4x_5 = 0$
	$2x_1 - x_2 + 2x_3 - x_4 + x_5 = 0$
12, 16	$x_1 + 10x_2 - 3x_3 - 2x_4 - x_5 = 0$
12, 10	$4x_1 + 19x_2 - 4x_3 - 5x_4 - x_5 = 0$
	$3x_1 + 9x_2 - x_3 - 3x_4 = 0$
	$x_1 + x_2 - 3x_4 - x_5 = 0$
13, 17	$x_1 - x_2 + 2x_3 - x_4 = 0$
15, 17	$4x_1 - 2x_2 + 6x_3 + 3x_4 - 4x_5 = 0$
	$2x_1 + 4x_2 - 2x_3 + 4x_4 - 7x_5 = 0$
	$x_1 - 2x_2 + x_3 - x_4 + x_5 = 0$
14, 18	$2x_1 + x_2 - x_3 + 2x_4 - 3x_5 = 0$
14, 10	$3x_1 - 2x_2 - x_3 + x_4 - 2x_5 = 0$
	$2x_1 - 5x_2 + x_3 - 2x_4 + 2x_5 = 0$
	$x_1 - 2x_2 + x_3 - x_4 + x_5 = 0$
15, 19	$2x_1 + x_2 - x_3 - x_4 + x_5 = 0$
10, 19	$x_1 + x_2 - 5x_3 - 5x_4 + 5x_5 = 0$
	$3x_1 - 7x_2 - 2x_3 + x_4 - x_5 = 0$

Задача 2. Найти общее решение в зависимости от значения параметра λ . При каких значениях λ система допускает решение с помощью обратной матрицы?

№ вар.	Система уравнений
	$x_1 + x_2 + (\lambda - 1)x_3 = 1$
1	$x_1 + (\lambda - 1)x_2 + x_3 = \lambda$
	$(\lambda - 1)x_1 + x_2 + x_3 = \lambda^2$

№ вар.	Система уравнений
J. Bap.	$3x_1 + 2x_2 + 5x_3 + 4x_4 = 3$
	$2x_1 + 3x_2 + 6x_3 + 8x_4 = 5$
2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$\begin{vmatrix} x_1 & 6x_2 & 6x_3 & 26x_4 & 11 \\ 4x_1 + x_2 + 4x_3 + \lambda x_4 = 2 & \end{vmatrix}$
	$2x_1 + 5x_2 + x_3 + 3x_4 = 2$
	$4x_1 + 6x_2 + 3x_3 + 5x_4 = 4$
3	$4x_1 + 14x_2 + x_3 + 7x_4 = 4$
	$2x_1 - 3x_2 + 3x_3 + \lambda x_4 = 7$
	$\lambda x_1 + x_2 + x_3 + x_4 = 1$
$\begin{vmatrix} 4 \end{vmatrix}$	$x_1 + \lambda x_2 + x_3 + x_4 = 1$
4	$x_1 + x_2 + \lambda x_3 + x_4 = 1$
	$x_1 + x_2 + x_3 + \lambda x_4 = 1$
	$2x_1 - x_2 + 3x_3 + 4x_4 = 5$
5	$4x_1 - 2x_2 + 5x_3 + 6x_4 = 7$
	$6x_1 - 3x_2 + 7x_3 + 8x_4 = 9$
	$\lambda x_1 - 4x_2 + 9x_3 + 10x_4 = 11$
	$2x_1 + 3x_2 + x_3 + 2x_4 = 3$
6	$4x_1 + 6x_2 + 3x_3 + 4x_4 = 5$
	$6x_1 + 9x_2 + 5x_3 + 6x_4 = 7$
	$8x_1 + 12x_2 + 7x_3 + \lambda x_4 = 9$
	$(1+\lambda)x_1 + x_2 + x_3 = 1$
7	$x_1 + (1+\lambda)x_2 + x_3 = \lambda$
	$x_1 + x_2 + (1+\lambda)x_3 = \lambda^2$
	$(\lambda + 1)x_1 + x_2 + x_3 = \lambda^2 + 3\lambda$
8	$x_1 + (\lambda + 1)x_2 + x_3 = \lambda^3 + 3\lambda^2$
	$x_1 + x_2 + (\lambda + 1)x_3 = \lambda^4 + 3\lambda^3$
0	$\lambda x_1 + x_2 + x_3 = 1$
9	$\begin{array}{c} x_1 + \lambda x_2 + x_3 = \lambda \\ x_1 + x_2 + \lambda x_3 = \lambda^2 \end{array}$
	$x_1 + x_2 + \lambda x_3 = \lambda^2$ $(1+\lambda)x_1 + x_2 + x_3 = 1$
10	$ \begin{vmatrix} (1+\lambda)x_1 + x_2 + x_3 = 1 \\ x_1 + (1+\lambda)x_2 + x_3 = 1 \end{vmatrix} $
10	$\begin{vmatrix} x_1 + (1+\lambda)x_2 + x_3 - 1 \\ x_1 + x_2 + (1+\lambda)x_3 = 1 \end{vmatrix}$
	$3x_1 + (\lambda + 8)x_2 + (5\lambda + 8)x_3 = \lambda + 13$
11	$\begin{vmatrix} 3x_1 + (\lambda + 3)x_2 + (3\lambda + 3)x_3 - \lambda + 13 \\ x_1 + (\lambda + 4)x_2 + (2\lambda + 3)x_3 = \lambda + 6 \end{vmatrix}$
11	$2x_1 + (\lambda + 4)x_2 + (2\lambda + 6)x_3 = \lambda + 10$
	$2\omega_1 + (\kappa + \sigma)\omega_2 + (1\kappa + \sigma)\omega_3 = \kappa + 1\sigma$

№ вар.	Система уравнений
	$\lambda x_1 + \lambda x_2 + (\lambda + 1)x_3 = \lambda$
12	$\lambda x_1 + \lambda x_2 + (\lambda - 1)x_3 = \lambda$
	$(\lambda + 1)x_1 + \lambda x_2 + (2\lambda + 3)x_3 = 1$
	$3x_1 + (\lambda - 8)x_2 + (5\lambda - 8)x_3 = \lambda + 8$
13	$x_1 + (\lambda - 4)x_2 + (2\lambda - 3)x_3 = \lambda + 2$
	$2x_1 + (\lambda - 6)x_2 + (4\lambda - 6)x_3 = \lambda + 6$
	$2x_1 + 9x_2 - x_3 + 3x_4 = 4$
14	$x_1 + 3x_2 - x_3 + 2x_4 = 2$
14	$3x_1 + 15x_2 - x_3 + 4x_4 = 6$
	$x_1 + 3x_2 + \lambda x_3 + 2x_4 = 5$
	$2x_1 + 2x_2 + x_3 + x_4 = 0$
15	$4x_1 + (\lambda + 7)x_2 + 7x_3 + 2x_4 = 5$
	$2x_1 + (\lambda + 4)x_2 + 5x_3 + x_4 = 4$
	$4x_1 + (\lambda + 4)x_2 + 4x_3 + 2x_4 = 2$
	$2\lambda x_1 + x_2 + x_3 = 0$
16	$x_1 - x_2 + \lambda x_3 = 1$
	$(\lambda - 6)x_1 + 2x_2 - 4x_3 = -3$
	$x_1 + \lambda x_2 + x_3 - \lambda x_4 = 1$
17	$2x_1 - x_2 + \lambda x_4 = 0$
1.	$x_1 - 3x_2 - x_3 + x_4 = 2$
	$3x_1 + (\lambda - 1)x_2 + x_3 = 1$
	$x_1 + x_2 + \lambda x_3 = 2$
18	$x_1 + \lambda x_2 + x_3 = -1$
	$\lambda x_1 + x_2 + x_3 = -1$
	$x_1 + x_2 - 2x_3 + x_4 = 0$
19	$3x_1 + (2\lambda + 3)x_2 + (\lambda - 7)x_3 + (3\lambda + 3)x_4 = 2\lambda + 3$
	$x_1 + (\lambda + 1)x_2 - 2x_3 + (\lambda + 1)x_4 = \lambda$
	$2x_1 + (\lambda + 2)x_2 + (\lambda - 5)x_3 + (2\lambda + 3)x_4 = \lambda + 4$

№ вар.	Система уравнений
307	$x_1 + x_3 + 2x_4 = 0$
	$(\lambda + 2)x_1 + 2x_3 + (\lambda + 4)x_4 = \lambda$
20	$x_1 + (\lambda + 1)x_2 + (\lambda + 2)x_3 + 2x_4 = 2$
	$2x_1 + (\lambda + 1)x_2 + (\lambda + 4)x_3 + 4x_4 = 3$
	$6x_1 + \lambda x_2 + \lambda x_3 = 5$
21	$9x_1 + (2\lambda + 1)x_2 + (\lambda + 1)x_3 = \lambda + 6$
	$3x_1 + (\lambda - 1)x_2 + (\lambda - 1)x_3 = 4$
	$2x_1 + (\lambda + 6)x_2 + (\lambda + 2)x_3 = \lambda + 4$
22	$x_1 + (\lambda + 3)x_2 + (\lambda + 1)x_3 = \lambda + 2$
	$3x_1 + (2\lambda + 8)x_2 + (\lambda + 3)x_3 = \lambda + 9$
	$(\lambda - 1)x_1 + x_2 + x_3 = 1$
23	$x_1 + (\lambda - 1)x_2 + x_3 = 1$
	$x_1 + x_2 + (\lambda - 1)x_3 = 1$
	$(\lambda + 2)x_1 + 2x_2 + 2x_3 = 2$
24	$2x_1 + (\lambda + 2)x_2 + 2x_3 = 2$
	$2x_1 + 2x_2 + (\lambda + 2)x_3 = 2$
	$5x_1 - 3x_2 + 2x_3 + 4x_4 = 3$
$\begin{vmatrix} 25 \end{vmatrix}$	$4x_1 - 2x_2 + 3x_3 + 7x_4 = 1$
20	$8x_1 - 6x_2 - x_3 - 5x_4 = 9$
	$7x_1 - 3x_2 + 7x_3 + 17x_4 = \lambda$
	$(2\lambda + 1)x_1 - \lambda x_2 + (\lambda + 1)x_3 = \lambda - 1$
26	$(\lambda - 2)x_1 + (\lambda - 1)x_2 + (\lambda - 2)x_3 = \lambda$
	$(2\lambda - 1)x_1 + (\lambda - 1)x_2 + (2\lambda - 1)x_3 = \lambda$
	$\lambda x_1 + (2\lambda - 1)x_2 + (\lambda + 2)x_3 = 1$
27	$(\lambda - 1)x_2 + (\lambda - 3)x_3 = 1 + \lambda$
	$\lambda x_1 + (3\lambda - 2)x_2 + (3\lambda + 1)x_3 = 2 - \lambda$
	$3\lambda x_1 + (2\lambda + 1)x_2 + (\lambda + 1)x_3 = \lambda$
28	$(2\lambda - 1)x_1 + (2\lambda - 1)x_2 + (\lambda - 2)x_3 = \lambda + 1$
	$(4\lambda - 1)x_1 + 3\lambda x_2 + 2\lambda x_3 = 1$

№ вар.	Система уравнений
	$(2\lambda + 1)x_1 - \lambda x_2 - (\lambda + 1)x_3 = 2\lambda$
29	$3\lambda x_1 - (2\lambda - 1)x_2 - (3\lambda - 1)x_3 = \lambda + 1$
	$(\lambda+2)x_1 - x_2 - 2\lambda x_3 = 2$
	$\lambda x_1 + x_2 + 2x_3 = \lambda$
30	$(\lambda+3)x_1 + (\lambda-1)x_2 + x_3 = 2\lambda$
	$3(\lambda + 1)x_1 + (\lambda + 1)x_2 + (\lambda + 3)x_3 = 3$

Задача 3. Линейный оператор $\hat{A}: V^3 \to V^3$ определяется действием отображения α на концы радиус-векторов точек трехмерного пространства.

- 1) Найти матрицу оператора \hat{A} в подходящем базисе пространства V^3 , а затем в каноническом базисе $\{\vec{i},\vec{j},\vec{k}\}.$
- 2) Определить, в какую точку переходят точки с координатами (1,0,0) и (-1,2,1) под действием отображения α .

№ вар.	Отображение α
1, 21	отражение относительно плоскости $x+y+z=0$
2, 22	поворот на 180 \degree вокруг оси $x=y=z$
3, 23	проектирование на ось $x = y/2 = z$
4, 24	проектирование на плоскость $x+y+z=0$
5, 25	отражение относительно плоскости $x+y-z=0$
6, 26	поворот на 180 \degree вокруг оси $x=y=-z$
7, 27	проектирование на ось $2x = 2y = -z$
8, 28	проектирование на плоскость $x-y+z=0$
9, 29	отражение относительно плоскости $x-y+z=0$
10, 30	поворот на 180 $^{\circ}$ вокруг оси $-x=y=z$
11, 16	проектирование на ось $x = 2y = 2z$
12, 17	проектирование на плоскость $-x + y + z = 0$
13, 18	отражение относительно плоскости $-x+y+z=0$
14, 19	поворот на 180 \degree вокруг оси $x=-y=z$
15, 20	проектирование на плоскость $x+y-z=0$

Задача 4. Пусть A – матрица оператора \hat{A} из задачи 3 в каноническом базисе $\{\vec{i},\vec{j},\vec{k}\}$. Найдите собственные значения и собственные векторы матрицы A. Объясните, как полученный результат связан с геометрическим действием оператора \hat{A} .

Задача 5.

- 1) Доказать, что оператор \hat{A} является линейным оператором в пространстве P_n многочленов степени не выше n.
- 2) Найти матрицу оператора \hat{A} в каноническом базисе P_n .
- 3) Существует ли обратный оператор \hat{A}^{-1} ? Если да, найти его матрицу.
- 4) Найти образ, ядро, ранг и дефект оператора \hat{A} .

No	n	$(\hat{A}p)(t)$	$N_{\overline{0}}$	n	
1,22	2	$\frac{d}{dt}[(t+1)p(t)]$	9,30	2	(t+1)p(t+1) - tp(t)
2,23	2	$\frac{d}{dt}[tp(t+1)]$	10, 16	2	$\frac{d}{dt}\left[(t-2)p(t)\right]$
3,24	3	$(t+1)\frac{dp(t)}{dt}$	11, 17	3	$\frac{d}{dt} \left[t \frac{dp(t)}{dt} \right]$
4, 25	3	$t\frac{dp(t+1)}{dt}$	12, 18	2	$\frac{d}{dt}\left[tp(t-2)\right]$
5, 26	3	p(t) - p(t+2)	13, 19	3	$t\frac{dp(t)}{dt} - p(t+1)$
$\boxed{6,27}$	3	$3tp(t) - t^2 \frac{dp(t)}{dt}$	14, 20	2	(t-2)p(t-2) - tp(t)
7, 28	2	$\frac{d}{dt}\left[tp(t)\right] + \frac{d^2p(t)}{dt^2}$	15, 21	2	$(2t+1)p(t) + t(1-t)\frac{dp(t)}{dt}$
8, 29	3	$6tp(t) - t^3 \cdot \frac{d^2p(t)}{dt^2}$			

Задача 6. Оператор \hat{A} действует на матрицы, образующие линейное подпространство M в пространстве матриц второго порядка.

- 1) Доказать, что \hat{A} линейный оператор в M.
- 2) Найти матрицу оператора \hat{A} в каком-нибудь базисе M.
- 3) Найти образ, ядро, ранг и дефект оператора \hat{A} .
- 4) Найти собственные значения и собственные векторы оператора \hat{A} (напомним, что в этой задаче векторами являются матрицы).
- 5) Доказать, что оператор \hat{A} является оператором простого типа. Выписать матрицу оператора \hat{A} в собственном базисе.

$N^{\underline{o}}$	$M = \left\{ X = \left(\begin{array}{cc} x & y \\ u & v \end{array} \right) \right\}$	\hat{A}	В
1, 16	y = u	$\hat{A}(X) = B^T X B$	$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$
2, 17	y = u	$\hat{A}(X) = B^T X B$	$\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$
3, 18	x + v = 0	$\hat{A}(X) = BX - XB$	$\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$
4, 19	x + v = 0	$\hat{A}(X) = BX - XB$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
5, 20	x + y + u + v = 0	$\hat{A}(X) = B^{-1}XB$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
6, 21	x - y + u + v = 0	$\hat{A}(X) = B^{-1}XB$	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$
7, 22	x + y - u - v = 0	$\hat{A}(X) = BX + XB$	$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$
8, 23	x - 2y - u - v = 0	$\hat{A}(X) = BX + XB$	$ \left(\begin{array}{cc} 1 & 1 \\ 0 & -1 \end{array}\right) $
9, 24	y = u	$\hat{A}(X) = B^T X B$	$\left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right)$
10, 25	y = u	$\hat{A}(X) = B^T X B$	$\left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array}\right)$
11, 26	x + v = 0	$\hat{A}(X) = BX - XB$	$\begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$
12, 27	x + y + u + v = 0	$\hat{A}(X) = BX - XB$	$\left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array}\right)$
13, 28	x + y + 2u + v = 0	$\hat{A}(X) = B^{-1}XB$	$\left(\begin{array}{cc} 0 & 1 \\ 1/2 & 0 \end{array}\right)$
14, 29	x + y + 2u - v = 0	$\hat{A}(X) = BX + XB$	$ \left(\begin{array}{cc} 1 & 0 \\ -1 & -1 \end{array}\right) $
15, 30	x + y - v = 0	$\hat{A}(X) = BX + XB$	$\left(\begin{array}{cc} -1 & 2 \\ 0 & 1 \end{array}\right)$

Задача 7. В пространстве V^3 геометрических векторов с обычным скалярным произведением векторы базиса $S=\{\vec{f_1},\vec{f_2},\vec{f_3}\}$ заданы координатами в каноническом базисе $\{\vec{i},\vec{j},\vec{k}\}$.

- 1) Найти матрицу Грама G_S скалярного произведения в этом базисе. Выписать формулу для длины вектора через его координаты в базисе S.
- 2) Ортогонализовать базис S. Сделать проверку ортонормированности построенного базиса P двумя способами:
 - а) выписав координаты векторов из P в базисе $\{\vec{i}, \vec{j}, \vec{k}\}$;
 - б) убедившись, что преобразование матрицы Грама при переходе от базиса S к базису P (по формуле $G_P = C^T \cdot G_S \cdot C$) приводит к единичной матрице.

$N_{\overline{0}}$	1,23	2,24	3, 25	4,26	5,27
$\vec{f_1}$	1 - 1 1	1 0 1	1 - 1 0	1 0 2	0 - 1 2
$\vec{f_2}$	2 1 0	$1 \ 1 \ -1$	1 - 1 1	$1 \ 1 \ -1$	1 1 -1
$ec{f_2} \ ec{f_3}$	0 - 1 1	2 0 1	1 0 2	1 1 0	$1 0 \ -1$
$N_{\overline{0}}$	6, 28	7, 29	8,30	9, 16	10, 17
$\vec{f_1}$	1 1 0	2 0 1	$-1 \ 1 \ 1$	2 0 1	-1 1 0
$\vec{f_2}$	2 0 1	$-1 \ 1 \ -1$	$1 \ 0 \ -2$	$-1 \ 1 \ 1$	-2 0 1
$\vec{f_2}$ $\vec{f_3}$	1 1 2	1 0 1	0 1 1	$-1 \ 0 \ 1$	1 - 1 1
$N_{\overline{0}}$	11, 18	12, 19	13, 20	14, 21	15, 22
$\vec{f_1}$	$1 \ 0 \ -2$	2 - 1 0	1 0 2	$-1 \ 1 \ 0$	1 1 -1
$ec{f_2}$	1 1 1	1 1 1	1 1 1	$-1 \ 1 \ 1$	$1 \ 0 \ -1$
\vec{f}_3	1 1 0	$ -1 0 \ -1$	1 1 0	1 0 2	2 1 0

Задача 8. Дана квадратичная форма $Q(\vec{x})$.

- 1) Привести $Q(\vec{x})$ к каноническому виду методом Лагранжа. Записать соответствующее преобразование переменных.
- 2) Привести $Q(\vec{x})$ к каноническому виду с помощью ортогонального преобразования, выписать матрицу перехода.
- 3) Убедиться в справедливости закона инерции квадратичных форм на примере преобразований, полученных в пунктах 1 и 2.
- 4) Поверхность второго порядка σ задана в прямоугольной декартовой системе координат уравнением $Q(\vec{x}) = \alpha$. Определить тип поверхности σ и написать ее каноническое уравнение.

$N_{\overline{0}}$	Квадратичная форма $Q(ec{x})$	α
1	$4x_2^2 - 3x_3^2 + 4x_1x_2 - 4x_1x_3 + 8x_2x_3$	24
2	$-2x_{2}x_{3}$	9
3	$2x_1^2 + 2x_2^2 + 2x_3^2 + 8x_1x_2 + 8x_1x_3 - 8x_2x_3$	0
4	$2x_1^2 + 9x_2^2 + 2x_3^2 - 4x_1x_2 + 4x_2x_3$	50
5	$-4x_1^2 - 4x_2^2 + 2x_3^2 - 4x_1x_2 + 8x_1x_3 - 8x_2x_3$	24
6	$2x_1^2 + x_2^2 - 4x_1x_2 - 4x_2x_3$	16
7	$4x_1^2 + 4x_2^2 + x_3^2 + 2x_1x_2 - 4x_1x_3 + 4x_2x_3$	0
8	$3x_1^2 + x_2^2 - \frac{3}{2}x_3^2 + 2\sqrt{3}x_1x_2 - x_1x_3 + \sqrt{3}x_2x_3$	8
9	$-x_1^2 - x_2^2 - 3x_3^2 - 2x_1x_2 - 6x_1x_3 + 6x_2x_3$	12
10	$x_1^2 - 7x_2^2 + x_3^2 - 4x_1x_2 - 2x_1x_3 - 4x_2x_3$	32
11	$x_1^2 + 2x_2^2 + 3x_3^2 - 4x_1x_2 - 4x_2x_3$	0
12	$3x_1^2 - 7x_2^2 + 3x_3^2 + 8x_1x_2 - 8x_1x_3 - 8x_2x_3$	36
13	$x_1^2 + 5x_2^2 + x_3^2 - 4x_1x_2 + 5\sqrt{2}x_1x_3 + \sqrt{2}x_2x_3$	24
14	$x_1^2 + x_2^2 + x_3^2 - \frac{4}{3}x_1x_2 - \frac{8\sqrt{2}}{3}x_2x_3$	9
15	$-2x_1^2 + 2x_2^2 - 2x_3^2 - 4x_1x_2 + 5\sqrt{2}x_1x_3 + \sqrt{2}x_2x_3$	0
16	$-\frac{1}{2}x_1^2 + 5x_2^2 - \frac{1}{2}x_3^2 - 4x_1x_2 + 3x_1x_3 + 4x_2x_3$	12
17	$-3x_1^2 + 9x_2^2 + 3x_3^2 + 2x_1x_2 + 8x_1x_3 + 4x_2x_3$	40
18	$-2x_1^2 + 2x_2^2 - 2x_3^2 + 4x_1x_2 - 6x_1x_3 + 4x_2x_3$	24
19	$2x_1^2 + 3x_2^2 + 2x_3^2 - 8x_1x_2 - 4\sqrt{2}x_1x_3 + 2\sqrt{2}x_2x_3$	0
20	$-4x_1^2 + x_2^2 - 4x_3^2 + 4x_1x_2 - 4x_1x_3 + 4x_2x_3$	28
21	$10x_1^2 + 14x_2^2 + 7x_3^2 - 10x_1x_2 - \sqrt{2}x_1x_3 - 5\sqrt{2}x_2x_3$	36
22	$\frac{3}{2}x_1^2 - 5x_2^2 + \frac{3}{2}x_3^2 + 4x_1x_2 - x_1x_3 - 4x_2x_3$	18
23	$x_1^2 + x_2^2 + 2x_3^2 + 4x_1x_2 + 2\sqrt{2}x_1x_3 - 2\sqrt{2}x_2x_3$	0
24	$2x_2^2 - 3x_3^2 - 2\sqrt{3}x_1x_2 - 4x_1x_3 + 4\sqrt{3}x_2x_3$	20
25	$x_1^2 + x_2^2 + x_3^2 + \frac{4}{3}x_1x_2 + \frac{8\sqrt{2}}{3}x_2x_3$	9
26	$x_1^2 + x_3^2 + 8x_1x_2 + 4\sqrt{2}x_1x_3 - 2\sqrt{2}x_2x_3$	0
27	$5x_1^2 + 13x_2^2 + 5x_3^2 + 4x_1x_2 + 8x_2x_3$	60
28	$2x_1^2 + 2x_2^2 + 2x_3^2 + \frac{2}{3}x_1x_2 + \frac{4\sqrt{2}}{3}x_2x_3$	12
29	$5x_1^2 + 4x_2^2 + 2x_3^2 - 4x_1x_2 - 2\sqrt{2}x_1x_3 + 4\sqrt{2}x_2x_3$	24
30	$-2x_1^2 + 5x_2^2 - 2x_3^2 + 4x_1x_2 + 4x_2x_3$	12

Примеры решения задач

Задача 1. Найти фундаментальную систему решений и общее решение однородной системы уравнений.

$$\begin{cases} 2x_1 - x_2 - 4x_3 + 7x_4 = 0\\ 5x_1 - 3x_2 - 9x_3 + 17x_4 = 0\\ -3x_1 + 9x_3 - 12x_4 = 0\\ x_1 + x_2 - 5x_3 + 5x_4 = 0 \end{cases}$$

Решение. Выпишем расширенную матрицу системы

$$\begin{pmatrix} 2 & -1 & -4 & 7 & 0 \\ 5 & -3 & -9 & 17 & 0 \\ -3 & 0 & 9 & -12 & 0 \\ 1 & 1 & -5 & 5 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -5 & 5 & 0 \\ 5 & -3 & -9 & 17 & 0 \\ -3 & 0 & 9 & -12 & 0 \\ 2 & -1 & -4 & 7 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -5 & 5 & 0 \\ 0 & -8 & 16 & -8 & 0 \\ 0 & 3 & -6 & 3 & 0 \\ 0 & -3 & 6 & -3 & 0 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 1 & -5 & 5 & 0 \\ 0 & 1 & -2 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -3 & 4 & 0 \\ 0 & 1 & -2 & 1 & 0 \end{pmatrix},$$

или $\begin{cases} x_1-3x_3+4x_4=0 \\ x_2-2x_3+x_4=0 \end{cases}$; x_1 и x_2 – базисные переменные; x_3 и x_4 – свободные переменные. Полагая $x_3=c_1,\ x_4=c_2,\$ где c_1 и c_2 – произвольные постоянные, из уравнений получим $x_1=3c_1-4c_2,\ x_2=2c_1-c_2.$

Общее решение

$$X(c_1; c_2) = \begin{pmatrix} 3c_1 - 4c_2 \\ 2c_1 - c_2 \\ c_1 \\ c_2 \end{pmatrix} = c_1 \begin{pmatrix} 3 \\ 2 \\ 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} -4 \\ -1 \\ 0 \\ 1 \end{pmatrix}.$$

Обозначим
$$\vec{e_1}=\begin{pmatrix}3\\2\\1\\0\end{pmatrix},\,\vec{e_2}=\begin{pmatrix}-4\\-1\\0\\1\end{pmatrix}$$
. Пара векторов $\{\vec{e_1};\vec{e_2}\}$ образует фун-

даментальную систему решений (ΦCP) однородной системы линейных уравнений.

- **Задача 3.** Задан линейный оператор $\hat{A}: V^3 \to V^3$ оператор отражения относительно плоскости x-y-z=0.
- 1) Найти матрицу оператора \hat{A} в подходящем базисе пространства V^3 , а затем в базисе $\{\vec{i},\vec{j},\vec{k}\}.$
- 2) Определить, в какие точки переходят точки с координатами (1,0,0) и (-1,2,1) под действием оператора \hat{A} .

Решение.

1) Найдем матрицу оператора \hat{A} в подходящем базисе \mathcal{B} пространства V^3 , а затем в базисе $\mathcal{B}' = \{\vec{i}, \vec{j}, \vec{k}\}.$

Базис в трехмерном пространстве геометрических векторов V^3 – это система их любых трёх линейно независимых (некомпланарных) векторов. Подходящий базис выберем из геометрических соображений. В качестве первого вектора возьмем вектор нормали к плоскости:

$$\vec{e}_1 = \vec{n} = (1, -1, -1).$$

В качестве остальных двух векторов возьмем векторы, перпендикулярные \vec{e}_1 :

$$ec{e}_2=(1,1,0), ec{e}_2\perp ec{e}_1$$
, т.к. $(ec{e}_1,ec{e}_2)=0$; $ec{e}_3=(1,0,1), ec{e}_3\perp ec{e}_1$, т.к. $(ec{e}_1,ec{e}_3)=0$.

Векторы
$$\vec{e_1}, \vec{e_2}, \vec{e_3}$$
 некомпланарные, т.к. $\begin{vmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = 3 \neq 0$. Следова-

тельно, $\mathcal{B} = \{\vec{e}_1; \vec{e}_2; \vec{e}_3\}$ – базис в V^3 .

Найдем матрицу оператора \hat{A} в базисе \mathcal{B} :

 $A\vec{e}_1 = -\vec{e}_1$ (т.к. вектор \vec{e}_1 перпендикулярен плоскости и при зеркальном отражении он переходит в противоположный вектор);

 $A\vec{e}_2 = \vec{e}_2$ (т.к. вектор \vec{e}_2 параллелен плоскости и при зеркальном отражении он переходит сам в себя);

 $A\vec{e}_3 = \vec{e}_3$ (аналогично вектору \vec{e}_2).

В результате получим матрицу оператора \hat{A} в базисе \mathcal{B} :

$$\begin{split} \hat{A}\vec{e}_1 &= -1 \cdot \vec{e}_1 + 0 \cdot \vec{e}_2 + 0 \cdot \vec{e}_3 \\ \hat{A}\vec{e}_2 &= 0 \cdot \vec{e}_1 + 1 \cdot \vec{e}_2 + 0 \cdot \vec{e}_3 \\ \hat{A}\vec{e}_3 &= 0 \cdot \vec{e}_1 + 0 \cdot \vec{e}_2 + 1 \cdot \vec{e}_3 \end{split} \Rightarrow A = \left(\begin{array}{cc} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right).$$

Найдем теперь матрицу A' оператора \hat{A} в базисе $\mathcal{B}' = \{\vec{i}, \vec{j}, \vec{k}\}, \, \mathcal{B}' = \mathcal{B}P$, где P – матрица перехода от \mathcal{B} к \mathcal{B}' . Выпишем для этого разложение векторов базиса $\mathcal{B} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ по базису $\mathcal{B}' = \{\vec{i}, \vec{j}, \vec{k}\}$:

$$\vec{e}_1 = 1 \cdot \vec{i} - 1 \cdot \vec{j} - 1 \cdot \vec{k}
\vec{e}_2 = 1 \cdot \vec{i} + 1 \cdot \vec{j} + 0 \cdot \vec{k}
\vec{e}_3 = 1 \cdot \vec{i} + 0 \cdot \vec{j} + 1 \cdot \vec{k}$$

Записывая коэффициенты разложения в столбцы, получим матрицу перехода от базиса \mathcal{B}' к базису \mathcal{B} , $\mathcal{B} = \mathcal{B}' P^{-1}$:

$$P^{-1} = \left(\begin{array}{rrr} 1 & 1 & 1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{array}\right)$$

Матрица перехода от базиса \mathcal{B} к базису \mathcal{B}' – это обратная к P^{-1} матрица

$$P = (P^{-1})^{-1} = \frac{1}{3} \cdot \begin{pmatrix} 1 & -1 & -1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}.$$

Матрица линейного оператора

$$A' = PAP^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \frac{1}{3} \cdot \begin{pmatrix} 1 & -1 & -1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} =$$

$$= \frac{1}{3} \cdot \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

2) Определим, в какие точки переходят точки с координатами (1,0,0) и (-1,2,1) под действием оператора \hat{A} .

По сути, нужно найти образы векторов $\vec{a}=(1,0,0)$ и $\vec{b}=(-1,2,1)$:

$$\hat{A}\vec{a} = \frac{1}{3} \cdot \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{3} \cdot \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{pmatrix}$$

$$\hat{A}\vec{b} = \frac{1}{3} \cdot \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = \frac{1}{3} \cdot \begin{pmatrix} 5 \\ -2 \\ -5 \end{pmatrix} = \begin{pmatrix} \frac{5}{3} \\ -\frac{2}{3} \\ -\frac{5}{3} \end{pmatrix}$$

Задача 4. Пусть A – матрица оператора \hat{A} из задачи 3 в каноническом базисе $\{\vec{i}, \vec{j}, \vec{k}\}$. Найдите собственные значения и собственные векторы матрицы A. Объясните, как полученный результат связан с геометрическим действием оператора \hat{A} .

Pewenue. Найдем собственные значения матрицы A оператора \hat{A} из предыдущей задачи, решив соответствующее характеристическое уравнение:

$$\det(A - \lambda E) = \begin{pmatrix} \frac{1}{3} - \lambda & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} - \lambda & -\frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} - \lambda \end{pmatrix} = -(\lambda + 1)(\lambda - 1)^2 = 0,$$

соответственно, $\lambda_1=-1,\ \lambda_{2,3}=1.$ Собственные векторы ищем, решая уравнение $(A-\lambda_i E)X=0.$ При $\lambda_1=-1$ имеем

$$(A - \lambda_1 E) = \begin{pmatrix} \frac{4}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{4}{3} & -\frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{4}{3} \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

$$\sim \left(\begin{array}{ccc} 1 & 2 & -1 \\ 1 & -1 & 2 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & 2 & -1 \\ 0 & -3 & 3 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & -1 & 1 \end{array}\right).$$

Полагая $x_3 = C$, получим $x_1 = -C$, $x_2 = C$, $X_1 = C(-1,1,1)^T$. Это вектор, перпендикулярный плоскости, отражение относительно которой задает оператор \hat{A} , и он с точностью до знака совпадает с вектором $\vec{e_1}$ из предыдущей задачи. Собственное значение $\lambda_1 = -1$ показывает, что этот вектор при отражении меняет знак.

При $\lambda_{2,3}=1$ имеем

$$(A - \lambda_2 E) = \begin{pmatrix} -\frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & -\frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & -\frac{2}{3} \end{pmatrix} \sim \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & -1 & 1 \end{pmatrix} \sim (-1 \ 1 \ 1).$$

Отсюда получаем $X_{2,3}=(C_1+C_2,C_2,C_1)^T=C_1(1,1,0)^T+C_2(1,0,1)^T$. Собственные вектора $X_2=(1,1,0)^T$ и $X_3=(1,0,1)^T$ лежат в плоскости, относительно которой происходит отражение, и при отражении не изменяются (т.к. отвечают $\lambda=1$). Эти два вектора должны лежать в той же плоскости, что и векторы $\vec{e_2},\vec{e_3}$ из предыдущей задачи (в нашем случае получились векторы, совпадающие с $\vec{e_2},\vec{e_3}$).

Задача 5.

Задан оператор $\hat{A}: P_2 \to P_2; \, \hat{A}p(t) = (t-1)\frac{dp(t)}{dt}.$

- 1) Доказать, что оператор \hat{A} является линейным оператором в пространстве P_n многочленов степени не выше n.
- 2) Найти матрицу оператора \hat{A} в каноническом базисе P_n .
- 3) Существует ли обратный оператор \hat{A}^{-1} ? Если да, найти его матрицу.
- 4) Найти образ, ядро, ранг и дефект оператора \hat{A} . Pemenue.
- 1) $\forall p(t), g(t) \in P_2$ и $\forall \alpha, \beta \in R$ имеем: $\hat{A}(\alpha p(t) + \beta g(t)) = (t-1)(\alpha p(t) + \beta g(t))' = \alpha (t-1)p(t)' + \beta (t-1)g(t)' = \alpha \hat{A}p(t) + \beta \hat{A}g(t)$.
- 2) Для нахождения матрицы оператора подействуем им на вектора канонического базиса $\vec{e}_1=1,\ \vec{e}_2=t,\ \vec{e}_3=t^2$ пространства P_2 многочленов степени не выше 2:

$$\hat{A}1 = (t-1)1' = 0,$$

$$\hat{A}t = (t-1)t' = -1 + t,$$

$$\hat{A}t^2 = (t-1)(t^2)' = (t-1)2t = -2t + 2t^2,$$

и запишем в столбцы коэффициенты разложения получившихся векто-

ров по каноническому базису в столбцы матрицы A,

$$A = \left(\begin{array}{ccc} 0 & -1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 2 \end{array}\right).$$

- 3) Т.к. $\det A = 0$, то обратной матрицы A^{-1} и обратного оператора \hat{A}^{-1} не существует.
- 4) Найдем сначала ранг и дефект оператора \hat{A} : rang $\hat{A} = \operatorname{rang} A = 2$, def $\hat{A} = \dim P_2 \operatorname{rang} \hat{A} = 3 2 = 1$.

Ядро оператора $\ker \hat{A}$ определяется как множество векторов \vec{x} пространства, обращающихся в 0 под действием оператора \hat{A} , $\hat{A}\vec{x}=0$. В матричной форме последнее уравнение имеет вид AX=0, где X – столбец координат. Это однородная система линейных уравнений. Запишем и преобразуем матрицу системы:

$$\begin{pmatrix}
0 & -1 & 0 \\
0 & 1 & -2 \\
0 & 0 & 2
\end{pmatrix}
\sim
\begin{pmatrix}
0 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{pmatrix}
\sim
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

Отсюда получим
$$x_1=C,\,x_2=x_3=0,\,X=\left(egin{array}{c} C \\ 0 \\ 0 \end{array}\right)=C\left(egin{array}{c} 1 \\ 0 \\ 0 \end{array}\right).$$
 Выпи-

шем теперь соответствующие многочлены: $p(t) = C \cdot 1 + 0 \cdot t + 0 \cdot t^2 = C$. Таким образом, $\operatorname{Ker} \hat{A} = \{p(t) = C; C \in \mathbb{R}\}$.

Найдем образ оператора $\operatorname{Im} \hat{A}$.

$$AX = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -x_2 \\ x_2 - 2x_3 \\ 2x_3 \end{pmatrix} = \alpha \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix},$$

где $\alpha=x_2,\,\beta=x_3$. Отсюда получаем $y(t)=\hat{A}\vec{x}=\alpha(-1+t)+\beta(-t+t^2),$ Im $\hat{A}=\{p(t)=\alpha(t^2-t)+\beta(t-1);\ \alpha,\beta\in\mathbb{R}\}.$ Векторы $f_1=t^2-t,$ $f_2=t-1$ образуют базис образа.

Задача 7.

В пространстве V^3 геометрических векторов с обычным скалярным произведением заданы векторы базиса $S=\{\vec{f_1}=i-j-k,\ \vec{f_2}=-i-j+k,\ \vec{f_3}=2i+k\}.$

1) Найти матрицу Грама G_S скалярного произведения в этом базисе. Выписать формулу для длины вектора через его координаты в базисе S.

- 2) Ортогонализовать базис S. Сделать проверку ортонормированности построенного базиса P двумя способами:
- а) выписав координаты векторов из P в базисе $\{\vec{i},\vec{j},\vec{k}\};$ б) убедившись, что преобразование матрицы Грама при переходе от базиса S к базису P (по формуле $G_P=C^T\cdot G_S\cdot C$) приводит к единичной матрице.

Решение.

1) Матрица Грама G_S системы векторов определяется как матрица из скалярных произведений этих векторов. Для базиса $S = \{\vec{f_1}, \vec{f_2}, \vec{f_3}\}$

$$g_{ij} = (\vec{f_i}, \vec{f_j}).$$

Т.к. векторы заданы координатами в ортонормированном базисе, скалярное произведение в этом случае вычисляется по "школьной" формуле как сумма произведений координат,

$$\begin{split} (\vec{f_1}, \vec{f_1}) &= |\vec{f_1}|^2 = 1^2 + (-1)^2 + (-1)^2 = 3; \\ (\vec{f_1}, \vec{f_2}) &= (\vec{f_2}, \vec{f_1}) = 1 \cdot (-1) + (-1) \cdot (-1) + (-1) \cdot 1 = -1; \\ (\vec{f_1}, \vec{f_3}) &= (\vec{f_3}, \vec{f_1}) = 1 \cdot 2 + (-1) \cdot 0 + (-1) \cdot 1 = 1; \\ (\vec{f_2}, \vec{f_2}) &= (-1)^2 + (-1)^2 + 1^2 = 3; \\ (\vec{f_2}, \vec{f_3}) &= (\vec{f_3}, \vec{f_2}) = (-1) \cdot 2 + (-1) \cdot 0 + 1 \cdot 1 = -1; \\ (\vec{f_3}, \vec{f_3}) &= 2^2 + 0^2 + 1^2 = 5. \end{split}$$

В результате получаем

$$G_S = \left(\begin{array}{rrr} 3 & -1 & 1 \\ -1 & 3 & -1 \\ 1 & -1 & 5 \end{array}\right).$$

Можно найти G_S и другим способом. Если мы запишем матрицу $C_{\mathcal{B} o \mathcal{S}}$ перехода от базиса $\mathcal{B} = \{i, j, k\}$ к базису S (её столбцы – координаты векторов "нового" базиса S в "старом" базисе \mathcal{B}), то

$$G_S = C_{\mathcal{B} \to \mathcal{S}}^T G_{\mathcal{B}} C_{\mathcal{B} \to \mathcal{S}} = C_{\mathcal{B} \to \mathcal{S}}^T E C_{\mathcal{B} \to \mathcal{S}} = C_{\mathcal{B} \to \mathcal{S}}^T C_{\mathcal{B} \to \mathcal{S}}.$$

Впрочем, вычисления фактически не будут отличаться от сделанных выше.

Далее выписываем формулу для квадрата длины вектора в базисе S:

$$|x|^2 = 3x_1^2 - 2x_1x_2 + 2x_1x_3 + 3x_2^2 - 2x_2x_3 + 5x_3^2.$$

2) Теперь мы должны ортогонализовать базис S (т.е. перейти к ортонормированному базису). Задача ортогонализации возникает, в частности, в том случае, когда надо построить ортонормированный базис, связанный с конкретным оператором.

Сначала построим ортогональный базис $R = \{\vec{g}_1, \vec{g}_2, \vec{g}_3\}$ (для получения ортонормированного базиса надо будет еще поделить получившиеся векторы на их длины).

Первый вектор берем без изменений,

$$\vec{g}_1 = \vec{f}_1.$$

Второй вектор \vec{g}_2 мы будем искать в линейной оболочке векторов \vec{f}_1 и \vec{f}_2 по формуле

 $\vec{g}_2 = \vec{f}_2 - \lambda \vec{g}_1,$

подбирая λ таким образом, чтобы \vec{g}_2 оказался перпендикулярен $\vec{g}_1 = \vec{f}_1$. Фактически мы тем самым проектируем вектор \vec{f}_2 на направление, перпендикулярное вектору \vec{g}_1 и лежащее в плоскости векторов \vec{f}_1 и \vec{f}_2 . Поскольку перпендикулярность равносильна обращению скалярного произведения в ноль,

$$(\vec{g}_2, \vec{g}_1) = (\vec{f}_2 - \lambda \vec{g}_1, \vec{g}_1) = (\vec{f}_2, \vec{g}_1) - \lambda (\vec{g}_1, \vec{g}_1) = 0, \quad \lambda = \frac{(\vec{f}_2, \vec{g}_1)}{(\vec{g}_1, \vec{g}_1)}.$$

Окончательно получим

$$\vec{g}_2 = \vec{f}_2 - \frac{(\vec{f}_2, \vec{g}_1)}{(\vec{g}_1, \vec{g}_1)} \vec{g}_1 = \vec{f}_2 - \frac{(\vec{f}_2, \vec{f}_1)}{(\vec{f}_1, \vec{f}_1)} \vec{f}_1,$$

т.е. из вектора $\vec{f_2}$ мы вычитаем его проекцию на направление вектора $\vec{q_1} = \vec{f_1}$.

В нашем случае $\lambda = \frac{(\vec{f_2}, \vec{f_1})}{(\vec{f_1}, \vec{f_1})} = -\frac{1}{3}$,

$$\vec{g}_2 = \vec{f}_2 + \frac{1}{3}\vec{f}_1 = \frac{1}{3}(3(-i-j+k) + (i-j-k)) = \frac{1}{3}(-2i-4j+2k).$$

Нетрудно проверить, что получившийся вектор действительно перпендикулярен $\vec{f_1}$ – скалярное произведение $(\vec{g_2}, \vec{f_1}) = \frac{1}{3}(-2 \cdot 1 - 4 \cdot (-1) + 2 \cdot (-1)) = 0$.

Ищем \vec{g}_3 в виде

$$\vec{g}_3 = \vec{f}_3 - \mu \vec{g}_1 - \eta \vec{g}_2.$$

Как и выше λ , коэффициенты μ и η определяются из условия ортогональности $(\vec{g}_3, \vec{g}_1) = (\vec{g}_3, \vec{g}_2) = 0$,

$$\vec{g}_3 = \vec{f}_3 - \frac{(\vec{f}_3, \vec{g}_1)}{(\vec{g}_1, \vec{g}_1)} \vec{g}_1 - \frac{(\vec{f}_3, \vec{g}_2)}{(\vec{g}_2, \vec{g}_2)} \vec{g}_2,$$

Используя матрицу Грама G_S , находим скалярные произведения

$$(\vec{f}_3, \vec{g}_2) = (\vec{f}_3, \vec{f}_2 + \frac{1}{3}\vec{f}_1) = -1 + \frac{1}{3} \cdot 1 = -\frac{2}{3},$$

$$(\vec{g}_2, \vec{g}_2) = (\vec{f}_2 + \frac{1}{3}\vec{f}_1, \vec{f}_2 + \frac{1}{3}\vec{f}_1) = 3 + 2 \cdot \frac{1}{3} \cdot (-1) + \frac{1}{9} \cdot 3 = \frac{8}{3}$$

и вектор

$$\vec{g}_3 = \vec{f}_3 - \frac{1}{3}\vec{g}_1 + \frac{1}{4}\vec{g}_2 = \frac{1}{12}(12\vec{f}_3 - 4\vec{g}_1 + 3\vec{g}_2) = \frac{1}{12}(12\vec{f}_3 - 4\vec{f}_1 + \vec{f}_1 + 3\vec{f}_2) = \frac{1}{4}(-\vec{f}_1 + \vec{f}_2 + 4\vec{f}_3) = \frac{1}{4}(-(i-j-k) + (-i-j+k) + 4(2i+k)) = \frac{1}{2}(3i+3k).$$

Мы получили ортогональный базис $\{\vec{g}_1,\vec{g}_2,\vec{g}_3\}$. Остается поделить векторы этого базиса на их длины: $|\vec{g}_1|=|\vec{f}_1|=\sqrt{3};\ |\vec{g}_2|=\sqrt{\frac{8}{3}}=\frac{2}{3}\sqrt{6},$ $|\vec{g}_3|=\frac{3}{\sqrt{2}}=\frac{3\sqrt{2}}{2}$ (это значение можно получить как с помощью матрицы Грама G_S , так и с помощью разложения по первоначальному ортонормированному базису \mathcal{B}).

Искомый ортонормированный базис – это $P = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\},$

$$\vec{e}_1 = \frac{\vec{g}_1}{|\vec{g}_1|} = \frac{\vec{f}_1}{\sqrt{3}} = \frac{i}{\sqrt{3}} - \frac{j}{\sqrt{3}} - \frac{k}{\sqrt{3}}$$

$$\vec{e}_2 = \frac{\vec{g}_2}{|\vec{g}_2|} = \frac{\vec{f}_1}{2\sqrt{6}} + \frac{3\vec{f}_2}{2\sqrt{6}} = -\frac{i}{\sqrt{6}} - \frac{2}{\sqrt{6}} + \frac{k}{\sqrt{6}}$$

$$\vec{e}_3 = \frac{\vec{g}_3}{|\vec{g}_3|} = -\frac{\vec{f}_1}{6\sqrt{2}} + \frac{\vec{f}_2}{6\sqrt{2}} + \frac{4\vec{f}_3}{6\sqrt{2}} = \frac{i}{\sqrt{2}} + \frac{k}{\sqrt{2}}$$

Далее надо совершить двойную проверку. Во-первых, используя выписанные разложения по базису \mathcal{B} , надо убедиться, что $(\vec{e}_1, \vec{e}_1) = (\vec{e}_2, \vec{e}_2) = (\vec{e}_3, \vec{e}_3) = 1$; $(\vec{e}_1, \vec{e}_2) = (\vec{e}_2, \vec{e}_3) = (\vec{e}_3, \vec{e}_1) = 0$, что докажет ортонормированность полученного базиса. Во-вторых, составив матрицу $C_{S\to P}$ перехода от базиса S к базису P,

$$C_S = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{2\sqrt{6}} & -\frac{1}{6\sqrt{2}} \\ 0 & \frac{3}{2\sqrt{6}} & \frac{1}{6\sqrt{2}} \\ 0 & 0 & \frac{4}{6\sqrt{2}} \end{pmatrix}.$$

нужно найти матрицу Грама в базисе P по формуле $G_P = C_{S \to P}^T G_S C_{S \to P}$. Матрица G_P должна оказаться единичной.

Контрольные вопросы

5. Теория систем линейных уравнений

- 5.1. Что такое ранг матрицы? Как он связан с рангом системы ее строк (столбцов)? Чему равен ранг матрицы, все элементы которой одинаковы?
 - 5.2. Каков критерий равенства определителя нулю?
- 5.3. Что происходит с рангом матрицы: а) при ее транспонировании (и почему?); б) при элементарных преобразованиях?
 - 5.4. Как выглядит блочно-треугольная матрица, чему равен ее ранг?
- 5.5. Что такое матрица системы; расширенная матрица? Что означают слова: записать систему в матричной форме? Почему она эквивалентна исходной системе уравнений?
- 5.6. Что означает совместность системы? Какие системы называются эквивалентными? Каков критерий совместности системы? Когда решение системы единственно?
- 5.7. Всегда ли совместна однородная система? Каков критерий существования ненулевых решений у однородной системы? Выделите случай квадратной системы.
- 5.8. Образует ли множество решений однородной системы линейное пространство? А множество решений неоднородной системы? Объясните результат. Какова связь решений однородной и неоднородной систем?
- 5.9. Какова размерность пространства решений однородной системы? Что называется фундаментальной системой решений (Φ CP)? Почему понятие Φ CP существует только для однородной системы?
- 5.10. Что называется общим решением однородной системы и какова его структура? Пусть дана ФСР некоторой однородной системы:

$$X_1 = (1, 1, 2)^T, \quad X_1 = (2, 3, 1)^T$$

Выпишите все ее решения. Укажите другую ФСР этой системы.

- 5.11. Все решения однородной системы линейных уравнений могут быть записаны в виде: $x_1 = s + t$, $x_2 = s 2t$, $x_3 = 3$, $x_4 = t$, $x_5 = s + 2t$, где $s, t \in R$. Укажите ее ФСР. Сколько уравнений могло быть в системе?
- 5.12. Все решения неоднородной системы линейных уравнений могут быть записаны в виде x=1+s, y=2s-1, z=s. Опишите все решения соответствующей однородной системы и приведите пример ее ФСР.
- 5.13. Какие способы решения систем линейных уравнений Вы знаете? Всегда ли они применимы?

6. Линейные операторы

6.1. Что такое линейный оператор? Привести примеры линейных операторов в пространствах V^3, R^n, P_n . Какой вектор сохраняется при действии любого линейного оператора?

6.2. Какие из следующих отображений, действующих на геометрические векторы $\bar{x} = (x_1, x_2, x_3) \in V^3$, являются линейными операторами (векторы \bar{a} и \bar{b} фиксированы):

```
а)\hat{A}\bar{x} = \bar{a}, \ \bar{a} \neq \bar{0}; \ б)\hat{A}\bar{x} = \bar{x} + \bar{a}; \ в)\hat{A}\bar{x} = \alpha \bar{x}; г)\hat{A}\bar{x} = (\bar{x}, \bar{a})\bar{x}; \ д)\hat{A}\bar{x} = [\bar{x}, \bar{a}]; \ е)\hat{A}\bar{x} = [\bar{x}, \bar{a}]; \ е)\hat{A}\bar{x} = (\bar{x}, \bar{a})\bar{x}; \ д) горомотрумоский аммер
```

ж) $\hat{A}\bar{x}=(\bar{x},\bar{a})\bar{a},|\bar{a}|=1$ (каков геометрический смысл?);

```
з)\hat{A}\bar{x} = (\bar{x}, \bar{x})\bar{a};
```

$$\mathbf{u})\hat{A}\bar{x} = (x_1^2, x_3, 0);$$

$$\kappa)\hat{A}\bar{x} = (2x_1 - x_3, x_2 + x_3, x_1);$$

$$\pi)\hat{A}\bar{x} = (\sin x_1, \cos x_2, 0);$$

- м) \hat{A} поворот вокруг оси OZ на угол α ;
- н) $\hat{A}\bar{x} = \bar{x} (\bar{x}, \bar{a})\bar{a}, |\bar{a}| = 1$ (каков геометрический смысл?).
- 6.3. Какие из следующих отображений являются линейными операторами в пространстве L:

a)
$$L = R^4$$
: $\hat{A}\bar{x} = (x_1 + x_4, x_1 - x_2, 0, x_4 - x_3); \hat{A}\bar{x} = (x+1, x_2 - x_3, x_1, 0);$

6)
$$L = L[\cos t, \sin t] : (\hat{A}x)(t) = x'(t); (\hat{A}x)(t) = x'(t) - x(0);$$

B)
$$L = P_3: \quad (\hat{A}p)(t) = p(t+h) - p(t), \ h \in R;$$

$$(\hat{A}p)(t) = p'(t), \ (\hat{A}p)(t) = tp(t), (\hat{A}p)(t) = p(t) - tp'(t) + t^2p''(t);$$

- д) L = P пространство всех многочленов (объяснить, почему это линейное пространство): $(\hat{A}p)(t) = tp(t)$; $\hat{A}(p_0 + p_1 t + ... + p_n t^n) = p_0 t + \frac{p_1 t^2}{2} + ... + \frac{p_n t^{n+1}}{n+1}$ интегрирование.
- 6.4. Что такое матрица линейного оператора в данном базисе? Как она изменится, если поменять местами два базисных вектора?

Пусть линейный оператор $\hat{A}: R^3 \to R^3$ переводит векторы $\vec{e_1} = (1,0,0), \ \vec{e_2} = (0,1,0), \ \vec{e_3} = (0,0,1)$ соответственно в векторы $\vec{f_1} = (1,2,3), \ \vec{f_1} =$

- $(3,4,5),\ \vec{f_3}=(6,6,6).$ Какова его матрица в базисе $\{\vec{e_1},\vec{e_2},\vec{e_3}\}$?
- 6.5. Известна матрица оператора в некотором базисе. По какой формуле преобразуются координаты векторов под действием этого оператора?
- 6.6. Что такое сумма, произведение линейных операторов? Что происходит с матрицами линейных операторов при сложении, умножении операторов?
- 6.7. Как образуется матрица перехода от данного базиса к новой системе векторов? Каков критерий базисности новой системы? Как преобразуются координаты векторов и матрица линейного оператора при переходе к другому базису? Что происходит при этом с определителем матрицы?
- 6.8. Какие матрицы называются подобными? Какие свойства подобия матриц Вы знаете? Как связаны между собой определители подобных

- матриц? Ответ на последний вопрос обоснуйте.
- 6.9. Какой оператор называется невырожденным? Что такое обратный оператор? Каков критерий его существования? Как найти матрицу обратного оператора? Известно, что линейный оператор \hat{A} переводит вектор $\bar{x} \neq \bar{0}$ в нуль-вектор. Существует ли \hat{A}^{-1} ? Ответ обосновать.
- 6.10. Что такое собственный вектор линейного оператора? Каков геометрический смысл собственного вектора в пространстве V^3 ? Пусть \bar{x} -собственный вектор. Укажите еще какой-нибудь собственный вектор, отвечающий тому же собственному значению. Ответ обосновать. Могут ли быть линейно зависимыми собственные векторы, отвечающие различным собственным значениям?
- 6.11. Верны ли утверждения: а) если λ собственное значение оператора \hat{A} , то λ^k собственное значение для оператора \hat{A}^k ;
- б) если \vec{x} собственный вектор операторов \hat{A} и \hat{B} с собственными значениями λ_1 и λ_2 соответственно, то \bar{x} собственный вектор для $\hat{A}+\hat{B}$; для $\hat{A}-\hat{B}$? Если да, то с каким собственным значением?
- 6.12^* . Исходя из геометрического смысла оператора $\hat{A}:V^3\to V^3$, указать его собственные значения и собственные векторы. Обладает ли он базисом из собственных векторов? Если да, то как выглядит матрица оператора в этом базисе? Является ли оператор невырожденным? а) \hat{A} оператор проектирования векторов на плоскость P; б) \hat{A} оператор проектирования векторов на прямую L; в) \hat{A} оператор симметрии векторов относительно плоскости P; г) \hat{A} оператор симметрии векторов относительно прямой L; д) $\hat{A}\bar{x}=[\bar{x},\bar{a}], \bar{a}\neq 0$ фиксированный вектор.
- 6.13. Что такое характеристический многочлен линейного оператора? Зачем он нужен? Как он зависит от выбора базиса? Пусть $\lambda_1, \lambda_2, \lambda_3$ собственные значения оператора в V^3 : а) каков его характеристический многочлен; δ^*) чему равен определитель матрицы оператора?
- 6.14. Как находить собственные значения и собственные векторы линейного оператора в *n*-мерном пространстве?
- 6.15. Что такое оператор простого типа? Как выглядит матрица оператора в базисе из собственных векторов? Каково достаточное условие оператора простого типа? Является ли оно необходимым?* Что означает диагонализуемость матрицы?
- 6.16. Матрица оператора в некотором базисе треугольная. Каковы собственные значения этого оператора?
- 6.17^* . Показать, что оператор, заданный матрицей E_{ij} (см. вопрос 3.8 из типового расчета \mathbb{N}_1), переводит базисный вектор \vec{e}_j в \vec{e}_i , а остальные базисные векторы в нуль. Пользуясь этим, вычислить $E_{ij} \cdot E_{kl}$.
 - 6.18^* . Интерпретируя матрицу A как матрицу линейного оператора,

вычислить A^n , где: а) A – треугольная матрица n-го порядка с нулевыми элементами на главной диагонали;

6)
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
, $n = -1, 1, 2, 3, \dots$

- 6.19*. Справедливо ли рассуждение: "Пусть $\hat{A}\hat{B}=\hat{A}\hat{C}$, где \hat{A} ненулевой оператор; сократив на \hat{A} , получим $\hat{B}=\hat{C}$ "?
- 6.20^* . Привести пример линейных операторов \hat{A} и \hat{B} , для которых $\hat{A}\hat{B}=\hat{0},\;\hat{B}\hat{A}\neq\hat{0}$ (указание: см. 6.17^*).

7. Билинейные и квадратичные формы

7.1. Что такое билинейная форма? Как образуется матрица билинейной формы в данном базисе? Как записать билинейную форму в данном базисе? Как записать билинейную форму в координатной и в векторноматричной записи? Пусть $B=\begin{pmatrix}1&2\\3&4\end{pmatrix}$ – матрица формы в базисе $\{\bar{e}_1,\bar{e}_2\}; \bar{x}=(-1,1), \ \bar{y}=(1,-1).$ Чему равны $B(\bar{e}_1,\bar{e}_2), B(\bar{e}_2,\bar{e}_1), B(\bar{x},\bar{y})$? 7.2. При каком условии на коэффициенты билинейная форма

$$B(\bar{x}, \bar{y}) = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij} \cdot x_i \cdot y_j$$

симметрична, кососимметрична?

- 7.3. Как меняется матрица билинейной формы при изменении базиса? Что происходит при этом со значениями формы?
- 7.4. Что такое квадратичная форма? Как образуется матрица квадратичной формы в данном базисе? Как записать квадратичную форму по ее матрице (указать 2 вида записи)? Выпишите матрицу квадратичной формы. Приведите векторно-матричную запись формы $K(\vec{x}) = 2x_1^2 3x_1x_3 + x_2^2$. Приведите два вида записи квадратичной формы с матрицей

$$\left(\begin{array}{ccc} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{array}\right).$$

- 7.5. Каков канонический вид квадратичной формы? Однозначно ли он определен? Как выглядит матрица формы в каноническом базисе? Какие характеристики формы не зависят от выбора канонического базиса?
- 7.6. Что называется положительным, отрицательным индексами инерции, рангом квадратичной формы? Что означает положительная (отрицательная) определенность формы? Каковы положительный, отрицательный индексы и ранг положительно (отрицательно) определенной формы?

- 7.7. Каков критерий положительной (отрицательной) определенности квадратичной формы?
- 7.8. Поверхность 2-го порядка в V^3 задается уравнением $K(\bar{x})=1$, где $Q(\bar{x})$ – квадратичная форма. Укажите тип поверхности в зависимости от ранга и индексов инерции квадратичной формы.

8. Евклидовы пространства

- 8.1. Какие аксиомы определяют скалярное произведение в евклидовом пространстве? Что они означают на языке билинейных форм? Приведите примеры скалярных произведений.
- 8.2. Что такое матрица Грама? Каковы ее свойства? Как записать с ее помощью скалярное произведение векторов?

Может ли матрица Грама в некотором базисе $\{\bar{e}_1,\bar{e}_2\}$ иметь вид:

a)
$$G = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$$
; 6) $G = \begin{pmatrix} 3 & 1 \\ 0 & 1 \end{pmatrix}$; B) $G = \begin{pmatrix} 3 & -1 \\ -1 & 1 \end{pmatrix}$?

При положительном ответе найти (\bar{e}_1,\bar{e}_2) , (\bar{e}_2,\bar{e}_2) , (\bar{x},\bar{y}) , где $\bar{x}=(1,1)$, $\bar{y}=(1,1)$ (1,-1).

- 8.3. Что такое длина (норма) вектора в евклидовом пространстве? Каковы ее свойства? Что такое неравенство Коши-Буняковского? Когда оно превращается в равенство? Как выглядит неравенство треугольника, и почему оно так называется?
- 8.4. Как вычисляется угол между векторами? Почему это определение угла корректно? Какие векторы называются ортогональными? Скалярное произведение в базисе $\vec{e}_1, \vec{e}_2, \vec{e}_3$ задается матрицей Грама G =

$$\begin{pmatrix} 3 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. Будут ли ортогональны векторы $\vec{e_1}$ и $\vec{e_2}$, $\vec{e_1}$ и $\vec{e_3}$, $\vec{e_2}$ и $\vec{e_3}$?

 \dot{K} аковы длины векторов $\vec{e}_1, \vec{e}_2, \vec{e}_3$?

8.5. Что такое ортогональный, ортонормированный базисы в евклидовом пространстве? Как выглядит матрица Грама в ортогональном базисе, в ортонормированном? Как ищется скалярное произведение в ортонормированном базисе? Почему? Как выражаются через скалярное произведение координаты вектора в ортонормированном базисе?

9. Линейные операторы в евклидовом пространстве

- 9.1. Какой оператор \hat{A}^+ называется сопряженным к линейному оператору \hat{A} в евклидовом пространстве? Будет ли он единственным? Как найти его матрицу, зная матрицу оператора \hat{A} в ортонормированном базисе?
- 9.2. Как найти оператор, сопряженный к произведению операторов $\hat{A}\hat{B}$; к их сумме $\hat{A}+\hat{B}$? Чему равен сопряженный оператор к обратному оператору \hat{A}^{-1} ?

- 9.3. Какой оператор называется самосопряженным? Каково характеристическое свойство матрицы самосопряженного оператора в ортонормированном базисе? Сохраняется ли самосопряженность при сложении операторов; при умножении их на числа; при умножении операторов?
- 9.4. Какова специфика корней характеристического уравнения для самосопряженного оператора? Каковы свойства его собственных векторов?
- 9.5. Какой оператор называется ортогональным? Что происходит с ортонормированным базисом при действии ортогонального оператора?
- 9.6. Известно, что линейный оператор переводит ортонормированный базис в ортонормированный. Каков этот оператор?
- 9.7. Будет ли ортогональный оператор иметь обратный? Если да, то как его найти?
- 9.8. Известно, что оператор \hat{A} обратим, и $\hat{A}^{-1} = \hat{A}^+$. Каков этот оператор?
- 9.9. Каковы свойства матрицы ортогонального оператора в ортонормированном базисе?
- 9.10*. Как показать, что при переходе от одного ортонормированного базиса к другому ортонормированному базису матрица самосопряженного оператора преобразуется так же, как матрица соответствующей квадратичной формы? Для чего здесь нужна самосопряженность оператора?