COMPECON WORKSHOP

CONTINUOUS TIME METHODS

Felipe Alves August 17, 2017

NYU

REFERENCES

THEORY: STOCHASTIC CALULUS AND STOCHASTIC CONTROL

- Pham (2009) Continuous-time Stochastic Control maybe too finance
- · Lecture notes
 - → Caldentey (????) Stochastic processes and optimal control nice lecture notes Enio uses them
 - → Ross (????) Stochastic Control in Continuous Time alternative to math books Fleming and Soner (2006), Øksendal (2003), Øksendal and Sulem (2007)

NUMERIC

- Achdou, Han, Lasry, Lions, and Moll (2016) (mainly the numerical appendix), Moll's website (tons of examples and materials)
- Forsyth and Vetzal (2012) (Also has some slides) good introduction to "viscosity solutions"

MACRO (friendly)

- Moll's website, Nuno syllabus
- Stokey (2009) book Impulse control Problem
- Bayer and Wälde (2015) recent discovery, dicuss the kind of problems driven by a Markov chain
 Sennewald (2007) (theory paper), Walde (2008) (book on intertemporal optimization),
- Interested? Check applications ...
 - → HANK by Kaplan, Moll, and Violante (2016) (Transition Dynamics)
 - → PHACT (Reiter + HACT)
 - → Nuño and Moll (2017) (social optimum in models with heterogeneous agents)
 - → Thomas and Nuño (2016) (impulse control)

TABLE OF CONTENTS

- 1. Consumption Savings Problem
- 2. Computing the Distribution
- 3. Stationary Equilibrium & Transition Dynamics

CONSUMPTION SAVINGS PROBLEM

Problem of Household

$$\begin{aligned} \max_{\{c_t\}_{t\geq 0}} \mathbb{E}_0 & \int_0^\infty e^{-\rho t} u(c_t) dt \\ & \text{S.t } da_t = \big\{ ra_t + z_t - c_t \big\} dt \\ & z_t \text{: is a ct markov chain on } \{b, w\} \text{ with intensities } \lambda_1, \lambda_2 \\ & dz_t = (w-b) dq - (w-b) dQ, \quad q \sim \text{Poisson}(\lambda_1), \ Q \sim \text{Poisson}(\lambda_2) \end{aligned}$$

Individuals' consumption and saving decision is summarized by HJB equation

$$\rho v(a, z_k) = \max_{c} \left\{ u(c) + v_a(a, z)[ra + z_k - c] \right\} + \lambda_k \left[v(a, z_{-k}) - v(a, z_k) \right]$$
(1)

Where this came from? Check Lagos lecture notes for an heuristic argument.

Theoretical results analogous to discrete time:

- Value function satisfy the HJB equation
- Verification theorems: solution of HJB + ...→ value function
- Alternatively, one can show HJB has a unique "nice" solution which is the value function (viscosity solution)

٨.

Before solving the HJB FE let's see what we can do. Analytical results from Bayer and Wälde (2015)

Envelope condition:

$$\rho v_a(a,b) = r v_a(a,b) + v_{aa}(a,b) \{ ra + b - c(a,b) \} + \lambda_1 \Big[v_a(a,w) - v_a(a,b) \Big]$$

Differential of $v_a(a, z)$ — CVF, "Itô formula"

$$da_t = \{ra_t + z_t - c_t\}dt$$

$$dz_t = (w - b)dq - (w - b)dQ, \quad q \sim Poisson(\lambda_1), \ Q \sim Poisson(\lambda_2)$$

$$\mathrm{d} v_{a}(a,b) = \underbrace{v_{aa}\big\{ra+b-c(a,b)\big\}}_{\text{normal term}} \mathrm{d} t + \underbrace{\left[v_{a}(a,w)-v_{a}(a,b)\right]}_{\text{jump terms}} \mathrm{d} q_{t}$$

foc implies: $v_a(a, z) = u'(c(a, z))$.

Combining both equations to get rid of v_{aa} we have

$$du'(c(a,b)) = \left\{ (\rho - r)u'(c(a,b)) - \lambda_1 u'(c(a,b)) \left[\frac{u'(c(a,w))}{u'(c(a,b))} - 1 \right] \right\} dt +$$

$$+ \left[u'(c(a,w)) - u'(c(a,b)) \right] dq_t$$

5

Applying "Itô lemma" to get consumption over time

$$dc(a,b) = \frac{u'(c(a,b))}{-u''(c(a,b))} \left\{ r - \rho - \lambda_1 \left[1 - \frac{u'(c(a,w))}{u'(c(a,b))} \right] \right\} dt + \left[c(a,w) - c(a,b) \right] dq_t$$
 (2)

$$dc(a, w) = \frac{u'(c(a, w))}{-u''(c(a, w))} \left\{ r - \rho + \underbrace{\lambda_2 \left[\frac{u'(c(a, b))}{u'(c(a, w))} - 1 \right]}_{\text{prec. savings}} \right\} dt + \underbrace{\left[c(a, b) - c(a, w) \right] dQ_t}_{\text{jumps}}$$
(3)

neoclassical growth model $\dot{c}(t) = \frac{u'(c)}{-u''(c)} \Big(r - \rho \Big)$

Looking at period between jumps. What the signs tell us?

Proposition. Consider the case $0 < r \le \rho$. Define the threshold level a_w^* by

$$\frac{u'(c(a_w^*,b))}{u'(c(a_w^*,w))} = 1 + \frac{\rho - r}{\lambda_2}$$
 (4)

Then (i) Consumption of employed workers is increasing on $[\underline{a}, a_w^*]$ and decreasing $a > a_w^*$; (ii) consumption of unemployed workers always decrease

6

Properties of this system can be illustrated in the usual phase diagram

POLICIES

Note:

CHANGE

- Results help build some intuition on the problem. Look at Bayer and Wälde (2015) for much more...
- Now we change the approach.
 Instead of looking at households' saving behavior in terms of a differential equation for its consumption policy function, we will focus on the HJB equation and how to solve it numerically.
- draw heavily on Moll's notes

Problem of Household

$$\begin{aligned} \max_{\{c_t\}_{t\geq 0}} \mathbb{E}_0 & \int_0^\infty e^{-\rho t} u(c_t) dt \\ & \text{S.t } da_t = \big\{ ra_t + z_t - c_t \big\} dt \\ & z_t \text{ is a ct markov chain on } \{b, w\} \text{ with intensities } \lambda_1, \lambda_2 \\ & dz_t = (w - b) dq_\mu - (w - b) dq_s, \quad q_\mu \sim \text{Poisson}(\lambda_1), \ q_s \sim \text{Poisson}(\lambda_2) \\ & a_t \geq \underline{a} \end{aligned}$$

Individuals' value function must satisfy HJB equation¹

$$\rho v_{k}(a) = \max_{c} \left\{ u(c) + v'_{k}(a)[ra + z_{k} - c] \right\} + \lambda_{k} \left[v_{-k}(a) - v_{k}(a) \right]$$
 (5)

Borrowing constraint shows only as state constraint boundary condition

$$u'(c_i(\underline{\mathbf{a}})) = v'_i(\underline{\mathbf{a}}) \ge u'(r\underline{\mathbf{a}} + z_i) \tag{6}$$

which ensures $s_i(\underline{a}) = r\underline{a} + z_i - c_i(\underline{a}) \ge 0$ so that the borrowing constraint is <u>never violated</u>.

¹change notation

CONTINUOUS × **DISCRETE TIME**

Consider the first-order condition for consumption

cont time:
$$u'(c) = \partial_a v(a, z)$$
 (7)

disc time:
$$u'(c) \ge \beta \int \partial_a v(a',z') dF(z'|z), \quad a' = z + (1+r)a - c$$
 (8)

Continuous time numerical advantages:

- 1. "today" = "tomorrow" foc is static
- 2. HJB is not stochastic evolution of stochastic process is captured by additive terms
- 3. Borrowing constraint shows only as state constraint boundary condition

Finite difference methods: replace derivatives by differences. Simple right? Well developed theory... some slides on it

Recall our HJB equation

$$\rho v_k(a) - \sup_{c \in \Gamma_k(a)} \left\{ u(c) + \mathcal{A}^c v_k(a) \right\} = 0$$
 (9)

where

$$\mathcal{A}^{c}\phi_{k}(a) = \phi'_{k}(a)[ra + z_{k} - c] + \lambda_{k}\left[\phi_{-k}(a) - \phi_{k}(a)\right]$$

Define a grid $\{a_1, a_2, \ldots, a_i, \ldots\}$ and let $v_k = (v_k(a_1), \ldots, v_k(a_i), \ldots)'$. Discretizing this equation requires deciding upon

· which fd approximation to use: forward/backward differencing

$$v_k'(a) \approx \frac{v_{k,i+1} - v_{k,i}}{a_{i+1} - a_i}, \quad v_k'(a) \approx \frac{v_{k,i} - v_{k,i-1}}{a_i - a_{i-1}},$$

Let A^c be the discrete form of the differential operator \mathcal{A}^c , so that

$$\left(\mathsf{A}^\mathsf{c}\mathsf{v}\right)_{k,i} = \alpha_{k,i}(\mathsf{c})\mathsf{v}_{k,i-1} + \beta_{k,i}(\mathsf{c})\mathsf{v}_{k,i+1} - \left(\alpha_{k,i}(\mathsf{c}) + \beta_{k,i}(\mathsf{c}) + \lambda_k\right)\mathsf{v}_{k,i} + \lambda_k\mathsf{v}_{-k,i}$$

and the discretization

$$\rho v_{k,i} - \sup_{c \in \Gamma_{k,i}} \left\{ u(c) + (A^c v)_{k,i} \right\} = 0$$
 (10)

where discretization can use forward, backward or central discretization. If

$$\alpha_{k,j} \ge 0, \ \beta_{k,j} \ge 0$$

we say that (10) is *positive coefficient discretization*. We will search for a discretization that satisfies this condition — more on the reason later.

In order to ensure a *positive coefficient discretization* our choice of central/forward/backward differencing will depend, in general, on the control c. A useful rule for this problem is to use the so-called *upwind scheme*.

IDEA: Use forward difference whenever drift is positive, and use backward whenever it is negative.

Suppose that we have the value of consumption $c_{k,i}$ at a particular node.

Let $s_{k,i} := ra_i + z_k - c_{k,i}$. In this case, the derivatives are approximated

$$\dots \frac{v_{k,i+1} - v_{k,i}}{a_{i+1} - a_i} \underbrace{\max \left\{ s_{k,i}, 0 \right\}}_{s_{k,i}^+} + \underbrace{\frac{v_{k,i} - v_{k,i-1}}{a_i - a_{i-1}}}_{s_{k-1}^-} \underbrace{\min \left\{ s_{k,i}, 0 \right\}}_{s_{k,i}^-} + \dots$$

which in terms of our α, β

$$\alpha_{k,i}^{up} = -\frac{s_{k,i}^{-}}{a_i - a_{i-1}} \ge 0, \quad \beta_{k,i}^{up} = \frac{s_{k,i}^{+}}{a_{i+1} - a_i} \ge 0$$

Discretized HJB equation is

$$\rho v_{k,i} = u(c_{k,i}) + \frac{v_{k,i+1} - v_{k,i}}{a_{i+1} - a_i} \left[s_{k,i}(c) \right]^+ + \frac{v_{k,i} - v_{k,i-1}}{a_i - a_{i-1}} \left[s_{k,i}(c) \right]^- + \lambda_k \left[v_{-k,i} - v_{k,i} \right]$$
(11)

which can be written in matrix notation

$$\rho V = U + A^{c}V$$

But we don't know $c_{k,i}$! Remember that c satisfy the foc everywhere on the grid

$$u'(c_{k,i}) = v'_k(a_i)$$

so c(v), A(v), which makes

$$\rho v = \mathsf{u}(v) + \mathsf{A}(v)v$$

HJB equation is highly nonlinear, so we need an iterative method to solve it.

FINITE DIFFERENCES

Implicit Timestepping

Start with a vector v^n , solve for foc and update v^{n+1} according to

$$\frac{v_{k,i}^{n+1} - v_{k,i}^{n}}{\Delta} + \rho v_{k,i}^{n+1} = u(c_{k,i}^{n}) + \frac{v_{k,i+1}^{n+1} - v_{k,i}^{n+1}}{a_{i+1} - a_{i}} \left[s_{k,i}^{F,n} \right]^{+} + \frac{v_{k,i}^{n+1} - v_{k,i-1}^{n+1}}{a_{i} - a_{i-1}} \left[s_{k,i}^{B,n} \right]^{-} + \lambda_{k} \left[v_{-k,i}^{n+1} - v_{k,i}^{n+1} \right]$$

$$(12)$$

- Compute the policy from the foc $\left(u'(c_{k,i}^n) = \partial_a v_{k,i}^n\right)$ for the backward AND forward derivative of the value function.
- Define $s_{k,i}^{B,n} := ra_i + z_k c_{k,i}^{B,n}, \ s_{k,i}^{F,n} := ra_i + z_k c_{k,i}^{F,n}$. Set

$$c_{k,i}^{n} = \mathbb{1}\left\{s_{k,i}^{B,n} \leq 0\right\} \times c_{k,i}^{B,n} + \mathbb{1}\left\{s_{k,i}^{F,n} \geq 0\right\} \times c_{k,i}^{F,n} + \mathbb{1}\left\{s_{k,i}^{F,n} \leq 0 \leq s_{k,i}^{B,n}\right\} \times (ra_{i} + z_{k})$$

• Collecting terms with the same subscripts on the right-hand side

$$\frac{V_{k,i}^{n+1} - V_{k,i}^{n}}{\Delta} + \rho V_{k,i}^{n+1} = u(c_{k,i}^{n}) + \alpha_{k,i} V_{k,i-1}^{n+1} + \beta_{k,i} V_{k,i+1}^{n+1} - \left(\alpha_{k,i} + \beta_{k,i} + \lambda_{k}\right) V_{k,i}^{n+1} + \lambda_{i} V_{-k,i}^{n+1}$$
(13)

where

$$\alpha_{k,i}^{up} = -\frac{\left[s_{k,i}^{B,n}\right]^{-}}{a_{i} - a_{i-1}} \ge 0, \quad \beta_{k,i}^{up} = \frac{\left[s_{k,i}^{F,n}\right]^{+}}{a_{i+1} - a_{i}} \ge 0$$

Equation (13) is just a system of linear equations on vⁿ⁺¹!!

FINITE DIFFERENCES

Implicit Timestepping

Equation (13) can be written in matrix notation as

$$\frac{1}{\Delta}(v^{n+1} - v^n) + \rho v^{n+1} = \mathbf{u}(c^n) + \mathbf{A}^n v^{n+1}$$

where the sparse matrix A looks like

$$\mathbf{A}^{n} = \begin{bmatrix} \gamma_{1,1} & \beta_{1,1} & 0 & 0 & \dots & \lambda_{1} & 0 & \dots & & 0 \\ \alpha_{1,2} & \gamma_{1,2} & \beta_{1,2} & 0 & \dots & 0 & \lambda_{1} & 0 & \dots & & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \alpha_{1,l} & \gamma_{1,l} & 0 & 0 & \dots & \dots & 0 & \lambda_{1} \\ \lambda_{2} & 0 & \dots & \dots & \gamma_{2,1} & \beta_{2,1} & 0 & \dots & \dots & 0 \\ 0 & \lambda_{2} & 0 & \dots & \dots & \alpha_{2,2} & \gamma_{2,2} & \beta_{2,2} & 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \dots & \lambda_{2} & 0 & 0 & \dots & \dots & \alpha_{2,l} & \gamma_{2,l} \end{bmatrix}_{l+2 \times l+2}$$

entries of row i

$$\begin{bmatrix} \alpha_{k,i} & \underbrace{-\left(\alpha_{k,i}+\beta_{k,i}+\lambda_k\right)}_{\text{outflow}} & \underbrace{\beta_{k,i}}_{\text{inflow }i+1} \end{bmatrix} \begin{bmatrix} v_{k,i-1} \\ v_{k,i} \\ v_{k,i+1} \end{bmatrix}$$

Iterate until $v^{n+1} \approx v^n$

17

BACKGROUD FINITE DIFFERENCE

WHY DOES IT WORK?

Our HJB

$$\rho v_k(a) = \max_{c} \left\{ u(c) + v'_k(a)[ra + z_k - c] \right\} + \lambda_k \left[v_{-k}(a) - v_k(a) \right]$$

in a PDE notation

$$0 = F(\mathbf{x}, \mathbf{v}, \mathsf{D}\mathbf{v}, \mathsf{D}^2\mathbf{v}) \tag{14}$$

where $\mathbf{x} := (a, z)$. Suppose we define a grid $\{a_0, a_1, \ldots, a_i, \ldots\}$. Let $v_{k,i} \approx v_k(a_i)$ be the approximate value of the solution. Then we can write a general **discretization** of the HJB equation at node (a_i, z_b)

$$0 = S_{k,i}\left(\tilde{\Delta}, v_{k,i}, \{v_{m,j}\}_{m \neq k, j \neq i}\right)$$
(15)

SUFFICIENT CONDITIONS CONVERGENCE

Condition (Monotonicity) . — The numerical scheme (15) is monotone if

$$S_{k,i}(\cdot, v_{k,i}, \{y_{m,j}\}) \le S_{k,i}(\cdot, v_{k,i}, \{z_{m,j}\})$$

for all $y \ge z$.

Condition (Stability). — The numerical scheme (15) is stable if for every $\tilde{\Delta}>0$ it has a solution which is uniformly bounded independently of $\tilde{\Delta}$.

Condition (Consistency). — The numerical scheme (15) is consistent if for every smooth function ϕ with bounded derivatives we have

$$S_{k,i}(\tilde{\Delta}, \phi(\mathbf{x}_{k,i}), \{\phi(\mathbf{x}_{m,j})\}) \to F(\mathbf{x}, \phi, D\phi, D^2\phi)$$

as $\tilde{\Delta} \to 0$ and $\mathbf{x}_{k,i} \to \mathbf{x}$.

SUFFICIENT CONDITIONS CONVERGENCE

Theorem Barles and Souganidis (1990). If the numerical scheme S (15) satisfies monotonicity, stability and consistency conditions, then its solution converges locally uniformly to the unique viscosity solution of (14).

- Convergence here is about $\tilde{\Delta} \to 0$
- For given Δ, we have a system of I non-linear equations that we must solve somehow (Implicit scheme). Theorem guarantees that the solution {v_{k,i}} of this system converges to the "viscosity solution" of the original PDE as Δ → 0
- "viscosity solution" of the HJB is the the value function
- A positive coefficient discretization is also Monotone. To see it check that

$$S_{k,i}\left(\tilde{\Delta},v_{k,i},v_{k,i+1},v_{k,i-1},v_{k,i},v_{-k,i}\right)$$

is a nonincreasing function of the neighbor nodes $\{v_{m,i}\}$. Check a example!

COMPUTING THE DISTRIBUTION

DISTRIBUTIONS

- We now know how to solve the Household consumption/savings problem
- But interesting questions require dealing with distributions
- Denote by $g_i(a,t)$ i=1,2 the joint density of income z_i and we ath a.
- The evolution of the density given a fixed initial distribution $g_i(a,0)$ is described by the Kolmogorov forward equation
 - · time dependent

$$\frac{\partial}{\partial t}g(a,t) = -\frac{\partial}{\partial a}\left[s_k(a,t)g_k(a,t)\right] - \lambda_k g_k(a,t) + \lambda_{-k}g_{-k}(a,t) \tag{16}$$

stationary

$$0 = -\frac{\mathrm{d}}{\mathrm{d}a} \left[s_k(a) g_k(a) \right] - \lambda_k g_k(a) + \lambda_{-k} g_{-k}(a) \tag{17}$$

Consider the stationary KFE

$$0 = -\frac{\mathrm{d}}{\mathrm{d}a} \left[s(a, z_k) g(a, z_k) \right] - \lambda_k g(a, z_k) + \lambda_{-k} g(a, z_{-k})$$

with the following discretization

$$0 = -\frac{\left(s_{k,i}^{F}\right)^{+}g_{k,i} - \left(s_{k,i-1}^{F}\right)^{+}g_{k,i-1}}{\Delta a} - \frac{\left(s_{k,i+1}^{B}\right)^{-}g_{k,i+1} - \left(s_{k,i}^{B}\right)^{-}g_{k,i}}{\Delta a} - \lambda_{k}g_{k,i} + \lambda_{-k}g_{-k,i}$$
(18)

Collecting terms with the same subscripts on the right-hand side

$$0 = \underbrace{\frac{\left(s_{k,i-1}^F\right)^+}{\Delta a}}_{\beta_{k,i-1}} g_{k,i-1} + \underbrace{\left(\frac{\left(s_{k,i}^B\right)^-}{\Delta a} - \frac{\left(s_{k,i}^F\right)^+}{\Delta a} - \lambda_k\right)}_{\gamma_{k,i}} g_{k,i} + \underbrace{\left(-\frac{\left(s_{k,i+1}^B\right)^-}{\Delta a}\right)}_{\alpha_{k,i+1}} g_{k,i+1} + \lambda_{-k} g_{-k,i}$$

which in matrix notation reads $\mathbf{A}^T g = \mathbf{0}$. Numerically, this is very efficient bc we have already computed \mathbf{A} .

OBSERVATION: look HACT for non-equidistant grids

This makes sense: the operation is exactly the same as that used for finding the stationary distribution of a discrete Poisson process (continuous-time Markov chain). The matrix A captures the evolution of the stochastic process over a very short interval — it is our discretized *infinitesimal generator* of our state — and to find the stationary distribution, one solves the eigenvalue problem $\mathbf{A}^Tg=\mathbf{0}$.

STATIONARY EQUILIBRIUM & TRANSITION DYNAMICS

STATIONARY EQUILIBRIUM

Definition. A stationary recursive competitive equilibrium is

such that ...

$$\rho v_k(a) = \max_c \left\{ u(c) + v_k'(a) \big[ra + z_k - c \big] \right\} + \lambda_k \Big[v_{-k}(a) - v_k(a) \Big] \qquad \qquad \left[\text{HJB} \right]$$

$$0 = \frac{\mathrm{d}}{\mathrm{d}a} \left[s_k(a) g_k(a) \right] - \lambda_k g_k(a) + \lambda_\ell g_\ell(a)$$

$$1 = \int_{\underline{a}}^{\infty} \left(g_1(a) + g_2(a) \right) da$$
[KFE]

$$0 = \int_{a}^{\infty} a \Big(g_1(a) + g_2(a) \Big) da$$
 [Equil]

STATIONARY EQUILIBRIUM

STATIONARY EQUILIBRIUM

TRANSITION DYNAMICS

Hypothetical thought experiments of the following form:

- Suppose the economy is in a stationary equilibrium, with a given government policy and all other exogenous elements that define preferences, endowments and technology fixed
- Unexpectedly, either government policy or some exogenous elements of the economy (such as the labor productivity process) change
 - This change was completely unexpected by all agents of the economy (a zero probability event), so that no anticipation actions were taken by any agent.
- We want to study the transition path induced by the exogenous change, from the old stationary equilibrium ∞¹ to a new stationary equilibrium ∞² (which may coincide with the old stationary equilibrium in case the exogenous change is of transitory nature, or may differ from it in case the exogenous change is permanent)

TRANSITION DYNAMICS

The time-dependent analogue of the stationary system is

$$\rho v_k(a,t) = \max_c \left\{ u(c) + \partial_a v_k(a,t) \big[r(t)a + z_k - c \big] \right\} \\ + \lambda_k \Big[v_{-k}(a) - v_k(a) \Big] \\ + \frac{\partial_t v_k(a,t)}{\partial_t v_k(a,t)}$$
 [HJB]

$$\begin{split} & \frac{\partial_t g_k(a,t)}{\partial_t} = \partial_a \left[s_k(a,t) g_k(a,t) \right] - \lambda_k g_k(a,t) + \lambda_{-k} g_{-k}(a,t) \\ & 1 = \int_{\underline{a}}^{\infty} \left(g_1(a,t) + g_2(a,t) \right) da \end{split}$$
 [KFE]

$$0 = \int_{\underline{a}}^{\infty} a \Big(g_1(a,t) + g_2(a,t) \Big) da$$
 [Equil]

where the density satisfies an initial condition and runs forwards

$$g_k(a,0) = g_k^{\infty^1}(a)$$

while the value function satisfies a terminal condition and runs backwards

$$v_k(a,T) = v_k^{\infty^2}(a)$$

We solve this system using the following algorithm. Start by computing the two stationary equilibria. Guess a function $r^0(t)$ and then for $m=1,2,3,\ldots$ follow

- Given $r^m(t)$, solve the HJB backwards in time to find $\{v_k^m(a,t), s_k^m(a,t)\}$
- Given $s_k^m(a,t)$ solve the KFE forward in time given initial condition to calculate the time path for $g_k(a,t)$
- Check market clearing for the whole path

$$S^{m}(t) = \int_{a}^{\infty} a \Big(g_1^{m}(a,t) + g_2^{m}(a,t) \Big) da$$

• Update $r^{m+1}(t) = r^m(t) - \xi \frac{dS^m(t)}{dt}$ (not so trivial – check code)

TRANSITION DYNAMICS

Solving time-dependent HJB & KFE

HJB:

Approximate the value function at I discrete points in the wealth dimension and N discrete points in the time dimension, and use the shorthand notation $V_{n,i}^l = v_k(a_i,t_n)$. The discrete approximation to the time-dependent HJB is

$$\rho v_{k,i}^{n} = u(c_{k,i}^{n+1}) + \left(v_{k,i}^{n}\right)' \left[r^{n} a + z_{k} - c_{k,i}^{n+1}\right] + \lambda_{k} \left[v_{-k,i}^{n} - v_{k,i}^{n}\right] + \frac{v_{k,i}^{n+1} - v_{k,i}^{n}}{\Delta t}$$
(19)

which is exactly as we have before!!! Why?

KFE:

Consider the time dependent KFE

$$\frac{\partial}{\partial t}g(a,t) = -\frac{\partial}{\partial a}\left[s_k(a,t)g_k(a,t)\right] - \lambda_k g_k(a,t) + \lambda_{-k}g_{-k}(a,t)$$

Given an initial condition, the KFE can be easily solve through a implicit method

$$\frac{g^{n+1} - g^n}{\Delta} = \left(\mathbf{A}^{n(+1)}\right)^{\mathsf{T}} g^{n+1} \tag{20}$$

EXPERIMENT

Suppose an increase in the unemployment risk λ_2 . What would you expect has to happen to the interest rate?

Distributional effect of more unemployed in equilibrium makes economy converge to an higher interest rate!

TRANSITION

Real rate path

TRANSITION

TRANSITION DYNAMICS

Note:

CONCLUSION

This is just the tip of the iceberg

- idiosyncratic income may follow a diffusion
- multiple state HANK has liquid/illiquid assets
- Moll has some examples with impulse control problem now menu cost
- But there is way to introduce extensive margin decisions invest/not invest, search/not search - if the cost enters on the flow only (instantaneous control problems?)
- Aggregate shocks PHACT (Reiter + HACT)...look at their NBER paper

REFERENCES

- ACHDOU, Y., J. HAN, J.-M. LASRY, P.-L. LIONS, AND B. MOLL (2016): "Heterogeneous Agent Models in Continuous Time," .
- BARLES, G., AND P. SOUGANIDIS (1990): Convergence of Approximation Schemes for Fully Nonlinear Second Order Equations.
- BAYER, C., AND K. WÄLDE (2015): "The Dynamics of Distributions in Continuous-Time Stochastic Models," . CALDENTEY, R. (????): Stochastic Control.
- FLEMING, W., AND H. SONER (2006): Controlled Markov Processes and Viscosity Solutions, Stochastic Modelling and Applied Probability. Springer New York.
- FORSYTH, P. A., AND K. R. VETZAL (2012): Numerical Methods for Nonlinear PDEs in Financepp. 503–528. Springer Berlin Heidelberg, Berlin, Heidelberg.
- KAPLAN, G., B. MOLL, AND G. L. VIOLANTE (2016): "Monetary Policy According to HANK," Working Papers 1602, Council on Economic Policies.
- Nuño, G., AND B. MOLL (2017): "Social Optima in Economies with Heterogeneous Agents," Discussion paper.
- ØKSENDAL, B. (2003): Stochastic Differential Equations: An Introduction with Applications, Hochschultext / Universitext. Springer.
- ØKSENDAL, B., AND A. SULEM (2007): Applied Stochastic Control of Jump Diffusions. Springer Berlin Heidelberg.

- PHAM, H. (2009): Continuous-time Stochastic Control and Optimization with Financial Applications. Springer Publishing Company, Incorporated, 1st edn.
- Ross, K. (????): Stochastic Control in Continuous Time.
- SENNEWALD, K. (2007): "Controlled stochastic differential equations under Poisson uncertainty and with unbounded utility," Journal of Economic Dynamics and Control, 31(4), 1106 1131.
- STOKEY, N. L. (2009): The Economics of Inaction: Stochastic Control Models with Fixed Costs. Princeton University Press.
- THOMAS, C., AND G. Nuño (2016): "Monetary Policy and Sovereign Debt Vulnerability," 2016 Meeting Papers 329, Society for Economic Dynamics.
- WALDE, K. (2008): Applied Intertemporal Optimization, no. econ1 in Books. Business School Economics, University of Glasgow.