Adaptive Overlay Topology for Mesh-Based P2P-TV Systems

Richard Lobb (Univ. Canterbury, NZ)

Ana Paula Couto da Silva (Univ. Juiz de Fora, BR)

Emilio Leonardi

Marco Mellia

Michela Meo

Politecnico di Torino, Italy

Mesh-Based P2P-TV Systems

- Distribute TV channels over the Internet in a P2P fashion
- Video is generated by a source and received by users with short delay
- The video information is organized in small chunks that are individually and independently distributed by the participating peers

Chunk distribution process

- Each peer maintains a (small) transmission window with chunks to be redistributed to other peers
- A scheduling process decides which chunk to distribute to which neighboring peer
- The most critical phase of the chunk distribution is the initial one (when it is rare)

Chunk distribution process

After a delay
ChunkSize/Bw1
1 more peer can contribute

Chunk distribution process

Michela Meo - NOSSDAV 2009

After a delay
ChunkSize/Bw1
1 more peer can contribute

P2 has 3 times the Bw of P1

After the same delay
ChunkSize/Bw1

more peers can contribute

NAPA WINE

Upload bandwidth matters...

- Peers that can contribute more to the chunk distribution (high bw peers) should be
 - > favored during the scheduling process

Upload bandwidth matters...

- Peers that can contribute more to the chunk distribution (high bw peers) should be
 - -> favored during the scheduling process

High bw peers should be preferentially served first

Schadulina is not anauch

Pee dist

 $\rightarrow H$

 $\rightarrow B$

 $\rightarrow B$

+1

High bw, small out-degree:

Too few neighbors to distribute the chunk to, the bw is not well exploited

Scheduling is not enough

- Peers that can contribute more to the chunk distribution (high bw peers) should also
 - > Have many neighbors (they can use their bw)
 - → Be close to the sour
 - → Be well connected to the distribution beto

Overlay construction and maintenance are crucial

Our proposal key points

- Overlay maintenance algorithm that
 - → Automatically adapts the out-degree (neighborhood size) to the actual capacity of the peer to contribute to chunk distribution
 - → Automatically makes high bw peers highly connected and close to the source
 - → Does not require the explicit estimation of peer bw

Set a time window

Every time window...
...compute the
fraction of used links

Use this value as an indication of peer capacity to contribute to chunk distribution

- Large? Increase out-degree (the peer can contribute more)
- Small? Decrease out-degree (the neighborhood is too large)

Set a time window.

Every time window...
...compute the
fraction of used links

Control the no. of unused links

$$\alpha_L U < \overline{U} < \alpha_H U$$

no. of used links

no. of unused links

Implicit estimation of bandwidth

- Fraction of used links is employed to adapt the out-degree to the capacity of the peer to contribute
- The peer out-degree is then used as an implicit estimation of its bandwidth
 - → For scheduling
 - → When choosing/dropping peers

Growing the neighborhood

 New peers are added choosing among the set of neighbors' neighbors

 Within this set, peers are chosen with a probability proportional to the desirability

function

→ The desirability for with out-degree

→ Out-degree is thus the peer upload bo Need to exchange the list of neighbors and their out-degree

Growing the neighborhood

- At peer p, neighborhood size L(p) increases by
 - → kL(p): k is the growth factor
- Initially, L(p) is small
 - → Low bw peers are not congested
- Initially, k=k_i
 k linearly decreases to k_f < k_i
 - > High bw peers quickly grow their neighborhood

Shrinking the neighborhood

 Cull from the neighborhood a number of links within the set of unused links, so that

• Set
$$\overline{U} = \frac{\alpha_L + \alpha_H}{2}U$$

no. of desired unused links

$$\alpha_L U < \overline{U} < \alpha_H U$$

no. of unused links

no. of used links

Chunk scheduler

- Choose the latest useful chunk (latest chunk needed by some neighbor)
- Send chunk to neighbor q with probability proportional to the desirability function

$$p(q) = \frac{D(q)}{\sum_{r \in \mathcal{N}(c,p)} D(r)}$$

$$\text{set of neighbors}$$

$$\text{needing the chunk}$$

$$D(q) = \sqrt{L(q)}$$

$$\text{desirability}$$

$$\text{function}$$

Michela Meo – NOSSDAV 2009

NAPA **₩INE**

Scenario & evaluation

Discrete event simulator

Download P2PTVSim from www.napa-wine.eu

- 10,000 chunks (1000s at 10 chunk/s rate)
- N=10,000 peers, partitioned in 4 classes
 - → Class 1 (10%): Bw=5Mbps
 - → Class 2 (40%): Bw=1Mbps
 - → Class 3 (40%): Bw=0.5Mbps
 - → Class 4 (10%): Bw=OMbps

E[Bw]=1.1Mbps(video rate=1Mbps)

Other parameters

- Chunk size 0.1Mb, 10 chunks/s
- Playout delay=5s (50 chunks)
- Start with L(p)=10
- Time window size: 50 chunks
- $k_i = 0.4$, $k_f = 0.1$, after 750 chunks
- $a_L = 0.1$, $a_H = 0.3$

THE ADAPTIVE OVERLAY

Neighborhood

Neighborhood

Per class: percentage of links to other classes

From\To	Class 1	Class 2	Class 3	Class 4	Degree
Source	33.6	44.0	21.6	0.9	116
Class 1	25.8	42.9	29.2	2.1	120.4
Class 2	19.6	35.7	36.7	8.0	14.5
Class 3	19.4	31.7	37.4	11.4	6.9

Peers prefer to be connected to high bw peers (10% of total only)

PERFORMANCE

Delay

Losses

Only during the initial transient

Improvement

High bw peers

- more neigh.
- highly connected

Tot no. links smaller of a factor 4

Churning

• 50% of the peers disconnect after a random time in [10,100]s

Churning

Conclusions

- Effective in adapting the overlay to peer heterogeneity
 - → Neighborhood size and topology
- Robust to varying conditions
 - → Churning
 - > Available bw variations
- Simple and does not need bw estimation
- Requires limited exchange of information
 - → List of neighbors and their out-degree

Impact of load

Sensitivity to parameters

 α_{H}

		0.2	0.3	0.4	0.5	0.6	0.7
α_{L}	0.1	0.438	0.453	0.478	0.478	0.463	0.478
	0.2	K	0.408	0.438	0.468	0.498	0.473
	0.3		/	0.398	0.443	0.453	0.468
	0.4			/	0.393	0.433	0.468
	0.5					0.393	0.423
	0.6						0.398

Delay decreases with large no. unused links

