Connaissances professionnelles écrites Série zéro

Position 7

Technique des systèmes électriques, incl. bases technologiques

Série zéro PQ selon orfo 2015 Electricienne de montage CFC Electricien de montage CFC

Nom:	Pr	rénom:	N° de candid	dat: Date) :
60 Minute	es 19	9 Exercices	10 Pages	40	Points

Moyens auxiliaires autorisés:

- Règle, équerre, chablon
- Recueil de formules sans exemple de calcul
- Calculatrice de poche, indépendante du réseau (Tablettes, Smartphones, etc. ne sont pas autorisés)

Cotation – Les critères suivants permettent l'obtention de la totalité des points:

- Les formules et les calculs doivent figurer dans la solution.
- Les résultats sont donnés avec leur unité.
- Le cheminement vers la solution doit être clair.
- Les réponses et leur unité doivent être soulignés deux fois.
- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elle.
- Les réponses sont évaluées dans l'ordre.
- Les réponses données en plus ne sont pas évaluées.

• S'il manque de la place, la solution peut être écrite au dos de la feuille et vous devez le mentionner sur l'exercice.

Nous vous souhaitons plein succès! ©

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des 09.09.2008)

Points

1

1,5-0,0

Note

Barème					tâd	tâches d'examens du 09.09			
6,0	5 5,5	5	4,5	4	3,5	3	2,5	2	1,5
40,0-38,0	37,5-34,0	33,5-30,0	29,5-26,0	25,5-22,0	21,5-18,0	17,5-14,0	13,5-10,0	9,5-6,0	5,5-2,0
Experte	es / Expe	erts							
Page	2	3	4	5 6	5 7	8	9	10	
Points:									

Signature de

experte/expert 2

Délai d'attente:

Signature de

experte/expert 1

Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le 1er september 2017.

Créé par:

Groupe de travail PQ de l'USIE pour la profession d'électricienne de montage CFC / électricien de montage CFC

Editeur:

CSFO, département procédures de qualification, Berne

Production électrique Quel type de tension est généré par:	1
a) une dynamo?	0,5
b) une installation photovoltaïque?	0,5
 Energie, courant et tension Une plaque chauffante est raccordée sous 230 V. Elle consomme 150 Wh durant 	2
6 minutes. Calculer:	
a) la puissance absorbée.	1
b) le courant.	1
 3. Système triphasé Un four est connecté au réseau triphasé 3 x 400 V. Il consomme en charge un courant de 6 A sur chacun des conducteurs polaires. Calculer la puissance absorbée. 	1
	Points par page:

			Points
4. Mécanique			2
Un paquet est posé sur une 3 minutes et 26 secondes.	e bande transporteuse. Il parce	ourt une distance de 68	mètres en
Calculer la vitesse moyenne	e en ^m		
	S		
5. Performance énergétic	i que our chacune des formes d'éne	araja sujvantas:	2
Cocher la bonne reponse p	our chaculte des formes d'enc	sigle sulvantes.	_
Forme d'énergie	Energie renouvelable	Energie fossile	
Vent			
Pétrole		\boxtimes	
Soleil			0,5
Gaz naturel			0,5
Charbon			0,5
Biomasse			0,5
6. Puissance et rendeme			2
Calculer:	nent de 0,94 fournit une puiss	ance de 30 kvv.	
	ar co motour		1
a) la puissance absorbée p	ai ce moteur.		1
b) la puissance perdue.			1
o, ia paicoanico perado.			
			Points

par page:

7. Densité de courant

2

Dans une barre d'alimentation rectangulaire de dimension 5 mm par 20 mm, la densité de courant maximum est de 4 A / mm².

Quel est le courant maximum que peut transporter cette barre?

8. Les organes de protection

3

a) Quels dispositifs de protection contre les surintensités sont capables de couper un court-circuit de façon sûre.

Cochez les bonnes réponses.

Diamonitif do mustostico		Est capable de coupe	er des courts circuits	
	Dispositif de protection	Juste	Faux	
1)				0,
2)				0,
3)	16 A 500 V D 4 3 (E KETA 6 gL/gG			O,:
4)	S 203 C 16 -400 3 2 4 6			0,

b) Lequel de ces quatre dispositifs de protection a le plus grand pouvoir de coupure? Cocher la bonne réponse.

Dispositif de protection					
1)	2)	3)	4)		

Points par

page:

1

2

9. Triangle de puissance

Il y a deux erreurs dans ce triangle de puissances. Chercher et justifier ces deux erreurs. (Le triangle n'est pas à l'échelle)

Erreur 1:	 0,5
Justification:	0,5

 Erreur 2:
 0,5

 Justification:
 0,5

10. Distribution

Des maisons familiales sont alimentées à partir d'un transformateur électrique. Quels sont les niveaux de tension en a) et b).

a)

b)

1

2

Points par page:

11. Procédé chimique			2	
Quelles mesures de protection empêchent la corrosion	n électrochimic	que?		
Mesure 1:			1	
Mesure 2:			1	
12. Signaux sinusoïdaux Quelles sont les spécifications appliquées à notre rése Cochez les réponses appropriées pour:	eau basse tens	sion?	2	
Affirmation	Juste	Faux		
Tension alternative avec une fréquence f = 60 Hz			0,5	
Tension sinusoïdale ayant une valeur efficace de U = 230 V			0,5	
Tension alternative avec une crête à 230 V			0,5	
Tension d'onde carrée avec une fréquence f = 50 Hz			0,5	
13. Impédances Dans une bobine de relais, deux mesures ont été effectuées. Mesure 1: $U_{DC} = 24 \text{ V}$; $I_{DC} = 0.3 \text{ A}$ Mesure 2: $U_{AC} = 24 \text{ V}$; $I_{AC} = 20 \text{ mA}$ Calculer:				
a) la résistance effective (résistance ohmique) de cette bobine de relais.				
b) l'impédance (la résistance en courant alternatif) de cette bobine de relais.				
			Points par page:	

14.	Résistance	2	
Un ra Sa ra Calc	adiateur est constitué d'un fil résistif de 220 m de long ayant un diamètre de 0,5 mm. ésistance est de 550 Ω . uler:		
a) la	section du fil.	1	
b) la	résistivité du métal composant ce fil.	1	
Un c	Loi d'Ohm ircuit série est constitué de deux résistances. Ésistance totale est de 20 Ω , et la résistance R1 = 12,3 Ω . deux résistances sont parcourues par une courant de 6,5 A.	4	
a) D	essiner le circuit.	1	
b) C	alculer la résistance R ₂ .	1	
c) C	alculer la tension aux bornes de R ₁ .	1	
d) Q	ue vaut la tension totale?	1	Points par page:

2

1

2

1

16. Sources lumineuses

Quels types de lampe sont présentés ici?

See to the second secon

b)

a)

a)

b) 1

17. Champs magnétique

Dessiner quelques lignes de champ ainsi que leur direction.

a)

b)

1

Points par page:

18. Machines électriques	3
Les moteurs électriques suivants sont disponibles:	
Moteur triphasé à cage d'écureuil, moteur universel, moteur à pôle bagués	
a) Quel type de moteur est adapté à une utilisation dans une perceuse à main?	1
b) Donner une caractéristique importante du type de moteur utilisé pour une perceuse à main.	0,5
c) Quel type de moteur est adapté pour entraîner une pompe de 5,5 kW?	1
d) Nommez une caractéristique importante du type de moteur utilisé pour une pompe de 5,5 kW.	0,5
	Point: par

page:

2

1

19. Procédés thermiques

Il existe trois types de transfert de chaleur.

- a) la conduction thermique
- b) le rayonnement thermique
- c) la convection (flux de chaleur)

Appareil 1:

Cochez le principal type de transfert de chaleur utilisé par l'appareil 1.

a) Conduction	b) Rayonnement	c) Convection

Appareil 2:

Cochez le principal type de transfert de chaleur utilisé par l'appareil 2.

a) Conduction	b) Rayonnement	c) Convection

1

Points par page: