Examen Final de Sistemes Intel·ligents: Bloc 2 ETSINF, Universitat Politècnica de València, 26 de gener de 2015

Nom: Cognoms:

$\square 3B \square 3C \square 3D \square 3E$ \Box 3F \Box 3A $\square \operatorname{RE}1$

Qüestions (2 punts; temps estimat: 30 minuts)

Marca cada requadre amb una única opció d'entre les donades.

1 B La figura a la dreta mostra 8 punts bidimensionals. La menor "Suma d'Errors Quadràtics", J, amb la qual poden agrupar-se aquests punts en dos clústers és:

A)
$$0 \le J \le 7$$

B)
$$7 < J \le 14$$
 $J = 10$

C)
$$14 < J \le 21$$

D)
$$21 < J$$

 $2 \mid D \mid$ Siguen X, Y i Z tres variables aleatòries. Es diu que X i Y són condicionalment independents donada Z si i solament si $P(X = x, Y = y \mid Z = z) = P(X = x \mid Z = z) P(Y = y \mid Z = z)$ per a tot x, y i z.

Si es compleix aquesta igualtat, podem calcular $P(Z=z\mid X=x,Y=y)$ com segueix:

A)
$$P(Z = z \mid X = x, Y = y) = \frac{P(X = x, Y = y, Z = z)}{P(X = x, Y = y)}$$

B)
$$P(Z = z \mid X = x, Y = y) = \frac{P(Z = z) P(X = x, Y = y \mid Z = z)}{P(X = x, Y = y)}$$

B)
$$P(Z = z \mid X = x, Y = y) = \frac{P(Z = z) P(X = x, Y = y \mid Z = z)}{P(X = x, Y = y)}$$

C) $P(Z = z \mid X = x, Y = y) = \frac{P(Z = z) P(X = x \mid Z = z) P(Y = y \mid Z = z)}{P(X = x, Y = y)}$

- 3 C Es vol construir un sistema de reconeixement de formes per a dígits manuscrits representats mitjançant cadenes de contorn de 4 direccions; açò és, mitjançant cadenes de símbols en l'alfabet $\Sigma = \{1, 2, 3, 4\}$. Donada una seqüència de cadenes d'entrenament amb les seues corresponents etiquetes de classe, construirem el sistema com segueix:
 - A) Emprarem l'algorisme Perceptró i obtindrem un classificador lineal.
 - B) Aprendrem un Arbre de Decisió i Classificació mitjançant l'algorisme ADC.
 - C) Dissenyarem un classificador basat en models de Markov aplicant l'algorisme de re-estimació per Viterbi.
 - D) Les tres opcions anteriors són vàlides.
- En un problema de classificació en tres classes $(C = \{a, b, c\})$, en el qual es disposa de 100 mostres de la classe a, 100 mostres de la classe b i 100 mostres de la classe c, siga y un fet o dada. La decisió òptima de classificació per a y és la classe a amb una probabilitat a posteriori de 0.50. Quina de les següents afirmacions és correcta?

A)
$$P(C = a \mid Y = y) > P(C = b \mid Y = y) + P(C = c \mid Y = y)$$

B) $P(Y = y \mid C = a) = \frac{0.5 \ P(C = a)}{P(Y = y)}$
C) $P(Y = y \mid C = a) = P(Y = y \mid C = b) + P(Y = y \mid C = c)$

B)
$$P(Y = y \mid C = a) = \frac{0.5 \ P(C = a)}{P(Y = a)}$$

C)
$$P(Y = y \mid C = a) = P(Y = y \mid C = b) + P(Y = y \mid C = c)$$

- D) Cap de les anteriors.
- Donat un classificador lineal de 2 classes \circ i \bullet definit pel seu conjunt de pesos $\mathbf{a}_{\circ} = (0, -1, 1)^t$ i $\mathbf{a}_{\bullet} = (0, 1, -1)^t$, Què conjunt de pesos dels següents no defineix un classificador equivalent al donat?

A)
$$\mathbf{a}_0 = (1, -1, 1)^t$$
 i $\mathbf{a}_{\bullet} = (1, 1, -1)^t$ $f(z) = az + b$ amb $a = 1$ i $b = 1$

B)
$$\mathbf{a}_0 = (1, -1, 1)$$
 i $\mathbf{a}_0 = (1, 1, -1)$ $f(z) = az + b$ and $a = 1$ i $b = 1$ $f(z) = az + b$ and $a = 2$ i $b = -1$

B)
$$\mathbf{a}_{\circ} = (-1, -2, 2)^t$$
 i $\mathbf{a}_{\bullet} = (-1, 2, -2)^t$ $f(z) = az + b$ amb $a = 2$ i $b = -1$
C) $\mathbf{a}_{\circ} = (0, 2, -2)^t$ i $\mathbf{a}_{\bullet} = (0, -2, 2)^t$ $f(z) = az + b$ amb $a = -2$ i $b = 0$

- D) $\mathbf{a}_{\circ} = (0, -2, 2)^t$ i $\mathbf{a}_{\bullet} = (0, 2, -2)^t$ f(z) = az + b amb a = 2 i b = 0
- 6 A En la figura de la dreta es representen dues mostres d'aprenentatge bidimensionals de 2 classes: (x_1, \circ) i (x_2, \bullet) . Donats el conjunt de pesos $\mathbf{a}_\circ = (0, 1, -2)^t$ i $\mathbf{a}_\bullet = (0, 0, 1)^t$, si apliquem una iteració de l'algorisme Perceptró amb factor d'aprenentatge $\alpha=1.0$ i marge b=0.5 a partir del conjunt de pesos i mostres d'aprenentatge donats, quants errors de classificació es produeixen sobre les mostres d'aprenentatge amb el nou conjunt de pesos?

- $\mathbf{a}_{\circ} = (1, 1, -2)^t \ \mathbf{i} \ \mathbf{a}_{\bullet} = (-1, 0, 1)^t$ A) 0
- B) 1
- C) 2
- D) 3

Examen Final de Sistemas Intel·ligents: Bloc 2 ETSINF, Universitat Politècnica de València, 26 de gener de 2015

Cognoms:	Nom:	
----------	------	--

Grup: $\Box 3A \Box 3B \Box 3C \Box 3D \Box 3E \Box 3F \Box RE1 \Box RE2$

Problemes (3 punts; temps estimat: 60 minuts)

1. (1.5 punts)

Per a aprendre un arbre de classificació es disposa d'una mostra d'entrenament formada per 6 vectors bidimensionals pertanyents a 3 classes, A, B i C. Aquests vectors es mostren en la figura a la dreta $(A = \circ, B = \bullet \text{ i } C = \times)$. En les primeres invocacions recursives de l'algorisme ADC (amb $\epsilon = 0.5$ bits) s'ha produït el sub-arbre amb tres nodes que es mostra en la figura de baix. Aquest sub-arbre correspon a una primera divisió òptima de la mostra d'entrenament en dos subconjunts mitjançant l'"split" (2,4.0) (és a dir, $y_2 \leq 4$). En aquest procés inicial s'han obtingut els paràmetres que es mostren en la taula.

5 1 y	• ••••••••••••••••••••••••••••••••	····•		×		
4 +						
3 +						
2 +						
1 +			····	211		
0	+	\vdash	+	y_1		
0	1 2	2 3	4	5		
t_1						
$y_2 \leq 4$						
	t_2		$\sum t_3$	_		

Node	Split	$P(A \mid t_i)$	$P(B \mid t_i)$	$P(C \mid t_i)$	$P_{t_i}(L)$	$P_{t_i}(R)$	$\mathcal{I}(t_i)$	$\Delta \mathcal{I}(t_1)$
t_1	(2,4)	1/2	1/3	1/6	1/2	1/2	1.459	1.000
t_2	_	1	0	0	_	_	0	_
t_3		0	2/3	1/3				
t_4								
t_5								

(a) Expliqueu com s'obtenen els següents valors de la taula: $P(A \mid t_1)$, $P(B \mid t_1)$, $P(C \mid t_1)$, $P_{t_1}(R)$ i $\mathcal{I}(t_1)$.

El node arrel (t_1) representa als 6 les dades disponibles. D'ells hi ha 3 de la classe A, 2 de la classe B i 1 de la classe C. Per tant: $P(A \mid t_1) = 3/6 = 1/2$, $P(B \mid t_1) = 2/6 = 1/3$, $P(C \mid t_1) = 1/6$

L'"split" (2, 4.0) $(t_2 \le 4)$ divideix l'arbre arrel en dos subárbres: un arrelat en t_2 , que representa 3 dades tals que $y_2 \le 4$, i un altre en t_3 , que representa altres 3 dades tals que $y_2 > 4$. Així doncs: $P_{t_1}(R) = 3/6 = 1/2$

Finalment:
$$\mathcal{I}(t_1) = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{3}\log_2\frac{1}{3} - \frac{1}{6}\log_2\frac{1}{6} \approx 1.459 \text{ bits}$$

(b) Calculeu la impuresa del node t_3 .

$$\mathcal{I}(t_3) = 0 - \frac{2}{3}\log_2\frac{2}{3} - \frac{1}{3}\log_2\frac{1}{3} \approx 0.918 \text{ bits}$$

(c) Trobeu l'"split" òptim per al node t_3 , completeu l'execució de l'algorisme ADC i completeu les cel·les de taula que estan en blanc.

El node t_3 representa els vectors $((1,5)^t, B), ((3,5)^t, B), ((5,5)^t, C)$ per als quals solament hi ha dues particions possibles, corresponents als "splits": $y_1 \le 2$ i $y_1 \le 4$. Els decrements d'impuresa corresponents són:

$$\Delta \mathcal{I}(1,2,t_3) = \mathcal{I}(t_3) - \frac{1}{3}\mathcal{I}(t_4) - \frac{2}{3}\mathcal{I}(t_5) \approx 0.918 - 0 - \frac{2}{3} \cdot 1 = 0.251 \text{ bits}$$

$$\Delta \mathcal{I}(1,4,t_3) = \mathcal{I}(t_3) - \frac{2}{3}\mathcal{I}(t_4) - \frac{1}{3}\mathcal{I}(t_5) \approx 0.918 - 0 - 0 = 0.918 \text{ bits}$$

D'aquests, el major decrement és per a l'split (1,4) (o siga, $y_1 \leq 4$).

L'arbre resultant i els paràmetres corresponents es mostren baix en la figura i taula, respectivament.

Node	Split	$P(A \mid t_i)$	$P(B \mid t_i)$	$P(C \mid t_i)$	$P_{t_i}(L)$	$P_{t_i}(R)$	$\mathcal{I}(t_i)$	$\Delta \mathcal{I}(t_1)$
t_1	(2,4)	1/2	1/3	1/6	1/2	1/2	1.459	1.000
t_2	_	1	0	0	_	_	0	_
t_3	(1,4)	0	2/3	1/3	2/3	1/3	0.918	0.918
t_4	_	0	1	0	_	_	0	_
t_5	-	0	0	1	_	_	0	_

2. (1.5 punts) Siga M el model de Markov:

Calculeu la probabilitat exacta de que M genere la cadena bbac, $P_{M}(bbac)$, mitjançant l'algorisme Forward.

 $P_M(bbac) = 0.0013104$