Universidade de São Paulo Escola de Artes, Ciências e Humanidades

ACH2011 – Cálculo I – 1º sem. 2015 Professor: Dr. José Ricardo G. Mendonça

3º Lista de Exercícios — Limites e Derivadas — 13 abr. 2015

If you stop at general math, you're only going to make general math money.

Snoop Doggy Dogg (1971–)

Nos exercícios a seguir, considere que todas as funções são de \mathbb{R} em \mathbb{R} e possuem domínios apropriados.

I. Limites

1. Encontre a inclinação das seguintes curvas nos pontos indicados:

(a)
$$y = 2x^2 \text{ em } x = 1$$
;

(b)
$$y = x^2 + 1 \text{ em } x = -1$$
;

(c)
$$y = 2x - 7 \text{ em } x = 2$$
;

(d)
$$y = 1/x \text{ em } x = 2$$
;

(e)
$$y = x^3 \text{ em } x = \frac{1}{2}$$
.

2. Usando a definição da derivada como o limite de $h \to 0$ do quociente [f(x+h)-f(x)]/h (chamado de quociente de Newton), encontre a derivada das seguintes funções justificando em cada passo as propriedade dos limites usadas (limite do produto, limite da soma etc.) e dê a equação da reta tangente em x = 2:

(a)
$$f(x) = x^2 + 1$$
;

(b)
$$f(x) = 2x^2 + x$$
;

(c)
$$f(x) = \frac{2}{2x+1}$$
;

(d)
$$f(x) = \frac{1}{2}x^3 + 2x$$
;

(e)
$$f(x) = (x+2)(x-1)$$
;

$$(f) \ f(x) = \frac{x}{2x-1}.$$

- 3. Seja f(x) = -x se $x \le 0$ e f(x) = 2 se x > 0. Encontre f'(x) em x = -1 e as derivadas à esquerda e à direita de f(x) em x = 0, caso elas existam.
- 4. Seja f(x) = |x| + x. Existe f'(0)? Para que valores de x a derivada de f(x) existe e é única?

1

5. Determine se as seguintes funções possuem derivada em x = 0 e, se sim, determine f'(0):

(a)
$$f(x) = |x|x$$
; (b) $f(x) = x^2|x|$; (c) $f(x) = -|x|x^3$.

II. Potências

- 1. Escreva as expansões de $(x+h)^3$, $(x+h)^4$ e $(x+h)^5$ em termos de x e h e obtenha a derivada de $f(x) = x^3$, $f(x) = x^4$ e $f(x) = x^5$ diretamente a partir da definição de derivada ($\lim h \to 0$ do quociente de Newton).
- 2. Encontre a derivada das seguintes potências:

(a)
$$f(x) = x^{2/3}$$
; (b) $f(x) = x^{-3/2}$; (c) $f(x) = x^{5/11}$.

- 3. Dê a inclinação de cada uma das curvas a seguir nos pontos indicados e escreva a equação da reta tangente passando pelo ponto:
 - (a) $y = x^9$ no ponto x = 1;
 - (b) $y = x^{-3/4}$ no ponto x = 16;
 - (c) $y = \sqrt{x}$ no ponto x = 3;
 - (d) $y = x^{\sqrt{2}}$ no ponto x = 10.

III. Derivadas de somas, produtos e quocientes de funções

1. Encontre as derivadas das seguintes funções:

(a)
$$f(x) = 2x^{1/3}$$
;

(b)
$$f(x) = 25x^{-1} + 12\sqrt{x}$$
;

(c)
$$f(x) = (2x+3)(\frac{1}{x^2} + \frac{1}{x});$$

(d)
$$f(x) = \frac{2x+1}{x^2+5x+1}$$
;

(e)
$$f(x) = (x+1)(x^2+5x^{7/2});$$

(d)
$$f(x) = \frac{x^2 + 2x - 1}{(x+1)(x-1)}$$
.

2. Qual é a inclinação da curva $s = \frac{t^2}{t^2 + 1}$ no ponto t = 2 e qual é a inclinação da reta tangente à curva nesse ponto?

IV. Regra da cadeia

Em cada um dos casos a seguir, procure identificar as funções f(u) e g(x) antes de proceder à derivação da função composta $h(x) = (f \circ g)(x) = f(g(x))$ pela regra da cadeia.

1. Encontre a derivada de cada uma das funções h(x) dadas a seguir:

- (a) $h(x) = (x+1)^8$;
- (b) $h(x) = \sqrt{2x^2 5}$;
- (c) Sabendo que a derivada da função trigonométrica $\cos x$ vale $(\cos x)' = -\sin x$, calcule a derivada de $h(x) = \cos^3 x = (\cos x)^3$;
- (d) Sabendo que a derivada da função trigonométrica $\sin x$ vale $(\sin x)' = \cos x$, calcule a derivada de $h(x) = \sin 3x$. Verifique essa derivada a partir da identidade $\sin 3x = 3\sin x 4\sin^3 x$ (você consegue derivar esta identidade?);
- (e) $h(x) = \sin(2x^2 + 1)$;
- $(f) h(x) = \tan 2x = \frac{\sin 2x}{\cos 2x};$
- (g) Sabendo que a derivada do logaritmo natural $\ln x$ vale $(\ln x)' = \frac{1}{x}$, calcule a derivada de $h(x) = \ln(x^2 + 1)$;
- $(h) \ h(x) = \ln(\cos 2x).$