Лабораторная работа 16

Задачи оптимизации. Модель двух стратегий обслуживания

Беличева Дарья Михайловна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
	3.1 Постановка задачи	7 7 11
4	Выводы	19

Список иллюстраций

3.1	Модель первой стратегии обслуживания	8
3.2	Отчёт по модели первой стратегии обслуживания	9
3.3	Модель второй стратегии обслуживания	10
3.4	Отчет по модели второй стратегии обслуживания	10
3.5	Модель двух стратегий обслуживания с 1 пропускным пунктом	12
3.6	Отчёт по модели двух стратегий обслуживания с 1 пропускным	
	пунктом	12
3.7	Модель первой стратегии обслуживания с 3 пропускными пунктами	13
3.8	Отчёт по модели первой стратегии обслуживания с 3 пропускными	
	пунктами	14
3.9	Модель первой стратегии обслуживания с 4 пропускными пунктами	15
3.10	Отчёт по модели первой стратегии обслуживания с 4 пропускными	
	пунктами	15
3.11	Модель второй стратегии обслуживания с 3 пропускными пунктами	16
3.12	Отчёт по модели второй стратегии обслуживания с 3 пропускными	
	пунктами	16
3.13	Модель второй стратегии обслуживания с 4 пропускными пунктами	17
3.14	Отчёт по модели второй стратегии обслуживания с 4 пропускными	
	пунктами	17

Список таблиц

3.1 Сравнение стратегий:	
--------------------------	--

1 Цель работы

Реализовать с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.

2 Задание

Реализовать с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.

3 Выполнение лабораторной работы

3.1 Постановка задачи

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением μ . Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [a,b]. Предлагается две стратегии обслуживания прибывающих автомобилей:

- 1) автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска;
- 2) автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска. Исходные данные: μ = 1, 75 мин, a = 1 мин, b = 7 мин.

3.2 Построение модели

Целью моделирования является определение:

• характеристик качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего времени пребывания автомобиля на пункте пропуска;

- наилучшей стратегии обслуживания автомобилей на пункте пограничного контроля;
- оптимального количества пропускных пунктов.

В качестве критериев, используемых для сравнения стратегий обслуживания автомобилей, выберем:

- коэффициенты загрузки системы;
- максимальные и средние длины очередей;
- средние значения времени ожидания обслуживания.

Для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими пропускными пунктами, имеем следующую модель (рис. [3.1]).

```
GENERATE (Exponential(1,0,1.75)) ; прибытие автомобилей
TEST LE Q$Other1,Q$Other2,Obsl_2 ; длина оч. 1<= длине оч. 2
TEST E Q$Other1,Q$Other2,Obsl_{1}; длина оч. 1= длине оч. 2
TRANSFER 0.5,Obsl_1,Obsl_2 ; длины очередей равны, ; выбираем произв. пункт пропуска
; моделирование работы пункта 1
Obsl_1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punkt1 ; занятие пункта 1
DEPART Other1 ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE punkt1 ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 2
Obsl 2 QUEUE Other2 ; присоединение к очереди 2
SEIZE punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2 ; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
: (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Рис. 3.1: Модель первой стратегии обслуживания

После запуска симуляции получим отчёт (рис. [3.2]).

■ lab16_1.1.1	- REPORT								
	START TIM	E	END	TIME E	LOCKS	FACILITIES	STORAGES		
	0.00					2			
	NAME		VALUE						
	OBSL_1 OBSL 2			5	.000				
				11	.000				
	OTHER1			10000					
	OTHER2			10001					
	PUNKT1			10003					
	PUNKT2			10002	.000				
			ocu munn	-		T CURRENT C	OUNT DEED!		
LABEL		LOC BL	OCK TYPE NERATE	ENT		T CURRENT C	OUNT RETRY 0		
		2 TE	ST		5853	0			
		2 TE	ST ST		4162	0	_		
		4 TR	ANSFER		2431	0	_		
OBSL 1		5 QU	ANSFER EUE		2928	387	0		
_		6 SF	T7F		2541	0	0		
		7 DE	PART		2541	0	0		
		8 AD	VANCE		2541	1	. 0		
		9 RE	LEASE		2540	0	0		
	1	0 TE	RMINATE		2540	0			
OBSL_2	1	1 QU	EUE		2925	388	0		
		2 SE	IZE		2537	0	_		
		3 DE	PART		2537	0	-		
			VANCE		2537	1			
			LEASE		2536	0	-		
			RMINATE		2536	0			
			NERATE RMINATE		1	0			
	1	8 15	KMINAIL		1	U	U		
FACTITTY	PHT	יי פעדם	יי איי	TTME	* 77777	OWNED DENI	INTER RETRY	DELYA	
PUNKT2									
PUNKT1	2	541	0.990	3 05	5 1	5078 0	0 0	387	
10111111	-	J.1	0.557	0.50	,,,	3073 0		307	
QUEUE	М	AX CONT	. ENTRY E	NTRY(0)	AVE.CO	NT. AVE.TIM	E AVE.(-0)	RETRY	
OTHER1	3	93 387	2928	12	187.09	8 644.10	7 646.758	0	
OTHER2	3	93 388	2925	12	187.11	4 644.82	3 647.479	0	
FEC XN E						PARAMETER	VALUE		
5855			5855						
5079	U 10	U83.517	5079	8	9				

Рис. 3.2: Отчёт по модели первой стратегии обслуживания

Составим модель для второй стратегии обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются освободившимся пропускным пунктом (рис. [3.3], [3.4]).

```
M totic_2gps

punkt STORAGE 2

GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

QUEUE Other; присоединение к очереди 1

ENTER punkt,1; занятие пункта 1

DEPART Other; выход из очереди 1

ADVANCE 4,3; обслуживание на пункте 1

LEAVE | punkt,1; освобождение пункта 1

TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования 
GENERATE 10080; генерация фиктивного транзакта, 
; указывающего на окончание рабочей недели 
; (7 дней х 24 часа х 60 мин = 10080 мин) 
TERMINATE 1; остановить моделирование 
START 1; запуск процедуры моделирования
```

Рис. 3.3: Модель второй стратегии обслуживания

	1.1 - REPORT									
	START								STORAGES	
	0	.000		10080	.000	9		0	1	
	NAM	ΙE				VALUE				
	OTHER				100	01.000				
	PUNKT				100	00.000				
LABEL		LOC	BLOCK	TYPE	E	NTRY C	OUNT	CURRENT (COUNT RETRY	
			GENERA		_	5719			0	
		2	QUEUE			5719		668	3 0	
		3	ENTER			5051		0	0	
		4	DEPAR	Γ		5051		(0	
		5	ADVANO	Œ		5051		2	2 0	
		6	LEAVE			5049		(0	
		7	TERMI	NATE		5049		0	0	
		8	GENER!	ATE		1		(0	
		9	TERMIN	NATE		1		(0	
QUEUE		MAX C	ONT. El	NTRY E	NTRY (0) AVE	.con	r. AVE.TIN	ME AVE.(-0)	RETR
OTHER		668	668	5719	4	344	.466	607.13	88 607.562	0
STORAGE PUNKT									UTIL. RETRY	
FEC XN	PRI	BDT	1	ASSEM	CURR	ENT N	EXT	PARAMETE	R VALUE	
5721	0	10080.	466	5721	0		1			
5051	0	10081.	269	5051	5	i	6			
5052	0	10083.	431 5	5052	5		6			
5722	0	20160.	000	5722	0		8			

Рис. 3.4: Отчет по модели второй стратегии обслуживания

Составим таблицу по полученной статистике (табл. [3.1]).

Таблица 3.1: Сравнение стратегий:

Показатель	стратегия 1	стратегия 1					
	пункт 1	пункт 2	в целом				
Поступило автомобилей	2928	2925	5853	5719			
Обслужено автомобилей	2540	2536	5076	5049			
Коэффициент загрузки	0,997	0,996	0,9965	1			
Максимальная длина	393	393	786	668			
очереди							
Средняя длина очереди	187,098	187,114	374,212	344,466			
Среднее время ожидания	644,107	644,823	644,465	607,138			

Сравнив результаты моделирования двух систем, можно сделать вывод о том, что первая модель позволяет обслужить большее число автомобилей. Однако мы видим, что разница между обслуженными и поступившими автомобилями меньше для второй модели – значит, продуктивность работы выше. Также для второй модели коэффициент загрузки равен 1 – значит ни один из пунктов не простаивает. Максимальная длина очереди, средняя длина очереди и среднее время ожидания меньше для второй стратегии. Можно сделать вывод, что вторая стратегия лучше.

3.3 Оптимизация модели двух стратегий обслуживания

Изменим модели, чтобы определить оптимальное число пропускных пунктов (от 1 до 4). Будем подбирать под следующие критерии:

- коэффициент загрузки пропускных пунктов принадлежит интервалу [0, 5; 0, 95];
- среднее число автомобилей, одновременно находящихся на контрольно пропускном пункте, не должно превышать 3;

• среднее время ожидания обслуживания не должно превышать 4 мин.

Для обеих стратегий модель с одним пунктом выглядит одинаково (рис. [3.5]).

```
A toble_Zopo

GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

QUEUE Other; присоединение к очереди 1

SEIZE punkt; занятие пункта 1

DEPART Other; выход из очереди 1

ADVANCE 4,3; обслуживание на пункте 1

RELEASE punkt; освобождение пункта 1

TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования

GENERATE 10080; генерация фиктивного транзакта,

; указывающего на окончание рабочей недели

; (7 дней x 24 часа x 60 мин = 10080 мин)

TERMINATE 1; остановить моделирование

START 1; запуск процедуры моделирования
```

Рис. 3.5: Модель двух стратегий обслуживания с 1 пропускным пунктом

После симуляции получим следующий отчет (рис. [3.5]).

ab16_2.6.	1 - REPORT					
		END TIM 10080.00			TORAGES 0	
	NAME OTHER PUNKT	1	VALUE .0000.000 .0001.000			
LABEL	1 2 3	QUEUE SEIZE DEPART ADVANCE RELEASE TERMINATE GENERATE	ENTRY COUNT 5744 5744 2511 2511 2511 2510 2510 1		NT RETRY 0 0 0 0 0 0 0 0 0 0 0	
FACILITY PUNKT		S UTIL. AVE.				DELAY 3233
QUEUE OTHER		CONT. ENTRY ENTR 3233 5744				
1	0 10080 0 10080	ASSEM CU 255 2512 384 5746 .000 5747	5 6 0 1	PARAMETER	VALUE	

Рис. 3.6: Отчёт по модели двух стратегий обслуживания с 1 пропускным пунктом

В этом случае модель не проходит ни по одному из критериев, так как коэффициент загрузки, размер очереди и среднее время ожидания больше.

Построим модель для первой стратегии с 3 пропускными пунктами и получим отчет (рис. [3.7], [3.8]).

Рис. 3.7: Модель первой стратегии обслуживания с 3 пропускными пунктами

LABEL		TOC	BIOCK	TVDE		FNTDV	COUNT	CHIDDEN	IT COII	MT D	FTDV	
LADEL		1	GENER				47	CORREI	0	NI K	0	
		2	TRANS				47		0		0	
GO			TRANS				82		0		0	
OBSL 1			OUEUE				53		1		0	
0202_1			SEIZE				52		0		0	
		6	DEPAR				52		0		0	
		7	ADVAN	_			52		1		0	
			RELEA				51		0		0	
			TERMI			18			0		0	
OBSL 2		_	OUEUE				29		0		0	
0202_2			SEIZE				29		0		0	
		12	DEPAR				29		0		0	
		13	ADVAN	_			29		0		0	
			RELEA			18			0		0	
		15	TERMI			18			0		ol	
OBSL 3			QUEUE				65		3		0	
0202_0			SEIZE			18			0		0	
			DEPAR			18			0		0	
		19	ADVAN	_		18			1		0	
			RELEA			18			0		0	
			TERMI			18			0		0	
			GENER				1		0		0	
			TERMI				1		0		0	
		20					-					
FACILITY		ENTRIES	HTTI	7	VF T	ידאד א	VATI (OWNED I	FND T	MTFD	DETDV	DELYA
PUNKT2		1829				.952		0	0	0	0	0
PUNKT3		1862	0.7	40	- 4	.006		5534		0	0	3
PUNKT1							1				0	1
TOWNIT		1002	0.7	- /			-	5510	•		•	-
OUEUE		MAX C	ONT. E	NTRY	ENTRY	(0) A	VE.CON	r. AVE.	TIME	AV	E.(-0)	RETRY
OTHER2		11	0	1829	50	8	1.112		5.126		8.482	
OTHER3		13	3	1865	51	3	1.134		5.132		8.458	0
OTHER1		9	1				0.929				7.075	
FEC XN I	PRI	BDT		ASSEM	CUF	RENT	NEXT	PARAME	ETER	VA	LUE	
5549	0	10081.				0	1					
5534	0	10082.	140	5534	1	9	20					
5546	0	10085.				7	8					
	0	20160.				0	22					

Рис. 3.8: Отчёт по модели первой стратегии обслуживания с 3 пропускными пунктами

В этом случае среднее количество автомобилей в очереди меньше 3 и коэффициент загрузки в нужном диапазоне, но среднее время ожидания больше 4.

Построим модель для первой стратегии с 4 пропускными пунктами (рис. [3.9], [3.10]).

Рис. 3.9: Модель первой стратегии обслуживания с 4 пропускными пунктами

FACILITY		ENTRIES	UTI	[L.]	AVE. TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELAY
PUNKT4		1413	0.	557	3.97	1 1	5623	0	0	0	0
PUNKT3		1378	0.	545	3.989	1	0	0	0	0	0
PUNKT2		1366	0.	541	3.993	3 1	0	0	0	0	0
PUNKT1		1465	0.	584	4.018	3 1	5621	0	0	0	0
QUEUE OTHER4 OTHER3 OTHER2 OTHER1		7 8 6	0	1413 1378 1366	ENTRY(0) 628 655 625 590	0.415 0.345 0.363	5 5 3	2.958 2.527 2.676	3 7 5	5.325 4.816 4.934	0 0
FEC XN I	PRI	BDT		ASSE	1 CURRENT	NEXT	PARA	METER	VA	LUE	
5624	0	10080.	041	5624	0	1					
5621	0	10080.	398	5621	8	9					
5623	0	10082.	255	5623	26	27					
5625	0	20160			0	29					

Рис. 3.10: Отчёт по модели первой стратегии обслуживания с 4 пропускными пунктами

В этом случае все критерии выполнены, поэтому 4 пункта являются *оптимальным* количеством для первой стратегии.

Построим модель для второй стратегии с 3 пропускными пунктами и получим отчет (рис. [3.11], [3.12]).

```
[4] lab16_3.gps
 punkt STORAGE 3;
 GENERATE (Exponential(1,0,1.75)) ; прибытие автомобилей
 ; моделирование работы пункта 1
 QUEUE Other ; присоединение к очереди 1
 ENTER punkt ; занятие пункта 1
 DEPART Other ; выход из очереди 1
 ADVANCE 4,3 ; обслуживание на пункте 1
 LEAVE punkt ; освобождение пункта 1
 TERMINATE ; автомобиль покидает систему
 ; задание условия остановки процедуры моделирования
 GENERATE 10080 ; генерация фиктивного транзакта,
 ; указывающего на окончание рабочей недели
 ; (7 дней х 24 часа х 60 мин = 10080 мин)
 TERMINATE 1 ; остановить моделирование
 START 1 ; запуск процедуры моделирования
```

Рис. 3.11: Модель второй стратегии обслуживания с 3 пропускными пунктами

	OTHER PUNKT				10001 10000					
LABEL		1 2 3 4 5 6 7 8	GEN QUE ENT DEP ADV LEA TER	ERATE UE ER ART ANCE		RY COUNT 5683 5683 5683 5683 5680 5680 1	CURRENT	COUNT 0 0 0 0 3 0 0 0	RETRY 0 0 0 0 0 0 0 0	
QUEUE OTHER							T. AVE.TI			
STORAGE PUNKT							. AVE.C. 2.243			
FEC XN 5680 5683 5685 5684 5686	0 0 0	10080 10080 10082 10085	.434 .631 .068	5680 5683 5685 5684	5 5 0	6 6 6 1 6 8	PARAMETE	ER .	VALUE	

Рис. 3.12: Отчёт по модели второй стратегии обслуживания с 3 пропускными пунктами

В этом случае все критерии выполняются, поэтому модель оптимальна.

Построим модель для второй стратегии с 4 пропускными пунктами и получим отчет (рис. [3.11], [3.12]).

```
punkt STORAGE 4;
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

; моделирование работы пункта 1
QUEUE Other; присоединение к очереди 1
ENTER punkt; занятие пункта 1
DEPART Other; выход из очереди 1
ADVANCE 4,3; обслуживание на пункте 1
LEAVE punkt; освобождение пункта 1
TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования
GENERATE 10080; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1; остановить моделирование
START 1; запуск процедуры моделирования
```

Рис. 3.13: Модель второй стратегии обслуживания с 4 пропускными пунктами

I					
LABEL			E ENTRY COUNT	CURRENT COUNT	RETRY
		1 GENERATE	5719	0	0
		2 QUEUE	5719	0	0
		3 ENTER	5719	0	0
		4 DEPART	5719	0	0
		5 ADVANCE	5719	4	0
		6 LEAVE	5715	0	0
		7 TERMINATE	5715	0	0
		8 GENERATE	1	0	0
		9 TERMINATE	1	0	0
QUEUE		MAX CONT. ENTRY	ENTRY (0) AVE.CON	I. AVE.TIME	AVE.(-0) RETRY
OTHER		7 0 5719	4356 0.194	0.341	1.431 0
STORAGE		CAP. REM. MIN.	MAX. ENTRIES AVL	. AVE.C. UTIL	. RETRY DELAY
PUNKT		4 0 0	4 5719 1	2.253 0.56	3 0 0
FEC XN	PRI	BDT ASSE	M CURRENT NEXT	PARAMETER	VALUE
5718	0	10082.346 5718	5 6		
5717	0	10082.412 5717	5 6		
5719	0	10083.393 5719	5 6		
5721	0	10084.393 5721	0 1		
5720	0	10085.162 5720	5 6		
5722	0	20160.000 5722			
			_		

Рис. 3.14: Отчёт по модели второй стратегии обслуживания с 4 пропускными пунктами

Здесь все критерии выполнены при этом время ожидания и среднее число автомобилей меньше, чем в случе второй стратегии с 3 пунктами, однако и загрузка

меньше. Можно сделать вывод, что 4 пропускной пункт излишне разгружает систему.

В результате анализа наилучшим количеством пропускных пунктов будет 3 при втором типе обслуживания и 4 при первом.

4 Выводы

В результате выполнения данной лабораторной работы я реализовала с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.