

時系列データベース 「InfluxDB」ご紹介

伊藤忠テクノソリューションズ株式会社 エンタープライズ事業グループ 科学システム本部 小林 範昭

Agenda

- ■時系列データとは?
- ■時系列データベースとは?
- ■なぜInfluxDBなのか?

会社概要

2020年6月18日現在

会社名	伊藤忠テクノソリューションズ株式会社 (略称 CTC)
英文社名	ITOCHU Techno-Solutions Corporation
本社所在地	〒100-6080 東京都千代田区霞が関3-2-5 霞が関ビル TEL: 03-6203-5000(代) URL: http://www.ctc-g.co.jp/
代表者	代表取締役社長 柘植 一郎
創立	1972年(昭和47年)4月1日
設立	1979年(昭和54年)7月11日
資本金	21,763百万円
社員数	単体: 4,419名 連結: 9,085名
事業内容	コンピュータ・ネットワークシステムの販売・保守、ソフトウェア受託開発、情報処理サービス、 科学・工学系情報サービス、サポート、その他

時系列データとは?

時系列データとは

時系列データは一連のデータポイントであり、通常、同じソースから一定間隔で連続して取得されます

グラフに点をプロットすると、 軸の1つは常に時間になります

時系列データとは

時間 →

時系列データではないもの

時系列データ

時系列データではないもの

データの特長

- タイムスタンプを持っている
- ・膨大な量のデータ

時系列データベースとは?

時系列データベースは、 時系列データの収集、 保存および処理に最適 化されています

以下と比較すると、、、

- ・ドキュメントデータベース▶JSONドキュメントの保存用に最適化
- 検索のためのデータベース▶全文検索用に最適化
- リレーショナルデータベース
 - ▶行と列の関連データの表形式のストレージ用に最適化

時系列データベースとその他のデータベースの違い

他の種類のデータベース

時系列データベース

典型的な用途

産業:製造(工場)、石油、 ガス、農業、交通

コンシューマー: ウェア ラブル端末、スマートフォ ンなどの各種デバイス

監視: サーバー、仮想マシン、アプリケーション、ユーザー、イベント

メトリクス: 分析に必要な指標(メトリクス)を補正しながら簡単 に管理

時系列データベースを採用するメリット

TIME-STAMP

10:10:00.000

10:10:40.000

10:11:20.000

10:12:00.000

10:12:40.000

10:13:20.000

10:13:00.000

装置A 1分単に取得

装置A (Value)

100

100

110

110

120

120

130

TIME-STAMP

10:10:00.000

10:11:00.000

10:12:00.000

10:13:00.000

10:14:00.000

10:15:00.000

10:16:00.000

装置B 40秒単に取得

装置B (Value)

1.22

2.15

4.22

3.25

4.55

2.36

1.98

装置C 30秒単に取得

TIME-STAMP	装置C (Value)
10:10:00.000	0.001
10:10:30.000	0.122
10:11:00.000	0.113
10:11:30.000	0.002
10:12:00.000	0.258
10:12:30.000	0.117

0.001

10:13:00.000

装置・センサーごとに取得するデータの タイミングはバラバラのケースがある

データ転送に遅延がある場合は装置・センサーのデータ所得時間とDBへの格納時間には差が生じる

※各センサーの時刻同期(基準)

Reg: 分析の為に毎分のデータが欲しい

TIME-STAMP 装置A 装置C (Value) 装置B (Value) (Value) 10:10:00.000 1.22 0.001 10:10:30.000 0.122 10:10:40.000 2.15 10:11:00.000 100 0.113 10:11:20.000 4.22 10:11:30.000 0.002 10:12:00.000 3.25 0.258 110 10:12:30.000 0.117 10:12:40.000 4.55 10:13:00.000 120 0.001 10:13:20.000 2.36

データベース側で取得時間によるデータ結合を行 い、不足値は<mark>補完</mark>してデータを生成して返す

	TIME-STAMP	装置A (Value)	装置B (Value)	装置C(Value)	
*	10:10:00.000	100	1.22	0.001	ニークオウナナ
_	10:11:00.000	100	3.64	0.113	テータ補完方法 を指定
-	10:12:00.000	110	3.25	0.258	・平均値
-	10:13:00.000	120	3.12	0.001	・中央値
	10:14:00.000	120	2.98	0.114	・移動平均など
	10:15:00.000	120	2.24	0.322	な し
	10:16:00.000	130	1.45	0.500	

なぜInfluxDBなのか?

なぜInfluxDBなのか

- ・始めるのが簡単
- わかり易いクエリ構文
- クラスタリングによる拡張可能

評価

時系列データベースの 評価結果

直近24か月の評価

InfluxDBの評価結果

Oct 2020	Rank Sep 2020	Oct	DBMS	Database Model	Oct Sep 2020 2020		1000 100
1.	1.	1.	InfluxDB 🚹	Time Series	24.15	+0.81	+4.52
2.	2.	2.	Kdb+ 🔠	Time Series, Multi-model 🚺	7.66	+0.24	+2.23
3.	3.	3.	Prometheus	Time Series	5.33	-0.36	+1.73
4.	4.	4.	Graphite	Time Series	4.36	+0.06	+1.02
5.	5.	5.	RRDtool	Time Series	3.19	+0.14	+0.48
6.	6.	1 8.	TimescaleDB 🖽	Time Series, Multi-model	2.91	+0.18	+1.40
7.	1 8.	7.	Apache Druid	Multi-model 🚺	2.39	+0.10	+0.54
8.	4 7.	4 6.	OpenTSDB	Time Series	2.29	-0.01	+0.37
9.	9.	↑ 11.	FaunaDB 🔠	Multi-model 🚺	1.79	-0.07	+1.31
10.	10.	10.	GridDB 🔡	Time Series, Multi-model	0.83	+0.09	+0.30

出展: <u>DB-Engines</u>

InfluxDB プラットフォームの機能

INSTRUMENT

- どこからでもすばやくデータを取り込み可能
- 大規模なデータを効率的に 保存(圧縮)

AUTOMATE

- 自動化および制御機能を提供
- データの削除と集約

OBSERVE

- 大規模データにおけるリア ルタイムでの検索、分析、 可視化をサポート
- 時刻の変化に対する分析と 制御のための機能を提供

LEARN

- 機械学習と異常検出アルゴ リズム
- ストリーミングデータの分析に活用

データの可視化と蓄積

データ収集: センサーおよびシステムからの時系列データを収集ツール

「Telegraf」を介して収集 ダッシュボード:可視化ツールとしてOSS製品のGrafanaと連携

時系列データの可視化

特異個所の深堀

時間軸を特定箇所に絞り込んでデータ探索を実施、全体像から特異個所を探索可能

InfluxDBを活用したソリューション①

- リアルタイムでの分析、異常検知に備えるためエッジにInfluxDBを配置
- 可視化や他システムとの連携のためCloudにも配置

デジタルツインソリューション概要

InfluxDBを活用したソリューション②

混雑予測/人流分析のデータ蓄積部分にInfluxDBを採用

まとめ

- 時系列データ
 - ▶時刻と値がセットになった一連のデータ
- 時系列データベース
 - ▶IoTなどモニタリング、リアルタイム分析 等で活用
 - ▶分析システムが活用しやすいようにデータ加工/集約/補正して利用可能
- InfluxDB
 - ▶操作が簡単かつクラスタリングにより水 平拡張可能
 - ▶データの取り込みも容易

お問合せ先:influxdb-info@ctc-g.co.jp

