EMPLOYEE DATA ANALYSIS IN MS-EXCEL

BY RIYAVARSHINI ARUNPRASAD

POWERED BY

INTRODUCTION

- I am excited to present the results of my internship project, "Employee Data Analysis," provided by PSYLIQ.
- Throughout this journey, I utilized the capabilities of MS-Excel, applying various techniques such as data cleaning, Pivot Tables, dynamic charts, VLOOKUP to derive actionable insights.
- My primary goal was to answer key questions posed by PSYLIQ and finally create Dashboard with insights.

For each questions, data analysis results and insights are provided respectively

create a pivot table to summarize the total number of employees in each department?

Departments	Count of Employee
Admin Offices	80
Executive Office	24
IT/IS	430
Production	2020
Sales	331
Software Engineering	115
Grand Total	3000

- The **Production department** has the highest number of employees, with **2020 individuals**.
- Admin Offices and Executive Office have relatively smaller employee counts, with 80 and 24 employees, respectively.
- Production, IT/IS, and Sales departments appear to be the core operational areas, as they collectively constitute a significant portion of the workforce.

Apply conditional formatting to highlight employees with a "employee rating" below 3 in red.

- 781 employees found to have employee rating below "3".
- Applied conditional formatting on entire dataset to highlight entire row containing employee rating below 3.
- \$Z2 < 3 (assuming Z is employee rating column)

Calculate the average "Satisfaction Score" for male and female employees separately using a pivot table.

Gender 🔽 Aver	age of Satisfaction Score
Female	3.005945303
Male	3.042488619
Grand Total	3.022

- On average, male employees have a slightly higher satisfaction score compared to female employees.
- The overall satisfaction score (grand total) falls in between the average scores of male and female employees, suggesting a relatively balanced satisfaction level across genders.

• Job functions, such as **Labourer, Technician, Engineer, and Foreman**, have relatively high counts in the **higher satisfaction score** ranges (4 and 5).

Filter the data to display only terminated employees and find out the most common "Termination Type."

Count of TerminationType Termination typ(▼					
Employee status	₹ Involuntary	Resignation	Retirement	Voluntary	Grand Total
Terminated for Cause	21	22	10	13	66
Voluntarily Terminated	86	74	76	85	321
Grand Total	107	96	86	98	387

- Employee who are **voluntarily terminated** has most common **termination type as Involuntary** about **86** out of 321.
- Employee who are **terminated for cause** has most common **termination type as Resignation** about **22** out of 66.

Department type 🔽 Average of Enga	gement Score
Admin Offices	2.925
Executive Office	3.375
IT/IS	3.025581395
Production	2.906435644
Sales	2.990936556
Software Engineering	2.973913043
Grand Total	2.939666667

- Executive Office has the **highest average** (3.375), while **Production** has a slightly **lower average** (2.906).
- Admin Offices, IT/IS, Sales, and Software Engineering fall in between these two extremes.

Use VLOOKUP to find the supervisor's name and employee email address for a specific employee.

Enter EmployeeID:	1942
Supervisor Name:	William Thompson
ADEmail ID:	jett.kent@bilearner.com

- **Create a cell** to enter required **employeeID** [AI5]
- Enter formula **=VLOOKUP(AI5,A1:AD3001,7)** to retrieve supervisor name
- Enter formula **=VLOOKUP(AI5,A1:AD3001,8)** to retrieve email address

Departments	Average of Current Employee Rating
Admin Offices	3.025
Production	2.982178218
IT/IS	2.969767442
Sales	2.909365559
Software Engineerin	g 2.904347826
Executive Office	2.791666667
Grand Total	2.969

Department Admin Offices found to have highest average Employee Rating.

Create a scatter plot to explore the relationship between "Training Duration (Days)" and "Training Cost.

• From the equation, y = -1.9107x + 564.31 and R^2 value = 0.0001, it is evident that the linear relationship between the two variable is very weak.

Build a pivot table that shows the count of employees by "RaceDesc" and "GenderCode."

Count of Employee ID GenderCode	-		
RaceDesc Female		Male	Grand Total
Asian	346	283	629
Black	346	272	618
Hispanic	325	247	572
Other	318	264	582
White	347	252	599
Grand Total	1682	1318	3000

- Highest number of employee found to be **Asian race** (629)
- Highest number of **Female** employees belong to **White**(347), **Asian and black** (346) race respectively.
- Highest number of Male employees belong to Asian (283) race.

Use INDEX and MATCH functions to find the "Training Program Name" for an employee with a specific ID.

Choose Employee Id:	1009
Training Program Name	Customer Service

- Created **drop down list** to **choose employee ID**.
- Extracted training program name corresponding to the chosen employeeID using the formula = INDEX(A:I,MATCH(L2,A:A),3).

Create a multi-level pivot table to analyze the "Performance Score" by "BusinessUnit" and "JobFunctionDescription."

Count of Performance Score	Performance score	7				
BusinessUnit/ JobFunction	Exceeds	Fully M	eete -	Needs Improvement	PIP	Grand Total
• NEL	3	o o	251	11	12	304
■SVG	4	6	233	20	5	304
■ BPC	3	6	235	24	8	303
• EW	3	9	240	16		302
• PL		4	241	16	10	301
• CCDR	3	9	234	17	10	300
■ PYZ	3	5	228	23	13	299
• TNS	4	1	233	15		297
• MSC	3	9	226	20	11	296
= WBL	3)	240	15	9	294
Laborer		4	39	2	1	46
Technician		6	25	5		36
Engineer		2	30	2	1	35
Foreman		4	22		1	27
Coordinator		3	12			15
Supervisor		1	13			14
Lineman		2	7	1	2	12
Project Manager		3	7			10
Manager		1	8			9
Administrative			6		1	7

• The Fully Meets category dominates in each Business Unit, indicating that a significant portion of employees meets the expected performance standards.

Design a dynamic chart that allows users to select and visualize the performance of any employee over time.

- Created drop down list to choose EmployeeID.
- Used **=INDEX(Employee_ID:Current_Employee_Rating, MATCH(R3,Employee_ID,0), {2,3,4})** to retrieve date , performance score and employee rating of selected employeeID.
- Created bar chart which measure employee rating and added label which also show performance rating of employee

Calculate the total training cost for each "Training Program Name" and display it in a bar chart.

Training Program Name	▼ Sum o	f Training Cost
Communication Skills	₹	3,65,023.24
Customer Service	₹	3,20,575.04
Leadership Development	₹	3,23,902.03
Project Management	₹	3,43,313.17
Technical Skills	₹	3,23,072.61
Grand Total	₹	16,75,886.09

- Training on Communication skills costs the largest about ₹ 3,65,023.24
- Training on customer services costs the smallest about ₹3,20,575.04

Apply advanced conditional formatting to highlight the top 10% and bottom 10% of employees based on "Current Employee Rating."

- Found that employees with **employee rating 1,2** are **bottom 10%** about 781 employees.
- Employees with **employee rating 4,5** are **top 10%** about 689 employees.

Use a calculated field in a pivot table to determine the average "Engagement Score" per year.

Year 🔻	Sum of Employee count	Sum of Engagement Score	calculated_avg_per_year
2018	255	739	2.9
2019	598	1833	3.07
2020	592	1740	2.94
2021	600	1733	2.89
2022	620	1825	2.94
2023	335	949	2.83
Grand Total	3000	8819	2.94

Calculated Field		
Solve Order	Field	Formula
1	Calculated_average	=ROUND('Engagement Score' /'Employee count',2)

- There is an **increase in Employee count from 2018 to 2019**, and then it remains relatively stable in the following years.
- The Engagement Score **peaks in 2019** approximately 3.07.

Can you build a macro that automates the process of updating and refreshing all pivot tables in the workbook?

- Two nested loops to iterate through worksheets and pivot tables.
- pt.RefreshTable to refresh each individual pivot table.
- ThisWorkbook.RefreshAll for refreshing the entire workbook.

Create a histogram to understand the distribution of "ExitDate" for terminated employees.

• The number of employees **terminated statuses increases significantly** in subsequent years.

Utilize the SUMPRODUCT function to calculate the total training cost for employees in a specific location.

	G	Н	I	J	K	L	
1	Location	Training Duration(Days)	Training Cost				
2	Aaronborough	5	841.22		CHOOSE LOCATION:	Aaronborough	~
3	Aaronburgh	3	633.96		TOTAL TRAINING EXPENDITURE:	4206.1	
4	Aaronstad	5	939.02				
5	Abbottton	3	609.01				
6	Acevedoshire	4	443.55				
7	Adamborough	4	444.22				
8	Adammouth	2	738.65				
9	Adammouth	2	510.12				
10	Adamsberg	3	962.45				
11	Adamsmouth	4	261.13				T
12	Adamsmouth	4	106.21				
13	Aguirreland	4	881.71				T
14	Alexanderberg	2	494.29				
15	Alexanderchester	5	346.93				T

- Created **drop down list** using data validation to **choose specific location** [L2]
- Utilized **=SUMPRODUCT((G2:G3001 = L2)*H2:H3001*I2:I3001)** to return total training cost for employees

EMPLOYEE ANALYSIS DASHBOARD

PSYLIQ

EMPLOYEE ANALYSIS DASHBOARD

TOTAL

3000

FEMALE EMPLOYEES

1682

Romeo Gordon

MALE EMPLOYEES

1318

ACTIVE EMPLOYEES

2458

TERMINATED EMPLOYEES

387

AVERAGE EMPLOYEE RATING

2.969

GenderCode SE &
Female

Male

Employee ID	Employee Name	GenderCode	EmployeeClassificationType	BusinessUnit	DepartmentType	Location	Performance Score	Current Employee Rating
2103	Nola Sellers	Female	Full-Time	MSC	Production	MA-49149	Exceeds	5
2148	Joel Koch	Female	Full-Time	PL	Production	MA-75427	Exceeds	5
2187	Amaris Kirk	Female	Full-Time	PL	Production	MA-31571	Exceeds	5
3047	Francesca Lowe	Female	Full-Time	PYZ	Production	MA-33237	Exceeds	5
2183	Bria Bush	Female	Full-Time	SVG	Production	MA-81415	Exceeds	5
2121	Jenna Cochran	Female	Full-Time	TNS	Production	MA-12265	Exceeds	5
2109	Zain Tanner	Female	Part-Time	BPC	Production	MA-51689	Exceeds	5
2211	Leonara Lindsay	Female	Temporary	WBL	IT/IS	CT-6070	Exceeds	5
2119	Marcos Carey	Female	Temporary	EW	Production	MA-72491	Exceeds	5
3376	Maren Anderson	Female	Temporary	PL	Production	MA-7445	Exceeds .	5
2118	Dale Mendoza	Female	Temporary	SVG	Production	MA-41529	Exceeds	5
2920	Caden Silva	Male	Part-Time	MSC	Production	MA-80589	Exceeds	5
3656	Francesca Mcmahon	Male	Part-Time	TNS	Production	MA-72523	Exceeds	5
3363	Trevor Barry	Male	Temporary	MSC	Production	MA-31018	Exceeds	5

Production

MA-59153

HEADCOUNT PER EMPLOYEE

PERFORMANCE SCORE

TOTAL TRAINING COST PER TRAINING PROGRAM

MS - EXCEL FUNCTIONS AND METHODS UTILIZED

1 Filtering

2 Sorting

3 Conditional Formatting

4 Pivot tables

Multi level
Pivot Tables

6 Calculated fields

INDEX Functions

7

MATCH Function

8

Dynamic charts

9

Pivot Charts

10

Dashboard

111

Slicers

12

THANK YOU

Thank you, PSYLIQ, for the invaluable opportunity to not only apply my Excel skills but also for fostering an environment that encourages learning. The chance to delve into creating dynamic pivot tables, incorporating calculated fields, and crafting dashboards in Excel has been both enriching and rewarding.