Chrysafis Vogiatzis

Department of Industrial and Enterprise Systems Engineering University of Illinois at Urbana-Champaign

Lecture 32a

ISE | Industrial & Enterprise Systems Engineering GRAINGER COLLEGE OF ENGINEERING

©Chrysafis Vogiatzis. Do not distribute without permission of the author

Quick recap

Simple linear regression:

- Goal: get a line $y = \hat{\beta}_0 + \hat{\beta}_1 x$.
- How? Least squares line.

Is it significant?

- Goal: check whether there is really a relationship.
- How? Hypothesis testing.

$$H_0: \beta_1 = 0$$
 vs. $H_1: \beta_1 \neq 0$

 $lacksquare eta_1 \sim \mathcal{N}\left(eta_1, rac{\sigma}{S_\infty}
ight)$, and hence

Quick recap

Simple linear regression:

- Goal: get a line $y = \hat{\beta}_0 + \hat{\beta}_1 x$.
- How? Least squares line.

Is it significant?

- Goal: check whether there is *really* a relationship.
- How? Hypothesis testing.

$$H_0: \beta_1 = 0$$
 vs. $H_1: \beta_1 \neq 0$.

 \blacksquare $\hat{eta}_1 \sim \mathcal{N}\left(eta_1, rac{\sigma^2}{S_{xx}}\right)$, and hence

$$T_0 = \frac{\hat{\beta}_1 - \beta_{10}}{\hat{\sigma}/\sqrt{S_{xx}}}$$

$$\blacksquare$$
 where $S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2$;

$$\blacksquare$$
 and $\hat{\sigma} = \sqrt{MS_E} = \sqrt{\frac{SS_E}{n-2}} = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-2}}$.

Quick recap

Simple linear regression:

- Goal: get a line $y = \hat{\beta}_0 + \hat{\beta}_1 x$.
- How? Least squares line.

Is it significant?

- Goal: check whether there is really a relationship.
- How? Hypothesis testing.

$$H_0: \beta_1 = 0$$
 vs. $H_1: \beta_1 \neq 0$.

lacksquare $\hat{eta_1} \sim \mathcal{N}\left(eta_1, rac{\sigma^2}{S_{xx}}
ight)$, and hence

$$T_0 = \frac{\hat{\beta}_1 - \beta_{10}}{\hat{\sigma}/\sqrt{S_{xx}}}$$

• where
$$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2$$
;

$$lacksquare$$
 and $\hat{\sigma} = \sqrt{MS_E} = \sqrt{\frac{SS_E}{n-2}} = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-2}}$.

Sum of squares come in different shapes and forms..

sum of squares of errors:

$$SS_E = \sum_{i=1}^n (y_i - \hat{y}_i)^2.$$

total sum of squares:

$$SS_T = \sum_{i=1}^n (y_i - \overline{y})^2.$$

sum of squares of regression:

$$SS_{R} = \sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}.$$

The ANalysis Of VAriance (ANOVA) identity

$$SS_T = SS_E + SS_R$$

Sum of squares come in different shapes and forms..

sum of squares of errors:

$$SS_E = \sum_{i=1}^n (y_i - \hat{y}_i)^2.$$

total sum of squares:

$$SS_T = \sum_{i=1}^n (y_i - \overline{y})^2.$$

sum of squares of regression:

$$SS_R = \sum_{i=1}^n (\hat{y}_i - \overline{y})^2$$

The ANalysis Of VAriance (ANOVA) identity

$$SS_T = SS_E + SS_R$$

Sum of squares come in different shapes and forms..

sum of squares of errors:

$$SS_E = \sum_{i=1}^n (y_i - \hat{y}_i)^2.$$

total sum of squares:

$$SS_T = \sum_{i=1}^n (y_i - \overline{y})^2$$
.

sum of squares of regression:

$$SS_{R} = \sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}.$$

The ANalysis Of VAriance (ANOVA) identity

$$SS_T = SS_E + SS_R$$

Sum of squares come in different shapes and forms..

sum of squares of errors:

$$SS_E = \sum_{i=1}^n (y_i - \hat{y}_i)^2.$$

■ total sum of squares:

$$SS_T = \sum_{i=1}^n (y_i - \overline{y})^2$$
.

sum of squares of regression:

$$SS_R = \sum_{i=1}^n (\hat{y}_i - \overline{y})^2$$
.

The ANalysis Of VAriance (ANOVA) identity:

$$SS_T = SS_E + SS_R$$

Sum of squares come in different shapes and forms..

sum of squares of errors:

$$SS_E = \sum_{i=1}^n (y_i - \hat{y}_i)^2.$$

total sum of squares:

$$SS_T = \sum_{i=1}^n (y_i - \overline{y})^2$$
.

sum of squares of regression:

$$SS_R = \sum_{i=1}^n (\hat{y}_i - \overline{y})^2$$
.

The ANalysis Of VAriance (ANOVA) identity:

$$SS_T = SS_E + SS_R$$

Let us take a moment and check the corresponding degrees of freedom.

- sum of squares of **errors** SS_E :
 - n-2 degrees of freedom.
- total sum of squares SS_T :
 - n-1 degrees of freedom.
- \blacksquare sum of squares of **regression** SS_R :
 - 1 degree of freedom.

The last follows because $SS_T = SS_R + SS_E \implies df(SS_T) = df(SS_R) + df(SS_E).$

Let us take a moment and check the corresponding degrees of freedom.

■ sum of squares of **errors** SS_E :

n-2 degrees of freedom.

total sum of squares SS_T :

n-1 degrees of freedom.

sum of squares of **regression** SS_R :

1 degree of freedom.

The last follows because $SS_T = SS_R + SS_E \implies df(SS_T) = df(SS_R) + df(SS_E)$.

Let us take a moment and check the corresponding degrees of freedom.

■ sum of squares of **errors** SS_E :

n-2 degrees of freedom.

■ **total** sum of squares SS_T :

n-1 degrees of freedom.

sum of squares of **regression** SS_R :

1 degree of freedom.

The last follows because $SS_T = SS_R + SS_E \implies df(SS_T) = df(SS_R) + df(SS_E)$.

Let us take a moment and check the corresponding degrees of freedom.

■ sum of squares of **errors** SS_E :

n-2 degrees of freedom.

■ **total** sum of squares SS_T :

n-1 degrees of freedom.

sum of squares of **regression** SS_R :

1 degree of freedom.

The last follows because

$$SS_T = SS_R + SS_E \implies df(SS_T) = df(SS_R) + df(SS_E).$$

Mean squares

Combining the sum of squares and the degrees of freedom, we may calculate the mean squares:

$$\blacksquare MS_E = \frac{SS_E}{n-2}.$$

$$\blacksquare MS_T = \frac{SS_T}{n-1}.$$

$$\blacksquare MS_R = \frac{SS_R}{1} = SS_R.$$

Definition

 R^2 is a measure of how much of the variability is accounted for by the regression model and is calculated as:

$$R^2 = \frac{SS_R}{SS_T} = 1 - \frac{SS_E}{SS_T}.$$

Example

Consider the following data.

Also note that $\overline{y} = 8.78$ and $SS_E = 1.629$. What is R^2 ?

Answer

Definition

 R^2 is a measure of how much of the variability is accounted for by the regression model and is calculated as:

$$\label{eq:R2} \textit{R}^2 = \frac{\textit{SS}_\textit{R}}{\textit{SS}_\textit{T}} = 1 - \frac{\textit{SS}_\textit{E}}{\textit{SS}_\textit{T}}.$$

Example

Consider the following data

Also note that $\overline{y} = 8.78$ and $SS_E = 1.629$. What is R^2 ?

Answer: First, for the total sum of squares: $SS_7 = \sum (y_1 - \overline{y})^2 = 7.2148$.

Definition

 R^2 is a measure of how much of the variability is accounted for by the regression model and is calculated as:

$$\label{eq:R2} \textit{R}^2 = \frac{\textit{SS}_\textit{R}}{\textit{SS}_\textit{T}} = 1 - \frac{\textit{SS}_\textit{E}}{\textit{SS}_\textit{T}}.$$

Example

Consider the following data.

X	У	ŷ	x	У	ŷ
1	7.6	7.654	6	8.74	9.019
9	10.24	9.838	7	8.99	9.292
2	7.3	7.927	8	9.93	9.565
7	8.97	9.292	1	8.47	7.654

Also note that $\overline{y} = 8.78$ and $SS_E = 1.629$. What is R^2 ?

Answer: First, for the total sum of squares: $SS_T = \sum (y_i - \overline{y})^2 = 7.2148$. Then:

$$R^2 = 1 - \frac{SS_E}{SS_T} = 1 - \frac{1.629}{7.2148} = 0.774.$$

Definition

 R^2 is a measure of how much of the variability is accounted for by the regression model and is calculated as:

$$R^2 = \frac{SS_R}{SS_T} = 1 - \frac{SS_E}{SS_T}.$$

Example

Consider the following data.

Χ	У	ŷ	X	У	ŷ
1	7.6	7.654	6	8.74	9.019
9	10.24	9.838	7	8.99	9.292
2	7.3	7.927	8	9.93	9.565
7	8.97	9.292	1	8.47	7.654

Also note that $\overline{y} = 8.78$ and $SS_E = 1.629$. What is R^2 ?

Answer: First, for the total sum of squares: $SS_T = \sum (y_i - \overline{y})^2 = 7.2148$. Then:

$$R^2 = 1 - \frac{SS_E}{SS_T} = 1 - \frac{1.629}{7.2148} = 0.774.$$

Definition

 R^2 is a measure of how much of the variability is accounted for by the regression model and is calculated as:

$$\label{eq:R2} \textit{R}^2 = \frac{\textit{SS}_\textit{R}}{\textit{SS}_\textit{T}} = 1 - \frac{\textit{SS}_\textit{E}}{\textit{SS}_\textit{T}}.$$

Example

Consider the following data.

X	у	ŷ	x	У	ŷ
1	7.6	7.654	6	8.74	9.019
9	10.24	9.838	7	8.99	9.292
2	7.3	7.927	8	9.93	9.565
7	8.97	9.292	1	8.47	7.654

Also note that $\overline{y} = 8.78$ and $SS_E = 1.629$. What is R^2 ?

Answer: First, for the total sum of squares: $SS_T = \sum (y_i - \overline{y})^2 = 7.2148$. Then:

$$R^2 = 1 - \frac{SS_E}{SS_T} = 1 - \frac{1.629}{7.2148} = 0.774.$$

