Brief Report HAI, Assignment 2

Modal-Based SVM Model:

I use 8 features for the SVM classification. Vector features include 1D feature as magnitude and length, and 2D features by combining them.

A cross validation approach of 5 folds shows that the accuracy is 90% for the given set, and 81.8% for my own gesture set. The confusion matrix is as below:

[[1 0 0 0 0 0 0 0 0 0]	[[1 0 0 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0 0]	[0 0 0 1 0 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0]	[0 0 1 0 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0 0]	[0001000000]
[0 0 0 0 1 0 0 0 0 0]	[0 0 0 0 1 0 0 0 0 0 0]
0000010000	[0000010000]
[0 0 0 0 0 0 1 0 0 0]	[0 0 0 0 0 0 1 0 0 0 0]
0000010000	[00000001000]
000000010	[0 0 0 0 0 0 0 1 0 0]
[0000000001]	[0 0 0 0 0 0 0 0 1 0]
-	[0000000010]

My own set per gesture accuracy is as below:

precision recall f1-score support									
At Rest	1.00	1.00	1.00)	1				
Backhand Tennis	1.0	00 ′	1.00	1.00	1				
Baseball Throw	1.00	0 1.	00 1	1.00	1				
Forehand Tennis	0.5	50 ′	1.00	0.67	1				
Midair Clockwise O	1.0	00	1.00	1.00	1				
Midair Counter Clockwise	O :	1.00	1.00	1.00) 1				
Midair S	1.00	1.00	1.00	0	1				
Midair Zorro Z	1.00	1.0	00 1.	00	1				
Shake	1.00	1.00	1.00)	1				
Underhand Bowling	, 0	.00	0.00	0.00	1				
Your Custom Gestur	e ´	1.00	1.00	1.00	1				
avg / total	0.86	0.91	0.8	88	11				

The given set [er gesture accuracy is as below:

precision recall f1-score support								
At Rest	1.00	1.0	0	1.00	1			
Backhand Tennis	1.0	00	1.00	1.0	00	1		
Baseball Throw	1.0	0	1.00	1.00	C	1		
Forehand Tennis	1.0	00	1.00	1.0	0	1		
Midair Clockwise O	1.	00	1.00	1.0	00	1		
Midair Counter Clockwise) O	1.00	1	.00	1.00		1	
Midair S	1.00	1.0	0	1.00	1			
Midair Zorro Z	1.00) 1	.00	1.00		1		
Shake	1.00	1.0	0	1.00	1			
Underhand Bowling	g 1	.00	1.00) 1.	.00	1		
avg / total	1.00	1.0	0	1.00	10			

For Dynamic Time Wrapping, I calculated a euclidean distance using it. I should use a for loop on all distance to find the closest one - which is the prediction gesture

Overall, the assignment is very challenging for me. I spent quite a lot time understanding the frequency analysis, and eventually chose to visualize Fourier transform. Another problem is the integration of multi-feature into SVM. The data structure of SVM input is complicated to me. I spent several hours on debugging the training data structure, testing data structure, and feature inputs.

Since I have no experience with machine learning, or data science before, I learned a lot from the basics to high level concepts. For instance, how data visualization works in python and what kinds of visualization should we choose are basic but useful - since data is becoming a common design material nowadays. I also gained practical understanding of model based machine learning - how they train and test, how to perform cross validation evaluations on them.

Link to work: https://github.com/ZFengyi/HAI