$P(x_1 \le X < x_2) = F(x_2) - F(x_1)$ F(x) = F(x - 0), где $F(x - 0) = \lim_{y \to x = 0} F(y)$; т.е. Φ – непрерывная слевя

Сформулировать персасъещие инсерстивб СВ, понятие выза распределяния. Сформулировать персасъещие интеррациям СВ и функции вызтипеття Сформулировать персасъещие и СВ, к михо пределение и следу по пределение и съемости пределение и съемости пределение п

Сформулировать опреждение испрерывной случайной величины. Записать основные свойства функции влютности распределения верои ностей НСВ,
1 Непрерывной называют СВ X, функцию распределения верои ностей НСВ,
1) Угл $f(n) \ge 0$ 2) $P(x_i \le X < x_j) = f_{x_i}^{x_i} f(x) dx$ 3) $f_{x_i}^{x_i} f(x) dx = 1$ 4) $P(x_i \le X < x_i + dx) = f(x) dx$ в точках непрерывности плотности распределения
5) P(X = x) = 0 для любого наперед заданного $x \in \mathbb{R}$.

Сформулировать определения //СВектора, понятие таблицы распределения двумерного СВектора. Сформулировать определения непрерывного СВектора и его функции плотности распределения перератионстві. / Двумерний скумайнай вектор (X.У) наимамог унисрепнямь, сели виждая и стумайнам кентим X и Являнско дякскур (X.У) наимамог унисрепнямь, сели виждая и стумайнам кентим X и Являнско дякскур (X.У) наимамог унисрепнямь, сели виждая и стумайнам кентим X и Являнско дякскур (X.У) на и в верхней строите перечислены в совмоляние занавают габлицу $X_1, \dots, X_D, \dots X_n$ (В X_n) на пересечения собота у 1 и строи хи измодитих варостивство, ра- $P(X = x_p Y = y_j)$ совместного осуществления соботий ($X = x_j \ln |Y = y_j|$). Также объячно добавляют строку P_1 и столоба P_2 на пересечения P_3 и за наимамог исперавивам, сели стеросечил P_3 и за наимамог исперавивам, сели стеросечил P_4 и за наимамог исперавивам, сели стеросечил P_4 на за наимамог исперавивам, сели стеросечил P_4 на за наимамог объять P_4 на P_4

Сформулировать определения непрерывного случайного вектора и его функции плотиости распределения нероятностей. Записать основные свойства функции илитиости распределения нероятностей. Записать основные свойства функции илитиости распределения 1 можно пределения в виде сходинетося вереверення распределения распределения распределения в пиде сходинетося несобственного интеграват $F(x_1, \dots, x_n) = f_{-x_n} - f_{(x_1, \dots, x_n)} + f_{(x_n, \dots, x_n)} = f_{-x_n} - f_{(x_n, \dots, x_n)} + f_{(x_n, \dots, x_n)} = f_{(x_n, \dots, x_n)}$ анализот соместной политиостью распределения СВ Кіхора (X1, ...Xn), $F(x_1, \dots, x_n) = \frac{F(x_1, \dots, x_n)}{x_n, x_n} = \frac{F(x_1, \dots, x_n)}{x_n, x_n}$

 $\begin{aligned} f(x,y) &\geq 0 \\ P(a_1 < X < b_1, a_2 < Y < b_2) &= \int_{a_1}^{b_1} dx \int_{a_2}^{b_2} f dy \\ \int_1^\infty \int_1^\infty f(x,y) dx dy &= 1 \\ P(x < X < x + A_2, y < Y < y + \Delta y) &\geq f(x,y) \Delta x \Delta y \\ P(X = x, Y = y) &= 0 \\ P(X,Y) &= 0 \end{pmatrix} \int_1^\infty f(x,y) dx dy \\ f_1(x) &= \int_1^\infty f_{1/2}(x,y) dy \\ f_2(y) &= \int_1^\infty f_{1/2}(x,y) dy \end{aligned}$

Сформулировать определение независимых СВ. Сформулировать их свійства, Сформулировать определение поварно независимых СВ и СВ, независимых в смонхиньсти . «СВ х и У назависимых в смонхиньсти . «СВ х и У назависимых праспределения $F_{R_1}(x)$ у валечем произведением одномерних функций распределения $F_{R_1}(x)$ у $= F_{R_2}(x) = F_{R_1}(x)$, (x) . «СВ XII. Х.м. задавнием одном вероитностном пространенть, изъвляютсям сведением одном вероитностном пространенть, изъвляютсям изъявлениями в соволущности, сели $F_{R_1}(x) = F_{R_2}(x)$, и $F_{R_3}(x)$, недависимым попарво, если $V_{L_1} = T_{R_1}(x) = F_{R_2}(x)$, и $F_{R_3}(x)$ недависимых СВ xту), иснависимыми попарию, сели v_1 , $j=v_1,v_2,\cdots,v_{j+1},\cdots,v_{j+1}$. СВ X и X иснависимых Y иснависимых Y иснависимых Y иснависимых Y и Y иснависимых Y и Y и Y иснависимых Y и Y

1)

2)

X и Y инсависном \Leftrightarrow $\forall X_1, X_2, Y_1, Y_2 \in \mathbb{R}$ $\{X \mid S \mid X \leq X\}, \{y \mid Y \leq Y \leq y \}\}$ инсависном X и Y инсависном \Leftrightarrow $\forall M1, M2 \ (x \in M1), \{Y \in M2\}$ инсависном, r_i де M —промежутки, либо объединения ромежутков $F_i = X_i =$ 3)

4)

Новитие условного распретеления "Показать формузу для вычисления условного раза распретеления санов компоненты дизменяюте дистретите С Вектора вид условных тор, дотов достовного дистретите С Вектора вид условных тор, дотов достовного дистретите с Вектора вид условного дистретите меняющих должного дистретите дистрет $\frac{1}{N_{p}}$, настор вероизпостен $\frac{1}{N_{p}}$, иле условных распределением с К в Три Пуста (XV) — передавиный СВ-кгор. Условной училищёй распределения СВ X при условии Y=y называется отображение $F_{i}(x|Y=y)=F(X-x|Y=y)$. Условной плютностью распределения СВ X при условии Y=y называется функция $f_{i}(x|Y=y)=\frac{f(xy)}{12}$ $f_{i}(x,y)$ — совместива илогичества распределения СВ-ктора.

Сформулировать определение везависимых случайных величин. Сформулировать критерий независимости люх СВ в терминах условных распределений .

— СВ X и Уназывают независимолии если совмества функция распределения $F_D(\mathbf{x}y)$ = $F_{\mathbf{x}}(\mathbf{x})F_{\mathbf{x}}(\mathbf{y})$ =

Понятие скальярной функции случайного векторного аргумента, Дохавать формулу для нахождения инчения функции распределения СВ Y, функционьно дависаней от случайных веними Y in Y. 1 (Уус. СК, X), Y = CRESTOR (X), Y = CRESTOR $\iint_{D(y)} f(x_1, x_2) dx_1 dx_2$

Сформульнровать и доказать теорему о формулае свертки. Теорема: пусть (X,Y) - CB-сктор, веперывный и невывенный, $a \ge x + Y$. Тогда $f_{\ell}(x) = \int_{0}^{t} f_{\ell}(x) f_{\ell}(x-x)$ - $d_{\ell}(x) = \int_{0}^{t} f_{\ell}(x) f_{\ell}(x-x)$ - $d_{\ell}(x) = \int_{0}^{t} f_{\ell}(x) f_{\ell}(x-x)$ - $d_{\ell}(x) = \int_{0}^{t} f_{\ell}(x) f_{\ell}(x) dx dy = \int_{0}^{t} f_{\ell}(x) f_{\ell}(x) f_{\ell}(x) f_{\ell}(x)$ - $f_{\ell}(x) f_{\ell}(x) f_{\ell}(x) f_{\ell}(x) f_{\ell}(x)$ - $f_{\ell}(x) f_{\ell}(x) f_{$ $\int_{-\pi}^{\pi} f_X(x) f_Y(\mathbf{z}-x) dx$. Выражение $(f1*f2)(y) = \int_{-\pi}^{\pi} f1(x1) f2(y-x) dx$ называется сверткой функций f1,f2.

Сформулировать определение математического ожидания СВ (дискретный и интеррывный случая). Записать формулир вычисления МО функции от СВ. Сформулировать свойства МО и его механический смысь, -1, СВС МО можний от СВ. Сформулировать свойства МО и его механический смысь, -1, СВС Митематический ожиданием СВ Х называется число $M[X] = \sum_{i=1}^{N} p_i x_i$, $p_i p_i = P[X = \chi]$, x_i пофестает изможено всех заничий X. Н.ЕВ. математический ожиданием СВ Х называется число $M[X] = \sum_{i=1}^{N} f(x) dx_i$, $r_i e(x)$, —плотность распределения НСВ X | • Если X - СВ, ϕ R = R - слагарива функции r_i мо $M(\phi(x)) = \sum_{i=1}^{N} \rho_i (x) j x_i T$ (r_i) месанический смысь математического ожидание въдает х 0 – плотр такости для этого стеряли. В случае НСВ, (с) можно интерпериоровать как оплотностью бесковечного стеряли. В случае НСВ, (с) можно интерпериоровать как оплотностью бесковечного стеряли. В случае НСВ, (с) можно интерпериоровать как оплотностью бесковечного стеряли. В случае НСВ, (с) можно интерпериоровать как оплотностью бесковечного стеряли. В случае НСВ, (с) можно интерпериоровать как оплотностью бесковечного стеряли. В случае НСВ, (с) можно интерпериоровать как оплотностью бесковечного стеряли. В случае НСВ, (с) можно интерпериоровать как оплотностью бесковечного стеряли. В случае НСВ, (с) можно интерпериоровать как оплотностью бесковечного стеряли. В случае НСВ, (с) можно интерпериоровать как оплотностью бесковечного стеряли. В случае НСВ, (с) можно интерпериоровать как оплотностью бесковечного стеряли. В сременения объекты с предменения объекты с предменения с пре

MO: Если X принимает значение x0 с вероятностью 1 (т.е. не является CB), то Mx=x0, M[2X+b] = aM[X] + b M[X+Y] = MX+MY Если X и У пенаненомые, то M[XY] = MXMY

Сформулировать определение дисперсии СВ. Записать формулы вызчисаемия дисперсии в дискретивы и исперсии в дискретивы и исперсии в дискретивы и исперсии в дискретивы и исперсии в десемент дес

ва дисперени: Если СВ X принимает всего одно значени С с вероятностью 1, то DC = 0 $D[aX+b]=a^2DX$ DX = $M[X^2]-(MX^2)$ D[X+Y]=DX+DY, если X и У – нехависимые CB.

Сформулировать определения начального и исигрального моментов СВ. МО и дисперели как моменты, Сформулировать определение кваитили и мещеним СВ - Начальним моментов К- то порядка СВ X изываном замежителеское ожидание К-я степени этой СВ: $m_k = M(X^1) = \sum_i x_i^2 p_i$. • | Пертральным моментов К-го порядка X изыванами такомулировать α : «Тестение васичных $X^2 = X - MX$: $m_k^2 = M(X - MX)^2$). | • "Матехнитеское ожидание СВ X — сомпланет с моментом первог СВ X урожна в панявляется чиское α , определение осотноснием РК ($x = MX^2$) $x_i = MX^2$ ($x = MX^2$) | • "Матехнитеское ожидание СВ X — сомпланет с моментом первог СВ X урожна выявляется чиское $x = MX^2$ ($x = MX^2$) $x = MX^$

Сформулировать определение ковариании СВ. Записать формулы вычис ления ковариании в дискретиом и непрерывном случаях. Сформулировать снойства ковариания В Аискретиом и непрерывном случаях. Сформулировать снойства ковариания СВ. Им Вильанается число слож (X, Y) = M(X ~ m1)(Y ~ m2)(μ , re m1-MX, m2-MY. Если X, Y ~ ДсВ, то ковариании слог (X, Y) = $\int_{-\infty}^{\infty} (x - MX)(y - MY) \rho_{X}(y) dx dy$.

Свойства ковариании:

1) cov(X, X) = DX2) cov(X, X) = 0, celu X, Y ~ нелависимые СВ
3) $Ecni Y_1 = a_1 X_1 + b_1$, $Y_2 = a_2 X_2 + b_2$, $Y_3 = a_3 X_2 + b_3$, $Y_3 = a_3 X_3 + b_3$, $Y_3 = a_3$