High level Content-based image retrieval

Silvério Pereira, 76505 Pedro Santos, 76532

Introduction

Development of an application to do image retrieval by extracting high level information from the images.

The application is divided in two parts:

Indexing set of images

What do we use to score images?

- Object detection
- Visual Saliency
- Face recognition
- Object Character recognition

Yolov3

YOLO (You Only Look Once) is a state of the art object recognition algorithm.

Divides the image in grid cells and applies a CNN classifier to each, each grid cell has a maximum of

objects it can predict.

Non-max suppression

Tunable parameters

- Confidence threshold
- Non-max suppression threshold (IoU)
- Max number of objects in a cell grid
- Size of images

Visual Saliency

Relevance Calculation

One Shoot Face Recognition

OCR (optical character recognition)

- The function verifyText() is called and it returns a list with the words detected in the given image;
- Verification if it was detected any text in the image;
- Removing Special Characters;
- Performing Stemming;

```
sell: [(image1.jpg,1),(image2.jpg,1),(image3.jpg,1)]
starbucks:[(image1.jpg,2),(image4.jpg,1)]
open: [(image3.jpg,4),(image4.jpg,1),(image5.jpg,4)]
```


- It is not easy... it is necessary to have some installed dependencies and to do and manipulate configurations files.
- To be able to see the results of the configuration of the network is necessary to wait several hours.
- Collect the labeled data
- The Darknet implementation is used to train the data using the GPU
- It is necessary to have two files, one with the paths to the images of the training set and another to the test set.

- Somo lines in file detector.c were changed to save the intermediate weights more frequently.
- Download the pre-trained model from darknet
- Create some files to configure Darknet and set the architecture of the network

rute@rute-X550JK:~/Documents/cadeiras/vc/progs/darknet\$./darknet detector train
 obj.data cfg/yolov3-tiny.cfg backup/yolov3-tiny_5000.weights > /home/rute/Docum
 ents/cadeiras/vc/vc1819-76505-76532/project/proj1/training/log.txt

```
rute@rute-X550JK:~/Documents/cadeiras/vc/progs/darknet$ ./darknet detector test obj.data cfg/yolov3-tiny.cfg backup/yolov3-tiny_5000.weights data/tree1.jpg
        filters
                size
                                  input
             16 3 x 3 / 1 416 x 416 x 3
                                           -> 416 x 416 x 16 0.150 BFLOPs
   1 max
                2 x 2 / 2 416 x 416 x 16 ->
                                                208 x 208 x 16
   2 conv
   3 max
                                                104 x 104 x 32
                           104 x 104 x 32
   4 conv
                                           -> 104 x 104 x 64 0.399 BFLOPs
   5 max
                2 x 2 / 2 104 x 104 x 64
   6 conv
                            52 x 52 x 64
                                                52 x 52 x 128 0.399 BFLOPs
   7 max
                            52 x 52 x 128
                2 x 2 / 2
  8 conv
           256 3 x 3 / 1
                                                26 x 26 x 256 0.399 BFLOPs
  9 max
                2 x 2 / 2
                            26 x 26 x 256 ->
                                                13 x 13 x 256
            512 3 x 3 / 1
                            13 x 13 x 256
  10 conv
  11 max
                2 x 2 / 1
                            13 x 13 x 512
  12 conv 1024 3 x 3 / 1
                            13 x 13 x 512
                                                13 x 13 x1024 1.595 BFLOPs
           512 3 x 3 / 1 13 x 13 x 256 ->
                                                13 x 13 x 512 0.399 BFLOPs
  15 conv
            18 1 x 1 / 1 13 x 13 x 512 -> 13 x 13 x 18 0.003 BFLOPs
  16 volo
  17 route 13
  18 conv 128 1 x 1 / 1
                           13 x 13 x 256 ->
                                                13 x 13 x 128 0.011 BFLOPs
  19 upsample
  20 route 19 8
  21 conv 256 3 x 3 / 1
                            26 x 26 x 384 ->
                                                26 x 26 x 256 1.196 BFLOPs
 22 conv
            18 1 x 1 / 1 26 x 26 x 256 -> 26 x 26 x 18 0.006 BFLOPs
  23 volo
Loading weights from backup/yolov3-tiny 5000.weights...Done!
data/tree1.jpg: Predicted in 0.027182 seconds.
tree: 93%
tree: 90%
tree: 80%
tree: 51%
rute@rute-X550JK:~/Documents/cadeiras/vc/progs/darknet$
```


Indexing Data flow

Search Data flow

Ranking

TABLE I
OBJECT WEIGHT CALCULATION

y	\hat{y}	cost
0	0	0
0	> 1	
> 1	0	$1 + log(y) * e^{rel(y)}$
> 1	> 1	$ log(y) - log(\hat{y}) * e^{ rel(y) - rel(\hat{y}) }$

TABLE II FACE DISCOUNT CALCULATION

	-10
0.6 < d < 1	min(log((d-0.6)*2.5)), -10)
d > 1	0

Results

Query: "nokia"

Query

Results

END