Yusuke Miura

( joint work with Tatsuya Maruta and Koji Imamura )

Osaka metropolitan University

#### **ABSTRACT**

An n-set B in PG(r, q) is a k-blocking set if every (r-k)-space in PG(r, q) meets B in at least one point.

Bono et al.(2021) proved that there are exactly six non-trivial minimal 2-blocking sets in PG(4, 2) up to projective equivalence.

#### **ABSTRACT**

We consider the non-trivial minimal 2-blocking sets in PG (5,2) and their generalizations.

We denote by PG (r,q) the projective geometry of dimension r over the field of q elements  $\mathbb{F}_q$ .

A *j*-space is a projective subspace of dimension j in PG (r, q)

The 0-spaces, 1-spaces, 2-spaces, 3-spaces and (r-1)-spaces are respectively called points, lines, planes, solids and hyperplanes.

A set of points in PG (r,q) meeting every (r-k)-space is called a k-blocking set.

In this presentation, we call this set k-block simply.

A k-space in PG (r,q) is the smallest k-block and a k-block containing a k-space in PG (r,q) is called trivial.

Let  $P_1, P_2, \dots P_{r+1}$  be r+1 points of PG (r,2) in general position.

We call the (r+2)-set  $\{P_1, P_2, ..., P_{r+1}, \sum_{i=1}^{r+1} P_i\}$  a skeleton in PG (r, 2).

An elliptic quadric in PG(3,2) is a skeleton.

Denote by  $Cone(\Pi_k, \beta)$  a cone with vertex a k-space  $\Pi_k$  and base  $\beta$  in an s-space  $\Delta$  skew to  $\Pi_k$ .

Let Q be a point of a minimal k-block B in PG(r, q). An (r - k) – space  $\Pi$  is called a tangent of B at Q if  $\Pi \cap B = \{Q\}$ .

B is minimal if every point of B has a tangent.

Govaerts and Storme proved the following.

#### Theorem 1

(1) Any smallest non-trivial 1-block in PG (r, 2),  $r \ge 3$ , is an elliptic quadric in a solid in PG (r, 2).

(2) Every non-trivial minimal 2-block in PG (3,2) is the complement of an elliptic quadric.

(3) Any smallest non-trivial k-block in PG (r, 2),  $r \ge 3$ , with  $2 \le k \le r - 1$  is Cone( $\Pi_{k-3}$ , T) where T is the set of 10 points consisting of the complement of an elliptic quadric in a solid  $\Delta$ .

Six non-trivial minimal 2-blocking sets in PG (4, 2) proved by Bono et al. (2021) are the followings.

(a)  $S_{10} = \Delta \setminus \mathcal{E}_3$  with some solid  $\Delta$  and a skeleton  $\mathcal{E}_3$  in  $\Delta$ .

$$\bullet \notin S_{10}$$



(b)  $S_{11}$ : the cone with vertex a point P and base  $\mathcal{E}_3$  in  $\Delta$  not containing P.



(c)  $S_{12} = (\delta_1 \setminus \{Q_1\}) \cup (\delta_2 \setminus \{Q_2\}) \cup \{Q_1 + Q_2\}$  where  $\delta_1$ ,  $\delta_2$  are planes meeting in a point P and  $Q_i \in \delta_i \setminus \{P\}$  for i = 1,2.



(d)  $S_{13} = (\{P\} \cup \delta_1 \cup \delta_2 \cup \delta_3) \setminus \{Q_1, Q_2, Q_3\}$  where  $Q_1, Q_2, Q_3$  are not on a line, L is a line which is skew to  $\delta = \langle Q_1, Q_2, Q_3 \rangle$ ,  $\delta_i = \langle Q_i, L \rangle$  and  $P = Q_1 + Q_2 + Q_3$ .



**○** 
$$\in S_{13}$$

(e)  $S'_{13} = \bigcup_{i=1}^4 (L_i \cup \{P + Q_i\})$  where  $\Delta$  is a solid,  $R_1$  is a point out of  $\Delta$ , and  $\{Q_1, Q_2, Q_3, Q_4, P\}$  is a skeleton in  $\Delta$ .

The lines  $L_j$  's are defined as  $L_1 = \{P, R_1, R_1' = P + R_1\}$  and

$$L_j = \{P, R_j = R_{j-1} + Q_{j-1}, R'_j = R'_{j-1} + Q_{j-1}\} \text{ for } j = 2,3,4.$$



(f)  $S_{15} = \mathcal{P}_4$  is a parabolic quadric.

For a given set B, a line l is called an i-line of B if  $|B \cap l| = i$ .

An *i*-plane, *i*-solid and so on are defined similarly.

We want to find a set B satisfying the following conditions.

- $\cdot |B| = n$
- $B_1 \cap \Delta \neq \emptyset$  for any solid  $\Delta$  (2- block)
- There exists a 1-solid  $\Delta$  of P for any P  $\in$  B (minimal)
- B contains no plane. (non-trivial)
- Rank B = 6

```
Let s, t, u, \delta, \Delta, a_i, b_i, c_k and H be the followings.
s = max\{s \mid \exists H: s - \text{hyperplane}\}.
t = max\{t \mid \exists \Delta : t-solid\}.
u = max\{ u \mid \exists \delta : u-plane \}.
\delta: u- plane, \Delta: t- solid, H: s- hyperplane.
a_i = \#\{i - hps\}, b_i = \#\{j - solids\}, c_k = \#\{k - planes\}.
And \forall P \in B \cap \Delta, \Delta \subset H_i(H_1, H_2, H_3 : hyperplanes)
```

First, we consider range of n.

For  $n \le 12$ , Koji Imamura did an exhaustive computer search and there is no 2-block in PG(5,2).

Considering the 0-planes in 1-solds, we get  $n \le 21$ .

From the above,  $13 \le n \le 21$ .

Next, we consider range of t.

Since B is minimal and since two different solids meet in a line or plane in PG (5,2),

for  $\forall P \in B \cap \Delta$ , there is a 1-line through P in  $\Delta$ .

Since B is non-trivial,  $t \leq 12$ .

For t = 12,  $\Delta \setminus B = line$  and there is no 1-line through P in  $\Delta$ , a contradiction.

For t = 10 or 11, if  $\Delta \setminus B$  contains a *line*, then it is same with t = 12.

For t = 10, assume  $\Delta \setminus B$  contains no *line*. Then B is complement of skeleton in  $\Delta$  and rank B is 4.

Therefore  $t \leq 9$ .

For t = 4, there is no  $[7,5,3]_2$  code, so  $s \le 6$  and then  $n \le (6-4) \times 3 + 4 = 10$ .

For t = 5, there is no  $[8,5,3]_2$  code, so  $s \le 7$  and then  $n \le (7-5) \times 3 + 5 = 11$ .

These two are not satisfying  $13 \le n$ , thus  $6 \le t$ .

From the above,

$$13 \le n \le 15 \Longrightarrow 6 \le t \le 9$$
.

$$16 \le n \le 21 \Longrightarrow 7 \le t \le 9$$
.

There are four different 6-solids.

- (a1)  $\delta_5 \cup \{P\}$  (5 plane  $\delta_5$ ,  $P \notin \delta_5$ ).
- (a2)  $\Delta \setminus B = \delta \cup \{P_1, P_2\}$  (0-plane  $\delta$ , 0-pts  $P_1, P_2$ ).
- (a3) skeleton  $\cup$  {P} (3-line is only one through P).
- (a4)  $l_1 \cup l_2$  (  $l_1 \cap l_2 = \emptyset$ ).

There are five different 7-solids.

- (b1)  $\delta_6 \cup \{P\}$  (6-plane  $\delta_6, P \notin \delta_6$ ).
- (b2)  $\Delta \setminus B = \delta \cup \{P\} (0\text{-plane } \delta, 0\text{-pt } P \notin \delta).$
- (b3)  $\delta_5 \cup \{P_1, P_2\}$  (5-plane  $\delta_5$ , line  $\langle P_1, P_2 \rangle$  meets  $\delta_5$  at 0-pt.)
- (b4) 3 lines meeting in a point and each line are not coplanar.
- (b5)  $l_1 \cup l_2 \cup \{P\}$  ( $l_1, l_2$ : skew lines,  $P = P_1 + P_2, P_i \in l_i$ ).

There are two different 8-solids.

- (c1)  $\Delta \setminus B = l_1 \cup l_2 \cup \{P\}$  (complement of (b5)).
- (c2) 6-plane and 5-plane meeting in a 3-line.

There are two different 9-solids.

$$(d1) \Delta \setminus B = l_1 \cup l_2 (l_1, l_2: \text{skew lines}).$$

(d2) Two 6-planes meeting in a 3-line.

We explain how to add (n - t) points to t-solid  $\Delta$  and find B with the aid of a computer.

We assume  $H_1 = [0,0,0,0,1,0]$ ,  $H_2 = [0,0,0,0,0,1]$ ,  $H_3 = [0,0,0,0,1,1]$ .

Let  $n_i$  be the number of points of B selected from  $H_i \setminus \Delta$ . We may assume  $n_1 \ge n_2 \ge n_3$ .

```
For example, for n=13 and |B \cap \Delta|=6
We need to add (n-t)=7 points with n_1 \geq n_2 \geq n_3. (n_1, n_2, n_3)=(3,3,1),(3,2,2) (4,3,0),(4,2,1), (5,2,0),(5,1,1), (6,1,0),
```

We need to check  $7 \times 4$  (different 6-solids) = 28 casess.

This table shows the number of non-trivial minimal 2-blocks in PG(5,2).

| size | (s,t,u)  | #  |
|------|----------|----|
| 13   | (9,7,6)  | 3  |
| 14   | (10,8,6) | 2  |
| 15   | (10,7,5) | 1  |
|      | (11,7,5) | 1  |
|      | (10,8,6) | 1  |
|      | (11,8,6) | 6  |
|      | (11,9,6) | 12 |

| size | (s,t,u)  | #  |
|------|----------|----|
| 16   | (10,7,5) | 1  |
|      | (11,8,5) | 1  |
|      | (12,8,5) | 1  |
|      | (12,9,6) | 30 |
| 17   | (12,8,5) | 3  |
|      | (13,8,5) | 2  |
|      | (13,9,5) | 4  |

| size | (s,t,u)  | # |
|------|----------|---|
| 18   | (12,8,5) | 6 |
|      | (12,8,6) | 2 |
|      | (12,9,6) | 1 |
|      | (14,9,5) | 2 |
|      | (14,9,6) | 1 |
| 19   | (13,9,5) | 3 |
| 20   | (12,8,5) | 1 |

 $s = max\{s \mid \exists H: s - \text{hyperplane}\}, \quad t = max\{t \mid \exists \Delta: t - \text{solid}\}, \quad u = max\{u \mid \exists \delta: u - \text{plane}\}$ 

#### **GENERALIZATIONS**

For n = 13, there are three different 2-blocks in PG (5,2). The followings are figures of the 2-blocks B of size 13.

- $\bullet \in B$
- ∉ *B*



- $(b) \bullet \in B$ 
  - ∉ *B*



- $(c) \bullet \in B$ 
  - ∉ *B*



We construct a minimal k-block B in  $\Sigma = PG(r, 2)$  from two disjoint k-spaces  $B_1$  and  $B_2$ . For a point  $P_1$  of  $B_1$  and  $T \subset B_2$ , we denote by  $(B_1; P_1) + (B_2; T)$  the set

 $(B_1 \setminus \{P_1\}) \cup (B_2 \setminus T) \cup \{P_1 + R \mid R \in T\}$ 

Theorem 2

Let  $B_1$ ,  $B_2$  be k-spaces in  $\Sigma = PG(r, 2)$  with  $B_1 \cap B_2 = \emptyset$ , r = 2k + 1.

Let  $P_1$  be a point of  $B_1$  and T be a subset of  $B_2$ ,  $T \neq B_2$ .

Then,  $B = (B_1; P_1) + (B_2; T)$ 

is a non-trivial minimal k-block in  $\Sigma$ .

## **FUTURE WORK**

The figure of the 2-block of size 14 is more complicated than the figures of the three 2-blocks of size 13.



### References

- [1] A. Blokhuis, P. Sziklai, T. Szönyi, Blocking sets in projective spaces, in: Current Research Topics in Galois Geometry, Nova Sci. Publ., New York, 2010, pp. 63-86.
- [2] N. Bono, T. Maruta, K. Shiromoto, On the non-trivial minimal blocking sets in binary projective spaces, Finite Fields Appl. 72(2021), 101814
- [3] P. Govaerts, L. Storme, The classication of the smallest nontrivial blocking sets in PG(n, 2), J. Combin. Theory Ser. A 113 (2006) 1543-1548.

- (b1) 6-plane  $\delta_6 + P$  (P  $\notin \delta_6$ )
- (b2)  $\Delta \setminus B = \delta + P$  (0-plane  $\delta$ , 0-pt P  $\notin \delta$ )
- (b3) 5-plane  $\delta_5 + P_1 + P_2$  (line  $\langle P_1, P_2 \rangle$  meet  $\delta_5$  at 0-pt.
- (b4) 1点を共有する同一plane上にないline3本
- (b5)  $l_1 + l_2 + P(l_1, l_2: \text{ skew lines, } P = P_1 + P_2, P_i \in l_i)$
- (b4) 3 lines having same one point and each line are not on same planes.

We explain how to add (n-t) points to t-solid  $\Delta$  and find B. We define H1=[0,0,0,0,0,1,0], H2=[0,0,0,0,0,1], H3=[0,0,0,0,1,1], and Let ni be points added to t-solid  $\Delta$  from Hi. Then we can consider as  $n_1 \ge n_2 \ge n_3$ .

- We consider projective transformation like  $(x_1, x_2, x_3, x_4, x_5, x_6) \rightarrow (x_1, x_2, x_3, x_4, x_6, x_5)$  and
- $(x_1, x_2, x_3, x_4, x_5, x_6) \rightarrow (x_1, x_2, x_3, x_4, x_5, x_5 + x_6)$
- [0,0,0,0,0,1] [0,0,0,0,1,1] [0,0,0,0,1,0]

$$(a) \in \{P_1 + R \mid R \in T\} \subset B \ f : B_1 \to B_2 \mathbb{F}_q \ S_{10}$$
 $(r,2) B = (B_1; P_1) + (B_2; T) (B_1 \setminus \{P_1\}) \cup (B_2 \setminus T)$ 
 $\Sigma = PG \ (r,2) \ j - space \ \langle P_1 \rangle$ 
 $\in \not \in B$ 
 $\Sigma$ 
 $r = 2k + 1$ 
 $B_1 \cap B_2 = \emptyset$ 
 $\not =$ 
 $B = (B_1; P_1) + (B_2; T)$ 
 $Q$ 
 $r - k = k + 1$ 
游明朝

- • |B|=n
- • B  $\cap \Delta \neq \emptyset$  for any solid  $\Delta$  (2-block)
- • there exists a 1-solid  $\Delta$  of P for any P  $\in$  B (minimal)
- • B contains no plane (non-trivial)
- • rank B = 6

```
s = max\{ s \mid \exists H: s - \text{hyperplane} \}.

t = max\{ t \mid \exists \Delta: t - \text{solid} \}.

u = max\{ u \mid \exists \delta: u - \text{plane} \}.
```

### Lemma 1

Let  $\Pi$  and  $\Pi'$  be disjoint subspace of PG (r, 2). For any subset S of  $\Pi'$  and a point P of Cone ( $\Pi$ , S) with  $P \notin \Pi \cup S$ , there is a unique line through P in the cone.

# コピペ用

- $13 \le n \le 15$   $0 \ge 6 \le t \le 9 \ge 5$   $0 \ge n \ge 16$   $0 \ge 6 \ge t \le 9 \ge 5$
- (c1)  $\Delta \setminus B = l_1 + l_2 + P$  ((b5)の補集合)  $\Delta \setminus B = l_1 + l_2 + P$  (complement of (b5))
- (c2) 3-lineを共有する 6-plane と 5-plane
- 6-plane and 5-plane having same one 3-line.
- (d1)  $\Delta \setminus B = l_1 + l_2$  ( $l_1, l_2$ : skew lines)
- (d2) Two 6-plane having same one 3-line.
- {P} U

### Sakoda Lemma

Let  $\Pi_s$  and  $\Pi_s'$  be disjoint s-space of PG (r, q). Then there is a s-space in  $(\Pi_s \vee \Pi_s') \setminus (\Pi_s \cup \Pi_s)$ .

### minimal

Let Q be a point of a minimal k-block B in  $\Sigma = PG(r, 2)$ .

An (r-k) – space  $\Pi$  is called a tangent of B at Q

if  $\Pi \cap B = \{Q\}$ .

B is minimal if every point of B has a tangent.

proof

Since r - k = k + 1, every (r - k)-space of  $\Sigma$  meets  $B_1$  and  $B_2$  in at least one point.

Hence, B is a k-block in  $\Sigma$  since  $\{P_1 + R \mid R \in T\} \subset B$ . (k-block)

It is obvious that B contains no k-space. (non-trivial)

For any point Q of B, we shall show the existence of a tangent of B at Q.

For an isomorphism  $f : B_1 \to B_2$ , let  $B_1 + f(B_1) := \{P + f(P) \mid P \in B_1\}$ .