

دانسکده مهندسی کامپیوتر

گزارش درس مبانی هوش محاسباتی

عنوان گزارش:

تمرین سوم CNN

ارائهدهندگان:

فرزانه آقازاده زينب جنتي فاطمه نجفي

استاد درس: دستیاران درس:

دکتر حسین کارشناس رضا برزگر

علی شاہ زمانی

آرمان خليلي

نيم سال دوم ۱۴۰۳۱۴۰۴

فهرست

٣	شرح كد
٣	تعریف معماری شبکه CNN
۴	ایجاد مدل، تابع هزینه و بهینهساز
۴	فرآيند آموزش
۵	تحليل نتايج
9	مقايسه
۸	منابع

```
import torch
                            import torchvision
                            import torchvision.transforms as transforms
                            import torch.nn as nn
                            import torch.nn.functional as F
                            import torch.optim as optim
                            کتابخانههای اصلی PyTorch برای پیادهسازی شبکه عصبی کانولوشنی ایمپورت شدهاند.
      transform = transforms.Compose([
           transforms.ToTensor(),
           transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
                                           () ToTensor تصاویر را به تانسورهای PyTorch تبدیل می کند.
                                   ()Normalize مقادیر پیکسلها را از محدوده [۰٫۱] به [-۱٫۱] نرمال می کند.
torchvision.datasets.CIFAR10(root="D:\\ frzna \\Projects\\PycharmProjects\\CN
N\\cifar-10-batches-py", train=True, download=True, transform=transform)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
                     مجموعه داده CIFAR-10 را دانلود و بارگذاری می کند (۶۰۰۰۰ تصویر x32۳۲ رنگی در ۱۰ کلاس).
trainloader = torch.utils.data.DataLoader(trainset, batch size=64,
testloader = torch.utils.data.DataLoader(testset, batch size=64,
                              دادهها را به بچهای ۶۴ تایی تقسیم می کند و هر بار به صورت تصادفی مخلوط می شود.
                                                                تعریف معماری شبکه CNN
    def __init__(self):
```

1)

trainset =

shuffle=True)

shuffle=False)

class CNN(nn.Module):

super(CNN, self). init () self.conv1 = nn.Conv2d(3, 32, 3)self.pool = nn.MaxPool2d(2, 2)

```
self.conv2 = nn.Conv2d(32, 64, 3)
         self.fc1 = nn.Linear(64 * 6 * 6, 128)
         self.fc2 = nn.Linear(128, 10)
     def forward(self, x):
         x = self.pool(F.relu(self.conv1(x))) # Conv1 \rightarrow ReLU \rightarrow Pooling
         x = self.pool(F.relu(self.conv2(x))) # Conv2 \rightarrow ReLU \rightarrow Pooling
         x = torch.flatten(x, 1) # Flatten
         x = F.relu(self.fc1(x)) # FC1 \rightarrow ReLU
         x = self.fc2(x)
         return x
                                   یک شبکه کانولوشنی با دو لایه کانولوشن و دو لایه تماممتصل تعریف شده است.
                                                  و مسیر پردازش داده از ورودی تا خروجی را مشخص شده:
                                                              ۱. کانولوشن → Pooling →
                                                              ۲. کانولوشن → Pooling →
                                                              ۳. تبدیل به بردار یکبعدی (Flatten)
                                                                    ReLU \rightarrow  لايه تماممتصا. *
                                                                             ۵. لايه خروجي
                                                                 ایجاد مدل، تابع هزینه و بهینهساز
model = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
                                                                      مدل CNN ساخته میشود.
                                  از loss function کراس آنتروپی برای طبقهبندی چندکلاسه استفاده شده است.
                                                 بهینهساز Adam با نرخ یادگیری ۲۰۰۰۱ تنظیم شده است.
                                                                                فرآيند آموزش
for epoch in range(10):
     running loss = 0.0
     for i, data in enumerate(trainloader, 0):
          inputs, labels = data
         optimizer.zero grad()
         outputs = model(inputs)
         loss = criterion(outputs, labels)
         loss.backward()
         optimizer.step()
```

```
running loss += loss.item()
    print(f'Epoch {epoch + 1}, Loss: {running loss / len(trainloader)}')
correct = 0
total = 0
with torch.no grad():
    for data in testloader:
        images, labels = data
        outputs = model(images)
        , predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
print(f'Test Accuracy: {100 * correct / total}% in {total} images')
                                                         مدل روی دادههای تست ارزیابی میشود.
                                   بدون محاسبه گرادیانها (torch.no_grad) برای صرفهجویی در حافظه.
                                                       تعداد پیشبینیهای صحیح شمرده میشود.
                                                 دقت نهایی روی مجموعه تست محاسبه و چاپ میشود.
                                                                          تحليل نتايج
                    Epoch 1, Loss: 1.412473019126736
                    Epoch 2, Loss: 1.0414021530419664
                    Epoch 3, Loss: 0.8871514912304062
                    Epoch 4, Loss: 0.7716826744320447
                    Epoch 5, Loss: 0.6751528580094237
                    Epoch 6, Loss: 0.592101705539257
                    Epoch 7, Loss: 0.5118970723293931
                    Epoch 8, Loss: 0.44109894948847156
                    Epoch 9, Loss: 0.3722288070241814
                    Epoch 10, Loss: 0.3221115250607281
                    Test Accuracy: 71.79% in 10000 images
  1. Epoch 1: Loss = 1.412
                                           مقدار اوليه نسبتاً بالا، نشان دهنده شروع آموزش از نقطه تصادفي
  7. Epoch 5: Loss = 0.675 (~52% مروع %52)
                                                        پیشرفت سریع در یادگیری ویژگیهای پایه
```

```
۳. Epoch 10: Loss = 0.322 (~77% شروع %77)
```

مدل به خوبی همگرا شده و همچنان در حال بهبود است

الگوى كاهش Loss

کاهش سریع در اپوکهای اول (یادگیری ویژگیهای کلی)

کاهش آهستهتر در اپوکهای بعدی (یادگیری ویژگیهای ظریف)

نکته: اگر آموزش ادامه می یافت، ممکن بود مدل به Overfitting منجر شود

دقت ۷۱.۷۹:%

مدل توانسته است حدود ۷۲ درصد از تصاویر تست را به درستی طبقهبندی کند

مدلهای پیشرفتهتر معمولاً به دقت ۸۵-۹۵٪ میرسند

راههای بهبود:

افزایش عمق شبکه (اضافه کردن لایههای بیشتر)

استفاده از تکنیکهایRegularization

افزایش تعداد اپوکها با نظارت برOverfitting

تنظیم نرخ یادگیری (Learning Rate Scheduling)

مقايسه

شبکه یک لایه (Perceptron): فقط یک لایه وزن بین ورودی و خروجی

شبکه دو لایه: یک لایه پنهان + لایه خروجی

اتصالات کامل: هر نورون با تمام نورونهای لایه بعدی ارتباط دارد

محدودیتها برای دادههای تصویری:

۱. عدم حفظ ساختار مكانى: موقعیت پیكسلها در نظر گرفته نمیشود

۲. پارامترهای بسیار زیاد: برای یک تصویر x32 RGB۳۲:

ورودی: ۳۲×۳۲×۳ = ۳۰۷۲ نورون

 $1.0 \approx 0.17$ نورون $\sim 0.17 \times 0.17 \approx 0.1$ میلیون پارامتر!

٣. عدم تشخيص الگوهاي محلي: نمي تواند لبهها، بافتها و اشكال ساده را تشخيص دهد

شبکههای کانولوشنی (CNN)

ویژگیهای کلیدی:

۱. کانولوشن (Convolution):

فیلترهایی که روی تصویر حرکت میکنند و ویژگیهای محلی را استخراج میکنند

مثال: تشخيص لبهها، رنگها، بافتها

مزیت: پارامترهای مشترک (weight sharing) کاهش پارامترها

۲. لایه Pooling:

کاهش ابعاد با حفظ ویژگیهای مهم

معمولاً Max Pooling: بيشترين مقدار در هر ناحيه را نگه ميدارد

مزیت: کاهش حساسیت به جابجایی و چرخش جزئی

٣. سلسله مراتب ویژگیها:

لایههای اول: لبهها و اشکال ساده

لایههای میانی: ترکیب اشکال ساده

لایههای آخر: اشیاء پیچیده

مقايسه عملكرد:

CNN	پرسپترون چند لایه	ویژگی
بله	خبر	حفظ ساختار مكاني
عالى	ضعيف	تشخيص الگوهاى محلى
بهینه شده	بسیار زیاد	تعداد پارامترها
قوی (دقت حدود ۷۰–۹۵٪)	ضعیف (دقت حدود ۵۰٪)	عملکرد روی تصاویر
مقاوم	بسيار حساس	حساسیت به جابجایی تصویر

همانطور که درنتایج بخش های قبلی مشخص است در پرسپترونچند لایهی بخش چهارم بعد از ۵۰ ایپاک به دقت حدود ۵۰ درصد دست یافته ایم که هم از نظر زمانی و هم از نظر فضایی از سی ان ان بدتر عمل کرده و در نهایت به دفت کافی هم دست نیافته است.

چرا CNN برای تصاویر بهتر است؟

۱. محلینگری: هر فیلتر فقط یک ناحیه کوچک را میبیند

۲. اشتراک وزن: یک فیلتر برای کل تصویر استفاده میشود

۳. سلسله مراتب: یادگیری ویژگیها از ساده به پیچیده

جمعبندی:

برای دادههای ساختاریافته ساده (مثل جداول): شبکههای معمولی ممکن است کافی باشند

برای دادههای فضایی (تصاویر، ویدیو): CNN انتخاب بهتری است

منابع

chat.deepseek.com
chatgpt.com