Name: Anshuman Gaonsindhe

BITS ID No: 2023 ab 05 150
Section: 4.

Aus 1 a) Code Snippet for REF.

clef perform lef (matrix):

Converts a matrix to set with pivol

normalization

num-rows = len (matrix)

num_cols = len(matrix [0])

Lead = 0

for & in range (num-rows):

if lead > = num-cols:

记= 名.

While matrix [i] [lead]==0:

î + = 1

if i = z num-lows:

Lead = lead + 1

if Lead == num_lols:

Swap-rows (matrix, 1, 2) # Pivoting fun

pivot_value = matrix [r][lead]

for i in range (len (matrix [1])):

matrix[1][i] / = pivol_value

	Date
Name: Anshuman Gaonsindhe	
Bits ID: 2023 ab 05 150	
Section: Sec 4.	
1@ continued	
for j is range (2+1, if matrix[j][le	num-rous):
if matrix[j][le	ad] 1=0:
add mulipu	JE-10W-LUT-LUT
(matris	x, L, j, - matrix[j][leat]
,1,	
lead + = 1	
	0
# Pivoting function, swaps two	rows of matrix
det swap-rows (matrix matrix [104], matrix	, LOW 1 , LOW 2):
matrix [10W], matrix	x [row2]
= matrix[row 2], matrix [row]
* Elimination Function	
the add-multiple-of-row-to	- row (matrix,
Soulle	-row, Target-row, scalar);
	0
for i in range (len (m matrix [target-row][i] +=	alrese [target_row]):
malia Llargel-row List =	Slalar &
	natria [source-row][i]
Input	Output
Matrix A: Vector b:	REF:
3 1 4 6 8	1 0 1 2 20
8 6 5 1 8 2 -1 2 4	0 1 -1 -4 -3 -1
8 6 8 6 1	0 0 1 -2 -2 1
27276	0 0 0 3 3 0 0
// vijeta//	

-			92	
101	-0	1	/	

Name: Anshuman Gamsindhe Bits ID: 2023 ab 05 150 Section: 4. 1@ continued ... Code Snippet for RREP. det perform-rref (matrix): # Converts a matrix to let. perform-ref (matrix) # Perform REP first num-rows = len (matrix) for r in range (num_rows -1, -1, -1):

for j in range (r):

if matrix [j][r] ! = 0: add-multiple-of-row-to-row (matrix, e, j, - matrix [j][r]) if matrin[r][r] = 0 scale_row (matrix, 2, 1/matrix[2][1] # Scale The pivot to 1 def scale row (matrix, row, scalar): for is in range (len (matrix [row])): matrin [row][i] &= Scoler Dutput RREF: 1 0 0 0 7 0

/// vijeta //

Name: Anshuman Gainsindhe Bits IO: 2023 ab 05150 Scition: 4. Que 16) Code Suippet for pivot, non-pivot, particular sol and solution to Ax = 0. # Edentify Pivot Columns. on RREF matrix det identify-pivot-columns (matrix) pirot_cole = [] for i in range (len (matrin)); for j is range (len (matrin [0]):

if matrin[i][j] == 1 and all(matrin [k][j] == 0 for k is rangeli). pivot-cole apperd (j) non-pivot-role=[i for i is range [len(matrix[o]))
if i not is pivot_role] return pivot-cole, non-pivot-cole. Output Coput Matrix A: Vector b: Pirot Columns: 1 2 3 4 Non Pivot Cols: 10 1 10 RREFALL: /// vijeta ///

CLSAC S

return solution

Name: Anshuman Gaonsindle

Bits Id: 2023 ab 05 150

Scation: 4

16 continued.

det find_homogenous_solution (rref_matrix): cols = len[matrin[0]

for is in range (len (ref-matrix)):

pivot-colums, non-pivot-columns = identify-pivot-columns

Solutions = []

for sol in non-pivot-columns; solution = np. zeros ((cols - 1, 1))

if col & len (solutions):

Solution [col] = 1

for now, pivot- col is enumerate (pivot-columns): if pivot_rol < len (solution):

Solution [pivot-col, 0] = - matrix [row][col]

Solutions. append (solution. feather (). trolist)

return solutions

Output:

Particular Solution: /-0.153, 0.229, 0-200, 0.436, 0

/// vijeta ///

Name: Anshuman Gaonsindhe BITS LD: 2023 ab 05 150 Section: 4 16 continues Solutions to Ax = 0: 0-433 -0.076 -1.151 0.084 11.0 0-153 -0.229 -0.200 -0.200 -0-436 0-0 Ane 1() Outputs for a random 5 X7 Matrix. Input: 2 10 Matrix A: Vector b: Output : REF: D

/// vijeta ///

					Lev		
Nam	e: dust	uman Go	ronsind	le	No en		
Bits	D' 20	023 ab 05	150	M		La rela	= 8
Section	5 4.			e.) 1	.,]	k
10 contine	ul						jac s
1 2 1	1100	0 0	0	0	-26	9	1.Bu
	0 1	0 0	0	0	1]	- 4	
RREF:	0 0	1 0	0	O	-4	-1	4
,	0 0	0 1	D	1	-	2	
, and a	0 0	0	- 1	0	7	3	j
			1 1		ly 1		
Pivot	Lolumns	: 0,1	, 2 ,	3,	47		
	d Indenin						
	J				, , ,		
Non-Pû	rot Colu	mns: 5	, 6,	77	l second	V , , ; 8	
•							
Particula	~ Solut	ien:		1 -	10000	1 2	1
		1 -1-72	9 2.	351	3.02:	7 0	07
		-	II.	-1	11. Fr	1 A 2	l n
Solution	To A:	x = 0.			N .		
		-0-081	-1.0	405	-0-108	1.0	0-0
	1	A 6 2 2 4 6	(8)		13.		-
26.891	-11-405	4-729	1-64	8 -	7.027	0.0	1.0
						1 1	
1-9.108	4.594	1.729	-2-35	-)	-3-027	0.0	0.0
31		€			· · · · · · · · · · · · · · · · · · ·	30	
General S.	ol"		95				
		,729,2.35	1, 3.0	27,	0,0		
		, -0.08),					0.0
[26.891,-							10.0
T-9.108,							-
Note; Subs	will sat	isty That the	- Bol' ar	e 575	eters of liv	sear eg"	

Date/	
Name: Anshuman Gaonsirdhe	
Bits Id: 2023 ab 05150	
Scition : 4.	
ع من من الله الله الله الله الله الله الله الل	
Due 26 Code Snippet for elementry matrix & A=LU	
# Generale Elementry Matrix	
whet we mentale elementary and This I as I at Time	6
det generale-elementry-matrix (n, i, j, factor) E = [[1 if p = = q else 0 for q is range(n)] for p is range(n)]	-0
For nin sange (n)]	0
100 p 20 100 g (11/2	
E[i][i] = factor	
E[j][i] = factor return E	-0
	0
# LU Decomposition	0
def lu-decomposition (A):	
n = len(A)	
L=[[0 for _ is range(n)] for _ is range(n)]	0
L=[[o for_ is range(n)] for_ is range(n)] U=[row. copy() for row is A]	0
for i is range (n):	
for j is range (i+1, n):	
factor = ULjsLis/U[i]Lis	
L[j][i] = factor	U
# Applying Elementry Operations.	<u></u>
E = generates elementry - matrix (n, i, j, - Part	2
U = multiply_matrices (E,U)	

/// vijeta ///

Data	1	1	
Date.	/	/	

Name: dushuman Gaoncindhe Bills [d: 2023 ob 05150 Section :- 4. 20 continues for i is range (n): [[i] = 1 return L,U. # Function to Multiply Matrices det multiply-matrices (A,B): result = [[O for - is range (len (B[0])] for - is range (len (A))] for i is range (len(A)):

for j is range (len(BEO]):

for k is range (len(B)):

Result(i)[j] + = A[i][k] & B[k][j] return result # function to verify A = LU det verify - lu - decomposition (A, L, U): reconstructed_A = multiply-matrices (L, U) for i is range (len (A)): for j is range (len (A[O])): if abs (A[i][j] - reconstructed_A[i][i] >1e-8 6 return false

// vijeta//

Leturs True

// vijeta//

Name: Sushuman Gaonsinelle Bits Id: 2023 ab 05150 Section: 4. Aus 26 Code Snippet for Cholecky's Decomp # Function to calculate Cholesky's Decomp" idef cholesky-decomposition (A):

N = len(A) L = np - zeros((n, n))for i is range (n);

for j is range (i+1);

if i=-j: L[i][j] = np-sqnt(A[i,i]-np.sun (L[i,:i])*else: L[i,j]=A[i,j]-np.sum(L[i,:j]* return L * Function to verify cholesky's decomposition def verify_cholecky_decomposition (A,L): reconstructed_A = np.elot(L,L.T) return np. allclose (A, reconstructed_A Input Lower Triangular Matrix L 75 67 52 8-66 Matrix A : 67 65 63 52 63 90 7-73 2-26 0 6.00 7.29 0.86 A=LL=True

// vijeta //

	Data	
	Date/_/	
	0	
Name: Ancheman Gaunsirelle		1
Bits Ed: 2023 ab 0 5 150		
Section: 4.		-0
dus 20 Code Snippet for QR Decompo	situs	-
/ ~		0
m,n = A-shape		
$Q = np \cdot zeros((m, n))$	علي ال	
$Q = np \cdot zeros((m, n))$ $R = np \cdot zeros((h, n))$	J. S.	
- V (e° p ' e 200 h 7 + p.	1	0
for j'in range(n):		0
V = A[:, j]	A CONTRACTOR	_0
	_ 1=	
for i is rangelj):		
R/i,i] = np. dot(Q[:,i],AL	0, 1])	0
v = v - R[i,j] * Q[:,)		0
	<u> </u>	
R[i,j] = np. lipalg.norm(v)		
Q[:,j] = V/R[j,j]		
	of very die der	0
return Q, R.		0
To put	2	
8 5 4 052	0.43 -0.63	
Matrix A: 3 4 6 Matrix 0; 0.03		
989	1 3	0
	The Theory Was	0
0.52 0.03 -0.63	15.32,9.2,91	3
Matrix Q: 0.13 0.45 0.67 Matrix R:	0,4.8,6.9	L

/// vijeta ///

0-58

0-58

Verification QRZA: True

0-37

01021-5

-0-71

Name: Suchuman Gaonsindhe Bits Ld; 2023 ab 05150 Section; 4.

dus 20 Random 5 x y Matrix

			2 1 2 3 3	The Control of the Co
Matrix A:	0.614	0.337	0-26,6	0-770
	0.102	0-522	0-357	0.552
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.712	0-528	0-839	0-304
, V = 1	0.371	0-773	0.855	0.993
	0.453	0-346	0.731	0.681

Matrix Q (Orthogonal):

-0.552	0.300	0-703	-0-329
-0.092	-0.652	0.310	0.136
-0.639	0.140	-0-229	0-721
-0-333	0.677	-0.098	-0.189
-0-407	0-074	-0.590	-0.562

Matrin R: Upper Triangulor.

	-1.113	-0.971	-1.289	-1.280	
	0	-0.663	-0.565	-0.707	
	0		-0-420	0-144	
1	0	0	0	-0.530	

Diagonal Elements Of L.

-1.113 -0.663 -0-420 -0.530

7470			
Date_	1	1	
Dale -			_

duchuman Gaones rolle 2023 ab 05150 Bits 6: Section : 20 continues. Observations on O/P: Orthoganal Matrix (Q) is The columns of a form an orthogonal basis, The dot product of any two columns is approx Zero is dicating onthogonality. o Upper Trianguler Matrix (R) 4 R is an upper triangular matrix with all the entries below the mais diagonal being zero. O Diegonal Elements Of R; 4 The diagonal elements of R represent The scale or magnitude of the corresponding columns of the Original matrix. 4 All diagonal elements are non-zuo, indicating that The original matrix hold linerly independent columns Is In Enample, The output confirms that The 5 x 2 mot has been suscessfully decemposed into an Orthogonal Matrix Q & Upper triangular natur R. 4 The non- you diagonal elements of R isdicate the Scale of original columns and the negative sign is the diagonal elements is common due to Grahm-Schnidt process & doesn't affect Orthogonality

/// vijeta //