Analysis Comprehensive Examination

Examiners: Robert T.W. Martin, Eric Schippers, and Nina Zorboska

Department of Mathematics, University of Manitoba

September 24, 2020 12h00 - 18h00

Instructions:

This examination consists of 3 parts, A,B and C:

- Part A covers the Core Material, it consists of 6 questions worth 10 marks each for a total of 60 marks. All questions must be answered for full marks.
- Part B covers the Advanced Material on Abstract Measure and Integration Theory. This section consists of 3 questions of which you must attempt 2. Each question is worth 15 marks for a total of 30 marks.
- Part C covers the Advanced Material on Basic Functional Analysis. This section consists of 3 questions of which you must attempt 2. Each question is worth 15 marks for a total of 30 marks.

Please take note of the following:

- 1. In Parts B and C, if you attempt more than 2 questions, you must clearly indicate which two questions you would like marked. Otherwise only the first 2 answers in the order they appear in your solutions will be graded.
- 2. The examination is worth a total of 120 marks. A total grade of 75% or 90 marks is required to pass the exam.
- 3. The examination length is 6 hours. No texts, reference books, calculators, cell phones, or other aids are permitted in the examination.

A. Core material

1. Consider the vector field $\mathbf{F}(x,y,z) = [-y+z\sqrt{\sin{(xy)}}]\mathbf{i} + xe^z\mathbf{j} + \cos{(xz)}\mathbf{k}$ in \mathbb{R}^3 , where $\mathbf{i} = (1,0,0)$, $\mathbf{j} = (0,1,0)$, $\mathbf{k} = (0,0,1)$ are the standard unit coordinate vectors. Let M be the half-sphere $x^2 + y^2 + z^2 = 9$, z > 0, oriented with unit normal vector \mathbf{n} pointing upwards (i.e. in particular $\mathbf{n}(0,0,3) = (0,0,1)$). State Stokes' theorem and apply it to evaluate the surface integral

$$\iint_{M} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS$$

of the vector field $\nabla \times \mathbf{F}$.

2. Consider the series

$$f(x) = \sum_{n=1}^{\infty} e^{-nx} \left(\cos(nx) - \sin(nx)\right).$$

Show that this series converges on $[\pi, \infty)$, and that for all $x \in [\pi, \infty)$

$$\int_{\pi}^{x} f(t) dt = \sum_{n=1}^{\infty} \frac{e^{-nx} \sin(nx)}{n}.$$

3. Let |y| denote the greatest integer which is less than or equal to y. Let

$$f(x) = \begin{cases} 1/\left\lfloor \frac{1}{x} \right\rfloor - x^2 & x \in (0, 1] \\ 0 & x = 0. \end{cases}$$

Show that f is of bounded variation.

- 4. (a) State the Cauchy-Riemann Theorem on analyticity of functions.
 - (b) Fix $z_0 \in \mathbb{C}$ and let $D_r(z_0)$ be the open disk:

$$D_r(z_0) := \{ z \in \mathbb{C} \mid |z - z_0| < r \}.$$

Use part (a) to show that if f is analytic in $D_r(z_0)$ and |f(z)| = 1 for all $z \in D_r(z_0)$, then $f(z) = c \in \mathbb{C}$ is constant in $D_r(z_0)$.

2

- 5. Let C be the positively oriented triangle in the complex plane defined by the points $z_1 = -1$, $z_2 = 1$ and $z_3 = 2i$.
 - (a) State Cauchy's Theorem and use it to calculate

$$I_a = \int_C 3e^{2z+i}dz$$

.

(b) State Cauchy's Integral Formula for derivatives and use it to calculate

$$I_b = \int_C \frac{3e^{2z+i}}{(z-i)^3} dz$$

.

(c) State the Residue Theorem and use it to calculate

$$I_c = \int_C \frac{3e^{2z+i}}{(z-i)^2} dz$$

.

- 6. Let \mathbb{Q} denote the rational numbers, and $\mathbb{Q}^c := \mathbb{R} \setminus \mathbb{Q}$ its complement in \mathbb{R} , the irrational numbers.
 - (a) Consider the indicator function $f := \chi_{[0,1] \cap \mathbb{Q}^c}$. (This is defined to be 1 on $[0,1] \cap \mathbb{Q}^c$ and 0 everywhere else.) Is this function Riemann integrable on [0,1]? Is it Lebesgue integrable? Compute these integrals if they exist.
 - (b) Determine whether or not a monotone convergence theorem holds for the Riemann integral. That is, if f_n is a monotone non-decreasing sequence of positive semi-definite and Riemann integrable functions in [0,1] which converges pointwise to some function f, is it true that

$$\lim_{n \uparrow \infty} \int_0^1 f_n(x) dx = \int_0^1 \lim_{n \uparrow \infty} f_n(x) dx?$$

Hint: Let $(q_k)_{k=1}^{\infty}$ be an enumeration of $\mathbb{Q} \cap [0,1]$ and consider the indicator functions χ_n of the finite sets $Q_n := \{q_1, ..., q_n\}$.

B. Measure and Integration Theory

- 1. Let (X, Σ, μ) be a measure space. That is, X is a set, Σ is a σ -algebra of subsets of X, and $\mu: \Sigma \to [0, +\infty) \cup \{+\infty\}$ is a positive measure.
 - (a) Write down the definition of the integral of a non-negative μ -integrable function, f. If $0 \le g \le f$ are μ -integrable, show that

$$\int_X g d\mu \le \int_X f d\mu.$$

- (b) State Fatou's Lemma and prove it using the Monotone Convergence Theorem.
- (c) Show by example that the inequality in Fatou's Lemma can be strict.
- 2. (a) Compute:

$$\sum_{k=0}^{\infty} \int_0^{1/2} x^{2k+1} dx,$$

by showing that the order of the summation and integration can be interchanged.

(b) Consider the integrals:

$$I_n := \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} e^{-(x_1^2 + \dots + x_n^2)} dx_1 dx_2 \dots dx_n.$$

Compute I_n for any $n \in \mathbb{N}$. Hint: First compute I_2 by changing variables to polar co-ordinates.

- 3. (a) State the Lebesgue dominated convergence theorem.
 - (b) Prove that

$$\lim_{n \to \infty} \int_0^\infty n \sin(x/n) \frac{1}{x(1+x^2)} \, dm(x)$$

exists and evaluate it. Here, m denotes Lebesgue measure on $\mathbb{R}.$

C. Functional Analysis

- 1. (a) State Hölder's inequality.
 - (b) Assume that $f \in L^p([0,1]) \cap L^r([0,1])$ where $1 . Show that <math>f \in L^q([0,1])$ for any $q \in (p,r)$, and

$$||f||_q \le ||f||_p^{\lambda} ||f||_r^{1-\lambda}$$

where $\lambda \in (0,1)$ is the unique number such that

$$\frac{1}{q} = \frac{\lambda}{p} + \frac{1-\lambda}{r}.$$

Hint: $p/\lambda q$ and $r/(1-\lambda)q$ are conjugate exponents.

- (c) Let $X := \{1, ..., N\}$, $\Sigma = 2^X$, the set of all subsets of X, and μ be counting measure on Σ . That is, given $\Omega \in \Sigma$, $\mu(\Omega)$ is the number of elements in Ω , and $\mu(\emptyset) = 0$. Write out Hölder's inequality for finite sequences. *Hint:* View elements of $L^p(X, \mu)$ as finite sequences.
- (d) Suppose that a, b, c > 0 are positive real numbers so that a + b + c = 3. What is the smallest possible value of

$$\frac{1}{\sqrt{a}} + \frac{1}{\sqrt{b}} + \frac{1}{\sqrt{c}}?$$

Hint: Apply Hölder's inequality to

$$\left(\frac{1}{\sqrt{a}} + \frac{1}{\sqrt{b}} + \frac{1}{\sqrt{c}}\right)^{2/3} (a+b+c)^{1/3}.$$

- 2. (a) State the open mapping theorem for linear operators.
 - (b) Let X and Y be Banach spaces, $T: X \to Y$ a bounded linear map. Show that there is a constant c > 0 such that for each $x \in X$, $||Tx|| \ge c||x||$ if and only if Ker(T), the kernel of T, is $\{0\}$ and T(X), the range of T, is closed in Y.

5

3. A (separable, complex) Hilbert space of complex-valued functions, \mathcal{H} , on a set $X \subseteq \mathbb{C}^d$, is said to be a *reproducing kernel Hilbert space* (RKHS), if for each $x \in X$, the linear functional of point evaluation at x is bounded: Given $h \in \mathcal{H}$,

$$h \stackrel{\ell_x}{\mapsto} h(x); \qquad \|\ell_x\| < +\infty.$$

The multiplier algebra, $\operatorname{Mult}(\mathcal{H})$, of \mathcal{H} is the set of all complex-valued functions, $F: X \to \mathbb{C}$, which 'multiply' \mathcal{H} into itself. That is, $F \in \operatorname{Mult}(\mathcal{H})$ and $h \in \mathcal{H}$ imply that $F \cdot h \in \mathcal{H}$.

- (a) State the closed graph theorem.
- (b) Prove that the map $h \mapsto Fh$ defines a bounded linear operator on \mathcal{H} .
- (c) if $F \in \text{Mult}(\mathcal{H})$, and $M_F : \mathcal{H} \to \mathcal{H}$ is the corresponding linear multiplication operator, show that $\overline{F(x)}$ is an eigenvalue of M_F^* , for any $x \in X$. Hint: Apply the Riesz representation lemma to each ℓ_x .