Here are the details for $\sqrt{10}$: 3. 1 6 d $\sqrt{10.0000000}$ $\frac{9}{100}$ $\frac{61}{3900}$ $\frac{61}{3756}$ $\frac{3756}{632d}$ $\frac{14400}{10000000}$

$$(6322 \cdot 2 = 12644)$$

$$(6323 \cdot 3 > 14400)$$

$$d = 2$$

As expected, to two-decimal places, $\sqrt{10} = 3.16$.

Suggested problems

Try approximating $\sqrt{107}$ and $\sqrt{1525}$ to two decimal places.

9.8596 is a perfect square. Evaluate $\sqrt{9.8596}$

An acre has originally defined so that exactly 640 acres was equivalent to 1 square mile. To the nearest integer, what is the length (in feet) of the side of a square whose area is 1 acre?

The following diagram (2 small squares and 2 rectangles inside a larger square) hints at why this algorithm works. Try explaining why the algorithm works?

