Поля

В кольцах операции "+" и "·" называются сложением и умножением соответственно. Кольцо \mathcal{F} такое, что $\mathcal{F}\setminus\{0\}$ является абелевой группой по умножению, называется полем. Вообще говоря, поле обобщает собой понятие множества с двумя операциями, в котором однозначно решается любое (невырожденное) линейное уравнение. В дальнейшем, если речь будет идти о кольце или поле, то знак умножения мы будем для краткости пропускать.

- 1. Определите, какие из колец $(\mathbb{Z}, +, \cdot)$, $(\mathbb{Q}_n, +, \cdot)$, $(\mathbb{R}_n, +, \cdot)$, $(\mathbb{Z}_n, +, \cdot)$, являются полями, а какие нет.
- 2. Докажите, что $\mathbb{Q}[i\sqrt{3}]$, определённое по аналогии с $\mathbb{Z}[i\sqrt{3}]$, является полем.

Деление многочленов с остатком

Разделить многочлен p(x) на многочлен q(x) с остатком означает следующее: найти многочлены h(x) и r(x) такие, что p(x) = h(x)q(x) + r(x) и многочлен r(x) имеет степень, меньшую степени делителя q(x), либо тождественно равен нулю. Мы будем использовать стандартные обозначения $\deg p$ степени многочлена p(x), а также $\mathcal{K}[x]$ для множества многочленов одной переменной с коэффициентами из кольца $\mathcal{K}[x]$. Ясно, что, деление с остатком зависит от того, откуда выбираются коэффициенты.

- 3. Разделите с остатком многочлен $2x^5 + 5x^2$ на многочлен $2x^3 + 3x^2$ в $\mathbb{Q}[x]$.
- 4. Возможно ли такое деление в $\mathbb{Z}[x]$?

Теорема Безу

5. Докажите¹, что остаток от деления многочлена p(x) на многочлен x-a равен p(a).

В частности, если число a является корнем многочлена p(x), если и только если p(x) делится на x-a нацело (остаток равен нулю). Наибольшее число k такое, что p(x) делится на $(x-a)^k$ называется кратностью корня a. Например, многочлен $x^3(x-1)^2$ имеет два корня: корень 0 кратности три и корень 1 кратности два, в таком случае говорят, что у него пять корней с учётом кратности.

Теорема Безу показывает, что, если найден корень многочлена p(x), то в уравнении p(x)=0 можно понизить степень. Следующая задача показывает, как определить, имеет ли многочлен из $\mathbb{Z}[x]$ рациональные корни.

- 6. Докажите², что, если несократимая дробь $p/q \in \mathbb{Q}$ является корнем многочлена $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \in \mathbb{Z}[x]$, то числитель p делит свободный член a_0 , а знаменатель q делит старший коэффициент a_n .
- 7. Решите уравнение $x^5 2x^4 4x^3 + 4x^2 5x + 6 = 0$.

Основная теорема арифметики для многочленов

Пусть \mathcal{F} — поле, например, \mathbb{Q} или \mathbb{R} . Поскольку для многочленов из $\mathcal{F}[x]$ определено деление с остатком, то $\mathcal{F}[x]$ — евклидово кольцо с нормой deg. В частности, $\mathcal{F}[x]$ всегда факториально.

- 8. Докажите, что многочлен из $\mathcal{F}[x]$ степени n имеет не больше n корней с учётом кратности.
- 9. Докажите, что многочлен из $\mathbb{Z}[x]$ степени n имеет не больше n корней с учётом кратности, а для кольца $\mathbb{Z}_m[x]$ это в общем случае неверно.
- 10. Докажите, что, если значения двух многочленов из $\mathcal{F}[x]$ степени не выше n совпадают по крайней мере в n+1 точке, то эти два многочлена равны.

¹Это утверждение называется **теоремой Безу**.

 $^{^{2}}$ Это утверждение называется **теоремой о рациональных корнях**.

Факториальность $\mathbb{Z}[x]$

Хотя кольцо $\mathbb{Z}[x]$ и не евклидово, однако оно факториально, как показывает задача 13.

- 11. Пусть $f(x) = a_n x^n + \ldots + a_1 x + a_0 \in \mathbb{Z}[x]$ и для некоторого простого числа p все коэффициенты, кроме a_n , делятся на p, а свободный член не делится на p^2 . Докажите³, что многочлен f(x) неприводим над \mathbb{Z} .
- 12. Содержанием многочлена $p \in \mathbb{Z}[x]$ называется наибольший общий делитель его коэффициентов, обозначение: $\operatorname{cont}(p)$. Докажите⁴ тождество $\operatorname{cont}(pq) = \operatorname{cont}(p) \cdot \operatorname{cont}(q)$.
- 13. Докажите, что многочлен $p \in \mathbb{Z}[x]$ приводи́м в $\mathbb{Q}[x]$ тогда и только тогда, когда он приводи́м в $\mathbb{Z}[x]$. В частности, покажите, что кольцо $\mathbb{Z}[x]$ факториально.

Разложение на множители

Для разложения многочленов на множители иногда бывает полезно использовать метод неопределённых коэффициентов, главное при этом понимать, что он не упрощает задачу в общем виде, а позволяет подобрать разложение, используя некоторые допущения.

- 14. Найдите все линейные функции p(x) и q(x) с вещественными коэффициентами, удовлетворяющие тождеству $p(x)(x^2-3x+2)+q(x)(x^2+x+1)=21$.
- 15. Разложите на множители многочлен $x^4 + x^3 + x^2 + x + 12$.

Упражнения

- 16. Найдите остаток от деления $p(x) = x^{2019} + 19x^{20} + 20x^{19} + x$ на **a)** x 1, **b)** $x^2 1$.
- 17. При каких a и b многочлен $p(x) = (a+b)x^5 + abx^2 + 1$ делится на $x^2 3x + 2$?
- 18. Многочлен p(x) даёт остаток 2 при делении на x-1 и остаток 1 при делении на x-2. Какой остаток даёт p(x) при делении на (x-1)(x-2)?
- 19. Пусть $p(x) = (2x^2 2x + 1)^{20}(3x^2 3x + 1)^{19}$. Найдите сумму коэффициентов этого многочлена **a**) при всех, **b**) при чётных и **c**) при нечётных степенях переменной.
- 20. Докажите, что многочлен с целыми коэффициентами, имеющий больше трёх целых корней, не принимает простых значений в целых точках.
- 21. Решите уравнение $x^4 + x^3 x^2 2x 2 = 0$.

Задачи

- 22. Решите уравнение $n^5 + n^4 = 7^m 1$ в целых числах n и m.
- 23. Найдите все многочлены p(x), удовлетворяющие тождеству p(x+1) = p(x) + 2x + 1.
- 24. При каких n многочлен $1+x^2+x^4+\ldots+x^{2n}$ делится на $1+x+x^2+\ldots+x^n$?
- 25. Найдите все многочлены p(x), удовлетворяющие тождеству $x \cdot p(x-1) = (x-26)p(x)$.
- 26. Найдите все натуральные числа a, для которых найдётся многочлен p(x) с целыми коэффициентами, удовлетворяющий равенствам $p(\sqrt{2}+1)=2-\sqrt{2}$ и $p(\sqrt{2}+2)=a$.

Немного о полях

 $Xарактеристикой поля называется наименьшее <math>n \in \mathbb{N}$ такое, что $\underbrace{1+1+\ldots+1}_{n \text{ pas}} = 0.$

Если такого числа не существует, то говорят, что поле имеет характеристику нуль.

27. Докажите, что, если у поля есть характеристика, то она — простое число.

В некотором смысле, поля \mathbb{Z}_p и \mathbb{Q} минимальны. Изоморфизмом полей K и L называется такая биекция $\varphi\colon K\to L$, что $\varphi(ab)=\varphi(a)\varphi(b)$ для любых $a,b\in K$.

- 28. K поле характеристики p. Докажите 5 , что в K есть подполе, изоморфное \mathbb{Z}_{p} .
- 29. K поле характеристики 0. Докажите, что в K есть подполе, изоморфное \mathbb{Q} .

³Это утверждение называется критерием Эйзенштейна.

⁴Это утверждение называется **леммой Гаусса.**

 $^{^5\}mathrm{B}$ частности, все поля с p элементами изоморфны \mathbb{Z}_p , это поле часто обозначают через \mathbb{F}_p .