SCRUM Domain Optimization Model

${\bf Truely Most Wanted}$

August 11, 2025

Contents

1	1. Sets (Entities)	2
2	2. Indices	3
3	3. Goals	4
4	4. Conditions	5
5	5. DecisionVariables	6

1 1. Sets (Entities)

- \mathcal{P} (Projects, index p): product or initiative; attributes {id, name, project_start, project_end, description, but
- \mathcal{T} (Teams, index t): cross-functional team; attributes {id, name, team_size, team_start, team_status, location
- \mathcal{W} (Workers, index w): individual members; attributes {id, name, first_name, email, start_date, status, available of the status of th
- \mathcal{F} (Features, index f): mid-sized functionality; attributes {id, title, description, status, priority, estimated_e.
- \mathcal{S} (Skills, index s): competences; attributes {id, label, description, level, certified, category}.
- \mathcal{R} (Roles, index r): responsibilities; attributes {id, role_name, description, area_of_responsibility}.
- \mathcal{PO} (Product Owners, index po): attributes {id, name, email, availability}.
- SM (Scrum Masters, index sm): attributes {id, name, email, experience}.
- \mathcal{PB} (Product Backlogs, index pb): attributes {id, created_on, last_updated, number_of_entries, status}.
- \mathcal{SP} (Sprints, index sp): attributes {id, sprint_number, start_date, end_date, status, achievement_of_goal}.
- SPP (Sprint Plannings, index spp): attributes {id, date, duration_(min), moderation, outcome_documentat
- \mathcal{DS} (Daily Scrums, index ds): attributes {id, date, time, duration, moderation}.
- \mathcal{SR} (Sprint Reviews, index sr): attributes {id, date, duration, feedback_documentation, attendees_count}.
- SRE (Sprint Retrospectives, index sre): attributes {id, date, duration, improvement_actions, team_satisfact
- \mathcal{SBL} (Sprint Backlogs, index sbl): attributes {id, number_of_tasks, last_updated, status, total_effort}.
- \mathcal{SG} (Sprint Goals, index sg): attributes {id, objective_description, achievement_status, benefit}.
- \mathcal{E} (Epics, index e): attributes {id, title, description, priority, status, estimated_effort}.
- \mathcal{US} (User Stories, index us): attributes {id, title, description, acceptance_criteria, priority, story_points, stat
- TSK (Tasks, index tsk): attributes {id, title, description, status, effort, type}.
- $\bullet \ \mathcal{DEV} \ (\text{Development Snapshots, index} \ dev): \ \text{attributes} \ \{\text{id, version_number, creation_date, test_status, deployed}\}.$
- \mathcal{BL} (Blockers, index bl): attributes {id, title, description, severity, status, detected_on, resolved_on}.
- \mathcal{SH} (Stakeholders, index sh): attributes {id, name, organization, role, email, area_of_interest, influence_level.
- \bullet \mathcal{VEL} (Velocities, index vel): attributes {id, number_of_sprints_used, avg._story_points, max_velocity, min_velocity},
- \mathcal{REP} (Release Plans, index rep): attributes {id, version, planned_date, included_features, status}.
- \mathcal{RM} (Roadmaps, index rm): attributes {id, start_date, end_date, milestones, objectives, versions}.
- \mathcal{SCB} (Scrum Boards, index scb): attributes {id, board_type, columns, number_of_cards, last_updated}.
- \mathcal{FED} (Feature Documentations, index fed): attributes {id, title, description, creation_date, change_log, links

Relationship-derived index sets (from Relationships.csv). We use the following incidence sets:

- TeamProj $(t) \subseteq \mathcal{P}$ from R1 (team t assigned to project(s)).
- TeamOf(w) $\subseteq \mathcal{T}$ from R2 (worker w belongs to team(s)).
- Skills(w) $\subseteq \mathcal{S}$ from R3; Roles(w) $\subseteq \mathcal{R}$ from R4.
- POManages(po) $\in \mathcal{PB}$ from R5; SMOf(t) $\in \mathcal{SM}$ from R6.
- Features $(pb) \subseteq \mathcal{F}$ (R7); Epics $(pb) \subseteq \mathcal{E}$ (R8).
- Stories(e) $\subseteq \mathcal{US}$ (R9); Tasks(us) $\subseteq \mathcal{TSK}$ (R10).
- SBStories(sbl) $\subseteq \mathcal{US}$ (R11); SprintOf(sbl) $\in \mathcal{SP}$ (R12).
- GoalOf $(sp) \in \mathcal{SG}$ (R13); BoardTasks $(scb) \subseteq \mathcal{TSK}$ (R14).
- $DocOf(fed) \in \mathcal{F}$ (R15); $Blocks(tsk) \subseteq \mathcal{BL}$ (R16).
- StakeholdersIn $(sr) \subseteq \mathcal{SH}$ (R17); Moderates $(sm) \subseteq \mathcal{SRE}$ (R18).
- VelOf(vel) $\in \mathcal{T}$ (R19); FeaturesIn(rep) $\subseteq \mathcal{F}$ (R20).
- RoadmapOf $(rep) \in \mathcal{RM}$ (R21); SnapshotOf $(sp) \in \mathcal{DEV}$ (R22).

2 2. Indices

- $p \in \mathcal{P}, t \in \mathcal{T}, w \in \mathcal{W}, f \in \mathcal{F}, s \in \mathcal{S}, r \in \mathcal{R}, po \in \mathcal{PO}, sm \in \mathcal{SM}.$
- $pb \in \mathcal{PB}$, $sp \in \mathcal{SP}$, $spp \in \mathcal{SPP}$, $ds \in \mathcal{DS}$, $sr \in \mathcal{SR}$, $sre \in \mathcal{SRE}$.
- $sbl \in \mathcal{SBL}$, $sg \in \mathcal{SG}$, $e \in \mathcal{E}$, $us \in \mathcal{US}$, $tsk \in \mathcal{TSK}$, $dev \in \mathcal{DEV}$.
- $bl \in \mathcal{BL}$, $sh \in \mathcal{SH}$, $vel \in \mathcal{VEL}$, $rep \in \mathcal{REP}$, $rm \in \mathcal{RM}$, $scb \in \mathcal{SCB}$, $fed \in \mathcal{FED}$.

Parameters (derived from attributes; all are numeric or suitably encoded).

- B_p (budget of project p); A_w (availability of worker w); SP_{us} (story points of user story us); $Prio_f$ (priority of feature f).
- Effort_{tsk}; VelAvg_{vel}; Rel_{sh} (stakeholder relevance); AchGoal_{sp} $\in \{0, 1\}$.
- PlanDur_{spp} (planning minutes); Att_{sr} (review attendees); WIP_{scb} (cards on board).
- FreshPB_{pb} (freshness score from last_updated); Sev_{bl} (blocker severity).
- Status/flags as binary parameters: e.g., Active Proj_p , Blocked_{tsk}, Certified_s, POAvail_{po}, etc.
- Thresholds and bounds (given/decided by policy): \underline{A} (min availability), \underline{Prio} (min priority), \underline{SBL} (sprint capacity), \underline{Sev} (severity limit), allowed team size $[\underline{N}, \overline{N}]$.
- Incidence masks from relationships, e.g., $1\{us \in SBStories(sbl)\}$, $1\{bl \in Blocks(tsk)\}$, etc.

3 3. Goals

We scalarize multiple goals via a single composite objective

$$\min Z = \sum_{g \in \mathcal{G}} \omega_g \, \phi_g,$$

where each goal g contributes ϕ_g with weight ω_g . For a $maximize_-$ goal we negate the measure (so it becomes minimizing the negative utility). When IsSum=True, we sum over the corresponding entity set; when IsSum=False, we use the average over that set (or the single instance if unique).

- [G0] minimize_total_budget (min, weight 1.0): logical: reduce overall spend. $\phi_{G0} = \sum_{p \in \mathcal{P}} B_p$.
- [G1] maximize_worker_availability (max, weight 1.0): logical: increase available capacity. $\phi_{G1} = -\sum_{w \in \mathcal{W}} A_w.$
- [G2] maximize_story_throughput (max, weight 1.0): logical: maximize delivered story points. $\phi_{G2} = -\sum_{us \in \mathcal{US}} \mathrm{SP}_{us}.$
- [G3] minimize_open_blocker_severity (min, weight 1.0): logical: lower active blocker burden. $\phi_{G3} = \sum_{bl \in \mathcal{BL}} \text{Sev}_{bl} \cdot \mathbf{1} \{ \text{Resolved}_{bl} = 0 \}.$
- [G4] maximize_feature_priority (max, weight 1.2): logical: favor high-priority features. $\phi_{G4} = -\sum_{f \in \mathcal{F}} \operatorname{Prio}_f$.
- [G5] minimize_total_task_effort (min, weight 1.0): logical: reduce total effort. $\phi_{G5} = \sum_{tsk \in \mathcal{TSK}} \text{Effort}_{tsk}.$
- [G6] maximize_team_velocity (max, weight 1.3): logical: increase average velocity. $\phi_{G6} = -\sum_{vel \in \mathcal{VEL}} \text{VelAvg}_{vel}.$
- [G7] maximize_stakeholder_relevance (max, weight 0.8): logical: increase value for most relevant stakeholders. $\phi_{G7} = -\sum_{sh \in SH} \mathrm{Rel}_{sh}.$
- [G8] maximize_sprint_goal_achievement (max, weight 1.5): logical: maximize achieved sprint goals. $\phi_{G8} = -\sum_{sp \in SP} \text{AchGoal}_{sp}.$
- [G9] minimize_meeting_time (min, weight 0.6): logical: reduce sprint planning duration. $\phi_{G9} = \sum_{spp \in \mathcal{SPP}} \text{PlanDur}_{spp}.$

• [G10] maximize_review_attendance (max, weight 0.7): logical: increase review atten-

$$\phi_{G10} = -\sum_{sr \in SR} Att_{sr}.$$

• [G11] minimize_wip_on_board (min, weight 1.1): logical: limit cards on boards.

$$\phi_{G11} = \sum_{scb \in \mathcal{SCB}} WIP_{scb}.$$

• [G12] maximize_backlog_freshness (max, weight 0.5, IsSum=False): logical: keep PB

$$\phi_{G12} = -\frac{1}{|\mathcal{PB}|} \sum_{pb \in \mathcal{PB}} \text{FreshPB}_{pb}.$$

4 4. Conditions

Each condition encodes a logical rule and a constraint. We reference decision variables from Section 5 and relationship sets from Section 1.

- [C0] must_match_active_projects (Must-Match): only active projects considered. Logical: $p \in \mathcal{P} \Rightarrow \text{ActiveProj}_p = 1$. Math: $\sum_{us \in \mathcal{US}} \sum_{sp \in \mathcal{SP}} x_{us, sp, p}^{\text{US-SP}} \leq M \cdot \text{ActiveProj}_p$, $\forall p$ (big-M gating by project activity).
- [C1] cannot_match_blocked_tasks (Cannot-Match): exclude blocked tasks unless resolved.

 $x_{tsk,w}^{\text{TSK-W}} \leq \min_{bl \in \text{Blocks}(tsk)} z_{bl}^{\text{BL-Resolved}}, \ \forall tsk, w, \text{ where } z_{bl}^{\text{BL-Resolved}} \in \{0,1\} \text{ indicates resolution};$ if any blocker unresolved, assignment is 0.

- [C2] must_match_available_workers (Must-Match): assign only to available workers. $\sum_{tole \in TSK} \text{Effort}_{tsk} \, x_{tsk,w}^{\text{TSK-W}} \leq A_w, \, \forall w.$
- [C3] must_match_certified_skills (Must-Match): when a task requires certified skill s,

assign to worker with Certified_s = 1.
$$x_{tsk,w}^{\text{TSK-W}} \leq \sum_{s \in \text{Skills}(w)} \text{Certified}_s \cdot \mathbf{1}\{s \text{ required by } tsk\}, \ \forall tsk, w.$$

• [C4] must_match_product_owner_availability (Must-Match): Sprint pulling from pb needs available po with POManages(po) = pb.

$$\sum_{\substack{us \in \text{SBStories}(sbl) \\ pb.}} x_{us,sp}^{\text{US-SP}} \leq M \cdot \text{POAvail}_{po}, \ \forall sbl : \text{SprintOf}(sbl) = sp, \ po : \text{POManages}(po) = pb.$$

- [C5] must_match_sprint_has_goal (Must-Match): each sprint must have a goal. $AchGoal_{sp} \leq \mathbf{1}\{GoalOf(sp) \text{ exists}\}, \forall sp.$
- [C6] cannot_match_low_priority_features (Cannot-Match): features with $Prio_f < \underline{Prio}$ $\begin{array}{l} \text{cannot be planned.} \\ x_{f,rep}^{\text{F-REP}} \leq \mathbf{1}\{\text{Prio}_f \geq \underline{\text{Prio}}\}, \; \forall f, rep. \end{array}$
- [C7] must_match_active_backlog (Must-Match): pull only from active product backlogs. $\sum_{f \in \text{Features}(pb)} x_{f,rep}^{\text{F-REP}} \leq M \cdot \mathbf{1}\{\text{Status}_{pb} = \text{active}\}, \ \forall pb, rep.$

• [C8] must_match_sprint_backlog_effort_limit (Must-Match): total effort in a sprint within capacity.

$$\sum_{us \in \mathcal{US}} \sum_{tsk \in \text{Tasks}(us)}^{\text{Tasks}(us)} \text{Effort}_{tsk} \, x_{us,sp}^{\text{US-SP}} \le \overline{SBL}_{sp}, \, \forall sp.$$

• [C9] cannot_match_severe_blockers (Cannot-Match): items with high severity blocked until severity $\leq \overline{\text{Sev}}$.

$$x_{us,sp}^{\text{US-SP}} \leq \prod_{tsk \in \text{Tasks}(us)} \prod_{bl \in \text{Blocks}(tsk)} \mathbf{1}\{\text{Sev}_{bl} \leq \overline{\text{Sev}} \ \lor \ z_{bl}^{\text{BL-Resolved}} = 1\}.$$

- [C10] must_match_review_feedback_documented (Must-Match): reviews must have feedback documented.
 - $\mathbf{1}\{\text{feedback_documentation}_{sr} \text{ present}\} = 1, \ \forall sr.$
- [C11] must_match_retro_actions_logged (Must-Match): retros capture improvements. $1\{\text{improvement_actions}_{sre} \text{ present}\} = 1, \forall sre.$
- [C12] must_match_team_size_bounds (Must-Match): team size within bounds. $N \le N_t^{\text{Team}} \le \overline{N}, \ \forall t.$

5 5. DecisionVariables

Notation below expands the CSV-defined variables into indexed decision variables over the relevant sets (domains as in the CSV).

- [DV0] assign_user_story_to_sprint $(x_{us,sp}^{\text{US-SP}} \in \{0,1\})$: assign story us to sprint sp.
- [DV1] select_feature_for_release $(x_{f,rep}^{\text{F-REP}} \in \{0,1\})$: include feature f in release plan rep.
- [DV2] allocate_task_to_worker $(x_{tsk,w}^{\text{TSK-W}} \in \{0,1\})$: assign task tsk to worker w.
- [DV3] set_sprint_number $(n_{sp}^{\text{SP}} \in \{1, \dots, 999\})$: sprint numbering.
- [DV4] set_story_points_for_user_story ($y_{us}^{\text{SPts}} \in \{0, ..., 100\}$): calibrated story points (can refine SP_{us}).
- [DV5] set_task_effort_hours $(y_{tsk}^{\text{Eff}} \in \{0, \dots, 100\})$: estimated effort (can refine Effort_{tsk}).
- [DV6] choose_board_column ($c_{tsk,scb}^{\text{Board}} \in \{0,1,2\}$): column index for task on board scb.
- [DV7] schedule_sprint_start_offset $(d_{sp}^{\text{Start}} \in \{0, \dots, 30\})$: day offset from project start.
- [DV8] decide_blocker_resolution_flag ($z_{bl}^{\text{BL-Resolved}} \in \{0,1\}$): whether blocker bl is treated as resolved for planning.
- [DV9] set_team_size $(N_t^{\text{Team}} \in \{1, \dots, 20\})$: effective team size for execution horizon.
- [DV10] set_velocity_target_story_points ($v_t^{\text{Target}} \in \{0, \dots, 200\}$): target team velocity.
- [DV11] plan_review_attendees_target ($a_{sr}^{\text{Target}} \in \{0, ..., 100\}$): target attendees for review sr.
- [DV12] pick_roadmap_milestone_sequence ($m_{rm}^{\text{Seq}} \in \{1, ..., 50\}$): ordering index for roadmap rm milestones.

Linking and consistency constraints (cross-cutting).

- Story-to-sprint implies its tasks are executable: $x_{us,sp}^{\text{US-SP}} \leq \frac{1}{|\text{Tasks}(us)|} \sum_{tsk \in \text{Tasks}(us)} \sum_{w \in \mathcal{W}} x_{tsk,w}^{\text{TSK-W}}, \ \forall us, sp.$
- Sprint capacity based on team availability: $\overline{SBL}_{sp} \leq \sum_{t \in \mathcal{T}} N_t^{\text{Team}} \cdot \bar{a} \cdot H$ (with nominal availability \bar{a} and hours H).
- Velocity target consistency: $\sum_{us} \mathrm{SP}_{us} \, x_{us,sp}^{\mathrm{US-SP}} \leq \sum_{t} v_{t}^{\mathrm{Target}}, \, \forall sp.$