Exercices corrigés - Information chiffrée

Exercice 12 p 282

- a°) Calculer 70 % d'un nombre, c'est multiplier ce nombre par $\frac{70}{100}$ = 0,7
- b°) Quand on multiplie un nombre par $\frac{13}{100}$, on calculer 13 % de ce nombre.
- c°) Calculer 4 % d'un nombre, c'est multiplier ce nombre par $\frac{4}{100}$ = 0,04
- d°) Calculer la moitié d'une quantité revient à calculer $\frac{1}{2} = \frac{50}{100} = 50$ % de cette quantité.

Exercice 14 p 282

On a, d'après le cours, $p = \frac{n_A}{n_E} = \frac{873}{3600}$. On retrouve bien ici le fait que $n_A \le n_E$, car A est inclus dans E, et donc possède moins d'éléments que E. D'où aussi que $0 \le p \le 1$.

Exercice 15 p 282

On a, d'après le cours,
$$p = \frac{n_A}{n_E} \Leftrightarrow 0.175 = \frac{n_A}{680} \Leftrightarrow n_A = 0.175 \times 680 \Leftrightarrow n_A = 119$$

Exercice 19 p 282

Il s'agit de proportions échelonnées. D'après le cours, on a $p = p_1 \times p_2 = 0.8 \times 0.6 = 0.48$

Exercice 20 p 282

Il s'agit de proportions échelonnées. D'après le cours, on a $p = p_1 \times p_2 = 0.6 \times 0.2 = 0.12$

Exercice 22 p 283

- a°) Il s'agit clairement d'une évolution, plus précisément d'une augmentation de 8 %
- b°) Il s'agit d'une proportion de 5 %
- c°) Il s'agit d'une évolution, plus précisément d'une diminution de 12 %
- d°) Evolution: augmentation de 65 %

Exercice 23 p 283

La grandeur varie ici de Q1 à Q2.

Le cours nous donne que la taux d'évolution en pourcentage de cette grandeur est toujours égal à

$$t = \frac{Q2 - Q1}{Q1} \times 100$$

a°) $t = \frac{63 - 36}{36} \times 100 = \frac{27}{36} \times 100 = 75\%$, il s'agit d'une **augmentation** de 75 % (car on obtient un taux d'évolution **positif**)

b°) $t = \frac{0.9 - 1.2}{1.2} \times 100 = -\frac{1}{4} \times 100 = -25\%$, il s'agit d'une **diminution** de 25 % (car on obtient un taux d'évolution **négatif**)

c°)
$$t = \frac{32 - 40}{40} \times 100 = -\frac{1}{5} \times 100 = -20\%$$
, il s'agit d'une **diminution** de 20 %

d°)
$$t = \frac{126 - 52,5}{52,5} \times 100 = 1,4 \times 100 = 140 \%$$
, il s'agit d'une **augmentation** de 140 %

Exercice 25 p 283

Nous avons déjà fait cet exercice en cours

Taux	+47 %	-4,5 %	+90 %	-32 %
Coefficient	1,47	0,955	1,9	0,68

Exercice 30 p 283

- 1°) Le coefficient multiplicateur de l'augmentation de 15 % est 1,15 (voir exercice précédent, cela est lié au fait que $1+\frac{15}{100}=1,15$. De même, le coefficient multiplicateur de l'augmentation de 10 % est 1,10.
- 2°) Nous avons deux évolutions **successives** ici. D'après le cours, le coefficient multiplicateur global est le produit des deux coefficient multiplicateurs. C'est à dire qu'il est égal à 1,15 fois 1,10, c'est à dire **1,265**.

Exercice 32 p 283

- 1°) c'est 1,25
- 2°) c'est 0,80
- 3°) On se ramène à la définition du cours. Deux évolutions **successives** ayant respectivement pour taux d'évolution t_1 et t_2 forment une évolution globale ayant pour taux d'évolution global $t=t_1\times t_2$.

Et l'on dit alors que les deux évolutions successives sont **réciproques** lorsque t = 1, c'est à dire que le grandeur, de façon globale, n'évolue pas.

Donc ici, il suffit que calculer $t=1,25\times0,80$, et l'on voit que t=1 donc ces deux évolution sont bien réciproques.

Exercice 33 p 283

- 1°) C'est donc 1,10
- 2°) Le coefficient multiplicateur de l'évolution réciproque est le nombre c tel que $1,10 \times c = 1$, donc en résolvant cette équation on obtient $c = \frac{1}{1,1}$.

3°) Il faut simplement calculer le taux d'évolution correspondant à $c = \frac{1}{1.1}$.

Rappel de cours :

<u>Définition</u>: Soit deux évolutions successives de la valeur a vers b puis de la valeur b vers c.

Ces deux évolutions sont dites réciproques si a = c, c'est à dire que la coefficient multiplicateur global est 1.

Calcul du taux d'évolution réciproque :

On considère deux valeurs v_i et v_f , et on désigne par t le taux d'évolution de v_i à v_f , et par T le taux d'évolution réciproque de v_f à v_i .

On a donc :
$$v_f = v_i \times (1+t) = v_f \times (1+T) \times (1+t)$$

 $v_i \underbrace{\bigvee_{i \in V_f} v_f}_{\times (1+T)}$ et ainsi, $1+T=\frac{1}{1+t}$.

Donc
$$T = \frac{1}{1+t} - 1$$

Donc si on connaît le taux d'évolution t, on obtient le taux d'évolution réciproque par la formule

$$T = \frac{1}{1+t} - 1 .$$

Donc ici, $T = \frac{1}{1+0.10}$ $-1=c-1 \approx -0.09$, et en pourcentage, on a $T \approx 9\%$ (on multiplie par 100)