INTERPOLATION WITH UNERVAL INTERVAL!

DIVIDED DIFFERENCES :

DIVIDED DIFFERENCE TABLE:

		AND NO	allowed to the same		
Argument (21)	Entry f(n)	First D.D.	Second D.D Defin)	Third D.D ABBLAD.	
No	tino)	$\frac{f(n_1) - f(n_0)}{x_1 - x_0} = f(n_0)$	(1)8(1)		
۲۱	Acar)	f(x2)-f(x1) 22-x1=f(x1,x2	exilkioxil (x	f(x0, x1, x2,x	
22	fexs)	H(x2)-1(x2) = 6(x2,x3)	bth1,26)8(3)		
X3	flas)	$=b(x_2,x_3)$			
- W					

Properties of divided differences:

The divided differences are symmetrical in all their arguments.

The operator & is linear

3. The nth divided differences of a polynomial of nth degree are constant.

Problems:

If
$$f(n) = \frac{1}{x}$$
 find the devided difference $f(a,b,c,d)$ or $\frac{3}{bcd}(\frac{1}{a})$.

Polution: -

$$H(a) = \frac{1}{a} \implies H(a) = \frac{1}{a}$$

$$H(a,b) = H(b) - H(a) = \frac{1}{b-a} = \frac{a-b}{b-a}$$

$$= \frac{a-b}{ab} = \frac{-1}{ab}$$

$$= \frac{1}{ab} = \frac{1}{ab}$$

$$t(a,b,c) = t(b,c) - t(a,b)$$

$$c-a$$

$$= -\frac{1}{bc} + \frac{1}{ab} = \frac{1}{abc} = abc$$

$$f(a,b,c,d) = f(b,c,d) - f(a,b,c)$$

$$= \frac{1}{bcd} - \frac{1}{abc} = \frac{(a-d)}{abcd} = -\frac{1}{abcd}$$

$$= \frac{1}{d-a} = \frac{(a-d)}{d-a} = \frac{a-d}{abcd}$$

:
$$H(a,b,c,d) = A^3(1) = -\frac{1}{abcd}$$

If
$$f(x) = \frac{1}{x^2}$$
 find the divided differences $f(a_1b)$ and $f(a_1b,c)$.

Solution:

Here
$$f(n) = \frac{1}{n^2}$$

$$b(a) = \frac{1}{a^2}$$
; $b(b) = \frac{1}{b^2}$ and $b(c) = \frac{1}{c^2}$

$$\frac{1}{b-a} = \frac{b(b) - b(a)}{b-a} = \frac{1}{b^2} - \frac{1}{a^2} = \frac{a^2 - b^2}{a^2 b^2}$$

$$= \frac{(a+b)(a-b)}{a^2b^2} = -\frac{(a+b)}{a^2b^2}$$

$$= -(a-b)$$

$$= -(\frac{b+c}{b^2c^2}) + (\frac{a+b}{a^2b^2}) = \left[-\frac{a^2(b+c)+c^2(a+b)}{a^2b^2c^2} \right]$$

$$r = 0$$

$$\frac{1}{c-a}$$

$$= \left[-a^{2}b - a^{2}c + c^{2}a + c^{2}b \right]$$

$$= \left[a^{2}b^{2}c^{2} \right]$$

$$= \frac{1}{c-a} \left[\frac{ac[c-a] + b[c^2-a^2]}{a^2b^2c^2} \right] = \frac{c-a}{c-a} \left[\frac{ac+b(c+a)}{a^2b^2c^2} \right]$$

Find the third derided differences with arguments 2, 4, 9, 10 of the function find = n = 2x.

polition:

21: 2 4 9 10

blow): 4 56 711 980

Ofridad difference lable:

٩٢	6000	06	75 P	73 p
2 4 9 10	4 56 711 980	$\frac{56-4}{41-9} = 2$ $\frac{711-56}{9-4} = 15$ $\frac{980-711}{10-9} = 2$	$ \begin{array}{c c} 131 - 26 = 1 \\ 9 - 2 \end{array} $ $ 269 + 131 = 1 $	10-2

Newton's divided difference formula (or)

Newton's interpolation formula for unequal intervals: $f(x) = f(x_0) + (x_0 - x_0) f(x_0, x_1) + (x_0 - x_0) (x_0 - x_1) f(x_0, x_1, x_0)$ $+ (x_0) (x_0 - x_1) (x_0 - x_0) f(x_0, x_1, x_0, x_0) + \cdots$ $+ (x_0) (x_0 - x_1) \cdots (x_0 - x_0) f(x_0, x_1, x_0, x_0)$.

4. Given the data

X: 0 1 2 5

Ha): 2 3 12 147

find the polynomial equation. Hence find b(2).

gelution :

The divided difference table le

	1			
X	H(n)	7f(x)	BHa)	D3HA)
Q	2 \$(110)	3-2 -1/1	tho (xi)x)	fluorx1,72,73)
Mary .	3	1-0	$\frac{q-1}{2-c} = 4^{-1}$	9-4=1
2	10	2-1	$\frac{45-9}{5-1}=9$	5-0
5	147	5-2		
1			- 1	60

Newton's divided difference formula is $H(x) = H(x_0) + (x-x_0) f(x_0, x_0) + (x-x_0) (x-x_0) H(x_0, x_0, x_0)$ $+ (x-x_0) (x-x_0) (x-x_0) H(x_0, x_0, x_0, x_0, x_0)$ Here $x = -\infty$

Here 30 =0, x, =1, 22=2, x3=5.

 $f(\pi_0) = 2$, $f(\pi_0, \chi_1) = 1$, $f(\pi_0, \chi_1, \chi_2) = 4$, $f(\pi_0, \chi_1, \chi_2, \chi_3) = 1$ Substituting these values is \bigcirc

 $H(x) = 2 + (x-0) \cdot 1 + (x-0)(x-1) \cdot 4 + (x-0)(x-1)(x-2) \cdot 1$

= 2 + 2 + 4x(x-1) + x(x-1)(x-2)

*(3) = 27+9-3+2 = 35 //

Use Newton's dévided différence formula, to l'ét a polynomial to the date

$$y:-8$$
 3 | 12 and hence find y when $x=1$.

solution:The allvided difference touble for the given data is as follows.

×	y=ftn)	· Ofta)	Postex)	B3 flm)
1- (tak	-8-)Hao)	3+8 = 11	f(a0,a1,a2)	नीय । वा वा वा वा व
2170	3	$\frac{1}{3} = -1$	2+1	H+4 = 2
x2 + 2	1	2-0	11+1 = 4 3-0	3+1
% ५ %	12	$\frac{3}{3-2} = 0$		

By Newton (1 divided difference formula, f(n) = f(n0) + (n-n0) f(n0, n0) + (n-n0) (n-n0) f(n0, n0, n0) + (n-n0) (n-n0) (n-n0) f(n0, n0, n0) f(n0, n0, n0) + (n-n0) (n-n0) (n-n0) f(n0, n0, n0) + (n-n0) (n-n0) (n-n0) f(n0, n0) f(n0, n0) + (n-n0) (n-n0) (n-n0) f(n0, n0) + (n-n0) (n-n0) (n-n0) f(n-n0) (n-n0) f(n0, n0) + (n-n0) (n-n0) (n-n0) f(n-n0) (n-n0) f(n0, n0) + (n-n0) (n-n0) f(n0, n0) + (n-n0) (n-n0) f(n-n0) f(n-n0) (n-n0) f(n0, n0) + (n-n0) (n-n0) f(n-n0) f(n-n0) (n-n0) f(n-n0) + (n-n0) f(n-n0) f(n-n0) f(n-n0) (n-n0) f(n-n0) + (n-n0) f(n-n0) f(n-n0) f(n-n0) (n-n0) f(n-n0) f(n-n0) + (n-n0) f(n-n0) f(n-n0) f(n-n0) f(n-n0) f(n-n0) f(n-n0) f(n-n0) + (n-n0) f(n-n0) f(

Using Newton's divided difference formula, find the value of 618) and 615) given the following date.

2: 4 5 7 10 11 13

Bla): 48 100 294 900 1210 2028

Solution:

Form the divided difference table

26	fex)	Af(m)	seffen)	13ten)	otifen)
76 -) 4	18 tino)	100-48 = 52	\$180,81,82 7-52 =15 7-4	1-15 =1	
X1 + 5	100	294-100 = 97	202/-97 =21	27-21	0
a277	294	900-294 = 202	310-202 = 27	11-5	D
75-10	900	1210-900 = 310	409/810=33	33/27=1	
711	1210	200/8-1210 =409	13-10	3	
15713	2028	13 - 11			

By Newton's divided difference interpolation formula.

$$f(n) = f(no) + (n-xo) f(no,xo) + (n-xo)(n-xo) f(no,xo,xo)$$

$$+ (n-xo) (n-xo) (n-xo) f(no,xo,xo,xo,xo) + ...$$

f(n) = d8 + 52(x-4) + 15(x-4)(x-5) + (x-4)(x-5)(x-7)when x = 8,

when n = 15, f(15) = 48 + 572 + 1650 + 880 f(15) = 3150

Honework problems:

Using alirided difference, fied \$18) from the following:

x: 3 7 9 10

fen): 168 120 72 63

Ans: (18) = 98

Using Newton's dirided difference formula find fin) and \$16) from the following data:

n:1278

tens: 1 5 5 4

Ans:

fin) = 12[3 n3 - 58 nd + 321 n - 224]

\$16) = 6.2381.