CMPS 2200 Recitation 09

In	this	lah	we'll	investigate	minimum	spanning	tree	algorithms
III	01115	lab	we n	mvestigate	mmmmum	spanning	tree .	aigoriumis.

	1. In class, we gave an implementation of Prim's algorithm. It assumes that the input graph G is connected What if it's not? Modify prim to return a list of trees, one per connected component. Test with test_prim.
	2. What is the worst-case work of your algorithm, assuming G has k connected components?
pu	at in answers.md
•	
	3. Consider the problem of finding the MST to connect a list of cities by roads. If we have as input the (x,y) coordinates of each city, we can first build a fully-connected, undirected, weighted graph where each pair of cities is joined by an edge with weight equal to the Euclidean distance between their coordinates. Complete mst_from_points to find the MST from a list of points, and test with test_mst_from_points.
	4. What is the work of your full algorithm in the previous answer?
pu	nt in answers.md
•	