Suppose A, B and C are sets.

Prove: $(A \cap B) - C = (A - C) \cap (B - C)$.

that $x \in (A-c) \cap (B-c)$.

Proof First we will show $(A \cap B) - C \subseteq (A - C) \cap (B - C)$. Suppose $x \in (A \cap B) - C$. This means $x \in A \cap B$ and $x \notin C$. But since $x \in A \cap B$, we know $x \in A$ and $x \in B$. Because $x \in A$ and $x \notin C$, we get $x \in A - C$. Because $x \in B$ and $x \notin C$, we get $x \in B - C$. But then, as $x \in A - C$ and $x \in B - C$, it must be

This shows (ANB) - C = (A-c) n (B-c).

Next we will show $(A-C) \cap (B-C) \subseteq (A \cap B)-C$. Suppose $x \in (A-C) \cap (B-C)$. Then, by definition of intersection, $x \in A-C$ and $x \in B-C$. And by the definition of set difference, this gives $x \in A$ and $x \notin C$ and $x \in B$ and $x \notin C$. Because $x \in A$ and $x \in B$, we get $x \in A \cap B$. But, in addition, $x \notin C$, so $x \in (A \cap B)-C$. This shows $(A-C) \cap (B-C) \subseteq (A \cap B)-C$.

Having shown $(A \cap B) - C \in (A - C) \cap (B - C)$ and $(A - C) \cap (B - C) = (A \cap B) - C$, we have now established $(A \cap B) - C = (A - C) \cap (B - C)$