

Question 2:

Check the injectivity and surjectivity of the following functions:

- (i) $f: \mathbf{N} \to \mathbf{N}$ given by $f(x) = x^2$
- (ii) $f: \mathbf{Z} \to \mathbf{Z}$ given by $f(x) = x^2$
- (iii) $f: \mathbf{R} \to \mathbf{R}$ given by $f(x) = x^2$
- (iv) $f: \mathbf{N} \to \mathbf{N}$ given by $f(x) = x^3$
- (v) $f: \mathbf{Z} \to \mathbf{Z}$ given by $f(x) = x^3$

Answer

(i) $f: \mathbf{N} \to \mathbf{N}$ is given by,

$$f(x)=x^2$$

It is seen that for x, $y \in \mathbb{N}$, $f(x) = f(y) \Rightarrow x^2 = y^2 \Rightarrow x = y$.

∴f is injective.

Now, $2 \in \mathbf{N}$. But, there does not exist any x in \mathbf{N} such that $f(x) = x^2 = 2$.

∴ f is not surjective.

Hence, function f is injective but not surjective.

- (ii) $f: \mathbf{Z} \to \mathbf{Z}$ is given by,
- $f(x) = x^2$

It is seen that f(-1) = f(1) = 1, but $-1 \neq 1$.

 $\therefore f$ is not injective.

Now, $-2 \in \mathbf{Z}$. But, there does not exist any element $x \in \mathbf{Z}$ such that $f(x) = x^2 = -2$.

 $\therefore f$ is not surjective.

Hence, function f is neither injective nor surjective.

- (iii) $f: \mathbf{R} \to \mathbf{R}$ is given by,
- $f(x)=x^2$

It is seen that f(-1) = f(1) = 1, but $-1 \neq 1$.

 $\therefore f$ is not injective.

Now, $-2 \in \mathbf{R}$. But, there does not exist any element $x \in \mathbf{R}$ such that $f(x) = x^2 = -2$.

 $\stackrel{.}{.} f \text{ is not surjective.}$

Hence, function f is neither injective nor surjective.

- (iv) $f: \mathbf{N} \to \mathbf{N}$ given by,
- $f(x) = x^3$

It is seen that for $x, y \in \mathbb{N}$, $f(x) = f(y) \Rightarrow x^3 = y^3 \Rightarrow x = y$.

∴f is injective

Now, $2 \in \mathbf{N}$. But, there does not exist any element x in domain \mathbf{N} such that $f(x) = x^3 = 2$.

 $\therefore f$ is not surjective

Hence, function \boldsymbol{f} is injective but not surjective.

- (v) $f: \mathbf{Z} \to \mathbf{Z}$ is given by,
- $f(x) = x^3$

It is seen that for $x, y \in \mathbf{Z}$, $f(x) = f(y) \Rightarrow x^3 = y^3 \Rightarrow x = y$.

 $\therefore f$ is injective.

Now, $2 \in \mathbf{Z}$. But, there does not exist any element x in domain \mathbf{Z} such that $f(x) = x^3 = 2$.

 $\therefore f$ is not surjective.

Hence, function f is injective but not surjective.

Question 3:

Prove that the Greatest Integer Function $f: \mathbf{R} \to \mathbf{R}$ given by f(x) = [x], is neither one-once nor onto, where [x] denotes the greatest integer less than or equal to x.

Answe

 $f: \mathbf{R} \to \mathbf{R}$ is given by,

$$f(x) = [x]$$

It is seen that f(1.2) = [1.2] = 1, f(1.9) = [1.9] = 1.

- f(1.2) = f(1.9), but $1.2 \neq 1.9$.
- ∴ f is not one-one.

Now, consider $0.7 \in \mathbf{R}$.

It is known that f(x) = [x] is always an integer. Thus, there does not exist any element $x \in \mathbf{R}$ such that f(x) = 0.7.

 $\therefore f$ is not onto.

Hence, the greatest integer function is neither one-one nor onto.

Question 4:

Show that the Modulus Function $f: \mathbf{R} \to \mathbf{R}$ given by f(x) = |x|, is neither one-one nor

onto, where |x| is x, if x is positive or 0 and |x| is -x, if x is negative.

Answer

 $f: \mathbf{R} \to \mathbf{R}$ is given by,

$$f(x) = |x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$$

It is seen that f(-1) = |-1| = 1, f(1) = |1| = 1

 $f(-1) = f(1), \text{ but } -1 \neq 1.$

 $\therefore f$ is not one-one.

Now, consider $-1 \in \mathbf{R}$.

It is known that $f(x) = \frac{|x|}{|x|}$ is always non-negative. Thus, there does not exist any

element x in domain **R** such that $f(x) = \frac{|x|}{|x|} = -1$.

 $\therefore f$ is not onto.

Hence, the modulus function is neither one-one nor onto.

Question 5:

Show that the Signum Function $f: \mathbf{R} \to \mathbf{R}$, given by

$$f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases}$$

is neither one-one nor onto.

Answer

 $f: \mathbf{R} \to \mathbf{R}$ is given by,

$$f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases}$$

It is seen that f(1) = f(2) = 1, but $1 \neq 2$.

:f is not one-one.

Now, as f(x) takes only 3 values (1, 0, or -1) for the element -2 in co-domain \mathbf{R} , there does not exist any x in domain \mathbf{R} such that f(x) = -2.

∴ f is not onto.

Hence, the signum function is neither one-one nor onto.

Question 6:

Let $A = \{1, 2, 3\}$, $B = \{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. Show that f is one-one.

Answer

It is given that $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}.$

 $f: A \to B$ is defined as $f = \{(1, 4), (2, 5), (3, 6)\}.$

$$\therefore f(1) = 4, f(2) = 5, f(3) = 6$$

It is seen that the images of distinct elements of A under f are distinct.

Hence, function f is one-one.

Question 7:

In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

(i)
$$f: \mathbf{R} \to \mathbf{R}$$
 defined by $f(x) = 3 - 4x$

(ii)
$$f: \mathbf{R} \to \mathbf{R}$$
 defined by $f(x) = 1 + x^2$

Answe

(i) $f: \mathbf{R} \to \mathbf{R}$ is defined as f(x) = 3 - 4x.

Let $x_1, x_2 \in \mathbf{R}$ such that $f(x_1) = f(x_2)$

$$\Rightarrow$$
 3 - 4 x_1 = 3 - 4 x_2

$$\Rightarrow$$
 $-4x_1 = -4x_2$

$$\Rightarrow x_1 = x_2$$

∴ f is one-one.

$$3-y$$

For any real number (y) in **R**, there exists 4 in **R** such that

$$f\left(\frac{3-y}{4}\right) = 3 - 4\left(\frac{3-y}{4}\right) = y.$$

∴f is onto

Hence, f is bijective.

(ii) $f: \mathbf{R} \to \mathbf{R}$ is defined as

$$f(x) = 1 + x^2$$

Let $x_1, x_2 \in \mathbf{R}$ such that $f(x_1) = f(x_2)$

$$\Rightarrow 1 + x_1^2 = 1 + x_2^2$$

$$\Rightarrow x_1^- = x_2^-$$

$$\Rightarrow x_1 = \pm x_2$$

$$f(x_1) = f(x_2)$$
 does not imply that $x_1 = x_2$.

For instance,

$$f(1) = f(-1) = 2$$

 $\therefore f$ is not one-one.

Consider an element -2 in co-domain R.

It is seen that $f(x) = 1 + x^2$ is positive for all $x \in \mathbf{R}$.

Thus, there does not exist any x in domain \mathbf{R} such that f(x) = -2.

 $\therefore f$ is not onto.

Hence, f is neither one-one nor onto.

Question 8:

Let A and B be sets. Show that $f: A \times B \to B \times A$ such that (a, b) = (b, a) is bijective function.

Answer

 $f: A \times B \rightarrow B \times A$ is defined as f(a, b) = (b, a).

Let
$$(a_1, b_1)$$
, $(a_2, b_2) \in A \times B$ such that $f(a_1, b_1) = f(a_2, b_2)$

$$\Rightarrow$$
 $(b_1, a_1) = (b_2, a_2)$

$$\Rightarrow b_1 = b_2$$
 and $a_1 = a_2$

$$\Rightarrow$$
 $(a_1, b_1) = (a_2, b_2)$

∴ f is one-one

Now, let $(b, a) \in B \times A$ be any element.

Then, there exists $(a, b) \in A \times B$ such that f(a, b) = (b, a). [By definition of f]

f is onto

Hence, f is bijective.

Question 9:

$$f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$$
 for all $n \in \mathbb{N}$.

Let $f: \mathbf{N} \to \mathbf{N}$ be defined by

State whether the function \boldsymbol{f} is bijective. Justify your answer.

Answer

$$f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$$

 $f: \mathbf{N} \to \mathbf{N}$ is defined as

It can be observed that:

$$f(1) = \frac{1+1}{2} = 1$$
 and $f(2) = \frac{2}{2} = 1$ [By definition of f]

$$\therefore f(1) = f(2), \text{ where } 1 \neq 2.$$

 $\therefore f$ is not one-one.

******* END ******