MIDDLE EAST TECHNICAL UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

EE101: Introduction to Electrical and Electronics Engineering MATLAB Hands-on Exercise Session Report

Name : Alperen Öztürk

Student ID : 2575868

Part I: Overview of Basic Tools

• Write down the values of **m** and **n** and briefly explain what they represent.

The values of m and n represent the index values of the elements that are equal to 0 in A matrix, and here the m represents the row indices , n represent the column indices of each element.

For example, the second entry of A that is equal to 0 is in the first row, and in the second column. Because of that, first value of m is 1 and first value of n is 2.

- Comment on the difference between the two product operators " * " and " .* ".
 - * is used for matrix multiplications.
 - .* is used for element-wise multiplications. For example, $A_{xy} * B_{xy}$
- Insert the plot you saved in Part I Ex. 10 below.

Part II: Frequency Analysis of Sinusoidal Signals

• Insert the plot you saved in Part II Ex. 2 below.

• Insert the spectrum plot you saved in Part II Ex. 5 below.

• Can you approximately spot the dominant frequency f_{θ} in the signal x? Interpret this by remembering that our signal is $x(t) = \sin(\omega_0 t)$. What is the relation between ω_{θ} (the angular frequency in radians per second) and f_{θ} (the frequency in Hertz)?

Dominant frequency is approximately 1 Hz. The relation between ω_{θ} and f_{θ} is, ω_{θ} = 2* π * f_{θ} .

• Report the dominant frequencies in the signal x and comment on the result. Is the function output consistent with the frequency f_0 you determined in part 5?

There is just one dominant frequency in the signal x and it is 0.998 Hz. It shows that it is consistent with the dominant frequency I determined in part 5.

• Insert the plot of y(t) you saved in Part II Ex. 8 below.

• In what way do x(t) and y(t) have similar and different characteristics?

They both have sinusoidal characters; however, y(t) consist 3 different sinusoids.

Y-Axis limits of y(t) are 6 and -6, but since there is no such t that makes the first two elements of y equal to 1 and last element equal to -1, y(t) never reach 6 and -6.

Y-Axis limits of x(t) are 1 and -1 and x(t) which consists one sinus function, and x(t) oscillates between 1 and -1

frequencies proportiona formula $\omega_{ heta}$ =	These frequencies are C with the angular freque	.9980 Hz, 1.9960 Hz, 1.9960 Hz, ncies $w_{ heta}, 2w_{ heta}, 3w_{ heta}$ lar frequency is mu	esent the 3 different dominant c, 2.9940 Hz, and they are direct This proportion results from the Itiplied by a constant, so does th