

Algoritmizace

- Proces transformace zadaného problému či úkolu do podoby algoritmu
- Ověření a testování výsledného algoritmu

Základní postupy tvorby algoritmu

- Vždy vycházíme ze schopností systému, pro který algoritmus tvoříme – popisný jazyk (jiný pro člověka nebo stroj)
 - nemusí jít nutně o IT problém
- Snaha použít části algoritmu opakovaně
 - parametrizace algoritmu zadáním vstupních hodnot
 - funkce činnosti, jejichž výstupem je nový údaj
 - procedury činnosti bez výstupních údajů, jejich činnost spočívá v ovládání systému
- Ze základních prvků tvoříme složitější konstrukce

Kroky algoritmizace

- Specifikace úkolu
 - co chci řešit a vyřešit
 - co má být výstupem a jaké jsou potřeba vstupy?
 - jaké další předpoklady (omezení) platí?
 - pohled zvenčí
 - algoritmus je v tuto chvíli pouze černou skřínkou
 - příklad
 - mám X Kč a chci mít mobil
 - chci jej koupit v ČR

Java 👙 Java 👙 Java

- Analýza problému
 - jak lze úlohu řešit?
 - koncepční nástin cesty, jak dosáhnout cíle
 - může pomoci dekompozice rozdělení na dílčí úlohy
 - požadavky na informace a data
 - příklad
 - mobil má umět X funkcí
 - projdu nabídku vybraných e-shopů a vyberu si nejlepší variantu
 - v každém e-shopu provedu výběr

• Vytvoření algoritmu

- základem schopnosti autora a znalost použitelných příkazů pro cílový systém
- obvykle návrh shora dolů
 - postupná dekompozice od úkolu k řešení jeho částí
- návrh zdola nahoru
 - postupné skládání řešení ze základních stavebních prvků (kroků)
 - automatizované postupy
- příklad
 - konkrétní zápis algoritmu zvoleným způsobem (např. PS Diagram)
 - obtížnější, než se zdá nutná přesnost

- Java 🛂 Java 🛂 Java
- Testování algoritmu
 - je to správně zapsáno?
 - syntaktické chyby
 - řeší to zadanou úlohu?
 - chyby analýzy špatně pochopený úkol
 - chyby vstupních dat špatná, nepřesná nebo nedostupná
 - obvykle náročné
 - "ruční práce"
 - vhodné použít nějakou podporu (PS Diagram)

Java 🥞 Java 👙 Java

- Implementace algoritmu vložení do cílového systému (program)
 - transformace algoritmu do podoby srozumitelné pro cílový systém – např. do programu
 - možné problémy s cílovým systémem
 - nedostatek schopností systému (nebo jiné než jsme čekali),
 - technická nebo např. matematická omezení při výpočtu (0<>0), atd.

• Užití algoritmu může vyžadovat údržbu vnější vlivy – jiné prostředí • vnitřní změny – upgrade schopností systému Objektové programování 1 pro AI - UAI/510 28.9.2024

Algoritmické postupy

- Obecné, nezávislé na konkrétním systému
- Obvykle sekvence (série) kroků, které se mají v daném pořadí provést
 - kroky navazují na předchozí a vytváří předpoklady pro následující
 - lze i hierarchické uspořádání sekvence algoritmů řešících zvolenou část úlohy
 - příklad: chci jet vlakem do Prahy do divadla
- Dnes i paralelizmus mimo tento kurz

Algoritmizace problému

- Přímý postup
 - triviální problém, známý postup, dostatek znalostí
- Přeformulování problému
 - zjednodušení, zobecnění, ekvivalentní přeformulování, parametrizace
- Rozklad problému na podproblémy
 - konjunktivní: řešení problému řešením všech podproblémů
 - disjunktivní: řešení problému řešením pouze jednoho z podproblémů
 - repetiční: opakované řešení podproblémů (iterační rozklad) nebo řešení téhož problému se zmenšující se dimenzí (rekurzivní rozklad)

Přeformulování problému

- Zjednodušující přeformulování
 - místo výrazu πr^2 vyhodnocujeme výraz 3,14 · r^2
- Ekvivalentní přeformulování
 - soustavu n lineárních rovnic o n neznámých postupně transformujeme ekvivalentními úpravami (násobení rovnice nenulovým číslem, přičtení rovnice k jiné rovnici) na soustavu s jednotkovou maticí, což je triviální problém
- Zobecňující přeformulování
 - místo problému nalezení kořenů rovnice $2x^2 6x + 3 = 0$ algoritmizujeme problém $ax^2 + bx + c = 0$

Rozklad problému

- Postupný návrh algoritmu rozkladem problému na podproblémy
 - zadaný problém rozložíme na podproblémy (procedury, funkce)
 - pro řešení podproblémů zavedeme abstraktní příkazy
 - s pomocí abstraktních příkazů sestavíme hrubé řešení
 - k abstraktním příkazům následně přistupujeme jako k samostatným algoritmům a popisujeme je standardními příkazy

Java 👙 Java 👙 Java

Rozklad problému

- Konjunktivní rozklad
 - aritmetický průměr n čísel získáme postupným řešením těchto dvou podproblémů:
 - výpočet součtu zadaných čísel
 - dělení součtu hodnotou n
- Disjunktivní rozklad
 - kořeny kvadratické rovnice získáme v závislosti na hodnotě diskriminantu řešením jednoho z těchto dvou podproblémů:
 - výpočet reálných kořenů
 - výpočet komplexních kořenů

Rozklad problému

- Iterační rozklad (v kombinaci s konjunktivním)
 - výpočet součtu čísel x_1, x_2, \ldots, x_N :
 - konjunktivní rozklad vynulování proměnné S (S = 0)
 - iterační rozklad pro I = 1, 2, ..., N postupně sečítáme hodnoty S a x_I a výsledek ukládáme do S ($S = S + x_I$)
- Rekurzivní rozklad (v kombinaci s disjunktivním)
 - výpočet faktoriálu F přirozeného čísla N (F = N!):
 - disjunktivní rozklad:
 - je-li N = 0, pak F = 1
 - je-li N > 0, pak F = N * (N-1)! ... rekurzivní rozklad
- Hierarchický rozklad procedury a funkce
 - opakované užití v algoritmu

Vazba na algoritmické struktury

- Operační krok
 - přiřazení A=A+1
 - vstup / výstup READ (odkud, prom), PRINT (kam, "pokusný text")
- Sekvence (odpovídá konjunktivnímu rozkladu)
- Větvení (odpovídá disjunktivnímu rozkladu)
- Iterace, cyklus (odpovídá iteračnímu rozkladu)
 - s daným počtem opakování
 - s testem zahájení, s testem ukončení

Hra NIM

- Rozklad problému na podproblémy ilustrujme na příkladu hry NIM
 - Pravidla:
 - hráč zadá počet zápalek (např. od 15 do 35)
 - pak se střídá se strojem v odebírání; odebrat lze 1, 2 nebo 3 zápalky,
 - prohraje ten, kdo odebere poslední zápalku.
 - Dílčí podproblémy:
 - zadání počtu zápalek
 - odebrání zápalek hráčem
 - odebrání zápalek strojem
- Pravidla pro odebírání zápalek strojem, která vedou k vítězství (je-li to možné):
 - počet zápalek nevýhodných pro protihráče je 1, 5, 9, atd., obecně 4n+1, kde n >= 0,
 - stroj musí z počtu p zápalek odebrat x zápalek tak, aby platilo p x = 4n + 1
 - z tohoto vztahu po úpravě a s ohledem na omezení pro x dostaneme $x = (p 1) \mod 4$ (mod je zbytek po dělení tj. operace %)
 - vyjde-li x=0, znamená to, že okamžitý počet zápalek je pro stroj nevýhodný a bude-li protihráč postupovat správně, stroj prohraje.

Rekurzivní algorimus

- Rekurzivní algoritmus v některém kroku volá sám sebe
- Rekurzivní metoda v některém příkazu volá sama sebe (i nepřímo)
- Příklad: faktoriál

Obecně k rekurzivitě

- Rekurzivní algoritmus předepisuje výpočet "shora dolů" v závislosti na velikosti (složitosti) vstupních dat:
 - pro nejmenší (nejjednodušší) data je výpočet předepsán přímo
 - pro obecná data je výpočet předepsán s využitím téhož algoritmu pro menší (jednodušší) data
- Výhodou rekurzivních metod je jednoduchost a přehlednost
- Nevýhodou může být časová náročnost způsobená např. zbytečným opakováním výpočtu

Příklad: Fibonacciho posloupnost {0,1,1,2,3,5,8,13,21,...}

$$f_0 = 0$$

 $f_1 = 1$
 $f_i = f_{i-1} + f_{i-2}$ pro $i > 1$

$$f_4$$
 $f_3 + f_2$
 $f_2 + f_1 \quad f_1 + f_0$
 $f_1 + f_0$

Od rekurze k iteraci

• Řadu rekurzívních algoritmů lze nahradit iteračními, které počítají výsledek "zdola nahoru", tj, od menších (jednodušších) dat k větším (složitějším)

• Pozn.: Rekurzivitu lze odstranit pomocí tzv. zásobníku

Problémy algoritmizace

- Rámec (rozsah) popisovaného problému
 - co všechno do algoritmu zahrneme?
 - algoritmus může být velmi jednoduchý, pokud nebereme v úvahu všechny možné (i málo pravděpodobné) situace
 - pravidlo 20 / 80
 - optimální je minimální rozsah naplňující uspokojivě
 (např. s určitou pravděpodobností či kvalitou) daný cíl

- Náročnost a efektivita
 - cíle se často dá dosáhnout různými způsoby
 - příklad: dřevorubec
 - nároky na zdroje
 - čas drobnou úpravou algoritmu může být řešení výrazně zkráceno
 - lidé algoritmy nejsou jen pro stroje
 - energie souvisí s dobou řešení
 - finance jiné promítnutí energií
 - vstupy různá cena informace
 - paměť nutná kapacita

Jiné pohledy na algoritmizaci

- Na tvorbu algoritmu může být pohlíženo i jako na hru mezi autorem a daným úkolem.
- Autor vybírá své tahy ze sady příkazů podle známých pravidel s cílem vytvořit sekvenci, která povede k vítězství (vyřešení úlohy).
- Tvorba algoritmu je i prohledávání stavového prostoru.
- Prostor možností (stupeň volnosti systému) je obrovský (při zahrnutí výběru proměnných → ∞ variant), výrazně větší než u šachů.

- Důležitou vlastností algoritmu je časová náročnost výpočtů podle daného algoritmu
 - nezískává se měřením doby výpočtu pro různá data, ale analýzou algoritmu, jejímž výsledkem je stanovení časové složitosti algoritmu
- Časová složitost algoritmu vyjadřuje závislost času potřebného pro provedení výpočtu na rozsahu (velikosti) vstupních dat
- Čas se měří počtem provedených operací, přičemž trvání každé operace se chápe jako bezrozměrná jednotka

Příklad - faktoriál

28.9.2024

$$C(n) = 1 + 1 + 1 + n - 1 + n + 1$$

$$C(n) = 3 + 2n$$

1 + (n-1)

- Doba výpočtu obvykle nezávisí jen na rozsahu vstupních dat, ale též na konkrétních hodnotách
- Obecně proto rozlišujeme časovou složitost v nejlepším, nejhorším a průměrném případě
- Analýza
 - nejlepší případ: n = 1
 Cmin(n) = 5
 - nejhorší případ: obecný počet prvků n
 Cmax(n) = 3 + 2n
 - průměrný případ: Cprum(n) = 4 + n

- Přesné určení počtu operací při analýze složitosti algoritmu bývá velmi problematické
 - problém s určením průměru uvádí jen nejhorší případ
- Zpravidla nás nezajímají detaily, ale tendence růstu při zvětšujícím se n
 - výrazy udávající složitost lze pak zjednodušit: stačí uvažovat pouze složky s nejvyšším řádem růstu a i u nich lze zanedbat multiplikativní konstanty
- Řád růstu časové složitosti výpočtu faktoriálu je n časová složitost je lineární
- Časovou složitost definujeme pomocí tzv. asymptotické složitosti O()

Tabulka udávající dobu výpočtu pro různé časové složitosti za předpokladu, že l operace trvá l μ s a pro rostoucí rozsahy dat n

O() \ n	10	20	40	60	500	1000
log ₂ n	<i>3,3μ</i> s	4,3μ s	5,3μs	5,9μs	9μs	10μs
n	10μs	20 μs	40 μs	60μs	0,5ms	1ms
n log ₂ n	33 μs	86 μs	0,2ms	0,35ms	4,5ms	10ms
n²	0,1ms	0,4ms	1,6ms	3,6ms	<i>0,25</i> s	1s
n³	1ms	8ms	64ms	<i>0</i> ,2s	125s	17min
n ⁴	10ms	160ms	2,56s	13s	17h	11,6dní
2 ⁿ	1ms	1s	12,7 dní	36000 let		
n!	3,6s	77000 let				

Z tabulky vyplývá, že algoritmy s horší než polynomiální složitostí jsou prakticky neproveditelné – tzv. NP úplné (nedeterministicky polynomiální), např. problém obchodního cestujícího tj. nalezení nejkratší cesty, která prochází právě jednou všemi místy ze zadané množiny (permutace uzlů grafu – C(n!))

Hledání v poli

- Klasická ukázka různé složitosti algoritmů pro stejný úkol
- Sekvenční hledání v poli lze urychlit pomocí předčasného ukončení cyklu a dále pomocí zarážky
- Cyklus budeme provádět do prvního výskytu hledané hodnoty
 - s tím spojena určitá omezení
- Za předpokladu, že pole není zaplněno až do konce, uložíme do prvního volného prvku hledanou hodnotu a cyklus pak může být řízen jedinou podmínkou

Java 🚔 Java 🚔 Java

klasika

přerušení cyklu

přerušení cyklu se zarážkou

Ušetříme část průchodů cyklem, avšak časová složitost zůstane O(n) a nejde tedy o významné urychlení

Princip půlení intervalu

- Pro některé problémy lze sestavit algoritmus založený na principu opakovaného půlení intervalu
 - opakovaně se zmenšuje rozsah dat na polovinu
 - časová složitost takového algoritmu je logaritmická (dělíme-li n opakovaně 2, pak po log₂ n krocích dostaneme číslo menší nebo rovno 1)
- Při hledání prvku pole lze použít princip opakovaného půlení v případě, že pole je seřazené, tj. hodnoty jeho prvků tvoří monotónní posloupnost
 - zjistíme hodnotu y prvku ležícího uprostřed zkoumaného úseku pole
 - je-li hledaná hodnota x = y, je prvek nalezen
 - je-li x < y, budeme hledat v levém úseku
 - je-li x > y, budeme hledat v pravém úseku
- Takovéto hledání se nazývá též binární hledání (binary search), časová složitost je $O(log_2 n)$
 - základ logaritmu ale není pro určení složitosti podstatný

Řazení pole

- Algoritmy řazení pole jsou algoritmy, které přeskupí prvky pole tak, aby upravené pole bylo seřazené
 - pole p je vzestupně seřazené, jestliže platí:

```
p[i-1] <= p[i] pro i = 1..počet prvků pole – 1
```

• pole p je sestupně seřazené, jestliže platí:

```
p[i-1] >= p[i] pro i = 1.. počet prvků pole – 1
```

 Následující metody vzestupně řadí všechny prvky pole daného parametrem:

```
bubbleSort(...) řazení zaměňováním selectSort(...) řazení výběrem insertSort(...) řazení vkládáním mergeSort(...) řazení slučováním
```

Bublinkové řazení (BubbleSort)

- Při řazení zaměňováním postupně porovnáváme sousední prvky a pokud jejich hodnoty nejsou v požadované relaci, vyměníme je; to je třeba provést několikrát - prohledávaný interval se postupně zkracuje zprava
- Pseudokód řešení

```
// největší prvek na pravý konec intervalu,
pak zkrácení intervalu o 1
a znovu for (n=pole.length-1; n>0; n--)
for (i=0; i<n; i++)
if (pole[i]>pole[i+1]) "vyměň pole[i] a pole[i+1]"
```

• Časová složitost algoritmu BubbleSort je $O(n^2)$

Výběrové řazení (SelectSort)

- Při řazení výběrem se opakovaně hledá nejmenší prvek
 prohledávaný interval se postupně zkracuje zleva
- Pseudokód řešení

```
for (i=0; i<pole.length-1; i++) {
    "najdi nejmenší prvek mezi
    pole[i] až pole[pole.length-1]";
    "vyměň hodnotu nalezeného prvku s
    pole[i]";
}</pre>
```

• Časová složitost algoritmu SelectSort: $O(n^2)$

Řazení vkládáním (InsertSort)

- Pole je řazeno opakovaným vkládáním prvku do již seřazeného úseku pole s posunem větších prvků vpravo
- Psedudokód řešení

```
for (n=1; n<pole.length; n++) {
  "úsek pole od pole[0] do pole[n-1] je seřazen"
  "vlož do tohoto úseku délky n hodnotu pole[n]"
}</pre>
```

• Časová složitost algoritmu InsertSort je $O(n^2)$

Slučování (merging)

- Problém slučování lze obecně formulovat takto:
 - ze dvou seřazených (monotónních) posloupností a a b máme vytvořit novou posloupnost obsahující všechny prvky z a i b, která je rovněž seřazená

Příklad

a: 2 3 6 8 10 34

b: 3 7 12 13 55

výsledek: 2 3 3 6 7 8 10 12 13 34 55

Neefektivní řešení

- vytvoříme pole, do něhož zkopírujeme prvky a, pak b, a pak seřadíme
- ale to není slučování!

Princip slučování

- postupně porovnáváme prvky zdrojových posloupností a do výsledné posloupnosti přesouváme menší z nich
- nakonec zkopírujeme do výsledné posloupnosti zbytek první nebo druhé posloupnosti

Řazení slučováním (MergeSort)

- Efektivnější algoritmy řazení mají časovou složitost $O(n.log_2 n)$
- Např. řazení slučováním,
 - založen na opakovaném slučování seřazených úseků do úseků větší délky
- Lze jej popsat rekurzívně:
 - řazený úsek pole rozděl na dvě části
 - seřaď levý úsek a pravý úsek
 - přepiš řazený úsek pole sloučením levého a pravého úseku

