Intro stats with mosaic

ggformula version

Loading packages

library (mosaic)

Essential R syntax

Names in R are case sensitive Function and arguments rflip(10)

Optional arguments rflip(10, prob = 0.8)

Assignment

 $x \leftarrow rflip(10, prob = 0.8)$

Getting help on any function

help(mean)

Arithmetic operations

+ - * / basic operations ^ exponentiation () grouping sqrt(x) square root abs(x) absolute value log10(x) logarithm, base 10 log(x) natural logarithm, base e exp(x) exponential function e^x factorial(k) k! = k(k-1) ... 1

Logical operators

- == is equal to (note double equal sign)
- != is not equal to
- < is less than
- <= is less than or equal to
- > is greater than
- >= is greater than or equal to
- A and B are TRUE
- A | B ("A or B") is TRUE if one or both of A and B are TRUE
- %in% inclusion; for example
 - "C" %in% c("A", "B") is FALSE

Formula interface

Use for graphics, statistics, inference, and modeling operations.

goal(y ~ x, data = mydata)
Read as "Calculate goal for y using
mydata "broken down by" x, or
"modeled by" x.

mean(age ~ sex, data = HELPrct)

For graphics:

goal(y ~ x | z, data = mydata, color = ~ w)

y: y-axis variable (optional)

x: x-axis variable (required)

z : panel-by variable (optional)

w: color-by formula (optional)

gf_boxplot(wage ~ sex,
 data = CPS85)

gf_point(wage ~ educ | sex,
 data = CPS85, color = "blue")

gf_point(wage ~ educ,
 data = CPS85, color = ~ sex)

Examining data

Print short summary of all variables inspect (HELPrct)

Number of rows and columns dim (HELPrct)
nrow (HELPrct)
ncol (HELPrct)
Print first rows or last rows head (KidsFeet)
tail (KidsFeet, 10)

Names of variables

names (HELPrct)

One categorical variable

Counts by category
tally(~ sex, data = HELPrct)
Percentages by category
tally(~ sex, data = HELPrct,
 format = "percent")

Bar graph of percentages
gf_percents(~ sex,
 data = HELPrct, fill = "cyan",
 color = "black")

Tests and confidence intervals

Exact test

result1 <binom.test(~ (homeless ==
 "homeless"), data = HELPrct)</pre>

Approximate test (large samples)

result2 < prop.test(~ (homeless ==
 "homeless"), data = HELPrct,
 alternative = "less",
 p = 0.4)</pre>

Extract confidence intervals and p-values confint (result1)
pval (result2)

One quantitative variable

options (digits = 3)
Compute summary statistics
mean (~ cesd, data = HELPrct)
Other summary statistics work similarly

Make output more readable

median() iqr() max() min()
fivenum() sd() var() sum()

Table of summary statistics

favstats(~ cesd, data = HELPrct)

Summary statistics by group

favstats(cesd ~ sex,
 data = HELPrct)

Quantiles

quantile(~ cesd, data = HELPrct, prob = c(0.25, 0.5, 0.8))

Histogram

gf_histogram(~ cesd,
 data = HELPrct, binwidth = 5,
 center = 2.5)

Normal probability plot gf qq(~ cesd, data = HELPrct)

Density plot

gf_dens(~ cesd, data = HELPrct, color = "blue", size = 1.25)

One-sample t-test
result <- t_test(~ cesd,
data = HELPrct, mu = 34)

Extract confidence intervals and *p*-values confint(result) pval(result)

Paired t-test

t_test(extra ~ group,
 data = sleep, paired = TRUE)

Data wrangling

Drop, rename, or reorder variables df <- select(HELPrct,</pre> c(id, age, gender = sex)) Create new variables from existing ones KidsFeet <- mutate(KidsFeet,</pre> width in = 0.394 * width) Retain specific rows from data girls feet <- filter(KidsFeet,</pre> sex == "G")Sort data rows by value in column df <- arrange(KidsFeet, length)</pre> Compute summary statistics by group group by (KidsFeet, sex) %>% summarize(mean width = mean(width))

Importing data

For more, see Tidyverse cheatsheet

Import data from file or URL MustangPrice <read.file("C:/MustangPrice.csv") Note: R uses forward slashes kidsfeet <read.file("http://www.mosaicweb.org/go/datasets/kidsfeet.csv")

Randomization and simulation

Fix random number sequence set.seed(42) Toss coins rflip(10) # default prob is 0.5 Do something repeatedly do(5) * rflip(10, prob = 0.75)Draw a simple random sample sample(LETTERS, 10) deal(Cards, 5) # poker hand Resample with replacement Small <- sample(KidsFeet, 10)</pre> resample(Small) Random permutation (shuffling) shuffle (Cards) Random values from distributions rbinom(5, size = 10, prob = 0.7)rnorm(5, mean = 10, sd = 2)

Two categorical variables

```
Contingency table with margins
tally(~ substance + sex,
  data = HELPrct, margins = TRUE)
Percentages by column
tally(~ sex | substance,
  data = HELPrct,
  format = "percent")
Mosaic plot
my tbl <- tally(substance ~ sex,
 data = HELPrct)
mosaicplot(my tbl, color = TRUE)
 sex
                substance
```

Test for proportions (approximate) prop.test(homeless ~ sex, success = "homeless", data = HELPrct)

Distributions

```
Normal distribution function
qnorm(0.95) # mean = 0, sd = 1
Binomial density function ("size" means n)
dbinom(5, size = 8, prob = 0.65)
Central portion of distribution
cdist("norm", 0.95)
cdist("t", c(0.90, 0.99), df = 5)
Plotting distributions
  prob = 0.65, xlim = c(-1, 9)
```

Two quantitative variables

```
Correlation coefficient
cor(cesd ~ mcs, data = HELPrct)
Scatterplot with regression line and smooth
gf point(cesd ~ mcs,
         data = HELPrct) %>%
  gf lm(size = 1.5, linetype =
    "dashed") %>%
  gf smooth(color = "red")
Simple linear regression
cesdmodel <- lm(cesd ~ mcs,
  data = HELPrct)
msummary(cesdmodel)
Prediction
lm fun <- makeFun(cesdmodel)</pre>
lm fun (mcs = 35)
Extract useful quantities
anova (cesdmodel)
coef(cesdmodel)
confint(cesdmodel)
rsquared(cesdmodel)
```

```
pnorm(13, mean = 10, sd = 2)
Normal distribution function with graph
xpnorm(1.645, mean = 0, sd = 1)
Normal distribution quantiles
Normal distribution quantiles with graph
xqnorm(0.85, mean = 10, sd = 2)
Binomial distribution function
pbinom(5, size = 8, prob = 0.65)
plotDist("binom", size = 8,
plotDist("norm", mean = 10,
  sd = 2
```

Quantitative response, categorical predictor

```
Two-level predictor: two-sample t test
Numeric summaries
favstats (~length | sex,
  data = KidsFeet)
Graphic summaries
qf qq(~ length | sex,
       data = KidsFeet) %>%
  gf gqline() %>%
  gf labs(x = "Normal quantile",
           v = "Length (cm)")
Two-sample t-test and confidence interval
result <- t test(cesd ~ sex,
  data = HELPrct)
result # view results
confint(result)
pval(result)
More than two levels (Analysis of variance)
Numeric and graphic summaries
favstats(cesd ~ substance,
  data = HELPrct)
gf boxplot(cesd ~ substance,
  data = HELPrct)
Fit and summarize model
mod <- lm(age ~ substance,</pre>
  data = HELPrct)
anova (mod)
Which differences are significant?
mplot(TukeyHSD(mod))
            95% family-wise confidence level
                           log10(pval)
    cocaine-alcohol -
```

Diagnostics; plot residuals

gf lm(size = 2)

gf qq(~resid(cesdmodel))

Diagnostics; plot residuals vs. fitted

gf point(resid(cesdmodel) ~

fitted(cesdmodel)) %>%

Categorical response,

quantitative predictor

gf dhistogram(~resid(cesdmodel))

Logistic regression logit mod <- glm(homeless ~ age,</pre> data = HELPrct, family = binomial) msummary(logit mod) Odds ratios and confidence intervals exp(coef(logit mod)) exp(confint(logit mod))