Aug 23rd - Ropar 23-08-2012 Note Title ARM -> Machine Insts. [ARCHITECTURE] Basic Elements: [ORGANIZATION] ALU: adder, shifter, multiplier divider. Memory: SRAM, DRAM, Flip- Flops

Adder

1 bit addition.

 C_1 Q_1 $+ b_1$ S_1

 $S_1 = a, \oplus b,$

 $C_1 = a_1 \cdot b,$

[HALF ADDER]

€ > exclusive or

· - and

Full Adder + - OR S1 = a, + b, + C0 $C_1 = a_1 \cdot b_1 + a_1 \cdot c_0 + b_1 \cdot c_0$ n. bit addition a, 20+1

Ripple Carry Adder.

Carry is rippling from the first to last adder Time it takes to do addition: O(n)
[Slow]

Reason for slow objection:

The cavoy is propagating from fosition 1...n

result 1 (assuming Con = 1)
(sum bits 2

cout)
result 0 (assuming Cin = 0)

Chank size is k

Time (Stages): O(k)

Stage 2:

Make the carry rible across chunks

Time (Stage,) = #chunks: n/k

Time:
$$\left\{k + \frac{n}{k}\right\}$$

Time:
$$k + n/k$$

$$f(k) = k + n$$

$$k$$

$$\frac{\partial f(k)}{\partial k} = 1 - n = 0$$

$$\frac{\partial k}{\partial k} = \sqrt{n}$$

 $\overline{Iime}: 2\sqrt{n} \leftrightarrow O(\sqrt{n})$

Extension

Time waste:

A unit (chank) is idle in the

and stage after it has done its job.
vauable sized chunk.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
m
$\leq i = n$
Operation:
Operation: 1) Every chank computes two results (Con=0, Con=1)
Con = 1)
2) Claim:
The moment it is done with its
Computation it gets the right value of Cin
7) Claim: The moment it is done with its Computation it gets the right value of Cin froof Mathematical Induction
Mathematical Induction

Bose Case: chunk₁
Con=0

ith Chunk

At time (i) if the computation.

By induction by pothesis, the previous chunk

finoshes its computation in time (i-i) and
forwards the correct Cin to chunk i by

time i.

Before time (i+i), compute the right

value of Con for chunk(i+i)

Total tome: O(m)

Mi = n

 $\Rightarrow m (m+1) = n$

=) m2 + m - 2n = 0

 $m = \sqrt{gn+1} - 1$

 $= \sqrt{2n+1/4} - 1/2 \approx \sqrt{2}.\sqrt{n}$

Time: $O(m) = O(\sqrt{n})$ (complexity is same as fined chunk algo.)

Time:

Aborithm	Exact Time	Asymptotic
1) Ribble Corry	\approx n	70me 0(n)
y) Riffle Corry Adder		
2) Carry Select	$\approx 2\sqrt{n}$	$\mathcal{O}(\sqrt{n})$
Adder (Fixed		_
2) Carry Select Adder (Fixed Size chunk)		
1	·	
3) Corry Select		
Adder (Variable	$\approx \sqrt{2}.\sqrt{n}$	<i>O</i> (√n)
Adder (Variable Size chunk)		
4) Carry Look ahead	$\approx 2. \log(n)$	(log (n))
4) Carry Lookahead Adder		
	1	

Lookahead Adder + 0 Cout = 0 [propagate] [absorb] a, $G_1 = \alpha_1 \cdot b_1$ (generate) $P_1 = a_1 \oplus b_1$ (propagate)

$$+ \frac{a_2}{b_2} \frac{a_1}{b_1} \quad cout \quad cout$$

$$+ \frac{b_2}{b_2} \frac{b_1}{b_1} \quad cout \quad cout$$

$$- \frac{cout}{cout} = G + P \cdot C_{in}$$
For a 1-bit chunk:

We have equation for g and P

Mullibil System.

$$m+n$$

$$- \frac{m}{cout} = G_m + P_m \cdot G_n$$

$$- \frac{G_{m+n}}{P_{m+n}} = P_m \cdot P_n$$

$$- \frac{G_m}{P_m} = P_m \cdot P_m$$

8.9.

$$\begin{bmatrix} a_2 & a_1 \\ b_2 & b_1 \end{bmatrix}$$

$$G = a_2.b_2 + (a_2 \oplus b_2).a_1.b_1$$

 $P = (a_1 \oplus b_1).(a_2 \oplus b_2)$

 $G_1 = a_1 \cdot b_1 \qquad P_1 = a_1 \oplus b_1$

 $G_3 = Q_2 \cdot b_3$ $P_2 = Q_2 \oplus b_3$

$$\begin{cases}
G = G_2 + P_2 \cdot G, \\
P = P_2 \cdot P,
\end{cases}$$
(2)

7000: Go to the web and understand this

Tutorial This week: Sunday (10-1 Pm)
Tomorrow
Carry Lookahead Adder.