

Bayesian Non-Parametrics for Personalized Medicine

Melanie F. Pradier, UC3M

Stochastic modeling and graphical models for the analysis and prediction of phenotype interactions

Who I am

Academical Background

- Telecommunication Engineer, Technical University of Madrid (4 years)
- MSc. in Information Technology, University of Stuttgart (2.5 years)

Professional Experience

- Research Internship at Sony EuTEC, Stuttgart (9 months)
- Research Internship at Sony Corporation, Tokyo (1 year)

Previous Research Projects

- 2009 Bachelor Th "Statistical Bounds for DOA estimation in Antenna Arrays"
- 2010 Sony EuTec: "Personalization and Recommendation Systems"
- 2011 MSc. Th: "Emotion Recognition from Speech signals and Perception of Music"
- 2012 Sony Corporation: "Adaptive Learning Technologies for Education"
- 2013 "Scalar Quantization for Lossy Source Coding of Continuous Sources"

Research Overview

Aim: Model complex relationships between genetics, epigenetics and environment to infer latent information.

- 1. Modeling
- 2. Inference

A1 Biomarker discovery

A2 Data Integration

A3 Causal Mechanism of Disease

A4 Gene-Environment Interactions

1. Modeling

Goal: comparative density estimation of group data

Some motivating applications

- Pediatrics: children weight and height evolution with age.
- Social Sciences: gender impact on salary income.
- Pharmaceutics: monitoring drug responses according to patient's characteristics.

Dependent Dirichlet Process

- The DDP places a prior over a collection $G_1 \ldots G_J$ of random distributions
- Based on Dirichlet Process, where $G \sim \mathrm{DP}(H, \alpha)$
 - α : concentration parameter
 - H: base measure
- $G_j = \sum_{k=1}^{\infty} \pi_{jk} \delta_{\phi_{jk}}$

Hierarchical DP vs Single-p DDP

Application to Marathon dB

Study of Age/gender impact on marathon performance

- J populations of runners
- $G_j = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_{jk}}$
- $x_{ji}|c_{ji} = k, \mu_k, \theta_j, \sigma_x^2 \sim \mathcal{N}\left(x_{ji}|\mu_k + \theta_j, \sigma_x^2\right)$
- $\theta \sim \mathcal{N}(0, \Sigma_{\theta})$
- $(\Sigma_{\theta})_{ij} = \sigma_{\theta}^2 \cdot \exp\left(-\frac{(i-j)^2}{2\nu^2}\right) + \kappa \delta(i-j)$

Results: Bayesian Non-Parametrics for Marathon Analysis

2. Inference

Scala pBNP toolbox for parallel MCMC Inference in BNP models

$$p(\beta, \mathbf{x}, \mathbf{z} | \alpha) = p(\beta | \alpha) \prod_{n=1}^{N} p(x_n, z_n | \beta)$$

- 1. Sample β from $p(\beta | \mathbf{z}, \mathbf{x}, \alpha)$
- 2. Sample z_n from $p(z_n|x_n,\beta)$ for $n=1,\ldots,N$

Scala pBNP toolbox

- 1. Functional programming
- 2. Parallel/distributed
- 3. DP/IBP models
- 4. Easy extension to any lik model
- 5. Flexible Framework

MARIE CURIE ACTIONS

Initial Training Network "Machine Learning for Personalized Medicine"

Results: Scala pBNP toolbox

Algorithm	100K	1M	5M	50M
Sequential	0.1349	1.3963	-	-
Parallel	0.0123	0.1397	0.8736	-
Distributed (100K)	0.1795	0.1512	0.2143	1.3429

N Algorithm	100K	1M
Sequential	9.9169	-
Parallel	0.6791	26.4195
Distributed (100K)	10.7375	32.8588
Distributed (25K)	3.1215	9.6388

Impact of Marie Curie-ITN

- 1. Quality Training
- 2. Multidisciplinary work
- 3. Link to Society