

Halbleitertechnik IV-Nanoelectronics

Friedrich-Alexander-Universität Erlangen-Nürnberg | Lehrstuhl für Elektronische Bauelemente | Cauerstraße 6 | 91058 Erlangen | www.leb.tf.fau.de | Michael Jank

Scaling of MOSFETs

Objectives of the lecture

Mission and goals?

Scaling of MOSFETs

Objectives

- To know the different approaches for dimensional scaling in MOS technology and the reasons behind
- for the well defined schemes of constant-voltage and constant-field scaling you should be aware of the respective rules and
- the effects on the device behavior, especially the electrical fields and currents and critical device parameters

- Most important circuit-related parameters of MOSFET
 - threshold voltage U_{Th}
 - areal oxide capacity C_{IS}
 - (charge) carrier mobility μ
 - body effect coefficient γ
 - subthreshold swing S
 - transconductance g_m or β
- Important technology criteria af MOSFETs
 - channel length L
 - channel width W
 - substrate and well doping N_{A,D}
 - gate oxide thickness d_{IS}
 - junction depth of S/D areas x_j
 - (gate material: n-type polysilicon, p-type polysilicon, metal electrode)

Nanoelectronics – Scaling of MOSFETs Contents

• <u>Transfer characteristics</u> of a n-channel MOSFET (W=6 μ m, L=3 μ m, V_{TH} =0.8V, μ =750 cm²/Vs)

- "OFF"
- 2 linear region
- 3 saturation region
- 4 subthreshold region

- Metrics of MOS-Transistors
 - Structure
 - Operation regions
 - Output and transfer characteristics
 - Dynamic behavior
- Skaling rules
 - Constant Voltage Scaling
 - Constant Field Scaling
 - Real / practical scaling

- Scaling of MOS devices I
 - before: Scaling at constant voltage
 - Advantages:
 - Compatibility of supply voltage (bipolar technology)
 - High switching speed

Key parameters

- Scaling of MOS devices II: constant voltage
 - typicall scaling with a constant α >1 (until approx. 0.8 μ m linewidth); compatibility against bipolar technology (U_{DD} = 5 V)

Parameter	scales to		
Supply voltage U_{DD}	U_{DD}		
Gate length <i>L</i>	L/a		
Gate width W	W/a		
Gate oxid thickness d _{IS}	d_{IS}/α		
p-n junction depth x_j	x_j/α		
Substrate doping N _{A,D}	$N_{A,D} \cdot \alpha$		

 $\alpha \approx 1.4$

$$E = \frac{U}{d}$$

Field increases and leads to reliability problems: Scaling with constant field

- Scaling of MOS devices I
 - · before: scaling at constant voltage
 - Advantages:
 - Compatibility of supply voltage (bipolar technology)
 - · High switching speed
 - Disadvantages:
 - increased field leads to problems (hot carriers)
 - strongly increasing power density >> high temperatures
 - · then (theoretically): scaling at constant field
 - Advantage:
 - less power consumption
 - Disadvantages
 - no voltage compatibility

Key parameters

- Scaling of MOS devices III: const. field, theoretically
- scaling by a factor α > 1
- primarily scaled parameters
 - Channel length $L \rightarrow L/\alpha$
 - Channel width $W \rightarrow W/\alpha$
 - Oxide thickness d_{IS} → d_{IS}/α
 - Doping conc. $N_{AD} \rightarrow N_{AD} \cdot \alpha$
 - Supply Voltage $U \rightarrow U/\alpha$

- effects of scaling on
 - Utilized area
 - Capacitances
 - Resistances
 - Power consumption

- Threshold voltage U_{Th}
- Drain current I_D
- Gate delay t_{GD}
- Transmission delay t_W

Scaling of MOS devices IV: constant voltage vs. constant field

Parameter	constant voltage	constant field
Supply Voltage V_{DD}	U_{DD}	U_{DD}/α
Gate Length L	L/α	L/α
Gate Width W	W/a	W/a
Oxide thickness d _{IS}	d_{IS}/α	d_{IS}/α
S/D junction depth x_j	x_j / α	x_j/α
Doping concentration $N_{A,D}$ (substrate)	$N_{A,D} \cdot \alpha$	$N_{A,D} \cdot \alpha$

$$E = \frac{U}{d} = const.$$

Key parameters

- Scaling of MOS devices V: areal scaling
 - area

$$A = L \cdot W$$

$$L \rightarrow \frac{L}{\alpha}, \qquad W \rightarrow \frac{W}{\alpha}$$

after scaling

$$A \rightarrow \frac{A}{\alpha^2}$$

• Example: Transition from 90 nm node (technology) to 65 nm node $\alpha = 1, 4 \rightarrow \text{Area } / 2 \rightarrow \text{very good}$

Key parameters

- Scaling of MOS devices VI: capacity
 - per area

$$C_{IS} = \frac{\varepsilon_0 \varepsilon_{IS}}{d_{IS}} \qquad d_{IS} \rightarrow \frac{d_{IS}}{\alpha}$$

areal capacity after scaling

$$C_{IS} \rightarrow C_{IS} \cdot \alpha$$

increases due to scaling

• Total capacity (absolute value)

$$C = C_{IS} \cdot A \rightarrow \frac{C}{\alpha}$$

Capacity gets smaller/larger? → good/bad?

Key parameters

Scaling of MOS devices VII: treshold voltage

$$U_{Th} = U_{FB} + 2\phi_{B} - \frac{Q_{HL}}{C_{IS}} = \phi_{MHL} + 2\phi_{B} - \frac{Q_{IS} + Q_{HL}}{C_{IS}}$$

$$Q_{IS} = \int_{0}^{d_{IS}} \rho_{IS} x \, dx = \frac{1}{2} d_{IS} \rho$$

$$Q_{IS} \rightarrow \frac{Q_{IS}}{\alpha}$$

$$C_{IS} \rightarrow C_{IS} \cdot \alpha$$

$$Q_{IS} \rightarrow C_{IS} \cdot \alpha$$

$$Q_{IS} \rightarrow \frac{Q_{IS}}{\alpha}$$

$$Q_{IS} \rightarrow C_{IS} \cdot \alpha$$

$$Q_{IS} \rightarrow \frac{Q_{IS}}{\alpha}$$

Scaled threshold voltage:

$$U_{Th} \rightarrow \frac{U_{Th}}{\alpha}$$

Key parameters

Scaling of MOS devices VIII: drain current (saturation)

$$I_{D} = \frac{\mu C_{IS}}{2} \frac{W}{L} (U_{G} - U_{Th})^{2}$$

$$U_{G} \rightarrow \frac{U_{G}}{\alpha}, \quad U_{Th} = \frac{U_{Th}}{\alpha}$$

$$L \rightarrow \frac{L}{\alpha}, \quad W = \frac{W}{\alpha}, \quad C_{IS} = C_{IS} \cdot \alpha$$

Scaled saturation current

$$I_{D} \rightarrow \frac{I_{D}}{\alpha}$$

Saturation current gets smaller! → but: really bad?

Scaling of MOS devices IX: gate delay

$$\tau_{G} = \frac{Q}{I_{D}} = \frac{CU_{DD}}{I_{D}}$$

$$C \rightarrow \boxed{\frac{C}{\alpha}}, I_{D} \rightarrow \boxed{\frac{I_{D}}{\alpha}} \qquad U_{DD} \rightarrow \boxed{\frac{U_{DD}}{\alpha}}$$

Scaled delay time

$$\tau_{\rm GD} \rightarrow \frac{\tau_{\rm GD}}{\alpha}$$

Transistor gets faster! → good!

Key parameters

Scaling of MOS devices X: resistivity of wiring

$$R = \rho \frac{L}{Wd}$$

$$L \rightarrow \frac{L}{\alpha}$$

$$W \rightarrow \frac{W}{\alpha}$$

scaled line resistivity

$$R \rightarrow R \cdot \alpha$$

Resistivity increases ! → bad!

Key parameters

Scaling of MOS devices XI: line delay

$$au_{\it wire} = RC$$

$$R \rightarrow R \cdot c$$

scaled line delay

$$au_{ ext{wire}} = ext{const}.$$

delay time is constant: o.k.

Scaling of MOS devices XII: static power dissipation

$$P = UI$$
 $U \rightarrow \frac{U}{\alpha}$ $I \rightarrow \frac{I}{\alpha}$

scaled power losses

$$P \rightarrow \frac{P}{\alpha^2}$$

losses are strongly reduced: very good!

 Scaling of MOS devices XIII: dynamic power dissipation capacitive discharging:

$$P = \frac{1}{2}CU^2f \qquad U \rightarrow \frac{U}{\alpha}, C \rightarrow \frac{C}{\alpha}$$

scaled dynamic power loss (at fixed frequency)

$$P \rightarrow \frac{P}{\alpha^3}$$

including an increasing frequency

$$f \rightarrow f \cdot \alpha$$
 ? $P \rightarrow \frac{P}{\alpha^2}$

also very good!

Summary of constant field scaling

Parameter	changes to	
Area A	A/α^2	
Capacities C		
Resistivities R		
Threshold Voltage U_{th}	U_{Th}/α	
Drain current I _D		
Gate delay τ_{G}		
Line delay $ au_{ ext{wire}}$	const.	
Power losses P	$1/\alpha^3$ to $1/\alpha^2$	

But: is this really representing the reality?

- Historically: scaling @ fixed voltage
 - Compatibility of supply voltages
 - high switching speeds
 - problems due to high electric fields (hot carriers)
 - strong increase in power density → high chip temperatures, low reliability
- now (theoretically): scaling @ constant field
 - low power consumption
 - no voltage compatibility
- now (practically/additionally):

Trade offs with respect to device physics, voltage compatibility

Nanoelectronics – Scaling of MOSFETs Real scaling

• Constant voltage, constant field, and real scaling (scaling by factors of $\alpha > 1$, $\beta > 1$)

Parameter	constant voltage	constant field	lpha and eta scaling
Supply Voltage V _{DD}	U_{DD}	U_{DD}/α	U_{DD} / β
Gate Length <i>L</i>	L/α	L/α	L/α
Gate Width W	W/a	W/a	W/a
Oxide thickness d _{IS}	d_{IS}/α	d_{IS}/α	d _{IS} /β
S/D junction depth x_j	x_j / α	x_j/α	x_j / α
Doping concentration $N_{A,D}$ (substrate)	Ν·α	N·α	Ν·α

Due to problems with gate oxide breakdown only constant field scaling below 800 nm node

Real scaling

• Constant voltage, constant field, and real scaling (scaling by factors of $\alpha > 1$, $\beta > 1$) influence on device and circuit parameters

Parameter	constant voltage	constant field	lpha and eta scaling
Gate electric field	α	1	1
Depletion width	1 / α	1 / α	1 / α
Gate area	$1/\alpha^2$	$1/\alpha^2$	$1/\alpha^2$
Gate capacity	1 / α		
Drain current	α		
Gate delay	$1/\alpha^2$		
Current density	α^3	α	α
Power consumption	α	$1 / \alpha^2 \dots 1 / \alpha^3$	$1/(\alpha\beta)1/(^2\beta\alpha)$
Power density	α^3	1	1

Due to problems with gate oxide breakdown only α and β scaling below 500 nm node

Real scaling

Technology nodes according to ITRS

Year of production	2009	2012	2015	2018	2021	2024
Technology node	54 nm	32 nm	21 nm	15 nm	10,6 nm	7,5 nm
Equivalent oxide thickness (nm)	1,0 1)	0,85 2)	0,8 3)	0,73 4)	0,65 4)	0,6 4)
Supply voltage U_{DD} (V)	0,95	0,85	0,75	0,7	0,6	0,6
DRAM memory generation (Gb)	2	4	8	16	32	64
DRAM cell size (nm²)	16 000	5 100	2 600	1 300	640	320
CPU (10 ⁶ Transistors / Chip)	773	1 546	3 092	6 184	12 368	24 736
CPU clock frequency (GHz, on chip)	5,454	6,329	8,522	10,652	13,315	16,640

(International Technology Roadmap for Semiconductors, 2015/last edition)

- 1) Bulk Si, poly gate
- 2) Bulk Si, metal gate
- 3) FDSOI, metal gate
- ⁴⁾ Multiple metal gate

Nanoelectronics – Scaling of MOSFETs Real scaling

Example: physical gate length (ITRS)

Thanks for your attention!