§ 1.5. Inverse Functions + Logarithms, Part I

In this video, we will

- 1) Define the logarithm function is the <u>natural log</u> function
- 2 List the Rules of Logarithms
- 3 Graph the natural logarithm Ruction.

Consider the graph of $f(x) = 2^x$ $f(0) = 2^{0-1}$ f(1) = 2

This is where logarithms come from.

These meen the same thing:

$$2^{x} = 3 \iff \log_{a}(3) = x$$

 $a^{x} = y \iff \log_{a}(y) = x$

Ex:
$$2^{4} = 16 \Leftrightarrow \log_{2}(16) = 4$$

 $5^{*} = 25 \Leftrightarrow \log_{5}(25) = x = 2$ $\log_{5}(25) = 2$
 $\log_{4}(64) = x \Leftrightarrow 4^{*} = 64 = 3$ $\log_{4}(14) = 3$

*
$$y=2^x$$
, to find the inverse we switch
 $x+y$, solve for $y:$
 $x=2^y \Rightarrow \log_2(x)=y$

$$f(x) = 2^{x}$$
, $f^{-1}(x) = \log_{2}(x)$

$$\log_2(2^{\times}) = \times$$
 AND $2^{\log_2(x)} = \times$

$$f(x)=a^{*}$$
, $f'(x)=\log_{a}(x)$

$$f(x) = e^{x}$$

$$f^{-1}(x) = \log_{e}(x) = \ln(x)$$

$$\log_{5}(5) + \log_{7}(4) + \log_{7}(6^{2})$$

$$1 + 8 + 2 \cdot \log_{7}(6) = 1 + 8 + 2(10) = 29$$

Ex: Find x such that
$$e^{x+1} = 9$$
 $\log_e(9) = x+1$
 $\ln(e^{x+1}) = \ln(9)$
 $\ln(9) = x+1$
 $\ln(9) = x+1$
 $\ln(9) = \ln(9)$
 $\ln(9) = \ln(9)$
 $\ln(9) = \ln(9)$
 $\ln(9) = \ln(9)$

Graph
$$y = \log_2 x$$
 $\log_2(1) = 0$
 $y = \ln(x)$ $\ln(1) = 0$
 $y = \ln(x)$ $\ln(e) = 1$

What Else:

- · Solving more exponential equations
- · Real-World Applications of logarithms
- · Different way to rewrite loga(x)