Introducción a la Lógica y la Computación

Mariana Badano Héctor Gramaglia
Pedro Sánchez Terraf Mauricio Tellechea
Guido Ivetta César Vallero

FaMAF, 27 de agosto de 2021

Contenidos estimados para hoy

- Repaso: Posets Reticulados y Dualidad
- 2 Retículos
 - Equivalencia con posets reticulados
 - Subret{ícul,iculad}os
 - Isomorfismo de retículos
- 3 Clases particulares de reticulados
 - Reticulados acotados y complementados

Definición

 (L, \leq) es un poset **reticulado** si para todo $a, b \in L$ existen $a \lor b := \sup\{a, b\}$ y $a \land b := \inf\{a, b\}$.

Definición

 (L, \leq) es un poset **reticulado** si para todo $a, b \in L$ existen $a \lor b := \sup\{a, b\}$ y $a \land b := \inf\{a, b\}$.

Lema

Sea (L, \leq) poset reticulado, y elementos $x, y, u, l \in L$.

- $\blacksquare \ x \le x \lor y, \quad y \le x \lor y.$
- $\blacksquare \ x \lor y \le u \iff x \le u \ \& \ y \le u.$

Definición

 (L, \leq) es un poset **reticulado** si para todo $a, b \in L$ existen $a \lor b := \sup\{a, b\}$ y $a \land b := \inf\{a, b\}$.

Lema

Sea (L, \leq) poset reticulado, y elementos $x, y, u, l \in L$.

- $x \le x \lor y, \quad y \le x \lor y.$
- $x \lor y \le u \iff x \le u \& y \le u.$

Dualidad para posets reticulados

Toda propiedad válida para todos los reticulados también vale al intercambiar $\leq con \geq$, "superior" con "inferior", $\sup con \inf, \max con \min, \ldots$

Definición

 (L, \leq) es un poset **reticulado** si para todo $a, b \in L$ existen $a \vee b := \sup\{a, b\}$ y $a \wedge b := \inf\{a, b\}$.

Lema

Sea (L, \leq) poset reticulado, y elementos $x, y, u, l \in L$.

- $x \le x \lor y, \quad y \le x \lor y.$
- $\blacksquare x \lor y \le u \iff x \le u \& y \le u.$

Dualidad para posets reticulados

Toda propiedad válida para todos los reticulados también vale al intercambiar $\leq con \geq$, "superior" con "inferior", $\sup con \inf, \max con \min, \dots$

- $x \wedge y \leq x, \quad x \wedge y \leq y.$
- $\blacksquare \ l \le x \land y \iff l \le x \& \ l \le y.$

leyes de idempotencia:

$$x \lor x = x \land x = x$$

1 leyes de idempotencia:

$$x \lor x = x \land x = x$$

2 leyes conmutativas:

$$x \lor y = y \lor x, \qquad x \land y = y \land x$$

1 leyes de idempotencia:

$$x \lor x = x \land x = x$$

2 leyes conmutativas:

$$x \lor y = y \lor x$$
, $x \land y = y \land x$

3 leyes de absorción:

$$x \lor (x \land y) = x, \qquad x \land (x \lor y) = x$$

1 leyes de idempotencia:

$$x \lor x = x \land x = x$$

2 leyes conmutativas:

$$x \lor y = y \lor x$$
, $x \land y = y \land x$

3 leyes de absorción:

$$x \lor (x \land y) = x, \qquad x \land (x \lor y) = x$$

Ieyes asociativas:

$$(x \lor y) \lor z = x \lor (y \lor z), \qquad (x \land y) \land z = x \land (y \land z)$$

Retículos

Definición

Un **retículo** (L, \sqcup, \sqcap) consta de un conjunto L y dos operaciones (binarias) $\sqcup : L \times L \to L$ y $\sqcap : L \times L \to L$ que cumplen:

- **1** Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- 3 Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- **4** Asociatividad: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$.

Retículos

Definición

Un **retículo** (L, \sqcup, \sqcap) consta de un conjunto L y dos operaciones (binarias) $\sqcup : L \times L \to L$ y $\sqcap : L \times L \to L$ que cumplen:

- **1** Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- 3 Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- **4** Asociatividad: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$.

Ejemplo (Posets reticulados ⇒ Retículos)

Si (L, \leq) es un poset reticulado, entonces (L, \vee, \wedge) es un retículo.

Retículos

Definición

Un **retículo** (L, \sqcup, \sqcap) consta de un conjunto L y dos operaciones (binarias) $\sqcup : L \times L \to L$ y $\sqcap : L \times L \to L$ que cumplen:

- **1** Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- **3** Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- **4** Asociatividad: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$.

Ejemplo (Posets reticulados ⇒ Retículos)

Si (L, \leq) es un poset reticulado, entonces (L, \vee, \wedge) es un retículo.

De hecho, este es el único ejemplo.

- **1** Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- 3 Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- **4** Asociatividad: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$.

- 1 Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- 3 Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- **4** Asociatividad: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$.

Teorema

Sea (L, \sqcup, \sqcap) un retículo. Entonces, $x \le y :\iff x \sqcup y = y$ es un orden parcial sobre L tal que $x \sqcup y = \sup\{x,y\}$ y $x \sqcap y = \inf\{x,y\}$

- **1** Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- **3** Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- $\textbf{4} \ \, \mathsf{Asociatividad:} \ \ (x \sqcup y) \sqcup z = x \sqcup (y \sqcup z) \qquad (x \sqcap y) \sqcap z = x \sqcap (y \sqcap z).$

Teorema

Sea (L, \sqcup, \sqcap) un retículo. Entonces, $x \leq y :\iff x \sqcup y = y$ es un orden parcial sobre L tal que $x \sqcup y = \sup\{x,y\}$ y $x \sqcap y = \inf\{x,y\}$

Demostración.

≤ reflexiva por Idempotencia.

- **1** Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- 3 Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- **4** Asociatividad: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$.

Teorema

Sea (L, \sqcup, \sqcap) un retículo. Entonces, $x \leq y :\iff x \sqcup y = y$ es un orden parcial sobre L tal que $x \sqcup y = \sup\{x,y\}$ $y x \sqcap y = \inf\{x,y\}$

Demostración.

 \leq antisimétrica por Conmutatividad: $\underbrace{y = x \sqcup y}_{x \sqcup y} = \underbrace{y \sqcup x = x}_{y \sqcup x = x}$.

- 1 Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- 3 Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- **4** Asociatividad: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$.

Teorema

Sea (L, \sqcup, \sqcap) un retículo. Entonces, $x \le y :\iff x \sqcup y = y$ es un orden parcial sobre L tal que $x \sqcup y = \sup\{x,y\}$ $y x \sqcap y = \inf\{x,y\}$

Demostración.

≤ reflexiva por Idempotencia.

 \leq antisimétrica por Conmutatividad: $\underbrace{y = x \sqcup y}_{x \sqcup y} = \underbrace{y \sqcup x = x}_{y \sqcup x = x}$.

 \leq transitiva | por Asociatividad:

$$\overbrace{z = y \sqcup z}^{y \le z} =$$

- 1 Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- 3 Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- **4** Asociatividad: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$.

Teorema

Sea (L, \sqcup, \sqcap) un retículo. Entonces, $x \le y :\iff x \sqcup y = y$ es un orden parcial sobre L tal que $x \sqcup y = \sup\{x,y\}$ $y x \sqcap y = \inf\{x,y\}$

Demostración.

 \leq antisimétrica por Conmutatividad: $\underbrace{y = x \sqcup y}_{x \sqcup y} = \underbrace{y \sqcup x = x}_{y \sqcup x = x}$.

 \leq transitiva | por Asociatividad:

$$\overbrace{z = \underline{y} \sqcup z}^{y \le z} = (\underline{x} \sqcup \underline{y}) \sqcup z =$$

- 1 Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- 3 Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- **4** Asociatividad: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$.

Teorema

Sea (L, \sqcup, \sqcap) un retículo. Entonces, $x \leq y :\iff x \sqcup y = y$ es un orden parcial sobre L tal que $x \sqcup y = \sup\{x,y\}$ y $x \sqcap y = \inf\{x,y\}$

Demostración.

≤ reflexiva por Idempotencia.

 \leq antisimétrica por Conmutatividad: $\underbrace{y = x \sqcup y}_{x \sqcup y} = \underbrace{y \sqcup x = x}_{y \sqcup x}.$

 \leq transitiva por Asociatividad:

$$\underbrace{z = \underline{y} \sqcup z}_{y \subseteq z} = (\underline{x} \sqcup \underline{y}) \sqcup z = x \sqcup (y \sqcup z) =$$

- 1 Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- 3 Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- **4** Asociatividad: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$.

Teorema

Sea (L, \sqcup, \sqcap) un retículo. Entonces, $x \le y :\iff x \sqcup y = y$ es un orden parcial sobre L tal que $x \sqcup y = \sup\{x,y\}$ $y x \sqcap y = \inf\{x,y\}$

Demostración.

sereflexiva por Idempotencia.

 \leq antisimétrica por Conmutatividad: $\underbrace{y = x \sqcup y}_{x \sqcup y} = \underbrace{y \sqcup x = x}_{y \sqcup x = x}$.

 \leq transitiva | por Asociatividad:

$$\underbrace{z = \underline{y} \sqcup z}_{y \sqcup z} = (\underline{x} \sqcup \underline{y}) \sqcup z = x \sqcup (\underline{y} \sqcup z) = x \sqcup z$$

- 1 Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- 3 Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- **4** Asociatividad: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$.

Teorema

Sea (L, \sqcup, \sqcap) un retículo. Entonces, $x \le y :\iff x \sqcup y = y$ es un orden parcial sobre L tal que $x \sqcup y = \sup\{x,y\}$ $y x \sqcap y = \inf\{x,y\}$

Demostración.

≤ reflexiva por Idempotencia.

 \leq antisimétrica por Conmutatividad: $\underbrace{y = x \sqcup y}_{x \sqcup y} = \underbrace{y \sqcup x = x}_{y \sqcup x = x}$.

≤ transitiva por Asociatividad:

$$\underbrace{z = y \sqcup z}_{y \sqcup z} = (\underline{x \sqcup y}) \sqcup z = x \sqcup (y \sqcup z) = x \sqcup z \implies x \leq z.$$

- **1** Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- 3 Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- $\textbf{4} \ \, \mathsf{Asociatividad:} \ \ (x \sqcup y) \sqcup z = x \sqcup (y \sqcup z) \qquad (x \sqcap y) \sqcap z = x \sqcap (y \sqcap z).$

Teorema

Sea (L, \sqcup, \sqcap) un retículo. Entonces, $x \leq y :\iff x \sqcup y = y$ es un orden parcial sobre L tal que $x \sqcup y = \sup\{x,y\}$ y $x \sqcap y = \inf\{x,y\}$

Demostración.

$$x \sqcup y = \sup\{x, y\}$$
 Es cota superior: ejercicio.

- **1** Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- **3** Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- **4** Asociatividad: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$.

Teorema

Sea (L, \sqcup, \sqcap) un retículo. Entonces, $x \le y :\iff x \sqcup y = y$ es un orden parcial sobre L tal que $x \sqcup y = \sup\{x,y\}$ y $x \sqcap y = \inf\{x,y\}$

Demostración.

$$x \sqcup y = \sup\{x,y\}$$
 Es cota superior: ejercicio.

- 1 Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- 3 Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- **4** Asociatividad: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$.

Teorema

Sea (L, \sqcup, \sqcap) un retículo. Entonces, $x \le y :\iff x \sqcup y = y$ es un orden parcial sobre L tal que $x \sqcup y = \sup\{x,y\}$ $y x \sqcap y = \inf\{x,y\}$

Demostración.

$$x \sqcup y = \sup\{x, y\}$$
 Es cota superior: ejercicio.

Es la menor: supongamos $x \sqcup u = u$ y $y \sqcup u = u$. Vemos $x \sqcup y \leq u$: $(x \sqcup y) \sqcup u =$

- 1 Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- **3** Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- 4 Asociatividad: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$.

Teorema

Sea (L, \sqcup, \sqcap) un retículo. Entonces, $x \le y :\iff x \sqcup y = y$ es un orden parcial sobre L tal que $x \sqcup y = \sup\{x,y\}$ $y x \sqcap y = \inf\{x,y\}$

Demostración.

$$x \sqcup y = \sup\{x, y\}$$
 Es cota superior: ejercicio.

$$(x \sqcup y) \sqcup u = x \sqcup (y \sqcup u) =$$

- 1 Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- 3 Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- **4** Asociatividad: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$.

Teorema

Sea (L, \sqcup, \sqcap) un retículo. Entonces, $x \le y :\iff x \sqcup y = y$ es un orden parcial sobre L tal que $x \sqcup y = \sup\{x,y\}$ y $x \sqcap y = \inf\{x,y\}$

Demostración.

$$x \sqcup y = \sup\{x, y\}$$
 Es cota superior: ejercicio.

$$(x \sqcup y) \sqcup u = x \sqcup (y \sqcup u) = x \sqcup u =$$

- 1 Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- 3 Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- **4** Asociatividad: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$.

Teorema

Sea (L, \sqcup, \sqcap) un retículo. Entonces, $x \le y :\iff x \sqcup y = y$ es un orden parcial sobre L tal que $x \sqcup y = \sup\{x,y\}$ $y x \sqcap y = \inf\{x,y\}$

Demostración.

$$x \sqcup y = \sup\{x, y\}$$
 Es cota superior: ejercicio.

Es la menor: supongamos $x \sqcup u = u$ y $y \sqcup u = u$. Vemos $x \sqcup y \leq u$: $(x \sqcup y) \sqcup u = x \sqcup (y \sqcup u) = x \sqcup u = u \implies x \sqcup y \leq u$.

- 1 Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- 3 Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- $\textbf{4} \ \, \mathsf{Asociatividad:} \ \ \, (x \sqcup y) \sqcup z = x \sqcup (y \sqcup z) \qquad (x \sqcap y) \sqcap z = x \sqcap (y \sqcap z).$

Teorema

Sea (L, \sqcup, \sqcap) un retículo. Entonces, $x \le y :\iff x \sqcup y = y$ es un orden parcial sobre L tal que $x \sqcup y = \sup\{x,y\}$ y $x \sqcap y = \inf\{x,y\}$

Demostración.

$$x \sqcup y = \sup\{x, y\}$$
 Es cota superior: ejercicio.

$$(x \sqcup y) \sqcup u = x \sqcup (y \sqcup u) = x \sqcup u = u \implies x \sqcup y \le u.$$

$$x \sqcap y = \inf\{x, y\}$$

- 1 Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- 3 Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- **4** Asociatividad: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$.

Teorema

Sea (L, \sqcup, \sqcap) un retículo. Entonces, $x \leq y :\iff x \sqcup y = y$ es un orden parcial sobre L tal que $x \sqcup y = \sup\{x,y\}$ y $x \sqcap y = \inf\{x,y\}$

Demostración.

$$x \sqcup y = \sup\{x,y\}$$
 Es cota superior: ejercicio.

$$(x \sqcup y) \sqcup u = x \sqcup (y \sqcup u) = x \sqcup u = u \implies x \sqcup y \le u.$$

$$x \sqcap y = \inf\{x,y\}$$
 | ¡Dualidad! Basta ver que $x \ge y \iff x \sqcap y = y$:

- 1 Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- 3 Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- **4** Asociatividad: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$.

Teorema

Sea (L, \sqcup, \sqcap) un retículo. Entonces, $x \leq y :\iff x \sqcup y = y$ es un orden parcial sobre L tal que $x \sqcup y = \sup\{x,y\}$ y $x \sqcap y = \inf\{x,y\}$

Demostración.

$$x \sqcup y = \sup\{x, y\}$$
 Es cota superior: ejercicio.

$$(x \sqcup y) \sqcup u = x \sqcup (y \sqcup u) = x \sqcup u = u \implies x \sqcup y \le u.$$

$$x \sqcap y = \inf\{x, y\}$$
 ¡Dualidad! Basta ver que $x \ge y \iff x \sqcap y = y$:

- 1 Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- 3 Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- **4** Asociatividad: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$.

Teorema

Sea (L, \sqcup, \sqcap) un retículo. Entonces, $x \leq y :\iff x \sqcup y = y$ es un orden parcial sobre L tal que $x \sqcup y = \sup\{x,y\}$ $y x \sqcap y = \inf\{x,y\}$

Demostración.

$$x \sqcup y = \sup\{x, y\}$$
 Es cota superior: ejercicio.

$$(x \sqcup y) \sqcup u = x \sqcup (y \sqcup u) = x \sqcup u = u \implies x \sqcup y \le u.$$

$$x \sqcap y = \inf\{x, y\}$$
 | **Dualidad!** Basta ver que $x \ge y \iff x \sqcap y = y$:

$$\overline{(\Rightarrow) \ x \sqcap y = (x \sqcup y) \sqcap y} =$$

- 1 Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- 3 Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- **4** Asociatividad: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$.

Teorema

Sea (L, \sqcup, \sqcap) un retículo. Entonces, $x \leq y :\iff x \sqcup y = y$ es un orden parcial sobre L tal que $x \sqcup y = \sup\{x,y\}$ y $x \sqcap y = \inf\{x,y\}$

Demostración.

$$x \sqcup y = \sup\{x, y\}$$
 Es cota superior: ejercicio.

$$(x \sqcup y) \sqcup u = x \sqcup (y \sqcup u) = x \sqcup u = u \implies x \sqcup y \le u.$$

$$\boxed{x \sqcap y = \inf\{x,y\}} \text{ [Dualidad! Basta ver que } x \geq y \iff x \sqcap y = y:$$

$$(\Rightarrow) x \sqcap y = (x \sqcup y) \sqcap y = y.$$

- **1** Idempotencia: $x \sqcup x = x \sqcap x = x$.
- **2** Conmutatividad: $x \sqcup y = y \sqcup x$ $x \sqcap y = y \sqcap x$.
- 3 Absorción: $x \sqcup (x \sqcap y) = x$ $x \sqcap (x \sqcup y) = x$.
- **4** Asociatividad: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$.

Teorema

Sea (L, \sqcup, \sqcap) un retículo. Entonces, $x \leq y :\iff x \sqcup y = y$ es un orden parcial sobre L tal que $x \sqcup y = \sup\{x,y\}$ y $x \sqcap y = \inf\{x,y\}$

Demostración.

$$x \sqcup y = \sup\{x,y\}$$
 Es cota superior: ejercicio.

$$(x \sqcup y) \sqcup u = x \sqcup (y \sqcup u) = x \sqcup u = u \implies x \sqcup y \le u.$$

$$x \sqcap y = \inf\{x,y\}$$
 | ¡Dualidad! Basta ver que $x \ge y \iff x \sqcap y = y$:

$$(\Rightarrow) x \sqcap y = (x \sqcup y) \sqcap y = y.$$

$$(\Leftarrow) x \sqcup y = x \sqcup (x \sqcap y) = x.$$

Posets reticulados = retículos

De ahora en más, la palabra **reticulado** (a secas) se referirá tanto a un poset reticulado como al retículo asociado, y denotaremos las operaciones de este último simplemente con \vee y \wedge .

Posets reticulados = retículos

De ahora en más, la palabra **reticulado** (a secas) se referirá tanto a un poset reticulado como al retículo asociado, y denotaremos las operaciones de este último simplemente con \vee y \wedge .

Usaremos los términos específicos si queremos dar énfasis a alguno de los aspectos (relacional o algebraico, respectivamente).

Posets reticulados = retículos

De ahora en más, la palabra **reticulado** (a secas) se referirá tanto a un poset reticulado como al retículo asociado, y denotaremos las operaciones de este último simplemente con \vee y \wedge .

Usaremos los términos específicos si queremos dar énfasis a alguno de los aspectos (relacional o algebraico, respectivamente).

Seguiremos un momento con el aspecto algebraico de los reticulados.

Ejemplo

- Todos los órdenes totales.
- (N, |).
- $(\mathscr{P}(A),\subseteq)$ para cada conjunto A.

Ejemplo

- Todos los órdenes totales.
- **2** $(\mathbb{N}, |)$. Subposets no preservan \vee ni \wedge
- $(\mathscr{P}(A),\subseteq)$ para cada conjunto A.

Ejemplo

- Todos los órdenes totales.
- **2** $(\mathbb{N}, |)$. Subposets no preservan \vee ni \wedge
- $(\mathscr{P}(A),\subseteq)$ para cada conjunto A.

Otro ejemplo similar es el reticulado $P:=([0,1)\cup[2,3),\leqslant)$ de la clase pasada:

Ejemplo

- Todos los órdenes totales.
- **2** $(\mathbb{N}, |)$. Subposets no preservan \vee ni \wedge
- $(\mathscr{P}(A),\subseteq)$ para cada conjunto A.

Otro ejemplo similar es el reticulado $P:=([0,1)\cup[2,3),\leqslant)$ de la clase pasada:

$$\sup^{\mathbb{R}}[0,1) = 1 \neq 2 = \sup^{P}[0,1).$$

Estructuras algebraicas conocidas

 $(\mathbb{N},+)$ es una "subálgebra" de $(\mathbb{R},+)$:

Estructuras algebraicas conocidas

 $(\mathbb{N},+)$ es una "subálgebra" de $(\mathbb{R},+)$: la suma de dos números naturales me da natural.

Estructuras algebraicas conocidas

 $(\mathbb{N},+)$ es una "subálgebra" de $(\mathbb{R},+)$: la suma de dos números naturales me da natural.

Definición

Sea (L, \vee, \wedge) un retículo. $S \subseteq L$ es un **subuniverso** de (L, \vee, \wedge) si es cerrado por las operaciones \vee y \wedge .

Estructuras algebraicas conocidas

 $(\mathbb{N},+)$ es una "subálgebra" de $(\mathbb{R},+)$: la suma de dos números naturales me da natural.

Definición

Sea (L, \vee, \wedge) un retículo. $S \subseteq L$ es un **subuniverso** de (L, \vee, \wedge) si es cerrado por las operaciones \vee y \wedge .

Y decimos que (S, \vee, \wedge) es un **subreticulado** ó **subretículo** de (L, \vee, \wedge) .

Estructuras algebraicas conocidas

 $(\mathbb{N},+)$ es una "subálgebra" de $(\mathbb{R},+)$: la suma de dos números naturales me da natural.

Definición

Sea (L,\vee,\wedge) un retículo. $S\subseteq L$ es un **subuniverso** de (L,\vee,\wedge) si es cerrado por las operaciones \vee y \wedge . restricciones!

Y decimos que (S, \vee, \wedge) és un **subreticulado** ó **subretículo** de (L, \vee, \wedge) .

Estructuras algebraicas conocidas

 $(\mathbb{N},+)$ es una "subálgebra" de $(\mathbb{R},+)$: la suma de dos números naturales me da natural.

Definición

Sea (L,\vee,\wedge) un retículo. $S\subseteq L$ es un **subuniverso** de (L,\vee,\wedge) si es cerrado por las operaciones \vee y \wedge .

Y decimos que (S, \vee, \wedge) es un **subreticulado** ó **subretículo** de (L, \vee, \wedge) . También escribimos " (S, \leq) es subreticulado de (L, \leq) ".

Estructuras algebraicas conocidas

 $(\mathbb{N},+)$ es una "subálgebra" de $(\mathbb{R},+)$: la suma de dos números naturales me da natural.

Definición

Sea (L,\vee,\wedge) un retículo. $S\subseteq L$ es un **subuniverso** de (L,\vee,\wedge) si es cerrado por las operaciones \vee y \wedge .

Y decimos que (S, \vee, \wedge) es un **subreticulado** ó **subretículo** de (L, \vee, \wedge) . También escribimos " (S, \leq) es subreticulado de (L, \leq) ".

Ejemplo

 \blacksquare $(D_n, |)$ es subreticulado de $(\mathbb{N}, |)$.

Estructuras algebraicas conocidas

 $(\mathbb{N},+)$ es una "subálgebra" de $(\mathbb{R},+)$: la suma de dos números naturales me da natural.

Definición

Sea (L,\vee,\wedge) un retículo. $S\subseteq L$ es un **subuniverso** de (L,\vee,\wedge) si es cerrado por las operaciones \vee y \wedge .

Y decimos que (S, \vee, \wedge) es un **subreticulado** ó **subretículo** de (L, \vee, \wedge) . También escribimos " (S, \leq) es subreticulado de (L, \leq) ".

Ejemplo

- \blacksquare $(D_n, |)$ es subreticulado de $(\mathbb{N}, |)$.
- \blacksquare $([0,1) \cup [2,3), \leqslant)$ es subreticulado de (\mathbb{R}, \leqslant) .

También hay noción de isomorfismo para estructuras algebraicas.

También hay noción de isomorfismo para estructuras algebraicas.

Definición

Un **isomorfismo de retículos** $f:(L,\vee,\wedge)\to (L',\vee',\wedge')$ es una función biyectiva $f:L\to L'$ tal que para todos $x,y\in L$,

$$f(x \lor y) = f(x) \lor' f(y)$$
 y $f(x \land y) = f(x) \land' f(y)$.

También hay noción de isomorfismo para estructuras algebraicas.

Definición

Un **isomorfismo de retículos** $f:(L,\vee,\wedge)\to (L',\vee',\wedge')$ es una función biyectiva $f:L\to L'$ tal que para todos $x,y\in L$,

$$f(x \lor y) = f(x) \lor' f(y)$$
 y $f(x \land y) = f(x) \land' f(y)$.

Pero en el contexto de los reticulados, esta noción no es nueva.

También hay noción de isomorfismo para estructuras algebraicas.

Definición

Un **isomorfismo de retículos** $f:(L,\vee,\wedge)\to (L',\vee',\wedge')$ es una función biyectiva $f:L\to L'$ tal que para todos $x,y\in L$,

$$f(x \lor y) = f(x) \lor' f(y)$$
 y $f(x \land y) = f(x) \land' f(y)$.

Pero en el contexto de los reticulados, esta noción no es nueva.

Teorema

$$f:(L,\vee,\wedge)\to (L',\vee',\wedge')$$
 es iso $\iff f:(L,\leq)\to (L',\leq')$ es iso.

También hay noción de isomorfismo para estructuras algebraicas.

Definición

Un **isomorfismo de retículos** $f:(L,\vee,\wedge)\to (L',\vee',\wedge')$ es una función biyectiva $f:L\to L'$ tal que para todos $x,y\in L$,

$$f(x \lor y) = f(x) \lor' f(y)$$
 y $f(x \land y) = f(x) \land' f(y)$.

Pero en el contexto de los reticulados, esta noción no es nueva.

Teorema

$$f:(L,\vee,\wedge) \to (L',\vee',\wedge')$$
 es iso $\iff f:(L,\leq) \to (L',\leq')$ es iso.

Demostración.

El orden y las operaciones son interdefinibles.

Ejemplo

- Todos los órdenes totales.
- (N, |).
- $(\mathscr{P}(A),\subseteq)$ para cada conjunto A.

Otro ejemplo similar es el reticulado $P:=([0,1)\cup[2,3),\leqslant)$ de la clase pasada:

$$\sup^{\mathbb{R}}[0,1)=1\neq 2=\sup^{P}[0,1).$$

Ejemplo

- Todos los órdenes totales.
- $(\mathbb{N},|).$
- $(\mathscr{P}(A),\subseteq)$ para cada conjunto A.

Otro ejemplo similar es el reticulado $P:=([0,1)\cup[2,3),\leqslant)$ de la clase pasada:

$$\sup^{\mathbb{R}}[0,1) = 1 \neq 2 = \sup^{P}[0,1).$$

Partes de un conjunto $(\mathcal{P}(A),\subseteq)\longleftrightarrow (\mathcal{P}(A),\cup,\cap)$

■ Tiene primer elemento \varnothing y último elemento A.

Partes de un conjunto $(\mathcal{P}(A),\subseteq)\longleftrightarrow (\mathcal{P}(A),\cup,\cap)$

- Tiene primer elemento \emptyset y último elemento A.
- Todo $X \in \mathcal{P}(A)$ tiene un **complemento**: un $Y \in \mathcal{P}(A)$ tal que

$$X \cup Y = A$$
 $X \cap Y = \emptyset$.

Partes de un conjunto $(\mathcal{P}(A),\subseteq)\longleftrightarrow (\mathcal{P}(A),\cup,\cap)$

- Tiene primer elemento \emptyset y último elemento A.
- Todo $X \in \mathcal{P}(A)$ tiene un **complemento**: un $Y \in \mathcal{P}(A)$ tal que

$$X \cup Y = A$$
 $X \cap Y = \emptyset$.

■ Las operaciones distribuyen:

$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$$

$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z).$$

Partes de un conjunto $(\mathcal{P}(A),\subseteq)\longleftrightarrow (\mathcal{P}(A),\cup,\cap)$

- Tiene primer elemento \emptyset y último elemento A.
- Todo $X \in \mathcal{P}(A)$ tiene un **complemento**: un $Y \in \mathcal{P}(A)$ tal que

$$X \cup Y = A$$
 $X \cap Y = \emptyset$.

■ Las operaciones distribuyen:

$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$$

$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z).$$

Definimos estas propiedades para reticulados en general.

Definición

■ L es **acotado** si tiene primer elemento 0^L y último elemento 1^L .

Definición

- L es **acotado** si tiene primer elemento 0^L y último elemento 1^L .
- Sea L acotado y sean $a, b \in L$. b es un **complemento** de a si

$$a \lor b = 1^L \qquad a \land b = 0^L.$$

Definición

- L es **acotado** si tiene primer elemento 0^L y último elemento 1^L .
- Sea L acotado y sean $a, b \in L$. b es un **complemento** de a si

$$a \lor b = 1^L$$
 $a \land b = 0^L$.

L es **complementado** si todo elemento tiene complemento.

Definición

- L es **acotado** si tiene primer elemento 0^L y último elemento 1^L .
- Sea L acotado y sean $a, b \in L$. b es un **complemento** de a si

$$a \lor b = 1^L \qquad a \land b = 0^L.$$

L es **complementado** si todo elemento tiene complemento.

Actividad

Encontrar los menores n > 1 tales que

- $(D_n, |)$ es complementado.
- $(D_n, |)$ no lo es pero hay más de 2 elementos con complemento.
- $(D_n, |)$ tiene al menos 5 elementos y sólo tiene dos elementos con complemento.