

Differential Equation With Complex Roots
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + 6y' + 25y = 0, y(0) = 2, y'(0) = 2, y'(0) = 2$$
• Auxiliary Equation
$$y'' + y'' + y'$$

• Spring-mass-friction system,
$$my'' + by' + ky = 0$$
• $m = 36$, $b = 12$, $k = 37$, $y(0) = 0.7$, $y'(0) = 0.1$
(1) Auxiliary equation $36/2 + 17/4 + 37 = 0$
(2) Roots
$$r = -\frac{1}{6} \pm i \qquad fr = 2/2$$
(3) General solution: $y(t) = e^{-t/6}(d_1 \cos t + d_2 \sin t)$
(4) Initial value equation: $y(0) : d_1 = 0.7$

$$y'(0) : -\frac{1}{6}d_1 + d_2 = 0.1$$
(5) Solution: $y(t) = e^{-t/6}(0.7 \cos t + 0.2167 \sin t)$

