PREDECTING THE SURVIVAL OF TITANIC PASSENGERS

Ayhem Belkhamsa

Dept. of EE

ISET Bizerte — Tunisia

ayhem-b

Abstract — This project explores machine learning techniques to predict Titanic passenger survival using demographic and socioeconomic data. Logistic regression, K-Nearest Neighbors (KNN), and K-means clustering were applied to analyze the dataset. After preprocessing and feature engineering, the models were evaluated using accuracy and F1-score.

Results showed that [mention the best-performing model] provided the most accurate predictions. This study highlights the effectiveness of machine learning in predictive analytics and decision-making.

I. Introduction

The Titanic disaster of 1912 remains one of history's most infamous maritime tragedies. This project aims to predict passenger survival using machine learning models based on demographic and socioeconomic data from the Titanic dataset. By employing logistic regression, K-Nearest Neighbors (KNN), and K-means clustering, we analyze key factors influencing survival outcomes. The study highlights the potential of predictive analytics in understanding historical events and making data-driven decision

Figure 1: Titanic ship

II. CODING PART

1. Importing librarys

import numpy as np
np.set_printoptions(precision=3)
import pandas as pd

import matplotlib.pyplot as plt
%matplotlib inline

2. Importing the data

train_df = pd.read_csv('./titanic_Data/train.csv')
train_df.head()

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	s
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	s
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	s
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	s
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	s

Figure 2: First 9 examples

3. Cleaning & Data preparation

1) Data info:

<pre><class 'pandas.core.frame.dataframe'=""></class></pre>											
RangeIndex: 891 entries, 0 to 890											
Data	Data columns (total 12 columns):										
#	Column	Non-Null Count	Dtype								
0	PassengerId	891 non-null	int64								
1	Survived	891 non-null	int64								
2	Pclass	891 non-null	int64								
3	Name	891 non-null	object								
4	Sex	891 non-null	object								
5	Age	714 non-null	float64								
6	SibSp	891 non-null	int64								
7	Parch	891 non-null	int64								
8	Ticket	891 non-null	object								
9	Fare	891 non-null	float64								
10	Cabin	204 non-null	object								
11	Embarked	889 non-null	object								

ISET Bizerte -1

dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB

by looking to the output above we can know that the $\boldsymbol{Training}$ \boldsymbol{Data} has

- 891 examples
- 10 features
- 1 target (survived)
- some missing datain **Age** and **Cabin**

ISET Bizerte -2-