## 第十二單元 廣義角的三角比

## (甲)銳角三角比

(1)銳角三角比的定義:

設 $\Delta ABC$  為直角三角形,其中 $\angle C$  為直角三角形, $\overline{AB}$  為斜邊,兩股 $\overline{BC}$ 與 $\overline{AC}$ 分別是  $\angle A$  的對邊與鄰邊。

設 $\overline{BC}=a$  ,  $\overline{AC}=b$  ,  $\overline{AB}=c$  , 則我們定義 $\angle A$  的三角比如下:

$$\angle A$$
 的**正弦**=sinA=  $\frac{$ 對邊}  $= \frac{BC}{AB} = \frac{a}{c}$ 

$$\angle A$$
 的**餘弦**= $\cos A = \frac{\mbox{\sc Miss}}{\mbox{\sc Miss}} = \frac{AC}{AB} = \frac{b}{c}$ 

$$\angle A$$
 的**正切**= $tan A =$  對邊  $= \frac{BC}{AC} = \frac{a}{b}$ 

$$\angle A$$
 的**餘切**=cotA=  $\frac{$  鄰邊}{ 對邊} =  $\frac{AC}{BC} = \frac{b}{a}$ 

$$\angle A$$
 的**正割**= $\sec A = \frac{AB}{$  類邊  $= \frac{AB}{AC} = \frac{c}{b}$ 

$$\angle A$$
 的**餘割**=cscA=  $\frac{$  斜邊  $}{$  對邊  $}=\frac{AB}{BC}=\frac{c}{a}$ 



$$\sin B = \frac{5}{13}$$
,  $\cos B = \frac{12}{13}$ ,  $\tan B = \frac{5}{12}$   $\cot B = \frac{12}{5}$ ,  $\sec B = \frac{13}{12}$ ,  $\csc B = \frac{13}{5}$ 

給定一銳角 $\angle A$ (即 $\theta$ )它的六個三角比亦隨之確定了。

直角 $\triangle AB_1C_1$ ~ $\triangle AB_2C_2$ ~ $\triangle AB_3C_3$ ~......,

因 
$$\sin A = \sin \theta = \frac{B_1C_1}{AB_1} = \frac{B_2C_2}{AB_2} = \frac{B_3C_3}{AB_3}...$$

故知 $\angle A(\mathbb{D}\theta)$ 的六個三角比只受 $\angle A(\mathbb{D}\theta)$ 的大小影響,而不在乎三角形的大小。

#### (2)特殊角的三角比:







B₁

 $C_1$ 

 $B_2$ 

 $C_2$ 

 $C_3$ 



#### (練習1) 完成下表:

| θ   | sinθ | cosθ | tanθ | cotθ | secθ | cscθ |
|-----|------|------|------|------|------|------|
| 30° |      |      |      |      |      |      |
| 45° |      |      |      |      |      |      |
| 60° |      |      |      |      |      |      |

(練習2) 在下列各三角形,分別計算 sinA, cosA, tanA 之值。



(練習3) 設
$$\theta$$
為銳角且  $\tan\theta = \sqrt{2}$ ,則  $\sin\theta =$ \_\_\_\_\_,而  $\sec\theta =$ \_\_\_\_\_。 Ans :  $\frac{\sqrt{6}}{3}$  ;  $\sqrt{3}$ 

### (2)銳角三角比的關係:

若三角形 $\triangle$ ABC 中, $\angle$ C=90°, $\angle$ A 的度數為 $\theta$ ,以 a,b 與 c 分別表示三邊 $\overline{BC}$ , $\overline{AC}$ 與 $\overline{AB}$  之長,則可發現這六個三角比並非毫不相干,而是具有某些關聯的。

(a)預備公式

銳角三角比的定義

$$\sin\theta = \frac{a}{c}$$
,  $\cos\theta = \frac{b}{c}$ ,  $\tan\theta = \frac{a}{b}$ ,  $\cot\theta = \frac{b}{a}$ ,  $\sec\theta = \frac{c}{b}$ ,  $\csc\theta = \frac{c}{a}$ 



(b)倒數關係:

 $\bigcirc \sin\theta \times \csc\theta = 1 \bigcirc \cos\theta \times \sec\theta = 1 \bigcirc \tan\theta \times \cot\theta = 1$ 

#### (c)平方關係(利用畢式定理可得)

(注意:  $\sin^2\theta = (\sin\theta)^2 \cos^2\theta = (\cos\theta)^2$ )

$$\sin^2 A + \cos^2 A = (\frac{a}{c})^2 + (\frac{b}{c})^2 = \frac{c^2}{c^2} = 1 \implies \sin^2 A + \cos^2 A = 1$$

上式兩邊同除以  $\cos^2 A$ ,則可得 $\frac{\sin^2 A}{\cos^2 A}$  +1=  $\frac{1}{\cos^2 A}$  = $\sec^2 A$   $\Rightarrow \tan^2 A + 1 = \sec^2 A$ 若將 sin<sup>2</sup>A +cos<sup>2</sup>A=1 的兩邊除以 sin<sup>2</sup>A,則可得 1+cot<sup>2</sup>A=csc<sup>2</sup>A



(d)餘角關係:直角三角形的兩銳角互為餘角關係

 $\sin(90^{\circ}-\theta)=\cos\theta$   $\cos(90^{\circ}-\theta)=\sin\theta$ 

 $\tan(90^{\circ}-\theta)=\cot\theta$ 

 $\cot(90^{\circ}-\theta)=\tan\theta$ 

 $\sec(90^{\circ}-\theta)=\csc\theta$ 

 $\csc(90^{\circ}-\theta)=\sec\theta$ 

上述的百角三角形 ABC 中, $\angle C=90^{\circ}$ , $\angle A+\angle B=90^{\circ}$ ,我們可以觀察 $\angle A$  的對邊剛好為  $\angle B$  的鄰邊, $\angle A$  的鄰邊剛好是 $\angle B$  的對邊,由正弦和餘弦函數的定義可知:

$$sinB = \frac{\angle B$$
的對邊  $= \frac{\angle A$ 的鄰邊  $= cosA \circ$ 

(e)銳角三角比的範圍:

若 0°<θ<90°,則

00< $\sin\theta$ <1 $\Rightarrow$ 倒數  $\csc\theta$ >100< $\cos\theta$ <1 $\Rightarrow$ 倒數  $\sec\theta$ >10 $\tan\theta$ 為任意實數 $\Rightarrow \cot\theta$ 任意實數

(f)上述各種關係對於任意銳角 $\theta$ 都成立,根據這些關係,我們若知道  $\sin\theta$ ,  $\cos\theta$ ,  $\tan\theta$ ,  $\cot\theta$ , $\sec\theta$ , $\csc\theta$ 六個三角比中之一個,就可推得他五個的值。

已知 $\theta$ 為銳角且  $\tan\theta = \frac{5}{6}$ ,試求  $\sin\theta$ , $\cos\theta$ , $\tan\theta$ , $\cot\theta$ , $\sec\theta$ , $\csc\theta$ 之值。 (練習4)

Ans : 
$$\sin\theta = \frac{5}{\sqrt{61}}$$
,  $\cos\theta = \frac{6}{\sqrt{61}}$ ,  $\tan\theta = \frac{5}{6}$ ,  $\cot\theta = \frac{6}{5}$ ,  $\sec\theta = \frac{\sqrt{61}}{6}$ ,  $\csc\theta = \frac{\sqrt{61}}{5}$ 

[**例題**1] 設 $\theta$ 為銳角,且  $2\sin\theta + \cos\theta = 2$ ,求  $\sin\theta$  與  $\cos\theta$  。

Ans : 
$$\sin\theta = \frac{3}{5}$$
,  $\cos\theta = \frac{4}{5}$ 

- [**例題2**] 設 $\theta$ 為銳角,且  $\sin\theta + \cos\theta = \frac{4}{3}$ ,求下列各小題的值:
  - $(1)\sin\theta \cdot \cos\theta$   $(2)\sin\theta \cos\theta$   $(3)\sin^3\theta + \cos^3\theta$   $(4)\tan\theta + \cot\theta$  •

Ans:  $(1)\frac{7}{18}$   $(2)\frac{\pm\sqrt{2}}{3}$   $(3)\frac{22}{27}$   $(4)\frac{18}{7}$ 

#### [例題3] (用線段表銳角的三角比)

在坐標平面上以原點 O 為圓心,1 為半徑畫一圓,交x 軸正向於 A 點,y 軸 正向於 B 點,再畫一直線 L 過原點並交圓 O 於 C,C 兩點。過 A 點與 B 點作 圓的切線,分別交直線 L 於 D 點與 E 點並自 C 點作 x 軸的垂線交x 軸於 F 點,設 $\angle$ COA= $\theta$ 。

- (1)在上圖中分別找出長度等於  $\sin\theta$ ,  $\cos\theta$ ,  $\tan\theta$ ,  $\cot\theta$ ,  $\sec\theta$ ,  $\csc\theta$  的單一線段。
- (2)試比較 sinθ ,tanθ ,secθ 的大小。
- (3)試比較 cosθ ,cotθ ,cscθ 的大小。 [答案]:
- $(1)\sin\theta = \overline{CF} \cdot \cos\theta = \overline{OF} \cdot \tan\theta = \overline{AD}$

 $\sec\theta = \overline{OD}$ ,  $\cot\theta = \overline{BE}$ ,  $\csc\theta = \overline{OE}$ 

- $(3)\sin\theta < \tan\theta < \sec\theta$



(1)考慮六個銳角三角比的定義,

若希望用單一線段表示三角比,那麼可以讓分母的線段長等於1。



考慮ΔAOD ,  $tan\theta = \frac{AD}{OA} = \overline{AD}$  ,  $sec\theta = \frac{OD}{OA} = \overline{OD}$   $\circ$ 

考慮ΔBOE,  $cot\theta = \frac{BE}{OB} = \overline{BE}$ ,  $csc\theta = \frac{OE}{OB} = \overline{OE}$ .

(2)如右圖,可以得知

當  $0 < \theta < 45^{\circ}$ ,  $\overline{CF} < \overline{OF} \Rightarrow \sin\theta < \cos\theta$ ;

當  $45^{\circ}$ < $\theta$ < $90^{\circ}$ , $\overline{CF}$ > $\overline{OF}$ ⇒ $\sin\theta$ > $\cos\theta$ 

(3)根據圖形,

因為 $\overline{CF}$ < $\overline{AD}$ < $\overline{OD}$ ,所以  $\sin\theta$ < $\tan\theta$ < $\sec\theta$ 。



O

(練習5) 設 $\theta$ 為銳角,且令  $\tan \theta = k$ ,請用 k表示下列各三角比的值:

(1) 
$$\sec\theta$$
 (2)  $\cos\theta$  (3)  $\sin\theta$  Ans : (1)  $\sqrt{1+k^2}$  (2)  $\frac{1}{\sqrt{1+k^2}}$  (3)  $\frac{k}{\sqrt{1+k^2}}$ 

(練習6) 設
$$\theta$$
為銳角,且  $\tan\theta + \sec\theta = \frac{3}{2}$ ,試求  $\tan\theta = ?$  Ans:  $\frac{5}{12}$ 

(練習7) 設θ為銳角, $sin\theta-cos\theta=\frac{1}{2}$ ,請計算下列各小題的值:

$$(1)\sin\theta \cdot \cos\theta \qquad (2)\sin\theta + \cos\theta \qquad (3)\tan\theta + \cot\theta$$

$$Ans : (1)\frac{3}{8} \quad (2)\frac{\sqrt{7}}{2} \quad (3)\frac{8}{3}$$

(練習8) 設
$$\theta$$
為銳角,若 $\cos\theta = \tan\theta$ ,求 $\sin\theta = ?$  Ans:  $\frac{\sqrt{5}-1}{2}$ 

## (乙)廣義角的意義

摩天輪常常成為某個城市或地區的地標,它的運動可以視為一個等速率的圓周運動,如何來描述摩天輪上車廂的運動呢?首先設 O 為摩天輪的圓心,並以 A 為觀察的基準點,一段時間之後車廂運動到 P 點位置, A 點繞 O 點順時針轉動或逆時針轉動運動,都會到達 P 點的位置,而且可能轉動的圈數超過一圈,因此我們有必要引進新的角度概念來描述「如何由 A 點繞 O 點旋轉到 P 點的運動狀態」。



#### (1)廣義角的概念:

以射線 OA 為始邊,射線 OB 為終邊,從射線 OA 繞 O 點旋轉至射線 OB 的旋轉量,稱為有向角,並且規定逆時針旋轉為正向角,順時針旋轉為負向角。

如上圖,若用量角器量出 $\angle AOP=153^\circ$ ,若是 A 點順時針繞 O 點轉到 P,此時有向角為 $-207^\circ$ ,若是 A 順時針繞 O 點先逆時針轉一圈再轉到 P,此時有向角為 $513^\circ$ ,這些旋轉量打破角度 $180^\circ$ 的限制,而將角度的範圍擴充到任何的實數,像這樣的角度就稱為 $\pmb{6}$  為角(或稱為有向角)。

當 A 點繞 O 點逆時針轉一圈、二圈...回到 A 點,此時廣義角為 360°、720°...; 當 A 點繞 O 點順時針轉一圈、二圈...回到 A 點,此時廣義角為-360°、-720°... 若 A 點繞 O 點並沒轉動,此時規定廣義角為 0°。

#### (2)同界角的概念:

如上所述,廣義角-207°、513°、153°,它們的始邊與終邊都是相同的射線,這樣的角度稱之為同界角。

#### 同界角的定義:

兩個廣義角 $\theta$ , $\phi$  有共同的始邊與終邊,我們將這樣的 $\theta$ , $\phi$  稱為**同界角**。而兩個同界角之間,因為始邊與終邊相同,因此差別只是所繞的圈數不同,故可得

 $θ - φ = k \cdot 360°, k 為整數。$ 

例如: 57°的同界角都可寫成 57°+360°×k (k 為整數)

## (丙)廣義角三角比

想要定義廣義角的三角比,首先我們要先清楚「**三角比(正弦、正切、..)它們是角度的函數」**這個事實,因此當我們選定廣義角時,可以試圖以此廣義角來定義 6 個三角比,換句話說,我們想要定義 sin(-120°)、cos370°、tan0°...的值,而它們的值應如何定義才好?

- (1)廣義角三角比的定義:
- (a)回顧銳角三角比的定義:





直角ΔABC 中,根據銳角三角比的定義可得  $sinC = \frac{c}{a}$ , $cosC = \frac{b}{a}$ ,現在將 C 點移至座標原點,如上右圖所示,可得 B(b,c),所以正弦與餘弦的定義,可用另一觀點來看:

根據上面的式子,可以將定義由線段長度,延伸至坐標,因為坐標可正可負,因此當我們推廣銳角三角比定義時至廣義角三角比時,就可以引用坐標來定義。

#### (b)定義廣義角的正餘弦:

在坐標平面上做一個以原點為圓心,半徑等於r的圓,給定一個廣義角 $\theta$ ,規定 $\theta$ 的始邊為x軸的正向,角的頂點為原點,稱為將 $\theta$ 置於標準位置,根據 $\theta$  的旋轉量,可畫

出終邊的位置。

設終邊與圓交於 P(x,y), $\Leftrightarrow r=\overline{OP}$ ,定義廣義角θ的正弦( $\sin\theta$ )與餘弦( $\cos\theta$ )如下:

$$\sin\theta = \frac{y}{r} \cdot \cos\theta = \frac{x}{r}$$

特別情形:

當 
$$r=1$$
 時  $\sin\theta = \frac{y}{1} = y$ ,  $\cos\theta = \frac{x}{1} = x$ 

所以單位圓上的點 P 的坐標可以寫成 P( $\cos\theta$ , $\sin\theta$ )





#### (c)其他三角比的定義:

仿照銳角三角比間的關係,可定義其它的廣義角三角比:

若將θ至於標準位置,且設終邊與圓交於 P(x,y), $\Leftrightarrow r=\overline{OP}$ ,此時  $\cos\theta = \frac{x}{r}$ ,  $\sin\theta = \frac{y}{r}$ 

則定義 
$$\tan\theta = \frac{y}{x}$$
,  $\sec\theta = \frac{r}{x}$   $(x \neq 0)$ ,  $\csc\theta = \frac{r}{y}$ ,  $\cot\theta = \frac{x}{y}$ ,  $(y \neq 0)$ 

結論:設角0終邊上的點 P(x,y),  $r=\overline{OP}=\sqrt{x^2+y^2}$ 

(1)

| $\sin\theta = \frac{y}{r}$ | $\tan\theta = \frac{y}{x} \ (x \neq 0)$ | $\sec\theta = \frac{r}{x} (x \neq 0)$   |
|----------------------------|-----------------------------------------|-----------------------------------------|
| $\cos\theta = \frac{x}{r}$ | $\cot\theta = \frac{x}{y} \ (y \neq 0)$ | $\csc\theta = \frac{r}{y} \ (y \neq 0)$ |

- (2)由終邊的位置判別三角比的正負:
- (a) 廣義角 $\theta$ 的終邊在第一二三四象限的角稱為 $\theta$ 的第一二三四象限角。 廣義角 $\theta$ 的終邊在x軸或y軸上,稱為**象限角**。
- (b)sinθ之正負 $\Rightarrow$ 看 y 在第一、二象限為正,y 在第三、四象限為負

所以  $\sin\theta = \frac{y}{r}$ 在第一、第二象限為正,在第三、第四象限為負

 $(c)\cos\theta$ 之正負⇒看x在第一、四象限為正,x在第二、三象限為負

# 所以 $\cos\theta = \frac{x}{r}$ 在第一、第四象限為正,在第二、第三象限為負

#### (d)整理成表格如下:

| 象限函數       |   | 1 ] | 111 | 四 |
|------------|---|-----|-----|---|
| sinθ與 cscθ | + | +   | _   | _ |
| cosθ與 secθ | + | _   | _   | + |
| tanθ與 cotθ | + | _   | +   | _ |

#### (練習9)根據廣義角三角比的定義,完成下表:

| 角度θ  | 0° | 90° | 180° | 270° | 360° | 120° | 135° | 150° | 225° | 300° | 330° |
|------|----|-----|------|------|------|------|------|------|------|------|------|
| sinθ |    |     |      |      |      |      |      |      |      |      |      |
| cosθ |    |     |      |      |      |      |      |      |      |      |      |
| tanθ |    |     |      |      |      |      |      |      |      |      |      |

[討論]:根據廣義角三角比的定義,討論六個三角比的範圍:

#### [例題4]

如圖所示,點 P(-5k,12k)為位於標準位置的廣義角 $\theta$ 的終邊

上之一點,其中k>0,

試求  $\sin\theta \cdot \cos\theta \cdot \tan\theta \cdot \cot\theta \cdot \sec\theta \cdot \csc\theta$ 的值。

Ans :  $\sin\theta = \frac{12}{13} \cdot \cos\theta = \frac{-5}{13} \cdot \tan\theta = \frac{-12}{5}$ 

 $\cot\theta = \frac{-5}{12} \cdot \sec\theta = \frac{-13}{5} \cdot \csc\theta = \frac{13}{12}$ 



[**例題5**] 設  $\sin\theta = \frac{4}{5}$ ,且 $\theta$ 為第二象限角,試用

(1)三角恆等式,決定其他三角比(2)標準位置角,決定其他三角比

Ans : 
$$\sin\theta = \frac{4}{5}$$
,  $\cos\theta = \frac{-3}{5}$ ,  $\tan\theta = \frac{4}{-3}$ ,  $\cot\theta = \frac{-3}{4}$ ,  $\sec\theta = \frac{5}{-3}$ ,  $\csc\theta = \frac{5}{4}$ 

(練習10) 在 xy 平面上,以 x 軸之正向為始邊作一廣義角 $\theta$ ,其終邊上有一點 P 之 坐標如下表所示,試填寫 $\theta$ 的各三角比值。

| P點坐標         | (5,12) | (3,-4) | (-1,-2) | (3,-1) | (5,0) | (0,3) | (-4,0) | (0,-3) |
|--------------|--------|--------|---------|--------|-------|-------|--------|--------|
| OP 長度        |        |        |         |        |       |       |        |        |
| sinθ         |        |        |         |        |       |       |        |        |
| $\cos\theta$ |        |        |         |        |       |       |        |        |
| $tan\theta$  |        |        |         |        |       |       |        |        |
| cotθ         |        |        |         |        |       |       |        |        |
| secθ         |        |        |         |        |       |       |        |        |
| $\csc\theta$ |        |        |         |        |       |       |        |        |

(練習11) 如圖所示,點 P(-3k,-2k)為位於標準位置的廣義角 $\theta$ 的終邊上之一點,其中 k>0,試求  $\sin\theta$ 、 $\cos\theta$ 、 $\tan\theta$ 的值。

[答案]: 
$$\sin\theta = \frac{-2}{\sqrt{13}}$$
 \cdot \cos\theta =  $\frac{-3}{\sqrt{13}}$  \cdot \tan\theta =  $\frac{2}{3}$ 



(練習12) 座標平面上,O為原點, $\theta$ 為第二象限角,P(x,2)是 $\theta$ 角終邊

上一點,已知
$$\overline{OP}=3$$
,求  $x$  及  $\cos\theta$ 之值。Ans: $x=-\sqrt{5}$ , $\cos\theta=\frac{-\sqrt{5}}{3}$ 

(練習13)  $(1)\sin\theta = \frac{-4}{5}$ ,且 $\theta$ 為第三象限角,求其他三角比。

$$(2)\tan\theta = \frac{-4}{3}$$
,且 $\theta$ 為第四象限角,求其他三角比。

Ans: 
$$(1)\cos\theta = \frac{-3}{5}$$
,  $\tan\theta = \frac{4}{3}$ ,  $\cot\theta = \frac{3}{4}$ ,  $\sec\theta = \frac{5}{-3}$ ,  $\csc\theta = \frac{5}{-4}$ 

(2) 
$$\sin\theta = \frac{-4}{5}$$
,  $\cos\theta = \frac{3}{5}$ ,  $\cot\theta = \frac{3}{-4}$ ,  $\sec\theta = \frac{5}{3}$ ,  $\csc\theta = \frac{5}{-4}$ 

#### (2)三角比的化簡:

(a)角度θ終邊的位置與三角比的正負:

| 象限函數       | 1 | 11 | 111 | 四 |
|------------|---|----|-----|---|
| sinθ與 cscθ | + | +  | _   | _ |
| cosθ與 secθ | + | _  | _   | + |
| tanθ與 cotθ | + | _  | +   | _ |

#### (b)角度化簡的原則:

#### ①凡是同界角均有相同的三角比:

若 $\theta_1$ 與 $\theta_2$ 為同界角,由於同界角具有相同的始邊與終邊,所以同界角具有相同的三角比值,利用此觀念可將任意角度的三角比化成角度在 $0^{\circ}$ 到 $360^{\circ}$ 間的三角比。

$$\sin \cdot \cos \cdot \tan \cdot \cot \cdot \sec \cdot \csc (n \times 360^{\circ} + \theta)$$

= 
$$\sin \cdot \cos \cdot \tan \cdot \cot \cdot \sec \cdot \csc (\theta)$$

例如: $\sin 789^\circ = \sin(2 \cdot 360^\circ + 69^\circ) = \sin 69^\circ$ , $\tan(-1000^\circ) = \tan(-3 \cdot 360^\circ + 80^\circ) = \tan 80^\circ$ 

### ②負角之三角比的變換:

$$\sin \cdot \tan \cdot \cot \cdot \csc(-\theta) = -\sin \cdot \tan \cdot \cot \cdot \csc(\theta)$$

$$\cos$$
,  $\sec$   $(-\theta) = \cos$ ,  $\sec$   $(\theta)$ 



#### [說明]:

如右圖,P點與Q點分別是廣義角 $\theta$ , $-\theta$ 終邊與單位圓的交點

根據定義可知

 $m = \cos\theta, n = \sin\theta$ ;  $m' = \cos(-\theta), n' = \sin(-\theta)$ 

又因為 $P \cdot Q$  分別對稱於x 軸,

 $\Rightarrow m=m'$ , n=-n'

 $\Rightarrow \cos\theta = \cos(-\theta)$ ,  $\sin(-\theta) = -\sin\theta$ 

其餘四個三角比,可由 sinθ,cosθ 的關係推得。

例如: $\cos(-123^\circ)=\cos 123^\circ$ , $\sin(-125^\circ)=-\sin 125^\circ$ , $\tan(-200^\circ)=-\tan 200^\circ$ 

θ+180°

 $\mathbf{Q}(m',n')$ 

O

P(m,n)

#### ③角 180°± 0之三角比的變換:

$$\sin \cdot \cos \cdot \tan \cdot \cot \cdot \sec \cdot \csc (180^{\circ} \pm \theta)$$

$$=\pm \sin \cdot \cos \cdot \tan \cdot \cot \cdot \sec \cdot \csc (\theta)$$

◆ ±號的選定可將θ 視為銳角去判斷正負

#### [說明]:

如右圖,P 點與 Q 點分別是廣義角 $\theta$ ,180°+ $\theta$ 終邊與單位圓的交點根據定義可知

 $m=\cos\theta, n=\sin\theta$ ;  $m'=\cos(180^{\circ}+\theta), n'=\sin(180^{\circ}+\theta)$ 

又因為P與Q對稱於O點

 $\Rightarrow m' = -m, n' = -n \circ$ 

 $\Rightarrow \cos(180^{\circ}+\theta)=-\cos\theta$ ,  $\sin(180^{\circ}+\theta)=-\sin\theta$ 

另外一方面,

 $cos(180^{\circ}-\theta)=cos(180^{\circ}+(-\theta))=-cos(-\theta)=-cos\theta$ 

 $\sin(180^{\circ}-\theta) = \sin(180^{\circ}+(-\theta)) = -\sin(-\theta) = \sin\theta$ 

例如: $\sin 230^\circ = \sin(180^\circ + 50^\circ) = -\sin 50^\circ$ , $\cos 230^\circ = \cos(180^\circ + 50^\circ) = -\cos 50^\circ$  $\sin 140^\circ = \sin(180^\circ - 40^\circ) = \sin 40^\circ$ , $\cos 140^\circ = \cos(180^\circ - 40^\circ) = -\cos 40^\circ$ 

#### ④角 90°± θ , 270°± θ 之三角比的變換:

$$\sin \cdot \cos \cdot \tan \cdot \cot \cdot \sec \cdot \csc (90^{\circ} \pm \theta) \cdot 270^{\circ} \pm \theta)$$

$$=\pm \cos \cdot \sin \cdot \cot \cdot \tan \cdot \csc \cdot \sec (\theta)$$

◆ ±號的選定可將θ 視為銳角去判斷正負

請注意上式中正餘三角比互換。

#### [說明]:

如右圖,P點與 Q點分別是廣義角 $\theta$ ,90°+ $\theta$ 終邊與單位圓的交點 從圖形可以得知 $\Delta COP \cong \Delta DQO$ ,因此若 P點坐標為(m,n),

那麼 Q 點坐標為(-n,m),根據三角比的定義,

 $m=\cos\theta$ ,  $n=\sin\theta$ ;  $-n=\cos(\theta+90^\circ)$ ,  $m=\sin(\theta+90^\circ)$ 

所以可以得到  $\sin(\theta+90^\circ)=\cos\theta$ , $\cos(\theta+90^\circ)=-\sin\theta$  。

例如:sin130°=sin(90°+40°)=cos40°

cos130°=cos(90°+40°)=-sin40°





[例題6] 請化簡下列各三角比:

(a) $\sin 1800^{\circ}$  (b) $\cos 1560^{\circ}$  (c) $\sin (-1050^{\circ})$  (d) $\tan 945^{\circ}$ 

[**例題7**] 設  $\cot\theta = \frac{-5}{12}$ ,且 $\theta$ 為第二象限角,試求

(1)sinθ (2)cos(θ+90°)(3)tan(180°-θ) 的值。

Ans:  $(1)\frac{12}{13}(2)\frac{-12}{13}(3)\frac{12}{5}$ 

[**例題8**] 設  $\cos 100^{\circ} = k$ , 試以 k 表

$$(1)\sin(-260^{\circ}) = ____ \circ (2)\tan(-260^{\circ}) = ___ \circ (3)\cos(-80^{\circ}) = ___ \circ (4)\sin(-80^{\circ}) = ___ \circ$$

$$(3)\cos(-80^{\circ}) = _{-----} \circ (4)\sin(-80^{\circ}) = _{----}$$

Ans: 
$$(1)\sqrt{1-k^2}$$
  $(2)\frac{\sqrt{1-k^2}}{k}$   $(3)-k$   $(4)-\sqrt{1-k^2}$ 

(練習14) 化簡 
$$\frac{\sin(180^{\circ} + \theta)\tan^{2}(180^{\circ} - \theta)}{\cos(270^{\circ} + \theta)} - \frac{\sin(270^{\circ} - \theta)\csc^{2}(90^{\circ} + \theta)}{\sin(90^{\circ} + \theta)}$$
 。Ans:1

- (練習15) 右圖為一圓心在原點的單位圓,且 $\angle AOP=\theta$ (非有向角)。則圓弧上一點 P 的坐標為?  $y \uparrow$ 
  - (A)  $(\cos\theta, \sin\theta)$  (B) $(\cos\theta, -\sin\theta)$  (C)  $(-\cos\theta, \sin\theta)$
  - (D)  $(-\cos\theta, -\sin\theta)$  (E) $(-\sin\theta, \cos\theta)$  Ans : (B)



- $(2)\sin 210^{\circ} + \tan(-135^{\circ}) + \cos(-390^{\circ}) = \underline{\hspace{1cm}}$
- $(3)\sin 60^{\circ} \cdot \cos 150^{\circ} \cos 225^{\circ} \sin 315^{\circ} + \tan 300^{\circ} \cdot \sec 180^{\circ} =$
- $(4)\sin 1560^{\circ} \tan (-510^{\circ}) + \cos (-240^{\circ})\cot 495^{\circ} = \underline{\hspace{1cm}}$

Ans: 
$$(1)0 (2) \frac{1+\sqrt{3}}{2} (3) \frac{4\sqrt{3}-5}{4} (4)1$$

- (練習17) 設  $0^{\circ} \le \theta < 360^{\circ}$ ,求滿足下列條件的 $\theta$ 值:
  - $(1)\sin\theta = \frac{\sqrt{2}}{2}$   $(2)\cos\theta = \frac{-1}{2}$   $(3)\sin\theta = -1$   $(4)\tan\theta = 0$   $(5)\csc\theta = -2$

[答案]: (1)45°或 135° (2)120°或 240° (3)270° (4)0°或 180° (5)210°或 330°

(練習18) 設 
$$\tan 20^\circ = k$$
,試求  $\sec 250^\circ = \underline{\qquad}$  Ans :  $\frac{-\sqrt{k^2+1}}{k}$ 

- (練習19) 設 0°≤θ<360°,求滿足下列各條件的θ值:
  - $(1)\sin\theta = \frac{-1}{2}$   $(2)\cos\theta = \frac{\sqrt{2}}{2}$   $(3)\tan\theta = -\sqrt{3}$

Ans: (1)210°或 330° (2)45°或 315° (3)120°或 300°

(練習20) 請求出 sin1°+sin2°+...+sin360°=? Ans: 0

## 綜合練習

(1) 如圖所示,點 P(-3,-4)落在廣義角 $\theta$ 的終邊上, 則下列哪些敘述是正確的?



(D) 
$$\sin(90^{\circ}+\theta) = \frac{-3}{5}$$
 (E)  $\sin(360^{\circ}+\theta) = \frac{4}{5}$ 



(2) 試求下列各式的值:

(a)
$$2\cos^2 30^\circ - 1$$
 (b) $2\sin 30^\circ \cos 30^\circ$  (c) $\frac{2\tan 30^\circ}{1-\tan^2 30^\circ}$  (d) $\sin 60^\circ \cos 60^\circ \tan 60^\circ \cot 60^\circ \sec 60^\circ$  (e) $\tan 45^\circ + \sqrt{3} \tan 60^\circ - \sin^2 30^\circ$  (f) $1+\sin^2 45^\circ - \tan 30^\circ \cot 60^\circ$ 

(3) 設  $0^{\circ} < \theta < 90^{\circ}$ ,  $\tan \theta = k$ , 則下列敘述何者正確?

(A) 
$$\sec\theta = \sqrt{k^2 + 1}$$
 (B)  $\csc\theta = k^2 + 1$  (C)  $\cot\theta = \frac{1}{k}$ 

(D) 
$$\sin\theta = \frac{k}{\sqrt{k^2+1}}$$
 (E)  $\cos\theta = \frac{1}{\sqrt{k^2+1}}$  °

(4) 如右圖,圓 O 為單位圓,已知  $\sin\theta = \frac{12}{13}$ ,則 $\overline{PT} = ?$ 





(7) △ABC 是一個頂角為 36°的等腰三角形,  $\overline{AM}$ 與 $\overline{BD}$ 分別是 $\angle A$  與 $\angle B$  的分角線, 如右上圖所示。試利用△BCD~△ABC,求 sin18°之值。





(9) 設  $\sin\theta + \cos\theta = \frac{1}{\sqrt{2}}$  ,則求下列各小題的值:

(a)
$$\sin\theta \cdot \cos\theta =$$
\_\_\_\_  $\circ$  (b) $\sin\theta - \cos\theta =$ \_\_\_\_  $\circ$ 

(a)
$$\sin\theta \cdot \cos\theta =$$
\_\_\_\_  $\circ$  (b) $\sin\theta - \cos\theta =$ \_\_\_  $\circ$  (c) $\sin^3\theta + \cos^3\theta =$ \_\_\_  $\circ$  (d) $\sin^6\theta + \cos^6\theta =$ \_\_\_  $\circ$ 

(10) 有一塊正方形的壓克力版,其中有一個角落附近有瑕疵,現在要將它依右圖的方式截成一塊較小的正方形壓克力,小正方形的邊與大正方形的邊成一個角度

 $\theta(0<\theta<45^\circ)$ 使得其面積為原來面積的 $\frac{3}{4}$ ,試問  $\tan\theta=$ \_\_\_\_\_





- (12) 設  $\cot\theta = \frac{-4}{3}$  ,且  $\sin\theta > 0$  ,試求  $\frac{3\sin\theta + 5\cos\theta}{2\sin\theta + 6\cos\theta} = \underline{\hspace{1cm}}$
- (13) 設  $4\cos^2\theta 8\cos\theta 5 = 0$ ,求  $\sin\theta$ 之值。
- (14) 假設  $\cos\theta + 3\sin\theta = 2$ ,且  $0 < \theta < 90^{\circ}$ ,求  $\cos\theta + \sin\theta$ 之值。
- (15) 若 90°< $\theta$ <180°,且  $\cos\theta$  +  $\sin\theta = \frac{1}{5}$ ,請求下列兩小題的值:
  (a)  $\cos\theta = ?$  (b)  $\frac{\sec\theta}{\tan\theta} + \frac{\csc\theta}{\cot\theta} = ?$  (c)  $\sin\theta\cos\theta = ?$
- (16) 設  $45 < \theta < 90^{\circ}$ ,  $\Leftrightarrow a = \log_{\frac{1}{2}} \sin \theta$  ,  $b = \log_{\frac{1}{2}} \cos \theta$  ,  $c = \log_{\frac{1}{2}} \tan \theta$  ,  $d = \log_{\frac{1}{2}} \sec \theta$  試比較 a,b,c,d 之大小。
- (17) 銳角 $\Delta$ ABC 之三邊長為 a,b,c,其所對應的高為  $h_a$ , $h_b$ , $h_c$ ,已知  $\tan$ A=1, $\tan$ B=2, $\tan$ C=3,則 $\frac{abc}{h_ah_bh_c}$ =?

## 進階問題

- (18) 若 $0^{\circ}$ < $\theta$ < $45^{\circ}$ ,求 $\sqrt{1-2\sin\theta\cos\theta} \sqrt{1+2\sin\theta\cos\theta}$  之值。
- (19) 設  $A+B+C=180^{\circ}$ ,求證:
  (a) $\tan \frac{A+B}{2} = \cot \frac{C}{2}$  (b) $\sin A=-\cos(\frac{3A}{2}+\frac{B}{2}+\frac{C}{2})$  (c) $\sin(\frac{A}{2}+B)=\cos(\frac{B}{2}-\frac{C}{2})$   $\circ$
- (20) 如右圖,∠BDC=90°,∠ADB=30°,A、B、C 共線, 且ĀB=CD=1,求BC的長。







## 綜合練習解答

- (1) (B)(C)(D)
- (2)  $(a)\frac{1}{2} (b)\frac{\sqrt{3}}{2} (c)\sqrt{3} (d)\frac{\sqrt{3}}{2} (e)\frac{15}{4} (f)\frac{7}{6}$
- (3) (A)(C)(D)(E)
- $(4) \quad \frac{5}{12}$
- $(5) \quad 2nr\sin\frac{180^{\circ}}{n}, \ 2nr\tan\frac{180^{\circ}}{n}$
- (6)  $\overline{BC} = 22$
- (7)  $\sin 18^\circ = \frac{\sqrt{5}-1}{4}$
- (8)  $\frac{1}{4}$
- (9) (a)- $\frac{1}{4}$  (b)± $\frac{\sqrt{6}}{2}$  (c) $\frac{5 \cdot \sqrt{2}}{8}$  (d)  $\frac{3}{16}$
- (10)  $3-2\sqrt{2}$  [解法]:設大正方形邊長為 1, 則小正方形邊長為  $\frac{\sqrt{3}}{2}$ ,令 $\overline{ND}=x$



因為 $\Delta$ MDN、 $\Delta$ NCK 全等,所以 $\overline{MD}=\overline{CN}=1-x$ 

故
$$\frac{3}{4} = x^2 + (1-x)^2 \Rightarrow x = \frac{2-\sqrt{2}}{4}(\frac{2+\sqrt{2}}{4}$$
不合), $\tan\theta = \frac{x}{1-x} = 3-2\sqrt{2}$ 。

- (11)  $(a)\frac{1}{2}(b)\frac{-\sqrt{2}}{2}(c)\frac{\sqrt{2}-\sqrt{6}}{4}(d)\frac{1}{\sqrt{3}}$
- (12)  $\frac{11}{18}$
- (13) ① $\theta$ 在第二象限, $\sin\theta = \frac{\sqrt{3}}{2}$ ,;② $\theta$ 在第三象限, $\sin\theta = \frac{-\sqrt{3}}{2}$
- (14)  $\frac{4+\sqrt{6}}{5}$
- (15)  $(a)\frac{-3}{5}$   $(b)\frac{-5}{12}$   $(c)\frac{-12}{25}$
- $(16) \quad b>a>c>d$
- (17)  $\frac{5}{3}$  (Hint: 考慮 $\frac{c}{h_a}$ ,  $\frac{b}{h_c}$ ,  $\frac{a}{h_b}$ 的值)
- (18)  $-2\sin\theta$ [提示:1=  $\sin^2\theta$ + $\cos^2\theta$ ]
- (19) 提示: (b)  $\frac{3A}{2} + \frac{B}{2} + \frac{C}{2} = A + \frac{A + B + C}{2} = A + 90^{\circ}$  (c)  $\frac{A}{2} + B = (\frac{A}{2} + \frac{B}{2}) + \frac{B}{2} = (90^{\circ} \frac{C}{2}) + \frac{B}{2}$
- (20)  $\sqrt[3]{2}$
- (21) 358[提示:可令  $P_k(\cos k^{\circ}, \sin k^{\circ})$ , $\Rightarrow \overline{AP_k}^2 = 2 2\cos k^{\circ}$ ]
- (22)  $-2 \le a \le \frac{1}{4}$  [提示:  $a = -\sin^2\theta \sin\theta = -(\sin\theta + \frac{1}{2})^2 + \frac{1}{4}$ ,且 $-1 \le \sin\theta \le 1$ ]