CDI-II

Integrais duplas em coordenadas polares

Exercícios

1. Calcule, em coordenadas polares, as seguintes integrais:

(a)
$$\iint (x^2 + y^2) dxdy$$

$$R = \{(x; y); x^2 + y^2 \le 9\}$$

(b)
$$\iint_{\mathbb{R}} e^{x^2+y^2} dxdy$$

(a)
$$\iint_{R} (x^{2} + y^{2}) dxdy$$
 $R = \{(x; y); x^{2} + y^{2} \leq 9\}$
(b) $\iint_{R} e^{x^{2} + y^{2}} dxdy$ $R = \{(x; y); y = x \text{ e } x^{2} + y^{2} \leq 5\}$
(c) $\iint_{R} (x^{2} + 2y) dxdy$ $R = \{(x; y); 1 \leq x^{2} + y^{2} \leq 4\}$
(d) $\iint_{R} \sin(x^{2} + y^{2}) dxdy$ onde R é o conjunto de todos os pontos

(c)
$$\iint_{\mathcal{B}} (x^2 + 2y) \, dx dy$$

$$R = \{(x; y); 1 \le x^2 + y^2 \le 4\}$$

(d)
$$\iint_{R} \sin\left(x^2 + y^2\right) dx dy$$

$$(x;y)$$
 tais que $x^2 + y^2 \le 1$ e $y \ge 0$

(e)
$$\iint_{\mathcal{B}} x dx dy$$

onde R é o conjunto de pontos

no plano $x\circ y$ limitado pelo cardióide $r = 1 - \cos \theta$

(f)
$$\iint_{R} xydxdy$$

$$R = \{(x; y); x^2 + y^2 - x \le 0\}$$

2. Reescreva as integrais abaixo em coordenadas polares e calcule:

(a)
$$\int_{0}^{1} \int_{0}^{\sqrt{x-x^2}} x dx dy$$

(b)
$$\int_{0}^{1} \int_{1-\sqrt{1-x^2}}^{1+\sqrt{1-x^2}} x dx dy$$