Übung 1

	Begriff	Erklärung
(1)	Syntax	Struktur einer Sprache, erlaubte Zeichenketten
(2)	Semantik	Bedeutung der Zeichenketten
(3)	Objektsprache	(syntaktisch) zu beschreibende Sprache
(4)	Metasprache	Hilfssprache zur Beschreibung der Objektsprache
(5)	Alphabet Σ	nichtleere, endliche Menge von Terminalsymbolen, Zeichenvorrat
(6)	Wort	endliche Folge von Symbolen (Besonderheit: leeres Wort ε mit Länge 0)

Übung 1

	Begriff	Erklärung
(7)	Konkatenation	Verkettung von Wörtern
(8)	Potenzmenge $\mathcal P$	Menge aller Teilmengen
(9)	Σ^*	Menge aller Wörter über Σ
(10)	$\mathcal{P}(\Sigma^*)$	Menge aller Sprachen über Σ
(11)	formale Sprache ${\cal L}$	Menge von Wörtern
		$L \in \mathcal{P}(\Sigma^*)$ bzw. $L \subseteq \Sigma^*$
(12)	Komplexprodukt	Verknüpfung von Sprachen
		$ \mid L_1 \cdot L_2 = \{uv u \in L_1, v \in L_2\} $
(13)	L^*	$L^* = \bigcup L^n$
		$n \ge 0$
		wobei $L^0=\{arepsilon\}$, $L^{n+1}=L^nL$
		und $\{\varepsilon\}^*=\emptyset^*=\{\varepsilon\}$

Übung 3

- $\blacktriangleright \ L_1 \cdot L_2 \cdot L_3 = \{aba, abba\}$
- $L_1^* = \{\varepsilon, a, aa, aaa, \dots\}$ $= \{a^n \mid n \in \mathbb{N}\}$
- $$\begin{split} \blacktriangleright \ L_3^* &= \{\varepsilon, a, ba, aa, aba, baa, \dots\} \\ &= \{a^{m_1}(ba)^{n_1} \dots a^{m_k}(ba)^{n_k} \,|\, m_i, n_i \in \mathbb{N}, k \in \mathbb{N}^+, \end{split}$$
 - $1 \leq i \leq k\}$
- $L_2^* \cdot L_1 = \{a, ba, bba, bbba, \dots\}$ $= \{b^n a \mid n \in \mathbb{N}\}$
- $\mathcal{P}(L_1^*) = \{\emptyset, \{\varepsilon\}, \{a\}, \{aa\}, \dots, \{\varepsilon, a\}, \{\varepsilon, aa\}, \dots\}$

$$= \{ \{a^n | n \in I\} \, | \, I \subseteq \mathbb{N} \}$$

Zusatzaufgabe 1

- $L_2 \cdot L_2 \cdot L_3 = L_2^2 \cdot L_3$
- $\blacktriangleright L_1 \cdot L_2 \cdot L_3$
- L_3^*

Zusatzaufgabe 2

- $L_1 = \{a\}^* \cdot \{b\} = \{a^n b \, | \, n \in \mathbb{N}\}$ $L_2 = \Sigma^*$
- $L_2' = \{a^n b^n \mid n \in \mathbb{N}\}\$
- $\blacktriangleright \ L_3 = \Sigma^*$
 - $L_3' = \{\varepsilon\}$
 $L_2'' = \{ab\}^*$