U.1 Stöchiometrie

1. Welche Molekülformeln haben die Verbindungen mit folgenden empirischen Formeln und relativen Molekülmassen?

a) SNH; 188.32

b) CH₂; 70.15

2. Welche empirische Formel hat die Verbindung mit folgender Zusammensetzungen (Angaben in Masse-%)?

60.00% C; 4.48% H; 35.52% O

- 3. Zur Analyse einer Verbindung, die Chrom und Chlor enthält, wird das Chlor in die Verbindung AgCl überführt. Aus 8.610 g CrCl_x werden 20.08 g AgCl erhalten. Wie lautet die empirische Formel (x = ?) der Chromverbindung?
- 4. Welche Masse muss man einwiegen, um folgende Lösungen herzustellen?
 - a) 500 mL mit $c(KMnO_4) = 2.00 \cdot 10^{-2} \text{ mol L}^{-1}$

b) 2.00 L mit $c(KOH) = 1.50 \text{ mol L}^{-1}$

- 5. Aus konzentrierter Salzsäure (36 Masse-% HCl, 100g Lösung bestehen aus 36 g HCl und 64 g Wasser) mit der Dichte $\rho = 1.18$ g/cm³ sollen 2 L einer Salzsäure (c = 2.00 mol L⁻¹) hergestellt werden. Wie gehen Sie vor?
- 6. 2.50 g eines Gemisches aus Natriumchlorid, NaCl, und Natriumnitrat, NaNO₃, werden in Wasser gelöst. Zur vollständigen Umsetzung nach

$$NaCl + AgNO_3 \longrightarrow AgCl + NaNO_3$$

werden 30.0 mL einer Silbernitrat-Lösung mit $c(AgNO_3) = 0.600$ mol L⁻¹ benötigt. Berechnen Sie den prozentualen Masseanteil von NaCl im Gemisch.

7. Die Tabelle enthält die Stoffmengenkonzentrationen einiger handelsüblicher konzentrierter Säuren.

Säure	Formel	$c \pmod{L^{-1}}$
Salpetersäure (65%)	HNO ₃	15.8
Schwefelsäure (96%)	H ₂ SO ₄	18.0

Wie viel mL der konzentrierten Lösung muss man mit Wasser verdünnen, um folgende Lösungen herzustellen?

- a) $1.50 \text{ L mit } c \text{ (HNO}_3) = 0.500 \text{ mol L}^{-1}$
- b) 75 mL mit c (H₂SO₄) = 0.600 mol L⁻¹

8.	Wie viele Mole CO werden durch die Reaktion
	$Fe(CO)_5 + 2 PF_3 + H_2 \rightarrow Fe(CO)_2(PF_3)_2(H)_2 + 3 CO$
	aus einer Mischung von $5.0 \text{ mol Fe}(CO)_5$, $8.0 \text{ mol PF}_3 \text{ und } 6.0 \text{ mol H}_2$ gebildet?
	☐ 15 mol ☐ 5.0 mol ☐ 18 mol ☐ 6.0 mol ☐ 12 mol
9.	Welche der folgenden Proben enthält die meisten Atome?
	1 g Americium 1 g Europium 1 g Francium 1 g Gallium 1 g Germanium
10.	Wie gross ist die prozentuale Ausbeute an CaO in der Reaktion $CaCO_3 \ \rightarrow \ CaO + CO_2,$
	wenn 10.0 g CaCO ₃ eingesetzt und 5.33 g CaO erhalten werden.
	5.60 % 53.3 %

64.7 %

C 5.33 %

© 95.1 %

11.	Eine Lösung wird durch Mischen von 30.0 mL einer 8.00 <i>M</i> wässrigen HCl-Lösung, 100 mL einer 2.00 <i>M</i> wässrigen HCl-Lösung und genau soviel Wasser, dass genau 200.0 mL Lösung entstehen, hergestellt. Wie gross ist die Stoffmengenkonzentration der fertigen HCl-Lösung?
12.	Welcher der folgenden Vorgänge ergibt eine 0.200 <i>M</i> K ₂ SO ₄ -Lösung? Verdünnen von 250.0 mL einer 1.00 <i>M</i> K ₂ SO ₄ -Lösung auf 1L Auflösen von 43.6 g K ₂ SO ₄ in Wasser und Verdünnung der Lösung auf ein Gesamtvolumen von 250.0 mL Verdünnen von 20.0 mL einer 5.0 <i>M</i> K ₂ SO ₄ -Lösung auf 500.0 mL Auflösen von 20.2 g K ₂ SO ₄ in Wasser und Verdünnung auf 250.0 mL und anschliessendes Verdünnen von 25.0 mL dieser Lösung auf ein Gesamtvolumen von 500.0 mL