Assignment Math45-Homework-WEEK-02 due 09/12/2020 at 11:59pm PDT

1. (1 point)

- ? 1. Which differential equation below is in normal form?
- ? 2. Which differential equation below is in differential

A.
$$(y + \sin(\theta)) dy + y\theta d\theta = 0$$
 Tifferential form

B.
$$y''' = ty'' - t^3y' + y \leftarrow \text{Normal form}$$

1 "Multiplying" by da

2 Solve for 战

Answer(s) submitted: Differential Form

- 2xdx+4dx+3xdy+4d2

lormal Form

鉄=-美(2x+4+4)

(incorrect)

2. (1 point)

Determine the order of the given differential equation and state whether the equation is linear or nonlinear.

$$(\sin \theta)y^{(7)} - (\cos \theta)y' = 7$$

(a) The order of this differential equation is $\frac{1}{2}$

(b) The equation is [Choose/Linear/Nonlinear].

Answer(s) submitted: No Powers greater than one, So

this is a linear equation

(incorrect)

3. (1 point)

Determine the order of the given differential equation and state whether the equation is linear or nonlinear.

$$\frac{d^4u}{dr^4} + \frac{du}{dr} + 6u = \cos(r+u)$$

(a) The order of this differential equation is $\frac{4}{3}$

(b) The equation is [Choose/Linear/Nonlinear].

- Answer(s) submitted: A power greater than one
 - Makes the equation non-linear.

(incorrect)

Q4 Which of the following functions satisfies the differential equation $(x+1)y' - y + 2\ln(1+x) = 3$?

- A. $y = \ln(x + x^2)$
- B. $v = e^x$

Answer(s) submitted:

Q5 Note that $\phi(x) = \ln(1+2x)$ satisfies the differential equation $(2x+1)\ln(1+2x)y'-2y=0$. On what interval is ϕ a solution for this differential equation?

- A. $(-\infty, \infty)$
- B. $(-1, \infty)$
- - D. $[-1, \infty)$
 - E. $\left[-\frac{1}{2},\infty\right)$

Answer(s) submitted:

(incorrect)

6. (1 point)

1. Which statement of sets below best describes the domain of the function $f(x) = \frac{1}{1-x}$?

Which statement of sets below best describes the interval on which the function $f(x) = \frac{1}{1-x}$ is a solution to the differential equation $y' = y^2$?

A.
$$(-\infty,1)$$
 or $(1,\infty)$ 1) $f_{(X)} = \frac{1}{1-x}$

B. $(-\infty,1)$ and $(1,\infty)2)$ for $=\frac{1}{1-x}$ is a solution to the differential equation y'=y2

Answer(s) submitted:

(incorrect)

The function $y = c_1 e^{3x} + c_2 x e^{3x}$ is a two-parameter family of solutions for which of the following differential equations?

• A.
$$y'' - 6y' + 9y = 0$$

• B.
$$y' = y$$

• C.
$$y'' + 6y' - 9y = 0$$

Answer(s) submitted:

(incorrect)

Find the value k such that $y = e^{kx}$ is a solution to the differential equation 7y' + 4y = 0.

$$7y'+4y=0 \Rightarrow 7(ke^{kx})+4(e^{kx})=0$$

$$\Rightarrow \frac{1}{e^{kx}} + \frac{1}{e^{kx}} = 0$$

$$\Rightarrow \frac{1}{e^{kx}} + \frac{1}{e^{kx}} = 0$$

$$\Rightarrow \frac{1}{e^{kx}} + \frac{1}{e^{kx}} = 0$$

Answer(s) submitted:

(incorrect)

9. (1 point) Find the two values of k such that $y = x^k$ is a solution to the differential equation xy'' + 9y' = 0. The values are $k = \underline{0}$ and k = 1

Answer(s) submitted:

(incorrect)

10. (1 point) Find the two values of k such that the constant function y = k is a solution to the differential equation $y' = y^2 - 10y + 21$. The values are k =____

y=K, y=0 $y=K^2-10K+21$ $0=K^2-10K+21$ (K-7)(K-3)=0Answer(s) submitted: y=K,y'=0(incorrect)

11. (1 point) Find the two values of k such that $y = x^k$ is a solution to the differential equation xy'' + 9y' = 0. The values are k = and k = $y = x^{\kappa}$, $y' = k_x^{\kappa}$, $y'' = k_x^{2\kappa}$

Answer(s) submitted: $\chi(k^2x^5) + q(kx^K) = 0$

(incorrect)

12. (1 point)

Let y' = 2x.

Find all values of r such that $y = rx^2$ satisfies the differential equation. If there is more than one correct answer, enter your answers as a comma separated list.

help (numbers)

(incorrect)

2

Answer(s) submitted: Let y'=2x

*Find y' Using power rule as *

y= d/(rx2) >1\$(x2) -) r(2x)

77 Cz

Plug-in y'=2rx in given differental equation y'=2x to obtain

2rx = 2x:. r=1.

