Assignment 3

Question 1: Let $A = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ and let $\alpha, \beta, \gamma \in A$.

- a. Is the group $A/\langle \alpha, \beta \rangle$ finite for some α, β ? Why or why not?
- b. Give conditions under which the group $A/\langle \alpha, \beta, \gamma \rangle$ is finite?

Hint: view the elements α, β, γ as vectors in \mathbb{Q}^3 . From linear algebra, we know that if these vectors are linearly independent, they form a basis for \mathbb{Q}^3 . What does this say about the subgroup of $\mathbb{Z}^3 = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ they generate?

Question 2: For a group G and elements $x, y \in G$, the commutator of x and y is the element

$$[x,y] = x \cdot y \cdot x^{-1} \cdot y^{-1}.$$

- a. Let $G'=\langle [x,y], x,y\in G\rangle$ be the subgroup generated by all commutators. Prove that G' is a normal subgroup of G.
- b. Prove that the quotient group G/G' is abelian (i.e. commutative).
- c. Suppose that H is any abelian group and that $f: G \to H$ is a group homomorphism. Prove that $\forall x \in G', f(x) = 1$; i.e. that $G' \subseteq \ker f$.
- d. Deduce that there is a homomorphism $\overline{f}:G/G'\to H$ for which $\overline{f}\circ\pi=f$ where $\pi:G\to G/G'$ is the quotient map.

Remark: G/G' is known as the abelianization of G.

Question 3: Let G be a finite p-group for some prime number p.

- a. Prove that G has a central subgroup of order p.
 - **Remark**: This result is required for the proof of Corollary 3.4.5 in the notes, so you shouldn't quote that result for the proof! You can use Theorem 3.4.4 though.
- b. Prove that the commutator subgroup G' (see previous problem) is not equal to G.

Question 4: Let Q be the subgroup of $\mathrm{GL}_2(\mathbb{C})$ generated by the matrices

$$I = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, J = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.$$

- a. Prove that Q is a group of order 8.
- b. Prove that the center Z of Q has order 2 and that

$$Q/Z \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$
.

c. Prove that $Z=Q^\prime$ where Q^\prime is the commutator subgroup.

Question 5: Let F be any field and for $n\in\mathbb{N}, n>0$, let $G=\mathrm{GL}_n(F)$. From linear algebra, we know that the determinant mapping

$$\det:G\to F^\times$$

is a group homomorphism, where $F^{\times} = F - \{0\}$ is the multiplicative group of the field.

Let $\mathrm{SL}_n(F) = \ker(\det)$ be the subgroup $\{g \in \mathrm{GL}_n(F) \mid \det g = 1\}$; it is known as the special linear group.

Prove that $\operatorname{GL}_n(F)/\operatorname{SL}_n(F) \simeq F^{\times}$.

Question 6: Let $n \in \mathbb{N}$ and let $D = \langle \sigma, \tau \rangle$ be the dihedral group of order 2n as in Example 2.6.6 in the notes. (So the order of σ is n.)

- a. Find a 2-Sylow subgroup P of D. (Note that your answer must take into account the parity of n.)
- b. Is P normal in D?