Decimal Numbers: Base 10

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Example:

3271 =

 $(3x10^3) + (2x10^2) + (7x10^1) + (1x10^0)$

Garcia, Fall 2005 © UCB

Numbers: positional notation

- Number Base B ⇒ B symbols per digit:
 - Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Base 2 (Binary): 0, 1
- Number representation:
 - · d₃₁d₃₀ ... d₁d₀ is a 32 digit number
 - value = $d_{31} \times B^{31} + d_{30} \times B^{30} + ... + d_{1} \times B^{1} + d_{0} \times B^{0}$
- Binary: 0,1 (In binary digits called "bits")

 $\overline{\#}$ s often written = 26

0b... • Here 5 digit binary # turns into a 2 digit decimal #

Garcia, Fall 2005 © UCB

Hexadecimal Numbers: Base 16

- · Hexadecimal:
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- · Normal digits + 6 more from the alphabet
- In C, written as 0x... (e.g., 0xFAB5)
- Conversion: Binary⇔Hex
 - · 1 hex digit represents 16 decimal values
 - · 4 binary digits represent 16 decimal values
 - ⇒1 hex digit replaces 4 binary digits
- One hex digit is a "nibble". Two is a "byte"
- Example:
- 1010 1100 0011 (binary) = 0x_____ ?

Garcia, Fall 2005 © UCB

Decimal vs. Hexadecimal vs. Binary

Examples:	00	0	0000
1010 1100 0011 (binary)	01 02	1 2	0001 0010
= 0xAC3		3	0011
	04	4	0100
10111 (binary)	05	5	0101
= 0001 0111 (binary)	06	6	0110
	07	7	0111
= 0x17	80	8	1000
	09	9	1001
0x3F9	10	Α	1010
= 11 1111 1001 (binary)	11	в	1011
(27	12	С	1100
How do we convert between	13	D	1101
hex and Decimal?	14	E	1110
MEMODIZE	15	F	1111

Garcia, Fall 2005 © UCB

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta

Name	Abbr	Factor	SI size
Kilo	K	210 = 1,024	103 = 1,000
Mega	М	220 = 1,048,576	106 = 1,000,000
Giga	G	230 = 1,073,741,824	109 = 1,000,000,000
Tera	Т	240 = 1,099,511,627,776	1012 = 1,000,000,000,000
Peta	Р	250 = 1,125,899,906,842,624	1015 = 1,000,000,000,000,000
Exa	E	260 = 1,152,921,504,606,846,976	1018 = 1,000,000,000,000,000,000
Zetta	z	270 = 1,180,591,620,717,411,303,424	1021 = 1,000,000,000,000,000,000,000
Yotta	Y	280 = 1,208,925,819,614,629,174,706,176	1024 = 1,000,000,000,000,000,000,000,000

- Confusing! Common usage of "kilobyte" means 1024 bytes, but the "correct" SI value is 1000 bytes
- Hard Disk manufacturers & Telecommunications are the only computing groups that use SI factors, so what is advertised as a 30 GB drive will actually only hold about 28 x 230 bytes, and a 1 Mbit/s connection transfers 106 bps.

kibi, mebi, gibi, tebi, pebi, exbi, zebi, yobi

en.wikipedia.org/wiki/Binary prefix

New IEC Standard Prefixes [only to exbi officially]

Name	Abbr	Factor
kibi	Ki	210 = 1,024
mebi	Mi	2 ²⁰ = 1,048,576
gibi	Gi	230 = 1,073,741,824
tebi	Ti	2 ⁴⁰ = 1,099,511,627,776
pebi	Pi	250 = 1,125,899,906,842,624
exbi	Ei	260 = 1,152,921,504,606,846,976
zebi	Zi	2 ⁷⁰ = 1,180,591,620,717,411,303,424
yobi	Yi	280 = 1,208,925,819,614,629,174,706,176

As of this writing, this proposal has yet to gain widespread use...

- International Electrotechnical Commission (IEC) in 1999 introduced these to specify binary quantities.
 - Names come from shortened versions of the original SI prefixes (same pronunciation) and bi is short for "binary", but pronounced "bee" :-(

 Now SI prefixes only have their base-10 meaning and never have a base-2 meaning.

The way to remember #s

- What is 2³⁴? How (I.e., what's ceil many bits addresses $log_2 = lg of) 2.5 TiB?$
- Answer! 2^{XY} means...

X=0
$$\Rightarrow$$
 ...
X=1 \Rightarrow kibi \sim 10³
Y=1 \Rightarrow 2
X=2 \Rightarrow mebi \sim 10⁶
Y=2 \Rightarrow 4
X=3 \Rightarrow gibi \sim 10⁹
Y=3 \Rightarrow 8
X=4 \Rightarrow tebi \sim 10¹²
Y=4 \Rightarrow 16
X=5 \Rightarrow pebi \sim 10¹⁵
Y=5 \Rightarrow 32
X=6 \Rightarrow exbi \sim 10¹⁸
Y=6 \Rightarrow 64
X=7 \Rightarrow zebi \sim 10²¹
Y=7 \Rightarrow 128
X=8 \Rightarrow yobi \sim 10²⁴
Y=9 \Rightarrow 512

