测度的历史1

- 若尔当(Jordan)于1892年在R中用有限个开区间覆盖定义外测度,但有明显的缺点。主要是它仍只具有有限可加性,从而导致有些简单的点集也不可测。例如,令A=[0,1]∩Q,则A的若尔当内测度为0,而外测度为1,因而A在若尔当意义下不可测。
- 波莱尔(Borel)于1898年,先由开集经过可列并与余的运算导致一类集,即所谓波莱尔集类。再对每个有界波莱尔集对应一个实数,即波莱尔测度,并使得这种测度具有可列可加性。波莱尔的这种思想对测度理论做出了重大贡献,成为近代测度论中用公理方式引出σ代数概念的起源,并为勒贝格(Lebesgue, H.L.)的工作开辟了道路.Borel 在1920到中国做为期5个月的学术交流.

刘建明 (北大数学学院) 1 / 36

测度的历史2

- 波莱尔的学生勒贝格于1902年以更一般的形式建立起比较完善的 测度理论.他在定义点集测度的方法上,容许可列覆盖,使所建立 的测度具有可列可加性,并且相当广泛的一类点集的测度有了定 义。勒贝格测度是现代抽象测度的起源,在它的基础上建立的勒贝 格积分,是现代分析中应用最广和意义重大的积分。卡拉西奥多 里(Carath odory, C.) 于1914年发展了外测度理论,对测度进行了 公理化研究,并给出了测度扩张的典型方法,成为近代测度论的基 础.拉东(Radon, J.)、萨克斯(Saks, S.)、弗雷歇(Fr & het, M.-R.)以 及另外一些人考虑了一般集合上的测度以及测度空间的乘积,并建 立了一般可测集上积分的理论。
- 测度概念与积分概念紧密相关。每一种测度理论的推广都可导致一种积分理论的推广.测度理论不仅是积分理论的基础,而且在现代分析以及概率论等许多数学领域中也有着广泛的应用。

刘建明 (北大数学学院) 2 / 36

Lebesgue 外测度的定义1

- \mathbb{R}^n 中开矩体的体积: $I = \{(x_1, x_2, \cdots, x_n) : a_i < x_i < b, i = 1, 2, \dots, n\}$, I 的体积为 $|I| = \prod_{i=1}^n (b_i a_i)$.
- L-覆盖: 设 $E \subset \mathbb{R}^n$,若 $\{I_k\}$ 是 \mathbb{R}^n 中的可数个开矩体,且有 $E \subset \bigcup_{k>1} I_k$,则称 $\{I_k\}$ 是 E 的一个 L-覆盖.
- Lebesgue 外测度的定义: E ⊂ ℝⁿ, E 的 Lebesgue 外测度

$$m^*(E) = \inf \Big\{ \sum_{k>1} |I_k| : \{I_k\} \not\in E \text{ of } L\text{-}\ \mathcal{Z} \le \Big\}.$$

刘建明 (北大数学学院) 3 / 36

Lebesgue 外测度的定义2

- $E \subset \mathbb{R}^n$, 若 $m^*(E) < +\infty$, 则对任意给定的 $\epsilon > 0$,存在 E 的 L-覆盖 $\{I_k\}$, 使得 $\sum |I_k| < m^*(E) + \epsilon$.
- $H_k^*(E) = +\infty$, 则对 $H_k^*(E) = +\infty$.
- 例:单点集的外侧度为 0.
- 例: 二维空间中线段的外侧度为 0. 证明: 不妨设线段不与坐标轴平行, 设线段长 1, n 等分后每个小段可 以用边长为 $\frac{1}{n}$ 的正方形覆盖, 所得覆盖的面积和为 $\frac{12}{n} \rightarrow 0$,

Lebesgue 外测度的基本性质

- $m^*(E) \ge 0$, $m^*(\phi) = 0$.
- 设 E_k 是 \mathbb{R}^n 中的集合列,则有 $m^*(\bigcup_{k=1}^{\infty} E_k) \leq \sum_{k=1}^{\infty} m^*(E_k)$. 证明:任给 $\epsilon > 0$,存在 E_k 的 L-覆盖 $\{I_{k,i}: i=1,2,\dots\}$,使得 $\sum_{i=1}^{\infty} |I_{k,i}| \leq m^*(E_k) + \frac{\epsilon}{2^k}$.则 $\{I_{k,i}: k, i=1,2,\dots\}$ 是 $\bigcup_{k=1}^{\infty} E_k$ 的 L-覆盖,有

$$m^*(\bigcup_{k=1}^{\infty} E_k) \leq \sum_{k,i} |I_{k,i}| \leq \sum_{k=1}^{\infty} m^*(E_k) + \epsilon$$

由 ϵ 的任意性即得要证的不等式.

• 特别地, $m^*(\bigcup_{k=1}^n E_k) \leq \sum_{k=1}^n m^*(E_k)$.

刘建明 (北大数学学院) 5 / 36

一些集合的外测度1

- 可数集的外侧度为 0. 证明:设 $E = \{a_1, a_2, \dots\}, m^*(E) \leq \sum m^*(\{a_n\}) = 0.$
- 例: ℝ² 中的任意直线的外侧度为0.
- I 为开矩体,则有 $m^*(\overline{I}) = |I|$. 证明:记 λI 为与 I 中心相同,边长为 λ 倍的开矩体.若 $\lambda > 1$,则有 $\lambda I \supset \overline{I}$.从而 $m^*(\overline{I}) \leq |\lambda I| = \lambda^n |I|$.令 $\lambda \to 1 + 0$,即得 $m^*(\overline{I}) \leq |I|$.另一方面,对 \overline{I} 的任意开矩体覆盖 $\{I_k\}$, $\exists N$,使得 $\bigcup_{k=1}^{N} I_k \supset \overline{I}$,

$$\sum\limits_{k=1}^{N} |I_k| \ge |I|$$
,从布 $\sum\limits_{k=1}^{\infty} |I_k| \ge |I|$, $m^*(\overline{I}) \ge |I|$.

刘建明 (北大数学学院) 6 / 36

一些集合的外测度2

- I 为开矩体,则有 $m^*(I) = |I|$. 证明: $m^*(I) \le m^*(\overline{I}) = |I|$,另一方面, $\forall 0 < \lambda < 1$, $m^*(I) \ge m^*(\lambda \overline{I}) = \lambda^n |I|$. $\lambda \to 1 - 0$,得 $m^*(I) \ge |I|$.
- 若 E 满足 I ⊂ E ⊂ Ī, 则有 m*(E) = |I|.
- [0,1] 中的 Cantor 集的外侧度为零.
 证明:设 F_n 是构造过程中第 n 步留下来的集合,它是由 2ⁿ 个长度为 3⁻ⁿ 的闭区间之并,因此

$$m^*(C) \leq m^*(F_n) = 2^n \cdot 3^{-n} \rightarrow 0$$

刘建明 (北大数学学院) 7 / 36

距离外测度1

• 引理: 设 $E \subset \mathbb{R}^n$, $\delta > 0$, 定义

$$m^*_{\delta}(E) = \inf \Big\{ \sum_{k \geq 1} |I_k| : \{I_k\} \ \mathcal{E} \ E \ \text{的 L-覆盖, 且每个 I_k} \ \text{的变成小于 δ} \Big\}.$$

则有 $m_{\delta}^*(E) = m^*(E)$.

证明: 显然 $m_{\delta}^*(E) \geq m^*(E)$. 为证明反向不等式, 不妨设 $m^*(E) < \infty$. 对于任意 $\epsilon > 0$, 存在 E 的 L-覆盖 $\{I_k\}$, 使得

$$\sum_{k=1}^{\infty} |I_k| \leq m^*(E) + \epsilon,$$

再把每个 I_k 分割为边长小于 $\delta/2$ 的小矩体 $I_{k,j}$, 再把每个小矩体边长 扩大 $\lambda(1<\lambda<2)$ 倍则 $\{I_k,j\}$ 构成 E 的 L-覆盖, 且有

$$\sum_{k,j} |I_{k,j}| = \lambda^n \sum_k |I_k| \le \lambda^n (m^*(E) + \epsilon),$$

刘建明 (北大数学学院) 8 / 36

距离外测度2

• 定理: 设 E_1, E_2 是 \mathbb{R}^n 中的两个点集, 若 $d(E_1, E_2) > 0$, 则有

$$m^*(E_1 \cup E_2) = m^*(E_1) + m^*(E_2).$$

证明: 只需要证明 $m^*(E_1 \cup E_2) \ge m^*(E_1) + m^*(E_2)$. 不妨设 $m^*(E_1 \cup E_2) < \infty$. 对任给 $\epsilon > 0$, 做 $E_1 \cup E_2$ 的边长小于 $d(E_1, E_2)/\sqrt{n}$ 的 L-覆 盖 $\{I_k\}(I_k$ 不会同时和 E_1, E_2 相交)使得

$$m^*(E_1 \cup E_2) + \epsilon > \sum_{k=1}^{\infty} |I_k| \ge m^*(E_1) + m^*(E_2)$$

由 ϵ 的任意性即得.

刘建明 (北大数学学院) 9 / 36

外测度的平移不变性

• 定理: 设 $E \subset \mathbb{R}^n$, $x_0 \in \mathbb{R}^n$, 记 $E + \{x_0\} = \{x + x_0 : x \in E\}$, 则有

$$m^*(E + \{x_0\}) + m^*(E).$$

证明: 对于开矩体 I, $I + \{x_0\}$ 还是开矩体,且 $|I| = |I + \{x_0\}|$. 对于 E 的任意 L-覆盖 $\{I_k\}$, $\{I_k + \{x_0\}\}$ 是 $E + \{x_0\}$ 的 L-覆盖.则有 $m^*(E + \{x_0\}) \le \sum |I_k + \{x_0\}| = \sum |I_k\}|$, $\Rightarrow m^*(E + \{x_0\}) \le m^*(E)$

• 一维集合的数乘: $E \subset \mathbb{R}$, $\lambda \in \mathbb{R}$, $\lambda E = \{\lambda x : x \in E\}$. 则 $m^*(\lambda E) = |\lambda| m^*(E)$.

证明: $E \subset \bigcup (a_n, b_n)$, 则 $\lambda E \subset \bigcup \lambda (a_n, b_n)$.

刘建明 (北大数学学院) 10 / 36

可测集

• 定义: $E \subset \mathbb{R}^n$. 若 $\forall T \subset \mathbb{R}^n$, 有

$$m^*(T) = m^*(T \cap E) + m^*(T \cap E^c).$$

则称 E 为(Lebesgue)可测集, $\mathcal{M}(\mathbb{R}^n)$ 表示可测集的全体. E 为可测集时,E 的外侧度 $m^*(E)$ 称为 E 的测度,记为 $m(E)=m^*(E)$.

- E 可测 $\Leftrightarrow \forall m^*(T) \ge m^*(T \cap E) + m^*(T \cap E^c)$. $\Leftrightarrow \forall \epsilon > 0, m^*(T \cap E) + m^*(T \cap E^c) \le m^*(T) + \epsilon$.
- 零测集(外侧度为零的点集)是可测集. 事实上若 $m^*(E) = 0$, $\forall T \subset \mathbb{R}^n$.

$$m^*(T \cap E) + m^*(T \cap E^c) \le m^*(E) + m^*(T) = m^*(T).$$

刘建明 (北大数学学院) 11 / 36

Lebesgue 可测条件的一个等价刻画

• E 可测 \iff \forall 开矩体 I, 有 $m^*(I) = m^*(I \cap E) + m^*(I \cap E^c)$. 证明:只要证明充分性. $\forall T$, $\forall \epsilon > 0$, 存在 T 的开矩体覆盖 $\{I_k\}$, 使得 $\sum_{k=1}^{\infty} |I_k| < m^*(T) + \epsilon$.

$$m^{*}(T \cap E) + m^{*}(T \cap E^{c}) \leq m^{*}((\cup I_{k}) \cap E) + m^{*}((\cup I_{k}) \cap E^{c})$$

$$= m^{*}(\cup (I_{k} \cap E)) + m^{*}(\cup (I_{k} \cap E^{c}))$$

$$\leq \sum m^{*}((I_{k} \cap E) + m^{*}(I_{k} \cap E^{c})) = \sum (m^{*}(I_{k})) < m^{*}(T) + \epsilon$$

- 若 $E \subset I$, $m^*(I) = m^*(I \cap E) + m^*(I \cap E^c)$, 则 E 可测. 事实上若 $H \subset I \not\in I \cap E^c$ 的等侧包, 则 $I \setminus H \not\in I$ 的等测核.
- 勒贝格内测度: E ⊂ I, m_{*}(E) = |I|-m^{*}(E), 则 E 可测 ⇔ m_{*}(E) = m^{*}(E)

刘建明 (北大数学学院) 12 / 36

 \mathbb{R}^n 上的可测集族记为 M.

- 空集 $\phi \in \mathcal{M}$. $E \in \mathcal{M}$, 则 $E^c \in \mathcal{M}$.
- E, F ∈ M, 则 E∪F, E∩F, E\F ∈ M.
 证明: 只证明 E∪F ∈ M. 任给集合 T, 则有T = A∪B∪C∪D, 其中 A = (T∩E)∩F, B = (T∩E)∩F^c, C = (T∩E^c)∩F, D = (T∩E^c)∩F^c, T∩(E∪F) = A∪B∪C, T∩((E∪F)^c) = D. 则有

$$m^*(T) \le m^*(T \cap (E \cup F)) + m^*(T \cap ((E \cup F)^c))$$

 $\le m^*(A) + m^*(B) + m^*(C) + m^*(D)$
 $= m^*(T \cap E) + m^*(T \cup E^c) = m^*(T).$

刘建明 (北大数学学院) 13 / 36

• 若 $\{E_k\}$ 可测, 两两不交, 则 $S_n = \bigcup_{k=1}^n E_k$ 可测. 对任意集合T, 有

$$m^*(T\cap S_n)=\sum_{k=1}^n m^*(T\cap E_k).$$

证明: 只对 n = 2 证明. 显然 S_n可测. 对任意集合 T,

$$m^*(T \cap (E_1 \cup E_2))$$
= $m^*(T \cap (E_1 \cup E_2) \cap E_1) + m^*(T \cap (E_1 \cup E_2) \cap E_1^c)$
= $m^*(T \cap E_1) + m^*(T \cap E_2)$.

刘建明 (北大数学学院) 14 / 36

- 可测集合列 $\{E_k\}$ 两两不交, 则 $\bigcup_{k=1}^{\infty} E_k$ 可测.
- 证明: 令 $S = \bigcup_{k=1}^{\infty} E_k$. 对任意集合 T, 我们有

$$m^*(T) = m^*(T \cap S_n) + m^*(T \cap S_n^c)$$

$$= \sum_{k=1}^n m^*(T \cap E_k) + m^*(T \cap S_n^c) \ge \sum_{k=1}^n m^*(T \cap E_k) + m^*(T \cap S^c),$$

令 n 趋向无穷,得

$$m^*(T) \ge \sum_{k=1}^{\infty} m^*(T \cap E_k) + m^*(T \cap S^c)$$
$$\ge m^*(T \cap S) + m^*(T \cap S^c) \ge m^*(T),$$

因此上面的"≥"取等号, S可测.

刘建明 (北大教学学院) 15 / 36

可测集合列 {E_k} ⊂ M 两两不交,则有

$$m(\bigcup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} m(E_k).$$

证明:上面证明,对任意集合 T,

$$m^{*}(T) = \sum_{k=1}^{\infty} m^{*}(T \cap E_{k}) + m^{*}(T \cap S^{c})$$
$$= m^{*}(T \cap S) + m^{*}(T \cap S^{c}),$$

取 T = S, 即得 $m^*(S) = \sum_{k=1}^{\infty} m^*(E_k)$.

• 推论: 若可测集 A, B 满足 $A \subset B$, $m(B) < +\infty$, 则有 $m(B \setminus A) = m(B) - m(A)$.

刘建明 (北大数学学院) 16 / 36

- 集合列 $\{E_k\} \subset \mathcal{M}$, 则 $\bigcup_{k=1}^{\infty} E_k$, $\bigcap_{k=1}^{\infty} E_k \in \mathcal{M}$.
- 证明: 取 $F_1 = E_1$, $F_2 = E_2 \setminus E_1$, $F_3 = E_2 \setminus (E_1 \cup E_2)$, · · · · 则有 $\bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} F_k$ 可测.

又由于 E_k^c 可测, $\bigcup_{k=1}^\infty E_k^c$ 可测, $\bigcap_{k=1}^\infty E_k = (\bigcup_{k=1}^\infty E_k^c)^c$, 即得 $\bigcap_{k=1}^\infty E_k$ 可测.

• 半开闭矩体是可测集, 开集, 闭集, G_δ 集, F_σ 集都可测. 证明: 若 E 是半开闭矩体, 则存在开矩体 I, $I \subset E \subset \overline{I}$, $E \setminus I \subset \overline{I} \setminus I$ 是 零测集.

刘建明 (北大数学学院) 17 / 36

极限集的测度1

• E_k 是递增可测集合列,则 $\lim_{k\to\infty} E_k \in \mathcal{M}$, 且有

$$m(\lim_{k\to\infty} E_k) = \lim_{k\to\infty} m(E_k).$$

证明: $\lim_{k\to\infty} E_k = \bigcup_{k=1}^{\infty} (E_k \backslash E_{k-1})$ (不交并), 这里取 $E_0 = \phi$. 则有

$$m(\lim_{k\to\infty} E_k) = \sum_{k=1}^{\infty} m(E_k \setminus E_{k-1})$$
$$= \sum_{k=1}^{\infty} m(E_k) - m(E_{k-1}) = \lim_{k\to\infty} m(E_k).$$

刘建明 (北大数学学院) 18 / 36

极限集的测度2

• E_k 是递减可测集合列,则 $\lim_{k\to\infty} E_k \in M$,若还有 $m(E_1) < +\infty$,则 有

$$m(\lim_{k\to\infty} E_k) = \lim_{k\to\infty} m(E_k).$$

证明: $E_1 \setminus E_k$ 是递增列,

$$m(\lim_{k\to\infty}(E_1\backslash E_k))=\lim_{k\to\infty}m(E_1\backslash E_k)=m(E_1)-\lim_{k\to\infty}m(E_k).$$

又
$$\lim_{k\to\infty} (E_1\backslash E_k) = E_1\backslash (\lim_{k\to\infty} E_k)$$
,我们得

$$m(E_1) - \lim_{k \to \infty} m(E_k) = m(E_1) - m(\lim_{k \to \infty} E_k).$$

• $\{\emptyset\}: E_k = (k, +\infty), \lim_{k \to \infty} E_k = \emptyset, \lim_{k \to \infty} m(E_k) = +\infty.$

刘建明 (北大数学学院) 19 / 36

极限集的测度3

• $m(\underbrace{\lim_{k\to\infty} E_k}) \leq \underbrace{\lim_{k\to\infty} m(E_k)}.$ 证明: 利用 $\bigcap_{k=n}^{\infty} E_k \subset E_n$,

$$m(\underbrace{\lim_{k\to\infty} E_k}) = m(\lim_{n\to\infty} \bigcap_{k=n}^{\infty} E_k) = \lim_{n\to\infty} m(\bigcap_{k=n}^{\infty} E_k)$$

$$\leq \underline{\lim}_{n\to\infty} m(E_n).$$

- 若有 $m(\bigcup E_n) < +\infty$, $m(\overline{\lim}_{k \to \infty} E_k) \ge \overline{\lim}_{k \to \infty} m(E_k)$. 证明: $m(\overline{\lim}_{k \to \infty} E_k) = m(\overline{\lim}_{n \to \infty} \bigcup_{k=n}^{\infty} E_k)$.
- 注: $E_k = (k, k+1)$ 时, $m(\overline{\lim}_{k \to \infty} E_k) = 0$, $\overline{\lim}_{k \to \infty} m(E_k) = 1$,

刘建明 (北大数学学院) 20 / 36

例

- 若有 $m(\bigcup E_n) < +\infty$, $\lim_{n \to \infty} E_k$ 存在, 则有 $m(\lim_{k \to \infty} E_k) = \lim_{k \to \infty} m(E_k)$.
- 例: 若可测集列 $\{E_k\}$ 满足 $\sum m(E_k) < \infty$, 则有 $m(\lim_{k \to \infty} E_k) = 0$. 即几乎所有点最多属于有限个 E_k . 证明:

$$m(\overline{\lim}_{k\to\infty} E_k) = \lim_{k\to\infty} m(\bigcup_{i=k}^{\infty} E_i)$$

$$\leq \lim_{k\to\infty} \sum_{i=k}^{\infty} m(E_i) = 0$$

刘建明 (北大数学学院) 21 / 36

测度的平移、旋转不变性

• E 是可测集,则对任意的 $x \in \mathbb{R}^n$, $E + x = \{y + x : y \in E\}$ 可测. 证明: 对任意集合 T, 有 $m^*(T + x) = m^*(T)$, $T \cap (E + x) = (T - x) \cap E + x$, $(E + x)^c = E^c + x$,

$$m^*(T \cap (E + x)) + m^*(T \cap (E + x)^c)$$

$$m^*((T - x) \cap E)) + m^*((T - x) \cap E^c)$$

$$= m^*(T - x) = m^*(T).$$

• 定理: 设 $T: \mathbb{R}^n \to \mathbb{R}^n$ 是非奇异线性变换. 若 $E \in \mathcal{M}$, 则 $T(E) \in \mathcal{M}$, 且

$$m(T(E)) = |\det T| \cdot m(E).$$

• E 是可测集,T 是 \mathbb{R}^n 的旋转,则 T(E) 可测,且 m(T(E)) = m(E).

刘建明 (北大数学学院) 22 / 36

连续变换与可测集

引理: 设 T: ℝⁿ → ℝⁿ 是非奇异线性变换. 若 I 为矩体,

$$m(T(I)) = |\det T| \cdot |I|. \tag{*}$$

证明:不妨设 n=2, T 是下面三类变换的乘积: (1) $T_1:(x,y) \rightarrow (y,x)$, (2) $T_2:(x,y) \rightarrow (\lambda x,y)$ (3) $T_3:(x,y) \rightarrow (x+y,y)$. T_1 显然满足(*), T_2 把矩体变为矩体,一个边有拉伸,(*)显然也成立. 对 T_3 把矩矩形变为平行四边形,只要把平行四边形切成几部分再通过平行移动可以重新组合成矩形(高维情形类似),利用测度的平移不变性和可加性可得(*).

• 定理证明: 由上面的引理, $m^*(T(E)) = |\det T| \cdot m^*(E)$, 所以 T 把零测集映到零测集, 由于 T, T^{-1} 连续, T 把 Borel 集映到 Borel 集, 因此 T 把可测集映到可测集.

刘建明 (北大教学学院) 23 / 36

Cantor 集的测度

• 例: Cantor 集是测度为 0 的可测集. 证明: 复习 Cantor 集的构造. $I_1 = (\frac{1}{3}, \frac{2}{3}), F_1 = I \setminus I_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1].$ $I_2 = (\frac{1}{9}, \frac{2}{9}) \cup (\frac{7}{9}, \frac{8}{9}). F_2 = I \setminus (I_1 \cup I_2) = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1].$

Cantor $\notin C = I \setminus (\cup I_n) = \cap F_n$.

由 Cantor 集的构造可知 $m(I_n) = \frac{2^{n-1}}{3^n}$,

$$m(C) = m(I \setminus (\cup I_n)) = 1 - \sum_{n=1}^{\infty} \frac{2^{n-1}}{3^n} = 0.$$

或者由 $m(F_n) = \frac{2^n}{3^n}$, 得 $m(C) = m(\bigcap_{n=1}^{\infty} F_n) \le m(F_n) \to 0$.

• 推论: 可测集的基数是 2c.

刘建明 (北大数学学院) 24 / 36

Carathéodory引理1

• 设开集 $G \neq \mathbb{R}^n$, 设 $E \subset G$, 令

$$E_k = \left\{ x \in E : d(x, G^c) \ge \frac{1}{k} \right\}, (k = 1, 2, \cdots)$$

则 $\lim_{k\to\infty} m^*(E_k) = m^*(E)$.

• 证明: E_k 递增, 且 $E = \bigcup E_k$, 显然 $\lim_{k \to \infty} m^*(E_k) \le m^*(E)$, 下证 反向不等式. 不妨假设 $\lim_{k \to \infty} m^*(E_k) < \infty$, 令

$$A_k = E_{k+1} \backslash E_k, k = 1, 2, \cdots$$

则有 $d(A_{2j,2j+2}) > 0$.

$$\sum_{j=1}^k m^*(A_{2j}) = m^*(\bigcup_{j=1}^k A_{2j}) \le m^*(E_{2j+1}) \le \lim_{k \to \infty} m^*(E_k) \le \infty$$

刘建明 (北大数学学院) 25 / 36

Carathéodory引理2

• 因此 $\sum_{i=1}^{\infty} m^*(A_{2i})$ (类似地 $\sum_{i=1}^{\infty} m^*(A_{2i})$)收敛,

$$m^*(E) \le m^*(E_{2k}) + m^*(\bigcup_{j=k}^{\infty} A_{2j}) + m^*(\bigcup_{j=k}^{\infty} A_{2j+1})$$

 $\le m^*(E_{2k}) + \sum_{j=k}^{\infty} m^*(A_{2j}) + \sum_{j=k}^{\infty} m^*(A_{2j+1})$

两边对 k 求极限即得.

刘建明 (北大数学学院) 26 / 36

非空闭集是可测集

• 定理: 非空闭集是可测集.

证明: 对任意集合 T, $T/F \subset F^c = G$.

$$F_k = \left\{ x \in T/F : d(x, G^c) \ge \frac{1}{k} \right\}, d(F_k, F) \ge \frac{1}{k}, (k = 1, 2, \cdots).$$

这里 $\lim_{k\to\infty} m^*(F_k) = m^*(T/F)$.

$$m^*(T) \ge [(T/F) \cup F_k] = m^*(T \cap F) + m^*(F_k)$$

上式中令 $k \to \infty$, 即得.

• 推理: Borel集是可测集.

刘建明 (北大数学学院) 27 / 36

可测集的刻画1

- 设 E 是可测集. 对任意 $\epsilon > 0$, 存在开集 $G \supset E$, $m(G \setminus E) < \epsilon$.
- 证明: $m(E) < +\infty$ 时,存在 $\bigcup_{k=1}^{\infty} I_k \supset E$, $\sum_{k=1}^{\infty} |I_k| < m(E) + \epsilon$,取 $G = \bigcup_{k=1}^{\infty} I_k$,则有

$$m(G \setminus E) < m(\bigcup_{k=1}^{\infty} I_k) - m(E) < \epsilon.$$

当 $m(E) = +\infty$ 时,令 $E_n = E \cap B(0, n)$, 则 E_n 测度有限,存在开集 $G_n \supset E_n$,使得 $m(G_n \setminus E_n) < \frac{\epsilon}{2^n}$. 取 $G = \bigcup_{k=1}^{\infty} G_n$,则有

$$m(G \backslash E) \leq \sum_{k=1}^{\infty} m(G_n \backslash E) \leq \sum_{k=1}^{\infty} m(G_n \backslash E_n) < \epsilon.$$

刘建明 (北大数学学院) 28 / 36

可测集的刻画2

设 E 是可测集.

- 対任意 ε > 0, 存在闭集 F ⊂ E, m(E\F) < ε
 证明: 存在开集 G ⊃ E^c, 使得 m(G\E^c) < ε. 取 F = G^c, m(E\F) = m(E ∩ F^c) = m(F^c\E^c) < ε.
- 存在 G_{δ} 集 $G \supset E$, $m(G \setminus E) = 0$ (G 称为 E 的 G_{δ} 包). 证明: 存在 $G_{n} \supset E$, $m(G_{n} \setminus E) < \frac{1}{n}$, 取 $G = \bigcap_{k=1}^{\infty} G_{n}$.
- 存在 F_{σ} 集 $F \subset E$, $m(E \setminus F) = 0$ (F 称为 E 的 F_{σ} 核). 证明: 存在 G_{δ} 集 $G \supset E^{c}$, 使得 $m(G \setminus E^{c}) = 0$, $F = G^{c} \subset E \not \in F_{\sigma}$ 集, $m(G \setminus E^{c}) = m(G \cap E) = m(E \setminus G^{c}) = 0$.

刘建明 (北大数学学院) 29 / 36

等侧包与等侧核

- 等侧包: E ⊂ H, m*(E) = m(H)
- 等侧核: E 可测, E ⊃ K, m(E) = m(K). 若 m*(E) < ∞, m(H) = m*(E) = 0, 但 m*(H\E) 不一定为零.
- 定理: 若 E ⊂ ℝⁿ, 存在 G_δ 集 H, 使得 H 是 E 的等侧包.
 证明: 存在开集 G_k ⊃ E, 使得

$$m(G_k) \leq m^*(E) + \frac{1}{k}, H = \bigcap_{k=1}^{\infty} G_k.$$

刘建明 (北大数学学院) 30 / 36

极限集的外侧度

推论: 设 E_k ⊂ ℝⁿ, 则 m*(lim_{k→∞} E_k) ≤ lim_{k→∞} m*(E_k).
 证明: 对每个 E_k 做等侧包 H_k,

$$m^*(\varliminf_{k\to\infty} E_k) \le m^*(\varliminf_{k\to\infty} H_k) \le \varliminf_{k\to\infty} m^*(H_k) = \varliminf_{k\to\infty} m^*(E_k)$$

- 注: 若有 $m^*(\bigcup E_n) < +\infty$, $m^*(\overline{\lim}_{k \to \infty} E_k) \geq \overline{\lim}_{k \to \infty} m^*(E_k)$ 也不一定成立. 事实上可以做不可测集合列 $E_k = W + \{r_k\}$ 满足两两不交且 $[0,1] \subset \bigcup E_k \subset [-1,2]$, 则上述不等式不成立.
- 推论: 设 {E_k} 是递增集合列, 则

$$m^*(\lim_{k\to\infty} E_k) = \lim_{k\to\infty} m^*(E_k)$$

证明: $E_k \subset \lim E_k$, $\lim m^*(E_k) \leq m^*(\lim E_k)$.

刘建明 (北大数学学院) 31 / 36

正测度集与矩体的关系

定理: 设 E ⊂ ℝⁿ 可测且 m(E) > 0, 0 < λ < 1, 则存在矩体 I, 使得

$$\lambda |I| < m(I \cap E)$$

证明:不妨设 $m(E) < \infty$, $0 < \epsilon < (\lambda^{-1} - 1)m(E)$, 存在 E 的 L-覆盖 $\{I_k\}$, 使得

$$\sum_{k=1}^{\infty} |I_k| < m(E) + \epsilon < \lambda^{-1} m(E) \le \sum_{k=1}^{\infty} \lambda^{-1} m(I_k \cap E)$$

因此至少存在一个 k 满足 $|I_k| < \lambda^{-1} m(I \cap E)$.

刘建明 (北大数学学院) 32 / 36

Steinhaus 定理

• 定理: 设 $E \subset \mathbb{R}^n$ 可测且 m(E) > 0, 则存在 $\delta_0 > 0$ 使得

$$E - E = \{x - y : x, y \in E\} \supset B(0, \delta_0)$$

● 证明思路: 只要找一个原点为中心的矩体 $J, J \subset E - E$, 即证对任意 $x_0 \in J$, 存在 $x \in E$, 使得 $x + x_0 \in E$, 也就是 $E \cap (E + \{x_0\})$ 非空, 只要证明存在矩体 I, 使得

$$m((E \cap I) \cap (E \cap I + \{x_0\})) > 0$$

$$\iff m((E \cap I) \cup (E \cap I + \{x_0\})) < 2m(E \cap I).$$

刘建明 (北大数学学院) 33 / 36

Steinhaus 定理的证明

• 证明: 对 $0 < \lambda < 1$, 存在矩体 I, 使得 $\lambda |I| < m(I \cap E)$, 记 I 的最短 边长为 δ , 做开矩体

刘建明 (北大数学学院) 34 / 36

不可测集的构造1

● 设 Qn 为 Rn 中的有理点集, 定义 Rn 中等价关系

$$x \sim y \iff x - y \in \mathbb{Q}^n$$

利用上述等价关系, 把 \mathbb{R}^n 分类, 等价的元素属于一类, 如 \mathbb{R}^n 中的有理点集是一类.

• 上述每个类中取一个点, 构成集合 W, 则有

$$\mathbb{R}^n = \bigcup_{r \in \mathbb{Q}^n} (W + \{r\}).$$

下面证明 W 是不可测集. 反设 W 是可测集, 若 m(W) = 0, 则 $m(\mathbb{R}^n)$, 矛盾;

若 m(W) > 0, W - W 包含一个原点为心的球, 因此存在 $0 \neq r \in (W - W) \cap \mathbb{Q}^n$, 即存在 $x, y \in W$, $x - y \in \mathbb{Q}^n$, 矛盾.

刘建明 (北大数学学院) 35 / 36

不可测集的构造2

• $E = [0,1]^n$ 分类: 设 \mathbb{Q}^n 为 \mathbb{R}^n 中的有理点集, 定义 E 中等价关系

$$x \sim y \iff x - y \in \mathbb{Q}^n$$

利用上述等价关系, 把E分类, 等价的元素属于一类, 如E中的有理点集是一类.

● 上述每个类中取一个点, 构成集合 W, 下面证明 W 是不可测集. 设

$$R = \{(x_1, x_2, \cdots, x_n) \in \mathbb{Q}^n : |x_i| \le 1, i = 1, 2, \cdots, n.\}$$

考虑集合 $A = \bigcup_{r_k \in R} (W + \{r_k\})$. 下面设 W 可测,则 A 是无穷个测度相等的可测集之并,且两两不交,

$$E \subset A \subset [-1,2]^n$$

则不管 W 测度为零还是不为零, 都会推出矛盾.

刘建明 (北大数学学院) 36 / 36