Advanced Programming & Maths

Tuur Vanhoutte

12 februari 2021

Inhoudsopgave

1	Bas	isfuncties in de wiskunde
	1.1	Functies
	1.2	Veelterm en veeltermfuncties
	1.3	Bijzondere veeltermfuncties
		1.3.1 Constante functie
		1.3.2 Lineaire functie
		1.3.3 Tweedegraadsfunctie
		1.3.4 Derdegraadsfunctie
		1.3.5 Exponentiële functie
2	Exp	onentiële verbanden in data
	2.1	Lineaire groei
	2.2	Exponentiële groei
	2.3	Van groeipercentage naar groeifactor
	2.0	2.3.1 Percentage naar factor
		2.3.2 Factor naar percentage
	2.4	Voorbeeld
	2.5	Belangrijke maten voor exponentiële toename
	2.5	2.5.1 Oefening: Combinatie van groeifactoren?
		2.5.1 Determing. Combinative vari groenactorens
3		angrijke functies met betrekking tot machine learning
	3.1	Logistische groei
		3.1.1 Voorbeeld
		3.1.2 De groei
		3.1.3 Functievoorschrift
		3.1.4 Voorbeeld
		3.1.5 Algemene wiskundige notatie van een logistische functie
	3.2	Regression analysis
		3.2.1 Lineair regressiemodel
		3.2.2 Logistisch regressiemodel
		3.2.3 Lineair vs logistisch regressiemodel
		3.2.4 Meerdere inputfactoren
	3.3	Softmax functie
		3.3.1 Kansen
		3.3.2 Model
		3.3.3 Wiskundig
	3 4	
	3.4	Logistic regression cost function

1 Basisfuncties in de wiskunde

1.1 Functies

Definitie 1.1 (Reële functie) Een reële functie is een relatie in $\mathbb R$ waarbij elke waarde x hoogstens één beeldwaarde f(x) heeft

Figuur 1: Voorbeelden reële functies

Definitie 1.2 Voor elke functie geldt: er bestaat een . . .

- (i) ...domein van de functie (domain)
- (ii) ... beeld van de functie (range)
- (iii) ... functievoorschrift van de functie

Figuur 2: Domein, bereik, functievoorschrift

 $f: \mathbf{domein} \to \mathbf{bereik}: x \to y = f(x)$ $f: \mathbb{R} \to \mathbb{R}: x \to y = x^3 - 4x$

Definitie 1.3 Elke functie kan nulpunten hebben.

Figuur 3: $y = -x^3 + 4x$

Verloop van een functie wordt via een tekenschema verduidelijkt:

x		-2		0		2	
f(x)	+	0	-	0	+	0	-

Figuur 4: Tekenschema

1.2 Veelterm en veeltermfuncties

Definitie 1.4 (Veelterm)

$$A(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0$$

$$(a_n, a_{n-1}, \dots, a_2, a_1, a_0 \in \mathbb{R})$$
(1)

Definitie 1.5 (Veeltermfunctie)

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0$$

$$Graad\ van\ veelterm = n\ als\ a_n \neq 0$$
(2)

1.3 Bijzondere veeltermfuncties

• Constante functie: f(x) = 4

• Lineaire functie: f(x) = 4

• Tweedegraadsfunctie: $f(x) = 3x^2 + 2x + 1$

• Derdegraadsfunctie: $f(x) = 5x^3 - 3x^2 + 2x - 1$

• Exponentiële functie: $f(x) = 2^x$

• Logaritmische functie: $(fx) = log_2(x)$

1.3.1 Constante functie

Figuur 5: y = 4

1.3.2 Lineaire functie

Definitie 1.6 (Lineaire functie)

$$f(x) = ax + b (3)$$

Voorbeeld: f(x) = 3x + 6

• Betekenis van a: de richtingscoëfficiënt (rico)

• Betekenis van b: het snijpunt met de y-as

• Nulpunt:
$$f(x) = 0$$

 $\Leftrightarrow 3x + 6 = 0$
 $\Leftrightarrow 3x = -6$
 $\Leftrightarrow x = -2$

Figuur 6: Meerdere evenwijdige lineaire functies

Evenwijdige rechten als: als $a_1 = a_2$

Loodrechte rechten als: als $a_1 \cdot a_2 = -1$

1.3.3 Tweedegraadsfunctie

Definitie 1.7

$$f(x) = ax^2 + bx + c,$$

$$(a \neq 0)$$
(4)

Figuur 7: $f(x) = x^2 - 2x - 3$

- Betekenis van a: positief \Rightarrow dalparabool, negatief \Rightarrow bergparabool
- Nulpunten: via de discriminant berekenen:

Definitie 1.8 (Discriminant) Bij een tweedegraadsvergelijking is de discriminant:

$$D = b^2 - 4ac (5)$$

- Geval 1: $D > 0 \Rightarrow$ de functie heeft 2 nulpunten
- Geval 2: $D = 0 \Rightarrow$ de functie heeft 1 nulpunt
- Geval 3: $D < 0 \Rightarrow$ de functie heeft géén nulpunten

Figuur 8: De discriminant toont de nulpunten

Nulpunten berekenen:

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} \tag{6}$$

Figuur 9: Symmetrieas: $x = \frac{-b}{2a}$

Voorbeeld:

Figuur 10: $y = x^2 - 6x + 8$

1.3.4 Derdegraadsfunctie

Definitie 1.9 (Derdegraadsfunctie)

$$f(x) = ax^3 + bx^2 + cx + d(a \neq 0)$$
(7)

1.3.5 Exponentiële functie

Definitie 1.10 (Exponentiële functie)

$$f(x) = a^{g(x)} \tag{8}$$

Met grondtal $a \in \mathbb{R}_0^+ \backslash \{1\}$

Figuur 11

- Betekenis van a: groeifactor
- · Wanneer stijgend?
- · Wanneer dalend?
- Nulpunten:
- · Vaststelling beeld functie

Definitie 1.11 (Constante van Euler)

$$e \approx 2.718281828\dots$$
 (9)

 $f(x) = e^x$ is een bijzondere exponentiële functie

Figuur 12: Verschil tussen 2^x , 3^x en e^x

2 Exponentiële verbanden in data

2.1 Lineaire groei

Kenmerkend:

- · Per tijdseenheid wordt hetzelfde getal opgeteld
- · Grafiek is een rechte
- Algemene formule (N = aantal, t = tijd, b: beginhoeveelheid):

$$N = a \cdot t + b \tag{10}$$

Figuur 13: Lineaire groei

2.2 Exponentiële groei

Kenmerkend:

- Per tijdseenheid wordt de hoeveelheid met hetzelfde getal vermenigvuldigd
- Grafiek is een exponentiële functie
- · Algemene formule:

Figuur 14: Exponentiële groei

LENGTE FIETSPADEN IN NEDERLAND								
jaar	1998	2002	2006	2010	2014			
aantal km	17600	21 500	26200	32 000	39 000			

Figuur 15: Voorbeeld exponentiële groei met groeifactor ≈ 1.22

2.3 Van groeipercentage naar groeifactor

De toename/afname wordt vaak ook procentueel uitgedrukt

- Een jaarlijkse toename van 14.6%
- Een jaarlijkse afname van 14.6%

Definitie 2.1 (Groeifactor) De groeifactor is de factor die per tijdseenheid wordt vermenigvuldigd met de vorige waarde.

2.3.1 Percentage naar factor

$$g = \frac{p + 100}{100}\%$$

$$100\% + 14.6\% = 114.6\% = 1,146$$

$$100\% - 14.6\% = 85.4\% = 0,854$$

$$\times 1,146$$

$$\times 0.854$$

Figuur 16: Van groeipercentage naar groeifactor

2.3.2 Factor naar percentage

$$0.765 = 76.5\% - 100\% = -23.5\%$$

Figuur 17: Van groeifactor naar groeipercentage

Figuur 18: Let op: hier gebeuren vaak fouten bij het omrekenen

2.4 Voorbeeld

Een hoeveelheid groeit exponentieel. Na 5u is N=82 en na 12u is N=246. Stel de formule van N op.

Oplossing

$$N = b \cdot g^t \tag{13}$$

Stap 1: groeifactor berekenen per tijdseenheid:

Na 5u
$$\to N=82$$
 Na 12u $\to N=246$ $\bigg\}\, \Delta = 7u \to 164$

Groeifactor voor 7 uren: $\frac{246}{82}=3$

Groeifactor voor 1 uur: $3^{1/7} \approx 1.170$

Stap 2: 1 punt nemen waarvan we N weten:

$$82 = b \cdot (1.170)^5$$

$$\Leftrightarrow b = \frac{82}{1.170}^5 \approx 37$$

$$\Leftrightarrow N = 37 \cdot 1.170^t$$

2.5 Belangrijke maten voor exponentiële toename

Definitie 2.2 (Verdubbelingstijd) De verdubbelingstijd is de nodige tijd tot de hoeveelheid verdubbeld is.

De verdubbelingstijd t kan je berekenen met:

$$q^t = 2 (14)$$

Oefening

De populatie neemt toe met 8.3% per jaar. Bereken de verdubbelingstijd:

$$\begin{split} g^t &= 2 \\ \Leftrightarrow (1.083)^t &= 2 \\ \Leftrightarrow \log(1.083^t) &= \log(2) \\ \Leftrightarrow t \cdot \log(1.083) &= \log(2) \\ \Leftrightarrow t &= \frac{\log(2)}{\log(1.083)} \\ \Leftrightarrow t &= 8.69 \ jaar \end{split}$$

Definitie 2.3 (Halveringstijd) De halveringstijd is de nodige tijd tot de hoeveelheid gehalveerd is.

De halveringstijd t kan je berekenen met:

$$g^t = 1/2 \tag{15}$$

2.5.1 Oefening: Combinatie van groeifactoren?

Een hoeveelheid neemt eerst 5 jaar lang met vast percentage (*) toe, om daarna nog 3 jaar met 10% per jaar toe te nemen. Na 8 jaar is de totale hoeveelheid verdubbeld.

(*) Bereken het jaarlijkse groeipercentage in de eerste 5 jaren.

Oplossing

We weten:

- Eerste 5 jaar: toename met vast percentage
- Volgende 3 jaar: toename met 10% (= factor van 1.1)
- Na 8 jaar: hoeveelheid verdubbeld (= factor van 2)

$$g^5 \cdot 1.1^3 = 2$$

We moeten g vinden:

$$\Leftrightarrow g^5 = \frac{2}{1.1^3}$$
$$\Leftrightarrow g = \sqrt[5]{\frac{2}{1.1^3}}$$

3 Belangrijke functies met betrekking tot machine learning

3.1 Logistische groei

3.1.1 Voorbeeld

Startsituatie: een bos (bv 10km²) waarin een konijnenepidemie uitbreekt. Boswachter houdt de populatie van de konijnen bij. Wat stelt hij vast?

De groei van de populatie verloopt volgens een typisch patroon (niet exponentieel):

Figuur 19: De rode lijn is de bovengrens

3.1.2 De groei

- = de mate van toename
 - Hangt af van hoeveel er al zijn tegenover hoeveel er nog bij kunnen
 - · Heel sterke verandering bij start, op het einde heel kleine verandering
 - · Hangt dus ook af van de tijd

Definitie 3.1 (De logistische groei) De logistische groei is de mate van toename, afhankelijk van hoeveel er nog bij kan en hoeveel er al is

$$\frac{\textit{Hoeveel er nog bij kan}}{\textit{Hoeveel er al is}} = B \cdot g^t \tag{16}$$

- *t* = *de tijd*,
- B en g = constanten

3.1.3 Functievoorschrift

$$y = \frac{G}{1 + B \cdot g^t} \tag{17}$$

- t = de tijd
- · B en constanten
- G = bovengrens

Figuur 20: Grafiek logistische groei met G = 800

3.1.4 Voorbeeld

Het aantal vissen in een meer is gegeven door:

$$N = \frac{2500}{1 + 5.5 \cdot 0.74^t}$$

waarbij N = aantal vissen, t = tijd

Beredeneer: Wanneer bereiken we het 'verzadigingsniveau'

Als t heel groot is:

• Dan wordt $0.74^t \approx 0$

• Dan wordt $5.5 \cdot 0.74^t \approx 0$

• Dan wordt $N \approx 2500$

• ⇒ Het meer is 'verzadigd'

3.1.5 Algemene wiskundige notatie van een logistische functie

Definitie 3.2 (Logistische functie) De wiskundige notatie voor een logistische functie is:

$$f(x) = \frac{c}{1 + a \cdot b^x} \tag{18}$$

met a,b,c constanten waarbij de constante c de belangrijkste is:

c drukt uit wat de maximumwaarde kan zijn

Figuur 21

3.2 Regression analysis

Regressieanalyse:

- Is er een (voorspellend) verband tussen 2 variabelen
- Heeft de ene variabele een invloed op de andere variabele

Figuur 22: Regressieanalyse

Figuur 23: Lineaire vs niet-lineaire samenhang

3.2.1 Lineair regressiemodel

Enkelvoudige vorm:

- 1 inputwaarde x
- via lineaire functie $h_{\theta}(x) = \theta_0 + \theta_1 x$

Figuur 24

- · Aan de hand van de opgestelde functie doe je een voorspelling
- · Doel: een zo goed mogelijke lineaire functie opstellen
- \Rightarrow zoektocht naar de beste θ_0 en θ_1

3.2.2 Logistisch regressiemodel

Logistische regressie = Classificatie-algoritme

Zoeken naar een model dat uitkomst (2 mogelijkheden) voorspelt mbv inputwaardes. Elke inputwaarde heeft een zeker belang (gewicht).

Figuur 25: 3 inputs met elk een bepaald gewicht, die een uitkomst zoekt (2 mogelijkheden)

Vereenvoudiging:

- 1 inputwaarde x
- Logistische functie $p=\frac{1}{1+e^{-(b_0+b_1x)}}$

Uitkomst:

- de persoon slaagt als $h_{\theta}(x) \geq 0.5$
- de persoon slaagt niet als $h_{\theta}(x) < 0.5$

Figuur 26: 1 inputwaarde x, met twee uitkomsten

3.2.3 Lineair vs logistisch regressiemodel

Figuur 27: Hoe dichter p tegen 1, hoe zekerder het model is

Welk model gaat het snelst naar 0 en 1?

- · Het logistische model
- Daarom is het logistische model beter voor classificate: je splitst de groep op in 2

3.2.4 Meerdere inputfactoren

Zelfde redenering:

- Meerdere inputwaardes x_1, x_2, \ldots
- Gebruik $\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots$

Figuur 28: Regressiemodel met meerdere inputfactoren

3.3 Softmax functie

Doelstelling:

- Model dat in staat is om data te gaan categoriseren
- · Hoe?

- ⇒ Met behulp van verschillende inputvariabelen en bijhorende parameters

Figuur 29: Categoriseren met de softmax functie

3.3.1 Kansen

Kans dat de toestand tot groep A behoort:

• $\theta_{A,0} + \theta_{A,1}x_1 + \theta_{A,2}x_2$

• Voorbeeld: $0.01 + 0.1x_1 + 0.1x_2$

Kans dat de toestand tot groep B behoort:

• $\theta_{B,0} + \theta_{B,1}x_1 + \theta_{B,2}x_2$

• Voorbeeld: $0.1 + 0.2x_1 + 0.2x_2$

Kans dat de toestand tot groep C behoort:

• $\theta_{C,0} + \theta_{C,1}x_1 + \theta_{C,2}x_2$

• Voorbeeld: $0.1 + 0.3x_1 + 0.3x_2$

3.3.2 Model

Het softmax-model berekent de mate van zekerheid dat een toestand tot een bepaalde categorie behoort.

vb: volgende quotiënt drukt uit hoe zeker hij is dat (z1, z2) tot categorie A behoort:

$$\frac{e^{\theta A,0^{+}\theta A,1}z_{1}+\theta A,2}{e^{\theta A,0^{+}\theta A,1}z_{1}+\theta A,2}z_{2}+e^{\theta B,0^{+}\theta B,1}z_{1}+\theta B,2}z_{2}+e^{\theta C,0^{+}\theta C,1}z_{1}+\theta C,2}z_{2}}$$

(analoog voor categorie B en C: vervang de teller)

$$\frac{e^{0.01+0.1*0.1+0.1*0.1}+0.1*0.5}{e^{0.01+0.1*0.1+0.1*0.5}+e^{0.1+0.2*0.1+0.2*0.5}+e^{0.1+0.3*0.1+0.3*0.1+0.3*0.5}} = 0.2945$$

Figuur 30: Betekenis: het model is 29% zeker dat (0.1, 0.5) tot categorie A behoort. Bereken zelf als oefening voor B en C

3.3.3 Wiskundig

Het gebruikte model wordt via volgende wiskundige formule algemeen beschreven:

$$\frac{e^{x_k}}{\sum_{i=1}^n e^{x_i}} \tag{19}$$

waarbij:

- $x_k = \theta_{k,0} + \theta_{k,1}x_1 + \theta_{k,2}x_2 + \dots + \theta_{k,m}x_m$
- n = aantal groepen
- m = het aantal meetcriteria

3.4 Logistic regression cost function

Het model:

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{\tau} x}} \tag{20}$$

waarbij:

- $\theta^{\tau}x = \theta_0 + \theta_1x_1 + \theta_2x_2$
- h_{θ} drukt uit wat de kans is dat voor opgegeven x_1 en x_2 de waarneming tot 1 groep behoort
- x_1 en x_2 zijn de inputwaardes
- θ_1 en θ_2 zijn gewichten (hoe belangrijk is de input)
- Doel: vinden van de beste gewichten zodat de voorspelling == de werkelijkheid

3.4.1 Success meten

Stel: je maakt een logistisch regressiemodel die bepaalt of een object een groene appel of een tennisbal is.

- Bepalen van de kostenfunctie $J(\theta)$ met als doel deze zo laag mogelijk te brengen
- kost = afwijking tegenover de werkelijke situatie
- · werkelijkheid kan 2 situaties zijn:
 - Indien de werkelijkheid een groene appel is $\Rightarrow y = 1$
 - Indien de werkelijkheid géén groene appel is $\Rightarrow y = 0$

Hoe ziet zo'n kostfunctie er dan uit?

Figuur 31: Als y=1 en y=0

Figuur 32

$$-\log(h_{\theta}(x)) \quad \text{if } y = 1$$

$$-\log(1 - h_{\theta}(x)) \quad \text{if } y = 0$$

Figuur 33

Hoe brengen we 2 mogelijke situaties in 1 functie samen? (TODO: slide 24)