Name:

4-digit code:

	_

Page 1/12

- Write your name and the last 4 digits of your SSN in the space provided above.
- The test has twelve (12) pages, including this one. You have 120 minutes to complete this exam.
- Each page is worth 20 points. You must choose 5 pages and work on those problems. If you work problems from more than 5 pages, I will grade the last 5 pages with any of your written content.
- You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- No books, notes or calculators may be used on this test.

Page	Max. points	Your points	Page	Max. points	Your points
1		_	7	20	
2	20		8	20	
3	20		9	20	
4	20		10	20	
5	20		11	20	
6	20		12	20	
Total	100		Total	120	

Problem 1 (5 pts). Find f(0) and $f(\pi/2)$ for $f(x) = \begin{cases} \sqrt{x+1} & \text{if } x \ge 1, \\ 3 & \text{if } x < 1. \end{cases}$

$$f(0) =$$

$$f(\pi/2) =$$

Problem 2 (10 pts). Find the domain of $f(x) = \sqrt{(x-1)(x-2)}$.

Problem 3 (5 pts). Let $f(x) = x^2 + 4$ and $g(x) = \sqrt{x}$. Find $(g \circ f)(x)$.

$$(g \circ f)(x) =$$

Problem 4 (10 pts). Solve for x:

$$\ln x + \ln(x - 1) = 1$$

x =

Problem 5 (10 pts). Compute the derivatives of the following functions.

(a)
$$f(x) = \pi \sqrt{x}(x^4 - 4x^3 + 6x^2 - 4x^1 + 1 - x^{-1})$$

f'(x) =

(b)
$$g(t) = \frac{t^2 - 5}{t^{-1}}$$

g'(t) =

Problem 6 (10 pts). Compute the following limits:

(a)
$$\lim_{x \to 2} \frac{x^2 + 2x - 8}{x^2 - 4} =$$

(b)
$$\lim_{x \to -\infty} \frac{x^2 - 2x - 8}{x^2 - 4} =$$

(b)
$$\lim_{x \to -2} \frac{x^2 + 2x - 8}{x^2 - 4} =$$

Problem 7 (10 pts). Find the value of the constant k for which the following function is continuous everywhere:

$$f(x) = \begin{cases} 2k^2x^3 & \text{if } x < 2, \\ x + 32k - 18 & \text{if } x \ge 2. \end{cases}$$

Problem 8 (10 pts). Find equations of the tangent lines to the curve

$$y = \frac{x-1}{x+1}$$

that are parallel to the line $x - \frac{9}{2}y = 3$.

Problem 9 (10 pts). Find an equation of the tangent line to the curve $y = \ln(xe^{x^2})$ at the point (1,1).

Problem 10 (20 pts). Evaluate each limit:

$$\lim_{x \to 0} \cot 2x \sin 6x =$$

$$\lim_{x \to 0} \frac{\sin(4x^2)}{x^2} = \boxed{}$$

Problem 11 (20 pts). Sketch the graph of the rational function $f(x) = \frac{6x^2}{3-3x^2}$.

Indicate clearly: Domain; x- and y-intercepts; vertical and horizontal asymptotes; intervals of increase, decrease and different concavity; location of relative extrema and inflection points.

Problem 12 (10 pts). Find the absolute extrema of $f(x) = \frac{8}{3}x^{4/3} - \frac{4}{3}x^{1/3}$ on the interval [-1, 1].

Absolute maxima at

Absolute minima at

Problem 13 (10 pts). Use logarithmic differentiation to find the derivative of the function

$$y = \frac{\tan^2 x \sin^4 x}{e^{3x}(x^2 + 1)}$$

Dimensions of most economic fence:

Problem 16 (20 pts). Evaluate each integral:

(a)
$$\int_0^2 \left(5x + \frac{2}{3x^5} - \sqrt{2}e^x\right) dx$$

(b)
$$\int (3\sin x - 2\cos x) dx$$

(c)
$$\int \left(t^{4/5} - \sin t\right) dt$$

(d)
$$\int \left(\frac{1}{x} - 2^x\right) dx$$

Problem 17 (20 pts). Express the following expressions of n in closed form and then find the limit.

(a)
$$\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3}$$

(b)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{5k}{n^2}$$

Problem 18 (10 pts). Use the Fundamental Theorem of Calculus to find the derivative of the following functions.

(a)
$$F(x) = \int_1^x \frac{1}{t^4 + 1} dt$$

$$F'(x) =$$

(b)
$$F(x) = \int_{\sin x}^{\pi} \sqrt{e^t + t^8} \, dt$$

$$F'(x) =$$

Problem 19 (10 pts). Find the antiderivative F of $f(x) = 4 - 3(1 + x^2)$ that satisfies F(1) = 6.

$$F(x) =$$