

Project

Algorithm Design

zhangzizhen@gmail.com

QQ group: 117282780

Berth Allocation Problem

 In a container terminal, such as the Hong Kong Container Terminal, the bottleneck of the traffic is often at the quay.
Therefore, the terminal operator has to allocate a limited number of berths of the quay to vessels in an efficient way.

Berth Allocation Problem

- Consider a container terminal of n berths and m vessels arrived, where each vessel requires one or more berths to load and unload containers. Vessel i (for i=1,2,...,m) arrives at time a_i with its service time t_i hours, and it occupies b_i berths.
- For each vessel i=1,2,...m, the terminal manager needs to decide on the berths, as well on the starting time s_i of berthing for it.
- It must be satisfied that no two vessels are allowed to occupy the same berth simultaneously, i.e., for any two different vessels i and j, if $b_i=b_j$, then either $s_i+t_i <= s_j$ or $s_j+t_j <= s_j$ must be satisfied.
- Given the limited time horizon, your task is to help the manager to minimize the unassigned vessels, the total waiting time and the last departure time of all the vessels.

Game website: 172.18.57.223

Your task

- Suppose that
 - Weight of unassigned vessels: w1=100
 - Weight of total waiting time: w2=2
 - Weight of last departure time: w3=1
- If your arrangement has
 - No. unassigned vessels: x1
 - Total waiting time: x2
 - Last departure time: x3
- Then f(x)=w1x1+w2x2+w3x3
- You need to minimize f(x) subject to the aforementioned constraints.

What to submit

- A zip/rar package (Deadline: 2017/6/4)
 - Your codes
 - project.xlsx

	Unassigned vessels (x1)	Total waiting times (x2)	Last departure time (x3)	f(x)=w1x1+w2x2+w3x3	Solution
Game 1	1	5	5	115	0, 0; 0, 3; 2, 3; 0, 4; -1, -1
Game 2					
Game 3					
Game 4					
Game 5					
Game 6					
Game 7					
Game 8					
Game 9					
Game 10					
Game 11					
Game 12					

- Your report
 - Algorithms
 - Experiments on (original and new) instances
 - Results

Thank you!

