

INNOVATION. AUTOMATION. ANALYTICS

PROJECT ON

Expolartory_Data_Analysis on Aspiring Mind Employment Outcome 2015 (AMEO)

About me

Radhika Aggarwal

Data Science // Statistics // Mathematics

Innovative and detail-oriented professional with a passion for leveraging data to drive strategic decision-making. Adept at utilizing advanced analytical and programming skills to extract meaningful insights from complex datasets. Proven ability to communicate technical findings to both technical and non-technical stakeholders. Seeking a challenging role as a Data Scientist where I can contribute my skills in statistical analysis, machine learning, and data visualization to solve real-world problems.

Education History

- Bachelor of Mathematics Hons 2019-2022 (81.6 %)
 Vedic mathematics certification
 Water Warriors, advocating water conservation and sustainability
- Master of Data Science and Analytics 2022-2024 (9.25 SGPA)
 Innov8 Chief Editor
 Performed in Anveshna and Onam

Embracing the Data Science Journey: From Curiosity to Creative Problem-Solving"

My passion for data science is deeply rooted in my lifelong curiosity about mathematics practical and its seeking applications, constantly connections in the world around me. It goes beyond a mere academic pursuit; it's about living my dream, especially when integrated with the marvels of artificial intelligence. I see data science as a means to address real-world challenges, utilizing analytical thinking to make optimal decisions. In a world filled with problem creators, I am determined a problem solver, finding satisfaction in contributing meaningful The creative aspect of solutions. seemingly transforming useless information into innovations that can amaze the world is what truly excites me.

Bussiness Problem

Salary Analysis Initiative

Company HR faces
 challenges in accurately
 determining salaries for
 engineering professionals.

 Current approach lacks precision and neglects crucial factors: market trends, individual performance, and specialized skills.

Objectives

• Enhance Salary Precision: Develop a data-driven model

for accurate and consistent salary determination.

Recognize Specialized Skills:

Implement a system acknowledging and rewarding engineering expertise.

Exploratory Data Analysis

Data Summary

- 1. The dataset, capturing the employment outcomes of engineering graduates, comprises around 40 variables and 4000 data points. **Categorical variables** like 'Designation,' 'JobCity,' 'Gender,' and 'Specialization' provide insights into non-numeric attributes, reflecting job roles, locations, gender distribution, and academic specialties.
- 2. Numerical variables, including 'Salary,'
 '10percentage,' '12percentage,' and
 AMCAT assessment scores, offer
 quantifiable metrics for salary
 distributions, academic performance,
 and competency assessments. This dual
 representation of categorical and
 numerical data provides a
 comprehensive perspective on the
 dynamics of engineering graduates'
 employment outcomes.

Data Cleaning Steps

1. Column Names Standardization:

Enhancing Consistency and Readability

2. Correct Data Formats:

Ensuring Accuracy and Minimizing Errors

3. Conversion of Data Types:

• Promoting Uniformity and Compatibility

4. Titlecase Application:

 Aesthetic Standardization for Consistent Presentation

5. Handling Missing Data:

• Comprehensive Examination and Strategies for Completeness

6. Identification and Treatment of Outliers:

• Ensuring Robust Analysis Through Proper Handling

Analysis of Data

Before Outlier Treatment

After Outlier Treatment

— Univariate

Following the outlier applied treatment to the 'Salary' column, the salary has been adjusted, range resulting in a more condensed distribution that appears to align more closely with a distribution. normal mitigating the influence of extreme values, the data is characterized by now narrower spread of salary values, contributing to a more representative and refined depiction of the salary distribution within the dataset."

Bivariate

Based on the visible bars, it appears that Computer Science & Engineering has the highest percentage of graduates, followed by Electronics And Computer Engineering and Information Technology. The other specializations seem to have lower percentages.

Research Question

Testing the Times of India Claim

Null Hypothesis (H0): The average salary for fresh graduates with designations 'Programming Analyst,' 'Software Engineer,' 'Hardware Engineer,' and 'Associate Engineer' is equal to or less than 2.5-3 lakhs.

Alternative Hypothesis (H1): The average salary for fresh graduates with these designations is significantly greater than 3 lakhs.

Statistical Test Result:

t-Statistic: [-3.9194240092136106]

P-Value: [0.00010123189655940822]

Conclusion:

• **Result**: Reject the null hypothesis.

• Interpretation: The average salary is significantly greater than the claimed range (\$250,000).

Set significance level **alpha** = 0.05

Hypothesis Based on Gender and Specialization

Null Hypothesis (H0):

There is no significant relationship between gender and specialization preference among engineering graduates.

Alternative Hypothesis (H1):

There is a significant relationship between gender and specialization preference among engineering graduates.

Critical Value at 90% Confidence Level: 61.65623337627955

Calculated Chi-Squared Test Statistic: 104.46891913608455

Confidence Level: 90% Degrees of Freedom: 45

Set significance level alpha = 0.05

Calculated chi-squared test statistic > Critical Value at 90% Confidence Level

- Interpretation: Reject the null hypothesis.
- **Conclusion**: Strong evidence suggests that the Gender and Specialization are not independent.

CONCLUSION

After thoroughly analyzing the data in Jupyter notebook, here are the key takeaways:

- 1. **Top-Paying Field**: Computer Science & Engineering specialization stands out, offering the highest median salary.
- 2. Gender Enrollment Trends: Males tend to enroll more in specialization courses compared to females.
- 3. **Lucrative Domain**: The Software Engineer domain leads with the highest average salary at ₹209,166.67 per year.
- 4. **Salary Gender Gap**: On average, females earn around ₹203,648.65, slightly surpassing the mean salary of ₹194,105.26 for males.
- 5. **Workforce Dominance**: Software Engineer Domain has the largest number of employees, indicating its significance in the job market.
- 6. **Educational Alignment**: Graduates in Computer Science & Engineering show a strong alignment between their degree and specialization choices.
- 7. **Gender-Based Preferences:** Females favor Information Technology, while males lean towards Computer Science and Engineering in their chosen specializations.

Thank You

For more better understanding of my project please refer to my LinkedIn and GitHub

