Week 9 Homework

(!) This is a preview of the published version of the quiz

Started: Jul 2 at 7:50am

Quiz Instructions

Question 1	1 pts
(Lesson 7.1: Introduction to Random Variate Generation.) Unif(0,1) PRNs can used to generate which of the following random entities?	be
\bigcirc a. Exp(λ) random variates \bigvee ia Inverse Transform	
○ b. Nor(0,1) random variates	
oc. Triangular random variates Via Inverse Transform	
od. Bern(p) random variates Inverse Transform	
○ e. Nonhomogeneous Poisson processes AR Methol	

$\overline{}$	_	N I = =	- 4 4 1	-1
	е.	none	or the	above

Question 3 1 pts

(Lesson 7.2: Inverse Transform Theorem --- Intro.) If $m{U}$ is a Unif(0,1) random variable, what's the distribution of $-\frac{1}{\lambda}\ln(U)$?

- $F(x) = U \implies x = F^{-1}(u)$ $X = -\frac{1}{\lambda} \ln U \implies -\lambda x = \ln U$ $\implies U = e^{-\lambda x}$ ○ b. Nor(0,1)
- Oc. Triangular
- Where it is also true that $1-U=e^{-\lambda x}$ d. $\mathsf{Exp}(\lambda)$
- $\sqrt{-e^{-\lambda \times}} = U$ O e. None of the above olf for Exp(X)

Question 4 1 pts

(Lesson 7.2: Inverse Transform Theorem --- Intro.) Suppose that $U_1, U_2, \ldots, U_{5000}$ are i.i.d. Unif(0,1) random variables. Using Excel (or your favorite programming language), simulate $X_i = -\ln(U_i)$ for $i = 1, 2, \dots, 5000$. Draw a histogram of the 5000 numbers. What p.d.f. does the histogram look like?

- o a. Uniform
- O b. Normal
- c. Triangular
 - d. Exponential
- O e. Bernoulli

(Lesson 7.3: Inverse Transform --- Continuous Examples.) Suppose the c.d.f. of X is $F(x)=x^3/8,\,0\leq x\leq 2$. Develop a generator for X and demonstrate with U=0.54.

$$F(x)=U \Rightarrow x^3/8=U$$

$$\odot$$
 a. $X=U^3/8=0.0197$

$$\chi^3 = 8U \Rightarrow X = 2\sqrt[3]{U} = 2U^{V_3}$$

$$\odot$$
 b. $X=8U^3=1.260$

$$U=0.54 \Rightarrow X=2U^{3}=1-629$$

c.
$$X=2U^{1/3}=1.629$$

$$\odot$$
 d. $X=4U^{1/3}=3.257$

$$\odot$$
 e. $X=8U^{1/3}=6.515$

Question 6 1 pts

(Lesson 7.3: Inverse Transform --- Continuous Examples.) If X is a Nor(0,1) random variate, and $\Phi(x)$ is the Nor(0,1) c.d.f., what is the distribution of $\Phi(X)$?

 \times Nor(0,1) and $\Phi(x)$ is Nor(0,1) c.d.f. \bullet a. Uniform \bullet (x) maps values of \times to interval \bullet [0,1]

- \bigcirc b. Normal $\underline{\underline{\sigma}}: \times \longrightarrow \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- Oc. Triangular 里(X) effectively gives the probability that
- Od. Exponential a standard normal variable is less than or
- e. Bernoulli equal to X.

Question 7 1 pts

(Lesson 7.3: Inverse Transform --- Continuous Examples.) If U is a Unif(0,1) random variate, and $\Phi(x)$ is the Nor(0,1) c.d.f., what is the distribution of $2\Phi^{-1}(U)+3$?

○ a. Unif(0,1)

○ b. Unif(3,2)

2
$$\Phi^{+}(u)+3$$
 means $6=2$, $\mu=3$

○ c. Nor(0,1)	X~ Nor (3,4)	
○ d. Nor(3,2)		
e. Nor(3,4)		

Question 8 1 pts

(Lesson 7.4: Inverse Transform --- Discrete Examples.) How would you simulate the sum of two 6-sided dice tosses? (Note that $\lceil \cdot \rceil$ is the round-up function; and all of the U's denote PRNs.)

 \bigcirc a. f 12U

Exam 1 Qn 7

- \bigcirc b. $\lceil 12U
 ceil$
- \bigcirc c. $6U_1+6U_2$
- d. $\lceil 6U_1
 ceil + \lceil 6U_2
 ceil$
 - \bigcirc e. None of the above

Question 9 1 pts

(Lesson 7.4: Inverse Transform --- Discrete Examples.) If U is Unif(0,1), how can we simulate a Geom(0.6) random variate?

 \checkmark a. $\lceil \ln(U) / \ln(0.4) \rceil$

- iggred b. $\lceil \ln(1-U)/\ln(0.4)
 ceil$
- \odot c. $\lceil \ln(U) / \ln(0.6) \rceil$
- \bigcirc d. $\lceil \ln(1-U)/\ln(0.6)
 ceil$
- e. Both (a) and (b)
- f. Both (c) and (d)

Question 10 1 pts

(Lesson 7.6: Convolution.) Suppose that U and V are PRNs. Let X = U + V. Simulate this 5000 times, and draw a histogram of the 5000 numbers. What p.d.f. does the histogram look like?

- o a. Uniform
- O b. Normal
- c. Triangular
- d. Exponential
- (e. Bernoulli

Ougstion	11
Question	11

"Pesert Island"
$$Y = \sum_{i=1}^{n} U_i$$

1 pts

(Lesson 7.6: Convolution.) Suppose that U_1, U_2, \ldots, U_{24} are i.i.d. PRNs. What is (Lesson 7.6: Convolution.) Suppose that O_1, O_2, \dots, O_n the approximate distribution of $X = 5 + 3\sum_{i=1}^{24} U_i$?

Using "Jesert island" generator

O a. Uniform $V = \sum_{i=1}^{24} U_i \implies V \sim \text{Nor}\left(\frac{24}{2}, \frac{24}{12}\right)$ O b. Nor(0,1) $V \sim \text{Nor}\left(\frac{12}{2}, \frac{24}{12}\right)$

- 5+34 where Y~Nor (12,2) ○ c. Nor(5,1)
- d. Nor(12,2)
- new mean: 5+3(12) = 41 e. Nor(41,6)
- $ne \sim var: 3^2(z) = 18$ f. Nor(41,18)

Question 12

(Lesson 7.6: Convolution.) If U_1, U_2, U_3 are PRNs, what's the distribution of $-2\ln(U_1^2(1-U_2)^2U_3^2)? \qquad \sim \text{Erlang}_n(\lambda)$ $\bigcirc \text{ a. Exp(1/2)} \qquad \qquad = -\frac{1}{\lambda} \ln\left(\frac{n}{1-\mu}U_i\right)$

- O b. Exp(4) $-2 \ln \left(U_1^2 U_2^3 U_3^2 \right) = -2 \ln \left(U_1 U_2 U_3 \right)^2$
- $= -4 \ln \left(\frac{3}{11} U_i \right)$ \bigcirc c. Erlang $_2(1/2)$
- \checkmark d. Erlang₃(1/4)
- $-\frac{1}{\lambda} = -+ \Rightarrow \lambda = + \lambda = 3$

 \bigcirc e. Erlang₃(2)

Question 13

 $\pm(x) \geqslant \pm(x)$ 1 pts

(Lesson 7.7: Acceptance-Rejection --- Intro.) In general, the majorizing function t(x)

is itself a p.d.f. f(x).

Wrong. Because the Sirtus dx might not be equal to 1.

○ True

Bro

False

Only $\int_{\mathbb{R}^2} h(x) dx = \int_{\mathbb{R}^2} \frac{t(x)}{c} dx = 1$

Question 14 1 pts

(Lesson 7.9: Acceptance-Rejection --- Continuous Examples.) Suppose that X is a continuous RV with p.d.f. $f(x) = 30x^4(1-x)$, for 0 < x < 1. What's a good method that you can use to generate a realization of X?

- a. Inversion
- b. Convolution
- Oc. Box-Muller
- d. Acceptance-Rejection
 - O e. Composition

Question 15 1 pts

(Lesson 7.8: Acceptance-Rejection --- Proof.) Consider the constant $c=\int_{\mathbb{R}}t(x)\,dx=5$. On average, how many iterations (trials) will the A-R algorithm require?

The number of trials until "success"

U = g(Y) is geom (1/c)

so mean number of trials is C ○ a. 1/5

Ø b. 5

O c. 10

Od. 25

e. None of the above

Question 16 1 pts

(Lesson 7.10: Acceptance-Rejection --- Poisson Distribution.) Suppose that $U_1 = 0.65$, $U_2 = 0.45, U_3 = 0.82, U_4 = 0.09$, and $U_5 = 0.26$. Use our acceptance-rejection technique from class to generate $N \sim \mathrm{Pois}(\lambda=3.7)$. (You may not need to use all of the uniforms.) n 11.

	Sample until e	$\lambda = e^{-3.4}$	= 0.02472 > i	
○ a. N=0	n	U n+1	it ui	< e ^{-3.7}
○ b. N=1	O	0.65	0.65	no
○ c. N=2	l	0.45	0.2925	no
d. N=3	2	0.82	0.23985	n o
○ e. N=4	7	0.09	0.02/59	yes