		Dist	tribuições d	iscretas								
Distribuição	Parâmetros	F. probabilidade	Suporte	Valor m	édio	Variância	F. distribuição					
$H\left(N,M,n\right)$	$N,M,n\in\mathbb{N}$	$\binom{M}{k} \binom{N-M}{n-k} / \binom{N}{n}$	_	nM/I	$n\frac{M}{N}$	$\left(1 - \frac{M}{N}\right) \frac{N - n}{N - 1}$	_					
$B\left(n,p\right)$	$n\in\mathbb{N},p\in\left]0,1\right[$	$\binom{n}{k}p^k\left(1-p\right)^{n-k}$	$0 \leq k \leq n$	np		$np\left(1-p ight)$	_					
$P(\lambda)$	$\lambda \in \mathbb{R}^+$	$e^{-\lambda}\lambda^k/k!$	$k \in \mathbb{N}_0$	λ		λ	_					
$G\left(p\right)$	$p\in \left]0,1\right[$	$p\left(1-p\right)^{k-1}$	$k\in \mathbb{N}$	1/p		$(1-p)/p^2$	$1 - (1 - p)^{[x]}$					
		Distribuiçõ	es absoluta	mente co	ntínuas							
Distribuição	Parâmetros	F. densidade	Sup	orte	Valor médio	Variância	F. distribuiçã					
$U\left(a,b\right)$	$a,b\in\mathbb{R}$	$\frac{1}{b-a}$	$a \le$	$x \le b$	(a+b)/2	$\left(b-a\right)^2/12$	$\frac{x-a}{b-a}$					
$E\left(\lambda,\delta\right)$	$\lambda \in \mathbb{R}, \ \delta \in \mathbb{R}^+$	$\frac{1}{\delta}e^{-(x-\lambda)/\delta}$	x	$\geq \lambda$	$\lambda + \delta$	δ^2	$1 - e^{-(x-\lambda)/\epsilon}$					
$Par\left(\delta,\alpha\right)$	$\delta, lpha \in \mathbb{R}^+$	$\frac{\alpha}{\delta} \left(\frac{x}{\delta} \right)^{-\alpha - 1}$	x	$\geq \delta$	$\frac{\alpha \delta}{\alpha - 1}$	$\frac{\alpha \delta^2}{\left(\alpha - 2\right) \left(\alpha - 1\right)^2}$	$1 - \left(\frac{x}{\delta}\right)^{-\alpha}$					
$N\left(\mu,\sigma^2\right)$	$\mu \in \mathbb{R}, \ \sigma \in \mathbb{R}^+$	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{1}{2}\left(\frac{x-1}{\sigma}\right)\right)$	$\left(\frac{\mu}{2}\right)^2$ $x = \frac{1}{2}$	$\in \mathbb{R}$	μ	σ^2	_					
		Distribuiçõ	ões de estat	ísticas								
		Méd	dia amostral									
$\sqrt{n} \frac{\bar{X} - \mu}{\sigma} \sim N(0, 1) \qquad \sqrt{n} \frac{\bar{X} - \mu}{S} \sim t_{n-1} \qquad \sqrt{n} \frac{\bar{X} - \mu}{\sigma} \stackrel{a}{\sim} N(0, 1) \qquad \sqrt{n} \frac{\bar{X} - \mu}{S} \stackrel{a}{\sim} N(0, 1)$												
Variância Am	nostral	Proporção a	amostral		Ajustamento							
$\frac{(n-1)S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2} \qquad \sqrt{n} \frac{\hat{P} - p}{\sqrt{p(1-p)}} \stackrel{a}{\sim} N(0,1) \qquad \sqrt{n} \frac{\hat{P} - p}{\sqrt{\hat{P}\left(1-\hat{P}\right)}} \stackrel{a}{\sim} N(0,1) \qquad \sum_{i=1}^{m} \frac{(O_{i} - E_{i})^{2}}{E_{i}} \stackrel{a}{\sim} \chi_{(m-p-1)}^{2}$												
	VF	* /	V 1 (1 1)								
		$\frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \bar{X} \right)^2$	V \									
		$\frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \bar{X} \right)^2$	V \	$\sum_{i=1}^{n} X_i^2 -$								
$S_{xx} =$		$\frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \bar{X} \right)^2$	$= \frac{1}{n-1} \left(\left(\frac{1}{n-1} \right) \right)$ ssão linear s	$\sum_{i=1}^{n} X_i^2 - \frac{1}{2}$	$-n\bar{X}^2$	$-\bar{x})\left(Y_i - \bar{Y}\right) = \sum_{i=1}^n$						
$S_{xx} =$	$S^2 = \frac{1}{n}$	$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ Regree	$= \frac{1}{n-1} \left(\left(\frac{1}{2} \right)^{2} \right)$ ssão linear s $(Y_{i} - \bar{Y})^{2}$	$\sum_{i=1}^{n} X_i^2 - \frac{1}{2}$ simples	$-n\bar{X}^2$ $xY = \sum_{i=1}^n (x_i)^{n-i}$	n						
	$S^2 = \frac{1}{n}$	$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ Regree $S_{YY} = \sum_{i=1}^{n} (X_i - \bar{X})^2$	$= \frac{1}{n-1} \left(\left(\frac{1}{N} \right)^{2} \right)$ ssão linear s $\left(Y_{i} - \bar{Y} \right)^{2}$ ara os parâmo	$\sum_{i=1}^{n} X_i^2 - \frac{1}{2}$ simples	$-n\bar{X}^2$ $xY = \sum_{i=1}^n (x_i)$ nodelo	n	$\bar{Y}_i X_i Y_i - n \bar{x} \bar{Y}_i$					
	$S^2 = \sum_{i=1}^n (x_i - \bar{x})^2$	$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ Regrei $S_{YY} = \sum_{i=1}^{n}$ Estimadores para $\hat{\beta}_0 = \bar{Y}$	$= \frac{1}{n-1} \left(\left(\frac{1}{N} \right)^{2} \right)$ ssão linear s $\left(Y_{i} - \bar{Y} \right)^{2}$ ara os parâmo	$\sum_{i=1}^{n} X_i^2 - \sum_{i=1}^{n} X_i^2$ simples S_i etros do m	$-n\bar{X}^2$ $xY = \sum_{i=1}^n (x_i)$ nodelo	$(-\bar{x})(Y_i - \bar{Y}) = \sum_{i=1}^n$	$\bar{Y}_i X_i Y_i - n \bar{x} \bar{Y}_i$					
β	$S^2 = \sum_{i=1}^n (x_i - \bar{x})^2$	$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ Regrei $S_{YY} = \sum_{i=1}^{n}$ Estimadores para $\hat{\beta}_0 = \bar{Y}$	$= \frac{1}{n-1} \left(\left(\frac{1}{n-1} \right)^2 \right)$ ssão linear s $(Y_i - \bar{Y})^2$ ara os parâmo $-\hat{\beta}_1 \bar{x}$ uição dos esti	$\sum_{i=1}^{n} X_i^2 - \sum_{i=1}^{n} X_i^2$ simples S_i etros do m	$-n\bar{X}^2$ $=\sum_{i=1}^n (x_i)$ anodelo $\hat{\sigma}^2 =$	$(-\bar{x})(Y_i - \bar{Y}) = \sum_{i=1}^n$	$\bar{Y}_i X_i Y_i - n \bar{x} \bar{Y}_i$					
β	$S^{2} = \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$ $1 = \frac{S_{xY}}{S_{xx}}$ $\frac{\hat{\beta}_{0} - \beta_{0}}{\hat{\sigma}} \sim t_{n-2}$	$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ Regrei $S_{YY} = \sum_{i=1}^{n}$ Estimadores para $\hat{\beta}_0 = \bar{Y}$ Distribution	$= \frac{1}{n-1} \left(\left(\frac{1}{n-1} \right)^2 \right)$ ssão linear s $(Y_i - \bar{Y})^2$ ara os parâmo $-\hat{\beta}_1 \bar{x}$ uição dos esti	$\sum_{i=1}^{n} X_i^2 - \sum_{i=1}^{n} X_i^2$ simples S_i etros do m	$-n\bar{X}^2$ $xY = \sum_{i=1}^n (x_i)$ anodelo $\hat{\sigma}^2 =$	$-\bar{x})\left(Y_i - \bar{Y}\right) = \sum_{i=1}^n \frac{SQ_R}{n-2} = \frac{S_{YY} - \hat{\beta}_1^2 S}{n-2}$	$S_{xi}Y_i - nar{x}ar{Y}$					

1. Função de distribuição do modelo Normal reduzido

$$\Phi(z) = P\left(Z \le z\right) = \int\limits_{-\infty}^{z} \, \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}t^2\right) dt$$

2. Quantis da distribuição t de Student

3. Quantis da distribuição do Qui Quadrado

(1)													
z	0	1	2	3	4	5	6	7	8	9			
.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359			
.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753			
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141			
.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517			
.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879			
.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224			
.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549			
.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852			
.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133			
.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389			
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621			
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830			
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015			
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177			
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319			
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441			
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545			
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633			
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706			
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767			
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817			
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857			
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890			
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916			
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936			
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952			
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964			
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974			
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981			
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986			
3.	.9987	.9990	.9993	.9995	.9997	.9998	.9998	.9999	.9999	1.0000			

Nota: Para $z \ge 4$, $\Phi(z) \approx 1$.

(2)																(3)												
						(α														α							
n	.45	.4	.35	.3	.25	.2	.15	.1	.05	.025	.01	.005	n	.995	.99	.975	.95	.9	.8	.7	.5	.3	.2	.1	.05	.025	.01	.005
													1	.000	.000	.001	.004	.016	.064	.148	.455	1.07	1.64	2.71	3.84	5.02	6.63	7.88
1	.158	.325	.510	.727	1.00	1.38	1.96	3.08	6.31	12.7	31.8	63.7	2	.010	.020	.051	.103	.211	.446	.713	1.39	2.41	3.22	4.61	5.99	7.38	9.21	10.6
2	.142	.289	.445	.617	.816	1.06	1.39	1.89	2.92	4.30	6.96	9.92	3	.072	.115	.216	.352	.584	1.01	1.42	2.37	3.66	4.64	6.25	7.81	9.35	11.3	12.8
3	.137	.277	.424	.584	.765	.978	1.25	1.64	2.35	3.18	4.54	5.84	4	.207	.297	.484	.711	1.06	1.65	2.19	3.36	4.88	5.99	7.78	9.49	11.1	13.3	14.9
4	.134	.271	.414	.569	.741	.941	1.19	1.53	2.13	2.78	3.75	4.60	5	.412	.554	.831	1.15	1.61	2.34	3.00	4.35	6.06	7.29	9.24	11.1	12.8	15.1	16.7
5	.132	.267	.408	.559	.727	.920	1.16	1.48	2.02	2.57	3.36	4.03	6	.676	.872	1.24	1.64	2.20	3.07	3.83	5.35	7.23	8.56	10.6	12.6	14.4	16.8	18.5
6	.131	.265	.404	.553	.718	.906	1.13	1.44	1.94	2.45	3.14	3.71	7	.989	1.24	1.69	2.17	2.83	3.82	4.67	6.35	8.38	9.80	12.0	14.1	16.0	18.5	20.3
7	.130	.263	.402	.549	.711	.896	1.12	1.41	1.89	2.36	3.00	3.50	8	1.34	1.65	2.18	2.73	3.49	4.59	5.53	7.34	9.52	11.0	13.4	15.5	17.5	20.1	22.0
8	.130	.262	.399	.546	.706	.889	1.11	1.40	1.86	2.31	2.90	3.36	9	1.73	2.09	2.70	3.33	4.17	5.38	6.39	8.34	10.7	12.2	14.7	16.9	19.0	21.7	23.6
9	.129	.261	.398	.543	.703	.883	1.10	1.38	1.83	2.26	2.82	3.25	10	2.16	2.56	3.25	3.94	4.87	6.18	7.27	9.34	11.8	13.4	16.0	18.3	20.5	23.2	25.2
10	.129	.260	.397	.542	.700	.879	1.09	1.37	1.81	2.23	2.76	3.17	11	2.60	3.05	3.82	4.57	5.58	6.99	8.15	10.3	12.9	14.6	17.3	19.7	21.9	24.7	26.8
11	.129	.260	.396	.540	.697	.876	1.09	1.36	1.80	2.20	2.72	3.11	12	3.07	3.57	4.40	5.23	6.30	7.81	9.03	11.3	14.0	15.8	18.5	21.0	23.3	26.2	28.3
12	.128	.259	.395	.539	.695	.873	1.08	1.36	1.78	2.18	2.68	3.05	13	3.57	4.11	5.01	5.89	7.04	8.63	9.93	12.3	15.1	17.0	19.8	22.4	24.7	27.7	29.8
13	.128	.259	.394	.538	.694	.870	1.08	1.35	1.77	2.16	2.65	3.01	14	4.07	4.66	5.63	6.57	7.79	9.47	10.8	13.3	16.2	18.2	21.1	23.7	26.1	29.1	31.3
14	.128	.258	.393	.537	.692	.868	1.08	1.35	1.76	2.14	2.62	2.98	15	4.60	5.23	6.26	7.26	8.55	10.3	11.7	14.3	17.3	19.3	22.3	25.0	27.5	30.6	32.8
15	.128	.258	.393	.536	.691	.866	1.07	1.34	1.75	2.13	2.60	2.95	16	5.14	5.81	6.91	7.96	9.31	11.2	12.6	15.3	18.4	20.5	23.5	26.3	28.8	32.0	34.3
16	.128	.258	.392	.535	.690	.865	1.07	1.34	1.75	2.12	2.58	2.92	17	5.70	6.41	7.56	8.67	10.1	12.0	13.5	16.3	19.5	21.6	24.8	27.6	30.2	33.4	35.7
	.128												18	6.26	7.01	8.23	9.39	10.9	12.9	14.4	17.3	20.6	22.8	26.0	28.9	31.5	34.8	37.2
18	.127	.257	.392	.534	.688	.862	1.07	1.33	1.73	2.10	2.55	2.88	19	6.84	7.63	8.91	10.1	11.7	13.7	15.4	18.3	21.7	23.9	27.2	30.1	32.9	36.2	38.6
	.127													7.43														
20	.127	.257	.391	.533	.687	.860	1.06	1.33	1.72	2.09	2.53	2.85	21	8.03	8.90	10.3	11.6	13.2	15.4	17.2	20.3	23.9	26.2	29.6	32.7	35.5	38.9	41.4
- 1	.127													8.64														
- 1	.127													9.26														
	.127													9.89														
24	.127												25	10.5														
25		.256											26	11.2														
26		.256											27	11.8														
27	.127												28	12.5														
28														13.1														
29	.127												30	13.8														
30		.256											40	20.7														
∞	.126	.253	.385	.524	.674	.842	1.04	1.28	1.64	1.96	2.33	2.58		28.0														
													60	35.5	37.5	40.5	43.2	46.5	50.6	53.8	59.3	65.2	69.0	74.4	79.1	83.3	88.4	92.0