КР1533**ТМ**9, **КФ**1533**ТМ**9, **ЭКФ**1533**ТМ**9

Микросхемы представляют собой шесть синхронных D-триггеров с прямыми выходами. Имеют общий для всех триггеров синхровход C и вход сброса \overline{R} . Корпус типа 238.16-1, масса не более 1,2 г и 4307.16-A.

[R	T	Q	
3	D		1	2 5
6	2		2 3	7
4 6 11 13 14	4		4	10
13	5	i.	5	12 15
990,5000	6		6	13
9	C			

Условное графическое обозначение КР1533ТМ9, КФ1533ТМ9, ЭКФ1533ТМ9

Таблица истинности

	Выход		
\overline{R}	С	D	Q
0	Х	Х	0
1	」	1	1
1	」	0	0
1	0	Χ	Q0

Назначение выводов: 1 - вход установки в состояние «низкий уровень» \overline{R} ; 2 - выход Q1; 3 - вход информационный D1; 4 - вход информационный D2; 5 - выход Q2; 6 - вход информационный D3; 7 - выход Q3; 8 - общий; 9 - вход тактовый C; 10 - выход Q4; 11 - вход информационный D4; 12 - выход Q5; 13 - вход информационный D5; 14 - вход информационный D6; 15 - выход Q6; 16 - напряжение питания.

Электрические параметры

Номинальное напряжение питания5 В ± 10%					
Выходное напряжение низкого уровня:					
- при I ⁰ _{вых} = 4 мА≤ 0,4 В					
- при I ⁰ _{вых} = 8 мА≤ 0,5 В					
Выходное напряжение высокого уровня≥ 2,4 В					
Прямое падение напряжения на антизвонном диоде≤ -1,5 В					
Ток потребления при U _п = 5,5 В≤ 19 мА					
Входной ток низкого уровня≤ -0,1 мА					
Входной ток высокого уровня≤ 20 мкА					
Входной пробивной ток≤ 0,1 мА					
Выходной ток					
Время задержки распространения сигнала при включении:					
- по входу 9≤ 17 нс					
- по входу 1≤ 23 нс					
Время задержки распространения сигнала при					
выключении по входу 9≤ 15 нс					
Емкость входа≤ 5 пФ					

Предельно допустимые режимы эксплуатации

Напряжение питания	.4,55,5 B
Входное напряжение низкого уровня	.00,8 В
Входное напряжение высокого уровня	.25,5 B
Максимальное напряжение, подаваемое на выход	.5,5 B
Температура окружающей среды	10+70 °C

Общие рекомендации по применению

Безотказность работы микросхем в аппаратуре достигается: правильным выбором условий эксплуатации и электрических режимов микросхем; соблюдением последовательности монтажа микросхем в аппаратуре, исключающих тепловые, электрические и механические повреждения микросхем.

Лужение производить в следующих режимах: температура расплавленного припоя не более 260 °C; время погружения не более 2 с; расстояние от корпуса до зеркала припоя (по длине вывода) не менее 1 мм; допустимое количество погружений не более 2; интервал между двумя погружениями не менее 5 мин.

Лужение и пайка должны производиться предпочтительно припоем ПОС61 по ГОСТ 21930-76, флюсом, состоящим из 25% по массе канифоли и 75%

по массе изопропилового или этилового спирта.

Установку микросхем на плату производить с зазором, который обеспечивается конструкцией выводов.

Пайку микросхем на печатную плату одножальным паяльником производить по следующему режиму: температура жала паяльника не более 270 °C; время касания каждого вывода не более 3 с; расстояние от корпуса до места пайки (по длине вывода) не менее 1 мм; интервал между пайками соседних выводов не менее 3 с.

Жало паяльника должно быть заземлено.

Пайку микросхем на печатную плату групповым способом производить по следующему режиму: температура жала группового паяльника не более $265~^{\circ}\text{C}$; время воздействия этой температуры (одновременно на все выводы) не более 3~C; расстояние от корпуса до места пайки (по длине вывода) не менее 1~MM; интервал между двумя повторными пайками выводов не менее 5~M мин.

Операцию очистки печатных плат с микросхемами от паяльных флюсов производить тампоном или кистью, смоченными спирто-бензиновой смесью в пропорции 1:1, ацетоном, спиртом или трихлорэтиленом, исключив при этом механическое повреждение выводов.

Сушку печатных плат с микросхемами после очистки производить при температуре не выше 60 °C.

Для влагозащиты плат с микросхемами применять лак УР-231 по ТУ 6-10-863-84 или ЭП-730 по ГОСТ 20924-81. Оптимальная толщина покрытия лаком УР231 должна быть 35...55 мкм, лаком ЭП-730 - 35...100 мкм.

Количество слоев 3.

Рекомендуемая температура сушки (полимеризации) лака 65 ± 5 °C.

Свободные входы необходимо подключать к источнику постоянного напряжения $5 \ B \pm 10\%$, к источнику выходного напряжения высокого уровня или заземлять.

Допустимое значение электростатического потенциала 200 В.