Гайд по сходимостям числовых рядов

Ниже перечислены основные методы решения задач.

Необходимый признак сходимости

Если последовательность сходится, её общий член должен сходится к 0.

Применение: Если мы видим, что общий член ряда больше единицы в пределе, пишем, что ряд расходится.

Предельный признак сходимости

Если предел отношений исходного ряда u_n с расходимым рядом v_n равен конечному числу, отличному от нуля, то ряд U_n расходится.

Если предел отношений исходного ряда u_n со сходимым рядом v_n равен конечному числу, отличному от нуля, то ряд v_n сходится.

 Π рименение: Эквивалентные ряды сходятся и расходятся одновременно \Rightarrow Можем использовать эквивалентности в пределах.

Вот основные эквивалентности:

1)
$$\sin x \sim x, x \to 0$$

3) $\arcsin x \sim x, x \to 0$
5) $1 - \cos x \sim \frac{x^2}{2}, x \to 0$
7) $a^x - 1 \sim x \cdot \ln a, x \to 0$
9) $\log_a (1+x) \sim x \cdot \log_a e, x \to 0$
2) $tgx \sim x, x \to 0$
4) $arctgx \sim x, x \to 0$
6) $e^x - 1 \sim x, x \to 0$
8) $\ln(1+x) \sim x, x \to 0$
10) $(1+x)^{k-1} \sim kx, k > 0, x \to 0$
11) $\sqrt{1+x} - 1 \sim \frac{x}{2}, x \to 0$

Признак Даламбера

Если существует $\lim_{n\to\infty}A_n=r$, то:

- если г < 1, то ряд абсолютно сходится;
- если г > 1, то ряд расходится;
- если $\mathbf{r}=1$, то данный признак не позволяет сделать определённый вывод о сходимости ряда.

Примечание: Хорошо работает с многочленами и показательными функциями (т.е там, где легко посчитать отношение членов последовательности при стремлении к бесконечности).

Признак Лейбница

Пусть для знакочередующегося ряда $S = \sum_{n=1}^{\infty} {(-1)}^{n-1} a_n$ верно:

- Последовательность $\{a_n\}$, начиная с некоторого номера (n>N) монотонно убывает:
- $a_{n+1} < a_{n_i}$ $\lim_{n \to \infty} A_n = 0$

Тогда такой ряд сходится.

Примечание: можно попробовать, когда у нас есть знакопеременный ряд.

Интегральный признак Коши

Пусть функция f(x) определена при $x\geqslant 1$, неотрицательна, монотонно убывает и $f(n)=a_n.$

Тогда ряд $\displaystyle \sum_{n=1}^{\infty} a_n$ и несобственный интеграл:

$$\int\limits_{1}^{\infty}f(x)\,dx=\lim_{t
ightarrow\infty}\int\limits_{1}^{t}f(x)\,dx$$

сходятся или расходятся одновременно [9].

Радикальный признак Коши

Если существует $\lim_{n o \infty} \sqrt[n]{|a_n|} = r$, то:

- ullet если r < 1, то ряд сходится, причём абсолютно;
- если r > 1, то ряд расходится;
- если r=1, то данный признак не позволяет сделать определённый вывод о сходимости ряда $^{[15]}$.

Важные идеи

Дополнительные штуки(+идеи), которые могут помочь

- 1. Гармонический ряд это ряд вида $\frac{1}{n}$. Он расходится. С ним мы сравниваем все остальные ряды. Если степень в знаменателе больше $1 \to \mathrm{P}$ яд сходится, иначе расходится
- 2. Если в ряду мы работает с выражениями в разных степенях, имеет смысл перейти к замене вида: $t = e^{\log t}$