Package 'ReporterScore'

November 28, 2024

Type Package

Title Generalized Reporter Score-Based Enrichment Analysis for Omics

Version 0.1.9

Data

Description Inspired by the classic 'RSA', we developed the improved 'Generalized Reporter Score-based Analysis (GRSA)' method, implemented in the R package 'ReporterScore', along with comprehensive visualization methods and pathway databases. 'GRSA' is a threshold-free method that works well with all types of biomedical features, such as genes, chemical compounds, and microbial species. Importantly, the 'GRSA' supports multigroup and longitudinal experimental designs, because of the included multi-group-compatible statistical methods.

License GPL-3 **Encoding** UTF-8

RoxygenNote 7.2.3

Imports magrittr, dplyr, stats, ggplot2 (>= 3.2.0), pcutils (>= 0.2.5), utils, scales, ggnewscale, ggrepel, reshape2, stringr, foreach

Suggests knitr, rmarkdown, plyr, e1071, factoextra, snow, doSNOW, pheatmap, readr, R.utils, KEGGREST, clusterProfiler, enrichplot, pathview, GSA, vegan, MetaNet, igraph, ggraph, PADOG, safe, rSEA, GSVA

Depends R (>= 4.2.0) **VignetteBuilder** knitr

BugReports https://github.com/Asa12138/ReporterScore/issues

URL https://github.com/Asa12138/ReporterScore

NeedsCompilation no

Author Chen Peng [aut, cre] (https://orcid.org/0000-0002-9449-7606)

Maintainer Chen Peng <pengchen2001@zju.edu.cn>

Repository CRAN

Date/Publication 2024-11-28 14:10:06 UTC

2 Contents

Contents

cm_test_k
combine_rs_res
Compound_htable
CPDlist
custom_modulelist
custom_modulelist_from_org
export_report_table
gene2ko
genedf
get_features
get_reporter_score
GOlist
hsa_kegg_pathway
ko.test
KOlist
KO_abundance
KO_enrich
KO_fisher
KO_gsa
KO_gsea
KO_gsva
KO_htable
KO_padog
KO_safe
KO_sea
load_CARDinfo
load_GOlist
load_htable
mmu_kegg_pathway
modify_description
Module_htable
Pathway_htable
plot.cm_res
plot_enrich_res
plot_features_box
plot_features_distribution
plot_features_heatmap
plot_features_in_pathway
plot features network
plot_htable
plot_KEGG_map
plot_report
plot_report_circle_packing
plot_significance
print_reporter_score
print.rs_by_cm
princis_oy_cm

cm_test_k 40

3

Index **50**

cm_test_k

Test the proper clusters k for c_means

Description

Test the proper clusters k for c_means

C-means cluster

Usage

```
cm_test_k(otu_group, filter_var, fast = TRUE)
c_means(otu_group, k_num, filter_var)
```

filter the highest var

Arguments

filter_var

standardize data otu_group

fast whether do the gap_stat?

k num cluster number

Value

ggplot

ggplot

See Also

Other C_means: RSA_by_cm()

4 combine_rs_res

Examples

```
if (requireNamespace("e1071") && requireNamespace("factoextra")) {
   data(otutab, package = "pcutils")
   pcutils::hebing(otutab, metadata$Group) -> otu_group
   cm_test_k(otu_group, filter_var = 0.7)
   cm_res <- c_means(otu_group, k_num = 3, filter_var = 0.7)
   plot(cm_res, 0.8)
}</pre>
```

combine_rs_res

Combine the results of 'step by step GRSA'

Description

Combine the results of 'step by step GRSA'

Usage

```
combine_rs_res(kodf, group, metadata, ko_stat, reporter_s, modulelist = NULL)
```

Arguments

kodf	KO_abundance table, rowname are feature ids (e.g. K00001 if feature="ko"; PEX11A if feature="gene"; C00024 if feature="compound"), colnames are samples.
group	The comparison groups (at least two categories) in your data, one column name of metadata when metadata exist or a vector whose length equal to columns number of kodf. And you can use factor levels to change order.
metadata	sample information data.frame contains group
ko_stat	result of pvalue2zs
reporter_s	result of get_reporter_score
modulelist	NULL or customized modulelist dataframe, must contain 'id', 'K_num', 'KOs', 'Description' columns. Take the 'KOlist' as example, use custom_modulelist.

Value

```
reporter_score object
```

See Also

```
Other GRSA: get_reporter_score(), ko.test(), pvalue2zs(), reporter_score()
```

Compound_htable 5

Examples

```
data("KO_abundance_test")
ko_pvalue <- ko.test(KO_abundance, "Group", metadata)
ko_stat <- pvalue2zs(ko_pvalue, mode = "directed")
reporter_s1 <- get_reporter_score(ko_stat, perm = 499)
reporter_res <- combine_rs_res(KO_abundance, "Group", metadata, ko_stat, reporter_s1)</pre>
```

Compound_htable

Compound htable from 'KEGG'

Description

Compound htable from 'KEGG'

See Also

Other data: CPDlist, GOlist, KO_htable, KOlist, Module_htable, Pathway_htable, hsa_kegg_pathway, mmu_kegg_pathway

CPDlist

The CPDlist used for enrichment.

Description

an list contains two data.frame named pathway and module.

Format

four columns in each data.frame.

id "map0010" or "M00001"

K_num contians how many Compounds in this pathway or module

KOs Compounds name

Description the description of this pathway or module

See Also

Other data: Compound_htable, GOlist, KO_htable, KOlist, Module_htable, Pathway_htable, hsa_kegg_pathway, mmu_kegg_pathway

6 custom_modulelist

custom_modulelist

Build a custom modulelist

Description

Build a custom modulelist

Transform a modulelist to a list

Usage

```
custom_modulelist(pathway2ko, pathway2desc = NULL, verbose = TRUE)
transform_modulelist(mymodulelist, mode = 1)
```

Arguments

pathway2ko user input annotation of Pathway to KO mapping, a data.frame of 2 column with

pathway and ko.

pathway2desc user input of Pathway TO Description mapping, a data.frame of 2 column with

pathway and description.

verbose verbose

mymodulelist mymodulelist

mode $1\sim2$

Value

```
a custom modulelist modulelist
```

See Also

```
Other modulelist: custom_modulelist_from_org(), get_features()
Other modulelist: custom_modulelist_from_org(), get_features()
```

```
mydat <- data.frame(pathway = paste0("PATHWAY", rep(seq_len(2), each = 5)), ko = paste0("K", 1:10))
mymodulelist <- custom_modulelist(mydat)
print(mymodulelist)
transform_modulelist(mymodulelist)</pre>
```

```
custom_modulelist_from_org
```

Custom modulelist from a specific organism

Description

Custom modulelist from a specific organism

Usage

```
custom_modulelist_from_org(
  org = "hsa",
  feature = "ko",
  gene = "symbol",
  verbose = TRUE
)
```

Arguments

org kegg organism, listed in https://www.genome.jp/kegg/catalog/org_list.html, de-

fault, "hsa"

feature one of "ko", "gene", "compound"

gene one of "symbol", "id"

verbose logical

Value

modulelist

See Also

```
Other modulelist: custom_modulelist(), get_features()
```

```
hsa_pathway <- custom_modulelist_from_org(org = "hsa", feature = "gene")</pre>
```

gene2ko

export_report_table

Export report score result tables

Description

Export report score result tables

Usage

```
export_report_table(reporter_res, dir_name, overwrite = FALSE)
```

Arguments

reporter_res a reporter_score object or rs_by_cm object dir_name the directory to save the report tables

overwrite overwrite the existed files or not, default is FALSE.

Value

No return value

gene2ko

Transfer gene symbol table to KO table

Description

You can use 'clusterProfiler::bitr()' to transfer your table from other gene_id to gene_symbol.

Usage

```
gene2ko(genedf, org = "hsa")
```

Arguments

genedf ,rowname is gene symbol (e.g. PFKM), colnames is samples

org kegg organism, listed in 'https://www.genome.jp/kegg/catalog/org_list.html', de-

fault, 'hsa'

Value

kodf

```
data("genedf")
KOdf <- gene2ko(genedf, org = "hsa")</pre>
```

genedf 9

genedf

human gene table

Description

human gene table

See Also

```
Other test_data: K0_abundance, reporter_score_res
```

get_features

get features in a modulelist

Description

get features in a modulelist

Usage

```
get_features(map_id = "map00010", ko_stat = NULL, modulelist = NULL)
```

Arguments

map_id map_id in modulelist

modulelist NULL or customized modulelist dataframe, must contain 'id', 'K_num', 'KOs', 'Description'

columns. Take the 'KOlist' as example, use custom_modulelist.

Value

KOids, or data.frame with these KOids.

See Also

```
Other modulelist: custom_modulelist_from_org(), custom_modulelist()
```

```
get_features(map_id = "map00010")
```

10 get_reporter_score

get_reporter_score

Calculate reporter score

Description

Calculate reporter score

Usage

```
get_reporter_score(
  ko_stat,
  type = c("pathway", "module")[1],
  feature = "ko",
  threads = 1,
 modulelist = NULL,
  perm = 4999,
  verbose = TRUE,
  p.adjust.method2 = "BH",
 min_exist_K0 = 3,
 max_exist_K0 = 600
)
```

Arguments

ko_stat result from pvalue2zs ko_stat

'pathway' or 'module' for default KOlist for microbiome, 'CC', 'MF', 'BP', type

'ALL' for default GOlist for homo sapiens. And org in listed in 'https://www.genome.jp/kegg/catalog/org_

such as 'hsa' (if your kodf is come from a specific organism, you should specify

type here).

feature one of 'ko', 'gene', 'compound'

threads default 1

modulelist NULL or customized modulelist dataframe, must contain 'id', 'K_num', 'KOs', 'Description'

columns. Take the 'KOlist' as example, use custom_modulelist.

permutation number, default: 4999. perm

logical verbose

p.adjust.method2

p.adjust.method for the correction of ReporterScore, see p.adjust

min exist KO number in a pathway (default, 3, when a pathway contains KOs min_exist_KO

less than 3, there will be no RS)

max_exist_KO max exist KO number in a pathway (default, 600, when a pathway contains KOs

more than 600, there will be no RS)

Value

reporter_res data.frame

GOlist 11

See Also

```
Other GRSA: combine_rs_res(), ko.test(), pvalue2zs(), reporter_score()
```

Examples

```
data("KO_abundance_test")
ko_pvalue <- ko.test(KO_abundance, "Group", metadata)
ko_stat <- pvalue2zs(ko_pvalue, mode = "directed")
reporter_s1 <- get_reporter_score(ko_stat, perm = 499)</pre>
```

GOlist

The GOlist used for enrichment.

Description

an list contains three data.frame named BP, CC, MF.

Format

four columns in each data.frame.

id "map0010" or "M00001"

K_num contians how many Genes in this GO term

KOs Genes name

Description the description of this GO term

See Also

Other data: CPDlist, Compound_htable, KO_htable, KOlist, Module_htable, Pathway_htable, hsa_kegg_pathway, mmu_kegg_pathway

hsa_kegg_pathway

pathway information for "hsa"

Description

pathway information for "hsa"

See Also

Other data: CPDlist, Compound_htable, GOlist, KO_htable, KOlist, Module_htable, Pathway_htable, mmu_kegg_pathway

12 ko.test

ko.test

Differential analysis or Correlation analysis for KO-abundance table

Description

Differential analysis or Correlation analysis for KO-abundance table

Usage

```
ko.test(
  kodf,
  group,
  metadata = NULL,
  method = "wilcox.test",
  pattern = NULL,
  p.adjust.method1 = "none",
  threads = 1,
  verbose = TRUE
)
```

Arguments

kodf KO_abundance table, rowname are feature ids (e.g. K00001 if feature="ko";

PEX11A if feature="gene"; C00024 if feature="compound"), colnames are sam-

ples.

pı

group The comparison groups (at least two categories) in your data, one column name

of metadata when metadata exist or a vector whose length equal to columns

number of kodf. And you can use factor levels to change order.

metadata

sample information data.frame contains group

method

the type of test. Default is 'wilcox.test'. Allowed values include:

- t.test (parametric) and wilcox.test (non-parametric). Perform comparison between two groups of samples. If the grouping variable contains more than two levels, then a pairwise comparison is performed.
- anova (parametric) and kruskal.test (non-parametric). Perform one-way ANOVA test comparing multiple groups.
- 'pearson', 'kendall', or 'spearman' (correlation), see cor.

pattern

a named vector matching the group, e.g. c('G1'=1,'G2'=3,'G3'=2), use the correlation analysis with specific pattern to calculate p-value.

```
p.adjust.method1
```

p.adjust.method for 'ko.test', see p.adjust

threads default 1 verbose logical KOlist 13

Value

ko_pvalue data.frame

See Also

```
Other GRSA: combine_rs_res(), get_reporter_score(), pvalue2zs(), reporter_score()
```

Examples

```
data("KO_abundance_test")
ko_pvalue <- ko.test(KO_abundance, "Group", metadata)</pre>
```

KOlist

The KOlist used for enrichment.

Description

an list contains two data.frame named pathway and module.

Format

four columns in each data.frame.

id "map0010" or "M00001"

K_num contians how many KOs in this pathway or module

KOs KOs name

Description the description of this pathway or module

See Also

Other data: CPDlist, Compound_htable, GOlist, KO_htable, Module_htable, Pathway_htable, hsa_kegg_pathway, mmu_kegg_pathway

K0_abundance

The KOs abundance table and group table.

Description

The KOs abundance table and group table.

The KOs abundance table and group table.

See Also

```
Other test_data: genedf, reporter_score_res
```

14 KO_enrich

KO_enrich

Perform enrichment analysis

Description

This function performs KO enrichment analysis using the 'clusterProfiler' package.

Usage

```
KO_enrich(
  ko_stat,
  padj_threshold = 0.05,
  logFC_threshold = NULL,
  add_mini = NULL,
  p.adjust.method = "BH",
  type = c("pathway", "module")[1],
  feature = "ko",
  modulelist = NULL,
  verbose = TRUE
)
```

Arguments

ko_stat dataframe from ko.test.

padj_threshold p.adjust threshold to determine whether a feature significant or not. p.adjust <

padj_threshold, default: 0.05

logFC_threshold

logFC threshold to determine whether a feature significant or not. abs(logFC)>logFC threshold,

default: NULL

add_mini when calculate the logFC. e.g (10+0.1)/(0+0.1), default 0.05*min(avg_abundance)

p.adjust.method

The method used for p-value adjustment (default: "BH").

type "pathway" or "module" for default KOlist_file.

feature one of "ko", "gene", "compound"

modulelist NULL or customized modulelist dataframe, must contain "id", "K_num", "KOs", "Description"

columns. Take the 'KOlist' as example, use custom_modulelist.

verbose logical

gsea_res gsea_res from KO_gsea

Value

A data frame containing the enrichment results.

```
enrich_res object
```

KO_fisher

See Also

```
Other common_enrich: KO_fisher(), KO_gsa(), KO_gsea(), KO_gsva(), KO_padog(), KO_safe(), KO_sea(), plot_enrich_res()
```

KO_fisher

Perform fisher's exact enrichment analysis

Description

Perform fisher's exact enrichment analysis

Usage

```
KO_fisher(
  ko_stat,
  padj_threshold = 0.05,
  logFC_threshold = NULL,
  add_mini = NULL,
  p.adjust.method = "BH",
  type = c("pathway", "module")[1],
  feature = "ko",
  modulelist = NULL,
  verbose = TRUE
)
```

Arguments

ko_stat dataframe from ko.test.

padj_threshold p.adjust threshold to determine whether a feature significant or not. p.adjust <

padj_threshold, default: 0.05

logFC_threshold

logFC threshold to determine whether a feature significant or not. abs(logFC)>logFC_threshold,

default: NULL

add_mini when calculate the logFC. e.g (10+0.1)/(0+0.1), default 0.05*min(avg_abundance)

p.adjust.method

The method used for p-value adjustment (default: "BH").

type "pathway" or "module" for default KOlist_file.

feature one of "ko", "gene", "compound"

modulelist NULL or customized modulelist dataframe, must contain "id", "K_num", "KOs", "Description"

columns. Take the 'KOlist' as example, use custom_modulelist.

verbose logical

Value

data.frame

16 KO_gsa

See Also

```
Other common_enrich: KO_enrich(), KO_gsa(), KO_gsea(), KO_gsva(), KO_padog(), KO_safe(), KO_sea(), plot_enrich_res()
```

Examples

```
## use `fisher.test` from the `stats` package.
data("reporter_score_res")
fisher_res <- KO_fisher(reporter_score_res)</pre>
```

K0_gsa

Perform gene set analysis

Description

Perform gene set analysis

Usage

```
KO_gsa(
  reporter_res,
  method = "Two class unpaired",
  p.adjust.method = "BH",
  verbose = TRUE,
  perm = 1000,
  ...
)
```

Arguments

reporter_res reporter_res

method Problem type: "quantitative" for a continuous parameter; "Two class unpaired"

; "Survival" for censored survival outcome; "Multiclass" : more than 2 groups, coded 1,2,3...; "Two class paired" for paired outcomes, coded -1,1 (first pair),

-2,2 (second pair), etc

p.adjust.method

"BH"

verbose TRUE perm 1000

... additional parameters to GSA

Value

```
enrich_res object
```

KO_gsea 17

See Also

```
Other common_enrich: KO_enrich(), KO_fisher(), KO_gsea(), KO_gsva(), KO_padog(), KO_safe(), KO_sea(), plot_enrich_res()
```

Examples

```
## use `GSA` from the `GSA` package.
if (requireNamespace("GSA")) {
  data("reporter_score_res")
  gsa_res <- KO_gsa(reporter_score_res, p.adjust.method = "none", perm = 200)
  plot(gsa_res)
}</pre>
```

K0_gsea

Perform gene set enrichment analysis

Description

Perform gene set enrichment analysis

Usage

```
KO_gsea(
  ko_stat,
  weight = "logFC",
  add_mini = NULL,
  p.adjust.method = "BH",
  type = c("pathway", "module")[1],
  feature = "ko",
  modulelist = NULL,
  verbose = TRUE
)
```

Arguments

ko_stat dataframe from ko.test.

weight the metric used for ranking, default: logFC

add_mini when calculate the logFC. e.g (10+0.1)/(0+0.1), default 0.05*min(avg_abundance)

p.adjust.method

The method used for p-value adjustment (default: "BH").

type "pathway" or "module" for default KOlist_file.

feature one of "ko", "gene", "compound"

modulelist NULL or customized modulelist dataframe, must contain "id", "K_num", "KOs", "Description"

columns. Take the 'KOlist' as example, use custom_modulelist.

verbose logical

18 KO_gsva

Value

DOSE object

See Also

```
Other common_enrich: KO_enrich(), KO_fisher(), KO_gsa(), KO_gsva(), KO_padog(), KO_safe(), KO_sea(), plot_enrich_res()
```

Examples

```
message("The following example require some time to run:")
## use `GSEA` from the `clusterProfiler` package.
if (requireNamespace("clusterProfiler")) {
  data("reporter_score_res")
  gsea_res <- KO_gsea(reporter_score_res, p.adjust.method = "none")
  enrichplot::gseaplot(gsea_res, geneSetID = data.frame(gsea_res)$ID[1])
  gsea_res_df <- as.enrich_res(gsea_res)
  plot(gsea_res_df)
}</pre>
```

K0_gsva

Perform Gene Set Variation Analysis

Description

Perform Gene Set Variation Analysis

Usage

```
KO_gsva(
  reporter_res,
  verbose = TRUE,
  method = "wilcox.test",
  p.adjust.method = "BH",
  ...
)
```

Arguments

```
reporter_res reporter_res

verbose verbose

method see ko.test
p.adjust.method
 p.adjust.method
... additional parameters to gsva
```

KO_htable

Value

```
enrich_res
```

See Also

```
Other common_enrich: KO_enrich(), KO_fisher(), KO_gsa(), KO_gsaa(), KO_padog(), KO_safe(), KO_sea(), plot_enrich_res()
```

Examples

```
## use `gsva` from the `GSVA` package.
if (requireNamespace("GSVA")) {
  data("reporter_score_res")
  gsva_res <- KO_gsva(reporter_score_res, p.adjust.method = "none")
}</pre>
```

KO_htable

KO htable from 'KEGG'

Description

KO htable from 'KEGG'

See Also

Other data: CPDlist, Compound_htable, GOlist, KOlist, Module_htable, Pathway_htable, hsa_kegg_pathway, mmu_kegg_pathway

K0_padog

Perform Pathway Analysis with Down-weighting of Overlapping Genes (PADOG)

Description

Perform Pathway Analysis with Down-weighting of Overlapping Genes (PADOG)

Usage

```
KO_padog(
  reporter_res,
  verbose = TRUE,
  perm = 1000,
  p.adjust.method = "BH",
  ...
)
```

20 KO_safe

Arguments

```
reporter_res The input reporter result.

verbose If TRUE, print verbose messages. Default is TRUE.

perm The number of permutations. Default is 1000.

p.adjust.method Method for p-value adjustment. Default is "BH".

... Additional parameters to be passed to padog function.
```

Value

A data frame containing PADOG results for KO enrichment.

```
A data frame with columns "ID," "Description," "K_num," "Exist_K_num," "p.value," and "p.adjust."
```

See Also

```
Other common_enrich: KO_enrich(), KO_fisher(), KO_gsa(), KO_gsea(), KO_gsva(), KO_safe(), KO_sea(), plot_enrich_res()
```

Examples

```
## use `PADOG` from the `PADOG` package.
if (requireNamespace("PADOG")) {
  data("reporter_score_res")
  padog_res <- KO_padog(reporter_score_res,
    verbose = TRUE,
    perm = 200, p.adjust.method = "none"
  )
}</pre>
```

K0_safe

Perform Significance Analysis of Function and Expression

Description

Perform Significance Analysis of Function and Expression

Usage

```
KO_safe(
  reporter_res,
  verbose = TRUE,
  perm = 1000,
  C.matrix = NULL,
  p.adjust.method = "BH",
  ...
)
```

KO_sea 21

Arguments

reporter_res The input reporter result.

verbose If TRUE, print verbose messages. Default is TRUE.

perm The number of permutations. Default is 1000.

C.matrix The contrast matrix. Default is NULL, and it will be generated from the module list.

p.adjust.method Method for p-value adjustment. Default is "BH".

Additional parameters to be passed to safe function.

Value

A data frame containing SAFE results for KO enrichment.

See Also

```
Other common_enrich: KO_enrich(), KO_fisher(), KO_gsa(), KO_gsea(), KO_gsva(), KO_padog(), KO_sea(), plot_enrich_res()
```

Examples

```
## use `safe` from the `safe` package.
if (requireNamespace("safe")) {
  data("reporter_score_res")
  safe_res <- KO_safe(reporter_score_res,
    verbose = TRUE,
    perm = 200, p.adjust.method = "none"
  )
}</pre>
```

K0_sea

Perform Simultaneous Enrichment Analysis

Description

Perform Simultaneous Enrichment Analysis

Usage

```
KO_sea(reporter_res, verbose = TRUE, ...)
```

Arguments

```
reporter_res The input reporter result.

verbose If TRUE, print verbose messages. Default is TRUE.

... Additional parameters to be passed to SEA function.
```

22 load_CARDinfo

Value

```
enrich_res
```

See Also

```
Other common\_enrich: KO\_enrich(), KO\_fisher(), KO\_gsa(), KO\_gsea(), KO\_gsva(), KO\_padog(), KO\_safe(), plot\_enrich\_res()
```

Examples

```
## use `SEA` from the `rSEA` package.
if (requireNamespace("rSEA")) {
  data("reporter_score_res")
  sea_res <- KO_sea(reporter_score_res, verbose = TRUE)
}</pre>
```

load_CARDinfo

Load the CARDinfo (from CARD database)

Description

Load the CARDinfo (from CARD database)

Usage

```
load_CARDinfo(verbose = TRUE)
```

Arguments

verbose logical

Value

CARDinfo

load_GOlist 23

load_GOlist

Load the GOlist (from 'GO' database)

Description

```
Load the GOlist (from 'GO' database)
Load the GOinfo (from GO)
```

Usage

```
load_GOlist(verbose = TRUE)
load_GOinfo(verbose = TRUE)
```

Arguments

verbose

logical

Value

GOlist

GOinfo

load_htable

Load the specific table (from 'KEGG')

Description

```
Load the specific table (from 'KEGG')
```

Load the KOlist (from 'KEGG')

Load the CPDlist (from 'KEGG')

Load the KO description (from 'KEGG')

Load the KO_htable (from 'KEGG')

Load the Pathway_htable (from 'KEGG')

Load the Module_htable (from 'KEGG')

Load the Compound_htable (from 'KEGG')

Load the pathway information for an organism (from 'KEGG')

24 load_htable

Usage

```
load_htable(type, verbose = TRUE)
load_KOlist(verbose = TRUE)
load_CPDlist(verbose = TRUE)
load_KO_desc(verbose = TRUE)
load_KO_htable(verbose = TRUE)
load_Pathway_htable(verbose = TRUE)
load_Module_htable(verbose = TRUE)
load_Compound_htable(verbose = TRUE)
load_org_pathway(org = "hsa", verbose = TRUE)
```

Arguments

type "ko", "module", "pathway", "compound" ...

verbose logical

org kegg organism, listed in https://www.genome.jp/kegg/catalog/org_list.html, de-

fault, "hsa"

Value

KO_htable

KOlist

CPDlist

KO description

KO_htable

Pathway_htable

Module_htable

Compound_htable

KOlist

```
Pathway_htable <- load_htable("pathway")
head(Pathway_htable)</pre>
```

mmu_kegg_pathway 25

 $mmu_kegg_pathway$

pathway information for "mmu"

Description

```
pathway information for "mmu"
```

See Also

```
Other data: CPDlist, Compound_htable, GOlist, KO_htable, KOlist, Module_htable, Pathway_htable, hsa_kegg_pathway
```

modify_description

Modify the pathway description before plotting

Description

Modify the pathway description before plotting

Usage

```
modify_description(
  reporter_res,
  pattern = " - Homo sapiens (human)",
  replacement = ""
)
```

Arguments

```
reporter_res reporter_res
pattern str, like " - Homo sapiens (human)"
replacement str, like ""
```

Value

```
reporter_res
```

```
data("reporter_score_res")
modify_description(reporter_score_res, pattern = " - Homo sapiens (human)")
```

26 plot.cm_res

Module_htable

Module htable from 'KEGG'

Description

Module htable from 'KEGG'

See Also

Other data: CPDlist, Compound_htable, GOlist, KO_htable, KOlist, Pathway_htable, hsa_kegg_pathway, mmu_kegg_pathway

Pathway_htable

Pathway htable from 'KEGG'

Description

Pathway htable from 'KEGG'

See Also

 $\label{lem:compound_htable} Other\,data: \ \texttt{CPDlist}, \ \texttt{Compound_htable}, \ \texttt{Golist}, \ \texttt{KO_htable}, \ \texttt{Kolist}, \ \texttt{Module_htable}, \ \texttt{hsa_kegg_pathway}, \\ \ \texttt{mmu_kegg_pathway}$

plot.cm_res

Plot c_means result

Description

Plot c_means result

Usage

```
## S3 method for class 'cm_res'
plot(
    x,
    filter_membership,
    mode = 1,
    show.clust.cent = TRUE,
    show_num = TRUE,
    ...
)
```

plot_enrich_res 27

Arguments

Value

ggplot

plot_enrich_res

Plot enrich_res

Description

```
Plot enrich_res
Plot enrich_res
```

Usage

```
plot_enrich_res(
  enrich_res,
 mode = 1,
 padj_threshold = 0.05,
  show_ID = FALSE,
 Pathway_description = TRUE,
  facet_level = FALSE,
  facet_anno = NULL,
  str_width = 50,
  facet_str_width = 15,
)
## S3 method for class 'enrich_res'
plot(
  Х,
 mode = 1,
 padj_threshold = 0.05,
  show_ID = FALSE,
 Pathway_description = TRUE,
  facet_level = FALSE,
```

28 plot_features_box

```
facet_anno = NULL,
str_width = 50,
facet_str_width = 15,
...
)
```

Arguments

enrich_res object enrich_res mode plot style: 1~2 padj_threshold p.adjust threshold $show_ID$ show pathway id Pathway_description show KO description rather than KO id. facet_level facet plot if the type is "pathway" or "module" facet_anno annotation table for facet, two columns, first is level summary, second is pathway id. str_width default: 50 facet_str_width

S

str width for facet label

... add

x enrich_res object

Value

ggplot ggplot

See Also

```
Other common_enrich: KO_enrich(), KO_fisher(), KO_gsa(), KO_gsea(), KO_gsva(), KO_padog(), KO_safe(), KO_sea()
```

plot_features_box

Plot features boxplot

Description

Plot features boxplot

29 plot_features_box

Usage

```
plot_features_box(
  kodf,
  group = NULL,
 metadata = NULL,
 map_id = "map00780",
  select_ko = NULL,
  only_sig = FALSE,
  box_param = NULL,
 modulelist = NULL,
 KO_description = FALSE,
  str_width = 50
)
```

Arguments

kodf KO_abundance table, rowname is ko id (e.g. K00001), colnames is samples. or result of 'get_reporter_score'

The compare group (two category) in your data, one column name of metadata group

when metadata exist or a vector whose length equal to columns number of kodf.

metadata metadata

map_id the pathway or module id

select_ko select which ko

only show the significant features only_sig box_param parameters pass to group_box

NULL or customized modulelist dataframe, must contain "id", "K num", "KOs", "Description" modulelist

columns. Take the 'KOlist' as example, use custom_modulelist.

KO_description show KO description rather than KO id.

str_width str_width to wrap

Value

ggplot

```
data("reporter_score_res")
plot_features_box(reporter_score_res,
  select_{ko} = c("K00059", "K00208", "K00647", "K00652", "K00833", "K01012"),
  box_param = list(p_value1 = FALSE, trend_line = TRUE)
plot_features_box(reporter_score_res,
  select_ko = "K00059", K0_description = TRUE,
  box_param = list(p_value1 = FALSE, trend_line = TRUE)
)
```

```
plot\_features\_distribution \\ plot the \textit{Z-score of features distribution}
```

Description

plot the Z-score of features distribution

Usage

```
plot_features_distribution(
  reporter_res,
  map_id,
  text_size = 4,
  text_position = NULL,
  rug_length = 0.04
)
```

Arguments

```
reporter_res result of 'reporter_score'

map_id the pathway or module id

text_size text_size=4

text_position text_position, e.g. c(x=3,y=0.4)

rug_length rug_length=0.04
```

Value

ggplot

```
data("reporter_score_res")
plot_features_distribution(reporter_score_res, map_id = c("map05230", "map03010"))
```

```
plot_features_heatmap
```

Description

Plot features heatmap

Usage

```
plot_features_heatmap(
  kodf,
  group = NULL,
 metadata = NULL,
 map_id = "map00780",
  select_ko = NULL,
  only_sig = FALSE,
  columns = NULL,
 modulelist = NULL,
 KO_description = FALSE,
 str_width = 50,
 heatmap_param = list()
)
```

Arguments

kodf	KO_abundance table, rowname is ko id (e.g. K00001),colnames is samples. or result of 'get_reporter_score'
group	The compare group (two category) in your data, one column name of metadata when metadata exist or a vector whose length equal to columns number of kodf.
metadata	metadata
map_id	the pathway or module id
select_ko	select which ko
only_sig	only show the significant KOs
columns	change columns
modulelist	$NULL\ or\ customized\ module list\ data frame,\ must\ contain\ "id", "K_num", "KOs", "Description"\ columns.\ Take\ the\ 'KOlist'\ as\ example,\ use\ custom_module list.$
${\sf KO_description}$	show KO description rather than KO id.
str_width	str_width to wrap

Value

ggplot

heatmap_param parameters pass to pheatmap

Examples

```
if (requireNamespace("pheatmap")) {
  data("reporter_score_res")
  plot_features_heatmap(reporter_score_res, map_id = "map00780")
}
```

```
plot_features_in_pathway
```

Plot features trend in one pathway or module

Description

Plot features trend in one pathway or module

Usage

```
plot_features_in_pathway(
    ko_stat,
    map_id = "map00780",
    modulelist = NULL,
    select_ko = NULL,
    box_color = reporter_color,
    show_number = TRUE,
    scale = FALSE,
    feature_type = "KOs",
    line_color = c(Depleted = "seagreen", Enriched = "orange", None = "grey", Significant = "red2")
)
```

Arguments

```
ko_stat
                  ko_stat result from pvalue2zs or result of 'get_reporter_score'
map_id
                  the pathway or module id
modulelist
                  NULL or customized modulelist dataframe, must contain "id", "K num", "KOs", "Description"
                  columns. Take the 'KOlist' as example, use custom_modulelist.
select_ko
                  select which ko
box_color
                  box and point color, default: c("#e31a1c","#1f78b4")
show_number
                  show the numbers.
scale
                  scale the data by row.
                  show in the title ,default: KOs
feature_type
                  line color, default: c("Depleted"="seagreen", "Enriched"="orange", "None"="grey")
line_color
```

Value

ggplot

plot_features_network 33

Examples

```
data("reporter_score_res")
plot_features_in_pathway(ko_stat = reporter_score_res, map_id = "map00860")
```

plot_features_network Plot features network

Description

Plot features network

Usage

```
plot_features_network(
  ko_stat,
  map_id = "map00780",
  near_pathway = FALSE,
 modulelist = NULL,
 kos_color = c(Depleted = "seagreen", Enriched = "orange", None = "grey", Significant =
    "red2", Pathway = "\#80b1d3"),
  pathway_label = TRUE,
  kos_label = TRUE,
  pathway_description = FALSE,
  kos_description = FALSE,
  str_width = 50,
  mark_module = FALSE,
 mark_color = NULL,
  return_net = FALSE,
)
```

Arguments

```
ko_stat
                  ko_stat result from pvalue2zs or result of 'get_reporter_score'
map_id
                  the pathway or module id
                  show the near_pathway if any features exist.
near_pathway
                  NULL or customized modulelist dataframe, must contain "id", "K_num", "KOs", "Description"
modulelist
                  columns. Take the 'KOlist' as example, use custom_modulelist.
kos_color
                  default, c("Depleted"="seagreen", "Enriched"="orange", "None"="grey", "Significant"="red2")
                  show pathway_label?
pathway_label
kos_label
                  show kos_label?
pathway_description
                  show the pathway description?
```

34 plot_htable

```
kos_description
```

show the kos description?

str_width str width

mark_module mark the modules?

mark_color mark colors, default, c("Depleted"="seagreen", "Enriched"="orange", "None"="grey", "Significant"="red2"

return_net return the network

... additional arguments for c_net_plot

Value

network plot

Examples

```
if (requireNamespace("MetaNet")) {
  data("reporter_score_res")
  plot_features_network(reporter_score_res, map_id = "map05230")
  plot_features_network(reporter_score_res, map_id = "map00780", near_pathway = TRUE)
}
```

plot_htable

Plot htable levels

Description

Plot htable levels

Usage

```
plot_htable(type = "ko", select = NULL, htable = NULL)
```

Arguments

type "ko", "module", "pathway", "compound"

select select ids

htable custom a htable

Value

ggplot

```
data("KO_abundance_test")
plot_htable(select = rownames(KO_abundance))
```

plot_KEGG_map 35

Description

```
plot_KEGG_map
```

Usage

```
plot_KEGG_map(
   ko_stat,
   map_id = "map00780",
   modulelist = NULL,
   type = "pathway",
   feature = "ko",
   color_var = "Z_score",
   save_dir,
   color = c("seagreen", "grey", "orange")
)
```

Arguments

ko_stat result from pvalue2zs or result of 'get_reporter_score'

map_id the pathway or module id

modulelist NULL or customized modulelist dataframe, must contain "id", "K_num", "KOs", "Description"

columns. Take the 'KOlist' as example, use custom_modulelist.

type "pathway" or "module" for default KOlist for microbiome, "CC", "MF", "BP",

"ALL" for default GOlist for homo sapiens. And org in listed in 'https://www.genome.jp/kegg/catalog/org

such as "hsa" (if your kodf is come from a specific organism, you should specify

type here).

feature one of "ko", "gene", "compound"

color_var use which variable to color save_dir where to save the png files

color color

Value

png files

References

https://zhuanlan.zhihu.com/p/357687076

36 plot_report

Examples

```
message("The following example will download some files, run yourself:")
if (requireNamespace("pathview")) {
  output_dir <- tempdir()
  data("reporter_score_res")
  plot_KEGG_map(reporter_score_res$ko_stat,
    map_id = "map00780", type = "pathway",
    feature = "ko", color_var = "Z_score", save_dir = output_dir
  )
}</pre>
```

plot_report

Plot the reporter_res

Description

Plot the reporter_res

Usage

```
plot_report(
  reporter_res,
  rs_threshold = 1.64,
  mode = 1,
  y_text_size = 13,
  str_width = 100,
  show_ID = FALSE,
  Pathway_description = TRUE,
  facet_level = FALSE,
  facet_anno = NULL,
  facet_str_width = 15,
  plot_line = TRUE,
  reorder = FALSE
)
```

Arguments

```
reporter_res result of 'get_reporter_score' or 'reporter_score'
rs_threshold plot threshold vector, default:1.64
mode 1~3 plot style.
y_text_size y_text_size
str_width str_width to wrap
show_ID show pathway id
```

```
Pathway_description
```

show KO description rather than KO id.

facet_level facet plot if the type is "pathway" or "module"

facet_anno annotation table for facet, two columns, first is level summary, second is path-

way id.

facet_str_width

str width for facet label

plot_line plot line or not

reorder reorder the order of the pathways

Value

ggplot

Examples

```
data("reporter_score_res")
plot_report(reporter_score_res, rs_threshold = c(2.5, -2.5), y_text_size = 10, str_width = 40)
```

```
plot_report_circle_packing
```

Plot the reporter_res as circle_packing

Description

Plot the reporter_res as circle_packing

Usage

```
plot_report_circle_packing(
  reporter_res,
  rs_threshold = 1.64,
  mode = 2,
  facet_anno = NULL,
  show_ID = FALSE,
  Pathway_description = TRUE,
  str_width = 10,
  show_level_name = "all",
  show_tip_label = TRUE
)
```

38 plot_significance

Arguments

reporter_res result of 'get_reporter_score' rs_threshold plot threshold vector, default:1.64

mode 1~2 plot style.

facet_anno annotation table for facet, more two columns, last is pathway name, last second

is pathway id.

show_ID show pathway id

Pathway_description

show KO description rather than KO id.

str_width str_width to wrap

show_level_name

show the level name?

show_tip_label show the tip label?

Value

ggplot

Examples

```
data("reporter_score_res")
if (requireNamespace("igraph") && requireNamespace("ggraph")) {
   plot_report_circle_packing(reporter_score_res, rs_threshold = c(2, -2), str_width = 40)
}
```

plot_significance

Plot the significance of pathway

Description

Plot the significance of pathway

Usage

```
plot_significance(reporter_res, map_id)
```

Arguments

```
reporter_res result of 'get_reporter_score' or 'reporter_score'
map_id the pathway or module id
```

Value

ggplot

print.reporter_score 39

Examples

```
data("reporter_score_res")
plot_significance(reporter_score_res, map_id = c("map05230", "map03010"))
```

```
print.reporter_score
```

Description

Print reporter_score

Usage

```
## S3 method for class 'reporter_score'
print(x, ...)
```

Arguments

x reporter_score

... add

Value

No value

Description

```
Print rs_by_cm
```

Usage

```
## S3 method for class 'rs_by_cm'
print(x, ...)
```

Arguments

```
x rs_by_cm
... add
```

Value

No value

40 pvalue2zs

pvalue2zs

Transfer p-value of KOs to Z-score

Description

Transfer p-value of KOs to Z-score

Usage

```
pvalue2zs(
  ko_pvalue,
  mode = c("directed", "mixed")[1],
  p.adjust.method1 = "none"
)
```

Arguments

ko_pvalue data.frame from ko.test, 'KO_id' and 'p.value' columns are required.

mode 'mixed' or 'directed' (default, only for two groups differential analysis or multigroups correlation analysis.), see details in pvalue2zs.

p.adjust.method1

p.adjust.method for 'ko.test', see p.adjust

Details

'mixed' mode is the original reporter-score method from Patil, K. R. et al. PNAS 2005. In this mode, the reporter score is **undirected**, and the larger the reporter score, the more significant the enrichment, but it cannot indicate the up-and-down regulation information of the pathway! (Liu, L. et al. iMeta 2023.)

steps:

- 1. Use the Wilcoxon rank sum test to obtain the P value of the significance of each KO difference between the two groups (ie P_{koi} , i represents a certain KO);
- 2. Using an inverse normal distribution, convert the P value of each KO into a Z value (Z_{koi}) , the formula:

$$Z_{koi} = \theta^{-1}(1 - P_{koi})$$

3. 'Upgrade' KO to pathway: Z_{koi} , calculate the Z value of the pathway, the formula:

$$Z_{pathway} = \frac{1}{\sqrt{k}} \sum Z_{koi}$$

where k means A total of k KOs were annotated to the corresponding pathway;

4. Evaluate the degree of significance: permutation (permutation) 1000 times, get the random distribution of $Z_{pathway}$, the formula:

```
Z_{adjustedpathway} = (Z_{pathway} - \mu_k)/\sigma_k
```

 μ_k is The mean of the random distribution, σ_k is the standard deviation of the random distribution.

Instead, 'directed' mode is a derived version of 'mixed', referenced from https://github.com/wangpeng407/ReporterSc

pvalue2zs 41

This approach is based on the same assumption of many differential analysis methods: the expression of most genes has no significant change.

steps:

- 1. Use the Wilcoxon rank sum test to obtain the P value of the significance of each KO difference between the two groups (ie P_{koi} , i represents a certain KO), and then divide the P value by 2, that is, the range of (0,1] becomes (0,0.5], $P_{koi} = P_{koi}/2$;
- 2. Using an inverse normal distribution, convert the P value of each KO into a Z value (Z_{koi}) , the formula:

$$Z_{koi} = \theta^{-1}(1 - P_{koi})$$

since the above P value is less than 0.5, all Z values will be greater than 0;

3. Considering whether each KO is up-regulated or down-regulated, calculate $diff_KO$,

$$Z_{koi} = -Z_{koi}$$
 (diff_KO < 0),

so Z_{koi} is greater than 0 Up-regulation, Z_{koi} less than 0 is down-regulation;

4. 'Upgrade' KO to pathway: Z_{koi} , calculate the Z value of the pathway, the formula:

$$Z_{pathway} = \frac{1}{\sqrt{k}} \sum Z_{koi}$$

where k means A total of k KOs were annotated to the corresponding pathway;

5. Evaluate the degree of significance: permutation (permutation) 1000 times, get the random distribution of $Z_{pathway}$, the formula:

$$Z_{adjustedpathway} = (Z_{pathway} - \mu_k)/\sigma_k$$

 μ_k is The mean of the random distribution, σ_k is the standard deviation of the random distribution.

The finally obtained $Z_{adjustedpathway}$ is the Reporter score value enriched for each pathway. In this mode, the Reporter score is directed, and a larger positive value represents a significant upregulation enrichment, and a smaller negative values represent significant down-regulation enrichment.

However, the disadvantage of this mode is that when a pathway contains about the same number of significantly up-regulates KOs and significantly down-regulates KOs, the final absolute value of Reporter score may approach 0, becoming a pathway that has not been significantly enriched.

Value

ko_stat data.frame

References

1. Patil, K. R. & Nielsen, J. Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci U S A 102, 2685–2689 (2005). 2. Liu, L., Zhu, R. & Wu, D. Misuse of reporter score in microbial enrichment analysis. iMeta n/a, e95. 3. https://github.com/wangpeng407/Reporte

See Also

Other GRSA: combine_rs_res(), get_reporter_score(), ko.test(), reporter_score()

reporter_score

Examples

```
data("KO_abundance_test")
ko_pvalue <- ko.test(KO_abundance, "Group", metadata)
ko_stat <- pvalue2zs(ko_pvalue, mode = "directed")</pre>
```

reporter_score

One step to get the reporter score of your KO abundance table.

Description

One step to get the reporter score of your KO abundance table.

Usage

```
reporter_score(
  kodf,
  group,
 metadata = NULL,
 method = "wilcox.test",
 pattern = NULL,
 p.adjust.method1 = "none",
 mode = c("directed", "mixed")[1],
  verbose = TRUE,
  feature = "ko",
  type = c("pathway", "module")[1],
 p.adjust.method2 = "BH",
 modulelist = NULL,
  threads = 1,
 perm = 4999,
 min_exist_K0 = 3,
 max_exist_K0 = 600
)
```

Arguments

kodf	KO_abundance table, rowname are feature ids (e.g. K00001 if feature="ko"; PEX11A if feature="gene"; C00024 if feature="compound"), colnames are samples.
group	The comparison groups (at least two categories) in your data, one column name of metadata when metadata exist or a vector whose length equal to columns number of kodf. And you can use factor levels to change order.
metadata	sample information data.frame contains group
method	the type of test. Default is 'wilcox.test'. Allowed values include:

reporter_score 43

• t.test (parametric) and wilcox.test (non-parametric). Perform comparison between two groups of samples. If the grouping variable contains more than two levels, then a pairwise comparison is performed.

- anova (parametric) and kruskal.test (non-parametric). Perform one-way ANOVA test comparing multiple groups.
- 'pearson', 'kendall', or 'spearman' (correlation), see cor.

pattern a named vector matching the group, e.g. c('G1'=1,'G2'=3,'G3'=2), use the cor-

relation analysis with specific pattern to calculate p-value.

p.adjust.method1

p.adjust.method for 'ko.test', see p.adjust

mode 'mixed' or 'directed' (default, only for two groups differential analysis or multi-

groups correlation analysis.), see details in pvalue2zs.

verbose logical

feature one of 'ko', 'gene', 'compound'

'pathway' or 'module' for default KOlist for microbiome, 'CC', 'MF', 'BP',

'ALL' for default GOlist for homo sapiens. And org in listed in 'https://www.genome.jp/kegg/catalog/org

such as 'hsa' (if your kodf is come from a specific organism, you should specify

type here).

p.adjust.method2

p.adjust.method for the correction of ReporterScore, see p.adjust

modulelist NULL or customized modulelist dataframe, must contain 'id', 'K_num', 'KOs', 'Description'

columns. Take the 'KOlist' as example, use custom_modulelist.

threads default 1

perm permutation number, default: 4999.

min_exist_KO min exist KO number in a pathway (default, 3, when a pathway contains KOs

less than 3, there will be no RS)

max_exist_KO max exist KO number in a pathway (default, 600, when a pathway contains KOs

more than 600, there will be no RS)

Value

reporter_score object:

kodf your input KO_abundance table

ko_stat ko statistics result contains p.value and z_score

reporter_s the reporter score in each pathway

modulelist default KOlist or customized modulelist dataframe

group The comparison groups in your data

metadata sample information dataframe contains group

for the 'reporter_s' in result, whose columns represent:

ID pathway id

Description pathway description

44 reporter_score_res

K_num total number of KOs/genes in the pathway

Exist_K_num number of KOs/genes in your input data that exist in the pathway

Significant_K_num

number of kos/genes in your inputdata that are significant in the pathway

Z_score $Z_{pathway} = \frac{1}{\sqrt{k}} \sum Z_{koi}$

BG_Mean Background mean, μ_k

BG_Sd Background standard deviation, σ_k

ReporterScore ReporterScore of the pathway, $ReporterScore = (Z_{pathway} - \mu_k)/\sigma_k$

p.value of the ReporterScore

p.adjust adjusted p.value by p.adjust.method2

See Also

```
Other GRSA: combine_rs_res(), get_reporter_score(), ko.test(), pvalue2zs()
```

Examples

```
message("The following example require some time to run:")

data("KO_abundance_test")
reporter_score_res <- reporter_score(KO_abundance, "Group", metadata,
    mode = "directed", perm = 499
)
head(reporter_score_res$reporter_s)
reporter_score_res2 <- reporter_score(KO_abundance, "Group2", metadata,
    mode = "mixed",
    method = "kruskal.test", p.adjust.method1 = "none", perm = 499
)
reporter_score_res3 <- reporter_score(KO_abundance, "Group2", metadata,
    mode = "directed",
    method = "pearson", pattern = c("G1" = 1, "G2" = 3, "G3" = 2), perm = 499
)</pre>
```

reporter_score_res 'reporter_score()' result from KO_abundance_test

Description

```
`reporter\_score()` result from KO\_abundance\_test
```

'reporter_score()' result from KO_abundance_test

RSA_by_cm 45

Format

```
a list contain 7 elements.

kodf your input KO_abundance table

ko_stat ko statistics result contains p.value and z_score

reporter_s the reporter score in each pathway

modulelist default KOlist or customized modulelist dataframe

group The compare group (two category) in your data

metadata sample information dataframe contains group
```

See Also

Other test_data: K0_abundance, genedf

RSA_by_cm

Reporter score analysis after C-means clustering

Description

Reporter score analysis after C-means clustering Extract one cluster from rs_by_cm object Plot c_means result

Usage

```
RSA_by_cm(
  kodf,
  group,
 metadata = NULL,
  k_num = NULL,
  filter_var = 0.7,
  verbose = TRUE,
 method = "pearson",
)
extract_cluster(rsa_cm_res, cluster = 1)
plot_c_means(
  rsa_cm_res,
  filter_membership,
 mode = 1,
  show.clust.cent = TRUE,
  show_num = TRUE,
)
```

46 RSA_by_cm

Arguments

```
kodf
                      KO_abundance table, rowname is ko id (e.g. K00001), colnames is samples.
                      The comparison groups (at least two categories) in your data, one column name
    group
                      of metadata when metadata exist or a vector whose length equal to columns
                      number of kodf. And you can use factor levels to change order.
                      sample information data.frame contains group
    metadata
    k_num
                      if NULL, perform the cm_test_k, else an integer
    filter_var
                      see c_means
    verbose
                      verbose
    method
                      method from reporter_score
                      additional
                      a cm_res object
    rsa_cm_res
    cluster
                      integer
    filter_membership
                      filter membership 0~1.
                      1~2
    mode
    show.clust.cent
                      show cluster center?
                      show number of each cluster?
    show_num
Value
    rs_by_cm
    reporter_score object
    ggplot
See Also
    Other C_means: cm_test_k()
```

Examples

```
message("The following example require some time to run:")
if (requireNamespace("e1071") && requireNamespace("factoextra")) {
  data("KO_abundance_test")
  rsa_cm_res <- RSA_by_cm(KO_abundance, "Group2", metadata,
        k_num = 3,
        filter_var = 0.7, method = "pearson", perm = 199
  )
  extract_cluster(rsa_cm_res, cluster = 1)
}</pre>
```

update_CARDinfo 47

update_CARDinfo

update CARDinfo from (from 'CARD' database)

Description

```
update CARDinfo from (from 'CARD' database)
```

Usage

```
update_CARDinfo(download_dir = NULL, card_data = NULL)
```

Arguments

download_dir

download_dir

card_data

card_data from https://card.mcmaster.ca/download/0/broadstreet-v3.2.8.tar.bz2

Value

No value

update_G0list

Update the GO2gene files (from 'GO' database)

Description

Download links: http://geneontology.org/docs/download-ontology/https://asa12138.github.io/FileList/GO

Usage

```
update_GOlist(download_dir = NULL, GO_file = NULL)
update_GOinfo(download_dir = NULL, obo_file = NULL)
```

Arguments

 $\begin{array}{ll} \mbox{download_dir} & \mbox{download_dir} \\ \mbox{GO_file} & \mbox{GO_file} \end{array}$

 $obo_file \\ \\ obo_file \\ from \\ \\ http://current.geneontology.org/ontology/go.obo \\ \\$

Value

No value

48 update_KEGG

update_KEGG

Update files from 'KEGG'

Description

Download links:

Usage

```
update_KEGG(download_dir)

update_KO_file(download_dir, RDSfile = NULL)

update_htable(type, keg_file = NULL, download = FALSE, download_dir = NULL)

update_org_pathway(
    org = "hsa",
    RDS_file = NULL,
    download = TRUE,
    download_dir = NULL
)
```

Arguments

download_dir where to save the .keg file?

RDSfile saved KO files.RDS file

type "ko", "module", "pathway", "compound" ...

keg_file path of a .keg file, such as ko00001.keg from https://www.genome.jp/kegg-

bin/download_htext?htext=ko00001&format=htext.

download save the .keg file?

org kegg organism, listed in https://www.genome.jp/kegg/catalog/org_list.html, de-

fault, "hsa"

RDS_file path of a org.RDS file if you saved before.

Value

No value

up_level_KO 49

Description

Upgrade the KO level

Usage

```
up_level_KO(
  KO_abundance,
  level = "pathway",
  show_name = FALSE,
  modulelist = NULL,
  verbose = TRUE
)
```

Arguments

KO_abundance KO_abundance

level one of 'pathway', 'module', 'level1', 'level2', 'level3', 'module1', 'module2',

'module3'.

show_name logical

modulelist NULL or customized modulelist dataframe, must contain 'id', 'K_num', 'KOs', 'Description'

columns. Take the 'KOlist' as example, use custom_modulelist.

verbose logical

Value

data.frame

Examples

```
data("KO_abundance_test")
KO_level1 <- up_level_KO(KO_abundance, level = "level1", show_name = TRUE)</pre>
```

Index

. C moons	a maana (am taat k) 2
* C_means cm_test_k, 3	<pre>c_means (cm_test_k), 3 c_net_plot, 34</pre>
RSA_by_cm, 45	cm_test_k, 3, 46
* GRSA	combine_rs_res, 4, 11, 13, 41, 44
combine_rs_res,4	Compound_htable, 5, 5, 11, 13, 19, 25, 26
get_reporter_score, 10	cor, 12, 43
ko.test, 12	CPDlist, 5, 5, 11, 13, 19, 25, 26
pvalue2zs, 40	custom_modulelist, 4, 6, 7, 9, 10, 14, 15, 17,
reporter_score, 42	29, 31–33, 35, 43, 49
* common_enrich	$\verb custom_modulelist_from_org , 6, 7, 9 $
KO_enrich, 14	download_org_pathway(update_KEGG), 48
KO_fisher, 15	downtoad_org_patriway (update_KEGG), 46
KO_gsa, 16	export_report_table, 8
KO_gsea, 17	extract_cluster (RSA_by_cm), 45
K0_gsva, 18	extract_craster (non_sy_cm), is
KO_padog, 19	gene2ko, 8
KO_safe, 20	genedf, 9, 13, 45
K0_sea, 21	get_features, 6, 7, 9
plot_enrich_res,27	get_KOs (get_features), 9
* data	get_org_pathway (update_KEGG), 48
Compound_htable, 5	get_reporter_score, 4, 10, 13, 41, 44
CPDlist, 5	GOlist, 5, 11, 11, 13, 19, 25, 26
GOlist, 11	group_box, 29
hsa_kegg_pathway, 11	GRSA (reporter_score), 42
KO_htable, 19	GRSA_by_cm (RSA_by_cm), 45
KOlist, 13	GSA, 16
mmu_kegg_pathway, 25	gsva, <i>18</i>
Module_htable, 26	8014,10
Pathway_htable, 26	hsa_kegg_pathway, 5, 11, 11, 13, 19, 25, 26
* modulelist	
<pre>custom_modulelist, 6</pre>	ko.test, 4, 11, 12, 14, 15, 17, 18, 40, 41, 44
<pre>custom_modulelist_from_org, 7</pre>	KO_abundance, <i>9</i> , 13, <i>45</i>
get_features, 9	KO_enrich, 14, <i>16</i> -22, 28
* test_data	KO_fisher, <i>15</i> , 15, <i>17</i> –22, 28
genedf, 9	KO_gsa, 15, 16, 16, 18–22, 28
KO_abundance, 13	KO_gsea, <i>15–17</i> , 17, <i>19–22</i> , <i>28</i>
reporter_score_res, 44	KO_gsva, 15–18, 18, 20–22, 28
	KO_htable, 5, 11, 13, 19, 25, 26
anova, <i>12</i> , <i>43</i>	KO_padog, 15–19, 19, 21, 22, 28
as.enrich_res(KO_enrich),14	KO_safe, <i>15-20</i> , 20, 22, 28

INDEX 51

KO_sea, <i>15–21</i> , 21, 28	<pre>plot_report_circle_packing, 37</pre>
KOlist, 5, 11, 13, 19, 25, 26	plot_significance, 38
kruskal.test, <i>12</i> , <i>43</i>	print.reporter_score, 39
	print.rs_by_cm, 39
load_CARDinfo, 22	pvalue2zs, 4, 9–11, 13, 32, 33, 35, 40, 40, 43,
<pre>load_Compound_htable (load_htable), 23</pre>	44
<pre>load_CPDlist(load_htable), 23</pre>	
<pre>load_GOinfo (load_GOlist), 23</pre>	reporter_score, 4, 11, 13, 41, 42, 46
load_GOlist, 23	reporter_score_res, 9, 13, 44
load_htable, 23	reporter_score_res2
load_KO_desc (load_htable), 23	(reporter_score_res), 44
load_KO_htable (load_htable), 23	RSA (reporter_score), 42
load_KOlist (load_htable), 23	RSA_by_cm, 3, 45
load_Module_htable (load_htable), 23	- - - , ,
load_org_pathway (load_htable), 23	safe, <i>21</i>
load_Pathway_htable (load_htable), 23	SEA, 21
Toda_rathway_htable (Toda_htable), 25	
metadata (KO_abundance), 13	t.test, <i>12</i> , <i>43</i>
mmu_kegg_pathway, 5, 11, 13, 19, 25, 26	transform_modulelist
modify_description, 25	(custom_modulelist), 6
Module_htable, 5, 11, 13, 19, 25, 26, 26	
Tiodate_Treadic, 3, 11, 13, 13, 23, 20, 20	up_level_KO, 49
p.adjust, 10, 12, 40, 43	update_CARDinfo, 47
padog, 20	update_GOinfo(update_GOlist),47
Pathway_htable, 5, 11, 13, 19, 25, 26, 26	update_GOlist, 47
pheatmap, 31	update_htable (update_KEGG), 48
plot.cm_res, 26	update_KEGG, 48
plot.enrich_res(plot_enrich_res), 27	update_KO_file (update_KEGG), 48
plot_c_means (RSA_by_cm), 45	update_org_pathway (update_KEGG), 48
plot_enrich_res, 15-22, 27	wilcox.test, <i>12</i> , <i>43</i>
plot_features_box, 28	
plot_features_distribution, 30	
plot_features_heatmap, 31	
plot_features_in_pathway, 32	
plot_features_network, 33	
plot_htable, 34	
plot_KEGG_map, 35	
plot_KOs_box (plot_features_box), 28	
plot_KOs_distribution	
<pre>(plot_features_distribution),</pre>	
30	
plot_KOs_heatmap	
<pre>(plot_features_heatmap), 31</pre>	
plot_KOs_in_pathway	
<pre>(plot_features_in_pathway), 32</pre>	
plot_KOs_network	
<pre>(plot_features_network), 33</pre>	
plot_report, 36	
<pre>plot_report_bar (plot_report), 36</pre>	