

Density estimation via adiabatic quantum computing

Matteo Robbiati¹², Juan Manuel Cruz Martinez² and Stefano Carrazza¹²³

¹TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano, Milan, Italy.

² CERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland. ³ Quantum Research Center, Technology Innovation Institute, Abu Dhabi, UAE.

Aim of the project

We propose a novel strategy to perform density estimation: given a variable x sampled from an unknown distribution $\rho(x)$, we aim to estimate the puntual probability density value $\hat{\rho}(\boldsymbol{x})$.

To know the value of the probability of a given data x is important in many situations, for example while calculating integrals via Monte Carlo Integration, where ρ is used to correctly weight the sample points in the integral approximation.

Schematic pipeline of the algorithm

% Encoding a CDF into an adiabatic evolution

We use qibo [1] to simulate an adiabatic evolution on time τ :

$$H_{\mathrm{ad}}(\tau, \boldsymbol{\theta}) = [1 - s(\tau, \boldsymbol{\theta})]H_0 + s(\tau, \boldsymbol{\theta})H_1.$$
(1)

We map $\{x,F(x)\}$ into $\{\tau,E(\tau)\}$, where $E(\tau)$ energy of a non-interacting Pauli Z over the evolved ground state of $H_{\rm ad}$ at τ .

How we optimize the evolution

- perform the evolution with initial guess θ_0 in the scheduling;
- estimating a loss function J_{mse}[F, E(θ)];
 updating θ using a chosen optimizer until convergence.

A, C Building a derivable circuit

After encoding the CDF into the evolution, we translate $H_{\rm ad}$ into a circuit derivable via shift rules [2]:

Validation cases

We firstly test the QAML procedure on a Gamma distribution and on a Gaussian mixture.

W Quantum density estimation of quantum generated data

LHC events of a $pp \to t\bar{t}$ decay generated with a quantum GAN [3].

On which we apply the QAML algorithm:

Results

Simulation with shots noise due to $N_{\rm nshots} = 5 \cdot 10^4$.

Fit function	N_{sample}	p	J_f	$N_{ m ratio}$	χ^2
Gamma	$5 \cdot 10^4$	25	$2.9 \cdot 10^{-6}$	31	$2.2 \cdot 10^{-4}$
Gaussian mix	$2 \cdot 10^{5}$	30	$2.75 \cdot 10^{-5}$	31	$4.39 \cdot 10^{-3}$
t	$5 \cdot 10^4$	20	$2.1 \cdot 10^{-6}$	34	$3.4 \cdot 10^{-4}$
s	$5 \cdot 10^4$	20	$7.9 \cdot 10^{-6}$	34	$1.20 \cdot 10^{-3}$
u	$5 \cdot 10^4$	8	$3.7 \cdot 10^{-6}$	34	$1.45 \cdot 10^{-3}$

Scale up with dimensionality

This same framework can be used to determine a d-dimensional PDFs in case of d iid variables. We can do this by composing a d-qubits circuit which encodes the rotations corresponding to d adiabatic evolutions. The global PDF is calculated as product of the marginalised ones. In the following we estimate $\rho_q(x_1, x_2) = \rho_1(x_1)\rho_2(x_2)$.

References

- S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto, A. Pérez-Salinas, D. García-Martín, A. Garcia-Saez, J. I. Latorre, and S. Carrazza, "Qibo: a framework for quantum simulation with hardware acceleration," Quantum Science and Technology, vol. 7, p. 015018, dec 2021.
- [2] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran, "Evaluating analytic gradients on quantum hardware," Physical Review A, vol. 99, mar 2019.
- [3] C. Bravo-Prieto, J. Baglio, M. Cè, A. Francis, D. M. Grabowska, and S. Carrazza, "Style-based quantum generative adversarial networks for monte carlo events," Quantum, vol. 6, p. 777, aug 2022.

