ÁLGEBRA MATRICIAL Y GEOMETRÍA ANALÍTICA TERCERA PRÁCTICA CALIFICADA SEMESTRE ACADÉMICO 2021-1

Elaborado por los profesores del curso

PREGUNTA 1:

Considere las siguientes operaciones entre vectores \vec{u} , \vec{v} y \vec{w} no nulos de \mathbb{R}^3

- I. $\vec{w} \times (\vec{u} \times \vec{v}) (\vec{w} \cdot \vec{v})\vec{u}$
- II. $Proy_{4\vec{w}}(Proy_{\vec{v}}(\vec{u} \times \vec{w}))$
- III. $(\vec{u} 7\vec{v}) \times (||\vec{w} \times \vec{v}||\vec{u} + 3)$

IV.
$$\frac{(\vec{w} - \vec{v})}{[\vec{u}, \vec{w} + \vec{v}, \vec{w} - \vec{v}]} - ||\vec{w}||\vec{u} \times (\vec{v} \cdot \vec{v})$$

Señales cuales están bien definidas

- a) Solo I y II
- b) Solo II y III
- c) Solo I y IV
- d) Solo III y IV
- e) Solo I, II y IV

PREGUNTA 2:

Considere los vectores $\overrightarrow{v_1} = (2;4;2)$, $\overrightarrow{v_2} = (3;3;3a)$ y $\overrightarrow{v_3} = (4;2;4a^2)$, con a $\in \mathbb{R}$. Halle el conjunto de todos los valores que puede tomar a de modo que los vectores $\overrightarrow{v_1}$, $\overrightarrow{v_2}$ y $\overrightarrow{v_3}$ sean coplanares.

- a) $\{\frac{1}{2}, 1\}$
- b) $\{\frac{1}{2}, 3\}$
- c) $\{-1, -\frac{3}{4}\}$
- d) $\{2,3\}$
- e) Ninguna de las opciones mostradas es la respuesta.

PREGUNTA 3:

Sean los vectores \vec{u} , \vec{v} y \vec{w} en \mathbb{R}^3 , tales que cumplen las siguientes condiciones:

- $\vec{w} = (\vec{u} \vec{v}) \times (\vec{u} + \vec{v})$
- El ángulo formado por los vectores \vec{u} \vec{y} \vec{v} mide $\frac{\pi}{4}$.
- $||\vec{u}|| = 1$; $||\vec{v}|| = 3$.

Determine el volumen del paralelepípedo generado por \vec{w} , \vec{u} y \vec{v} .

- a) 9
- b) 18
- c) 28
- d) 38
- e) Ninguna de las opciones mostradas es la respuesta

PREGUNTA 4:

Los puntos M(4;-6;-5), P(x;2;5) y Q(5;2;3) son vértices de un cuadrilátero MNPQ. Además, se sabe que $Comp_{(1;0;0)}\overrightarrow{QP} = -2$ y $Proy_{\overrightarrow{MN}}\overrightarrow{MQ} = \frac{17}{26}(-3;11;0)$. Halle el valor de x y las coordenadas del punto H, ubicado en el segmento \overline{NM} , de modo que el vector \overrightarrow{QH} sea perpendicular al vector \overrightarrow{NM} .

a)
$$x = 3 y H(\frac{53}{26}; \frac{31}{26}; -5)$$

b)
$$x = 4 y H(\frac{53}{26}; \frac{31}{26}; -5)$$

c) Ninguna de las opciones mostradas es la respuesta.

d)
$$x = 3 y H(-5; \frac{31}{26}; \frac{53}{26})$$

e)
$$x = -5 y H\left(-5; -\frac{31}{26}; -\frac{53}{26}\right)$$

PREGUNTA 5:

Considere el tetraedro ABCD tal que A(0;0;0), B(-2;2;-1), C(1;-3;-1) y \overrightarrow{AD} paralelo a la recta de ecuación P=(-6;10;-1)+t(0;1;1), $t \in \mathbb{R}$. Si se sabe que el volumen del tetraedro es $\frac{10}{3}$ u³, halle las coordenadas del vértice D.

PREGUNTA 6:

Dadas las ecuaciones de las rectas $L_1: P = (3; 4; 2) + t(-2; 4; 2)$, $t \in \mathbb{R}$ $y L_2: P = (1; k + 4; 4) + s\left(1; -\frac{k}{2}; -1\right)$, $s \in \mathbb{R}$. Determine los valores de $k \in \mathbb{R}$, en caso existan, de manera que las rectas L_1 $y L_2$:

- a) Sean coincidentes (iguales)
- b) Se corten perpendicularmente

PREGUNTA 7:

Sean \vec{u} y \vec{v} vectores no nulos, tales que $||\vec{u}|| = 3\sqrt{5}$ y $||\vec{v}|| = \sqrt{2}$. Demuestre que el vector:

$$\vec{w} = \frac{1}{3\sqrt{5} + \sqrt{2}} \left(\sqrt{2}\vec{u} + 3\sqrt{5}\vec{v} \right)$$

Biseca al ángulo formado por lo vectores \vec{u} y \vec{v}