Baire Space

Definition: Nowhere Dense

Let E be a normed space and let $X \subset E$. To say that X is nowhere dense in E means that the interior of its closure is empty. In other words, \overline{X} contains no open subsets.

Examples

- 1). \mathbb{Z} is nowhere dense in R because Z is its own closure, which has no interior points.
- 2). The Cantor set C.

Definition: Categories

Let E be a normed space and let $X \subset E$ be a countable union of sets:

$$X = \bigcup_{n=1}^{\infty} U_n$$

To say that X is of the *first category (meager)* means $\forall n \in \mathbb{N}$, U_n is nowhere dense in E.

Otherwise X is of the *second category (nonmeagre)* - i.e., $\exists n \in \mathbb{N}$ such that $\overline{U_n}$ has a non-empty interior.

Definition: Baire Space

Let E be a normed space. To say that E is a *Baire* space means every non-empty open subset X of E is of the second category in E.

The following restatements are equivalent:

- ullet Every countable union of nowhere dense sets in E is nowhere dense.
- Every countable intersection of dense sets in E is dense.

Theorem: Baire Category Theorem

Every complete normed (Banach) space ${\cal E}$ is a Baire Space.

Proof

Assume $X = \bigcap_{n=1}^{\infty} U_n$ is an intersection of dense sets in E.

Assume W is an open subset in E.

Since U_1 is dense in $E, \exists \vec{x}_1 \in U_1$ such that $\vec{x}_1 \in W \cap U_1$.

So $\exists r_1 \in (0,1)$ such that $\overline{B}(\vec{x}_1,r_1) \subset W \cap U_1$. Recursively construct a sequence (x_n) in E such that:

$$\overline{B}(\vec{x}_{n+1},r_{n+1}) \subset B(\vec{x}_n,r_n) \cap U_n$$

where $0 < r_n < \frac{1}{n}$. Thus, (x_n) is Cauchy and so, by completeness, $\vec{x}_n \to \vec{x} \in E$. But $\forall n \in \mathbb{N}$, a tail part of (\vec{x}_n) is in $\overline{B}(\vec{x}_n, r_n)$. So, by closedness, $\vec{x} \in \overline{B}(\vec{x}_n, r_n) \subset U_n$. Thus $\forall n \in \mathbb{N}, \vec{x} \in U_n$, and so $\vec{x} \in X$. But $\vec{x} \in W$ also, and so $\vec{x} \in W \cap X$.

Therefore X is dense, and so E is a Baire Space.