Universidade de Aveiro

Licenciatura em Tecnologias e Sistemas de Informação

1^a parte do Exame de Redes e Serviços 28 de Junho de 2013

Duração: 1h15. Sem consulta. Justifique cuidadosamente todas as respostas.

- 1. Relativamente à rede de switches (SW1 a SW4) da rede de uma empresa (SA 2222) em anexo considere: (i) que existem duas VLAN configuradas (Videoconferência e Investigação), (ii) todas as ligações entre switches são portas inter-switch/trunk, e (iii) o protocolo Spanning Tree está ativo em todos os switches/bridges.
 - a) Para o processo de Spanning-tree da VLAN de Videoconferência, indique e justifique qual o switch/bridge raiz, qual o custo de percurso para a raiz (root path cost) de cada switch/bridge, quais as portas raiz e quais as portas bloqueadas em cada switch/bridge. Justifique a sua resposta. Nota: a prioridade STP e o endereço MAC estão indicados junto ao respetivo switch/bridge e o custo STP de todas portas está entre parêntesis junto da respetiva porta. (2.0 valores)
 - b) Explique como um pacote IP enviado por um terminal da VLAN de Investigação no SW4 com destino a um terminal da VLAN de Videoconferência no SW3 se propaga pela rede de switches. Nota: Admita que o gateway dos terminais da VLAN de Investigação é o sub-interface respetivo do Router2. (2.0 valores)
 - c) Com base nas configurações iniciais da Spanning Tree (questão 1a) e admitindo que o único tráfego que circulou na rede foi o gerado pelos processos de Spanning Tree e o envio de um pacote IP de um terminal da VLAN de Investigação no SW4 para um terminal da VLAN de Videoconferência no SW3, escreva a tabela de encaminhamento do switch SW4. Notas: Sempre que não disponha do endereço MAC de um equipamento, identifique-o por um identificador alfanumérico (ex: MACterminalVLANInvest). Admita que o gateway dos terminais da VLAN de Investigação é o sub-interface respetivo do Router2. (2.0 valores)
- 2. Considere a figura em anexo e os mesmos pressupostos da questão 1.
 - a) A empresa detentora do SA 1111 possui a gama de endereços IPv4 públicos 200.1.1.192/26 e vai usar a gama de endereços IPv4 privados 10.0.0.0/16. Defina sub-redes IPv4 públicas e/ou privadas (identificador e máscara) para todas as (V)LAN assumindo que existem serviços a correr em terminais/servidores que necessitam obrigatoriamente de endereços IPv4 públicos, nomeadamente: a VLAN de Videoconferência tem no máximo 13 terminais a necessitar de endereços públicos, a VLAN de Investigação e o Datacenter necessitam de 9 endereços públicos cada. (2.5 valores)
 - b) A empresa em questão possui ainda uma gama de endereços IPv6 2002:A:A:AA00::/56. Defina sub-redes IPv6 (identificador e máscara) para todas as (V)LAN. (1.5 valores)
 - c) Considerando que as tabelas de vizinhança IPv6 estão vazias, indique que pacotes são trocados quando efetua o comando *ping* a partir de um dos terminais da VLAN de Videoconferência para o seu Default Gateway (assuma que o Gateway é o interface do Router 3). (1.5 valores)

- 3. Os routers da rede da empresa da figura em anexo foram configurados com o protocolo de encaminhamento OSPF em todos os interfaces internos à rede, considere que: os custos OSPF de todos interfaces estão indicados entre parêntesis ao lado no nome do interface, o custo OSPF dos sub-interfaces Ethernet é o mesmo do interface Ethernet indicado entre parêntesis e o Router1 está a anunciar uma rota por omissão.
 - a) Qual a tabela de encaminhamento IPv4 do Router2? <u>Notas: Inclua na tabela de encaminhamento todas as redes IPV4 da rede. Inclua na tabela de encaminhamento toda a informação necessária para efetuar o encaminhamento dos pacotes.</u> (3.0 valores)
 - b) Especifique e justifique quais as configurações OSPF a efetuar nos *routers* de modo a que o tráfego enviado pelos terminais das VLAN da rede de *switches* para o Datacenter passe sempre pelo Router 2. (2.0 valores)
 - c) Se o protocolo RIP for devidamente configurado nos Routers 1, 2 e 3, a tabela de encaminhamento que apresentou na alínea a) sofrerá alguma alteração? Justifique. (1.0 valores)
- 4. Se pretender que todos os endereços IP (tanto IPv4 como IPv6) sejam atribuídos de forma dinâmica, indique que configurações precisaria de efetuar nos equipamentos da rede do SA 1111. (2.5 valores)

Universidade de Aveiro

Licenciatura em Tecnologias e Sistemas de Informação

2ª parte do Exame de Redes e Serviços 28 de Junho de 2013

Duração: 1h15. Sem consulta. Justifique cuidadosamente todas as respostas.

- 1. Na rede da figura em anexo, considere que os Routers 1, 2 e 3 estão configurados com o protocolo OSPF (os custos das portas estão indicados entre parêntesis) e com o protocolo PIM dense-*mode*. No Datacenter existe um servidor de vídeo. Assuma que inicialmente o servidor de vídeo não envia qualquer tráfego *multicast*.
 - a) Assumindo que um terminal na rede da investigação aderiu à sessão *multicast* 235.235.235.235, indique quais os pacotes trocados entre o terminal e os routers e entre os diferentes routers entre si (indicando o protocolo, tipo de pacote e a sequência dos mesmos). (2.0 valores)
 - b) Assumindo agora que o servidor de vídeo começou a enviar pacotes periódicos para o endereço 235.235.235, descreva como os pacotes multicast chegam ao terminal e quais são os pacotes trocados pelos routers (indicando o protocolo, tipo de pacote e a sequência dos mesmos). (2.5 valores)
 - c) Assumindo que o terminal na rede da investigação abandonou à sessão *multicast* 235.235.235.235, indique quais os pacotes trocados (indicando o protocolo, tipo de pacote e a sequência dos mesmos). (2.0 valores)
- 2. Considere que os Routers 1 e A têm o protocolo BGP configurado e estabeleceram uma vizinhança entre os respetivos sistemas autónomos.
 - a) Quais são os pacotes BGP trocados entre os Routers 1 e A após a configuração da vizinhança entre os sistema autónomos 1111 e 2222? (2.0 valores)
 - b) Qual(is) é(são) a(s) entrada(s) BGP da tabela de encaminhamento do Router 1 considerando que o Router A está a fazer a sumarização de todas as redes do SA 2222 antes de as anunciar? (1.5 valores)
 - c) Quais são os valores dos atributos do BGP AS-path e Next-hop nas mensagens BGP enviadas pelo Router A? (1.5 valores)
 - d) O que é o atributo do BGP Local Preference e qual a sua utilidade? (1.0 valores)
- 3. Explique como poderia implementar as seguintes restrições de segurança:
 - a) Permitir que apenas os utilizadores da VLAN de Investigação possam ter acesso ao Datacenter. (1.5 valores)
 - b) Permitir que apenas seja possível aceder aos serviços HTTP e FTP localizados no Datacenter. (1.5 valores)

- 4. Considere o estabelecimento de uma sessão TCP entre dois terminais A e B. Considere que o terminal A escolhe sempre como número de sequência inicial SN = 1000 e o terminal B escolhe sempre SN = 2000. Considere ainda que o comprimento máximo do campo de dados dos pacotes é 1500 octetos. Após o estabelecimento da sessão, uma aplicação em A entrega 3500 octetos para serem enviados a B, após o qual o terminal A termina a sessão estabelecida.
 - a) Desenhe um diagrama temporal que represente o conjunto de mensagens trocadas entre A e B, quando o terminal A estabelece um sessão TCP para o terminal B. Indique para cada mensagem as flags TCP ativas, o Sequence Number (SN) e o Acknowledgement Number (AN). (2.0 valores)
 - b) Desenhe um diagrama temporal que represente o conjunto de mensagens trocadas entre A e B, quando o terminal A envia os 3500 octetos de dados para o terminal B. Indique para cada mensagem as *flags* TCP ativas. (2.5 valores)

