

4A Time: 3 minutes

In the 4×4 grid shown, the numbers 1, 2, 3, and 4 can appear exactly once in each row, each column, and each shaded 2×2 grid. Given the entries in five boxes, what number should replace X?

	4	1	
			2
3			Х
		3	

4B Time: 4 minutes

Express in lowest terms:

$$\frac{5-10+15-20+\cdots-490+495-500}{7-14+21-28+\cdots-686+693-700}$$

4C Time: 5 minutes

The sum of three whole numbers, *A*, *B*, and *C*, is 32. *C* is 10 more than *A*. *B* differs from one of the other numbers by 3 and the other by 7. Find *B*.

4D *Time: 6 minutes*

In the tin can shown, the height is 8 cm and the circumference is 12 cm. Points A and B lie "opposite" each other on the two rims. Find the shortest distance along the surface of the can from A to B.

4E Time: 7 minutes

Two different primes are randomly selected from the first nine prime numbers. What is the probability that their sum is 30? (Answer must be expressed in fraction form.)

4A

Student Name and Answer

4B

Student Name and Answer

4C

Student Name and Answer

B =

40

Student Name and Answer

cm

4E

Student Name and Answer

Please fold over on line. Write answers in these boxes.

Contest

SOLUTIONS AND ANSWERS

4A

4A Strategy: Use reasoning.

First fill in the boxes labeled A and B which must contain the numbers 3 and 4. A is not 4, so A must be 3 and B must be 4. Next fill in box D with a 2. Then C is 1 or 4. Since C cannot be 4, C is 1 and the box marked with an X contains a 4.

Г	4	1	Α
		В	2
3	С	D	Х
		3	

4

FOLLOW-UP: Create your own 4×4 Sudoku-type puzzle by filling in the answers and then erasing some of the numbers. Make sure that the numbers you leave allow only 1 solution.

4B

<u>5</u>

4B METHOD 1: *Strategy: Factor the numerator and denominator.*

Factor out the common factor in both the numerator and denominator and then cancel to get the following.

$$\frac{5(1-2+3-4+...-98+99-100)}{7(1-2+3-4+...-98+99-100)} = \frac{5}{7}$$

METHOD 2: *Strategy*: Pair numbers in both numerator and denominator.

$$\begin{array}{l} (5-10)+(15-20)+\ldots+(495-500) \\ (7-14)+(21-28)+\ldots+(693-700) \\ = (-5)+(-5)+(-5)+\ldots+(-5) \\ (-7)+(-7)+(-7)+\ldots+(-7) \end{array} = \begin{array}{l} -250 \\ -350 \end{array} = \begin{array}{l} \frac{5}{7} \end{array}$$

4C

12

METHOD 3: *Strategy*: Look for a pattern in the partial sums.

Start with $\frac{5}{7}$, next $\frac{5-10}{7-14}$, then $\frac{5-10+15}{7-14+21}$, and so on. In each case the fraction equals $\frac{5}{7}$. In the given fraction both the numerator and denominator contain the same number of terms, 100, so the value remains at $\frac{5}{7}$.

4D

FOLLOW-UP: Explain why the successive fractions listed in Method 3 are equivalent.

10

4C *Strategy: Set up and solve possible equations.*

C is 10 more than A. Also, B. is 3 away from one number and 7 away from the other number. Then A < B < C.

Either B = A + 3 or B = A + 7. Substitute each possibility into the equation A + B + C = 32 to get A + (A + 3) + (A + 10) = 32 or A + (A + 7) + (A + 10) = 32. In the first case, $A = \frac{19}{3}$ and the second equation results in A = 5. A is a whole number so A = 5 and B = 12.

4E

3 36 or equivalent **4D** *Strategy*: *Remove the label from the can.*

Cut open the cylinder along the dotted line and unroll it to get a rectangle with A on the top edge and B on the bottom edge. Then connect A and B with a straight line segment. Notice that AC = 8 cm and BC = 6 cm. (BC is one-half the circumference). Apply the Pythagorean Theorem or recognize the Pythagorean triple 6-8-10 to get AB = 10 cm.

4E Strategy: List the primes; find the pairs that add to 30; list all the possible pairs. The first nine prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19, and 23. The only pairs that have a sum of 30 are {7, 23}, {11, 19}, and {13, 17}.

There are several ways to count all possible pairs of primes.

- Method 1: The prime 2 can be paired with each of the 8 other primes listed. 3 has already been paired with 2, so there are an additional 7 pairs for 3. Similarly, there are 6 additional pairs for 5, and so on. In all there are 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 36 pairs of primes.
- Method 2: There are 9 possible values for the first of the two primes. Each of these may be paired with any of the 8 remaining values, a total of 9×8 = 72. This, however, counts each pair twice (e. g. 2 paired with 3 and 3 paired with 2). The total number of pairs is 72÷2 = 36.
- Method 3: List all pairs of primes in an orderly manner.

The probability that the sum of the 2 primes 30 is $\frac{3}{36} = \frac{1}{12}$.

Follow-Ups: (1) Two different primes are selected from the first 9 prime numbers. What is the probability that their sum is odd? $[^2/9]$ (2) Two primes, not necessarily different, are selected from the first 9 prime numbers. What is the probability that their sum is odd? $[^{16}/81]$ (3) Two different primes are selected from the first 20 prime numbers. What is the probability that their sum is 30? $[^3/190]$

NOTE: Other Follow-UP problems related to some of the above can be found in our books "Math Olympiad Contest Problems for Elementary and Middle Schools" and "Creative Problem Solving in School Mathematics."