























# LSGIT

Linear portion of the logistic regression equation

$$z = \beta_0 + \beta_1 x$$
Risk Factor

Coefficients

Are they SIGNIFICANT?

### Goal

- Build a model to predict or explain a dichotomous outcome (0/1) such as disease or mortality status
- Note: Study subjects with a particular constellation of risk factors may have opposite outcomes
- This is different from linear regression (continuous outcome) where "similar" outcome values are possible

# Disease probability

- $\pi(x)$  = probability of the disease given a particular risk factor
- Example, smoking and lung cancer:  $\pi(smoking = yes)$ 
  - = probability of lung cancer among smokers

# Disease probability

- $0 \le \pi(x) \le 1$  (S shaped)
  - → linear regression won't work
- Note: Many different regression models could be used to estimate π(x)

# The logistic regression model

- The logistic regression model is a good choice because
  - It can be used easily with available software
  - It provides odds ratios adjusted for confounding
- The logistic regression model is defined as  $e^{\beta_0+\beta_1x}$

$$\pi(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

# The logit transformation

- The logistic regression model is nonlinear
- A transformation called the logit transformation can be used to obtain a linear equation

# The logit transformation

$$\frac{g(x)}{1-\pi(x)} = \ln\left(\frac{\pi(x)}{1-\pi(x)}\right) = \ln\left[\frac{e^{\beta_0 + \beta_1 x}}{1+e^{\beta_0 + \beta_1 x}}\right] = \ln(e^{\beta_0 + \beta_1 x}) = \beta_0 + \beta_1 x$$
Risk factor
Slope

## Model coefficients

•  $\beta_1 = 0$ :  $\pi(x)$  does not depend on x

Example for lung cancer

- $\beta_1 = 0$ :  $\pi(eye\ color)$  does not depend on eye color
- I.e. the probability of lung cancer does not depend on eye color

# Model coefficients

•  $\beta_1 \neq 0$ :  $\pi(x)$  depends on x

Example for lung cancer

- $\beta_1 \neq 0$ :  $\pi(smoking)$  depends on smoking
- I.e. the probability of lung cancer depends on smoking

### Stat. significance of model coefficients

- If  $\beta_1$  is statistically significant, the model with x predicts the outcome "better" than the model without x
- Warning: This does not necessarily mean that the model with x predicts the outcome well

# Estimating the model coefficients

- Maximum likelihood estimation
  - Create likelihood function expressing the probability of actually observing the data we observed
  - Choose coefficients  $\beta_0$  and  $\beta_1$  such that the likelihood function is maximized
  - Given  $\frac{\hat{\beta}_0}{\hat{\beta}_0}$  and  $\frac{\hat{\beta}_1}{\hat{\beta}_1}$ , the outcome predicted by the model mirrors the observed outcome most closely

# Example

- Maximum likelihood estimation
  - Find an equation that expresses the probability of observing the lung cancer and smoking data we observed
  - Choose coefficients  $\beta_0$  and  $\beta_1$  such that this probability is maximized
  - Given  $\hat{\beta}_0$  and  $\hat{\beta}_1$ , the outcome (lung cancer yes/no) predicted by the model (given smoking status) mirrors the observed data most closely



# Significance tests –

### valu les

- Need
  - $\hat{\beta}_1$  = estimated coefficient for variable x
  - $SE(\hat{\beta}_1)$  = estimate of its standard error
- Test statistic:  $W = \frac{\widehat{\beta}_1}{\widehat{SE}(\widehat{\beta}_1)}$
- $H_0$ :  $\beta_1 = 0$
- If  $H_0$  is true, then  $W^2$  is  $\chi^2$  distributed with 1 df

# Example: chd and age

libname sdat 'C:\ERHS642';

data chdage; set sdat.chdage; run;

proc logistic descending data=chdage; model chd=age;

run;

# Example: chd and age



p < 0.05

→ the model with age predicts chd better than the model without age

# Odds ratio and confidence interval

 Odds Ratio Estimates

 Effect
 Point
 95% Wald Confidence Limits

 age
 1.117
 1.066
 1.171

CI does not include 1

→ The model with age predicts chd better than the model without age

# Significance tests – Likelihood ratio test

- Compares
  - "difference" between the model with the variable of interest and the "perfect model"

    to the
  - "difference" between the model without the variable of interest and the "perfect model"

# Significance tests — Likelihood ratio test • Test statistic: $G = -2ln \left[ \frac{likelihood \ WITHOUT \ x}{likelihood \ WITH \ x} \right]$ $= -2[ln(likelihood \ WITH \ x)]$ $= 2[ln(likelihood \ WITH \ x)]$ $- 2[ln(likelihood \ WITH \ x)]$ • $H_0$ : $\beta_1 = 0$ • If $H_0$ is true, then $W_1^2$ is $\chi^2$ distributed with 1 df

### Example: chd and age • From SAS: G = 136.663 - 107.353 = 29.31 Model Fit Statistics Criterion Intercept Intercept and Only Covariates AIC 138.663 111.353 SC 141.268 116.563 136.663 107.353 -2 Log L Without x With x



# Wald test vs. likelihood ratio test

- Wald test p-values can be artificially low
- Wald test 95% CIs can be artificially narrow
- This is most likely to occur for small sample sizes but can also happen for larger sample sizes
- Likelihood ratio test is preferable

# Wald test vs. likelihood ratio test

 SAS can be used to calculate likelihood ratiobased CIs

> proc logistic descending data=chdage; model chd=age/clodds=both; run;

# Wald test vs. likelihood ratio test

• In the chd and age example, the Wald and likelihood-ratio (LR) based CIs are similar

| Odds Ratio Estimates for age |        |          |                       |       |
|------------------------------|--------|----------|-----------------------|-------|
| Test                         | Unit   | Estimate | 95% Confidence Limits |       |
| Wald                         | 1.0000 | 1.117    | 1.066                 | 1.171 |
| LR-based                     | 1.0000 | 1.117    | 1.069                 | 1.176 |

 Unless statistical significance is "borderlineish", conclusions are generally the same based on both CIs

# Wald test vs. likelihood ratio test

- An asymmetry index can be calculated to estimate whether the two CIs will be much different
- We won't bother

# Assumptions for all tests

- "Large" sample size
- "Reasonable" number of subjects with and without the outcome (e.g., death or disease)
- More on sample size later in the semester