

b UNIVERSITÄT BERN

LATEX for scientists

Julien Riou

13 February 2019

$u^{\scriptscriptstyle b}$

Plan

- What is LATEX?
- Writing and compiling LATEX code
- Basic formatting
- Advanced topics
- LATEX templates for scientists:
 - cover letter
 - scholarly article
 - journal submission
 - presentation

LATEX for scientists

... a sophisticated typesetting system.

... a sophisticated typesetting system.

Different from a "what you see is what you get" word processor:

- program the structure and contents of a document
- compile the LATEX code into an output file (PDF)

LATEX is . . .

... a sophisticated typesetting system.

Different from a "what you see is what you get" word processor:

- program the structure and contents of a document
- compile the LATEX code into an output file (PDF)

Very good for:

- professional-looking documents with a pre-specified format
- structure, reproductibility
- maths, cross-referencing, bibliographies

LATEX is . . .

... a sophisticated typesetting system.

Different from a "what you see is what you get" word processor:

- program the structure and contents of a document
- compile the LATEX code into an output file (PDF)

Very good for:

- professional-looking documents with a pre-specified format
- structure, reproductibility
- maths, cross-referencing, bibliographies

Less good for:

creating highly personalized documents

universităt

Writing and compiling LATEX code

In principle, you only need a text editor and a LATEX compiler:

- write your code and save it as a .tex file
 - e.g. with notepad in Windows
- compile the .tex file into an output file (generally .pdf)
 - e.g. with MiKT_EX for Windows or T_EX Live for MacOS and Linux

Writing and compiling LATEX code

In principle, you only need a text editor and a LATEX compiler:

- write your code and save it as a .tex file
 - e.g. with notepad in Windows
- compile the .tex file into an output file (generally .pdf)
 - e.g. with MiKT_EX for Windows or T_EX Live for MacOS and Linux

In practice, it is easier to use an integrated development environment:

- installed on your computer: T_EXStudio (www.texstudio.org)
 - but you still need to install a compiler!
- online: Overleaf (www.overleaf.com)

LATEX for scientists

$u^{\scriptscriptstyle b}$

Commands

LATEX commands start with \ and are of two kinds:

Declarations

Are stated once and take effect until further notice

```
e.g. \centering, \textit{}
```

Environments

Have matching begin and end declarations

```
e.g. \begin{itemize} ...\end{itemize}
```

Beware, forgetting closing braces or end declarations will give an error!

LATEX for scientists

l^b

Arguments

Required arguments...

- Are contained in curly braces
- Must be included

e.g. \documentclass{<u>letter</u>}

Optional arguments...

- Are contained in square brackets
- Can be left out
- Give you more control over the commands

e.g. \documentclass[12pt]{letter}

l^b

A basic . tex file

- Declare the type of document you want (book, article, letter, report...) with \documentclass
- Declare additional options or packages (float, amsmath, geometry...) with \usepackage
- 3. Write your content within a document environment

L^b

A basic .tex file

- Declare the type of document you want (book, article, letter, report...) with \documentclass
- Declare additional options or packages (float, amsmath, geometry...) with \usepackage
- 3. Write your content within a document environment

```
\documentclass{}
\usepackage{}
\begin{document}
...
\end{document}
```

Hello, world!

Let's try a simple "Hello, world!" example with LATEX and Overleaf:

- Go to www.overleaf.com and log in with your credentials
- Create a new project, then an empty document named helloworld.tex
- Create a letter that says "Hello, world!"

Hello, world!

Let's try a simple "Hello, world!" example with LATEX and Overleaf:

- Go to www.overleaf.com and log in with your credentials
- Create a new project, then an empty document named helloworld.tex
- Create a letter that says "Hello, world!"

Solution

```
\documentclass{letter}
%\usepackage{}
\begin{document}
    Hello, world!
\end{document}
```

ub

Basic formatting

- font styles
- special characters
- lists
- sectioning
- figures
- cross-referencing
- bibliography
- equations

u D

Font style

Font face:

```
\verb|\textit{Text}|, \verb|\textbf{Text}|, \verb|\texttt{Text}|, \verb|\textsc{Text}| \dots
```

Font style

Font face:

```
\textit{Text}, \textbf{Text}, \texttt{Text}, \textsc{TEXT} ...
```

Font size:

```
\label{text} $$ \bigg\{ Text \bigg\}, \c Text \bigg\},
```

u^{\flat}

Font style

Font face:

```
\textit{Text}, \textbf{Text}, \texttt{Text}, \textsc{TEXT} ...
```

Font size:

```
\label{text} $$ \operatorname{Text}, \operatorname{T
```

Alignment:

```
\begin{center/flushright/flushleft}
...
\end{center/flushright/flushleft}
```


Special characters and commands

Special commands

b UNIVERSITÄT BERN

Special characters and commands

Special commands

```
\ or \sim \to extra single space \\ \to new line \hspace{1cm} or \vspace{5mm} \to custom space \clearpage \to new page
```

Non-standard characters:

```
\% \rightarrow \% (used for commenting out) \& \rightarrow \& (used for separations) \fill \  \  \ (used in commands) \ \ (used in commands)
```

and lots of other symbols: \spadesuit , ϕ , \Re , \mathcal{R} , \dagger , \ll , \notin , \triangle ... (try detexify)

ub UNIVERSITĂT

Lists

Bullet list:

```
\begin{itemize}
    \item Text
    \item[-] Text
\end{itemize}
```

- Text
- Text

$u^{^{\scriptscriptstyle b}}$

Lists

Bullet list:

```
\begin{itemize}
   \item Text
   \item[-] Text
\end{itemize}
```

Numbered list:

```
\begin{enumerate}
   \item Text
   \item Text
\end{enumerate}
```

- Text
- Text

1. Text

2. Text

$u^{\scriptscriptstyle b}$

Lists

Bullet list:

```
\begin{itemize}
  \item Text
  \item[-] Text
  \end{itemize}
- Text
```

Numbered list:

Note: Lists can be nested within other lists.

l^D

Sectioning

LATEX can organize, number, and index sections of document:

\section{Introduction}

1 Introduction

\subsection{Context}

1.1 Context

Sectioning

LATEX can organize, number, and index sections of document:

\section{Introduction} 1 Introduction

\subsection{Context} 1.1 Context

Layers of sectioning

\part{} \chapter{} \section{} \subsection{} \subsubsection{} \paragraph{}

u^{b}

Sectioning

LATEX can organize, number, and index sections of document:

\section{Introduction} 1 Introduction

. . .

\subsection{Context}

1.1 Context

Layers of sectioning

\part{} \chapter{} \section{} \subsection{} \subsubsection{} \paragraph{}

For the unnumbered version, add an asterisk:

\section*{Introduction}

Introduction

Sectioning

LATEX can organize, number, and index sections of document:

\section{Introduction} 1 Introduction

\subsection{Context} 1.1 Context

Layers of sectioning

\part{} \chapter{} \section{} \subsection{} \subsubsection{} \paragraph{}

For the unnumbered version, add an asterisk:

\section*{Introduction} Introduction

Note: Add a table of contents with \tableofcontents

U b universität BERN

Figures

Figures must be added as independent files in the same repertory.

u"

Figures

Figures must be added as independent files in the same repertory.

```
\begin{figure}[h]
  \centering
  \includegraphics[width=2cm,height=3cm]{cat.png}
  \caption{This is my cat.}
\end{figure}
```

LATEX for scientists

Figures

Figures must be added as independent files in the same repertory.

```
\begin{figure}[h]
  \centering
  \includegraphics[width=2cm,height=3cm]{cat.png}
  \caption{This is my cat.}
\end{figure}
```

Placement options:

- h: approximately at the same point it occurs in the code
- t/b: at the top/bottom of the page
- p: on a special page for figures only
- H: precisely at the same point in the code (requires a package: \usepackage{float})

Cross-referencing

LATEX handles all references using unique identifiers.

place a label after something (section, figure caption...)

```
\begin{figure}[ht]
  \centering
  \includegraphics{cat.png}
  \caption{This is my cat.}
  \label{refcat}
  \end{figure}
```


Cross-referencing

LATEX handles all references using unique identifiers.

• place a label after something (section, figure caption...)

```
\begin{figure}[ht]
  \centering
  \includegraphics{cat.png}
  \caption{This is my cat.}
  \label{refcat}
\end{figure}
```

then refer to the same identifier at any point in the text

```
My cat is very cute (see Fig.\ref{refcat}). 
 \rightarrow My cat is very cute (see Fig. 1).
```

l"

Bibliography I

Same principle for citing books or articles, except that the information must be placed in a separate bibTEX file in the same repertory.

• use the \cite command instead:

My cat is the product of evolution\cite{darwin1859origin}.

LATEX for scientists

Bibliography I

Same principle for citing books or articles, except that the information must be placed in a separate bibT_EX file in the same repertory.

• use the \cite command instead:

My cat is the product of evolution\cite{darwin1859origin}.

place the corresponding information in a separate foo.bib file:

```
@book{darwin1859origin,
   title={On the origin of species},
   author={Darwin, Charles},
   year={1859} }
```

LATEX for scientists

Bibliography I

Same principle for citing books or articles, except that the information must be placed in a separate bibT_EX file in the same repertory.

use the \cite command instead:

My cat is the product of evolution\cite{darwin1859origin}.

place the corresponding information in a separate foo.bib file:

```
@book{darwin1859origin,
   title={On the origin of species},
   author={Darwin, Charles},
   year={1859} }
```

• add a reference to the foo.bib file at the end of the source file:

```
\bibliographystyle{plain}
\bibliography{foo}
```


Bibliography II

Several basic styles are included (apalike, unsrt, abbrv) and journal-specific styles can be added.

The bibT_EX file can be created:

- manually
- copied from e.g. https://scholar.google.ch/

[LIVRE] On the origin of species, 1859

C Darwin - 2004 - taylorfrancis.com

Darwin began writing this book while on holiday at Sandown in the Isle of Wight on Tuesday, 20 July 1858. 1 He had been working for nearly twenty years on his big idea, in notebooks2

begun on HMSBeagle and continued afterwards on his return to England. 3 In 1842 he ...

☆ 99 Cité 42653 fois Autres articles Les 164 versions ②

directly from Zotero or Endnote (export as bibtex)

l^b

Equations I

LATEX allows you to typeset any sort of equations with reliability.

Using math mode

Inline math mode: \$...\$

Consider subject $i \in \{1, \ldots, n\}$...

Numbered equations: \begin{equation}...\end{equation}

$$logit E(Y) = \alpha + \beta x \tag{1}$$

u^D

Equations II

Some commands:

4+2 \$4+2\$

ub UNIVERSITĂT

Equations II

$$\begin{array}{ccc} 4+2 & \$4+2\$ \\ \sqrt{5} & \$\sqrt{5} \\ \end{array}$$

ub UNIVERSITĂT

Equations II

```
\begin{array}{cc} 4+2 & \$4+2\$ \\ \sqrt{5} & \$\sqrt{5}\} \\ \frac{x}{y} & \$\sqrt{x} \end{array}
```

b UNIVERSITÄT BERN

Equations II

```
\begin{array}{ll} 4+2 & \$4+2\$ \\ \sqrt{5} & \$ \setminus \{5\} \$ \\ \frac{x}{y} & \$ \cap \{x\} \in Y_i^m & \$Y^{m}_{i} = \{i\} \$ \end{array}
```

$\boldsymbol{l}^{\scriptscriptstyle \mathrm{D}}$

b UNIVERSITÄT BERN

Equations II

```
\begin{array}{cccc} 4+2 & \$4+2\$ \\ & \sqrt{5} & \$ \setminus \{5\} \$ \\ & \frac{x}{y} & \$ \setminus \{x\} \in \{y\} \$ \\ & Y_i^m & \$Y^{m}_{i} \} \\ & \sum_{i=1}^n x_i & \$ \setminus \{i=1\}^n x_i \$ \end{array}
```

$\boldsymbol{l}^{\scriptscriptstyle \mathrm{b}}$

Equations II

```
\begin{array}{cccc} 4+2 & \$4+2\$ \\ \sqrt{5} & \$ \setminus \{5\} \$ \\ & \frac{x}{y} & \$ \setminus \{x\} \in \{y\} \$ \\ & Y_i^m & \$Y^{m}_{i} \} \$ \\ & \sum_{i=1}^n x_i & \$ \setminus \{i=1\}^n x_i \$ \\ & Y \sim \mathcal{N}(0,1) & \$Y \times \{mathcal \} (0,1) \$ \end{array}
```

$\boldsymbol{l}^{\scriptscriptstyle \mathsf{b}}$

Equations II

$\boldsymbol{l}^{\scriptscriptstyle \mathsf{D}}$

Equations II

L^b

Equations II

universităt

Advanced topics Tables I

Creating tables manually can be tricky.

```
\begin{table}[h]
  \centering
```

Trial	n	t
1	23	2
2	15	10
3	100	20

\end{table}

ub

Advanced topics Tables I

```
\begin{table}[h]
  \centering
  \begin{tabular}{r|c|c}
```

Trial	n	t
1	23	2
2	15	10
3	100	20

```
\end{tabular}
\end{table}
```

ubb

Advanced topics Tables I

```
\begin{table}[h]
  \centering
  \begin{tabular}{r|c|c}
   Trial & n & t \\ \hline
```

Trial	n	t
1	23	2
2	15	10
3	100	20

```
\end{tabular}
\end{table}
```

ub UNIVERSITÄT

Advanced topics Tables I

```
\begin{table}[h]
  \centering
  \begin{tabular}{r|c|c}
   Trial & n & t \\ \hline
  1 & 23 & 2 \\ \hline
```

```
Trial n t
1 23 2
2 15 10
3 100 20
```

```
\end{tabular}
\end{table}
```

ubbuniversităt

Advanced topics Tables I

```
\begin{table}[h]
  \centering
  \begin{tabular}{r|c|c}
    Trial & n & t \\ \hline
    1 & 23 & 2 \\ \hline
    2 & 15 & 10 \\ \hline
```

```
Trial n t

1 23 2
2 15 10
3 100 20
```

```
\end{tabular}
\end{table}
```

ub

Advanced topics Tables I

```
\begin{table}[h]
  \centering
  \begin{tabular}{r|c|c}
    Trial & n & t \\ \hline
    1 & 23 & 2 \\ \hline
    2 & 15 & 10 \\ \hline
    3 & 100 & 20 \\
  \end{tabular}
\end{table}
```

Trial	n	t
1	23	2
2	15	10
3	100	20

Advanced topics Tables II

Beyond simple tables it is preferable to use dedicated tools:

- online convertors (e.g. https://tablesgenerator.com/)
- R package: xtable
- Stata function: esttab

Advanced topics Collaborating

From simple to more difficult (but more powerful):

drafting in Word and pasting the final version into LATEX

$u^{^{\scriptscriptstyle b}}$

Advanced topics Collaborating

From simple to more difficult (but more powerful):

- drafting in Word and pasting the final version into LATEX
- using comments in the source code

% this sentence is really stupid

$u^{\scriptscriptstyle b}$

Advanced topics Collaborating

- drafting in Word and pasting the final version into LATEX
- using comments in the source code
 % this sentence is really stupid
- inline additions in the compiled PDF \textcolor{red}{SAD!}

u^{b}

Advanced topics Collaborating

- drafting in Word and pasting the final version into LATEX
- using comments in the source code
 % this sentence is really stupid
- inline additions in the compiled PDF \textcolor{red}{SAD!}
- writing in margins (or in boxes with package todonotes)
 \marginpar{you are fired}

Advanced topics Collaborating

- drafting in Word and pasting the final version into LATEX
- using comments in the source code% this sentence is really stupid
- inline additions in the compiled PDF \textcolor{red}{SAD!}
- writing in margins (or in boxes with package todonotes)
 \marginpar{you are fired}
- highlighting modifications using latexdiff

Advanced topics Collaborating

- drafting in Word and pasting the final version into LATEX
- using comments in the source code% this sentence is really stupid
- inline additions in the compiled PDF \textcolor{red}{SAD!}
- writing in margins (or in boxes with package todonotes)
 \marginpar{you are fired}
- highlighting modifications using latexdiff
- version control: paid overleaf account, svn, git

LATEX templates for scientists

Templates to fill the needs of scientists:

- scholarly article
- journal submission
- letters (cover letter, answer to reviewers)
- presentation

Download the files from:

https://github.com/jriou/LaTeX_for_scientists

LATEX templates for scientists Scholarly article

Creating professional-looking articles with the same methods used by journal publishers.

Very important for directly published academic documents:

- preprints (e.g. for bioRxiv)
- supplementary appendices

LATEX templates for scientists Scholarly article

Creating professional-looking articles with the same methods used by journal publishers.

Very important for directly published academic documents:

- preprints (e.g. for bioRxiv)
- supplementary appendices

How to use it

- upload all 3 files in /scholarly_article to Overleaf
- select scholarly_article.tex and hit the "recompile" button

LATEX templates for scientists Journal submission

Some academic journals provide LATEX templates for submissions (e.g., PLoS Medicine here).

LATEX templates for scientists Journal submission

Some academic journals provide LaTEX templates for submissions (e.g., PLoS Medicine <u>here</u>).

How to use it

- upload all 2 files in /plos_submission_template to Overleaf
- select plos_latex_template.tex and hit the "recompile" button

LATEX templates for scientists Cover letter

Provided by the University (here)

Especially useful for cover letters and responses to reviewers

LATEX templates for scientists Cover letter

Provided by the University (here)

Especially useful for cover letters and responses to reviewers

How to use it

- open the /cover_letter repertory
- open the .clo file in any editor to modify the personal settings
- comment out the 5th line (starting with "\PackageError")
- upload all 5 files to Overleaf
- start your letter from the .tex file
 - options in \documentclass[]: english/german, color/bw...
 - recipient address, subject, opening, main text, closing

LATEX templates for scientists Presentation

Surprise (?) this presentation was made in LATEX!

There is a document class called **beamer** that allows to do presentations (a template is provided by the University <u>here</u>).

LATEX templates for scientists Presentation

Surprise (?) this presentation was made in LATEX!

There is a document class called **beamer** that allows to do presentations (a template is provided by the University <u>here</u>).

How to use it

- upload all 4 files in /beamer to Overleaf
- select unibern-demo.tex and hit the "recompile" button

$u^{\scriptscriptstyle b}$

Acknowledgments

- MIT Introduction to LATEX (<u>link</u>)
- Peter Flom, LaTEX for academics and researchers who (think they) don't need it. (link)
- LATEX wikibook (<u>link</u>)