2024 Vill. Mat A1 - 5. gyakorlat

Komplex számok

1. Számítsuk ki az alábbi komplex szám hosszát, konjugáltját, valós és képzetes részét, ill. adjuk meg algebrai alakban!

$$\frac{-2-i}{3+4i}$$
, gy.: $\frac{3-2i}{2-3i}$, hf: $\frac{3-2i}{5-12i}$

Egy $w \in \mathbb{C}$ n-edik gyökei a Gauss síkon egy orogó középpontú szabályos n szöget alkotnak, ahol az úgy nevezett k = 0-van indexelt gyök szöge $\arg(w)/n$, hossza $\sqrt[n]{|w|}$, a többit pedig ennek $2\pi/n$ szöggel való elforgatással kapjuk. Azaz

$$\sqrt[n]{w_k} = \sqrt[n]{|w|} \cdot \left(\cos\frac{\arg(w) + 2\pi k}{n} + i\sin\frac{\arg(w) + 2\pi k}{n}\right)$$

2. Oldjuk meg a $z^7 - 7z^4 - 8z = 0$ egyenletet a komplex számok halmazán!

gy.:
$$z^4 + (4-i)z^2 - 4i = 0$$
, **hf:** $z^6 + 13z^4 + 36z^2 = 0$

3. Oldjuk meg a $\overline{z} + z = 6$, $z^2 = -18i$ egyenletrendszert!

gy.:
$$|z| + z = 2 + i$$
, **hf:** $\overline{z} = z^2$

4. Adjuk meg algebrai alakban az alábbi kifejezések értékét!

a)
$$\left(\sqrt{3} + i\right)^{2022}$$
, b) $\frac{i^{2021}}{9} \cdot \left(\frac{3+3i}{1-i}\right)^{2020}$
gy.: $\left(1 - \sqrt{3}i\right)^{99}$, hf: $\frac{i^{999}}{2} \cdot \left(\frac{2+\sqrt{12}i}{1-\sqrt{3}i}\right)^{31}$

5. Oldjuk meg az alábbi egyenleteket a komplex számok halmazán!

a)
$$z^4 = -16$$
, b) $z^3 = -4 + 4\sqrt{3}i$
gy.: $z^6 = -9^3i$, hf: $z^2 = 2\sqrt{3} + 2i$

6. Melyik igaz az alábbiak közül (a választ igazoljuk/cáfoljuk!)?

1.
$$\arg z \cdot \arg w = \arg(z \cdot w)$$

2.
$$\overline{z} \cdot \overline{w} = \overline{z \cdot w}$$

3.
$$\operatorname{Im} z \cdot \operatorname{Im} w = \operatorname{Im}(z \cdot w)$$

7*.

a) Oldjuk meg az alábbi egyenletet a komplex számok halmazán: $\overline{z}^3 \cdot z^4 = i$

b) Igazoljuk, hogy a z-t reprezentáló vektor pontosan akkor merőleges a w-t reprezentáló vektorra, ha $\text{Im}(z\overline{w})=0$.