

WHAT IS CLAIMED IS:

- 1 1. A method of testing an integrated circuit comprising:
2 receiving test output data from a circuit-under-test;
3 delaying the test output data;
4 comparing the test output data with the delayed test output data to generate a first
5 compare signal;
6 generating a control signal; and
7 comparing the control signal to the first compare signal to generate a second
8 compare signal.

- 1 2. The method of claim 1 further comprising:
2 if the second compare signal toggles from a first state to a second state while
3 receiving the test output data; then
4 providing a signal indicating an error; else
5 providing a signal indicating no error.

- 1 3. The method of claim 1 further comprising:
2 changing the control signal such that the second compare signal toggles from the
3 first state to the second state.

- 1 4. The method of claim 1 further comprising:
2 toggling the control signal when the test output data is expected to toggle.

- 1 5. The method of claim 3 further comprising:
2 after changing the control signal such that the second compare signal toggles from
3 the first state to the second state;
4 providing a signal indicating an error.

- 1 6. The method of claim 1 further comprising:
2 after receiving test output data from a circuit-under-test; and
3 retiming the test output data to a clock signal, the clock signal comprising a
4 plurality of clock cycles.

1 7. The method of claim 6 wherein the test output data is delayed one clock
2 cycle.

1 8. The method of claim 1 wherein the delay is done using a flip-flop.

1 9. The method of claim 1 wherein the test output data and the delayed test
2 output data are retimed to a clock signal, the clock signal comprising a plurality of clock cycles.

1 10. The method of claim 9 wherein the retiming circuits are preloaded with
2 expected data to generate a first compare signal.

1 11. The method of claim 8 wherein the comparing the test output data with the
2 delayed test output data to generate a first compare signal and comparing the control signal to the
3 first compare signal to generate a second compare signal are done using a first exclusive-OR gate
4 and a second exclusive-OR gate.

1 12. An integrated circuit comprising:
2 a delay circuit;
3 a first compare circuit coupled to the delay circuit; and
4 a second compare circuit coupled to the first compare circuit and further coupled
5 to receive a control signal.

1 13. The integrated circuit of claim 12 further comprising:
2 a retiming circuit coupled to the delay circuit.

1 14. The integrated circuit of claim 13 further comprising:
2 a state machine coupled to the second compare circuit.

1 15. The integrated circuit of claim 12 wherein the first compare circuit and the
2 second compare circuit are exclusive-OR gates.

1 16. The integrated circuit of claim 12 wherein the integrated circuit is a field
2 programmable logic device further comprising:

3 a plurality of logic elements coupled by a plurality of programmable interconnect
4 lines.

1 17. The integrated circuit of claim 16 further comprising:
2 an error memory circuit coupled to the second compare circuit.

1 18. An integrated circuit comprising:
2 a series combination including a retiming circuit in series with a delay circuit,
3 wherein the retiming circuit is configured to retime test data to a clock signal and the delay
4 circuit is configured to delay the test data;
5 a first compare circuit coupled to receive an output of the series combination;
6 a second compare circuit coupled to receive an output of the first compare circuit,
7 and further coupled to receive a control signal.

1 19. The integrated circuit of claim 18 wherein the delay circuit has an input
2 coupled to an output of the retiming circuit.

1 20. The integrated circuit of claim 18 wherein a state machine is configured to
2 provide the control signal.

1 21. The integrated circuit of claim 20 further comprising a second retiming
2 circuit configured to retime the test data and provide an output to the first compare circuit.

1 22. The integrated circuit of claim 18 wherein the first compare circuit and the
2 second compare circuit are exclusive-OR gates.

1 23. The integrated circuit of claim 18 wherein the integrated circuit is a field
2 programmable logic device further comprising:
3 a plurality of logic elements coupled by a plurality of programmable interconnect
4 lines.

1 24. The integrated circuit of claim 18 wherein the error circuit comprises an
2 OR gate having an output coupled to an input of a flip-flop, the OR gate configured to receive an
3 output from the flip-flop and the output from the second compare circuit.

1 25 The integrated circuit of claim 24 further comprising:
2 a error circuit coupled to receive an output of the second compare circuit.