Midterm Exam

CS/MATH 113 Discrete Mathematics

Habib University, Spring 2022

Total Marks: 30 Date: Monday, 28 February, 2022.

Show that $(P \implies (Q \vee R)) \equiv ((P \wedge \neg Q) \implies R)$. 1. 5 points

Solution:

2. 5 points Given the sets, A, B, and C, where C is non-empty, show that

$$((A \times C) = (B \times C)) \implies (A = B).$$

Solution: Given $(A \times C) = (B \times C)$ and $C \neq \emptyset$

Case 1: Let $A = \emptyset$

 $(A \times C) = \emptyset$ Cartesian product with an empty set $(B \times C) = \emptyset$ premise $(A \times C) = (B \times C)$ $B = \emptyset$ since $C \neq \emptyset$ A = Bdesired conclusion

Similarly,
$$(B = \emptyset) \implies (A = \emptyset)$$

Case 2: Let A, B and C be non-empty. Then

$$\forall a \in A, c \in C \qquad (a, c) \in (A \times C) \qquad \text{Definition of the Cartesian product} \\ (A \times C) \subset (B \times C) \qquad \qquad \text{premise} \\ \Longrightarrow \qquad (a, c) \in (B \times C) \qquad \text{subset definition} \\ \Longrightarrow \qquad a \in B \qquad \qquad \forall a \in A \\ \Longrightarrow \qquad A \subset B$$

Similarly, we prove $B \subset A$. Therefore, A = B.

- 3. 10 points Let $x, y \in \mathbb{R}$ and Q(x, y) be the propositional function, x + y = x y. Determine the truth value of each of the following statements, also providing an explanation or a counterexample, as applicable, with each.
 - (a) $\forall x \forall y \ Q(x,y)$

Solution: The statement reads

For all x, for all y, x + y = x - y

This is FASLE as we have a counterexample, when x=1,y=1, then $x+y=2\neq x-y=0.$

(b) $\forall x \exists y \ Q(x, y)$

Solution: The statement reads

For all x, there exists a y such that x + y = x - y

This is TRUE as indeed, when y = 0 then $x + y = x - y = x, \forall x$.

(c) $\exists x \forall y \ Q(x,y)$

Solution: The statement reads

There exists x, such that for all y x + y = x - y

This is FALSE.

Proof by contradiction

Suppose the statement was true i.e. there exists x, such that for all y + y = x - y

Then for all y, y = -y, but that is not the case if $y \neq 0$.

Note that considering any one value of x is not sufficient here to disprove the statement, as there might have been some other value of x making the statement true. So we need a general result rather than a counterexample.

(d) $\exists y \ Q(1,y)$

Solution: The statement reads

When x = 1, there exists a y such that 1 + y = 1 - y

This is TRUE as indeed, when y = 0 then 1 + y = 1 - y = 1.

Note that this is just an instance of the universal true statement given in part b and therefore has to be true.

(e) $\exists x \exists y \ Q(x,y)$

Solution: The statement reads

There exists x, there exists a y such that x + y = x - y

This is TRUE, when for instance x = 1, y = 0.

Note again that since the universal statement in part b is true, our statement needs to be true aswell.

4. 5 points Show that $((A \cap B) = (A \cup B)) \implies (A = B)$.

Solution:

- (1) $A \subset (A \cup B)$ since $\forall a \in A, a \in A \cup B$
- (2) $(A \cup B) = (A \cap B)$ premise
- (3) $\implies A \subset (A \cap B)$ implied from (1) and (2)
- (4) $(A \cap B) \subset B$ since $\forall x \in A \cap B, x \in B$
- (5) $\implies A \subset B$ implied from (3) and (4)

Similarly, $B \subset A$.

Therefore, A = B

- 5. 5 points In this problem we prove $\{12a + 25b|a, b \in \mathbb{Z}\} = \mathbb{Z}$.
 - (a) Let $S = \{12a + 25b | a, b \in \mathbb{Z}\}$. Show that $S \subset \mathbb{Z}$.

Solution: Since a and b are integers and since we know that product and sum of integers are integers again, $\forall a,b \in \mathbb{Z}, 12a+25b \in \mathbb{Z}$. Thus the set $S = \{12a+25b|a,b \in \mathbb{Z}\} \subset \mathbb{Z}$.

(b) Next to show $\mathbb{Z} \subset S$, we need to prove that $\forall x \in \mathbb{Z}, \exists a, b \in \mathbb{Z}$ such that $x = \underline{12a + 25b}$. Fill in the blank and then complete the proof by choosing appropriate values of a and b.

Solution: For any $x \in \mathbb{Z}$ keeping a = -2x and b = x produces x = 12a + 25b.