

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO

-----ANÁLISIS DE ALGORITMOS-----ACTIVIDAD

Determinando funciones de complejidad

PROFESOR:

Franco Martínez Edgardo Adrián

ALUMNO:

 $Meza\ Vargas\ Brandon\ David-2020630288$

GRUPO: 3CM13

Antes de comenzar es importante recalcar que para el análisis y obtención de las funciones se están tomando los siguientes criterios:

- Asignaciones
- Operaciones aritméticas
- Saltos (gF falso, gT true)
- Comparaciones

Además, en el análisis no entra la variable nInstru y las operaciones con esta, ya que solo es para determinar cuántas instrucciones fueron en total al verificar el código. También aclaramos que para las funciones complejidad espacial no se toma en cuenta la variable n.

-Cédige 01-----

```
int i, temp, k, j, n, nInstru=0;
int *A;
if(argc != 2)
    exit(1);
n = atoi(argv[1]);
A = (int *)malloc(40000*sizeof(int));
for(i=1, nInstru++;i<n;i++, nInstru++) {</pre>
    nInstru++; //Condicional TRUE en i
    for(j=n, nInstru++;j>1;j/=2, nInstru++){
        nInstru++, //Condicional TRUE en j
        temp = A[j]; nInstru++;
        A[j] = A[j+1]; nInstru+=2;
        A[j+1] = temp; nInstru+=2;
        nInstru++; //saltos TRUE j
    nInstru++; //Saltos FALSE de j
    nInstru++; //Condicional FALSE en j
    nInstru++; //Saltos TRUE en i
nInstru++; //Salto FALSE en i
nInstru++; //Comparacion FALSE en i
```

Función complejidad temporal

```
for(i=1, nInstru++;i<n;i++, nInstru++) {</pre>
```

- → (1+n+n-1)(asignación+comparaciones+aritmeticas) = 2n
- → 1 (gF i)
- → n-1 (gT i)

```
for(j=n, nInstru++;j>1;j/=2, nInstru++){
    nInstru++, //Condicional TRUE en j
    temp = A[j]; nInstru++;
    A[j] = A[j+1]; nInstru+=2;
    A[j+1] = temp; nInstru+=2;
    nInstru++; //saltos TRUE j
}
```

- → (1+(log2(n)+1)+log2(n))*(n-1) (asignación+comparaciones+aritmeticas)*(gT i) = 2nlog2(n)-2log2(n)+2n-2
- \rightarrow n-1 (gF j)
- → log2(n)*(n-1) (veces que se ejecuta for interno)* $(gT\ i) = nlog(n)-log2(n)$ $(gT\ j)$
- → (3+2)*(nlog(n)-log2(n)) (comparaciones+aritméticas dentro de for interno) (gT j) = 5nlog2(n)-5log2(n)

De esta forma, recordando que el logaritmo es piso, al reducir términos nos queda:

$$f(n) = 8n[\log_2(n)] - 8[\log_2(n)] + 6n - 3$$

Siempre y cuando n > 0, pues para n < 0 será 6n - 3

Función complejidad espacial

- → 1 variable i
- → 1 variable j
- → 1 variable temp
- → n variables del arreglo A

$$f(n) = n + 3$$

Determinando funciones de complejidad

N	Resultados Teóricos	Resultados Empíricos
-1	3	3
0	3	3
1	3	3
2	17	17
3	31	31
5	91	91
15	423	423
20	725	725
100	5349	5349
409	28563	28563
500	34933	34933
593	46179	46179
1000	77925	77925
1471	126423	126423
1500	128917	128917
2801	263203	263203
3000	281909	281909
5000	509901	509901
10000	1099893	1099893
20000	2359885	2359885

----Código 02-----

```
int main(int argc, char **argv){

int i, n, nInstru=0;
int *A, z;
if(argc != 2)
    exit(1);

n = atoi(argv[1]);
A = (int *)malloc(40000*sizeof(int));

int polinomio = 0; nInstru++;
for(i=0, nInstru++;i<=n;i++, nInstru++) {
    nInstru++; //Condicional TRUE en i
    polinomio = polinomio*z+A[n-i]; nInstru+=4;
    nInstru++; //Saltos TRUE en i
}

nInstru++; //Salto FALSE en i
nInstru++; //Comparacion FALSE en i
vintf("\nInstrucciones: %d", nInstru);</pre>
```

Función complejidad temporal

- → 1 (asignación)
- \rightarrow (1+(n+1+1)+(n+1)) (asignación+comparaciones+aritmeticas) = 2n+4
- → n+1 (gT i)
- **→** 1 (gF i)
- \rightarrow (1+3)*(n+1) (asignación+operaciones)*(gT i) = 4n+4

Así, al sumar los términos nos queda la siguiente función:

$$f(n) = 7n + 11$$

Función complejidad espacial

- → 1 variable polinomio
- → 1 variable i
- → 1 variable z
- → n variables del arreglo A

$$f(n) = n + 3$$

Tabla Comparativa función complejidad temporal

N	Resultados Teóricos	Resultados Empíricos
-1	4	4
0	11	11
1	18	18
2	25	25
3	32	32
5	46	46
15	116	116
20	151	151
100	711	711
409	2874	2874
500	3511	3511
593	4162	4162
1000	7011	7011
1471	10308	10308
1500	10511	10511
2801	19618	19618
3000	21011	21011
5000	35011	35011
10000	70011	70011
20000	140011	140011

Gráfica

Página 7 | 21

------Código 03-----

```
main(int argc, char **argv){
int *A, *B, *C;
A = (int *)malloc(500000*sizeof(int));
B = (int *)malloc(500000*sizeof(int));
C = (int *)malloc(500000*sizeof(int));
if(argc != 2)
n = atoi(argv[1]);
for(i=1, nInstru++; i<=n; i++, nInstru++){</pre>
     nInstru++; //Condicional TRUE en
         nInstru++; //Condicional TRUE en j
         for(k=1, nInstru++; k<=n; k++, nInstru++){</pre>
              nInstru++; //Condicional TRUE en I
              C[i,j] = C[i,j] + A[i,k] * B[k,j]; nInstru += 3;
              nInstru++; //Saltos TRUE k
         nInstru++; //Salto FALSE k
         nInstru++; //Condicional FALSE k
         nInstru++; //Salto TRUE j
     nInstru++; //Salto FALSE j
     nInstru++; //Condicional FALSE j
     nInstru++; //Saltos TRUE i
    stru++; //Salto FALSE i
```

Función complejidad temporal

```
for(i=1, nInstru++; i<=n; i++, nInstru++){
```

- \rightarrow (1+(n+1)+n) (asignaciones + comparaciones + aritméticas) = 2n+2
- **→** n (gT i)
- → 1 (gF i)

```
for (j=1, nInstru++; j<=n; j++, nInstru++){
    nInstru++; //Condicional TRUE en j
    C[i,j] = 0; nInstru++;</pre>
```

- \rightarrow (1+(n+1)+n)*n (asignaciones + comparaciones + aritméticas)* $(gT i) = 2n^2+2n$
- \rightarrow n*n (gT i)(Veces que entra el for intero) = n² (gT j)
- \rightarrow n (gF j)

→ $1*(n^2)$ (asignación)*(gT j) = n^2

```
for(k=1, nInstru++; k<=n; k++, nInstru++){
    nInstru++; //Condicional TRUE en k
    C[i,j] = C[i,j] + A[i,k] * B[k,j]; nInstru += 3;
    nInstru++; //Saltos TRUE k
}</pre>
```

- \rightarrow (1+ (n+1) +n)*n² (asignaciones + comparaciones+aritméticas)*(gT j) = 2n³+2n²
- \rightarrow n(n²) (veces que entra el for en k) (gT j) = n³ (gT k)
- \rightarrow (1+2)*n³ (asignación + aritméticas)*(gT k) = 3n³

De esta forma, al sumar los términos anteriores, obtenemos la siguiente función:

$$f(n) = 6n^3 + 7n^2 + 6n + 3$$

Tomando en cuenta que para valores menores de 1 serán siempre 3 instrucciones.

Función complejidad espacial

- → 3 variables i, j, k
- → n*n variables de la matriz C. A y B

$$f(n) = 3n^2 + 3$$

N	Resultados Teóricos	Resultados Empíricos
-1	3	3
0	3	3
1	22	22
2	91	91
3	246	246
5	958	958
15	21918	21918
20	50923	50923
100	6070603	6070603
409	411680998	411680998
500	751753003	751753003
593	1253632246	1253632246
1000	1712038707	1712038707
1471	1.91×10^{10}	1933347198
1500	2.02×10^{10}	-1209077477
2801	1.31 x10 ¹¹	-1235879754
3000	1.62×10^{11}	-1255894754
5000	7.5×10^{11}	-1431239914
10000	6 x10 ¹²	-2031455133
20000	4.8 x10 ¹³	-2533155690

Como vemos en la tabla, en los resultados empíricos a partir del 1500 empieza a dar cifras erróneas debido a la gran cantidad de instrucciones generadas

------Cédige 04-----

```
int main(int argc, char **argv){

int n, anterior, actual, aux, nInstru=0;

if(argc != 2)
    exit(0);

n = atoi(argv[1]);

anterior = 0; nInstru++;
    actual = 0; nInstru++;

while(n > 2){
        nInstru++; //Condicion TRUE
        aux = anterior + actual; nInstru+=2;
        anterior = actual; nInstru++;
        actual = aux; nInstru++;
        n = n - 1; nInstru+=2;
        nInstru++; //Saltos TRUE
}

nInstru++; //Saltos TRUE

printf("\nInstrucciones: %d", nInstru);

return 0;
```

Función complejidad temporal

- → 1+1 (asignación + asignación)
- → n-1 (comparaciones)
- → n-2 (gT ciclo)
- **→** 1 (gF ciclo)
- \rightarrow (4 + 2) * (n-2)(asignaciones+aritmeticas)*(gT ciclo) = 6n-12

De esta forma nos queda la siguiente función tomando en cuenta n > 2, ya que si n<=2 el número de instrucciones siempre será 4

$$f(n) = 8n - 12$$

Función complejidad espacial

- → 2 variables anterior y actual
- → 1 variable aux

$$f(n) = 3$$

Tabla Comparativa función complejidad temporal

N	Resultados Teóricos	Resultados Empíricos
-1	4	4
0	4	4
1	4	4
2	4	4
3	12	12
5	28	28
15	108	108
20	148	148
100	788	788
409	3260	3260
500	3988	3988
593	4732	4732
1000	7988	7988
1471	11756	11756
1500	11988	11988
2801	22396	22396
3000	23988	23988
5000	39988	39988
10000	79988	79988
20000	159988	159988

Gráfica

------Cédige 05-----

```
int maln(int argc, char **argv){

int i, k, nInstru=0, n, j;
int *s, *s2;
s = (int *)malloc(500000*sizeof(int));

s2 = (int *)malloc(500000*sizeof(int));

if(argc != 2)
    exit(1);

n = atoi(argv[1]);

for(i=n-1,j=0,nInstru+=2;i>=0;i--,j++,nInstru+=2){
    nInstru++; //Condicional TRUE
    s2[j] = s[i]; nInstru++;
    nInstru++; //Salto TRUE
}

nInstru++; //Salto FALSE
nInstru++; //Comparacion FALSE

for(k=0,nInstru++;k<n;k++,nInstru++){
    nInstru++; //Comparacion FALSE

for(k=0,nInstru++; //Salto FALSE
    nInstru++; //Salto FALSE

printf("\nInstru++; //Salto FALSE
    nInstru++; //Salto FALSE
    nInstru++; //Salto FALSE
    printf("\nInstrucciones: %d", nInstru);

return 0;</pre>
```

```
for(i=n-1,j=0,nInstru+=2;i>=0;i--,j++,nInstru+=2){
    nInstru++; //Condicional TRUE
    s2[j] = s[i]; nInstru++;
    nInstru++; //Salto TRUE
}
```

- → 1+1 (asignación i, asignación j) = 2
- → n+1 (comparaciones)
- → n+n (aritméticas + aritméticas j)
- → n (asignaciones)
- → 1 (gF)
- **→** n (gT)

```
for(k=0,nInstru++;k<n;k++,nInstru++){</pre>
    nInstru++; //Condicional TRUE
    s[i] = s2[i]; nInstru++;
    nInstru++; //Saltos TRUE
```

- \rightarrow (1+(n+1)+n) (asignación + comparaciones + aritméticas) = 2n+2
- → n (asignaciones)
- → 1 (gf)
- **→** n (gT)

De esta forma, al sumar los términos, nos queda la siguiente función:

$$f(n) = 9n + 7$$

Tengamos en cuenta que para valores menores a 1, las operaciones serán solo 7

Función complejidad espacial

- → 3 variables i, j, k
- → n variables de los arreglos s y s2

$$f(n) = 2n + 3$$

Tabla Comparativa

N	Resultados Teóricos	Resultados Empíricos	
-1	7	7	
0	7	7	
1	16	16	
2	25	25	
3	34	34	
5	52	52	
15	142	142	
20	187	187	
100	907	907	
409	3688	3688	
500	4507	4507	
593	5344	5344	
1000	9007	9007	
1471	13246	13246	
1500	13507	13507	
2801	25216	25216	
3000	27007	27007	
5000	45007	45007	
10000	90007	90007	
20000	180007	180007	

-Cédige 06--

```
int l, a, b, nInstru=0, r, i, auxa=0, auxb=0;
if(argc != 3)
b = atoi(argv[2]);
l = (a < b)?a:b; nInstru+=2;
r=1; nInstru++;
for(i=2,nInstru++;i<=1;i++,nInstru++){</pre>
   nInstru++; //Comparacions true
    if(a%i==0&&b%i==0)
       printf("\n true %d %d %d",a%i,b%i, i);
    if(a%i==0&&b%i==0){
        nInstru+=5;
       r=i:nInstru++;
       nInstru++; //Salto TRUE if
       auxa++;
    }else{
        nInstru+=5;
        nInstru++; //salto false
        nInstru++; //condicional false
    nInstru++; //salto true
nInstru++; //comparacion FALSE i
nInstru++; //Salto FALSE i
```

Función complejidad temporal

Analizando el código me doy cuenta de que todo va bien hasta llegar al if, puesto que este entrará siempre y cuando su condición se cumpla, dicha condición resulta algo complicada de analizar, pero si vemos bien entramos en razón que la cantidad de veces que se cumplirá serán el numero de divisores que tiene el máximo factor común de a y b. A partir de esta afirmación podemos establecer una función de complejidad de la siguiente forma:

- → (1+1) (asignación y comparación del primer if)
- → 1 asignación de r
- \rightarrow (1+n+(n-1)) (asignaciones + comparaciones + aritméticas del if) = 2n
- \rightarrow n-1 (gT for)
- **→** 1 (gF for)
- \rightarrow (3+2)(n-1) (operaciones + comparaciones en if)*(gT for) = 5n-5
- \rightarrow (1)*(cantidad de divisores del MFC de a y b, lo llamaremos cDiv)* = cDiv

→ cDiv (gT if)

 \rightarrow n – cDiv (gF if)

$$f(n) = cDiv + 9n - 2$$

Cuando l toma un valor menor a 2 las instrucciones siempre serán 6

Función complejidad espacial

→ 4 variables l, r, a y b

→ 1 variable i

$$f(n) = 5$$

a, b	Resultados Teóricos	Resultados Empíricos
-1, 0	6	6
0, 2	6	6
1, 2	6	6
2, 4	17	17
3, 6	26	26
5, 10	44	44
15, 30	136	136
20, 40	183	183
100, 200	906	906
409, 818	3680	3680
500, 1000	4509	4509
593, 1800	5335	5335
1000, 2000	9013	9013
1471, 2800	13237	13237
1500, 3000	13521	13521
2801, 6000	25207	25207
3000, 6500	27009	27009
5000, 10000	45017	45017
10000, 20000	90022	90022
20000, 40000	180027	180027

------Cédige 07-----

```
int main(int argc, char **argv){
   int n, nInstru = 0, i, j, temp;
   int *lista = (int *)malloc(500000*sizeof(int));

if(argc != 2)
   exit(1);

n = atoi(argv[1]);

for(i=1,nInstru++;i<n;i++,nInstru++){
   nInstru++; //Condicional TRUE i
   for(j=0,nInstru++; j<n-1; j++, nInstru++){
        nInstru++; //Condicional TRUE j

        if(lista[j]>lista[j+1], nInstru+-2){

        nInstru++; // Condicional TRUE IF
        temp = lista[j] = lista[j+1];nInstru+-2;
        lista[j+1] = temp; nInstru+-2;
        lista[j+1] = temp; nInstru+-2;
        nInstru++; // Saltos TRUE IF
   }

   nInstru++; // Saltos TRUE i
}

nInstru++; //Saltos TRUE en i
nInstru++; //Saltos TRUE en i

nInstru++; //Saltos TRUE en i

nInstru++; //Comparacion FALSE en i

nInstru++; //Comparacion FALSE en i

printf("\nInstrucciones: %d", nInstru);

return 0;
```

Función complejidad temporal

```
for(i=1,nInstru++;i<n;i++,nInstru++){</pre>
```

- → (1+n+(n-1)) (asignación + comparación + aritméticas) = 2n
- → n-1 (gT i)
- → 1 (gF i)

```
for(j=0,nInstru++; j<n-1; j++, nInstru++){
    nInstru++; //Condicional TRUE j</pre>
```

- → (a+n+(n-1)) * (n-1) (asignaciones + comparaciones + aritméticas) * (gT i) = 2n²-2n
- \rightarrow n-1 (gF j)
- \rightarrow (n-1)(n-1) (gT i)(veces que se repite el for interno) = n²-2n+1

```
if(lista[j]>lista[j+1], nInstru+=2){

    nInstru++; // Condictional TRUE IF
    temp = lista[j];nInstru++;
    lista[j] = lista[j+1];nInstru+=2;
    lista[j+1] = temp; nInstru+=2;
    nInstru++; // Salto TRUE IF
}
```

- → En esta parte consideramos que el IF siempre será verdadero, pues no sabemos que hay dentro del arreglo de lista
- \rightarrow (1 + 3 + 3)*(n-1)(n-1) (comparaciones + aritméticas + asignaciones)*(veces que pasa por el if) = $7n^2$ -14n+7
- \rightarrow (n-1)(n-1) = n²-2n+1 (gT IF)

Si sumamos los términos nos queda la siguiente función:

$$f(n) = 11n^2 - 16n + 8$$

Teniendo en cuenta que, para valores menores de 2, el número de operaciones siempre serán 3

Función complejidad espacial

- → 2 variables i, j
- → n variables del arreglo lista
- → 1 variable temp

$$f(n) = n + 3$$

N	Resultados Teóricos	Resultados Empíricos
-1	3	3
0	3	3
1	3	3
2	20	20
3	59	59
5	203	203
15	2243	2243
20	4088	4088
100	108408	108408
409	1833555	1833555
500	2742008	2742008
593	3858659	3858659
1000	10984008	10984008
1471	23778723	23778723

Analisis de algoritmo	sis de algoritmos	mos	lgoritr	а	de	lisis	Aná
-----------------------	-------------------	-----	---------	---	----	-------	-----

Meza Vargas Brandon David 3CM13

Determinando funciones de complejidad

1500	24726008	24726008
2801	86256803	86256803
3000	98952008	98952008
5000	274920008	274920008
10000	1099840008	1099840008
20000	4399680008	104712712

