Suites réelles et complexes

I. Définition et premières propriétés

Définition. Une suite réelle (resp. complexe) est une application de \mathbb{N} dans \mathbb{R} (resp. \mathbb{C}). Une application $u: \mathbb{N} \to \mathbb{K}$, $n \mapsto u(n)$ sera notée $u=(u_n)_{n\in\mathbb{N}}$ et on dira que u_n est son terme général.

Remarque: On s'intéressera aussi à des suites tronquées $(u_n)_{n\geq n_0}$

Définition. On dit qu'une suite u est constante si $\forall n \in \mathbb{N}$, $u_n = u_0$.

Définition. On dit qu'une suite u est stationnaire si $\exists n_0 \in \mathbb{N} : \forall n \geq n_0, u_n = u_{n_0}$.

Définition. On dit qu'une suite réelle u est majorée si $\exists M \in \mathbb{R} : \forall n \in \mathbb{N}, u_n \leq M$.

Définition. On dit qu'une suite réelle u est minorée si $\exists m \in \mathbb{R} : \forall n \in \mathbb{N}, m \leq u_n$.

Définition. On dit qu'une suite réelle ou complexe u est bornée si $\exists M \in \mathbb{R} : \forall n \in \mathbb{N}, |u_n| \leq M$.

Définition. On dit qu'une suite réelle u est croissante si $\forall n \in \mathbb{N}, u_n \leq u_{n+1}$.

Définition. On dit qu'une suite réelle u est décroissante si $\forall n \in \mathbb{N}, u_{n+1} \leq u_n$.

Définition. On dit qu'une suite réelle u est monotone si elle est croissante ou décroissante.

Remarque : On dit qu'une propriété (*) est vérifiée à partir d'un certain rang s'il existe un entier n_0 tel que $(u_n)_{n\geq n_0}$ vérifie (*).

Par exemple une suite est stationnaire si, et seulement si, elle est constante à partir d'un certain rang.

Proposition. (*) Une suite réelle est majorée (resp. minorée) si, et seulement si, elle est majorée (resp. minorée) à partir d'un certain rang

Proposition. Une suite réelle ou complexe est bornée si, et seulement si, elle l'est à partir d'un certain rang

II. Suites convergentes

Définition. (*)On dit qu'une suite complexe u converge vers le complexe ℓ si

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} : \forall n > n_0 \Rightarrow |u_n - \ell| < \varepsilon$$

Définition. On dit qu'une suite complexe est convergente s'il existe un complexe ℓ tel que u converge vers ℓ . On dit que la suite est divergente sinon.

Proposition. (*) Une suite complexe u converge vers le complexe ℓ si et seulement si les suites réelles $R\acute{e}(u) = (R\acute{e}(u_n))_{n \in \mathbb{N}}$ et $Im(u) = (Im(u_n))_{n \in \mathbb{N}}$ convergent vers $R\acute{e}(\ell)$ et $Im(\ell)$.

Définition. (*) Si une suite u converge vers deux complexes ℓ et ℓ' , alors $\ell = \ell'$. On dit qu'il y a unicité de la limite.

On note alors $\lim u = \ell$ ou $\lim_{n \to +\infty} u_n = \ell$.

Proposition. Une suite u converge vers le complexe ℓ si et seulement si la suite $u - \ell$ converge vers 0.

Proposition. (*) Si la suite u converge vers ℓ alors la suite |u| converge vers $|\ell|$

Remarque : Il n'y a pas de réciproque comme le montre l'exemple de la suite $((-1)^n)_{n\in\mathbb{N}}$.

Proposition. (*) Une suite convergente est bornée

Remarque: Il n'y a pas de réciproque comme le montre l'exemple de la suite $((-1)^n)_{n\in\mathbb{N}}$.

III. Suites réelles de limite $\pm \infty$

Proposition. On dit qu'une suite réelle u tend $vers +\infty$ si

$$\forall M \in \mathbb{R}, \ \exists n_0 \in \mathbb{N} : \forall n \geq n_0 \Rightarrow u_n \geq M$$

On note alors $\lim u = +\infty$ ou $\lim_{n \to +\infty} u_n = +\infty$ ou $u_n \to +\infty$.

Proposition. On dit qu'une suite réelle u tend $vers -\infty$ si

$$\forall M \in \mathbb{R}, \ \exists n_0 \in \mathbb{N} : \forall n \ge n_0 \Rightarrow u_n \le M$$

On note $\lim u = -\infty$ ou $\lim_{n \to +\infty} u_n = -\infty$ ou $u_n \to -\infty$.

Remarque : Une suite divergente ne tend pas nécessairement vers $\pm \infty$. Il suffit de considérer la suite $((-1)^n)_{n\in\mathbb{N}}$.

Remarque: Une suite réelle u tend vers $+\infty$ si

$$\forall M \in \mathbb{R}^+, \exists n_0 \in \mathbb{N} : \forall n \geq n_0 \Rightarrow u_n \geq M$$

Proposition. Une suite réelle u tend $vers + \infty$ si et seulement si la suite -u tend $vers - \infty$.

Proposition. (*) Si une suite réelle u tend vers $+\infty$ alors elle n'est pas majorée.

Remarque: Il n'y a pas de réciproque comme le montre l'exemple de la suite $(n(-1)^n)_{n\in\mathbb{N}}$.

Proposition. (*) Si une suite réelle u tend $vers +\infty$ alors elle est minorée.

Remarque: Il n'y a pas de réciproque comme le montre l'exemple de la suite $((-1)^n)_{n\in\mathbb{N}}$. Remarque: Il existe des suites non majorées mais minorées ne tendant pas vers $+\infty$. Par exemple, $(n(1+(-1)^n))_{n\in\mathbb{N}}$.

IV. Opérations sur les limites

Proposition. (*) Soit $(u, v) \in (\mathbb{C}^{\mathbb{N}})^2$ de limites finies respectives ℓ et ℓ' alors la suite u + v converge vers le réel $\ell + \ell'$.

Proposition. (*) Soit $(u, v) \in (\mathbb{R}^{\mathbb{N}})^2$ tel que u diverge $vers + \infty$ et v soit minorée alors u + v diverge $vers + \infty$.

Proposition. Soit $(u, v) \in (\mathbb{R}^{\mathbb{N}})^2$ tel que u diverge vers $-\infty$ et v soit majorée alors u+v diverge vers $-\infty$.

Proposition. (*) Soit $(u, v) \in (\mathbb{R}^{\mathbb{N}})^2$ de limites respectives ℓ et ℓ' dans $\overline{\mathbb{R}}$ alors

- $Si \ \ell \in \mathbb{R} \ et \ \ell' = +\infty \ alors \lim u + v = +\infty,$
- $Si \ \ell \in \mathbb{R} \ et \ \ell' = -\infty \ alors \lim u + v = -\infty,$
- $Si \ \ell = \ell' = +\infty \ alors \lim u + v = +\infty$,
- Si $\ell = \ell' = -\infty$ alors $\lim u + v = -\infty$.

Proposition. (*) Le produit d'une suite complexe convergeant vers 0 et d'une suite complexe bornée tend vers 0.

Proposition. Soit $u \in (\mathbb{C}^{\mathbb{N}})$ de limite finie ℓ alors pour tout complexe λ , la suite λu converge vers le complexe $\lambda \ell$.

Proposition. Soit $(u, v) \in (\mathbb{C}^{\mathbb{N}})^2$ de limites finies respectives ℓ et ℓ' alors pour tout couple de complexes (λ, μ) , la suite $\lambda u + \mu v$ converge vers le complexe $\lambda \ell + \mu v$.

Proposition. (*) Soit $(u, v) \in (\mathbb{C}^{\mathbb{N}})^2$ de limites finies respectives ℓ et ℓ' alors la suite uv converge vers le complexe $\ell\ell'$.

Proposition. (*) Le produit d'une suite réelle divergeant vers $+\infty$ et d'une suite réelle minorée par m > 0 diverge vers $+\infty$.

Remarque: Il suffit que la minoration ait lieu à partir d'un certain rang.

Remarque : Il n'y a pas équivalence entre "être minorée par m>0" et "être strictement positive" comme le montre l'exemple de la suite $\left(\frac{1}{n+1}\right)_{n\in\mathbb{N}}$.

Proposition. (*) Soit $(u, v) \in (\mathbb{R}^{\mathbb{N}})^2$ de limites respectives ℓ et ℓ' alors

- $Si \ \ell = \ell' = +\infty \ et \ \ell' \in \mathbb{R}^{+*} \ alors \ \lim uv = +\infty,$
- $Si \ \ell = +\infty \ et \ \ell' \in \mathbb{R}^{+*} \ alors \ \lim uv = +\infty,$
- $Si \ \ell = +\infty \ et \ \ell' \in \mathbb{R}^{-*} \ alors \lim uv = -\infty$,
- $Si \ \ell = +\infty \ et \ \ell' = -\infty \ alors \lim uv = -\infty.$

Proposition. (*) Soit $u \in \mathbb{C}^{\mathbb{N}}$ ne s'annulant pas alors la suite $\left(\frac{1}{u_n}\right)_{n \in \mathbb{N}}$ est bien définie et :

- $\ si \ \text{lim} \ u = \ell \in \mathbb{C}^* \ alors \ \text{lim} \ \frac{1}{u} = \frac{1}{\ell},$
- $si \lim u = 0 alors \lim \left| \frac{1}{u} \right| = +\infty,$
- $\ si \ \text{lim} \ |u| = + \infty \ \ alors \ \text{lim} \ \frac{1}{u} = 0.$

V. Limites et inégalités

Proposition. (*) Passage à la limite dans les inégalités larges Soit $u \in \mathbb{R}^{\mathbb{N}}$ convergente majorée par M alors $\lim u \leq M$

Soit $u \in \mathbb{R}^{\mathbb{N}}$ convergente minorée par m alors $m \leq \lim u$

Corolaire. Si u est une suite réelle positive convergente alors sa limite est positive.

Remarque: Les inégalités strictes ne passent pas à la limite: une suite strictement positive convergente n'a pas forcément une limite strictement positive comme le montre l'exemple de la suite $(1/n)_{n\in\mathbb{N}^*}$.

Corolaire. Soit u et v deux suites réelles convergentes. Si $\forall n \in \mathbb{N}, u_n \leq v_n$, alors $\lim u \leq \lim v$.

Proposition. (*) Si une suite réelle u converge vers ℓ et si $m < \ell$ (resp. $\ell < M$) alors, à partir d'un certain rang, la suite est strictement minorée par m (resp. majorée par M).

Corolaire. Si une suite réelle u converge vers l > 0 alors la suite u est strictement positive à partir d'un certain rang

Remarque : Si une suite réelle u converge vers ℓ et si $\forall n \in \mathbb{N}, \ v_n < \ell$, alors on a pas forcément l'inégalité $u_n < v_n$ vraie à partir d'un certain rang. Il suffit de prendre $u = v = \left(\frac{-1}{n+1}\right)_{n \in \mathbb{N}}$.

Corolaire. Soit u et v deux suites réelles convergentes. Si $\lim u < \lim v$ alors à partir d'un certain rang u < v.

VI. Théorème d'existence de limites

Théorème. d'encadrement (*)

Soit $(u, v, w) \in (\mathbb{R}^{\mathbb{N}})^3$

- $-si \ \forall n \in \mathbb{N}, \ v_n \leq u_n \leq w_n \ et \ si \ \lim v = \lim w = \ell \in \mathbb{R} \ alors \ la \ suite \ u \ converge \ vers \ \ell.$
- $si \ \forall n \in \mathbb{N}, \ v_n \leq u_n \ et \ si \ \lim v = +\infty \ alors \ la \ suite \ u \ diverge \ vers +\infty.$
- $si \ \forall n \in \mathbb{N}, \ u_n \leq w_n \ et \ si \ \lim w = +\infty \ alors \ la \ suite \ u \ diverge \ vers \ -\infty.$

Remarque : Ces résultats sont conservés si l'encadrement, la minoration ou la majoration de la suite u est vraie à partir d'un certain rang.

Théorème. de la limite monotone (*)

Toute suite réelle monotone possède une limite dans $\overline{\mathbb{R}}$.

Plus précisément,

- $si \ u \in \mathbb{R}^{\mathbb{N}}$ est croissante et non majorée alors u diverge vers $+\infty$,
- $si \ u \in \mathbb{R}^{\mathbb{N}}$ est croissante et majorée alors u converge vers $\sup\{u_n, n \in \mathbb{N}\},\$
- si $u \in \mathbb{R}^{\mathbb{N}}$ est décroissante et non minorée alors u diverge vers $-\infty$,
- $si \ u \in \mathbb{R}^{\mathbb{N}}$ est décroissante et minorée alors u converge vers $\inf\{u_n, n \in \mathbb{N}\}$.

Remarque : Si u est une suite croissante à partir d'un rang n_0 et majorée, alors elle converge vers $\sup\{u_n, n \geq n_0\}$,

Définition. On dit que les suites réelles u et v sont adjacentes si u est croissante, v est décroissante, lim(u-v)=0 et $u \le v$.

Remarque: Si u et v vérifient u est croissante, v est décroissante, $\lim(u-v)=0$, alors $u\leq v$.

Théorème. des suites adjacentes (*)

Si deux suites réelles u et v sont adjacentes alors elles convergent vers la même limite.

VII. Suites extraites

Définition. Soit $u \in \mathbb{C}^{\mathbb{N}}$. On appelle suite extraite de u toute suite de la forme $(u_{\phi(n)})_{n\in\mathbb{N}}$ où ϕ est une application strictement croissante de \mathbb{N} dans \mathbb{N} . On dit que ϕ est une extractrice.

Proposition. Si la suite v est extraite de la suite u et si la suite w est extraite de la suite v alors la suite w est extraite de la suite u.

Proposition. Si u est majorée (resp. minorée ou bornée), alors toute suite extraite de u l'est aussi.

Proposition. Si u est croissante (resp. décroissante), alors toute suite extraite de u l'est aussi.

Proposition. Si u est strictement croissante (resp. strictement décroissante), alors toute suite extraite de u l'est aussi.

Proposition. Soit ϕ une extractrice alors $\forall n \in \mathbb{N}, \ \phi(n) \geq n$.

Proposition. (*) Une suite extraite d'une suite convergente converge vers la même limite.

Remarque : Ce résultat est souvent utilisé pour montrer la divergence d'une suite.

Théorème. (*) Si les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers la même limite alors la suite u converge.

Remarque: Il s'agit même d'une équivalence

Théorème. de Bolzano-Weierstrass réel (admis) :

De toute suite réelle bornée, on peut extraire une sous-suite convergente.

Théorème. de Bolzano-Weierstrass complexe (*):

De toute suite complexe bornée, on peut extraire une sous-suite convergente.

VIII. Traduction séquentielle de certaines propriétés

Définition. Une partie D de \mathbb{R} est dense si pour tout couple de réels (a,b) tel que a < b, il existe $d \in D$ tel que a < d < b.

Proposition. (*) Une partie D de \mathbb{R} est dense si, et seulement si, tout réel est limite d'une suite d'éléments de D.

Corolaire. \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses.

Proposition. (*) Soit A une partie de
$$\mathbb{R}$$
. On a $s = SupA \Leftrightarrow \begin{cases} \forall a \in A : a \leq s \\ \exists u \in A^{\mathbb{N}} : \lim u = s \end{cases}$

IX. Suites particulières

1. Suites arithmético-géométrique

Définition. On dit que la suite u est arithmétique de raison r si $\forall n \in \mathbb{N}$, $u_{n+1} = u_n + r$.

Proposition. Si u est une suite arithmétique de raison r, alors on a : $\forall n \in \mathbb{N}$, $u_n = u_0 + nr$ et $\forall (n_1, n_2) \in \mathbb{N}^2$, $n_1 \leq n_2 \Rightarrow \sum_{k=n}^{n_2} u_k = (n_2 - n_1 + 1) \frac{u_{n_1} + u_{n_2}}{2}$

Proposition. Si u est une suite arithmétique réelle de raison r alors

- $si \ r > 0$ alors la suite u est strictement croissante et $\lim u = +\infty$,
- si r < 0 alors la suite u est strictement décroissante et $\lim u = -\infty$,
- si r = 0 alors la suite u est constante à u_0 .

Proposition. (*) Si u est une suite arithmétique complexe alors elle converge si et seulement si elle est constante.

Définition. On dit que la suite u est une suite géométrique de raison q si $\forall n \in \mathbb{N}$, $u_{n+1} = qu_n$.

Proposition. si u est une suite géométrique de raison q, alors on a : $\forall n \in \mathbb{N}, u_n = q^n u_0$ et

$$\forall (n_1, n_2) \in \mathbb{N}^2, \ n_1 \le n_2 \Rightarrow \sum_{k=n_1}^{n_2} u_k = \begin{cases} (n_2 - n_1 + 1)u_{n_1} & \text{si } q = 1\\ u_{n_1} \frac{1 - q^{n_2 - n_1 + 1}}{1 - q} & \text{sinon} \end{cases}$$

Proposition. (*) Soit u une suite géométrique réelle non constante à zéro (i.e. $u_0 \neq 0$) de raison q

- si $q \leq -1$ alors la suite u est divergente et n'a pas de limite dans $\overline{\mathbb{R}}$,
- $si \ q \in]-1,1[$ alors la suite u converge vers zéro,
- si q = 1 alors la suite u est constante à u_0 .
- $Si \ q > 1 \ alors$
 - Si $u_0 > 0$ alors la suite u est strictement croissante et $\lim u = +\infty$
 - Si $u_0 < 0$ alors la suite u est strictement décroissante et $\lim u = -\infty$

Proposition. (*) Soit u une suite géométrique complexe de raison q non constante à zéro

- si |q| < 1 alors la suite u converge vers zéro,
- si |q| > 1 alors la suite u diverge et $\lim |u| = +\infty$,
- si q = 1 alors la suite u est constante à u_0 .
- si |q| = 1 et $q \neq 1$ alors la suite u est divergente.

Définition. On dit que la suite u est une suite arithmético-géométrique si

$$\exists (a,b) \in \mathbb{C}^2 : \forall n \in \mathbb{N}, \ u_{n+1} = au_n + b$$

Remarque: Dans ce cas, si $a \neq 1$, alors la suite $u - \frac{b}{1-a}$ est géométrique de raison a.

Ainsi, en posant $\ell = \frac{b}{1-a}$, on a $\forall n \in \mathbb{N}, \ u_n = a^n(u_0 - \ell) + \ell$ et

$$\forall (n_1, n_2) \in \mathbb{N}^2, \ n_1 \le n_2 \Rightarrow \sum_{k=n_1}^{n_2} u_k = (u_{n_1} - \ell) \frac{1 - q^{n_2 - n_1 + 1}}{1 - q} + (n_2 - n_1 + 1)\ell$$

2. Suites récurrentes linéaires d'ordre deux à coefficients constants

Définition. On dit que la suite u vérifie une relation linaire d'ordre deux à coefficients constants $si \exists (a,b) \in \mathbb{C}^2 : \forall n \in \mathbb{N}, \ u_{n+2} = au_{n+1} + bu_n$

Proposition. Une telle suite est entièrement déterminée par u_0 et u_1

Proposition. Soit $(a,b) \in \mathbb{C}^2$ alors l'ensemble des suites réelles (respectivement complexes) vérifiant $\forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n$ est stable par combinaison linéaire.

Théorème. (*) Soit $(a,b) \in \mathbb{C}^2$ et $S^{a,b}_{\mathbb{C}} = \{u \in \mathbb{C}^{\mathbb{N}} : \forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n\}$. On introduit le polynôme associé $P = X^2 - aX - b$

— Si le polynôme P a deux racines distinctes dans \mathbb{C} , r_1 et r_2 , alors

$$S_{\mathbb{C}}^{a,b} = \{ (\lambda r_1^n + \mu r_2^n)_{n \in \mathbb{N}}, \ (\lambda, \mu) \in \mathbb{C}^2 \}$$

— Si le polynôme P a une racine double dans \mathbb{C} , r_0 , alors

$$S_{\mathbb{C}}^{a,b} = \{ \left(\lambda r_0^n + \mu n r_0^{n-1} \right)_{n \in \mathbb{N}}, \ (\lambda, \mu) \in \mathbb{C}^2 \}$$

Théorème. (*) Soit $(a,b) \in \mathbb{R}^2$ et $S^{a,b}_{\mathbb{R}} = \{u \in \mathbb{R}^{\mathbb{N}} : \forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n\}$. On introduit le polynôme associé $P = X^2 - aX - b$

— Si le polynôme P a deux racines distinctes dans \mathbb{R} , r_1 et r_2 , alors

$$S_{\mathbb{R}}^{a,b} = \{ (\lambda r_1^n + \mu r_2^n)_{n \in \mathbb{N}}, (\lambda, \mu) \in \mathbb{R}^2 \}$$

— Si le polynôme P a une racine double dans \mathbb{R} , r_0 , alors

$$S_{\mathbb{R}}^{a,b} = \{ \left(\lambda r_0^n + \mu n r_0^{n-1} \right)_{n \in \mathbb{N}}, \ (\lambda, \mu) \in \mathbb{R}^2 \}$$

— Si le polynôme P n'a pas de racine dans \mathbb{R} , alors il admet dans \mathbb{C} deux racines conjuguées, $\rho e^{\pm i\theta}$, et

$$S_{\mathbb{R}}^{a,b} = \left\{ \left(\rho^n \left(\lambda \cos(n\theta) + \mu \sin(n\theta) \right) \right)_{n \in \mathbb{N}}, \ (\lambda,\mu) \in \mathbb{R}^2 \right\} = \left\{ \left(\rho^n A \cos(n\theta + \phi) \right)_{n \in \mathbb{N}}, \ (A,\phi) \in \mathbb{R}^2 \right\}$$

3. Suites définies par une relation de récurrence $u_{n+1} = f(u_n)$

Soit D une partie de \mathbb{C} et f une fonction de D dans D alors pour tout $d \in D$, on peut définir de façon unique une suite u par (\bigstar) $\begin{cases} u_0 = d \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \end{cases}$ On dit que la suite u oct defini

On dit que la suite u est définie par récurr

Proposition. (*) Soit D une partie de \mathbb{R} , f une fonction de D dans D et $d \in D$. On considère la suite u définie par ★.

Si f est croissante sur D alors

- u est croissante si $u_0 \le u_1$
- u est décroissante si $u_0 \ge u_1$

Si f est décroissante sur D alors

- si $u_0 \leq u_2$, la suite extraite $(u_{2n})_{n \in \mathbb{N}}$ est croissante et la suite extraite $(u_{2n+1})_{n \in \mathbb{N}}$ est
- si $u_0 \ge u_2$, la suite extraite $(u_{2n})_{n \in \mathbb{N}}$ est décroissante et la suite extraite $(u_{2n+1})_{n \in \mathbb{N}}$ est croiss ante.

Proposition. Soit D une partie de \mathbb{R} , f une fonction de D dans D et $d \in D$. On considère la suite u définie par \bigstar . Si la suite u converge vers $\ell \in \mathbb{R}$ et si f est continue en ℓ alors ℓ est un point fixe de f i.e. $f(\ell) = \ell$.

X. Relations de comparaison

1. Suites dominées

Définition. Soit v une suite ne s'annulant pas à partir d'un certain rang n_0 .

On dit qu'une suite u est dominée par la suite v si la suite $\left(\frac{u_n}{v_n}\right)_{n\geq n_0}$ est bornée i.e. si

$$\exists M \in \mathbb{R} : \forall n \ge n_0, \left| \frac{u_n}{v_n} \right| \le M$$

On note u = O(v).

Proposition. $u = O(1) \iff u \ est \ born\acute{e}e$

Proposition. Si u = O(v) et $\lim v = 0$ alors $\lim u = 0$.

Proposition. Transitivité: u = O(v) et $v = O(w) \implies u = O(w)$

Proposition. Combinaison linéaire:

$$u = O(w)$$
 et $v = O(w) \implies \forall (\lambda, \mu) \in \mathbb{C}^2 \lambda u + \mu v = O(w)$

Proposition. Produit: u = O(w) et $v = O(t) \implies uv = O(wt)$

Proposition. Quotient: Soit u et v deux suites ne s'annulant pas à partir d'un certain rang alors $u = O(v) \iff \frac{1}{v} = O\left(\frac{1}{u}\right)$

Proposition. (*) Puissance positive :

Soit u et v deux suites strictement positives et $\alpha \in \mathbb{R}^{+*}$ alors $u = O(v) \iff u^{\alpha} = O(v^{\alpha})$

Proposition. (*) Comparaison logarithmique: Soient u et v deux suites strictement positives telles qu'il existe un rang n_0 vérifiant $\forall n \in \mathbb{N}, \ n \ge n_0 \Rightarrow \frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}$ alors u = O(v).

Proposition. (*) Soit u une suite strictement positive telle que $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=\ell\in\overline{\mathbb{R}}$ alors

- $si \ell < 1 \ alors \lim u = 0$,
- $si \ell > 1 alors \lim u = +\infty,$
- $si \ell = 1$ alors on ne peut pas conclure.

2. Suites négligeables

Définition. Soit v une suite ne s'annulant pas à partir d'un certain rang n_0 . On dit que la suite u est négligeable devant la suite v si la suite $\left(\frac{u_n}{v_n}\right)_{n\geq n_0}$ tend vers zéro i.e. si

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N} : \forall n \ge N, \ \left| \frac{u_n}{v_n} \right| \le \varepsilon.$$

On note u = o(v).

Proposition. Si la suite u est négligeable devant la suite v alors la suite u est dominée par v.

Proposition. $u = o(1) \iff \lim u = 0$

Proposition. Transitivité: u = o(v) et $v = o(w) \implies u = o(w)$

Proposition. Combinaison linéaire : u = o(v) et $v = o(w) \implies \forall (\lambda, \mu) \in \mathbb{C}^2 \lambda u + \mu v = o(w)$

Proposition. Produit: $si \ u = O(w) \ et \ v = o(t)$, alors uv = o(wt)

Proposition. Quotient: Soit u et v deux suites ne s'annulant pas à partir d'un certain rang alors $u = o(v) \iff \frac{1}{v} = o\left(\frac{1}{u}\right)$

Proposition. Puissance positive: Soit u et v deux suites strictement positives et $\alpha \in \mathbb{R}^{+*}$ alors

$$u = o(v) \iff u^{\alpha} = o(v^{\alpha})$$

Proposition. Croissances comparées :

$$\forall (\alpha, \beta) \in \mathbb{R}^{+*} \times \mathbb{R}, \quad |\ln n|^{\beta} = o(n^{\alpha}) \qquad et \qquad \forall (\alpha, \lambda) \in \mathbb{R}^{+*} \times]1, \infty[, \quad n^{\alpha} = o(\lambda^{n})$$

Proposition. (*) Pour tout complexe λ , $\lambda^n = o(n!)$.

Proposition. (*) $n! = o(n^n)$

3. Suites équivalentes

Définition. Soit v une suite ne s'annulant pas à partir d'un certain rang n_0 . On dit qu'une suite u est équivalente à la suite v si la suite $\left(\frac{u_n}{v_n}\right)_{n\geq n_0}$ tend vers 1. On note $u\sim v$

Proposition. Soit u et v deux suites alors $u \sim v$ si et seulement si u = v + o(v).

Proposition. (*) La relation \sim est une relation d'équivalence sur l'ensemble des suites non nulles à partir d'un certain rang.

Proposition. Si les suites u et v sont équivalentes alors elles sont de même signe à partir d'un certain rang.

Proposition. Soit u, v deux suites et $\ell \in \mathbb{C} \cup \pm \infty$ alors $u \sim v$ et $\lim u = \ell \implies \lim v = \ell$

Proposition. Soit u une suite et $\ell \in \mathbb{C}^*$ alors $u \sim \ell \iff \lim u = \ell$

Remarque: Si l'on obtient $u \sim 0$ c'est surement que l'on a fait une erreur comme sommer ou soustraire des équivalents.

Remarque : Ne jamais sommer des équivalents. Quand on veut sommer il faut repasser par des o.

Proposition. Produit: Soit u_1 , v_1 , u_2 et v_2 quatre suites alors

$$u_1 \sim v_1 \ et \ u_2 \sim v_2 \implies u_1 u_2 \sim v_1 v_2$$

Proposition. Inverse: Soit u et v deux suites ne s'annulant pas alors

$$u \sim v \iff 1/u \sim 1/v$$

Proposition. Puissance Soit u et v deux suites strictement positives et $\alpha \in \mathbb{R}^*$ alors

$$u \sim v \iff u^{\alpha} \sim v^{\alpha}$$

Proposition. Si $u \sim w$ et si v = o(w) alors $u + v \sim w$.

Remarque : Écrire $u \sim \frac{1}{n} + \frac{1}{n^2}$ n'apporte pas plus d'informations que d'écrire $u \sim \frac{1}{n}$

Proposition. Si $\lim u = \ell$, si f est dérivable en ℓ et si $f'(\ell) \neq 0$, alors

$$f(u_n) - f(\ell) \sim f'(\ell) (u_n - \ell)$$
.

Proposition. Si la suite u tend vers zéro alors $\sin u_n \sim u_n$, $\tan u_n \sim u_n$, $\ln(1+u_n) \sim u_n$, $\exp(u_n) - 1 \sim u_n$, $(1+u_n)^{\alpha} - 1 \sim \alpha u_n$.

Proposition. Si la suite u tend vers zéro alors $\cos u_n - 1 \sim -\frac{u_n^2}{2}$.