08/11/2023

Centrale 2021

I Quelques Fonctions Auxiliaires

```
Q1. let nombre_aretes g =
        let rec length_list l =
            match 1 with
            | [] -> 0
            |h::t -> 1 + length_list t
        in
        let s = ref 0 in
        for i = 0 to Array.length(g) - 1 do
            s := !s + length_list g.(i)
        done;
        !s / 2 ;;
Q2. let g_2 = [|
        [|3; 1|];
        [|4; 0; 2|];
        [|5; 1|];
        [|0; 4|];
        [|1; 3; 5|];
        [|2; 4|];
        ];;
Q3. let adjacence g =
        let n = Array.length g in
        let adj = Array.make_matrix n n 0 in
        for i = 0 to n - 1 do
        List.iter (fun x \rightarrow adj.(i).(x) \leftarrow 1) g.(i)
        done;
        adj;;
\mathbf{Q4.} let rang (p, q) (s, t) =
        let is, js = s / p, s mod p in
        let it, jt = t / p, t mod p in
        if it = is + 1 then
            (q - 1) * js + is
        else if jt = js + 1 then
            p * (q - 1) + (p - 1) * is + js
        else
            failwith "Argument(s) invalide(s)" ;;
\mathbf{Q5.} let sommets (p, q) rg =
        if rg  then
            let is, js = rg \mod (q - 1), rg / (q - 1) in
            let s = is * p + js in
            (s, s + p)
        else if rg  then
            let shift = p * (q - 1) in
            let is, js = (rg - shift) \mod (p - 1), (rg - shift) / (p - 1) in
            let s = js * (q + 1) + is in
        else failwith "Argument(s) invalide(s)" ;;
Q6. let quadrillage p q =
        let graphe = Array.make (p * q) [] in
        let rec remplissage_graphe rg =
            if rg  then
                let v1, v2 = sommets (p, q) rg in
                begin
```

```
graphe.(v1) <- v2 :: graphe.(v1) ;
    graphe.(v2) <- v1 :: graphe.(v2);
    remplissage_graphe (rg + 1);
    end
in
remplissage_graphe 0 ;
graphe ;;</pre>
```

II Caractérisation des arbres

II.A - Propriétés sur les arbres

- **Q7.** Si $s, t \in S_n$, notons s * t, la relation "Il existe un chemin de s à t". Montrons que * est une relation d'équivalence sur S_n .
 - Réflexivité : soit $s \in S_n$. Par convention, il existe un chemin de s à s. Donc s * s.
 - Symétrie : soit $s,t \in S_n$, si s*t, alors il existe un chemin $c=(s,s1,\ldots,s_{k-1},t)$. Donc $\forall i \in \{0,\ldots,k-1\}, \{s_i,s_{i+1}\} \in A \text{ donc } \{s_{i+1},s_i\} \in A, \text{ donc le chemin } c'=(t,s_{k-1},\ldots,s_1,s)$ existe et donc t*s
 - Transitivité: soit $s, t, u \in S_n$ tels que si s * t et t * u. Alors il existe $c1 = (s, s_1, \ldots, s_{k-1}, t)$ et $c2 = (t, t_1, \ldots, t_{i-1}, u)$.

 Donc en concaténant ces chemins, il existe $c = (s, \ldots, s_{k-1}, t, t_1, t_{k-1}, u)$, d'où s * u.

Ainsi comme les composantes connexes de G sont les classes d'équivalence de * et forment donc une partition de S_n .

Q8. Soit s,t deux sommets tels que s*t, en notant len(c) la longueur d'un chemin c, alors $L = \{len(c) | c$ chemin de s à $t\}$ est une partie de \mathbb{N} , non-vide (puisque s*t), donc il existe un plus petit élément k_0 de L. D'où l'existence d'un plus court chemin de s à t. Soit c_0 un plus court chemin de s à t, notons le $c_0 = (s, s_1, \ldots, s_{k_0-1}, t)$. Si il existe $i \neq j$ tels que $s_i = s_j$ (on peut supposer sans perte de généralité que i < j) alors $c = (s, \ldots, s_i = s_j, s_{j+1}, \ldots, t)$, un chemin de longueur $k_0 - (j-i) < k_0$, ce qui contredit le caractère de plus court chemin de $c_0 \to$ absurde. Donc les sommets d'un plus court chemin sont distincts.

Q9. Soit $k \in [0, m[$, notons s, t les extrémités de a_k .

Supposons que s et t appartiennent à la même composante connexe de G_k , alors $s *_k t$. Ainsi en notant $c_k = (s_0 = s, s_1, \ldots, s_{i-1}, s_i = t)$ (avec i > 1), où les sommets de c_k sont adjacents dans G_k , alors il existe un chemin c dans G tel que $c = (s, \ldots, t, s)$ (car a_k relie s et t). Or $len(c) = i + 1 \ge 2$, donc il existe un cycle dans G. Or G est un arbre donc est acyclique \to absurde!

Ainsi les extrémités de a_k appartiennent à deux composantes connexes différentes de G_k .

En notant pout tout $i \in [0, m]$, $\varphi(i)$ le nombre de composantes connexes de G_i , alors $\phi(0) = n$ (G_0 est composé de n sommets non reliés) et $\varphi(m) = 1$ ($G_m = G$ est un arbre, donc connexe).

Donc si $k \in [0, m[$ et $a_k = \{s, t\}$, alors d'après ce qu'on a fait juste avant, s et t sont dans deux composantes connexes différentes de G_k et dans la même dans G_{k+1} . Les composantes connexes étant disjointes, si $u \in S_n$ tel que $C_{u_k} \neq C_{s_k}$ et $C_{u_k} \neq C_{t_k}$, alors $C_{u_k} = C_{u_{k+1}}$, (les C_{i_k} étant les composantes connexes de G_k contenant i), d'où finalement $\varphi(k+1) = \varphi(k) - 1$

Par une récurrence immédiate, $\varphi(m) = \varphi(0) - m$, d'où m = n - 1 et donc le résultat.

Q10. D'après **Q9.**, $(i) \implies (ii)$ et $(i) \implies (iii)$