Power Operations and Global Algebra

Jiantong Liu

November 14, 2024

1 November 13, 2024

Background. In chromatic homotopy theory, we have a notion of height that measures complexity. In the case of height 1, we have a completion of complex K-theory

$$K \to K_n^{\wedge} = E_1$$

which then builds up to higher heights with E_2, E_3 , and so on. When goes on to the height level of ∞ , we have a map $\mathbb{S} \to H\mathbb{F}_p$. When valued in finite groups, this gives rise to objects in global algebra, which are the representative ring functor. This corresponds to the Burnside ring functor in terms of K-theory and E-cohomology of classifying spaces in terms of the spectrum $\{E_i\}_{i\geqslant 1}$.

1.1 THE COMPLEX REPRESENTATION RING

Definition 1.1. A G-representation is a finite-dimensional \mathbb{C} -vector space equipped with an action of G. A map $f: V \to W$ of G-representations is an equivariant linear map: $g \cdot f(v) = f \cdot g(v)$ for $g \in G$ and $v \in V$.

Given two G-representations V and W, we may build G-representations $V \oplus W$ and $V \otimes W$ with respect to the G-diagonal action.

Definition 1.2. Let [V] be the isomorphism class of G-representation V. We may define addition and multiplication of G-representations V and W as

$$[V] + [W] = [V + W] \qquad [V][W] = [V \otimes W].$$

This gives rise to a symmetric monoidal structure, only lacking the additive inverses.

Taking the Grothendieck construction, we may fill in the additive inverses. Let RU(G) be the Grothendieck ring of the isomorphism class of G-representations under addition and multiplication above.

Lemma 1.3 (Schur). If V and W are irreducible G-representations, i.e., no non-trivial G-subrepresentations, then

- 1. if $V \not\cong W$ as G-representations, and $f: V \to W$ is a map of G-representations, then $f \equiv 0$;
- 2. if $V \cong W$, then any map $f: V \to V$ of G-representations must be defined by multiplication by a scalar.

Fact 1.4. Since every G-representation is a sum of irreducible G-representations in a unique way, then RU(G) is (additively) a free \mathbb{Z} -module with canonical basis given by the set of isomorphism classes of irreducible G-representations.

Therefore, RU(G) is quite simple with respect to the additive structure. However, it takes more effort to understand the ring multiplicatively.

Example 1.5. Let e be the trivial group, then the isomorphism classes are given by \mathbb{N} , so taking the Grothendieck completion gives $\mathrm{RU}(e) \cong \mathbb{Z}$.

Example 1.6. Assume A is an abelian group and V is an irreducible A-representation. For $a \in A$, the action map $a:V \to V$ is a map of A-representations. Since V is irreducible, then by Lemma 1.3, we know the map a is described by av = cv for some $c \in \mathbb{C}$. Therefore, the subspace $\langle v \rangle$ is a subrepresentation of V, hence $V = \langle v \rangle$. That is, $\dim(V) = 1$.

Example 1.7. Consider $A = C_n \subseteq S^1 \subseteq \mathbb{C}$, then A inherits an \mathbb{C} -action. In particular, the action $\rho : C_n \times \mathbb{C} \to \mathbb{C}$ is such that $\rho^{\otimes n} = \text{triv}$ and the tensor powers give n irreducible representations. Therefore, $\mathrm{RU}(C_n) \cong \mathbb{Z}[x]/(x^n-1)$ where $x = [\rho]$.

Remark. The spectrum $\operatorname{Spec}(\mathbb{Z}[x]/(x^n-1)) \cong \mathbb{G}_m[n]$ is the *n*-torsion of the multiplicative group.

Example 1.8. Consider the free \mathbb{C} -vector space $\mathbb{C}\{C_n\}$ based on the cyclic group C_n has a C_n -action. This is then called the regular representation. Since it can be written as a sum of irreducible representations, then one can show that

$$\mathbb{C}\{C_n\} \cong \bigoplus_{i=0}^{n-1} \rho^{\otimes i}.$$

Alternatively,

$$[\mathbb{C}\{C_n\}] = 1 + x + x^2 + \dots + x^{n-1}$$

in the context of representation ring.

It is now natural to ask: how do representation rings interact as the group varies?

1.2 RESTRICTIONS AND TRANSFERS

Let $f: H \to G$ be a map of groups, then

- there is a (contravariant) restriction map $\operatorname{Res}_f : \operatorname{RU}(G) \to \operatorname{RU}(H)$: given G-representation V, we can send this to $H \xrightarrow{f} G$ acting on V, so thinking of V as an H-representation. In particular, the restriction map above is a ring map;
- we can also define a (covariant) transfer map $\operatorname{Tr}_f:\operatorname{RU}(H)\to\operatorname{RU}(G)$: given H-representation V, we may notice that it is the same thing as a $\mathbb{C}[H]$ -module over the group ring, then by base-change, we consider it as $\mathbb{C}[G]\otimes_{\mathbb{C}[H]}V$ as a G-representation. This map is not a ring map: it is additive but not multiplicative in general.

Example 1.9. Consider the trivial map $i: e \to G$, then this corresponds to a restriction map

$$\mathrm{Res}_i:\mathrm{RU}(G)\to\mathbb{Z}$$

$$V\mapsto\dim(V)$$

that describes the dimension, and a transfer map

$$\operatorname{Tr}_i: \mathbb{Z} \to \operatorname{RU}(G)$$
$$\mathbb{C} \mapsto \mathbb{C}[G] \otimes_{\mathbb{C}} \mathbb{C} \cong \mathbb{C}[G]$$

as the regular representation.

The restriction and transfer map interacts via the Frobenius reciprocity and a double coset formula.

Theorem 1.10 (Frobenius Reciprocity). Given $x \in RU(G)$ and $y \in RU(H)$, then $Tr_f(Res_f(x)y) = x Tr_f(y)$. That is, the transfer map is a map of RU(G)-modules for a module structure on RU(H) given by restriction along f.

Theorem 1.11 (Double Coset Formula). Given subgroups $H, K \subseteq G$, then

$$\operatorname{Res}_K^G\operatorname{Tr}_H^G = \sum_{[g] \in K \backslash G/H} \operatorname{Tr}_{K \cap H^{g^{-1}}}^K c_g \operatorname{Res}_H^{K^g \cap H}$$

where c_g is a conjugation action.

Example 1.12. Suppose $k \mid n$ and consider $f: C_k \to C_n$, then

$$\operatorname{Res}_f : \operatorname{RU}(C_n) \cong \mathbb{Z}[x]/(x^n - 1) \to \operatorname{RU}(C_k) \cong \mathbb{Z}[x]/(x^k - 1)$$

is a surjection, and

$$\operatorname{Tr}_f : \operatorname{RU}(C_k) \to \operatorname{RU}(C_n)$$

$$\mathbb{1} = [\mathbb{C}] \mapsto [\mathbb{C}[C_n] \otimes_{\mathbb{C}[C_k]} \mathbb{C}] \cong [\mathbb{C}[C_n/C_k]]$$

Since the restriction map is surjective and the transfer map is a map of modules, then the module structure implies that the transfer map is completely determined by the mapping of $\mathbb{1}$.

1.3 Character Theory

Let G/conj be the set of conjugacy classes of G. Let $\mathbb{Q}(\mu_{\infty})$ be \mathbb{Q} adjoining all roots of unity. Let $\rho: G \to \operatorname{GL}_n(\mathbb{C})$ be some G-representation, then the trace $\operatorname{Tr}(\rho(g))$ is a sum of roots of unity.

Remark. To see this, we note that every representation $GL_n(\mathbb{C})$ can be conjugated to some representation of the unitary group, which can then be diagonalized. But G has finite order, so the elements on the diagonal has to be some roots of unity. Alternatively, apply Jordan canonical form.

Furthermore, the trace function satisfies $\text{Tr}(\rho(hgh^{-1})) = \text{Tr}(\rho(g))$. So this process gives a map

$$\chi : \mathrm{RU}(G) \to \mathrm{Cl}(G, \mathbb{Q}(\mu_{\infty})) = \mathrm{Fun}(G/\operatorname{conj}, \mathbb{Q}(\mu_{\infty}))$$

into the class functions.

Fact 1.13. χ is an injective ring map: we win by sending a complicated (multiplicative) structure into a much simpler structure, since the ring structure is defined pointwise. Moreover, the base-change

$$\mathbb{Q}(\mu_{\infty}) \otimes_{\mathbb{Z}} \mathrm{RU}(G) \to \mathrm{Cl}(G, \mathbb{Q}(\mu_{\infty}))$$

is an isomorphism. Even more: $\operatorname{Gal}(\mathbb{Q}(\mu_{\infty})/\mathbb{Q}) \cong \hat{\mathbb{Z}}^* := \underset{n}{\underline{\lim}} (\mathbb{Z}/n\mathbb{Z})^*$.

Fact 1.14. Here $\operatorname{Aut}(\hat{\mathbb{Z}}) \cong \hat{\mathbb{Z}}^*$ acts on G/conj naturally as $\operatorname{Hom}_{\operatorname{cts}}(\hat{\mathbb{Z}}, G)$. Combining the two actions, we have an isomorphism

$$\mathbb{Q} \otimes \mathrm{RU}(G) \cong \mathrm{Cl}(G, \mathbb{Q}(\mu_{\infty}))^{\hat{\mathbb{Z}}^{\times}}.$$

Example 1.15. Let $G = \Sigma_m$, then we have a map

$$\mathrm{RU}(\Sigma_m) \to \mathrm{Cl}(\Sigma_m, \mathbb{Q}(\mu_\infty))^{\hat{\mathbb{Z}}^\times}.$$

A conjugacy class $[\sigma]$ of Σ_m is determined completely by the cycle decomposition: given $\ell \in \hat{\mathbb{Z}}^*$ and $[\sigma] \in \Sigma_m/\text{conj}$, we view $\ell \in (\mathbb{Z}/m!\mathbb{Z})^*$ and send $[\sigma]$ to $[\sigma^\ell]$ via ℓ . In particular, $[\sigma] = [\sigma^\ell]$ have the same cycle decomposition. Therefore, the action of $\hat{\mathbb{Z}}^*$ on conjugacy classes must be trivial. Hence, the given map tells us that

$$\operatorname{Cl}(\Sigma_m, \mathbb{Q}(\mu_\infty))^{\hat{\mathbb{Z}}^\times} \cong \operatorname{Cl}(\Sigma, \mathbb{Q}).$$

Comparing this with $Cl(\Sigma_m, \mathbb{Z})$, we notice that the trace map ensures the fractions of integers never appear in the image, therefore this map factors into $Cl(\Sigma_m, \mathbb{Z})$.