

Obsah

- Čas
- Relativistické jevy
- Časová základna družice
- Formulace navigační úlohy
- Řešení navigační úlohy
- Chyba polohy
- Rozšířený Kalmánův filtr

Atomový čas

UTC (Coordinated Universal Time)

Astronomický čas

GMT

Rotace Země se zpomaluje, GMT se zpožďuje za UTC. Řeší se vkládáním a teoreticky i odebíráním přestupných sekund do UTC a to dle potřeby o půlnoci z 30. června na 1. červenca a půlnoci z 31. prosince na 1.ledna.

Časová základna GNSS

GPS GPST

Atomový čas, přestupné sekundy ne, synchronizace s UTC < 1μs

GLONASS GLONASST

- Atomový čas, přestupné sekundy Ano
- GLONASST = UTC + 3h +/- 1 ms

Galileo GST

- Atomový čas, přestupné sekundy Ne
- Chyba k UTC < 50 ns

BeiDou BDT

- Atomový čas, přestupné sekundy Ne
- Chyba k UTC < 100 ns

Relativistické jevy

1. Pohyb družice

Podle speciální teorie relativity čas objektu, který se vůči nám pohybuje přímočaře plyne pomaleji než náš. GNSS družice se pohybuje rychlostí přibližně 3300 m/s. Její čas plyne 5.10⁻⁹ % pomaleji

2. Gravitace

Rychlost plynutí času závisí na gravitačním potenciálu. Gravitační potenciál na povrchu Země je 4 vyšší než na GNSS družici. To zpomalí rychlost plynutí času na zemi o 20.10⁻⁹ %.

3. Šíření signálu

Podle teorie relativity je rychlost šíření světla a potažmo i signálu známá v inerciálních soustavách. Rotace Země způsobuje, že souřadnicová soustava ECEF není inerciální. Výpočet polohy je třeba provádět v jakékoliv inerciální soustavě ECI

Řešení relativistických jevů

- Jevy 1. a 2. se navzájem kompenzují až na změnu gravitačního potenciálu družice na excentrické dráze.
- U GPS se řeší uladěním kmitočtového normálu družice na kmitočet 10,22999999543 MHz. Pozorovateli na Zemi se kmitočet jeví jako 10,23 MHz.
- Změna gravitačního potenciálu se řeší korekcí

$$\Delta t_r = F. e. \sqrt{A} \sin E_k,$$

 $F=rac{-2.\sqrt{\mu}}{c^2}=-4.442807633.\,10^{-10}~{
m s/m^{1/2}}$, e excentricita, A délka hlavní poloosy, E_k excentrická anomálie

GLONASS korekci na změnu gravitačního potenciálu nepoužívá.

Řešení relativistických jevů

 Opomenutí korekce času u družice s excentricitou 0,02 způsobuje časovou chybu +/- 46 ns, což odpovídá chybě vzdálenosti +/- 13m.

Časová základna družice

- Družice je vybavena přesnými atomovými hodinami.
- Odchylka hodin družice měří řídicí segment a počítá korekční koeficienty.

GPS

$$t = t_{SV} + \Delta t_{SV}$$

$$\Delta t_{SV} = a_{f0} + a_{f1}(t - t_{oc}) + a_{f2}(t - t_{oc})^2 + \Delta t_r$$

 a_{f0}, a_{f1}, a_{f2} korekční koeficienty vysílané v navigační zprávě

t_{oc} vztažná čas

 Δt_r relativistická korekce

Formulace navigační úlohy

Východiska

- 1. Signál se od družice k uživateli šíří jistou dobu. U systému GPS je doba šíření mezi 66 a 86 ms. Za tuto dobu navigační družice urazí vzdálenost mezi 210 a 280 m. Polohu navigačních družic je tedy třeba určit v okamžiku vysílání signálu, nikoliv v okamžiku přijmu signálu.
- 2. Doba šíření signálu se přepočítává na vzdálenost pomocí známé rychlosti šíření signálu c. Podle speciální teorie relativity je rychlost šíření signálu známá v inerciálních soustavách. Výpočet polohy družice je tedy třeba provádět v libovolné inerciální soustavě, nikoliv v soustavě ECEF. Poznamenejme, že v neinerciálních rotujících soustavách, například ECEF rotace způsobuje změnu rychlosti šíření signálu. Jev se nazývá Sagnacův efekt.

Čas vysílání signálu

$$t_{tx} = t_{SV,tx} - \Delta t_{SV}$$

 $t_{SV,tx}$ čas vyslání signálu v časové základně družice zjištěný z fáze kódu přijímaného signálu, bitové synchronizace a navigační zprávy. t_{tx} čas vyslání signálu v časové základně systému.

Výpočet polohy navigačních družic

• Transformace poloh navigačních družic ze soustavy ECEF do soustavy ECI $heta=\dot{\Omega}(t_{tx}-t_{fix})$

$$\begin{bmatrix} x_k \\ y_k \\ z_k \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} ECEF \\ x_k(t_{tx,k}) \\ ECEF \\ y_k(t_{tx,k}) \\ ECEF \\ z_k(t_{tx,k}) \end{bmatrix}$$

 $\dot{\Omega}$ úhlová rychlost rotace Země

Formulace navigační úlohy

Zdánlivá vzdálenost

$$\rho_k = (t_{rt,k} - t_{t,k})c$$

 $t_{rt,k}$ čas přijmu signálu k-té družice v časové základně přijímače $t_{t,k}$ čas vyslání signálu k-té družice v časové základně navigačního systému

Vzdálenost

$$r_k = \rho_k + \tau_c c$$

 au_c časový posun mezi časovou základnou přijímače a časem navigačního systému

Formulace navigační úlohy

Měření musí odpovídat geometrii úlohy

$$\rho_k = \sqrt{(x_u - x_k)^2 + (y_u - y_k)^2 + (z_u - z_k)^2} - \tau_c c,$$

$$k = 1, 2, \dots$$

Řešení

- Přímá Bancroftova metoda
- Numerické řešení (Newtonova-Gaussova metoda)

Linearizace v bodě s předpokládanou polohou $(\hat{x}_u, \hat{y}_u, \hat{z}_u)$ a časovém posunu $\hat{\tau}_c$

$$\hat{\rho}_k = \sqrt{(x_u - \hat{x}_k)^2 + (y_u - \hat{y}_k)^2 + (z_u - \hat{z}_k)^2} - \hat{\tau}_c c = f(\hat{x}_u, \hat{y}_u, \hat{z}_u, \hat{\tau}_u)$$

Skutečná poloha uživatele se liší o $(\Delta x_u, \Delta y_u, \Delta z_u, \Delta \tau_c)$

$$f(x_u, y_u, z_u, \tau_c) = f(\hat{x}_u + \Delta x_u, \hat{y}_u + \Delta y_u, \hat{z}_u + \Delta z_u, \hat{\tau}_c + \Delta \tau_c)$$

Rozvoj do Taylorovy řady

$$f(\hat{x}_{u} + \Delta x_{u}, \hat{y}_{u} + \Delta y_{u}, \hat{z}_{u} + \Delta z_{u}, \hat{\tau}_{c} + \Delta \tau_{c}) =$$

$$= f(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \hat{\tau}_{c}) + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \hat{\tau}_{c})}{\partial \hat{y}_{u}} \Delta y_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{z}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{x}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{x}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{x}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{x}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{x}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{y}_{u}, \hat{x}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{x}_{u}, \hat{x}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{x}_{u}, \hat{x}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{x}_{u}, \hat{x}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{x}_{u}, \hat{x}_{u}, \hat{\tau}_{c})}{\partial \hat{x}_{u}} \Delta x_{u} + \frac{\partial f(\hat{x}_{u}, \hat{x}_{u}, \hat{x}_{u}, \hat{\tau}_{c})}{\partial$$

$$\frac{\partial f(\hat{x}_u, \hat{y}_u, \hat{z}_u, \hat{\tau}_c)}{\partial \hat{x}_u} = \frac{x_u - \hat{x}_k}{\hat{r}_k} = a_{x,k}$$

$$\frac{\partial f(\hat{x}_u, \hat{y}_u, \hat{z}_u, \hat{\tau}_c)}{\partial \hat{y}_u} = \frac{y_u - y_k}{\hat{r}_k} = a_{y,k}$$

$$\frac{\partial f(\hat{x}_u, \hat{y}_u, \hat{z}_u, \hat{\tau}_c)}{\partial \hat{z}_u} = \frac{z_u - \hat{z}_k}{\hat{r}_k} = a_{z,k}$$

$$\frac{\partial f(\hat{x}_u, \hat{y}_u, \hat{z}_u, \hat{\tau}_c)}{\partial \hat{\tau}_c} = -c$$

Koeficienty $a_{x,k}$, $a_{y,k}$, $a_{z,k}$ představují směrové kosiny jednotkového vektoru s počátkem v místě uživatele, který směruje ke k-té družici.

$$\Delta \rho_k = \rho_k - \hat{\rho}_k = a_{x,k} \Delta x_u + a_{y,k} \Delta y_u + a_{z,k} \Delta z_u - c \Delta \tau_c$$

Maticový tvar

$$\Delta \rho = H \Delta x$$

$$\Delta \boldsymbol{\rho} = \begin{bmatrix} \Delta \rho_1 \\ \Delta \rho_2 \\ \vdots \\ \Delta \rho_n \end{bmatrix} \quad \boldsymbol{H} = \begin{bmatrix} a_{x,1} & a_{y,1} & a_{z,1} & 1 \\ a_{x,2} & a_{y,2} & a_{z,2} & 1 \\ \vdots & \vdots & \vdots & \vdots \\ a_{x,n} & a_{y,n} & a_{z,n} & 1 \end{bmatrix} \quad \Delta \boldsymbol{x} = \begin{bmatrix} \Delta x_u \\ \Delta y_u \\ \Delta z_u \\ -c \Delta \tau_c \end{bmatrix}$$

H Matice směrových kosinů

Čtyři družice (n=4)

$$\Delta x = H^{-1} \Delta \rho$$

n>4

Metoda nejmenších čtverců

$$\Delta x = (H^T H)^{-1} H^T \Delta \rho$$

Váhovaná metoda nejmenších čtverců

$$\Delta x = \left(H^T W H\right)^{-1} H^T W \Delta \rho$$

Konvergence algoritmu

	a) Počátek ve středu Země			a) Počátek v místě poslední polohy		
Krok	x [m]	y [m]	z [m]	x [m]	y [m]	z [m]
0	0	0	0	3963844,14	1001362,26	4879390,95
1	5033921,30	1320513,52	6164878,19	3963862,47	1001378,38	4879397,38
2	4033867,54	1027556,93	4959868,45			
3	3964139,66	1001487,80	4879720,20			
4	3963844,14	1001362,27	4879390,95			
5	3963844,14	1001362,26	4879390,95			

Chyby měření

1. Chyby zdánlivých vzdáleností

2. Geometrie úlohy

 Koeficienty DOP vyjadřují, kolikrát je směrodatná odchylka chyby polohy větší než je směrodatná odchylka měření zdánlivé vzdálenosti σ.

Chyby měření

Kovarianční matice chyby

$$\mathbf{H} = \begin{bmatrix} \frac{\left(d_{e,1} - d_{e}\right)}{R_{1}} & \frac{\left(d_{n,1} - d_{n}\right)}{R_{1}} & \frac{\left(d_{u,1} - d_{u}\right)}{R_{1}} & 1\\ \frac{\left(d_{e,2} - d_{e}\right)}{R_{2}} & \frac{\left(d_{n,2} - d_{n}\right)}{R_{2}} & \frac{\left(d_{u,2} - d_{u}\right)}{R_{2}} & 1\\ \vdots & \vdots & \vdots & \vdots\\ \frac{\left(d_{e,n} - d_{e}\right)}{R_{n}} & \frac{\left(d_{n,n} - d_{n}\right)}{R_{n}} & \frac{\left(d_{u,n} - d_{u}\right)}{R_{n}} & 1 \end{bmatrix}$$

$$R_{k} = \sqrt{(d_{e,k} - d_{e})^{2} + (d_{n,k} - d_{n})^{2} + (d_{u,k} - d_{u})^{2}}$$

 d_e, d_n, d_u $d_{e,k}, d_{n,k}, d_{u,k}$

polohový vektor uživatele v lokálních souřadnicích je polohový vektor družice v lokálních souřadnicích

Chyby měření

$$(\mathbf{H}^{T}\mathbf{H})^{-1} = \begin{bmatrix} \sigma_e^2 & \sigma_{en} & \sigma_{eu} & \sigma_{et} \\ \sigma_{ne} & \sigma_n^2 & \sigma_{nu} & \sigma_{nt} \\ \sigma_{ue} & \sigma_{un} & \sigma_u^2 & \sigma_{ut} \\ \sigma_{te} & \sigma_{tn} & \sigma_{tu} & \sigma_t^2 \end{bmatrix}$$

$GDOP = \sqrt{\sigma_e^2 + \sigma_n^2 + \sigma_u^2 + \sigma_t^2}$	Geometric Dilution of Precision
$PDOP \qquad \sqrt{\sigma_e^2 + \sigma_n^2 + \sigma_u^2}$	Position Dilution of Precision
$HDOP \qquad \sqrt{\sigma_e^2 + \sigma_n^2}$	Horizontal Dilution of Precision
$VDOP = \sqrt{\sigma_u^2}$	Vertical Dilution of Precision
$TDOP = \sqrt{\sigma_t^2}$	Time Dilution of precision

Rozšířený Kalmánův filtr

Kalmánův filtr počítá s historií, zohledňuje polohy, které byly vypočítány v předchozích časových okamžicích

Stavový model a model měření

$$\mathbf{z}_{k} = f(\mathbf{x}_{k-1}) + \mathbf{w}_{k-1}$$
$$\mathbf{z}_{k} = h(\mathbf{x}_{k}) + \mathbf{v}_{k}$$

 w_k je náhodný vektor zahrnující neurčitosti stavového modelu a v_k představuje šum měření. Oba náhodné vektory (w_k, v_k) jsou časově nezávislé (bílé) náhodné posloupnosti s normálním rozložením, mají nulovou střední hodnotu se známou kovarianční matici. Oba procesy jsou nekorelované s počátečním stavem x_0

Rozšířený Kalmánův filtr

\bullet x_k	n x 1	Stavovy	ý vektor
/\.			

• w_k n x 1 Vektor procesního šumu

• \mathbf{z}_k m x 1 Vektor měření

• $oldsymbol{v}_k$ m x 1 Vektor šumu měření

• f(.) n x 1 Nelineární funkce stavového modelu

• h(.) m x 1 Nelineární funkce modelu měření

• Q_k n x n Kovarianční matice procesního šumu

• \mathbf{R}_k m x m Kovarianční matice šumu měření

Aproximace stavového modelu a modelu měření Taylorovou řadou

$$J_{f} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}} \end{bmatrix}$$

$$h(x_k) \equiv h(x_k^f) + J_h(x_k^f)(x_k - x_k^f) + \cdots$$

$$J_h = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \cdots & \frac{\partial h_+}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial h_n}{\partial x_1} & \cdots & \frac{\partial h_n}{\partial x_n} \end{bmatrix}$$

Kalmánův filtr

Predikce

$$\boldsymbol{x}_{k}^{f} \approx \boldsymbol{f}(\boldsymbol{x}_{k-1}^{a})$$

$$\boldsymbol{P}_{k}^{f} = \boldsymbol{J}_{f}(\boldsymbol{x}_{k-1}^{a})\boldsymbol{P}_{k-1}\boldsymbol{J}_{f}^{T}(\boldsymbol{x}_{k-1}^{a}) + \boldsymbol{Q}_{k-1}$$

Filtrace

$$\boldsymbol{x}_{k}^{a} \approx \boldsymbol{x}_{k}^{f} + \boldsymbol{K}_{k} \left(\boldsymbol{z}_{k} - \boldsymbol{h} (\boldsymbol{x}_{k}^{f}) \right)$$

$$\boldsymbol{K}_{k} = \boldsymbol{P}_{k}^{f} \boldsymbol{J}_{h}^{T} (\boldsymbol{x}_{k}^{f}) (\boldsymbol{J}_{h} (\boldsymbol{x}_{k}^{f}) \boldsymbol{P}_{k}^{f} \boldsymbol{J}_{h}^{T} (\boldsymbol{x}_{k}^{f}) + \boldsymbol{R}_{k})^{-1}$$

$$\boldsymbol{P}_{k} = \left(\boldsymbol{I} - \boldsymbol{K}_{k} \boldsymbol{J}_{h} (\boldsymbol{x}_{k}^{f}) \right) \boldsymbol{P}_{k}^{f}$$

Stavový model

Stavové veličiny

- Souřadnice x, y, z
- Rychlosti v_x , v_y , v_z
- Odchylka časové základny b a její drift f
- _ ...

Stavový model pohybu uživatele

Náhodný pohyb

Integrovaný náhodný pohyb

Stavový model

