Table 1: TRISO and Fuel Compact Characteristics [1].

Characteristic	Value	Units
Fuel	UC _{0.5} O _{1.5}	-
Enrichment (average)	15.5	wt%
Kernel radius	0.02125	cm
Buffer radius	0.03125	cm
IPyC radius	0.03475	cm
SiC radius	0.03825	cm
OPyC radius	0.04225	cm
Kernel density	10.50	g/cm ³
Buffer density	1.00	g/cm ³
IPyC density	1.90	g/cm ³
SiC density	3.20	g/cm ³
OPyC density	1.90	g/cm ³
Packing Fraction (average)	0.35	-
Compact radius	0.6223	cm
Compact Gap radius	0.6350	cm
Compact length	4.9280	cm
Helium density	4.19	10^{-3} g/cm^3
Block graphite density	1.85	g/cm ³

1 Fuel Compact

Table 1 specifies details of the TRISO particle and fuel compact designs of the MHTGR-350.

References

[1] OECD NEA. Benchmark of the Modular High-Temperature Gas-Cooled Reactor (MHTGR)-350 MW Core Design Volumes I and II. page 110, 2017.