

## LA POULE QUI CHANTE



PRODUISEZ UNE ETUDE DE MARCHE
AVEC PYTHON

DANIELA MENGUI FEVRIER 2025



## ENTREPRISE AGROALIMENTAIRE

#### Stratégie de Développement à l'international



## ETUDE DE MARCHE

MISSION DATA INTERNATIONALE



Analyse des Groupements de pays
Ciblage des pays vers lesquels exporter

Diversification du portefeuille Clients

Axes statégiques
Recommandations et Conseil

## METHODOLOGIE

DEMARCHE METHODOLOGIQUE DE NETTOYAGE PUIS D'ANALYSE DE DONNEES

O1 BASES DE DONNEES PUBLIQUES FAO

- 02 5 FICHIERS CSV
  - Disponibilite\_Alimentaire
  - PIB\_Habitant
  - Population\_2000\_2018
  - Prix\_Consommation
  - Stabilite\_Politique





## SOMMAIRE

3. RECOMMANDATIONS **SELECTION DES PREPARATION ANALYSES DES DONNEES DONNEES** 

## 1.SELECTION DES DONNEES

Indicateurs quantitatifs

- Population
- PIB/habitant en USD
- Indicateur Stabilité Politique
- Disponibilité de protéines en quantité (g/personne/jour)
- **Exportations Quantité**
- Importations Quantité
- Nourriture
- Production

# 2.PREPARATION ET NETTOYAGE DES DONNEES

Faciliter l'analyse et exploration

Code Domaine, Domaine, Code zone, Zone, Code Élément, Élément, Code Produit, Produit, Code année, Année, Unité, Valeur, Symbole, Description du Symbole, Note

OA, "Séries temporelles annuelles", "2", "Afghanistan", "511", "Population totale", "3010", "Population-Estimations", "2001", "2001", "1000 personnes", "21606.988", "X", "Sources internationales sûres", ""

OA, "Séries temporelles annuelles", "2", "Afghanistan", "511", "Population totale", "3010", "Population-Estimations", "2002", "2002", "1000 personnes", "22600.77", "X", "Sources internationales sûres", ""

OA, "Séries temporelles annuelles", "2", "Afghanistan", "511", "Population totale", "3010", "Population-Estimations", "2003", "2003", "1000 personnes", "23680.871", "X", "Sources internationales sûres", ""

OA, "Séries temporelles annuelles", "2", "Afghanistan", "511", "Population totale", "3010", "Population-Estimations", "2004", "2004", "1000 personnes", "24726.684", "X", "Sources internationales sûres", ""

OA, "Séries temporelles annuelles", "2", "Afghanistan", "511", "Population totale", "3010", "Population-Estimations", "2005", "2005", "1000 personnes", "24726.684", "X", "Sources internationales sûres", ""

OA, "Séries temporelles annuelles", "2", "Afghanistan", "511", "Population totale", "3010", "Population-Estimations", "2005", "2005", "1000 personnes", "25654.277", "X", "Sources internationales sûres", ""

OA, "Séries temporelles annuelles", "2", "Afghanistan", "511", "Population totale", "3010", "Population-Estimations", "2006", "2006", "1000 personnes", "27100.536", "X", "Sources internationales sûres", ""

OA, "Séries temporelles annuelles", "2", "Afghanistan", "511", "Population totale", "3010", "Population-Estimations", "2007", "2007", "1000 personnes", "27100.536", "X", "Sources internationales sûres", ""

OA, "Séries temporelles annuelles", "2", "Afghanistan", "511", "Population totale", "3010", "Population-Estimations", "2008", "2008", "1000 personnes", "27722.276", "X", "Sources internationales sûres", ""

OA, "Séries temporelles a



## Import des données dans Jupyter

#Importation du fichier Population\_2000\_2018
df\_population = pd.read\_csv('Population\_2000\_2018.csv')
display(df\_population)

| Cod<br>Domain | Domaine                              | Code<br>zone | Zone        | Code<br>Élément | Élément              | Code<br>Produit | Produit                    | Code<br>année | Année | Unité             | Valeur    | Symbole | Description du<br>Symbole           | Note |
|---------------|--------------------------------------|--------------|-------------|-----------------|----------------------|-----------------|----------------------------|---------------|-------|-------------------|-----------|---------|-------------------------------------|------|
| 0 0/          | Séries<br>temporelles<br>annuelles   | 2            | Afghanistan | 511             | Population<br>totale | 3010            | Population-<br>Estimations | 2000          | 2000  | 1000<br>personnes | 20779.953 | х       | Sources<br>internationales<br>sûres |      |
| 1 0/          | Séries<br>A temporelles<br>annuelles | 2            | Afghanistan | 511             | Population<br>totale | 3010            | Population-<br>Estimations | 2001          | 2001  | 1000<br>personnes | 21606.988 | х       | Sources<br>internationales<br>sûres | NaN  |
| 2 0/          | Séries<br>A temporelles<br>annuelles | 2            | Afghanistan | 511             | Population<br>totale | 3010            | Population-<br>Estimations | 2002          | 2002  | 1000<br>personnes | 22600.770 | х       | Sources<br>internationales<br>sûres |      |
| <b>3</b> O/   | Séries<br>A temporelles<br>annuelles | 2            | Afghanistan | 511             | Population<br>totale | 3010            | Population-<br>Estimations | 2003          | 2003  | 1000<br>personnes | 23680.871 | х       | Sources<br>internationales<br>sûres | NaN  |
| 4 0/          | Séries<br>A temporelles<br>annuelles | 2            | Afghanistan | 511             | Population<br>totale | 3010            | Population-<br>Estimations | 2004          | 2004  | 1000<br>personnes | 24726.684 | х       | Sources<br>internationales<br>sûres |      |

# 2.PREPARATION ET NETTOYAGE DES DONNEES

Corriger et transformer les données

### Suppression des colonnes

#Suppression de colonnes non nécessaires aux analyses df\_population = df\_population.drop(columns =['Année']) display(df population)

# Vérification des Valeurs manquantes

```
#Vérification de valeurs nulles

df_dispo_alimentaire_final.isna().sum()

Élément
Disponibilité alimentaire en quantité (kg/personne/an) 0
Disponibilité de protéines en quantité (g/personne/jour) 0
Disponibilité intérieure 2
Exportations - Quantité 37
Importations - Quantité 2
Nourriture 2
Production 4
Variation de stock 3
dtype: int64
```

### **Opérations diverses**

```
#Renommage de colonnes
df_population = df_population.rename(columns={'Valeur':'Population'})
```

```
#Sélection de L'année 2017
df_population = df_population.loc[df_population["Année"] == 2017]
```



## Traitement des outliers (valeurs extrêmes)

Répartition de la Population des pays

## Chine Inde



Répartition du volume des Exportations



USA Bresil



### Suppression des lignes des 4 Pays

```
# D'après nos analyses précédentes, il faut enlever les outliers afin de ne pas influencer considérablement nos futures analyses
df_data.drop(df_data[(df_data["Pays"] == "Etats-Unis d'Amérique")].index, inplace=True)
df_data.drop(df_data[(df_data["Pays"] == "Inde")].index, inplace=True)
df_data.drop(df_data[(df_data["Pays"] == "Brésil")].index, inplace=True)
df_data.drop(df_data[(df_data["Pays"] == "Chine")].index, inplace=True)
```

# 2.PREPARATION ET NETTOYAGE DES DONNEES



#### Fusion des 5 fichiers en 1 seul

- Suppression de lignes manquantes



## Nouveau Dataframe

|     | Zone                                | Population   | PIB/habitant<br>en USD | Indicateur<br>Stabilité<br>Politique | Disponibilité de protéines en<br>quantité (g/personne/jour) | Exportations -<br>Quantité | Importations -<br>Quantité | Nourriture | Production |
|-----|-------------------------------------|--------------|------------------------|--------------------------------------|-------------------------------------------------------------|----------------------------|----------------------------|------------|------------|
| 1   | Inde                                | 1.338677e+09 | 1937.92                | -0.77                                | 0.75                                                        | 4.00                       | 0.0                        | 2965.0     | 3545.0     |
| 2   | États-Unis<br>d'Amérique            | 3.250848e+08 | 59468.23               | 0.26                                 | 19.93                                                       | 3692.00                    | 123.0                      | 18100.0    | 21914.0    |
| 3   | Indonésie                           | 2.646510e+08 | 3839.79                | -0.50                                | 2.42                                                        | 0.00                       | 1.0                        | 1904.0     | 2301.0     |
| 4   | Pakistan                            | 2.079062e+08 | 1558.08                | -2.40                                | 1.97                                                        | 4.00                       | 2.0                        | 1218.0     | 1281.0     |
| 5   | Brésil                              | 2.078338e+08 | 9896.72                | -0.48                                | 15.68                                                       | 4223.00                    | 3.0                        | 9982.0     | 14201.0    |
|     |                                     |              |                        |                                      |                                                             |                            |                            |            |            |
| 195 | Grenade                             | 1.108740e+05 | 9309.27                | 0.99                                 | 15.50                                                       | -45.70                     | 7.0                        | 5.0        | 1.0        |
| 196 | Saint-Vincent-et-<br>les Grenadines | 1.098270e+05 | 7996.65                | 0.87                                 | 25.10                                                       | -70.31                     | 9.0                        | 8.0        | 0.0        |
| 201 | Antigua-et-<br>Barbuda              | 9.542600e+04 | 16110.31               | 0.73                                 | 17.77                                                       | 0.00                       | 7.0                        | 5.0        | 0.0        |
| 204 | Dominique                           | 7.145800e+04 | 7395.99                | 1.17                                 | 11.52                                                       | 0.00                       | 4.0                        | 3.0        | 0.0        |
| 211 | Saint-Kitts-et-<br>Nevis            | 5.204500e+04 | 22160.60               | 0.63                                 | 19.22                                                       | 0.00                       | 4.0                        | 3.0        | 0.0        |

157 lignes9 Colonnes



## ACP - Analyse en Composantes Principales

Synthétiser les 8 colonnes Mettre en évidence les liens entre variables



#### Scaling

Commençons par scaler les données. On instancie :

```
scaler = StandardScaler()

On fit:

scaler.fit(X)

* StandardScaler
StandardScaler()
```

On transforme:

#### **CLUSTERING - Partitionnement**

Découpage des Pays en groupes avec les mêmes caractéristiques

**Centrage Réduction** 



#### **CLUSTERING - Partitionnement**

1.Classification ascendante hierachique Regroupement de pays par proximité



**Dendogramme** 



#### **CLUSTERING - Partitionnement**

# 1.Classification ascendante hierachique



## 8 Groupes de Pays

**G1:2 pays** 

**G2**: 5 pays

**G3:3 pays** 

**G4**: 5 pays

**G5**: 17 pays

**G6**: 72 pays

**G7: 11 pays** 

**G8:39 pays** 



#### **CLUSTERING - Partitionnement**

#### 2. K Means

Regroupement de Pays grâce à des centroïdes





#### **CLUSTERING - Partitionnement**

#### 2. K Means

Sélection du nombre de groupes de Pays







#### **CLUSTERING - Partitionnement**

#### 2. K Means

#### **Attribution du cluster au Pays**

```
# Nous devons d'abord ré-entraîner un estimateur !
kmeans_final = KMeans(n_clusters=5)
kmeans_final.fit(df_scaled)
```

| c | luster | Pays                 |
|---|--------|----------------------|
| 0 | 1      | Indonésie            |
| 1 | 1      | Pakistan             |
| 2 | 1      | Nigéria              |
| 3 | 1      | Bangladesh           |
| 4 | 4      | Fédération de Russie |



#### **CLUSTERING - Partitionnement**

#### 2. K Means

# Comparaison des groupes avec un diagramme en coordonnées parallèles



PIB / Stabilité Politique : G0,G2

**Nourriture / Disponibilité : G4,G0,G2** 

**Importations: G4,G2** 

**Production: G4** 

**Population : G1,G4** 

## 4.RECOMMANDATIONS





**KMEANS** 

Classification ascendante hierachique

## PAYS CIBLES



Allemagne

Thaïlande

Royaume-Uni de Grande-Bretagne et d'Irlande du Nord

Pologne

Belgique

Chine - RAS de Hong-Kong

#### Des pays à majorité européens

|    | Pays                                                 | Population | PIB/habitant<br>en USD | Indicateur<br>Stabilité<br>Politique | Disponibilité de protéines en<br>quantité (g/personne/jour) | Exportations -<br>Quantité | Importations -<br>Quantité | Nourriture | Production |
|----|------------------------------------------------------|------------|------------------------|--------------------------------------|-------------------------------------------------------------|----------------------------|----------------------------|------------|------------|
| 11 | Allemagne                                            | 82658409.0 | 44670.22               | 0.57                                 | 7.96                                                        | 646.0                      | 842.0                      | 1609.0     | 1514.0     |
| 14 | Thailande                                            | 69209810.0 | 6436.79                | -0.75                                | 4.35                                                        | 796.0                      | 2.0                        | 896.0      | 1676.0     |
| 15 | Royaume-Uni de<br>Grande-Bretagne et<br>d'Irlande du | 66727461.0 | 40568.47               | 0.38                                 | 13.77                                                       | 359.0                      | 779.0                      | 2131.0     | 1814.0     |
| 30 | Pologne                                              | 37953180.0 | 13615.44               | 0.51                                 | 12.14                                                       | 1025.0                     | 55.0                       | 1150.0     | 2351.0     |
| 65 | Belgique                                             | 11419748.0 | 44162.26               | 0.42                                 | 4.57                                                        | 656.0                      | 338.0                      | 144.0      | 463.0      |
| 87 | Chine - RAS de Hong-<br>Kong                         | 7306322.0  | 45737.48               | 0.82                                 | 22.26                                                       | 663.0                      | 907.0                      | 391.0      | 24.0       |

#### Des pays à forte stabilité économique et politique

275 274 930 d'habitants

32 531\$ de Pib/habitant contre 14 064\$ pour le monde Environnement prévisible qui attire les investissements Importations conséquentes donc demande présente Cas Thailande

# MERC.

POUR VOTRE ATTENTION

