Practice 8

1. Sales Consider the following table representing sales of each fruit over five days:

	Mon	Tue	Wed	Thu	Fri
Apple	16.50	47.25	145.75	117.50	116.15
Guava	40.00	77.60	95.65	29.50	52.65
Orange	10.75	61.20	134.15	72.60	131.45
Grapes	12.00	150.85	29.95	30.35	47.85

Write a program that displays the total sale on each day, and displays the day with the highest sale.

2. Smallest number Write the following method that returns the location of the smallest element in a two-dimensional array.

```
public static int[] locateSmallest(double[][] a)
```

The return value is a one-dimensional array that contains two elements. These two elements indicate the row and column indices of the smallest element in the two-dimensional array. Write a test program that prompts the user to enter a two-dimensional array and displays the location of the smallest element in the array.

Here is a sample run:

```
Enter the number of rows and columns of the array: 3 4
Enter the array:
23.5 35 2 10
4.5 3 45 3.5
35 44 5.5 9.6
The location of the smallest element is at (0, 2)
```

3. Matrix Consider the following 4×4 matrix:

Write a program that calculates and displays the following (You may write one void function per part):

- a. The maximum value in the primary diagonal
- b. The minimum value in the secondary diagonal

- c. The sum of the values **above** the primary diagonal
- d. The sum of the values **below** the primary diagonal
- **4. Matrix addition** Write a program that prompts the user to enter the values of two 3×3 matrices and displays the sum of the two matrices. Here is a sample run:

```
Enter values for the first 3*3 matrix:

1 2 3
4 5 6
7 8 9
Enter values for the second 3*3 matrix:

1 1 2
1 0 1
2 2 3
Sum of the matrices is
2 3 5
5 5 7
9 10 12
```