1 Probability and random variables

- **Probability**: S sample space (all possible states of the system), $F \subset \mathcal{P}(S)$ a σ -algebra, $P: F \to \mathbb{R}$ a measure, such that P(S) = 1.
- Random variable: $X: S \to \mathbb{R}$, such that preimages of open sets are in F (i.e. has a well defined probability).
- Cumulative distribution function of random variable: $F_X(t) = P(X \le t)$.
- Probability distribution of random variable: g such that $F_X(t) = \sum_{x \le t, x \in C} g(x)$.
- Probability density function: f such that $F_X(t) = \int_{-\infty}^t f(s) ds$.
- Two random variables have the **same distribution** if they have the same cdf.

Example: uniform distribution:

- S a finite interval [a, b]
- F: Set of Borel sets on S (sets with a well defined "length")
- P: Borel measure ("length") divided by b-a
- X = id.

1.1 Expectation of random variables and their functions

- X is a random variable, the **expectation** of X is $E[X] = \int_S X dP$.
- The variance of X is $E[(X E[X])^2]$.
- The k-th moment of X is $E[X^k]$.
- The moment generating function of X is $E[e^{Xt}]$ (two sided Laplace transform)
- The characteristic function of X is $E[e^{itX}]$ (Fourier transform)

Since expectation is defined via integration, one can use the properties of integration to prove statements regarding expectation.

Example: Chebyshev's theorem: E[X] = 0, $E[X^2] = 1$, then $P(|X| < k) \ge 1 - \frac{1}{k^2}$. Proof:

$$1 = E[X^2] = \int_S X^2 dP \ge k^2 \int_{|X| > k} 1 dP = k^2 (1 - P(|X| < k))$$

Example: If X has p.d.f. f_X , then $E[g(X)] = \int_{-\infty}^{\infty} g f_x dt$. We prove it when g(X) is bounded via Fubini's theorem:

$$E[g(X)] = \int_{S} g(X)dP$$

$$= \int_{g(X)\geq 0} \int_{0}^{g(X)} 1dydP - \int_{g(X)<0} \int_{g(X)}^{0} 1dydP$$

$$= \int_{0}^{\infty} \int_{g^{-1}([y,\infty])} f_X(t)dtdy - \int_{-\infty}^{0} \int_{g^{-1}([-\infty,y])} f_X(t)dtdy$$

$$= \int_{-\infty}^{\infty} gf_xdt$$

There is a multivariate version of this formula, and one can also write down E[g(X)] when only the c.d.f. of X is known (via Fubini's theorem or integration by parts).

Can you write down a random variable with neither probability distribution nor p.d.f.?

Can you write down a random variable with no expectation?

1.2 Independence and conditional probability for random events

- $A, B \in F$ are independent iff $P(A \cap B) = P(A)P(B)$.
- If $P(B) \neq 0$, $P(A \cap B) = P(B)P(A|B)$. Here P(A|B) is the **conditional probability** of A when B is known to happen.

1.3 Joint distribution, marginal distribution, conditional distribution

1.3.1 Joint distribution

- X and Y are two random variables. The **joint cumulative distribution** function is $F(s,t) = P(X \le s, Y \le t)$.
- If $F(s,t) = \sum_{(x,y) \in C, x \leq s, y \leq t} g(s,t)$, we call g the **joint probability distribution**.
- If $F(s,t) = \int_{(-\infty,s]\times(-\infty,t]} f(x,y) dx dy$ we call f the joint probability density function.
- X and Y are called independent iff the joint c.d.f. is $F(x,y) = F_X(x)F_Y(y)$.
- The **covariance** between X and Y is E[(X E[X])(Y E[Y])]

Example: X and Y are two independent random variable with uniform distribution on [0,1]. What is the joint distribution function of X and Y? How about max(X,Y) and min(X,Y)? What are their covariances?

1.3.2 Marginal distribution

Knowing the joint c.d.f. of X and Y, the c.d.f. of X or Y are called the marginal cumulative distribution function, their p.d. or p.d.f. the marginal p.d. or marginal p.d.f.

1.3.3 Conditional distribution

- If A is a set such that $P(Y \in A) > 0$, then the **conditional cumulative** distribution function of X is $F_{X|Y \in A}(t) = P(X \le t|Y \in A) = P(X \le t \cap Y \in A)/P(Y \in A)$. The **conditional p.d.f.**, **conditional p.d.** and **conditional expectation** are defined similarly.
- If $P(Y \in A) = 0$ there isn't a definition of conditional distribution that works in all cases. For example, if X, Y has joint p.d.f. $f_{X,Y}$, and the marginal p.d.f. of Y, denoted as $f_Y(y) = \int_{\mathbb{R}} f_{X,Y}(x,y) dx$, exists and is non zero at y_0 , then the conditional p.d.f. at $Y = y_0$ is defined as $f_{X|Y=y_0} = f_{X,Y}(x,y_0)/f_Y(y_0)$. The conditional c.d.f. is its integral.

Remark: The definition of conditional distribution for the case $P(Y \in A) = 0$ depends on Y and not just $Y^{-1}(A)$. For example, if $Z = Ye^X$, $f_{X|Y=0} \neq f_{X|Z=0}$.

Example: X is a random variable with uniform distribution on [0,1], P(Y=1|X=p)=p (i.e. $P(Y=1|X\in A)=\int_A pdF_x(p)$), P(Y=0|X=p)=1-p. Find the conditional distribution of X when Y=1.

When there are N random variables, $N \geq 3$, the joint/marginal/conditional distributions can be defined analogously.

2 Special probability distributions, central limit theorem

2.1 Special discrete distributions

- Bernoulli distribution: $f(1) = \theta$, $f(0) = 1 \theta$.
- Binomial distribution (sum of iid Bernoulli): $f(x) = \binom{n}{x} \theta^x (1 \theta)^{n-x}, x = 0, 1, ..., n.$

- Negative Binomial distribution (waiting time for the k-th success of iid trials): $f(x) = \begin{pmatrix} x-1 \\ k-1 \end{pmatrix} \theta^k (1-\theta)^{x-k}, \ x=k,k+1,\ldots$ When k=1 it is the **geometric distribution**.
- Hypergeometric distribution (randomly pick n elements at random from N elements, the number of elements picked from a fixed subset of M elements) $f(x) = \binom{M}{x} \binom{N-M}{n-x} \binom{N}{n}^{-1}$.
- Poisson distribution (limit of binomial as $n \to \infty$, $n\theta \to \lambda$) $f(x) = \lambda^x e^{-\lambda}/x!$.
- Multinomial distribution $f(x_1, ... x_k) = \binom{n}{x_1, ..., x_k} \theta_1^{x_1} ... \theta_k^{x_k},$ $\sum_i x_i = n, \ \theta_i \theta_i = 1.$
- Multivariate Hypergeometric distribution $f(x_1, \ldots, x_k) = \prod_i \binom{M_i}{x_i}$. $\binom{N}{n}^{-1} \cdot \sum_i x_i = n, \sum_i M_i = N.$

2.2 Special continuous distributions

- Uniform distribution: $f(x) = \begin{cases} 1/(b-a) & x \in (a,b) \\ 0 & x \notin (a,b) \end{cases}$
- Normal distribution: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$.
- Multivariate Normal distribution: $x \in \mathbb{R}^d$, Σ positive definite $d \times d$ symmetric matrix, $f(x) = (2\pi)^{-d/2} |\Sigma|^{-1/2} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$.
- χ^2 distribution d: degrees of freedom. Squared sum of d normal distributions: $f(x) = \begin{cases} \frac{1}{2^{d/2}\Gamma(d/2)}x^{\frac{d-2}{2}}e^{-x/2} & x>0\\ 0 & x\leq 0 \end{cases}$.
- Exponential distribution $f(x) = \begin{cases} \frac{1}{\theta}e^{-x/\theta} & x > 0\\ 0 & x \le 0 \end{cases}$
- Gamma-distribution: $f(x) = \begin{cases} \frac{1}{\beta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{-x/\beta} & x>0\\ 0 & x\leq 0 \end{cases}$
- Beta distribution: (conjugate prior of Bernoulli distribution) $f(x) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} & x \in (0,1) \\ 0 & x \notin (0,1) \end{cases}$.

2.3 Law of Large Numbers and Central Limit Theorem

2.3.1 Convergence

- Convergence in distribution: cdf pointwise convergence.
- Convergence almost surely: $P(\lim_i X_i \neq X) = 0$.

Example: X uniform on $[0,1], Y_i = \begin{cases} 1 & \exists n \in \mathbb{Z}(X+n \in [\sum_{j=1}^i \frac{1}{j}, \sum_{j=1}^{i+1} \frac{1}{j}]) \\ 0 & \text{otherwise} \end{cases}$.

Then Y_i converges to 0 in distribution but not almost surely.

2.3.2 CLT and weak LLN

Levy's continuity theorem: If $\phi_{X_j} \to \phi_X$ pointwise, then X_j converges to X in distribution.

Weak Law of Large Numbers X_i i.i.d. with expectation μ . $S_n = \frac{1}{n} \sum_{i=1}^{n} X_i$. Then S_n converges to μ in distribution.

(Levy's) Central Limit Theorem X_i i.i.d. with expectation μ and variance $\sigma^2 > 0$. $Y_n = \sqrt{\frac{1}{n\sigma^2}} \sum_i (X_i - \mu)$, then Y_n converges in distribution to standard normal distribution (normal distribution with $\mu = 0$ and $\sigma^2 = 1$).

Proof of both theorems (assume X_i bounded): Taylor expansion of the characteristic function.

One can also use the continuity of moment generating function, which is the argument in the textbook.

2.3.3 Strong Law of Large Numbers

Borel-Cantelli Lemma A_i events, $i = 1, 2, ..., \sum_i (A_i) < \infty$, then $P(\cap_i (\cup_{j>i} A_j)) = 0$. (the probability of infinitely many A_i happening is 0)

Proof: $P(\cap_i(\cup_{j>i}A_j)) \leq P(\cup_{j>i}A_j) \leq \sum_{j>i}P(A_j)$ which converges to 0 as $i \to \infty$.

Strong Law of Large Numbers X_i , i = 1, 2, ... i.i.d. (independent with identical distribution) and $E(X_i) = \mu$, then $Y_n = \frac{1}{n} \sum_{i=1}^n X_i$ converges a.s. to constant μ .

Proof (assume X_i bounded by M): Suppose $Var(X_i) = m$. $\sqrt{\frac{n}{m}}(Y_n - \mu)$ has expectation 0 and variance 1, so $P(|Y_n - \mu| > C\sqrt{\frac{m}{n}}) < 1/C^2$ by Chebyshev's theorem. Now let $n_k = k^4$, $C_k = k$, then $Y_{n_k} = Y_{k^4}$ converges a.s. to μ by Borel-Cantelli.

 $Y_n = (\lfloor n^{1/4} \rfloor^4 Y_{\lfloor n^{1/4} \rfloor^4} + X_{\lfloor n^{1/4} \rfloor^4 + 1} + \dots + X_n)/n = Y_{\lfloor n^{1/4} \rfloor^4} + (M + |\mu|) \frac{n - \lfloor n^{1/4} \rfloor^4}{n}.$ The first term converges to μ as $n \to \infty$, and the second converges to 0.

3 Sample statistics

3.1 Some important distributions

- Standard Normal Distribution: $\mathcal{N}(0,1)$
- $\chi^2(k)$: squared sum of k independent standard normal distribution.
- t distribution: Z standard normal, $Y \sim \chi^2(k)$, Z and Y independent, then $T = \frac{Z}{\sqrt{Y/k}}$ is said to have t-distribution with k degrees of freedom.
- F distribution: U and V independent, $U \sim \chi^2(m), \ V \sim \chi^2(n)$, then $F = \frac{U/m}{V/n}$ is said to have F distribution with degrees of freedom m and n,

3.2 Sample statistics

 $X_1, \dots X_n$ i.i.d. (independent with identical distributions). Sample statistics: a random variable computed from n other random variables.

- Sample mean: $\overline{X} = \frac{\sum_{i} X_{i}}{n}$
 - $-E[\overline{X}] = E[X_1], Var(\overline{X}) = \frac{1}{n}Var(X_1).$ Proof:

$$E[\overline{X}] = E\left[\frac{1}{n}\sum_{i} X_{i}\right] = \frac{1}{n}\sum_{i} E[X_{i}] = E[X_{1}]$$

$$Var(\overline{X}) = E[(\overline{X} - E[X_1])^2] = \frac{1}{n^2} E[\sum_i (X_i - E[X_i)^2] = \frac{1}{n} Var(X_1)$$

- If $X_1 \sim \mathcal{N}(\mu, \sigma^2)$, $\overline{X} \sim \mathcal{N}(\mu, \sigma^2/n)$. Proof: By calculation using MGF.
- If $n \to \infty$, $\sqrt{\frac{n}{Var(X_1)}}(\overline{X} E[X_1])$ converges to standard normal by distribution.

Proof: This is just central limit theorem.

- Sample variance: $S^2 = \frac{1}{n-1} \sum_i (X_i \overline{X})^2 = \frac{1}{n-1} (\sum_i X_i^2 n \overline{X}^2)$.
 - $E[S^2] = Var(X_1).$ Proof:

$$E[S^2] = \frac{1}{n-1} \sum_i E[(X_i - \overline{X})^2] = \frac{1}{n-1} \sum_i E[(\frac{n-1}{n} X_i - \sum_{j \neq i} \frac{1}{n} X_j)^2]$$

$$\begin{split} &= \frac{1}{n-1} \sum_i \left(\frac{(n-1)^2}{n^2} E[X_i^2] + \sum_{j \neq i} \frac{1}{n^2} E[X_j^2] - \sum_{j \neq i} \frac{2n-2}{n^2} E[X_i] E[X_j] \right. \\ &\qquad \qquad + \sum_{j \neq i, k \neq i, j \neq k} \frac{2}{n^2} E[X_j] E[x_k] \right) \\ &= E[X_1^2] - E[X_1]^2 = Var(X_1) \end{split}$$

- If $X_1 \sim \mathcal{N}(\mu, \sigma^2)$, then
 - * \overline{X} and S^2 are independent Proof: Calculate joint cdf, do a change of variables.

*
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

Proof:
$$\frac{(n-1)S^2}{\sigma^2} + n \frac{(\overline{X} - E[X_1])^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_i (X_i - E[X_1])^2 \sim \chi^2(n)$$

Now use moment generating function and the independence between S^2 and \overline{X} .

*
$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$
.
Proof: By definition of t -distribution.

- If S_1^2 is the sample variance of n_1 i.i.d. $\mathcal{N}(\mu, \sigma^2)$ random variables Y_i , S_2^2 the sample variance of n_2 i.i.d. $\mathcal{N}(\mu', \sigma'^2)$ random variables Z_j independent from Y_i , then $\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 1, n_2 1)$ Proof: By definition of F-distribution.
- Order statistics The k-th order statistics is the k-th smallest element in $\{X_i\}$, denoted as Y_k . Then, if X_1 has pdf f, then

$$f_{Y_k}(t) = \frac{d}{dt} F_{Y_k}(t) = \lim_{\delta \to 0} \frac{F_{Y_k}(t+\delta) - F_{Y_k}(t)}{\delta}$$

$$= \lim_{\delta \to 0} \frac{1}{\delta} \binom{n}{k-1, 1, n-k} \left(\int_0^t f ds \right)^{k-1} \int_t^{t+\delta} f ds \left(\int_{t+\delta}^{\infty} f ds \right)^{n-k}$$

$$= \frac{n!}{(k-1)!(n-k)!} \left(\int_0^t f ds \right)^{k-1} f(t) \left(\int_t^{\infty} f ds \right)^{n-k}$$

3.3 PDF of χ^2 -, t- and F- distributions

3.3.1 χ^2

Let X_i be iid standard normal, their joint distribution is

$$f(x_1, \dots x_n) = (2\pi)^{-n/2} e^{-\sum_i x_i^2/2}$$

Hence the pdf of χ^2 is:

$$f_{\chi^2(n)}(r) = \frac{d}{dr} \int_{\sum_i x_i^2 \le r} (2\pi)^{-n/2} e^{-\sum_i x_i^2/2} dx_1 \dots dx_n$$

which is easy to see must be proportional to $r^{\frac{n-2}{2}}e^{-r/2}$.

3.4 *t*

Let X and Y be independent with pdf: $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ and $f_Y(y) = \frac{1}{2^{d/2}\Gamma(d/2)}y^{\frac{d-2}{2}}e^{-y/2}$. Then

$$f_{t(d)}(s) = \frac{d}{ds}P(X \le s\sqrt{Y/d}) = \frac{d}{ds} \int_0^\infty dy \int_{-\infty}^{s\sqrt{y/d}} dx \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \frac{1}{2^{d/2}\Gamma(d/2)} y^{\frac{d-2}{2}} e^{-y/2}$$
$$= \int_0^\infty dy \sqrt{y/d} \frac{1}{\sqrt{2\pi}} e^{-s^2y/2d} \frac{1}{2^{d/2}\Gamma(d/2)} y^{\frac{d-2}{2}} e^{-y/2}$$

Do change of variables $z=(s^2/d+1)y$ we get that it is proportional to $(s^2/d+1)^{-\frac{d+1}{2}}$.

The calculation for the pdf of F is similar.

- 4 Point estimators and their properties
- 5 Method of moments, Maximum likelihood
- 6 Maximum a posteriori
- 7 Hypothesis testing
- 8 Examples of hypothesis testing
- 9 Confidence interval
- 10 Linear Regression
- 11 ANOVA
- 12 Example of non parametric methods