

Dynamic Multipath Scheduling Protocol in SDN

Project Work of "Advanced Network Architectures and Wireless Systems"

Nannini Alice Poleggi Stefano

A.Y. 2020-2021

Used technologies

- VirtualBox 6.1
- Floodlight VM pre-configured with mininet, Open vSwitch, and Floodlight v1.1: for the tests, the VM has been executed with the maximum memory available (3562MB) and 4 processors. Two network adapters have been used: NAT and host-only adapter.

https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/8650780/Floodlight+VM

- Mininet 2.2.1
- Wireshark 2.6.6
- Iperf 2.0.5

Introduction

- DMSP is based on a multipath environment and makes real-time changes to select least congested links for routing data packets. The path selection and monitoring is done by a central SDN controller.
- We modified the java code of the project Floodlight to adapt it to the DMSP requirements.

S. A. Hussain, S. Akbar and I. Raza, "A dynamic multipath scheduling protocol (DMSP) for full performance isolation of links in software defined networking (SDN)," 2017 2nd Workshop on Recent Trends in Telecommunications Research (RTTR), Palmerston North, 2017, pp. 1-5, doi: 10.1109/RTTR.2017.7887866.

Topology

- We created the topology with redundant links for multipaths, using Mininet.
- We wrote a python code ("fat-tree.py") that implemented a "Fat Tree Topology" and we executed it from command line:

```
sudo mn --custom fat-tree.py
--controller=remote,ip=192.168.56.109
,port=6653 -topo=fat-tree
```


Building Multipaths

- We adapted the original module TopologyInstance in the package net.floodlightcontroller.topology: when calculting dijkstra shortest paths, we managed to store all the next-hops for each sourcedestination tuple that have minimum cost, instead of stopping at the first one found.
- We used the found next-hops to build all the possible paths and then we stored them in a cache.

Building Multipaths

The main funcions in the code that we modified for calculating the multhipaths are:

- getRoute [I.753-816]: get the possible multipaths from the cache to the TopologyManager
- dijkstra [I.496-557]: calculate all the minimum cost next-hops
- buildroute [I.655-727]: build all the possible paths from the next-hops of dijkstra

TopologyInstance

This is an extract of the code, in which we can see how the multiple next-hops are selected.

```
public class TopologyInstance {
   protected LoadingCache<RouteId, List<Route>> pathcache;
   protected BroadcastTree dijkstra(Cluster c, DatapathId root,
                                     Map<Link, Integer> linkCost,
                                     boolean isDstRooted) {
       HashMap<DatapathId, List<Link>> nexthoplinks = new HashMap<DatapathId, List<Link>>();
       if (ndist <= cost.get(neighbor)) {</pre>
            if( isLinkCongested(link,isDstRooted) )
                continue;
            cost.put(neighbor, ndist);
           List<Link> templinks = nexthoplinks.get(neighbor);
            if (templinks == null) templinks = new ArrayList<Link>();
            templinks.add(link);
           nexthoplinks.put(neighbor, templinks);
           NodeDist ndTemp = new NodeDist(neighbor, ndist);
           nodeq.remove(ndTemp);
           nodeq.add(ndTemp);
```


Scheduling of multipaths

- We have updated the *TopologyManager* module: after receiving the list of possible paths from the *TopologyInstance*, it schedules one for each source-destination host pair, using the Round Robin algorithm.
- The interested functions are:
 - class PathId [I.97-155]
 - getRoute [I.780-802]
 - scheduleNewRoute [I.805-821]
 - checkStatistics [I.370-379]

TopologyManager

```
• • •
public class TopologyManager implements IFloodlightModule, ITopologyService, IRoutingService, ILinkDiscoveryListener,
IOFMessageListener {
    protected Map<RouteId,Integer> lastScheduledRoutes = new HashMap<RouteId,Integer>();
    protected Map<PathId,Route> scheduledPaths = new HashMap<PathId,Route>();
    @Override
    public Route getRoute(DatapathId src, OFPort srcPort, DatapathId dst, OFPort dstPort, U64 cookie,
            boolean tunnelEnabled) {
        TopologyInstance ti = getCurrentInstance(tunnelEnabled);
        List<Route> routes = ti.getRoute(null, src, srcPort, dst, dstPort, cookie);
        Route r = null;
        PathId pid = new PathId(src,srcPort,dst,dstPort);
            if(scheduledPaths.get(pid)!=null && routes.contains(scheduledPaths.get(pid))){
                r = scheduledPaths.get(pid);
                r = ti.getWholeRoute(r, src, srcPort, dst, dstPort);
            }else{
                r = scheduleNewRoute(src,srcPort,dst,dstPort,routes);
                r = ti.getWholeRoute(r, src, srcPort, dst, dstPort);
        return r;
    private Route scheduleNewRoute(DatapathId src, OFPort srcPort, DatapathId dst, OFPort dstPort, List<Route> routes){
        PathId pid = new PathId(src,srcPort,dst,dstPort);
        RouteId rid = new RouteId(src,dst);
            int last = lastScheduledRoutes.get(rid);
            last = (last+1)%routes.size();
            lastScheduledRoutes.put(rid, last);
            scheduledPaths.put(pid,routes.get(last));
            return routes.get(last);
```


Statistics on bandwidth

- Since the DMSP protocol requires congestion control, so that different paths can be scheduled according to link available bandwidth, we included this part.
- We integrated the statistics module of a later version (present since 14 Dec 2015) of Floodlight to our system, which periodically collects statistics about link bandwidth.
- This service is exploited by the TopologyInstance: congested links do not contribute to path building.

Statistics on bandwidth

We added several classes in a new package net.floodlightcontroller.statistics:

- IStatisticsService: interface of the service
- StatisticsCollector: implements the interface and contains the threads that collect the bandwidth statistics
- SwitchPortBandwidth: utility class to store statistics for each port
- The other classes in the package are for the Rest API service

Use of StatisticsCollector

The congested links are not considered in the computing of the possible paths by *TopologyInstance*.

```
public class TopologyInstance {
    protected IStatisticsService statisticsCollectorService;
    protected BroadcastTree dijkstra(Cluster c, DatapathId root, Map<Link, Integer> linkCost, boolean isDstRooted) {
        if( isLinkCongested(link,isDstRooted) )
                        continue;
    protected boolean isLinkCongested(Link link, boolean isDstRooted){
        if(this.statisticsCollectorService != null){
            SwitchPortBandwidth spb = null;
            if(isDstRooted){
                spb = statisticsCollectorService.getBandwidthConsumption(link.getSrc(),link.getSrcPort());
            }else{
                spb = statisticsCollectorService.getBandwidthConsumption(link.getDst(),link.getDstPort());
            if (spb != null && spb.getBitsPerSecondTx().compareTo(statisticsCollectorService.getTxThreshold()) > 0){
                log.info(link+": TxBitsPerSec: "+spb.getBitsPerSecondTx()+", over threshold;");
                return true;
        return false;
```


Alternative choice

We developed an alternative version to calculate the shortest paths, modifying the *dijkstra* code (class *TopologyInstance*): instead of setting the link weights all to 1, we use the traffic load on the link. So the computed paths will be the ones with less load on them. To exploit this altervative, the code is:

Topology

Test on multipath

Two consecutive pings between hosts connected to the same switches go on different paths.

mininet> h11 ping -c 1 h41 PING 10.0.0.7 (10.0.0.7) 56(84) bytes of data. 64 bytes from 10.0.0.7: icmp seq=1 ttl=64 time=20.7 ms --- 10.0.0.7 ping statistics ---1 packets transmitted, 1 received, 0% packet loss, time Oms rtt min/avg/max/mdev = 20.792/20.792/20.792/0.000 ms mininet> h11 ping -c 1 h42 PING 10.0.0.8 (10.0.0.8) 56(84) bytes of data. 64 bytes from 10.0.0.8: icmp_seq=1 ttl=64 time=27.0 ms --- 10.0.0.8 ping statistics ---1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 27.043/27.043/27.043/0.000 ms Interface id

No	. Time ▼	Source	Destination	Protocol	Longth	Info			Interface id	
INO							/-i			
	5 -0.015173730		10.0.0.7	ICMP				request		
	7 -0.003014273		10.0.0.7	ICMP				request		
	9 -0.003007870		10.0.0.7	ICMP				request		
	11 -0.000128085		10.0.0.7	ICMP				request		
	13 -0.000123214		10.0.0.7	ICMP				request		
	15 -0.000061989		10.0.0.7	ICMP				request		
	17 -0.000057418		10.0.0.7	ICMP				request		
	19 -0.000003400	10.0.0.1	10.0.0.7	ICMP				request		
	1 0.000000000	10.0.0.1	10.0.0.7	ICMP				request		
	3 0.000049787	10.0.0.1	10.0.0.7	ICMP	98	Echo	(ping)	request	s114-eth1	
	4 0.000068082	10.0.0.7	10.0.0.1	ICMP	98	Echo	(ping)	reply	s114-eth1	
	2 0.005410383	10.0.0.7	10.0.0.1	ICMP	98	Echo	(ping)	reply	s114-eth4	
	20 0.005415825	10.0.0.7	10.0.0.1	ICMP			(ping)		s13-eth3	
	18 0.005462957	10.0.0.7	10.0.0.1	ICMP	98	Echo	(ping)	reply	s13-eth1	
	16 0.005466405	10.0.0.7	10.0.0.1	ICMP			(ping)		s1-eth2	
	14 0.005528212	10.0.0.7	10.0.0.1	ICMP	98	Echo	(ping)	reply	s1-eth1	
	12 0.005531807	10.0.0.7	10.0.0.1	ICMP			(ping)		sll-ethl	
	10 0.005562314	10.0.0.7	10.0.0.1	ICMP			(ping)		s11-eth4	
	8 0.005564621	10.0.0.7	10.0.0.1	ICMP			(ping)		s111-eth4	
	6 0.005591334	10.0.0.7	10.0.0.1	ICMP			(ping)		slll-ethl	
1	28 9.025874915	10.0.0.1	10.0.0.8	ICMP				request		
	30 9.031446361	10.0.0.1	10.0.0.8	ICMP				request		
	21 9.031455877	10.0.0.1	10.0.0.8	ICMP				request		
	24 9.035961265	10.0.0.1	10.0.0.8	ICMP				request		
	32 9.035966330	10.0.0.1	10.0.0.8	ICMP				request		
	34 9.036013873	10.0.0.1	10.0.0.8	ICMP				request		
	22 9.036016628	10.0.0.1	10.0.0.8	ICMP				request		
	26 9.036057355	10.0.0.1	10.0.0.8	ICMP				request		
	36 9.036060245	10.0.0.1	10.0.0.8	ICMP				request		
	38 9.036088265	10.0.0.1	10.0.0.8	ICMP				request		
	39 9.036103994	10.0.0.8	10.0.0.1	ICMP			(ping)		s114-eth2	
	37 9.037833543	10.0.0.8	10.0.0.1	ICMP			(ping)		s114-eth3	
	27 9.037837627	10.0.0.8	10.0.0.1	ICMP			(ping)		s14-eth3	
	23 9.037878038	10.0.0.8	10.0.0.1	ICMP			(ping)		s14-eth2	
	35 9.037880917	10.0.0.8	10.0.0.1	ICMP			(ping)		s4-eth2	
	33 9.042136762	10.0.0.8	10.0.0.1	ICMP			(ping)		s4-eth1	
	25 9.042143530	10.0.0.8	10.0.0.1	ICMP			(ping)		s12-eth2	
133	40 9.052784038	10.0.0.8	10.0.0.1	ICMP			(ping)		s12-eth2	
	31 9.052789344	10.0.0.8	10.0.0.1						s111-eth3	
	29 9.052887863	10.0.0.8		ICMP ICMP				reply	slll-ethl	
	29 9.032007003	10.0.0.0	10.0.0.1	TCPIF	90	ECHO	(brind)	Tepty	3111-61111	

Test on congestion

Two consecutive pings between the same hosts go on the same path.

mininet> h11 ping -c 1 h41	
PING 10.0.0.7 (10.0.0.7) 56(84) bytes of data.	
64 bytes from 10.0.0.7: icmp_seq=1 ttl=64 time=22.3 ms	
10.0.0.7 ping statistics	
1 packets transmitted, 1 received, 0% packet loss, time 0m	s
rtt min/avg/max/mdev = 22.318/22.318/22.318/0.000 ms	
mininet> h11 ping -c 1 h41	
PING 10.0.0.7 (10.0.0.7) 56(84) bytes of data.	
64 bytes from 10.0.0.7: icmp seg=1 ttl=64 time=10.6 ms	
,	
10.0.0.7 ping statistics	
1 packets transmitted, 1 received, 0% packet loss, time 0m	<
rtt min/avg/max/mdev = 10.695/10.695/10.695/0.000 ms	_
mininet>	
Interface id	

No.	Time •	Source	Destination	Protocol	Length Info	Interface id
Τ*	1 0.000000000	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping)	request slll-ethl
	3 0.009411146	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping)	request slll-eth4
	5 0.009416482	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping)	request sll-eth4
	11 0.012970510	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping)	request sll-ethl
	17 0.012973333	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping)	request sl-eth1
	9 0.013048574	10.0.0.1	10.0.0.7	ICMP		request s1-eth2
	15 0.013051999	10.0.0.1	10.0.0.7	ICMP		request s13-eth1
	19 0.013104538	10.0.0.1	10.0.0.7	ICMP		request s13-eth3
	7 0.013107947	10.0.0.1	10.0.0.7	ICMP		request s114-eth4
	13 0.013142874	10.0.0.1	10.0.0.7	ICMP		request s114-eth1
	14 0.013164574	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping)	
	8 0.022139925	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping)	
	20 0.022145679	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping)	
	16 0.022192290	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping)	
	10 0.022201353	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping)	
	18 0.022233785	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping)	
	12 0.022236415	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping)	
	6 0.022262533	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping)	
	4 0.022265124	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping)	
		10.0.0.7	10.0.0.1	ICMP		reply slll-ethl
	25 3.732317601	10.0.0.1	10.0.0.7	ICMP		request slll-ethl
	27 3.740094534	10.0.0.1	10.0.0.7	ICMP		request s111-eth4
	29 3.740099209	10.0.0.1	10.0.0.7	ICMP		request sll-eth4
	31 3.740149703	10.0.0.1	10.0.0.7	ICMP		request sll-ethl
	21 3.740152736	10.0.0.1	10.0.0.7	ICMP		request s1-eth1
	23 3.740187009	10.0.0.1	10.0.0.7	ICMP		request s1-eth2
	33 3.740189689	10.0.0.1	10.0.0.7	ICMP		request s13-eth1
	35 3.740216859	10.0.0.1	10.0.0.7	ICMP		request s13-eth3
		10.0.0.1	10.0.0.7	ICMP		request s114-eth4
	39 3.740244542	10.0.0.1	10.0.0.7	ICMP		request s114-eth1
L	40 3.740259471	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping)	
1	38 3.742834521	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping)	
	36 3.742840013	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping)	
	34 3.742892054	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping)	
	24 3.742895173	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping)	
	22 3.742926495	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping)	
	32 3.742928988	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping)	
	30 3.742955196	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping)	
	28 3.742957595	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping)	
	26 3.742990196	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping)	
	20 3.742330130	10.0.0.7	10.0.0.1	TOTAL	So Ecilo (pilig)	repty SIII-etili

Test on congestion

```
⊗ 🖨 🗊 "Node: h41"
    "Node: h11"
oot@floodlight:~/project/floodlight_project# iperf -c 10.0.0.7 -u -b 1000M
                                                                             root@floodlight;~/project/floodlight_project# iperf -s -u
Client connecting to 10.0.0.7, UDP port 5001
                                                                             Server listening on UDP port 5001
Sending 1470 byte datagrams
                                                                             Receiving 1470 byte datagrams
                                                                             UDP buffer size: 208 KByte (default)
UDP buffer size: 208 KByte (default)
 79] local 10,0,0,1 port 36787 connected with 10,0,0,7 port 5001
                                                                               79] local 10,0,0,7 port 5001 connected with 10,0,0,1 port 36787
 ID] Interval
                    Transfer
                                Bandwidth
                                                                               ID] Interval
                                                                                                  Transfer
                                                                                                             Bandwidth
                                                                                                                              Jitter Lost/Total Datagrams
     0.0-10.0 sec 863 MBytes 724 Mbits/sec
                                                                                   0.0-10.0 sec 834 MBytes 701 Mbits/sec 0.001 ms 20638/615325 (3.4%)
 79] Sent 615326 datagrams
                                                                               79] 0.0-10.0 sec 127 datagrams received out-of-order
     Server Report:
     0.0-10.0 sec 834 MBytes 701 Mbits/sec 0.000 ms 20638/615325 (3.4%)
     0.0-10.0 sec 127 datagrams received out-of-order
root@floodlight:~/project/floodlight_project#
```

We congest the path between h11 and h41 with the command *iperf*.

The controller will detect the congestion on the links and compute a different path for the hosts comunication.

```
mininet> h11 ping -c 1 h41

PING 10.0.0.7 (10.0.0.7) 56(84) bytes of data.
64 bytes from 10.0.0.7: icmp_seq=1 ttl=64 time=13.1 ms

--- 10.0.0.7 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 13.141/13.141/13.141/0.000 ms
mininet> h11 ping -c 1 h41

PING 10.0.0.7 (10.0.0.7) 56(84) bytes of data.
64 bytes from 10.0.0.7: icmp_seq=1 ttl=64 time=14.0 ms

--- 10.0.0.7 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 14.014/14.014/14.014/0.000 ms
mininet>
```


Test on congestion

No.	Time ▼	Source	Destination	Protocol	Length Info	Interface id
	2 -0.067705264	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping) request	slll-ethl
	6 -0.002210492	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping) request	s111-eth4
	16 -0.002203960	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping) request	sll-eth4
	18 -0.000806475	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping) request	sll-ethl
	14 -0.000800061	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping) request	s1-eth1
	8 -0.000009296	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping) request	s1-eth2
_	1 0.000000000	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping) request	s13-eth1
	4 0.000041933	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping) request	s13-eth3
	12 0.000047434	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping) request	s114-eth4
	10 0.000083282	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping) request	s114-eth1
	11 0.000111036	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping) reply	s114-eth1
	13 0.003600459	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping) reply	s114-eth4
	5 0.003609796	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping) reply	s13-eth3
	20 0.095849187	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping) reply	s13-eth1
	9 0.095855913	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping) reply	s1-eth2
	15 0.096130884	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping) reply	s1-eth1
	19 0.096139848	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping) reply	sll-eth1
	17 0.096198366	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping) reply	sll-eth4
	7 0.096203820	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping) reply	s111-eth4
	3 0.096268148	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping) reply	s111-eth1
1	21 179.2681528	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping) request	slll-ethl
	22 179.2725070	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping) request	s111-eth4
	31 179.2725119	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping) request	s11-eth4
	25 179.2770466	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping) request	s11-eth2
	38 179.2770520	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping) request	s2-eth1
	37 179.2771008	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping) request	s2-eth2
	33 179.2771037	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping) request	s13-eth2
	32 179.2771716	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping) request	s13-eth3
	27 179.2771746	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping) request	s114-eth4
	23 179.2772022	10.0.0.1	10.0.0.7	ICMP	98 Echo (ping) request	s114-eth1
	24 179.2772168	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping) reply	s114-eth1
	28 179.2780081	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping) reply	s114-eth3
	34 179.2780120	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping) reply	s14-eth3
	35 179.2803867	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping) reply	s14-eth1
	39 179.2803915	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping) reply	s3-eth2
	40 179.2808016	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping) reply	s3-eth1
	30 179.2808054	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping) reply	s12-eth1
	29 179.2812245	10.0.0.7	10.0.0.1	ICMP	98 Echo (ping) reply	s12-eth4
	26 179.2812280		10.0.0.1	ICMP	98 Echo (ping) reply	s111-eth3
	36 179.2812689		10.0.0.1	TCMP	98 Echo (ping) reply	s111-eth1

Before the congestion

After the congestion

Pingall comparision

We executed the *pingall* command for the three versions of the project:

- 1. Scheduling with <u>dijkstra</u> the first shortest path available
- 2. Scheduling multipaths with *Round Robin*, discarding congested links
- 3. Scheduling multhipaths with *dijkstra*, considering as cost measure the <u>traffic load</u> on each link

Pingall comparision

These are the results in term of number of packets captured at each switch's interfaces.

pingall	DIJKSTRA	CONGESTEDLINKS	TRAFFICLOAD
switch	pkts	pkts	pkts
s1	768	151	208
s2	-	204	192
s3	-	196	196
s4	-	166	172
s11	416	212	216
s12	-	204	200
s13	416	220	216
s14	-	196	200
s15	416	222	216
s16	-	194	200
s17	416	222	216
s18	-	194	200
s111	232	232	232
s112	232	232	232
s113	232	232	232
s114	232	232	232
s115	232	232	232
s116	232	232	232
s117	232	232	232
s118	232	232	232

Parameters

To study better the network we could modify some parameters:

- Add the option —*link tc,bw=10* to the mininet command, to limit the bandwidth of the links
- Change consequently the TX_THRESHOLD of the interface IstatisticsService
- Change the FLOWMOD_DEFAULT_IDLE_TIMEOUT in the ForwardingBase class, to alterate the timeout of the flow table entries
- Change the *expireAfterWrite* timeout of the *PathCache* in the *TopologyInstance* class.