Numerical Analysis - Fall 2022

Assignment #3

Issued: Sep. 29, 2022 Due: Oct. 19, 2022

Please upload to the 'hw3' directory if you submit your homework in time.

Problem 1:

The following linear systems $A\mathbf{x} = \mathbf{b}$ have \mathbf{x} as the actual solution and $\tilde{\mathbf{x}}$ as an approximate solution. Compute $\|\mathbf{x} - \tilde{\mathbf{x}}\|_{\infty}$ and $\|A\tilde{\mathbf{x}} - \mathbf{b}\|_{\infty}$.

$$\mathbf{a.} \quad x_1 + 2x_2 + 3x_3 = 1,$$

$$2x_1 + 3x_2 + 4x_3 = -1,$$

$$3x_1 + 4x_2 + 6x_3 = 2,$$

$$\mathbf{x} = (0, -7, 5)^t$$

$$\tilde{\mathbf{x}} = (-0.2, -7.5, 5.4)^t$$
.

b.
$$x_1 + 2x_2 + 3x_3 = 1$$
,

$$2x_1 + 3x_2 + 4x_3 = -1,$$

$$3x_1 + 4x_2 + 6x_3 = 2,$$

$$\mathbf{x} = (0, -7, 5)^t$$

$$\tilde{\mathbf{x}} = (-0.33, -7.9, 5.8)^t$$
.

Problem 2:

Show that if *A* is symmetric, then $||A||_2 = \rho(A)$.

Problem 3:

Implement the algorithm of Gaussian elimination with scaled partial pivoting, and solve the following linear systems.

a.
$$0.03x_1 + 58.9x_2 = 59.2$$
,

$$5.31x_1 - 6.10x_2 = 47.0.$$

Actual solution [10, 1].

b.
$$3.03x_1 - 12.1x_2 + 14x_3 = -119$$
,

$$-3.03x_1 + 12.1x_2 - 7x_3 = 120,$$

$$6.11x_1 - 14.2x_2 + 21x_3 = -139.$$

Actual solution $[0, 10, \frac{1}{7}]$.

Problem 4:

Implement the Jacobi iterative method and list the first three iteration results when solving the following linear systems, using $\mathbf{x}^{(0)} = \mathbf{0}$.

a.
$$4x_1 + x_2 - x_3 = 5$$
,
 $-x_1 + 3x_2 + x_3 = -4$,
 $2x_1 + 2x_2 + 5x_3 = 1$.

b.
$$-2x_1 + x_2 + \frac{1}{2}x_3 = 4,$$

 $x_1 - 2x_2 - \frac{1}{2}x_3 = -4,$
 $x_2 + 2x_3 = 0.$

Problem 5:

Use the Jacobi method and Gauss-Seidel method to solve the following linear systems, with TOL = 0.001 in the $L\infty$ norm.

a.
$$3x_1 - x_2 + x_3 = 1$$
, $3x_1 + 6x_2 + 2x_3 = 0$, $3x_1 + 3x_2 + 7x_3 = 4$.

b.
$$10x_1 - x_2 = 9$$
, $-x_1 + 10x_2 - 2x_3 = 7$, $-2x_2 + 10x_3 = 6$.

Problem 6:

Prove: If **A** is a matrix and $\rho_1, \rho_2, \dots, \rho_k$ are distinct eigenvalues of **A** with associated eigenvectors x_1, x_2, \dots, x_k , then $\{x_1, x_2, \dots, x_k\}$ is a linearly independent set.

Problem 7:

Prove that a strictly diagonally dominant matrix is invertible.