Capstone Project Final Presentation

August 7, 2018 Electronic Systems Engineering (B.Eng) Conestoga College - Class of 2018

Team

Stanislav Rashevskyi

David Eelman

Thomas Abdallah

Overview

- 1. Review Project Proposal
- 2. Project Status
- 3. Future Development
- 4. Demonstration
- 5. Q&A

Project Proposal

Project objective:

Develop a robotic system capable of playing air hockey against a human player.

Air Hockey Robot Block Diagram - Proposal

User Interface · Visualization of puck and paddle movements Control mode selection Game scoreboard System status & debug data · Manual control of paddle Master Controller Responsible for control strategy Issues position/velocity commands to Paddle Controller Data logging **Puck Tracker** Paddle Controller · Position tracking of puck Position/velocity control of paddle Puck velocity & trajectory Position tracking of paddle calculations

Project Plan

Project Status

Project Status - Puck Tracker

Puck Tracker Implementation

- Vision based position tracking with OpenCV
 - Investigated alternatives
 (Magnets, Ultrasonic
 Sensors, etc.)
- Key attributes for puck detection
 - Color
 - o Area
 - o Radius

Puck Localization & Perspective Correction

Goal

- Provide a "top down" view for consistent relative position detection
- Frame the playing surface

Methodology

- Identify 4 fiducials
- Calculate transformation matrix
- Warp image perspective
- Apply pixel to mm scaling factors for puck position
- Puck velocity = distance/time

Adjusting for Varying Lighting Conditions

- Ability to calibrate the computer vision system using UI sliders
- Values saved to JSON file

Project Status - Paddle Controller

Paddle Controller High-Level Requirements

1. Accelerate the paddle to human-level speeds

2. Control paddle position to +/-5mm in two dimensions

Operate safely at high speeds in close proximity to humans

System Modelling

Modelled system performance as a function of individual component parameters.

Real-world data from low-speed prototype used to accurately estimate static and dynamic friction.

Model of high-speed system accurate to within 20%.

Step Response for High-Speed Prototype

$$v(t) = \left(\frac{d\,f}{2\,S} - \frac{q}{S}\right)e^{-\frac{4\,S\,t}{d\,m}} - \frac{d\,f}{2\,S} + \frac{q}{S}$$

Linear Speed vs Time

$$\int\!\left(\!\left(\frac{d\,f}{2\,S}-\frac{q}{S}\right)\!e^{-\frac{4\,S\,t}{d\,m}}-\frac{d\,f}{2\,S}+\frac{q}{S}\right)\!dt=-\frac{(d\,f-2\,q)\left(d\,m\,e^{-\frac{4\,S\,t}{d\,m}}+4\,S\,t\right)}{8\,S^2}+\text{constant}$$

Distance Travelled vs Time

Mechanical Design

X-Axis Mechanism:

- 230W DC motor + encoder
- Linear rail + timing belt drive

Y-Axis Mechanism:

- 2 x 230W DC motors + encoders
- Linear rail + timing belt drive
- Connecting rod to mechanically link left/right movement

Electrical Design

Off-the-shelf MicroController (HCS12)

- Communicates with Master
 Controller via CAN
- Closed-loop motor control with quadrature encoder feedback

Custom Circuit Board

- High-power motor drivers
- Sensor interfaces
- Hardware-based motor safety shutoff

Electrical Design

Off-the-shelf MicroController (HCS12)

- Communicates with Master Controller via CAN
- Closed-loop motor control with quadrature encoder feedback

Custom Circuit Board

- High-power motor drivers
- Sensor interfaces
- Hardware-based motor safety shutoff

Safety Systems Design

- 1. Software monitoring of motor torque
 - Motors disabled if excessive resistance is detected
- 2. Light-screens surrounding robot
 - Motors disabled if human enters robots playing area
- Limit switches placed at end of robot travel
 - Motors disabled in hardware if any limit switch pressed
- 4. Emergency-Stop mounted on human side of table
 - Removes power to robot when pressed

Implementation & Results

Prototype constructed that meets all high-level requirements.

- X-Axis speeds >5m/s
- Y-Axis speeds up to 4m/s
- Paddle position controlled to +/- 0.8
- Multiple safety features to protect humans from high-speed robot

20% slower than theoretical max speed

Implementation & Results

Prototype constructed that meets all high-level requirements.

- X-Axis speeds >5m/s
- Y-Axis speeds up to 4m/s
- Paddle position controlled to +/- 0.8 mm
- Multiple safety features to protect humans from high-speed robot

Project Status - Master Controller

Master Controller Implementation

- Central "brain" of the system
 - Makes control decisions based on data from all other modules
 - Issues movement commands to the robot
- Multiple control strategies implemented
 - User can select what strategy to play against

Defense Control Strategy

- Objective: Do not let the human score goals.
- Puck trajectory calculated from position measurements
 - Final position of puck predicted including bounces
- Robot blocks puck at Y=0
 - Returns puck to human if necessary

Offense Control Strategy

- Objectives:
 - Score goals on the human.
 - Do not let the human score goals.
- Robot attempts to hit the puck near the middle of the table
 - Attempts to hit puck with max speed
- Reverts to defensive movements if attack is not possible

Master Controller Results

- Robot can compete against human players
- Robot is highly competent at defense
 - Nearly impossible for humans to score when robot plays pure defense
- Robot is capable of scoring goals
 - More vulnerable on defense due to large distances travelled to attack puck

Project Status - User Interface

User Interface

- Kivy Open source Python library
- Implemented on 10.1" capacitive touchscreen
- Provides user ability to:
 - Control settings
 - View system diagnostics
 - Manually control robot
 - Play against autonomous robot

Visualizing the Robot

 Provides a real time view of the robots control strategy

Game control

Start, Pause, and Reset game play

- Game clock
- Game score

Future Development

Future Development - Other Applications

- Autonomous vehicles
 - Vision-based object detection and path prediction
- Military defense
 - Tracking and intercepting objects in motion
- Advanced manufacturing
 - High-speed position control
 - Pick and place machines
 - CNC machining
 - 3D printing

Future Development - Air Hockey Robot

- Prototype not designed for mass production
 - Redesign needed reduce costs and further improve safety
- Could be a popular game for arcades and bars

Future Development - Al

Control strategy development:

- Traditional control strategy implemented for Capstone
 - State based approach attack, defend, return puck
- AI-based control strategy could allow for more "human-like" behavior
 - Neural Network being trained to play air hockey in Advanced Technical Elective course
 - Early results promising

Traditional Control Strategy

Future Development - Al

Control strategy development:

- Traditional control strategy implemented for Capstone
 - State based approach attack, defend, return puck
- AI-based control strategy could allow for more "human-like" behavior
 - Neural Network being trained to play air hockey in Advanced Technical Elective course
 - Early results promising

generation: 5 brain: 4 time: 453

Traditional Control Strategy

Demonstration

Project Demonstration Video

Thank You!