Introduction

Abhishek Bichhawat

09/01/2024

Course Overview

- Introduction to Security and Foundations
- Cryptography
- Software Security
- Web Security
- Network Security
- Crypto Applications
- Human Factors in Security

Course Details

- Reference Books
 - Cryptography and Network Security by W. Stallings
 - Security Engineering: A Guide to Building Dependable Systems, by Ross J. Anderson
 - Introduction to Computer Security, by Matt Bishop
 - https://textbook.cs161.org
- Lecture-slides will be online
- Exams on material covered in lectures
 - During the two examination slots
 - + some quizzes during lecture hours informed a week in advance

Course Details

- Assignments will involve hands-on exercises
 - 6, maybe 7, depending on available time
 - Due dates will not change
 - Expect you to learn & search for resources on your own to resolve issues
 - Defenses and/or attacks on fairly real systems.
 - Not a lot of coding, but lots of non-standard thinking.
 - Poke into obscure corners of x86 asm, C, Python, Javascript, ...
 - Also true for lectures! We are looking for loopholes everywhere...

Tentative Course Grading

Assignments	- 50%

- Exams/Quizzes 40%
- Find a REAL exploit 10%

Course Assignment

- Will be released on Canvas
 - Submission will include a PDF document
- Should be done individually unless mentioned
 - May discuss assignments but solutions must be your own
- Detailed instructions on how to do the practical exercises will be provided as the assignments are released
 - Will include CTF for majority of the exercises
- No grace hours
 - After deadline, 1% point deducted every hour up to 75%
- May have "random" viva to understand your assignments
- *Ethics* do not break into any system w/o permission of the system's owner

What is Security?

- "Building systems to remain dependable in the face of malice, error or mischance" (Ross Anderson)
- "Ensuring systems operate properly and remain secure from outside intrusion" (US Air Force)
- "The state or process of protecting and recovering networks, devices and programs from any type of cyberattack." (Norton)
- "A set of techniques used to protect the integrity of an organization's security architecture and safeguard its data against attack, damage or unauthorized access." (Palo Alto Networks)

Security

- Security may be defined as the enforcement of a desired property (normally, assuming an attacker is present)
 - Confidentiality
 - Privacy
 - Integrity
 - Availability
- Why secure?
- Everything can be compromised
 - A Casino Gets Hacked Through a Fish-Tank Thermometer
 - No system is built secure

Building Secure Systems Is Hard

- **Example**: Your grade files stored on IMS
 - Policy: only TAs should be able to read and write the grades file.
 - Easy to implement the *positive* aspect of the policy:
 - There just has to be one code path that allows a TA to get at the file.
 - But security is a *negative* goal:
 - We want no tricky way for a non-TA to get at the file.
 - There are a huge number of potential attacks to consider!
 - Exploit a bug in the server's code.
 - Guess a TA's password.
 - Steal a TA's laptop, maybe it has a local copy of the grades file.
 - Intercept grades when they are sent over the network to the registrar.
 - Break the cryptographic scheme used to encrypt grades over the network.
 - Trick the TA's computer into encrypting grades with the attacker's key.
 - Get a job in the registrar's office, or as a TA.

Approaching Security

- Establish social norms
- Establish legal rules
- Make it "uneconomical"
- Establish defense

"Security is a process, not a product"!

- Need to engineer security into a system
- During system design yields the best results
 - As more functionalities are added to the system, it becomes difficult to search and fix security bugs
 - Unfixed bugs lead to huge losses
- Security is not absolute
 - Cannot have full security
 - Tradeoff between attacker strength, cost and required security!

- For building secure systems, one should:
 - Understand the adversary

- For building secure systems, one should:
 - Understand the adversary
 - Make it hard enough for an adversary so that the adversary spends their energy elsewhere
 - Build a model of the adversary, their motives and their capabilities
 - Who can attack you and why?

- For building secure systems, one should:
 - Understand the adversary (assumptions on the adversary)
 - Knows general information about systems and can interact
 - May try a brute-force approach
 - May collude to perform complex attacks
 - Has the resources required for the attack
 - Can obtain privileges

- For building secure systems, one should:
 - Understand the adversary
 - Limit the trusted computing base (TCB)
 - TCB are the components of a system that you trust
 - Security of a system is built on top of the TCB
 - Determine what components should be in the TCB
 - Should be secure and "unhackable"
 - "Old"-code is the most vulnerable
 - KISS principle

- For building secure systems, one should:
 - Understand the adversary
 - Understand the cost tradeoffs

- For building secure systems, one should:
 - Understand the adversary
 - Understand the cost tradeoffs
 - Simply put, the cost of defense should be lesser than the cost of resource being secured
 - Security is directly proportional to costs
 - Example : Safes and lockers

- For building secure systems, one should:
 - Understand the adversary
 - Understand the cost tradeoffs
 - Detect, if not prevent

- For building secure systems, one should:
 - Understand the adversary
 - Understand the cost tradeoffs
 - Detect, if not prevent
 - Build systems to deter or prevent all attacks
 - If we can't stop an attack, we should be able to detect (and recover)
 - Prepare for the worst.
 - Do not rely on prevention; recovery is as important

- For building secure systems, one should:
 - Understand the adversary
 - Understand the cost tradeoffs
 - Detect, if not prevent
 - Design in-depth defense

For building secure systems, one should:

Understand the adversary

Understand the cost tradeoffs

Detect, if not prevent

Design in-depth defense

- For building secure systems, one should:
 - Understand the adversary
 - Understand the cost tradeoffs
 - Detect, if not prevent
 - Design in-depth defense

- For building secure systems, one should:
 - Understand the adversary
 - Understand the cost tradeoffs
 - Detect, if not prevent
 - Design in-depth defense
 - Multiple types of defenses should be layered together
 - Attacker should have to breach all defenses
 - Remember the costs

- For building secure systems, one should:
 - Understand the adversary
 - Understand the cost tradeoffs
 - Detect, if not prevent
 - Design in-depth defense
 - Provide least privilege

- For building secure systems, one should:
 - Understand the adversary
 - Understand the cost tradeoffs
 - Detect, if not prevent
 - Design in-depth defense
 - Provide least privilege
 - Do not grant unnecessary permissions
 - Devise methods to control access