

Autumn Examinations 2021-22

Course Instance	3BCT, 3BDA
Code(s) Exam(s)	BSc (CS&IT), BA (Digital Arts & Technology)
Module Code(s) Module(s)	CT3536 Games Programming
Paper No.	1
External Examiner(s Internal Examiner(s	
	Answer any three questions. All questions carry equal marks. Note that the final page of this exam paper lists useful classes from the Unity3D SDK.
Duration No. of Pages Discipline(s) Course Co-ordinat	2 hours 4 Computer Science or(s) Dr. Colm O'Riordan, Dr. Padraic Killeen
Requirements: Release in Exam Ve	enue Yes No
MCQ Answersheet	Yes No
Handout Statistical/ Log Tabl Cambridge Tables Graph Paper Log Graph Paper Other Materials Graphic material in	None None None None

- (i) Explain how Unity's MonoBehaviour class provides tight integration with the Game Loop. Refer to appropriate methods of the MonoBehaviour class in your answer. [6]
- (ii) What is a Coroutine in Unity, and how do Coroutines integrate with the Game Loop? [4]

(iii) The Game Object depicted has a Collider component, 'isTrigger' property is true. A script on the game object contains a reference to the Box Collider and to a prefab of a ball.

```
public BoxCollider bc;
public GameObject ball;
public IEnumerator SpawnBallsInBox(){
}
```

Write code for the SpawnBallsInBox() coroutine, so that it continually instantiates balls, at a rate of one ball every two seconds. The balls should be initialised to a random position somewhere inside the Box Collider. (Hint: use the 'bounds' property of the Box Collider, which has 'min' and 'max' properties, each of which are of type Vector3).

[10]

Q.2.

Making appropriate use of local and global co-ordinates, write Unity3D/C# code to perform the following transformations. You may assume that references to the runtime gameobjects are provided:

- rotate a gameobject 5 degrees around its own x axis [2] move a gameobject 6 units downwards in the world's co-ordinate system [2]
- move a gameobject 7 units directly towards another gameobject [3]
- move a gameobject 10 units forward in whatever direction it is facing [3]
- (ii) Write code for the following method, which considers the supplied list of objects and returns the one which is furthest away from the specified 3D point: [10]

```
public static GameObject GetFurthestObject(List<GameObject> objects, Vector3 pos) {
}
```

- (i) In 3D games development, what does the term **'raycast'** mean, as supported by various static methods of the Unity3D SDK's Physics class? Explain, with illustrative C# code, how you could use a raycast to allow the user to click with the mouse and select a gameobject from the scene. [10]
- (ii) In a shooting game, assume you are using raycasts to determine what the player has hit when they fire their gun. You may assume that you are given a reference to the gun object in the 3D scene.
 - Write appropriate Unity3D/C# code to perform a raycast when the gun is fired, to determine what is hit by the bullet. The gun should have a maximum range of 500 metres. [6]
 - Write appropriate Unity3D/C# code to instantiate an 'explosion' object at the position that the bullet hits. You may assume that a prefab exists for this explosion object. [4]

Q.4.

- (i) Bearing in mind that, in Unity's physics engine, gravity only operates along a fixed world vector, how could you simulate a moon orbiting a planet? Write Unity3D/C# code to achieve this, identifying the appropriate methods in which it should be written, as well as identifying the appropriate component(s) which have been added to the game objects.
- (ii) Write Unity3D/C# code to accomplish the following:
- instantiate a gameobject at runtime, from a prefab
 obtain a reference to the Rigidbody component attached to it, if it has one
- 5 obtain a reference to the Rigidoody component attached to it, if it has one [2]
- attach a new Rigidbody to the gameobject, if it did not have one already [3]
- set the gameobject moving in a straight line using the physics engine [3]

Q.5.

Write technical notes on each of the following

 $[5 \times 4]$

- (i) How you would display (and update) a score on the screen while a game is being played, using the Unity GUI system.
- (ii) Garbage collection in Unity, including how to write low-garbage code.
- (iii)Triggers and Colliders in Unity how to use them and why they are useful for games development.
- (iv)Screen space, viewport space and world space in Unity.

Some Useful Unity3D SDK Classes

GameObject: static methods

Instantiate() Destroy() DestroyImmediate() Find()

GameObject: methods

AddComponent() SendMessage() GetComponent() SetActive()

GameObject: data members

activeInHierarchy transform tag

MonoBehaviour: methods

Start() OnDestroy() Update() Awake() OnDisable() OnEnabled() FixedUpdate() LateUpdate() OnCollisionEnter() OnBecameInvisible() OnBecameVisible() OnCollisionExit() OnCollisionStay() OnTriggerEnter() OnTriggerStay() OnTriggerExit() SendMessage() BroadcastMessage() SendMessageUpwards() GetComponent() GetComponentInChildren() GetComponentInParent() GetComponents() GetComponentsInChildren()

GetComponentsInParent() GetInstanceID() Invoke() StartCoroutine()

MonoBehaviour: data members

enabled gameObject transform name

Transform: methods

Rotate() Translate() TransformPoint() InverseTransformPoint() LookAt() RotateAround() SetParent() TransformVector()

InverseTransformDirection() InverseTransformVector() TransformDirection()

Transform: data members

localPosition localRotation position rotation

lossyScale localScale parent right

forward gameObject up

RigidBody: methods

AddForce() AddForceRelative() AddForceAtPosition() AddTorque()

MoveRotation() AddRelativeTorque() MovePosition()

RigidBody: data members

angularDrag velocity drag mass

angularVelocity centerOfMass

Camera: methods

ScreenToWorldPoint() ScreenToViewportPoint() WorldToScreenPoint() WorldToViewportPoint() ViewportToWorldPoint() ViewportToScreenPoint()

ViewportPointToRay() ScreenPointToRay()

Physics: static methods

Raycast() SphereCast() OverlapBox() BoxCast()