|                           | Utech                       |
|---------------------------|-----------------------------|
| Name :                    |                             |
| Roll No.:                 | Donas, va amaga su l'astrol |
| Invigilator's Signature : |                             |

# CS/B.Tech (CSE/IT-OLD)/SEM-4/M-401/2013 2013 MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

|                                                                                        |       |      |         | (          | GROUP    | - A       |            |         |         |         |      |
|----------------------------------------------------------------------------------------|-------|------|---------|------------|----------|-----------|------------|---------|---------|---------|------|
|                                                                                        |       |      | ( Mu    | ıltiple Cl | noice T  | ype Qu    | esti       | ons)    |         |         |      |
| 1.                                                                                     | Cho   | ose  | the     | correct    | altern   | atives    | for        | any     | ten     | of      | the  |
|                                                                                        | follo | wing | ξ:      |            |          |           |            |         | 10      | × 1 =   | 10   |
|                                                                                        | i)    | Pro  | duct o  | of two per | mutati   | ons is c  | comm       | nutativ | ve      |         |      |
|                                                                                        |       | a)   | Tru     | e          |          |           |            |         |         |         |      |
|                                                                                        |       | b)   | Fals    | se.        |          |           |            |         |         |         |      |
| ii) A group contains 12 elements. Then the poss<br>number of elements in a subgroup is |       |      |         |            |          | poss      | ible       |         |         |         |      |
|                                                                                        |       | a)   | 3       |            |          | b)        | 5          |         |         |         |      |
|                                                                                        |       | c)   | 7       |            |          | d)        | 11.        |         |         |         |      |
| iii) A ring with zero divisors is called an integral domain                            |       |      |         |            |          | main      |            |         |         |         |      |
|                                                                                        |       | a)   | Tru     | e          |          |           |            |         |         |         |      |
|                                                                                        |       | b)   | Fals    | se.        |          |           |            |         |         |         |      |
|                                                                                        | iv)   | The  | gene    | erators of | the cy   | clic gro  | up {       | 1, –    | 1, i, - | - i } v | vith |
|                                                                                        |       | resp | pect to | o usual n  | nultipli | cation is | S          |         |         |         |      |
|                                                                                        |       | a)   | { 1,    | - 1 }      |          | b)        | $\{i, i\}$ | 1 }     |         |         |      |
|                                                                                        |       | c)   | { - 1   | , -i       |          | d)        | $\{i, -$   | - i }.  |         |         |      |
|                                                                                        |       |      |         |            |          |           |            |         |         |         |      |

4201 (O) [ Turn over

## $CS/B.Tech\ (CSE/IT\text{-}OLD)/SEM\text{-}4/M\text{-}401/2013$



- v) A vertex having no incident edge is called an isolated vertex
  - a) True
  - b) False
- vi) If a is a generator of cyclic group then  $a^{-1}$  is also a generator of the group
  - a) True
  - b) False.
- vii) A minimally connected graph is a
  - a) Binary tree
- b) Hamiltonian graph

c) Tree

- d) Regular graph.
- viii) Tree contains at least
  - a) one vertex
- b) two vertex
- c) three vertex
- d) four vertex.
- ix) In the POset ( $(Z^+,/)$ ,  $Z^+$  represents set of all positive integers and / represents 'divides', which of the following pairs are not comparable?
  - a) (4, 6)

b) (5, 5)

c) (2, 4)

- d) (3, 15).
- x) In a Boolean Algebra (B, +, ., ', 0, 1), a + 1 = 1
  - a) True
  - b) False.
- xi) Number of operations required in a Boolean Algebra is
  - a) 1

b) 2

c) 3

- d) 4.
- xii) The generating function of the following numeric function  $\langle 1,\,1,\,1,\,.....\rangle$  is
  - a)  $(1 + x)^{-1}$
- b)  $(1-x)^{-1}$
- c)  $(1-x)^2$
- d)  $(1+x)^2$ .





### (Short Answer Type Questions)

Answer any three of the following.



- 2. Show that the centre of a group G, given by  $Z\left(G\right)=\left\{a\in G:ag=ga\ \forall\ g\in G\right\} \text{ is a normal subgroup of }G.$
- 3. Show that the ring of matrices of the form  $\begin{bmatrix} 2\alpha & 0 \\ 0 & 2\beta \end{bmatrix}$ ,  $\alpha$ ,  $\beta \in Z$  contains divisors of zero. (Z = set of all integers and the operations are matrix addition and multiplication).
- 4. In a lattice ( L,  $\wedge$ ,  $\vee$  ) prove that  $a \wedge b = a$  if any only if  $a \vee b = b$ ,  $a, b \in L$ .
- 5. Express E = y' + z(x' + y) as a full disjunctive normal form.
- 6. Show that the maximum number of edges in a simple graph with n vertices is  $\frac{n(n-1)}{2}$ .
- 7. Prove that the maximum degree of any vertex in a simple graph with n vertices is (n-1).

### **GROUP - C**

### (Long Answer Type Questions)

Answer any three of the following.



- $3 \times 15 = 45$
- 8. a) Prove that in a simple graph with  $n \ (\ge 2)$  vertices must have at least one pair of vertices whose degrees are equal.
  - b) Applying Dijkstra's algorithm find the shortest path from the vertex  $\boldsymbol{v}_1$  to  $\boldsymbol{v}_4$  in the following simple graph :



c) Draw the graph whose incidence matrix is :

|                                                          | $e_1$ | $e_{2}^{}$ | $e_3^{}$ | $e_{4}^{}$ | $e_{5}^{}$ | $\begin{bmatrix} e_6 \\ 1 \end{bmatrix}$ |
|----------------------------------------------------------|-------|------------|----------|------------|------------|------------------------------------------|
| $v_1$                                                    | 0     | 1          | 0        | 0          | 1          | 1                                        |
| $ v_2 $                                                  | 1     | 0          | 1        | 0          | 0          | 0                                        |
| $v_3$                                                    | 1     | 0          | 0        | 0          | 0          | 0                                        |
| $v_4$                                                    | 0     | 1          | 1        | 1          | 1          | 0                                        |
| $\begin{bmatrix} v_2 \\ v_3 \\ v_4 \\ v_5 \end{bmatrix}$ | 0     | 0          | 0        | 1          | 0          | 0                                        |



- 9. a) Prove that there exists no graph with four edges having vertices of degree 4, 3, 2, 1.
  - b) Find by Kruskal's algorithm a minimal spanning tree for the following graph:



- c) If a simple regular graph has n vertices and 24 edges, find all possible values of n. 5 + 5 + 5
- 10. a) Prove that a ring R is commutative if and only if

$$(a + b)^2 = a^2 + 2ab + b^2 \quad \forall \ a, b \in R$$

b) If two operations \* and o on the set Z of integers are defined as follows:

$$a * b = a + b - 1$$
,  $a \circ b = a + b - ab$ 

Prove that ( Z, \*, o )is a commutative ring with unit element.

c) Prove that  $(Z, +, \bullet)$  is not an ideal of  $(Q, +, \bullet)$  where + and  $\bullet$  are usual addition and multiplication respectively.

[ Q = set of all rational numbers ]. 5 + 7 + 3

#### CS/B.Tech (CSE/IT-OLD)/SEM-4/M-401/2013



- b) Let S be the set of all real  $n \times n$  non-singular matrices A, with det A = 1 and G be the group of all  $n \times n$  real non-singular matrices. Prove that  $(S, \bullet)$  is a normal subgroup of  $(G, \bullet)$  where  $\bullet$  denotes matrix multiplication.
- c) Let f be a homomorphism from a group G to  $G^{\prime}$ . Let f(G) be the set of homomorphic images of G in  $G^{\prime}$ . Prove that f(G) is a subgroup of  $G^{\prime}$ . 5+5+5
- 12. a) A light in a room is to be controlled by 3 switches located at three entrances. Design a simple seriesparallel switching circuit, such that flicking any one of the switches will change the state of the light.
  - b) Construct the Boolean function and simplify it given the following table :

| х | у | Z | f(x, y, z) |
|---|---|---|------------|
| 1 | 1 | 1 | 0          |
| 1 | 1 | 0 | 1          |
| 1 | 0 | 1 | 1          |
| 1 | 0 | 0 | 0          |
| 0 | 1 | 1 | 0          |
| 0 | 1 | 0 | 1          |
| 0 | 0 | 1 | 1          |
| 0 | 0 | 0 | 0          |

- c) Let  $S = \{1, 2, 3, 4, 6, 8, 9, 12, 18, 24\}$  be a set and '/' be a relation defined in S such that a/b mean b is divisible by a. Draw the Hasse diagram. 5 + 5 + 5
- 13. a) For any Boolean algebra B, prove that  $(a+b)(b+c)(c+a) = ab+bc+ca \quad \forall \ a,b,c \in B.$ 
  - b) Consider the lattice  $L = \{1, 2, 3, 4, 6, 12\}$  ordered by divisibility ( / ). Find the lower and upper bound of L. Is L a complemented lattice ?
  - c) Express the Boolean expression  $z (x^{l} y)^{l}$  in a complete sum of product form. 5 + 5 + 5