Groupes

I/ Notion de groupe

1. Définition

Un ensemble E muni d'une opération * est un groupe si

- □ La loi * est associative
- □ E admet un élément neutre pour la loi *
- □ Chaque élément de *E* admet un symétrique pour la loi *

Si, de plus, la loi * est commutative, on dit que (E,*) est un groupe commutatif ou groupe abélien

Exemples de groupes abéliens :

- \triangleright $(\mathbb{Z},+),(\mathbb{R},+),(\mathbb{C},+):0$ est élément neutre. Le symétrique de x est son opposé -x
- \triangleright $(\mathbb{R}^*,\times),(\mathbb{C}^*,\times):1$ est élément neutre.

Le symétrique de x est son inverse $x^{-1} = \frac{1}{x}$. On note alors $\frac{y}{x} = y x^{-1} = x^{-1} y$

➤ Groupe(s) d'ordre 2

							l							
0	0	1	-1	-1	1	false	false	true	id	id	Sym.%O	id	id	Sym.%Ox
1	1	0	1	1	-1	true	true	false	Sym.%O	Sym.%O	id	Sym.%Ox	Sym.%Ox	id

Quelques groupes finis

		$(\mathbb{Z}$	/6Z	Z,+))		$(\mathbb{Z}/5\mathbb{Z}-\{0\},\times)$					L		upe à nents	3	Un groupe à 4 éléments				
	0	1	2	3	4	5		1	2	3	4		e	a	b		a	b	С	d
0	0	1	2	3	4	5	-									-				
1	1	2	3	4	5	0	1	1	2	3	4	e	e	a	b	a	a	b	С	d
2	2	3	4	5	0	1	2	2	4	1	3					b	b	a	d	С
3	3	4	5	0	1	2				_		a	a	b	е	c	С	d	a	b
4	4	5	0	1	2	3	3	3	1	4	2	b	ь	e	a			_	_	
5	5	0	1	2	3	4	4	4	3	2	1					d	d	С	b	a

Exemples de groupes non commutatifs :

- \triangleright L'ensemble des isométries du plan euclidien \mathbb{R}^2 pour la composée.
- L'ensemble des permutations (bijections) d'un ensemble quelconque A.
- \triangleright L'ensemble GL(n) des matrices $n \times n$ inversibles, pour le produit.
- \triangleright L'ensemble des fonctions affines non constantes de \mathbb{R} dans \mathbb{R} .
- ➤ Le groupe des isométries d'un triangle équilatéral pour la composée →

Contre-exemples:

- \triangleright (N,+), (R,×).
- $\triangleright \left(\mathbb{Z}/6\mathbb{Z}-\{0\},\times\right)$
- \triangleright L'ensemble des fonctions affines de \mathbb{R} dans \mathbb{R} .

Rappels: comme dans tout monoïde,

- \triangleright L'élément neutre est unique. On le note e (ou 1 en notation \times , ou 0 en notation +)
- \triangleright Le symétrique d'un élément donné a est unique. On le note a^{-1} (ou -a en notation +)
- Tout élément d'un groupe est régulier : $\forall a, x, y \in E / a * x = a * y \Rightarrow x = y$ et $x * a = y * a \Rightarrow x = y$

2. Propriété fondamentale

Soit (E,*) un groupe.

- \Box Pour tous a et b dans E, l'équation a * x = b a une solution unique : c'est $a^{-1} * b$
- \Box Pour tous a et b dans E, l'équation x * a = b a une solution unique : c'est $b * a^{-1}$

Autre formulation:

Pour tout élément a de E,

On l'appelle translation à gauche associée à l'élément aEn notation additive, $\varphi_a(x) = a + x$

On l'appelle translation à droite associée à l'élément aEn notation additive, $\psi_a(x) = x + a$

Corollaire:

Si (E,*) est un groupe fini, sa table de Pythagore est un **carré latin** : chaque élément figure une fois et une seule dans chaque ligne et une fois et une seule dans chaque colonne (mais réciproque fausse)

II/ Morphisme de groupes

1. Définition

Soient (E, \star) et (F, \otimes) deux groupes et f une application de E dans F. f est un **morphisme de groupes** si :

$$\forall a,b \in E / f(a \star b) = f(a) \otimes f(b)$$

Exemples:

- Si (E,+) est un groupe commutatif, pour tout $n \in \mathbb{Z}$, $\stackrel{E}{a} \xrightarrow{} \stackrel{E}{na}$ est un morphisme de groupe Mais si le groupe (E,\times) n'est pas commutatif, $\stackrel{E}{a} \xrightarrow{} \stackrel{E}{a}$ n'est pas un morphisme de groupe
- $ightharpoonup ext{Si } (E,\star) ext{ est un groupe , pour tout } a \in E \,,\,\, \mathop{\mathbb{Z}}_n \ \, \stackrel{E}{\to} \ \, \mathop{\text{est un morphisme de groupes}}_{a^n}$
- \nearrow $\stackrel{\mathbb{Z}}{x} \stackrel{\longrightarrow}{\to} \stackrel{\mathbb{Z}/n\mathbb{Z}}{\text{classe de } x \bmod n}$ est un morphisme de groupes additifs.
- Soit $(GL(n),\times)$ le groupe des matrices $n\times n$ inversibles.

 $GL(n) \to \mathbb{R}^*$ est un morphisme du groupe GL(n) (non commutatif) vers (\mathbb{R}^*, \times) (commutatif)

- $\rightarrow x \rightarrow \ln(x)$ est un morphisme du groupe multiplicatif \mathbb{R}_+^* vers le groupe additif \mathbb{R}_+ .
- $\theta \to e^{i\theta}$ est un morphisme du groupe additif \mathbb{R} vers le groupe multiplicatif \mathbb{C}^* .

2. Propriétés

- ightharpoonup Si $f\left(E,\star\right) o \left(F,\otimes\right)$ est un morphisme de groupes, e l'élément neutre de $E,\ \varepsilon$ celui de F, alors
 - $\Box f(e) = \varepsilon \text{ (en notation additive, } f(0) = 0)$
- La composée de deux morphismes de groupes est un morphisme de groupes.
- La réciproque d'un morphisme de groupes inversible est un morphisme de groupes.

Noyau

Soit $f(E,\star) \to (F,\otimes)$ un morphisme de groupes, e l'élément neutre de E, ε celui de F. Le **noyau** de f est l'ensemble des éléments de E dont l'image par f est ε Notation $Ker f = \{x \in E / f(x) = \varepsilon\}$

- \triangleright C'est un sous-groupe de E (voir § 4)
- ightharpoonup f est injective si et seulement si $Ker f = \{e\}$

3. Isomorhisme de groupes

Soit $f(E, \star) \to (F, \otimes)$ un morphisme de groupes.

f est un **isomorhisme de groupes** si f est inversible (bijective)

On dit alors que (E, \star) et (F, \otimes) sont **isomorphes**.

Exemples:

 \triangleright $(\mathbb{Z}/4\mathbb{Z},+)$ et $(\mathbb{Z}/5\mathbb{Z}-\{0\},\times)$ sont isomorphes, mais pas $(\mathbb{Z}/4\mathbb{Z},+)$ et (G,\star)

$(\mathbb{Z}/4\mathbb{Z},+)$ $(\mathbb{Z}$						$(\mathbb{Z}/5$	$\mathbb{Z}-\{$	$[0], \times$	$\times) \qquad \qquad \left(\mathbb{Z}/5\mathbb{Z} - \{0\}, \times \right)$						(G,\star)				
	0	1	2	3		1	2	3	4		1	2	4	3		a	b	c	d
0	0	1	2	3	1	1	2	3	4	1	1	2	4	3	a	a	b	С	d
1	1	2	3	0	2	2	4	1	3	2	2	4	3	1	b	b	a	d	С
2	2	3	0	1	3	3	1	4	2	4	4	3	1	2	С	С	d	a	b
3	3	0	1	2	4	4	3	2	1	3	3	1	2	4	d	d	С	b	a
	$0 \rightarrow 1$, $1 \rightarrow 2$, $2 \rightarrow 4$, $3 \rightarrow 3$														-				

- \triangleright Le groupe des permutations de $\{A,B,C\}$ est isomorphe au groupe des isométries d'un triangle équilatéral ABC
- \triangleright Le groupe des permutations de $\{A,B,C,D\}$ n'est pas isomorphe au groupe des isométries d'un carré ABCD
- $ightharpoonup x o \ln(x)$ est un isomorphisme de \mathbb{R}_+^* vers \mathbb{R} .
- > Tous les groupes d'ordre 3 sont isomorphes.
- ightharpoonup Si (E,\star) est un groupe, pour tout $a \in E$, $x \mapsto a^{-1} \star x \star a$ est un isomorphisme de groupes (automorphisme intérieur)
- ightharpoonup Le morphisme $\theta \to e^{i\theta}$ du groupe additif $\mathbb R$ vers le groupe multiplicatif $\mathbb C^*$ n'est pas un isomorphisme. Son noyau est l'ensemble des multiples de 2π .

Son image est le cercle trigonométrique $U = \{z \in \mathbb{C} / |z| = 1\}$

Mais il induit un isomorphisme entre le groupe (additif) des classes modulo 2π et le groupe (multiplicatif) des complexes de module 1.

III/ Sous-groupes

1. Définition

Soient (E, \star) un groupe d'élément neutre e et F une partie de E.

F est un **sous-groupe de** E si (F,\star) est un groupe

Condition nécessaire et suffisante

$$F$$
 est un **sous-groupe de** $E \Leftrightarrow \begin{cases} F \neq \emptyset \\ \forall a, b \in F / a \star b \in F \end{cases} \Leftrightarrow \begin{cases} e \in F \\ \forall a, b \in F / a^{-1} \in F \end{cases}$

En notation additive
$$(F,+)$$
 est un sous-groupe de $(E,+)$ \Leftrightarrow
$$\begin{cases} F \neq \emptyset \\ \forall a,b \in F \, / \, a + b \in F \\ \forall a \in F \, / - \, a \in F \end{cases} \Leftrightarrow \begin{cases} e \in F \\ \forall a,b \in F \, / \, b - a \in F \end{cases}$$

Exemples

- \triangleright (E,\star) et $(\{e\},\star)$ sont des sous-groupes (triviaux) de (E,\star) .
- \triangleright Tout sous-groupe de \mathbb{Z} est de la forme $n\mathbb{Z}$, pour un certain entier n.
- \triangleright L'ensemble U des complexes de module 1 est un sous-groupe de (\mathbb{C}^*,\times)
- \triangleright L'ensemble R_n des racines $n^{i\text{èmes}}$ de l'unité est un sous-groupe de U.
- L'ensemble des translations est un sous-groupe commutatif du groupe (non commutatif) des isométries du plan.
- \triangleright L'ensemble des matrices orthogonales de déterminant +1 est un sous-groupe de l'ensemble des matrices orthogonales 2×2
- \triangleright Le noyau d'un morphisme de groupes $(E,\star) \to (F,\otimes)$ est un sous-groupe de E.

2. Sous-groupe engendré par un élément

Soient (E, \star) un groupe d'élément neutre e et a un élément de E.

Le sous-groupe engendré par a est l'ensemble des puissances de a.

Notation :
$$\langle a \rangle = \{ a^n / n \in \mathbb{Z} \} = \{ ..., a^{-2}, a^{-1}, e, a, a^2, a^3, ... \}$$

en notation additive : $\langle a \rangle = \{ n \ a / n \in \mathbb{Z} \} = \{ ..., -2a, -a, 0, a, 2a, 3a, ... \}$

Exemples:

- Pour une rotation r d'angle $2\pi/5$ dans l'ensemble des isométries, $\langle r \rangle = \{id, r, r^2, r^3, r^4\}$
- Pour une rotation r d'angle θ tel que $\frac{\theta}{\pi}$ n'est pas une fraction, les rotations ..., r^{-2} , r^{-1} , id, r, r^2 , r^3 ,... sont toutes distinctes 2 à 2

et $\langle r \rangle$ est un groupe multiplicatif isomorphe au groupe $(\mathbb{Z},+)$

 \triangleright Dans $(\mathbb{Z},+)$, $\langle n \rangle = n\mathbb{Z}$. Ce sont les seuls sous-groupes.

L'**ordre** d'un élément dans un groupe est l'**ordre** (i.e. le cardinal) du sous-groupe qu'il engendre. Exemples :

- ightharpoonup Dans $\left(\mathbb{Z}/4\mathbb{Z},+\right)$, 0 est d'ordre 1 , 1 et 3 d'ordres 4 et 2 d'ordre 2
- ightharpoonup Dans $(\mathbb{Z}/5\mathbb{Z}-\{0\},\times)$, 1 est d'ordre 1, 2 et 3 sont d'ordre 4 et 4 est d'ordre 2

Si un groupe fini est engendré par un élément, on dit que c'est **un groupe cyclique.** Tout groupe cyclique d'ordre n est isomorphe à $\mathbb{Z}/n\mathbb{Z}$.

3. Classes suivant un sous-groupe

Soient (E, \star) un groupe et H un sous-groupe de E.

À tout élément $x \in E$ on associe sa **classe à gauche suivant** $H : xH = \{x \star a / a \in H\}$ en notation additive, la classe de x suivant H est $x + H = \{x + a / a \in H\}$

Exemples

ightharpoonup Soit $n \in \mathbb{Z}^*$. $n\mathbb{Z}$ est un sous-groupe. Il y a n classes :

classe de
$$0 = n\mathbb{Z} = \{n \ k \ / \ k \in \mathbb{Z}\}$$
, classe de $1 = 1 + n\mathbb{Z} = \{n \ k + 1 \ / \ k \in \mathbb{Z}\}$, ..., classe de $(n-1) = \text{classe de}(-1) = n\mathbb{Z} + (n-1) = n\mathbb{Z} - 1$

- \triangleright Dans le groupe $\{id, r, r^2, s_1, s_2, s_3\}$ des isométries d'un triangle équilatéral,
- l'ensemble $\{id, r, r^2\}$ des rotations constitue un sous-groupe H. Les classes à gauche sont : $id H = rH = r^2H = H$ (les rotations) et $s_1H = s_2H = s_3H = \{s_1, s_2, s_3\}$ (les symétries)
- \Box l'ensemble $\{id, s_1\}$ constitue un sous-groupe K. Les classes à gauche sont :

$$id\ K = s_1 K = K$$
, $s_2 K = r^2 K = \left\{ s_2, r^2 \right\}$ et $s_3 K = r K = \left\{ s_3, r \right\}$

1	id	г	г2	s1	s2	s3
id	id	r	r2	s1	s2	s3
г	r	r2	id	s3	s1	s2
r2	r2	id	r	s2	s3	s1
s1	s1	s2	s3	id	r	r2
s2	s2	s3	s1	r2	id	r
s3	s3	s1	s2	r	r2	id

-	-					
1	id	r	r2	s1	s2	s3
id	id	г	г2	s1	s2	s3
г	r	г2	id	s3	s1	s2
г2	г2	id	r	s2	s3	s1
s1	s1	s2	s3	id	г	r2
s2	s2	s3	s1	r2	id	r
s3	s3	s1	s2	r	r2	id

Classes à gauche=classes à droite

Classes à gauche

Classes à droite

Propriété

Soient (E, \star) un groupe et H un sous-groupe de E.

Les classes à gauche suivant H forment une partition de E en parties équipotentes.

Théorème de Lagrange

Soient (E, \star) un groupe fini et H un sous-groupe de E.

L'ordre de *H* divise l'ordre de *G*.

Corollaire

- Dans un groupe fini, l'ordre tout élément est un diviseur de l'ordre du groupe.
- Tout groupe d'ordre égal à un nombre premier est cyclique.

4. Indicatrice d'Euler

Définition

Soit *n* un naturel ≥ 2 .

L'indicatrice d'Euler, notée $\varphi(n)$ est le nombre d'entiers compris entre 1 et n-1 qui sont premiers avec n

Propriété

 $\varphi(n)$ est le nombre d'éléments inversibles du monoïde $(\mathbb{Z}/n\mathbb{Z},\times)$.

Démonstration : $\forall k \in \{1 ... n-1\} / k$ est inversible dans $\mathbb{Z}/n\mathbb{Z}$ si et seulement si k est premier avec n

En effet k est inversible dans $\mathbb{Z}/n\mathbb{Z} \Leftrightarrow \exists x \in \mathbb{Z} \mid k x \equiv 1 \mod n \Leftrightarrow \exists x, y \in \mathbb{Z} \mid k x + n y = 1$

ce qui équivaut, d'après le théorème de Bezout, à PGCD(k,n)=1

Donc $\varphi(n)$ est aussi l'ordre du groupe multiplicatif $(\mathbb{Z}/n\mathbb{Z})^{\times}$ des éléments inversibles de $\mathbb{Z}/n\mathbb{Z}$.

Théorème d'Euler

Soient *n* un naturel ≥ 2 et *x* un naturel premier avec *n*.

Alors
$$x^{\varphi(n)} \equiv 1 \mod n$$

Application: RSA (Rivest, Shamir, Adelman 1978)

Clé privée :

2 nombres premiers "grands" p et q, leur produit n, un exposant "de décodage" d premier avec $\varphi(n)$

$$x = (p, q, d)$$

Clé publique :

Le produit n = pq et l'entier r compris entre 1 et $\varphi(n) - 1$ el que $e.d \equiv 1 \mod \varphi(n)$

$$y = (n, e)$$

Protocole:

Chaque message M est un entier inférieur à n

 $C_{\nu}(M) = M^e \mod n$ Codage:

Décodage: $D_{x}(M) = M^{d} \mod n$

$$(M^e)^d \equiv M \mod n \text{ car } n = p.q \text{ et que } e.d = k.\phi(n) + 1$$

Alice

			Alice	Bob
Public	Clef de Codage	Exposant :e	4519	3893
		Modulo : <i>n</i>	68557	81493
Privé	Clef de décodage	Exposant : d	3867	2681
		Modulo : n	68557	81493
Pour		p	383	359
mémoire		q	179	227
		$\varphi(n) = (p-1).(q-1)$	67996	80908
			4519 x 3867	3893 x 2681
			= 17474973	=10437133
			$= 257 \times 67996 + 1$	$=129 \times 80908 + 1$

Exemple : Si Alice envoie à Bob le message M = 65432,

 $C(M) = 65432^{3893} \mod 81493 = 40694$, $D(C(M)) = 40694^{2681} \mod 81493 = 65432$

Si Bob envoie à Alice le message M = 23456,

 $C(M) = 23456^{4519} \mod 68557 = 35780, D(C(M)) = 35780^{3867} \mod 68557 = 23456$

IV/ Action d'un groupe sur un ensemble

1. Définition

Soit (G, \star) un groupe d'élément neutre e et E un ensemble.

On dit que G opère sur E quand on a défini une application $G \times E \to E \atop (g,x) \to \varphi_{\sigma}(x)$ telle que

$$\neg \forall x \in E / \varphi_e(x) = x$$
, c'est-à-dire $\varphi_e = id_E$

$$\Box \quad \forall x \in E \ / \ \forall g, h \in G \ / \ \varphi_g \left(\varphi_h \left(x \right) \right) = \varphi_{g \star h} \left(x \right), \text{ c'est-à-dire } \ \forall g, h \in G \ / \ \varphi_g \circ \varphi_h = \varphi_{g \star h} \right)$$

Remarque:

Pour tout $g \in G$, l'application φ_g est alors une bijection dans E (une permutation de E)

et l'application $g \longrightarrow \varphi_g$ est un morphisme de groupes entre G et le groupe des permutations de E

Notation : $\varphi_g(x)$ est parfois noté $g \bullet x$ ou même gx. Les conditions s'écrivent alors :

$$\neg \forall x \in E / e \bullet x = x$$

Exemples:

- Soit (G,\star) un groupe. Pour tout $g \in G$ on pose $\varphi_g : G \to G$ G agit ainsi sur lui-même par "conjugaison"
- Soient (G,\star) un groupe et H un sous-groupe. Soit E l'ensemble des classes à gauche suivant H. Pour tout $g \in G$ on pose $\varphi_g : E \to E \atop xH \to (g \star x)H$. G opère ainsi sur les classes à gauche.
- Soit GL(n) le groupe des matrices $n \times n$ inversibles et $M_n(\mathbb{R})$ l'ensemble des matrices $n \times n$. GL(n) agit sur $M_n(\mathbb{R})$ en posant pour tout $P \in GL(n)$ $\varphi_P : \frac{M_n(\mathbb{R})}{A} \to \frac{M_n(\mathbb{R})}{A}$
- Soit $GL(\mathbb{R}^2)$ le groupe des isométries vectorielles du plan. $GL(\mathbb{R}^2)$ agit sur le plan \mathbb{R}^2 en posant, pour toute isométrie f et tout point M, $\varphi_f(M) = f.M = \text{le point } M'$ tel que $\overrightarrow{OM'} = f(\overrightarrow{OM})$

2. Orbite d'un élément

Soit (G, \star) un groupe opérant sur un ensemble E et x un élément de E.

L'orbite de x sous l'action de E est l'ensemble $Gx = \{ \varphi_g(x) \mid g \in G \}$. On le note aussi O(x). Exemples :

 \triangleright Soient (G, \star) un groupe et H un sous-groupe. Soit E l'ensemble des classes à gauche suivant H.

$$G$$
 opère sur les classes à gauche par $\varphi_g: \begin{matrix} E & \to & E \\ xH & \to & \left(g\star x\right)H \end{matrix}$

L'orbite de n'importe quelle classe sous l'action de G est l'ensemble E de toutes les classes. en effet pour tous x et y, $\varphi_{v \times x^{-1}}(xH) = (y \times x^{-1} \times x)H = yH$

$$ightharpoonup GL(n)$$
 agit sur $M_n(\mathbb{R})$ par $\varphi_P: \frac{M_n(\mathbb{R})}{A} \to M_n(\mathbb{R})$

L'orbite de A sous l'action de GL(n) est l'ensemble des matrices semblables à A

Cas particulier : Orbite de
$$I_n$$
:, Orbite de $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} (a \neq b)$:

 $ightharpoonup GL(\mathbb{R}^2)$ agit sur le plan \mathbb{R}^2 , donc il en est de même pour les sous-groupes de $GL(\mathbb{R}^2)$. Orbite d'un point sous l'action de $GL(\mathbb{R}^2)$:.............

Orbite d'un point sous l'action du sous-groupe engendré par la rotation d'angle $\frac{2\pi}{n}$:.....

Orbite d'un point sous l'action du sous-groupe engendré par symétrie d'axe Ox:.....

Le groupe des applications affines bijectives agit de même sur le plan.
Orbite d'un point sous l'action du sous-groupe des rotations de centre O:
Orbite d'un point sous l'action du sous-groupe des homothéties de centre O et de rapport > 0 : ...
Orbite d'un point sous l'action du sous-groupe engendré par la translation de vecteur (1,1) :
Orbite de l'origine sous l'action du sous-groupe engendré par les translations

de vecteurs
$$(1,0)$$
 et $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$:

> S_4 agit sur lui-même par $\varphi_{\sigma}(s) = \sigma \circ s$ Les orbites sous l'action du sous-groupe engendré par le cycle (1,2,3,4)

Propriétés: Les orbites sous l'action de E forment une partition de E. En effet la relation $x \in y \Leftrightarrow y \in O(x) \Leftrightarrow \exists g \in G \ / \ y = g \star x$ est une équivalence sur E.

3. Stabilisateur d'un élément

Soit (G,\star) un groupe opérant sur un ensemble E et x un élément de E. Le stabilisateur (ou groupe d'isotropie) de x sous l'action de E est le sous-groupe de G: $I_x = \{g \in G \mid \varphi_g(x) = x \}$. On le note aussi $\operatorname{stab}(x)$.

Exemples

Soient (G, \star) un groupe et H un sous-groupe. Soit E l'ensemble des classes à gauche suivant H.

$$G$$
 opère sur les classes à gauche par $\varphi_g: \begin{matrix} E & \to & E \\ xH & \to & (g\star x)H \end{matrix}$

Le stabilisateur de n'importe quelle classe sous l'action de G est le sous-groupe H.

En effet
$$\varphi_v(xH) = xH \Leftrightarrow (y \star x)H = xH \Leftrightarrow (y \star x) \in xH \Leftrightarrow \exists g \in H / y \star x = g \star x \Leftrightarrow y \in H$$

ightharpoonup GL(n) agit sur $M_n(\mathbb{R})$ par $\varphi_P: \frac{M_n(\mathbb{R})}{A} \to \frac{M_n(\mathbb{R})}{A}$

Le stabilisateur de A est l'ensemble des matrices qui commutent avec A

 $ightharpoonup GL(\mathbb{R}^2)$ agit sur le plan \mathbb{R}^2 , donc il en est de même pour les sous-groupes de $GL(\mathbb{R}^2)$. Le stabilisateur de O est le groupe $GL(\mathbb{R}^2)$ entier.

Le stabilisateur d'un autre point M est le sous-groupe $\{id, s\}$ où s est la symétrie d'axe OM.

- $ightharpoonup GL(\mathbb{R}^2)$ agit de même sur l'ensemble des triangles (non ordonnés) du plan. Le stabilisateur d'un triangle équilatéral centré en O est le "groupe du triangle" isomorphe à S_3 .
- ➤ Tout groupe (G, \star) agit sur lui-même par $\varphi_g(h) = g \star h$ le stabilisateur de tout élément est le sous-groupe $\{1_G\}$

Propriétés :

- Le stabilisateur d'un élément de E sous l'action de G est un sous-groupe de (G, \star)
- Si G est fini, pour tout $x \in E$ le nombre d'éléments de l'orbite de x suivant G est égal à l'ordre de G divisé par l'ordre de son stabilisateur : $Card(O(x)) = \frac{Card(G)}{Card(stab(x))}$

Preuve:

Soit $k = Card(\operatorname{Stab}(x))$

Soit $y \in O(x)$. On va démontrer qu'il y a exactement k éléments de G tels que $y = \varphi_g(x)$.

* Il existe un tel g par définition de " $y \in O(x)$ "

* Par ailleurs soient g et $h \in G$ $\varphi_g(x) = \varphi_h(x) \Leftrightarrow \varphi_{h^{-1}}(\varphi_g(x)) = \varphi_e(x) = x = \varphi_{h^{-1} \star g}(x) \Leftrightarrow h^{-1} \star g \in I_x$.

Donc $\varphi_g(x) = \varphi_h(x) \Leftrightarrow h$ et g appartiennent à la même classe modulo le sous-groupe I_x .

D'après la formule des classes (III.5.), toutes les classes ont le même cardinal que I_x donc il y a k éléments $h \in G$ tels que $\varphi_g(x) = \varphi_h(x)$.

La propriété s'en déduit par le principe du berger.

• Corollaire : Si G et E sont finis, soient $O(x_1), O(x_2), ..., O(x_n)$ les orbites de E sous l'action de G.

Comme les orbites constituent une partition de E, on a $Card(E) = \sum_{i} \frac{Card(G)}{Card(Stab(x_i))}$

4. Exemple : Groupe des isométries du tétraèdre régulier

On fait agir le groupe Isom(T) des isométries de l'espace euclidien laissant globalement invariant un tétraèdre régulier T sur l'ensemble des sommets $\{A, B, C, D\}$

On obtient ainsi un morphisme de groupes φ de Isom(T) sur l'ensemble des permutations de $\{A, B, C, D\}$, isomorphe au groupe S_4 des permutations de $\{1, 2, 3, 4\}$ on démontre que φ est un isomorphisme.

Donc Isom(T) est isomorphe à S_4

5. Exemple : Groupe des isométries du cube

Soit Isom(C) le groupe des isométries de l'espace euclidien laissant globalement invariant un cube C. Soit $Isom^+(C)$ le sous-groupe composé des isométries directes (déterminant +1) : Ce sont les rotations.

Une action de groupe

On fait agir le groupe Isom(C) sur l'ensemble $\{D_1, D_2, D_3, D_4\}$ des 4 "grandes" diagonales.

En effet si une isométrie f laisse le cube globalement invariant, l'image d'une diagonale (segment de longueur $c\sqrt{3}$ joignant 2 sommets) doit être un segment de longueur $c\sqrt{3}$ joignant 2 sommets donc une diagonale.

On obtient ainsi un morphisme de groupes φ de Isom(C) sur le groupe S_4 des permutations de $\{1,2,3,4\}$. On obtient également un morphisme de groupes ψ du sous-groupe $Isom^+(C)$ sur le groupe S_4

Le noyau de ψ est l'ensemble des rotations laissant chacune des diagonales globalement invariantes.

Si une telle rotation r n'est pas l'identité, supposons (quitte à changer la numérotation) que $r(A_1) = B_1$

Alors on aurait compte tenu de la conservation des distances $r(A_2) = B_2$ et $r(A_4) = B_4$

Comme le centre O est invariant, l'image du repère affine $(O, \overrightarrow{OA_1}, \overrightarrow{OA_2}, \overrightarrow{OA_4})$ serait le repère

 $(O, \overrightarrow{OB_1}, \overrightarrow{OB_2}, \overrightarrow{OB_4})$ et donc r serait l'homothétie de rapport -1 (symétrie S_O par rapport à l'origine), ce qui est impossible car $\det(S_O) = -1$.

Donc $Ker(\psi) = \{Id\}$ et par suite ψ est injective. Remarque : $Ker(\varphi) = \{Id, S_0\}$

Pour montrer que ψ est surjective, il suffit de montrer que chaque transposition de S_4 est l'image par ψ d'une rotation laissant le cube globalement invariant. En effet toute permutation est produit de transpositions.

Par exemple, pour la transposition (1,2), on cherche une rotation qui amène la diagonale D_1 sur la diagonale D_2 en laissant chacune des diagonales D_3 et D_4 globalement invariantes.

La rotation d'angle π autour de l'axe passant par les milieux des arêtes $[A_1A_2]$ et $[B_1B_2]$ est une solution (d'ailleurs la seule car ψ est injective)

Ainsi ψ est un isomorphisme de $Isom^+(C)$ sur S_4 . $Isom^+(C)$ a donc 24 éléments.

Isom(C) est donc composé de 24 rotations et des 24 composées de ces rotations par S_o . Il est d'ordre 48.

$$Isom(C) \cong Isom^+(C) \times \{Id, S_o\} \cong S_4 \times \mathbb{Z} / 2\mathbb{Z}$$

Les 24 rotations sont :

l'application identité, qui est une rotation (d'angle nul et d'axe quelconque);

- 3 demi-tours d'axe passant par le centre de deux faces opposées (3 axes possibles) ;
- 6 quart de tours d'axe passant par le centre de deux faces opposées (3 axes possibles et 2 angles possibles);
- 6 demi-tours d'axe passant par les milieux de deux arêtes opposées (6 axes possibles);
- 8 tiers de tours d'axe passant par deux sommets opposés (4 axes possibles et 2 angles possibles).

Les 24 isométries négatives sont respectivement :

la symétrie centrale

- 3 symétries par rapport à un plan passant par le centre du cube et parallèle à une face (3 plans possibles);
- 6 composées des symétries précédentes avec un quart de tour d'axe perpendiculaire au plan de symétrie
- (3 plans possibles et 2 angles possibles);
- 6 symétries par rapport à un plan passant par deux arêtes opposées (6 plans possibles) ;
- 8 composées d'un sixième de tour d'axe passant par deux sommets opposés avec la symétrie par rapport au plan passant par le centre du cube et perpendiculaire à cet axe (4 axes possibles et 2 angles possibles).
- Le plan de symétrie intersecte les arêtes du cube en formant un hexagone régulier.

https://www.wikiwand.com/fr/Cube

Un autre point de vue :

Le cube contient 2 tétraèdres réguliers, image l'un de l'autre par l'homothétie $S_{\mathcal{O}}$ de rapport -1 .

Il y a donc 2 sortes d'isométries du cube :

- ➤ Celles qui conservent chacun des tétraèdres : ce sont les isométries du tétraèdre.
- \blacktriangleright Les composées des précédentes par S_o : celles qui envoient chacun des tétraèdres sur l'autre.

Donc
$$Isom(C) \cong Isom(T) \times \{Id, S_o\} \cong S_4 \times \mathbb{Z}/2\mathbb{Z}$$