

Message Passing Interface Applications

Computação em Larga Escala **Assignment 2**

Artur Romão, 98470 João Reis, 98474

Text Processing Problem - Implementation

• We used **2 structures** to help us solving the problem, like we did for the previous assignment.

```
struct File {
  int nWords;
  int nWordsA;
  int nWordsE;
  int nWordsI;
  int nWordsU;
  int nWordsY;
  bool is_finished;
  char *filename;
};
```

```
struct ChunkData {
  int index;
  bool is_finished;
  int *chunk;
  int chunk_size;
  int nWords;
  int nWordsA;
  int nWordsE;
  int nWordsI;
  int nWordsU;
  int nWordsU;
  int nWordsY;
};
```

Laptop Specifications:

Hardware Model	Micro-Star International Co., Ltd. GF63 Thin 9SC	
Memory	16,0 GiB	
Processor	Intel® Core™ i7-9750H CPU @ 2.60GHz × 12	
Graphics	NV167 / Mesa Intel® UHD Graphics 630 (CFL GT2)	
Disk Capacity	512,1 GB	

Text Processing Problem - Implementation

Text Processing Problem - Results

- Timing Results for processing all files and with a chunk size of 4k bytes
- We execute the next command 5 times and we calculate the results that are in the table

\$ mpiexec -n 5 ./prog1 -f dataset/text0.txt -f dataset/text1.txt -f dataset/text2.txt -f dataset/text3.txt -f dataset/text4.txt

Number of workers	Mean Execution Time (s)	Standard deviation (σ)	Variation (σ2)
1	0.120854	0.010303	0.000106
2	0.096035	0.019195	0.000368
4 (default)	0.069495	0.005885	3.463764 x 10⁻5
8	0.179997	0.043071	0.001855

Sort Integers Problem - Implementation

• We created **1 structure** to help us solving the problem.

```
struct File {
  char *filename;
  FILE *file;
  int size;
  int *sequence;
  int *subsequences;
  int *subsequences_length;
  int all_subsequences_size;
};
```

Laptop Specifications:

Hardware Model	Micro-Star International Co., Ltd. GF63 Thin 9SC	
Memory	16,0 GiB	
Processor	Intel® Core™ i7-9750H CPU @ 2.60GHz × 12	
Graphics	NV167 / Mesa Intel® UHD Graphics 630 (CFL GT2)	
Disk Capacity	512,1 GB	

Sort Integers Problem - Implementation

Sort Integers Problem - Results

- Timing Results for datSeq1M.bin.
- We execute the next command 5 times and we calculate the results that are in the table.

\$ mpiexec -n 5 ./prog2 dataset/datSeq1M.bin

Number of workers	Mean Execution Time (s)	Standard deviation (σ)	Variation (σ2)
1	1.331454	0.006087	3.705083 x 10⁻⁵
2	0.654747	0.052690	0.002776
4 (default)	0.401097	0.014068	0.000197
8	0.728336	0.059044	0.003486