Block diagonalization using similarity renormalization group flow equations

E. Anderson, ¹ S. K. Bogner, ² R. J. Furnstahl, ¹ E. D. Jurgenson, ¹ R. J. Perry, ¹ and A. Schwenk ³

¹Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA

²National Superconducting Cyclotron Laboratory and

Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48844, USA

³TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3

(Received 14 January 2008; published 24 March 2008)

By choosing appropriate generators for the Similarity Renormalization Group (SRG) flow equations, different patterns of decoupling in a Hamiltonian can be achieved. Sharp and smooth block-diagonal forms of phase-shift equivalent nucleon-nucleon potentials in momentum space are generated as examples and compared to analogous low-momentum interactions (" $V_{low\,k}$ ").

DOI: 10.1103/PhysRevC.77.037001 PACS number(s): 21.30.-x, 05.10.Cc, 13.75.Cs

The Similarity Renormalization Group (SRG) [1–3] applied to internucleon interactions is a continuous series of unitary transformations implemented as a flow equation for the evolving Hamiltonian H_s ,

$$\frac{dH_s}{ds} = [\eta_s, H_s] = [[G_s, H_s], H_s]. \tag{1}$$

Here s is a flow parameter and the flow operator G_s specifies the type of SRG [4]. Decoupling between low-energy and high-energy matrix elements is naturally achieved in a momentum basis by choosing a momentum-diagonal flow operator such as the kinetic energy $T_{\rm rel}$ or the diagonal of H_s ; either drives the Hamiltonian toward *band-diagonal* form. This decoupling leads to dramatically improved variational convergence in few-body nuclear systems compared to unevolved phenomenological or chiral effective field theory (EFT) potentials [5,6].

Renormalization Group (RG) methods that evolve NN interactions with a sharp or smooth cutoff in relative momentum, known generically as $V_{low\,k}$, rely on the invariance of the two-nucleon T matrix [7,8]. These approaches achieve a *block-diagonal* form characterized by a cutoff Λ (see left plots in Figs. 1 and 2). As implemented in Refs. [7,8], the high-momentum matrix elements are defined to be zero, but this is not required.

Block-diagonal decoupling of the sharp $V_{\text{low }k}$ form can be generated using SRG flow equations by choosing a block-diagonal flow operator (see Refs. [9,10] for details),

$$G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix} \equiv H_s^{\text{bd}}, \tag{2}$$

with projection operators P and Q=1-P. In a partial-wave momentum representation, P and Q are step functions defined by a sharp cutoff Λ on relative momenta. This choice for G_s , which means that η_s is nonzero only where G_s is zero, suppresses off-diagonal matrix elements such that the Hamiltonian approaches a block-diagonal form as s increases. If one considers a measure of the off-diagonal coupling of the Hamiltonian,

$$\operatorname{Tr}\left[\left(QH_{s}P\right)^{\dagger}\left(QH_{s}P\right)\right] = \operatorname{Tr}\left[PH_{s}QH_{s}P\right] \geqslant 0, \qquad (3)$$

then its derivative is easily evaluated by applying the SRG equation, Eq. (1):

$$\frac{d}{ds}\operatorname{Tr}\left[PH_{s}QH_{s}P\right]
= \operatorname{Tr}\left[P\eta_{s}Q(QH_{s}QH_{s}P - QH_{s}PH_{s}P)\right]
+ \operatorname{Tr}\left[(PH_{s}PH_{s}Q - PH_{s}QH_{s}Q)Q\eta_{s}P\right]
= -2\operatorname{Tr}\left[(Q\eta_{s}P)^{\dagger}(Q\eta_{s}P)\right] \leq 0.$$
(4)

Thus, the off-diagonal QH_sP block will decrease in general as s increases [9,10].

The right plots in Figs. 1 and 2 result from evolving the N^3LO potential from Ref. [11] using the block-diagonal G_s of Eq. (2) with $\Lambda=2\,{\rm fm}^{-1}$ until $\lambda\equiv 1/s^{1/4}=0.5\,{\rm fm}^{-1}$. The parameter λ is a quantitative measure of the progress toward block diagonalization made by the SRG evolution. The agreement between $V_{{\rm low}\,k}$ and SRG potentials for momenta below Λ is striking. A similar degree of universality is found in the other partial waves. Deriving an explicit connection between these approaches is the topic of an ongoing investigation.

The evolution with λ of two representative partial waves (3S_1 and 1P_1) are shown in Figs. 3 and 4. The evolution of the "off-diagonal" matrix elements (meaning those outside the PH_sP and QH_sQ blocks) can be roughly understood from the dominance of the kinetic energy on the diagonal. Let the indices p and q run over indices of the momentum states in the P and Q spaces, respectively. To good approximation we can replace PH_sP and QH_sQ by their eigenvalues E_p and E_q in the SRG equations, yielding [9,10]

$$\frac{d}{ds}h_{pq} \approx \eta_{pq}E_q - E_p\eta_{pq} = -(E_p - E_q)\eta_{pq}$$
 (5)

and

$$\eta_{pq} \approx E_p h_{pq} - h_{pq} E_q = (E_p - E_q) h_{pq}.$$
(6)

Combining these two results, we have the evolution of any off-diagonal matrix element:

$$\frac{d}{ds}h_{pq} \approx -(E_p - E_q)^2 h_{pq}. (7)$$

FIG. 1. (Color online) Comparison of momentum-space (a) $V_{low\,k}$ and (b) SRG block-diagonal potentials with $\Lambda=2\,{\rm fm^{-1}}$ evolved from an $N^3LO~^3S_1$ potential [11].

FIG. 2. (Color online) Comparison of momentum-space (a) $V_{\text{low }k}$ and (b) SRG block-diagonal potentials with $\Lambda=2\,\text{fm}^{-1}$ evolved from an N³LO $^3\text{S}_1$ potential [11].

In the NN case we can replace the eigenvalues by those for the relative kinetic energy, giving an explicit solution

$$h_{pq}(s) \approx h_{pq}(0)e^{-s(\epsilon_p - \epsilon_q)^2}$$
 (8)

with $\epsilon_p \equiv p^2/M$. Thus the off-diagonal elements go to zero with the energy differences just like with the SRG with $T_{\rm rel}$; one can see the width of order $1/\sqrt{s} = \lambda^2$ in the k^2 plots of the evolving potential in Figs. 3 and 4.

While in principle the evolution to a sharp block-diagonal form means going to $s = \infty(\lambda = 0)$, in practice we need only take s as large as needed to quantitatively achieve the decoupling implied by Eq. (8). Furthermore, it should hold for more general definitions of P and Q. To smooth out the cutoff, we can introduce a smooth regulator f_{Λ} , which we take here to be an exponential form:

$$f_{\Lambda}(k) = e^{-(k^2/\Lambda^2)^n},\tag{9}$$

with n an integer. For $V_{\text{low }k}$ potentials, typical values used are n=4 and n=8 (the latter is considerably sharper but still numerically robust). By replacing H_s^{bd} with

$$G_s = f_{\Lambda} H_s f_{\Lambda} + (1 - f_{\Lambda}) H_s (1 - f_{\Lambda}), \tag{10}$$

we get a smooth block-diagonal potential.

A representative example with $\Lambda = 2 \, \mathrm{fm}^{-1}$ and n = 4 is shown in Fig. 5. We can evolve to $\lambda = 1.5 \, \mathrm{fm}^{-1}$ without a problem. For smaller λ the overlap of the P and Q spaces becomes significant and the potential becomes distorted. This distortion indicates that there is no further benefit to evolving

FIG. 3. (Color online) Evolution of the 3S_1 partial wave with a sharp block-diagonal flow equation with $\Lambda=2\,\mathrm{fm}^{-1}$ at $\lambda=4,3,2,$ and $1\,\mathrm{fm}^{-1}$. The initial N³LO potential is from Ref. [11].

FIG. 4. (Color online) Same as Fig. 3 but for the ¹P₁ partial wave.

FIG. 5. (Color online) Evolution of the ${}^{3}S_{1}$ partial wave with a smooth (n=4) block-diagonal flow equation with $\Lambda=2.0\,\mathrm{fm}^{-1}$, starting with the N ${}^{3}LO$ potential from Ref. [11]. The flow parameter λ is 3, 2, 1.5, and 1 fm ${}^{-1}$.

in λ very far below Λ ; in fact the decoupling worsens for $\lambda < \Lambda$ with a smooth regulator.

Another type of SRG that is second-order exact and yields similar block diagonalization is defined by

$$\eta_s = [T, PV_sQ + QV_sP],\tag{11}$$

which can be implemented with $P \to f_\Lambda$ and $Q \to (1 - f_\Lambda)$, with f_Λ either sharp or smooth. We can also consider bizarre choices for f_Λ in Eq. (10), such as defining it to be zero out to Λ_{lower} , then unity out to Λ , and then zero above that. This means that $1 - f_\Lambda$ defines both low and high-momentum blocks and the region that is driven to zero consists of several rectangles. Results for two partial waves starting from the Argonne v_{18} potential [12] are shown in Fig. 6. Despite

FIG. 6. (Color online) Evolved SRG potentials starting from Argonne v_{18} in the (a) 1S_0 and (b) 1P_1 partial waves to $\lambda = 1 \text{ fm}^{-1}$ using a bizarre choice for G_s (see text).

FIG. 7. (Color online) Phase shifts for the 3S_1 partial wave from an initial N^3LO potential and the evolved sharp SRG block-diagonal potential with $\Lambda=2\, \text{fm}^{-1}$ at various $\lambda,$ in each case with the potential set identically to zero above $\Lambda.$

FIG. 8. (Color online) Same as Fig. 7 but with Argonne v_{18} as the initial potential [12].

FIG. 9. (Color online) Errors in the phase shift at $E_{\rm lab} = 100 \, {\rm MeV}$ for the evolved sharp SRG block-diagonal potential with $\Lambda = 2 \, {\rm fm}^{-1}$ for a range of λ 's and a regulator with n=8.

the strange appearance, these remain unitary transformations of the original potential, with phase shifts and other NN observables the same as with the original potential. These choices provide a proof-of-principle that the decoupled regions can be tailored to the physics problem at hand.

Definitive tests of decoupling for NN observables are now possible for $V_{\text{low }k}$ potentials since the unitary transformation of the SRG guarantees that no physics is lost. For example, in Figs. 7 and 8 we show 3S_1 phase shifts from an SRG sharp block diagonalization with $\Lambda=2\,\text{fm}^{-1}$ for two different potentials. The phase shifts are calculated with the potentials cut sharply at Λ . That is, the matrix elements of the potential are set to zero above that point. The improved decoupling as

 λ decreases is evident in each case. By $\lambda = 1 \, \mathrm{fm}^{-1}$ in Fig. 7, the unevolved and evolved curves are indistinguishable to the width of the line up to about 300 MeV.

In Fig. 9 we show a quantitative analysis of the decoupling as in Ref. [13]. The figure shows the relative error of the phase shift at 100 MeV calculated with a potential that is cut off by a smooth regulator as in Eq. (9) at a series of values Λ_{cut} . We observe the same universal decoupling behavior seen in Ref. [13]: a shoulder indicating the perturbative decoupling region, where the slope matches the power 2n fixed by the smooth regulator. The onset of the shoulder in Λ_{cut} decreases with λ until it saturates for λ somewhat below Λ , leaving the shoulder at $\Lambda_{\text{cut}} \approx \Lambda$. Thus, as $\lambda \to 0$ the decoupling scale is set by the cutoff Λ .

In the more conventional SRG, where we use $\eta_s = [T, H_s] = [T, V_s]$, it is easy to see that the evolution of the two-body potential in the two-particle system can be carried over directly to the three-particle system. In particular, it follows that the three-body potential does not depend on disconnected two-body parts [4,14]. If we could implement η_s as proposed here with analogous properties, we would have a tractable method for generating $V_{\text{low }k}$ three-body forces. While it seems possible to define Fock-space operators with projectors P and Q that will not have problems with disconnected parts, it is not yet clear whether full decoupling in the few-body space can be realized. Work on this problem is in progress.

This work was supported in part by the National Science Foundation under Grant Nos. PHY-0354916 and PHY-0653312, the UNEDF SciDAC Collaboration under DOE Grant DE-FC02-07ER41457, and the Natural Sciences and Engineering Research Council of Canada (NSERC). TRIUMF receives federal funding via a contribution agreement through the National Research Council of Canada.

^[1] S. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993); 49, 4214 (1994).

^[2] F. Wegner, Ann. Phys. (Leipzig) 3, 77 (1994); Phys. Rep. 348, 77 (2001).

^[3] S. Kehrein, *The Flow Equation Approach to Many-Particle Systems* (Springer, Berlin, 2006).

^[4] S. K. Bogner, R. J. Furnstahl, and R. J. Perry, Phys. Rev. C 75, 061001(R) (2007).

^[5] S. K. Bogner, R. J. Furnstahl, R. J. Perry, and A. Schwenk, Phys. Lett. **B649**, 488 (2007).

^[6] S. K. Bogner, R. J. Furnstahl, P. Maris, R. J. Perry, A. Schwenk, and J. P. Vary, Nucl. Phys. A801, 21 (2008).

^[7] S. K. Bogner, T. T. S. Kuo, and A. Schwenk, Phys. Rep. 386, 1 (2003).

^[8] S. K. Bogner, R. J. Furnstahl, S. Ramanan, and A. Schwenk, Nucl. Phys. A784, 79 (2007).

^[9] E. L. Gubankova, H.-C. Pauli, F. J. Wegner, and G. Papp, arXiv:hep-th/9809143.

^[10] E. L. Gubankova, C. R. Ji, and S. R. Cotanch, Phys. Rev. D 62, 074001 (2000).

^[11] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001(R) (2003).

^[12] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C 51, 38 (1995).

^[13] E. D. Jurgenson, S. K. Bogner, R. J. Furnstahl, and R. J. Perry, arXiv:0711.4266 [nucl-th].

^[14] S. K. Bogner, R. J. Furnstahl, and R. J. Perry, arXiv:0708.1602 [nucl-th].