Arbitrary TN Approximate Contraction

Overview of Steps

1. Find a *contraction tree*

- 2. Find a contraction tree *ordering*
- 3. As we proceed up tree:
 - 1. Find *multibonds* to compress
 - 2. Gauge around multibond tensors
 - 3. Compress between multiband tensors

Choose Contraction Tree

 Generate as usual (with tweaked heuristics):

> Need to carefully choose order

Maybe more efficient?

 Generate from a spanning tree of original graph

> Easy to visualize 'surface'

Easier to define order

 Can contract 'around' stuff (all spanning trees map to contraction trees but not other way round)

Spanning Tree Generation

Contraction Tree Ordering

'Surface' ordering

-

Contract 'inwards' and try keep tensors same size

Compress as we contract

As we generate tensors with multiple bonds to other tensors – compress them

Probably want some form of arbitrary geometry gauging first

basic reduced compress

Local Canonization

- Just absorb QR factors inwards from neighbours
- For trees is exact canonicalization

local canonization "perfect for trees"

Spanning Tree Results (boundary-style)

6x6x6 OBC Classical Ising Model

(close to critical)

free energy error

Balanced Tree Results ('RG'-style)

canonize_boundary_only

Very similar scaling or results at slightly lower chi (though memory scales higher?)

Flavours of Arbitrary Gauging

 If we want to gauge a bond, options depend on type of TN

scalar TN

vector IN

And also whether we want to guage 'permanently' or 'temporarily'

scalar TN product gauge

Since env is product, we can insert gauge back into original TN bonds

vector TN product gauge

"simple update is not the only choice"

Product env between bonds means we can still gauge original TN

Simple Update (= Belief Propagation) is *a* (diagonal) choice of this, but not necessarily the best.

scalar TN full gauge (temporary)

Take into account correlations between outer bonds – means we can only **temporarily** gauge tensors

vector TN full gauge (temporary)

4-leg structure means we can't use SVD, might be a more robust way of doing Full Update?

Results for single bond compression

(scalar TN gauging)

8x7 D=3 PEPS norm contraction

Results for single bond compression

Real example - TEBD 2D Gauging

Summary

 Can handle tree or span – generated contraction sequences

 Results seems promising for 3D classical Ising model (easy TN)

Might be able to use much better local gauging + full gauging

Best way of cutting dangling bonds?