

Europäisches Patentamt

European Patent Office

Office européen des brevets

ı) EP 1 367 143 A1

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

- (43) Date of publication: 03.12.2003 Bulletin 2003/49
- (21) Application number: 02703900.7
- (22) Date of filing: 26.02.2002

- (51) Int Cl.7: C22C 38/00, C21D 9/46
- (86) International application number: PCT/JP02/01711
- (87) International publication number: WO 02/058703 (06.09.2002 Gazette 2002/36)
- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE TR
- (30) Priority: 27.02.2001 JP 2001051300
- (71) Applicant: NKK CORPORATION Tokyo 109-0005 (JP)
- (72) inventors:
 - NAGATAKI, Yasunobu,c/o NKK Corporation Chiyoda-ku, Tokyo 100-0005 (JP)

- KITANO, Fusato,c/o NKK Corporation Chiyoda-ku, Tokyo 100-0005 (JP)
- SATO, Kentaro,c/o NKK Corporation
 Chiyoda-ku, Tokyo 100-0005 (JP)
- IWABUCHI, Masahiro,c/o NKK Corporation Chiyoda-ku, Tokyo 100-0005 (JP)
- GAMOU, Akira,c/o NKK Corporation Chiyoda-ku, Tokyo 100-0005 (JP)
- (74) Representative: HOFFMANN EITLE Patent- und Rechtsanwälte Arabellastrasse 4 81925 München (DE)
- (54) HOT DIP ZINC PLATED STEEL SHEET HAVING HIGH STRENGTH AND METHOD FOR PRODUCING THE SAME
- (57) The invention relates to a high strength hot-dip galvanized sleel sheet consisting essentially of 0.03 to 0.25% C, 0.7% or less Si, 1.4 to 3.5% Mn, 0.05% or less P, 0.01% or less S, 0.05 to 1% Cr, 0.005 to 0.1% Nb, by mass, and balance of Fe, and being made of a composite structure of ferrite and secondary phase, and having

an average grain size of the composite structure of 10 μ m or smaller. Since the high strength hot-dip gaivanized steel sheet of the present invention hardly induces softening at HAZ during welding, it is applicable to structural members of automobiles for "Tailor Welded Blanks" (TWB).

FIG 1

Description

5

10

15

20

30

33

40

50

TECHNICAL FIELD

[0001] The present invention relates to a high strength hot-dip galvanized steel sheet having tensile strength above 700 MPa, and particularly to a high strength hot-dip galvanized steel sheet that hardly induces softening at heat-affected zone (HAZ) during welding and that has excellent formability, and a method for manufacturing thereof.

BACKGROUND ART

[0002] High strength hot-dip galvanized steel sheets having higher than 440 MPa of tensile strength are used in wide fields including construction materials, machine and structural members, and structural members of automobiles owing to the excellent corrosion resistance and the high strength.

[0003] Responding to ever-increasing severity of requirements on formability in recent years, various technologies to improve the formability of that type of high strength hot-dip galvanized steel sheet have been introduced. For example, according to JP-A-5-311244, (the term "JP-A" referred herein signifies the "unexamined Japanese patent publication"), a Si-Mn-P bearing hot-rolled steel sheet is heated to temperatures at or above Ac1 transformation point in a continuous hot-dip galvanizing line, and the heated steel sheet is quenched to Ms point or below to generate martensite over the whole or in a part thereof, then the martensite is tempered using the heat of the hot-dip galvanizing bath and of the alloying furnace. According to JP-A-7-54051, a hot-rolled steel sheet of Mn-P-Nb(-Ti) bearing is colled at a low temperature after hot-rolled, which steel sheet is then subjected to hot-dip galvanizing to let pearlites or cementites disperse finely in the fine ferrite matrix to improve the stretch flangeability.

[0004] On the other hand, structural members of automobiles have recently been adopting steel sheets of different strength or different thickness which are joined together by laser welding or mush-seam welding, called "Taitor Welded Blanks" (TWB). Thus, the characteristics of welded part are also emphasized.

[0005] The high strength hot-dip galvanized steel sheet manufactured by the method disclosed in JP-A-5-311244 aiming at the improvement of formability of the steel sheet itself, however, is not applicable to the structural members of automobiles or the like because the softening at HAZ likely occurs during welding to induce degradation of formability and strength at the welded part. It is because, though the mechanism of strengthening is based on the second phase obtained by rapid-cooling austenite, the ferrite and the second phase are not fully homogeneously refined. The term "second phase" referred herein signifies a phase consisting of at least one structure selected from the group consisting of martensite and bainite. The high strength hot-dip galvanized steel sheet manufactured by the method disclosed in JP-A-7-54051 is difficult to stably have tensile strength exceeding 700 MPa, particularly above 780 MPa, because the structure thereof is a ferrite matrix with finely dispersed pearlites or cementites.

DISCLOSURE OF THE INVENTION

[0006] An object of the present invention is to provide a high strength hot-dip galvanized steel sheet that hardly induces softening at HAZ during welding, that has tensile strengths above 700 MPa, and that assures excellent formability, and a method for manufacturing thereof.

[0007] The object is attained by a high strength hot-dip galvanized steel sheet which consists essentially of 0.03 to 0.25% C, 0.7% or less Si, 1.4 to 3.5% Mn, 0.05% or less P, 0.01% or less S, 0.05 to 1% Cr, 0.005 to 0.1% Nb, by mass, and balance of Fe, and is made of a composite structure of ferrite and secondary phase, further has an average grain size of the composite structure of 10 μ m or smaller.

[0008] The high strength hot-dip galvanized steel sheet can be manufactured by the method containing the steps of: hot-rolling a steel slab consisting essentially of 0.03 to 0.25% C, 0.7% or less Si, 1.4 to 3.5% Mn, 0.05% or less P, 0.01% or less S, 0.05 to 1% Cr, 0.005 to 0.1% Nb, by mass, and balance of Fe, at temperatures of Ar3 transformation point or above; cooling the hot-rolled steel sheet within a temperature range of 800°C to 700°C at a cooling rate of 5°C/sec or more, followed by coiling the cooled steel sheet at temperatures of 450°C to 700°C; and galvanizing the steel sheet after heating the steel sheet to a temperature range of 760°C to 880°C, and by cooling the steel sheet to temperatures of 600°C or below at a cooling rate of 1°C/sec or more in a continuous hot-dip galvanizing line.

BRIEF DESCRIPTION OF THE DRAWINGS

55 [0009]

Fig. 1 is a graph showing the relation between Δh and average grain size of femite.

Fig. 2A and Fig. 2B are graphs showing the hardness profite on a laser-welded cross section of steel sheet of an

EP 1 367 143 A1

example according to the present invention and a comparative example, respectively.

EMBODIMENTS OF THE INVENTION

- [0010] The inventors of the present invention studied the characteristics of high strength hot-dip galvanized steel sheets after welded, and found that the softening at HAZ during welding could be prevented and that excellent formability could be attained by adding Nb and Cr to the steel and by establishing a composite structure of territe and second phase, which composite structure has 10 µm or smaller average grain size. Owing to the presence of the hard second phase of martensite or bainite, giving high dislocation density, to the strengthening of secondary precipitation caused by Cr, and to the effect of suppressing recovery of dislocation caused by the fine NbC precipitation, the softening at HAZ could be prevented, and, further with the refinement of structure, the excellent formability could be attained. The detail description is given below.
 - 1) Steel compositions

[0011] The high strength hot-dip galvanized steet sheet according to the present invention consists essentially of the elements described below and balance of Fe.

C

15

20

25

30

35

[9012] Carbon is an essential element to attain high strength. To obtain tensite strengths above 700 MPa, the C content of 0.03% or more is necessary. If, however, the C content exceeds 0.25%, the volumetric percentage of the second phase increases to induce binding of grains to each other thus to increase the grain size, which induces softening at HAZ during welding and degrades the formability. Therefore, the C content is specified to a range of from 0.03 to 0.25%.

Sį

[0013] Silicon is an effective element for stably attaining a ferrite + martensite dual phase structure. If, however, the Si content exceeds 0.7%, the adhesiveness of zinc coating and the surface appearance significantly degrade. Accordingly, the Si content is specified to 0.7% or less.

Mn

[0014] Manganese is an essential element for attaining high strength, similar with C. To obtain 700 MPa or higher tensile strength, at least 1.4% of the Mn content is required. If, however, the Mn content exceeds 3.5%, the grain size of the second phase increases to induce softening at HAZ during welding and to degrade the formability. Consequently, the Mn content is specified to a range of from 1.4 to 3.5%.

40

35

50

55

[0015] Phosphorus is an effective element for stably attaining a ferrite + martensite dual phase structure, similar with Si. If, however, the P content exceeds 0.05%, the toughness at the welded part degrades. Therefore, the P content is specified to 0.05% or less.

S

[0016] Since S is an impurity, smaller amount is more preferable. If the S content exceeds 0.01%, the toughness at the welded part significantly degrades, similar with P. Consequently, the S content is specified to 0.01% or less.

ent Al

[0017] Although sol.Al is an effective element as deoxidizing element, over 0.10% of sol.Al content gives degraded formability. Accordingly, the sol.Al content is preferably 0.10% or less.

N

[0018] If N exists at a large amount exceeding 0.007%, the ductility degrades. So the N content is preferably 0.007%

or less.

Cr.

5

10

15

[9019] Chromium is an effective element for preventing softening at HAZ during welding. To attain the effect, the Cr content of 0.05% or more is necessary. If, however, the Cr content exceeds 1%, the surface property degrades. Therefore, the Cr content is specified to a range of from 0.05 to 1%.

Nb

3.3

[0020] Niobium is an effective element to prevent softening at HAZ during welding and to improve the formability by refining ferritic grains. To attain the effect, the Nb content of 0.005% or more if required. If, however, the Nb content exceeds 0.1%, the formability degrades. Therefore, the Nb content is specified to a range of from 0.005 to 0.1%.

[0021] Adding to these elements, if at least one element selected from the group consisting of 0.05 to 1% Mo, 0.02 to 0.5% V, 0.005 to 0.05% Ti, and 0.0002 to 0.002% B is added, it is more effective to further refine the ferritic grains to prevent softening at HAZ during welding and to improve the formability, in particular, Mo and V are effective to improve the hardenability, and Ti and B are effective to increase the strength.

Average grain size of composite structure consisting of ferrite + second phase

20

25

30

35

40

45

50

[9022] As described later, excellent formability is attained by making the average grain size of the composite structure 10 µm or less. The term "second phase" referred herein signifies a phase consisting of at least one structure selected from the group consisting of martensite and bainite. To the composite structure, less than 10% of pearlite or residual austenite may exist in addition to the second phase, which level thereof does not degrade the effect of the present invention.

3) Manufacturing method

[0023] The above-described high strength hot-dip galvanized steel sheet may be manufactured by a method, for example, comprising the steps of: hot-rolling a steel slab satisfying the above-given requirement of compositions at finishing temperatures of Ar3 transformation point or above; cooling the hot-rolled steel sheet within a temperature range of 800°C to 700°C at a cooling rate of 5°C/sec or more; coiling the cooled steel sheet at temperatures of 450°C to 700°C; pickling the steel sheet; and galvanizing the pickled steel sheet after heating the pickled steel sheet to a temperature range of 760°C to 880°C, and cooling the steel sheet to temperatures of 600°C or below at a cooling rate of 1°C/sec or more in a continuous hot-dip galvanizing line. The method may further comprise a step of alloying the galvanized steel sheet. The high strength hot-dip galvanized steel sheet thus manufactured is a hot-rolled steel sheet. [0024] If the finishing temperature of the hot-rolling becomes lower than the Ar3 transformation point, coarse ferritic grains are generated to form non-uniform structure, so the finishing temperature thereof is specified to Ar3 transformation point or above.

[0025] After the hot-rolling, ferritic grains are generated in a temperature range of from 800°C to 700°C, if the cooling rate through the temperature range is less than 5°C/sec, the ferritic grains become coarse to form non-uniform structure. Consequently, the cooling is required to give at 5°C/sec or higher cooling rate. Particularly, the cooling rate between 100 and 300°C/sec is more preferable in terms of refinement of the structure.

[0026] If the coiling temperature is below 450°C, the precipitation of NbC becomes insufficient, if the coiling temperature exceeds 700°C, coarse NbC deposits to fall in refining the structure, which induces softening at HAZ during welding and degrading the formability. Consequently, the coiling temperature is specified to a range of from 450°C to 700°C.

[0027] If the heating temperature in a continuous hot-dip galvanizing line is below 760°C, the second phase cannot be formed. If the heating temperature therein exceeds 880°C, the structure becomes coarse. Therefore, the heating temperature thereof is specified to a range of from 760°C to 880°C.

[0028] After heating, even if the cooling is given at a cooling rate of less than 1°C/sec and at a cooling rate of 1°C/sec or more, when the galvanizing is given on the steel with a temperature of above 600°C, the ferritic grains become coarse or the second phase cannot be formed. Accordingly, the galvanizing is necessarily to be given after cooling the steel to 600°C or lower at a cooling rate of 1°C/sec or more.

[0029] The hot-rolled steel sheet may be subjected to galvanizing under similar condition as above in a continuous hot-dip galvanizing line after cold-rolled. The high strength hot-dip galvanized steel sheet thus manufactured is a cold-rolled steel sheet. In the procedure, the cold-rolling reduction rate of 20% or more is necessary to prevent formation of coarse structure.

EP 1 367 143 A1

[0030] Alternatively, the slab may be manufactured by ingot-making process or continuous casting process. The hot-rolling may be conducted by continuous rolling process or direct rolling process. During the hot-rolling, the steel sheet may be reheated by an induction heater, increase in the reduction rate during the hot-rolling is preferable in terms of refinement of structure. Before applying galvanizing in a continuous hot-dip galvanizing line, Ni plating may be applied.

Example 1

5

15

20

25

35

30

[0031] Steels A through R in Table 1A which are within the range of the present invention and steels a through k in Table 1B which are outside the range of the present invention were prepared by melting in a converter, and were formed in slabs by continuous casting. The slabs were hot-rolled under the conditions of the present invention given in Table 2A, cold-rolled at a reduction rate of 60%, and then galvanized under the conditions of the present invention given in Table 2A using a continuous hot-dip galvanizing line, thus manufacturing high strength hot-dip galvanized steel sheets having 1.4 mm in thickness.

[9032] The second phase of each high strength hot-dip galvanized steel sheet was observed using an electron microscope. The residual austenite of each high strength hot-dip galvanized steel sheet was determined by an X-ray diffraction meter, and the tensile strength TS thereof was determined by a tensile test. To evaluate the characteristics at HAZ of each high strength hot-dip galvanized steel sheet after laser welding. Erichsen test was given to the mother material and to the laser-welded part to determine the formed height ho of the mother material, the formed height ht of the welded part, and their difference Δh (= h0 - ht).

[0033] The laser welding was carried out using carbon dioxide laser (10.6 µm in wavelength, ring mode M=2 of beam mode) and ZnSe lens (254 mm of focal distance) as the convergence system, while letting Ar gas flow as the shield gas at a flow rate of 20 l/min giving 4 kW of laser output and 4 m/min of welding speed.

[0034] With the steels C, I, J, Q, and d in Table 1A and Table 1B, high strength hot-dip galvanized steel sheets were prepared under the conditions given in Table 3A. The above-described tests were applied to each of thus prepared steel sheets.

[0035] The results are given in Table 2B and Table 3B.

[0036] As for the steel sheets having the composition and the size of ferrite and of second phase within the range of the present invention, the values of Δh were small, and the HAZ softening hardly occurred. On the other hand, for the steel sheets having these characteristics outside the range of the present invention, the values of Δh were large, and rapture occurred at HAZ.

[0037] Fig. 1 shows the relation between the value of Δh and the ferrific grain size of the steel sheets given in Table 2B and Table 3B.

[0038] The grain sizes of second phase are given in Table 2B and Table 3B.

[0039] When the steels having the compositions within the range of the present invention were used, and when the manufacturing conditions within the range of the present invention were applied to make the ferritic grain size and the grain size of second phase 10 μm or less, the obtained galvanized steel sheet showed no rapture at HAZ, gave 2 mm or smaller of Δh , gave high strength, and hardly induced HAZ softening.

[0040] To the contrary, the steel sheets having the compositions outside the range of the present invention and prepared by manufacturing conditions outside the range of the present invention gave above 2 mm of Δh, induced HAZ softening, and generated rupture in HAZ.

[0041] Fig. 2A and Fig. 2B show the graphs of the hardness profile on a laser-welded cross section of the steel sheet 17 according to the present invention and the steel sheet 28 as a comparative example, respectively.

[0042] The steel sheet according to the present invention gave very little HAZ softening.

5	
10	
15	
20	
25	
.30	
35	

norther throat

tri in whri to

autili ni agi

ani nene bi

	ប	2,1	Mn	24	ಬ	sol.Al	z	SN S	ప	Other	Remark
0.05		0.13	2.4	0.030	0.001	0.020	0.0025	0.015	0.10		Example
0.13		0.03	3.3	0.010	0.0006	0.031	0.0014	0.043	07.0	V.0.0	Example
0.08		96.0	2.0	0.014	0.001	0.014	0.0023	0.030	0.06		Екатрів
0,11		0.10	1.8	0.016	0.003	0.019	0.0025	0.026	0.85	0.05%0	Example
0.03		0.03	2.8	0.023	0.007	0.020	0.0036	0.010	0.07		Exampl.
0.19	a.	0.25	2.2	0.026	0.003	0.021	0.0044	0.035	0.33		Example
0.08	හ	0.63	3.0	0.030	0,002	0.032	0.0036	0.026	0.15	\(\)1.0	Example
0.10	o	0.25	2.8	0.006	0.004	0.012	0.0021	0.031	0.05		Example
0.06	w	0.23	1.9	0.032	0.003	0.024	0.0020	0.058	0.40		Example
0.07	~	0 2	2.3	0.025	0.0002	0.022	0.0028	0.025	0.10	٥.05٧	Example
0.10	0	0.15	2.7	0.026	0.002	0.023	0.0011	0.620	0.55		Example
0.08	83	0.25	2.0	0.032	200.0	0.018	0.0048	0.045	0.15	0.15Mo	Example
0.04	200	0.10	3.4	0.019	100.0	0.031	0.0032	0.005	0.23	0.03%1, 0.00058	Example
0.15	หา	0.48	න **	0.011	0,003	0,026	0,0033	0.018	0.07		Example
0.13	m.	0.10	2,3	0.011	0.002	0.022	0.0015	0.046	0,30		Example
50.0	ġn.	0,25	1.6	0.016	0.001	0.038	0.0019	0.040	0.20		Example
0.13	6	0.05	2.5	0.029	970.0	0.031	0.0022	0.080	0.15	0.0541, 0.00038	Example
0.03	ŗ.	0.11	2,	0.022	0.001	0.025	0,0019	0.033	0.20		Example
				The state of the s		THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	A CONTRACTOR OF THE PARTY OF TH	A	And the same of the same of the same	The second secon	

Invention | the j Unit is massa.

. San Armini (School) San Araka (School)

55

40

45

					·		· ·	, <u>.</u>		;	· · · · · · · · · · · · · · · · · · ·		····		3	
S,	1000 Serves V &		Remark	Comparison	Comparison	Comparison	Comparison									
10			. L						0.0003B						eli Pedecem Partieli Pedecem	
			Other	,	5	.035T1	ŧ			,	0.21Mo	,	٠	0.04T1		
			and the second			0			0.0571							
15			-						<u></u>						211	
			Cr	,	0.20	0.15	\$	S I	0,30	ę,	93 1	0,35	0.10	4	987 :	
00				30				1/2							(4741 (71	
20			æ	0.035	0.003%	13 1	3 2	0.015	0.015	0.038	0,055	0.030	ss 1	ā		
						62									925	
25			z	0.0036	0.0021	0.0022	0.0030	0.0019	0.0026	0.0022	0.0026	0.0041	0.0029	0.0030		
				о С			Ö	ø :	Ö	ပ်	C	ຍ	Ċ	င်	00 (E)	
		. 145	801.Al	0.030	0.036	0.024	0.028	0.021	0.023	0.026	0,019	0.040	0.026	0.028	SM	
30			ž	0	٥	0	0	C	-	···	•	0	0	c		
			ಬ	0.003	3000.0	0.001	0.002	200'0	0.001	0,005	0.001	0.001	0.001	0.003	ton	
				<u> </u>	σ.	٥	-		0	0	٥	٥	•	-	invention	
35			SL.	.023	0.020	0.030	0.012	0.030	0.016	0.026	0.016	0.015	0.033	0.045		
e.		040 1040		0	0	0	0	0	0	0	0	0	6	© 	present	
40			Mn	3%	JAN.	1.1	~	۰Ç	\$4.	ů,	œ	42	3.4	.,	စ္က	
				, e-4	~	~	~		162	m		7	n	~	ີ່ສຸ	
		Jeg Jeg	51	0.15	0.13	0.25	0.02	0.10	0.01	0.30	0.03	0.02	0,25	.45	range of th	
45				0	0	0	0	0	0	٥	ð	ò	ő	Ö	, 23 22	
	.		ပ	0.14	0.07	6.08	0.16	0.03	0.12	0.11	0.13	0.07	60.0	0.05	t is mass .	
				6	o.	φ.	Ö	င်	0	0.	6	o l	0	0.	18 m taid	
50	0 2 2 2 3	(d) (h)	Steel	स्ट	۵	Ü	ಶ	Ð.	w.	ō,	æ	*	-	×	Unit *: ou	

EP 1 367 143 A1

Table 2A

5	Steel sheet	Steel	Hot	-rolling can	itton	Cold- rolling reduction rate %	Sheet thickness mm	Hot-dip g	alvanizing o	condition
10			Heating temp. °C	Cooling rate °C/ sec	Coiling temp. °C			Soaking temp. °C	Cooling rate °C/ sec	Alloying
	1	Α	1220	10	580	60	1,4	800	7	yes
	2	8	1260	10	630	60	1,4	800	7	no
	3	С	1230	10	600	60	1.4	800	12	yes
15	4	Q	1170	10	530	60	1,4	800	15	yes
	S	E	1220	10	620	60	1.4	800	3	yes
	6	F	1200	10	600	60	1.4	800	8	yes
20	7	G	1200	10	580	60	1.4	800	20	yes
	8	н	1200	10	580	60	1.4	800	15	no
	9	1	1200	10	580	50	1.4	800	10	yes
	10	J	1200	10	580	60	1.4	800	10	yes
25	11	K	1200	10	580	60	1,4	800	2	yes
	12	L	1270	10	580	60	1.4	800	7	yes
	13	M	1230	10	580	60	1,4	800	25	yes
30	14	N	1200	10	580	60	1.4	800	20	yes
	15	0	1200	10	550	60	1,4	800	10	no
	16	Р	1200	10	550	60	1,4	800	10	no
	17	Q	1200	10	620	60	1,4	800	5	yes
35	18	R	1200	10	620	60	1,4	800	7	yes
	19	а	1200	10	620	60	1.4	800	5	yes
	20	ь	1200	10	580	60	1.4	800	28	yes
40	21	С	1200	10	580	60	1,4	800	10	no
	22	d	1200	10	580	60	1.4	800	13	yes
	23	е	1200	10	580	60	1.4	800	9	yes
مواق	24	f	1280	10	600	60	1.4	800	5	yes
45	25	g	1200	10	600	60	1.4	800	27	yes
	26	h	1200	10	600	60	1.4	800	10	yes
	27		1200	10	000	60	1.4	800	10	yes
50	28	<u> </u>	1200	10	600	60	1,4	800	10	yes
	29	k	1200	10	600	60	1.4	800	10	yes

5		Remark		Example	Example	Example	Example	Example	Example	Example	Example	Comparison	Comparison	Comparison										
10			Position of rupture	Weld line	Weld Ilne	Weld line	Weld Ilne	Weld line	Weld line	Weld line	Weld line	Weld line	Weld line	Weld line	Weld line	Weld line	HAZ	HAZ	HAZ					
15		ejetics	<u> </u>	6.0	0.1	0.6	0	1.0	0.5	O	Ö	0	0.2	0.2	0	<u>-</u> Si	0.0	Q	0.1	0.2	0.1	ល ស	3.8	6.3
		Characteristics	it enm	9.1	8,8	9,2	හි	8.0	7,2	7.3	0.8	en en	 	7.3	හ. හ	8.5	7.7	o. †:	<u>ග</u>	7.3	8,1	8.6	4.9	2.0
20			h0 mm	9.4	8	9.8	8,8	9.6	7.7	7.3	0,8	99.4	6,9	2.5	8,3	æ.7	83	т. б	10.0	7.5	3.2		8.7	8.3
- 25			TS MPa	967	1152	739	889	861	1045	1087	860	842	835	1079	815	764	959	847	213	1071	977	552	908	836
<i>30</i>	Table 2B		Residual y volumetric percentage %	0	ෆ්	0	3	-	9	2	က	Ü			0	0	ಜ	2	O	7	*	9		•
35	,		Second phase grain size µm	Ω	ø	7	ະດ	8	4	S.	ł.	¢	យ	6	ક	æ	4		10	9	Ω.		15	£5
¥0		Structure	Second phase volumetric percentage %	27	67	23	. 32	38	55	62	50	7	46	65	33	28	\$ *	Ĉ	25	55	43		39	46
45			Ferritic grain size µm	8	8	6	7	10	8	8	3	2	4	7	Ş	10	8	2	3	6	වු	œ	7	ĵ.
50			Phase	F+M	F+M	F+M+B	F+M	F+M	F+M+8	F÷M	F+M+8	F+M	F÷M	F+M	F+M+B	F+M+B	F±M	F+M+B	F+M	F+8	F+M	d+4	F+W	F+#M
		Steel		A	82	O	۵	ш	u.	9	Ι	-	ŋ	×		≅	z	0	a.	O	æ	æ	g	υ
55		Steel sheet			82	ಣ	4	2	Ø	7	ക്ക	6	0,	,	12	13	14	15	16	17	18	40	20	2

Ŝ		Remark				Comparison	Comparison	Comparison	Comparison	Comparison	Comparison	Comparison	Comparison										
10			Position of rupture			HAZ	HAZ	HAZ	HAZ	HAZ	HAZ	ZVH	ZvH										
15		ristics	<i>ձ</i> h <i>m</i> m			8.8	4 0	4 60	2.3	4,6	4 6	භ භ	တ တ										
		Characteristics	at mm		787	4,4	7.2	4.	4 ق	8 8	8,3	es Ø	დ *~										
20			ho mm		U1 U2	9.6	£.	5,7	6.8	10.5	10.5	6.7	10.0		- 13- - 13- - 13-								
.25			TS MPa			777	549	1323	1196	647	640	1181	710		1000								
30	Table 2B (continued)		Residual १ volumetric	percentage	c. G	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0	8	S	0	0	2	*										
35	Table 2		Second phase grain	size µm		83	6	18	25	æ	•	30	£.		. 10								
40		Structure	Second phase	volumetric	percentage %	23	4	83	85	16		70	20	lite									
45			Ferritic grain size	En	es .	13	හ	ĸ	m	7	£3	40	4.6	F. ferrite, M: martensite, B: bainite, P: pearlite		\$111 TT							
50			Phase			F+M+B	F+M	₩+4	F+M	F+M+B	£+p	F+M	F+M+B	ensite, B. t									
		Steel				ø	۵		S	عـ	-	-	×	, M: marti									
55		Steel sheet				22	23	24	25	58	27	28	29	F. ferrite	procession								

	Steel sheet	Steel	Hot	rolling cond	ition	Cold- rolling reduction rate %	Sheet thickness mm	Hot-dip g	alvanizing o	condition
)			Heating temp. °C	Cooling rate °C/ sec	Coiling temp. [©] C			Soaking temp.*C	Cooling rate °C/ sec	Alleying
	41	C	1240	1	550	60	1.4	780	5	yes
	42	С	1240	3	550	60	1.4	780	5	yes
	43	С	1240	8	550	60	1.4	780	5	yes
;	44	С	1240	15	550	60	1.4	780	5	yes
	45	C	1240	100	550	60	1.4	780	5	yes
	46	С	1240	15	550		3.5	780	5	no
) .	47	C	1240	15	550	10	3.15	780	5	по
	48	C	1240	15	550	30	2.45	780	5	no
	49	C	1240	15	550	80	0.7	780	5	по
	50	1	1200	15	620		2.3	780	5	yes
ř	51	j	1250	15	580	60	1,4	700	8	yes
	52	J	1250	15	580	60	1.4	750	8	yes
	53	J	1250	15	580	60	1,4	780	8	yes
)	54	J	1250	15	580	60	1,4	830	8	yes
	55	J	1250	15	580	60	1.4	860	8	yes
	56	J	1250	15	580	60	1,4	900	8	yes
_	57	J	1250	15	580	60	1,4	800	0.5	yes
5	58	J	1250	15	580		2.3	800	8	yes
	59	Q	1200	10	400	60	1.4	780	5	yes
	60	Q	1200	200	500	60	1.4	780	5	yes
9	61	Q	1200	10	680	60	1.4	780	5	yes
	62	Q	1200	10	500	-	3.5	780	5	yes
	63	d	1250	15	580	60	1.4	900	8	yes
5	64	d	1250	15	580	10	3.15	800	8	yes

5		Helbark		Сотрайѕоп	Comparison	Example	Example	Example	Example	Comparison	Example	Example	Example	Comparison	Comparison	Example	Example	Example	Comparison	Comparison	Example	Comparison	Example	Example	
10			Position of rupture	HAZ	HAZ	Weld line	Weld line	Weld line	Weld line	HAZ	Weld line	Weld line	Weld line	HAZ	HAZ	Weld line	Weld line	Weld line	HAZ	HAZ	Weld line	HAZ	Weld line	Weld line	
15		istics	Sh mm	6.7	5.7	0.8	9,0	O	0.2	7.8	9.0	O.	0	2.7	2,4	0	O	0	5,5	2.5	O	4.2	0,1	0	
		Characteristics	in i	2.3	3,5	හු	ල ල	10,3	11.3		10.0	3.5	8,2 8	ا ق	3.9	8,5	98	9.7	හ ග	8,0	10.7	63	7.5	7.7	
20			h0 mm	0.8	8.2	10.1	6.9	10.3	1.5	8.9	‡0.8	න භ	9.2	4.2	6.3	20	80	7.6	6	හි	10.7	7.3	7.6	7.7	
25		 	TS MPa	730	725	720	733	735	720	715	726	725	820	1121	965	820	808	806	795	700	817	1050	1061	1058	
30	lable 35		Residual y volumetric percentage %	¢	0	0	O	0	0	0	0	0	0	9	0	7	·	40	0	o	¥	8	4	4	
35			Second phase grain size µm	12	O.	æ	2	E .	တ	13	10	S	9			7	9	w	14		ક	50	8	9	***************************************
40		Structure	Second phase volumetric percentage	28	23	25	24	7.2	25	223	28	25	38	,		45	48	46	45		43	99	53	48	-
45		44 (197 - 41 (197 - 41 (197)	Ferritic grain size µm	15	60	G	7	0	7	20	88	3	2	1,1	F. 3	ະວ	8	4	1.2	7	2	12	2	4	4
50			Phase	F+M+B	F+M+B	F+M+9	F+M+B	F+M+B	F+M+B	F+M+B	F+M+B	F+M+B	F+M	F+P	£+P	F+M	F+M	F+M	F+M	F.p	F+M	F+M	F+M	F+34	
		Steel		O	0	O	O	0	ပ	O	0	٥	-	77	77	7	77	7	7	->	7	O	o	O	<u> </u>
55		Steel sheet		41	42	43	44	45	46	47	48	48	20	51	52	53	54	55	58	57	58	59	90	81	

	1	~~~~	····																	
5		Remark			Example	Corriparison	Comparison		e . e											
io			Position of rupture		Weld line	HAZ	HAZ		- 34,									re righted		
				. P. 1 B.				201	lar g											
		SILCS	£		0	8.7	7.2	5 }	1											
15		erke																		
		Characteristics	ht mm		9.0	6.	۳ 0													
		0																		
20			Line .		9.6	9.8	හි	3 2	1											
			TS MPa	la de	1055	765	749		-340											
25			 																	
	ed)	inter 0	ر ان ده	e S																
	ting		ua; etrì	ıtaç				1 1	î											
30	(continued)	eli elik	Residual y volumetric	percentage %	כס	<u>.</u>	~													
	Table 3B		************		╀		-													
	3Die		m m	i ngjadir k J a ngar				,	₹											
	£22		Second phase grain	size um	S	35	83													
35			88	128			6.0													
		147.3	ā					.: S												
		9		/2 O	1															
		Structure	Second	volumetric percentage %	51	25	22													
40		32	g fa		1															
			is self	≫ <u>Q</u> .				pearlite												
			ď					ear												
45			Ferritic grain size	.	7	8.1	25	bainite, P. p												
			ļ		ļ	ļ	ļ	Da.	-											
			es es		330	φ.	m	à												
50			Phase		F+M	F+M+3	F+M+B	W: madensile,	n-											
		jes	1		T.,	T_	_	mark												
		Slee		elle aga elite.	o	P	۵		Fr.											
55		sel sheet			62	63	64	F. ferrite,	***************************************											

Claims

5

10

15

20

25

30

35

- A high strength hot-dip galvanized steel sheet consisting essentially of 0.03 to 0.25% C, 0.7% or less Si, 1.4 to 3.5% Mn, 0.05% or less P, 0.01% or less S, 0.05 to 1% Cr, 0.005 to 0.1% Nb, by mass, and balance of Fe, and being made of a composite structure of ferrite and secondary phase, the average grain size of the composite structure being 10 µm or smaller.
- The high strength hot-dip galvanized steel sheet of claim 1 further containing at least one element selected from
 the group consisting of 0.05 to 1% Mo, 0.02 to 0.5% V, 0.005 to 0.05% Ti, and 0.0002 to 0.002% B, by mass.
- 3. A mothod for manufacturing high strength hot-dip galvanized steel sheet comprising the steps of:

hot -rolling a steel slab consisting essentially of 0.03 to 0.25% C, 0.7% or less Si, 1.4 to 3.5% Mn, 0.05% or less P, 0.01% or less S, 0.05 to 1% Cr, 0.005 to 0.1% Nb, by mass, and balance of Fe, at temperatures of Ar3 transformation point or above;

cooling the hot-rolled steel sheet within a temperature range of 800°C to 700°C at a cooling rate of 5°C/sec or more, followed by coiling the cooled steel sheet at temperatures of 450°C to 700°C; pickling the steel sheet; and

galvanizing the pickled steel sheet after heating the pickled steel sheet to a temperature range of 760°C to 880°C, and cooling the steel sheet to temperatures of 600°C or below at a cooling rate of 1°C/sec or more in a continuous hot-dip galvanizing line.

4. A method for manufacturing high strength hot-dip galvanized steel sheet comprising the steps of:

hot-roiling a steel slab consisting essentially of 0.03 to 0.25% C, 0.7% or less Si, 1.4 to 3.5% Mn, 0.05% or less P, 0.01% or less S, 0.05 to 1% Cr, 0.005 to 0.1% Nb, further containing at least one element selected from the group consisting of 0.05 to 1% Mo, 0.02 to 0.5% V, 0.005 to 0.05% Ti, and 0.0002 to 0.002% B, by mass, and balance of Fe, at temperatures of Ar3 transformation point or above;

cooling the hot-rolled steel sheet within a temperature range of 800°C to 700°C at a cooling rate of 5°C/sec or more, followed by coiling the cooled steel sheet at temperatures of 450°C to 700°C; pickling the steel sheet; and

galvanizing the pickled steel sheet after heating the pickled steel sheet to a temperature range of 760°C to 880°C, and cooling the steel sheet to temperatures of 600°C or below at a cooling rate of 1°C/sec or more in a continuous hot-dip galvanizing line.

- 5. The method for manufacturing high strength hot-dip galvanized steel sheet of claim 3 further comprising the step of cold-rolling the steel sheet at a reduction rate of 20% or higher between the step of pickling and the step of galvanizing.
- 40 6. The method for manufacturing high strength hot-dip galvanized steel sheet of claim 4 further comprising the step of cold-rolling the steel sheet at a reduction rate of 20% or higher between the step of pickling and the step of galvanizing.
- The method for manufacturing high strength hot-dip galvenized steel sheet of claim 3 further comprising the step
 of alloying the galvanized steel sheet after the step of galvanizing.
 - The method for manufacturing high strength hot-dip galvanized steel sheet of claim 4 further comprising the step of alloying the galvanized steel sheet after the step of galvanizing.
- 50 9. The method for manufacturing high strength hot-dip galvenized steel sheet of claim 5 further comprising the step of alloying the galvenized steel sheet after the step of galvenizing.
 - 10. The method for manufacturing high strength hot-dip galvanized steel sheet of claim 6 further comprising the step of alloying the galvanized steel sheet after the step of galvanizing.

ŠŠ

(count) andreg bedisterer for services exciti friff Affilia

FIG. 2A

	INTERNATIONAL SEARCH REPO	£):35°	International appli	ention No
		\$. s.	§	
			PULYOR	02/01711
A. CLASS	SIFICATION OF SUBJECT MATTER Cl ⁷ C22C38/00, C21D9/46			
	35 926470 001. 022203 (80			
According t	er Intermedianed Detect Classification (1900)	and the second s		
}	to International Patent Classification (IPC) or to both n	auonal ciassification a	nd IPC	
	S SEARCHED commentation searched (classification system followed)	Review Company		
Int.	Cl C22C38/00-60, C21D9/46-48	, 8/00-04	ons) is lighter	
Documental	ion searched other than minimum documentation to the	e extent that such docs	ments are included	in the fields searched
	uyo Shinan Koho 1926-1996 i Jitsuyo Shinan Koho 1971-2002			
Electronic d WPI	sta base consulted during the international search (nam	e of data base and, wi	ere practicable, sess	ch ternos used)
MET				
C. DOCU	MENIS CONSIDERED TO BE RELEVANT			
Category*	Chation of document, with indication, where ap	propriate, of the relev	ant nassages	Relevant to claim No.
X	JP 11-343538 A (Kawasaki Ste			1.–10
	14 December, 1939 (14.12.99)	,		710
	Claims (Family: none)		****	
Х	JP 2000-282175 A (Kawasaki S	teel Corp.),	Ì	2
	10 October, 2000 (10.10.00), Claims			
	(Family: none)		v.	
x	JP 2000-109951 A (Kawasaki s	taal Carn	***************************************	_
	18 April, 2000 (18.04.00),	CCCT SOLENY	-	2
	Claims (Family: none)			
	trancry, none;			
			¥.,	
				:
X Furths	er documents are listed in the continuation of Box C.	Sce patent fam	Ny annex.	
* Special	categories of cited documents; ant defining the general state of the art which is not	"I" later document p	ublished after the inter	national filing date or
conside	ned to be of particular relevance	q edi backarouu	deciple or theory ands	supplication but cited to thying the invention
date	ducument but published on or after the international filing	"A" document of year considered novel	icelar relevance; the cl for cannot be consider	laimed invention caused be ed to involve as investive
cited to	ent which may throw doubts on priority claim(s) or which is establish the publication date of another classion or other	stop when the do	cument is taken alone	simed investion earnot be
	reason (ex specified) and referring to an anal disclosum, use, exhibition or other	considered to im	olve an inventive step ne er more other soch i	when the document is
means	end published prior to the international filing date but later	and neiteridance	ng obvious to a person i er of the same patent fr	skilled in the art
than the	e priority date claimed solubl completion of the international search			
	tay, 2002 (21.05.02)	Date of mailing of the 04 June.	e international scand 2002 (04.0)	
	-	a to the second	ويورونه مجرح الشاديدات	
Name and m	siling address of the ISA/	Authorized officer		
Japa	nese Patent Office	- ":		
Facsimile No	3.	Telephone No.		. [
Pom PCI/	ISA/210 (second sheet) (July 1998)			

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/01711

Category*	Citation of document, with indication, where appro-	oriate, of the relevant passages	Relevant to claim No.
E,X	BP 1143022 Al (NKK Corp.), 10 October, 2001 (10.10.01), 4 US 2002/0000266 Al 4 KR 2 4 JP 2001-152255 A 4 JP 2 5 WO 01/20051 Al JP 11-236621 A (Sumitomo Metal 31 August, 1999 (31.08.99),	001075195 A 002-30347 A	
	(Family: none)		
5.73			El engledik i derek
			ESBRENCE A BRITANISAN SECTOR CE
			1
1	1970 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	g .g.qqeU weer(Brand No. A Security On E Security Fr. School No. A
			BARTICATOR Pringa AD AMERICA Pringa A
		•	
			en vinnegostá seniteli
5.44 (15-3) 8.7 (44-4) 84 45 (44)			स्तुष्ट काना पुरस्क संस्थान स्वास्थानस्
			ta ta heji depenhedada ne virinni, ne valit providin je fledih endroenes, inventi ja priti
			- Pelikanga Pendual P Hila Yawa magai
· · · · · · · · · · · · · · · · · · ·			garj Berasa