Introduction

Fatemeh Mansoori

This slide are based the slides by Sebastian Raschka for intro. to machine learning course

What is machine learning

The traditional Programming Paradigm

Machine learning is the field of study that gives computers the ability to learn without being explicitly programmed

- Arthur Samuel (1959)

The Connection between fields

Artificial Intelligence (AI):

orig. subfield of computer science, solving tasks humans are good at

Narrow Al:

solving a particular task (playing a game, driving a car, ...)

Artificial General Intelligence (AGI):

multi-purpose AI mimicking human intelligence across tasks

Categories of Machine Learning

Supervised Learning Is The Largest Subcategory

Supervised Learning 1: Regression

Supervised Learning 2: Classification

Binary classification example with two features ("independent" variables, predictors)

Classification works like this

The 2nd Subcategory Of ML (And DL)

Unsupervised Learning 1: Representation Learning/Dimensionality Reduction

E.g., Principal Component Analysis (PCA)

Unsupervised Learning--Dimensionality Reduction

Unsupervised Learning 1: Representation Learning/Dimensionality Reduction

E.g., Autoencoders

Unsupervised Learning 2: Clustering

Assigning group memberships to unlabelled examples (instances, data points)

Reinforcement Learning

Semi-Supervised Learning

- mix between supervised and unsupervised learning
- some training examples contain outputs, but some do not
- use the labeled training subset to label the unlabeled portion of the training set, which we then also utilize for model training

Semi-Supervised Learning

Illustration of semi-supervised learning incorporating unlabeled examples. (A) A decision boundary derived from the labeled training examples only. (B) A decision boundary based on both labeled and unlabeled examples.

Supervised Learning Workflow -- Overview

Structured vs Unstructured Data

Machine Learning vs Deep Learning

Image source: Stevens et al., Deep Learning with PyTorch. Manning, 2020

Supervised Learning Notation

Training set:
$$\mathcal{D} = \{\langle \mathbf{x}^{[i]}, y^{[i]} \rangle, i = 1, \dots, n\},\$$

Unknown function:
$$f(\mathbf{x}) = y$$

Hypothesis:
$$h(\mathbf{x}) = \hat{y}$$

$$h: \mathbb{R}^m \to \underline{\hspace{1cm}} h: \mathbb{R}^m \to \underline{\hspace{1cm}}$$

Data Representation

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \vdots \\ \mathbf{x}_n^T \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} x_1^{[1]} & x_2^{[1]} & \cdots & x_m^{[1]} \\ x_1^{[2]} & x_2^{[2]} & \cdots & x_m^{[2]} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{[n]} & x_2^{[n]} & \cdots & x_m^{[n]} \end{bmatrix}$$

Feature vector

Data Representation

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} y^{[1]} \\ y^{[2]} \\ \vdots \\ y^{[n]} \end{bmatrix}$$

Input features

Data Representation (structured data)

Sebastian Raschka

STAT 453: Intro to Deep Learning

Data Representation (unstructured data; images)

"traditional methods"

, 0.99607843, 1.0, 0.99607843, 0.99607843, 0.99607843, 0.30980393, 0.14509805, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 .0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.27450982, 0.8862745, 0.99215686, 0.99215686, 0.99215686, 0.99215686, 0.99215686, 0.9 9215686, 0.99215686, 0.99215686, 0.99215686, 0.99215686, 0.99215686, 0.99215686, 0.7764766, 0.15294118, 0.0, 0.0 0.9529412, 0.87058824, 0.21568628, 0.21568628, 0.21568628, 0.5176471, 0.98039216, 0.99215686, 0.99215686, 0.8392157 0, 0.0, 0.06666667, 0.07450981, 0.5411765, 0.972549, 0.99215686, 0.99215686, 0.99215686, 0.627451, 0.05490196, 0.0, , 0.8980392, 0.99215686, 0.99215686, 0.99215686, 0.99215686, 0.99215686, 0.92941177, 0.3647059, 0.0, 0.0, 0.0, .99215686, 0.99215686, 0.99215686, 0.99215686, 0.99215686, 0.99215686, 0.91764706, 0.12941177, 0.0, 0.0, 0.0, .99215686, 0.99215686, 0.99215686, 0.99215686, 0.99215686, 0.99215686, 0.99215686, 0.59607846, 0.03529412, 0.0, 0.0 0.61960787, 0.61960787, 0.61960787, 0.9529412, 0.99215686, 0.99215686, 0.99215686, 0.99215686, 0.54901963, 0.011764 4902, 0.3647059, 0.78431374, 0.99215686, 0.99215686, 0.99215686, 0.3019608, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0.0, 0.0, 0.0, 0.0, 0.1254902, 0.3254902, 0.9529412, 0.99215686, 0.9490196, 0.41960785, 0.0, 0.0, 0.0, 0.0, 64706, 0.47058824, 0.0, 0.08235294, 0.7019608, 0.7019608, 0.81960785, 0.99215686, 0.99215686, 0.99215686 7, 0.98039216, 0.9607843, 0.9647059, 0.99215686, 0.99215686, 0.99215686, 0.99215686, 0.99215686, 0.9490196, 0.43921 13686, 0.99213686, 0.99213686, 0.99213686, 0.99213686, 0.99213686, 0.99213686, 0.7921369, 0.30980393, 0.41960785, 0 686, 0.99215686, 0.99215686, 0.99215686, 0.99215686, 0.32941177, 0.14901961, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

ML Terminology (Part 1)

- Training example: A row in the table representing the dataset. Synonymous to an observation, training record, training instance, training sample (in some contexts, sample refers to a collection of training examples)
- Feature: a column in the table representing the dataset. Synonymous to predictor, variable, input, attribute, covariate.
- Targets: What we want to predict. Synonymous to outcome, output, ground truth, response variable, dependent variable, (class) label (in classification).
- Output / prediction: use this to distinguish from targets; here, means output from the model.

