

School of Computer Engineering

Kalinga Institute of Industrial Technology (KIIT)

Deemed to be University

Bhubaneswar-751024

Lesson Plan and Activity Calendar

Design and Analysis of Algorithms - CS30001 (L-T-P-Cr: 3-0-0-3)

Semester: 5th

Discipline: B.Tech. (CSE), Section: CSE 47

Session: Autumn 2024

.....

Prerequisites: Data Structures (CS21001)

Instructor:

Name : Dr. Dayal Kumar Behera

Chamber: Faculty Block 402, Cubicle –Z, Block-C, Campus-14

Mobile No : 9853334495

Email : dayal.beherafcs@kiit.ac.in

Class Hours:

Day	Time	Class Room
WED	08.00 – 09.00 AM	A-LH-104
THUR	11.00 – 12.00 PM	WL-103
FRI	09.00 – 10.00 AM	A-LH-110

Lesson Plan:

Unit	Unit Name	Topics to be covered	No. of lectures	Lecture serial nos.
1	Introduction	 Concepts in algorithm analysis & design - motivation Complexity of an algorithm (Space and time Complexity), Analysis of time complexity of Insertion Sort by step count method Growth of functions, Asymptotic Notations (Big Oh, Omega, Theta)) Solving recurrences: Iterative method Substitution method, Recurrence Tree method Solving recurrences: Master theorem, Change of variable Tutorials / Activity 	5	1-5

2a	Divide and Conquer Approach	 Structure of Divide-and-Conquer algorithm design technique Analysis of divide-and-conquer run time recurrence relations of Binary Search Merge Sort Quick Sort Tutorials / Activity 	3	6-8
2b	Greedy Approach	 Overview of Greedy design paradigm and Solving as well as analyzing the following problems using Greedy method: Fractional knapsack problem Job sequencing with deadlines Huffman method of Optimal Coding Finding Minimum spanning trees for a Graph: Kruskal's Method Finding Minimum spanning trees for a Graph: Prim's Method Finding Single Pair Shortest Path in a graph: Dijkstra's Method Tutorials / Activity 	6	9-14
3	Dynamic Programming Approach	 Overview of Dynamic Programming paradigm, Difference between Dynamic Programming and Divide & Conquer/Greedy Methods Solving as well as analyzing the following problems using Dynamic Programming method: 0/1 Knapsack problem Matrix Chain Multiplication Longest Common Subsequence Multistage Graph problem - Forward and Backward Approach for solving Finding All Pair Shortest Paths in a Graph - Floyd Warshall Algorithm Notion of Optimal Binary Search Tree (OBST), Finding OBST using Dynamic Programming method Notion of Travelling Salesman Problem (TSP), Solving TSP using Dynamic Programming method Tutorials / Activity 	10	15-24
4	Amortized Analysis and Randomized Algorithms	 Notion and methods of Amortized Analysis of algorithms: Aggregate Analysis, Accounting Method, Potential Method Randomized Algorithms: Las Vegas and Monte Carlo algorithms Randomized Quick Sort and its analysis Minimum Cut in a graph - Karger's min cut algorithm 	6	25-30

		Tutorials / Activity		
6.	Complexity Classes and Approximation Algorithms	 Concepts of Complexity Classes: P, NP, NP-Hard and NP-Complete Reducibility of problems Complexity Classes for the following selected problems: Vertex Cover Problem 3-CNF Satisfiability Problem Maximal Clique Problem Hamiltonian cycle Problem Travelling Salesman Problem Notion of Approximation algorithms Approximation algorithms for following selective problems: Vertex Cover Problem Travelling Salesman Problem Tutorials / Activity 	10	31-40

Day-wise Lesson Handouts:

Week	Lecture No.	Topics			
Week - 1	1	Concepts in algorithm, difference between Algorithm and Program, characteristics of algorithms. Algorithm design and their Performance Analysis: Time and Space Complexity, motivation.			
WEEK - 1	2	Pseudo code Conventions, Analysis of Insertion Sort by step count method (Incremental Approach), Best-case, Worst-case and Average-case Analysis.			
	3	Growth of functions, Asymptotic Notations $(\theta, 0, \Omega)$			
Week - 2	4	Solving recurrences using Iterative method, Substitution method and Recursion Tree method			
vveek - 2	5	Solving recurrences using Master's Theorem, Change of Variables			
	6	Divide-and-Conquer Approach - Binary Search and its complexity analysis			
	7	Divide-and-Conquer Approach - Merge Sort and its complexity analysis			
Week – 3	8	Divide-and-Conquer Approach - Quick Sort and its complexity analysis (Worst-case, Best-case and role of Balanced Partitioning)			
	Overview of Greedy paradigm, Elements of greedy strategy: Recursive, Iterative greedy algorithm. Knapsack Problem, Difference between Fractional Knapsack and 0/1 Knapsack, Greedy strategy for solving Fractional Knapsack Problem.				
10 A greedy approach for Joh seguencing		A greedy approach for Job sequencing with deadlines			
Week - 4	11	Problem of Optimal coding, Huffman Tree and Huffman method for Optimal coding			
	Minimum-Cost Spanning Tree (MST) for a weighted graph, Krumethod for finding MST, its analysis				
	13	Prim's Method for finding MST, its analysis			
Week - 5	14	Single-Source Shortest Path problem for weighted graphs, Dijkstra's Method and its analysis			
vveek - 5	15	Overview of Dynamic Programming paradigm, Divide and Conquer vs Dynamic Programming, Greedy vs Dynamic Programming, Elements of dynamic programming, Tabulation vs Memoization			

	16	Dynamic Programming approach for solving 0/1 Knapsack problem
	17	Longest Common Subsequence (LCS) problem, Dynamic Programming
Week - 6	1 /	approach for solving LCS problem
	18	Matrix Chain Multiplication (MCM) problem, Dynamic Programming
	10	approach for solving MCM problem
	19	Multistage Graph problem - Forward Approach
Week - 7	20	Multistage Graph problem - Backward Approach
WCCK - 7	21	All Pair Shortest Path problem for weighted graph - Floyd Warshall's algorithm
	22	Floyd Warshall's algorithm (Contd)
Week - 8	23	Notion of Optimal Binary Search Tree (OBST), Finding OBST using
	23	Dynamic Programming method
	24	Notion of Travelling Salesman Problem (TSP), Solving TSP using Dynamic
	24	Programming method
	25	Amortized Analysis of algorithm - Aggregate Analysis
Week - 9	26	Amortized Analysis of algorithm - Accounting Method
	27	Amortized Analysis of algorithm - Potential Method
	28	Randomized Algorithms: Las Vegas and Monte Carlo
Week - 10	29	Randomized Quick Sort and its analysis
	30	Minimum Cut in a graph, Karger's min cut algorithm
		Tractable vs Intractable problems, Decision vs Optimization Problems,
	31	Deterministic vs Nondeterministic Algorithms, Reduction, Polynomial
Week - 11		Reduction and Equivalence of Problems.
WCCK 11	32	Basic Concepts of Complexity Classes (P, NP, NP hard, NP Complete) and
		their hierarchy
	33	SAT, CNF-SAT, 3CNF-SAT: Basic Concepts and Complexity Classes
	34	Maximal Clique Problem
Week - 12	35	Vertex Cover Problem
	36	Hamiltonian cycle Problem,
	37	Travelling Salesman Problem
Week - 13	38	Approximation Algorithm: Basic Concepts, Relation with NP hardness
	39	Approximation Algorithm for Vertex Cover Problem
	40	Approximation Algorithm for Travelling Salesman Problem

Activity Calendar:

Activity No.	Type of Activity	Probable Date	Marks (Weightage)	CO		
1	ACTIVITY-1 (Class Test/ Subjective Test)	01.08.24 – 06.08.24	5			
2	ACTIVITY-2 (Class Test/Quiz Test)	19.08.24 – 23.08.24	5			
3	ACTIVITY-3 (Class Test/ Surprise Test)	09.09.24 – 13.09.24	5			
	Mid Semester Examination [1]	7.09.2024 – 21.09.2024]			
4	ACTIVITY-4 (Home Assignment)	01.10.24 – 07.10.24	5			
5	ACTIVITY-5 (Class Test/Home Assignment)	21.10.24 – 25.10.24	5			
6	ACTIVITY-6 (Class Test/Quiz Test)	04.11.24 – 08.11.24	5			
End Semester Examination [16.11.2024 – 26.11.2024]						

Course Outcome: Upon completion of this course, the students will be able to:

CO1:	Analyze the time and space complexity for any algorithm	
CO2:	Compare and contrast different algorithm design techniques	
CO3:	Apply the algorithm design techniques in solving real world problems	
CO4:	Perform amortize analysis for any algorithm	
CO5:	Modify existing algorithms to apply in common engineering design situations	
CO6:	Use NP class of problems to propose approximation algorithms	

Text books:

- ▶ Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, "Fundamentals of Computer Algorithms", Universities Press.
- Thomas H. Corman, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", PHI.

Reference books:

- Jon Kleinberg, Eva Tardos, "Algorithm Design", Pearson.
- Michael T. Goodrich, Roberto Tamassia, "Algorithm Design: Foundations, Analysis, and Internet Examples", Wiley India.

Grading Policy:

Pedagogy: Lecture, Assignments, Quiz, Debate, Short Projects, etc.

Evaluation Methodology: Internal: 50 (20- Midterm Exam & 30 Activity), End Term: 50

Distribution of Marks:

SL No.	Evaluation Component	Evaluation Marks	Course Lecture No.		Mode
			From	То	
1	Mid-Semester Examination	20	1	20	Closed Book
2	Activity based Teaching and Learning	30	NA	NA	Open Book, Closed Book and Presentation, Short quiz
3	End-Semester Examination	50	1	40	Closed Book

Note

- Tentative Mid-Semester Syllabus would be up to Longest Common Subsequence problem under the unit of Dynamic Programming approach as per the Lesson Plan
- Modifications to the above-mentioned structure (Lesson Plan / Examination Process / Any other modifications) may take place as per the Teacher's discretion adhering to the University Guidelines.