

Interfacing to the Analogue World

(HWP **I1**)

Analogue interfacing

- D/A-converters
- A/D-converters
- Pulse Width Modulation (PWM)
- Etc.

Analogue versus Digital

Analogue signals are continuously

Digital signals are quantified in steps

D/A-Converters

D/A-Converters

<i>S2</i>	S1	S0	VO	
OFF	OFF	OFF	0	
OFF	OFF	ON	.125 imes VR	$(1/8 \times VR)$
OFF	ON	OFF	.25 × VR	$(2/8 \times VR)$
OFF	ON	ON	.375 × VR	$(3/8 \times VR)$
ON	OFF	OFF	.5 imes VR	$(4/8 \times VR)$
ON	OFF	ON	.625 × VR	$(5/8 \times VR)$
ON	ON	OFF	.75 × VR	$(6/8 \times VR)$
ON	ON	ON	.875 imes VR	(7/8 × VR)

A/D-Converters

- Tracking A/D-Converters
- Flash A/D-Converters
- Successive Approximation A/D-Converters

Sample/Hold

Tracking A/D-Converter

Slow if signal are fluctuating

Flash A/D-Converter

- Very Fast
- Expensive
 - One comparator per level (4bit => 16 comparators)

Successive Approximation A/D-Converter

- Most used type
- Medium fast
- Cheap

In the ATMEGA1280

Sample/Hold

- Stabilize analogue signals for short periods
- Used to hold the signal steady during an A/D-

The software for A/D-conversion

 We want to sample with a constant period between samples

Pulse Coded Modulation (PCM/PWM)

Analogue control of motor speed, heater etc.

Pulse Coded Modulation (PCM)

PCM control of motor speed, heater etc.

Slow/Low power			
Medium/Medium power			
High/ High power			

AVR

- Read about the A/D converter in the documentation for the ATMEGA1280 MCU
- Exercise:
 - How many modes can the ADC be setup to
 - If some music (20-20khz) must be sampled how would you setup the ADC?
 - Setup the ADC to measure a voltage between 0 and 2.5V

Discussion

• If you have 16 keys/switches that you must interface to, can this be done with a single ADC input?

If it can how?

Solution

The input voltage associated with each key n is given by:

$$Vin = (Vdd - Vss) \times \Sigma(R1..Rn) / (R0 + \Sigma(R1..Rn))$$

If more than one key is pressed at the same time, the key detected is the closest key to the ADC input in the chain. This means that the key recognition is managed by priority.