

# Testing of Automotive Systems (Part I)

Module 4 – CAN / LIN

David Ludwig, Magna Steyr



# **Schedule**





# CAN-BUS



#### **CAN-Bus**

- Firstly introduced 1991, still standard in automotive
- Used in various domains in vehicles
- Different data rates are used
  - CAN-C 125kbit-1Mbit/sec
    - "high-speed CAN" 500 kbit/sec
    - Still in almost every vehicle
  - CAN-B 5-125kbit/sec
    - "low-speed CAN" 125 kbit/sec
    - More fault-tolerant
    - less used





#### **Network nodes**

All network nodes are connected to a bus and each node is

able to receive all information sent on the bus

The two bus lines are designated CAN\_H and CAN\_L

- A network node comprises of
  - Microcontroller
    - runs the application program
    - controls the CAN controller
    - prepares the sent data and evaluates received data
  - CAN Controller
    - responsible for the transmit and receive modes
    - generates the data communication bit stream
    - forwards it to the transceiver on the TxD line
  - CAN Tranceiver
    - Signal amplification, generates voltage levels
    - transmits the processed bit stream serially





#### Logical bus states

- Two states created by CAN controller
  - dominant binary "0"
  - recessive "1"
  - NRZ = non-return-to-zero
- Unshielded twisted pair cables (UTP, diameter between 0,34 and 0,6 mm²)
- Disturbance pulses have effect on both lines
- Differential amplifier subtracts
   CAN L from CAN H level
- Additional shielding reduce self emissions

CAN great benefit -> it is extremly robust because of twisted pairs.



#### **Electrical bus states**

- CAN transceiver converts digital to voltage signals
  - Low-Speed CAN (a)
    - dominant CAN\_H 3.6V / CAN\_L 1.4V
    - recessive CAN\_H OV / CAN\_L 5V
  - High-Speed CAN (b)
    - dominant CAN\_H 3.5V / CAN\_L 1.5V
    - recessive CAN\_H 2.5V / CAN\_L 2.5V
- Terminal resistor RT= 120Ω to dampen reflections (b)
- Maximum number of nodes 32 according ISO11898
- Maximum bus length (recommendation)
  - 500kbaud 100m
  - 125kbaud 500m







CANH: CAN High line CANL: CAN Low line RT: Termination



#### **CAN Tranceiver**







# **Exercise: Open Collector Buslogic**



~ 12 V leitet

12 V

~ 0,7 V

~ 50 mA

 $\sim 4 \Omega$ 

~ 0 V

geschlossen

As long as we have a zero on one it will be pulled to zero.

#### **ENGINEERING**

#### **CAN Communication**

- Multi-Master Principle
  - Each node may send messages any time
  - If bus is free and arbitration has been passed
- Content-based addressing
  - No addressing of nodes but of messages
  - Identifier classifies message content
  - Messages are broadcasted to all stations
  - Read only those messages which are stored in acceptance list
- Arbitration
  - Message begins with a dominant bit (start-of-frame bit), followed by the identifier
  - Message with highest priority is assigned first access
  - With highest priority bus access ~300μs
  - The higher the busload the bigger the latency







# **Arbitration and priorisation**

- Bitwise arbitration, wired-AND logic
- To get access to the bus a node needs message with the highest priority
- The smaller the Identifier value the higher the priority





#### **CAN Message Format**

- Data Frame
  - Transmitted message contains data (e.g. current engine speed) that is provided by transmitting station (data source)
- Remote Frame
  - Stations can call-in data they need from the data source
  - Example: windshield wiper requests how wet windshield is from rain sensor
- Error Frame
  - If station detects a fault or error
- Overload Frame
  - create a delay between preceding and subsequent data or remote frame

**EOF** 

ITM



#### **CAN Message Format**

- SOF  $\rightarrow$  start of frame represented by a dominant bit
- Arbitration field  $\rightarrow$  11-bit or 29-bit (extended) identifier and remote transmission request
- Control field → Identifier extension and number of data length code (DLC) in data field
   Data field → Actual message information 0...8 byte
- CRC field  $\rightarrow$  15-bit cyclic redundancy checksum (Generator polynom G(x))
  - ACK field → Divison frame/polynom → acknowledge receipt by the **receiver** 
    - → End of frame with 7 recessive bits
      - → Interframe space, separate successive messages





#### Data transfer sequence

- Engine ECU calculates engine speed from sensor on microcontroller level
- CAN Controller compiles CAN frame and generates bitstream if bus is free
- Bus availability check via CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance)
- Tranceiver generates electrical signal and puts it on the bus
- Signal is received by all stations
- CAN controller of receiving node checks message for errors and acceptance, reject or receives message



All transmitter/receiver relationships including the meaning of the messages are described in the communication matrix

https://elearning.vector.com/mod/page/view.php?id=343

#### **ENGINEERING**



#### **Exercise: Typical CAN-Communication**





#### **CAN Error processing**

- If an error is detected by a node, message transfer is aborted
- All nodes have to be informed by the node who has detected the error
- Error flag is put on the bus by six dominant bits
- This is a violation of the bitstuffing rule
  - Bitstuffing rule: after five bits of same kind transmission of one complementary bit
- Violation of bitstuffing rule causes error flag at all other nodes
- After error flag, delimiter and intermission data frame is send again (if allowed by arbitration)
- Error counters detect recurring errors, CAN-Controller will be cut from bus at counter overload





#### **Error processing**

- 1-2 Bus monitoring error detected by sender, error flag set and bit stuffing rule violated
- 3-4 Receiver detects bitstuffing rule violation and stets error flag, sender in delimiter state
- 5-6 Receiver has finished error flag, both sender and receiver go in delimiter mode
- 7-9 Delimiter and intermission finished, data frame starts again with SOF





# **CAN-FD**



# **CAN FD Motivation and principle**

- Bandwidth requirements increase due to additional vehicle functions
- General exchange CAN by other bus technologies with higher bandwidth not suitable regarding costs and development efforts
- Bandwidth limitating factor for CAN is parallel node communication during arbitration (and acknowledge ACK) period
- Idea: Increase the bandwidth only during data field





#### **CAN FD Motivation and principle**

- CAN Reserve bit is used as CAN FD indicator
- FDF (Flexible data rate format) indicates transmission of CAN or CAN FD frame
- Bit rate switch (BRS) announces increase of baud rate
- Switch back to baudrate 1 at CRC delimiter
- Backwards compatibility to CAN, but no upwards compatibility





# **LIN-BUS**



# LIN (local interconnect network) - Bus

- Low-cost unshielded single-wire bus system
- Low data rates max 20kbit/sec and limited to 16 bus subscribers
- Local subsystem within demarcated installation space (e.g. door)
- Master/slave topology with connection to superordinate CAN
- Time-synchronous communication where master defines time grid
- Mainly comfort appications: Door modules, sunroof, seat adjustment etc.





# LIN networking example - AC control





# LIN data transmission system

- Open collector circuit, wired-AND logic same as CAN
- Dominant level corresponds to ~ 0V (vehicle ground) and represents logical 0
- Recessive level corresponds to VBAT and represents logical 1
  - Pull-up Resistance  $1k\Omega$  (master) and  $30k\Omega$  (slaves)
- Stable data transfer by means of tolerance zones for transmitter and receiver
- Data rate limited to 20kbit/sec





# LIN bus access - message format

- Master initiates slave(s) response with frame header
- Slaves answer with frame response
- Deterministic, Delegated token" bus access → No collisions or arbitration
- Predictable data transfer, defined <u>schedule</u>
- LIN configuration in \*.ldf-file
- LIN standard describes several types of frames
- Several types of frame, unconditional frame described here, unique header and response





#### LIN Schedule

#### **Communication Matrix**





#### LIN Frame header

- Master task
- Sync break field initiates begin of the header
- Sync Field includes clock frequency and is used for synchronization with slaves
- Protected identifier (PID) field
  - Unique identifier for slave communication, defined in \*ldf
  - 6-bit identifier + 2 parity bits
- Between header and response frame there is a pause time called response space (RS)





#### LIN Frame response

- Slave task
- Slaves answer with max. 8 byte response to the frame header (data field)
- Also slave task of the master can be accessed
- Bytes are transferred from LSB to MSB





#### LIN Frame – time base

- The LIN schedule is organized in time slots to transfer one frame
- Size of the slots is defined by minislots as communication time base
- Time reserve to ensure communication (Jitter before and Interframe Space after frame) up to 40%





#### **LIN Error Detection**

- Bitmonitoring (sender task)
  - Compare each bit on the bus with bus level
- Checksum (Receiver task)
  - Check of incoming data bytes w/o PID (classic/enhanced checksum)
  - Sum of received data and received checksum has to 0xFF
- Parity check (receiver task)
  - Check of P0 and P1
- Slave responding check (receiver task)
  - Check whether frame response after header is transferred
- Sync field check (receiver task)
  - Check whether master sync rate is in between tolerance range
- Reaction to errors part of individual design, not described in the standard

#### **ENGINEERING**

# FH JOANNEUM Electronic Engineering

# References and quotations



Buchreihe: Bosch Professional Automotive Information

Herausgeber: Robert Bosch GmbH

Verlag: Springer Fachmedien Wiesbaden

Print ISBN: 978-3-658-01783-5

Electronic ISBN: 978-3-658-01784-2

Enthalten in: Springer Professional "Wirtschaft+Technik",

Springer Professional "Technik"

https://elearning.vector.com

https://www.eecs.umich.edu/courses/eecs461/doc/CAN notes.pdf

https://www.uni-kassel.de/eecs/fileadmin/datas/fb16/Fachgebiete/FSG/Download/Lehre/PFS/

http://www.lin-subbus.org