Finding Dessert

Time Limit: 1s

Memory Limit: 128MB

After eating all that food, you're felling like you need something sweet. After a bit of research, you are able to find a list of N dessert shops. Each shop has a name, A_i , and a sweetness level of S_i . You are then given Q queries, each containing a sweetness level X. For each query, you must output the name of the dessert shop with the closest sweetness level to X. If there are multiple shops with the same closest sweetness level, output the one with the lexicographically smallest name.

Constraints

 $1 \leq N \leq 100~000$

 $1 \le Q \le 100\ 000$

 $1 \le |A_i| \le 30$

 $1 \le S_i \le 1\ 000\ 000$

 $1 \le X \le 1\ 000\ 000$

 A_i will only contain lowercase letters.

Input Specification

The first line of input will contain the integers N and Q. The next N lines will contain the string A_i and the integer S_i each. The next Q lines will contain the integer X.

Output Specification

Output Q lines, the answer to each query.

Sample Input

```
5 3
ichi 100
ni 200
san 300
yon 400
go 500
150
220
550
```

Sample Output

```
ichi
ni
go
```

Explanation

There are 2 dessert shops with a sweetness level that is closest to 150, ichi and ni. Since ichi comes before ni, lexicographically, we output Ichi.