DISCRETE MATHEMATICS AND ITS APPLICATIONS

1.4 PREDICATES AND QUANTIFIERS

WENJING LI

wjli@bupt.edu.cn

SCHOOL OF COMPUTER SCIENCE

BEIJING UNIVERSITY OF POSTS & TELECOMMUNICATIONS

OUTLINE

- Predicate logic (谓词逻辑)
- Quantifiers (量词)
 - Universal (全称量词)
 - Existential (存在量词)
 - Unique Existential (唯一存在量词)
- Property of Quantifiers
 - Free and Bound Variables (自由变项与绑定变项)
 - Nesting (嵌套)
 - Negation (否定)
- Applications

苏格拉底三段论

- 凡人都是要死的。苏格拉底是人。所以,苏格拉底是要死的。
 - 设: p:凡人都是要死的; q:苏格拉底是人; r: 苏格拉底是要死的。
 - 前提: p, q, 结论: r
- 推理的形式结构: $p \land q \rightarrow r$ (非永真式!)
- 重新符号化: x, a, F(), ∀,∃
 - 设: F(x): x是人。G(x): x是要死的。a: 苏格拉底。
 - 前提: $\forall x(F(x) \rightarrow G(x)), F(a)$
 - 结论: *G(a)*

PREDICATES LOGIC

- A generalization of propositions *predicates* (谓词) or *propositional functions* (命题函数): propositions which contain variables
- Predicates become propositions once every variable is bound by
 - assigning it a value or an object (个体) from the Universe of Discourse (论域) U

or

quantifying it

FORMULAS OF PREDICATE LOGIC

Notation:

- We will use various kinds of *individual constants* that denote individuals/objects: a,b,c,..., individual variables over objects: x, y,
 z, ...
- P: refers to a property that the subject of the statement can have.
- The result of applying a *predicate* P to a *constant* a is the proposition P(a). Meaning: the object denoted by a has the property denoted by P.
- The result of applying a *predicate P* to a *variable x* is the *propositional form P(x)*.
 - E.g. if P = "is a prime number", then P(x) is the *propositional form* of "x is a prime number".

FORMULAS OF PREDICATE LOGIC

Example:

- Let U = Z, the integers = $\{...-2, -1, 0, 1, 2, ...\}$
- P(x): x > 0 is the predicate. It has no truth value until the variable x is bound.

Examples of propositions where x is assigned a value:

- P(-3) is false,
- P(0) is false,
- P(3) is true.

The collection of integers for which P(x) is true are the positive integers.

- $P(y) \lor \sim P(0)$ is not a proposition. The variable y has not been bound. However.
- $P(3) \vee P(0)$ is a proposition which is true.

PROPOSITIONAL FUNCTIONS

- Predicate logic generalizes the grammatical notion of a predicate to also include propositional functions of any number of arguments, each of which may take any grammatical role that a noun can take.
- *E.g.*
 - let P(x,y,z) =" $x \ gave \ y \ the \ grade \ z$ ",
 - then if x = ``Mike'', y = ``Mary'', z = ``A'',
 - then P(x,y,z) = "Mike gave Mary the grade A."

Proposition
Proposition variable
Predicate (Propositional function)

N-PLACE PREDICATE

- A statement involving the *n* variables $x_1, x_2, ...x_n$ can be denoted by $P(x_1, x_2, ...x_n)$.
- A statement of the form $P(x_1, x_2, ...x_n)$ is the value of the propositional function P at the n-tuple $(x_1, x_2, ...x_n)$, and P is also called a n-place predicate or a n-ary predicate.
- Let *R* be the three-variable predicate
 - R(x, y, z): x + y = z
- Find the truth value of
 - R(2, -1, 5)
 - R(3, 4, 7)
 - R(x, 3, z)

QUANTIFIERS — UNIVERSAL(全称量词)

- P(x) is true <u>for every x</u> in the **universe of discourse**.
- Notation: universal quantifier

$$\forall x P(x)$$

'For all x, P(x)', 'For every x, P(x)'

- The variable x is bound by the universal quantifier producing a proposition.
- Let P(x) be the statement "x+1>x".
- What is the truth value of the quantification $\forall x P(x)$, where the universe of discourse consists of all real numbers?

QUANTIFIERS — UNIVERSAL(全称量词)

Example:

$$U=\{1, 2, 3\}$$

$$\forall x P(x) \Leftrightarrow P(1) \land P(2) \land P(3)$$

Example:

- Let P(x) be the statement " $x^2 > 0$ ".
- What is the truth value of the quantification $\forall x P(x)$, where the universe of discourse consists of all integers?

QUANTIFIERS — EXISTENTIAL(存在量词)

- P(x) is true for <u>some</u> x in the universe of discourse.
- Notation: existential quantifier

$$\exists x P(x)$$

'There is an x such that P(x)', 'For some x, P(x)', 'For at least one x, P(x)', 'I can find an x such that P(x).'

- Let P(x) be the statement "x>3".
- What is the truth value of the quantification $\exists x P(x)$, where the universe of discourse consists of all real numbers?

QUANTIFIERS — EXISTENTIAL(存在量词)

Example:

$$U=\{1, 2, 3\}$$

$$\exists x P(x) \Leftrightarrow P(1) \lor P(2) \lor P(3)$$

Example:

- Let Q(x) denote the statement "x=x+1".
- What is the truth value of the quantification $\exists x P(x)$, where the universe of discourse consists of all real numbers?

UNIQUE EXISTENTIAL(唯一存在量词)

- P(x) is true <u>for one and only one x</u> in the universe of discourse.
- Notation: unique existential quantifier

 $\exists !xP(x)$

'There is a unique x such that P(x)', 'There is one and only one x such that P(x)', 'One can find only one x such that P(x)'.

UNIQUE EXISTENTIAL(唯一存在量词)

Example:

$$U=\{1, 2, 3\}$$

$$\exists !xP(x) \Leftrightarrow ?$$

P	P(1)	P (2)	P (3)	$\exists !xP(x)$
_	0	0	0	0
	0	0	1	1
	0	1	0	1
	0	1	1	0
	1	0	0	1
	1	0	1	0
	1	1	0	0
	1	1	1	0

$$(\sim P(1) \land \sim P(2) \land P(3)) \lor (\sim P(1) \land P(2) \land \sim P(3)) \lor (P(1) \land \sim P(2) \land \sim P(3))$$

minterms in the PDNF

UNIQUENESS QUANTIFIER

Examples:

- If P(x) denotes "x + 1 = 0" and U is the integers, then $\exists !x P(x)$ is true.
- But if P(x) denotes "x > 0," then $\exists !x P(x)$ is false.
- Note: The uniqueness quantifier is not really needed as the restriction that there is a unique x such that P(x) can be expressed as:

$$\exists x \ (P(x) \land \forall y \ (P(y) \rightarrow y = x))$$

Quantifiers:

 $\forall x \ P(x) := \text{``For all } x, \ P(x).\text{''}$

 $\exists x \ P(x) :=$ "There is an x such that P(x)."

 $\exists !xP(x):\equiv$ "There is one and only one x such that P(x)."

THINKING ABOUT QUANTIFIERS

- When the domain of discourse is finite, we can think of quantification as looping through the elements of the domain.
- To evaluate $\forall x P(x)$ loop through all x in the domain.
 - If at every step P(x) is true, then $\forall x P(x)$ is true.
 - If at a step P(x) is false, then $\forall x P(x)$ is false and the loop terminates.
- To evaluate $\exists x P(x)$ loop through all x in the domain.
 - If at some step, P(x) is true, then $\exists x \ P(x)$ is true and the loop terminates.
 - If the loop ends without finding an x for which P(x) is true, then $\exists x \ P(x)$ is false.
- Even if the domains are infinite, we can still think of the quantifiers this fashion, but the loops will not terminate in some cases.

THINKING ABOUT QUANTIFIERS

The truth value of $\exists x P(x)$ and $\forall x P(x)$ depend on both the **propositional function** P(x) and on the **domain** U.

Examples:

- If *U* is the positive integers and P(x) is the statement "x < 2", then $\exists x \ P(x)$ is true, but $\forall x \ P(x)$ is false.
- If *U* is the negative integers and P(x) is the statement "x < 2", then both $\exists x \ P(x)$ and $\forall x \ P(x)$ are true.
- If *U* consists of 3, 4, and 5, and P(x) is the statement "x > 2", then both $\exists x \ P(x)$ and $\forall x \ P(x)$ are true. But if P(x) is the statement "x < 2", then both $\exists x \ P(x)$ and $\forall x \ P(x)$ and $\forall x \ P(x)$ are false.

PRECEDENCE OF QUANTIFIERS

■ The quantifiers \forall and \exists have higher precedence than all the logical operators.

Example

- $\forall x P(x) \lor Q(x)$ means $(\forall x P(x)) \lor Q(x)$
- $\forall x (P(x) \lor Q(x))$ means something different.
- Unfortunately, often people write $\forall x P(x) \lor Q(x)$ when they mean $\forall x (P(x) \lor Q(x))$.
- **Remember:** A predicate is not a proposition until *all* variables have been bound either by quantification or assignment of a value!

FREE AND BOUND VARIABLES

An expression like P(x) is said to have a *free variable* x (meaning, x is undefined).

A quantifier (either ∀ or ∃) operates on an expression having one or more free variables, and binds one or more of those variables, to produce an expression having one or more bound variables.

EXAMPLE OF BINDING

- P(x,y) has 2 free variables, x and y.
- $\forall x P(x,y)$ has 1 free variable and 1 bound variable. [Which is which?]
- An expression with <u>zero</u> free variables is a bona-fide (actual) proposition.
- An expression with <u>one or more</u> free variables is similar to a predicate:

$$e.g.$$
 let $Q(y) = \forall x P(x,y)$

NESTING OF QUANTIFIERS

Example:

- Let the u.d. of x and y be people.
- Let L(x,y) =" $x \ likes \ y$ "
- Then $\exists y \ L(x,y) = "There is someone whom x likes."$
- Then $\forall x (\exists y L(x,y)) = \text{``Everyone has someone whom they like.''}$

(a real proposition; no free variables left)

BINDING AND NESTING

Examples:

- $\forall x \exists x P(x)$ x is not a free variable in $\exists x P(x)$ Therefore the $\forall x$ binding isn't used.
- $(\forall x P(x)) \land Q(x)$ The variable x is outside of the scope of the $\forall x$ quantifier, and is therefore free.

Not a complete proposition!

■ $(\forall x P(x)) \land (\exists x Q(x))$ – A complete proposition, and no superfluous quantifiers

BINDING AND NESTING

$$\forall x(\exists y \ R(x,y))=$$

Everyone has someone to rely on.

$$\exists y(\forall x \ R(x,y))=$$

There's an overburdened soul whom *everyone* relies upon (including himself)!

$$\exists x(\forall y \ R(x,y))=$$

There's some needy person who relies upon *everybody* (including himself).

Everyone has someone who relies upon them.

$$\blacksquare \forall x(\forall y R(x,y)) =$$

Everyone relies upon everybody, (including themselves)!

NATURAL LANGUAGE IS AMBIGUOUS!

- Let L(x,y) = " $x \ likes y$ "
- "Everybody likes somebody."
 - For everybody, there is somebody they like,
 - $\forall x \exists y L(x,y)$
 - or, there is somebody (a popular person) whom everyone likes?
 - $\exists y \ \forall x \ L(x,y)$
- "Somebody likes everybody."
 - Same problem: Depends on context, emphasis.

$$\exists x \ \forall y \ L(x,y)$$

 $\forall y \exists x L(x,y)$

NEGATIONS

Every student in the class has taken a course in Calculus.

$$\sim \forall x P(x) \Leftrightarrow \exists x \sim P(x)$$

- **Negation:** There is a student in this class who has not taken a course in calculus.
- There is a student in this class who has taken a course in calculus.

$$\sim \exists x P(x) \Leftrightarrow \forall x \sim P(x)$$

 Negation: Every student in this class has not taken a course in calculus.

Remember:

 Distributing a negation operator across a quantifier changes a universal to an existential and vice versa.

NEGATIONS

- **Example 20:** What are the negation of the statements "there is an honest politician" and "All Americans eat cheeseburgers"?
 - \blacksquare H(x): "x is honest."

 $\exists x H(x)$, where the domain consists of all politicians.

The negation is $\neg \exists x H(x)$, which is equivalent to $\forall x \neg H(x)$: Every politician is dishonest."

• C(x): "x eats cheeseburgers."

 $\forall x C(x)$, where the domain consists of all Americans.

The negation is $\neg \forall x C(x)$, which is equivalent to $\exists x \neg C(x)$: "Some American does not eat cheeseburgers" or "There is an American who does not eat cheeseburgers."

NEGATIONS

■ Example 21: What are the negation of the statements $\forall x(x^2>x)$ and $\exists x(x^2=2)$?

$$\sim \forall x(x^2 > x) \iff \exists x \sim (x^2 > x)$$

$$\Leftrightarrow \exists x \ (x^2 \leq x)$$

$$\sim \exists x(x^2=2) \iff \forall x \sim (x^2=2)$$

$$\Leftrightarrow \forall x (x^2 \neq 2)$$

TRANSLATING FROM ENGLISH TO LOGIC

Example 1:

Translate the following sentence into predicate logic: "Every student in this class has taken a course in Java."

Solution:

First decide on the domain U.

Solution 1: If *U* is all students in this class,

J(x) denoting "x has taken a course in Java"

 $\forall x J(x).$

Solution 2: But if *U* is all people,

S(x) denoting "x is a student in this class"

 $\forall x (S(x) \rightarrow J(x))$

 $\forall x (S(x) \land J(x))$ is not correct. What does it mean?

TRANSLATING FROM ENGLISH TO LOGIC

Example 2:

Translate the following sentence into predicate logic: "Some student in this class has taken a course in Java."

Solution:

First decide on the domain U.

Solution 1: If *U* is all students in this class,

$$\exists x J(x)$$

Solution 2: But if *U* is all people,

$$\exists x (S(x) \land J(x))$$

 $\exists x \ (S(x) \rightarrow J(x))$ is not correct. What does it mean?

EXCERSICE-EXAMPLE 24

- Some student in this class has visited Guangzhou.
- Every student in this class has visited Chengdu or Guangzhou.
 - G(x): "x has visited Guangzhou.", C(x): "x has visited Chengdu."
 - The U.D. for the variable x consists of the students in this class,
 - $\exists x G(x)$.
 - $\forall x (C(x) \lor G(x))$
 - The U.D. for the variable x consists of all people.
 - S(x): "x is a student in this class."
 - $\exists x (S(x) \land G(x))$
 - $\forall x(S(x) \rightarrow (C(x) \lor G(x)))$

SOME COMMON SHORTHANDS

- Sometimes the universe of discourse is restricted within the quantification.
- *E.g.*,
 - $\forall x>0$ P(x) is shorthand for "For all x that are greater than zero, P(x)." $\forall x (x>0 \rightarrow P(x))$
 - $\exists x>0$ P(x) is shorthand for "There is an x greater than zero such that P(x)." $\exists x \ (x>0 \land P(x))$

SOME COMMON SHORTHANDS

Consecutive quantifiers of the same type can be combined:

$$\forall xyz \ P(x,y,z) \Leftrightarrow_{\text{def}} \ \forall x \ \forall y \ \forall z \ P(x,y,z)$$
$$\exists xyz \ P(x,y,z) \Leftrightarrow_{\text{def}} \ \exists \ x \ \exists \ y \ \exists \ z \ P(x,y,z)$$

 One way of precisely defining the calculus concept of a limit, using quantifiers:

$$\left(\lim_{x \to a} f(x) = L\right) \Leftrightarrow$$

$$\left(\forall \varepsilon > 0 \exists \delta > 0 \forall x \left(0 < |x - a| < \delta\right) \to \left(|f(x) - L| < \varepsilon\right)\right)$$

LEWIS CARROLL EXAMPLE

- The first two are called *premises* and the third is called the *conclusion*.
 - 1. "All lions are fierce."
 - 2. "Some lions do not drink coffee."
 - 3. "Some fierce creatures do not drink coffee."
- Let:
 - P(x): "x is a lion";
 - Q(x): "x is fierce";
 - R(x): "x drinks coffee".

- 1. $\forall x \ (P(x) \rightarrow Q(x))$
- 2. $\exists x (P(x) \land \neg R(x))$
- 3. $\exists x (Q(x) \land \neg R(x))$
- Later we will see how to prove that the conclusion follows from the premises.

<u>Charles Lutwidge Dodgson</u> <u>(AKA Lewis Caroll)</u> (1832-1898)

EXCERSICE-EXAMPLE 27

$$\forall x (P(x) \rightarrow S(x))$$

No large birds live on honey.

$$\neg \exists x (Q(x) \land R(x))$$

Birds that do not live on honey are dull in color.

$$\forall x(\neg R(x) \to \neg S(x))$$

Hummingbirds are small.

$$\forall x (P(x) \rightarrow \neg Q(x))$$

Let:

- P(x): "x is a humming bird,",
- S(x): "x is richly colored,".
- Q(x): "x is large,",
- R(x): "x lives on honey,"
- Assuming that the domain consists of all birds.

BONUS TOPIC: LOGIC PROGRAMMING

- There are some programming languages that are based entirely on predicate logic!
- The most famous one is called Prolog.
- Prolog (from *Programming* in *Logic*) is a programming language developed in the 1970s by researchers in artificial intelligence (AI).
- A Prolog program is a set of propositions ("facts") and ("rules") in predicate logic.
- The input to the program is a "query" proposition.
 - Want to know if it is true or false.
- The Prolog interpreter does some automated deduction to determine whether the query follows from the facts.

- example of a set of Prolog facts consider the following:
 - instructor(p,c): professor p is the instructor of course c;
 - enrolled(s,c): student s is enrolled in course c. instructor(chan, math273). instructor(patel, ee222). instructor(grossman, cs301). enrolled(kevin, math273). enrolled(juna, ee222). enrolled(juana, cs301). enrolled(kiko, math273). enrolled(kiko, cs301).

- In Prolog, names beginning with an uppercase letter are variables.
- If we have a predicate *teaches*(*p*,*s*) representing "professor *p* teaches student *s*," we can write the rule:

teaches(P,S) := instructor(P,C), enrolled(S,C).

This Prolog rule can be viewed as equivalent to the following statement in logic (using our conventions for logical statements).

$$\forall p \ \forall c \ \forall s((I(p,c) \land E(s,c)) \rightarrow T(p,s))$$

- Prolog programs are loaded into a *Prolog interpreter*. The interpreter receives *queries* and returns answers using the Prolog program.
- For example, using our program, the following query may be given:

?enrolled(kevin,math273).

Prolog produces the response:

yes

• Note that the? is the prompt given by the Prolog interpreter indicating that it is ready to receive a query.

The query:

?enrolled(X, math 273).

produces the response:

$$X = kevin;$$

 $X = kiko;$
 no

The query:

?teaches(X, juana).

produces the response:

```
X = patel;

X = grossman;

no
```

- The Prolog interpreter tries to find an instantiation for X.
- It does so and returns

 X=kevin. Then the user types

 the; indicating a request for

 another answer.
- When Prolog is unable to find another answer it returns no.

The query:

```
?teaches(chan,X).
produces the response:
```

```
X = kevin;X = kiko;no
```

- A number of very good Prolog texts are available. Learn Prolog Now! is one such text with a free online version at http://www.learnprolognow.org/
- There is much more to Prolog and to the entire field of logic programming.

Homework

- § 1.4
 - **1**0, 18, 38, 42, 64