DERWENT-ACC-NO: 2003-318225

DERWENT-WEEK: 200431

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE: M

Manufacture of alumina-silica group fiber for catalyst converters, involves producing precursor fiber from alumina-silica fiber-formation stock solution and sintering precursor fiber at preset conditions

INVENTOR: DOUSHITA, M; TAKAHASHI, H; TANAHASHI, K

PRIORITY-DATA: 2001JP-0157702 (May 25, 2001), 2001JP-0157701 (May 25, 2001), 2001JP-0157703 (May 25, 2001), 2001JP-0157704 (May 25, 2001), 2001JP-0157705 (May 25, 2001), 2001JP-0164915 (May 31, 2001)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUA	GE P	AGES	MAIN-IPC
EP 1418317 A1	May 12, 2004	Е	000	F01N 0	03/28
JP 2002348740 A	December 4, 2002	N/A	009	D0	1F 009/08
KR 2003027940 A	April 7, 2003	N/A	000	F01N	003/28
WO 2002103171 A1	December 27, 200)2 J	00	0 F0	1N 003/28
CN 1463323 A	December 24, 2003	N/A	000	F01	N 003/28

INT-CL (IPC): B01D053/86, B01J033/00, D01F009/08, F01N003/28

ABSTRACTED-PUB-NO: JP2002348740A

BASIC-ABSTRACT:

NOVELTY - A precursor fiber is produced from an alumina-silica fiber (6) fiber-formation stock solution. The obtained precursor fiber is sintered to produce alumina-silica fiber. The precursor fiber is sintered by heating the fiber in an environment where oxidation of carbon component contained in the precursor fiber is inhibited.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

- (1) Alumina-silica group fiber which has black color: and
- (2) Maintenance sealant for catalytic converters (4), which is obtained by gathering the alumina-silica fiber in the form of a mat-like assembly and arranging the assembly within the gap of a metal shell (3) which covers the periphery of a catalyst support (2).

USE - For catalytic converters.

ADVANTAGE - The alumina-silica fiber with excellent mechanical strength is produced easily, reliably and inexpensively. The fiber provides maintenance sealant with high initial stage bearing and prevents the time-dependent deterioration of the bearing.

DESCRIPTION OF DRAWING(S) - The figure shows the perspective diagram of the manufacture process of a catalytic converter. (Drawing includes non-English language text).

Catalyst support 2	
Metal shell 3	
Maintenance sealant for catalytic converters 4	
Alumina-silica fiber 6	
KWIC	
Document Identifier - DID (4): WO 2002103171 A1	

(19)日本国特新庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開2002-348740

(P2002-348740A)

(43)公開日 平成14年12月4日(2002.12.4)

(51) Int.CL.		識別記号		FΙ			Ť	-73-1*(参考)
D01F	9/08			D01F	9/08		· A	3G091
B01D	53/86			B01J	33/00		G	4D048
B 0 1 J	33/00			F01N	3/28		311N	4G069
F 0 1 N	3/28	311					311P	4L037
							311S	
			STEENS AND	± 44.0	の形で ク	α	(本 0 百)	息金百に始く

特顧2001-157702(P2001-157702) (21)出魔番号

(22)出廣日 平成13年5月25日(2001.5.25) (71)出蹟人 000000158

イビデン株式会社

岐阜県大垣市神田町2丁目1番地

(72)発明者 棚橋 一智

岐阜県大垣市河間町3丁目200番地 イビ

デン 株式会社河間工場内

(74)代理人 100068755

弁理士 恩田 博宜 (外1名)

最終質に続く

(54) 【発明の名称】 アルミナーシリカ系繊維及びその製造方法、触媒コンパータ用保持シール材

(57)【要約】

【課題】 機械的強度に優れるアルミナーシリカ系繊維 を簡単にかつ確実に得ることができる製造方法を提供す ること。

【解決手段】 無機塩法用のアルミナーシリカ系繊維紡 糸原液を材料として前駆体繊維を得る。次に、前駆体繊 維中に含まれる炭素成分の酸化反応を進行させにくい環 境下において、前駆体繊維を加熱する。これにより前駆 体繊維を焼結させ、アルミナーシリカ系繊維6を得る。

2: 触動排

3:全国党上ル

4:保持シール材

6:アルミナーシリカ系業業

2

【特許請求の範囲】

【請求項1】無機塩法用のアルミナーシリカ系繊維紡糸 原液を材料として前駆体繊維を得る紡糸工程と、前記前 駆体繊維中に含まれる炭素成分の酸化反応を進行させに くい環境下において前記前駆体繊維を加熱することによ り、前記前駆体繊維を焼結させる焼成工程とを含むこと を特徴とするアルミナーシリカ系繊維の製造方法。

1

【請求項2】前記前駆体繊維を窒素雰囲気下において1 000℃~1300℃に加熱することを特徴とする請求 項1に記載のアルミナーシリカ系繊維の製造方法。

【請求項3】前記前駆体繊維中に含まれる炭素成分は、 前記アルミナーシリカ系繊維紡糸原液に対して曳糸性付 与剤として添加された有機重合体に由来することを特徴 とする請求項1または2に記載のアルミナーシリカ系繊 維の製造方法。

【請求項4】 黒色系の色を呈するアルミナーシリカ系**繳** 維.

【請求項5】炭素成分に由来する黒色系の色を呈するアルミナーシリカ系繊維。

【請求項6】残留炭素量が1重量%以上であってその残 20 留炭素成分に由来する黒色系の色を呈するとともに、繊維引張強度が1.2GPa以上、繊維曲げ強度が1.0 GPa以上、破壊靭性が0.8MN/m³/²以上であるアルミナーシリカ系繊維。

【請求項7】マット状に集合した請求項4乃至6のいずれか1項に記載のアルミナーシリカ系繊維を構成要素とし、触媒担持体とその触媒担持体の外周を覆う金属製シェルとのギャップに配置される触媒コンバータ用保持シール材。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、アルミナーシリカ 系繊維及びその製造方法、触媒コンバータ用保持シール 材に関するものである。

[0002]

【従来の技術】従来、車両用、特に自動車の動力源として、ガソリンや軽油を燃料とする内燃機関が百年以上にわたり用いられてきた。しかしながら、排気ガスが健康や環境に害を与えることが次第に問題となってきている。それゆえ、最近では排気ガス中に含まれているCO、NOx、HC等を除去する排気ガス浄化用触媒コンバータや、PM等を除去するDPFが各種提案されるに至っている。通常の排気ガス浄化用触媒コンバータは、触媒担持体と、前記触媒担持体の外周を覆う金属製シェルと、両者間のギャップに配置される保持シール材とを備えている。触媒担持体としてはハニカム状に成形したコージェライト担体が用いられており、それには白金等の触媒が担持されている。

【0003】また最近では、石油を動力源としない次期 系繊維を作出するに至った。このようにして作出されたのクリーンな動力源の研究が進められており、そのうち 50 アルミナーシリカ系繊維は携して黒色系の色を呈してお

特に有望なものとして例えば燃料電池がある。燃料電池とは、水素と酸素とが反応して水ができる際に得られる電気を、動力源として用いるものである。酸素は空気中からじかに取り出される反面、水素についてはメタノール、ガソリン等を改質して用いている。この場合、メタノール等の改質は触媒反応によって行われる。そして、このような燃料電池にも、触媒担持体と、触媒担持体の外周を覆う金属製シェルと、両者間のギャップに配置される保持シール材とを備える燃料電池用触媒コンバータが用いられている。触媒担持体としてはハニカム状に成形したコージェライト担体が用いられており、それには銅系の触媒が担持されている。

【0004】上記の触媒コンバータを製造する方法をここで簡単に説明しておく。まず、熔融法によりアルミナーシリカ系繊維を訪糸した後、そのアルミナーシリカ系繊維をマット状に集合させてなる材料を作製する。この材料を金型で打ち抜くことによって、帯状の保持シール材を作製する。次に、この保持シール材を触媒担持体の外周面に巻き付けた後、金属製シェル内に前記触媒担持体を収容する。その結果、所望の触媒コンバータが完成する。このような収容状態において保持シール材は厚さ方向に圧縮されるため、保持シール材にはその圧縮力に抗する反発力(面圧)が生じる。そして、この反発力が作用することにより、触媒担持体が金属製シェル内に保持されるようになっている。

[0005]

【発明が解決しようとする課題】しかしながら、上記従来の保持シール材は使用時に振動や排気ガス等の高温に晒されることから、時間が経つにつれて次第に面圧が低30下し、比較的早期のうちに触媒担持体の保持性やシール性が悪くなるという欠点があった。ゆえに、アルミナーシリカ系繊維自体の機械的強度を向上させることにより、初期面圧の向上及び面圧の経時劣化の防止を図るべきとの要請があった。

【0006】本発明は上記の課題に鑑みてなされたものであり、その第1の目的は、初期面圧が高くて面圧の経時劣化を起こしにくい触媒コンバータ用保持シール材を提供することにある。

【0007】また、本発明の第2の目的は、機械的強度に優れるため、上記の保持シール材を得るうえで好適なアルミナーシリカ系繊維及びその製造方法を提供することにある。さらに、本発明の第3の目的は、機械的強度に優れる上記アルミナーシリカ系繊維を簡単にかつ確実に得ることができる製造方法を提供することにある。

[8000]

【課題を解決するための手段】上記の課題を解決すべく本願発明者は鋭意研究を行い、数多くの試行錯誤を経たのちに、幸運にも機械的強度に優れたアルミナーシリカ系織雑を作出するに至った。このようにして作出されたアルミナーシリカ系織雑は優して黒色系の色を呈してお

り、通常よく知られている白色透明のアルミナーシリカ 系繊維とは明らかに性状が異なるものであった。このよ うに通常とは異なる色の発生原因を突き止めるべく、本 原発明者はさらに鋭意研究を行った。その結果、繊維中 の残留炭素量が多くなると繊維が黒色系の色に着色され ること、及びかかる残留炭素の存在が機械的強度の向上 に寄与しているであろうことを知見した。そこで、本願 発明者は上記の知見をさらに発展させ、最終的に下記の 本願発明を想到するに至ったのである。

【0009】即ち、請求項1に記載の発明では、無機塩 10 法用のアルミナーシリカ系繊維紡糸原液を材料として前 駆体繊維を得る紡糸工程と、前記前駆体繊維中に含まれ る炭素成分の酸化反応を進行させにくい環境下において 前記前駆体繊維を加熱することにより、前記前駆体繊維 を焼結させる焼成工程とを含むことを特徴とするアルミ ナーシリカ系繊維の製造方法をその要旨とする。

【0010】請求項2に記載の発明は、請求項1におい て、前記前駆体繊維を窒素雰囲気下において1000℃ ~1300℃に加熱することとした。請求項3に記載の 発明は、請求項1または2において、前記前駆体繊維中 20 に含まれる炭素成分は、前記アルミナーシリカ系繊維紡 糸原液に対して曳糸性付与剤として添加された有機重合 体に由来することとした。

【0011】請求項4に記載の発明では、黒色系の色を 呈するアルミナーシリカ系繊維をその要旨とする。請求 項5に記載の発明では、炭素成分に由来する黒色系の色 を呈するアルミナーシリカ系繊維をその要旨とする。

【0012】請求項6に記載の発明では、残留炭素量が 1重量%以上であってその残留炭素成分に由来する黒色 系の色を呈するとともに、繊維引張強度が1.2GPa 30 以上、繊維曲げ強度が1.0GPa以上、破壊制性が 0.8MN/m3/2以上であるアルミナーシリカ系繊維 をその要旨とする。

【0013】請求項7に記載の発明では、マット状に集 合した請求項4乃至6のいずれか1項に記載のアルミナ ーシリカ系繊維を構成要素とし、触媒担持体とその触媒 担持体の外周を覆う金属製シェルとのギャップに配置さ れる触媒コンバータ用保持シール材をその要旨とする。 【0014】以下、本発明の「作用」について説明す る。請求項1に記載の発明によると、前駆体繊維中の炭 40 素成分を酸化させずに前駆体繊維を焼結させることがで きる。このため、繊維中に多くの炭素成分を残留させる ことができ、機械的強度に優れた繊維を簡単にかつ確実 に得ることができる。

【0015】ちなみに、前駆体繊維中の炭素成分は、通 常、焼成温度に達するまでの過程で殆ど焼失してしまう ため、焼成工程を経て得られるアルミナーシリカ系繊維 中には残りにくい。しかし、炭素成分の酸化反応を進行 させにくい環境下において前駆体繊維を加熱した場合に は、炭素が繊維中に残ってある程度セラミック骨格中に 50 い触媒コンバータ用保持シール材を得ることができる。

組み込まれるものと考えられる。

【0016】請求項2に記載の発明によると、焼成工程 を行う際の不活性な雰囲気として安価な窒素雰囲気を用 いているため、製造コストを低減することができる。ま た、焼成温度を上記好適範囲にて加熱しているため、高 強度のアルミナーシリカ系繊維を安定的に得ることが可 能となる。

【0017】前駆体繊維の加熱温度が1000℃未満で あると、前駆体繊維の焼結が不完全になりやすく、たと え残留炭素量が多くても、高強度のアルミナーシリカ系 繊維を安定的に得ることが困難になる。逆に、前駆体繊 雄の加熱温度を1300℃を超えて設定したとしても、 アルミナーシリカ系繊維の顕著な高強度化にはつながら ず、かえって経済性が低下する。

【0018】請求項3に記載の発明によると、前記有機 重合体は、曳糸性付与剤としての役割を果たすばかりで なく、アルミナーシリカ系繊維に好適な強度を付与する ために前駆体繊維に添加される炭素源としての役割も果 たすことになる。従って、紡糸原液にわざわざ炭素源を 別添する必要がなく、紡糸原液の組成の大幅な変更を伴 わない。よって、原液組成のバランスが崩れるような心 配もなく、アルミナーシリカ系繊維の基本的物性の悪化 も未然に防止することができる。また、炭素源の別添を 伴わないので、製造コストを低減することができる。し かも、前記有機重合体は紡糸原液に均一に分散されやす いため、前駆体繊維中に炭素源が均一に分散した状態と なる。ゆえに、得られるアルミナーシリカ系繊維におけ る残留炭素量も均一になり、機械的強度にムラができに くい。

【0019】ちなみに、この種の有機重合体は通常50 0℃~600℃程度の温度で焼失してしまうため、焼成 工程を経て得られるアルミナーシリカ系繊維中には何ら 残らない。しかし、炭素成分の酸化反応を進行させにく い環境下において前駆体繊維を加熱した場合には、有機 重合体を構成する炭素が繊維中に残ってある程度セラミ ック骨格中に組み込まれるものと考えられる。

【0020】請求項4,5,6に記載の発明によると、 黒色系の色を呈するアルミナーシリカ系繊維は概して機 械的強度に優れるため、これを用いることにより、初期 面圧が高くて面圧の経時劣化を起こしにくい保持シール 材を実現することができる。なお、繊維引張強度、繊維 曲げ強度及び破壊靭性が上記値以上であると、引っ張り や曲げに対して極めて強く、しなやかで破壊しにくいア ルミナーシリカ系繊維となる。よって、さらなる初期面 圧の向上及び面圧の経時劣化の確実な防止を図ることが できる。

【0021】請求項7に記載の発明によると、機械的強 度に優れたアルミナーシリカ系繊維を構成要素としてい るため、初期面圧が高くて面圧の経時劣化を起こしにく

[0022]

【発明の実施の形態】以下、本発明を具体化した一実施 形態の自動車排気ガス浄化装置用触媒コンバータを図1 ~図3に基づき詳細に説明する。

【0023】図3に示される本実施形態の触媒コンバータ1は、自動車の車体において、エンジンの排気管の途中に設けられる。エンジンから触媒コンバータ1までの距離は比較的短いため、触媒コンバータ1には約700℃~900℃の高温の排気ガスが供給されるようになっている。エンジンがリーンバーンエンジンである場合に 10は、触媒コンバータ1には約900℃~1000℃という、さらに高温の排気ガスが供給されるようになっている。

【0024】図3に示されるように、本実施形態の触媒コンバータ1は、基本的に、触媒担持体2と、触媒担持体2の外周を覆う金属製シェル3と、両者2,3間のギャップに配置される保持シール材4とによって構成されている。

【0025】前記触媒担持体2は、コージェライト等に代表されるセラミック材料を用いて作製されている。こ 20の触媒担持体2は断面円形状をした柱状部材となっている。また、触媒担持体2は、軸線方向に沿って延びる多数のセル5を有するハニカム構造体であることが好ましい。セル壁には排気ガス成分を浄化しうる白金やロジウム等の貴金属系触媒が担持されている。なお、触媒担持体2として、上記のコージェライト担体のほかにも、例えば炭化珪素、窒化珪素等のハニカム多孔質焼結体等を用いてもよい。

【0026】前記金属製シェル3としては、例えば組み付けに際して圧入方式を採用する場合には、断面O字状 30の金属製円筒部材が用いられる。なお、円筒部材を形成するための金属材料としては、耐熱性や耐衝撃性に優れた金属(例えばステンレス等のような鋼材等)が選択されることがよい。圧入方式に代えていわゆるキャニング方式を採用する場合には、前記断面O字状の金属製円筒部材を軸線方向に沿って複数片に分割したもの(即ちクラムシェル)が用いられる。

【0027】そのほか、組み付けに際して巻き締め方式を採用する場合には、例えば断面C字状ないしU字状の金属製円筒部材、言い換えるといわば軸線方向に沿って 40 延びるスリット (開口部)を1箇所にのみ有する金属製円筒部材が用いられる。この場合、触媒担持体2の組み付けに際し、触媒担持体2に保持シール材4を固定したものを金属製シェル3内に収め、その状態で金属製シェル3を巻き締めた後に開口端が接合(溶接、接着、ボルト締め等)される。溶接、接着、ボルト締め等といった接合作業は、キャニング方式を採用したときにも同様に行われる。

【0028】図1に示されるように、この保持シール材 4は長尺状のマット状物であって、その一端には凹状合 50

わせ部11が設けられ、他端には凸状合わせ部12が設けられている。図2に示されるように、触媒担持体2への巻き付け時には、凸状合わせ部12が凹状合わせ部11にちょうど係合するようになっている。

【0029】本実施形態の保持シール材4は、マット状に集合したセラミック繊維(即ち繊維集合体)を主要な要素として構成されたものである。前記セラミック繊維として、本実施形態ではアルミナーシリカ系繊維6が用いられている。この場合、ムライト結晶含有量が0重量%以上かつ10重量%以下のアルミナーシリカ系繊維6を用いることがより好ましい。このような化学組成であると、非晶質成分が少なくなることから耐熱性に優れたものとなり、かつ圧縮荷重印加時の反発力が高いものとなめらである。従って、ギャップに配置された状態で高温に遭遇したときであっても、発生する面圧の低下が比較的起こりにくくなる。

【0030】アルミナーシリカ系繊維6におけるアルミ ナ量は40重量%~100重量%であることがよく、シ リカ量は0重量%~60重量%であることがよい。ま た、アルミナーシリカ系繊維6の平均繊維径は、3 µm ~25µ■程度であることがよく、さらには5µm~1 5μπ程度であることがなおよい。平均繊維径を小さく しすぎると、呼吸器系に吸い込まれやすくなるという不 都合が生じるからである。アルミナーシリカ系繊維6の 平均繊維長は、0. 1㎜~100㎜程度であることがよ く、さらには2㎜~50㎜程度であることがなおよい。 【0031】本実施形態のアルミナーシリカ系繊維6 は、白色透明である通常のアルミナーシリカ系繊維とは 異なり、黒色系の色を呈しているということが特徴的で ある。アルミナーシリカ系繊維6を着色している黒色系 の色は、紡糸原液中に含まれていた炭素成分に由来する ものである。

【0032】アルミナーシリカ系繊維6において残留した炭素成分の量は1重量%以上であることがよく、好ましくは1重量%~20重量%、より好ましくは5重量%~10重量%である。残留炭素量が1重量%未満であると、十分に機械的強度を向上させることができなくなるおそれがある。逆に、残留炭素量が多すぎると、アルミナーシリカ系繊維6の基本的物性(例えば耐熱性等)の悪化を伴うおそれがある。

【0033】アルミナーシリカ系繊維6の繊維引張強度は1.2GPa以上、特には1.5GPa以上であることがよい。繊維曲げ強度は1.0GPa以上、特には1.5GPa以上であることがよい。破壊制性は0.8 MN/m³/²以上、特には1.3MN/m³/²以上であることがよい。その理由は、繊維引張強度、繊維曲げ強度及び破壊制性が大きくなると、引っ張りや曲げに対して極めて強く、しなやかで破壊しにくいアルミナーシリカ系繊維6となるからである。

50 【0034】なお、アルミナーシリカ系繊維6の断面形

状は、真円形状でもよいほか、異形断面形状(例えば楕 円形状、長円形状、略三角形状等)でも構わない。組み 付け前の状態における保持シール材4の厚さは、触媒担 持体2と金属製シェル3とがなすギャップの1.1倍~ 4.0倍程度、さらには1.5倍~3.0倍程度である ことが望ましい。前記厚さが1.1倍未満であると、高 い担持体保持性を得ることができず、触媒担持体2が金 属製シェル3に対してズレたりガタついたりするおそれ がある。勿論、この場合には高いシール性も得られなく りやすくなり、高度な低公害性を実現できなくなってし まう。また、前記厚さが4.0倍を超えると、特に圧入 方式を採用した場合には、触媒担持体2の金属製シェル 3への配置が困難になってしまう。よって、組み付け性 の向上を達成できなくなるおそれがある。

【0035】また、組み付け後における保持シール材4 のGBD (嵩密度) は、0.10g/cm³~0.30 g/cm³、さらには0.10g/cm³~0.25g/ cm³となるように設定されることが好ましい。GBD の値が極端に小さいと、十分に高い初期面圧を実現する 20 ことが困難になる場合がある。一方、GBDが大きすぎ ると、材料として使用すべきアルミナーシリカ系繊維6 の量が増え、コスト高を招きやすくなる。

【0036】組み付け状態における保持シール材4の初 期面圧は50kPa以上、さらには70kPa以上であ ることが好ましい。初期面圧の値が高ければ、面圧の経 時劣化が起こったとしても、触媒担持体2の好適な保持 性を維持することができるからである。

【0037】なお、保持シール材4に対し必要に応じ て、ニードルパンチ処理や樹脂含浸処理等を施してもよ 30 アルミナーシリカ系繊維6の顕著な高強度化にはつなが い。これらの処理を施すことにより、保持シール材4を 厚さ方向に圧縮して肉薄化することが可能となるからで ある。

【0038】次に、触媒コンバータ1を製造する手順を 説明する。まず、アルミニウム塩水溶液、シリカゾル及 び有機重合体を混合し、紡糸原液を作製する。言い換え ると、無機塩法により紡糸原液を作製する。アルミナ源 であるアルミニウム塩水溶液は、紡糸原液に粘性を付与 するための成分でもある。なお、このような水溶液とし て、塩基性アルミニウム塩の水溶液を選択することがよ 40 い。シリカ源であるシリカゾルは、繊維に高い強度を付 与するための成分でもある。有機重合体は紡糸原液に曳 糸性付与剤としての役割を果たす成分であって、本実施 形態においてはアルミナーシリカ系繊維6に好適な機械 的強度を付与する炭素源としての役割も果たす成分でも ある。有機重合体としては、PVA(ポリビニルアルコ ール) 等のように炭素を含む直鎖状高分子を用いること ができる。なお、炭素源としての役割を果たすものとし ては、直鎖状高分子のみに限定されることはなく、炭素 を含む化合物であれば、鎖状構造を有しない比較的低分 50

子のもの (重合体でないもの) を選択することも可能で ある。

【0039】次いで、得られた枋糸原液を減圧濃縮する ことにより、紡糸に適した濃度・温度・粘度等に調製し た紡糸原液とする。ここでは、20重量%程度であった 紡糸原液を濃縮して30重量%~40重量%程度にする ことがよい。また、粘度を10ポアズ~2000ポアズ に設定することがよい。

【0040】さらに、調製後の紡糸原液を紡糸装置のノ なるため、ギャップ部分からの排気ガスのリークが起こ 10 ズルから空気中に吐出すると、ノズルの開口形状に相似 の断面形状を有する前駆体繊維が連続的に得られる。こ のようにして訪出された前駆体繊維を延伸しながら順次 巻き取るようにする。この場合、例えば乾式圧力紡糸法 などが採用されることが好ましい。

> 【0041】次に、焼成工程を行って前駆体繊維を焼結 してセラミック化 (結晶化) することにより、前駆体繊 雄を硬化させ、アルミナーシリカ系繊維6を得る。 焼成 工程においては、前駆体繊維中に含まれる炭素成分(即 ち前記有機重合体)の酸化反応を進行させにくい環境下 において、前駆体繊維を加熱する必要がある。本実施形 態において具体的には、代表的な不活性雰囲気である窒 素雰囲気の下において加熱を行うこととしている。

> 【0042】窒素雰囲気下において加熱する際、温度は 1000℃~1300℃、好ましくは1050℃~12 50℃に設定されることがよい。加熱温度が1000℃ 未満であると、前駆体繊維の焼結が不完全になりやす く、たとえ残留炭素量が多くても、高強度のアルミナー シリカ系繊維6を安定的に得ることが困難になる。逆 に、加熱温度を1300℃を超えて設定したとしても、

らず、かえって経済性が低下する。

【0043】続いて、上記の各工程を経て得られたアル ミナーシリカ系繊維6の長繊維を所定長さにチョップし てある程度短繊維化する。この後、短繊維を集綿、解繊 及び積層することにより、あるいは、短鍵維を水に分散 させて得た繊維分散液を成形型内に流し込んで加圧・乾 燥することにより、マット状の繊維集合体を得る。さら に、この繊維集合体を所定形状に打ち抜き、黒系色の保 持シール材4とする。

【0044】この後、必要に応じて保持シール材4に対 する有機バインダの含浸を行った後、さらに保持シール 材4を厚さ方向に圧縮成形してもよい。この場合の有機 バインダとしては、アクリルゴムやニトリルゴム等のよ うなラテックス等のほか、ポリビニルアルコール、アク リル樹脂等が挙げられる。

【0045】そして、保持シール材4を触媒担持体2の 外周面に巻き付けて有機テープ13を固定する。その 後、圧入、キャニングまたは巻き締めを行えば、所望の 触媒コンバータ1が完成する.

【0046】以下、上記実施形態をより具体化した実施

9

例及びその比較例について説明する。 【0047】

【実施例及び比較例】(実施例1)実施例1では、まず、塩基性塩化アルミニウム水溶液(23.5重量%)、シリカゾル(20重量%、シリカ粒径15nm)及び曳糸性付与剤であるボリビニルアルコール(10重量%)を混合し、紡糸原液を作製した。次いで、得られた紡糸原液をエバボレータを用いて50℃で減圧濃縮し、濃度38重量%、粘度1500ボアズの紡糸原液に調製した。

【0048】調製後の紡糸原液を紡糸装置のノズル(断面真円状)から空気中に連続的に噴出するとともに、形

成された前駆体繊維を延伸しながら巻き取った。次いで、窒素雰囲気かつ常圧に保持された電気炉内で、上記前駆体繊維に対する250℃、30分間の加熱(前処理)を行った後、同じく窒素雰囲気かつ常圧に保持された電気炉内で1250℃、10分間の焼成を行った。【0049】その結果、アルミナ/シリカの重量比が72:28、平均繊維径が10.5μm、炭素残留量5重量%の真円状アルミナーシリカ系繊維6を得た(表1参2)。このアルミナーシリカ系繊維6の機械的強度をそれぞれ従来公知の手法により測定したところ、繊維引張強度が2.0GPa、繊維曲げ強度が1.8GPa、破壊靭性が1.5MN/m³/2であった。つまり、実施例1のアルミナーシリカ系繊維6は、非常に優れた機械的強度

を備えていた。

【0051】続いて、アルミナーシリカ系繊維6の長繊維を5mm長にチョップして短繊維化した。その後、この短繊維を水に分散させ、得られた繊維分散液を成形型枠内に流し込んで加圧・乾燥することにより、マット状繊維集合体を得た。そして、この繊維集合体からサンプルを作製し、面圧に関する測定試験を以下のように行った。

【0052】まず、繊維集合体を25mm角に打ち抜い 40 て面圧測定用サンプルとし、これを専用の治具にて挟持し、嵩密度(GBD)が0.30g/cm³となるようにした。この状態の面圧測定用サンプルを1000℃の大気圧中に保持し、1時間後、10時間後、100時間後の面圧を測定した。なお、無挟持、無加熱のままの面圧を「初期面圧」として位置付け、100時間後の面圧を「耐久後面圧」として位置付けた。また、(耐久後面圧/初期面圧)×100(%)を計算し、面圧経時劣化率とした。それらの結果を表1に示す。

【0053】これによると、実施例1のサンプルでは、

10

初期面圧も耐久後面圧も100kPaを超えており、面 圧経時劣化率も50%以内に収まり比較的小さかった。 なお、100時間経過後のサンプルを観察してみたとこ ろ、アルミナーシリカ系繊維6の性状に特に変化はな く、依然として黒色を呈していた。残留炭素量も5重量 %のままであった。

【0054】また、前記マット状繊維集合体を所定形状に打ち抜いて実際に保持シール材4を作製した後、これを触媒担持体2に巻き付けて金属製シェル3内に圧入した。触媒担持体2としては、外径130mmø、長さ100mmのコージェライトモノリスを用いた。金属製シェル3としては、肉厚1.5mmかつ内径140mmøであって断面O字状のSUS304製円筒部材を用いた。このようにして組み立てられた触媒コンバータ1を、3リットルのガソリンエンジンに実際に搭載して連続運転するという試験を行った。その結果、走行時における異音の発生も触媒担持体2のガタつきも認められず、初期面圧の向上及び面圧の経時劣化の防止が確実に図られていることが実証された。また、風蝕性能も好適であった。

(実施例2,3)実施例2,3では、焼成温度及び焼成時間を表1のとおりに変更したことを除き、基本的には実施例1の手順に従ってそれぞれアルミナーシリカ系繊維6を作製した。その結果、非常に機械的強度に優れたアルミナーシリカ系繊維6を得ることができた。【0055】また、面圧測定用サンプルを作製して初期面圧、耐久後面圧、面圧経時劣化率を測定したところ、実施例1と同様に好結果を得ることができた(表1参照)。勿論、色や残留炭素量に何ら変化は認められなか

【0056】さらに、保持シール材4を作製して触媒コンバータ1とし、これを搭載して連続運転試験を行った。その結果、走行時における異音の発生も触媒担持体2のガタつきも認められず、初期面圧の向上及び面圧の経時劣化の防止が確実に図られていることが実証された。(比較例)比較例では、実施例1と同じ組成の紡糸原液を用いて紡糸を行い、前駆体繊維を形成した。次いで、酸素を含む活性雰囲気(大気)かつ常圧に保持された電気炉内で、上記前駆体繊維に対する250℃、30分間の加熱(前処理)を行った後、同じく活性雰囲気(大気)かつ常圧に保持された電気炉内で1250℃、10分間の焼成を行った。

【0057】その結果、アルミナ/シリカの重量比が72:28、平均繊維径が10.2μm、炭素残留量0重量%の真円状かつ白色透明のアルミナーシリカ系繊維6を得た(表1参照)。このアルミナーシリカ系繊維6の機械的強度は表1に示すとおりであり、実施例1~3の半分程度であった。即ち、比較例のアルミナーシリカ系繊維6は、実施例1~3に比べて明らかに機械的強度に

50 劣っていた。

【0058】また、面圧測定用サンプルを作製して初期 * [0059] 【表1】 面圧、耐久後面圧、面圧経時劣化率を測定したところ、 実施例1~3よりも明らかに劣っていた(表1参照)。*

11

	実施例 1	実施例2	実施例3	比較例
焼成雰囲気	泰室	空来	空業	大気
焼成湿度	1250℃	1290℃	1150℃	1250℃
能成時間	10分	5分	20分	10分
繊維の色	黒色	黒色	黒色	白色透明
炭素残留量	5 重量光	5 重量%	5重量%	0 重量%
平均撤離径	10.5 µm	10. 5 µm	10.5 µm	10. 2 µm
繊維引張強度	2. OGPa	1.8GPa	2. 3GPa	1. 1GPa
機能曲げ強度	1. 8GPa	1.6GPa	2. OGPa	0. 9GPa
破裝韧性	1.5MN/m 3/2	L6MN/m ^{3/2}	1.5 MN/m 2/2	0.7 M N / m 3/2
異密度	0.10 g/cm ³	0.10 g / c m ³	0.10 g/cm ³	0.10 g/c m ³
初期函圧	186kPa	180 kPa	192kPa	144kPa
耐久後面圧	107kPa	105kPa	105kPa	35kPa
面圧経時劣化 本	42.2%	41. 7%	45.3%	75.7%

従って、本実施形態によれば以下のような効果を得るこ とができる。

【0060】(1)この保持シール材4に用いられてい るアルミナーシリカ系繊維6は、炭素成分に由来する黒 色系の色を呈しており、繊維引張強度、繊維曲げ強度、 破壊靭性等といった機械的強度に非常に優れている。よ って、これを用いることにより、初期面圧が高くて面圧 の経時劣化を起こしにくい保持シール材4を実現するこ とができる。従って、触媒担持体2の保持性やシール性 に優れた触媒コンバータ1を得ることができる。

【0061】(2) 黒色のアルミナーシリカ系繊維6を 用いて触媒コンバータ1を構成した場合、保持シール材 4にスス等の黒色系物質が付着したとしても、保持シー ル材4の見た目には変化が現れにくい。つまり、そもそ も黒色の保持シール材4であることから、使用前後で色 30 に大きな変化が生じない。ゆえに、「劣化した」あるい は「汚れた」という印象をユーザに与えることがない、 という点で有利である。

【0062】(3)本実施形態の製造方法では、前駆体 繊維中に含まれる炭素成分の酸化反応を進行させにくい 環境下において加熱することにより、前駆体繊維を焼結 させる焼成工程を行っている。従って、アルミナーシリ カ系繊維6中に多くの炭素成分を残留させることがで き、機械的強度に優れたアルミナーシリカ系繊維6を簡 単にかつ確実に得ることができる。

【0063】(4)本実施形態の製造方法では、焼成工 程を行う際の不活性な雰囲気として安価な登案雰囲気を 用いている。このため、保持シール材4の製造コストを 低減することができる。また、焼成温度を上記好適範囲 にて加熱しているため、高強度のアルミナーシリカ系繊 維6を安定的に得ることが可能となる。

【0064】(5)本実施形態の製造方法の場合、前駆 体繊維中に含まれる炭素成分は、紡糸原液に対して曳糸 性付与剤として添加された有機重合体に由来する。従っ

※紡糸原液の組成の大幅な変更を伴わない。よって、原液 組成のバランスが崩れるような心配もなく、アルミナー シリカ系繊維6の基本的物性の悪化も未然に防止するこ とができる。また、炭素源の別添を伴わないので、保持 20 シール材4の製造コストを低減することができる。しか も、前記有機重合体は紡糸原液に均一に分散されやすい ため、前駆体繊維中に炭素源が均一に分散した状態とな る。ゆえに、得られるアルミナーシリカ系繊維6におけ る残留炭素量も均一になり、機械的強度にムラができに < W.

【0065】なお、本発明の実施形態は以下のように変 更してもよい。

・ 炭素成分の酸化反応を進行させにくい環境とは、必 ずしも不活性雰囲気のみに限定されるわけではなく、例 えば減圧状態の大気も含む。減圧大気下にて焼成を行え ば、常圧大気下にて焼成を行った場合に比べて酸化反応 の進行が抑制されるからである。

【0066】・ 窒素以外の不活性雰囲気、例えばアル ゴン中において焼成を行うようにしてもよく、さらには 減圧不活性雰囲気下において焼成を行うようにしてもよ 41.

- 前駆体繊維中に含まれる炭素成分は、曳糸性付与剤 として添加された有機重合体に由来しなくてもよく、別 に添加される炭素源に由来するものでもよい。この場
- 40 合、有機重合体のような有機物のみに限定されず、例え ばカーボン等の無機物を採用してもよい。

【0067】・ 「黒色系の色」のアルミナーシリカ系 繊維6とは、黒色(真黒)のものを指すばかりでなく、 黒灰色であるものも含む。

保持シール材4の形状は任意に変更することが可能 である。例えば、凹凸状の位置合わせ部11,12を省 略して、より単純な形状にしてもよい。

【0068】・ 触媒担持体2の断面形状は真円状に限 定されることはなく、例えば楕円状または長円状等であ て、紡糸原液にわざわざ炭素源を別添する必要がなく、※50 ってもよい。この場合、金属製シェル3の断面形状も、

13

それに合わせて楕円状または長円状等に変更してもよ 41

【0069】・ 触媒担持体2としては、実施形態のよ うなハニカム状に成形したコージェライト担体が用いら れるほか、例えば炭化珪素、窒化珪素等のハニカム多孔 質焼結体などが用いられてもよい。

【0070】・ 実施形態では、本発明の保持シール材 4を排気ガス浄化装置用触媒コンバータ1に使用した例 を示した。勿論、本発明の保持シール材4は、排気ガス ゼルパティキュレートフィルタ(DPF)や、燃料電池 改質器用触媒コンバータ等に使用することも許容され る。

【0071】次に、特許請求の範囲に記載された技術的 思想のほかに、前述した実施形態によって把握される技 術的思想を以下に列挙する。

(1) 請求項1において、前記焼成工程では、不活性 雰囲気下及び/または減圧下において前記前駆体繊維の 加熱を行うこと。従って、この技術的思想1に記載の発 明によれば、機械的強度に優れたアルミナーシリカ系織 20 雄を安定的に得ることができる。

[0072]

【発明の効果】以上詳述したように、請求項1~3に記

載の発明によれば、機械的強度に優れるアルミナーシリ カ系繊維を簡単にかつ確実に得ることができる製造方法 を提供することができる。

【0073】請求項2に記載の発明によれば、低コスト 化を図りつつ上記繊維を安定的に得ることができる。請 求項3に記載の発明によれば、低コスト化を図りつつ機 維の基本的物性を維持することができる。

【0074】請求項4~6に記載の発明によれば、機械 的強度に優れるため、初期面圧が高くて面圧の経時劣化 浄化装置用触媒コンバータ1以外のもの、例えばディー 10 を起こしにくい保持シール材を得るうえで好適なアルミ ナーシリカ系繊維を提供することができる。

> 【0075】請求項7に記載の発明によれば、初期面圧 が高くて面圧の経時劣化を起こしにくい触媒コンバータ 用保持シール材を提供することができる。

【図面の簡単な説明】

【図1】本発明を具体化した実施形態の触媒コンバータ 用保持シール材の斜視図。

【図2】前記実施形態の触媒コンバータの製造工程を説 明するための斜視図。

【図3】前記実施形態の触媒コンバータの断面図。 【符号の説明】

2…触媒担持体、3…金属製シェル、4…触媒コンバー 夕用保持シール材、6…アルミナーシリカ系繊維。

【図1】

【図2】

【図3】

フロントページの続き

F01N 3/28

(51) Int. Cl .⁷

識別記号

FI . BO1D 53/36 テーマコード(参考)

С

Fターム(参考) 3G091 AB01 BA07 GA06 GB01X GB01Z GB05W GB06W GB10X

GB10Z GB13X GB15X GB16Z

GB17X HA27 HA29

4D048 BB02 BB18 CA07 CC04 CC06

CC08

4G069 AA20 DA06 EA18 EE01

4L037 AT05 CS20 FA01 FA03 FA06

FA12 PA39 PA42 PA45 PF12

PF19 PS12 UA20