Population Shape Regression from Random Design data

Published in June 2010

By Brad C. Davis, P. Thomas Fletcher, Elizabeth Bullitt, Sarang Joshi

Introduction

Why is this an important subject?

- We observe a deformation of the brain with aging
- Classical methods are focused on volume change which is less informative

Understanding healthy aging and shape change of the brain could help diagnose abnormal deformation linked to diseases like Alzheimer's

State of the art before publication of the article

Glial tumor
Clatz et al. 2005

Swanson et al. 2000

Based on volume estimation

Continuum mechanical tensor maps

Thompson et al. 2000

Focus on children brain development

Anatomy shape, growth, atrophy comparison via diffeomorphisms

Miller 2004

Longitudinal approach only

Compute a representative anatomical configuration, for each time t

Observations of the form : age of the patient, three-dimensional image

Compute a representative anatomical configuration, for each time t

Observations of the form : age of the patient, three-dimensional image

Use the manifold Ω of brain shape configurations instead of R³

Shape change is described as a diffeomorphism

Action of a diffeomorphism on an image : $I_{\phi}(x) = I(\phi^{-1}(x))$

Relationship between Phi and v : $\frac{d}{ds}\phi_s(x) = v_s(\phi_s(x))$

Action of a diffeomorphism on an image : $I_{\phi}(x) = I(\phi^{-1}(x))$

Relationship between Phi and v : $\frac{d}{ds}\phi_s(x) = v_s(\phi_s(x))$

Metrics: $||v_s||_V^2 = \int_{\Omega} Av_s \cdot v_s dx$

 $d_{\mathcal{H}}(e,\phi)^2 = \min_{v:\frac{d}{ds}\phi_s = v_s(\phi_s)} \int_0^1 ||v_s||_V^2 ds$

subject to $\phi(x) = x + \int_0^1 v_s(\phi_s(x)) ds$ for all $x \in \Omega$.

 $d_{\mathcal{H}}(\phi_1, \phi_2)^2 = d_{\mathcal{H}}(e, \phi_1^{-1} \circ \phi_2)^2.$

Distance between two images:

$$d_{\mathcal{I}}(I_1, I_2)^2 = \min_{\substack{v: \frac{d}{ds}\phi_s = v_s(\phi_s)}} \left[\int_0^1 ||v_s||_V^2 ds + \frac{1}{\sigma^2} ||I_1(\phi^{-1}) - I_2||_{L^2}^2 \right]$$

Distance between two images:

$$d_{\mathcal{I}}(I_1, I_2)^2 = \min_{v: \frac{d}{ds}\phi_s = v_s(\phi_s)} \left[\int_0^1 ||v_s||_V^2 ds + \frac{1}{\sigma^2} ||I_1(\phi^{-1}) - I_2||_{L^2}^2 \right]$$

Representative image for all patients at a given time :

$$\hat{I}_h(t) = \underset{I \in \mathcal{I}}{\operatorname{argmin}} \left(\frac{\sum_{i=1}^n K_h(t - t_i) d_{\mathcal{I}}(I, I_i)^2}{\sum_{i=1}^n K_h(t - t_i)} \right)$$

Solved by an iterative greedy algorithm

Growth model for a population:

Given several image observations J_t at different times, we now seek the diffeomorphic flow g_t that flows through these images as time increases

$$\underset{v:\dot{g}_{t}=v_{t}(g_{t})}{\operatorname{argmin}} \int_{0}^{1} \|v_{t}\|_{V}^{2} dt + \frac{1}{\sigma^{2}} \int_{0}^{1} \left\|I_{\alpha}(g_{t}^{-1}) - \underset{I \in \mathcal{I}}{\operatorname{argmin}} \left(\frac{\sum_{i=1}^{N} K_{h}(t-t_{i}) d_{\mathcal{I}}(I, I_{i})^{2}}{\sum_{i=1}^{N} K_{h}(t-t_{i})}\right)\right\|_{L_{2}}^{2} dt.$$

Solved by gradient descent

Results

Synthetic data

$$r_1(t_i) = f_1(t_i) + \epsilon_i + \epsilon_{i,1}$$

 $r_2(t_i) = f_2(t_i) + \epsilon_i + \epsilon_{i,2}$
 $r_3(t_i) = f_3(t_i) + \epsilon_i + \epsilon_{i,3}$

- Excellent results (grey = prediction, colors = ground truth)
- But simplistic (no shape variability)

Brain MRIs

- Illustration of the local brain shape change as a function of age
- Only issue: small dataset (97 MRIs)
 1000+ images datasets nowadays

Further use of the paper

Patient-specic atlas of the brain

Ericsson et Al. 2008

Sex, age, ethnicity, medical history as similarity measure

Probabilistic atlas of the developing brain

Kuklisova-Murgasova et Al. 2010

Tissue probability as target

Anatomy shape, growth, atrophy comparison via diffeomorphisms

Serag et Al. 2012

Adaptive kernel band-width

Example of similar recent method

Quantib (company)

- Same principle as in the paper, except :
 - global average brain instead of regressive average with time,
 - "morphology score": curves for which score is to be expected at a certain age

https://www.quantib.com/blog/how-to-measure-the-changing-shape-of-the-aging-brain;
https://www.researchgate.net/publication/321588351 A spatio-temporal reference model
of the aging brain

Answers the question in the conclusion of Davis's paper about the quantification of the descriptive trends he had + helps medical diagnosis

Possible applications for shape regression

Medical: Alzheimer's diagnosis

- By comparing the patient brain shape to the theoretical one.

(Example done with Neural Nets + Linear regression on volume; https://medium.com/thelaunchpad/how-to-estimate-the-age-of-your-brain-with-mri-data-c60df60da95d)

Non-medical: facial recognition

- Instead of brain deformation with age, facial deformation with pose
- Based on Recurrent Neural Network

(https://www.researchgate.net/publication/323502242_Recurrent_Convolutional_Shape_Regression)

Thank you!