Appunti di Elementi di Analisi Matematica 1

Giuseppe Criscione

Indice

1	Insi	emi numerici	2
	1.1	Definizione di sottrazione in \mathbb{N}	2
	1.2	Definizione di quoziente in \mathbb{N}	2
	1.3	Proprietà dei numeri razionali	3
	1.4	Operazione di potenza	3
	1.5	Numeri reali	4
		1.5.1 Proprietà dei numeri reali	6
		1.5.2 Potenza con esponente razionale	10
		1.5.3 Potenza con esponente un numero razionale	11
		1.5.4 Potenza con un numero reale	11
	1.6	Proprietà delle potenze (con esponente reale)	11
	1.7	Proprietà di monotonia	12
2	Not	azioni	12
3	\mathbf{Log}	aritmi	13
	3.1	Proprietà dei logaritmi	14
	3.2	Proprietà di monotonia	14
4	Val	ore assoluto	14
	4.1	Proprietà dei valori assoluti	14
5	Fun	zioni	15
	5.1	Concetto di funzione	15
	5.2	Definizioni principali	15
		5.2.1 Restrizioni e Prolungamenti	16
	5.3	Funzioni definite per casi	16
	5.4		17
	F F	7. f	10
	5.5	Maggioranti e minoranti di una funzione	18

6			20
	6.1	Definizione di successione numerica	20
	6.2	Successioni monotone	22
7	Lim	niti	23
	7.1	Carattere di una successione	27
	7.2	Operazioni sui limiti	28
	7.3	Successione reciproca	31
	7.4	Successione quoziente	32
	7.5	Limiti Notevoli	32
	7.6	Limiti di successioni notevoli	32
	7.7	Limite delle successioni monotone	33

1 Insiemi numerici

- $\mathbb{N} = \{1,\!2,\!3,\!4,\!\ldots\}$ numeri naturali
- $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$ numeri interi
- $\bullet \ \mathbb{Q} = \{ \frac{m}{n}, \, \mathbf{m}, \mathbf{n} \in \mathbb{Z}, \, n \neq 0 \}$ numeri razionali
- \bullet \mathbb{R} = numeri reali

$$\mathbb{N}_0 = \mathbb{N} \cup \{0\}$$

1.1 Definizione di sottrazione in \mathbb{N}

Siano a,b $\in \mathbb{N}$ con a > b.

$$a - b \stackrel{\text{def}}{=} d \in \mathbb{N} : b + d = a$$

1.2 Definizione di quoziente in \mathbb{N}

Siano a,b $\in \mathbb{N}$ con a > b.

$$a \div b \stackrel{\mathrm{def}}{=} q \in \mathbb{N} \ : \ q * b = a$$

Proprietà dei numeri razionali

 $(\mathbb{Q}, +, *, \leq)$ è un campo. $\forall a, b, c \in \mathbb{Q}$ valgono le seguenti proprietà:

1.
$$a + b = b + a$$

2.
$$a + (b + c) = (a + b) + c$$

3.
$$a + 0 = 0 + a = a$$
 (esistenza dell'elemento neutro)

4.
$$a + (-a) = 0$$

5.
$$a * b = b * a$$

6.
$$a * (b * c) = (a * b) * c$$

7.
$$a * 1 = a$$

8. se
$$a \neq 0 \Rightarrow \exists ! \ a^{-1} \in \mathbb{Q} : a * a^{-1} = 1$$

 a^{-1} è detto **reciproco** di $a(\frac{1}{a})$

9.
$$a*(b+c) = a*b + a*c$$

10.
$$a \le b \Rightarrow a + c \le b + c$$

11. se
$$c > 0 \Rightarrow a \le b \Leftrightarrow a * c \le b * c$$

se $c < 0 \Rightarrow a \le b \Leftrightarrow a * c \ge b * c$

Operazione di potenza

Siano $a \in \mathbb{Q}$ e $n \in \mathbb{Q}$. Chiamiamo potenza di base a ed esponente n:

$$a^n \stackrel{\text{def}}{=} \begin{cases} a & \text{se } n = 1 \\ \underbrace{a * a * \dots * a}_{n \text{ volte}} & \text{se } n > 1 \end{cases}$$

Problema

Determinare un numero $d \in \mathbb{Q}^+$ tale che $d^2 = 2$

Teorema 1.1

Non esiste alcun numero razionale d tale che $d^2 = 2$

Dimostrazione. (per assurdo)

Supponiamo che: $\exists d \in \mathbb{Q} : d^2 = 2$. Allora $d = \frac{m}{n}$ con $m, n \in \mathbb{Z}$ ed $n \neq 0$. Inoltre, poniamo M.C.D(m,n)=1 (m ed n primi tra di loro). $\left(\frac{m}{n}\right)^2=2\Rightarrow \frac{m^2}{n^2}=2\Rightarrow m^2=2n^2$

$$\left(\frac{m}{n}\right)^2 = 2 \Rightarrow \frac{m^2}{n^2} = 2 \Rightarrow m^2 = 2n^2$$

[DA COMPLETARE]

1.5 Numeri reali

Definizione 1.1

Chiamiamo numero reale un simbolo del tipo $\pm M, C_1, C_2, ..., C_n$ con $M \in \mathbb{N}$ $e C_i \in \{0, 1, ..., 9\} \ \forall i \in \mathbb{N}.$

Se $C_1, ..., c_n$ è periodico il numero si dice **razionale**, altrimenti si dice **irrazionale**. L'insieme dei numeri reali si indica con \mathbb{R} .

I numeri reali preceduti dal segno + $(+M, C_1, C_2, ..., C_n)$ si dicono **reali positivi**. I numeri reali preceduti dal segno - $(-M, C_1, C_2, ..., C_n)$ si dicono **reali negativi**.

Definizione 1.2

Sia α un numero \mathbb{R} . Si chiama **valore assoluto** di α un numero reale definito come:

$$|\alpha| \stackrel{\text{def}}{=} \begin{cases} \alpha, & se \ \alpha \in \mathbb{R}^+ \\ 0, & se \ \alpha = 0 \\ -\alpha & se \ \alpha \in \mathbb{R}^- \end{cases}$$

Proprietà 1.1

Il valore assoluto di α è un valore reale non negativo $\forall \alpha$.

- $|\alpha| = 0 \Leftrightarrow \alpha = 0$
- $|\alpha| \in \mathbb{R}^+ \Leftrightarrow \alpha \neq 0$

Proprietà 1.2

Il valore assoluto di α è uguale al valore assoluto dell'opposto di α $(-\alpha)$. $|\alpha| = |-\alpha| \ \forall \ \alpha \in \mathbb{R}$.

Definizione 1.3

Siano $\alpha, \beta \in \mathbb{R}$. Con $\alpha = \pm M, C_1, C_2, ..., C_n$ e $\beta = \pm N, D_1, D_2, ..., D_n$. α è uguale a β se hanno lo stesso segno e se M = N e $C_i = D_i \ \forall i \in \mathbb{N}$.

Definizione 1.4

Siano $\alpha, \beta \in \mathbb{R}^+$ con $\alpha \neq \beta$. Si dice che α è minore di β e scriviamo $\alpha < \beta$ se la parte intera di α è minore della parte intera di β oppure se la parte intera di α è uguale alla parte intera di β e c'è una cifra decimale \overline{r} di α che è minore della corrispondente cifra decimale di β . Se \overline{r} è maggiore di 1, tutte quelle precedenti devono essere uguali.

$$\alpha < \beta \ se \ M < N \ oppure \ se \ M = N \ e \begin{cases} \exists \ \overline{r} \in \mathbb{N} \ tale \ che \ C_{\overline{r}} < D_{\overline{r}} \ e \ se \\ \overline{r} > 1 \ allora \ C_i = D_i \ \forall \ i = 1, ..., \overline{r} - 1 \end{cases}$$

Se $\alpha, \beta \in \mathbb{R}^-$ diremo che $\alpha < \beta$ se $-\beta < -\alpha$

Diremo che β è maggiore di α e scriviamo $\beta > \alpha$ se $\alpha < \beta$. Diremo che α è maggiore o uguale a β e scriviamo $\alpha \leq \beta$ se $\alpha < \beta$ o $\alpha = \beta$.

Proprietà 1.3

Siano $\alpha, \beta, \gamma \in \mathbb{R}$

- 1. $\alpha < \beta \ e \ \beta < \gamma \Rightarrow \alpha < \gamma$ proprietà transitiva
- 2. $\alpha < \beta \in \beta < \alpha \Rightarrow \alpha = \beta$ proprietà antisimmetrica

Definizione 1.5 (Definizione di potenza)

Siano $a \in \mathbb{R}$ e $n \in \mathbb{N}$. Chiameremo potenza di base a ed esponente n e scriviamo a^n il numero così definito:

$$a^n \stackrel{\text{def}}{=} \begin{cases} a & se \ n = 1 \\ \underbrace{a * a * \dots * a}_{n \ volte} & se \ n > 1 \end{cases}$$

Se
$$a \neq 0$$
 per definizione $a^0 \stackrel{\text{def}}{=} 1$ e $a^{-n} \stackrel{\text{def}}{=} \frac{1}{a^n}$

Teorema 1.2 (Esistenza della radice ennesima aritmetica)

Siano $a \in \mathbb{R}$ con $a \geqslant 0$ e $n \in \mathbb{N}$.

Allora esiste uno e uno solo numero reale positivo b tale che $b^n = a$

Definizione 1.6 (Radice ennesima aritmetica)

Chiamiamo radice ennesima aritmetica di a e la indichiamo con il simbolo $\sqrt[n]{a}$ quell'unico numero reale non negativo d tale che $d^n = a$.

Se $a \ge 0$ ed $n \in \mathbb{N}$ con $n \ge 2$ allora:

$$\sqrt[n]{a} \stackrel{\text{def}}{=} b \geqslant 0 \text{ tale che } b^n = a.$$

Se a < 0 e n è pari **non esiste** alcun numero reale d tale che $b^n = a$.

Se
$$n \ \dot{e} \ dispari - \sqrt[n]{-a} \ \dot{e} \ tale \ che: \left(-\sqrt[n]{a}\right)^n = \left[\left(-1\right) \sqrt[n]{-a}\right]^n = \left(-1\right)^n \sqrt[n]{a^n} = \left(-1\right)^n \sqrt[n]{a^n$$

1.5.1 Proprietà dei numeri reali

Proprietà 1.4 (Proprietà di completezza o Dedekind) Siano $A, B \subseteq \mathbb{R}$ con $A, B \neq \emptyset$ tali che $a \leq b \ \forall a \in A \ e \ \forall b \in B$. Allora esiste almeno un numero reale c tale che:

 $a \leqslant c \leqslant b \ \forall a \in A \ e \ \forall b \in B. \ c \ \dot{e} \ detto \ elemento \ separatore.$

Sia $A \subseteq \mathbb{R}$, $A \neq \emptyset$.

Definizione 1.7

Un numero reale k si dice **maggiorante** di A se $a \leq k \ \forall a \in A$.

Definizione 1.8

Un numero reale h si dice **minorante** di A se $a \ge h$ $\forall a \in A$.

Conseguenza 1.1

- $k \in \mathbb{R}$ non maggiorante di A se esiste almeno un elemento $\overline{a} \in A$ tale che $\overline{a} > k$.
- $h \in \mathbb{R}$ non minorante di A se esiste almeno un elemento $\overline{a} \in A$ tale che $\overline{a} < h$.

Definizione 1.9

Un insieme si dice dotato di massimo se:

$$\exists M \in A \ tale \ che \ a \leq M \ \forall a \in A.$$

M si chiama **massimo** di A e si indica con maxA.

Definizione 1.10

Un insieme si dice dotato di minimo se:

$$\exists m \in A \ tale \ che \ m \leq a \ \forall a \in A.$$

m si chiama **minimo** di A e si indica con minA.

Conseguenza 1.2

•
$$M \in \mathbb{R}$$
 $M = maxA \Leftrightarrow \begin{cases} 1 \\ M \in A \end{cases}$
2) $a \leqslant M \quad \forall a \in A$

•
$$m \in \mathbb{R}$$
 $m = maxA \Leftrightarrow 1$ $m \in A$
2) $m \leqslant a \ \forall a \in A$

Proprietà 1.5

Se A è dotato di massimo (minimo) il maxA (minA) è unico.

Dimostrazione. Siano:

$$M_1 = maxA \Leftrightarrow \begin{cases} 1 \\ 4 \\ 2 \end{cases} M_1 \in A$$

2) $M_1 \geqslant a \ \forall a \in A$

e

$$M_2 = maxA \stackrel{\text{def}}{\Leftrightarrow} 3) \quad M_2 \in A$$
 $4) \quad M_2 \geqslant a \quad \forall a \in A$

allora:

$$1)+4) \Rightarrow M_2 \geqslant M_1$$

$$2)+3)\Rightarrow M_1\geqslant M_2.$$

Ne viene che $M_1=M_2$ per la proprietà antisimmetrica dell'ordinamento. \square

Proprietà 1.6

Se A è finito allora esistono il maxA e minA.

Esempio 1.1 (Insieme dotato di maggiorante ma privo di massimo) Consideriamo l'insieme A così definito $A = \{a \in \mathbb{R} \mid a < 0\}$.

A è dotato di maggioranti (ad esempio 0). Ogni numero positivo è maggiorante dell'insieme A.

Proviamo che A non è dotato di massimo.

Supponiamo per assurdo che A sia dotato di massimo e lo indichiamo con M.

$$M = \max A \iff i) \ M \in A$$
$$ii) \ M \geqslant a \ \forall a \in A.$$

Per la i M è negativo. Per la $iiM \geqslant a \quad \forall a \in A \quad \Rightarrow \quad \frac{M}{2}$ è minore di 0 ed $\frac{M}{2} \in A$. Poiché $M < 0 \Rightarrow M < \frac{M}{2}$.

ASSURDO poiché $M = maxA \in \frac{M}{2} \in A$.

Proprietà 1.7 (Proprietà del buon ordine)

Nell'insieme dei numeri naturali vale la proprietà del buon ordine.

Se $A \subseteq \mathbb{N}$ con $A \neq \emptyset$. A è dotato di massimo.

Dimostrazione. Poiché $A \neq 0$ possiamo prendere un elemento $\overline{a} \in A$. Costruiamo l'insieme X formato da tutti gli elementi minori o uguali ad \overline{a} .

$$X = \{ x \in A \mid x \leqslant \overline{a} \}.$$

X è finito, pertanto è dotato di minimo $\Rightarrow \exists minX \Rightarrow \exists m = minX$. Proviamo che m è il minA.

Poiché
$$m = minX \Rightarrow 1 \ m \in X$$

2) $m \le x \ \forall x \in X$

Dalla 1) segue che $m \in X \stackrel{\text{def}}{\Leftrightarrow} m \in A \ e \ m \leq \overline{a}$. Provo che $m \leq a \ \forall a \in A$.

Sia
$$a \in A$$
 $\begin{cases} a \leqslant \overline{a} \Rightarrow a \in X \ e \ m \leqslant a \ per \ la \ 2) \\ a \geqslant \overline{a} \geqslant m \ per \ la \ 1) \end{cases}$

Definizione 1.11

Diremo che A è **limitato superiormente** se è dotato di maggioranti. Diremo che A è **limitato inferiormente** se è dotato di minoranti. Diremo che A è **limitato** se è limitato superiormente e inferiormente.

A limitato superiormete $\stackrel{\text{def}}{\Leftrightarrow} \exists k \in \mathbb{R} : k \geqslant a \ \forall a \in \mathbb{R}.$

A limitato inferiormente $\stackrel{\text{def}}{\Leftrightarrow} \exists h \in \mathbb{R} : h \leqslant a \ \forall a \in \mathbb{R}.$

 $A \ limitato \ \stackrel{\text{def}}{\Leftrightarrow} \exists \ h, k \in \mathbb{R} \ : \ h \leqslant a \geqslant k \ \forall a \in \mathbb{R}.$

Proprietà 1.8

 $A \ \grave{e} \ limitato \ se \ e \ solo \ se \ \exists \ H>0 \ : \ H\geqslant |a| \ \forall a\in A$

Conseguenza 1.3

Dato un insieme $A = \{a \in \mathbb{R} \mid a < 0\}$ limitato superiormente. L'insieme dei maggioranti di $A \in B = \{b \in \mathbb{R} \mid b > 0\}$.

Teorema 1.3 (Esistenza dell'estremo superiore)

Sia $A \subseteq R$, $A \neq \emptyset$ limitato superiormente.

Allora l'insieme dei maggioranti di A è dotato di minimo.

Dimostrazione.

Poiché A è limitato superiormente è dotato di maggioranti.

Sia B l'insieme dei maggioranti di A. Segue che:

 $B=\{b\in B: \text{ b'e maggiorante di }A\}$. Pertanto $B\neq\emptyset$ vale $a\leqslant b \ \forall a\in A$ e $\forall b\in B$. Per la proprietà di completezza $\exists\ c\in\mathbb{R}:\ a\leqslant c\leqslant b\ \forall a\in A$ e $\forall b\in B$.

Poiché $c \geqslant a \ \forall a \in A \ c$ è un maggioranete di A. Quindi $c \in B$ ed essendo $c \leqslant b \ \forall b \in B \ c$ è il minimo dell'insieme B

Conseguenza 1.4

Il minimo dei maggioranti di un insieme si chiama estremo superiore.

Definizione 1.12

Sia $A \subseteq \mathbb{R}$, $A \neq \emptyset$ limitato superiormente. Si chiama **estremo superiore** di A e si indica con supA il minimo dei maggioranti di A.

Teorema 1.4 (Proprietà caratteristiche del sup) Sia $A \subseteq \mathbb{R}$, $A \neq \emptyset$ limitato superiormente e $L \in \mathbb{R}$.

Allora L è l'estremo superiore di A se e solo se:

$$L = \sup A \ \stackrel{\text{def}}{\Leftrightarrow} \ \frac{1) \ a \leqslant L \ \forall a \in A}{2) \ \forall \epsilon > 0 \ \exists \ \overline{a} \in A : \ \overline{a} > L - \epsilon}$$

Proprietà 1.9

Sia $A \subseteq \mathbb{R}$, $A \neq \emptyset$ limitato superiormente.

Per ipotesi: $sup A \in A$. Allora $\exists max A = sup A$.

Proprietà 1.10

Sia $A \subseteq \mathbb{R}$, $A \neq \emptyset$ dotato di massimo.

Allroa A sarà limitato superiormente e supA = maxA.

Dimostrazione. Il maxA è un maggioranete quindi A è limitato superiormente e $supA \leq maxA$ perchè supA è il minimo dei maggioranti di A. Ma il $maxA \in A$. Allora $maxA \leq supA$ poiché il sup è un maggiorante di A. \square

Teorema 1.5

Sia $A \subseteq \mathbb{R}$, $A \neq \emptyset$ limitato inferiormente.

Allora l'insieme dei minoranti di A è dotato di minimo.

Definizione 1.13

Sia $A \subseteq \mathbb{R}$, $A \neq \emptyset$ limitato inferiormente.

Si chiama estremo inferiore e si indica con infA il massimo dei minoranti di a.

$$infA \stackrel{\text{def}}{=} max\{h \in \mathbb{R} : h \text{ minorante } di \mathbb{R}\}.$$

Teorema 1.6 (Proprietà caratteristica dell'inf)

Siano $A \subseteq \mathbb{R}$, $A \neq \emptyset$ limitato inferiormente e $l \in \mathbb{R}$. Allora:

$$l = infA \stackrel{\text{def}}{\Leftrightarrow} 1) \ l \leqslant a \ \forall a \in A$$
$$2) \ \forall \epsilon > 0 \ \exists \ \overline{a} \in A \ : \ \overline{a} < l + \epsilon$$

Conseguenza 1.5

Se A è un insieme non limitato superiormente diremo che $\sup A = \infty$.

Definizione 1.14

Se A non è limitato superiormente (dalla definizione si ha che $\forall k \in \mathbb{R} \ \exists \ \overline{a} \in \mathbb{A} : \overline{a} > k$).

Allora:

$$SupA \stackrel{\text{def}}{=} +\infty$$

Definizione 1.15

Se A non è limitato inferiormente (dalla definizione si ha che $\forall h \in \mathbb{R} \ \exists \ \overline{a} \in \mathbb{A} : \overline{a} < h$).

Allora:

$$InfA \stackrel{\text{def}}{=} -\infty$$

Definizione 1.16

Definiamo $\overline{\mathbb{R}}$ l'insieme dei numeri reali tale che:

$$\overline{\mathbb{R}} \stackrel{\text{def}}{=} \mathbb{R} \cup \{-\infty, +\infty\}$$

Seque che:

- $-\infty < a \ \forall \ a \in \mathbb{R}$
- \bullet $+\infty > a \ \forall \ a \in \mathbb{R}$

1.5.2 Potenza con esponente razionale

Siano $a \in \mathbb{R}$ e $\frac{m}{n} \in \mathbb{Q}^+$ con $m, n \in \mathbb{N}$.

$$a^{\frac{m}{n}} \stackrel{\text{def}}{=} \sqrt[n]{a^m}$$

- 1. $a \ge 0$ con a, m, n qualsiasi
- 2. a < 0 con n dispari e m qualsiasi
- 3. a < 0 con n pari e m qualsiasi

1.5.3 Potenza con esponente un numero razionale

Sia $a \in \mathbb{R}$, $\frac{m}{n} \in \mathbb{Q}^+$ con $(m, n \in \mathbb{N})$.

Si definisce: $a^{\frac{m}{n}} \stackrel{\text{def}}{=} \sqrt[n]{a^m}$. Se $a \neq 0$, allora $a^{-\frac{m}{n}} \stackrel{\text{def}}{=} \frac{1}{a^{\frac{m}{n}}}$ in tutti i casi in cui è definita $a^{\frac{m}{n}}$.

1.5.4 Potenza con un numero reale

Siano $a \in \mathbb{R}$, a > 0 e $b \in \mathbb{R}$. Vogliamo definire la potenza a^b . Sia $b > 0 \Rightarrow b = M, C_1, C_2, ..., C_n$. Consideriamo

- $b_0 = M$
- $b_1 = M, C_1$
- $b_2 = M, C_1, C_2$
- ...
- $b_n = M, C_1, C_2, ..., C_n$

Per ogni n questi sono numeri razionali \Rightarrow I numeri b_n con $n \in \mathbb{N}_0$ sono numeri razionali poiché per a > 0 le potenze $a^{b_0}, a^{b_1}, ..., a^{b_n}$ sono ben definite. A partire da un certo indice esse presentano la stessa parte intera che chiamiamo γ . Poi si stabilizza la prima cifra decimale γ_1 , così come γ_2 fino a γ_n . Il numero $\gamma, \gamma_1, \gamma_2, ... \gamma_n$ per definizione si chiama **potenza di base** a **ed esponente** b.

Si pone anche $a^{-b} \stackrel{\text{def}}{=} \frac{1}{a^b}$.

Definizione 1.17

Se b > 0 è definita anche $0^b \stackrel{\text{def}}{=} 0$. Quindi a^b con b > 0 si definisce per $b \ge 0$.

1.6 Proprietà delle potenze (con esponente reale)

Siano $a, b, c \in \mathbb{R}$ con a > 0.

- 1. $a^b > 0$
- 2. $a^b * a^c = a^{b+c}$
- 3. $\frac{a^b}{a^c} = a^{b-c}$

4.
$$a^b * c^b = (a * c)^b \text{ con } c > 0$$

$$5. \ \frac{a^b}{c^b} = \left(\frac{a}{c}\right)^b$$

6.
$$(a^b)^c = a^{b*c}$$

1.7 Proprietà di monotonia

Siano $x_1 \in x_2 \in \mathbb{R}$.

- Se a > 1 allora $x_1 < x_2 \Leftrightarrow a^{x_1} < a^{x_2}$
- Se 0 < a < 1 allora $x_1 < x_2 \Leftrightarrow a^{x_1} > a^{x_2}$

Siano $x_1, x_2 > 0e \ a \in \mathbb{R}$

- Se a > 0 allora $x_1 < x_2 \Leftrightarrow x_1^{\alpha} < x_2^{\alpha}$
- Se a < 0 allora $x_1 < x_2 \Leftrightarrow x_1^{\alpha} < x_2^{\alpha}$

2 Notazioni

Siano $a, b \in \mathbb{R}$ con a > b.

- $[a,b] \stackrel{\text{def}}{=} \{x \in \mathbb{R} : a \leqslant x \leqslant b\}$ intervallo chiuso e limitato di estremi $a \in b$.
- [a,b [$\stackrel{\text{def}}{=}$ { $x \in \mathbb{R} : a \leq x < b$ } intervallo semiaperto a destra e limitato di estremi $a \in b$.
-] a, b] $\stackrel{\text{def}}{=}$ { $x \in \mathbb{R} : a < x \leq b$ } intervallo semiaperto a sinistra e limitato di estremi $a \in b$.
-] a, b [$\stackrel{\text{def}}{=} \{x \in \mathbb{R} : a < x < b\}$ intervallo aperto e limitato di estremi $a \in b$.
- [$a, +\infty$ [$\stackrel{\text{def}}{=}$ $\{x \in \mathbb{R} : x \geqslant a\}$ intervallo chiuso non limitato superiormente.
-] $a, +\infty$ [$\stackrel{\text{def}}{=}$ $\{x \in \mathbb{R} : x > a\}$ intervallo aperto non limitato superiormente.

-] $-\infty, a$] $\stackrel{\mathrm{def}}{=}$ $\{x \in \mathbb{R} : x \leqslant a\}$ intervallo chiuso non limitato inferiormente.
-] $-\infty, a$ [$\stackrel{\text{def}}{=}$ $\{x \in \mathbb{R} : x < a\}$ intervallo aperto non limitato inferiormente.
- $\bullet \] \ -\infty, +\infty \ [\ \stackrel{def}{=} \ \mathbb{R}$

3 Logaritmi

Siano $a, b \in \mathbb{R}$ con a, b > 0

Problema

Determinare, se esiste, almeno una $x \in \mathbb{R}$ tale che $a^x = b$ (1)

• se a = 1, $a^x = 1 \ \forall x \in \mathbb{R}$.

Allora la (1) non ha soluzioni reali se $b \neq 1$. Invece ha infinite soluzioni se b = 1.

Teorema 3.1

Siano a > 0, $a \neq 1$ e b > 0. Allora esiste uno ed un solo numero reale x tale che:

$$a^x = b$$

Definizione 3.1

Siano a > 0, $a \neq 1$ e b > 0. Chiamiamo **logaritmo** in base a di b e lo indichiamo con log_ab :

$$log_a b \stackrel{\text{def}}{=} x \in \mathbb{R} \ tale \ che \ a^x = b.$$

- a si chiama base del logaritmo
- b si chiama argomento del logaritmo

Conseguenza 3.1

Dalla definizione si ha che $a^{log_ab} = b$.

Conseguenza 3.2

$$log_a 1 = 0$$

Conseguenza 3.3

$$log_a a = 1$$

3.1 Proprietà dei logaritmi

1.
$$log_a b + log_a c = log_a (b * c)$$

2.
$$log_a b - log_a c = log_a (b/c)$$

3.
$$log_a b^{\gamma} = \gamma log_a b$$
 con $\gamma \in \mathbb{R}$

4.
$$log_a b = \frac{log_c b}{log_c a}$$
 $con c > 0, c \neq 1$

3.2 Proprietà di monotonia

Siano $x_1, x_2 > 0$.

$$\bullet$$
 Se $a>1$ allora $x_1 < x_2 \Leftrightarrow log_a x_1 < log_a x_2$

• Se
$$0 < a < 1$$
 allora $x_1 < x_2 \Leftrightarrow log_a x_1 > log_a x_2$

4 Valore assoluto

Sia $x \in \mathbb{R}$.

$$|x| \stackrel{\text{def}}{=} \begin{cases} x & \text{se } x > 0 \\ 0 & \text{se } x = 0 \\ -x & \text{se } x < 0 \end{cases}$$

4.1 Proprietà dei valori assoluti

1.
$$|x| \geqslant 0 \ \forall x \in \mathbb{R}$$

$$|x| = 0$$
 se e solo se $x = 0$. $|x| > 0 \Leftrightarrow x \neq 0$

$$2. |x| = |-x| \quad \forall x \in \mathbb{R}$$

3.
$$|x * y| = |x| * |y| \quad \forall x \in \mathbb{R}$$

4.
$$\left| \frac{x}{y} \right| = \frac{|x|}{|y|} \ \forall x \in \mathbb{R}, y \neq 0$$

5.
$$|x+y| \le |x| + |y|$$

$$|x - y| \leqslant |x| - |y|$$

$$||x-y|| \le |x \pm y| \le |x| + |y|$$

6. Dato $k \in \mathbb{R}$, k > 0 allora:

$$|x| < k \Leftrightarrow -k < x < k$$

$$|x| > k \Leftrightarrow x < -k, \ x > k$$

5 Funzioni

5.1 Concetto di funzione

Siano $A, B \neq \emptyset$ e f una legge che associa **ad ogni** elemento di A un solo elemento di B. La terna (A, B, f) si chiama **funzione definita in** A **a ha valori in** B.

A si chiama **dominio** della funzione.

B si chiama **codominio** della funzione

f si chiama legge di definizione.

Scriviamo quindi: $f: A \to B$.

Preso $x \in A$ la legge f associa ad x un solo elemento di B che indichiamo con f(x). Quindi:

$$A \ni x \longrightarrow f(x) \in B.$$

f(x) si chiama valore assunto dalla funzione f in x o **immagine di** x **tramite** f.

5.2 Definizioni principali

Definizione 5.1

Data una funzione $f: A \to B$, si chiama **immagine di** f l'insieme Imf formato dai valori assunti dalla funzione.

$$ImF \stackrel{\text{def}}{=} \{f(x), x \in A\}.$$

Oppure: $ImF = \{y \in B \mid \exists x \in A : f(x) = y\}.$

Definizione 5.2

Data una funzione $f:A\to B$, si chiama **grafico di** f l'insieme Imf formato dai valori assunti dalla funzione.

$$Gf \stackrel{\text{def}}{=} \{(x, f(x)), x \in A\}.$$

Oppure: $Gf = \{(x, y), x \in A, y = f(x)\}.$

Definizione 5.3

Si chiama **funzione reale** una funzione il cui codominio è tutto \mathbb{R} $(B = \mathbb{R})$. Se $A \subseteq \mathbb{R}$ diremo che f è una funzione di **variabile reale**.

Definizione 5.4

Diremo f iniettiva se $\forall x_1 e x_2 \in A con x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$. (f non è iniettiva se $\exists x_1, x_2 \in A con x_1 \neq x_2 \Rightarrow f(x_1) = f(x_2)$).

Definizione 5.5

Diremo f suriettiva se $Im f = B \Leftrightarrow \forall y \in B \exists x \in A : f(x) = y$.

Definizione 5.6

Diremo f biettiva se f è iniettiva e surriettiva.

Definizione 5.7 (Funzione invertibile)

Diremo f invertivile se $\forall y \in Imf \exists ! x \in A : F(x) = y$.

Se f è invertibile possiamo definire la funzione $f^{-1}: Im f \to A$ come seque:

$$f^{-1}(x) \stackrel{\text{def}}{=} !x \in A : f(x) = y \ \forall y \in Imf.$$

5.2.1 Restrizioni e Prolungamenti

Definizione 5.8

Data $f: A \to B$ e $x \subset A$. Sia $g: X \to B$ definita da $g(x) = f(x) \ \forall x \in X$. Diremo chhe g è la **restrizione** di f all'insieme X e si scrive $g = f_{|X}$

Definizione 5.9

Siano $f: A \to B$ e $g: X \to B$ con $A \subset X$ tale che $f(x) = g(x) \ \forall x \in A$. Ossia $g_{|A} = f$. In tale caso si dice che g è un **prolungamento** di f.

definita da $g(x) = f(x) \ \forall x \in X$. Diremo chhe g è la **restrizione** di f all'insieme X e si scrive $g = f_{|X}$

5.3 Funzioni definite per casi

Siano $A_1, A_2, ..., A_n \neq \emptyset$ e $B_1, B_2, ..., B_n \neq \emptyset$ a due a due disgiunti. Siano inoltre:

$$f_1:A_1\to B_1$$

$$f_2:A_2\to B_2$$

...

$$f_n:A_n\to B_n$$

Chiamiamo $A = \bigcup_{i=1}^{n} A_i$ e $\bigcup_{i=1}^{n} B_i$. Sia $g: A \to B$ definita come segue:

$$g(x) = \begin{cases} f_1(x) & \text{se } x \in A_1 \\ f_2(x) & \text{se } x \in A_2 \\ & \dots \\ f_n(x) & \text{se } x \in A_n \end{cases}$$

Si dice che q è una funzione definita per casi.

5.4 Crescenza e Decrescenza

Sia $A \subseteq \mathbb{R}, A \neq \emptyset$ e $f: A \to \mathbb{R}$.

Diremo che f è **crescente** se: $\forall x_1, x_2 \in A \text{ con } x_1 < x_2 \Rightarrow f(x_1) \leqslant f(x_2)$. Diremo che f è **strettamente crescente** se: $\forall x_1, x_2 \in A \text{ con } x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$.

Diremo che f è **decrescente** se: $\forall x_1, x_2 \in A \ con \ x_1 < x_2 \Rightarrow f(x_1) \geqslant f(x_2)$. Diremo che f è **strettamente decrescente** se: $\forall x_1, x_2 \in A \ con \ x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$.

Definizione 5.10

Le funzioni crescenti, decrescente, strettamente crescenti e strettamente decrescenti si dicono **monotone**. In particolare quelle strettamente crescenti e strettamente decrescenti si dicono **strettamente monotone**.

Proprietà 5.1

Sia $f: A \to \mathbb{R}$ una funzione strettamente monotona. Allora f è iniettiva.

Dimostrazione. Supponiamo che f sia strettamente decrescente. Siano x_1 e $x_2 \in A, x_1 \neq x_2$. Abbiamo due casi:

1)
$$x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$$

2)
$$x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$$

In entrambi i casi si ha che $f(x_1) \neq f(x_2)$.

5.5 Maggioranti e minoranti di una funzione

Sia $f: A \to \mathbb{R}, A \subseteq \mathbb{R}, A \neq \emptyset$.

Definizione 5.11

Un numero $k \in \mathbb{R}$ si chiama **maggiorante** di f (**minorante** di f) se è un maggiorante (minorante) dell'insieme Im f.

Poiché $ImF \stackrel{\text{def}}{=} \{f(x), x \in A\}$, preso un $k \in \mathbb{R}$, si chiama:

maggiorante di $f \stackrel{\text{def}}{\Leftrightarrow} k \geqslant f(x) \ \forall x \in A.$

minorante di $f \stackrel{\text{def}}{\Leftrightarrow} h \leqslant f(x) \ \forall x \in A.$

 $k \text{ non } \grave{e} \text{ maggiorante } di \ f \overset{\text{def}}{\Leftrightarrow} \ \exists \ x \in A : f(x) > k.$

Definizione 5.12

Diremo che f è dotata di massimo (minimo) se l'Imf è dotata di massimo (minimo). Se f è dotata di massimo (minimo), si chiama massimo di f (minimo di f) e si indica con $\max_{x \in A} f$, $\max_{x \in A} f(x)$, $\max_{x \in A} f$ ($\min_{x \in A} f$, $\min_{x \in A} f(x)$, $\min_{x \in A} f$) il $\max_{x \in A} Imf$ ($\min_{x \in A} Imf$).

 $f \ dotata \ di \ massimo \ \stackrel{\text{def}}{\Leftrightarrow} \ \exists \ \overline{x} \in A : f(\overline{x}) \geqslant f(x) \ \forall x \in A.$

 $f \ dotata \ di \ minimo \ \stackrel{\text{def}}{\Leftrightarrow} \ \exists \ \overline{\overline{x}} \in A : f(\overline{\overline{x}}) \leqslant f(x) \ \forall x \in A.$

 \overline{x} si chiama punto di massimo. Quindi $\max_{A} f = f(\overline{x})$.

 $\overline{\overline{x}}$ si chiama punto di minimo. Quindi $\min_{A} f = f(\overline{\overline{x}})$.

Definizione 5.13

Se $f \ \dot{e} \ dotata \ di \ massimo \ (minimo), \ il \ max \ f(min \ f) \ \dot{e} \ unico.$

Proprietà 5.2

Se $f \ \dot{e} \ dotata \ sia \ di \ \max \ che \ di \ \min \ allora \ il \ \min f \leqslant \max f$.

Definizione 5.14

Diremo che f è limitata superiormente (inferiormente) se è dotata di maggioranti (minoranti).

f limitata superiormente $\stackrel{\text{def}}{\Leftrightarrow} \exists k \in \mathbb{R} : k \geqslant f(x) \ \forall x \in A.$

f limitata inferiormente $\stackrel{\text{def}}{\Leftrightarrow} \exists h \in \mathbb{R} : h \leqslant f(x) \ \forall x \in A.$

Definizione 5.15

Diremo che f è limitata se è limitata superiormente e inferiormente.

$$f \ limitata \ \stackrel{\text{def}}{\Leftrightarrow} \ \exists \ h, k \in \mathbb{R} : h \leqslant f(x) \leqslant k \ \forall x \in A.$$

Proprietà 5.3

 $f \ limitata \stackrel{\text{def}}{\Leftrightarrow} \exists H > 0 : |f(x)| \leqslant H \ \forall x \in A.$

Definizione 5.16

Se f è limitata superiormente chiamiamo **estemo superiore** di f e lo indichiamo con $\sup_{x \in A} f(x)$, $\sup_{x \in A} f(x)$, $\sup_{x \in A} f(x)$ estemo superiore del Imf.

$$\sup_{x \in A} f \stackrel{\text{def}}{\Leftrightarrow} \sup Im f$$

Definizione 5.17

Se f è limitata inferiormente chiamiamo **estemo inferiore** di f e lo indichiamo con $\inf_{x \in A} f$, $\inf_{x \in A} f(x)$, $\inf f$ l'estemo superiore del Imf.

$$\inf_{x \in A} f \stackrel{\text{def}}{\Leftrightarrow} \inf Im f$$

Proprietà 5.4

 $Sia\ f:A\to\mathbb{R}\ limitata\ superiormente.\ Preso\ un\ L\in\mathbb{R}\ segue:$

$$L = \sup_{A} f \iff i) \ f(x) \leqslant L \ \forall x \in A$$
$$ii) \ \forall \ \epsilon > 0 : \exists \ x_{\epsilon} \in A : f(x_{\epsilon}) > L - \epsilon$$

Proprietà 5.5

Sia $f: A \to \mathbb{R}$ limitata inferiormente. Preso un $l \in \mathbb{R}$ segue:

$$l = \sup_{A} f \iff i) f(x) \geqslant l \ \forall x \in A$$
$$ii) \forall \epsilon > 0 : \exists x_{\epsilon} \in A : f(x_{\epsilon}) < l + \epsilon$$

Definizione 5.18

Diremo che f non è limitata superiormente (inferiormente) se non è dotata di maggioranti (minoranti).

f non limitata superiormente $\stackrel{\text{def}}{\Leftrightarrow} \forall k \in \mathbb{R} \ \exists \ x^* \in A : f(x^*) > k$

f non limitata inferiormente $\stackrel{\mathrm{def}}{\Leftrightarrow} \forall h \in \mathbb{R} \ \exists \ x^{**} \in A : f(x^{**}) < k$

Conseguenza 5.1

Sia f una funzione:

se f non è limitata superioremente poniamo $\sup_{\Lambda} f = +\infty$

se f non è limitata inferiormente poniamo $\inf_A f = -\infty$

$$se \ f: A \to \mathbb{R} \Rightarrow \inf_A f \leqslant \sup_A f.$$

$$\inf_{A} \leqslant f(x) \leqslant \sup_{A} \ \forall x \in A.$$

Definizione 5.19

Sia $A \subseteq \mathbb{R}, A \neq \emptyset$.

Diremo che A è simmetrico rispetto all'origine se $x \in A \Rightarrow -x \in A$.

Definizione 5.20

Sia $A \subseteq \mathbb{R}, A \neq \emptyset$. Simmetrico rispetto all'origine. Sia $f: A \to \mathbb{R}$. Se:

- i) $f(x) = f(-x) \ \forall x \in A \ allora \ f \ è \ una \ funzione \ pari.$
- ii) $f(x) = -f(-x) \ \forall x \in A \ allora \ f \ è \ una \ funzione \ dispari.$

5.6 Funzioni composte

Siano $A, B \subseteq \mathbb{R}, \ A, B \neq \emptyset. \ f: A \to \mathbb{R}, \ g: B \to \mathbb{R}. \ Imf \subseteq B.$ Allora la funzione: $g \circ f: A \to \mathbb{R}$ definita dalla legge:

$$(g \circ f)(x) \stackrel{\text{def}}{=} g(f(x)) \ \forall x \in A$$

si chiama funzione composta tramite f e g. f e g si chiameranno funzioni componenti.

6 Successioni numeriche

6.1 Definizione di successione numerica

Definizione 6.1

Chiamiamo successione numerica una funzione $f: \mathbb{N} \to \mathbb{R}$.

Indichiamo con a_n (termine generale) il numero \mathbb{R} che la successione associa ad n. In questo caso la successione si indica con $\{a_n\}$ detta successione di termine generale a_n .

Esempi di successioni

- $\{\frac{1}{n}\}$ è la successione che associa ad ogni $n \in \mathbb{N}$ il suo **reciproco**.
- $\{n^2\}$ è la successione che associa ad ogni $n \in \mathbb{N}$ il suo quadrato.
- $\{(-a)^n\}$ è la successione che associa ad ogni $n \in \mathbb{N}$ $\begin{cases} -1 & \text{con } n \text{ } dispari \\ 1 & \text{con } n \text{ } pari \end{cases}$

Quindi per assegnare una successione numerica basta assegnare il suo termine generale.

Definizione 6.2

Sia $\{a_n\}$ una successione numerica. L'immagine di $\{a_n\}$ ossia l'insieme numerico $\{\{a_n\}, n \in \mathbb{N}\}$ si chiama **insieme dei termini** (o sostegno) della successione.

Definizione 6.3

Sia $\{a_n\}$ una successione di numeri \mathbb{R} .

- Un numero $k \in \mathbb{R}$ si chiama **maggiorante** di $\{a_n\}$ se $k \geqslant a_n \ \forall n \in \mathbb{N}$.
- Un numero $h \in \mathbb{R}$ si chiama **minorante** di $\{a_n\}$ se $h \leq a_n \ \forall n \in \mathbb{N}$.

Osservazione 1

 $k \in \mathbb{R} \ \textit{non} \ \grave{e} \ \textit{maggiorante} \ di \ \{a_n\} \ \stackrel{\text{def}}{\Leftrightarrow} \ \exists \ \overline{n} \in \mathbb{N} : a_{\overline{n}} > k$

Osservazione 2

 $h \in \mathbb{R} \ \textit{non} \ \grave{e} \ \textit{minorante} \ di \ \{a_n\} \ \stackrel{\text{def}}{\Leftrightarrow} \ \exists \ \overline{\overline{n}} \in \mathbb{N} : a_{\overline{\overline{n}}} > k$

Definizione 6.4

Diremo che $M \in \mathbb{R}$ è il **massimo** di $\{a_n\}$ (max) se i) $\exists \overline{n} \in \mathbb{N} : M = a_{\overline{n}}$ i) $M \geqslant a_n \in \mathbb{N}$

Definizione 6.5

 $\{a_n\}$ è dotata di massimo se $\exists \overline{n} \in \mathbb{N} : a_n \leqslant a_{\overline{n}}. \ a_{\overline{n}} \text{ si chiama } \boldsymbol{massimo} \text{ di } \{a_n\} \text{ e si indica con } \max\{a_n\}.$

Definizione 6.6

 $\{a_n\}$ è dotata di minimo se $\exists \overline{n} \in \mathbb{N} : a_{\overline{n}} \leq a_n$. $a_{\overline{n}}$ si chiama **minimo** di $\{a_n\}$ e si indica con $\min\{a_n\}$.

Definizione 6.7

 $\{a_n\}$ si dice **limitata superiormente** $\stackrel{\text{def}}{\Leftrightarrow} \exists k \in \mathbb{R} : k \geqslant a_n \ \forall n \in \mathbb{N}.$

Definizione 6.8

 $\{a_n\}$ si dice **limitata inferiormente** $\stackrel{\text{def}}{\Leftrightarrow} \exists h \in \mathbb{R} : h \leqslant a_n \ \forall n \in \mathbb{N}.$

Definizione 6.9

 $\{a_n\}$ si dice **limitata** $\stackrel{\text{def}}{\Leftrightarrow} \exists h, k \in \mathbb{R} : h \leqslant a_n \leqslant k \ \forall n \in \mathbb{N}.$

Proprietà 6.1

 $\{a_n\}$ è limitata se e solo se $\exists H > 0 : H \geqslant |a_n| \ \forall n \in \mathbb{N}$.

Definizione 6.10

Sia $\{a_n\}$ limitata superiormente. Chiamiamo **estremo superiore** di suc l'estremo superiore del sul sostegno e lo indichiamo con sup $\{a_n\}$. Quindi:

$$\sup\{a_n\} \stackrel{\text{def}}{\Leftrightarrow} \sup\{a_n, \ n \in \mathbb{N}\}.$$

Proprietà 6.2 (Proprietà caratteristica del sup)

Sia $\{a_n\}$ una successione limitata superiormente. Sia $L \in \mathbb{R}$. Allora:

$$L = \sup\{a_n\} \stackrel{\text{def}}{\Leftrightarrow} \begin{array}{l} i) \ a_n \leqslant L \ \forall n \in \mathbb{N} \\ ii) \ \forall \epsilon > 0 \ \exists \ \overline{n} \in \mathbb{N} : a_{\overline{n}} > L - \epsilon \end{array}$$

Se $\{a_n\}$ non è limitata superiormente allora $\sup\{a_n\} = +\infty$.

Proprietà 6.3 (Proprietà caratteristica del inf)

 $Sia \{a_n\}$ una successione limitata inferiormente. $Sia l \in \mathbb{R}$. Allora:

$$l = \inf\{a_n\} \stackrel{\text{def}}{\Leftrightarrow} i) \ l \leqslant a_n \ \forall n \in \mathbb{N}$$
$$ii) \ \forall \epsilon > 0 \ \exists \ \overline{n} \in \mathbb{N} : a_{\overline{n}} < l + \epsilon$$

Se $\{a_n\}$ non è limitata inferiormente allora $\inf\{a_n\} = -\infty$.

6.2 Successioni monotone

Sia $\{a_n\}$ una successione numerica.

- $\{a_n\}$ è **crescente** $\stackrel{\text{def}}{\Leftrightarrow} \forall n, m \in \mathbb{N} n < m \Rightarrow a_n \leqslant a_m \Leftrightarrow a_n \leqslant a_{n+1} \ \forall n \in \mathbb{N}$
- $\{a_n\}$ è strettamente crescente $\stackrel{\text{def}}{\Leftrightarrow} \forall n, m \in \mathbb{N} n < m \Rightarrow a_n < a_m \Leftrightarrow a_n < a_{n+1} \ \forall n \in \mathbb{N}$
- $\{a_n\}$ è decrescente $\stackrel{\text{def}}{\Leftrightarrow} \forall n, m \in \mathbb{N} n < m \Rightarrow a_n \geqslant a_m \Leftrightarrow a_n \geqslant a_{n+1} \ \forall n \in \mathbb{N}$

• $\{a_n\}$ è strettamente decrescente $\stackrel{\text{def}}{\Leftrightarrow} \forall n, m \in \mathbb{N} n < m \Rightarrow a_n > a_m \Leftrightarrow a_n > a_{n+1} \ \forall n \in \mathbb{N}$

Osservazione 3

- Se $\{a_n\}$ è crescente (s. crescente) $\Rightarrow \exists \min \{a_n\} = a_1$
- Se $\{a_n\}$ è decrescente (s. decrescente) $\Rightarrow \exists \max\{a_n\} = a_1$

7 Limiti

Sia $\{a_n\}$ una successione numerica.

Definizione 7.1

Diremo che $\{a_n\}$ converge a $l \in \mathbb{R}$ e si scrive:

$$\lim_{n \to +\infty} a_n = l$$

Se:

$$\forall \epsilon > 0 \; \exists \; \overline{n} \in \mathbb{N} : \forall n > \overline{n} \Rightarrow |a_n - l| < \epsilon.$$
$$(l - \epsilon < a_n < l + \epsilon).$$

Segue che:

$$\lim_{n \to +\infty} a_n = l \stackrel{\text{def}}{\Leftrightarrow} \forall \epsilon > 0 \; \exists \; \overline{n} \in \mathbb{N} : \forall n > \overline{n} \Rightarrow l - \epsilon < a_n < l + \epsilon.$$

Definizione 7.2

Diremo che la successione $\{a_n\}$ diverge positivamente e scriviamo:

$$\lim_{n \to +\infty} a_n = +\infty$$

Se

for all
$$k > 0 \exists \overline{n} \in \mathbb{N} : n > \overline{n} \Rightarrow a_n > k$$
.

Definizione 7.3

Diremo che la successione $\{a_n\}$ diverge negativamente e scriviamo:

$$\lim_{n \to +\infty} a_n = -\infty$$

Se

for all
$$\epsilon > 0 \exists \overline{n} \in \mathbb{N} : n > \overline{n} \Rightarrow a_n < \epsilon$$
.

Definizione 7.4

Diremo che $\{a_n\}$ è **regolare** se esiste il $\lim_{n\to+\infty} a_n$.

Esempio 7.1 (Esempio di successione non regolare o oscillante)

$$(-1)^n = \begin{cases} 1 & con \ n \ pari \\ -1 & con \ n \ dispari \end{cases}$$

Dimostrazione. Dalla definizione di limite si ha:

$$\forall \ k > 0 \ \exists \ \overline{n} \in \mathbb{N} : \forall \ n > \overline{n} \Rightarrow (-1)^n > k.$$

Se prendo k = 1 ho un assurdo.

Definizione 7.5

Una successione $\{a_n\}$ a termini non tutti nulli si dice **alternante** (o a segni alterni) se:

$$a_n \begin{cases} \geqslant 0 & (\leqslant 0) \quad con \ n \ dispari \\ \leqslant 0 & (\geqslant 0) \quad con \ n \ pari \end{cases}$$

Teorema 7.1 (Teorema di unicità del limite)

Ogni successione regolare un unico limite.

Supponiamo che esistano due limiti l e m.

Poniamo quindi per ipotesi che:

$$\lim_{n \to +\infty} a_n = l \in \overline{\mathbb{R}}$$

$$\lim_{n \to +\infty} a_n = m \in \overline{\mathbb{R}}$$

La tesì sarà dunque: l = m.

Dimostrazione. Supponiamo per assurdo che $l\neq m$ e siano $l,m\in\mathbb{R}$ con l>m. Allora $\frac{l-m}{2}>0.$

Poiché
$$\lim_{n \to +\infty} a_n = l \stackrel{\text{def}}{\Leftrightarrow} \forall \epsilon > 0 \; \exists \; \overline{n} \in \mathbb{N} : \forall n > \overline{n} \Rightarrow l - \epsilon < a_n < l + \epsilon.$$
 (1).

Scriviamo la (1) in corrispondenza di $\epsilon = \frac{l-m}{2}$ e trovo che:

$$preso \overline{n}_1 \in \mathbb{N} : \forall n > \overline{n}_1 \Rightarrow l - \frac{l-m}{2} < a_n < l + \frac{l-m}{2}$$
 (3).

Si ha anche che:

 $\lim_{\substack{n \to +\infty \\ (2)}} a_n = m \iff \forall \ \epsilon > 0 \ \exists \ \overline{\overline{n}} \in \mathbb{N} : \forall n > \overline{\overline{n}} \Rightarrow m - \epsilon < a_n < m + \epsilon.$

Scriviamo la (2) in corrispondenza di $\epsilon = \frac{l-m}{2}$ e trovo che:

$$preso \overline{\overline{n}}_1 \in \mathbb{N} : \forall n > \overline{\overline{n}}_1 \Rightarrow m - \frac{l-m}{2} < a_n < m + \frac{l-m}{2}$$
 (4).

Se prendo $n > \max\{\overline{n}_1, \overline{\overline{n}}_1\}$ valgono contemporaneamente la 3 e la 4.

Pertanto possiamo scrivere:

$$l - \frac{l - m}{2} < a_n < m + \frac{l - m}{2}$$
. Segue $\frac{2l - l + m}{2} < a_n < \frac{2m - l + m}{2} \implies \frac{l + m}{2} < \frac{l + m}{2} \implies \text{ASSURDO}$.

Teorema 7.2 (Teorema della permanenza del segno)

Sia $\lim_{n \to +\infty} a_n = l \in \overline{\mathbb{R}}$. Allora:

Se l > 0 oppure $l = +\infty$ allora $\exists \overline{n} \in \mathbb{N} : a_n > 0 \forall n > \overline{n}$.

Se
$$l < 0$$
 oppure $l = -\infty$ allora $\exists \overline{n} \in \mathbb{N} : a_n < 0 \forall n > \overline{n}$.

Dimostrazione.

(1) Se
$$\lim_{n \to +\infty} a_n = -\infty \stackrel{\text{def}}{\Leftrightarrow} \forall k > 0 \exists \overline{n} \in \mathbb{N} : \forall n > \overline{n} \Rightarrow a_n < -k$$
.

(2) Se
$$\lim_{n \to +\infty} a_n = l \in \mathbb{R} \stackrel{\text{def}}{\Leftrightarrow} \forall \epsilon > 0 \; \exists \; \overline{n} \in \mathbb{N} : \forall \; n > \overline{n} \Rightarrow l - \epsilon < a_n < l + \epsilon.$$

Poiché l > 0 posso prendere $0 < \epsilon < l$. Scrivo la (2) in corrispondenza a $0 < \epsilon < l$ e trovo $\overline{n} \in \mathbb{N} : \forall n > \overline{n} \Rightarrow l - \epsilon < a_n < l + \epsilon$. Poiché $l - \epsilon > 0$ (per la scelta di ϵ) ho la tesi.

Corollario 7.2.1

Sia $\{a_n\}$ una successione tale che: $a_n = \begin{cases} > 0 & per infiniti casi di n \\ < 0 & per infiniti casi di n \end{cases}$ Allora $\exists \lim_{n \to +\infty} a_n \Rightarrow \lim_{n \to +\infty} a_n = 0.$

Dimostrazione. Se fosse $\lim_{n\to+\infty} a_n = l \text{ con } l > 0 (l < 0)$ oppure $l = +\infty (-\infty)$ per il teorema della permanenza del segno $\exists \ \overline{n} \in \mathbb{N} : a_n > 0 (a_n < 0) \ \forall \ n > \overline{n}$. ASSURDO.

Esempio 7.2

Se $\{(-1)^n\}$ fosse dotata di limite per il corollario precedente dovrebbe essre: $\lim_{n\to +\infty} (-a)^n = 0$ che per definizione: $\forall \ \epsilon > 0 \ \exists \ \overline{n} \in \mathbb{N} : \forall \ n > \overline{n} \Rightarrow |(-1)^n - 0| < \epsilon$. Se prendo $\epsilon = \frac{1}{2}$ e determino $\overline{n} \in \mathbb{N} : |(-1)^n - 0| < \frac{1}{2}$. ASSURDO.

Teorema 7.3 (Primo teorema del confronto (dei carabinieri)

Siano $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ tre successioni.

Supponiamo che:

1.
$$\exists \overline{n} \in \mathbb{N} : b_n \leqslant a_n \leqslant c_n \ \forall n > \overline{n}$$
.

2.
$$\lim_{n \to +\infty} b_n \leqslant \lim_{n \to +\infty} c_n = l \in \mathbb{R}$$
.

Allora

$$\lim_{n \to +\infty} a_n = l$$

Dimostrazione.

Bisogna provare che $\forall \epsilon > 0 \; \exists \; \overline{n} \in \mathbb{N} : \; \forall \; n > \overline{n} \Rightarrow l - \epsilon < a_n < l + \epsilon.$

Fisso $\epsilon > 0$

Poiché $\lim_{n \to +\infty} b_n = l$ allora $\forall \epsilon > 0 \; \exists \; n_1 \in \mathbb{N} : \; \forall \; n > n_1 \Rightarrow l - \epsilon < b_n < l + \epsilon.$

Analogamente.

 $\lim_{n \to +\infty} c_n = l \text{ allora } \forall \epsilon > 0 \ \exists \ n_2 \in \mathbb{N} : \ \forall \ n > n_2 \Rightarrow l - \epsilon < c_n < l + \epsilon.$

Allora segue che $l - \epsilon < b_n \leqslant a_n \leqslant c_n < l + \epsilon$.

Trovo quindi che $l - \epsilon < a_n < l + \epsilon$.

Posto $n_o = \max{\{\overline{n}, n_1, n_2\}}$ ho la tesi.

Teorema 7.4 (Secondo teorema del confronto)

Siano $\{a_n\}$, $\{b_n\}$ due successioni numeriche. Supponiamo che:

1.
$$\exists \overline{n} \in \mathbb{N} : a_n \geqslant b_n \ \forall \ n > \overline{n}$$
.

2.
$$\lim_{n \to +\infty} b_n = +\infty.$$

Allora:

$$\lim_{n \to +\infty} a_n = +\infty$$

Teorema 7.5 (Terzo teorema del confronto)

Siano $\{a_n\}$, $\{b_n\}$ due successioni numeriche. Supponiamo che:

1.
$$\exists \overline{n} \in \mathbb{N} : a_n \leqslant b_n \ \forall \ n > \overline{n}$$
.

$$2. \lim_{n \to +\infty} b_n = -\infty.$$

Allora:

$$\lim_{n \to +\infty} a_n = -\infty$$

7.1 Carattere di una successione

Sia $\{a_n\}$ una successione di numeri reali. Vogliamo studiare il carattere di $\{|a_n|\}$.

Teorema 7.6

$$Se \lim_{n \to +\infty} a_n = l \in \mathbb{R} \Rightarrow \lim_{n \to +\infty} |a_n| = |l|.$$

Non vale il viceversa.

Basta considerare la sucessione $\{(-1)^n\} \forall n \in \mathbb{N}$.

Il valore assoluto $|a_n|=1 \ \forall n \in \mathbb{N}$. Questo implica che $\lim_{n\to +\infty} |a_n|=1$.

FALSO perché non esiste il $\lim_{n\to+\infty} a_n$.

Teorema 7.7

$$Se \lim_{n \to +\infty} a_n = +\infty(-\infty) \in \mathbb{R} \Rightarrow \lim_{n \to +\infty} |a_n| = +\infty.$$

Non vale il viceversa.

Basta considerare la sucessione $\{(-1)^n n\} \ \forall n \in \mathbb{N}$.

Non esiste il $\lim_{n \to +\infty} (-1)^n n$ perché $(-1)^n n$ è alternante quindi ha infiniti termini positivi e negativi. Se fosse dotata di limite dorebbe essere $\lim_{n \to +\infty} (-1)^n n = 0$ se e solo se $\lim_{n \to +\infty} |(-1)^n n| = 0$, ASSURDO.

Definizione 7.6

Se il $\lim_{n \to +\infty} a_n = 0$ diremo che $\{a_n\}$ è **infinitesima**.

Definizione 7.7

Se il $\lim_{\substack{n \to +\infty \\ n \to +\infty}} a_n = +\infty$ diremo che $\{a_n\}$ è **infinitivamente grande** e scriveremo $\lim_{\substack{n \to +\infty \\ n \to +\infty}} a_n = \infty$.

Teorema 7.8

 $Se \lim_{n \to +\infty} a_n = l \in \mathbb{R} \Rightarrow \{a_n\} \ e \ limitata.$

Dimostrazione.

$$\lim_{n \to +\infty} a_n = l \stackrel{\text{def}}{\Leftrightarrow} \forall \ \epsilon > 0 \ \exists \ \overline{n} \in \mathbb{N} : \forall n > \overline{n} \Rightarrow l - \epsilon < a_n < l + \epsilon.$$

Fisso $\epsilon > 0$ e determino $\overline{n} : l - \epsilon < a_n < l + \epsilon \forall n > \overline{n}$.

Sia $k = \max\{a_1, a_2, ..., a_{\overline{n}}, l+\epsilon\}$. k esiste perché $\{a_1, a_2, ..., a_{\overline{n}}, l+\epsilon\}$ è finito. Infatti ha $\overline{n} + 1$ elementi. Inoltre $k \ge a_1$. $k \ge a_1, ..., k \ge a_{\overline{n}}$. $k \ge l+\epsilon \ge a_n$ se $n > \overline{n}$. Quindi $k \ge a_n \ \forall n \in \mathbb{N}$. (1).

Analogamente posto $h = \min\{a_1, a_2, ..., a_{\overline{n}}, l - \epsilon\}$ trovo che $h \leqslant a_1, ..., h \leqslant a_{\overline{n}} \in h \leqslant l - \epsilon \leqslant a_n \ \forall n > \overline{n}$. Quindi $h \leqslant a_n \ \forall n \in \mathbb{N}$.(2).

Da (1) e (2) $\Rightarrow h \leqslant a_n \leqslant k \ \forall n \in \mathbb{N}$. Quindi per definizione a_n è limitata.

Teorema 7.9

Se
$$\lim_{n \to +\infty} a_n = +\infty \Rightarrow i) \sup\{a_n\} = +\infty$$

 $ii) \inf\{a_n\} \in \mathbb{R}$

Teorema 7.10

Se
$$\lim_{n \to +\infty} a_n = -\infty \Rightarrow i) \sup\{a_n\} \in \mathbb{R}$$

 $ii) \inf\{a_n\} = -\infty$

7.2 Operazioni sui limiti

Siano $\{a_n\}$, $\{b_n\}$ due successioni numeriche.

Teorema 7.11

Se
$$\lim_{n \to +\infty} a_n = l \in \mathbb{R}e \lim_{n \to +\infty} b_n = l \in \mathbb{R} \Rightarrow ii$$
 $\lim_{n \to +\infty} (a_n + b_n) = l + m$ ii $\lim_{n \to +\infty} (a_n \cdot b_n) = l \cdot m$

Dimostrazione.

Ipotesi:

(1)
$$\lim_{n \to +\infty} a_n = l \stackrel{\text{def}}{\Leftrightarrow} \forall \epsilon > 0 \ \exists \ n_1 \in \mathbb{N} : \forall n > n_1 \Rightarrow |a_n - l| < \delta$$

(2)
$$\lim_{n \to +\infty} b_n = m \stackrel{\text{def}}{\Leftrightarrow} \forall \epsilon > 0 \ \exists \ n_2 \in \mathbb{N} : \forall n > n_2 \Rightarrow |b_n - m| < \delta$$

Tesi:

•
$$\lim_{n \to +\infty} a_n \cdot b_n = l \cdot m \stackrel{\text{def}}{\Leftrightarrow} \forall \epsilon > 0 \ \exists \ n_3 \in \mathbb{N} : \forall n > n_3 \Rightarrow |a_n \cdot b_n - l \cdot m| < \epsilon$$

Fisso $\epsilon > 0$ nella tesi.

Consideriamo
$$|a_n \cdot b_n - l \cdot m| = |a_n \cdot b_n - l \cdot b_n + l \cdot b_n - l \cdot m| = |(a_n - l)b_n + (b_n - m)l| \le |(a_n - l)b_n)| + |(b_n - m)l| = |a_n - l| \cdot |b_n| \cdot |b_n - m| \cdot |l| \le H \cdot |a_n - l| + (|l| + 1) \cdot |b_n - m|$$
. (*)

Poiché b_n è convergente, segue che b_n è limitata. Cioè:

$$\exists H > 0 : |b_n| \leqslant H \ \forall n \in \mathbb{N}.$$

$$\exists H > 0 : |b_n| \leqslant H \ \forall n \in \mathbb{N}.$$
Scrivo la (1) con $\delta = \frac{\epsilon}{2H}$ e trovo $n_1 \in \mathbb{N} : |a_n - l| < \frac{\epsilon}{2H} \ \forall n > n_1.$ (3).
Scrivo la (2) con $\delta = \frac{\epsilon}{2(|l|+1)}$ e trovo $n_2 \in \mathbb{N} : |b_n - l| < \frac{\epsilon}{2(|l|+1)} \ \forall n > n_2.$
(4).

Se $n > \max(n_1, n_2)$ valgono la (3) e la (4).

E quindi dalla (*) si ha:

$$|a_n b_n - lm| < H \cdot \frac{\epsilon}{2H} + (|l| + 1) \cdot \frac{\epsilon}{2(|l| + 1)} = \epsilon.$$

Posto $n_3 = \max(n_1, n_2) \stackrel{\text{def}}{\Leftrightarrow} \forall \epsilon > 0 \ \exists \ n_3 \in \mathbb{N} : \forall n > n_3 \Rightarrow |a_b b_n - le| < \epsilon. \quad \square$

Conseguenza 7.1

- $Se \lim_{n \to +\infty} a_n = l \in \mathbb{R} \ e \ k \in \mathbb{R} \Rightarrow \lim_{n \to +\infty} k \cdot a_n = k \cdot l.$
- $Se \lim_{n \to +\infty} a_n = l \in \mathbb{R}, \lim_{n \to +\infty} b_n = m \in \mathbb{R} \ e \ k_1, k_2 \in \mathbb{R} \Rightarrow \lim_{n \to +\infty} k_1 \cdot a_n + k_2 \cdot b_n = 0$ $k_1 \cdot l + k_2 \cdot m$.

Teorema 7.12 (Terorema della permanenza del segno generalizzato) Siano $\lim_{n \to +\infty} a_n = l \in \mathbb{R} \ e \ l < m(l > m).$

Allora:

$$\exists \overline{n} \in \mathbb{N} : a_n < m \ \forall n > \overline{n}.$$

Dimostrazione. Consideriamo $\{a_n - m\}$. Allora il $\lim_{n \to +\infty} a_n - m = l - m < m$ $0 \Rightarrow \exists n_1 \in \mathbb{N} : a_n - m < 0 \ \forall n > n_1$. Si ha quindi la tesi.

Teorema 7.13

Se $\lim_{n \to +\infty} a_n = +\infty$ e $\{b_n\}$ è limitata inferiormente.

Allora:

$$\lim_{n \to +\infty} (a_n + b_n) = +\infty.$$

Teorema 7.14

Se $\lim_{n \to +\infty} a_n = -\infty$ e $\{b_n\}$ è limitata supeiriormente.

Allora:

$$\lim_{n \to +\infty} (a_n + b_n) = -\infty.$$

Conseguenza 7.2

$$Se \lim_{n \to +\infty} a_n = +\infty \ e \lim_{n \to +\infty} b_n = l \in \mathbb{R}.$$

Allora:

$$\lim_{n \to +\infty} \left(a_n + b_n \right) = +\infty.$$

Oservazione. Se lim $b_n = l \in \mathbb{R}$ o lim $b_n = +\infty$ allora $\{b_n\}$ è limitata inferiormente.

Conseguenza 7.3

$$Se \lim_{n \to +\infty} a_n = +\infty \ e \lim_{n \to +\infty} b_n = +\infty.$$

Allora:

$$\lim_{n \to +\infty} (a_n + b_n) = +\infty.$$

Oservazione. Se lim $b_n = l \in \mathbb{R}$ o lim $b_n = -\infty$ allora $\{b_n\}$ è limitata superiormente.

Teorema 7.15

$$Se \lim_{n \to +\infty} a_n = +\infty(-\infty) \ e \lim_{n \to +\infty} b_n = l \in \mathbb{R}.$$

Allora:

$$\lim_{n \to +\infty} (a_n \cdot b_n) = \begin{cases} +\infty(-\infty) & \text{se } l > 0 \\ ? & (\text{F.I.}) & \text{se } l = 0 \\ -\infty(+\infty) & \text{se } l < 0 \end{cases}$$

$$Se \lim_{n \to +\infty} a_n = +\infty(-\infty) e \lim_{n \to +\infty} b_n = -\infty.$$

Allora:

$$\lim_{n \to +\infty} (a_n + b_n) = ? \text{ (F.I.) } +\infty - \infty \text{ è una forma indeterminata.}$$

Teorema 7.16

Se
$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = +\infty(-\infty)$$
 allora $\lim_{n \to +\infty} (a_n \cdot b_n) = +\infty$.

Teorema 7.17

$$Se \lim_{n \to +\infty} a_n = +\infty \ e \lim_{n \to +\infty} b_n = -\infty \ allora \lim_{n \to +\infty} (a_n \cdot b_n) = -\infty.$$

Dimostrazione (Forma Indeterminata)

DA COMPLETARE

Teorema 7.18

Il prodotto tra una successione infinitesima e una successione limitata è a sua volta un'infinitesima.

Siano
$$\lim_{n\to+\infty} a_n = 0$$
 e $\{b_n\}$ limitata. Allora

$$\lim_{n \to +\infty} (a_n \cdot b_n) = 0 \text{ (successione infinitesima)}.$$

Dimostrazione.

Se il
$$\lim_{n \to +\infty} a_n = 0$$
 allora anche il $\lim_{n \to +\infty} |a_n| = 0$. (1)

Per ipotesi la successione $\{b_n\}$ è limitata, quindi $\exists H > 0 : |b_n| \leqslant H \ \forall n \in \mathbb{N}$. (2)

Ne viene che $0 \leq |a_n \cdot b_n| = |a_n| \cdot |b_n| \leq H \cdot |a_n| \ \forall n \in \mathbb{N}.$

Per il teorema dei carabinieri, il $\lim_{n \to +\infty} |a_n \cdot b_n| = 0$.

7.3 Successione reciproca

Sia $\{a_n\}$ una successione numerica tale che $a_n \neq 0 \ \forall n \in \mathbb{N}$.

La successione $\left\{\frac{1}{a_n}\right\}$ si chiama successione reciproca di $\{a_n\}$

1.
$$\lim_{n \to +\infty} a_n = l \in \mathbb{R} \ l \neq 0 \Rightarrow \lim_{n \to +\infty} \frac{1}{n} = \frac{1}{l}$$
.

2.
$$\lim_{n \to +\infty} a_n = 0 \implies \lim_{n \to +\infty} \left| \frac{1}{a_n} \right| = +\infty.$$

3.
$$\lim_{n \to +\infty} a_n = +\infty \implies \lim_{n \to +\infty} \frac{1}{a_n} = 0.$$

7.4 Successione quoziente

Siano $\{a_n\}$ e $\{b_n\}$ due successioni numeriche con $b_n \neq 0 \forall n \in \mathbb{N}$.

La successione $\left\{\frac{a_n}{b_N}\right\}$ si chiama successione rapporto o quoziente tra $\{a_n\}$ e $\{b_n\}$.

7.5 Limiti Notevoli

 $\{n^{\alpha}\}\ \mathbf{con}\ \alpha\in\mathbb{R}$

$$\lim_{n \to +\infty} n^{\alpha} = \begin{cases} +\infty & \text{se } \alpha > 0 \\ 1 & \text{se } \alpha = 0 \\ 0 & \text{se } \alpha < 0 \end{cases}$$

 $\{a^n\}$ con $a \in \mathbb{R}$

$$\lim_{n \to +\infty} a^n = \begin{cases} +\infty & \text{se } a > 1\\ 1 & \text{se } a = 1\\ 0 & \text{se } -1 < a < 1\\ \end{cases}$$

$$\frac{1}{2} \quad \text{se } a \leq 1$$

 $\{n^n\}$

 $\forall n \in \mathbb{N}$ per il secondo teorema del confronto si ha:

$$\lim_{n\to +\infty} n^n = +\infty$$

 $\{n!\}$

 $\forall n \in \mathbb{N}$ per il secondo teorema del confronto si ha:

$$\lim_{n \to +\infty} n! = +\infty$$

7.6 Limiti di successioni notevoli

Successione polinomiale

$$\lim_{n \to +\infty} \left[a_0 n^p + a_1 n^{p-1} + \ldots + a_p \right] = \lim_{n \to +\infty} n^p \left[a_0 + \frac{a_1}{n} + \frac{a_2}{n^2} + \ldots + \frac{a_p}{n^p} \right] = \begin{cases} +\infty & \text{se } a_0 > 0 \\ -\infty & \text{se } a_0 < 0 \end{cases}$$

Successione polinomiale fratta

$$\lim_{n \to +\infty} \frac{a_0 n^p + a_1 n^{p-1} + \ldots + a_p}{b_0 n^q + b_1 n^{q-1} + \ldots + a_q} = \lim_{n \to +\infty} \frac{n^p \left[a_0 + \frac{a_1}{n} + \frac{a_2}{n^2} + \ldots + \frac{a_p}{n^p} \right]}{n^q \left[b_0 + \frac{b_1}{n} + \frac{b_2}{n^2} + \ldots + \frac{b_q}{n^q} \right]} =$$

$$= \lim_{n \to +\infty} n^{p-q} \cdot \frac{\left[a_0 + \frac{a_1}{n} + \frac{a_2}{n^2} + \dots + \frac{a_p}{n^p}\right]}{\left[b_0 + \frac{b_1}{n} + \frac{b_2}{n^2} + \dots + \frac{b_q}{n^q}\right]} = \begin{cases} +\infty & \text{se } p > q, \frac{a_0}{b_0} > 0 \\ -\infty & \text{se } p > q, \frac{a_0}{b_0} < 0 \\ 0 & \text{se } p < q \\ \frac{a_0}{b_0} & \text{se } p = q \end{cases}$$

7.7 Limite delle successioni monotone

Teorema 7.19 (Delle successioni monotone)

Ogni successione monotona è regolare. In particolare, se $\{a_n\}$ è crescente (s. crescente) allora il $\lim_{n\to+\infty} a_n = \sup\{a_n\}$. Invece se $\{a_n\}$ è decrescente (s. decrescente) allora il $\lim_{n\to+\infty} a_n = \inf\{a_n\}$.

Ipotesi: $\{a_n\}$ è crescente.

Tesi:
$$\lim_{n\to+\infty} a_n = \sup\{a_n\}.$$

Distinguiamo due casi:

Caso 1.

Sia sup $\{a_n\} \in \mathbb{R}$ e sia $L = \sup 1\{a_n\}$. Bisogna provare che:

 $\lim_{\substack{n \to +\infty \\ Fisso \ \epsilon > 0}} a_n = L \stackrel{\text{def}}{\Leftrightarrow} \forall \ \epsilon > 0 \ \exists \ \overline{n} \in \mathbb{N} : n > \overline{n} \Rightarrow L - \epsilon < a_n < L + \epsilon$ (1).

Fisso
$$\epsilon > 0$$
.

$$L = \sup\{a_n\} \Leftrightarrow \begin{cases} i) & a_n \leqslant L \forall n \in \mathbb{N} \Rightarrow a_n \leqslant L + \epsilon \ \forall n \in \mathbb{N} \ (2) \end{cases}$$

$$ii) \quad \forall \ \sigma > 0 \exists n_0 \in \mathbb{N} : a_{n_0} > l - \sigma$$

Scrivo la ii) con $\sigma = \epsilon$ e determino $n_0 \in \mathbb{N}$: $a_{n_0} > L - \epsilon$. Se prendo $n > n_0 \Rightarrow a_n \geqslant a_{n_0} > L - \epsilon$ (3).

Dalla (2) + (3) $\Rightarrow L - \epsilon < a_n < L + \epsilon \quad \forall n > n_0$. Se prendo $\overline{n} = n_0$ ho la tesi.

Caso 2.

Sia sup $\{a_n\} = +\infty$. Provo che $\lim_{n \to +\infty} a_n = +\infty \stackrel{\text{def}}{\Leftrightarrow} \forall k > 0 \; \exists \; \overline{n} \in \mathbb{N} : \forall n > \overline{n} \Rightarrow a_n > k$.

Fisso k > 0. k non è maggiorante di $\{a_n\} \Leftrightarrow \exists n_0 \in \mathbb{N} : a_{n_0} > k$.

Poiché $\{a_n\}$ è crescente, se $n > n_0 \Rightarrow a_n > a_{n_0} > k$.