ATUS Clustering

Joe Marlo

May 23 2020

Contents

EDA	1
EDA	3
Transformations	4
PCA	7
Resampling the data using survey weights	8
Clustering 1	10
Hierarchical cluster	10
kmeans clustering	17
Model based clustering	
ibrary(tidyverse)	
ibrary(pander)	
ibrary(mclust)	
ibrary(NbClust)	
set.seed(44)	
theme_set(theme_minimal())	
utus_long <- read_tsv('Data/atus.tsv')	
<pre>lemographics <- read_tsv('Data/demographic.tsv')</pre>	

EDA

Only contains weekend observations

Activity	Type	Mean	Participation rate
Sleep	Continuous	556	1
Socializing, Relaxing, and Leisure	Continuous	351	0.96
Household Activities	Continuous	137	0.8
Eating and Drinking	Continuous	80	0.95
Work	Continuous	76	0.23
Consumer Purchases	Continuous	49	0.45
Personal Care	Continuous	46	0.76
Caring For Household Member	Continuous	34	0.26
Sports, Exercise, and Recreation	Continuous	26	0.18
Religious and Spiritual	Continuous	24	0.17
Other	Continuous	22	0.28
Caring For Nonhousehold Members	Continuous	15	0.14
Volunteer	Continuous	12	0.07
Education	Continuous	8	0.04
Professional & Personal Care Services	Continuous	4	0.04
Total	-	1440	_

Demographics

EDA

Feature densities (un-transformed)

Transformations

```
# log transform the data
cats_to_cube <- unique(atus_long$description)[</pre>
  !(unique(atus_long$description) %in% c('Socializing, Relaxing, and Leisure', 'Sleep'))]
atus_cube_root <- atus_long %>%
  filter(description %in% cats_to_cube) %>%
  group_by(description) %>%
  mutate(value = value^(1/3)) %>%
  ungroup() %>%
  bind_rows(
    atus_long %>%
      filter(!(description %in% cats_to_cube))
  )
atus_cube_root %>%
  ggplot(aes(x = value)) +
  geom_density() +
  facet_wrap( ~ description, scales = "free") +
  labs(title = 'Feature densities (cube-root-transformed)',
       x = NULL,
       y = NULL)
```

Feature densities (cube-root-transformed)

description	variance
Caring For Household Member	4.7
Caring For Nonhousehold Members	2.41
Consumer Purchases	5.6
Eating and Drinking	1.92
Education	1.3
Household Activities	6.33
Other	3.52
Personal Care	3.19
Professional & Personal Care Services	0.71
Religious and Spiritual	3.71
Sleep	19103
Socializing, Relaxing, and Leisure	47226
Sports, Exercise, and Recreation	3.79
Volunteer	1.88
Work	8.04

```
# scale the data ??
atus_scaled <- atus_cube_root %>%
  group_by(description) %>%
  mutate(value = scale(value)) %>%
  ungroup()

# check spread of the data
atus_scaled %>%
  group_by(description) %>%
  summarize(variance = var(value)) %>%
  pander::pander(justify = c('left', 'right'), round = 2)
```

description	variance
Caring For Household Member	1
Caring For Nonhousehold Members	1
Consumer Purchases	1
Eating and Drinking	1
Education	1
Household Activities	1
Other	1
Personal Care	1
Professional & Personal Care Services	1
Religious and Spiritual	1
Sleep	1
Socializing, Relaxing, and Leisure	1
Sports, Exercise, and Recreation	1
Volunteer	1
Work	1

Feature densities (cube and scaled transformed)

PCA

```
# run PCA
atus_pca <- prcomp(atus_wide)
summary(atus_pca)$importance %>%
pander::pander(justify = c('left', rep('right', 15)), round = 2)
```

Table 4: Table continues below

	PC1	PC2	PC3	PC4	PC5	PC6	PC7
Standard deviation	1.28	1.17	1.13	1.09	1.05	1.03	1
Proportion of Variance	0.11	0.09	0.09	0.08	0.07	0.07	0.07
Cumulative Proportion	0.11	0.2	0.29	0.37	0.44	0.51	0.58

	PC8	PC9	PC10	PC11	PC12	PC13	PC14	PC15
Standard deviation	0.99	0.98	0.97	0.94	0.93	0.92	0.84	0.42
Proportion of Variance	0.07	0.06	0.06	0.06	0.06	0.06	0.05	0.01

	PC8	PC9	PC10	PC11	PC12	PC13	PC14	PC15
Cumulative Proportion	0.64	0.71	0.77	0.83	0.89	0.94	0.99	1

```
pca_plot <- atus_pca$x[ , 1:3]
# rgl::plot3d(pca_plot)</pre>
```

Resampling the data using survey weights

```
# function to scale [0.1]
scale_01 \leftarrow function(x) (x - min(x)) / (max(x) - min(x))
# sample using survey weights
total_rows <- nrow(atus_wide)</pre>
sample_size <- 10000</pre>
rows_to_keep <- sample(1:total_rows, size = sample_size, prob = scale_01(demographics$survey_weight), r
IDs_kept <- atus_scaled %>%
  pivot_wider(values_from = value, names_from = description) %>%
  select(ID) %>%
  .[rows_to_keep,]
atus_resampled <- atus_wide[rows_to_keep,]</pre>
# pairs plot of resampled data
# as_tibble(atus_resampled) %>%
# GGally::ggpairs(mapping = aes(alpha = 0.2))
# correlations
corr_matrix <- cor(atus_resampled)</pre>
corr_matrix[lower.tri(corr_matrix)] %>% density() %>% plot(main = 'Density of correlations between acti
```

Density of correlations between activities


```
# run PCA
atus_pca <- prcomp(atus_resampled)
summary(atus_pca)$importance %>%
    pander::pander(justify = c('left', rep('right', 15)), round = 2)
```

Table 6: Table continues below

	PC1	PC2	PC3	PC4	PC5	PC6	PC7
Standard deviation	1.28	1.21	1.15	1.1	1.07	1.04	1.02
Proportion of Variance	0.11	0.1	0.09	0.08	0.08	0.07	0.07
Cumulative Proportion	0.11	0.2	0.29	0.37	0.45	0.52	0.59

	PC8	PC9	PC10	PC11	PC12	PC13	PC14	PC15
Standard deviation	0.99	0.98	0.96	0.93	0.92	0.87	0.82	0.41
Proportion of Variance	0.07	0.06	0.06	0.06	0.06	0.05	0.04	0.01
Cumulative Proportion	0.66	0.72	0.78	0.84	0.89	0.94	0.99	1

Clustering

Hierarchical cluster

```
# distance matrix for features
dist_sc <- dist(atus_resampled, method = 'euclidean')</pre>
# try single, centroid, and ward (D2) linkage hier clustering
# hcl_single <- hclust(d = dist_sc, method = 'single')</pre>
# hcl_centroid <- hclust(d = dist_sc, method = 'centroid')</pre>
hcl_ward <- hclust(d = dist_sc, method = 'ward.D2')</pre>
library(dendextend)
# dev.off()
\# par(mfrow = c(3, 1))
# # nearest neighbors method
# plot(hcl_single, hang = -1, main = 'Single Linkage',
       labels = FALSE, xlab = '', sub = '')
# # groups centroid
# plot(hcl_centroid, hang = -1, main = 'Centroid Linkage',
       labels = FALSE, xlab = '', sub = '')
# Ward's minimum variance method,
# with dissimilarities are squared before clustering
dend <- as.dendrogram(hcl_ward)</pre>
hcl_k <- 3
dend_col <- color_branches(dend, k = hcl_k)</pre>
plot(dend_col, main = paste0('Ward (D2) Linkage: K = ', hcl_k))
```

Ward (D2) Linkage: K = 3


```
groupings <- cutree(hcl_ward, 3)
# plot the clusters in PC space
atus_pca$x[, 1:2] %>%
   as_tibble() %>%
   mutate(Cluster = as.factor(groupings)) %>%
   ggplot(aes(x = PC1, y = PC2, color = Cluster)) +
   geom_point(alpha = 0.3) +
   labs(title = 'Hierarchical Ward D2 cluster solution in PC space',
        subtitle = 'Three cluster solution')
```

Hierarchical Ward D2 cluster solution in PC space

Three cluster solution

Examine the demographics through the clusters $\,$

Demographics split by cluster

Optimizing hierarchical cluster sizes

```
# get optimal cluster sizes: c(g)
hcl_ch <- NbClust(
  data = atus_resampled,
  max.nc = 14,
  method = 'ward.D2',
  index = 'ch'
)
hcl_ch$All.index %>% plot(type = 'l', x = 2:14, main = 'Hierarchical: C(g) index', xlab = 'n clusters')
```

Hierarchical: C(g) index


```
# get optimal cluster sizes: silhouette width
hcl_silhouette <- NbClust(
  data = atus_resampled,
  max.nc = 14,
  method = 'ward.D2',
  index = 'silhouette'
)
hcl_silhouette$All.index %>% plot(type = 'l', x = 2:14, main = 'Hierarchical: Silhouette', xlab = 'n cl'
```

Hierarchical: Silhouette


```
# plot the clusters in PC space
atus_pca$x[, 1:2] %>%
   as_tibble() %>%
   mutate(Cluster = as.factor(hcl_ch$Best.partition)) %>%
   ggplot(aes(x = PC1, y = PC2, color = Cluster)) +
   geom_point(alpha = 0.3) +
   labs(title = 'Hierarchical Ward D2 cluster solution in PC space',
        subtitle = paste0(hcl_ch$Best.nc[[1]], ' cluster solution'))
```

Hierarchical Ward D2 cluster solution in PC space 8 cluster solution

Examine the demographics through the clusters

Demographics split by cluster

Hierarchical Ward D2 cluster solution

kmeans clustering

```
# get optimal cluster sizes
km_ch <- NbClust(
   data = atus_resampled,
   max.nc = 20,
   method = 'kmeans',
   index = 'ch'
)
km_ch$All.index %>% plot(type = 'l', x = 2:20, main = 'Kmeans: C(g) index', xlab = 'n clusters')
```

Kmeans: C(g) index


```
# get optimal cluster sizes
km_silhouette <- NbClust(
  data = atus_resampled,
  max.nc = 20,
  method = 'kmeans',
  index = 'silhouette'
)
km_silhouette$All.index %>% plot(type = 'l', x = 2:20, main = 'Kmeans: Silhouette', xlab = 'n clusters'
```

Kmeans: Silhouette

Examine the demographics through the clusters

Demographics split by cluster

K-means cluster solution

Model based clustering

```
# run model
mcl <- Mclust(atus_resampled)</pre>
summary(mcl)
## Gaussian finite mixture model fitted by EM algorithm
##
## Mclust EEV (ellipsoidal, equal volume and shape) model with 8 components:
##
##
  log-likelihood
                      n df
                                   BIC
                                           ICL
         -100741.5 10000 982 -210527.5 -210728
##
##
## Clustering table:
           2
              3
                    4
                          5
## 989 406 1935 98 753 5206 42 571
plot(mcl, what = "BIC")
```


factoextra::fviz_mclust(mcl, "classification", geom = "point", alpha = 0.3)

Examine the demographics through the clusters

Demographics split by cluster

Model-based cluster solution

