CSE6706: Advanced Digital Image Processing

Dr. Md. Monirul Islam

Topics

- Image Processing Basics
- Data Structure
- Image Enhancement

Image Enhancement

Image Enhancement using Histogram Processing

Histogram

Image Histogram

Assuming image has L gray levels,

a histogram is an array, h:

bin(i) or h(i) contains the number of pixels with gray level i

$$h(r_k) = n_k$$

Image Histogram

An image

Histogram:

Bin pos.: 0 1 2 3 4 5 6 7 8 9

1 1 1 0 4 0 2 3 2	2
-------------------	---

Image Histogram

a histogram is an array, h:

Bins are divided by total count

$$p(r_k) = n_k / n$$

where,
$$n = \sum_{k} n_k$$

An image

Histogram:

Bin pos: 0 1 2 3 4 5 6 7 8 9

$$p(r_k) = n_k / n$$

Normalized histogram is more like probabilities

 $p(r_k)$: how likely a pixel will have gray level r_k

- Dark images: bins in the low end
- Bright images: bins in the high end
- Low contrast images: bins in a narrow range
- High contrast images: bins are in the entire range and uniform

Input gray levels

Let

s, r: are all discrete and in [0, L-1]

$$s = T(r)$$
 $0 \le r \le L-1$

- Let, 2 conditions hold:
- T(r): single valued and monotonous in $0 \le r \le L-1$
- $0 \le T(r) \le L 1$ for $0 \le r \le L 1$

- Let,
 - $-p_r(r)$: the normalized histogram of the given image
 - $-p_s(s)$: the normalized histogram of the output image

- Let,
 - $-p_r(r)$: the normalized histogram of the given image
 - $-p_s(s)$: the normalized histogram of the output image
- We have to find the transformed image so that p_s(s) of the transformed image is uniform

• If $p_r(r)$ and T(r) are known and $T^{-1}(s)$ increases monotonically,

$$p_s(s) = p_r(r) \left| \frac{dr}{ds} \right|$$

Let us try with this transformation function

$$s = T(r) = (L-1) \int_{0}^{r} p_{r}(w) dw$$

Let us try with this transformation function

$$s = T(r) = (L-1) \int_{0}^{r} p_{r}(w) dw$$

Looks like a CDF

• Let us try with this transformation function

$$s = T(r) = (L-1) \int_{0}^{r} p_{r}(w) dw$$

- It also holds conditions:
 - T(r): single valued and monotonous in $0 \le r \le L-1$

$$-0 \le T(r) \le L-1$$
 for $0 \le r \le L-1$

• Let us try with this transformation function

$$s = T(r) = (L-1) \int_{0}^{r} p_{r}(w) dw$$

$$\frac{ds}{dr} = \frac{dT(r)}{dr} = (L-1)\frac{d}{dr} \left[\int_{0}^{r} p_{r}(w)dw \right]$$

$$= (L-1)p_r(r)$$

$$\frac{ds}{dr} = (L-1)p_r(r)$$

$$p_s(s) = p_r(r) \left| \frac{dr}{ds} \right| = p_r(r) \times \frac{1}{(L-1)p_r(r)} = \frac{1}{L-1}$$

$$p_s(s) = \frac{1}{L-1}$$

This means transformation function

$$s = T(r) = (L-1) \int_{0}^{r} p_{r}(w) dw$$

can lead to an equalized image

Next Objective: find the digitized version of

$$s = T(r) = (L-1) \int_{0}^{r} p_{r}(w) dw$$

We know:
$$p_r(r_k) = \frac{n_k}{n}$$

We know:
$$p_r(r_k) = \frac{n_k}{n}$$

Then, the digitized version of

$$s = T(r) = (L-1) \int_{0}^{r} p_{r}(w) dw$$

is

$$S_k = T(r_k) = (L-1)\sum_{j=0}^{j=k} p_r(r_j)$$

We know:
$$p_r(r_k) = \frac{n_k}{n}$$

Then, the digitized version of

$$s = T(r) = (L-1) \int_{0}^{r} p_{r}(w) dw$$

is

$$S_k = T(r_k) = (L-1) \sum_{j=0}^{j=k} p_r(r_j) = (L-1) \sum_{j=0}^{j=k} \frac{n_j}{n}$$

Histogram Equalization

Histogram Equalization

Transfer Functions

Local Histogram Processing

original

Equalized with global histogram

Local Histogram Processing

original

Equalized with global histogram

Equalized with 3X3 local histogram

Arithmetic/Logic operations for Image Enhancement

- Pixel by pixel operation
- Output pixel at (x, y) is calculated from input pixels of the same location, e.g., (x, y)

$$g(x, y) = f(x, y) + h(x, y)$$

$$g(x, y) = f(x, y) - h(x, y)$$

$$g(x, y) = f(x, y) \text{ and } h(x, y)$$

$$g(x, y) = f(x, y) \text{ or } h(x, y)$$

$$g(x, y) = f(x, y) \text{ and } h(x, y)$$
$$g(x, y) = f(x, y) \text{ or } h(x, y)$$

- Used for
 - masking
 - selecting a sub-image or region of interest

$$g(x, y) = f(x, y) \text{ and } h(x, y)$$
$$g(x, y) = f(x, y) \text{ or } h(x, y)$$

Used for

- masking
 - selecting a sub-image or region of interest

AND masking

AND masking

OR masking

$$g(x,y) = f(x,y) - h(x,y)$$

- Used to enhance the differences in detail
- Have many commercial applications

 Used to enhance the differences in detail

$$g(x,y)=f(x,y)-h(x,y)$$

 Used to enhance the differences in detail

$$g(x,y) = f(x,y) - h(x,y)$$

Least 4 bits set to 0

 Used to enhance the differences in detail

$$g(x,y) = f(x,y) - h(x,y)$$

Difference image

 Used to enhance the differences in detail

$$g(x,y) = f(x,y) - h(x,y)$$

- commercial applications
 - Mask mode radiography
 - Used to closely inspect an area under investigation

- Mask mode radiography
- contrast medium goes through blood vessels
- The mask is subtracted from each subsequent photograph

A single diff. image but together with other shots it appears as a video

Subtraction can result a pixel-value, p, in [-255
 255]

$$0 - 255 = -255$$

$$255 - 0 = 255$$

- Subtraction can result a pixel-value, p, in [-255
 255]
- Two ways to handle
 - Replace p with (p + 255)/2
 - Fast implementation
 - But entire range is not utilized

- Subtraction can result a pixel-value, p, in [-255
 255]
- Two ways to handle (method 2)
 - Find the minimum, m, of all pixel values of the diffinage
 - Add -m to all pixel values
 - Find the maximum, M, of the modified pixel values
 - The modified pixels in the range [0 M]
 - Multiply all values by 255/ M

92	93	5	13	
73	91	35	20	
17	41	81	20 19	
40	89	0	60	
				J

252 255 14 36 200 250 96 55 47 112 222 52 110 244 0 165

Min= -10

-(-10) added Max= 93 Multiplied by 255/93 All values in [0 255]

used for noise removal

Noisy image

Original image

used for noise removal

$$g(x,y) = f(x,y) + \eta(x,y)$$
noise

- Let the noise is uncorrelated and has zero average
- We try to approximate f(x, y) from a number of g(x, y)

$$\overline{g}(x,y) = \frac{1}{K} \sum_{i=1}^{K} g_i(x,y)$$

$$\overline{g}(x,y) = \frac{1}{K} \sum_{i=1}^{K} g_i(x,y)$$

As K increases, it can be proved that

$$E\{\overline{g}(x,y)\} = f(x,y)$$

and

$$\sigma_{\overline{g}(x,y)}^2 = \frac{1}{K} \sigma_{\eta(x,y)}^2$$

This image was sent from space craft

Noisy image received

Original Image

For simulation this noisy image is generated with μ =0, σ =64

Averaged images

From 8 images

From128 images

• As *K* increases, both standard deviation and mean decrease

 As K increases, both standard deviation and mean decrease

Issues in Image Averaging

- The value of pixels will be in $[0 \ 255*K]$
- Even, can have negative values due to noise
 - E.g., Gaussian r.v. with 0 mean and nonzero variance

- Similar to neighborhood operation
- A mask or filter or template or kernel or window defines the neighborhood
- Mask size is usually $m \times n$

o
$$m = 2a+1, n = 2b+1$$

• Output pixel value is determined from the pixels under the mask

Pixel under consideration

Image f(x,y)

Image Origin

w(-1,-1)	w(-1,0)	w(-1,1)
w(0,-1)	w(0,0)	w(0,1)
w(1,-1)	w(1,0)	w(1,1)

f(x-1,y-	-1) f(x-1)	1, <i>y</i>) <i>f</i> (<i>x</i> -1	, <i>y</i> +1)
f(x,y-1	1) f(x,	f(x,y)	y+1)
f(x+1,y-	-1) f(x+	1, <i>y</i>) <i>f</i> (<i>x</i> +1	, <i>y</i> +1)

Mask Coefficients

Pixels under Mask

Image Origin

w(-1,-1)	w(-1,0)	w(-1,1)
w(0,-1)	w(0,0)	w(0,1)
w(1,-1)	w(1,0)	w(1,1)

f(x-1,y-1	f(x-1,y)	f(x-1,y+1)	
f(x,y-1)	f(x,y)	<i>f</i> (<i>x</i> , <i>y</i> +1)	
f(x+1,y-1	1) f(x+1,y)	f(x+1,y+1)	

Mask Coefficients

Pixels under Mask

Response of the filter at point (x, y):

$$R = w(-1,-1)f(x-1,y-1) + w(-1,0)f(x-1,y) + \cdots$$
$$\cdots + w(1,0)f(x+1,y) + w(1,1)f(x+1,y+1)$$

w(-1,-1)	w(-1,0)	w(-1,1)		
w(0,-1)	w(0,0)	w(0,1)		
w(1,-1)	w(1,0)	w(1,1)		

f(x-1,y-1)	f(x-1,y)	<i>f</i> (<i>x</i> -1, <i>y</i> +1)	
f(x,y-1)	f(x,y)	<i>f</i> (<i>x</i> , <i>y</i> +1)	
f(x+1,y-1)	f(x+1,y)	<i>f</i> (x+1,y+1)	

Coefficients

Mask

Pixels under Mask

Response of the filter at point (x, y):

$$R = w(-1,-1)f(x-1,y-1) + w(-1,0)f(x-1,y) + \cdots$$
$$\cdots + w(1,0)f(x+1,y) + w(1,1)f(x+1,y+1)$$

w(-1,-1)	w(-1,0)	w(-1,1)		
w(0,-1)	w(0,0)	w(0,1)		
w(1,-1)	w(1,0)	w(1,1)		

**This type of response is called linear filtering

f(x-1,y-	-1) <i>f</i> (<i>x</i> -1	,y) f(x-	·1, <i>y</i> +1)
f(x,y-1	f(x,	y) f(x	(, <i>y</i> +1)
f(x+1,y-	f(x+1)	l,y)	-1, <i>y</i> +1)

Pixels under Mask

Mask Coefficients

response:
$$g(x,y) = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

	<i>2b</i> +1 →									
2a+1	w(-1,-1)	w(-1,0)	w(-1,1)							
	w(0,-1)	w(0,0)	w(0,1)							
	w(1,-1)	w(1,0)	w(1,1)							
ľ										

 $1 \cdot 1$

f(x-1,y-1)	f(x-1,y)	<i>f</i> (<i>x</i> -1, <i>y</i> +1)		
f(x,y-1)	f(x,y)	f(x,y+1)		
f(x+1,y-1)	<i>f</i> (<i>x</i> +1, <i>y</i>)	<i>f</i> (x+1,y+1)		

Mask Coefficients

A more general equation for response:

$$g(x,y) = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Looks like a convolution operation

Called convolution mask

SHIPLE .
A.H. K.
7
Sall March
CSE-BUET

f(x-1,y-1)	f(x-1,y)	<i>f</i> (<i>x</i> -1, <i>y</i> +1)			
f(x,y-1)	f(x,y)	f(x,y+1)			
f(x+1,y-1)	f(x+1,y)	<i>f</i> (x+1,y+1)			

Mask Coefficients

Other form of the response:

$$R = \sum_{i=1}^{9} w_i z_i$$

Or, for a general case of mask size mXn:

$$R = \sum_{i=1}^{mn} w_i z_i$$

Correlation Origin f w 0 0 0 1 0 0 0 0 1 2 3 2 8


```
Correlation

Origin f w
0 0 0 1 0 0 0 0 1 2 3 2 8

0 0 0 1 0 0 0 0
1 2 3 2 8

Starting position alignment
```


Full correlation result
0 0 8 2 3 2 1 0 0 0 0


```
0 0 0 0 1 0 0 0 0 0 0 0 0
  1 2 3 2 8
    - Position after one shift
           - Position after four shifts
0 0 0 0 0 0 0 1 0 0 0 0
            Final position —
        Full correlation result
    0 0 0 8 2 3 2 1 0 0 0
```



```
0 0 0 0 1 0 0 0 0 0 0 0 0
  1 2 3 2 8
    - Position after one shift
           - Position after four shifts
0 0 0 0 0 0 0 1 0 0 0 0
                          1 2 3 2 8
            Final position —
         Full correlation result
    0 0 0 8 2 3 2 1 0 0 0 0
       Cropped correlation result
```

Convolution

Origin f w rotated 180°
0 0 0 1 0 0 0 0 8 2 3 2 1

0 0 0 1 0 0 0 0

8 2 3 2 1 Starting position

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 8 2 3 2 1 Full padded

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 8 2 3 2 1 Position after one shift

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 8 2 3 2 1 Position after 4 shifts

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Final position 8 2 3 2 1

Full convolution result

Cropped convolution result

0 1 2 3 2 8 0 0

2D Correlation and Convolution

```
Padded f
Origin f(x, y)
             w(x, y)
       (a)
                                    (b)
Initial position for w
                                                      Cropped correlation result
                       Full correlation result
```

2D Correlation and Convolution

7	— F	Rot	ate	dw)				Full convolution result						Cropped convolution result							
9	8	7	0	0	0	0	0	0	()	0	0	0	0	0	0	0	0	()	0	0	()	0
6	5	4	0	0	0	0	0	()	()	0	0	0	0	0	0	0	()	()	1	2	3	0
3	2	_1	0	0	0	0	0	0	()	0	0	0	0	()	()	0	()	()	4	5	6	0
0	()	0	0	0	0	0	0	()	()	0	()	1	2	3	0	0	()	()	7	8	9	0
0	0	0	0	1	0	0	0	()	()	0	0	4	5	6	0	0	()	()	0	0	0	0
0	()	0	0	0	0	0	0	()	()	0	()	7	8	9	()	()	()					
0	0	0	0	0	0	0	0	()	()	0	0	0	0	0	0	0	()					
0	0	0	0	0	()	()	0	()	()	0	0	()	0	()	0	()	()					
0	()	0	()	0	0	()	0	0	()	0	()	()	0	()	0	()	()					

Examples of Spatial Filtering: Smoothing or Low Pass Filtering

- Averaging or low pass filtering
- Replace every pixel by the average of its neighbor
- Reduce sharp transitions
- Removes or blurs some of the edges
- Helps to find gross elements, ignoring fine details
- Removes false contouring

Examples of Spatial Filtering: Smoothing or Low Pass Filtering

	1	1	1
$\frac{1}{9}$ ×	1	1	1
,	1	1	1

• Easy to implement: $R = \sum_{i=1}^{9} z_i$

The division is carried out only once

Examples of Spatial Filtering: Smoothing or Low Pass Filtering

	1	2	1
$\frac{1}{16} \times$	2	4	2
	1	2	1

• Easy to implement: $R = \sum_{i=1}^{9} z_{i}$

$$R = \sum_{i=1}^{9} z_i$$

The division is carried out only once

Examples of Spatial Filtering: Smoothing or Low Pass Filtering

$$g(x,y) = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

More general formula for smoothing filter:

$$g(x,y) = \frac{\sum_{s=-at=-b}^{a} \sum_{w=-at=-b}^{b} w(s,t) f(x+s,y+t)}{\sum_{s=-at=-b}^{a} \sum_{w=-at=-b}^{b} w(s,t)}$$

Examples of Spatial Filtering: Smoothing or Low Pass Filtering

• Black square: 3, 5, 9, 15, 25, 35, 45

Border 25 pixels apart

• Circle: 25 pixels, gray: 0, 20, ..., 100%

• Small a's: 10, 12, 24 pixels

Large a: 60 pixels

Bars: 5X100 pixels, Separated by 20 pix

Noise boxes: 50X120 pixels

Examples of Spatial Filtering: Smoothing or Low Pass Filtering

- Black square: 3, 5, 9, 15, 25, 35, 45
- Border 25 pixels apart
- Circle: 25 pixels, gray: 0, 20, ..., 100%
- Small a's: 10, 12, 24 pixels
- Large a: 60 pixels
- Bars: 5X100 pixels, Separated by 20 pix
- Noise boxes: 50X120 pixels
- Smoothing using mask of size 3X3

Examples of Spatial Filtering: Smoothing or Low Pass Filtering

• Black square: 3, 5, 9, 15, 25, 35, 45

Border 25 pixels apart

• Circle: 25 pixels, gray: 0, 20, ..., 100%

• Small a's: 10, 12, 24 pixels

• Large a: 60 pixels

Bars: 5X100 pixels, Separated by 20 pix

Noise boxes: 50X120 pixels

Smoothing using masks of diff sizes

Another Example of Spatial Filtering

- Blurring helps to find major objects
- Removes fine details
- Original image contains lots of small objects

Original image

Another Example of Spatial Filtering

- Blurring helps to find major objects
- Removes fine details
- Original image contains lots of small objects

Original

Smoothed by 15X15 mask

Thresholding after smoothing

Consider this image segment

- Centre pixel value is significantly different from its neighbors
- Smoothing will reduce the centre, but increase the others

10	20	20	
20	100	20	
25	20	15	

Consider this image segment

- Centre pixel value is significantly different from its neighbors
- Smoothing will reduce the centre, but increase the others
- Solution:
 - Centre will be more or less similar to others

10	20	20
20	100	20
25	20	15

- Nonlinear filtering
- Example: median filtering
- Response based on order or ranking
- Example: median filtering
- Adv:
 - Less blurring effect
 - removes random noise
 - Force point to be more like their neighbors
- Policy:
 - Sort the values of enclosed pixels
 - Select the median as output pixel level

Policy:

- Sort the values of enclosed pixels
- Select the median as output pixel level
- Example:
 - Let, 3X3 mask size
 - Let Image pixel values under masks
 - Sorted values: 10, 15, 20, 20, 20, 20, 20, 25, 100
 - Median is 20
 - Output pixel value is 20

10	20	20
20	100	20
25	20	15

Image pixel values under masks

Example of Averaging and Median Filters

Noisy image

Example of Averaging and Median Filters

Noisy image

Noise reduction by Avg. filter

Example of Averaging and Median Filters

Noisy image

Noise reduction by Avg. filter

Noise reduction by median filter

• Isolated dark or light clusters of size smaller than $n^2/2$ are removed by median filter of size nXn

Other Order Statistics filters

- median filter is 50th percentile filter
- Others are:
 - 100th percentile filter or max filter
 - Replace with the brightest pixel in neighborhood
 - Oth percentile filter or min filter
 - Replace with the darkest pixel in neighborhood

Issues in spatial filtering

- When the mask moves closer to the border
 - safe when the center of the mask is at distance (n-1)/2 pixels away from the border
 - Closer to that distance: some rows/columns of the mask are out of image
- Way out:
 - Ignoring the outside columns/rows
 - Padding
 - Zero padding
 - Mirror padding

