2. Introduction to MOS Amplifiers: Concepts and MOS Small-Signal-Model

Sedra & Smith Sec. 5.4 & 5.6

(S&S 5th Ed: Sec. 4.4 & 4.6)

NMOS Transfer Function (1)

> Transfer Function: Relation between output and input voltages.

Circuit Equations:

o NMOS iv characteristics: i_D = $f\left(v_{GS}$, $v_{DS}\right)$

o KVL:
$$v_o = v_{DS} = V_{DD} - R_D \; i_D$$

NMOS Transfer Function (2)

- 2) Just to the right of point A:
- o $V_{OV} = v_{GS} V_t$ is small, so i_D is small.
- o $\,v_{DS}$ = $\,V_{DD}\,$ $-R_{D}\,$ i_{D} is close to $\,V_{DD}\,$
- o Thus, v_{DS} > V_{OV} and NMOS is in saturation.

NMOS Transfer Function (2)

- **3)** As v_{GS} increases:
- o $V_{OV} = v_{GS} V_t$ and i_D become larger;
- o v_{DS} = V_{DD} $-R_D$ i_D becomes smaller.
- $\circ~$ At point B, v_{DS} = V_{OV}

NMOS Transfer Function (2)

- 2) Just to the right of point A:
- o $V_{OV} = v_{GS} V_t$ is small, so i_D is small.
- o v_{DS} = V_{DD} $-R_D$ i_D is close to V_{DD}
- o Thus, v_{DS} > V_{OV} and NMOS is in saturation.

- **3)** As v_{GS} increases:
- o $V_{OV} = v_{GS} V_t$ and i_D become larger;
- o v_{DS} = V_{DD} $-R_D$ i_D becomes smaller.
- o At point B, v_{DS} = V_{OV}

Graphical analysis of NMOS Transfer Function (1)

NMOS *i-v* Characterisitics : $i_D = f(v_{GS}, v_{DS})$

 $KVL: V_{DD} = R_D i_D + v_{DS}$

- KVL equation is a plane in this space.
- \blacktriangleright Intersection of KVL plane with the iv characteristics surface is a line.
- ightharpoonup NMOS operating point is on this line (depending on the value of v_{GS} .)

 \blacktriangleright If we look from the bottom (i_D axis out of the paper), we can see the transfer function.

Graphical analysis of NMOS Transfer Function (6)

 V_{GS}

 v_{GS}

 V_{DD}

Foundation of Transistor Amplifiers (1)

A voltage amplifier requires $v_o/v_i = {\rm const.}$ (2 examples below)

 v_o/v_i can be negative (minus sign represents a 180° phase shift)

MOS transfer function is NOT linear Triode V_{DD} $=V_{GS}|_{_{\mathbf{B}}}-V_{t}$

In saturation, however, transfer function looks linear (but shifted)

 $V_{GS}|_{_{\mathrm{B}}}$

 v_{GS}

 V_{DD}

Foundation of Transistor Amplifiers (2)

➤ In <u>saturation</u>, transfer function appear to be linear

Foundation of Transistor Amplifiers (3)

Let us consider the response if NMOS remains in saturation at all times and v_{GS} is a combination of a constant value (V_{GS}) and a <u>signal</u> (v_{gs}).

The response to a combination of v_{GS} = V_{GS} + v_{gs} can be found from the transfer function

Response to the signal appears to be linear

- Response $(v_o = v_{DS})$ is also made of a constant part (V_{DS}) and a signal response part (v_{ds}) .
- ightharpoonup Constant part of the response, V_{DS} , is ONLY related to V_{GS} , the constant part of the input (Q point on the transfer function of previous slide).
 - o i.e., if $v_{gs} = 0$, then $v_{ds} = 0$
- The shape of the time varying portion of the response (v_{ds}) is similar to v_{gs} .
 - o i.e., v_{ds} is <u>proportional</u> to the input signal, v_{gs}

Although the overall response is non-linear, the transfer function for the signal is linear!

Important Points and Definitions!

- > Signal: We want the response of the circuit to this input.
- > Bias: State of the system when there is no signal.
 - Bias is constant in time (may vary extremely slowly compared to signal)
 - Purpose of the bias is to ensure that MOS is in saturation at all times.
- ➤ **Response** of the circuit (and its elements) to the signal is different than its response to the Bias (or to Bias + signal):
 - o <u>Signal</u> iv characteristics of elements are different, i.e. relationships among v_{gs} , v_{ds} , i_d is <u>different</u> from relationships among v_{GS} , v_{DS} , i_D .
 - Signal transfer function of the circuit is different from the transfer function for total input (Bias + signal).

Issues in developing a MOS amplifier:

- 1. Find the iv characteristics of the elements for the signal (which can be different than their characteristics equation for bias).
 - This will lead to different circuit configurations for bias versus signal
- 2. Compute circuit response to the signal
 - Focus on fundamental MOS amplifier configurations
- **3.** How to establish a Bias point (bias is the state of the system when there is no signal).
 - Stable and robust bias point should be resilient to variations in $\mu_n C_{ox} (W/L), V_t$, ... due to temperature and/or manufacturing variability.
 - Bias point details impact small signal response (e.g., gain of the amplifier).

Signal Circuit

- 1) We will find signal iv characteristics of various elements.
- 2) In order to use circuit theory tools, we will use the $\underline{\text{signal}}\ iv$ characteristics of various elements to assign a circuit symbol. e.g.,
 - \circ We will see that the diode <u>signal</u> iv characteristics is linear so for signals, diode can be modeled as a "circuit theory" resistor.
 - o In this manner, we will arrive at a signal circuit.

Bias and Signal Circuits

 $\begin{aligned} \text{MOS} : & v_{GS}, v_{DS}, i_D, \\ & (v_{GS} = V_{GS} + v_{gs}, ...) \end{aligned}$

 $R_D:$ $v_R = V_R + v_r$ $i_R = I_R + i_r$

 $MOS: V_{GS}, V_{DS}, I_D,$

 $R_D: V_R, I_R$

 $MOS: v_{gs}, v_{ds}, i_d,$

 $R_D: v_r, i_r$

• • • • •

Finding signal circuit elements -- Resistor

Resistor	Voltage	Current	iv Equation
Bias + Signal:	v_R	i_R	$v_R = R i_R$
Bias:	V_R	I_R	$V_R = R I_R$
Signal:	$\upsilon_r = \upsilon_R - V_R$	$i_r = i_R - I_R$??

$$v_r = v_R - V_R = Ri_R - RI_R = R(i_R - I_R)$$
 $v_r = Ri_r$

> A resistor remains as a resistor in the signal circuit.

Finding signal circuit elements – IVS & ICS

Independent voltage source	Voltage	Current	iv Equation
Bias + Signal:	$v_{I\!V\!S}$	$i_{I\!V\!S}$	$v_{IVS} = V_{DD} = const$
Bias:	$V_{I\!V\!S}$	$I_{I\!V\!S}$	$V_{I\!V\!S} = V_{D\!D} = const$
Signal:	$v_{ivs} = v_{IVS} - V_{IVS}$	$i_{ivs} = i_{IVS} - I_{IVS}$??

$$v_{ivs} = v_{IVS} - V_{IVS} = V_{DD} - V_{DD} = 0$$

$$v_{ivs} = 0, \quad i_{ivs} \neq 0$$

> An independent voltage source becomes a short circuit!

Similarly:

> An independent current source becomes an open circuit!

Exercise: Show that dependent sources remain as dependent sources

Summary of signal circuit elements

Resistors& capacitors:

The Same

Capacitor act as open circuit in the bias circuit.

 \succ Independent voltage source (e.g., V_{DD}): Effectively grounded

> Independent current source:

Effectively open circuit

 Careful about current mirrors as they are <u>NOT</u> "ideal" current sources (early effect and/or channel width modulation was ignored!)

Dependent sources:

The Same

> Non-linear Elements:

Different!

o Diodes & transistors ?

Formal derivation of small signal model

> Signal + Bias for element A
$$(i_A, v_A)$$
: $i_A = f(v_A)$

$$\blacktriangleright$$
 Bias for element A ($I_A,\ V_A$) :
$$I_A = f(V_A)$$

> Signal for element A (
$$i_a$$
, v_a) :
$$i_a = \mathbf{g} \ (v_a)$$

$$\begin{split} i_A &= f(v_A) \\ &= f(V_A) + f^{(1)}(V_A) \cdot \left(v_A - V_A\right) + \frac{f^{(2)}(V_A)}{2!} \cdot \left(v_A - V_A\right)^2 + \dots & \text{(Taylor Series Expansion)} \\ &= f(V_A) + f^{(1)}(V_A) \cdot v_a + \frac{f^{(2)}(V_A)}{2!} \cdot v_a^2 + \dots & \\ &\approx f(V_A) + f^{(1)}(V_A) \cdot v_a & - \dots & - \dots \end{split}$$

$$i_A = i_a + I_A = I_A + f^{(1)}(V_A) \cdot v_a$$

$$i_a = g(v_a) = f^{(1)}(V_A) \cdot v_a$$

Small signal means:

$$\left| f^{(1)}(V_A) \cdot v_a \right| >> \left| \frac{f^{(2)}(V_A)}{2!} \cdot v_a^2 \right| \\
\left| v_a \right| << 2 \cdot \left| \frac{f^{(1)}(V_A)}{f^{(2)}(V_A)} \right| \\$$

Small signal model vs iv characteristics

Small signal model is equivalent to approximating the non-liner iv characteristics curve by a line tangent to the iv curve at the bias point

$$i_d = f^{(1)}(V_D) \times v_d$$

$$r_d = \frac{1}{f^{(1)}(V_D)} \approx \frac{nV_T}{I_D}$$

Derivation of MOS small signal model (1)

MOS iv equations:
$$i_D = f(v_{GS}, v_{DS})$$

$$i_G = 0$$

$$ightharpoonup$$
 Signal + Bias for MOS (i_D, v_{GS}, v_{DS}) : $i_D = f(v_{GS}, v_{DS}), i_G = 0$

$$\blacktriangleright$$
 Bias for MOS ($I_D,~V_{GS}~,~V_{DS}$) : I_D = f ($V_{GS},~V_{DS}$), I_G = 0

$$\begin{split} I_D + i_d &= i_D = f(v_{GS}, v_{DS}) \\ &= f(V_{GS}, V_{DS}) + \frac{\partial f}{\partial v_{GS}} \bigg|_{V_{GS}, V_{DS}} \cdot (v_{GS} - V_{GS}) + \frac{\partial f}{\partial v_{DS}} \bigg|_{V_{GS}, V_{DS}} \cdot (v_{DS} - V_{DS}) + \dots \\ &\approx I_D + \frac{\partial f}{\partial v_{GS}} \bigg|_{V_{GS}, V_{DS}} \times v_{gs} + \frac{\partial f}{\partial v_{DS}} \bigg|_{V_{GS}, V_{DS}} \times v_{ds} \end{split}$$

$$i_{d} \approx \frac{\partial f}{\partial v_{GS}} \bigg|_{V_{GS}, V_{DS}} \times v_{gs} + \frac{\partial f}{\partial v_{DS}} \bigg|_{V_{GS}, V_{DS}} \times v_{ds}$$

Derivation of MOS small signal model (2)

$$\begin{split} i_{D} &= 0.5 \mu_{n} C_{ox} \frac{W}{L} (v_{GS} - V_{t})^{2} (1 + \lambda v_{DS}) = f(v_{GS}, v_{DS}) \\ i_{d} &= \frac{\partial f}{\partial v_{GS}} \bigg|_{V_{GS}, V_{DS}} \cdot v_{gs} + \frac{\partial f}{\partial v_{DS}} \bigg|_{V_{GS}, V_{DS}} \cdot v_{ds} \\ &= 2 \times 0.5 \mu_{n} C_{ox} \frac{W}{L} (v_{GS} - V_{t}) (1 + \lambda v_{DS}) \bigg|_{V_{GS}, V_{DS}} \\ &= 2 \times \frac{0.5 \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{t})^{2} (1 + \lambda V_{DS})}{(V_{GS} - V_{t})} = \frac{2I_{D}}{V_{OV}} \equiv g_{m} \\ &\frac{\partial f}{\partial v_{DS}} \bigg|_{V_{GS}, V_{DS}} \\ &= \lambda \times 0.5 \mu_{n} C_{ox} \frac{W}{L} (v_{GS} - V_{t})^{2} \bigg|_{V_{GS}, V_{DS}} \\ &= \lambda \times \frac{0.5 \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{t})^{2} (1 + \lambda V_{DS})}{(1 + \lambda V_{DS})} = \frac{\lambda I_{D}}{(1 + \lambda V_{DS})} \approx \lambda I_{D} \equiv \frac{1}{r} \end{split}$$

$$i_d = g_m \cdot v_{gs} + \frac{v_{ds}}{r_o} \qquad i_g = 0$$

MOS small signal "circuit" model

$$g_m = \frac{2 \cdot I_D}{V_{OV}}$$

$$r_o \approx \frac{1}{\lambda \cdot I_D}$$

$$g_m r_o = \frac{2}{\lambda V_{OV}} = \frac{2V_A}{V_{OV}} >> 1$$

PMOS small signal model is identical to NMOS

- > PMOS small-signal circuit model is identical to NMOS
 - o We will use NMOS circuit model for both!
 - o For both NMOS and PMOS, while $i_D\!\ge\!0$ and $I_D\!\ge\!0$, signal quantities: i_d , v_{gs} , and v_{ds} , can be negative!