Coffee Talk #1

April 13, 2021

Ozgur Taylan Turan

Transfering Knowledge Across Learning Processes¹ Conference paper at 2019 ICLR

¹S. Flennerhag, P. G. Moreno, N. D. Lawrence, and A. Damianou (2018). "Transferring knowledge across learning processes". In: arXiv, pp. 1–23. ISSN: 23318422 arXiv: 1812.01054

Why This Paper?

- Neil Lawrence
- Transfer learning Meta Learning

Introduction

Problem with Transfer Learning

- Structural affinity of tasks
- Information loss?

Solution with Meta Learning

- Save relevant information
- Aggregate task geometry info.

- Learning a new task as a learning problem
- BackProp entire learning process

A meta-training step (training the optimizer O) comprising with 3 steps of training the model M) $\,$

O.T. Turan

 $^{^2} https://medium.com/huggingface/from-zero-to-research-an-introduction-to-meta-learning-8e16e677f78a$

Loss Manifold

of Updates ↑

Loss manifold importance ↑

Ease of Learning

• Easier to navigate loss manif.

Leap

- Framework that exploits geometry
- Focus: point of initialization
- · Learning and initialization relation

Learning Objective
$$f: \theta \in \mathbb{R}^n \to L$$

$$\theta^{i+1} = \theta^i - \alpha^i S^i \nabla f(\theta^i)$$

Assume convergence after K steps

Meta objective

$$\min_{(\theta^0)} \quad \mathbb{E}_{ au}[d(\theta^0; M_{ au})]$$

$$\begin{split} \text{s.t.} \quad & \theta_{\tau}^{(i+1)} = u(\theta_{\tau}^i), \quad \theta_{\tau}^0 = \theta^0, \\ & \theta^0 \in \mathbf{\Theta} = \cap_{\tau} \{ \theta^0 | f_{\tau}(\theta_{\tau}^{K_{\tau}}) \leq f_{\tau}(\psi_{\tau}^{K_{\tau}}) \} \end{split}$$

Minimize the expected learning path for all the tasks at the same time

Results-[Omniglot]

Omniglot: dataset \rightarrow 50 distinct alphabets show 1-25 and held 10 back

Results-[Multi-CV]

Train for all and held-out one

Held-out task	Method	Test (%)	Train (%)	AUC^{\dagger}
Facescrub	Leap	19.9	0.0	11.6
	Finetuning	32.7	0.0	13.2
	Progressive Nets [‡]	18.0	0.0	8.9
	HAT^{\ddagger}	25.6	0.1	14.6
	No pretraining	18.2	0.0	10.5
Cifar10	Leap	21.2	10.8	17.5
	Finetuning	27.4	13.3	20.7
	Progressive Nets [‡]	24.2	15.2	24.0
	HAT [‡]	27.7	21.2	27.3
	No pretraining	26.2	13.1	23.0
SVHN	Leap	8.4	5.6	7.5
	Finetuning	10.9	6.1	10.5
	Progressive Nets [‡]	10.1	6.3	13.8
	HAT [‡]	10.5	5.7	8.5
	No pretraining	10.3	6.9	11.5
Cifar100	Leap	52.0	30.5	43.4
	Finetuning	59.2	31.5	44.1
	Progressive Nets‡	55.7	42.1	54.6
	HAT [‡]	62.0	49.8	58.4
	No pretraining	54.8	33.1	50.1
Traffic Signs	Leap	2.9	0.0	1.2
	Finetuning	5.7	0.0	1.7
	Progressive Nets [‡]	3.6	0.0	4.0
	HAT [‡]	5.4	0.0	2.3
	No pretraining	3.6	0.0	2.4

Thanks for your attention!