Build an IoT Weather Monitoring System with Etisalat Digital

Date & time

Saturday, October 12th, 11:00am - 2:00pm

Location

in5 Tech, Dubai Knowledge Park

*Attendance is free.

ABOUT THE ASSEMBLY

- A Smart Lab based out of in5 since December 2014
- Over 250 Free workshops done
- Assembly: HACK Embedded systems, IOT, hardware.
- Assembly: CODE Software projects APIs, frameworks, apps
- Target Audience Students | Professionals | Entrepreneurs
- Focus on Smart Technology and Practical Applications
- Forum: members.theassembly.ae

FACEBOOK The Assembly - @MakeSmartThings

TWITTER @MakeSmartThings

INSTAGRAM @MakeSmartThings

YOUTUBE The Assembly

OBJECTIVE: To build a distributed **IoT weather monitoring system**, that:

- Collects temperature and humidity data on various edge devices (in our case, Raspberry Pis)
- Syncs up that data with the Thingworx cloud platform in real time
- Presents that data in the form of a web application accessible at a remote location

GETTING STARTED

- PASTEBIN: https://pastebin.com/ZzY42Ejv
- GITHUB: https://github.com/the-assembly

Installation:

 Thingworx Academic Simulator (TAS) - simulates edge devices for feeding data to the platform
 MAC:

http://apps.ptc.com/schools/software/ThingWorxAcademicSimulatorSetup.dmg WINDOWS:

http://apps.ptc.com/schools/software/ThingWorxAcademicSimulatorSetup.exe

THE INTERNET OF THINGS

The Internet Of Things (IoT) is the network of physical objects that can exchange data for value

SMART, CONNECTED PRODUCTS

- Harvard Business Review
- Capabilities of a Smart,
 Connected Product (SCP)
 - Monitor
 - Control
 - Optimize
 - Automate

- Fast To Market
- Simplicity
- Scalability
- Built-in Analytics
- Multi-tenancy model
- Data Encryption

THINGWORX GENERAL STRUCTURE

DHT11 & DHT22 SENSORS

D	н	т	1	1

DHT22	DH	łT2	2
-------	----	-----	---

0 - 50°C / ± 2°C	Temperature Range	-40 - 125 °C / ± 0.5 °C	
20 - 80% / ± 5%	Humidity Range	$0-100\%$ / \pm 2-5%	
1Hz (one reading every second)	Sampling Rate		
15.5mm x 12mm x 5.5mm	Body Size		
3 - 5V	Operating Voltage	3 - 5V	
2.5mA	Max Current During Measur	ing 2.5mA	

