HW6 Corrections (CSCI-C241)

Lillie Donato

$17~\mathrm{March}~2024$

• Question One	
$- \ \mathrm{1d}$ Claim: $X \subseteq \overline{Y \cap Z}$	
Proof.	
Choose the sets X, Y, Z and $x \in X$	(1)
Assume $(X \cap Y) \subseteq \overline{Z}$	(2)
Suppose towards a contradiction $x \notin \overline{Y \cap Z}$	(3)
Since $x \notin \overline{Y \cap Z}$, we know $x \in Y \cap Z$	(4)
Since $x \in Y \cap Z$, we know $x \in Y$ and $x \in Z$	(5)
Since $x \in X$ and $x \in Y$, we know $x \in X \cap Y$	(6)
Since $x \in X \cap Y$, we know $x \in \overline{Z}$	(7)
Since $x \in \overline{Z}$, we know $x \notin Z$	(8)
Under the assumption of $x \notin \overline{Y \cap Z}$, we proved an impossibility of $x \in Z$ and $x \notin Z$	Z, (9)
therefore $x \in \overline{Y \cap Z}$	
Since $x \in X$ and $x \in \overline{Y \cap Z}$, we know $X \subseteq \overline{Y \cap Z}$	(10)
	(11)
– 1e Claim: $H \cup (J \cap K) \subseteq (H \cup K) \setminus M$ Proof.	
	(1)
Choose the sets H, J, K, L, M and $x \in H \cup (J \cap K)$	(1)
Assume $J \subseteq L \setminus M$ and $H \subseteq \overline{M}$ Case 1: $x \in H$	(2) (3)
Since $x \in H$ and $H \subseteq \overline{M}$, we know $x \in \overline{M}$	(3) (4)
Since $x \in \overline{M}$ and $H \subseteq M$, we know $x \in M$	
Since $x \in M$, we know $x \notin M$ Since $x \in H$, we know $x \in H \cup K$	(5) (6)
Since $x \in H$, we know $x \in H \cup K$ Since $x \in H \cup K$ and $x \notin M$, we know $x \in (H \cup K) \setminus M$	(7)
Case 2: $x \in J \cap K$	(8)
Since $x \in J \cap K$, we know $x \in J$ and $x \in K$	(9)
Since $x \in J$ and $J \subseteq L \setminus M$, we know $x \in L \setminus M$	(10)
Since $x \in L \setminus M$, we know $x \in L$ and $x \notin M$	(11)
Since $x \in K$, we know $x \in H \cup K$	(12)
Since $x \in H \cup K$ and $x \notin M$, we know $x \in (H \cup K) \setminus M$	(13)
In either case of $H \cup (J \cap K)$, we proved that $x \in (H \cup K) \setminus M$	(14)
Under the assumption of $J \subseteq L \setminus M$ and $H \subseteq \overline{M}$,	(15)
we proved that any member of $H \cup (J \cap K)$ is a member of $(H \cup K) \setminus M$,	
therefore $H \cup (J \cap K) \subseteq (H \cup K) \setminus M$	

• Question Three

-3c $T = \{x + y\sqrt{2} \mid x \in \mathbb{Q} \land y \in \mathbb{Q}\}$ $S = \{st \mid s \in T \land t \in T\}$

Claim: S = T

Proof.

Choose
$$s \in T$$
 and $t \in T$ (1)

Since
$$s \in T$$
, we know $s = x_1 + y_1\sqrt{2}$, where $x_1, y_1 \in \mathbb{Q}$ (2)

Since
$$t \in T$$
, we know $t = x_2 + y_2\sqrt{2}$, where $x_2, y_2 \in \mathbb{Q}$ (3)

Since
$$st = (x_1 + y_1\sqrt{2})(x_2 + y_2\sqrt{2})$$
, we know $st = x_1x_2 + x_1y_2\sqrt{2} + x_2y_1\sqrt{2} + 2y_1y_2$ (4)

Since
$$st$$
, we know $st = (x_1x_2 + 2y_1y_2) + \sqrt{2}(x_1y_2 + x_2y_1)$ (5)

Let
$$a = x_1x_2 + 2y_1y_2$$
 and $b = x_1y_2 + x_2y_1$ (6)

Since
$$x_1, x_2, y_1, y_2 \in \mathbb{Q}$$
, we know $a, b \in \mathbb{Q}$ (7)

Since
$$st = a + b\sqrt{2}$$
 and $a, b \in \mathbb{Q}$, we know $S \subseteq T$ (8)

Choose
$$t \in T$$
 where $t = x + y\sqrt{2}$, and $x, y \in \mathbb{Q}$ (9)

Since
$$0, 1 \in \mathbb{Q}$$
, $0\sqrt{2} = 0$ and $1 + 0 = 1$, we know $1 \in T$ (10)

Since
$$t, 1 \in T$$
 and $t = 1 \cdot t$, we know $t \in S$ (11)

Since
$$t \in S$$
, we know $T \subseteq S$ (12)

Since
$$S \subseteq T$$
 and $T \subseteq S$, we know $S = T$ (13)

-3c

Claim: The sum of an irrational number and a rational number is irrational.

Proof.

Choose an irrational number x and a rational number y (1)

Since y is rational, we know
$$y = \frac{p_1}{q_1}$$
, where $p_1, q_1 \in \mathbb{Z}$ and $q_1 \neq 0$ (2)

Let
$$z = x + y$$
 (3)

Assume towards a contradiction that z is rational (4)

Since z is rational, we know
$$z = \frac{p_2}{q_2}$$
, where $p_2, q_2 \in \mathbb{Z}$ and $q_2 \neq 0$ (5)

We can rewrite
$$x + y = z$$
 as $x + \frac{p_1}{q_1} = \frac{p_2}{q_2}$ (6)

Since
$$x + \frac{p_1}{q_1} = \frac{p_2}{q_2}$$
, we know $x = \frac{p_2}{q_2} - \frac{p_1}{q_1}$ (7)

Since
$$x = \frac{p_2}{q_2} - \frac{p_1}{q_1}$$
, we know $x = \frac{p_2 q_1 - p_1 q_2}{q_1 q_2}$ (8)

Since
$$q_1 \neq 0$$
 and $q_2 \neq 0$, we know $q_1 q_2 \neq 0$ (9)

Since
$$x = \frac{p_1q_2 - p_2q_1}{q_1q_2}$$
, we know $x = \frac{p}{q}$ where $p, q \in \mathbb{Z}$ and $q \neq 0$, (10)

meaning x is rational

This is a contradiction to our earlier claim, so z must be irrational, (11) meaning the sum of a irrational number and a rational number is irrational