Mathematical Logic

Lecture 4, Monday April 24, 2023 Ari Feiglin

Corollary 4.0.1:

Our system \mathcal{L} is consistent: there is no well-formed formula φ such that φ and $\neg \varphi$ are both theorems.

Proof:

By the soundness theorem, if both φ and $\neg \varphi$ are theorems, they are both tautologies. This is a contradiction since they have opposite truth values.

Definition 4.0.2:

A well-formed formula φ is independent of a set of other well-formed formulas Γ if φ is not provable from (just) Γ .

Proposition 4.0.3:

Axioms A1, A2, and A3 are all independent of one another.

Proof:

(1) First we show A1 is independent of A2 and A3. We construct the following "truth tables":

A	$ \neg A $	A	B	$ A \rightarrow B $
0	1	0	0	0
1	1	1	0	2
1 2	0	$\frac{1}{2}$	0	0
	'	0	1	2
		1	1	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$
		$\frac{1}{2}$	1	0
		0	2	2
			2	0
		$\frac{1}{2}$	2	0

This gives us a method of evaluating well-formed formulas φ . If φ is always 0 then it is called *select*. We will show that modus ponens of two select formulas is itself select, and **A2** and **A3** are also select. Then these truth tables model the logical system without **A1**. We will then show that **A1** is not select (ie. it cannot be proven by **A2** and **A3**).

The proof that **A2** and **A3** are select is left as an exercise. If φ and $\varphi \to \psi$ is select then φ and $\varphi \to \psi$ are always 0. The only row where this is possible is when $\psi = 0$ (otherwise $\varphi \to \psi$ is 2). Thus ψ is also select and therefore modus ponens infers select values from select inputs, as required.

If $\varphi = 2$ and $\psi = 1$ then $\psi \to (\varphi \to \psi) = 1 \to (2 \to 1) = 1 \to 0 = 2$ so **A1** is not select, as required.

1

(2) For **A2** we take:

(3) We say that φ is "super" if $h(\varphi)$ is a tautology where $h(\varphi)$ is the same as φ except we remove all negations. Thus obviously **A1** and **A2** are super as they don't involve negation, but it can be shown that **A3** is not. Modus ponens holds since if φ and $\varphi \to \psi$ are super then $h(\varphi)$ and $h(\varphi \to \psi) = h(\varphi) \to h(\psi)$ are tautologies then by modus ponens, $h(\psi)$ is a tautology and ψ is "super" as required.

First we have Kleené's (1952):

(1)
$$\varphi \to (\psi \to \varphi)$$

(2)
$$(\varphi \to (\psi \to \mu)) \to ((\varphi \to \psi) \to (\varphi \to \mu))$$

(3)
$$(\varphi \wedge \psi) \rightarrow \varphi$$

$$(4) \quad (\varphi \wedge \psi) \to \varphi$$

(5)
$$\varphi \to (\psi \to (\varphi \land \psi))$$

(6)
$$\varphi \to (\varphi \lor \psi)$$

(7)
$$\psi \to (\varphi \lor \psi)$$

(8)
$$(\varphi \to \mu) \to ((\psi \to \mu) \to ((\varphi \lor \psi) \to \mu)$$

$$(9) \quad (\varphi \to \psi) \to ((\varphi \to \neg \psi) \to \neg \varphi)$$

(10)
$$\neg \neg \varphi \rightarrow \varphi$$

Or Mezedith's (1953) which is just a single axiom:

$$\left(\left(\left((\varphi \to \psi) \to (\neg \mu \to \neg \vartheta)\right) \to \mu\right) \to \eta\right) \to \left((\eta \to \varphi) \to (\zeta \to \varphi)\right)$$

4.1 First Order Theories

Definition 4.1.1:

A first order language is a language consisting of the following characters:

- (1) Connectives: \neg , \rightarrow , \vee , and \wedge .
- (2) Punctuation: (and).
- (3) The quantifier \forall (for all, the universal quantifier).
- (4) Individual variables: x_1, x_2, \ldots
- (5) Individual constants: a_1, a_2, \ldots
- (6) Predicate letters: A_k^n for $k, n \in \mathbb{N}$.

- (7) Function letters: f_k^n for $k, n \in \mathbb{N}$.
- (8) An equality symbol: =.

The set of individual constants, predicate letters, and function letters can be empty and an equality symbol is not necessary.

We know define what a term is:

- (1) Any variable or constant is a term.
- (2) If f_k^n is a function letter and t_1, \ldots, t_n are terms then $f_k^n(t_1, \ldots, t_n)$ is a term.

And only strings which are recursively defined by the above two rules (using a finite number of steps) are terms.

Now we define atomic formulas: if A_k^n is a predicate letter then

- (1) If t_1, \ldots, t_n are terms then $A_k^n(t_1, \ldots, t_n)$ is an atomic formula.
- (2) If there is an equality symbol, then $t_1 = t_2$ for any terms t_1 and t_2 is an atomic formula.

The well-formed formulas of the first order theory are defined by:

- (1) Any atomic formula is well-formed.
- (2) If φ and ψ are any well-formed formulas then so are $\neg \varphi$ and $\varphi \circ \psi$ for any connective \circ .
- (3) If y is a variable letter and φ is a well-formed formula then $\forall y \varphi$ is also a well-formed formula.

Definition 4.1.2:

Given a well-formed formula $\forall y \varphi$ then φ is called a scope of the quantifier $\forall y$. An occurrence of a variable x in a well-formed formula is bound if the occurrence is in a substring $\forall x$, or if it is in the scope of some $\forall x$. And x is a bound variable in the well-formed formula if all of its occurrences are bound.

And an occurrence is free if it is not bound, and a variable is a free variable if it is not bound (equivalently, at least one of its occurrences is free).

Example 4.1.3:

For example given

$$\forall x_3 \Big(\big(\forall x_1 A_1(x_1, x_2) \big) \to A_2(x_3, a_1) \Big)$$

All of the occurrences of x_1 are bound, the only occurrence of x_2 is free, and all occurrences of x_3 are bound. So x_1 and x_3 are bound, and x_2 is free. Now look at a similar formula:

$$(\forall x_3(\forall x_1 A_1(x_1, x_2))) \rightarrow A_2(x_3, a_1)$$

The second occurrence of x_3 is free, so x_1 is bound and x_2 and x_3 are free.