

30 V、低噪声、轨到轨输入/输出、 低功耗运算放大器

数据手册

ADA4084-1/ADA4084-2/ADA4084-4

产品特性

轨到轨输入/输出

低功耗: 0.625 mA (±15 V, 每放大器典型值) 增益带宽积: 15.9 MHz (A_V=100, 典型值) 单位增益交越频率: 9.9 MHz (典型值) -3 dB闭环带宽: 13.9 MHz (±15 V, 典型值) 低失调电压: 100 μV最大值 (SOIC) 单位增益稳定

高压摆率: 4.6 V/μs (典型值) 低噪声: 3.9 nV/√Hz (1 kHz, 典型值) 长期失调电压漂移(10,000小时): 3 μV (典型值) 温度迟滞: 4 μV (典型值)

应用

电池供电仪器仪表 高端和低端检测 电源控制和保护 电信 数模转换器 (DAC) 输出放大器 模数转换器 (ADC) 输入缓冲器

概述

ADA4084-1 (单通道)、ADA4084-2 (双通道) 和ADA4084-4 (四通道) 是单电源、10 MHz带宽放大器,具有轨到轨输入和输出特性。保证工作电压范围为+3 V至+30 V (或±1.5 V至±15 V)。

这款放大器非常适合要求交流性能与精密直流性能的单电源应用。宽带宽、低噪声与精度特性组合,使ADA4084-1/ADA4084-2/ADA4084-4适合滤波器和仪器仪表等各种应用。

其它应用包括便携式电信设备、电源控制与保护,以及用作 具有宽输出范围传感器的放大器或缓冲器。要求采用轨到轨 输入放大器的传感器包括霍尔效应传感器、压电传感器和阻 性传感器。

利用轨到轨输入和输出摆幅,设计人员可以在单电源系统中构建多级滤波器,并保持高信噪比。

ADA4084-1/ADA4084-2/ADA4084-4 的 额 定 温 度 范 围 为 -40°C至+125°C工业温度范围。

引脚接线图

图1. ADA4084-2,8引牌ILFCSP(CP),关于其他封装和型号,请参见"引牌配置和功能描述"部分。

单通道ADA4084-1提供5引脚SOT-23和8引脚SOIC两种封装,双通道ADA4084-2提供8引脚SOIC、8引脚MSOP和8引脚LFCSP表面贴装三种封装,四通道ADA4084-4提供14引脚TSSOP和16引脚LFCSP两种封装。

ADA4084-1/ADA4084-2/ADA4084-4属于ADI公司不断扩展的高压低噪声运算放大器系列(见表1)。

表1. 低噪声运算放大器

单通道	双通道	四通道	电压噪声
AD8597	AD8599		1.1 nV/Hz
ADA4004-1	ADA4004-2	ADA4004-4	1.8 nV/Hz
AD8675	AD8676		2.8 nV/Hz轨到轨
			输出
AD8671	AD8672	AD8674	2.8 nV/Hz
OP27, OP37			3.2 nV/Hz
ADA4084-1	ADA4084-2	ADA4084-4	3.9 nV/Hz轨到轨
			输入/输出

Rev. I Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2011-2017 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com/cn

目录

产品特性	1 ±5 V特性	.17
应用	1 ±15 V特性	.23
引脚接线图	1 应用信息	.29
概述	1 功能描述	.29
修订历史	2 启动特性	.30
技术规格	4 输入保护	.30
电气特性	4 输出反相	.30
绝对最大额定值	7 设计单电源应用中的低噪声电路	.31
热阻	7 比较器操作	.31
ESD警告	7 长期漂移	.32
引脚配置和功能描述	8 温度迟滞	.32
典型性能参数1	1 外形尺寸	33
±1.5 V特性1	1 订购指南	.36
修订历史		
2017年5月—修订版H至修订版I	2015年6月—修订版F至修订版G	
CP-8-12更改为CP-8-11		.24
CP-16-26更改为CP-16-17	1	
更改"产品特性"部分		
增加"长期漂移"部分、"温度迟滞"部分、图112、图113和图		3
114; 重新排序3		
更新外形尺寸3	4 更改"订购指南"部分	.29
更改"订购指南"部分3	6	
	2014年7月—修订版D至修订版E	
2015年8月—修订版G至修订版H	增加ADA4084-1	i篇
增加5引脚SOT-23封装		
更改"引脚接线图"部分、图1和"概述"部分	1 更改表2的高输出电压参数	3
删除图3;重新排序	1 更改表3的电流噪声密度参数	4
更改表2中"大信号电压增益"参数	4 更改表4的电流噪声密度参数	5
更改表3中"大信号电压增益"参数	5 更改图8的标题和图9至图11	7
更改表4中"大信号电压增益"参数	6 更改图13	8
更改表6	7 更改图21	9
移动图3	8 增加图31,重新排序	.11
增加"引脚配置和功能描述"部分、图4、图5、表7、表8和氡	長 更改图30的标题和图32至图34	. 11
9; 重新排序	8 更改图36至图39的标题	.12
增加图6、图7、图8、表10和表11	9 更改图50	.14
移动图910	0 增加图60	.16
增加表1210	0 更改图59的标题、图62和图63	.16
增加图11和图151	1 更改图65至图68的标题	.17
增加图42和图461	7 更改图79	.19
增加图73和图772	3 增加图89	.21
更新外形尺寸3	2 更改图88、图91和图92的标题	.21
更改"订购指南"部分3	5 更改"订购指南"部分	.28

数据手册

ADA4084-1/ADA4084-2/ADA4084-4

2013年11月一修订版C至修订版D
增加14引脚TSSOP和16引脚LFCSP封装
增加ADA4084-4
更改"产品特性"部分和"应用"部分1
增加图2和图3; 重新排序1
更改表23
更改表34
更改表45
更改表5和表66
更改"典型性能参数"部分7
更新外形尺寸27
更改"订购指南"部分28
2012年4日 梅江斯B本林江斯C
2013年4月—修订版B至修订版C
更改图48的标题15
更新外形尺寸25
2012年6月—修订版A至修订版B
增加LFCSP封装通篇
更改图11
更改表4的高输出电压参数5
增加图5和图7;重新编号7
增加图30和图3212

增加图55和图57	17
增加"启动特性"部分	23
移动图78	23
更改"输出反相"部分和"比较器操作"部分	24
更新外形尺寸	25
更改"订购指南"部分	26
2012年2月—修订版0至修订版A	
更改数据手册标题	1
更改"概述"中的电压范围	1
更改表2中的每放大器电源电流参数	3
更改表3中的共模抑制比参数	4
更改表4中的共模抑制比参数	5
更改图2	6
更改图24	10
更改图32	12
更改图47	14
更改图55	16
更改图62	17
更改图73	20

2011年10月—修订版0: 初始版

技术规格

电气特性

除非另有说明, $V_{SY} = 3 V$, $V_{CM} = 1.5 V$, $T_A = 25$ °C。

表2.

参数	符号	测试条件/注释	最小值	典型值	最大值	单位
输入特性						
失调电压	Vos	SOIC封装		20	100	μV
		-40 °C $\leq T_A \leq +125$ °C			200	μV
		SOT-23、MSOP、TSSOP封装		50	130	μV
		-40 °C $\leq T_A \leq +125$ °C			250	μV
		ADA4084-2 LFCSP封装		80	200	μV
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$			300	μV
失调电压漂移	Δt/ΔT	$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$		0.5	1.75	μV/°C
失调电压匹配		$T_A = 25$ °C			150	μV
		ADA4084-4 LFCSP封装			200	μV
输入偏置电流	I _B			140	250	nA
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			400	nA
输入失调电流	los			5	25	nA
1117 47 474 3010	03	-40°C ≤ T _A ≤ +125°C			50	nA
输入电压范围			0		3	V
共模抑制比	CMRR	V _{CM} = 0 V至3 V	64	88	-	dB
NA Death aid NR	Civilia	-40°C ≤ T _A ≤ +125°C	60			dB
大信号电压增益	A _{vo}	$R_L = 2 k\Omega$, $0.5 V \le V_{OUT} \le 2.5 V$	100	104		dB
火山 A. G/E√日Ⅲ	Avo	$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	97	101		dB
输入阻抗		-40 C S 14 S + 125 C	37			ub
差分				100 1.1		kΩ pF
左 共模				80 2.9		MΩ pF
				00 2.9		MIZZIIPE
输出特性 	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	D 1010+21	2.00	2.05		.,
输出高电压	V _{OH}	$R_L = 10 \text{ k}\Omega$ 接 V_{CM}	2.90	2.95		V
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	2.80			V
		$R_L = 2 k\Omega接V_{CM}$	2.85	2.9		V
		-40 °C $\leq T_A \leq +125$ °C	2.70			V
输出低电压	V _{OL}	$R_L = 10 \text{ k}\Omega \dot{\mathbf{E}} V_{CM}$		10	20	mV
		-40 °C $\leq T_A \leq +125$ °C			40	mV
		$R_L = 2 kΩ 接 V_{CM}$		20	30	mV
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$			50	mV
短路电流	Isc			-17/+10		mA
闭环输出阻抗	Z _{out}	$f=1 \text{ kHz}, A_V=1$		0.1		Ω
电源						
电源抑制比	PSRR	V _{sy} = ±1.25 V至±1.75 V	100	110		dB
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	90			dB
电源电流 (每个放大器)	Isy	$I_{OUT} = 0 \text{ mA}$		0.565	0.650	mA
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$			0.950	mA
动态性能						
压摆率	SR	$R_L = 2 k\Omega$	2.0	2.6		V/µs
增益带宽积	GBP	$V_{IN} = 5 \text{ mV p-p}, R_L = 10 \text{ k}\Omega, A_V = 100$		15.4		MHz
单位增益交越	UGC	$V_{IN} = 5 \text{ mV p-p}, R_L = 10 \text{ k}\Omega, A_V = 1$		8.08		MHz
相位裕量	Φ_{M}	- - - - - - - - - - - - -		86		度
-3 dB闭环带宽	−3 dB	$A_V = 1$, $V_{IN} = 5 \text{ mV p-p}$		12.3		MHz
建立时间	t _s	$A_V = 1$, $V_{IN} = 3111V p-p$ $A_V = 10$, $V_{IN} = 2 V p-p$, 0.1%		4		μs
总谐波失真加噪声	THD + N	$V_{IN} = 300 \text{ mV rms}, R_L = 2 k\Omega, f = 1 \text{ kHz}$		0.009		μs %
	IIID T N	ν _{IN} – 300 IIIν IIII3, N _L – 2 κ <u>ν</u> 2, 1 – 1 κπ <u>2</u>		0.003		/0
噪声性能 		0111-51011-		0.14		
电压噪声	e _n p-p	0.1 Hz至10 Hz		0.14		μV p-p
电压噪声密度	e _n	f = 1 kHz		3.9		nV/√Hz
电流噪声密度	İn	f = 1 kHz		0.55		pA/√Hz

除非另有说明, $V_{SY} = \pm 5.0 \text{ V}$, $V_{CM} = 0 \text{ V}$, $T_A = 25$ °C。

表3.

参数	符号	测试条件/注释	最小值	典型值	最大值	单位
输入特性						
失调电压	V_{os}	SOIC封装		30	100	μV
		-40 °C $\leq T_A \leq +125$ °C			200	μV
		SOT-23、MSOP、TSSOP封装		60	130	μV
		-40 °C $\leq T_A \leq +125$ °C			250	μV
		ADA4084-2 LFCSP封装		90	200	μV
		-40 °C $\leq T_A \leq +125$ °C			300	μV
失调电压漂移	$\Delta V_{OS}/\Delta T$	-40 °C $\leq T_A \leq +125$ °C		0.5	1.75	μV/°C
失调电压匹配		$T_A = 25$ °C			150	μV
, , , ,		ADA4084-4 LFCSP封装			200	μV
输入偏置电流	I _B			140	250	nA
Ind A blid Tr. O blo		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$			400	nA
输入失调电流	los	10 0 = 1 1 = 1 1 2 5		5	25	nA
11的ノマンマッパーロ かに	103	$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$		3	50	nA
输入电压范围		10 C 3 1A 3 1 125 C	-5		+5	V
共模抑制比	CMRR	$V_{CM} = \pm 4 \text{ V}, -40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	106	124	⊤ J	dB
六 保押削儿	Civinn	$V_{CM} = \pm 4 V$, $-40 C \le T_A \le +125 C$ $V_{CM} = \pm 5 V$	76	124		dВ
						dВ
		$V_{CM} = \pm 5 \text{ V}, -40^{\circ}\text{C} \le T_A \le +125^{\circ}\text{C}$	70	112		
大信号电压增益	Avo	$R_L = 2 k\Omega, -4 V \le V_{OUT} \le 4 V$	108	112		dB
		-40 °C \leq T _A \leq $+125$ °C	103			dB
输入阻抗						
差分				100 1.1		kΩ pF
共模				200 2.5		MΩ pF
渝出特性						
输出高电压	V _{OH}	$R_L = 10 kΩ接V_{CM}$	4.9	4.95		V
		-40 °C $\leq T_A \leq +125$ °C	4.8			V
		$R_L = 2 kΩ接V_{CM}$	4.8	4.85		V
		-40 °C $\leq T_A \leq +125$ °C	4.7			V
输出低电压	V_{OL}	$R_L = 10 kΩ接V_{CM}$		-4.95	-4.9	V
		-40 °C $\leq T_A \leq +125$ °C			-4.8	V
		$R_L = 2 kΩ接V_{CM}$		-4.95	-4.8	V
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$			-4.7	V
短路电流	I _{sc}			-24/+17		mA
闭环输出阻抗	Z _{out}	$f = 1 \text{ kHz}, A_V = 1$		0.1		Ω
电源		,				1
电源抑制比	PSRR	V _{sY} = ±2 V至±18 V	110	120		dB
-C-(/x)44-hi) FC	1 31111	-40°C ≤ T _A ≤ +125°C	105	120		dB
电源电流 (每个放大器)	I _{SY}	$I_{OUT} = 0 \text{ mA}$	103	0.595	0.700	mA
电你电流 (每个放入品)	ISY			0.595		
· 1. 太州· 4.		-40°C ≤ T _A ≤ +125°C			1.00	mA
动态性能	60	D 21-O-th/	2.4	2.7		V//-
压摆率	SR	$R_L = 2 k\Omega \dot{E} V_{CM}$	2.4	3.7		V/µs
增益带宽积	GBP	$V_{IN} = 5 \text{ mV p-p}, R_L = 10 \text{ k}\Omega, A_V = 100$		15.9		MHz
单位增益交越	UGC	$V_{IN} = 5 \text{ mV p-p}, \ R_L = 10 \text{ k}\Omega, \ A_V = 1$		9.6		MHz
相位裕量	Фм			85		度
-3 dB闭环带宽	−3 dB	$A_V = 1$, $V_{IN} = 5 \text{ mV p-p}$		13.9		MHz
建立时间	ts	$A_V = 10$, $V_{IN} = 8 V p-p$, 0.1%		4		μs
总谐波失真加噪声	THD + N	$V_{IN} = 2 \text{ V rms}, R_L = 2 \text{ k}\Omega, f = 1 \text{ kHz}$		0.003		%
噪声性能						
电压噪声	e _n p-p	0.1 Hz至10 Hz		0.14		μV p-p
电压噪声密度	e _n	f = 1 kHz		3.9		nV/√Hz
电流噪声密度	in	f = 1 kHz		0.55		pA/√Hz

ADA4084-1/ADA4084-2/ADA4084-4

除非另有说明, $V_{SY} = \pm 15.0 \text{ V}$, $V_{CM} = 0 \text{ V}$, $T_A = 25$ °C。

表4.

参数	符号	测试条件/注释	最小值	典型值	最大值	单位
输入特性						
失调电压	Vos	SOIC封装		40	100	μV
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$			200	μV
		SOT-23、MSOP、TSSOP封装		70	130	μV
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$			250	μV
		ADA4084-2 LFCSP封装		100	200	μV
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$.00	300	μV
失调电压漂移	ΔV _{os} /ΔΤ	10 C 3 1 N 3 1 1 2 5 C		0.5	1.75	μV/°C
失调电压匹配	Δν05/Δ1	T _A = 25°C		0.5	150	μV
人则电压匹乱		ADA4084-4 LFCSP封装			200	μV
松 1 / 伯里由法	1	ADA4004-4 LI CSF到表		140	250	nA
输入偏置电流	I _B	40%C 4T 4 125%C		140		
44 t al. (44 t a		-40°C ≤ T _A ≤ +125°C		-	400	nA
输入失调电流	los			5	25	nA
		-40°C ≤ T _A ≤ +125°C			50	nA
输入电压范围			-15		+15	V
共模抑制比	CMRR	$V_{CM} = \pm 14 \text{ V}, -40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	106	124		dB
		$V_{CM} = \pm 15 \text{ V}$	85			dB
		$V_{CM} = \pm 15 \text{ V}, -40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	80			dB
大信号电压增益	A _{vo}	$R_L = 2 \text{ k}\Omega$, $-13.5 \text{ V} \le V_{\text{OUT}} \le +13.5 \text{ V}$	110	117		dB
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	105			dB
输入阻抗						
差分				100 1.1		kΩ pF
共模				200 2.5		MΩ pF
输出特性				"		- '''
输出高电压	V _{OH}	R _L = 10 kΩ接V _{CM}	14.85	14.9		V
100 E4 F4 C / E5	- 011	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	14.8			V
		R _L = 2 kΩ接V _{CM}	14.5	14.6		V
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	14.0	14.0		V
输出低电压	Vol	R _L = 10 kΩ接V _{CM}	14.0	-14.95	-14.9	V
制 出 似 电 压	VOL	$-40^{\circ}\text{C} \leq T_{A} \leq +125^{\circ}\text{C}$		-14.93	-14.9 -14.8	V
				140		
		$R_L = 2 k\Omega接V_{CM}$		-14.9	-14.8	V
temperature.		-40°C ≤ T _A ≤ +125°C			-14.7	٧.
短路电流	I _{sc}			±30		mA
团环输出阻抗	Z _{OUT}	$f = 1 \text{ kHz}, A_V = +1$		0.1		Ω
电源						
电源抑制比	PSRR	$V_{SY} = \pm 2 V \underline{\Sigma} \pm 18 V$	110	120		dB
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	105			dB
电源电流(每个放大器)	I _{SY}	$I_{OUT} = 0 \text{ mA}$		0.625	0.750	mA
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$			1.050	mA
动态性能						
压摆率	SR	$R_L = 2 k\Omega$	2.4	4.6		V/µs
增益带宽积	GBP	$V_{IN} = 5 \text{ mV p-p}, R_L = 10 \text{ k}\Omega, A_V = 100$		15.9		MHz
单位增益交越	UGC	$V_{IN} = 5 \text{ mV p-p}, R_L = 10 \text{ k}\Omega, A_V = 1$		9.9		MHz
相位裕量	Фм	F F /		86		度
-3 dB闭环带宽	-3 dB	$A_V = 1$, $V_{IN} = 5 \text{ mV p-p}$		13.9		MHz
建立时间	t _s	$A_V = 1$, $V_{IN} = 3 \text{ mV p-p}$ $A_V = 10$, $V_{IN} = 10 \text{ V p-p}$, 0.1%		4		μς
是立时间 总谐波失真加噪声	THD + N	$V_{IN} = 5 \text{ V rms}, R_L = 2 \text{ k}\Omega, f = 1 \text{ kHz}$		0.003		μs %
	HIDTIN	V _{IN} - J V IIII3, INL - Z KM2, I - I KIIZ		0.003		/0
噪声性能		0.1 U-조10 U-		0.1		
电压噪声	e _n p-p	0.1 Hz至10 Hz		0.1		μV p-p
电压噪声密度	e _n	f = 1 kHz		3.9		nV/√Hz
电流噪声密度	İn	f = 1 kHz		0.55		pA/√Hz

绝对最大额定值

表5.

1KJ.	
参数	额定值
电源电压	±18 V
输入电压	$V- \leq V_{IN} \leq V+$
差分输入电压1	±0.6 V
对地输出短路持续时间	未定
存储温度范围	-65℃至+150℃
工作温度范围	-40℃至+125℃
结温范围	-65℃至+150℃
引脚温度(焊接60秒)	300°C
ESD	
人体模型 ²	4.5 kV
机器模型 ³	200 V
场感应充电器件模型 (FICDM)⁴	1.25 kV

- ¹ 对于0.6 V以上的输入差分电压,输入电流应小于5 mA,以防输入器件性能下降或受损。
- ² 适用标准: MIL-STD-883, 方法3015.7。
- ³ 适用标准: JESD22-A115-A (JEDEC ESD机器模型标准)。
- ⁴ 适用标准: JESD22-C101-C (JEDEC ESD FICDM标准)。

注意,等于或超出上述绝对最大额定值可能会导致产品永久性损坏。这只是额定最值,不表示在这些条件下或者在任何其它超出本技术规范操作章节中所示规格的条件下,器件能够正常工作。长期在超出最大额定值条件下工作会影响产品的可靠性。

热阻

 θ_{IA} 针对焊接在零气流4层JEDEC标准印刷电路板 (PCB) 上的器件而规定。

表6. 热阻

封装类型	θ _{JA}	θ _{JC}	单位
5引脚SOT-23 (RJ-5)	219.4	155.6	°C/W
8引脚SOIC_N (R-8)	121	43	°C/W
8引脚MSOP (RM-8)	142	45	°C/W
8引脚LFCSP (CP-8-11) ^{1,3}	84	40	°C/W
14引脚TSSOP (RU-14)	112	43	°C/W
16引脚LFCSP (CP-16-17) ^{2,3}	55	30	°C/W

- ¹数值基于4层 (2S2P) JEDEC标准PCB, 具有4个散热通孔。裸露焊盘焊接到PCB。
- ² 数值基于4层 (2S2P) JEDEC标准PCB, 具有9个散热通孔。裸露焊盘焊接到PCB。
- ³ θ_{IC}在封装顶部测量。

ESD警告

ESD(静电放电)敏感器件。

带电器件和电路板可能会在没有察觉的情况下放电。尽管本产品具有专利或专有保护电路,但在遇到高能量ESD时,器件可能会损坏。因此,应当采取适当的ESD防范措施,以避免器件性能下降或功能丧失。

图2. 简化示意图

引脚配置和功能描述

表7.8引脚SOIC, ADA4084-1引脚功能描述

		7111 771101212
引脚编号	引脚名称	描述
1	NIC	内部不连接
2	-IN	负输入
3	+IN	正输入
4	V-	负电源
5	NIC	内部不连接
6	OUT	输出
7	V+	正电源
8	NIC	内部不连接

图4. ADA4084-1, 5引脚SOT-23 (RJ)

表8.5引脚SOT-23, ADA4084-1引脚功能描述

引脚编号	引脚名称	描述
1	OUT	输出
2	V-	负电源
3	+IN	正输入
4	-IN	负输入
5	V+	正电源

图5. ADA4084-2,8引加LFCSP (CP)

表9.8引脚LFCSP, ADA4084-2引脚功能描述

引脚编号	引脚名称	描述
1	OUTA	通道A输出
2	−IN A	通道A负输入
3	+IN A	通道A正输入
4	V-	负电源
5	+IN B	通道B正输入
6	−IN B	通道B负输入
7	OUT B	通道B输出
8	V+	正电源
	EPAD	裸露焊盘。对于LFCSP封装,裸露焊盘必须连接到V-。

图7. ADA4084-2, 8引脚SOIC (R)

表10.8引脚MSOP、8引脚SOIC, ADA4084-2引脚功能描述

77 7101	V 21.01	, , , , , , , , , , , , , , , , , , , ,
引脚编号	引脚名称	描述
1	OUTA	通道A输出
2	−IN A	通道A负输入
3	+IN A	通道A正输入
4	V-	负电源
5	+IN B	通道B正输入
6	−IN B	通道B负输入
7	OUT B	通道B输出
8	V+	正电源B

图8. ADA4084-4,14引加TSSOP (RU)

表11.14引脚TSSOP, ADA4804-4引脚功能描述

引脚编号	引脚名称	描述
1	OUTA	通道A输出
2	−IN A	通道A负输入
3	+IN A	通道A正输入
4	V+	正电源
5	+IN B	通道B正输入
6	−IN B	通道B负输入
7	OUT B	通道B输出
8	OUT C	通道C输出
9	−IN C	通道C负输入
10	+IN C	通道C正输入
11	V-	负电源
12	+IN D	通道D正输入
13	−IN D	通道D负输入
14	OUT D	通道D输出

图9. ADA4084-4,16 引加LFCSP (CP)

表12.16引脚LFCSP, ADA4084-4引脚功能描述

引脚编号	引脚名称	描述
1	−IN A	通道A负输入
2	+IN A	通道A正输入
3	V+	正电源
4	+IN B	通道B正输入
5	−IN B	通道B负输入
6	OUT B	通道B输出
7	OUT C	通道C输出
8	−IN C	通道C负输入
9	+IN C	通道C正输入
10	V-	负电源
11	+IN D	通道D正输入
12	−IN D	通道D负输入
13	NIC	内部不连接
14	OUT D	通道D输出
15	OUTA	通道A输出
16	NIC	内部不连接

典型性能参数

除非另有说明, TA = 25°C。

±1.5 V特性

图10. 输入失调电压 (Vos) 分布, SOIC

图11. 输入失调电压 (Vos) 分布, SOT-23

图12. 输入失调电压 (Vos) 分布, MSOP和TSSOP

图13. 输入失调电压 (Vos) 分布, LFCSP

图14. TCVos分布, SOIC、MSOP和TSSOP

图15. TCVos分布, SOT-23

图16. TCVos分布,LFCSP

图17. 输入失调电压与共模电压的关系

图18. 输入失调电压与温度的关系

图19. 输入偏置电流与温度的关系

图20. 不同温度下输入偏置电流与Vcm的关系

图21. 压差 (VDO) 与拉电流的关系

图22. 压差 (VDO) 与灌电流的关系

图23. 开环增益和相位与频率的关系

图24. 闭环增益与频率的关系

图25. 输出阻抗 (Zout) 与频率的关系

图26. PSRR与频率的关系

图27. CMRR与频率的关系

图28. 大信号瞬态响应

图29. 小信号瞬态响应

图30. 建立时间

图31. 电压噪声密度与频率的关系

图32. 过冲与负载电容的关系

图33. 电压噪声, 0.1 Hz至10 Hz

图34. 通道隔离与率的关系

图35. THD + N与幅度的关系

图36. THD + N 与频率的关系, 500 kHz滤波器

图37. THD + N与频率的关系, 80 kHz滤波器

图38. 无反相

图39.50%正过载恢复时间

图40.50%负过载恢复时间

±5 V特性

图41. 输入失调电压 (Vos) 分布, SOIC

图42. 输入失调电压 (Vos) 分布, SOT-23

图43. 输入失调电压 (Vos) 分布, MSOP和TSSOP

图44. 输入失调电压 (Vos) 分布, LFCSP

图45. TCVos分布, SOIC、MSOP和TSSOP

图46. TCVos分布,SOT-23

图47. TCVos分布, LFCSP

图48. 输入失调电压与共模电压的关系

图49. 输入失调电压与温度的关系

图50. 输入偏置电流与温度的关系

图51. 不同温度下输入偏置电流与Vcm的关系

图52. 压差 (VDO) 与拉电流的关系

图53. 压差 (VDO) 与灌电流的关系

图54. 开环增益和相位与频率的关系

图55. 闭环增益与频率的关系

图56. 输出阻抗 (Zout) 与频率的关系

图57. PSRR 与频率的关系

图58. CMRR与频率的关系

图59. 大信号瞬态响应

图60. 小信号瞬态响应

10 VOLTAGE NOISE DENSITY (nV/√Hz) 10 100 1k 10k 100k FREQUENCY (Hz)

图62. 电压噪声密度与频率的关系

图63. 过冲与负载电容的关系

图64. 电压噪声, 0.1 Hz至10 Hz

图65. 通道隔离与频率的关系

图66. THD + N与幅度的关系

图67. THD + N与频率的关系, 500 kHz滤波器

图68. THD + N与频率的关系, 80 kHz滤波器

10 0 INPUT VOLTAGE (V) -2 -3 2 OUTPUT V_{SY} = ±5V T_A = 25°C 10 6 12 18 0 -2

图69. 无反相

TIME (µs) 图70.50%正过载恢复时间

图71.50%负过载恢复时间

±15 V特性

图72. 输入失调电压 (Vos) 分布, SOIC

图73. 输入失调电压 (Vos) 分布, SOT-23

图74. 输入失调电压 (Vos) 分布, MSOP和TSSOP

图75. 输入失调电压 (Vos) 分布, LFCSP

图76. TCVos分布, SOIC、MSOP和TSSOP

图77. TCVos分布,SOT-23

图78. TCVos分布, LFCSP

图79. 输入失调电压与共模电压的关系

图80. 输入失调电压与温度的关系

图81. 输入偏置电流与温度的关系

图82. 不同温度下输入偏置电流与Vcm的关系

图83. 压差 (VDO) 与拉电流的关系

图84. 压差 (VDO) 与灌电流的关系

图85. 开环增益和相位与频率的关系

图86. 闭环增益与频率的关系

图87. 输出阻抗 (Zout) 与频率的关系

140 V_{SY} = ±15V T_A = 25°C 120 100 CMRR (dB) 80 60 20 0 10 100 100k 10M 100M 1k 10k FREQUENCY (Hz)

图89. CMRR 与频率的关系

图103. 不同温度下每个放大器的电源电流(Isy) 与电源电压(Vsy) 的 辛亥

应用信息

功能描述

ADA4084-1/ADA4084-2/ADA4084-4是单电源供电、精密轨到轨运算放大器。ADA4084-1/ADA4084-2/ADA4084-4设计用于便携式仪器仪表应用,集高精度、宽带宽和低噪声等特性于一体,是同时要求高交流性能和精密直流性能的单电源应用的理想选择。ADA4084-1/ADA4084-2/ADA4084-4同样适合其他低电源电压应用,包括有源滤波器、音频麦克风前置放大器、电源控制和电信。为将所有这些特性与轨到轨输入/输出操作结合在一起,需要采用新型电路设计技术。

例如,图106显示了ADA4084-1/ADA4084-2/ADA4084-4输入级的简化等效电路。它包括一个PNP差分对(Q1和Q2)和一个NPN差分对(Q3和Q4),两个差分对同时工作。二极管D100和D101用于箝位ADA4084-1/ADA4084-2/ADA4084-4的差分输入电压,防止输入晶体管的射极-基极结发生齐纳击穿。输入级电压增益保持较低的值,以便支持输入轨到轨操作。两对差分输出电压连接到ADA4084-1/ADA4084-2/ADA4084-4的第二级,它是一个经过修改的复合折叠级联增益级,在第二增益级中;两对差分输出电压合并为一个单端输出信号电压,用来驱动输出级。

输入级的一个关键问题是输入偏置电流在输入共模电压范围内的行为。ADA4084-1/ADA4084-2/ADA4084-4的输入偏置电流是Q1、Q4中的基极电流与Q2、Q3中的基极电流的算术和。这种设计方法导致ADA4084-1/ADA4084-2/ADA4084-4的

输入偏置电流不仅表现出不同的幅度,而且表现为不同的极性。图19、图20、图50、图51、图81和图82很好地说明了这种效应。因此,为实现最佳直流和交流性能,连接到ADA4084-1/ADA4084-2/ADA4084-4输入端的有效源阻抗必须平衡。

为实现轨到轨输出,ADA4084-1/ADA4084-2/ADA4084-4针对拉电流和灌电流的输出级设计采用独特的拓扑结构,此电路拓扑如图107所示。输出级由第二增益级电压驱动。通过输出级的信号路径是反相的,也就是说:对于正输入信号,Q13向Q19提供基极电流驱动,使其传导(吸收)电流;对于负输入信号,信号路径(经过Q18 → 镜像 → Q24)向Q23提供基极电流驱动,从而传导(流出)电流。两个晶体管会一直提供输出电流,直到发生饱和。

因此,输出晶体管的饱和电压设置ADA4084-1/ADA4084-2/ADA4084-4最大输出电压摆幅的限值。输出短路电流由第二增益级输入Q13基极的最大信号电流决定。输出级也有一定的电压增益,这是通过使用共射极放大器实现的,因此,输出级的电压增益(因而器件的开环增益)在一定程度上取决于ADA4084-1/ADA4084-2/ADA4084-4输出端的总负载电阻。

启动特性

在标称电源下,ADA4084-1/ADA4084-2/ADA4084-4的额定工作电压为3 V至30 V(±1.5 V至±15 V)。上电期间,当电源电压从0 V提高到标称电源电压时,电源电流(Isv)随之提高到稳定点,放大器准备就绪。稳定过程随温度而变化,如图103所示。例如在-40°C时,相比于高温,它需要更高的电压,并在较低电源电流处稳定。在高温时,它需要较低电压,但在较高电流处稳定。在所有情况下及所有温度条件下,ADA4084-1/ADA4084-2/ADA4084-4的额定最小启动和工作电压都是3 V。

输入保护

和任何半导体器件一样,如果存在器件输入电压可能超过任一电源电压的情况,就必须考虑器件的输入过压I-V特性。 发生过压时,放大器可能会受损,具体取决于所施加电压的幅度和故障电流的幅度。

当输入共模电压超过任一电源引脚的幅度为二极管压降时, 二极管D1、D2、D4和D5导通。此二极管压降随温度而不同, 范围是0.3 V到0.8 V。如图106中的简化等效输入电路所示, ADA4084-1/ADA4084-2/ADA4084-4 没有任何内部限流电 阻,因此故障电流可能快速上升至能造成损坏的水平。

该输入电流如果以5 mA为限,则不会损坏器件。如果故障条件导致电流超过5 mA,则应外加一个串联电阻,其代价是热噪声增加。图108显示一个过压保护放大器的典型同相配置,其中串联电阻 (R1) 按照以下公式选择:

$$R1 = \frac{IN(MAX) - V_{SUPPLY}}{5 \text{ mA}}$$

例如,1 kΩ电阻可以保护ADA4084-1/ADA4084-2/ADA4084-4 不受电源电压上下5 V的输入信号影响。注意,一个1 kΩ电阻在室温下的热噪声约为4 nV/ \sqrt{Hz} ,这超过了ADA4084-1/ADA4084-2/ADA4084-4的电压噪声。对于两路输入均使用的其他配置,应添加一个串联电阻来限制输入电流。为了确保最佳直流和交流性能,应平衡源阻抗。

图108. 输入端的串联电阻将过压电流限制在安全值以下

为防止Q1/Q2和Q3/Q4对免受较大差分电压影响(可能导致射极-基极结发生齐纳击穿),D100和D101连接在两路输入之间。这使得器件不能用作比较器。关于更详情说明,请参阅技术指南MT-035"运算放大器输入、输出、单电源和轨到轨问题";技术指南MT-083"比较器";技术指南MT-084"运算放大器用作比较器";以及应用笔记AN-849"运算放大器用作比较器"。

输出反相

某些设计用于单电源操作的运算放大器,当其输入被驱动到有用共模范围以外时,会发生输出反相。通常,对于单电源双极性运算放大器,负电源决定共模范围的下限。对于这些器件,外部箝位二极管(阳极连接到地、阴极连接到输入端)防止输入信号偏移超过器件的负电源(即GND),从而阻止致使输出电压改变相位的条件出现。JFET输入放大器也可能发生反相,这种情况下,通常需要一个串联输入电阻来防止反相。

只要施加的输入电压不大于电源电压,ADA4084-1/ADA4084-2/ADA4084-4就不存在合理的输入电压范围限制(参见图38、图69和图100)。

虽然器件输出不会反相,但可能有大电流流过输入保护二极管。因此,对于输入电压很有可能超过电源电压的应用,应采用"输入保护"部分提出的技术。

设计单电源应用中的低噪声电路

在单电源应用中,ADA4084-1/ADA4084-2/ADA4084-4等器件可以通过轨到轨操作扩展应用的动态范围。参考图109所示的运放噪声模型电路配置,对于源电阻Rs,放大器的总等效输入噪声电压表示为:

$$e_{nT} = \sqrt{2[(e_{nR})^2 + (i_{nOA} \times R_S)^2] + (e_{nOA})^2}$$
, units in $\frac{V}{\sqrt{Hz}}$

其中:

(enR)2为源电阻的热噪声电压功率 (4kTR)。

k为玻尔兹曼常数, 等于1.38×10⁻²³ J/K。

T为用开氏度表示的电路环境温度, 273.15 + TA(°C)。

 $(i_{nOA})^2$ 为运放等效输入噪声电流频谱功率(1 Hz带宽)。 $R_S = 2R$,即有效或等效电路源电阻。

(enOA)2为运放等效输入噪声电压频谱功率 (1 Hz带宽)。

图109. 用于确定电路总等效输入噪声电压和噪声系数的 运放噪声电路模型

为帮助设计,图110显示了ADA4084-1/ADA4084-2/ADA4084-4 的等效热噪声与总源电阻的关系。注意,源电阻小于1 kΩ时, ADA4084-1/ADA4084-2/ADA4084-4的噪声以等效输入噪声 电压为主。

图110. 等效热噪声与总源电阻的关系

由于电路信噪比 (SNR) 是最终分析的关键参数,因此有时会用噪声系数 (NF) 来表示电路的噪声特性。噪声系数定义为电路的输出信噪比与输入信噪比的比值。

噪声系数一般用于50 Ω系统中的射频和微波电路分析,在输入和输出阻抗变化非常大的运放电路中作用不大。有关噪声系数的更完整说明,请参阅技术指南MT-052:"运算放大器噪声系数——不要被误导"。

应用中的信号电平总是提高到使电路信噪比(SNR)最大的 水平,但低压单电源应用无法提供此选择。

因此,为在单电源应用中实现最佳电路SNR,应选择等效输入噪声电压最低的运算放大器,以及能使电路总噪声维持较低水平的源电阻。

比较器操作

虽然运算放大器不同于比较器,但有时也将双通道或四通道运放的不用部分用作比较器,但对轨到轨输出运算放大器不推荐采取这种做法。对于轨到轨输出运算放大器,输出级通常采用双极性或MOSFET晶体管比例式电流镜。由于器件工作在开环状态,第二级增加驱动至比例镜的电流以闭合环路,但是,环路无法闭合,导致电源电流增加。运算放大器配置为比较器时,电源电流将明显增加(见图111)。将不用部分配置为电压跟随器时,应将同相输入连接到输入电压范围内的电压。ADA4084-1/ADA4084-2/ADA4084-4具有独特的第二级和输出级设计,当运算放大器在开环状态下工作时,它可大大降低过高的电源电流。

图111. 电源电流与电源电压 (Vsy) 的关系

长期漂移

精密信号路径在其寿命周期内或两次校准程序间隔期内的稳定性,取决于路径中的模拟器件(如运算放大器、基准电压源、数据转换器等)的长期稳定性。为了帮助设计人员预测采用ADA4084-1/ADA4084-2/ADA4084-4的电路的长期漂移,ADI公司利用高精度测量系统(包括超稳定油浴)测量了多个器件为期10,000小时(超过13个月)的失调电压。为了模仿实际系统性能,利用标准回流焊曲线(如JEDEC J-STD-020D标准所定义)将被测器件(DUT)焊接到FR4 PCB上,而不是在插槽中进行测试。这种测试方式很重要,因为PCB的膨胀和收缩可能会给集成电路(IC)封装造成压力,影响失调电压偏移。

ADA4084-1/ADA4084-2/ADA4084-4的长期漂移极低,如图112 所示。红色、蓝色和绿色曲线表示样片单元。可以看到, ADA4084-1/ADA4084-2/ADA4084-4 10,000小时的平均漂移小于3 μV,或小于室温时最大额定失调电压 (100 μV) 的3%。

图112. ADA4084-1/ADA4084-2/ADA4084-4 实测10,000 小时 的失调电压长期漂移

温度迟滞

除了"长期漂移"部分所述的时间稳定性之外,知道温度迟滞,即稳定性与温度周期变化的关系也很有用。迟滞是一个重要参数,因为它能告诉系统设计人员,在环境温度改变并随后回到室温时,信号在多大程度上回到其起始幅度。图113显示了温度三次从室温变为+125°C,再变为-40°C,最后回到室温时的输入失调电压变化。虚线表示初始预调理周期,用以消除器件暴露在生产回流焊温度下引起的最初温度相关失调偏移。在这三个全温度周期中,失调迟滞典型值仅为4μV,或完整工作温度范围内200μV最大失调电压的2%。图114中的直方图显示:当器件仅经历半周期(即从室温变到125°C,再回到室温)时,迟滞较大。

图113. 三个全温度周期内失调电压的变化

图114. 三个全周期内和三个半周期内失调电压的温度迟滞直方图

外形尺寸

COMPLIANT TO JEDEC STANDARDS MS-012-AA

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

图115.8引脚标准小型封装 [SOIC_N] 窄体 (R-8)

图示尺寸单位: mm和 (inch)

COMPLIANT TO JEDEC STANDARDS MO-178-AA

图116.5引脚小型晶体管封装 [SOT-23] (RJ-5) 图示尺寸单位: mm

图117.8引脚超小型封装 [MSOP] (RM-8) 图示尺寸单位: mm

图118.8引脚引线框芯片级封装 [LFCSP] 3 mm×3 mm本体、0.75 mm封装高度 (CP-8-11) 图示尺寸单位: mm

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.

图119.16引脚引线框芯片级封装 [LFCSP] 4 mm×4 mm本体、075 mm封装高度 (CP-16-17) 图示尺寸单位: mm

COMPLIANT TO JEDEC STANDARDS MO-153-AB-1 图120. 14引脚超薄紧缩小型封装 [TSSOP]

(RU-14) 图示尺寸单位:mm

ADA4084-1/ADA4084-2/ADA4084-4

订购指南

型号 ¹	温度范围	封装描述	封装选项	标识
ADA4084-1ARZ	-40°C至+125°C	8引脚标准小型封装 [SOIC_N]	R-8	
ADA4084-1ARZ-R7	-40°C至+125°C	8引脚标准小型封装 [SOIC_N]	R-8	
ADA4084-1ARZ-RL	-40°C至+125°C	8引脚标准小型封装 [SOIC_N]	R-8	
ADA4084-1ARJZ-R2	-40°C至+125°C	5引脚小型晶体管封装 [SOT-23]	RJ-5	A38
ADA4084-1ARJZ-R7	-40°C至+125°C	5引脚小型晶体管封装 [SOT-23]	RJ-5	A38
ADA4084-1ARJZ-RL	-40°C至+125°C	5引脚小型晶体管封装 [SOT-23]	RJ-5	A38
ADA4084-2ARMZ	-40°C至+125°C	8引脚超小型封装 [MSOP]	RM-8	A2Q
ADA4084-2ARMZ-R7	-40°C至+125°C	8引脚超小型封装 [MSOP]	RM-8	A2Q
ADA4084-2ARMZ-RL	-40°C至+125°C	8引脚超小型封装 [MSOP]	RM-8	A2Q
ADA4084-2ARZ	-40°C至+125°C	8引脚标准小型封装 [SOIC_N]	R-8	
ADA4084-2ARZ-R7	-40°C至+125°C	8引脚标准小型封装 [SOIC_N]	R-8	
ADA4084-2ARZ-RL	-40°C至+125°C	8引脚标准小型封装 [SOIC_N]	R-8	
ADA4084-2ACPZ-R7	-40°C至+125°C	8引脚引线框芯片级封装 [LFCSP]	CP-8-11	A2Q
ADA4084-2ACPZ-RL	-40°C至+125°C	8引脚引线框芯片级封装 [LFCSP]	CP-8-11	A2Q
ADA4084-4ACPZ-R7	-40°C至+125°C	16引脚引线框芯片级封装 [LFCSP]	CP-16-17	
ADA4084-4ACPZ-RL	-40°C至+125°C	16引脚引线框芯片级封装 [LFCSP]	CP-16-17	
ADA4084-4ARUZ	-40°C至+125°C	14引脚超薄紧缩小型封装 [TSSOP]	RU-14	
ADA4084-4ARUZ-RL	-40℃至+125℃	14引脚超薄紧缩小型封装 [TSSOP]	RU-14	

¹Z= 符合RoHS标准的器件。