Nº 11 LINQ to Object

Задание

- 1. Задайте массив типа string, содержащий 12 месяцев (June, July, May, December, January). Используя LINQ to Object напишите запрос выбирающий последовательность месяцев с длиной строки равной п, запрос возвращающий только летние и зимние месяцы, запрос вывода месяцев в алфавитном порядке, запрос считающий месяцы содержащие букву «u» и длиной имени не менее 4-х...
- 2. Создайте коллекцию List<T> и параметризируйте ее типом (классом) из лабораторной №3 (при необходимости реализуйте нужные интерфейсы).
- 3. На основе LINQ сформируйте следующие запросы по вариантам. При необходимости добавьте в класс Т (тип параметра) свойства.
- 4. Придумайте и напишите свой собственный запрос, в котором было бы не менее 5 операторов из разных категорий: условия, проекций, упорядочивания, группировки, агрегирования, кванторов и разиения.
 - 5. Придумайте запрос с оператором Join

	0.
Вариант 1	количество векторов, содержащих 0;
	список векторов с наименьшим модулем.
	массив векторов (один) длины (количество элементов) 3,5,7.
	максимальный вектор
	первый вектор с отрицательным значением
	упорядоченный список векторов по размеру
Вариант 2	стек с наименьшим/наибольшим верхним элементом;
	список стеков, содержащих отрицательные элементы.
	Минимальный стек
	Массив стеков длины 1 и 3
	Первый стек с нулевым элементом
	Упорядоченный массив стеков по сумме элементов
	множества с наименьшей/наибольшей суммой элементов;
Вариант 3	список множеств, содержащих отрицательные элементы.
	Количество множеств, содержащих заданное значение
	Максимальное множество
	Первое множество с заданным элементом
	Упорядоченный массив множеств по первому элементу
Вариант 4	список дат для заданного года;
	список дат, которые имеют заданный месяц
	количество дат в определённом диапазоне
	максимальную дату
	Первую дату для заданного дня
	Упорядоченный список дат (хронологически)

Вариант 5	количество строк длины п и т
	список строк, которые содержат заданное слово.
	Максимальную строку
	Первую строку, содержащую точку или ?
	Последнюю строку с самым коротким словом
	Упорядоченный массив по первому слову
Вариант 6	матрицу с наибольшим/наименьшим количеством единиц;
	список матриц с равным количеством заданного символа в
	каждой строке
	Максимальную матрицу
	Количество матриц заданного размера
	Упорядоченный список матриц по количеству единиц
	группы окружностей, центры которых лежат на одной
	прямой;
D 7	наибольший и наименьший по площади (периметру) объект;
Вариант 7	Количество окружностей заданного радиуса
	Первую окружность, лежащую в первой четверти
	Упорядоченный список окружностей по площади
	количество четырехугольников разного типа (квадрат,
	прямоугольник, ромб, произвольный)
	определить для каждой группы наибольший и наименьший по
Вариант 8	площади (периметру) объект
	Массив квадратов со стронной не более х
	Упорядоченный по периметру массив прямоугольников
	количество векторов, содержащих 0;
	список векторов с наименьшим модулем.
	массив векторов (один) длины (количество элементов) 3,5,7.
Вариант 9	максимальный вектор
	первый вектор с отрицательным значением
	упорядоченный список векторов по размеру
Вариант 10	вектора с заданным числом единиц/нулей;
	определить и вывести равные вектора в коллекции
	максимальный вектор
	первый вектор с п единицами
	· · · · · · · · · · · · · · · · · · ·
	упорядоченный вектор по числу единиц
Вариант 11	время с заданным значением часов;
	списки времен по группам: ночь, утро, день, вечер
	минимальное время
	Первое время в котором часы и минуты совпадают
	Упорядоченный список времен
Вариант 12	массивы только с четными/нечетными элементами;
	массив с наибольшей суммой элементов
	минимальный массив
	количество массивов, содержащих заданное значение
	количество равных массивов
	упорядоченный массив массивов по первому элементу

Вариант 13	подсчитать количество треугольников разного типа (равносторонний, равнобедренный, прямоугольный, произвольный). определить для каждой группы наибольший и наименьший по периметру объект минимальный по площади треугольник треугольники со длинами сторон из диапазона <п и >т
	упорядоченный по сумме длин сторон массив треугольников
Вариант 14	множества только с четными/нечетными элементами; множества, содержащие отрицательные элементы. Количество пустых множеств Список множеств длины которых принадлежат заданному диапазону Минимальное множество
Вариант 15	список рейсов для заданного пункта назначения; количество рейсов для заданного дня недели Рейс который вылетает в понедельник раньше всех Рейс который вылетает в среду или пятницу позже всех Список рейсов, упорядоченных по времени вылета
Вариант 16	список студентов заданной специальности; список заданной учебной группы самого молодого студента количество студентов заданной группы упорядоченных по фамилии первого студента с заданным именем
Вариант 17	список покупателей в алфавитном порядке; список покупателей, у которых номер кредитной карточки находится в заданном интервале максимального покупателя первых пят покупателей с максимальной суммой на карте
Вариант 18	список абитуриентов, имеющих неудовлетворительные оценки; список абитуриентов, у которых сумма баллов выше заданной; количество абитуриентов с 10-ками массив абитуриентов упорядоченных по алфавиту 4 последних абитуриента с самой низкой успеваемостью
Вариант 19	список книг заданного автора; список книг, выпущенных после заданного года самую тонкую книгу 5 первых самых толстых книг Список книг отсортированных по цене

Вариант 20	список квартир, имеющих заданное число комнат; пять первых квартир на заданной улице заданного дома количество квартир на определенной улице список квартир, имеющих заданное число комнат и расположенных на этаже, который находится в заданном промежутке;
Вариант 21	сведения об абонентах, у которых время внутригородских разговоров превышает заданное; сведения об абонентах, которые пользовались междугородной связью; количество абонентов с заданным значением дебета максимального абонента (по вашему критерию) упорядоченный список абонентов по фамилии
Вариант 22	Создать массив объектов. Вывести: список автомобилей заданной марки; список автомобилей заданной модели, которые эксплуатируются больше п лет; количество автомобильной заданного цвета и диапазона цены самый старый автомобиль первых пять самых новых автомобилей упорядоченный массив по цене
Вариант 23	список товаров для заданного наименования; список товаров для заданного наименования, цена которых не превосходит заданную; количество наименований цена которых больше 100 максимальный товар (ваш критерий максимальности) упорядоченный набор товаров по производителю, а потом по количеству.
Вариант 24	Создать массив объектов. Вывести: список поездов, следующих до заданного пункта назначения; список поездов, следующих до заданного пункта назначения и отправляющихся после заданного часа; максимальный поезд по количеству мест последние пять поездов по времени отправления упорядоченный список поездов по пункту назначения в алфавитном порядке
Вариант 25	список автобусов для заданного номера маршрута; список автобусов, которые эксплуатируются больше заданного срока; минимальный по пробегу автобус последние два автобуса максимальные по пробегу упорядоченный список автобусов по номеру

список рейсов для заданного пункта назначения; список рейсов для заданного дня недели; максимальны по дню недели рейс

Вариант 26 все рейсы в определенный день недели и с самым поздним временем вылета упорядоченные по дню и времени рейсы количество рейсов для заданного типа самолета

Вопросы

- 1. Что такое LINQ?
- 2. В чем разница между отложенными операциями и не отложенными операциями LINQ to Object?
- 3. Что такое лямбда-выражения?
- 4. Какие есть группы операции в LINQ to Object? Перечислите
- 5. Как используется операция Where в LINQ to Object?
- 6. Как используется операция Select?
- 7. Как используются операции Take, Skip?
- 8. Как используется операция Concat?
- 9. Как используется операция OrderBy?
- 10. Как используется операция Join?
- 11. Как используются операции Distinct, Union, Except и Intersect?
- 12. Как используются операции First, Last, Any, All и Contains?
- 13. Как используются операции Count, Sum, Min и Max, Average?
- 14. Что выведет на экран данный код?

Краткие теоретические сведения

LINQ - язык интегрированных запросов

LINQ to Objects

LINQ to Objects - название, данное API-интерфейсу IEnumerable<T> для стандартных операций запросов (Standard Query Operators). Именно LINQ to Objects позволяет выполнять запросы к массивам и находящимся в памяти коллекциям данных. Стандартные операции запросов - это статические методы класса System.Linq.Enumerable, которые используются для создания запросов LINQ to Objects.

LINQ to XML

LINQ to XML — название, назначенное API-интерфейсу LINQ, который ориентирован на работу с XML. В Microsoft не только добавили необходимые библиотеки XML для работы с LINQ, но также восполнили недостатки стандартной модели XML DOM, существенно облегчив работу с XML. Прошли времена, когда нужно было создавать XmlDocument только для того, чтобы поработать с небольшим фрагментом XML-кода. Чтобы воспользоваться преимуществами LINQ to XML, в проект понадобится добавить ссылку на сборку System.Xml.Linq.dll и директиву using System.Xml.Linq.

LINQ to DataSet u SQL

LINQ to DataSet — название, данное API-интерфейсу LINQ, который предназначен для работы с DataSet. У многих разработчиков есть масса кода, полагающегося на DataSet. Те, кто не хотят отставать от новых веяний, но и не готовы переписывать свой код, благодаря этому интерфейсу могут воспользоваться всей мощью LINQ.

LINQ to SQL — наименование, присвоенное API-интерфейсу IQueryable<T>, который позволяет запросам LINQ работать с базой данных Microsoft SQL Server. Чтобы воспользоваться преимуществами LINQ to SQL в проект понадобится добавить ссылку на сборку System.Data.Linq.dll, а также директиву using System.Data.Linq.

LINQ to Entities

LINQ to Entities — альтернативный API-интерфейс LINQ, используемый для обращения к базе данных. Он отделяет сущностную объектную модель от физической базы данных, вводя логическое отображение между ними двумя. С таким отделением возрастает мощь и гибкость, но также растет и сложность. Если нужна более высокая гибкость, чем обеспечивается LINQ to SQL, имеет смысл рассмотреть эту альтернативу.

В частности, когда необходимо ослабить связь между сущностной объектной моделью и базой данных, если сущностные объекты конструируются из нескольких таблиц или требуется большая гибкость в моделировании сущностных объектов, то в этом случае LINQ to Entities может стать оптимальным выбором.

Parallel LINQ

Формально отдельного продукта LINQ, который нужно было бы получать отдельно, не существует. LINQ полностью интегрирован в .NET Framework, начиная с версии 3.5 и Visual Studio 2008. В NET 4.0 и Visual Studio 2010 добавлена поддержка средств Parallel LINQ.

Запросы LINQ

Одним из привлекательных для разработчиков средств LINQ является SQL-подобный синтаксис, доступный в LINQ-запросах. Синтаксис предоставлен через расширение языка С#, которое называется выражения запросов. Выражения запросов позволяют запросам LINQ принимать форму, подобную SQL, всего лишь с рядом небольших отличий.

Для выполнения запроса LINQ выражения запросов не обязательны. Альтернативой является использование стандартной точечной нотации С# с вызовом методов на объектах и классах. Во многих случаях применение стандартной точечной нотации оказывается более предпочтительным, поскольку она более наглядно демонстрирует, что в действительности происходит и когда.

При записи запроса в стандартной точечной нотации не происходит никакой трансформации при компиляции. Именно поэтому во многих примерах не используется синтаксис выражений запросов, а предпочтение отдается стандартному синтаксису точечной нотации. Получить представление о различиях между этими двумя синтаксисами лучше всего на примере:

```
string[] names = {
    "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
    "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
    "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
    "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
    "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
    "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington",

"Wilson"};

// Использование точечной нотации
IEnumerable<string> sequence = names
    .Where(n => n.Length < 6)
    .Select(n => n);

// Использование синтаксиса выражения запроса
IEnumerable<string> sequence = from n in names
    where n.Length < 6
    select n;

foreach (string name in sequence)
{
    Console.WriteLine("{0}", name);
}</pre>
```

Синтаксис выражений запросов поддерживается только для наиболее распространенных операций запросов: Where, Select, SelectMany, Join, GroupJoin, GroupBy, OrderBy, ThenBy, OrderByDescending и ThenByDescending.

Выражения запросов должны подчиняться перечисленным ниже правилам:

- 1. Выражение должно начинаться с конструкции from.
- Остальная часть выражения может содержать ноль или более конструкций from, let или where. Конструкция from — это генератор, который объявляет одну или более переменных диапазона, перечисляющих последовательность или соединение нескольких последовательностей. Конструкция let представляет переменную диапазона и присваивает ей значение. Конструкция where фильтрует элементы ИЗ входной последовательности ИЛИ соединения несколько входных последовательностей в выходную последовательность.
- 3. Остальная часть выражения запроса может затем включать конструкцию orderby, содержащую одно или более полей сортировки с необязательным направлением упорядочивания. Направлением может быть ascending (по возрастанию) илиdescending (по убыванию).
- 4. Затем в оставшейся части выражения может идти конструкция select или group.
- Наконец в оставшейся части выражения может следовать необязательная конструкция продолжения. Такой конструкцией может быть либо into, ноль или более конструкций join, или же другая повторяющаяся последовательность перечисленных элементов, начиная с конструкций из 2. Конструкция into направляет правила результаты запроса воображаемую выходную последовательность, которая служит конструкцией from для последующих выражения запросов, начиная с конструкций из правила 2.