Сколько различных правильных раскрасок у заданного графа?

В отличие от того, что было раньше, раскраски будем считать разными, даже если они переходят друг в друга при автоморфизме графа.

Число правильных раскрасок графа G в цвета из множества $\{1, ..., x\}$, обозначим $\chi(G; x)$.

Примеры:

- $\chi(\overline{K}_n;x)=x^n$ Каждую вершину независимо от других красим в один из x цветов.
- $\chi(K_n;x)=x\cdot(x-1)\cdot...\cdot(x-n+1)$ Первую вершину красим в любой из x цветов, вторую — в любой из (x-1) оставшихся цветов, и т.д.
- $\chi(P_n;x) = x \cdot (x-1)^{n-1}$ Начав красить цепь с концевой вершины, каждую следующую вершину красим в один из (x-1) цветов, отличных от цвета уже окрашенного соседа.

Пусть e —произвольное ребро графа G. Через (G-e) и G/e обозначают графы, полученные из G удалением и стягиванием e.

Утверждение.

$$\chi(G;x) = \chi(G-e;x) - \chi(G/e;x)$$

Доказательство:

Правильные раскраски графа (G-e) можно разбить на два типа:

- Те, в которых вершины-концы e окрашены в разные цвета. Таких раскрасок ровно $\chi(G;x)$.
- Те, в которых вершины-концы e окрашены в один цвет. Таких раскрасок ровно $\chi(G/e\,;x)$.

Значит, $\chi(G - e; x) = \chi(G; x) + \chi(G/e; x)$, откуда следует доказываемое утверждение.

Хроматический многочлен

Утверждение.

$$\chi(G; x) = \chi(G - e; x) - \chi(G/e; x)$$

Следствие.

Для любого G функция $\chi(G; x)$ является многочленом от x.

Доказательство: индукция по числу рёбер.

Для пустых графов утверждение очевидно.

Если G непуст, и e — произвольное ребро G, то $\chi(G-e;x)$ и $\chi(G/e;x)$ — многочлены по предположению. Тогда и $\chi(G;x)$ многочлен.

Свойства хроматического многочлена

Функция $\chi(G;x)$ называется хроматическим многочленом графа G.

Если G имеет n вершин, то

$$\chi(K_n; x) \le \chi(G; x) \le \chi(\overline{K}_n; x)$$

Старшие члены в $\chi(K_n; x)$ и $\chi(\overline{K}_n; x)$ равны x^n .

Отсюда следует, что старший моном в $\chi(G; x)$ равен x^n .

Натуральные числа, меньшие $\chi(G)$, являются корнями многочлена $\chi(G; x)$.

Свойства хроматического многочлена

Утверждение.

Если G граф на n вершинах с m рёбрами, то коэффициент в $\chi(G;x)$ при x^{n-1} равен -m.

Доказательство:

Индукция по |E(G)|.

Для пустого графа очевидно.

Пусть
$$|E(G)|=m>0$$
. Имеем $\operatorname{coef}_{\chi^{n-1}}\chi(G;\chi)=\operatorname{coef}_{\chi^{n-1}}\chi(G-e;\chi)-\operatorname{coef}_{\chi^{n-1}}\chi(G/e;\chi)==-(m-1)-1=-m$