# Sorting

Pablo Castro Algoritmos I-UNRC

## Sorting

**Sorting** es la tarea de organizar una colección de datos según un orden dado

- Podemos realizar sorting sobre cualquier tipo con un orden: int, char, Integer, Strings, etc
- En general, el sorting acomoda los elementos de forma ascendente o descendentes.
- Es importante que los algoritmos de sorting sean eficientes ya que en la práctica se quiere ordenar una cantidad grande de elementos

# Sorting en JAVA

En Java se utiliza la clase COMPARABLE:

- Toda clase con un orden hereda de comparable.
- Permite implementar algoritmos de sorting polimorficos.
- La clase comparable provee un método CompareTo():

CompareTo(T o): Compara el objeto actual con o, retorna -1,0,1 dependiendo si o mas grande, igual o más chico que this, respectivamente.

#### Importante...

Para analizar un algoritmo de sorting podemos tener en cuenta:

 Eficiencia: el tiempo de ejecución del algoritmo, en el peor caso, y también en el caso promedio.

> comparaciones pueden ser costosas

Las

 Cantidad de comparaciones: Cuanta veces comparamos para ordenar los elementos.

 Cantidad de Intercambios: Cuanta intercambios se realizan para ordenar Los intercambios son constantes en JAVA

#### Estabilidad

Un algoritmo de sorting se dice estable si preserva el orden de los elementos con las mismas claves

- La clave es el campo o el atributo sobre el cual ordenamos.
- Hay algoritmos que son estables y otros no.
- En general cualquier algoritmo se puede hacer estable con algún costo extra: agregar más claves, etc.

#### Selection Sort

Idea: seleccionar el item más grande, ponerlo último; agarrar el segundo más grande, ponerlo penúltimo, etc.



## Algoritmo en JAVA

```
public static void selectionSort(Comparable[] array, int n){
// last: index del ultimo elemento de la parte no ordenada
// largest: posicion del elemento mas grande
    for (int last = n-1; last >= 1; last--){
    //inv: array[last..n-1] está ordenado
        int largest = indexOfLargest(array, last+1);
        swap(array, last, largest);
    }// end for
}// end selectionSort
```

#### En donde:

```
private static int indexOfLargest(Comparable[] array, int n){
   int largest = 0;
   for (int i = 1; i < n; i++){
      if (array[i].compareTo(array[largest]) > 0){
        largest = i;
      }
   } //end for
   return largest;
}// end indexOfLargest
```

# Tiempo de Ejecución

Veamos el tiempo de ejecución del selection:

Inicialización For indexOf Largest es 
$$O(i)$$
 
$$T_{sel}(n) = c + \sum_{i=1}^{n-1} (c'+i)$$
 
$$= c + (n-1) * c' + \frac{n^2}{2} - \frac{n}{2}$$
 
$$\in \Theta(n^2)$$

# Intercambios y Comparaciones

#### Selection Sort efectua:

•  $3*(n-1) \in \Theta(n)$  intercambios,

• 
$$\sum_{i=1}^{n-1} i = \frac{n^2}{2} - \frac{n}{2} \in \Theta(n^2)$$
, comparaciones.

Selection puede ser implementado para que sea estable, la versión de más arriba no lo es.

#### BubbleSort

Idea: En la primera pasada comparar cada elemento con el siguiente, en caso que no estén ordenados intercambiarlos. Esto pasa el más grande al último. Se hacen N pasadas.



#### BubbleSort en JAVA

```
public static void bubbleSort(Comparable[] array, int n){
   boolean sorted = false;
   for (int pass = 1; (pass < n)&& !sorted; ++pass){
      // inv: array[n-pass] hasta array[n-1] está ordenado
      sorted = true;
      for (int index = 0; index < n - pass; ++index){
            // inv: para todo 0<=i<index: array[i] <= array[index]
            int nextIndex = index + 1;
            if (array[index].compareTo(array[nextIndex])>0){
                swap(array, index, nextIndex);
                 sorted = false;
            } // end if
            }//end for
}// end bubbleSort
```

## Tiempo de Ejecución

Veamos su tiempo de ejecución:

$$T_{bub}(n) = \sum_{i=1}^{n-1} (c + \sum_{j=0}^{n-1} c')$$

$$= \sum_{i=1}^{n-1} c + \sum_{i=1}^{n-1} \sum_{j=0}^{n-i-1} c'$$

$$= (n-1) * c + \sum_{i=1}^{n-1} (n-i) * c'$$

$$= (n-1) * c + c' * n^2 - c'n - c' * \frac{n^2}{2} + c' * \frac{n}{2} \in \Theta(n^2)$$

## Intercambios y Comp.

#### BubbleSort efectua:

• 
$$(n-1) + (n-2) + (n-3) + ... \in \Theta(n^2)$$
 intercambios,

• 
$$(n-1) + (n-2) + (n-3) + ... \in \Theta(n^2)$$
 comparaciones.

#### Además:

- Produce más intercambios que el selection sort.
- Es un algoritmo estable.
- En la práctica no se usa, es uno de los algoritmos más ineficientes

#### Insertion Sort

**Idea**: Es el método que usamos cuando jugamos a las cartas. Agarramos un número lo ponemos en su posición, y repetimos.



#### Insertion en JAVA

```
public static void insertionSort (Comparable [] array , int n){
   for ( int unsorted = 1; unsorted < n; unsorted++){
     // array [0.. unsorted -1] esta ordenado
     Comparable nextItem = array [ unsorted ];
     int loc = unsorted ;
     while ((loc > 0) && (array[loc-1].compareTo(nextItem) > 0)){
         array[loc] = array[loc-1];
        loc--;
     }//end while
     array [ loc ] = nextItem ;
     }//end for
}//end insertionSort
```

# Tiempo de Ejecución

Analicemos el tiempo de ejecución:

$$T_{ins}(n) = \sum_{i=1}^{n-1} \sum_{j=1}^{i} c$$

$$= c * \sum_{i=1}^{n-1} i$$

$$= c * \frac{n^2}{2} - c * \frac{n}{2} \in \Theta(n^2)$$

#### Otras consideraciones

- En el mejor caso es  $\Theta(n)$
- La cantidad de comparaciones es:  $\Theta(n^2)$
- La cantidad de intercambios:  $\Theta(n^2)$
- Insertion Sort es estable

Es muy ineficiente para ser usado en la practica.

# Mergesort

Idea: Dividimos el arreglo a la mitad y ordenamos recursivamente luego mezclamos las partes (Divide and Conquer)



## Tiempo de Ejecución

Analicemos su tiempo de ejecución en el peor caso:

- Merge se puede implementar en  $\Theta(n)$
- Su ecuación de recurrencia viene dada por:

$$T(0) = 1$$
 
$$T(1) = 1$$
 
$$T(n) = 2 * T(\frac{n}{2}) + n$$
 Merge

# Tiempo del MergeSort

Hagamos sustituciones:

$$2 * T(\frac{n}{2}) + n$$

$$= 2 * [2 * T(\frac{n}{4}) + \frac{n}{2}] + n$$

$$= 2 * [2 * [2 * T(\frac{n}{8}) + \frac{n}{4}] + \frac{n}{2}] + n$$

$$= \dots$$

En i sustituciones nos da:  $2^{i}T(\frac{n}{2^{i}}) + i * n$ 

Obtenemos que:  $T(\frac{n}{2^i})=1$  cuando:  $\frac{n}{2^i}=1$  Es decir:  $i=log_2n$ 

Reemplazando:  $2^{\log_2 n} + 1 + n * \log_2 n = n + n * \log_2 n \in \Theta(n * \log_2 n)$ 

## Mergesort

- Es un algoritmo estable (bien implementado).
- La cantidad de comparaciones es: O(n \* log n)
- La cantidad de intercambios es: O(n \* log n)

Para entradas pequeñas la recursión hace que no se comporte tan bien.

#### QuickSort

La idea del quicksort es la siguiente:

- Elegir un pivot (elemento del arreglo).
- Ordenar todos los menores o iguales al pivot antes que el,
- Ordenar todos los mayores después de el
- En ese momento el pivot queda en el lugar que va, se llama recursivamente con la parte a la izq. del pivot y la parte a la derecha.

#### QuickSort en JAVA

```
public static void quickSort(Comparable[] array, int begin, int end){
  if (begin < end){
    // Calculo la particion
    int p = partition(array, begin, end);
    // ordeno la parte izq
    quickSort(array, begin, p);
    // ordeno la parte derecha
    quickSort(array, p+1, end);
  }
}</pre>
```

```
private static int partition(Comparable[] array, int begin, int end){
   Comparable pivot = array[begin];
   int i = begin - 1;
   int j = end + 1;
   while (i < j) {
        //invariante:
        //para k < = i : a[k] <= pivot y para k >= j : pivot <= a[k]
        do j--; while (array[j].compareTo(pivot) > 0);
        do i++; while (array[i].compareTo(pivot) < 0);
        if (i < j) {swap(array, i, j);}
   }
   return j;
}</pre>
```

# Tiempo de Ejecución

En el peor caso (arreglo ordenado al revés) de elección del pivot, la cantidad de elementos se decrementa por uno, es decir:

$$T(0)=1$$
 tiempo del partition  $T(1)=1$   $T(n)=c+T(n-1)+n$  Llamada recursiva

Es decir, tenemos:  $T(n) \in O(n^2)$ 

#### Tiempo en Caso Promedio

En caso promedio tenemos que tomar todas las posibles elecciones del pivot, dividido la longitud de la lista:

$$T(0) = 1$$
  
 $T(1) = 1$   
 $T(n) = c + \frac{1}{n} * \sum_{i=0}^{n-1} T(i) + T(n-i)$ 

Si resolvemos esta ecuación nos da:  $T(n) \in O(n * log n)$ 

#### Observaciones

- En la practica el QuickSort se comporta mejor que otros algoritmos de sorting.
- El partition no necesita espacio extra.
- No es un algoritmo estable.
- El peor caso tiene pocas probabilidades de suceder!

# Cota inferior para Algoritmos de Sorting

Tenemos el siguiente resultado para algoritmo de sorting:

**Teorema**: Cualquier algoritmo de sorting que utilice comparaciones para ordenar es  $\Omega(n*log n)$ 

Sin embargo, existen algoritmos que utilizan información extra para ordenar, por ejemplo:

- El mayor número que puede aparecer,
- La cantidad de dígitos que pueden tener los números a ordenar.

# Counting Sort

Idea: Para cada i determinamos el número de j's menores a él en el arreglo, y acomodamos a i en el lugar que va. Necesitamos usar arreglos adicionales para esto.

# Ejemplo:

Veamos un ejemplo:

Arreglo Inicial:

3 6 4 1 3 4 1 4

Contamos:

0 2 0 2 3 0 1

Arreglo auxiliar c

Acomodamos:

0 2 2 4 7 7 8

Ponemos cada elemento en su lugar:

1 1 3 3 4 4 6

Arreglo b

# Tiempo de Ejecución

Veamos el tiempo de ejecución:



Si el k es muy grande, el algoritmo es ineficiente!

#### Radix Sort

Idea: También se utiliza para las cartas, primero se ordenan por número y después por palo. Hacemos lo mismo pero por dígito.

Arreglo Inicial: 25 57 48 37 12 92 86 33

Ordeno por último digito:

86 57,37 12,92 33 25 48

Acomodo:

12 92 33 25 86 57 37 28

Ordeno por primer digito:

12 25,28 33 37 57 86 92

Acomodo:

12 25 28 33 37 57 86 92