

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)		
	Technical Paper			
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER		
		5b. GRANT NUMBER		
		5c. PROGRAM ELEMENT NUMBER		
		5d. PROJECT NUMBER <i>2308</i>		
		5e. TASK NUMBER <i>M13C</i>		
		5f. WORK UNIT NUMBER <i>346 057</i>		
6. AUTHOR(S)		7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		
		<i>ERC</i>		
8. PERFORMING ORGANIZATION REPORT				
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)		
Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048				
11. SPONSOR/MONITOR'S NUMBER(S) <i>Please see attached</i>				
12. DISTRIBUTION / AVAILABILITY STATEMENT				
Approved for public release; distribution unlimited.				
13. SUPPLEMENTARY NOTES				
14. ABSTRACT				
<i>20030205 296</i>				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
		<i>A</i>		Leilani Richardson
a. REPORT	b. ABSTRACT			c. THIS PAGE
Unclassified	Unclassified	Unclassified		

99C0025

23P8M13C

MEMORANDUM FOR PRS (In-House Contractor Publication)

FROM: PROI (STINFO)

20 May 2002

SUBJECT: Authorization for Release of Technical Information, Control Number: **AFRL-PR-ED-AB-2002-124**
Bruce Chehroudi (ERC) and Doug Talley (PRSA), "Coaxial Injection Under Supercritical Conditions"

41st Aerospace Sciences Meeting & Exhibit
(Reno, NV, 6-9 January 2003) (Deadline = 06 June 2002)

(Statement A)

1. This request has been reviewed by the Foreign Disclosure Office for: a.) appropriateness of distribution statement, b.) military/national critical technology, c.) export controls or distribution restrictions, d.) appropriateness for release to a foreign nation, and e.) technical sensitivity and/or economic sensitivity.

Comments: _____

Signature _____ Date _____

2. This request has been reviewed by the Public Affairs Office for: a.) appropriateness for public release and/or b) possible higher headquarters review.

Comments: _____

Signature _____ Date _____

3. This request has been reviewed by the STINFO for: a.) changes if approved as amended, b) appropriateness of references, if applicable; and c.) format and completion of meeting clearance form if required

Comments: _____

Signature _____ Date _____

4. This request has been reviewed by PR for: a.) technical accuracy, b.) appropriateness for audience, c.) appropriateness of distribution statement, d.) technical sensitivity and economic sensitivity, e.) military/national critical technology, and f.) data rights and patentability

Comments: _____

APPROVED/APPROVED AS AMENDED/DISAPPROVED

PHILIP A. KESSEL
Technical Advisor
Space and Missile Propulsion Division

Date

Coaxial Injection Under Supercritical Conditions

B. Chehroudi and D. Talley

This work reports on findings from the initial phase of a coaxial injection process under both subcritical and supercritical conditions. The results presented here are part of a systematic investigation of common rocket engine injectors, such as impinging and coaxial designs. Liquid nitrogen (LN_2) is injected through a large length-to-diameter ratio circular hole and exposed at the exit to an annular jet of different gases including nitrogen, helium, and argon. The length-to-diameter ratio is sufficiently large to ensure fully-developed turbulent pipe flow at the exit plane. The behavior of the central LN_2 jet has already been analyzed extensively and reported in our earlier published works, for example, *Chehroudi et al. [1, 2]*. Experiments were conducted by injecting LN_2 into a room temperature, high-pressure chamber with full optical access from four directions. The stainless steel chamber can withstand pressures and temperatures of up to 13.6 MPa and 473 K, respectively. Liquid nitrogen is used to cool and/or liquefy the gaseous nitrogen passing through the cryogenic cooler prior to injection. The mass flow rate of the injectant is measured and regulated by way of a mass flowmeter, and a precision micrometer valve. A model K2 Infinity long distance microscope is used to form images of the injected jets on a high resolution CCD camera by the Cooke Corporation.

Results concentrate on the interaction of the annular gaseous jet with the core LN_2 jet only in the initial region of the mixing layer formation. The initial jet growth rate was measured in order to investigate the effects of some flow and thermodynamic parameters of the annular gas on the core LN_2 jet. The results are compared with our reference data when no annular gas jet was used.

1. Chehroudi, B., Talley, D., and Coy, E. Visual characteristics and initial growth rates of round cryogenic jets at subcritical and supercritical pressures, *Physics of Fluids*, Vol. 14, No. 2, February 2002.
2. Chehroudi, B. , Cohn, R., and Talley, D. Cryogenic shear layers: Experiments and phenomenological modeling of the initial growth rate under subcritical and supercritical conditions, *International Journal of Heat and Fluid Flow*, 2002. (To appear)

An abstract to:

41st Aerospace Sciences Meeting and Exhibit, January 6-9, 2003, Reno, Nevada.

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited