Statistics $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^2}$

Bachelor Studiengang Informatik

Prof. Dr. Egbert Falkenberg

Fachbereich Informatik & Ingenieurwissenschaften

Wintersemester 23/24

FR 2 PLIED SCIENCES

< □ →

Statistics Dr. Falkenberg

Discrete Variables

Distribution

Central Tendency

central tendency Other Means

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Section 1

Descriptive Statistics

Statistics

Dr. Falkenberg

Descriptive Statistics

Discrete Variables

Continuous variables

Distribution

Measures

Central Tendency

central tendency Other Means

Graphing Frequency

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Coefficients for Measuring Association between nominal variables Relative Risks and Odds

FR 2

4 □ →

Descriptive Statistics I

- Different variables contain different levels of informations.
- Summarizing and visualizing the value of variables depends on the type of the variable.
- First: consideration of frequencies of values of variables and possibilities of graphical representations of frequencies.
- ► Then: statistics for characterizing properties of observed values.
- ► At the end: representation and description of dependencies of two variables. Depending on the type of variable, different methods are to be used.

Statistics

Dr. Falkenberg

Descriptive Statistics

Discrete Variables

Measures

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Relative Risks and Odds

FR 2

Descriptive Statistics II

The examples are from the data set flights of the R package nycflights 13. The data set includes on-time data for all flights that departed NYC (i.e. JFK, LGA or EWR) in 2013.

- year,month,day: Date of departure
- dep time, arr time: Actual departure and arrival times
- sched dep time, sched arr time: Scheduled departure and arrival times
- dep delay, arr delay: Departure and arrival delays
- hour, minute: Time of scheduled departure
- carrier: Two letter carrier abbreviation. See airlines() to get names

Statistics

Dr. Falkenberg

Descriptive Statistics

Discrete Variables

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Relative Risks and Odds

4 □ →

Discrete Variables I

- Absolute frequency: number of observations in a particular categorie of a variable
- Relative frequency: absolute frequency divided by total number of observations
- Bar charts: height represents the absolute or relative frequency

Example: Frequencies of carriers

name	carrier	absfreq	relfreq
Endeavor Air Inc.	9E	18460	0.05
American Airlines Inc.	AA	32729	0.10
Alaska Airlines Inc.	AS	714	0.00
JetBlue Airways	B6	54635	0.16
Delta Air Lines Inc.	DL	48110	0.14
ExpressJet Airlines Inc.	EV	54173	0.16
Frontier Airlines Inc.	F9	685	0.00
AirTran Airways Corporation	FL	3260	0.01
Hawaiian Airlines Inc.	HA	342	0.00
Envoy Air	MQ	26397	0.08
SkyWest Airlines Inc.	00	32	0.00
United Air Lines Inc.	ÜA	58665	0.17
US Airways Inc.	US	20536	0.06
Virgin America	VX	5162	0.02
Southwest Airlines Co.	WN	12275	0.04
Mesa Airlines Inc	YV	601	0.00

Statistics

Dr. Falkenberg

Descriptive Statistics

Frequency Tables and Frequency Distributions

Discrete Variables Continuous variable

mulative Frequency

Measures Central Tendency

Quartils, Box Plot Comparing measures

4 □ →

Discrete Variables II

- ▶ Pie chart: angle of a slice corresponds to the proportion of observation
- Eye good at judging linear measures and bad at judging relative areas
- ▶ Pie charts: only recommended if the number of observed categories of the variable is low.
- Bar charts or dot charts better for this type of data.

Pie Chart

Statistics

Dr. Falkenberg

Discrete Variables

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Discrete Variables III

Pie chart useful if the number of categories is small **Example:** Frequencies of the top carriers from the flights data set, i.e. with a proportion of at least 3%.

Statistics

Dr. Falkenberg

Descriptive
Statistics
Frequency Tables and

Pie Chart

FR 2

oc: other cariers

Questions

Statistics

Dr. Falkenberg

D	e	S	С	ri	р	ti	V	е
S	ts	at	i	e†	ic	۰,		

Discrete Variables

Continuous variables

Distribution Measures

Central Tendency

central tendency

Other Means

Graphing Frequency

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Association between nominal variables Relative Risks and Odds

Which of the following statements are true or false?

t	f	
		Bar charts visualize categories of nominal or ordinal values.
Ш	Ш	Pie charts are useful for every type of variables.
		The area of each segment in a pie chart is pro-
		portional to the absolute frequency of the re-
		spective category.
		The relative frequency of an observerd catego-
		ry is the number of its observation divided by
		the total number of observation.
		Small differences of frequencies of different ca-
		tegories can be visualized by a pie chart.

4 □ →

Continuous variables I

compare Online Statistics: I 11 and II 5

Example: Time to move a mouse to a given target, sample of 100 observations

- ► The measured values depend on the accuracy of the measurement
- 1 decimal digits: 1.0 0.4 0.7 0.6 0.4 1.4 0.9 1.1 0.7 0.7 1.6 1.3 1.2 1.1 1.4 0.9 1.3 1012111010101109131108130808081111091110051311081109 $0.8\,1.1\,1.1\,1.1\,1.8\,1.8\,1.2\,0.6\,1.1\,1.2\,1.1\,1.0\,0.7\,0.8\,1.1\,0.7\,0.6\,1.1\,1.0\,1.3\,1.0\,1.4\,1.0\,1.2\,0.5\,0.6$ 0.81.10.71.10.90.91.01.11.11.20.71.00.60.90.80.91.30.61.11.21.21.01.00.90.91.21.0 1.2 1.1 1.2 0.8
- ► 2 decimal digits: 1.03 0.43 0.72 0.57 0.39 1.43 0.85 1.13 0.69 0.67 1.64 1.32 1.18 1.08 1.43 0.91 1.28 1.02 1.18 1.07 1.03 1.00 0.98 1.06 0.91 1.32 1.15 0.80 1.27 0.82 0.82 0.85 1 09 1 15 0 89 1 09 1 03 0 53 1 26 1 12 0 85 1 08 0 88 0 77 1 08 1 15 1 08 1 76 1 79 1 18 0 64 1.13 1.17 1.06 0.95 0.70 0.80 1.12 0.73 0.55 1.11 1.05 1.27 1.01 1.35 1.00 1.18 0.51 0.65 0.80 1.07 0.72 1.08 0.94 0.91 0.96 1.13 1.09 1.17 0.70 0.97 0.64 0.89 0.78 0.93 1.30 0.62 1.08 1.15 1.21 1.04 0.97 0.94 0.88 1.21 0.96 1.16 1.07 1.23 0.84

Statistics

Dr. Falkenberg

Discrete Variables Continuous variables

Distribution

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Relative Risks and Odds

4 □ ▶

Continuous variables II

Problem: With increasing accuracy no two response times would be expected to be the same. The frequency distribution would consist of the 100 times in the experiment, each with a frequency of 1.

Statistics

Dr. Falkenberg

Descriptive Statistics

Frequency Tables and Frequency Distributions Discrete Variables

Continuous variables

Cumulative Frequency

Measures

Central Tendency Quartils, Box Plot Comparing measures o

ther Means ariability

Graphing Frequency Distributions Qualitative Variables

Quantitative Variables

Bivariate Data

catterplot

ovariance and

pefficient of Correlation

pearman's Rank

Correlation Coefficient Linear Regression

Contingency Tables

oefficients for Mea

Continuous variables III

- Bar charts may in case of continous variables not give a clear summary.
- ► Histogram: partitions the variable on the x-axis into various contiguous class intervals of (usually) equal widths. The heights resp. the areas of the bars represent the class frequencies.
 Height of the bar of class j: h_j = f_j/d_j, where f_j is the frequency in class j and d_j width of class j.
- Mention the area of a bar is proportional to the relative frequency. Thus the height of a bar does not necessarily represents the frequency of the class, since the width of the bars may vary.
- ► Histograms are especially useful with a large number of observations of continuos or discrete variables.

Statistics

Dr. Falkenberg

Descriptive Statistics

Frequency Tables and Frequency Distributions

Discrete Variables Continuous variables

Cumulative Frequency Distribution

Measures

Central Tender

Comparing measures of

Other Means

ariability

Qualitative Variables

Quantitative Variable

Bivariate Data Scatterplot

Covariance and Coefficient of Correlation

Correlation Coefficient Linear Regression

Contingency Tables

Contingency Table Coefficients for Me

ociation between ninal variables

Continuous variables IV

Example: Arrival delays (continous variable) of United Airlines flights at New York airport (data set flights) (in minutes)

Grouped frequency distribution of arr delay

Histogram: 10 classes with identical width

Statistics

Dr. Falkenberg

Discrete Variables

Continuous variables

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Continuous variables V

- The class intervalls and the number of class intervall determine the figure of the histogram.
- The number of classes should be not to small and not to large.

Rules of thumb: k = # of classes, n = # of values

$$k = \begin{cases} \sqrt{n} & n \le 1000 \\ 10 \cdot \ln n & n > 1000 \end{cases}$$

Sturges' Rule: $k = 1 + \log_2 n$

Rice rule: $k = 2 \cdot \sqrt[3]{n}$

Further examples: Effects of bin width and height in a histogram

Quelle: Effects of Bin Width and Height in a Histogram from the Wolfram Demonstrations Project

http://demonstrations.wolfram.com/EffectsOfBinWidthAndHeightInAHistogram/

Statistics

Dr. Falkenberg

Discrete Variables

Continuous variables

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Continuous variables VI

If all class intervalls have equal width, the heights represent the class frequencies. Otherwise the areas of the bars represent the class frequencies.

Example arrival delays of UA at New York Airport:

class	n	rel	b	h
(-75,-30]	5332	0.09	45	0.00
(-30,0]	30227	0.52	30	0.02
(0,30]	14344	0.25	30	0.01
(30,60]	3947	0.07	30	0.00
(60,455]	3931	0.07	395	0.00

Which of the diagrams represents the data corectly?

Dr. Falkenberg

Discrete Variables Continuous variables

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Relative Risks and Odds

FR 2

Continuous variables VII

Histogram: classes of different widths

Dr. Falkenberg

Discrete Variables

Continuous variables

Distribution

Measures Central Tendency

Quartils, Box Plot central tendency Other Means

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Continuous variables VIII

Histogram: classes of different widths

Dr. Falkenberg

Discrete Variables Continuous variables

Distribution

Central Tendency Quartils, Box Plot

central tendency

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Cumulative Frequency Distribution I

Example: Arrival delays of Skywest Airlines at New York City Airport

107 -5 27 -24 -6 3 -20 157 3 140 46 69 6 -12 -15 -8 -7 -2 -8 48 -24 -14 -16 -26 -7 -24 -8 -18 -16

Questions:

- ► Percentage of delays:
 - ► less or equal 0 minutes?
 - bigger than 0 minutes and less equal 20 minutes?
 - bigger than 20 minutes?
- ► If one flight arrives 5 minutes earlier. How can this delay be compared to other delays?

Statistics

Dr. Falkenberg

Descriptive Statistics

Frequency Tables and Frequency Distributions Discrete Variables

Cumulative Frequency Distribution

Measures

entral Tendency

Comparing measures of

Jtner Means

ariability aphing Frequ

Qualitative Variables

Quantitative variable Bivariate Data

Scatterplot
Covariance and
Coefficient of Correlati

Spearman's Rank Correlation Coefficient Linear Regression

Contingency Tables

ontingency Tables oefficients for Me

sociation between ninal variables

Cumulative Frequency Distribution II

Use the ordered sample to answer these questions! **Notations:**

- ► Sample of size $n: x_1, x_2, ..., x_{n-1}, x_n$ $x_i = \text{value of the i-th observation}$
- ► Ordered sample: $x_{(1)}, x_{(2)}, ..., x_{(n-1)}, x_{(n)}$ with

$$x_{(1)} \le x_{(2)} \le \dots \le x_{(n-1)} \le x_{(n)}$$

 $\Rightarrow x_{(1)} = \min_{i} x_{i}, x_{(n)} = \max_{i} x_{i}$

Example: Arrival delays of Skywest Airlines at New City

$$x_{(1)} = -26, x_{(2)} = -24, ..., x_{(28)} = 140, x_{(29)} = 157$$

Statistics

Dr. Falkenberg

Descriptive Statistics

Frequency Distributions
Discrete Variables

Cumulative Frequency Distribution

1easures

Quartils, Box Plot

Comparing measures of central tendency

/ariability

aphing Frequency stributions

Qualitative Variables Quantitative Variables

Bivariate Data

ovariance and pefficient of Correlation

Correlation Coefficient Linear Regression

near Regression

Contingency Tables

Coefficients for Meas Association between nominal variables

Cumulative Frequency Distribution III

Definition: Cumulative Frequency Distribution

$$H: \mathbb{R} \to [0, 1], H(x) = \frac{\#(i \in \{1, 2, ..., n\} \mid X_i \leq x)}{n}$$

= Proportion of observations $\leq x$

Percentage of delays with:

- ▶ 0 or less minutes: H(0) = 0.6551724
- ► more than 0 and less equal 20 minutes: H(20) H(0) = 0.7586207 0.6551724
- greater than 20 minutes: 1 H(20) = 1 0.7586207

An arrival 5 minutes earlier: Due to $x_{(18)} = -5$ 18 flights from 29 (proportion = H(-5)) arrive 5 minutes before the scheduled arrival time.

Statistics

Dr. Falkenberg

Descriptive Statistics

Frequency Tables and Frequency Distributions Discrete Variables

Cumulative Frequency
Distribution

leasures

Quartils, Box Plot

Comparing measures of central tendency

Variability

Graphing Frequency Distributions Qualitative Variables

Quantitative Variable

Bivariate Data

Scatterplot
Covariance and
Coefficient of Correlation

Correlation Coefficient Linear Regression

Contingency Tables

ntingency Table efficients for Me

ociation between inal variables

Cumulative Frequency Distribution IV

Example: Arrival delays of Skywest at New City Airport

arr_delay -26.00 -24.00 -20.00 -18.00 -16.00	n 1 3 1 1 2	rel 0.03 0.10 0.03 0.03 0.03	edist 0.03 0.14 0.17 0.21 0.28
-15.00 -14.00 -12.00 -8.00 -7.00 -6.00	1 1 3 2	0.03 0.03 0.03 0.10 0.07 0.03	0.31 0.34 0.38 0.48 0.55
-5.00 -2.00 3.00 6.00 27.00 46.00 48.00	1 1 2 1 1 1	0.03 0.03 0.07 0.03 0.03 0.03 0.03	0.62 0.66 0.72 0.76 0.79 0.83 0.86
69.00 107.00 140.00 157.00	1 1 1	0.03 0.03 0.03 0.03	0.90 0.93 0.97 1.00

Statistics

Dr. Falkenberg

Discrete Variables Continuous variables

Cumulative Frequency Distribution

Central Tendency central tendency Other Means Variability

raphing Frequency istributions

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Cumulative Frequency Distribution V

Properties:

- \blacktriangleright H(x) is a step function; step at x_i = relative frequency of x_i
- ► H(x) = 1 for $x > x_{(n)}$ and H(x) = 0 for $x < x_{(1)}$
- monotonously increasing and continous from the right

Statistics

Dr. Falkenberg

Discrete Variables

Cumulative Frequency Distribution

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Relative Risks and Odds Ratio

FR 2

4 □ ▶

Questions

Which of the following statements are true or false?

Histograms viusalize the distributions of continous variables. The heights of the rectangles in a histogram are proportional to the relative frequencies. The number of classes in a histogram has no effect on the shape of a histogram. The empirical distribution can be used for all kinds of variables. The height of a step in the diagram of an empirical distribution functions corresponds to the relative frequency of the observation at this point.

Dr. Falkenberg

Discrete Variables

Cumulative Frequency

Distribution

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Relative Risks and Odds

990

4 □ ▶

Measures I

Objective: Characterize sample properties by certain numbers

Following properties will be discussed:

- 1. **central tendency:** location of the "middle" of a frequency distribution
- 2. **variation:** variability (spread) of a frequency distribution

Statistics

Dr. Falkenberg

Discrete Variables

Distribution

Measures

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Relative Risks and Odds

Ratio

FR 2

Measures II **Central Tendency - Variation:**

same location but different spread

OF APPLIED SCIENCES

abs. frequency

Dr. Falkenberg Ba Inf

WS 23/24

4 □ →

990

Statistics

Dr. Falkenberg

Discrete Variables

Continuous variables Distribution

Measures

Central Tendency Quartils, Box Plot

central tendency

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Central Tendency I

Measures of central tendency are measures of the location of the middle or the center of a distribution.

Example: Arrival delays of Skywest Airlines at New York City Airport

Mean and Mode:

► Arithmetic Mean: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, n = sample sizeexample: (107 - 5... - 18 - 16)/29 = 11.93103

► Mode: the most occurring value example: mode -24, -8

Statistics

Dr. Falkenberg

Discrete Variables

Distribution

Central Tendency

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Central Tendency II

In case of grouped data the arithmetic mean is calculated as the weighted mean: the number of observations (n_i) in the classes are weighted by the midpoints (a_i) of the classes

$$\bar{x}_b = \frac{1}{n} \sum_i a_j \cdot n_j$$

Statistics

Dr. Falkenberg

Discrete Variables

Distribution

Central Tendency

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Relative Risks and Odds

Ratio

4 □ →

Central Tendency III

Median and Quantiles

Objective: Number in the middle of a sample To get the median the first step is sorting the data

example: $\tilde{x}_{0,5} = -7$

- ▶ n odd: unique number in the middle, namely $x_{(\frac{n+1}{2})}$
- ▶ n even: no unique number in the middle. With

$$\tilde{x}_{0,5} = \frac{x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}}{2}$$

At most 50% of all observations are less than $\tilde{x}_{0,5}$ and at least 50% of all observations are less equal than $\tilde{x}_{0,5}$.

Statistics

Dr. Falkenberg

Descriptive Statistics

Frequency Tables and Frequency Distributions Discrete Variables

Continuous variables

Cumulative Fr Distribution

Measures Control Tondonou

Central Tendency

Comparing measures of central tendency

Other Means

ariability anhing Freque

Qualitative Variables

Quantitative Variable

Bivariate Data

Scatterplot Covariance and Coefficient of Correlation

Spearman's Rank Correlation Coefficient

Linear Regression Contingency Tables

ontingency Table

efficients for Mea sociation betwee minal variables

Central Tendency IV

No universally accepted definition of the median

Definition: Sample Median smallest observed value for which that at least 50% of all observations are less than or equal to this observed value, i.e.

$$\tilde{x}_{0.5} = \begin{cases} x_{(\frac{n+1}{2})} & \text{if } n \text{ is odd} \\ x_{(\frac{n}{2})} & \text{if } n \text{ is even} \end{cases}$$

Remark:

- ► The required property guarantees an unique value of the median equally valid whether n is even or odd.
- ► The median is always a sample value whether n is odd or even.
- ► The definition will be generalised to quantiles of samples and distributions.

Statistics

Dr. Falkenberg

Discrete Variables

Distribution

Measures

Central Tendency

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Central Tendency V

- Definition of the median based on the empirical distribution F
- $\tilde{x}_{0.5} = \inf\{x \in \mathbb{R} \mid F(x) > 0.5\}$
- \triangleright $\tilde{x}_{0.5}$ is the smallest value where F reaches 0.5 or iumpes over 0.5.
- ► $F(\tilde{x}_{0.5}) \ge 0.5$ since F is continous from the right
- $ightharpoonup \lim_{x \searrow \tilde{\chi}_{0.5}} F(x) \ge 0.5$ and $1 - \lim_{x \nearrow \tilde{\chi}_{0.5}} F(x) \ge 1 - 0.5 = 0.5$

Statistics

Dr. Falkenberg

Discrete Variables

Measures

Central Tendency

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Central Tendency VI

Generalizing the median to $p \in (0, 1)$ **:** smallest number x where at least 100p% of the observations are less equal x, i.e. a number x where the graph of the cumulative frequency distribution crosses (or jumps over) p the first time.

Definition: Sample Quantiles of order $p \in (0, 1)$

$$\tilde{x}_p = \inf\{x \in \mathbb{R} \mid F(x) \ge p\}$$

$$= \begin{cases} x_{(n \cdot p)} & \text{if } np \text{ is a natural number} \\ x_{(\lceil n \cdot p \rceil)} & \text{else} \end{cases}$$

Remark: In the case $np \in \mathbb{N}$ the sample quantile of order p is often defined as an interpolated value of $x_{(np)}$ and $x_{(np+1)}$, for example $1/2 \cdot (x_{(np)} + x_{(np+1)})$.

Statistics

Dr. Falkenberg

Discrete Variables

Distribution

Central Tendency

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Relative Risks and Odds

Central Tendency VII

Example: Arrival delays of Skywest Airlines at New York

City Airport

	rel	H(.)
13111211132111111111111111111111111111	0.03 0.10 0.03 0.03 0.07 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	0.03 0.14 0.21 0.28 0.31 0.38 0.38 0.55 0.59 0.62 0.72 0.76 0.79 0.83 0.90 0.93
1	0.03	1.00
	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0.03 3 0.10 1 0.03 1 0.03 2 0.07 1 0.03 1 0.03

- ► sample median = $x_{(15)} = -7$
- $ightharpoonup ilde{x}_{0.5} = \text{sample median}$ $ightharpoonup \tilde{x}_{0,75} = x_{(22)} = 6$
- $\sim \tilde{x}_{0.33} = x_{(10)} = -14$

Statistics

Dr. Falkenberg

Discrete Variables

Distribution

Measures

Central Tendency

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Relative Risks and Odds Ratio

 $\leftarrow \Box \rightarrow$

990

OF APPLIED SCIENCES

Questions

Which of the following statements are true or false?

 Mode and mean are measures of central tendency for every kind of avariable.

 \square mean of X = 3 \square median of X = 2.5

 \Box first quartile of X = 1

 \Box third quartile of X = 4

If the value 4 in the sample is exchanged by 30 the median remains but the mean increases to 7.

Quantiles are measures of the location of a sample.

Sample of the variable X: 2, 3, 1, 4, 1, 5

Statistics

Dr. Falkenberg

Descriptive Statistics

requency Tables and

Discrete Variables

ontinuous variables

umulative Fred istribution

Measures

Central Tendency

Quartils, Box Plot

comparing measures of central tendency

/ariability

aphing Frequency

Distributions

Qualitative Variables

Quantitative Variables

ivariate Data

Bivariate Data

Covariance and Coefficient of Correlation

Correlation Coefficient Linear Regression

near Regression

Contingency Tables

efficients for Mea sociation between

ociation between ninal variables

Quartils, Box Plot I

- ► Sample quantile of order 0.25: first sample quartile (Q_1)
- ► Sample quantile of order 0,75: third sample quartile (Q_3)
- ▶ Sample median: quantile of order 0,5, sometimes denoted by Q_2 .
- \blacktriangleright $(x_{(1)}, Q_1, Q_2, \bar{x}, Q_3, x_{(n)})$: six-number summary
- ► These statistics give a great deal of information about the frequency distribution.
- Displayed as a boxplot.

Statistics

Dr. Falkenberg

Discrete Variables

Quartils, Box Plot

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Quartils, Box Plot II

Example: Arrival delays of Skywest Airlines at New York

Examples: Descriptions of univariate Data Quelle:

"Descriptions of Univariate Data" from the Wolfram **Demonstrations Project**

Statistics Dr. Falkenberg

Box Plot

e Variables

on Coefficient

Linear Regression Contingency Tables

Relative Risks and Odds

realization | Important | Impo

Slide 34 von 97

Quartils, Box Plot III

Box Plot: first brief overview of the distribution of a continous or ordinal variable

- ▶ Box: contains 50% of the data.
- Sides of the box: first quartile and third quartile
- Median: thick line in the box.
- Whiskers at the end: minimum and maximum

Statistics

Dr. Falkenberg

Discrete Variables

Distribution

Measures

Quartils, Box Plot

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Quartils, Box Plot IV

Sometimes extreme values (values far away from the entre of the distribution) are shown as dots which 1.5 box lenghts away from the 1. or 3. quartile.

FR 2

width of the box =interquartile range

- outliers: distance from the box more than 1.5 interquartile range
- whisker to the most distant point that is not an outlier

4 □ ▶

Statistics

Dr. Falkenberg

Discrete Variables

Quartils, Box Plot

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Comparing measures of central tendency I

- ► These characteristic numbers can provide information on the shape of the sample distribution.
- Skewed distribution: one of its tails is longer than the other
- Distribution (A): a positive skew; i.e. a long tail in the positive direction.
- ▶ Distribution (C): a negative skew since, i.e. a long tail in the negative direction
- ▶ Distribution (B): approximately symmetric, no skew.

Statistics

Dr. Falkenberg

Discrete Variables

Comparing measures of central tendency

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Comparing measures of central tendency II

In cases of right skewed samples in many cases are mode < median < mean

A: rightskewed sample

Statistics

Dr. Falkenberg

Descriptive Statistics

Discrete Variables
Continuous variables

Distribution Measures

Central Tendency Quartils, Box Plot

Comparing measures of central tendency

Other Means Variability

phing Frequency ributions

Qualitative Variables

Quantitative Variable

Bivariate Data Scatterplot

Covariance and

Spearman's Rank Correlation Coefficient

Linear Regression Contingency Tables

perficients for Meassociation between

nominal variables Relative Risks and Odds

Ratio

Comparing measures of central tendency III

In cases of symmetric samples in many cases are mode \approx median \approx mean

B: symmetric sample

Statistics

Dr. Falkenberg

Descriptive Statistics

Discrete Variables
Continuous variables

Distribution

Central Tendency Quartils, Box Plot

Comparing measures of central tendency

Other Means Variability

phing Frequency ributions

Qualitative Variables

Quantitative Variable

Bivariate Data

Covariance and Coefficient of Correlation Spearman's Rank Correlation Coefficient

Linear Regression

Contingency Tables

Association betweer nominal variables

Relative Risks and Odds Ratio

Comparing measures of central tendency IV

In cases of left skewed samples in many cases are mode > median > mean

C: left skewed sample

Statistics

Dr. Falkenberg

Descriptive Statistics

Frequency Distributions
Discrete Variables
Continuous variables
Cumulative Frequency
Distribution

easures

Other Means

Central Tendency Quartils, Box Plot

Comparing measures of central tendency

ariability

Graphing Frequency Distributions Qualitative Variables

uantitative Variables

Quantitative variable livariate Data

Scatterplot
Covariance and

Coefficient of Correlatio Spearman's Rank Correlation Coefficient

Linear Regression Contingency Tables

Contingency Tables

efficients for Measur sociation between minal variables

FB 2 Dr. Falkenberg Ba Inf

Comparing measures of central tendency V

- ▶ Rule of Thumb: "In a skewed distribution, the mean is farther out in the long tail than is the median."
- ▶ But: "In a skewed distribution, it is quite possible for the median to be further out in the long tail than the mean. This configuration is common for discrete variables, especially when the areas to the left and right of the median are not equal. Exceptions are rarer for continuous variables, but can still occur if the density is bimodal or multimodal, or if one tail is long but the other is heavy. "

Source: http://www.amstat.org/publications/jse/v13n2/vonhippel.html

WS 23/24

4 □ ▶

Statistics

Dr. Falkenberg

Discrete Variables

Central Tendency

Comparing measures of central tendency

Other Means

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Relative Risks and Odds

990

Comparing measures of central tendency VI

- ► The mean is a good measure of central tendency for roughly symmetric distributions but can be misleading in skewed distributions since it can be greatly influenced by extreme scores. Therefore, other statistics such as the median may be more informative.
- ► The mode is the only measure of central tendency that can be used with nominal data. It is greatly subject to sample fluctuations and is therefore not recommended to be used as the only measure of central tendency. A further disadvantage of the mode is that many distributions have more than one mode.
- ▶ The mean, median, and mode are nearly equal in symmetric distributions. The mean is usually higher than the median in positively skewed distributions and usually lower than the median in negatively skewed distributions.

Statistics

Dr. Falkenberg

Discrete Variables

Comparing measures of central tendency

Other Means

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Relative Risks and Odds

4 □ ▶

Questions

Which of the following statements are true or false?

Discrete Variables

Comparing measures of central tendency

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Relative Risks and Odds

Distribution

data distribution is skewed or there are extreme

990

values.

FR 2

Other Means 1

- Statistics
- Dr. Falkenberg

• geometric mean:
$$G(x_1,...,x_n) = \sqrt[n]{\prod_{i=1}^n x_i}$$

- ► all numbers should be positive
- appropriate measure in case of averaging rates

Example: stock portfolio that began with a value of 1000 and had annual returns of 13%, 22%, 12%, -5%, and -13%.

Year	Return	Value		
1	13%	1130		
2	22%	1379		
3	12%	1544		
4	-5%	1467		
5	-13%	1276		

FR 2

G =
$\sqrt[5]{1.13 \cdot 1.22 \cdot 1.12 \cdot 0.95 \cdot 0.87}$
= 1.05 ⇒ average annual rate
of return is 5%

Discrete Variables

Distribution

Other Means

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Other Means II

► harmonic mean: $H(x_1, ..., x_n) = \frac{n}{\frac{1}{x_1} + ... + \frac{1}{x_n}}$

Example: Car drives from A to B

- tour: 3 parts of equal length
- ightharpoonup constant but different velocities at every part: $v_1 = 80$ km/h, $v_2 = 100 km/h$, $v_3 = 70 km/h$
- average speed:

FR 2

$$\bar{v} = \frac{s}{t} = \frac{s}{t_1 + t_2 + t_3} = \frac{s}{\frac{s/3}{v_1} + \frac{s/3}{v_2} + \frac{s/3}{v_3}}$$

$$= \frac{3}{\frac{1}{v_1} + \frac{1}{v_2} + \frac{1}{v_3}} = \frac{3}{1/80 + 1/100 + 1/70} \approx 81.58$$

Sensitive to a single small value

Statistics

Dr. Falkenberg

Discrete Variables

Other Means

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Coefficients for Measuring

Other Means III

12, 9, 6

- **Trimmed p% mean:** remove the lowest $\frac{\rho}{2}$ % and the highest $\frac{p}{2}$ % of the values, compute the mean of the remaining scores
- ► **Example:** number of touchdown (TD) passes thrown by each of the 31 teams in the National Football League in the 2000 season: 37, 33, 33, 32, 29, 28, 28, 23, 22, 22, 22, 21, 21, 21, 20, 20, 19, 19, 18, 18, 18, 18, 16, 15, 14, 14, 14, 12,

Trimmed 20% mean: remove the lower 10% of the scores (6, 9, 12) as well as the upper 10% of the scores (33, 33, 37) and compute the mean of the remaining 25 scores \rightarrow 20.16.

Statistics

Dr. Falkenberg

Discrete Variables

Other Means

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Variability I

Variability: how much differ the values in a sample from each other

Example: Arrival delays of Skywest Airlines at New York City Airport

107 -5 27 -24 -6 3 -20 157 3 140 46 69 6 -12 -15 -8 -7 -2 -8 48 -24 -14 -16 -26 -7 -24 -8 -18 -16

Range and Interguartil Range:

► Range: difference between the largest and the smallest values.

example: range = 157 - (-26) = 183

► Interquartil Range: difference between the 3. quartile Q_3 and 1. quartile Q_1 example: interquartile range = 6 - (-16) = 22

Statistics

Dr. Falkenberg

Discrete Variables

Distribution

Variability

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Variability II

Variance and Standard Deviation:

- How close are the scores in a sample to the middle of the distribution
- here: mean as the measure of the middle
- ▶ Variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})^2$ with n = samplesize, $\bar{x} = \text{mean}$.
- Easier to use:

$$s^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right) = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - n \cdot \bar{x}^{2} \right)$$

Example: $s^2 = 2360.495$, s = 48.58493

► Standard deviation: square root of the variance

Statistics

Dr. Falkenberg

Discrete Variables

Measures

Variability

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables Coefficients for Measuring

Variability III

Grouped data:

$$s_b^2 = \frac{1}{n-1} \sum_{i=1}^K n_i (a_i - \bar{x})^2 = \dots = \frac{1}{n-1} \sum_{i=1}^K n_i a_i^2 - \bar{x}^2$$

where n_i = number of observations in class j, a_i = mid-value in class j.

Statistics

Dr. Falkenberg

Discrete Variables

Distribution

Measures

Variability

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Relative Risks and Odds

FR 2

Variability IV

- Range: sensitive to extreme scores
- Use range as a supplement to other measures of spread such as standard deviation or interquartile range.
- Interguartile range: little affected by extreme scores, a good measure of spread for skewed distributions
- Standard deviation: most used measure of spread.
- Standard deviation: extremely useful properties in case of normal distributions, tractable mathematically, appears in many formulas in inferential statistics.
- Standard deviation: not good in highly-skewed distributions, interquartile range additionaly

Statistics

Dr. Falkenberg

Discrete Variables

Variability

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Questions

Which of the following statements are true or false?

A lower interguartile range indicates a lower variability. If data of a continous variable is grouped, and the original ungrouped data are not known the measures of central tendency and variability calculated based on the group data might be wrong.

The standard deviation is the absolute value of the variance.

If the variance of a sample is negative the sample has a low variability.

If the variance of a sample is zero all the sample values are identical.

Statistics

Dr. Falkenberg

Discrete Variables

Variability

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Relative Risks and Odds

FR 2

Graphing Frequency Distributions

compare Online Statistics: II 3, 8

- Graphing data: first and often most important step in data analysis
- Applicable methods of graphing data depends on the type of the dependent variable(s).

Statistics

Dr. Falkenberg

Discrete Variables

Graphing Frequency

Distributions

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Relative Risks and Odds Ratio

4 □ ▶

Qualitative Variables I

Example: 500 iMac customers were interviewed 1998, categorized as a previous Macintosh owners, a previous Windows owner, or a new computer purchaser.

-			
	Frequency		
Previous Ownership	absolute	relative	
None	85	0,17	
Windows	60	0,12	
Macintosh	355	0,71	
Sum	500	1,00	

Statistics

Dr. Falkenberg

Discrete Variables

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Qualitative Variables II Pie and Bar Charts:

pie chart

- Summarize a large data set in visual form.
- Clarify trends better than do tables
- Difference between the frequencies in the categories can be seen easily.

Statistics

Dr. Falkenberg

Discrete Variables

Central Tendency

Other Means

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Coefficients for Measuring

Relative Risks and Odds

What is wrong?

Effective in case of a small number of categories but not recommended in case of a large number of categories

FR 2

Qualitative Variables III

What is wrong?

Statistics

Dr. Falkenberg

Descriptive

Frequency Distributions
Discrete Variables

Continuous variables
Cumulative Frequency

Distribution

Measures Central Tendency

Quartils, Box Plot Comparing measures of central tendency

Other Means

Variability raphing Frequency

Qualitative Variables

uantitative Variables

Bivariate Data

Scatterplot

Covariance and Coefficient of Correlation Spearman's Rank Correlation Coefficient

Linear Regression

Contingency Tables

ntingency Tables efficients for Mea

sociation between minal variables

Quantitative Variables I

Many types of graphs can be used to portray distributions of quantitative variables.

Here only:

- Histograms: best-suited for large amounts of data (already done)
- 2. Box plots: useful for a short survey of the frequency distribution and good at depicting differences between distributions
- 3. Scatterplots: show the relationship between two variables (later)

Statistics

Dr. Falkenberg

Discrete Variables

Qualitative Variables Quantitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Quantitative Variables II

Example: Arrival delays of the carriers AS (Alaska Airlines Inc., 714 observations) and YV (Mesa Airlines Inc., 601 observations) at New York City airport

carrier	Min	Max	Q1	Q2	Mean	Q3
AS	-74.00	198.00	-32.00	-17.00	-9.93	2.00
YV	-46.00	381.00	-16.00	-2.00	15.56	24.25

Statistics

Dr. Falkenberg

Discrete Variables

Measures

Central Tendency central tendency Other Means

Qualitative Variables

Quantitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Relative Risks and Odds

4 □ →

Bivariate Data 1

compare Online Statistics: IV 2, 3, 5, 6; XIV 2, 4, 5; XVII 5

- Bivariate data: dataset with two variables.
- ► Here: bivariate data, with either two quantitative variables or two qualitative variables
- \rightarrow ways describing the relationship between two variables
- First: two quantitative variables

Statistics

Dr. Falkenberg

Discrete Variables

Qualitative Variables

Bivariate Data

Correlation Coefficient

Linear Regression

Contingency Tables

Relative Risks and Odds

Batio

Scatterplot II

Example: High School GPA and College GPA

- ► High School and College GPA information of 105 students who graduated from a university with a B.S. in computer science.
- GPA = grade point average

Statistics

Dr. Falkenberg

Discrete Variables

Distribution

Measures

Qualitative Variables

Scatterplot

Correlation Coefficient

Linear Regression

Contingency Tables

Coefficients for Measuring

Scatterplot III

Are high school and college GPAs related?

Summary of the data of each variable:

type	Min	Max	Mean	Median	Variance	Std.Deviation
high	2.03	4.00	3.08	3.17	0.27	0.52
univ	2.08	3.81	3.17	3.29	0.20	0.45

Separating variables: Relationship between variables remains hidden

Statistics

Dr. Falkenberg

Discrete Variables

Central Tendency

Other Means

Qualitative Variables

Scatterplot

Correlation Coefficient Linear Regression

Contingency Tables

Scatterplot IV

Scatterplot: points = pairs of the two variable

Here: Indications of strong positive relationship

Dr. Falkenberg

Discrete Variables Continuous variables

Distribution

Central Tendency

Qualitative Variables

Scatterplot

Correlation Coefficient

Linear Regression

Contingency Tables

Relative Risks and Odds

FR 2

Covariance and Coefficient of Correlation I

- ▶ Positive association: one variable (Y) increases with the second variable (X)
- ▶ Negative association: Y decreases as X increases
- ► Linear Relationship:
 - ► Perfect linear: scatterplot = straight line
 - Even linear if points diverge randomly but not systematicly from the line.

Statistics

Dr. Falkenberg

Discrete Variables

Measures

Qualitative Variables

Covariance and

Coefficient of Correlation

Correlation Coefficient Linear Regression

Contingency Tables

Covariance and Coefficient of Correlation II

- Scatterplots showing linear relationships differ in the slope of the line and how tightly the points cluster about the line
- Statistical measure of the strength of the linear relationship: Correlation Coefficient
- ► In case of a nonlinear relationship: correlation coefficient not adequately represents the strength of the relationship

Statistics

Dr. Falkenberg

Discrete Variables

Distribution

Measures

Qualitative Variables

Covariance and

Coefficient of Correlation

Correlation Coefficient Linear Regression

Contingency Tables

Covariance and Coefficient of Correlation III

covariance:

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y} \right)$$

► coefficient of correlation: $r_{xy} = \frac{S_{xy}}{S_x \cdot S_y}$

Statistics

Dr. Falkenberg

Discrete Variables

Measures

Qualitative Variables

Covariance and

Coefficient of Correlation

Correlation Coefficient Linear Regression

Contingency Tables

Coefficients for Measuring

Covariance and Coefficient of Correlation IV

Statistics

Dr. Falkenberg

Properties of r_{xy} :

- ightharpoonup symmetric: $r_{xy} = r_{yx}$
- unaffected by linear transformations

$$\tilde{\mathbf{x}} = \alpha \mathbf{x} + \beta, \ \alpha, \beta \in \mathbb{R} \Rightarrow \mathbf{r}_{\mathbf{x}\mathbf{y}} = \mathbf{r}_{\tilde{\mathbf{x}}\mathbf{y}}$$

- ▶ possible range: [-1,1]
 - ► -1: perfect negative linear relationship
 - ► 0: no linear relationship
 - ► 1: perfect positive linear relationship.

Statistics

Frequency Distributions
Discrete Variables

Continuous variables

Cumulative Frequency Distribution

easures

entral Tendency uartils, Box Plot

Comparing measures of entral tendency

'ariability

Distributions

Qualitative Variables

Quantitative Variables

Bivariate Data

Scatterplot
Covariance and

Covariance and Coefficient of Correlation

Spearman's Rank Correlation Coefficient

Linear Regression

Contingency Tables Coefficients for Mea

efficients for Meas sociation between ninal variables

Relative Risks and Odds Ratio

Covariance and Coefficient of Correlation V

Statistics

Dr. Falkenberg

Descriptive Statistics

Frequency Tables and Frequency Distributions Discrete Variables Continuous variables Cumulative Frequency

Distribution Measures

Central Tendency
Quartils, Box Plot
Comparing measures of
central tendency
Other Means

Variability Graphing Frequency distributions

Qualitative Variables

Quantitative varial Bivariate Data

Covariance and Coefficient of Correlation

Spearman's Rank Correlation Coefficient Linear Regression

Linear Regression Contingency Tables

Coefficients for Measuring Association between nominal variables

Spearman's Rank Correlation Coefficient I

- Coefficient of correlation: measure of the strength of a linear association of continous variables, i.e. at least intervally scaled variables
- Ordinally scaled variables: Spearman's Rank Correlation Coefficient is a measure of the association
- Only the ranks and not the values themselves are used \Rightarrow no change of the coefficient in case of a monotonous change of the grading system

Statistics

Dr. Falkenberg

Discrete Variables

Measures

Qualitative Variables

Spearman's Bank Correlation Coefficient

Linear Regression

Contingency Tables

Coefficients for Measuring

Spearman's Rank Correlation Coefficient II

Example: Scores in Analysis and Statistics of 10

students

students	
analysis	statistics
2.30	3.70
3.00	2.00
4.00	3.00
1.70	1.00
2.70	1.70
5.00	3.00
5.00	4.00
4.00	5.00
3.30	5.00
3.70	5.00

FR 2

Statistics

Dr. Falkenberg

Descriptive Statistics

Frequency Distributions
Discrete Variables
Continuous variables

Distribution Measures

Central Tendency
Quartils, Box Plot
Comparing measures of central tendency

Other Means Variability

Graphing Frequency Distributions Qualitative Variables

ualitative Variables uantitative Variables

Scatterplot

atterplot wariance and refficient of Correlation

Spearman's Rank Correlation Coefficient

Linear Regression Contingency Tables

entingency Tables efficients for Mea sociation between minal variables

Spearman's Rank Correlation Coefficient III

analysis	statistics	rk_ana	av_rk_ana	rk_stat	av_rk_stat
2.30	3.70	2	2.00	6	6.00
3.00	2.00	4	4.00	3	3.00
4.00	3.00	7	7.50	4	4.50
1.70	1.00	1	1.00	1	1.00
2.70	1.70	3	3.00	2	2.00
5.00	3.00	9	9.50	5	4.50
5.00	4.00	10	9.50	7	7.00
4.00	5.00	8	7.50	8	9.00
3.30	5.00	5	5.00	9	9.00
3.70	5.00	6	6.00	10	9.00

- Rank the scores for Analysis and Statistics separately.
- In case of a "tie" (two or more identical values): average of the ranks

Example: ranks of the score 4 in Analysis are 7 and $8 \Rightarrow$ assign the average rank 7.5 to each of these "tied" scores.

 Calculation the coefficient of correlation using the average ranks → Spearman's rank correlation coefficient, here 0.4706085

Statistics

Dr. Falkenberg

Discrete Variables

Distribution

Measures

Qualitative Variables

Spearman's Bank Correlation Coefficient

Linear Regression

Contingency Tables

Spearman's Rank Correlation Coefficient IV

Remark: Differences between the correlation coefficient and Spearman's rank correlation coefficient

- Correlation coefficient: only for continous but not for only ordinal variables.
- ► Rank correlation coefficient: either for two continous variables or two ordinal variables or a combination of a continous and a ordinal variable, but not for nominal variables.
- Rank correlation responds to any type of relationship wheras the correlation coefficient measures the degree of linear relationships only.
- Correlation coefficient: entire information contained in the data
- ► Rank correlation coefficient: only ordinal information contained in the data

Statistics

Dr. Falkenberg

Discrete Variables

Measures

Qualitative Variables

Spearman's Bank

Correlation Coefficient

Linear Regression

Contingency Tables

Questions

Which of the following statements are true or false?

If a variable Y increase with the second variable X, there is a negative association between Y and X. A very high value of the covariance indicates a positive association of the variables. If the coefficient of correlation is close to 0 there is no assocation between the variables. In case of ordinally scaled variables the coefficient of correlation can not be used. Spearman's Rank correlation coefficient can be used to summarise the strength and direction of a relationship between two variables. The result will always be between 1 and minus 1.

Statistics

Dr. Falkenberg

Discrete Variables

Distribution

Qualitative Variables

Spearman's Bank Correlation Coefficient

Linear Regression

Contingency Tables

Relative Risks and Odds

FR 2

Linear Regression I

Objective: Methods to predict one variable from other variables

Example: predict college grade point average from high school grade point average

Simple Linear Regression:

- predicts scores on one variable from the scores on a second variable
 - criterion variable: predicting variable (Y)
 - predictor variable: predictions based on this variable (X)
- **simple regression:** only one predictor variable; otherwise multiple regression
- ▶ linear regression: predictions of the criterion variable (Y) is a "linear" function of the predictor variable (X), i.e. Y=a+bX.

Statistics

Dr. Falkenberg

Discrete Variables

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Linear Regression II

Evample:

ilibie.
Υ
1
2
1,3
3,75
2,25

Objective: find the best-fitting straight line through the points

- ▶ best-fitting line: regression line (black line); predicted score on Y for each value of X
- vertical lines from the points to the regression line: errors of prediction

Statistics

Dr. Falkenberg

Discrete Variables

Measures

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Linear Regression III

Computation of the regression line:

- ▶ regression line: y = bx + a
- ▶ **Least Squares Method:** Determine *a*, *b* such that

$$\sum_{i=1}^{n}(y_i-(bx_i+a))^2\stackrel{!}{=}\min \Rightarrow b=\frac{s_{xy}}{s_x^2}, a=\bar{y}-b\bar{x}$$

error sum of squares:

$$\frac{1}{n-1}\sum_{i=1}^{n}(y_i-(bx_i+a))^2=s_y^2(1-r_{xy}^2)\Rightarrow -1\leq r_{xy}\leq 1$$

► Influence of Outliers
Source: "Correlation and Regression Explorer" from the Wolfram Demonstrations Project

http://demonstrations.wolfram.com/CorrelationAndRegressionExplorer

Statistics

Dr. Falkenberg

Descriptive Statistics

Frequency Tables and Frequency Distributions

Frequency Distributions
Discrete Variables

Continuous variables
Cumulative Frequency
Distribution

easures

Quartils, Box Plot

central tendency

ariability

aphing Frequency stributions

Qualitative Variables

Quantitative Variables

Scatterplot

Covariance and Coefficient of Correlation Spearman's Rank Correlation Coefficient

Linear Regression

Contingency Tables
Coefficients for Measuring
Association between
nominal variables

Linear Regression IV

	Х	У	X*X	y*y	x * y
1	1.00	1.00	1.00	1.00	1.00
2	2.00	2.00	4.00	4.00	4.00
3	3.00	1.30	9.00	1.69	3.90
4	4.00	3.75	16.00	14.06	15.00
5	5.00	2.25	25.00	5.06	11.25
Sum	15.00	10.30	55.00	25.82	35.15

Example:

Mean: $\bar{x} = 3$, $\bar{y} = 2.06$

Variance: $s_x^2 = 2.5$, $s_y^2 = 1.14925$

Covariance: $s_{xy} = 1.0625$

Coeff. of Correlation: $r_{XV} = 0.6268327$ Coeff. of Determination: B = 0.3929193

Regresson line: y = 0.425x + 0.785 $x = 2.5 \rightarrow predicted value of y = 1.8475$

Statistics

Dr. Falkenberg

Discrete Variables

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Linear Regression V

Partitioning the Sums of Squares:

► The variation in Y can be divided in two parts: the variation of the predicted scores and the variation in the errors of prediction

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (a + bx_i))^2$$

$$SSR = \sum_{i=1}^{n} ((a + bx_i) - \bar{y})^2$$

$$\Rightarrow SST = SSE + SSR$$

total sum of squares error sum of squares regression sum of square strat tendency

total variation = variation unexplained + variation explained

Definition: Coefficient of Determination $B = \frac{SSR}{SST}$

- ightharpoonup B = proportion of variation explained by simple linear regression
- ► Note: $r_{xy}^2 = \frac{SSR}{SST}$

Statistics

Dr. Falkenberg

Discrete Variables

Qualitative Variables

Correlation Coefficient

Linear Regression Contingency Tables

Relative Risks and Odds

4 □ ▶

Linear Regression VI

Example:

- Covariance = 0.1800941
- Coefficient of Correlation = 0.7795631
- Coeff. of Determination = 0.6077187
- Regression line: univ gpa = 1.0968 + 0.6748 * high gpa
- high GPA = 2.2: predicted uni gpa = 2.581449 variate Data

Visualizing R² Statistics Source: "Visualizing R-Squared in Statistics" from the Wolfram Demonstrations Project

http://demonstrations.wolfram.com/VisualizingRSquaredInStatistics/

Statistics

Dr. Falkenberg

Discrete Variables

Distribution

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Relative Risks and Odds Batio

FR 2

Linear Regression VII

Remark: Coefficient of correlation is only a measure for the strength of a linear relationship.

Example: : Choose 11 symmetric Points of a parabola; the regression line is a constant line, i.e. r = 0.

Statistics

Dr. Falkenberg

Descriptive Statistics

Frequency Tables and Frequency Distributions Discrete Variables

> ontinuous variables umulative Frequency

Measures

central Tendency Quartils, Box Plot

ther Means ariability

Graphing Frequency Distributions Qualitative Variables

Quantitative Variables

Bivariate Data

Covariance and
Coefficient of Correlation
Spearman's Rank
Correlation Coefficient

Linear Regression

Contingency Tables Coefficients for Measuring Association between nominal variables

Relative Risks and Odds Ratio

FR 2

Questions

Which of the following statements are true or false?

The predictor variable is the predicting variable. The regression line is the line which minimizes the distance between the observations and the line.

The regression is very sensitive to outliers.

If the coefficient of correlation r_{xy} is 0.8 64% of the variation of the y-values can be explained by a linear regression.

Linear regression can be used to model the relationship between two variables of any kind.

Statistics

Dr. Falkenberg

Discrete Variables

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Contingency Tables I

- Summarising the relationship between qualitive variables
- ► Table of frequencies classified according to the values of the variables in question.
- Denomination: Cross-classification or two-way classification.
- ► **Objective:** measure the association, if any, between the variables

Statistics

Dr. Falkenberg

Descriptive Statistics

Frequency Tables and Frequency Distributions

Discrete Variables

Continuous variables Cumulative Frequency

Measures

Central Te

Quartils, Box Plot

Other Means

'ariability

raphing Frequency

Qualitative Variables

Quantitative Variables

Bivariate Data

Scatterplot

Covariance and

Confficient of Correlate

Spearman's Rank Correlation Coefficient

Linear Regression

Contingency Tables

oefficients for Mea ssociation betwee ominal variables

Contingency Tables II

Example: Results of an exam in a class with 50 students

	sex	score	
1	m	4	
2	m	4	
3	f	3	with 45 more rows
4	m	3	

m

A classification according to the variables sex and score leads to

	1	2	3	4	5	Sum
f	2.00	5.00	6.00	4.00	3.00	20.00
m	4.00	5.00	6.00	10.00	5.00	30.00
Sum	6.00	10.00	12.00	14.00	8.00	50.00

Statistics

Dr. Falkenberg

Discrete Variables

Distribution

Measures

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Relative Risks and Odds

FR 2

Contingency Tables III

Two variables A and B with r resp. s different categorial values A_i resp. B_i

	B_1	B_2	 $ B_s $	total
A_1	f ₁₁	f ₁₂	 f_{1s}	f _{1.}
A_2	<i>f</i> ₂₁	f_{22}	 f_{2s}	f _{2.}
A_r	f_{r1}	f_{r2}	 f _{rs}	$f_{r.}$
total	f_1	$f_{.2}$	 f_{rs}	f

FR 2

f_{ij}	# observation of A_i and E
$f_{.j} = \sum_{i} f_{ij}$	# observation of B_j
$f_{i.} = \sum_{j} f_{ij}$	# observation of A_i
$f_{\cdot \cdot} = \sum_{i} \sum_{j} f_{ij}$	# observation

Statistics

Dr. Falkenberg

Descriptive Statistics

Frequency Tables and Frequency Distributions Discrete Variables

Continuous variables

Cumulative Frequency Distribution

leasures

Quartils, Box Plot

Comparing measures of central tendency

uner weans

riability

aphing Frequ

Qualitative Variables

Quantitative Variable

Bivariate Data

Scatterplot
Covariance and
Coefficient of Correlation

Spearman's Rank Correlation Coefficient Linear Regression

near Hegression

Contingency Tables

oefficients for Mea ssociation betwee ominal variables

Relative Risks and Odds Ratio

Contingency Tables IV

Example: If there is no association, which values would be expected?

	1	2	3	4	5	Sum
f						20.00
m						30.00
Sum	6.00	10.00	12.00	14.00	8.00	50.00

Statistics

Dr. Falkenberg

Descriptive Statistics

Frequency Distributions
Discrete Variables
Continuous variables

Cumulative Frequency Distribution

easures

Comparing measures of

ther Means

ariability

aphing Frequency tributions

Qualitative Variables

Quantitative Variable

Bivariate Data

Scatterple

Covariance and Coefficient of Correlation Spearman's Rank Correlation Coefficient

Linear Regression

Contingency Tables

Contingency Tab Coefficients for N

Association between nominal variables

Relative Risks and Odds Ratio

FR 2

Contingency Tables V

Expected values:

	1	2	3	4	5	Sum
f	2.40	4.00	4.80	5.60	3.20	20.00
m	3.60	6.00	7.20	8.40	4.80	30.00
Sum	6.00	10.00	12.00	14.00	8.00	50.00

expected values $e_{ij} = \frac{f_{i.} \cdot f_{.j}}{f_{..}}$

Statistics

Dr. Falkenberg

Descriptive Statistics

Discrete Variables
Continuous variables

Cumulative Frequency Distribution

Measures Central Tendency

Quartils, Box Plot Comparing measures of central tendency

Other Means

ariability

phing Frequency tributions

Qualitative Variables

Quantitative Variable

Bivariate Data

Scatterplot Covariance and

Coefficient of Correlation Spearman's Rank Correlation Coefficient

Linear Regression

Contingency Tables

Contingency Tal Coefficients for

Association between nominal variables

Contingency Tables VI

Independence: row and column variables are unassociated

- ► Knowing the value of the row variable will not help us to predict the value of the column variable and likewise knowing the value of the column variable will not help us predict the value of the row variable.
- ► The values in the contingency table are completly determined by the marginal values.

Statistics

Dr. Falkenberg

Discrete Variables

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Coefficients for Measuring Association between nominal variables I

$$\chi^{2} = \sum_{i=1}^{r} \left(\sum_{j=1}^{s} \frac{(f_{ij} - e_{ij})^{2}}{e_{ij}} \right) = n \cdot \left(\left(\sum_{i=1}^{r} \sum_{j=1}^{s} \frac{f_{ij}^{2}}{f_{i.} f_{.j}} \right) - 1 \right)$$
where position the total complexity

where n =the total sample size

 $\sim \chi^2$ = sums up all differences between observed and expected values, scale them with respect to the expected values, and squares them.

Example: $\chi^2 = 1.8105$

- $ightharpoonup \chi^2 = 0 \Leftrightarrow$ no association
- ▶ But:
 - No meaningful interpretation of the strength of association
 - \triangleright χ^2 depends on the scale of variables: different scales results in different values of χ^2 .
 - ► $0 < \chi^2 < n(\min(r, s) 1)$

Statistics

Dr. Falkenberg

Discrete Variables

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Coefficients for Measuring Association between nominal variables

Coefficients for Measuring Association between nominal variables II

Pearson's Contingency Coefficient: $C = \sqrt{\frac{\chi^2}{\chi^2 + n}}$ with n = total sample size.

It is interpreted as a measure of relative (strength) of an association between two variables. The coefficient will always be less than 1 and varies according to the number of rows and columns.

Example:
$$C = \sqrt{\frac{1.8105}{1.8105+50}}$$

►
$$C = 0 \Leftrightarrow$$
 no association

▶
$$0 \le C \le \sqrt{\frac{e-1}{e}}$$
 with $e = \min(r, s)$

Statistics

Dr. Falkenberg

Discrete Variables

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Coefficients for Measuring Association between nominal variables

Relative Risks and Odds Batio

4 □ ▶

Coefficients for Measuring Association between nominal variables III

corrected Pearson's Contingency Coefficient:

$$C_{corr} = \sqrt{rac{e}{e-1} \cdot rac{\chi^2}{n+\chi^2}}$$

Example:
$$C = \sqrt{\frac{2}{1} \cdot \frac{1.8105}{1.8105 + 50}}$$

$$ightharpoonup C_{corr} = 0 \Leftrightarrow \text{no association}$$

Statistics

Dr. Falkenberg

Discrete Variables

Distribution

Measures

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Coefficients for Measuring

Association between nominal variables

Coefficients for Measuring Association between nominal variables IV

Example: Data from a Mediterranean Diet and Health case study

	Outcome					
Diet	Cancers	Fatal	Non-	Healthy	Total	
		Heart	Fatal			
		Disease	Heart			
			Disease			
AHA	15	24	25	239	303	
Mediterranean	7	14	8	273	302	
Total	22	38	33	512	605	

AHA = American Heart Association

Is there a relationship between diet and outcome?

Statistics

Dr. Falkenberg

Discrete Variables

Measures

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Coefficients for Measuring

Association between nominal variables

Coefficients for Measuring Association between nominal variables V

Observed and Expected Frequencies for Diet and Health Study

	Outcome					
Diet	Cancers	Fatal	Non-	Healthy	Total	
		Heart Fatal				
		Disease	Heart			
			Disease			
AHA	15 (11.02)	24 (19.03)	25 (16.53)	239 (256.42)	303	
Mediterranean	7 (10.98)	14 (18.97)	8 (16.47)	273 (255.58)	302	
Total	22	38	33	512	605	

Coefficients for Measuring Association:

- $\sim \chi^2 = 16.5645$
- \triangleright C = 0.1631991
- $ightharpoonup C_{corr} = 0.2307984$

FR 2

Statistics

Dr. Falkenberg

Discrete Variables

Distribution

Qualitative Variables

Coefficient of Correlation

Correlation Coefficient Linear Regression

Contingency Tables

Coefficients for Measuring Association between nominal variables

Questions

Which of the following statements are true or false?

The association of two nominal variables can
be desribed by a contingency table.
If two variables are independent the knowledge
of the value of one variable gives no information
about the value of the other varaible.
If scales of two nominal variables are changed
χ^2 -value remains unchanged.
If values of variables are regrouped in a contin-
gency table so that the dimension of the table
changes, the χ^2 -value will usually also change.
If $\chi^2 = 0$ the variables are independent.

Statistics

Dr. Falkenberg

Descriptive Statistics

requency Tables and requency Distributions

Discrete Variables Continuous variables

Distribution

easures

Quartils, Box Plot

Comparing measures o central tendency

ariability

phing Frequen

stributions

Qualitative Variables

Quantitative Variable:

Scatterplot

Covariance and Coefficient of Correlati

Correlation Coefficient Linear Regression

ar Regression

Contingency Tables

Coefficients for Measuring Association between nominal variables

Relative Risks and Odds Ratio I

compare Heumann, Schomaker, page 78ff

In case of 2x2 contingency tables, odds ratios are often used to describe the relationship of the variables exspecially in case-control-studies. It describes how likely an exposure is lead to a specific event.

Example: Possible association of smoking with a particular disease

			king (Y)	Sum
		Yes	No	
Disease (X)	Yes	34	66	100
	No	22	118	140
	Sum	56	184	240

Statistics

Dr. Falkenberg

Discrete Variables

Distribution

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Relative Risks and Odds Ratio II

Questions:

- How can we compare the proportion of sick or healthy patients between smokers and non-smokers?
- ► How can we compare the chance for disease and no disease?

Statistics

Dr. Falkenberg

Discrete Variables

Measures

Qualitative Variables

Correlation Coefficient Linear Regression

Contingency Tables

Relative Risks and Odds Ratio III Conditional distributions for the variables X and Y:

$$f_{i|j}^{X|Y} = \frac{f_{ij}}{f_{.j}}$$
 and $f_{j|i}^{Y|X} = \frac{f_{ij}}{f_{i.}}$

Remark: X=disease D, \bar{D} , Y=smoking: S, \bar{S}

	S	Ī	
D	34	66	100
D	22	118	140
	56	184	240

- ► $f_{1|1}^{X|Y} = \frac{34}{56}$ = risk of a smoker to get the disease
- ► $f_{2|2}^{X|Y} = \frac{118}{184}$ = risk of a nonsmoker to stay healthy
- $ightharpoonup f_{1|1}^{Y|X} = \frac{34}{100} = \text{risk of an ill person to be a smoker}$

Statistics

Dr. Falkenberg

Descriptive Statistics

Frequency Tables and Frequency Distributions

Discrete Variables

Continuous variable

umulative Frequency istribution

Measures

Sentral Tendency Quartils Box Plo

Comparing measures of central tendency

'ariability

raphing Frequency istributions

Qualitative Variables

Quantitative Variable

Scatterplot

ovariance and perficient of Correlation

Correlation Coefficient
Linear Regression

Linear Regression Contingency Tables

Coefficients for Measuring Association between

Relative Risks and Odds Ratio IV

relative risk: ratio of conditional distributions

Example: relative risks

$$\frac{f_{2|1}^{X|Y}}{f_{1|2}^{X|Y}} = \frac{\frac{34}{56}}{\frac{66}{184}} \approx 1.69, \qquad \frac{f_{2|1}^{X|Y}}{f_{2|2}^{X|Y}} = \frac{\frac{22}{56}}{\frac{118}{184}} \approx 0.6^{-1}$$

- Proportion of individuals with disease is 1.69 times higher among smokers when compared with non smokers
- Proportion of healthy individuals is 0.61 times smaller among smokers when compared with non-smokers.

Statistics

Dr. Falkenberg

Discrete Variables

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Relative Risks and Odds

Batio

Relative Risks and Odds Ratio V

odds ratio: ratio of relative risks

Example: odds ratio

$$\text{odds ratio} = \frac{f_{1|1}^{X|Y}}{f_{1|2}^{X|Y}} : \frac{f_{2|1}^{X|Y}}{f_{2|2}^{X|Y}} = \frac{\frac{34}{56}}{\frac{66}{184}} : \frac{\frac{22}{56}}{\frac{118}{184}} = \frac{34 \cdot 118}{66 \cdot 22} = \frac{\frac{34}{66}}{\frac{22}{118}} \approx 2.76^{\frac{\text{Continuous of the Contract of Con$$

Meaningful interpretations are

- number of smokers with disease number of nonsmokers with disease number of smokers with no disease odds ratio = number of nonsmokers with no disease
- ► Chance of smoking: 2.76 times higher for individuals with disease compared with healthy individuals
- Chance of having the disease: 2.76 higher for smokers compared with non smokers

Statistics

Dr. Falkenberg

Discrete Variables

Central Tendency

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables

Content Descriptive Statistics

Frequency Tables and Frequency Distributions

Discrete Variables

Continuous variables

Cumulative Frequency Distribution

Measures

Central Tendency

Quartils, Box Plot

Comparing measures of central tendency

Other Means

Variability

Graphing Frequency Distributions

Qualitative Variables

Quantitative Variables

Bivariate Data

Scatterplot

Covariance and Coefficient of Correlation

Spearman's Rank Correlation Coefficient

Linear Regression

Contingency Tables

Coefficients for Measuring Association between nominal variables

990

Statistics

Dr. Falkenberg

Discrete Variables

Measures

Qualitative Variables

Correlation Coefficient

Linear Regression

Contingency Tables