p.56: 9-(d) In each case below, let $\mathscr{A}(x_1)$ be the given wf, and let t be the term $f_1^2(x_1, x_3)$. Write out the wf. $\mathscr{A}(t)$ and hence decide in each case whether t is free for x_1 in the given wf.

(d)
$$(\forall x_2)A_1^3(x_1, f_1^1(x_1), x_2) \to (\forall x_3)A_1^1(f_1^2(x_1, x_3)).$$

Recall that

- $\mathscr{A}(t)$: if x_i does occur free in $\mathscr{A}(x_1)$, then $\mathscr{A}(t)$ denotes the result of substituting term t for every free occurrence of x_i . (cf. p.54)
- t is free for x in a wf. ϕ :

定义 3.11*. (Revised defintion) 当一个项 t 可以替换 \mathscr{A} 中变元 x_i 的所有自由出现,且不会使得 t 中任何变元与 \mathscr{A} 的其他部分相互作用,我们就称 t 对 \mathscr{A} 中 x_i 是自由的。

(注意此题有两问: 你需要 1) 写出 $\mathcal{A}(t)$, 且 2) 回答 t 在 $\mathcal{A}(x_1)$ 中是否对 x_1 自由)

Your answer: (10 points)

Note that in

(d)
$$(\forall x_2)A_1^3(\mathbf{x_1}, f_1^1(\mathbf{x_1}), x_2) \to (\forall x_3)A_1^1(f_1^2(\mathbf{x_1}, x_3)).$$

 x_1 has three occurrences are free, hence

[6 points]

$$\mathscr{A}(t) = (\forall x_2) A_1^3(f_1^2(x_1, x_3), f_1^1(f_1^2(x_1, x_3)), x_2) \to (\forall x_3) A_1^1(f_1^2(f_1^2(x_1, x_3), x_3))$$

And t is not free for x_1 in (d) of course.

[4 points]

.....作业反馈

• 关于代入后的结果。对 x_1 的自由出现代入 t 后,一定得在所得的公式中把 t 展开了,仅仅写成

$$(\forall x_2) A_1^3(t, f_1^1(t), x_2) \to (\forall x_3) A_1^1(f_1^2(t, x_3))$$

这个样子是不可行滴,且就定义而言,上面这个符号串也不是一个合式公式(因为一阶语言的字母 表中并没有 t 这样的符号,t 只是元语言中的符号)。

• 关于符号的写法。对于全称量词或存在量词,可以采取书上的写法,即 $\forall x_i$ 和 $\exists x_i$ 外面有对括号:

$$(\forall x_i)\varphi \qquad (\exists x_i)\varphi$$

比较现代的记法一般省略会这对括号,直接写作: $\forall x_i \varphi, \exists x_i \varphi$ 。但有些同学会在把变元用括号括起来,从而有形如

$$\forall (x_i)\varphi \qquad \exists (x_i)\varphi$$

这样的写法。不过这种写法既不太美观也不通用,有时还会让人看得比较困惑,所以还是建议不要 采用这种记法为好。

• 关于代入自由。一个项 t 对于某个公式 φ 中的变元 x 是自由的,一定是相对于整个公式 φ 来说的,当 φ 是一个蕴含式(或者其他复合公式)时,没有「t 对 φ 的前件代入自由」或者「t 对 φ 的后件不是代入自由」这类说法。