STOCKAGE GEOLOGIQUE DU DIOXYDE DE CARBONE (CO₂)

Numéro du candidat: 17493

Objectifs

- Faire une modélisation physique du phénomène de diffusion du ${\cal CO}_2$ dans la roche réservoir
- Résolution analytique et numérique des équations avec Python
- Montrer l'importance de la diffusion dans la capacité de stockage du réservoir géologique
- Etudier l'impact de la diffusion de CO₂ sur les roches du réservoir géologique

Plan

Introduction

- I. Mise en évidence et explication du phénomène
- II. Modélisation physique du phénomène
- III. Résolution des équations
- IV. L'impact de la diffusion du ${\cal CO}_2$ sur les roches du réservoir géologique

Conclusion

Notations:

(i):représente la source i dans l'annexe de l'image [lettre]:représente le code source dans l'annexe de la figure ou une preuve

Introduction

La fonte des glaciers[6]

Ce qui a pour conséquence le réchauffement climatique avec:

La sècheresse[7]

La
solution: Le
captage et
stockage
géologique
du CO₂

Du CO_2 directement rejeté dans l'air[8]

I-Mise en évidence et explication du phénomène de diffusion

Structure de la roche réservoir [3]

Le CO_2 dans les pores roche réservoir[2]

II-Modélisation du phénomène

Le phénomène du diffusion du CO_2 (aqueux)est décrit par la <u>loi de</u> FICK(Première loi)

$$\vec{j}$$
= -D_e . \vec{grad} (C)

- \triangleright D_e: le coefficient de diffusion effectif $(s^{-1}m^2)$
- \geqslant j:la densité de flux molaire du CO2($mol.m^{-2}.s^{-1}$)
 - \triangleright c:sa concentration molaire ($mol.m^{-3}$)

Type de roche	Méthodeutilisée	Espèce diffusante	 Coefficient de diffusion effectif (m².s⁻¹)
Argiles de Mol	Pulse-test	нто	8,50×10 ⁻¹¹
Calcaires de Charmottes	RMN	D ₂ O	8,0 à 9,8×10 ⁻¹²
Argilite de Muderong	Diffusion au travers	CO ₂ dissous	3,08×10 ⁻¹¹
Argilites de Bure	Diffusion au travers	нто	1,8 à 2,4×10 ⁻¹¹
Argiles à Opalinus	Diffusion au travers	нто	5,6 à 6,7×10 ⁻¹²
Grès d'Emscher	Diffusion au travers	CO ₂ dissous	7,80×10 ⁻¹¹

Des ordres de grandeur de De[5]

Equation de diffusion

Notons n(x,t)le nombre de mole à l'instant t et à la position x dn(x,t) = c(x,t). dV = S. c(x,t). dx Par ailleurs, $\varepsilon_0.\frac{\partial n(x,t)}{\partial t} = \iint j. dS$ (par analogie avec avec $I = \frac{\partial q}{\partial t} = \iint j_{electrique}. dS$)

Ainsi en faisant un bilan sur n(x,t) et en remplaçant n par son expression on obtient successsivement:

$$\varepsilon_{0} \cdot \frac{\partial n(x,t)}{\partial t} = S(j(x,t) - j(x+dx,t))$$

$$\frac{\partial c(x,t)}{\partial t} = -\frac{\partial j(x,t)}{\varepsilon_{0} \cdot \partial x} \quad (1)$$

En remplaçant j(loi de Fick) par son expression dans (1),on a donc l'équation de diffusion unidimensionnelle:

$$\frac{\partial c(x,t)}{\partial t} = \frac{D_e}{\varepsilon_0} \cdot \frac{\partial^2 c(x,t)}{\partial x^2}$$
 (2)

Forme générale(2^{ème} Loi de Fick):

$$\frac{\partial c}{\partial t} = \frac{D_e}{\varepsilon_0} \cdot \Delta(c) + \sigma$$

 σ :un terme de source

III-Résolution des équations

- ❖Résolution avec la transformation de Fourier pour le cas unidimensionnel
- *Hypothèse*: De et £0 sont des constantes
- Définition: la Transformation de Fourier(TF) d'une fonction f est:

$$F(k) = \int_{-\infty}^{+\infty} f(x)e^{-i2\pi kx}dx$$

Et la transformation inverse de Fourier (TF^{-1}) de F est:

$$f(x) = \int_{-\infty}^{+\infty} F(k)e^{i2\pi kx}dk$$

• Résolution : On applique la TF à (2):

$$\int_{-\infty}^{+\infty} \frac{\partial c(x,t)}{\partial t} e^{-i2\pi kx} dx = \int_{-\infty}^{+\infty} \frac{D_e}{\varepsilon_0} \cdot \frac{\partial^2 c(x,t)}{\partial x^2} e^{-i2\pi kx} dx$$

Voir annexe (D)

$$\frac{\partial C(k,t)}{\partial t} = -4\pi^2 k^2 \frac{D_e}{\varepsilon_0} \cdot C(k,t)$$
 (3)

(3)
$$C(k,\tau) = A(k). e^{-4\pi^2 k^2 \frac{D_e}{\varepsilon_0} t}$$

our trouver A(k)=C(k,0), on prend par exemple une condition initiale une

gaussienne
$$c(x,0)=c_0e^{-\frac{x^2}{2}}$$
, Alors
$$C(k,t)=C(k,0).e^{-k^2\frac{D_e}{\varepsilon_0}t}$$
(4)

où en appliquant TF^{-1} à (4),on obtient:

$$c(x,t) = c_0 \frac{e^{-(\frac{\varepsilon_0}{4Det})x^2}}{2\sqrt{\pi \frac{D_e t}{\varepsilon_0}}}$$

uniforme au cour du temps

Conclusion partielle: La concentration tend à être

(A)

* Résolution numérique en 2D En 2D, la 2^{ème} loi de Fick devient:

$$\frac{\partial c}{\partial t} = \frac{D_e}{\varepsilon_0} \left(\frac{\partial^2 c}{\partial x^2} + \frac{\partial^2 c}{\partial y^2} \right) + \sigma \quad (5)$$

• Discrétisation:

On fait de même pour x et y .On notera pour simplifier:

 $egin{array}{cccc} t_k & & & & & & & \\ x_i & & & & & & \\ t_j & & & & & & \\ & & & & & & & \end{array}$

$$dt \ll 1$$
, $dx \ll 1$, $dy \ll 1$; $d'où$ en appliquant de Taylor, on obtient:
$$> c(i,j,k+1) = c(i,j,k+dt) \approx c(i,j,k) + dt \frac{\partial c}{\partial t}$$
 (1')

$$> c(i+1,j,k) = c(i+dx,j,k) \approx c(i,j,k) + dx \frac{\partial c}{\partial x} + dx^2 \cdot \frac{\partial^2 c}{2\partial x^2} (2')$$

$$> c(i-1,j,k) = c(i-dx,j,k) \approx c(i,j,k) - dx \frac{\partial c}{\partial x} + dx^2 \cdot \frac{\partial^2 c}{2\partial x^2} (3')$$

En sommant (2') et (3');on obtient:

$$\frac{\partial^2 c}{\partial x^2} \approx \frac{c(i+1,j,k) + c(i-1,j,k) - 2c(i,j,k)}{dx^2} \tag{4'}$$

De même selon y on a:

$$\frac{\partial^2 c}{\partial y^2} \approx \frac{c(i,j+1,k) + c(i,j-1,k) - 2c(i,j,k)}{dy^2} \tag{5'}$$

13

En combinant les équations (5),(1'),(4') et (5') on obtient donc:

$$c(i,j,k+1) \approx c(i,j,k) + \frac{D_e}{\varepsilon_0} \cdot dt \left(\frac{c(i+1,j,k) + c(i-1,j,k) - 2c(i,j,k)}{dx^2} + \frac{c(i,j+1,k) + c(i,j-1,k) - 2c(i,j,k)}{dy^2} \right) + \text{dt. } \sigma$$

- ✓ Conditions initiales :c(x=0,y=0,t)=1
- ✓ Conditions aux limites: xlimite=1,ylimite=1 X0=0,y0=0

IV-Impact de la diffusion de *CO*₂ sur les roches du réservoir

Les travaux de Appelo et Postma ont permis de montrer la relation simple suivante:

$$pH = -0.5 \log \left(10^{-7.8} \frac{P_{CO_2}}{P_{norm}} \right) \text{ à T} = 25^{\circ}\text{C}$$

Avec:

- $\triangleright P_{CO_2}$: la pression de CO_2
- $\triangleright P_{norm}$:une pression de normalisation
- \triangleright pH: le pH du CO_2 (aqueux)

La représention graphique est obtenue avec python

pH de l'eau en fonction de la pression du CO_2

• Avec P normalisation=1bar

Observation et interprétions:

- Le pH décroit en fonction de la pression
- Le pH est inferieur à 7(milieu acide)
- D'où le lieu de plusieurs réactions chimiques
- Ce qui altère la roche couverture ou le ciment

• Matériau	• Type de roche	Mode d'altération	Dimensions des échantillons (mm)	Température (°C)	• Pression (bar)	 Taux d'injection (cm³/h) 	• Durée	[5]
Argilite de Tournemire	Couverture fracturé	Injection d'eau acidifiée par dissolution de CO ₂	Diamètre : 9 Longueur : 15	25	n.s.*	25	33 j	
Grès synthétique	Poudre	Flux de CO ₂ dissous	Colonne : Diamètre : 36 Longueur : 1000	70	100	1,25	7,5 mois	17
Argilite de Muderong	Couverture	Diffusion de CO ₂ dissous	Diamètre : 28,5 Longueur : 5 à 20	50	60-70	-	120 h	
Carbonate de Midyat	Réservoir	11 1 1 00	Diamètre : 38,1 &	18, 35		180, 360		
Carbonate de Saint-Maximin	Réservoir	Injection de CO ₂	47,2 Longueur : 70 & 107	& 50	n.s.	& 3600	~6,5 h	
Calcaire de Lérouville	Réservoir	Injection d'eau acidifiée par dissolution de CO ₂	Diamètre : 9 Longueur : 21	20	n.s.	300	22,5 h	Des exemples d'altération de roche par la diffusion du CO_2
Calcaire argileux de Montpellier	Réservoir fracturé	Injection d'eau acidifiée par dissolution de CO ₂	Diamètre : 9 Longueur : 15	20	n.s.	300	100 h	roche par la diffusion du co ₂
Grès d'Adamsviller Calcaire de Lavoux	Réservoir Réservoir	Diffusion de saumure saturée en CO ₂ & CO ₂ supercritique humide	Diamètre : 12,5 & 25 Longueur : 25 & 50	90	280		1 mois	
Calcaire de Leadville Grès de Mt. Tom Grès de Coconio	Poudre Poudre Poudre	Diffusion de CO ₂ dissous dans trois types de saumure	-	20 & 120	100 à 600		~50 j	Des exemples d'altération de roche par la diffusion du \mathcal{CO}_2
Calcaire de Lavoux	Réservoir	Diffusion de CO ₂ dissous & CO ₂ supercritique sec	Diamètre : 38 Longueur : 61 à 76	80	150	-	1 mois	
Grès d'Emsher Calcaire de Donar 5	Couverture Couverture	Percée et diffusion de CO ₂ dissous	Diamètre : 28,5 Longueur : 10	28	50	-	50 h	

Conclusion

• Cette modélisation permet de visualiser la diffusion du \mathcal{CO}_2 dans la roche ,comprendre son importance sur la capacité de stockage et voir son impact sur les roches du réservoir géologique .

constantes, ils dépendent du type de milieu, de la position mais aussi du temps

 Solution envisageable pour réduire les risques liés au stockage géologique :injecter le CO2 avec des faibles pressions

• Cependant De et ε_0 ne sont pas vraiment des

	Type de roche	Méthodeutilisée	Espècediffusante	diffusion effectif (m².s⁻¹)
_		Pulse test	нто	8,50×10 ⁻¹¹
	Argiles de Mol	Pulse-test	D ₂ O	8,0 à 9,8×10 ⁻¹²
	Calcaires de Charmottes	RMN		3,08×10 ⁻¹¹
	Argilite de Muderong	Diffusion au travers	CO ₂ dissous	1,8 à 2,4×10 ⁻¹¹
	Argilites de Bure	Diffusion au travers	нто	5,6 à 6,7×10 ⁻¹²
	Argiles à Opalinus	Diffusion au travers	нто	
	Grès d'Emscher	Diffusion au travers	CO ₂ dissous	7,80×10 ⁻¹¹

Coefficient de

Roches poreuses	porosité totale (%)		
Sable et gravier	25 à 40		
	30 à 35		
Sable fin	40 à 50		
Argile	10 à 40		
Craie	1 à 10		
Calcaire (fissuré)	1810		

MERCI POUR VOTRE ATTENTION

ANNEXE

- [1]:Image de : Guillaume BERTHE, THÈSE DE DOCTORAT, UNIVERSITE PARIS-SUD, Soutenue le 20/12/2012, Évolution des propriétés de confinement des roches couvertures type argilite soumises à des fluides enrichis en CO2 : Impact des discontinuités naturelles et artificielles ; https://tel.archives-ouvertes.fr/tel-00795668
- [2]:image de clubco2.fr
- [3]image de Houssein Nasser El Dine. Étude mathématique et numérique pour le modèle Darcy-Brinkman pour les écoulements diphasiques en milieu poreux. Analyse numérique [math.NA]. École centrale de Nantes; Université Libanaise:https://hal.archives-ouvertes.fr/tel-01626032v3
- [4] Image de :http://eduterre.ens-lyon.fr/nappe/html/scenarii/TP
- [5]Image de Pierre Bachaud. Stockage du CO2 dans les aquifères profonds : étude en conditions réelles des propriétés de confinement des roches de couverture et de leur altération. Autre. Institut National Polytechnique de Lorraine, 2010. Français. ffNNT : 2010INPL084Nff. fftel-01749436f:https://hal.univ-lorraine.fr/tel-01749436
- [6] Image de :www.news.uliege.be
- [7] Image de:www.ecoconso.be
- [8] Image de :www.lesechos.fr
- [9]:Image de https:fr.science-questions.org

```
76 diff1d.py - C:\Users\ASUS\Desktop\diff1d.py
File Edit Format Run Options Windows Help
import numpy as np
import matplotlib.pyplot as plt
def c():
    De=2*10**-9
    epsillon=0.4
    x=np.linspace(-5,5,100)
    c0=10
    T=[10**i for i in range(5)]
    for t in T:
        y=c0*np.exp(-x**2*epsillon/4*De*t-x**2/2)/np.sqrt(4*De*np.pi*t/epsillon)
        plt.plot(x,y,label='t={}s'.format(t))
        plt.xlabel("x en nano mètre")
        plt.ylabel(" c (micro mol/m3")
        plt.title("concentration de CO2")
        plt.legend()
    plt.show()
```

```
22
```

```
import matplotlib.pyplot as plt
import numpy as np
def ph():
   pl=np.linspace(1,200)
   p2=np.linspace(0.1,10)
   yl=-0.5*np.log(10**-7.8*pl)/np.log(10)
   plt.plot(pl,yl,'o--')
   plt.xlabel("Pression(en bar) du CO2 ")
   plt.ylabel("pH")
   plt.title("pH en fonction de la pression du CO2")
   plt.grid()
   plt.cool()
   plt.show()
                                                                                                                                                            Ln: 10 Col: 32
```

76 ph=f(pression).py - C:\Python32\2kS\ph=f(pression).py

File Edit Format Run Options Windows Help

(B)

```
2:
```

```
File Edit Format Run Options Windows Help
import numpy as np
import matplotlib.pyplot as plt
def diff(n,p,k,t):
    if 'qt' in plt.get backend().lower():
        try:
            from PyQt4 import QtGui
        except ImportError:
            from PySide import QtGui
    De= 2*10**-3
    epsillon= 0.4
    sigma = 2
    dt = t/k
    dx = 1/n
    dy = 1/p
    x= np.linspace(0,1,n)
    y = np.linspace(0,1,p)
    plt.figure()
    plt.ion()
    c = np.zeros((n,p))
    m= np.zeros((n,p))
    for i in range(0,k):
       m[1:-1,1:-1] = dt*De/epsillon*((c[:-2,1:-1]-2*c[1:-1,1:-1]+c[2:,1:-1])/(d
       c[1:-1,1:-1] += (m[1:-1,1:-1]+dt*sigma)
       if (i%100== 0):
          plt.pcolormesh(y,x,c,cmap='cool')
          plt.title(" concentration à t={}s".format(t))
          plt.draw()
          if 'qt' in plt.get backend().lower():
              QtGui.qApp.processEvents()
    plt.colorbar()
    plt.show()
```

76 diffusionco2.py - C:\Users\ASUS\Desktop\diffusionco2.py

(C)

- © X

Analyse

Tupperono 3 g de 8 de 1 et Entegrable sur IR tel que.

1 c(n,t) | < 19 (w) ; 1 3 (x,t) | < 19 (x)

1 20 (x,t) = 1 g(w) et (22 (a,t)) = (g(w).)

C(k,t)= forc(n,t) e ionker du est bien definie car 10(x,t) = 12 mkx | 6 10(x,t) | 4 19(w) 1

. Soit $h(x) = C(x,t)e^{-i2\pi kx}$

Je zecht) e isakn du est aussi bren defenie.

(En utilisant l'hypothèse).

$\int_{-\infty}^{+\infty} \frac{\partial c(n_t)}{\partial t} e^{-i\omega k n} dn = \frac{\partial}{\partial t} \int_{-\infty}^{+\infty} \frac{c(n_t)}{c(n_t)} e^{-i\omega k n} dn$ = 2 C(k,t) car par

hypothèse: | 20 (x,t) | = |g(x)|, alors, peut intervertir

l'integrale et la derivation.

Lar une une double integration par partie. 1 = 22c(xt) = 121 kn dn = - 41 k² c(k,t)

On obtient: 3C(k,t) + 4Th2C(k,t) = 0 D C(&t) = C(&,0),e + + & & +

On vertie sussi que c(21t) verifie l'équation de diffusion