Honework 5

Then the product behaves as if it where in where in box of size $\lambda - x - \sigma$.

Then indicat particle $\lambda - x - \sigma$. Indust = Jak Z, x-0 Z1, L-x-0 $z = \int_{3\sigma}^{L-3\sigma} dx \left(x-\sigma-2\sigma\right) \left(L-x-\sigma-2\sigma\right)$ $= -\int_{3\sigma}^{L-3\sigma} dx \left(x - 3\sigma \right) \left(x - L - 3\sigma \right)$ the charge of vor. able $= -\int_{0}^{L-6\sigma} \frac{13}{y} \left(y-L \right) = -\frac{y^{3}}{3} \left|_{0}^{(L-6\sigma)} + \frac{L}{2} \frac{y^{2}}{3} \left|_{0}^{(L-6\sigma)} + \frac{L}{2} \frac{y^{2}}{3} \right|_{0}^{(L-6\sigma)}$ $\left(\lambda - 6\sigma\right)^{3} \left(\frac{1}{2} - \frac{1}{3}\right) = \frac{1}{6} \left(\lambda - 6\sigma\right)^{3}$ Z_{3,L} = 1 (1-60)³ (if the purholes where distinguishable) we would have to multiply by 3!=6

o For arbitrary al

$$Z_{N,L} = \int_{0}^{L-3\sigma} c dx Z_{N-2,x-\sigma} Z_{1,L-x-\sigma}$$

 $\frac{1}{N-2} = \int_{N-2}^{\infty} \frac{1}{2^{N-2}} dx = \int_{N-2}^{\infty} \frac{1}{$

Now we can prove $2^{ind} = \sqrt{(1-2N\sigma)^N}$ by induction on N

 $Z_{N,L} = \int_{-2N\sigma-3\sigma}^{-2-\sigma} \frac{1}{(N-2)!} \left(2L-\sigma-2(N-2)\sigma \right)^{N-2} \left(L-x-\sigma-2(N-2)\sigma \right)^{N-2}$ $= \int_{(N-2)!}^{L-3\sigma} (x - (2N\sigma - 3\sigma))^{N-2} (x - (L-3\sigma))$ The change of variables $y = x - (2N\sigma - 3\sigma)$ yields $2_{NL} = -\int_{0}^{L-2N\sigma} \frac{1}{(N-2)!} y^{N-2} (y + 2N\sigma - L)$ $= -\frac{1}{(N-2)!} \left(\frac{y^{N-1}}{(N-1)!} \left(\frac{y+2N(\sigma-L)}{(N-1)!} \right) \right)^{N-1} dy \frac{1}{(N-1)!} y^{N-1}$ $Z_{N,L} = \frac{1}{\sqrt{1}} \left(L - 2N\sigma \right)^N$ Density profile of the one dimensional Hurd-Sphere model. combinatory factor accounting to picking the sphere at 20 ZNL Z (N-1) Zx, x-5 Zn-1-k, L-x-0

purhour

purhour

que le after the one

one at x Jammed disks and their III Quasi one - dimensional transfer matrix The longest is The shortest is

