Load Balancing Problem

Input: m identical machines: M1, M2, ..., Mm

n jobs: J1, J2, ..., J*n*

Processing time of each job: t_j (j = 1, 2, ..., n)

Example: 3 machines and 7 jobs ($t_j = 1, 2, 3, 4, 5, 6, 7$)

Makespan T = $\max \{T1, T2, T3\} = 12$

- Q. What is the best assignment?
- A. The assignment with the minimum makespan.

Example: 3 machines and 7 jobs (t_j = 1, 2, 3, 4, 5, 6, 7)

Makespan T = $\max \{T1, T2, T3\} = 12$

Optimal Solution:

M1: ??, ...

M2: ??, ...

M3: ??, ...

Optimal Makespan $T^* = ??$

Greedy Algorithm

Assign a job to the machine with the smallest load in an arbitrary order of jobs.

Simple Example: Two Machines and Three Jobs

J1: 20 J2: 20

J3: 40

If the three jobs are assigned in the order of J1, J2, J3:

M1: J1: 20

J3: 40

Makespan = 60

M2: J2: 20

If the three jobs are assigned in the order of J3, J2, J1:

M1:

J3: 40

Makespan = 40

M2: J2: 20 J1: 20

Question: What is the average makespan by this algorithm?

Greedy Algorithm

Assign a job to the machine with the smallest load in an arbitrary order of jobs.

Q: How good is this greedy algorithm?

The obtained makespan T is not worse than $2T^*$ where T^* is the optimal makespan ($T < 2T^*$): 2-approximation

Greedy Algorithm

Assign a job to the machine with the smallest load in an arbitrary order of jobs.

Q: How good is this greedy algorithm?

When the number of jobs is the same as or smaller than the number of machines, the optimal value is obtained by this algorithm: $T = T^*$ where T is the obtained makespan by the greedy algorithm and T^* is the optimal makespan.

Makespan: $T = T^*$

The obtained makespan T is not worse than $2T^*$ where T^* is the optimal makespan ($T \le 2T^*$): 2-approximation

$$(a) < \frac{1}{m} \sum_{j=1}^{n} t_j \le T^*$$
 $(b) \le \max_{j=1, 2, ..., m} \{t_j\} \le T^*$

The smallest load just before the last job assignment.

The obtained makespan T is not worse than $2T^*$ where T^* is the optimal makespan ($T \le 2T^*$): 2-approximation

$$(a) < \frac{1}{m} \sum_{j=1}^{n} t_j \le T^*$$
 $(b) \le \max_{j=1, 2, ..., m} \{t_j\} \le T^*$

The smallest load just before the last job assignment.

The obtained makespan T is not worse than $2T^*$ where T^* is the optimal makespan ($T \le 2T^*$): 2-approximation

$$(a) < \frac{1}{m} \sum_{j=1}^{n} t_j \le T^*$$
 $(b) \le \max_{j=1, 2, ..., m} \{t_j\} \le T^*$

The smallest load just before the last job assignment.

The obtained makespan T is not worse than $2T^*$ where T^* is the optimal makespan ($T \le 2T^*$): 2-approximation

$$(a) < \frac{1}{m} \sum_{j=1}^{n} t_j \le T^*$$
 $(b) \le \max_{j=1, 2, ..., m} \{t_j\} \le T^*$

The last job at the machine with the largest makespan.

The obtained makespan T is not worse than $2T^*$ where T^* is the optimal makespan ($T \le 2T^*$): 2-approximation

$$(a) < \frac{1}{m} \sum_{j=1}^{n} t_j \le T^*$$
 $(b) \le \max_{j=1, 2, ..., m} \{t_j\} \le T^*$

The last job at the machine with the largest makespan.


```
List-Scheduling (m, n, t_1, t_2, ..., t_n) {
for i = 1 to m {
    L_i \leftarrow 0 \leftarrow load on machine i
    J(i) \leftarrow \phi \leftarrow jobs assigned to machine i
for j = 1 to n {
    i = argmin_k L_k — machine i has smallest load
    J(i) \leftarrow J(i) \cup \{j\} \leftarrow assign job j to machine i
    L_i \leftarrow L_i + t_i
                          update load of machine i
return J(1), ..., J(m)
```

procedure Greedy-Balance

1 pass through jobs in any order.

Assign job j to machine with current smallest load.

end procedure

Q: How tight is this upper bound?

Exercise 3-1:

Create two examples where the obtained makespan T is always the same as T^* . (Easy examples for the greedy algorithm).

Exercise 3-2:

Create two example where the obtained makespan T strongly depends on the order of jobs (i.e., the obtained makespan is much larger than T^* for some orders of jobs and the same as T^* for some other orders of jobs.

Exercise 3-3:

For each of the following three cases (i) m = 2 and n = 3, (ii) m = 4 and n = 7, and (iii) a general case with m machines and n jobs, create an example where the value of T/T^* is very large for the obtained makespan T by the greedy algorithm using a particular order of jobs. (If you can create an example where T/T^* is 2 (or approximately equal to 2), we can say that the upper bound $2T^*$ is tight).