Second Order Cone Program

min
$$fx$$

 $||Aix-bi|| \le c_i^Tx+di \quad i=1,...m$
 $fx=g$
 $||Aix-bi||-c_i^Tx-di \le 0$
 $||Aix-bi||-c_i^Tx-di \le 0$
 $||Aix-bi||-c_i^Tx-di \le 0$

but
$$\Leftrightarrow$$
 $|1x|^2 \le t^2$
or $|1x|^2 - t^2 \le 0$
not convex

Eg:
$$n=1$$
 $\nabla^2(x^2-t^2) = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$

Algorithms

LP
$$\subseteq$$
 QP \subseteq QCQP \subseteq SOCP

| min $\frac{1}{2}x^TP_{\times} + q^{T}x$
| $\frac{1}{2}x^TP_{\times} + q^{T}x + r_{i} \leq 0$
| $\frac{1}{2}x^TP_{\times} + r_{i} \leq 0$
| $\frac{1}{2}x^TP_{\times} + q^{T}x + q^{T}x + r_{i} \leq 0$
| $\frac{1}{2}x^TP_{\times} + q^{T}x + q^{T$

min
$$\| \nabla P_0 x + \nabla P_0^{-1} q_0 \|_2$$

 $\| \nabla P_i x + \nabla P_i^{-1} q_i \|_2 \le \nabla q_i^{T} P_i^{-1} q_i - \varepsilon_i$

(epigraph trick)

min t

$$\| \sqrt{P_o x} + \sqrt{P_o} q_o \|_2 \le t$$
 SocP contraints

Il
$$||P_i x + |P_i||^q ||P_i||^q ||$$