SVKM'S NMIMS MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING / SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING

Academic Year: 2021-22

Programme: B. Tech / MBA Tech (Computer)

Year: II

Semester: IV

Subject: Theoretical Computer Science

Marks: 100

Date: 08 June 2022

Time: 10.00 am to 1.00pm

Durations: 3 (Hrs)

No. of Pages: 3

Re-Examination (2021-22)

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book, which is provided for their use.

1) Question No. 1 is compulsory.

2) Out of remaining questions, attempt any 4 questions.

3) In all 5 questions to be attempted.

4) All questions carry equal marks.

5) Answer to each new question to be started on a fresh page.

6) Figures in brackets on the right hand side indicate full marks.

7) Assume Suitable data if necessary.

Q1		Solve the following	
CO-2; SO-1,2; BL-IV	a.	What is ambiguous grammar? Test the following grammar G for ambiguity, and if G is ambiguous, what is the cause of ambiguity? $G = \{E, (+, *, a), \{E \rightarrow E + E, E \rightarrow E * E, E \rightarrow a\}, E\}$	[5]
CO-3; SO-2; BL-VI	b.	Design pushdown automata for the following context-free grammar. $S \rightarrow SS \mid (S) \mid (\)$	[5]
CO-1; SO-1; BL-I	c.	Give Formal Definition of Turing Machine & Mealy Machine. How they are different from each other.	[5]
CO-1; SO-1; BL-1	d.	What are the applications of Regular Expression and Grammar in Compiler Constructions? Explain.	[5]
Q2 CO-1,3; SO-1,2; BL-I and VI	a.	How is DFA different from NFA? Construct DFA, which accepts all strings ending with 00 or 11 over $\Sigma = \{0,1\}$.	[10]
CO-3; SO-2;	b.	Construct & verify Turing machine to recognize the language $L = \{ \ a^{n+1}b^n \ \ n \geq 1 \}$	

BL-VI				,e 1"			Part of A. House Charles				
Q3 CO-2; SO-1,2 BL-V	a.	Prove the following languages are closed under operations union, concatenation, and Kleene closure i. Regular Language ii. Context Free Language								[10]	
CO-3; SO-2; BL-III	b.	Consider the following grammar G, apply Chomsky Normal Form (CNF), and construct the equivalent grammar in CNF. G: $S \rightarrow AACD$ $A \rightarrow aAb \mid \in$ $C \rightarrow aC \mid a$ $D \rightarrow aDa \mid bDb \mid \in$						[10]			
Q4 CO-1,3; SO-1,2; BL-III	a.	Consider the following Develop Minim	$\rightarrow q_0$ q_1 q_2^* q_3	€ q1 q2 -	a · · · · · · · · · · · · · · · · · · ·	b - q ₃ - q ₁	c - q2	d - - q ₂			[10]
CO-3; SO-2; BL-VI	b.	Design Turing Machine to Compare two numbers, 'm' and 'n' represented in unary format and produce the following output 'G' if m>n 'S' if m <n 'e'="" for="" m="n</td"><td>[10]</td></n>							[10]		
Q5 CO-3; SO-2; BL-VI	a.	Construct pushdown automata for the following laguage L, $L = \{ w \in \{0,1\}^* \mid n_0(w) \neq n_1(w) \}$							[10]		
CO-2,3; SO-1,2; BL-IV	b	Simplify the following grammar: $S \rightarrow a \mid Xb \mid aYa$ $X \rightarrow Y \mid \in$							[5]		

		$Y \rightarrow b \mid \epsilon$	
	С	Differentiate between Moore and Mealy Machines. Construct the Moore machine for the given Mealy machine.	
CO-1,3; SO-1,2; BL-II,III	ā	b/0 $a/0$ $a/1$ $b/1$	[5]
Q6			
·		Solve the following	
CO-2; SO-1,2; BL-II	a	Write a short note on Chomsky Hierarchy	[5]
CO-1; SO-1; BL-II	b	Compare and Contrast Turing Machine, Pushdown Automata & Finite State Machine.	[5]
CO-1; SO-1; BL-I,II		What is Pushdown automata? Explain its tuples and elements in a pushdown machine.	[5]
CO-2; SO-1,2; BL-II		What do you understand by Recursive and recursively enumerable languages? Explain	[5]