3.1 Developing a Modern Model of the Atom

Dalton's Theory:

explained: law of conservation of mass

law of constant composition

limitations:

Technological Advance: cathode ray tube (CRT)

Thomson's Theory:

<u>Discovery</u>: discovered certain elements are radioactive, emitting positively charged alpha-particles

Rutherford:

R	u	tŀ	ne	rf	or	ď	C	on	't	
---	---	----	----	----	----	---	---	----	----	--

→ proposed the "nuclear model"

PROBLEMS: 0

0

3 contradicted 19th century physics:

→ it was thought that an electron should give off a _____

b) can move to a

Continuous light spectrum

Experimental Observation: hydrogen gas emits a line spectrum consisting of 4 visible lines

enerav

Bohr Model: →			
\rightarrow			
Assumptions: 0			
2			
3			
	a) can move to a	orbit by	a specific quantity of energy

orbit if

Assumptions based on:

- a) Planck →
- b) Einstein →

Bohr → energy from coloured lines of H-spectrum due to e⁻ moving between energy levels, called a <u>transition</u>

ground state ⇒

excited state ⇒

→ when dropping back down towards ground state the e⁻ emits light at a particular wavelength

e⁻ _____ a quantum of energy

e loses a quantum of energy

Explaining hydrogen spectrum:

BIG PROBLEM:

3.2 The Quantum Mechanical Model of the Atom

- *** Bohr's model could only explain _____ ***
- → atoms with many e⁻ had many spectral lines close together:

→ not only does light behave like a particle sometimes, but particles behave like waves! **WAVE-PARTICLE DUALITY**

Light as a particle (a stream of photons)

Quantum model of the atom

→ devised by _____ to mathematically describe the wave-like properties of atoms

 \rightarrow

Heisenberg Uncertainty principle

 \Rightarrow

example:

if you know an electron's precise position and path around the nucleus, as you would by determining its orbit, you cannot know with certainty of its

similarly, if you know its precise velocity, you cannot know with certainty its

Instead of finding an electron in an orbit, quantum mechanics uses the concept of an _____

Orbital ⇒

Bohr's Orbits

Quantum Orbitals

n = 3

Orbits	Orbitals

Quantum Numbers

ground state \Rightarrow

quantum numbers ⇒

There are 4 quantum numbers:

- B) C) D)

A) Principal Quantum Number (n)

B) Secondary Quantum Number () (

→ refers to the shape of the orbital, given a letter to describe shape:

 \rightarrow

Putting it together:

n	_ (n-1)	shape
1		
2		
3		
4		

We will use both the principal (n) and secondary (_) quantum numbers to name a particular orbital. e.g.

Practice

Primary energy level	Principal Quantum Number (n)	Possible Secondary Quantum Numbers (_)	Number of sublevels per primary level
1			
2			
3			
4			

c) Magnetic Quantum Number (m_)

•

•

n	(n – 1)	(^m)
	2 (d)	-2 -1 0 +1 +2
3	1 (p)	-1 0 +1 3p
	0 (s)	0 3s
2	1(p)	-1 0 +1 2p
	0(s)	0 -2s
1 D) Sni	0 (s)	01s

3d	 	 	

Summary of the four quantum numbers

Quantum Number	Symbol	Allowed Values	Property
principal			

		ens rectare statue
orbital shape		
magnetic		
spin		

Example 1: If n = 3, what are the allowed values for _ and m_, and what is the total number of orbitals in this energy level?

Example 2: What are the possible values for m_ if n = 5 and _ = 1? What kind of orbital is described by these quantum numbers? How many orbitals can be described by these quantum numbers?

p. 136 Practice # 1- 5

Quantum Numbers Practice Problems

1. What are the allowed ratios for in each of the following cases?

a)
$$n = 5$$

b)
$$n = 1$$

2. What are the allowed values for m_ for an electron with the following quantum numbers?

$$a) = 4$$

$$b) = 0$$

3. What are the names (i.e. 1s, 3p, 4d), m_ values, and the total number of orbitals described by the following quantum numbers?

a)
$$n = 2$$
, = 0

- 4. Determine the n, _, and possible m_ values for an electron in the 2p orbital.
- 5. Each value of the secondary quantum number is used to determine the possible values of the magnetic quantum number. How many possible values of m are there for _ = 1, 2, 3, 4?
- 6. Which of the following are allowable sets of quantum numbers for an atomic orbital? Explain you answer for those that are <u>NOT</u> allowable.

7. Identify any values that are incorrect for the following sets of quantum numbers:

a)
$$n = 1, _ = 1, m = 0$$
; name $1p$

8. Fill in the missing values in the following sets of quantum numbers.

a)
$$n = ?$$
, $_{-} = ?$, $m = 0$; name $4p$

3.3 Electron Configurations and Periodic Trends

electron configuration:

example	Ch3 lecture	Stu
охатрю	a) 26 e⁻ need to placed b) Fe is in Period 4, ∴ 4 main energy levels to fill	
3d 4s 3p 3s 2p	Box configuration and electron configuration	
2s 1s	2s 2p _x 2p _y 2p _z 3s 3p _x 3p _y 3p _z 4s 3d	
SUMMAF 1.	RY:	
	4s 4p 4d 4f 3s 3p 3d 2s 2p 1s	
2.		

incorrect:	3s <u>correct:</u>	3s
	2p 🔾	2p 🔘
	2s ()	2s
	1s ()	1s ()

incorrect:		<u>correct:</u>	
incorrect:		correct:	
Condensed ele	ectron configuration:		
uses the noble eg. Si –	gas preceding in square b	rackets	
p. 145 practice	# 6-9		
	urations and Orbital Diagra c table for Cu and Cr m others	ams for Period 4	
Cu –			
s,p orbitals			
D block are call	led transition metals		
E block are call	ed the inner transition met	tale	

Patterns involving Group Numbers and Period Numbers 3 patterns:	
1.	
2.	
3.	
p. 150 practice # 10-13	
Read p.150-157 independently	

Electron Configuration Practice #1

1.	Practice questions 6 and 7 (text pg. 194)										
2.			odic table, identify the group number, period number, and block of an electron configurations.								
	a) [Ne]3s ¹	b) [He]2s ²		c) [Kr]5s ² 4d ¹⁰ 5p ⁵						
3.	Use the <i>aufbau</i> principle to write complete electron configurations for the atom of the elementation of the following descriptions.										
	a) group 2 (IIA) element in period 4										
	b) group 12 (IIB) element in period 4										
	c) group 16 (VI) element in period 2										
4.	Identify all the po	ossible elements tha	t have the	ollowing valenc	ce electron configurations.						
	a) s^2d^1	b) s^2p^3	c) s^2p^6								
5.	5. For each of the following elements below, use the <i>aufbau</i> principle to write the full and condensed electron configurations.										
	a) potassium	b) nickel	c) l	ead							
	d) calcium ion	e)chloride ioi	า								
6.	Explain what each	n number and letter	means in th	ne following not	ation: 3p ⁶						
7.	Fill in the numerio	cal value(s) that corr	ectly comp	lete(s) each of	the following statements.						
	a) A 5f subshell holds a maximum of electrons.										
	b) A 4s orbital holds a maximum of electrons.										
	c) The maximum	number of electrons	s in the thir	d electron shell	is						
	c) The maximum number of electrons in the third electron shell is d) The forth shell contains subshells, orbitals, and a maximum of electrons										

Electron Configuration Practice #2

1. Give	full <u>and</u>	abbreviated (nob	ole gas core) elec	tronic configura	itions for	the following	ıg.		
a)	Br	FULL							
		NOBLE GAS CO)RE						
b)	Cr	FULL							
		NOBLE GAS CO)RE						
c)	Fe	FULL							
		NOBLE GAS CO)RE						
d)	S ²⁻	FULL							
		NOBLE GAS CO)RE						
2. For	each of th	ne following sets	of orbitals, indica	ite which orbital	is higher	r in energy.			
a)	1s, 2s			b) 2p, 3p					
c)	4s, 3d _{yz}			d) 3p _x , 3p _y , 3p _z					
0 1 1									
3. India	cate the b	olock (s, p or d) in	which each of tr	ne following eler	ments fol	una.			
		BLOCK			BLOCK				
a)	Sc)	b) P					
c)	Fr		•	d) Ni					
e)	As								
and :	seven ele	two electrons wi ectrons with princ given, say so)	th principal quan ipal quantum nu	tum number n = mber n = 3. Fro	= 1, eight om these	electrons v data, suppl	vith princip y the follov	al quantum wing values	number n = 2 (if insufficient
a) the ı	mass nur	nber.							
b) the a	atomic nu	ımber.							
c) the e	electron o	configuration.		 	_				
5. Iden	tify the el	lement from the e	electron configura	ations of <u>atoms</u>	shown b	elow.			
a) [Ne]	$3s^23p^2$								
b) [Ar]	$4s^2 3d^7$								
c) [Xe]	6s ²								

6. St	ate which ato	om or ion is re	epresent	ted by th	ne followi	ng sets c	of atomic	numbe	rs and e	electronic co	nfiguratio
	Atomic #	Electr	onic Co	nfigurati	on						
a)	8	1s ² 2s	s ² 2p ⁴								
b)	11	1s ² 2s	s ² 2p ⁶								
c)	14	1s ² 2s	s² 2p ⁶ 3s	s ² 3p ²							
d)	22	1s ² 2s	s² 2p ⁶ 3s	s ² 3p ⁶ 3c	j ²						
7.	Of the follow	ving species (Sc, Ca ²⁻	, CI, S ²⁻	, Ti ³⁺), w	hich are	isoelect	ronic?			
	•	ment that is o		ed of ato	ms whos	se <u>last</u> el	ectron;				
		s the 4s sub-s									
		es not fill the		hell							
,		nter the 2p si									
		he last to ent			nell						
e) is	the second	to enter the 4	·d sub-sl	hell							
9. lde	entify two po	sitive <u>and</u> two	o negativ	ve ions t	that are i	soelectro	nic with	neon.			
	Two Posi	itive ions									
	Two Neg	ative ions									
10. L	Jsing the elec	ctrons in boxe	es notati	on com	plete the	electroni	c config	urations	of the fe	ollowing ele	ments.
1s	2s 2	2p	3s	3р		3d		4s	4p	Element	
П	П		П					П		V	
Ш			Ш					Ш		V	
1s	2s 2	2p	3s	3р		3d		4s	4p	Element	
			Ш							Ar	
1s	2s 2	2p	3s	3р		3d		4s	4p	Element	
П	П		П	-	П					Zn	
Ш	Ц		Ш		Ш			Ш			

V _____ Zn ____

11. State the number of **unpaired** electrons in each of the electronic configurations in question 11.