Implicitly definable generalized quantifiers

Filosofidagarna 2015, Linköping

Fredrik Engström, Göteborg

June 13, 2015

GENERALIZED QUANTIFIERS

A generalized quantifier Q of type $\langle n_1, n_2, \dots, n_k \rangle$ is a (class) function mapping sets to sets:

$$M \mapsto Q_M \subseteq \mathcal{P}(M^{n_1}) \times \mathcal{P}(M^{n_2}) \times \ldots \times \mathcal{P}(M^{n_k}).$$

For simplicity consider only generalized quantifiers of type $\langle 1 \rangle$:

$$Q_M \subseteq \mathcal{P}(M)$$
.

Syntax: $Qx \varphi$. Semantics:

$$M \vDash Qx \varphi \text{ iff } \varphi(M) \in Q_M$$

- $\blacktriangleright \forall_M = \{M\}$
- $\blacksquare \exists_M = \{ A \subseteq M \mid A \neq \emptyset \}$
- $(Q_0)_M = \{ A \subseteq M \mid |A| \ge \aleph_0 \}$

Logicality

Logic considers the **form** of sentences and arguments. To determine this form we need to know which the **logical constants** are.

Which of the generalized quantifiers should be considered **logical**?

The ones that are topic neutral. (Ryle, 1954)

- ► 'Topic neutral' as 'not possible to discriminate between individuals' gives an invariance criterion.
- 'Topic neutral' as 'universally applicable' gives an inferential account.

THE INFERENTIAL VIEWPOINT

Logicality is the property of being characterizable (uniquely) by inference rules.

Thus, the meaning of conjunction is given by the rules:

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \qquad \frac{\varphi \wedge \psi}{\varphi} \qquad \frac{\varphi \wedge \psi}{\psi}$$

Uniqueness: Introduce two new symbols $\wedge_1 \wedge_2$:

$$\begin{array}{ccc} \frac{\varphi & \psi}{\varphi \wedge_1 \psi} & \frac{\varphi \wedge_1 \psi}{\varphi} & \frac{\varphi \wedge_1 \psi}{\psi} \\ \\ \frac{\varphi & \psi}{\varphi \wedge_2 \psi} & \frac{\varphi \wedge_2 \psi}{\varphi} & \frac{\varphi \wedge_2 \psi}{\psi} \end{array}$$

Then $\varphi \wedge_1 \psi \dashv \vdash \varphi \wedge_2 \psi$.

FEFERMAN'S APPROACH

Let L_2 be pure second order logic:

- ► Individual variables: x, y, z, ...,
- ▶ Predicate variables (including 0-ary) P, P_1, \ldots
- ► Formulas are built from predicate variables using \neg , \lor , \land , \rightarrow , \forall , \exists .

Semantics is Henkin semantics:

▶ A model M of L_2 is a pair of a set M and a set Pred(M) of subsets of $\mathcal{P}(M^k)$, $k \ge 1$, for the predicate variables to range over.

DEFINABILITY

- ► The language $L_2(Q)$ is L_2 extended with a second-order predicate symbol Q. Example: $\forall PQ(P)$.
- ▶ A model of $L_2(Q)$ gives an interpretation for Q as a second-order predicate, i.e., a subset of Pred(M).
- ▶ We say that a sentence θ of $L_2(\mathbb{Q})$ implicitly defines a generalized quantifier Q if for every L_2 model M the only second-order predicate satisfying θ is $Q_M \cap \operatorname{Pred}(M)$.
- ▶ A formula $\theta(P)$ of L_2 explicitly defines a generalized quantifier Q if for every L_2 model M, for every $R \in \text{Pred}(M)$:

$$(M, R) \models \theta(P) \text{ iff } R \in Q_M.$$

LOGICALITY

According to Feferman's (new) thesis on logicality:

A generalized quantifier Q is **logical** iff it is implicitly definable in L_2 .

Main Theorem (Feferman)

Q is implicitly definable in L_2 iff it is (explicitly) definable in FOL.

Proof of the Main Theorem

BETH'S THEOREM

Suppose first-order logic. If

$$T, \sigma(P), \sigma(P') \vDash \forall \bar{x}(P\bar{x} \leftrightarrow P'\bar{x})$$

then there is a formula $\varphi(\bar{x})$ (without *P*) such that

$$T, \sigma(P) \vDash \forall \bar{x} (P\bar{x} \leftrightarrow \varphi(\bar{x})).$$

Proof of the Main theorem is by:

- ► translating to many-sorted first-order logic,
- ► then using Beth's theorem for many-sorted formulas (proved by Feferman in 1968) and
- ► then argue that the many-sorted formula explicitly defining *Q* is equivalent to a first-order formula defining *Q*.

ALTERNATIVE PROOF OF THE MAIN THEOREM

Suppose Q of type $\langle 1 \rangle$ is implicitly defined by θ .

Fix a universe M and for every $A \subseteq M$ let

$$M_A = (M, \{A\})$$

be the L_2 model in which the predicate variables range over the singleton set $\{A\}$.

 θ may not include *n*-ary predicate symbols for $n \ge 2$.

Let $Q_M = \mathcal{P}(M)$ be the universally true second order predicate.

Then $(M_A, Q'_M) \models \theta$ iff $Q'_M \cap \{A\} = Q_M \cap \{A\}$ iff $A \in Q_M$.

Let φ be the first-order formula we get from θ by removing second-order quantifiers and replacing all predicate variables by the single predicate variable P. Also repacing all Q(P) by \top . Then

$$(M, A) \vDash \varphi \text{ iff } (M_A, Q'_M) \vDash \theta \text{ iff } A \in Q_M$$

and thus φ defines Q.

Conclusions ...

The main theorem says that "plugging in" pure second-order logic into the machinery gives us first-order logic back, i.e.,

Beth²(
$$L_2$$
, FOL).

However, this argument shows that this is for completely elementary reasons:

Pure second-order logic with Henkin semantics "is" just first-order logic.

...AND QUESTION

- ► In fact, the grounds for considering Henkin semantics are not clear.
- Also, we may observe that many inference rules can be formalized by a Π¹₁ formula.

Which quantifiers are implicitly definable in full second-order logic (i.e., second-order logic with standard semantics) with a Π_1^1 sentence?

THANK YOU!

Fredrik Engström.

Implicitly definable generalized quantifiers.

In Martin Kaså, editor, *Idées Fixes. A Festschrift Dedicated to Chistian Bennet on the Occasion of His 60th Birtday*, pages 65–70. 2014.

Solomon Feferman.

Which quantifiers are logical? a combined semantical and inferential criterion.

2012.