- State-space age-structured assessment models provide reliable inferences(?)
- Timothy J. Miller¹, Britten, Brooks, Fay, Legault, Stock,
- ⁴ ¹corresponding author: timothy.j.miller@noaa.gov, Northeast Fisheries Science Center,
- Woods Hole Laboratory, 166 Water Street, Woods Hole, MA 02543 USA

6

- 7 Abstract
- 8 Keywords

₉ 1 Introduction

- Much is known about the reliability of state-space models that are linear or Gaussian, but
- applications in fisheris management are nonlinear and typically include multiple types of
- observations with varying distributional assumptions. We know relatively little about the
- statistical reliability of such models. Also, there is a wide range of potential random effects
- 14 structures in assessment models and we know little about the ability of information criteria
- to distinguish among such alternative structures.
- But those studies focus primarily on Gaussain Reliability of hidden process models

$_{17}$ 2 Methods

- Used the WHAM package commit = XXXXXXX (Stock and Miller 2021, Miller and Stock
- ¹⁹ 2020). This packages has also been used to configure operating and estimating models for
- closed loop simulations evaluating index-based assessment methods (Legault et al. In press).
- We completed a simulation study with 24 NAA re operating models, 16 M re operating
- 22 models, 16 Sel re operating models and 16 q re operating models. We simulated N data sets
- 23 for each operating model. For each simulated data from each operating model we fit a set
- of estimating models.
- 25 Y estimating models fit to each ## Operating models
- 26 common to all:
- 27 ages, M maturity was observation error assumptions 2.5 Fmsy -> Fmsy after 20 years Fmsy
- 28 througout
- 29 marginal standard deviations for random effects are defined in tables of operating models.
- NAA oms process error assumtions
- Population Initial population, ages, M maturity waa

- Fishing history All operating models assumed one of two different fishing histories. One:
- Fishing mortality is equal to Fmsy for the whole 40 year period. Two: Fishing mortality is
- 2.5 times Fmsy for the first 20 years then changes to Fmsy for the last 20 years.
- Overfishing assumptions is based on average estimates of overfishing for NE groundfish stocks
- from Wiedenman et al. (20XX). Legault et al. (2023) also used similar approaches to defining
- 37 fishing mortality histories for operating models.
- We assumed a Beverton-Holt stock recruit function with constant pre-recruit mortality pa-
- ³⁹ rameters for all operating models. All post-recruit productivity components are constant
- 40 in the NAA and survey catchability process error operating models. Therefore steepness
- and unfished recruitment are also constant over the time period for those operating models
- (Miller and Brooks 2021). We specified unfished recruitment = e^{10} and $F_{MSY} = F_{40}$ equated
- to a steepness of 0.68 and a and b parameters X and X?
- 44 For operating models with time-varying random effects for M, steepness is not constant, but
- 45 we used the same alpha and beta parameters as other operating models this equates to a
- steepness and R0 at the mean of the time series process for M.
- 47 For operating models with time-varying random effects for fishery selectivity, Fmsy is also
- 48 not constant however we use the same Fhistory as other operating models which corresposds
- to Fmsy at the mean selectivity parameters.
- 50 Initial population starts at equilibium population structure associated with F= x*Fmsy
- where x = 1 or 2.5.
- 52 surveys, selectivity
- fleets, selectivity
- 54 M_oms NOTE: inv_trans_rho function in set_M.R is mis-defined. Will affect correlation
- parameters assigned in operating models?

56 2.1 Estimating models

- ⁵⁷ 32 estimating models 1-20 fit to each NAA RE operating model 5-24 fit to each M RE oper-
- ating model 5-20,25-28 to each sel RE operating model 5-20, 29-32 to each q RE operating
- 59 model
- 60 SR estimation or not
- 61 Make plot of S-R curve, Fmsy = F40 Initial values for BH parameters are the true values.
- 62 Initial values for mean R model = true R0.
- 63 M estimation or not
- NAA_re Random effects on Recruitment only or random effects on recruitment and transi-
- tions among older numbers at age.
- 66 M_re Random effects on Recruitment only, M constant across age .
- 67 sel_re Random effects on Recruitment only, fleet logistic selectivity RE model?
- 68 q_re Random effects on Recruitment only, one survey catchability RE model?
- 69 Simulations were all carried out on the University of Massachussetts Green High-Performance
- 70 Computing Cluster. Code for completing the simulations and summarization of results can be
- found at github.com/timjmiller/SSRTWG/Project_0. We used the wham package version
- 1.X.X (commit XXXXX).

73 Results

- Do each of these by type of operating model (Naa, M, sel, q) Convergence performance
- 75 AIC performance
- 76 SR estimation? M estimation?
- 77 Bias, Mean Square error

 $_{78}$ Certain basic parameters (stock-recruit pars, M, variance parameters) SSB, F, R

- 79 3.1 Numbers at age operating models
- $_{\mbox{\tiny 80}}$ 3.1.1 Estimating models include alternative random effects options: NAA, M, $_{\mbox{\tiny 81}}$ sel, q

Table 1. NAA operating models, estimating models all assume a B-H stock recruit relationship and M is fixed at the true value.

σ_R	σ_N	F-history	Obs Error	R only	NAA	M	Sel	q
0.5		H-MSY	L	96	0	0	0	4
1.5		H-MSY	${ m L}$	96	0	0	0	4
0.5	0.25	H-MSY	${ m L}$	0	100	0	0	0
1.5	0.25	H-MSY	${ m L}$	0	100	0	0	0
0.5	0.50	H-MSY	${ m L}$	0	96	4	0	0
1.5	0.50	H-MSY	${ m L}$	0	100	0	0	0
0.5		MSY	${ m L}$	97	0	0	0	3
1.5		MSY	${ m L}$	96	0	0	0	4
0.5	0.25	MSY	${ m L}$	0	99	1	0	0
1.5	0.25	MSY	${ m L}$	0	99	1	0	0
0.5	0.50	MSY	${ m L}$	0	100	0	0	0
1.5	0.50	MSY	${ m L}$	0	99	1	0	0
0.5		H-MSY	Н	94	0	0	0	6
1.5		H-MSY	Н	94	0	0	0	6
0.5	0.25	H-MSY	Н	46	50	0	0	4
1.5	0.25	H-MSY	Н	65	30	0	0	5
0.5	0.50	H-MSY	Н	1	99	0	0	0
1.5	0.50	H-MSY	Н	0	98	0	0	2
0.5		MSY	Н	94	0	0	0	6
1.5		MSY	Н	95	0	0	0	5
0.5	0.25	MSY	Н	45	52	0	0	3
1.5	0.25	MSY	Н	63	28	0	0	9
0.5	0.50	MSY	Н	0	100	0	0	0
1.5	0.50	MSY	Н	0	98	1	0	1

Table 2. NAA operating models, estimating models all assume a B-H stock recruit relationship and M is estimated.

σ_R	σ_N	F-history	Obs Error	R only	NAA	Μ	Sel	q
0.5		H-MSY	L	96	0	0	0	4
1.5		H-MSY	${ m L}$	96	0	0	0	4
0.5	0.25	H-MSY	${ m L}$	0	98	1	1	0
1.5	0.25	H-MSY	${ m L}$	0	100	0	0	0
0.5	0.50	H-MSY	${ m L}$	0	97	3	0	0
1.5	0.50	H-MSY	${ m L}$	0	96	2	2	0
0.5		MSY	${ m L}$	95	1	0	0	4
1.5		MSY	${ m L}$	93	3	0	0	4
0.5	0.25	MSY	${ m L}$	0	94	1	5	0
1.5	0.25	MSY	${ m L}$	0	85	5	3	0
0.5	0.50	MSY	${ m L}$	0	91	7	1	1
1.5	0.50	MSY	${f L}$	0	77	20	0	1
0.5		H-MSY	Н	94	0	0	0	6
1.5		H-MSY	Н	96	0	0	0	4
0.5	0.25	H-MSY	Н	50	47	0	0	3
1.5	0.25	H-MSY	Н	68	28	0	0	4
0.5	0.50	H-MSY	Н	1	99	0	0	0
1.5	0.50	H-MSY	Н	0	97	1	0	2
0.5		MSY	Н	78	15	0	1	4
1.5		MSY	Н	69	21	0	2	6
0.5	0.25	MSY	Н	45	41	0	0	6
1.5	0.25	MSY	Н	37	44	1	0	8
0.5	0.50	MSY	Н	3	79	0	0	11
1.5	0.50	MSY	Н	4	69	7	1	13

Table 3. NAA operating models, estimating models all estimate a mean recruitment and M is fixed at the true value.

σ_R	σ_N	F-history	Obs Error	R only	NAA	Μ	Sel	q
0.5		H-MSY	L	96	0	0	0	4
1.5		H-MSY	${ m L}$	96	0	0	0	4
0.5	0.25	H-MSY	${ m L}$	0	99	0	1	0
1.5	0.25	H-MSY	${ m L}$	0	100	0	0	0
0.5	0.50	H-MSY	${ m L}$	0	99	1	0	0
1.5	0.50	H-MSY	${ m L}$	0	97	3	0	0
0.5		MSY	${ m L}$	97	0	0	0	3
1.5		MSY	${ m L}$	96	0	0	0	4
0.5	0.25	MSY	${ m L}$	0	100	0	0	0
1.5	0.25	MSY	${ m L}$	0	100	0	0	0
0.5	0.50	MSY	${ m L}$	0	100	0	0	0
1.5	0.50	MSY	${ m L}$	0	100	0	0	0
0.5		H-MSY	Н	94	0	0	0	6
1.5		H-MSY	Н	94	0	0	0	6
0.5	0.25	H-MSY	Н	48	48	0	0	4
1.5	0.25	H-MSY	Н	65	30	0	0	5
0.5	0.50	H-MSY	Н	0	99	1	0	0
1.5	0.50	H-MSY	Н	0	99	0	0	1
0.5		MSY	Н	94	0	0	0	6
1.5		MSY	Н	95	0	0	0	5
0.5	0.25	MSY	Н	46	51	0	0	3
1.5	0.25	MSY	Н	63	28	0	0	9
0.5	0.50	MSY	Н	0	100	0	0	0
1.5	0.50	MSY	Н	0	98	1	0	1

Table 4. NAA operating models, estimating models all estimate a mean recruitment and \mathcal{M} estimated.

σ_R	σ_N	F-history	Obs Error	R only	NAA	Μ	Sel	q
0.5		H-MSY	L	96	0	0	0	4
1.5		H-MSY	${ m L}$	96	0	0	0	4
0.5	0.25	H-MSY	${ m L}$	0	99	0	1	0
1.5	0.25	H-MSY	${ m L}$	0	100	0	0	0
0.5	0.50	H-MSY	${ m L}$	0	99	1	0	0
1.5	0.50	H-MSY	${ m L}$	0	97	3	0	0
0.5		MSY	${ m L}$	97	0	0	0	3
1.5		MSY	${ m L}$	96	0	0	0	4
0.5	0.25	MSY	${ m L}$	0	100	0	0	0
1.5	0.25	MSY	${ m L}$	0	100	0	0	0
0.5	0.50	MSY	${ m L}$	0	100	0	0	0
1.5	0.50	MSY	${ m L}$	0	100	0	0	0
0.5		H-MSY	Н	94	0	0	0	6
1.5		H-MSY	Н	94	0	0	0	6
0.5	0.25	H-MSY	Н	48	48	0	0	4
1.5	0.25	H-MSY	Н	65	30	0	0	5
0.5	0.50	H-MSY	Н	0	99	1	0	0
1.5	0.50	H-MSY	Н	0	99	0	0	1
0.5		MSY	Н	94	0	0	0	6
1.5		MSY	Н	95	0	0	0	5
0.5	0.25	MSY	Н	46	51	0	0	3
1.5	0.25	MSY	Н	63	28	0	0	9
0.5	0.50	MSY	Н	0	100	0	0	0
1.5	0.50	MSY	Н	0	98	1	0	1

 $_{82}$ 3.1.2 Estimating models include NAA random effects and estimation assumes mean R or BH SR

Table 5. Operating models and estimation models all assume RE on recruitment only, estimating models assume mean recruitment or a B-H stock recruit relationship and M is fixed at the true value.

σ_R	σ_N	F-history	Obs Error	R only	ВН
0.5		H-MSY	${ m L}$	46	54
1.5		H-MSY	${ m L}$	82	18
0.5		MSY	${ m L}$	71	29
1.5		MSY	${ m L}$	85	15
0.5		H-MSY	Н	51	49
1.5		H-MSY	Н	82	18
0.5		MSY	Н	72	28
1.5		MSY	Н	86	14

Table 6. Operating models and estimation models all assume RE on recruitment only, estimating models assume mean recruitment or a B-H stock recruit relationship and M is estimated.

σ_R	σ_N	F-history	Obs Error	R only	ВН
0.5		H-MSY	${ m L}$	45	55
1.5		H-MSY	${ m L}$	82	18
0.5		MSY	${ m L}$	70	30
1.5		MSY	${ m L}$	87	13
0.5		H-MSY	Н	56	44
1.5		H-MSY	Н	82	18
0.5		MSY	Н	75	25
1.5		MSY	Н	84	16

Table 7. Operating models and estimation models all assume RE on all abundances at age, estimating models assume mean recruitment or a B-H stock recruit relationship and M is fixed at the true value.

σ_R	σ_N	F-history	Obs Error	R only	ВН
0.5	0.25	H-MSY	${ m L}$	43	57
1.5	0.25	H-MSY	${ m L}$	84	16
0.5	0.50	H-MSY	${ m L}$	33	67
1.5	0.50	H-MSY	${ m L}$	77	23
0.5	0.25	MSY	${ m L}$	69	31
1.5	0.25	MSY	${ m L}$	88	12
0.5	0.50	MSY	${ m L}$	55	45
1.5	0.50	MSY	${ m L}$	87	13
0.5	0.25	H-MSY	Н	57	43
1.5	0.25	H-MSY	Н	84	16
0.5	0.50	H-MSY	Н	66	34
1.5	0.50	H-MSY	Н	79	21
0.5	0.25	MSY	Н	78	22
1.5	0.25	MSY	Н	88	12
0.5	0.50	MSY	Н	73	27
1.5	0.50	MSY	Н	83	17

Table 8. Operating models and estimation models all assume RE on all abundances at age, estimating models assume mean recruitment or a B-H stock recruit relationship and M is estimated.

σ_R	σ_N	F-history	Obs Error	R only	ВН
0.5	0.25	H-MSY	${ m L}$	44	56
1.5	0.25	H-MSY	${ m L}$	84	16
0.5	0.50	H-MSY	${ m L}$	31	69
1.5	0.50	H-MSY	${ m L}$	80	20
0.5	0.25	MSY	${ m L}$	68	32
1.5	0.25	MSY	${ m L}$	88	12
0.5	0.50	MSY	${ m L}$	55	45
1.5	0.50	MSY	${ m L}$	86	14
0.5	0.25	H-MSY	Н	59	41
1.5	0.25	H-MSY	Н	81	19
0.5	0.50	H-MSY	Н	67	33
1.5	0.50	H-MSY	Н	80	20
0.5	0.25	MSY	Н	66	34
1.5	0.25	MSY	Н	74	26
0.5	0.50	MSY	Н	74	26
1.5	0.50	MSY	Н	87	13

4 Discussion

- 85 The estimating models assumed variances of aggregate catch and index observations was
- known. This approximation may be appropriate for indices where we have a reliable estimate
- of uncertainty based on the survey design (), but there may be better approaches for the
- aggregate catch such as an informed prior on the standard errors with realistic bounds.

**** Acknowledgements**

This work was funded by NOAA Fisheries Northeast Fisheries Science Center.