AD-BC-VUMPS

Contents

Why AD?

3D ising contract

Gradient to

$$\frac{\partial}{\partial A}$$
 () = 2

3D view

add envir

Quantum case

• 2D Energy

$$\min_{A} E(A) = \min_{A} \frac{\langle \Psi(A) | \hat{H} | \Psi(A) \rangle}{\langle \Psi(A) | \Psi(A) \rangle}$$

$$T_{uldr} = l - r = - r$$

CTMRG

Experimental optimization method

- (1) Compute E(1) (corresponding to the previous energy with the old tensor A' = A) and E(0.5) (corresponding to the energy with $A' = \tilde{A}$).
 - (2) If E(0.5) < E(1), take $A' = \tilde{A}$ as the solution and exit.
- (3) Define an initial step size Δ_0 (e.g., $\Delta_0 = 0.1$) and a tiny step size h (e.g., $h = 10^{-4}$).
 - (4) If E(1+h) < E(1), set $\Delta = \Delta_0$, else $\Delta = -\Delta_0$.
 - (5) For iter = 1 to maxiter
 - (a) If $E(1 + \Delta) < E(1)$, accept solution [44] with $\lambda = 1 + \Delta$ and exit.
 - (b) Else $\Delta = \Delta/2$.

Channel environments

Gradient

Big Cell CTMRG

• General case

Get P_1 and P_2

AD-VUMPS

VUMPS-algorithm

Initial orthonormal form MPS $M = classical 2 Disingmpo(\beta; J = 1.0, h = 0.)$ AL,C =leftorth (A)AR = rightorth (AL,C)while error(AC,FL,FR,M) > tol_error # Get environment FL = leftenv(AL, M)FR = rightenv(AR, M)# Get orthonormal form AC, C = vumpsstep(AL, C, AR, M, FL, FR)# calculate observable Obs = obser(O, AC, M, FL, FR)

QR to avoid inverse

$$A_{C} = Q_{A_{C}} \cdot R_{A_{C}}$$

$$C = Q_{C} \cdot R_{C}$$

$$\downarrow$$

$$A_{L} = A_{C} \cdot C^{-1}$$

$$= Q_{A_{C}} \cdot R_{A_{C}} \cdot R_{C}^{-1} \cdot Q_{C}^{-1}$$

$$= Q_{A_{C}} \cdot R_{A_{C}} \cdot R_{C}^{-1} \cdot Q_{C}^{-1}$$

$$= Q_{A_{C}} \cdot R_{A_{C}} \cdot R_{C}^{-1} \cdot Q_{C}^{-1}$$

$$= Q_{A_{C}} \cdot Q_{C} \cdot Q_{C}^{-1} \cdot Q_{C}^{-1}$$

$$= Q_{A_{C}} \cdot Q_{C} \cdot Q_{C}^{-1} \cdot Q_{C}^{-1}$$

$$\Rightarrow Q_{A_{C}} \cdot Q_{C}^{-1}$$

$$\downarrow$$

$$A_{L}^{T} \cdot A_{L} = Q_{C} \cdot Q_{A_{C}}^{T} \cdot Q_{A_{C}} \cdot Q_{C}^{-1} = 1$$
 inverse and orthogonality at the same time

Computation Graphs

Adjoint of eigsolve

•
$$\boldsymbol{l}^T A = \lambda \boldsymbol{l}^T$$
, $A \boldsymbol{r} = \lambda \boldsymbol{r}$, $\boldsymbol{l}^T \boldsymbol{r} = 1$,
$$(A - \lambda I)\boldsymbol{\xi}_l = (1 - \boldsymbol{r}\boldsymbol{l}^T)\bar{\boldsymbol{l}}, \quad \boldsymbol{l}^T \boldsymbol{\xi}_l = 0$$

$$(A^T - \lambda I)\boldsymbol{\xi}_r = (1 - \boldsymbol{l}\boldsymbol{r}^T)\bar{\boldsymbol{r}}, \quad \boldsymbol{r}^T \boldsymbol{\xi}_r = 0$$

$$\text{gauge invariant} \qquad \boldsymbol{l}^T \bar{\boldsymbol{l}} = \boldsymbol{r}^T \bar{\boldsymbol{r}} = 0$$

$$(A - \lambda I)\boldsymbol{\xi}_l = \bar{\boldsymbol{l}}, \quad \boldsymbol{l}^T \boldsymbol{\xi}_l = 0$$

$$(A - \lambda I)\boldsymbol{\xi}_l = \bar{\boldsymbol{l}}, \quad \boldsymbol{l}^T \boldsymbol{\xi}_l = 0$$

$$(A^T - \lambda I)\boldsymbol{\xi}_r = \bar{\boldsymbol{r}}, \quad \boldsymbol{r}^T \boldsymbol{\xi}_r = 0$$

$$(A^T - \lambda I)\boldsymbol{\xi}_r = \bar{\boldsymbol{r}}, \quad \boldsymbol{r}^T \boldsymbol{\xi}_r = 0$$

$$(A - \lambda I)\boldsymbol{\xi}_l = 0, \quad \boldsymbol{l}^T \boldsymbol{\xi}_l = 0$$

$$(A - \lambda I)\boldsymbol{\xi}_l = 0, \quad \boldsymbol{l}^T \boldsymbol{\xi}_l = 0$$

$$(A - \lambda I)\boldsymbol{\xi}_l = 0, \quad \boldsymbol{l}^T \boldsymbol{\xi}_l = 0$$

$$(A - \lambda I)\boldsymbol{\xi}_l = 0, \quad \boldsymbol{l}^T \boldsymbol{\xi}_l = 0$$

$$(A - \lambda I)\boldsymbol{\xi}_r = \bar{\boldsymbol{r}}, \quad \boldsymbol{r}^T \boldsymbol{\xi}_r = 0$$

$$(A - \lambda I)\boldsymbol{\xi}_r = \bar{\boldsymbol{r}}, \quad \boldsymbol{r}^T \boldsymbol{\xi}_r = 0$$

Adjoint of VUMPS envirment

$$(A - \lambda I)\boldsymbol{\xi}_{l} = \bar{l}, \quad \boldsymbol{l}^{T}\boldsymbol{\xi}_{l} = 0$$

$$\overline{A} = -l \boldsymbol{\xi}_{l}^{T}$$

$$\overline{AL} = \overline{A} \cdot \frac{\partial A}{\partial AL}$$

$$\overline{M} = \overline{A} \cdot \frac{\partial A}{\partial M}$$

Adjoint of QR

 $egin{aligned} oldsymbol{\cdot} & A = QR \ & ar{A} = [ar{Q} + Q ext{copyltu}(M)]R^{-T} \ & M = Rar{R}^T - ar{Q}^TQ \ & [ext{copyltu}(M)]_{ij} = M_{ ext{max}(i,j), ext{min}(i,j)} \end{aligned}$

• Trick: add $\delta = 10^{-6}$ to R's diagonal element for the stability of inverse

2D Classical Ising Model

Finding the Ground State of infinite 2D Heisenberg model

ADVUMPS vs ADCTMRG $D = 2 \chi = 20 \delta = 10^{-12}$

33.76s vs 15.62s

Difference ~1e-14

29.11s vs 15.58s

Difference ~1e-9

Difference ~1e-9

		Time			Allocations			
Tot / % measured:		8.6	i6s / 10	10%	7.54GiB / 100%			
Section	ncalls	time	%tot	avg	alloc	%tot	avg	5
backward forward	61 61				6.11GiB 1.43GiB			

	Time				Al	Allocations			
	Tot / % measured:		30.2s / 100%			26.2GiB / 100%			
vg	Section	ncalls	time	%tot	avg	alloc	%tot	avg	
iB iB	backward forward	62 62		75.8% 24.2%	368ms 118ms	20.1GiB 6.13GiB	76.6% 23.4%	332MiB 101MiB	

Problem of D=3

• QR isn't stable for R^{-1}

Problem of iPEPS symmetry

• When only require up and down symmetry, Heisenberg(1,1,1)

$$E_0 = -0.85 < -0.66$$

$$T_{uldr} = l - r =$$

 Vertical and horizontal bond energy should be optimized at the same time

AD-BC-VUMPS

BCVUMPS-algorithm

Initial orthonormal form MPS

Get orthonormal form

AR[i, j] = rightenv(AR[i, :], M[i, :])

AC[i, j], C[i, j] = vumpsstep(AL[:, j], C[:, j], AR[:, j], M[:, j], FL[:, j], FR[:, j])

AD for array of array

```
# example to solve differential of array of array
# use `[]` list then reshape
A = Array{Array, 2}(undef, 2, 2)
for j = 1:2, i = 1:2
    A[i,j] = rand(2,2)
end
function foo2(x)
    \# B[i,j] = A[i,j].*x \# mistake
    B = reshape([A[i].*x for i=1:4],2,2)
    return sum(sum(B))
end
@test Zygote.gradient(foo2, 1)[1] ≈ num grad(foo2, 1)
```

Be careful of index and replaced function!

