Stratification

Core Components and Initialization

The Stratification class, implemented in C#, models vertical stratification in an estuary, focusing on density-driven flows and passive scalar transport. The estuary spans a length $L=10,000\,\mathrm{m}$ and depth H, discretized into n grid points with spatial step $\Delta x=L/n$. Key parameters include:

• Gravitational acceleration: $g = 9.81 \,\mathrm{m/s^2}$

• Reference density: $\rho_0 = 1000 \, \text{kg/m}^3$

• Ocean salinity: $S_{\text{ocean}} = 35 \text{ PSU}$

• Ocean temperature: $T_{\text{ocean}} = 20 \, ^{\circ}\text{C}$

• River scalar concentration: $C_{\text{river}} = 1.0 \,\text{kg/m}^3$

• Ocean scalar concentration: $C_{\text{ocean}} = 0.0 \, \text{kg/m}^3$

• Salt wedge position: $x_s = 5000 \,\mathrm{m}$

• Base mixing coefficient: $\kappa = 0.1 \,\mathrm{m}^2/\mathrm{s}$

• Critical Richardson number: $Ri_c = 0.25$

• Time step: $\Delta t = 3600 \, \text{s}$ (1 hour)

The model initializes arrays for salinity (S), temperature (T), density (ρ), passive scalar concentration (C), and gradient Richardson number (Ri). Initial profiles are linear:

$$S(x) = \frac{x}{L} S_{\text{ocean}} \tag{1}$$

$$T(x) = 15 + \frac{x}{L}(T_{\text{ocean}} - 15)$$
 (2)

$$C(x) = C_{\text{river}} \left(1 - \frac{x}{L} \right) \tag{3}$$

$$\rho(x) = \mathsf{CalculateDensity}(S(x), T(x)) \tag{4}$$

with $S \in [0, 35]$, $T \in [0, 20]$, $C \in [0, C_{\mathrm{river}}]$, and $\rho \in [1000, 1030]\,\mathrm{kg/m^3}$.

Functioning Logic

The UpdateSimulation method advances the simulation by Δt , performing:

- 1. Velocity profile computation: u(x) = 0.1(1 x/L), clamped to $[-1, 1] \, \text{m/s}$.
- 2. Stratification computation via ComputeStratification.
- 3. Salinity, temperature, and passive scalar updates using BaroclinicFlow and PassiveScalarTransportEq.
- 4. Visualization of density and passive scalar profiles.

A GUI allows users to adjust the turbulence model ($k-\epsilon$, $k-\omega$, or constant), mixing coefficient, critical Richardson number, and river scalar concentration.

Stratification Computation

The ComputeStratification method calculates:

- **Density**: $\rho = \text{CalculateDensity}(S, T)$, clamped to $[1000, 1030] \, \text{kg/m}^3$, computed via the BaroclinicFlow class.
- Gradient Richardson Number:

$$Ri = \frac{(g/\rho_0)(\partial \rho/\partial x)}{(\partial u/\partial x)^2}$$
 (5)

where $\partial \rho/\partial x=(\rho_{i+1}-\rho_{i-1})/(2\Delta x)$, $\partial u/\partial x=(u_{i+1}-u_{i-1})/(2\Delta x)$, clamped to [-100,100].

• Eddy Viscosity: Adjusted based on the turbulence model:

$$-k - \epsilon : \qquad \qquad \nu_t = \frac{\nu_t}{1 + \max(0, Ri/Ri_c)} \tag{6}$$

$$-k - \omega: \nu_t = \nu_t \frac{1 + 0.5 \min(Ri, Ri_c)}{1 + Ri}$$
 (7)

– Constant:
$$\nu_t = \kappa \tag{8}$$

Eddy viscosity is clamped to [0, 1] m²/s.

Transport Equations

Salinity, temperature, and passive scalar are updated using transport equations solved by BaroclinicFlow and PassiveScalarTransportEq:

$$\frac{\partial \phi}{\partial t} + u \frac{\partial \phi}{\partial x} = \frac{\partial}{\partial x} \left(\nu_t \frac{\partial \phi}{\partial x} \right) \tag{9}$$

where ϕ represents S, T, or C. Boundary conditions are:

- At x = L: $S = S_{\text{ocean}}$, $T = T_{\text{ocean}}$, $C = C_{\text{ocean}}$
- At x = 0: $C = C_{river}$

Visualization

The GUI displays density and passive scalar profiles in a panel, with:

- Density (ρ , blue): Scaled to [1000, 1030] kg/m³.
- Passive scalar (C, red): Scaled to $[0, C_{river}] \text{ kg/m}^3$.
- Axes labeled with position (km) and simulation time (hours).

Controls allow starting, pausing, resetting, and adjusting parameters, with updates every 100 ms.

Physical and Mathematical Models

The Stratification class simulates estuarine stratification driven by density gradients from salinity and temperature, coupled with passive scalar transport. The following models and equations are utilized:

• Velocity Profile: A simplified linear velocity profile drives advection:

$$u(x) = 0.1 \left(1 - \frac{x}{L}\right), \quad u \in [-1, 1] \text{ m/s}$$
 (10)

• **Density Calculation**: Density is computed via the BaroclinicFlow class (implementation not shown), constrained to:

$$\rho \in [1000, 1030] \,\mathrm{kg/m^3} \tag{11}$$

• Gradient Richardson Number: Assesses stability of stratified flow:

$$Ri = \frac{(g/\rho_0)(\partial \rho/\partial x)}{(\partial u/\partial x)^2}, \quad \frac{\partial \rho}{\partial x} = \frac{\rho_{i+1} - \rho_{i-1}}{2\Delta x}, \quad \frac{\partial u}{\partial x} = \frac{u_{i+1} - u_{i-1}}{2\Delta x}$$
 (12)

with $Ri \in [-100, 100]$.

• Eddy Viscosity Adjustment: Modulates mixing based on turbulence model:

$$-k - \epsilon$$
:
$$\nu_t = \frac{\nu_t}{1 + \max(0, Ri/Ri_c)}$$
 (13)

$$-k - \omega: \nu_t = \nu_t \frac{1 + 0.5 \min(Ri, Ri_c)}{1 + Ri}$$
 (14)

– Constant:

$$\nu_t = \kappa \tag{15}$$

with $\nu_t \in [0, 1] \, \mathbf{m}^2 / \mathbf{s}$.

• **Transport Equation**: Governs evolution of salinity (*S*), temperature (*T*), and passive scalar (*C*):

$$\frac{\partial \phi}{\partial t} + u \frac{\partial \phi}{\partial x} = \frac{\partial}{\partial x} \left(\nu_t \frac{\partial \phi}{\partial x} \right) \tag{16}$$

solved numerically by BaroclinicFlow and PassiveScalarTransportEq classes, with boundary conditions:

– At
$$x=L$$
: $S=35$ PSU, $T=20$ °C, $C=0$ kg/m 3

- At
$$x = 0$$
: $C = C_{river}$

and constraints $S \in [0, 35]$, $T \in [0, 20]$, $C \in [0, C_{river}]$.

• Initial Conditions: Linear profiles for initialization:

$$S(x) = \frac{x}{L} \cdot 35 \tag{17}$$

$$T(x) = 15 + \frac{x}{L} \cdot 5 {(18)}$$

$$T(x) = 15 + \frac{x}{L} \cdot 5$$

$$C(x) = C_{\text{river}} \left(1 - \frac{x}{L} \right)$$
(18)

These models capture the interplay of advection, diffusion, and stratification, with turbulence modulated by the Richardson number. The simulation ensures numerical stability through clamping and provides real-time visualization of density and scalar profiles.