Lattice Data

Spatial autoregressive models SAR and CAR models

Dra. ROSA ABELLANA

DEPARTAMENT SALUT PÚBLICA. UNIVERSITAT DE BARCELONA

Inference for areal data

For areal units the inferential issues are:

- Is there a spatial pattern? How strong is it?

 Spatial pattern suggest that observations close to each other have more similar values than those far from each other.
- Do we want to smooth the data? How much?

Introduction

The most popular models in <u>lattice data</u> remind us of the autoregressive models to <u>time series</u>

For example AR(1) (autoregressive order 1)

$$Z_t = \rho Z_{t-1} + \varepsilon_t$$
 $\varepsilon_t \sim N(0, \sigma^2), \quad t = 0, \pm 1, \dots$

Where $\rho \in (-1,1)$ is called the autocorrelation coefficient

$$\operatorname{corr}(Z_t, Z_{t-k}) = \rho^k$$

Simultaneous autoregressive model ordre 1 SAR(1)

We transfer these ideas in the space data, where \boldsymbol{Z} will be depending on the neighboring regions

$$Z_{i} = \sum_{j} b_{ij} Z_{j} + \varepsilon_{i} \qquad \varepsilon_{i} \sim N(0, \sigma_{i}^{2})$$

Matricial form:
$$Z = BZ + \varepsilon$$
 $\varepsilon \sim N(0, \Lambda)$

Reduced form
$$Z = (I - B)^{-1} \varepsilon$$

$$E(Z) = 0$$

$$Var(Z) = \sigma^{2} (1 - B)^{-1} I (1 - B)^{-T}$$

Re-parametrization of the model

(I-B) Must be non-singular

Re-paremetrization of this model can by writing B=
ho W

$$Z = \rho W Z + \varepsilon$$
 $\varepsilon \sim N(0, \Lambda)$ $\Longrightarrow Z = (I - \rho W)^{-1} \varepsilon$

$$E(Z) = 0$$

 $Var(Z) = \sigma^{2} (1 - \rho W)^{-1} I (1 - \rho W)^{-T}$

$$Z \sim N(0, (I - \rho W)^{-} \Lambda (I - \rho W)^{-T})$$

Conditions to variance and covariance matrix will be non-singular:

W: neighborhood matrix binary (B)

(I-ρB) is non-singular, we need to impose that ρ , $\rho \in (1/\lambda_1, 1/\lambda_n)$ where λ are eigenvalues of W

W: neighborhood standardized by rows

(I- ρ W) is non-singular, we need impose that $\rho \in (-1,1)$

Explanatory variables into a spatial regression model

Spatial error **SAR**_{error}

$$Z = \beta X + u$$

$$u = \rho W u + \varepsilon$$

$$\varepsilon \sim N(0, \sigma^2 I)$$

Spatial autocorrelation in the error, is generally considered a nuisance model, because the primary interest is in the relationship between the explanatory variables X and response variable Z

$$Z = X\beta + (I - \lambda W)^{-}\varepsilon$$

$$E(Z) = X\beta$$

$$Var(Z) = \sigma^{2}(I - \lambda W)^{-}(I - \lambda W)^{-T}$$

$$Z \sim N(X\beta, \sigma^{2}(I - \lambda W)^{-}(I - \lambda W)^{-T})$$

Interpretation of the SAR error model

SAR model for the random error generate a global spatial dependence

Global: covariance matrix involved all the locations of the system

$$Var(Z) = \sigma^{2}(1 - \rho W)^{-1}I(1 - \rho W)^{-T}$$

$$u = [I - \rho W]^{-1}\varepsilon$$

$$[I - \rho W]^{-1} = I + \rho W + \rho^{2}W^{2} + \dots \text{ Leontieff expansion}$$

$$Var(Z) = I + \rho W + \rho W' + \rho^{2}(W^{2} + WW' + W^{2}) \dots$$

Potency of W involves a contiguity of higher order.

Potency of ρ involves progressive loss of the value of the covariance

Conditionally autoregressive models (CAR)

Introduced by Besag 1974, is called **conditionally autoregressive models (CAR).**

It is used in Gibbs sampling, particularly Monte Carlo Markov Chain to construct a hierarchical model

Definition: Conditioned distributions Z_i

$$f(Z_i \mid Z_j \ j \neq i)$$

Gaussian distribution (autonormal)

$$E[Z_i|Z_{-i}] = X\beta + \sum_{j \neq i} c_{ij} (Y_j - X\beta)$$

$$Var[Z_i|Z_{-i}] = \sigma^2 \qquad i = 1....n$$

Joint distribution

Multivariate distribution of Z

$$Z \sim NMV(X\beta, Q^{-})$$
 $Q = D^{-1}(I - C)$

Where $C=c_{ij}$ and D is diagonal matrix with elements $d_i=\tau_i^2$

Restrictions for Q:

Ensure symmetric matrix $Q = D^{-1}(I - C)$

$$\frac{c_{ij}}{\tau_i^2} = \frac{c_{ji}}{\tau_j^2}$$
 For all i and j

1. Binary definition for C (non-standardized by row)

No problems of symmetry.

2. Row-standardized weights

If C is **standardized by rows** of the binary matrix $w_{ij}=1$ if i and j are neighbors $w_{ij}=0$ other case

$$c_{ij} = \frac{W_{ij}}{W_{i+}}$$
 $\tau_i^2 = \frac{\tau^2}{W_{i+}}$

Conditional distribution of Z_i is Normal with expectation and variance

$$E[Z_i|Z_{-i}] = X\beta + \sum_{j \neq i} \frac{w_{ij}}{w_{i+}} (Y_j - X\beta) \qquad Var[Z_i|Z_{-i}] = \frac{\sigma^2}{w_{i+}}$$

Joint distribution of Z

$$Z \sim NMV(X\beta, \sigma^2 Q^-)$$
 where $Q = (I_w - W)$
$$I_w = diag(w_{i+})$$

Handicap

$$(I_w - W)\mathbf{1} = 0$$
 then Q is singular

Joint distribution might be improper

The joint distribution is improper but the conditionals are proper Model called as **intrinsically autoregressive model (IAR)**

IAR it is used to define a random spatial effects

The impropriety can be remedied. Redefine:

$$Q = (I_w - \rho W)$$
 Standardized by row

Choice ρ to make Q^{-1} nonsingular

It is guarantee if

$$\rho \in (1/\lambda_1, 1/\lambda_n)$$
 where $\lambda_1 < \dots \lambda_n$ are the ordered eigenvalues of
$$I_w^{-1/2} \rho W I_w^{-1/2}$$

$$\lambda_1 < 0, \text{ and } \lambda_n < 1$$

Binary definition for W (non-standardized by row)

$$Q = D^{-1}(I - \rho W)$$
 is nonsingular if $\rho \in (1/\lambda_1, 1/\lambda_n)$
values $\lambda_1 < ... \lambda_n$ eigenvalues of W

COMPARATION BETWEEN SAR AND CAR

Grid 3x3 (definition of neighbors tower criterion). MATRIX W

	1	2	3	4	5	6	7	8	9
1		1		1					
2	1		1		1				
3		1				1			
4	1				1		1		
5		1		1		1		1	
6			1		1				1
7				1				1	
8					1		1		1
9						1		1	

SAR

$$\Sigma = \sigma^{2} (I - \rho W)^{-1} (I - \rho W)^{-T}$$

$$\Sigma = \sigma^2 (I - \rho W)^{-1}$$

$$\rho$$
=0.25

	1	2	3	4	5	6	7	8	9
1	1,86	1,33	0,63	1,33	1,25	0,67	0,63	0,67	0,39
2	1,33	2,48	1,33	1,25	2,00	1,25	0,67	1,02	0,67
3	0,63	1,33	1,86	0,67	1,25	1,33	0,39	0,67	0,63
4	1,33	1,25	0,67	2,48	2,00	1,02	1,33	1,25	0,67
5	1,25	2,00	1,25	2,00	3,50	2,00	1,25	2,00	1,25
6	0,67	1,25	1,33	1,02	2,00	2,48	0,67	1,25	1,33
7	0,63	0,67	0,39	1,33	1,25	0,67	1,86	1,33	0,63
8	0,67	1,02	0,67	1,25	2,00	1,25	1,33	2,48	1,33
9	0,39	0,67	0,63	0,67	1,25	1,33	0,63	1,33	1,86

		_	_			_		_	_
	1	2	3	4	5	6	7	8	9
1	1,20	0,39	0,13	0,39	0,25	0,11	0,13	0,11	0,05
2	0,39	1,32	0,39	0,25	0,50	0,25	0,11	0,18	0,11
3	0,13	0,39	1,20	0,11	0,25	0,39	0,05	0,11	0,13
4	0,39	0,25	0,11	1,32	0,50	0,18	0,39	0,25	0,11
5	0,25	0,50	0,25	0,50	1,50	0,50	0,25	0,50	0,25
6	0,11	0,25	0,39	0,18	0,50	1,32	0,11	0,25	0,39
7	0,13	0,11	0,05	0,39	0,25	0,11	1,20	0,39	0,13
8	0,11	0,18	0,11	0,25	0,50	0,25	0,39	1,32	0,39
9	0,05	0,11	0,13	0,11	0,25	0,39	0,13	0,39	1,20

- 1. Different values but the properties are the same.
- 2. The interior sites, and those with more neighbors have a larger variance. The variance are not stationary

SAR Binary weights

CAR Binary weights

$$\Sigma = \sigma^2 (I - \rho W)^{-1} (I - \rho W)^{-T}$$

$$\Sigma = \sigma^2 (I - \rho W)^{-1}$$

 ρ =0.25

	1	2	3	4	5	6	7	8	9
1	1,86	1,33	0,63	1,33	1,25	0,67	0,63	0,67	0,39
2	1,33	2,48	1,33	1,25	2,00	1,25	0,67	1,02	0,67
3	0,63	1,33	1,86	0,67	1,25	1,33	0,39	0,67	0,63
4	1,33	1,25	0,67	2,48	2,00	1,02	1,33	1,25	0,67
5	1,25	2,00	1,25	2,00	3,50	2,00	1,25	2,00	1,25
6	0,67	1,25	1,33	1,02	2,00	2,48	0,67	1,25	1,33
7	0,63	0,67	0,39	1,33	1,25	0,67	1,86	1,33	0,63
8	0,67	1,02	0,67	1,25	2,00	1,25	1,33	2,48	1,33
9	0,39	0,67	0,63	0,67	1,25	1,33	0,63	1,33	1,86

	1	2	3	4	5	6	7	8	9
1	1,20	0,39	0,13	0,39	0,25	0,11	0,13	0,11	0,05
2	0,39	1,32	0,39	0,25	0,50	0,25	0,11	0,18	0,11
3	0,13	0,39	1,20	0,11	0,25	0,39	0,05	0,11	0,13
4	0,39	0,25	0,11	1,32	0,50	0,18	0,39	0,25	0,11
5	0,25	0,50	0,25	0,50	1,50	0,50	0,25	0,50	0,25
6	0,11	0,25	0,39	0,18	0,50	1,32	0,11	0,25	0,39
7	0,13	0,11	0,05	0,39	0,25	0,11	1,20	0,39	0,13
8	0,11	0,18	0,11	0,25	0,50	0,25	0,39	1,32	0,39
9	0,05	0,11	0,13	0,11	0,25	0,39	0,13	0,39	1,20

- 1. Different values but the properties are the same.
- The interior sites, and those with more neighbors have a larger variance. The variance are not stationary

3. Covariance decreases with the distance

SAR Binary weights

CAR Binary weights

	Z ₂	Z ₅	Z_3	Z ₆	Z ₉	
Z ₁	1.33	1.25	0.63	0.67	0.39	

	Z_2	Z_5	Z_3	Z ₆	Z_9	
Z_1	0.39	0.25	0.13	0.11	0.05	

The correlation is not constant (effect of variance is not constant).

	Z ₂	Z_5	Z_3	Z ₆	Z ₉	
Z ₁	0.62	0.49	0.34	0.31	0.21	

	Z_2	Z_5	Z_3	Z ₆	Z ₉	
Z_1	0,31	0,19	0,10	0,09	0,04	

4. The ρ parameter controls the amount of autocorrelation.

If
$$\rho = 0.10$$
 cor(Z_1, Z_2)= 0.21 If $\rho = 0.10$ cor(Z_1, Z_2)= 0.10

If
$$\rho = -0.25 \text{ cor}(Z_1, Z_2) = -0.62$$

If
$$\rho = 0.10$$
 cor(Z_1, Z_2)= 0.10
If $\rho = -0.25$ cor(Z_1, Z_2)=-0.31

5. The covariances are not invariant to translation:

$$cov(Z_1,Z_3)=0.63$$
 $cov(Z_1,Z_3)=0.13$ $cov(Z_4,Z_6)=1.25$ $cov(Z_4,Z_6)=0.18$

6. The models are anisotropic:

$$cov(Z_2,Z_3)=1.33$$
 but $cov(Z_2,Z_5)=2.00$
 $cor(Z_2,Z_3)=0.62$ but $cor(Z_2,Z_5)=0.69$

$$cov(Z_2,Z_3)=0.39$$
 but $cov(Z_2,Z_5)=0.5$
 $cor(Z_2,Z_3)=0.31$ but $cov(Z_2,Z_5)=0.36$

Grid of 3x3 (definition of neighbors move tower). **MATRIX** W* Row Standardized weights

	1	2	3	4	5	6	7	8	9
1		1/2		1/2					
2	1/3		1/3		1/3				
3		1/2				1/2			
4	1/3				1/3		1/3		
5		1/4		1/4		1/4		1/4	
6			1/3		1/3				1/3
7				1/2				1/2	
8					1/3		1/3		1/3
9						1/2		1/2	

Example matrix Q⁻ with ρ =0.9 $Q = (I_w - \rho W)$

	1	2	3	4	5	6	7	8	9
1	0.95	0.50	0.36	0.50	0.36	0.29	0.36	0.29	0.26
2	0.50	0.75	0.50	0.36	0.39	0.36	0.29	0.29	0.29
3	0.36	0.5	0.95	0.29	0.36	0.50	0.26	0.29	0.36
4	0.50	0.36	0.29	0.75	0.39	0.29	0.50	0.36	0.29
5	0.36	0.39	0.36	0.39	0.61	0.39	0.36	0.39	0.36
6	0.29	0.36	0.50	0.29	0.39	0.75	0.29	0.36	0.50
7	0.36	0.29	0.26	0.50	0.36	0.29	0.95	0.50	0.36
8	0.29	0.29	0.29	0.36	0.39	0.36	0.50	0.75	0.5
9	0.26	0.29	0.36	0.29	0.36	0.50	0.36	0.5	0.95

- 1. The interior sites, those with more neighbors have smaller variance
- 2. The variances are not stationary
- 3. Covariance decreases with "distance".

Example matrix Q⁻ with ρ =0.9 $Q = (I_w - \rho W)$

	1	2	3	4	5	6	7	8	9
1	0.95	0.50	0.36	0.50	0.36	0.29	0.36	0.29	0.26
2	0.50	0.75	0.50	0.36	0.39	0.36	0.29	0.29	0.29
3	0.36	0.5	0.95	0.29	0.36	0.50	0.26	0.29	0.36
4	0.50	0.36	0.29	0.75	0.39	0.29	0.50	0.36	0.29
5	0.36	0.39	0.36	0.39	0.61	0.39	0.36	0.39	0.36
6	0.29	0.36	0.50	0.29	0.39	0.75	0.29	0.36	0.50
7	0.36	0.29	0.26	0.50	0.36	0.29	0.95	0.50	0.36
8	0.29	0.29	0.29	0.36	0.39	0.36	0.50	0.75	0.5
9	0.26	0.29	0.36	0.29	0.36	0.50	0.36	0.5	0.95

- 1. The interior sites, those with more neighbors have smaller variance
- 2. The variances are not stationary
- 3. The covariance decreases with "distance".

4. The covariance decrease with the distances

	Z_2	Z ₅	Z_3	Z_6	Z_9
Z ₁	0.5	0.36	0.36	0.29	0.26

And the correlations also decrease with the distances

	Z_2	Z ₅	Z_3	Z ₆	Z_9
Z ₁	0.59	0.47	0.37	0.35	0.28

5. For
$$\rho$$
=0.912 cor(Z_1, Z_2)=0.6171

	Z ₂	Z_5	Z ₃	Z ₆	Z_9
Z ₁	0.62	0.50	0.41	0.38	0.31

6. The covariances are not translation invariant

$$cov(Z_1,Z_3)=0.5$$
 $cov(Z_4,Z_6)=0.29$

7. The model is not isotropic.

$$cov(Z_2,Z_3)=0.5$$
 but $cov(Z_2,Z_5)=0.39$
 $cor(Z_2,Z_3)=0.42$ but $cov(Z_2,Z_5)=0.58$

Bibliografia:

BOOKS

Cressie N.A. (1993). Statistics for Spatial Data. Wiley Series in Probability and Mathematical Statistics. Canada. Chapter 6

Banerjee S Carlin BP, Gelfrand A.E. (2004) Hierarchical Modelling and Analysis for Spatial Data. Chapman & Hall /CRC. Chapter 3

Clayton D.and Bernardinelli L. (**1992**). *Bayesian methods for mapping disease risks*. In small Area Studies in Geographical and Environmental Epidemiology (P.Elliot, J. Cuzich, et al) Oxford University Press. 205-20.

Moreno R i Vayà E. (2000). Técnicas econométricas para el tratamiento de datos espaciales: la econometría espacial. Ediciones UB. 44 manuals.

PAPERS

Besag J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B. 36:192-236.

Besag J., York J. and Mollié A.(1991). Bayesian image restoration, with applications in spatial statistics. Annals of the Institute of Statistical Mathematics. 43: 1-59.

Breslow N.E. and Clayton D.G.(1993). *Approximate Inference in Generalized Linear Mixed Models*, Journal of the American Statistical Association. 88: 9-25.

Clayton D. and Kaldor J. (**1987**). *Empirical Bayes Estimates of Age-standardized Relative Risks for Use in Disease Mapping*. Biometrics, **43**: 671-681