

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

ЛЕКЦИОННЫЕ МАТЕРИАЛЫ

Методы обеспечения целостности информации

_		· · · · · · · · · · · · · · · · · · ·		
	(наименование дисциплины (модуля) в соответствии с учебным планом)			
Уровень	бакалавриат			
	(бакалавриат, магистратура, специалитет)			
Форма обучения	ранро н			
	(очная, очно-заочная, заочна			
Направление(-я)				
подготовки	09.03.02 «Информационные системы и технологии»			
	именование(-я))			
Институт	кибербезопасности и цифровых технологий (ИКБ)			
	(полное и краткое наименование)			
Кафедра	Разработка программных решений и системное программирование			
	(полное и краткое наименование кафедры, реализующей дисциплину (модуль))			
Лектор	К.т.н. Ермакова Алла Юрьевна			
	(сокращенно – ученая степень,	ученое звание; полностью – ФИО)		
Используются в данной редакции с учебного года 2023/24				
		(учебный год цифрами)		
Проверено и согл	асовано «»2023_г.			
		(подпись директора Института/Филиала		
		с расшифровкой)		

Лекция 7. Протоколы контроля целостности. Использование контрольных цифр.

Контрольные суммы (checksums или CRC) являются более надежным способом обеспечения целостности, чем биты четности или контрольные цифры. В англоязычной литературе CRC расшифровывается двояко в зависимости от контекста: Cyclic Redundancy Code или Cyclic Redundancy Check. Под первой расшифровкой понимают циклический код, под второй – хеш-образ.

Циклические коды основаны на полиномиальной арифметике по модулю 2 (полиномиальном делении без переноса). Вместо представления делимого (исходного сообщения, входных данных), делителя (порождающего полинома), частного (целой части) и остатка (контрольной суммы, CRC) в виде положительных целых чисел, их можно представить в виде полиномов с двоичными коэффициентами или в виде строки бит, каждый из которых является коэффициентом полинома. Например, десятичное число 19₁₀ в двоичной системе счисления имеет вид 10011₂, что совпадает с полиномом

$$1*x^4 + 0*x^3 + 0*x^2 + 1*x^1 + 1*x^0 = x^4 + x^1 + x^0.$$
 (6)

Значение контрольной суммы с порождающим полиномом G(x) определяется по формуле:

$$R(x) = P(x) * x^{N} \mod G(x),$$
 (7)

где R(x) - полином, представляющий значение контрольной суммы; P(x) - полином, представляющий входные данные; G(x) - порождающий полином;

N - максимальная степень порождающего полинома.

Умножение x^N эквивалентно приписыванию N нулевых битов к входным данным. Полиномиальное деление без переноса выполняется по следующим правилам:

- при наличии у промежуточного остатка в качестве старшего бита «1», он складывается по модулю 2 (ХОR, исключающее ИЛИ) с битовым представление порождающего полинома и в частное записывается «1»;
- в противном случае выполняется сложение по модулю 2 промежуточного остатка с нулевой битовой строкой длиной N+1 и в частное записывается «0».

В следующей таблице приведены примеры определения контрольных сумм для порождающего полинома $G(x) = x^4 + x^1 + x^0$ (делитель - 10011_2 , 19_{10} ; N = 4; $x^N = 10000_2$).

Таблица 1 Примеры определения контрольных сумм

Делимое P(x) (входные данные)	10111 ₂ (23 ₁₀)	10011 ₂ (19 ₁₀)	10001 ₂ (17 ₁₀)
$P(x) * x^N$	101110000 ₂ (368 ₁₀)	100110000 ₂ (304 ₁₀)	100010000 ₂ (272 ₁₀)
Деление $P(x) * x^{N} \mod G(x)$	101110000 10011 1 01000	100110000 10011 1 00000	100010000 10011 1 00100

	00000 0	00000 0	00000 0
	10000	00000	01000
	<u>10011</u> 1	<u>00000</u> 0	<u>00000</u> 0
	00110	00000	10000
	<u>00000</u> 0	<u>00000</u> 0	<u>10011</u> 1
	01100	00000	00110
	<u>00000</u> 0	<u>00000</u> 0	<u>00000</u> 0
	1100	0000	0110
Частное	10100 ₂ (20 ₁₀)	10000 ₂ (16 ₁₀)	10010 ₂ (18 ₁₀)
Остаток R(x) (контрольная сумма)	1100 ₂ (12 ₁₀)	0000 ₂ (0 ₁₀)	0110 ₂ (6 ₁₀)
Входные данные с	10111 11002	10011 00002	10001 01102
контрольной суммой	(380 ₁₀)	(304 ₁₀)	(278 ₁₀)

Принимающая сторона для проверки целостности полученных данных может сделать одно из следующих равноценных действий:

- выделить входные данные, вычислить для них контрольную сумму (не забыв при этом дополнить данные N нулевыми битами) и сравнить ее с переданной;
- поделить входные данные с контрольной суммой (последняя строка табл. 2) на делитель, представляющий порождающий полином G(x). В результате должен получиться нулевой остаток.

Как было отмечено выше, использование циклических кодов является более надежным способом контроля целостности, чем <u>биты четности</u>. В то же время, при передаче исходного сообщения P(x) возможна такая его модификация, что контрольная сумма для него и принятого искаженного сообщения P'(x) будут совпадать. Т.е. циклические коды не лишены проблемы возникновения <u>коллизий</u>.

Выбор и применение на практике вида порождающего полинома определяется требованиями производительности и минимизации возникновения коллизий. В следующей таблице приведены некоторые разновидности порождающих полиномов, используемые в информационных системах.

Таблица 2 Разновидности порождающих полиномов

Название	Порождающий полином G(x)	Нормальное представление	Применение
CRC-1	x + 1	01 ₁₆	аппаратный контроль ошибок (<u>нечетный</u> паритетный бит)
CRC-4- ITU	$x^4 + x + 1$	03 ₁₆	
CRC-7	$x^7 + x^3 + 1$	09 ₁₆	системы телекоммуникации, MMC, SD
CRC-12	$x^{12} + x^{11} + x^3 + x^2 + x + 1$	$080F_{16}$	системы телекоммуникации
CRC-16- IBM	$x^{16} + x^{15} + x^2 + 1$	8005 ₁₆	USB, ANSI X3.28
CRC-16- CCITT	$x^{16} + x^{12} + x^5 + 1$	1021 ₁₆	X.25, Bluetooth, SD, RFID
CRC-24- Radix-64	$x^{24} + x^{23} + x^{18} + x^{17} + x^{14} $ $+ x^{11} + x^{10} + x^7 + x^6 + x^5 $ $+ x^4 + x^3 + x + 1$	864CFB ₁₆	OpenPGP
CRC-32- IEEE 802.3	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16}$ + $x^{12} + x^{11} + x^{10} + x^{8} +$ $x^{7} + x^{5} + x^{4} + x^{2} + x + 1$	1EDC6F41 ₁₆	V.42, MPEG-2, PNG
CRC-64- ISO	$x^{64} + x^4 + x^3 + x + 1$	1B ₁₆	HDLC

Нормальное представление полинома указывается в стандартах, как правило, в шестнадцатеричном виде. При этом преобразование битовой строки полинома выполняется без учета старшего единичного бита.

Например, для CRC-12 битовая строка порождающего полинома выглядит 1100000001111_2 . Отбросив старший бит (100000001111_2) и преобразовав в шестнадцатеричный вид, получаем $080F_{16}$.

Другой вариант использования контрольных сумм - проверка целостности хранимых файлов с целью обнаружения их искажения (например, вирусами) или подмены. В этом случае обычно применяют <u>хеш-образы</u> файлов, которые хранятся в защищённом месте и периодически используются для контроля целостности файлов. <u>Хеш-образы</u> активно применяют для проверки целостности скачиваемых файлов. В частности на многих сайтах, помимо дистрибутивов ПО, выкладываются также их контрольные <u>хеш-образы</u>.