Вариант	Номер задачи			
1	1a)	XII.7.23	XII.7.28a	XIII.10.7a
2	1b)	XII.7.22	XII.7.28б	XIII.10.7б
3	1c)	XII.7.21	ХІІ.7.28в	XIII.10.3б
4	1d)	XII.7.20	XII.7.28r	ХІІІ.10.3в
5	1e)	XII.7.19	ХІІ.7.28д	XIII.10.3e
6	1a)	XII.7.20	XII.7.28e	XIII.10.4ж
7	1b)	XII.7.21	XII.7.28ж	XIII.10.43
8	1c)	XII.7.22	XII.7.283	XIII.10.4и
9	1d)	XII.7.23	XII.7.28и	XIII.10.4б
10	1e)	XII.7.22	XII.7.28к	XIII.10.4 _B
11	1a)	XII.7.21	XII.7.28a	XIII.10.4e
12	1b)	XII.7.20	XII.7.28б	XIII.10.7a
13	1c)	XII.7.19	ХІІ.7.28в	XIII.10.7y
14	1d)	XII.7.20	XII.7.28г	XIII.10.7a
15	1e)	XII.7.21	ХІІ.7.28д	XIII.10.3б
16	1a)	XII.7.22	XII.7.28e	XIII.10.3B
17	1b)	XII.7.23	XII.7.28ж	XIII.10.3e
18	1c)	XII.7.22	XII.7.283	XIII.10.4ж
19	1d)	XII.7.21	XII.7.28и	XIII.10.43
20	1e)	XII.7.22	XII.7.28к	XIII.10.4б

Задача 1. Для численного решения уравнения переноса

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$$

методом неопределенных коэффициентов построить схему **максимального** порядка аппроксмации (порядок указать) по значениями в узлах сетки:

a)
$$(t_{n+1}, x_k)$$
, (t_n, x_k) , (t_n, x_{k-1}) , (t_n, x_{k-2})

b)
$$(t_{n+1}, x_k)$$
, (t_n, x_k) , (t_{n+1}, x_{k-1}) , (t_{n+1}, x_{k-2})

c)
$$(t_{n+1}, x_k)$$
, (t_n, x_k) , (t_{n+1}, x_{k-1}) , (t_{n+1}, x_{k+1})

d)
$$(t_{n+1}, x_k)$$
, (t_n, x_k) , (t_n, x_{k-1}) , (t_{n+1}, x_{k-1})

e)
$$(t_{n+1}, x_k)$$
, (t_n, x_k) , (t_{n+1}, x_{k-1}) , (t_n, x_{k+1})

Исследовать полученный метод на устойчивость.