CHARACTERIZATION OF A NOVEL PHOTOSWITCH FOR DETECTING HOTSPOTS IN EXPLOSIVE COMPOSITES

Simran Arora Penn WiP Conference, 2015

Background

Introduction

- Problem
 - Hotspots cause uncontrolled detonations
 - No viable way to study hotspots
- Proposition
 - Thermochromic molecular photoswitches

Vietnam USS Forrestal: 134 deaths and 161 injuries

DASA Photoswitch

Donor-acceptor Stenhouse adduct photoswitch (DASA) in hydroxyl-terminated polybutadiene (HTPB) polymer

THERMAL CHARACTERIZATION

Absorption and Emission

Reconversion

Exponential reconversion

Decay constant is 34 hours

Reactivated to 92% of initial counts

Kinetics

MECHANICAL STRESS TESTS

Uniform Temperature Fluorescence Maps

Method

- Uniformly heated sample of DASA with HTPB
- Raman microspectrometer mapping at 100 nm scale

Results

 No observed spatial variation in activation of uniformly heated samples

Split Hopkinson Pressure Bar

150 microsecond compressive loading

Mechanical Stress Data

A/B: Plain HTPB with DASA

C/D: Sugar Composite

E/F: Inactivated sugar granules in impacted sugar composite

G/H: Uniformly heated sample with no spatial variation

Results

- Confirm the existence of hotspots
- DASA has suitable properties for the intended application
- Weapon System Explosives Safety Review Board use case

Next

- New photoswitch
 - Different activation barrier
 - Different fluorescent signature
- Extract hotspot properties
 - Temperature
 - Duration

Acknowledgements

Funding: Defense Threat Reduction Agency

Mentor: Joseph P. Hooper, Naval Postgraduate School

Collaborators:

- Brian P. Mason
 - Department of Chemistry and Biochemistry, University of California, Santa Barbara, California
- James R. Hemmer, Sameh Helmy and Javier Read de Alaniz
 - Research Department, Naval Surface Warfare Center, Indian Head, Maryland