WAKISSHA
MARKING GUIDE
Uganda Advanced Certificate of Education
Mathematics P425/2

£ WALESKA

QUESTION 1 Let F be 4 and \bar{F} be other faces								
	х	0	1	2	3	B1		
	P(X = x)	$\frac{27}{64}$	27 64	9 64	$\frac{1}{64}$	B1		
E(X) =	$E(X) = \sum xP(X = x)$							
	$=0\left(\frac{27}{64}\right)+1\left(\frac{27}{64}\right)+2\left(\frac{9}{64}\right)+3\left(\frac{1}{64}\right)M1$							
14	$=\frac{48}{64}$ or $\frac{3}{4}$ or 0.75							
$E(X^2) = \sum x^2 P(X = x)$								
	e weetsea							

Procedure
$$= 0^{2} \left(\frac{27}{64}\right) + 1^{2} \left(\frac{27}{64}\right) + 2^{2} \left(\frac{9}{64}\right) + 3^{2} \left(\frac{1}{64}\right)$$

$$= \frac{72}{64} \text{ or } \frac{9}{8} \text{ or } 1.125$$

$$\sigma = \sqrt{\left(\frac{72}{64} - \left(\frac{48}{64}\right)^{2}\right)} \qquad \text{M1}$$

$$= \frac{3}{4} = 0.75 \qquad \text{A1}$$
2

Procedure

For motion of the taxi, u = 0, $a = 1 \text{ms}^{-2}$, s = x, t = T.

From
$$s = ut + \frac{1}{2}at^2$$
,

$$x = (0)T + \frac{1}{2}(1)T^2$$

$$2x = T^2$$
(ii) B1

Also from $v^2 = u^2 + 2as$,

$$v^2 = 0^2 + 2(1)x$$

From (ii) and (iii),

$$2x = v^2 = T^2$$

$$\epsilon$$
 $v = T$

$$x + 4 = vT$$

$$4+\frac{1}{2}v^2=v(v)$$

$$v^2 = 8$$

$$v = 2\sqrt{2}ms^{-1}$$

7.

Qn 4 Procedure
Given E(X) = 13 and
$$\sigma = \frac{7}{\sqrt{3}}$$

$$13 = \frac{a+b}{2}$$
 B1

$$\left(\frac{7}{\sqrt{3}}\right) = \sqrt{\left(\frac{(b-a)^2}{12}\right)}$$

$$\left(\frac{7}{\sqrt{3}}\right)^2 = \left(\sqrt{\left(\frac{(b-a)^2}{12}\right)}\right)^2$$

8

$$\frac{49}{3} = \frac{(b-a)^2}{12}$$

$$196 = (b-a)^2$$

$$b-a=14$$
(ii)

$$(i) + (ii)$$

$$(a+b)+(b-a)=26+14$$

$$2b = 40$$

$$b = 20$$

B1

M WALKSHA

9

Procedure

$$20 - a = 14$$

$$a = 6$$

$$f(x) = \begin{cases} \frac{1}{14} & \text{if } s \le x \le 20, \\ 0 & \text{otherwise.} \end{cases}$$

$$P(8 < X < 14) = \int_{8}^{14} \frac{1}{14} dx$$

$$=\frac{1}{14}$$

$$=\frac{1}{14}(14-8)$$

A1 05

M1

B1

Procedure

Alternatively, a graph would have been used.

$$P(8 < X < 14) = \frac{1}{14}(14 - 8)$$

A1 05

Qn 5 Procedure Copy and complete the table below.								
EFN	W	BASE	NP	7				
A21B - 03	32,000	640	31360	B 1				
D69R - 11	270,000	44,750	225,250	В1				
P48M - 47	84,000	1,930	82,070	B1				
R29N - 14	50,000	1,250	48,750	B1				
L75Q - 80	100,000	2,250	97,750	В1				
		1						
12	v	Waxesha	()5				

Draw	Procedure Draw a contingency table							
	1	$P(B) = \frac{7}{20}$	$P(\overline{B}) = \frac{13}{20}$					
	$P(A) = \frac{7}{20}$	$P(A \cap B) = \frac{4}{20}$	$P(A \cap \overline{B}) = \frac{3}{20}$					
		$P(\overline{A} \cap B) = \frac{3}{20}$						
Ι ΄	P(B) = P(A)	$(\cap B) + P(\overline{A} \cap B)$)					
$\frac{7}{20} = P(A \cap B) + \frac{3}{20}$								
$P(A \cap B) = \frac{4}{20} \text{ or } \frac{1}{5} \text{ or } 0.2$								

Procedure
$$P(A) = P(A \cap B) + P(A \cap \overline{B})$$
But
$$2P(A) = 3P(A \cap \overline{B})$$

$$\Rightarrow P(A \cap \overline{B}) = \frac{2}{3}P(A)$$

$$\therefore P(A) = P(A \cap B) + \frac{2}{3}P(A)$$

$$\frac{1}{3}P(A) = P(A \cap B) = \frac{1}{5}$$

$$P(A) = \frac{3}{5}$$
A1
$$P(A) = \frac{3}{5}$$

Procedure At equilibrium point, $T = \frac{\lambda e}{l}$ $\Rightarrow 0.5(9.8) = \frac{19.6e}{0.04}$ e = 0.01mAt point D, the energy is purely EPE. $EPE = \frac{\lambda(e+d)^2}{2l}$ $= \frac{19.6(0.01+d)2}{2(0.04)}$ At point A, the energy is purely GPE.

Procedure

GPE =
$$0.5(9.8)(d + e + 0.04)$$

= $4.9(d + 0.01 + 0.04)$

= $4.9(d + 0.05)$

Total energy at D = total energy at A

$$\frac{19.6(0.01 + d)^2}{2(0.04)} = 4.9(d + 0.05)$$

M1

9950 $d^2 + 3d - 8.805 = 0$

$$d = \frac{-3\pm\sqrt{3^2 - 4(9950)(-8.805)}}{2(9950)}$$

$$d = 0.029597, d = -0.029899$$

$$d = 0.03m$$
A1

Procedure
Sum of energies at E = KE + EPE + GPE

$$= KE + \frac{19.6(0.01)^2}{2(0.04)} + 0.5(9.8)(0.029597)$$

$$= 0.16953 + KE$$
Sum of energy at D = EPE
$$= \frac{19.6(0.01 + 0.029597)^2}{2(0.04)}$$

$$= 0.38414$$
Sum of energies at E = Sum of energy at D
$$0.16953 + KE = 0.38414$$

$$KE = 0.215J.$$
A1
$$22$$

QUESTION 9										
Procedure										
Let y =	= x ³ +	- 4x²	- 16							
	х	-3	-2	-1	0	1	2	3	4	B1
	У	-7	-8	-13	-16	-11	8	47	112	BI
f(1)f(2) = (-11)(8) M1 = -88. B1										
Since $f(1)f(2) < 0$, a root exists between $x = 1$ and										
x=2. A1										
				•	накин				2	13

$$f(x) = x^3 + 4x^2 - 16 = 0$$

$$f'(x) = 3x^2 + 8x$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$= x_n - \frac{(x_n^3 + 4x_n^2 - 16)}{(3x_n^2 + 8x_n)}$$

$$\text{Let } x_0 = \frac{1+2}{2}$$

$$= 1.5$$

24

$$x_1 = 1.5 - \frac{(1.53 + 4(1.5)^2 - 16)}{(3(1.5)^2 + 8(1.5))}$$

$$= 1.693333$$

$$x_2 = 1.693333 - \frac{((1.693333)^3 + 4(1.693333)^2 - 16)}{(3(1.693333)^2 + 8(1.693333))}$$

$$= 1.678663$$

$$x_3 = 1.678663 - \frac{((1.678663)^3 + 4(1.678663)^2 - 16)}{(3(1.678663)^2 + 8(1.678663))}$$

$$= 1.678574$$
A1

Procedure

$$x_4 = 1.678574 - \frac{((1.678574)^3 + 4(1.678574)^2 - 16)}{(3(1.678574)^2 + 8(1.678574))}$$

= 1.678574 M1
root = 1.6786 (4D) A1

12

26

n waster

OUESTION 10 Procedure

This a binomial probability distribution problem with n = 25, p = 0.4 and q = 0.6

$$\mu = np$$
= (25)(0.4)
= 10
 $\sigma = \sqrt{npq}$
= $\sqrt{((25)(0.4)(0.6))}$
= $\sqrt{6}$
B1

P(X = 8) = P(7 < X < 9)

The range 7 < X < 9 can be considered as a class. 27

Procedure

 $P(X = 8) = P(7.5 \le Y \le 8.5)$

Standardising,

$$P(X = 8) = P(7.5 \le Y \le 8.5)$$

$$= P\left(\frac{7.5 - 10}{\sqrt{6}} \le Z \le \frac{8.5 - 10}{\sqrt{6}}\right) \qquad M1 B1$$
$$= P(-1.021 \le z \le -0.612)$$

$$P(X = 8) = 0.34637 - 0.22973$$

34637 – 0.22973 B1

$$= 0.11664$$

Α1

P(between 9 and 15 times inclusive) = $P(9 \le X \le 15)$

Procedure $P(9 \le X \le 15) = P(8.5 \le Y \le 15.5)$ $= P\left(\frac{8.5 - 10}{\sqrt{6}} \le Z \le \frac{15.5 - 10}{\sqrt{6}}\right) M1$ $= P(-0.612 \le Z \le 2.245)$ = 0.22973 + 0.48762 = 0.71735 A1 $P(49 < \overline{X} < 50.5) = P\left(\frac{7.5 - 10}{3} \le Z \le \frac{8.5 - 10}{3}\right) M1$ = P(-1.491 < Z < 0.745)

$$P(49 < \overline{X} < 50.5) = 0.43202 + 0.27186$$

= 0.70388 A1

12

30

The corresponding force diagram becomes.

$$(\rightarrow) \qquad X = 8 - 4 - 2\sqrt{2}(\cos 45^{\circ})$$

=2N

30

B1

B1

Procedure

(1)
$$Y = -3 - 3 + 2\sqrt{2}(\sin 45^\circ)$$

= -4N

The resultant R has a negative gradient.

Let m be the gradient

$$m = \frac{4}{2}$$

B1

31

B1

Procedure

The equivalent force system becomes

Perpendicular distance d = 4sin45°

When y = 0,

 $=2\sqrt{2}m$

TI WALKSHA

32

Procedure

LHS moment = $-3(4) + 4(4) + 2\sqrt{2}(2\sqrt{2})$ B1 A)

= 12

 \widehat{A} RHS moment = -c(2)

= -2c

LHS moment = RHS moment

$$12 = -2c$$

c = -6

The equation of line of action is of the form

y = mx + c

M1

m = -2 and c = -6Hence

y = -2x - 6CHARMIE

B1

33

B1

Procedure

0 = 2x - 6x = -3m (3m on BA produced.) B1

Alternative LHS RHS

Procedure

- A) LHS moment = $-3(4) + 4(4) + 2\sqrt{2}(2\sqrt{2})$
- = 12RHS moment = -4x

Equating moments,

$$12 = -4x$$
$$x = -3m$$

3m on BA produced.

When a couple M is added to the system, its effect is simply to displace the resultant force.

35

7	QUESTION 12 Procedure									
۱	Class	f	х	fρ	xf	x²f	CF			
	20≤x<30	4	25	0.4	100	2500	4			
	30 ≤ x < 45	3	37.5	0.2	112.5	4218.75	7			
	45 ≤ x < 50	9	47.5	1.8	427.5	20306.25	16	В1		
	50≤x<65	21	57.5	1.4	1207.5	69431.25	37			
	65≤x<75	3	70	0.3	210	14700	40			
	75≤x<80	5	77.5	1.0	387.5	30031.25	45			
	80 ≤ x < 100	14	90	0.7	1260	113400	59			
	$\sum f = 59$, $\sum xf = 3705$, $\sum x^2f = 254587.5$									

Procedure						
Position of median = $\frac{59}{2}$ = 29.5						
Let m ne the median,						
50 m 65 16 29.5 37						
$\frac{m-50}{65-50} = \frac{29.5-16}{37-16}$	M1					
$\frac{65 - 50}{m} = 59.6$	A1					
40 0 0000	12	12				

QUESTION 13

Min. value =
$$\frac{a - E_A}{b + E_B}$$

Max. value = $\frac{a + E_A}{b - E_B}$

Error (E_C) = $\frac{1}{2}$ (Max. value – Min. value)

= $\frac{1}{2} \left(\frac{a + E_A}{b - E_B} - \frac{a - E_A}{b + E_B} \right)$

= $\frac{1}{2} \left(\frac{(a + E_A)(b + E_B) - (a - E_A)(b - E_B)}{(b - E_B)(b + E_B)} \right)$

= $\frac{1}{2} \left(\frac{(ab+b(EA)+a(EB)+(EA)(EB)-ab+b(E_A)+a(E_B)-(E_A)(E_B))}{(b - E_B)(b + E_B)} \right)$

For small E_A and E_B, (E_A)(E_B) ≈ 0 and (E_B)(E_B) ≈ 0

E_C = $\frac{1}{2b^2} (2a(E_B)+2b(E_A))$

= $\frac{1}{b^2} (a(E_B)+b(E_A))$

$$\begin{aligned} & \textit{Procedure} \\ & |E_C| \leq \left(\left| \frac{a(EB) + b(EA)}{b^2} \right| \right) & \text{M1} \\ & \left| \frac{b}{a} \right| |E_C| \leq \left| \frac{b}{a} \right| \left(\left| \frac{a(EB) + b(EA)}{b^2} \right| \right) \\ & \leq \left(\left| \frac{E_A}{a} \right| + \left| \frac{E_B}{b} \right| \right) \\ & |E_C| \leq \left| \frac{a}{b} \right| \left(\left| \frac{E_A}{a} \right| + \left| \frac{E_B}{b} \right| \right) \\ & \text{Absolute error} = \left| \frac{a}{b} \right| \left(\left| \frac{E_A}{a} \right| + \left| \frac{E_B}{b} \right| \right) & \text{A1} \\ & \frac{A - B}{C} \equiv \frac{P}{C} \\ & A - B = P \end{aligned}$$

Procedure	-
$E_{P} = E_{(A-B)}$	
$= E_{A} + E_{B} $	
Error in $\frac{P}{C} = \left \frac{p}{c} \right \left(\left \frac{E_p}{P} \right + \left \frac{E_C}{c} \right \right)$	
But	
p = a - b	
$Error = \left \frac{a - b}{c} \right \left(\frac{ E_A + E_B }{ a - b } + \frac{ E_C }{ c } \right)$	B1
For $a = 4.314$, $b = 18.92$ and $c = 15.0214$,	
$E_A = 0.0005$, $E_B = 0.005$ and $E_C = 0.00005$	B1
P WARRING	42

Procedure	
Error = $\left \frac{4.314 - 18.92}{15.0214} \right \left(\frac{ 0.0005 + 0.005 }{ 4.314 - 18.92 } + \right)$	$\frac{ 0.00005 }{ 15.0214 }$ M
= 0.00037	A1
Working value = $\frac{4.314 - 18.92}{15.0214}$	M
= -0.97235	
Lower limit = $-0.97235 - 0.00037$	
= -0.9727	\mathbf{M} 1
Upper limit = -0.97235 + 0.00037 = -0.9720	M
Range of values is [-0.9727, -0.9720]	43 A1

For
$$x \le 2$$
, $f(x) = 0$ also for $x \ge 3$ $f(x) = 0$
For $-2 \le x \le 0$,
 $m = \frac{2k - 0}{0 - 2}$
 $= k$
For any other point $(x, f(x))$,
 $m = \frac{f(x) - 0}{x - 2}$
 $\therefore \frac{f(x) - 0}{x - 2} = k$ M1
 $f(x) = k(2 + x)$

For
$$0 \le x \le 2$$
,
 $m = 0$
Also for any point $(x, f(x))$,
 $m = \frac{f(x) - 2k}{x - 0}$

$$\therefore \frac{f(x) - 2k}{x - 0} = 0$$

$$f(x) = 2k \text{ For } 2 \le x \le 3, \qquad B1$$

$$m = \frac{2.5k - 2k}{3 - 2} \qquad M1$$

$$= 0.5k$$

For any point (x,f(x))
$$m = \frac{f(x) - 2k}{x - 2}$$
Hence
$$0.5k = \frac{f(x) - 2k}{x - 2}$$

$$f(x) = \frac{k}{2}(2 + x)$$

$$f(x) = \begin{cases} k(2 + x) & ; -2 \le x \le 0, \\ 2k & ; 0 \le x \le 2, \\ \frac{k}{2}(2 + x) & ; ; 2 \le x \le 3, \\ 0 & ; ; \end{cases}$$
Otherwise

Procedure

For P((X>-1)/(-1.5< X<1)), let X>-1 be A and -1.5< X<1 be B

Then

$$\begin{split} P((X>-1)/(-1.5< X<1)) &= \frac{P\big((X>-1)\cap (-1.5< X<1)\big)}{P(-1.5< X<1)} \\ &= \frac{P(-1 < X < 1)}{P(-1.5< X<1)} \end{split}$$

e wante

52.

$$Procedure$$

$$A_{2} = (1-0)(2k)$$

$$= 2k$$

$$P(-1.5 < X < 1) = A_{1} + A_{2}$$

$$= \frac{15k}{8} + 2k$$

$$= \left(\frac{4}{33}\right)\left(\frac{15}{8} + 2\right) \qquad M1$$

$$= \frac{31}{66}$$

$$P((X > -1)/(-1.5 < X < 1)) = \left(\frac{14}{33}\right) \div \left(\frac{31}{66}\right) \qquad M1$$

$$= \frac{28}{31}$$

$$= \frac{31}{66}$$
A1

$$Procedure$$

$$E(X) = \int xf(x) dx$$

$$= \int_{-2}^{0} kx(2+x)dx + \int_{0}^{2} 2kx dx + \int_{2}^{3} kx(2+x)dx$$

$$= k(x^{2} + \frac{1}{3}x^{3}) \Big|_{-2}^{0} + k(x^{2}) \Big|_{0}^{2} + k(x^{2} + \frac{1}{3}x^{3}) \Big|_{2}^{3} \qquad M1$$

$$= \left(\frac{4}{33}\right) \left((0)^{2} + \frac{1}{3}(0)^{3}\right) - \left((-2)^{2} + \frac{1}{3}(-2)^{3}\right)$$

$$+ \left(\frac{4}{33}\right) (2)^{2} - \left(\frac{4}{33}\right) (0)^{2} + \left(\frac{4}{33}\right) ((3)^{2} + \frac{1}{3}(3)^{3})$$

$$- \left(\frac{4}{33}\right) ((2)^{2} + \frac{1}{3}(2)^{3})$$

$$= \frac{100}{99} \qquad A1$$

$$12$$

$$\begin{array}{c} \textbf{Procedure} \\ R = \sqrt{(X^2 + Y^2)} \\ = \sqrt{((118.81869)^2 + (235.2)^2)} & \text{M1} \\ = 263.5089N & \text{A1} \\ \hline \textbf{A)} & 118.8187(2\cos\theta) - 137.2(2\sin\theta) - 10(9.8)\sin\theta = 0 \\ \tan\theta = \frac{237.63674}{372.4} & \text{M1} \\ \theta = 32.54^{\circ}. & \text{A1} \\ \hline \textbf{12} \\ \textbf{6} & \bullet & \bullet \\ \end{array}$$