29. Opáčko před čtvrtletkou

Úloha 1.

Obrazce jsou tvořeny bílými a tmavými šestiúhelníky uspořádanými do sloupců.

Počet šestiúhelníků ve sloupcích se postupně zvětšuje, a to od levého, resp. pravého okraje obrazce směrem ke středu.

Každý obrazec vždy začíná a končí sloupcem s jediným bílým šestjúhelníkem.

V jednom z dalších obrazců je v **nejdelším** sloupci 59 šestiúhelníků nad sebou. Určete, kolik je v onom obrazci **bílých** šestiúhelníků.

Úloha 2. Megasněhulák se skládá z n sněhových koulí, přičemž poloměr každé koule je vždy $\frac{3}{4}$ poloměru koule pod ní. **Druhá** koule odspodu má poloměr 1 m. Určete **objem** celého sněhuláka, pokud se skládá z

- (a) n = 20 koulí,
- (b) $n = \infty$ koulí.

(Připomenutí: objem koule o poloměru r je $V=\frac{4}{3}\pi r^3$. Napovím, že objemy koulí tvoří geom. posloupnost.)

Úloha 3.

Ve čtverci *PQRS* o straně délky 6 m je nekonečně mnoho stále se zmenšujících tmavých rovnoramenných pravoúhlých trojúhelníků. Největší z nich je trojúhelník *PQR*.

Každý následující trojúhelník má vrchol pravého úhlu uprostřed přepony předchozího trojúhelníku, což je i jediný společný bod obou trojúhelníků.

Středem stejnolehlosti libovolné dvojice těchto trojúhelníků je vrchol S.

Určete celkový obsah šedé oblasti.

Úloha 4. U následujících řad určete, pro která $x \in \mathbb{R}$ konvergují, a potom jejich součet (který zjednodušte): (a) $\sum_{k=1}^{\infty} (x^2-2)^k$ (b) $\sum_{k=1}^{\infty} \left(\frac{x+1}{x}\right)^k$ (c) $\sum_{k=1}^{\infty} x^{3k}$

* Úloha 5. Určete součet následujících řad (které nejsou geometrické):

(a)
$$\sum_{n=0}^{\infty} \frac{n}{2^n}$$
 (Nápověda: např. $\frac{3}{2^3} = \frac{1}{2^3} + \frac{1}{2^3} + \frac{1}{2^3}$)

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 (Nápověda: přepište sčítaný zlomek na rozdíl dvou zlomků)

1. 1741

2. (a)
$$(\frac{4}{3})^4 \pi \frac{(\frac{3}{4})^{60} - 1}{(\frac{3}{4})^3 - 1}$$
 (b) $(\frac{4}{3})^4 \pi \frac{1}{1 - (\frac{3}{4})^3}$

3. 24

4. (a)
$$x \in (-\sqrt{3}; -1) \cup (1; \sqrt{3}), \frac{2-x^2}{x^2-3}$$
 (b) $x \in (-\infty; -\frac{1}{2}), -1-x$ (c) $x \in (-1; 1), \frac{x^3}{1-x^3}$

5. (a) 2 (b) 1