Colles de mathématiques en PCSI 5

13 mars 2012

Programme

Calcul intégral et développements limités.

Exercice nº 1

Pour x > 1, on se propose de calculer l'intégrale :

$$I = \int_0^{\pi} \ln(1 - 2x\cos(t) + x^2) dt.$$

- 1. Justifier que I est bien définie.
- 2. On décide alors d'approcher I par des sommes de Riemann à pas constant. En utilisant l'identité : $X^2 2\cos(\alpha)X + 1 = (X e^{i\alpha})(X e^{-i\alpha})$, prouver que la n-ième somme s'écrit :

$$S_n = \frac{\pi}{n} \ln \left(\frac{(x-1)(x^{2n}-1)}{x+1} \right).$$

Conclure.

Exercice nº 2

Soit $f: [0,1] \to \mathbb{R}$ continue. Prouver que:

$$\prod_{k=1}^{n} \left(1 + \frac{1}{n} f\left(\frac{k}{n}\right) \right) \xrightarrow[n \to \infty]{} \exp\left(\int_{0}^{1} f(t) dt \right).$$

Exercice nº 3

Simplifier

$$\int_0^{\sin^2 x} \arcsin(\sqrt{t}) dt + \int_0^{\cos^2 x} \arccos(\sqrt{t}) dt.$$

Exercice nº 4

On pose ici $I_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt$.

- 1. Conparer I_n et $\int_0^{\frac{\pi}{2}} \sin^n(t) dt$.
- **2.** Prouver que $(I_n) \xrightarrow[n \to \infty]{} 0$.
- **3.** Chercher une relation entre I_n et I_{n+2} . En déduire I_{2k} et I_{2k+1} pour tout k.
- 4. Prouver que $nI_nI_{n-1} = \frac{\pi}{2}$.
- **5.** Montrer que $I_n \sim I_{n-1}$. Donner alors un équivalent simple de (I_n) .

Exercice nº 5

Déterminer les limites suivantes :

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + 2kn}} \,, \quad \lim_{n \to \infty} \prod_{k=1}^{n} \left(1 + \frac{k^2}{n^2} \right)^{\frac{1}{n}} \,, \quad \lim_{n \to \infty} \prod_{k=1}^{n} \left(1 + \frac{1}{k^2 + n^2} \right)^{n} \,.$$

Exercice nº 6

Calculer les intégrales suivantes :

$$\int_1^2 (\ln x)^2 dx, \quad \int_a^b \sqrt{(x-a)(b-x)} dx, \quad \int_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx.$$

Solution.
$$2(\ln 2)^2 - 4\ln 2 + 2$$
, $\frac{\pi(b-a)^2}{8}$, $\frac{\pi^2}{4}$.

Exercice nº 7

Déterminer les primitives des fonctions suivantes, en indiquant l'ensemble de validité :

- 1. $x^2 e^x \sin x$;
- **2.** $\frac{1}{x(\sqrt{x+1}+\sqrt{x})}$;
- 3. $\sqrt{e^x 1}$
- 4. $\frac{\tan x}{1+\sin^2 x}$.

Exercice nº 8

Déterminer les limites suivantes :

$$\lim_{x \to 0^+} x^{\frac{1}{x^x - 1}}, \quad \lim_{x \to 0^+} \frac{(\sin x)^x - 1}{x^x - 1}, \quad \lim_{x \to 1} \left(\tan \left(\frac{\pi x}{4} \right) \right)^{\tan \left(\frac{\pi x}{2} \right)}, \quad \lim_{x \to 1} (x^2 + x - 2) \tan \left(\frac{\pi x}{2} \right).$$

Solution.
$$+\infty$$
, 1 , $\frac{1}{e}$, $-\frac{\pi}{6}$.

Exercice nº 9

Donner:

1. Un DL_2 en 0 de

$$\left(\frac{\sin x}{x}\right)^{\frac{3}{x^2}}.$$

2. Un DL_5 en 0 de

$$\frac{1}{x^2} - \frac{1}{\arcsin^2 x}.$$

3. Un DL_{10} en 0 de

$$\int_{x}^{x^2} \frac{dt}{\sqrt{1+t^4}}.$$

4. Un DL_{100} en 0 de

$$\ln\left(\sum_{k=0}^{98} \frac{x^k}{k!}\right)$$
.

2

Solution. 1. $\frac{1}{\sqrt{e}}(1 - \frac{1}{60}x^2 + o(x^2))$;

- 2. $\frac{1}{3} + \frac{1}{15}x^2 + \frac{31}{945}x^4 + o(x^5)$; 3. $-x + 2x + \frac{1}{10}x^5 \frac{1}{24}x^9 \frac{1}{10}x^{10} + o(x^{10})$; 4. $x \frac{x^{99}}{99!} + \frac{x^{100}}{98!100} + o(x^{100})$.