Simple Mat

Généré par Doxygen 1.9.1

1 Index des structures de données	1
1.1 Structures de données	1
2 Index des fichiers	3
2.1 Liste des fichiers	3
3 Documentation des structures de données	5
3.1 Référence de la structure simplemat_s	5
3.1.1 Documentation des champs	5
3.1.1.1 data	5
3.1.1.2 num_cols	5
3.1.1.3 num_rows	5
4 Documentation des fichiers	7
4.1 Référence du fichier include/simplemat.h	7
4.1.1 Documentation des macros	8
4.1.1.1 INVALID_CARREE	9
4.1.1.2 INVALID_COLS	9
4.1.1.3 INVALID_DIM	9
4.1.1.4 INVALID_DIM_ADD	9
4.1.1.5 INVALID_DIM_MUL	9
4.1.1.6 INVALID_DIM_MUL_D	9
4.1.1.7 INVALID_DIM_MUL_G	9
4.1.1.8 INVALID_INV	10
4.1.1.9 INVALID_INVERSION	10
4.1.1.10 INVALID_LIGNE	10
4.1.1.11 INVALID_ROWS	10
4.1.1.12 INVALID_SYS_DIM	10
4.1.2 Documentation des définitions de type	10
4.1.2.1 s_mat	10
4.1.3 Documentation des fonctions	10
4.1.3.1 afficher_mat()	11
4.1.3.2 echange_deux_lignes()	11
4.1.3.3 est_carree()	11
4.1.3.4 est_egal()	11
4.1.3.5 est_id()	11
4.1.3.6 est_nulle()	11
4.1.3.7 mat_add()	12
4.1.3.8 mat_alea()	12
4.1.3.9 mat_alea_entier()	12
4.1.3.10 mat_minus()	12
4.1.3.11 mat_mul()	12
4.1.3.12 mat_mul_droite()	13

4.1.3.13 mat_mul_ext()	 . 13
4.1.3.14 mat_mul_gauche()	 . 13
4.1.3.15 mat_oppose()	 . 13
4.1.3.16 s_mat_carree()	 . 13
4.1.3.17 s_mat_coef()	 . 13
4.1.3.18 s_mat_copie()	 . 14
4.1.3.19 s_mat_e()	 . 14
4.1.3.20 s_mat_free()	 . 14
4.1.3.21 s_mat_h()	 . 14
4.1.3.22 s_mat_id()	 . 14
4.1.3.23 s_mat_l()	 . 14
4.1.3.24 s_mat_new()	 . 15
4.1.3.25 trace()	 . 15
4.1.3.26 transpose()	 . 15
4.2 Référence du fichier include/sm_test.h	 . 15
4.2.1 Documentation des fonctions	 . 15
4.2.1.1 run_tests()	 . 15
4.3 Référence du fichier include/sm_util.h	 . 16
4.3.1 Documentation des macros	 . 17
4.3.1.1 ALLOC_CHECK	 . 17
4.3.1.2 DEBUG_TRUE	 . 17
4.3.1.3 LOG_ERROR	 . 17
4.3.1.4 RESET	 . 17
4.3.1.5 ROUGE	 . 17
4.3.1.6 VERT	 . 17
4.3.1.7 VIOLET	 . 18
4.3.2 Documentation des fonctions	 . 18
4.3.2.1 egalD()	 . 18
4.3.2.2 error_log()	 . 18
4.3.2.3 max()	 . 18
4.3.2.4 min()	 . 18
4.3.2.5 my_log()	 . 18
4.4 Référence du fichier src/simplemat.c	 . 19
4.4.1 Documentation des macros	 . 20
4.4.1.1 INVALID_CARREE	 . 20
4.4.1.2 INVALID_COLS	 . 20
4.4.1.3 INVALID_DIM	 . 20
4.4.1.4 INVALID_DIM_ADD	 . 20
4.4.1.5 INVALID_DIM_MUL	 . 21
4.4.1.6 INVALID_DIM_MUL_D	 . 21
4.4.1.7 INVALID_DIM_MUL_G	 . 21
4.4.1.8 INVALID_INVERSION	 . 21

4.4.1.9 INVALID_LIGNE	21
4.4.1.10 INVALID_ROWS	21
4.4.2 Documentation des définitions de type	21
4.4.2.1 s_mat	21
4.4.3 Documentation des fonctions	22
4.4.3.1 afficher_mat()	22
4.4.3.2 echange_deux_lignes()	22
4.4.3.3 est_carree()	22
4.4.3.4 est_egal()	22
4.4.3.5 est_id()	22
4.4.3.6 est_nulle()	22
4.4.3.7 mat_add()	23
4.4.3.8 mat_alea()	23
4.4.3.9 mat_alea_entier()	23
4.4.3.10 mat_minus()	23
4.4.3.11 mat_mul()	23
4.4.3.12 mat_mul_droite()	23
4.4.3.13 mat_mul_ext()	24
4.4.3.14 mat_mul_gauche()	24
4.4.3.15 mat_oppose()	24
4.4.3.16 s_mat_carree()	24
4.4.3.17 s_mat_coef()	24
4.4.3.18 s_mat_copie()	24
4.4.3.19 s_mat_e()	25
4.4.3.20 s_mat_free()	25
4.4.3.21 s_mat_h()	25
4.4.3.22 s_mat_id()	25
4.4.3.23 s_mat_l()	25
4.4.3.24 s_mat_new()	25
4.4.3.25 trace()	26
4.4.3.26 transpose()	26
4.5 Référence du fichier src/sm_test.c	26
4.5.1 Documentation des fonctions	26
4.5.1.1 run_tests()	27
4.6 Référence du fichier src/sm_util.c	27
4.6.1 Documentation des fonctions	27
4.6.1.1 egalD()	27
4.6.1.2 error_log()	28
4.6.1.3 max()	28
4.6.1.4 min()	28
4.7 Référence du fichier src/test.c	28
4.7.1 Documentation des fonctions	29

	4.7.1.1 main()	29
4.8 Référ	rence du fichier src/tp_1.c	29
4.8.	.1 Documentation des fonctions	30
	4.8.1.1 determinant()	30
	4.8.1.2 echelon_passage()	30
	4.8.1.3 echelonner()	30
	4.8.1.4 est_inversible()	30
	4.8.1.5 inverse()	30
	4.8.1.6 LU()	31
	4.8.1.7 main()	31
	4.8.1.8 pivot_sous_mat_j()	31
	4.8.1.9 rang()	31
	4.8.1.10 solve_triangulaire_inf()	31
	4.8.1.11 solve_triangulaire_sup()	31
Index	3	33

Chapitre 1

Index des structures de données

	~ : .		,
77	Structures	$\Delta \Delta \Delta \Delta A$	annaac
	SHUCKUICS	ue u	JIIIIEES

Liste des structure	s d	e c	lor	าท	ées	s a	ve	c u	ne	b b	rè	ve	d	es	cri	pt	ior	n :											
simplemat_s																													

Chapitre 2

Index des fichiers

2.1 Liste des fichiers

Liste de tous les fichiers avec une brève description :

include/simplemat.h						 							 			 				7
include/sm_test.h .						 							 			 				15
include/sm_util.h .						 							 			 				16
src/simplemat.c						 							 			 				19
src/sm_test.c						 							 							26
src/sm_util.c						 							 			 				27
src/test.c						 							 			 				28
src/tp 1.c						 							 			 				29

Index des fichiers

Chapitre 3

Documentation des structures de données

Référence de la structure simplemat_s 3.1

```
#include <simplemat.h>
```

Champs de données

- unsigned int num_rowsunsigned int num_cols
- double ** data

3.1.1 Documentation des champs

3.1.1.1 data

double ** simplemat_s::data

3.1.1.2 num_cols

unsigned int simplemat_s::num_cols

3.1.1.3 num_rows

unsigned int simplemat_s::num_rows

La documentation de cette structure a été générée à partir du fichier suivant :

- include/simplemat.h
- src/simplemat.c

Documentation	doc	etructurae	do d	lannáac
Documentation	1145	Siruciures	oe o	ionnees

Chapitre 4

Documentation des fichiers

4.1 Référence du fichier include/simplemat.h

#include "sm_util.h"

Graphe des dépendances par inclusion de simplemat.h:

Ce graphe montre quels fichiers incluent directement ou indirectement ce fichier :

Structures de données

struct simplemat_s

Macros

```
#define INVALID_ROWS "Le nombre de ligne ne peut être nul"
#define INVALID_COLS "Le nombre de colonne ne peut être nul"
#define INVALID_DIM "La dimension ne peut être nulle"
#define INVALID_SYS_DIM "Les matrices doivent avoir le même nombre de lignes"
#define INVALID_DIM_ADD "Les dimensions des deux matrices doivent être identiques pour en faire la somme"
#define INVALID_DIM_MUL "Le nombre de colonnes de la première matrice doit être égal au nombre de ligne de la seconde pour effectuer le produit de deux matrices"
#define INVALID_LIGNE "L'indice de ligne ou colonne doit être inférieur à la taille de la matrice"
#define INVALID_INVERSION "Pour les matrices d'interversion ou de type L(n,i,j,a) les indices doivent être différents"
#define INVALID_CARREE "La matrice doit être carrée"
#define INVALID_DIM_MUL_D "La matrice de droite n'est pas carrée"
#define INVALID_DIM_MUL_D "La matrice de gauche n'est pas carrée"
#define INVALID_DIM_MUL_G "La matrice de gauche n'est pas carrée"
```

Définitions de type

typedef struct simplemat_s s_mat

Fonctions

```
- s_mat * s_mat_new (unsigned int num_row, unsigned int num_cols)
- s_mat * s_mat_corree (unsigned int n)
- s_mat * s_mat_copie (s_mat *matrice)
- s_mat * s_mat_id (unsigned int n)
- s_mat * s_mat_coef (unsigned int n, unsigned int m, double valeurs[], unsigned int nbVal)
- s_mat * mat_alea_entier (unsigned int n, unsigned int m, int min, int max)
- s_mat * mat_alea (unsigned int n, unsigned int m, int min, int max)
- s_mat * s_mat_e (unsigned int n, unsigned int i, unsigned j)
- s_mat * s_mat_h (unsigned int n, unsigned int i, double a)
- s_mat * s_mat_l (unsigned int n, unsigned int i, unsigned int j, double a)
- s_mat * mat_add (s_mat *A, s_mat *B)
- s_mat * mat_minus (s_mat *A, s_mat *B)
- s_mat * mat_mul_ext (s_mat *matrice, double scalaire)
- s_mat * mat_oppose (s_mat *matrice, double scalaire)
- s_mat * mat_mul_droite (s_mat *A, s_mat *B)
- void mat_mul_droite (s_mat *A, s_mat *B)
- void mat_mul_droite (s_mat *A, s_mat *B)
- void mat_mul_gauche (s_mat *A, s_mat *B)
- void s_mat_free (s_mat *matr)
- double trace (s_mat *A)
- s_mat * transpose (s_mat *A)
- Bool est_carree (s_mat *matrice)
- Bool est_egal (s_mat *A, s_mat *B)
- Bool est_loid (s_mat *A, s_mat *B)
- Sool est_nulle (s_mat *A, s_mat *B, sool est_nulle (s_mat *A,
```

4.1.1 Documentation des macros

4.1.1.1 INVALID_CARREE

#define INVALID_CARREE "La matrice doit être carrée"

4.1.1.2 INVALID_COLS

#define INVALID_COLS "Le nombre de colonne ne peut être nul"

4.1.1.3 INVALID_DIM

#define INVALID_DIM "La dimension ne peut être nulle"

4.1.1.4 INVALID_DIM_ADD

#define INVALID_DIM_ADD "Les dimensions des deux matrices doivent être identiques pour en faire la somme"

4.1.1.5 INVALID_DIM_MUL

#define INVALID_DIM_MUL "Le nombre de colonnes de la première matrice doit être égal au nombre de ligne de la seconde pour effectuer le produit de deux matrices"

4.1.1.6 INVALID_DIM_MUL_D

#define INVALID_DIM_MUL_D "La matrice de droite n'est pas carrée"

4.1.1.7 INVALID_DIM_MUL_G

#define INVALID_DIM_MUL_G "La matrice de gauche n'est pas carrée"

4.1.1.8 INVALID_INV

#define INVALID_INV "La matrice n'est pas inversible"

4.1.1.9 INVALID_INVERSION

#define INVALID_INVERSION "Pour les matrices d'interversion ou de type L(n,i,j,a) les indices doivent être différents"

4.1.1.10 INVALID_LIGNE

#define INVALID_LIGNE "L'indice de ligne ou colonne doit être inférieur à la taille de la matrice"

4.1.1.11 INVALID_ROWS

#define INVALID_ROWS "Le nombre de ligne ne peut être nul"

4.1.1.12 INVALID_SYS_DIM

#define INVALID_SYS_DIM "Les matrices doivent avoir le même nombre de lignes"

4.1.2 Documentation des définitions de type

4.1.2.1 s_mat

 ${\tt typedef \ struct \ simplemat_s \ s_mat}$

4.1.3 Documentation des fonctions

4.1.3.1 afficher_mat()

Affiche une matrice à l'écran

4.1.3.2 echange_deux_lignes()

```
void echange_deux_lignes ( s\_mat * A, \\ unsigned int i, \\ unsigned int j )
```

Échange deux lignes

4.1.3.3 est_carree()

```
_Bool est_carree (
s_mat * matrice )
```

La matrice est-elle carrée?

4.1.3.4 est_egal()

```
_Bool est_egal (
    s_mat * A,
    s_mat * B)
```

Deux matrices sont-elles égales?

4.1.3.5 est_id()

```
_Bool est_id ( s\_mat \ * \ A \ )
```

Renvoie vrai si la matrice est la matrice identité

4.1.3.6 est_nulle()

```
_Bool est_nulle (
s_mat * A )
```

Renvoie vrai si la matrice est nulle

4.1.3.7 mat_add()

Structure d'espace vectoriel

Addition de deux matrices

4.1.3.8 mat_alea()

```
s_mat* mat_alea (
          unsigned int n,
          unsigned int m,
          int min,
          int max )
```

Matrice aléatoires de flottants

4.1.3.9 mat_alea_entier()

```
s_mat* mat_alea_entier (
          unsigned int n,
          unsigned int m,
          int min,
          int max )
```

Matrice aléatoires

Matrice aléatoires d'entier

4.1.3.10 mat_minus()

```
s_mat* mat_minus ( s_mat* A, s_mat* B)
```

Soustration de deux matrices

4.1.3.11 mat_mul()

Structure d'algèbre

Multiplication de deux matrices Renvoie une matrice produit de A et de B

4.1.3.12 mat_mul_droite()

Multiplication de deux matrices multiplie la matrice A par une matrice carrée B A<-A*B

4.1.3.13 mat_mul_ext()

Multiplication par un scalaire

4.1.3.14 mat_mul_gauche()

```
void mat_mul_gauche (
    s_mat * A,
    s_mat * B )
```

Multiplication de deux matrices multiplie la matrice B à gauche par la matrice carrée A B<-A*B

4.1.3.15 mat_oppose()

Opposé d'une matrice

4.1.3.16 s_mat_carree()

```
s_mat* s_mat_carree (
          unsigned int n )
```

Crée une matrice carrée

Matrice carrée

4.1.3.17 s_mat_coef()

```
s_mat* s_mat_coef (
          unsigned int n,
          unsigned int m,
          double valeurs[],
          unsigned int nbVal )
```

Matrice coefficients donnés

4.1.3.18 s_mat_copie()

Copie une matrice

Copie d'une matrice

4.1.3.19 s_mat_e()

Inversion de deux lignes

4.1.3.20 s_mat_free()

Libère la mémoire occupée par une matrice

4.1.3.21 s_mat_h()

Homothétie

4.1.3.22 s_mat_id()

```
s_mat* s_mat_id (
          unsigned int n )
```

Crée une matrice identité

Matrice identité

4.1.3.23 s_mat_l()

4.1.3.24 s_mat_new()

Constructeurs Allocation de la mémoire d'une matrice allocation d'un pointeur vers un s_mat

Allocation d'un tableau de pointeurs

Allocation de n*m double

4.1.3.25 trace()

```
double trace ( s_{mat} * A )
```

Renvoie la trace d'une matrice

4.1.3.26 transpose()

Renvoie la transposée d'une matrice

4.2 Référence du fichier include/sm_test.h

Fonctions

```
— int run_tests (void)
```

4.2.1 Documentation des fonctions

4.2.1.1 run_tests()

```
int run_tests (
     void )
```

Référence du fichier include/sm_util.h 4.3

```
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <time.h>
```

Graphe des dépendances par inclusion de sm_util.h:

Ce graphe montre quels fichiers incluent directement ou indirectement ce fichier :

Macros

```
-- #define DEBUG_TRUE 1
-- #define ROUGE "\033[0;31m"
-- #define RESET "\033[0m"
-- #define VERT "\033[0;32m"
-- #define VIOLET "\033[0;35m"
-- #define LOG_ERROR(fmt) error_log(stderr, __FILE__, __LINE__, ROUGE fmt RESET);
-- #define ALLOC_CHECK(ptr)
```

Fonctions

- void error_log (FILE *stream, const char *file_name, unsigned int line, const char *format)
 void my_log (FILE *stream, const char *file_name, unsigned int line, const char *format)
 _ Bool egalD (double a, double epsilon)
 _ double max (double num1, double num2)

- double min (double num1, double num2)

4.3.1 Documentation des macros

4.3.1.1 ALLOC_CHECK

4.3.1.2 DEBUG_TRUE

```
#define DEBUG_TRUE 1
```

4.3.1.3 LOG_ERROR

4.3.1.4 RESET

```
#define RESET "\033[0m"
```

4.3.1.5 ROUGE

```
#define ROUGE "\033[0;31m"
```

4.3.1.6 VERT

```
#define VERT "\033[0;32m"
```

4.3.1.7 VIOLET

```
#define VIOLET "\033[0;35m"
```

4.3.2 Documentation des fonctions

4.3.2.1 egalD()

```
_Bool egalD (  \begin{tabular}{ll} double $a$, \\ double $b$, \\ double $epsilon$ ) \end{tabular}
```

Renvoie vrai si deux doubles sont égaux à epsilon près

4.3.2.2 error_log()

```
void error_log (
     FILE * stream,
     const char * file_name,
     unsigned int line,
     const char * format )
```

4.3.2.3 max()

maximum

4.3.2.4 min()

minimum

4.3.2.5 my_log()

4.4 Référence du fichier src/simplemat.c

```
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <math.h>
#include <time.h>
#include <stdbool.h>
#include "../include/sm util.h"
Graphe des dépendances par inclusion de simplemat.c:
```


Structures de données

struct simplemat s

Macros

- #define INVALID_ROWS "Le nombre de ligne ne peut être nul"
 #define INVALID_COLS "Le nombre de colonne ne peut être nul"
 #define INVALID_DIM "La dimension ne peut être nulle"
 #define INVALID_DIM_ADD "Les dimensions des deux matrices doivent être identiques pour en faire la
- #define INVALID_DIM_MUL "Le nombre de colonnes de la première matrice doit être égal au nombre de ligne de la seconde pour effectuer le produit de deux matrices"

 — #define INVALID_DIM_MUL_D "La matrice de droite n'est pas carrée"

 — #define INVALID_DIM_MUL_G "La matrice de gauche n'est pas carrée"

 — #define INVALID_LIGNE "L'indice de ligne ou colonne doit être inférieur à la taille de la matrice"

 — #define INVALID_INVERSION "Pour les matrices d'interversion ou de type L(n,i,j,a) les indices doivent être

- différents"
- #define INVALID CARREE "La matrice doit être carrée"

Définitions de type

typedef struct simplemat s s mat

Fonctions

```
s_mat * s_mat_new (unsigned int num_rows, unsigned int num_cols)
s_mat * s_mat_copie (s_mat *matrice)
s_mat * s_mat_carree (unsigned int n)
s_mat * s_mat_id (unsigned int n)
s_mat * s_mat_h (unsigned int n, unsigned int i, double a)
s_mat * s_mat_l (unsigned int n, unsigned int i, unsigned j)
s_mat * s_mat_l (unsigned int n, unsigned int i, unsigned int j, double a)
s_mat * s_mat_coef (unsigned int n, unsigned int m, double valeurs[], unsigned int nbVal)
s_mat * mat_alea_entier (unsigned int n, unsigned int m, int min, int max)
s_mat * mat_alea (unsigned int n, unsigned int m, int min, int max)
void s_mat_free (s_mat *matrix)
void s_mat_free (s_mat *matrix)
s_mat * mat_mul_ext (s_mat *matrice, double scalaire)
s_mat * mat_minus (s_mat *A, s_mat *B)
s_mat * mat_minus (s_mat *A, s_mat *B)
s_mat * mat_minus (s_mat *A, s_mat *B)
void mat_mul_gauche (s_mat *A, s_mat *B)
void mat_mul_droite (s_mat *A, s_mat *B)
_Bool est_carree (s_mat *A, s_mat *B)
_Bool est_carree (s_mat *A, s_mat *B)
_Bool est_id (s_mat *A, s_mat *B)
_Bool est_id (s_mat *A, s_mat *A, s_mat *B)
_s_mat * transpose (s_mat *A, s_mat *A, unsigned int i, unsigned int j)
```

4.4.1 Documentation des macros

4.4.1.1 INVALID CARREE

#define INVALID_CARREE "La matrice doit être carrée"

4.4.1.2 INVALID_COLS

#define INVALID_COLS "Le nombre de colonne ne peut être nul"

4.4.1.3 INVALID DIM

#define INVALID_DIM "La dimension ne peut être nulle"

4.4.1.4 INVALID_DIM_ADD

#define INVALID_DIM_ADD "Les dimensions des deux matrices doivent être identiques pour en faire la somme"

4.4.1.5 INVALID_DIM_MUL

#define INVALID_DIM_MUL "Le nombre de colonnes de la première matrice doit être égal au nombre de ligne de la seconde pour effectuer le produit de deux matrices"

4.4.1.6 INVALID_DIM_MUL_D

#define INVALID_DIM_MUL_D "La matrice de droite n'est pas carrée"

4.4.1.7 INVALID_DIM_MUL_G

#define INVALID_DIM_MUL_G "La matrice de gauche n'est pas carrée"

4.4.1.8 INVALID_INVERSION

#define INVALID_INVERSION "Pour les matrices d'interversion ou de type L(n,i,j,a) les indices doivent être différents"

4.4.1.9 INVALID_LIGNE

#define INVALID_LIGNE "L'indice de ligne ou colonne doit être inférieur à la taille de la matrice"

4.4.1.10 INVALID_ROWS

#define INVALID_ROWS "Le nombre de ligne ne peut être nul"

4.4.2 Documentation des définitions de type

4.4.2.1 s_mat

 ${\tt typedef \ struct \ simplemat_s \ s_mat}$

4.4.3 Documentation des fonctions

4.4.3.1 afficher_mat()

Affiche une matrice à l'écran

4.4.3.2 echange_deux_lignes()

Échange deux lignes

4.4.3.3 est_carree()

```
_Bool est_carree ( s_mat * matrice )
```

La matrice est-elle carrée?

4.4.3.4 est_egal()

Deux matrices sont-elles égales?

4.4.3.5 est_id()

```
_Bool est_id (
s_mat * A )
```

Renvoie vrai si la matrice est la matrice identité

4.4.3.6 est_nulle()

```
_Bool est_nulle (
s_mat * A )
```

Renvoie vrai si la matrice est nulle

4.4.3.7 mat_add()

Addition de deux matrices

4.4.3.8 mat_alea()

```
s_mat* mat_alea (
          unsigned int n,
          unsigned int m,
          int min,
          int max )
```

Matrice aléatoires de flottants

4.4.3.9 mat_alea_entier()

```
s_mat* mat_alea_entier (
          unsigned int n,
          unsigned int m,
          int min,
          int max )
```

Matrice aléatoires d'entier

4.4.3.10 mat_minus()

Soustration de deux matrices

4.4.3.11 mat_mul()

Multiplication de deux matrices Renvoie une matrice produit de A et de B

4.4.3.12 mat_mul_droite()

```
void mat_mul_droite (
     s_mat * A,
     s_mat * B )
```

Multiplication de deux matrices multiplie la matrice A par une matrice carrée B A<-A*B

4.4.3.13 mat_mul_ext()

Multiplication par un scalaire

4.4.3.14 mat_mul_gauche()

```
void mat_mul_gauche (
    s_mat * A,
    s_mat * B )
```

Multiplication de deux matrices multiplie la matrice B à gauche par la matrice carrée A B<-A*B

4.4.3.15 mat_oppose()

Opposé d'une matrice

4.4.3.16 s_mat_carree()

```
s_mat* s_mat_carree (
          unsigned int n )
```

Matrice carrée

4.4.3.17 s_mat_coef()

```
s_mat* s_mat_coef (
          unsigned int n,
          unsigned int m,
          double valeurs[],
          unsigned int nbVal )
```

Matrice coefficients donnés

4.4.3.18 s_mat_copie()

Copie d'une matrice

4.4.3.19 s_mat_e()

Inversion de deux lignes

4.4.3.20 s_mat_free()

Libère la mémoire occupée par une matrice

4.4.3.21 s_mat_h()

Homothétie

4.4.3.22 s_mat_id()

```
s_mat* s_mat_id (
          unsigned int n )
```

Matrice identité

4.4.3.23 s_mat_l()

4.4.3.24 s_mat_new()

Constructeurs Allocation de la mémoire d'une matrice allocation d'un pointeur vers un s_mat

Allocation d'un tableau de pointeurs

Allocation de n*m double

4.4.3.25 trace()

```
double trace ( s\_mat \ * \ A \ )
```

Renvoie la trace d'une matrice

4.4.3.26 transpose()

```
s_mat* transpose ( \\ s_mat * A )
```

Renvoie la transposée d'une matrice

4.5 Référence du fichier src/sm_test.c

```
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <math.h>
#include <stdbool.h>
#include "../include/simplemat.h"
```

Graphe des dépendances par inclusion de sm_test.c:

Fonctions

```
— int run_tests (void)
```

4.5.1 Documentation des fonctions

4.5.1.1 run_tests()

```
int run_tests (
            void )
```

4.6 Référence du fichier src/sm_util.c

```
#include <stdio.h>
#include <stdarg.h>
#include <stdbool.h>
#include "../include/sm_util.h"
#include <float.h>
#include <math.h>
```

Graphe des dépendances par inclusion de sm_util.c:

Fonctions

- void error_log (FILE *stream, const char *file_name, unsigned int line, const char *format)
 double max (double num1, double num2)
- double min (double num1, double num2)
- _Bool egalD (double a, double b, double epsilon)

4.6.1 Documentation des fonctions

4.6.1.1 egalD()

```
_Bool egalD (
             double a,
             double b,
             double epsilon )
```

Renvoie vrai si deux doubles sont égaux à epsilon près

4.6.1.2 error_log()

```
void error_log (
     FILE * stream,
     const char * file_name,
     unsigned int line,
     const char * format )
```

4.6.1.3 max()

maximum

4.6.1.4 min()

minimum

4.7 Référence du fichier src/test.c

```
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <math.h>
#include "../include/simplemat.h"
```

Graphe des dépendances par inclusion de test.c:

Fonctions

- int main (void)

4.7.1 Documentation des fonctions

4.7.1.1 main()

```
int main (
     void )
```

4.8 Référence du fichier src/tp_1.c

```
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <math.h>
#include <stdbool.h>
#include "../include/simplemat.h"
Graphe des dépendances par inclusion de tp_1.c:
```


Fonctions

```
int pivot_sous_mat_j (s_mat *matrice, unsigned int i, unsigned int j)
void echelon_passage (s_mat *matrice, s_mat *echelonnee, s_mat *passage)
void LU (s_mat *matrice, s_mat *echelonnee, s_mat *passage)
s_mat * echelonner (s_mat *matrice)
unsigned int rang (s_mat *matrice)
double determinant (s_mat *matrice)
_s_mat * solve_triangulaire_sup (s_mat *U, s_mat *B)
s_mat * solve_triangulaire_inf (s_mat *L, s_mat *B)
s_mat * inverse (s_mat *matrice)
int main (void)
```

4.8.1 Documentation des fonctions

4.8.1.1 determinant()

Calcule le déterminant de la matrice

4.8.1.2 echelon_passage()

À partir d'une matrice (M) de taille n x m , d'une copie de cette matrice (E:echelonnee) est de l'identité (P: passage) échelonne la matrice E et transforme la matrice P en une matrice de passage telle que P*M=E

La matrice P est triangulaire inférieure L La matrice E est triangulaire supérieure U

Il s'agit de la décomposition LU d'une matrice

4.8.1.3 echelonner()

Renvoie une matrice ligne équivalente à la matrice donnée en paramètre Les pivots sont calculés suivant la règle $L_i < -L_i + \lambda L_k$

4.8.1.4 est inversible()

Renvoie vrai si la matrice est inversible

4.8.1.5 inverse()

Résolution de AX=B où L triangulaire inférieure inversible et U triangulaire supérieure

```
s_mat* solve_lu(s_mat* L, s_mat* U, s_mat* B) {
```

} Retourne l'inverse d'une matrice carrée inversible. On commence par résoudre LX=I puis U Y= X Ainsi LU Y= LX ce qui équivaut à A Y=I Donc Y vaut $A^{(-1)}$

4.8.1.6 LU()

À partir d'une matrice (M) de taille n x m, d'une copie de cette matrice (E:echelonnee) est de l'identité (P: passage) échelonne la matrice E et transforme la matrice P en une matrice de passage telle que P*E=M

La matrice P est triangulaire inférieure L La matrice E est triangulaire supérieure U

Il s'agit de la décomposition LU d'une matrice

4.8.1.7 main()

```
int main (
     void )
```

4.8.1.8 pivot sous mat j()

```
int pivot_sous_mat_j (
    s_mat * matrice,
    unsigned int i,
    unsigned int j )
```

Renvoie la ligne du premier pivot de la sous matrices M[i:-1,j:-1] Si il n'y a pas de pivot renvoie -1

4.8.1.9 rang()

4.8.1.10 solve_triangulaire_inf()

Résolution de LX=B où L triangulaire inférieure et B a le même nombre de ligne que U. Renvoie une matrice de même taille que B où chaque colonne est solution de LX=B[:,i]

4.8.1.11 solve_triangulaire_sup()

Résolution de UX=B où U triangulaire supérieure et B a le même nombre de ligne que U. Renvoie une matrice de même taille que B où chaque colonne est solution de UX=B[:,i]

Index

afficher mat	INVALID DIM
simplemat.c, 22	simplemat.c, 20
simplemat.h, 10	simplemat.h, 9
ALLOC CHECK	INVALID_DIM_ADD
sm_util.h, 17	simplemat.c, 20
	simplemat.h, 9
data	INVALID_DIM_MUL
simplemat_s, 5	simplemat.c, 20
DEBUG_TRUE	simplemat.h, 9
sm_util.h, 17	INVALID_DIM_MUL_D
determinant	simplemat.c, 21
tp_1.c, <mark>30</mark>	simplemat.h, 9
	INVALID_DIM_MUL_G
echange_deux_lignes	simplemat.c, 21
simplemat.c, 22	simplemat.h, 9
simplemat.h, 11	INVALID_INV
echelon_passage	simplemat.h, 9
tp_1.c, 30	INVALID_INVERSION
echelonner	simplemat.c, 21
tp_1.c, 30	simplemat.h, 10
egalD	INVALID_LIGNE
sm_util.c, 27	simplemat.c, 21
sm_util.h, 18	simplemat.h, 10
error_log	INVALID_ROWS
sm_util.c, 27	simplemat.c, 21
sm_util.h, 18	simplemat.h, 10
est_carree	INVALID_SYS_DIM
simplemat.c, 22	simplemat.h, 10
simplemat.h, 11	inverse
est_egal	tp_1.c, 30
simplemat.c, 22	, –
simplemat.h, 11	LOG_ERROR
est_id	sm_util.h, 17
simplemat.c, 22	LU
simplemat.h, 11	tp_1.c, 30
est_inversible	
tp_1.c, 30	main
est_nulle	test.c, 29
simplemat.c, 22	tp_1.c, 31
simplemat.h, 11	mat_add
in alterda /aimentamant h. 7	simplemat.c, 22
include/simplemat.h, 7	simplemat.h, 11
include/sm_test.h, 15	mat_alea
include/sm_util.h, 16	simplemat.c, 23
INVALID_CARREE	simplemat.h, 12
simplemat.c, 20	mat_alea_entier
simplemat.h, 8	simplemat.c, 23
INVALID_COLS	simplemat.h, 12
simplemat.c, 20	mat_minus
simplemat.h, 9	simplemat.c, 23

34 INDEX

simplemat.h, 12	simplemat.c, 25
mat_mul	simplemat.h, 14
simplemat.c, 23	s_mat_h
simplemat.h, 12	simplemat.c, 25
mat_mul_droite	simplemat.h, 14
simplemat.c, 23	s_mat_id
simplemat.h, 12	simplemat.c, 25
mat_mul_ext	simplemat.h, 14
simplemat.c, 23	s mat I
simplemat.h, 13	simplemat.c, 25
mat_mul_gauche	simplemat.b, 14
	•
simplemat.c, 24	s_mat_new
simplemat.h, 13	simplemat.c, 25
mat_oppose	simplemat.h, 14
simplemat.c, 24	simplemat.c
simplemat.h, 13	afficher_mat, 22
max	echange_deux_lignes, 22
sm_util.c, 28	est_carree, 22
sm_util.h, 18	est_egal, 22
min	est id, 22
sm_util.c, 28	est_nulle, 22
sm_util.h, 18	INVALID CARREE, 20
my_log	INVALID_COLS, 20
sm_util.h, 18	INVALID_DIM, 20
3m_dtii.m, 10	INVALID_DIM, 20
num_cols	
simplemat_s, 5	INVALID_DIM_MUL, 20
• —	INVALID_DIM_MUL_D, 21
num_rows	INVALID_DIM_MUL_G, 21
simplemat_s, 5	INVALID_INVERSION, 21
nivet eque met i	INVALID_LIGNE, 21
pivot_sous_mat_j	INVALID_ROWS, 21
tp_1.c, 31	mat_add, 22
	mat_alea, 23
rang	mat_alea_entier, 23
tp_1.c, 31	mat minus, 23
RESET	mat mul, 23
sm_util.h, 17	mat mul droite, 23
ROUGE	mat mul ext, 23
sm_util.h, 17	mat_mal_oxt, 20
run_tests	mat_oppose, 24
sm_test.c, 26	—
sm_test.h, 15	s_mat, 21
	s_mat_carree, 24
s_mat	s_mat_coef, 24
simplemat.c, 21	s_mat_copie, 24
simplemat.h, 10	s_mat_e, 24
s mat carree	s_mat_free, 25
simplemat.c, 24	s_mat_h, 25
simplemat.h, 13	s_mat_id, 25
s_mat_coef	s_mat_l, 25
	s_mat_new, 25
simplemat.c, 24	trace, 25
simplemat.h, 13	transpose, 26
s_mat_copie	simplemat.h
simplemat.c, 24	afficher_mat, 10
simplemat.h, 13	
s_mat_e	echange_deux_lignes, 11
simplemat.c, 24	est_carree, 11
simplemat.h, 14	est_egal, 11
s_mat_free	est_id, 11
_	

INDEX 35

est_nulle, 11	VERT, 17
INVALID_CARREE, 8	VIOLET, 17
INVALID_COLS, 9	solve_triangulaire_inf
INVALID_DIM, 9	tp_1.c, 31
INVALID_DIM_ADD, 9	solve_triangulaire_sup
INVALID_DIM_MUL, 9	tp_1.c, 31
INVALID_DIM_MUL_D, 9	src/simplemat.c, 19
INVALID_DIM_MUL_G, 9	src/sm_test.c, 26
INVALID_INV, 9	src/sm_util.c, 27
INVALID_INVERSION, 10	src/test.c, 28
INVALID_LIGNE, 10	src/tp_1.c, 29
INVALID_ROWS, 10	
INVALID_SYS_DIM, 10	test.c
mat_add, 11	main, 29
mat_alea, 12	tp_1.c
mat_alea_entier, 12	determinant, 30
mat_minus, 12	echelon_passage, 30
mat_mul, 12	echelonner, 30
mat_mul_droite, 12	est_inversible, 30
mat_mul_ext, 13	inverse, 30
mat_mul_gauche, 13	LU, 30
mat_oppose, 13	main, 31
s_mat, 10	pivot_sous_mat_j, 31
s_mat_carree, 13	rang, 31 solve triangulaire inf, 31
s_mat_coef, 13	solve_triangulaire_sup, 31
s_mat_copie, 13	trace
s_mat_e, 14	simplemat.c, 25
s_mat_free, 14	simplemat.h, 15
s_mat_h, 14	transpose
s_mat_id, 14	simplemat.c, 26
s_mat_l, 14	simplemat.h, 15
s_mat_new, 14 trace, 15	omplematin, re
transpose, 15	VERT
simplemat_s, 5	sm_util.h, 17
data, 5	VIOLET
num_cols, 5	sm_util.h, 17
num rows, 5	
sm test.c	
run tests, 26	
sm test.h	
run tests, 15	
sm_util.c	
egalD, 27	
error_log, 27	
max, 28	
min, 28	
sm_util.h	
ALLOC_CHECK, 17	
DEBUG_TRUE, 17	
egalD, 18	
error_log, 18	
LOG_ERROR, 17	
max, 18	
min, 18	
my_log, 18	
RESET, 17	
ROUGE, 17	