Beyond Homonuclear Diatomic molecules

Heteronuclear Diatomics: HF

Higher electronegativity of F: Lopsided electron distribution

Bonding and antibonding MOs: *s* as well as *p*

Unequal contribution from the two atoms

Heteronuclear Diatomics: HCl

For Cl **3p** states close in energy to the **1s** of H

Heteronuclear Diatomics: HBr

For Br **4p** states close (higher) in energy to the **1s** of H

Carbonyl complexes

Carbon atom:

 σ -donor = dative bond , π -acceptor = back bonding

Applications in Organometallic Chemistry

$$L_{n}M = C = O$$

$$RLi$$

$$+ L_{n}M = O - CH_{3}$$

$$CH_{3})_{3}O^{+}BF_{4}$$

$$+ L_{n}M = R$$

$$+ CH_{3}$$

Why is CO a poisonous gas?

Hemoglobin (Hb): Transports O₂ and CO₂ in blood

O₂-Hb, CO₂-Hb: Reversible

CO-Hb: Almost ireversible,

half life of several hours

https://en.wikipedia.org/wiki/Hemoglobin

Hybridization

Linear combination of atomic orbitals **within an atom** leading to more effective bonding

- The **coefficients** α , β , γ and δ depend on **field strength**
- **Square** of a coefficient = **contribution** of that AO in the hybrid orbital
- *Equivalent* hybrid orbitals (same *s*-contribution, same *p*-contribution in each hybrid orbital) have *same energies*
- Hybrid orbitals are *ortho-normal* to each other

Hybridization origintes in VBT and relies on experimental results

Heteronuclear Diatomics: CO π-acceptor p_x, p_y **2**p h2 p_x, p_y σ_{nb} h1 `.h4 π 2*S h*3 σ_{nb} 28 **σ-donor**

Polyatomic molecules: Geometry

AOs with proper symmetry can only be combined

Central Carbon atom: 2s and 2p orbitals

2s orbital

Linear combination of hydrogen 1s orbitals with matching symmetry:

Symmetry Adapted Linear Combinations (SALCs)

$$\psi_{H,s} = \psi_{1s}(P) + \psi_{1s}(Q) + \psi_{1s}(R) + \psi_{1s}(S)$$

$$\psi_{MO,s} = c_1 \psi_{2s}(C) \pm c_2 \left(\psi_{1s}(P) + \psi_{1s}(Q) + \psi_{1s}(R) + \psi_{1s}(S) \right)$$

2p orbital

Linear combination of hydrogen 1s orbitals with matching symmetry:

3 such linear combinations:

$$\psi_{MO,p} = c_3 \psi_{2p}(C) \pm c_4 \left(\psi_{1s}(P) + \psi_{1s}(Q) - \psi_{1s}(R) - \psi_{1s}(S) \right)$$

Two kinds of Molecular Orbitals

1 MO, no node

3 MOs, one node in each

- Same energy?
- Experimental evidence?

Methane: Energy Diagram and Photoelectron spectrum

