Canonical Forms

- It is useful to specify Boolean functions in a form that:
 - Allows comparison for equality.
 - Has a correspondence to the truth tables
- Canonical Forms in common usage:
 - Sum of Minters (SOM)
 - Product of Maxterms (POM)
- Any boolean function that is expressed as a sum of minterms or as a product of maxterms

Minterms

- A minterm is a special product of literals, in which each input variable appears exactly once. each binary variable may appear normal (e.g., x) or complemented (e.g., \overline{X}).
- A function with n variables has 2ⁿ minterms (since each variable can appear complemented or not)
- A three-variable function, such as f(x,y,z), has $2^3 = 8$ minterms:

• Each minterm is true for exactly one combination of inputs:

Minterm

Is true when...

Shorthand

$$x=0, y=0, z=0$$

 m_0

$$x=0, y=0, z=1$$

 m_1

$$x=0, y=1, z=0$$

 m_2

$$x=0, y=1, z=1$$

 m_3

$$x=1, y=0, z=0$$

 m_4

$$x=1, y=0, z=1$$

 m_5

$$x=1, y=1, z=0$$

 m_6

$$x=1, y=1, z=1$$

 m_7

Sum of minterms form

- Every function can be written as a sum of minterms, which is a special kind of sum of products form
- The sum of minterms form for any function is unique
- If you have a truth table for a function, you can write a sum of minterms expression just by picking out the rows of the table where the function output is 1 (1-minterm).

$$f = x'y'z' + x'y'z + x'yz' + x'yz + xyz'$$
 $f' = xy'z' + xy'z + xyz$
 $= m_0 + m_1 + m_2 + m_3 + m_6$ $= m_4 + m_5 + m_7$
 $= \Sigma(0,1,2,3,6)$ $= \Sigma(4,5,7)$

f' contains all the minterms not in f

X	У	Z	f(x,y,z)	f'(x,y,z)
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	0	1

• Example

• F = x + yz, how to express this in the sum of minterms?

=
$$x(y + y')(z + z') + (x + x')yz$$

= $xyz + xyz' + xy'z + xy'z' + xyz + x'yz$
= $x'yz + xy'z' + xy'z + xyz' + xyz$
= $\Sigma(3,4,5,6,7)$

or, convert the expression into truth-table and then read the minterms from the table

Maxterms

- A maxterm (OR terms) is a *sum* of literals, in which each input variable appears exactly once.
- A function with n variables has 2ⁿ maxterms
- The maxterms for a three-variable function f(x,y,z):

$$x' + y' + z'$$
 $x' + y' + z$ $x' + y + z'$ $x' + y + z$
 $x + y' + z'$ $x + y' + z$ $x + y + z'$ $x + y + z$

• Each maxterm is *false* for exactly one combination of inputs:

Maxterm	Is	false	2
	_~	,	_

when...

Shorthand

$$x + y + z$$

$$x=0, y=0, z=0$$

$$\mathbf{M}_0$$

$$x + y + z$$

$$x=0, y=0, z=1$$

$$\mathbf{M}_1$$

$$x + y' + z$$

$$x=0, y=1, z=0$$

$$M_2$$

$$x + y' + z'$$

$$x=0, y=1, z=1$$

$$M_3$$

$$x' + y + z$$

$$x=1, y=0, z=0$$

$$M_4$$

$$x' + y + z'$$

$$x=1, y=0, z=1$$

$$M_5$$

$$x' + y' + z$$

$$x=1, y=1, z=0$$

$$M_6$$

$$x' + y' + z'$$

$$x=1, y=1, z=1$$

$$M_7$$

Product of maxterms form

- Every function can be written as a unique product of maxterms
- If you have a truth table for a function, you can write a product of maxterms expression by picking out the rows of the table where the function output is 0 (**0-maxterm**).

$$f = (x' + y + z)(x' + y + z')(x' + y' + z')$$

$$= M_4 M_5 M_7$$

$$= \prod (4,5,7)$$

$$f' = (x + y + z)(x + y + z')(x + y' + z)$$

$$= (x + y + z)(x' + y' + z')$$

$$= M_0 M_1 M_2 M_3 M_6$$

$$= \prod (0,1,2,3,6)$$

f' contains all the maxterms not in f

X	У	Z	f(x,y,z)	f'(x,y,z)
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	0	1

• F = x'y' + xz, how to express this in the product of maxterms?

$$= (x'y' + x)(x'y' + z)$$

$$= (x' + x)(y' + x)(x' + z)(y' + z)$$

$$= (x + y')(x' + z)(y' + z)$$

$$= (x + y' + zz')(x' + z + yy')(xx' + y' + z)$$

$$= (x + y' + z)(x + y' + z')(x' + y + z)(x' + y' + z)(x + y' + z)(x' + y' + z)$$

$$= (x + y' + z)(x + y' + z')(x' + y + z)(x' + y' + z)$$

$$= (x + y' + z)(x + y' + z')(x' + y + z)(x' + y' + z)$$

$$= \prod (2,3,4,6)$$

or, convert the expression into truth-table and then read the minterms from the table

Minterm and Maxterm Relationship

• Review: DeMorgan's Theorem

$$(xy)' = x' + y'$$
 and $(x + y)' = x'y'$

• Two-variable example:

$$\mathbf{M_2} = \overline{\mathbf{x}} + \mathbf{y}$$
 and $\mathbf{m_2} = \mathbf{x} \cdot \overline{\mathbf{y}}$

Thus M_2 is the complement of m_2 and vice-versa.

Since DeMorgan's Theorem holds for *n* variables, the above holds for terms of *n* variables

giving:

$$\mathbf{M}_{\mathbf{i}} = \overline{\mathbf{m}}_{\mathbf{i}}$$
 and $\mathbf{m}_{\mathbf{i}} = \overline{\mathbf{M}}_{\mathbf{i}}$

Thus M_i is the complement of m_i.

• Any minterm m_i is the *complement* of the corresponding maxterm M_i

Minterm	Shorthand	Maxterm	Shorthand
x'y'z'	m_0	x + y + z	\mathbf{M}_0
x'y'z	m_1°	x + y + z	\mathbf{M}_1
x'yz'	m_2	x + y' + z	\mathbf{M}_2
x'yz	_	x + y' + z'	M_3
•	m_3	x' + y + z	\mathbf{M}_4
xy'z'	m_4	x' + y + z'	\mathbf{M}_{5}
xy'z	m_5	x' + y' + z	M_6
xyz'	m_6	x' + y' + z'	\mathbf{M}_7
XYZ	m_7		·

• For example, $m_4' = M_4$ because (xy'z')' = x' + y + z

Converting between canonical forms

• We can convert a sum of minterms to a product of maxterms

```
From before f = \Sigma(0,1,2,3,6)
and f' = \Sigma(4,5,7)
                   = m_4 + m_5 + m_7
complementing (f')' = (m_4 + m_5 + m_7)'
                              f = m_4' m_5' m_7' [ DeMorgan's law ]
SO
                                  = \mathbf{M}_4 \mathbf{M}_5 \mathbf{M}_7
                                  = \prod (4,5,7)
        f = \Sigma(0,1,2,3,6)
          = \prod (4,5,7)
```

In general, just replace the minterms with maxterms, using maxterm numbers that don't appear in the sum of minterms:

The same thing works for converting from a product of maxterms to a sum of minterms

Standard Forms

- Any boolean function that is expressed as a sum of products (SOP) or as a product of sums (POS), where each product-term or sum-term may require fewer than (n-1) operations, is said to be in its standard form.
- Standard forms are not unique, there can be several different SOPs and POSs for a given function.

$$f(x,y,z) = xy + x'yz + xy'z$$

$$f(x,y,z) = (x' + y')(x + y' + z')(x' + y + z')$$

A SOP expression contains:

Only OR (sum) operations at the "outermost" level

Each term (implicant) must be a product of literals

A POS expression contains:

Only AND (product) operations at the "outermost" level

Each term (implicate) must be a sum of literals

Canonical Forms

• Any boolean function that is expressed as a sum of minterms or as a product of maxterms is said to be in its canonical form.

Sum of minterms: practise

• F = x + yz, how to express this in the sum of minterms?

=
$$x(y + y')(z + z') + (x + x')yz$$

= $xyz + xyz' + xy'z + xy'z' + xyz + x'yz$
= $x'yz + xy'z' + xy'z + xyz' + xyz$
= $\Sigma(3,4,5,6,7)$

or, convert the expression into truth-table and then read the minterms from the table

Product of maxterms: practice

• F = x'y' + xz, how to express this in the product of maxterms?

$$= (x'y' + x)(x'y' + z)$$

$$= (x' + x)(y' + x)(x' + z)(y' + z)$$

$$= (x + y')(x' + z)(y' + z)$$

$$= (x + y' + zz')(x' + z + yy')(xx' + y' + z)$$

$$= (x + y' + z)(x + y' + z')(x' + y + z)(x' + y' + z)(x + y' + z)(x' + y' + z)$$

$$= (x + y' + z)(x + y' + z')(x' + y + z)(x' + y' + z)$$

$$= (x + y' + z)(x + y' + z')(x' + y + z)(x' + y' + z)$$

$$= (x + y' + z)(x + y' + z')(x' + y + z)(x' + y' + z)$$

$$= (x + y' + z)(x + y' + z')(x' + y + z)(x' + y' + z)$$

or, convert the expression into truth-table and then read the minterms from the table