Algebra e Geometria - Corso di Laurea in Informatica docente: prof.ssa Marta Morigi 24 giugno 2023

Il parametro b è uguale a: (il resto della divisione del proprio numero di matricola per 4)+1 .

Nota: Le risposte vanno motivate. I calcoli e le motivazioni delle risposte sono parte integrante dello svolgimento dell'esercizio.

Esercizio 1. (7 punti) Sia $W = \{p(x) \in \mathbb{R}_3[x] | p(-2) \le 0 \in p(1) = 0\} \subseteq \mathbb{R}_3[x].$

- a) Si stabilisca se W è chiuso rispetto alla somma e/o al prodotto per scalari (fornendo controesempi in caso di risposta negativa).
- b) Si stabilisca se $U = \langle x^3 x^2 4x + 4 \rangle$ è contenuto in W.
- c) Si stabilisca per quali valori di k il vettore $x^3 + kx^2 1 k$ appartiene a W.

Esercizio 2. (9 punti)

Si considerino le applicazioni lineari $F_k : \mathbb{R}^3 \to \mathbb{R}^4$ definite da: $F_k(\mathbf{e}_1) = \mathbf{e}_1 - 8\mathbf{e}_2 + \mathbf{e}_4$, $F_k(\mathbf{e}_2) = k\mathbf{e}_2 + \mathbf{e}_3 - 2\mathbf{e}_4$, $F_k(\mathbf{e}_3) = k\mathbf{e}_1 - 15e_2 + k\mathbf{e}_3 - k\mathbf{e}_4$, al variare di $k \in \mathbb{R}$.

- a) Si stabilisca per quali valori di k si ha che F_k è iniettiva.
- b) Sia $\mathbf{w} = -3\mathbf{e}_1 + 4\mathbf{e}_2 4\mathbf{e}_3 + 5\mathbf{e}_4$. Si stabilisca per quali valori di k si ha che \mathbf{w} appartiene a Im (F_k) .
- c) Per quali valori di k è possibile completare F_k(e₁), F_k(e₂), F_k(e₃) ad una base di R⁴?
- d) Posto k = 0, determinare le equazioni cartesiane di Im (F_0) .

Esercizio 3. (10 punti) Sia $T_k: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da:

$$T_k(x_1, x_2, x_3) = (-x_1 + kx_2 - 2x_3, x_2, x_1 - kx_2 + 2x_3)$$

e sia A_k la matrice ad essa associata rispetto alla base canonica in dominio e codominio.

a) Si stabilisca per quali valori a di k si ha che T_k è diagonalizzabile.

- b) Scelto un valore a per cui T_a è diagonalizzabile, si determinino una matrice diagonale D simile ad A_a e due matrici P_1, P_2 invertibili tali che $P_1^{-1}A_aP_1=D=P_2^{-1}A_aP_2$.
- c) Si stabilisca se esistono valori di k tali che il vettore $-2\mathbf{e}_1+k\mathbf{e}_3$ sia autovettore di T_k .
- d) Posto k = -5 si determini, se possibile, una base ordinata \mathcal{B} di \mathbb{R}^3 tale che la matrice associata a T_{-5} rispetto alla base \mathcal{B} nel dominio e alla base canonica nel codominio sia $\begin{pmatrix} -5 & 0 & -1 \\ 1 & 0 & 0 \\ 5 & 0 & 1 \end{pmatrix}$.

Esercizio 4. (4 punti)

Si determinino tutte le soluzioni intere della congruenza:

 $77x \equiv_{246} b.$