

WIE3007 DATA MINING AND WAREHOUSING

SESSION 2023/2024 SEMESTER 1 GROUP ASSIGNMENT

Chiew Kian Khoon	U2005256/1
Loi Yi Hang	U2005366/1
Sim Jia Hong	U2005316/1
Ooi Xie Gee	U2005379/1

1. Introduction	3
2. Problem Statement	3
3. Objective	4
4. Dataset Description	5
5. Sampling	8
6. Feature Tools and Star Schema Integration	11
6.1 Feature Tools	11
6.2 Star Schema	13
7. Explore	14
7.1 Average Temperature	14
7.2 Correlation of Humidity & and Temperature	15
7.3 Correlation between NO2 and Benzene Concentration	16
8. Modify	17
8.1 Talend	17
8.2 SAS Enterprise Miner	19
9. Techniques and Algorithms	20
9.1 Association Rule	20
9.2 Sequence Analysis	24
9.3 Time Series Clustering	27
10. Model	30
10.1 Classification	30
10.2 Decision tree	30
10.3 Interactive decision tree	34
10.4 Gradient boosting	35
10.5 Regression	36
10.6 Neural Network	42
11. Assess	44
11.1 Decision Tree & Gradient Boosting	44
11.2 Neural Network and regression	48
12. Conclusion	52
13. References	53

1. Introduction

In urban environments, the impact of air quality on public health and the overall well-being of the community is a matter of paramount concern. This study revolves around a comprehensive dataset obtained from a gas multisensor device deployed in an Italian city. The dataset, spanning a year from March 2004 to February 2005, captures hourly responses from an array of 5 metal oxide chemical sensors embedded in an Air Quality Chemical Multi Sensor Device. The device was strategically positioned at road level in an area marked by significant pollution. This research represents a valuable opportunity to delve into the intricate interplay of air quality factors within the urban landscape.

2. Problem Statement

Urban areas often grapple with deteriorating air quality, posing a threat to the health and well-being of their inhabitants. Understanding the nuances of air quality dynamics, including cross-sensitivities, concept drifts, and sensor drifts, is crucial for accurate estimation of gas concentrations. This dataset, with its hourly averaged responses and ground truth concentrations from a certified analyzer, presents a unique opportunity to address these challenges. However, the presence of missing values and the potential impact of various drifts highlight the need for a sophisticated data mining approach to uncover hidden patterns and insights.

3. Objective

The primary objective of this study is to leverage data mining techniques to gain a deeper understanding of air quality dynamics in the specified Italian city. The specific goals include:

- 1. **Pattern Recognition**: Identify hidden patterns and trends within the hourly responses from the multisensor device, exploring correlations among the various gas concentrations and environmental factors.
- Sensor Drift Analysis: Investigate and mitigate the impact of sensor drifts on concentration estimations, providing insights into the reliability and longevity of the deployed sensors.
- 3. **Concept Drift Exploration**: Examine instances of concept drifts and their implications on the accuracy of concentration estimations, contributing to the refinement of air quality modeling.
- 4. **Imputation of Missing Values**: Develop robust imputation strategies for handling missing values, ensuring the integrity of the dataset for accurate analysis.
- 5. **Predictive Modeling**: Build predictive models for gas concentrations based on the responses of the multisensor device, offering a tool for forecasting air quality variations in urban environments.

4. Dataset Description

Dataset: https://archive.ics.uci.edu/dataset/360/air+quality

AirQualityMeasurements (Fact Table)

FIELD NAME	DESCRIPTION
MeasurementID	Unique identifier for each measurement record
DateID	Foreign key linked to 'Dim_Date' table. Represents the date on which the measurement was taken
TimeID	Foreign key linked to 'Dim_Time' table. Represents the time at which the measurement was recorded
ReadingID	Foreign key linked to `Dim_SensorReading` table. Represents the sensor readings associated with this measurement
CO_Concentration	True hourly averaged concentration of Carbon Monoxide (CO) in mg/m^3. Obtained from reference analyzer
NMHC_Concentration	True hourly averaged overall Non-Methane HydroCarbons (NMHC) concentration in micro g/m^3. Obtained from reference analyzer
Benzene_Concentration	True hourly averaged Benzene concentration in micro g/m^3. Obtained from reference analyzer
NOx_Concentration	True hourly averaged Nitrogen Oxides (NOx) concentration in ppb. Obtained from reference analyzer
NO2_Concentration	True hourly averaged Nitrogen Dioxide (NO2) concentration in micro g/m^3. Obtained from reference analyzer
Temperature	Ambient temperature measured in degrees Celsius (°C)
Relative_Humidity	Relative Humidity measured in percentage (%)
Absolute_Humidity	Absolute Humidity, a measure of the amount of moisture in the air

Date (Dimension Table)

FIELD NAME	DESCRIPTION
DateID	Unique identifier for each date
Day	Day of the month (1-31)
Month	Month of the year (1-12)
Year	Year in four-digit format (YYYY)

Time (Dimension Table)

FIELD NAME	DESCRIPTION
TimeID	Unique identifier for each time record
Hour	Hour of the day in 24-hour format (0-23)
Minute	Minute of the hour (0-59)
Second	Second of the minute (0-59)

SensorReading (Dimension Table)

FIELD NAME	DESCRIPTION
ReadingID	Unique identifier for each sensor reading record
PT08_S1	Hourly averaged sensor response from PT08.S1 (tin oxide), nominally targeted for CO measurement
PT08_S2	Hourly averaged sensor response from PT08.S2 (titania), nominally targeted for NMHC measurement
PT08_S3	Hourly averaged sensor response from PT08.S3 (tungsten oxide), nominally targeted for NOx measurement
PT08_S4	Hourly averaged sensor response from PT08.S4 (tungsten oxide), nominally targeted for NO2 measurement

PT08_S5	Hourly averaged sensor response from PT08.S5 (indium oxide),
	nominally targeted for O3 (Ozone) measurement

5. Sampling

Google Colab Link for Sampling:

https://colab.research.google.com/drive/1PkBdJhorFGe00qjTDbFyQiv1PJVACKMv?usp=sharing

In this section, three distinct sampling methods are utilized to read data directly using the pandas library. The methods include random sampling based on proportion, grouping based on different categories of specified columns, and subsequently randomly sampling data within each group. Additionally, random sampling with weights is also employed. Diagram 5.1 below shows the raw data of our dataset.

	MeasurementID	DateID	TimeID	ReadingID	CO_Concentration	NMHC_Concentration	Benzene_Concentration	NOx_Concentration	NO2_Concentration
0	1	1	1	1	2.6	150.0	11.9	166.0	113.0
1	2	2	2	2	2.0	112.0	9.4	103.0	92.0
2	3	3	3	3	2.2	88.0	9.0	131.0	114.0
3	4	4	4	4	2.2	80.0	9.2	172.0	122.0
4	5	5	5	5	1.6	51.0	6.5	131.0	116.0
9466	9467	9467	9467	9467	NaN	NaN	NaN	NaN	NaN
9467	9468	9468	9468	9468	NaN	NaN	NaN	NaN	NaN
9468	9469	9469	9469	9469	NaN	NaN	NaN	NaN	NaN
9469	9470	9470	9470	9470	NaN	NaN	NaN	NaN	NaN
9470	9471	9471	9471	9471	NaN	NaN	NaN	NaN	NaN
9471 ro	ws × 23 columns								

Diagram 5.1: Raw Data

To implement random sampling, it's necessary to pre-specify the proportion of the sample, represented as a decimal between 0 and 1. This decimal signifies the portion of the original data intended for sampling. For example, in our code, we have entered 0.3 as the proportion, which means the code will sample 30% of the data. Additionally, we have included a seed number as a parameter when running the code. The reason for this is that by providing a fixed seed, we can obtain the same random sampling result every time the code is run. If we want to display different sampling results, we can simply change the seed. Below is Diagram 5.2, which shows the result of the sampling.

	MeasurementID	DateID	TimeID	ReadingID	CO_Concentration	${\tt NMHC_Concentration}$	Benzene_Concentration	${\tt NOx_Concentration}$	NO2_Concentratio
7517	7518	7518	7518	7518	1.9	-200.0	7.4	298.0	143.
3858	3859	3859	3859	3859	-200.0	-200.0	5.6	-200.0	-200.
1336	1337	1337	1337	1337	2.9	-200.0	13.0	214.0	123.
6259	6260	6260	6260	6260	4.9	-200.0	22.7	854.0	196
2501	2502	2502	2502	2502	2.4	-200.0	13.6	144.0	104
568	569	569	569	569	-200.0	-200.0	11.2	-200.0	-200
8707	8708	8708	8708	8708	1.8	-200.0	8.1	292.0	162
1888	1889	1889	1889	1889	-200.0	-200.0	9.6	-200.0	-200
3142	3143	3143	3143	3143	-200.0	-200.0	11.0	108.0	126
4202	4203	4203	4203	4203	3.0	-200.0	14.5	288.0	122
2841 ro	ws × 23 columns								

Diagram 5.2: Random Sampling

By utilizing the **groupby** and **apply** methods in Pandas, we can group and sample data based on different categories of a specified column. This method involves grouping the data within a DataFrame according to distinct categories of a specified column and subsequently applying random sampling to the data within each group. It's crucial to highlight that this sampling approach guarantees a balanced number of samples from each category, as the number of samples from each group is predefined and consistent. Diagram 5.3 below provides an example of sampling based on a specified category.

		MeasurementID	DateID	TimeID	ReadingID	CO_Concentration	NMHC_Concentration	Benzene_Concentration	NOx_Concentration	NO2_Cond
Month										
1.0	7352	7353	7353	7353	7353	1.1	-200.0	3.9	146.0	
	7209	7210	7210	7210	7210	2.0	-200.0	8.5	-200.0	
	7120	7121	7121	7121	7121	1.2	-200.0	4.7	190.0	
	7555	7556	7556	7556	7556	0.3	-200.0	4.6	193.0	
2.0	8434	8435	8435	8435	8435	1.0	-200.0	3.4	116.0	
	7964	7965	7965	7965	7965	1.1	-200.0	3.7	180.0	
	7873	7874	7874	7874	7874	4.1	-200.0	17.0	502.0	
	8145	8146	8146	8146	8146	2.7	-200.0	11.3	-200.0	
3.0	8982	8983	8983	8983	8983	1.9	-200.0	6.8	273.0	
	8597	8598	8598	8598	8598	2.1	-200.0	7.3	330.0	
	8829	8830	8830	8830	8830	0.1	-200.0	3.3	130.0	
	8536	8537	8537	8537	8537	1.4	-200.0	3.6	284.0	
4.0	9346	9347	9347	9347	9347	-200.0	-200.0	0.8	52.0	
	9335	9336	9336	9336	9336	1.4	-200.0	6.1	242.0	
	4000	1001	1001	1001	1001	222.2	202.2	40.4	202.2	

Diagram 5.3: Sampling Based on Specific Category

Another sampling method that we have used is the weight sampling method. In traditional random sampling, each element has an equal chance of being chosen. However, in weighted sampling, the probability of selection is proportional to the assigned weight. The weights are usually positive values, and their magnitudes determine the likelihood of an element being included in the sample. In our provided code, the number of samples is determined by the 'num' parameter, and the 'random_state' parameter ensures that the sampling results can be consistently reproduced. Below is Diagram 5.4, showing the result of weight sampling.

	MeasurementID	DateID	TimeID	ReadingID	CO_Concentration	NMHC_Concentration	Benzene_Concentration	NOx_Concentration	NO2_Concentration
8034	8035	8035	8035	8035	1.8	-200.0	7.6	340.0	194.0
5359	5360	5360	5360	5360	-200.0	-200.0	10.0	-200.0	-200.0
4384	4385	4385	4385	4385	3.1	-200.0	19.9	590.0	171.0
3379	3380	3380	3380	3380	-200.0	-200.0	9.5	96.0	106.0
5580	5581	5581	5581	5581	1.3	-200.0	7.7	242.0	91.0
4117	4118	4118	4118	4118	-200.0	-200.0	2.8	-200.0	-200.0
9402	9403	9403	9403	9403	NaN	NaN	NaN	NaN	NaN
142	143	143	143	143	2.9	201.0	16.6	184.0	129.0
4094	4095	4095	4095	4095	1.2	-200.0	7.1	75.0	62.0
2677	2678	2678	2678	2678	2.2	-200.0	15.2	178.0	106.0
4735 ro	ws × 23 columns								

Diagram 5.4: Weight Sampling

6. Feature Tools and Star Schema Integration

6.1 Feature Tools

Jupyter Notebook Link for Feature Tools:

https://github.com/jiahongggg/Data-Mining-Warehousing-A2/blob/main/Tools/Feature%20Tools/Assignment%202.ipynb

```
In [1]:
            import featuretools as ft
            import pandas as pd
In [2]:
            # Read the CSV file into a DataFrame
df = pd.read_csv('new_AirQualityUCI.csv')
            # Create a new DataFrame "AirQualityMeasurements"
AirQuality = df[['MeasurementID','ReadingID','DateID', 'TimeID']]
            # Create a new DataFrame "AirQualityMeasurements"
AirQualityMeasurements = df[['MeasurementID','CO_Concentration', 'NMHC_Concentration', 'Benzene_Concentration',
            # Create a new DataFrame "SensorReadings"
SensorReadings = df[['ReadingID', 'PT08_S1', 'PT08_S2', 'PT08_S3', 'PT08_S4', 'PT08_S5']]
In [3]:
            AirQuality.head()
Out[3]:
               MeasurementID ReadingID DateID TimeID
                                              2
                                5
                                                        5
                                                                   5
```

Diagram 6.1: Featuretools Code Repository (1)

Out[4]:	N	deasureme	entID CO_	Concentration	NMHC	_Concentra	ation I	Benzene_Concentration	NOx_Concentration	NO2_Concentration	Те
	0		1	2.6		1	150.0	11.9	166.0	113.0	
	1		2	2.0			112.0	9.4	103.0	92.0	
	2		3	2.2			88.0	9.0	131.0	114.0	
	3		4	2.2			80.0	9.2	172.0	122.0	
	4		5	1.6			51.0	6.5	131.0	116.0	
In [5]:		sorReadir ReadingID) PT08_S2 P	T08_S3	PT08_S4	PT08_	_\$5			
	0	1	1360.0	1046.0	1056.0	1692.0	126	68.0			
	1	2	1292.0	955.0	1174.0	1559.0	97	72.0			
	2	3	1402.0	939.0	1140.0	1555.0	107	74.0			
	3	4	1376.0	948.0	1092.0	1584.0	120	03.0			
	4	5	1272.0	836.0	1205.0	1490.0	111	10.0			

Diagram 6.2: Featuretools Code Repository (2)

```
In [6]:
           dataframes = {
   "AirQualityMeasurements": (AirQualityMeasurements, "MeasurementID"),
   "SensorReadings": (SensorReadings, "ReadingID"),
   "AirQuality": (AirQuality, "DateID"),
In [7]:
           relationships = [
                ("SensorReadings", "ReadingID", "AirQuality", "ReadingID"),
("AirQualityMeasurements", "MeasurementID","AirQuality","MeasurementID")
In [8]:
            feature_matrix_SensorReadings, features_defs = ft.dfs(
                dataframes=dataframes,
relationships=relationships,
target_dataframe_name="SensorReadings",
            feature_matrix_SensorReadings
Out[8]:
                        PT08_S1 PT08_S2 PT08_S3 PT08_S4 PT08_S5 COUNT(AirQuality) MAX(AirQuality.TimeID) MEAN(AirQuality.Time
          ReadingID
                            1360
                                        1046
                                                    1056
                                                                 1692
                                                                             1268
                                                                                                                                  1.0
                            1292
                                         955
                                                     1174
                                                                 1559
                                                                              972
                    3
                            1402
                                         939
                                                     1140
                                                                 1555
                                                                             1074
                                                                                                                                 3.0
                                                                                                                                 4.0
                    4
                            1376
                                         948
                                                     1092
                                                                 1584
                                                                             1203
                    5
                            1272
                                         836
                                                     1205
                                                                 1490
                                                                             1110
                                                                                                                                 5.0
                           <NA>
                                       <NA>
                                                                <NA>
                                                                                                                              9467.0
                                                                                                                                                           946
                9467
                                                    <NA>
                                                                            <NA>
                           <NA>
                                       <NA>
                                                                                                                             9468.0
                                                                                                                                                           946
                9468
                                                    <NA>
                                                                <NA>
                                                                            <NA>
                9469
                           <NA>
                                       <NA>
                                                    <NA>
                                                                <NA>
                                                                            <NA>
                                                                                                                             9469.0
                                                                                                                                                           946
                                                                                                                                                           947
                9470
                           <NA>
                                       <NA>
                                                    <NA>
                                                                <NA>
                                                                            <NA>
                                                                                                                             9470.0
                9471
                           <NA>
                                                                                                                              9471.0
                                                                                                                                                           947
                                       <NA>
                                                    <NA>
                                                                <NA>
                                                                            <NA>
         9471 rows × 60 columns
```

Diagram 6.3: Featuretools Code Repository (3)

6.2 Star Schema

Diagram 6.4: Star Schema

7. Explore

Exploratory Data Analysis

Exploratory Data Analysis (EDA) employs data visualization to thoroughly inspect, analyze, and summarize essential aspects of datasets. It aids in efficiently manipulating data sources to extract desired insights, facilitating the identification of patterns, anomalies, hypothesis testing, and assumption verification. EDA plays a crucial role in assessing the suitability of chosen statistical techniques before delving into data analysis.

7.1 Average Temperature

Diagram 7.1: Average Temperature Of Italy Base On Month

The diagram 7.1 vividly illustrates the monthly temperature variations in Italy through a bar chart. July stands out with the highest temperature, peaking at approximately 29 degrees

Celsius, while February records the lowest temperature at around 7 degrees Celsius. This clear distinction emphasizes the seasonal temperature fluctuations experienced in Italy, with summer months being notably warmer and winter months considerably cooler.

7.2 Correlation of Humidity & and Temperature

Diagram 7.2: Correlation of Humidity & Temperature

The diagram 7.2 depicting the correlation between humidity and temperature reveals a noticeable trend. It is evident that as relative humidity decreases, there is a corresponding drop in temperature. This observation indicates an inverse relationship between humidity and temperature, suggesting that lower humidity levels are associated with cooler temperatures. Hence, we may infer that temperature may be the factor that can affect humidity.

7.3 Correlation between NO2 and Benzene Concentration

Diagram 7.3: Correlation Of NO2 & Benzene

The diagram 7.3, depicting the correlation between NO2 and benzene with different colors representing various years, reveals a notable trend. Upon examination, it becomes evident that the concentrations of both NO2 and benzene decreased in 2005 compared to 2004. This observation suggests an overall reduction in the levels of these pollutants between the two years, indicating a potential improvement in air quality and environmental conditions during that period. Furthermore, the graph illustrates a positive correlation between the concentrations of benzene and NO2. As the concentration of benzene increases, there is a corresponding increase in the concentration of NO2. This positive correlation suggests a potential relationship or co-occurrence between the two pollutants.

8. Modify

8.1 Talend

Data preprocessing is the process of fixing or removing incorrect, corrupted, incorrectly formatted, duplicate, or incomplete data within a dataset. Data preprocessing helps ensure the quality of the data, correct errors, handle missing values, and prepare the dataset for further exploration. In this project, we have chosen to integrate Talend Data Preparation as the tool to perform the data preprocessing task on the selected dataset.

The air quality data was obtained from UC Irvine. After exploring the data, we discovered that in some rows, only MeasurementID, DateID, TimeID, and ReadingID have values, while the remaining columns are blank.

The dataset is loaded into Talend Data Preparation to perform data preprocessing.

Below are the steps we use to preprocess our dataset:

- 1. Remove negative values in the CO Concentration column.
- 2. Delete all rows consisting of missing values.
- 3. Remove negative values such as -200 in the NMHC Concentration column.
- 4. Remove negative values in the Benzene Concentration column.
- 5. Remove negative values in the NOx Concentration column.
- 6. Delete the unnecessary columns 'Minute' and 'Second.'

Diagram 8.1: Talend Data Preprocessing

Data Cleaning

- Removing Negative Values: We start by removing negative values in the CO_Concentration, NMHC_Concentration, Benzene_Concentration, and NOx_Concentration columns. Negative values in these columns might result from sensor errors or missing data, potentially distorting the analysis and leading to incorrect conclusions. By eliminating these values, we ensure that the data accurately represents air quality measurements.
- **Deleting Rows with Missing Values:** We also delete all rows that consist of missing values. Rows containing missing data can introduce complications during data analysis and modeling. By removing them, we ensure that the dataset is complete and ready for further processing.

Data Reduction

• Removing Unnecessary Columns: To streamline the dataset, we eliminate the unnecessary 'Minute' and 'Second' columns. These columns may not be relevant to the analysis. By removing extraneous data, we reduce the dataset's dimensionality, making it easier to manage and process. Additionally, this action helps us focus on the most pertinent data for our analysis.

8.2 SAS Enterprise Miner

Data Preparation and Modeling

- Importing into SAS Enterprise Miner: Following data cleaning and reduction, we import the preprocessed dataset into SAS Enterprise Miner using the File Import Node.
- **Data Partitioning:** The dataset is then connected to the Data Partitions Node, which helps us allocate the data according to the desired percentages. Using this node, we assign 70% of the data to our training dataset, 20% to the validation dataset, and 10% to our test dataset.
- Variable Transformation: Before submitting the data to the regression and neural networking modeling nodes, we perform variable transformation. Transforming the data can enhance model responsiveness by stabilizing variance, removing nonlinearity, improving additivity, and mitigating non-normality. These transformations contribute to better model fits.

Diagram 8.2: Transformations Statistics

9. Techniques and Algorithms

9.1 Association Rule

Association Rule is a data mining method used to reveal connections between different variables within a dataset. It is often utilized in market basket analysis to uncover patterns in consumer purchasing behavior. For this project, our association rule is carried out using the day of the date as the ID, and our target variable is the temperature category. Our objective is to identify the relationships between the day and temperature category. This allows us to find rules that may predict the occurrence of a temperature category based on the occurrences of other temperature categories.

Diagram 9.1: Association Rule Diagram

Diagram 9.2: Association Rule Description

Diagram 9.3: Association Rule Statistic

Diagram 9.3 above displays the association rules statistics plot. The chart represents association rules, with the X-axis representing rule confidence and the Y-axis representing rule support. Each point on the graph corresponds to a specific association rule. Notably, a standout rule appears in the top right corner, symbolizing a robust rule with both high support and confidence. This rule is generally regarded as the most trustworthy. Conversely, the rule found in the bottom-left corner has the lowest support and confidence, suggesting a less reliable association rule.

Diagram 9.4: Association Rule Matrix

The illustration in Diagram 9.4 displays a rule matrix where the y-axis corresponds to the left side of association rules, and the x-axis corresponds to the right side of rules. This matrix serves the purpose of elucidating and examining the conditions that give rise to associations and their corresponding outcomes. Utilizing this rule matrix facilitates a thorough comprehension of the patterns and connections between the components on the left-hand side and the results on the right-hand side within association rules. By referring to the results, we can identify that the right-hand side of the rule consists of 'Mid,' 'Low,' 'Mid & Low,' 'High,' 'Mid & High,' and 'Low & High,' while the left-hand side of the rule consists of 'Mid,' 'Mid & High,' 'High,' 'Mid & Low,' and 'Low & High.'

Diagram 9.5: Association Rule Line Plot

Diagram 9.5 above presents the statistics line plot. From the graph, we can observe that the blue line (lift) maintains a constant value of 1.06. This suggests that the antecedent and consequent are unrelated, and the rule does not offer any supplementary information. Next, the green line (confidence) exhibits a sudden drop from 80% to 40% but eventually achieves consistency at 100%. This indicates that, in the end, the presence of the antecedent guarantees the presence of the consequent. As for the brown line (support), it also displays an up and down trend, but overall, the percentage remains below 50%. This might indicate that the rules are only present in a small portion of the transactions.

Relations	Expected Confidenc e(%)	Confidenc e(%)	Support(%)	Lift	Transactio n Count	Rule	Left Hand of Rule	Right Hand of Rule	Rule Item 1	Rule Item 2	Rule Item 3	Rule Item 4	Rule Item 5	Rule Index	Transpose Rule
2	51.85					High ==>		Low	High	===>	Low			1	1
3	51.85						Mid & High	Low	Mid	High	===>	Low		2	1
3	51.85	55.00	40.74	1.06	11.00	High ==>	High	Mid & Low	High	===>	Mid	Low		3	1
2	74.07	78.57	40.74	1.06	11.00	Low ==>	.Low	High	Low	===>	High			4	1
3	3 74.07	78.57	40.74	1.06	11.00	Mid & Lo	Mid & Low	High	Mid	Low	===>	High		5	1
3	3 74.07	78.57	40.74	1.06	11.00	Low ==>	.Low	Mid & High	Low	===>	Mid	High		6	1
2	74.07	74.07	74.07	1.00	20.00	Mid ==>	Mid	High	Mid	===>	High			7	1
2	51.85	51.85	51.85	1.00	14.00	Mid ==>	Mid	Low	Mid	===>	Low			8	1
3	3 40.74	40.74	40.74	1.00	11.00	Mid ==>	Mid	Low & High	Mid	===>	Low	High		9	1
2	2 100.00	100.00	74.07	1.00	20.00	High ==>	High	Mid	High	===>	Mid			10	1
2	2 100.00	100.00	51.85	1.00	14.00	Low ==>	Low	Mid	Low	===>	Mid			11	1
3	3 100.00	100.00	40.74	1.00	11.00	Low & Hi	Low & High	Mid	Low	High	===>	Mid		12	1

Diagram 9.6: Association Rule Table

9.2 Sequence Analysis

In this context, sequence analysis plays a crucial role in converting unprocessed data into practical and meaningful insights. For conducting sequence analysis on our dataset, the initial step involves redefining the dataset role to "Transaction" and designating "Day" as the ID, "Category" as the Target, and "Hour" as the Sequence. Subsequently, an Association node is introduced to the diagram workspace, linked to the dataset node. This Association node is then renamed as "Sequence Analysis."

Diagram 9.7:Sequence Analysis Diagram

24	Sequence R	eport										
25 26	Chain	Transaction	Support	Confidence	Pseudo		Chain	Chain	Chain	Rule		Right Hand
27	Length	Count	(%)	(%)	Lift	Rule	Item 1	Item 2	Item 3	Index	Left Hand of Rule	of Rule
28	Beligai	court	(+)	(*)	BILC	MIL	I OCM I	ICCM 2	I OCM 5	Index	Bert Halla of Nate	or ware
29	2	26	96.30	96.30	0.96	Mid ==> Mid	Mid	Mid		1	Mid	Mid
30	3	26	96.30	100.00	1.00	Mid ==> Mid ==> Mid	Mid	Mid	Mid	2	Mid ==> Mid	Mid
31	2	20	74.07	100.00	1.00	High ==> Mid	High	Mid		3	High	Mid
32	3	20	74.07	100.00	1.00	High ==> Mid ==> Mid	High	Mid	Mid	4	High ==> Mid	Mid
33	2	19	70.37	95.00	1.28	High ==> High	High	High		5	High	High
34	2	19	70.37	70.37	0.95	Mid ==> High	Mid	High		6	Mid	High
35	3	19	70.37	73.08	0.99	Mid ==> Mid ==> High	Mid	Mid	High	7	Mid ==> Mid	High
36	3	19	70.37	100.00	1.00	High ==> High ==> Mid	High	High	Mid	8	High ==> High	Mid
37	3	19	70.37	100.00	1.00	Mid ==> High ==> Mid	Mid	High	Mid	9	Mid ==> High	Mid
38	3	18	66.67	94.74	1.28	High ==> High ==> High	High	High	High	10	High ==> High	High
39	3	18	66.67	94.74	1.28	Mid ==> High ==> High	Mid	High	High	11	Mid ==> High	High
40	2	13	48.15	48.15	0.93	Mid ==> Low	Mid	Low		12	Mid	Low
41	2	13	48.15	92.86	0.93	Low ==> Mid	Low	Mid		13	Low	Mid
42	3	13	48.15	50.00	0.96	Mid ==> Mid ==> Low	Mid	Mid	Low	14	Mid ==> Mid	Low
43	3	13	48.15	100.00	1.00	Low ==> Mid ==> Mid	ron	Mid	Mid	15	Low ==> Mid	Mid
44	2	12	44.44	85.71	1.65	Low ==> Low	Low	Low		16	Low	Low
45	2	12	44.44	100.00	1.00	Mid & High ==> Mid	Mid & High	Mid		17	Mid & High	Mid
46	2	12	44.44	44.44	1.00	Mid ==> Mid & High	Mid	Mid & High		18	Mid	Mid & High
47	3	12	44.44	92.31	0.92	Mid ==> Low ==> Mid	Mid	Low	Mid	19	Mid ==> Low	Mid
48	3	12	44.44	100.00	1.00	Mid & High ==> Mid ==> Mid	Mid & High	Mid	Mid	20	Mid & High ==> Mid	Mid
49	3	12	44.44	100.00	1.00	Mid ==> Mid & High ==> Mid	Mid	Mid & High	Mid	21	Mid ==> Mid & High	Mid
50	3	12	44.44	46.15	1.04	Mid ==> Mid ==> Mid & High	Mid	Mid	Mid & High	22	Mid ==> Mid	Mid & High
51	2	11	40.74	78.57	1.06	Low ==> High	Low	High		23	Low	High
52	2	11	40.74	91.67	1.24	Mid & High ==> High	Mid & High	High		24	Mid & High	High
53	3	11	40.74	100.00	1.35	Mid & High ==> High ==> High	Mid & High	High	High	25	Mid & High ==> High	High
54												
55												
56												
57												

Diagram 9.8: Sequence Analysis Report

Diagram 9.9:Rule Matrix

Diagram 9.9 depicts a Rule Matrix that employs a scatter plot to create a graph illustrating the correlation between the Left Hand of Rule and the Right Hand of Rule.

Diagram 9.10: Statistics Line Plot

Rule Stati	stics			
The MEANS	Procedure			
Variable	Label	Minimum	Maximum	Mean
NITEMS	Chain Length	2.0000000	3.0000000	2.8200000
COUNT	Transaction Count	1.0000000	26.0000000	6.1150000
SUPPORT	Support(%)	3.7037037	96.2962963	22.6481481
CONF	Confidence(%)	5.0000000	100.0000000	63.7409009

Diagram 9.11: Rule Statistics

Diagrams 9.10 and 9.11 above show an overview of the association rule performance within the dataset. From the diagrams, we can observe that the average confidence of 63.74% indicates a relatively strong association between the antecedent and consequent parts of the rules. However, the lower support metric, averaging at 22.64%, suggests that these rules might not be widely applicable across the entire dataset. In short, the high confidence but low support imply that the rules are moderately reliable but may not cover a large portion of the dataset.

Diagram 9.12: Statistics Plot

Sequence	Report			
The FREQ	Procedure			
		Chain Len	igth	
NITEMS	Frequency	Percent	Cumulative Frequency	Cumulative Percent
2	36	18.00	36	18.00
3	164	82.00	200	100.00

Diagram 9.13: Sequence Report

According to Diagrams 9.12 and 9.13, there are two distinct n-items: 2 and 3. The n-items of size 2 account for 18% in both frequency and percentage of itemsets. In contrast, n-items of size 3 have a frequency and percentage of 82%.

9.3 Time Series Clustering

Diagram 9.14: Time Clustering Diagram

Diagram 9.15: TS Similarity Node Properties

(maximum 500 observations printed)								
Variable		Measurement						
Name	Role	Level	Creator	Label				
Day	TIMEID	INTERVAL						
_TS_01	TARGET	INTERVAL	TSDP	Temperature 1				
_TS_02	INPUT	INTERVAL	TSDP	Temperature 2				
_TS_03	INPUT	INTERVAL	TSDP	Temperature 3				
_TS_04	INPUT	INTERVAL	TSDP	Temperature 4				
_TS_05	INPUT	INTERVAL	TSDP	Temperature 5				
_TS_06	INPUT	INTERVAL	TSDP	Temperature 6				
_TS_07	INPUT	INTERVAL	TSDP	Temperature 7				
_TS_08	INPUT	INTERVAL	TSDP	Temperature 8				
_TS_09	INPUT	INTERVAL	TSDP	Temperature 9				
_TS_10	INPUT	INTERVAL	TSDP	Temperature 10				
_TS_11	INPUT	INTERVAL	TSDP	Temperature 11				
_TS_12	INPUT	INTERVAL	TSDP	Temperature 12				
_TS_13	INPUT	INTERVAL	TSDP	Temperature 13				
_TS_14	INPUT	INTERVAL	TSDP	Temperature 14				
_TS_15	INPUT	INTERVAL	TSDP	Temperature 15				
_TS_16	INPUT	INTERVAL	TSDP	Temperature 16				
_TS_17	INPUT	INTERVAL	TSDP	Temperature 17				
_TS_18	INPUT	INTERVAL	TSDP	Temperature 18				
_TS_19	INPUT	INTERVAL	TSDP	Temperature 19				
_TS_20	INPUT	INTERVAL	TSDP	Temperature 20				
_TS_21	INPUT	INTERVAL	TSDP	Temperature 21				
_TS_22	INPUT	INTERVAL	TSDP	Temperature 22				
TS 23	INPUT	INTERVAL	TSDP	Temperature 23				

Diagram 9.16: Time Series Data Preparation

Diagram 9.16 shows the results of the **TS Data Preparation Node** result. From the node we can see that we have 23 different time variables.

Diagram 9.17: Time Series Similarity Node

Diagram 9.18: Most Similar Time

10. Model

10.1 Classification

Classification is a supervised learning technique that characterizes and separates data classes. The models are developed by analyzing the training data. The model is then used to predict the label or class of unlabeled objects. Learning is supervised by the labeled examples in training data sets.

Diagram 10.1: Model Diagram

10.2 Decision tree

This model has been proven to be effective in supporting water quality assessment due to its easy visualization and automatic feature selection (Nasir, Nida, et al., 2022). Decision tree models are widely used because they simplify understanding various factors. The objective of employing decision trees is to create an initial model that can predict the class or category by learning a straightforward decision process from the original dataset or training data.

For the purpose of assessing air quality data in Italy, a classification model utilizing a decision tree is presented in a paper by Gakii, C., & Jepkoech, J. (2019). This paper focuses on classifying temperature using a decision tree.

Diagram 10.2: Score Ranking Matrix (Decision Tree)

Diagram 10.2 reveals that, in the TRAIN data model, the trends of the Score Ranking Matrix for Mean Predicted and Mean Target are overlapping. However, in the VALIDATE train data model, there is a slight disparity between Mean Predicted and Mean Target, suggesting that the model may not be as accurate.

Diagram 10.3: Leaf Statistic (Decision Tree)

Diagram 10.4: Tree (Decision Tree)

Fit Statistics					
Target	Fit Statistics	Statistics Label	Train	Validation	Test
Temperature	NOBS	Sum of Frequencies	579	165	83
Temperature	MAX	Maximum Absolute Error	5.893333	6.693333	2.4375
Temperature	SSE	Sum of Squared Errors	535.577	245.6968	71.99258
Temperature	ASE	Average Squared Error	0.925003	1.489071	0.86738
Temperature	RASE	Root Average Squared Error	0.961771	1.220275	0.931333
Temperature	DIV	Divisor for ASE	579	165	83
Temperature	DFT	Total Degrees of Freedom	579		

Diagram 10.5: Fit Statistic (Decision Tree)

Data Ro	le=TRAIN Target	Variable=Te	mperature Target	Label=' '
	Number of	Mean	Mean	
Depth	Observations	Target	Predicted	
5	39	26.1769	26.1769	
10	23	22.9043	22.9043	
15	26	21.1192	21.1192	
20	32	19.4875	19.4875	
25	31	18.6194	18.6194	
30	27	17.9407	17.9407	
35	27	17.1481	17.1481	
40	38	16.5421	16.5421	
45	22	15.7227	15.7227	
50	26	15.1962	15.1962	
55	30	14.6433	14.6433	
60	30	14.2900	14.2900	
65	26	13.6577	13.6577	
70	58	12.4328	12.4328	
80	33	11.8273	11.8273	
85	38	10.8921	10.8921	
90	35	9.8771	9.8771	
95	20	8.8450	8.8450	
100	18	7.6667	7.6667	

Diagram 10.6: Assessment Score Ranking - Train (Decision Tree)

Data Rol	Le=VALIDATE Targ	et Variable	=Temperature	Target	Label='	1	
	Number of	Mean	Mean				
Depth	Observations	Target	Predicted				
5	11	26.1364	26.0167				
10	6	23.5500	22.8919				
15	12	21.2750	20.8251				
20	6	18.6500	19.4552				
25	14	18.4929	18.7094				
30	2	18.7500	18.3133				
35	13	17.4538	17.2739				
40	3	16.1000	16.6786				
45	9	15.8222	16.2739				
50	8	15.5625	15.2823				
55	9	14.6778	14.6402				
60	6	14.3333	14.3630				
65	10	13.2000	13.4980				
70	12	11.9583	12.3551				
75	4	12.0000	11.8667				
80	7	11.7286	11.8048				
85	13	11.3692	11.0333				
90	11	10.3545	10.2306				
95	4	8.6750	9.7300				
100	5	7.9000	8.1235				

Diagram 10.7: Assessment Score Ranking - Validate (Decision Tree)

10.3 Interactive decision tree

Diagram 10.8: Score Ranking Matrix (Interactive Decision Tree)

Diagram 10.8 illustrates that in both the TRAIN data model and the VALIDATE train data model, the trends of the Score Ranking Matrix for Mean Predicted and Mean Target are overlapping. This alignment suggests that the model is accurate and reliable.

Diagram 10.9 Tree (Interactive Decision Tree)

Diagram 10.10: Leaf Statistic (Interactive Decision Tree)

Fit Statistics					
Target	Fit Statistics	Statistics Label	Train	Validation	Test
Temperature	NOBS	Sum of Frequencies	579	165	8:
Temperature	MAX	Maximum Absolute Error	8.382895	7.082895	6.49142
Temperature	SSE	Sum of Squared Errors	3635.586	1144.089	483.893
Temperature	ASE	Average Squared Error	6.279078	6.933872	5.83003
Temperature	RASE	Root Average Squared Error	2.505809	2.633225	2.41454
Temperature	DIV	Divisor for ASE	579	165	8:
Temperature	DFT	Total Degrees of Freedom	579		

Diagram 10.11: Fit Statistic (Interactive Decision Tree)

10.4 Gradient boosting

Gradient boosting is an effective method for making efficient and accurate predictions, especially when dealing with large and complex datasets. It operates by identifying the optimal way to partition the data based on a single variable. The primary objective is to create segments where the target variable exhibits a greater degree of similarity within each segment. This iterative process continues, further subdividing each segment until an optimal partitioning scheme is attained. Ultimately, these partitions are amalgamated to construct a predictive model.

Diagram 10.12: Score Ranking Matrix (Gradient Boosting)

In Diagram 10.12, we observe that the trends of the Score Ranking Matrix for both the TRAIN data model (Mean Predicted and Mean Target) and the VALIDATE train data model (Mean Predicted and Mean Target) exhibit overlapping patterns. This consistency suggests that the model is characterized by accuracy and reliability.

10.5 Regression

Regression is a statistical technique used to predict a numeric target variable based on one or more predictor variables. It can accommodate both continuous and discrete inputs. A regression model is employed to assess whether changes in the dependent variable are correlated with changes in one or more of the explanatory variables.

Diagram 10.13: Regression Node

First, we will execute the Regression node with its default settings. SAS Enterprise Miner employs the Logistic Regression with a Logit link function as the default regression type. Logistic regression, often associated with the sigmoid function, is utilized for binary classification tasks, where the outcome variable has only two possible results (typically coded as 0 and 1).

Additionally, we will employ a sequential selection approach within the Regression node by configuring the Selection Model to **Forward, Backward, or Stepwise**. This sequential selection method enhances the model's performance and identifies a subset of variables that offer the most effective explanation for the variations in the target variable.

Regression

		Analysis	s of Varia	nce		
		Si	um of			
Source	DF			Mean Square	F Value	Pr > F
Model	22	:	11403	518.318166	150.64	<.0001
Error	556	1913.02	26593	3.440695		
Corrected To	tal 578	:	13316			
	Model Fit St	atistics				
D. Company	0.0563	Na≐ D C∞		507		
R-Square AIC	0.8563	Adj R-Sq BIC	0.8			
SBC	737.9857		741.8			
abc	838.2957	C(p)	23.0	000		
	Tens	2 Am - 1	of Reform	_		
	тұре	3 Analysis	or Friedo	8		
			Sum o	f		
Effect		DF	Square	s F Value	Pr > F	
DateID		1	324.299	6 94.25	<.0001	
Day		1	6.341	4 1.84	0.1751	
Hour		1	31.306	9.10	0.0027	
LG10_PT08_S1		1	52.549	0 15.27	0.0001	
LG10_PT08_S2		1	25.572	8 7.43	0.0066	
LG10_PT08_S3		1	12.179	9 3.54	0.0604	
LG10_PT08_S4		1	17.075	8 4.96	0.0263	
LG10_PT08_S5		1	48.852	7 14.20	0.0002	
MeasurementI	D	0				
Month		0				
OPT_Absolute	_Humidity	2	302.902	8 44.02	<.0001	
OPT_Benzene_	Concentration	2	27.003	2 3.92	0.0203	
OPT_CO_Concer	ntration	2	0.707	0.10	0.9024	
OPT_NMHC_Con	centration	2	11.422	5 1.66	0.1911	
OPT_NO2_Conc	entration	2	7.364	1.07	0.3437	
OPT_NOx_Conc	entration	1	2.122	5 0.62	0.4325	
OPT_Relative	_Humidity	3	4364.937	4 422.87	<.0001	
ReadingID		0				

Diagram 10.14: Output Result (Default Regression)

In our regression model, we've obtained a Mean Square Error (MSE) value of 3.440695. During our Type 3 Analysis of Effects, we identified the input variables with the highest F values, revealing that Relative Humidity and Absolute Humidity exhibit the strongest correlations with temperature. These insights provide valuable information about the influential factors impacting our temperature predictions in the model.

Forward Regression

		Analysis	of Vari	ance			
		Su	um of				
Source	DF	Squ	lares	Mean	Square	F Value	Pr > F
Model	10	נ	1325	1132.	454237	322.99	<.0001
Error	568	1991.48	3883	3.	506134		
Corrected Tot	al 578	1	13316				
	Model Fit St	atistics					
R-Square	0.8504	Adj R-Sq	0.	8478			
AIC	737.2577	BIC	739.	2652			
SBC	785.2320	C(p)	21.	8027			
	Туре	3 Analysis	of Effec	ts			
			Sum	of			
Effect		DF	Squar	es	F Value	Pr > F	
DateID		1	427.32	15	121.88	<.0001	
Hour		1	21.14	99	6.03	0.0143	
LG10_PT08_S1		1	112.02	58	31.95	<.0001	
LG10_PT08_S3		1	69.19	98	19.74	<.0001	
LG10_PT08_S5		1	44.20	73	12.61	0.0004	
OPT_Absolute_	Humidity	2	621.43	17	88.62	<.0001	
OPT_Relative_	Humidity	3	6893.32	31	655.36	<.0001	

Diagram 10.15: Output Result (Forward Regression)

We use Forward Regression with model selection set to Forward, and while the outcomes closely resemble those of other regression models, slight variations in the results arise due to distinct techniques in model training. In this case, Forward Regression yields an MSE of 3.506134.

Backward Regression

		Analysis	of Varia	nce			
		ສນ	un of				
Source	DF	Squ	lares	Mean	Square	F Value	Pr > F
Madal	14	,	1070	010	700000	236.67	< 0001
Model	14 564		.1379		.789992	230.07	<.0001
Error Corrected Tot				٥.	. 434338		
corrected lot	al 578		.3316				
	Model Fit St	atistics					
R-Square	0.8545	Adj R-Sq	0.8	509			
AIC	729.1864	BIC	732.0	397			
SBC	794.6059	C(p)	13.9	578			
	T	0 31	-e Eee	_			
	Type	3 Analysis	or Errect	.8			
			Sum o	f			
Effect		DF	Square	s	F Value	Pr > F	
DateID		1	328.033		95.52	<.0001	
Hour		1	34.997				
LG10 PT08 S1		1	56.600	_	16.48		
		1	31.100		9.06		
LG10_PT08_S2 LG10 PT08 S3		1	13.529		3.94		
LG10_PT08_S4		1	17.389		5.06		
LG10_PT08_S5		1	52.552		15.30		
OPT_Absolute :	Humidity	2	361.78		52.67		
OPT Benzene C		2	31.105		4.53		
OPT Relative		3	4835.855		469.36		
	rorol	•	2000.000	-	103.00	I	

Diagram 10.16: Output Result (Backward Regression)

In Backward Regression, we utilize the Regression node with a model selection set to Backward. Although the outcomes closely resemble those of other regression models, slight variations occur due to distinct techniques in model training. The mean square error of the Backward Regression model is 3.434338.

Stepwise Regression

		Analysi	s of Varian	ce		
		នា	um of			
Source	DF	នច្ចា	uares M	ean Square	F Value	Pr > F
Model	10	,	11325 1	132.454237	322.99	<.0001
Error	568	1991.4	83883	3.506134		
Corrected Tot	al 578		13316			
	Model Fit St	atistics				
R-Square	0.8504	Adj R-Sq	0.84	78		
AIC	737.2577	BIC	739.26	52		
SBC	785.2320	C(p)	21.80	27		
	Туре	3 Analysis	of Effects			
			Sum of			
Effect		DF	Squares	F Value	Pr > F	
DateID		1	427.3215	121.88	<.0001	
Hour		1	21.1499	6.03	0.0143	
LG10_PT08_S1		1	112.0258	31.95	<.0001	
LG10_PT08_S3		1	69.1998	19.74	<.0001	
LG10_PT08_S5		1	44.2073	12.61	0.0004	
OPT_Absolute_	Humidity	2	621.4317	88.62	<.0001	
OPT_Relative_		3	6893.3231	655.36	<.0001	

Diagram 10.17: Output Result (Stepwise Regression)

In Stepwise Regression, we utilize the Regression node with a model selection set to Stepwise. Although the outcomes closely resemble those of other regression models, The relative slight variations occur due to distinct techniques in model training. The mean square error of the Backward Regression model is 3.506134.

10.6 Neural Network

Neural networks are a class of parametric models that can handle a wider variety of nonlinear relationships between a set of predictors and a target variable

Diagram 10.18: Variable Selection (Neutral Network)

We have used variable selection to reduce the number of input variables submitted to neural network models. We have employed the default settings from the variable selection node. As configured, variables with low R-square values are rejected.

					Objective	Max Abs		Slope of
		Function	Active	Objective	Function	Gradient	Step	Search
Iter	Restarts	Calls	Constraints	Function	Change	Element	Size	Direction
1	0	6	0	3.34922	0.0309	0.2709	0.00543	-11.528
2	0	10	0	3.26807	0.0812	0.2528	1.528	-0.106
3	0	12	0	3.16432	0.1037	0.1679	1.000	-0.176
4	0	16	0	3.09773	0.0666	0.3045	2.174	-0.0613
5	0	18	0	3.03020	0.0675	0.1813	1.000	-0.119
6	0	20	0	2.95697	0.0732	0.1919	1.391	-0.121
7	0	23	0	2.91497	0.0420	0.1287	1.508	-0.0549
8	0	25	0	2.87198	0.0430	0.1799	2.847	-0.0369
9	0	27	0	2.84807	0.0239	0.2544	2.742	-0.0392
10	0	29	0	2.81013	0.0379	0.1052	0.975	-0.0614
11	0	31	0	2.76792	0.0422	0.2118	2.500	-0.0379
12	0	33	0	2.71086	0.0571	0.1616	2.289	-0.0461
13	0	36	0	2.68391	0.0269	0.1139	1.179	-0.0451
14	0	38	0	2.66655	0.0174	0.1709	3.225	-0.0209
15	0	42	0	2.61517	0.0514	0.0850	2.049	-0.0501
16	0	44	0	2.58166	0.0335	0.2016	3.756	-0.0342
17	0	46	0	2.54081	0.0408	0.0757	1.500	-0.0559
18	0	48	0	2.48690	0.0539	0.1517	3.458	-0.0295
19	0	51	0	2.46299	0.0339	0.1317	1.147	-0.0233
20	0	53	0	2.42921	0.0338	0.1146	1.507	-0.0397
21	0	55	0	2.38376	0.0350	0.1414	1.828	-0.0397
22	0	57	0	2.37174	0.0455	0.1414	2.029	-0.0462
23	0	61	0					-0.0360 -0.0973
	0	64		2.31469	0.0570	0.1033	1.199	
24	0		0	2.29211	0.0226	0.0907	1.237	-0.0372
25	_	66	0	2.26056	0.0316	0.0795	1.353	-0.0417
26	0	69	0	2.23947	0.0211	0.0911	1.342	-0.0313
27	0	71	0	2.21386	0.0256	0.1179	2.387	-0.0221
28	0	73	0	2.19967	0.0142	0.2386	2.550	-0.0251
29	0	75	0	2.17496	0.0247	0.0727	0.825	-0.0430
30	0	77	0	2.15706	0.0179	0.2163	2.241	-0.0276
31	0	79	0	2.13094	0.0261	0.0815	1.591	-0.0281
32	0	81	0	2.09830	0.0326	0.1617	2.309	-0.0283
33	0	83	0	2.08664	0.0117	0.2186	2.340	-0.0349
34	0	87	0	2.05825	0.0284	0.0645	1.195	-0.0488
35	0	89	0	2.03486	0.0234	0.2208	4.971	-0.0143
36	0	91	0	2.00266	0.0322	0.1518	0.972	-0.0601
37	0	94	0	1.98797	0.0147	0.0854	0.974	-0.0295
38	0	96	0	1.96846	0.0195	0.0811	2.030	-0.0181
39	0	98	0	1.94669	0.0218	0.1778	1.820	-0.0268
40	0	100	0	1.93085	0.0158	0.1038	1.964	-0.0277
41	0	102	0	1.91123	0.0196	0.0535	1.618	-0.0245
42	0	104	0	1.89588	0.0153	0.1603	3.463	-0.0142
43	0	106	0	1.87914	0.0167	0.0828	1.387	-0.0277
44	0	109	0	1.86765	0.0115	0.0771	1.976	-0.0113
45	0	111	0	1.85374	0.0139	0.1001	1.775	-0.0162
46	0	113	0	1.84900	0.00474	0.1036	2.476	-0.0140
47	0	117	0	1.83645	0.0126	0.0407	1.225	-0.0205
48	0	120	0	1.82791	0.00854	0.0711	2.873	-0.0058
49	0	122	0	1.81625	0.0117	0.0408	1.496	-0.0143
50	0	124	0	1.81327	0.00298	0.1053	3.110	-0.0094

Diagram 10.19: Optimization Results Neural Network

The objective function value within our neural network optimization results serves as a critical performance metric that we endeavor to enhance throughout the process. It initiates at a value of 3.34922 and progressively diminishes as our optimization algorithm iteratively refines the neural network model. Ultimately, after a series of iterations, it converges to a final value of 1.81327.

11. Assess

The assessment step in SEMMA is of paramount importance because it involves the evaluation and comparison of various models. This critical phase aims to pinpoint the model that is most effective in tackling a particular problem or producing accurate predictions.

11.1 Decision Tree & Gradient Boosting

Diagram 11.1: Model Comparison Decision Tree & Gradient Boosting

To assess all the models and make comparisons between them, we utilized the Model Comparison Node in SAS Enterprise Miner for this purpose.

Diagram 11.2: Score Distribution Target Variable Interactive Decision tree

Diagram 11.3: Score Distribution Target Variable Gradient Boosting

Based on Diagrams 11.2 and 11.3, it is evident that the mean prediction line closely aligns with the mean target line. Consequently, we can conclude that, on average, the model's predictions are in agreement with the actual target values. This alignment between the mean prediction and mean target indicates that the model effectively captures the underlying data patterns.

Diagram 11.4: Result of Model Comparison Node Decision Tree & Gradient Boosting

Diagram 11.4 displays the results obtained from the Model Comparison Node, which includes distinct tabs such as the Fit Statistics Table, Score Ranking Overlay Chart, and Output Result. A detailed explanation of each component follows.

Diagram 11.5: Score Ranking Overlay Decision Tree & Gradient Boosting

Diagram 11.5 illustrates the cumulative lift graph generated by our trained model. A superior model will exhibit a larger area under the curve. In this graph, we observed that the Interactive Decision Tree halted midway. This occurred because, during the setup of the interactive decision tree, we constrained the tree from including all nodes, leading to the issue of underfitting, as demonstrated above. The graph also reveals that the decision tree and gradient boosting produced fairly similar results, with the line chart for gradient boosting showing a slightly higher curve.

Fit Stati	stics											_ 0	X
Selected Model	Predecesso r Node	Model Node	Model Description	Target Variable	Target Label	Selection Criterion: Valid: Average Squared Error	Train: Sur of Frequenc s	ie	Train: Maximum Absolute Error	Train: Sum of Squared Errors	Train: Average Squared Error	Train: Root Average Squared Error	Tra Divi AS
Υ	Boost Tree Tree2	Boost Tree Tree2		Tempera Tempera Tempera		0.212251 1.489071 6.933872	5	79 79 79	0.586105 5.893333 8.382895	535.577	0.925003	0.961771	1

Diagram 11.6: Fit Statistics Decision Tree & Gradient Boosting

Fit Statis	tics			
Model Sele	ction bas	ed on Valid: Average Squared	Error (_VAS	E_)
			Valid:	Train:
			Average	Average
Selected	Model		Squared	Squared
Model	Node	Model Description	Error	Error
Y	Boost	Gradient Boosting	0.21225	0.00748
	Tree	Decision Tree	1.48907	0.92500
	Tree2	Interactive Decision Tree	6.93387	6.27908

Diagram 11.7: Fit Statistics Decision Tree & Gradient Boosting

Considering Diagrams 11.6 and 11.7, it becomes evident that among the models, including Decision Tree, Interactive Decision Tree, and Gradient Boosting, Gradient Boosting stands out as the superior choice. This decision is primarily rooted in the fact that Gradient Boosting exhibits the lowest Average Squared Error when compared to the other models.

11.2 Neural Network and regression

Diagram 11.8: Model Comparison Regression & Neural Network

Diagram 11.9: Result of Model Comparison Node Regression & Neural Network

Diagram 11.9 displays the results obtained from the Model Comparison Node, which comprises various tabs, including the Fit Statistics Table, Score Ranking Overlay Chart, and Output Result. Further elaboration on each of these components will follow.

Diagram 11.10: Score Distribution Target Variable Regression & Neural Network

Diagram 11.10 displays the mean prediction line and mean target line. We can observe variations in trend lines among the models. Upon examination, it is evident that the Mean Predicted and Mean Target of the neural network exhibit the highest inconsistency, suggesting that this model may not be suitable for our project.

Diagram 11.11: Score Ranking Overlay Regression & Neural Network

Diagram 11.11 represents the mean predicted graph of our trained model. A larger area under the curve signifies a better-performing model. Upon examination, we note that all models exhibit similar results on the line chart. However, a closer inspection reveals that our standard regression model outperforms the others, making it the best choice among the regression and neural network models.

Fit Statisti	cs											×
Selected Model	Predecessor Node	Model Node	Model Description	Target Variable	Target Label	Selection Criterion: Valid: Average Squared Error	Train: Akaike's Information Criterion	Train: Average Squared Error	Train: Average Error Function	Train: Degrees of Freedom for Error	Train: Model Degrees of Freedom	Tra Deg Fre
Y	Reg4	Reg4	Regressi	Tempera		3.383599	737.9857	3.304018	3.304018	556	23	3
	Reg3	Reg3	Backward	Tempera		3.446203	729.1864	3.345365	3.345365	564	15	,
	Reg	Reg	Stepwise	Tempera		3.639423	737.2577	3.439523	3.439523	568	11	
	Reg2	Reg2	Forward	Tempera		3.639423	737.2577	3.439523	3.439523	568	11	
	Neural	Neural	Neural N	Tempera		3.705683	704.8124	2.23947	2.23947	460	119)

Diagram 11.12: Fit Statistics Regression & Neural Network

Fit Statis Model Sele		d on Valid: Averag	e Squared E	rror (_VASE	
Selected Model	Model Node	Model Description	Valid: Average Squared Error	Train: Average Squared Error	Train: Misclassification Rate
Υ	Reg4 Reg3 Reg Reg2 Neural	Regression Backward Stepwise Forward Neural Network	3.38360 3.44620 3.63942 3.63942 3.70568	3.30402 3.34537 3.43952 3.43952 2.23947	

Diagram 11.13: Fit Statistics Regression & Neural Network

Considering Diagrams 11.12 and 11.13, Regression emerges as the best model among Backward, Stepwise, Forward, and Neural Network. We base this choice on Regression's lower Average Squared Error compared to the other models.

12. Conclusion

In summary, our investigation revolved around analyzing a dataset focused on air quality, which encompassed a variety of input variables, with air temperature as the target variable. We applied various models, including decision trees, interactive decision trees, gradient boosting, regression, as well as forward, backward, and stepwise regression, and neural networks.

For the classification tasks (decision tree and gradient boosting), we determined that gradient boosting is the most suitable model for our dataset. This choice was influenced by the potential presence of intricate relationships and dependencies among variables in our dataset. Gradient boosting excels at capturing such complexities by sequentially constructing weak learners, each designed to address specific aspects of the data.

In contrast, for the regression and neural network aspects, we found that the original regression model is the most appropriate for our dataset. This preference may be attributed to the possibility that forward, backward, and stepwise regression, as well as neural networks, introduced unnecessary complexity or overfit the training data, leading to reduced performance on new data. The original regression model, being simpler, may have avoided these issues.

In conclusion, each data mining model has its own strengths and limitations, which are influenced by the characteristics of the datasets they analyze. There is no universally superior or inferior model; the key lies in fine-tuning parameters and identifying settings that enhance accuracy for a specific dataset. Employing a variety of models in data mining enables the generation of predictive insights, facilitating well-informed decision-making and ultimately improving business outcomes.

13. References

- Demir, F. (2022). Deep autoencoder-based automated brain tumor detection from MRI data.

 Artificial Intelligence-Based Brain-Computer Interface, 317–351.

 https://doi.org/10.1016/b978-0-323-91197-9.00013-8
- Ghoson, A. M. A. (2011). Decision Tree Induction & Clustering Techniques In SAS Enterprise Miner, SPSS Clementine, And IBM Intelligent Miner A Comparative Analysis. International Journal of Management & Information Systems, 14(3). https://doi.org/10.19030/ijmis.v14i3.841
- Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM computing surveys (CSUR), 31(3), 264-323.
- Madhulatha, T. S. (2012). An overview on clustering methods. arXiv preprint arXiv:1205.1117, https://doi.org/10.48550/arXiv.1205.1117.
- Rithika, S. (2023, January 18). Sequence data in Data Mining Simplified 101 learn. Hevo. https://hevodata.com/learn/sequence-data-in-data-mining