Modelos de Regressão e Previsão

Introdução ao Modelo de Regressão Linear Simples

Prof. Carlos Trucíos carlos.trucios@facc.ufrj.br ctruciosm.github.io

Faculdade de Administração e Ciências Contábeis Universidade Federal do Rio de Janeiro

Aula 1

Data Is The New Oil --And That's A Good Thing

The world's most valuable resource is no longer oil, but data

Data Scientist: The Sexiest Job of the 21st Century

Algumas razões para estudar analise de dados:

- A análise de dados é muito importante para as grandes empresas.
- Oportunidades de trabalho em alta
- Salario competitivo
- Oportunidades de trabalho em diversos setores
- As tomadas de decisão nas empresas são influenciadas pelos dados.

A modelagem entra em cena quando:

- Temos uma teoria econômica para testar
- Temos em mente uma relação que apresenta alguma importância na tomada de decisão
- Queremos explicar determinados fenômenos
- Queremos saber como o aumento/diminuição em uma variavel influencia em outra.
- Queremos fazer previsão

Modelagem

Estamos interessado em relações do tipo

$$y = f(x_1, x_2, \ldots, x_n)$$

onde y é a variavel de interesse e $x_i's$ são as variaveis que nos ajudarão a entender/explicar/prever y

No processo de modelagem, lidamos com diversos tipos de dados, eles podem ser classificados em:

- Corte transversal
- Séries temporais
- Corte transversal agrupados
- Painel (ou longitudinais)

Para cada tipo de dado, teremos uma abordagem de modelagem diferente que nos permitirá explotar a informação contida nos dados.

Corte transversal

Consiste em uma amostra de indivídios* (consumidores, empresas, cidades, paises, etc) tomadas em determino ponto no tempo. Podemos pensar nesse conjunto de dados como quando tiramos uma **foto** (panoramica).

Corte transversal

Consiste em uma amostra de indivídios* (consumidores, empresas, cidades, paises, etc) tomadas em determino ponto no tempo. Podemos pensar nesse conjunto de dados como quando tiramos uma **foto** (*panoramica*).

Séries temporais

Consiste em observações sobre uma (ou várias) variaveis ao **longo do tempo**. A diferença dos dados e corte transversal, dados de séries temporais são ordenados de forma cronológica.

Corte transversal agrupados

Agrupar várias amostras de corte transversal (cada uma tomada em diferentes períodos de tempo)

Corte transversal agrupados

Agrupar várias amostras de corte transversal (cada uma tomada em diferentes períodos de tempo)

Painel (ou longitudinais)

Consiste em uma série temporal para cada observação de corte transversal. A diferença dos dados de *corte transversal agrupados*, nos dados de painel as **mesmas unidades** são acompanhadas ao longo do tempo

Nessa disciplina, estudaremos dados de corte transversal e de séries temporais

Sejam x e y duas variáveis e suponha que queremos **explicar** y **em termos** de x, **estudar como varia** y **com variações de** x.

Sejam x e y duas variáveis e suponha que queremos **explicar** y **em termos** de x, **estudar como varia** y **com variações de** x.

MRL Simples

$$y = \beta_0 + \beta_1 x + u$$

onde

- y variável dependente,
- x variável independente,
- β_0 é parâmetro de intercepto,
- β_1 é o parâmetro de inclinação e
- *u* é o termo de erro ou perturbação
- u representa outros fatores, além de x, que afetam y.

X
v. independente
v. explicativa
v. de controle
v. previsora
regressor
covariável

Exemplos

• Produção de soja e os fertilizantes

produção =
$$\beta_0 + \beta_1$$
fertilizante + u

• Salario e educação

Salario =
$$\beta_0 + \beta_1$$
Educação + u

Exemplos

• Produção de soja e os fertilizantes

produção =
$$\beta_0 + \beta_1$$
fertilizante + u

• Salario e educação

Salario =
$$\beta_0 + \beta_1$$
Educação + u

Nos exemplos acima, podemos estar interessados em saber o efetio do fertilizante sobre a produção (mantendo fixos os outros fatores) ou o efeito dos anos em educação sobre o salário (mantentos fixos os outros fatores).

Ceteris Paribus

Outros fatores permanecendo iguais

Em muitas aplicações, o interesse é se uma variável (exemplo: fertilizante ou educação) tem efeito causal sobre outra (exemplo: produção ou salário). Nesse sentido estamos interessados em conclussões ceteris paribus de x sobre y.

Ceteris Paribus

Outros fatores permanecendo iguais

Em muitas aplicações, o interesse é se uma variável (exemplo: fertilizante ou educação) tem efeito causal sobre outra (exemplo: produção ou salário). Nesse sentido estamos interessados em conclussões ceteris paribus de \boldsymbol{x} sobre \boldsymbol{y} .

No MRLS

$$y = \beta_0 + \beta_1 x + u$$

se todos os outros fatores são mantidos fixos (de modo que $\Delta u = 0$),

$$\Delta y = \beta_1 \Delta x$$

Mas como podemos manter fixos todos os outros fatores quando na verdade estamos ignorando eles?

Veremos que na verdade, somente podemos obter estimadores confiáveis de β_0 y β_1 quando fazemos hipotesis sobre u e como se relaciona com x

Mas como podemos manter fixos todos os outros fatores quando na verdade estamos ignorando eles?

Veremos que na verdade, somente podemos obter estimadores confiáveis de β_0 y β_1 quando fazemos hipotesis sobre u e como se relaciona com x

Hipóteses

•
$$E(u) = 0$$

Mas como podemos manter fixos todos os outros fatores quando na verdade estamos ignorando eles?

Veremos que na verdade, somente podemos obter estimadores confiáveis de β_0 y β_1 quando fazemos hipotesis sobre u e como se relaciona com x

Hipóteses

- E(u) = 0
- E(u|x) = E(u)

O qué implicam essas hipoteses?

• No modelo com intercepto, sem perda de generalidade, sempre podemos assumir que que o valor médio de u é zero (E(u) = 0)

O qué implicam essas hipoteses?

- **1** No modelo com intercepto, sem perda de generalidade, sempre podemos assumir que que o valor médio de u é zero (E(u) = 0)
- ② E(u|x) = E(u) diz que o valor médio dos fatores não observáveis (u) é o mesmo para todo valor de x e que é igual à media de u.

O qué implicam essas hipoteses?

- No modelo com intercepto, sem perda de generalidade, sempre podemos assumir que que o valor médio de u é zero (E(u) = 0)
- ② E(u|x) = E(u) diz que o valor médio dos fatores não observáveis (u) é o mesmo para todo valor de x e que é igual à media de u.
- **3** No MRLS, se aplicarnos $E(\cdot|x)$, temos que

$$E(y|x) = E(\beta_0 + \beta_1 x + u|x) = \beta_0 + \beta_1 \underbrace{E(x|x)}_{x} + \underbrace{E(u|x)}_{0} = \beta_0 + \beta_1 x$$

(o valor médio de y muda com x)

Exemplos

- Suponha que u seja **aptidão**, então E(aptidão|educação = 5) representa a aptidão média para o grupo de pessoas com 5 anos de educação e E(aptidão|educação = 12) a aptidão média para o grupo de pessoas com 12 anos de educação. E(u|x) = E(u) implica que ambas as médias devem ser as mesmas.
- Mas se entendemos que a média da aptidão aumenta com os anos de educação formal, então $E(u|x) \neq E(u)$

Suponha que

$$y = 1.05 + 0.5x + u$$

com E(u|x) = E(u) = 0. Então

$$E(y|x) = \underbrace{1.05}_{\beta_0} + \underbrace{0.5}_{\beta_1} x$$

(a média de y aumenta em 0.5 por unidade em x).

Suponha que

$$y = 1.05 + 0.5x + u$$

com E(u|x) = E(u) = 0. Então

$$E(y|x) = \underbrace{1.05}_{\beta_0} + \underbrace{0.5}_{\beta_1} x$$

(a média de y aumenta em 0.5 por unidade em x).

- Na prática, nunca conhecemos os valores de β_0 e β_1 e devemos estima-los
- Estimar β_0 e β_1 é o tópico da nossa próxima aula

Leituras recomendadas

Leituras recomendadas

 Wooldridge, Jeffrey M. Introdução à Econometria: Uma abordagem moderna. (2016). Cengage Learning. – Cap 1 e Cap 2.1