Correction_DM

ali.zainoul.az

October 2022

1 Notation big O

Définition de la notation Big O:

$$f(n) \in O(g(n)) \iff f(n) = O(g(n)) \text{ (abus de notation)}$$

$$\iff \exists n_0 \in \mathbb{N}, \exists c \in \mathbb{R}^+, \forall n \ge n_0 : f(n) \le cg(n)$$

• n=O(n) nous dit que: f(n)=n de $\mathbb N$ dans $\mathbb N$ et g(n)=n de $\mathbb N$ dans $\mathbb N$. Ainsi:

$$n \in O(n) \iff n = O(n) \text{(abus de notation)}$$

 $\iff \exists n_0 \in \mathbb{N}, \exists c \in \mathbb{R}^+, \forall n \ge n_0 : n \le cn$
 $\implies n \le cn$
 $\implies 1 \le c$

Conclusion: $1 \le n$ nous assure que $1 \le c$, il suffit de prendre que $n_0 = 1$ et $C \ge 1$.

• 2n = O(3n) nous dit que: f(n) = 2n de $\mathbb N$ dans $\mathbb N$ et g(n) = 3n de $\mathbb N$ dans $\mathbb N$. Ainsi:

$$2n \in O(3n) \iff 2n = O(3n) \text{ (abus de notation)}$$

 $\iff \exists n_0 \in \mathbb{N}, \exists c \in \mathbb{R}^+, \forall n \geq n_0 : (2n) \leq c(3n)$
 $\implies (2n) \leq c(3n)$
 $\implies (2/3) \leq c$

Conclusion: $1 \le n$ nous assure que $(2/3) \le c$, il suffit de prendre que $n_0 = 1$ et $c \ge (2/3)$.

• 2n = O(3n) nous dit que: f(n) = 2n de $\mathbb N$ dans $\mathbb N$ et g(n) = 3n de $\mathbb N$ dans $\mathbb N$. Ainsi:

$$n+2 \in O(n) \iff n+2 = O(n) \text{ (abus de notation)}$$

 $\iff \exists n_0 \in \mathbb{N}, \exists c \in \mathbb{R}^+, \forall n \geq n_0 : (n+2) \leq cn$
 $\implies (n+2) \leq cn$
 $\implies \alpha \leq c \text{ (for } \alpha \geq 2 \text{)}$

Conclusion: $1 \le n$ nous assure que $2 \le c$, il suffit de prendre que $n_0 = 1$ et $c \ge 2$.

• $\sqrt{n} = O(n)$ nous dit que: $f(n) = \sqrt{n}$ de \mathbb{N} dans \mathbb{R}^+ et g(n) = n de \mathbb{N} dans \mathbb{N} . Ainsi:

$$\sqrt{n} \in O(n) \iff \sqrt{n} = O(n) \text{ (abus de notation)}$$

$$\iff \exists n_0 \in \mathbb{N}, \exists c \in \mathbb{R}^+, \forall n \ge n_0 : \sqrt{n} \le cn$$

$$\implies \sqrt{n} \le cn$$

$$\implies c \ge 1(*)$$

Conclusion: $1 \le n$ nous assure que $1 \le c$, il suffit de prendre que $n_0 = 1$ et $c \ge 1$. (*): il suffit de remarquer que pour $n \ge 1$: $n^2 \ge n \implies n \ge \sqrt{n}$.

• log(n) = O(n) nous dit que: f(n) = log(n) de \mathbb{N} dans \mathbb{R}^+ et g(n) = n de \mathbb{N} dans \mathbb{N} . Ainsi:

$$log(n) \in O(n) \iff log(n) = O(n) \text{(abus de notation)}$$

 $\iff \exists n_0 \in \mathbb{N}, \exists c \in \mathbb{R}^+, \forall n \ge n_0 : log(n) \le cn$
 $\implies log(n) \le cn$
 $\implies 1 \le c(*)$

Conclusion: $1 \le n$ nous assure que $1 \le c$, il suffit de prendre que $n_0 = 1$ et $c \ge 1$. (*): il suffit de remarquer que pour $n \ge 1$: $log(n) \ge n \implies log(n)/n \ge 1$, d'où le résultat.

• $n=O(n^2)$ nous dit que: f(n)=n de $\mathbb N$ dans $\mathbb N$ et $g(n)=n^2$ de $\mathbb N$ dans $\mathbb N$. Ainsi:

$$n \in O(n^2) \iff n = O(n^2) \text{ (abus de notation)}$$

 $\iff \exists n_0 \in \mathbb{N}, \exists c \in \mathbb{R}^+, \forall n \ge n_0 : n \le cn^2$
 $\implies n \le cn^2$
 $\implies c \ge 1(*)$

Conclusion: $1 \le n$ nous assure que $1 \le c$, il suffit de prendre que $n_0 = 1$ et $c \ge 1$. (*): il suffit de remarquer que pour $n \ge 1 \implies n^2 \ge n$, d'où le résultat.

2 Notation petit o

Définition de la notation petit o:

$$f(n) \in o(g(n)) \iff f(n) = o(g(n)) \text{(abus de notation)}$$

 $\iff \forall c \geq 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \geq n_0 : f(n) \leq cg(n)$

• Pour tous les cas, il suffit simplement de remarquer que la définition précédente est équivalente à:

$$\begin{split} f(n) &\in o(g(n)) \iff f(n) = o(g(n)) \text{(abus de notation)} \\ &\iff \{f, g \text{ tels que: } \lim_{n \to \infty} f(n)/g(n) = 0\} \textbf{(*)} \end{split}$$

Conclusion: il suffit donc de vérifier la condition précédente (*) pour les quatre exemples.