Projet de MPNA : Méthode des itérations simultanées

Matthias Beaupère, Pierre Granger

Rapport MPNA - CHPS - 18 février 2019

Table des matières

1	Introduction	2
2	Problématique	2
3	Approche utilisée	2
4	1	2
	1 0	2
	4.2 Etude de performances théorique	
	4.3 Etude de performances pratique	2
	4.4 Ajout d'une méthode de déflation "locking"	
	4.5 Conclusions	2
5	Cas parallèle	2
	5.1 Approche utilisée	2
	5.2 Etude de performances théorique	2
	5.3 Etude de performances pratique	2
	5.4 Conclusions	2
6	Conclusion générale	2

FIGURE 1 – Nombre d'itérations N nécessaires pour faire converger e valeurs propres pour différentes tailles de sous-espace de Krylov m et une précision $p=10^{-6}$

- 1 Introduction
- 2 Problématique
- 3 Approche utilisée
- 4 Cas séquentiel
- 4.1 Description de l'algorithme
- 4.2 Etude de performances théorique
- 4.3 Etude de performances pratique
- 4.4 Ajout d'une méthode de déflation "locking"
- 4.5 Conclusions
- 5 Cas parallèle
- 5.1 Approche utilisée
- 5.2 Etude de performances théorique
- 5.3 Etude de performances pratique
- 5.4 Conclusions
- 6 Conclusion générale

FIGURE 2 – Nombre d'itérations N nécessaires pour faire converger e valeurs propres pour différentes tailles de sous-espace de Krylov m et une précision $p=10^{-8}$

FIGURE 3 – Nombre d'itérations N nécessaires pour faire converger e valeurs propres pour différentes tailles de sous-espace de Krylov m et une précision $p=10^{-10}$

FIGURE 4 – Nombre d'itérations N nécessaires pour faire converger e=4 valeurs propres pour différentes tailles de sous-espace de Krylov m et une précision p