| Bayesian inference                                                                                                                                                                                                                                                                                                                                                                                               |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| <b>J. Daunizeau</b><br>Institute of Empirical Research in Economics, Zurich, Switzerland<br>Brain and Spine Institute, Paris, France                                                                                                                                                                                                                                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Overview of the talk                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 1 Probabilistic modelling and representation of uncertainty 1.1 Bayesian paradigm 1.2 Hierarchical models 1.3 Frequentist versus Bayesian inference 2 Numerical Bayesian inference methods 2.1 Sampling methods 2.2 Variational methods (ReML, EM, VB) 3 SPM applications 3.1 aMRI segmentation 3.2 Decoding of brain images 3.3 Model-based fMRI analysis (with spatial priors) 3.4 Dynamic causal modelling    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Overview of the talk  1 Probabilistic modelling and representation of uncertainty  1.1 Bayesian paradigm  1.2 Hierarchical models  1.3 Frequentist versus Bayesian inference  2 Numerical Bayesian inference methods  2.1 Sampling methods  2.2 Variational methods (ReML, EM, VB)  3 SPM applications  3.1 aMRI segmentation  3.2 Decoding of brain images  3.3 Model-based fMRI analysis (with spatial priors) |  |
| 3.4 Dynamic causal modelling                                                                                                                                                                                                                                                                                                                                                                                     |  |

## Bayesian paradigm

probability theory: basics

- Degree of plausibility desiderata:
   should be represented using real numbers
   should conform with intuition
   should be consistent

(D1) (D2) (D3)



• normalization:

$$\sum_{a} P(a) = 1$$



• marginalization:

$$P(b) = \sum P(a, b)$$

• conditioning : (Bayes rule)

$$P(a,b) = P(a|b)P(b)$$
$$= P(b|a)P(a)$$

# Bayesian paradigm

deriving the likelihood function





- But data is noisy:  $y = f(\theta) + \varepsilon$
- Assume noise/residuals is 'small':





ightarrow Distribution of data, given fixed parameters:

$$p(y|\theta) \propto \exp\left(-\frac{1}{2\sigma^2}(y-f(\theta))^2\right)$$

Bayesian paradigm likelihood, priors and the model evidence



Likelihood:

 $p(y|\theta,m)$ 

Prior:

 $p(\theta|m)$ 



Bayes rule:

 $p(\theta|y,m) = \frac{p(y|\theta,m)p(\theta|m)}{p(y|\theta,m)p(\theta|m)}$ p(y|m)















## Frequentist versus Bayesian inference

what about bilateral tests?

 $p(Y|H_0)$ 

 $p(Y|H_1)$ 

 $\bullet$  define the null and the alternative hypothesis in terms of priors, e.g.:

$$H_0: p(\theta|H_0) = \begin{cases} 1 & \text{if } \theta = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$H_1: p(\theta|H_1) = N(0, \Sigma)$$

• apply decision rule, i.e.: if  $\frac{P\!\left(H_0\big|y\right)}{P\!\left(H_1\big|y\right)} \! \! \leq \! \! 1$  then reject H0

Savage-Dickey ratios (nested models, i.i.d. priors):

$$p(y|H_0) = p(y|H_1) \frac{p(\theta = 0|y, H_1)}{p(\theta = 0|H_1)}$$

### Overview of the talk

- 1 Probabilistic modelling and representation of uncertainty
  - 1.1 Bayesian paradigm
  - 1.2 Hierarchical models
  - 1.3 Frequentist versus Bayesian inference
- 2 Numerical Bayesian inference methods
  - 2.1 Sampling methods
  - 2.2 Variational methods (ReML, EM, VB)
- 3 SPM applications
  - 3.1 aMRI segmentation
  - 3.2 Decoding of brain images
  - 3.3 Model-based fMRI analysis (with spatial priors)
  - 3.4 Dynamic causal modelling



### Variational methods

VB / EM / ReML

$$\ln p(y|m) = \underbrace{\left\langle \ln p(\theta, y|m) \right\rangle_q + S(q)}_{\text{free energy } F(q)} + D_{\text{KL}} \Big( q(\theta); p(\theta|y, m) \Big)$$

 $\to {\bf VB}: \ \ {\rm maximize} \ \ {\rm the} \ \ {\rm free} \ \ {\rm energy} \ \ F(q) \ \ {\rm w.r.t.} \ \ {\rm the} \ \ "{\rm variational"} \ \ {\rm posterior} \ \ q(\theta)$  under some (e.g.,  $mean \ field, \ Laplace)$  approximation



$$p(\theta_1, \theta_2 | y, m)$$

$$p(\theta_{1 \text{ or } 2} | y, m)$$

$$\underline{\phantom{a}} = \underline{\phantom{a}} \qquad q(\theta_{\text{1 or 2}})$$

#### Overview of the talk

- 1 Probabilistic modelling and representation of uncertainty
  - 1.1 Bayesian paradigm
  - 1.2 Hierarchical models
  - 1.3 Frequentist versus Bayesian inference
- 2 Numerical Bayesian inference methods
  - 2.1 Sampling methods
  - 2.2 Variational methods (ReML, EM, VB)
- 3 SPM applications
  - 3.1 aMRI segmentation
  - 3.2 Decoding of brain images
  - 3.3 Model-based fMRI analysis (with spatial priors)
  - 3.4 Dynamic causal modelling



| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |













|                                                                                                                      | _ |
|----------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                      |   |
|                                                                                                                      |   |
|                                                                                                                      |   |
|                                                                                                                      |   |
| I thank you for your attention.                                                                                      |   |
| i ilialik you ioi your attention.                                                                                    |   |
|                                                                                                                      |   |
|                                                                                                                      |   |
|                                                                                                                      |   |
|                                                                                                                      |   |
|                                                                                                                      |   |
| A note on statistical significance  lessons from the Neyman-Pearson lemma                                            |   |
| Neyman-Pearson lemma: the likelihood ratio (or Bayes factor) test                                                    |   |
| $\Lambda = \frac{p(y H_1)}{p(y H_0)} \ge u$                                                                          |   |
| is the most powerful test of size $\ \alpha = p\left(\Lambda \geq u \left  H_0 \right. \right) \ $ to test the null. |   |
| what is the threshold u, above which the Bayes factor test yields a error I rate of 5%?     ROC analysis             |   |
| o la                                                                                                                 |   |
| ဉ် <sup>46</sup>                                                                                                     |   |
| CCA (F-statistics)  F=2.20, power=20%                                                                                |   |
|                                                                                                                      |   |
|                                                                                                                      |   |
|                                                                                                                      |   |