Autômatos Finitos Determinísticos

Douglas O. Cardoso douglas.cardoso@cefet-rj.br

Roteiro

1 Uma Introdução Intuitiva

- 2 Autômatos Finitos Determinísticos (AFDs)
- 3 Exercícios

Roteiro

1 Uma Introdução Intuitiva

- 2 Autômatos Finitos Determinísticos (AFDs)
- 3 Exercícios

Um leão, um coelho e um repolho

- Numa margem de um rio estão um leão, um coelho e um repolho. Você deve atravessar de canoa os 3 para a outra margem, um por vez. Porém, não podem ser deixados sozinhos o leão com o coelho, ou o coelho com o repolho.
- Como você faria isso?
- Há mais de um jeito de fazer isso?

Modelagem

- Símbolos: humano = h, leão = l, coelho = c, repolho = r
- Estado inicial: todos numa mesma margem do rio; {h, l, c, r}
- Abstração 1: Não preciso representar a posição da canoa
 - Afinal, ela está onde o homem está
- Abstração 2: cada "passo" é uma travessia
 - Não é preciso registrar ações como "fulano entra na canoa"
 - Agora, é importante registrar quem atravessou

Solução

A solução é: chlcrhc

Outra solução?

Outra solução é: chrclhc

Outras soluções?

Na verdade, infinitas soluções!

Reconhecimento de soluções

- Um alfabeto é um conjunto finito, não-vazio de símbolos
 - **Exemplo:** $\Sigma = \{h, l, c, r\}$
- lacktriangle Um palavra sobre Σ uma sequência finita de elementos desse conjunto
 - Exemplos: chrclhc e chlcrhc
 - ullet | w | representa o número de símbolos (i.e., tamanho) de uma palavra w
 - lacktriangle w_i representa o i-ésimo elemento de uma palavra w
 - lacksquare A palavra de tamanho zero é representada por λ
- lacksquare Seja Σ^* o conjunto de todas as palavras sobre Σ
- Como verificar se $w \in \Sigma^*$ é uma solução?

Resposta: computação

- lacktriangle Verificar se o caminho correspondente a w leva ao estado final
- \blacksquare Em caso positivo, diz-se que w foi aceita (ou reconhecida)
- Senão, w foi rejeitada
- Denomina-se computação o processamento de uma palavra
- Uma computação é denotada usando a notação $[e_1, ax] \vdash [e_2, x]$, considerando que exista uma transição do estado e_1 para e_2 sob o símbolo a

Exemplo de computação: chrclhc, desde o estado inicial

$$\begin{split} [\{h,l,c,r\},chrclhc] \vdash [\{l,r\},hrclhc] \vdash [\{h,l,r\},rclhc] \vdash \\ [\{l\},clhc] \vdash [\{h,l,c\},lhc] \vdash [\{c\},hc] \vdash [\{h,c\},c] \vdash [\varnothing,\lambda] \end{split}$$

Roteiro

1 Uma Introdução Intuitiva

- 2 Autômatos Finitos Determinísticos (AFDs)
- 3 Exercícios

Definição

Um AFD é definido pela quíntupla $(E, \Sigma, \delta, i, F)$, em que:

- E é um conjunto finito, não-vazio de elementos denominados estados
- Σ é um alfabeto
- $\delta: E \times \Sigma \to E$ é a função de transição (determinismo)
- $i, i \in E$, é o estado inicial
- $F, F \subset E$, é o conjunto de estados finais

O estado "sumidouro"

- Uma função mapeia cada elemento do seu domínio
- Todavia, não há transições sob todos os símbolos a partir de todos os estados do exemplo
- Assume-se então que há um estado não-terminal 't', denominado sumidouro, que foi omitido do diagrama
- Se uma transição de um estado e sob um símbolo a não foi especificada, assume-se que $\delta(e,a)=t$
- Por fim, $\forall_{a \in \Sigma} \ \delta(t, a) = t$

O estado "sumidouro"

- Uma função mapeia cada elemento do seu domínio
- Todavia, não há transições sob todos os símbolos a partir de todos os estados do exemplo
- Assume-se então que há um estado não-terminal 't', denominado sumidouro, que foi omitido do diagrama
- \blacksquare Se uma transição de um estado e sob um símbolo a não foi especificada, assume-se que $\delta(e,a)=t$
- Por fim, $\forall_{a \in \Sigma} \ \delta(t, a) = t$

Exemplo

- $\quad \blacksquare \ i = \{h,l,c,r\}$
- $F = \{\emptyset\}$

Exemplo, função de transição

δ	h	1	С	r
h,l,c,r	t	t	{l, r}	t
$\{I,r\}$	$\{h,l,r\}$	t	$\{h,l,c,r\}$	t
$\{h,l,r\}$	$\{I,r\}$	$\{r\}$	t	$\{I\}$
$\{I\}$	t	t	$\{h,l,c\}$	$\{h,l,r\}$
$\{r\}$	t	$\{h,l,r\}$	$\{h,c,r\}$	t
$\{h,l,c\}$	t	{c}	$\{I\}$	t
$\{h,c,r\}$	t	t	$\{r\}$	{c}
{c}	$\{h,c\}$	$\{h,l,c\}$	t	$\{h,c,r\}$
$\{h,c\}$	{c}	t	Ø	t
Ø	t	t	$\{h, c\}$	t
t	t	t	t	t

Linguagens

- Uma linguagem é um conjunto de palavras
- \blacksquare A linguagem aceita por um AFD M, L(M), é o conjunto de palavras que M aceita
- Seja $\hat{\delta}: E \times \Sigma^* \to E$ uma função de transição estendida, tal que:
 - $\hat{\delta}(e,\lambda) = e$
 - $\hat{\delta}(e, aw) = \hat{\delta}(\delta(e, a), w)$
- $\blacksquare \ \, \operatorname{Ent\ \, ao}, \ \, L(M) = \{w \in \Sigma^* : \hat{\delta}(i,w) \in F\}$
- \blacksquare Dado outro AFD M', se e somente se L(M)=L(M'), diz-se que M e M' são equivalentes

Roteiro

1 Uma Introdução Intuitiva

- 2 Autômatos Finitos Determinísticos (AFDs)
- 3 Exercícios

Exercício 1: um AFD para uma linguagem

- Descreva um AFD M, dado que:
- $\blacksquare \ L(M) = \{w \in \{0,1\}^* : w \text{ tem um número par de símbolos}\}$
- Ideia: qual a menor palavra que M deve aceitar? E que deve rejeitar?

Caracterização formal

- $\Sigma = \{0, 1\}$
- \blacksquare $E = \{ par, impar \}$
- i = par
- \blacksquare $F = \{par\}$

Exercício 2: outro AFD para outra linguagem

- Descreva um AFD M', dado que:
- $L(M') = \{w \in \{0,1\}^*: \\ w \text{ tem um número par de 0s e um número par de 1s} \}$

Exercício 3: adaptando M'

- Seja M'' um AFD tal que:
- $L(M'') = \{w \in \{0,1\}^* : w \text{ tem os números de 0s e 1s ambos pares, ou ambos ímpares}\}$
- Como modificar o diagrama de M' para definir M''?

Exercício 4

Qual a relação entre os AFDs M e M'' dos exercícios anteriores?

Solução na próxima aula

■ Seja A_n um AFD tal que:

■ $L(A_n) = \{w \in \{0,1\}^* : w \text{ \'e um n\'umero divis\'ivel por } n \text{ representado na base 2} \}$

Determine a função de transição dos AFDs A_1, A_2, \ldots, A_7