

Eukaryotic Gene Regulation

Part A Gene expression
defie expression
Every cell* in your body contains exactly the same set of genes. The differences between cell types are
therefore due to differences in which genes are expressed (i.e. "switched on") and which are not (i.e.
"switched off").
Gene expression refers to the process of producing the functional product of a gene. In most cases this
involves to produce RNA and then to produce a protein. In some cases though,
RNA is the final product (e.g. in the case of).
Gene expression is regulated by transcription factors: that bind to the regulatory region of a
gene.
*except mature red blood cells (which contain no genes) and gametes (which are haploid and only contain half of your genome)
Items:
ribosomal RNA (rRNA) carbohydrates replication translation transcription proteins
messenger RNA (mRNA)

Part B **Transcription factors** Transcription factors regulate gene expression by regulating the binding of RNA polymerase to region of a gene. Transcription factors can either act as "activators" or as "repressors". An activator binds to a specific sequence in region of a gene. This binding allows RNA region, which activates transcription. polymerase to bind to A repressor binds to a specific sequence in region of a gene. This binding stops RNA polymerase from binding to region, which represses transcription. A single gene may have multiple enhancers and silencers, which allows its expression to be regulated differently in different contexts (e.g. controlled by different transcription factors in different cell types). Items: an enhancer a silencer the promoter

	n to the description in the table below.
Term	Definition
	the region of a gene that is transcribed
	the region of a gene that is not transcribed, but includes the promoter, enhancers, and silencers
	the region that RNA polymerase binds to
	a region that activators bind to
	a region that repressors bind to
	a protein that binds to a regulatory region of a gene to regulate its expression
ns: promoter	regulatory region (transcription factor) (enhancer) (silencer) (coding region)

Created for isaacphysics.org by Lewis Thomson

Bacterial Gene Regulation

Part A Operons
In bacteria, genes are often found in clusters called operons. An operon is a cluster of genes that share a
single . These genes are transcribed into a single which is then translated into multiple .
An operon also contains an : a regulatory region that repressors (transcription factors) bind to
to repress transcription. This region is equivalent to a region in eukaryote genes.
In many cases, the repressor (produced by a separate regulatory gene) is constantly being produced. In
these cases, the operon will only be expressed if another molecule (an) is present. This
molecule binds to the repressor to stop it from binding to the operator.
Items:
inducer operator promoter proteins silencer mRNA

Part B The lac operon The *lac* operon is an operon found in many bacteria (including *E. coli*) which enables digestion of lactose. The lac operon contains three genes (lacZ, lacY, and lacA), which each encode a different protein (LacZ, LacY, LacA) involved in lactose digestion. A nearby gene (lacl) is constantly expressed to produce a protein (Lacl) that binds to the operator of the lac operon. However, when lactose is present, lactose binds to this protein to stop it from binding to the operator. This allows RNA polymerase to bind to the *lac* operon promoter to drive expression of the three lac operon genes. Fill in the table below to identify the regulatory gene, the repressor, and the inducer in this system. Remember that genes are written in italics and lower case, whereas proteins are written with an upper case first letter. General term lac operon regulatory gene repressor inducer Items: RNA polymerase lactose lacA lacl lacY lacZ LacA Lacl LacY LacZ

Created for isaacphysics.org by Lewis Thomson

Question deck:

STEM SMART Biology Week 41 - Gene Regulation

Genes vs Operons

Part A **Eukaryotic gene structure**

silencer

repressor

enhancer

Figure 1: The structure of a eukaryotic gene, with different regions highlighted. Top: simple structure of the gene, showing the regulatory region (regions A-C) and the coding region. Middle: the same gene in its expressed state. Binding of molecule D to region A allows the binding of RNA polymerase to region C. Bottom: the same gene in its not-expressed state. Binding of molecule E to region B prevents RNA polymerase binding to region C.

Match the label from Figure 1 to the region/molecule in the table below.

Label region/molecule

A

B

C

D

E

Items:

activator

promoter

Figure 2: The structure of a bacterial operon, with different regions highlighted. Top: simple structure of the operon, showing the regulatory region (regions A-B) and the coding region (genes 1-3). Middle: the same gene in its expressed state. Binding of molecule D to molecule C prevents molecule C binding to region B, which allows the binding of RNA polymerase to region A. Bottom: the same gene in its not-expressed state. Binding of molecule C to region B prevents the binding of RNA polymerase to region A.

Match the label from Figure 2 to the region/molecule in the table below.

Label	region/molecule
А	
В	
С	
D	

Items:

repressor operator inducer promoter activator

Part C Eukaryotic genes vs bacterial operons	
vvnat is	the difference between eukaryotic genes and bacterial operons?
	Eukaryotic genes usually have one promoter per gene, whereas bacterial operons have multiple promoters for one gene.
	Eukaryotic genes usually have one promoter per gene, whereas bacterial operons have one promoter for multiple genes.
	Eukaryotic genes are active by default, whereas bacterial operons are inactive by default.
	Eukaryotic genes have enhancer regions where activators can bind, whereas bacterial operons do not.
	Eukaryotic genes are transcribed by RNA polymerase, whereas bacterial operons are not.
	Eukaryotic genes have regions where repressors can bind, whereas bacterial operons do not.
reated fo	r isaacphysics.org by Lewis Thomson

Question deck:

STEM SMART Biology Week 41 - Gene Regulation

Epigenetics

Subject & topics: Biology | Genetics | Genes & Alleles Stage & difficulty: A Level P3

Epigenetics refers to chromatin structure and organisation. Epigenetic changes (i.e. chromatin modifications) within a cell can regulate gene expression by making it easier or more difficult for transcription factors to bind to regulatory regions.

Part A Chromatin structure	
In eukaryotic cells, DNA is wrapped around proteins called to form a material ca	alled chromatin,
which exists as separate structures called . During prophase, the chromatin coils	up and
condenses, but for the most of the cell cycle it exists in its less condensed form.	
The extent to which a region of DNA is wrapped around histones affects the expression of ger	nes in that
region. If a region of DNA becomes tightly wrapped around the histones, this will	expression
levels as it becomes difficult for transcription factors to bind. Conversely, if a re	gion of DNA
becomes less tightly wrapped around the histones, this can expression levels as	it becomes
difficult for transcription factors to bind.	
Items:	
(increase) (histones) (less) (reduce) (more) (chromosomes)	

Part B Acetylation & methylation
Acetylation is the addition of an acetyl group to a molecule. Histones become less positively charged when they are acetylated. This causes DNA to become tightly wrapped around the histones because DNA is charged. Acetylation, therefore, gene expression. The opposite happens when histones are deacetylated (i.e. when acetyl groups are removed from histones). Methylation is the addition of a methyl group to a molecule. DNA methylation involves the addition of a methyl group to a nucleobase. In most cases, this gene expression by making it difficult for transcription factors to bind to regulatory regions. The opposite happens when DNA is
demethylated (i.e. when methyl groups are removed from DNA). These acetyl groups and methyl groups are sometimes referred to as "epigenetic tags". They alter the overall organisation/structure of chromatin without changing the genetic sequence of bases. Epigenetic
changes can be triggered by genetic factors or by environmental factors. Items:
(negatively) (increases) (decreases) (less) (more) (positively)

Part C Development & reproduction
Over the course of embryo development, a zygote divides and differentiates into all the cell types of the organism. This process of differentiation involves in potency as cells become more specialised. This involves epigenetic changes to specific genes, as genes not required for each cell type
Epigenetic tags must be removed during sperm and egg production, so that the zygote of the next generation can be . However, in some cases, not all epigenetic tags are removed and may be inherited by the offspring. This means that some environmentally-caused variation may be inherited by the offspring.
Items: [pluripotent] [a decrease] [deacetylation] [acetylation] [an increase] [unipotent] [totipotent]
Created for isaacphysics.org by Lewis Thomson

Question deck:

STEM SMART Biology Week 41 - Gene Regulation

Regulation Explanations

Part A A gene switching on	
	the following could explain why a gene (which was previously not being expressed) is now being ed in a cell? Select all that apply.
	the promoter of this gene has become methylated, preventing RNA polymerase from binding
	a silencer of this gene has become methylated, preventing repressors from binding
	activators have bound to the enhancer region of the gene
	repressors have bound to the silencer region of the gene
	the histones at this region of DNA have become de acetylated, causing this region of DNA to be more tightly-wrapped around histones
	the histones at this region of DNA have become acetylated, causing this region of DNA to be less tightly-wrapped around histones

utation in the regulatory region of a proto-oncogene causes the gene to be constantly expressed
utation in the coding region of a tumour-suppressor gene causes the protein to no longer function
utation in the regulatory region of a tumour-suppressor gene causes the gene to be constantly expressed
histones associated with a proto-oncogene become de acetylated, causing this region of DNA to be more tly-wrapped around histones
promoter region of a tumour-suppressor gene becomes methylated, preventing RNA polymerase from ding
histones associated with a proto-oncogene become acetylated, causing this region of DNA to be less tightly-opped around histones
i i i i i i i i i i i i i i i i i i i

nich c	of the following could explain why the heterozygote has this phenotype?
	allele 1 is dominant and allele 2 is recessive
	a mutation in the gene for RNA polymerase causes it to no longer bind to allele 1 in some cells, and no lon bind to allele 2 in other cells
	allele 2 is dominant and allele 1 is recessive
	in some cells allele 1 is methylated and allele 2 is not, while in other cells allele 2 is methylated and allele not
	a mutation occurs in the zygote that causes allele 1 to no longer produce a functional protein
	allele 1 undergoes methylation whereas allele 2 undergoes acetylation

Part C

Question deck:

STEM SMART Biology Week 41 - Gene Regulation

Colour patches

Transcription Calculations

Subject & topics: Biology | Genetics | Transcription Stage & difficulty: A Level P1

In a hypothetical haploid cell, gene A is 3.6 kilobase pairs (kbp) long, and RNA polymerase transcribes genes at a rate of 50 bases per second.

Part A RNA molecules with one polymerase

Assuming only one RNA polymerase can transcribe the gene at a given time, how long will it take the cell to produce 2000 RNA molecules from gene A?

Part B RNA molecules with multiple polymerases

If one hundred RNA polymerase molecules can simultaneously transcribe the gene, how long will it take the cell to produce $2\,000$ RNA molecules from gene A?

Created for isaacphysics.org by Lewis Thomson