• Continuous pdf:

$$f_X(x): \mathcal{X} \to [0, \infty), f_X(x) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \cdot \Pr[x \le X \le x + \epsilon]$$

• Continuous cdf:

$$F_x(x) := \Pr[X \le x]$$
 where $\Pr[a \le X \le b] = \int_a^b f_x(x) dx$

• Uniform distribution on $\mathcal{X} = [u, v]$:

$$f_X(x) = 1/(v-u)$$
 for $x \in \mathcal{X}$

$$f_X(x) = (2\pi)^{-1/2} \exp(-x^2/2)$$

• Dirac delta property:

$$\int_{-\infty}^{\infty} dx \, b(x) \delta(x - a) = b(a)$$

• Expectation value of g(X) where $X \in \mathcal{X}$:

$$\mathbb{E}[g(X)] = \sum_{x \in \mathcal{X}} \Pr[X = x] g(x)$$
 , k'th moment of $X = \mathbb{E}[X^k]$

• Statistical distance of $X, Y \in \mathcal{X}$:

$$\Delta(X,Y) = \frac{1}{2} \sum_{x \in \mathcal{X}} |\mathbb{P}(x) - \mathbb{Q}(x)|$$

• Covariance matrix *K*:

$$K_{i,j} = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \cdot \mathbb{E}[X_j]$$

Zero covariance ($K_{1,2} = K_{2,1} = 0$) does not imply X_1 and X_2 are independent.

• Marginal distribution for X when $(X,Y) \sim \mathbb{P}$:

$$\Pr[X = x] = \sum_{y} \mathbb{P}(x, y)$$

• Conditional probability for
$$(X,Y) \sim \mathbb{P}$$
:
$$\Pr[X = x | Y = y] = \frac{\Pr[X = x, Y = y]}{\Pr[Y = y]} = \frac{\mathbb{P}(x,y)}{\mathbb{P}_2(y)}$$

• (Shannon) Entropy rules:

- 1. Additivity: inf of a set of indep. RVs must be the sum of indiv.
- 2. Sub-additivity: Total inf. content of two jointly distrib. RVs cannot exceed sum of seperate infs.
- 3. Expansibility: Adding extra outcome of prob. 0 does not affect
- 4. **Normalization**: The distrib (1/2, 1/2) has inf. of 1 bit.
- 5. The distrib (p, 1-p) for $p \to 0$ has zero inf.

• Shannon entropy:

Lower bound on the avg length of the shortest desc of X.

$$H(X) = \sum_{x \in \mathcal{X}} p_x \log_2 \frac{1}{x}$$

$$\begin{split} H(X) &= \sum_{x \in \mathcal{X}} p_x \log_2 \frac{1}{p_x} \\ H(X, Y) &= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_{xy} \log_2 \frac{1}{p_{xy}} \end{split}$$

• Renyi entropy:

$$H_{\alpha}(X) = \frac{-1}{\alpha - 1} \log \sum_{x \in \mathcal{X}} p_x^{\alpha}$$

- Binary entropy function: 2 outcomes with prob. p and 1 p: $h(p) = p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p}$

• Differential entropy for continuous RV
$$X \sim \rho$$
: $h_{\text{diff}}(X) = -\int \mathrm{d}x \, \rho(x) \log \rho(x) = \mathbb{E}_x \log \frac{1}{\rho(x)}$

• Relative entropy (Kullback-Leibler distance):

$$D(\mathbb{P}||\mathbb{Q}) = \sum_{x \in \mathcal{X}} \mathbb{P}(x) \log \frac{\mathbb{P}(x)}{\mathbb{Q}(x)}$$

• Entropy of jointly distrib. RVs:
$$H(X,Y)$$
 or $H(XY)$: $H(X,Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_{xy} \log \frac{1}{p_{xy}}$

• Conditional entropy:

$$H(X|Y) = \mathbb{E}_y[H(X|Y=y)] = -\sum_{x \in \mathcal{X}} p_x \sum_{y \in \mathcal{Y}} p_{x|y} \log p_{x|y}$$

$$H(X|Y) = H(X,Y) - H(Y)$$

• Mutual information:

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

$$\mathbf{I}(X;Y) = H(X,Y) - H(X|Y) - H(Y|X)$$

$$\mathbf{I}(X;Y) = H(X) + H(Y) - H(X,Y)$$

$$\mathbf{I}(X;Y|Z) = \mathbb{E}_z \mathbf{I}(X|Z=z;Y|Z=z)$$

• Min entropy:

$$H_{\min}(X) = -\log \max_{x \in \mathcal{X}} p_x = -\log p_{\max}$$

$$H_{\min}(X|Y) = -\log \mathbb{E}_y \max_{x \in \mathcal{X}} p_{x|y}$$

$$H_{\min}(X|Y) = -\log \mathbb{E}_y \max_{x \in \mathcal{X}} p_x$$

• Linear binary codes:

Maps k-bit msg x to n-bit (n > k) codeword $c_x \in \mathcal{C}$. Perceived string $z = c_z \oplus e$. Minimum distance of code: d = $\min_{c,c'\in\mathcal{C}}$ HammingWeight $(c\oplus c')$. Receiver determines which $c_{\hat{x}}$ is closest to z and decodes it into \hat{x} . Error correcting capability $t = \lfloor \frac{d-1}{2} \rfloor$.

• Generator (G is $k \times n$) and parity check (H is $(n - k) \times n$) matrix: $c_x = xG$. $G = (\mathbf{1}_k | A)$. $H = (-A^T | \mathbf{1}_{n-k})$. $GH^T = 0$, $cH^t = 0$. All *k* rows of *G* are linearly independent.

• Syndrome decoding ($s(z) \in \{0,1\}^{n-k}$):

$$s(z) = zH^T = (c_x + e)H^T = eH^T$$

Syndrome depends only on the error pattern, not on the message.

• Hamming bound: Binary code of length n that can correct t errors: $2^k \le 2^n / \sum_{i=0}^t \binom{n}{i}$. Approx $\log n$ bits of redundancy per bit error.

• Channel capacity:

Inf. content error free: $k \leq \mathbf{I}(C; Z)$

BSC capacity (per bit): $\frac{k}{n} \leq \mathbf{I}(C_j; Z_j) = H(Z_j) - H(Z_j|C_j)$

This is called the BSC code rate: BSC CODE RATE $\leq 1 - h(\epsilon)$

Following the rule of thumb: $h(\epsilon) = -\epsilon \log \epsilon + \mathcal{O}(\epsilon)$

• Randomness sources:

Ring oscilators (odd number of inverters causes jitter in period, gaussian), noisy resistors (no voltage applied, noise amplitude gaussian distribution), radioactive decay (poisson)

• The von Neumann alg:

Given (b_1, b_2) , if $b_1 = b_2$ then no output, else output b_1 .

• Piling-up lemma:

Let $X_1,...,X_n \in \{0,1\}$ be independent with biases $\Pr[X_i=1]$ – $\Pr[X_i = 0] = \alpha_i$. Construct $Y = X_1 \oplus X_2 \oplus ... \oplus X_n$. The bias of Yis $\Pr[Y = 1] - \Pr[Y = 0] = (-1)^{n-1} \prod_{i=1}^{n} \alpha_i$. Thus by xoring many bits together the bias gets reduced.

Resilient function:

A function $\Psi: \{0,1\}^n \to \{0,1\}^m$ is (n,m,t)-resilient of, for any t coords $i_1, ..., i_t \in [n]$, any $a_1, ..., a_t \in \{0, 1\}$ and any $y \in \{0, 1\}^m$ it holds that: $\Pr[\Psi(X) = y | x_{i_1} = a_1, ..., x_{i_t} = a_t] = 2^{-m}$ i.e.: Knowledge of t values of the input does not give inf. that

would help in guessing the output. ECC example ([n, k, d] code): $\Psi: \{0,1\}^n \to \{0,1\}^k$. $\Psi = xG^T$. Then Ψ is an (n,k,d-1)-resilient

• Strong extractor Ext : $\{0,1\}^n \times \{0,1\}^* \to \{0,1\}^l$:

Takes n-bit string X and randomness R and outputs an l-bit string (l < n). Z = Ext(X, R). Ext is a strong extractor for source minentropy m, output length l and nonuniformity ϵ if for all distrib of X with $H_{\infty}(X) \geq m$ it holds that $\Delta(ZR; U_lR) \leq \epsilon$. U_l is an RV uniform on $\{0,1\}^l$. Also true: $\mathbb{E}_r \Delta(Z|R=r;U_l) \leq \epsilon$

• Universal hash functions:

Let \mathcal{R} , \mathcal{X} and \mathcal{T} be finite sets. Let $\{\Phi_r\}_{r\in\mathcal{R}}$ be a family of hash functions from \mathcal{X} to \mathcal{T} . The family is called universal iff, for R drawn uniformly from \mathcal{R} , it holds that: $\Pr[\Phi_R(x) = \Phi_R(x')] \leq 1/|\mathcal{T}|$. It's called η -almost universal if it holds that: $\Pr[\Phi_R(x) = \Phi_R(x')] \leq \eta$ (for all $x, x' \in \mathcal{X}$ with $x \neq x'$).

• Leftover hash lemma:

Let $X \in \mathcal{X}$ be a RV. Let $\delta \geq 0$ be a constant. Let $F : \mathcal{X} \times \mathcal{R} \to \{0,1\}^l$ be a $w^{-l}(1+\delta)$ -almost universal family of hash functions, with seed $R \in \mathcal{R}$. Then: $\Delta(F(X,R)R; U_l R) \leq \frac{1}{2} \sqrt{\delta + 2^{l - H_2(X)}}$

• Noisy broadcast channel and no return channel:

Secret capacity C_s of the broadcast channel $P_{Y|Z|X}$ can be bounded: $C_s(P_{YZ|X}) \ge \max_{P_X} [\mathbf{I}(X;Y) - \mathbf{I}(X;Z)] = \max_{P_X} [H(X|Z) - \mathbf{I}(X;Z)]$ H(X|Y)]. Condition: if Eve's reception quality is better than Bob's $(\mathbf{I}(X;Y) < \mathbf{I}(X;Z))$ then the secrecy capacity is zero. Secrecy capacity of BSC with error rates ϵ and δ is: $h(\delta) - h(\epsilon)$ if $\delta > \epsilon$, and 0 otherwise.

• Noisy broadcast channel plus public return channel:

$$C_s(P_{Y|Z|X}) \le \min\{\max_{P_X} \mathbf{I}(X;Y), \max_{P_X} \mathbf{I}(X;Y|Z)\}$$

 $\hat{C}_s(\epsilon, \delta) = h(\epsilon * \delta) - h(\epsilon).$

• Satellite scenario:

Alice and Bob agree on an ECC $\mathcal C$ with cw of length N. Alice chooses a random msg R, encodes it to V^N and sends $V^N \oplus X^N$ to Bob over the noiseless pub channel (NPC). Bob computes $W^N = (V^N \oplus X^N) \oplus Y^N$. He accepts only if W^N has much closer Hamming dist to some cw in $\mathcal C$ then the error correcting cap. of the code. He tells Alice over the NPC if he accepts or not. Noiseless for A en B but noisy for Eve: her noise is indep. so she has to guess at X^N and hence at R.

• PUF types and their properties:

General properties:

- The object can be subjected to a large number of diff challenges that yield an unpredictable response
- The object is very hard to clone physically
- Mathematical modeling of the challenge-response physics is very difficult
- Opaqueness: It is hard to characterize the physical structure of the object in a non-destructive way.

Types:

- Coating PUF: random layor of conductors and insulators: probes result in binary string. Used for secure key storage.
- Optical PUF: 3D optical structure produces speckle pattern.
 Challenge: props of laser beam: angle of incidence, focal dist.
- Silicon PUF: variations in IC from manufacturing. Challenge: pulsed time signal to certain part. Response: delay times of various wires and logic devices.
- SRAM PUF: Undefined state of RAM cells. Challenge: memory address, response: returned start-up values.
- Randomly positioned glass fibers: Challenge: ordinary beam of light lighting up part of the layer. Response: Certain fibers light up.

Uncontrolled PUF: reader interacts directly with PUF structure, trusted reader. Controlled PUF (CPUF): interaction through a *control layer*, PUF and *cl* are bound together, seperation will damage the PUF. Result: attacker has no direct access to PUF. Example: secure key storage where control layer performs zk-protocol to prove knowledge of the key (called *Physically Obscured Key (POK)*).

• PUF math:

Information revealed by a noisy measurement outcome U' where $m \in \mathcal{M}(m(K) = U)$: $\mathbf{I}(U'; K) = \mathbf{I}(U'; U)$. Noiseless case: \mathbf{I}_m

Meassurable entropy of PUF (space K and M): $\mathbf{I}_{\mathbb{P}M}^{\text{meas}} = \max_{m \in \mathcal{M}} H(m(k))$

Security param of bare PUF: min num of C-R meassurements required to reveal all measurable info of the PUF: $S_{\mathbb{P}\mathcal{M}_0}$

• Fuzzy extractor:

Gen and Rep algorithms. $(S_x, W_x) = Gen(X)$. $S'_x = Rep(X', W_x)$ Must satisfy the following properties:

- Correctness: The prob that $S'_x = S_x$ must be close to 1.
- **Security**: The RV S_x must be close to uniform, given knowledge of W_x .

• **Secure Sketch** (for discrete src space \mathcal{X}):

 $SS: x \mapsto w_x$, $Rec: (x', w_x) \mapsto \hat{x}$ with:

- **Correctness**: The prob that $\hat{X} = X$ must be close to 1.
- **Security**: X given W_X must have high entropy.

• When to use FE and SS:

FE: reliably extract a cryptographic key from noisy data. SS: reliably extract a string with sufficient (min-)entropy. Easier to construct SS than FE, in general: SS extracts more (min-)entropy than a FE from the same source.

• Code offset method (COM):

Enroll (Gen): $s \in \{0,1\}^k$, $c_s = Enc(s)$. $w = c_S \oplus x$. Output s as secret and w as helper data. Reconstruct (Rep): $\hat{s} = Dec(x' \oplus w)$.

• Zero leakage FE (for continuous RV) based on partitions

 $\Pr[S=s|W=w]=1/n$. Enroll: determine which partition the meassured val x is located in: \mathcal{A}_{ij} . Set $s_x=i$, $w_x=j$. Reconstruct: X' is meassured, determine for which s' the interval \mathcal{A}_{s',w_x} is closest to x'. This s' is the reconstructed key. $H_{\infty}(S|W=w)=H_{\infty}(S|W)=\log n$.

• Distance bounding principles (and fraud types):

Mafia fraud: challenge is relayed to different location where a legit. device is tricked into giving a response, response is relayed back to verifier. **Terrorist fraud**: legit. device cooperates with attacker, does not have to follow protocol, can share everything except long-term auth secrets.

(Light travels about 300m every μs). If a device repeatedly correctly respons to an *unpredictable* challenge within time Δt , then the location where the response is computed cannot be further away than $x=c\Delta t/2$. Max time for resp. to arrive: $t_{\rm max}=2\frac{x_{\rm max}}{c}+t_{\rm slack}$.

• Brands-chaum protocol:

commit, rapid bit phase, sign phase. No link between phases, mafia not possible (timing measured), terrorist is possible.

• Swiss knife protocol

Rapid phase uses $R0_i = Z0_j$ and $R1_i = Z1_j$ to determine response r_i . $Z1 = Z0 \oplus x$ so attacker cannot perform rapid phase without knowledge of the key. Therefore terrorist and mafia are not possible. **Analog impl.** Similar to swiss knife but with LP and HP filters.

• Linear algebra:

Complex conjugate of a+bi is a-bi. conjugate of $\rho e^{i\phi}$ is $\rho e^{-i\phi}$. Hermitian conjugate of a complex number is its complex conjugate: $a^{\dagger}=a^*$. On a matrix: Hermitian conjugate is transpose followed by complex conjugate. The Hermitian conjugate of $|\psi\rangle$ is $|\psi\rangle$.

• Quantum stuff:

Meassurement destroys state information.

Time evolution of a quantum system can be represented as a unitary operator acting on a starting space. A unitary op U is defined as: $UU^{\dagger} = \mathbf{1}$ and $U^{\dagger}U = \mathbf{1}$. Norm of a vec is preserved: For $|\psi'\rangle = U|\psi\rangle$, then the norm is $\langle \psi'|\psi'\rangle = \langle \psi|U^{\dagger}U|\psi\rangle = \langle \psi|\psi\rangle$.

Tensor product:
$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \otimes \begin{pmatrix} \gamma \\ \delta \end{pmatrix} = \begin{pmatrix} \alpha \gamma \\ \alpha \beta \\ \beta \gamma \\ \beta \delta \end{pmatrix}$$
.

For qubits, tensor is omitted: $|0\rangle \otimes |1\rangle = |01\rangle$

• No cloning theorem:

Let \mathcal{H}_1 and \mathcal{H}_2 be two Hilbert spaces. let $|\psi\rangle \in \mathcal{H}_1$ and $|e\rangle \in \mathcal{H}_2$, where e is known and ψ is unknown. Then there does not exist a unitary operator U_e acting on $\mathcal{H}_1 \otimes \mathcal{H}_2$ satisfying $U_e |\psi\rangle \otimes |e\rangle = |\psi\rangle \otimes |\psi\rangle$ for all ψ

• Quantum readout of PUFs:

One round of the protocol:

- 1. The verifyer choses a random challenge ψ . He prepares a particle in state $|\psi\rangle$ and sends the particle to the prover.
- 2. The prover lets the particle interact with the PUF. This results in a state $|\omega\rangle=R\,|\psi\rangle$. He sends the particle back to the verifyer.
- 3. The verifier does a meassurement $|\omega\rangle\langle\omega|$ on the particle. If the outcome is 1 then the prover has passed this round.

• Shor:

Integer factorization. Classical part: Reduce factoring problem to order-finding problem. Quantum part: Quantum alg to solve order finding problem using the quantum Fourier transform. There is also a variant of Shor for solving discrete logarithms.