Calculus II

MAT187 Student Slides

Geoff McGregor Arman Pannu Jason Siefken

Consider the plot of the complex numbers p_1 , p_2 , p_3 , p_4 in the complex plane.

- 1.1 For which complex numbers is the real part grater than the imaginary part?
- 1.2 Which complex number has the smallest modulus/absolute value?
- 1.3 Which complex number has the largest argument? Is your answer at all ambiguous?

Consider the plot of the complex number p in the complex 2.1 Sketch the complex number 2p.

- 2.2 Sketch the complex number p^2 .
- 2.3 Sketch the complex numbers p^n for n = 3, 4, ... Will your answer depend on r?
- 2.4 Use the geometry of the complex plane to find \sqrt{i} . Express your answer in both polar and rectangular form.

Consider the equation

3.1 Find a solution to Equation (1).

3.3 Find all solutions to Equation (1).

 $z^3 = -1$

© Geoff McGregor, Arman Pannu & Jason Siefken, 2025 @ 00

3.2 If
$$z = re^{i\theta}$$
 is a solution to Equation (1), what conditions must r and θ satisfy? Justify your conclusions.
3.3 Find all solutions to Equation (1).

(1)

For each situation, decide whether *least squares* curve fitting or *polynomial interpolation* would be more appropriate.

- 4.1 You are modelling the arch used in the construction of a particular Roman aqueduct. You have collected several hundred data points of height of the arch vs. distance from the base of the aqueduct.
- 4.2 You are creating a function to govern the brightness of a light which will be used for signalling a computer. There are three different brightnesses that must be achieved exactly and the transition between those brightnesses must be smooth.
- 4.3 You are given exact data points from a lab and told that the data was created with a 4th degree polynomial. You are asked to find the coefficients of the polynomial.

A baseball is thrown on the moon. You are trying to find the function

 h(t), the height (in meters) of the baseball above the moon's surface at time t (in seconds).

You collected the following data

t	h(t
1	4
2	3.8
3	2

- 5.2 Use polynomial interpolation to find h.
- 5.3 Find the maximum height of the baseball above the
 - moon's surface.

5.1 What degree polynomial would best model *h*?

5.4 What would change (if anything) if you were given 4 data points?

While developing a robotics control system, you find the 6.2 Complete the following table need for a function f which satisfies the following properties:

(i)
$$f(0) = -1$$
 and $f(1) = 2$

(ii)
$$f'(0) = -1$$
 and $f'(1) = 2$

Your friend suggests that you could use the following polynomial to come up with f:

$$L_1(x) = -(x-1)$$
 $L_2(x) = x$
 $S_1(x) = (x-1)^2 x$ $S_2(x) = (x-1)x^2$

Can Lagrange interpolation be used to directly find f? Explain.

g	g(0)	g(1)	g'(0)	g'(1)
L_1				
L_2				
S_1				
S_2				

- 6.3 Use L_1 , L_2 , S_1 , and S_2 to find a polynomial satisfying the properties of f.
- 6.4 Explain how Lagrange interpolation can be generalized to allow finding a polynomial that passes through particular points and takes on particular derivatives at those points.

7.1 For each polynomial approximation of the bell curve, is the approximation best at 0, best on the interval [-2,2], or best on the interval [0,2].

7.2 Based on the pictures, which polynomial(s) do you think come from a Taylor approximation?

The function *f* satisfies

$$f(0) = 1$$
 $f'(0) = 0$ $f''(0) = -2$
 $f'''(0) = 0$ $f''''(0) = 12$

- 8.1 Write down T_4 , the 4th degree Taylor approximation to *f* centered at 0.
- 8.2 Use Desmos to compare the graph of T_4 with the graphs

of g_1 , g_2 , g_3 , and g_4 . Which of the g's do you think is most likely equal to f?

(a) $g_1(x) = e^{-|x|}$

(b) $g_2(x) = e^{-x^2}$

(c) $g_3(x) = \frac{1}{1+x^2}$ (d) $g_4(x) = \frac{1}{1 + (2x)^4}$

A bee is flying back and forth along a window sill trying to escape from your living room.

The bee's position at time t along the window sill is given by r(t).

You know that a first-order Taylor approximation to r(t) at time t = 2 is

$$A_1(t) = 3(t-2) + 1$$

- 9.1 Estimate the position of the bee on the window sill at time 2.1. Is your answer exact or approximate?
- 9.2 Estimate the velocity of the bee at time 2.1. Is your answer exact or approximate?
- 9.3 Are there any times you can compute the *exact* position of the bee?
- 9.4 Are there any times you can compute the *exact* velocity?
- 9.5 What is your best estimate for the acceleration of the bee at time 2.1?

A bee is flying back and forth along a window sill trying to escape from your living room.

The bee's position at time t along the window sill is given by r(t).

You know that a second-order Taylor approximation to r(t) at time t = 2 is

$$A_2(t) = 2(t-2)^2 + 3(t-2) + 1$$

- 10.1 Estimate the position of the bee on the window sill at time 2.1. Is your answer exact or approximate?
- 10.2 Estimate the velocity of the bee at time 2.1. Is your answer exact or approximate?
- 10.3 Are there any times you can compute the *exact* position of the bee?
- 10.4 Are there any times you can compute the *exact* velocity?
- 10.5 What is your best estimate for the acceleration of the bee at time 2.1?

© Geoff McGregor, Arman Pannu & Jason Siefken, 2025 © 00

Based on the pictures, which polynomial approximations of the bell curve do you think are Taylor polynomials?

tion to *f* centered at 0. In particular $P_3(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$

Let $f(x) = e^x$ and let $P_n(x)$ be the *n*th Taylor approxima-

$$+\frac{x^3}{6}$$

Let $R_n(x)$ be the (signed) error in $P_n(x)$.

12.1 Find $R_3(1.5)$ (you may use a calculator).

12.2 What is the largest value of $R_3(x)$ when $0 \le x \le 2$?

12.3 Is there a value of x for which $R_3(x) = 0$? What does

(a) works for a fixed $x \in [0, 2]$ (b) works simultaneously for all $x \in [0, 2]$

12.4 Given that $|f^{(5)}(x)| \le 8$ when $x \in [0, 2]$, find an upper

12.5 Given what you know from the previous part(s), can you bound $R_n(x)$?

this say about P_3 ?

bound for $R_4(x)$ that

Let f be an infinitely differentiable function, and let P_n be a Taylor polynomial for f of degree n centered at a.

We approximate $f(x) \propto P_n(x)$. Which of the following affect the size of the error in $P_n(x)$ (i.e., the magnitude of

We approximate $f(x) \approx P_n(x)$. Which of the following affect the size of the error in $P_n(x)$ (i.e., the magnitude of $R_n(x)$)?

- (A) The degree of P_n , i.e., n.
- (B) The magnitude of f(a), i.e., |f(a)|.
- (C) The magnitudes of the derivatives of f at a, i.e., the size of |f'(a)|, |f''(a)|, etc..
- (D) The distance from a that you are approximating at, i.e., the size of |x-a|.

Use Desmos to conjecture about the following questions.

https://www.desmos.com/calculator/nrru5n0gqq

- 14.1 True/False? When approximating sin(x) using Taylor polynomials centered at x = 0, higher degree polynomials will approximate sin(2) better.
 14.2 True/False? When approximating tan(x) using Taylor polynomials centered at x = 0, higher degree polynomials
- will approximate tan(2) better. 14.3 True/False? When approximating $f(x) = \frac{1}{1+x^2}$ using Taylor polynomials centered at x = 0, higher degree
- 14.3 True/False? When approximating $f(x) = \frac{1}{1+x^2}$ using Taylor polynomials centered at x = 0, higher degree polynomials will approximate f(2) better.
- 14.4 Make a conjecture about the relationship between the degree of your Taylor approximation and the accuracy of its values. Does this contradict what you know from Taylor's remainder theorem?

© Geoff McGregor, Arman Pannu & Jason Siefken, 2025 @ 💿 🔾

Consider the function
$$f(x) = \frac{1}{2}x^2 + 1$$
 and the value \int_0^3

$$I = \int_{-\pi}^{3} f(x) \, \mathrm{d}x.$$

- 15.1 Make three sketches: one where the left-endpoint rule is used to approximate *I*, one where the right-endpoint
 - rule is used, and one where the trapezoid rule is used. (Use at least three intervals.)
- 15.2 For the left-endpoint, right-endpoint, and trapezoid
 - rules, which will give over estimates of *I* and which
- will give underestimates? Will any give an exact value?

15.3 Consider the following estimates of *I*:

- $E_1 = 8.6875$ • $E_2 = 6.4375$
- $E_3 = 7.5625$
- Each estimate comes from using the same partition. Which estimates come from a left-endpoint approxima-
- tion, a right-endpoint approximation, and a trapezoid approximation?
 - Hint: you know calculus!
- 15.4 (Homework) Will the midpoint rule produce an over or under estimate of *I*?

© Geoff McGregor, Arman Pannu & Jason Siefken, 2025 @ 00

In a classic problem, you are trying to find the volume of 16.2 a wine barrel. Let $r(\ell)$ represent the radius of the barrel ℓ cm from the base. The total length of the barrel is 80cm.

You know the volume of the barrel can be computed exactly 16.3 by

$$\int_0^{80} \pi [r(\ell)]^2 \,\mathrm{d}\ell.$$

You have measured the barrel in several places and gotten the following data

16.1 Make a sketch of the barrel's profile. Make a second sketch of $\pi[r(\ell)]^2$.

- Based on your sketch, do you think using a trapezoid approximation will produce an over or under estimate for the volume?
- Use a trapezoid approximation to estimate the volume of the barrel.
- 16.4 Use a Simpson's approximation to estimate the volume of the barrel.

Reminder: if *p* is a quadratic polynomial,

$$\int_{a}^{b} p(x) dx = \frac{b-a}{6} \left(p(a) + 4p \left(\frac{a+b}{2} \right) + p(b) \right)$$

16.5 The exact (rounded) volume of the barrel is 104384cm³. What approximation method was most accurate? Why?

For this question, the domain of integration will be 0 to 5 and you will be using a uniform partition with 5 pieces.

- 17.1 Draw a function where the left endpoint approximation is an *under estimate*.
- 17.2 Draw a function where the right endpoint approximation is an *under estimate*.
- 17.3 Draw a function where the trapezoid approximation is an *under estimate*.
- 17.4 Draw a function where the midpoint approximation is an *under estimate*.

The graph above is of the function f. Marked on the graph are the intervals A = [0,2], B = [2,4], and C = [4,8]. We

are interested in the quantity $I = \int_0^8 f(x) dx$.

- 18.1 On each interval, identify whether left/right/mid-point/trapezoid approximations will produce an
 - (a) Underestimate
 - (b) Overestimate
 - (c) Cannot be determined
- 18.2 Is there any interval where you're confident that Simpson's rule would produce an over/under estimate?
- 18.3 Come up with a strategy (i.e., a choice of integration method for each interval) that gives the best possible upper and lower bounds for I.

Given an interval [a, b] the midpoint-rule (with one interval) says to use (b-a)f(0.5a+0.5b) as an estimate for

$$I = \int_{a}^{b} f(x) \, \mathrm{d}x.$$

A biased midpoint rule with bias $\alpha \in [0,1]$ uses $(b-a)f(\alpha a + (1-\alpha)b)$ as an estimate for I.

19.1 Is there a bias
$$\alpha$$
 so that with a single partition, $\int_0^1 x^2 dx$ is *perfectly* approximated? If so, what is the bias?

19.2 Is there a bias
$$\alpha$$
 so that with *two* partitions, $\int_0^1 x^2 dx$ is *perfectly* approximated? If so, what is the bias?

- 20.1 Explain to your table: What is the difference between a sequence and a series?
- 20.2 How can you produce a sequence from a series?
- 20.3 How can you produce a series from a sequence?
- 20.4 Give an example of a bounded sequence that when summed produces an unbounded series.

Define the sequence a_n by $a_n = \sin(\pi n)$ and the function f by $f(x) = \sin(\pi x)$.

- 21.1 Find $\lim_{n\to\infty} a_n$, if it exists.
- 21.2 Find $\lim_{x\to\infty} f(x)$, if it exists.
- 21.3 What is the difference between a sequence and a function.

Define

$$a_n = \frac{4+n}{2+n}$$
 $b_n = \frac{(-1)^n}{n^2}$

for $n \ge 1$.

- 22.1 If a_n and b_n define sequences, what values can n take on? (E.g., any number in \mathbb{R} , any number in \mathbb{Z} , etc.)
- 22.2 Malta a plat of a rea mand h rea m
- 22.2 Make a plot of a_n vs. n and b_n vs. n. 22.3 Which sequences (out of a_n and b_n) are (i) bounded above, (ii) bounded below, (iii) strictly increasing, (iv) strictly
 - decreasing, (v) alternating.
- 22.4 Define $c_n = a_{n-1} + b_{2n}$ for $n \ge 2$. Find a formula for c_n .
- 22.5 Based on your answer to Part 3, will c_n be bounded above or below? Neither?
- 22.6 Find $\lim_{n\to\infty} c_n$.

$$S_n = \sum_{i=1}^n a_n.$$

Let $S_{\infty} = \lim_{n \to \infty} S_n$.

- 23.1 Which of the following statements must be true?
 - (a) If $|a_n| \ge 1$ for all n, then S_n converges.
 - (b) If $|a_n| \le 1$ for all n, then S_n converges.
 - (c) If $|S_n| \ge 1$ for all n, then a_n diverges.
 - (d) If $|S_n| \le 1$ for all n, then a_n diverges.
 - (e) If $a_n \to 0$ then S_n converges.

23.2 If you switch *converges* ↔ *diverges*, which statements change their truth value? (I.e., switch from being true to false or false to true.)

23

Consider the function f(x) = 1/x, the sequence $a_n = 1/n$ 24.2 Use Σ -notation to write down a formula for the rightand the sequence of partial sums $S_n = \sum_{i=1}^{n} a_i$.

whose intervals are width 1.

In this question we want to get bounds on the series

$$\sum_{i=1}^{\infty} a_i$$

endpoint approximation of $\int_{1}^{n} \frac{1}{x} dx$ using a partition whose intervals are width 1.

24.3 Use the actual value of $\int_{1}^{\pi} \frac{1}{x} dx$ to give upper and lower bounds for S_n .

24.4 Does S_n converge or diverge? Explain.

24.1 Use Σ -notation to write down a formula for the leftendpoint approximation of $\int_{1}^{n} \frac{1}{x} dx$ using a partition

24

Consider the function
$$f(x) = 1/x^2$$
, the sequence $a_n = 25.2$ Use Σ -notation to write down a formula for the right-
$$1/n^2 \text{ and the sequence of partial sums } S_n = \sum_{i=1}^n a_i.$$
endpoint approximation of $\int_1^n \frac{1}{x^2} \, \mathrm{d}x$ using a partition whose intervals are width 1.

In this question we want to get bounds on the series

$$\sum_{i=1}^{\infty} a_i$$

25.3 Use the actual value of $\int_{1}^{n} \frac{1}{x^2} dx$ to give upper and lower bounds for S_n .

Use Σ -notation to write down a formula for the left- 25.4 Does S_n converge or diverge? Explain. endpoint approximation of $\int_{1}^{n} \frac{1}{x^2} dx$ using a partition whose intervals are width 1

25.5 Conjecture about the convergence of $\sum_{i=1}^{\infty} i^{\alpha}$ for $\alpha > 0$.

Can you justify your answer by comparing with known

25

integrals?

© Geoff McGregor, Arman Pannu & Jason Siefken, 2025 @ 00

$$a_n = \frac{1}{\sqrt{n}}$$
 $b_n = \frac{1}{n^3}$ $c_n = e^{-n}$ $d_n = e^{-n^2}$

and consider the corresponding sequences of partial sums A_n , B_n , C_n , and D_n . (I.e., $A_n = \sum_{i=1}^n a_i$, etc.)

- 26.1 Use a comparison with known integrals to decide the convergence of A_n , B_n , C_n .
- 26.2 Can you decide the convergence of D_n using a comparison to a known integral? Explain.

Consider the function $f(x) = \sin(x)$.

- 27.1 Write down $T_k(x)$, the kth Taylor approximation to f centered at 0. You may use "..." notation or Σ -notation.
- 27.2 Write down, using Σ -notation, T(x), the Taylor series for f centered at 0.
- 27.3 In general a Taylor series may be written as $\sum_{n=0}^{\infty} a_n \frac{x^n}{n!}$, where a_n is a sequence. Find a_n in this case.
- 27.4 Let $R_k(x) = f(x) T_k(x)$. Find an expression for $R_k(x)$ using Taylor's Remainder Theorem. Use your expression to find an upper bound for $|R_k(x)|$ (Hint: your bound may depend on x).
- 27.5 Using the fact that for any $\alpha \in \mathbb{R}$, $\lim_{n \to \infty} \frac{\alpha^n}{n!} = 0$, find $\lim_{k \to \infty} R_k(x)$.
- 27.6 For which *x* is f(x) = T(x)? Justify your answer.

Consider the function $g(x) = \frac{1}{1-x}$. The kth Taylor approxi- 28.1 For which x is $\lim_{k\to\infty} R_k(x) = 0$? mation of g centered at 0 is

$$T_k(x) = \sum_{i=0}^k x^k$$

and the remainder $R_k(x) = g(x) - T_k(x)$ satisfies

$$|R_k(x)| \le \frac{1}{1-x} \left(\frac{x}{1-x}\right)^{k+1}$$

when $x \ge 0$ and

$$|R_k(x)| \le x^{k+1}$$

when x < 0.

- 28.2 Let T(x) be the Taylor series for g centered at 0. For
- which x can you guarantee that g(x) = T(x)?
- 28.3 Use the following Desmos link to numerically answer the question: for which x does g(x) = T(x)?
- https://www.desmos.com/calculator/yi4qczkxqn 28.4 Does your answer to the previous part contradict Tay
 - lor's remainder theorem?

Let
$$f(x) = \sin(x)$$
 and let

$$T(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

be the Taylor series for f centered at 0. We know that

be the Taylor series for
$$f$$
 centered at 0. We know th $f(x) = T(x)$ for all $x \in \mathbb{R}$.

- 29.1 Find a series representation for $g_1(x) = f(2x)$ (with-

29.2 Find a series representation for $g_2(x) = f(x^2)$.

out computing any derivatives).

29.4 Compute $g_3(x) = \int g_2(x) dx$ by integrating your series for $g_2(x)$ term by term. What should you do with the constants of integration?

29.3 Use WolframAlpha to integrate g_2 . Does WolframAl-

pha's solution make sense?

- 29.5 For which x do you expect $g_3(x)$ to be valid? Explain.
 - 29.6 When would it be advantageous to integrate a Taylor series term by term instead of integrating the original function? Explain.

Let
$$f(x) = \frac{1}{1-x}$$
 and let

$$T(x) = \sum_{n=0}^{\infty} x^n$$

be the Taylor series for f centered at 0. We know that f(x) = T(x) for all $x \in (-1,1)$.

- 30.1 Find a series representation for $g_1(x) = f(2x)$ (without computing any derivatives).
- 30.2 For which x do you expect your series for $g_1(x)$ to be valid (i.e. to equal f(2x)? Explain.
- 30.3 Find a series representation for $g_2(x) = f(x^2)$.
- 30.4 Compute $g_3(x) = \int g_2(x) dx$ by integrating your series for $g_2(x)$ term by term.
- 30.5 For which x do you expect $g_3(x)$ to be valid? Explain.

The function f has a Taylor series centered at 0 of the form

$$T(x) = \frac{1}{2} + \frac{x}{3} - \frac{x^2}{4} + \frac{x^3}{5} - \frac{x^4}{6} + \cdots$$

- 31.1 Express T using Σ -notation.
- 31.2 Find a series representation for f'(x) and $\int f(x) dx$.
- 31.3 Modify the following Desmos link and make a conjecture: for which values of x is f(x) = T(x)? https://www.desmos.com/calculator/try63qzvo5

Recall

$$\int_{n=0}^{\infty} for all x \in \mathbb{R}.$$

Let $f(x) = \cos(\sqrt{x})$.

32.1 Write down a Taylor series for f.

Hint: you don't need to take any derivatives.

 $\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \qquad \cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$

$$=\sum_{n=0}^{\infty}(-$$

$$(-1)^n \frac{x}{(2\pi)^n}$$

32

32.2 Find
$$f^{(10)}(0)$$
.

Find
$$f^{(10)}(0)$$

x does your series converges?

true that $T(x_0) = g(x_0)$? Explain.

32.4 Using Desmos, make a conjecture: for which values of

https://www.desmos.com/calculator/try63qzvo5

32.5 Let T be a Taylor series for an unknown function g. If

a Taylor series T converges at a value x_0 , must it be

© Geoff McGregor, Arman Pannu & Jason Siefken, 2025 @ 00

Find
$$f^{(10)}(0)$$

Find
$$f^{(10)}$$
(

$$d f^{(10)}(0)$$

Find
$$f^{(10)}$$