31013 Réunion du 12 Avril 2019

Nicolas CASTANET Maël FRANCESCHETTI Daoud KADOCH Fabien MANSON

Sommaire

La Demande du Client

Scénario d'Utilisation

Les Différentes Solutions

Architecture Matérielle

Architecture Logicielle

Test Effectués

État d'Avancement

La Demande du Client

- Le client souhaite effectuer des rondes avec un drone Bebop 2
- Le drone doit voler de manière autonome en suivant un plan de vol prédéfini
- ► Le retour vidéo du drone doit être redirigé à un iPod touch qui sera placé dans un masque FPV pour permettre à l'utilisateur de voir comme s'il était à la place du drone

Scénario d'utilisation

- 1. Démarrage du drone
- 2. Lancement de l'application PC
- 3. Saisie du plan de vol à l'aide du composant dédié (carte interactive)
- 4. Connexion du PC au wifi du drone
- Connexion de l'iPod au réseau local et démarrage de l'application sur l'iPod
- 6. Mise en place de l'iPod dans le masque FPV
- 7. Démarrage de la ronde depuis l'iPod ou le PC
- 8. Arrêt d'urgence si besoin

Comparatif des solutions

	1) PC + iPod	2) iPad + iPod	3) iPod
confort d'utilisation (interface)	bonne	optimale	mauvaise
arrêt d'urgence possible	sur PC & iPod	sur iPod	sur iPod
minimisation de latence vidéo	bonne	optimale	optimale
répartition des traitements	majorité sur PC	majorité sur iPod	tout sur iPod

► Solution retenue : PC + iPod

Architecture Matérielle

Architecture Logicielle : controle du drone

Architecture Logicielle: interface utilisateur

Architecture Logicielle : retour vidéo sur l'iPod

Architecture Logicielle complète

Tests effectués

- Saisie d'un plan de vol enregistré au format Mavlink
- Connexion au drone
- Envoi d'un fichier Mavlink avec le SDK
- Initialisation des paramètres pour le vol autonome
- Exécution du plan de vol enregistré sur le drone en totalité.
- Arrêt d'urgence
- Essais d'émission d'un flux vidéo depuis un serveur vers un iPod
- Traitement d'un flux vidéo en direct (webcam) -> découpe et assemblage des images pour le format VR

Etat d'avancement

Interface	Interface principale de l'application	Interface de saisie du plan de vol	Interface de l'application iOS			
Vol du drone	Creation du plan de vol	Envoi du plan de vol	Exécution du plan de vol	Direction du drone pendant le vol	Arrêt d'urgence	
Retour vidéo	Réception du flux vidéo du drone sur le PC	Retouche des frames avec OpenCV	Ré-émission du flux vidéo vers l'iPod	Lecture du flux vidéo par l'iPod		
<u>Légende</u> : En cours de développement (version alpha)						
	Fonctionnel Non d		éveloppé			

Problèmes rencontrés

- Résolus :
- 1. Calibration du drone après chaque arrêt d'urgence (choc ou inclinaison trop forte du drone)
- 2. Direction du drone durant le trajet
- ► En cours :
- 1. Perte du signal GPS sur campus de l'UPMC
- Encodage du fichier video traité en .avi : conversion en mp4 (ffmpeg) trop lente
- 3. Ré-émission du flux vidéo par le serveur