Tipos de fuerzas

Tipos de fuerzas

Interacciones a Distancia

Interaccion	Intensidad	Alcance	Fuente	Caracteristica
Gravitatoria	Muy debil	Infinito	Masa	Atraccion Universal

Es una fuerza acumulativa (depende de la masa)

$$ec{P}=mec{g}$$

Interacciones de contacto (Normal $ec{N}$)

Interaccion	Intensidad	Alcance	Fuente	Caracteristica
Electromagnetica	Fuerte	Infinito	Carga Electrica	Atraccion y Repulsion

La fuerza normal \vec{N} es una fuerza de contacto. Si no existe la interacción desaparece la fuerza normal

Fuerza Elastica

$$ec{F}_e = -k\Deltaec{x}$$

Movimiento de un sistema masaresorte

- Un bloque de masa m está atado a un resorte, el bloque puede moverse sin fricción sobre una superficie horizontal.
- Cuando el resorte no está ni comprimido ni estirado, el bloque está en su posición de equilibrio.
- X=0

Ponemos x_0 en la posicion de equilibreo de manera que $\Delta ec{x} = ec{x} - ec{x_0} = ec{x} - 0 = ec{x}$

Fuerza Roce $ec{F}_r$

• Fuerza de roce dinamica

$$ec{F_r} = \mu_d N$$

 μ_d es constante en el tiempo (aprox)

En la fuerza de rozamiento dinamico, se opone al movimiento relativo entre ambas superficies.

• Fuerza de roce estatica

$$\vec{F_r} = \mu_e N$$

$$0 \le \mu_e \le 1$$

En la fuerza de rozamiento estatico, no existe desplazamiento relativo entre el bloque y la superficie de apoyo.

- ullet N: Es la norma (en modulo) de la fuerza normal
- ullet μ_e Coeficiente de rozamiento estatico
- ullet μ_d Coeficiente de rozamiento dinamico
- $\mu_e > \mu_d$

Tension para una Cuerda Ideal

Escribamos la segunda Ley de Newton sobre la cuerda, para lo cual nos imaginamos que la colocamos en forma horizontal.

$$ec{F}_{\scriptscriptstyle B \;
ightarrow \; C} {-} ec{F}_{\scriptscriptstyle A \;
ightarrow \; C} = m_c \cdot a_c$$

- ullet $ec{F}_{\scriptscriptstyle B
 ightarrow \, C}$ la fuerza que la masa B ejerce sobre la cuerda.
- ullet $ec{F}_{A
 ightarrow C}$ la correspondiente a la masa A y
- $m_c \cdot a_c$ el producto de la masa de la cuerda por su aceleración.

Si suponemos que la cuerda es ideal **su masa será despreciable**; por lo tanto:

$$ec{F}_{\scriptscriptstyle B \;
ightarrow \; C} = ec{F}_{\scriptscriptstyle A \;
ightarrow \; C}$$

Ahora bien, $\vec{F}_{B \to C}$ es el par de interacción de la fuerza que la cuerda ejerce sobre B, es decir de la tensión, y por consiguiente ambas son iguales en módulo.

Lo mismo ocurre para $ec{F}_{\scriptscriptstyle A \;
ightarrow \; C}$.

Transitivamente, entonces, las tensiones aplicadas sobre cada masa son, en módulo, iguales. **Tener** en claro que estas tensiones NO forman, entre sí, un par de interacción.