



## **DEPARTMENT OF MATHEMATICS**

 Sub Code:
 CS41
 Sub:
 ENGINEERING MATHEMATICS IV
 Test:
 II

 Time:
 9.30 to 10.30 am
 Term:
 8.03.2021 to 26.06.2021
 Marks:
 30

 Date:
 13.07.2021
 Semester:
 IV
 Section:
 CSE

## Note: Answer any TWO full questions. Each main question carries 15 marks

| Q. No. |     | Questions                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                               | Bloom's<br>Level | CO's | Marks |
|--------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|-------|
| 1.     | (a) | Define (i) Stochastic Process (ii) Ergo                                                                                                                                                                                                                                                                                                                                              | odic process                                                                                                                                                                                                                                                                                  | L1               | CO3  | 2     |
|        | (b) | Find the fixed probability vector of                                                                                                                                                                                                                                                                                                                                                 | $\begin{bmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 1/4 & 1/4 \\ 3/4 & 1/4 & 0 \end{bmatrix}$                                                                                                                                                                                                             | L2               | CO4  | 3     |
|        | (c) | random. If $X$ and $Y$ are discrete rand white and red bulbs respectively, det                                                                                                                                                                                                                                                                                                       | bag contains 3 white, 3 red and 2 green bulbs. 2 bulbs are selected at ndom. If $X$ and $Y$ are discrete random variables denoting the number of nite and red bulbs respectively, determine (i) joint distribution of $X$ and $Y$ ) Marginal distribution of $X$ and $Y$ & (iii) $COV(X,Y)$ . |                  | CO3  | 5     |
|        | (d) | A supermarket has two billing counters. The customers arrive in a Poisson fashion at the rate of 12 per hour. The service time for each customer is exponential with mean 6 minutes. Find (i) the probability that an arriving customer has to wait for the service (ii) the average number of customers in the system (iii) the average time spent by a customer in the supermarket |                                                                                                                                                                                                                                                                                               | L4               | CO4  | 5     |
| 2.     | (a) | Define regular stochastic matrix. Is t regular?                                                                                                                                                                                                                                                                                                                                      | the matrix $A = \begin{bmatrix} 1/4 & 3/4 \\ 0 & 1 \end{bmatrix}$                                                                                                                                                                                                                             | L1               | CO4  | 2     |
|        | (b) | A random process X(t) is represented 1.5} corresponding to the outcomes Check if the process is SSS.                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                               | L2               | CO3  | 3     |
|        | (c) | Find the value of $k$ from the joint property of $f(x,y) = \begin{cases} k\left(x^2 + \frac{xy}{2}\right) & 0 \\ 0 & \text{Also find (i) P(} x > 0.5\text{ )} \end{cases}$ (ii) P( $y > 1$                                                                                                                                                                                           | 0 < x < 1, 0 < y < 2 otherwise                                                                                                                                                                                                                                                                | L4               | CO3  | 5     |
|        | (d) | The mean and standard deviation of                                                                                                                                                                                                                                                                                                                                                   | a sample of size 50 are 1000 and 100 come from a population with mean                                                                                                                                                                                                                         | L3               | CO5  | 5     |
| 3.     | (a) | Define (i) Null hypothesis (ii) One                                                                                                                                                                                                                                                                                                                                                  | tailed test                                                                                                                                                                                                                                                                                   | L1               | CO5  | 2     |
|        | (b) | Trains arrive in a yard in a Poisson minutes but the service time is e                                                                                                                                                                                                                                                                                                               | fashion with a mean of one every 20 exponential with mean 30 minutes. ce station and the line capacity of the                                                                                                                                                                                 | L2               | CO4  | 3     |
|        | (c) | In a cascade of binary communication transmitted in successive stages. A transmitted 1 is received as 1 is 0.8 as 0 is 0.75. Find the probability that (i) 1 transmitted in the first stage is                                                                                                                                                                                       | on channels, the symbol 1 and 0 are at any stage, the probability that a and the probability that 0 is received                                                                                                                                                                               | L4               | CO4  | 5     |
|        | (d) | Find the autocorrelation function o                                                                                                                                                                                                                                                                                                                                                  | f the stochastic process defined by m in the interval $[-\pi,\pi]$ . Hence verify                                                                                                                                                                                                             | L3               | CO3  | 5     |