Análise de Componentes Principais

Adilson dos Anjos

Sensometria 2

Objetivo

- O objetivo dessa aula é apresentar a Análise de Componentes Principais.
- As análises serão realizadas com uso do R;

Pacotes utilizados nessa aula

- readxl
- ▶ FactoMineR
- bpca

Dados

Café

Análise de Componentes Principais (ACP): Introdução

- ▶ PCA: Principal Component Analysis (Pearson, 1901)
- Objetivo: explicar a estrutura de variância/covariância por meio de combinações lineares das variáveis originais;
- As combinações lineares são chamadas de Componentes Principais;
- Essas combinações são não correlacionadas;

- Busca-se uma redução do número de p variáveis para k componentes principais;
- ► Em geral, a análise de componentes principais serve como um método intermediário de avaliação;
- Por exemplo: construção de agrupamentos em análise de segmentação (cluster).

- Na análise de componentes principais, busca-se a informação contida em p variáveis por meio de k componentes principais não correlacionadas (k < p);
- A qualidade da informação pode ser medida por meio da proporção de variância total explicada pelas k componentes principais;
- A suposição de normalidade não é necessária para utilização de ACP.

- ▶ Para a obtenção dos componentes principais utiliza-se a matriz de covariâncias dos vetores aleatórios das variáveis originais;
- É comum utilizar-se uma transformação das variáveis;
- Os componentes principais podem ser obtidos a partir da matriz de covariância das variáveis originais padronizadas ou,
- ... de maneira equivalente, a partir da matriz de correlação das variáveis originais
- Os componentes principais dependem apenas da matriz de covariância (ou correlação);

- ▶ Dado o vetor $X' = [X_1, X_2, ..., X_p]$ e a matriz de covariâncias Σ com autovalores $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_p \ge 0$;
- As combinações lineares são dadas da forma:

$$Y_1 = l'_1 X = l_{11} X_1 + l_{21} X_2 + \dots + l_{p1} X_p$$

 $Y_2 = l'_2 X = l_{12} X_1 + l_{22} X_2 + \dots + l_{p2} X_p$
 \vdots
 $Y_p = l'_p X = l_{1p} X_1 + l_{2p} X_2 + \dots + l_{pp} X_p$

A primeira combinação linear é a que possui a maior variância.

A variância total é:

$$\sigma_{11} + \sigma_{22} + \ldots + \sigma_{pp} = \lambda_1 + \lambda_2 + \ldots + \lambda_p$$

► Assim, a proporção da variância total explicada pela k-ésima componente principal é

Var devida a k-ésima CP =
$$\frac{\lambda_k}{\lambda_1 + \lambda_2 + \ldots + \lambda_p}$$

▶ Se Σ é a matriz de covariância associada com o vetor $X' = [X_1, X_2, \ldots, X_p]$ e Σ tem os pares de autovalores e autovetores (λ_p, e_p) com $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p \geq 0$, o i-ésimo componente principal é dado por:

$$Y_i = e_{1i}X_1 + e_{2i}X_2 + \ldots + e_{pi}X_p$$

Com a condição:

$$Var(Y_i) = e_i' \Sigma e_i = \lambda_i$$
 e $Cov(Y_i, Y_k) = e_i' \Sigma e_k = 0 (i \neq k)$

- ► Em geral, entre 80 e 90% da variabilidade pode ser explicada por até 3 componentes principais (considerando um grande número de variáveis originais);
- A variabilidade depende do fenômeno em estudo;
- ► Em alguns casos, pode-se considerar uma variabilidade menor, em geral, em torno de 70%.

- Há diferenças entre os componentes principais obtidos a partir da matriz de variância e covariância em comparação com a matriz de correlação;
- Recomenda-se a padronização quando as variáveis possuem escalas diferentes (inclusive em magnitude)

Representação Gráfica

 Utiliza-se um gráfico de dispersão entre as duas componentes principais e o escores de cada componente;

ACP Definição dos Componentes

- Percentual: depende do fenômeno (scree-plot);
- Interpretação prática do componente;
- Aproximação da matriz de variâncias/covariâncias (original).

- Quando as variáveis possuem Distribuição Normal (normal multivariada) podem ser realizadas algumas inferências;
- Exemplo: elipses de confiança.

Exemplo: coxinha

library(FactoMineR)

- Nesse exemplo s\u00e3o considerados quatro atributos: sabor, aroma, massa e recheio.
- Cada avaliador atribuiu uma nota na escala ordinal de 1 a 5. Notas maiores estão relacionadas com melhor qualidade da coxinha.

```
sabor<-c(2.75,3.90,3.12,4.58,3.97,3.01,4.19,3.82)
aroma<-c(4.03,4.12,3.97,4.86,4.34,3.98,4.65,4.12)
massa<-c(2.80,3.40,3.62,4.34,4.28,2.90,4.52,3.62)
recheio<-c(2.62,3.52,3.05,4.82,4.98,2.82,4.77,3.71)
produto<-c(paste('C',1:8,sep=""))
coxa<-data.frame(sabor,aroma,massa,recheio,produto)</pre>
```

Alguma observação sobre esses valores? sobre as coxinhas?

coxa

```
sabor aroma massa recheio produto
 2.75 4.03 2.80
                  2.62
                          C1
2 3.90 4.12 3.40 3.52
                          C2
3 3.12 3.97 3.62 3.05
                       C3
4
 4.58 4.86 4.34 4.82
                          C4
5 3.97 4.34 4.28 4.98
                          C5
6 3.01 3.98 2.90 2.82
                          C6
7 4.19 4.65 4.52 4.77
                          C7
8 3.82 4.12 3.62
                  3.71
                          C8
```

▶ Um resumo dos dados:

summary(coxa)

C4

C5

C6

:1

:1

sab	or	aro	ma	mas	sa	rech	eio
Min.	:2.750	Min.	:3.970	Min.	:2.800	Min.	:2
1st Qu.	:3.092	1st Qu.	:4.018	1st Qu.	:3.275	1st Qu.	:2
Median	:3.860	Median	:4.120	Median	:3.620	Median	:3
Mean	:3.667	Mean	:4.259	Mean	:3.685	Mean	:3
3rd Qu.	:4.025	3rd Qu.	:4.418	3rd Qu.	:4.295	3rd Qu.	:4
Max.	:4.580	Max.	:4.860	Max.	:4.520	Max.	:4
prod	luto						
C1	:1						
C2	:1						
C3	:1						

Obtendo os componentes principais:

```
prcomp(coxa[,1:4]) # base
```

```
Standard deviations (1, .., p=4):
[1] 1.3178933 0.2547255 0.1670736 0.1499212
```

```
Rotation (n x k) = (4 x 4):

PC1 PC2 PC3 PC4

sabor 0.4557692 0.8160940 -0.1121458 -0.33717690

aroma 0.2234675 0.2149422 -0.2691445 0.91182420

massa 0.4770120 -0.4564207 -0.7177864 -0.22118397

recheio 0.7174930 -0.2819051 0.6322715 0.07724004
```

A função **prcomp** está no base do R. Não é necessário instalar pacotes.

A função **estim_ncp** sugere o número de dimensões:

```
estim_ncp(coxa[,1:4]) # factominer
```

\$ncp [1] 1

\$criterion

[1] 1.0000000 0.2556116 0.3908284 0.6169136

Nesse caso, é sugerida apenas uma dimensão.

-Graficamente, pode-se obter o mesmo resultado:

```
screeplot(prcomp(coxa[,1:4])) # base
```

prcomp(coxa[, 1:4])

- Obtendo as componentes principais:
- Nesse primeiro caso, utilizamos a opção scale=F. Isso significa que estamos utilizando a escala natural do atributo, sem nenhuma transformação.

coxa.pca<-PCA(coxa[,1:4],scale=F)</pre>

Individuals factor map (PCA)

Nesse segundo caso, utilizamos a opção scale=T. Isso significa que estamos utilizando a escala natural do atributo, ou seja, fazendo uma transformação.

Individuals factor map (PCA)

Graficamente pode-se visualizar o comportamento dos atributos:

plot(coxa.pca,choix='var')

Variables factor map (PCA)

► E dos tipos de coxinhas:

```
plot(coxa.pca,choix='ind')
```

Individuals factor map (PCA)

▶ O percentual explicado por cada componente pode ser obtido da seguinte forma:

coxa.pca\$eig

		${\tt eigenvalue}$	percentage	of	variance	cumulative	percen
comp	1	3.63027606		:	90.756901		
comp	2	0.19524697			4.881174		
comp	3	0.13041172			3.260293		
comp	4	0.04406525			1.101631		

Os coeficientes da primeira componente principal podem ser obtidos da seguinte maneira:

Onde usar essa informação?

0.4557692 0.2234675 0.4770120 0.7174930

▶ Para obter os escores para cada tipo de coxinha:

5.369405

ou de outra maneira:

[1] 5.36683

	40.00	00	110
Sensome	tria	71	Π
CHSCHIC	tila,	_ \	$^{\prime}$

Utilizando o critério da componente principal, qual a melhor coxinha?

Exemplo: Café

Arquivo de dados

A tibble: 6×4

```
library(readxl)
cafe<-read_excel('cafe.xls')</pre>
```

head(cafe)

π	A CIDDIE.	OAT		
	Consumidor	Α	В	C
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	C1	8	7	3
2	C2	9	4	7
3	C3	9	8	7
4	C4	8	3	7
5	C5	3	7	4
6	C6	7	8	8

summary(cafe)

Consumidor	A	В	(
Length:75	Min. :1.000	Min. :2.000	Min.
Class :character	1st Qu.:4.000	1st Qu.:4.000	1st Qu
Mode :character	Median :6.000	Median :7.000	Median
	Mean :5.973	Mean :6.227	Mean
	3rd Qu.:8.000	3rd Qu.:8.000	3rd Qu
	Max. :9.000	Max. :9.000	Max.

```
library(FactoMineR)
par(mfrow=c(1,2))
cafe.pca<-PCA(cafe[,2:4])</pre>
```

Individuals factor map (PCA) Var

Variables factor map (PCA)


```
par(mfrow=c(1,1))
plot(cafe.pca,choix=c('ind')) # linhas
```

Individuals factor map (PCA)


```
par(mfrow=c(1,1))
plot(cafe.pca,choix=c('var')) # colunas
```

Variables factor map (PCA)

head(round(cafe.pca\$ind\$contrib[,1:2],2))

```
Dim.1 Dim.2
```

- 1 0.09 0.46
- 2 2.45 0.01
- 3 0.41 4.75
- 4 2.39 1.03
- 5 1.72 0.58
- 6 0.14 2.87

```
round(cafe.pca$var$contrib[,1:2],2)
```

Dim.1 Dim.2

A 34.87 23.22

B 27.75 70.20

C 37.38 6.58

```
round(cafe.pca$var$coord[,1:2],2)
```

Dim.1 Dim.2

A 0.78 0.41

B -0.70 0.71

C 0.81 0.22

round(cafe.pca\$eig,2)

eigenvalue percentage of variance cumulative percent

comp	1	1.76	58.53
comp	2	0.71	23.83
comp	3	0.53	17.64

Utilizando o pacote bpca

library(bpca)

Duas dimensões

Três dimensões

Experimente ratacionar o gráfico

```
plot.bpca.3d(bp3,rgl=T)
```

Exemplo: Suco de Laranja

- Suco de Laranja
- 6 sucos
- 7 variáveis/atributos
- 2 variáveis auxiliares
 - Variáveis 8:15 são quantitativas suplementares e
 - 16 e 17 são qualitativas suplementares

Sensometria, 2018

Arquivo de dados

```
orange<-read.table('http://factominer.free.fr/book/orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.orange.or
```

3rd Qu.:3.335

Max. :3.380

3rd Qu.:20

:32

Max.

Descrição rápida dos dados

summary(orange)

3rd Qu.:3.125

Max. :3.310

Odour.intensity		Odour.t	typicality	Pulp	oiness	Intens	sit
Min.	:2.760	Min.	:2.530	Min.	:1.660	Min.	::
1st Qu.	:2.775	1st Qu.	:2.625	1st Qu	1.:1.722	1st Qı	1.::
Median	:2.825	${\tt Median}$:2.775	Mediar	ı:2.625	Mediar	ı ::
Mean	:2.907	Mean	:2.762	Mean	:2.710	Mean	::
3rd Qu.	:3.010	3rd Qu.	:2.865	3rd Qu	1.:3.603	3rd Qı	1.::
Max.	:3.200	Max.	:3.020	Max.	:4.000	Max.	::
Acid	lity	Bitte	erness	Sweet	ness	Glud	cos
Min.	:2.330	Min.	:1.760	Min.	:2.600	Min.	:1
1st Qu.	:2.453	1st Qu.	.:1.998	1st Qu.	:2.825	1st Qu	.:2
Median	:2.800	${\tt Median}$:2.320	Median	:3.110	Median	:24
Mean	:2.802	Mean	:2.328	Mean	:3.057	Mean	:24

3rd Qu.:2.612

Max.

:2.970

PCA

```
library(FactoMineR)

X11()
par(mfrow=c(1,2))
res.pca <- PCA(orange[,1:7])</pre>
```

Individuals factor map (PCA)

Variables factor map (PCA)

res.pca

Results for the Principal Component Analysis (PCA)
The analysis was performed on 6 individuals, described by

The analysis was performed on 6 individuals, described *The results are available in the following objects:

name description

1 "\$eig" "eigenvalues"

2 "\$var" "results for the variables"

3 "\$var\$coord" "coord. for the variables"
4 "\$var\$cor" "correlations variables - dimensions"

5 "\$var\$cos2" "cos2 for the variables"
6 "\$var\$contrib" "contributions of the variables"

7 "\$ind" "results for the individuals"
8 "\$ind\$coord" "coord. for the individuals"
9 "\$ind\$cos2" "cos2 for the individuals"

10 "\$ind\$contrib" "contributions of the individuals"
11 "\$call" "summary statistics"
12 "\$call\$contro" "mean of the variables"

```
par(mfrow=c(1,1))
plot(res.pca,choix=c('ind'))
```

Individuals factor map (PCA)


```
par(mfrow=c(1,1))
plot(res.pca,choix=c('var'))
```

Variables factor map (PCA)

Interpretação

DIM₁

- tropicana.fr e Pampryl.amb-> extremos para odour typicality
- tropicana.fr é mais typical e menos bitter
- ► Pampryl.amb é menos typical e mais bitter

DIM₂

- Tropicana.amb tem odor menos intenso
- Pampryl.fr tem odor mais intenso

Correlação entre variáveis e as primeiras duas componentes

```
round(res.pca$var$coord[,1:2],2)
```

Variância explicada

```
round(res.pca$eig,2)
```

		eigenvalue	percentage	of	variance	${\tt cumulative}$	percent
comp	1	4.74			67.77		
comp	2	1.33			19.05		
comp	3	0.82			11.71		
comp	4	0.08			1.20		
comp	5	0.02			0.27		

Contribuição de cada indivíduo ou variável para cada uma das dimensões

```
round(res.pca$ind$contrib[,1:2],2)
```

```
Dim.1 Dim.2
Pampryl amb. 31.29 0.08
Tropicana amb. 2.76 36.77
Fruvita fr. 13.18 0.02
Joker amb. 12.63 8.69
Tropicana fr. 35.66 4.33
Pampryl fr. 4.48 50.10
```

round(res.pca\$var\$contrib[,1:2],2)

Dim.1	Dim.2
4.45	42.69
20.47	1.35
10.98	28.52
8.90	13.80
17.56	9.10
18.42	2.65
19.22	1.89
	4.45 20.47 10.98 8.90 17.56 18.42

Adicionando informação: variáveis suplementares:

 Variáveis suplementares não contribuem para a construção do PCA auxiliam na interpretação

Individuals factor map (PCA) Variables factor map (PCA)


```
par(mfrow=c(1,1))
plot(res.pca,choix=('var'))
```

Variables factor map (PCA)


```
par(mfrow=c(1,1))
plot(res.pca,choix=('ind'))
```

Individuals factor map (PCA)

Interpretação

- ▶ pH e sacarose são correlacionadas com a primeira dimensão
- Primeira dimensão: doce e ácido
- Em ambiente ácido, sacarose transforma-se em glicose e frutose.
- A variável categórica suplementar é posicionada no centro dos indivíduos aos quais ela pertence

Biplot

 representando produtos/amostras e atributos/variáveis no mesmo gráfico

Função biplot (base do R)

biplot(prcomp(orange[,1:7]))

PC3

0.2

Os componentes principais

```
prcomp(orange[,1:7])
```

Odour.intensity

```
Standard deviations (1, .., p=6):

[1] 1.195422e+00 5.354149e-01 1.868676e-01 1.098345e-01 4.6

[6] 2.715608e-16

Rotation (n x k) = (7 x 6):
```

Odour.typicality -0.13361141 -0.1305171 0.26045122 0.26
Pulpiness -0.88585708 0.4244513 -0.03989412 -0.13
Intensity.of.taste 0.02473181 0.2220744 -0.52319792 -0.08

PC1

PC2

-0.09187630 0.1294499 0.67970061

Intensity.of.taste 0.02473181 0.2220744 -0.52319792 -0.08
Acidity 0.22252469 0.5786700 -0.23652412 0.68
Bitterness 0.30400795 0.5137590 0.36460721 -0.23

Bitterness 0.30400795 0.5137590 0.36460721 -0.23 Sweetness -0.21543965 -0.3713825 -0.07721764 0.58 PC5 PC6

ensometria, 2018

Utilizando o pacote bpca

library(bpca)

```
bp2 <- bpca(orange[,1:7],d=1:2)
plot.bpca.2d(bp2,var.cex=1.2,obj.cex=1.2)</pre>
```


Utilizando 3 dimensões

Sensometria, 2018

Experimente rotacionar o gráfico!

plot.bpca.3d(bp3,rgl=T)