

Executive Summary

Objective

Build a supervised learning model to detect fraudulent credit card transactions

Data Analysis Methods

5 step approach from data exploration, imputation, expert variable creation, feature selection and data modeling

Conclusions

Our best model, Bootstrap Forest, gave an FDR at 2% of 52.37% on OOT dataset.

Problem Statement

- About 31.8 million U.S. consumers had their credit cards breached in 2014
- As per studies in 2007 for every \$100 of transaction \$0.07 was lost due to fraud
- As part of this project we are building a supervised learning model to identify fraudulent credit card transactions

Process Overview

- Data Discovery and initial analysis
- Data Visualization and understanding
- Expert variable creation using training data set
- Data imputation
- Feature Selection (KS + LASSO)
- Data Partition Training, Testing and OOT

Predictive Modeling

Data Description

- One year of credit card transaction data for Gov. Agency
- 96,707 sample transaction labeled with fraud/not fraud
- 6.26 MB and 10 columns
- The data contains following information:
 - Card number
 - Date of transaction
 - Merchant number
 - Merchant description
 - Merchant state

- Merchant zip
- Transaction type
- Transaction amount
- Fraud label

Data Visualization - 1

Benford's Law

Data Visualization - 2

Transcation Counts - Fraud Map - December

Monthly Transactions Distribution

August	June	February	April	
11,050	9,249	7,742	7,731	
September	May	January	November	
9,857	8,943	6,793	5,877	
March	July	December	October	
9,370	8,296	6,736	5,064	

Number of Records 5,064 11,050

Mothly Frauds/Transactions Distribution

Data Cleaning

- Three variables -- merchnum, merch.state and merch.zip are not 100% populated, with missing values and 0's.
- We assigned values to these fields based on merch.description. We considered records with different merch.description as different merchants, and assumed that each merchant should have a unique merchant number, be in one state, and only have one zip code.
- We skipped missing values while counting linkages to create expert variables
- Since all these three variables are categorical, we assigned unique values in these fields according to merch.description, and those values were designed to be quite different from other existing values

Expert Variable Creation

- Since this analysis involves time, with limited data, we chose four different time windows 1, 3, 7, 15 and 30 days.
- The rationale is to capture more (and different types of) fraudulent records that might be detected in those time windows.
- We did not use fraud label to create expert variable to represent more real world scenerio

Expert Variable Creation

Type I variables are intended to capture unusual amounts of transaction, both at the card level and the merchant level

Type 2 variables are intended to capture unusual transaction frequency during a set period of time, both at the card level and the merchant level

Type 3 are location related variables, which are intended to capture merchants with different zip codes and states in a set period of time.

Type 4 are intended to catch card appearance pattern, either for a merchant or for a card holder.

Feature Selection - KS & Lasso

- KS: KS is a robust measure of how well two distributions are separated (goods vs bads)
- Lasso: Lasso can solve the multicollinearity problem between variables

KS Lasso 130 variables $\rightarrow \rightarrow$ 40 variables $\rightarrow \rightarrow$ 25 variables

Gini Index – Variable Importance

The Gini coefficient measures the inequality among values of a frequency distribution

FDR at 2% for Different Models

	Bootstrap Forest	Boosted Trees	Neural Network	Naive Bayes	Logistic Regression
Training	66.51%	64.41%	70.89%	59.98%	62.13%
Testing	58.94%	53.61%	60.08%	50.00%	49.05%
ООТ	52.37%	51.48%	42.31%	38.78%	47.63%

Variable Importance based on Bootstrap Forest

	Fraud					
Predictor	Contribution	Portion	Rank			
cardnum_amount_month_diff_sum_3	47.1125	0.1676	1			
cardnum_amount_sum_3	30.3670	0.1080	2			
cardnum_amount_sum_1	30.1621	0.1073	3			
cardnum_amount_week_diff_sum_1	28.3481	0.1009	4			
cardnum_amount_week_diff_sum_3	28.0321	0.0997	5			
cardnum_amount_month_diff_sum_1	16.7704	0.0597	6			
merchantnum_amount_sum_1	13.6179	0.0484	2 3 4 5 6 7 8 9			
merchantnum_amount_month_diff_sum_1	13.0390	0.0464	8			
cardnum_amount_max_3	10.8681	0.0387	9			
cardnum_amount_week_diff_sum_7	7.1813	0.0255	10			
cardnum_amount_week_diff_max_3	5.7419	0.0204	11			
cardnum_amount_month_diff_sum_15	4.9791	0.0177	12			
merchantnum_amount_month_diff_max_1	4.8036	0.0171	13			
merchantnum_amount_avg_1	4.6146	0.0164	14			
cardnum_amount_max_1	4.3300	0.0154	15			
cardnum_amount_avg_3	4.1590	0.0148	16			
cardnum_amount_avg_1	4.1219	0.0147	17			
merchantnum_amount_max_3	3.8105	0.0136	18			
merchantnum_amount_month_diff_avg_3	3.7181	0.0132	19			
merchantnum_amount_week_diff_avg_1	3.6167	0.0129	20			
cardnum_amount_week_diff_sum_15	3.1844	0.0113	21			
cardnum_amount_month_diff_avg_15	2.8551	0.0102	22			
cardnum_amount_month_diff_avg_1	2.6148	0.0093	23			
cardnum_amount_avg_7	1.9606	0.0070	24			
cardnum_amount_month_diff_avg_7	1.0637	0.0038	25			

ROC Curve – Bootstrap forest

Neural Network (Nodes: 25, 10)

Bin Table

Overall Bad Rate is 2.69%	Bin Statistics					Cumulative Statistics					
Population Bin %	Total # records	# Bad	# Good	% Bad	% Good	Cumulative Bad	Cumulative Good	% Bad (FDR)	% Good	KS	False Pos. Ratio
0.5	63.000	63.000	-	100.000	-	63.000	-	18.639	-	18.639	-
1	63.000	60.000	3.000	95.238	4.762	123.000	3.000	36.391	0.024	36.366	0.024
1.5	63.000	34.000	29.000	53.968	46.032	157.000	32.000	46.450	0.261	46.188	0.204
2	63.000	20.000	43.000	31.746	68.254	177.000	75.000	52.367	0.612	51.755	0.424
2.5	63.000	8.000	55.000	12.698	87.302	185.000	130.000	54.734	1.061	53.672	0.703
3	63.000	7.000	56.000	11.111	88.889	192.000	186.000	56.805	1.519	55.286	0.969
3.5	63.000	2.000	61.000	3.175	96.825	194.000	247.000	57.396	2.017	55.380	1.273
4	63.000	6.000	57.000	9.524	90.476	200.000	304.000	59.172	2.482	56.690	1.520
4.5	63.000	8.000	55.000	12.698	87.302	208.000	359.000	61.538	2.931	58.607	1.726
5	63.000	5.000	58.000	7.937	92.063	213.000	417.000	63.018	3.405	59.613	1.958
5.5	63.000	3.000	60.000	4.762	95.238	216.000	477.000	63.905	3.895	60.011	2.208
6	63.000	3.000	60.000	4.762	95.238	219.000	537.000	64.793	4.384	60.409	2.452
6.5	63.000	5.000	58.000	7.937	92.063	224.000	595.000	66.272	4.858	61.414	2.656
7	63.000	-	63.000	-	100.000	224.000	658.000	66.272	5.372	60.900	2.938
7.5	63.000	1.000	62.000	1.587	98.413	225.000	720.000	66.568	5.879	60.690	3.200
8	63.000	2.000	61.000	3.175	96.825	227.000	781.000	67.160	6.377	60.783	3.441
8.5	63.000	-	63.000	-	100.000	227.000	844.000	67.160	6.891	60.269	3.718
9	63.000	2.000	61.000	3.175	96.825	229.000	905.000	67.751	7.389	60.363	3.952
9.5	63.000	2.000	61.000	3.175	96.825	231.000	966.000	68.343	7.887	60.456	4.182
10	63.000	2.000	61.000	3.175	96.825	233.000	1,027.000	68.935	8.385	60.550	4.408
10.5	63.000	2.000	61.000	3.175	96.825	235.000	1,088.000	69.527	8.883	60.644	4.630
11	63.000	1.000	62.000	1.587	98.413	236.000	1,150.000	69.822	9.389	60.433	4.873
11.5	63.000	1.000	62.000	1.587	98.413	237.000	1,212.000	70.118	9.895	60.223	5.114
12	63.000	1.000	62.000	1.587	98.413	238.000	1,274.000	70.414	10.402	60.013	5.353
12.5	63.000	1.000	62.000	1.587	98.413	239.000	1,336.000	70.710	10.908	59.802	5.590

Conclusion

- Assume \$1000 loss for every fraud that's not caught
- Assume \$10 loss for every false positive (good that's flagged as a bad)

The average merchant experiences 156 successful fraudulent transactions per month.

The value of an average fraudulent transaction is \$114.

55% of fraud is related to ecommerce, as reported by multi-channel merchants.

1.32% of revenue is lost to fraud, a 94% increase from 2014.

29% of merchants feel it is too expensive to control fraud.

25% of declined potentially fraudulent transactions are false positives.

Business Insight

FRAUD MITIGATION EXPENSE

Two of the nine deadly costs of fraud are often chalked up as "the cost of doing business." Yet these may be much higher than they need to be.

MANUAL REVIEWS

The labor cost for staffers to review orders are typically the most expensive aspect of fraucinitigation budgets.

DO-IT-YOURSELF SYSTEMS

Deploying and integrating ad hot tools to fight fraud is expensive, time consuming and dangerous

TRANSACTIONAL COSTS

ive deadly costs of fraud are directly attributable of fraudulent transactions. Two are obvious, but three may not be so apparent.

LOST & STOLEN MERCHANDISE

All merchants understand that fraud results in lost product, a direct cost against the bottom line

CHARGEBACK FEES/FINES

Each time a fraudulent transaction results in a chargeback, you get dinged with fees and fines that can rance from \$15 - \$100 per

LOST SALES

These two costs often don't even make the list but the cost of foregone revenue can be more damaging than the fraud itself.

DECLINED ORDERS

Decline rates typically average 2.6%. Yet the actual incidence of fraud averages 0.9% Turning away that many good sales for fear of fraud is a huge hidden cost

CANCELLED ORDERS

Due to suspicion of fraud, merchants cancel 2X more orders than they should even after manua review. Are your reviewers turning down sales by cancelling good orders that only look bad? HIDDEN COSTS

VISIBLE COSTS

LOST SHIPPING EXPENSE

With fraudulent orders, there is no way to recoup the \$5 - \$100 you paid for delivery.

WASTED LABOR

Resolving Issues with fraudulent transactions—representments, complaints, audits, etc.—takes time away from profitable activities.

HIGHER TRANSACTION FEES + ESCROW ACCOUNTS

With higher rates of fraud come higher processing fees and possibl escrow requirements, which hurt the profitability of every transaction

Thank You!

Q&A

Expert Variable Creation

We created 130 expert variables and we kept 40 variables after KS.

Since this analysis involves time, with limited data, we chose four different time windows 1, 3, 7, 15 and 30 days. The rationale is to capture more (and different types of) fraudulent records that might be detected in those time windows.

Furthermore, we kept 25 variables after Lasso, we use these 25 to train our models.

