ASSIGNMENT 3

EE24BTECH11003 - Akshara Sarma Chennubhatla

I. D: MCQs with One or More than One Correct

3)	The probability that at least one of the events A	and B occurs is 0.6. If A and B occur simultaneously
ĺ	with probability 0.2, then $Pr(\overline{A}) + Pr(\overline{B})$ is	(1987 - 2Marks)

a) 0.4

b) 0.8

c) 1.2

d) 1.4

e) none

(Here \overline{A} and \overline{B} are the complements of A and B, respectively).

4) For two given events A and B, $Pr(A \cap B)$

(1988 - 2Marks)

- a) not less than Pr(A) + Pr(B) 1
- b) not greater than Pr(A) + Pr(B)
- c) equal to $Pr(A) + Pr(B) Pr(A \cup B)$
- d) equal to $Pr(A) + Pr(B) + Pr(A \cup B)$
- 5) If E and F are independent events such that 0 < Pr(E) < 1 and 0 < Pr(F) < 1, then (1989 2Marks)
 - a) E and F are mutually exclusive
 - b) E and $F^{\mathbb{C}}$ (the complement of the event F) are independent
 - c) $E^{\mathbb{C}}$ and $F^{\mathbb{C}}$ are independent
 - d) $Pr(E|F) + Pr(E^{C}|F^{C}) = 1$.

6) For any two events A and B in a sample space

(1991 - 2Marks)

- a) $Pr(A|B) \ge \frac{Pr(A) + Pr(B) 1}{Pr(B)}$, $Pr(B) \ne 0$ is always true
- b) $Pr(A \cap \overline{B}) = Pr(A) Pr(A \cap B)$ does not hold
- c) $Pr(A \cup B) = 1 Pr(\overline{A})Pr(\overline{B})$, if A and B are independent
- d) $Pr(A \cup B) = 1 Pr(\overline{A})Pr(\overline{B})$, if A and B are disjoint.
- 7) E and F are two independent events. The probability that both E and F happen is $\frac{1}{12}$ and the probability that neither E nor F happens is $\frac{1}{2}$. Then, (1993 - 2Marks)

 - a) $Pr(E) = \frac{1}{3}, Pr(F) = \frac{1}{4}$ b) $Pr(E) = \frac{1}{2}, Pr(F) = \frac{1}{6}$ c) $Pr(E) = \frac{1}{6}, Pr(F) = \frac{1}{2}$ d) $Pr(E) = \frac{1}{4}, Pr(F) = \frac{1}{3}$
- 8) Let $0 < \Pr(A) < 1, 0 < \Pr(B) < 1$ and $\Pr(A \cup B) = \Pr(A) + \Pr(B) \Pr(A) \Pr(B)$ then (1995S)
 - a) Pr(A|B) = Pr(B) Pr(A)
 - b) Pr(A' B') = Pr(A') Pr(B')
 - c) $Pr(A \cup B)' = Pr(A') Pr(B')$
 - d) Pr(A|B) = Pr(A)
- 9) If from each of the three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3 black balls, one ball is drawn at random, then the probability that 2 white and 1 black ball will be (1998 - 2Marks)drawn is

 10) If \$\overline{E}\$ and \$\overline{F}\$ are the complementary events of events E and F respectively and if \$0 < \Pr(F) < 1\$, then \$(1998 - 2Marks)\$ a) \$\Pr(E F) + \Pr(\overline{E} F) = 1\$ b) \$\Pr(E F) + \Pr(E \overline{F}) = 1\$ c) \$\Pr(\overline{E} F) + \Pr(\overline{E} \overline{F}) = 1\$ d) \$\Pr(E \overline{F}) + \Pr(\overline{E} \overline{F}) = 1\$ 11) There are four machines and it is known that exactly two of them are faulty. They are tested, one by one, in a random order till both the faulty machines are identified. Then the probability that only two tests are needed is \$(1998 - 2Marks)\$ 								
	a) $\frac{1}{3}$	b) ½	c) $\frac{1}{2}$	d) $\frac{1}{4}$				
	 12) If E and F are events with Pr(E) ≤ Pr(F) and Pr(E ∩ F) > 0, then a) occurrence of E ⇒ occurrence of F b) occurrence of F ⇒ occurrence of E c) non-occurrence of E ⇒ non-occurrence of F d) none of the above implications holds 13) A fair coin is tossed repeatedly. If the tail appears on first four tosses, then the probability of the head appearing on the fifth toss equals (1998 – 2Marks) 							
	a) $\frac{1}{2}$	b) $\frac{1}{32}$	c) $\frac{31}{32}$	d) $\frac{1}{5}$				
14)	Seven white balls and black balls are placed	three black balls are ran adjacently equals	domly placed in a row.	The proba	ability that no two (1998 – 2 <i>Marks</i>)			
	a) $\frac{1}{2}$	b) $\frac{7}{15}$	c) $\frac{2}{15}$	d) $\frac{1}{3}$				
15) The probabilities that a student passes in Mathematics, Physics and Chemistry are m, respectively. Of these subjects, the student has a 75% chance of passing in at least on chance of passing in at least two, and a 40% chance of passing in exactly two. Whi following relations are true?								
	a) $p + m + c = \frac{19}{20}$		b) $p + m + c = \frac{27}{20}$					
	c) $pmc = \frac{1}{10}$		d) $pmc = \frac{1}{4}$					
16) Let E and F be two independent events. The probability that exactly one of them occur the probability of none of them occurring is $\frac{2}{25}$. If $Pr(T)$ denotes the probability of occurring the event T, then								
	a) $Pr(E) = \frac{4}{5}, Pr(F) = \frac{4}{5}$	$\frac{3}{5}$	b) $Pr(E) = \frac{1}{5}, Pr(F) =$	<u>2</u> 5				
	c) $Pr(E) = \frac{2}{5}, Pr(F) = \frac{2}{5}$	$\frac{1}{5}$	d) $Pr(E) = \frac{3}{5}, Pr(F) =$	<u>4</u> 5				
17)	with respective probability function. Let <i>X</i> denote	aree engines E_1 , E_2 and E_4 diffuses $\frac{1}{2}$, $\frac{1}{4}$ and $\frac{1}{4}$. For the state event that the ship is nes E_1 , E_2 and E_3 are fundamental.	ship to be operational at l operational and let X_1, X_2	east two and X_3	of its engines must lenote respectively			

b) $\frac{1}{4}$ c) $\frac{1}{32}$ d) $\frac{3}{16}$

a) $\frac{13}{32}$

- a) $\Pr\left(X_1^{\mathbb{C}}|X\right) = \frac{3}{16}$ b) $\Pr\left(\text{Exactly two engines of the ship are functioning }|X\right) = \frac{7}{8}$ c) $\Pr\left(X|X_2\right) = \frac{5}{16}$ d) $\Pr\left(X|X_1\right) = \frac{7}{16}$