Stu	dei	nt	Infa	r m	atio	n
Nu	uc			,, ,,,,	auv	

Name:	Student ID:
Due Date: 25 Sep, 11:59PM.	
Submit answers on eDimension in po	f format. Submission without student information will NOT
be marked! Any questions regarding	the homework can be directed to the TA through email (con-
tact information on eDimension).	

Week 1

For all answers that are FALSE to a (T/F) question, please provide a short reason why as well.

- 1. The asymptotic complexity of $n^3 + 2n^2 + 1000$ is $O(n^3)$. (T/F)
- 2. The asymptotic complexity of $100n^2 + n + \cos n + 1000$ is $\Theta(n^2)$. (T/F)
- 3. The asymptotic complexity of $100n^{10} + n^{2.3} + 1000$ is $\Omega(n^9)$. (T/F)
- 4. The asymptotic complexity of $n^2 + n + 1000$ is $\Theta(n^{1.5})$. (T/F)
- 5. Given a program that performs the following (assuming printing takes $\Theta(1)$):

for(int
$$i = 0$$
; $i < n^2$; $i++$)
for(int $j = 0$; $j < n$; $j++$)
for(int $k = 0$; $k < 10$; $k++$)
print(Hello)

The asymptotic complexity is $\Theta(n^2)$. (T/F)

6. Given a program that performs the following (assuming printing takes $\Theta(1)$):

$$for(int \ i = 0; \ i < 100; \ i++)$$

 $for(int \ j = 0; \ j < n; \ j++)$
 $print(Hello)$

The asymptotic complexity is $\Theta(n)$. (T/F)

7. Given a program that performs the following (assuming printing takes $\Theta(1)$):

for(int
$$i = 0$$
; $i < 100$; $i++$)

for(int
$$j = 0$$
; $j < 500$; $j++$)

print(n)

The asymptotic complexity is $\Theta(n)$. (T/F)

8. Given
$$f(n) = n^3 + n^2$$
 and $g(n) = 10n^2$, $f(n) = \Theta(g(n))$. (T/F)

9. Given
$$f(n) = n^{0.5} + 10$$
 and $g(n) = n + 10$, $f(n) = O(g(n))$. (T/F)

10. The ranking of the functions below, sorted in **ascending** order of growth is ().

A.
$$n^2 < nlog(n) < 2^n < n^n$$

B.
$$nlog(n) < n^2 < 2^n < n^n$$

C.
$$nlog(n) < n^2 < n^n < 2^n$$

D.
$$n^2 < nlog(n) < n^n < 2^n$$

Week 2

1) Use the Master Theorem to give tight asymptotic bounds for the following recurrences. Please show how you derive your answer.

1.
$$T(n) = 2T(n/4) + n^2$$

2.
$$T(n) = 2T(4n/5) + \log n$$

3.
$$T(n) = 2T(n/4) + \sqrt{n}$$

4.
$$T(n) = \sqrt{2}T(n/4) + n \log n$$