Espaces Vectoriels

A.Belcaid

Université Euro Méditerranéenne de Fès

January 24, 2021

Table de matière

- Définition
 - Sous-espace vectoriel
 - Applications Linéaires

- 2 Dimension finie
 - Famille libre
 - Famille génératrice
 - Base
 - Dimension

<u>A.Belcaid</u> 2/62

Introduction

Espace vectorie

- Structure commune entre différents objets mathématiques
- Obtenir des théorèmes généraux qui s'appliquent non seulement aux vecteurs mais aussi à des fonctions, polynômes ou matrices.
- Cette généralité pose une difficulté à appréhender ces notions et vous demandera une quantité conséquente de travail!

 $\mathbb{K} = \mathbb{R}$

Définition

Définition

un K-espace vectoriel est un ensemble non vide E muni:

Définition

Définition

un K-espace vectoriel est un ensemble non vide E muni:

lacktriangle Une loi de **composition interne**, c'est-à-dire d'une application de $E \times E$ dans E:

$$\begin{array}{ccc} \mathsf{E} \times \mathsf{E} & \to & \mathsf{E} \\ (\mathsf{A},\mathsf{B}) & \to & \mathsf{A} + \mathsf{B} \end{array}$$

Définition

Définition

un K-espace vectoriel est un ensemble non vide E muni:

• Une loi de **composition interne**, c'est-à-dire d'une application de $E \times E$ dans E:

$$\begin{array}{ccc} \mathsf{E} \times \mathsf{E} & \to & \mathsf{E} \\ (\mathsf{A},\mathsf{B}) & \to & \mathsf{A} + \mathsf{B} \end{array}$$

 \bullet D'une loi externe, c'est-à-dire d'une application $\mathbb{K}\times E$ dans $E\colon$

$$\begin{array}{ccc} \mathbb{K} \times \mathsf{E} & \to & \mathsf{E} \\ (\lambda, A) & \to & \lambda. \end{array}$$

• La loi interne et externe doivent vérifier les conditions suivantes:

• La loi interne et externe doivent vérifier les conditions suivantes:

Condition Loi interne (Groupe)

• La loi interne et externe doivent vérifier les conditions suivantes:

Condition Loi interne (Groupe)

• La loi interne et externe doivent vérifier les conditions suivantes:

Condition Loi interne (Groupe)

$$② A + (B+C) = (A+B) + C \qquad \forall A, B \text{ et } C \in E$$

• La loi interne et externe doivent vérifier les conditions suivantes:

Condition Loi interne (Groupe)

$$\bigcirc$$
 A + B = B + A \forall A, B \in E

3 il existe un **élément neutre** 0_E tel que $A + 0_E = A$ $(\forall A \in E)$

• La loi interne et externe doivent vérifier les conditions suivantes:

Condition Loi interne (Groupe)

- **3** il existe un **élément neutre** 0_E tel que $A + 0_E = A$ $(\forall A \in E)$
- ① Tout élément $A \in E$, admet un symétrique A' tel que $A + A' = 0_E$

• La loi interne et externe doivent vérifier les conditions suivantes:

Condition Loi interne (Groupe)

- \bigcirc A + B = B + A \forall A, B \in E
- $A + (B + C) = (A + B) + C \quad \forall A, B \text{ et } C \in E$
- **3** il existe un **élément neutre** 0_E tel que $A + 0_E = A$ $(\forall A \in E)$
- $\textcircled{ } \text{ Tout \'el\'ement } A \in E \text{, admet un } \textbf{sym\'etrique } A^{'} \text{ tel que } A + A^{'} = 0_{E}$

loi Externe

• La loi interne et externe doivent vérifier les conditions suivantes:

Condition Loi interne (Groupe)

- **3** il existe un **élément neutre** 0_F tel que $A + 0_F = A$ $(\forall A \in E)$
- $\textcircled{\textbf{3}} \ \, \text{Tout \'el\'ement } A \in \mathsf{E}, \, \text{admet un } \textbf{sym\'etrique} \, \, A^{'} \, \, \text{tel que } A + A^{'} = \mathsf{0}_{\mathsf{E}}$

loi Externe

• $1.A = A \quad (\forall A \in E)$

• La loi interne et externe doivent vérifier les conditions suivantes:

Condition Loi interne (Groupe)

- $A + (B + C) = (A + B) + C \qquad \forall A, B \text{ et } C \in E$
- **3** il existe un **élément neutre** 0_E tel que $A + 0_E = A$ $(\forall A \in E)$
- $\textcircled{0} \ \ \mathsf{Tout} \ \mathsf{\acute{e}l\acute{e}ment} \ A \in \mathsf{E} \mathsf{, \ admet} \ \mathsf{un} \ \ \mathbf{sym\acute{e}trique} \ A^{'} \ \mathsf{tel} \ \mathsf{que} \ A + A^{'} = \mathsf{0}_{\mathsf{E}}$

loi Externe

- $1.A = A \quad (\forall A \in E)$
- $\lambda.(\beta.A) = (\lambda\beta).A \quad (\forall \lambda, \beta \in \mathbb{K} \text{ et } A \in E)$

• La loi interne et externe doivent vérifier les conditions suivantes:

Condition Loi interne (Groupe)

- ③ il existe un élément neutre 0_E tel que $A + 0_E = A$ $(\forall A \in E)$
- $\textcircled{ } \text{ Tout \'el\'ement } A \in E \text{, admet un } \textbf{sym\'etrique } A^{'} \text{ tel que } A + A^{'} = 0_{E}$

loi Externe

- $1.A = A \quad (\forall A \in E)$
- $\bullet \ \lambda.(\beta.A) = (\lambda\beta).A \quad (\forall \lambda, \beta \in \mathbb{K} \ \text{et} \ A \in E)$
- $\lambda(A + B) = \lambda . A + \lambda . B \quad (\forall A, B \in E \text{ et } \lambda \in \mathbb{K})$

• La loi interne et externe doivent vérifier les conditions suivantes:

Condition Loi interne (Groupe)

- **3** il existe un **élément neutre** 0_E tel que $A + 0_E = A$ $(\forall A \in E)$
- $\textcircled{ } \text{ Tout \'el\'ement } A \in E \text{, admet un } \textbf{sym\'etrique } A^{'} \text{ tel que } A + A^{'} = 0_{E}$

loi Externe

- $1.A = A \quad (\forall A \in E)$
- $\bullet \ \lambda.(\beta.A) = (\lambda\beta).A \quad (\forall \lambda, \beta \in \mathbb{K} \ \text{et} \ A \in E)$
- $\lambda(A + B) = \lambda . A + \lambda . B \quad (\forall A, B \in E \text{ et } \lambda \in \mathbb{K})$
- $(\lambda + \beta).A = \lambda.A + \beta.A$ $(\forall \lambda, \beta \in \mathbb{K} \text{ et } A \in E.$

Exemple (1) \mathbb{R}^2

Exemple (1) \mathbb{R}^2

- $E = \{(x, y) \mid x \in \mathbb{R} \text{ , } y \in \mathbb{R}\}$
- Loi interne

$$(x_1, y_1) + (x_2, y_2) = (x_1 + y_1, x_2 + y_2)$$

Exemple (1) \mathbb{R}^2

- $E = \{(x, y) \mid x \in \mathbb{R} , y \in \mathbb{R} \}$
- Loi interne

$$(x_1, y_1) + (x_2, y_2) = (x_1 + y_1, x_2 + y_2)$$

Loi externe

$$\lambda \in \mathbb{R}$$
, $(x, y) \in \mathbb{R}^2$, $\lambda(x, y) = (\lambda x, \lambda y)$

• Elément neutre: 0 = (0, 0)

Forme générale \mathbb{R}^n

• La généralisation de \mathbb{R}^2 où chaque élément est un **couple** est \mathbb{R}^n où chaque élément un **n-uplet**

$$\mathbb{R}^{n} = \{(x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{R} \ 1 \leqslant i \leqslant n\}$$

Forme générale \mathbb{R}^n

• La généralisation de \mathbb{R}^2 où chaque élément est un **couple** est \mathbb{R}^n où chaque élément un **n-uplet**

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{R} \ 1 \leqslant i \leqslant n\}$$

La loi interne est:

$$(x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$

<u>A.Belcaid</u> 7/62

Forme générale \mathbb{R}^n

• La généralisation de \mathbb{R}^2 où chaque élément est un **couple** est \mathbb{R}^n où chaque élément un **n-uplet**

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{R} \ 1 \leqslant i \leqslant n\}$$

La loi interne est:

$$(x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$

Loi externe

$$\lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$$

Exemple 3: Plan

Plan

Tout **plan** \mathcal{P} passant par **l'origine** est un espace vectoriel (muni des operations habituels de \mathbb{R}^3 .)

$$\mathcal{P} = \left\{ (x, y, z) \in \mathbb{R}^3 \mid \alpha x + by + cz = 0 \right\}$$

• Vérifier les axioms d'un espace vectoriel.

Exemple (4): Espace des fonctions

- L'ensemble des fonctions de $\mathbb R$ vers $\mathbb R$ que nous notons $\mathfrak F(\mathbb R,\mathbb R).$
- Loi interne: Pour deux fonctions f et $g \in \mathcal{F}(\mathbb{R}, \mathbb{R})$.

$$(f+g)(x) = f(x) + g(x) \quad x \in \mathbb{R}$$

Loi externe: notée x.

$$(\lambda f)(x) = \lambda f(x) \tag{1}$$

• Elément neutre :

$$0_{\mathcal{F}}(x) = 0 \quad \forall x \in \mathbb{R}$$

Opposé :

$$(-f)(x) = -f(x) \quad x \in \mathbb{R}$$

 \bullet L'espace vectoriel sur $\mathbb K$ est dit $\mathbb K\text{-espace}$ vectoriel.

A.Belcaid 10/62

- Les éléments de E sont appelés des vecteur.

<u>A.Belcaid</u> 10/62

- Les éléments de E sont appelés des vecteur.
- ullet Les éléments de $\mathbb K$ sont appelés des scalaires.

<u>A.Belcaid</u> 10/62

- Les éléments de E sont appelés des vecteur.
- Les éléments de K sont appelés des scalaires.
- L'élément neutre de la loi interne est 0_E est appelé vecteur nul.

<u>A.Belcaid</u> 10/62

- Les éléments de E sont appelés des vecteur.
- Les éléments de K sont appelés des scalaires.
- L'élément neutre de la loi interne est 0_E est appelé vecteur nul.
- L'inverse d'un vecteur A dans E est appelé opposé.

A.Belcaid 10/62

- Les éléments de E sont appelés des vecteur.
- Les éléments de K sont appelés des scalaires.
- L'élément neutre de la loi interne est 0_E est appelé vecteur nul.
- L'inverse d'un vecteur A dans E est appelé opposé.
- On se refère à la loi externe par multiplication.

A.Belcaid 10/62

Règles de calcul

Soit E un espace vectoriel sur un corps \mathbb{K} . Soient $A \in E$ et $\lambda \in \mathbb{K}$. alors

Proposition

A.Belcaid 11/62

Règles de calcul

Soit E un espace vectoriel sur un corps $\mathbb{K}.$ Soient $A\in E$ et $\lambda\in \mathbb{K}.$ alors

Proposition

<u>A.Belcaid</u> 11/62

Règles de calcul

Soit E un espace vectoriel sur un corps \mathbb{K} . Soient $A \in E$ et $\lambda \in \mathbb{K}$. alors

Proposition

- $0.A = 0_F$.
- ② $\lambda.0_E = 0_E$ (élément absorbant)

A.Belcaid 11/62

Soit E un espace vectoriel sur un corps \mathbb{K} . Soient $A \in E$ et $\lambda \in \mathbb{K}$. alors

Proposition

- $0.A = 0_F$.
- (-1).A = -A

<u>A.Belcaid</u> 11/62

Soit E un espace vectoriel sur un corps \mathbb{K} . Soient $A \in E$ et $\lambda \in \mathbb{K}$. alors

Proposition

- $0.A = 0_F$.
- (-1).A = -A

<u>A.Belcaid</u> 11/62

Soit E un espace vectoriel sur un corps \mathbb{K} . Soient $A \in E$ et $\lambda \in \mathbb{K}$. alors

Proposition

- $0.A = 0_F$.
- ② $\lambda.0_E = 0_E$ (élément absorbant)
- (-1).A = -A

Donner un preuve?

<u>A.Belcaid</u> 11/62

Pour chaque cas, vérifier s'il s'agit d'une espace vectoriel?

Mini-exercice

- L'ensemble des fonctions réelles sur [0, 1], continues positives ou nulles, pour l'addition et le produit par un réel.
- a L'ensemble des fonctions réelles sur $\mathbb R$ vérifiant $\lim_{\chi\to\infty}f(\chi)=0$ par les mêmes opérations.
- \bigcirc L'ensemble \mathbb{R}_+^* pour les opérations

$$x \oplus y = xy$$
 $\lambda.x = x^{\lambda} (\lambda \in \mathbb{R})$

4 L'ensemble des points (x, y) de \mathbb{R}^2 vérifiant

$$sin(x + y) = 0$$

⑤ L'ensmble des vecteurs (x, y, z) de \mathbb{R}^3 orthogonaux au vecteur (-1, 3, -2).

A.Belcaid 12/62

Sous espace Vectoriel

Définition

Similaire à la notion de groupe. Si on possède un \mathbb{K} -espace vectoriel E. Une **partie** F de E est appelée un **sous espace vectoriel** si:

A.Belcaid 13/62

Sous espace Vectoriel

Définition

Similaire à la notion de groupe. Si on possède un \mathbb{K} -espace vectoriel E. Une **partie** F de E est appelée un **sous espace vectoriel** si:

• $0_E \in F$. (élément neutre)

<u>A.Belcaid</u> 13/62

Définition

Similaire à la notion de groupe. Si on possède un \mathbb{K} -espace vectoriel E. Une **partie** F de E est appelée un **sous espace vectoriel** si:

- $0_E \in F$. (élément neutre)
- $A + B \in F$ $\forall A, B \in F$. Loi interne

A.Belcaid 13/62

Définition

Similaire à la notion de groupe. Si on possède un \mathbb{K} -espace vectoriel E. Une **partie** F de E est appelée un **sous espace vectoriel** si:

- $0_E \in F$. (élément neutre)
- $A + B \in F$ $\forall A, B \in F$. Loi interne
- $\lambda . A \in F \quad \forall \lambda \in \mathbb{K} \text{ et } A \in F \text{ (Loi externe)}$

<u>A.Belcaid</u> 13/62

Exemple (1)

Droite passant par l'origine

$$\mathfrak{D} = \{(x, y) \mid 3x - 2y = 0\}$$

Figure: Droite passant par l'origine

A.Belcaid 14/62

Exemple (2)

Sous groupes?

$$F_1 = \{(x, y) \in \mathbb{R}^2 \mid x + y = 2\}$$

•

$$F_2 = \left\{ (x, y) \in \mathbb{R}^2 \mid x = 0 \text{ ou } y = 0 \right\}$$

•

$$F_3 = \left\{ (x, y) \in \mathbb{R}^2 \mid x \geqslant 0 \text{ et } y \geqslant 0 \right\}$$

Figure

<u>A.Belcaid</u> 15/62

Exemples (2) Vérification

Pour chaque cas, vérifier s'il s'agit d'un espace vectoriel

Mini Exercice

- L'ensemble des fonction paires.
- ② L'ensemble des fonctions impaires.

$$\mathsf{E} = \left\{ (\mathsf{x},\mathsf{y},\mathsf{z},\mathsf{t}) \in \mathbb{R}^4 \mid \mathsf{x} = \mathsf{t} \; \mathsf{et} \; \mathsf{y} = \mathsf{z} \right\}$$

$$E = \{(x, y) \in \mathbb{R}^2 \mid x^2 + xy \geqslant 0\}$$

$$E = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f \text{ est croissante} \}$$

$$\{(u_n)_{n\in\mathbb{N}}\mid (u_n)\to 0\}$$

A.Belcaid 16/62

Définition

Soient B_1, B_2, \ldots, B_n des vecteurs d'un espace vectoriel E. On appelle une **combinaison linéaire** des $(B_i)_{1,n}$ est un **vecteur**:

$$V = \lambda_1 B_1 + \lambda_2 B_2 \dots + \lambda_n B_n \tag{2}$$

• Si n = 1, alors $V = \lambda B$. on dit alors que V et B sont colinéaire.

<u>A.Belcaid</u> 17/62

Exemples

Exemples

① Dans \mathbb{R}^3 , (4,1,3) est une combinaison linéaire de (1,0,1) et (0,1,0) car:

$$(4,1,4) = 4(1,0,1) + 1(0,1,0)$$

- ② Est ce que le vecteur (2,1) est **collinéaire** avec (1,0)?
- ① On considère l'espace $E=\mathcal{F}(\mathbb{R},\mathbb{R})$, on considère les monômes

$$\forall x \in \mathbb{R}$$
, $f_0(x) = 1$, $f_1(x) = x$, $f_2(x) = x^2$, $f_3(x) = x^3$

alors la fonction $f(x)=x^3-2x^2-7x-4$ peut s'écrire comme une combinaison linéaire des $(f_{\rm i})$

$$f(x) = f_3 - 2f_2 - 7f_1 - 4f_0$$

A.Belcaid 18/62

Recherche Coefficients

Exemple (1)

Soit u=(1,2,-1) et v=(6,4,2) deux vecteurs de \mathbb{R}^3 . Montrons que w=(9,2,7) est une combinaison linéaire de u et v.

$$\begin{pmatrix} 9 \\ 2 \\ 7 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \beta \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix} = \begin{pmatrix} \lambda + 6\beta \\ 2\lambda + 4\beta \\ -\lambda + 2\beta \end{pmatrix}$$

Ainsi on trouve:

$$\begin{cases}
9 &= \lambda + 6\beta \\
2 &= 2\lambda + 4\beta \\
7 &= -\lambda + 2\beta
\end{cases}$$

On retrouve que $\lambda = -3$, $\beta = 2$

A.Belcaid 19/62

Recherche Coefficients

Exemple (1)

Soit u=(1,2,-1) et v=(6,4,2) deux vecteurs de \mathbb{R}^3 . Montrons que w=(9,2,7) est une combinaison linéaire de u et v.

$$\begin{pmatrix} 9 \\ 2 \\ 7 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \beta \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix} = \begin{pmatrix} \lambda + 6\beta \\ 2\lambda + 4\beta \\ -\lambda + 2\beta \end{pmatrix}$$

Ainsi on trouve:

$$\begin{cases}
9 &= \lambda + 6\beta \\
2 &= 2\lambda + 4\beta \\
7 &= -\lambda + 2\beta
\end{cases}$$

On retrouve que $\lambda = -3$, $\beta = 2$

Exemple (2)

Reprenez la même procédure pour u=(1,2,-1), v=(6,4,2) et w=(4,-1,8).

<u>A.Belcaid</u> 19/62

Caractérisation d'un sous espace

Caractérisation Sous espace vectoriel

Soient E un \mathbb{K} -espace vectoriel et F une **partie** non vide de E. F est un sous espace vectoriel **si et seulement si**:

$$\underbrace{\lambda U + \mu V}_{\text{combinaison linéaire}} \in F \quad \forall U, V \in F \quad \forall \lambda, \mu \in \mathbb{K}$$
 (3)

Donner une preuve

<u>A.Belcaid</u> 20/62

Proposition

Soient F et G deux sous-espace vectoriel d'un \mathbb{K} -espace vectoriel. L' **intersection** $F \cap G$ est aussi un espace vectoriel.

Donner une preuve?

Exemple

$$\mathcal{D} = \{(x, y, z) \in \mathbb{R}^3 \ x + 3y + z = 0 \text{ et } x - y + 2z = 0\}$$

On peut considérer

$$\left\{ \begin{array}{lcl} \mathsf{F} & = & \{(x,y,z) \in \mathbb{R}^3 \mid x + 3y + z = 0\} \\ \mathsf{G} & = & \{(x,y,z) \in \mathbb{R}^3 \mid x - y + 2z = 0\} \end{array} \right.$$

A.Belcaid 21/62

Remarque

Malheureusement, **L'union** de deux sous espaces vectoriels **n'est** pas un sous espace vectoriel.

Contre exemple

$$\left\{ \begin{array}{l} F = \{(x,y) \mid x = 0\} \\ G = \{(x,y) \mid y = 0\} \\ (0,1) \in F \cup G \text{ et } (1,0) \in F \cup G \text{ mais } (1,1) \notin F \cap G \end{array} \right.$$

A.Belcaid 22/62

Somme directe

Somme directe

Si on cherche un espace vectortiel qui contient F et F. On définit la somme directe de F et G

$$F + G = \{u + v \mid u \in F, \ v \in G\}$$
 (4)

Figure: Somme directe

<u>A.Belcaid</u> 23/62

Proposition

Soient E e F deux **sous-espaces** vectoriels d'un K-espace vectoriel.

A.Belcaid 24/62

Proposition

Soient E e F deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel.

 \bullet F + G est **sous espace** vectoriel.

A.Belcaid 24/62

Propositior

Soient E e F deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel.

- F + G est sous espace vectoriel.
- F + G est le plus petit sous espace vectoriel contenant à l fois F et G.

A.Belcaid 24/62

Propositior

Soient E e F deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel.

- F + G est **sous espace** vectoriel.
- \bigcirc F + G est le plus petit sous espace vectoriel contenant à I fois F et G.

Exemple

$$\left\{ \begin{array}{lcl} F & = & \left\{ (x,y,z) \in \mathbb{R}^3 \mid x=0 \right\} \\ G & = & \left\{ (x,y,z) \in \mathbb{R}^3 \mid y=0 \right\} \end{array} \right.$$

Déterminer l'espace vectoriel

$$F + G$$

A.Belcaid 24/62

.

Somme supplémentaire

Somme directe

Soient F et G deux sous espaces vectoriels de E. F et G sont en somme directe si:

- ① $F \cap G = \{0_F\}$
- ② F + G = E.

Dans ce cas on dit que F et G sont supplémentaires et on écrit:

$$E = F \oplus G \tag{5}$$

Proposition

F et G sont supplémentaires dans E si tout élément de E s'écrit d'une manière **unique** comme la somme d'un élément de F et d'un élément de G.

A.Belcaid 25/62

Exemple Espaces supplémentaires

Exemple:

$$\left\{ \begin{array}{lcl} F & = & \left\{ (x,y) \in \mathbb{R}^2 \, | \, x = 0 \right\} \\ G & = & \left\{ (x,y) \in \mathbb{R}^2 \, | \, y = 0 \right\} \end{array} \right.$$

prouver que

$$\mathbb{R}^2 = F \oplus G$$

A.Belcaid 26/62

Exemple Espaces supplémentaires

Exemple :

$$\begin{cases} F = \{(x, y) \in \mathbb{R}^2 \mid x = 0\} \\ G = \{(x, y) \in \mathbb{R}^2 \mid y = 0\} \end{cases}$$

prouver que

$$\mathbb{R}^2 = F \oplus G$$

Exemple 2

Même question dans \mathbb{R}^3 pour

$$\left\{ \begin{array}{lcl} {\sf F} & = & \left\{ (x,y,z) \in \mathbb{R}^3 \mid x-y-z=0 \right\} \\ {\sf G} & = & \left\{ (x,y,z) \in \mathbb{R}^3 \mid y=z=0 \right\} \end{array} \right.$$

A.Belcaid 26/62

Sous espace engendré

Théorème

Soient $\{v_1, v_2, \dots, v_n\}$ un ensemble fini de vecteurs dans un \mathbb{K} -espace vectoriel E alors:

Cet espace est appelé espace **engendré** par v_1, \ldots, v_n :

$$Vect(\nu_1, \dots, \nu_n) = \left\{ \sum_{i=0}^n \lambda_i \nu_i \mid \lambda_i \in \mathbb{K} \right\}$$
 (6)

<u>A.Belcaid</u> 27/62

Théorème

Soient $\{v_1, v_2, \dots, v_n\}$ un ensemble fini de vecteurs dans un \mathbb{K} -espace vectoriel E alors:

• L'ensemble des combination linéaires de $\{v_1, \ldots, v_n\}$ est un sous espace vectoriel de E.

Cet espace est appelé espace **engendré** par v_1, \ldots, v_n :

$$\mathsf{Vect}(\nu_1, \dots, \nu_n) = \big\{ \sum_{i=0}^n \lambda_i \nu_i \mid \lambda_i \in \mathbb{K} \big\}$$
 (6)

A.Belcaid 27/62

Théorème

Soient $\{v_1, v_2, \dots, v_n\}$ un ensemble fini de vecteurs dans un \mathbb{K} -espace vectoriel E alors:

- L'ensemble des combination linéaires de $\{v_1, \ldots, v_n\}$ est un sous espace vectoriel de E.
- C'est le plus petit sous espace vectoriel contenant les vecteurs v_1, v_2, \dots, v_n .

Cet espace est appelé espace **engendré** par v_1, \ldots, v_n :

$$\mathsf{Vect}(\nu_1, \dots, \nu_n) = \big\{ \sum_{i=0}^n \lambda_i \nu_i \mid \lambda_i \in \mathbb{K} \big\}$$
 (6)

A.Belcaid 27/62

A.Belcaid 28/62

A.Belcaid 28/62

 Si u est un vecteur d'un espace vectoriel E,

$$\mathsf{Vect}(u) = \{\lambda u \mid \lambda \in \mathbb{K}\} = \mathbb{K} u$$

Figure: Droite vectotielle

<u>A.Belcaid</u> 28/62

 Si u est un vecteur d'un espace vectoriel E,

$$\text{Vect}(\mathfrak{u}) = \{\lambda\mathfrak{u} \mid \lambda \in \mathbb{K}\} = \mathbb{K}\mathfrak{u}$$

Figure: Droite vectotielle

<u>A.Belcaid</u> 28/62

 Si u est un vecteur d'un espace vectoriel E,

$$\mathsf{Vect}(\mathfrak{u}) = \{\lambda\mathfrak{u} \mid \lambda \in \mathbb{K}\} = \mathbb{K}\mathfrak{u}$$

Figure: Droite vectotielle

Si u et v sont deux vecteurs de E, on définit un plan vectoriel par:

$$\mathsf{Vect}(\mathfrak{u},\mathfrak{v}) = \{\lambda\mathfrak{u} + \mu\mathfrak{v} \mid \lambda, \mu \in \mathbb{K}\}\$$

Figure: Plan vectoriel

<u>A.Belcaid</u> 28/62

Exemple 2

Exemple Polynomes

L'ensemble

$$\begin{array}{lcl} \mathfrak{P}_2 &=& \{P \in \mathbb{R}[X] \mid \mathsf{deg}(P) = \mathbf{2}\} \\ \\ \mathfrak{P}_2 &=& \left\{P \in \mathbb{R}[X] \mid P = \mathfrak{a}X^2 + \mathfrak{b}X + c\right\} \\ \\ \mathfrak{P}_2 &=& \mathsf{Vect}(X^2, X, 1) \end{array}$$

<u>A.Belcaid</u> 29/62

Exemple Polynomes

L'ensemble

$$\begin{array}{lcl} \mathfrak{P}_2 &=& \left\{P \in \mathbb{R}[X] \mid \mathsf{deg}(P) = \mathbf{2}\right\} \\ \\ \mathfrak{P}_2 &=& \left\{P \in \mathbb{R}[X] \mid P = \mathfrak{a}X^2 + \mathfrak{b}X + c\right\} \\ \\ \mathfrak{P}_2 &=& \mathsf{Vect}(X^2, X, 1) \end{array}$$

Exemple 3

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x - y - z = 0\}$$

<u>A.Belcaid</u> 29/62

Exemple Polynomes

L'ensemble

$$\begin{array}{lcl} \mathfrak{P}_2 &=& \left\{P \in \mathbb{R}[X] \mid \mathsf{deg}(P) = \mathbf{2}\right\} \\ \\ \mathfrak{P}_2 &=& \left\{P \in \mathbb{R}[X] \mid P = \mathfrak{a}X^2 + \mathfrak{b}X + c\right\} \\ \\ \mathfrak{P}_2 &=& \mathsf{Vect}(X^2, X, 1) \end{array}$$

Exemple 3

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x - y - z = 0\}$$

<u>A.Belcaid</u> 29/62

Exemple Polynomes

L'ensemble

$$\begin{array}{lcl} \mathfrak{P}_2 &=& \left\{P \in \mathbb{R}[X] \mid \mathsf{deg}(P) = \mathbf{2}\right\} \\ \\ \mathfrak{P}_2 &=& \left\{P \in \mathbb{R}[X] \mid P = \mathfrak{a}X^2 + \mathfrak{b}X + c\right\} \\ \\ \mathfrak{P}_2 &=& \mathsf{Vect}(X^2, X, 1) \end{array}$$

Exemple 3

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x - y - z = 0\}$$

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid (y + z, y, z)\}$$

A.Belcaid 29/62

Exemple Polynomes

L'ensemble

$$\begin{array}{lcl} \mathfrak{P}_2 &=& \left\{P \in \mathbb{R}[X] \mid \mathsf{deg}(P) = \mathbf{2}\right\} \\ \\ \mathfrak{P}_2 &=& \left\{P \in \mathbb{R}[X] \mid P = \mathfrak{a}X^2 + \mathfrak{b}X + c\right\} \\ \\ \mathfrak{P}_2 &=& \mathsf{Vect}(X^2, X, 1) \end{array}$$

Exemple 3

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x - y - z = 0\}$$

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid (y + z, y, z)\}$$

$$F = y(1, 1, 0) + z(1, 0, 1)$$

<u>A.Belcaid</u> 29/62

Exemple Polynomes

L'ensemble

$$\begin{array}{lcl} \mathfrak{P}_2 &=& \left\{P \in \mathbb{R}[X] \mid \mathsf{deg}(P) = \mathbf{2}\right\} \\ \\ \mathfrak{P}_2 &=& \left\{P \in \mathbb{R}[X] \mid P = \mathfrak{a}X^2 + \mathfrak{b}X + c\right\} \\ \\ \mathfrak{P}_2 &=& \mathsf{Vect}(X^2, X, 1) \end{array}$$

Exemple 3

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x - y - z = 0\}$$

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid (y + z, y, z)\}$$

$$F = y(1, 1, 0) + z(1, 0, 1)$$

$$F = \text{Vect}((1, 1, 0), (1, 0, 1))$$

<u>A.Belcaid</u> 29/62

Définition

Soient E et F deux espace vectoriels. Une application $f: E \to F$ est une application linéaire si elle satisfait les deux conditions suivantes:

Soient E et F deux espace vectoriels. Une application $f: E \to F$ est une application linéaire si elle satisfait les deux conditions suivantes:

Soient E et F deux espace vectoriels. Une application $f: E \to F$ est une application linéaire si elle satisfait les deux conditions suivantes:

$$\forall u, v \in E$$
 $f(u+v) = f(u) + f(v)$

Soient E et F deux espace vectoriels. Une application $f: E \to F$ est une application linéaire si elle satisfait les deux conditions suivantes:

- - Une application linéaire doit respecter les deux lois d'un espace vectotiel.

Soient E et F deux espace vectoriels. Une application $f: E \to F$ est une application linéaire si elle satisfait les deux conditions suivantes:

- $\forall u, v \in E$ f(u+v) = f(u) + f(v)
- - Une application linéaire doit respecter les deux lois d'un espace vectotiel.
 - L'ensemble des applications linéaires de E vers F est noté $\mathcal{L}(E, F)$

A.Belcaid 30/62

Soient E et F deux espace vectoriels. Une application $f: E \to F$ est une application linéaire si elle satisfait les deux conditions suivantes:

- \bigcirc $\forall u, v \in E$ f(u+v) = f(u) + f(v)
- - Une application linéaire doit respecter les deux lois d'un espace vectotiel.
 - L'ensemble des applications linéaires de E vers F est noté $\mathcal{L}(E, F)$
 - f est aussi appelé un morphisme d'espace vectoriel.

A.Belcaid 30/62

Soient E et F deux espace vectoriels. Une application $f: E \to F$ est une application linéaire si elle satisfait les deux conditions suivantes:

- - Une application linéaire doit respecter les deux lois d'un espace vectotiel.
 - L'ensemble des applications linéaires de E vers F est noté $\mathcal{L}(E, F)$
 - f est aussi appelé un morphisme d'espace vectoriel.
 - Une application f de E vers E est appelé un endomorphisme de E.

A.Belcaid 30/62

Exemples

Exemple

Soit l'application f définie par

$$\begin{array}{cccc} f & \mathbb{R}^3 & \rightarrow & \mathbb{R}^2 \\ & (x,y,z) & \rightarrow & (-2x,y+3z) \end{array}$$

Vérifier que $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$.

Exemples

Exemple

Soit l'application f définie par

$$\begin{array}{cccc} f & \mathbb{R}^3 & \rightarrow & \mathbb{R}^2 \\ & (x,y,z) & \rightarrow & (-2x,y+3z) \end{array}$$

Vérifier que $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$.

Exemple 2

L'application

$$g \quad \mathbb{R} \quad \rightarrow \quad \mathbb{R}$$

$$x \quad \rightarrow \quad x$$

est-elle linéaire?

Proposition

Soit $f\in\mathcal{L}(E,F)$ alore on as:

A.Belcaid 32/62

Proposition

Soit $f \in \mathcal{L}(E, F)$ alore on as:

 $\bullet \ f(0_E) = 0_F$

A.Belcaid 32/62

Proposition

Soit $f \in \mathcal{L}(E, F)$ alore on as:

- $f(0_F) = 0_F$
- $\quad \bullet \quad f(-u) = -f(u) \quad \forall u \in E$

A.Belcaid 32/62

Proposition

Soit $f \in \mathcal{L}(E, F)$ alore on as:

- $f(0_E) = 0_F$
- $f(-u) = -f(u) \quad \forall u \in E$

Caractérisation d'une application linéaire

Une méthode plus **concentrée** pour vérifier que $f \in \mathcal{L}(E,F)$ est de prouver que

$$f(\lambda u + \mu v) = \lambda f(u) + \mu f(v)$$
 (7)

Proposition

Soit $f \in \mathcal{L}(E, F)$ alore on as:

- $f(0_E) = 0_F$
- $f(-u) = -f(u) \quad \forall u \in E$

Caractérisation d'une application linéaire

Une méthode plus **concentrée** pour vérifier que $f \in \mathcal{L}(E,F)$ est de prouver que

$$f(\lambda u + \mu v) = \lambda f(u) + \mu f(v)$$
 (7)

Proposition

Soit $f \in \mathcal{L}(E, F)$ alore on as:

- $f(0_E) = 0_F$
- $\bullet \ f(-u) = -f(u) \quad \forall u \in E$

Caractérisation d'une application linéaire

Une méthode plus **concentrée** pour vérifier que $f \in \mathcal{L}(E,F)$ est de prouver que

$$f(\lambda u + \mu v) = \lambda f(u) + \mu f(v) \tag{7}$$

Préservation combinaison linéaire

$$f\left(\sum_{i=0}^{n} \lambda_{i} \nu_{i}\right) = \sum_{i=0}^{n} \lambda_{i} f(\nu_{i}) \tag{8}$$

Mini Exercice

Mini exercice

Pour chaque cas, vérifier si fi est une applicaiton linéaire

$$f_1(x,y) = (-x,-y)$$

$$f_2(x,y) = (3x,3y)$$

$$f_3(x,y) = (x,y)$$

$$f_4(x,y) = \big(\frac{\sqrt{3}}{2}x - \frac{1}{2}y \ , \ \frac{1}{2}x + \frac{\sqrt{3}}{2}y\big)$$

Transformation géométrique

Symétrie centrale

La symétrie centrale par rapport à 0_E dans un espace vectoriel E est définit comme suit:

$$\begin{array}{cccc} f \colon & E & \longrightarrow & E \\ & \mathfrak{u} & \longrightarrow & -\mathfrak{u} \end{array} \tag{9}$$

A.Belcaid 34/62

Transformation géométrique

Symétrie centrale

La symétrie centrale par rapport à 0_E dans un espace vectoriel E est définit comme suit:

$$\begin{array}{cccc} f \colon & E & \longrightarrow & E \\ & \mathfrak{u} & \longrightarrow & -\mathfrak{u} \end{array} \tag{9}$$

A.Belcaid 34/62

Transformation géométrique

Symétrie centrale

La symétrie centrale par rapport à 0_E dans un espace vectoriel E est définit comme suit:

$$f: E \longrightarrow E \\ u \longrightarrow -u$$
 (9)

A.Belcaid 34/62

L'homotétie de rapport λ d'un espace vectoriel est définit comme suit:

$$\begin{array}{cccc}
f: & E & \longrightarrow & E \\
 & u & \longrightarrow & \lambda.u
\end{array} \tag{10}$$

L'homotétie de rapport λ d'un espace vectoriel est définit comme suit:

$$f: E \longrightarrow E \\ u \longrightarrow \lambda.u$$
 (10)

Figure: Représentation Homotétie

A.Belcaid 35/62

L'homotétie de rapport λ d'un espace vectoriel est définit comme suit:

$$\begin{array}{cccc} f: & E & \longrightarrow & E \\ & u & \longrightarrow & \lambda.u \end{array} \tag{11}$$

A.Belcaid 36/62

L'homotétie de rapport λ d'un espace vectoriel est définit comme suit:

$$\begin{array}{cccc} f \colon & E & \longrightarrow & E \\ & u & \longrightarrow & \lambda.u \end{array} \tag{11}$$

Figure: Représentation Homotétie

A.Belcaid 36/62

Projectior

Si F et G sont deux sous espace vectoriels **complémentaires** dans E. Alors on peut définir deux **projections** P_F et P_G donnés comme: Pour chaque $\mathfrak{u} \in E$ on as $\mathfrak{u} = \mathfrak{v} + \mathfrak{w}$.

$$P_{F}: E \longrightarrow F \qquad P_{G}: E \longrightarrow G$$

$$u \longrightarrow v \qquad \qquad u \longrightarrow w$$
(12)

Projectior

Si F et G sont deux sous espace vectoriels **complémentaires** dans E. Alors on peut définir deux **projections** P_F et P_G donnés comme: Pour chaque $\mathfrak{u} \in E$ on as $\mathfrak{u} = \mathfrak{v} + w$.

$$P_{F}: E \longrightarrow \mathbf{F} \qquad P_{G}: E \longrightarrow \mathbf{G}$$

$$\mathfrak{u} \longrightarrow \mathfrak{v} \qquad \mathfrak{u} \longrightarrow \mathfrak{w}$$

$$(12)$$

A.Belcaid 37/62

Mini Exercice

Mini Exercice

Pour chaque exemple, vérifier si l'application est linéaire

$$\begin{array}{ccc}
\mathbb{R} & \longrightarrow & \mathbb{R} \\
x & \longrightarrow & 3x - 2
\end{array} \tag{13}$$

2

$$\begin{array}{cccc}
\mathbb{R}^4 & \longrightarrow & \mathbb{R} \\
(x_1, x_2, x_3, x_4) & \longrightarrow & x_1 x_3 + x_2 x_4
\end{array}$$
(14)

3

$$\begin{array}{ccc}
\mathcal{C}^{1}(\mathbb{R},\mathbb{R}) & \longrightarrow & \mathcal{C}^{0}(\mathbb{R},\mathbb{R}) \\
f & \longrightarrow & f+f
\end{array} \tag{15}$$

4

$$\begin{array}{ccc}
\mathcal{C}^{0}(\mathbb{R},\mathbb{R}) & \longrightarrow & \mathcal{C}^{0}(\mathbb{R},\mathbb{R}) \\
f & \longrightarrow & \max(f(x))
\end{array} \tag{16}$$

Image d'une application linéaire

Image d'une application linéaire

Soientt E et F deux espaces vectoriels et $f: E \longrightarrow F$ une application linéaire, alors on définit **l'image directe** de E par:

$$Imf = \{f(x) \in F \mid x \in E\}$$

alors on a Imf est un sous espace vectoriel de F.

Résultats

 Si E' est un sous espace vectoriel de E alors, ImE' est aussi un sous espace vectoriel de F.

•

f est surjective \iff Imf = F

A.Belcaid 39/62

Noyau d'une application linéaire

Noyau

Soit E et F deux espaces vectoriels et soit $f: E \longrightarrow F$ une application linéaire. On appelle noyau de f noté Ker(f)

$$Ker(f) = \{u \in E \mid f(u) = 0_F\}$$
 (17)

Noyau d'une application linéaire

Noyau

Soit E et F deux espaces vectoriels et soit $f:E\longrightarrow F$ une application linéaire. On appelle \hbox{noyau} de f noté $\hbox{Ker}(f)$

$$Ker(f) = \{u \in E \mid f(u) = 0_F\}$$
(17)

Proposition

Si E et F deux espaces vectoriels et $f: E \longrightarrow F$ une application linéaire. Alors Ker(f) est un sous espace vectoriel de E.

Noyau d'une application linéaire

Noyaı

Soit E et F deux espaces vectoriels et soit $f:E\longrightarrow F$ une application linéaire. On appelle \hbox{noyau} de f noté Ker(f)

$$Ker(f) = \{u \in E \mid f(u) = 0_F\}$$
(17)

Proposition

Si E et F deux espaces vectoriels et $f: E \longrightarrow F$ une application linéaire. Alors Ker(f) est un sous espace vectoriel de E.

Exemple

Calculer le noyau de

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

$$(x, y, z) \longrightarrow (-2x, y + 3z)$$

Introduction

- Les espaces vectoriels qui sont engendrés par un nombre fini de vecteurs sont appelés des espaces vectoriels de dimension finie.
- Le but de cette section est de savoir comment calculer une base pour cet espace.

Famille libre

Une famille $\{\nu_1, \nu_2, \dots, \nu_p\}$ où $p \geqslant 1$ est dite famille libre si toute combinaison linéaire **nulle** :

$$\lambda_1\nu_1+\lambda_2\nu_2+\ldots\lambda_p\nu_p=0$$

n'admet qu'une seule solution

$$\lambda_1 = 0$$
 $\lambda_2 = 0$... $\lambda_p = 0$

• Dans le cas contraire, on dit que la famille est liée

A.Belcaid 41/62

Exemple

Exemple

On considère dans \mathbb{R}^3 la famille:

$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 4\\5\\6 \end{pmatrix}, \begin{pmatrix} 2\\1\\0 \end{pmatrix} \right\}$$

On veut vérifier si cette famille est libre ou non?

$$\lambda_1(1,2,3) + \lambda_2(4,5,6) + \lambda_3(2,1,0) = 0_{\mathbb{R}^3}$$

$$\begin{cases} \lambda_1 & +4\lambda_2 & +2\lambda_3 & = & 0 \\ 2\lambda_1 & +5\lambda_2 & +\lambda_3 & = & 0 \\ 3\lambda_1 & +6\lambda_2 & = & 0 \end{cases}$$

A.Belcaid 42/62

Exemple

On considère dans \mathbb{R}^3 la famille:

$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 4\\5\\6 \end{pmatrix}, \begin{pmatrix} 2\\1\\0 \end{pmatrix} \right\}$$

On veut vérifier si cette famille est libre ou non?

$$\lambda_1(1,2,3) + \lambda_2(4,5,6) + \lambda_3(2,1,0) = 0_{\mathbb{R}^3}$$

$$\begin{cases} \lambda_1 & +4\lambda_2 & +2\lambda_3 & = & 0 \\ 2\lambda_1 & +5\lambda_2 & +\lambda_3 & = & 0 \\ 3\lambda_1 & +6\lambda_2 & = & 0 \end{cases}$$

On peut vérifier que $\lambda_1=2$, $\lambda_2=-1$ et $\lambda_3=1$ est une solution. Ainsi cette famille est **liée**.

A.Belcaid 42/62

Autre Exemples

Famille trigonométique

On considère l'espace vectoriel $\mathfrak{F}(\mathbb{R},\mathbb{R})$ et la famille:

$$F = \{\sin, \cos\}$$

Est ce que cette famille est libre ou liée?

Autre Exemples

Famille trigonométique

On considère l'espace vectoriel $\mathcal{F}(\mathbb{R}, \mathbb{R})$ et la famille:

$$F = \{\sin, \cos\}$$

Est ce que cette famille est libre ou liée?

$$\lambda_1 \sin(x) + \lambda_2 \cos(x) = 0$$

- Pour x = 0 on trouve que $\lambda_1 = 0$
- \bullet Pour $x=\frac{\pi}{2}$ on trouve que $\lambda_2=0$

Ainsi cette famille est libre.

A.Belcaid 43/62

Famille Liée (Identification)

Cas deux vecteur

La famille $\{\nu_1,\nu_2\}$ est

- liée si v_1 est un multiple de v_2 ou **inversement**.
- libre sinon

A.Belcaid 44/62

Famille Liée (Identification)

Cas deux vecteur

La famille $\{\nu_1,\nu_2\}$ est

- liée si v_1 est un multiple de v_2 ou **inversement**.
- libre sinon

Généralisation

Soit E un \mathbb{K} -espace vectoriel est $F = \{\nu_1, \nu_2, \dots, \nu_p\}$ une famille avec $p \geqslant 2$.

Alors F est **liée** si l'un de vecteurs s'écrit comme combinaison linéaire des autres vecteurs.

A.Belcaid 44/62

Famille Liée (Identification)

Cas deux vecteur

La famille $\{v_1, v_2\}$ est

- liée si v_1 est un multiple de v_2 ou **inversement**.
- libre sinon

Généralisation

Soit E un \mathbb{K} -espace vectoriel est $F = \{\nu_1, \nu_2, \dots, \nu_p\}$ une famille avec $p \geqslant 2$.

Alors F est **liée** si l'un de vecteurs s'écrit comme combinaison linéaire des autres vecteurs.

Exemle

$$\Big\{\begin{pmatrix}1\\2\\3\end{pmatrix},\begin{pmatrix}4\\5\\6\end{pmatrix},\begin{pmatrix}2\\1\\0\end{pmatrix}\Big\}$$

A.Belcaid 44/62

Interprétation géométrique

\mathbb{R}^2

Deux vecteurs dans \mathbb{R}^2 sont liés (**linéairement dépendents**) s'ils sont colinéaires

\mathbb{R}^3

Deux vecteurs dans \mathbb{R}^3 sont liés (linéairement dépendents) s'ils sont colplanaires

A.Belcaid 45/62

Mini Exercice

On considère la famille

$$\{(-1,t), (t^2,-t)\}$$
 (18)

Pour quels valeurs de t cette famille est libre?

- Montrer que toute famille contenant une famille liée est liée.
- Montrer que toute famille contenue dans une famille libre est libre.
- Soit $f: E \longrightarrow F$ une application linéaire **injective**. Montrer alors que si $\{\nu_1, \nu_2, \dots, \nu_p\}$ est une famille libre de E, alors $\{f(\nu_1), f(\nu_2), \dots, f(\nu_p)\}$ est une famille libre de F.

Famille génératrice

Définition

Soient v_1, \ldots, v_p des vecteurs de E. La famille $\{v_1, \ldots, v_p\}$ est une **famille génératrice** de l'espace vectoriel E si:

$$\forall u \in E \quad u = \lambda_1 \nu_1 + \lambda_2 \nu_2 + \ldots + \lambda_p \nu_p \tag{19}$$

- On dit que la famille $\{v_1, \dots, v_p\}$ engendre l'espace vectoriel E.
- $E = Vect(v_1, \dots, v_p)$

Exemple

Soit $v_1 = (1, 0, 0)$, $v_2 = (0, 1, 0)$ et $v_3 = (0, 0, 1)$.

La famille $F = \{\nu_1, \nu_2, \nu_3\}$ est une famille génératrice de \mathbb{R}^3 .

$$\forall \mathbf{u} = (\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \mathbb{R}^3 \quad \mathbf{u} = \mathbf{x}\mathbf{v}_1 + \mathbf{y}\mathbf{v}_2 + \mathbf{z}\mathbf{v}_3$$

A.Belcaid 47/62

Exemple 2

Si on considère
$$v_1=\begin{pmatrix}1\\1\\1\end{pmatrix}$$
 et $v_2=\begin{pmatrix}1\\2\\3\end{pmatrix}$ de $E=\mathbb{R}^3$.

Ces deux vecteurs ne forment pas une famille génératice car le vecteur $(0,1,0) \notin \{v_1,v_2\}$ Car

$$\lambda_1(1,1,1) + \lambda_2(1,2,3) = (0,1,0) \tag{20}$$

implique que

$$\begin{cases} \lambda_1 + \lambda_2 &= 0 \\ \lambda_1 + 2\lambda_2 &= 1 \\ \lambda_1 + 3\lambda_2 &= 0 \end{cases}$$

Ce système n'admet pas de solution!

A.Belcaid 48/62

Lien entre famille

Proposition

Si $\mathcal{F} = \{\nu_1, \nu_2, \dots, \nu_p\}$ est une famille **génératrice** de E. alors $\mathcal{F}' = \left\{\nu_1', \nu_2', \dots, \nu_p'\right\}$ est aussi une famille génératrice si et seulement si tout élément de \mathcal{F} est une combinaison linéaire de \mathcal{F}' .

- Cette propriété ne change pas le cardinal des familles génératrice.
- Nous cherchons à avoir un nombre minimal de générateurs

A.Belcaid 49/62

Lien entre famille

Proposition

Si $\mathcal{F} = \{\nu_1, \nu_2, \dots, \nu_p\}$ est une famille **génératrice** de E. alors $\mathcal{F}' = \left\{\nu_1', \nu_2', \dots, \nu_p'\right\}$ est aussi une famille génératrice si et seulement si tout élément de \mathcal{F} est une combinaison linéaire de \mathcal{F}' .

- Cette propriété ne change pas le cardinal des familles génératrice.
- Nous cherchons à avoir un nombre minimal de générateurs

Réduction

Si la famille $\{\nu_1,\ldots,\nu_p\}$ engendre E. Et si l'un des vecteur (par exemple) ν_p est une cominaison linéaire des autre alors:

$$\{\nu_1, \nu_2, \dots, \nu_{p-1}\} \tag{21}$$

est une famille génératrice.

A.Belcaid 49/62

Mini Exercice

Mini Exercice

- $\bullet \ \ \text{A quelle condition sur } t \in \mathbb{R} \text{, la famille } \left\{ (0,t-1),(t,-t),(t^2-t,t-1) \right\} \text{ est } \\ \text{une famille génératrice de } \mathbb{R}^2.$
- Même question avec la famille

$$\{(1,0,t),(1,t,t^2),(1,t^2,1)\}$$

Montrer que si f : E → F est une application linéaire surjective et que v₁,..., v_p est une famille génératrice de E.
 Alors {f(v₁),..., f(v_p)} est aussi une famille génératrice de F.

Introduction

Introduction

- La notion de base généralise la notion de repère.
- lacktriangle Dans \mathbb{R}^2 , un repère est donné par deux vecteurs non **colinéaires**.
- Dans \mathbb{R}^3 , un repère doit être construit par **trois** vecteurs non colplanaires.

Figure: Illustration Repère \mathbb{R}^2

A.Belcaid 51/62

Définition

Soit E un \mathbb{K} -espace vectoriel. Une famille $\mathcal{B}=(\nu_1,\nu_2,\ldots,\nu_n)$ de vecteurs de E est une alertbase de E si:

- B est génératrice.
- B est libre.

<u>A.Belcaid</u> 52/62

Définition

Soit E un \mathbb{K} -espace vectoriel. Une famille $\mathcal{B}=(\nu_1,\nu_2,\ldots,\nu_n)$ de vecteurs de E est une alertbase de E si:

- B est génératrice.
- B est libre.

Théorème

Si $\mathcal{B}=(\nu_1,\nu_2,\ldots,\nu_\pi)$ une base de l'espace vectoriel E. Alors tout vecteur de $u\in E$ s'exprime de façon unique comme combinaison linéaire des éléments de \mathcal{B} .

$$u = \sum_{i=1}^{n} \lambda_i \nu_i \tag{22}$$

- (1) $(\lambda_1, \ldots, \lambda_n)$ s'appellent des coordonées du vecteur $\mathfrak u$ dans la base $\mathfrak B$.
- 2 L'application

$$\begin{array}{cccc} \varphi: \mathbb{K}^n & \longrightarrow & \mathsf{E} \\ (\lambda_1, \dots, \lambda_n) & \longrightarrow & \sum_{i=1}^n \lambda_i \nu_i \end{array}$$

est un **isomorphisme** entre \mathbb{K}^n et $\mathsf{E}.$

A.Belcaid 52/62

Exemples (1)

Base Canonique

Dans \mathbb{R}^2 , on note $e_1=(1,0)$ et $e_2=(0,1)$ la base canonique.

<u>A.Belcaid</u> 53/62

Exemples (1)

Base Canonique

Dans \mathbb{R}^2 , on note $e_1=(1,0)$ et $e_2=(0,1)$ la base canonique.

Autre base de \mathbb{R}^2

On peut générer aussi une base de \mathbb{R}^2 , en considéreant deux vecteurs non colinéaires. Par exemple soient $\nu_1=(3,1)$ et $\nu_2=(1,2)$. Alors (ν_1,ν_2) forme un base de \mathbb{R}^2 .

Figure: Illustration base \mathbb{R}^2

Base canonique \mathbb{R}^3

On peut aussi donner la base cannonique dans \mathbb{R}^3 par $\nu_1=(1,0,0),\, \nu_2=(0,1,0)$ et $\nu_3=(0,0,1).$

<u>A.Belcaid</u> 53/62

Exemple (2)

Base non coplanaires

Soit $\nu_1=(1,2,1),\ \nu_2=(2,9,0)$ et $\nu_3=(3,3,4).$ Montrer que la famille $\mathcal{B}=(\nu_1,\nu_2,\nu_3)$ est une base de $\mathbb{R}^3.$

• Génératrice: Soit $u = (x, y, z) \in \mathbb{R}^3$ cherchons $\lambda_1, \lambda_2, \lambda_3$ tel que

$$u=\lambda_1\nu_1+\lambda_2\nu_2+\lambda_3\nu_3$$

$$\begin{cases} \lambda_1 + 2\lambda_2 + 3\lambda_3 &= x \\ 2\lambda_1 + 9\lambda_2 + 3\lambda_3 &= y \\ \lambda_1 + 4\lambda_3 &= z \end{cases}$$

Libre Soient λ₁, λ₂, λ₃ tel que

$$\lambda_1\nu_1 + \lambda_2\nu_2 + \lambda_3\nu_3 = 0$$

$$\begin{cases} \lambda_1 + 2\lambda_2 + 3\lambda_3 &= 0\\ 2\lambda_1 + 9\lambda_2 + 3\lambda_3 &= 0\\ \lambda_1 + 4\lambda_3 &= 0 \end{cases}$$

A.Belcaid 54/62

Exemples (3)

Base canonique \mathbb{R}^r

Les vecteurs de \mathbb{K}^n :

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} \quad \dots \quad e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

forment la base canonique de \mathbb{K}^n .

<u>A.Belcaid</u> 55/62

Exemples (3)

Base canonique \mathbb{R}^r

Les vecteurs de \mathbb{K}^n :

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 $e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}$... $e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$

forment la base canonique de \mathbb{K}^n .

Base polynômiale

Une base des polynomes de degré n est donnée par:

$$\mathcal{B} = (1, X, X^2, \dots, X^n)$$

<u>A.Belcaid</u> 55/62

Base incomplète

Libre à Base

Soit E un K-espace vectoriel admettant une famille **génératrice**.

Toute famille **libre** \mathcal{L} peut être **étendue** à un base.

i.e trouver une famille ${\mathcal F}$ tel que

 $\mathcal{L} \cup \mathcal{F}$ est une base

Base incomplète

Libre à Base

Soit E un \mathbb{K} -espace vectoriel admettant une famille **génératrice**.

Toute famille **libre** \mathcal{L} peut être **étendue** à un base.

i.e trouver une famille ${\mathcal F}$ tel que

 $\mathcal{L} \cup \mathcal{F}$ est une base

Génératrice à Base

Toute famille **génératrice** \mathcal{L} peut être **réduite** à une base.

i.e Trouver $\mathcal{B} \subset \mathcal{L}$ tel que \mathcal{B} est une base.

Mini Exercice

Mini Exercice

- ① Soient les vecteurs $\nu_1=(-1,-3), \ \nu_2=(3,3), \ \nu_3=(0,0), \ \nu_4=(2,0)$ et $\nu_5=(2,6).$
 - Démontrer que $G=(\nu_1,\dots,\nu_5)$ est une famille génératrice de $\mathbb{R}^2.$
 - Extraire une base de G.
- ② Déterminer une base du sous espace vectoriel E_1 de \mathbb{R}^3 d'équation:

$$x + 3y - 2z = 0$$

- Compléter cette base dans \mathbb{R}^3 .
- Même question pour E₂ vérifiant les équations:

$$x + 3y - 2z = 0$$

<u>A.Belcaid</u> 57/62

Dimension finie

Définition

Un espace vectoriel E admettant une base de cardinal fini est dit de dimension finie.

A.Belcaid 58/62

Dimension finie

Définition

Un espace vectoriel E admettant une base de cardinal fini est dit de dimension finie.

Théorème

Toutes les bases d'un espace vectoriel E de **dimension finie** ont le même **cardinal**.

A.Belcaid 58/62

Dimension finie

Définition

Un espace vectoriel E admettant une base de cardinal fini est dit de dimension finie.

Théorème

Toutes les bases d'un espace vectoriel E de **dimension finie** ont le même **cardinal**.

Définition

Ainsi la dimension, notée dimE, d'un espace vectoriel est par définition le cardinal de l'une de ces bases.

A.Belcaid 58/62

Exemples

Exemples

① Puisque $\{(1,0),(0,1)\}$ est une base de \mathbb{R}^2 . Alors

$$\text{dim}\mathbb{R}^2=2$$

Oe même

$$dim(\mathbb{R}^n) = n$$

① La dimension de l'espace des polynomes de degré n est n+1.

$$\mathcal{B} = \left\{1, X, X^2, \dots, X^n\right\}$$

- **③** $\mathbb{R}[X]$ n'est pas de dimension finie.
- **⑤** $\mathcal{F}(\mathbb{R}, \mathbb{R})$ n'est pas de dimension finie.

<u>A.Belcaid</u> 59/62

Lemme 1

Soit E un espace vectoriel. Soit G une famille génératrice de E et $\mathcal L$ une famille libre alors:

$$Card \mathcal{L} \leqslant Card G$$
 (23)

Lemme 1

Soit E un espace vectoriel. Soit G une famille génératrice de E et $\mathcal L$ une famille libre alors:

$$Card \mathcal{L} \leqslant Card G$$
 (23)

Lemme 1

Soit E un espace vectoriel. Soit G une famille génératrice de E et $\mathcal L$ une famille libre alors:

$$Card \mathcal{L} \leqslant Card G$$
 (23)

Proposition

Soit E un $\mathbb{K}\text{-espace}$ vectoriel de dimension \mathbf{n}

Lemme 1

Soit E un espace vectoriel. Soit G une famille génératrice de E et $\mathcal L$ une famille libre alors:

$$Card \mathcal{L} \leqslant Card G$$
 (23)

Proposition

Soit E un $\mathbb{K}\text{-espace}$ vectoriel de dimension \mathbf{n}

Toute famille libre de Ε à au plus π éléments.

Lemme 1

Soit E un espace vectoriel. Soit G une famille génératrice de E et $\mathcal L$ une famille libre alors:

$$Card \mathcal{L} \leqslant Card G$$
 (23)

Proposition

Soit E un $\mathbb{K}\text{-espace}$ vectoriel de dimension \mathbf{n}

Toute famille libre de Ε à au plus π éléments.

Lemme 1

Soit E un espace vectoriel. Soit G une famille génératrice de E et $\mathcal L$ une famille libre alors:

$$Card \mathcal{L} \leqslant Card G$$
 (23)

Proposition

Soit E un \mathbb{K} -espace vectoriel de dimension \mathbf{n}

Toute famille libre de E à au plus n éléments.

2 Toute famille génératrice de E à au moins n éléments.

Lemme 1

Soit E un espace vectoriel. Soit G une famille génératrice de E et $\mathcal L$ une famille libre alors:

$$Card \mathcal{L} \leqslant Card G$$
 (23)

Proposition

Soit E un \mathbb{K} -espace vectoriel de dimension \mathbf{n}

Toute famille libre de E à au plus n éléments.

2 Toute famille génératrice de E à au moins n éléments.

Lemme 1

Soit E un espace vectoriel. Soit G une famille génératrice de E et $\mathcal L$ une famille libre alors:

$$Card \mathcal{L} \leqslant Card G$$
 (23)

Proposition

Soit E un \mathbb{K} -espace vectoriel de dimension \mathbf{n}

- ① Toute famille libre de E à au plus n éléments.
- 2 Toute famille génératrice de E à au moins n éléments.

théorème

Soient E un \mathbb{K} -espace vectoriel de dimension \mathfrak{n} et $\mathfrak{F}=(\nu_1,\ldots,\nu_n)$ une famille de n vecteurs. Alors on as l'équivalence

Lemme 1

Soit E un espace vectoriel. Soit G une famille génératrice de E et $\mathcal L$ une famille libre alors:

$$Card\mathcal{L} \leqslant CardG$$
 (23)

Proposition

Soit E un \mathbb{K} -espace vectoriel de dimension \mathbf{n}

- 1 Toute famille libre de E à au plus n éléments.
- 2 Toute famille génératrice de E à au moins n éléments.

théorème

Soient E un \mathbb{K} -espace vectoriel de dimension \mathfrak{n} et $\mathfrak{F}=(\nu_1,\ldots,\nu_n)$ une famille de n vecteurs. Alors on as l'équivalence

 \bigcirc \mathcal{F} est une base.

Lemme 1

Soit E un espace vectoriel. Soit G une famille génératrice de E et $\mathcal L$ une famille libre alors:

$$Card\mathcal{L} \leqslant CardG$$
 (23)

Proposition

Soit E un \mathbb{K} -espace vectoriel de dimension \mathbf{n}

- 1 Toute famille libre de E à au plus n éléments.
- 2 Toute famille génératrice de E à au moins n éléments.

théorème

Soient E un \mathbb{K} -espace vectoriel de dimension \mathfrak{n} et $\mathfrak{F}=(\nu_1,\ldots,\nu_n)$ une famille de \mathfrak{n} vecteurs. Alors on as l'équivalence

- \bigcirc \mathcal{F} est une base.

Lemme 1

Soit E un espace vectoriel. Soit G une famille génératrice de E et $\mathcal L$ une famille libre alors:

$$Card \mathcal{L} \leqslant Card G$$
 (23)

Proposition

Soit E un \mathbb{K} -espace vectoriel de dimension \mathbf{n}

- ① Toute famille libre de E à au plus π éléments.
- 2 Toute famille génératrice de E à au moins n éléments.

théorème

Soient E un \mathbb{K} -espace vectoriel de dimension \mathfrak{n} et $\mathfrak{F}=(\nu_1,\ldots,\nu_\mathfrak{n})$ une famille de \mathfrak{n} vecteurs. Alors on as l'équivalence

- \bigcirc \mathcal{F} est une base.
- ② F est une famille libre.
- \odot \mathcal{F} est une famille génératrice.

Question

Pour quelle valeur de $t \in \mathbb{R}$, les vecteurs (ν_1, ν_2, ν_3) forment une base de \mathbb{R}^3 ?

$$\nu_1 = (1,1,4) \quad \nu_2 = (1,3,t) \quad \nu_3 = (1,1,t)$$

- Puisque on est dans \mathbb{R}^3 de dimension 3, il suffit de démontrer que cette famille est soit libre soit génératrice.
- En pratique, il est simple de montrer qu'elle est libre.

$$\lambda_{1}\nu_{1} + \lambda_{2}\nu_{2} + \lambda_{3}\nu_{3} = 0$$

$$\begin{cases}
\lambda_{1} + \lambda_{2} + \lambda_{3} &= 0 \\
\lambda_{1} + 3\lambda_{2} + \lambda_{3} &= 0 \\
4\lambda_{1} + t\lambda_{2} + t\lambda_{3} &= 0
\end{cases}$$

$$\begin{cases}
\lambda_{1} + \lambda_{3} &= 0 \\
\lambda_{2} &= 0 \\
(t - 4)\lambda_{3} &= 0
\end{cases}$$

Dimension sous espace vectoriel

Théorème

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

- Tout sous espace vectoriel F de E est de dimension finie.
- ② dimF ≤ dimE
- \bigcirc $F = E \iff dimF = dimE$

Dimension sous espace vectoriel

Théorème

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

- Tout sous espace vectoriel F de E est de dimension finie.
- ② dimF ≤ dimE

Théorème des quatre dimensions

Soient E un espace vectoriel de dimension finie, F et G deux sous espaces vectoriels de E. Alors

$$dim(F+G) = dimF + dimG - dim(F \cap G)$$
 (24)

Corollaire

$$dim(F \oplus G) = dimF + dimG$$