ε 項とクラスの導入による具体的で直観的な集合論の構築

目次

1	。	2
1.1	arepsilon計算について	2
1.2	クラスについて	4
2	言語	6
2.1		7
2.2	言語の拡張....................................	8
3	3の規則	11
4	式の書き換え	13
5	日の除去規則	15
6	∀の導入	16
7	成り立つこと	18

1 導入

1.1 ε 計算について

- 量化∃,∀を使う証明を命題論理の証明に埋め込むためにHilbertが開始.
- 式 $\varphi(x)$ に対して

$$\varepsilon x \varphi(x)$$

という形のオブジェクトを作り、 ε 項と呼ぶ. また

$$\exists x \varphi(x) \leftrightarrow \varphi(x/\varepsilon x \varphi(x)),$$
$$\forall x \varphi(x) \leftrightarrow \varphi(x/\varepsilon x \rightarrow x \varphi(x))$$

を公理とする.

- 命題論理の証明に埋め込む際には \exists や \forall の付いた式を ε 項を代入した式に変換すればよい.
- ただし、今回 ε 項を導入したのは埋め込むためではなく集合を「具体化」するため.

• "生の"集合論では集合というオブジェクトが用意されていないため、「存在」は「実在」ではない、たとえば

$$\exists x \, \forall y \, (y \notin x)$$

は定理であり「空集合は存在する」と読むが、空集合を"実際に取ってくる"ことは不可能.

• ε 項を使えば、 \exists の公理と空集合の存在定理によって

$$\forall y (y \notin \varepsilon x \forall y (y \notin x))$$

が成り立つ. つまり ε 項は「存在」を「実在」に昇華する(上の ε 項は集合である).

*ε*項のメリット

- •「存在」を「実在」で補強できる.
- ある種の ε 項は集合であり、集合を具体的なオブジェクトとして扱える.
- 証明で用いる推論規則は三段論法のみで済む.
- 証明は全て閉じた式で行える.

1.2 クラスについて

- ブルバキ[]や島内[]でも ε 項を使った集合論を展開.
- ところで、 $[\varphi(x)]$ を満たす集合xの全体」の意味の

$$\{x \mid \varphi(x)\}$$

というオブジェクトも取り入れたい.

- "生の"集合論では"インフォーマル"な導入.
- ブルバキ[]や島内[]では

$$\left\{ x \mid \varphi(x) \right\} \stackrel{\text{def}}{=\!\!\!=} \varepsilon x \, \forall u \, (\varphi(u) \leftrightarrow u \in x)$$

と定めるが、これは欠点がある.

$$\exists x \, \forall u \, (\, \varphi(u) \, \leftrightarrow \, u \in x \,)$$

が成立しない場合は「 $\varphi(x)$ を満たす集合xの全体」という意味を持たない.

• 式 φ から直接 $\{x \mid \varphi(x)\}$ の形のオブジェクトを作ればよい.

定義 1.1 (クラス). 式 φ に χ のみが自由に現れているとき,

$$\varepsilon x \varphi(x), \quad \{x \mid \varphi(x)\}$$

の形のオブジェクトをクラス(class)と呼ぶ.

- クラスである ε 項は集合である.
- 集合でないクラスもある. たとえば $\{x \mid x = x\}$ や $\{x \mid x \notin x\}$ は集合ではない.

集合の定義は竹内[]に倣う、定義により集合はクラスである、

定義 1.2 (集合). クラスcが

$$\exists x (c = x)$$

を満たすときcを集合(set)と呼び、そうでない場合は真クラス(proper class)と呼ぶ.

NBG集合論 クラスの概念を取り入れたNBG集合論というものがあるが、こちらのクラスは「実在」しない.

2 言語

- クラスという新しいオブジェクトを導入したら、この導入操作が"妥当"であるかどうかが問題になる.
- 妥当性は、"生の"集合論の式 φ に対して

"生の"集合論で φ が証明される \Longleftrightarrow 新しい集合論で φ が証明される

が成り立つかどうかで検証する.

- 精密な検証のためには、集合論の言語と証明のルールを明らかにしなくてはならない.
- 言語とは「変項」、「述語記号」、「論理記号」とその他もろもろの記号からなる.そして「(数)式」は言語の記号を用いて作られる.式を作るためには「項」が必要であり、文字は最もよく使われる項である.たとえば

 $s \in t$

と書けば一つの式が出来上がる.

• まず"生の"集合論の言語 \mathcal{L}_{\subset} を明示する.

2.1 言語 \mathcal{L}_{ϵ}

言語 \mathcal{L}_{\in}

矛盾記号 \bot 論理記号 \neg , \lor , \land , \rightarrow 量化子 \forall , \exists 述語記号 =, \in 変項 x, y, z, \cdots など.

また \mathcal{L}_{\leftarrow} の項(term)と式(formula)は次の規則で生成する.

\mathcal{L}_{C} の項と式

項 変項は項であり、またこれらのみが項である.

式・ 」は式である.

- 項 τ と項 σ に対して $\tau \in \sigma$ と $\tau = \sigma$ は式である.
- 式 φ に対して $\neg \varphi$ は式である.
- 式 φ と式 ψ に対して $\varphi \lor \psi$ と $\varphi \land \psi$ と $\varphi \to \psi$ はいずれも式である.
- 式 φ と項xに対して $\exists x \varphi$ と $\forall x \varphi$ は式である.
- これらのみが式である.

2.2 言語の拡張

- クラスを正式に導入するには言語を拡張しなくてはならない.
- 拡張は二段階に分けて行う.始めに ε 項のために拡張し,次に $\left\{x\mid\varphi(x)\right\}$ の形の項のために拡張する.
- 始めの拡張により得る言語を $\mathcal{L}_{\mathcal{E}}$ と名付ける.

言語 $\mathcal{L}_{\mathcal{E}}$

$\mathcal{L}_{\mathcal{E}}$ の項と式の定義

- 変項は項である.
- 」は式である。
- 項 τ と項 σ に対して $\tau \in \sigma$ と $\tau = \sigma$ は式である.
- 式 φ に対して $\neg \varphi$ は式である.
- 式 φ と式 ψ に対して $\varphi \lor \psi$ と $\varphi \land \psi$ と $\varphi \to \psi$ はいずれも式である.
- 式 φ と変項xに対して $\exists x \varphi$ と $\forall x \varphi$ は式である.
- 式 φ と変項xに対して $\epsilon x \varphi$ は項である.
- これらのみが項と式である.
- \mathcal{L}_{\leftarrow} との大きな違いは項と式の定義が循環している点にある.
- $\mathcal{L}_{\mathcal{E}}$ の式が $\mathcal{L}_{\mathcal{E}}$ の項を用いて作られるのは当然ながら,その逆に $\mathcal{L}_{\mathcal{E}}$ の項もまた $\mathcal{L}_{\mathcal{E}}$ の式 から作られる.
- $\mathcal{L}_{\mathcal{E}}$ の式は $\mathcal{L}_{\mathcal{E}}$ の式でもある.

言語 £

矛盾記号 \bot 論理記号 \neg , \lor , \land , \rightarrow 量化子 \forall , \exists 述語記号 =, \in 変項 x, y, z, \cdots など. 補助記号 $\{$, $\}$,

上の項と式の定義

項 • 変項は項である.

- $\mathcal{L}_{\mathcal{E}}$ の項は項である.
- xを変項とし、 φ を $\mathcal{L}_{\mathcal{E}}$ の式とするとき、 $\{x \mid \varphi\}$ なる記号列は項である.
- これらのみが項である。

式・ 」は式である.

- 項 τ と項 σ に対して $\tau \in \sigma$ と $\tau = \sigma$ は式である.
- 式 φ に対して $\rightarrow \varphi$ は式である.
- 式 φ と式 ψ に対して $\varphi \lor \psi$ と $\varphi \land \psi$ と $\varphi \to \psi$ はいずれも式である.
- 式 φ と変項xに対して $\exists x \varphi$ と $\forall x \varphi$ は式である.
- これらのみが式である.

3 ヨの規則

推論規則 3.1 (日の導入). \mathcal{L} の式 $\varphi(x)$ と ϵ 項 τ に対して

$$\varphi(\tau) \vdash \exists x \varphi(x).$$

とくに、任意の ε 項 τ に対して

$$\tau = \tau$$
.

だから

$$\exists x (x = \tau)$$

が成り立つ. つまり ε 項はすべて集合.

推論規則 3.2 (日の除去(NG版)). \mathcal{L} の式 $\varphi(x)$ に対して

$$\exists x \varphi(x) \vdash \varphi(\varepsilon x \varphi(x)).$$

 φ に内包項や ε 項が現れる場合

$$\varepsilon x \varphi(x)$$

なる項は無い(無理矢理つくると入れ子問題).

解決法

 \mathcal{L} の式を \mathcal{L}_{ϵ} の式に書き換える手順を用意する.

4 式の書き換え

- 式に ε 項が含まれていると書き換え不可.
- ε 項が現れない式を甲種式,そうでない式を乙種式と分類.

次の書き換え規則によって、甲種式はすべて \mathcal{L}_{ϵ} の式に書き換え可能(構造的帰納法による).

- $x \in \{y \mid \psi(y)\} \bowtie \psi(x)$
- $\{x \mid \varphi(x)\} \in y$ は

$$\exists s \ (s \in y \land \forall x \ (x \in s \Longleftrightarrow \varphi(x)))$$

• $\{x \mid \varphi(x)\} \in \{y \mid \psi(y)\}$ は

$$\exists s \ (\psi(s) \land \forall x \ (x \in s \iff \varphi(x)))$$

•
$$x = \{ y \mid \psi(y) \}$$
 は

$$\forall u \ (u \in x \iff \psi(u))$$

•
$$\{x \mid \varphi(x)\} = y \, \mathsf{t}$$

$$\forall u \ (\varphi(u) \iff u \in y)$$

•
$$\{x \mid \varphi(x)\} = \{y \mid \psi(y)\}$$

$$\forall u \ (\varphi(u) \Longleftrightarrow \psi(u))$$

5 日の除去規則

甲種式 φ を \mathcal{L}_{ϵ} の式に書き換えたものを $\hat{\varphi}$ と書く.

推論規則 5.1 (∃の除去). 甲種式 $\varphi(x)$ に対して

$$\exists x \varphi(x) \vdash \varphi(\varepsilon x \hat{\varphi}(x)).$$

ヨの除去規則と導入規則により次を得る.

定理 5.2. 甲種式 $\varphi(x)$ に対して

$$\exists x \varphi(x) \Longleftrightarrow \varphi\left(\varepsilon x \hat{\varphi}(x)\right).$$

6 ∀の導入

推論規則 6.1 (\forall の導入). 式 $\varphi(x)$ に対し、すべての ε 項 τ で $\varphi(\tau)$ が成り立つなら $\forall x \varphi(x)$.

推論規則 6.2 (\forall の除去). 式 $\varphi(x)$ と ε 項 τ に対して

 $\forall x \varphi(x) \vdash \varphi(\tau)$.

 ε 項は集合であるから、量化の亘る範囲は集合の上だけ.

定理 6.3. 甲種式 $\varphi(x)$ に対して

$$\forall x \varphi(x) \Longleftrightarrow \varphi(\varepsilon x \rightarrow \hat{\varphi}(x)).$$

次の定理は他の公理および構造的帰納法と併せて示される.

定理 6.4 (書き換えの同値性). 甲種式 $\varphi(x)$ に対して

$$\forall x \ (\varphi(x) \Longleftrightarrow \hat{\varphi}(x)).$$

7 成り立つこと

定理 7.1. 内包項 $\{x \mid \varphi(x)\}$ が集合であれば

$$\{x \mid \varphi(x)\} = \varepsilon y \,\forall x \, (x \in y \iff \varphi(x)).$$

略証. $\exists y (\{x \mid \varphi(x)\} = y) を \mathcal{L}_{\epsilon}$ の式に書き直せば

$$\exists y \, \forall x \, (x \in y \iff \varphi(x)).$$

存在記号の規則より結論が従う.