ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

Cơ sở trí tuệ nhân tạo

Quy trình Markov

Nguyễn Ngọc Đức 2024

Nội dung

2024

1/22

1 Mô hình Markov

2 Tìm kiếm bất định

3 Cây trò chơi

4 Expectimax

Mô hình Markov

Nguyễn Ngọc Đức Cơ sở trí tuệ nhân tạo 2024 2 / 22

Markov

- Ta dùng từ "Markov" cho các quy trình mà hiện tại, tương lai và quá khứ độc lập với nhau
- Kết quả khi thực hiện một hành động chỉ phụ thuộc vào trạng thái hiện tại

Markov

- Ta dùng từ "Markov" cho các quy trình mà hiện tại, tương lai và quá khứ độc lập với nhau
- Kết quả khi thực hiện một hành động chỉ phụ thuộc vào trạng thái hiện tại
- Tương tự như bài toán tìm kiếm

Mô hình Markov

lacktriau Giá trị X trong một khoảng thời gian nhất định được gọi là trạng thái

- Tham số: Xác suất chuyển tiếp
- Giả định tính ổn định: Xác suất chuyển tiếp giống nhau ở mọi thời điểm

Hợp phân phối xác suất I

■ Dựa trên quy tắc chuỗi, mỗi hợp phân phối xác suất X_1, X_2, X_3, X_4 có thể được viết thành:

$$\mathbb{P}(X_1, X_2, X_3, X_4) = \mathbb{P}(X_1)\mathbb{P}(X_2|X_1)\mathbb{P}(X_3|X_1, X_2)\mathbb{P}(X_4|X_1, X_2, X_3)$$

■ Giả sử

$$X_3 \perp \!\!\! \perp X_1 | X_2$$
 và $X_4 \perp \!\!\! \perp X_1, X_2 | X_3$

Hợp phân phối xác suất II

Hợp phân phối xác suất:

$$\mathbb{P}(X_1, X_2, X_3, X_4) = \mathbb{P}(X_1)\mathbb{P}(X_2|X_1)\mathbb{P}(X_2|X_3)\mathbb{P}(X_4|X_3)$$

Mọi hợp phân phối xác suất X₁, X₂,..., X_T có thể được viết dưới dạng:

$$\mathbb{P}(X_1, X_2, \dots, X_T) = \mathbb{P}(X_1) \prod_{t=2}^{T} \mathbb{P}(X_t | X_1, X_2, \dots, X_{t-1})$$

Hợp phân phối xác suất III

■ Giả sử rằng với mọi t:

$$X_t \perp \!\!\! \perp X_1, \ldots, X_{t-2} | X_{t-1}$$

Ta có:

$$\mathbb{P}(X_1, X_2, \dots, X_T) = \mathbb{P}(X_1)\mathbb{P}(X_2|X_1)\mathbb{P}(X_3|X_2)\dots\mathbb{P}(X_T|X_{T-1})$$
$$= \mathbb{P}(X_1)\prod_{t=2}^T \mathbb{P}(X_t|X_{t-1})$$

Tìm kiếm bất định

Nguyễn Ngọc Đức Cơ sở trí tuệ nhân tạo 2024 8 / 22

Ví du: Hex world I

- Mỗi ô là một trạng thái
- Di chuyển theo 6 hướng
- Nhiễu: Kết quả di chuyển ngẫu nhiên
- Tác tử nhận điểm thưởng với mỗi bước di chuyển

Ví dụ: Hex world II

Quy trình Markov

- Một quy trình Markov được đinh nghĩa dưa trên:
 - 1 Tập trạng thái $s \in S$
 - **2** Tập hành động $a \in A$
 - 3 Hàm chuyển dịch T(s, a, s')
 - 4 Hàm điểm thưởng $R(s,a,s^\prime)$
 - Trạng thái bắt đầu
 - Trạng thái kết thúc (có thể có hoặc không)
 - MDP là một bài toán tìm kiếm bất định ⇒ Expectimax

Chiến lược

Trong các bài toán tìm kiếm, chúng ta cần một kế hoạch tối ưu

■ Với MDP:

Chiến lược

Trong các bài toán tìm kiểm, chúng ta cần một kế hoạch tối ưu

- lacktriangle Với MDP: Chúng ta cần một chiến lược tối ưu $\pi^*:S o A$
 - lacktriangle Một chiến lược π đưa ra hành động tại một trạng thái cụ thể
 - Một chiến lược tối ưu sẽ tối đa hóa lợi ích kỳ vọng (expectimax)
 - Một chiến lược rõ ràng định nghĩa một tác tử

Cây trò chơi

Nguyễn Ngọc Đức Cơ sở trí tuệ nhân tạo 2024 13 / 22

Trò chơi 3 chiếc hộp

- Có 3 chiếc hộp, mỗi hộp chứa 2 con số (hình 1).
- Bạn chọn một chiếc hộp sau đó mình chọn một con số nằm trong hôp đó
- Nhiệm vụ của bạn là phải tối đa con số mà mình chọn

Hình 1: Ví du một trò chơi

Cây trò chơi

Cây trò chơi

- Mỗi nút là một điểm quyết định cho mỗi người chơi
- Mỗi đường đi tới nút lá là một kết quả của trò chơi

Expectimax

Nguyễn Ngọc Đức Cơ sở trí tuệ nhân tạo 2024 16 / 22

Chiến lược

■ Chiến lược xác định: hành động người chơi p thực hiện ở trạng thái s

$$\pi(s) \in Action(s)$$

■ Chiến lược bất định: xác suất người chơi p thực hiện hành động a ở trạng thái s

$$\pi(s,a) \in [0,1]$$

Đánh giá trò chơi l

■ Lợi ích kỳ vọng (giá trị của trò chơi)

$$V_{eval}(s) = \begin{cases} Utility(s) & IsEnd(s) \\ \sum_{a \in Actions(s)} \pi_{agent}(s, a) V_{eval}(Succ(s, a)) & Player(s) = agent \\ \sum_{a \in Actions(s)} \pi_{opp}(s, a) V_{eval}(Succ(s, a)) & Player(s) = opp \end{cases}$$

- 1 Trò chơi kết thúc, lợi ích ở trạng thái cuối Utility(s)
- 2 Lượt của agent, dựa trên giá trị các successor trả về
- 3 Lượt của opp, tương tự agent

Đánh giá trò chơi II

Hình 2: Giá trị trò chơi

Expectimax I

■ Giá trị expectimax $V_{exptmax}(s)$ ở trạng thái s, là lợi ích tối đa của người chơi đạt được ở trạng thái s nếu biết trước chiến lược chơi của đối thủ

$$V_{exptmax}(s) = \begin{cases} Utility(s) & IsEnd(s) \\ \max_{a \in Actions(s)} V_{exptmax}(Succ(s, a)) & Player(s) = agent \\ \sum_{a \in Actions(s)} \pi_{opp}(s, a) V_{eval}(Succ(s, a)) & Player(s) = opp \end{cases}$$

Expectimax II

Hình 3: Expectimax

Tài liệu tham khảo

- [1] Bùi Tiến Lên, Bộ môn Khoa học máy tính Bài giảng môn Cơ sở trí tuệ nhân tạo
- [2] Michael Negnevitsky
- Artificial Intelligence: A Guide to Intelligent Systems (3rd Edition)
- CS188: Introduction to Artificial Intelligence

Dan Klein and Pieter Abbeel