: • Física do Movimento

Lista de Exercícios 3

Exercício 1 (Adaptado de Halliday&Resnick, seção 4-4, ex. 28, p. 82)

Na figura ao lado, uma pedra é lançada com velocidade inicial de 42m/s e um ângulo $\theta_0=60^\circ$ com a direção horizontal, e atinge o alto de um rochedo de altura h. A pedra cai em um ponto A 5,5s após o lançamento. Considerando o versor $\hat{\imath}$ horizontal para a direita e o versor $\hat{\jmath}$ vertical para cima, determine:

- a) a equação diferencial do movimento e o vetor aceleração, desprezando-se a resistência do ar;
- b) o vetor velocidade e o vetor posição da pedra, válidos para todo o lançamento;
- c) a altura h do rochedo;
- d) a velocidade da pedra imediatamente antes do impacto (sua intensidade);
- e) a máxima altura H alcançada acima do solo. Use $g = 10m/s^2$.

Exercício 2 (Halliday&Resnick, seção 4-4, ex. 19, p. 82)

A aceleração de uma partícula que se move apenas em um plano horizontal xy é dada por $\vec{a}=3t\hat{\imath}+4t\hat{\jmath}$, onde a está em metros por segundo ao quadrado e t em segundos. Em t=0, o vetor posição $\vec{r}=20\hat{\imath}+40\hat{\jmath}$ indica a localização da partícula, que nesse instante tem velocidade $\vec{v}=5\hat{\imath}+2\hat{\jmath}$. Em t=4s, determine:

- a) o vetor posição em termos dos versores;
- b) o ângulo entre a direção do movimento e o semieixo *x* positivo.

Dica: lembre-se das relações entre \vec{r} , \vec{v} e \vec{a} . Se precisar "chutar" um vetor velocidade de tal forma que sua derivada se iguale ao vetor aceleração, não hesite, chute! O mesmo vale para o vetor posição, não?

Exercício 3 (Halliday&Resnick, seção 4-4, ex. 20, p. 82)

Na figura ao lado, a partícula A se move ao longo da reta y=30m com uma velocidade constante \vec{v} de módulo 3m/s e paralela ao eixo x. No instante em que a partícula A passa pelo eixo y, a partícula B deixa a origem com velocidade inicial zero e aceleração constante \vec{a} de módulo $0.4 \ m/s^2$. Para que valor do ângulo θ entre \vec{a} e o semieixo y positivo acontece a colisão?

Dica: Sabendo os deslocamentos de cada partícula a partir de seu vetor posição, é possível construir um triângulo retângulo contendo um dos ângulos igual a θ . Qual o teorema mais famoso que pode ser aplicado a um triângulo retângulo? Chegou numa equação de quarto grau? Faça uma substituição conveniente!

Física do Movimento

Respostas

1. a)
$$\frac{d^2x}{dt^2} = 0$$
; $\frac{d^2y}{dt^2} = -10$; $\vec{a} = -10\hat{j}$

b)
$$\vec{v} = v_x(0)\hat{\imath} + (v_y(0) - 10t)\hat{\jmath}$$
 sendo $v_x(0) = 42\cos\theta$ e $v_y(0) = 42\sin\theta$, ou $\vec{v} = 21\hat{\imath} + (36,37 - 10t)\hat{\jmath}$; $\vec{r} = 21t\hat{\imath} + (36,37t - 5t^2)\hat{\jmath}$

c)
$$h = 48,80m$$

d)
$$v = 28,07 \, m/s$$

e)
$$H = 66,14 m$$

2. a)
$$\vec{r} = \left(\frac{t^3}{2} + 5t + 20\right)\hat{\imath} + \left(\frac{2t^3}{3} + 2t + 40\right)\hat{\jmath}$$
 b) 49,53°

3.
$$\theta = 60^{\circ}$$