

Physics-Based Animation (SET09119)

Tutorial 01 - Mathematics for Physics

1 Question

If $p = \sqrt{3}$ and $s = \sqrt{2}$ evaluate:

$$\sqrt{(5p-4s)^2-(4p-5s)^2}$$

$$\begin{split} &\sqrt{(5p-4s)^2-(4p-5s)^2}\\ &= [(5p-4s)^2-(4p-5s)^2]^{\frac{1}{2}}\\ &= [(25p^2-20ps-20ps+16s^2)^2-(16p^2-20ps-20ps-25s^2)^2]^{\frac{1}{2}}\\ &= [9p^2-9s^2]^{\frac{1}{2}}\\ &= 3[p^2-s^2]^{\frac{1}{2}}\\ &= 3[p^2-s^2]^{\frac{1}{2}}\\ &\text{where } p^2=3 \text{ and } s^2=2\\ &= 3[3-2]^{\frac{1}{2}}\\ &= 3[1]^{\frac{1}{2}}\\ &= 3 \end{split}$$

2 Question

Find the set of real numbers λ for which the quadratic equation:

$$x^2 - (\lambda - 3)x + \lambda = 0$$

has distinct, real roots for x.

(Remember:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
)

$$x = \frac{3 - \lambda \pm \sqrt{(\lambda - 3)^2 - 4\lambda}}{2}$$

therefore distinct real roots if $(\lambda - 3)^2 > 4\lambda$ (i.e., the number must be positive) hence, we solve for: $(\lambda - 3)^2 = 4\lambda$

$$\lambda^2 - 6\lambda + 9 = 4\lambda$$

$$\lambda^2 - 10\lambda + 9 = 0$$

$$(\lambda - 1)(\lambda - 9) = 0$$

so:

$$\lambda = 1, 9$$

which requires:

$$(\lambda - 3)^2 > 4\lambda$$

∴.

$$\lambda < 1$$
 or $\lambda > 9$

3 Question

Let $\mathbf{u}=<-4,-1,2>,\,\mathbf{v}=<1,3,2>$ and $\mathbf{w}=<0,-2,-4>,$ Find:

1. u + v

$$< u_x, u_y, u_z> + < v_x, v_y, v_z> = <(u_x+v_x), (u_y+v_y), (u_z+v_z)> = <-3, 2, 4>$$

2. -3u

$$a < u_x, u_y, u_z > = <(a u_x), (a u_y), (a u_z) > = <12, 3, -6>$$

3. 3u - 4v

$$\begin{array}{l} a < u_x, u_y, u_z > -b < v_x, v_y, v_z > = \\ < (a \; u_x), (a \; u_y), (a \; u_z) > - < (b \; v_x), (b \; v_y), (b \; v_z) > = < -16, -15, -2 > \end{array}$$

4. 2u + 4v - 5w

$$< -4, 20, 32 >$$

4 Question

Let $\mathbf{u}=<0,1,5>,\,\mathbf{v}=<1,1,5>$ and $\mathbf{w}=<-0,-1,2>,$ Find:

1. $\mathbf{u} \cdot \mathbf{v}$

26

2. $\mathbf{u} \cdot \mathbf{w}$

9

3. $\mathbf{u} \times \mathbf{w}$

< 7, 0, 0 >

4. $\mathbf{v} \times \mathbf{w}$

<7, -2, -1>

5. $||\mathbf{u}||$ (i.e., the length/magnitude of \mathbf{u})

< 5.099 >

5 Question

1. Show that if \vec{a} and \vec{b} are two parallel vectors, then $\vec{a} \times \vec{b} = 0$

knowing

$$\vec{a} \times \vec{b} = <(a_y b_z - a_z b_y), (a_x b_z - a_z b_x), (a_x b_y - a_y b_x) >$$

= $||\vec{a}|| ||\vec{b}|| sin(\theta)$

e.g., $\theta=0$ if the vectors parallel and sin(0)=0

where θ is the angle between the vectors. For the vectors to be parallel, the angle between them must be 0 or a multiple of π . That means the sin of the angle will be 0, so the cross product will be 0.

2. Show that if \vec{a} and \vec{b} are two orthogonal vectors where $\vec{c} = \vec{a} \times \vec{b}$ then

$$||c|| = ||a|| ||b||$$

knowing

$$\vec{a} \times \vec{b} = \langle (a_y b_z - a_z b_y), (a_x b_z - a_z b_x), (a_x b_y - a_y b_y) \rangle$$

= $||\vec{a}|| ||\vec{b}|| sin(\theta)$

where θ is the angle between the vectors. For the vectors to be orthogonal, the angle between them must be 90^0 (i.e., $\frac{\pi}{2}$). That means the sin of the angle will be 1, so the cross product will be the magnitude of the two vectors $||\vec{a}|| ||\vec{b}||$.

3. Find the cross product of the vectors $\vec{a}=<1,0,3>$ and $\vec{b}=<9,-3,1>$. If $\vec{c}=\vec{a}\times\vec{b},$ verify that $\vec{c}^T\vec{a}=\vec{c}^T\vec{b}=0$

$$\vec{a} \times \vec{b} = <1, 0, 3 > \times <9, -3, 1 >$$

$$= <(0)(1) - (3)(-3), (3)(9) - (1)(1), (1)(-3) - (0)(9) >$$

$$= <9, 26, -3 >$$

second part is simple matrix multiplication:

$$\vec{c}^T \vec{a} = \begin{bmatrix} 9\\26\\-3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \end{bmatrix}$$

$$= (9)(1) + (26)(0) + (-3)(3) = 0$$

$$\vec{c}^T \vec{b} = \begin{bmatrix} 9\\26\\-3 \end{bmatrix} \begin{bmatrix} 9 & -3 & 1 \end{bmatrix}$$

$$= (9)(9) + (26)(-3) + (-3)(1) = 0$$

6 Question

Differentiate:

1.	$\frac{d}{d}$	$(3x^2)$	1)
	dx	(500	/

6x

2. $\frac{d}{dx}(4x^4-2)$

 $16x^3$

 $3. \ \frac{d}{dx}(x+\frac{1}{x})$

 $1 - \frac{1}{x^2}$

 $4. \ \frac{d}{dx}(\sqrt[4]{x})$

 $\frac{1}{4x^{\frac{4}{4}}}$

 $5. \ \frac{d}{dx}(\sqrt[5]{x} + \frac{5}{\sqrt{x}})$

 $\frac{1}{5x^{\frac{4}{5}}} - \frac{5}{2x^{\frac{3}{2}}}$

7 Question

Integrate:

1. $\int 4x^3 dx$

 x^4

 $2. \int 2x^4 dx$

 $\frac{2}{5}x^{5}$

 $3. \int x^{-4} dx$

 $\frac{-1}{3}x^{-3}$

4. $\int 5x^{-3} dx$

 $\frac{-5}{2}x^{-2}$

 $5. \int \frac{6}{x^2} dx$

 $\frac{-6}{r}$

8 Question

Compute:

1.
$$\begin{bmatrix} 1 & 6 \\ -3 & 5 \end{bmatrix} \times \begin{bmatrix} 4 & 0 \\ 2 & -1 \end{bmatrix}$$

 $\begin{bmatrix} 16 & -6 \\ -2 & -5 \end{bmatrix}$

$$2. \begin{bmatrix} 1 & 6 \\ -3 & 5 \end{bmatrix} \times \begin{bmatrix} 2 \\ -7 \end{bmatrix}$$

 $\begin{bmatrix} -40 \\ -41 \end{bmatrix}$

$$3. \begin{bmatrix} 1 \\ -6 \end{bmatrix} \times \begin{bmatrix} 1 & 6 \\ -3 & 5 \end{bmatrix}$$

Not defined

$$4. \begin{bmatrix} 1 \\ 6 \end{bmatrix} \times \begin{bmatrix} 3 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 2 \\ 18 & 12 \end{bmatrix}$$

5.
$$\begin{bmatrix} 2 & -1 \end{bmatrix} \times \begin{bmatrix} 1 \\ -6 \end{bmatrix}$$

[8]

9 Question

Generate the 4×4 transformation matrix for the following transformations:

1. A translation of <4,6,7>

$$\begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2. A scaling of < 10, 5, 2 >

$$\begin{bmatrix} 10 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3. A z-axis rotation of $\frac{\pi}{2}$ radians

$$\begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

4. A x-axis rotation of π radians

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

5. A y-axis rotation of $\frac{\pi}{4}$ radians

$$\begin{bmatrix} 0.707 & 0 & 0.707 & 0 \\ 0 & 1 & 0 & 0 \\ -0.707 & 0 & 0.707 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

10 Question

Transform the following vectors using the transformation matrix:

$$\begin{bmatrix} 2.121 & -2.121 & 0 & 10 \\ 2.121 & 2.121 & 0 & 15 \\ 0 & 0 & 3 & 12 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

1. < 4, 5, 10 >

< 7.879, 34.089, 42 >

2. < 12, 8, 16 >

< 18.484, 57.420, 60 >

3. < 1, 4, 0 >

< 3.637, 25.605, 12 >

$$4. < -10, 12, -4 >$$

$$<-36.662,19.242,0>$$

$$5. < 0, 5, -11 >$$

$$< -0.605, 25.605, -21 >$$

11 Question

A plane is described by a point p < 1, 2, 1 > on the plane and a unit normal n < 0, 1, 0 >. Find the distance from point x < 2, 2, 0 > to the plane

The distance is the length of the projection of $\vec{x} - \vec{p}$ onto \hat{n} :

$$\begin{aligned} dist &= (\vec{x} \bullet \hat{n}) - (\vec{p} \bullet \hat{n}) \\ &= (\vec{x} - \vec{p}) \bullet \hat{n} \\ &= (< 2, 2, 0 > - < 1, 2, 1 >) \bullet < 0, 1, 0 > \\ &= < 1, 0, -1 > \bullet < 0, 1, 0 > \\ &= < 0, 0, 0 > \end{aligned}$$
 (1)

12 Question

Find the solution of the following system of algebraic equations:

$$-x_1 + 2x_2 - x_3 = 2$$
1.
$$2x_1 - x_2 = 1.5$$

$$-x_2 + x_3 = 5$$

The strategy is to reduce this to two equations in two unknowns. Do that by eliminating one of the unknowns from two pairs of equations: either from equations a) and b), or a) and c), or b) and c).

- a) $-x_1 + 2x_2 x_3 = 2$
- b) $2x_1 x_2 = 1.5$
- $(c) x_2 + x_3 = 5$
- a + c:
- $(d) x_1 + x_2 = 7$
- b) $2x_1 x_2 = 1.5$
- d + b:
- $e) x_1 = 8.5$

sub into b:

b)
$$2(8.5) - x_2 = 1.5$$

 $x_2 = 17 - 1.5 = 15.5$

sub into c:

c)
$$-(15.5) + x_3 = 5$$
:
 $x_3 = 15.5 + 5 = 20.5$

check in a, b and c:

a)
$$-(8.5) + 2(15.5) - (20.5) = 2$$

$$b) 2(9) - (15.5)$$

$$= 1.5$$

c)
$$-(15.5) + (20.5)$$
 = 5

$$-3x_2 + 5x_3 = 0$$

$$2. \quad -2x_1 + 2x_2 - 3x_3 = 0$$

$$6x_1 - 2x_2 = 5.5$$

The strategy is to reduce this to two equations in two unknowns. Do that by eliminating one of the unknowns from two pairs of equations: either from equations a) and b), or a) and c), or b) and c).

a)
$$-3x_2 + 5x_3 = 0$$

$$b) \quad -2x_1 + 2x_2 - 3x_3 = 0$$

c)
$$6x_1 - 2x_2 = 5.5$$

3b +c:

a)
$$-3x_2 + 5x_3 = 0$$

d)
$$4x_2 - 9x_3 = 5.5$$

4a+3d:

$$20x_3 - 27x_3 = 16.5 \ x_3 = -16.5/7 = -2.36$$

sub into a:

a)
$$-3x_2 + 5(-2.36) = 0$$

$$x_2 = -3.933$$

sub into c:

$$6x_1 - 2(-3.933) = 5.5 \ x_1 = -0.39$$

check with b:

$$-2(-0.39) + 2(-3.933) - 3(-2.36) = 0$$

13 Question

A triangle is defined by 3D points \vec{a} , \vec{b} , and \vec{c} Find the area of the triangle given $\vec{a} < 1, 1, 0 >$, $\vec{b} < 4, 5, 1 >$, and $\vec{c} < 0, 2, 0 >$.

The area of the triangle is given by:

$$area = \frac{1}{2} | (\vec{b} - \vec{a}) \times (\vec{c} - \vec{a}) |$$

$$= \frac{1}{2} | (<4, 5, 1 > - <1, 1, 0 >) \times (<0, 2, 0 > - <1, 1, 0 >) |$$

$$= \frac{1}{2} | (<3, 4, 1 >) \times (<-1, 1, 0 >) |$$

$$= \frac{1}{2} | <(4)(0) - (1)(1), (3)(0) - (1)(-1), (3)(1) - (4)(-1) > |$$

$$= \frac{1}{2} | <-1, 1, 7 > |$$

$$= \frac{1}{2} \sqrt{51}$$
(2)