

	1	2	3	4				
A		Sampling T	heorem Notes					
	Because $\delta_{T_{ m s}}(t)$ is periodic v	ve can represent it as a	Fourier series					
	because $\sigma_{T_S}(t)$ is periodic v	∞						
		$\delta_{T_S}(t) = $	$\sum_{n} D_n e^{jn\omega_s t}$					
		n:	=-∞					
	Where	TI.						
	D., =	$\frac{1}{1}\int_{0}^{t_0/2} \delta_m(t) e^{-jn\omega_s}$	$T_0 = T_s \omega_s = 2\pi \frac{1}{T_s}$					
	Dn -	$T_0 \int_{-T_0/2}^{T_0/2} \sigma_{I_s}(t) t$	$T_0 = T_S \omega_S = 2\pi T_S$					
-	From this we find that D_n =	$=\frac{1}{T_c}$ and thus that						
\perp		y						
B		$\delta_{T_S}(t) = \frac{1}{T}$	$\frac{1}{s}\sum_{s}^{\infty}e^{jn\omega_{s}t}$					
ı	60		$n=-\infty$					
ı	SO		. ∞					
		$\bar{g}(t) = g(t)\delta_{T_s}(t)$	$=\frac{1}{T_s}\sum_{s}^{\infty}g(t)e^{jn\omega_s t}$					
			$n = -\infty$					
-	Finally taking the Fourier tr	U . , .						
-	$\mathcal{F}\{ar{a}(t)$	$\{ = \int_{0}^{\infty} \bar{q}(t)e^{-j\omega t}dt = 0$	$=\int_{-\infty}^{\infty}\frac{1}{T_{s}}\sum_{n=-\infty}^{\infty}g(t)e^{jn\omega_{s}t}e^{-j\omega t}dt$	dt				
다	1 (3 (1)	$\int_{-\infty}^{\infty}$	$\int_{-\infty} T_s \sum_{n=-\infty}^{\infty} g(s)^{s}$					
ŀ	The previous equation can	The previous equation can be rewritten as						
		$T(\bar{z}(t))$ 1 $\sum_{i=1}^{\infty}$	$\int_{-\infty}^{\infty} (t) \sin(\omega t) = i\omega t dt$					
		$F\{g(t)\} = \frac{1}{T_s} \sum_{n=-\infty}^{\infty}$	$\int_{-\infty}^{\infty} g(t)e^{jn\omega_s t}e^{-j\omega t}dt$					
	Using the phase shift property of the Fourier transform we find that							
-			1 \(\nabla \)					
\perp		$\mathcal{F}\{\bar{g}(t)\} = G(f) =$	$= \frac{1}{T_s} \sum_{n=-\infty}^{\infty} G(f - nf_s)$					
마	Where $f_s = \frac{1}{T_s}$		$n = -\infty$	1				
\perp	T_S							
ı								
1								
-								
-								
Eŀ				- E				
-								
ŀ								
	Class: Digital Communication	ons		Dentato 2012				
	1	2	3	4				

$$\tilde{g}(t) = p(t) * \sum_{n} g(nT_s)\delta(t - nT_s)$$

The Fourier transform yields

$$\widetilde{G}(f) = P(f)\overline{G}(f) = P(f)\frac{1}{T_s}\sum_{s=-\infty}^{\infty}G(f-nf_s)$$

This is an interesting result because what it says is that rather than having to walk through a barrage of mathematically equations to determine how to reconstruct g(t), we can simply find a transfer function that will essentially undue the results of sampling a signal with a non-ideal sampling function in this case p(t). We will refer to this transfer function as an equalizer. The end result of apply an equalizer is that afterwards the signal simply becomes $\bar{q}(t)$.

А

Recall: We showed earlier that g(t) can be extracted by a simple, well placed, low-pass

Example 2: Non-Ideal Sampling

Let's consider a simple interpolating pulse generator that generates short (zero-order hold) pulses.

We have

$$p(t) = \Pi\left(\frac{t - 0.5T_p}{T_p}\right)$$

For reconstruction we first have

$$\tilde{g}(t) = \sum_{n} g(nT_s) \Pi\left(\frac{t - 0.5T_p}{T_p}\right)$$

The transfer function of p(t) is

$$P(f) = T_p sinc(\pi f T_p) e^{-j\pi f T_p}$$

As a result the equalizer must satisfy

$$E(f) = \begin{cases} T_s/P(f) & |f| \le B \\ Flexible & B < |f| < (1/T_s - B) \\ 0 & |f| \ge (1/T_s - B) \end{cases}$$

Class: Digital Communications

Dentato 2012

А

Example 3: Quantization

We have a radio receiver that will never receive a signal greater than $1V_p$ (p = peak refer to Figure 6). Well at this point we can say to ourselves we do not need to have a signal greater that $1V_p$ so all signals will only take on values between $\pm 1V$. Our accuracy or resolution of the signal depends on L. For larger values of L we will have move voltage resolution. Let's say we later find out that our voltage accuracy is 0.25V we can use an L value of 8 where

$$L = \frac{2m_p}{\Delta v} = \frac{2(1V_p)}{0.25} = 8$$

If we decided to represent this signal digitally we could say we need $2^3=8$ or 3 bits and now any incoming signal will take on values between -1 and 1 in 0.25V steps. Another way to say it is that we can only detect a 0.25V change in the incoming signals voltage. For an 8 bit binary number we have

Binary	000	001	010	011	100	101	110	111
Decimal	0	1	2	3	4	5	6	7
x0.25V	0	0.25	0.50	0.75	1	1.25	1.50	1.75
-1V	-1.00	-0.75	-0.50	-0.25	0.00	0.25	0.50	0.75

But if we quantize the signal doesn't that change the signal all together?

It turns out that we will not change the signal per se, rather we will increase the noise level of the signal.

Previously we demonstrated the interpolation formula

$$g(t) = \sum_{k} g(kT_s) sinc(2\pi Bt - k\pi)$$

If we consider the $m(kT_S)$ as to be the k^{th} sample of the message signal m(t) the interpolation is as follows

Class: Digital Communications

Dentato 2012

	1 2 3 4						
	Sampling Theorem Notes						
	$m(t) = \sum_{k} m(kT_s) sinc(2\pi Bt - k\pi)$						
A	And for the quantized signal let $\widehat{m}(kT_s)$ be the k^{th} sample of the signal $\widehat{m}(t)$ then						
	$q(t) = \sum_{s} \widehat{m}(kT_s) sinc(2\pi Bt - k\pi)$						
	The distortion component $q(t)$ is then						
-	$q(t) - \sum_{\underline{k}} [m(k I_s) - m(k I_s)] sinc(2\pi B t - k\pi)$						
	$q(t) = \sum_{k} [\widehat{m}(kT_s) - m(kT_s)] sinc(2\pi Bt - k\pi)$ $= \sum_{k} q(kT_s) sinc(2\pi Bt - k\pi)$						
В							
	The signal $q(t)$ is an undesired and acts as noise which leads to the term quantization noise.						
	To calculate the power of the quantization noise we do the following						
	$\widetilde{q^2(t)} = \lim_{T \to \infty} \frac{1}{T} \int q^2(t) dt$						
-	$T \to \infty T \int_{T}^{T} T \int_{T}^{T$						
-	$= \lim_{T \to \infty} \frac{1}{T} \int_{T} \left[\sum_{k} q(kT_{s}) sinc(2\pi Bt - k\pi) \right]^{2} dt$						
	$T \to \infty T \int_T \left[\frac{\sum_i T_i - \sum_i T_i}{k} \right]$	+++					
	Where $\widetilde{\widetilde{q^2(t)}}$ denotes the mean square power. Since the a since function						
	$sinc(2\pi Bt-n\pi)$ and $sinc(2\pi Bt-m\pi)$ are orthogonal ever where but at $n=m$ we find that						
-							
	$\widetilde{q^{2}(t)} = \lim_{T \to \infty} \frac{1}{T} \int_{T} \sum_{k} q^{2}(kT_{s}) \operatorname{sinc}^{2}(2\pi Bt - k\pi) dt$						
	$= \lim_{T \to \infty} \frac{1}{T} \sum_{k} q^{2}(kT_{s}) \int_{T} sinc^{2}(2\pi Bt - k\pi) dt$						
П							
٦	From the orthogonality relationship it follows that						
-	$\widetilde{q^2(t)} = \lim_{T \to \infty} \frac{1}{2BT} \sum_{k} q^2(kT_s)$						
	Assuming that the error is equally likely be anywhere between $\left(-\frac{\Delta v}{2},\frac{\Delta v}{2}\right)$ we will find that the						
	quantization noise is						
	$N_q = \widetilde{q^2(t)} = \frac{m_p^2}{3I^2}$						
	32						
E-	Since the power of the message signal						
-	$S_0 = \widetilde{m^2(t)}$						
	Class: Digital Communications Dentato 2012	Dentato 2012					
	1 2 3 4						

	1 2 3 4					
	Sampling Theorem Notes					
\vdash	It is clear that the Signal to Quantization Noise Ratio (SQNR) is					
A	$\frac{S_0}{N_q} = 3L^2 \frac{\widetilde{m^2(t)}}{m_p^2}$	A				
-	Quantization will be in addition to whatever other noise is present in the system.					
	Example 4: Power of Quantized Signal					
	Question: If an audio signal has average power of 0.1W and a peak voltage of 1V. What is the resulting SQNR if L = 50,000 levels.					
В	Answer: When you see average power think mean square power or $\widetilde{m^2(t)}$ unless otherwise noted. With this we have					
F	$\frac{S_0}{N_q} = 3L^2 \frac{\widetilde{\overline{m^2(t)}}}{m_p^2} = 3(50,000)^2 \frac{0.1}{(1)^2} = 88.7506 dB$					
	Where a the decibel value is calculated as					
	$\frac{S_0}{N_q}dB = 10log\left(3L^2\frac{\widetilde{\overline{m^2(t)}}}{m_p^2}\right)$					
c	Question: How many bits would be required to represent one sample from this audio signal?					
	Answer: $log(x) log(50000)$					
\perp	$log_b(x) = \frac{log(x)}{log(b)} = \frac{log(50000)}{log(2)} = 15.61$	-				
	Well there is no such thing as 15.61 bits so we must round up to 16 bits in order to represent the largest possible quantization of the signal.					
D	Some Applications of the Sampling Theorem					
	Sampling theorem is important because it allows a continuous signal to be sampled and then transmitted as a discrete number rather than a continuous time signal. Processing a continuous signal is then equivalent to processing a discrete signal. Discrete values can be transmitted by multiple variations of a pulse train.					
	Pulse Amplitude Modulation (PAM)					
E		E				
F	PAM					
	Class: Digital Communications Dentato 2012					
	1 2 3 4					

	1	2	3	4		
		Sampling Theo	rem Notes			
Н					-	
\Box	Example 5: Data Transmission and Time Multiplexing					
	Question: A wireless communication provider would like to time divide voice data from as many users as possible in order to transmit it over a new wireless link that has a bandwidth of 20MHz. In order to minimize data errors, engineers decide that they must sample data on the link at 20% above the Nyquist rate. If we can only transmit 2bits/s/Hz					
+		aximum sampling rate that	can be achieved for this	new wireless	+	
	channel? (b) How many bits/s can be transmitted on this channel? (c) If each user will be transmitting data at 500Kbs/s how many users can this channel serve?					
В	Answer: The Nyquist sampling criteria says that we must sample at $T_s < \frac{1}{2B}$. In this case we have a channel that has $2B = 20 \mathrm{MHz}$ so $B = 10 \mathrm{MHz}$, but we must also account for the 20% over sampling that engineering has advised us of thus $2B = 20(1-0.20)\mathrm{MHz}$ which means that our max bandwidth is really only $B = 8 \mathrm{MHz}$. Since we can only					
	If each user transr	z we find the maximum binits 500Kbs/s we find that	trate of the channel is $\frac{1}{2bi}$ the channel can service 8	$\frac{dts/sHz}{dts} = 4Mbits/s$. Users.		
С					c	
					-	
					-	
					٦,	
					1	
					1	
					+	
E					E	
					+	
C	Class: Digital Communicatio	ns		Dentato 2012		
	1	2	3	4	Т	