RELATIONAL DATA ANALYSIS (or NORMALISATION)

Lecture Notes:

1. What is Relational Data Analysis?

Relational Data Analysis, or Normalisation, is a technique used extensively for database design, it is based on work developed by Codd, which originally aimed to automate the process of data design. This did not happen, but the technique, is widely used by analysts. Codd developed 3 stages of normalisation known as 1st, 2nd and 3rd normal form. These have been extended to include 4th and 5th normal form, however we will only be looking at the first 3 as these are the most widely used.

It is a 'bottom up' technique, based on an analysis of individual data items and their relationships, (deduced from the way they are grouped together in documents). This is distinct from Logical Data Structuring (or Entity Relationship Modelling) which is a 'top down' approach - it starts from a high level and then begins to look at the underlying detail. Logical Data Structuring is an intuitive, subjective technique, whereas Relational Data Analysis is a formal, mathematically based technique - it is based on relational algebra and calculus.

2. Where does Relational Data Analysis Fit in SSADM?

If we were doing a "proper" SSADM analysis, we wouldn't do Relational Data Analysis straight after Logical Data Structuring. Logical Data Structuring comes in Stage 2 of SSADM, "Specification of Requirements", whereas Relational Data Analysis comes in Stage 4, "Data Design". However, for teaching purposes, it assists understanding if we look at the two techniques one after the other.

3. Steps in Relational Data Analysis

3.1 Extract Data from Data Source & Represent it in Unnormalised Form

The data source will usually be an input or an output of the system, whether a screen, a form, a format or a report. Let's take a student module registration form, (from a system to administer a modular degree scheme).

Student Name:	Reg #: 123456789			
Course: Biochemistry		Year: 3		
Module Code	Module Name			
GN 301 GN 302 GN 303	Introduction to Genetic Engineering Advanced Genetic Engineering Social Consequences of Genetic Eng etc			
Project Details				
Project Code:	PR370/94			
Project Title: Building a Group of Friends				
Project Supervisor: Frank N. Stein				

To represent that data in unnormalised form, simply write the *name* of each data item, showing where there are repeating groups. I do this by enclosing them in brackets, which may be nested if there are repeating groups in the repeating groups. So, for the above document:

UNF STUDENT

Student Number

Course

Year

Student Name

(Module Code

Module Name)

Project Code

Project Title

Project Supervisor

When you have your data in UNF you need to pick a key. This should ideally be unique on the data source, but you may have to use a combination of items to get a unique identifier. In theory, the key can be anything, but it makes sense to have a "reasonable" key, and to avoid textual keys. So here, although Project Code is unique on the document, and could in theory be used as the key, it makes more sense to use Student Number, as student is what we are storing data about we have underlined it.

3.2 Move from Unnormalised Form to First Normal Form

To go to 1NF, take out the repeating groups, *taking the key with them*, and remove them to separate "relations", and identify new key(s) for them as well, so that they too are uniquely identifiable.

So for our example:

<u>UNF</u> <u>1NF</u>

STUDENT STUDENT

Student Number Student Number

Course Year Year

Student Name
(Module Code
Module Name)

Student Name
Project Code
Project Title

Project Code Project Supervisor

Project Title

Project Supervisor STUDENT_MODULE

Student Number Module Code Module Name

3.3 Move from First Normal Form to Second Normal Form

To go from 1NF to 2NF, just look at the relations with more than one key. Check that each data item within them *depends on all keys*. If it doesn't, remove it, together with the key(s) on which it does depend, to a new relation.

In our example, we only have one relation with a compound key:

Student Number Module Code Module Name

To work out whether the data item (in this case), depends on both keys, try thinking about the actual data values. If the data item depends on a key, its value will change if there is a different value for the key. So, looking at this relation, we can consider the value of Module Name with different keys;

Student Number: 123456789 Module Code: GN301

Module Name: Introduction to Genetic Engineering

With a different Student Number, we would get the following values:

Student Number: 987654321 Module Code: GN301

Module Name: Introduction to Genetic Engineering

With a different Module Code, we would get the following values:

Student Number: 987654321 Module Code: GN302

Module Name: Advanced Genetic Engineering

Therefore, we can see that Module Name depends *only* on Module Code, so our 2NF looks like this:

UNF	1NF	2NF

STUDENT	STUDENT	STUDENT
Student Number	Student Number	Student Number
C	Carres	Carre

Course Course Year Year Year

Student Name Student Name Student Name
(Module Code Project Code Project Code
Module Name) Project Title Project Code Project Supervisor Project Supervisor

Project Title

Project Supervisor STUDENT_MODULE

Student NumberSTUDENT_MODULEModule CodeStudent NumberModule NameModule Code

MODULE

Module Code

Module Name

We are left with a relation containing only the codes for student and module, but this is fine; we may well find data associated with such a relation on another document, (such as a record of student marks), and in any case, we do need to know which student is taking which module.

3.4 Move From Second Normal Form to Third Normal form

To go to 3NF, we examine all relations, to check that the data items each contains depends on the key(s), rather than on another data item. The test is a similar one as to 2NF - would the data item's value change if the value of another data item was changed?

So for our example, we can see that Project Title and Project Supervisor would change if Project Code were altered. These data items should therefore be removed to another relation, using the data item they depend on as their key. This data item should be left in the original relation, and should be marked as a foreign key, thus:

<u>UNF</u>	<u>1NF</u>	<u>2NF</u>	<u>3NF</u>
STUDENT	STUDENT	STUDENT	STUDENT
Student Number	Student Number	Student Number	Student Number
Course	Course	Course	Course
Year	Year	Year	Year
Student Name	Student Name	Student Name	Student Name
(Module Code	Project Code	Project Code	Project Code #
Module Name)	Project Title	Project Title	STUDENT_MODULE
Project Code	Project Supervisor	Project Supervisor	Student Number
Project Title			Module Code
Project Supervisor	STUDENT_MODULE	STUDENT_MODULE	
	Student Number	Student Number	MODULE
	Module Code	Module Code	Module Code
	Module Name		Module Name
		MODULE	
		Module Code	PROJECT
		Module Name	Project Code
			Project Title
			Project Supervisor

The relations defined in 3NF are said to be normalised.

Now try and do this with the following examples:

Drug Card

Patient No: 923 Surname: Moneybags Forename: Maurice

Ward No: 10 Ward Name: Barnard

Drugs Prescribed:

Date	Drug Code	Drug Name	Dosage	Tim
20/5/94	CO2355P	Cortisone	2 pills 3 x day after meals	14 days
20/5/94	MO3416T	Morphine	Injection every 4 hours	5 days
25/5/94	MO3416T	Morphine	Injection every 8 hours	3 days
26/5/94	PE8694N	Penicillin	1 pill 3 x day	7 days

Staff Allocation Sheet

Project Code: 3411 Project Description: New Accounts
Customer Number: 3475 Customer Name: British Bakers

Staff No	Name	Grade	No of Days
34	Bloggs	S. Prog	12
12	Jones	Analyst	3
23	Brown	Manager	9
45	Williams	Teaboy	32

Invoice

Invoice Number: 3412 Date of Invoice: 23/10/94
Customer Number: 3475 Customer Name: British Bakers

Customer Address: Bread House, Albert Sq, London, W14 3RT

Proj Desc	Start Date	Finish Dat	e Man Da	ys Co
New Accounts	12/8/94	11/11/94	222	£13,000
Delivery System	3/3/94	31/11/94	53	£34,000

Total Cost: £55,000

References:

Ashworth, C., Goodland, M., "SSADM, a Practical Approach", 1990

Self Directed Study:

1) If we don't finish the Drug Card, Staff Allocation, and Invoice, in the lecture and tutorial, do them in your own time.

Drug Card Solution

<u>UNF</u>		<u>1NF</u>		<u>2NF</u>		<u>3NF</u>
PATIENT		PATIENT		PATIENT		PATIENT
Patient No		Patient No		Patient No		Patient No
Surname		Surname		Surname		Surname
Forename		Forename		Forename		Forename
Ward No		Ward No		Ward No		Ward No#
Ward Name		Ward Name		Ward Name		
{Drug Code		PATIENT_I	DRUG	PATIENT_I	DRUG	WARD
Date		Patient No		Patient No		Ward No
Drug Name		Drug Code		Drug Code		Ward Name
Dosage	<u>Date</u>		<u>Date</u>		PATII	ENT_DRUG
Dosage Time}	<u>Date</u>	Drug Name	<u>Date</u>	Dosage	PATII Patient	_
_	<u>Date</u>	Drug Name Dosage	<u>Date</u> Time	Dosage		No _
_	<u>Date</u>	•		Dosage	Patient	No _
_	<u>Date</u>	Dosage		Dosage DRUG	Patient	No Code
_	<u>Date</u>	Dosage		C	Patient	No Code Date
_	<u>Date</u>	Dosage		DRUG	Patient	No Code Date Dosage
_	<u>Date</u>	Dosage		DRUG Drug Code	Patient	No Code Date Dosage
_	<u>Date</u>	Dosage		DRUG Drug Code	Patient	No Code Date Dosage Time

Staff Allocation Sheet Solution

<u>UNF</u>	<u>1NF</u>	<u>2NF</u>	<u>3NF</u>
PROJECT	PROJECT	PROJECT	PROJECT
Proj Code	Proj Code	Proj Code	Proj Code
Proj Desc	Proj Desc	Proj Desc	Proj Desc
Cust No	Cust No	Cust No	Cust No#
Cust Name	Cust Name	Cust Name	CUSTOMER
{Staff No	PROJECT_STAFF	PROJECT_STAFF	Cust No
Staff Name	Proj Code	Proj Code	Cust Name
Grade	Staff No	Staff No	PROJECT_STAFF
No of Days}	Staff Name	No of Days	Proj Code
	Grade	STAFF	Staff No
	No of Days	Staff No	No of Days
		Staff Name	
		Grade	STAFF
			Staff No
			Staff Name
			Grade

Invoice Solution

UNF 1NF 2NF 3NF **INVOICE INVOICE INVOICE INVOICE** Invoice No Invoice No Invoice No Invoice No Date of Invoice Date of Invoice Date of Invoice Date of Invoice Cust No **Total Cost Total Cost Total Cost** Cust Name Cust No Cust No Cust No # Cust Address Cust Name Cust Name {Proj Desc **CUSTOMER** Cust Address **Cust Address** Start Date **INVOICE PROJ INVOICE PROJ** Cust No Finish Date Invoice No Invoice No CustName Cust Address Man Days Proj Desc Proj Desc Cost} Start Date **PROJECT Total Cost** Finish Date Proj Desc **INVOICE PROJ** Man Days Start Date Invoice No Cost Finish Date Proj Code Man Days Cost **PROJECT** Proj Desc Start Date Finish Date Man Days Cost