

USACERL Technical Report EC-84/84
Merch 1994

Evaluating the Degree of Annoyance Caused by Military Noise

Results of Tests Done at Munster, Federal Republic of Germany

by
Paul D. Schomer
L. Ray Wagner
L. Jerome Benson
U. S. Army Construction Engineering Research Laboratories

Edmon Buchta Karl-Willhelm Hirsch Detlef Krahé Institute für Lärmschutz

Of noises created by Army testing and training, impulsive noises are the most difficult to assess. General community noise is currently assessed using A-frequency weighting and "energy equivalent" level. Adjustments or "penalties" are sometimes added to impulsive sound to account for the greater annoyance of that sound type. This pair-comparison study's objective was to: (1) further define and develop "penalties" to help assess military noise and (2) investigate community response to blast noise by focusing on blasts, small arms, and tracked vehicles noises.

Results showed that real sounds in real settings yield results different from artificial sounds in laboratory

settings. The sound of a vehicle passing, measured near a subject's ears, differs in annoyance from an equivalent computer-generated pink-noise sound by 10 db or more. Compared to real, tracked vehicles, small arms also seem to fit an equal energy model and require penalties on the order of zero and 80 dB, respectively. Blast noise does not appear to fit an equal energy model. A 1-dB increase in blast C-weighted sound exposure level (CSEL) is equivalent to a 2-dB increase in the sound level of noncommon sound sources such as vehicles.

DTIC QUALITY INSPECTED 1

94 8 22 085

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR

USER EVALUATION OF REPORT

REFERENCE: USACERL Technical Report EC-94/04, Evaluating the Degree of Annoyance Caused by Military Noise

Please take a few minutes to answer the questions below, tear out this sheet, and return it to USACERL. As user of this report, your customer comments will provide USACERL with information essential for improving future reports.

1. rep	Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which ort will be used.)
2. pro	How, specifically, is the report being used? (Information source, design data or procedure, management cedure, source of ideas, etc.)
3. ope	Has the information in this report led to any quantitative savings as far as manhours/contract dollars saved, rating costs avoided, efficiencies achieved, etc.? If so, please elaborate.
4.	What is your evaluation of this report in the following areas? a. Presentation: b. Completeness:
	c. Easy to Understand: d. Easy to Implement: e. Adequate Reference Material: f. Relates to Area of Interest:
	g. Did the report meet your expectations? h. Does the report raise unanswered questions?

i. General Comments. (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)

5. If you would like to be contacted l discuss the topic, please fill in the following	by the personnel who prepared this report to raise specific questions or owing information.
Name:	
Telephone Number:	
Organization Address:	

6. Please mail the completed form to:

Department of the Army
CONSTRUCTION ENGINEERING RESEARCH LABORATORIES
ATTN: CECER-IMT
P.O. Box 9005
Champaign, IL 61826-9005

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0186

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching exists accurate, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davie Highway, Suite 1204, Artington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0186), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank)

2. REPORT DATE

3. REPORT TYPE AND DATES COVERED

,,	March 1994	Final	neu	
4. TITLE AND SUBTITLE Evaluating the Degree of Ann	noyance Caused by Military N	loise	5. FUNDING NUMBERS 4A162720 A896 NN-TG1	
8. AUTHOR(S) Paul D. Schomer, L. Ray Wa Karl-Willhelm Hirsch, and De	•	on Buchta,		
7. PERFORMING ORGANIZATION NAME(S U.S. Army Construction Engi P.O. Box 9005 Champaign, IL 61826-9005		s (USACERL)	8. PERFORMING ORGANIZATION REPORT NUMBER EC-94/04	
 SPONSORINGMONITORING AGENCY R Office of the Chief of Engine ATTN: ENVR-E Room 1E685, The Pentagon Washington, D.C. 20310-2600 	ers		10. SPONSORINGAMONITORING AGENCY REPORT NUMBER	
11. SUPPLEMENTARY NOTES Copies are available from the 22161.	Copies are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA			
12a. DISTRIBUTION/AVAILABILITY STATES Approved for public release;			12b. DISTRIBUTION CODE	
Of noises created by Army testing and training, impulsive noises are the most difficult to assess. General community noise is currently assessed using A-frequency weighting and "energy equivalent" level. Adjustments or "penalties" are sometimes added to impulsive sound to account for the greater annoyance of that sound type. This pair-comparison study's objective was to: (1) further define and develop "penalties" to help assess military noise and (2) investigate community response to blast noise by focusing on blasts, small arms, and tracked vehicles noises. Results showed that real sounds in real settings yield results different from artificial sounds in laboratory settings. The sound of a vehicle passing, measured near a subject's ears, differs in annoyance from an equivalent computer-generated pink-noise sound by 10 db or more. Compared to real, tracked vehicles, small arms also seem to fit an equal energy model and require penalties on the order of zero and 80 dB, respectively. Blast noise does not appear to fit an equal energy model. A 1-dB increase in blast C-weighted sound exposure level (CSEL) is equivalent to a 2-dB increase in the sound level of noncommon sound sources such as vehicles.				
14. SUBJECT TERMS blast noise noise measurement	Munster, Feder	ral Republic of Germany	15. NUMBER OF PAGES 374 16. PRICE CODE	
noise assessment procedures			IO. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT SAR	
				

Foreword

This study was conducted for Office of the Chief of Engineers (OCE) under Project 4A162720A896, "Environmental Quality Technology;" Work Unit NN-TG1, "DOD Noise Source Human Response Characterization." The technical monitor was LTC Graven, ENVR-E.

The work was performed by Environmental Compliance and Modeling Division (EC), Environmental Sustainment Laboratory (EL), U.S. Army Construction Engineering Research Laboratories (USACERL) jointly with the German Federal Ministry of Defense (FMOD). The Institute for Noise Pollution (Institute für Lärmschutz [IFL]) served as contractor to FMOD. The USACERL principal investigator was Dr. Paul D. Schomer. Special thanks is expressed to Mr. Johann Kubat, Staatshochbauamt Bergen, and Mr. Marx, Staatshochbauamt Munster, whose professional assistance made it possible to conduct this study. Dr. John Bandy is Chief, CECER-EC and Dr. Michael J. O'Connor is Chief, CECER-FL. The USACERL technical editor was William J. Wolfe, Information Management Office.

LTC David J. Rehbein is Commander, USACERL, and Dr. L.R. Shaffer is Director.

Access	ion For	Ana
MTIS	GRA&I	3
DTIC T	'AB	
Unanno	ವಿದ್ದಾರ್ಥ	
Justif	Testion_	
Distribution/ Availability Codes		
	Avail an	d/or
Dist 1	Specia	1
4.1		·we

Contents

SF	298	1
For	eword	2
Lie	t of Figures and Tables	5
1	Introduction	1
	Background1	1
	Objectives	2
	Approach 1	2
	Mode of Technology Transfer 1	3
2	General Study Concepts	4
3	Deta Collection	1
	The General Area and Site	1
	The Subjects	1
	Acoustical Data Collection	7
	Control Sound	0
	Conduct of the Test4	0
	Test Conditions	7
4	Data Analysis	0
	Subject Response Data 5	0
	Subject Data Reduction	0
	Acoustical Levels	5
	Subject Data Results	6
5	Discussion	7
	Small Arms and Tracked-Vehicle Sounds—Indoor Data, Measured at Subjects'	
	Ears6	7
	Small Arms and Tracked-Vehicle Sounds—Outdoor Acoustical Data, Subjects Indoors	^
	A Model for Small Arms Noise	
	Blast Sound	
	Blast Noise Models	
	DIGOLITUISE MUUSIS	2
6	Conclusions 8	5
Ret	erences	7

Appendix A: Subject F	tesponee Data and Transition Analysis Curves for Small Arms
and Tracked and	I Wheeled Vehicles
Appendix B: Indoor	and Outdoor Measured Acoustical Data for Small Arms and
Tracked and W	heeled Vehicles, and Outdoor Acoustical Data for Blast
Sounds	B1
Appendix C: Indoor N	feasured Acoustical Data for Blast Sounds
Appendix D: Subject	Response Data by Room for Small Arms and Tracked and
Wheeled Vehicle	は
Appendix E: Subject	Response Data and Transition Analysis Curves, Grouped by
Measurement Se	ts, for Blast Sounds E1
Appendix F: Evaluation	ng the Degree of Annoyance Caused by Military Noise F1
Distribution	

List of Figures and Tables

Figures

1	Typical curve expected for a single test sound source and a range of control sound levels	5
2	Leopard II tank 1	7
3	Marder infantry fighting vehicle	8
4	Soldiers at the near gun fire site	9
5	Control Vehicle 1—tank transport. This figure shows Vehicle 1 just being started on a drive by the USACERL controller	1
6	Control Vehicle 2—large wrecker. This figure shows Vehicle 2 just being started on a drive by the USACERL controller. Other vehicles being staged can be seen in the background	2
7	Control Vehicle 3—bus	3
8	Control Vehicle 4—cargo truck	4
9	Control Vehicle 5—diesel "Jeep." The test house can be seen in the background	5
10	Control Vehicle 6—gasoline-engine van. The test house can be seen in the background	6
11	Map of the immediate test site area. This map shows the test house, control house, roads and staging area for the wheeled vehicles, road for the tracked vehicle and the near- and far-gun fires sites. The blast sites were more distant	7

12	The test house layout. It indicates the location of the subjects and the loud speakers that produced the white/pink noise control sound. It also indicates the location of the four outdoor microphones. Three were located next to the test house (10 cm from the wall surface), and the fourth (free-field) was located 6 m west of the test house and in line with its front face
13	A subject room showing the front wall, control lights, and loud speakers for generating the pink/white-noise control sound
14	Subjects seated in a test room
15	The instrument control room—data collection station
16	The instrument control room—test control station
17a	A schematic representation of the American instrumentation 38
1 7 b	A schematic representation of the German instrumentation 39
18a _.	White-noise control sound amplitude envelope. This sound was used as the control sound for the large blast test sound
18b	Pink-noise control sound amplitude envelope. This sound was used as the control sound for Leopard II tank, near gun fire (60 shots), control vehicle 2 sounds
19	An example of the machine-readable subject response test form 43
20	A supervisor starting the Leopard II tank. Note the large paddle used for signalling
21	The windows—open test conditions
22	An outdoor subject group 49
23	Indoor data (all rooms) for set 7—large blast sounds compared with vehicle noise as the control sound
24	Indoor data (all rooms) for set 8—small blast sounds compared with vehicle noise as the control sound

25	Indoor data (all rooms) for set 10—large blast sounds compared with vehicle noise as the control sound
	veriled 1000 to the control addity
26	Linear regression lines fit to the outdoor and corresponding indoor control vehicle sound levels for conditions of windows closed (26a) and windoes
	open (26b)
27	Data and regression line for blast data measured indoors during sets 1
	through 5; data for the windows-closed condition
28	Data and regression lines for earlier results from GTA and APG (solid
	diamonds) along with the new white-noise control results from Munster
	(open circles)
29	Indoor-measured blast data gathered using wheeled-vehicle sound as the
	control
30	Data for the indoor groups (windows closed (circles) and open
	(triangles)—sets 1 through 10) with the acoustical sound levels measured
	outdoors
31	The Oklahoma City sonic-boom data
Tables	
1a	Test sound sources and corresponding control sound sources. For the
	white/pink noise control sound sources, the control levels were adjusted
	in ± 5 dB steps depending on received test sound levels and the response
	data already collected
1b	Middle levels for the white/pink noise control sound by set. These were
	adjusted in ±5 dB steps depending on received test sound levels and the
	response data already collected. The goal was to have the equivalency
	point at the middle of the control range which was the sound level of V3
	or V4 for the vehicles and the middle level for the white/pink noise control
	sounds. The most accurate estimate of a "penalty" possible is provided
	when the equivalency point lies in the middle of the analysis range. (The
	white noise control level in set 1 was inadvertently off by 3 dB from the
	planned level.)

2 a	Outdoor, free-field (no reflecting surface) test and control-vehicle sound levels (ASEL) by test halves. Most sources remained constant throughout the test, but the gun fire levels changed slightly because of the nature of the weapons and the blank ammunition being fired. Since the blast levels changed a lot with weather conditions, Table 2b contains the blast sound levels by set
2b	Outdoor, large and small blast charge size sound levels (CSEL) by test set
3a	Order of the sound pairs for the first half of each test. The designation (pair 1) "+5 Pink Noise" shows that the control sound level for that set and test sound was pink noise presented at 5 dB above the "base" sound level. (Table 1b gives "base" sound level by set and test sound.) 45
3b	Order of sound pairs for the second half of each test. The designation (pair 1) "-0 Pink Noise" shows that the control sound level for that set and test sound was pink noise presented at the "base" sound level. (Table 1b gives the "base" sound levels by set and test sound.)
4	Example large blast data for sets 7, 8, and 10. This table contains indoor data (all rooms) for large blast sounds compared with vehicle noise as the control sound
5	Aggregation of blast data by received level
6	All acoustical data used for the overall analysis. These data are energy averaged and rounded to the nearest ½ dB. In general, the indoor data were measured using the eight indoor microphones, and, in general, the outdoor data were gathered using the free-field microphone. Blast data were gathered using the microphone located about 10 cm from the middle of the front-facing wall of the test house, and data for the outdoor group were measured with a microphone placed at ear height and in the midst of this group
7	Overall acoustical levels and resulting "penalties" by test room and aggregated across rooms for small arms and tracked-vehicles. The acoustical data are for sets 1 through 5, windows closed. The subjects are located indoors. The acoustical data were gathered at the location of the subjects except for those designated as "outdoors," for indoor subjects

•	Overall acoustical levels and resulting "penalties" by test room and aggregated across rooms for small arms and tracked-vehicles. The acoustical data are for sets 6 through 10, windows open. The subjects are located indoors. The acoustical data were gathered at the location of the subjects except for those designated as "outdoors," for indoor subjects
9	Overall acoustical levels and resulting "penalties" for the outdoor group for small arms and tracked-vehicles. The acoustical data are for sets 7 through 10. The acoustical data were gathered at the location of the subjects. Only 6 subjects could properly hear the white-noise control sound. Their data are in the first column. The "extra" subjects (second column) could hear the wheeled-vehicle control sound accurately, but not the white-noise control sound. The third data column contains the combined results for the first two groups when the control sound was generated by wheeled vehicles
10a	Blast and control levels (measured at subjects) and resulting differences by "bin" (Table 5).
10b	Blast and control levels (measured at subjects) and resulting differences by set
11a	Blast and control levels (measured outdoors in a free-field) and resulting differences by "bin" (Table 5). There are no white noise control data "outdoors."
11b	Blast and control levels (measured outdoors in a free-field) and resulting differences by set. There are no white noise control data "Outdoors." Data for sets 1 and 10 indoors and 7 and 10 outdoors are included in Table 11a
12	Blast charge sizes by set for the large and small charges respectively. For sets 5 and 10, the weather conditions changed sufficiently during the test to warrant a change in charge sizes between the first and second halves. With this change in charge size, the received sound levels remained constant enough from first half to second half so that all of the data for the set could be analyzed together 66

13	Overall acoustical levels and resulting "penalties" for small arms and tracked-vehicles. The acoustical measurements were made near the location of the subjects; indoors, for indoor subjects, outdoors, for outdoor subjects. The numbers in parenthesis are the American and German values, respectively	. 68
14	Differences between using wheeled-vehicles and a 500 Hz octave-band of pink noise as the control sound source compared with the "equivalency" found from the sound of V2 directly compared with the pink-noise control sound. Note the internal consistency. With windows closed, the difference is about 12 dB; with windows open, the difference is almost the same at about 11 dB; and outdoors, the difference is about 8 dB	. 69
15	Overall acoustical levels and resulting "penalties" for small arms and tracked-vehicles. The subjects are located indoors but the acoustical data are gathered outdoors in a free-field next to the house. (There are no outdoor pink-noise levels since pink-noise sound was presented to the subjects via oudspeakers located indoors.)	. 72
16	Overall acoustical test sound levels, "corrected" control sound levels and resulting "penalties" for small arms and tracked-vehicles. The subjects are located indoors but the acoustical data are gathered outdoors in a free-field next to the house	. 75
17	Data taken from the Oklahoma City data as used in the National Academy of Science study of high-amplitude impulse noise. In this table, ADNL is calculated from the percent highly annoyed. Since there were 8 booms per day, 9 decibels are subtracted from ADNL and 49.4 is added to yield a "normal" sound ASEL equivalent in annoyance to the CSEL for each boom.	ga

1 Introduction

Background

Proper assessment of the noise created by Army testing and training remains a question that is not fully answered (Schomer and Averbuch, August 1989; Schomer, December 1991; Schomer and Neathammer, April 1987; and Schomer, January 1986). The most difficult noises to assess are the impulsive noises generated by large weapons, small arms, and helicopters (Sutherland, November 1979). These noises are more difficult to assess than general community noise because their impulsive character adds to the annoyance that they generate. The nature of this "addition" is not well understood. Currently, general community noise is assessed using the A-frequency weighting and some form of "energy equivalent" level (American National Standard, 1988; American National Standard, 1990). In the United States, the day-night average sound level (DNL) is used. For clearly impulsive sound, adjustments or "penalties" are sometimes added to the formulation to account for the increase in annoyance generated by the impulsive character of the sound (International Organization for Standardization, 1990).

Adding a penalty is current practice for small arms and helicopter noise (Air Installations Compatible Use Zones, November 1977; Army Regulation (AR) 200-1, April 1990). Blast noise, which is one form of high-energy impulse noise, is assessed using the C-weighting, and, in the United States, the (C-weighted) daynight average sound level (CDNL) is currently used as the fundamental unit of assessment (American National Standard, 1986). Since the day-night average is retained for blast noise, converting from A- to C-weighting is equivalent to adding about a 20 dB penalty (Schomer et al. 1978). But the criteria levels are also changed, and this change is, in effect, like adding a DNL-dependent penalty of up to 5 dB. As yet, precise values for these penalties still need to be determined.

Over the past several years, the U.S. Army Construction Engineering Research Laboratories (USACERL) has performed a series of experiments that have had two purposes: (1) to better determine penalties for impulsive sound sources like helicopters and small arms, and (2) to better understand human and community response to blast sound. These experiments differ from other research in that they

use subjects placed in real houses, judging real test sounds generated during the experiment, outdoors, at realistic distances from the test houses. These experiments have been performed as paired-comparison tests. Artificial noise generated through a loudspeaker in the subject test rooms has been the control sound.

These impulsive noise sources are problems worldwide and not just in the United States, so some tests have been performed jointly with researchers in other countries with the experiment actually conducted in that country. Helicopter tests have been performed in Champaign, IL (Schomer and Neathammer, April 1987) and Tustin, CA (Schomer, Hoover, and Wagner, 1991). Blast noise tests have been performed in Grafenwoehr Germany (Schomer, Buchta, and Hirsch, 1991) and Aberdeen Proving Grounds (APG), MD. Initial vehicle and small arms tests have also been conducted at Aberdeen. This current test is a joint German/American study performed in Germany.

Objectives

The purpose of the present test was (1) to further define and develop adjustments or "penalties" that can be used to assess military noise vis-a-vis normal, urban noises and (2) to develop a better understanding of community response to blast noise. In particular, this study concentrates on blast, small arms, and tracked-vehicle sounds. (The tracked vehicles are tanks and infantry fighting vehicles.)

Approach

This test follows the paired-comparison methods developed and used by USACERL for the past several years, but it adds a new dimension in paired comparison testing. This test maintains the use of real houses with real test sources of sound. Small arms are fired to create small arms sound; tanks drive by the houses to create tracked-vehicle sound; and plastic explosives are set off to create blast sound. But an innovation has been added to this test. Instead of just using control sounds that are electrically generated through loudspeakers in each test room, this test also uses real, wheeled vehicles as a source of control sound. Six sizes of wheeled vehicles were used to create six levels of control sound. The

New blast tests of window attenuation at Aberdeen Proving Ground. Only old windows have been tested to date, therefore results cannot yet be published.

subjects heard and compared the sound of a truck driving by to a burst of small arms fire, to an explosive sound, or to a tank driving by (at a further distance).

This study was performed at the German Army base at Munster. This was a joint project of the U.S. Army and the German Federal Ministry of Defense (FMOD). The Institute for Noise Pollution (Institute für Lärmschutz) (IFL) served as contractor to FMOD. USACERL provided most of the indoor and some of the outdoor acoustical measurements, control and supervision of the sources of sound, and overall conduct of the experiment. Separately, IFL provided outdoor and some indoor acoustical measurements; hiring and supervision of subjects; vehicles and munitions to create the test sounds; and renovation and repair of the test houses. Dr. Buchta and Dr. Hirsch, of the FMOD, suggested the innovation of using wheeled vehicles as a control sound.

Data analysis has been accomplished in parallel in Germany and the United States. The German analysis has concentrated on fitting curves to small group, pooled responses and corresponding energy-average acoustical data; the U.S. analysis has concentrated on larger group, pooled responses and the same energy average data. Both results are based on maximum likelihood estimation and use transitional curve fitting with a cumulative distribution, sigmoid, or logit function, and both analyses yield virtually identical results. The U.S. analysis is described in this paper, but both sets of results are reported and averages of the two are used for purposes of discussion and development of conclusions.

Mode of Technology Transfer

These data will be used to help set joint North Atlantic Treaty Organization/Command Control and Monitor System (NATO/CCMS) noise assessment procedures and criteria. They will be used in the United States to help reformulate National Academy of Science (NAS) recommendations. In turn, these NAS reports will influence American National Standards Institute (ANSI) Standards and Army policy.

A separate report will be issued in German by FMOD.

2 General Study Concepts

The study was designed as a paired comparison test where the subjects were presented pairs of sounds and asked, for each pair, which was more annoying, the first or the second sound. For this study, the test sound was one of three categories of military sounds that came from: (1) tracked vehicles, (2) small arms fire, or (3) large blasts. The other sound in a pair was one of two control sounds, which were: (1) the sound of a wheeled vehicle passing by, or (2) a computer-generated white noise. Either the test sound or the control sound was presented first; the order was random, but balanced. This study used juries of subjects placed in adjacent rooms on the front side of the test house, or, in the later stages of the test, at an outdoor location that was in line with the other test rooms.

Figure 1 shows a hypothetical curve expected from the experiment for a single military source. The theoretical curve assumes a transitional shape in the general form of a sigmoid or Gaussian cumulative probability curve. When the control is very quiet, 100 percent of the subjects will find the test source more annoying; when the control is very loud, all the subjects will find the control more annoying.

Many actual curves of the type indicated in Figure 1 were generated; each yields a pair of numbers: a military test sound exposure level (SEP) (A-weighted for all sounds except blast sound) and corresponding control sound A-weighted sound exposure level (ASEL). This pair of levels (point) occurs when 50 percent of the subjects perceived the test sound to be more annoying than the control sound and 50 percent perceived it to be less annoying. This 50 percent point is marked on Figure 1. This point is taken as the equivalency point, that is, the point where the test sound causes the same annoyance as the control sound. The number of decibels that the test sound differs from the control sound is the "offset" or "adjustment." This is the decibel difference between the test sound SEL and the control sound ASEL for equivalent annoyance. For the hypothetical example in Figure 1, the military test sound was generated by a blast and had a C-weighted SEL (CSEL) of 91 dB; the equivalent wheeled-vehicle control sound ASEL is 77 dB at the 50 percent point. So a 14 dB offset or "penalty" must be added to the test

sound CSEL to make it equivalent to a control sound generating the same annoyance. In this example, the penalty is negative; it is a bonus.

In this hypothetical example, the Leopard II is compared with wheeled-vehicle control sounds. The "equivalency" point is when the Leopard II had an indoor-measured ASEL of 62 and the equivalently annoying control vehicle ASEL was 59. This indicates that in terms of decibels, the Leopard II creates "3 dB" less annoyance that an equivalent wheeled vehicle; it has a "negative penalty."

The tracked vehicles consisted of a Leopard II main battle tank and a Marder armored personnel carrier (Figures 2 and 3). Both vehicles were driven forward and reverse during the test to avoid the additional noise of turning around or returning to a single starting point, since this extraneous noise could have affected the subject responses when other study sounds were present. The direction these vehicles faced and the end of the travel path at which they started were changed from test to test to obtain all possible combinations.

The small arms were 7.62 mm German G3 rifles fired from two distances: a "near" and "far" distance, which were respectively 125 and 200 meters from the test house. For safety reasons, only blank ammunition could be used. Two different firing rates were used at the near site. A rate of 60 rounds in 30 seconds was used at both sites throughout the entire study. In addition, a rate of 6 shots in 3 seconds was used at the near site in sets 1 through 5, and a 10 times slower rate of 6 shots in 30 seconds was used in sets 6 through 10. This change was done to test differing hypotheses on how people temporally integrate sound in terms of annoyance. Figure 4 shows soldiers at the near gun fire site.

The primary blast site was located 1 km from the test house. A secondary site, located 1.8 km from the test house, was used to lower the received blast sound levels when weather conditions were such that the primary site produced levels that were too high. Nominally, large and small blast charge sizes of 2 kg and 500 g were used, but these were changed (e.g., up to 4 kg or down to 1 kg for the large blast) when needed to get received, flat-weighted peak levels that were as close as possible to 121 dB and 115 dB for the large and small blast, respectively.

The control vehicles, except for the smallest, were supplied by the German Army and consisted of six wheeled vehicles. These vehicles generated sound levels that ranged from about 65 to 95 ASEL (in roughly 5 dB steps) at a free-field (no reflecting surface) microphone in line with the front face of the test house. For

USACERL TR EC-94/04

Figure 3. Marder infantry fighting vehicle.

USACERL TR EC-94/04

ease of designation, these vehicles were designated V1 through V6 with V1 being the loudest. According to this scheme, V1 was a tank transport truck, V2 was a large tow truck, V3 was a bus, V4 was a 2-ton cargo truck, V5 was a diesel jeep, and V6 was a gas engine passenger van. Figures 5 through 10 respectively show these six vehicles. The test house can be seen in the background of some of these photographs. All of the wheeled vehicles passed by the test house west to east at the same distance, then looped back on an alternate, more distant road.

The tracked and wheeled vehicles were run on two different roads. Vehicles 1 through 6 were run on a long-existing graded dirt road 20 m from the front of the house, while the tracked vehicles ran on a new dirt road, graded from a farm field, approximately 170 m from the front of the house. Figure 11 shows the relationship of these roads and the blast and small arms sites.

The computer-generated control sound had a "haystack" temporal amplitude-envelope pattern with the final shape being determined by the military sound being tested. For the tracked vehicles and small arms fire, a 500 Hz octave band of pink noise was used as the control sound; for the blast sounds, a 200 to 1500 Hz band of white noise was used as the control sound. The blast control sound was identical to the control sound used in previous test situations at Aberdeen Proving Ground, Grafenwöhr Training Area (GTA) (Schomer, Buchta, and Hirsch, 1991), and USACERL (Schomer and Averbuch, 1989). To mimic the temporal pattern of the sources, the pink noise was presented for almost 30 seconds and the white noise for less than 1 second.

The wheeled-vehicle and pink/white-noise control sounds were intermixed throughout the test. All of the seven military test sounds were compared with wheeled-vehicle control sounds. The three louder military sources, which were the large blast, the Leopard II tank, and the near gun fire (60 shots), were compared with the five louder control vehicles, V1 through V5. The other military sources, which were the small blast, the Marder, the near gun fire (6 shots), and the far gun fire, were compared with V2 through V6. The three louder military sources and control vehicle 2 (V2) were compared with the computer-generated pink/white-noise control sound. There were five different levels of control sound for each

New blast tests of window attenuation at Aberdeen Proving Ground. Only old windows have been tested to date, therefore results cannot yet be published.

The tests at USACERL involved artificially generated blast sounds that were created with a giant shake table covered by a heavy membrane.

USACERL TR EC-94/04

Figure 7. Control Vehicle 3—bus.

Figure 8. Control Vehicle 4—cargo truck.

USACERL TR EC-94 04

Figure 9. Control Vehicle 5—diesel "Jeep." The test house can be seen in the background.

USACERL TR EC-94/04

Figure 10. Control Vehicle 6—gasoline-engine van. The test house can be seen in the background.

source. The test and control sound pairs were intermixed randomly throughout the test. Table 1a lists these test pairings.

As discussed later, the indoor control sounds were presented at 5 dB intervals depending on the sound source they were compared with. For the white/pink noise control sound sources, the control levels were adjusted in ±5 dB steps depending on received test sound levels and the response data already collected. The goal was to have the equivalency point at the middle of the control range, which was the sound level of V3 or V4 for the vehicles and the middle level for the white/pink noise control sounds. The most accurate estimate of a "penalty" possible is provided when the equivalency point lies in the middle of the analysis range. Table 1b lists the actual "base" levels by set. Table 2a lists the actual, outdoor, energy-average sound levels for the control vehicles and the test sounds (except

Test Sound	Control Sound 1	Control Sound 2	Control Sound 3	Control Sound 4	Control Sound 5
Large blast	V1	V2	V3	V4	V5
Small blast	V2	V3	V4	V5	V6
Near gun- 60 shots	V1	V2	V3	V4	V5
Near gun- 6 shots	V2	V3	V4	V5	V6
Far gun- 60 shots	V2 V3		V4	V5	V6
Leopard II	V1	V2	V3	V4	V5
Marder	V2	V3	V4	V5	V6
Large blast	-10 dB White	-5 dB White	Mid white (Large blast)	+5 dB white	+10 dB white
Leopard II	-10 dB Pink	-5 dB Pink	Mid pink (Leopard II)	+5 dB pink	+10 dB pink
Near gun- 60 shots	-10 dB Pink	-5 dB Pink	Mid pink (near gun)	+5 dB pink	+10 dB pink
Control vehicle-2	-10 dB Pink -5 dB Pink		Mid pink (vehicle 2)	+5 dB pink	+10 dB pink

Table 1a. Test sound sources and corresponding control sound sources. For the white/pink noise control sound sources, the control levels were adjusted in ± 5 dB steps depending on received test sound levels and the response data already collected.

blast sounds) by study halves. Since the blast levels changed a lot with weather conditions, Table 2b contains the blast sound levels by set.

Set Teet Source	1	2	3	4	5	6	7	8	9	10
Large blast	78	75	75	70	70	70	60	60	60	65
Leopard II	60	65	70	70	70	80	75	75	75	75
Near gun-60 shots	60	65	70	70	70	80	75	75	75	75
Control vehicle 2	65	65	70	70	70	80	75	75	75	80

Table 1b. Middle levels for the white/pink noise control sound by set. These were adjusted in ±5 dB steps depending on received test sound levels and the response data already collected. The goal was to have the equivalency point at the middle of the control range which was the sound level of V3 or V4 for the vehicles and the middle level for the white/pink noise control sounds. The most accurate estimate of a "pensity" possible is provided when the equivalency point lies in the middle of the analysis range. (The white noise control level in set 1 was inadvertently off by 3 dB from the planned level.)

The German researchers, who were responsible for the data analysis, collected these data using a free-field (no reflecting surface) microphone. Their data were consistent with the American data measured at the face of the test house.

These data were collected by the American microphone located at the front face (middle) of the test house and are also consistent with the free-field data collected by the German researchers.

Sound Source	ASEL (dB) First 5 Sets	ASEL (dB) Second 5 Sets			
Near gun - 60 shots	80	831/2			
Near gun - 6 shots	71	74½			
Far gun - 60 shots	691/2	72			
Leopard II	79½	79½			
Marder	721/2	73			
Control vehicle 1	95	95			
Control vehicle 2	86	85			
Control vehicle 3	79	78			
Control vehicle 4	76	76			
Control vehicle 5	71	71			
Control vehicle 6	62	61			

Table 2a. Outdoor, free-field (no reflecting surface) test and control-vehicle sound levels (ASEL) by test halves. Most sources remained constant throughout the test, but the gun fire levels changed slightly because of the nature of the weapons and the blank ammunition being fired. Since the blast levels changed a lot with weather conditions, Table 2b contains the blast sound levels by set.

		Set									
		1	2	3	4	5	6	7	8	9	10
Large	Peak	120	120	119	124	123	113	116	119	120	126
Blast	CSEL	97	96	96	100	100	89	91	94	96	103
Small	Peak	112	114	112	116	117	104	108	111	113	119
Blast	CSEL	89	91	89	93	94	81	85	88	89	97

Table 2b. Outdoor, large and small blast charge size sound levels (CSEL) by test set.

3 Data Collection

The General Area and Site

The test site was a group of three duplexes in a relatively isolated area surrounded by fields and inactive artillery ranges. The subjects were placed in the eastern most of the three duplexes and occupied four rooms in the front of the duplex. The two halves of the duplex were mirror images so the two inner rooms and the two outer rooms were virtually identical. Each room had two windows with at least one facing the vehicle roads and the small arms firing sites. The subjects sat on chairs and couches located towards the rear of each room; the seat locations were as distant as possible from the wall facing the road and firing sites, the wall containing the front windows. A German test supervisor sat with each test group in each test room. Figure 12 shows the duplex layout. All windows were painted translucent white to prevent the subjects from seeing the vehicles passing by or the rifle sites. Figures 13 and 14 show two duplex test-subject rooms; one view is of subjects and the other is of the front wall, control lights, and loud speakers for generating the pink/white-noise control sound. In the latter part of the study, sets 6 through 10, an outdoor group was located just west of the test house (Figure 12).

The control computer and measurement equipment were located in the adjacent house. This is also where the coordinator of the vehicles, blasts, small arms, and computer-generated sounds was located. Figures 15 and 16, respectively, show the instrument control room including the data collection station, and the test control station.

The Subjects

The subjects were hired and supervised by the German researchers. The subjects came from the local area and represented a reasonable cross section of the general public in terms of age and gender. No subject participated in more than one test. Overall, about 250 different subjects were used for this study.

Figure 14. Subjects seated in a test room.

Figure 15. The instrument control room—data collection station.

Acoustical Data Collection

The acoustical measurement devices consisted of indoor and outdoor microphones. Two Brüel and Kjær 4145 "1-in." microphones were placed in each subject room at the subject's ear height and located so as to obtain a good approximation to the stimuli heard by the subjects. These microphone positions (for one of the four test-subject rooms) are marked in Figure 12. In addition, three Brüel and Kjær 4921 outdoor microphone systems were located about 10 cm from the east, west, and south faces of the test duplex. A fourth Brüel and Kjær free-field (no reflecting surface) microphone was located about 6 m west and in line with the front face of the test house. All four outdoor microphones were at a height of about 2 m. (These outdoor microphones are indicated in Figure 12.)

The signals from one of the two microphones in each subject room were passed through a USACERL-developed line driver set to 30 dB gain, while the second microphone had no gain. This combination of gains was used to ensure accurate measurement of both low level (small arms and vehicles) and high level (blast) sounds. For the same reason, the built-in amplifier of the 4921 on the south face of the test house was set to 20 dB of gain while the other two were set to 40 dB. In general, the eight indoor microphones were used to develop estimates of the acoustical levels received by the subjects. Only the four amplified indoor microphones were used for measuring the very low level, far gunfire and vehicle (V6) sounds, and only the four unamplified indoor microphones were used for measuring the very high level blast sounds. With the exception of blast sounds, the free-field microphone was used to obtain the general outdoor sound levels; the microphone on the front face of the test house was used to determine the blast sound levels. When there was an outdoor group (data sets 7 through 10), the microphone normally positioned on the west face of the test house was moved and placed at subject ear height (about 1 m) in the middle of the outdoor subjects and was used to determine the levels received by this outdoor group (Figure 12).

The equipment room (Figure 15) housed all the equipment for analyzing and recording the signals taken from the houses and three outdoor microphones. Both indoor and outdoor signals were recorded on Panasonic model 3500 DAT recorders. They were amplified with a Tektronix AM502 amplifier and analyzed with a USACERL-developed integrating noise monitor and sound exposure level meter (Model 380). Figure 17a shows the American instrumentation.

The German researchers operated two independent microphones with corresponding analysis systems: one microphone outside and one inside. Figure 17b shows a diagram of the German instrumentation.

Control Sound

A personal computer (Figure 16) was used to regulate the control sound that was compared with each test sound. The starting point in generating a control sound was the playback of a DAT recording. One channel contained the white noise (from 200 to 1500 Hz), and the other channel contained the pink noise (500 Hz octave band). The amplitude envelope (Figure 18a) of either control noise type was created with a programmable attenuator connected to the personal computer. By using the programmable attenuator, the computer regulated the SEL and 10 dB "down time" of the control sound.

The white/pink noise control sounds were presented at 5 dB intervals depending on the sound source with which they were compared (see Table 1a). The sound would gradually rise from inaudible to 10 dB below the maximum level, and then rise to the maximum at a different rate. The sound would then decay in approximately the same manner. (See Figures 18a and 18b for examples of the amplitude envelopes of the two control sounds.) The sound in each house was generated by two loud speakers. The outdoor control sound was the same as the indoor sound, except the outdoor level was 20 dB higher. This 20 dB gain was used because the A-weighted attenuation of a typical American house from outdoors to indoors is about 20 to 25 decibels (A-weighted). For the white/pink noise control sound sources, the control levels were adjusted in ±5 dB steps depending on received test sound levels and the response data already collected. The goal was to have the equivalency point at the middle of the control sound range, which was the middle level for the white/pink noise control sounds. Table 1b contains the actual "base" levels by set.

Conduct of the Test

The test took approximately 3 hours, the first half starting at 1:00 PM, and lasting about 1 hour and 15 minutes. The subjects got a 15-minute break before the second half, which was similar to the first. The participants were told to meet 30 minutes before the test at a large commercial building about 1 km from the site to receive test instructions and to divide into groups. They were bused to the test site (by Vehicle 3) where they received additional information on the test and a folder with six test forms. The subjects were then split into random groups of five or six. They were taken to their test house by a supervisor who remained with the group throughout the test and who gave them more information on the conduct of

¹⁰⁻dB down time is the time period when the sound level is within 10 dB of the maximum level.

Figure 18s. White-noise control sound amplitude envelope. This sound was used as the control sound for the large blast test sound.

Figure 18b. Pink-noise control sound amplitude envelope. This sound was used as the control sound for Leopard II tank, near gun fire (80 shots), control vehicle 2 sounds.

the test. All of the subject training and supervision was performed by the German researchers. (Figure 14 shows a typical indoor group of test subjects.)

Before the actual test started, there was a pretest that used two pink-noise samples as the pair of sounds. For the first two pretest pairs, the ASEL of the two sounds in each pair differed greatly (10 dB). In the first pair, the first sound was of a much higher level, and in the second pair, the second sound was of a much higher level. In the third pair, the ASELs of the two sounds were equal. Supervisors would check the participants' answers after each pretest run and use the first two pretest pairs to verify that everyone understood the instructions. If a test subject chose the "wrong" answer during the pretest, the supervisor would re-explain the instructions to everyone. If necessary, more pretest pairs were run until everyone fully understood the instructions. The subjects used response form number 0 for the pretest. Figure 19 shows an example of the machine-readable subject response test form.

The judging of each pair of sounds consisted of four different segments. First, a red light would be lit, and subjects would concentrate on the first sound in the pair. Second, a yellow light would be lit, and the participants would listen to the second sound in the pair. Third, a green light would be lit and the subjects would have approximately 5 seconds to mark which sound was more bothersome or annoying. Finally all lights would be turned off, and the subjects would wait until the red light was turned on to signal the start of the next pair of sounds. The red and yellow light segments for the vehicles and small arms lasted for approximately 30 seconds, for the blasts, these lights were lit for about 5 seconds. (Figure 13 shows these control lights atop the loudspeakers in a subject room.)

The computer in the equipment room controlled all of the lights along with the generation of the control sound. The operator of this computer (see Figure 16) was in radio contact with the various military sound source sites. In this way, the entire test was fully coordinated and choreographed. USACERL supervisors were at each sound source site to coordinate activities. Because this was a binational study, communication of instructions to each sound source site was a concern. There was one supervisor (who was German and bilingual) with the small arms, one with the tracked vehicles, one at the blast site, and one with the wheeled vehicles. Figure 6 shows V2 ready to start and other wheeled vehicles being staged into sequence for drivebys, Figure 4 shows a supervisor starting V1 for a driveby, and Figure 20 shows a supervisor starting the Leopard II tank. Many of the German civilian vehicle drivers were bilingual, and the American supervisor used large signs (painted pin-pong paddles) to signal each driver. These signs were numbered for the wheeled vehicles and painted red and green ("ready and

1 20 %	عند شات	فاستقد أغافية		€23 €13 PR	108E Nr SEITE	
1.00 m	. •	13 (23 (3)				
	5		c42 c52 c62 c72	A Charles Self	EIHENFOLGE TAG RT POSITION	
3.3	i . 'a		المستر الأوائد والموارد		RTPOSITION ONAT	
34	4.5	And the second	the state of		HR	
	ist.	A COLUMN	CHAMPINE.	543 PE	ERSONEN Nr	
KREU	ZEN SIE D	AS EREIGNIS HR BELÄSTIGT	WIE SCHWER V			
AN, D Versuchs	Protes	Zweites	Sehr	Sehr		
Nr.	Ereignis		Einfach	Schwer		
1.	€1,5 See25	∈2. ⊒ - Στον Μενικον (1996 - 199	c 10 c 20 c 30			
3.	ा ? म्यात श्रेष	स्टेक्ट हैं क कुट 24 € 5 c2. 2			ANTWORTBOO	2EA
34.00	- 10		# \$30.623 F.3M		ANT WONTDOO	3EI
5.	c 1 .3	c 2 .3	c 1 2 c 2 2 c 3 2	c4> c5>		
- 6.5	e U		FREE 1832 638-			
7	c1,a	೯ ೭. ೨ ನಿರ್ವಾ ್ಟ್ ಎಡ್ಎ ಡಿ.ನಿ.	c 1 a c 2 a c 3 a	-		
8, S	્રાં લો. ક	- 2. 3	c10 c20 c30			
Targe 1			The second	MER. 653	NAME	
11.	c † .5	c 2. 5	c 1 3 c 2 3 c 3 3	c4= c5=		•
1 32.	4		A CONTRACTOR	A 44		
13.	c 1.3	€2. 3	c13 c23 c33	c43 c53		
	€ 49.2 9.	2.3	c10 c20 c30	AND AND	WICHILD	
15.			4 42 100 1001		REMITTEN SIE BI EISTIETE DED	
17.	c 1.2		c10 c20 c30		STÄRKE #2	
		17	Section 12	-	MARKIEREN SIE DEUTLICH	
19.	c 1,a Selvente in Ala	€2. 3	610 620 630		BEISPIEL: A B - D	5 E 2
21.	c 1.3	2. 3	c10 c20 c30		RADIEREN SIE TOTAL FALSCHE MARKIERUNGEN, FALLS NOTWEN	510
21.				A40: 54.	MARKIEHUNGEN, PALLS NOT WEN	UG
KREU AN, D	ZEN SIE D AS SIE ME	DAS EREIGNIS EHR BELÄSTIGT	WIE SCHWER \	MAR ES, CHEIDEN		
Versuchs Nr.	Erstes Ereignis	Zweites Ereignis	Sehr Einfach	Sehr Schwer		
1.	c 1 ,3	F2.3	C13 C23 C33			
3.	c 1.3	**************************************	- 10 c20 c30	• • • • • • •		
			A San Late 18 the Control of the Con			
5.	c 1. =	c 2. 3	€10 €20 €30	c40 c50		
100		THE REAL PROPERTY.	THE STATE OF	194 195		
7.	c 1. 3	c2.3	c10 c20 c30			
1		-2,-	c1: c2: c3:	* .		
1 6			7.5			
9.	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		c10 c20 c30			
11.	c 1, 2	c 2. 3				
11.	c1.3	4.1	4-8. 7. 7.			
11. 13.	c1,2 c1,2	c2,3	c10 c20 c30	c4> c5>		
11. 13.	c1,3 c1,3	c2.⊃	c10 c20 c30	c4> c5>		
11. 13. 15.	c1,3 c1,3	c 2. 3	c 10 c20 c30	c4> c5>		
11. 13. 15.	c1,3 c1,3	c 2. 3	c10 c20 c30	c45 c55		
11. 13. 15.	c1,3 c1,3 c1,3	c2.3	c12 c22 c32 c12 c22 c32 c12 c22 c32	c45 c55 c45 c55 c45 c55		
11. 13. 15. 17.	c1,5 c1,5 c1,5 c1,5	C2.3 C2.3 C2.3	c12 c22 c32 c12 c22 c32 c12 c22 c32	c42 c52		
11. 13. 15. 17.	c1,3 c1,3 c1,3 c1,3 c1,3	c2.5	c12 c22 c32 c12 c22 c32 c12 c22 c32	c42 c52 c42 c52 c42 c52 c42 c52		
11. 13. 15. 17.	c1,5 c1,5 c1,5 c1,5	C2.5 C2.5 C2.5 C2.5	c12 c22 c32 c12 c22 c32 c12 c22 c32	c42 c52 c42 c52 c42 c52 c42 c52 c42 c52		

Figure 19. An example of the machine-readable subject response test form.

Figure 20. A supervisor starting the Leopard II tank. Note the large paddle used for signalling.

go") for the tracked vehicles. The German military sergeants at the blast site also spoke excellent English.

The test consisted of 110 pairs of stimuli. For half the pairs of sounds, each military test sound was compared with its associated set of five wheeled-vehicle control sound levels, and the three loudest military test sounds along with V2 were each compared with five levels of computer-generated pink/white-noise control sound. This resulted in 55 comparisons. These pairs of sounds were presented in seemingly random order, with consideration for the return time for the control vehicles. The order of test and control sound within each pair was also apparently random. For the second half, each of the same 55 pairs of sounds were presented in a different random order, but for the second half the order of presentation within each pair, between the test sound and the control sound, was reversed as compared with the first half. Tables 3a and 3b list the 110 pairs of sounds used during each test.

		Fire	t Helf		
	1st Event	2nd Event		1st Event	2nd Event
1	V2	+5 Pink Noise	29	V1	Near Gun-60 shots
2	+10 Pink Noise	Leo II	30	-10 Pink Noise	Near Gun-60 shots
3	V5	Small Blast	31	+5 Pink Noise	Leo II
4	V3	Near Gun-60 shots	32	Large Blast	V3
5	V6	Far Gun-60 shots	33	+10 Pink Noise	V2
6	V2	Leo II	34	Far Gun-60 shots	V5
7	Small Blast	V4	35	-10 White Noise	Large Blast
8	Large Blast	+10 White Noise	36	V4	Leo II
9	+10 Pink Noise	Near Gun-60 shots	37	Small Blast	V6
10	Leo li	-10 Pink Noise	38	Marder	V2
11	Near Gun-60 shots	V5	39	Far Gun-60 shots	V3
12	Near Gun-6 shots	V2	40	Large Blast	+5 White Noise
13	V3	Marder	41	Near Gun-60 shots	-5 Pink Noise
14	V4	Large Blast	42	V2	-10 Pink Noise
15	Leo II	V1	43	V5	Near Gun-6 shots
16	-5 White Noise	Large Blast	44	V3	Small Blast
17	Near Gun-60 shots	+5 Pink Noise	45	Large Blast	-0 White Noise
18	Marder	V5	46	V2	Far Gun-60 shots
19	Large Blast	V2	47	Marder	V4
20	Near Gun-6 shots	V3	48	Leo II	V3
21	V4	Near Gun-60 shots	49	V5	Large Blast
22	Leo II	-0 Pink Noise	50	-0 Pink Noise	Near Gun-60 shots
23	V1	Large Blast	51	-5 Pink Noise	V2
24	Near Gun-60 shots	V2	52	V6	Marder
25	Near Gun-6 shots	V6	53	-5 Pink Noise	Leo II
26	V5	Leo II	54	V4	Far Gun-60 shots
27	V4	Near Gun-6 shots	55		
28	V2	-0 Pink Noise		V2	Small Blast

Table 3a. Order of the sound pairs for the first half of each test. The designation (pair 1) "+5 Pink Noise" shows that the control sound level for that set and test sound was pink noise presented at 5 dB above the "base" sound level. (Table 1b gives "base" sound level by set and test sound.)

		Seco	and He	М	
	1st Event	2nd Event		1st Event	2nd Event
1	-0 Pink Noise	Leo II	29	Large Blast	-5 White Noise
2	V2	Marder	30	V5	Near Gun-60 Shots
3	Near Gun-60 Shots	-10 Pink Noise	31	-0 Pink Noise	V2
4	Large Blast	V5	32	Large Blast	V1
5	Leo II	+5 Pink Noise	33	V3	Large Blast
6	Marder	V3	34	Leo II	-5 Pink Noise
7	Near Gun-6 Shots	V4	35	Marder	V6
8	V2	Near Gun-6 Shots	36	Near Gun-6 Shots	V5
9	Far Gun-60 Shots	V6	37	V3	Far Gun-60 Shots
10	V5	Marder	38	V2	Near Gun-60 Shots
11	Leo II	+10 Pink Noise	39	Near Gun-60 Shots	V4
12	-5 Pink Noise	Near Gun-60 Shots	40	+10 White Noise	Large Blast
13	V2	-5 Pink Noise	41	V3	Near Gun-6 Shots
14	V4	Small Blast	42	Far Gun-60 Shots	V2
15	V5	Far Gun-60 Shots	43	Leo II	V5
16	Near Gun-60 Shots	+10 Pink Noise	44	Large Blast	V4
17	Small Blast	V3	45	+5 Pink Noise	Near Gun-60 Shots
18	V1	Leo II	46	V2	+10 Pink Noise
19	Small Blast	V2	47	Near Gun-60 Shots	-0 Pink Noise
20	-0 White Noise	Large Blast	48	V3	Leo II
21	V6	Small Blast	49	+5 White Noise	Large Blast
22	Far Gun-60 Shots	V4	50	V2	Large Blast
23	Leo II	V2	51	V6	Near Gun-6 Shots
24	Near Gun-60 Shots	V3	52	Small Blast	V5
25	Near Gun-60 Shots	V1	53	-10 Pink Noise	Leo II
26	Large Blast	-10 White Noise	54	V4	Marder
27	-10 Pink Noise	V2	55	+5 Pink Noise	V2
28	Leo II	V4	1		

Table 3b. Order of sound pairs for the second half of each test. The designation (pair 1) "-0 Pink Noise" shows that the control sound level for that set and test sound was pink noise presented at the "base" sound level. (Table 1b gives the "base" sound levels by set and test sound.)

The test form (shown in Figure 19) was used by the test subjects to mark which sound was more bothersome or annoying. The first 11 lines in each of the two sections of each test form were used. Test form numbers 1 through 5 were used for the 110 pairs of sounds. Subjects marked the form after each pair of sounds was presented. The subjects were also told to mark how difficult it was to make this decision. They judged difficulty in deciding on a scale of 1 to 5 with the endpoints anchored by the adjectival descriptions "very easy" (sehr Einfuch) and "very hard" (sehr Schwer). It is important to note that test participants were required to decide which sound of the pair was more annoying or bothersome for every run. Subjects were required to make a decision; they could not say that the two sounds were of equal annoyance. But they could indicate that it was "very hard" to decide.

Test Conditions

Three conditions were tested. First, like most previous research in this general area, the windows in each room were closed. The windows-closed condition was used during the first five sets of the test. Second, for the last five sets, the windows were partially open, enabling air flow but not allowing the subjects to see the test stimuli. Figure 21 shows the windows-open condition. Third, for tests 7 through 10, one room was chosen to be vacated and the subjects from that room occupied an outdoor area directly west of the test house. Figures 17a and 17b indicate the location of the outdoor group (shown in Figure 22.) The outdoor group was enlarged from the normal number of 5 or 6 subjects to about 15. All of the subjects could properly hear the test sounds and the wheeled-vehicle control sounds. But the loudspeaker control sound could be heard properly only at the 6 subject's positions near the center of the group. Subjects too far to the sides heard a loudspeaker sound that was too quiet. So all of the data were used for analysis when the control sound source was wheeled vehicles, but only data from the original subject positions were used for analysis when the control sound source was loudspeaker-generated noise.

USACERL TR EC-94/04

USACERL TR EC-94/04

Figure 22. An outdoor subject group.

4 Data Analysis

Subject Response Data

The responses of the participants were read by computer and stored in DBASE[®] files. These were then analyzed to determine the test sound ASEL (CSEL for blast sounds) at which 50 percent of the subjects felt that the test sound was more annoying. Figure 1 shows a hypothetical, typical data plot.

Subject Data Reduction

For the American analysis, the subject responses were pooled into large groups and analyzed for each test source paired with each of its 5 respective control sound levels to find the percentage of subjects that were more annoyed by the event at each control sound level. As is shown in Figure 1, plots of these data should take the form of a transitional function such as a sigmoid, logit, or Gaussian cumulative probability curve. Each curve will take this shape for when the control is very quiet; 100 percent of the subjects will find the test sound to be more annoying, and when the control is very loud, 100 percent of the subjects will find the control sound to be more annoying. However, it is not feasible to test with extremely high or low level control sounds. For example, control levels at or below 20 ASEL are virtually inaudible and unmeasurable, and control levels at or above 110 ASEL are well above recommended levels for hearing conservation. So in this analysis, a transitional curve was fit to the data, but this curve was constrained to be very near to 100 percent for control sound levels at or below 20 ASEL, and it was constrained to very near zero percent for control sound levels at or above 110 ASEL. Once the plots were generated, the point at which 50 percent of the sul ects felt that the event was more annoying than the control sound was found. This point was called the "equivalency point," meaning that the annoyance of the event and control were equivalent.

In the past, linear regression has been used to fit to the linear, transition portion of the curve. This technique works fine when the 50 percent point lies in the middle of the data range. In the past, this condition has usually been the case because great care is taken during the test to set the test and control sound levels to appropriate values. During this test, rapidly changing weather conditions did not permit us to control the blast levels to the desired degree. Sometimes propagation conditions caused the blasts to have higher or lower levels than

expected (from earlier measurements that day). As a result, much of the blast data could not be analyzed using linear regression. Table 4 contains three example data sets. The first column contains the large blast data of set 7, a normal day; the second column contains the small blast data of set 8, a quieter than expected day; and the third contains the large blast data for set 10, a louder than expected day. Intuitive examination of the data in Table 4 suggests that the 50 percent point (equivalently annoying vehicle sound level) should be about 57, 45, and 67 ASEL for the three cases, respectively. Figure 23 shows the data for set 7, the case where the blast levels were as expected. The 50 percent point lies in the middle of the control sound level range. Figure 23 shows a line fit to the data using linear regression and transitional cure fit to the same data and constrained at low and high control sound levels as indicated above. In this figure, both analysis methods yield virtually the same result, just over 57 dB, and the result is the same as one would intuitively expect upon examination of the data. The error bounds (90 percent confidence) to the linear regression at the 50 percent point meets our requirement of ±20 percent. Figures 24 and 25 show the data for sets 8 and 10. Each demonstrates an extreme where the 50 percent point control sound ASEL is either above or below all of the actual data. In Figure 24, most of the data are beyond the transition towards zero percent, and in Figure 25, most of the data are beyond the transition at 100 percent. Again, in these two figures, both linear regression and transition function fit are portrayed. The better fit using the transition function and the general agreement with intuitive expectation is obvious. In Figure 24, the intuitive value (above) is 45 dB, the transition fit is 45.1 dB and the linear regression fit is 36.0 dB. Linear regression can not be used to fit one-half of a transitional curve. Even though both techniques result in about the same estimate in Figure 25, the 90 percent confidence intervals (Figures 24 and 25) for the linear regression lines show just how inappropriate this technique is when the 50 percent point does not lie in the middle of the data range. So, in this study, all of the data have been fit to

SET 7 Large	Full Range	SET 8 Small	Mainly Low	SET 10 Large	Meinly High
Control Vehicle ASEL	% More Annoyed By Blast	Control Vehicle ASEL	% More Annoyed By Blast	Control Vehicle ASEL	% More Annoyed By Blast
63	31	63	13	71	48
61	50	61	13	63	47
57	50	57	9	61	87
52	52	52	13	57	90
247	84	47	43	52	100

Table 4. Example large blast data for sets 7, 8, and 10. This table contains indoor data (all rooms) for large blast sounds compared with vehicle noise as the control sound.

a. Transition function fit to the data.

b. Linear regression fit to the data.

Figure 23. Indoor data (all rooms) for set 7—large blast sounds compared with vehicle noise as the control sound. This figure shows the good comparison between the two analysis methods when the 50 percent point lies in the middle of the data range. The intuitive estimate, and both fits agree at 57 ASEL.

a. Transition function fit to the data.

b. Linear regression fit to the data.

Figure 24. Indoor data (all rooms) for set 8—small blast sounds compared with vehicle noise as the control sound. This figure shows the poor comparison between the two analysis methods when the 50 percent point lies outside the data range and the data include a transition region. The intuitive estimate is 45 ASEL, the transition fit estimate is also 45 ASEL, but the regression fit estimate is 36 ASEL and the 90 percent confidence interval is about ±50 percent.

a. Transition function fit to the data.

b. Linear regression fit to the data.

Figure 25. Indoor data (all rooms) for set 10—large blast sounds compared with vehicle noise as the control sound. In this example, the two estimates agree with intuition, but the 90 percent confidence interval using linear regression (at the 50 percent point) is ± 25 percent, which exceeds the stated +20 percent criteria.

transition curves constrained to be very near to 100 percent for control sound levels at or below 20 ASEL and constrained to be very near to zero percent for control sound levels at or above 110 ASEL.

These constraints are very conservative. A vehicle pass-by producing an ASEL of 20 dB (indoors at the subject) is unmeasurable and would have a maximum level that might be audible only in the quietest surroundings—no one else breathing, no wind, no other noises, including heating or ventilation noise. A vehicle pass-by producing an ASEL of 110 dB (indoors, at the subject) would have maximum level well in excess of the maximum permitted by the Occupational Safety and Health Administration (OSHA). The actual control vehicle levels (indoors at the subjects) varied between about 42 and 71 ASEL (windows open and closed) and encompassed the needed control level for nearly all of the data.

One of these transitional plots (see Figure 1) was produced for each test sound and corresponding set of 5 control sounds. (Table 1 lists these pairings.) The transition function selected (using maximum likelihood) for any plot was one of the following three: the Gaussian cumulative probability function, the sigmoid function, or the logistic dose-response function. The selection was made on the basis best fit to the data. The curve having the largest **F-statistic** (minimum mean square residuals) was selected. Appendix A contains all of the curves used, a data listing, the statistical data analysis, and a listing of the residuals.

The German researchers used essentially the same analysis procedure but with smaller groups, and with pooled data. The comparison between these two methods of analysis is very good, and both results are given in the summary tables. Averages of the two methods are used for purposes of discussion and for the development of conclusions.

Acoustical Levels

The acoustical levels for the small arms, tracked-vehicle, and wheeled-vehicle sound were kept very constant from test to test, so the resulting data could be aggregated together based on test condition (windows closed, subjects indoors; windows open, subjects indoors; or subjects outdoors). The blast sound levels were not constant enough from day to day because of changes in sound propagation

^{*} The Sigmoid is the integral of the Logistic peak function, and the Cumulative is the integral of the Gaussian peak function. Since the cumulative area of symmetric peak functions yields symmetric transition functions, the Sigmoid and Cumulative are fully symmetric about the center of the transition. The Logistic Dose Response function is a model used by pharmacologists. This function has a power term that produces an asymmetrical transition.

conditions. So the blast sound data could only be aggregated by one or two sets at a time. These blast sound level "bins" contain about a 3 dB range of blast sound levels. Table 5 summarizes this aggregated data. Appendix B contains the (American) measured average data for sound sources except blasts, and Appendix C lists the (American) measured blast data for each set.

Table 2 listed the general, energy averaged outdoor measured acoustical sound levels. Table 6 lists all of the acoustical data used for overall analysis. These data are energy averaged and rounded to the nearest 1/2 dB. In general, the indoor data were measured using the eight indoor microphones, and, in general, the outdoor data were gathered using the free-field microphone. Blast data were gathered using the microphone located about 10 cm from the middle of the front-facing wall of the test house, and data for the outdoor group were measured with a microphone placed at ear height and in the middle of this group.

Subject Data Results

Tables 7, 8, and 9 summarize the data by location and sound source. These three tables contain all test sounds except blast sounds. Each of these tables is for a specific test condition: indoors, windows closed; indoors, windows open; outdoors. The data by room (or group for outdoors) are listed in Appendix D. Each listing also includes a statistical analysis for the curve fit and the residuals. (For the

	Bin Center Peak (dB)	Bin Center CSEL (dB)	Grouping (Set Number and Charge Size, L=Large; S=Small
	112	89	18
First	113	90	28, 38
Half	117	94	4 S, 5S
Sets	119½	96	2L, 3L
1 - 5	120	97	1L
	1231/2	100	4L, 5L
	106	83	6S, 7S
Second	112	881/2	8S, 9S
Half	119	97	108
Sets	114½	90	6L, 7L
6 - 10	119½	95	8L, 9L
	126	103	10L

Table 5. Aggregation of blast data by received level.

Sound Source	Indoors at Subjects Sets 1-5	indoors at Subjects Sets 6-10	Outdoor Free- Field Sets 1-6	Outdoor Free- Fleid Sets 6-10	Outdoors at Subjects Sets 7-10
Near guns—60 shots	51	¥/09	90	¥69	80%
Near guns—6 shots	41	51%	71	74%	711%
Far guns—60 shots	43%	7,05	66%	72	02
Leopard II	%29	489	79%	79%	#4L
Marder	85	62	72%	23	12
Vehicle 1	99	7.1	96	98	16
Vehicle 2	29	69	96	88	18
Vehicle 3	99	61	73	78	72
Vehicle 4	25	57	78	76	2.2
Vehicle 5	L *	52	71	71	29
Vehicle 6	77	47	29	61	00

Table 6. All accustical data used for the overall analysis. These data are energy averaged and rounded to the nearest ½ 3B. In general, the indoor data were measured using the eight indoor microphones, and, in general, the outdoor data were gathered using the free-fleid microphone. Blast data were gathered using the microphone gathered using the indoor group were measured with a microphone placed at ear height and in the midst of this group.

Indoors							8ET8 1	TO 5							
		Room	٧		Room	8		Room	၁		Room	0		77	
Test Source/ Control	Source	Control ASEL	(A dB) Penelty	Source ASEL	Control	(A dB) Penelty	Source ASEL	Control ASEL	(A cm) Perselly	Source	Control ASEL	(A CE)	TOPY	Control	
Near guns-80 shots/vehicles	51.0	63.6	12.6	51.7	1.98	14.4	50.2	59.9	9.7	40.7	63.9	14.2	51	83.6	12.6
Near guns- 6 shots/vehicles	41.9	53.7	11.8	41.9	56.1	13.2	42.0	52.0	10.0	40.8	55.0	14.2	4	54.0	13.0
Far gune- 60 shots/vehicles	4.0	40.8	5.8	45.0	52.4	7.4	43.6	50.5	6.9	43.4	52.1	8.7	43 1/2	61.9	8.4
Leopard II Ashicles	61.7	60.3	-1.4	63.9	56.8	-7.1	63.5	56.1	-7.4	62.4	56.9	-2.5	8	58.5	4.0
Marder Ashicles	56.9	54.3	-1.8	50.5	53.6	-5.9	56.9	53.5	-5.4	56.1	63.9	-12	8	54.4	-3.6
Near gune- 60 shots/pink notee	51.0	76.2	25.2	51.7	61.2	29.5	50.2	70.4	20.2	40.7	78.0	28.3	26	78.1	24.1
Leopard II /pink noise	61.7	72.1	10.4	63.9	71.9	8.0	63.5	68.0	4.5	62.4	72.2	9.8	8	70.8	8.5
Vehicle 2 /pink noise	57.6	72.7	15.1	58.2	73.2	15.0	57.2	71.0	13.8	56.4	74.0	18.6	67	72.3	16.3

Table 7. Overall acoustical levels and resulting "penalties" by test room and aggregated across rooms for small arms and tracised-vehicles. The acoustical data are for sets 1 through 5, windows closed. The subjects are located indoors. The acoustical data were gathered at the location of the subjects except for those designated as "cutdoors," for indoor subjects.

ensebul								Dets 6 TO	9						
		Reem	٧		Room	•		Peom	၁		Reem	Q		NI.	
Test Source/ Central	Source ASEL	Control ASEL	Agency (mp q)	Source Adel.	Control ASEL	Appendig (80 9)	TIBRY earning	Centrol ASER.	Agenda (ap V)	Pourse Add.	Constant Agent	(m 4)	TOTAL SERVICE	Out of A	91
Near gune 60 shosivehides	58.7	66.3	7.6	61.5	1.19	2.6	8.08	67.7	6.1	88.2	67.8	9.6	8	78	53
Near gune- 6 shosa/vehicles	40.8	56.1	6.3	61.9	56.7	3.6	50.3	SB .0	7.7	60.7	50.5	2	818	57.A	6.9
Far guna- 60 ahosivahidas	47.7	6.99	6.6	50.9	56.6	4.5	0.08	90.6	10.6	40.4	62.4	13.0	9709	88.8	6.1
Leopard II Arthidea	67.0	67.6	0.6	66.3	67.4	-0.9	1.08	66.3	9.6-	990	66.3	413	9780	98.8	4.7
Merder Arehidies	61.3	56.0	-2.3	61.6	50.0	-2.8	64.0	98.9	-6.1	69.2	20.0	-3.4	2	58.2	8.5-
Near gune-80 shots /pink noise	58.7	77.4	18.7	61.5	79.5	18.0	9'95	62.2	22.6	57.6	78.4	20.8	909	78.5	0.61
Leopard II /pink nolee	66.7	73.6	6.9	66.3	79.2	10.9	0.07	78.5	8.5	80.6	75.2	979	988	76.8	8.3
Vehide 2 /pirk noise	62.5	74.6	12.0	68.7	77.4	13.7	64.0	1.10	17.1	61.3	74.4	13.1	8	78.7	13.7

Table 8. Overall acoustical levels and resulting "penalties" by test room and aggregated across rooms for small arms and tracked-vehicles. The acoustical data are for sets 6 through 10, windows open. The subjects are located indoors. The acoustical data were gathered at the location of the subjects except for those designated as "outdoors," for indoor subjects.

Outdoons					Sea 7 TO 16				
	Original	S Dubjects		Extra	Subjects			TIV	
Test Source/ Control	Sours ASEL	Central ASEL	Agency (gp V)	Seuros ASEL	Central ASEL	(A dil) Pendity	196V 40/146	Corbel ABBL	9
New gune 60 shosivehides	9'09	86.4	4.9	80.8	0.00	7.5	9:00	196.4	6.9
Neer gune- 6 shats/vehicles	21.5	78.4	4.9	71.8	73.2	1.7	2.15	74.9	3.4
Far gune- 60 shote/vehicles	70.0	76.6	9'9	70.0	76.6	6.6	0.07	78.2	6.2
Leopard II Archides	2.77	79.3	1.8	8.17	77.8	0.3	8.77	78.6	1.1
Marder Anhides	0.17	72.3	1.3	71.0	72.2	1.2	g.17	72.2	1.2
Near gune- 60 shotsplirk notes	9'08	\$23	11.8						
Leoperd H /pink notee	77.8	98.4	10.9						
Vehicle 2 Apink noise	0.10	98.4	7.4						

7 through 10. The acoustical data were gathered at the location of the subjects. Only 6 subjects could properly hear the white-noise control sound. The first column. The "extra" subjects (second column) could hear the wheeled-vehicle control sound securately, but not the white-noise control sound. The third data column contains the combined results for the first two groups when the control sound was generated by wheeled vehicles. Table 9. Overall accustical levels and resulting "penalties" for the outdoor group for small arms and tracked-vehicles. The accustical data are for sets

sake of brevity, the actual transition curves were not reproduced.) These tables show that there were no great differences between groups for a given condition.

Unlike the other test sound sources, the blast sound data could not be separated just by condition (windows open, windows closed, outdoors) because the received blast sound levels varied greatly from day-to-day. Rather, these data had to be aggregated into "bins" (Table 5). Because the data were only aggregated by one or two sets at a time, there were too few subjects per aggregation to analyze the data by room (or outdoor location). So Tables 10a and 11a summarize the blast sound results by blast sound level (bin) and test condition. Table 10 is based on acoustical data collected near to the subjects, and Table 11 is based on acoustical data collected outdoors. These tables also include the data analyzed by single sets (Tables 10b and 11b). The curves, listings, and statistical analysis for these data are contained in Appendix E.

Table 12 gives the size of explosive used during each set; the sizes were varied because of weather conditions so as to keep the received blast sound levels as constant as possible. The target levels were 121 and 115 dB peak, flat-weighted sound pressure level, respectively, for the large and small blast charge sizes.

As previously noted, the blast data were measured with a microphone on the front face of the test house; the vehicle data were measured with a free-field microphone (Figure 12). However, the blast data normally arrived at grazing incidence to the front of the test house (Figure 11). For all test sets except sets 2 and 3, the free-field microphone and the front-face microphone both measured like levels for the blast. On sets 2 and 3, the alternate blast site was used (Figure 11) and there was some pressure doubling at the front face of the test house. Since the subjects, and more importantly the structure, reacted to these higher, pressure-doubled levels, the front-face microphone data are used for this analysis.

Subject Acoustical Data	Sets	Blast Size	Control Source	Blact CSEL	Control ASEL	(A dB)
		Small	Vehicle	77	52.2	-24.8
	1	Large	Vehicle	84	65.6	-18.4
			Noise	0-	71.7	-12.3
		Small	Vehicle	78	50.5	-27.5
Windows Closed	2 & 3	Large	Vehilce	83	53.2	-29.8
		Large	Noise	65	62.9	-20.1
		Small	Vehicle	83	57.7	-25.3
	4 & 5	Lorgo	Vehicle	87½	65.6	-21.9
		Large	Noise	0/72	72	-15.5
		Small	Vehicle	79½	48.7	-30.8
	6 & 7	Lorgo	Vehicle	881/2	51.5	-37
Windows Open		Large	Noise	0072	58.9	-29.6
	8 & 9 10	Small	Vehicle	831/2	49.7	-33.8
		Lorgo	Vehicle	91	57	-34
		Large	Noise	91	56.5	-34.5
		Small	Vehicle	90	63.5	-26.5
		1	Vehcile	oe.	68.4	-27.6
		Large	Noise	96	82.6	-13.4
		Small	Vehicle	84½	79.6	-4.9
	6 & 7	lama	Vehicle	01	76.7	-14.3
		Large	Noise	91	79.1	-11.9
		Small	Vehicle	89	61.4	-27.6
Outdoors	8 & 9		Vehicle	or	63.7	-31.3
		Large	Noise	95		
		Small	Vehicle	961/2	85.6	-10.9
	10	1	Vehicle	400	90.8	-12.2
		Large	Noise	103	90.5	-12.5

Table 10a. Blast and control levels (measured at subjects) and resulting differences by "bin" (Table 5).

					Test Da	Test Data Taken at Subjects	bjects		
		Control	popul	Indoors, Windows Closed	peso		opul	Indoors, Windows Open	ued
Set	Blast Size	Source	Blast CSEL	Control ASEL	(B p ∇)	SET	Blast CSEL	Control ASEL	(ab ∆)
	Small	Vehicle	81	53.1	-27.9		82	48.1	-29.9
7		Vehicle	8	53.7	-29.3	ø	70		
	Large	Noise	3	63.9	-19.1		/0	20.7	-36.3
	Small	Vehicle	9/	48	-28		81	50.4	-30.6
က		Vehicle	G	52.6	-30.4	7	8	57.1	-32.9
	rarge	Noise	<u>.</u>	61.5	-21.5		3	66.2	-23.8
	Small	Vehicle	83	62.8	-20.2		82	45.1	-36.9
4		Vehicle	8	69.4	-18.6	60	8	48.6	-41.4
	Large	Noise	8	74.7	-13.3		3	47	-43
	Small	Vehicle	83	55.1	-27.9		85	54.9	-30.1
S		Vehicle	03	62.5	-24.5	Ø.	G	63.7	-28.3
	Large	Noise	/ 0	68.2	-18.8		35	62.9	-26.1
				Outdoors	oors				
	Small	Vehicle	88	78.7	-9.3		%68	75.7	-13.8
œ		Vehicle	7170	78.3	-16.2	ത	8	85.1	-10.9
	Large	Noise	84 /2				8	84.9	-11.1

Table 10b. Blast and control levels (measured at subjects) and resulting differences by set.

Free-Field Outdoor Data	Sets	Biast Size	Blest CSEL	Control ASEL	(A d8)
	•	Small	89	77	-12
	1	Large	97	96.1	-0.9
Windows	0 1 0	Small	90	74.5	-15.5
Closed	2 and 3	Large	96	78.5	-17.5
	4 and 5	Small	93½	85	-8.5
	4 and 5	Large	100	96.4	-3 6
	0 and 7	Small	83	64	-19
Windows Open	6 and 7	Large	90	67.9	-22.1
	8 and 9	Smail	881/2	65.4	-23.1
	8 and 9	l.arge	95	75.6	-19.4
	10	Small	97	84.4	-12.6
	10	Large	103	91.1	-11.9
	7	Small	841/2	79.6	-4.9
	,	Large	91	76.7	-14.3
	0 1 0	Small	89	61.4	-27.6
Outdoors	8 and 9	Large	95	63.7	-31.3
	4.0	Small	961/2	95.6	-10.9
	10	Large	103	90.8	-12.2

Table 11a. Blast and control levels (measured outdoors in a free-field) and resulting differences by "bin" (Table 5). There are no white noise control data "outdoors."

Free-Field Outdoor Data	Sets	Blest Size	Blast CSEL	Control ASEL	(Δ dB)
-		Small	91	78.3	-12.7
	2	Large	96	79.2	-16.8
		Small	89	71.1	-17.9
Windows	3	Large	96	77.6	-18.4
Closed		Small	93	92.1	-0.9
	4	Large	100	101.5	1.5
	_	Small	94	81.2	-12.8
	5	Large	100	91.7	-8.3
		Small	81	63.4	-17.6
	6	Large	89		
	-	Small	85	66.7	-18.3
Windows	7	Large	91	75.8	-15.2
Open		Small	88	59.5	-28.5
	8	Large	94	64.2	-29.8
		Small	89	72.8	-16.2
	9	Large	96	84.7	-11.3
	_	Small	88	78.7	-9.3
0.44	8	Large	94½	78.3	-16.2
Outdoors		Small	89½	75.7	-13.8
	9	Large	96	85.1	-10.9

Table 11b. Blast and control levels (measured outdoors in a free-field) and resulting differences by set. There are no white noise control data "Outdoors." Data for sets 1 and 10 indoors and 7 and 10 outdoors are included in Table 11a.

Set	Blast Charge Sizes
1	2 kg, 500 g
2	2 kg, 500 g
3	2 kg, 300 g
4	2 kg, 500 g
5	1 kg, 200 g; 2 kg, 500 g
6	2 kg, 500 g
7	4 kg, 1 kg
8	4 kg, 1 kg
9	4 kg, 1 kg
10	4 kg, 1 kg; 2 kg, 500 g

Table 12. Blast charge sizes by set for the large and small charges respectively. For sets 5 and 10, the weather conditions changed sufficiently during the test to warrant a change in charge sizes between the first and second halves. With this change in charge size, the received sound levels remained constant enough from first half to second half so that all of the data for the set could be analyzed together.

5 Discussion

In the following, results are given both for acoustical data gathered near the subjects' ears and for acoustical data collected **outdoors**, but with subjects **indoors**.

Small Arms and Tracked-Vehicle Sounds-Indoor Data, Measured at Subjects' Ears

Table 13 summarizes the results for the three test conditions of windows closed, windows open, and outdoors (except to sound). Table 13 includes both the American and the German results in parenthesis, and the average of the two used for purposes of this discussion. These results are based on measurements from microphones placed near the subjects. This table includes amalgamated data for the four indoor rooms taken together and for the enlarged outdoor group. As previously noted, only the "regular" outdoor group could accurately hear and judge the outdoor white-noise control sound, so only their data are reported for the white-noise judgements. In Table 13, the "differences" are the penalties one would add to make the subjective annoyance assessments equivalent.

Several points can be derived from the results in Table 13. First, the subjects' answers are dependent on the control sound source. The results using the pinknoise control sound are substantially different from the results using wheeled-vehicle sound as the control. In fact, this difference is on the order of 10 decibels. Second, the penalty for small-arms sound shows considerable variation with distance, rate-of-fire, and test condition (windows open or shut or subjects outdoors), and ranges from 3 to 13 decibels. Overall, this penalty is on the order of 8 to 10 decibels. Third, there is a small, negative penalty to be applied to tracked-vehicle sound when compared with wheeled-vehicle sound.

The differences between using a pink-noise or wheeled-vehicle control sound are unexpected and counter to "conventional wisdom." Nevertheless, these differences are internally consistent. With windows closed, the difference between the pink-noise control sound level and an equivalently annoying vehicle sound level—both measured near the subjects' ears—is about 12 or 14 dB (ASEL). This result is in sharp contrast to the widely accepted theory that A-weighted Leq and ASEL are adequate for noise assessment. But the results are internally consistent, indicating that this difference of 12 or 14 decibels is real. Table 14 demonstrates

				TEST D	TEST DATA TAKEN AT SUBJECT	T SUBJECT			
Sound	y puj	Indoors, Window Closed	Closed	opul	Indoors, Window Open	ben		Outdoors	
Source/Control	Source	Control ASEL	(∆ dB) Penatty	Source	Control	(A dB) Penalty	Source	Control ASEL	(A dB) Penetty
Near Guns-60 shots/Vehicles	51	63%	(12.5/12.6) 12½	%09	67%	(5.9/7.6) 7	80%	%98	(5.9/5.9) 6
Near Guns-6 shots/Vehicles	three 41	<u>second</u> 54	<u>duration</u> (13.0/12.8) 13	thirty 51%	<u>second</u> 58	<u>duration</u> (5.9/7.1) 6½	<u>thirty</u>	puoces Puoces	duration (3.4/4.0) 3%
Far Guns-60 shots/Vehicles	43%	52	(8.4/8.4) 8½	20%	59	(8.1/9.1) 8½	70	44	(6.2 <i>1</i> 7.5) 7
Leopard II Vehicles	%29	59%	(-4.0/-2.3) -3	681⁄2	66%	(-1.7/-2.1) -2	77%	6/	(1.1/2.3) 11%
Marder Vehides	89	54%	%E- -3.6/-3.5)	62	%69	(-2.8/-2.5) -2%	1.2	%ZL	(1.2/1.9) 1½
Near Guns-60 shots/Pink Noise	51	74%	(24.1/22.6) 23½	409	%6 <i>L</i>	(19.0/19.3) 19	%08	%Z6	(11.8/12.4) 12
Leopard II /Pink Noise	62%	71	(8.3⁄9.0) 8½	68 %	77	(8.3/8.9) 8½	477	%88	(10. 9 /11.1) 11
Vehicle 2 (V2) /Pink Noise	57	71%	(15.3/14.1) 14%	83	492	(13.7/13.4) 13%	81	68	(7.4/8.7) 8

Table 13. Overall acoustical levels and resulting "penalties" for small arms and tracked-vehicles. The acoustical measurements were made near the location of the subjects; indoors, for indoor subjects, outdoors, for outdoor subjects. The numbers in perenthesis are the American and German values, respectively.

				TEST DAT	TEST DATA TAKEN AT SUBJECT	SUBJECT			
Sound	Indoors,	rs, Window Closed	osed	Indo	Indoors, Window Open	pen		Outdoors	
Source/Control	Vehicle Control ∆ dB	Pink Noise Control A dB	Differ- ence	Vehicle Control ∆ dB	Pink Noise Control A dB	Differ- ence	Vehicle Control ∆ dB	Pink Noise Control Δ dB	Differ- ence
Near Guns - 60 shots	12%	23%	11	7	19	12	9	12	\$
Leopard II	-3	8 1/2	411	-2	8 1/2	10%	11%	11	9%
	Vehicle ASEL	Noise ASEL	8b ∆	Vehicle ASEL	Noise ASEL	ΔdB	Vehicle ASEL	Noise ASEL	Δ дВ
Vehicle 2 (V2)/ Pink Noise	57	71%	141/2	63	13%	10%	81	88	80

Table 14. Differences between using wheeled-vehicles and a 500 Hz octave-band of pink noise as the control sound source compared with the "equivalency" found from the sound of V2 directly compared with the pink-noise control sound. Note the internal consistency. With windows closed, the difference is about 12 dB; with windows open, the difference is almost the same at about 11 dB; and outdoors, the difference is about 8 dB.

this internal consistency. This table shows the difference in penalty between using these two control sounds (vehicles or pink noise) for small arms and tracked vehicles compared with the difference between V2 and its equivalent pink noise control sound. Table 14 includes the three test conditions. Blast sound is not included in Table 14 since the white-noise control sound used with blast sounds had a different spectrum and duration than the pink-noise control sound used with V2, near gunfire (60 shots), or with the Leopard II tank. For each test condition, the difference between V2 and its equivalent pink-noise control sound is very similar in value to the difference in penalty found between using vehicle or pink noise sound as the control for near gunfire (60 shots) or the Leopard II tank sound.

This difference between pink-noise and wheeled vehicle sound is very important to testing methodology and interpretation of results. Some have suggested that in a paired comparison test, subjects are responding to loudness. If this were true, then the responses would be more or less equal for equal ASEL. This is not true; the subjects are assessing annoyance, as requested in the test instructions. Further, this difference between pink-noise and wheeled vehicle sound calls into question any testing methodology that uses artificial sounds, since these results show that artificial sounds cannot be used as a surrogate for real sounds when testing noise annoyance.

The difference between the three test conditions (indoors, windows closed; indoors, windows open; outdoors) are perhaps more perplexing than the differences between results using the two different control sounds. In particular, changes between the conditions of windows closed and windows open are unexpected. First, as discussed above, the penalty for gunfire, and, as is shown later, blast noise, decreases when the windows are opened or when the subjects are moved outdoors. Indoors, with windows closed, the small arms penalty (vehicle control noise) ranges from 8 1/2 to 13 dB; 11 dB is average. With windows open or outdoors, the average penalty drops to about 7 1/2 dB. With pink noise as the control sound source, the penalty changes from about 23 1/2 to 19. So for both control sounds, the penalty or gunfire decreases by about 3 1/2 decibels when the windows are opened. The penalty for tracked vehicles does not change very much when the windows are opened; the indoor penalty varies a little from about -3 1/2 dB when the windows are closed to -2 1/2 dB when the windows are open.

Small Arms and Tracked-Vehicle Sounds—Outdoor Acoustical Data, Subjects Indoors

Environmental noise is normally measured and assessed on the basis of outdoor data. For example, airport or highway noise contours predict the outdoor levels; not the levels at the ears of residents in houses. So near maintain noise

vis-a-vis traffic noise, it is mandatory that the "penalties" be based on outdoor-measured acoustical levels—even though the judgments are made by subjects situated indoors. Table 15 develops these outdoor-measured penalties for subjects situated indoors.

Table 15 uses the acoustical data measured by the free-field microphone—even for the outdoor group, since it is the free-field microphone that simulates what one would normally measure for general environmental assessment and regulatory compliance.

Table 15 is similar to Table 13. Both tables are based on the same subject-response data and analysis. However, in Table 15, the acoustical data are "translated" from the indoor levels given in Table 13 to outdoor levels. The outdoor levels for the test and vehicle control sounds are given in Table 6. However, the equivalent vehicle control sound levels found in Table 13 do not correspond to any particular vehicle; they are the result of the transition curve fitting. Figure 26 shows linear regression lines fit to the indoor and corresponding outdoor vehicle noise level for both the windows open and windows closed test conditions. The outdoor levels are taken as the independent variable. This regression line is used to "translate" the indoor vehicle control levels to the outdoor levels given in Table 15.

The control vehicle sound attenuation from outdoors to indoors varies with vehicle and condition as is shown in Figure 26. With windows closed, the attenuation (ASEL) varies proportionally from about 30 dB for Vehicle 1 to about 20 dB for Vehicle 6, and with windows open, the attenuation varies from about 24 dB for Vehicle 1 to about 16 dB for Vehicle 6. For general traffic, 25 and 20 dB would be the typical attenuation for the windows closed and windows open conditions, respectively. This situation suggests that the "penalties" in Table 15 are too large when the control vehicle sound ASEL are near the top of the range, and too small when the ASEL are near the bottom of the range. In Table 15, the control ASEL for Near Guns (6-shots), Far Guns, and the Marder are all near the middle of the range where the vehicle sound attenuation from outdoors to indoors is typical. So these require little adjustment. But the control ASEL for Near Guns (60-shots) and the Leopard II are near the top of the range. Hence, these penalties require some adjustment to make them the penalty one would derive with typical road traffic instead of the very large, unusual truck that they actually pair with. With windows closed, Near Guns (60-shots) approximately pair with Vehicle 1, and the Leopard II approximately pairs with Vehicle 2. With windows closed, both of these test sound sources approximately pair with Vehicle 2.

				TEST DAT	TEST DATA TAKEN OUTDOORS	JTDOORS			i
Sound Source/Control	Indoor	idoors, Window Closed	Closed	Indoor	Indoors, Window Open	Open		Outdoors	
	Source	Control ASEL	(∆ dB) Penalty	Source ASEL	Control ASEL	(∆ dB) Penalty	Source ASEL	Control ASEL	(A dB)
Near Guns-80 Shots/Vehicles	80	%E6	13%	83%	06	61⁄2	8314	%08	è
Near Guns-6 Shots/Vehicles	<u>three</u> 71	3/6/ puodes	duration 8%	thirty 74%	second 77	duration 2%	thirty 74%	escond 79	duration 4%
Far Guns-80 Shots/Vehicles	69%	76%	7	72	78%	61⁄2	72	81	0
Leopard II/Vehicles	79%	87%	8	79%	88	9%	79%	83	3%
Marder/Vehicles	72%	%08	8	73	79	8	73	76%	31%

Table 15. Overall acoustical levels and resulting "penalties" for small arms and tracked-vehicles. The subjects are located indoors but the acoustical data are gathered outdoors in a free-field next to the house. (There are no outdoor pink-noise levels since pink-noise sound was presented to the subjects via loudspeakers located indoors.)

a. Windows closed.

b. Windows open.

Figure 26. Linear regression lines fit to the outdoor and corresponding indoor control vehicle sound levels for conditions of windows closed (26e) and windoes open (26b).

Vehicle 2 and, especially, vehicle 1 are unusual. Vehicle 2 was a tow truck for towing large trucks, and vehicle 1 was a very heavy tractor and trailer for transporting large battle tanks. Since the test plan required that the vehicle sound levels span a 30-dB range, vehicles 1 through 3 were driven so as to maximize their noise output, thus maximizing the control sound range. To maximize their noise output, these vehicles were driven in a low gear so as to increase engine noise. This vehicle operation, of course, increases engine RPM and the resulting spectrum of the engine noise. As a result, the largest vehicles exhibit the largest outdoor to indoor sound attenuation. So test sound sources that pair with vehicles 1 or 2 should be adjusted for the unusual building attenuation that results from the operation of these unusual wheeled vehicles.

Since the penalties are being developed with respect to "traffic noise," one simple adjustment is to use a standard attenuation by the windows and walls for "traffic noise." The data in this experiment suggest that 25 dB is the attenuation of typical traffic noise attenuation from outdoors to indoors with windows closed, and that 20 dB is the typical traffic noise attenuation from outdoors to indoors with windows open. These values have been used to convert the data in Table 13 to the data in Table 16. The results in Table 16 are similar to Table 15 except that the penalties diminish somewhat for those test sounds that had corresponding control vehicle ASELs near the levels for Vehicle 1 or 2. (As with Table 15, Table 16 uses the free-field microphone data for the outdoor group, since it is the free-field microphone that simulates what one would normally measure for general environmental assessment and a regulatory compliance.)

In Table 13, the penalty for sound from the near gunfire site with windows closed is about 13 dB and with windows open it is about 7 dB. The penalty is the same for 6 shots or 60 shots. Again, in Table 16, the penalty for the near gun sound seems to be constant with conditions for the near gun site. With windows closed, the penalty is about 8 dB, and with windows open it is about 4 dB. Table 15 does not show this regularity with gun site, but this consistency in results evident in Tables 13 and 16 offers some proof that the adjustments used to obtain Table 16 are valid.

Further, these results in Tables 13 and 16 for sound from the near gun site offer proof that an equal-energy model is appropriate for gunfire noise. For the same single event ASEL, the penalty is constant with condition. Sixty shots indicate an equivalent control level that is 10 dB higher than the control level for 6 shots. This result holds independently of whether the 6 shots occur in 3 seconds or in 30 seconds. So the equal-energy model draws support from these results. However, the penalty appears to vary with condition and sound source site (spectrum). So

				TEST	TEST DATA TAKEN OUTDOORS	OUTDOORS			
	Indoor	rs, Window Closed	beeok	puj	Indoors, Window Open	Open		Outdoors	
Sound Source/Control	Source ASEL	Corrected Control ASEL	(A dB) Penalty	Source	Corrected Control ASEL	(∆ dB) Penalty	Source	Control	(A dB) Penatry
Near Guns-60 Shots/Vehicles	88	88 1/2	8 1/2	83 1/2	87 1/2	4	83 1/2	90 1/2	7
Near Guns-6 Shots/Vehicles	three 71	Pucces 79	duration 8	thirty 74 1/2	second 78	duration 3 1/2	thirty 74 1/2	second 79	duration 4 1/2
Far Guns-60 Shots/Vehicles	69 1/2	4	7 1/2	72	79	7	72	81	6
Leopard II/Vehicles	79 1/2	84 1/2	9	79 1/2	86 1/2	7	79 1/2	83	3 1/2
Marder/Vehicles	72 1/2	79 1/2	7	73	79 1/2	5 1/2	73	76 1/2	3 1/2

Table 16. Overall acoustical test sound levels, "corrected" control sound levels and resulting "penalties" for email arms and tracked-vehicles. The aubjects are located indoors but the acoustical data are gethered outdoors in a free-field next to the house.

there is some evidence for some form of level dependence to the penalty. These data suggest a complicated dependence with level (e.g., ASEL or A-fast max).

The data in Table 16 suggest an overall small arms penalty which is about 8 dB or less. As with Table 13, the penalties change with condition: windows open, windows closed or outdoors. But these penalties do not appear to shift with rate of fire or total number of shots.

Tracked vehicles exhibit an interesting result. For indoor subjects, the tracked vehicle penalty is about ±5 dB when the sound is measured outdoors; it reverses sign and is about -2 dB when the sound is measured indoors. Because environmental noise is normally measured outdoors, the results in Table 16 are considered to be more reliable and useful than the results in Table 13.

A Model for Small Arms Noise

The data in Tables 13 and 16 support an energy model for small arms, but they are more equivocal on the value for an exact penalty. There is some evidence of a level dependent penalty. However, this occurs only for the higher spectral content gunfire noise from the near site. The lower spectral content noise from the far site indicates a conflicting result. Nevertheless, the data in Tables 13 and 16 seem to provide strong support for an equal energy model with some penalty (or penalty function). Under all conditions, and in both tables, when the number of rounds (near site) changes from 60 to 6, the equivalently annoying control vehicle sound changes by about 10 dB. Moreover, this result occurs both for 6 rounds in 30 seconds and for 6 rounds in 3 seconds rate of fire.

As noted above, since indoor dwelling unit environments are normally assessed by outdoor measurements, the best guidance on a penalty comes from Table 16. This table indicates a penalty of about 7 or 8 dB.

Blast Sound

As with the other test sound sources, blast test sounds were compared both with control sounds generated by wheeled vehicles and with white-noise sounds generated using a loud speaker. The wheeled-vehicle control sounds were identical with those used for the small arms and tanks; the white-noise control sound, as described earlier, differed in spectral content and duration from the pink-noise sound presented to the subjects as the control for V2, the near gun fire (60 shots), and the Leopard II tank. The white-noise control sound was identical

to the control sound used in similar, earlier tests at GTA in Germany and at APG, MD in the United States.*

Figure 27 shows the data and regression line for blast data measured indoors during sets 1 through 5, data for the windows-closed condition. These data represent equivalency points for blast sound data grouped by level across sets of data. The data were analyzed by set. For example, the lowest data point occurred when the blast CSEL was about 68 dB. The white-noise control sound equivalency point, the point where 50 percent of the subjects found the blast sound more annoying and the other 50 percent of the subjects found the control sound more annoying, was 44 dB (ASEL).

Unlike the data for the Leopard II tank, V2 and small arms, the blast data exhibit no difference between using the wheeled-vehicle control sound or the white-noise control sound. But the white-noise control sound is vastly different from the pink-noise control sound used with the Leopard II tank, small arms, and V2. The white-noise control sound is a short pulse of the 200 to 1500 Hz band of white noise; the pink noise control sound was a long, haystack time pattern of the 500 Hz octave band of pink noise. So this white noise control sound may fortuitously yield the same result as the wheeled-vehicle control sound.

Figure 28 shows data and regression lines for earlier results from GTA and APG along with the new results from Munster. All of these data are for the windows-closed test condition. At each site, the large charge-size blast sound source was typically about 5 lb (or 2 kg) of explosives (C-4 or military TNT), the small blast sound source was about 500 g of explosives, and the blast site was located about 1 km from the test houses. The most important feature of either regression line in Figure 28 is its slope. A 1-dB change in (indoor) CSEL corresponds to about a 2-decibel change in equivalent control ASEL.

At this writing, tests at Aberdeen are still in progress.

Appendix E contains the tabulated data for indoor acoustical measurements for all the figures in this section and Appendix F contains similar data for outdoor acoustical measurements. It also includes the blast data analyzed by bins, where the bins represent like groupings of blast data—within about 3 decibels. The results with the data grouped into bins are about the same as the results when the data are analyzed by set.

a. Bin data.

b. Individual sets.

Figure 27. Data and regression line for blast data measured indoors during sets 1 through 5; data for the windows-closed condition. Data for both white noise (filled circles) and vehicle controls (open circles) are included in this figure. These data represent equivalency points for blast sound data grouped across rooms by set. Figure 27a is for the "bin" data and Figure 27b is the data for individual sets. The resulting regression lines are virtually the same in both figures.

USACERL 1R EC-04/04

Figure 28. Data and regression lines for earlier results from GTA and APG (solid diamonds) along with the new white-noise control results from Munster (open circles). All of these data are for the windows-closed test condition. At each site, the large charge-size blast sound source was typically about 5 lb (or 2 kg) of explosives (C-4 or military TNT), the small blast sound source was about 500 g of explosives, and the blast site was located about 1 km from the test houses. The new data fit well with the old results. The most important feature of either regression line is its slope. A one decibel change in (indoor) CSEL corresponds to about 2 to 3 decibel change in equivalent control ASEL.

The second half of the test at Munster included both the windows-open and the outdoor test conditions. When the windows are open, the vehicle sound levels increase by about 6 dB, and the blast levels (CSEL) increase by about 10 dB. Figure 29 shows these data for blast sounds. This figure includes just indoormeasured blast data gathered using wheeled-vehicle sound as the control. The circles represent sets 1 through 5, the windows-closed test condition; the triangles represent sets 6 through 10, the windows-open test condition. These two sets of data differ by about 6 dB; the resulting penalty decreases.

This apparent penalty reduction when windows are opened may be illusionary. It presupposes that CSEL (or ASEL) is an appropriate indoor measure for blast noise. Earlier research showed that a quiet rattle sound, not measurable at the subjects' ears using either A- or C-weighting, nevertheless resulted in the equivalent to a 10 dB change in annoyance. So, neither A- nor C-weighting may

Figure 29. Indoor-measured blast data gathered using wheeled-vehicle sound as the control. The circles represent sets 1 through 5, the windows-closed tests condition; the trinsgles represent sets 6 through 10, the windows-open test condition. These two sets of data differ by about 6 decibels, the change in vehicle sound level when the windows are opened. Figure 29a is for the "bin" data and Figure 29b is the data for individual sets. The resulting regression lines are virtually the same in both figures.

be appropriate measures for predicting indoor blast noise response. We do not know what is appropriate. The conclusion we draw is that present A- or C-weighted acoustical measurements made indoors for blast sounds are inappropriate for annoyance judgments made indoors. But, as is shown below, outdoor C-weighted measurements of blast sound correlate well with judgments made indoors for both conditions of windows open and closed (and even for subjects outdoors).

Figure 30 contains data for the indoor groups (windows open and closed—sets 1 through 10) with the acoustical sound levels measured outdoors. The data only include comparisons using wheeled-vehicle sound as the control, since the loudspeakers were indoors there are no outdoor loudspeaker sound levels. These data (Figure 30 compared to Figure 29) clearly show the greater consistency in using acoustical data measured outdoors for judgments made indoors under differing test conditions. Without labels, one could not tell which points on Figure 30 come from the first five sets (the open circles), which come from the second five sets (the open triangles), and which come from the outdoor group (squares).

Figure 30. Data for the indoor groups (windows closed (circles) and open (triangles)—sets 1 through 10) with the acoustical sound levels measured outdoors. The data only include comparisons using wheeled-vehicle sound as the control, since the loudspeakers were indoors there are no outdoor loudspeaker sound levels. Figure 30 also contains the data for the outdoor subjects (squares).

Blast Noise Models

The most salient feature to the data in Figure 30 is that the slope found earlier remains when the measurements are made outdoors for sounds judged indoors; a 1-dB change in CSEL of the blast sound corresponds to a 2 dB change in equivalently annoying vehicle control sound ASEL. The crossover point is at about 100 dB. Above a 100 CSEL, the blast noise should include an adjustment or penalty (in addition to measuring with C-weighting), below 100 dB, this penalty becomes a "bonus."

Overall, the combined Munster, APG, and GTA indoor data indicate a slope of 2 or more to 1; a 1 dB change in blast CSEL corresponds to at least a 2-dB change in equivalent control ASEL. In Figure 30, the outdoor data clearly show this same relation; a 1-dB change in blast sound CSEL corresponds to about a 2.4-dB change in equivalent wheeled-vehicle control sound ASEL. This relation has important implications on the appropriate model for blast sound community assessment. Since "normal" community sounds are assessed using A-weighting and an equal energy model, blast sound cannot be assessed with an equal energy model. If both types of sounds were correctly assessed with an equal energy model, then the slope of the curve in Figure 30 (or Figure 27 or Figure 28) would be 1, a 1 dB change in blast CSEL would be equivalent to a 1 dB change in control sound ASEL. But this is clearly not the case. Rather, it appears from this rather large body of data spanning three locations and times and two continents, that blast noise annoyance grows much more rapidly with sound level than would be accounted for by an equal energy hypothesis.

For the following discussion, a "noise unit" will be defined as equal to a unit of sound exposure for common, A-weighted sounds. With an equal energy model, for common sound, a 3-dB change in level corresponds to a doubling of sound exposure (A-weighted) and a corresponding double of noise units. Sound exposure and noise units would also double if there were two events at the same sound level. This relation between event sound level and number of events is what is meant by the "equal energy hypothesis."

Blast noise annoyance does not appear to fit an equal energy hypothesis. For blast sounds, two (incoherent) events at the same sound level produce double the C-weighted sound exposure (+3 dB), and double the number of equivalent, A-weighted noise units. But, in contrast, a change of +3 dB in the level of a single

^{*} One sound exposure unit is one (Pascal)² second as defined in American National Standard Quantities and Procedure for Assessment of Environmental Sound, Part 1, ANSI S12.9-1988.

blast produces a much greater change in annoyance response than a doubling of equivalent noise units would indicate. For the line in Figure 30, where the slope is 2.4, a 3 dB change in blast sound level corresponds to almost a 5-fold increase in equivalent, A-weighted noise units. Stated simply, five blasts, each creating a CSEL of "X" correspond to one blast creating a CSEL of "X+3."

This result is reminiscent of the sonic-boom data gathered at Oklahoma City. Those data also showed a much larger growth in annoyance with boom level than can be supported by an equal energy hypothesis. Table 17 lists the Oklahoma City data as used in the National Academy of Science study of high-amplitude impulse noise (National Academy of Science 1981). In this table, A-weighted day-night average sound level (ADNL) is calculated from the percent highly annoyed. Total day-night ASEL is calculated from ADNL by adding 49.4 dB. Since there were 8 booms per day, 9 decibels are subtracted from this total day-night ASEL to yield an equivalent ASEL per event. This ASEL is equivalent in terms of annoyance to the CSEL for each boom. Figure 31 shows these sonic-boom data. Figure 31 portrays single boom CSEL versus equivalently annoying single event ASEL. The slope is 2.1, and, at about 100 CSEL, CSEL and ASEL are equivalent. The general agreement between the blast and boom data is remarkable.

-		Bonic Boom Level	8	Equivalent Co	ommunity !	Response
Time Period	Peak (pef)	Peak (dB)	CSEL (dB)	% Highly Annoyed	ADNL (dB)	ASEL (dB)
First	1.13	128.1	102.1	10.5	62.8	103.2
First	0.80	125.1	99.1	7.9	60.4	100.8
First	0.65	123.3	97.3	3.0	52.7	93.1
Second	1.23	128.8	102.8	16.1	66.5	106.9
Second	1.10	127.8	101.8	12.2	64.1	104.5
Second	0.85	125.6	99.6	6.5	58.8	99.2
Third	1.60	131.1	105.1	21.7	69.3	109.7
Third	1.30	129.3	103.3	15.2	66.0	106.4
Third	1.00	127.0	101.0	10.1	62.5	102.9

Table 17. Data taken from the Okiahoma City data as used in the National Academy of Science study of highamplitude impulse noise. In this table, ADNL is calculated from the percent highly annoyed. Since there were 8 booms per day, 9 decibels are subtracted from ADNL and 49.4 is added to yield a "normal" sound ASEL equivalent in annoyance to the CSEL for each boom.

^{49.4} dB is 10 log (86,400), where 86,400 is the number of seconds in a day.

As an example of the implications of this nonequal-energy model, if the slope of the relation between blast CSEL and equivalent ASEL is 2 and 100 CSEL blast or boom sound is equivalent to a 100 ASEL "normal" sound, then a 110 CSEL blast sound is equivalent to 120 ASEL "normal" sound. But one sound per day having an ASEL of 120 dB constitutes a 70 DNL. So with this relation, one gun blast or boom having a peak level of about 135 dB (a CSEL of 110) would be the equivalent of 70 ADNL for "normal" sound. This result is much more consistent with the Oklahoma City results and Bureau of Mines regulations, which limit blast levels to a peak of 131 dB. (A mine blast with a peak of 131 dB has a CSEL of about 110-115.) In contrast, the present ANSI S12.4 procedure would indicate an equivalent DNL of only 60 dB for one blast per day creating a CSEL of 110; quite a difference (American National Standard 1988). A 10 dB change in CSEL yields a 20 dB change in equivalent level. Stated another way, one blast producing a 110 CSEL sound would be equivalent to 10,000 blasts, each producing a 90 CSEL sound.

Figure 31. The Oklahoma City sonic-boom data. Single boom CSEL versus equivalently annoying single event ASEL are shown. The slope is 2.1 and at about 100 CSEL, CSEL and ASEL are equivalent.

^{*} A mine explosion having a peak level of 131 dB, has a CSEL of about 110 to 115 dB.

6 Conclusions

Proper assessment of blast noise environments is essential. However, the fact that tests involving real sounds in real houses yield different results from tests using artificial sounds in laboratory settings throws laboratory-based environmental noise assumptions and test methods into doubt. Measured near a subject's ears, the real sound of a vehicle passing is not the same as a computer-generated pinknoise sound; they differ by 10 dB or more in ASEL for equivalent annoyance. To obtain reliable, comparative data, this difference indicates that research should use real sound sources located outdoors, at typical distances, and test subjects situated in real houses.

In this test, subjects were exposed to pairs of given noises, and were asked to compare the two sources and to choose the more annoying of the pair. The results of this test suggest a positive relation between type of noise and the level of annoyance it causes. If the subjects were only judging loudness, then there would be no large difference between results using pink-noise and wheeled vehicle sound.

The data taken in this study support an energy model for small arms, but do not specify an exact value for a penalty. There is some evidence of a level-dependent penalty, but any functional relation is quite complicated. Since indoor dwelling unit environments are normally assessed by *outdoor* measurements, the best guidance indicates a penalty of about 7 to 10 dB, with some values as small as 3-1/2 dB.

For tracked vehicles, with indoor subjects, the penalty is about ±5 dB when the sound is measured outdoors; the penalty reverses sign and is about -3 dB when the sound is measured indoors. With outdoor subjects, the penalty is only about +1.5 dB.

Blast noise is no amenable to a simple penalty—even if measured using C-weighting. For a 1-dB change in blast sound CSEL, the equivalent control sound ASEL changes by at least 2 dB. This "trading-ratio" result is consistent across conditions and tests in this study and is supported by results of earlier tests at Grafenwöhr, Germany and Aberdeen, MD. The results of this test are also consistent with sonic boom data taken in a study done in Oklahoma City.

The results of the studies done at Munster, APG, and Grafenwöhr clearly show that an equal energy model overestimates the importance of many low-level events

and underestimates the importance of a few high-level events. The importance of this observation should not be underestimated. These results indicate that one event creating a CSEL of 110 dB is equivalent to about 10,000 events creating a CSEL of 90 dB. (Under an equal energy model, the ratio would be 1 to 100, not 1 to 10,000.) One event producing 110 CSEL creates an environment equivalent to about 70 ADNL or higher.

Thus, a proper, high-amplitude impulse noise model does not appear to be an equal energy model. Rather, each event must be converted to "equivalent Aweighted annoyance units," which can then be summed to total the equivalent environment.

References

- Air Installations Compatible Use Zones (AICUZ), U.S. Department of Defense [DOD] Instruction 4165.57, 8 November 1977.
- American National Standard S12.4, Method for Assessment of High-Energy Impulsive Sounds with Respect to Residential Communities (1986).
- American National Standard S12.9, Part 1, Quantities and Procedures for Description and Measurement of Environmental Sound (1988).
- American National Standard S12.40, Sound Level Descriptors for Determination of Compatible Land Use (1990).
- Assessment of Community Response to High-Energy Impulsive Sound, Report of Working Group 84, Committee on Hearing, Bioaccustics and Biomechanics, Assembly of Behavioral and Social Sciences, The National Research Council, National Academy of Science, Washington, D.C. (1981).
- International Organization for Standardization, International Standard [ISO] R1996:1990/2, AcousticsDescription and Measurement of Environmental Noise—Part 2: Acquisition of Data Pertinent to
 Land Use (International Organization for Standardization, Geneva, Switzerland, 1990).
- Schomer, Paul D., Brian D. Hoover, and Lee R. Wagner, Human Response to Helicopter Noise: A Test of A-Weighting, Technical Report/Draft (U.S. Army Construction Engineering Research Laboratory [USACERL], 1991).
- Schomer, Paul D., Edmon Buchta, and Karl-Wilhelm Hirsch, "Decibel Annoyance Reduction of Low-Frequency Blast Attenuating Windows," Journal of the Acoustical Society of America, vol 89, no. 4 (1991).
- Schomer, Paul D., "On Using the Generalized Concept of Loudness to Predict Annoyance," INTER-NOISE 91 (Institute of Noise Control Engineering International, Australia, December 1991).
- Schomer, Paul D., et al., "Statistics of Amplitude and Spectrum of Blasts Propagated in the Atmosphere," Journal of the Acoustical Society of America, vol 63, no. 5 (1978), pp 1431-1443.
- Schomer, Paul D., and Robert D. Neathammer, "The Role of Helicopter Noise-Induced Vibration and Rattle in Human Response," *Journal of the Acoustical Society of America*, vol 81, no. 4 (April 1987).
- Schomer, Paul D., and Aaron Averbuch, "Indoor Human Response to Blast Sounds that Generate Rattles," Journal of the Acoustical Society of America, vol 86, no. 2 (August 1989).

- Schomer, Paul D., "High-Energy Impulsive Noise Assessment," Journal of the Acoustical Society of America, vol 79, no. 1, (January 1986).
- Sutherland, L.C., Annoyance, Loudness, and Measurement of Repetitive Type Impulsive Noise Sources (Report by Wyle Research Laboratories for the U.S. Environmental Protection Agency [USEPA] 550/9-79-103, November 1979).
- U.S. Army Regulation 200-1, Environmental Protection and Enhancement, Chapter 7, Environmental Noise Abatement Program (Headquarters, Department of the Army, Washington, D.C., 23 April 1990).

Appendix A: Subject Response Data and Transition Analysis Curves for Small Arms and Tracked and Wheeled Vehicles

Figure A1

Test Source: Near Gun, 60 Condition: Windows Closed

Control Source: Vehicles Data Included: Sets 1-5

NEAR GUN 60, FIRST HALF-VEHICLE CONTROLS

Cum Area 0.0 500.7 1001.5 1502.2 4678.6 5131.9	5380.4 5532.6 6005.3 6465.4 6466.3 6466.4		
Y % Residual -0.149 -0.149 -0.148 -0.189	7.056 -10.649 2.818 0.000 0.000		
Y Residual -0.149 -0.149 -0.148 -0.178	5.997 -7.028 1.296 -0.298 -0.061 0.061		
Y Predicted 100.1 100.1 100.1 94.2 86.3	79.0 73.0 0.3 0.3 -0.1	63.5 0.8 78.1	62.1 65.0 9.2 1.0 9.1 7.3
PERCENT 100 100 100 100 84	88 89 90 00 00	d) [LogisticDoseRsp] C C StdErr C t	C Conflimits D StdErr D t D Conflimits
CONTROL ASEL 0 5 10 15 47	55 57 110 120 125 7.8	<	-3.3 100.5 2.3 44.0 96.3 7.401
× - αω 4 ω φ #	8 8 10 10 13 13 00 00 00 00 00 00 00 00 00 00 00 00 00	Equation Adjr2 r2 Fit StdErr F-stat Confidence A StdErr	A Conflimits B StdErr B t B Conflimits

Figure A2

Test Source: Near Gun, 6

Condition: Windows Closed

Control Source: Vehicles Data Included: Sets 1-5

NEAR GUN 6, FIRST HALF-VEHICLE CONTROLS

Cum Area	500.8	1001.6	1502.4	4174.3	4605.4	4953.6	5110.2	5191.5	5400.9	5400.5	5400.1	5399.8																	
Y % Residual	-0.158	-0.158	-0.158	4.255	-9.985	6.208	9.519	-16.850	0.000	0.000	0.000	0000																	
Y Residual	-0.158	-0.158	-0.158	4.085	-7.189	3.911	4.760	-5.224	0.072	0.072	0.072	0.072																	
Y Predicted	100.2	100.2	100.2	91.9	79.2	59.1	45.2	36.2	-0.1	-0.1	-0.1	-0.1			•					0.42	9.0	6.96	52.9	55.0	-8.6	0.1	-8.4	-10.5	-6.7
PERCENT	9 2	100	9	96	72	63	20	સ	0	0	0	0		(x-c)/(02d)) [Cumulative]						ပ	C StdErr	Ċţ.	C Conflimits		۵	D StdErr	0,	D Conflimits	
CONTROL ASEL	ഹ	5	15	42	47	52	25	22	110	115	120	125	28	y=a+b0.5(1+erf((x	1.0	1.0	9.0	509.3	0.06	-0.1	6.1	0.0	-3.6	3.5	100.2	2.7	36.9	95.3	105.2
XY Pt #	· QI	ო	4	ιΩ	9	7	œ	O	1 0	=	12	13	X@50Y	Equation	Adjr2	ୂପ	Fit StdErr	F-stat	Confidence	∢	A StdErr	۸t	A ConfLimits		8	B StdErr	B ‡	B Conflimits	•

Figure A3

Test Source: Far Gun, 60

Condition: Windows Closed

Control Source: Vehicles Data Included: Sets 1-5

FAR GUN 60, FIRST HALF-VEHICLE CONTROLS

15.0 100.0 100.1 42.0 89.0 84.7 47.0 62.0 69.4 52.0 50.0 49.8 55.0 51.0 37.7 57.0 0.0 -0.1 115.0 0.0 -0.1 125.0 0.0 0.0 -0.1 125.0 0.0 0.0 -0.1 125.0 0.0 0.0 0.0 0.0 125.0 0.0 0.0 0.0 0.0 125.0 0.0 0.0 0.0 0.0 125.0 0.0 0.0 0.0 0.0 0.0 125.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
52.0 57.0 110.0 110.0 125.0 12

Figure A4

Test Source: Leopard II

Condition: Windows Closed

Control Source: Vehicles Data Included: Sets 1-5

LEOPARD II, FIRST HALF-VEHICLE CONTROLS

Cum Area	0.0	503.8	1007.7	1511.5	4706.3	5142.8	5364.1	5488.8	5799.7	5981.8	5984.9	5987.8	5990.7																	
Y % Residual	-0.766	-0.766	-0.766	-0.766	0.913	8.253	6.726	-33.566	23.334	0.000	0.000	0.000	0.00																	
Y Residual	-0.766	-0.766	-0.766	-0.766	0.858	7.180	4.843	-14.434	7.000	-0.626	-0.599	-0.583	-0.574																	
Y Predicted	100.8	100.8	100.8	100.8	93.1	79.8	67.2	57.4	23.0	9.0	9.0	9.0	9.0								58.4	1.0	6.09	56.6	60.1	11.5	2.7	5.5	7.7	15.4
PERCENT	100.0	100.0	100.0	100.0	0.49	87.0	72.0	43.0	30.0	0.0	0.0	0.0	0.0		^d) [LogisticDoseRsp]						O	C StdErr	Ç	C Conflimits		۵	D StdErr	οt	D Conflimits	
CONTROL ASEL	0.0	5.0	10.0	15.0	47.0	52.0	55.0	57.0	029	110.0	115.0	120.0	125.0	58.5		1.0	0.1	6.1	208.9	0.06	9.0	3.1	0.5	-5.1	6.2	100.2	4.3	23.2	92.3	108.1
XY Pt #	_	8	ო	4	ည	9	7	œ	ത	9	-	12	13	X@50Y	Equation	Adjr2	.	Fit StdErr	F-stat	Confidence	⋖	A StdErr	Αt	A ConfLimits		∞	B StdErr	9	B Conflimits	

Figure A5

Test Source: Marder

Condition: Windows Closed

Control Source: Vehicles Data Included: Sets 1-5

MARDER, FIRST HALF-VEHICLE CONTROLS

Cum Area 0.0 463.2 926.4 1389.6 3890.9 4354.1 4817.3 5038.9 5088.5 5639.1 5812.7 5517.9	
Y % Residual 7.359 7.359 7.359 7.359 4.494 -7.722 -49.387 65.883 45.002 0.000 0.000 0.000	
Y Residual 7.359 7.359 7.359 7.359 4.359 -6.641 -30.620 34.918 8.100 -9.888 -9.888	
7 Predicted 92 Pre	5. 1.
PERCENT 100.0 100.0 100.0 100.0 100.0 97.0 86.0 62.0 53.0 18.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	O 0
CONTROL ASEL 0.0 10.0 15.0 47.0 47.0 55.0 57.0 115.0 125.0 54.4 y=a+b/(1+(x/c) ^0.8 0.9 17.9	9.9 4.7 1.3 23.5 82.8 10.1 64.2 64.2
XY Pt # 1 2 4 4 5 6 7 7 10 11 12 13 X@50Y Equation Adjr2 Pit StdErr Fit StdErr	A StdErr A t A Conflimits B StdErr B t B Conflimits

Figure A6

Test Source: Near Gun, 60 Condition: Windows Closed

Control Source: White Noise Data Included: Sets 1-5

NEAR GUN 60, FIRST HALF-NOISE CONTROLS

Cum Area	49 0.0 0.0	9.266	1496.0	4922.3	5377.1	5806.4	6198.8	6542.0	6825.5	7044.8	7451.5	7455.0	7454.2	7450 7																	
Y % Residual	0.234	0.284	0.366	-0.973	-3.198	2.844	0.042	3.168	-7.016	3.818	0.000	0.000	0.00	0000																	
Y Residual	0.234	0.284	0.366	-0.895	-2.750	2.417	0.031	2.059	-3.298	1.489	-1.321	-0.200	0.483	0.897																	
75	0 0 0 0 0		9.66										-									75.4		~			-9.7			-10.7	-8.8
Y Pt # CONTROL ASEL PERCENT Y Pre-	100.0	100.0	100.0	92.0	86.0	85.0	74.0	65.0	47.0	39.0	0.0	0.0	0.0	0.0		(x-c)/d)) [Sigmoid]						ပ	C StdErr	Ç	C Conflimits		۵	D StdErr	Ot	D Conflimits	
CONTROL ASEL	9 9 9 9	10.0	15.0	20.0	25.0	0.09	65.0	70.0	75.0	80.0	110.0	115.0	120.0	125.0	75.1	y=a+b/(1+exp(-	.0.1	1.0	1.8	2528.6	0.06	-1.5	1.0	-1.5	-3.4	0.3	101.4	1.5	69.5	28.7	104.0
X F #	- Q I	ო	4	S.	ဖ	7	ထ	တ	9	7	12	13	14	5	X@50Y	Equation	Adjr2	언	Fit StdErr	F-stat	Confidence	⋖	A StdErr	Αŧ	A Conflimits		æ	B StdErr	Bţ	B Conflimits	

Figure A7

Test Source: Leopard II

Condition: Windows Closed

Control Source: White Noise

Data Included: Sets 1-5

LEOPARD II, FIRST HALF-NOISE CONTROLS

Y% Residual Cur 0.441	0.446 0.446 497.8 0.457 0.457 995.5	0.478	0.640	-3.110	-0.714	-2.0173.010 6209	5.919		10.906	10.906 43.151	10.906 -43.151 0.000	10.906 -43.151 0.000 0.000	'
	5 6 6 7	99.5	94.4	89.7	81.6	0.69	52.7	35.6	2	V. 1.2	5.12 5.0-	C C 4.	c: -0 c: -000 -0 -0 -0 -0 -0 -0 -0 -0 -0
PERCENT 100:0	2 0 0 0 0	100.0	95.0	87.0	81.0	67.0	26.0	40.0	C 14	0.0	9 0 0	<u>0</u> 0 0	0000
CONTROL ASEL 0.0	0.01	15.0	50.0	55.0	0.09	65.0	70.0	75.0	Ca	25	110.0	110.0 115.0	90.0 115.0 120.0
**************************************				20.		~	•	0	_	•	. 8	. N 0	: <u>0</u>

Figure A8

Test Source: Vehicle 2

Condition: Windows Closed

Control Source: Vehicles Data Included: Sets 1-5

VEHICLE 2, FIRST HALF-NOISE CONTROLS

Cum Area 0.0 499.1 598.1 1497.0	5830.2 6214.3 6214.3 6535.7 6955.5 7202.5 7203.6		
Y % Residual 0.174 0.185 0.207 0.246	3.601 3.601 2.912 3.002 0.000 0.000 0.000		
Y Residual 0.174 0.185 0.207 0.246	-3.30 -0.084 -1.061 -0.810 -0.810 -0.010 0.232		
Y Predicted 99.8 99.8 99.8 99.8 99.8	81.9 81.9 7.1.1 7.1.1 27.8 0.0 -0.2	27.7 2.0.3	71.8 73.0 -8.1 -23.3 -8.8
PERCENT 100.0 100.0 100.0	85.0 71.0 71.0 56.0 27.0 27.0 0.0 0.0		C Conflimits D StdErr D t D Conflimits
CONTROL ASEL 0.0 5.0 10.0 15.0	86.0 66.0 75.0 75.0 110.0 125.0 72.3	y=a+b/(1+exp((1.0 1.0 1.6 3201.7 90.0 -0.5 0.8	-2.0 1.00 4.00 4.2 88 87.3 4.3 4.3 4.3
× - α α 4 π #	× × × × × × × × × × × × × × × × × × ×	Equation Adjr2 r2 Fit StdErr F-stat Confidence A A StdErr	A Conflimits B StdErr B t B Conflimits

Figure A9

Test Source: Near Gun, 60 Condition: Windows Open

Control Source: Vehicles
Data Included: Sets 6-10

NEAR GUN 60, SECOND HALF-VEHICLE CONTROL

Cum Area 0.0 502.2 1004.4 1506.6 5193.3 5641.6 5955.2 6091.1 6751.4 6752.9 6752.9	
Y % Residual -0.441 -0.441 -0.441 -0.441 -0.142 8.009 -20.821 9.891 0.000 0.000 0.000	
Y Residual -0.441 -0.441 -0.441 0.134 3.648 6.247 -11.035 3.561 -0.219 -0.127	
Y Predicted 100.4 100.4 100.4 100.4 100.4 100.4 100.4 93.9 84.4 71.8 64.0 0.1 0.1 0.1	66.3 0.9 7.4.2 64.7 68.0 10.9 1.5 1.5 13.7
PERCENT 100.0 100.0 100.0 100.0 100.0 94.0 88.0 78.0 36.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	C StdErr C t C ConfLimits D StdErr D t D ConfLimits
CONTROL ASEL 0.0 5.0 10.0 15.0 52.0 57.0 61.0 63.0 71.0 110.0 115.0 125.0 66.4 y=a+b/(1+(x/c)^1.0 1.0 1.0 1.0 90.0	0.0- 0.0- 0.0- 0.0- 0.0- 0.0- 0.0- 0.0-
XY Pt # 1	A StdErr A t A Conflimits B StdErr B t B Conflimits

Figure A10

Test Source: Near Gun, 6
Condition: Windows Open

Control Source: Vehicles Data Included: Sets 6-10

NEAR GUN 6, SECOND HALF-VEHICLE CONTROLS

Y % Residual Cum Area 100.169 0.0	S.		-0.325 1504.9		-9.793 5074.0					0.000 5840.1	0.000 5839.6	0.000 5839.0																
Y Residual Y 100.169	-0.325	-0.325	-0.325	5.147	-6.562	1.089	9.058	-7.813	0.041	0.088	0.116	0.1 \$																
Y Predicted -0.2	100.3	100.3	100.3	88.9	73.6	51.9	94.9	27.8	-0.0	-0.1	-0.1	-0.1								57.4	0.8	75.6	26.0	58.8	-10.2	•	4.	1.7-
PERCENT 100.0	100.0	100.0	100.0	0.38	67.0	53.0	44.0	20.0	0.0	0.0	0.0	0.0		d) [LogisticDoseRsp]						O	C StdErr	Ot Ot	C Conflimits		۵	D 044E		D t
CONTROL ASEL	5.0	10.0	15.0	47.0	52.0	57.0	61.0	63.0	110.0	115.0	120.0	125.0	57.4	$y=a+b/(1+(x/c)^{-1}$	1.0	0.1	6.4	320.5	0.06	100.3	2.4	41.7	95.9	104.7	-100.5	4	0.0	-29.0
XY Pt #	, CV	က	4	2	9	7	œ	O	9	=	12	13	X@50Y	Equation	Adjr2	2	Fit StdErr	F-stat	Confidence	⋖	A StdErr	At	A Conflimits		6	בחבות מ		8 t

Figure A11

Test Source: Far Gun, 60 Condition: Windows Open

Control Source: Vehicles Data Included: Sets 6-10

FAR GUN 60, SECOND HALF-VEHICLE CONTROLS

Figure A12

Test Source: Leopard II

Condition: Windows Open

Control Source: Vehicles
Data Included: Sets 6-10

LEOPARD II, SECOND HALF-VEHICLE CONTROLS

Cum Area	0.0	500.5	1001.0	1501.5	5152.8	5582.8	5883.9	6016.2	6412.2	6793.9	6795.7	6796.0	6795.3																	
Y % Residual	-0.103	-0.103	-0.103	-0.102	-1.707	2.809	14.328	-31.073	8.466	0.000	0000	0.000	0000																	
Y Residual	-0.103	-0.103	-0.103	-0.102	-1.519	2.331	11.604	-14.915	3.386	-0.567	-0.189	0.057	0.22																	
Y Predicted	1001	1001	1001	1001	90.5	80.7	69.4	62.9	36.6	9.0	0.2	-0.1	-0.2								699	1.6	42.5	9	8.69	8.9	6.	4.7	4.0	12.5
PERCENT	100.0	100.0	100.0	100.0	89.0	83.0	0.18	48.0	40.0	0.0	0.0	0.0	0.0		d) [LogisticDoseRsp]			6.5			O	C StdErr	ŏ	C Conflimits		۵	D StdErr	õ	D Conflimits	
CONTROL ASEL	0.0	5.0	10.0	15.0	52.0	92.0	0.10	63.0	0.17	110.0	115.0	120.0	125.0	66.2	$y = a + b/(1 + (x/c)^{-1}$	1.0	0.0	6.5	180.4	90.0	-0.6	3.5	-0.5	-7.0	9.9	100.7	4 .0	20.6	7.16	109.6
** XX	-	Q	ო	4	ιΩ	ø	2	œ	o	9	=	12	.	X@50Y	Equation				F-stat	9	⋖	A SIDER	Αt	A Conflimits		œ	B StdErr	8	B Conflimits	

Figure A13

Test Source: Marder

Condition: Windows Open

Control Source: Vehicles
Data Included: Sets 6-10

MARDER, SECOND HALF-VEHICLE CONTROLS

Cum Area	0.0	496.5	993.0	1489.5	4647.0	5099.3	5474.8	5680.1	5747.7	5869.7	5867.5	5865.7	5063 7	7.200																
Y % Residual	0.699	0.699	0.700	0.701	-1.634	-3.479	-1.772	25.653	-78.389	0.00	0000	0.00		8																
Y Pesidual	0.699	0.699	0.700	0.701	-1.519	-2.853	-1.099	13.596	-12.542	0.404	0.405	0.405	0.405																	
Y Predicted	89.3	99.3	69.3	99.3	9 2	6.49	63.1	39.4	28.5	4.0-	-0.4	-0.4	4 0-	•							59.3	0.8	77.2	57.9	60.7	1.4	0.8	-5.2	-5.6	-2.7
PERCENT	100.0	100.0	100.0	100.0	93.0	82.0	62.0	53.0	16.0	0.0	0.0	0.0	0.0	•	(x-c)/d)) [Sigmoid]						ပ	C StdErr	č	C Conflimits		۵	D StdErr	٥t	D Conflimits	
CONTROL ASEL	0.0	5.0	10.0	15.0	47.0	25.0	57.0	61.0	63.0	110.0	115.0	120.0	125.0	59.2	_ 1		1.0	6.3	198.5	0.06	-0.4	3.1	-0.1	-6.2	5.4	28.7	4.4	7:23	7.19	107.7
XY Pt *		Q	ო	◀ '	so.	6	_	œ	ග	9	=	12	1 0	X@50Y	Equation	Adjr2	୍ଦ	Fit StdErr	F-:-	Conndence	⋖	A StdErr	Αt	A Conflimits			B StdErr	8	B Conflimits	

Figure A14

Test Source: Near Gun, 60 Condition: Windows Open Control Source: White Noise

Data Included: Sets 6-10

NEAR GUN 60, SECOND HALF -- NOISE CONTROLS

Figure A15

Test Source: Leopard II

Condition: Windows Open

Control Source: White Noise

Data Included: Sets 6-10

LEOPARD II, SECOND HALF-NOISE CONTROLS

Cum Area 0.0 496.8 993.6 1490.3	5347.8 5757.8 6124.5 6438.9 6695.1 6892.2 7034.1 7128.8 7234.7	7219.1
Y % Residual 0.641 0.643 0.648 0.666	1.576 -23.020 5.044 6.269 5.670 19.786 -16.749 -197.931 0.000 0.000	000:0
Y Residual 0.641 0.643 0.648	1.371 3.632 3.632 3.824 2.722 8.310 -3.350 -9.897 0.913 1.314	1.492
Y Predicted 99.4 99.4 99.4 99.4	85.6 78.0 68.7 7.7.2 7.3.3 7.0.1 6.0.1	, , ,
PERCENT 100.0 100.0 100.0	87.0 65.0 61.0 61.0 48.0 20.0 20.0 0.0	125.0 0.0 76.8 5(1+erf((x-c)/(02d))) [Cumulative] 1.0 1.0 5.7 253.6 90.0 -1.6 C t -7.2 C Cont.imits 3.9 101.0 D 4.3 D StdErr 23.4 D t 93.3 D Conf.Limits
CONTROL ASEL 0.0 5.0 10.0 15.0	55.0 60.0 70.0 75.0 80.0 110.0 115.0	125.0 76.8 y=a+b0.5(1+erf(() 1.0 1.0 5.7 253.6 90.0 -1.6 3.9 101.0 4.3 23.4 93.3
× − α α 4 #	ი ი ८ ფ ი ე ე ე ე ქ ე ე	X@50Y Equation Adjr2 r2 Fit StdErr F-stat Confidence A A StdErr A t B StdErr B t B ConfLimits

Figure A16

Test Source: Vehicle 2

Condition: Windows Open

Control Source: Vehicles
Data Included: Sets 6-10

VEHICLE 2, SECOND HALF-NOISE CONTROLS

A Cum Area		4			9 5235.0						8 6890.4			0 7167.8																			
Y % Residua	0.528	0.661	0.860	1.155	-6.819	-10.822	6.052	11.066	2.837	4.113	2.918	-83.639	0.00	0.000	0.00	0000																	
Y Residual	0.528	0.661	0.860	1.155	-5.182	-7.251	4.237	6.971	1.333	1.522	0.788	-8.364	-1.408	0.319	1.509	2.321																	
Y Predicted	99.5	99.3	99.1	98.8	81.2	74.3	65.8	99.0	45.7	35.5	26.2	18.4	4.1	-0.3 -	-1.5	-2.3								73.9	4.4	53.1	71.5	76.4	-12.4	4.1	-8.6	-15.0	ć
PERCENT	100.0	100.0	100.0	100.0	76.0	67.0	20.0	63.0	47.0	37.0	27.0	10.0	0.0	0.0	0.0	0.0		+ exp(-(x-c)/d)) [Sigmoid]						O	C StoEn	Ot Ot	C Conflimits		۵	D StdEn	ŏ	D Conflimits	
CONTROL ASEL	0.0	5.0	10.0	15.0	22.0	90.0	020	70.0	75.0	80.0	85.0	0.06	110.0	115.0	120.0	125.0	7.97	y = a + b/(1 + exp(-(0.7	4.4	405.0	0.06	-4.0	3.1	-1.3	-9.5	5.1	103.7	4.2	24.9	96.3	444.0
XY ₽*	-	α	က	4	တ	ဖ	7	œ	တ	5	=	5	5	4	5	16	X@50Y	Equation	Adjrz	' 2	Fit StdEn	F-stat	Confidence	∢	A StdEn	At	A Confilmits		∞	B StdEn	B	B Confl.imits	

Figure A17

Test Source: Near Gun, 60

Condition: Outdoors
Control Source: Vehicles

Data Included: Sets 7-10

NEAR GUN 60, OUTDOOR-VEHICLE CONTROL

Cum Area 0.0 501.1	1503.3 6696.0 7163.5 7340.8 7890.1 8404.0	8643.7 8646.3 8645.1 8642.8	
Y % Residual -0.220 -0.220	0.952 0.952 0.760 0.212 -2.470	0.0000000000000000000000000000000000000	
Y Residual -0.220 -0.220	0.920 0.924 0.691 0.184 -1.655	-1.243 -0.005 0.397 0.505	
Y Predicted 100.2 100.2	96.1 96.2 96.3 1.5 8.8 8.8 9.9		86.4 385.7 86.0 86.9 -11.2 0.3 -138.1
PERCENT 100.0 100.0	97.0 97.0 91.0 87.0 67.0	Zd))) [Cu	C StdErr C t C ConfLimits D StdErr D t D ConfLimits
CONTROL ASEL 0.0 5.0	72.0 72.0 74.0 81.0		0.5 0.5 1.1-1 1.00 1.48.0 1.48.0 1.02.0
× + 2 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 =	0 4 ≈ ∞ ∼ ∞ ∞	10 11 12 13 X@50Y Equation Adjr2 r2 r2 Fit StdErr F – stat Confidence	A StdErr A t A ConfLimits B StdErr B t B ConfLimits

Figure A18

Test Source: Near Gun, 6 Condition: Outdoors Control Source: Vehicles

Data Included: Sets 7-10

NEAR GUN 6, OUTDOOR-VEHICLE CONTROL

Cum Area 0.0	497.9	995.8	1493.7	5936.8	6549.7	6909.0	7025.5	7297.8	7452.6	7451.6	7450.2	7448.7																	
Y % Residual 0.421	0.421	0.421	0.423	-0.055	-8.206	8.085	1.983	-14.288	0.00	0.00	0.000	0.00																	
Y Residual 0.421	0.421	0.421	0.423	-0.051	-6.072	5.498	1.091	-3.143	0.133	0.248	0.296	0.316																	
Y Predicted 99.6	9.66	9.66	9.66	93.1	90.1	62.5	53.9	25.1	-0.1	-0.2	-0.3	-0.3								75.0	0.5	152.2	74.1	75.9	-5.6	0.5	-10.9	9.9	7.4-
PERCENT 100.0	100.0	100.0	100.0	93.0	74.0	68.0	55.0	22.0	0.0	0.0	0.0	0.0		-(x-c)/d)) [Sigmoid]						ပ	C StdErr	Ç	C Conflimits		۵	D StdErr	ot Ot	D Conflimits	
CONTROL ASEL	5.0	10.0	15.0	90.0	67.0	72.0	74.0	91.0	110.0	115.0	120.0	125.0	74.9			1.0	3.0	878.8	0.06	-0.3	7.5	-0.5	-3.1	2.4	6.66	2.1	47.7	96.1	103.8
XY Pt #	8	က	4	ro.	9	7	©	O	9	=	12	13	X@50Y	Equation	Adjr2	Q	Fit StdErr	F-stat	Confidence	⋖	A StdErr	A t	A Conflimits		∞	B StdErr	B	B Conflimits	

Figure A19

Test Source: Far Gun, 60 Condition: Outdoors Control Source: Vehicles

Data Included: Sets 7-10

FAR GUN 60, OUTDOOR-VEHICLE CONTROL

XY P.*	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	100.0	1004	-0.388	-0.368	
- α	5.0	100.0	1001	-0.368	-0.368	5.02 8.103
C.	000		200	986	0.369	1000
· (0.00	3	000.0	10.366	3
4	15.0	100.0	100.4	-0.368	-0.368	1505.5
د	0.09	0.66	97.2	1.756	1.774	6011.6
9	0.79	87.0	82.8	1.243	1.429	6659.6
7	72.0	0.40	989	-4.615	-7.211	7048.7
œ	74.0	63.0	90.0	3.033	4.814	7177.4
O	81.0	29.0	28.8	0.180	0.622	7485.9
0	110.0	0.0	0.0	-0.035	0.00	7642.4
=	115.0	0.0	0.0	-0.030	0.00	7642.5
5	120.0	0.0	0.0	-0.030	0.000	7642.7
13	125.0	0.0	0.0	-0.030	0000	7642.8
X@50Y	76.2					
Equation	y=a+b0.5(1+erf((x-	y=a+b0.5(1+erf((x-c)/(02d))) [Cumulative]	[0			
Adjr2	0.1		•			
ି ପ	1.0					
Fit StdErr	2:0					
F-stat	2007.3					
Confidence	0.06					
⋖	0.0	ပ	76.1			
A StdErr	0.1	C StdErr	0.3			
Αt	0.0	5	236.4			
A Conflimits	<u>1</u> .	C Conflimits	75.5			
	6 .		78.7			
മ	100.3	۵	-8.7			
B StdErr	4.	D StdErr	0.5			
Bţ	72.7	o t	-16.8			
B Conflimits	8.78	D Conflimits	-9.6			
	102.9		-7.7			

Figure A20

Test Source: Leopard II
Condition: Outdoors
Control Source: Vehicles

Data Included: Sets 7-10

LEOPARD II, OUTDOOR-VEHICLE CONTROL

Cum Area	0.0	499.8	288.7	1499.5	6683.9	7139.9	7301.3	7696.3	7869.1	7921.6	7929.5	7936.9	7944 7																	
Y % Residual	0.034	30.0 0.0	0.034	0.034	-4.101	6.958	-1.779	-11.591	26.690	0.000	0.000	0000	0000																	
Y Residual	0.034	0.034	0.034	0.034	-3.773	6.332	-1.334	-3.709	8.504	-1.612	-1.539	-1.509	-1.497																	
Y Predicted	100.0	100.0	100.0	100.0	92.8	7.78	76.3	35.7	ò.5	1.6	75.	1.5	5.7	2							78.5	9.0	127.1	77.3	79.6	19.7	2.5	8.0	15.2	24.2
PERCENT	100.0	0.00	100.0	100.0	92.0	0.16	75.0	32.0	15.0	0.0	0.0	0.0	0.0		^d) [LogisticDoseRsp]						ပ	C StdErr	Çt	C Conflimits		۵	D StdErr	01	D Conflimits	
CONTROL ASEL	0.0	0.6	10.0	15.0	0.79	72.0	74.0	81 .0	0.19	110.0	115.0	120.0	125.0	78.6	$y=a+b/(1+(x/c)^{-1}$	1.0	1.0	4.1	499.1	0.06	1.5	2.0	0.8	-2.1	5.1	98.5	2.8	8.7	93.3	103.7
XY Pt #	- 0	y (₁₀	4	က	ဖ	7	œ	o	9	=	12	1 3	X@50Y	Equation	Adjr2	ପ	Fit StdErr	F-stat	Confidence	⋖	A StdErr	At	A Conflimits		6	B StdErr	B t	B Conflimits	

Figure A21

Test Source: Marder

Condition: Outdoors Control Source: Vehicles

Data Included: Sets 7-10

MARDER, OUTDOOR-VEHICLE CONTROL

Cum Area 0.0 501.8 1003.6 1505.4	6012.2 6638.3 6965.8 7057.0 7244.9 7244.3	7243.2	
Y % Residual -0.363 -0.363 -0.363	3.213 -5.730 9.675 -7.503 -7.991 0.000	000	
Y Residual -0.363 -0.363 -0.363	3.213 -4.240 5.515 -0.719 0.115	2.0 2.12 3.03	
Y Predicted 100.4 100.4 100.4	96.8 78.2 39.8 9.7 1.0 - 1.1		72.2 0.3 71.6 7.7.9 1.6.8 0.6 1.2.2 6.8
PERCENT 100.0 100.0 100.0	100.0 74.0 57.0 37.0 9.0 0.0	2d))) [Cum	C StdErr C t C ConfLimits D StdErr D t D ConfLimits
CONTROL ASEL 0.0 5.0 10.0	60.0 67.0 72.0 74.0 81.0 116.0	7	-0.1 -0.1 -0.1 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
X - 0 6 4 1 #	v o r o o o o c c	13 X@50Y Equation Adjr2 r2 Fit StdErr F-stat Confidence	A StdErr A t A Conflimits B StdErr B t B Conflimits

Figure A22

Test Source: Near Gun, 60

Condition: Outdoors

Control Source: White Noise Data Included: Sets 7-10

NEAR GUN 60, SECOND HALF-NOISE CONTROLS

Cum Area 0.0 498.0 996.0 1494.0 7469.9 7964.8 8832.3 9075.1 9196.0 9196.0	
Y % Residual 0.398 0.398 0.398 0.398 -1.500 -3.137 5.863 -7.122 6.038 0.000 0.000	
Y Residual 0.398 0.398 0.398 0.398 -1.470 -2.981 5.570 -4.344 2.053 -0.081	
Y Predicted 99.6 99.6 99.6 99.6 99.5 99.5 99.5 99.5	92.3 0.3 278.8 92.9 - 5.8 - 6.7
PERCENT 100.0 100.0 100.0 98.0 95.0 95.0 0.0 0.0	(x-c)/(02d))) [Cumulative] C StdErr C t C ConfLimits D D StdErr D t D ConfLimits
CONTROL ASEL 0.0 5.0 10.0 15.0 75.0 80.0 85.0 90.0 115.0 115.0 125.0 92.3	¥
X T C C C C C C C C C C C C C C C C C C C	Equation Adjr2 r2 Fit StdErr F-stat Confidence A A StdErr A t A ConfLimits B B StdErr B t B ConfLimits

Figure A23

Test Source: Leopard II
Condition: Outdoors

Control Source: White Noise Data Included: Sets 7-10

LEOPARD II, SECOND HALF-NOISE CONTROLS

XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
-	0.0	100.0	2.66	0.305	0.305	0.0
8	5.0	100.0	2.66	0.305	0.305	498.5
ო	10.0	100.0	266	0.305	0.305	6.966
4	15.0	100.0	266	0.305	0.305	1495.4
S	75.0	97.0	97.3	-0.301	-0.310	7471.0
9	80.0	89.0	89.0	-0.002	-0.002	7940.7
7	85.0	0.40	69.1	-5.098	-7.965	8341.2
œ	0.06	20.0	40.6	9.373	18.745	8616.7
ത	95.0	0.6	16.3	-7.328	-81.423	8754.8
10	110.0	0.0	-0.5	0.477	0000	8807.5
=	115.0	0.0	-0.5	0.550	0000	8804.9
12	120.0	0.0	9.0-	0.554	0000	8802.1
13	125.0	0.0	9.0-	0.554	0.000	8799.3
X@50Y	88.4					
Equation	y=a+b0.5(1+erf((x-	f((x-c)/(02d))) [Cumulative]				
Adjr2			•			
ୃଦ	1.0					
Fit StdErr	4.3					
F-stat	446.4					
Confidence	0.06					
⋖	266	ပ	88.5			
A StdErr	2.0	C StdErr	9.0			
At	49.1	Ç	152.5			
A ConfLimits	96.0	C Conflimits	87.4			
	103.4		89.5			
₩.	-100.2	۵	6 .8			
B StdErr	3.0	D StdErr	0.8			
Bt	-33.3	ō	8.4			
B Conflimits	-105.8	D ConfLimits	5.3			
	7.46-		8.3			

Figure A24

Test Source: Vehicle 2

Condition: Outdoors

Control Source: Vehicles

Data Included: Sets 7-10

VEHICLE 2, OUTDOOR GROUP-NOISE CONTROLS

XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	100.0	266	0.315	0.315	0.0
Q	5.0	100.0	266	0.315	0.315	498.4
ო	10.0	100.0	266	0.315	0.315	986.9
4	15.0	100.0	266	0.315	0.315	1495.3
Ŋ	75.0	0.10	%	-3.008	-3.306	7452.0
Q	80.0	86.0	84.4	1.563	1.818	7901.3
7	85.0	68.0	66.2	1.824	2.682	8281.5
œ	0.06	39.0	42.5	-3.503	-8.982	8553.6
O	95.0	25.0	22.5	2.507	10.029	8713.0
-	110.0	0.0	1.5	-1.511	0.000	8840.8
=	115.0	0.0	0.2	-0.21	0.000	8844.7
42	120.0	0.0	-0.4	0.395	0.000	8844.0
13	125.0	0.0	-0.7	0.684	0.000	8841.3
X@50Y	88.4					
Equation	$y=a+b/(1+(x/c)^{-1}$	^d) [LogisticDoseRsp]				
Adjr2	1.0					
ପ	1.0					
Fit StdErr	2.0					
F-stat	1939.5					
Confidence	0.06					
⋖	-1.0	ပ	88.6			
A StdErr	1.1	C StdErr	0.3			
Αt	6.0-	5	269.0			
A Conflimits	-3.1	C Conflimits	88.0			
	1.1		89.2			
∞	100.7	۵	17.0			
B StdErr	1.6	D StdErr	1.0			
B	6 .6	ot ot	16.7			
B Conflimits	8.76	D Conflimits	15.1			
	103.5		18.8			

Appendix B: Indoor and Outdoor Measured Acoustical Data for Small Arms and Tracked and Wheeled Vehicles, and Outdoor Acoustical Data for Blast Sounds Munster, Germany Noise Data July 1991

Test #01.1

		1	4921 Ou	ıtdoor M	licrophoi								
Run			MIC 10			MIC 9		MIC 1		MIC 1		MIC 8	
No.	Event	CSEL	CPK	FSEL	FPK	ASEL	APK	ASEL	APK	ASEL	APK	CSEL	CPK
	 ВТ	101	 98	103	100	 79	79	 81	 82	83	 86	89	90
	FGF	78	85	96	89	66	81	67	88	68	86	77	76
						70			92	66	89	91	106
	HB	97	114	104	121		94	63 57	92 79	61		84	98
	LB	89	108	97	112	66	89	57			86 05	_	
	NGF	81	94	96	94	75 88	94	78	93	79	95	77	75 74
	NGS	76	91	94	93	66	90	69	91	70	91	73	74
	ST	95	93	99		72	77	73	78	76	84	83	84
	V1	100	104	102		93	99	92	100	96	101	84	83
	V2	97	103	100	104	87	101	86	97	90	99	83	85
	V3	89	93	97	96	83	89	79	88	84	89	79	78
	V4	95	99	100		78	87	75	85	80	87	84	86
	V5	84	88	97		72	81	69	79	73	86	78	79
	V6	84	86	97	91	65	77	63	77	66	80	79	78
0		12410.4	111100	114100	11410 4	11410 5	14410 0	1440 7	1440	1			
Run					MIC 4						F3 /FNO		
	Event				MIC 4 ASEL						EVENS		
	Event	ASEL	ASEL	ASEL	ASEL	ASEL	ASEL	ASEL	ASEL	ODDS			
	Event BT	ASEL 60	ASEL 64	ASEL 65	ASEL 67	ASEL 65	ASEL 63	ASEL 63	ASEL 63	ODDS 63	64	· 	
	Event BT FGF	ASEL 60 46	ASEL 64 61	ASEL 65 49	ASEL 67 59	ASEL 65 43	ASEL 63 60	ASEL 63 47	ASEL 63 60	ODDS 63 46	64 60		
	Event BT FGF HB	ASEL 60 46 0	64 61 0	65 49 0	ASEL 67 59 0	ASEL 65 43 0	63 60 0	63 47 0	À ASEL 63 60 0	ODDS 63 46 0	64 60 0		
	Event BT FGF HB LB	À ASEL 60 46 0	64 61 0	65 49 0	ASEL 67 59 0	65 43 0 0	63 60 0 0	63 47 0 0	63 60 0	ODDS 63 46 0	64 60 0	. 	
	BT FGF HB LB NGF	À ASEL 60 46 0 0 50	64 61 0 0	65 49 0 0 51	67 59 0 0	65 43 0 0 47	63 60 0 0 59	63 47 0 0 48	63 60 0 0 59	63 46 0 49	64 60 0 0		
	BT FGF HB LB NGF NGS	60 46 0 0 50 43	64 61 0 0 60 58	65 49 0 0 51 44	67 59 0 60 55	65 43 0 47 41	63 60 0 0 59 56	63 47 0 48 43	63 60 0 0 59 57	63 46 0 49 43	64 60 0 0 60 57		
	BT FGF HB LB NGF NGS ST	60 46 0 50 43 53	64 61 0 60 58 62	65 49 0 51 44 59	67 59 0 60 55 61	65 43 0 47 41 58	63 60 0 59 56 61	63 47 0 48 43 56	63 60 0 59 57 61	63 46 0 49 43 56	64 60 0 0 60 57 61		
	BT FGF HB LB NGF NGS ST V1	60 46 0 50 43 53 64	64 61 0 60 60 58 62 65	65 49 0 51 44 59	67 59 0 60 55 61 65	65 43 0 0 47 41 58 63	63 60 0 59 56 61 64	63 47 0 0 48 43 56 63	63 60 0 0 59 57 61 64	63 46 0 0 49 43 56	64 60 0 0 60 57 61 65		
	Event BT FGF HB LB NGF NGS ST V1 V2	60 46 0 50 43 53 64 59	64 61 0 60 60 58 62 65 63	65 49 0 0 51 44 59 65 61	67 59 0 60 55 61 65 63	65 43 0 0 47 41 58 63 61	63 60 0 59 56 61 64 62	63 47 0 48 43 56 63 58	63 60 0 59 57 61 64 61	63 46 0 49 43 56 64 60	64 60 0 0 60 57 61 65 62		
	Event BT FGF HB LB NGF NGS ST V1 V2 V3	60 46 0 50 43 53 64 59	64 61 0 60 58 62 65 63	65 49 0 51 44 59 65 61	67 59 0 60 55 61 65 63 60	65 43 0 0 47 41 58 63 61 53	63 60 0 59 56 61 64 62 60	63 47 0 0 48 43 56 63 58	63 60 0 59 57 61 64 61 60	63 46 0 49 43 56 64 60 53	64 60 0 0 60 57 61 65 62 60		
	BT FGF HB LB NGF NGS ST V1 V2 V3 V4	60 46 0 50 43 53 64 59 53	64 61 0 60 60 58 62 65 63 61	65 49 0 0 51 44 59 65 61 54	67 59 0 60 55 61 65 63 60 60	65 43 0 0 47 41 58 63 61 53	63 60 0 59 56 61 64 62 60 61	63 47 0 0 48 43 56 63 58 52	63 60 0 59 57 61 64 61 60	63 46 0 0 49 43 56 64 60 53	64 60 0 0 60 57 61 65 62 60 61		
	Event BT FGF HB LB NGF NGS ST V1 V2 V3	60 46 0 50 43 53 64 59	64 61 0 60 58 62 65 63	65 49 0 51 44 59 65 61	67 59 0 60 55 61 65 63 60	65 43 0 0 47 41 58 63 61 53	63 60 0 59 56 61 64 62 60	63 47 0 0 48 43 56 63 58	63 60 0 59 57 61 64 61 60	63 46 0 49 43 56 64 60 53	64 60 0 0 60 57 61 65 62 60		

O INDICATES MEANINGLESS DATA

Munster, Germany Noise Data July 1991

Test #01.2

D		! .			or Micr	ophone		1.440		1.840.4			
Run	-		MIC 10		50 1/	MIC		MIC		MIC 1		MIC 8	
No.	Event	CSEL	CPK	FSEL	FPK	ASEL	APK	ASEL	APK	ASEL	APK	FSEL	FPK
	BT	100	98	102	100	79	 78	81	82 82	83	84	89	89
	FGF	78	84	96	88	66	83	66	86	68	83	80	83
	HB	97	113	104	120	70	95	62	92	65	87	94	107
	LB	89	108	96	112	65	89	56	76	60	78	85	99
	NGF	82	98	96	97	76	97	78	97	80	97	79	77
	NGS	75	91	92	91	66	91	68	91	70	90	73	75
	ST	95	92	99	94	71	75	74	79	76	82	83	83
	V1	100	105	102	105	92	99	92	100	95	101	82	81
	V2	97	103	100	104	87	99	86	96	89	98	84	88
	V3	89	93	96	95	83	90	79	87	84	89	79	78
	V4	95	99	99	102	78	88	76	85	80	87	85	86
	V5	84	88	96	92	72	81	69	78	73	81	80	81
	V6	84	85	96	91	65	72	63	75	66	76	78	78
Run		MIC1											
No.	Event	ASEL	ASEL	. ASEL	. ASEL	. ASEL	ASEL	. ASEL	JASEL	ODDS	EVEN	S	
	BT	60	62	64	65	65	62	63	58	63	62		
	FGF	46	40	50	48	46	43	47	42	47	43		
	HB	0	0	0	0	0	0	0	0	0	0		
	LB	0	0	0	0	0	0	0	0	0	0		
	NGF	50	50	53	51	49	49	49	47	50	49		
	NGS	43	40	44	41	40	40	43	38	43	40		
	ST	53	53	58	55	57	55	57	52	56	54		
	V1	64	63	64	64	63	62	63	62	63	63		
	V2	59	59	61	61	62	59	58	57	60	59		
	V3	54	54	54	54	53	51	52	51	53	52		
	V4	54	53	57	57	56	54	55	53	55	54		
	V5	47	46	49	48	47	45	48	46	48	46		
	V6	47	43	50	47	48	46	47	43	48	45		

0 INDICATES MEANINGLESS DATA

Test #02.1

July 1991

5		1			or Micr	rophon		1.140	44	1.440			
Run	5		MIC 1		CD1/	MIC		MIC		MIC 1		MIC 8	
No.	Event	CSEL	CPK	FSEL	FPK	ASEL	APR	ASEL	. APK	ASEL	APK	FSEL	FPK
	BT	100	98	103	100	79	80	80	78	82	82	88	89
	FGF	79	85	99	90	67	82	70	88	70	85	81	82
	HB	97	116	104	121	70	94	61	77	69	92	92	106
	LB	92	112	98	115	66	90	58	75	65	86	86	99
	NGF	81	92	99	94	77	97	74	87	78	92	78	77
	NGS	77	90	95	92	68	96	65	86	69	89	74	76
	ST	96	95	101	97	75	76	75	78	78	80	84	83
	V1	102	105	104	106	95	102	94	101	97	103	87	87
	V2	94	99	100	100	87	94	84	94	89	96	80	81
	V3	94	98	101	102	79	87	76	86	81	87	86	89
	V4	94	93	100	96	77	84	74	81	79	83	79	80
	V5	85	90	99	93	73	80	70	78	74	80	78	80
	V6	83	85	99	91	62	74	62	79	63	79	79	79
Run No.	Event	MIC1 ASEL								. ODDS	EVEN	S	
	BT	60	60	66	65	63	61	60	 58	62	61		
	FGF	46	44	47	43		43		42		43		
	HB	0	0	0			. 0	0	0	0	0		
	LB	0	0	0	0	0	0	0	0	0	0		
	NGF	48	47	50	49	48	48	49	46	49	48		
	NGS	42	40	45	42	44	44	44	41	44	42		
	ST	56	57	62	59	60	58	59	53	59	57		
	V1	66	65	67	66	65	64	66	64	66	65		
	V2	58	58	59	58	57	57	57	54	58	57		
	V3	53	52	58	55	55	54	55	53	55	54		
	V4	50	50	51	51	51	51	51	48	51	50		
	V5	48	47	49	48	47	46	48	44	48	46		
	V6	45	41	47	43	43	42	46	41	45	42		

Test #02.2

MIC 10 ASEL APK	MIC 8 FSEL FPK
ASEL APR	1 F Z F 1 F F F
	HOLLIFK
82 82	88 88
68 80	78 83
63 85	91 104
61 82	85 99
77 91	<i>77</i> 78
68 88	74 74
78 79	83 83
98 104	87 89
89 97	81 82
81 87	
78 82	
73 80	
ODDS EVEN	IS
 62 61	
-	
-	
KK K3	
55 53 49 48	
.	68 80 63 85 61 82 77 91 68 88 78 79 98 104 89 97 81 87 78 82 73 80 63 78

Test #03.1

D		!			or Micr	ophon		1.440	4.4	1.00			
Run	-		MIC 10		-DI	MIC		MIC		MIC 1		MIC 8	
No.	Event	CSEL	CPK	FSEL	FPK	ASEL	APK	ASEL	APK	ASEL	APK	FSEL	FPK
	BT	101	99	103	100	79	78	81	83	83	85	89	85
	FGF	80	91	99	96	70	88	70	83	75	93	86	78
	HB	97	118	102	121	73	98	66	88	74	100	88	102
	LB	89	108	96	112	67	93	60	78	68	92	83	94
	NGF	84	99	99	98	78	96	80	96	82	98	86	78
	NGS	78	98	94	97	70	95	72	94	74	97	81	78
	ST	95	92	101	95	72	75	74	79	76	84	87	81
	V1	102	105	104	106	95	102	94	103	98	102	88	86
	V2	94	100	101	102	86	94	84	94	90	97	88	82
	V3	94	97	101	101	78	88	76	86	81	89	87	84
	V4	95	93	100	96	75	81	72	80	77	84	86	81
	V5	84	88	99	93	72	80	68	79	73	85	86	78
	V6	82	84	98	90	61	74	58	78	62	83	85	78
_			111100										
Run								MIC7			-	_	
No.	Event	JASEL	IASEL	ASEL	. JASEL	. ASEL	ASEL	ASEL	ASEL	. Odds	FAFU	5	
	BT	60	62	 61	65	64	61	64	60	62	62		
	FGF	47	44	48	46		45	47	44	47	45		
	HB	53	52	54	51	55	52	49	53	53	52		
	LB	46	44	46	43	47	44	42	43	45	44		
	NGF	52	51	52	52	50	50	50	48	51	50		
	NGS	46	45	45	44	43	43	43	41	44	43		
	ST	53	54	59	55	58	56	57	53	57	55		
	V1	65	65	67	65	65	64	65	64	65	65		
	V2	57	57	58	58	57	57		55	57	57		
	V3	53	52	56	55	54	54	55	53	55	53		
	V4	51	50	55	53	54	54	53	48	53	51		
	V5	47	46	48	48	46	45	47	44	47	46		
	V6	44	40	45	41	42	41	45	40	44	41		

Test #03.2

		1			or Mic	ophon							
Run			MIC 10			MIC		MIC		MIC 1		MIC 2	
No.	Event	CSEL	CPK	FSEL	FPK	ASEL	. APK	ASEL	APK	ASEL	APK	FSEL	FPK
	BT	101	99	103	100	 79	78	81	83	83	84	 89	88
					94					74	93		
	FGF	81	91	99		69	86	70	82		89	86 87	78
	HB	94	113	101	117	68	91	61	78	68			100
	LB	89	108	96	112		87	58	77	66	87	82	93
	NGF	84	97	99	96	78	97	81	94	82	96	86	80
	NGS	78	95	94	94	70	93	72	94	74	94	81	78
	ST	95	92	100			74		79	77	79	86	81
	V1	102	105	104	106		102		102	97	102	88	85
	V2	94	99	100	100	86	94	83	94	89	97	87	82
	V3	94	98	101	101	78	87	76	84	80	87	87	86
	V4	96	94	101	97	76	82	73	81	78	84	87	81
	V5	84	88	99	93	72	80	69	80	73	83	86	78
	V6	84	85	99	91	64	74	60	77	6 5	81	86	80
D		184104	LAHOO	LAUCO	144104	IMICE	INDO	MIC7					
Run No.	Event									. ODDS	EVEN	2	
140.	Evelif	INOEL	IASEL	IVOE	-14951	- 	. 14366	-14055	IVOER	. 0003			
	BT	60	62	62	64	64	61	64	60	62	62		
	FGF	46	43	49	47	45	45	47	43	47	45		
	HB	0	0	0	0	0	0	0	0	0	0		
	LB	0	0	0	0	0	0	0	0	0	0		
	NGF	52	51	52		50	51	50	49	51	51		
	NGS	45	43	45			44	44	42	44	43		
	ST	53	54	60			56	57	53	57	55		
	V1	65	65	67	65	64	64	65	64	65	65		
	V2	57	57	58	57	56	56	56	55	57	56		
	V3	53	52	55		55	54	54	53	54	53		
	V4	51	51	54	53		52	53	49	53	51		
	V5	47	46	49	48		47	47	45	48	47		
	V6	46	42	48	-	-	43	46	42	46	43		

Test #04.1

		! .			or Mic	ophone		1.440		1.140		1 440 6	
Run	_	,	MIC 10	-		MIC		MIC		MIC 1		MIC 2	
No.	Event	CSEL	CPK	FSEL	FPK	ASEL	APK	ASEL	APK	ASEL	APK	FSEL	FPK
	BT	101	99	103	100	78	79	79	 79	82	82	88	86
	FGF	78	89	96	91	70	89	70	81	74	90	85	77
	HB	100	118	107	124		100		93	73	93	95	109
	LB	93	113	99	116		94	63	89	66	87	89	102
	NGF	83	96	97	95	77	95	79	93	81	95	86	76
	NGS	77	91	92	92	66	92	68	90	70	91	81	76
	ST	96	94	100	95	74	74	74	75	78	79	87	82
	V1	102	106	104	107	95	102	94	102	97	102	88	85
	V2	94	99	99	100	86	93	84	94	89	96	87	81
	V3	95	98	100	102	78	87	76	85	80	86	87	85
	V4	96	94	100	96	76	82	73	81	77	81	86	81
	V5	85	88	97	92	72	82	69	78	73	82	86	78
	V6	. 83	83	96	89	62	69	61	70	64	73	85	77
Run		IMIC1	MIC2	! [MIC3	IMIC4	IMIC5	IMIC6	IMIC7	IMIC8				
No.	Event									. ODDS	EVEN	S	
		·			·		· 						
	BT	59	61	60	59	62	60	61	58	60	59		
	FGF	46	44	48	46		45	48	46	47	45		
	HB	0	0	0	0	0	0	0	0	0	0		
	LB	0	0	0	0	0	0	0	0	0	0		
	NGF	51	49	51	50	49	49	50	48	50	49		
	NGS	43	40	42	40	41	42	43	42	42	41		
	ST	55	57	56	58	60	57	58	53	58	56		
	V1	66	65	67	66	64	64	66	63	66	65		
	V2	57	57	57	57	56	57	56	54	57	56		
	V3	53	52	55	55	55	55	55	52	54	53		
	V4	53	52	54	54	53	53	54	48	53	52		
	V5	48	47	48	48		46		47	48	47		
	V6	45	41	45	41	43	44	46	42	45	42		

Test #04.2

D		! .			or Micr	rophon			4.4	1.440.4			
Run No.	Event		MIC 10	FSEL	EDY	MIC		MIC		MIC 1 ASEL		MIC 8	
					· ·		. AI N				~ · · · ·	11 022	
	BT	100	98	103	100	79	80	80	79	82	82	89	88
	FGF	79	92	97	93	70	88	71	84	74	92	86	77
	HB	101	119	108	124	78	102	70	93	73	94	96	110
	LB	94	114	99	117	72	97	65	84	68	89	89	102
	NGF	83	97	97	96	79	96	81	95	82	96	86	77
	NGS	76	92	92	91	68	90	71	89	72	91	81	76
	ST	95	93	99	95		74		75	77	79	87	82
	V1	102	106	104	109		101	94	101	97	102	88	86
	V2	94	99	99	100		93	83	94	89	96	87	82
	V3	95	99	100	103		88	76	85	81	87	88	88
	V4	96	94	100	96		82	73	79	77	81	87	81
	V5	84	88	97	92		82	69	78	73	81	86	79
	V6	82	82	96	88	62	65	60	68	63	72	85	77
_		14404				114105							
Run	F**							MIC7			/- N	_	
No.	Event	ASEL	ASEL	. JASEL	- I ASEL	INSEL	INSEL	. ASEL	ASEL	ODDS	EVEN	5 	
	BT	60	62	60	64	63	61	63	 59	61	61		
	FGF	48	44	48	46	45	45	48	45	47	45		
	HB	0	0	0	0	0	0	0	0	0	0		
	LB	0	0	0	0	0	0	0	0	0	0		
	NGF	53	51	52	51	51	50	50	49	51	50		
	NGS	45	42	44	42	43	43	43	40	44	42		
	ST	55	56	57	58	59	56	58	53	57	56		
	V 1	66	65	66	65	64	64	65	63	65	64		
	V2	57	57	57	57	56	57	56	54	57	56		
	V3	54	53	56	55	59	59	56	52	56	55		
	V4	55	52	57	57	58	58	55	49	56	54		
	V5	49	48	49	49		47	48	45	49	47		
	V6	45	41	46	43	44	45	46	42	45	43		

Test #05.1

Run			4921 MIC 10		or Mic	ophon		I MIC	44	I MIC 1	10	I MIC 2	•
No.	Event			FSEL	FPK	ASEL		ASEL		ASEL		IFSEL	
								· <u> </u>		· <u>-</u>		<u>.</u>	
	BT	101	99	102	100		78	81	82	83	83	89	87
	FGF	79	84	97	88	66	83	69	84	69	83	86	78
	HB	98	118	104	122		99	69	93	71	92	92	106
	LB	93	113	98	116		96	65	82	68	90	88	101
	NGF	84	99	97	98	79	97	82	95	83	98	86	77
	NGS	77	94	92	93	70	98	72	92	72	93	81	76
	ST	96	93	100	96		73	74	76	77	79	87	81
	V1	102	105	104	106		102	94	102	98	103	88	86
	V2	94	99	99	100	86	94	84	94	89	97	87	82
	V3	95	99	100	104	78	88	76	85	81	88	88	87
	V4	96	95	100	97	76	82	73	79	78	82	87	81
	V5	84	88	97	92	72	80	69	78	73	80	86	79
	V6	83	84	96	90	61	70	59	73	62	76	85	78
_		10004		114100				1140	11400				
Run		MIC1											
No.	Event	ASEL	ASEL	. ASEL	. ASEL	. ASEL	ASEL	. ASEL	ASEL	. ODDS	EVEN) _.	
	BT	60	62	 59	64	64	61	63	 58	62	61		
	FGF	46	42	46	41	42	42	47	42	45	42		
	HB	0	0	0	0	0	0	0	0	0	0		
	LB	0	0	0	0	0	0	0	0	0	0		
	NGF	53	52	52	52	51	50	51	49	52	51		
	NGS	44	44	43	41	41	41	42	40	43	41		
	ST	53	54	58	56	58	56	57	53	57	55		
	V1	65	65	66	65	64	64	66	63	65	64		
	V2	57	57	57	57	56	57	56	55	57	56		
	V3	54	53	56	55	55	55	55	52	55	54		
	V4	52	51	54	53	55	56	53	48	53	52		
	V5	48	46	47	47	46	44	47	43	47	45		
	V6	45	41	46	41	42	43	45	43	45	42		
			•	. •	• •		. •		. •	. •	-		

Test #05.2

D		! .			or Mic	ophon		1 1410	4.4	1.110		1.440.6	
Run			MIC 10		CD1	MIC		MIC		MIC 1		MIC 2	
No.	Event	CSEL	CPK	FSEL	FPK	ASEL	, APK	ASEL	APK	ASEL	APK	IFSEL	rpk
	BT	101	100	103	101	81	80	82	84	84	85	 89	87
	FGF	80	85	98	89	68	85	70	87	70	84	86	77
	HB	101	119	108	124	75	100	70	92	73	94	95	108
	LB	95	115	100	118	72	97	61	78	67	86	89	103
	NGF	85	99	98	98	81	99	83	97	84	98	89	76
	NGS	77	96	93	96	70	96	72	95	73	95	81	77
	ST	96	93	100	96	73	74	75	78	77	79	88	82
	V1	102	106	104	107	95	102	94	101	98	102	89	86
	V2	95	99	100	100	86	94	84	95	89	97	87	82
	V3	95	99	101	104	78	87	76	85	81	87	89	87
	V4	96	94	100	97	76	82	73	80	78	82	87	82
	V5	84	88	98	92	72	81	69	79	73	80	86	79
	V6	82	85	97	90	62	69	61	71	64	72	85	78
	•												
Run		IMIC1	MIC2	IMICS	IMIC4	IMIC5	IMIC6	MIC7	IMIC8				
No.	Event									ODDS	EVEN	S	
	BT	61	63	61	65	65	61	64	58	62	62		
	FGF	47	46	46	42	43	43	46	42	46	43		
	HB	0	0	0	0	0	0	0	0	0	0		
	LB	0	0	0	0	0	0	0	0	0	0		
	NGF	54	53	54	53	53	52	52	50	53	52		
	NGS	44	42	44	42	43	43	45	41	44	42		
	ST	53	55	59	56	58	56	57	52	57	55		
	V1	65	65	66	65	65	65	66	63	66	65		
	V2	57	57	58	58	57	57	58	57	57	57		
	V3	54	53	56			55	55	52	55	54		
	V4	52	51	56	54	55	55	55	51	54	53		
	V5	48	47	49	49		47		44	48	47		
	V6	46	42	46	42	43	44	46	41	45	42		

Test #06.1

July	1991
------	------

D		1	-		or Mic	ophon		1 440	4.4	1.840	10		
Run	F		MIC 10		FDI	MIC		MIC		MIC 1		MIC 2	
No.	Event	ICSEL	CPK	FSEL	FPK	ASEL	. APK	ASEL	APK	ASEL	APK	FSEL	rpk
	BT	102	101	103	102	79	80	81	 84	83	83	91	90
	FGF	78	87	94	88	67	83	70	85	70	83	85	77
	HB	88	105	98	113	64	86	58	85	62	80	101	114
	LB	81	99	92	105	60	78	56	84	59	81	93	106
	NGF	84	99	94	98	79	98	82	97	83	98	85	79
	NGS	78	94	94	94	68	94	71	93	72	94	85	. 77
	ST	95	94	98	94	73	76	74	83	77	80	87	85
	V1	101	105	103	106	94	101	94	101	97	102	89	90
	·V2	94	99	97	99	86	94	83	92	89	96	86	85
	V3	94	98	98	101	78	87	76	85	80	86	90	92
	V4	94	95	98	96	76	83	73	85	78	83	86	84
	V5	84	88	94	91	72	80	69	84	73	81	85	· 81
	V6	82	88	95	91	64	81	63	86	66	85	85	80
Run No.	Event							MIC7 . ASEL		ODDS	EVEN	S	
	вт	65	67	66	68	68	68	70	63	67	66		
	FGF	48	46	50	49	49	49	48	46	49	48		
	HB	0	0	0	0	0	0	0	0	0	0	-	
	LB	0	0	0	0	0	0	0	0	0	0		
	NGF	60	59	61	62	60	60	58	56	60	59		
	NGS	51	49	52	51	50	50	50	48	51	50		
	ST	61	64	62	66	67	64	66	60	64	63		
	V1	73	72	74	74	74	74	72	71	73	73		
	V2	64	64	65	66	65	65	64	62	65	64		
	V3	60	59	64	63	62	62	61	58	62	60		
	V4	56	57	58	58	57	59	57	.54	57	57		
	V5	52	53	53	55	54	52	52	51	53	53		
	V6	48	46	49	47	47	47	50	45	48	46		

Test #06.2

Run		1	4921 MIC 10		or Micr	ophon		MIC	44	MIC 1	0	MIC 2	
No.	Event		CPK		EPK	ASEL		ASEL		ASEL		MIC 2 FSEL	
	BT	103	101	104	101	80	81	81	83	84	83	91	90
	FGF	79	86	93	89	68	85	70	89	71	86	85	80
	HB	90	107	99	114	66	89	59	87	62	79	103	115
	LB	81	98	91	104	59	76	55	81	58	80	92	105
	NGF	84	98	93	98	80	99	82	97	83	97	85	80
	NGS	78	93	93	93	69	93	71	94	72	92	85	79
	ST	95	94	98	94	73	75	74	81	77	80	88	85
	V1	101	105	103	106	94	101	93	101	97	102	90	90
	V2	94	98	97	99	86	93	83	93	89	96	87	85
	V3	95	99	98	102	78	87	77	86	81	87	91	92
	V4	95	94	97	96	76	82	73	83	78	82	86	84
	V5	84	87	93	90	72	81	69	81	73	81	85	82
	V6	84	85	93	89	63	72	62	80	65	77	85	81
D		14404	LAHOO	114100	184104	MAIOE	LMCC	114107	LAHOO				
Run	F							MIC7		. ODDS			
No.	Event	IASEL	INDEL	ASEL	- IASEL	. ASEL	. A3EL	. JASEL	I NOEL	. 0005	EVEN) 	
	BT	66	68	68	68	68	68	72	65	68	67	_	
	FGF	51	49	52	52	50	50	50	48	51	50		
	HB	0	0	0	0	0	0	0	0	0	0		
	LB	0	0	0	0	0	0	0	0	0	0		
	NGF	61	60	62	62	60	60	59	58	61	60		
	NGS	53	51	52	52	50	50	51	51	52	51		
	ST	62	65	62	66	64	63	66	61	64	64		
	V1	73	72	74	74	72	72	72	71	73	72		
	V2	65	65	66	67	64	64	65	63	65	65		
	V3	61	60	63	62	62	62	63	59	62	61		
	V4	57	58	59	59	57	59	58	55	58	58		
	V5	53	54	53	56	53	52	53	52	53	53		
	V6	49	48	52	51	49	49	52	48	50	49		

Test #07.1

		_	_		
Ju	ly	19	99	1	

Ο		! .			or Micr	ophon		1.040	4.4	1.440.4	•	1.440	•
Run No.			VIC 10		EDV	MIC		MIC ASEL		MIC 1 ASEL		MIC 4	
NO.	Event	CSEL	CPK	LOEL	FPK	ASEL	APN	IVOEL	AFN	IVOEL	AFR	ILOEL	FPK
	BT	101	99	102	100	79	79	81	83	84	86	93	92
	FGF	79	88	91	90	69	84	72	92	73	87	82	85
	HB	90	107	101	115	66	87	61	89	64	84	108	120
	LB	83	100	92	106	61	79	58	78	60	84	98	110
	NGF	85	99	91	99	78	96	83	100	83	98	79	81
	NGS	78	93	88		66	91	71	95	72	93	76	75
	ST	94	91	95		70	74	73	78	<i>7</i> 6	82	87	86
	V1	100	104	101	105	89	94	92	100	96	100	90	91
	V2	94	98	96		81	87	83	92	88	94	85	87
	V3	94	98	97		74	82	76	85	81	88	93	95
	V4	95	100	96		72	78	72	80	78	84	87	93
	V5	83	87	90		68	75	68	80	73	84	81	84
	V6	85	88	92	90	67	85	62	78	65	83	82	83
_													
Run		MIC1										_	
No.	Event	ASEL	ASEL	. ASE	- ASEL	-\ASEL	ASEL	ASEL	IASEL	.ODDS	FAFIN	5	
	BT	68	71	 67	74	71	68	71	67	69	70		
	FGF	50	49	52	52	51	50	51	49	51	50		
	HB	0	0	0	0	0	0	0	0	0	0		
	LB	0	0	0	0	0	0	0	0	0	0		
	NGF	61	60	62	63	60	59	59	58	61	60		
	NGS	49	49	51	51	48	47	49	47	49	49		
	ST	58	60	61	61	62	61	62	58	61	60		
	V1	72	71	72	72	71	70	70	70	71	71		
	V2	63	64	64	65	64	63	63	62	64	64		
	V3	61	59	63	62	62	62	63	58	62	60		
	V4	57	57	61	59	59	60	59	54	59	58		
	V 5	52	52	52	55	52	50	51	50	52	52		
	V6	48	47	50	50	49	50	50	46	49	48		

Test #07.2

		1			or Micr	ophon		1 440	4.4	1.000		1 1410 4	•
Run	Frank		MIC 10		EDV	MIC		MIC		MIC 1		MIC 4 FSEL	
No.	Event	CSEL	CPK	LOEL	FFK	ASEL	. AFN	IMOEL	APN		AFK	ILOEL	FFK
	BT	101	99	102	100	79	82	81	83	84	86	93	92
	FGF	79	90	89	90	70	87	74	92	74	90	79	76
	HB	92	108	102	117	67	88	62	90	64	84	106	119
	LB	86	103	93	109	63	79	58	80	63	85	97	109
	NGF	84	99	90	99	78	96	82	98	83	99	80	81
	NGS	78	95	89	95	69	93	74	99	73	95	79	78
	ST	95	92	96	93	71	70	73	79	77	84	87	87
	V1	102	106	103	106	91	97	94	102	97	102	92	94
	V2	94	98	95	99	82	89	83	92	88	94	85	87
	V3	94	97	97	100	74	82	77	86	81	87	94	98
	V4	95	94	96	95	73	81	73	80	78	85	86	86
	V5	84	87	90	90	68	86		80	73	85	83	84
	V6	84	85	90	88	64	86	62	78	65	82	81	82
•													
_													
Run								MIC7			C /C \ /	_	
No.	Event	ASEL	ASEL	. ASEL	. ASEL	. ASEL	JASEL	. ASEL	IASEL	ODDS	EVEN	5	
	BT	 61	63	 67	73	 72	67	71	 67	68	68		
	FGF	46	43	53	53	52	51	51	50	50	49		
	HB	0	0	0		0	0		0	0	0		
	LB	Ō	0	Ō		Ō	0		0	0	0		
	NGF	53	52	62		59	59	60	59	59	58		
	NGS	45	43	54	54	50	50	51	50	50	49		
	ST	54	54	63	63	62	62	63	59	60	59		
	V1	66	65	73	73	73	72	72	71	71	70		
	V2	57	ž.	64	65	64	64	63	62	62	62		
	V3	54	5ა	62	62	62	61	63	58	60	59		
	V4	50	51	59	59	58	59	57	54	56	56		
	V5	47	46	52	55	53	51	52	51	51	51		
	V6	43	40	51	49	49	49	51	46	49	46		

Test #08.1

		1			or Micr	ophon							
Run			MIC 1			MIC		MIC		MIC 1		MIC 4	
No.	Event	CSEL	CPK	FSEL	FPK	ASEL	. APK	ASEL	APK	ASEL	APK	IFSEL	FPK
	BT	102	100	103	101	77	78	81	83	84	83	90	88
	FGF	79	87	89		68	85	72	89	73	87	84	78
	HB	94	110	104		66	90	61	93	62	82	103	116
	LB	88	105	95	_	59	79	57	77	59	76	95	107
	NGF	84	97	89	97	78	95	82	97	83	96	84	77
	NGS	79	96	89	96	70	94	73	96	74	96	84	76
	ST	95	95	96		72	73	74	83	77	80	86	83
	V1	102	106	103		92	97	94	101	97	102	88	88
	V2	93	98	95		82	90	82	90	88	94	86	84
	V3	95	98	98			82	77	86	81	87	90	93
	V4	95	95	96		73	81	73	83	78	86	86	86
	V5	84	88	89	90	68	75	69	82	73	80	85	83
	V6	84	86	90	90	60	66	61	81	64	79	85	80
Run No.	Event							MIC7 ASEL		ODDS	EVEN	S	
	BT	58	59	63	62	69	69	67	63	64	63		
	FGF	48	46	46	44	51	50	51	49	49	47		
	HB	0	0	0	0	0	0	0	0	0	0		
	LB	0	0	0	0	0	0	0	0	0	0		
	NGF	56	56	53	52	60	59	59	59	57	56		
	NGS	50	48	47	45	52	52	51	50	50	49		
	ST	59	60	56	56	64	63	64	60	61	60		
	V 1	69	69	67	65	73	72	72	72	70	70		
	V2	60	61	56	55	64	63	63	62	61	60		
	V3	58	56	56	57	62	61	64	58	60	58		
	V4	56	55	53		58	60	57	54	56	56		
	V5	51	50	45		54	51	52	51	50	50		
	V6	47	44	45	44	49	49	49	45	48	46		

Test #08.2

_		!			or Micr	ophon							
Run	_		MIC 10			MIC		MIC		MIC 1		MIC 2	
No.	Event	 CSEL	CPK	FSEL	FPK	ASEL	APK	ASEL	. APK	ASEL	APK	FSEL	FPK
	BT	103	100	104	101	 77	80	81	 82	84	84	 91	90
	FGF	81	86	89	87								
	HB	95	111		119	70	86	74	91	74	85	84	78
	LB	88	106	103		68	93	62	93	62	84	105	117
	NGF	85	98	95 90	112 98	61	82	56	83	60	79	96	109
	NGS	79	96			79	96	83	99	83	98	84	79
	ST			89	96	69	94	Z 4	97	74	95	84	78
	31 V1	95	94	96	94	71	72	73	81	77	80	87	84
		102	106	103		91	97	94	102	97	102	89	90
	V2	94	98	95	99	82	90	82	91	89	95	86	85
	V3	94	97	97	100	74	81	76	85	81	87	93	96
	V4	95	95	96	96	73	79	73	82	79	85	87	87
	V5	85	88	90	90	67	75	68	81	73	80	85	83
	V6	84	86	90	90	61	67	62	80	65	80	85	82
Run		IMIC1	IMIC2	IMIC3	IMIC4	MIC5	IMICA	1MIC7	IMICS				
No.	Event	ASE	IASFI	ASFI	IASFI	JASFI	IASFI	IASFI	IASFI	ODDS	FVFN	3	
												, 	
	BT	64	65	69	69	69	69	7 2	66	69	67		
	FGF	52	51	54	54	52	51	51	50	52	52		
	HB	0	0	0	0	0	0	0	0	0	0		
	LB	0	0	0	. 0	0	0	0	0	0	0		
	NGF	61	61	64	63	61	60	59	59	61	61		
	NGS	53	52	54	54	52	51	51	50	52	52		
	ST	61	63	62	62	64	62	64	60	63	62		
	V1	72	71	74	74	73	72	72	72	73	72		
	V2	63	64	66	65	64	64	64	62	64	64		
	V3	60	60	63	64	62	62	62	58	62	61		
	V4	57	58	61	61	58	60	58	54	58	58		
	V5	53	53	53	54	53	52	52	51	53	52		
	V6	49	46	51	51	49	49	49	45	50	48		
						_	. •	. •	-		. •		

V6

Test #09.1

5		!.			or Micr	ophon		1.440		1.00	40	1.440.4	
Run	_		MIC 10			MIC		MIC		MIC .		MIC 2	
No.	Event	CSEL	CPK	FSEL	FPK	ASEL	. APK	ASEL	APK	ASEL	APK	FSEL	FPK
	BT	101	99	102	100	 79	78	81	83	84	86	92	90
	FGF	78	88	88	88	68	84	73	91	73	87	85	77
	HB	96	113	104	120	69	95	62	93	64	87	106	119
	LB	90	107	96	113	63	87	56	72	60	82	98	111
	NGF	85	99	90	99	79	95	83	98	84	98	85	78
	NGS	79	96	89	96	69	91	74	98	75	96	85	77
	ST	95	93	96	93	71	71	73	76	77	84	87	83
	V1	101	107	102	107	91	95	94	101	97	102	89	90
	V2	93	98	95	98	81	87	82	91	88	95	86	86
	V3	94	97	96	99	74	82	76	85	80	87	89	90
	V4	94	94	96	95	71	76	73	80	78	84	86	83
	V5	84	89	90	90	68	76	69	78	74	83	85	81
	V6	83	88	90	90	60	74	60	73	63	86	86	81
Run		[MIC1]	MIC2	IMIC3	IMIC4	IMIC5	IMIC6	IMIC7	IMIC8				
	Event	ASEL									EVEN	S	
	BT	67	71	67	74	72	68	71	68	69	70		
	FGF	50	48	51	51	50	50	50	48	50	49		
	HB	0	0	0	0	0	0	0	0	0	0		
	LB	0	0	0	0	0	0	0	0	0	0		
	NGF	60	60	62	63	61	60	60	59	61	61		
	NGS	52	52	54	54	52	51	52	51	52	52		
	ST	59	61	62	62	64	62	63	59	62	61		
	V 1	71	71	73	73	73	72	73	72	72	72		
	V2	63	63	64	65	64	64	64	63	64	64		
	V3	60	59	62	61	62	62	62	59	61	60		
	V4	56	57	59	57	57	59	57	53	57	57		
	V 5	52	53	52	54	53	52	52	50	52	52		
	1/0	40	40	40	40	40	40	40	42	40	40		

0 INDICATES MEANINGLESS DATA

48

Test #09.2

D		!	4921 MIC 10		or Micr	ophone		I MIC	4.4	I MIC 1	Δ.	MIC 2	
Run No.	Event			FSEL	FPK	IASEL		IASEL		ASEL		MIC 2 FSEL	
	BT	101	99	102	99	79	79	81	82	84	85	92	90
	FGF	81	89	89	89	69	86	74	93	74	86	85	78
	HB	96	113	105	121	70	95	64	93	65	87	107	119
	LB	89	107	96	113	62	83	56	75	61	83	97	109
	NGF	85	98	89	98	79	95	83	98	84	98	85	78
	NGS	79	96	88	96	69	93	75	98	75	97	85	78
	ST	95	92	96	93	70	72	73	76	76	83	87	83
	V1	101	106	102	106	90	95	94	101	97	102	89	90
	V2	93	98	95	98	81	87	82	90	88	94	86	85
	V3	94	98	97	100	74	82	76	85	81	88	90	91
	V4	95	94	96	94	71	78		80	78	82	87	84
	V5	83	88	88	89	67	75		78	73	82	85	81
	V6	83	87	89	88	61	70	62	74	65	80	85	81
Run		IMIC1	LAICO	IMICO	IMICA	MIC5	IMICE	114107	IMICO				
No.										ODDS	EVEN	2	
140.		17055	Ivorr		-1-0			-IVOER			CACIA		
	вт	68	71	67	73	72	69	61	57	67	67		
	FGF	50	49	51	51	51	50	44	43	49	48		
	HB	0	0	0	0	0	0	0	0	0	0		
	LB	0	0	0	0	0	.0	0	0	0	0		
	NGF	60	60	63	63	61	60	52	50	59	58		
	NGS	52	51	54	54	52	51	42	40	50	49		
	ST	59	61	62	62	64	62	55	51	60	59		
	V1	71	71	73	73	73	73	62	61	70	69		
	V2	63	63	64	65	64	64	53	51	61	61		
	V3	60	59	62	61	62	61	51	49	59	58		
	V4	56	57	59	58	58	59	50	45	56	55		
	V5	52	53	52	55	53	50	46	44	51	50		
	V6	48	47	49	46	47	47	44	41	47	45		

Test #10.1

		ı	4921	Outdo	or Micr	ophone	3 S						
Run		İ	MIC 1	0		MICS	•	MIC	11	MIC 1	0	MIC 4	ļ
No.	Event	CSEL	CPK	FSEL	FPK	ASEL	APK	ASEL	APK	ASEL	APK	FSEL	FPK
	BT	102	99	103	100	76	77	80	 79	83	82	91	89
	FGF	78	88	93	87	67	78	71	84	73	83	87	85
	HB	103	120	110	127	77	103	73	93	76	96	109	122
	LB	98	117	103	120	73	98	70	94	72	92	100	116
	NGF	85	95	94	95	78	92	82	95	84	95	87	82
	NGS	81	94	94	94	69	89	74	93	75	95	87	80
	ST	95	94	97	94	71	81	73	73	77	77	88	86
	V1	101	105	103	106	90	97	94	101	97	102	90	89
	V2	94	99	97	99	81	88	83	92	89	95	88	85
	V3	94	97	98	99	73	81	76	85	80	87	90	90
	V4	94	96	97	98	71	78	73	80	78	82	88	88
	V5	84	89	94	91	67	75	69	78	74	80	87	82
	V6	83	87	94	89	60	65	59	70	63	71	87	84

Run No.	Event	MIC1 ASEL								ODDSI	EVENS	
	BT	65	66	68	68	69	68	65	71	67	68	
	FGF	57	48	64	63	49	49	50	50	55	53	
	HB	0	0	0	0	0	0	0	0	0	0	
	LB	0	0	0	0	0	0	0	0	0	0	
	NGF	59	59	63	65	60	59	59	59	60	61	
	NGS	51	51	69	76	51	51	51	52	56	57	
	ST	60	63	60	76	65	62	60	65	61	66	
	V1	71	71	63	63	73	73	71	72	70	70	
	V2	63	63	64	65	65	65	.63	64	64	64	
	V3	60	59	69	69	62	62	58	61	62	63	
	V4	56	56	63	62	57	59	54	57	57	59	
	V5	51	52	61	62	53	51	51	52	54	54	
	V6	48	46	49	0	47	48	46	51	47	36	

0 INDICATES MEANINGLESS DATA

Test #10.2

_		ļ			or Micr	ophon				1.000	_		
Run		•	MIC 10			MIC		MIC		MIC 1		MIC 8	
No.	Event	CSEL	CPK	FSEL	FPK	ASEL	APK	ASEL	APK	ASEL	APK	FSEL	FPK
	BT	102	99	102	100	76	82	80	80	 82	84	 92	91
	FGF	80	88	90	88	66	76	70	83	71	82	88	86
	HB	103	121	109	126	78	107	75	94	77	105	109	122
	LB	95	115	100	118	71	96	67	84	70	90	99	114
	NGF	85	99	91	99	78	92	83	97	84	100	88	87
	NGS	81	98	90	98	70	90	74	97	76	98	88	95
	ST	94	93	96	94	70	74		73	76	84	89	87
	V1	101	106	102	106	90	96	94	102	97	102	91	91
	V2	94	98	95	99	82	88	83	91	89	95	88	91
	V3	94	97	97	100	74	85	77	86	81	87	91	97
	V4	94	94	96	95	71	77	73	81	78	84	89	89
	V5	84	89	90	91	67	82	68	78	73	81	88	88
	V6	85	86	91	89	62	78		71	65	81	88	89
Run		IMIC1	MiCo	MICS	IMICA	IMIC5	IMICS	MIC7	IMICS				
No.	Event									. ODDS	EVEN	9	
140.		INOLL	IVOCE		. ^	. ^OLL		-17022				- 	
	BT	65	66	65	69	0	0	64	70	48	51		
	FGF	49	47	63	63	0	0	48	50	40	40		
	HB	0	0	0	0	0	0	0	0	0	0		
	LB	0	0	0	0	0	0	0	0	0	0		
	NGF	60	60	76	75	0	0	59	60	49	49		
	NGS	52	52	55	54	. 0	0	52	56	40	40		
	ST	60	62	59	60	0	0	59	64	45	47		
	V1	71	70	69	69	0	0	71	72	53	53		
	V2	63	64	65	67	0	0	63	65	48	49		
	V3	60	59	61	60	0	0	59	63	45	45		
	V4	56	57	68	67	0	0	54	58	45	45		
	V 5	51	52	60	60	0	0	51	61	40	43		
	V6	50	47	56	55	0	0	46	54	38	39		

Appendix C: Indoor Measured Acoustical Data for Blast Sounds

TEST# 01.1

	F	A MOOF	١					ROOM E	3			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
8 HIGH	89.2	100.6	76.9	88.7	43.9	60.3	90.8	102.5	78.9	94.7	44.9	58.7
14 HIGH	92.5	104.1	84.1	97.3	55.7	74.3	93.1	107.5	85.3	101.1	52.5	70.9
16 HIGH	93.0	104.1	84.3	97.9	55.8	78.4	92.6	107.5	85.5	101.3	52.3	67.9
19 HIGH	91.6	104.5	84.0	98.9	55.2	76.8	92.5	107.2	85.0	101.3	51.6	67.4
23 HIGH	92.1	103.9	83.3	96.4	54.9	76.6	92.5	106.1	84.2	98.4	49.5	64.3
32 HIGH	92.5	104.4	84.4	98.6	55.7	77.3	92.9	107.4	85.2	101.1	52.0	68.0
35 HIGH	91.8	103.0	82.3	96.6	54.0	76.4	92.3	105.4	82.8	97.3	49.3	64.3
40 HIGH	91.6	102.3	81.3	95.3	53.8	77.8	91.8	104.8	82.2	96.8	47.6	61.7
45 HIGH		102.1	80.4	93.6	53 .1	75.0	91.7	104.0	81.9	95.1	46.5	61.3
49 HIGH	91.4	101.8	80.7	94.7	53.3	76.6	91.3	104.5	80.9	96.7	46.0	62.2
AVERAGE	91.6	103.1	82.4	96.2	54.1	76.2	92.1	105.8	83.4	98.8	49.7	65.8
	F	ROOM	;					ROOM E				
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
8 HIGH							89.7	102.7	77.8	91.6	44.6	61.6
14 HIGH	94.6	105.8	80.4	93.9	50.1	67.2	92.9	106.5	86.4	99.9	54.1	76.5
16 HIGH	96.1	109.1	85.4	101.3	55.4	73.6	92.7	106.3	86.1	99.5	53.3	75.0
19 HIGH	95.9	108.9	85.7	101.4	54.9	72.2	92.3	105.7	85.8	99.7	53.6	74.8
23 HIGH	96.4	108.4	83.7	97.9	53.6	71.6	91.7	105.0	82.9	97.4	52.2	74.2
32 HIGH	96.3	109.0	85.6	101.3	55.2	72.6		106.0	85.4	99.0	53.8	76.9
35 HIGH	95.8		84.0	97.7	53.4	71.7		104.8	81.8		50.8	71.4
40 HIGH		107.4	83.1	96.1	\$2.3	70.6		105.2	82.7		49.6	68.5
45 HIGH		106.5	81.5	94.9	52.6	71.1		104.0	81.8		48.4	65.2
49 HIGH	95.9	107.4	82.6	96.2	52.1	70.5	91.8	104.7	83.2	96.1	49.7	69.3
AVERAGE	95.7	107.8	83.6	98.2	53.3	71.4	91.7	105.1	83.8	97.5	51.5	72.7
	F	ROOM A						ROOM E	3			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
3 LOW	86.0	97.0	77.3	91.4	46.5	61.4	88.4	98.6	77.8	94.7	46.7	62.7
7 LOW	85.3	95.0	73.4	86.2	41.9	59.1	87.2		73.6		42.5	54.2
37 LOW	87.6	98.4	79.1	92.7	50.6	72.4	87.2		79.2		46.1	63.1
44 LOW	87.4	98.1	78.1	91.3	50.3	71.2	88.2	98.0	77.5	93.8	45.9	61.3
55 LOW	87.6	95.8	73.6	84.8	46.1	65.3	85.7	94.8	72.0	88.3	41.4	54.6
AVERAGE	86.9	97.1	76.9	90.3	48.1	68.6	87.4	97.6	76.8	93.1	45.0	60.6
	F	ROOM C	;					ROOM)			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
3 LOW	89.3	99.8	78.5	95.9	49.1	64.6	86.2	96.0	76.9	90.2	44.6	63.2
7 LOW	88 .7	97.2	73.1	88.8	44.3	62.6	85.0		73.2		42.5	54.5
37 LOW	89.2	101.0	79.2	96.4	49.2	64.3	88.2		80.2		46.2	59.0
44 LOW	88.4	99.7	77.2	95.1	48.0	63.8	87.1		78.5	_	45.0	58.7
55 LOW	88.9	97.9	73.1	88.9	44.0	63.8	87.3		74.6		44.5	67.4
AVERAGE	89.0	99.7	77.7	95.1	48.3	64.0	86.7	96.7	77.7	90.7	44.7	60.8

	i	ROOM A						ROOM E	3			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
4 HIGH	93.4	106.7	83.8	99.8	54.6	78.6	92 4	105.1	81.5	96.0	46.5	61.8
20 HIGH	94.2	109.6	86.4	163.5	57.0	81.0	93.4		85.6		52.1	68.2
26 HIGH	94.5	110.0	86.6	104.0	57.6	80.0	93.7		85.7		52.6	82.0
29 HIGH	92.9	107.3	84.2	101.2	55.2	78.8	92 :		83.5		50.3	64.9
32 HIGH	91.2	104.0	80.2	94.7	51.4	74.9	**				••••	04.0
33 HIGH	92.1	104.5	81.6	97.2	53.4	76.7	92.0	104.3	79.9	93.4	45.5	61.8
40 HIGH	92.4	104.7	32.3	98.3	54.0	77.6	91.9		81.0		46.3	60.9
44 HIGH	92.5	106.5	83.7	100.4	55.1	79.2	92.4		83.0		48.0	63.2
49 HIGH	94.7		86.7	104.0	58.0	80.9	94.5		86.4		51.9	
50 HIGH	94.6	109.4	86.3	103.2	57.7	80.4	94.3		86.3		52.1	67.2
30 AlGA												
	93.4	107.8	84.7	101.5	55.9	79.2	93.1	106.8	84.2	98.9	50.3	73.1
	{	ROOM	;					ROOM)			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
4 HIGH	97.3	108.9	82.4	95.8	52.7	70.7	92.1	104.8	81.4	95.2	47.7	64.7
20 HIGH	97.1	109.8	85.7	101.8	56.0	74.4	93.1		86.3		53.8	73.5
26 HIGH	97.7	109.9	86.4	101.8	55.7	75.0	93.2		86.6		54.0	75.5
29 HIGH	96.6	108.7	83.8	97.8	54.0	72.0	91.6		82.3		48.8	
32 HIGH	95.9	107.5	80.0	92.5	49.8	66.2	93.7		78.9		44.8	
33 HIGH	97.5	107.3	81.9	94.8	50.9	69.6	92.3		78.8		44.3	
40 HIGH	97.3	108.9	82.6	95.9	52.5	71.0	92.3		81.1		47.4	
44 HIGH	97.2	108.3	83.4	98.4	53.9	71.9	92.6		83.3		49.6	
49 HIGH	98.9	110.1	86.0	100.8	55.5	75.7	94.7		87.7		55.3	
50 HIGH	98.9	110.5	86.3	100.8	55.4	74.9	94.6		86.5		55.5	
30 (1101)	30.3	110.5	00.0	100.0	50. 7	74.5	04.0		50.5			
AVERAGE	97.5	109.2	84.3	99.0	54.1	72.9	93.1	105.2	84.4	97.3	51.8	71.7
	1	ROOM A						ROOM E	3			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
14 LOW	86.2	98.2	76.1	90.7	47.7	67.6	86.7	97.7	75.1	90.7	43.2	57.2
17 LOW	86.3	97.6	74.3	88.9	47.3	68.2	86.3	97.1	75.7	91.2	43.9	60.4
19 LOW	87.2	98.5	76.5	92.1	48.8	71.5	87.1	97.9	76.6	92.8	43.8	59.5
21 LOW	87.9	98.5	76.7	92.7	49.1	71.2	87.1	97.9	76.6	93.4	44.7	60.6
52 LOW	88.8	101.9	79.9	96.8	51.8	75.8	88.4	99.8	79.1	95.2	45.5	61.5
AVERAGE	87.4	99.2	77.1	93.1	49.3	71.9	87.2	98.2	76.9	93.0	44.3	60.1
		ROOM (3					ROOM)			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
14 LOW	88.2	98.9	75.0	91.1	45.0	59.5	84.5	95.3	74.3	87.5	42.2	61.0
17 LOW	88.8	98.8	75.1	91.9	45.5	63.3	84.2		74.1		44.4	
19 LOW	89.3	99.8	76.6	93.5	45.9	61.7	85.8		76.9		44.1	
21 LOW	89.6	99.7	77.7	94.8	47.9	62.6	34.4					
52 LOW	90.4	102.6	80.1	97.1	49.4	65.4	88.0	101.0	82.2	95.6	49.8	64.6
-												

AVERAGE 88.9 99.2 76.0 92.7 46.0 61.6 84.8 95.9 75.1 88.1 43.3 59.6

TEST#02.1

	f	A MOOF						ROOM B	i			
	FSEL	FPEAK	CSEL (CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
8 HIGH	90.2	102.4	84.1	98.7	49.8	66.7	90.0	104.9	82.8	100.0	49.7	65.9
	90.0	102.4	83.3	97.6	49.5	66.5	90.1		83.6	99.8	50.6	65.3
14 HIGH									81.4	99.0	48.4	65.8
16 HIGH	90.5	102.0	84.0	98.5	50.2	67.1	89.9			101.1	51.6	68.0
19 HIGH	90.5	103.4	84.5	98.7	51.0	68.9	90.7		84.0	99.0	49.0	64.1
23 HIGH	89.9	101.9	83.4	98.2	48.8	66.2	89.8		82.0	97.0	47.0	64.1
32 HIGH	88.7	100.2	81.3	96.5	48.8	66.0	88.5		79.4		51.4	68.2
35 HIGH	90.6	102.8	85.0	99.1	51.1	69.3	90.2		83.9	101.3		69.2
40 HIGH	90.5	102.6	84.9	100.1	51.4	69.3	90.4		84.5	101.8	52.3	
45 HIGH	90.3	103.6	84.8	99.2	61.3	84.4	90.5		85.4	102.4	52.8	69.4
49 HIGH	91.2	103.9	85.8	101.2	52.7	69.8	91.2	107.1	85.9	103.0	53.3	70.1
AVERAGE	90.3	102.6	84.3	99.0	53.7	75.2	90.2	105.1	83.7	100.8	51.0	67.5
	1	ROOM C	;					ROOM)			
	FSEL	FPEAK	CSEL (CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
8 HIGH	94.2	106.3	84.2	101.2	53.0	70.1	92 4	104.6	84.8	96.4	50.9	66.5
14 HIGH	94.3	106.0	84.7	100.9	53.4	70.2	93.1		85.7	97.6	51.6	67.8
16 HIGH	94.2	105.4	83.1	100.0	51.9	68.8	92.2		84.2	-	50.0	65.2
19 HIGH	94.1	106.8	85.9	103.0	55.3	72.7	92.8		85.6	-	51.7	66.8
	93.9	105.5	83.1	99.9	51.9	68.5	92.1	-	84.3		50.4	
23 HIGH	92.9	103.3	81.5	98.6	50.5	68.4	91.4		82.0		49.1	63.7
32 HIGH					_		92.5		86.0		51.7	
35 HIGH	93.9	106.8	85.2	102.8	54.7	72.0	92.3 92.7		86.5		52.4	69.4
40 HIGH	93.8	107.4	85.7	103.6	55.8	73.6			87.3		56.3	75.7
45 HIGH	95.2	108.0	87.1	104.1	57.2	73.6	93.6					
49 HIGH	95.4	108.9	87.4	104.5	57.0	73.8	93.9		88.0		54.2	
AVERAGE	94.2	106.7	85.1	102.3	54.6	71.7	92.7	105.0	85.7	97.5	52.3	69.5
	I	ROOM A	\					ROOME	3			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
3 LOW	86.8	99.8	80.1	95.0	48.4	64.4	86.8	99.0	79.5	96.1	47.8	64.4
7 LOW	87.1	99.6	79.8	94.4	48.2	63.9	86.0	-	78.5		46.9	62.8
37 LOW	97. 1	JJ.J	. 5.5	97,7	74.5	50.3	30.0	3,.,		J-0.5		J
44 LOW	85.4	100.0	80.5	95.3	48.8	65.1	86.3	98.3	79.6	96.5	47.7	64.2
55 LOW		100.9	81.8	96.7	49.7	66.8	87.7		80.8		49.1	66.1
AVERAGE	86.6	100.1	80.6	95.4	48.8	65.2	86.7	98.7	79.7	96.6	47.9	64.5
	ĺ	ROOM	;					ROOM)			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	. FPEAK	CSEL	CPEAK	ASEL	APEAK
3 LOW	88.8	100.8	82.4	98.1	51.2	67.1	88.1	99.5	81.4	92.9	48.0	61.0
7 LOW	88.9	98.7	81.2	97.3	50.3	65.7	87.7		79.9		47.4	
37 LOW	JU.3	50.7	U1.2	57.5	30.0	55.7	J1.7	JU. 1		J		30.0
44 LOW	88.8	100.1	82.3	98.6	51.6	68.4	88.0	98.8	81.1	93.3	48.0	62.6
55 LOW	89.2		83.5	100.3	52.9	70.0	88.5		82.5		49.3	
AVERAGE	88.9	100.4	82.4	98.7	51.6	68.1	88.1	99.1	81.3	93.7	48.2	62.1

TEST# 02.2

	1	ROOM A						ROOM B	}			
_	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
4 HIGH	90.0	102.4	82.2	98.0	49.0	67.4	91.0	105.7	83.4	100.6	52.9	67.7
20 HIGH	89.3	100.4	81.1	96.4	48.6	65.5	89.8	103.6	81.3	98.4	71.9	91.5
26 HIGH	89.7	100.5	80.8	95.6	48.2	64.8	90.0	103.8	81.2	98.3	48.9	64.4
29 HIGH	89.5	100.2	80.1	93.7	46.9	62.5	89.0	101.8	77.8	95.1	45.7	61.1
32 HIGH	09.5	100.2	60 . I	53. 7	70.0	02.5	03.0	101.0	77.0	3 3. 1	40.7	01.1
33 HIGH	89.6	100.8	81.5	95.7	47.9	64.5	89.5	103.1	80.3	97.2	47.6	62.9
40 HIGH	89.9	100.6	79.8	94.0	48.2	63.6	89.5		79.8	97.0	48.2	63.8
44 HIGH	09.9	100.0	73.0	34.0	40.2	03.0	99.3	102.0	13.0	31.0	70.6	00.0
49 HIGH	88.3	100.0	78.8	93.0	46.6	62.3	89.2	101.0	78.1	95.0	46.6	62.8
50 HIGH	89.0	99.8	79.5	93.5	46.9	63.0	89.3	101.7	78.0	95.5	47.0	61.9
JU FIGH	03.0	33.0	73.3	30.5	70.5	65.0	03.5	101.7	10.0	50.5	47.0	51.5
AVERAGE	89.4	100.7	80.6	95.3	47.9	64.5	89 .7			97.5	63.0	82.5
		ROOM C	;					ROOM D)			
_	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
4 HIGH	04 6	107.0	85.4	102.0	55.7	74.7	92.2	104.9	85.0	96.6	51.6	68.8
20 HIGH	93.1	104.9	82.8	100.2	52.2	69.7	91.0		82.7	94.0	49.0	63.5
26 HIGH	93.8		83.1	99.7	51.8	69.1	91.6		83.7	95.5	49.5	84.5
29 HIGH	93.4		80.2	96.1	48.8	64.8	90.7	102.4	79.9	91.9	46.7	58.4
32 HIGH	30.7	100.5	OV.2	30.1	40.0	O-1.0	50.7	102.7		01.0	70	55 . v
33 HIGH	93.4	104.5	82.3	98.5	50.5	67.0	91.0	103.7	82.4	93.7	48.2	61.9
40 HIGH		104.3	82.1	98.8	52.4	70.3	91.1	103.9	81.3	92.6	47.9	61.0
44 HIGH	30.7	104.5	92.1	30.0	JE. 7	70.5	91.1	100.3	01.0	JE. 0	٧,,,	•
49 HIGH	92.5	102.9	80.4	96.5	49.4	70.6	90.4	103.3	80.2	92.1	46.5	59.6
50 HIGH		103.6	80.6	97.1	50.1	66.3	90.6		80.2	92.0	47.0	63.3
50 mon	JE.U	100.0	00.0	07. 1	30. 1	00.0	30.0	104.0	JU.		*****	00.0
AVERAGE	93.5	104.6	82.4	99.0	51.9	70.1	91.1	103.6	82.3	93.9	48.6	63.8
		ROOM A						ROOM E	3			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
14 LOW	86.1	99.0	79.1	94.2	48.1	64.5	87.0	98.3	79.3	96.0	48.1	63.3
14 LOW	86.8	99.0 98.3	79.1 78.2	94.2	47.3	62.8	87.0 85.7		79.3 78.2		46.5	63.8
19 LOW	86.5	98.5	78.8	93.5	47.6	63.5	86.9		79.3		47.5	62.9
21 LOW	86.4	97.0	76.9	91.9	46.5	61.6	86.8		77.2		46.7	62.6
52 LOW	60. 4	37.0	70.3	91.9	70.3	01.0	60. 0	30.0	****	34.1	40.7	04.0
AVERAGE	86.5	98.3	78.3	93.2	47.4	63.2	86.6	97.6	78.6	95.4	47.2	63.2
		ROOM C	;					ROOM)			
												.05.416
_						APEAK				CPEAK		
14 LOW	89.4		82.9	98.3	52.0	67.8	87.4		80.6	_	47.4	61.7
17 LOW	88.3		81.5	97.6	50.5	66.5	87.7		80.6		47.5	61.0
19 LOW	88.7		82.4	97.9	51.1	66.4	87.5		81.4		47.6	62.8
21 LOW 52 LOW	88.6	98.3	80.4	96.3	49.6	65.2	86.9	97.8	79.0	89.7	46.2	60.3
AVERAGE	89.0	99.7	82.5	98.0	51.4	67.2	87.5	99.1	80.8	92.3	47.5	61.8

TEST# 03.1

	R	A MOC						ROOM E	3			
	FSEL F	PEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
8 HIGH	89.6	103.0	84.4	99.2	51.9	68.3	89.7	104.1	84.2	100.3	50.9	69.1
14 HIGH		100.6	80.8	95.7	48.5	64.9	87.6		80.1	96.5	47.2	63.0
16 HIGH			30.0	••••		• • • •	87.8		79.3	96.4	47.3	62.8
19 HIGH	88.5	101.6	83.2	98.1	51.3	68.8	88.9		82.6		50.3	67.9
23 HIGH		102.5	83.8	99.5	50.8	69.0	89.0		83.3	100.4	49.8	67.2
32 HIGH		101.2	82.1	96.9	49.9	65.4	88.3		81.9	98.1	48.8	65.1
35 HIGH							88.7		83.1	100.2	49.8	67.6
40 HIGH	90.0	103.3	85.0	101.4	56.8	76.8	89.8	104.6	84.6	102.1	54.4	74.9
45 HIGH	89.7	102.7	84.2	98.5	52.5	69.5	89.5	104.2	83.8	100.8	51.6	67.6
49 HIGH	90.3	104.0	85.2	100.1	53.3	70.0	89.5	105.0	84.5	100.8	51.0	68 .2
AVERAGE	89.2	102.5	83.8	99.0	52.6	70.8	88.9	103.1	83.0	99.9	50.6	68.8
	R	00M C	;					ROOM	,			
	FSEL FI	PEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
8 HIGH	91.7	104 1	86.0	101.2	54.2	70.3	Q1 R	103.5	86.4	98.0	52.0	66.6
14 HIGH		101.9	82.1	98.1	51.0	68.0	89.3		82.2		48.8	69.4
16 HIGH		102.0	82.3	97.8	51.1	66.3	89.4		82.5		48.5	60.6
19 HIGH	91.4		85.1	102.6	55.1	72.4	90.9		85.3	_	50.8	64.6
23 HIGH	91.5		85.0	102.4	54.3	71.6		103.0	86.1		51.5	65.4
32 HIGH		103.5	83.9	100.1	53.2	70.0	90.6		84.9		50.3	63.8
35 HIGH	91.4		85.3	101.9	54.7	70.8		102.6	85.2		51.0	67.6
40 HIGH		107.1	86.6	103.4	57.8	76.1	92.5		87.4		54.3	72.3
45 HIGH		105.9	86.4	101.9	55.6	73.4		104.9	87.0		52.9	68.3
49 HIGH		105.2	86.9	101.1	55.3	73.0	92.7	105.2	88.0	99.6	53.4	68.5
AVERAGE	91.6	104.7	85.2	101.4	54.7	72.0	91.3	103.4	85.9	-97.4	51.7	67.8
	R	OOM A						ROOME	ı			
												.05.14
	FSEL FI	PEAK 	CSEL	CPEAK	ASEL	APEAK	FSEL 	FPEAK	CSEL	CPEAK	ASEL	APEAK
3 LOW	83.5	93.1	72.3	88.1	44.2	62.7	85.2		73.0		44.6	61.4
7 LOW	84.6	95.3	75.4	91.0	46.3	61.7	85.0	95, 1	75.1		45.2	61.7
37 LOW	84.2	95.3	74.3	90.2	45.4	61.5	85.4		74.1		45.0	63 .0
44 LOW	84.8	97.5	77.5	93.1	47.5	63.4	85.0		76.7		46.1	62.3
55 LOW .	85.1	95.3	75.8	90.2	45.3	60.0	84.6	95.2	76.2	91.4	44.7	59.9
AVERAGE	84.5	95.5	75.4	90.8	45.9	62.0	85.0	94.7	75.2	91.3	45.2	61.8
	ROOM C							ROOM E)			
	FSEL F	PEAK	CSEL (CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
3 LOW	85.2	95.4	76.7	92.1	46.9	63.3	86.5	93.5	74.2	86.1	46.0	56.4
7 LOW	85.4	96.2	78.3	93.4	48.1	64.0	86.5		77.0		46.3	58.6
37 LOW	86.8	95.0	77.6	92.8	47.7	63.3	87.7		75.4		46.3	59.5
44 LOW	87.2	97.3	79.9	95.1	49.4	65.5	86.8		79.1		47.2	62.0
55 LOW	86.0	96.8	78.0	92.1	47.7	72.9	86.7		78.7		46.9	64.8
AVERAGE	86.0	95.9	78.0	93.3	47.9	64.0	86.8	94.7	76.4		46.4	59.1

TEST# 03.2

	1	ROOM A	١					ROOM E	3			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
4 HIGH	88.8	100.8	82.7	96.5	49.4	65.7	89.2	102.3	82.6	96.5	49.3	65.5
20 HIGH	87.1	98.0	79.0	93.5	46.9	61.9	87.0	100.0	79.5	96.3	47.7	64.9
26 HIGH	85.9	97.5	76.6	90.6	45.5	63.0	86.1	97.6	77.5	93.6	45.8	59.7
29 HIGH	86.3	98.1	78.4	92.4	46.5	63.2	86.5	96.1	78.4	94.6	46.2	61.1
32 HIGH	87.1	97.3	77.4	93.0	46.2	62.5	87.8	100.6	78.8		45.8	60.9
33 HIGH	87.5	99.2	78.7	93.2	46.3	62.7	88.5		79.1	95.5	46.1	60.2
40 HIGH	88.8	99.4	79.4	94.7	47.9	65.3	88.7		80.4	97.4	48.8	66.5
44 HIGH	87.8	99.1	79.8	95.2	48.2	64.7	88.2		79.1	96.4	47.4	65.1
49 HIGH	89.0		81.8	96.9	49.6	66.2	89.3		81.9	99.3	48.8	64.7
50 HIGH	87.4	98.4	78.3	94.6	46.6	64.1	88.4	101.6	78.5	95.4	46.5	62.2
AVERAGE	87.7	99.1	79.6	94.4	47.5	64.2	88.1	101.2	79.9	96.5	47.4	63.7
	í	ROOM C	;					ROOM D)			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
4 HIGH	92.2	105.4	85.7	100.6	53.6	70.6	91.1	103.2	85.9	97.3	51.2	65.7
20 HIGH		101.6	81.9	97.7	50.1	65.5	88.8		80.6	91.9	47.3	59.5
26 HIGH	_	100.3	81.0	95.5	49.6	64.1	88.6	100.5	79.8	91.2	47.2	58.9
29 HIGH		100.6	80.8	96.2	49.7	64.8	88.7		81.4		48.0	69.5
32 HIGH		102.7	80.0	96.3	49.1	65.5	89.4	101.6	78.4	90.2	45.8	58.0
33 HIGH		102.3	80.7	95.6	48.7	64.3	90.1	102.6	80.6	_	47.2	
40 HIGH		103.9	82.6	99.2	52.1	68.4	90.8	103.4	82.0		48.4	60.1
44 HIGH		103.4	80.8	97.9	50.2	66.6	90.1	102.2	79.8		47.3	60.1
49 HIGH		104.7	83.4	99.8	52.4	69.6	91.5	104.0	84.0	_	50.1	65.3
50 HIGH		103.2	80.2	97.3	50.5	68.1	91.5		58.3	68.9	47.9	58.0
AVERAGE	91.7	103.1	82.1	98.0	50.9	67.3	90.2	102.2	81.5	93 .1	48.3	63.5
	,	A MOOF	\					ROOM B	1			
	FSEL	FPEAK	CSEL (CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
14 LOW	85.5	96.1	75.9	91.6	47.2	63.8	86.2	95.1	76.4	92.7	46.6	61.7
17 LOW	84.2	93.3	73.1	87.2	44.3	61.6	84.6	93.4	73.9	89.4	43.9	57.5
19 LOW	84.7	95.0	75.3	90.0	45.3	62.1	85.1	95.2	76.7	91.6	44.9	61.7
21 LOW	85.1	95.6	76.0	91.1	45.8	60.5	85.7	96.3	77.1	92.0	46.4	61.7
52 LOW .												
AVERAGE	84.9	95.1	75.2	90.3	45.8	62.2	85.4	95.1	76.2	91.6	45.6	61.0
	ROOM C							ROOM D)			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
14 LOW	86.5	97.9	80.2	95.2	49.3	64.6	86.1	96.2	78.0	89.4	46.5	58.3
17 LOW	85.6	96.1	76.7	90.9	46.2	60.4	85.8	94,1	76.0		45.4	57.7
19 LOW	86.3	97.7	79.0	93.5	47.7	62.4	86.1	95.7	77.7		47.7	71.4
21 LOW	87.2	98.2	80.0	94.2	49.0	63.5	86.4	95.3	79.0		46.4	61.7
52 LOW											•	
AVERAGE	86.2	97.5	79.2	94.0	48.3	63.3	86.0	95.6	77.5	88.7	46.6	66.0

TEST# 04.1

		ROOM A						ROOM E	l .			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
8 HIGH	92.0	106.2	86.8	100.3	53.4	71.4	90.9	105.2	82.3	99.8	49.7	66.4
14 HIGH		110.2	90.2	104.6	57.9	77.1	94.9		88.1		55.3	70.5
16 HIGH		110.8	90.9	105.4	58.6	77.7	95.0		88.5		55.7	71.1
19 HIGH		108.7	89.0		56.4	76.5	93.9		86.8		54.5	69.1
23 HIGH		110.6	91.0		58.4	78.0	95.1		88.5		55.9	71.4
32 HIGH		109.3	90.4		58.0			110.3	88.6			
35 HIGH	95.0	109.1	89.6	104.1	57.2	77.5	94.9	109.9	88.0	104.0	55.8	72.3
40 HIGH	95.9	110.1	90.6	104.4	58.1	77.8	95.2	109.9	88.1	103.9	55.8	73.9
45 HIGH	96.5	110.3	91.7	105.5	58.9	78.5	95.7	110.4	89.0	104.6	56.8	75.3
49 HIGH	96.9	110.7	91.7	105.4	58.7	78.1	96.4	110.6	89.5	104.2	58.2	78.4
AVERAGE	95.5	109.8	90.4	104.6	57.8	77.4	94.9	109.8	88 .1	103.9	55.8	73.2
		ROOM C	;					ROOM	•			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
8 HIGH	92.4	105.8	83.4	100.1	52.1	67.6	90.0	101.3	83.6	95.3	50.6	72.1
14 HIGH		111.1		104.6	57.3	75.7		105.8	86.4	100.6	55.2	73.2
16 HIGH		111.4	87.7	105.4	57.6	75.5	93.4	106.3	87.0	100.5	55.9	73.2
19 HIGH	95.8	109.6	85.6	103.2	55.5	73.8		105.9	85.5	98.5	53.2	73.3
23 HIGH	96.9	111.4	88.0			75.9	93.7	107.0	87.8	102.2	56.7	77.0
32 HIGH	96.9	111.3	88.2	105.6	58.3	75.7	93.4	106.7	87.0	101.7	55.7	77.0
35 HIGH	96.8	110.9	87.6	104.9	58.3	75.7	93.1	106.3	86.2	100.4	55.4	76.4
40 HIGH	97.2	110.8	87.4	104.4	57.8	76.1	92.9	106.1	86.1	100.3	55.9	77.4
45 HIGH	96.9	111.4	87.7		57.9	76.2	93.5	106.7	87.4	101.0	56.5	77.5
49 HIGH	97.6	111.6	87.6	104.3	58.0	75.3	93.9	106.4	87.7	101.1	57.6	78.4
AVERAGE	96.6	110.8	87.2	104.5	57.4	75.2	93.1	106.1	86.6	100.5	55.6	76.1
		ROOM A						ROOME	3			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
3 LOW	87.3	98.6	81.2	95.4	50 .1	65.7	87.4	98.2	77.8	95.7	48.7	64.2
7 LOW	86.7		81.8	95.5	50.6	67.1	85.9	98.2	<i>1</i> 7.3	95.3	48.0	64.2
37 LOW	89.7	101.6	84.2	98.2	52.0	. 71.3	87.9	102.4	81.1	98.8	50.1	66.2
44 LOW	91.8	104.3	87.0	100.4	53.9	73.1		103.4	83.2	100.5	52.0	67.2
55 LOW	91.4	104.2	86.8	100.0	53.1	70.8	89.9	102.9	83.0	99.4	51.0	66.2
AVERAGE	89.9	102.2	84.8	98.4	52.2	70.4	88.5	101.6	81.1	98.4	50.2	65.8
	ROOM C							ROOM)			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
3 LOW	88.3	99.5	80.4	98.0	51.5	68.7	86.7	94.0	76.7	89.8	46.3	61.8
7 LOW	88.4		80.0	97.2	50.8	67.2	86.4		76.9		46.5	61.6
37 LOW	90.3		82.8	100.2	53.3	69.5	87.9		80.1		48.2	64.1
44 LOW	90.6	_	84.6	101.5	54.5	70.0	89.2		82.8		50.6	67.3
55 LOW	90.9		82.9	100.2	52.3	68.1	89.6		82.3		. 50.5	67.1
AVERAGE	89.3	101.8	82.0	99.3	52.5	68.9	87.5	96.9	79.4	92.2	47.9	63.9

TEST# 04.2

		ROOM A	١.					ROOM 8	3			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
4 HIGH	95.8	109.7	30.7	105.0	56.2	72.3	95.3	110.8	88.5	104.7	55.6	72.2
20 HIGH	96.7	111.2	92.0	105.8	58.1	76.0	95.6	111.0	89.2	-	57.0	75.0
26 HIGH	96.8	112.8	94.4	108.5	60.4	79.7	96.9	112.7	91.4		60.4	78.6
29 HIGH	95.6	109.7	90.4	104.0	56.2	74.4	95.1	110.1	87.9	103.9	54.5	71.0
32 HIGH	95.3	109.9	89.9	104.2	56 .0	73.4	94.8	109.5	87.6	103.1	54.4	71.0
33 HIGH	96.3	110.4	90.7	104.6	57.3	75.6	96.2	110.7	89.0	104.2	57.2	75.4
40 HIGH	96.1	110.2	90.8	104.5	57.6	77.3	95.5	110.2	88.5	104.1	56.4	73.6
44 HIGH		109.3	90.2	103.5	56.4	76.8	95.0		87.9		55.4	
49 HIGH		108.0	89.0	102.8	56 .0	74.6	95.0		87.6		54.7	
50 HIGH	94.1	108.7	87.8	102.3	54.9	73.7	94.4	108.1	86 .1	100.3	53.0	68.9
AVERAGE	96.0	110.2	90.9	104.9	57.2	75.9	95.4	110.3	88.6	104.5	56.4	73.7
	!	ROOM	;					ROOM E)			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
4 HIGH	97.3	111.8	88.3	104.7	58.9	76.7	95.1	106.1	89.2	102.1	57 .1	75.3
20 HIGH		112.3	88.8	106.1	59.8	77.1	94.9	106.7	88.5	101.7	57.0	76.7
26 HIGH	98.1	114.0	91.2	108.9	62.2	79.9	96.6	109.1	91.7	106.0	60.8	79.8
29 HIGH	97.0	111.1	87.0	104.0	57.8	75.2	94.1	105.6	87.3	101.0	55.6	77.1
32 HIGH	96.6	110.5	86.0	103.1	56.8		93.7	104.9	86.0	99.2	55.2	
33 HIGH	97.7	111.9	87.9	104.4	58.7			104.6		100.9	57.5	
40 HIGH		111.3	87.5		58.5	75.2		103.8				
44 HIGH		110.7	86.9	103.9	57.4	74.9		105.2				
49 HIGH		110.4		102.7	56.8	74.6		104.0		97.9	55.1	
50 HIGH	96.7	109.0	84.2	100.0	54.8	73.3	93.4	104.3	83.9	97.3	54.2	76.4
AVERAGE	97.2	111.5	87.8	104.8	58.6	76.3	94.4	105.7	87.5	101.2	56.9	77.6
	l	ROOM A	1					ROOM E	•			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
14 LOW	91.7	104.0	86.7	100.1	53.7	69.1	89.8	103.8	83.7	100.8	51.8	67.1
17 LOW	91.5	104.5	87.1	101.2	54.4	71.1	90.1	103.8	84.6	101.6	53.3	69.6
19 LOW	90.7	103.8	86.1	99.6	53 .5	70.0	89 .6	102.9	83.3	100.3	51.9	68.0
21 LOW												
52 LOW	89.5	101.8	83.7	96.5	50.3	66.1	89.4	100.8	80.1	96.9	49.0	63.4
AVERAGE	90.0	102.7	85.1	98.7	52.3	68.5	88.8	102.0	82.2	99.3	50.8	66.6
	ĺ	ROOM C	;					ROOM D)			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
14 LOW	91.5	105.0	84.3	101.6	54.8	70.7	90.8	99.6	83.4	96.2	50.8	66.6
17 LOW	91.4	105.1	85.5	102.9	56.3	72.8	91.0	100.4	83.8	97.1·	50.9	66.1
19 LOW	91.3	103.9	84.1	101.3	54.4	70.2	90.4	98.8	82.0	95.2	49.7	64.6
21 LOW									_ •			
52 LOW	89.8	101.9	80.6	97.8	50.7	66.1	90.7	98.1	79.2	91.6	48.9	62.3
AVERAGE	90.5	103.8	83.6	100.9	54.2	70.3	89.8	98.7	82.2	95.3	49.6	65.1

TEST# 06.1

		ROOM A	١					ROOM E	3			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
8 HIGH	96.2	108.7	90.1	104.4	56.8	72.8	95.8	109.8	88.5	104.9	57.0	75.5
14 HIGH	94.3	-	87.3		55.5	71.2	94.1	106.1	84.5		53.9	70.4
16 HIGH	95.8		90.6		57.8	74.1	95.3	106.3	88.0	104.8	56.1	70.7
19 HIGH	93.4		85.6	_	53.2	68.3	93.3	104.5	82.4		51.4	66.4
23 HIGH	94.0		86.3		53.9	68.7	93.9	105.5	83.8	101.8	52.8	68.8
32 HIGH	94.0		86.6		54.4	69.6	93.1	105.5	83.8		52.2	68.3
35 HIGH	94.6		87.5		55.2	69.6	94.0	106.1	85.1	102.6	53.9	69.6
40 HIGH	93.9		87.1		54.0	69.5	94.3	106.0	84.9	101.6	53.3	67.8
45 HIGH	95.0		88.1		55.6	70.4	94.7		86.4	102.1	54.5	68.5
49 HIGH	94.6		88.1	100.8	55.3	70.4	94.4	106.6	86.0	101.8	54.2	69.7
AVERAGE	94.7	106.2	88.0	101.6	55.4	70.8	94.4	106.8	85.7	102.7	54.2	70.4
		ROOM	;					ROOM D	•			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
8 HIGH	97.5	111.2	88.0	105.9	58.2	75.0						
14 HIGH	95.7	107.6	87.1	104.6	58.1	73.9	94.2	102.7	84.4	97.6	53.5	71.8
16 HIGH	96.6	109.8	88.8	106.2	58.5	74.6	95.0	103.7	87.3	100.4	56.6	75.9
19 HIGH	95.4	106.0	84.6	101.9	55.2	70.9	94.2	101.8	83.0	95.5	52.2	69.4
23 HIGH	95.7		85.9	103.3	56.7	72.5	94.2	102.8	84.0	96.2	53.0	73.1
32 HIGH	95.3	107.0	86.2		56 .5	71.8	94.2		84.1	96.1	53.3	71.4
35 HIGH	95.6		86.9		57.6	72.9		103.4	84.6	96.9	53.9	72.8
40 HIGH	95.7		85.9		56 .1	70.6		103.2	84.3	97.3	54.3	72.8
45 HIGH	95.9		86.4		56 .1	70.4		103.4	85.2	99.3	55.6	75.7
49 HIGH	96.0	107.4	86.4	103.2	55.7	70.7	94.4	104.2	85.6	99.5	54.8	74.5
AVERAGE	96.0	108.2	86.8	104.1	57.0	72.6	94.5	103.2	84.9	98.0	54.3	73.5
		ROOM A						ROOM B	,			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
3 LOW	92.5	103.3	85.6	98.7	53.6	68.2	92.9	102.6	83.3	100.3	52.6	69.2
7 LOW	93.5	105.1	87.1	100.8	55.1	69.8	93.5	103.7	84.2	101.2	52.7	68.0
37 LOW	91.9	96.6	78.2	91.2	49.7	62.0	91.4	96.6	76.1	93.6	49.2	61.7
44 LOW	91.9	96.0	78.7	91.4	49.5	62.9	91.5	95.6	75.6	93.1	48.7	61.8
55 LOW .	91.9	97.6	81.0	93.5	50.6	64.0	91.7	96.4	76.9	93.8	48.6	61.8
AVERAGE	92.4	101.3	83.6	96.9	52.3	66.5	92.3	100.4	80.8	97.9	50.8	65.8
	ROOM C							ROOM D)			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
3 LOW	94.6	104.1	85.1	102.1	55.7	71.4	93 4	100.6	83.4	95.7	51.2	65.4
7 LOW	94.3		86.2		55.4	71.0	94.0	101.9	84.8	96.7	52.7	68.6
37 LOW	92.9		79.8		52.1	65.8	92.9	95.7	74.8		49.2	61.4
44 LOW	92.1		79.3		51.1	64.3	92.7	95.8	74.9		48.8	63.9
55 LOW	92.7		79.9		50.9	64.8	92.9	96.9	76.5		49.3	61.8
AVERAGE	93.8	102.7	84.0	100.6	54.4	69.7	93.3	99.6	82.0	94.3	50.9	65.6

TEST# 05.2

		ROOM A	١					ROOM B	3			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
4 HIGH	96.5	109.5	89.5	104.0	56.7	74.3	96.6	110.0	88.7	104.1	57.3	75.6
20 HIGH	97.0	110.1	90.6	104.6	57.3	74.8	96.8	110.6	89.5	105.0	58.3	75.8
26 HIGH	96.7	109.2	90.0	104.0	57.2	74.2	97.1	110.6	89.6	105.3	58.1	76.0
29 HIGH	96.5	110.1	90.3	104.6	57.1	74.5	96.7	110.3	89.2	104.9	57.9	76.1
32 HIGH	96.2		89.5	103.0	56.3	74.5	96.6	109.9	88.9	104.4	57.1	74.0
33 HIGH	96.0		88.9	102.1	55.7	71.7	96.3	109.1	88.2	103.0	56.3	73.5
40 HIGH	96.4	109.0	90.0	103.7	57.0	74.6	96.6	109.7	88.9	104.2	57.1	74.8
44 HIGH	96.7	109.5	90.5	104.2	57.2	73.7	96.7	109.8	88.9	104.3	57.4	74.6
49 HIGH	96.6	108.9	90.3	103.9	57.3	73.8	96.9	109.7	88.9	103.9	58.0	76.2
50 HIGH	96.6	109.2	90.0	103.8	57.0	73.3	96.9	109.3	88.6	103.2	57.6	76.4
AVERAGE	96.5	109.3	90.0	103.8	56.9	74.0	96.7	109.9	89 .0	104.3	57.5	75.4
		ROOM C	;					ROOM E	•			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
4 HIGH	97.8	110.9	87.3	104.7	57.1	74.4	96.5	105.9	88.6	101.8	56.8	76.5
20 HIGH	97.8		88.2	105.8	58.6	76.9		106.5	89.3		58.3	77.1
26 HIGH		111.5	88.4	106.2	58.6	75.2	96.1	106.4	88.8	102.8	57.5	77.8
29 HIGH		111.2	88.1	105.7	58.5	76.2	96.5		89.0		58.0	77.9
32 HIGH	97.7	110.9	87.6	105.4	58.1	74.8	95.9	106.1	87.8	101.9	57.1	77.3
33 HIGH		110.1	86.6	103.9	57.4	74.2	95.4		86.9		55.9	77.1
40 HIGH	98.0		87.6	105.0	57.9	75.4	95.8		87.8	102.1	57.3	76.6
44 HIGH		110.8	87.6	105.1	57.9	75.0	96.5	106.4	88.7	102.1	57.4	77.6
49 HIGH	98.0		87.4	104.7	57.5	73.4	95.7	106.4	88.4	101.8	57.4	76.8
50 HIGH	97.4	110.4	86.6	103.9	56.9	74.9	96.1	106.2	87.9	100.9	57.3	76.8
AVERAGE	97.7	110.9	87.6	105.1	57.9	75.1	96.1	106.2	88.4	102.0	57.3	77.2
		ROOM A	١					ROOM B	J			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
14 LOW	93.3	103.5	85.2	99.1	53.5	68.2	93.0	102.1	82.1	99.5	52.3	67.1
17 LOW	92.9		84.7	98.4	52.9	67.1	93.0	101.8	81.7	99.2	52.0	66.2
19 LOW	93.2	104.3	85.9	99.8	54.1	68.7	93.0	102.7	83.1	100.3	52.9	67.1
21 LOW	93.1	103.9	85.8	100.2	54.2	69.2	93.8	102.7	83.5	100.7	53.7	68.1
52 LOW _	92.8	103.3	85.2	98.8	53.2	68.0	93.0	101.3	83.0	98.4	52.1	64.6
AVERAGE	93.1	103.7	85.4	99.3	53.6	68.3	93.2	102.2	82.7	99.7	52.6	66.8
	ROOM C							ROOM D)			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
14 LOW	94.5	103.4	84.3	101.2	55.0	70.5	93.5	99.3	82.4	94.7	50.8	64.3
17 LOW	94.0		83.7	100.7	54.2	69.7	94.2		81.6	94.3	50.9	70.2
19 LOW	94.0		85.0	101.7	55.0	70.4	93.1	100.1	83.0	94.9	50.9	65.4
21 LOW	94.2		85.7	102.3	55.9	71.3	93.8	99.9	82.5	94.7	51.3	64.9
52 LOW	93.2		83.9	99.8	53.2	72.3	93.2	100.0	81.6	94.2	51.3	65.6
AVERAGE	94.2	103.4	84.7	101.5	55.1	70.5	93.6	99.5	82.4	94.7	50.9	66.5

TEST# 06.1

	,	ROOM A	1					ROOM E	3			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
8 HIGH	103.8	114.6	88.6	102.5	47.2	75.2	106.0	116.8	91.3	101.9	46.7	75
14 HIGH		113.6	86.7	102.6	48.9	77.5	102.6		88.2		48.4	72.4
16 HIGH		112.3	86.1	101.0	47.1	76.6	102.2	114.0	87.6	96.9	46.7	73.1
19 HIGH	102.1	114.6	88.7	103.7	47.3	75.5	103.7	116.2	90.0	102.0	47.5	70.4
23 HIGH		115.6	88.5	103.9	47.3	76.1	104.1		90.3		47.7	74.3
32 HIGH	100.1	114.1	87.3	102.0	47.9	76.1	101.9		88.8	102.8	45.7	73.6
35 HIGH		114.7	88.0	102.6	45.5	76.1	103.5		89.9	102.1	48.0	74.3
40 HIGH		115.2	89.5	105.3	49.3	76.2	104.4		91.1	103.2	49.9	73.4
45 HIGH												
49 HIGH	100.9	114.4	88.4	103.4	47.9	77.5	102.7	115.4	89.8	104.1	47.1	72.4
AVERAGE	101.8	114,4	88.1	103.2	47.7	76.4	103.6	115.9	89.8	102.2	47.7	73.2
	ı	ROOMC	;					ROOM)			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
8 HIGH	99 1	111.7	84.7	99.0	46.6	62.5	102 9	113.9	86.3	97.4	44.2	65.1
14 HIGH		111.8	85.6	99.3	50.1	65.2		112.0	84.3	94.8	59.9	84.7
16 HIGH		110.9	84.5	98.6	47.5	59.1		111.9	84.0	93.5	43.8	61.1
19 HIGH		114.0	87.8	101.6	49.2	76.0		113.3	85.6	96.5	44.7	57.3
23 HIGH		114.3	87.7	101.8	47.9	76.4	103.2		86.8	96.8	44.4	71.3
32 HIGH		112.6	86.6	102.4	47.4	62.7		112.1	84.8	96.9	46.0	59.5
35 HIGH		113.7	87.1	100.5	45.7	63.2		113.5	86.2	96.5	43.6	64.3
40 HIGH		114.8	88.9	103.1	53.0	78.0		114.5	87.8	98.4	47.2	72.1
45 HIGH				. •								
49 HIGH	99.9	112.9	87.8	103.8	49.2	65.0	101.8	113.1	86.8	99.4	46.4	62.0
AVERAGE	100.1	113.1	87.0	101.5	49.1	72.5	102.3	113.2	86.0	97.0	51.4	75.7
		ROOM A	1					ROOME	3			
	FSEL	FPEAK	CSEL (CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
3 LOW	93.1	103.0	78.1	91.5	44.1	60.3	95.0	105.1	80.0	90.0	42.9	58.3
7 LOW		102.9	78.6	94.0	42.9	60.3	95.1		81.0		41.9	54.9
37 LOW	93.2	105.8	80.7	96.4	44.3	60.5	94.8		81.7	93.3	44.2	60.1
44 LOW	91.9	103.9	77.9	91.3	41.9	59.6	94.4		79.9		41.4	62.8
55 LOW	94.1	107.9	81.8	96.3	44.6	59.6	96.2		82.9	96.0	42.3	62.1
AVERAGE	93.0	105.2	79.7	94.4	43.7	60.1	95.1	106.4	81.2	92.9	42.7	60.4
	1	ROOM C	;					ROOM [)			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
3 LOW							001	103 4	75 A	86.3	42.6	62.6
7 LOW							··	102.3			42.9	61.3
37 LOW	92 4	104.8	70 9	937	AR E	61.2		105.6			42.8	56.1
44 LOW		104.8				61.6		104.2			42.5	
55 LOW		105.6		95.7	44.7			105.3			44.1	61.3
AVERAGE	92.2	103.5	78.5	92.1	45.3	61.4	92.8	103.9	76.8	87.6	42.7	62.2

TEST# 06.2

	F	A MOOF	1					ROOM 8	3			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
4 HIGH	102.8	115.2	89.5	105.8	51.3	74.3	105.0	116.9	90.8	101.9	47.6	71.2
20 HIGH	101.6	113.8	87.8	103.1	47.2	75.4	104.0	115.4	89.6	102.3	46.7	70.1
26 HIGH	101.8	114.2	88.1	103.7	47.5	75.8	104.1	115.7	90.0	102.6	47.5	73.9
29 HIGH	102.3	114.4	88.6	104.1	48.4	74.5	104.7	116.3	90.3	103.2	48.0	68.5
32 HIGH		114.9	89.3	104.6	49.9	74.9	104.9	116.6	90.9	103.2	49.2	71.8
33 HIGH	102.1	114.8	89.2	105.1	50.3	75.3	104.2	116.5	90.7	104.3	48.9	72.6
40 HIGH	101.9	114.3	88.0	103.6	48.4	75.4	103.8	115.8	89.8	103.2	48.8	74.4
44 HIGH	103.1	116.7	89.2	102.6	48.9	76.5	105.6	118.1	91.6	103.7	46.3	74.3
49 HIGH	102.5	114.5	89.2	104.2	49.3	76.3	104.6	116.7	90.8	103.6	48.2	72.5
50 HIGH	101.7	113.6	87.3	102.3	45.6	74.9	103.9	115.5	89.4	101.6	45.7	74.3
AVERAGE	102.3	114.7	88.7	104.0	49.0	75.4	104.5	116.4	90.4	103.0	47.8	72.7
	F	ROOM	;					ROOM D)			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
HIGH		113.3	86.2	96.8	45.3	64.7		112.8	86.0	99 .9	48.4	62.7
20 HIGH	101.6	112.8	85.6	96.8	45.6	58.9	98.7	110.5	84.7	100.2	47.1	70.6
26 HIGH	101.6	112.5	85.4	96.0	46.7	69.2	98.9	111.1	85.5	100.3	48.6	62.7
29 HIGH	101.7	112.9	85.8	98.1	45.2	63.3	98.9	111.6	85.3	100.9	49.0	70.4
32 HIGH		113.7	86.5	97.8	44.5	62.9	99.7	112.5	86.3	101.6	49.6	65.5
33 HIGH	102.0	113.5	86.5	98.3	46.5	63.5	99.4	112.6	86.7	102.7	51.1	68.1
40 HIGH	101.9	113.0	85.7	96.8	45.0	64.7	99.1	111.5	85.5	101.6	50.2	64.6
44 HIGH		113.9	86.9	97.9	44.5	71.0	100.1	114.0	86.2	100.6	46.7	76.6
49 HIGH	102.6	113.9	87.2	98.9	46 5	71.1	99.7	112.4	86.6	101.7	48.4	74.4
50 HIGH	102.1	113.1	85.8	96.6	44.2	61.5	98.8	110.5	84.3	99.5	46.0	61.5
AVERAGE	102.2	113.3	86.2	97.5	45.5	66.8	99.3	112.1	85.8	101.0	48.8	70.6
	F	A MOOF	ı					ROOM B	ı			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
14 LOW	92.9	105.2	80.3	95.4	44.3	8.08	95.9	106.5	82.0	91.8	43.1	56.2
17 LOW		104.2	77.3	91.7	41.1	61.7	95.1	105.3	80.3	91.0	41.0	61.5
19 LOW	91.0	103.5	78.5	94.9	45.5	60.8	93.8	104.4	79.7	92.3	41.4	62.0
21 LOW	92.6	104.7	80.3	95.6	43.7	56.8	95.4	106.0	81.5	92.9	43.4	61.1
52 LOW .	92.1	104.7	78.9	94.6	44.3	63.5	95.3	105.7	81.0	93.6	42.9	62.6
AVERAGE	92.2	104.5	79.2	94.6	44.0	61.2	95.2	105.6	81.0	92.4	42.5	61.2
	ı	;					ROOM E)				
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
14 LOW	92.4	103.6	76.9	87.8	42.7	61.7	89.3	102.3	76.8	89.6	43.6	59 .0
17 LOW		101.7	73.9	85.5	40.9	61.7	88.4		73.8	88.0	42.2	66.4
19 LOW	91.4	102.5	75.2	86.2	42.1	59.2	88.4	99.9	75.5	90.5	45.9	68.7
21 LOW		102.8	76.6	87.4	42.6	54.8	89.3	101.4	77.2	91.1	44.9	61.5
52 LOW		103.8	77.0	88.0	45.5	64.0	89.3	101.1	76 .1	90.9	43.8	62.6
AVERAGE	91.8	102.9	76.0	87.0	42.3	60.5	89.0	101.5	76.2	89.9	44.2	64.7

TEST# 07.1

		ROOM A	١					ROOM	3			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
8 HIGH							1072	119,2	92.6	104.7	40.7	74.6
14 HIGH							109.3	_	94.7		48.7	71.6
16 HIGH							108.3		93.3		51.1	71.7
19 HIGH							108.6	_			50.0	71.2
23 HIGH									93.2		49.2	71.1
							106.7	118.2	91.5	102.8	48.5	71.1
32 HIGH												
35 HIGH								119.0		104.9		72.0
40 HIGH								119.7			50.8	70.8
45 HIGH								121.2	94.4		67.9	94.7
49 HIGH							105.9	117.6	90.4	101.3	47.8	69.9
AVERAGE	0.0	0.0	0.0	0.0	0.0	0.0	107.4	119,1	92.6	104.4	58.4	84.9
	(ROOM	;					ROOM D)			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
8 HIGH	102.0	115.3	88.1	102.8	47.5	76.0	104.9	115.6	88.2	98.1	44.8	72.7
14 HIGH		117.2	90.1	104.9	49.4	72.9	106.8	_	90.4	100.8	45.9	64.6
16 HIGH		115.3	87.8	101.5	48.6	77.3		116.5	89.2	99.5	45.7	71.2
19 HIGH		115.9			46.8	77.0	106.6		89.6	99.2	45.0	72.0
23 HIGH		113.7			44.9	63.5		115.6	88.0	97.5	43.4	72.1
32 HIGH	101.3	110.7	65.0	33.3	77.3	63.5	104.3	113.0	00.0	97.5	43.4	12.1
35 HIGH	100 5	4444	97.0	400 E	40.7	70.4	105 7	446.4	00.0	00.0	40.5	70.0
40 HIGH	102.5			103.5		72.4		116.4			49.5	72.5
		115.1	87.9		48.2	76.1	105.3		88.9	98.9	45.7	72.6
45 HIGH		117.0	89.9	104.2	58.4	83.8		118.1	90.6	100.6	46.5	66.2
49 HIGH	101.6	113.1	85.0	98.9	43.5	59.0	104.7	115.4	87.4	97.9	43.5	71.4
AVERAGE	102.3	114.9	87.5	101.9	50.6	76.7	105.4	116.1	88.7	98.7	45.5	70.8
	ı	ROOM A						ROOM B	i			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
3 LOW 7 LOW							99.5	110.6	84.6	96.2	42.5	61.9
37 LOW							98.1	109.1	83.3	93.2	45.7	69.1
44 LOW												
_							100.1	111.2	85.8	96.8	44.5	65.8
55 LOW							96.7	108.3	82.2	93.7	42.8	61.6
AVERAGE	0.0	0.0	0.0	0.0	0.0	0.0	98.8	110.0	84.2	95.2	44.1	65.7
	F	ROOM C	;					ROOM D)			
	FSEL	FPEAK	CSEL (CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
3 LOW 7 LOW	94.0	106.4	79.4	94.5	42.4	58.7	98.1	108.8	81.7	92.2	43.2	63.8
37 LOW	92.6	103.9	78.1	90.7	43.3	62.6	96.5	107.3	80.4	90.2	43.6	63.0
44 LOW	94.3	106.6	80.8	94.9	44.7	61.1	98.2	108.9	82.3	93.6	42.9	61.8
55 LOW	91.9	104.2	77.6	92.1	43.0	56.3	96.0	107.0	80.0	91.8	45.2	64.1
AVERAGE	92.4	104.5	78.3	92.5	42.3	59.8	96.4	107.1	80.3	91.0	42.0	61.7

MUNSTER INDOOR BLAST DATA TEST# 07.2

	f	ROOM A	1					ROOM E	3			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
4 HIGH							106.3	119.0	92.6	105.0	47.9	70.5
20 HIGH								120.8	94.1	106.5	49.7	71.9
26 HIGH								118.5	92.1	104.4	46.1	70.2
29 HIGH								117.9	91.1		48.1	75.5
32 HIGH									•		••.	
33 HIGH							105.1	117.3	90.1	101.9	45.4	69.9
40 HIGH								115.8	89.9		45.2	70.5
44 HIGH								120.2	94.1		50.3	72.8
49 HIGH								120.7			51.8	72.6
50 HIGH								120.1	93.5			70.5
AVERAGE	0.0	0.0	0.0	0.0	0.0	0.0	106.5	119.2	92.7	105.4	48.6	72.0
	F	ROOMC	;					ROOM)			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
4 HIGH	102.4	115.8	88.8	103.6	48.2	73.1	105.2	116.5	88.7	99.4	44.9	71.1
20 HIGH		117.7		104.5	50.0	73.0		118.1		100.5	46.9	65.6
26 HIGH		115.1		101.6	46.7	76.1		116.2			45.2	71.4
29 HIGH		115.1			47.8	75.4		115.5			48.3	72.2
32 HIGH			••••			,			-			
33 HIGH	101.9	114.3	85.8	98.9	44.7	76.3	105.0	116.3	88.0	98.5	43.9	71.7
40 HIGH	100.5				44.6	58.7		114.5			43.4	72.3
44 HIGH	104.0			105.8	50.0	73.1		118.2	90.5		46.2	64.8
49 HIGH	104.7			105.1	46.7	73.2	107.6	118.7	90.9	101.1	44.4	64.8
50 HIGH	103.3			103.7	47.4	72.1	106.5	117.8	90.2	101.0	45.0	66.3
AVERAGE	102.9	116.0	88.9	103.4	47.7	73.8	105.8	117.1	89.3	99.8	45.6	70.0
	ş	ROOM A						ROOME	3			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CJEL	CPEAK	ASEL	APEAK
14 LOW	- · - - ·			- -								
17 LOW							96.5	109.0	84.4	99.5	46.6	63.9
19 LOW							98.4	111.3	85.2	98.7	46.3	60.0
21 LOW							95.2	107.6	82.0	94.0	45.1	63.7
52 LOW .							97.2	109.8	84.2	97.3	42.9	62.9
AVERAGE	0.0	0.0	0.0	0.0	0.0	0.0	97.0	109.6	84.1	97.8	45.4	62.9
	ı	ROOM C	;					ROOM)			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
444.000												
14 LOW	20 =	400 +	90 4	00.0	46.4	64.4	ne o	107.0	01 4	04.2	44.0	86 F
17 LOW		106.4		98.3		61.1		107.2			44.2 44.4	56.6
19 LOW		108.3		96.8	47.1	64.6	•					62.9
21 LOW		104.2		92.1	47.0	55.9	95.0		79.0		43.0	58.7 56.2
52 LOW	93.5	106.7	81.0	96.0	45.1	62.0	96.8	100.3	81.5	93.1	42.5	56.2
AVERAGE	91.7	105.4	80.0	95.2	45.6	60.6	95 . 1	106.0	79.9	91.2	42.7	59.0

TEST# 06.1

ROOM A							ROOM B							
_	FSEL FPEAK			CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK		
8 HIGH	102.6	115.2	88.0	103.2	46.7	73.7								
14 HIGH	102.1	114.5	88.7	104.8	48.0	73.9								
	103.9		90.4	106.3	50.2	74.8								
	102.4			102.8	46.3	74.1								
	102.6			103.4	47.3	73.4								
	102.8			102.0	46.8	74.7								
	102.3				48.4	73.6								
35 HIGH	102.3	113.4	88.7	105.1										
40 HIGH	102.5	115.3	88.9	105.0	48.3	73.4								
	103.8			106.6		73.9								
49 HIGH	103.4	115.7	89.4	105.4	48.7	73.7								
AVERAGE	102.9	115.4	88.9	104.7	48.4	73.9	0.0	0.0	0.0	0.0	0.0	0.0		
ROOM C							ROOM D							
_	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK		
8 HIGH	103.1	1166	80.2	102.8	48 0	71.7	106 7	116.5	89.1	99.4	44.2	72.1		
14 HIGH		116.1		104.7		75.2		116.5						
	104.9					76.3	107.5							
16 HIGH	103.0	117.0	91.0	106.8 102.6		70.5	100.0	118.3 116.5		_		66.1		
19 HIGH	103.0	110.2	09.2		49.5	72.5 71.5	105.3							
23 HIGH	103.2 102.8 103.2	115.8	89.0	102.3	48.4	/1.5	105.7	116.8			45.1			
32 HIGH	102.8	114.4	87.6	101.1	49.5	75.7 71.5	105.7	116.5						
35 HIGH	103.2	116.7	90.3	104.9				116.7				71.7		
40 HIGH	103.5 105.1	116.6	90.6	106.3	52.6	74.5		117.1	89.4					
				107.6		77.4		118.8						
49 HIGH	104.2	117.2	90.9	106.3	49.1	75.6	106.6	117.9	90.3	101.4	46.3	67.1		
AVERAGE	103.7	116.8	90.3	105.0	50.8	74.7	105.9	117.2	89.6	100.5	46.3	71.1		
ROOMA								ROOM B	.					
	FSEL	FPEAK	CSEL CPEAK		ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK		
3 LOW	04 0	107.3	81.2	95.9	42.1	56.9								
7 LOW		107.3	82.3	97.4	44.1	63.9								
37 LOW		107.7		97.9	44.8	62.4								
	94.9			96.7		58.7								
55 LOW	94.7	107.9	82.6	97.3	44.4	61.9								
AVERAGE	94.8	107.2	82.0	97.1	43.8	61.4	0.0	0.0	0.0	0.0	0.0	0.0		
ROOM C							ROOM D							
	FSEL FPEAK CSEL CPEAK			ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK			
3 LOW	94.6	108.6	82.4	96.7	44.6	63.1	97.4	108.2	81.8	92.1	42.0	57.0		
7 LOW		108.9	83.3	97.4	46.7	61,3		107.6	81.1		42.3	61.4		
37 LOW	95.0	109.1	83.7	98.4	51.0	69.8	97.5		82.2		44.1	61.2		
44 LOW	94.3	107.1	82.3	97.7	46.4	61.5	97.4 97.4		82.2		44.0	63.6		
55 LOW	95.0	108.7	83.8	97.7	47.5	62.4	97.2		82.3		44.4	60.2		
AVERAGE	94.7	108.5	82.9	97.4	47.4	65.2	97.2	108.4	81.8	92.7	43.0	60.8		

MUNSTER INDOOR BLAST DATA TEST# 06.2

	ROOM	4		ROOM B								
	FSEL FPEAK	CSEL CPEAK	ASEL.	APEAK	FSEL FPEAK CSEL CPEAK ASEL APEAK							
4 HIGH	104.6 116.8	90.2 106.1	49.6	73.3								
20 HIGH	105.0 117.9	91.5 107.2	50.4	73.4								
26 HIGH	104.5 117.3	90.5 106.8	51.7	72.4								
29 HIGH	104.4 116.7	90.4 106.4	51.6	71.4								
32 HIGH	104.8 117.2		48.9	72.6								
33 HIGH	105.1 117.9		49.1	72.7								
40 HIGH	104.5 116.9		51.8	72.6								
44 HIGH	104.5 117.1		50.3	73.9								
49 HIGH	105.5 118.2		52.2	75.4								
50 HIGH	105.5 118.2	92.1 108.0	51.9	75.1								
AVERAGE	104.9 117.5	91.1 107.1	50.9	73.4	0.0 0.0 0.0 0.0 0.0 0.0							
	ROOM			ROOM D								
	FSEL FPEAK	CSEL CPEAK	ASEL	APEAK	FSEL FPEAK CSEL CPEAK ASEL APEAK							
4 HIGH	103.0 115.5	89.3 104.6	50.5	68.5	105.2 116.2 88.7 99.4 45.9 71.5							
20 HIGH	103.8 117.0		52 0	76.0	105.7 117.3 89.7 100.6 46.9 72.3							
26 HIGH	103.1 116.0	90.1 106.0	55.8	76.6	105.4 116.5 89.0 99.0 46.2 72.7							
29 HIGH	103.1 115.7		55.3	77.3	105.3 116.6 89.2 99.6 46.9 72.7							
32 HIGH	103.6 116.3		50.2	75.5	105.7 117.1 89.6 100.7 45.9 72.8							
33 HIGH	103.9 116.7	90.7 105.7	53.0	76.0	106.1 117.5 89.9 100.4 45.9 71.8							
	103.5 116.8		55.8	77.1	105.6 116.9 89.7 100.9 47.7 72.7							
44 HIGH	103.4 116.8		54.3	77.2								
	104.7 118.1			76.4	106.5 118.2 90.8 102.6 48.4 69.4							
50 HIGH	104.7 118.0	92.1 108.0	54.5	76.9	106.7 118.3 91.0 102.9 48.6 68.8							
AVERAGE	103.7 116.8	90.8 106.4	54.0	76.2	105.8 117.2 89.8 100.8 47.0 71.9							
	ROOM A			ROOM B								
	FSEL FPEAK	CSEL CPEAK	ASEL	APEAK	FSEL FPEAK CSEL CPEAK ASEL APEAK							
14 LOW	96.0 108.4	83.7 99.7	47.8	63.3								
17 LOW	95.3 107.5			65.4								
19 LOW	95.8 108.6	83.8 99.9		64.1								
21 LOW	95.9 109.8	84.2 98.3	45.3	61.3								
52 LOW .	95.3 109.0	84.2 99.7	48.2	65.4								
AVERAGE	95.7 108.7	83.7 99.3	47.4	64.2	0.0 0.0 0.0 0.0 0.0 0.0							
	ROOM	:			ROOM D							
	FSEI. FPEAK	CSEL CPEAK	ASEL	APEAK	FSEL FPEAK CSEL CPEAK ASEL APEAK							
14 LOW	94.3 107.9	82.9 97.2	49.2	65.8	97.2 108.7 82.0 93.3 44.1 63.4							
17 LOW	93.8 106.8	81.5 96.0	47.9	63.5	96.4 107.5 81.1 91.8 43.3 59.3							
19 LOW	94.2 107.8	83.0 97.7	51.2	67.2	97.4 108.6 82.2 92.2 44.4 65.2							
21 LOW	94.6 108.1	83.2 99.3	46.9	66.7	96.7 108.7 82.3 95.1 44.0 54.9							
52 LOW	94.3 107.7	83.4 97.1	49.2	64.3	96.8 108.7 82.7 95.0 44.8 57.4							
AVERAGE	94.2 107.7	82.7 97.6	49.1	66.0	97.0 108.5 81.9 93.3 44.0 62.5							

TEST# 09.1

	ROOM B												
	FSEL FPEAK CSEL CPEAK				ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	
8 HIGH	107.2	120 0	93.6	109.6	513	76.0	109.0	121.4	95.0	107.5	51.6	71.8	
14 HIGH		117.7		107.7	51.3			119.3	92.5		51.1	73.2	
16 HIGH	106.4			110.2	56.1	77.0		120.8				73.2 72.6	
19 HIGH	106.0			109.8	55.8	77.7		120.4			55.1	73.0	
23 HIGH	105.9			108.8	52.2	75.8		120.2					
32 HIGH	104.6			107.8	52.2	75.7		118.9				72.4	
35 HIGH	106.3				50.9	74.9	100.2	120.8					
40 HIGH	106.5	110.1	92.1	100.3		74.5		120.8				-	
45 HIGH	106.2	110.5	92.1			77.4		121.1					
49 HIGH	100.2	116.9	90.Z	104.7	49.1	77. F		118.3				71.3	
AVERAGE	105.9	118.9	92.6	108.7	53.1	76.0	107.7	120.3	93.9	107.0	52.5	72.1	
	ı	ROOM	;				ROOMD						
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	
8 HIGH	105.8	118.9	922	106.8	51.4	74.6							
14 HIGH	103.9			104.2	52.8	76.3							
16 HIGH	106 1	1107	02.0	108.2	58.3	75.0							
19 HIGH	104.7	118.3	92.5	108.1		75.1							
23 HIGH	104.6	117.8	92.0	106.5		74.0							
32 HIGH	104.6 103.1	116.1	90.1	104.9		75.8							
35 HIGH	105.1	118.2	91.5	106.2	49.2	73.9							
40 HIGH	105.1 105.3	118.2	91.0	105.8	48.7	74.7							
45 HIGH	105.3	119.0	92.7	107.2		74.7							
49 HIGH	105.3 102.7	115.1	88.1	102.5		72.0							
AVERAGE	104.7	117.8	91.5	106.3	54.0	74.7	0.0	0.0	0.0	0.0	0.0	0.0	
ROOM A								ROOM E	3				
	FSEL FPEAK CSEL CPEAK			CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	
3 LOW	98.3	449 5		102.0	 52.1	78.3	99.6	1102	07 =	102.4	50.2	69.1	
7 LOW	97.4	110.3	94.4	103.9 99.4		60.3	Ø.50 0.00	111.0	97.3 95.0	98.2	43.1		
37 LOW	97.5			99.6		62.1		111.6				60.3	
44 LOW	97.1			100.2		62.1		111.9		100.0	-		
	95.3			97.0		62.6						63.1	
•						_							
AVERAGE	97.2	111.2	85.4	100.6	47.8	71.7	98.9	111.5	85.7	100.0	46.5	64.5	
	វ	NOOR					ROOM [)					
	FSEL FPEAK CSEL CPEAK				ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	
3 LOW	96.5	111.6	867	103.0	52.4	70.5							
7 LOW		108.4		97.2	42.9	63.4							
37 LOW		109.5		98.2	47.5	62.2							
44 LOW		109.4		99.8	48.4	64.0							
55 LOW		108.0		96.3	45.4	62.6							
AVERAGE	96.0	110.3	85.1	100.9	49.9	67.6	0.0	0.0	0.0	0.0	0.0	0.0	

	ROOM	A			ROO	4 B	
	FSEL FPEAK	CSEL CPEAK	ASEL	APEAK	FSEL FPEA	K CSEL CPEAK	ASEL APEAK
4 HIGH	106.0 119.1	92.9 108.5	50.8	75.2	107.9 120	.2 93.8 107.6	49.8 72.2
20 HIGH	105.6 118.4		52.3	75.7	107 5 110		
	106.6 119.5		52.6	76.3	108.3 120		
29 HIGH	105.9 119.0			75.8	108.0 120		
	107.2 120.7			76.0	109.1 121		
33 HIGH	107.1 120.0			76.5			
	106.5 120.2			75.6	108.4 121		
44 HIGH	106.5 119.7			76.4			
49 HIGH	105.5 118.4			74.0	107.7 120		47.4 72.0
50 HIGH	105.4 118.4	92.4 108.4	54.0			.9 93.5 107.5	51.6 72.7
AVERAGE	106.3 119.4	93.1 109.0	52.8	75.9	108.2 120	.7 94.2 107.9	52.9 73.4
	ROOM	c			ROOL	A D	
	FSEL FPEAK	CSEL CPEAK	ASEL	APEAK	FSEL FPEA	K CSEL CPEAK	ASEL APEAK
4 HIGH	105.1 118.1	91.7 106.6	50.6	74.8			
20 HIGH	104.7 117.4			75.6			
	105.7 118.8		54.4	74.5			
29 HIGH	105.3 117.9 106.7 120.0	91.5 106.3	53.7	75.5			
32 HIGH	106.7 120.0	93.4 108.7		73.9			
33 HIGH	106.5 119.9	93.5 108.2	57.0	73.6			
40 HIGH	106.5 119.9 105.9 119.5	93.6 108.7	55.7	73.5			
44 HIGH	105.4 118.4 104.4 117.2	92.3 108.0	54.0	74.5			
49 HIGH	104.4 117.2	89.5 103.4	47.4	73.1			
50 HIGH	104.3 117.5	91.4 106.5	53.3	74.9			
AVERAGE	105.5 118.6	92.2 107.2	54.2	74.5	0.0	.0 0.0 0.0	0.0 0.0
	ROOM	A			ROOI	A B	
	FSEL FPEAK	CSEL CPEAK	ASEL	APEAK	FSEL FPEA	K CSEL CPEAK	ASEL APEAK
14 LOW	966 1103	85.1 100.2	48.0	64.3	98.5 110	.6 84.8 98.0	46.7 62.9
17 LOW	96.5 109.9			62.5			
19 LOW	100.0	01.0 100.0	10.1	32.3	99.9 110		
	96.4 109.7	84.5 100.3	48.7	65.8	98.5 110	.0 84.8 97.5	47.7 63.4
52 LOW	95.6 109.0						
AVERAGE	96.3 109.8	84.5 99.9	47.6	64.4	98.4 110	.1 84.7 98.1	46.3 62.7
	ROOM	c			ROO	A D	
	FSEL FPEAK	CSEL CPEAK	ASEL	APEAK	FSEL FPEA	K CSEL CPEAK	ASEL APEAK
14 LOW	94.9 108.6	83.1 97.1	47.5	64.3		-	
17 LOW	95.2 108.3	82.7 96.7	45.6	63.5			
19 LOW				30.0			
21 LOW	95.1 108.1	83.2 97.2	48.6	65.4			
52 LOW	94.4 107.7		46.3	61.6			
AVERAGE	93.7 107.2	81.9 95.9	46.6	63.4	0.0	.0 0.0 0.0	0.0 0.0

	ROOM	A				ROOM E	3			
	FSEL FPEAK	CSEL CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
8 HIGH	108.7 123.1	98.3 114.3	64.0	89.4	110.0	123.8	QR 1	112.1	88 3	118.8
14 HIGH	108.8 123.1					123.6	98.3	-		118.8
16 HIGH	109.1 123.5			90.7		124.1		111.8	• • • •	118.8
	108.9 123.6			90.3	110.7	124.1	98.6		86.8	
				90.3	110.4		-	_		
23 HIGH	108.8 122.8			00.7	110.4	123.9		112.8		118.8
	108.6 122.4			87.9		123.4		112.4	89.0	118.8
35 HIGH	108.8 122.9		-	88.5		124.1		112.5	89.6	118.8
	108.8 123.1			88.6		124.4		112.5	89.9	118.8
45 HIGH	109.0 123.3	98.1 114.0		89.7	110.8	124.4		112.6		118.8
49 HIGH	108.4 122.5	96.8 112.5	60.8	85.7	110.2	123.7	97.7	111.5	58.5	80.3
AVERAGE	108.8 123.0	98.0 113.8	63.6	89.0	110.3	124.0	98.3	112.3	88.0	118.3
	ROOM	c				ROOM				
	FSEL FPEAK	CSEL CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
8 HIGH					10A A	120.4	92.9	106.3	57.8	74.7
14 HIGH						120.8	93.2		58.2	74.7
16 HIGH						121.0		106.9	56.8	73.9
19 HIGH						121.0		107.4	58.2	
23 HIGH						121.1		107.4	57.9	
32 HIGH						120.8	• • • •	107.4	57. 9	
-					_				_	
35 HIGH						121.3			55.7	
40 HIGH						121.4				
45 HIGH						121.6				
49 HIGH					109.5	121.3	93.6	106.1	55.5	74.2
AVERAGE	0.0 0.0	0.0 0.0	0.0	0.0	109.3	121.1	93.5	107.0	58.1	80.6
	ROOM	A				ROOM E	3			
	FSEL FPEAK	CSEL CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
3 LOW	99.8 116.5	91.7 108.6	58.3	78.5	101.2	115.1	90.6	107.9	56.2	74.4
7 LOW	100.2 116.8	92.4 109.1	59.5	79.4	101.5	115.5	91.1	108.7	56.9	74.6
37 LOW	100.3 117.0	91.8 108.3	57.5	79.4	102.0	115.6	91.4	108.3	56.9	73.6
44 LOW	100.3 117.0 100.0 116.7	91.6 107.8	58.5	79.1	101.9	115.4	91.2	108.3	57.0	74.6
	100.0 116.8		59.8	78.2	102.0	115.0	91.0	107.5	55.8	74.1
AVERAGE	100.1 116.8	91.8 108.4	58.8	78.9	101.7	115.3	91.1	108.2	56.6	74.3
	ROOM	С				ROOM ()			
	FSEL FPEAK	CSEL CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
3 LOW					100 1	111.2	84.6	97.3	51.3	67.2
7 LOW					100.1		85.0	97.6	52.1	68.2
37 LOW					100.5		85.7		52.3	67.9
44 LOW					100.9				52.3 53.4	
55 LOW					100.9		85.8	100.8		71.8
							86.0	101.4	54.2	70.8
AVERAGE	0.0 0.0	0.0 0.0	0.0	0.0	100.4	111.6	85.2	98.9	52.2	68.9

MUNSTER INDOOR BLAST DATA

TEST# 10.2

	F	ROOM A						ROOM E	1			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
4 HIGH 20 HIGH	108.4	122.0	97.6	113.6	63.0	83.8	107.6	126.3 122.8	97.9	117.8 114.5	90.9 65 .1	118.8 86.3
26 HIGH	109.8			112.8	62.1	81.9	108.4 108.3 106.6	123.2	97.7	113.8	64.0	
29 HIGH	109.5			112.1	60.7	80.4	108.3	122.6	97.5	112.6		
32 HIGH	107.6 109.4	120.9	96.0	112.0	60.0	75.9	106.6 108.3	121.1	96.9	112.8		
33 HIGH	109.4	122.8	97.6	113.5	61.7	80.2	108.3	122.0	90.0	113.5 112.8		
40 HIGH 44 HIGH	109.3 107.5	120.4	97.0	111.2	59.5 60.0	77.0	108.2 106.9	120.5	97.4	111.3	62.7	81.9
49 HIGH	107.5	120.4	30.0	111.2	00.0	77.3		122.4		112.4		
50 HIGH							100.0					••
AVERAGE	108.9	122.1	97.1	112.6	61.2	80.6	108.6	123.0	98.1	113.9	81.4	109.3
	F	ROOM C	;					ROOM)			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
4 HIGH							111.0	123.0	96.9	110.6	68.3	87.6
20 HIGH							105.9	117.6		105.8	64.6	82.0
26 HIGH								118.6		105.9	65.1	
25 HIGH								118.4		106.3	65.8	
32 HIGH								116.7		104.2		
33 HIGH								118.5		106.9 106.3		
40 HIGH								118.3		106.3		
44 HIGH 49 HIGH							105.0	110.4	31.4	100.3	UZ.4	30 .3
50 HIGH												
		•					407.0	4400	00.4	100.0	65.4	04.4
AVERAGE	0.0	0.0	0.0	0.0	0.0	0.0	107.3	118.9	93.4	106.9	55.4	04.1
		ROOM A						ROOM B				
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
14 LOW	100.6		89.8		55.1					107.5	57.7	79.1
17 LOW	101.3 100.9	112.4	89.8	106.4	55.2	74.1		114.3		107.3	57.9	79.8
19 LOW	100.9	112.9	89.8			75.1	98.8 99.5	114.7	90.3	107.4		76.4 76.0
	101.9	113.7	90.5	107.3	55.2	75.3	99.5	115.4	91.5	108.0	58.2	76.9
52 LOW .												
AVERAGE	101.2	112.9	90.0	106.8	55.3	74.5	99.1	114.7	90.8	107.6	58.0	78.3
	ſ	NOOF	:					ROOM)			
	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK	FSEL	FPEAK	CSEL	CPEAK	ASEL	APEAK
14 LOW							97.3	108.2	82.8	96.1	50.4	64.6
17 LOW							97.4		83.1	95.6	51.8	66.4
19 LOW							97.1	108.3	83.5		53.1	68.5
21 LOW							97.8	109.6	84.7	98.2	54.3	68.0
52 LOW												
AVERAGE	0.0	0.0	0.0	0.0	0.0	0.0	97.3	108.3	83.1	96.5	51.6	66.3

Appendix D: Subject Response Data by Room for Small Arms and Tracked and Wheeled Vehicles

NEAR GUN 60, 1st HALF - VEHICLE CONTROLS-A

ed Cum Area	ភ	1 1002.7																											
Y % Residual	-0.279	-0.161		4.605	0.517		7		0.00	0.0	0000	0000																	
Y Residual	-0.279	-0.161	0.074	4.145	0.413	1.846	-9.940	4.529	-1.283	-0.206	0.424	0.772																	
Y Predicted	100.3	100.2	6.66	85.9	79.6	75.2	71.9	57.5	. L	0.2	-0.4	-0.8		[0	•					0.69	2.7	25.1	0.40	74.1	-20.6	4.1	-5.1	-28.1	-13.2
PERCENT 100.0	100.0	100.0	100.0	0.06	80.0	77.0	62.0	62.0	0.0	0.0	0.0	0.0		1((x-c)/(02d))) [Cumulative]	,					O	C StdErr	Ct	C Conflimits		۵	D StdErr	01	D Conflimits	
CONTROL ASEL	5.0	10.0	15.0	47.0	52.0	55.0	57.0	65.0	110.0	115.0	120.0	125.0	63.6	y=a+b0.5(1+erf((1.0	1.0	4.0	467.5	0.06	1:1	2.7	4.0-	-6.1	9.8	101.5	3.7	27.5	S .7	108.2
XY Pt *	α	ო	4	ιo	ဖ	7	œ	O)	9	=	12	13	X@50Y	Equation	Adjr2	인	Fit StdErr	F-stat	Confidence	⋖	A StdErr	At	A Conflimits		œ	B StdErr	Bt	B Conf∐mits	

NEAR GUN 60, 1st HALF-VEHICLE CONTROLS-B

Cum Area	0.0	500.3	1000.7	1501.0	4650.1	5090.6	5334.6	5486.7	5994.8	6741.5	6744.6	6744.3	6741.6																	
Y % Residual	-0.069	-0.069	-0.069	-0.065	-1.659	4.342	6.824	-15.223	3.912	0.000	0.000	0.000	0.000																	
Y Residual	-0.069	-0.069	-0.069	-0.065	-1.493	3.821	5.732	-9.743	2.152	-1.024	-0.238	0.327	0.737																	
Y Predicted	1001	1001	1001	1001	91.5	8 2i	78.3	73.7	52.8	0.1	0.2	-0.3	-0.7								66.4	6.1	8.5	62.9	70.0	6.9	<u>.</u> сі	5.8	4.7	9.1
PERCENT	100.0	100.0	100.0	100.0	0.06	88.0	0.78	0.79	55.0	0.0	0.0	0.0	0.0		^ d) [LogisticDoseRsp]						O	C StdErr	Ċţ.	C ConfLimits		۵	D StdErr	٥٤	D Conflimits	
CONTROL ASEL	0.0	5.0	10.0	15.0	47.0	52.0	55.0	57.0	65.0	110.0	115.0	120.0	125.0	66.1	$y=a+b/(1+(x/c)^{-1}$		1.0	4.1	456.0	90.0	-2.0	2.8	-0.7	-7.2	3.1	102.1	3.7	27.3	95.2	108.9
XY Pt #	-	81	က	4	ഹ	9	7	ထ	o	9	=	12	13	X@50Y	Equation	Adjr2	ୄୄୄୄ	Fit StdErr	F-stat	Confidence	∢	A StdErr	Αt	A Conflimits		∞	B StdErr	B t	B Conflimits	

NEAR GUN 60, 1st HALF-VEHICLE CONTROLS-C

Cum Area	503.7	1007.3	1511.0	4699.7	5137.9	5366.4	5499.8	5866.3	6130.5	6132.4	6134.1	6135.6																	
Y % Residual	-0.733	-0.733	-0.733	1.299	7.677	6.950	-30.323	15.593	0000	0.00	0000	0000																	
Y Residual	-0.733	-0.733	-0.733	1.221	6.756	5.282	-14.555	5.614	-0.432	-0.358	-0.313	-0.284																	
Y Predicted	100.7	100.7	100.7	92.8	81.2	70.7	62.6	30.4	4.0	4.0	0.3	0.3								59.8	7.	2 2	57.8	61.8	10.2	1.8	5.5	6.8	13.6
PERCENT 100.0	100.0	100.0	100.0	9	88.0	76.0	48.0	36.0	0.0	0.0	0.0	0.0		^ d) [LogisticDoseRsp]						ပ	C StdErr	Ct.	C Conflimits		۵	D StdErr	0t	D Conf∐mits	
CONTROL ASEL	5.0	10.0	15.0	47.0	52.0	55.0	67.0	65.0	110.0	115.0	120.0	125.0	59.9	$y=a+b/(1+(x/c)^{-1}$		1.0	6.0	217.6	0.06	0.5	3.0	0.1	-5.3	8. 8.	100.5	4.2	23.7	92.7	108.3
XY Pt #	· 04	က	4	S	ဖ	7	æ	O	0	11	12	13	X@50Y	Equation	Adjr2	୍ଧ	Fit StdErr	F-stat	Confidence	⋖	A StdErr	Αt	A Conflimits		ω	B StdErr	B t	B Conflimits	

NEAR GUN 60, 1st HALF-VEHICLE CONTROLS-D

Cum Area 0.0 501.1 1002.2 1503.3 4686.8	5146.3 5400.0 5556.0 6043.4 6507.7 6508.5	6507.9	
Y % Residual -0.219 -0.219 -0.219 -0.219	0.142 3.729 -5.656 1.814 0.000 0.000	0 000	
Y Residual -0.219 -0.219 -0.219 -0.219 0.897	0.125 3.132 -4.016 0.853 -0.263 -0.063	0.146	
Y Predicted 100.2 100.2 100.2 100.2 95.1	87.9 80.9 75.0 46.1 0.3	1.0.1 2.0.000000000000000000000000000000	20.04 6.0.04 6.0.0 7.0.0 8.0.0 8.0.0 8.0.0 8.0.0 8.0.0 8.0.0 8.0.0
PERCENT 100.0 100.0 100.0 100.0	88.0 84.0 17.0 0.0 0.0 0.0	d) [LogisticDos	C StdErr C t C Conflimits D StdErr D t D Conflimits
CONTROL ASEL 0.0 5.0 10.0 15.0 47.0	52.0 55.0 57.0 65.0 110.0 120.0	125.0 63.5 y=a+b/(1+(x/c) ^ 1.0 1.0 2561.3 90.0 -0.3	0.9 -0.4 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
X T C C C C C C C C C C C C C C C C C C C	o r 8 6 7 7 2 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 X@50Y Equation Adjr2 r2 Fit StdErr F – stat Confidence	A StdErr A t A Conflimits B StdErr B t B Conflimits

NEAR GUN 6, 1st HALF-VEHICLE CONTROLS-A

XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	100.0	99.8	0.202	0.202	0.0
8	5.0	100.0	8.66	0.203	0.203	499.0
ო	10.0	100.0	8.66	0.207	0.207	998.0
4	15.0	100.0	8.66	0.218	0.218	1496.9
ທ	42.0	0.76	93.2	3.847	3.966	4161.1
9	47.0	71.0	81.8	-10.771	-15.171	4602.4
7	52.0	0.69	59.3	9.661	14.001	4959.7
æ	55.0	44.0	42.6	1.420	3.227	5112.7
Ø	57.0	26.0	32.0	-6.047	-23.257	5187.1
10	110.0	0.0	-0.3	0.265	0.000	5346.0
=	115.0	0.0	-0.3	0.265	0.000	5344.7
12	120.0	0.0	-0.3	0.265	0.000	5343.3
13	125.0	0.0	-0.3	0.265	0.000	5342.1
X@50Y	53.7					
Equation		-(x-c)/d)) [Sigmoid]				
Adjr2						
ପ	1.0					
Fit StdErr	5.4					
F-stat	263.4					
Confidence	90.0					
⋖	-0.3	O	53.7			
A StdErr	2.7	C StdErr	0.7			
Αt	-0.1	ŏ	79.9			
A Conflimits	-5.2	C Conflimits	52.5			
	4.7		55.0			
ω	100.1	۵	4.4			
B StdErr	3.8	D StdErr	0.8			
B ‡	26.4	οt	-5.8			
B Conflimits	93.1	D Conflimits	-5.8			
	107.0		-3.0			

NEAR GUN 6, 1st HALF-VEHICLE CONTROLS-B

Cum Area	500.2	1000.4	1500.6	4181.3	4629.4	5003.0	5175.9	5267.3	5511.1	5511.0	5510.9	5510.7																	
Y % Residual	-0.040	-0.040	-0.040	1.761	-4.468	5.018	-1.010	-2.421	0.000	0.000	0.00	0.000																	
Y Residual	-0.040	-0.040	-0.040	1.691	-3.574	3.412	-0.505	-0.968	0.026	0.026	0.026	0.026																	
Y Predicted	100.0	100.0	100.0	94.3	83.6	64.6	50.5	41.0	-0.0	-0.0	-0.0	-0.0		[6	•					55.1	0.3	213.1	54.6	55.6	-8.3	0.5	-16.4	-9.2	4.7-
PERCENT 100.0	100.0	100.0	100.0	0.96	80.0	0.89	50.0	40.0	0.0	0.0	0.0	0.0		f((x-c)/(û2d))) [Cumulative]						ပ	C StdErr	ot C	C ConfLimits		۵	D StdErr	Οt	D Conflimits	
CONTROL ASEL	5.0	10.0	15.0	42.0	47.0	52.0	55.0	57.0	110.0	115.0	120.0	125.0	55.1	y=a+b0.5(1+erf((x))		1.0	1.8	2409.0	0.06	-0.0	6.0	-0.0	-1.7	9.1	100.1	1.2	80.2	97.8	102.4
XY Pt #	01	ო	4	ഹ	ဖ	7	∞	တ	0	=	12	13	X@50Y	Equation	Adjr2	. 22	Fit StdErr	F-stat	Confidence	⋖	A StdErr	Αt	A Conflimits		മ	B StdErr	B	B Conflimits	

NEAR GUN 6, 1st HALF - VEHICLE CONTROLS-C

Cum Area	501.1	1002.1	1503.2	4163.0	4571.9	4880.5	5010.0	5075.3	5281.9	5280.2	5278.5	5276.7																	
Y % Residual 100.386	-0.213	-0.213	-0.213	7.204	-23.618	16.641	23.751	-106.395	0.000	0.00	0.000	0.000																	
Y Residual 100.386	-0.213	-0.213	-0.213	6.916	-13.935	9.985	11.400	-14.895	0.318	0.342	0.357	0.366																	
Y Predicted -0.4	100.2	100.2	100.2	89.1	72.9	50.0	36.6	28.9	-0.3	-0.3	-0.4	4.0-								52.0	 6.	40.4	49.7	54.4	-9.7	2.5	ල. ල.	-14.4	-5.1
PERCENT 100.0	100.0	100.0	100.0	0.96	29.0	0.09	48.0	14.0	0.0	0.0	0.0	0.0		d) [LogisticDoseRsp]						O	C StdErr	C.	C Conflimits		۵	D StdErr	Dt	D Conflimits	
CONTROL ASEL	5.0	10.0	15.0	42.0	47.0	52.0	55.0	57.0	110.0	115.0	120.0	125.0	52.0	$y=a+b/(1+(x/c)^{-1}$	1.0	1.0	8.8	28.7	0.06	100.2	4.3	23.1	92.3	108.2	-100.6	6.2	-16.2	-112.0	-89.2
XY Pt #	8	က	4	2	9	7	œ	တ	1 0	=	12	13	X@50Y	Equation	Adjr2	2	Fit StdErr	F-stat	Confidence	∢	A StdErr	Αt	A ConfLimits		∞	B StdErr	9,	B Conflimits	

NEAR GUN 6, 1st HALF-VEHICLE CONTROLS-D

Cum Area 0.0 500.6 1001.2 1501.7	4633.4 5006.5 5178.4 5268.9 5502.7 5502.2 5501.7		
Y % Residual -0.115 -0.115 -0.115	20.494 -2.145 20.494 -30.511 0.000 0.000 0.000		
Y Residual -0.115 -0.115 -0.115 -0.115	-5.598 -1.351 12.911 -9.459 0.097 0.097		
Y Predicted 100.1 100.1 100.1	6.4.4 6.4.4 6.0.4 6.0.1 6.0.1 6.0.1 7.0.1 7.0.1	_	58.5 1 8.2 2 4.4 1 5.4 1
PERCENT 100.0 100.0 100.0 100.0	63.0 63.0 63.0 31.0 0.0 0.0	((x-c)/(û2d))) [Cumulative] C C StdErr C t	C Conflimits D StdErr D t D Conflimits
CONTROL ASEL 0.0 5.0 10.0 15.0	47.0 52.0 52.0 55.0 57.0 116.0 126.0	y=a+b0.5(1+erf(() 1.0 1.0 5.8 227.9 90.0 -0.1 2.9	-5.4 5.2 100.2 4.1 24.7 92.8
X Y T T T S S S S	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Equation Adjr2 r2 Fit StdErr F-stat Confidence A StdErr	A Conflimits B StdErr B t B Conflimits

FAR GUN 60, 1st HALF-VEHICLE CONTROLS-A

Cum Area 0.0	500.6	1001.3	1501.9	4125.4	4492.1	4748.8	4847.5	4893.3	4976.9	4976.2	4975.5	4974.9																	
Y % Residual – 0.129	-0.129	-0.129	-0.127	4.144	-12.580	12.134	11.279	-38.386	0.00	0.00	0.00	0.000																	
Y Residual -0.129	-0.129	-0.129	-0.127	3.564	-7.045	5.460	3.384	-5.374	0.131	0.131	0.131	0.131																	
Y Predicted 100.1	100.1	100.1	100.1	82.4	63.0	39.5	26.6	19.4	-0.1	-0.1	-0.1	-0.1			•					49.8	9.0	89.1	48.8	50.8	-8.4	0.8	-10.3	6.6-	-6.9
PERCENT 100.0	100.0	100.0	100.0	86.0	26.0	45.0	30.0	14.0	0.0	0.0	0.0	0.0		(x-c)/(02d))) [Cumulative]						O	C StdErr	Ct Ct	C Conflimits		۵	D StdErr	οt	D Conflimits	
CONTROL ASEL	5.0	10.0	15.0	42.0	47.0	52.0	55.0	57.0	110.0	115.0	120.0	125.0	49.8	y=a+b0.5(1+erf((x-		1.0	3.8	517.9	0.06	-0.1	1.9	-0.1	-3.6	3.4	100.3	2.7	37.0	95.3	105.2
XY Pt #	N	က	4	ഗ	9	7	œ	ത	10	=	12	13	X@50Y	Equation	Adjr2	~	Fit StdErr	F-stat	Confidence	⋖	A StdErr	At	A Conflimits		œ	B StdErr	9,	B Conf∐mits	

FAR GUN 60, 1st HALF-VEHICLE CONTROLS-B

Cum Area 0.0	1002.9	1504.4	4123.7	4511.0	4815.7	4953.4	5026.6	5252.4	5252.2	5252.0	5251.9																	
Y % Residual -0.295	-0.293	-0.278	8.479	-20.457	0.736	28.131	-50.222	0000	0.000	0.000	0000																	
Y Residual -0.295	-0.293	-0.278	7.801	-11.865	0.383	15.754	-11.049	0.035	0.035	0.035	0.035																	
Y Predicted 100.3	100.3	100.3	24 24. 2	6.69	51.6	40.5	33.0	-0.0	0.0-	-0.0	-0.0		[9	1					52.4	<u>6.</u>	39.5	49.9	54. 8	-10.5	2.5	-4.2	-15.0	-5.9
PERCENT 100.0	100.0	100.0	92.0	28.0	52.0	56.0	22.0	0.0	0.0	0.0	0.0		f((x-c)/(02d))) [Cumulative]						ပ	C StdErr	ct	C Conf∐mits		۵	D StdErr	Οt	D Conflimits	
CONTROL ASEL	10.0	15.0	42.0	47.0	52.0	55.0	67.0	110.0	115.0	120.0	125.0	52.4	y=a+b0.5(1+erf(()		1.0	8.0	115.4	0.06	0.0-	4.0	٥.0	-7.3	7.3	100.3	5.6	17.8	0.06	110.7
XY Pt #	1 છ	4 (ഹ	ဖ	7	œ	ത	0	=	12	13	X@50Y	Equation	Adjr2	2	Fit StdErr	F-stat	Confidence	∢	A StdErr	Αt	A Conflimits		ω	B StdErr	Bt	B ConfLimits	

FAR GUN 60, 1st HALF-VEHICLE CONTROLS-C

6046-66-66-66-66

XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
-	0.0	100.0	100.1	-0.077	-0.077	0.0
8	5.0	100.0	100.1	-0.077	-0.077	500.4
ဇ	10.0	100.0	100.1	-0.076	-0.076	1000.8
4	15.0	100.0	100.1	-0.065	-0.065	1.101.1
2	42.0	8 4 .0	81.1	2.904	3.457	4102.5
9	47.0	58.0	64.1	-6.145	-10.596	4467.8
7	52.0	48.0	43.8	4.214	8.779	4738.1
ω	25.0	36.0	32.0	3.999	11.108	4851.5
o	57.0	20.0	25.0	-4.975	-24.877	4908.3
0	110.0	0.0	-0.1	0.075	0.000	5048.7
11	115.0	0.0	-0.1	0.075	0.000	5048.3
12	120.0	0.0	-0.1	0.075	0.000	5047.9
13	125.0	0.0	-0.1	0.075	0.000	5047.5
X@50Y	50.5					
Equation	y=a+b0.5(1+erf((x-6))	y=a+b0.5(1+erf((x-c)/(02d))) [Cumulative]				
Adjr2	1,0		•			
ପ	1.0					
Fit StdErr	3.4					
F-stat	636.2					
Confidence	0.06					
⋖	-0.1	ပ	50.5			
A StdErr	1.7	C StdErr	0.5			
Αt	-0.0	Ç	92.9			
A Conflimits	-3.2	C Conflimits	49.5			
	3.0		51.5			
6 0	100.2	۵	-9.7			
B StdErr	2.4	D StdErr	6.0			
Bt	41.5	o t	-10.8			
B Conflimits	95.7	D Conflimits	-11.3			
	104.6		-8.0			

FAR GUN 60, 1st HALF-VEHICLE CONTROLS-D

Cum Area 0.0 500.3 1000.5 1500.5	4137.0 4543.7 488. 498. 5048.2 5195.9	5192.5 5190.8	
Y % Residual -0.053 -0.047 -0.031	4.362 -12.630 2.902 31.967 -129.244 0.000	0.00 0.00 0.00	
Y Residual -0.053 -0.047 -0.031	- 8.210 - 8.210 1.509 16.943 - 15.509 0.343	0.344 444	
Y Predicted 100.1 100.0 100.0	73.2 73.2 36.5 27.5 -0.3	0 - 1 0 - 0 0 - 0	- 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
PERCENT 100.0 100.0 100.0	65.0 52.0 53.0 12.0 0.0	Q	C StdErr C t C ConfLimits D StdErr D t
CONTROL ASEL 0.0 5.0 10.0	42.0 47.0 52.0 55.0 57.0 110.0	<u></u>	100.1 4.1 24.4 92.5 107.6 -100.4 5.8 -117.2 -111.1
X - 0 0 4 π #	o o r o o o c t	12 13 X@50Y Equation Adjr2 r2 Fit StdErr F - stat Confidence	A StdErr A t A ConfLimits B StdErr B t B ConfLimits

LEOPARD II, 1st HALF-VEHICLE CONTROLS-A

XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Pesidual	Y % Residual	Cum Area
-	0.0	100.0	100.8	-0.826	-0.826	0.0
α	5.0	100.0	100.8	-0.826	-0.826	504.1
က	10.0	100.0	100.8	-0.826	-0.826	1008.3
4	15.0	100.0	100.8	-0.825	-0.825	1512.4
ഹ	47.0	9	1.06	3.907	4.156	4683.2
9	52.0	88.0	78.6	9.427	10.713	5107.2
7	55.0	61.0	69.2	-8.156	-13.370	5329.2
œ	22.0	26.0	62.2	-6.164	-11.007	5460.6
O	65.0	40.0	94.6	5.439	13.599	5844.2
9	110.0	0.0	0.5	-0.505	0.000	6202.0
=	115.0	0.0	0.3	-0.323	0.00	6204.0
5	120.0	0.0	0.2	-0.202	0.000	6205.3
13	125.0	0.0	0.1	-0.121	0000	6206.1
X@50Y	60.3					
Equation	$y=a+b/(1+(x/c)^{-1}d)$	d) [LogisticDoseRsp]				
Adjr2	.0.	•				
2	1.0					
Fit StdErr	5.2					
F-stat	283.2	•				
Confidence	0.06					
⋖	-0.1	ပ	60.3			
A StdErr	2.7	C StdErr	1:1			
At	-0.0	ç	53.1			
A Conflimits	-5.0	C Conflimits	58.2			
	4.8		62.3			
∞	100.9	<u> </u>	8.6			
B StdErr	9. 8.	D StdErr	4.			
9	26.7	οţ	0.9			
B Conflimits	26	D Conflimits	0.9			
	107.8		11.2			

LEOPARD II, 1st HALF-VEHICLE CONTROLS-B

Y % Residual Cum Area	2.954 0.0		2.954 970.5				2.103 5320.8		80.040 5541.0			•	0.000 5709.1																	
Y Residual	2.954	2.954	2.954	2.954	-5.038	-8.071	1.766	-0.646	17.609	-4.359	-4.359	-4.359	-4.359																	
Y Predicted	97.0	97.0	97.0	97.0	97.0	96.1	82.2	44.6	4.4	4.4	4.4	4.4	4.4								29.7	0.3	170.9	56.1	57.3	-1.0	0 .4	-2.7	-1.7	-0.3
PERCENT	100.0	100.0	100.0	100.0	92.0	88.0	0.48	44.0	22.0	0.0	0.0	0.0	0.0		-(x-c)/d)) [Sigmoid]						O	C StdErr	Ç	C Conflimits		۵	D StdErr	0	D Conflimits	
CONTROL ASEL	0.0	5.0	10.0	15.0	47.0	52.0	55.0	57.0	65.0	110.0	115.0	120.0	125.0			1.0	1.0	9.2	140.8	0.06	4.4	3.4	L.3	1.8	10.6	92.7	4.6	19.9	84.2	101.2
*4 ₹	-	۰ ۵	l 62	٠ ٦	י ענ) (C	,	. 00	· თ	, c	: =	7	5	X@50Y	Equation	Adjr2	ିପ	Fit StdErr	F-stat	Confidence	⋖	A StdErr	At	A Conflimits		8	B StdErr	B t	B Conflimits	

LEOPARD II, 1st HALF-VEHICLE CONTROLS-C

XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	100.0	96.4	3.623	3.623	0.0
Ø	5.0	100.0	96.4	3.623	3.623	481.9
ო	10.0	100.0	96.4	3.623	3.623	963.8
4	15.0	100.0	96.4	3.623	3.623	1445.7
က	47.0	0.06	96.4	-6.377	-7.086	4529.7
ဖ	52.0	88.0	96.3	-8.286	-9.415	5011.6
7	55.0	78.0	77.8	0.248	0.318	5286.9
6 0	27.0	28.0	28.1	-0.135	-0.482	5393.5
O	65.0	30.0	0.9	24.012	80.038	5457.2
9	110.0	0.0	0.9	-5.988	0.000	5650.8
=	115.0	0.0	0.9	-5.988	0.000	5857.3
12	120.0	0.0	0.9	-5.988	0.000	5780.3
13	125.0	0.0	0.0	-5.988	0.00	5699.9
X@50Y	56.1			i i i		
Equation	y=a+b0.5(1+erf((x-	y=a+b0.5(1+erf((x-c)/(02d))) [Cumulative]				
Adjr2	6.0		•			
ି ପ	1.0					
Fit StdErr	6.6					
F-stat	80.0					
Confidence	0.06					
∢	0.9	ပ	56.1			
A StdErr	4.4	C StdErr	9.0			
At	1.4	Ç	150.8			
A Conf∐mits	-2.1	C Conflimits	55.4			
	14.1		26.8			
∞	90.4	۵	<u>1.</u> ئ			
B StdErr	0.9	D StdErr	0.5			
æ	15.0	o t	-2.8			
B Conflimits	79.4	D Conflimits	-2.2			
	101.4		-0.5			

LEOPARD II, 1st HALF-VEHICLE CONTROLS-D

Cum Area 0.00 504.83 1009.67 1514.50 4708.69	5373.23 5505.87 5870.73 6139.82 6142.13 6144.12		
Y % Residual -0.967 -0.967 -0.967 -0.967	9.819 9.819 17.935 0.000 0.000 0.000		
Y Residual -0.967 -0.967 -0.967 -0.967	7.659 -17.198 6.636 -0.502 -0.425 -0.377		
Y Predicted 100.97 100.97 100.97 92.66	0.36 0.36 0.36 0.50 0.38 0.38	59.71 1.30 46.09	57.34 62.09 10.06 2.13 6.16 13.96
PERCENT 100.00 100.00 100.00 96.00	37.00 37.00 0.00 0.00 0.00	^d) [LogisticDoseRsp] C C StdErr C t	C Conflimits D StdErr D t D Conflimits
CONTROL ASEL 0.00 5.00 10.00 15.00 47.00	55.00 57.00 65.00 115.00 125.00		6.20 6.77 100.68 4.97 20.24 91.56
X - 0 6 4 6 6 #	0 0 0 7 1 0 0 0 7 1 0 0 0 0 0 0 0 0 0 0	Equation Adjr2 r2 Fit StdErr F-stat Confidence A StdErr	A Conflimits B StdErr B t B Conflimits

MARDER, 1st HALF-VEHICLE CONTROLS-A

XY Pt *	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	100.0	100.5	-0.498	-0.498	0.0
0	5.0	100.0	100.5	-0.498	-0.498	502.5
က	10.0	100.0	100.5	-0.498	-0.498	1005.0
4	15.0	100.0	100.5	-0.497	-0.497	1507.5
2	42.0	0.66	93.3	5.674	5.731	4194.2
9	47.0	77.0	81.2	-4.183	-5.432	4633.9
7	52.0	26.0	61.1	-5.095	-9.098	4992.4
œ	55.0	9.0	46.9	12.102	20.511	5154.5
တ	57.0	31.0	37.6	-6.556	-21.149	5238.9
0	110.0	0.0	-0.0	0.012	0000	5456.3
=======================================	115.0	0.0	-0.0	0.012	0.000	5456.2
12	120.0	0.0	-0.0	0.012	0000	5456.2
13	125.0	0.0	-0.0	0.012	0.00	5456.1
X@50Y	54.3					
Equation	y=a+b0.5(1+erf((x-	f((x-c)/(û2d))) [Cumulative]				
Adjr2			•			
ିପ	1.0					
Fit StdErr	5.4					
F-stat	258.7					
Confidence	0.06					
⋖	-0.0	O	54.3			
A StdErr	2.7	C StdErr	0.8			
Αt	0.0-	ö	70.4			
A Conf∐mits	-5.0	C Conflimits	52.9			
	5.0		55.7			
∞	100.5	۵	-8.4			
B StdErr	3.8	D StdErr	4.1			
B t	26.3	٥ţ	-5.8			
B Conflimits	93.5	D Conflimits	-11.0			
	107.5		-5.7			

MARDER, 1st HALF-VEHICLE CONTROLS-B

Cum Area	0.0	494.7	989.4	1484.1	4148.9	4617.7	5007.1	5160.5	5224.3	5281.3	5277.3	5272.6	5271 5																	
Y % Residual	1.057	1.057	1.057	1.057	-0.817	-5.842	-4.864	29.991	-151.037	0.00	0000	0.00	0000																	
Y Pesidual	1.057	1.057	1.057	1.057	-0.784	-4.907	-2.918	16.795	-15.104	0.673	0.673	0.673	0.673																	
Y Predicted	98.9	98.9	98.9	98.9	8.96	88.9	62.9	39.2	25.1	-0.7	-0.7	-0.7	-0.7	•							53.8	0.7	72.7	52.4	55.1	3.1	0.8	9.0	1.6	4.5
PERCENT	100.0	100.0	100.0	100.0	0.96	0.48	60.0	56.0	10.0	0.0	0.0	0.0	0.0		-(x-c)/d)) [Sigmoid]						ပ	C StdErr	ot Ot	C Conflimits		۵	D StdErr	0 t	D Conflimits	
CONTROL ASEL	0.0	5.0	10.0	15.0	42.0	47.0	52.0	55.0	22.0	110.0	115.0	120.0	125.0	53.6	y=a+b/(1+exp(-(0.7	1.0	7.8	132.2	0.06	6.86	3.6	27.4	92.3	105.6	9.66-	5.4	-18.6	-109.4	189.8
XY Pt #	-	0	က	4	2	9	7	œ	on.	0	=	12	13	X@50Y	Equation	Adjr2	୕ୄୄୄୄ	Fit StdErr	F-stat	Confidence	⋖	A StdErr	Αt	A ConfLimits		മ	B StdErr	B t	B Conflimits	

MARDER, 1st HALF-VEHICLE CONTROLS-C

CONTROL ASEL		Y Predicted 98.7	Y Residual 1.290	Y % Residual 1.290	Cum Area 0.0
	100.0 100.0	98.7 98.7	1.290 1.290	1.290 1.290 1.290	493.5 987.1
	100.0	98.7	1.291	1.291	1480.6
	2 0. 0	97.2	-3.228	-3.434	4141.7
	99.0 0.0	90.4 4. c.	-2.55	1.0.7 I	4010.1 a C 10.4
	50.0	36.9 96.9	13.067	26.133	5161.1
	10.0	22.0	-12.035	-120.349	5219.4
	0.0	-0.6	0.634	0.000	5258.5
	0.0	9.0-	0.634	0000	5253.7
	0.0	9.0-	0.634	0.000	5248.3
	0.0	9.0-	0.634	0.000	5249.7
-(x-c)/d) [Sigmoid]	Sigmoid]				
ပ	ပ	53.6			
S	dErr	9.0			
ၓ		97.3			
ပိ ပ	Conflimits	52.6			
		54.6			
Ω		9			
<u>S</u>	D StdErr	9.0			
O T		4 .0			
Ö	Conf Limits	1.7			
		3.8			

MARDER, 1st HALF -- VEHICLE CONTROLS -- D

Cum Area 0.0 496.2 992.3 1488.5 4162.0 5032.9 5338.2 5336.0 5332.5 5332.5	
Y % Residual 0.766 0.766 0.766 0.766 0.693 -7.262 2.782 12.206 -33.372 0.000 0.000	
Y Residual 0.766 0.766 0.766 0.766 0.766 0.679 -6.100 -6.674 0.358 0.358	
Y Predicted 99.2 99.2 99.2 99.2 99.2 99.2 99.2 90.1 90.1 90.1 90.1 90.1 90.1 90.1 90.1	54.0 158.1 4.6 4.0 4.0 13.7 4.2 4.2
PERCENT 100.0 100.0 100.0 100.0 98.0 84.0 67.0 47.0 20.0 0.0 0.0 0.0 0.0	C StdErr C t C ConfLimits D StdErr D t D ConfLimits
	90.0 4.0 - 1.3.7 6.0.0 6.0.0 7.0.0 7.0.0 7.0.0 8.0 8
XY Pt # 2	Confidence A StdErr A t A ConfLimits B B StdErr B t B ConfLimits

NEAR GUN 60, 1st HALF -- NOISE CONTROLS -- A

Cum Area 0.0 499.8	999.7 1400 5	4992.9	5482.1	5955.9	6398.3	6786.7	7099.3	7326.9	7684.3	7687.4	7687.2	7685.1																	
Y % Residual 0.033 0.033	0.033	1.275	-2.871	0.780	-1.090	8.179	-20.029	11.097	0000	0000	0.000	0000																	
Y Residual 0.033 0.033	0.033	1.275	-2.699	0.726	-0.905	6.298	-9.013	4.661	-1.060	-0.245	0.258	0.574																	
Y Predicted 100.0 100.0	100.0	98.7	296.7	92.3	83.9	70.7	54.0	37.3	1.1	0.2	-0.3	9.0-								76.3	0.8	90.3	74.8	77.9	10.4	1.3	8.0	8.0	12.7
Y Pt # CONTROL ASEL PERCENT Y Predic 1 100.0 100	100.0	100.0	94.0	93.0	83.0	77.0	45.0	42.0	0.0	0.0	0.0	0.0		d) [LogisticDoseRsp]						O	C StdErr	Çţ	C Conflimits		۵	D StdErr	ŏ	D Conflimits	
CONTROL ASEL 0.0 5.0	10.0	20.0	55.0	0.09	65.0	70.0	75.0	80:0	110.0	115.0	120.0	125.0	76.2	$y=a+b/(1+(x/c)^{4}$	1.0	0.1	3.7	612.0	0.06	-1.2	2	-0.5	-5.0	2.7	101.1	2.9	34.9	95.9	106.3
X + + +	დ 4	. rv	9	7	œ	O	9	-	5	1 3	4	15	X@50Y	Equation	Adjr2	ପ	Fit StdErr	F-stat	Confidence	∢	A StdErr	At	A Conflimits		മ	B StdErr	Bţ	B Conflimits	

NEAR GUN 60, 1st HALF-NOISE CONTROLS-B

*4 ∆X	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
-	0.0	100.0	986	1.428	1.428	0.0
8	5.0	100.0	98.5	1.501	1.501	492.7
ო	10.0	100.0	98.4	1.609	1.609	984.9
4	15.0	100.0	98.2	1.768	1.768	1476.5
ιΩ	20.0	80.0	91.5	-11.504	-14.381	4843.1
9	55.0	88.0	88.4	-0.366	-0.416	5293.2
7	0.09	86.0	24.	1.934	2.249	5724.8
œ	65.0	80.0	78.4	1.638	2.047	6131.5
თ	70.0	74.0	71.1	2.888	3.902	6505.8
5	75.0	62.0	62.4	-0.380	0.613	6840.1
=	80.0	53.0	52.5	0.479	0.903	7.127.7
12	110.0	0.0	4.5	-4.497	0.00	7876.4
13	115.0	0.0		-1.056	0000	7889.8
4	120.0	0.0	4.1-	1.411	0.00	7888.6
5	125.0	0.0	-3.1	3.148	0000	7876.9
X@50Y	81.2					
Equation	y=a+b/(1+exp(-(x+y))	(-c)/d)) [Sigmaid]				
Adjrz	1.0	1.0				
ପ	0; 0:					
Fit StdErr	4.2					
F-stat	443.4					
Confidence	0.06					
⋖	-7.0	ပ	83.2			
A StdErr	4 .	C StdErr	2.5			
At	4.1-	ö	32.8			
A Conflimits	-15.6	C Conflimits	78.6			
	1.7		87.8			
6	105.7		-12.7			
B StdErr	6.5	D StdErr	2.0			
æ	17.8	ō	-6.2			
B Conflimits	95.0	D Conflimits	-16.4			
	116.3		0.6-			

NEAR GUN 60, 1st HALF-NOISE CONTROLS-C

Cum Area 0.0 501.4 1002.7 1504.0 4935.7 5370.2 5765.3 6110.1 6396.3 7046.1 7046.1 7045.7	
Y % Residual -0.275 -0.273 -0.267 -0.248 9.951 -2.041 -2.133 13.946 -19.203 0.000 0.000	
Y Residual -0.275 -0.273 -0.267 -0.248 9.951 -1.304 -1.066 6.276 -0.343 0.073	
9	46.4 46.4 46.7 73.2 43.2 46.8 11.8
PERCENT 100.0 100.0 100.0 100.0 100.0 100.0 69.0 69.0 62.0 62.0 50.0 45.0 23.0 0.0 0.0 0.0 0.0	3.1 C StdErr -0.1 C t -6.0 C Conflimits 5.3 C Conflimits 4.4 D StdErr 22.9 D t 92.7 D Conflimits
CONTROL ASEL 0.0 10.0 10.0 15.0 55.0 60.0 65.0 70.0 75.0 115.0 115.0 125.0 70.4 y=a+b0.5(1+erf() 1.0 1.0 6.0 218.9 90.0	-6.0 -6.0 -6.0 -6.0 -6.0 -6.0 -6.0 -6.0
XY Pt # 1 2 3 4 4 7 6 7 11 12 13 14 15 X@50Y Equation Adjr2 Prestat Confidence	A StdErr A t A Conflimits B StdErr B t B Conflimits

NEAR GUN 60, 1st HALF - NOISE CONTROLS - D

Y Residual Y% Residual Cun 0.091 0.091 0.091 0.091	99.9 0.094 0.094 999.1 99.9 0.101 0.101 1498.6	-4.236	4.122 4.385	-1.470 -1.793	5.132 6.416	1.678 2.542	-14.517 -38.203	9.549 19.098	-1.322 0.000	-0.217 0.000	0.329 0.000	-0.6 0.575 0.000 7577.2								76.2	1.8	43.1	73.0	79.4	-16.5	2.8	-5.8	-21.6	-11.4
	100.0 0.00	90.0	0.40	82.0	80.0	66.0	38.0	50.0	0.0	0.0	0.0	0.0		1+erf((x-c)/(02d))) [Cumulative]						ပ	C StdErr	ŏ	C Conflimits		۵	D StdErr	Dt	D Conflimits	
CONTROL	10.0								•					y=a+b0.5(•			N					-6.6		7	4.5	222	92.5	108.8
XY Pt #	დ 4	. ro	ဖ	7	80	O	9	=	12	13	4	15	X@50Y	Equation	Adjr2	' 22	Fit StdErr	F-stat	Confidence	⋖	A StdErr	At	A Conflimits		æ	B StdErr	B t	B Conflimits	

LEOPARD II, 1st HALF-NOISE CONTROLS-A

Cum Area 0.0 496.2 992.3	1488.4 4925.4 5388.1	5823.1 6212.6 6536.4	6780.3 6944.9	7152.2	7149.9	7.147.7													
Y % Residual 0.759 0.765 0.777	0.800 -4.919 -0.292	3.356 -4.322 -0.077	13.741	0000	0.000	0.000													
Y Residual 0.759 0.765	0.800 -4.427 -0.263	2.886 -2.982 -2.982	6.458 -5.811	-0.068	0.410	0.493													
77	99 9 94 9 61 4 62										72.3	0.7	108.4	71.1	73.5	-7.5	0.7	-11.5	-8.7 -6.3
Y Pt # CONTROL ASEL PERCENT Y Prex 100.0 100.0 2 100.0 100.0 3 100.0	0.00 0.00 0.00	86.0 69.0 57.0	47.0 20.0	0.0	0.0	0.0	(x-c)/d)) [Sigmaid]				O	C StdErr	5	C Conflimits	1	<u> </u>	D StdErr	Οt	D Conflimits
CONTROL ASEL 0.0 5.0 10.0	15.0 50.0 55.0	66.0 65.0 70.0	75.0 80.0	110.0	120.0	125.0 72.1	y=a+b/(1+exp(-1.0)	1.0	3.2	90.06 0.06	9.0-	1.7	-0.9 6.0	9.6	2.4	8.06	23	42.9	95.6 104.0
× - 0 6 .	4 ო დ	~ ∞ σ	9 = 1	5 5	4	15 X@50Y	Equation Adir2	2	Fit StdEr	Confidence	∢	A StdErr	At	A Conflimits	(B	B StdErr	B	B Conflimits

LEOPARD II, 1st HALF-NOISE CONTROLS-B

Cum Area 0.0 496.4 496.4 492.7 1488.9 4928.1 5391.2 5826.1 6214.6 6535.9 6775.8 6835.7 7134.9 7134.2 7132.8	
Y % Residual 0.727 0.727 0.732 0.743 0.743 0.743 0.743 0.743 0.765 -0.355 1.146 3.188 -4.372 5.646 0.000 0.000 0.000 0.000 0.000	
Y Residual 0.727 0.727 0.732 0.743 0.743 0.765 -0.319 0.962 -2.361 -2.371 -1.921 -0.186 0.096 0.240 0.313	
Y Predicted 99 99 99 99 99 99 99 99 99 99 99 99 99	0.4 -18.7 -6.7
YPr # CONTROL ASEL PERCENT Y Prec 100.0 1	D StdErr D t D Conflimits
CONTROL ASEL 0.0 5.0 10.0 15.0 56.0 56.0 66.0 77.0 110.0 115.0 125.0 77.9 71.9 7-8+b/(1+exp(0.4 1.00.4 1.5 99.7	69.3 97.1 102.3
XY Pt # 1 2 3 4 4 5 6 7 7 10 11 12 13 14 15 X@50Y Equation Adjr2 Pri StdErr F - stat Confidence A StdErr A t B	B StdErr B t B Conflimits

LEOPARD II, 1st HALF-NOISE CONTROLS-C

Cum Area 0.0 497.4 994.7 1492.1 4956.2 5419.2 5838.6 6188.1 6747.6 6614.3 6704.1 6732.3 6726.6	
Y % Residual 0.528 0.528 0.528 0.528 0.528 0.528 1.075 1.075 11.192 0.000 0.000 0.000 0.000	
Y Residual 0.528 0.528 0.528 0.528 4.631 -9.094 -1.742 0.667 7.626 3.134 -1.150 1.153 1.154	
Y Predicted 99:5 99:5 99:5 99:5 4 99:5 4 77.7 77.7 77.7 1:9 1:9 1:2 1:2 1:2 1:2 1:2 1:2 1:2 1:2 1:2 1:2	68.2 1.0 70.6 70.0 70.0 10.5 1.3 1.3 1.3 1.3
SEL PERCENT 100.0	C StdErr C t C Conflimits D StdErr D t D Conflimits
CONTROL ASEL 0.0 5.0 10.0 15.0 55.0 66.0 65.0 70.0 75.0 115.0 115.0 125.0 68.0 75.0 68.0 1.0 1.0 1.0 1.0	90.0
XY Pt # 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Confidence A A StdErr A t A Conflimits B B StdErr B t B Conflimits

LEOPARD II, 1st HALF-NOISE CONTROLS-D

Cum Area 0.0 501.5	1003.0 1504.5	4986.2	5450.5 5881.6	6263.6	6582.0	6828.1	70027	7235.0	7234.7	7233.8	72328																	
Y % Residual -0.301 -0.301	-0.301 -0.300	4.782	-1.184 -4.932	-6.734	12.929	0.253	-12990	0.00	0.00	0.00	0000																	
Y Residual -0.301 -0.301	-0.301 -0.300	4.782	-3.847	-4.445	8.404	0.108	-3.248	-0.048	0.139	0.198	0.215																	
Y Predicted 100.3 100.3	100.3 100.3	95.2	90.1	70.4	56.6	41.9	28.2	0.0	-0.1	-0.2	-0.2		-						72.2	0.8	91.7	70.8	73.6	-13.6	1.2	-11.2	-15.7	-11.4
KY Pt # CONTROL ASEL PERCENT Y Predicted 1 0.0 100.0 100.3 2 5.0 100.0 100.3	100.0	100.0	89.0 78.0	0.99	65.0	42.0	25.0	0.0	0.0	0.0	0.0		(-c)/(02d))) [Cumulative						ပ	C StdEn	Ç	C Conflimits		۵	D StdErr	٥t	D Conflimits	
CONTROL ASEL 0.0 5.0	10.0	50.0	55.0	65.0	70.0	75.0	80.0	110.0	115.0	120.0	125.0	72.2	y=a+b0.5(1+erf(x)	1.0	0.1	3.6	652.7	0.06	-0.2	6 .	-0.1	-3.5	3.0	100.5	25	39.8	0.96	105.1
× ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	w 4	. 10	9 ^	- 60	o	5	=	5	<u>5</u>	4	ट	X@50Y	Equation	Adjr2	언	Fit StdEr	F-stat	Confidence	⋖	A StdErr	At	A Conflimits		∞	B StdEn	B	B Conflimits	

LEOPARD II, 1st HALF-NOISE CONTROLS-D

* 4	CONTRO! ASE!	TNECTOR	V Dredicted	Y Residuel	V % Residuel	Cum Area
-	0.0	1000	100.3	-0.301	-0.301	0.0
· (VI	5.0	100.0	100.3	-0.301	-0.301	501.5
ო	10.0	100.0	100.3	-0.301	-0.301	1003.0
4	15.0	100.0	100.3	-0.300	-0.300	1504.5
S)	20.0	100.0	95.2	4.782	4.782	4986.2
•	55.0	0.68	8	-1.054	-1.184	5450.5
_	0.09	78.0	81.8	-3.847	-4.932	5881.6
6	65.0	0.99	70.4	-4.445	-6.734	6263.6
G	70.0	65.0	26.6	8.404	12.929	6582.0
9	75.0	42.0	41.9	0.106	0.253	6828.1
=	90.0	0.53	58 .5	-3.248	-12990	7002.7
12	110.0	0.0	0.0	-0.048	0.00	7235.0
13	115.0	0.0	-0.1	0.139	0000	7234.7
4-	120.0	0.0	-0.2	0.198	0000	7233.8
5	125.0	0.0	-0.2	0.215	0000	7232.8
X@50Y	72.2					
Equation	y=a+b0.5(1+erf((x))	-c)/(02d))) [Cumulative	.			
Adjr2	1.0	1.0	•			
ୃଦ	0.1					
Fit StdErr	3.6					
F-stat	652.7					
Confidence	0.06					
∢	-0.2	ပ	72.2			
A StdErr	1.8	C StdErr	0.8			
At	-0.1	Ç	91.7			
A Conflimits	-3.5	C Conflimits	70.8			
	3.0		73.6			
₩	100.5	۵	-13.6			
B StdErr	25	D StdErr	<u>.</u>			
B	39.8	οt	-11.2			
B Conflimits	0.96	D Conflimits	-15.7			
	105.1		-11.4			

LEOPARD II, 1st HALF-NOISE CONTROLS-D

Cum Area 0.0 501.5 1003.0 1504.5 4986.2 5450.5 5881.6 6283.6 6582.0 7234.7 7232.8 7232.8	
Y % Residual -0.301 -0.301 -0.301 -0.301 -0.300 -0.300 -1.184 -4.832 -1.2920 -1.2920 -0.000 -0.000 -0.000	
Y Residual -0.301 -0.301 -0.301 -0.300 -1.054 -1.054 -1.054 0.106 0.139 0.139	
©	5.57 1.3.6 1.5.1 1.5.1 1.5.1
CONTROL ASEL 0.0 10.0 5.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 55.0 65.0 75.0 75.0 80.0 75.0 110.0 115.0 0.0 125.0 0.0 125.0 125.0 0.0 125.0 126.0 0.0 125.0 126.0 0.0 126.0 126.0 127.0 128.0 138.0 148.0 150.0 150.0 160.0 170.0 180.0 180.0 180.0 19	D D StdErr D t D Conflimits
CONTROL ASEL 0.0 10.0 10.0 15.0 55.0 65.0 75.0 115.0 115.0 125.0 125.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.5 0.5 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
XY Pt # 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 X@50Y Equation Adjr2 r2 Fit StdErr F stat Confidence A StdErr A t A ConfLimits	B B StdErr B t B Conflimits

VEHICLE 2, 1st HALF-NOISE CONTROLS-A

Cum Area 0.0 499.7 999.4 1498.8 5325.1 5720.8 6632.0 6831.7 7243.3 7242.7	
Y % Residual 0.049 0.049 0.059 0.059 0.085 0.085 0.0414 14.555 0.000 0.000 0.000 0.000 0.000 0.000	
Y Residual 0.049 0.059 0.085 0.149 -7.811 12.808 -0.052 -8.829 0.832 0.832 0.425	
Y Predicted 100.0 100.0 99.9 99.9 99.9 99.9 75.2 87.8 75.2 94.8 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	73.0 4.04 40.4 76.3 18.8 -24.7 -13.0
Y Pt # CONTROL ASEL PERCENT Y Predicted 1 0.0 100.0 99.9 3 10.0 100.0 99.9 4 15.0 100.0 99.9 5 5.0 100.0 99.9 6 60.0 88.0 75.2 6 60.0 88.0 75.2 7 65.0 66.0 66.1 8 75.0 46.0 45.2 10 110.0 0.0 1.4 111.0 0.0 0.0 -0.4 125.0 0.0 0.0 -0.4 125.0 0.0 0.0 -0.4 125.0 0.0 0.0 0.0 125.0 0.0 0.0 0.0 125.0 0.0 0.0 125.0 0.0 0.0 125.0 0.0 0.0 125.0 0.0 0.0 125.0 0.0 0.0 125.0 0.0 0.0 125.0 0.0 0.0 125.0 0.0 0.0 125.0 0.0 0.0 125.0 0.0 0.0 125.0 0.0 0.0 125.0 0.0 0.0 125.0 0.	C StdErr C t C ConfLimits D StdErr D t D ConfLimits
CONTROL ASEL 0.0 5.0 10.0 15.0 55.0 60.0 65.0 70.0 75.0 80.0 115.0 115.0 125.0 72.7 y=a+b0.5(1+erf((x)) 1.0 5.6 230.6	3.3 3.3 3.3 5.0 101.0 101.0 82.2 82.8 109.3
XY Pt # 1	A StdErr A t A Conflimits B StdErr B t B Conflimits

VEHICLE 2, 1st HALF-NOISE CONTROLS-B

Cur						6181.4	6510.7	6771.4	6961.3	7259.2	7260.5	7259.4	7256.9																	
Y % Residual 0.674	0.690	0.719	0.770	-10.947	4.734	2.650	4.429	-7.023	-1.026	0.000	0000	0000	0000																	
Y Residual 0.674	0.690	0.719	0.770	-8.757	4.071	1.961	2.746	-2.950	-0.318	-0.611	0.026	0.388	0.592																	
Y Predicted 99.3						72.0															73.5	0.8	89.7	72.0	75.0	-8.7	6.0	-10.1	-10.2	-7.1
Y Pt # CONTROL ASEL PERCENT Y Pred 100.0	100.0	100.0	100.0	80.0	86.0	74.0	62.0	42.0	31.0	0.0	0.0	0.0	0.0		(x-c)/d)) [Sigmaid]						ပ	C StdErr	Ç	C Conflimits		۵	D StdErr	ō	D Conflimits	
CONTROL ASEL	5.0	10.0	15.0	55.0	0.09	65.0	70.0	75.0	80:0	110.0	115.0	120.0	125.0	73.2	y=a+b/(1+exp(-(1.0	1.0	3.4	653.8	0.06	6.0-	1.8	-0.5	-4.2	2.5	100.2	2.6	38.7	95.5	104.9
XY Pt #	~ ~	က	4	S	. 9	7	6	O	5	-	12	13	14	X@50Y	Equation	Adjr2	ପ	At StdErr	F-stat	Confidence	⋖	A StdErr	At	A Conflimits		œ	B StdErr	8	B Conflimits	

VEHICLE 2, 1st HALF-NOISE CONTROLS-C

Cum Area 0.0 1002.0 1002.0 1503.1 5480.4 5929.3 6638.2 6861.2 6861.2 6998.0 7112.1 7112.1	
Y% Residual -0.205 -0.205 -0.205 -0.205 1.491 3.226 -11.840 7.010 6.631 -17.270 0.000 0.000	
Y Residual -0.205 -0.205 -0.205 -0.205 -0.205 -1.417 -7.577 -7.577 -2.839 -7.577 -2.936 0.114 0.126	
Y Predicted 100.2 100.2 100.2 100.2 100.2 100.2 93.6 85.2 71.6 53.9 19.9 10.1 10.1 10.1 10.1 10.1 10.1 10	71.0 0.6 70.0 72.1 10.6 1.3.1 1.2.1 1.2.1
Y Pt # CONTROL ASEL PERCENT Y Predicted 1 0.0 100.2 2 5.0 100.0 100.2 3 10.0 100.0 100.2 4 4 15.0 100.0 100.2 5 65.0 95.0 93.6 6 6 60.0 88.0 85.2 7 65.0 88.0 85.2 9 75.0 88.0 53.9 9 75.0 88.0 53.9 11 11 115.0 0.0 -0.1 13 120.0 0.0 -0.1 14 125.0 0.0 -0.1 14 125.0 0.0 -0.1 15.0 1.0 11 StdErr 826.7 9 10.0 10.0 11 Stderr 826.7	C StdErr C t C Conflimits D StdErr D t D Conflimits
CONTROL ASEL 0.0 5.0 10.0 15.0 55.0 66.0 65.0 75.0 80.0 115.0 125.0 71.0 71.0 71.0 9=a+b0.5(1+erf((x)) 1.0 1.0 9.0	6.0- 6.0- 6.0- 6.0- 6.0- 6.0- 6.0- 6.0-
XY Pt # 1	A StdErr A t A Conflimits B StdErr B t B Conflimits

VEHICLE 2, 1st HALF-NOISE CONTROLS-D

Cum Area 0.0 500.3 1000.5 1500.8 5458.3	6308.4 6652.5 6925.4 7123.7 7401.1 7400.8 7400.1		
Y % Residual -0.053 -0.053 -0.053 -0.053 -0.053	0.959 0.058 0.058 0.000 0.000 0.000		
Y Residual -0.053 -0.053 -0.053 -0.053 -3.583	0.729 0.036 1.948 -1.538 -0.179 0.052 0.125		
Y Predicted 100.1 100.1 100.1 92.5 85.6	62.0 62.0 62.0 62.0 62.0 62.0 62.0		73.4 7.4.7 1.0.0 1
PERCENT 100.0 100.0 100.0 100.0 95.0	31.0 62.0 31.0 0.0 0.0 0.0 0.0	y=a+b0.5(1+erf((x-c)/(02d))) [Cumulative] 1.0 1.0 1.6 3050.0 90.0 -0.2 C StdErr -0.2 C t	C Conflimits D StdErr D t D Conflimits
CONTROL ASEL 0.0 5.0 10.0 15.0 55.0	65.0 70.0 75.0 110.0 125.0 125.0	y=a+b0.5(1+erf() 1.0 1.0 1.0 3050.0 90.0 -0.2 -0.2	1.6 1.00.2 1.1 1.7 1.02.3
× - α ε 4 ε ε #	у С в в 5 ± 5 ± 5 5 5 5 6 7	o :	is is

NEAR GUN 60, 2nd HALF-VEHICLE CONTROL-A

Cum Area 0.0 499.9 999.7	5539.3 5835.7 5835.7 5965.9 6346.9 6629.6	6630.2 6630.2	
Y % Residual 0.020 0.027 0.042	- 3.226 - 3.226 - 3.85 - 3.619 0.000	0.00 0.00 0.00	
Y Residual 0.020 0.027 0.042	-2.774 4.646 1.669 -4.781 -0.146	0.016	
Y Predicted 100.0 100.0 100.0	9.59 88.8 66.3 61.8 7.0 1.0	0.0	66.3 0.5 123.5 65.3 67.3 - 6.9 - 7.9 - 7.9
PERCENT 100.0 100.0	86.0 84.0 70.0 70.0 35.0 0.0	0.0 0.0 -(x-c)/d)) [Sigmoid]	C StdErr C t C ConfLimits D StdErr D t D ConfLimits
CONTROL ASEL 0.0 5.0 10.0	52.0 57.0 61.0 63.0 71.0 110.0	125.0 125.0 66.3 y=a+b/(1+exp(-() 1.0 1.0 2.5 1196.3 90.0	-0.0 -1.3 -2.4 -2.4 -2.3 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8
XX X Pt # 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 to 0 / 8 to 2 T	12 13 X@50Y Equation Adjr2 r2 Fit StdErr F-stat	A StdErr A t A ConfLimits B StdErr B t B ConfLimits

NEAR GUN 60, 2nd HALF-VEHICLE CONTROL-B

XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
-	0.0	100.0	100.8	-0.847	-0.847	0.0
2	5.0	100.0	100.8	-0.847	-0.847	504.2
က	10.0	100.0	100.8	-0.847	-0.847	1008.5
4	15.0	100.0	100.8	-0.847	-0.847	1512.7
9	52.0	95.0	96.2	-1.245	-1.311	5228.3
9	57.0	95.0	85.3	9.729	10.241	5686.6
7	61.0	0.69	9'29	1.360	1.971	5995.1
œ	63.0	46.0	56.5	-10.504	-22.834	6119.4
6	71.0	26.0	18.8	7.238	27.840	6404.7
10	110.0	0.0	0.8	-0.817	0000	6538.6
==	115.0	0.0	0.8	-0.799	000.0	6542.7
12	120.0	0.0	0.8	-0.790	0000	6546.6
13	125.0	0.0	0.8	-0.786	0.000	6550.5
X@50Y	1.49					
Equation	$y=a+b/(1+(x/c)^2$	d) [LogisticDoseRsp]				
Adjr2	0.1					
ୄୄୄ	1.0					
Fit StdErr	5.4					
F-stat	273.1					
Confidence	0.06					
⋖	0.8	O	64.0			
A StdErr	2.7		0.8			
Αt	0.3	Çţ	83.3			
A ConfLimits	-4.2	C Conf∐mits	62.6			
	5.7		65.4			
6 0	1001		14.6			
B StdErr	3.8	D StdErr	2,4			
B t	26.3	ot 0	0.9			
B ConfLimits	93.1	D Conflimits	10.2			
	107.0		19.0			

NEAR GUN 60, 2nd HALF-VEHICLE CONTROL-C

XY P: #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
•			•	2		
- 1)	0.00	0.00	D :	0.00))
CV	5.0	100.0	100.0	0.03	0.019	499.9
က	10.0	100.0	100.0	0.019	0.019	8.666
4	15.0	100.0	100.0	0.019	0.019	1499.7
S)	52.0	92.0	91.3	0.702	0.763	5151.5
ဖ	27.0	78.0	82.2	-4.244	-5.441	5587.3
7	61.0	82.0	7.17	10.336	12.605	5896.0
œ	63.0	58.0	65.5	-7.465	-12.871	6033.2
Ø	71.0	40.0	39.3	0.660	1.649	6451.4
9	110.0	0.0	0.5	-0.528	0.00	6868.5
=	115.0	0.0	0.1	960'0-	0.00	6870.0
12	120.0	0.0	-0.2	0.187	0.00	6869.7
13	125.0	0.0	4.0-	0.374	0.000	6868.3
X@50Y	67.7					
Equation	$y=a+b/(1+(x/c)^4$	^ d) [LogisticDoseRsp]				
Adjr2	1.0					
୍ପ	1.0					
Fit StdErr	4.5					
F-stat	375.6					
Confidence	0.06					
∢	-0.8	ပ	67.8			
A StdErr	2.5	C StdErr	1. 2.			
A t	-0.3	ဦ	28.0			
A Conf⊔imits	-5.3	C Conflimits	9.29			
	3.7		6.69			
∞	100.8	٥	6.8			
B StdErr	3.4	D StdErr	1.4			
B t	29.4	Ot	6.5			
B Conflimits	9 .5	D Conflimits	6.4			
	107.1		4.11			

NEAR GUN 60, 2nd HALF-VEHICLE CONTROL-D

Cum Area	506.6	1013.1	1519.7	5244.6	5706.9	6037.7	6184.0	6611.1	6942.4	6944.3	6945.6	6946.4																
Y % Residual	-1.313	-1.313	-1.313	4.009	5.449	10.808	-33.683	12.832	0.000	0.000	0.000	0000																
Y Residual -1.313	-1.313	-1.313	-1.313	4.009	2.068	9.295	-17.515	5.518	-0.491	-0.306	-0.195	-0.129																
Y Predicted	101.3	101.3	101.3	0.96	87.9	76.7	69.5	37.5	0.5	0.3	0.5	0.1							9.79	5.	45.0	64.9	70.4	11.0	2.5	4.3	6.3	15.7
PERCENT 100.0	100.0	100.0	100.0	100.0	93.0	86.0	52.0	43.0	0.0	0.0	0.0	0.0	d) [LogisticDos	•					ပ	C StdErr	Ç	C Conflimits		۵	D StdErr	Ωŧ	D Conflimits	
CONTROL ASEL	5.0	10.0	15.0	52.0	57.0	61.0	63.0	71.0	110.0	115.0	120.0	125.0	<u><</u>	1.0	1.0	7.2	152.6	0.06	0.0	3.7	0.0	-6.8	6.8	101.3	5.2	19.5	91.8	110.8
XY Pt #	0	က	4	S.	9	7	Φ	တ	9	=	12	ಕ	Equation	Adjr2	언	Fit StdEr	F-stat	Confidence	∢	A StdErr	At	A Conflimits		Ω.	B StdErr	B ‡	B Confl.imits	

NEAR GUN 6, 2nd HALF-VEHICLE CONTROLS-A

Cum Area 0.0 504.7 1009.5 1514.2 4668.9 5053.7	5490.0 5544.9 5758.2 5760.1 5761.7		
7 % Residual 99.743 -0.946 -0.945 -0.945 12.243 -18.611 -6.964	23.382 -11.215 0.000 0.000 0.000		
Y Residual 99.743 -0.946 -0.945 -11.876 -10.608	9.353 - 2.467 - 0.403 - 0.353 - 0.320		
Y Predicted 0.3 100.9 100.9 85.1 67.6 46.0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6.53 6.43 8.43	54.1 57.8 -9.7 1.7 -5.7 -6.6
PERCENT 100.0 100.0 100.0 97.0 57.0	60.0 60.0 60.0 60.0 60.0	C StdErr Ct	C Conflimits D StdErr D t D Conflimits
CONTROL ASEL 0.0 5.0 10.0 15.0 47.0 52.0		y=a+b/(1+(x/c) × 1.0 1.0 1.0 6.3 190.1 90.0 100.9 32.2	95.2 106.7 -100.7 4.5 -22.3 -109.0
X X 1000 4000 4000 4000 4000 4000 4000 4	8 9 10 12 13 (\$50\)	Equation Adjr2 r2 Fit StdErr F-stat Confidence A StdErr	A Conflimits B StdErr B t B Conflimits

NEAR GUN 6, 2nd HALF-VEHICLE CONTROLS-B

XY Pt *	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	100.0	-0.2	100.176	100.176	0.0
Ø	5.0	100.0	100.6	-0.571	-0.571	502.9
က	10.0	100.0	100.6	-0.571	-0.571	1005.7
4	15.0	100.0	100.6	-0.570	-0.570	1508.6
മ	47.0	8	86.1	7.853	8.355	4663.6
ဖ	52.0	59.0	67.7	-8.692	-14.733	5051.8
7	57.0	42.0	44.1	-2.134	-5.081	5331.6
œ	61.0	49.0	27.8	21.201	43.268	5474.0
Ø	63.0	5.0	21.5	-16.473	-329.466	5523.0
9	110.0	0.0	-0.1	0.098	0.000	5676.0
=	115.0	0.0	-0.1	0.128	0.000	5675.4
12	120.0	0.0	-0.1	0.145	0000	5674.7
13	125.0	0.0	-0.2	0.156	0.000	5674.0
X@50Y	55.7					
Equation	$y=a+b/(1+(x/c)^{-1}$	^ d) [LogisticDoseRsp]				
Adjr2	6.0					
୕ୄୄୄୄ	1.0					
Fit StdErr	8.6					
F-stat	80.7					
Confidence	0.06					
⋖	100.6	ပ	55.7			
A StdErr	4.8	C StdErr	1.5			
At	20.7	O.t	37.4			
A Conflimits	91.7	C Conflimits	53.0			
	109.5		58.4			
6	-100.7	۵	-10.5			
B StdErr	7.0	D StdErr	2.8	•		
B t	-14.5	0 t	-3.8			
B Conflimits	-113.5	D Conflimits	-15.6			
	-88.0		- 5.5			

NEAR GUN 6, 2nd HALF-VEHICLE CONTROLS-C

Cum Area 0.0 498.7	1496.0 4646.6 5063.4	5391.6 5574.2 5638.9 5780.7	5779.4 5778.1 5776.7			
Y % Residual 0.265 0.265	0.265 0.290 -8.107	8.688 18.627 -57.263 0.000	0.000			
Y Residual 0.265 0.265	0.265 0.261 -5.675	5.213 8.382 -10.307 0.267	0.267 0.267 0.267			
Y Predicted 99.7 99.7	99.7 99.7 7.57	8.42 8.82 8.00 8.00		~	58.1 0.8 6.9 7.06.9	1.2 1.2 1.09 1.09
PERCENT 100.0 100.0	0.001 0.007 0.007	60.0 60.0 60.0 60.0	0.00	y=a+b0.5(1+erf((x-c)/(02d))) [Cumulative] 1.0 5.1 289.6 90.0	C StdErr C t C C ConfLimits	D StdErr D t D ConfLimits
CONTROL ASEL 0.0 5.0	0.51 0.74 0.78	57.0 61.0 63.0 110.0	115.0 125.0 58.0	y=a+b0.5(1+erf(() 1.0 1.0 1.0 5.1 289.6 90.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27.7 93.4 93.4
XX Pt #	ა 4 ი ი	~ 8 6 ° €	11 12 13 X@50Y	Equation Adjr2 r2 Fit StdErr F - stat Confidence	A StdErr A t	B B StdErr B t B ConfLimits

NEAR GUN 6, 2nd HALF-VEHICLE CONTROLS-D

1 0.0 100.0 100.2 -0.188 -0.188	XY Pt *	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
5.0 100.0 100.2 -0.188 10.0 10.0 10.0 10.0 10.0 10.0 10.0		0.0	100.0	100.2	-0.188	-0.188	0.0
10.0 100.0 100.2 -0.188 15.0 100.0 100.2 -0.188 47.0 97.0 94.5 -0.188 47.0 97.0 94.5 -0.188 52.0 64.0 62.5 1.523 61.0 43.0 42.5 0.541 63.0 0.0 -0.0 0.015 115.0 0.0 -0.0 0.015 1.0 1.0 0.0 -0.0 1.0 0.0 C 1.0 C 1.		9.0	100.0	100.2	-0.188	-0.188	500.9
15.0 100.0 100.2 -0.188 47.0 97.0 94.5 2497 52.0 80.0 83.0 -3.020 57.0 64.0 62.5 1.523 61.0 43.0 42.5 0.541 63.0 0.0 -0.0 0.015 115.0 0.0 0.0 0.015 1.0 1.0 1.0 Ct 1.3 CConflimits 59.1 1.0 D StdErr 0.3 1.0 D StdErr 0.3 1.0 1.0 D StdErr 0.3 1.0 D StdErr 0.3 1.0		10.0	100.0	100.2	-0.188	-0.188	1001
47.0 97.0 94.5 2.497 52.0 80.0 83.0 -3.020 57.0 64.0 62.5 1.523 61.0 43.0 42.5 0.541 63.0 32.0 32.8 -0.849 110.0 0.0 -0.0 0.015 120.0 0.0 -0.0 0.015 120.0 0.0 -0.0 0.015 1.0 C StdErr 0.2 1.0 C StdErr 0.2 1.0 C T C StdErr 0.2 1.0 C T 1.0 1.0 C T 1.0 1.0 -0.0 C T 1.0 1.0 C T 1.0 1.0 D StdErr 0.3 100.1 -0.3 100.2 D 1 100.1 D StdErr 0.3 100.1 -0.3 100.1 -0.3 100.1 -0.3 100.1 -0.3 100.1 -0.3 100.1 -0.3 100.1 -0.3		15.0	100.0	100.2	-0.188	-0.188	1502.8
52.0 80.0 83.0 -3.020 57.0 64.0 62.5 1.523 61.0 43.0 42.5 0.541 63.0 32.0 32.8 -0.849 110.0 0.0 -0.0 0.015 125.0 0.0 -0.0 0.015 59.5 Tr 3715.1 Inde 90.0 C -0.0 Ct	47.0	97.0	94.5	2.497	2.575	4689.7	
57.0 64.0 62.5 1.523 61.0 43.0 42.5 0.541 63.0 32.0 32.8 -0.849 110.0 0.0 -0.0 0.015 125.0 0.0 -0.0 0.015 126.0 0.0 -0.0 0.015 1.0 1.0		52.0	80.0	83.0	-3.020	-3.775	5137.3
61.0 43.0 42.5 0.541 63.0 32.0 32.8 -0.849 110.0 0.0 -0.0 0.015 115.0 0.0 -0.0 0.015 125.0 0.0 -0.0 0.015 125.0 0.0 -0.0 0.015 125.0 0.0 -0.0 0.015 1.0 1.0 Ct 301.1 1.3 CConfLmits 59.1 1.0 1.0 D StdErr 0.3 100.2 D -7.9		57.0	0.49	62.5	1.523	2.380	5504.4
63.0 32.0 32.8 -0.849 -110.0 0.0 0.015 115.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		61.0	43.0	42.5	0.541	1.258	5714.5
110.0 0.015 115.0 0.0 -0.0 0.015 120.0 0.0 -0.0 0.015 120.0 0.0 -0.0 0.015 125.0 0.0 -0.0 0.015 59.5 n y=a+b0.5(1+erf((x-c)/(02d))) [Cumulative] 1.0 1.0		63.0	32.0	32.8	-0.849	-2.654	5789.7
115.0 0.0 -0.0 0.015 120.0 0.0 -0.0 0.015 125.0 0.0 -0.0 0.015 59.5 n y=a+b0.5(1+erf((x-c)/(02d))) [Cumulative] 1.0 1.0 rr 3715.1 nce 90.0 C -0.0 C 0.7 C StdErr 0.2 -0.0 C t 301.1 -1.3 C Conflimits 59.1 1.3 59.8 100.2 D -7.9 rr 98.9 D t -23.3 imits 98.3 D Conflimits -6.5		110.0	0.0	-0.0	0.015	0.000	5959.0
120.0 0.0 -0.0 0.015 125.0 0.0 -0.0 0.015 59.5 n y=a+b0.5(1+erf((x-c)/(02d))) [Cumulative] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.		115.0	0.0	-0.0	0.015	0.000	5958.9
125.0 0.0 -0.0 0.015 59.5 n y=a+b0.5(1+erf((x-c)/(02d))) [Cumulative] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.		120.0	0.0	-0.0	0.015	0.000	5958.8
59.5 n y=a+b0.5(1+erf((x-c)/(02d))) [Cumulative] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 C StdErr -0.0 C C C C S9.5 -0.0 C T C StdErr -1.3 C ConfLimits 1.3 C ConfLimits 59.8 100.2 D -7.9 Imits 98.9 D ConfLimits -23.3 102.1 -7.3		125.0	0.0	-0.0	0.015	0.00	5958.8
n y=a+b0.5(1+erf((x-c)/(02d))) [Cumulative] 1.0 1.0 1.0 1.4 3715.1 nce 90.0 -0.0 C 0.7 C StdErr -0.0 C t 1.3 C ConfLimits 1.3 100.2 D	≽	59.5					
1.0 1.0 1.0 1.0 1.0 3715.1 ance 90.0 -0.0 C C C C C C C C C C C C C C C C C C	<u>o</u>	y=a+b0.5(1+erf((x-	-c)/(02d))) [Cumulative				
1.0 1.4 3715.1 30.0 -0.0 -0.0 C T -0.0 C -1.3 CConflimits 1.3 100.2 D T 1.0 D StdErr 98.9 D t 102.1		1.0		•			
Err 3715.1 3715.1 ance 90.0 -0.0 C -0.0 Ct -0.0 Ct -1.3 CConfilmits 1.3 100.2 D rr 98.9 Dt 102.1		1.0					
3715.1 90.0 -0.0 C -0.0 C -0.0 Ct -1.3 CConflimits 1.3 100.2 D this 98.3 D Conflimits 10.0 10.0 10.0	Er	4.1					
ance 90.0 -0.0 rr 0.7 C StdErr -0.0 C t 1.3 C Conflimits 1.0 D StdErr 98.9 D t 100.2 D 100.2 D 500000000000000000000000000000000000	_	3715.1					
-0.0 C C StdErr -0.0 C C C C C C C C C C C C C C C C C C	ence	0.06					
0.7 C StdErr -0.0 C t -1.3 C Confilmits 1.3 100.2 D 1.0 D StdErr 98.9 D t mits 98.3 D Confilmits		-0.0	O	59.5			
-0.0 Ct -1.3 CConfilmits 1.3 100.2 D 1.0 DStdErr 98.9 Dt imits 98.3 DConfilmits	ᇤ	0.7	C StdErr	0.2			
-1.3 C Confilmits 1.3 100.2 D 1.0 D StdErr 98.9 D t 98.3 D Confilmits		-0.0	č	301.1			
1.3 100.2 D 1.0 D StdErr 98.9 D t 98.3 D ConfLimits	flimits	6.1-	C Conflimits	59.1			
100.2 D 1.0 D StdErr 98.9 D t 98.3 D Conflimits		1.3		59.8			
1.0 D StdErr 98.9 D t 98.3 D ConfLimits 102.1		100.2	۵	-7.9			
98.9 D t 98.3 D Conflimits 102.1	Ë	1.0	D StdErr	0.3			
98.3 D Conflimits 102.1		6.86	o t	-23.3			
	[Limits	98.3	D Conflimits	-8.5			
		102.1		-7.3			

FAR GUN 60, 2nd HALF-VEHICLE CONTROLS-A

***	CONTRO! ASE!	TNECHE	Y Predicted	Y Pasidial	Y & Besidinal	Cum Are
- -	0.0	0.00	300.6	-0.580 -	-0.585	Š
~	2.0	100.0	100.6	-0.595	-0.595	503.
က	10.0	100.0	100.6	-0.595	-0.595	1006.
4	15.0	100.0	100.6	-0.595	-0.595	1508.8
ĸ	47.0	92.0	85.7	6.321	6.871	4657.4
ဖ	52.0	65.0	68.7	-3.693	-5.682	5046.4
7	57.0	43.0	47.2	-4.201	-9.771	5336.
œ	61.0	35.0	31.6	3.377	9.650	5493.1
o,	63.0	27.0	25.3	1.718	6.362	5549.
0	110.0	0.0	0.3	-0.346	0.000	5767.(
=	115.0	0.0	0.3	-0.294	0.000	5769.
12	120.0	0.0	0.3	-0.261	0000	5770.
13	125.0	0.0	0.2	-0.240	0.000	5771.
,	56.3					
Equation	$y=a+b/(1+(x/c)^{2}$	d) [LogisticDoseRsp]				
	1.0					
	1.0					
	3.1					
	779.4					
	0.06					
	0.2	O	56.3			
A StdErr	1.6	C StdErr	0.5			
	0.1	ot o	112.0			
A Conflimits	-2.7	C ConfLimits				
	3.1		40			
6	100.4	۵	9.7			
B StdErr	2.2	D StdErr	8 .0			
B t	45.2	01	1.5			
B Conflimits	86.3	D Conflimits	8.2			
	104.5	104.5	11.3			

FAR GUN 60, 2nd HALF-VEHICLE CONTROLS-B

Cum Area	0.0	506.4	1012.9	1519.3	4715.4	5117.5	5396.9	5527.8	5569.7	5706.5	5709.7	5712.9	57182																	
Y % Residual	-1.288	-1.288	-1.288	-1.288	10.655	-8.508	-17.295	26.327	0.408	0.000	0.000	0.000	0000																	
Y Residual	-1.288	-1.288	-1.288	-1.288	10.655	-5.445	-6.226	8.688	0.073	-0.659	-0.650	-0.644	-0.641																	
Y Predicted	101.3	101.3	101.3	101.3	89.3	69.4	42.2	24.3	17.9	0.7	9.0	9.0	0.6	!							55.4	0.8	73.6	54.0	26.8	12.2	1.7	7.0	0.6	15.4
PERCENT	100.0	100.0	100.0	100.0	100.0	0.40	36.0	33.0	18.0	0.0	0.0	0.0	0.0		d) [LogisticDoseRsp]						O	C StdErr	Ct.	C Conflimits		۵	D StdErr	οt	D Conflimits	
CONTROL ASEL	0.0	5.0	10.0	15.0	47.0	52.0	27.0	61.0	63.0	110.0	115.0	120.0	125.0	55.6	$y=a+b/(1+(x/c)^{-1}$	1.0	1.0	5.4	270.2	0.06	9.0	2.7	0.2	6.4-	5.6	100.7	8 .0	26.2	93.6	107.7
XY Pt #	—	Q	m	4	6 0	ဖ	_	ထ	<u>o</u>	9	=	12	_	X@50Y	Equation	Adjr2	Q	Fit StdErr	F-stat	Confidence	⋖	A StdErr	At	A Conflimits		6	B StdErr	8 t	B Conflimits	

FAR GUN 60, 2nd HALF-VEHICLE CONTROLS-C

Cum Area 0.0 499.4	1498.0 4627.7	5053.9	5416.0	5641.8	5731.0	6054.7	6054.2	6053.7	6053.2																	
Y % Residual 0.114 0.122	0.177	-2.333	-3.402	19.045	-27.213	0.000	0.00	0.00	0.00																	
Y Residual 0.114 0.122	0.177	-1.820	-2.109	11.427	-8.708	0.074	0.095	0.10	0.109																	
Y Predicted 99.9 99.9	9.56 8.68 7.68	79.8	64.1	48.6	40.7	-0.1	-0.1	-0.1	-0.1								60.7	6.0	70.9	59.1	62.2	-6.3	1.1	-6.0	-8.2	-4.3
PERCENT 100.0	1000	78.0	62.0	0.09	32.0	0.0	0.0	0.0	0.0		(x-c)/d)) [Sigmoid]	•					ပ	C StdErr	Ç	C Conf∐mits		٥	D StdErr	o t	D Conflimits	
CONTROL ASEL 0.0 5.0	15.0	52.0	57.0	61.0	63.0	110.0	115.0	120.0	125.0	9.09	y=a+b/(1+exp(-(1.0	6.4	312.6	0.06	-0.1	2,4	0.0	9.4-	4.4	100.0	3.5	28.9	93.7	106.3
XX - 2 %) 4 സ	ဖ	_	© (ത	9	_	7	1 3	X@50Y	Equation	Adjr2	Q	Fit StdErr	F-stat	Confidence	∢	A StdErr	A t	A Conflimits		∞	B StdErr	Bt	B Conflimits	

FAR GUN 60, 2nd HALF-VEHICLE CONTROLS-D

Cum Area 0.0 501.1 1002.2	500.6 4674.9 5118.4 5503.8 5754.1 6251.7	6251.6 6251.2 6251.2 6251.2	
Y % Residual	5.300 5.300 -2.278 -22.659 0.000	0000	
Y Residual -0.216 -0.216	-0.2194 -6.756 -1.549 12.662 -8.837	0.037 0.037 0.037	
Y Predicted 100.2 100.2 100.2	8.3.8 8.3.8 8.5.3 8.5.3 8.0.0		4.08 6.01 6.00 6.41 6.41 6.41 6.41
PERCENT 100.0 100.0	98.0 98.0 98.0 98.0 98.0)) ((pa	C StdErr C t C ConfLimits D StdErr D t D ConfLimits
CONTROL ASEL 0.0 5.0 10.0	52.0 57.0 57.0 61.0 63.0	115.0 120.0 125.0 62.4 y=a+b0.5(1+erf((1.0 1.0 5.9 217.3	-0.0 3.0 -0.0 -0.0 100.3 -1.4 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0
X - 0 0 4	4 vo v & o o o o c ;	11 12 13 X@50Y Equation Adjr2 r2 Fit StdErr F - stat Confidence	A StdErr A t A Conflimits B StdErr B t B Conflimits

LEOPARD II, 2nd HALF-VEHICLE CONTROLS-A

Cum Area 0.0 0.0 500.3 1000.5 1000.5 1500.8 5577.6 6873.3 6875.9 6875.9 6875.9	
Y % Residual -0.053 -0.053 -0.053 -0.053 -1.542 -1.542 -1.542 -0.124 19.716 -0.000 0.000 0.000	
Y Residual -0.053 -0.053 -0.053 -0.053 -1.373 -1.373 -0.100 -1.350 -18.639 3.361 -0.701 -0.196 0.141	
Y Predicted 100.1 100.1 100.1 100.1 100.1 100.1 20.4 81.1 81.1 20.6 64.6 64.6 6.0 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10	67.7 8.9 6.9.7 7.0 7.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5
PERCENT 100.0 100.0 100.0 100.0 100.0 89.0 88.0 88.0 46.0 45.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	C StdErr C t C ConfLimits D StdErr D t D ConfLimits
CONTROL ASEL 0.0 5.0 10.0 15.0 52.0 57.0 61.0 63.0 71.0 115.0 125.0 67.6 y=a+b/(1+(x/c) ^ 1.0 1.0 1.0 1.0 1.0	-0.9 -0.2 -0.2 -0.2 -0.2 -0.1 -0.7 -0.7 -0.7 -0.7 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3
XY Pt # 1	A StdErr A t A Conflimits B StdErr B t B Conflimits

LEOPARD II, 2nd HALF-VEHICLE CONTROLS-B

Cum Area 0.0 498.7 987.4 1496.1 5130.9 5569.7 5883.5 6730.3 6730.8 6730.8	
Y % Residual 0.252 0.255 0.263 0.279 -7.559 8.454 5.202 -12.749 3.591 0.000 0.000 0.000	
Y Residual 0.252 0.255 0.253 0.263 0.279 -6.426 7.693 1.365 -0.118 -0.009 0.007	
Y Predicted 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.	67.5 0.9 71.6 65.8 69.2 -6.5 -7.1 -8.1
PERCENT 100.0 100.0 100.0 100.0 100.0 85.0 85.0 91.0 77.0 59.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	C StdErr C t C ConfLimits D StdErr D t D ConfLimits
	0.0- 0.0- 0.0- 0.4- 0.4- 0.4- 0.4- 0.4-
XY Pt # 1	A StdErr A t A Conflimits B StdErr B t B Conflimits

LEOPARD II, 2nd HALF-VEHICLE CONTROLS-C

Cum Area 0.0 501.9 1003.8 1505.7 5109.1 5775.1 6689.9 6693.4 6693.1	
Y % Residual -0.382 -0.382 -0.382 -0.380 -0.380 -2.971 -2.971 -2.971 -61.854 16.275 0.000 0.000	
Y Residual0.3820.3820.3800.380 -2.1092.1091.0320.395 0.055	
Y Predicted 100.4 100.4 100.4 100.4 100.4 100.4 100.4 23.1 23.1 100.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	65.5 2.49 60.7 60.7 6.20 6.21 6.21 6.31
PERCENT 100.0 100.0 100.0 100.0 88.0 71.0 78.0 35.0 0.0 0.0 0.0 0.0	C StdErr C t C ConfLimits D StdErr D t D ConfLimits
CONTROL ASEL 0.0 5.0 10.0 15.0 52.0 57.0 61.0 63.0 71.0 115.0 115.0 125.0 65.3 y=a+b/(1+(x/c)^2) 0.9 1.0 9.3	5.7 -0.2 -11.7 -0.0 101.7 7.6 13.4 87.7
XY Pt # 1 2 3 4 4 5 6 7 10 11 12 13 X@50Y Equation Adjr2 r2 Fit StdErr F-stat	A StdErr A t A ConfLimits B StdErr B t B ConfLimits

LEOPARD II, 2nd HALF-VEHICLE CONTROLS-D

Cum Area	0.0	502.0	1004.0	1506.0	5192.0	5640.6	5954.0	6089.5	6467.7	6737.1	6738.7	6739.7	6740.4																	
Y % Residual	-0.400	-0.400	-0.400	-0.400	-1.005	5.204	10.505	-27.508	11.623	0000	0.000	0.000	0.00																	
Y Residual	-0.400	-0.400	-0.400	-0.400	-0.934	4.632	8.404	-13.754	4.184	-0.394	-0.252	-0.168	-0.117																	
Y Predicted	100.4	100.4	100.4	100.4	93.9	84. 4	71.6	63.8	31.8	0.4	0.3	0.2	0.1								66.2	-:	59.6	64.2	68.3	11.1	2.0	5.6	7.4	14.7
PERCENT	100.0	100.0	100.0	100.0	93.0	89.0	80.0	50.0	36.0	0.0	0.0	0.0	0.0		^d) [LogisticDoseRsp]						O	C StdErr	Çţ	C ConfLimits		۵	D StdErr	ot 0	D ConfLimits	
CONTROL ASEL	0.0	5.0	10.0	15.0	52.0	92.0	01.0	63.0	71.0	110.0	115.0	120.0	125.0	66.3			1.0	5.8	233.8	0.06	0.0	2.9	0.0	-5.4	5.4	100.4	4.1	24.3	92.8	107.9
XY Pt *	_	N	ო	4	ည	9	7	œ	တ	0	=	12	13	X@50Y	Equation	Adjr2	~	Fit StdErr	F-stat	Confidence	⋖	A StdErr	Αt	A Conflimits		œ	B StdErr	8	B ConfLimits	

MARDER, 2nd HALF-VEHICLE CONTROLS-A

Cum Area 0.0 501.5 1003.1 1504.6 4685.7 5472.2 5672.1 5910.1 5909.7	
Y % Residual -0.308 -0.308 -0.308 -0.308 -0.308 -0.308 -0.308 -0.308 -0.308 -0.308 -0.308 -0.308 -0.308 -0.308 -0.308 -0.000 -0.000	
Y Residual -0.308 -0.308 -0.308 -0.308 -0.308 -3.458 -3.458 -3.458 0.092 0.092	
> G 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	59.0 0.9 60.2 4.7.7 60.3 4.1 6.3 1.0 8.3 8.3
PERCENT 100.0 100.0 100.0 97.0 76.0 56.0 54.0 22.0 0.0 0.0 0.0 0.0 0.0	C StdErr C t C Conflimits C Conflimits D StdErr D t
	-0.1 -0.0 -5.6
XY Pt # 1 2 3 4 5 6 7 10 11 12 13 X@50Y Equation Adjr2 r2 Fit StdErr F - stat	A StdErr A t A ConfLimits B StdErr B t B ConfLimits

MARDER, 2nd HALF-VEHICLE CONTROLS-B

Cum Area 0.0	495.6	991.2	1486.8	4644.1	5102.0	5481.6	5681.7	5743.9	5828.7	5825.4	5822.8	5819.7																	
Y % Residual 0.881	0.881	0.881	0.882	1.716	-13.335	7.376	21.281	-96.320	0.000	0.000	0.000	0.000																	
Y Residual 0.881	0.881	0.881	0.882	1.664	-10.134	5.015	10.002	-12.522	0.612	0.612	0.612	0.612																	
Y Predicted 99.1	99.1	99.1	99.1	95.3	86.1	63.0	37.0	25.5	9.0-	9.0-	9.0-	9.0-								59.1	0.8	78.2	57.7	60.5	3.7	0.7	5.0	2.4	5.1
PERCENT 100.0	100.0	100.0	100.0	0.76	76.0	68.0	47.0	13.0	0.0	0.0	0.0	0.0		-(x-c)/d)) [Sigmoid]						ပ	C StdErr	o t	C Conflimits		۵	D StdErr	Ot	D Conflimits	
CONTROL ASEL	5.0	10.0	15.0	47.0	52.0	22.0	61.0	63.0	110.0	115.0	120.0	125.0	29.0	y=a+b/(1+exp(-(1.0	1.0	9.9	183.6	0.06	99.1	3.1	31.8	93.4	104.8	-99.7	4.6	-21.8	-108.1	-91.3
XY Pt #	61	ന	4	က	9	7	œ	O	10	11	42	13	X@50Y	Equation				F-stat	Confidence	∢	A StdErr	Αt	A Conflimits		മ	B StdErr	Bţ	B Conflimits	

MARDER, 2nd HALF-VEHICLE CONTROLS-C

Cum Area 0.0	489.0	977.9	1466.9	4579.7	5028.3	5398.8	5595.5	5657.6	5742.6	5738.7	5735.4	5731.7																	
Y % Residual 2.206	2.206	2.206	2.207	-10.135	-5.206	5.300	26.535	-156.968	0.000	0000	0000	0.00																	
Y Pesidual 2.206	2.206	2.206	2.207	-8.615	-4.165	3.445	13.268	-15.697	0.734	0.735	0.735	0.735																	
Y Predicted 97.8	97.8	97.8	97.8	93.6	84.2	61.6	36.7	25.7	-0.7	-0.7	-0.7	-0.7								59.1	6.0	63.7	57.4	80.8	න. හ	6.0	4.2	2.2	5.6
PERCENT 100.0	100.0	100.0	100.0	85.0	80.0	65.0	50.0	10.0	0.0	0.0	0.0	0.0		-(x-c)/d)) [Sigmoid]						O	C StdErr	ot Ot	C Confl⊥mits		۵	D StdErr	o t	D Conflimits	
CONTROL ASEL	5.0	10.0	15.0	47.0	52.0	67.0	61.0	63.0	110.0	115.0	120.0	125.0	58.9	y=a+b/(1+exp(-(1.0	7.8	127.6	0.06	97.8	3.7	26.4	91.0	104.6	-98.5	5.4	-18.2	-108.5	-88.6
XY Pt #	a	ო	4	ഹ	ဖ	7	œ	O	9	=	42	13	X@50Y	Equation	Adjr2	~	Fit StdErr	F-stat	Confidence	⋖	A StdErr	Αt	A Conflimits		∞	B StdErr	8 t	B Conflimits	

MARDER, 2nd HALF-VEHICLE CONTROLS-D

Cum Area	0.0	498.3	996.5	1494.8	4677.6	5145.4	5537.2	5755.4	5828.5	5950.8	5950.0	5949.2	5948.4																	
Y % Residual	0.348	0.348	0.348	0.348	-3.406	5.218	-16.425	28.089	-54.524	0.000	0.00	0.00	0.00																	
Y Residual	0.348	0.348	0.348	0.348	-3.202	4.853	-9.362	16.572	-10.905	0.163	0.163	0.163	0.163																	
Y Predicted	2.66	99.7	26.7	266	97.2	88.1	66.4	42.4	30.9	-0.2	-0.2	-0.2	-0.2								59.8	0.0	67.4	58.2	4. 10	6.5	1.5	4 .0	3.7	9.3
PERCENT	100.0	100.0	100.0	100.0	0.78	93.0	57.0	59.0	20.0	0.0	0.0	0.0	0.0		((x-c)/(02d))) [Cumulative]						ပ	C StdErr	Ct.	C Conflimits		۵	D StdErr	οt	D Conflimits	
CONTROL ASEL	0.0	5.0	10.0	15.0	47.0	52.0	57.0	61.0	63.0	110.0	115.0	120.0	125.0	59.8	y=a+b0.5(1+erf((x-1))	1.0	1.0	7.6	139.0	0.06	26.5	3.6	27.9	93.1	106.2	-99.8	5.2	-19.1	-109.4	90.2
XY Pt #		αı	ო	4	22	ဖ	7	∞	Ø	10		12	13	X@50Y	Equation	Adir2	. &	Fit StdErr	F-stat	Confidence	⋖	A StdEr	At	A Conflimits		∞	B StdErr	8 ‡	B Conflimits	

NEAR GUN 60, 2nd HALF -- NOISE CONTROLS -- A

× ₽ *	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
•	c		151	191	121	
- 0	9 0	5.00	<u> </u>	11 121	12.12	505.8
ı m	10.0	100.0	101	-1.121	-1.124	1011.2
4	15.0	100.0	101.1	-1.121	-1.121	1516.8
_C	55.0	100.0	98.1	1.939	1.939	5548.4
9	60.0	100.0	93.4	6.589	6.589	6028.5
7	65.0	85.0	84.7	0.300	0.353	6475.7
•	70.0	65.0	71.3	-6.280	-9.662	6867.5
0	75.0	51.0	54.3	-3.282	-6.435	7182.4
9	80.0	45.0	36.6	8.422	18.716	7409.1
=	85.0	19.0	21.4	-2.417	-12.720	7552.5
5	0.06	10.0	10.7	-0.741	-7.411	7630.9
13	110.0	0.0	0.1	-0.096	0000	7687.8
4	115.0	0.0	-0.0	0.005	0000	7688.0
15	120.0	0.0	-0.0	0.023	0.000	7887.9
16	125.0	0.0	-0.0	0.027	0000	7687.8
X@50Y	4.77					
Equation	y=a+b0.5(1+erf((x-	.5(1+erf((x-c)/(02d))) [Cumulative]	<u> </u>			
Adjrz			•			
G	1.0					
Fit StdEr	3.9					
F-stat	634.0					
Confidence	0.06					
<	-0.0	ပ	76.0			
A StdErr	1.9	CStdErr	0.7			
۸t	-0.0	ŏ	105.9			
A Conflimits	-3.4	C Conflimits	74.8			
	3.4		77.3			
∞	101.1	۵	-11.2			
B StdErr	2.7	D StdEn	0.1			
Bţ	37,6	ō	-11.8			
B Conflimits	86.3	D Conflimits	-12.9			
	105.9		-9.5			

NEAR GUN 60, 2nd HALF-NOISE CONTROLS-B

Cum Area	0.0	485.8	971.5	1457.3	6294.8	6745.3	7143.0	7442.3	7618.4	7697.9	7727.8	7722.7	7717.2	7711.6																	
Y % Residual	2.846	2.846	2.846	2.846	3.118	-16.467	7.486	12.042	-14.273	0.000	0.000	0.00	0000	0.000																	
Y Residual	2.846	2.846	2.846	2.846	2.993	-12.186	5.764	6.503	-2.997	9.438	0.950	1.066	1.107	1.121	!																
Y Predicted	97.2	97.2	97.2	97.2	93.0	86.2	71.2	47.5	24.0	9.6	-0.9	77		7.7								-									
PERCENT	100.0	100.0	100.0	0.001	0.96	74.0	77.0	54.0	21.0	0.0	0.0	0.0	0.0	0.0		(x-c)/d)) [Sigmoid]															
CONTROL ASEL	0.0	5.0	10.0	15.0	65.0	70.0	75.0	80.0	85.0	90.0	110.0	115.0	120.0	125.0	79.3	y = a + b/(1 + exp(-(x-	_	0.0	7.5	109.0	0.06	7.7	2.8	-0.4	-6.2	4.0	98.3	0.4	24.6	2.19	105.5
XY Pt #		8	က	4	S)	9	7	œ	o	9	=	5	1 3	4	X@50Y	Equation	Adjr2	Q	Fit StdErr	F-stat	Confidence	<	A StdErr	At	A Conflimits		Φ.	B StdErr	Bt	B Conflimits	

NEAR GUN 60, 2nd HALF - NOISE CONTROLS - C

* \\	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
-	0.0	100.0	4.96	3.597	3.597	0.0
~~	5.0	100.0	96.4	3.597	3.597	482.0
က	10.0	100.0	96.4	3.599	3.599	964.0
4	15.0	100.0	96.4	3.603	3.603	1446.0
S	92.0	85.0	94.0	-8.968	-10.550	5285.4
9	0.09	95.0	91.5	3.522	3.707	5749.7
7	65.0	67.0	86.7	-19.701	-29.404	6196.3
•	70.0	85.0	78.2	6.807	8.008	6610.4
œ	75.0	68.0	64.9	3.123	4.592	6970.1
10	80.0	20.0	47.7	2.268	4.537	7252.7
=	85.0	40.0	30.5	9.548	23.860	7447.2
12	0.06	0.0	16.8	-16.846	0000	7563.5
<u>5</u>	110.0	0.0	-0.8	0.790	0000	7657.8
4	115.0	0.0	4.1-	1.429	0.00	7652.0
5	120.0	0.0	-1.7	1.741	0.000	7644.0
16	125.0	0.0	1.9	1.891	0000	7634.8
X@50Y	82.2					
Equation	y=a+b/(1+exp(-(x+y))	$b/(1+\exp(-(x-c)/d))$ [Sigmoid]				
Adjr2	1.0					
. 64	1.0					
Fit StdEr	0.6					
F-stat	107.1	-				
Confidence	90.0					
⋖	-2.0	ပ	80.2			
A StdErr	8.4	C StdErr	1 .8			
At	4.0-	5	45.8			
A ConfLimits	-10.5	C Conflimits	77.0		•	
	6.4		83.3			
©	98.4	۵	-6.8			
B StdEn	6.5	D StdErr	1.6			
8	15.1	ō	-4.3			
B Conflimits	86.8	D Conflimits	-9.7			
	110.1		0.4-			

NEAR GUN 60, 2nd HALF-NOISE CONTROLS-D

Cum Area	0.0	497.4	994.0	1489.4	5259.7	5659.9	6024.9	6347.5	6622.1	6846.0	7020.3	7149.6	7357.1	7363.9	7361.9	7353.8																	
Y % Residual	0.467	0.594	0.782	1.058	-3.812	-18.121	8.014	17.997	-10.829	7.615	-43.655	12.863	0000	0.000	0.000	0.00																	
Y Residual	0.467	0.594	0.782	1.058	-3.049	-11.779	6.011	13.138	-4.873	3.274	-9.167	3.216	-2,480	-0.382	1.087	2.104																	
Y Predicted	99.5	99.4	99.2	6.86	83.0	76.8	0.69	59.9	49.9	39.7	30.2	21.8	2.5	4 .0	-1.1	-2.1								76.0	2.2	35.2	72.2	79.9	-12.7	2.2	-5.7	-16.7	8 .8
PERCENT	100.0	100.0	100.0	100.0	80.0	65.0	75.0	73.0	45.0	43.0	21.0	25.0	0.0	0.0	0.0	0.0		$(1 + \exp(-(x-c)/d))$ [Sigmoid]						O	C Stoffin	ວັ	C Conflimits		۵	D StdEn	01	D Conflimits	
CONTROL ASEL		5.0	10.0	15.0	92.0	90.0	65.0	70.0	75.0	80.0	85.0	0.06	110.0	115.0	120.0	125.0	78.4	y=a+b/(1+exp(-(1.0	1.0	6.5	186.2	0.06	6.4-	4.9	6.0-	-12.9	4.4	104.1	6.5	16.1	92.6	115.6
× ₽ *	*	α	က	4	က	9	7	œ	o	9	=	12	13	4	15	16	X@50Y	Equation	Adjr2	2	Fit StdErr	F-stat	Confidence	⋖	A StdEn	At	A Confl.imits		0	B StdErr	9	B Conflimits	

LEOPARD II, 2nd HALF - NOISE CONTROLS - A

×	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
-	0.0	100.0	100.2	-0.243	-0.243	0.0
Ø	5.0	160.0	100.2	-0.239	-0.239	501.2
ო	10.0	100.0	100.2	-0.228	-0.228	1002.4
4	15.0	100.0	100.2	-0.195	-0.195	1503.5
Ŋ	55.0	100.0	82.3	17.733	17.738	5349.6
9	0.09	40.0	73.4	-33.428	-83.569	5739.6
7	65.0	82.0	62.8	19.200	23.415	6080.8
60	70.0	46.0	51.1	-5.091	-11.067	6365.8
o	75.0	43.0	39.3	3.730	8.675	6591.6
5	80.0	31.0	28.3	2.665	8.598	6760.0
=	85.0	16.0	19.1	-3.065	-19.158	6877.7
12	90.0	10.0	11.9	-1.865	-18.653	6954.1
13	110.0	0.0	0.3	-0.308	0.000	7040.0
4	115.0	0.0	-0.2	0.241	0.000	7040.0
15	120.0	0.0	-0.5	0.493	0.000	7038.1
16	125.0	0.0	9.0-	0.599	0000	7035.3
X@50Y	73.6					
Equation	y=a+b0.5(1+erf(x)	0.5(1+erf((x-c)/(02d))) [Cumulative]	6			
Adjr2	6.0	,	•			
ିଅ	6.0					
Fit StdErr	12.5					
F-stat	53.5					
Confidence	0.06					
⋖	-0.7	O	70.5			
A StdErr	9.9	C StdEr	3.2			
At	-0.1	01	22.2			
A Confl.imits	-12.4	C Conflimits	9.49			
	7.7		76.2			
8	100.9	۵	-16.9			
B StdEn	9.2	D StdEn	4.6			
B 1	10.9	Dt	-3.7			
B Confl.imits	84.5	D Conflimits	-25.0			
	117.3		-8.7			

LEOPARD II, 2nd HALF - NOISE CONTROLS - B

CONTRO	ASEL 0.0	PERCENT 100.0	Y Predicted 98.4	Y Residual	Y % Residual	Cum Area 0.0
0.00 0.00		0.0 0.0 0.0	00 00 4. 60 4. 4.	1.576	1.576 1.577	492.1 984.2
	_	100.0	98.4	1.577	1.577	1476.4
55.0	-	100.0	97.0	3.028	3.028	5405.4
		0.06	0.40 0.00	-4.860	-5.400	5885.7
0.00		5 6 5 6	99.9 7 0 5	13.850	800.7-I	6778.0
		58.0	61.5	-3.535	-6.095	7131.8
		54.0	38.9	15.096	27.955	7383.2
		11.0	19.6	-8.640	-78.542	7526.7
90.0		0.0	8.0	-7.970	0.00	7592.7
110.0		0.0	-1.6	1.601	0.00	7610.0
115.0		0.0	-1.8	1.766	0.000	7601.5
120.0		0.0	1.8	1.832	0.000	7592.5
125.0		0.0	e:1-9	1.858	0.000	7583.3
79.2						
y=a+b/(1+exp(-(x-c)/d)) [Sigmoid]	S Si	_				
1.0						
0.7						
6.0						
250.3						
0.06						
			77.9			
3.1 CStdErr			1.0			
			77.8			
-7.4 C Conflimits	E	•	76.2			
3.6			7.67			
100.3 D			-5.4			
4.3 D StdErr			6.0			
			-6.3			
92.7 D Conflimits	<u>₹</u>	90	-7.0			
107.9			-3.9			

LEOPARD II, 2nd HALF - NOISE CONTROLS - C

XY Pt *	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
-	0.0	100.0	8.66	0.152	0.152	0.0
8	5.0	100.0	8.66	0.152	0.152	499.2
თ	10.0	100.0	8.66	0.152	0.152	998.5
4	15.0	100.0	8.66	0.152	0.152	1497.7
ιΩ	55.0	95.0	92.5	2.522	2.654	5448.3
9	0.09	80.0	85.6	-5.598	-6.997	5894.8
7	65.0	77.0	75.3	1.687	2.191	6298.5
œ	70.0	62.0	62.0	0.024	0.039	6642.8
O	75.0	48.0	47.0	1.032	2.151	6915.5
9	80.0	30.0	32.3	-2.314	-7.712	7113.1
=======================================	85.0	30.0	19.9	10.101	33.671	7242.4
57	0.06	0.0	10.8	-10.773	0.000	7317.6
51	110.0	0.0	-0.5	0.461	0.00	7374.8
4	115.0	0.0	-0.7	0.694	0.00	7371.8
15	120.0	0.0	-0.8	0.767	0.000	7368.1
16	125.0	0.0	-0.8	0.787	0.000	7364.2
X@50Y	78.5					
Equation	y=a+b0.5(1+erf(x)	y=a+b0.5(1+ef((x-c)/(02d))) [Cumulative]	[9]			
Adjr2	1.0	•	•			
. 6	1,0					
Fit StdErr	4.7					
F-stat	401.5					
Confidence	0.06					
∢	-0.8	ပ	74.2			
A StdErr	2.4	C StdEn	1.0			
At	-0.3	ၓ	74.6			
A Confl.imits	-5.0	C Conflimits	72.4			
	3.4		75.9			
∞	100.6	۵	-13.2			
B StdEn	3.6	D StdEn	1 .3			
B t	29.9	ō	-10.0			
B Conflimits	9.78	D Conflimits	-15.5			
	106.6		- 10.8			

LEOPARD II, 2nd HALF-NOISE CONTROLS-D

Cum Area 0.0 505.3 1004.3 1495.3	48624 5176.3 5459.7 5711.6 5831.7 6120.1 6277.8 6406.1 6686.4	6680.0 6686.0 6686.7
Y % Residual -1.586 -0.479 0.941	6.076 -32.821 -16.412 17.196 5.035 35.967 1.540 -185.337 0.000	0.00 0.00 0.00 0.00
Y Residual -1.586 -0.479 0.941 2.725	4.253 -14.769 -7.349 9.802 2.165 19.422 0.458 -14.827	3.783
Y Predicted 101.6 100.5 99.1 97.3	65.7 8.63 8.64 6.83 8.45 8.45 8.54 8.54 8.54 8.54 8.54 8.54	11
PERCENT 100.0 100.0 100.0	70.0 45.0 46.0 57.0 54.0 29.0 8.0	y=a+b0.5(1+erf((x-c)/(02d))) [Cumulative] 75.2 75.2 0.9 1.0 9.3 82.9 90.0 -11.6 C -11.6 C -12.8 C Confilmits 19.7 116.2 D 25.7 D StdErr 4.5 D t 70.4 D Confilmits
CONTROL ASE. 0.0 5.0 10.0 15.0	55.0 60.0 65.0 75.0 75.0 80.0 90.0 110.0	115.0 120.0 125.0 75.2 75.2 0.9 1.0 93.3 82.9 90.0 -11.6 17.5 -0.7 -42.8 19.7 116.2 25.7 4.5
× - α ε 4	v o r e e e e e e e e e e e e e e e e e e	14 15 16 X@50Y Equation Adjr2 r2 Fit StdErr F - stat Confidence A StdErr A t B StdErr B t B StdErr B t

VEHICLE 2, 2nd HALF-NOISE CONTROLS-A

			;			,
* Z ×	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
-	0.0	100.0	101.3	-1.253	-1.253	0.0
8	5.0	100.0	101.3	-1.253	-1.253	506.3
ო	10.0	100.0	101.3	-1.253	-1.253	1012.5
4	15.0	100.0	101.3	-1.253	-1.253	1518.8
S	55.0	100.0	98.9	1.128	1.128	5559.7
ဖ	0.09	100.0	94.0	6.023	6.023	6043.8
7	65.0	81.0	82.5	-1.542	-1.904	6488.5
œ	70.0	65.0	62.8	2.219	3.414	6854.9
တ	75.0	30.0	39.8	-9.768	-32.558	7110.7
9	80.0	30.0	21.7	8.327	27.757	7261.2
=	85.0	16.0	10.9	2.067	31.671	7339.9
-21	0.06	0.0	5.4	-5.418	0.000	7379.2
13	110.0	0.0	4.0	-0.443	0.000	7417.0
4	115.0	0.0	0.3	-0.272	0.000	7418.7
15	120.0	0.0	0.2	-0.181	0.000	7419.8
16	125.0	0.0	0.1	-0.131	0.00	7420.6
X@50Y	74.5					
Equation	$y=a+b/(1+(x/c)^4$	$v=a+b/(1+(x/c)^2)$ [LogisticDoseRsp]				
Adjr2	0.					
. ପ	4.0					
Fit StdEn	4.8					
F-stat	447.5					
Confidence	0.06					
∢	0.1	ပ	72.6			
A StdErr	2.3	C StdErr	0.8			
At	0.0	5	95.9			
A Confl.imits	1.4-1	C Conflimits	71.2			
	4.2		73.9			
6	101.2	۵	13.4			
B StdErr	3.3	D StdErr	1.6			
B t	30.7	o t	8.4			
B ConfLimits	95.3	D ConfLimits	10.6			
	107.1		16.3			

VEHICLE 2, 2nd HALF-NOISE CCNTROLS-B

* ~ ×	CONTROL ASEL	PERCENT	Y Predicted	Y Aesidual	Y % Residual	Cum Area
-		100.0	99.2	0.761	0.761	0.0
~~	5.0	100.0	686	1.088	1.088	495.4
ო	10.0	100.0	98.5	1.532	1.532	988.9
4	15.0	100.0	97.9	2.131	2.131	1479.8
· w	55.0	60.0	77.9	-17.882	-29.803	5122.2
မ	0.09	70.0	71.9	-1.866	-2.666	5497.0
_	65.0	98.0	64.9	1.117	1.693	5839.2
σ.	70.0	0.69	57.1	11.909	17.280	6144.5
œ	75.0	62.0	48.8	13.229	21.337	6409.3
10	80.0	38.0	40.3	-2.294	-6.037	6631.9
=	85.0	34.0	32.1	1.939	5.703	6812.6
12	0.06	10.0	24.4	-14.427	-144.272	6953.5
13	110.0	0.0	3.2	-3.208	0.00	7203.8
4	115.0	0.0	0.2	-0.173	0000	7212.0
15	120.0	0.0	12.2	2.175	0.00	7206.7
16	125.0	0.0	0.4-0	3.967	0.000	7191.2
X@50Y	77.4					
Equation	$y=a+b/(1+\exp(-)$	5/(1+ exp(-(x-c)/d)) [Sigmoid]				
Adjr2	6.0					
. 6	1.0					
Fit StdEr	8.7					
F-stat	9.66					
Confidence	0.06					
∢	-9.2	ပ	76.9			
A StdEn	9.6	C StdEn	0.4			
At	-1.0	ö	19.0			
A ConfLimits	-26.4	C Conflimits	69.7			
	7.9		84.2			
6 0	109.4	۵	-16.1			
B StdEn	12.5	D StdEn	4.5			
8	89.	ō	-3.6			
B Conflimits	87.1	D Conflimits	-24.0			
	131.6		-8.1			

VEHICLE 2, 2nd HALF - NOISE CONTROLS - C

× ₹ ×	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	100.0	9.66	0.378	0.378	0.0
8	5.0	100.0	9.66	0.437	0.437	498.0
က	10.0	100.0	99.5	0.528	0.528	932.6
4	15.0	100.0	99.3	0.668	0.668	1492.6
ស	25.0	0.06	88.2	1.769	1.966	5346.2
9	0.09	75.0	83.0	-7.983	10.64 û	5774.9
7	65.0	77.0	76.0	1.043	1.354	6173.0
æ	70.0	0.89	67.1	0.911	1.340	6531.4
o	75.0	58.0	29.7	1.308	2.255	6841.3
10	80.0	20.0	45.5	4.494	8.987	7097.0
==	85.0	35.0	34.5	0.467	1.336	7296.8
12	0.06	20.0	24.7	-4.699	-23.493	7444.2
5	110.0	0.0	2.5	-2.483	0.000	7672.5
14	115.0	0.0	0.3	-0.268	0.000	7679.0
15	120.0	0.0	-1.2	1.221	0.000	7676.4
16	125.0	0.0	-2.2	2.210	0.000	7667.6
X@50Y	81.1					
Equation	$y=a+b/(1+\exp(-(x-x)))$	-c)/d)) [Sigmoid]				
Adjr2	0.7					
. 24	1.0					
Fit StdErr	3.2	3.2				
F-stat	758.3					
Confidence	0.06					
⋖	1.4-	O	79.0			
A StdErr	2.3	C StdErr	1.0			
Αţ	-1.7	ŏ	78.2			
A ConfLimits	-8.2	C Conflimits	77.2			
	0.1	•	80.8			
∞	103.8	۵	-11.5			
B StdEn	3.1	D StdErr	1.0			
Bt	33.4	ot	-11.7			
B ConfLimits	98.3	D ConfLimits	-13.3			
	109.3		-9.8			

VEHICLE 2, 2nd HALF-NOISE CONTROLS-D

			-7.4 -32.1 -19.6	D t D ConfLimits	21.2 95.7 113.3
			3.5	D StdErr	6.4
			4.17	c	2.6 7.4 7.4
			65.1	C Conflimits	-10.0
			38.9	ŏ	-1.0
			1.8	C StdEn	3.5
			68.3	ပ	-3.7
					90.0
					384.5
					4.4
					1.0
					1.0
				5(1+eff((x-c)/(û2d))) [Cumulative]	y=a+b0.5(1+erf((x-
					74.4
6661.6	0.000	2.226	-2.2	0.0	125.0
6670.6	0.00	1.323	-1.3	0.0	120.0
6674.1	0.000	-0.003	0.0	0.0	115.0
6669.7	0.000	-1.881	1.9	0.0	110.0
6501.7	-115.750	-9.260	17.3	80.0	90.0
6400.5	6.534	1.634	23.4	25.0	85.0
6266.7	8.237	2.718	30.3	33.0	80.0
9096.6	3.007	1.173	37.8	39.0	75.0
5887.8	11.999	6.240	45.8	52.0	70.0
5638.9	8.820	5.204	53.8	59.0	65.0
5350.1	-12.072	-6.639	61.6	55.0	0.09
5023.2	-6.177	-4.015	0.69	65.0	92.0
1496.1	1.257	1.257	28.7	100.0	15.0
1000.2	0.460	0.460	99.5	100.0	10.0
501.2	-0.057	-0.057	1001	100.0	5.0
0.0	-0.380	-0.380	100.4	100.0	0.0
Cum Area	Y % Residual	Y Residual	Y Predicted	PERCENT	CONTROL ASEL

NEAR GUN 60, OUTDOOR-VEHICLE CONTROL-7

Cum Area 0.0	498.1	- 6	6634.1	7091.6	7265.5	7807.4	8311.5	8548.8	8553.1	8551.6	8547.2																	
Ö																												
Y % Residual 0.385	0.385	0.388	-2.099	-6.644	7.288	-1.345	0.898	0.00	0.000	0.000	0.000																	
Y Residual 0.385	0.385	0.300	-1.931	-5.515	6.705	-0.901	0.296	-1.740	-0.142	0.649	1.035																	
Y Predicted 99.6	9.06 6.00	0. W	0.00 00	88.5	85.3	67.9	32.7	1.7	0.1	9.0-	-1.0								86.4	0.8	110.6	8 0. 78	87.8	6.9	9.0	-10.7	-8.1	-5.7
PERCENT 100.0	0.00	9.0	92.0	83.0	92.0	67.0	33.0	0.0	0.0	0.0	0.0		-(x-c)/d)) [Sigmoid]						ပ	C StdErr	č	C Conflimits		۵	D StdErr	01	D Conflimits	
CONTROL ASEL	5.0	0.0	67.0	72.0	74.0	81.0	91.0	110.0	115.0	120.0	125.0		$\overline{}$		1.0	3.1	847.7	0.06	4.1-	- - -	-0.8	7.4-	9.	101.0	2.4	41.3	96.5	105.5
XY Pt #	(N) (າ ຈ	n 1	9	7	œ	o	0	11	12	13	X@50Y	Equation	Adjr2	2	Fit StdErr	F-stat	Confidence	∢	A StdErr	Αt	A Conflimits		₩.	B StdErr	Bt	B Conflimits	

NEAR GUN 60, OUTDOOR-VEHICLE CONTROL-8

idual Cum Area		τς -				30.289 7255.4		-4.194 7804.8		_	0.000																		
Y Residual Y% Residual		-10.323 -10							ï																				
Y Predicted Y Res																													
RCENT Y PR	100.0	100.0	100.0	100.0	100.0	100.0	0.06	50.0	10.0	0.0	0.0	0.0	0.0		moid]	•													
			_												(-(x-c)/d) [Sigmoid]	_							_					•••	
CONTROL ASEL	0.0	5.0	10.0	15.0	0.79	72.0	74.0	81.0	0.10	110.0	115.0	120.0	125.0	82.0	y=a+b/(1+exp(0.8	6.0	18.1	24.8	90.0	111.0	8.0	13.9	96.3	105.	-117.7	-117.7 13.7	13.7 13.7 18.6	13.7 13.7 13.7 142.8
XY Pt #	_	04	က	4	co.	9	7	œ	O	10	1	12	13	X@50Y	Equation	Adjr2	2	Fit StdErr	F-stat	Confidence	∢	A StdErr	A t	A Conflimits		00	B B StdErr	8 B StdErr B t	B B StdErr B t B Conflimits

Cum Area	0.0	499.8	999.5	1499.3	6679.5	7149.3	7328.6	7892.0	8443.5	8730.8	8734.5	8732.5	8728.5																	
Y % Residual	0.050	0.050	0.050	0.050	3.767	-11.121	4.341	2.019	-0.276	0.00	0.000	0.00	0.000																	
Y Pesidual	0.050	0.050	0.050	0.050	3.767	-9.119	3.993	1.474	-0.105	-1.768	0.018	0.671	0.870																	
Y Predicted	100.0	100.0	100.0	100.0	96.2	9. 1.19	88.0	71.5	38.1	1.8	-0.0	-0.7	6.0-		<u></u>	•					87.7	1.0	80.8	85.9	89.4	-11.6	L.3	-9.1	-13.9	-9.2
PERCENT	100.0	100.0	100.0	100.0	100.0	82.0	92.0	73.0	38.0	0.0	0.0	0.0	0.0		((x-c)/(02d))) [Cumulative]						ပ	C StdErr	č	C Conflimits		۵	D StdErr	ot 0	D Conflimits	
CONTROL ASEL	0.0	5.0	10.0	15.0	67.0	72.0	74.0	81.0	91.0	110.0	115.0	120.0	125.0	87.5	y = a + b0.5(1 + erf((x + er		1.0	3.6	611.9	0.06	-0.9	2.7	-0.5	7.4-	2.9	100.9	2.8	35.5	86.7	106.1
XY ₽*		N	ო	4	S)	9	7	ω	တ	9	=	12	1 3	X@50Y	Equation	Adjr2	2 2	Fit StdErr	F-stat	Confidence	⋖	A StdErr	At	A Conflimits		ග	B StdErr	8	B Conflimits	

Cum Area 0.0	1003.5	1505.Z 6699.5	7165.7	7343.1	1.1087	8458.2	8778.0	8784.2	8782.3	8777.3																	
Y % Residual -0.347	-0.347	1.341	6.964	-7.506	-3.045	5.552	0.00	0.00	0.00	0.00																	
Y Residual -0.347	-0.347	1.300	6.755	-6.080	-2.101	2.332	-2.556	-0.200	0.791	1.146																	
Y Predicted 100.3	. 6 6 6 6 6 6	100.3 85.7	90.2	87.1	1.17	39.7	2.6	0.5	- 0.8	1.1		_						88.0	0.1	8.06	86.2	89.7	-12.4	1.3	6.6	-14.7	-10.1
PERCENT 100.0	0.00	0.001 97.0	0.76	81 .0	0.69	42.0	0.0	0.0	0.0	0.0		f((x-c)/(02d))) [Cumulative]						ပ	C StdErr	Ç	C Conflimits		۵	D StdErr	01	D Conflimits	
CONTROL ASEL	0.0	15.0 67.0	72.0	74.0	81.0	0.10	110.0	115.0	120.0	125.0	87.8	y=a+b0.5(1+erf((x))	1.0	0.1	3.4	706.2	0.06	6.1-	2.0	9.0-	-5.0	2.5	101.6	2.8	36.7	96.6	106.7
X + 4 + 4	v 60 ·	4 ₁ 0	9	7	œ	Ø	9	=	12	£.	X@50Y	Equation	Adjr2	2	Fit StdErr	F-stat	Confidence	⋖	A StdErr	Αt	A Conflimits		∞	B StdErr	Bt	B Conflimits	

Cum Area	0.0	501.1	1002.2	1503.3	5902.4	6479.3	6839.6	6969.3	7351.9	7918.8	7925.4	7924.2	7919.0							,										
Y % Residual	-0.225	-0.224	-0.222	-0.216	5.057	-2.422	-15.539	6.461	2.009	0.000	0.00	0.000	0.000																	
Y Residual	-0.225	-0.224	-0.222	-0.216	4.652	-1.816	-9.013	4.329	3.504	-2.402	-0.396	0.726	1.303																	
Y Predicted	100.2	100.2	100.2	100.2	87.3	76.8	67.0	62.7	46.5	2.4	9.0	-0.7	-1.3			ı					79.8	1.6	49.0	76.8	85.8	-17.3	2.6	-6.7	-22.1	-12.6
PERCENT	100.0	100.0	100.0	100.0	92.0	75.0	58.0	67.0	20.0	0.0	0.0	0.0	0.0		f((x-c)/(02d))) [Cumulative]						ပ	C StdErr	Ct.	C Conflimits		۵	D StdErr	ot	D Confl⊥mits	
CONTROL ASEL	0.0	5.0	10.0	15.0	0.09	67.0	72.0	74.0	61.0	110.0	115.0	120.0	125.0	79.5	y=a+b0.5(1+erf((x))	0.1	0.1	4.0	452.4	0.06	1.8	2.8	9.0-	6.9	3.4	102.0	3.6	28.2	95.4	108.6
XY Pt *	-	α	က	4	2	9	7	80	O	5	=	5	13	X@50Y	Equation	Adjr2	2	Fit StdErr	F-stat	Confidence	⋖	A StdErr	Αt	A ConfLimits		œ	B StdErr	8	B Conflimits	

181 Cum Area 30 0.0 30 500.9				33 7006.4					0.0997																	
Y % Residual -0.190 -0.190	-0.190	-0.465	11.601	-38.66	14.79	0.0	0.0	0.0	0.00																	
Y Residual -0.190 -0.190	-0.190 -0.190	-0.419	3.539 8.120	-15.473	5.917	-1.377	-0.402	0.224	0.631																	
Y Predicted 100.2 100.2	100.2 100.2	90.4	6.19 0.19	55.5	34.1	4.1	0.4	-0.2	9.0-								75.9	7.5	49.6	73.1	78.7	9.6	2.1	4.6	5.7	13.3
PERCENT 100.0	100.0	90.0	7 80.0 7 0.0	40.0	40.0	0.0	0.0	0.0	0.0		d) [LogisticDoseRsp]						O	C StdErr	ot o	C Conflimits		۵	D StdErr	٥t	D Conflimits	
CONTROL ASEL 0.0 5.0	10.0	60.0	67.0 72.0	74.0	81.0	110.0	115.0	120.0	125.0	75.7		1.0	1.0	6.3	188.6	0.06	5.1-	3.9	4.0-	-8.6	5.6	7.101	5.2	19.5	92.1	111.2
XY Pt #	w 4	n (ø ~	€ 60	6	10	=	12	13	X@50Y	Equation	Adjr2	2	Fit StdErr	F-stat	Confidence	∢	A StdErr	Αt	A Conflimits		6	B StdErr	91	B Conflimits	

Cum Area 0.0 495.2 990.3 1485.5	5917.2 6540.6 6904.2 7019.2 7269.4 7369.1	7358.9 7358.9	
Y % Residual 0.969 0.969 0.969 0.970	0.874 -20.020 14.639 4.503 -49.574 0.000	0.00 0.00 0.00	
Y Residual 0.969 0.969 0.969 0.970	0.830 -13.614 10.687 2.476 -6.940 0.623 0.672	0.690 0.697	
Y Predicted 99.0 99.0 99.0	94.2 81.6 62.3 82.3 82.3 80.0 7.0 7.0	-0.7 -0.7	7. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
PERCENT 100.0 100.0 100.0	95.0 68.0 73.0 73.0 0.0 0.0	0.0 0.0 -(x-c)/d)) [Sigmoid]	C StdErr C t C Conflimits U D StdErr D t D Conflimits
CONTROL ASEL 0.0 5.0 10.0 15.0	60.0 67.0 72.0 74.0 81.0 110.0	_	99.0 3.0 32.9 32.9 4.4 4.4 6.701-1 8.701-1
χ - 2 ε 4 *	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 13 X@50Y Equation Adjr2 r2 Fit StdErr F - stat Confidence	A StdErr A t A ConfLimits B StdErr B t B ConfLimits

# 1	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
) ()	0.00	25 C	0.61	C. G. G.	
). ()	0.00	39.6	5 6 6 6 1 2	5 6	490.9
	10.0	100.0	286.2) IS.0) ISO	8. E8
	15.0	100.0	99.2	0.817	0.817	1487.7
	0.09	0.40	7.3 6	-0.740	-0.787	5929.2
	67.0	75.0	82.5	-7.537	-10.050	6557.8
	72.0	089	63.1	4.922	7.238	6925.9
	74.0	96.0	53.1	2.943	5.256	7042.2
	81.0	16.0	20.7	-4:712	-29.450	7293.1
	110.0	0.0	-0.4	0.425	0.000	7393.0
	115.0	0.0	-0.5	0.466	0.000	7390.8
	120.0	0.0	-0.5	0.481	0.000	7388.4
	125.0	0.0	-0.5	0.486	0.000	7386.0
X@50Y	74.6					
Equation	y=a+b/(1+exp(-(x-x))	(-(x-c)/d) [Sigmoid]				
	1.0					
	1.0					
Fit StdErr	3.6					
F-stat	612.9					
Confidence	90.06					
	-0.5	ပ	74.7			
A StdErr	1.8	C StdErr	0.5			
	-0.3	5	141.9			
A Conflimits	-3.8	C ConfLimits	73.8			
	2.8		75.7			
	2.66	۵	-4.8			
B StdErr	2.5	D StdErr	0.5			
	39.8	o t	-9.0			
B Conflimits	95.1	D Conflimits	-5.8			
	104.3		-3.8			

Cum Area	0.0	505.0	1009.9	1514.9	6048.2	6711.9	7135.6	7286.5	7704.9	8077.5	8078.2	8078.5	8078.7																	
Y % Residual	-0.994	-0.994	-0.994	-0.994	1.858	9.880	12.085	-3.291	6.841	0.000	0.000	0.000	0000																	
Y Residual	-0.994	-0.994	-0.994	10.994	1.858	9.880	-8.460	-2.303	3.421	-0.249	-0.082	-0.047	-0.04																	
Y Predicted	101.0	101.0	101.0	101.0	98.1	90.1	78.5	72.3	46.6	0.2	0.1	0.0	0.0		<u>-</u>	•					80.0	1.1	72.6	78.0	82.0	-10.5	1.8	-5.9	-13.7	-7.2
PERCENT	100.0	100.0	100.0	100.0	100.0	100.0	70.0	70.0	20.0	0.0	0.0	0.0	0.0		((x-c)/(02d))) [Cumulative]						O	C StdErr	5	C Conflimits		۵	C StdErr	01	D Conflimits	
CONTROL ASEL	0.0	5.0	10.0	15.0	90.0	67.0	72.0	74.0	91.0	110.0	115.0	120.0	125.0	80.1	y=a+b0.5(1+erf((x-	. 0.1	1.0	4.6	373.3	90.0	0.0	2.3	0.0	-4.2	4 .3	101.0	9.9	31.0	95.0	106.9
XY Pt *	*	ΟI	က	4	ιΩ	φ	7	ထ	თ	10	=	12	13	X@50Y	Equation	Adir2	ୂପ	Fit StdErr	F-stat	Confidence	⋖	A StdErr	Αt	A Conf⊔imits		60	B StdErr	8	B Conflimits	

XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	100.0	6.66	0.137	0.137	0.0
01	5.0	100.0	6.66	0.137	0.137	499.3
ო	10.0	100.0	6.66	0.137	0.137	9.866
4	15.0	100.0	6.66	0.137	0.137	1497.9
വ	0.09	95.0	94 54	0.804	0.846	5970.4
ဖ	0.79	75.0	78.4	-3.443	-4.591	6583.0
7	72.0	55.0	58.8	-3.821	-6.948	6928.5
80	74.0	29.0	49.9	9.129	15.473	7037.2
တ	81.0	17.0	2 5. F3	-4.261	-25.063	7281.1
10	110.0	0.0	-0.3	0.259	0.000	7382.0
=	115.0	0.0	-0.3	0.262	0.000	7380.7
12	120.0	0.0	-0.3	0.262	0.000	7379.4
13	125.0	0.0	-0.3	0.262	0.000	7378.1
X@50Y	74.0					
Equation	y=a+b0.5(1+erf((x-	f((x-c)/(û2d))) [Cumulative]	_			
Adjr2			•			
Q	0.1					
Fit StdErr	9.8					
F-stat	547.1					
Confidence	0.06					
⋖	6.0-	ပ	74.0			
A StdErr	9.1	C StdErr	9.0			
Αt	-0.1	Ç	125.1			
A Conflimits	-3.7	C Conflimits	72.9			
	3.2		75.1			
œ	100.1	۵	-8.8			
B StdErr	2.7	D StdErr	1.0			
Bt	37.7	O.t	-9.2			
B Conflimits	95.3	D Conflimits	-10.6			
	105.0		-7.1			

Cum Area 0.0 502.5 1005.0 1507.6 6708.9 7127.9 7263.3 7550.2 7631.9	
7 % Residual -0.504 -0.504 -0.504 -0.504 -0.504 -1.311 -1.311 -0.000	
Y Residual -0.504 -0.504 -0.504 -0.504 0.187 -7.157 -0.088 -0.057	
Y Predicted 100.5 100.5 100.5 100.5 99.8 92.1 73.2 62.0 0.1 0.1 0.1	- '
PERCENT 100.0 100.0 100.0 97.0 66.0 0.0 0.0	C StdErr C t C Conflimits D StdErr D t D Conflimits
CONTROL ASEL 0.0 5.0 10.0 15.0 67.0 72.0 74.0 81.0 110.0	
× − α α 4 α α ν α α ο τ τ τ τ #	X@50Y Equation Adjr2 r2 Fit StdErr F - stat Confidence A A StdErr A t A ConfLimits B StdErr B t

Cum Area 0.0 491.6 983.2 1474.9 6585.3 7056.5 7557.4 7608.4 7608.4 7608.4	
Y % Residual 1.677 1.677 1.677 -5.652 -6.803 5.733 -8.104 0.000 0.000 0.000	
Y Residual 1.677 1.677 1.677 -5.199 -5.499 -1.378 -0.332 0.273 0.273	
Y Predicted 98.0 98.0 98.0 98.0 98.0 98.0 1.0	77.3 196.2 76.6 76.6 31.2 10.2 8.8 8.8
PERCENT 100.0 100.0 100.0 100.0 92.0 83.0 83.0 17.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	C StdErr C t C ConfLimits D StdErr D t D ConfLimits
CONTROL ASEL 0.0 5.0 10.0 15.0 67.0 72.0 74.0 81.0 91.0 115.0 125.0 77.2 y=a+b/(1+(x/c)^2) 1.0 1.0 3.3 863.9	
XY Pt # 1 2 3 4 4 5 6 7 10 11 12 13 X@50Y Equation Adjr2 r2 Fit StdErr F- stat	A StdErr A t A Conflimits B StdErr B t B Conflimits

* 1 1 1	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
	0.0	100.0	0.7	99.930	99.930	0.0
	5.0	100.0	 	-1.106	-1.106	505.5
	10.0	100.0	101.1	-1.106	-1.106	1011.1
	15.0	100.0	101.1	-1.106	-1.106	1516.6
	0.79	100.0	99.1	0.874	0.874	6767.0
	72.0	100.0	94.3	5.748	5.748	7252.7
	74.0	0.06	90.4	-0.360	-0.400	7437.5
	81.0	0.09	63.1	-3.094	-5.157	7987.2
	91.0	20.0	17.3	2.739	13.694	8365.7
	110.0	0.0	0.8	-0.753	0.000	8464.0
	115.0	0.0	9.0	-0.378	0.000	8466.7
	120.0	0.0	0.2	-0.214	0.00	8468.1
13	125.0	0.0	0.1	-0.139	0000	8468.9
} 0	83.4					
Equation	_	d) [LogisticDoseRsp]				
Adjr2		:				
	4.0					
Fit StdErr	2.5					
F-stat	1399.4					
Confidence	0.06					
	101.1	ပ	83.3			
StdErr	7.	C StdErr	0.5			
	88.9	Ç	179.6			
A ConfLimits	0.66	C ConfLimits	82.5			
	103.2		84.2 54.2			
	-101.0	۵	-18.0			
B StdErr	1.8	D StdErr	4.			
	-56.5	Dt	-12.7			
B Conflimits	-104.3	D Conflimits	-20.6			
	8.26~		-15.4			

Cum Area 0.0 503.1 1006.2 1509.4 6679.8 7107.6 7709.8 8073.4 8255.8	8265.1 8263.3	
Y % Residual -0.625 -0.625 -0.625 -0.625 -0.625 -12.845 -11.736 -13.354 21.733	0.00 0.00 0.00	
Y Residual -0.625 -0.625 -0.625 -0.625 -0.625 -0.625 -0.844 -7.863 -6.143 -6.143	0.056 0.603	
Y Predicted 100.6 100.6 100.6 100.6 90.2 80.2 22.7 22.7 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9	- 0.1 . 0.1	8:18 6:105 7:005 8:105 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
PERCENT 100.0 100.0 100.0 100.0 92.0 67.0 67.0 29.0	istcDos	C StdErr C t C ConfLimits D StdErr D t D ConfLimits
CONTROL ASEL 0.0 10.0 15.0 67.0 74.0 81.0 110.0	_	6.1-0 6.0-1 6.0-1 7.0-1
X - 2 6 4 5 9 6 6 1 1 3 4 4 5 9 6 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 13 X@50Y Equation Adjr2 r2 Fit StdErr F - stat Confidence	A StdErr A t A ConfLimits B StdErr B t B ConfLimits

Cum Area 0.0 496.2 992.3 1488.5 6641.5 7103.4 7583.8 7652.5 7693.4 7693.4	
Y % Residual 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.767 0.000 0.000 0.000 0.000	
Y Residual 0.767 0.767 0.767 0.767 -5.669 4.746 -2.104 -0.498 6.837 -1.595 -1.595	
Y Predicted 99.2 99.2 99.2 99.2 99.2 99.2 14.1 19.5 16.1 16.1 16.1 16.1 16.1 16.1 16.1 16	76.9 4.0 7.77 7.77 7.20 6.0 6.0 8.0 8.0
PERCENT 100.0 100.0 100.0 91.0 90.0 72.0 19.0 0.0 0.0 0.0 0.0 0.0	C StdErr C t C Conflimits D StdErr D t D Conflimits
CONTROL ASEL 0.0 5.0 10.0 15.0 67.0 72.0 74.0 81.0 91.0 115.0 125.0 77.0 y=a+b/(1+exp(-(?) 1.0 3.6 663.0 90.0	99.2 1.7 1.7 102.3 -97.6 -40.9 -93.3
XY Pt # 1	A StdErr A t A Conflimits B StdErr B t B Conflimits

Cum Area 0.0	1003.8 8.8	1505.6	6010.5	6618.8	6915.5	6992.0	7110.1	7104.6	7100.5	7096.3	7092.2																	
Y % Residual -0.376	-0.376 -0.376	-0.376	4.130	-9.800	11.525	1.747	0000	0.000	0.00	0.00	0.00																	
Y Residual -0.376	-0.3/6 -0.376	-0.376	4.130	-6.566	5.762	0.577	-5.723	0.831	0.831	0.831	0.831																	
Y Predicted 100.4	2.00 4.4.4	100.4	95.9	73.6	44.2	32.4	5.7	-0.8	8 .0-	8 .0–	-0.8								71.17	0.5	155.1	70.3	71.9	-6.5	0.7	8 .8	-7.9	-5.2
PERCENT 100.0	100.0	100.0	100.0	0.79	50.0	33.0	0.0	0.0	0.0	0.0	0.0		f((x-c)/(02d))) [Cumulative]						O	C StdErr	Ot Ot	C Conf∐mits		۵	D StdErr	ot	D Conflimits	
CONTROL ASEL	10.0	15.0	0.09	67.0	72.0	74.0	81.0	110.0	115.0	120.0	125.0	69.4	y=a+b0.5(1+erf((x-		0.1	3.8	588.2	0.06	-0.8	1.8	-0.5	-4.2	2.5	101.2	5.6	38.3	96.4	106.0
XY Pt #	N W	4	വ	9	~	æ	o	10	=	12	13	X@50Y	Equation	Adjr2	2	Fit StdErr	F-stat	Confidence	⋖	A StdErr	At	A Conf∐mits		∞	B StdErr	B t	B Confl⊥mits	

Cum Area 0.0 500.5	1501.4	6606.9 6970.0 7086.5	7371.9 7517.9	7516.3 7514.7	7513.1								
Y % Residual -0.090 -0.090	-0.090 -0.090 5.193	-15.621 -5.598 21.310	-33.624 0.000	0.00 0.00 0.00	0.000								
Y Residual -0.090 -0.090	-0.090 5.193	-10.835 -3.359 14.917	-6.725 0.309	0.319	0.320								
Y Predicted 100.1	25.28 1.88	80.9 63.4 55.1	26.7 -0.3	6.0- 6.0-	-0.3	[6		75.2 1.2	65.2	77.3) 4 0.	0.4-1 0.4 0.4	D .O.I
PERCENT 100.0 100.0	1000	70.0 60.0 70.0	20.0	0.0	0.0	f((x-c)/(02d))) [Cumulative]		C C StdErr	C t		D StdErr	D t D Conflimits	
CONTROL ASEL 0.0 5.0	15.0 60.0	67.0 72.0 74.0	81.0 110.0	115.0 120.0	125.0 75.2	y=a+b0.5(1+erf((x 1.0 1.0	6.9 6.5.5 0.09	-0.9 4.6	1.0-	0.00	4.8	8.05 9.09 9.09	108.5
X - 2 c *) 4 r0 (v ∼ æ	e 6 6	12	13 X@50Y	Equation Adjr2 r2	Fit StdErr F-stat Confidence	A A StdErr	A t		B StdErr	B t B Conf∐mits	

XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
*	0.0	100.0	100.1	-0.120	-0.120	0.0
8	5.0	100.0	100.1	-0.120	-0.120	500.6
က	10.0	100.0	100.1	-0.120	-0.120	1001
4	15.0	100.0	100.1	-0.120	-0.120	1501.8
S.	0.09	100.0	97.0	3.017	3.017	5994.8
ၯ	67.0	77.0	83.8	-6.808	-8.841	6638.6
7	72.0	72.0	58.8	13.150	18.264	7001.1
œ	74.0	36.0	46.1	-10.121	-28.114	7106.1
ത	91.0	14.0	12.5	1.516	10.831	7295.5
5	110.0	0.0	0.1	-0.074	0.000	7349.2
=	115.0	0.0	0.1	-0.068	0.000	7349.4
12	120.0	0.0	0.1	-0.066	0000	7350.0
13	125.0	0.0	0.1	-0.066	0000	7349.9
X@50Y	73.4					
Equation	$y=a+b/(1+exp(-(x-1)^2)$	-(x-c)/d)) [Sigmoid]				
Adjr2	1.0					
. 22	1.0					
Fit StdErr	6.1					
F-stat	222.3					
Confidence	0.06					
⋖	0.1	ပ	73.4			
A StdErr	3.0	C StdErr	0.7			
At	0.0	ŏ	100.3			
A Conflimits	-5.4	C Conflimits	72.0			
	5.6		74.7			
മ	100.1	۵	-3.9			
B StdErr	4.2	D StdErr	0.8			
8 t	23.7	o o	-5.0			
B Conflimits	92.3	D Conflimits	-5.3			
	107.8		-2.5			

XY Pt *	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
-	0.0	100.0	100.4	-0.432	-0.432	0.0
α	5.0	100.0	100.4	-0.432	-0.432	502.2
ო	10.0	100.0	100.4	-0.432	-0.432	1004.3
4	15.0	100.0	100.4	-0.432	-0.432	1506.5
ĸ	0.09	100.0	97.7	2.278	2.278	6020.0
ဖ	0.79	75.0	75.9	-0.873	-1.163	6646.5
7	72.0	44.0	42.7	1.316	2.990	6945.8
∞	74.0	28.0	29.6	-1.573	-5.617	7017.8
O)	91.0	6.0	4.1	1.935	32.254	7115.8
9	110.0	0.0	0.3	-0.339	0.000	7.94.0
=	115.0	0.0	O.3	-0.339	0.000	7135.7
57	120.0	0.0	0.3	-0.339	0.00	7137.4
.	125.0	0.0	0.3	-0.339	0.000	7139.1
X@50Y	71.0					
Equation	y=a+b0.5(1+erf((x-	f((x-c)/(02d))) [Cumulative]	<u></u>			
Adjr2	1.0		•			
_ 2	1.0					
Fit StdErr	1.3					
F-stat	5077.1					
Confidence	90.0					
⋖	0.3	O	70.9			
A StdErr	9.0	C StdErr	0.1			
At	9.0	č	499.5			
A Conflimits	-0.8	C Conflimits	70.6			
	5.1		71.2			
₩.	100.1	۵	-5.7			
B StdErr	6.0	D StdErr	0.2			
Bt	113.1	ŏ	-24.7			
B Confl.imits	98.5	D Conflimits	-6.1			
	101.7		-5.2			

Cum Area	0.0	499.4	6.866	1498.3	7490.2	7982.3	8444 .1	8803.1	8988.7	9075.4	9077.6	9078.5	9079.4																	
ರ																														
Y % Residual	0.112	0.112	0.112	0.112	0.644	-5.234	7.115	-9.973	13.427	0.000	0000	0.000	0.000																	
Y Residual	0.112	0.112	0.112	0.112	0.644	-4.816	6.546	-4.986	3.357	-0.608	-0.270	-0.173	-0.143																	
Y Predicted	6.66 6	6.66	6.66	6.66	99.4	8.96	85.5	92.0	21.6	9.0	0.3	0.2	0.1								206	4.0	229.5	89.9	91.4	27.6	9.1 1.0	8.9	21.9	33.3
PERCENT	100.0	100.0	100.0	100.0	100.0	92.0	92.0	50.0	25.0	0.0	0.0	0.0	0.0		^ d) [LogisticDoseRsp]						ပ	C StdErr	ot Ot	C Conflimits		٥	D StdErr	01	D Conflimits	
CONTROL ASEL	0.0	5.0	10.0	15.0	75.0	80.0	85.0	90.0	95.0	110.0	115.0	120.0	125.0	906	$y=a+b/(1+(x/c)^2)$	1.0	1.0	3.4	745.8	0.06	0.1	1.7	0.1	-3.0	B. B.	8.66	2.3	43.3	95.5	104.0
XY Pt #		α	က	4	ro.	9	7	æ	တ	10	11	12	13	X@50Y	Equation	Adjr2	୕ୄୄୄୄ	Fit StdErr	F-stat	Confidence	⋖	A StdErr	At	A Conflimits		6	B StdErr	Bt	B Conflimits	

Cum Area	0.0	502.2	1004.5	1506.7	7523.4	8005.8	8457.7	8848.6	9144.8	9481.3	9495.6	9493.7	9483.7																	
Y % Residual	103.787	-0.449	-0.449	-0.449	1.851	-4.696	14.526	-39.306	19.339	0.000	0.000	0.000	0.00																	
Y Residual	103.787	-0.449	-0.449	-0.449	1.851	-4.226	14.526	-19.653	11.604	-5.312	-0.883	1.373	2.518																	
Y Predicted	-3.8	100.4	100.4	100.4	98.1	8	85.5	69.7	48.4	5.3	6.0	4.1-	-2.5								95.0	2.3	42.0	6.06	99.5	-16.0	5.5	-2.9	-26.2	-5.9
PERCENT	100.0	100.0	100.0	100.0	100.0	0.06	100.0	50.0	0.09	0.0	0.0	0.0	0.0		^ d) [LogisticDoseRsp]						O	C StdErr	o t	C Conflimits		۵	D StdErr	01	D Conflimits	
CONTROL ASEL	0.0	5.0	10.0	15.0	75.0	80.0	85.0	0.06	95.0	110.0	115.0	120.0	125.0	94.6	$y=a+b/(1+(x/c)^{2}$		1.0	9.6	91.7	0.06	100.4	4.0	23.4	95.6	108.3	-104.2	9.6	-11.0	-121.6	-86.9
XY Pt #	- -	8	ო	4	ιΩ	9	7	80	o	0	=	12	13	X@50Y	Equation	Adjr2	ୂପ	Fit StdErr	F-stat	Confidence	∢	A StdErr	A t	A ConfLimits		∞	B StdErr	B T	B Conflimits	

Cum Area	0.0	493.3	986.6	1479.9	7399.3	7892.6	8385.2	8831.2	9016.1	9029.3	9032.2	9021.9	9042.9																	
Y % Residual	1.343	1.343	1.343	1.343	-9.619	1.344	2.127	-0.389	2.684	0.000	0.000	0.000	0.000																	
Y Residual	1.343	1.343	1.343	1.343	-8.657	1.344	2.127	-0.272	0.268	-0.045	-0.045	-0.045	-0.045																	
Y Predicted	98.7	28.7	98.7	98.7	98.7	98.7	97.9	70.3	7.6	0.0	0.0	0.0	0.0		[9 /	•					91.5	0.3	359.2	91.0	92.0	2.7	0.3	8.6	2.1	3.3
PERCENT	100.0	100.0	100.0	100.0	0.06	100.0	100.0	70.0	10.0	0.0	0.0	0.0	0.0		f((x-c)/(02d))) [Cumulative]						O	C StdErr	Ct Ct	C Conflimits		۵	D StdErr	01	D Conflimits	
CONTROL ASEL	0.0	5.0	10.0	15.0	75.0	80.0	85.0	0.06	95.0	110.0	115.0	120.0	125.0	91.5	y=a+b0.5(1+erf((1.0	1.0	3.1	927.4	0.06	98.7	1.2	82.0	96.5	100.9	98.6	2.0	9.6	-102.3	-95.0
XY Pt #	~	8	ო	4	က	9	7	80	ത	0	=	12	13	X@50Y	Equation	Adjr2	. &	Fit StdErr	F-stat	Confidence	<	A StdErr	Αt	A Conflimits		80	B StdErr	æ t	B ConfLimits	

Cum Area	500.3	1000.5	1500.8	7503.9	8002.3	8486.8	8912.5	9206.2	9387.9	9388.0	9387.6	9387.1																	
Y % Residual -0.053	-0.053	-0.053	-0.053	0.021	0.922	-1.381	1.048	-0.666	0.000	0.00	0.000	0.00																	
Y Residual -0.053	-0.053	-0.053	-0.053	0.021	0.922	-1.270	0.786	-0.280	-0.229	0.076	0.0	0.0																	
Y Predicted 100.1	100.1	100.1	100.1	100.0	99.1	93.3	74.2	42.3	0.2	-0.1	-0.1	-0.1			1					93.9	0.1	1163.1	93.7	8	9.5	0.1	-43.0	-6.2	-5.7
PERCENT 100.0	100.0	100.0	100.0	100.0	100.0	92.0	75.0	42.0	0.0	0.0	0.0	0.0		f((x-c)/(û2d))) [Cumulative]	•					ပ	C StdErr	Ct.	C Conflimits		٥	D StdErr	D t	D Conflimits	
CONTROL ASEL	5.0	10.0	15.0	75.0	80.0	85.0	0.06	95.0	110.0	115.0	120.0	125.0	93.8	y=a+b0.5(1+erf((x))	1.0	1.0	9.0	23567.4	90.0	-0.1	0.3	-0.3	-0.7	0.5	1001	4.0	251.1	99.4	100.9
XY Pt #	8	ო	4	Ŋ	ဖ	7	œ	တ	10	=	12	13	X@50Y	Equation	Adjr2	୍ଦ	Fit StdErr	F-stat	Confidence	∢	A StdErr	At	A Conflimits		∞	B StdErr	94	B Conflimits	

Cum Area 0.0 503.3 1006.6 1509.9 7544.7 8017.0 8401.2 8631.8 8720.8 8744.9 8745.3	
Y % Residual -0.661 -0.661 -0.661 -0.661 1.571 3.985 -8.234 9.299 -6.141 0.000 0.000	
Y Residual -0.661 -0.661 -0.661 1.571 3.666 -4.776 -0.491 -0.097	
Y Predicted 100.7 100.7 100.7 100.7 100.7 100.7 98.4 88.3 62.8 29.9 8.5 0.1 0.1	86.9 86.9 86.3 86.3 86.3 86.3 86.3 86.3 86.3 86.3
PERCENT 100.0 100.0 100.0 100.0 92.0 58.0 33.0 8.0 0.0 0.0 0.0 0.0 0.0	C StdErr C t C ConfLimits D StdErr D t D ConfLimits
¥	90.0 90.0 1.0 1.0 9.1 8.19 8.103 8.103 8.103
XY Pt # 1	Confidence A StdErr A t A Conflimits B StdErr B t B Conflimits

Cum Area	0.0	488.7	977.5	1466.2	7330.9	7819.0	8302.3	8747.8	9026.0	9109.4	9107.8	9108.8	0 60 60																	
Y % Residual	2.254	2.254	2.254	2.254	-8.568	2.559	-5.669	2.011	-1.959	0.00	0.00	0.00	0000																	
Y Residual	2.254	2.254	2.254	2.254	-7.712	2.559	-5.102	1.609	-0.588	0.00	0.065	0.072	0.072																	
Y Predicted	7.76	7.76	7.76	7.76	7.76	97.4	95.1	78.4	30.6	-0.0	-0.1	-0.1	-0.1	•							93.2	0. ئ	270.8	95.6	93.8	-2.3	0.3	-7.6	-2.8	-1.7
PERCENT	100.0	100.0	100.0	100.0	0.06	100.0	0.00	0.08	30.0	0.0	0.0	0.0	0.0		·(x-c)/d)) [Sigmoid]						ပ	C StdErr	o t	C Conflimit:		۵	D StdErr	οt	D Conf⊥imits	
CONTROL ASEL	0.0	5.0	10.0	15.0	75.0	80.0	85.0	0.06	95.0	110.0	115.0	120.0	125.0	93.1	y=a+b/(1+exp(-(1.0	3.6	660.2	90.0	-0.1	1.8	0.0	-3.4	3.2	97.8		42.6	93.A	102.0
XY Pt #	•	Q	က	4	တ	ဖ	7	œ	တ	9	=	12	_	X@50Y	Equation	Adjr2	୍ଧ	Fit StdErr	F-stat	Confidence	∢	A StdErr	At	A ConfLimits		∞	B StdErr	B t	B Conflimits	

Cum Area	0.0	503.0	1006.1	1509.1	7516.3	7943.6	8271.4	8472.0	8563.3	8592.8	8589.2	8585.5	8581.8																	
Y % Residual	-0.609	-0.609	-0.609	-0.609	7.818	-10.066	-6.100	30.360	0.000	0.000	0000	0.000	0.00																	
Y Residual	-0.609	-0.609	-0.609	-0.609	7.818	-7.047	-3.050	12.144	-10.339	0.675	0.741	0.747	0.747																	
Y Predicted	100.6	100.6	100.6	100.6	92.2	77.0	53.0	27.9	10.3	-0.7	-0.7	-0.7	-0.7		<u></u>	•					85.6	6.0	92.0	83.9	87.3	7.7	1.2	-6.1	6.6 1	-5.4
PERCENT	100.0	100.0	100.0	100.0	100.0	70.0	50.0	40.0	0.0	0.0	0.0	0.0	0.0		(x-c)/(û2d))) [Cumulative]	,					O	C StdErr	Ct	C ConfLimits		۵	D StdErr	Dt	D Conflimits	
CONTROL ASEL	0.0	5.0	10.0	15.0	75.0	80.0	85.0	90.0	95.0	110.0	115.0	120.0	125.0	85.6	y=a+b0.5(1+erf()		1.0	6.5	199.3	0.06	-0.7	3.2	-0.2	9.9-	5.1	101.4	4.6	22.2	93.0	109.7
XY Pt #	_	α	ო	4	ഹ	9	7	ထ	O	9	=	12	13	X@50Y	Equation	Adjr2	<u>Q</u>	Fit StdErr	F-stat	Confidence	⋖	A StdErr	Αt	A ConfLimits		8	B StdErr	Bt	B Conflimits	

I Cum Area	_	36	-			7987.9																								
Y % Residua	101.449	-0.315	-0.315	-0.315	2.303	2.491	-16.975	28.685	0000	0.00	0.000	0.00	0000																	
Y Pesidual	101,449	-0.315	-0.315	-0.315	2.303	2.292	-9.845	14.343	-13.015	0.871	1.240	1.370	1418	•																
Y Predicted	4.1-	100.3	100.3	100.3	7.76	89.7	67.8	35.7	13.0	-0.9	-1.2	4.1-	4.1-	•							87.9	0.0		87.9	87.9	-23.0	5.0	9.4-	-32.2	-13.7
PERCENT	100.0	100.0	100.0	100.0	100.0	92.0	58.0	50.0	0.0	0.0	0.0	0.0	0.0		d) [LogisticDoseRsp]						O	C StdErr	ot	C ConfLimits		۵	D StdErr	٥t	D Conflimits	
CONTROL ASEL	0.0	5.0	10.0	15.0	75.0	80.0	85.0	90.0	95.0	110.0	115.0	120.0	125.0	87.8	$y=a+b/(1+(x/c)^{-1}$	1.0	1.0	7.4	160.3	0.06	100.3	3.5	28.6	93.9	106.8	-101.8	5.5	-18.4	-111.9	9.16
XY Pt #	-	01	က	4	S	9	7	œ	O	9	=	12	13	X@50Y	Equation	Adjr2	୕ୄୄୄୄୄ	Fit StdErr	F-stat	Confidence	∢	A StdErr	At	A Conflimits		ω	B StdErr	B t	B Conflimits	

idual Cum Area	0.043 0.0	0.043 499.8	0.043 999.6	0.043 1499.4			6.298 8237.5		-0.620 8672.3	0.000 8814.5		0.000 8814.7	0.000 8812.2																	
Y Residual Y % Residua	0.043		0.043	0.043				ı			0.115 0																			
Y Predicted Y F	100.0	100.0	100.0	100.0	90.6	79.4	62.8	43.2	25.2	7.7	-0.1	-0.5	-0.5								88.4	9.0	223.5	87.6	89.1	-10.1	9.0	-17.0	-11.2	0.61
PERCENT	100.0	100.0	100.0	100.0	92.0	75.0	67.0	42.0	25.0	0.0	0.0	0.0	0.0		(x-c)/(û2d))) [Cumulative]						O	C StdErr	Ct	C Conflimits		۵	D StdErr	÷	D Conflimits	
CONTROL ASEL	0.0	5.0	10.0	15.0	75.0	80.0	85.0	90.0	95.0	110.0	115.0	120.0	125.0	88.3	y=a+b0.5(1+erf((x-c)/(6))		0.7	2.2	1627.3	0.06	0.5	7.0	-0.5	-2.7	1.6	100.5	1.6	62.1	97.5	103.5
XY Pt #		СI	ო	4	ഹ	ဖ	~	80	တ	10	-	12	13	X@50Y	Equation	Adjr2	_ 2	Fit StdErr	F-stat	Confidence	⋖	A StdErr	At	A Conflimits		6	B StdErr	B ‡	B ConfLimits	

Cum Area 0.0 504.9 1009.8 1514.7 7562.5	8038.8 8468.1 8816.1 9058.0 9279.6	9281.8 9279.1	
Y % Residual -0.977 -0.977 -0.977 -0.977	8.339 0.963 6.435 0.000	00.00 00.00	
Y Residual -0.977 -0.977 -0.977 -0.977	8.339 -8.866 0.578 2.574 -1.874	0.493 0.586 0.493	
Y Predicted 101.0 101.0 101.0 97.9	91.7 7.89 7.89 37.4 1.9		92.1 118.4 90.7 93.5 1.2 1.2 1.3 -6.8
PERCENT 100.0 100.0 100.0 100.0	0.00 0.00 0.00 0.00 0.00)) ((pa	C StdErr C t C t C ConfLimits D StdErr D t D ConfLimits
CONTROL ASEL 0.0 5.0 10.0 15.0 75.0	80.0 85.0 90.0 95.0 115.0	-	6.0- 6.0- 6.10- 6.10- 6.0- 6.0- 6.0- 6.0- 6.0- 6.0- 6.0- 6.
X -0040 #	o r & e 0 = 6	12 13 X@50Y Equation Adjr2 r2 Fit StdErr F-stat Confidence	A StdErr A t A Conflimits B StdErr B t B Conflimits

Cum Area 0.0 487.6 975.1 1462.7 7279.2	7712.1 8074.6 8326.4 8463.6 8552.0 8552.6	8548. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4		
Y % Residual 2.488 2.488 2.488 2.488 -29.742	9.959 10.796 -27.102 9.111 0.000	0000		
Y Residual 2.488 2.488 2.488 -2.488	8.963 7.557 -8.131 1.822 -0.507 0.188	0.0535 3.05 3.05 3.05 3.05 3.05 3.05 3.0		
Y Predicted 97.5 97.5 97.5 97.5 97.5 97.5	0. 4. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.		0. 4. 0. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	
PERCENT 100.0 100.0 100.0 100.0	0.00 0.00 0.00 0.00 0.00 0.00		C StdErr C t C t C ConfLimits D StdErr D t D ConfLimits	
CONTROL ASEL 0.0 5.0 10.0 15.0 75.0	80.0 85.0 90.0 95.0 1.0.0 1.5.0		8.6.4 8.8.4 8.4 8	0.60
× - 2 ε 4 ε	0 ~ 8 6 1 5	13 X@50Y Equation Adjr2 r2 Fit StdErr F-stat	A StdErr A t A ConfLimits B StdErr B t B ConfLimits	

Cum Area 0.0 500.1 1000.2 1500.3	7493.2 7962.5 8345.2 8627.8 8662.8	8678.2 8678.2	
Y % Residual -0.022 -0.022 -0.022	2.631 -6.445 -46.344 55.637 0.000	0000	
Y Residual -0.022 -0.022 -0.022	2.631 -5.350 5.936 -7.879 -1.077	20.1 20.1	
Y Predicted 100.0 100.0 100.0	97.8 88.3 61.1 7.1 6.1.0	5. C. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	20 20 20 20 20 20 20 20 20 20 20 20 20 2
PERCENT 100.0 100.0 100.0	100.0 83.0 67.0 16.0 0.0 0.0	0.0 (x-c)/d)) [Sigmoid]	C StdErr C t C ConfLimits D StdErr D t D ConfLimits
CONTROL ASEL 0.0 5.0 10.0	0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01	<u> </u>	95.04.0 95.0.0 95.0.0 95.0.0 95.0.0 95.0.0 95.0.0 95.0.0 95.0.0 95.0.0
X - αω4π F	v ⊛ ≻ ∞ ⊕ Ç <u>† </u> Ç	X@50Y X@50Y Equation Adjr2 r2 Fit StdErr F-stat Confidence	A StdErr A t A ConfLimits B StdErr B t B ConfLimits

Appendix E: Subject Response Data and Transition Analysis Curves, Grouped by Measurement Sets, for Blast Sounds

Figure E1

Test Source: Large Blast

Condition: Windows Closed

Control Source: Vehicles Data Included: Set 1

Table E1		LARGE BLAST,	LARGE BLAST, SET 1 - VEHICLE CONTROLS	CONTROLS		
XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
	0.0	100.0	6.66	0.085	0.085	0.0
8	5.0	100.0	6.66	0.117	0.117	499.5
ო	10.0	100.0	93.8	0.174	0.174	938.8
4	15.0	100.0	2.66	0.276	0.276	1497.7
ည	47.0	88.0	6.06	-2.893	-3.288	4617.4
ø	52.0	0.06	7.48	5.260	5.844	5057.7
7	55.0	75.0	79.6	-4.609	-6.146	5304.5
œ	61.0	0.69	65.8	3.154	4.571	5743.1
တ	65.0	53.0	54.6	-1.620	-3.057	5984.4
9	110.0	0.0	0.3	-0.284	0.00	6641.5
=======================================	115.0	0.0	0.0	-0.015	0.000	6642.2
12	120.0	0.0	-0.1	0.135	0.000	6641.9
13	125.0	0.0	-0.5	0.219	0000	6641.0
X@50Y	65.6					
Equation	ŀ	(x-c)/d)) [Sigmoid]				
Adjr2	1.0					
Q	1.0					
Fit StdErr	2.8					
F-stat	974.0					
Confidence	90.0					
⋖	-0.3	ပ	9.99			
A StdErr	4.1	C StdErr	1.0			
Αt	-0.2	Ct	66.5			
A Conflimits	-3.0	C Conflimits	64.8			
	2.3		68.5			
∞	100.3	۵	-8.5			
B StdErr	2.1	D StdErr				
B t	48.0	ot 0	-8.1			
B Conflimits	96.4	D Conflimits	-10.4			
	1.40		9.9-			

Figure E2

Test Source: Small Blast

Condition: Windows Closed

Control Source: Vehicles
Data Included: Set 1

Cum Area 0.0 497.7	995.5 1493.2 4164.4	4604.9	5064.8	5122.9	5266.8	5267.9	5269.2	5270.2																	
Y % Residual -0.555 -0.555	-0.555 -0.555 0.917	6.253	24.401	-11.437	0.000	0.000	0.000	0000																	
Y Residual -0.550 -0.550	-0.550 -0.550 0.871	5.315	10.981	-2.516	-0.217	-0.214	-0.213	-0.212																	
Y Predicted 99.5	99 99 90 90 90 90 90 90 90 90 90 90 90 9	79.7	<u>2</u> 8 6 0	24.5	0.5	0.2	0.2	0.2								52.3	0.7	76.0	51.0	53.5	13.0	2.2	6.3 5.9	0.0	17.1
PERCENT 99.0	0.000	85.0	4 4 5.0	22.0	0.0	0.0	0.0	0.0		d) [LogisticDoseRsp]						O	C StdErr	Ç	C Conflimits		۵	D StdErr	οt	D Conflimits	
CONTROL ASEL 0.0 5.0	15.0 15.0 42.0	47.0	55.0	57.0	110.0	115.0	120.0	125.0	52.2	$y=a+b/(1+(x/c)^{-1}$		0.1	5.7	240.5	90.06	0.2	2.8	0.1	-5.0	5.4	89.3	4.0	25.0	92.0	106.6
×	ა 4 ი	0 1	- ω	တ	9	Ξ.	42	13	X@50Y	Equation	Adjr2	2	Fit StdErr	F-stat	Confidence	∢	A StdErr	Αt	A ConfLimits		മ	B StdErr	8	B ConfLimits	

SMALL BLAST, SET 1 - VEHICLE CONTROLS

Table E2

Figure E3

Test Source: Large Blast

Condition: Windows Closed

Control Source: White Noise

Data Included: Set 1

Table E3		LARGE BLAST, SET 1-NOISE CONTROLS	SET 1-NOISE C	ONTROLS		
XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	100.0	100.0	0.049	0.049	0.0
Ø	5.0	100.0	6.66	0.059	0.059	499.7
က	10.0	100.0	6.66	0.084	0.084	999.4
4	15.0	100.0	6.66	0.147	0.147	1498.8
ည	65.0	62.0	64 .3	-2.320	-3.742	6052.5
9	70.0	52.0	53.8	-1.765	-3.395	6348.0
7	75.0	20.0	42.9	7.097	14.194	6589.6
œ	80.0	32.0	32.5	-0.508	-1.588	67777.8
O	85.0	20.0	23.3	-3.259	-16.295	6916.6
0	110.0	0.0	1.0	-0.975	0.00	7141.9
=	115.0	0.0	-0.0	0.021	0.00	7144.1
12	120.0	0.0	9.0-	0.553	0.000	7142.5
13	125.0	0.0	-0.8	0.818	0.000	7139.0
X@50Y	71.7					
Equation	y=a+b0.5(1+erf((x-1))	f((x-c)/(û2d))) [Cumulative]	[9]			
Adjr2	1.0		•			
ū	0.1					
Fit StdErr	2.8					
F-stat	887.4					
Confidence	0.06					
⋖	-1.0	ပ	72.0			
A StdErr	1.7	C StdErr	0.8			
Αt	9.0-	Ç	86.7			
A Conf⊔mits	1.4-	C ConfLimits	70.5			
	2.0		73.5			
6	101.0	Ω	-18.5			
B StdErr	2.2	D StdErr	6 . L			
B ‡	45.3	ō	8.6-			
B Conflimits	6.96	D ConfLimits	-21.9			
	105.1		-15.0			

Figure E4

Condition: Windows Closed

Table E4		LARGE BLAST, SET 2-VEHICLE CONTROLS	SET 2-VEHICLE	CONTROLS		
XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	100.0	100.1	-0.080	-0.080	0.0
8	5.0	100.0	1001	-0.080	-0.080	500.4
ო	10.0	100.0	100.1	-0.080	-0.080	1000.8
4	15.0	100.0	1001	-0.080	-0.080	1501.2
S)	47.0	85.0	83.7	1.287	1.514	4640.3
9	52.0	55.0	59.9	-4.913	-8.933	5003.9
7	55.0	55.0	43.0	11.989	21.799	5158.1
ထ	22.0	23.0	32.8	-9.837	-42.771	5233.7
O	65.0	12.0	9.1	2.866	23.887	5384.2
0	110.0	0.0	0.3	-0.276	0.00	5449.8
=	115.0	0.0	0.3	-0.269	0.00	5451.1
12	120.0	0.0	0.3	-0.265	0.00	5452.5
13	125.0	0.0	0.3	-0.263	0.000	5453.9
X@50Y	53.7					
Equation	$y=a+b/(1+(x/c)^2 d)$	d) [LogisticDoseRsp]				
Adjr2		•				
2	0.1					
Fit StdErr	5.5					
F-stat	252.6					
Confidence	0.06					
∢	0.0	ပ	53.7			
A StdErr	2.7	C StdErr	0.7			
At	0.1	5	78.1			
A Conflimits	-4.7	C Conflimits	52.5			
	5.2		55.0			
6	8.66	۵	12.2			
B StdErr	9.0 0.0	D StdErr	2.1			
8	25.7	ōţ	5.9			
B Conflimits	92.7	D Conflimits	8.4			
	107.0		16.0			

Figure E5

Condition: Windows Closed

Table E5		SMALL BLAST, SET 2-VEHICLE CONTROLS	SET 2-VEHICLE	CONTROLS		
XY P. *	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	0.66	-0.2	99.172	100.174	0.0
0	5.0	0.66	6.66	-0.853	-0.862	499.3
ဗ	10.0	0.66	6.66	-0.852	-0.861	998.5
4	15.0	0.66	8.66	-0.840	0.848	1497.8
5	42.0	97.0	83.9	13.135	13.541	4103.3
9	47.0	29.0	70.3	-11.282	-19.122	4490.5
7	52.0	46.0	53.8	-7.758	-16.865	4801.1
80	55.0	54.0	43.9	10.073	18.654	4947.5
O	57.0	38.0	37.9	0.146	0.385	5029.2
10	110.0	0.0	9 .0	-0.426	0.00	5469.8
11	115.0	0.0	0.3	-0.266	0.00	5471.5
12	120.0	0.0	0.2	-0.153	0.00	5472.5
13	125.0	0.0	0.1	-0.072	0.000	5473.1
X@50Y	53.1					
Equation	$y=a+b/(1+(x/c)^4)$	d) [LogisticDoseRsp]				
Adjr2	1.0					
બ	0.7					
Fit StdErr	7.2					
F-stat	138.7					
confidence	0.06					
⋖	6.66	ပ	53.2			
A StdErr	3.6	C StdErr	- 4.			
+	27.9	5	37.2			
A Conflimits	93.3	C Conflimits	50.5			
	106.4		55.8			
œ	-100.0	۵	-7.0			
B StdErr	5.3	D StdErr	1.7			
B t	-19.0	oţ	0.4			
B Conflimits	-109.7	D Conflimits	-10.2			
	-90.4		-3.8 -			

Figure E6

Condition: Windows Closed

Control Source: White Noise

Table E6		LARGE BLAST, SET 2-NOISE CONTROLS	SET 2-NOISE C	ONTROLS		
XY Pt *	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	100.0	100.0	-0.025	-0.025	0.0
8	5.0	100.0	100.0	-0.025	-0.025	500.1
ო	10.0	100.0	100.0	-0.025	-0.025	1000.3
4	15.0	100.0	100.0	-0.025	-0.025	1500.4
ທ	65.0	44.0	43.0	0.975	2.217	6205.4
9	70.0	15.0	17.8	-2.834	-18.891	6351.0
7	75.0	8.0	6.9	1.093	13.662	6408.3
80	80.0	8.0	3.2	4.833	60.410	6431.8
O	85.0	3.0	6 .	1.070	35.676	6444.0
0	110.0	0.0	<u>1.3</u>	-1.264	0.00	6478.7
=	115.0	0.0	1.3	-1.260	0.000	6485.4
12	120.0	0.0	1.3	-1.258	0.00	6491.1
13	125.0	0.0	1.3	-1.257	0.00	6497.5
X@50Y	63.9					
Equation		^d) [LogisticDoseRsp]				
Adjr2						
2	0.1					
Fit StdErr	2.3					
F-stat	1804.9					
Confidence	0.06					
⋖	1.3	ပ	63.8			
A StdErr	6.0	C StdErr	0 .4			
A t	1.3	င်	160.0			
A Conflimits	-0.5	C Conflimits	63.1			
	3.0		64.6			
∞	98.8	۵	17.4			
B StdErr	4.1	D StdErr	2.1			
8 t	69.3	οt	8.5			
B Conflimits	96.2	D Conflimits	13.6			
	101.4		24 1.2			

Figure E7

Condition: Windows Closed

Table E7		LARGE BLAST,	LARGE BLAST, SET 3-VEHICLE CONTROLS	CONTROLS		
XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
-	0.0	100.0	0.8	99.179	99.179	0.0
α	5.0	100.0	100.2	-0.244	-0.244	501.2
ო	10.0	100.0	100.2	-0.244	-0.244	1002.4
4	15.0	100.0	100.2	-0.244	-0.244	1503.7
တ	47.0	87.0	8 4.1	2.859	3.287	4659.2
ဖ	52.0	47.0	54.4	-7.352	-15.642	5011.5
7	55.0	20.0	34.4	15.581	31.163	5143.8
Φ	57.0	11.0	23.9	-12.855	-116.863	5201.6
O	65.0	11.0	5.0	6.031	54.827	5297.4
9	110.0	0.0	0.8	-0.823	0.00	5354.4
=	115.0	0.0	0.8	-0.822	0.00	5358.2
12	120.0	0.0	0.8	-0.822	0.00	5362.8
13	125.0	0.0	0.8	-0.821	0.000	5367.3
X@50Y	52.6					
Equation	<	d) [LogisticDoseRsp]				
Adjr2	1.0					
언	1.0					
Fit StdErr	7.5					
F-stat	139.9					
Confidence	0.06					
⋖	100.2	ပ	52.5			
A StdErr	3.7	C StdErr	0.8			
Αt	56.9	č	63.7			
A Conf∐mits	93.4	C Conflimits	51.0			
	107.1		2 2			
8	-99.4	۵	-14.7			
B StdErr	5.2	D StdErr	3.4			
B t	-19.0	o o	4.4			
B Conflimits	-109.0	D Conflimits	-20.9			
	-89.8		-8.5			

Figure E8

Condition: Windows Closed

Cum Area	0.0	498.9	6.766	1496.8	4066.3	4392.5	4612.4	4699.7	4743.5	4918.0	4919.3	4920.4	4921.5																	
Y % Residual	99.831	-0.796	-0.796	-0.790	18.097	-109.799	31.806	37.171	-288.774	0.000	0.000	0.000	0.000																	
Y Residual	98.833	-0.788	-0.788	-0.782	16.649	-28.548	15.903	14.497	-14.439	-0.266	-0.235	-0.215	-0.201																	
Y Predicted	0.5	8. 66 8. 8.	8.66	8.66	75.4	54.5	8	24.5	19.4	0.3	0.2	0.2	0.2								48.0	2.3	20.7	43.8	52.3	-8.4	3.3	-2.5	-14.4	-2.3
PERCENT	0.00	0.66	0.66	0.00	92.0	26.0	50.0	39.0	5.0	0.0	0.0	0.0	0.0		d) [LogisticDoseRsp]						O	C StdErr	Ct Ct	C Conflimits		۵	D StdErr	ot 0	D Conflimits	
CONTROL ASEL	0.0	5.0	10.0	15.0	42.0	47.0	52.0	55.0	27.0	110.0	115.0	120.0	125.0	48.0	$y=a+b/(1+(x/c)^{-1}c$		6.0	14.0	37.7	0.06	8.66	7.0	14.3	87.0	112.6	9.66	10.0	-10.0	-117.9	-81.3
XY Pt #	(α	က	4	വ	9	7	ထ	o,	0	=	12	13	X@50Y	Equation	Adjr2	인	Fit StdErr	F-stat	Confidence	⋖	A StdErr	Αt	A Conflimits		6 0	B StdErr	B t	B Conf∐mits	

SMALL BLAST, SET 3-VEHICLE CONTROLS

Table E8

Figure E9

Condition: Windows Closed

Control Source: White Noise

Table E9		LARGE BLAST, SET 3-NOISE CONTROLS	SET 3-NOISE (CONTROLS		
XY Pt *	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	100.0	100.0	-0.012	-0.012	0.0
Q	5.0	100.0	100.0	-0.012	-0.012	500.1
ო	10.0	100.0	100.0	-0.012	-0.012	10001
4	15.0	100.0	100.0	-0.012	-0.012	1500.2
2	65.0	32.0	31.0	0.993	3.103	6016.2
9	70.0	11.0	13.7	-2.743	-24.937	6123.1
7	75.0	5.0	0.9	-1.027	-20.530	6169.7
∞	80.0	11.0	3.0	8.045	73.138	6191.0
တ	65.0	0.0	1.7	-1.741	0.000	6202.2
10	110.0	0.0	6.0	-0.881	0.000	6229.2
1	115.0	0.0	6.0	-0.871	0.000	6233.5
12	120.0	0.0	6.0	-0.866	0.000	6237.8
13	125.0	0.0	6.0	-0.863	0.000	6242.4
X@50Y	61.5					
Equation	$y=a+b/(1+(x/c)^{-1}$	d) [LogisticDoseRsp]				
Adjr2	1.0					
ъ.	0.					
Fit StdErr	3.0					
F-stat	933.6					
Confidence	0.06					
⋖	6.0	ပ	61.4			
A StdErr	4.1	C StdErr	1:1			
A t	9.0	č	<u>\$</u>			
A Conflimits	-1.6	C Conflimits	59.3			
	3.4		63.5			
8	39.5	۵	14.5			
B StdErr	2.0	D StdErr	3.3			
Bt	48.9	οt	4.4			
B Conflimits	95.4	D Conflimits	8.4			
	102.9		20.5			

Figure E10

Condition: Windows Closed

Cum Area	0.0	501.8	1003.6	1505.3	4667.9	5120.5	5376.5	5538.8	6105.7	6958.5	6959.1	6958.9	6958.4																	
Y % Residual	-0.357	-0.356	-0.352	-0.338	2.960	1.663	4.666	-13.388	3.910	0000	0.000	0.000	0.00																	
Y Residual	-0.357	-0.356	-0.352	-0.338	2.841	1.480	4.060	-9.372	2.503	-0.277	-0.020	0.078	0.111																	
Y Predicted	100.4	100.4	100.4	100.3	93.2	87.5	82.9	79.4	61.5	0.3	0.0	-0.1	-0.1								69.4	2.0	33.9	65.7	73.2	-15.3	2.7	-5.7	-20.3	-10.4
PERCENT	100.0	100.0	100.0	100.0	0.96	89.0	87.0	70.0	6.0	0.0	0.0	0.0	0.0		(x-c)/(02d)) [Cumulative]						ပ	C StdErr	ວັ	C Conflimits		۵	D StdErr	٥	D Conflimits	
CONTROL ASEL	0.0	5.0	10.0	15.0	47.0	52.0	55.0	22.0	65.0	110.0	115.0	120.0	125.0	69.4	y=a+b0.5(1+erf((x-		1.0	3.7	583.3	0.06	1.0-	<u>۔</u> ق	1.0-	-3.6	හ. හ.	100.5	2.7	37.5	92.6	105.4
XY Pt #	_	81	က	4	က	9	7	&	တ	5	=	12	13	X@50Y	Equation	Adjr2	. 22	Fit StdErr	F-stat	Confidence	⋖	A StdErr	Αt	A Conflimits		œ	B StdErr	B	B ConfLimits	

LARGE BLAST, SET 4-VEHICLE CONTROLS

Table E10

Figure E11

Condition: Windows Closed

Table E11		SMALL BLAST, SET 4-VEHICLE CONTROLS	SET 4-VEHICLE	CONTROLS		
XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Are
_	0.0	0.66	99.5	-0.186	-0.188	0.0
C4	5.0	0.66	99.5	-0.159	-0.160	495.6
ო	10.0	0.66	99.1	-0.088	-0.088	991.
4	15.0	0.66	6.86	0.083	0.084	1486.0
S	42.0	92.0	88.0	4.045	4.396	4071.6
9	47.0	76.0	81.5	-5.485	-7.217	4496.0
7	52.0	0.69	73.1	-4.063	-5.889	4883.
∞	55.0	80.0	67.2	12.826	16.032	5093.7
တ	57.0	. 56.0	63.0	-6.968	-12.443	5223.6
9	110.0	0.0	0.2	-0.203	0.000	6242.(
=	115.0	0.0	0.0	-0.002	0.000	6242.4
2	120.0	0.0	-0.1	0.083	0.000	6242.
13	125.0	0.0	-0.1	0.117	0.00	6241.7
X@50Y	62.8					
Equation	y=a+b0.5(1+erf((x-	y=a+b0.5(1+erf((x-c)/(02d))) [Cumulative]	[a]			
Adjr2	1.0		•			
2	0.1					
Fit StdErr	55					
F-stat	238.7					
Confidence	0.06					
⋖	-0.1	Ç	63.0			
A SMErr	2.8	C StdErr	3.5			
At	-0.0	ct	17.8			
A Conflimits	-5.3	C Conflimits	56.5			
	5.1		69.5			
6 0	89.3 8	۵	-17.4			
B StdErr	4.2	D StdErr	5.7			
	53.9	ot 0	-3.0			
B Conflimits	91.7	D Conflimits	-27.8			
	106.9		-6.9			

Figure E12

Condition: Windows Closed

Control Source: White Noise

Table E12		LARGE BLAST, SET 4-NOISE CONTROLS	SET 4-NOISE C	CONTROLS		
XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
-	0.0	100.0	99.5	0.467	0.467	0.0
~	5.0	100.0	99.5	0.469	0.469	497.7
ო	10.0	100.0	99.5	0.473	0.473	995.3
4	15.0	100.0	99.5	0.482	0.482	1492.9
က	60.0	87.0	89.1	-2.137	-2.456	5896.3
9	65.0	77.0	80.2	-3.216	-4.176	6321.6
7	70.0	70.0	66.5	3.535	5.050	6690.3
œ	75.0	52.0	49.1	2.949	5.671	6980.0
o)	80.0	28.0	31.8	-3.754	-13.408	7181.0
9	110.0	0.0	0.1	-0.148	0.00	7431.3
=	115.0	0.0	-0.5	0.166	0.00	7431.1
12	120.0	0.0	-0.3	0.319	0.00	7429.9
13	125.0	0.0	-0.4	0.394	0.000	7428.1
X@50Y						
Equation	$y = a + b/(1 + \theta xp(-(x - c))$	-(x-c)/d)) [Sigmoid]				
Adjr2						
인	1.0					
Fit StdErr	2.4					
F-stat	1320.3	•				
Confidence	90.0					
⋖	-0.5	ပ	74.9			
A StdErr	1.2	C StdErr	0.5			
At	-0.4	ö	155.8			
A Confilmits	-2.7	C Conflimits	74.0			
	1.8		75.7			
∞	100.0	۵	-6.9			
B StdErr	1.7	D StdErr	0.5			
B t	57.8	D.t	-13.7			
B Conflimits	8.98	D Conflimits	-7.8			
	103.2		-6.0			

Figure E13

Condition: Windows Closed

Table E13		LARGE BLAST, SET 5-VEHICLE CONTROLS	SET 5-VEHICLE	CONTROLS		
XY R*	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0:0	100.0	100.8	-0.801	-0.801	0.0
Ø	5.0	100.0	100.8	-0.801	-0.801	504.0
ო	10.0	100.0	100.8	-0.801	-0.80	1008.0
4	15.0	100.0	100.8	-0.800	-0.800	1512.0
ro	47.0	95.0	95.9	-0.897	-0.945	4717.1
ဖ	52.0	0.96	87.8	10.153	10.360	5179.0
_	55.0	85.0	7.67	5.339	6.281	5431.0
œ	57.0	58.0	72.7	-14.738	-25.411	5583.5
o	65.0	44.0	39.9	4.107	9.334	6034.9
0	110.0	0.0	0.3	-0.304	0.00	6386.1
=	115.0	0.0	0.2	-0.205	0.00	6387.3
12	120.0	0.0	0.1	-0.145	0.00	6388.2
13	125.0	0.0	0.1	-0.108	0.000	6388.8
X@50Y	62.5)))	
Equation	$y=a+b/(1+(x/c)^4)$	^d) [LogisticDose Rsp]				
Adjr2		•				
6	1.0					
Fit StdEr	6.4					
F-stat	194.9					
Confidence	90.0					
⋖	0.0	ပ	62.4			
A StdErr	3.2	C StdErr	1.3			
At	0.0	5	46.3			
A Conf∐mits	-5.9	C Conflimits	90.0			
	9.0		9.20			
6	100.8	۵	10.5			
B StdErr	4.5	D StdErr	2.2			
8	22.2	οţ	4 .8			
B Conflimits	92.4	D Conflimits	6.5			
	109.1		14.5			

Figure E14

Condition: Windows Closed

Table E14		SMALL BLAST, SET 5-VEHICLE CONTROLS	SET 5-VEHICLE	CONTROLS		
XY P:#	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
-	0.0	0.06	7.76	1.256	1.268	0.0
· 0	5.0	0.66	7.76	1.256	1.268	488.7
ı m	10.0	0.66	7.76	1.256	1.269	977.4
4	15.0	0.66	7.76	1.257	1.269	1466.2
- ro	42.0	0.86	92.6	2.418	2.467	4097.6
ဖ	47.0	75.0	89.3	-14.334	-19.112	4563.1
· ~	52.0	80.0	70.2	9.781	12.227	4969.4
. 00	55.0	52.0	50.8	1.181	2.270	5152.0
· 0	57.0	32.0	37.1	-5.078	-15.869	5239.7
0	110.0	0.0	-0.3	0.252	0.00	5391.1
=	115.0	0.0	-0.3	0.252	0.000	5390.3
12	120.0	0.0	-0.3	0.252	0.000	5388.3
5	125.0	0.0	-0.3	0.252	0.000	5386.9
X@50Y						
Equation	y=a+b/(1+exp(-(x+b))	-(x-c)/d)) [Sigmoid]				
Adjr2						
인	0.0					
Fit 9-4Er	6.2					
F-stat	201.5					
Confidence	0.06					
⋖	-0.3	ပ	55.3			
A StdErr	3.1	C StdErr	9.0			
At	-0.1	ŏ	85.5			
A Conflimits	-5.9	C Conflimits	54 .1			
	5.4		56.5			
6	0.86	۵	-3.5			
B StdErr	4.2	D StdErr	0 .0			
B	23.2	οţ	-4.2			
B Conflimits	6 0.3	D Conflimits	-5.0			
	105.7		-2.0			

Figure E15

Condition: Windows Closed

Control Source: White Noise

Table E15		LARGE BLAST, SET 5-NOISE CONTROLS	SET 5-NOISE (CONTROLS		
XY Pt *	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	100.0	8.66	0.19 20	0.19 201.0	0.0
Q	5.0	100.0	8.66	0.1 \$	0.19 4	499.0
ო	10.0	100.0	8.66	0.194	0.194	998.1
4	15.0	100.0	8.66	0.195	0.195	1497.1
S.	0.09	0.69	74.3	-5.255	-7.616	5795.9
9	65.0	02.0	0.09	7.002	10.451	6132.6
7	20.0	40.0	44.2	-4.210	-10.525	6393.3
œ	75.0	35.0	29.3	5.736	16.388	6576.2
o	80.0	12.0	17.2	-5.169	-43.078	6690.8
9	110.0	0.0	E.O.	0.250	0000	6799.6
==	115.0	0.0	-0.3	0.284	0.000	6798.3
12	120.0	0.0	-0.3	0.292	0.000	6796.8
1 3	125.0	0.0	-0.3	0.294	0000	6795.4
X@50Y	68.2					
Equation	y=a+b0.5(1+erf((x-1))	y=a+b0.5(1+erf((x-c)/(0.2d))) [Cumulative]	[9			
Adjr2	0.1		•			
<u>Q</u>	1.0					
Fit StdErr	4.1					
F-stat	431.4					
Confidence	0.06					
∢	-0.3	ပ	68.3			
A StdErr	2.1	C StdErr	6.0			
Αt	-0.1	Č	79.7			
A Conflimits	1.4-	C Conflimits	66.7			
	3.5		8.69			
6	100.1	۵	-12.5			
B StdErr	2.9	D StdErr	4.			
B	8 .1	ō	-8.8			
B Conflimits	7.38	D Conflimits	-15.2			
	105.5		6.6-			

Figure E16

Test Source: Small Blast Condition: Windows Open

Table E16		SMALL BLAST,	SMALL BLAST, SET 6-VEHICLE CONTROLS	CONTROLS		
XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
▼ ···	0.0	0.66	0.66	-0.04	-0.042	0.0
01	2.0	0.66	0.66	-0.041	-0.042	495.2
က	10.0	0.66	99.0	-0.041	-0.042	990.4
4	15.0	0.66	0.66	-0.041	-0.042	1485.6
2	47.0	0.40	63.5	0.489	0.765	4575.9
9	52.0	12.0	14.2	-2.21	-18.421	4752.3
7	57.0	12.0	4.2	7.822	65.187	4789.8
∞	61.0	10.0	3.2	6.838	68.384	4803.9
ത	63.0	2.0	3.0	-1.035	-51.768	4810.0
10	110.0	0.0	2.9	-2.935	0.000	4949.7
11	115.0	0.0	2.9	-2.935	0.000	4975.2
12	120.0	0.0	2.9	-2.935	0.000	4968.8
13	125.0	0.0	2.9	-2.935	0.000	4976.8
X@50Y	48.1					
Equation	$y=a+b/(1+(x/c)^4$	d) [LogisticDoseRsp]				
Adjr2	0.1					
2	1.0					
Fit StdErr	4.1					
F-stat	497.0					
Confidence	0.06					
⋖	2.9	ပ	48.0			
A StdErr	1.6	C StdErr	0.3			
At	1.8	5	138.2			
A ConfLimits	-0.0	C ConfLimits	47.4			
	6.5		48.6			
∞	96.	Ω	25.2			
B StdErr	2.6	D StdErr	4.6			
B t	37.1	ot 0	5.5			
B Conflimits	4.10	D Conflimits	16.8			
	100.9		33.7			

Figure E17

Condition: Windows Open

Control Source: White Noise

II Y % Residual Cum Area	-0.001	0 -0.000 1000.0	0.007	-0.798	-3.846	27.243	-112.957	-24.944		0.000	0.000	0000)																
Y Residual	-0.001	-0.000	0.00	-0.168	-0.461	2.724	-2.259	-0.499	0.079	0.150	0.198	0.231																	
Y Predicted	100.0	100.0	100.0	21.2	12.5	7.3	4.3	20,55	-0.1	-0.1	-0.2	-0.2								50.8	4.	40.8	48.5	53.1	-7.8	1.0	-8.2	9.6	-6.0
PERCENT 100.0	100.0	100.0	100.0	21.0	12.0	10.0	2.0	8.0	0.0	0.0	0.0	0.0		^d) [LogisticDoseRsp]						O	C StdErr	Ç	C Conflimits		۵	D StdErr	Ωţ	D Conflimits	
CONTROL ASEL	5.0	10.0	15.0	0.09	65.0	70.0	75.0	80.0	110.0	115.0	120.0	125.0	20.7	y=a+b/(1+(x/c)		1.0	1.2	5780.0	90.0	100.0	9.0	165.5	6.86	101.1	-100.3	6.0	-113.3	-101.9	-98.7
XY Pt *	Ø	က	4	လ	ဖ	_	œ	တ	0	+	12	13	X@50Y	Equation	Adjr2	언	Fit StdErr	F-stat	Confidence	⋖	A StdErr	Αt	A Conflimits		œ	B StdErr	æ	B Conflimits	

LARGE BLAST, SET 6-NOISE CONTROLS

Table E17

Figure E18

Test Source: Large Blast Condition: Windows Open

Table E18		LARGE BLAST, SET 7-VEHICLE CONTROLS	SET 7-VEHICLE	CONTROLS		
XY Pt *	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	100.0	100.2	-0.248	-0.248	0.0
Q	5.0	100.0	100.2	-0.248	-0.248	501.2
ო	10.0	100.0	100.2	-0.245	-0.245	1002.5
4	15.0	100.0	100.2	-0.207	-0.207	1503.6
က	47.0	2	75.9	8.085	9.625	4522.2
9	52.0	52.0	63.5	-11.460	-22.039	4871.4
7	57.0	20.0	50.5	-0.238	-0.476	5155.6
ထ	61.0	20.0	40.3	9.710	19.420	5336.3
Ø	63.0	31.0	35.8	-4.753	-15.331	5412.3
9	110.0	0.0	0.7	-0.735	0.00	5909.7
=	115.0	0.0	0.5	-0.233	0.00	5912.0
72	120.0	0.0	-0.1	0.143	0.00	5912.2
13	125.0	0.0	4.0-	0.428	0.000	5910.7
X@50Y	57.1					
Equation		^ d) [LogistcDoseRsp]				
Adjr2		•				
2	0.0					
Fit StdErr	5.0					
F-stat	202.0					
Confidence	90.0					
⋖	-1.5	ပ	57.3			
A StdErr	3.6	C StdErr	5.1			
Αt	-0.4	č	37.5			
A Conf⊔mits	-8.1	C Conf∐mits	54.5			
	5.1		60.1			
6	101.8	۵	5.8			
B StdErr	4.8	D StdErr	1.3			
B	<u>1.</u>	٥ţ	4.6			
B Conflimits	92.9	D Conflimits	3.5			
	110.6		8.2			

Figure E19

Condition: Windows Open

Cum Area 0.0 496.1 992.1 1488.0 437.2 4574.9 4771.0 4887.7 4935.0 5232.6 5235.4 5237.0	
7 % Residual -0.21 6 -0.21 5 -0.205 -0.107 13.633 -47.028 -15.940 0.000 0.000	
Y Residual -0.213 -0.213 -0.203 -0.106 -0.106 -14.579 -1.283 -0.704 -0.704 -0.222	
Y Predicted 98 99.2 99.2 99.2 99.2 99.2 99.1 1.0	00 - 72 - 44 - 60 - 60 - 60 - 60 - 60 - 60 - 60 - 60
PERCENT 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.	C StdErr C t C ConfLimits C ConfLimits D StdErr D t
CONTROL ASEL 0.0 5.0 10.0 15.0 47.0 52.0 57.0 61.0 63.0 110.0 115.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0	0.0- 0.1- 0.1- 0.1- 0.0- 0.0- 0.0- 0.0-
XY Pt # 1	A StdErr A t A ConfLimits B StdErr B t B ConfLimits

SMALL BLAST, SET 7-VEHICLE CONTROLS

Table E19

Figure E20

Condition: Windows Open

Control Source: White Noise

Table E20		LARGE BLAST, SET 7-NOISE CONTROLS	SET 7-NOISE (CONTROLS		
XY P. *	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
-	0.0	100.0	99.5	0.542	0.542	0.0
α	5.0	100.0	99.3	0.709	0.708	496.9
က	10.0	100.0	0.66	0.964	0.964	992.8
4	15.0	100.0	98.6	1.357	1.357	1487.0
ιΩ	20.0	0.99	80.4	-14.430	-21.863	4745.4
ဖ	55.0	72.0	72.7	-0.698	-0.969	5129.0
7	0.09	91.0	63.2	17.750	27.94	5469.5
œ	65.0	26.0	52.6	3.402	6.075	5759.4
o	70.0	31.0	41.6	-10.625	-34.275	5994.9
9	110.0	0.0	0.7	-0.675	0.00	6552.0
=	115.0	0.0	-0.1	0.112	0.000	6553.2
12	120.0	0.0	-0.6	0.627	0.000	6551.3
1 3	125.0	0.0	0.	0.963	0000	6547.3
X@50Y	66.2					•
Equation	y=a+b/(1+exp(-(x+b))	-(x-c)/d)) [Sigmoid]				
Adjr2	1.0					
Q	1.0					
Fit StdErr	8.5					
F-stat	97.3					
Confidence	0.06					
⋖	1.6	ပ	9.99			
A StdErr	5.1	C StdErr	3.0			
At	-0.3	Ct Ct	22.3			
A Conflimits	-10.9	C Conflimits	61.1			
	7.7		72.1			
ω	101.3	۵	-11.5			
B StdErr	7.5	D StdErr	3.9			
8	13.5	ŏ	-2.9			
B Conflimits	87.6	D Conflimits	-18.7			
	115.1		14.2			

Figure E21

Test Source: Large Blast Condition: Windows Open

* 6	CONTENT ASE	FINDCODO	7 CASIA (C.)		V 9 000	4 4 1 1 C
	CONTROL ASEL	PERCEN-	Y Predicted	T Hesidual	7 % Hesidus -0.206	Cura Area
	5.0	1000	100.2	-0.206	-0.206	501.0
	10.0	100.0	100.2	-0.205	-0.205	1002.1
	15.0	100.0	100.2	-0.183	-0.183	1503.0
	47.0	65.0	56.1	8.924	13.730	4380.1
	52.0	22.0	38.3	-16.333	-74.240	4615.1
	27.0	56 .0	24.5	1.491	5.736	4770.2
	61.0	31.0	9.9	14.214	45.851	4851.9
	63.0	0.6	13.9	-4.878	-54.202	4882.4
	110.0	0.0	0.8	-0.751	0000	5047.6
	115.0	0.0	0.7	-0.673	0000	5051.1
	120.0	0.0	9.0	-0.618	0000	5054.3
	125.0	0.0	9.0	-0.578	0.000	5057.3
X@50Y	48.6					
Equation	$y=a+b/(1+(x/c)^2d)$	d) [LogisticDoseRsp]				
	1.0					
	1.0					
Fit StdErr	8.0					
F-stat	116.2					
Confidence	0.06					
	0.5	ပ	48.5			
A StdErr	4.1	C StdErr	. 69.			
	0.1	Ç	26.8			
Conflimits	-7.1	C Conflimits	45.2			
	8.0		51.9			
	26.7	۵	7.1			
StdErr	5.8	D StdErr	200			
	17.3	ŏ	3.5			
Conflimits	89.2	D Conflimits	3.4			
	110.3		10.9			

Figure E22

Test Source: Small Blast Condition: Windows Open

Table E22		SMALL BLAST, SET 8-VEHICLE CONTROLS	SET 8-VEHICLE	CONTROLS		
XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Are
	0.0	0.66	99.1	-0.064	-0.065	0.0
α	5.0	0.66	99.1	-0.064	-0.065	495.3
ო	10.0	0.66	99.1	-0.064	-0.065	9006
4	15.0	0.66	99.1	-0.062	-0.063	1486.0
Ś	47.0	44.0	40.5	3.500	7.955	4275.7
ဖ	52.0	13.0	21.0	-7.979	-61.377	4425.2
7	57.0	0.6	10.7	-1.669	-18.543	4501.1
∞	61.0	13.0	9.9	6.389	49.148	4534.6
o	63.0	13.0	5.4	7.624	58.643	4546.7
10	110.0	0.0	1.9	-1.909	0.000	4660.8
=	115.0	0.0	1.9	-1.903	0000	4670.4
12	120.0	0.0	1.9	-1.900	0000	4680.0
13	125.0	0.0	6.1	-1.898	0.000	4689.
X@50Y	45.1					
Equation	$y = a + b/(1 + (x/c)^{-1} d$	$y=a+b/(1+(x/c)^{-1}d)$ [LogisticDose Rsp]				
Adjr2	1.0					
~	1.0					
Fit StdErr	4.6					
F-stat	362.5					
Confidence	0.06					
∢	1.9	ပ	45.0			
A StdErr	2.2	C StdErr	L Si			
Αt	0.8	ပ	38.5			
A Conflimits	-2.2	C Conflimits	42.9			
	6.0		47.2			
ω	97.2	۵	8.0			
B StdErr	3.2	D StdErr	2.4			
B	30.5	oţ	0.4			
B Conflimits	91 .3	D Conflimits	5.4			
	103.1		14.3			

Figure E23

Test Source: Large Blast Condition: Windows Open

Control Source: White Noise

Cum Area 0.0 500.3 1000.6 1500.6 4797.7 4914.2 4915.4 4915.6	
Y % Residual -0.062 -0.045 -0.045 -0.105 5.981 -32.578 -3.651 0.000 0.000	
Y Residual -0.062 -0.045 -0.045 0.105 -7.167 -0.329 -0.132 -0.132 0.010	
Y Predicted 100.1 100.1 100.1 100.1 100.0 99.9 20.1 13.7 13.7 13.7 13.7 10.0 10.3 10.0 10.0 10.0 10.0 10.0 10.0	1.74 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.0
PERCENT 100.0 100.0 100.0 100.0 100.0 22.0 22.0	C StdErr C t C ConfLimits D StdErr D t
CONTROL ASEL 0.0 5.0 10.0 15.0 55.0 60.0 65.0 70.0 115.0 125.0 47.0 y=a+b/(1+(x/c) ^c 1.0 1.0 3.2 730.0	6.01 6.01 6.02 6.03 6.03 6.03 6.03 6.03
XY Pt # 1 2 3 4 4 5 6 7 11 12 13 X@50Y Equation Adjr2 r2 Fit StdErr F stat	A StdErr A t A ConfLimits B StdErr B t B ConfLimits

LARGE BLAST, SET 8-NOISE CONTROLS

Figure E24

Test Source: Large Blast

Condition: Windows Open

Table E24		LARGE BLAST,	LARGE BLAST, SET 9-VEHICLE CONTROLS	CONTROLS		
XY Pt *	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	100.0	100.0	0.033	0.033	0.0
8	5.0	100.0	6.66	0.084	0.0 28 0.0	499.7
က	10.0	100.0	8.66	0.174	0.174	999.1
4	15.0	100.0	28.7	0.333	0.333	1497.9
S	47.0	0.16	87.3	3.703	4.069	4583.8
9	52.0	69.0	79.4	-10.424	-15.108	5001.8
7	57.0	0.69	68.4	0.562	0.814	5372.8
6 0	61.0	0.18	27.7	23.251	28.706	5625.6
o	63.0	94.0	52.0	-18.038	-53.052	5735.4
5	110.0	0.0	0.2	-0.156	0.00	6358.8
-1	115.0	0.0	-0.1	0.057	0.00	6359.0
12	120.0	0.0	-0.2	0.177	0.00	6358.4
13	125.0	0.0	-0.2	0.244	0.00	6357.3
X@50Y	63.7					
Equation	y=a+b/(1+exp(-()	(x-c)/d)) [Sigmoid]				
Adjr2						
Q	0.1					
Fit StdErr	10.5					
F-stat	9.99					
Confidence	0.06					
⋖	-0.3	ပ	63.8			
A StdErr	4.0	C StdErr	3.2			
Αt	-0.1	ວັ	20.0			
A Conflimits	-10.2	C Conflimits	57.9			
	9.5		89.6			
co	100.4	۵	-8.7			
B StdErr	7.8	D StdErr	4.1			
91	12.8	ō	-2.1			
B Conflimits	86.0	D Conflimits	-16.1			
	114.7		<u>. 1</u>			

Figure E25

Test Source: Small Blast Condition: Windows Open

	CONTROL ASEL	1000 0.000	7 Predicted	1 TESIQUE -0.693	2 % THE SIGN	
	5.0	0.66	9.66	-0.554	-0.560	498.2
	10.0	0.66	99.3	-0.309	-0.312	986.4
	15.0	0.66	98.9	0.126	0.127	1490.9
	47.0	0.18	71.2	9.829	12.135	4401.8
	52.0	20.0	58.2	-8.158	-16.317	4726.1
	22.0	31.0	43.9	-12.898	-41.606	4981.3
	61.0	53.0	33.1	19.923	37.591	5134.8
	63.0	22.0	28.2	-6.207	-28.215	5196.1
	110.0	0.0	0.3	-0.349	0.000	5488.4
	115.0	0.0	0.3	-0.273	0.00	5489.8
	120.0	0.0	0.2	-0.230	0.000	5491.
	125.0	0.0	0.2	-0.207	0.00	5492.3
X@50Y	6.43					
Equation	$y = a + b/(1 + e \times p(-(x + e)))$	-(x-c)/d)) [Sigmoid]				
	0.1					
Fit StdErr	9.5					
F-stat.	82.0					
Confidence	0.06					
	6.66	ပ	54.9			
Ë	6.4	C StdErr	2.4			
At	20.4	Ç	26.1			
Conflimits	6.06	C Conflimits	51.0			
	108.8		58.7			
	-99.7	_	8.7			
StdErr	6.9	D StdErr	2.7			
	-14.5	oţ	3.2			
B Conflimits	-112.3	D Conflimits	3.7			
	-87.1		13.6			

SMALL BLAST, SET 9-VEHICLE CONTROLS

Figure E26

Test Source: Large Blast Condition: Windows Open

Control Source: White Noise

Table E26		LARGE BLAST, SET 9-NOISE CONTROLS	SET 9-NOISE (CONTROLS		
XY Pt *	CONTROL ASEL	PERCENT	Y Predicted	Y Pesidual	Y % Residual	Cum Area
_	0.0	100.0	100.3	-0.283	-0.283	0.0
8	5.0	100.0	100.2	-0.180	-0.180	501.2
က	10.0	100.0	100.0	0.023	0.023	1001.6
4	15.0	100.0	9.66	0.405	0.405	1500.7
വ	20.0	81.0	77.8	3.220	3.976	4745.2
ဖ	55.0	62.0	70.0	-7.983	-12.876	5115.1
7	0.09	0.69	61.2	7.843	11.366	5443.3
80	65.0	47.0	51.7	-4.713	-10.028	5725.6
o	70.0	44.0	42.2	1.840	4.182	5960.2
9	110.0	0.0	1.0	-0.985	0.00	6574.9
=	115.0	0.0	0.1	-0.141	0.00	6577.5
12	120.0	0.0	-0.3	0.345	0.000	6276.9
13	125.0	0.0	9.0-	0.610	0.000	6574.4
X@50Y	62.9					
Equation	y=a+b0.5(1+erf((x-	y=a+b0.5(1+erf((x-c)/(02d))) [Cumulative]	@			
Adjr2	1.0	•	1			
~	1.0					
Fit StdErr	4.3					
F-stat	389.0					
Confidence	0.06					
⋖	6.0	ပ	0.99			
A StdErr	2.5	C StdErr	1.7			
At	-0.3	Ç	39.8			
A Conflimits	-5.5	C Conflimits	63.0			
	3.8		69.1			
₩.	101.2	۵	-21.0			
B StdErr	3.6	D StdErr	3.6			
8	27.9	o t	-5.8			
B Conflimits	9. 2 9	D ConfLimits	-27.7			
	107.9		4.41-			

Figure E27

Test Source: Large Blast Condition: Windows Open

XY Pt *	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	100.0	101.3	-1.323	-1.323	0.0
Q	5.0	100.0	101.3	-1.323	-1.323	506.6
ღ	10.0	100.0	101.3	-1.323	-1.323	1013.2
4	15.0	100.0	101.3	-1.323	-1.323	1519.8
ည	52.0	100.0	\$	5.833	5.833	5232.0
	22.0	90.0	82.8	4.216	4.685	5683.9
7	61.0	87.0	75.4	11.625	13.363	6007.3
∞	63.0	46.7	69.1	-22.353	-47.866	6151.8
O	71.0	48.4	41.3	7.095	14.659	6593.0
10	110.0	0.0	0.7	-0.726	0.000	7020.8
=	115.0	0.0	0.3	-0.347	0.000	7023.4
12	120.0	0.0	0.1	-0.105	0.000	7024.5
13	125.0	0.0	-0.1	0.052	0.000	7024.6
X@50Y	68.4					
Equation	$y=a+b/(1+(x/c)^4)$	^d) [LogisticDoseRsp]				
Adjr2						
Q	1.0					
Fit StdErr	9.1					
F-stat	95.0					
Confidence	90.0					
⋖	-0.4	ပ	68.3			
A StdErr	4 .	C StdErr	2.3			
At	-0.1	ct	29.9			
A Conflimits	-9.3	C Conflimits	2			
	8.5		72.5			
a	101.7	۵	9.5			
B StdErr	6.8	D StdErr	2.9			
81	14.9	οt	3.2			
B Conflimits	89.2	D Conflimits	4.1			
	114.2		14.8			

LARGE BLAST, SET 10-VEHICLE CONTROLS

Figure E28

Test Source: Small Blast Condition: Windows Open

Control Source: Vehicles

Table E28		SMALL BLAST,	SMALL BLAST, SET 10-VEHICLE CONTROLS	E CONTROLS		
XY Pt #	CONTROLASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	100.0	99.96	3.397	3.397	0.0
8	5.0	100.0	96.6	3.397	3.397	483.0
က	10.0	100.0	9.96	3.397	3.397	0.996
4	15.0	100.0	98.6	3.397	3.397	1449.0
ທ	47.0	0.8	9.96 - `	-2.602	-2.768	4540.3
9	52.0	87.0	99.96	-9.579	-11.01	5023.3
7	27.0	2	95.8	-1.755	-1.867	5505.2
œ	61.0	0.48	83.5	0.501	0.597	5873.2
o	63.0	58.0	58.2	-0.172	-0.296	6017.8
0	110.0	0.0	0.0	0.005	0.00	6109.6
1	115.0	0.0	0.0	0.005	0.000	6176.5
12	120.0	0.0	-0.0	0.005	0.00	6130.2
13	125.0	0.0	0.0	0.005	0.000	6102.1
X@50Y	63.5					
Equation	y=a+b/(1+exp(-(x+b))	(x-c)/d)) [Sigmoid]				
Adjr2	1.0		6 '			
연	0.0					
Fit StdErr	4.1					
F-stat	489.7					
Confidence	0.06		• .,			
⋖	-0.0	O	63.6			
A StdErr	2.0	C StdErr	0.3			
At	0.0-	ö	184.0			
A Conflimits	-3.7	C Conflimits	65.9			
	3.7		64.2			
æ	9.96	۵	4.1-			
B StdErr	2.6	D StdErr	0.4			
	37.6	ŏ	-3.6			
B Conflimits	6. 6.	D Conflimits	-2.1			
	101.3		-0.7			

Figure E29

Test Source: Large Blast Condition: Windows Open

Control Source: White Noise

Table E29		LARGE BLAST, SET 10-NOISE CONTROLS	SET 10-NOISE	CONTROLS		
XY Pt *	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	100.0	98.9	1.135	1.135	0.0
8	5.0	100.0	98.9	1.136	1.136	494.3
ო	10.0	100.0	98.9	1.139	1.139	988.6
4	15.0	100.0	98.9	1.145	1.145	1482.9
S.	55.0	97.0	96.4	0.557	0.574	5419.2
9	0.09	81.0	8	-13.275	-16.388	5886.5
7	65.0	97.0	90.3	9999	6.872	6359.0
σ.	70.0	87.0	83.6	3.446	3.961	6795.1
o,	75.0	71.0	72.9	-1.913	-2.695	7188.0
9	110.0	0.0	4.1	-1.411	0.00	8144.0
=	115.0	0.0	0.1	-0.115	0.00	8147.5
12	120.0	0.0	9.0-	0.567	0.00	8146.1
13	125.0	0.0	6.0	0.923	0.00	8142.3
X@50Y						
Equation	y=a+b/(1+exp(-(x-	-(x-c)/d)) [Sigmoid]				
Adjr2	1.0					
. 22	1.0					
Fit StdErr	5.2					
F-stat	298.6					
Confidence	90.0					
∢	-1.3	ပ	82.9			
A StdErr	3.7	C StdErr	4.1			
At	4.0-	ö	20.4			
A Conflimits	-8.1	C Conflimits	75.5			
	5.5		9 0.4			
6 0	100.2	۵	-7.6			
B StdErr	5.0	D StdErr	2.7			
B t	20.5	ō	-2.8			
B Conflimits	9	D Conflimits	-12.5			
	109.3		-2.6			

Figure E30

Test Source: Large Blast Condition: Outdoors Control Source: Vehicles Data Included: Set 7

Table E30		LARGE BLAST-7, OUTDOOR-VEHICLE CONTROL	OUTDOOR-	VEHICLE CON	ITROL	
XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	100.0	100.4	-0.416	-0.416	0.0
8	5.0	100.0	100.4	-0.416	-0.416	502.1
က	10.0	100.0	100.4	-0.416	-0.416	1004.2
4	15.0	100.0	100.4	-0.416	-0.416	1506.2
ம	60.0	100.0	6.96	3.057	3.057	6012.4
ဖ	67.0	83.0	82.8	-2.764	-3.331	6658.7
	72.0	75.0	69.8	5.245	6.993	7050.3
ω	74.0	57.0	61.7	-4.707	-8.258	7181.9
Ø	81.0	33.0	32.0	1.01	3.063	7508.7
10	110.0	0.0	0.1	-0.055	0.000	7699.8
=	115.0	0.0	0.0	-0.042	0.000	7700.1
12	120.0	0.0	0.0	-0.041	0.000	7700.3
13	125.0	0:0	0.0	-0.041	0.000	7700.5
X@50Y	7.97					
Equation	y=a+b0.5(1+erf((x-c)	((x-c)/(û2d))) [Cumulative]				
Adjr2	1.0					
Q	. 0.					
Fit StdErr	, ,					
F-stat	1041.8					
Confidence	0.06					
∢	0.0	ပ	76.7			
A StdErr	4.1	C StdErr	0.5			
Αt	0.0	Ç	161.0			
A Conflimits	-2.5	C ConfLimits	75.8			
	2.6		77.5			
æ	100.4	۵	-9.2			
B StdErr	6 .	D StdErr	0.8			
Bt	52.4	٥ţ	9:11-		•	
B Conflimits	6.96	D Confl⊥mits	-10.6			
	103.9		-7.8			

Figure E31

Test Source: Small Blast Condition: Outdoors Control Source: Vehicles

Cum Area	0.0	498.7	997.2	1495.1	5812.7	6377.9	6734.3	6863.4	7247.0	7838.8	7847.6	7846.2	7838.0																	
Y % Residual	0.230	0.279	0.353	0.469	-2.663	-0.881	-14.799	16.683	-4.216	0.00	0.00	0.000	0.000																	
Y Residual	0.230	0.279	0.353	0.469	-2.210	-0.661	-8.584	12.512	-1.897	-3.091	-0.612	1.054	2.158																	
Y Predicted	8.66	266	9.66	99.5	85.2	75.7	9.99	62.5	46.9	3.1	9.0	1.1.	-2.2								80.6	2.5	31.8	75.9	85.2	4.11-	25	-4.5	-16.0	-6.8
PERCENT	100.0	100.0	100.0	100.0	83.0	75.0	58.0	75.0	45.0	0.0	0.0	0.0	0.0		(x-c)/d)) [Sigmoid]						ပ	C StdErr	Ct Ct	C Conflimits		۵	D StdErr	1	D Conflimits	
CONTROL ASEL	0.0	5.0	10.0	15.0	0.09	02.0	72.0	74.0	81.0	110.0	115.0	120.0	125.0	962	y=a+b/(1+exp(-(1.0	5.3	253.8	0.06	-4.2	4.8	6.0-	-13.0	4.6	1.40	0.9	17.4	93.1	115.1
XY Pt #	_	α	ო	4	ഗ	9	7	ထ	Ø	5	=	5	13	X@50Y	Equation	Adjr2	ୄଧ	Fit StdErr	F-stat	Confidence	«	A StdErr	Αt	A Conflimits		6	B StdErr	Bt	B Conflimits	

SMALL BLAST-7, OUTDOOR-VEHICLE CONTROL

Figure E32

Test Source: Large Blast Condition: Outdoors Control Source: White Noise

	sidual Cum Area	0.318 0.0	0.318 498.4	0.318 996.8	0.318 1495.2		0.959 6477.5	-4.351 6967.2	2.113 7418.9				0.000 7890.7	0.000 7889.2																	
LARGE BLAST-7, OUTDOOR-NOISE CONTROL	Y Residual Y % Residual	0.318	0.318	0.318	0.318	0.427	0.959		1.754	-0.526	0.028	0.030	0.030	0.030																	
7, OUTDOOR-I	Y Predicted	266	266	266	2.66	9.66	0.66	96.0	81.2	42.5	0.0	-0.0	-0.0	-0.0								79.2	0.2	477.9	78.9	79.5	-2.8	0.2	-15.5	-3.1	-2.5
LARGE BLAST-	PERCENT	100.0	100.0	100.0	100.0	100.0	100.0	92.0	83.0	42.0	0.0	0.0	0.0	0.0		-(x-c)/d) [Sigmoid]						ပ	C StdErr	5	C Conflimits		۵	D StdErr	ō	D Conflimits	
	CONTROL ASEL	0.0	5.0	10.0	15.0	0.09	65.0	70.0	75.0	80.0	110.0	115.0	120.0	125.0	79.1	y=a+b/(1+exp(-(1.0	1.0	5.	3698.6	90.0	0.0	0.8	-0.0	4.1-	4.	266	1.0	101.2	6.76	101.5
Table E32	XY Pt *	-	8	ო	4	ιΩ ·	ဖ	7	8	O	0	=	12	13	X@50Y	Equation	Adjr2	. 22	Fit StdErr	F-stat	Confidence	⋖	A StdErr	At	A Conflimits		8	B StdErr	Bt	B Conflimits	

Figure E33

Test Source: Large Blast

Condition: Outdoors

Control Source: Vehicles

Table E33		LARGE BLAST-8, OUTDOOR-VEHICLE CONTROL	, ourboor-	VEHICLE CON	ITROL	
XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	100.0	100.2	-0.196	-0.196	0.0
Ø	5.0	100.0	100.2	-0.196	-0.196	501.0
က	10.0	100.0	100.2	-0.196	-0.196	1002.0
4	15.0	100.0	100.2	-0.196	-0.196	1502.9
വ	0.09	100.0	100.2	-0.182	-0.182	6011.7
9	67.0	100.0	6 .86	1.055	1.055	6710.9
7	72.0	0.06	89.6	0.358	0.398	7188.6
&	74.0	80.0	80.5	-0.549	-0.686	7359.4
O	0.18	30.0	29.8	0.152	0.505	7752.1
5	110.0	0.0	0.0	-0.012	0.00	7847.8
11	115.0	0.0	0.0	-0.012	0.00	7847.8
2	120.0	0.0	0.0	-0.012	0.00	7847.9
-	125.0	0.0	0.0	-0.012	0.000	7848.0
X@50Y	78.3					
Equation	y=a+b0.5(1+erf((x))	f((x-c)/(02d))) [Cumulative]	<u></u>			
Adjr2	1.0		•			
언	0.1					
Fit StdErr	0.4					
F-stat	44809.2					
Confidence	0.06					
⋖	0.0	O	78.3			
A StdErr	0.2	C StdErr	0.1			
At	0.1	ot t	1464.0			
A ConfLimits	-0.4	C Conflimits	78.2			
	0.4		78.4			
ω	100.2	٥	-5.0			
B StdErr	හ. ර	D StdErr	0.1			
B	346.4	ō	-78.7			
B Conflimits	26.7	D Confl⊥mits	-5.2			
	100.7		6.4			

Figure E34

Test Source: Small Blast Condition: Outdoors Control Source: Vehicles Data Included: Set 8

Table E34		SMALL BLAST-8, OUTDOOR-VEHICLE CONTROL	8, OUTDOOR-	/EHICLE CON	ITROL	
XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
_	0.0	100.0	100.4	-0.401	-0.401	0.0
Q	5.0	100.0	100.4	-0.401	-0.401	502.0
က	10.0	100.0	100.4	-0.401	-0.401	1004.0
4	15.0	100.0	100.4	-0.401	-0.401	1506.0
ro	0.09	100.0	2 .7	5.332	5.332	5995.1
ထ	0.79	80.0	8 4.2	-4.168	-5.210	6625.6
7	72.0	90.0	7.17	-11.668	-19.446	7016.9
ω	74.0	80.0	65.6	14.368	17.960	7154.3
ത	0.18	40.0	42.3	-2.349	-5.872	7533.0
9	110.0	0.0	0.2	-0.250	0.000	7894.5
=	115.0	0.0	-0.1	0.051	0.000	7894.8
12	120.0	0.0	-0.1	0.135	0000	7894.3
1 3	125.0	0.0	-0.2	0.154	0000	7893.6
X@50Y	78.7		l	•		
Equation	y=a+b0.5(1+erf((x-	(x-c)/(02d)) [Cumulative]	[0]			
Adjr2	1.0		•			
2	1.0					
Fit StdErr	6.6					
F-stat	176.2					
Confidence	90.0					
⋖	-0.2	ပ	78.7			
A StdErr	3.4	C StdErr	1.6			
A t	0.0	ö	48.9			
A Conflimits	-6.3	C Conf∐mits	75.7			
	0.9		81.6			
6	100.6	۵	-11.8			
B StdErr	4.7	D StdErr	2.7			
B	24. 24.22	ot 0	4.4-			
B Conflimits	91.9	D Conf∐mits	-16.8			
	109.2		-6.9			

Figure E35

Test Source: Large Blast Condition: Outdoors

Table E35		LARGE BLAST-9, OUTDOOR-VEHICLE CONTROL	9, OUTDOOR-	ÆHICLE CON	ITROL	
XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
· ·	0.0	100.0	99.4	0.610	0.610	0.0
- (\	5.0	100.0	4.66	0.611	0.611	496.9
1 67	10.0	100.0	99.4	0.614	0.614	993.9
. 4	15.0	100.0	99.4	0.618	0.618	1490.8
. ro	0.09	92.0	96.1	-4.082	-4.437	5938.1
· (C	67.0	0.49	4.16	2.594	2.760	6596.6
, ~	72.0	82.0	85.0	-2.951	-3.599	7038.9
. 00	74.0	83.0	81.3	1.659	1.999	7205.3
ത	0.18	9	63.5	0.521	0.813	7716.7
, C	110.0	0.0	2.0	-1.986	0.000	8425.3
: -	115.0	0.0	0.2	-0.198	0.000	8430.2
12	120.0	0.0	-0.7	0.748	0.000	8428.6
5	125.0	0.0	1.2	1.242	0.000	8423.5
X@50Y						
Equation	y=a+b/(1+exp(-()	-(x-c)/d)) [Sigmoid]				
Adjr2						
Q	0.4					
Fit StdErr	2.2					
F-stat	1676.6					
Confidence	0.06					
⋖	L 8.	ပ	85.5			
A StdErr	5.1	C StdErr	1.1			
¥ ¥	1.2	ot 0	79.7			
A Conflimits	-4.5	C Conflimits	83.5			
	1.0		87.5			
œ	101.2	<u> </u>	-7.5			
B StdErr	2.0	D StdErr	0.8			
Bt	20.7	ō	-9.2			
B Conflimits	97.5	D Conflimits	0.6-			
	104.8		-6.0			

Figure E36

Test Source: Small Blast

Condition: Outdoors
Control Source: Vehicles

Table E36		SMALL BLAST-9, OUTDOOR-VEHICLE CONTROL	9,′OUTDOOR-\	FHICLE CON	TROL	
XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
-	0.0	100.0	266	0.343	0.343	0.0
8	5.0	100.0	99.7	0.343	0.343	498.3
က	10.0	100.0	99.7	0.343	0.343	936.6
4	15.0	100.0	266	0.344	0.344	1494.8
5	0.09	100.0	9 4.4	5.569	5.569	5950.1
9	67.0	0.89	83.1	-15.074	-22.167	6578.1
7	72.0	67.0	66.5	0.547	0.816	6955.1
œ	74.0	71.0	57.9	13.114	18.470	7079.6
o	81.0	20.0	27.5	-7.465	-37.324	7375.0
10	110.0	0.0	-0.4	0.370	0.00	7537.2
11	115.0	0.0	-0.5	0.485	0.00	7535.0
12	120.0	0.0	-0.5	0.531	0.000	7532.4
13	125.0	0.0	-0.5	0.549	0.000	7529.7
X@50Y	7.5.7					
Equation	y=a+b/(1+exp(-(x+b))	(x-c)/d)) [Sigmoid]				
Adjr2	1.0					
연	1.0					
Fit StdErr	7.4					
F-stat	144.7					
Confidence	0.06					
∢	9.0-	ပ	75.8			
A StdErr	3.7	C StdErr	1.2			
Αt	-0.5	Çţ	62.0			
A Conflimits	4.7-	C ConfLimits	73.6			
	6.2		78.			
∞	100.2	۵	-5.5			
B StdErr	5.2	D StdErr	1.2			
B t	19.4	οţ	4.4-			
B Conflimits	20.4	D Conflimits	-7.7			
	109.7		-3.2			

Figure E37

Test Source: Large Blast Condition: Outdoors Control Source: White Noise

Cum Area 0.0 489.8 979.7 1469.5 5868.4 6346.2 6809.6 7243.6 7623.3 8321.2 8322.3	
Y % Residual 2.032 2.032 2.032 2.032 2.033 -16.137 1.588 4.842 -0.429 0.000 0.000 0.000	
Y Residual 2.032 2.032 2.033 -13.394 1.525 -0.351 -0.961 -0.022 0.398	
Y Predicted 98.0 98.0 98.0 98.0 98.0 98.0 96.4 96.4 96.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	8.5.2 8.0.0 8.0.0 8.0.0 8.0.0 9.0.0 9.0.0 9.0.0
- PERCENT 100.0 100.0 100.0 100.0 83.0 96.0 96.0 96.0 0.0 0.0 0.0 0.0	C StdErr C t C ConfLimits D StdErr D t D ConfLimits
CONTROL ASEL 0.0 5.0 10.0 15.0 60.0 65.0 70.0 75.0 80.0 115.0 125.0 84.9 y=a+b/(1+exp(-(x-2)) 1.0 1.0 5.0 5.0	98.0 98.0 2.3 42.6 102.2 198.7 1.4.3 196.1
XY Pt # 1 2 3 4 5 6 7 10 11 12 13 X@50Y Equation Adjr2 Fit StdErr F stat	A StdErr A t A ConfLimits B StdErr B t B ConfLimits

LARGE BLAST-9, OUTDOOR-NOISE CONTROL

Figure E38

Test Source: Large Blast Condition: Outdoors

Cum Area 0.0 503.2 1006.4 1509.6 6737.5 7227.9 7419.1 8043.4 8711.3 9103.2 9106.7	
Y % Residual -0.639 -0.639 -0.639 -0.639 0.755 0.513 5.462 0.000 0.000 0.000	
Y Residual -0.639 -0.639 -0.639 -0.639 0.755 0.498 -0.195 -2.683 -0.082 1.138	
Y Predicted 100.6 100.6 100.6 100.6 99.2 94.6 99.2 2.7 2.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	90.9 104.6 104.6 89.3 92.4 1.2 13.0 13.0
PERCENT 100.0 100.0 100.0 100.0 97.0 100.0 76.0 52.0 0.0 0.0 0.0 0.0	C StdErr C t C Conflimits D StdErr D t D Conflimits
CONTROL ASEL 0.0 5.0 110.0 15.0 67.0 72.0 74.0 81.0 91.0 115.0 115.0 115.0 125.0 90.8 y=a+b0.5(1+erf((x· 1.0 1.0 1.0 1.0 1.0 1.0 1.0	90.0 -1.2 -0.6 -0.4 -7.4 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
XY Pt # 2 3 4 4 7 7 7 8 9 11 12 13 X@50Y Equation Adjr2 r2 Fit StdErr	Confidence A A StdErr A t A ConfLimits B B StdErr B t B ConfLimits

LARGE BLAST-10, OUTDOOR-VEHICLE CONTROL

Figure E39

Test Source: Small Blast Condition: Outdoors Control Source: Vehicles Data Included: Set 10

Table E39		SMALL BLAST-10, OUTDOOR-VEHICLE CONTROL	IO, OUTDOOR-	VEHICLE CO	NTROL	
XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Pesidual	Y % Residual	Cum Area
-	0:0	100.0	96.8	0.226	0.226	0.0
. 0	5.0	100.0	96.8	0.226	0.226	498.9
) (r)	10.0	100.0	8.66	0.226	0.226	2.766
4	15.0	100.0	8.66	0.226	0.226	1496.6
. က	0.09	100.0	98.7	1.256	1.256	5980.6
9	67.0	94.0	96.3	-2.290	-2.436	6664.9
	72.0	87.0	7.16	-4.709	-5.413	7136.4
. σο	74.0	0.48	88.7	5.348	2.690	7316.9
ා ග	81.0	0.69	69.5	-0.503	-0.729	7878.8
10	110.0	0.0	0.8	-0.780	0.000	8532.4
=	115.0	0.0	0.0	-0.002	0.000	8534.0
12	120.0	0.0	e.o.	0.322	0.000	8533.1
د	125.0	0.0	-0.5	0.456	0.000	8531.1
X@50Y	85.6					
Equation	y=a+b/(1+exp(-(x-	(x-c)/d)) [Sigmoid]				
Adjr2	0.1					
2	1.0					
Fit StdErr	2.6					
F-stat	1279.2					
Confidence	0.06					
⋖	-0.5	ပ	85.7			
A StdErr	4.1	C StdErr	L 2			
At	-0.4	Ç	70.0			
A Conflimits	-3.1	C Conflimits	83.5			
	2.0		88.0			
80	100.3	۵	-5.6			
B StdErr	2.0	D StdErr	6 .0			
Bt	20.7	οţ	0.9-			
B Conflimits	296.7	D Conflimits	4.7			
	104.0		හ. ල.			

Figure E40

Test Source: Large Blast Condition: Outdoors Control Source: White Noise

Data Included: Set 10

Table E40		LARGE BLAST-10, OUTDOOR-NOISE CONTROL	10, OUTDOOR-	-NOISE CON-	rrol	
XY Pt #	CONTROL ASEL	PERCENT	Y Predicted	Y Residual	Y % Residual	Cum Area
-	0.0	100.0	100.4	-0.391	-0.391	0.0
α	2.0	100.0	100.4	-0.391	-0.391	502.0
ო	10.0	100.0	100.4	-0.391	-0.391	1003.9
4	15.0	100.0	100.4	-0.391	-0.391	1505.9
വ	65.0	100.0	100.1	-0.145	-0.145	6524.7
9	70.0	100.0	89.5	0.801	0.801	7023.6
7	75.0	100.0	0.96	4.004	4.004	7513.0
ထ	80.0	83.0	6.78	-4.946	-5.959	7975.5
თ	85.0	74.9	72.9	1.977	2.639	8380.7
10	110.0	0.0	1.1	-1.105	0000	9069.5
=	115.0	0.0	-0.1	0.120	0000	9071.3
12	120.0	0.0	-0.4	0.404	0000	9069.8
13	125.0	0.0	-0.5	0.453	0.000	9067.6
X@50Y	90.5					
Equation	y=a+b0.5(1+erf((x-	(x-c)/(02d)) [Cumulative]	[9]			
Adjr2			•			
&	1.0					
Fit StdErr	23					
F-stat	1639.5					
Confidence	0.06					
∢	-0.5	ပ	90.5			
A StdErr	1.3 6.1	C StdErr	1.2			
A t	-0.3	Ç	77.2			
A ConfLimits	-2.9	C ConfLimits	88.3			
	9.		92.6			
6	100.9	۵	-9.1			
B StdErr	1.7	D StdErr	4.1			
B ‡	27.7	οţ	-6.7			
B Conflimits	9.76	D Conflimits	-11.5			
	194.1		9.9-			

Appendix F: Evaluating the Degree of Annoyance Caused by Military Noise

Transition curves for blast noise with vehicle controls, for sets grouped as indicated on each page. Subjects located indoors, acoustical measurements outdoors; except the last page, that is outdoor subjects.

LARGE BLAST, SET 1-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/($2^{0.5}$ d))) [Cumulative] r^2 =0.995948179 DF Adj r^2 =0.993922268 FitStdErr=3.20644752 Fstat=737.407803 a=-2.2505369 b=102.1816

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/(2^{0.5}d))) [Cumulative]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9959481788 0.9939222683 3.2064475225 737.40780284

Pam	n Value	Std Error	t-value	95% Confide	ence Limits
a	-2.25053688	2.449664309	-0.91871236	-7.80867290	3.307599139
b	102.1816032	3.093972178	33.02602523	95.16157272	109.2016338
С	96.02461404	1.831186259	52.43847454	91.86976626	100.1794618
d	-20 1069861	2.345746128	-8 57168040	-25 4293382	-14.7846340

Date Time File Source
Mar 31, 1994 4:13:46 PM c:\tblcurve\munster\blast1hv.pm

SMALL BLAST, SET 1-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r²=0.988210081 DF Adj r²=0.982315121 FitStdErr=5.56952237 Fstat=251.454672 a=0.67661515 b=98.60233

a=0.6/661515 b=98.60233 c=76.446008 d=15.791267

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9882100809 0.9823151214 5.5695223720 251.45467226

Pam	n Value	Std Error	t-value	95% Confide	ince Limits
a	0.676615154	2.762595551	0.244920091	-5.59154240	6.944772707
b	98.60233020	3.848881728	25.61843599	89.86945684	107.3352035
С	76.44600794	0.792538381	96.45716818	74.64778763	78.24422826
d	15.79126670	2.885557527	5.472518414	9.244116068	22.33841733

Date Time File Source
Mar 31, 1994 4:16:05 PM c:\tblcurve\munster\blast1iv.pm

LARGE BLAST, SET 2&3-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r²=0.993474644 DF Adj r²=0.990211966 FitStdErr=4.15727495 Fstat=456.745036

a=1.2360152 b=99.127627

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9934746441	0.9902119661	4.1572749513	456.74503638

Pam	n Value	Std Error	t-value	95% Confide	nce Limits
а	1.236015246	1.957509104	0.631422477	-3.20545121	5.677481703
b	99.12762727	2.884474625	34.36592106	92.58293367	105.6723209
С	77.48246669	0.582979108	132.9077931	76.15972334	78.80521005
d	16.54363941	2.188635654	7.558882346	11.57776118	21.50951764

Date	Time	File Source
Mar 31, 1994	11:03:51 AM	c:\tblcurve\munster\bi23hv.pm

SMALL BLAST, SET 2&3-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r²=0.980395221 DF Adj r²=0.970592832 FitStdErr=7.05803873 Fstat=150.023914

a=-0.23629084 b=101.07699 c=73.969892 d=8.6914507

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9803952211 0.9705928316 7.0580387327 150,02391396

Pam	n Value	Std Error	t-value	95% Confide	ence Limits
a	-0.23629084	3.716991437	-0.06357046	-8.66991333	8.197331639
b	101.0769891	5.218281169	19.36978592	89.23703356	112.9169447
С	73.98989210	1.602781787	46.16342206	70.35327987	77.62650433
d	8.691450746	1.939652503	4.480931884	4.290499805	13.09240169

Date Time File Source
Mar 31, 1994 11:02:05 AM c:\tblcurve\munster\bl23iv.pm

LARGE BLAST, SET 4&5-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/(2^{0.5}d))) [Cumulative] r²=0.9947969 DF Adj r²=0.992195349 FitStdErr=3.71664842 Fstat=573.579305 a=-0.70975506 b=101.26977

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9947968996	0.9921953494	3.7166484224	573.57930512

Pam	n Value	Std Error	t-value	95% Canfide	ence Limits
a	-0.70975506	2.124043074	-0.33415286	-5.52907675	4.109566616
b	101.2697742	2.947391596	34.35911752	94.58232592	107.9572225
С	95.44927600	1.632056944	58.48403534	91.74624026	99.15231174
d	-16 5891034	2 209079620	-7 50950907	-21 6013678	-11 5768391

Date	Time	File Source
Mar 31, 1994	3:08:04 PM	c:\tblcurve\munster\bl45hv.pm

SMALL BLAST, SET 4&5-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/(2^{0.5}d))) [Cumulative] r²=0.998297207 DF Adj r²=0.997445811 FitStdErr=2.07115165 Fstat=1758.81181 a=-0.064005267 b=100.07522

Rank 1 Eqn 8012 $y=a+b0.5(1+erf((x-c)/(2^{0.5}d)))$ [Cumulative]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9982972075 0.9974458112 2.0711516455 1758.8118086

Parm	n Value	Std Error	t-value	95% Confide	ence Limits
а	-0.06400527	1.041574229	-0.06145051	-2.42727244	2.299261903
b	100.0752230	1.465874513	68.26997952	96.74924483	103.4012011
C	84.09909967	0.686058017	122.5830725	82.54247668	85.65572266
d	-15.1087610	1.243134430	-12.1537628	-17.9293557	-12.2881663

Date Time File Source
Mar 31, 1994 4:09:12 PM c:\tblcurve\munster\bl45lv.pm

LARGE BLAST, SET 6&7-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r²=0.993310876 DF Adj r²=0.990337932 FitStdErr=4.11277658 Fstat=494.988022 a=0.91263447 b=99.600602

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9933108760	0.9903379320	4.1127765762	494.98802229

Parm	value	Sta Error	t-value	95% Confide	nce Limits
а	0.912634470	1.903615935	0.479421533	-3.33957460	5.164843545
b	99.60060167	2.839026652	35.08265821	93.25891547	105.9422879
С	68.46009354	0.855364376	80.03617572	66.54942022	70.37076685
d	11 05152033	1.282549155	8 616839585	8 186621454	13.91641921

Date Time File Source
Mar 30, 1994 4:25:49 PM c:\tcwin\munoh.pm

SMALL BLAST, SET 6&7-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)^d) [LogisticDoseRsp]

r²=0.993492603 DF Adj r²=0.990238904 FitStdErr=4.125478 Fstat=458.01382

a=0.67707068 b=99.484943

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9934926029 0.9902389043 4.1254780034 458.01382018

Pam	n Value	Std Error	t-value	95% Confide	nce Limits
а	0.677070683	2.050457447	0.330204699	-3.97528978	5.329431152
b	99.48494292	2.921898027	34.04805438	92.85533795	106.1145479
С	64.44277441	1.011714633	63.69659218	62.14725681	66.73829202
d	9.315710682	1.195772562	7.790537244	6.602577080	12.02884428

Date Time File Source
Mar 30, 1994 4:21:38 PM c:\tcwin\munoh.pm

LARGE BLAST, SET 8&9-VEHICLE CONTROLS

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/(2^{0.5}d))) [Cumulative] r²=0.974949795 DF Adj r²=0.962424692 FitStdErr=7.76502609 Fstat=116.759497 a=-0.82920481 b=100.92435

c=82.735772 d=-22.009876

Rank 1 Eqn 8012 y=a+b0.5(1+erf((x-c)/(2^{0.5}d))) [Cumulative]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9749497947 0.9624246920 7.7650260893 116.75949731

Parm	n Value	Std Error	t-value	95% Confide	ence Limits
а	-0.82920481	4.502934530	-0.18414765	-11.0460833	9.387673689
b	100.9243506	6.096113804	16.55552272	87.09264734	114.7560538
С	82.73577169	2.817121508	29.36890421	76.34389814	89.12764525
d	-22.0098760	6.163278451	-3.57113121	-35.9939716	-8.02578038

Date Time File Source
Mar 30, 1994 2:24:53 PM c:\tcwin\munoh.pm

SMALL BLAST, SE i 8&9-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r²=0.991940007 DF Adj r²=0.98791001 FitStdErr=4.44202122 Fstat=369.208746 a=-0.8933291 b=100.98266

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r ² Coef Det	DF Adj r ²	Fit Std Err	F-value
0.9919400067	0.9879100101	4.4420212153	369.20874631

Parm	n Value	Std Error	t-value	95% Confide	nce Limits
а	-0.89332910	2.603275274	-0.34315583	-6.79999885	5.013340651
b	100.9826643	3.471163070	29.09188140	93.10681113	108.8585175
С	66.38365993	1.408211927	47.14039033	63.18851462	69.57880525
d	6.197320520	0.994580642	6.231089021	3.940678877	8.453962163

Date Time File Source C:\tcwin\munoh.pm

LARGE BLAST, SET 7-VEHICLE CONTROLS

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r²=0.9957572 DF Adj r²=0.9936358 FitStdErr=3.35053521 Fstat=704.080228 a=-0.48800498 b=101.40596

a=-0.48800498 b=101.40596 c=83.890706 d=10.239116

Rank 1 Eqn 8013 y=a+b/(1+(x/c)d) [LogisticDoseRsp]

r² Coef Det DF Adj r² Fit Std Err F-value 0.9957572000 0.9936358000 3.3505352104 704.08022822

Pam	n Value	Std Error	t-value	95% Confide	nce Limits
а	-0.48800498	1.798771470	-0.27129904	-4.56930561	3.593295654
b	101.4059639	2.517143346	40.28612994	95.69472214	107.1172057
C	83.89070588	0.902932806	92.90913491	81.84200748	85.93940428
d	10 23911578	0 999263872	10 24665863	7 971848176	12 50638338

Date Time File Source
May 3, 1994 4:39:07 PM c:\tcwin\augh.pm

USACERL DISTRIBUTION

Chief of Engineers

ATTN: CEHEC-IM-LH (2)

ATTN: CEHEC-IM-LP (2)

ATTN: CERD-L

ATTN: CEMP-CE

ATTN: CEMP-EA

ATTN: CEMP-EI (2)

ATTN: CEMP-ZA

ATTN: CEMP-ZM (2)

ATTN: ENVR-E

HQ USAF/LEEEU 20332

US Army Europe

ODCS/Engineer 09014

ATTN: AEAEN-FE

ATTN: AEAEN-ODCS

AMC 22333

ATTN: AMCEN-A

Fort Belvoir, VA 22060

ATTN: Water Rescource Center

ATTN: CECC-R

ATTN: NACEC-FB

Picatinny Arsenal 07801

ATTN: Library

US Military Academy 10996

ATTN: Facilities Engineer

ATTN: Dept of Geography & Environmental Engrig

ATTN: MAEN-A

Naval Air Systems Command 20360

ATTN: Llibrary

Little Rock AFB 72099

ATTN: 314/DEEE

Aberdeen PG, MD 21010

ATTN: Safety Office Range Sefty Div

ATTN: US Army Ballistic Res Lab (2)

ATTN: ARNG Operating Activity Ctr

ATTN: Human Engineer Lab

Edgeweeod Arsenal, MD 21010

ATTN HSHB-MO-B

NAVFAC 22332

ATTN Code 2003

Navai Surve Weapons Center 22448

ATTN: N-43

Ft. McPherson, GA 30330

ATTN: AFEN-FEB

US Army Aeromedical Res Lab 36362

ATTN: SGRD-UAS-AS

USAWES 39180

ATTN: WESSEN-B

ATTN: Soils & Pavements Lab

ATTN: C/Structures

Wright-Patterson AFB, OH 45433

ATTN: AAMRL/BB

ATTN: AAMRL/BBE

Ft. Monmouth 07703

ATTN: AMSEL-EW-MD

WASH DC 20410

ATTN: Housing & Urban Dev (2)

Nat'l Institute of Standards & Tech

ATTN: Library 20899

Department of Transportation

ATTN: Library 20590

Naval Undersea Center, Code 401 92132

Bureau of National Affairs 20037

Building Research Board 20418

Transportation Research Board 20418

Federal Aviation Administration 20591

AVSCOM 63120-1798

ATTN: SFAE-AV-ASH

Defense Tech Info Center 22304

ATTN: DTIC-FAB (2)

39

+47

10/92