

10

15

20

Title: Component response rate variation drives stability in large complex systems

Authors: A. Bradley Duthie^{1†}

Affiliations:

¹Biological and Environmental Sciences, University of Stirling, Stirling, UK, FK9 4LA

† <u>alexander.duthie@stir.ac.uk</u>

Abstract: The stability of a complex system generally decreases with increasing system size and

interconnectivity, a counter-intuitive result of widespread importance across the physical, life,

and social sciences. Despite recent interest in the relationship between system properties and

stability, the effect of variation in the response rate of individual system components remains

unconsidered. Here I vary the component response rates (γ) of randomly generated complex

systems. I show that when component response rates vary, the potential for system stability is

markedly increased. Variation in γ becomes increasingly important as system size increases,

such that the largest stable complex systems would be unstable if not for $Var(\gamma)$. My results

reveal a previously unconsidered driver of system stability that is likely to be pervasive across all

complex systems.

One Sentence Summary: Complex systems are more likely to be stable if the rate at which their

individual components respond to perturbation varies.

Main Text:

In 1972, May (1) first demonstrated that randomly assembled systems of sufficient

complexity are almost inevitably unstable given infinitesimally small perturbations. Complexity

in this case is defined by the size of the system (i.e., the number of potentially interacting

components; S), its connectance (i.e., the probability that one component will interact with

1

another; C), and the variance of interaction strengths (σ^2) (2). May's finding that the probability of local stability falls to near zero given a sufficiently high threshold of $\sigma\sqrt{SC}$ is broadly relevant for understanding the dynamics and persistence of systems such as ecological (I-5), neurological (6, 7), biochemical (8, 9), and socio-economic (10-13) networks. As such, identifying general principles that drive stability in complex systems is of wide-ranging importance.

Randomly assembled complex systems can be represented as large square matrices (M)

30

35

25

with *s* components (e.g., species (2) or banks (11)). One element of such a matrix, M_{ij} , defines how component *j* affects component *i* in the system at a point of equilibrium (2). Off-diagonal elements $(i \neq j)$ therefore define interactions between components, while diagonal elements (i = j) define component self-regulation (e.g., carrying capacity in ecological communities). Traditionally, off-diagonal elements are assigned non-zero values with a probability *C*, which are sampled from a distribution with variance σ^2 ; diagonal elements are set to -1 (1, 2, 4). Local system stability is assessed using eigenanalysis, with the system being stable if the real parts of all eigenvalues (λ) of *M* are negative $(max(\Re(\lambda)) < 0)$ (1, 2). In a large system (high *S*), eigenvalues are distributed uniformly (14) within a circle centred at $\Re = -1$ (the mean value of diagonal elements) and $\Im = 0$, with a radius of $\sigma\sqrt{SC}$ (1, 2, 4) (Figs 1a and 2a). Local stability of randomly assembled systems therefore becomes increasingly unlikely as *S*, *C*, and σ^2 increase.

40

45

May's (1, 2) stability criterion $\sigma\sqrt{SC}$ < 1 assumes that individual components respond to perturbations of the system at the same rate (γ) , but this is highly unlikely in any complex system. In ecological communities, for example, the rate at which population density changes following perturbation will depend on the generation time of individuals, which might vary by orders of magnitude among species. Species with short generation times will respond quickly (high γ) to perturbations relative to species with long generation times (low γ). Similarly, the

55

60

65

speed at which individual banks respond to perturbations in financial networks, or individuals or institutions respond to perturbations in complex social networks, is likely to vary. The effect of such variance has not been investigated in complex systems theory. Intuitively, variation in γ might be expected to decrease system stability by introducing a new source of variation into the system and thereby increasing σ . Here I show why, despite higher σ , complex systems in which γ varies are actually more likely to be stable, especially when S is high.

Rows in M define how a given component i is affected by other components of the system, meaning that the rate of component response time can be modelled by multiplying all row elements by a real scalar value γ_i (15) (see Supplementary Information for details). The distribution of γ over S components thereby models the distribution of component response rates. An instructive example compares one M where $\gamma_i = 1$ for all i in S to the same M when half of $\gamma_i = 1.95$ and half of $\gamma_i = 0.05$. This models one system in which γ is invariant and one in which γ varies, but systems are otherwise identical (note $E[\gamma_i] = 1$ in both cases). I assume S = 200, C = 0.05, and $\sigma = 0.4$; diagonal elements are set to -1, and non-zero off-diagonal elements are drawn randomly from $N(0, \sigma^2)$. Rows are then multiplied by γ_i to generate M. When $\gamma_i = 1$, eigenvalues of M are distributed uniformly within a circle centred at (-1,0) with a radius of 1.265 (Fig. 1a). Hence, the real components of eigenvalues are highly unlikely to all be negative when all $\gamma_i = 1$. But when γ_i values are separated into two groups, eigenvalues are no longer uniformly distributed (Fig. 1b). Instead, two distinct clusters of eigenvalues appear (grey circles in Fig. 1b), one centred at (-1.95,0) and the other centred at (-0.05,0). The former has a large radius, but the real components have shifted to the left (in comparison to when $\gamma = 1$) and all $\Re(\lambda) < 0$. The latter cluster has real components that have shifted to the right, but has a smaller radius. Overall, for 1

75

80

85

90

million randomly assembled M, this division between slow and fast component response rates results in more stable systems: 1 stable given $\gamma = 1$ versus 32 stable given $\gamma = \{1.95, 0.5\}$.

Higher stability in systems with variation in γ can be observed by sampling γ_i values from various distributions. I now focus on a uniform distribution where $\gamma \sim U(0,2)$ (see Supplementary Information for other distributions, which give similar results). As with the case of $\gamma = \{1.95, 0.5\}$ (Fig. 1b), $E[\gamma] = 1$ when $\gamma \sim U(0,2)$, allowing comparison of M before and after variation in component response rate. Figure 2 shows a comparison of eigenvalue distributions given S = 1000, C = 0.05, and $\sigma = 0.4$. As expected (14), when $\gamma = 1$, eigenvalues are distributed uniformly in a circle centred at (-1,0) with a radius of $\sigma\sqrt{SC} = 2.828$. Uniform variation in γ leads to a non-uniform distribution of eigenvalues, some of which are clustered locally near the centre of the distribution, but others of which are spread outside the former radius of 2.828 (Fig 2b). The clustering and spreading of eigenvalues introduced by $Var(\gamma)$ can destabilise previously stable systems or stabilise systems that are otherwise unstable. But where systems are otherwise too complex to be stable given $\gamma = 1$, the effect of $Var(\gamma)$ can often lead to stability above May's (1, 2) threshold $\sigma\sqrt{SC} < 1$.

To investigate the effect of $Var(\gamma)$ on system stability, I simulated random M matrices at $\sigma = 0.4$ and C = 1 across S ranging from 2-32. One million M were simulated for each S, and the stability of M was assessed given $\gamma = 1$ versus $\gamma \sim U(0,2)$. For all S > 10, I found that the number of stable random systems was higher given $Var(\gamma)$ than when $\gamma = 1$ (Fig. 3), and that the difference between the probabilities of observing a stable system increased with an increase in S; i.e., the potential for $Var(\gamma)$ to drive stability increased with system complexity. For the highest values of S, nearly all systems that were stable given $Var(\gamma)$ would not have been stable given $\gamma = 1$ (see Supplementary Information for full results). This suggests that the stability of large

100

105

110

115

systems might be dependent upon variation in the response rate of their individual components, meaning that factors such as generation time (in ecological networks), transaction speed (in economic networks), or communication speed (in social networks) need to be considered when investigating the stability of complex systems.

It is important to point out that $Var(\gamma)$ is not stabilising per se; that is, adding variation in γ to a particular system M does not necessarily increase the probability that the system will be stable (see Supplementary Information). Rather, systems that are observed to be stable are more likely to vary in γ , and for this $Var(\gamma)$ to be critical to their stability. This is caused by the shift in the distribution of eigenvalues that occurs by introducing $Var(\gamma)$ (Fig. 1b, 2b), which can sometimes result in all $\Re(\lambda) < 0$ but might also increase $\Re(\lambda)$ values.

To further investigate the potential of $Var(\gamma)$ to be stabilising, I used a genetic algorithm (the space of possible γ values was too large to search exhaustively (16); see Supplementary Information). For each of 40000 random M ($\sigma = 0.4$, C = 1), the genetic algorithm initialised 1000 different sets of $\gamma \sim U(0,2)$ values of size S. Eigenanalysis was performed on M using each set of γ values, and the 20 sets with the lowest $max(\Re(\lambda))$ each produced 50 clonal offspring with subsequent mutation and crossover between the resulting new population of 1000 γ sets. The genetic algorithm terminated if a stable M was found, 20 generations occurred, or a convergence criteria of minimum fitness increase between generations was satisfied. Across $S = \{2,3,...,39,40\}$, sets of γ values were found that resulted in stable systems with probabilities that were up to four orders of magnitude higher than when $\gamma = 1$ (see Supplementary Information), meaning that stability could often be achieved by manipulating S γ values rather than $S \times S$ M elements. Hence, managing the response rates of system components in a targetted way can potentially facilitate the stabilisation of complex systems through a reduction in dimensionality.

125

130

135

I have focused broadly on random complex systems, but it is also worthwhile to consider more restricted interactions such as those of specific ecological networks (2). These include systems in which all interactions are negative (competitive networks), positive (mutualist networks), or i and j pairs have opposing signs (predator-prey networks). In general, competitive and mutualist networks tend to be destabilising, and predator-prey network tend to be stabilising (17). When $Var(\gamma)$ is applied to each, the proportion of stable competitive and predator-prey networks increases, but the proportion of stable mutualist networks does not (see Supplementary Information). Additionally, when each component of M is interpreted as a unique species and given a random intrinsic growth rate (18), feasibility is not increased by $Var(\gamma)$, suggesting that variation in species generation time might be unlikely to drive stability in purely multi-species networks (see Supplementary Information).

My results show that complex systems are more likely to be stable when the response rates of system components vary. These results are broadly applicable to understanding stability of complex networks in the physical, life, and social sciences.

References and Notes:

- 1. R. M. May, Will a large complex system be stable? *Nature*. **238**, 413–414 (1972).
- 2. S. Allesina, S. Tang, Stability criteria for complex ecosystems. *Nature*. **483**, 205–208 (2012).
- 3. A. Mougi, M. Kondoh, Diversity of interaction types and ecological community stability. *Science*. **337**, 349–351 (2012).
- 4. S. Allesina, J. Grilli, G. Barabás, S. Tang, J. Aljadeff, A. Maritan, Predicting the stability of large structured food webs. *Nature Communications*. **6**, 7842 (2015).

155

- 5. J. Grilli, M. Adorisio, S. Suweis, G. Barabás, J. R. Banavar, S. Allesina, A. Maritan, Feasibility and coexistence of large ecological communities. *Nature Communications*. **8** (2017).
- 6. R. T. Gray, P. A. Robinson, Stability and synchronization of random brain networks with a distribution of connection strengths. *Neurocomputing*. **71**, 1373–1387 (2008).
 - 7. R. T. Gray, P. A. Robinson, Stability of random brain networks with excitatory and inhibitory connections. *Neurocomputing*. **72**, 1849–1858 (2009).
 - 8. S. Rosenfeld, Patterns of stochastic behavior in dynamically unstable high-dimensional biochemical networks. *Gene Regulation and Systems Biology*. **3**, 1–10 (2009).
 - 9. B. D. MacArthur, R. J. Sanchez-Garcia, A. Ma'ayan, Microdynamics and criticality of adaptive regulatory networks. *Physics Review Letters*. **104**, 168701 (2010).
 - 10. R. M. May, S. A. Levin, G. Sugihara, Complex systems: Ecology for bankers. *Nature*. **451**, 893–895 (2008).
- 11. A. G. Haldane, R. M. May, Systemic risk in banking ecosystems. *Nature*. **469**, 351–355 (2011).
 - 12. S. Suweis, P. D'Odorico, Early warning signs in social-ecological networks. *PLoS ONE*. **9** (2014).
 - 13. M. Bardoscia, S. Battiston, F. Caccioli, G. Caldarelli, Pathways towards instability in financial networks. *Nature Communications*. **8**, 1–7 (2017).
 - 14. T. Tao, V. Vu, Random matrices: Universality of ESDs and the circular law. *Annals of Probability*. **38**, 2023–2065 (2010).

- 15. S. Patel, M. H. Cortez, S. J. Schreiber, Partitioning the effects of eco-evolutionary feedbacks on community stability. *American Naturalist*. **191**, 1–29 (2018).
- 16. S. Hamblin, On the practical usage of genetic algorithms in ecology and evolution. *Methods* in Ecology and Evolution. **4**, 184–194 (2013).
 - 17. S. Allesina, J. M. Levine, A competitive network theory of species diversity. *Proceedings of the National Academy of Sciences*. **108**, 5638–5642 (2011).
 - 18. M. Dougoud, L. Vinckenbosch, R. Rohr, L.-F. Bersier, C. Mazza, The feasibility of equilibria in large ecosystems: a primary but neglected concept in the complexity-stability debate. *PLoS Computational Biology*. **14**, e1005988 (2018).
 - 19. R. M. May, Qualitative stability in model ecosystems. *Ecology* **54**, 638–641 (1973).
 - 20. S. Tang, S. Allesina, Reactivity and stability of large ecosystems. *Frontiers in Ecology and Evolution* **2**, 1–8 (2014).
- 21. C. Song, S. Saavedra. Will a small randomly assembled community be feasible and stable? *Ecology.* **99**, 743–751 (2018).

Acknowledgements: Conversations with L. Bussière and N. Bunnefeld, and comments from J.J. Cusack and I. L. Jones, improved the quality of this work.

Funding: I am supported by a Leverhulme Trust Early Career Fellowship (ECF-2016-376).

175 **Supplementary Materials:** Supplementary Text (PDF)

185

Fig. 1: Example distribution of eigenvalues before (a) and after (b) separating a randomly generated complex system into fast ($\gamma = 1.95$) and slow ($\gamma = 0.05$) component response rates. Each panel shows the same system where S = 200, C = 0.05, and $\sigma = 0.4$, and in each case $E[\gamma] = 1$ (i.e., only the distribution of γ differs between panels). **a.** Eigenvalues plotted when all $\gamma = 1$; points are uniformly distributed within the grey circle with a radius of $\sigma\sqrt{SC} = 1.238$ centred at -1 on the real axis. **b.** Eigenvalues plotted when half $\gamma = 1.95$ and half $\gamma = 0.05$; distributions of points can be partitioned into one large circle centred at $\gamma = -1.95$ and one small circle centred at $\gamma = -0.05$. In a, the maximum real eigenvalue $max(\Re(\lambda)) = 0.2344871$, while in b $max(\Re(\lambda)) = -0.0002273135$, meaning that the complex system in b but not a is stable because in b $max(\Re(\lambda)) < 0$. In 1 million randomly generated complex systems under the same parameter values, 1 was stable when $\gamma = 1$ while 32 were stable when $\gamma = \{1.95,0.05\}$. Overall, complex systems that are separated into fast versus slow components tend to be more stable than otherwise identical systems with identical component response rates.

195

Fig. 2: Distributions of eigenvalues before (a) and after (b) introducing variation in component response rate (γ) in complex systems. Each panel show the same system where S = 1000, C = 0.05, and $\sigma = 0.4$. **a.** Eigenvalues plotted in the absence of $Var(\gamma)$ where $E[\gamma] = 1$, versus **b.** eigenvalues plotted given $\gamma \sim U(0,2)$, which increases the variance of interaction strengths (σ^2) but also creates a cluster of eigenvalues toward the distribution's centre (-1, 0). Black elipses in both panels show the circle centred on the distribution in panel a. Proportions of $\Re(\lambda) < 0$ are 0.725 and 0.739 for a and b, respectively.

205

Fig. 3: Stability of large complex systems with and without variation in component response rate (γ) . The ln number of systems that are stable across different system sizes (S) given C=1, and the proportion of systems in which variation in γ is critical for system stability. For each S, 1 million complex systems are randomly generated. Stability of each complex system is tested given variation in γ by randomly sampling $\gamma \sim U(0,2)$. Stability given $Var(\gamma)$ is then compared to stability in an otherwise identical system in which $\gamma = E[U(0,2)]$ for all components. Light and dark grey bars show the number of stable systems in the absence and presence of $Var(\gamma)$, respectively. The black line shows the proportion of systems that are stable when $Var(\gamma) > 0$, but would be unstable if $Var(\gamma) = 0$.

Component response rate variation drives stability in large complex systems

Supplemental Information

A. Bradley Duthie

Biological and Environmental Sciences, University of Stirling, Stirling, UK, FK9 4LA alexander.duthie@stir.ac.uk

This supplemental information supports the manuscript "Component response rate variation drives stability in large complex systems" with all of the code required to recreate the analysis in the main text, and with additional analyses to support its conclusions. All text, code, and data underlying this manuscript are publicly available on GitHub as part of the RandomMatrixStability package.

The RandomMatrixStability package includes all functions and tools for recreating the text, this supplemental information, and running all code; additional documentation is also provided for functions as part of the package. The RandomMatrixStability package is available on GitHub; to download it, the devtools library is needed.

```
install.packages("devtools");
library(devtools);
```

7 The code below installs the RandomMatrixStability package using devtools.

```
install_github("bradduthie/RandomMatrixStability");
```

While downloading this package is recommended, all relevant code is also reproduced below with explanation, so it is possible to recreate all analyses using only this supplemental information.

Supplemental Information table of contents

• Further explanation of γ

22

23

24

25

27

28

29

30

31

32

33

34

35

36

- Code and simulations underlying Fig. 1
- Code and simulations underlying Fig. 2
- Stability across increasing S
- Stability of ecological networks
 - Competitor networks
 - Mutualist networks
 - Predator-prey networks
- Different connectance (C) values
 - C = 0.3
 - C = 0.5
 - C = 0.7
 - C = 0.9
- Different distributions of γ
- Genetic algorithm
- Feasibility of complex systems

38 Further explanation of γ

In a synthesis of eco-evolutionary feedbacks on community stability, Patel et al. model a system that includes a vector of potentially changing species densities (\mathbf{N}) and a vector of potentially evolving traits (\mathbf{x}) (15). For any species i or trait j, change in species density (N_i) or trait value (x_j) with time (t) is a function of the vectors \mathbf{N} and \mathbf{x} ,

$$\frac{dN_i}{dt} = N_i f_i(\mathbf{N}, \mathbf{x}),$$

$$\frac{dx_j}{dt} = \epsilon g_j(\mathbf{N}, \mathbf{x}).$$

In the above, f_i and g_j are functions that define the effects of all species densities and trait values on the density of a species i and the value of trait j, respectively. Patel et al. were interested in stability when the evolution of traits was relatively slow or fast in comparison with the change in species densities (15), and this is modulated in the above by the scalar ϵ . The value of ϵ thereby determines the timescale separation between ecology and evolution, with high ϵ modelling relatively fast evolution and low ϵ modelling relative slow evolution (15).

I use the same principle that Patel et al. use to modulate the relative rate of evolution to modulate rates of component responses for S components. Following May (1, 19), the value of a component i at time t $(v_i(t))$ is affected by the value of j $(v_i(t))$ and j's marginal effect on i (m_{ij}) , and by i's response rate (γ_i) ,

$$\frac{dv_i(t)}{dt} = \gamma_i \sum_{j=1}^{S} m_{ij} v_j(t).$$

52 In matrix notation (20),

$$\frac{d\mathbf{v}(t)}{dt} = \gamma \mathbf{M} \mathbf{v}(t).$$

In the above, γ is a diagonal matrix in which elements correspond to individual component response rates. Therefore, $\gamma \mathbf{M}$ modulates the values of components and can be analysed using the techniques of May (1, 19).

55 Code and simulations underlying Fig. 1

The sample M used for the eigenvalue distributions in Fig. 1 of the text is available on GitHub, and was produced by running the following function.

```
A0_e
                <- eigen(A0)$values;
        AO_r
                \leftarrow Re(A0_e);
        AO_i
               <-Im(A0_e);
        A1 e
                <- eigen(A1)$values;
        A1_r
                <- Re(A1_e);
               <- Im(A1_e);
        A1 i
        if(max(A0_r) >= 0 & max(A1_r) < 0){
             return(list(AO = AO, A1 = A1));
             break;
        print(iters);
        iters <- iters - 1;</pre>
    }
}
```

The above find_bgamma function terminates when a matrix M is found that is not stable when all component response rates are set to $\gamma = 1$, but is stable when half of component response rates are 1.95 and half are 0.05. The function is used to illustrate the concept of how fast versus slow component responses can cause a system to become stable. Simulations were run for iter = 1000000, but terminated once an acceptable A0 and A1 were found. The code below plots the eigenvalue distributions of A0 and A1 in panels a and b, respectively. The plot itself can be recreated with the function and code below.

```
A0 <- as.matrix(A0[,-1]);
A1 <- as.matrix(A1[,-1]);
plot_Fig_1 <- function(A0, A1){</pre>
    S_val
                \leftarrow dim(A0)[1];
    A0_e
                <- eigen(A0)$values;
    A0_r
                <- Re(A0_e);
    AO_i
                <- Im(A0_e);
    A1 e
                <- eigen(A1)$values;
                <- Re(A1_e);
    A1_r
    A1 i
                \leftarrow Im(A1 e);
    AO_{vm}
                <- A0;
    diag(A0_vm) <- NA;</pre>
    A0vec
                 <- as.vector(t(A0_vm));
    A0vec
                 <- A0vec[is.na(A0vec) == FALSE];
    A1 vm
                <- A1;
    diag(A1_vm) <- NA;</pre>
                <- as.vector(t(A1_vm));
    A1vec
                <- Alvec[is.na(Alvec) == FALSE];
    A1vec
                <- 1:(0.5*length(A1vec));
    fhalf
                <- (0.5*length(A1vec)+1):length(A1vec);
    shalf
    par(mfrow = c(1, 2), mar = c(0.5, 0.5, 0.5, 0.5), oma = c(5, 5, 0, 0));
    plot(AO_r, AO_i, xlim = c(-3.7, 0.3), ylim = c(-2, 2), pch = 4, cex = 0.7,
         xlab = "", ylab = "", cex.lab = 1.5, cex.axis = 1.5, asp = 1);
         <- seq(from = 0, to = 2*pi, by = 0.001);
    A0x0 \leftarrow sqrt(S_val) * sd(A0vec) * cos(vl) + mean(diag(A0));
    A0y0 <- sqrt(S_val) * sd(A0vec) * sin(vl);
    text(x = -3.5, y = 2.25, labels = "a", cex = 2);
    points(x = A0x0, y = A0y0, type = "1", 1wd = 3, col = "grey");
    points(AO_r, AO_i, pch = 4, cex = 0.7);
    plot(A1_r, A1_i, xlim = c(-3.7, 0.3), ylim = c(-2, 2), pch = 4, cex = 0.7,
         xlab = "", ylab = "", cex.lab = 1.5, cex.axis = 1.5, asp = 1,
         col = "black", yaxt = "n");
```


To find out how frequently M was stable given that all $\gamma = 1$ versus $\gamma = \{1.95, 0.05\}$, the function below was created.

```
gammas \leftarrow c(rep(1.95, S/2), rep(0.05, S/2))
         mu_gam <- mean(gammas);</pre>
         diag(A_mat) < -1;
                 <- gammas * A_mat;</pre>
         ΑO
                 <- mu_gam * A_mat;
         A0 e
                 <- eigen(A0)$values;
         AO_r
                <- Re(A0_e);
         AO i
                \leftarrow Im(A0 e);
         A1 e
                 <- eigen(A1)$values;
         A1 r
                 \leftarrow Re(A1 e);
                 <- Im(A1_e);
         A1 i
         if(max(A0_r) < 0){
             ress[iters, 1] <- 1;
             AO_count
                              <- A0_count + 1;
             }
         if(max(A1_r) < 0){
             ress[iters, 2] <- 1;</pre>
             A1_count
                              <- A1_count + 1;
         print(c(iters, A0_count, A1_count));
         iters <- iters - 1;</pre>
    }
    return(ress);
}
```

The above functions produced the bi_pr_st data.

```
bi_pr_st <- read.csv("sim_results/bi_gamma/bi_pr_st.csv");
pr_st <- bi_pr_st[,-1];</pre>
```

The function stab_bgamma was run for iters = 1000000, and the resulting matrix ress was returned. Each row of ress represents a single M given $\gamma = 1$ (column 1) versus $\gamma = \{1.95, 0.05\}$ (column 2). Values of 0 indicate that M was found to be unstable (at least one real component of its eigenvalues greater than or equal to zero), whereas values of 1 indicate that M was found to be stable (all real components of eigenvalues are negative). The frequencies of stable M were 1 given $\gamma = 1$ and 32 given $\gamma = \{1.95, 0.05\}$, as reported in the main text and legend of Fig. 1 (raw data are available on GitHub).

⁷⁴ Code and simulations underlying Fig. 2

Figure 2 of the main text shows eigenvalue distributions in a system where S = 1000, C = 1, and $\sigma = 0.4$. Eigenvalues can be reproduced using the code below for when $\gamma = 1$ (panel a) and $\gamma \sim \mathcal{U}(0, 2)$ (panel b). The function below reproduces the figure.

```
plot_Fig_2 <- function(){
    A_comp <- NULL;
    A_dat <- rnorm(n = 1000000, mean = 0, sd = 0.4);
    A_mat <- matrix(data = A_dat, nrow = 1000);
    C_dat <- rbinom(n = 1000 * 1000, size = 1, prob = 0.05);
    C_mat <- matrix(data = C_dat, nrow = 1000, ncol = 1000);
    A_mat <- A_mat * C_mat;
    A_mat <- species_interactions(A_mat, type = 0);
    gammas <- runif(n = 1000, min = 0, max = 2);
    mu_gam <- mean(gammas);</pre>
```

```
diag(A_mat) <- -1;</pre>
           <- gammas * A_mat;</pre>
    ΑO
           <- mu_gam * A_mat;
    AO_e <- eigen(AO)$values;
    A0_r \leftarrow Re(A0_e);
    AO_i \leftarrow Im(AO_e);
    A1_e <- eigen(A1)$values;
    A1 r \leftarrow Re(A1 e);
    A1_i \leftarrow Im(A1_e);
    AO_vm
                <- A0;
    diag(A0_vm) <- NA;</pre>
                <- as.vector(A0_vm);
    A0vec
                 <- A0vec[is.na(A0vec) == FALSE];
    A0vec
    par(mfrow = c(1, 2), mar = c(0.5, 0.5, 0.5, 0.5), oma = c(5, 5, 0, 0));
    plot(AO_r, AO_i, xlim = c(-6, 2.25), ylim = c(-5, 4.25), pch = 4, cex = 0.7,
         xlab = "", ylab = "", cex.lab = 1.5, cex.axis = 1.5, asp = 1);
    vl \leftarrow seq(from = 0, to = 2*pi, by = 0.001);
    x0 <- sqrt(1000) * sd(A0vec) * cos(vl) + mean(diag(A0));</pre>
    y0 \leftarrow sqrt(1000) * sd(A0vec) * sin(v1);
    text(x = -15.5, y = 19, labels = "a", cex = 2);
    points(x = x0, y = y0, type = "1", lwd = 3);
    plot(A1_r, A1_i, xlim = c(-6, 2.25), ylim = c(-5, 4.25), pch = 4, cex = 0.7,
         xlab = "", ylab = "", cex.lab = 1.5, cex.axis = 1.5, asp = 1, col = "red",
         yaxt = "n");
    text(x = -15.5, y = 19, labels = "b", cex = 2);
    points(x = x0, y = y0, type = "1", lwd = 3, lty = "solid");
    mtext(side = 1, "Real", outer = TRUE, line = 3, cex = 2);
    mtext(side = 2, "Imaginary", outer = TRUE, line = 2.5, cex = 2);
plot_Fig_2();
```


⁷⁹ Stability across increasing S

- Figure 3 of the main text reports the number of stable random complex systems found over 1 million iterations.
- The data used to make this figure are read into R below.

```
dat <- read.csv(file = "sim_results/C_1/random_all.csv");
dat <- dat[,-1]; # Extra row-indicating column removed</pre>
```

The table below shows the results for all simulations of random M matrices at $\sigma=0.4$ and C=1 given a range of $S=\{2,3,...,49,50\}$. In this table, the AO refers to matrices where $\gamma=1$, while A1 refers to matrices after $Var(\gamma)$ is added and $\gamma\sim\mathcal{U}(0,2)$. Each row summarises data for a given S over 1 million randomly simulated M (AO and A1). The column AO_unstable shows the number of AO matrices that are unstable, and the column AO_stable shows the number of AO matrices that are stable (these two columns sum to 1 million). Similarly, the column A1_unstable shows the number of A1 matrices that are unstable and A1_stable shows the number that are stable. The columns A1_stabilised and A1_destabilised show how many AO matrices were stabilised or destabilised, respectively, by $Var(\gamma)$.

\overline{S}	A0_unstable	A0_stable	A1_unstable	A1_stable	A1_stabilised	A1_destabilised
2	293	999707	293	999707	0	0
3	3602	996398	3609	996391	0	7
4	14937	985063	15008	984992	0	71
5	39289	960711	39783	960217	36	530
6	78845	921155	80207	919793	389	1751
7	133764	866236	136904	863096	1679	4819
8	204112	795888	208241	791759	5391	9520
9	288041	711959	291775	708225	12619	16353

\overline{S}	A0 unstable	A0 stable	A1 unstable	A1 stable	A1 stabilised	A1 destabilised
10	384024	615976	384931	615069	23153	24060
11	485975	514025	481019	518981	35681	30725
12	590453	409547	577439	422561	48302	35288
13	689643	310357	669440	330560	57194	36991
14	777496	222504	751433	248567	60959	34896
15	850159	149841	821613	178387	58567	30021
16	905057	94943	877481	122519	51255	23679
17	943192	56808	919536	80464	40854	17198
18	969018	30982	949944	50056	30102	11028
19	984301	15699	970703	29297	20065	6467
20	992601	7399	983507	16493	12587	3493
21	996765	3235	991532	8468	7030	1797
22	998693	1307	995567	4433	3884	758
23	999503	497	997941	2059	1883	321
24	999861	139	999059	941	899	97
25	999964	36	999617	383	380	33
26	999993	7	999878	122	121	6
27	999995	5	999946	54	53	4
28	1000000	0	999975	25	25	0
29	1000000	0	999997	3	3	0
30	1000000	0	999999	1	1	0
31	1000000	0	999999	1	1	0
32	1000000	0	1000000	0	0	0
33	1000000	0	1000000	0	0	0
34	1000000	0	1000000	0	0	0
35	1000000	0	1000000	0	0	0
36	1000000	0	1000000	0	0	0
37	1000000	0	1000000	0	0	0
38	1000000	0	1000000	0	0	0
39	1000000	0	1000000	0	0	0
40	1000000	0	1000000	0	0	0
41	1000000	0	1000000	0	0	0
42	1000000	0	1000000	0	0	0
43	1000000	0	1000000	0	0	0
44	1000000	0	1000000	0	0	0
45	1000000	0	1000000	0	0	0
46	1000000	0	1000000	0	0	0
47	1000000	0	1000000	0	0	0
48	1000000	0	1000000	0	0	0
49	1000000	0	1000000	0	0	0
50	1000000	0	1000000	0	0	0

Overall, the ratio of stable A1 matrices to stable A0 matrices found is greater than 1 (compare column 5 to column 3), and this ratio increases with increasing S (column 1). Hence, more randomly created complex systems (M) are generated given variation in γ than when $\gamma = 1$. The results underlying this table were produced with the rand_gen_var function below.

```
tot_res[[i-1]] <- matrix(data = 0, nrow = iter, ncol = 7);</pre>
        fea_res[[i-1]] <- matrix(data = 0, nrow = iter, ncol = 7);</pre>
        while(iter > 0){
            r vec
                      \leftarrow rnorm(n = i, mean = 0, sd = rmx);
            A0_dat
                      - rnorm(n = i * i, mean = 0, sd = 0.4);
            ΑO
                      <- matrix(data = AO_dat, nrow = i, ncol = i);
            ΑO
                      <- species_interactions(mat = A0, type = int_type);</pre>
            C dat
                      \leftarrow rbinom(n = i * i, size = 1, prob = C);
                      <- matrix(data = C_dat, nrow = i, ncol = i);
            C mat
            ΑO
                      <- A0 * C_mat;
            diag(A0) <- -1;
                      <- runif(n = i, min = 0, max = 2);
            gam1
                      <- A0 * gam1;
            Α1
            ΑO
                     <- A0 * mean(gam1);
            A0_stb <- max(Re(eigen(A0)$values)) < 0;
            A1_stb <- max(Re(eigen(A1)$values)) < 0;
            A0_fea <-min(-1*solve(A0) %*% r_vec) > 0;
            A1_fea <-\min(-1*solve(A1) %*% r_vec) > 0;
            if(A0_stb == TRUE){
                tot_res[[i-1]][iter, 1] <- 1;
            if(A1_stb == TRUE){
                tot_res[[i-1]][iter, 2] <- 1;
            if(A0 fea == TRUE){
                fea_res[[i-1]][iter, 1] <- 1;
            if(A1_fea == TRUE){
                fea_res[[i-1]][iter, 2] <- 1;
            }
            iter
                    <- iter - 1;
        }
        print(i);
    }
    all_res <- summarise_randmat(tot_res = tot_res, fea_res = fea_res);</pre>
    return(all_res);
}
```

The above function calls the two functions species_interactions and summarise_randmat, which are provided below.

```
species_interactions <- function(mat, type = 0){
   if(type == 1){
      mat[mat > 0] <- -1*mat[mat > 0];
   }
   if(type == 2){
      mat[mat < 0] <- -1*mat[mat < 0];
   }
   if(type == 3){
      for(i in 1:dim(mat)[1]){
        for(j in 1:dim(mat)[2]){
            if(mat[i, j] * mat[j, i] > 0){
                mat[j, i] <- -1 * mat[j, i];
      }
}</pre>
```

```
}
    }
    return(mat);
}
summarise_randmat <- function(tot_res, fea_res){</pre>
            <- length(tot res);
    all_res <- matrix(data = 0, nrow = sims, ncol = 13);</pre>
    for(i in 1:sims){
        all_res[i, 1]
                       - i + 1;
        # Stable and unstable
        all res[i, 2] <- sum(tot res[[i]][,1] == FALSE);
        all_res[i, 3] <- sum(tot_res[[i]][,1] == TRUE);
        all_res[i, 4] <- sum(tot_res[[i]][,2] == FALSE);
        all_res[i, 5] <- sum(tot_res[[i]][,2] == TRUE);
        # Stabilised and destabilised
        all_res[i, 6] <- sum(tot_res[[i]][,1] == FALSE &
                                   tot_res[[i]][,2] == TRUE);
        all_res[i, 7] <- sum(tot_res[[i]][,1] == TRUE &
                                   tot_res[[i]][,2] == FALSE);
        # Feasible and infeasible
        all_res[i, 8] <- sum(fea_res[[i]][,1] == FALSE);
        all_res[i, 9] <- sum(fea_res[[i]][,1] == TRUE);
        all_res[i, 10] <- sum(fea_res[[i]][,2] == FALSE);
        all_res[i, 11] <- sum(fea_res[[i]][,2] == TRUE);
        # Feased and defeased
        all_res[i, 12] <- sum(fea_res[[i]][,1] == FALSE &
                                   fea_res[[i]][,2] == TRUE);
        all_res[i, 13] <- sum(fea_res[[i]][,1] == TRUE &
                                   fea_res[[i]][,2] == FALSE);
    }
    cnames <- c("N", "A0_unstable", "A0_stable", "A1_unstable", "A1_stable",</pre>
                "A1_stabilised", "A1_destabilised", "A0_infeasible",
                "A0_feasible", "A1_infeasible", "A1_feasible",
                "A1_made_feasible", "A1_made_infeasible");
    colnames(all_res) <- cnames;</pre>
    return(all_res);
}
```

Note that feasibility results were ommitted for the table above, but are reported below.

Stability of ecological networks

While the foundational work of May (1) applies broadly to complex networks, much attention has been given specifically to ecological networks of interacting species. In these networks, the matrix M is interpreted as a community matrix and each row and column is interpreted as a single species. The effect that the density of any species i has on the population dynamics of species j is found in M_{ij} , meaning that M holds the effects of pair-wise interactions between S species (2, 4, 20). While May's original work (1) considered only randomly assembled communities, recent work has specifically looked at more restricted ecological communities including competitive networks (all off-diagonal elements of M are negative), mutualist networks (all off-diagonal elements of M are positive), and predator-prey networks (for any pair of i and j, the effect of

i on j is negative and j on i is positive, or vice versa) (2, 4, 17, 20). In general, competitor and mutualist networks tend to be unstable, while predator-prey networks tend to be highly stabilising.

I investigated competitor, mutualist, and predator-prey networks following Allesina et al. (2). To create these networks, I first generated a random matrix M, then changed the elements of M accordingly. If M was a competitive network, then the sign of any positive off-diagonal elements was reversed to be negative. If M was a mutualist network, then the sign of any positive off-diagonal elements was reversed to be positive. And if M was a predator-prey network, then all i and j pairs of elements were checked; any pairs of the same sign were changed so that one was negative and the other was positive. The species_interaction function used to do this is below.

```
species_interactions <- function(mat, type = 0){</pre>
    if(type == 1){
        mat[mat > 0] <- -1*mat[mat > 0];
    if(type == 2){
        mat[mat < 0] <- -1*mat[mat < 0];
    if(type == 3){
        for(i in 1:dim(mat)[1]){
            for(j in 1:dim(mat)[2]){
                if(mat[i, j] * mat[j, i] > 0){
                    mat[j, i] <- -1 * mat[j, i];
                }
            }
        }
    }
    return(mat);
} # Note: -1 values are added in the diagonal later
```

This function was applied to all created matrices M, then the number of stable M matrices was estimated exactly as it was in the main text for random matrices for values of S from 2 to 50 (100 in the case of the relatively more stable predator-prey interactions), except that only 100000 random M were generated instead of 1 million. This produced the data set below.

```
cdat <- read.csv(file = "sim_results/ecology/competition_C_1.csv");
mdat <- read.csv(file = "sim_results/ecology/mutualism_C_1.csv");
pdat <- read.csv(file = "sim_results/ecology/pred-prey_C_1.csv");</pre>
```

The following tables for restricted ecological communities can therefore be compared with the random M results above (but note that counts from systems with comparable probabilities of stability will be an order of magnitude lower in the tables below due to the smaller number of M matrices generated). As with the results above, in the tables below, A0 refers to matrices when $\gamma=1$ and A1 refers to matrices after $Var(\gamma)$ is added. The column A0_unstable shows the number of A0 matrices that are unstable, and the column A0_stable shows the number of A0 matrices that are stable (these two columns sum to 100000). Similarly, the column A1_unstable shows the number of A1 matrices that are unstable and A1_stable shows the number that are stable. The columns A1_stabilised and A1_destabilised show how many A0 matrices were stabilised or destabilised, respectively, by $Var(\gamma)$.

Competition

108

109

110

111

113

115

116

117

118

120

121

122

123

124

125

126

127

Results for competitor interaction networks are shown below

N	${\bf A0_unstable}$	$A0_stable$	${\bf A1_unstable}$	${\bf A1_stable}$	A1_stabilised
2	48	99952	48	99952	0
3	229	99771	231	99769	0

N	$A0$ _unstable	$A0_stable$	${\bf A1_unstable}$	${\bf A1_stable}$	$A1_stabilised$
4	701	99299	704	99296	0
5	1579	98421	1587	98413	0
6	3218	96782	3253	96747	6
7	5519	94481	5619	94381	23
8	9062	90938	9237	90763	77
9	13436	86564	13729	86271	230
10	18911	81089	19303	80697	505
11	25594	74406	25961	74039	1011
12	33207	66793	33382	66618	1724
13	41160	58840	41089	58911	2655
14	50575	49425	49894	50106	3777
15	59250	40750	57892	42108	4824
16	67811	32189	65740	34260	5634
17	75483	24517	73056	26944	5943
18	82551	17449	79878	20122	5780
19	88030	11970	85204	14796	5417
20	92254	7746	89766	10234	4544
21	95233	4767	93002	6998	3695
22	97317	2683	95451	4549	2803
23	98508	1492	97122	2878	1991
24	99240	760	98407	1593	1216
25	99669	331	99082	918	739
26	99871	129	99490	510	452
27	99938	62	99732	268	240
28	99985	15	99888	112	108
29	99990	10	99951	49	46
30	100000	0	99981	19	19
31	100000	0	99993	7	7
32	100000	0	99996	4	4
33	100000	0	99998	2	2
34	100000	0	100000	0	0
			• • •		• • •
50	100000	0	100000	0	0

$_{130}$ Mutualism

131 Results for mutualist interaction networks are shown below

N	${\bf A0_unstable}$	$A0_stable$	${\bf A1_unstable}$	${\bf A1_stable}$	${\bf A1_stabilised}$
2	56	99944	56	99944	0
3	3301	96699	3301	96699	0
4	34446	65554	34446	65554	0
5	86520	13480	86520	13480	0
6	99683	317	99683	317	0
7	99998	2	99998	2	0
8	100000	0	100000	0	0
9	100000	0	100000	0	0
10	100000	0	100000	0	0
11	100000	0	100000	0	0
12	100000	0	100000	0	0
50	100000	0	100000	0	0

Predator-prey
Results for predator-prey interaction networks are shown below

2 0 100000 0 100000 0 3 0 100000 0 100000 0 4 0 100000 0 100000 0 5 1 99999 1 999999 0 6 4 99996 4 99996 0 7 2 99998 2 99998 0 8 5 99995 5 99995 0 9 20 99980 21 99979 0 10 20 99980 22 99978 0 11 38 99962 39 99961 0 12 64 99936 66 99934 0 13 87 99913 91 99941 0 15 215 99785 227 99773 0 16 293 99707 310 99690 0 0 <td< th=""><th>N</th><th>A0_</th><th>_unstable</th><th>A0_</th><th>_stable</th><th>A1_</th><th>_unstable</th><th>A1_</th><th>stable</th><th>A1_</th><th>stabilised</th></td<>	N	A0_	_unstable	A0_	_stable	A1_	_unstable	A1_	stable	A1_	stabilised
4 0 100000 0 100000 0 5 1 99999 1 99999 0 6 4 99996 4 99996 0 7 2 99998 2 99998 0 8 5 99995 5 99995 0 9 20 99980 21 99979 0 10 20 99980 22 99978 0 11 38 99962 39 99961 0 12 64 9936 66 99934 0 13 87 99913 91 99999 0 14 157 99843 159 99841 0 15 215 99785 227 99773 0 16 293 99707 310 99690 0 17 383 99617 408 99592 0 18			0		100000		0		100000		0
5 1 99999 1 99996 0 6 4 99996 4 99996 0 7 2 99998 2 99998 0 8 5 99995 5 99995 0 9 20 99980 21 99979 0 10 20 99980 22 99978 0 11 38 99962 39 99961 0 12 64 99936 66 99934 0 12 64 99936 66 99934 0 13 87 99913 91 99909 0 14 157 99843 159 99841 0 15 215 99785 227 99773 0 16 293 99707 310 99690 0 17 383 99617 408 99592 0 18			0		100000		0		100000		0
6 4 99996 4 99998 0 7 2 99998 2 99998 0 8 5 99995 5 999979 0 9 20 99980 21 99979 0 10 20 99980 22 99978 0 11 38 99962 39 99961 0 12 64 99936 66 99934 0 13 87 99913 91 99909 0 14 157 99843 159 99841 0 15 215 99785 227 99773 0 16 293 99707 310 99690 0 17 383 99617 408 99592 0 18 443 99557 473 99527 3 19 642 99358 675 99325 4 20 </td <td>4</td> <td></td> <td>0</td> <td></td> <td>100000</td> <td></td> <td>0</td> <td></td> <td>100000</td> <td></td> <td>0</td>	4		0		100000		0		100000		0
7 2 99998 2 99995 0 8 5 99995 5 99995 0 9 20 99980 21 99978 0 10 20 99980 22 99978 0 11 38 99962 39 99961 0 12 64 99936 66 99934 0 13 87 99913 91 99999 0 14 157 99843 159 99841 0 15 215 99785 227 97773 0 16 293 99707 310 99690 0 17 383 99617 408 99592 0 18 443 99557 473 99527 3 19 642 99358 675 99325 4 20 836 99164 887 99113 7	5		1		99999		1		99999		0
8 5 99995 5 999979 0 9 20 99980 21 99979 0 10 20 99980 22 99978 0 11 38 99962 39 99961 0 12 64 99936 66 99934 0 13 87 99913 91 99909 0 14 157 99843 159 99841 0 15 215 99785 227 99773 0 16 293 99707 310 99690 0 17 383 99617 408 99592 0 18 443 99557 473 99527 3 19 642 99358 675 99325 4 20 836 99164 887 99113 7 21 1006 9894 1058 9842 10	6		4		99996		4		99996		0
9 20 99980 21 99978 0 10 20 99980 22 99978 0 11 38 99962 39 99961 0 12 64 99936 66 99934 0 13 87 99913 91 99909 0 14 157 99843 159 99841 0 15 215 99785 227 99773 0 16 293 99707 310 99690 0 17 383 99617 408 99592 0 18 443 99557 473 99527 3 19 642 99358 675 99325 4 20 836 99164 887 99113 7 21 1006 98994 1058 98942 10 22 1153 98847 1228 98772 20 <	7		2		99998		2		99998		0
10 20 99980 22 99978 0 11 38 99962 39 99961 0 12 64 99936 66 99934 0 13 87 99913 91 99909 0 14 157 99843 159 99841 0 15 215 99785 227 99773 0 16 293 99707 310 99690 0 17 383 99617 408 99592 0 18 443 99557 473 99527 3 19 642 99358 675 99325 4 20 836 99164 887 99113 7 21 1006 98994 1058 98942 10 22 1153 98847 1228 98772 20 23 1501 98499 1593 98407 30	8		5		99995		5		99995		0
11 38 99962 39 99961 0 12 64 99936 66 99934 0 13 87 99913 91 99909 0 14 157 99843 159 99841 0 15 215 99785 227 99773 0 16 293 99707 310 99690 0 17 383 99617 408 99592 0 18 443 99557 473 99527 3 19 642 99358 675 99325 4 20 836 99164 887 99113 7 21 1006 9894 1058 98942 10 22 1153 98847 1228 98772 20 23 1501 98499 1593 98407 30 24 1841 98159 1996 98004 40 <	9		20		99980		21		99979		0
12 64 99936 66 99934 0 13 87 99913 91 99909 0 14 157 99843 159 99841 0 15 215 99785 227 99773 0 16 293 99707 310 99690 0 17 383 99617 408 99592 0 18 443 99557 473 99527 3 19 642 99358 675 99325 4 20 836 99164 887 99113 7 21 1006 98994 1058 98942 10 22 1153 98847 1228 98772 20 23 1501 98499 1593 98407 30 24 1841 98159 1996 98004 40 25 2146 97854 2316 97684 58	10		20		99980		22		99978		0
13 87 99913 91 99909 0 14 157 99843 159 99841 0 15 215 99785 227 99773 0 16 293 99707 310 99690 0 17 383 99617 408 99592 0 18 443 99557 473 99527 3 19 642 99358 675 99325 4 20 836 99164 887 99113 7 21 1006 98994 1058 98942 10 22 1153 98847 1228 98772 20 23 1501 98499 1593 98407 30 24 1841 98159 1996 98004 40 25 2146 97854 2316 97684 58 26 2643 97357 2809 97191 11	11		38		99962		39		99961		0
14 157 99843 159 99841 0 15 215 99785 227 99773 0 16 293 99707 310 99690 0 17 383 99617 408 99592 0 18 443 99557 473 99527 3 19 642 99358 675 99325 4 20 836 99164 887 99113 7 21 1006 98994 1058 98942 10 22 1153 98847 1228 98772 20 23 1501 98499 1593 98407 30 24 1841 98159 1996 98004 40 25 2146 97854 2316 97684 58 26 2643 97357 2809 97191 119 27 3034 9696 3258 96742 <	12		64		99936		66		99934		0
15 215 99785 227 99773 0 16 293 99707 310 99690 0 17 383 99617 408 99592 0 18 443 99557 473 99527 3 19 642 99358 675 99325 4 20 836 99164 887 99113 7 21 1006 98994 1058 98942 10 22 1153 9847 1228 98772 20 23 1501 98499 1593 98407 30 24 1841 98159 1996 98004 40 25 2146 97854 2316 97684 58 26 2643 97357 2809 97191 119 27 3034 96966 3258 96742 158 28 3690 96310 3928 96072	13		87		99913		91		99909		0
16 293 99707 310 99690 0 17 383 99617 408 99592 0 18 443 99557 473 99527 3 19 642 99358 675 99325 4 20 836 99164 887 99113 7 21 1006 98994 1058 98942 10 22 1153 9847 1228 98772 20 23 1501 98499 1593 98407 30 24 1841 98159 1996 98004 40 25 2146 97854 2316 97684 58 26 2643 97357 2809 97191 119 27 3034 96966 3258 96742 158 28 3690 96310 3928 96072 201 29 4257 95743 4532 95468	14		157		99843		159		99841		0
17 383 99617 408 99592 0 18 443 99557 473 99527 3 19 642 99358 675 99325 4 20 836 99164 887 99113 7 21 1006 98994 1058 98942 10 22 1153 98847 1228 98772 20 23 1501 98499 1593 98407 30 24 1841 98159 1996 98004 40 25 2146 97854 2316 97684 58 26 2643 97357 2809 97191 119 27 3034 96966 3258 96742 158 28 3690 96310 3928 96072 201 29 4257 95743 4532 95468 290 30 4964 95036 5221 94779 </td <td>15</td> <td></td> <td>215</td> <td></td> <td>99785</td> <td></td> <td>227</td> <td></td> <td>99773</td> <td></td> <td>0</td>	15		215		99785		227		99773		0
17 383 99617 408 99592 0 18 443 99557 473 99527 3 19 642 99358 675 99325 4 20 836 99164 887 99113 7 21 1006 98994 1058 98942 10 22 1153 98847 1228 98772 20 23 1501 98499 1593 98407 30 24 1841 98159 1996 98004 40 25 2146 97854 2316 97684 58 26 2643 97357 2809 97191 119 27 3034 96966 3258 96742 158 28 3690 96310 3928 96072 201 29 4257 95743 4532 95468 290 30 4964 95036 5221 94779 </td <td>16</td> <td></td> <td>293</td> <td></td> <td>99707</td> <td></td> <td>310</td> <td></td> <td>99690</td> <td></td> <td>0</td>	16		293		99707		310		99690		0
18 443 99557 473 99527 3 19 642 99358 675 99325 4 20 836 99164 887 99113 7 21 1006 98994 1058 98942 10 22 1153 98847 1228 98772 20 23 1501 98499 1593 98407 30 24 1841 98159 1996 98004 40 25 2146 97854 2316 97684 58 26 2643 97357 2809 97191 119 27 3034 96966 3258 96742 158 28 3690 96310 3928 96072 201 29 4257 95743 4532 95468 290 30 4964 95036 5221 94779 424 31 5627 94373 5978 940											0
19 642 99358 675 99325 4 20 836 99164 887 99113 7 21 1006 98994 1058 98942 10 22 1153 98847 1228 98772 20 23 1501 98499 1593 98407 30 24 1841 98159 1996 98004 40 25 2146 97854 2316 97684 58 26 2643 97357 2809 97191 119 27 3034 96966 3258 96742 158 28 3690 96310 3928 96072 201 29 4257 95743 4532 95468 290 30 4964 95036 5221 94779 424 31 5627 94373 5978 94022 452 32 6543 93457 6891 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
20 836 99164 887 99113 7 21 1006 98994 1058 98942 10 22 1153 98847 1228 98772 20 23 1501 98499 1593 98407 30 24 1841 98159 1996 98004 40 25 2146 97854 2316 97684 58 26 2643 97357 2809 97191 119 27 3034 96966 3258 96742 158 28 3690 96310 3928 96072 201 29 4257 95743 4532 95468 290 30 4964 95036 5221 94779 424 31 5627 94373 5978 94022 452 32 6543 93457 6891 93109 666 33 7425 92575 7777											
21 1006 98994 1058 98942 10 22 1153 98847 1228 98772 20 23 1501 98499 1593 98407 30 24 1841 98159 1996 98004 40 25 2146 97854 2316 97684 58 26 2643 97357 2809 97191 119 27 3034 96966 3258 96742 158 28 3690 96310 3928 96072 201 29 4257 95743 4532 95468 290 30 4964 95036 5221 94779 424 31 5627 94373 5978 94022 452 32 6543 93457 6891 93109 666 33 7425 92575 7777 92223 818 34 8540 91460 8841											7
22 1153 98847 1228 98772 20 23 1501 98499 1593 98407 30 24 1841 98159 1996 98004 40 25 2146 97854 2316 97684 58 26 2643 97357 2809 97191 119 27 3034 96966 3258 96742 158 28 3690 96310 3928 96072 201 29 4257 95743 4532 95468 290 30 4964 95036 5221 94779 424 31 5627 94373 5978 94022 452 32 6543 93457 6891 93109 666 33 7425 92575 7777 92223 818 34 8540 91460 8841 91159 1071 35 9526 90474 9842											
23 1501 98499 1593 98407 30 24 1841 98159 1996 98004 40 25 2146 97854 2316 97684 58 26 2643 97357 2809 97191 119 27 3034 96966 3258 96742 158 28 3690 96310 3928 96072 201 29 4257 95743 4532 95468 290 30 4964 95036 5221 94779 424 31 5627 94373 5978 94022 452 32 6543 93457 6891 93109 666 33 7425 92575 7777 92223 818 34 8540 91460 8841 91159 1071 35 9526 90474 9842 90158 1337 36 10617 89383 10891 <td></td>											
24 1841 98159 1996 98004 40 25 2146 97854 2316 97684 58 26 2643 97357 2809 97191 119 27 3034 96966 3258 96742 158 28 3690 96310 3928 96072 201 29 4257 95743 4532 95468 290 30 4964 95036 5221 94779 424 31 5627 94373 5978 94022 452 32 6543 93457 6891 93109 666 33 7425 92575 7777 92223 818 34 8540 91460 8841 91159 1071 35 9526 90474 9842 90158 1337 36 10617 89383 10891 89109 1624 37 12344 87656 1250											
25 2146 97854 2316 97684 58 26 2643 97357 2809 97191 119 27 3034 96966 3258 96742 158 28 3690 96310 3928 96072 201 29 4257 95743 4532 95468 290 30 4964 95036 5221 94779 424 31 5627 94373 5978 94022 452 32 6543 93457 6891 93109 666 33 7425 92575 7777 92223 818 34 8540 91460 8841 91159 1071 35 9526 90474 9842 90158 1337 36 10617 89383 10891 89109 1624 37 12344 87656 12508 87492 2021 38 13675 86325											
26 2643 97357 2809 97191 119 27 3034 96966 3258 96742 158 28 3690 96310 3928 96072 201 29 4257 95743 4532 95468 290 30 4964 95036 5221 94779 424 31 5627 94373 5978 94022 452 32 6543 93457 6891 93109 666 33 7425 92575 7777 92223 818 34 8540 91460 8841 91159 1071 35 9526 90474 9842 90158 1337 36 10617 89383 10891 89109 1624 37 12344 87656 12508 87492 2021 38 13675 86325 13877 86123 2442 39 15264 84736 15349 84651 2870 40 17026 82974 17053 <td></td>											
27 3034 96966 3258 96742 158 28 3690 96310 3928 96072 201 29 4257 95743 4532 95468 290 30 4964 95036 5221 94779 424 31 5627 94373 5978 94022 452 32 6543 93457 6891 93109 666 33 7425 92575 7777 92223 818 34 8540 91460 8841 91159 1071 35 9526 90474 9842 90158 1337 36 10617 89383 10891 89109 1624 37 12344 87656 12508 87492 2021 38 13675 86325 13877 86123 2442 39 15264 84736 15349 84651 2870 40 17026 82974 17053 82947 3363 41 18768 81232 18614<											
28 3690 96310 3928 96072 201 29 4257 95743 4532 95468 290 30 4964 95036 5221 94779 424 31 5627 94373 5978 94022 452 32 6543 93457 6891 93109 666 33 7425 92575 7777 92223 818 34 8540 91460 8841 91159 1071 35 9526 90474 9842 90158 1337 36 10617 89383 10891 89109 1624 37 12344 87656 12508 87492 2021 38 13675 86325 13877 86123 2442 39 15264 84736 15349 84651 2870 40 17026 82974 17053 82947 3363 41 18768 81232 18614 81386 3905 42 20791 79209 204											
29 4257 95743 4532 95468 290 30 4964 95036 5221 94779 424 31 5627 94373 5978 94022 452 32 6543 93457 6891 93109 666 33 7425 92575 7777 92223 818 34 8540 91460 8841 91159 1071 35 9526 90474 9842 90158 1337 36 10617 89383 10891 89109 1624 37 12344 87656 12508 87492 2021 38 13675 86325 13877 86123 2442 39 15264 84736 15349 84651 2870 40 17026 82974 17053 82947 3363 41 18768 81232 18614 81386 3905 42 20791 79209 20470 79530 4579 43 23150 76850											
30 4964 95036 5221 94779 424 31 5627 94373 5978 94022 452 32 6543 93457 6891 93109 666 33 7425 92575 7777 92223 818 34 8540 91460 8841 91159 1071 35 9526 90474 9842 90158 1337 36 10617 89383 10891 89109 1624 37 12344 87656 12508 87492 2021 38 13675 86325 13877 86123 2442 39 15264 84736 15349 84651 2870 40 17026 82974 17053 82947 3363 41 18768 81232 18614 81386 3905 42 20791 79209 20470 79530 4579 43 23150 76850 </td <td></td>											
31 5627 94373 5978 94022 452 32 6543 93457 6891 93109 666 33 7425 92575 7777 92223 818 34 8540 91460 8841 91159 1071 35 9526 90474 9842 90158 1337 36 10617 89383 10891 89109 1624 37 12344 87656 12508 87492 2021 38 13675 86325 13877 86123 2442 39 15264 84736 15349 84651 2870 40 17026 82974 17053 82947 3363 41 18768 81232 18614 81386 3905 42 20791 79209 20470 79530 4579 43 23150 76850 22754 77246 5217 44 25449 74551 24184 75816 6285 45 27702 72298											
32 6543 93457 6891 93109 666 33 7425 92575 7777 92223 818 34 8540 91460 8841 91159 1071 35 9526 90474 9842 90158 1337 36 10617 89383 10891 89109 1624 37 12344 87656 12508 87492 2021 38 13675 86325 13877 86123 2442 39 15264 84736 15349 84651 2870 40 17026 82974 17053 82947 3363 41 18768 81232 18614 81386 3905 42 20791 79209 20470 79530 4579 43 23150 76850 22754 77246 5217 44 25449 74551 24184 75816 6285 45 27702 72298 26464 73536 6754 46 30525 69475											
33 7425 92575 7777 92223 818 34 8540 91460 8841 91159 1071 35 9526 90474 9842 90158 1337 36 10617 89383 10891 89109 1624 37 12344 87656 12508 87492 2021 38 13675 86325 13877 86123 2442 39 15264 84736 15349 84651 2870 40 17026 82974 17053 82947 3363 41 18768 81232 18614 81386 3905 42 20791 79209 20470 79530 4579 43 23150 76850 22754 77246 5217 44 25449 74551 24184 75816 6285 45 27702 72298 26464 73536 6754 46 30525 69475 28966 71034 7646 47 32832 67168 <td></td>											
34 8540 91460 8841 91159 1071 35 9526 90474 9842 90158 1337 36 10617 89383 10891 89109 1624 37 12344 87656 12508 87492 2021 38 13675 86325 13877 86123 2442 39 15264 84736 15349 84651 2870 40 17026 82974 17053 82947 3363 41 18768 81232 18614 81386 3905 42 20791 79209 20470 79530 4579 43 23150 76850 22754 77246 5217 44 25449 74551 24184 75816 6285 45 27702 72298 26464 73536 6754 46 30525 69475 28966 71034 7646 47 32832 67168 31125 68875 8487 48 36152 63848<											
35 9526 90474 9842 90158 1337 36 10617 89383 10891 89109 1624 37 12344 87656 12508 87492 2021 38 13675 86325 13877 86123 2442 39 15264 84736 15349 84651 2870 40 17026 82974 17053 82947 3363 41 18768 81232 18614 81386 3905 42 20791 79209 20470 79530 4579 43 23150 76850 22754 77246 5217 44 25449 74551 24184 75816 6285 45 27702 72298 26464 73536 6754 46 30525 69475 28966 71034 7646 47 32832 67168 31125 68875 8487 48 36152 63848 33865 66135 9479 49 38714 61286 36242 63758 10125											
36 10617 89383 10891 89109 1624 37 12344 87656 12508 87492 2021 38 13675 86325 13877 86123 2442 39 15264 84736 15349 84651 2870 40 17026 82974 17053 82947 3363 41 18768 81232 18614 81386 3905 42 20791 79209 20470 79530 4579 43 23150 76850 22754 77246 5217 44 25449 74551 24184 75816 6285 45 27702 72298 26464 73536 6754 46 30525 69475 28966 71034 7646 47 32832 67168 31125 68875 8487 48 36152 63848 33865 66135 9479 49 38714 61286 36242 63758 10125											
37 12344 87656 12508 87492 2021 38 13675 86325 13877 86123 2442 39 15264 84736 15349 84651 2870 40 17026 82974 17053 82947 3363 41 18768 81232 18614 81386 3905 42 20791 79209 20470 79530 4579 43 23150 76850 22754 77246 5217 44 25449 74551 24184 75816 6285 45 27702 72298 26464 73536 6754 46 30525 69475 28966 71034 7646 47 32832 67168 31125 68875 8487 48 36152 63848 33865 66135 9479 49 38714 61286 36242 63758 10125											
38 13675 86325 13877 86123 2442 39 15264 84736 15349 84651 2870 40 17026 82974 17053 82947 3363 41 18768 81232 18614 81386 3905 42 20791 79209 20470 79530 4579 43 23150 76850 22754 77246 5217 44 25449 74551 24184 75816 6285 45 27702 72298 26464 73536 6754 46 30525 69475 28966 71034 7646 47 32832 67168 31125 68875 8487 48 36152 63848 33865 66135 9479 49 38714 61286 36242 63758 10125											
39 15264 84736 15349 84651 2870 40 17026 82974 17053 82947 3363 41 18768 81232 18614 81386 3905 42 20791 79209 20470 79530 4579 43 23150 76850 22754 77246 5217 44 25449 74551 24184 75816 6285 45 27702 72298 26464 73536 6754 46 30525 69475 28966 71034 7646 47 32832 67168 31125 68875 8487 48 36152 63848 33865 66135 9479 49 38714 61286 36242 63758 10125											
40 17026 82974 17053 82947 3363 41 18768 81232 18614 81386 3905 42 20791 79209 20470 79530 4579 43 23150 76850 22754 77246 5217 44 25449 74551 24184 75816 6285 45 27702 72298 26464 73536 6754 46 30525 69475 28966 71034 7646 47 32832 67168 31125 68875 8487 48 36152 63848 33865 66135 9479 49 38714 61286 36242 63758 10125											
41 18768 81232 18614 81386 3905 42 20791 79209 20470 79530 4579 43 23150 76850 22754 77246 5217 44 25449 74551 24184 75816 6285 45 27702 72298 26464 73536 6754 46 30525 69475 28966 71034 7646 47 32832 67168 31125 68875 8487 48 36152 63848 33865 66135 9479 49 38714 61286 36242 63758 10125											
42 20791 79209 20470 79530 4579 43 23150 76850 22754 77246 5217 44 25449 74551 24184 75816 6285 45 27702 72298 26464 73536 6754 46 30525 69475 28966 71034 7646 47 32832 67168 31125 68875 8487 48 36152 63848 33865 66135 9479 49 38714 61286 36242 63758 10125											
43 23150 76850 22754 77246 5217 44 25449 74551 24184 75816 6285 45 27702 72298 26464 73536 6754 46 30525 69475 28966 71034 7646 47 32832 67168 31125 68875 8487 48 36152 63848 33865 66135 9479 49 38714 61286 36242 63758 10125											
44 25449 74551 24184 75816 6285 45 27702 72298 26464 73536 6754 46 30525 69475 28966 71034 7646 47 32832 67168 31125 68875 8487 48 36152 63848 33865 66135 9479 49 38714 61286 36242 63758 10125											
45 27702 72298 26464 73536 6754 46 30525 69475 28966 71034 7646 47 32832 67168 31125 68875 8487 48 36152 63848 33865 66135 9479 49 38714 61286 36242 63758 10125											
46 30525 69475 28966 71034 7646 47 32832 67168 31125 68875 8487 48 36152 63848 33865 66135 9479 49 38714 61286 36242 63758 10125											
47 32832 67168 31125 68875 8487 48 36152 63848 33865 66135 9479 49 38714 61286 36242 63758 10125											
48 36152 63848 33865 66135 9479 49 38714 61286 36242 63758 10125											
49 38714 61286 36242 63758 10125											

	A0 unstable	A0 stable	A1 unstable	A1 stable	A1 stabilised
51	44483	55517	41023	58977	11704
52	48134	51866	44287	55713	12573
53	51138	48862	46721	53279	13223
54	54261	45739	49559	50441	13757
55	57647	42353	52403	47597	14324
56	60630	39370	55293	44707	14669
57	63647	36353	57787	42213	15103
58	66961	33039	60439	39561	15450
59	69968	30032	63708	36292	15246
60	72838	27162	66270	33730	15177
61	75609	24391	68873	31127	15006
62	77999	22001	71318	28682	14538
63	80616	19384	73517	26483	14510
64	83089	16911	76209	23791	13784
65	85150	14850	78086	21914	13412
66	86908	13092	80437	19563	12477
67	88671	11329	82379	17621	11718
68	90537	9463	84483	15517	10878
69	91969	8031	86233	13767	10033
70	93181	6819	87914	12086	9070
71	94330	5670	89200	10800	8401
72	95324	4676	90833	9167	7359
73	96143	3857	91805	8195	6726
74	96959	3041	93065	6935	5900
75	97543	2457	93987	6013	5222
76	97969	2031	94900	5100	4481
77	98497	1503	95756	4244	3809
78	98744	1256	96442	3558	3269
79	99045	955	96942	3058	2837
80	99276	724	97528	2472	2329
81	99481	519	97996	2004	1894
82	99556	444	98321	1679	1597
83	99691	309	98722	1278	1227
84	99752	248	98943	1057	1015
85	99833	167	99144	856	837
86	99895	105	99346	654	642
87	99925	75	99461	539	530
88	99945	55	99566	434	428
89	99976	24	99675	325	324
90	99977	23	99756	244	243
91	99982	18	99839	161	155
92	99988	12	99865	135	135
93	99994	6	99885	115	115
94	99993	7	99911	89	88
95	99998	2	99953	47	47
96	99999	1	99965	35	35
97	99999	1	99979	21	21
98	100000	0	99973	27	27
99	100000	0	99984	16	16
100	100000	0	99989	11	11

Overall, as expected (2), predator-prey communities are relatively stable while mutualist communities are

highly unstable. But interestingly, while $Var(\gamma)$ stabilises predator-prey and competitor communities, it does not stabilise mutualist communities. This is unsurprising because purely mutualist communities are characterised by a very positive (2) leading $\Re(\lambda)$, and it is highly unlikely that $Var(\gamma)$ alone will shift all real parts of eigenvalues to negative values.

Different inter-connectivity (C) values

In the main text, for simplicity, I assumed inter-connectivity values of C=1, meaning that all off-diagonal 140 elements of a matrix M were potentially nonzero and sampled from a normal distribution $\mathcal{N}(0,\sigma^2)$ where 141 $\sigma = 0.4$. Here I present four tables showing the number of stable communities given $C = \{0.3, 0.5, 0.7, 0.9\}$. 142 In all cases, uniform variation in component response time $(\gamma \sim \mathcal{U}(0,2))$ led to a higher number of stable 143 communities than when γ did not vary ($\gamma = 1$). In contrast to the main text, 100000 rather than 1 million M 144 were simulated. As with the results on stability with increasing S shown above, in the tables below AO refers to matrices when $\gamma = 1$, and A1 refers to matrices after $Var(\gamma)$ is added. The column A0_unstable shows the 146 number of AO matrices that are unstable, and the column AO_stable shows the number of AO matrices that are stable (these two columns sum to 100000). Similarly, the column A1 unstable shows the number of A1 148 matrices that are unstable and A1_stable shows the number that are stable. The columns A1_stabilised 149 and A1_destabilised show how many A0 matrices were stabilised or destabilised, respectively, by $Var(\gamma)$. 150

All data reported below for various values of C are accessible using the below.

```
C3dat <- read.csv(file = "sim_results/C_other/rand_c-0pt3.csv");
C5dat <- read.csv(file = "sim_results/C_other/rand_c-0pt5.csv");
C7dat <- read.csv(file = "sim_results/C_other/rand_c-0pt7.csv");
C9dat <- read.csv(file = "sim_results/C_other/rand_c-0pt9.csv");</pre>
```

These objects C3dat, C5dat, C7dat, and C9dat include the results for C = 0.3, C = 0.5, C = 0.7, and C = 0.9, respectively.

N	A0_unstable	A0_stable	A1_unstable	A1_stable	A1_stabilised	A1_destabilised
2	5	99995	5	99995	0	0
3	6	99994	6	99994	0	0
4	24	99976	24	99976	0	0
5	59	99941	59	99941	0	0
6	98	99902	98	99902	0	0
7	160	99840	161	99839	0	1
8	290	99710	293	99707	0	3
9	430	99570	434	99566	0	4
10	648	99352	653	99347	1	6
11	946	99054	957	99043	0	11
12	1392	98608	1415	98585	4	27
13	2032	97968	2065	97935	5	38
14	2627	97373	2688	97312	10	71
15	3588	96412	3647	96353	35	94
16	5019	94981	5124	94876	51	156
17	6512	93488	6673	93327	79	240
18	8444	91556	8600	91400	165	321
19	10416	89584	10667	89333	244	495
20	13254	86746	13477	86523	425	648
21	16248	83752	16481	83519	642	875
22	19497	80503	19719	80281	929	1151
23	23654	76346	23776	76224	1368	1490

N	A0_unstable	A0_stable	A1_unstable	A1_stable	A1_stabilised	A1_destabilised
24	28485	71515	28389	71611	1914	1818
25	32774	67226	32483	67517	2428	2137
26	38126	61874	37411	62589	3221	2506
27	43435	56565	42418	57582	3828	2811
28	49333	50667	47840	52160	4565	3072
29	55389	44611	53381	46619	5329	3321
30	60826	39174	58388	41612	5918	3480
31	66820	33180	64043	35957	6345	3568
32	72190	27810	69036	30964	6685	3531
33	77053	22947	73587	26413	6826	3360
34	81816	18184	78157	21843	6673	3014
35	85651	14349	82041	17959	6383	2773
36	88985	11015	85657	14343	5721	2393
37	92072	7928	88805	11195	5180	1913
38	94329	5671	91444	8556	4451	1566
39	95912	4088	93295	6705	3804	1187
40	97232	2768	95201	4799	2967	936
41	98179	1821	96506	3494	2356	683
42	98826	1174	97489	2511	1786	449
43	99275	725	98312	1688	1251	288
44	99583	417	98872	1128	903	192
45	99776	224	99339	661	576	139
46	99865	135	99518	482	413	66
47	99938	62	99744	256	226	32
48	99956	44	99824	176	151	19
49	99980	20	99914	86	85	19
50	99993	7	99950	50	46	3
51	99998	2	99971	29	28	1
52	99998	2	99986	14	14	2
53	99999	1	99992	8	7	0
54	100000	0	99997	3	3	0
55	100000	0	99999	1	1	0
56	100000	0	99998	2	2	0
57	100000	0	99999	1	1	0
58	100000	0	100000	0	0	0
	• • •				• • •	• • •
100	100000	0	100000	0	0	0

N	A0_unstable	$A0_stable$	A1_unstable	A1_stable	A1_stabilised	A1_destabilised
2	7	99993	7	99993	0	0
3	32	99968	32	99968	0	0
4	122	99878	122	99878	0	0
5	320	99680	321	99679	0	1
6	667	99333	673	99327	0	6
7	1233	98767	1252	98748	0	19
8	2123	97877	2156	97844	3	36
9	3415	96585	3471	96529	16	72
10	5349	94651	5450	94550	30	131
11	7990	92010	8185	91815	81	276

N	A0_unstable	A0_stable	A1_unstable	A1_stable	A1_stabilised	A1_destabilised
12	11073	88927	11301	88699	219	447
13	14971	85029	15204	84796	445	678
14	19754	80246	19992	80008	764	1002
15	25020	74980	25239	74761	1185	1404
16	30860	69140	30938	69062	1902	1980
17	37844	62156	37562	62438	2758	2476
18	44909	55091	44251	55749	3595	2937
19	52322	47678	51011	48989	4573	3262
20	60150	39850	58295	41705	5382	3527
21	67147	32853	64895	35105	5925	3673
22	74177	25823	71358	28642	6310	3491
23	80297	19703	77034	22966	6507	3244
24	85372	14628	82039	17961	6209	2876
25	89719	10281	86539	13461	5562	2382
26	92947	7053	90141	9859	4707	1901
27	95436	4564	92950	7050	3844	1358
28	97196	2804	95171	4829	2999	974
29	98300	1700	96842	3158	2115	657
30	99103	897	98033	1967	1466	396
31	99502	498	98665	1335	1068	231
32	99745	255	99185	815	696	136
33	99881	119	99572	428	375	66
34	99955	45	99788	212	191	24
35	99979	21	99900	100	95	16
36	99995	5	99950	50	50	5
37	99997	3	99970	30	28	1
38	99998	2	99986	14	13	1
39	99999	1	99991	9	9	1
40	100000	0	100000	0	0	0
41	100000	0	99999	1	1	0
42	100000	0	99999	1	1	0
43	100000	0	100000	0	0	0
	100000		100000			
50	100000	0	100000	0	0	0

N	A0_unstable	A0_stable	A1_unstable	A1_stable	A1_stabilised	A1_destabilised
2	7	99993	7	99993	0	0
3	106	99894	106	99894	0	0
4	395	99605	397	99603	0	2
5	1117	98883	1123	98877	0	6
6	2346	97654	2367	97633	6	27
7	4314	95686	4388	95612	16	90
8	7327	92673	7456	92544	61	190
9	11514	88486	11792	88208	150	428
10	16247	83753	16584	83416	415	752
11	22481	77519	22759	77241	884	1162
12	29459	70541	29729	70271	1548	1818
13	37631	62369	37567	62433	2419	2355
14	46317	53683	45696	54304	3548	2927

N	$A0$ _unstable	$A0_stable$	${\bf A1_unstable}$	${\bf A1_stable}$	$A1_stabilised$	$A1_destabilised$
15	54945	45055	53695	46305 4671		3421
16	63683 36317		61643	38357	5567	3527
17	72004	27996	69375	30625	6124	3495
18	79220	20780	76158	23842	6413	3351
19	85286	14714	82283	17717	5982	2979
20	90240	9760	87181	12819	5398	2339
21	93676	6324	91077	8923	4468	1869
22	96203 3797		94045	5955	3425	1267
23	97866 2134		96161	3839	2496	791
24	98842	1158	97633	2367	1713	504
25	99433	567	98630	1370	1079	276
26	99760	240	99259	741	655	154
27	99895	105	99576	424	377	58
28	99950	50	99790	210	194	34
29	99981	19	99915	85	80	14
30	99994	6	99952	48	47	5
31	99998	2	99972	28	28	2
32	99999	1	99992	8	8	1
33	100000	0	99997	3	3	0
34	100000	0	99999	1	1	0
35	100000	0	100000	0	0	0
 50	100000	0	100000	0	0	0

N	$A0$ _unstable	$A0_stable$	A1_unstable	A1_stable	$A1_stabilised$	A1_destabilised
2	14	99986	14	99986	0	0
3	240	99760	240	99760	0	0
4	1008	98992	1016	98984	0	8
5	2708	97292	2729	97271	2	23
6	5669	94331	5755	94245	13	99
7	9848	90152	10057	89943	91	300
8	15903	84097	16201	83799	336	634
9	22707	77293	23110	76890	765	1168
10	30796	69204	31122	68878	1526	1852
11	40224	59776	40082	59918	2649	2507
12	49934	50066	49288	50712	3773	3127
13	60138	39862	58803	41197	4984	3649
14	69100	30900	67110	32890	5755	3765
15	77607	22393	74884	25116	6273	3550
16	84663	15337	81780	18220	5975	3092
17	90075	9925	87290	12710	5209	2424
18	93944	6056	91419	8581	4271	1746
19	96650	3350	94530	5470	3287	1167
20	98160	1840	96698	3302	2191	729
21	99111	889	98133	1867	1389	411
22	99588	412	98905	1095	903	220
23	99837	163	99480	520	452	95
24	99932	68	99744	256	228	40
25	99976	24	99863	137	133	20

N	A0_unstable	A0_stable	A1_unstable	A1_stable	A1_stabilised	A1_destabilised
26	99995	5	99950	50	49	4
27	99996	4	99986	14	13	3
28	100000	0	99993	7	7	0
29	100000	0	99996	4	4	0
30	100000	0	99998	2	2	0
31	100000	0	100000	0	0	0
		• • •	• • •	• • •	• • •	• • •
50	100000	0	100000	0	0	0

Different distributions of γ

In the main text, I considered a uniform distribution of component response rates $\gamma \sim \mathcal{U}(0,2)$. The number of unstable and stable M matrices are reported in a table above across different values of S. Here I show complementary results for three different distributions including an exponential, beta, and gamma distribution of γ values. The shape of these distributions is shown in the figure below.

Distributions of component response rate (γ) values in complex systems. The stabilities of simulated complex systems with these γ distributions are compared to otherwise identical complex systems with a fixed component response rate of $\gamma=1$ across different system sizes (S; i.e., component numbers) given a unit γ standard deviation ($\sigma_{\gamma}=1$) for b-d. Distributions are as follows: (a) uniform, (b) exponential, (c) beta ($\alpha=0.5$ and $\beta=0.5$), and (d) gamma (k=2 and k=0.5). Each panel shows 1 million randomly generated k=0.50 values.

Component γ value

1.0

0.0

2.0

The same 100000 M matrices were used to investigate stability when applying each of these different distributions of γ values. The table below shows the number of M that were unstable (_unst) and stable (_stbl) for the exponential (Exp), beta, and gamma distributions.

fourdists <- read.csv(file = "sim_results/different_distr/four_distr_rand.csv");
kable(fourdists);</pre>

S	Exp_unst	$\rm Exp_stbl$	beta_unst	$beta_stbl$	gamma_unst	${\rm gamma_stbl}$
2	30	99970	30	99970	30	99970
3	355	99645	355	99645	355	99645
4	1506	98494	1512	98488	1516	98484
5	3930	96070	3971	96029	4006	95994
6	7738	92262	7844	92156	7918	92082

S	Exp_unst	Exp_stbl	beta_unst	beta_stbl	gamma_unst	$gamma_stbl$
7	13606	86394	13889	86111	13990	86010
8	20535	79465	21002	78998	21114	78886
9	28614	71386	29060	70940	29110	70890
10	38375	61625	38388	61612	38441	61559
11	48616	51384	48211	51789	47957	52043
12	59254	40746	58025	41975	57473	42527
13	68816	31184	66753	33247	66127	33873
14	77721	22279	75149	24851	74222	25778
15	84842	15158	82030	17970	81040	18960
16	90365	9635	87809	12191	86600	13400
17	94171	5829	91756	8244	90668	9332
18	96978	3022	94977	5023	94176	5824
19	98376	1624	97018	2982	96268	3732
20	99218	782	98357	1643	97765	2235
21	99678	322	99124	876	98746	1254
22	99864	136	99599	401	99323	677
23	99954	46	99783	217	99668	332
24	99978	22	99920	80	99821	179
25	99996	4	99967	33	99911	89
26	99999	1	99979	21	99960	40
27	99999	1	99990	10	99983	17
28	100000	0	99999	1	99991	9
29	100000	0	99999	1	99999	1
30	100000	0	100000	0	100000	0
31	100000	0	100000	0	99999	1
32	100000	0	100000	0	100000	0
50	100000	0	100000	0	100000	0

In comparison to the uniform distribution (a), proportionally fewer random systems are found with the exponential distribution (b), while more are found with the beta (c) and gamma (d) distributions.

177 Genetic algorithm

Ideally, to investigate the potential of $Var(\gamma)$ for increasing the proportion of stable complex systems, the search space of all possible γ vectors would be evaluated for each unique M. This is technically impossible because γ_i can take any real value between 0-2, but even rounding γ to reasonable values would result in a search space too large to practically explore. Under these conditions, genetic algorithms are highly useful tools for finding practical solutions by mimicking the process of biological evolution (16). In this case, the practical solution is finding vectors of γ that decrease the most positive real eigenvalue of M. The genetic algorithm below achieves this by initialising a large population of 1000 different potential γ vectors and allowing this population to evolve through a process of mutation, crossover (swaping γ_i values between vectors), selection, and reproduction until either a γ vector is found where all $\Re(\lambda) < 0$ or some "giving up" critiera is met (in the below, this "giving up" criteria is met when 20 generations pass, or if the fitness increase from one generation to the next is below a certain criteria). The genetic algorithm relies on five functions. The first outer function Evo_rand_gen_var runs all of the simulations (max_sp refers to the maximum S value simulated, and iters refers to the number of M to try for each S).

```
Evo_rand_gen_var <- function(max_sp, iters, int_type = 0, rmx = 0.4, C = 1){
  tot_res <- NULL;</pre>
```

```
fea_res <- NULL;</pre>
    for(i in 2:max_sp){
                        <- i;
        nn
        A1_stt
                        <- 0;
                        <- 0;
        A2_stt
        A1_fet
                        <- 0;
        A2_fet
                        <- 0;
        iter
                        <- iters;
        tot_res[[i-1]] <- matrix(data = 0, nrow = iter, ncol = 3);</pre>
        fea_res[[i-1]] <- matrix(data = 0, nrow = iter, ncol = 2);</pre>
        while(iter > 0){
             r_vec
                      \leftarrow rnorm(n = i, mean = 0, sd = rmx);
                      <- rnorm(n = i * i, mean = 0, sd = 0.4);
             A0_dat
             ΑO
                      <- matrix(data = AO_dat, nrow = i, ncol = i);
             ΑO
                      <- species_interactions(mat = A0, type = int_type);</pre>
             C dat
                      \leftarrow rbinom(n = i * i, size = 1, prob = C);
             C_{\mathtt{mat}}
                      <- matrix(data = C_dat, nrow = i, ncol = i);
                      <- A0 * C_mat;
             diag(A0) <- -1;
                      <- runif(n = i, min = 0, max = 2);
             gam1
                      \leftarrow A0 * gam1;
             A1
             AO stb
                     <- max(Re(eigen(A0)$values)) < 0;
             A1_stb <- rand_mat_ga(A1);
             A0_fea \leftarrow min(-1*solve(A0) %*% r_vec) > 0;
             A1_fea <-\min(-1*solve(A1) %*% r_vec) > 0;
             if(A0_stb == TRUE){
                 tot_res[[i-1]][iter, 1] <- 1;
             }
             if(A1_stb == TRUE){
                 tot_res[[i-1]][iter, 2] <- 1;
             if(A0_fea == TRUE){
                 fea_res[[i-1]][iter, 1] <- 1;
             if(A1 fea == TRUE){
                 fea_res[[i-1]][iter, 2] <- 1;
             }
             iter
                     <- iter - 1;
        }
        print(i);
    all_res <- summarise_randmat(tot_res = tot_res, fea_res = fea_res);</pre>
    return(all_res);
}
```

Note that Evo_rand_gen_var calls three custom sub-functions, species_interactions, rand_mat_ga, and summarise_randmat. The first simply allows for non-random interactions between components (e.g., modelling ecological interactions of random, competition, mutualism, or predator-prey).

```
species_interactions <- function(mat, type = 0){
   if(type == 1){
      mat[mat > 0] <- -1*mat[mat > 0];
   }
   if(type == 2){
```

```
mat[mat < 0] <- -1*mat[mat < 0];
}
if(type == 3){
    for(i in 1:dim(mat)[1]){
        for(j in 1:dim(mat)[2]){
            if(mat[i, j] * mat[j, i] > 0){
                mat[j, i] <- -1 * mat[j, i];
            }
        }
    }
}
return(mat);
}</pre>
```

The sub-function rand_mat_ga does the work of the genetic algorithm, searching for γ vectors that are stabilising.

```
rand_mat_ga <- function(A1, max_it = 20, converg = 0.01){</pre>
    nn
              \leftarrow dim(A1)[1];
              <- runif(n = nn*1000, min = 0, max = 1);
    rind
              <- matrix(data = rind, nrow = 1000, ncol = nn);
    inds
              <- -10;
    lastf
              <- 10;
    ccrit
    find_st <- 0;
    iter
              <- max_it;
    while(iter > 0 & find_st < 1 & ccrit > converg){
        ivar \leftarrow rep(x = 0, length = dim(inds)[1]);
        ifit \leftarrow rep(x = 0, length = dim(inds)[1]);
        isst \leftarrow rep(x = 0, length = dim(inds)[1]);
        for(i in 1:dim(inds)[1]){
             ifit[i] <- -1*max(Re(eigen(inds[i,]*A1)$values));</pre>
             ivar[i] <- var(inds[i,]);</pre>
             isst[i] <- max(Re(eigen(inds[i,]*A1)$values)) < 0;</pre>
        most_fit <- order(ifit, decreasing = TRUE)[1:20];</pre>
        parents <- inds[most_fit,];</pre>
        new_gen <- matrix(data = t(parents), nrow = 1000, ncol = nn,</pre>
                             byrow = TRUE);
                  <- rbinom(n = nn*1000, size = 1, prob = 0.2);
        mu_dat2 <- rnorm(n = nn*1000, mean = 0, sd = 0.02);
        mu_dat2[mu_dat2 < 0] <- -mu_dat2[mu_dat2 < 0];</pre>
        mu_dat2[mu_dat2 > 2] <- 2;</pre>
        mu_dat3 <- mu_dat * mu_dat2;</pre>
        mu_mat <- matrix(data = mu_dat3, nrow = 1000, ncol = nn);</pre>
        new_gen <- new_gen + mu_mat;</pre>
        new_gen <- crossover(inds = new_gen, pr = 0.1);</pre>
        inds
                  <- new_gen;
        find_st <- max(isst);</pre>
        newf
                  <- mean(ifit);
                  <- newf - lastf;
        ccrit
        lastf
                  <- newf;
                  <- iter - 1;
        iter
    if(find_st == 1){
```

```
s_row <- which(isst == 1)[1];
writt <- c(nn, inds[s_row,]);
cat(writt, file = "evo_out.txt", append = TRUE);
cat("\n", file = "evo_out.txt", append = TRUE);
}
return(find_st);
}</pre>
```

The while loop in rand_mat_ga continues until either iter generations have occured, a solution γ vector is found that results in all $\Re(\lambda) < 0$, or some criteria of minimum fitness increase is observed (by default, converg = 0.01). Within the genetic algorithm, γ values are mutated, crossover occurs between γ vectors, and selection occurs in each generation such that the 20 γ vectors that produce the lowest maximum $\Re(\lambda)$ are allowed to have 50 offspring each. In mutation, any γ_i values that mutate below zero are multiplied by -1, and any values that mutate above 2 are set to 2. Note also that if a solution is found, then one such γ vector causing stability is printed to a file.

203 Crossover occurs in the crossover function below.

197

198

200

202

After all M are simulated in Evo_rand_gen_var, the summarise_randmat formats the data into a table.

```
summarise_randmat <- function(tot_res, fea_res){</pre>
            <- length(tot_res);
    all_res <- matrix(data = 0, nrow = sims, ncol = 7);</pre>
    for(i in 1:sims){
                  <- tot_res[[i]][,1] == FALSE;
        A0_unst
                  <- tot_res[[i]][,1] == TRUE;
        AO stbl
        A1 unst
                  <- tot_res[[i]][,2] == FALSE;
        A1 stbl
                   <- tot_res[[i]][,2] == TRUE;
        stabled
                   <- tot_res[[i]][,1] == FALSE & tot_res[[i]][,2] == TRUE;
        unstabled <- tot_res[[i]][,1] == TRUE & tot_res[[i]][,2] == FALSE;
        all_res[i, 1] <- i + 1;
        all_res[i, 2]
                       <- sum(A0_unst);
        all_res[i, 3]
                       <- sum(A0_stbl);
        all_res[i, 4] <- sum(A1_unst);</pre>
        all_res[i, 5] \leftarrow sum(A1_stbl);
        all_res[i, 6] <- sum(stabled);</pre>
        all_res[i, 7] <- sum(unstabled);</pre>
   }
    colnames(all_res) <- c("N", "A0_unstable", "A0_stable", "A1_unstable",</pre>
                            "A1_stable", "A1_stabilised", "A1_destabilised");
   return(all res);
```

}

209

210

211

Stability results for 40000 M for each S from 2-40 are shown below. Results for AO indicate systems in which $\gamma = 1$, while A1 refers to systems in which the genetic algorithm searched for a set of γ values that stabilised the system.

13 39987 13 399843 0 0 157 39843 157 39843 0 0 563 39437 563 39437 0 0 1588 38412 1581 38419 7 0 3268 36732 3219 36781 49 0 3570 34630 5196 34804 175 1 8231 31769 7604 32396 627 0 .1704 28296 10181 29819 1523 0 .5215 24785 12303 27697 2912 0 .9529 20471 14599 25401 4930 0 .3480 16520 16210 23790 7270 0 .4036 5964 19948 20052 14089 1 .4036 5964 19948 20052 14089 1 .4737 2263 21693 18307							
157 39843 157 39843 0 0 563 39437 563 39437 0 0 1588 38412 1581 38419 7 0 3268 36732 3219 36781 49 0 5370 34630 5196 34804 175 1 5370 34630 5196 34804 175 1 1704 28296 10181 29819 1523 0 1704 28296 10181 29819 1523 0 5215 24785 12303 27697 2912 0 9529 20471 14599 25401 4930 0 3480 16520 16210 23790 7270 0 361096 894 18899 21101 12198 1 46231 3769 21000 19000 15231 0 37737 2263 21693 18307	S	$A0$ _unstable	A0_stable	A1_unstable	A1_stable	A1_stabilised	A1_destabilised
157 39843 157 39843 0 0 563 39437 563 39437 0 0 1588 38412 1581 38419 7 0 3268 36732 3219 36781 49 0 3268 36732 3219 36781 49 0 3268 36732 3219 36781 49 0 3268 36732 3219 36781 49 0 3231 31769 7604 32396 627 0 1704 28296 10181 29819 1523 0 .5215 24785 12303 27697 2912 0 .9529 20471 14599 25401 4930 0 .3480 16520 16210 23790 7270 0 .67750 12430 17800 22200 9770 0 .66231 3769 21000 19000	2	13	39987	13	39987	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	157		157		0	0
3268 36732 3219 36781 49 0 5370 34630 5196 34804 175 1 8231 31769 7604 32396 627 0 .1704 28296 10181 29819 1523 0 .5215 24785 12303 27697 2912 0 .9529 20471 14599 25401 4930 0 .3480 16520 16210 23790 7270 0 .37570 12430 17800 22200 9770 0 .3606 8904 18899 21101 12198 1 .3606 8904 18899 21101 12198 1 .36231 3769 21000 19000 15231 0 .37737 2263 21693 18307 16044 0 .38808 1192 22291 17709 16518 1 .93911 289 23943 16057 15768 0 .99850 50 26584	4					0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1588	38412	1581	38419	7	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	3268	36732	3219	36781	49	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	5370	34630	5196	34804	175	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	8231	31769	7604	32396	627	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	11704	28296	10181	29819	1523	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	15215	24785	12303	27697	2912	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	19529	20471	14599	25401	4930	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	23480	16520	16210	23790	7270	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	27570	12430	17800	22200	9770	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	31096	8904	18899	21101	12198	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	34036	5964	19948	20052	14089	1
38808 1192 22291 17709 16518 1 39391 609 23221 16779 16170 0 39711 289 23943 16057 15768 0 39867 133 25361 14639 14506 0 39950 50 26584 13416 13366 0 39982 18 28162 11838 11820 0 39994 6 29660 10340 10334 0 39997 3 31405 8595 8592 0 40000 0 34602 5398 5398 0 40000 0 35957 4043 4043 0 40000 0 37154 2846 2846 0 40000 0 38104 1896 1896 0 40000 0 38722 1278 1278 0 40000 0 39259 741 741 0 40000 0 39551 449 449 0 <td>16</td> <td>36231</td> <td>3769</td> <td>21000</td> <td>19000</td> <td>15231</td> <td>0</td>	16	36231	3769	21000	19000	15231	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	37737	2263	21693	18307	16044	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	38808	1192	22291	17709	16518	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	39391	609	23221	16779	16170	0
39950 50 26584 13416 13366 0 39982 18 28162 11838 11820 0 39994 6 29660 10340 10334 0 39997 3 31405 8595 8592 0 39999 1 33057 6943 6942 0 40000 0 34602 5398 5398 0 40000 0 35957 4043 4043 0 40000 0 37154 2846 2846 0 40000 0 38104 1896 1896 0 40000 0 38722 1278 1278 0 40000 0 39259 741 741 0 40000 0 39551 449 449 0	20	39711	289	23943	16057	15768	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	39867	133	25361	14639	14506	0
89994 6 29660 10340 10334 0 89997 3 31405 8595 8592 0 89999 1 33057 6943 6942 0 80000 0 34602 5398 5398 0 80000 0 35957 4043 4043 0 80000 0 37154 2846 2846 0 80000 0 38104 1896 1896 0 80000 0 38722 1278 1278 0 80000 0 39259 741 741 0 80000 0 39551 449 449 0	22	39950	50	26584	13416	13366	0
39997 3 31405 8595 8592 0 39999 1 33057 6943 6942 0 40000 0 34602 5398 5398 0 40000 0 35957 4043 4043 0 40000 0 37154 2846 2846 0 40000 0 38104 1896 1896 0 40000 0 38722 1278 1278 0 40000 0 39259 741 741 0 40000 0 39551 449 449 0	23	39982	18	28162	11838	11820	0
39999 1 33057 6943 6942 0 10000 0 34602 5398 5398 0 10000 0 35957 4043 4043 0 10000 0 37154 2846 2846 0 10000 0 38104 1896 1896 0 10000 0 38722 1278 1278 0 10000 0 39259 741 741 0 10000 0 39551 449 449 0	24	39994		29660	10340	10334	0
10000 0 34602 5398 5398 0 10000 0 35957 4043 4043 0 10000 0 37154 2846 2846 0 10000 0 38104 1896 1896 0 10000 0 38722 1278 1278 0 10000 0 39259 741 741 0 10000 0 39551 449 449 0	25	39997	3	31405	8595	8592	0
10000 0 35957 4043 4043 0 10000 0 37154 2846 2846 0 10000 0 38104 1896 1896 0 10000 0 38722 1278 1278 0 10000 0 39259 741 741 0 10000 0 39551 449 449 0	26	39999	1	33057	6943	6942	0
00000 0 37154 2846 2846 0 10000 0 38104 1896 1896 0 10000 0 38722 1278 1278 0 10000 0 39259 741 741 0 10000 0 39551 449 449 0	27	40000	0	34602	5398	5398	0
00000 0 38104 1896 1896 0 10000 0 38722 1278 1278 0 10000 0 39259 741 741 0 10000 0 39551 449 449 0	28	40000	0	35957	4043	4043	0
10000 0 38722 1278 1278 0 10000 0 39259 741 741 0 10000 0 39551 449 449 0	29	40000	0	37154	2846	2846	0
40000 0 39259 741 741 0 40000 0 39551 449 449 0	30	40000	0	38104	1896	1896	
10000 0 39551 449 449 0	31	40000	0	38722	1278	1278	0
	32	40000	0	39259	741	741	0
10000 0 00740 050 050	33	40000	0	39551	449	449	0
00000 0 39742 258 258 0	34	40000	0	39742	258	258	0
10000 0 39879 121 121 0	35	40000	0	39879	121	121	0
10000 0 39929 71 71 0	36	40000	0	39929	71	71	0
10000 0 39967 33 33	37	40000	0	39967	33	33	0
10000 0 39989 11 11 0	38	40000	0	39989	11	11	0
10000 0 39994 6 6 0	39	40000	0	39994	6	6	0
10000 0 39996 4 4 0	40	40000	0	39996	4	4	0

The distributions of nine γ vectors from the highest S values are shown below. Recall that 1 million random matrices were generated for the less computationally intense task of comparing M when $\gamma = 1$ versus when $\gamma \sim \mathcal{U}(0,2)$, so it is more informative to compare stability in column 5 above with column 3 above. This comparison shows the high number of stable M that can be produced through a targetted search of γ values, and suggests that many otherwise unstable systems could potentially be

stabilised by an informed manipulation of their component response times. Such a possibility might conceivably reduce the dimensionality of problems involving stability in social-ecological or economic systems.

Distributions of γ values in vectors for the highest values of S are shown below.

evo_out <- scan(file = "sim_results/evolved/evo_out.txt");
plot_evo_out(evo_out);</pre>

The distribution of γ values found by the genetic algorithm is uniform. A uniform distribution was used to initialise γ values, so there is therefore no evidence that a particular distribution of γ is likely to be found to stabilise a matrix M.

Feasibility of complex systems

217

218

219

220

221

223

224

225

For complex systems in which individual system components (S) represent the density of some tangible quantity, it is important to consider the feasibility of the system. Feasibile equilibria assume that the values of all system components are positive at equilibrium (5, 18, 21). This is of particular interest for ecological communities because population density cannot take negative values, meaning that ecological systems need to be feasible for stability to be biologically realistic (18). Consequently, the use of random matrices and

traditional stability critiera for making inferences in theoretical analyses of species networks has recently been criticised (18). While the key results in the main text are intended to be general to all complex systems, and not restricted to species networks, I have also performed a feasibility analysis on all matrices M. This analysis reveals that feasibility is not affected by $Var(\gamma)$, meaning that for pure interacting species networks, variation in component response time (i.e., species generation time) does not affect stability at biologically realistic species densities. Nevertheless, ecological interactions do not exist in isolation in empirical systems, but instead interact with evolutionary (15), abiotic, or social-economic systems. The relevance of γ for complex system stability presented in the main text should therefore not be ignored in the broader context of ecological communities.

Dougoud et al. (18) define the following feasibility criteria for ecological systems characterised by S interacting species with varying densities.

$$x^* = -(\theta I + (CS)^{-\delta}A)^{-1} r.$$

In the above, x^* is the vector of species abundances at equilibrium (for feasibility, all values in x^* must be positive). The matrix I is the identity matrix (1s on the diagonal, 0s on the off-diagonal elements), and the value θ is strength of intraspecific competition (diagonal elements). As I have done elsewhere, diagonal values are set to -1, so $\theta = -1$. The variable C is the connectance of the community, which was set to C = 1 throughout the manuscript and supplemental information, except where otherwise noted. The variable δ is a normalisation parameter that modulates the strength of interactions (σ in the main text), which are held in A. In the main text, implicitly, $\delta = 0$ underlying strong interactions. Hence, the whole $(CS)^{-\delta} = 1$, so in the above, a diagonal matrix of -1s (θI) is added to A, which has a diagonal of all zeros and an off-diagonal affecting species interactions (i.e., the expression $(CS)^{-\delta}$ relates to May's (1) stability criterion (19) by $\frac{\sigma}{(CS)^{-\delta}} \sqrt{SC} < -1$, and hence $(CS)^{-\delta} = 1$ for the randomly simulated systems in the main text and supplemental information). The above criteria is therefore reduced to the below; note that the parenthetical in both equations produces an M matrix as used throughout the main text and supplemental information,

$$x^* = -(\theta I + A)^{-1} r.$$

To check the feasibility criteria, I therefore inverted $M = (\theta I + A)$ and multiplied elements by -1, then multiplied the resulting matrix by the vector of population growth rates r. Feasibility is satisfied if all of the elements of the resulting vector are positive.

The population growth rate for an individual species i is sampled from a normal distribution of $r_i \sim \mathcal{N}(0, 0.4^2)$, as shown in the rand_gen_var function in the section on "Stability across increasing S" above. Hence, each component i of the complex system M is assumed to be a species with a growth rate of r_i .

When feasibility was evaluated with and without variation in γ , there was no increase in stability for M where γ varied as compared to where $\gamma=1$. Results below illustrate this result, which was general to all other simulations performed.

\mathbf{S}	${\bf A0_infeasible}$	$A0_feasible$	${\bf A1_infeasible}$	$A1_feasible$	$A1_made_feasible$	$A1_made_infeasible$
2	749978	250022	749942	250058	35552	35516
3	874519	125481	874296	125704	36803	36580
4	937192	62808	937215	62785	26440	26463
5	968776	31224	968639	31361	16319	16182
6	984313	15687	984463	15537	9006	9156
7	992149	7851	992161	7839	4991	5003
8	996124	3876	996103	3897	2644	2623
9	998014	1986	998027	1973	1361	1374
10	999031	969	999040	960	698	707
11	999546	454	999514	486	377	345
12	999764	236	999792	208	160	188

13 999883 117 999865 135 105 14 999938 62 999945 55 40 15 999971 29 999964 36 31 16 999988 12 999991 9 8 17 999996 4 999991 9 8 18 99997 3 999999 1 1 19 999988 2 999997 3 3 20 1000000 0 999999 1 1 21 1000000 0 1000000 0 0 22 999999 1 1 1 21 1000000 0 1000000 0 0 22 999999 1 1000000 0 0 23 1000000 0 1000000 0 0 24 1000000 0 1000000 0 0 25							
14 999938 62 999945 55 40 15 999971 29 999964 36 31 16 999988 12 999991 9 8 17 999996 4 999991 9 8 18 999997 3 999999 1 1 19 999998 2 999999 1 1 20 1000000 0 999999 1 1 21 1000000 0 1000000 0 0 22 999999 1 1000000 0 0 23 1000000 0 1000000 0 0 24 1000000 0 1000000 0 0 25 1000000 0 1000000 0 0 27 1000000 0 1000000 0 0 28 1000000 0 1000000 0 0 <tr< td=""><td>ble</td><td>A0_infeasi</td><td>e A0_feasible</td><td>$A1$_infeasible</td><td>$A1_feasible$</td><td>$A1_made_feasible$</td><td>$A1_made_infeasible$</td></tr<>	ble	A0_infeasi	e A0_feasible	$A1$ _infeasible	$A1_feasible$	$A1_made_feasible$	$A1_made_infeasible$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	883	9998	3 117	999865	135	105	87
16 999988 12 999991 9 8 17 999996 4 999991 9 8 18 999997 3 999999 1 1 19 999998 2 999997 3 3 20 1000000 0 999999 1 1 21 1000000 0 1000000 0 0 22 999999 1 1000000 0 0 23 1000000 0 1000000 0 0 24 1000000 0 1000000 0 0 25 1000000 0 1000000 0 0 26 1000000 0 1000000 0 0 27 1000000 0 1000000 0 0 28 1000000 0 1000000 0 0 30 1000000 0 100000 0 0	938	9999	62	999945	55	40	47
17 999996 4 999991 9 8 18 999997 3 999999 1 1 19 999998 2 999997 3 3 20 1000000 0 999999 1 1 21 1000000 0 100000 0 0 22 999999 1 100000 0 0 23 100000 0 100000 0 0 24 100000 0 100000 0 0 25 100000 0 100000 0 0 26 100000 0 100000 0 0 27 1000000 0 100000 0 0 28 1000000 0 100000 0 0 29 1000000 0 100000 0 0 31 1000000 0 100000 0 0 32 1000000 0 100000 0 0 34 1000000 <td>971</td> <td>9999</td> <td>29</td> <td>999964</td> <td>36</td> <td>31</td> <td>24</td>	971	9999	29	999964	36	31	24
18 999997 3 999999 1 1 19 999998 2 999997 3 3 20 1000000 0 999999 1 1 21 1000000 0 1000000 0 0 22 999999 1 1000000 0 0 23 1000000 0 1000000 0 0 24 1000000 0 1000000 0 0 25 1000000 0 1000000 0 0 26 1000000 0 1000000 0 0 28 1000000 0 1000000 0 0 29 1000000 0 1000000 0 0 30 1000000 0 1000000 0 0 31 1000000 0 1000000 0 0 32 1000000 0 1000000 0 0 34 1000000 0 1000000 0 0 35	988	9999	3 12	999991	9	8	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	996	9999	i 4	999991	9	8	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	997	9999	7 3	999999	1	1	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	998	9999	3 2	999997	3	3	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000	10000	0	999999	1	1	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000	10000) 0	1000000	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	999	9999) 1	1000000	0	0	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000	10000) 0	1000000	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000	10000) 0	1000000	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000	10000) 0	1000000	0	0	0
28 1000000 0 1000000 0 29 1000000 0 1000000 0 30 1000000 0 1000000 0 31 1000000 0 1000000 0 32 1000000 0 1000000 0 33 1000000 0 1000000 0 34 1000000 0 1000000 0 35 1000000 0 1000000 0	000	10000	0	1000000	0	0	0
29 1000000 0 1000000 0 30 1000000 0 1000000 0 31 1000000 0 1000000 0 32 1000000 0 1000000 0 33 1000000 0 1000000 0 34 1000000 0 1000000 0 35 1000000 0 1000000 0	000	10000) 0	1000000	0	0	0
30 1000000 0 1000000 0 31 1000000 0 1000000 0 32 1000000 0 1000000 0 33 1000000 0 1000000 0 34 1000000 0 1000000 0 35 1000000 0 1000000 0	000	10000) 0	1000000	0	0	0
31 1000000 0 1000000 0 32 1000000 0 1000000 0 33 1000000 0 1000000 0 34 1000000 0 1000000 0 35 1000000 0 1000000 0	000	10000) 0	1000000	0	0	0
32 1000000 0 1000000 0 33 1000000 0 1000000 0 34 1000000 0 1000000 0 35 1000000 0 1000000 0	000	10000) 0	1000000	0	0	0
33 1000000 0 1000000 0 0 34 1000000 0 1000000 0 0 35 1000000 0 1000000 0 0	000	10000) 0	1000000	0	0	0
34 1000000 0 1000000 0 0 35 1000000 0 1000000 0 0	000	10000) 0	1000000	0	0	0
35 1000000 0 1000000 0 0	000	10000) 0	1000000	0	0	0
					0	0	0
36 1000000 0 1000000 0 0	000	10000) 0	1000000	0	0	0
				1000000	0	0	0
37 1000000 0 1000000 0 0	000	10000) 0	1000000	0	0	0
38 1000000 0 1000000 0 0				1000000	0	0	0
39 1000000 0 1000000 0	000	10000) 0		0	0	0
$40 \qquad 1000000 \qquad 0 \qquad 1000000 \qquad 0 \qquad 0$	000	10000) 0	1000000	0	0	0
$41 \qquad 1000000 \qquad 0 \qquad 1000000 \qquad 0 \qquad 0$	000	10000) 0	1000000	0	0	0
42 1000000 0 1000000 0 0					0	0	0
$43 \qquad 1000000 \qquad 0 \qquad 1000000 \qquad 0 \qquad 0$					0	0	0
44 1000000 0 1000000 0 0					0	0	0
45 1000000 0 1000000 0 0					0	0	0
46 1000000 0 1000000 0	000	10000) 0	1000000	0	0	0
47 1000000 0 1000000 0 0					_		0
$48 \qquad 1000000 \qquad 0 \qquad 1000000 \qquad 0 \qquad 0$	000	10000) 0	1000000	0	0	0
$49 \qquad 1000000 \qquad 0 \qquad 1000000 \qquad 0 \qquad 0$						0	0
50 1000000 0 1000000 0	000	10000) 0	1000000	0	0	0

Hence, in general, $Var(\gamma)$ does not appear to affect feasibility in pure species interaction networks.