phruta: scrapping genbank and assembling phylogenetic trees *

Cristian Román-Palacios School of Information, University of Arizona, Tucson, Arizona 85721, USA. ORCiD: 0000-0003-1696-4886

Current methodological practices for assembling phylogenetic trees often recur to sequence data stored in GenBank. However, understanding molecular and taxonomic availability in GenBank is generally not very straightforward. For instance, the genetic makeup of datasets available in GenBank can strongly differ between genera even within the same family. Similarly, the taxonomic information associated with sequence data in GenBank can be outdated, relative to other databases that mainly focus on the taxonomic side. phruta, a newly developed R package, is designed to improve the user experience and access to information to genetic data stored in GenBank. By using phruta, users are able to (1) quantitatively explore the molecular makeup of particular clades with information in GenBank, (2) assemble curated multi-gene molecular datasets with retrieved and local sequences, and (3) run basic phylogenetic talks, all within R. The structure of the functions implemented in phruta, designed as a workflow, aim to allow users to assemble simple workflows for particular talks, which are in turn expected to increase reproducibility when assembling phylogenies. This paper provides a brief overview on the performance and workflow associated with phruta.

Keywords: R package, Phylogenetics, Reproducibility, Workflow

Background

The phruta R package

The phruta package is designed to simplify the basic phylogenetic pipeline in R. phruta is expected to allow scientists from different backgrounds to assemble molecular databases or phylogenies for particular taxa with as minimal complexity and maximal reproducibility as possible. All the code in phruta is run within the same software (R) and data from intermediate steps are either stored to the environment or can be exported locally to different folders. In general, phruta is able to (1) find potentially (phylogenetically) relevant gene regions for a given set of taxa based on GenBank, (2) retrieve gene sequences and curate taxonomic information from the same database, (3) combine downloaded and local gene sequences, and (4) perform sequence alignment, phylogenetic inference, and basic tree dating tasks.

^{*}Replication files are available on the author's Github account (http://github.com/cromanpa). **Current version**: September 04, 2022; **Corresponding author**: cromanpa94@arizona.edu.

Alternatives to phruta

Similar functionalities for assembling curated molecular datasets for phylogenetic analyses can be found in phylotaR and SuperCRUNCH. However, phylotaR is limited to downloading and curating sequences (e.g. it does not align sequences). Similarly, SuperCRUNCH only curates sequences that are already stored locally. In fact, phruta is closer to SUPERSMART and the associated R workflow SUPERSMARTR. However, most of the applications in the different packages that are part of SUPERSMARTR are simplified in phruta. Standalone applications that might resemble phruta could include MEGA and geneious. However, analyses in these two alternatives are either poorly reproducible (e.g. MEGA) or not all the functions are freely available to everyone (e.g. geneious has a paid version).

phruta in a nutshell

The current release of phruta includes a set of eight major functions. Running all eight major functions in phruta results in a time-calibrated phylogeny. However, users interested in using their own files at any stage can run each function independently. Note that all the functions for which their primary output are sequences (aligned or unaligned) are listed under sq.*. All the files that output phylogenies (time-calibrated or not) are listed under tree.*.

- First, the distribution of gene sampled for a given organism or set of taxa can be explored using the acc.gene.sampling function. This function will return a table that summarizes either the distribution of genes sampled for the search term in general or specifically across species.
- Second, given a list of target organisms, users can retrieve a list of accession numbers that are relevant to their search using acc.table.retrieve(). Instead of directly downloading sequences from genbank (see sq.retrieve.direct() below), retrieving accession numbers allow users to have more control over the sequences that are being used in the analyses. Note that users can also curate the content of the dataset obtained using sq.retrieve.direct().
- Third, users should download gene sequences. Sequences can be download using the sq.retrieve.indirect() from the accession numbers retrieved before using the acc.table.retrieve() function. This is the preferred option within phruta. Additionally, users can directly download gene sequences using the sq.retrieve.direct() function. Both sq.retrieve.indirect() and sq.retrieve.direct() functions save gene sequences in fasta files that will be located in a new directory named 0. Sequences.
- Fourth, sq.add() allows users to include local sequences to those retrieved from genbank in the previous step. This function saves all the resulting fasta files in two directories, combined sequences in 0. Sequences and local sequences in 0. Additional Sequences (originally downloaded sequences are moved to 0.0. Original Downloaded at this step). Note that sq.add() is optional.

- Fifth, the sq.curate() function filters out unreliable sequences based on information listed in genbank (e.g. PREDICTED) and on taxonomic information provided by the user. Specifically, this function retrieves taxonomic information from the Global Biodiversity Information Facility (GBIF) database's taxonomic backbone (see alternatives in the advanced vignette to phruta). If a given species belongs to a nontarget group, this species is dropped from the analyses. This function automatically corrects taxonomy and renames sequences.
- Sixth, sq.aln() performs multiple sequence alignment on fasta files. Currently, phruta uses the DECIPHER R package, here. This package allows for adjusting sequence orientation and masking (removing ambiguous sites).
- Seventh, the tree.raxml() function allows users to perform tree inference under RAxML for sequences in a given folder. This is a wrapper to ips::raxml() and each of the arguments can be customized. The current release of phruta can manage both partitioned and unpartitioned analyses. Starting and constrained trees are allowed.
- Eight, tree.dating() enables users to perform time-calibrations of a given phylogeny using geiger::congruify.phylo(). phruta includes a basic set of comprehensively sampled, time-calibrated phylogenies that are used to extract secondary calibrations for the target phylogeny. Note that sampling in those phylogenies can be examined using data(SW.phruta). Please make sure you have at least two groups in common with each of the phylogenies. Similarly, users can choose to run either PATHd-8 or treePL.

Assembling a molecular dataset for target taxa in phruta

Let's learn how phruta works by assembling a molecular dataset at the species level for a few bird clades. Note that athough this tutorial is based on a particular set of taxa, users can decide on what can choose their target clades in other families, orders, or even kingdoms.

Here we will focus on assembling a phylogeny for the new world Quails. Species in this group are classified in the family Odontophoridae, a clade including nearly 34 extant species classified in 10 genera (??fig:quail)). In general, the higher-level taxonomic information in GenBank for the Odontophoridae is largely congruent with recent studies on the systematics of the group. Howeger, GenBank's the taxonomic backbonone classifies *Ptilopachus*, a genus commonly included under the Odontophoridae, as part of the Phasianidae. We will follow more recent studies suggesting that *Ptilopachus* is nested within the Odontophoridae. As our outgroup, we will select the Phasianidae. Within this clade, we will explicitly focus on the genus *Polyplectron*, a clade of eight extant species. Finally, given that the systematics of the Odontophoridae has been discussed before using morphological and molecular evidence, we will be able to compare the topology of our tree relative to recent studies (Crowe et al. 2006a, b; Cohen et al. 2012; Hosner et al. 2015).

So far, we have decided the taxonomic makeup of our analyses. From this point, we could simply check the genetic sampling of previous studies and search for those genes in GenBank for the target taxa (Crowe et al. 2006a, b; Cohen et al. 2012; Hosner et

al. 2015). For instance, [review sampling in each of those]. We could use these gene names to assemble a molecular dataset for the Odontophoridae and **Polyplectron** in phruta.

Alternatively, we could use phruta to figure out what genes are well sampled in Gen-Bank for both the ingroup and outgroup. For simplicity, we will follow the later procedure in this paper implemented in <code>gene.sampling.retrieve()</code> function in phruta. The resulting <code>data.frame</code>, here named <code>gs.seqs</code>, will contain the list of full names for genes sampled in GenBank for the target taxa.

For the search terms, phruta was able to retrieve the names for 79 gene regions from GenBank. The frequency estimates per gene are based on inter-specific sampling (??tab:topGenes)). Note that the gene.sampling.retrieve() function provides an estimate of the number of species in GenBank that match the taxonomic criteria of the search term and that have sequences for a given gene region. However, this estimate is only as good as the annotations for genes deposited in GenBank.

We will now generate a preliminary summary of the accession numbers retrieved for the combination of target taxa and gene regions. I call this a preliminary dataset because not all these accession numbers are expected to be in the final molecular dataset. For instance, some sequences may be removed after taxonomic synonyms are identified in the dataset.

Next, we will assemble a species-level summary of accession numbers using the acc.table.retriev function in phruta (i.e. speciesLevel = TRUE argument). For simplicity, this tutorial will focus on analyzing gene regions that are sampled in >20% of the species (targetGenes data.frame). The acc.table object created below is a data.frame object that will later be used to download the relevant gene sequences from GenBank (??tab:AccN)).

Since we are interested in retrieving sequences from GenBank using an existing preliminary accession numbers table, we will use the sq.retrieve.indirect() function in phruta. Please note that there are two versions of sq.retrieve.* in phruta. The one that we're using in this tutorial, sq.retrieve.indirect(), retrieves sequences "indirectly" because it requires a table of accession numbers to be pass as an argument (see the acc.table.retrieve() function above). I present the information in this tutorial using sq.retrieve.indirect() instead of sq.retrieve.direct() because sq.retrieve.indirect() is simply more flexible and robust to mistakes. Specifically, sq.retrieve.indirect() allow users to correct issues *prior* to downloading/retrieving the sequences. For instance, you can add new sequences, species, populations to the resulting data.frame from acc.table.retrieve(). You could even manually assemble your own dataset of accession numbers to be retrieved using sq.retrieve.indirect(). Instead, sq.retrieve.direct() does its best to directly retrieve GenBank sequences for a target set of taxa and set of gene regions. In short, you should be able to catch errors using sq.retrieve.indirect() but mistakes will be harder to spot and fix if you're using sq.retrieve.direct().

We still need to retrieve all the sequences from the accessions table generated using acc.table. Note that since we have specified download.sqs = FALSE in sq.retrieve.indirect, the sequences retrieved from GenBank are returned in a list. If we decide to download the sequences to our working directory using download.sqs = TRUE, phruta will write all the resulting fasta files into a newly created folder 0. Sequences located in our working directory.

Now, let's make sure that we are only including sequences that are reliable and from species that we are actually interested in analyzing. We are going to use the sq.curate() function for this. We will provide a list of taxonomic names to filter out incorrect sequences (filterTaxonomicCriteria argument). For instance, we could simply provide a vector of the genera that we are interested in analyzing. This vector must have a length of 1, with all the target genera being separated with | (e.g. "Callipepla|Colinus|Dendrortyx" if we were interested in only those three genera). For now, we will assume that all of the species we downloaded are relevant to the analyses (i.e. filterTaxonomicCriteria = [AZ]). Finally, since we are not downloading anything to our working directory, we need to pass our downloaded sequences (sqs.downloaded object generated above using the sq.retrieve.indirect() function) to the sqs.object argument in sq.curate().

Running the sq.curate() function will create an object of class list (i.e. sqs.curated) that includes (1) the curated sequences with original names, (2) the curated sequences with species-level names (renamed_* prefix), (3) the accession numbers table (AccessionTable; ??tab:tw)), and (4) a summary of taxonomic information for all the species sampled in the files (??tab:tw2), ??tab:tw3)). From here, we will align the sequences that we just curated using sq.aln() with default parameters. We're again passing the output from sq.curate(), sqs.curated, using the sqs.object argument in sq.aln().

```
sqs.aln <- sq.aln(sqs.object = sqs.curated)</pre>
```

The resulting multiple sequence alignments will be saved to the sqs.aln object, a list of alignments. For each of the gene regions, we will have access to the original alignment (Aln.Original), the masked one (Aln.Masked), and information on the masking process. The raw and masked alignments are presented in ??fig:alnraw) and ??fig:alncur), respectively.

In total, code in this section took 4 minutes to run in my local machine (RAM: 8.5899346×10^9 , CPU: Intel(R) Core(TM) i5-8257U CPU @ 1.40GHz, cores: 8, platform: $x86_64$ -apple-darwin17.0, R: R version 4.2.0 (2022-04-22)). The performance of phruta is largely affected by the complexity of the dataset that is being assembled. On top of that, it is important to remember that multiple functions in phruta are directly retrieving data from different websites.

Basic phylogenetics with phruta

Phylogenetic inference with phruta and RAxML

Phylogenetic inference in phruta is conducted using the tree.raxml() function. To use this function, we will have to export our sequence alignments locally. We will follow the same folder structure as if we were exporting everything locally ([NEED FIGURE]). Specifically, our sequence alignments will located in 2.Alignments and we will exclusively export the alignments that were masked.

We are now ready to run RAxML. Note that in tree.raxml(), we will need to indicate where the aligned sequences are located (folder argument), the patterns of the files in the same folder (FilePatterns argument; "Masked_" in our case), and the total of bootstrap replicates. The outgroup argument is optional but since we are interested in calibrating our tree afterwards, we will define it using all the species in *Polyplectron*.

```
## [1] "raxmlHPC -T 4 -f a -p 1234 -x 1234 -m GTRGAMMA -o Polyplectron_inopinatum,Polypl
```

The resulting trees are saved in the 3. Phylogeny folder. For many, the bipartitions tree generated in these runs, RAxML_bipartitions.phruta, will be the most relevant. Additionally, 3. Phylogeny includes RAxML-related input and output files. The resulting phylogeny from these analyses is presented in ??fig:raxmlphylo).

Users can also run partitioned analyses in RAxML within phruta. This approach is implemented by setting the partitioned argument in tree.raxml to TRUE. For now, partitions are based on the genes are being analyzed. The same model is used to analyze each partition. More details on partitioned analyses can be customized by passing arguments in ips::raxml.

```
tree.raxml(folder = "2.Alignments", FilePatterns = "Masked_",
    raxml_exec = "raxmlHPC", Bootstrap = 100, outgroup = paste(outgroup$species_names,
    collapse = ","), partitioned = TRUE)
```

Finally, we note that users will sometimes need to generate constrain tress to seed their searches or limit the tree sampling space. These constrains can be generated using other software including TACT: Taxonomic Addition for Complete Trees.

Tree dating in phruta

Finally, let's perform tree dating in our phylogeny using secondary calibrations extracted from Scholl and Wiens (2016). I am only using this study because it has a large phylogeny but I expect to replace it in the near future. Note that tree.dating() requieres the user to specify where the 1.Taxonomy.csv file is. This file is created automatically when sequences are curated using sq.curate() and results are exported to your local repository. However, since we were keeping results in the environment, we will have to export it before we can move forward.

```
dir.create("1.CuratedSequences")
write.csv(sqs.curated$Taxonomy, "1.CuratedSequences/1.Taxonomy.csv")
```

Tree dating is performed using the tree.dating() function in phruta. We have to provide the name of the folder containing the 1.Taxonomy.csv file created in sq.curate(). We also have to indicate the name of the folder containing the RAxML_bipartitions.phruta file. We will scale our phylogeny using treePL.

Running this line will result in a new folder 4. Timetree, including the different time-calibrated phylogenies obtained (if any) and associated secondary calibrations used in the analyses. The resulting time-calibrated tree is presented in ??fig:timecaltree).

Advanced methods with phruta

Curating taxonomic names

1

You can use taxonomy.retrieve(), a function implemented inside sq.curate() in phruta to curate species names regardless of the kingdom. For instance, the block of code below will curate taxonomic names using the gbif taxonomic backbone. Note that the kingdom argument in taxonomy.retrieve() can be set to NULL, meaning that there wont be indication on the kingdom when performing taxonomic searches.

Felis catus

Animalia Chordata Mammalia Carnivora Felidae Felis

```
< NA >
                                     <NA>
                                                <NA>
                                                          < NA >
                                                                 <NA>
## 2 incertae sedis
                                                                                    < NA >
## 3
            Animalia Chordata Mammalia Carnivora Phocidae Phoca
                                                                          Phoca largha
## 4 incertae sedis
                           < NA >
                                     <NA>
                                                <NA>
                                                          <NA>
                                                                 < NA >
                                                                                    <NA>
## 5 incertae sedis
                          <NA>
                                     < NA >
                                                < NA >
                                                          < NA >
                                                                < NA >
                                                                                    <NA>
## 6
            Animalia Chordata Mammalia Carnivora
                                                     Felidae Felis Felis silvestris
## 7
            Animalia Chordata Mammalia Carnivora
                                                      Felidae Felis
                                                                        Felis nigripes
```

However, gbif is efficient for retrieving accurate taxonomy when we provide details on the kingdom. Given that all the species we're interested in are animals, we could just use the following block of code to curate taxonomic names.

```
##
             kingdom
                        phylum
                                   class
                                               order
                                                       family genus
                                                                                species
## 1
            Animalia Chordata Mammalia Carnivora
                                                      Felidae Felis
                                                                            Felis catus
## 2 incertae sedis
                           < NA >
                                    < NA >
                                                <NA>
                                                                <NA>
                                                          < NA >
                                                                                    < NA >
## 3
            Animalia Chordata Mammalia Carnivora Phocidae Phoca
                                                                          Phoca largha
## 4 incertae sedis
                           < NA >
                                     <NA>
                                                <NA>
                                                          <NA>
                                                                < NA >
                                                                                    <NA>
## 5 incertae sedis
                           < NA >
                                     < NA >
                                                < NA >
                                                          < NA >
                                                                <NA>
                                                                                    < NA >
## 6
            Animalia Chordata Mammalia Carnivora
                                                      Felidae Felis Felis silvestris
## 7
            Animalia Chordata Mammalia Carnivora
                                                      Felidae Felis
                                                                        Felis nigripes
```

Depending on your sampling, you could also do the same for plants by using plants in the kingdom argument instead of animals. Now, what if we were interested in following other databases to retrieve taxonomic information for the species in our database? The latest version of phruta allow users to select the desired database. The databases follow the taxize::classification() function. Options are: ncbi, itis, eol, tropicos, nbn, worms, natserv, bold, wiki, and pow. Please select only one. Note that the gbif option in taxize::classification() is replaced by the internal gbif in phruta.

Running PartitionFinder in phruta

With the current version of phruta, users are able to run PartitionFinder v1 within R. For this, users should provide the name of the folder where the alignments are stored, a particular pattern in the file names (Masked_ in our case), and which models will be run in PartitionFinder. This function will download PartitionFinder, generate the input files, and run it all within R. The output files will be in a new folder within the working directory.

Unfortunately, the output files are not integrated with the current phruta pipeline. This will be part of a new release. However, users can still perform gene-based partitioned analyses within RAxML or can use PartitionFinder's output files to inform their own analyses outside phruta.

Identifying rogue taxa

phruta can help users run RogueNaRok implemented in the Rogue R package. Users can then examine whether rogue taxa should be excluded from the analyses. tree.roguetaxa() uses the bootstrap trees generated using the tree.raxml() function along with the associated best tree to identify rogue taxa. Rogue taxa for the analyses presented in this paper are shown in ??table:rogue)

```
tree.roguetaxa(folder = "3.Phylogeny")
```

Reproducibility with phruta

One of the central points of developing phruta was related to increasing the reproducibility of simple phylogenetic analyses. By either compiling or calling alternative tools that are commonly used to assemble species-level molecular and phylogenetic datasets inside an R package, phruta allows users to generate a clear, structured, and reproducible workflow. In fact, phruta is conceived as a package that allow users to choose between at least two alternative options to share their workflow. First, users can simply provide access to their workflow in an R script. For instance, this file can be stored in GitHub along with all the intermediate files that are created each each given step. Alternatively, given that the information in databases is constantly changing, users can share their R script and associated workspace to assure that the versions of the retrieved files correspond to specific versions of the databases.

As an example, all the analyses and sequences analyzed in the current manuscript will be available to anyone in a RMarkdown file accompanied by a n R workspace phruta_ms. RData. The RMarkdown will allow users to replicate the analyses presented in the current paper. With the workspace, users can choose to use the stored objects instead of performing searches on GenBank and additional taxonomic databases. These two files confer full reproducibility to the analyses presented in this article.

```
save.image(file = "phruta_ms.RData")
```

Performance

Assessing the performance of phruta is intrinsically challenging However, it is expected for functions that scrape and curate information stored in GenBank to show an slow performance on search terms (e.g. clades) with extensive genetic sampling. Below, I focus

on comparing the distribution of durations for assembling molecular datasets in seven clades with different sample size. These estimates encompass all the steps outlined above between <code>gene.sampling.retrieve()</code> and <code>sq.curate</code>. Time estimates were estimated using the <code>microbenchmark</code> R package. ??fig:benchmark) shows a summary of phruta performance in different clades.

Table 1: Top six genes sampled in GenBank for species in Odontophoridae and Polyplectron.

Gene	Sampled in N species	PercentOfSampledSpecies
NADH dehydrogenase subunit 2	92	98.92473
12S ribosomal RNA	28	30.10753
eukaryotic elongation factor 2	26	27.95699
NADH dehydrogenase subunit 5	19	20.43011
cytochrome b	16	17.20430
cytochrome oxidase subunit 1	10	10.75269

Figure 1: Quail placeholder. Phyto by Brent Myers

Figure 2: Raw alignments for gene regions sampled in more than 20% of the species in GenBank

Figure 3: Curated alignments for gene regions sampled in more than 20% of the species in GenBank

Figure 4: RAxML phylo

Figure 5: Time-calibrated phylogeny phylo

Figure 6: Results for benchmarking analyses

Table 2: Summary of potential accession numbers for the species in Odontophoridae, our ingroup, and Polyplectron, outgroup genus. This list of sequences has not been curated yet.

Species	Acc	gene
Callipepla californica Callipepla gambelii Colinus virginianus Colinus cristatus Colinus nigrogularis	MZ476322 MZ476314 EU166949 AF222544 KR732857	NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2
Dendrortyx barbatus Philortyx fasciatus Rhynchortyx cinctus Cyrtonyx montezumae Oreortyx pictus	KR732856 KR732855 KR732850 KR732849 KR732848	NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2
Odontophorus leucolaemus Odontophorus speciosus Odontophorus erythrops Odontophorus guttatus Odontophorus gujanensis	KR732847 KR732846 KR732845 KR732844 KR732843	NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2
Odontophorus capueira Odontophorus stellatus Dactylortyx thoracicus Dendrortyx macroura Callipepla squamata	KR732842 KR732841 KR732840 KR732839 KR732838	NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2
Callipepla douglasii Colinus leucopogon Dendrortyx leucophrys Cyrtonyx ocellatus Odontophorus balliviani	KR732837 KC556543 KC556066 KC556060 KC556524	NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2
Odontophorus columbianus Odontophorus strophium Odontophorus melanonotus Odontophorus hyperythrus Odontophorus melanotis	KC556517 KC556515 KC556513 KC556512 KC556507	NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2
Ptilopachus nahani Ptilopachus petrosus Polyplectron inopinatum Polyplectron napoleonis Polyplectron chalcurum	DQ768288 KR732851 EF569482 EF569481 EF569480	NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2 NADH dehydrogenase subunit 2

Table 2: Summary of potential accession numbers for the species in Odontophoridae, our ingroup, and Polyplectron, outgroup genus. This list of sequences has not been curated yet. *(continued)*

Species	Acc	gene
Polyplectron bicalcaratum	EF569479	NADH dehydrogenase subunit 2
Polyplectron malacense	DQ768268	NADH dehydrogenase subunit 2
Polyplectron germaini	DQ768266	NADH dehydrogenase subunit 2
Polyplectron katsumatae	KC778823	NADH dehydrogenase subunit 2
Cyrtonyx montezumae	KR732830	12S ribosomal RNA
Dactylortyx thoracicus	KR732829	12S ribosomal RNA
Oreortyx pictus	KR732828	12S ribosomal RNA
Odontophorus erythrops	KR732827	12S ribosomal RNA
Odontophorus gujanensis	KR732826	12S ribosomal RNA
Odontophorus stellatus	KR732825	12S ribosomal RNA
Odontophorus capueira	KR732824	12S ribosomal RNA
Odontophorus speciosus	KR732823	12S ribosomal RNA
Odontophorus leucolaemus	KR732822	12S ribosomal RNA
Odontophorus balliviani	KR732821	12S ribosomal RNA
Dendrortyx macroura	KR732820	12S ribosomal RNA
Philortyx fasciatus	KR732819	12S ribosomal RNA
Callipepla gambelii	KR732818	12S ribosomal RNA
Callipepla californica	KR732817	12S ribosomal RNA
Callipepla douglasii	KR732816	12S ribosomal RNA
Callipepla squamata	KR732815	12S ribosomal RNA
Colinus cristatus	KR732814	12S ribosomal RNA
Colinus nigrogularis	KR732813	12S ribosomal RNA
Colinus virginianus	KR732812	12S ribosomal RNA
Ptilopachus petrosus	KR732832	12S ribosomal RNA
Polyplectron inopinatum	KC749467	12S ribosomal RNA
Polyplectron germaini Polyplectron napoleonis Polyplectron chalcurum Polyplectron bicalcaratum Polyplectron katsumatae	KC749466 KC749465 KC749464 KC749463 KC778974	12S ribosomal RNA 12S ribosomal RNA 12S ribosomal RNA 12S ribosomal RNA 12S ribosomal RNA
Colinus cristatus Callipepla squamata Dendrortyx macroura Philortyx fasciatus Cyrtonyx montezumae	KR732895 KR732894 KR732893 KR732892 KR732891	eukaryotic elongation factor 2 eukaryotic elongation factor 2 eukaryotic elongation factor 2 eukaryotic elongation factor 2 eukaryotic elongation factor 2

Table 2: Summary of potential accession numbers for the species in Odontophoridae, our ingroup, and Polyplectron, outgroup genus. This list of sequences has not been curated yet. *(continued)*

Species	Acc	gene
Rhynchortyx cinctus	KR732889	eukaryotic elongation factor 2
Oreortyx pictus	KR732888	eukaryotic elongation factor 2
Colinus virginianus	KR732887	eukaryotic elongation factor 2
Callipepla douglasii	KR732886	eukaryotic elongation factor 2
Callipepla californica	KR732885	eukaryotic elongation factor 2
Callipepla gambelii	KR732884	eukaryotic elongation factor 2
Odontophorus erythrops	KR732883	eukaryotic elongation factor 2
Odontophorus guttatus	KR732882	eukaryotic elongation factor 2
Odontophorus speciosus	KR732881	eukaryotic elongation factor 2
Odontophorus leucolaemus	KR732880	eukaryotic elongation factor 2
Odontophorus balliviani	KR732879	eukaryotic elongation factor 2
Odontophorus stellatus	KR732878	eukaryotic elongation factor 2
Odontophorus capueira	KR732877	eukaryotic elongation factor 2
Ptilopachus petrosus	KR732890	eukaryotic elongation factor 2
Polyplectron inopinatum	KC749707	eukaryotic elongation factor 2
Polyplectron germaini Polyplectron chalcurum Polyplectron bicalcaratum Polyplectron katsumatae Philortyx fasciatus	KC749706 KC749705 KC749704 KC778867 KR732875	eukaryotic elongation factor 2 eukaryotic elongation factor 2 eukaryotic elongation factor 2 eukaryotic elongation factor 2 NADH dehydrogenase subunit 5
Callipepla douglasii	KR732874	NADH dehydrogenase subunit 5
Rhynchortyx cinctus	KR732872	NADH dehydrogenase subunit 5
Dactylortyx thoracicus	KR732871	NADH dehydrogenase subunit 5
Odontophorus leucolaemus	KR732870	NADH dehydrogenase subunit 5
Odontophorus balliviani	KR732869	NADH dehydrogenase subunit 5
Odontophorus guttatus	KR732868	NADH dehydrogenase subunit 5
Odontophorus erythrops	KR732867	NADH dehydrogenase subunit 5
Odontophorus capueira	KR732866	NADH dehydrogenase subunit 5
Odontophorus stellatus	KR732865	NADH dehydrogenase subunit 5
Odontophorus gujanensis	KR732864	NADH dehydrogenase subunit 5
Dendrortyx macroura	KR732863	NADH dehydrogenase subunit 5
Callipepla californica	KR732862	NADH dehydrogenase subunit 5
Callipepla gambelii	KR732861	NADH dehydrogenase subunit 5
Callipepla squamata	KR732860	NADH dehydrogenase subunit 5
Colinus virginianus	KR732859	NADH dehydrogenase subunit 5

Table 2: Summary of potential accession numbers for the species in Odontophoridae, our ingroup, and Polyplectron, outgroup genus. This list of sequences has not been curated yet. (*continued*)

Species	Acc	gene
Colinus nigrogularis Ptilopachus petrosus		NADH dehydrogenase subunit 5 NADH dehydrogenase subunit 5

Table 3: Accession numbers for the retrieved sequences. This dataset has been curated.

OriginalNames	AccN	Species	file
MZ476322 Callipepla californica	MZ476322	Callipepla_californica Callipepla_gambelii Colinus_virginianus Colinus_cristatus Colinus_nigrogularis	NADH dehydrogenase subunit 2
MZ476314 Callipepla gambelii	MZ476314		NADH dehydrogenase subunit 2
EU166949 Colinus virginianus	EU166949		NADH dehydrogenase subunit 2
AF222544 Colinus cristatus	AF222544		NADH dehydrogenase subunit 2
KR732857 Colinus nigrogularis	KR732857		NADH dehydrogenase subunit 2
KR732856 Dendrortyx barbatus	KR732856	Dendrortyx_barbatus Philortyx_fasciatus Rhynchortyx_cinctus Cyrtonyx_montezumae Oreortyx_pictus	NADH dehydrogenase subunit 2
KR732855 Philortyx fasciatus	KR732855		NADH dehydrogenase subunit 2
KR732850 Rhynchortyx cinctus	KR732850		NADH dehydrogenase subunit 2
KR732849 Cyrtonyx montezumae	KR732849		NADH dehydrogenase subunit 2
KR732848 Oreortyx pictus	KR732848		NADH dehydrogenase subunit 2
KR732847 Odontophorus leucolaemus	KR732847	Odontophorus_leucolaemus	NADH dehydrogenase subunit 2
KR732846 Odontophorus speciosus	KR732846	Odontophorus_speciosus	NADH dehydrogenase subunit 2
KR732845 Odontophorus erythrops	KR732845	Odontophorus_erythrops	NADH dehydrogenase subunit 2
KR732844 Odontophorus guttatus	KR732844	Odontophorus_guttatus	NADH dehydrogenase subunit 2
KR732843 Odontophorus gujanensis	KR732843	Odontophorus_gujanensis	NADH dehydrogenase subunit 2
KR732842 Odontophorus capueira	KR732842	Odontophorus_capueira Odontophorus_stellatus Dactylortyx_thoracicus Dendrortyx_macroura Callipepla_squamata	NADH dehydrogenase subunit 2
KR732841 Odontophorus stellatus	KR732841		NADH dehydrogenase subunit 2
KR732840 Dactylortyx thoracicus	KR732840		NADH dehydrogenase subunit 2
KR732839 Dendrortyx macroura	KR732839		NADH dehydrogenase subunit 2
KR732838 Callipepla squamata	KR732838		NADH dehydrogenase subunit 2
KR732837 Callipepla douglasii	KR732837	Callipepla_douglasii Colinus_leucopogon Dendrortyx_leucophrys Cyrtonyx_ocellatus Odontophorus_balliviani	NADH dehydrogenase subunit 2
KC556543 Colinus leucopogon	KC556543		NADH dehydrogenase subunit 2
KC556066 Dendrortyx leucophrys	KC556066		NADH dehydrogenase subunit 2
KC556060 Cyrtonyx ocellatus	KC556060		NADH dehydrogenase subunit 2
KC556524 Odontophorus balliviani	KC556524		NADH dehydrogenase subunit 2

Table 3: Accession numbers for the retrieved sequences. This dataset has been curated. (continued)

OriginalNames	AccN	Species	file
KC556517 Odontophorus columbianus	KC556517	Odontophorus_columbianus	NADH dehydrogenase subunit 2
KC556515 Odontophorus strophium	KC556515	Odontophorus_strophium	NADH dehydrogenase subunit 2
KC556513 Odontophorus melanonotus	KC556513	Odontophorus_melanonotus	NADH dehydrogenase subunit 2
KC556512 Odontophorus hyperythrus	KC556512	Odontophorus_hyperythrus	NADH dehydrogenase subunit 2
KC556507 Odontophorus melanotis	KC556507	Odontophorus_melanotis	NADH dehydrogenase subunit 2
DQ768288 Ptilopachus nahani	DQ768288	Francolinus_nahani Ptilopachus_petrosus Polyplectron_inopinatum Polyplectron_napoleonis Polyplectron_chalcurum	NADH dehydrogenase subunit 2
KR732851 Ptilopachus petrosus	KR732851		NADH dehydrogenase subunit 2
EF569482 Polyplectron inopinatum	EF569482		NADH dehydrogenase subunit 2
EF569481 Polyplectron napoleonis	EF569481		NADH dehydrogenase subunit 2
EF569480 Polyplectron chalcurum	EF569480		NADH dehydrogenase subunit 2
EF569479 Polyplectron bicalcaratum	EF569479	Polyplectron_bicalcaratum Polyplectron_malacense Polyplectron_germaini Polyplectron_katsumatae Cyrtonyx_montezumae	NADH dehydrogenase subunit 2
DQ768268 Polyplectron malacense	DQ768268		NADH dehydrogenase subunit 2
DQ768266 Polyplectron germaini	DQ768266		NADH dehydrogenase subunit 2
KC778823 Polyplectron katsumatae	KC778823		NADH dehydrogenase subunit 2
KR732830 Cyrtonyx montezumae	KR732830		12S ribosomal RNA
KR732829 Dactylortyx thoracicus	KR732829	Dactylortyx_thoracicus Oreortyx_pictus Odontophorus_erythrops Odontophorus_gujanensis Odontophorus_stellatus	12S ribosomal RNA
KR732828 Oreortyx pictus	KR732828		12S ribosomal RNA
KR732827 Odontophorus erythrops	KR732827		12S ribosomal RNA
KR732826 Odontophorus gujanensis	KR732826		12S ribosomal RNA
KR732825 Odontophorus stellatus	KR732825		12S ribosomal RNA
KR732824 Odontophorus capueira	KR732824	Odontophorus_capueira Odontophorus_speciosus Odontophorus_leucolaemus Odontophorus_balliviani Dendrortyx_macroura	12S ribosomal RNA
KR732823 Odontophorus speciosus	KR732823		12S ribosomal RNA
KR732822 Odontophorus leucolaemus	KR732822		12S ribosomal RNA
KR732821 Odontophorus balliviani	KR732821		12S ribosomal RNA
KR732820 Dendrortyx macroura	KR732820		12S ribosomal RNA

Table 3: Accession numbers for the retrieved sequences. This dataset has been curated. (continued)

OriginalNames	AccN	Species	file
KR732819 Philortyx fasciatus	KR732819	Philortyx_fasciatus Callipepla_gambelii Callipepla_californica Callipepla_douglasii Callipepla_squamata	12S ribosomal RNA
KR732818 Callipepla gambelii	KR732818		12S ribosomal RNA
KR732817 Callipepla californica	KR732817		12S ribosomal RNA
KR732816 Callipepla douglasii	KR732816		12S ribosomal RNA
KR732815 Callipepla squamata	KR732815		12S ribosomal RNA
KR732814 Colinus cristatus	KR732814	Colinus_cristatus Colinus_nigrogularis Colinus_virginianus Ptilopachus_petrosus Polyplectron_inopinatum	12S ribosomal RNA
KR732813 Colinus nigrogularis	KR732813		12S ribosomal RNA
KR732812 Colinus virginianus	KR732812		12S ribosomal RNA
KR732832 Ptilopachus petrosus	KR732832		12S ribosomal RNA
KC749467 Polyplectron inopinatum	KC749467		12S ribosomal RNA
KC749466 Polyplectron germaini	KC749466	Polyplectron_germaini Polyplectron_napoleonis Polyplectron_chalcurum Polyplectron_bicalcaratum Polyplectron_katsumatae	12S ribosomal RNA
KC749465 Polyplectron napoleonis	KC749465		12S ribosomal RNA
KC749464 Polyplectron chalcurum	KC749464		12S ribosomal RNA
KC749463 Polyplectron bicalcaratum	KC749463		12S ribosomal RNA
KC778974 Polyplectron katsumatae	KC778974		12S ribosomal RNA
KR732895 Colinus cristatus	KR732895	Colinus_cristatus Callipepla_squamata Dendrortyx_macroura Philortyx_fasciatus Cyrtonyx_montezumae	eukaryotic elongation factor 2
KR732894 Callipepla squamata	KR732894		eukaryotic elongation factor 2
KR732893 Dendrortyx macroura	KR732893		eukaryotic elongation factor 2
KR732892 Philortyx fasciatus	KR732892		eukaryotic elongation factor 2
KR732891 Cyrtonyx montezumae	KR732891		eukaryotic elongation factor 2
KR732889 Rhynchortyx cinctus	KR732889	Rhynchortyx_cinctus Oreortyx_pictus Colinus_virginianus Callipepla_douglasii Callipepla_californica	eukaryotic elongation factor 2
KR732888 Oreortyx pictus	KR732888		eukaryotic elongation factor 2
KR732887 Colinus virginianus	KR732887		eukaryotic elongation factor 2
KR732886 Callipepla douglasii	KR732886		eukaryotic elongation factor 2
KR732885 Callipepla californica	KR732885		eukaryotic elongation factor 2

Table 3: Accession numbers for the retrieved sequences. This dataset has been curated. (continued)

OriginalNames	AccN	Species	file
KR732884 Callipepla gambelii	KR732884	Callipepla_gambelii Odontophorus_erythrops Odontophorus_guttatus Odontophorus_speciosus Odontophorus_leucolaemus	eukaryotic elongation factor 2
KR732883 Odontophorus erythrops	KR732883		eukaryotic elongation factor 2
KR732882 Odontophorus guttatus	KR732882		eukaryotic elongation factor 2
KR732881 Odontophorus speciosus	KR732881		eukaryotic elongation factor 2
KR732880 Odontophorus leucolaemus	KR732880		eukaryotic elongation factor 2
KR732879 Odontophorus balliviani	KR732879	Odontophorus_balliviani	eukaryotic elongation factor 2
KR732878 Odontophorus stellatus	KR732878	Odontophorus_stellatus	eukaryotic elongation factor 2
KR732877 Odontophorus capueira	KR732877	Odontophorus_capueira	eukaryotic elongation factor 2
KR732890 Ptilopachus petrosus	KR732890	Ptilopachus_petrosus	eukaryotic elongation factor 2
KC749707 Polyplectron inopinatum	KC749707	Polyplectron_inopinatum	eukaryotic elongation factor 2
KC749706 Polyplectron germaini	KC749706	Polyplectron_germaini Polyplectron_chalcurum Polyplectron_bicalcaratum Polyplectron_katsumatae Philortyx_fasciatus	eukaryotic elongation factor 2
KC749705 Polyplectron chalcurum	KC749705		eukaryotic elongation factor 2
KC749704 Polyplectron bicalcaratum	KC749704		eukaryotic elongation factor 2
KC778867 Polyplectron katsumatae	KC778867		eukaryotic elongation factor 2
KR732875 Philortyx fasciatus	KR732875		NADH dehydrogenase subunit 5
KR732874 Callipepla douglasii	KR732874	Callipepla_douglasii Rhynchortyx_cinctus Dactylortyx_thoracicus Odontophorus_leucolaemus Odontophorus_balliviani	NADH dehydrogenase subunit 5
KR732872 Rhynchortyx cinctus	KR732872		NADH dehydrogenase subunit 5
KR732871 Dactylortyx thoracicus	KR732871		NADH dehydrogenase subunit 5
KR732870 Odontophorus leucolaemus	KR732870		NADH dehydrogenase subunit 5
KR732869 Odontophorus balliviani	KR732869		NADH dehydrogenase subunit 5
KR732868 Odontophorus guttatus	KR732868	Odontophorus_guttatus Odontophorus_erythrops Odontophorus_capueira Odontophorus_stellatus Odontophorus_gujanensis	NADH dehydrogenase subunit 5
KR732867 Odontophorus erythrops	KR732867		NADH dehydrogenase subunit 5
KR732866 Odontophorus capueira	KR732866		NADH dehydrogenase subunit 5
KR732865 Odontophorus stellatus	KR732865		NADH dehydrogenase subunit 5
KR732864 Odontophorus gujanensis	KR732864		NADH dehydrogenase subunit 5

Table 3: Accession numbers for the retrieved sequences. This dataset has been curated. (continued)

OriginalNames	AccN	Species	file
KR732863 Dendrortyx macroura	KR732863	Dendrortyx_macroura	NADH dehydrogenase subunit 5
KR732862 Callipepla californica	KR732862	Callipepla_californica	NADH dehydrogenase subunit 5
KR732861 Callipepla gambelii	KR732861	Callipepla_gambelii	NADH dehydrogenase subunit 5
KR732860 Callipepla squamata	KR732860	Callipepla_squamata	NADH dehydrogenase subunit 5
KR732859 Colinus virginianus	KR732859	Colinus_virginianus	NADH dehydrogenase subunit 5
KR732858 Colinus nigrogularis	KR732858	Colinus_nigrogularis Ptilopachus_petrosus	NADH dehydrogenase subunit 5
KR732873 Ptilopachus petrosus	KR732873		NADH dehydrogenase subunit 5

Table 4: Taxonomic information for the retrieved species

kingdom	phylum	class	order	family	genus	species
Animalia Animalia Animalia Animalia Animalia	Chordata Chordata Chordata Chordata	Aves Aves Aves Aves	Galliformes Galliformes Galliformes Galliformes Galliformes	Odontophoridae Odontophoridae Odontophoridae Odontophoridae Odontophoridae	Callipepla Callipepla Colinus Colinus Colinus	Callipepla californica Callipepla gambelii Colinus virginianus Colinus cristatus Colinus nigrogularis
Animalia Animalia Animalia Animalia Animalia	Chordata Chordata Chordata Chordata	Aves Aves Aves Aves	Galliformes Galliformes Galliformes Galliformes	Odontophoridae Odontophoridae Odontophoridae Odontophoridae	Dendrortyx Philortyx Rhynchortyx Cyrtonyx Oreortyx	Dendrortyx barbatus Philortyx fasciatus Rhynchortyx cinctus Cyrtonyx montezumae Oreortyx pictus
Animalia Animalia Animalia Animalia Animalia	Chordata Chordata Chordata Chordata	Aves Aves Aves Aves	Galliformes Galliformes Galliformes Galliformes	Odontophoridae Odontophoridae Odontophoridae Odontophoridae Odontophoridae	Odontophorus Odontophorus Odontophorus Odontophorus	Odontophorus leucolaemus Odontophorus speciosus Odontophorus erythrops Odontophorus guttatus Odontophorus gujanensis
Animalia Animalia Animalia Animalia Animalia	Chordata Chordata Chordata Chordata	Aves Aves Aves Aves	Galliformes Galliformes Galliformes Galliformes	Odontophoridae Odontophoridae Odontophoridae Odontophoridae	Odontophorus Odontophorus Dactylortyx Dendrortyx Callipepla	Odontophorus capueira Odontophorus stellatus Dactylortyx thoracicus Dendrortyx macroura Callipepla squamata
Animalia Animalia Animalia Animalia Animalia	Chordata Chordata Chordata Chordata	Aves Aves Aves Aves	Galliformes Galliformes Galliformes Galliformes	Odontophoridae Odontophoridae Odontophoridae Odontophoridae Odontophoridae	Callipepla Colinus Dendrortyx Cyrtonyx Odontophorus	Callipepla douglasii Colinus leucopogon Dendrortyx leucophrys Cyrtonyx ocellatus Odontophorus balliviani

Table 4: Taxonomic information for the retrieved species (continued)

kingdom	phylum	class	order	family	genus	species
Animalia Animalia Animalia Animalia Animalia	Chordata Chordata Chordata Chordata	Aves Aves Aves Aves	Galliformes Galliformes Galliformes Galliformes	Odontophoridae Odontophoridae Odontophoridae Odontophoridae Odontophoridae	±	Odontophorus columbianus Odontophorus strophium Odontophorus melanonotus Odontophorus hyperythrus Odontophorus melanotis
Animalia Animalia Animalia Animalia Animalia	Chordata Chordata Chordata Chordata	Aves Aves Aves Aves	Galliformes Galliformes Galliformes Galliformes	Phasianidae Phasianidae Phasianidae Phasianidae Phasianidae	Francolinus Ptilopachus Polyplectron Polyplectron Polyplectron	Francolinus nahani Ptilopachus petrosus Polyplectron inopinatum Polyplectron napoleonis Polyplectron chalcurum
Animalia Animalia Animalia Animalia	Chordata Chordata Chordata Chordata	Aves Aves Aves	Galliformes Galliformes Galliformes	Phasianidae Phasianidae Phasianidae Phasianidae	Polyplectron Polyplectron Polyplectron Polyplectron	Polyplectron bicalcaratum Polyplectron malacense Polyplectron germaini Polyplectron katsumatae

Table 5: Taxonomic sampling across gene regions

species_names	kingdom	phylum	class	order	family	genus
Callipepla_californica Callipepla_douglasii Callipepla_gambelii Callipepla_squamata Colinus_cristatus	Animalia Animalia Animalia Animalia Animalia	Chordata Chordata Chordata Chordata	Aves Aves Aves Aves	Galliformes Galliformes Galliformes Galliformes Galliformes	Odontophoridae Odontophoridae Odontophoridae Odontophoridae Odontophoridae	Callipepla Callipepla Callipepla Callipepla Colinus
Colinus_leucopogon Colinus_nigrogularis Colinus_virginianus Cyrtonyx_montezumae Cyrtonyx_ocellatus	Animalia Animalia Animalia Animalia	Chordata Chordata Chordata Chordata	Aves Aves Aves Aves	Galliformes Galliformes Galliformes Galliformes	Odontophoridae Odontophoridae Odontophoridae Odontophoridae Odontophoridae	Colinus Colinus Cyrtonyx Cyrtonyx
Dactylortyx_thoracicus Dendrortyx_barbatus Dendrortyx_leucophrys Dendrortyx_macroura Francolinus_nahani	Animalia Animalia Animalia Animalia Animalia	Chordata Chordata Chordata Chordata	Aves Aves Aves Aves	Galliformes Galliformes Galliformes Galliformes	Odontophoridae Odontophoridae Odontophoridae Odontophoridae Phasianidae	Dactylortyx Dendrortyx Dendrortyx Dendrortyx Francolinus
Odontophorus_balliviani Odontophorus_capueira Odontophorus_columbianus Odontophorus_erythrops Odontophorus_gujanensis	Animalia Animalia Animalia Animalia	Chordata Chordata Chordata Chordata	Aves Aves Aves Aves	Galliformes Galliformes Galliformes Galliformes	Odontophoridae Odontophoridae Odontophoridae Odontophoridae	Odontophorus Odontophorus Odontophorus Odontophorus
Odontophorus_guttatus Odontophorus_hyperythrus Odontophorus_leucolaemus Odontophorus_melanonotus Odontophorus_melanotis	Animalia Animalia Animalia Animalia Animalia	Chordata Chordata Chordata Chordata Chordata	Aves Aves Aves Aves	Galliformes Galliformes Galliformes Galliformes Galliformes	Odontophoridae Odontophoridae Odontophoridae Odontophoridae Odontophoridae	Odontophorus Odontophorus Odontophorus Odontophorus
Odontophorus_speciosus	Animalia	Chordata	Aves	Galliformes	Odontophoridae	Odontophorus

Table 5: Taxonomic sampling across gene regions (continued)

species_names	kingdom	phylum	class	order	family	genus
Odontophorus_stellatus Odontophorus_strophium Oreortyx_pictus Philortyx_fasciatus	Animalia Animalia Animalia Animalia	Chordata Chordata Chordata Chordata	Aves Aves Aves	Galliformes Galliformes Galliformes	Odontophoridae Odontophoridae Odontophoridae Odontophoridae	Odontophorus Odontophorus Oreortyx Philortyx
Polyplectron_bicalcaratum Polyplectron_chalcurum Polyplectron_germaini Polyplectron_inopinatum Polyplectron_katsumatae	Animalia Animalia Animalia Animalia	Chordata Chordata Chordata Chordata	Aves Aves Aves Aves	Galliformes Galliformes Galliformes Galliformes	Phasianidae Phasianidae Phasianidae Phasianidae Phasianidae	Polyplectron Polyplectron Polyplectron Polyplectron Polyplectron
Polyplectron_malacense Polyplectron_napoleonis Ptilopachus_petrosus Rhynchortyx_cinctus	Animalia Animalia Animalia Animalia	Chordata Chordata Chordata Chordata	Aves Aves Aves	Galliformes Galliformes Galliformes	Phasianidae Phasianidae Phasianidae Odontophoridae	Polyplectron Polyplectron Ptilopachus Rhynchortyx

Table 6: Results of RogueNaRock

num	taxNum	taxon	rawImprovement	IC
0	NA	NA	NA	495.7345