

Yumeng Pan, Qianqian Guo

Problem Definition

- Brute force
 - Very time consuming for large maze
- Randomly choose actions
 - Stuck into infinite loop

Introduction

What is Q-learning?

Q-Learning is a value-based Reinforcement Learning algorithm that deals with the problem of learning to control autonomous agents. The learning process works based on interactions by trial and error with a dynamic environment which provides reward signals for each action the agent executes.

How does it work?

Q-Table		Actions						
		South (0)	North (1)	East (2)	West (3)	Pickup (4)	Dropoff (5)	
	0	0	0	0	0	0	0	
		•		•				
States	327	0	0	0	0	0	0	
					* :			
		•	•	•	•			
	499	0	0	0	0	0	0	

Introduction (continued)

How to update Q-Table?

$$NewQ(s,a) = Q(s,a) + \alpha[R(s,a) + \gamma \max_{\text{Reward for taking that action at that state}} | Part | Part$$

s: Sate. a: Action. r: Reward.

alpha: Learning rate parameter.

gamma: Decay rate (future reward discount) parameter.

Example

	←	\rightarrow	1	4
Start	0	0	0	0
Small cheese	0	0	0	0
Nothing	0	0	0	0
2 small cheese	0	0	0	0
Death	0	0	0	0
Big cheese	0	0	0	0

6 States, 4 Actions

We used OpenMPI to parallel the Q-Table.

Maze
8x3

0	1	2		
3	4	5		
6	7	8		
9	10	11		
12	13	14		
15	16	17		
18	19	20		
21	22	23		

Q-Table

States	L	R	U	D
35				
Bottom Buffer				
Top Buffer				
68				
911				
Bottom Buffer				

The Parallel Implementation (continued)

For each episode...

- 1. Reach max step
- 2. Reach end point
- 3. Fail
- 4. Reach boundaries (but...)

What's the point of parallel if communication is needed for each episode?

Update buffers once in a while! (e.g. every 100 episodes)

Results

o small reward - no reward V end of maze

x trap

8x8 Maze

DEMO

- Parallelization does not seem to improve the calculation time
- For small number of episodes and large maze, parallel
 q-learning is more global

