ВЛИЯНИЕ ГРАНИЧНЫХ УСЛОВИЙ НА ВОДОНАСЫЩЕННОСТЬ ВБЛИЗИ СКВАЖИН

О. Б. Бочаров, И. Г. Телегин

(Институт водных и экологических проблем СО РАН, Новосибирск; Тюменский государственный нефтегазовый университет)

Ключевые слова: водонасыщенность, нефтеотдача, нефтяной пласт, модели фильтрации, капиллярное запирание
Key word: water saturation, oil recovery, oil stratum, flow models, capillary locking-up

При математическом моделировании разработки нефтяных месторождений, как правило [1], используется модель двухфазной фильтрации Баклея-Леверетта (БЛ - модель). В этой модели не учитываются процессы, происходящие в нефтяном пласте, в частности, пренебрегается влияние капиллярных сил. В БЛ — модели краевые условия для водонасыщенности s(x,t) на нагнетательных и добывающих скважинах определяются однозначно. Однако в ряде случаев роль капиллярных и прочих эффектов является определяющей. В этом случае необходимо использовать более сложную модель Маскета-Леверетта (МЛ - модель). Эта модель реализуется квазилинейной эллиптико- параболической системой дифференциальных уравнений с возможным вырождением на решении. Усложнение модели приводит к более богатому набору возможных начально-краевых задач [2-4].

Нами изучается распределение водонасыщенности вблизи скважин в зависимости от используемых краевых условий для изотермической и неизотермической моделей фильтрации.

Уравнения МЛ-модели.

Фильтрация двух несмешивающихся жидкостей в не деформируемой пористой среде, как правило, описывается с помощью модели Маскета-Леверетта [5,6], состоящей из двух уравнений неразрывности фаз:

$$\frac{\partial (m_0 \rho_i s_i)}{\partial t} + div(\rho_i v_i) = 0, i = 1, 2, \qquad (1)$$

уравнения полного насыщения порового пространства $s_1 + s_2 = 1$ и двух уравнений движения в форме обобщенных законов Дарси:

$$\vec{v}_i = -(K_0 k_i(s) / \mu_i) \cdot (grad \ p_i - \rho_i \ g), i = 1, 2,$$
 (2)

где ρ_i – плотность і-й фазы, p_i – давление в і-й фазе, μ_i – вязкость, S – динамическая водонасыщенность порового пространства, определяемая по формуле $s=(s_1-S_1^0)/(1-S_1^0-S_2^0)$, S_i – истинная насыщенность флюидом порового пространства (индекс i=1 соответствует воде, а i=2 – нефти), S_i^0 – остаточная насыщенность, $k_i(s)$ – относительные фазовые проницаемости, v_i – скорость фильтрации і-ой фазы, m_0 – пористость, K_0 – тензор абсолютной проницаемости, v_i – вектор ускорения свободного падения. Система (1)–(2) дополняется уравнениями состояния

$$\rho_i = const, \, \mu_i = const, \, i = 1,2 \tag{3}$$

и капиллярной разности давлений:

$$p_2 - p_1 = p_c(s) = \gamma (m_0 / K_0)^{1/2} j(s),$$
 (4)

где p_c — капиллярное давление, j(s) — функция Леверетта, γ — коэффициент поверхностного натяжения. Свойства функциональных параметров МЛ модели, а также качественные свойства её решений описаны в [5,6].

Уравнение для температуры, преобразование уравнений, обезразмеривание.

Рассмотрим фильтрацию несжимаемых жидкостей ($\rho_i = const$), в негоризонтальном $g \neq 0$, несжимаемом ($m_0 = const$), однородном ($K_0 = const$) нефтяном пласте. Из уравнений (1), после сокращения на ρ_i и суммирования получим уравнение для суммарной скорости фильтрации:

$$div(v_1 + v_2) \equiv div(v) = 0, \quad v = v_1 + v_2.$$
 (5)

В одномерном случае при заданной скорости фильтрации v(t) система (1)— (5) после преобразований сводится к одному уравнению для динамической водонасыщенности:

$$m\frac{\partial s}{\partial t} = \frac{\partial}{\partial x} (K_0 a(\frac{\partial p_c}{\partial x} + f_1) - v(t)b) \equiv -\frac{\partial v_1}{\partial x}, \qquad (6)$$

где $x \in [0,L]$ – пространственная переменная, $m=m_0(1-S_1^0-S_2^0)$ – эффективная пористость, $a(s)=-k_2b/\mu_2$, $b(s)=k_1/(k_1+\mu k_2)$ – доля вытесняющей фазы в потоке (функция Баклея-Леверетта), $\mu=\mu_1/\mu_2$, $f_1=(\rho_1-\rho_2)\overrightarrow{g}\cdot \overrightarrow{e}x$, $\overrightarrow{g}\cdot \overrightarrow{e}_X=g\cdot\cos(\overrightarrow{g},\overrightarrow{e}_X)$, \overrightarrow{e}_X – орт оси ОХ, g – ускорение свободного падения.

В работе [7] для учета температурных эффектов описана неизотермическая модель двухфазной фильтрации, в которой уравнение для водонасыщенности остается в виде (6), а уравнение для температуры, общей для обеих фаз и пористого скелета, имеет вид

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial x} (\lambda \frac{\partial \theta}{\partial t} - v\theta),\tag{7}$$

где $\theta \in (\theta_{\min}, \theta_{\max})$ — температура, $\lambda(s, \theta) = \sum_{i=1}^{3} \alpha_i \lambda_i / (\rho_i c_{pi})$ — коэффициент температуропроводности смеси, $\alpha_1 = m_0 s_1$ — объемная концентрация воды, $\alpha_2 = m_0 (1 - s_1)$ — нефти, $\alpha_3 = 1 - m_0$ — порового пространства, $c_{pi} = const$ — теплоемкость фазы при постоянном давлении, $\lambda_i = \lambda_i(\theta)$ — коэффициенты теплопроводности фаз. Уравнения (1) — (5) и (7) составляют неизотермическую модель Маскета - Леверетта (МЛТ- модель).

Положив $V(t)=V_0=const$, введем безразмерные величины: $\bar{x}=x/L$, $\bar{t}=tV_0/(mL)$, $\bar{\theta}=(\theta-\theta_{\min})/(\theta_{\max}-\theta_{\min})$, $\bar{\lambda}=\lambda/\lambda_0$, где $\lambda_0=\lambda(0,\theta_{\min})$. Черта над \bar{x} , \bar{t} , $\bar{\theta}$ и $\bar{\lambda}$ в дальнейшем опускается. В силу доказанного в [7] принципа максимума θ_{\max} и θ_{\min} достигаются на границах области при x=0 и x=1. Система (6) –(7) тогда запишется в виде

$$\begin{cases} \frac{\partial s}{\partial t} = \frac{\partial}{\partial x} (\varepsilon_c a \frac{\partial p}{\partial x} - Ga - b) \equiv -\frac{\partial v_1}{\partial x}; \\ \frac{\partial \theta}{\partial t} = \frac{\partial}{\partial x} (\varepsilon_\theta \lambda \frac{\partial \theta}{\partial x} - m\theta), \end{cases}$$
(8)

где $\varepsilon_c = \Gamma^*(m_0k_0)^{1/2}/(V_0L\mathrm{M}^*)$ — капиллярный параметр, $a = k_2b/\mu_2^*$, $p(s,\theta) = -j\gamma^*$, $G(x) = K_0(\rho_1 - \rho_2)\vec{g} \cdot \vec{e}_x/(V_0\mathrm{M}^*)$, $\varepsilon_\theta = m\lambda_0/(V_0L)$, $\gamma^* = \gamma/\Gamma^*$, $\mu = \mu_1^*/\mu_2^*$, $\mu_2^* = \mu_2/\mathrm{M}^*$, $\mu_1^* = \mu_1/\mathrm{M}^*$, $\Gamma^* = \max(\gamma(\theta))$, $M^* = \max(\mu_2(\theta))$. Звездочки при μ_1^* , μ_2^* и γ^* в дальнейшем опускаются. При $\varepsilon_c = 0$ будем иметь $\theta \in [0,1]$ неизотермическую модель Баклея-Леверетта (БЛТ).

Постановка залачи.

Начально-краевые условия для температуры. В нагнетательную скважину (x = 0) подается вода с заданной температурой, на эксплуатационной скважине (x = 1) происходит свободный вынос тепла. В начальный момент задано распределение температуры в пласте. Эти предположения соответствуют следующей начально-краевой задаче:

$$\theta \mid_{x=0} = \theta_{H}, \ \varepsilon_{\theta} \lambda \frac{\partial \theta}{\partial x} \mid_{x=1} = 0; \quad \theta(x,0) = \theta_{0}, \ x \in (0,1).$$
 (9)

Начальные условия для водонасщеннности будем задавать в виде $s(x,0) = s_0(x)$.

Краевые условия для водонасыщенности.

Классический вариант условий: на входе в пласт задается водонасыщенность:

$$s|_{r=0}=1,$$
 (10a)

что соответствует поступлению в пласт только смачивающей фазы. На выходе, как правило, используется условие $\frac{\partial s}{\partial x}|_{x=0}=0$. Это условие реализует разные гипотезы об условиях вытекания:

- пренебрежение градиентом капиллярного давления по сравнению с градиентами давления в фазах [2];
- истечение фазы пропорционально её подвижности ($K_0 k_i(s)/\mu_i$)[2,6];
- вариант условия свободного истечения в задачах гидродинамики [8].

В общем случае данное условие можно представить в виде

$$\varepsilon_c a \frac{\partial p}{\partial x} \big|_{x=1} = 0. \tag{11a}$$

Фактически это соответствует пренебрежению капиллярными силами в окрестности эксплуатационной скважины. Другой вариант, если вместо насыщенности на нагнетательной скважине задаётся расход вытесняющей фазы:

$$v_1|_{x=0} = -(\varepsilon_c a \frac{\partial p}{\partial x} - Ga - b) = 1.$$
 (106)

Данное условие позволяет следить за динамикой s(x,t) при x=0 во времени.

С другой стороны, известно, экспериментально установленное явление, называемое "концевым" эффектом [2,6]. Он заключается в том, что смачивающая фаза не вытекает из гидрофильного пласта до того момента, пока её насыщенность на выходе не достигает максимально возможного значения, равного 1. При этом происходит выравнивание давлений в фазах, согласно свойству функции Леверетта j(s). В момент достижения этого значения, смачивающая фаза прорывается с дальнейшим сохранением на выходе постоянного значения ее насыщенности, то есть, если t' — момент прорыва, то на эксплутационной скважине имеем следующее условие:

Данное краевое условие (116) является более сложным по сравнению с условием (11а).

При условии (10б) на входе мы рассмотрим оба варианта (11а) и (11б) на выходе. Добавляя сюда возможность подачи горячей или холодной воды, получим 4 начально-краевые задачи: вариант 1 - (106), (11a), горячая вода, вариант 2 - (106), (11a), холодная вода, вариант 3 - (106), (11б), горячая вода, вариант 4 - (106), (11б), холодная вода.

Численный алгоритм.

Введем сетку ω с распределенными узлами:

 $\omega_{h\tau} = \{x_i = ih, \ t^n = n\tau, \ i = 0,...,N, \ n = 0,1,2,...\}, \ h = 1/N$ – шаг по пространственной координате, $\tau = Kh^2$ – шаг по временной переменной, K – число Куранта. Шаг h брался равным 0,005 (N = 200), а $\tau = 0,00025$. В дальнейшем при записи разностных схем используются обозначения, принятые в [9,10].

Схема для θ аппроксимировалось неявной разностной схемой первого порядка:

$$\begin{cases} \frac{\theta_{i}^{n+1} - \theta_{i}^{n}}{\tau} = \frac{\varepsilon_{\theta}}{h} (\lambda_{i+1/2}^{n} \theta_{x,i}^{n+1} - \lambda_{i-1/2}^{n} \theta_{\bar{x},i}^{n+1}) - m \theta_{\bar{x},i}^{n+1}, \ \theta_{i}^{0} = \theta_{0}, \ i = \overline{1, N}; \ \theta_{0}^{n} = \theta_{0}^{n+1} = \theta_{1}; \\ \frac{\theta_{N}^{n+1} - \theta_{N}^{n}}{\tau} = -\frac{2\varepsilon_{\theta}}{h} \lambda_{N-1/2}^{n} \theta_{\bar{x},N}^{n+1} - m \theta_{\bar{x},N}^{n+1}, \ n = 0,1,2,\dots \end{cases}$$
(12)

где $\lambda_{i+1/2}^n = \lambda((s_i^n + s_{i+1}^n)/2, (\theta_i^n + \theta_{i+1}^n)/2).$

Система (12) решалась методом правой прогонки. По аналогии с (12) аппроксимировалось и уравнение для водонасыщенности:

$$\frac{s_i^{n+1} - s_i^n}{\tau} = \frac{\mathcal{E}_c}{h} \left(a_{i+1/2}^n p_{x,i}^{n+1} - a_{i-1/2}^n p_{\bar{x},i}^{n+1} \right) - \left(Ga \right)_o^n - b_{\bar{x},i}^{n+1}, \ i = 1, \dots, N-1, n = 0, 1, 2, \dots;$$

$$s_i^0 = 0, i = \overline{0, N};$$

$$(13)$$

краевое условие (10б) аппроксимировалось следующим образом:

$$\frac{h}{2}\frac{s_0^{n+1}-s_0^n}{\tau}=1+\varepsilon_c a_{1/2}^n p_{\bar{x},1}^{n+1}-G a_{1/2}^n-b_{1/2}^{n+1};$$

краевое условие (11а) заменялось разностным уравнением:

$$\frac{s_N^{n+1}-s_N^n}{\tau} = -\frac{2\varepsilon_c}{h}a_{N-1/2}^np_{\bar{x},N}^{n+1} - Ga_{\bar{x},N}^n - b_{\bar{x},N}^{n+1};$$

нелинейное условие (11б) аппроксимировалось разностным уравнением при

$$\begin{cases} s_N^{n+1} = 1; t < t' \\ \frac{h}{2} \frac{s_N^{n+1} - s_N^n}{\tau} = -\varepsilon_c a_{N-1/2}^n p_{\bar{x},1}^{n+1} + G a_{N-1/2}^n + b_{N-1/2}^{n+1}; t > t' \end{cases},$$

где $a_{i+1/2}^n = a((s_i^n + s_{i+1}^n)/2, (\theta_i^{n+1} + \theta_{i+1}^{n+1})/2)$. Для численного решения системы (13) применялся метод правой прогонки. Задачи (12) – (13) решались последовательно: полученное из (12) значение θ^{n+1} использовалось при решении (13). Для нелинейных функций $b(s,\theta)$ и $p(s,\theta)$ применялась линеаризация по Ньютону:

$$f(s_i^{n+1}, \theta_i^{n+1}) = f(s_i^n, \theta_i^{n+1}) + f_s'(s_i^n, \theta_i^{n+1}) \cdot (s_i^{n+1} - s_i^n)$$

Схемы для каждого уравнения неявные, но их последовательное решение вносит элемент явности в схемы (12) – (13). Это ведет к проблеме подбора временного шага для устойчивого счета и сходимости итерационного процесса. На каждом временном шаге по формуле трапеций вычислялась обводненность пласта $\eta(t) = 100\% \int\limits_{0}^{1} s(x,t) dx$.

В расчетах использовались модельные параметры и данные: $k_1=s^2$, $k_2=(1-s)^2$, j=(1-s)/(0.9+s), $\rho_1/\rho_2=1.25$, $\varepsilon_\theta=0.000001$, m=0.36, G=0, $\mu_1=0.1$, $\mu_2=\mu_{2\max}+(\mu_{2\min}-\mu_{2\max})\theta$, $\gamma=\gamma_{\max}+(\gamma_{\min}-\gamma_{\max})\theta$, $\gamma_{\max}=1$, $\gamma_{\min}=0.2$, $\lambda_1=0.644$ $Bm/(M\cdot K)$, $\lambda_2=0.08$ $Bm/(M\cdot K)$, $\lambda_3=2.40$ $Bm/(M\cdot K)$, $\rho_1=1000$ $\kappa\varepsilon/M^3$, $\rho_2=730$ $\kappa\varepsilon/M^3$, $\rho_3=4216$ $\kappa\varepsilon/M^3$, $c_{pl}=4071$ $\mathcal{J}\mathcal{H}\mathcal{H}(\kappa\varepsilon\cdot K)$, $c_{p2}=2100$ $\mathcal{J}\mathcal{H}\mathcal{H}(\kappa\varepsilon\cdot K)$, $c_{p3}=920$ $\mathcal{J}\mathcal{H}(\kappa\varepsilon\cdot K)$.

При нагнетании горячей воды полагалось $\mu_{2\,\text{min}}=0.25,\ \mu_{2\,\text{max}}=1$, а при нагнетании холодной соответственно 1 и 4. На рисунках толстыми линиями обозначены решения S(x,t), полученные в неизотермическом случае, тонкими – результаты расчета по изотермической модели, тонкими линиями с кружками – температурные профили, $\mu \equiv \mu_2$.

Использование краевых условий свободного выхода.

Приведены, полученные решения при $\varepsilon_c = 0.1$ с нагнетанием горячей воды (рис.1). При этом использовались условия варианта 1. Представлены решения, относящиеся к закачке холодной воды, вариант 2, (рис.3, 4).

Рис.2. Графики s(0,t) к рис. 1

Представлено поведение водонасыщенности на эксплуатационной скважине для вариантов 1, 2 (рис.5, 6).

Результаты расчётов показывают, что при использовании горячего раствора или вытеснителя поведение водонасыщенности на нагнетательной и эксплуатационной скважинах более динамично, и она растёт быстрее.

Использование краевого условия капиллярного запирания.

В вариантах 1 и 2 использовалось достаточно простое краевое условие на эксплуатационной скважине. Более сложное условие (11 б) серьезно влияет на структуру решения водонасыщенности. Так, на рисунке 7 приведены решения при $\varepsilon = 0,1$ с нагнетанием горячей воды. При этом использовались условия (10 б) на левом конце и (11 б) на правом конце (вариант 3, жирные линии). Сравнение проводилось с решениями варианта 1 (тонкие линии). Соответственно на рисунке 8 приведены графики, полученные при использовании условий (10 б) на левом конце и (11 б) на правом конце, при закачке холодной воды (вариант 4, жирные линии). Сравнение проводилось с решениями варианта 3 (тонкие линии). Решения с использованием условий капиллярного запирания отличаются от решений варианта 1 только в малой окрестности эксплуатационной скважины и после подхода к ней воды (см. рис. 7, 8).

Рис. 3. Распределение s(x,t) и $\theta(x,t)$,

Рис. 4. Графики s(0,t) к рис. 3

Рис. 5. Графики s(1,t) к рис. 1

Рис. 6. Графики s(1,t) к рис .3

Рис. 7. Нагнетание горячей воды (вар. 3) Рис. 8. Нагнетание холодной воды (вар. 4)

Влияние различных факторов на поведение s(x,t) на нагнетательной скважине.

Представлены графики s(0, t) для варианта 1, при учете различных температурных эффектов (рис. 9). Соответственно приведены графики s(0, t) для варианта 2 при учете и неучете влияния температуры на вязкость и капиллярные силы (рис. 10).

Рис.9. Графики s(0,t) к варианту 1

Рис. 10. Графики s(0,t) к варианту 2

Влияние различных факторов на поведение s(x,t) на добывающей скважине.

Выведены графики s(1,t) для вариантов 1-2, при учете и неучете влияния температуры на вязкость и капиллярное давление (см. рис. 9-10).

Условие с капиллярным запиранием при обычных параметрах быстро выводит насыщенность на правом конце на 1 и влияние горячего вытеснителя не наблюдается. Только при малых скоростях нагнетания и соответственно при больших капиллярных числах заметно различие в поведении водонасыщенности при разной температуре. Так, (рис. 13) приведены графики s(1,t) для варианта 3 при $\varepsilon = 5$, соответственно (рис. 14) представлены графики s(1,t) для варианта 4.

Рис. 11. Графики s(1,t) к варианту 1

Рис. 12. Графики s(1,t) к варианту 2

Рис. 13. Графики s(1, t) к варианту 3

Рис. 14. Графики s(1, t) к варианту 4

Выводы

Приведённые численные эксперименты показывают, что различные гидротермические условия на скважинах приводят к разным пространственным и временным распределениям водонасыщенности в прискважинных областях. Это может оказать влияние на интерпретацию данных каротажа и на разработку стратегий эксплуатации месторождений.

Список литературы

- 1. Коллинз Р. Течения жидкостей через пористые материалы. М.: Мир, 1964.
- 2. Швидлер М. И., Леви Б. И. Одномерная фильтрация несмешивающихся жидкостей.- М.: Недра, 1970. 156 с.
- 3. Антонцев С. Н., Доманский А. В., Пеньковский В. И. Фильтрация в прискважинной зоне пласта и проблемы интенсификации притока. Новосибирск: ИГиЛ СО АН, 1989.
 - 4. Доманский А. В. Исследование методов повышения нефтегазоотдачи. Южно-Сахалинск: Изд-во СахГУ, 2000. 152 с.
- 5. Антонцев С. Н., Кажихов А. В., Монахов В. Н. Краевые задачи механики неоднородных жидкостей. Новосибирск: СОАН СССР, Наука, 1983. 316 с.
 - 6. Коновалов А. Н. Задачи фильтрации многофазной несжимаемой жидкости. Новосибирск: Наука, СО АН, 1988. 166 с.
- 7. Бочаров О. Б., Монахов В. Н. Краевые задачи неизотермической двухфазной фильтрации в пористых средах. // Сб.н.тр. Динамика сплошной среды. ИГиЛ СО РАН. 1988. Вып.86. С.47-59.
 - 8. Роуч П. Вычислительная гидродинамика. М.: Мир, 1980.- 616 с.
 - 9. Самарский А. А. Введение в теорию разностных схем. М.: Наука. 1971. 552 с.
- 10. Бочаров О. Б., Телегин И. Г. Сравнительный анализ некоторых разностных схем для задач двухфазной фильтрации без учета капиллярных сил // Вычислительные технологии. 2003. Том 8. № 4. С. 23-31.

Сведения об авторах

Телегин И. Г., к.ф.-м.н., доцент, Тюменский государственный нефтегазовый университет, тел.:8(3452)632391, e-mail: igtelegin@yandex.ru

Бочаров О. Б., к.ф.-м.н., доцент, Институт водных и экологических проблем СО РАН, тел.:8(383)3332808, e-mail:bob@ad-sbras.nsc.ru **Teleguin I. G.,** Candidate of Science, associate professor, Tyumen State Oil and gas University, phone: 8(3452)632391, e-mail:igtelegin@yandex.ru

Bocharov O.B., Candidate of Sciences in Physics and Mathematics, associate professor, Institute of water and ecology problems, SB RAS, phone: 8(383)3332808, e-mail:bob@ad-sbras.nsc.ru