Der Linearzeit MST Algorithmus

Ein randomisierter Ansatz für bessere Performanz

Max Springenberg

Proseminar: Randomisierte Algorithmen, TU Dortmund

Table of contents

- 1. MST in gewichteten Graphen
- 2. Bäume vs. Wälder
- 3. Boruvka Phasen
- 4. F-schwere/ -leichte Kanten
- 5. Randomiserte Stichprobem
- 6. Erkenntnis

MST in gewichteten Graphen

Definition MST

Ein Teilgraph T ist genau dann ein minimaler Spannbaum von G, wenn er alle Knoten verbindet und die Summe seiner Kantengewichte $\sum_{e \in E_T} w(e)$ minimal ist.

Definition MST

Ein Teilgraph T ist genau dann ein minimaler Spannbaum von G, wenn er alle Knoten verbindet und die Summe seiner Kantengewichte $\sum_{e \in E_T} w(e)$ minimal ist.

Definition MST

Ein Teilgraph T ist genau dann ein minimaler Spannbaum von G, wenn er alle Knoten verbindet und die Summe seiner Kantengewichte $\sum_{e \in E_T} w(e)$ minimal ist.

Bäume vs. Wälder

Boruvka Phasen

Ablauf

- 1. Kontraktierende Kanten markieren
- 2. Verbundene Komponente bestimmen
- 3. Verbundene Komponenten durch einzelnen Knoten ersetzen
- 4. Selbstschleifen entfernen

F-schwere/ -leichte Kanten

Randomiserte Stichprobem

Quelle: https://melbournechapter.net/explore/coin-flip-clipart/

Wirf eine Münze!

Kanten 'würfeln'

Erkenntnis

Eleminierung von unnützen Kanten

Aber wie fassen wir das in einen Algorithmus?

... doch:

- Wie erreicht man dadurch eine erwartete lineare Laufzeit?
- Wie kann ein vernünftiger Spannbaum trotzt eliminierung von Kanten erwartet werden?

Diese Antworten erhaltet ihr in meiner finalen Präsentation.