L P C

0 3 1.5

Course Objectives:

The student who successfully completes this course will have:

- 1. The knowledge to use R for statistical programming, computation, modelling and graphics.
 - 2. The skill to write functions and use R in an efficient way.
 - 3. The ability to fit some basic types of statistical models using R.
 - 4. The idea to expand the knowledge of R on their own.

Course Outcomes

On completion of this course, students will be able to:

- 1. Write the programs in R to solve the statistical problems.
- 2. Apply various built in functions in R to solve the computational and modelling problems.
- 3. Interpret the statistical data by various functions of graphical representation.
- 4. Understand- reading, writing, working and manipulating the data in various data frames.

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	P06	PO7	P08	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	2	2										2
CO3	3	3										2
CO4	3	2										3

CO-PSO Mapping

	PSO1	POS2	PSO3
CO1	3	3	1
CO2	2	2	3
CO3	3	3	2
CO4	3	2	2

Lab – Course Content

Introduction to R

Functions

Control flow and Loops

Working with Vectors and Matrices

Reading in Data

Writing Data

Working with Data

Manipulating Data

Simulation

Linear model

Data Frame

Graphics in R

Pre - Requisites

CS/IT-151- C Programming.

Lab – Course Plan&Delivery:

LIST OF EXPERIMENTS	PERIODS
1. Graphical representation of data	3
a) Bar plot b)Frequency polygon	
2. Graphical representation of data	3
a) Histogram b)Pie chart c) Scatter plot	
3. Measures of central tendency	3
a) Mean b)Median c)Mode	
4. Measures of central tendency a)Geometric Mean e)Harmonic Mean	3
5. Measures of dispersion	
a)Range b)Quartile deviation	3
· · · · · · · · · · · · · · · · · · ·	
6. Measures of dispersion	3
a)Mean deviation b)Standard deviation	
7. Goodness of fit	3
a) Binomial b)Poisson	
8. Goodness of fit	3
a)Normal b)Contingency table 9. Parametric tests	
a) t-test for one-mean b) t-test for two means	3
10.Parametric tests	
a) paired t-test b) F-test	3
11. Non-parametric tests	
a) Wilcoxon-Signed rank test (one sample) b) Wilcoxon-Signed rank test (Paired	3
samples) c) Mann-Whitney test (Two samples)	
12. Non-parametric tests	
a) Kolmogorov-Smirnov test (One sample) b) Kolmogorov-Smirnov test (Two	3
samples)	
13. Time series	3
a) Trend line b)Non-linear trend line	
14. Time series	3
a)Moving averages b)ARIMA	

Evaluation Methods:

Internal Lab Exam : 40 Marks Final Lab Exam : 60 Marks

Topics Covered Beyond The Curriculum:

Statistical concepts regarding testing of hypothesis

Differences between C and R Programming

Semester End Observations for Future Guidance:

Case studies to be explained are revised.

Identified new problems to be assigned for the next academic year students.

Learning Resources:

Text Books:

- 1. Hands-on Programming with R, Garrett Grolemund, O'Reilly.
- 2.R for Everyone: Advanced Analytics and Graphics, Jared P. Lander, Addison-Wesley