Remark 1. ... $\to \mathbb{Z}/4 \xrightarrow{\cdot 2} \mathbb{Z}/4 \xrightarrow{\cdot 2} \mathbb{Z}/4 \to ...$ is acyclic, so a 0 map is a quasi-isomorphism, but not a homotopy equivalence.

So one has 2 resolutions of $\dots \to 0 \to \dots$, which are not homotopy equivalent.

Definition 2 (K-injectivity, K-projectivity). A complex A is K-injective (K-projective) if for any acyclic X, Hom(X, A) (Hom(A, X)) is acyclic.

Theorem 3 (Spatenstein). In the category of chain complexes of R-modules every complex has a K-injective (K-projective) resolution.

Definition 4 (F-acyclic). Assume that $F: A \to \mathcal{B}$ is left-exact, additive and $RF \ (= D^+ F)$ exists; then we can say that $A \in \mathcal{A}$ is F-acyclic if RF(A) has only 0 cohomology group (i.e. $R^iF(A) = 0$ for i > 0).

Theorem 5. Let \mathcal{Z} be a class of F-acyclic objects.

- If Z is sufficiently large, then there exists a class of objects adapted to F.
- If Z is sufficiently large, then any class of objects adapted to F is contained in Z.
- If Z is sufficiently large, then it contains all injective objects of A.

 $F: \mathcal{A} \to \mathcal{B}, G: \mathcal{B} \to \mathcal{C}$ additive left exact functors of abelian categories. Assume that there exists classes $\mathcal{R}_{\mathcal{A}}$ of objects adapted to $F, \mathcal{R}_{\mathcal{B}}$ adapted to G, and $F(\mathcal{R}_{\mathcal{A}}) \subset \mathcal{R}_{\mathcal{B}}$. These assumptions imply that $RF, RG, R(G \circ F)$ exist.

Theorem 6. The functors $RG \circ RF$ and $R(G \circ F)$ are isomorphic as functors $\mathcal{D}(\mathcal{A}) \to \mathcal{D}(\mathcal{C})$.

Remark 7. Assume X is of the type that $R^iF(X) = 0$ for $i \neq k$ for k-a fixed integer. Then $RG(RF(X)) = RG(R^kF(X)[-k]), R^n(G \circ F)(X) = R^{n-k}G(R^kF(X)).$

Triangulated categories

Assume that \mathcal{C} is an additive category with an automorphism $T:\mathcal{C}\to\mathcal{C}$ (called the translation functor).

Definition 8. X[1] = T(X), X[n] = T(X[n-1])

Definition 9 (triangle). A triangle in C is a sequence of maps $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} T(X)$.

A map of triangles is a commutative diagram

$$\begin{array}{ccc} X \longrightarrow Y \longrightarrow Z \longrightarrow T(X) \\ \downarrow^f & \downarrow & \downarrow^{T(f)} \\ X' \longrightarrow Y' \longrightarrow Z' \longrightarrow T(X') \end{array}$$

Definition 10 (triangulated category). An additive category C with T on it is called a triangulated category if it is equipped with a class of distinguished triangles (u, v, w), which satisfy the following conditions:

• TR1. Every morphism v can be embedded into distinguished triangle $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} T(X)$.

Moreover, if X = Y and Z = 0 and u = id, then $X \xrightarrow{id} X \to 0 \to T(X)$ is distinguished.

- TR2. $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} T(X)$ is distinguished iff $Y \xrightarrow{v} Z \xrightarrow{w} T(X) \xrightarrow{-T(u)} T(U)$ is distinguished.
- TR3. Assume that in the diagram

$$\begin{array}{ccc} X \longrightarrow Y \longrightarrow Z \longrightarrow T(X) \\ f \downarrow & * \downarrow & \downarrow h & \downarrow T(f) \\ X' \longrightarrow Y' \longrightarrow Z' \longrightarrow T(X') \end{array}$$

rows are distinguished and * commutes. Then there exists $h: Z \to Z'$ such that (f, g, h) is a morphism of triangles.

- TR4. [Octahedron axiom] Assume that we have X,Y,Z,X',Y',Z' in \mathcal{C} . Assume that $X \xrightarrow{u} Y \xrightarrow{j} Z' \xrightarrow{\partial} T(X), Y \xrightarrow{v} Z \xrightarrow{x} X' \xrightarrow{i} T(Y), X \xrightarrow{v \circ u} Z \xrightarrow{y} Y' \xrightarrow{\delta} T(X)$ are distinguished. Then there exists distinguished $Z' \xrightarrow{f} Y' \xrightarrow{g} X' \xrightarrow{T(j) \circ i} T(Z')$ such that
 - ${\it 1. \ the four \ distinguished \ triangles \ form \ faces \ of \ octahedron},$
 - 2. the remaining faces commute,
 - 3. $yv = fj: Y \to Y'$
 - 4. $u\delta = ig: Y' \rightarrow Y$.

