

Optimization of a Drone-based System for Instrumental Odour Monitoring using Feature Selection

A Benegiamo, J. Burgués, J. Alonso-Valdesueiro, B.J. Losetierre,

L. Terren, L. Sauco, M.D. Esclapez, S. Doñate, A. Gutiérrez, S. Marco

Environmental Odour Monitoring

ATTRACT

- Odour pollution is a major cause of citizen complaints. Waste processing plants often are sources of malodours.
- The reference method to estimate odour concentration is Dynamic Olfactometry (EN13725-2022).
 - Infrequent
 - Limited locations
 - Expensive
- Instrumental Odour Monitoring Systems (IOMS)
 may be an option to have continuous odour
 monitoring.

Odour concentration by IOMS

- Odour is not objective: it is a human perception.
- Malodours are complex mixtures with hundreds of compounds that can contribute to the overall odour perception
- Odours can sometimes be due to minor components in the presence of odourless major components
- Emissions of plants can vary in time due to many factors: e.g. the quality of the water intake.
- The reference method (Dynamic Olfactometry) features multiplicative errors with a factor of 2 (95% CI)

SNIFFIRDRONE Project

- Usually IOMS are mounted in fixed locations.
- SNIFFIRDRONE GOAL:
 - Real time odour concentration estimation with an IOMS flying on a drone
 - 4 Waste Water Treatment Plants
 - 1 Composting plant
 - Novelty:
 - Drone operation
 - Calibration in flight conditions with transient signals.

RHINOS Electronic nose

- J. Burgués et al., Remote Sensing, 2021
- J. Burgués et al. iScience, 2021
- J. Burgués et al. Sci. Tot. Environ,, 2022

	Technology	Range	Accuracy	Response time (T ₉₀)
Temperature	Integrated	-40 to +85°C	±1°C	<2 s
Humidity	Integrated	0 to 100% RH	±3% RH	<2 s
Pressure	Integrated	30 to 110 kPa	±0.1 kPa	<2 s
Flow rate	Ultrasonic	-33 to +33 L/min	±3% m.v.	<1 s
CO ₂	NDIR	0 to 5000 ppm	±100 ppm	<60 s
СО	Electrochemical	0 to 100 ppm	$\pm 0.5 \mathrm{ppm}$	<20 s
H ₂ S	Electrochemical	0 to 20 ppm	±0.1 ppm	<20 s
NH ₃	Electrochemical	0 to 100 ppm	$\pm 0.5 \mathrm{ppm}$	<90 s
SO ₂	Electrochemical	0 to 20 ppm	±0.1 ppm	<45 s

Sensor	Model	Target gases	Heater voltage
M1	TGS 2600	H _{2,} CO, Ethanol	1.6 V
M2	TGS 2600	H _{2,} CO, Ethanol	3.2 V
M3	TGS 2600	H _{2,} CO, Ethanol	4.0 V
M4	TGS 2600	H _{2,} CO, Ethanol	4.9 V
M5	TGS 2602	H ₂ S, NH ₃ , Toluene	1.6 V
M6	TGS 2602	H ₂ S, NH ₃ , Toluene	3.2 V
M7	TGS 2602	H ₂ S, NH ₃ , Toluene	4.0 V
M8	TGS 2602	H ₂ S, NH ₃ , Toluene	4.9 V
M9	TGS 2611	CH ₄ , Hydrocarbons	1.6 V
M10	TGS 2611	CH ₄ , Hydrocarbons	3.2 V
M11	TGS 2611	CH ₄ , Hydrocarbons	4.0 V
M12	TGS 2611	CH ₄ , Hydrocarbons	4.9 V
M13	TGS 2620	Alcohols, ketones	1.6 V
M14	TGS 2620	Alcohols, ketones	3.2 V
M15	TGS 2620	Alcohols, ketones	4.0 V
M16	TGS 2620	Alcohols, ketones	4.9 V

Outline

- Methods
 - The waste-water treatment plant (WWTP) & 2020 measurement campaign
 - Signal and data processing workflow
 - Model training & Validation: Array optimization by Feature Selection
- Results
 - Raw signals
 - PLS full model and Variable Importance in Projection
 - Array optimization by Feature Selection
 - Model Comparison
- Summary

Wastewater treatment plant & Meas. campaign

Table 2. Number of samples collected in each source during the four measurement days.

Day	Date	Settler	Bioreactor	Pretreatment	Chimney	Total (odour)	Blanks	Total
1	24/06/2020	3	3	2	2	10	7	17
2	25/06/2020	2	2	2	2	8	6	14
3	14/07/2020	3	3	3	3	12	11	23
4	15/07/2020	3	3	3	3	12	7	19
	Total	11	11	10	10	42	31	73

Signal and Data processing workflow

Example to raw signals

Pattern formation from preprocessed sensor signals

Pattern is formed by the concatenation of 5 min window centered around the odour sampling period.

PLS Regression – Variable Importance

PLS LV=2, Model External Validation (N=40)

Variable Importance

Array Optimization: Sensors and Time Intervals

 Optimization was based on Nested Sequential Forward Selection using Interval Partial Least Squares (iPLS).

Minimum RMSECV error

Minimum RMSECV error

Array Optimization: Sensors and Time intevals

Optimal Model

Multiplicative Errors – Correlation Coeff.

Array Configuation	95% Conf	R
Full model	(0.2x-5.0x)	0.81
NH ₃ TGS2602 @ 4V TGS2611 @ 1.6V	(0.3x -3.4 x)	0.89

N=40 samples

Summary 1: Conclusions

- IOMS on a flying drone provides odour concentration estimation based on transient sensor signals acquired in flying conditions.
- We have used a single model for all the odour sources.
- Full model provides unbiased predictions with 95% CI errors of a factor of 5x.
- After the optimization, the sensor array uses an EC NH₃ sensor and two MOX sensors.
- The reduced system still provides unbiased predictions, and the error has been reduced to a factor 3.4x-
- The validity of these results is limited by the duration of the study and the use of a single WWTP.

1SOCS Short Course Winter 2024 – Bormio, 15-19 January

CHEMICAL SENSING FOR BIOMEDICAL APPLICATIONS: FROM A PROOF OF CONCEPT TO A MEDICAL DEVICE

- Sampling, storage and analysis of biological fluids
- Technological challenges and data processing related to multivariate chemical sensing
- Scientific and clinical validation of biomedical technologies
- Design of clinical validation trials
- Certification of biomedical devices
- Specific challenges related to healthcare applications (e.g., biocompatibility, cross contamination, etc.
- Examples of technologies based on chemical sensing that became medical devices

Speakers including:

- Prof. Raffaele Dellaca', Politecnico di Milar
- Prof. Santiago Marco, IBEC Barcelona
- Prof. Fabio Di Francesco, University of Pisa
- Prof. Corrado Di Natale, University of Rome Tor Vergata
- Prof. Anne-Claude Romain, University of Liège
- Prof. Dr. Med. Sascha Kreuer, Saarland University Medical Center
- Dr. Jan Mitrovics, JLM Innovation GmbH, Germany
- Dr. Alessandro Gobbi, Restech, Italy

www.olfactionsociety.org