MMI 727 - DEEP LEARNING: METHODS AND APPLICATIONS

Week 2: Introduction to Machine Learning

Alptekin Temizel <u>atemizel@metu.edu.tr</u>

Cihan Öngün congun@metu.edu.tr

Outline

- History of Al
- What is Machine Learning
- Types and Applications of Machine Learning
- Training and Test
- Measuring Success
- Overfitting , Bias-Variance
- Gradient descent
- Image Classification Example
- Introduction to Deep Learning

History of Al

- First formal publications are in 1940s
- Alan Turing
- Increasing popularity after success during WW2
- Mostly boolean logic, if-else, decision trees etc.
- The field of AI research was born at a workshop at Dartmouth College in 1956
- Herbert Simon: «machines will be capable, within twenty years, of doing any work a man can do» (1965)
- Marvin Minsky: «within a generation ... the problem of creating 'artificial intelligence' will substantially be solved» (1967)
- Turing predicted that Turing Test will be passed in 50 years (1950)
- Winter of Al around 1980s

What is Al

- Al is the field devoted to building persons
- All is the effort to automate intellectual tasks normally performed by humans.
- All is the field devoted to building artifacts capable of displaying, in controlled, well-understood environments, and over sustained periods of time, behaviors that we consider to be intelligent, or more generally, behaviors that we take to be at the heart of what it is to have a mind
- Machine learning (ML) is the study of computer algorithms that improve automatically through experience without being explicitly programmed to do so.
- Deep learning (DL) is part of a broader family of machine learning methods based on artificial neural networks.

What is Al

- Artificial Intelligence
 - If-Else
 - Boolean Logic
 - Symbolic Operations
 - ...
 - Machine Learning
 - K-means
 - SVM
 - Linear Regression
 - ...
 - Deep Learning
 - Fully Connected Neural Networks
 - Convolutional Neural Networks
 - Recurrent Neural Networks
 - ...

AI – Machine Learning

Turing Award 2018

Learning

- Predicting new actions from past experiences
- There is no need to "learn" to calculate payroll
- Learning is used when:
 - Human expertise does not exist (navigating on Mars),
 - Humans are unable to explain their expertise (speech recognition)
 - Solution changes in time (routing on a computer network)
 - Solution needs to be adapted to particular cases (user biometrics)
- Data is cheap and abundant (data warehouses, data marts); knowledge is expensive and scarce.
- Build a model that is a good and useful approximation to the data.

What is Machine Learning

- Machine Learning is the ability to teach a computer without explicitly programming it
- Optimize a performance criterion using example data or past experience.
- Role of Statistics: Inference from a sample
- Role of Computer science: Efficient algorithms to
 - Solve the optimization problem
 - Representing and evaluating the model for inference

Applications of Machine Learning

- Handwriting Recognition
 - convert written letters into digital letters
- Language Translation
 - translate spoken and or written languages (e.g. Google Translate)
- Speech Recognition
 - convert voice snippets to text (e.g. Siri, Cortana, and Alexa)
- Image Classification
 - label images with appropriate categories (e.g. Google Photos)
- Autonomous Driving
 - enable cars to drive

Data Mining

- Retail: Market basket analysis, Customer relationship management (CRM)
- Finance: Credit scoring, fraud detection
- Manufacturing: Control, robotics, troubleshooting
- Medicine: Medical diagnosis
- Telecommunications: Spam filters, intrusion detection
- Bioinformatics: Motifs, alignment
- Web mining: Search engines
- ...

Features in Machine Learning

- Features are the observations that are used to form predictions
 - For image classification, the pixels are the features
 - For voice recognition, the pitch and volume of the sound samples are the features
 - For autonomous cars, data from the cameras, range sensors, and GPS are features
- Extracting relevant features is important for building a model
 - Time of day is an irrelevant feature when classifying images
 - Time of day is relevant when classifying emails because SPAM often occurs at night
 - Common Types of Features in Robotics
 - Pixels (RGB data)
 - Depth data (sonar, laser rangefinders)
 - Movement (encoder values)
 - Orientation or Acceleration (Gyroscope, Accelerometer, Compass)

Types of Machine Learning

Supervised Learning

- Training data is labeled
- Goal is to correctly label new data

Unsupervised Learning

- Training data is unlabeled
- Goal is to categorize the observations

Reinforcement Learning

- Training data is unlabeled
- System receives feedback for its actions
- Goal is to perform better actions

Data: (x, y) x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Classification

This image is CC0 public domain

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

DOG, DOG, CAT

Object Detection

This image is CC0 public domain

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Semantic Segmentation

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

A cat sitting on a suitcase on the floor

Image captioning

Caption generated using neuraltalk2 Image is CCD Public domain.

Data: x
Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

K-means clustering

This image is CC0 public domai

Data: x
Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Principal Component Analysis (Dimensionality reduction)

This image from Matthias Scholz is CCD public domain

Data: x
Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Autoencoders (Feature learning)

Data: x
Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Figure copyright Ian Goodfellow, 2016. Reproduced with permission.

1-d density estimation

2-d density images <u>left</u> and <u>right</u> are CC0 public domain

Data: (x, y) x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Supervised Learning Algorithms

- Linear Regression
- Decision Trees
- Support Vector Machines
- K-Nearest Neighbor

• ..

Linear Regression

Linear Regression

$$b_0 = 2.2$$

 $b_1 = .6$
 $\hat{y} = 2.2 + .6x$

	X	У	x - x	y - y	$(x - \overline{x})^2$	$(x - \overline{x})(y - \overline{y})$
	1	2	-2	-2	4	4
	2	4	-1	0	1	0
	3	5	0	1	0	0
	4	4	1	0	1	0
	5	5	2	1	4	2
					10	- 6

$$4 = b_0 + .6(3)$$

$$4 = b_0 + 8$$
 -1.8
 $2.2 = b_0$

$$b_1 = \frac{6}{10} = .6 = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

Decision Tree

Support Vector Machine

Find a linear decision surface that can separate classes and has the largest distance between border points

K-means (Unsupervised)

Linear – nonlinear problems

Agglomerative Clustering

Cluster Dendrogram

Reducing Dimensionality

Principal Component Analysis (PCA) is a dimension-reduction tool that can be used to reduce a large set of variables to a small set that still contains most of the information in the large set.

original data space

Reducing Dimensionality

- Reduces time complexity: Less computation
- Reduces space complexity: Less parameters
- Saves the cost of observing the feature
- Simpler models are more robust on small datasets
- More interpretable; simpler explanation
- Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 dimensions

Reducing Dimensionality

Dataset

- A collection of data?
- Semantically grouped, large number of samples with given attributes
- Image, 3D model, audio, video, network, signal, behavior, usage, finance etc.

Dataset

MNIST dataset

- Handwritten digits
- 60000 training + 10000 test samples
- All labeled
- 28x28 resolution

Dataset

CIFAR10

- Color images
- 10 classes
- 50000 training + 10000 test samples
- Labeled
- 32x32 resolution

CIFAR100

- Color images
- 100 classes
- 500 training + 100 test samples per class
- Labeled
- 32x32 resolution

Dataset

ImageNet

- 1.200.000 images
- 1000 categories (subcategories)

COCO

- 330.000 images (1.5 million object instances)
- 80 object categories (5 captions per image)
- Object detection, segmentation, and captioning

CelebA

- 200.000 celebrity faces
- 40 attributes

ShapeNet

- 51000 3D models
- Kaggle
- Google Dataset Search
- Make your own dataset!

Dataset

Training set

Used for learning, that is to fit the parameters (weights, biases etc.)

Test set

 Used only to assess the performance (accuracy, success etc.) of a fully specified model

Validation set

- Used to tune the hyperparameters (architecture, layers, units etc.)
- Prevent overfitting

Training	Validation	Test
%75	%25	Separate
%50	%25	%25
%70	%20	%10

ML/DL development pipeline

- Select/Implement a suitable model for your data/task
- Train the model with the data
 - Forward pass to get predictions
 - Calculate loss/error between predictions and true labels
 - Backward pass to update model parameters/weights to minimize the loss
- Test your model with unseen data to evaluate the model performance
- Deploy the trained model to end device/user

Overfitting

- The production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit additional data or predict future observations reliably
- Model performs well on training data but poorly on test data
- Poor generalization

Underfitting

- Model cannot capture the underlying structure of the data
- Performs poorly on training data
- Not enough learning

Overfitting

predictor too inflexible: cannot capture pattern

predictor too flexible: fits noise in the data

Copyright © 2014 Victor Lavrenko

Overfitting

- True Positive: Correctly identified as relevant
- True Negative: Correctly identified as not relevant
- False Positive: Incorrectly labeled as relevant
- False Negative: Incorrectly labeled as not relevant

Images from the STL-10 dataset

Type I error (false positive)

Type II error (false negative)

Bias

expected difference between model's prediction and truth

Variance

how much the model differs among training sets

Model Scenarios

- High Bias: Model makes inaccurate predictions on training data
- High Variance: Model does not generalize to new datasets
- Low Bias: Model makes accurate predictions on training data
- Low Variance: Model generalizes to new datasets

Accuracy

- Percentage of correct labels
- Accuracy = (# true positives + # true negatives) / (# of samples)

Precision

- Percentage of positive labels that are correct
- Precision = (# true positives) / (# true positives + # false positives)

Recall

- Percentage of positive examples that are correctly labeled
- Recall = (# true positives) / (# true positives + # false negatives)

Find minimum point of a function

Repeat until convergence {

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

}

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

Question: Find the local minima of the function $y=(x+5)^2$ starting from

the point x=3

-10

Initialize Parameters:

Learning rate = 0.01

$$\frac{dy}{dx} = \frac{d}{dx}(x+5)^2 = 2*(x+5)$$

Iteration 1:

$$X_1 = X_0 - (learning\ rate) * (\frac{dy}{dx})$$

$$X_1 = 3 - (0.01) * (2 * (3 + 5)) = 2.84$$

Iteration 2:

$$X_2 = X_1 - (learning\ rate) * (\frac{dy}{dx})$$

$$X_2 = 2.84 - (0.01) * (2 * (2.84 + 5)) = 2.6832$$

https://towardsdatascience.com/implement-gradient-descent-in-python-9b93ed7108d1

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for $j = 0$ and $j = 1$)

Big learning rate

Never converges or diverges

Small learning rate

Too long time to converge

This image by Nikita is licensed under CC-BY 2.0

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

----- cat

The Problem: Semantic Gap

licensed under CC-BY 2.0

What the computer sees

An image is just a big grid of numbers between [0, 255]:

e.g. 800 x 600 x 3 (3 channels RGB)

Challenges: Viewpoint variation

Challenges: Illumination

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

Challenges: Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by sare bear is licensed under CC-BY 2.0

This image by Tom Thai is licensed under CC-BY 2.0

Challenges: Occlusion

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image by jonsson is licensed under CC-BY 2.0

Challenges: Background Clutter

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

Challenges: Intraclass variation

This image is CC0 1.0 public domain

- No obvious way to hardcode
- If-else is not enough

Machine Learning: Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

Nearest Neighbor Classifier

Test images and nearest neighbors

Nearest Neighbor Classifier

ı	test image						
	56	32	10	18			
	90	23	128	133			
	24	26	178	200			
	2	0	255	220			

training image

10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

pixel-wise absolute value differences

46	12	14	1	
82	13	39	33	ado
12	10	0	30	→
2	32	22	108	
	82 12	82 13 12 10	82 13 39 12 10 0	82 13 39 33 12 10 0 30

Nearest Neighbor Classifier

K-Nearest Neighbors Classifier

Instead of copying label from nearest neighbor, take majority vote from K closest points

K-Nearest Neighbors Classifier

K-Nearest Neighbors Classifier

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_pig(I_1^p-I_2^pig)^2}$$

$$K = 1$$

Image Classification with K-Nearest Neighbors Classifier

Summary

- Aim is to predict the classes of images in the test set
- We started with a training set using images and labels
- We used K-Nearest Neighbours to make predictions
- K value and distance metrics are hyperparameters
- We found the best hyperparameters using validation set
- We tested the system using test set to calculate success (accuracy) of the model

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

Cat image by Nikita is licensed under CC-BY 2.0

Nonlinear examples

Class 1:

First and third quadrants

Class 2

Second and fourth quadrants

Class 1:

1 <= L2 norm <= 2

Class 2:

Everything else

Class 1:

Three modes

Class 2:

Everything else

Introduction to Deep Learning

References

- Cambridge Handbook of Artificial Intelligence
- Deep Learning Book Ian Goodfellow, Yoshua Bengio and Aaron Courville
- CS231n: Convolutional Neural Networks for Visual Recognition (Stanford University)

