Bayesian StatisticsIntroduction

Brani Vidakovic, Ph.D.

Professor

School of Industrial and Systems Engineering

Introduction

About Instructor

 Professor at GaTech, shared appointment between ISyE and BME

Joined GaTech in 2000

Developed ISyE6420 in 2004

Prior to 2000, faculty at Duke

As a graduate student took courses at Purdue in Bayesian Statistics (Jim Berger and Jayanta K Ghosh) and ``declared" as Bayesian

 Currently conducting research in wavelets and their bio-related applications

About the Course

An Introduction to Bayesian Statistical Inference and Applications

- Necessary theoretical coverage
- Focus on Bayesian statistical models
- Software (WinBUGS)

Prerequisites

- Introductory Statistics course
- Basic programming proficiency
- Calculus

Course Goals

- Bayesian ``literacy"
- Statistical models and procedures from Bayesian point of view
- Hands on approach
- A range of practical applications covered

Web page with Supplementary material

https://www2.isye.gatech.edu/~brani/isye6420/

All programs/codes/data used

All Homework with hints

Extra Exercises (solutions for 50%)

Topics Covered

UNIT 1:

Introduction

UNIT 2:

- Historic Overview
- Bayesian vs. Classical Statistics
- FDA Recommendations

UNIT 3:

- A Review of Necessary Probability
- Conditioning
- Bayes Formula

Topics Covered cont.

UNIT 4:

- Bayes Theorem
- Bayesian Inference in Conjugate Cases
- Prior Elicitation

UNIT 5:

Bayesian Computation

UNIT 6:

- Graphical Models.
- Advanced WinBUGS

Topics Covered cont.

UNIT 7:

- Hierarchical Models
- Bayesian Linear Models

UNIT 8:

- Missing Data
- Censored Data

UNIT 9:

- Model Building and Selection
- Model Checking

Topics Covered cont.

UNIT 10:

Applications and Case Studies

My Own Bayesian Data Analysis

UNIT 11:

Conclusions and Overview

Software

BAYESIAN

- WinBUGS
- OpenBUGS
- MultiBUGS
- JAGS

NUMBER CRUNCHING

- MATLAB
- Octave
- Python
- R

Example

winbugs19.pdf

data= $\{(1,1),(2,3),(3,3),(4,3),(5,5)\}$

y = 0.6 + 0.8 x

 $y = 3 + 0.8 \left(x - \bar{x} \right)$

Summary

