1: Create an nfa for Σ = {a} that accepts the set of all strings that consist of an odd number of 'a's ("a", "aaa", etc.) or of exactly 2 'a's ("aa").

2. Create an nfa for $\Sigma = \{a,b\}$ that accepts the **COMPLEMENT** of the language defined by the following nfa:

states: $\{q0,q1\}$ input alphabet: $\{a,b\}$ initial state: q0final states: $\{q1\}$ transitions: $\delta(q0,b) = \{q1\}$ $\delta(q0,\lambda) = \{q1\}$ $\delta(q1,a) = \{q0\}$

3. Create an nfa that accepts L*, where L is the language defined by the following nfa:

states: $\{q0,q1,q2\}$ input alphabet: $\{a,b\}$ initial state: q0final states: $\{q2\}$ transitions: $\delta(q0,a) = \{q1\}$ $\delta(q1,a) = \{q2\}$ $\delta(q0,b) = \{q1,q2\}$

4. Use the construction of Theorem 2.2 to **convert** the following nfa **into an equivalent dfa**:

states: $\{q0,q1,q2\}$ input alphabet: $\{a,b\}$ initial state: q0final states: $\{q2\}$ transitions: $\delta(q1,b) = \{q1\}$ $\delta(q1,\lambda) = \{q2\}$ $\delta(q0,a) = \{q1,q2\}$

5. Prove that all finite languages are regular.

6. Prove that if L is regular, so is L^R.

