EE25BTECH11006 - ADUDOTLA SRIVIDYA

OUESTION

If vectors **a** and **b** are such that $|\mathbf{a}| = \frac{1}{2}$, $|\mathbf{b}| = \frac{4}{\sqrt{3}}$ and $|\mathbf{a} \times \mathbf{b}| = \frac{1}{\sqrt{3}}$, then find $\mathbf{a} \cdot \mathbf{b}$.

SOLUTION

We know that

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta \tag{1}$$

$$\mathbf{a}^{\mathrm{T}}\mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\theta\tag{2}$$

where θ is the angle between **a** and **b**.

Substitute the values:

$$\frac{1}{\sqrt{3}} = \left(\frac{1}{2}\right) \left(\frac{4}{\sqrt{3}}\right) \sin\theta \tag{3}$$

$$\sin \theta = \frac{1}{2} \tag{4}$$

Thus,

$$\theta = 30^{\circ} \quad \text{or} \quad 150^{\circ} \tag{5}$$

Now,

$$\mathbf{a}^{\mathrm{T}}\mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\theta\tag{6}$$

$$= \left(\frac{1}{2}\right) \left(\frac{4}{\sqrt{3}}\right) \cos \theta \tag{7}$$

$$=\frac{2}{\sqrt{3}}\cos\theta\tag{8}$$

So, the possible values are:

$$\mathbf{a}^{\mathrm{T}}\mathbf{b} = \frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{2} = 1 \quad (\theta = 30^{\circ})$$
 (9)

$$\mathbf{a}^{\mathrm{T}}\mathbf{b} = \frac{2}{\sqrt{3}} \cdot \left(-\frac{\sqrt{3}}{2}\right) = -1 \quad (\theta = 150^{\circ})$$
 (10)

Therefore, $\mathbf{a} \cdot \mathbf{b} = \pm 1$.

Fig. 1: Vectors \mathbf{a} and \mathbf{b} with angle θ