30 Worksheet (A2)

Data needed to answer questions can be found in the Data, formulae and relationships sheet.

1		Write down Einstein's famous equation relating mass and energy. Determine the change in energy equivalent to a change in mass:	[1]
		i of 1.0 g ii equal to that of an electron $(9.1 \times 10^{-31} \text{ kg})$.	[2] [2]
2	the	nuclear physics, it is common practice to quote the mass of a nuclear particle in terms of a unified atomic mass unit, u. The unified atomic mass unit u is defined as one-twelfth of the ass of an atom of the carbon isotope ${}^{12}_{6}$ C. Determine the mass of each of the following particles in terms of u:	
	b	i an α -particle of mass 6.65×10^{-27} kg ii a carbon-13 atom of mass 2.16×10^{-26} kg. Determine the mass of each of the following particles in kilograms:	[1] [1]
		 i a proton of mass 1.01 u ii a uranium-235 nucleus of mass 234.99 u. 	[1] [1]
3	Sta	ate three quantities conserved in all nuclear reactions.	[3]
4	a b c	Explain why external energy is required to 'split' a nucleus. Define the binding energy of a nucleus. The binding energy of the nuclide ${}^{16}_{8}$ O is 128 MeV. Calculate the binding energy per nucleon.	[1] [1]
5	a b	Define the half-life of a radioactive isotope. The half-life of a particular isotope is 20 minutes. A sample initially contains N_0 nuclei of this isotope. Determine the number of nuclei of the isotope left in the sample after: i 20 minutes ii 1.0 hour.	[1] [1] [2]
6		e activity of an α -source is 540 Bq. The kinetic energy of each α -particle is 8.6×10^{-14} J. e isotope in the source has a very long half-life. Calculate the number of α -particles emitted by the source in: i 1 second ii 1 hour. Determine the total energy released by the source in a time of 1 second.	[1] [1] [3]
	c	State the rate at which energy is emitted from this α -source.	[1]

1

7 The binding energy per nucleon against nucleon number graph for some common nuclides is shown below.

a Identify the most stable nuclide. Explain your answer.

[2]

b Use the graph to estimate the binding energy for the nucleus of ${}_{6}^{12}$ C.

- [2]
- **c** Use the graph to estimate the energy released in the following fusion reaction. ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{4}He$
- [4]
- **d** The fusion reaction shown in **c** is one of the many that occur in the interior of stars. State the conditions necessary to initiate such reactions in stars.
- [2]
- 8 Use the data given below to determine the binding energy and the binding energy per nucleon of the nuclide $^{235}_{92}$ U.

[7]

mass of proton = 1.007 u

mass of neutron = 1.009 u mass of uranium-235 nucleus = 234.992 u

[1]

[1]

- Describe the process of induced nuclear fission.
 - The diagram shows the fission of uranium-235 in accordance with the nuclear equation:

$${}^{235}_{92}\mathrm{U} + {}^{1}_{0}\mathrm{n} \rightarrow {}^{95}_{38}\mathrm{Sr} + {}^{139}_{54}\mathrm{Xe} + 2{}^{1}_{0}\mathrm{n}$$

- Copy the diagram, adding labels to identify the neutrons, the strontium nuclide and the xenon nuclide.
- Explain why energy is released in the reaction above. [2]
- iii Use the following data to determine the energy released in a single fission reaction involving ${}^{235}_{92}U$ and ${}^{1}_{0}n$. [5]

$$\begin{array}{ll} \text{mass of} \ ^{235}_{92} U = 3.902 \times 10^{-25} \ kg & \text{mass of} \ ^{95}_{38} Sr \ = 1.575 \times 10^{-25} \ kg \\ \text{mass of} \ ^{1}_{0} n \ = 1.675 \times 10^{-27} \ kg & \text{mass of} \ ^{139}_{54} Xe \ = 2.306 \times 10^{-25} \ kg \end{array}$$

10 One of the neutron-induced fission reactions of uranium-235 may be represented by the following nuclear equations.

$$\begin{array}{c} {}^{235}_{92}\mathrm{U} \, + \, {}^{1}_{0}\mathrm{n} \, \to \, {}^{236}_{92}\mathrm{U} \\ {}^{236}_{92}\mathrm{U} \, \to \, {}^{146}_{57}\mathrm{La} \, + \, {}^{87}_{35}\mathrm{Br} \, + \, 3\, {}^{1}_{0}\mathrm{n} \end{array}$$

The binding energies per nucleon for these nuclides are:

$$^{236}_{92}$$
U, 7.59 MeV; $^{146}_{57}$ La, 8.41 MeV; $^{87}_{35}$ Br, 8.59 MeV.

Calculate the energy released in MeV when the $^{236}_{92}\mathrm{U}\,$ nucleus undergoes fission. [3]

- 11 The half-life of the radon isotope ${}^{220}_{86}$ Rn is 56 s.
 - **a** Determine the decay constant in s^{-1} . [3]
 - Calculate the activity of a sample containing 6.0×10^{10} nuclei of $^{220}_{86}$ Rn. [3]
- 12 The activity of a radioactive source containing 8.0×10^{14} undecayed nuclei is 5.0×10^9 Bq.
 - Determine the decay constant in s⁻¹. [3]
 - Calculate the half-life of the nucleus. [3]
 - How many undecayed nuclei will be left after 40 hours? [3]
- 13 a Define the decay constant of a nucleus. [1]
 - The thorium isotope $\frac{227}{90}$ Th has a half-life of 18 days.

A particular radioactive source contains 4.0×10^{12} nuclei of the isotope $^{227}_{90}$ Th.

- Determine the decay constant for the thorium isotope ${}^{227}_{90}$ Th in s⁻¹. [3]
- ii What is the initial activity of the source? [3]
- iii Calculate the activity of the source after 36 days. [2]
- 14 A sample of rock is known to contain 1.0 μ g of the radioactive radium isotope $^{226}_{88}$ Ra.

The half-life of this particular isotope is 1600 years. The molar mass of radium-226 is 226 g.

- Determine the number of nuclei of the isotope ²²⁶₈₈Ra in the rock sample. [2]
- Calculate the activity from decay of the radium-226 in the sample. [3]

15 In a process referred to as 'annihilation', a particle interacts with its antiparticle and the entire mass of the combined particles is transformed into energy in the form of photons. The following equation represents the interaction of a proton (p) and its antiparticle, the antiproton (\bar{p}).

$${}^{1}_{1}p + {}^{1}_{-1}\overline{p} \longrightarrow \gamma + \gamma$$

The antiproton has the same mass as a proton – the only difference is that it has a negative charge. Determine the wavelength λ of each of the two identical photons emitted in the reaction above. (Mass of a proton = 1.7×10^{-27} kg.)

[5]

- 16 Does fusion or fission produce more energy per kilogram of fuel? Answer this question by considering the fusion reaction in 7 c and the fission reaction in 9 b.
 (The molar masses of hydrogen-2 and uranium-235 are 2 g and 235 g, respectively.)
 [7]
- 17 Some astronomers believe that our solar system was formed 5.0×10^9 years ago. Assuming that all uranium-238 nuclei were formed before this time, what fraction of the original uranium-238 nuclei remain in the solar system today? The isotope of uranium $^{238}_{92}$ U has a half-life of 4.5×10^9 y. [4]

Total: —_____ Score: %