Fachhochschule Münster University of Applied Sciences

Fachbereich Elektrotechnik und Informatik

Prof. Dr. Hans Effinger

effinger@fh-muenster.de www.et.fh-muenster.de

Lineare DGI 2. Ordnung

Sommersemester 2004

Allgemeine Lösung der homogenen Differentialgleichung

Die lineare, homogene Differenzialgleichung 2. Ordnung mit konstanten Koeffizienten $(a_1, a_0 \text{ reell})$

$$y'' + a_1 y' + a_0 y = 0$$

führt mit Hilfe des Ansatzes $y(x) = ce^{\lambda x}$ auf die charakteristischen Gleichung

$$\lambda^2 + a_1 \lambda + a_0 = 0$$

mit den Nullstellen λ_1, λ_2

$$\lambda_{1,2} = -\frac{a_1}{2} \pm \sqrt{\frac{{a_1}^2}{4} - a_0} \ .$$

Sie besitzt die allgemeine Lösung:

$\lambda_1 \neq \lambda_2$ reell $\frac{{a_1}^2}{4} - a_0 > 0$	$y(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$
Fall 2 $\lambda_{1,2} = \alpha \pm j\beta \text{ konjugiert-komplex}$ $\frac{{a_1}^2}{4} - a_0 < 0$ $\alpha = -\frac{a_0}{2}, \beta = \sqrt{a_0 - \frac{{a_1}^2}{4}}$	$y(x) = b_1 e^{\lambda_1 x} + b_2 e^{\lambda_2 x}$ $= c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x)$
Fall 3 $\lambda_1 = \lambda_2 = \lambda \text{ reell}$ $\frac{a_1^2}{4} - a_0 = 0$ $\lambda = -\frac{a_0}{2}$	$y(x) = c_1 e^{\lambda x} + c_2 x e^{\lambda x}$

Lösungsansätze für die partikuläre Lösung der inhomogenen DGI

Für die lineare, inhomogene Differentialgleichung 2. Ordnung mit konstanten Koeffizienten (a_1, a_0 reell)

$$y'' + a_1 y' + a_0 y = h(x)$$

können folgende Lösungsansätze für die partikuläre Lösung verwendet werden. Dabei sind $p_n(x)$, $q_n(x)$, $r_n(x)$ und $s_n(x)$ jeweils Polynome vom Grade $n \geq 0$. Die Lösungsansätze für $y_p(x)$ enthalten als freie Parameter die Polynomkoeffizienten, die durch Einsetzen in die Differenzialgleichung bestimmt werden müssen.

Funktion $h(x)$	Lösungsansatz für $y_p(x)$
$h(x) = p_n(x)$	$y_p(x) = \begin{cases} q_n(x), & a_0 \neq 0 \\ xq_n(x), & a_0 = 0, a_1 \neq 0 \\ x^2q_n(x), & a_0 = 0, a_1 = 0 \end{cases}$

Funktion $h(x)$	Lösungsansatz für $y_p(x)$
$h(x) = e^{bx} p_n(x)$	a) b ist nicht Nullstelle des charakteristischen Polynoms, d.h. $b \neq \lambda_1$ und $b \neq \lambda_2$
	$y_p(x) = e^{bx} q_n(x)$
	b) einfache Resonanz
	b ist einfache Nullstelle des charakteristischen
	Polynoms, d.h. $\lambda_1 \neq \lambda_2$ und $b = \lambda_1$ oder $b = \lambda_2$
k .	$y_p(x) = e^{bx} x q_n(x)$
	c) doppelte Resonanz
	b ist doppelte Nullstelle des charakteristischen
	Polynoms, d.h. $b=\lambda_1=\lambda_2$
	$y_p(x) = e^{bx} x^2 q_n(x)$

Funktion $h(x)$	Lösungsansatz für $y_p(x)$
$h(x) = e^{bx} \left(p_n(x) \cos(cx) + q_n(x) \sin(cx) \right)$	a) $b+jc \text{ ist nicht Nullstelle des charakteristischen}$ Polynoms, d.h. $b+jc\neq\lambda_1$ und $b+jc\neq\lambda_2$
	$y_p(x) = e^{bx} \left(r_n(x) \cos(cx) + s_n(x) \sin(cx) \right)$
	b) einfache Resonanz $b+jc$ ist einfache Nullstelle des charakteristi-
	schen Polynoms, d.h. $\lambda_1 \neq \lambda_2$ und $b+jc=\lambda_1$ oder $b+jc=\lambda_2$
	$y_p(x) = e^{bx} x \left(r_n(x) \cos(cx) + s_n(x) \sin(cx) \right)$