12) Logistic Regression

Vitor Kamada

February 2018

Reference

Tables, Graphics, and Figures from

An Introduction to Statistical Learning

James et al. (2017): Chapters: 4.3, 4.6.1, 4.6.2

The Default Data Set: Default Rate $\cong 3\%$

A Subset of 10,000 Individuals

Why Not Linear Regression?

$$y = \begin{cases} 1 & \text{if stroke} \\ 2 & \text{if drug overdose} \\ 3 & \text{if seizure} \end{cases}$$

Linear Probability vs Logistic Model

The Logistic Model

$$p(X) = rac{e^{eta_0 + eta_1 X}}{1 + e^{eta_0 + eta_1 X}}$$
 $1 - p(X) = rac{1}{1 + e^{eta_0 + eta_1 X}}$
 $rac{p(X)}{1 - p(X)} = e^{eta_0 + eta_1 X}$
 $\log\left[rac{p(X)}{1 - p(X)}
ight] = eta_0 + eta_1 X$

Logistic Regression

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Predictions given Balance

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

$$\hat{p}(X) = \frac{e^{\hat{eta}_0 + \hat{eta}_1 X}}{1 + e^{\hat{eta}_0 + \hat{eta}_1 X}}$$

$$\frac{e^{-10.65+0.0055\times1,000}}{1+e^{-10.65+0.0055\times1,000}} = 0.57\%$$

$$X = 2000 \rightarrow \hat{p}(X) = 58.6\%$$

Predictions given Student

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

$$\hat{Pr}(default = Yes|student = Yes)$$

$$\frac{e^{-3.5+0.405\times1}}{1+e^{-3.5+0.405\times1}} = 4.3\%$$

$$\hat{Pr}(default = Yes|student = No)$$
 $rac{e^{-3.5}}{1+e^{-3.5}} = 2.9\%$

Multiple Logistic Regression

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

$$\hat{p}(X) = \frac{e^{-10.87 + 0.0057 \times 1,500 + 0.003 \times 40 - 0.65 \times 1}}{1 + e^{-10.87 + 0.0057 \times 1,500 + 0.003 \times 40 - 0.65 \times 1}} = 5.8\%$$

$$\hat{p}(X) = \frac{e^{-10.87 + 0.0057 \times 1,500 + 0.003 \times 40 - 0.65 \times 0}}{1 + e^{-10.87 + 0.0057 \times 1,500 + 0.003 \times 40 - 0.65 \times 0}} = 10.5\%$$

S&P 500 Stock Index Over 1,250 Days

library(ISLR); summary(Smarket)

Statistic	N	Mean	St. Dev.	Min	Max
Year	1,250	2,003.016	1.409	2,001	2,005
Lag1	1,250	0.004	1.136	-4.922	5.733
Lag2	1,250	0.004	1.136	-4.922	5.733
Lag3	1,250	0.002	1.139	-4.922	5.733
Lag4	1,250	0.002	1.139	-4.922	5.733
Lag5	1,250	0.006	1.148	-4.922	5.733
Volume	1,250	1.478	0.360	0.356	3.152
Today	1,250	0.003	1.136	-4.922	5.733

round(cor(Smarket[,-9]),2)

```
Lag1 Lag2
                                     Lag5 Volume Today
       Year
                         Lag3
                               Lag4
       1.00
             0.03
                   0.03
                         0.03
                               0.04
                                     0.03
                                             0.54
                                                   0.03
Year
       0.03
             1.00 -0.03 -0.01 0.00 -0.01
                                             0.04 - 0.03
Lag1
       0.03 - 0.03
                 1.00 -0.03 -0.01 0.00
                                            -0.04 - 0.01
Lag2
                        1.00 -0.02 -0.02
Lag3
       0.03 - 0.01 - 0.03
                                            -0.04
                                                   0.00
Lag4
       0.04
             0.00
                  -0.01 - 0.02
                              1.00 -0.03
                                            -0.05 - 0.01
Lag5
       0.03 - 0.01
                  0.00 -0.02 -0.03
                                    1.00
                                            -0.02 - 0.03
Volume
             0.04 -0.04 -0.04 -0.05 -0.02
                                             1.00
                                                   0.01
      0.54
       0.03 -0.03 -0.01 0.00 -0.01 -0.03
Today
                                             0.01
                                                   1.00
```

Average Number of Shares Traded Daily Increased from 2001 to 2005

plot(Volume)

glm.fit=glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume, data = Smarket, family=binomial)

summary(glm.fit)

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.126000
                         0.240736
                                    -0.523
                                               0.601
            -0.073074
                         0.050167 -1.457
                                               0.145
Lag1
Lag2
            -0.042301
                         0.050086
                                    -0.845
                                               0.398
             0.011085
                         0.049939
                                     0.222
                                               0.824
Lag3
Lag4
             0.009359
                         0.049974
                                     0.187
                                               0.851
Lag5
             0.010313
                         0.049511
                                     0.208
                                               0.835
Volume
             0.135441
                         0.158360
                                     0.855
                                               0.392
```

exp(cbind(OR = coef(glm.fit), confint(glm.fit)))

```
OR 2.5 % 97.5 % (Intercept) 0.8816146 0.5493177 1.412613 Lag1 0.9295323 0.8420468 1.025314 Lag2 0.9585809 0.8686451 1.057370 Lag3 1.0111468 0.9167701 1.115303 Lag4 1.0094029 0.9151142 1.113442 Lag5 1.0103664 0.9168466 1.113533 Volume 1.1450412 0.8398920 1.563564
```

glm.probs=predict(glm.fit,type="response")

glm.probs[1:10]

```
1 2 3 4 5 6 7
0.5070841 0.4814679 0.4811388 0.5152224 0.5107812 0.5069565 0.4926509
8 9 10
0.5092292 0.5176135 0.4888378
```

```
glm.pred=rep("Down",1250)
glm.pred[glm.probs>.5]="Up"
```

table(glm.pred,Direction)

$$\frac{145+507}{1250} \cong 52.16\%$$

Training Error vs Test Error

```
train=(Year < 2005)
Smarket.2005=Smarket[!train,]
dim(Smarket.2005)
Direction.2005=Direction[!train]
glm.fit=glm(Direction\sim Lag1+Lag2+Lag3+Lag4+Lag5+
Volume, data=Smarket, family=binomial,subset=train)
glm.probs=predict(glm.fit,Smarket.2005,type="response")
glm.pred=rep("Down",252)
glm.pred[glm.probs>.5]="Up"
```

table(glm.pred, Direction. 2005)

Direction.2005 glm.pred Down Up Down 77 97 Up 34 44

mean(glm.pred==Direction.2005)

$$\frac{(77+45)}{252} \cong 48.1\%$$

mean(glm.pred!=Direction.2005)

$$\frac{(34+97)}{252} \cong 51.9\%$$

glm.fit=glm(Direction~Lag1+Lag2, data=Smarket, family=binomial,subset=train)

```
glm.probs = predict(glm.fit,Smarket.2005,
    type ="response")
glm.pred=rep("Down",252)
glm.pred[glm.probs>.5]="Up"
table(glm.pred,Direction.2005)
```

glm.pred Down Up Down 35 35 Up 76 106
$$\frac{(35+106)}{252}\cong 55.9\%$$

summary(glm.fit)

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.03222 0.06338 0.508 0.611
Lag1 -0.05562 0.05171 -1.076 0.282
Lag2 -0.04449 0.05166 -0.861 0.389
```

Specific Prediction

```
predict(glm.fit,newdata = data.frame(Lag1=c(5,-3),Lag2=c(4,-6)), type="response")
```

1	2
0.39	0.61