二次型大题视频时间节点和听课指南

"基础好可不听"的内容,指的是所讲内容相对于辅导书常规方法没有补充,平时如果复习到位就自己能够掌握的内容,这些内容自己看看手稿蓝字部分,确保掌握了的话可不听。

"基础不好可不听"的内容,指的是所讲内容是深层次的理解或必要性不强的方法,对于基础内容还没复习到位的同学或者复习时间紧张的同学来说,听这些的意义不大,可不听。

二次型大题视频总时长六个多小时,视频比去年长很多是因为今年把每个题都带着写了 一遍,说明做题步骤和答题卡书写格式,实质讲方法的内容没有看起来这么长。

具体视频当中会说哪些地方可以倍速快进,大家自己先看手稿,重点听没掌握的以及我 有补充技巧的内容,其余内容快速过一遍就好。

:00:00-00:24:52 :24:52-00:33:32 :33:32-01:01:13 :01:13-01:14:57	求特征值 非对称矩阵求特征向量 量 对称矩阵求特征向量 (避免施密特正交化) f(A)对角化 化规范形的步骤	有技巧,建议听 基础好可不听 有技巧,必听 基础好可不听
:33:32-01:01:13 :01:13-01:14:57 :14:57-01:35:11	量 对称矩阵求特征向量 (避免施密特正交化) f(A)对角化 化规范形的步骤	有技巧,必听
:01:13-01:14:57	(避免施密特正交化) f(A) 对角化 化规范形的步骤	
:14:57-01:35:11	化规范形的步骤	基础好可不听
	配方法(含平方项)	基础好可不听
:35:11-01:47:30		基础好可不听
01:47:30-01:59:55	不含平方项的另一种	非必要的方法补充
	配方法	基础不好可不听
1:59:55-2:14:55	实用结论补充	建议听
:00:00-00:11:43	非对称矩阵反求 A 常规解法	基础好可不听
00:11:43-00:17:57	非对称矩阵反求 A	非必要的方法补充
	补充解法	基础不好可不听
:17:57-00:24:54	对称矩阵反求 A 常规解法	基础好可不听
:24:54-01:04:02	谱分解公式升级版	有技巧, 必听
01:04:02-01:10:31	谈谈是否需要背	讲数一2021年真题
	施密特正交化公式	建议听
:10:31-01:24:59	深入理解根据正交性 求其余特征向量	选听
	:35:11-01:47:30 :47:30-01:59:55 :59:55-2:14:55 :00:00-00:11:43 :11:43-00:17:57 :17:57-00:24:54 :24:54-01:04:02 :04:02-01:10:31	:35:11-01:47:30 配方法(不含平方项) :47:30-01:59:55 :59:55-2:14:55 实用结论补充 :00:00-00:11:43 非对称矩阵反求 A 常规解法 :11:43-00:17:57 对称矩阵反求 A 常规解法 :17:57-00:24:54 常规解法 :24:54-01:04:02 谱分解公式升级版 :04:02-01:10:31 深入理解根据正交性

题型三	00:00:00-00:11:30	求 A"	基础好可不听
求 A"、A"β	00:11:30-00:19:31	求 A"β	蓝细灯 57 59
题型四 相似、合同的传递性	00:00:00-00:13:33	求可逆矩阵P	相似传递性
		使 $P^{-1}AP = B$	讲 2019 年真题 基础好可不听
	00:13:33-00:34:15	求可逆矩阵P	合同传递性
		使 $P^{T}AP = B$	讲 2020 年真题 基础好可不听
	00:34:15-00:43:28	求可逆矩阵 P	研究A和A ^T 相似
		使 $P^{-1}AP = A^{T}$	真题尚未考过 建议听
	00:43:28-00:49:09	不可对角化矩阵的 相似问题	基础不好可不听
	00:49:09-01:02:24	相似与方程组结合	建议听
	00:00:00-00:07:04	近十年真题 线代大题题型梳理	建议听
题型五	00:07:04-00:25:39	x ^T Ax 的最值	内容是重要也不难
x ^T Ax 的最值			数一没考过 数二数三去年考了 听不听自己斟酌 赌他不考那可不听
题型六			有补充技巧
$x^{T}\mathbf{A}x = 0$ 的解	00:00:00-00:49:45	$x^{T}\mathbf{A}x = 0$ 的解	数二数三没考过 数二数三同学必听 数一去年考了 数一同学自己斟酌
题型七 正定	00:00:00-00:10:16	求可逆矩阵B	
		$ \phi \mathbf{A} = \mathbf{B}^{T} \mathbf{B} $	必听
	00:10:16-00:25:11	求正定矩阵 B	2021 年数一考了 数二数三没考过
		使 A = B ²	数二数三同学必听 数一同学自己斟酌

猪代大题

题型与方法 总结

是更型一相似对角化、二次型化标、对全形

191.设A=(1-1-1).求可经关巨阵P,使P'AP为对角关巨阵. 4年对4次是19年时角化

求|λΕ-Al,先寿急かかっ減減凌公因式.
若观察不出怎么凌,则套公式: | λΕ-Al=入- ξαι: λ+ξΑι: λ-IAl
求单木艮的特殊正何量,可将λ;Ε-A为1去—15再解为6星,保证剩下两行不成比例即回 伤刀,求 A= (2-3-3)的特征值

何2.役A=(2 7 7) (1 2 7)

正交先下车对南化/正交变换化标准

(1) 水正交变换X=QY,将XAX化为标流程形

契对永尔东巨阵A的特征值为入二入土入。,将A正交对角化

成二重根的特征向量时,应直接写出两个正交的特征向量,省去正交化的步骤 入,E-A的特惠行向量,就是入3的特征向量。

入3E-A的非冤行向量,就是人的特征向量.

(2) 成可绝线性变换X=PZ,将XT(A+A*)X化为规范形

因为A的特征向量也是A¹,A*,f(A)台外等征向量 所以,能将A对角化台可使来巨阵Q,也能将A¹,A*,f(A)台外等征向量 正交变换一般只能将二次型化为标环径形,若要化为规范形,高再作一次变换Y=Rz 由于X=QY=QRZ,令P=QR,则X=PZ可将二次型化为规范形(X=PZ已不是正交变换) 何3.(1)用面2方法格f(X,从,从)=4X²+2X²+3X²+2X1Xz-6X1Xz-4XzXz化为木子、维形一次面2方要将一个变量全部配完,先面2容易面2的变量,若无差别,则按X.从,从顺序成变换矩阵P,从须反解为X二PY的形式、P不管一,但要保证可维,否则不会法(2)用配方法将f(X,X,X)=2X1Xz+2X1Xz-6XzXz化为规范形。

若无平方项,可利用平方差公式创造平方项再配方

西己方法化标准的

也可利用因式分解直接配为

题型二反成A

1994设3P介矢巨阵A的特征值为3.3.0,且(1,0,0) 和(0,1,1) 为入=3对应的特征向量, (1,0,3) 为入=0对应的特征向量成矢巨阵A. 国现状积矢巨阵

常规解法.先求PT,再用A=PNPT术.

科克解法。P'AP=A⇔AP=PA⇔PTAT=ATPT,作初等行变换(PT:ATPT)与(E:AT)可求得AT 此法的优越性在于初等行变换后直接得到AT,省去了矩阵乘法的计算量

例5.设3阶实对称矩阵A的特征值为一3,3,0,且(-1,1,0)7为入二-3对定的特征向量,(1,1,-2)7为入二3对应的特征向量,求矩阵A. 对称矩阵,无重根

常规解法:可用A=PAPT求,也可用A=PAPT求.

A=PNPT的计算量在于求逆,A=PNPT的计算量在于正交单位化,各有利弊.

秋·范解话:诸分解公式: A=PNPT=(R,R,R,)(\lambda_

外级片反.A=公成人的十分一个成功。人人以为人的不需要单位化)

何6.役3所实对称、矩阵A的特征值为3.3.0,且(1,1,1)"为入=0对应的特征向量求矩阵A常规解法,直接写出二重根的两个已正交的特征向量,再用A=PNPT求 对规矩阵

常规解法直接写出二重根的两个已正交的特征向量,再用A=PNPT求 补充解法.A-入,E的特征值为0,0,入3-入1,A-入,E为株为1的实对称矩阵

 $N_1A - \lambda_1E = \frac{\lambda_3 - \lambda_1}{\alpha_3^2 \alpha_3} \alpha_3 \alpha_3^{-1} + \lambda_1E$

有二重根 已知单根的

特征向量

何7.设3阶实对称矩阵A的特征值为3.3.0,且(-1,1,0)T和(-1,0,1)T为入=3对应的特征向量

成矩阵A.

对称处正阵,有二重根,已知重根的特征向量

常规解法:先成出单根的特征向量,再重新成一个二重根的特征向量,即可得到 3个两两正交的特征向量,再用A=PAPT术(不以对题目给的特征向量正交化) 补充解法:先求出单根的特征向量再用A=六子以以了+入上求

是重三求A",A"B

例8.设A= [7 2 -1]

(1) 末An

若不能用归纳法等简单方法成A",则可将A对角化,由A=PNP1.得A"=PNP1

(2)投B=(1,1,-5)T, 求ATB 若无第(1)问成AP的铺垫,则应先用特征向量将B结性表示出来,B=koltkzolz+kzolz $RIJA^nB=k_1A^nQ_1+k_2A^nQ_2+k_3A^nQ_3=k_1\lambda_1^nQ_1+k_2\lambda_2^nQ_2+k_3\lambda_3^nQ_3$

题型四相似、台目的传统性

199.设A=(2 -1 -1)·B=(3 1 -1) (0 3 0), 成可逆矩阵P,使P'AP=B. 相似的传递性

令P=P,P,T,MPTAP=B.

何10.设二次型f(x,x,x)=x²+x²+x²-x,x-x,x-x,x5-x,x6可绝线性变换x=py1化为二次型 用正交变换法或配方法求可绝关巨阵PI、PZ、使XTAX WEREZTAZ、YTBY YERZ ZTAZ MX=PZ=P,PZY, 全P=P,PZT,则XTAX ==PYyTBY

M11.设A=1030, 本可维矩阵P, 使P'AP=AT. A与AT相似 成可逆失巨阵P. 使P. AP.= A. 两级取转置得P. A(PT) = A. $P_{i}^{T}AP_{i}=P_{i}^{T}A^{T}(P_{i}^{T})^{T}, P_{i}^{T}(P_{i}^{T})^{T}A(P_{i}P_{i}^{T})=A^{T}.$ $(P_{i}P_{i}^{T})P_{i}^{T}AP_{i}^{T}=A^{T}.$ 题型五水XTAX的最值 何12.1分二次型f(x,x,x)=2Xi+2Xi+2Xi+2Xi-2XiXz-2XiXx-2XiXz-2XiXx-2XiXz-2XiXx-不文方设入 $|\leq \lambda_2 \leq \lambda_3$, $|\lambda_m| = \lambda_1$, $|\lambda_m| = \lambda_3$. 取 $y_{min} = (y_1, 0, 0)$,则 $\frac{f(x)}{y_1 y} = \frac{\lambda_1 y_1^2 + \lambda_2 0^2 + \lambda_3 0^2}{y_1^2 + 0^2 + 0^2} = \lambda_1$, to $\min_{x \neq 0} \frac{f(x)}{y_1 y} = \lambda_1 = \lambda_{min}$ π_{x} γ_{max} = (0,0, γ_{3}), π_{y} $\frac{f(x)}{y^{T}y} = \frac{\lambda_{1}0^{2} + \lambda_{2}0^{2} + \lambda_{3}\gamma_{3}^{2}}{0^{2} + 0^{2} + \gamma_{3}^{2}} = \lambda_{3}$, $tx \max_{x \neq 0} \frac{f(x)}{y^{T}y} = \lambda_{3} = \lambda_{max}$ 又XTX=(QY)T(QY)=YT(QTQ)Y=YTY, t久 min f(x)=>min, max f(x)=>max 题型六水XTAX=0的解

何13.设二次型f(x,x,x)=(x-x)+(x-x)+(x+ax;),其中Q是参数.二次型是平方和形式

(2)求于(从,从,从)的规范形

「xTAX=||BX||=XTBTBX 若于二XTAX二平方和只见了对YX产O.有XTAX20,A半正定,入i20 xTAX=0⇔BX=0⇔BTBX=0⇔AX=0⇔入=0的特征向量

XTAX正定⇔BX=0只有零解⇔B列满秩.

例件设A为3阶实对称矩阵,正交矩阵Q的前2列为(一走,走,0)、(击击一斋)、

且QTAQ=(00), 求XTAX=0的解 二次型不是平方和形式,但已知特征值符号

研究XTAX的性质时(如成最值、解为程),可通过可逆变换X=Py化为YTBY 先研究YTBY的相应性质,再将结论通过X=PY变换回来

何15.设二次型f(X1,X2,X3)=-2X12-2X2-2X3+2X1X2+2X1X3+2X2X3,求f(X1,X2,X3)=0的解

二次型不是平方和形式,也不知特征值符号

先化为标准形(一般用配为法),再见机行事

题型七.正定

何16.设A=(3-1-1) -1 3-1 -1 -1 3)

(1) 求可逆矩阵B.使A=BTB

若A半正定,则存在同阶张严格B,使A=BTB

若特征值全大于0(即正定),则B为可逆矩阵若有特征值0,则B为不可逆矩阵 求可逆矩阵P,使PTAP=Λ,令Λ=Λt,则A=(PT)TΛPT=(PT)TΛTΛ,PT=(Λ,PT)T(Λ,PT) 今B=Λ,PT,见JA=BTB

(z) 求正定矩阵B,使A=B2.

若A正定,则存在正定矩阵B,使A=B² 求正交矩阵Q,使Q'AQ= Λ , \mathcal{L} \mathcal

同理可证,存在正定矩阵B,使A=Bk(k为正整数)

不含平为项的二次型结论总结。

设二次型f(x1,X2,X3)=ZaX,X2+ZbX,X3+ZCX2X3,对定的关E阵为A=(0 a b)

PM |A|= 2abc, tv(A)=0

若abC70.则A的特征值符号为1正2负.

差abc<0.则A的特征值符号为Z正1负

若abc=0,网A的特征值符号为1正1负1毫入二一入之 \neq 0,入3=0.

(2021) (2021) (2021) (2021) (2

若乃,乃,乃,乃,乃,而两正交,则山,记依次为(A). A.善,是 B.一善,是 C.善,一是

D-5-1

何儿 P=(4-31), P'AP=(4-3). 所有求变换矩阵P的题 何之的是一位市市人XTAX 全区X 3X;于3X; 答案都不吃一,正确即得为 (2)f(x1,x2,x3)==[NZ(X1-Y3)]=[NZ(X1-Y3)]=[NZ(X1-Y3)]=-[NZ(X1-Y3)]=+(NZ(X1-Y3)]=+(NZ(X1-Y3)]=+(NZ(X1-Y3)]=+(NZ(X1-Y3)]=+(NZ(X1-Y3))=+(NZ(令P=(桂桂黄), f兰路子22+23

例4.A=(3 1 -1).例5.A=(1 1 -1).例6.A=(1 2 -1).例7.A=(1 2 -1). (3 3 0).例5.A=(1 1 -1).例6.A=(1 2 -1).例7.A=(1 2 -1).

反求A的答案吖至一.

例8.(1)
$$A^n=3^{n-1}A$$
. (2) $A^nB=(2\cdot3^n,2\cdot3^n,-4\cdot3^n)^T$.
例9. $P=\frac{1}{3}\begin{pmatrix} 3&1&2\\3&3&1\end{pmatrix}$, 例10. $P=\begin{pmatrix} 1&2&1\\0&1&2\\0&1&0\end{pmatrix}$ 何11. $P=\begin{pmatrix} 2&0&3\\0&1&10\end{pmatrix}$

例12.证明略. 例13.(1)若Q丰一,则只有零解若Q=一,编解为尽(1,1,1)了.(kcr). (2)若Q丰一,则于二、计论、若Q=一,则于二、计论、有例,例:从一点 (4)上(中),例15. 比(一),(kcr).