Autómatas y Lenguajes formales 2019-2 Ejercicio Semanal 4

Sandra del Mar Soto Corderi Edgar Quiroz Castañeda

Fecha de entrega: 22 de febrero del 2019

1. Demuestra que el operador de derivada preserva equivalencias, es decir si $\alpha = \beta$, entonces $\partial_a \alpha = \partial_a \beta$. Tenemos que $\alpha = \beta \iff \mathcal{L}[\![\alpha]\!] = \mathcal{L}[\![\beta]\!]$, por la definción de equivalencia en expresiones regulares. Por lo que

$$\begin{split} \partial_a \alpha &= \{v | av \in \mathcal{L}[\![\alpha]\!]\} \\ &= \{v | av \in \mathcal{L}[\![\beta]\!]\} \\ &= \partial_a \beta \end{split}$$

- 2. Calcula la derivada de las expresiones regulares en cada inciso.
 - a) $\partial bb(a^* + (a^*ba^*ba^*)^*)$
 - b) $\partial ab((a^*(baa)^*a^*)^*)$
 - c) $\partial a((aa + bb)^*)$