Week 3 - Decision Tree - R

September 19, 2018

1 Data Warehousing and Data Mining

1.1 Labs

1.1.1 Prepared by Gilroy Gordon

Contact Information SCIT ext. 3643 ggordonutech@gmail.com gilroy.gordon@utech.edu.jm

1.1.2 Week 3 - Decision Trees in R

Additional Reference Resources:

Decision Trees: https://www.statmethods.net/advstats/cart.html
Importing Different Types of Data: http://www.milanor.net/blog/read-excel-files-from-r/
Party package (Partitioning Recursively) : https://cran.rproject.org/web/packages/party/party.pdf
xlsx packages requires rJava : https://github.com/hannarud/r-bestpractices/wiki/Installing-RJava-(Ubuntu)

1.2 Objectives

- > Data Selection
- > Data Preprocessing
 > Noisy Data Invalid Attribute Values
 - > Casewise Deletion
- > Data Transformation
 - > Dummy Encoding
- > Data Mining
 - > Decision Trees
- > Model Evaluation and Prediction
 - > Train/Test Split 70/30
- > Presentation
 - > Tree Chart
 - > Tree Rules
 - > Confusion Matrix

1.3 Import required libraries and acquire data

NB. The data required was retrieved from the required text for this course. This should assist you in following the concepts from the book better

```
In [1]: #library("gdata")
```

In [3]: #view the data
 my.data

Income Range	Magazine Promo	Watch Promo	Life Ins Promo	Credit Card Ins.	Sex	Age
40-50,000	Yes	No	No	No	Male	45
30-40,000	Yes	Yes	Yes	No	Female	40
40-50,000	No	No	No	No	Male	42
30-40,000	Yes	Yes	Yes	Yes	Male	43
50-60,000	Yes	No	Yes	No	Female	38
20-30,000	No	No	No	No	Female	55
30-40,000	Yes	No	Yes	Yes	Male	35
20-30,000	No	Yes	No	No	Male	27
30-40,000	Yes	No	No	No	Male	43
30-40,000	Yes	Yes	Yes	No	Female	41
40-50,000	No	Yes	Yes	No	Female	43
20-30,000	No	Yes	Yes	No	Male	29
50-60,000	Yes	Yes	Yes	No	Female	39
40-50,000	No	Yes	No	No	Male	55
20-30,000	No	No	Yes	Yes	Female	19

^{1. &#}x27;Income Range' 2. 'Magazine Promo' 3. 'Watch Promo' 4. 'Life Ins Promo' 5. 'Credit Card Ins.' 6. 'Sex' 7. 'Age'

In [5]: # The first two(2) rows have invalid data. Let us perform casewise deletion to remove the
 my.data = my.data[-c(0,1),] # dropping items 0 and 1 from axis 0 or the x axis (rows)
 # NB. The "-" sign used to request the complement of the data
 my.data #viewing data

	Income Range	Magazine Promo	Watch Promo	Life Ins Promo	Credit Card Ins.	Sex	Age
2	30-40,000	Yes	Yes	Yes	No	Female	40
3	40-50,000	No	No	No	No	Male	42
4	30-40,000	Yes	Yes	Yes	Yes	Male	43
5	50-60,000	Yes	No	Yes	No	Female	38
6	20-30,000	No	No	No	No	Female	55
7	30-40,000	Yes	No	Yes	Yes	Male	35
8	20-30,000	No	Yes	No	No	Male	27
9	30-40,000	Yes	No	No	No	Male	43
10	30-40,000	Yes	Yes	Yes	No	Female	41
11	40-50,000	No	Yes	Yes	No	Female	43
12	20-30,000	No	Yes	Yes	No	Male	29
13	50-60,000	Yes	Yes	Yes	No	Female	39
14	40-50,000	No	Yes	No	No	Male	55
15	20-30,000	No	No	Yes	Yes	Female	19

	Income Range	Sex	Age	Watch Promo	Life Ins Promo
2	30-40,000	Female	40	Yes	Yes
3	40-50,000	Male	42	No	No
4	30-40,000	Male	43	Yes	Yes
5	50-60,000	Female	38	No	Yes
6	20-30,000	Female	55	No	No
7	30-40,000	Male	35	No	Yes
8	20-30,000	Male	27	Yes	No
9	30-40,000	Male	43	No	No
10	30-40,000	Female	41	Yes	Yes
11	40-50,000	Female	43	Yes	Yes
12	20-30,000	Male	29	Yes	Yes
13	50-60,000	Female	39	Yes	Yes
14	40-50,000	Male	55	Yes	No
15	20-30,000	Female	19	No	Yes

1.4 Aim: Use a decision tree to identify suitable rules for a Life Ins Promo

```
In [7]: # separate our data into dependent (Y) and independent(X) variables
    X_data = data2[c('Income Range', 'Sex', 'Age', 'Watch Promo')]
    Y_data = data2[c('Life Ins Promo')]
```

1.5 70/30 Train Test Split

We will split the data using a 70/30 split. i.e. 70% of the data will be randomly chosen to train the model and 30% will be used to evaluate the model

```
In [8]: require(caTools) # loading caTools library
```

```
Loading required package: caTools
```

```
In [9]: set.seed(400)  # set seed to ensure you always have same random numbers generated
    # splits the data in the ratio mentioned in SplitRatio. After splitting marks these rows
    sample = sample.split(X_data,SplitRatio = 0.70)
    # creates a training dataset named train1 with rows which are marked as TRUE
    X_train=subset(X_data,sample ==TRUE)
    X_test = subset(X_data, sample==FALSE)
    y_train=subset(Y_data,sample ==TRUE)
    y_test = subset(Y_data, sample==FALSE)

# The package we will use in R will not require that we split the independent and dependent
    train = subset(data2,sample=TRUE)
    test = subset(data2,sample=FALSE)
```

1.6 Building the Decision Tree

1.7 Describing the tree and visualizations

```
In [12]: plotcp(clf) # visualize cross-validation results
```


Classification Tree for Life Insurance Promotion


```
In [15]: help(rpart.plot)
In [16]: summary(clf) # display the results
Call:
rpart(formula = "`Life Ins Promo` ~ `Income Range` + `Sex` + `Age` + `Watch Promo`",
    data = train, method = "class", control = rpart.control(minsplit = 2))
  n=14
    CP nsplit rel error xerror
1 0.40
                    1.0
                           1.0 0.3585686
2 0.20
            1
                    0.6
                           1.4 0.3741657
3 0.10
                    0.2
                           1.6 0.3703280
            3
```

0.0 1.4 0.3741657

4 0.01 5

```
Node number 5: 3 observations, complexity param=0.2
 predicted class=Yes expected loss=0.3333333 P(node) =0.2142857
                    1
   class counts:
  probabilities: 0.333 0.667
  left son=10 (1 obs) right son=11 (2 obs)
 Primary splits:
      Age
                  < 49 to the right, improve=1.3333330, (0 missing)
                                     improve=0.3333333, (0 missing)
     Income Range splits as -RL-,
                                       improve=0.3333333, (0 missing)
                  splits as RL,
Node number 6: 2 observations,
                                complexity param=0.1
 predicted class=No expected loss=0.5 P(node) =0.1428571
   class counts:
                     1
  probabilities: 0.500 0.500
  left son=12 (1 obs) right son=13 (1 obs)
 Primary splits:
     Sex
                                      improve=1, (0 missing)
                 splits as RL,
                 < 23 to the right, improve=1, (0 missing)</pre>
     Watch Promo splits as RL,
                                      improve=1, (0 missing)
Node number 7: 6 observations
 predicted class=Yes expected loss=0 P(node) =0.4285714
   class counts:
                    0
                           6
  probabilities: 0.000 1.000
Node number 10: 1 observations
 predicted class=No
                    expected loss=0 P(node) =0.07142857
   class counts:
                     1
  probabilities: 1.000 0.000
Node number 11: 2 observations
  predicted class=Yes expected loss=0 P(node) =0.1428571
   class counts:
                    0
  probabilities: 0.000 1.000
Node number 12: 1 observations
  predicted class=No expected loss=0 P(node) =0.07142857
   class counts: 1
  probabilities: 1.000 0.000
Node number 13: 1 observations
 predicted class=Yes expected loss=0 P(node) =0.07142857
   class counts:
                   0
                           1
  probabilities: 0.000 1.000
```