Automaty Komórkowe

Wykład 9

https://github.com/houp/ca-class

Witold Bołt, 08.05.2024

Poprzednio omówiliśmy

- Wykład 1: Sprawy organizacyjne, motywację do zajmowania się CA, podstawowe pojęcia / definicje / intuicje.
- Wykład 2: Definicja (formalna) i podstawowe w fakty o ECA. Reprezentacja Wolframa.
- Wykład 3: Symetrie w zbiorze ECA, relacje do ogólnej teorii układów dynamicznych, własności CA/ECA.
- Wykład 4: Alternatywne reprezentacje reguły lokalnej (wielomiany, wyrażenia logiczne), problem klasyfikacji gęstości (DCP).
- Dwa tygodnie przerwy
- Wykład 5 (zdalny): Algorytmy ewolucyjne poszukiwanie automatów komórkowych o określonych własnościach
- Wykład 6: Stochastyczne automaty komórkowe SCAs, pLUT, α-ACAs, Diploid CAs, stochastic mixture, dekompozycja pLUT
- Wykład 7: Afiniczne Ciągle Automaty Komórkowe wielomiany, cLUT, relaxed DCP + bonus praca w IT w Trójmieście (i nie tylko)
- Wykład 8: Identyfikacja Deterministycznych Automatów Komórkowych

Co będzie dalej*

- Wykład 9: Identyfikacja Stochastycznych Automatów Komórkowych
- Wykład 10: Automaty Komórkowe zachowujące gęstość
- Wykład 11: Nie-jednorodne (non-uniform) Automaty Komórkowe; Zastosowania w modelowaniu ruchu ulicznego
- Wykład 12: Dwu-wymiarowe Automaty Komórkowe / Reguła Life i Life-like / Totalistyczne i Zewnętrzne-Totalistyczne Automaty Komórkowe (totalistic & outertotalistic CAs)
- Wykład 13: Modele pożaru lasu, rozprzestrzeniania się epidemii, Greenberg–Hastings i podobne modele
- Wykład 14: Modele c.d. w tym: lattice-gas, diffusion
- Wykład 15: Neural CAs (Neuronowe Automaty Komórkowe)

Identyfikacja Stochastycznych Automatów Komórkowych

Przypominajka: przypadek <u>deterministyczny</u>

- Dana jest obserwacja space-time diagramu, czyli albo cały space-time diagram albo jakiś jego "fragment" (pod-diagram?).
- W najprostszym przypadku mamy cały diagram na przykład taki:

• Zadanie: rozpoznać / odczytać, który CA wygenerował ten diagram.

LUT

$$\ell_7$$
 ℓ_6 ℓ_5 ℓ_4 ℓ_3 ℓ_2 ℓ_1 ℓ_0

$$\mathcal{E} = (1,0,0,1,0,1,1,0)$$

ECA 150

Co mogło się nam nie udać?

- Obserwacja nie miała "dziur" wszystkie stany dało się odczytać wprost z obrazka.
- Wszystkie konfiguracje sąsiedztw były dostępne, więc nie było wieloznaczności w odpowiedzi.
- Nie było brakujących kroków czasowych (time-gaps) dlatego nie musieliśmy korzystać z algorytmu ewolucyjnego.
- Założyliśmy, że promień sąsiedztwa wynosił 1, czyli szukaliśmy ECA i
 okazało się, że mieliśmy rację, bo diagram został faktycznie wygenerowany
 przez pewien ECA.
- Oczekiwaliśmy deterministycznego CA, więc nie musieliśmy odczytywać całego diagramu naszym "skanerem".

Identyfikacja SCAs

- Dana jest obserwacja space-time diagramu pewnego SCA.
- W najprostszym przypadku mamy cały diagram na przykład taki:

• Zadanie: oszacować prawdopodobieństwa w pLUT tego SCA!

skaner - odczytuje pojedyncze wartości

licznik - zlicza wystąpienia wartości

Oczywiście
"licznik" musi
przejeść cały
diagram!

19	31	33	12	29	0	0	96
28	23	17	29	25	37	41	0

Zauważmy, że wystąpiły trzy przypadki:

- 1. Wynik **zawsze** był 0 (sąsiedztwo 0,0,0).
- 2. Wynik **zawsze** był 1 (sąsiedztwa 0,1,0 i 0,0,1).
- 3. Wynik był albo 0 albo 1 pozostałe sąsiedztwa.

Szczęśliwie **nie** wystąpił (choć mógł) czwarty przypadek, to znaczy, że danej konfiguracji sąsiedztwa w ogóle nie zaobserwowano.

Co wynika z naszych przypadków?

- W przypadku gdy dla danej konfiguracji sąsiedztwa (załóżmy, że jest to sąsiedztwo i) zaobserwowaliśmy zarówno przejście na wartość 0 jak i 1 to **jesteśmy pewni**, że reguła na tym sąsiedztwie zachowuje się niedeterministycznie. Innymi słowy wiemy, że $p_i \in (0,1)$.
- Jeśli dla sąsiedztwa i zaobserwowano jedynie przejścia na wartość 0, to **albo** $p_i = 0$ **albo** $p_i > 0$ i w dodatku to p_i jest **raczej** bardzo małe.
- Jeśli dla sąsiedztwa i zaobserwowano jedynie przejścia na wartość 1, to **albo** $p_i = 1$ **albo** $p_i < 1$ i w dodatku to p_i jest **raczej** bardzo duże.
 - Słowo "raczej" użyto tu aby wskazać na subiektywność i niepewność zarazem. Jeśli ogólna liczba wystąpień danego sąsiedztwa była "mała" to tak na prawdę nie wiele możemy powiedzieć o p_i w tych przypadkach.

$$\hat{p}_i = \frac{\blacksquare}{\Box + \blacksquare}$$

	19	31	33	12	29	0	0	96
	28	23	17	29	25	37	41	0
\hat{p}_i	0.596	0.426	0.34	0.707	0. 463	1	1	0
p_i	0.6	0.4	0.4	0.6	0.4	1	1	0

Czy da się lepiej? 🙄

$$\frac{1}{8} \sum_{i} |p_i - \hat{p}_i| \approx 0.0326$$

$$\max_{i} |p_i - \hat{p}_i| \approx 0.1073$$

$$\max_{i} \frac{|p_i - \hat{p}_i|}{p_i} \approx 0.1789$$

Diploid to SCA, który można zapisać jako stochastyczna mikstura dokładnie dwóch, dowolnych CAs.

A co by było gdybyśmy założyli, że to jest diploid?

Identyfikacja diploidów?

- Diploid to mikstura dwóch CA. Założymy dla uproszczenia, że mamy miksturę dwóch ECA zdefiniowanych przez reguły lokalne f_1 oraz f_2 .
- Innymi słowy, w każdej chwili chwili czasu, dla każdej komórki niezależnie, z prawdopodobieństwem $\alpha \in (0,1)$, $\alpha \neq 0.5$, stosowana jest reguła f_1 a z prawdopodobieństwem $1-\alpha$ reguła f_2 .
- Fakt. W pLUT diploidu występują jedynie wartości ze zbioru: $\{0,1,\alpha,1-\alpha\}$.
 - Fakt. Wartości 0 oraz 1 występują dla tych sąsiedztw dla których obie reguły są "zgodne". Wartość α występuję dla sąsiedztw dla których reguła f_1 przyjmuje wartość 1, a reguła f_2 wartość 0. Wartość $1-\alpha$ dla sąsiedztw dla których f_1 przyjmuje wartość 0, a reguła f_2 wartość 1.

	19	31	33	12	29	0	0	96
	28	23	17	29	25	37	41	0
\hat{p}_i	0.596	0.426	0.34	0.707	0.463	1	1	0
p_i	0.6	0.4	0.4	0.6	0.4	1	1	0

Jak widać nasz tajemniczy SCA to jest diploid, bo w pLUT występują tylko 4 różne wartości!

Oczywiście algorytm identyfikacji nie "widzi" prawdziwych wartości p_i , a jedynie \hat{p}_i .

Zakładamy, że szukany SCA to diploid i musimy "wyciągnąć coś" z tego założenia.

	19	31	33	12	29	0	0	96
	28	23	17	29	25	37	41	0
\hat{p}_i	0.596	0.426	0.34	0.707	0.463	1	1	0
\hat{f}_1	?	?	?	?	?	1	1	0
\hat{f}_2	?	?	?	?	?	1	1	0
						Tu obi	ie reguły -	według

obserwacji - zgadzają się

ze sobą.

	19	31	33	12	29	0	0	96
	28	23	17	29	25	37	41	0
\hat{p}_i	0.596	0.426	0.34	0.707	0.463	1	1	0
\hat{f}_1	?	?	?	?	?	1	1	0
\hat{f}_2	?	?	?	?	?	1	1	0
	Tu	u natomia	ast musir	my policzy	rć :)			

	19	31	33	12	29	0	0	96
	28	23	17	29	25	37	41	0
\hat{p}_i	0.596	0.426	0.34	0.707	0.463	1	1	0
\hat{f}_1	1	?	?	?	?	1	1	0
\hat{f}_2	0	?	?	?	?	1	1	0
	Tu	ı natomia	ast musir	ny policzy	ć:)			

Jeśli dla danego sąsiedztwa $\hat{p}_i > 0.5$ to przyjmujemy, że

na tym sąsiedztwie: $f_1 = 1, f_2 = 0$.

	19	31	33	12	29	0	0	96
	28	23	17	29	25	37	41	0
\hat{p}_i	0.595	0. 426	0.34	0.707	0.463	1	1	0
\hat{f}_1	1	0	?	?	?	1	1	0
\hat{f}_2	0	1	?	?	?	1	1	0
	Tu	u natomia	ast musir	my policzy	ć:)			

Jeśli dla danego sąsiedztwa $\hat{p}_i < 0.5$ to przyjmujemy, że

na tym sąsiedztwie: $f_1 = 0, f_2 = 1$.

Pytanie ile wynosi $\hat{\alpha}$?

Pytanie ile wynosi $\hat{\alpha}$?

Pytanie ile wynosi $\hat{\alpha}$?

	19	31	33	12	29	0	0	96
	28	23	17	29	25	37	41	0
\hat{p}_i	0.596	0.426	0.34	0.707	0.463	1	1	0
\hat{f}_1	1	0	0	1	0	1	1	0
\hat{f}_2	0	1	1	0	1	1	1	0

 $\hat{\alpha} \approx 0.6098$

 $1 - \hat{\alpha} \approx 0.3902$

 $\frac{1}{2} \sum_{i=1}^{1} \frac{\sum_{i} |p_i - \hat{p}_i| \approx 0.0326}{|p_i - \hat{p}_i|} \approx 0.006$

0.6098 0.3902 0.3902 0.6098

0.3902

 $\max_{i} |p_i - \hat{p}_i| \approx 0.1073$

 $\max_{i} |p_i - \hat{p}_i| \approx 0.0097$

$$\max_{i} \frac{|p_i - \hat{p}_i|}{p_i} \approx 0.1789 \quad \max_{i} \frac{|p_i - \hat{p}_i|}{p_i} \approx 0.0244$$

- W przypadku deterministycznym rozważaliśmy dwa typy niekompletnych /
 cząstkowych obserwacji: (a) brakujące komórki (oznaczone symbolem '?')
 oraz (b) brakujące kroki czasowe wiersze w space-time diagram
 (nieoznaczone niczym, po prostu ich nie było).
- Przypadek (a) łatwo rozwiązać. Nasz "skaner" omija komórki oznaczone '?',
 odczytuje regułę a następnie zgodnie z regułą wypełnia '?'. W przypadku (b)
 omówiliśmy dość zawiły algorytm ewolucyjny, który umie znaleźć rozwiązanie.
- Dla SCAs potrafimy radzić sobie jedynie z przypadkiem (a). Nie wiem, co zrobić z przypadkiem (b) być może *nic się nie da*.
- Przypadek (a) dla SCAs rozwiązujemy podobnie jak w CAs... ale "podobnie" oznacza tu jednak nieco więcej kłopotów, bo...

- Dziura może wystąpić w takim miejscu, dla którego poprzedzająca konfiguracja sąsiedztwa skutkuje przejściem deterministycznym.
- Wtedy, podobnie jak w przypadku CAs możemy odczytać wartość z pLUT i nie martwić się zbytnio...

- Niestety może być jeszcze gorzej :(
- Bo wypełnienie danej dziury wpływa na możliwe wypełnienia dziur w okolicy!
- I w najgorszym wypadku trzeba rozważyć wszystkie możliwości wypełnień, wyeliminować "zakazane" i policzyć prawdopodobieństwa dla pozostałych...
- Na dzisiaj darujemy sobie to.

Identyfikacja diploidów

• Omówiliśmy podstawy i "esencje" algorytmu. Ale są jeszcze ważne i ciekawe szczegóły... których niestety nie omówimy. Do znalezienia tu:

https://www.sciencedirect.com/science/article/abs/pii/S030326471830128X

Wskazówka do implementacji

 Cały algorytm identyfikacji (zarówno deterministyczny jak i niedeterministyczny) w prostym przypadku kompletnych obserwacji da się zaimplementować w Pythonie w <u>kilku</u> linijkach. (Przypomnę, że kilka z reguły oznacza mniej niż 10.)

 W powyższym fragmencie kodu zakładamy, że observation to tablica 2D przedstawiająca space-time diagram. Warto zrobić sobie eksperyment i dla prawdziwego space-time diagramy wykonać powyższą linijkę i następnie wyświetlić zawartość neighborhoods za pomocą zwykłego print(...)

Dziękuję bardzo

Witold.Bolt@ug.edu.pl

