Class17_MiniProject

Angelita Rivera (PID A15522236)

11/23/2021

Mini-Project COVID Vaccination Rates

As we approach a period of travel and larger gatherings lets have a look at vaccination rates across the State.

We will take data from the CA.gov site here: - "Statewide COVID-19 Vaccines Administered by ZIP Code" CSV file from: https://data.ca.gov/dataset/covid-19-vaccine-progress-dashboard-data-by-zip-code"

```
vax <- read.csv("covid19vaccinesbyzipcode_test.csv")
head(vax)</pre>
```

```
##
     as_of_date zip_code_tabulation_area local_health_jurisdiction
                                                                          county
                                                                Orange
## 1 2021-01-05
                                     92804
                                                                          Orange
## 2 2021-01-05
                                     92626
                                                                Orange
                                                                          Orange
## 3 2021-01-05
                                     92250
                                                             Imperial
                                                                        Imperial
## 4 2021-01-05
                                     92637
                                                                Orange
                                                                          Orange
## 5 2021-01-05
                                     92155
                                                            San Diego San Diego
## 6 2021-01-05
                                     92259
                                                             Imperial
                                                                        Imperial
##
     vaccine_equity_metric_quartile
                                                       vem_source
## 1
                                    2 Healthy Places Index Score
## 2
                                    3 Healthy Places Index Score
## 3
                                    1 Healthy Places Index Score
## 4
                                    3 Healthy Places Index Score
## 5
                                   NA
                                                  No VEM Assigned
## 6
                                    1
                                         CDPH-Derived ZCTA Score
     age12_plus_population age5_plus_population persons_fully_vaccinated
## 1
                                            84200
                    76455.9
## 2
                    44238.8
                                            47883
                                                                          NA
## 3
                     7098.5
                                             8026
                                                                          NA
## 4
                    16027.4
                                            16053
                                                                          NA
## 5
                                              456
                      456.0
                                                                          NA
## 6
                      119.0
                                              121
                                                                          NA
##
     persons_partially_vaccinated percent_of_population_fully_vaccinated
## 1
                                                                    0.000226
                               1282
## 2
                                 NA
                                                                          NA
## 3
                                 NA
                                                                          NA
## 4
                                 NA
                                                                          NA
## 5
                                 NA
                                                                          NA
## 6
                                                                          NA
##
     percent_of_population_partially_vaccinated
## 1
## 2
                                               NA
```

```
## 3
                                              NA
## 4
                                              NA
## 5
                                              NA
## 6
                                              NA
     percent_of_population_with_1_plus_dose
##
                                   0.015452
## 1
## 2
## 3
                                          NA
## 4
                                          NA
## 5
## 6
                                          NA
##
                                                                    redacted
## 1
## 2 Information redacted in accordance with CA state privacy requirements
## 3 Information redacted in accordance with CA state privacy requirements
## 4 Information redacted in accordance with CA state privacy requirements
## 5 Information redacted in accordance with CA state privacy requirements
## 6 Information redacted in accordance with CA state privacy requirements
```

Ensure the date column is useful

We will use the **lubridate** package, which can make life allot easier when dealing with dates and times

Q1. What column details the total number of people fully vaccinated?

The column 'persons_fully_vaccinated'.

Q2. What column details the Zip code tabulation area?

The column 'zip code tabulation area'.

Q3. What is the earliest date in this dataset?

```
vax$as_of_date[1]
```

```
## [1] "2021-01-05"
```

Q4. What is the latest date in this dataset?

```
vax$as_of_date[nrow(vax)]
```

```
## [1] "2021-11-16"
```

Quick look at the data structure

As before we can use the **skim()** function to quickly overview and summarize the various columns of the dataset.

skimr::skim(vax)

Table 1: Data summary

Name Number of rows	vax 81144
Number of columns	14
Column type frequency:	
character	5
numeric	9
Group variables	None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
as_of_date	0	1	10	10	0	46	0
$local_health_jurisdiction$	0	1	0	15	230	62	0
county	0	1	0	15	230	59	0
vem_source	0	1	15	26	0	3	0
redacted	0	1	2	69	0	2	0

Variable type: numeric

skim_variable	n_missin	gomplete_	_r ante an	sd	p0	p25	p50	p75	p100	hist
zip_code_tabulation_area	0	1.00	93665.1	11817.39	90001	92257.7	593658.50	095380.5	097635.0	
vaccine_equity_metric_qu	art 416 02	0.95	2.44	1.11	1	1.00	2.00	3.00	4.0	
$age12_plus_population$	0	1.00	18895.0	418993.94	1 0	1346.95	13685.10	031756.1	288556.7	
$age5_plus_population$	0	1.00	20875.2	421106.05	0	1460.50	15364.00	034877.0	0101902.	0
persons_fully_vaccinated	8256	0.90	9456.49	11498.25	5 11	506.00	4105.00	15859.0	071078.0	
persons_partially_vaccinat	ed8256	0.90	1900.61	2113.07	11	200.00	1271.00	2893.00	20185.0	
percent_of_population_ful	lly <u>8</u> 2 56 cin	ated 0.90	0.42	0.27	0	0.19	0.44	0.62	1.0	
percent_of_population_pa	rti &12 5 <u>6</u> va	ccina 0e0 0	0.10	0.10	0	0.06	0.07	0.11	1.0	
percent_of_population_wi	th <u>825</u> 6plus	s_do 9 e90	0.50	0.26	0	0.30	0.53	0.70	1.0	

Q5. How many numeric columns are in this dataset?

There are nine numeric columns in this data set.

Q6. Note that there are "missing values" in the dataset. How many NA values there in the persons_fully_vaccinated column?

sum(is.na(vax\$persons_fully_vaccinated))

[1] 8256

Q7. What percent of persons_fully_vaccinated values are missing (to 2 significant figures)?

There is 10.00% of the persons_fully_vaccinate values missing.

Q8. [Optional]: Why might this data be missing?

They might be missing because of the military bases (or other areas) may not be contributing data.

Working with dates

```
# install.packages("lubridate")
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
##
       date, intersect, setdiff, union
today()
## [1] "2021-11-23"
Here we make our data 'as_of_date' column lubridate format...
# Specify that we are using the Year-month-day format
vax$as_of_date <- ymd(vax$as_of_date)</pre>
Now I can do useful math with dates more easily:
     Q. How many days since the first entry?
today() - vax$as_of_date[1]
## Time difference of 322 days
     Q. How many days since the last entry?
today() - vax$as_of_date[nrow(vax)]
## Time difference of 7 days
```

Q9. How many days between the first and last entry in the data set?

```
vax$as_of_date[nrow(vax)] - vax$as_of_date[1]
## Time difference of 315 days
     Q10. How many unique dates are in the dataset (i.e. how many different dates are detailed)?
length(unique(vax$as_of_date))
## [1] 46
This sounds good;
46*7
## [1] 322
Working with ZIP Codes
#install.packages("zipcodeR")
#install.packages("terra")
library(zipcodeR)
geocode_zip('92037')
## # A tibble: 1 x 3
     zipcode
               lat
                     lng
     <chr>>
             <dbl> <dbl>
## 1 92037
              32.8 -117.
More usefully, we can pull census data about ZIP code areas (including median household income etc.). For
example:
reverse_zipcode(c('92037', "92109") )
## # A tibble: 2 x 24
##
     zipcode zipcode_type major_city post_office_city common_city_list county state
                                      <chr>
##
     <chr>>
             <chr>>
                           <chr>
                                                                   <blook> <chr> <chr>
## 1 92037
             Standard
                           La Jolla
                                      La Jolla, CA
                                                               <raw 20 B> San D~ CA
                                                              <raw 21 B> San D~ CA
## 2 92109
             Standard
                           San Diego San Diego, CA
## # ... with 17 more variables: lat <dbl>, lng <dbl>, timezone <chr>,
       radius_in_miles <dbl>, area_code_list <blob>, population <int>,
```

median_household_income <int>, bounds_west <dbl>, bounds_east <dbl>,

population_density <dbl>, land_area_in_sqmi <dbl>,

occupied_housing_units <int>, median_home_value <int>,

water_area_in_sqmi <dbl>, housing_units <int>,

bounds_north <dbl>, bounds_south <dbl>

#

#

#

#

Focus on San Diego County

Using base R;

```
# Subset to San Diego county only areas
inds <- vax$county == "San Diego"
head(vax[inds,])</pre>
```

```
as_of_date zip_code_tabulation_area local_health_jurisdiction
                                                                           county
## 5 2021-01-05
                                      92155
                                                             San Diego San Diego
                                                             San Diego San Diego
## 14 2021-01-05
                                      92147
## 16 2021-01-05
                                     92124
                                                             San Diego San Diego
## 24 2021-01-05
                                     92145
                                                             San Diego San Diego
## 34 2021-01-05
                                     91935
                                                             San Diego San Diego
## 36 2021-01-05
                                     92102
                                                             San Diego San Diego
      vaccine_equity_metric_quartile
                                                        vem_source
## 5
                                                  No VEM Assigned
## 14
                                    NA
                                                  No VEM Assigned
## 16
                                     3 Healthy Places Index Score
## 24
                                                  No VEM Assigned
## 34
                                     3 Healthy Places Index Score
## 36
                                     1 Healthy Places Index Score
##
      age12_plus_population age5_plus_population persons_fully_vaccinated
## 5
                       456.0
                                               456
## 14
                       518.0
                                               518
                                                                           NA
## 16
                     25422.4
                                             29040
                                                                           29
                      1603.5
## 24
                                              1821
                                                                           NΑ
## 34
                      7390.0
                                              8101
                                                                           NA
                     37042.3
                                             41033
## 36
                                                                           29
##
      persons_partially_vaccinated percent_of_population_fully_vaccinated
## 5
                                 NA
## 14
                                 NA
                                                                           NA
                                573
                                                                     0.000999
## 16
## 24
                                 NA
                                                                           NA
## 34
                                 NA
                                                                           NA
## 36
                               1495
                                                                     0.000707
##
      percent_of_population_partially_vaccinated
## 5
                                                NA
## 14
                                                NA
                                          0.019731
## 16
## 24
                                                NA
## 34
                                                NA
## 36
##
      percent_of_population_with_1_plus_dose
## 5
                                            NA
## 14
                                            NA
                                      0.020730
## 16
## 24
                                            NA
## 34
                                            NA
                                     0.037141
## 36
##
                                                                      redacted
## 5 Information redacted in accordance with CA state privacy requirements
```

```
## 14 Information redacted in accordance with CA state privacy requirements
## 16
## 24 Information redacted in accordance with CA state privacy requirements
## 34 Information redacted in accordance with CA state privacy requirements
## 36
Using the dplyr package;
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
sd <- filter(vax, county == "San Diego")</pre>
#How many entries are there in San Diego County?
nrow(sd)
## [1] 4922
sd.10 <- filter(vax, county == "San Diego" &</pre>
                age5_plus_population > 10000)
    Q11. How many distinct zip codes are listed for San Diego County?
length(unique(sd$zip_code_tabulation_area))
## [1] 107
    Q12. What San Diego County Zip code area has the largest 12 + Population in this dataset
ind <- which.max(sd$age12_plus_population)</pre>
sd[ind,]
##
      as_of_date zip_code_tabulation_area local_health_jurisdiction
                                                                          county
## 23 2021-01-05
                                                            San Diego San Diego
##
      vaccine_equity_metric_quartile
                                                       vem_source
## 23
                                    2 Healthy Places Index Score
##
      age12_plus_population age5_plus_population persons_fully_vaccinated
## 23
                                             82971
      persons_partially_vaccinated percent_of_population_fully_vaccinated
##
```

Q. What is the population in the 92037 ZIP Code area?

```
filter(sd, zip_code_tabulation_area == "92037")[1,]
```

```
as_of_date zip_code_tabulation_area local_health_jurisdiction
## 1 2021-01-05
                                     92037
                                                            San Diego San Diego
##
     vaccine_equity_metric_quartile
                                                      vem_source
## 1
                                   4 Healthy Places Index Score
##
     {\tt age12\_plus\_population\ age5\_plus\_population\ persons\_fully\_vaccinated}
## 1
                    33675.6
                                            36144
##
     persons_partially_vaccinated percent_of_population_fully_vaccinated
## 1
                              1265
                                                                   0.001217
     percent_of_population_partially_vaccinated
##
                                         0.034999
## 1
##
     percent_of_population_with_1_plus_dose redacted
## 1
                                     0.036216
```

Q13. What is the overall average "Percent of Population Fully Vaccinated" value for all San Diego "County" as of "2021-11-09"?

```
sd.now <- filter(sd, as_of_date == "2021-11-09")
head(sd.now)</pre>
```

```
as_of_date zip_code_tabulation_area local_health_jurisdiction
                                                                         county
## 1 2021-11-09
                                    92075
                                                           San Diego San Diego
## 2 2021-11-09
                                    92130
                                                           San Diego San Diego
## 3 2021-11-09
                                    92060
                                                           San Diego San Diego
## 4 2021-11-09
                                    92091
                                                           San Diego San Diego
## 5 2021-11-09
                                    92020
                                                           San Diego San Diego
## 6 2021-11-09
                                    92004
                                                           San Diego San Diego
    vaccine_equity_metric_quartile
                                                      vem_source
## 1
                                   4 Healthy Places Index Score
## 2
                                   4 Healthy Places Index Score
## 3
                                        CDPH-Derived ZCTA Score
## 4
                                   4
                                        CDPH-Derived ZCTA Score
## 5
                                   2 Healthy Places Index Score
## 6
                                   2 Healthy Places Index Score
##
     age12_plus_population age5_plus_population persons_fully_vaccinated
                                                                      9504
## 1
                   11136.3
                                           12177
## 2
                   46300.3
                                           53102
                                                                      45517
## 3
                     166.0
                                             166
                                                                       153
## 4
                    1238.3
                                            1303
                                                                      1159
## 5
                   49284.5
                                           54991
                                                                      34904
## 6
                    2151.8
                                            2186
     persons_partially_vaccinated percent_of_population_fully_vaccinated
```

```
1623
## 1
                                                                    0.780488
## 2
                               6642
                                                                    0.857162
## 3
                                 34
                                                                    0.921687
## 4
                                221
                                                                    0.889486
## 5
                               4688
                                                                    0.634722
## 6
                                514
                                                                    1.000000
     percent_of_population_partially_vaccinated
##
## 1
                                         0.133284
## 2
                                         0.125080
## 3
                                         0.204819
## 4
                                         0.169609
## 5
                                         0.085250
## 6
                                         0.235133
##
     percent_of_population_with_1_plus_dose redacted
## 1
                                     0.913772
## 2
                                     0.982242
                                                     No
## 3
                                     1.000000
                                                     No
## 4
                                     1.000000
                                                     No
## 5
                                     0.719972
                                                     No
## 6
                                     1.000000
                                                     No
```

mean(sd.now\$percent_of_population_fully_vaccinated, na.rm = TRUE)

```
## [1] 0.6727567
```

To get the 6-number summary;

```
summary(sd.now$percent_of_population_fully_vaccinated)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 0.01017 0.60776 0.67700 0.67276 0.76164 1.00000 4
```

Q14. Using either ggplot or base R graphics make a summary figure that shows the distribution of Percent of Population Fully Vaccinated values as of "2021-11-09"?

Using base R;

hist(sd.now\$percent_of_population_fully_vaccinated)

Histogram of sd.now\$percent_of_population_fully_vaccinated

Using ggplot;

```
library(ggplot2)
ggplot(sd.now) +
  aes(percent_of_population_fully_vaccinated) + geom_histogram(bins = 15) + labs(title = "Histogram of")
```

Warning: Removed 4 rows containing non-finite values (stat_bin).

Histogram of Vaccination Rates Across San Diego County As of 2021–11–09

Focus on UCSD/La Jolla

```
ucsd <- filter(sd, zip_code_tabulation_area=="92037")
ucsd[1,]$age5_plus_population</pre>
```

[1] 36144

Q15. Using ggplot make a graph of the vaccination rate time course for the 92037 ZIP code area:

```
ggplot(ucsd) +
  aes(as_of_date,
  percent_of_population_fully_vaccinated) +
  geom_point() +
  geom_line(group=1) +
  ylim(c(0,1)) +
  labs(title = "Vaccination rate for La Jolla CA 92109", x = "Date", y="Percent Vaccinated")
```


We have about $\sim 90\%$ fully vaccinated.

Comparing 92037 to other similar sized areas

Let's return to the full dataset and look across every zip code area with a population at least as large as that of 92037 on as_of_date "2021-11-16".

```
# Subset to all CA areas with a population as large as 92037
vax.36.all <- filter(vax, age5_plus_population > 36144)
nrow(vax.36.all)
```

[1] 18906

How many unique zip codes have a population as large as 92037?

```
length(unique(vax.36.all$zip_code_tabulation_area))
```

[1] 411

Q16. Calculate the mean "Percent of Population Fully Vaccinated" for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2021-11-16". Add this as a straight horizontal line to your plot from above with the geom_hline() function?

$\#mean(vax.36\$percent_of_population_fully_vaccinated)$

Add H-line

```
ggplot(ucsd) +
  aes(as_of_date,
  percent_of_population_fully_vaccinated) +
  geom_point() +
  geom_line(group=1) +
  geom_hline(yintercept = 0.66, col = "red") +
  ylim(c(0,1)) +
  labs(title = "Vaccination rate for La Jolla CA 92109", x = "Date", y="Percent Vaccinated")
```

Vaccination rate for La Jolla CA 92109

Q17. What is the 6 number summary (Min, 1st Qu., Median, Mean, 3rd Qu., and Max) of the "Percent of Population Fully Vaccinated" values for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2021-11-16"?

```
summary(vax.36.all$percent_of_population_fully_vaccinated)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 0.00012 0.16384 0.46031 0.40615 0.61044 1.00000 180
```

 ${\bf Q18.}$ Using ggplot generate a histogram of this data.

Histogram of vax.36.all\$percent_of_population_fully_vaccinated

 $\mathbf{Q19}$. Is the 92109 and 92040 ZIP code areas above or below the average value you calculated for all these above?

They are below the average value I calculated.

Q20. Finally make a time course plot of vaccination progress for all areas in the full dataset with a $age5_plus_population > 36144$.

```
ggplot(vax.36.all) +
  aes(as_of_date,
    percent_of_population_fully_vaccinated,
    group = zip_code_tabulation_area) +
    geom_line(alpha = 0.2, col = "blue") +
    geom_hline(yintercept = 0.66, col = "red") + labs(title = "Vaccination rate across California", s
```

Warning: Removed 180 row(s) containing missing values (geom_path).

Vaccination rate across California

Only areas with a population above 36k are shown.

Q21. How do you feel about traveling for Thanksgiving and meeting for in-person class next Week?

I would rather not meet in person. I feel like we're going to see high rates of exposure, even if everyone is fully vaccinated. I would be happy to log online during next week's classes; or at least maybe we could have a hybrid week? Maybe Tuesday online and Thursday in person (after hopefully everyone gets tested); I do like the help in person provides, I'm just a little scared about potential exposure.