Title Subtitle

Rebecca Wei

Northwestern University

Date/Event

Theorem

(Hochschild-Kostant-Rosenberg, '62) Let A be a regular, commutative algebra over a field k of characteristic 0. Then,

$$(C_{\bullet}(A,A),b) \xrightarrow{\sim} \Omega^{\bullet}_{A/k}$$
$$(C^{\bullet}(A,A),\delta) \xrightarrow{\sim} \wedge^{\bullet} T_{A} = \wedge^{\bullet}(Der_{k}(A,A)).$$

Theorem

(Hochschild-Kostant-Rosenberg, '62) Let A be a regular, commutative algebra over a field k of characteristic 0. Then,

$$(C_{\bullet}(A,A),b) \xrightarrow{\sim} \Omega^{\bullet}_{A/k}$$
$$(C^{\bullet}(A,A),\delta) \xrightarrow{\sim} \wedge^{\bullet} T_{A} = \wedge^{\bullet}(Der_{k}(A,A)).$$

Theorem

(Kontsevich, '97) Let $A=C^{\infty}(M)$ for M a smooth real manifold. Then, there is an L_{∞} map

$$(C^{\bullet+1}(A,A),\delta,[,]_{Ger})\stackrel{\sim}{\to} (\wedge^{\bullet+1}T_A,d=0,[,]_{SN}).$$

Theorem

(Hochschild-Kostant-Rosenberg, '62) Let A be a regular, commutative algebra over a field k of characteristic 0. Then,

$$(C_{\bullet}(A,A),b) \xrightarrow{\sim} \Omega^{\bullet}_{A/k}$$
$$(C^{\bullet}(A,A),\delta) \xrightarrow{\sim} \wedge^{\bullet} T_{A} = \wedge^{\bullet}(Der_{k}(A,A)).$$

Theorem

(Tamarkin, '98) Dependent on the choice of a Drinfeld associator, there is a Ger_{∞} map

$$(C^{\bullet+1}(A,A),\delta,[,]_{Ger},\cup,...)\stackrel{\sim}{\to} (\wedge^{\bullet}T_A,d=0,[,]_{SN},\wedge).$$

Theorem

(Hochschild-Kostant-Rosenberg, '62) Let A be a regular, commutative algebra over a field k of characteristic 0. Then,

$$(C_{\bullet}(A,A),b) \xrightarrow{\sim} \Omega^{\bullet}_{A/k}$$
$$(C^{\bullet}(A,A),\delta) \xrightarrow{\sim} \wedge^{\bullet} T_{A} = \wedge^{\bullet}(Der_{k}(A,A)).$$

Theorem

(Dolgushev-Tamarkin-Tsygan, '08) There is a $Calc_{\infty}$ map

$$(C^{\bullet}(A,A), C_{-\bullet}(A,A)) \xrightarrow{\sim} (\wedge^{\bullet} T_A, \Omega^{\bullet}_{A/k}).$$

Theorem

(Hochschild-Kostant-Rosenberg, '62) Let A be a regular, commutative algebra over a field k of characteristic 0. Then,

$$(C_{\bullet}(A,A),b) \xrightarrow{\sim} \Omega^{\bullet}_{A/k}$$
$$(C^{\bullet}(A,A),\delta) \xrightarrow{\sim} \wedge^{\bullet} T_{A} = \wedge^{\bullet}(Der_{k}(A,A)).$$

Theorem

(Dolgushev-Tamarkin-Tsygan, '08) There is a $Calc_{\infty}$ map

$$(C^{\bullet}(A,A), C_{-\bullet}(A,A)) \xrightarrow{\sim} (\wedge^{\bullet} T_A, \Omega^{\bullet}_{A/k}).$$

Can we use this calculus structure to create a cyclic object?

Fix an algebra, A. Define a dg category, Hoch(A):

Fix an algebra, A. Define a dg category, Hoch(A): Objects: algebra maps $f: A \to A$ Morphisms: $Hoch(A)(f,g) = (C^{\bullet}(A, {}_fA_g), {}_f\delta_g)$

Fix an algebra, A.

Define a dg category, Hoch(A):

Objects: algebra maps $f: A \rightarrow A$

Morphisms: $Hoch(A)(f,g) = (C^{\bullet}(A, {}_{f}A_{g}), {}_{f}\delta_{g})$

$$\begin{split} {}_{f}\delta_{g}(\phi)(a_{1}\otimes\ldots\otimes a_{n})=&\epsilon_{\phi}\bigg(f(a_{1})\cdot\phi(a_{2},\ldots,a_{n})+\\ &+\sum_{1\leq i\leq n-1}(-1)^{i}\phi(a_{1},\ldots,a_{i}a_{i+1},\ldots,a_{n})+\\ &+(-1)^{n}\phi(a_{1},\ldots,a_{n-1})\cdot g(a_{n})\bigg)\\ &\epsilon_{\phi}=&(-1)^{|\phi|+1} \end{split}$$

Fix an algebra, A.

Define a dg category, Hoch(A):

Objects: algebra maps $f: A \rightarrow A$

Morphisms: $Hoch(A)(f,g) = (C^{\bullet}(A, {}_{f}A_{g}), {}_{f}\delta_{g})$

Composition: cup product on cochains

Fix an algebra, A.

Define a dg category, Hoch(A):

Objects: algebra maps $f: A \rightarrow A$

Morphisms: $Hoch(A)(f,g) = (C^{\bullet}(A, {}_{f}A_{g}), {}_{f}\delta_{g})$

Composition: cup product on cochains

Fix an algebra, A. Define a dg category, Hoch(A):

$$Bar(Hoch(A)) \otimes Bar(Hoch(A)) \xrightarrow{\bullet} Hoch(A)$$

Fix an algebra, A. Define a dg category, Hoch(A):

$$Bar(Hoch(A)) \otimes Bar(Hoch(A)) \xrightarrow{\bullet} Hoch(A)$$

A morphism from f_0 to f_n in Bar(Hoch(A))

Fix an algebra, A. Define a dg category, Hoch(A):

$$Bar(Hoch(A)) \otimes Bar(Hoch(A)) \xrightarrow{\bullet} Hoch(A)$$

Fix an algebra, A. Define a dg category, Hoch(A):

$$Bar(Hoch(A)) \otimes Bar(Hoch(A)) \xrightarrow{\bullet} Hoch(A)$$

$$\psi\{\phi_{1},\ldots,\phi_{n}\}(a_{1},\ldots,a_{q}) = \sum_{1 \leq i_{1} \leq \ldots \leq i_{n} \leq q} \pm \psi(a_{1},\ldots,a_{i_{1}},\phi_{1}(a_{i_{1}+1},\ldots),\ldots,\phi_{n}(a_{i_{n}+1},\ldots),\ldots)$$

Fix an algebra, A. Define a dg category, Hoch(A):

In this context, braces, •, give multilinear maps:

Then, $(Bar(Hoch(A)), \bullet)$ is an algebra in DGCocats.

Fix an algebra, A. Define a dg category, Hoch(A):

In this context, braces, •, give multilinear maps:

Then, $(Bar(Hoch(A)), \bullet)$ is an algebra in DGCocats. But we have more...

Fix algebras, $A_0, A_1, ..., A_n$. We will define a dg cocategory $B(A_0 \to A_1 \to ... \to A_n \to A_0)$ where $B(A_0 \to A_0) := Bar(Hoch(A_0))$ for n=0.

Fix algebras, $A_0, A_1, ..., A_n$. We will define a dg cocategory $B(A_0 \to A_1 \to ... \to A_n \to A_0)$ where $B(A_0 \to A_0) := Bar(Hoch(A_0))$ for n=0.

Objects: $\{A_0 \xrightarrow{f_0} A_1 \xrightarrow{f_1} \dots \xrightarrow{f_{n-1}} A_n \xrightarrow{f_n} A_0\}$ A morphism from $(A_0 \xrightarrow{f_{0,0}} \dots \xrightarrow{f_{n,0}} A_0)$ to $(A_0 \xrightarrow{f_{0,k_0}} \dots \xrightarrow{f_{n,k_n}} A_0)$:

Example

We have a dg functor

$$\hat{\tau}_{n}: B(A_{0} \to \dots \to A_{n} \to A_{0}) \to B(A_{n} \to A_{0} \to \dots \to A_{n})$$

$$Obj: \qquad (f_{0}, \dots, f_{n}) \mapsto (f_{n}, f_{0}, \dots, f_{n-1})$$

$$Mor: A_{0} : A_{1} : \dots : A_{n} : A_{0} \mapsto A_{n} : A_{0} : \dots : A_{n-1} : A_{n}$$

$$f_{0,1} \downarrow \downarrow \phi_{n,1} \downarrow \downarrow \phi_{n,1} \downarrow \downarrow \phi_{n,1} \downarrow \phi_{n,1} \downarrow \phi_{n,1}$$

$$f_{n-1,1} \downarrow \downarrow \phi_{n-1,1} \downarrow \phi_{n-$$

Example

For $n \ge 1, 0 \le j < n$, we have a dg functor

$$\hat{\delta}_{j,n}: B(A_0 \to \dots \to A_n \to A_0) \to B(A_0 \to \dots \to A_j \to A_{j+2} \to \dots \to A_0)$$

$$Obj: \qquad (f_0, \dots, f_n) \mapsto (f_0, \dots, f_{j+1}f_j, \dots, f_n)$$

$$f_{0,0} \to A_0 \to A_1 \to A_1 \to A_0$$

$$f_{0,1} \to A_1 \to A_1 \to A_0 \to A_0$$

Example

For $n \ge 0, 0 \le i \le n$, we have a dg functor

$$\hat{\sigma}_{i,n}: B(A_0 \to \dots \to A_n \to A_0) \to B(A_0 \to \dots \to A_i \to A_i \to \dots \to A_0)$$

$$Obj: \qquad (f_0, \dots, f_n) \mapsto (f_0, \dots, f_{i-1}, id_{A_i}, f_i, \dots, f_n)$$

$$Mor: A_0 : A_1 : \dots : A_n : A_0 \mapsto A_0 : \dots : A_i : A_i : \dots : A_0$$

$$\downarrow \downarrow \phi_{0,1} \downarrow \downarrow \phi_{0,1} \downarrow \downarrow \phi_{0,k} \downarrow \downarrow \phi_{0,k} \downarrow \phi$$

A sheafy-cyclic object in DGCocat

Definition

Let χ be the category with objects $\{A_0 \to A_1 \to ... \to A_n \to A_0\}$ and morphisms compositions of

rotations
$$\tau_n: \mathcal{A} \mapsto (A_n \to A_0 \to ... \to A_n)$$

coboundaries $\delta_{j,n}: \mathcal{A} \mapsto (A_0 \to ... \to A_j \to A_{j+2 \, (mod \, n+1)} \to ... \to A_0)$
codegeneracies $\sigma_{i,n}: \mathcal{A} \mapsto (A_0 \to ... \to A_i \to A_i \to ... \to A_0)$

where $\mathcal{A}:=(A_0\to\ldots\to A_n\to A_0)$, subject to the cyclic relations.

A sheafy-cyclic object in DGCocat

Definition

Let χ be the category with objects $\{A_0 \to A_1 \to ... \to A_n \to A_0\}$ and morphisms compositions of

rotations
$$\tau_n: \mathcal{A} \mapsto (A_n \to A_0 \to \dots \to A_n)$$

coboundaries $\delta_{j,n}: \mathcal{A} \mapsto (A_0 \to \dots \to A_j \to A_{j+2 \, (mod \, n+1)} \to \dots \to A_0)$
codegeneracies $\sigma_{i,n}: \mathcal{A} \mapsto (A_0 \to \dots \to A_i \to A_i \to \dots \to A_0)$

where $\mathcal{A}:=(A_0\to\ldots\to A_n\to A_0)$, subject to the cyclic relations.

Proposition

We have a functor $\chi \to DGCocat$

Objects:
$$(A_0 \to ... \to A_n \to A_0) \mapsto B(A_0 \to ... \to A_n \to A_0)$$

Generating morphisms: $\lambda \mapsto \hat{\lambda}$

Each dg cocategory $B(A_0 \to ... \to A_n \to A_0)$ has a dg comodule $C(A_0 \to ... \to A_n \to A_0)$ (which is a categorified version of the bar complex of Hochschild chains as a module over Hochschild cochains via contraction).

Each dg cocategory $B(A_0 \to ... \to A_n \to A_0)$ has a dg comodule $C(A_0 \to ... \to A_n \to A_0)$ (which is a categorified version of the bar complex of Hochschild chains as a module over Hochschild cochains via contraction).

Motivating Question: Can we extend the sheafy-cyclic structure to the comodules? In other words, can we give a functor

$$\chi \to \mathcal{D} := \{(\textit{dg cocat}, \textit{dg comod})\}?$$

Each dg cocategory $B(A_0 \to ... \to A_n \to A_0)$ has a dg comodule $C(A_0 \to ... \to A_n \to A_0)$ (which is a categorified version of the bar complex of Hochschild chains as a module over Hochschild cochains via contraction).

Motivating Question: Can we extend the sheafy-cyclic structure to the comodules? In other words, can we give a functor

$$\chi \to \mathcal{D} := \{(dg \ cocat, \ dg \ comod)\}$$
?

No.

Each dg cocategory $B(A_0 \to ... \to A_n \to A_0)$ has a dg comodule $C(A_0 \to ... \to A_n \to A_0)$ (which is a categorified version of the bar complex of Hochschild chains as a module over Hochschild cochains via contraction).

Motivating Question: Can we extend the sheafy-cyclic structure to the comodules? In other words, can we give a functor

$$\chi \to \mathcal{D} := \{(\textit{dg cocat}, \textit{dg comod})\}?$$

$$\chi_{\infty} \to \mathcal{D}_{\infty} \quad \textit{dg categories}$$

Each dg cocategory $B(A_0 \to ... \to A_n \to A_0)$ has a dg comodule $C(A_0 \to ... \to A_n \to A_0)$ (which is a categorified version of the bar complex of Hochschild chains as a module over Hochschild cochains via contraction).

Motivating Question: Can we extend the sheafy-cyclic structure to the comodules? In other words, can we give A_{∞} -functor

$$\chi \to \mathcal{D} := \{(\textit{dg cocat}, \textit{dg comod})\}?$$

$$\chi_{\infty} \to \mathcal{D}_{\infty} \quad \textit{dg categories}$$

Rest of this talk: Describe our A_{∞} -functor $\mathcal{F}: \chi_{\infty} \to \mathcal{D}_{\infty}$.

Rest of this talk: Describe our A_{∞} -functor $\mathcal{F}: \chi_{\infty} \to \mathcal{D}_{\infty}$.

- ullet Define dg categories χ_{∞} and \mathcal{D}_{∞}
- Define dg comodules $C(A_0 \rightarrow ... \rightarrow A_n \rightarrow A_0)$
- ullet Define the A_{∞} -functor ${\mathcal F}$

 χ_{∞} :

Objects: same objects as $\chi = \{A_0 \to ... \to A_n \to A_0\}$ $\chi^{\bullet}_{\infty}(X, Y) := \{\sum a_i v_i : a_i \in k, v_i \in \chi(X, Y)\}$

 χ_{∞} :

Objects: same objects as
$$\chi = \{A_0 \to ... \to A_n \to A_0\}$$

 $\chi^{\bullet}_{\infty}(X, Y) := \{\sum a_i v_i : a_i \in k, v_i \in \chi(X, Y)\}$

 \mathcal{D}_{∞} :

Objects: same objects as $\mathcal{D} = \{(\operatorname{dg\ cocategory}, \operatorname{dg\ comodule})\}$

$$\mathcal{D}^{p}_{\infty}\big((B_{1},C_{1}),(B_{0},C_{0})\big) := \begin{cases} F:B_{1} \to B_{0} \ dg \ functor, \\ F_{!}:C_{1} \to F^{*}C_{0} \ degree-p \ linear \ map \end{cases}$$
$$d_{D_{\infty}}(F,F_{!}) = (F,[d,F_{!}] = d_{F^{*}C_{0}} \circ F_{!} \pm F_{!} \circ d_{C_{1}})$$

 χ_{∞} :

Objects: same objects as
$$\chi = \{A_0 \to ... \to A_n \to A_0\}$$

 $\chi^{\bullet}_{\infty}(X, Y) := \{\sum a_i v_i : a_i \in k, v_i \in \chi(X, Y)\}$

 \mathcal{D}_{∞} :

Objects: same objects as $\mathcal{D} = \{(\text{dg cocategory}, \text{dg comodule})\}\$

$$\mathcal{D}^{p}_{\infty}\big((B_{1},C_{1}),(B_{0},C_{0})\big) := \begin{cases} F:B_{1} \to B_{0} \ dg \ functor, \\ F_{!}:C_{1} \to F^{*}C_{0} \ degree-p \ linear \ map \end{cases}$$

$$d_{D_{\infty}}(F,F_{!}) = (F,[d,F_{!}] = d_{F^{*}C_{0}} \circ F_{!} \pm F_{!} \circ d_{C_{1}})$$

 F^*C_0 is the categorified version of co-extension of scalars:

$$F^*C_0 = ker(B_1 \otimes C_0
ightharpoonup B_1 \otimes B_0 \otimes C_0)$$

Definition

A **dg comodule** C over a dg cocategory B consists of the following data:

- for each object $f \in B$, a complex $C^{\bullet}(f)$, and
- maps of complexes

$$\Delta_{\mathcal{C}}(f): \mathcal{C}^{\bullet}(f) \to \prod_{g \in Obj(B)} \mathcal{B}^{\bullet}(f,g) \otimes \mathcal{C}^{\bullet}(g).$$

such that the following diagrams for coassociativity and counitality commute:

Fix algebras $A_0, ..., A_n$.

Define a dg comodule over $B(A_0 \rightarrow ... \rightarrow A_n \rightarrow A_0)$:

$$C(A_0 \to ... \to A_n \to A_0)^{\bullet}(f_{0,0}, ..., f_{n,0}) :=$$

Fix algebras $A_0, ..., A_n$.

Define a dg comodule over $B(A_0 \rightarrow ... \rightarrow A_n \rightarrow A_0)$:

$$C(A_0 \to ... \to A_n \to A_0)^{\bullet}(f_{0,0}, ..., f_{n,0}) :=$$

Fix algebras $A_0, ..., A_n$.

Define a dg comodule over $B(A_0 \rightarrow ... \rightarrow A_n \rightarrow A_0)$:

$$C(A_0 \to ... \to A_n \to A_0)^{\bullet}(f_{0,0}, ..., f_{n,0}) :=$$

$$d_{C(A_0 \to \ldots \to A_0)} = d_B \otimes id_{C_{-\bullet}} + id_B \otimes b + \tilde{\iota}$$

where $\tilde{\iota}$ is given as follows:

where $\tilde{\iota}$ is given as follows:

$$C(A_0 \to \dots \to A_0)^{\bullet}(f_{0,0}, \dots, f_{n,0}) \xrightarrow{\tilde{\iota}} C_{-\bullet}(A_0, f_{n,0} \dots f_{0,0} A_0)$$

$$\stackrel{\varepsilon}{\underset{\text{coderivation}}{\underset{\text{coderivation}}{\tilde{\iota}}}} C(A_0 \to \dots \to A_0)^{\bullet}(f_{0,0}, \dots, f_{n,0})$$

$$\widetilde{\iota}((\phi_{0,1}|\ldots|\phi_{0,k_0})\otimes\ldots\otimes(\phi_{n,1}|\ldots|\phi_{n,k_n})\otimes\alpha) = \iota_{(\phi_{0,1}|\ldots|\phi_{0,k_0})\bullet\ldots\bullet(\phi_{n,1}|\ldots|\phi_{n,k_n})}\alpha$$

$$\iota_{\phi}(a_0\otimes\ldots a_p) = \pm\phi(a_{d+1},\ldots,a_n)\cdot a_0\otimes a_1\otimes\ldots\otimes a_d \quad \text{where } |\phi| = n-d$$

$$\mathcal{A}:=(A_0\to ...\to A_n\to A_0)$$

$$\chi_{\infty} \to \mathcal{D}_{\infty}$$

$$\mathcal{A}:=(A_0\to ...\to A_n\to A_0)$$

$$\chi_{\infty} \to \mathcal{D}_{\infty}$$
 $\mathcal{A} \mapsto (\mathcal{B}(\mathcal{A}), \mathcal{C}(\mathcal{A}))$

$$\mathcal{A}:=(A_0\to\ldots\to A_n\to A_0)$$

$$\mathcal{A} \mapsto (B(\mathcal{A}), C(\mathcal{A}))$$
Generating Morphisms: $\sigma_{i,n} \mapsto \begin{pmatrix} B(\mathcal{A}) \xrightarrow{\hat{\sigma}_{i,n}} B(\sigma_{i,n}\mathcal{A}) \\ C(\mathcal{A}) \xrightarrow{id} \hat{\sigma}_{i,n}^* C(\sigma_{i,n}\mathcal{A}) \end{pmatrix}$

$$\delta_{j,n} \mapsto \begin{pmatrix} B(\mathcal{A}) \xrightarrow{\hat{\delta}_{j,n}} B(\delta_{j,n}\mathcal{A}) \\ C(\mathcal{A}) \xrightarrow{id} \hat{\delta}_{i,n}^* C(\delta_{i,n}\mathcal{A}) \end{pmatrix} \quad \tau_n \mapsto \begin{pmatrix} B(\mathcal{A}) \xrightarrow{\hat{\tau}_{n}} B(\tau_n \mathcal{A}) \\ C(\mathcal{A}) \xrightarrow{id} \hat{\sigma}_{i,n}^* C(\tau_n \mathcal{A}) \end{pmatrix}$$

 $\chi_{\infty} \to \mathcal{D}_{\infty}$

$$\hat{\tau}_n^* C(\tau_n \mathcal{A})^{\bullet}(\underbrace{f_0, \ldots, f_n}) \cong C(\tau_n \mathcal{A})^{\bullet}(f_n, f_0, \ldots, f_{n-1}) \text{ as complexes.}$$

$$\hat{\tau}_n^* C(\tau_n \mathcal{A})^{\bullet}(\underbrace{f_0, \dots, f_n}_{\in Obj(B(\mathcal{A}))}) \cong C(\tau_n \mathcal{A})^{\bullet}(f_n, f_0, \dots, f_{n-1}) \text{ as complexes.}$$

$$\hat{\tau}_n^* C(\tau_n \mathcal{A})^{\bullet}(\underbrace{f_0, \ldots, f_n}_{\in Obj(B(\mathcal{A}))}) \cong C(\tau_n \mathcal{A})^{\bullet}(f_n, f_0, \ldots, f_{n-1}) \text{ as complexes.}$$

$$n=1: \quad C(A_0 \to A_1 \to A_0)^{\bullet}(f,g) \xrightarrow{\tau_{1!}} C(A_1 \to A_0 \to A_1)^{\bullet}(g,f)$$

$$\widehat{\tau}_n^*C(\tau_n\mathcal{A})^{\bullet}(\underbrace{f_0,\ldots,f_n}_{\in Obj(B(\mathcal{A}))})\cong C(\tau_n\mathcal{A})^{\bullet}(f_n,f_0,\ldots,f_{n-1}) \text{ as complexes}.$$

$$n = 1: \quad C(A_0 \to A_1 \to A_0)^{\bullet}(f,g) \xrightarrow{\tau_{11}} C(A_1 \to A_0 \to A_1)^{\bullet}(g,f)$$

$$\downarrow \downarrow \phi_{0,1} \qquad \downarrow \downarrow \phi_{1,1} \qquad \downarrow \phi_{1,$$

$$\widehat{\tau}_n^* C(\tau_n \mathcal{A})^{\bullet}(\underbrace{f_0, \dots, f_n}_{\in Obj(B(\mathcal{A}))}) \cong C(\tau_n \mathcal{A})^{\bullet}(f_n, f_0, \dots, f_{n-1}) \text{ as complexes.}$$

$$n = 1: \quad C(A_0 \to A_1 \to A_0)^{\bullet}(f,g) \xrightarrow{\tau_{11}} C(A_1 \to A_0 \to A_1)^{\bullet}(g,f)$$

$$\downarrow f_{0,0} \qquad \downarrow f_{1,0} \qquad \downarrow f_{1,1} \qquad \downarrow f_{1,1} \qquad \downarrow f_{1,1} \qquad \downarrow f_{1,0} \qquad$$

Strategy: Give these maps to cogenerators to define $\tau_{1!}$, then let

$$\tau_{n!}: C(\mathcal{A}) \cong \hat{\delta}_{0}^{*n-1}C(A_{0} \to A_{n} \to A_{0}) \xrightarrow{\hat{\delta}_{0}^{*n-1}\tau_{1!}} \hat{\delta}_{0}^{*n-1}\hat{\tau}_{1}^{*}C(A_{n} \to A_{0} \to A_{n}) \cong$$

$$\cong (\widehat{\tau_{1}}\widehat{\delta_{0}^{n-1}})^{*}C(A_{n} \to A_{0} \to A_{n}) \cong (\widehat{\delta_{0}^{n-1}\tau_{n}})^{*}C(A_{n} \to A_{0} \to A_{n}) \cong$$

$$\cong \hat{\tau}_{n}^{*}\hat{\delta}_{0}^{*n-1}C(A_{n} \to A_{0} \to A_{n}) \cong \hat{\tau}_{n}^{*}C(\tau_{n}\mathcal{A}).$$

$$n=1:$$
 $C(A_0 o A_1 o A_0)^{ullet}(f,g) \xrightarrow{ au_1!} C(A_1 o A_0 o A_1)^{ullet}(g,f)$

 id_{A_0}

$$[b, \bar{\tau}_{1!}](\phi \otimes \alpha) \pm \bar{\tau}_{1!}(\delta \phi \otimes \alpha) = [\bar{\tau}_{1!}, \iota_{\phi}](\alpha)$$

$$[b, \bar{\tau}_{1!}](\phi \otimes \alpha) \pm \bar{\tau}_{1!}(\delta \phi \otimes \alpha) = [\bar{\tau}_{1!}, \iota_{\phi}](\alpha)$$

$$L_{\phi}(\alpha) = \sum_{k \geq 1} \pm a_0 \otimes ... \otimes \phi(a_k, ...) \otimes a_r \otimes ... \otimes a_n + \sum_{k \geq 1} \pm \phi(a_k, ..., a_n, a_0, ...) \otimes a_s \otimes ... \otimes a_{k-1}$$
$$[b, L_{\phi}] \pm L_{\delta \phi} = 0$$

$$[b, \bar{\tau}_{1!}](\phi \otimes \alpha) \pm \bar{\tau}_{1!}(\delta \phi \otimes \alpha) = [\bar{\tau}_{1!}, \iota_{\phi}](\alpha)$$

$$\begin{split} \bar{\tau}_{1!}(\phi \otimes \alpha) &= \sum_{k \geq 1} \pm f_{0,0} a_0 \otimes \ldots \otimes \phi(a_k, \ldots) \otimes f_{0,1} a_r \ldots \otimes f_{0,1} a_n + \\ &\qquad \qquad \sum \pm \phi(f_{1,0} f_{0,1} a_k, \ldots, f_{1,0} f_{0,1} a_n, a_0, \ldots) \otimes f_{0,1} a_s \otimes \ldots \otimes f_{0,1} a_{k-1} \\ [b, \bar{\tau}_{1!}(\phi, -)] &\pm \bar{\tau}_{1!}(\delta \phi, -) = [\bar{\tau}_{1!}, \iota_{\phi}] \end{split}$$

$$\begin{split} \bar{\tau}_{1!} \big(\big(\phi_{0,1}| \dots | \phi_{0,k_0} \big) \otimes \big(\phi_{1,1}| \dots | \phi_{1,k_1} \big) \otimes \alpha \big) &= \\ & f_{1,0} f_{0,i} a_p, \dots, f_{1,0} \phi_{0,i+1} (a_*, \dots), \\ & f_{1,0} f_{0,i+1} a_*, \dots, f_{1,0} \phi_{0,j_1} (a_*, \dots), \\ & f_{1,0} f_{0,j_1} a_*, \dots, \phi_{1,1} (f_{0,j_1} a_*, \dots, \phi_{0,j_{j+1}} (a_*, \dots), \dots), \dots, \big) \otimes \\ & i \leq j_1 \leq \dots \leq j_{2k_1} \leq k_0 \\ & \otimes f_{0,1} a_* \otimes \dots \otimes \phi_{0,2} \big(a_*, \dots \big) \otimes f_{0,2} a_* \otimes \dots \otimes \\ & \otimes f_{0,1} a_* \otimes \dots \otimes \phi_{0,2} \big(a_*, \dots \big) \otimes f_{0,2} a_* \otimes \dots \otimes \\ & \otimes \phi_{0,i} \big(a_*, \dots \big) \otimes f_{0,i} a_* \otimes \dots f_{0,i} a_{p-1} + \\ & \left(\sum \pm f_{0,0} a_0 \otimes \dots \otimes \phi_{0,1} \big(a_*, \dots \big) \otimes \dots \otimes \phi_{0,n_0} \big(a_*, \dots \big) \otimes \\ & \otimes f_{0,n_0} a_* \otimes \dots \otimes f_{0,n_0} a_n \quad \text{if } k_1 = 0 \right) \end{split}$$

$$\mathcal{A}:=(A_0\to ...\to A_n\to A_0)$$

$$\chi_{\infty} \to \mathcal{D}_{\infty}
A \mapsto (B(\mathcal{A}), C(\mathcal{A}))$$
Generating Morphisms: $\sigma_{i,n} \mapsto \begin{pmatrix} B(\mathcal{A}) \xrightarrow{\hat{\sigma}_{i,n}} B(\sigma_{i,n}\mathcal{A}) \\ C(\mathcal{A}) \xrightarrow{id} \hat{\sigma}_{i,n}^* C(\sigma_{i,n}\mathcal{A}) \end{pmatrix}$

$$\delta_{j,n} \mapsto \begin{pmatrix} B(\mathcal{A}) \xrightarrow{\hat{\delta}_{j,n}} B(\delta_{j,n}\mathcal{A}) \\ C(\mathcal{A}) \xrightarrow{id} \hat{\delta}_{i,n}^* C(\delta_{j,n}\mathcal{A}) \end{pmatrix} \quad \tau_n \mapsto \begin{pmatrix} B(\mathcal{A}) \xrightarrow{\hat{\tau}_n} B(\tau_n \mathcal{A}) \\ C(\mathcal{A}) \xrightarrow{id} \hat{\sigma}_{i,n}^* C(\tau_n \mathcal{A}) \end{pmatrix}$$

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

$$C(A_0 \to A_1 \to \underbrace{A_0)} \xrightarrow{\overset{\tau_{11}}{\longrightarrow}} \hat{\tau}_1^* C(\tau_1(A_0 \to A_1 \to A_0)) \xrightarrow{\hat{\tau}_1^* \tau_{11}} \hat{\tau}_1^{*2} C(\tau_1^2(A_0 \to A_1 \to A_0))$$

$$id$$

$$C(A_0 \rightarrow A_1 \rightarrow \underbrace{A_0)} \xrightarrow{\overset{\tau_{11}}{\longrightarrow}} \hat{\tau}_1^* C(\tau_1(A_0 \rightarrow A_1 \rightarrow A_0)) \xrightarrow{\hat{\tau}_1^* \tau_{11}} \hat{\tau}_1^{*2} C(\tau_1^2(A_0 \rightarrow A_1 \rightarrow A_0))$$

$$id$$

$$\alpha = \mathsf{a_0} \otimes \ldots \otimes \mathsf{a_n} \overset{\tau_{1!}}{\mapsto} \mathsf{f_{0,0}} \mathsf{a_0} \otimes \ldots \otimes \mathsf{f_{0,0}} \mathsf{a_n} \overset{\hat{\tau}_{1!}^* \tau_{1!}}{\mapsto} \mathsf{f_{1,0}} \mathsf{f_{0,0}} \mathsf{a_0} \otimes \ldots \otimes \mathsf{f_{1,0}} \mathsf{f_{0,0}} \mathsf{a_n}$$

$$C(A_0 \rightarrow A_1 \rightarrow \underbrace{A_0)} \xrightarrow{\overset{\tau_{1!}}{\longrightarrow}} \hat{\tau}_1^* C(\tau_1(A_0 \rightarrow A_1 \rightarrow A_0)) \xrightarrow{\hat{\tau}_1^* \tau_{1!}} \hat{\tau}_1^{*2} C(\tau_1^2(A_0 \rightarrow A_1 \rightarrow A_0))$$

$$id$$

$$A_0 \xrightarrow{f_{0,0}} A_1 \xrightarrow{f_{1,0}} A_0$$

$$\alpha \xrightarrow{id_{A_0}} A_0$$

$$\alpha = a_0 \otimes \ldots \otimes a_n \stackrel{\tau_{11}}{\mapsto} f_{0,0} a_0 \otimes \ldots \otimes f_{0,0} a_n \stackrel{\widehat{\tau}_{1,1}^n \tau_{11}}{\mapsto} f_{1,0} f_{0,0} a_0 \otimes \ldots \otimes f_{1,0} f_{0,0} a_n$$
$$f_{1,0} f_{0,0} \alpha - \alpha = [b, B](\alpha)$$

$$B(a_0 \otimes ... \otimes a_n) = \sum_{0 \leq i \leq n} \pm 1 \otimes f_{1,0} f_{0,0} a_i \otimes ... \otimes f_{1,0} f_{0,0} a_n \otimes a_0 \otimes ... \otimes a_{i-1}$$

$$C(A_0 \rightarrow A_1 \rightarrow \underbrace{A_0)} \xrightarrow{\tau_1} \hat{\tau}_1^* C(\tau_1(A_0 \rightarrow A_1 \rightarrow A_0)) \xrightarrow{\hat{\tau}_1^* \tau_{1!}} \hat{\tau}_1^{*2} C(\tau_1^2(A_0 \rightarrow A_1 \rightarrow A_0))$$

$$id$$

$$A_0 \xrightarrow[f_{0,1}]{f_{0,1}} A_1 \xrightarrow[id_{A_0}]{f_{1,0}} A_0 = \phi \otimes \alpha$$

$$(\widehat{\tau}^*\tau_{1!}\circ\tau_{1!}-id)(\phi\otimes\alpha)=\text{``}f_{1,0}\circ L_{\phi}(\alpha)\text{''}$$

$$C(A_0 \rightarrow A_1 \rightarrow \underbrace{A_0)} \xrightarrow{\overset{\tau_{11}}{\longrightarrow}} \hat{\tau}_1^* C(\tau_1(A_0 \rightarrow A_1 \rightarrow A_0)) \xrightarrow{\hat{\tau}_1^* \tau_{11}} \hat{\tau}_1^{*2} C(\tau_1^2(A_0 \rightarrow A_1 \rightarrow A_0))$$

$$id$$

$$(\overline{\tau}^*\tau_{1!} \circ \tau_{1!} - id)(\phi \otimes \alpha) = "f_{1,0} \circ L_{\phi}(\alpha)"$$

$$= \sum_{k \geq 1} \pm f_{1,0}f_{0,0}a_0 \otimes \ldots \otimes f_{1,0}\phi(a_k,\ldots) \otimes f_{1,0}f_{0,1}a_r \ldots \otimes f_{1,0}f_{0,1}a_n +$$

$$\sum \pm f_{1,0}\phi(f_{1,0}f_{0,1}a_k,\ldots,f_{1,0}f_{0,1}a_n,a_0,\ldots) \otimes f_{1,0}f_{0,1}a_s \otimes \ldots \otimes f_{1,0}f_{0,1}a_{k-1}$$

$$\stackrel{?}{=} [\iota_{\phi}, B](\alpha) \pm [b, B](\phi \otimes \alpha) \pm B(\delta \phi \otimes \alpha)$$

$$C(A_0 \rightarrow A_1 \rightarrow \underbrace{A_0)} \xrightarrow{\overset{\tau_{11}}{\longrightarrow}} \hat{\tau}_1^* C(\tau_1(A_0 \rightarrow A_1 \rightarrow A_0)) \xrightarrow{\hat{\tau}_1^* \tau_{11}} \hat{\tau}_1^{*2} C(\tau_1^2(A_0 \rightarrow A_1 \rightarrow A_0))$$

$$id$$

$$(\widehat{\tau}^*\tau_{1!} \circ \tau_{1!} - id)(\phi \otimes \alpha) = "f_{1,0} \circ L_{\phi}(\alpha)"$$

$$= \sum_{k \geq 1} \pm f_{1,0}f_{0,0}a_0 \otimes \ldots \otimes f_{1,0}\phi(a_k,\ldots) \otimes f_{1,0}f_{0,1}a_r \ldots \otimes f_{1,0}f_{0,1}a_n +$$

$$\sum \pm f_{1,0}\phi(f_{1,0}f_{0,1}a_k,\ldots,f_{1,0}f_{0,1}a_n,a_0,\ldots) \otimes f_{1,0}f_{0,1}a_s \otimes \ldots \otimes f_{1,0}f_{0,1}a_{k-1}$$

$$\stackrel{?}{=} [\iota_{\phi}, B](\alpha) \pm [b, B](\phi \otimes \alpha) \pm B(\delta \phi \otimes \alpha)$$

$$B(\phi \otimes \alpha) = \sum_{0 \le i \le n} \pm 1 \otimes f_{1,0} f_{0,0} a_i \otimes \ldots \otimes f_{1,0} \phi(a_*,\ldots) \otimes f_{1,0} f_{0,1} a_* \otimes \ldots \otimes f_{1,0} f_{0,1} a_n \otimes a_0 \otimes \ldots \otimes a_{i-1}$$

$$B((\phi_{0,1}|...|\phi_{0,k_{0}})\otimes(\phi_{1,1}|...|\phi_{1,k_{1}})\otimes\alpha) =$$

$$= \sum_{\substack{0 \leq j_{1} \leq ... \leq j_{2k_{1}} \leq k_{0} \\ p}} \pm 1 \otimes f_{1,0}f_{0,0}a_{p} \otimes ... \otimes f_{1,0}\phi_{0,1}(a_{*},...)\otimes$$

$$\otimes f_{1,0}f_{0,1}a_{*} \otimes ... \otimes f_{1,0}\phi_{0,j_{1}}(a_{*},...)\otimes$$

$$\otimes f_{1,0}f_{0,j_{1}}a_{*} \otimes ... \otimes \phi_{1,1}(f_{0,j_{1}}a_{*},...,\phi_{0,j_{1}+1}(a_{*},...),...)\otimes$$

$$\otimes ... \otimes \phi_{1,k_{1}}(f_{0,j_{2k_{1}-1}}a_{*},...,\phi_{0,j_{2k_{1}-1}+1}(a_{*},...),...)\otimes...\otimes$$

$$\otimes a_{0} \otimes ... \otimes a_{p-1}$$

$$\chi_{\infty} \to \mathcal{D}_{\infty}$$

$$\mathcal{A} \mapsto (B(\mathcal{A}), C(\mathcal{A}))$$

$$\tau_{1} \mapsto \begin{pmatrix} \hat{\tau}_{1} : B(\mathcal{A}) \to B(\tau_{1}\mathcal{A}) \\ \tau_{1!} : C(\mathcal{A}) \to \hat{\tau}_{1}^{*}C(\tau_{1}\mathcal{A}) \end{pmatrix}$$

$$(\tau_{1}, \tau_{1}) \mapsto \begin{pmatrix} id : B(\mathcal{A}) \to B(\mathcal{A}) \\ B : C(\mathcal{A}) \to C(\mathcal{A}) \end{pmatrix}$$

$$(\tau_{1}, \tau_{1}, \tau_{1}) \mapsto \begin{pmatrix} \hat{\tau}_{1} : B(\mathcal{A}) \to B(\tau_{1}\mathcal{A}) \\ 0 : C(\mathcal{A}) \to \hat{\tau}_{1}^{*}C(\tau_{1}\mathcal{A}) \end{pmatrix}$$

$$\vdots$$

The A_{∞} relations mean:

- $\tau_{1!}$ is a map of complexes
- $B^2 = 0$
- The following diagram commutes:

$$C(\mathcal{A}) \xrightarrow{\tau_{1!}} \hat{\tau}_{1}^{*} C(\tau_{1} \mathcal{A})$$

$$\downarrow^{B} \qquad \qquad \downarrow^{\hat{\tau}_{1}^{*} B}$$

$$C(\mathcal{A}) \xrightarrow{\tau_{1!}} \hat{\tau}_{1}^{*} C(\tau_{1} \mathcal{A})$$

For higher n > 1, we want to find a homotopy between " $\tau_{n!}^{n+1}$ " and id.

For higher n>1, we want to find a homotopy between " $\tau_{n!}^{n+1}$ " and id. However, it is sufficient to find a homotopy between $\hat{\tau}_n^{*2}\delta_{0,n!}\circ\hat{\tau}_n^*\tau_{n!}\circ\tau_{n!}$ and $\hat{\delta}_{n-1,n}^*\tau_{n-1!}\circ\delta_{n-1,n!}$.

For higher n>1, we want to find a homotopy between " $\tau_{n!}^{n+1}$ " and id. However, it is sufficient to find a homotopy between $\hat{\tau}_n^{*2}\delta_{0,n!}\circ\hat{\tau}_n^*\tau_{n!}\circ\tau_{n!}$ and $\hat{\delta}_{n-1,n}^*\tau_{n-1!}\circ\delta_{n-1,n!}$.

Strategy: Find such a homotopy, \mathcal{B} , for n=2, and use $\hat{\delta}_0^{*n-2}\mathcal{B}$ for n>2.

$$\chi_{\infty} \to \mathcal{D}_{\infty}
A \mapsto (\mathcal{B}(\mathcal{A}), C(\mathcal{A}))$$

$$\mu = \tau_{n-1} \circ \delta_{n-1,n} = \delta_{0,n} \circ \tau_n^2 \mapsto \begin{pmatrix} \hat{\tau}_{n-1} \circ \hat{\delta}_{n-1,n} = \hat{\delta}_{0,n} \circ \hat{\tau}_n^2 \\ \hat{\tau}_n^{*2} \delta_{0,n!} \circ \hat{\tau}_n^* \tau_{n!} \circ \tau_{n!} \end{pmatrix}$$

$$(\delta_{0,n}, \tau_n^2) \mapsto \begin{pmatrix} \hat{\delta}_{0,n} \circ \hat{\tau}_n^2 \\ 0 \end{pmatrix}$$

$$(\tau_{n-1}, \delta_{n-1,n}) \mapsto \begin{pmatrix} \hat{\tau}_{n-1} \circ \hat{\delta}_{n-1,n} \\ \mathcal{B} \end{pmatrix}$$

$$(\tau_{n-1}, \delta_{n-1,n}, \lambda) \mapsto \begin{pmatrix} \hat{\tau}_{n-1} \circ \hat{\delta}_{n-1,n} \circ \hat{\lambda} \\ 0 \end{pmatrix}$$

$$\vdots$$

For n > 1, the A_{∞} relations mean:

- $\tau_{n!}$ is a map of complexes
- $\mathcal{B}^2 = 0$
- We have a pair of homotopic maps:

For n > 1, the A_{∞} relations mean:

- $\tau_{n!}$ is a map of complexes
- $\mathcal{B}^2 = 0$
- They are homotopic via two homotopies:

Summary:

We have a given a "homotopically sheafy-cyclic object in dg cocategories with a dg comodule", i.e., an A_{∞} -functor between dg categories χ_{∞} and \mathcal{D}_{∞} .

Time and interest permitting

- ullet Rectify ${\cal F}$ to a dg functor
- ullet Give a dg functor $\mathcal{D}_{\infty} o \mathcal{E} = \{(\mathsf{dg} \; \mathsf{cat}, \; \mathsf{dg} \; \mathsf{mod})\}$

$$U(\chi_{\infty}) \xrightarrow{rectified} \mathcal{D}_{\infty} \to \mathcal{E}$$

"A homotopically sheafy-cyclic object in dg categories with a dg module"