EE 3070 Statistics

Homework #1

Due at 23:59, March 31, 2023 online submission to eeclass systems

Note: There are **15** questions, each worth **7** points, for a total of 105 points. The maximum score, however, will be capped at 100 points.

You may use computers, software packages, and online tools for this Homework.

- 1. At the beginning of a study of individuals, 15% were classified as heavy smokers, 30% were classified as light smokers, and 55% were classified as nonsmokers. In the five-year study, it was determined that the death rates of the heavy and light smokers were five and three times that of the nonsmokers, respectively. A randomly selected participant died over the five-year period: calculate the probability that the participant was a nonsmoker.
- 2. Let the space of the random variable X be $\mathcal{D} = \{x : 0 < x < 1\}$. If $D_1 = \{x : 0 < x < \frac{1}{2}\}$ and $D_2 = \{x : \frac{1}{2} \le x < 1\}$, find $P_X(D_2)$ if $P_X(D_1) = \frac{1}{4}$.
- 3. Let X have the pmf $p(x) = \frac{1}{3}$, x = -1, 0, 1. Find the pmf of $Y = X^2$.
- 4. Let X have the pdf $f(x) = \frac{1}{9}x^2$, 0 < x < 3, zero elsewhere. Find the pdf of $Y = X^3$.
- 5. Let X have the pdf $f(x) = 3x^2$, 0 < x < 1, zero elsewhere.
 - (a) Compute $E(X^3)$.
 - (b) Show that $Y = X^3$ has a uniform (0,1) distribution.
 - (c) Compute E(Y) and compare this result with the answer obtained in part.
- 6. Suppose X_1 and X_2 have the joint pdf $f_{X_1,X_2}(x_1,x_2)=e^{-(x_1+x_2)},\ 0< x_i<\infty, i=1,2,$ zero elsewhere.
 - (a) Use formula (2.2.2) to find the pdf of $Y_1 = X_1 + X_2$.
 - (b) Find the mgf of Y_1 .

Note. formula (2.2.2) $f_{Y_1}(y_1) = \int_{-\infty}^{\infty} f_{X_1,X_2}(y_1 - y_2, y_2) dy_2$

7. Let the joint pdf of X and Y be given by

$$f(x,y) = \begin{cases} \frac{2}{(1+x+y)^3} & 0 < x < \infty, 0 < y < \infty \\ 0 & \text{elsewhere} \end{cases}$$

- (a) Compute the marginal pdf of X and the conditional pdf of Y, given X = x.
- (b) For a fixed X = x, compute E(1 + x + Y|x) and use the result to compute E(Y|x).
- 8. Let X and Y have the joint pmf $p(x,y) = \frac{1}{7}$, (0,0), (1,0), (0,1), (1,1), (2,1), (1,2), (2,2), zero elsewhere. Find the correlation coefficient ρ .

- 9. Let $f(x_1, x_2, x_3) = e^{-(x_1 + x_2 + x_3)}$, $0 < x_1 < \infty$, $0 < x_2 < \infty$, $0 < x_3 < \infty$, zero elsewhere, be the joint pdf of X_1, X_2, X_3 .
 - (a) Compute $P(X_1 < X_2 < X_3)$ and $P(X_1 = X_2 < X_3)$.
 - (b) Determine the joint mgf of X_1, X_2 and X_3 . Are these random variables independent?
- 10. Let X_1, X_2 and X_3 be iid with common pdf $f(x) = e^{-x}, x > 0$, zero elsewhere. Find the joint pdf of $Y_1 = X_1, Y_2 = X_1 + X_2$ and $Y_3 = X_1 + X_2 + X_3$.
- 11. Find the mean and variance of the sum $Y = \sum_{i=1}^{5} X_i$, where $X_1, ..., X_5$ are iid, having pdf f(x) = 6x(1-x), 0 < x < 1, zero elsewhere.
- 12. Let the independent random variables X_1 and X_2 have binomial distribution with parameters $n_1 = 3$, $p = \frac{2}{3}$ and $n_2 = 4$, $p = \frac{1}{2}$, respectively. Compute $P(X_1 = X_2)$.
- 13. Let X have a Poisson distribution. If P(X=1) = P(X=3), find the mode of the distribution.
- 14. If X is N(1,4), compute the probability $P(1 < X^2 < 9)$
- 15. Let the random variable X have a distribution that is $N(\mu, \sigma^2)$.
 - (a) Does the random variable $Y = X^2$ also have a normal distribution?
 - (b) Would the random variable Y = aX + b, a and b nonzero constants have a normal distribution?

Hint: In each case, first determine $P(Y \leq y)$.