Calculus Class Test II (共50分)

1. Evaluate the limit of the sequences

(1)
$$a_n = \ln(n+1) - \ln n$$
 (2) $a_n = n \sin(\frac{1}{n})$

(2)
$$a_n = n \sin\left(\frac{1}{n}\right)$$

(3)
$$a_n = \sqrt{\left(1 + \frac{1}{2n}\right)^n}$$

(4)
$$a_n = \sqrt[n]{2^{1+3n}}$$

Solution

(1)
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \ln\left(\frac{n+1}{n}\right) = \lim_{n\to\infty} \ln\left(1+\frac{1}{n}\right) = \ln 1 = 0$$

(2)
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} n \sin\left(\frac{1}{n}\right) = \lim_{n\to\infty} \sin\left(\frac{1}{n}\right) / \frac{1}{n} = 1$$

(3)
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \sqrt{\left(1 + \frac{1}{2n}\right)^n} = \sqrt{\lim_{n \to \infty} \left(1 + \frac{1}{2n}\right)^n} = \sqrt{\lim_{n \to \infty} \left(1 + \frac{1}{2n}\right)^{2n \cdot 1/2}} = e^{1/4}$$

$$(4) \lim_{n\to\infty} a_n = \lim_{n\to\infty} \sqrt[n]{2^{1+3n}} = 2^3 \lim_{n\to\infty} \sqrt[n]{2} = 2^3 \lim_{n\to\infty} e^{\frac{1}{n}\ln 2} = 2^3 e^{\lim_{n\to\infty} \frac{1}{n}\ln 2} = 2^3$$

2. Test the infinite series for convergence or divergence

(1)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^3+1}}{3n^3+4n^2+2}$$

(2)
$$\sum_{n=1}^{\infty} ne^{-n^2}$$

(3)
$$\sum_{n=1}^{\infty} \frac{n-1}{2n+1}$$

(4)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{n^4+1}$$

$$(5) \sum_{k=1}^{\infty} \frac{2^k}{k!}$$

(6)
$$\sum_{n=1}^{\infty} \frac{1}{2+3^n}$$

Solution

(1)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^3+1}}{3n^3+4n^2+2}$$

Since a_n is an algebraic function of n, we use Limit Comparison Test to compare the given series with a *p*-series $\sum b_n$, where

$$b_n = \frac{\sqrt{n^3}}{3n^3} = \frac{1}{3n^{3/2}}$$

As $a_n \le b_n$, and the *p*-series $\sum b_n$ is convergent $(p = \frac{3}{2} > 1)$, so $\sum_{n=1}^{\infty} \frac{\sqrt{n^3 + 1}}{3n^3 + 4n^2 + 2}$ is convergent.

(2)
$$\sum_{n=1}^{\infty} ne^{-n^2}$$

Since the integral $\int_{1}^{\infty} xe^{-x^2} dx$ is easily evaluated, we use the Integral Test.

$$\int_{1}^{\infty} x e^{-x^{2}} dx = -\frac{1}{2} \int_{1}^{\infty} e^{-x^{2}} d(-x^{2}) = -\frac{1}{2} e^{-x^{2}} \Big|_{1}^{\infty} = \frac{1}{2} (e^{-1} - 1)$$

So $\sum_{n=1}^{\infty} ne^{-n^2}$ is convergent.

The Ratio Test also works.

(3)
$$\sum_{n=1}^{\infty} \frac{n-1}{2n+1}$$

Since $a_n \to \frac{1}{2} \neq 0$ as $n \to \infty$, according to Divergence Test, $\sum_{n=1}^{\infty} \frac{n-1}{2n+1}$ is divergent.

(4)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{n^4+1}$$

Since the series is alternating, we use the Alternating Series Test.

First to show $a_n = \frac{n^3}{n^4 + 1}$ is decreasing.

Let
$$f(x) = \frac{x^3}{x^4 + 1}$$
, we have $f'(x) = \frac{x^2(3 - x^4)}{(x^4 + 1)^2}$.

When $x > \sqrt[4]{3}$, $3 - x^4 < 0$, f'(x) < 0. So, $a_{n+1} < a_n$ when $n \ge 2$.

Second,
$$\lim_{n \to \infty} \frac{n^3}{n^4 + 1} = \lim_{n \to \infty} \frac{1/n}{1 + 1/n^4} = 0$$

Therefore, $\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{n^4+1}$ is convergent.

(5)
$$\sum_{k=1}^{\infty} \frac{2^k}{k!}$$

Since the series involves k!, we use the Ratio Test.

$$a_{k+1}/a_k = \frac{2^{k+1}}{(k+1)!} \cdot \frac{k!}{2^k} = \frac{2}{k+1} \to 0$$

So $\sum_{k=1}^{\infty} \frac{2^k}{k!}$ is convergent.

(6)
$$\sum_{n=1}^{\infty} \frac{1}{2+3^n}$$

Since the series is closely related to the geometric series $\sum_{n=1}^{\infty} \frac{1}{3^n}$, we use the Comparison Test.

$$\frac{1}{2+3^n} < \frac{1}{3^n}$$

and $\sum_{n=1}^{\infty} \frac{1}{3^n}$ is convergent $(r = \frac{1}{3} < 1)$, so $\sum_{n=1}^{\infty} \frac{1}{2+3^n}$ is convergent.