COMPSCI361: Introduction to Machine Learning Decision Trees

Jörg Simon Wicker
The University of Auckland

Motivating Example

Supervised Learning

Decision Trees

Decision Stumps

Supervised Learning Notation

Decision Tree Learning Pruning

Hypothesis Space

Unsupervised Learning

Partially based on Slides from University of British Columbia

Motivating Example

- You frequently start getting an upset stomach and suspect an adult-onset food allergy
- To solve the mystery, you start a food journal

Egg	Milk	Fish	Wheat	Shellfish	Peanuts	 Sick?
0.0	0.7	0.0	0.3	0.0	0.00	 1
0.3	0.7	0.0	0.6	0.0	0.01	 1
0.0	0.0	0.0	8.0	0.0	0.00	 0
0.3	0.7	1.2	0.0	0.1	0.01	 1
0.3	0.0	1.2	0.3	0.1	0.01	 1

Motivating Example: Food Allergies

E	gg	Milk	Fish	Wheat	Shellfish	Peanuts	 Sick?
0	.0	0.7	0.0	0.3	0.0	0.00	 1
0	.3	0.7	0.0	0.6	0.0	0.01	 1
0	.0	0.0	0.0	8.0	0.0	0.00	 0
0	.3	0.7	1.2	0.0	0.1	0.01	 1
0	.3	0.0	1.2	0.3	0.1	0.01	 1

- What can we learn from this?
- It is hard to find the pattern
 - You can't isolate and only one food at a time
 - You may be allergic to more than one food
 - The quantity matters: a small amount may be OK
 - You may be allergic to specific interactions

Supervised Learning

■ We can formulate this as a supervised learning problem

Egg	Milk	Fish	Wheat	Shellfish	Peanuts		Sick?
0.0	0.7	0.0	0.3	0.0	0.00		1
0.3	0.7	0.0	0.6	0.0	0.01	 \Rightarrow	1
0.0	0.0	0.0	8.0	0.0	0.00	 \rightarrow	0
0.3	0.7	1.2	0.0	0.1	0.01		1
0.3	0.0	1.2	0.3	0.1	0.01		1

- Input for an example (day of the week) is a set of features (quantities of food)
- Output is a desired class label (whether or nor we got sick)
- Goal of supervised learning
 - Use data to find a model that outputs the right label based on the features
 - Model predicts whether foods will make you sick (even with new combinations)

Supervised Learning

- General supervised learning problem:
 - Take features of examples and corresponding labels as inputs
 - Find a model that can accurately predict the labels of new examples
- This is the most successful or widely used machine learning technique
 - Spam filtering, optical character recognition, speech recognition, classifying tumours, etc.
- We'll first focus on categorical labels, which is called classification
 - The model is a called a classifier

Naïve Supervised Learning: Predict Mode

	Egg	Milk	Fish	Wheat	Shellfish	Peanuts	
-	0.0	0.7	0.0	0.3	0.0	0.00	
	0.3	0.7	0.0	0.6	0.0	0.01	 \rightarrow
	0.0	0.0	0.0	8.0	0.0	0.00	 \rightarrow
	0.3	0.7	1.2	0.0	0.1	0.01	
	0.3	0.0	1.2	0.3	0.1	0.01	

Sick?	
1	
1	
0	
1	
1	

- A very naïve supervised learning method?
 - Count how many times each label occurred in the data (4 vs. 1 above)
 - Always predict the most common label, the "mode" ("sick" above)
- This ignores the features, so is only accurate if we only have 1 label
- We want to use the features, and there are MANY ways to do this
 - First, let's look at Decision Trees

Decision Trees

Decision Trees

- Decision trees are simple models consisting of
 - A nested sequence of "if-else" decisions based on the features (splitting rules)
 - A class label as a return value at the end of each sequence
- Example decision tree

 if milk > 0.5 then

 return sick

 else

 if egg > 1 then
 return sick

 else
 return not sick

 end

Can draw sequences of decisions as a

end

- There are many possible decision trees
 - We're going to search for one that is good at our supervised learning problem
- So our input is data and the output will be a program
 - This is called "training" the supervised learning model
 - Different than usual input/output specification for writing a program
- Supervised learning is useful when you have lots of labeled data BUT:
 - 1. Problem is too complicated to write a program ourselves,
 - 2. Human expert can't explain why you assign certain labels, OR
 - 3. We don't have a human expert for the problem.
- So how would you train a decision tree?

Decision Stumps

- We'll start with "decision stumps"
 - Simple decision tree with one splitting rule based on thresholding one feature

- How do we find the best "rule" (feature, threshold, and leaf labels)?
 - 1. Define a 'score' for the rule
 - 2. Search for the rule with the best score
- What would you suggest as a score?

- Maybe most intuitive score: classification accuracy
 - "If we use this rule, how many examples do we label correctly?"
- **Computing classification accuracy for** (egg > 1):
 - Find most common labels if we use this rule:
 - When (egg > 1), we were "sick" 2 times out of 2
 - When $(egg \le 1)$, we were "not sick" 3 times out of 4
 - Compute accuracy:
 - The accuracy ("score") of the rule (egg > 1) is 5 times out of 6
- This "score" evaluates quality of a rule
 - We "learn" a decision stump by finding the rule with the best score.

Egg	Milk	Fish	 Sick?
1	0.7	0.0	 1
2	0.7	0.0	 1
0	0.0	1.2	 0
0	0.7	1.2	 0
2	0.0	1.3	 1
0	0.0	0.0	 0

Learning a Decision Stump: By Hand

- Let's search for the decision stump maximizing classification score:
 - First we check "baseline rule" of predicting mode (no split): this gets 3/6 accuracy
 - If (milk > 0) predict "sick" (2/3) else predict "not sick" (2/3): 4/6 accuracy
 - If (fish > 0) predict "not sick" (2/3) else predict "sick" (2/3): 4/6 accuracy
 - If (fish > 1.2) predict "sick" (1/1) else predict "not sick" (3/5): 5/6 accuracy
 - If (egg > 0) predict "sick" (3/3) else predict "not sick" (3/3): 6/6 accuracy
 - If (egg > 1) predict "sick" (2/2) else predict "not sick" (3/4): 5/6 accuracy
- Highest-scoring rule: (egg > 0), then "sick", else "not sick"
- Notice we only need to test feature thresholds that happen in the data
 - There is no point in testing the rule (egg > 3), it gets the "baseline" score
 - There is no point in testing the rule (egg > 0.5), it gets the (egg > 0) score
 - Also note that we don't need to test "<", since it would give equivalent rules</p>

Egg	Milk	Fish	 Sick?
1	0.7	0.0	 1
2	0.7	0.0	 1
0	0.0	1.2	 0
0	0.7	1.2	 0
2	0.0	1.3	 1
0	0.0	0.0	 0

Supervised Learning Notation

	Egg	Milk	Fish	Wheat	Shellfish	Peanuts			Sick?
	0.0	0.7	0.0	0.3	0.0	0.00			1
	0.3	0.7	0.0	0.6	0.0	0.01	 l		1
X =	0.0	0.0	1.2	8.0	0.0 0.0 0.1	0.00	 >n	y =	0
	0.3	0.7	1.2	0.0	0.1	0.01			1
	0.3	0.0	1.3	0.3	0.1	0.01			_ 1 _
				¥					

- \blacksquare Feature matrix X has rows as examples, columns as features
 - \bullet x_{ij} is feature j for example i (quantity of food j on day i)
 - \bullet x_i is the list of all features for example i (all the quantities on day i)
 - x_i is column j of the matrix(the value of feature j across all examples)
- Label vector *y* contains the labels of the examples
 - y_i is the label of example i (1 for "sick", 0 for "not sick")

	Egg	Milk	Fish	Wheat	Shellfish	Peanuts			Sick?
	0.0	0.7	0.0	0.3	0.0	0.00			1
	0.3	0.7	0.0	0.6	0.0	0.01			1
X =	0.0	0.0	1.2	8.0	0.0	0.00	 >n	y =	0
	0.3	0.7	1.2	0.0	0.1	0.01			1
	0.3	0.0	1.3	0.3	0.1	0.01			_ 1 _
				\sim					

- Training phase
 - Use X and y to find a model (like a decision stump)
- Prediction phase
 - Given an example x_i , use model to predict a label \hat{y}_i ("sick" or "not sick")
- Training error
 - Fraction of times our prediction \hat{y}_i does not equal the true y_i label

Decision Tree Learning

- Decision stumps have only 1 rule based on only 1 feature
 - Very limited class of models: usually not very accurate for most tasks
- Decision trees allow sequences of splits based on multiple features
 - Very general class of models: can get very high accuracy
 - However, it's computationally infeasible to find the best decision tree
- How would you build the tree?
 - Most common decision tree learning algorithm in practice:
 - Greedy recursive splitting

Start with the full data set

Egg	Milk	 Sick?
0	0.7	 1
1	0.7	 1
0	0.0	 0
1	0.6	 1
1	0.0	 0
2	0.6	 1
0	1.0	 1
2	0.0	 1
0	0.3	 0
1	0.6	 0
2	0.0	 1

Find the decision stump with the best score

Split into two smaller data sets based on stump

Egg	Milk	 Sick?	Egg
0	0.0	 0	0
1	0.0	 0	1
2	0.0	 1	1
0	0.3	 0	2
2	0.0	 1	0
			1

Egg	Milk	 Sick?
0	0.7	 1
1	0.7	 1
1	0.6	 1
2	0.6	 1
0	1.0	 1
1	0.6	 0

Greedy Recursive Splitting

We now have a decision stump and two data se	a sets $milk \leq 0.5$					milk > 0.5			
milk > 0.5	Egg	Milk		Sick?	Eg	g Milk		Sick?	
	0	0.0		0	0			1	
no yes	1	0.0		0	1	0.7		1	
	2	0.0		1	1	0.6		1	
	0	0.3		0	2	0.6		1	
not sick sick	2	0.0	• • •	1	0	1.0		1	
	2	0.0	• • •	1	1	0.6		0	
Fit a decision stump to each leat's data Then add these stumps to the tree	no	egg no / ot sick	> 1 yes			fish no not sick	yes	ck	

- We can continue increasing the depth, when do we stop?
 - Leaves each have only one label
 - User-defined maximum depth

Which score function should a decision tree use?

- How about accuracy?
 - For leafs: no issue
 - For internal nodes: not the best choice
- What if no simple rule improves accuracy?
 - This does not necessarily mean we should stop

Which score function should a decision tree use?

- Most common score in practise is "information gain"
 - Choose split that decreases entropy of labels the most

information gain =
$$\underbrace{entropy(y)}_{\text{entropy before split}} - \underbrace{\frac{n_{yes}}{n}}_{\text{entropy examples satisfying rule}} \underbrace{\frac{n_{no}}{n}}_{\text{entropy examples satisfying rule}} - \frac{n_{no}}{n} \underbrace{\frac{n_{no}}{n}}_{\text{entropy examples satisfying rule}} - \frac{n_{no}}$$

with

$$entropy(s) = -p_{sick} \log_2 p_{sick} - p_{not \ sick} \log_2 p_{not \ sick}$$

- Information gain for baseline rule ("do nothing") is 0
 - Infogain is large if labels are "more predictable" ("less random") in next layer
- Even if it does not increase classification accuracy at one depth, we hope that it makes the classification easier at the next depth

number of examples satisfying rule

information gain = entropy(y)
$$-\frac{\overline{n_{yes}}}{n}$$
 entropy(y_{yes}) $-\frac{n_{no}}{n}$ entropy(y_{no}) entropy(y_{no})

with

$$entropy(s) = -p_{s_{pos}} \log_2 p_{s_{pos}} - p_{s_{neg}} \log_2 p_{s_{neg}}$$

Example

Pruning

Decision Tree Pruning

- There are different stopping criteria that are used in practice
 - You can not always achieve a clean split in the leaves
 - You can use threshold for information gain to decide to stop
- However, sometimes the information gain is low for several levels and then becomes high again (splits become more meaningful
 - You typically grow the tree "too large" and then "prune" it back
- Reduced error pruning


```
Input: decision Tree T; labelled data D
Output: Pruned tree T'
for every internal node N of T, starting from the bottom do
    T_N \leftarrow \text{subtree of } T \text{ rooted at } N:
    D_N \leftarrow \{x \in D | x \text{ is covered by } N\};
   if accuracy of T_N over D_N is worse than majority class in D_N then
        replace T_N in T by a leaf labelled with the majority class in D_N;
    end
end
return pruned version T
```

Decision Trees

- Decision Trees
 - Advantages:
 - Easy to implement
 - Interpretable
 - Learning is fast prediction is very fast
 - Can elegantly handle a small number missing values during training
 - Disadvantages
 - Hard to find optimal set of rules
 - Greedy splitting often not accurate, requires very deep trees

Hypothesis Space

- Learning can be defined as searching the best hypothesis for all observed data
- For decision trees, the hypothesis space are all possible decision trees that can be generated for a data set
- The learner searches through the space and returns the best hypothesis, for decision trees, the tree that potentially best predicts new data
- If the space is small enough, it is possible to test all hypotheses (then no Machine Learning needed)
- So how do we search the space to find the "best" decision tree?

Unsupervised Learning

- Supervised learning:
 - We have features x_i and class labels y_i
 - Write a program that produces y_i from x_i
- Unsupervised learning
 - We only have x_i values, but no explicit target labels
 - You want to do "something" with them
- Some unsupervised learning tasks
 - Outlier detection: Is this a 'normal' x_i ?
 - Similarity search: Which examples look like this x_i ?
 - Association rules: Which x_i occur together?
 - Latent-factors: What 'parts' are the x_i made from?
 - Data visualization: What does the high-dimensional X look like?
 - Ranking: Which are the most important x_i ?
 - Clustering: What types of x_i are there?

Summary

- Supervised learning
 - Using data to write a program based on input/output examples
- Decision trees: predicting a label using a sequence of simple rules
- Decision stumps: simple decision tree that is very fast to fit
- Greedy recursive splitting: uses a sequence of stumps to fit a tree
 - Very fast and interpretable, but not always the most accurate
- Information gain: splitting score based on decreasing entropy
- Unsupervised Learning
 - Unsupervised learning: fitting data without explicit labels

Literature

- Machine Learning Tom Mitchell
- Pattern Recognition and Machine Learning Christopher Bishop
- Machine Learning The Art and Science of Algorithms that Make Sense of Data –
 Peter Flach
- Data Mining Jiawei Han, Micheline Kamber, Jian Pei
- Data Mining Ian Witten, Eibe Frank, Mark Hall, Christopher Pal

SCIENCE SCHOOL OF COMPUTER SCIENCE MACHINE LEARNING

Thank you for your attention!

https://ml.auckland.ac.nz https://wicker.nz