HW3	Joohyun Lee
, α)	Make a Simulation instance
ALL	3 partides with orbital elements initilization
	pute initial positions and velocities
$A\lambda$	aptively choose timestep
	vance time and evolve partitles
(/\\$	ing numerical integrator (e.g. IASIS, leapfrog) Stop No
	Yes J

End of the simulation

b) Name	order of accuracy	Suitable problem	tunable parameters
IAS15	15	generic force problem, close encounter	Minimum timestep
WHPAST	2	Keplenan system with perturbations	symplectic correctors timestep
Gragg-Bulivsch		Shore integrations	error at each timestep
-Stoer			minimum/maximum timestep
SABA	Varies (tunable) desault: 4		order of accuracy
JANUS	default: 6		order of accuracy length/velouty scale
Embedded Operator Splitting	varies (Tunable)		order of accuracy
Leap frog	2		
Symplectic Epicycle Integrator	2		epicyclic/orbital frequency

() (1) Leapsnog read particle data Parel Compute new position (parallelized) アニア・ナンかと advance time by tot read particle data Pare 2 Compute New relouty (parallelized) $\frac{1}{n} = \frac{1}{n_0} + a = 0$ Compute new position (parallelized) $\vec{r} = \vec{v_0} + \vec{v} + \vec{v} = \vec{v_0} + \vec{v_0} + \vec{v} = \vec{v_0$ advance time by $\frac{1}{2}$ ot

(2) SEI	
Initialize	get epicyclic/orbit rotation angle
	advance vertical position/velocity
Integrator	advance orbital plane position/velocity
Parel	Initialize advance each particle (parallelized)
	Using Integrator
Pare 2	Initialize update each partiale velocity (parallelized) T= To + a st
	advance each particle (parallelized)
	Using Integrator