RAPPRESENTAZIONE E COMPOSIZIONE DI VETTORI

Aa1. Il vettore a ha modulo $|\mathbf{a}| = 5$, è diretto come la verticale ed è scomposto secondo due direzioni, una formante un angolo di 30° con l'orizzontale e un'altra formante un angolo di 60° con la verticale. Le due componenti hanno modulo rispettivamente pari a

(A) 4.33, 2.5 (B) 4.33, 4.33 (C) 2.5, 2.5 (D) 2.5, 4.33 (E) 5, 5

SOLUZIONE. Si tracciano le due rette indicate per il punto di applicazione del vettore e le loro due parallele per il secondo estremo del vettore costruendo così un parallelogramma di cui a è una diagonale. Il parallelogramma della figura, essendo diviso da a in due triangoli equilateri, ha lati tutti uguali alla diagonale; i vettori in cui a è scomposto hanno entrambi modulo pari a 5.

Aa2. Il modulo di un vettore diretto secondo la verticale discendente vale $|\mathbf{a}| = 5$. Si somma a con un vettore **b** formante un angolo di 45° con l'orizzontale. Se il vettore risultante $\mathbf{a} + \mathbf{b}$ ha componente verticale nulla, il modulo di **b** vale

(A) 5 **(B)** 7.07

(C) 9.80

(D) 12.5

(E) 68.3

SOLUZIONE. Scomponendo b lungo gli assi, si ha: $|\mathbf{b}| \cos(45^\circ) = |\mathbf{a} + \mathbf{b}|$ e

$$|\mathbf{b}| \sin(45^\circ) = |\mathbf{a}|$$
, da cui si ricava $|\mathbf{b}| = \frac{|\mathbf{a}|}{\sin 45^\circ} = 7.07$

Aa3. Due vettori $\mathbf{a} \in \mathbf{b}$ hanno modulo $|\mathbf{a}| = 5 \in |\mathbf{b}| = 4$; se la loro somma ha modulo $|\mathbf{a} + \mathbf{b}| = 3$ l'angolo β tra a e b è pari a

(A) 143.1°

(B) 9.8°

 $(C) 90^{\circ}$

(D) 53.1°

(E) 36.9°

SOLUZIONE. Si tratta di calcolare l'angolo β , supplementare di γ , che appartiene al triangolo di cui si conoscono i tre lati: $|\mathbf{a}|$, $|\mathbf{b}|$ e $|\mathbf{a} + \mathbf{b}|$; tale angolo si può ricavare direttamente dalla relazione trigonometrica nota come il teorema di Carnot:

$$|\mathbf{a} + \mathbf{b}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2|\mathbf{a}| \cdot |\mathbf{b}| \cos \gamma$$

Poiché $\gamma = 180^{\circ} - \beta$, $\cos \gamma = -\cos \beta$,

si ricava
$$\cos \beta = \frac{|\mathbf{a} + \mathbf{b}|^2 - |\mathbf{a}|^2 - |\mathbf{b}|^2}{2|\mathbf{a}| \cdot |\mathbf{b}|} = \frac{9 - 25 - 16}{40} = -0.8 \Rightarrow \beta = 143,1^\circ$$

È istruttivo risolvere il problema per via algebrica mediante le componenti dei vettori. Allineiamo il primo vettore lungo l'asse x: $\mathbf{a} = 5\mathbf{i}$ e poniamo $\mathbf{b} = b_x \mathbf{i} + b_y \mathbf{j}$. Le incognite sono le componenti cartesiane di b che soddisfano alle relazioni

$$\begin{vmatrix} |\mathbf{b}|^2 = b_x^2 + b_y^2 = 16 \\ |\mathbf{a} + \mathbf{b}|^2 = (5 + b_x)^2 + b_y^2 = 9 \end{vmatrix} \Rightarrow b_x^2 - (5 + b_x)^2 = -25 - 10b_x = 7$$

$$b_x = -\frac{32}{10} = -3.2$$

Poiché
$$b_x = b \cos \beta$$
, sostituendo si ha:
 $\cos \beta = \frac{b_x}{b} = \frac{-3.2}{4} = -0.8$

$$\beta = \cos^{-1}(-0.8) = 143.1^{\circ}$$

Aa4. Si scompone il vettore $\mathbf{a} = a_x \mathbf{i} + a_y \mathbf{j}$ lungo due direzioni \mathbf{u} e \mathbf{v} che formano con l'asse x angoli

$$9 = 30^{\circ}$$
 e $\varphi = 90^{\circ}$. Se $a_x = 3$, $a_y = 4$, la componente a_u vale

(D) 4.62

SOLUZIONE.

Considerati il riferimento ortogonale individuato dai versori \mathbf{i} e \mathbf{j} e il riferimento non ortogonale individuato da \mathbf{u} e \mathbf{v} , il vettore \mathbf{a} viene espresso nei due riferimenti come $\mathbf{a} = a_u \mathbf{u} + a_v \mathbf{v} = a_x \mathbf{i} + a_v \mathbf{j}$.

Dalla figura si deduce che la relazione fra le componenti risulta:

$$a_u = \frac{a_x}{\cos 30^\circ} = 3.46$$
 e $a_v = a_y - a_u \sin 30^\circ = 2.27$

Aa5. Tra le seguenti affermazioni sono vere

- (A) il coseno di un radiante è minore di cos60°
- (B) un angolo in radianti è il rapporto tra lunghezza di un arco di cerchio centrato al vertice compreso tra le due semirette e la lunghezza della circonferenza di pari raggio
- (C) per angoli minori di 5° la differenza tra misura dell'angolo in radianti e seno dell'angolo è al più di qualche parte su diecimila*
- (D) in un angolo giro vi sono 360 radianti
- (E) un angolo di 90° corrisponde a 1.57 radianti*

Aa6. La risultante di uno spostamento di 2 m nella direzione che forma un angolo di 40° con l'asse x e un successivo spostamento di 4 m nella direzione che forma un angolo di 120° con l'asse x è di circa

(D)
$$4.77 \text{ m a } 96^{\circ}$$

(E)
$$6.1 \text{ m a } 80^{\circ}$$

Aa7. Un vettore $\mathbf{a} = 5\mathbf{j}$ è la risultante di due vettori \mathbf{b} , \mathbf{c} con $\mathbf{b} = 3\mathbf{i} + 4\mathbf{j}$ e $\mathbf{c} = c_x \mathbf{i} + c_y \mathbf{j}$. Tra le seguenti affermazioni sono vere (segnare con una crocetta le affermazioni esatte)

- (A) la componente c_x vale -3*
- (B) la componente c_y vale +1*
- (C) la somma dei moduli di ${\bf b}$ e ${\bf c}$ è maggiore del modulo di ${\bf a}^*$
- (D) l'angolo formato tra ${\bf c}$ e ${\bf b}$ è pari a circa 53°
- (E) l'angolo tra a e c è pari a circa 72°*

Aa8 Il vettore **a** viene scomposto nei due vettori \mathbf{a}_1 ed \mathbf{a}_2 della figura. Se $|\mathbf{a}_1| = 3$ il modulo di **a** vale circa

- (A) 2.60
- (B) 3.00
- (C) 4.10
- (D) 4.50

(E) 5.00

Aa9. dato il vettore A = -3i + 2j + 4k, determinare il vettore B parallelo ad A di lunghezza 10.

(A)
$$\mathbf{B} = 30\mathbf{i} - 20\mathbf{j} - 40\mathbf{k} \ 0.60$$
 (B) $\mathbf{B} = -30\mathbf{i} + 20\mathbf{j} + 40\mathbf{k}$

(B)
$$\mathbf{B} = -30\mathbf{i} + 20\mathbf{j} + 40\mathbf{k}$$

(C)
$$\mathbf{B} = -\frac{30}{\sqrt{29}}\mathbf{i} + \frac{20}{\sqrt{29}}\mathbf{j} + \frac{40}{\sqrt{29}}\mathbf{k}^*$$

Aa10 Dimostrare che i vettori dati, se disposti punta-coda, formano un triangolo:

a)
$$A = 4i + 1j$$
, $B = -2i + 4j$ e $C = -2i - 5j$;

b)
$$A = 2i + 1j$$
, $B = 1i + 4j$ e $C = -3i - 5j$

Aa11. Ci si sposta di 20 m dall'origine di un sistema cartesiano in una direzione che forma un angolo antiorario di 210° con l'asse x. Le coordinate (x,y) del punto di arrivo sono (in metri)

- (A) (17.3, -10)
- (B) (-12.5,15)
- (C)(-1.5,21.5)
- (D) (-17.3,-10)
- (E)(14.1,-14.1)

Aa12. Due vettori \mathbf{a} e \mathbf{b} hanno modulo $|\mathbf{a}| = 5$ e $|\mathbf{b}| = 4$; se la loro differenza ha modulo $|\mathbf{a} - \mathbf{b}| = 3$ l'angolo formato tra a e b è pari a

- (A) 143.1°
- (B) 36.9°
- (C) 90° (D) 53.1°
- (E)

Aa13. Si scompone il vettore $a_x \mathbf{i} + a_y \mathbf{j}$ lungo due assi \mathbf{u} e \mathbf{v} . La componente a_u lungo l'asse \mathbf{u} che forma un angolo di $+30^{\circ}$ con l'asse delle x vale $a_u = +3$; la componente a_v lungo il secondo asse v, che forma un angolo di +120° con l'asse delle x, vale $a_v = +4$. La componente a_x vale

- (A) 0.60
- (B) 3.46
- (C)5
- (D) 5.50
- (E) 6.08

Aa14. Il vettore $\mathbf{a} = -5\mathbf{j}$ viene scomposto lungo le due direzioni \mathbf{d}_1 e \mathbf{d}_2 della

Le componenti lungo \mathbf{d}_1 e \mathbf{d}_2 hanno modulo pari a circa

- (A) 0.92; 4.61
- (B) 4.00; 1.00
- (C) 0.88; 4.77

- (D) 1.00; 5.00
- (E) 2; 4.92

PRODOTTO SCALARE E VETTORIALE

Ab1. Il prodotto scalare tra $\mathbf{a} = 5\mathbf{i} - 6\mathbf{j} + 7\mathbf{k}$ e $\mathbf{b} = -5\mathbf{i} + 6\mathbf{j} - 7\mathbf{k}$ è uguale a

- (A) -110
- (B) $|\mathbf{a}||\mathbf{b}|$
- $(C) |a|^2$
- (D) $|a|^2$
- (E) $|\mathbf{b}|^2$

SOLUZIONE. Il prodotto scalare, uguale alla somma dei prodotti delle componenti omologhe, è $\mathbf{a} \cdot \mathbf{b} = -5 \times 5 - 6 \times 6 - 7 \times 7 = -110.$

In questo caso particolare, in cui a e b hanno componenti uguali ed opposte, l'angolo formato dai vettori è di 180° e quindi $\mathbf{a} \cdot \mathbf{b} = -|\mathbf{a}|^2 = -|\mathbf{b}|^2$. Le soluzioni (A) e (C) sono entrambe accettabili

Ab2. L'angolo \mathcal{G} formato tra due vettori \mathbf{a} e \mathbf{b} con moduli dati da $|\mathbf{a}| = 4$, $|\mathbf{b}| = 3$ e prodotto scalare $\mathbf{a} \cdot \mathbf{b} = 10 \text{ vale}$

- (A) 27° 15′
- (B) 30°
- (C) $33^{\circ} 33'$ (D) 45°
- (E) $56^{\circ} 26'$

SOLUZIONE. $|\mathbf{a}||\mathbf{b}|\cos\theta = (4.3)\cos\theta = 10 \Rightarrow \cos\theta = 0.8333 \Rightarrow \theta \approx 33^{\circ} 33^{\circ}$

Ab3. L'angolo formato dai due vettori $\mathbf{a} = 8\mathbf{i} - 6\mathbf{j}$ e $\mathbf{b} = 3\mathbf{i} + 4\mathbf{j}$ vale, in valore assoluto

- (A) 16° 16′
- (B) 36° 52′
- (C) 43° 8'
- (D) 73° 44'

SOLUZIONE. Basta osservare che $\mathbf{a} \cdot \mathbf{b} = 0$ oppure, in modo equivalente, che $\frac{a_x}{a_y} = -\frac{b_y}{b_x}$, per dedurre

che i vettori sono perpendicolari.

	ori $\mathbf{a} = 3\mathbf{i}, \mathbf{b} = -2\mathbf{i}, \mathbf{c} =$	= 6 j il modulo del ve	ttore $\mathbf{d} = \mathbf{a} \times (\mathbf{b} \times \mathbf{c})$	$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ è pari
SOLUZIONE. Si ha a	B) 6 $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = 3\mathbf{i} \times (-12\mathbf{c})$ esto esercizio dimos			
-	ttoriale di due vettoria $\mathbf{a} \times \mathbf{b} = 9$. Se $\mathbf{a} = 3\mathbf{i}$ e		-	
del vettore b lungo (A) 0 SOLUZIONE Calcoli		(C) 4 priale a × b in forma		(E) 8.5
1 1	$\begin{vmatrix} 3 & 0 \\ b_x & b_y \end{vmatrix} \mathbf{k} = 3b_y \mathbf{k} \cdot Qt$			
Tenendo presente 1	a definizione del mo	odulo del vettore b ,	possiamo ricavare	e il valore della sua
	go l'asse x : $b^2 = b_x^2 +$			
Ab6 . L'angolo form (A) 16° 16'	nato dai due vettori a (B) 36° 52'	= 8i+6j e b = 3i+4j (C) $43^{\circ} 8'$		luto (E) 90°
Ab7 . Dati due vetto (A) 2	ori a e b , tali per cui a (B) 3	a + b = 7 e a - b = (C) 5		e a· b vale (E)
Ab8. Dati due vetto	ori \mathbf{a}, \mathbf{b} con $ \mathbf{a} = 2 \mathbf{b} $	formanti tra loro u	an angolo $\alpha = 37^{\circ}$	con prodotto scalare
$a \cdot b = 20$, il modulo (A) 7.08	(B) 7.91	(C) 9.36	(D) 10.62	(E) 13.24
Ab9. Dimostrare cl sono i lati di un tria	he i vettori $\mathbf{A} = 2\mathbf{i} +$ ngolo rettangolo.	1j, B = 1.5i - 3j e	$\mathbf{C} = -3.5\mathbf{i} + 2\mathbf{j} ,$	disposti punta-coda
	$ri \mathbf{A} = 3\mathbf{i} + 5\mathbf{j}, \mathbf{B} =$	$-7\mathbf{i} + b_y\mathbf{j}$, determin	nare b_y affinché i	due vettori risultino
perpendicolari. (A) 0	(B) 3	(C) 4	(D) 4.2	(E) 8.5
Ab11 . Dati i vettori risultino paralleli.	$\mathbf{i} \mathbf{A} = a_x \mathbf{i} + 1 \mathbf{j} - 1 \mathbf{k}, \mathbf{B}$	$3 = -1\mathbf{i} + 2\mathbf{j} - b_z\mathbf{k}, \mathbf{d}$	eterminare a_x e b_z a	affinché i due vettori
<u>-</u>	(B) -3, 4	(C) 2, 0.5	(D) -0.5, 2	(E) 4, -3
Ab12 . Il prodotto vettoriale $\mathbf{a} \times \mathbf{b}$ tra due vettori del piano xy , con $\mathbf{a} = 3\mathbf{i} + 4\mathbf{j}$ e $\mathbf{b} = b_x \mathbf{i} + b_y \mathbf{j}$ vale 25 \mathbf{k} . Se \mathbf{b} è perpendicolare ad \mathbf{a} , le componenti cartesiane di \mathbf{b} valgono				
(A) $3, -4$	(B) -3 , 4	(C) 0, 5	(D) -4, 3	(E) 4, -3
	ettoriale di due vetto o è $ \mathbf{a} \times \mathbf{b} = 9$. Se $\mathbf{a} =$			
componente $ b_x $ del vettore b lungo x , vale				

(A) 0

(B) 3

(C)4

(D) 5.2

(E) 8.5

Ab14. Il modulo di a vale 6 mentre $\mathbf{a} \cdot \mathbf{b} = 18$ e $|\mathbf{a} \times \mathbf{b}| = 24$. Tra le seguenti affermazioni è falsa

- (A) \mathbf{a} e \mathbf{b} possono essere assunti nel piano del disegno con $\mathbf{a} = 6\mathbf{i}$ e $\mathbf{b} = b_x \mathbf{i} + b_y \mathbf{j}$
- (B) $|\mathbf{b}| < |\mathbf{a}|$
- (C) |a + b| > |a|
- (D) L'angolo formato tra a e b è acuto
- (E) Il vettore b è completamente determinato *

Ab15. Dati i vettori $\mathbf{A} = 2\mathbf{i} + 1\mathbf{j} + 1\mathbf{k}$, $\mathbf{B} = 1\mathbf{i}$, determinare il vettore \mathbf{C} di modulo 5 che sia complanare ad \mathbf{A} e a \mathbf{B} . Il problema ha una soluzione unica?