Guía del Curso Previo de Matemáticas

Nicolas Argañaraz

8 de Marzo de 2024

1 Practica N°2

1.1
$$3x < -1$$

$$3x < -1$$

$$x < -\frac{1}{3}$$

$$\left[(-\infty;-\frac{1}{3})\right]$$

1.2
$$-3x < 2$$

$$-3x < 2$$

$$x > -\frac{2}{3}$$

$$\left[\left(-\frac{2}{3};+\infty\right)\right]$$

1.3
$$3x - 1 < 0$$

$$3x - 1 < 0$$

$$3x < 0 + 1$$

$$x < \frac{1}{3}$$

$$(-\infty;\frac{1}{3})$$

1.4
$$(3-x)^2+2<0$$

$$(3-x)^2 + 2 < 0$$

$$(3-x)^2 < -2$$

No se puede resolver

1.5
$$(x-3)^2 + 2 > 0$$

$$(x-3)^2 + 2 > 0$$

$$(x-3)^2 > -2$$

$$(-\infty; +\infty)$$

Todos los numeros reales

2 Ejercicio 2 - Resolver inecuaciones

2.1 $\frac{2x+3}{3x+2} < 0$

Consideramos dos casos. (+,-y-,+)

Caso 1:

- 1. $2x + 3 < 0 = x < -\frac{3}{2}$
- 2. $3x + 2 > 0 = x > -\frac{2}{3}$

Sin embargo, no hay valores de x que satisfacen ambas condiciones, por lo que este caso no proporciona ninguna solución.

Caso 2:

- 1. $2x + 3 > 0 = x > -\frac{3}{2}$
- 2. $3x + 2 < 0 = x < -\frac{2}{3}$

En este caso, los valores de x que satisfacen ambas condiciones son los que están en el intervalo $(-\frac{3}{2},-\frac{2}{3})$.

Por lo tanto, la solución a la desigualdad $\frac{2x+3}{3x+2}<0$ es el intervalo $(-\frac{3}{2},-\frac{2}{3})$.

2.2
$$\frac{2x+3}{5x-7} > 2$$

Primero resolvemos la inecuación para que sea mayor a 0

$$\frac{2x+3}{5x-7} > 2\tag{1}$$

$$\frac{3x - 7}{2x + 3} - 2 > 0 \tag{2}$$

$$\frac{2x+3-2(5x-7)}{5x-7} > 0$$

$$\frac{2x+3-10x-14}{5x-7} > 0$$
(3)

$$\frac{2x+3-10x-14}{5x-7} > 0 \tag{4}$$

$$\frac{-8x - 11}{5x - 7} > 0 \tag{5}$$

Consideramos dos. (+,+ y -,-)

Caso 1:

1.
$$-8x - 11 > 0 = x < -\frac{11}{8}$$

2.
$$5x - 7 > 0 = x > \frac{7}{5}$$

Sin embargo, no hay valores de x que satisfacen ambas condiciones, por lo que este caso no proporciona ninguna solución.

Caso 2:

1.
$$-8x - 11 < 0 = x > -\frac{11}{8}$$

$$2. 5x - 7 < 0 = x < \frac{7}{5}$$

En este caso, los valores de x que satisfacen ambas condiciones son los que están en el intervalo $(-\frac{11}{8}; \frac{7}{5})$.

Por lo tanto, la solución a la desigualdad $\frac{2x+3}{5x-7}>2$ es el intervalo $\left(-\frac{11}{8}; \frac{7}{5}\right)$.

2.3
$$(2x-5)(3x+7) < 0$$

Consideramos dos casos.(+,-y-,+)

Caso 1:

1.
$$2x - 5 > 0 = x > \frac{5}{2}$$

2.
$$3x + 7 < 0 = x < -\frac{7}{3}$$

Sin embargo, no hay valores de x que satisfacen ambas condiciones, por lo que este caso no proporciona ninguna solución.

Caso 2:

1.
$$2x - 5 < 0 = x < \frac{5}{2}$$

2.
$$3x + 7 > 0 = x > -\frac{7}{3}$$

En este caso, los valores de x que satisfacen ambas condiciones son los que están en el intervalo $(-\frac{7}{3};\frac{5}{2})$

2.4
$$(2x+3)(3x+2) > 0$$

Consideramos dos. (+,+y-,-)

Caso 1

1.
$$2x + 3 > 0 = x > -\frac{3}{2}$$

2.
$$3x + 2 > 0 = x > -\frac{2}{3}$$

En este caso se podria decir que x es el intervalo de $(-\frac{2}{3};+\infty)$

Caso 2

1.
$$2x + 3 < 0 = x < -\frac{3}{2}$$

$$2. \ 3x + 2 < 0 = x < -\frac{2}{3}$$

Y este otro esta diciendo que x es el intervalo de $(-\infty; -\frac{3}{2})$

Entonces el intervalo total de x seria $(-\infty; -\frac{3}{2})$ U $(-\frac{2}{3}; +\infty)$

Consideremos las dos inecuaciones:

1.
$$\frac{1}{3x+2} < 2$$

2. $\frac{1}{2} < 3x+2$

$$2. \quad \frac{1}{2} < 3x + 2$$

Aunque a primera vista pueden parecer similares, no son equivalentes. Veamos por qué:

Para la inecuación 1, si la resolvemos, obtenemos:

$$1 < 2(3x + 2)$$

$$1 < 6x + 4$$

$$-3 < 6x$$

$$-\frac{1}{2} < x$$

Por otro lado, para la inecuación 2, si la resolvemos, obtenemos:

$$-2 + \frac{1}{2} < 3x$$
$$-\frac{3}{2} < 3x$$
$$-\frac{1}{2} < x$$

Aunque las soluciones a ambas inecuaciones resultan ser las mismas, las inecuaciones originales no son equivalentes porque no representan la misma relación entre x y los otros términos.