Real Analysis

Alec Zabel-Mena

 $\underline{\text{Text}}$

An Introduction to Real Analysis (4^{th} edition) Rober G. Bartel & Donald R. Sherbert

September 10, 2020

Chapter 1

Preliminaries.

1.1 A Note on Finite and Infinite Sets

We go over the notions of "finite" and "infinite" sets.

Definition. (1) The emptyset \emptyset , is said to have 0 elements.

- (2) If $n \in \mathbb{N}$, a set S is said to have n **elements** if there is a bijection from the set $\{1, 2, \ldots, n\}$ onto S.
- (3) A set S is **finite** if it is either the emptyset, or has n elements.
- (4) A set S is **infinite** if it is not finite

We assume two theorems which will help us study finite and infinite sets.

Theorem 1.1.1. If S is a finite set, then the number of elements of S is a natural number.

Theorem 1.1.2. The set \mathbb{N} is infinite.

Theorem 1.1.3. (1) If A has m elements, and B has n elements, and $A \cap B = \emptyset$, then $A \cup B$ has m + n elements.

- (2) If A has m elements and CA is a set with 1 element, then $C \setminus A$ has m-1 elements.
- (3) If C is an infinite set, and B is a finite set, then $C\backslash B$ is an infinite set.

Proof. (1) Let f be a bijection from $\mathbb{N}_m = \{1, \ldots, m\}$ onto A, and let g be a bijection from $\mathbb{N}_n = \{1, \ldots, n\}$ onto B. Define h from \mathbb{N}_{m+n} into $A \cup B$ (without loss of generality) by:

$$h(i) = \begin{cases} f(i), & \text{for } i = 1, \dots, m \\ g(i-m) & \text{for } i = m+1, \dots, m+n \end{cases}$$
 (1.1)

We wish to show that h is a bijection. Notice that since A has m elements and B has n elements, then the set $A \cup B$ will have at m + n elements; so all that is needed is to show that h is 1 - 1. Let $i, j \in \mathbb{N}_m$, then h(i) = h(j) implies that f(i) = f(j), which is injective, thus i = j; now if $i, j = m + 1, \ldots m + n$, then h(i) = h(j) implies that g(m - i) = m - j, since g is also injective, m - i = m - j, so i = j. Thus h is injective and we are done.

- (2) Let f be a bijection from m onto A, since CA, f is also a bijection from \mathbb{N}_1 onto C. Consider now h defined from \mathbb{N}_{n-1} onto $A \setminus C$ by h(i) = f(i) for $i = 2, \ldots m$. Then by the argument of (1), h is a bijection.
- (3) Let f be a bijection from \mathbb{N}_m onto B, and consider h defined from \mathbb{N} into $C \setminus B$ by h(i) = g(i) for $i = m + 1, \ldots$. Clearly h is injective, but is it surjective? If $B = \emptyset$, then $C \setminus B = C$, and h is not surjective. Now suppose that B has only 1 element and suppose that h is indeed surjective. Then for every $j \in C \setminus B$, there exists and $i \in \mathbb{N}$ such that h(i) = j, Then clearly $j \notin B$, hence h is surjective still if we restrict it just to C, which would make C finite, a contradiction. Hence, $C \setminus B$ cannot be finite.

Theorem 1.1.4. Suppose that T and S are sets, and that TS. Then the following are true:

- (1) If S is finite, then T is also finite.
- (2) If S is infinite, then T is also infinite.
- *Proof.* (1) Suppose S is finite, then there is a bijection from onto S, for some $m \in T$. Now since TS, restricting f to N_n for some $n \leq m$, f is a bijection onto T; therefore T is finite.
 - (2) This is the contrapositive of the first argument.

Definition. A set S is **denumerable** if there is a bijection from \mathbb{N} onto S. S is **countable** if it is either finite or denumerable. S is uncountable if it is not countable.

- (1) The set $E = \{2n : n \in \mathbb{N}\}$ and $O = \{2n+1 : n \in \mathbb{N}\}$ are denumerable, take $f : \mathbb{N} \to E$ by f(n) = 2n and take $g : \mathbb{N} \to O$ by g(n) = 2n + 1.
- (2) The integers \mathbb{Z} are denumerable, take f(0) = 0 and f(n) = 2n for n > 0 and f(n) = 2n + 1 for n < 0.
- (3) Then union of denumberable sets is also denumerable.

Theorem 1.1.5. The set $\mathbb{N} \times \mathbb{N}$ is denumerable.

Theorem 1.1.6. Let S and T be sets with $T \subseteq S$; then:

- (1) If S is countable then T is countable.
- (2) If S is uncountable then T is uhncountable.

Theorem 1.1.7. The following statements are true:

- (1) S is denumerable.
- (2) There exists a surjection of \mathbb{N} onto S.
- (3) There exists an injection of \mathbb{N} onto S.

- *Proof.* (1) If S is finite, then clearly it is countable. Now suppose that S is denumerable, then there is a bijection from \mathbb{N} onto S, which by definition is surjective.
 - (2) If H is a surjection from \mathbb{N} onto S, define $H_1: S \to \mathbb{N}$ by taking $H_1(s)$ to be the least element in the set $H^{-1} = \{n \in \mathbb{N} : H(s) = n\}$, note that if $s, t \in S$ and $n_{st} = H_1(s) = H_1(t)$, then by definition of H_1 , $s = H(n_{st}) = t$, so H_1 is injective.
 - (3) If $H_1: S \to \mathbb{N}$ is injective, then it is bijective from S onto $H_1(S)\mathbb{N}$, by theorem 1.1.6 S is countable.

Theorem 1.1.8. The set of all rational numbers \mathbb{Q} is denumerable.

Proof. Since $\mathbb{N} \times \mathbb{N}$ is denumerable, it follows from theorem 1.1.7 that there is a surjection $f: \mathbb{N}rightarrow\mathbb{N} \times \mathbb{N}.Nowifg: \mathbb{N} \times \mathbb{N} \to \mathbb{Q}^+$, sends $(m,n) \to \frac{m}{n}$, then g is surjective. Then composing g with f, we get the surjection $g \circ f: \mathbb{B}\mathbb{Q}^+$, and so \mathbb{Q}^+ is countable. Similarly, \mathbb{Q}^- is countable, hence $\mathbb{Q} = \mathbb{Q}^+ \cup \mathbb{Q}^- \cup \{0\}$ is countable.

Theorem 1.1.9. If A_m is countable for each $m \in \mathbb{N}$, then the union, $A = \bigcup_{m=1}^{\infty} A_m$ is countable.

Proof. For each $m \in \mathbb{N}$, let $\phi_m : \mathbb{N} \to A$ be a surjection. Define $\beta : \mathbb{N} \times \mathbb{N}$ rightarrow A by $\beta(m,n) = \phi_m(n)$. Then we claim that β is a surjection. If $a \in A$, then there exists an $m \in \mathbb{N}$ such that $a \in A_m$. Hence there exists an $n \in \mathbb{N}$ such that $a = \phi_m(n) = \beta(m,n)$. Therefore β is surjective, and A is countable.

Theorem 1.1.10 (Cantor's Theorem.). If A is any set, then there is no surjection from A onto 2^A .

Proof. Suppose that $\phi: A \to 2^A$ is a surjection. Since $\phi(a) \subseteq A$, either $a \in A$ or $a \notin A$. Now let $D = \{a \in A : a \notin \phi(a)\}$. Then $D \subseteq A$; hence $D = \phi(a_0)$ for some $a_0 \in A$. Then either $a_0 \in D$ or $a_0 \notin D$. If $a \in D$, then $a = \phi(a_0)$, a contradiction of the definition of D. If $a \notin D$ then $a \notin \phi(a_0)$, another contradiction. Therefore, ϕ cannot be surjective.

Chapter 2

The Real Numbers.

2.1 The Algebraic and Order Properties of \mathbb{R} .

We begin first by examining the algebraic struture of a the real numbers, which we denote by \mathbb{R} . The following are called the **field axioms** for \mathbb{R} .

Axiom 2.1.1. On the set \mathbb{R} of real numbers, there are two binary operations + and \cdot called addition and multiplication respectively, such that:

- (1) $(\mathbb{R}, +)$ is an abelian group.
- (2) $(\mathbb{R}\setminus\{0\},\cdot)$ is an abelian group.
- (3) · distributes over +; that is for all $a, b, c \in \mathbb{R}$, $a \cdot (b+c) = a \cdot b + a \cdot c$.

Theorem 2.1.1. (1) If $z, a \in \mathbb{R}$, with z + a = a, then z = 0.

- (2) If $u, b \in \mathbb{R}$ with $b \neq 0$, and ub = b, then u = 1.
- (3) For $a \in \mathbb{R}$, $a_0 = 0$.

The proof of this theorem is elementary and easy to reproduce.

Theorem 2.1.2. (1) If $a, b \in \mathbb{R}$ with $a \neq 0$, and ab = 1, then $b = a^{-1}$.

(2) If ab = 0, then either a = 0 or b = 0.

Another elementary proof.

Remark. For the real numbers $a, b \in \mathbb{R}$, we define **subtraction** of a and b, to be a - b = a + (-b), similarly, we define **division** to be $\frac{a}{b} = ab^{-1}$. We also define the **exponent** recursively to be $a^0 = 1$, $a^1 = a$ and $a^{n+1} = a^n a$ for $n \ge 1$. We also denote $\frac{1}{a} = a^{-1}$ and we leave 0^0 and $\frac{1}{0}$ undefined.

We call the **rational numbers** tobe numbers of the form $\frac{a}{b}$ with $a, b \in \mathbb{Z}$ and denote them as \mathbb{Q} . There are however elements of \mathbb{R} which are not in \mathbb{Q} ; we call the set of such elements the **irrational numbers** and denonte them by $\mathbb{R}\backslash\mathbb{Q}$, or \mathbb{Q}^* .

Theorem 2.1.3. There is no rational number r such that $r^2 = 2$.

Proof. Suppose there were let $\frac{p}{q}$ be such a number where p and q have no common factors. Then $(\frac{p}{q})^2 = 2$, hence we have that $p^2 = 2q^2$, which makes p^2 even, hence p is even. Then p = 2k for some $k \in \mathbb{N}$. Then $2q^2 = 4k^2$, hence $q^2 = 2k^2$ which is even, therefore q^2 and consequently q is even; contradicting the fact that p and q have no common factors. Therefore no such rational number exist.

2.2 The Order Properties of \mathbb{R}

We begin with the following definition.

Definition. There is a nonempty subset \mathbb{R}^+ of \mathbb{R} called the set of **positive real numbers** satisfying the following properties:

- (1) If $ab \in \mathbb{R}^+$, then $a + b \in \mathbb{R}^+$.
- (2) If $a, b \in \mathbb{R}^+$, then $ab \in \mathbb{R}^+$.
- (3) One, and only one of the following hold for all $a \in \mathbb{R}^+$: either $a \in \mathbb{R}^+$, a = 0, or $-a \in \mathbb{R}^+$.

If $a \in \mathbb{R}^+$, then we say that a > 0, if $a \in \mathbb{R}^+ \cup \{0\}$, then we say that $a \ge 0$.