F-328 – Física Geral III

Aula Exploratória – Cap. 26 UNICAMP – IFGW

F328 - 1S2014

Corrente elétrica e resistência

Definição de corrente:

$$i = \frac{dq}{dt}$$

A carga Δq que atravessa um plano em um intervalo de tempo Δt pode ser determinada através de:

$$\Delta q = \int dq = \int_{t}^{t+\Delta t} i \, dt$$

Unidade de corrente:

1 Ampère = 1 C/s

A corrente *i* tem a mesma intensidade através das seções *aa*', *bb*' e *cc*'.

Densidade de corrente

$$i = \int \vec{J} \cdot \hat{n} dA$$

Se a densidade \vec{J} for uniforme através da superfície e paralela a $d\vec{A}$, teremos:

$$i = \int JdA = J \int dA$$

$$\longrightarrow J = \frac{i}{A} (A/m^2)$$

Velocidade de deriva: v_d

$$v_d = \frac{J}{ne}$$

ou, na forma vetorial:

$$\vec{J} = n e \vec{v}_d$$
, onde:

n = número de portadores
por unidade de volume
e = carga elementar

Resistência e resistividade

Do ponto de vista da física microscópica é conveniente utilizar o campo elétrico \vec{E} e a densidade de corrente \vec{J} no lugar da diferença de potencial V e da corrente elétrica i. Daí, o equivalente microscópico da resistência R é a resistividade ρ , definida por:

$$\vec{E} = \rho \vec{J}$$
 ou $\rho = \frac{E}{J} \left(\frac{V/m}{A/m^2} = \Omega.m \right)$

Algumas vezes é conveniente usar a condutividade σ , definida por:

$$\sigma = \frac{1}{\rho} \left(\frac{1}{\Omega \cdot m} \right)$$

Calculando R em função de ρ :

$$E = \frac{V_b - V_a}{L}$$
 e $J = \frac{i}{A}$. Substituindo em $\rho = \frac{E}{J}$, tem-se: $R = \rho \frac{L}{A}$

Lei de Ohm

A lei de Ohm estabelece que *a corrente* através de um "dispositivo" em função da *diferença de potencial* é *linear*, ou seja, *R independe do valor e da polaridade de V* (Fig. a). Quando isto acontece diz-se que o "dispositivo" é um *condutor ôhmico*. Caso contrário, o condutor não segue a lei de Ohm (Fig. b).

Pela definição de resistência:

$$R = \frac{V}{i}$$

A lei de Ohm implica que

$$R \neq R(V)$$

e que o gráfico $i \times V$ é linear.

condutor ôhmico Fig. a

condutor não-ôhmico Fig. b

Visão microscópica da Lei de Ohm

Um elétron de massa m colocado num campo E sofre uma

aceleração

$$a = \frac{F}{m} = \frac{eE}{m}$$

A velocidade de deriva pode ser escrita como:

$$v_d = a\tau = \frac{eE}{m}\tau'$$

onde au é o tempo médio entre colisões. Portanto,

$$J = nev_d = \frac{ne^2\tau}{m}E :$$

De acordo com este modelo clássico,

$$\sigma = \frac{n\tau e^2}{m}$$
 ou $\rho = \frac{m}{n\tau e^2}$ não dependem

de E, que é a característica de um condutor ôhmico.

(b)

Um fio de prata de 1,0 mm de diâmetro conduz uma carga de 90 C, em 1h15min. A prata contém 5,8×10²⁸ elétrons livres por m³.

- a) qual é a corrente elétrica no fio?
- b) qual é a velocidade de deriva dos elétrons no fio?

a)
$$i = \frac{(nAL)e}{L/v_d} = nAev_d = 20 \text{mA}$$

b) $v = 2.7 \times 10^{-6} \,\text{m/s}$

O módulo J da densidade de corrente em um certo fio cilíndrico de raio R = 2.0 mm é dado por $J = 3.0 \times 10^8 r$, em unidades do SI.

- a) para que valor de *r* o valor da corrente que passa no cilindro com este raio é metade do valor da corrente total?;
- b) Usando o raio encontrado no item a), recalcule esta corrente supondo que agora a densidade de corrente J é constante e igual ao valor que ela assume em r = 1,0 mm?

Uma corrente elétrica atravessa um resistor que tem a forma de um tronco de cone circular reto, de raio menor a, raio maior b e comprimento L. A densidade de corrente é considerada uniforme através de qualquer seção transversal perpendicular ao eixo do objeto.

- a) calcule a resistência desse sistema;
- b) mostre que o resultado de a) se reduz a $\rho L/A$ no caso em que a=b.

a)
$$R = \frac{\rho L}{\pi a b}$$

b)
$$R = \frac{\rho L}{\pi a^2}$$

A figura abaixo mostra um fio de cobre de comprimento L_1 , resistividade ρ_1 e área de secção transversal A_1 , e outro fio, de alumínio, com um comprimento L_2 , resistividade ρ_2 e área de secção transversal A_2 , submetidos a uma diferença de potencial V.

- a) qual a corrente através de cada fio?
- b) qual a densidade de corrente em cada fio?
- c) qual o campo elétrico em cada fio?
- d) qual a potência dissipada em cada um dos segmentos do fio?

Considerar: $L_2=2L_1,\,\rho_2=3\rho_1$, $A_2=2A_1$ e dê as reposta em termos dos parâmetros do cobre.

a)
$$V = V_1 + V_2 = i(R_1 + R_2)$$

Um cilindro oco de raio interno $r_{\rm a}$, raio externo $r_{\rm b}$ e comprimento L é feito de um material de resistividade ρ . Uma diferença de potencial V aplicada nos extremos do cilindro produz uma corrente paralela a seu eixo.

- a) ache a resistência do cilindro em termos de L, ρ, r_a e r_b ;
- b) calcule a densidade de corrente no cilindro quando V é aplicada;
- c) calcule o campo elétrico no interior do cilindro;
- d) suponha agora que a *ddp* é aplicada entre as superfícies interna e externa, de modo que a corrente flui radialmente para fora. Calcule a nova resistência do cilindro.

d) $R = \frac{\rho}{2\pi L} ln \frac{r_b}{r_a}$

A corrente que circula na bateria e nos resistores 1 e 2 da figura é 2,0 A. A energia elétrica é convertida em energia térmica nos dois resistores. As curvas 1 e 2 da figura mostram a energia térmica Et produzida pelos dois resistores em função do tempo *t*. Qual é a potência da bateria?

F328 – 1S2014