Algorithm Design

Chapter 0

Introduction to Algorithm

What is an Algorithm?

- A precise instruction based on computational operation
 - Which takes some value as input and process them into output
 - Precise = no ambiguity in what to do

We use an algorithm to solve a computational problem

What is a Computational Problem?

- A task with general description of what output is needed from the input
 - Describe what kind of admissible input we need
 - Describe the property of the desired output

- Example: GCD (Greatest Common Divider)
 - Given two positive integers (input)
 - Calculate GCD of the given input (the desired output)
 - GCD is well defined

GCD Problem

- Input: two positive integers A and B
- Output: the GCD of A and B (which is the largest integer by which both A and B can be divided)

Problem Instance

- Determining GCD is a problem
 - How many actual problems?
 - GCD of 1 and 2?
 - GCD of 234 and 42?
 - More? Obviously yes.
 - A pair of -2 and 8 is not an admissible input (because -2 is negative)

- Problem instance
 - A problem with specific values of input
 - E.g., find a GCD of 42 and 14

Algorithm Designing Goal

- Algorithm should be
 - Correct
 - For any admissible instances, it must correctly produce desired output
 - Efficient
 - Compute the output using reasonable resource (time, memory)

```
int GCD(int A,int B) {
  int ans = 1;
  for (int i = 2;i < min(A,B);i++) {
    if (A % i == 0 && B % i == 0)
       ans = i
  }
  return ans;
}</pre>
```

Calculating Fibonacci Sequence

- Fibonacci sequence
 - 0, 1, 1, 2, 3, 5, 7, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584

$$F_n = \begin{cases} 0 & : n = 0; \\ 1 & : n = 1; \\ F_{n-1} + F_{n-2} : n > 1; \end{cases}$$

The Problem

- Input: a non-negative integer N
- Output: F_n (the nth Fibonacci Number)

- Example instances
 - Ex. 1: $N = 10^{1}$
 - Ex. 2: N = 15
 - Ex. 3: N = 0

N = -4 is not an instances of this problem!!!

Method: Recursive O(2ⁿ)


```
int fibo(int n) {
   if (n == 0) return 0;
   if (n == 1) return 1;
   int a = f(n-1);
   int b = f(n-2);
   return a + b;
}
```

Method: Dynamic Programming O(n)

```
vector<int> v(n+1);
v[0] = 0;
v[1] = 1;
for (int i = 2;i <= n;i++) {
  v[i] = v[i-1] + v[i-2];
}</pre>
```

									8	
V	Ο	1	1	2	3	5	8	13	21	34

$$\begin{pmatrix} F_2 \\ F_1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_1 \\ F_0 \end{pmatrix}$$

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} F_1 \\ F_0 \end{pmatrix}$$

```
vector<vector<int>> matrix_expo(const vector<vector<int>>& A, int exp) {
 if (exp == 1) return A;
  vector<vector<int>> half = matrix expo(A, exp / 2);
 if (exp \% 2 == 0) {
   return multiply(half,half);
  } else {
   return multiply(multiply(half, half), A);
int fibonacci(int n) {
 if (n == 0) return 0;
 if (n == 1) return 1;
  vector<vector<int>> base = {{1, 1}, {1, 0}};
  vector<vector<int>> result = matrix expo(base, n - 1);
 return result[0][0];
```

Method: Divide and Conquer O(lg n)

Golden Ratio
$$F_n = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{-2}{1+\sqrt{5}}\right)^n}{\sqrt{5}}$$

• Method: Closed form solution

Conclusion

- Different Design -> Difference Performance
- This class emphasizes on designing efficient algorithm

Algorithm?

- Named after a Persian mathematician
 Muhammad ibn Musa al-Khwarizmi
- Wrote books on linear equation
- Introduce number 0