

PyEMLab-AGG Case Studies

Gary Howorth

Introduction

PyEMLab can be used to answer a variety of questions and can be run both short term (< 1 year) and longer term i.e. for 5 years. In all cases, parameters were varied incrementally so that comparison between cases could be made to provide an insight as to the effect of various key assumptions like social media propagation mechanics, social media network structure and assumptions on Agent Zero weights. Some of those effects are presented in the various subsections and figures below.

Long Term Case Parameters: Base Case

All cases use the same_Customer and aggregator input data. Parameters such as Agent_Zero weights, the number of bid buckets and the algorithm used (customer bids are aggregated into buckets) etc. can be changed by the users and used to simulate different scenarios or cases.

All cases bar case 6 and 7 use equal number of bids in each bucket as the bucketing algorithm. The parameters used in these cases are listed below. Values for the bases case are given

Base Case Assumptions: Parameters

Balancing demand sensitivity factor = 1.5. # Balancing demand is 50% higher than those presented in the input file

Generation output sensitivity factor = 0.3 # All generators produce 30% of the levels specified in the input file

Domestic Customer flexibility sensitivity factor= 1 # Multiplies supply of flex volumes for each customer as contained in input file

Domestic Customer bid price sensitivity factor= 1 # Multiples Marginal costs in input file by said factor - used in customer bidding values

 $Aggregator_opx_CPX_sensi_factor = 1 \ \# \ OPX \ CPX$

Elasticity long term effects flag on = True # Yearly effect

Elasticity short term effects flag on = True # Elasticity short term i.e. monthly effects Probability of domestic customer agent receiving message = 0.3

Stimulation adjustment factor =1 # e.g. need 1 stim from neighbour to get a 1 one stim

 $score\ sent\ to\ agent\ zero\ V$

 $agentzero_learn_rate{=}0.1$

 $agentzero_V_wt{=}0.333$

agentzero_P_wt =0.333

 $agentzero_S_wt = 0.333$

Aggregator number of buckets=10

Number of aggregators = 6

Bucketing algorithm - Equal numbers of bids in each buckets

Frequency adjuster for demand =1

Domestic customer yearly expectation =£10/Year

Aggregator Risk - as per data input (3 with risk hedging on and 3 aggregators with off)

Aggregator Numbers = 6

Domestic customers = 50000

Industrial Customers = 4500

Table 1: Parameters - Base case

Longer Terms Simulations: Description & Summary Results from 14 Cases

During longer timeframe simulations used in the PSCC 2024 paper, aggregators can choose to change their business models and change contract offer terms and customers can change contracts many times. The current model will allow aggregators to exit the market and new ones to enter, but this functionality has been disabled in the simulations presented in the paper.

To show the effect of different assumptions on the longer-term evolution of the simulations, 14 cases are presented in Table 2 below.

				Average		_	_	Average
			CP in	CP in	Average	Volatility		Volatility
Case			year 5	year 1	CP all	in year 5	in year 1	all years
Number	Brief Description	Assumptions/Parameters*	£/Mwh	£/Mwh	years	%	%	%
	Base Balancing Demand =1;	Bal Demand Factor = 1, OPX/CPX factor =0.4, Yearly						
1	OPX/CPX factor =0.4	Elaticity = off	705	243	521	124%	180%	145%
	Higher Balancing Demand; Higher	Case 1 with higher Balancing Demand = 1.5 and						
2	customer expectations	customer expectation =£100/year	54	456	593	344%	143%	144%
3	Aggregator Risk Hedge On	As case 3 with all aggragtors with risk hedging On	62	457	600	314%	143%	143%
4	Aggregator Risk Hedge Off	As case 3 with all aggragtors with risk hedging Off	139	445	566	196%	145%	142%
	Higher Balancing Demand and							
	requires more stimulation from	Bal Demand Factor = 1.7, Stimulation adjustment						
5	social interactyion to act	factor =5	1884	531	1127	54%	148%	99%
	Astropy bucketing with	Case 5 with Astropy Bucketing. Customer						
6	Stimulation Factor of 5	Expectations =£10/year Stimulation Factor =5	181	757	949	232%	123%	111%
		Aggregators use Astropy bucketing algorithm to						
		aggregate bids. Start FP=100 and initial aggragtor						
	Astropy bucketing with	margin =0.3, Stimulation adjustment factor =5;						
	Stimulation Factor =1 . Different	Balancing Demand Factor = 1.7; Stimulation Factor						
7	Fixed Price and Margin	=1	228	727	944	177%	122%	110%
		As Case 3 but with with Domestic customer						
	Customers use Marginal costs to	Expectations =£50/contract year; Start FP=100 and						
8	bid No adjustmnet	initial aggregator margin =0.3	233	223	294	200%	206%	199%
	Customerts and Aggragtors both	As Case 8 with Domestic customer Expectations						
9	use Marginal costs to form bid	=£50/contract year	233	223	294	200%	206%	199%
		Case3 assumptions but with balancing demand						
10	P=1; Logic preveails	factor = 1.5 and P=1,V=0, S=0	1884	531	1127	54%	148%	99%
	Domestic Customer follows Clear	Domestic Customer Expectation = £10/yr,						
11	price rather than expectations	Balancing Demand =1.5	330	333	813	131%	161%	126%
	Generation with Zip Trader rather	As Case x but Generators use a Cleraring Price						
12	than fixed Marginal Cost bidding	following zip trader to alter bids.	137	446	547	199%	155%	148%
	Domestic customer and Aggragator	As Case 11 but with Aggregators and domestic						
	both follow CP rtaher set tragets in	customers following Clearing Price rather setting a						
13	other ways	target price based on expectations or profits	328	328	810	131%	161%	126%
14	V=1 Emotions prevail	As Case 10 but with P=0, V=1,S=0	181	462	553	120%	154%	1.498275

 $Table\ 2:\ Five-year\ long-term\ simulation\ case\ summary\ (*see\ notes\ below)$

Table 2 also provides simulation summary values for average clearing price (CP), the volatility in those prices. Average CP's differ significantly from year 1 to year 5. This is not the case for case 8 and 9, where marginal costs are used to simulate clearing price output¹.

 $^{^{1}}$ This is the usual way to simulate clearing prices – e.g. as in SmartNet.