

Plano de Ensino para o Ano Letivo de 2020

IDENTIFICAÇÃO							
Disciplina:				Código da Disciplina:			
Sistemas Eletrônicos				ECM305			
Course:							
Electronic Systems							
Materia:							
Sistemas Electrónicos							
Periodicidade: Semestral	Carga horária total:	40	Carga horária sema	nal: 02 - 00 - 00			
Curso/Habilitação/Ênfase:	•		Série:	Período:			
Engenharia de Computação			3	Diurno			
Professor Responsável:		Titulação - Graduaç	ção	Pós-Graduação			
Sergio Ribeiro Augusto	Engenheiro Eletricista		Doutor				
Professores:		Titulação - Graduaç	ção	Pós-Graduação			
Sergio Ribeiro Augusto	Engenheiro Eletricista		Doutor				

Conhecimentos

- cl) Dispositivos semicondutores básicos: diodos e transistores de junção funcionando como chave;
- c2) Principios básicos de transistores MOS e uso em chaveamento;
- c3) Amplificadores operacionais e aplicações;
- C4) Conversão A/D e D/A.

Habilidades

- Aplicar conhecimentos matemáticos, científicos, tecnológicos h1) instrumentais à engenharia na sua área de atuação;
- h2) Analisar e interpretar circuitos com diodos e transitores
- h3) Analisar e interpretar circuitos com transistores BJT e MOSFETS atuando como chave;
- h3) Analisar interpretar circuitos básicos com amplificadores operacionais;
- h4) Analisar e formular soluções com conversores A/D e D/A.
- h5) Analisar criticamente os dispositivos abordados no estudo de problemas de engenharia.

Atitudes

- al) Ter interesse em buscar, continuamente, a sua atualização e aprimoramento;
- a2) Ter percepção do conjunto e capacidade de síntese;
- a3) Integrar conhecimentos de maneira a propor soluções adequadas a problemas relacionados com sistemas eletrônicos analógicos.

2020-ECM305 página 1 de 8

EMENTA

Diodos e aplicações: circuitos retificadores e limitadores. Transistores de junções bipolar (BJT) características e aplicações/acionamentos utilizando transistor como chave. MOSFET características e aplicações usando MOSFET como chave. Amplificadores operacionais: principais conceitos e topologias. Comparadores. Conversão A/D (Analógica/Digital) e D/A (digital/analógica): conceitos básicos (amostragem e retenção, controle, resolução, frequência de amostragem, faixa dinâmica, tempo de conversão, unipolar/diferencial), codificação numérica, tipos de conversores e aplicações.

SYLLABUS

Diodes and their applications: rectifiers and limiters. Bipolar junction transistors (BJT) and applications as a switch. MOSFET and its application as a switch. Operational Amplifiers: main concepts and topologies. Comparators. Analogic/ Digital conversion (A/D): characteristics (sampling and holding, control, resolution, sampling frequency, dynamic range, conversion time, single ended/differential), numeric codification, types of converters and applications.

TEMARIO

Diodos y aplicaciones: circuitos rectificadores y limitadores. Transistores de unión bipolar (BJT) características y aplicaciones/accionamientos utilizando transistores como interruptor. MOSFET características y aplicaciones utilizando MOSFET como interruptor. Amplificadores operacionales: principales conceptos y topologías. Comparadores. Conversión A/D (analógica/digital) y D/A (digital / analógica): conceptos básicos (muestreo y retención, control, resolución, frecuencia de muestreo, rango dinámico, tiempo de conversión, unipolar / diferencial), codificación numérica, tipos de convertidores y aplicaciones.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Teoria - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Sala de aula invertida
- Peer Instruction (Ensino por pares)

METODOLOGIA DIDÁTICA

Aulas expositivas e com exercícios/problemas reais, permeadas com aulas práticas em laboratório. Nas aulas de laboratório os alunos devem estudar previamente o que será realizado de maneira a discutir os resultados obtidos e relaciona-los com a teoria. Listas de exercícios são propostas durante o curso, assim como uma

avaliação individual no final de cada bimestre de maneira a discutir com os alunos pontos falhos na aprendizagem e o que precisa ser melhorado pelos mesmos.

2020-ECM305 página 2 de 8

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Considera-se como requisito para o andamento normal do curso o conhecimento de: Eletricidade - Circuitos de corrente contínua; conhecimento básico de circuitos digitais, incluindo sistemas e códigos numéricos.

CONTRIBUIÇÃO DA DISCIPLINA

A disciplina vai permitir aos futuros engenheiros adquirirem conceitos fundamentais para interpretar e analisar sistemas eletrônicos. Estes conceitos têm como objetivo desenvolver habilidades para projetar circuitos que permitem a interface entre sensores e atuadores com sistemas digitais utilizando microcontroladores.

BIBLIOGRAFIA

Bibliografia Básica:

BOYLESTAD, Robert; NASHELSKY, Louis. Dispositivos eletrônicos e teoria de circuitos. 3. ed. Rio de Janeiro, RJ: Prentice-Hall do Brasil, 1982. 700 p.

BOYLESTAD, Robert; NASHELSKY, Louis. Dispositivos eletrônicos e teoria de circuitos. 5. ed. Rio de Janeiro, RJ: Prentice Hall, 1992. 858 p. ISBN 85-7054-049-3.

BOYLESTAD, Robert; NASHELSKY, Louis. Electronic devices and circuit theory. 6. ed. Englewood Cliffs, NJ: Prentice-Hall, 1996. 950 p.

MILLMAN, Jacob; HALKIAS, Christos C. Eletrônica: dispositivos e circuitos. 2. ed. São Paulo, SP: McGraw-Hill, 1981. v. 2. 521-804 p.

MILLMAN, Jacob; HALKIAS, Christos C. Eletrônica: dispositivos e circuitos. Trad. de Eledio José Robalinho. São Paulo, SP: McGraw-Hill, 1981. v. 1. 355 p.

MILLMAN, Jacob; HALKIAS, Christos C. Eletrônica: dispositivos e circuitos. Trad. de Eledio José Robalinho. São Paulo, SP: McGraw-Hill, 1981. v. 2. 357-684 p.

MILLMAN, Jacob; HALKIAS, Christos C. Eletrônica: dispositivos e circuitos. Trad. de Eledio José Robalinho. 2. ed. São Paulo, SP: McGraw-Hill, 1981. v. 1. 520 p.

SEDRA, Adel S; SMITH, Kenneth C. Microelectronic circuits. 3. ed. Fort Worth: Saunders College, 1989. 1054 p.

SEDRA, Adel S; SMITH, Kenneth C. Microelectronic circuits. 4. ed. New York: Oxford University, 1998. 1237 p. (The Oxford Series in Electrical and Computer Engineering). ISBN 0-19-511690-9.

Bibliografia Complementar:

2020-ECM305 página 3 de 8

INSTITUTO MAUÁ DE TECNOLOGIA

MALVINO, Albert Paul. Eletrônica. 4. ed. São Paulo, SP: Makron Books, 1997. v. 1. 747 p. ISBN 85-346-0378-2.

MALVINO, Albert Paul. Eletrônica. 4. ed. São Paulo, SP: Makron Books, 1997. v. 2. ISBN 85-346-0455-X.

MALVINO, Albert Paul. Eletrônica. Trad. de Aracy Mendes da Costa. São Paulo, SP: McGraw-Hill, 1986. v. 1.

MALVINO, Albert Paul. Eletrônica. Trad. de Aracy Mendes da Costa. São Paulo, SP: McGraw-Hill, 1986. v. 2.

SPENCER, Richard R; GHAUSI, Mohammed Shuaib. Introduction to electronic circuit design. Upper Saddle River, N.J: Prentice Hall/Pearson Education, c2003. pt. A. 511 p. ISBN 0201361833.

SPENCER, Richard R; GHAUSI, Mohammed Shuaib. Introduction to electronic circuit design. Upper Saddle River, N.J: Prentice Hall/Pearson Education, c2003. pt. B. 513 a 1132 p. ISBN 0201361833.

TOOLEY, Mike. Circuitos eletrônicos: fundamentos e aplicações. Trad. de Luiz Cláudio de Queiroz Faria; rev. tec. de Henrique Serdeira. Rio de Janeiro, RJ: Elsevier, 2008. 417 p. ISBN 9788535223644.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina semestral, com trabalhos e provas (duas e uma substitutiva).

Pesos dos trabalhos:

 $k_1: 1,0 k_2: 1,0$

Peso de $MP(k_p)$: 0,7 Peso de $MT(k_p)$: 0,3

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

A nota de trabalho será obtida através de avaliações bimestrais em sala de aula /listas de exercícios.

2020-ECM305 página 4 de 8

OUTRAS INFORMAÇÕ	DES

2020-ECM305 página 5 de 8

		SOFTWARES NECESSÁRIOS PARA A DISCIPLINA			
Microsoft	Office.				

2020-ECM305 página 6 de 8

2020-ECM305 página 7 de 8

	PROGRAMA DA DISCIPLINA					
Nº da	Conteúdo	EAA				
semana						
22 T	Férias. Atendimento.	0				
23 T	Semana de provas.	0				
24 T	Apresentação da disciplina. Introdução ao diodo. Diodo ideal.	0				
	Característica i x v. Modelo simplificado. Modelo de queda de					
	tensão constante. Aplicações: circuitos retificadores e					
	limitadores.					
25 T	Transistor de junções bipolar (BJT). Constituição física,	0				
	simbologia, tipos, curvas características.					
26 Т	Transistor como chave: corte e saturação. Aplicações.	0				
27 T	Exercícios: diodos e transistores como chave.	1% a 10%				
28 T	Laboratório: Diodos e transistor como chave.	91% a				
		100%				
29 T	Avaliação em sala.	0				
30 T	Semana de provas.	0				
31 T	Introdução aos Mosfets (acumulação): tipos (canal P, canal	0				
	N):curvas características. Uso como chave. Exemplo.					
32 T	Amplificador operacional: características e topologias mais	0				
	comuns(inversor, não inversor, buffer). Comparador.					
33 T	Amplificadores operacionais (cont.) Exercício.	1% a 10%				
34 T	Conversão A/D e D/A: conceitos básicos (amostragem e retenção,	0				
	controle, resolução, frequência de amostragem, faixa dinâmica,					
	tempo de conversão, unipolar/diferencial), codificação numérica.					
	Tipos conversores A/D.					
35 T	Conversão A/D e D/A (cont). Exemplos de técnicas de conversão	11% a 40%				
	D/A. Aplicações. Exercícios. Estudo de caso.					
36 T	Laboratório: Amplificador operacional.	91% a				
		100%				
37 T	Avaliação em sala.	0				
38 T	Semana de provas.	0				
39 T	Semana de provas.	0				
40 T	Revisão de Conceitos. Discussões	11% a 40%				
41 T	Atendimento. Semana de provas.	0				

2020-ECM305 página 8 de 8