

CMS-EXO-15-010

Search for long-lived charged particles in proton-proton collisions at $\sqrt{s}=13\,\text{TeV}$

The CMS Collaboration*

Abstract

Results are presented of a search for heavy stable charged particles produced in proton-proton collisions at $\sqrt{s}=13\,\text{TeV}$ using a data sample corresponding to an integrated luminosity of $2.5\,\text{fb}^{-1}$ collected in 2015 with the CMS detector at the CERN LHC. The search is conducted using signatures of anomalously high energy deposits in the silicon tracker and long time of flight measurements by the muon system. The data are consistent with the expected background, and upper limits are set on the cross sections for production of long-lived gluinos, top squarks, tau sleptons, and leptonlike long-lived fermions. These upper limits are equivalently expressed as lower limits on the masses of new states; the limits for gluinos, ranging up to 1610 GeV, are the most stringent to date. Limits on the cross sections for direct pair production of long-lived tau sleptons are also determined.

Published in Physical Review D as doi:10.1103/PhysRevD.94.112004.

1 Introduction

Many extensions of the standard model (SM) include heavy long-lived charged particles that might have high momentum, but speed significantly smaller than the speed of light [1–3] and/or charge, Q, not equal to the elementary charge $\pm 1e$ [4–7]. Those particles with lifetimes greater than a few nanoseconds can travel distances larger than the size of a typical collider detector and appear quasi-stable like the pion or kaon. These particles are generally referred to as heavy stable charged particles (HSCPs) and can be singly (|Q|=1e), fractionally (|Q|<1e), or multiply (|Q|>1e) charged. Without dedicated searches, HSCPs may be misidentified or unobserved, since charged particle identification algorithms at hadron collider experiments generally assume that particles have speeds close to the speed of light and charges of $\pm 1e$. Additionally, HSCPs may be charged during only a part of their passage through detectors [8] further limiting the ability of standard algorithms to identify them.

For HSCP masses greater than about 100 GeV, a significant fraction of particles produced at the LHC will have a relative velocity $\beta \equiv v/c < 0.9$. It is possible to distinguish $|Q| \geq 1e$ particles with $\beta < 0.9$ from light SM particles traveling close to the speed of light through their higher rate of energy loss via ionization (dE/dx) or through their longer time of flight (TOF) to the outer detectors. This paper describes a search for HSCPs using the CMS detector in two ways: (i) requiring tracks to be reconstructed only in the silicon detectors, the *tracker-only* analysis; (ii) requiring tracks to be reconstructed in both the silicon detectors and the muon system, referred to as the *tracker+TOF* analysis.

Figure 1: Distribution of the dE/dx estimator, I_h (see Section 3.1), versus particle momentum for tracks in the 13 TeV data, and for simulation of HSCP for singly or multiply charged particles with masses of 400 and 1000 GeV. The vertical scale shows the density of entries for data only.

The dependence of dE/dx on the particle momentum is described by the Bethe-Bloch formula [9]. This dependence can be seen in Fig. 1, which shows the dE/dx estimator versus momentum for good quality (Section 4) high transverse momentum ($p_T > 55 \,\text{GeV}$) tracks from data and the generated Monte Carlo (MC) samples for HSCP signals with various charges. In the momentum range of interest at the LHC (10–1000 GeV), SM particles have nearly uniform ionization energy loss ($\approx 3 \,\text{MeV/cm}$). Searching for candidates with larger dE/dx gives sensitivity to massive particles with |Q| > 1e.

Previous collider searches for HSCPs have been performed at LEP [10-13], HERA [14], the

Tevatron [15–18] and the CERN LHC during Run 1 (proton-proton collisions with \sqrt{s} up to 8 TeV) [19–27]. The results from these searches have placed significant bounds on theories beyond the SM [28, 29], such as lower limits at 95% confidence level (CL) on the mass of long-lived gluinos (1300 GeV), top squarks (900 GeV), and directly pair-produced tau sleptons (330 GeV).

In the present paper, results of searches for singly and multiply charged HSCPs in $2.5 \, \text{fb}^{-1}$ of data collected with the CMS detector at $\sqrt{s} = 13 \, \text{TeV}$ in 2015 are presented. Similar limits on HSCPs were recently obtained by the ATLAS experiment [30, 31] using $3.2 \, \text{fb}^{-1}$ of 13 TeV data collected in 2015.

2 Signal benchmarks

The analyses described in this paper employ several HSCP models as benchmarks, to account for a range of signatures that are experimentally accessible.

The first type of signal consists of HSCPs that interact via the strong force and hadronize with SM quarks to form R-hadrons [2, 3]. As in Ref. [27], events involving direct pair production of gluinos (\tilde{g}) and top squarks (\tilde{t}_1), with mass values in the range 300-2600 GeV, are generated according to the Split Supersymmetry (Split SUSY) scenarios [32-35]. Gluinos are generated assuming the squark mass is 10 TeV [32, 36]. In the region of parameter space where squarks are too heavy to be produced at the LHC, the gluino-gluino production cross section and kinematic distributions depend only on the gluino mass, thus the cross section limits are modelindependent. PYTHIA 8.153 [37], with the underlying event tune CUETP8M1 [38], is used to generate the 13 TeV MC samples. The fraction, f, of produced \tilde{g} hadronizing into a \tilde{g} -gluon state is an arbitrary value of the hadronization model. It determines the fraction of R-hadrons that are neutral at production. For this search, results are obtained for two different values of f, 0.1 and 0.5. As in Ref. [27], two scenarios of R-hadron strong interactions with nuclear matter are considered. The first scenario follows the cloud model in Refs. [8, 39], which assumes that the R-hadron is surrounded by a cloud of colored, light constituents that interact during scattering. Therefore, the *R*-hadron interacting inside the detector may change its charge sign. The second scenario adopts a model of complete charge suppression [40] where the R-hadron becomes a neutral particle before it enters the muon system. Both the tracker-only and tracker+TOF analyses are used to search for these signals, although only the tracker-only analysis is expected to have sensitivity in the charge-suppressed scenario. In the case of a discovery, a comparison of the numbers of events found in the two analyses could give a hint about the nature of the new long-lived particle.

The second type of signal consists of HSCPs that behave like leptons. The minimal gauge mediated supersymmetry breaking (mGMSB) model [41] is selected as a benchmark for leptonlike HSCPs. Production of quasi-stable sleptons at the LHC can proceed either directly or via production of heavier supersymmetric particles (mainly squarks and gluinos) that decay and lead to two sleptons at the end of the decay chain. This latter process is dominant because the direct production process is electroweak. Direct production is relevant only if squarks and gluinos are too heavy to be produced at the LHC. The mGMSB model is explored using the SPS7 slope [42], which has the tau slepton (stau $\tilde{\tau}_1$) as the next-to-lightest supersymmetric particle (NLSP). The particle mass spectrum and the decay table are produced with the program ISASUGRA 7.69 [43]. The mGMSB model is characterized by six fundamental parameters. The mGMSB parameter Λ , which corresponds to the effective supersymmetry breaking scale, is varied from 31 to 510 TeV. It is proportional to the sparticle masses. The range of its values gives a tau slepton mass of 100 to 1600 GeV. Other parameters are fixed to the following values. The number of the mes-

senger SU(5) multiplets $N_{\rm mes}=3$ and their mass scale M is set as $M_{\rm mes}/\Lambda=2$. The ratio of the vacuum expectation values of the Higgs doublets is $\tan\beta=10$ and a positive sign of the higgsino mass term, $\mu>0$, is assumed. The large value of the scale factor of the gravitino coupling, $C_{\rm grav}=10000$, results in a long-lived $\tilde{\tau}_1$. The SUSY mass spectrum produced is input to PYTHIA 6.4 [37] with the Z2* tune [44] as the generator for a MC simulation at 13 TeV. Two tau slepton samples are generated for each SUSY point: one with all processes (labeled "GMSB stau") and one with only direct pair production (labeled "Pair prod. stau"). The pair-produced stau includes only $\tilde{\tau}_1$, which is predominantly $\tilde{\tau}_R$ for these model parameters. The direct production of long-lived stau is model independent. Both cross section and kinematics depend only on the stau mass and the scan over the stau mass parameter shows the effect of variations in center-of-mass energy and integrated luminosity. The *tracker-only* and *tracker+TOF* analyses are both used to search for these signals.

The last type of signal is based on modified Drell–Yan (DY) production of long-lived leptonlike fermions. In this scenario, new massive spin-1/2 particles have arbitrary electric charge but are neutral under SU(3)_{Colour} and SU(2)_{Left}, and therefore couple only to the photon and the Z boson. PYTHIA v6.4 [37] with the Z2* tune [44] is used to generate these 13 TeV MC signal samples. Simulations of events with leptonlike fermions are generated with masses ranging from 100 to 2600 GeV and for electric charges |Q| = 1e and 2e.

Different PYTHIA tunes were studied and the effects on the kinematic distribution were negligible for the HSCPs considered. The *tracker-only* and *tracker+TOF* analyses are both expected to have sensitivity to |Q| = 2e HSCPs.

In all signal samples, simulated minimum bias events are overlaid with the primary collision to produce the effect of additional interactions in the same LHC beam crossing (pileup).

3 The CMS detector

The central feature of the CMS [45] apparatus is a 3.8 T superconducting solenoid of 6 m internal diameter. Within the solenoid volume are a silicon tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Outside the solenoid, forward calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside of the solenoid. The missing transverse momentum vector $\vec{p}_{\rm T}^{\rm miss}$ is defined as the projection on the plane perpendicular to the beam axis of the negative vector sum of the momenta of all reconstructed particles in an event. Its magnitude is referred to as $E_{\rm T}^{\rm miss}$.

The silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules , measures charged particles within the pseudorapidity range $|\eta| < 2.5$. Isolated particles of transverse momentum $p_T = 100\,\text{GeV}$ and with $|\eta| < 1.4$ have track resolutions of 2.8% in p_T and $10\,(30)\,\mu\text{m}$ in the transverse (longitudinal) impact parameter [46]. Muons are measured in the pseudorapidity range $|\eta| < 2.4$, using three technologies: drift tubes (DTs), cathode strip chambers (CSCs), and resistive-plate chambers (RPCs). Matching muons to tracks measured in the silicon tracker results in a relative transverse momentum resolution for muons with $20 < p_T < 100\,\text{GeV}$ of 1.3–2.0% in the barrel and better than 6% in the endcaps. The p_T resolution in the barrel is better than 10% for muons with p_T up to 1 TeV [47].

The first level (L1) of the CMS trigger system, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events of interest within a fixed

4 3 The CMS detector

time interval of less than $4 \mu s$. The high-level trigger (HLT) processor farm further decreases the event rate from around 100 kHz to less than 1 kHz, before data storage. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [45].

3.1 dE/dx measurements

For the reconstructed track, information about dE/dx can be gained from measurements of ionization deposited in layers of the pixel and silicon tracker. The ionization charge measured is compared with that expected from a Minimum-Ionizing Particle (MIP), and its level of compatibility can provide a probability, using a dE/dx discriminator. As in Ref. [24], to distinguish SM particles from HSCP candidates the I_{as} discriminator is used and is given by

$$I_{as} = \frac{3}{N} \left(\frac{1}{12N} + \sum_{i=1}^{N} \left[P_i \left(P_i - \frac{2i-1}{2N} \right)^2 \right] \right), \tag{1}$$

where N is the number of measurements in the silicon-tracker detectors, P_i is the probability for a MIP to produce a charge smaller or equal to that of the ith measurement for the observed path length in the detector, and the sum is over the track measurements ordered in terms of increasing P_i .

In addition, the dE/dx of a track is estimated using a harmonic-2 estimator:

$$I_{\rm h} = \left(\frac{1}{N_{85\%}} \sum_{i}^{N_{85\%}} c_i^{-2}\right)^{-1/2},\tag{2}$$

where c_i is the charge per unit path length in the sensitive part of the silicon detector of the ith track measurement. The harmonic-2 estimator has units MeV/cm and the summation includes just the top 85% of the charge measurements. Ignoring the low charge measurements increases the resilience of the estimator against instrumental biases. This procedure is not necessary for I_{as} which is, by construction, robust against that type of bias.

The mass of a candidate particle can be calculated [27] from its momentum and its $I_h dE/dx$ estimate, based on the relation:

$$I_{\rm h} = K \frac{m^2}{p^2} + C, (3)$$

where the empirical parameters $K = 2.684 \pm 0.001 \, \text{MeV cm}^{-1}$ and $C = 3.375 \pm 0.001 \, \text{MeV cm}^{-1}$ are determined from data using a sample of low-momentum protons. As the momentum reconstruction is done assuming |Q| = 1e particles, Eq. (3) leads to an accurate mass reconstruction only for singly charged particles.

The HSCP candidates are preselected using the $I_{\rm as}$ discriminator because it has a better signal-to-background discriminating power compared to the $I_{\rm h}$ estimator or the mass. Nonetheless, the mass is used at the last stage of the analysis, after the $I_{\rm as}$ selection, to further discriminate between signal and backgrounds since the latter tend to have a low reconstructed mass.

3.2 Time of flight measurements

The time of flight to the muon system can be used to discriminate between particles travelling at near the speed of light and slower candidates. Both the DT and the CSC muon systems measure

the time of each hit. In the DT, the precision position is obtained from this time measurement. The synchronization works in a such a way that a relativistic muon produced at the interaction point gives an aligned pattern of hits in consecutive DT layers. For a slower HSCP particle, hits in each DT layer will be reconstructed as shifted with respect to its true position and will form a zigzag pattern with an offset proportional to the particle delay, δ_t . In the CSC the delay is measured for each hit separately. Each δ_t measurement can be used to determine the track β via the equation:

$$\beta^{-1} = 1 + \frac{c\delta_t}{L} \tag{4}$$

where L is the flight distance. The track β^{-1} value is calculated as the weighted average of the β^{-1} measurements from the DT and CSC systems associated with the track. The weight for the i^{th} DT measurement is given by

$$w_i = \frac{(n-2)}{n} \frac{L_i^2}{\sigma_{\rm DT}^2} \tag{5}$$

where n is the number of ϕ projection measurements found in the muon chamber producing the measurement and $\sigma_{\rm DT}$ is the time resolution of the DT measurements, for which the measured value of 3 ns is used. The factor (n-2)/n accounts for residuals computed using the two parameters of a straight line determined from the same n measurements. The minimum number of hits in a given DT chamber that allows for at least one residual calculation is n=3. The weight for the ith CSC measurement is given by

$$w_i = \frac{L_i^2}{\sigma_i^2} \tag{6}$$

where σ_i , the measured time resolution, is 7.0 ns for cathode strip measurements and 8.6 ns for anode wire measurements.

The resolution on the weighted average β^{-1} measurement is approximately 0.065 in both the DT and CSC subsystems.

4 Data selection

All events pass a trigger requiring either a reconstructed muon with high transverse momentum or large $E_{\rm T}^{\rm miss}$, calculated using an online particle-flow algorithm [48–50].

The muon trigger is more efficient than the $E_{\rm T}^{\rm miss}$ trigger for all HSCP models considered with the exception of the charge-suppressed R-hadron model, but it is not efficient for particles that are slow (β < 0.6).

The $E_{\rm T}^{\rm miss}$ trigger can recover some events in which the HSCP is charged in the tracker and neutral in the muon subsystem. The particle-flow algorithm rejects tracks reconstructed only in the tracker and having a track $p_{\rm T}$ significantly greater than the matched energy deposited in the calorimeter [49], as would be the case for HSCPs that become neutral in the calorimeter. Thus only an HSCP's energy deposit in the calorimeter, roughly 10–20 GeV, will be included in the $E_{\rm T}^{\rm miss}$ calculation. Where one or more HSCPs fail to be reconstructed as muon candidates, the events may appear to have significant $E_{\rm T}^{\rm miss}$.

For both the *tracker-only* and the *tracker+TOF* analyses, the muon high-level trigger requires a muon candidate with $p_T > 50 \,\text{GeV}$ and the E_T^{miss} trigger requires $E_T^{\text{miss}} > 170 \,\text{GeV}$. Using these two triggers for both analyses allows for increased sensitivity to HSCP candidates that arrive

in the muon system very late, as well as for hadronlike HSCPs, which may be charged only in the tracker.

Offline, for the tracker-only analysis, all events are required to have a candidate track with $p_{\rm T} > 55\,{\rm GeV}$ as measured in the tracker, relative uncertainty in $p_{\rm T}$ ($\sigma_{p_{\rm T}}/p_{\rm T}$) less than 0.25, $|\eta|$ < 2.1, and the track fit χ^2/dof < 5. The magnitudes of the impact parameters d_z and d_{xy} must both be less than 0.5 cm, where d_z and d_{xy} are the longitudinal and transverse impact parameters with respect to the vertex with the smallest d_z . The requirements on the impact parameters are very loose compared to the resolutions for tracks in the tracker. Candidates must pass isolation requirements in the tracker and calorimeter. The tracker isolation criterion is $\sum p_{\rm T} < 50\,{\rm GeV}$, where the sum is over all tracks (except the candidate) within $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.3$ of the candidate track. The calorimeter isolation criterion is E/p = 0.3, where E is the sum of energy deposited in the calorimeter towers within $\Delta R = 0.3$ and p is the track momentum reconstructed from the tracker. Candidate tracks must have at least two measurements in the silicon pixel detector and at least six measurements in the strip detectors. In addition, there must be measurements in at least 80% of the silicon layers between the first and last measurements of the track. To reduce the contamination from clusters with a large energy deposition due to overlapping tracks, a filtering procedure is applied to remove clusters in the silicon strip tracker that are not consistent with the passage of a singly charged particle (i.e., a narrow cluster with most of the energy deposited in one or two strips). After cluster filtering, there must be at least six measurements in the silicon tracker that are used for the dE/dx calculation.

The *tracker+TOF* analysis applies the same criteria, but additionally requires a reconstructed muon matched to the track in the inner detectors. At least eight independent time measurements are needed for the TOF computation. Finally, $1/\beta > 1$ and $\sigma_{1/\beta} < 0.15$ are required.

5 Background estimation

For background estimation we follow the procedure described in our previous work [27]. Candidates passing the preselection (Section 4) are subject to either two or three additional criteria to improve the signal-to-background discrimination. By choosing two uncorrelated criteria it is possible to predict the background using the ABCD (matrix) method. In this approach, the expected background in the signal region, D, is estimated by BC/A, where B and C are the number of candidates that fail the first or second criterion, respectively, while A is the number of candidates that fail both criteria.

Results are based upon a comparison of the number of candidates passing the selection criteria defining the signal region with the number of predicted background events in that region. Fixed selections on the appropriate set of I_{as} , p_T , and $1/\beta$ are used to define the final signal region (and the regions for the background prediction). The values are chosen to give the best discovery potential over the signal mass regions of interest.

For the *tracker-only* analysis, the two criteria are $p_T > 65$ GeV and $I_{as} > 0.3$. The candidates passing only the I_{as} requirement fall into the B region and those passing only the p_T requirement fall into the C region. The B and C candidates are then used to form binned probability density functions in I_h and p, respectively, such that, using the mass value (Eq. (3)), the full mass spectrum of the background in the signal region D can be predicted. However, the η distribution of candidates with low dE/dx differs from the distribution of candidates with high dE/dx. To correct for this, events in the C region are weighted such that the η distribution matches that in the B region.

Figure 2: Observed and predicted mass spectra for loose selection candidates in the *tracker-only* (left) and *tracker+TOF* (right) analyses. The expected distributions for representative signals are shown as histograms.

For the tracker+TOF analysis, a three-dimensional matrix method is used with $p_T > 65\,\text{GeV}$, $I_{as} > 0.175$, and $1/\beta > 1.25$, creating eight regions labeled A–H. Region D represents the signal region, with events passing all three criteria. The candidates in the A, F, and G regions pass only the $1/\beta$, I_{as} , and p_T criteria, respectively, while the candidates in the B, C, and H regions fail only the p_T , I_{as} , and $1/\beta$ criteria, respectively. The E region contains events that fail all three criteria. Background estimates can be made from several different combinations of these regions. The combination $D = AGF/E^2$ is used because it yields the smallest statistical uncertainty. As in the tracker-only analysis, events in the G region are reweighted to match the g distribution in the g region. The spread in background estimated from the other combinations is less than 20%, which is taken as the systematic uncertainty in the collision background estimate. The same 20% systematic uncertainty is used for the tracker-only analysis.

In order to check the background prediction, samples with a loose selection, which would be dominated by background tracks, are used for the *tracker-only* and *tracker+TOF* analyses. The loose selection sample for the *tracker-only* analysis is defined as $p_T > 60 \,\text{GeV}$ and $I_{as} > 0.10$. The loose selection sample for the *tracker+TOF* analysis is defined by $p_T > 60 \,\text{GeV}$, $I_{as} > 0.05$, and $1/\beta > 1.05$. Figure 2 shows the observed and estimated mass spectra for these samples.

For both analyses, an additional requirement on the reconstructed mass is applied. The specific requirement is adapted to each HSCP model. For a given signal mass and model, the mass requirement is $M \geq M_{\rm reco} - 2\sigma$, where $M_{\rm reco}$ is the average reconstructed mass for the given mass $M_{\rm HSCP}$ and σ is the expected resolution. Simulation is used to determine $M_{\rm reco}$ and σ .

Table 1 lists the final selection criteria, the predicted number of background events, and the number of events observed in the signal region. Agreement between prediction and observation is seen for both the *tracker-only* and the *tracker+TOF* analyses. Figure 3 shows the predicted and observed mass distributions for the *tracker-only* and the *tracker+TOF* analyses with the final selection.

Table 1: Selection criteria for the two analyses with the number of predicted and observed events. In the background prediction, the statistical and systematic uncertainties are added in quadrature.

	Se	election re	Numbers of events $\sqrt{s} = 13 \text{TeV}$			
	p_{T}	I_{as}	1/β	Mass	Pred.	Obs.
	(GeV)			(GeV)		
				>0	28.7 ± 6.0	24
tua alem mala	>65	>0.3	_	>100	20.7 ± 4.4	15
tracker-only				>200	3.8 ± 0.8	2
				>300	0.82 ± 0.18	0
				>400	0.25 ± 0.05	0
		>0.175	>1.250	>0	18.2 ± 3.7	14
tracker+TOF	>65			>100	5.4 ± 1.1	4
	> 03			>200	0.90 ± 0.19	0
				>300	0.06 ± 0.04	0

Figure 3: Observed and predicted mass spectra for candidates passing the final selection in the *tracker-only* (left) and *tracker+TOF* (right) analyses. The expected distributions for representative signals are shown as histograms.

6 Systematic uncertainties

The sources of systematic uncertainty considered are those related to the background prediction, the signal acceptance, and the integrated luminosity. The uncertainty in the integrated luminosity is 2.7% at $\sqrt{s} = 13 \,\text{TeV}$ [51]. The uncertainties in the collision background predictions are estimated to be at the level of 20% for the *tracker-only* and the *tracker+TOF* analyses, as described in Section 5.

The signal acceptance is obtained from MC samples of the various signals processed through the full detector simulation (Section 2). Systematic uncertainties are derived by comparing the response of the detector in the data and simulation. The relevant sources of uncertainty are discussed below.

The signal trigger efficiency is dominated by the muon triggers efficiency, for all the models except the charge-suppressed ones. The uncertainty in the muon trigger efficiency has many contributions. It is estimated from the difference between the trigger efficiency in data and that seen in simulation, using $Z(\mu\mu)$ data. For genuine muons, the trigger efficiency uncertainty is 3%.

For slow moving particles, the effect of the timing synchronization of the muon system is tested by shifting the arrival times in simulation by the synchronization accuracy observed in data, resulting in an efficiency change of less than 4% for most samples but up to 8% for the 2.4 TeV gluino sample. The uncertainty in the $E_{\rm T}^{\rm miss}$ trigger efficiency is found by varying the jet energy scale in the simulation of the high-level trigger by its uncertainty in data. The $E_{\rm T}^{\rm miss}$ uncertainty is found to be less than 12% for all samples. The total trigger uncertainty is found to be less than 13% for all the samples, since the muon trigger inefficiencies are often compensated by the $E_{\rm T}^{\rm miss}$ trigger and vice versa.

Low-momentum protons are used to compare the observed and simulated distributions of I_h and I_{as} that reflect the energy loss in the silicon tracker. The dE/dx distributions of signal samples are varied by the observed differences in order to estimate the systematic uncertainty. The uncertainty in the signal acceptance is usually less than 10%, and is at most 15%.

Bias in the energy loss measurement due to highly ionizing particles (HIP), such as low-momentum protons produced in pp collisions earlier than the triggering collision, was also considered as a source of uncertainty in the I_h estimate. In 2015, the LHC collision frequency was doubled, with bunches colliding every 25 ns compared to collisions every 50 ns in 2012, causing an increase of the HIP rate. The contribution of HIPs was included in simulations with the rate observed during the 2015 data taking. The uncertainty in this rate is found to be 25% and 80% for pixel and strip sensors, respectively. Varying the HIP rate in the simulation by these amounts leads to a change in signal acceptance of at most 4% for both analyses.

Dimuon events are used to test the MC simulation of $1/\beta$ by comparing with data. An offset of at most 1.5% is found for the muon system. The resulting uncertainty (labeled "Time of flight" in Table 2) in the signal acceptance is found to be less than 5% by shifting $1/\beta$ by this amount.

As in Ref. [26], the uncertainties in the efficiencies for muon [47] and track [52] reconstruction are each less than 2%. The track momentum uncertainty is estimated by shifting the momentum of the inner track, as in Ref. [26]. This uncertainty is found to be less than 5% for most of the samples, increasing to 20% for masses above 2 TeV.

The uncertainty in the number of pileup events is evaluated by varying $\pm 5\%$ the minimum bias cross section used to calculate the weights applied to signal events in order to reproduce the pileup observed in data. The uncertainties due to pileup estimated with this procedure are

10 7 Results

Table 2: Systematic uncertainties for the two HSCP searches. All values are relative uncertainties in the signal acceptance for the *tracker-only* and *tracker+TOF* analyses.

Source of systematic uncertainty	Relative uncertainty (%)			
Signal acceptance	tracker-only	tracker+TOF		
 Trigger efficiency 	13	13		
- Track momentum scale	< 20	< 20		
- Track reconstruction	<2	<2		
 Ionization energy loss 	<15	<15		
 HIP background effect 	<3	<4		
- Time of flight		< 5		
- Muon reconstruction		2		
- Pileup	<1	<1		
Tot. uncert. in signal acceptance	< 20	<25		
Collision background uncert.	20	20		
Luminosity uncertainty	2.7	2.7		

less than 1%.

The total systematic uncertainty in the signal acceptance is the sum in quadrature of the uncertainties due to the sources discussed above. For almost all signal models, it is less than 20% for both analyses. Only for the tracker+TOF analysis of the gluino (f=0.5) sample it is larger, but does not exceed 25%.

Table 2 summarizes the systematic uncertainties for the two analyses. As the uncertainty often depends on the model and HSCP mass, the largest systematic uncertainty is reported for each source.

7 Results

No significant excess of events is observed above the predicted background. Cross section limits are placed at 95% CL using a CL_s approach [53–55] where a profile likelihood technique [56] is used. It utilizes a log-normal model [57, 58] for the nuisance parameters, which are the integrated luminosity, the signal acceptance, and the expected background in the signal region. The observed limits are shown in Fig. 4 for both the *tracker-only* and the *tracker+TOF* analyses along with the theoretical predictions. The theoretical cross sections are computed at NLO or NLO+NLL [59–62] using PROSPINO [63] with CTEQ6.6M PDFs [64]. The uncertainty bands of the theoretical cross sections include the PDF uncertainty, the renormalization and factorization scale uncertainties, and the uncertainty in α_s . The 95% CL limits on the production cross sections are shown in Tables 3, 4, 5, and 6 for long-lived gluino, top squark, tau slepton, and modified Drell–Yan signals, respectively. The limits were determined from the numbers of events passing all final criteria (including the mass criteria).

Mass limits are obtained from the intersection of the observed limit and the central value of the theoretical cross section. The *tracker-only* analysis excludes f=0.1 gluino masses below 1610 (1580) GeV for the cloud interaction model (charge-suppressed model). Top squark masses below 1040 (1000) GeV are excluded for the cloud (charge-suppressed) models. In addition, the *tracker+TOF* analysis excludes $\tilde{\tau}_1$ masses below 490 (240) GeV for the GMSB (direct pair production) model. Drell–Yan signals with |Q|=1e (2e) are excluded below 550 (680) GeV.

The mass limits obtained at $\sqrt{s}=13\,\text{TeV}$ for various HSCP signal models are summarized in Table 7 and compared with earlier results at $\sqrt{s}=7$ and 8 TeV [27]. A significant increase

Figure 4: Results of the HSCP search as the cross section upper limits at 95% CL for various signal models for the *tracker-only* analysis (left) and *tracker+TOF* analysis (right) at $\sqrt{s} = 13$ TeV. In the legend, "CS" stands for charge-suppressed interaction model.

in mass limit is obtained for all models with large QCD production cross section (gluinos, top squarks, and inclusive production of GMSB tau sleptons), arising from the higher center-of-mass energy pp collisions delivered by the LHC. For scenarios with much smaller cross-sections, directly pair-produced tau sleptons and Drell–Yan signals with |Q|=1e, the results do not improve, because the larger integrated luminosity at 7 and 8 TeV with respect to that at 13 TeV prevails over the effect of the increase of the centre-of-mass energy. For the |Q|=2e analysis, results from the previous analysis optimized for multiply charged signals [27] are also provided.

8 Summary

A search for heavy stable charged particles produced in proton-proton collisions at $\sqrt{s}=13\,\text{TeV}$ using the CMS detector is presented. Two complementary analyses were performed: using only the tracker and using both the tracker and the muon system. The data are found to be compatible with the expected background. Mass limits for long-lived gluinos, top squarks, tau sleptons, and multiply charged particles are calculated. The models for *R*-hadronlike HSCPs include a varying fraction of \widetilde{g} -gluon hadronization and two different interaction models leading to a variety of exotic experimental signatures. The limits are significantly improved over those from Run 1 of the LHC, and the limits on long-lived gluinos, ranging up to 1610 GeV, are the most stringent to date.

12 8 Summary

Table 3: Summary of the search for long-lived gluinos: the $p_{\rm T}$ (GeV), $I_{\rm as}$, $1/\beta$, and mass thresholds M (GeV) requirements, the predicted and observed yields passing these criteria, and the resulting expected (exp.) and observed (obs.) cross section limits. The signal efficiencies and theoretical (theo.) cross sections are also listed.

Mass	Requirements			ts	Yields		Signal		σ (pb)		
(GeV)	p_{T}	I_{as}	$1/\beta$	M	SM predicted	data	eff.	theo.	exp.	obs.	
	Gluino ($f = 0.1$) with the <i>tracker-only</i> analysis										
400	65	0.3	_	60	28.000 ± 5.880	23	0.167	$9.5 \times 10^{+1}$	3.7×10^{-2}	2.8×10^{-2}	
800	65	0.3	_	350	0.435 ± 0.093	0	0.223	1.5	5.5×10^{-3}	5.5×10^{-3}	
1200	65	0.3		590	0.046 ± 0.010	0	0.220	8.4×10^{-2}	5.6×10^{-3}	5.6×10^{-3}	
1600	65	0.3	_	720	0.017 ± 0.004	0	0.166	8.0×10^{-3}	7.5×10^{-3}	7.5×10^{-3}	
2000	65	0.3	_	770	0.012 ± 0.003	0	0.112	9.7×10^{-4}	1.1×10^{-2}	1.1×10^{-2}	
2400	65	0.3	_	800	0.012 ± 0.002	0	0.072	1.3×10^{-4}	1.8×10^{-2}	1.8×10^{-2}	
		G.	luino c	harge	-suppressed ($f =$	= 0.1) v	vith the t	racker-only a	nalysis		
400	65	0.3	_	120	15.600 ± 3.300	10	0.092	$9.5 \times 10^{+1}$	4.9×10^{-2}	3.0×10^{-2}	
600	65	0.3	_	250	1.690 ± 0.369	0	0.141	9.1	1.2×10^{-2}	8.8×10^{-3}	
1200	65	0.3	_	580	0.050 ± 0.011	0	0.183	8.4×10^{-2}	6.8×10^{-3}	6.8×10^{-3}	
1600	65	0.3	_	680	0.023 ± 0.005	0	0.142	8.0×10^{-3}	8.8×10^{-3}	8.8×10^{-3}	
2000	65	0.3	_	670	0.024 ± 0.005	0	0.099	9.7×10^{-4}	1.3×10^{-2}	1.3×10^{-2}	
2400	65	0.3	_	680	0.023 ± 0.005	0	0.066	1.3×10^{-4}	1.9×10^{-2}	1.9×10^{-2}	
				Glui	no $(f = 0.5)$ with	n the tr	acker-onl <u>ı</u>	, analysis			
400	65	0.3	_	50	28.700 ± 6.030	24	0.094	$9.5 \times 10^{+1}$	6.6×10^{-2}	5.2×10^{-2}	
800	65	0.3	_	340	0.491 ± 0.105	0	0.129	1.5	9.5×10^{-3}	9.5×10^{-3}	
1200	65	0.3	_	580	0.050 ± 0.011	0	0.127	8.4×10^{-2}	9.7×10^{-3}	9.7×10^{-3}	
1600	65	0.3	_	710	0.018 ± 0.004	0	0.096	8.0×10^{-3}	1.3×10^{-2}	1.3×10^{-2}	
2000	65	0.3	_	760	0.013 ± 0.003	0	0.063	9.7×10^{-4}	2.0×10^{-2}	2.0×10^{-2}	
2400	65	0.3		740	0.014 ± 0.003	0	0.040	1.3×10^{-4}	3.1×10^{-2}	3.1×10^{-2}	

Table 4: Summary of the search for long-lived top squarks: the $p_{\rm T}$ (GeV), $I_{\rm as}$, $1/\beta$, and mass thresholds M (GeV) requirements, the predicted and observed yields passing these criteria, and the resulting expected (exp.) and observed (obs.) cross section limits. The signal efficiencies and theoretical (theo.) cross sections are also listed.

Mass	I	Requi	remen	ts	Yields	Signal	σ (pb)			
(GeV)	p_{T}	I_{as}	$1/\beta$	M	SM predicted	data	eff.	theo.	exp.	obs.
				Тс	p squark with the	ne track	er-only a	nalysis		
200	65	0.3	_	0	28.700 ± 6.030	24	0.195	$6.1 \times 10^{+1}$	3.3×10^{-2}	2.5×10^{-2}
600	65	0.3	_	40	28.700 ± 6.030	24	0.266	1.7×10^{-1}	2.4×10^{-2}	1.8×10^{-2}
1000	65	0.3	_	320	0.632 ± 0.136	0	0.260	6.0×10^{-3}	4.7×10^{-3}	4.7×10^{-3}
1800	65	0.3	_	660	0.026 ± 0.006	0	0.163	4.6×10^{-5}	7.4×10^{-3}	7.4×10^{-3}
2200	65	0.3	_	690	0.021 ± 0.005	0	0.109	6.0×10^{-6}	1.1×10^{-2}	1.1×10^{-2}
			Top so	quark	charge-suppress	sed wit	h the <i>trac</i>	ker-only ana	lysis	
200	65	0.3	_	0	28.700 ± 6.030	24	0.046	$6.1 \times 10^{+1}$	1.4×10^{-1}	1.1×10^{-1}
600	65	0.3		90	22.500 ± 4.710	16	0.169	1.7×10^{-1}	3.1×10^{-2}	2.3×10^{-2}
1000	65	0.3		320	0.632 ± 0.136	0	0.195	6.0×10^{-3}	7.4×10^{-3}	6.1×10^{-3}
1800	65	0.3		550	0.063 ± 0.014	0	0.124	4.6×10^{-5}	9.9×10^{-3}	9.9×10^{-3}
2200	65	0.3	_	580	0.050 ± 0.011	0	0.087	6.0×10^{-6}	1.5×10^{-2}	1.5×10^{-2}

Table 5: Summary of the search for long-lived tau sleptons: the $p_{\rm T}$ (GeV), $I_{\rm as}$, $1/\beta$, and mass thresholds M (GeV) requirements, the predicted and observed yields passing these criteria, and the resulting expected (exp.) and observed (obs.) cross section limits. The signal efficiencies and theoretical (theo.) cross sections are also listed.

Mass		Require	ements	3	Yields		Signal	σ (pb)		
(GeV)	p_{T}	I_{as}	$1/\beta$	M	SM predicted	data	eff.	theo.	exp.	obs.
Inclusive tau slepton with the <i>tracker+TOF</i> analysis										
200	65	0.175	1.25	50	0.861 ± 0.174	0	0.290	2.8×10^{-1}	6.0×10^{-3}	4.3×10^{-3}
308	65	0.175	1.25	130	0.081 ± 0.016	0	0.431	2.5×10^{-2}	2.9×10^{-3}	2.9×10^{-3}
494	65	0.175	1.25	260	0.008 ± 0.002	0	0.592	1.9×10^{-3}	2.1×10^{-3}	2.1×10^{-3}
651	65	0.175	1.25	380	0.002 ± 0.000	0	0.662	4.1×10^{-4}	1.9×10^{-3}	1.9×10^{-3}
1029	65	0.175	1.25	610	0.000 ± 0.000	0	0.710	2.2×10^{-5}	1.7×10^{-3}	1.7×10^{-3}
1599	65	0.175	1.25	910	0.000 ± 0.000	0	0.549	1.0×10^{-6}	2.3×10^{-3}	2.3×10^{-3}
		Г	irect p	air pr	od. of tau slepto	n with	the track	er+TOF ana	lysis	
200	65	0.175	1.25	40	0.924 ± 0.187	0	0.242	8.0×10^{-3}	7.1×10^{-3}	4.9×10^{-3}
308	65	0.175	1.25	110	0.130 ± 0.026	0	0.315	1.5×10^{-3}	3.9×10^{-3}	3.9×10^{-3}
494	65	0.175	1.25	230	0.013 ± 0.003	0	0.415	1.9×10^{-4}	3.0×10^{-3}	3.0×10^{-3}
651	65	0.175	1.25	330	0.003 ± 0.001	0	0.496	4.9×10^{-5}	2.5×10^{-3}	2.5×10^{-3}
1029	65	0.175	1.25	590	0.000 ± 0.000	0	0.592	4.0×10^{-6}	2.0×10^{-3}	2.0×10^{-3}
1599	65	0.175	1.25	930	0.000 ± 0.000	0	0.504	0.0	2.5×10^{-3}	2.5×10^{-3}

Table 6: Summary of the search for long-lived particles from modified Drell–Yan models of various charge: the $p_{\rm T}$ (GeV), $I_{\rm as}$, $1/\beta$, and mass thresholds M (GeV) requirements, the predicted and observed yields passing these criteria, and the resulting expected (exp.) and observed (obs.) cross section limits. The signal efficiencies and theoretical (theo.) cross sections are also listed.

Mass		Requi	ement	s	Yields		Signal			
(GeV)	p_{T}	I_{as}	$1/\beta$	M	SM predicted	data	eff.	theo.	exp.	obs.
Modified Drell–Yan $ Q = 1e$ particles with the <i>tracker+TOF</i> analysis									nalysis	
200	65	0.175	1.25	80	0.319 ± 0.065	0	0.303	1.1×10^{-1}	4.2×10^{-3}	4.2×10^{-3}
400	65	0.175	1.25	210	0.018 ± 0.004	0	0.417	7.3×10^{-3}	3.1×10^{-3}	3.1×10^{-3}
600	65	0.175	1.25	350	0.002 ± 0.000	0	0.461	1.2×10^{-3}	2.8×10^{-3}	2.8×10^{-3}
800	65	0.175	1.25	480	0.001 ± 0.000	0	0.485	2.6×10^{-4}	2.6×10^{-3}	2.6×10^{-3}
1000	65	0.175	1.25	610	0.000 ± 0.000	0	0.485	7.6×10^{-5}	2.7×10^{-3}	2.7×10^{-3}
1800	65	0.175	1.25	1020	0.000 ± 0.000	0	0.312	1.0×10^{-6}	4.1×10^{-3}	4.1×10^{-3}
2600	65	0.175	1.25	1270	0.000 ± 0.000	0	0.114	0.0	1.1×10^{-2}	1.1×10^{-2}
		Mod	dified l	Drell-Y	Q = 2e parti	cles wi	th the tra	icker+TOF a	nalysis	
200	65	0.175	1.25	0	0.930 ± 0.188	0	0.212	3.0×10^{-1}	8.0×10^{-3}	6.1×10^{-3}
400	65	0.175	1.25	90	0.230 ± 0.047	0	0.409	2.3×10^{-2}	3.0×10^{-3}	3.0×10^{-3}
600	65	0.175	1.25	200	0.021 ± 0.004	0	0.481	3.5×10^{-3}	2.7×10^{-3}	2.7×10^{-3}
800	65	0.175	1.25	300	0.004 ± 0.001	0	0.487	8.0×10^{-4}	2.6×10^{-3}	2.6×10^{-3}
1000	65	0.175	1.25	360	0.002 ± 0.000	0	0.449	2.4×10^{-4}	2.8×10^{-3}	2.8×10^{-3}
1800	65	0.175	1.25	410	0.001 ± 0.000	0	0.182	4.0×10^{-6}	6.9×10^{-3}	6.9×10^{-3}
2600	65	0.175	1.25	480	0.001 ± 0.000	0	0.069	0.0	1.8×10^{-2}	1.8×10^{-2}

14 8 Summary

Table 7: Mass limits obtained at $\sqrt{s}=13\,\text{TeV}$ for various HSCP candidate models compared with earlier results for $\sqrt{s}=7+8\,\text{TeV}$ [27]. In the model name, "CS" stands for charged suppressed interaction model and "DY" for Drell–Yan. The limits for doubly charged particles are also compared to the earlier CMS results obtained with the 'multiply charged' analysis, which was specifically designed to search for multiply charged particles.

$\sqrt{s} = 7 + 8 \text{ TeV}$	$\sqrt{s} = 13 \text{ TeV}$
$M > 1320 \mathrm{GeV}$	$M > 1610 \mathrm{GeV}$
OF M > 1290 GeV	M > 1580GeV
$M > 1230 \mathrm{GeV}$	$M > 1580 \mathrm{GeV}$
$M > 1250 \mathrm{GeV}$	$M > 1520 \mathrm{GeV}$
OF M > 1220 GeV	M > 1490GeV
$M > 1150 \mathrm{GeV}$	$M > 1540 \mathrm{GeV}$
$M > 930 \mathrm{GeV}$	$M > 1040\mathrm{GeV}$
$OF \qquad M > 910 \text{GeV}$	$M > 990 \mathrm{GeV}$
$M > 810 \mathrm{GeV}$	M > 1000GeV
$OF \qquad M > 430 \text{GeV}$	M > 490GeV
$M > 389 \mathrm{GeV}$	M > 480GeV
$OF \qquad M > 330 \text{GeV}$	$M > 240\mathrm{GeV}$
$M > 180 \mathrm{GeV}$	
$M > 640 \mathrm{GeV}$	$M > 510 \mathrm{GeV}$
$OF \qquad M > 650 \mathrm{GeV}$	$M > 550 \mathrm{GeV}$
harged $M > 720 \text{GeV}$	
$M > 520 \mathrm{GeV}$	M > 680GeV
OF M > 520 GeV	M > 660GeV
	$\begin{array}{ll} ly & M > 1320\mathrm{GeV} \\ OF & M > 1290\mathrm{GeV} \\ ly & M > 1230\mathrm{GeV} \\ ly & M > 1250\mathrm{GeV} \\ ly & M > 1250\mathrm{GeV} \\ OF & M > 1220\mathrm{GeV} \\ ly & M > 150\mathrm{GeV} \\ ly & M > 150\mathrm{GeV} \\ ly & M > 930\mathrm{GeV} \\ ly & M > 910\mathrm{GeV} \\ ly & M > 810\mathrm{GeV} \\ ly & M > 389\mathrm{GeV} \\ OF & M > 330\mathrm{GeV} \\ ly & M > 180\mathrm{GeV} \\ ly & M > 180\mathrm{GeV} \\ ly & M > 640\mathrm{GeV} \\ ly & M > 650\mathrm{GeV} \\ ly & M > 520\mathrm{GeV} \\ ly & M > 620\mathrm{GeV} \\ ly & M >$

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202, 2014/13/B/ST2/02543 and 2014/15/B/ST2/03998, Sonata-bis 2012/07/E/ST2/01406; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.

References

- [1] M. Drees and X. Tata, "Signals for heavy exotics at hadron colliders and supercolliders", *Phys. Lett. B* **252** (1990) 695, doi:10.1016/0370-2693 (90) 90508-4.
- [2] M. Fairbairn et al., "Stable massive particles at colliders", *Phys. Rept.* **438** (2007) 1, doi:10.1016/j.physrep.2006.10.002, arXiv:hep-ph/0611040.
- [3] C. W. Bauer et al., "Supermodels for early LHC", *Phys. Lett. B* **690** (2010) 280, doi:10.1016/j.physletb.2010.05.032, arXiv:0909.5213.

[4] A. Kusenko and M. E. Shaposhnikov, "Supersymmetric Q-balls as dark matter", *Phys. Lett. B* **418** (1998) 46, doi:10.1016/S0370-2693(97)01375-0, arXiv:hep-ph/9709492.

- [5] B. Koch, M. Bleicher, and H. Stoecker, "Black holes at LHC?", *J. Phys. G* **34** (2007) S535, doi:10.1088/0954-3899/34/8/S44, arXiv:hep-ph/0702187.
- [6] J. S. Schwinger, "Magnetic charge and quantum field theory", *Phys. Rev.* **144** (1966) 1087, doi:10.1103/PhysRev.144.1087.
- [7] D. Fargion, M. Khlopov, and C. A. Stephan, "Cold dark matter by heavy double charged leptons?", Class. Quant. Grav. 23 (2006) 7305, doi:10.1088/0264-9381/23/24/008, arXiv:astro-ph/0511789.
- [8] A. C. Kraan, "Interactions of heavy stable hadronizing particles", Eur. Phys. J. C 37 (2004) 91, doi:10.1140/epjc/s2004-01997-7, arXiv:hep-ex/0404001.
- [9] Particle Data Group Collaboration, "Review of Particle Physics", *Chin. Phys. C* **38** (2014) 090001, doi:10.1088/1674-1137/38/9/090001.
- [10] ALEPH Collaboration, "Search for pair production of long-lived heavy charged particles in e^+e^- annihilation", *Phys. Lett. B* **405** (1997) 379, doi:10.1016/S0370-2693 (97) 00715-6, arXiv:hep-ex/9706013.
- [11] DELPHI Collaboration, "Search for heavy stable and long-lived particles in e^+e^- collisions at $\sqrt{s} = 189 \,\text{GeV}$ ", *Phys. Lett. B* **478** (2000) 65, doi:10.1016/S0370-2693 (00) 00265-3, arXiv:hep-ex/0103038.
- [12] L3 Collaboration, "Search for heavy neutral and charged leptons in e^+e^- annihilation at LEP", *Phys. Lett. B* **517** (2001) 75, doi:10.1016/S0370-2693 (01) 01005-X, arXiv:hep-ex/0107015.
- [13] OPAL Collaboration, "Search for stable and long-lived massive charged particles in e^+e^- collisions at $\sqrt{s} = 130$ GeV to 209 GeV", Phys. Lett. B 572 (2003) 8, doi:10.1016/S0370-2693 (03) 00639-7, arXiv:hep-ex/0305031.
- [14] H1 Collaboration, "Measurement of anti-deuteron photoproduction and a search for heavy stable charged particles at HERA", Eur. Phys. J. C 36 (2004) 413, doi:10.1140/epjc/s2004-01894-1, arXiv:hep-ex/0403056.
- [15] CDF Collaboration, "Search for long-lived massive charged particles in 1.96 TeV $\bar{p}p$ collisions", *Phys. Rev. Lett.* **103** (2009) 021802, doi:10.1103/PhysRevLett.103.021802, arXiv:0902.1266.
- [16] D0 Collaboration, "Search for long-lived charged massive particles with the D0 detector", Phys. Rev. Lett. 102 (2009) 161802, doi:10.1103/PhysRevLett.102.161802, arXiv:0809.4472.
- [17] D0 Collaboration, "Search for Charged Massive Long-Lived Particles", Phys. Rev. Lett. 108 (2012) 121802, doi:10.1103/PhysRevLett.108.121802, arXiv:1110.3302.
- [18] D0 Collaboration, "Search for charged massive long-lived particles at $\sqrt{s}=1.96$ TeV", Phys. Rev. D 87 (2013) 052011, doi:10.1103/PhysRevD.87.052011, arXiv:1211.2466.

[19] ATLAS Collaboration, "Search for heavy long-lived charged particles with the ATLAS detector in pp collisions at $\sqrt{s}=7\,\text{TeV}$ ", Phys. Lett. B **703** (2011) 428, doi:10.1016/j.physletb.2011.08.042, arXiv:1106.4495.

- [20] ATLAS Collaboration, "Search for stable hadronising squarks and gluinos with the ATLAS experiment at the LHC", *Phys. Lett. B* **701** (2011) 1, doi:10.1016/j.physletb.2011.05.010, arXiv:1103.1984.
- [21] ATLAS Collaboration, "Search for massive long-lived highly ionising particles with the ATLAS detector at the LHC", *Phys. Lett. B* **698** (2011) 353, doi:10.1016/j.physletb.2011.03.033, arXiv:1102.0459.
- [22] ATLAS Collaboration, "Searches for heavy long-lived sleptons and R-Hadrons with the ATLAS detector in pp collisions at $\sqrt{s} = 7$ TeV", Phys. Lett. B **720** (2013) 277, doi:10.1016/j.physletb.2013.02.015, arXiv:1211.1597.
- [23] ATLAS Collaboration, "Search for long-lived, multi-charged particles in pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector", *Phys. Lett. B* **722** (2013) 305, doi:10.1016/j.physletb.2013.04.036, arXiv:1301.5272.
- [24] CMS Collaboration, "Search for heavy stable charged particles in pp collisions at $\sqrt{s} = 7 \text{ TeV}$ ", JHEP 03 (2011) 024, doi:10.1007/JHEP03 (2011) 024, arXiv:1101.1645.
- [25] CMS Collaboration, "Search for fractionally charged particles in pp collisions at $\sqrt{s} = 7 \, \text{TeV}$ ", Phys. Rev. D 87 (2013) 092008, doi:10.1103/PhysRevD.87.092008, arXiv:1210.2311.
- [26] CMS Collaboration, "Search for heavy long-lived charged particles in pp collisions at $\sqrt{s} = 7 \, \text{TeV}$ ", Phys. Lett. B 713 (2012) 408, doi:10.1016/j.physletb.2012.06.023, arXiv:1205.0272.
- [27] CMS Collaboration, "Searches for long-lived charged particles in pp collisions at $\sqrt{s}=7$ and 8 TeV", JHEP 07 (2013) 122, doi:10.1007/JHEP07 (2013) 122, arXiv:1305.0491.
- [28] C. F. Berger, J. S. Gainer, J. L. Hewett, and T. G. Rizzo, "Supersymmetry without prejudice", *JHEP* **02** (2009) 023, doi:10.1088/1126-6708/2009/02/023, arXiv:0812.0980.
- [29] M. W. Cahill-Rowley, J. L. Hewett, A. Ismail, and T. G. Rizzo, "More energy, more searches, but the phenomenological MSSM lives on", *Phys. Rev. D* **88** (2013) 035002, doi:10.1103/PhysRevD.88.035002, arXiv:1211.1981.
- [30] ATLAS Collaboration, "Search for metastable heavy charged particles with large ionization energy loss in pp collisions at $\sqrt{s}=13$ TeV using the ATLAS experiment", *Phys. Rev. D* **93** (2016) 112015, doi:10.1103/PhysRevD.93.112015, arXiv:1604.04520.
- [31] ATLAS Collaboration, "Search for heavy long-lived charged *R*-hadrons with the ATLAS detector in 3.2 fb⁻¹ of proton–proton collision data at $\sqrt{s} = 13$ TeV", *Phys. Lett. B* **760** (2016) 647, doi:10.1016/j.physletb.2016.07.042, arXiv:1606.05129.
- [32] G. F. Giudice and A. Romanino, "Split supersymmetry", Nucl. Phys. B 699 (2004) 65, doi:10.1016/j.nuclphysb.2004.11.048, arXiv:hep-ph/0406088.

[33] N. Arkani-Hamed, S. Dimopoulos, G. F. Giudice, and A. Romanino, "Aspects of split supersymmetry", *Nucl. Phys. B* **709** (2005) 3, doi:10.1016/j.nuclphysb.2004.12.026, arXiv:hep-ph/0409232.

- [34] J. L. Hewett, B. Lillie, M. Masip, and T. G. Rizzo, "Signatures of long-lived gluinos in split supersymmetry", *JHEP* **09** (2004) 070, doi:10.1088/1126-6708/2004/09/070, arXiv:hep-ph/0408248.
- [35] W. Kilian, T. Plehn, P. Richardson, and E. Schmidt, "Split supersymmetry at colliders", *Eur. Phys. J. C* **39** (2005) 229, doi:10.1140/epjc/s2004-02046-5, arXiv:hep-ph/0408088.
- [36] N. Arkani-Hamed and S. Dimopoulos, "Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC", *JHEP* **06** (2005) 073, doi:10.1088/1126-6708/2005/06/073, arXiv:hep-th/0405159.
- [37] T. Sjöstrand, S. Mrenna, and P. Z. Skands, "A brief introduction to PYTHIA 8.1", Comput. Phys. Commun. 178 (2008) 852, doi:10.1016/j.cpc.2008.01.036, arXiv:0710.3820.
- [38] CMS Collaboration, "Event generator tunes obtained from underlying event and multiparton scattering measurements", Eur. Phys. J. C 76 (2016) 155, doi:10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.
- [39] R. Mackeprang and A. Rizzi, "Interactions of coloured heavy stable particles in matter", Eur. Phys. J. C 50 (2007) 353, doi:10.1140/epjc/s10052-007-0252-4, arXiv:hep-ph/0612161.
- [40] R. Mackeprang and D. Milstead, "An updated description of heavy-hadron interactions in GEANT4", Eur. Phys. J. C 66 (2010) 493, doi:10.1140/epjc/s10052-010-1262-1, arXiv:0908.1868.
- [41] G. F. Giudice and R. Rattazzi, "Theories with gauge mediated supersymmetry breaking", *Phys. Rept.* **322** (1999) 419, doi:10.1016/S0370-1573(99)00042-3, arXiv:hep-ph/9801271.
- [42] B. C. Allanach et al., "The Snowmass points and slopes: Benchmarks for SUSY searches", Eur. Phys. J. C 25 (2002) 113, doi:10.1007/s10052-002-0949-3, arXiv:hep-ph/0202233.
- [43] F. E. Paige, S. D. Protopopescu, H. Baer, and X. Tata, "ISAJET 7.69: A Monte Carlo Event Generator for pp, $\bar{p}p$, and e^+e^- Reactions", (2003). arXiv:hep-ph/0312045.
- [44] CMS Collaboration, "Study of the underlying event at forward rapidity in pp collisions at $\sqrt{s} = 0.9$, 2.76, and 7 TeV", JHEP 04 (2013) 072, doi:10.1007/JHEP04 (2013) 072, arXiv:1302.2394.
- [45] CMS Collaboration, "The CMS experiment at the CERN LHC", JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.
- [46] CMS Collaboration, "Description and performance of track and primary-vertex reconstruction with the CMS tracker", *JINST* **9** (2014) P10009, doi:10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.

[47] CMS Collaboration, "Performance of CMS muon reconstruction in pp collision events at $\sqrt{s}=7$ TeV", JINST 7 (2012) P10002, doi:10.1088/1748-0221/7/10/P10002, arXiv:1206.4071.

- [48] CMS Collaboration, "Jet performance in pp collisions at $\sqrt{s}=7$ TeV", CMS Physics Analysis Summary CMS-PAS-JME-10-003, CMS, 2010.
- [49] CMS Collaboration, "Particle–flow event reconstruction in CMS and performance for jets, taus, and E_T^{miss} ", CMS Physics Analysis Summary CMS-PAS-PFT-09-001, CERN, 2009.
- [50] CMS Collaboration, "Commissioning of the Particle-flow Event Reconstruction with the first LHC collisions recorded in the CMS detector", Technical Report CMS-PAS-PFT-10-001, 2010.
- [51] CMS Collaboration, "CMS Luminosity Measurement for the 2015 Data Taking Period", technical report, 2016.
- [52] CMS Collaboration, "Measurement of tracking efficiency", CMS Physics Analysis Summary CMS-PAS-TRK-10-002, CMS, 2010.
- [53] T. Junk, "Confidence level computation for combining searches with small statistics", Nucl. Instrum. Meth. A 434 (1999) 435, doi:10.1016/S0168-9002 (99) 00498-2, arXiv:hep-ex/9902006.
- [54] A. L. Read, "Presentation of search results: the CL_s technique", *J. Phys. G* **28** (2002) 2693, doi:10.1088/0954-3899/28/10/313.
- [55] T. L. H. C. G. The ATLAS Collaboration, The CMS Collaboration, "Procedure for the LHC Higgs boson search combination in Summer 2011", Technical Report CMS-NOTE-2011-005. ATL-PHYS-PUB-2011-11, CERN, Geneva, Aug, 2011.
- [56] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, "Asymptotic formulae for likelihood-based tests of new physics", Eur. Phys. J. C 71 (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727. [Erratum: doi:10.1140/epjc/s10052-013-2501-z].
- [57] W. T. Eadie et al., "Statistical methods in experimental physics". North Holland, Amsterdam, 1971.
- [58] F. James, "Statistical methods in experimental physics". World Scientific, Singapore, 2006.
- [59] A. Kulesza and L. Motyka, "Threshold resummation for squark-antisquark and gluino-pair production at the LHC", *Phys. Rev. Lett.* **102** (2009) 111802, doi:10.1103/PhysRevLett.102.111802, arXiv:0807.2405.
- [60] A. Kulesza and L. Motyka, "Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC", Phys. Rev. D 80 (2009) 095004, doi:10.1103/PhysRevD.80.095004, arXiv:0905.4749.
- [61] W. Beenakker et al., "Soft-gluon resummation for squark and gluino hadroproduction", *JHEP* **12** (2009) 041, doi:10.1088/1126-6708/2009/12/041, arXiv:0909.4418.
- [62] W. Beenakker et al., "Supersymmetric top and bottom squark production at hadron colliders", JHEP 08 (2010) 098, doi:10.1007/JHEP08 (2010) 098, arXiv:1006.4771.

[63] W. Beenakker, R. Hopker, and M. Spira, "PROSPINO: A program for the PROduction of Supersymmetric Particles In Next-to-leading Order QCD", (1996). arXiv:hep-ph/9611232.

[64] P. M. Nadolsky et al., "Implications of CTEQ global analysis for collider observables", Phys. Rev. D 78 (2008) 013004, doi:10.1103/PhysRevD.78.013004, arXiv:0802.0007.

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia

V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria

W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth¹, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler¹, A. König, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck¹, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz¹

National Centre for Particle and High Energy Physics, Minsk, Belarus

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

S. Alderweireldt, E.A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium

S. Abu Zeid, F. Blekman, J. D'Hondt, N. Daci, I. De Bruyn, K. Deroover, N. Heracleous, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

Université Libre de Bruxelles, Bruxelles, Belgium

H. Brun, C. Caillol, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Léonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, R. Yonamine, F. Zenoni, F. Zhang²

Ghent University, Ghent, Belgium

A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, G. Garcia, M. Gul, D. Poyraz, S. Salva, R. Schöfbeck, A. Sharma, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

H. Bakhshiansohi, C. Beluffi³, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, P. Jez, M. Komm, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, C. Nuttens, K. Piotrzkowski, L. Quertenmont, M. Selvaggi, M. Vidal Marono, S. Wertz, J. Zobec

Université de Mons, Mons, Belgium

N. Beliy

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

W.L. Aldá Júnior, F.L. Alves, G.A. Alves, L. Brito, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato⁴, A. Custódio, E.M. Da Costa, G.G. Da Silveira⁵, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Sznajder, E.J. Tonelli Manganote⁴, A. Vilela Pereira

Universidade Estadual Paulista ^a, Universidade Federal do ABC ^b, São Paulo, Brazil

S. Ahuja^a, C.A. Bernardes^b, S. Dogra^a, T.R. Fernandez Perez Tomei^a, E.M. Gregores^b,

P.G. Mercadante^b, C.S. Moon^a, S.F. Novaes^a, Sandra S. Padula^a, D. Romero Abad^b, J.C. Ruiz Vargas

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria

A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China

W. Fang⁶

Institute of High Energy Physics, Beijing, China

M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, T. Cheng, C.H. Jiang, D. Leggat, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, H. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu

Universidad de Los Andes, Bogota, Colombia

C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, C.F. González Hernández, J.D. Ruiz Alvarez, J.C. Sanabria

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia

N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac

University of Split, Faculty of Science, Split, Croatia

Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia

V. Brigljevic, D. Ferencek, K. Kadija, S. Micanovic, L. Sudic, T. Susa

University of Cyprus, Nicosia, Cyprus

A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

Charles University, Prague, Czech Republic

M. Finger⁸, M. Finger Jr.⁸

Universidad San Francisco de Quito, Quito, Ecuador

E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

Y. Assran^{9,10}, T. Elkafrawy¹¹, A. Mahrous¹²

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

B. Calpas, M. Kadastik, M. Murumaa, L. Perrini, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland

P. Eerola, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

J. Härkönen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland

J. Talvitie, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, P. Miné, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

J.-L. Agram¹³, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte¹³, X. Coubez, J.-C. Fontaine¹³, D. Gelé, U. Goerlach, A.-C. Le Bihan, K. Skovpen, P. Van Hove

Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

S. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, C.A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov¹⁴, D. Sabes, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret

Georgian Technical University, Tbilisi, Georgia

T. Toriashvili¹⁵

Tbilisi State University, Tbilisi, Georgia

Z. Tsamalaidze⁸

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

C. Autermann, S. Beranek, L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, S. Schael, C. Schomakers, J.F. Schulte, J. Schulz, T. Verlage, H. Weber, V. Zhukov¹⁴

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, S. Thüer

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

V. Cherepanov, G. Flügge, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, A. Künsken, J. Lingemann, T. Müller, A. Nehrkorn, A. Nowack, I.M. Nugent, C. Pistone, O. Pooth, A. Stahl¹⁶

Deutsches Elektronen-Synchrotron, Hamburg, Germany

M. Aldaya Martin, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A.A. Bin Anuar, K. Borras¹⁷, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez

Pardos, G. Dolinska, G. Eckerlin, D. Eckstein, E. Eren, E. Gallo¹⁸, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, P. Gunnellini, A. Harb, J. Hauk, M. Hempel¹⁹, H. Jung, A. Kalogeropoulos, O. Karacheban¹⁹, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krücker, W. Lange, A. Lelek, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann¹⁹, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.Ö. Sahin, P. Saxena, T. Schoerner-Sadenius, C. Seitz, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany

V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, M. Hoffmann, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo¹⁶, T. Peiffer, A. Perieanu, J. Poehlsen, C. Sander, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

C. Barth, C. Baus, J. Berger, E. Butz, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, S. Fink, R. Friese, M. Giffels, A. Gilbert, P. Goldenzweig, D. Haitz, F. Hartmann¹⁶, S.M. Heindl, U. Husemann, I. Katkov¹⁴, P. Lobelle Pardo, B. Maier, H. Mildner, M.U. Mozer, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, S. Röcker, F. Roscher, M. Schröder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, J. Wagner-Kuhr, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis

National and Kapodistrian University of Athens, Athens, Greece

S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

University of Ioánnina, Ioánnina, Greece

I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary

N. Filipovic

Wigner Research Centre for Physics, Budapest, Hungary

G. Bencze, C. Hajdu, P. Hidas, D. Horvath²⁰, F. Sikler, V. Veszpremi, G. Vesztergombi²¹, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

N. Beni, S. Czellar, J. Karancsi²², A. Makovec, J. Molnar, Z. Szillasi

University of Debrecen, Debrecen, Hungary

M. Bartók²¹, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India

S. Bahinipati, S. Choudhury²³, P. Mal, K. Mandal, A. Nayak²⁴, D.K. Sahoo, N. Sahoo, S.K. Swain

Panjab University, Chandigarh, India

S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, U.Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, A. Mehta, M. Mittal, J.B. Singh, G. Walia

University of Delhi, Delhi, India

Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India

R. Bhattacharya, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur

Indian Institute of Technology Madras, Madras, India

P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India

R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty¹⁶, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India

T. Aziz, S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, B. Sutar

Tata Institute of Fundamental Research-B, Mumbai, India

S. Banerjee, S. Bhowmik²⁵, R.K. Dewanjee, S. Ganguly, M. Guchait, Sa. Jain, S. Kumar, M. Maity²⁵, G. Majumder, K. Mazumdar, T. Sarkar²⁵, N. Wickramage²⁶

Indian Institute of Science Education and Research (IISER), Pune, India

S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

H. Behnamian, S. Chenarani²⁷, E. Eskandari Tadavani, S.M. Etesami²⁷, A. Fahim²⁸, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi²⁹, F. Rezaei Hosseinabadi, B. Safarzadeh³⁰, M. Zeinali

University College Dublin, Dublin, Ireland

M. Felcini, M. Grunewald

INFN Sezione di Bari ^a, Università di Bari ^b, Politecnico di Bari ^c, Bari, Italy

M. Abbrescia^{a,b}, C. Calabria^{a,b}, C. Caputo^{a,b}, A. Colaleo^a, D. Creanza^{a,c}, L. Cristella^{a,b}, N. De Filippis^{a,c}, M. De Palma^{a,b}, L. Fiore^a, G. Iaselli^{a,c}, G. Maggi^{a,c}, M. Maggi^a, G. Miniello^{a,b}, S. My^{a,b}, S. Nuzzo^{a,b}, A. Pompili^{a,b}, G. Pugliese^{a,c}, R. Radogna^{a,b}, A. Ranieri^a, G. Selvaggi^{a,b}, L. Silvestris^{a,16}, R. Venditti^{a,b}, P. Verwilligen^a

INFN Sezione di Bologna ^a, Università di Bologna ^b, Bologna, Italy

G. Abbiendi^a, C. Battilana, D. Bonacorsi^{a,b}, S. Braibant-Giacomelli^{a,b}, L. Brigliadori^{a,b}, R. Campanini^{a,b}, P. Capiluppi^{a,b}, A. Castro^{a,b}, F.R. Cavallo^a, S.S. Chhibra^{a,b}, G. Codispoti^{a,b}, M. Cuffiani^{a,b}, G.M. Dallavalle^a, F. Fabbri^a, A. Fanfani^{a,b}, D. Fasanella^{a,b}, P. Giacomelli^a, C. Grandi^a, L. Guiducci^{a,b}, S. Marcellini^a, G. Masetti^a, A. Montanari^a, F.L. Navarria^{a,b}, A. Perrotta^a, A.M. Rossi^{a,b}, T. Rovelli^{a,b}, G.P. Siroli^{a,b}, N. Tosi^{a,b,16}

INFN Sezione di Catania ^a, Università di Catania ^b, Catania, Italy

S. Albergo^{a,b}, M. Chiorboli^{a,b}, S. Costa^{a,b}, A. Di Mattia^a, F. Giordano^{a,b}, R. Potenza^{a,b}, A. Tricomi^{a,b}, C. Tuve^{a,b}

INFN Sezione di Firenze ^a, Università di Firenze ^b, Firenze, Italy

G. Barbagli^a, V. Ciulli^{a,b}, C. Civinini^a, R. D'Alessandro^{a,b}, E. Focardi^{a,b}, V. Gori^{a,b}, P. Lenzi^{a,b}, M. Meschini^a, S. Paoletti^a, G. Sguazzoni^a, L. Viliani^{a,b,16}

INFN Laboratori Nazionali di Frascati, Frascati, Italy

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera¹⁶

INFN Sezione di Genova ^a, Università di Genova ^b, Genova, Italy

V. Calvelli^{a,b}, F. Ferro^a, M. Lo Vetere^{a,b}, M.R. Monge^{a,b}, E. Robutti^a, S. Tosi^{a,b}

INFN Sezione di Milano-Bicocca ^a, Università di Milano-Bicocca ^b, Milano, Italy

L. Brianza¹⁶, M.E. Dinardo^{a,b}, S. Fiorendi^{a,b}, S. Gennai^a, A. Ghezzi^{a,b}, P. Govoni^{a,b}, M. Malberti, S. Malvezzi^a, R.A. Manzoni^{a,b,16}, B. Marzocchi^{a,b}, D. Menasce^a, L. Moroni^a, M. Paganoni^{a,b}, D. Pedrini^a, S. Pigazzini, S. Ragazzi^{a,b}, T. Tabarelli de Fatis^{a,b}

INFN Sezione di Napoli ^a, Università di Napoli 'Federico II' ^b, Napoli, Italy, Università della Basilicata ^c, Potenza, Italy, Università G. Marconi ^d, Roma, Italy

S. Buontempo^a, N. Cavallo^{a,c}, G. De Nardo, S. Di Guida^{a,d,16}, M. Esposito^{a,b}, F. Fabozzi^{a,c}, A.O.M. Iorio^{a,b}, G. Lanza^a, L. Lista^a, S. Meola^{a,d,16}, P. Paolucci^{a,16}, C. Sciacca^{a,b}, F. Thyssen

INFN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy

P. Azzi^{a,16}, N. Bacchetta^a, L. Benato^{a,b}, M. Biasotto^{a,31}, A. Boletti^{a,b}, A. Carvalho Antunes De Oliveira^{a,b}, P. Checchia^a, M. Dall'Osso^{a,b}, P. De Castro Manzano^a, T. Dorigo^a, F. Fanzago^a, F. Gasparini^{a,b}, U. Gasparini^{a,b}, A. Gozzelino^a, S. Lacaprara^a, M. Margoni^{a,b}, G. Maron^{a,31}, A.T. Meneguzzo^{a,b}, J. Pazzini^{a,b,16}, N. Pozzobon^{a,b}, P. Ronchese^{a,b}, F. Simonetto^{a,b}, E. Torassa^a, M. Zanetti, P. Zotto^{a,b}, A. Zucchetta^{a,b}, G. Zumerle^{a,b}

INFN Sezione di Pavia ^a, Università di Pavia ^b, Pavia, Italy

A. Braghieri^a, A. Magnani^{a,b}, P. Montagna^{a,b}, S.P. Ratti^{a,b}, V. Re^a, C. Riccardi^{a,b}, P. Salvini^a, I. $Vai^{a,\bar{b}}$, P. $Vitulo^{a,b}$

INFN Sezione di Perugia ^a, Università di Perugia ^b, Perugia, Italy L. Alunni Solestizi^{a,b}, G.M. Bilei^a, D. Ciangottini^{a,b}, L. Fanò^{a,b}, P. Lariccia^{a,b}, R. Leonardi^{a,b}, G. Mantovani^{a,b}, M. Menichelli^a, A. Saha^a, A. Santocchia^{a,b}

INFN Sezione di Pisa ^a, Università di Pisa ^b, Scuola Normale Superiore di Pisa ^c, Pisa, Italy K. Androsov^{a,32}, P. Azzurri^{a,16}, G. Bagliesi^a, J. Bernardini^a, T. Boccali^a, R. Castaldi^a, M.A. Ciocci^{a,32}, R. Dell'Orso^a, S. Donato^{a,c}, G. Fedi, A. Giassi^a, M.T. Grippo^{a,32}, F. Ligabue^{a,c}, T. Lomtadze^a, L. Martini^{a,b}, A. Messineo^{a,b}, F. Palla^a, A. Rizzi^{a,b}, A. Savoy-Navarro^{a,33}, P. Spagnolo^a, R. Tenchini^a, G. Tonelli^{a,b}, A. Venturi^a, P.G. Verdini^a

INFN Sezione di Roma ^a, Università di Roma ^b, Roma, Italy

L. Barone^{a,b}, F. Cavallari^a, M. Cipriani^{a,b}, G. D'imperio^{a,b,16}, D. Del Re^{a,b,16}, M. Diemoz^a, S. Gelli^{a,b}, E. Longo^{a,b}, F. Margaroli^{a,b}, P. Meridiani^a, G. Organtini^{a,b}, R. Paramatti^a, F. Preiato^{a,b}, S. Rahatlou^{*a,b*}, C. Rovelli^{*a*}, F. Santanastasio^{*a,b*}

INFN Sezione di Torino ^a, Università di Torino ^b, Torino, Italy, Università del Piemonte Orientale ^c, Novara, Italy

N. Amapane^{a,b}, R. Arcidiacono^{a,c,16}, S. Argiro^{a,b}, M. Arneodo^{a,c}, N. Bartosik^a, R. Bellan^{a,b}, C. Biino^a, N. Cartiglia^a, M. Costa^{a,b}, G. Cotto^{a,b}, R. Covarelli^{a,b}, D. Dattola^a, A. Degano^{a,b}, N. Demaria^a, L. Finco^{a,b}, B. Kiani^{a,b}, C. Mariotti^a, S. Maselli^a, E. Migliore^{a,b}, V. Monaco^{a,b}, E. Monteil^{a,b}, M.M. Obertino^{a,b}, L. Pacher^{a,b}, N. Pastrone^a, M. Pelliccioni^a, G.L. Pinna Angioni^{a,b}, F. Ravera^{a,b}, A. Romero^{a,b}, M. Ruspa^{a,c}, R. Sacchi^{a,b}, V. Sola^a, A. Solano^{a,b}, A. Staiano^a, P. Traczyk^{a,b}

INFN Sezione di Trieste ^a, Università di Trieste ^b, Trieste, Italy

S. Belforte^a, M. Casarsa^a, F. Cossutti^a, G. Della Ricca^{a,b}, C. La Licata^{a,b}, A. Schizzi^{a,b}, A. Zanetti^a

Kyungpook National University, Daegu, Korea

D.H. Kim, G.N. Kim, M.S. Kim, S. Lee, S.W. Lee, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang

Chonbuk National University, Jeonju, Korea

A. Lee

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

H. Kim

Hanyang University, Seoul, Korea

J.A. Brochero Cifuentes, T.J. Kim

Korea University, Seoul, Korea

S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, B. Lee, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh

Seoul National University, Seoul, Korea

J. Almond, J. Kim, H. Lee, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu

University of Seoul, Seoul, Korea

M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu

Sungkyunkwan University, Suwon, Korea

Y. Choi, J. Goh, C. Hwang, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania

V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

I. Ahmed, Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali³⁴, F. Mohamad Idris³⁵, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz³⁶, A. Hernandez-Almada, R. Lopez-Fernandez, R. Magaña Villalba, J. Mejia Guisao, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico

S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

A. Morelos Pineda

University of Auckland, Auckland, New Zealand

D. Krofcheck

University of Canterbury, Christchurch, New Zealand

P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas

National Centre for Nuclear Research, Swierk, Poland

H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland K. Bunkowski, A. Byszuk³⁷, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia

V. Alexakhin, I. Golutvin, I. Gorbunov, V. Karjavin, V. Korenkov, A. Lanev, A. Malakhov, V. Matveev^{38,39}, V.V. Mitsyn, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, E. Tikhonenko, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

L. Chtchipounov, V. Golovtsov, Y. Ivanov, V. Kim⁴⁰, E. Kuznetsova⁴¹, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology

A. Bylinkin³⁹

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia

R. Chistov⁴², M. Danilov⁴², V. Rusinov

P.N. Lebedev Physical Institute, Moscow, Russia

V. Andreev, M. Azarkin³⁹, I. Dremin³⁹, M. Kirakosyan, A. Leonidov³⁹, S.V. Rusakov, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

A. Baskakov, A. Belyaev, E. Boos, M. Dubinin⁴³, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

Novosibirsk State University (NSU), Novosibirsk, Russia

V. Blinov⁴⁴, Y.Skovpen⁴⁴

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

P. Adzic⁴⁵, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

J. Alcaraz Maestre, M. Barrio Luna, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares

Universidad Autónoma de Madrid, Madrid, Spain

J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain

J. Cuevas, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, S. Sanchez Cruz, I. Suárez Andrés, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

I.J. Cabrillo, A. Calderon, J.R. Castiñeiras De Saa, E. Curras, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland

D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, P. Bloch, A. Bocci, A. Bonato, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, M. D'Alfonso, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di Marco⁴⁶, M. Dobson, B. Dorney, T. du Pree, D. Duggan, M. Dünser, N. Dupont, A. Elliott-Peisert, S. Fartoukh, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, M. Girone, F. Glege, D. Gulhan, S. Gundacker, M. Guthoff, J. Hammer, P. Harris, J. Hegeman, V. Innocente, P. Janot, J. Kieseler, H. Kirschenmann, V. Knünz, A. Kornmayer¹⁶, M.J. Kortelainen, K. Kousouris, M. Krammer¹, C. Lange, P. Lecoq, C. Lourenço, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, A. Racz, T. Reis, G. Rolandi⁴⁷, M. Rovere, M. Ruan, H. Sakulin, J.B. Sauvan, C. Schäfer, C. Schwick, M. Seidel, A. Sharma, P. Silva, P. Sphicas⁴⁸, J. Steggemann, M. Stoye, Y. Takahashi, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns⁴⁹, G.I. Veres²¹, N. Wardle, H.K. Wöhri, A. Zagozdzinska³⁷, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland

W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

F. Bachmair, L. Bäni, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, P. Lecomte[†], W. Lustermann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, M.T. Meinhard, D. Meister,

F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Rossini, M. Schönenberger, A. Starodumov⁵⁰, V.R. Tavolaro, K. Theofilatos, R. Wallny

Universität Zürich, Zurich, Switzerland

T.K. Aarrestad, C. Amsler⁵¹, L. Caminada, M.F. Canelli, A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, Y. Yang

National Central University, Chung-Li, Taiwan

V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, Y.J. Lu, A. Pozdnyakov, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan

Arun Kumar, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Miñano Moya, E. Paganis, A. Psallidas, J.f. Tsai, Y.M. Tzeng

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey

S. Cerci⁵², S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos, E.E. Kangal⁵³, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut⁵⁴, K. Ozdemir⁵⁵, D. Sunar Cerci⁵², H. Topakli⁵⁶, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey

B. Bilin, S. Bilmis, B. Isildak⁵⁷, G. Karapinar⁵⁸, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey

E. Gülmez, M. Kaya⁵⁹, O. Kaya⁶⁰, E.A. Yetkin⁶¹, T. Yetkin⁶²

Istanbul Technical University, Istanbul, Turkey

A. Cakir, K. Cankocak, S. Sen⁶³

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine

B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom

R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold⁶⁴, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith

Rutherford Appleton Laboratory, Didcot, United Kingdom

K.W. Bell, A. Belyaev⁶⁵, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom

M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne, A. Elwood, D. Futyan, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, R. Lucas⁶⁴,

L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, J. Nash, A. Nikitenko⁵⁰, J. Pela, B. Penning, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, C. Seez, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta⁶⁶, T. Virdee¹⁶, J. Wright, S.C. Zenz

Brunel University, Uxbridge, United Kingdom

J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA

A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika

The University of Alabama, Tuscaloosa, USA

O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA

D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, USA

G. Benelli, E. Berry, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, O. Jesus, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, E. Spencer, R. Syarif

University of California, Davis, Davis, USA

R. Breedon, G. Breto, D. Burns, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA

R. Cousins, P. Everaerts, A. Florent, J. Hauser, M. Ignatenko, D. Saltzberg, E. Takasugi, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA

K. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, H. Wei, S. Wimpenny, B. R. Yates

University of California, San Diego, La Jolla, USA

J.G. Branson, G.B. Cerati, S. Cittolin, M. Derdzinski, R. Gerosa, A. Holzner, D. Klein, V. Krutelyov, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech⁶⁷, C. Welke, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA

R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, N. Mccoll, S.D. Mullin, A. Ovcharova, J. Richman, D. Stuart, I. Suarez, J. Yoo

California Institute of Technology, Pasadena, USA

D. Anderson, A. Apresyan, J. Bendavid, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, J.M. Lawhorn, A. Mott, H.B. Newman, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA

M.B. Andrews, V. Azzolini, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev

University of Colorado Boulder, Boulder, USA

J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, K. Stenson, S.R. Wagner

Cornell University, Ithaca, USA

J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek

Fairfield University, Fairfield, USA

D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

S. Abdullin, M. Albrow, G. Apollinari, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir[†], M. Cremonesi, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, D. Hare, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, N. Magini, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, C. Newman-Holmes[†], V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck

University of Florida, Gainesville, USA

D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, P. Ma, K. Matchev, H. Mei, P. Milenovic⁶⁸, G. Mitselmakher, D. Rank, L. Shchutska, D. Sperka, L. Thomas, J. Wang, S. Wang, J. Yelton

Florida International University, Miami, USA

S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA

A. Ackert, J.R. Adams, T. Adams, A. Askew, S. Bein, B. Diamond, S. Hagopian, V. Hagopian, K.F. Johnson, A. Khatiwada, H. Prosper, A. Santra, M. Weinberg

Florida Institute of Technology, Melbourne, USA

M.M. Baarmand, V. Bhopatkar, S. Colafranceschi⁶⁹, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA

M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, P. Kurt, C. O'Brien, I.D. Sandoval Gonzalez, P. Turner, N. Varelas, H. Wang, Z. Wu, M. Zakaria, J. Zhang

The University of Iowa, Iowa City, USA

B. Bilki⁷⁰, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya⁷¹, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok⁷², A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA

I. Anderson, B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, M. Osherson, J. Roskes, U. Sarica, M. Swartz, M. Xiao, Y. Xin, C. You

The University of Kansas, Lawrence, USA

A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, C. Bruner, J. Castle, L. Forthomme, R.P. Kenny III, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, S. Sanders, R. Stringer, J.D. Tapia Takaki, Q. Wang

Kansas State University, Manhattan, USA

A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda

Lawrence Livermore National Laboratory, Livermore, USA

F. Rebassoo, D. Wright

University of Maryland, College Park, USA

C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, J. Kunkle, Y. Lu, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA

D. Abercrombie, B. Allen, A. Apyan, R. Barbieri, A. Baty, R. Bi, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, Z. Demiragli, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, K. Krajczar, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Sumorok, K. Tatar, M. Varma, D. Velicanu, J. Veverka, J. Wang, T.W. Wang, B. Wyslouch, M. Yang, V. Zhukova

University of Minnesota, Minneapolis, USA

A.C. Benvenuti, R.M. Chatterjee, A. Evans, A. Finkel, A. Gude, P. Hansen, S. Kalafut, S.C. Kao, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA

J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA

E. Avdeeva, R. Bartek, K. Bloom, D.R. Claes, A. Dominguez, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, A. Malta Rodrigues, F. Meier, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger

State University of New York at Buffalo, Buffalo, USA

M. Alyari, J. Dolen, J. George, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, A. Parker, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA

G. Alverson, E. Barberis, D. Baumgartel, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood

Northwestern University, Evanston, USA

S. Bhattacharya, K.A. Hahn, A. Kubik, A. Kumar, J.F. Low, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco

University of Notre Dame, Notre Dame, USA

N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Marinelli, F. Meng, C. Mueller, Y. Musienko³⁸, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA

J. Alimena, L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, R. Hughes, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin

Princeton University, Princeton, USA

S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, D. Lange, J. Luo, D. Marlow, T. Medvedeva, K. Mei, M. Mooney, J. Olsen, C. Palmer, P. Piroué, D. Stickland, C. Tully, A. Zuranski

University of Puerto Rico, Mayaguez, USA

S. Malik

Purdue University, West Lafayette, USA

A. Barker, V.E. Barnes, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, K. Jung, D.H. Miller, N. Neumeister, X. Shi, J. Sun, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu

Purdue University Calumet, Hammond, USA

N. Parashar, J. Stupak

Rice University, Houston, USA

A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, Z. Tu, J. Zabel

University of Rochester, Rochester, USA

B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti

Rutgers, The State University of New Jersey, Piscataway, USA

A. Agapitos, J.P. Chou, E. Contreras-Campana, Y. Gershtein, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, K. Nash, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA

M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A&M University, College Station, USA

O. Bouhali⁷³, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, E. Juska, T. Kamon⁷⁴, R. Mueller, Y. Pakhotin, R. Patel, A. Perloff, L. Perniè, D. Rathjens, A. Rose, A. Safonov, A. Tatarinov, K.A. Ulmer

Texas Tech University, Lubbock, USA

N. Akchurin, C. Cowden, J. Damgov, F. De Guio, C. Dragoiu, P.R. Dudero, J. Faulkner, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang

Vanderbilt University, Nashville, USA

A.G. Delannoy, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, USA

M.W. Arenton, P. Barria, B. Cox, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA

C. Clarke, R. Harr, P.E. Karchin, P. Lamichhane, J. Sturdy

University of Wisconsin - Madison, Madison, WI, USA

D.A. Belknap, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, I. Ojalvo, T. Perry, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods

- t: Deceased
- 1: Also at Vienna University of Technology, Vienna, Austria
- 2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
- 3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
- 4: Also at Universidade Estadual de Campinas, Campinas, Brazil
- 5: Also at Universidade Federal de Pelotas, Pelotas, Brazil
- 6: Also at Université Libre de Bruxelles, Bruxelles, Belgium
- 7: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
- 8: Also at Joint Institute for Nuclear Research, Dubna, Russia
- 9: Also at Suez University, Suez, Egypt
- 10: Now at British University in Egypt, Cairo, Egypt
- 11: Also at Ain Shams University, Cairo, Egypt
- 12: Now at Helwan University, Cairo, Egypt
- 13: Also at Université de Haute Alsace, Mulhouse, France
- 14: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
- 15: Also at Tbilisi State University, Tbilisi, Georgia
- 16: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
- 17: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
- 18: Also at University of Hamburg, Hamburg, Germany
- 19: Also at Brandenburg University of Technology, Cottbus, Germany
- 20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
- 21: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
- 22: Also at University of Debrecen, Debrecen, Hungary
- 23: Also at Indian Institute of Science Education and Research, Bhopal, India
- 24: Also at Institute of Physics, Bhubaneswar, India
- 25: Also at University of Visva-Bharati, Santiniketan, India
- 26: Also at University of Ruhuna, Matara, Sri Lanka
- 27: Also at Isfahan University of Technology, Isfahan, Iran
- 28: Also at University of Tehran, Department of Engineering Science, Tehran, Iran
- 29: Also at Yazd University, Yazd, Iran
- 30: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
- 31: Also at Laboratori Nazionali di Legnaro dell'INFN, Legnaro, Italy
- 32: Also at Università degli Studi di Siena, Siena, Italy
- 33: Also at Purdue University, West Lafayette, USA
- 34: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
- 35: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
- 36: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
- 37: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
- 38: Also at Institute for Nuclear Research, Moscow, Russia
- 39: Now at National Research Nuclear University 'Moscow Engineering Physics

Institute' (MEPhI), Moscow, Russia

- 40: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
- 41: Also at University of Florida, Gainesville, USA
- 42: Also at P.N. Lebedev Physical Institute, Moscow, Russia
- 43: Also at California Institute of Technology, Pasadena, USA
- 44: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
- 45: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
- 46: Also at INFN Sezione di Roma; Università di Roma, Roma, Italy
- 47: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy
- 48: Also at National and Kapodistrian University of Athens, Athens, Greece
- 49: Also at Riga Technical University, Riga, Latvia
- 50: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
- 51: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
- 52: Also at Adiyaman University, Adiyaman, Turkey
- 53: Also at Mersin University, Mersin, Turkey
- 54: Also at Cag University, Mersin, Turkey
- 55: Also at Piri Reis University, Istanbul, Turkey
- 56: Also at Gaziosmanpasa University, Tokat, Turkey
- 57: Also at Ozyegin University, Istanbul, Turkey
- 58: Also at Izmir Institute of Technology, Izmir, Turkey
- 59: Also at Marmara University, Istanbul, Turkey
- 60: Also at Kafkas University, Kars, Turkey
- 61: Also at Istanbul Bilgi University, Istanbul, Turkey
- 62: Also at Yildiz Technical University, Istanbul, Turkey
- 63: Also at Hacettepe University, Ankara, Turkey
- 64: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
- 65: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
- 66: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
- 67: Also at Utah Valley University, Orem, USA
- 68: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
- 69: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
- 70: Also at Argonne National Laboratory, Argonne, USA
- 71: Also at Erzincan University, Erzincan, Turkey
- 72: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
- 73: Also at Texas A&M University at Qatar, Doha, Qatar
- 74: Also at Kyungpook National University, Daegu, Korea