Estimates of the summary AUC under three settings of (c_1, c_2) $(\tau_1^2, \tau_2^2) = (1, 4)$

Yi

2021-12-01

Table 1: Summary of the SAUC estimates under the true selective publication mechanism of $(c_1, c_2) = (1/\sqrt{2}, 1/\sqrt{2})$

			S = 15	S = 25	S = 50	S = 200
No.	Methods	True	Median (Q1, Q3)	Median (Q1, Q3)	Median (Q1, Q3)	Median (Q1, Q3)
1	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = c_2)$ Prop $(c_1 = 0)$ Heckman-type Reistma _O Reistma _P	56.4	4.4 (47.4, 70.6) 3.5 (48.4, 69.6) 9.3 (55.6, 73.5) 8.7 (56.0, 72.8) 11.1 (57.8, 74.6) 0.3 (49.5, 63.4)	2.8 (49.6, 67.1) 3.0 (51.0, 67.2) 9.5 (59.1, 71.8) 9.2 (58.3, 71.3) 11.3 (61.8, 73.0) 0.1 (51.3, 60.7)	0.8 (49.2, 63.7) 1.7 (51.9, 64.0) 9.8 (61.5, 70.1) 8.6 (59.8, 69.1) 10.8 (63.0, 71.1) -0.1 (52.9, 59.6)	-0.7 (51.5, 59.8) 0.2 (53.0, 59.6) 9.9 (64.2, 68.6) 8.2 (61.9, 66.6) 10.5 (64.8, 69.0) -0.1 (54.6, 58.1)
2	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = c_2)$ Prop $(c_1 = 0)$ Heckman-type Reistma _O Reistma _P	62.0	2.7 (54.7, 72.7) 2.5 (55.4, 72.3) 7.1 (61.2, 75.0) 5.7 (59.7, 74.0) 7.9 (62.9, 75.7) 0.5 (56.9, 67.3)	0.9 (54.8, 69.8) 1.3 (56.0, 69.9) 6.8 (64.1, 73.3) 5.5 (62.1, 71.8) 7.5 (65.2, 73.5) -0.1 (57.4, 65.5)	0.0 (55.7, 67.2) 1.2 (58.1, 68.2) 7.5 (65.5, 72.1) 5.3 (63.4, 71.0) 8.0 (66.5, 72.7) 0.1 (59.2, 64.6)	-0.4 (58.0, 64.7) 0.1 (59.5, 64.8) 7.5 (67.7, 70.8) 5.2 (65.2, 69.0) 7.7 (68.1, 71.2) 0.0 (60.7, 63.2)
3	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = c_2)$ Prop $(c_1 = 0)$ Heckman-type Reistma _O Reistma _P	82.8	2.2 (79.2, 88.6) 1.6 (78.7, 88.1) 2.9 (80.4, 89.0) 3.3 (82.0, 89.2) 4.2 (83.3, 89.8) -0.2 (78.5, 85.5)	1.2 (78.9, 87.3) 0.8 (78.7, 87.0) 2.9 (81.5, 88.2) 3.2 (82.9, 88.3) 4.1 (83.9, 89.2) -0.2 (79.9, 85.0)	0.8 (79.9, 86.2) 0.7 (80.3, 86.0) 3.0 (83.4, 87.7) 3.8 (84.4, 88.1) 4.4 (85.3, 88.7) -0.0 (81.0, 84.4)	0.2 (81.3, 84.6) 0.1 (81.3, 84.5) 3.5 (85.1, 87.4) 3.6 (85.5, 87.3) 4.4 (86.4, 88.0) 0.0 (81.9, 83.7)
4	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = c_2)$ Prop $(c_1 = 0)$ Heckman-type Reistma _O Reistma _P	84.6	1.2 (82.2, 88.6) 0.7 (81.7, 88.6) 1.8 (83.6, 89.2) 1.9 (83.6, 89.0) 2.7 (84.6, 89.8) -0.1 (82.0, 86.8)	0.7 (82.4, 87.7) 0.6 (82.3, 87.5) 1.8 (84.0, 88.4) 1.9 (84.5, 88.4) 2.8 (85.5, 89.1) -0.1 (82.4, 86.5)	0.4 (82.6, 86.9) 0.5 (82.9, 87.0) 2.2 (84.9, 88.1) 2.1 (85.2, 88.1) 2.9 (86.2, 88.8) 0.0 (83.2, 85.8)	0.1 (83.6, 85.8) 0.1 (83.7, 85.8) 2.3 (86.3, 87.8) 2.1 (85.9, 87.4) 2.9 (86.9, 88.1) 0.0 (84.0, 85.2)
5	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = c_2)$ Prop $(c_1 = 0)$ Heckman-type Reistma _O Reistma _P	89.2	-0.3 (85.9, 91.4) -0.4 (86.1, 91.3) -0.8 (85.1, 91.2) 0.2 (86.5, 91.6) 0.9 (87.6, 92.1) -0.4 (86.4, 90.9)	0.1 (87.2, 91.2) 0.3 (87.4, 91.3) -0.3 (86.2, 91.1) 0.6 (87.8, 91.6) 1.5 (88.9, 92.1) -0.1 (87.4, 90.7)	-0.0 (87.6, 90.6) 0.2 (87.8, 90.6) 0.2 (87.6, 90.8) 0.6 (88.4, 91.0) 1.5 (89.6, 91.7) -0.1 (87.9, 90.2)	0.0 (88.4, 89.9) 0.0 (88.5, 89.9) 0.6 (88.7, 90.6) 0.8 (89.3, 90.6) 1.6 (90.3, 91.3) -0.0 (88.6, 89.7)
6	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = c_2)$ Prop $(c_1 = 0)$ Heckman-type Reistma _O Reistma _P	87.7	-0.2 (84.4, 90.1) -0.1 (84.9, 90.2) -0.6 (83.8, 89.9) -0.1 (85.0, 90.0) 0.7 (85.8, 90.8) -0.2 (85.0, 89.7)	-0.0 (85.4, 89.5) 0.2 (85.9, 89.7) -0.1 (85.2, 89.4) 0.3 (86.0, 89.7) 1.2 (87.3, 90.5) -0.2 (85.9, 89.3)	-0.0 (86.1, 89.1) 0.2 (86.5, 89.3) -0.1 (85.9, 89.2) 0.2 (86.7, 89.2) 1.3 (87.9, 90.1) -0.1 (86.5, 88.8)	0.0 (87.0, 88.5) 0.0 (87.1, 88.5) 0.3 (87.1, 88.9) 0.3 (87.3, 88.7) 1.3 (88.5, 89.6) -0.1 (87.1, 88.3)

Note:

Median with 25th empirical quartile (Q1) and 75th empirical quartile (Q3) and convergence rate (CR) are reported. No. denotes the senario numbers. S denotes the number of the population studies; True denotes the true value of the SAUC. Prop $(hatc_1, hatc_2)$, Prop $(c_1 = c_2)$, and Prop $(c_1 = 1)$ denote the proposed method that estimates (c_1, c_2) , correctly specifies $(c_1, c_2) = (1/sqrt2, 1/sqrt2)$, and misspecifies $(c_1, c_2) = (1, 0)$, respectively; Heckman-type denotes the method of Piao et al.; Reitsma_O and Reitsma_P denote the Reitsma model based on N observed studies and S population studies, respectively. All the entries are multiplied by 100.

Table 2: Summary of the SAUC estimates under the true selective publication mechanism of $(c_1, c_2) = (1, 0)$

			S = 15	S = 25	S = 50	S = 200
No.		True	Median (Q1, Q3)	Median (Q1, Q3)	Median (Q1, Q3)	Median (Q1, Q3)
1	$\begin{array}{c} \operatorname{Prop}\ (\hat{c}_1,\hat{c}_2) \\ \operatorname{Prop}\ (c_1=1) \\ \operatorname{Prop}\ (c_1=c_2) \\ \operatorname{Heckman-type} \\ \operatorname{Reistma}_O \\ \operatorname{Reistma}_P \end{array}$	56.4	2.9 (50.4, 67.1) 3.5 (51.3, 67.8) 5.6 (55.0, 68.4) 5.2 (55.1, 68.3) 8.3 (58.8, 70.8) 0.3 (49.5, 63.4)	1.7 (50.9, 64.5) 2.7 (51.9, 65.3) 6.3 (57.1, 67.1) 5.8 (56.4, 66.6) 8.8 (60.1, 69.3) 0.1 (51.3, 60.7)	-0.5 (50.9, 61.5) 1.0 (52.1, 62.3) 6.4 (59.1, 66.3) 5.5 (58.1, 65.1) 8.8 (61.7, 68.2) -0.1 (52.9, 59.6)	-0.3 (53.3, 58.4) 0.1 (53.9, 58.9) 7.7 (62.1, 65.8) 5.2 (59.5, 63.2) 8.6 (63.3, 66.4) -0.1 (54.6, 58.1)
2	$\operatorname{Prop}\ (\hat{c}_1,\hat{c}_2)$ $\operatorname{Prop}\ (c_1=1)$ $\operatorname{Prop}\ (c_1=c_2)$ $\operatorname{Heckman-type}$ $\operatorname{Reistma}_{O}$ $\operatorname{Reistma}_{P}$	62.0	1.3 (55.8, 69.7) 2.2 (56.9, 70.0) 3.0 (58.7, 70.3) 2.7 (58.8, 69.7) 5.4 (62.1, 72.4) 0.5 (56.9, 67.3)	0.2 (56.5, 67.3) 1.2 (57.9, 67.9) 2.9 (60.5, 68.8) 2.0 (59.3, 68.0) 5.3 (63.4, 70.7) -0.1 (57.4, 65.5)	-0.3 (57.1, 65.4) 0.8 (58.6, 66.1) 3.5 (62.2, 68.1) 2.2 (61.1, 67.2) 5.4 (64.7, 69.8) 0.1 (59.2, 64.6)	-0.2 (59.7, 63.7) 0.1 (60.1, 63.9) 4.7 (65.0, 68.1) 2.1 (62.3, 65.6) 5.5 (66.1, 68.7) 0.0 (60.7, 63.2)
3	$\operatorname{Prop}\ (\hat{c}_1,\hat{c}_2)$ $\operatorname{Prop}\ (c_1=1)$ $\operatorname{Prop}\ (c_1=c_2)$ $\operatorname{Heckman-type}$ $\operatorname{Reistma}_O$ $\operatorname{Reistma}_P$	82.8	0.7 (78.8, 87.1) 0.6 (78.6, 87.1) 1.5 (80.2, 87.6) 2.5 (81.4, 87.9) 3.1 (82.2, 88.6) -0.2 (78.5, 85.5)	0.4 (79.1, 86.2) 0.6 (79.1, 86.4) 1.7 (81.6, 87.0) 2.7 (82.8, 87.6) 3.3 (83.7, 88.1) -0.2 (79.9, 85.0)	0.1 (80.3, 85.1) 0.5 (80.8, 85.5) 2.0 (82.8, 86.4) 2.9 (84.0, 87.2) 3.5 (84.7, 87.6) -0.0 (81.0, 84.4)	-0.0 (81.4, 84.2) 0.2 (81.6, 84.3) 2.5 (84.2, 86.2) 3.0 (85.0, 86.6) 3.6 (85.7, 87.1) 0.0 (81.9, 83.7)
4	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = 1)$ Prop $(c_1 = c_2)$ Heckman-type Reistma _O Reistma _P	84.6	0.4 (81.9, 87.9) 0.6 (82.0, 87.9) 1.1 (82.6, 88.2) 1.3 (83.3, 88.3) 2.4 (84.2, 89.0) -0.1 (82.0, 86.8)	0.3 (82.2, 87.1) 0.4 (82.3, 87.2) 1.0 (83.3, 87.6) 1.3 (84.0, 87.8) 2.3 (84.9, 88.5) -0.1 (82.4, 86.5)	0.1 (82.7, 86.4) 0.3 (83.2, 86.5) 1.2 (84.2, 87.1) 1.6 (84.9, 87.5) 2.4 (85.8, 88.1) 0.0 (83.2, 85.8)	0.1 (83.8, 85.6) 0.1 (83.8, 85.6) 1.3 (85.1, 86.7) 1.7 (85.6, 86.9) 2.5 (86.5, 87.6) 0.0 (84.0, 85.2)
5	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = 1)$ Prop $(c_1 = c_2)$ Heckman-type Reistma _O Reistma _P	89.2	0.7 (86.9, 92.0) 0.3 (86.2, 91.9) 1.5 (88.2, 92.6) 1.8 (88.4, 92.9) 1.9 (88.5, 92.9) -0.4 (86.4, 90.9)	0.9 (87.7, 91.6) 0.4 (87.1, 91.5) 1.8 (89.3, 92.4) 2.1 (89.6, 92.6) 2.3 (89.9, 92.7) -0.1 (87.4, 90.7)	0.3 (88.0, 90.9) 0.2 (87.6, 90.8) 1.8 (89.9, 92.0) 2.1 (90.2, 92.3) 2.3 (90.4, 92.4) -0.1 (87.9, 90.2)	0.2 (88.4, 90.1) 0.1 (88.3, 90.0) 2.0 (90.7, 91.7) 2.2 (90.8, 91.8) 2.3 (91.0, 91.9) -0.0 (88.6, 89.7)
6	$\operatorname{Prop}\left(\hat{c}_{1},\hat{c}_{2}\right)$ $\operatorname{Prop}\left(c_{1}=1\right)$ $\operatorname{Prop}\left(c_{1}=c_{2}\right)$ $\operatorname{Heckman-type}$ $\operatorname{Reistma}_{O}$ $\operatorname{Reistma}_{P}$	87.7	0.7 (85.4, 90.7) 0.3 (84.6, 90.5) 1.4 (86.8, 91.4) 1.5 (86.7, 91.4) 1.7 (87.1, 91.6) -0.2 (85.0, 89.7)	0.9 (86.6, 90.5) 0.5 (85.8, 90.3) 1.9 (87.8, 91.2) 1.9 (87.9, 91.2) 2.3 (88.2, 91.4) -0.2 (85.9, 89.3)	0.7 (86.8, 89.7) 0.2 (86.2, 89.4) 1.8 (88.4, 90.7) 1.8 (88.4, 90.7) 2.1 (88.8, 91.0) -0.1 (86.5, 88.8)	0.3 (87.2, 88.9) 0.1 (87.0, 88.5) 1.9 (89.0, 90.2) 1.9 (89.1, 90.3) 2.3 (89.4, 90.5) -0.1 (87.1, 88.3)

Note:

Median with 25th empirical quartile (Q1) and 75th empirical quartile (Q3) and convergence rate (CR) are reported. No. denotes the senario numbers. S denotes the number of the population studies; True denotes the true value of the SAUC. Prop $(hatc_1, hatc_2)$, Prop $(c_1 = 1)$, and Prop $(c_1 = c_2)$ denote the proposed method that estimates (c_1, c_2) , correctly specifies $(c_1, c_2) = (1, 0)$, and misspecifies $(c_1, c_2) = (1/sqrt2, 1/sqrt2)$, respectively; Heckman-type denotes the method of Piao et al.; Reitsma_O and Reitsma_P denote the Reitsma model based on N observed studies and S population studies, respectively. All the entries are multiplied by 100.

Table 3: Summary of the SAUC estimates under the true selective publication mechanism of $(c_1, c_2) = (0, 1)$

			S = 15	S = 25	S = 50	S = 200
No.		True	Median (Q1, Q3)	Median (Q1, Q3)	Median (Q1, Q3)	Median (Q1, Q3)
1	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = 0)$ Prop $(c_1 = c_2)$ Heckman-type Reistma _O Reistma _P	56.4	-5.2 (37.6, 64.3) 0.2 (44.2, 67.4) -8.5 (33.7, 61.4) -2.3 (41.2, 65.7) 0.6 (44.3, 68.5) 0.3 (49.5, 63.4)	-5.2 (40.9, 61.3) 0.6 (47.5, 65.2) -8.5 (37.8, 58.9) -2.3 (43.6, 62.8) 1.2 (47.6, 65.9) 0.1 (51.3, 60.7)	-5.2 (42.1, 58.6) 0.1 (50.5, 62.0) -9.8 (38.6, 55.4) -2.5 (47.1, 60.2) 0.7 (50.7, 62.8) -0.1 (52.9, 59.6)	-2.4 (49.7, 57.5) -0.3 (52.9, 59.1) -8.9 (41.8, 53.8) -2.9 (49.8, 57.4) 0.3 (53.5, 59.9) -0.1 (54.6, 58.1)
2	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = 0)$ Prop $(c_1 = c_2)$ Heckman-type Reistma _O Reistma _P	62.0	-2.8 (46.9, 69.6) 1.4 (52.7, 71.8) -5.7 (43.5, 68.1) -1.0 (49.1, 70.2) 2.3 (53.5, 72.6) 0.5 (56.9, 67.3)	-4.6 (47.1, 66.2) 0.3 (54.5, 68.8) -7.4 (44.1, 64.3) -2.0 (51.1, 67.1) 1.3 (55.2, 69.7) -0.1 (57.4, 65.5)	-3.8 (50.9, 64.6) 0.5 (57.4, 66.8) -6.4 (47.4, 62.5) -1.9 (53.6, 65.5) 1.5 (58.1, 68.0) 0.1 (59.2, 64.6)	-1.6 (57.5, 63.2) -0.0 (59.5, 64.1) -6.3 (50.3, 60.5) -2.4 (56.2, 62.5) 1.1 (60.7, 65.3) 0.0 (60.7, 63.2)
3	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = 0)$ Prop $(c_1 = c_2)$ Heckman-type Reistma _O Reistma _P	82.8	-1.9 (69.8, 86.4) -0.2 (74.4, 87.5) -4.4 (66.3, 85.7) -1.8 (72.1, 86.9) 0.1 (73.9, 87.8) -0.2 (78.5, 85.5)	-2.6 (73.4, 85.5) -0.2 (77.5, 86.6) -4.2 (70.3, 84.6) -1.9 (74.8, 85.6) 0.1 (77.5, 87.0) -0.2 (79.9, 85.0)	-1.7 (76.7, 84.8) -0.0 (79.0, 85.6) -4.5 (72.8, 83.2) -1.5 (76.8, 84.7) 0.4 (79.1, 85.9) -0.0 (81.0, 84.4)	-0.4 (80.5, 83.9) -0.0 (81.3, 84.2) -3.1 (76.3, 82.4) -1.4 (79.3, 83.0) 0.4 (81.6, 84.7) 0.0 (81.9, 83.7)
4	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = 0)$ Prop $(c_1 = c_2)$ Heckman-type Reistma _O Reistma _P	84.6	-0.8 (77.4, 87.7) 0.4 (79.9, 88.3) -1.5 (75.9, 87.4) -1.0 (77.2, 87.4) 0.9 (80.1, 88.7) -0.1 (82.0, 86.8)	-1.3 (78.9, 86.5) -0.1 (80.9, 87.2) -2.6 (76.2, 86.1) -1.5 (78.5, 86.5) 0.4 (81.5, 87.7) -0.1 (82.4, 86.5)	-1.1 (80.2, 85.9) -0.0 (82.4, 86.7) -1.6 (78.9, 85.7) -1.4 (80.0, 85.6) 0.5 (82.9, 87.2) 0.0 (83.2, 85.8)	-0.3 (83.1, 85.4) 0.0 (83.6, 85.6) -1.2 (81.4, 85.1) -1.4 (81.9, 84.5) 0.6 (84.1, 86.2) 0.0 (84.0, 85.2)
5	Prop (\hat{c}_1, \hat{c}_2) Prop $(c_1 = 0)$ Prop $(c_1 = c_2)$ Heckman-type Reistma _O Reistma _P	89.2	-1.7 (83.8, 90.2) -0.9 (85.2, 90.7) -2.3 (82.6, 89.8) -1.8 (83.9, 90.1) -0.9 (85.0, 90.7) -0.4 (86.4, 90.9)	-0.8 (85.7, 90.3) -0.2 (86.6, 90.7) -1.5 (84.8, 89.8) -1.4 (85.2, 90.0) -0.2 (86.8, 90.8) -0.1 (87.4, 90.7)	-0.5 (87.1, 90.0) -0.2 (87.6, 90.2) -1.3 (86.0, 89.5) -1.4 (86.2, 89.3) -0.0 (87.8, 90.4) -0.1 (87.9, 90.2)	-0.1 (88.4, 89.7) -0.0 (88.5, 89.7) -0.6 (87.5, 89.3) -1.3 (87.1, 88.7) 0.1 (88.7, 89.9) -0.0 (88.6, 89.7)
6	$\operatorname{Prop}(\hat{c}_1, \hat{c}_2)$ $\operatorname{Prop}(c_1 = 0)$ $\operatorname{Prop}(c_1 = c_2)$ $\operatorname{Heckman-type}$ $\operatorname{Reistma}_{O}$ $\operatorname{Reistma}_{P}$	87.7	-1.1 (83.2, 89.2) -0.6 (84.3, 89.6) -1.6 (82.7, 89.0) -1.9 (82.8, 88.6) -0.5 (84.4, 89.6) -0.2 (85.0, 89.7)	-0.7 (84.7, 89.0) -0.3 (85.5, 89.3) -1.1 (84.1, 88.7) -1.5 (83.7, 88.2) -0.1 (85.7, 89.4) -0.2 (85.9, 89.3)	-0.3 (85.9, 88.6) -0.1 (86.3, 88.9) -0.8 (85.2, 88.4) -1.6 (84.6, 87.7) 0.2 (86.6, 89.1) -0.1 (86.5, 88.8)	-0.1 (86.9, 88.3) -0.1 (87.0, 88.3) -0.3 (86.7, 88.2) -1.5 (85.4, 87.0) 0.2 (87.4, 88.5) -0.1 (87.1, 88.3)

Note:

Median with 25th empirical quartile (Q1) and 75th empirical quartile (Q3) and convergence rate (CR) are reported. No. denotes the senario numbers. S denotes the number of the population studies; True denotes the true value of the SAUC. Prop $(hatc_1, hatc_2)$, Prop $(c_1 = 1)$, and Prop $(c_1 = c_2)$ denote the proposed method that estimates (c_1, c_2) , correctly specifies $(c_1, c_2) = (0, 1)$, and misspecifies $(c_1, c_2) = (1/sqrt2, 1/sqrt2)$, respectively; Heckman-type denotes the method of Piao et al.; Reitsma_O and Reitsma_P denote the Reitsma model based on N observed studies and S population studies, respectively. All the entries are multiplied by 100.