

SF1625 Envariabelanalys Lösningsförslag till tentamen 2014-03-10

DEL A

1. Bestäm värdemängden till funktionen

$$f(x) = 2 \arctan x + \ln(1 + x^2), \ \text{där } -\sqrt{3} \le x < 1.$$

För att ge full poäng skall svaret inte innehålla "arctan" (men "ln" går bra).

Lösningsförslag.

Eftersom f är kontinuerlig i definitionsintervallet kan vi finna värdemängden med en tabell (och satsen om mellanliggande värden).

Vi börjar med att finna f:s derivata (med kedjeregeln i andra termen):

$$f'(x) = \frac{2}{1+x^2} + \frac{2x}{1+x^2} = \frac{2(x+1)}{1+x^2}.$$

Dess enda nollställe x = -1 ligger i det aktuella intervallet. Tabellen

(där vi har använt att $\arctan(-\sqrt{3}) = -\frac{\pi}{3}$, $\arctan(\pm 1) = \pm \frac{\pi}{4}$ och $\ln 4 = 2 \ln 2$) visar att den kontinuerliga

funktionen f antar alla värden i intervallen $\left[-\frac{\pi}{2} + \ln 2, -\frac{2\pi}{3} + 2 \ln 2\right]$ och (eftersom x=1 inte ligger i definitionsmängden är intervallet öppet till höger) $\left[-\frac{\pi}{2} + \ln 2, \frac{\pi}{2} + \ln 2\right]$. ln $2 < \ln e = 1 < \pi$ ger att $-\frac{2\pi}{3} + 2 \ln 2 < \frac{\pi}{2} + \ln 2$, så det första intervallet är innehållet i det andra och värdemängden är $\left[-\frac{\pi}{2} + \ln 2, \frac{\pi}{2} + \ln 2\right]$, dvs den innehåller precis de y som uppfyller $-\frac{\pi}{2} + \ln 2 \le y < \frac{\pi}{2} + \ln \overline{2}$.

Svar.

Värdemängden är intervallet $\left[-\frac{\pi}{2} + \ln 2, \frac{\pi}{2} + \ln 2\right]$.

2. Beräkna integralen

$$\int_{\frac{\pi^2}{16}}^{\frac{\pi^2}{4}} \frac{\cos(\sqrt{x})}{\sqrt{x}} \, dx.$$

För att ge full poäng skall svaret inte innehålla namn på trigonometriska funktioner.

Lösningsförslag.

Eftersom $\frac{d}{dx}\sqrt{x}=\frac{1}{2\sqrt{x}}$ och integranden innehåller en "störande" faktor $\frac{1}{\sqrt{x}}$ prövar vi med variabelbytet $t=\sqrt{x}$.

$$\int_{\frac{\pi^2}{16}}^{\frac{\pi^2}{4}} \frac{\cos(\sqrt{x})}{\sqrt{x}} dx = \begin{bmatrix} t = \sqrt{x} & x = \frac{\pi^2}{4} \Rightarrow t = \frac{\pi}{2} \\ dt = \frac{dx}{2\sqrt{x}} & x = \frac{\pi^2}{16} \Rightarrow t = \frac{\pi}{4} \end{bmatrix} = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos(t) 2dt =$$
$$= \left[2\sin(t) \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} = 2\left(\sin\frac{\pi}{2} - \sin\frac{\pi}{4}\right) = 2\left(1 - \frac{1}{\sqrt{2}}\right) = 2 - \sqrt{2}.$$

Svar. Integralens värde är $2 - \sqrt{2}$.

3. Beräkna två Riemannsummor R_1 och R_2 för integralen

$$\int_0^6 \frac{1}{x^3 + 1} \, dx,$$

båda med integrationsintervallet indelat i tre lika långa delar och sådana att R_1 säkert är mindre och R_2 säkert är större än integralens värde.

Svaret får ges som en summa av rationella tal (kvoter av heltal).

Lösningsförslag.

Vi skall dela in intervallet [0,6] i tre lika delar, så vi tar $x_0=0, x_1=2, x_2=4, x_3=6$. Motsvarande Riemannsummor är, med $f(x)=\frac{1}{x^3+1}$,

$$R = \sum_{k=1}^{3} f(\xi_k)(x_k - x_{k-1}), \text{ där } x_{k-1} \le \xi_k \le x_k.$$

För att få R_1 mindre än integralens värde tar vi för den ξ_k så att $f(\xi_k)$ är funktionens minsta värde i $[x_{k-1},x_k]$ (då är $\int_{x_{k-1}}^{x_k} f(x)\,dx \geq f(\xi_k)(x_k-x_{k-1})$). Sådana ξ_k finns, ty f är kontinuerlig på de kompakta intervallen $[x_{k-1},x_k]$. Eftersom $f'(x)=-\frac{3x^2}{(x^3+1)^2}<0$ är f avtagande och därmed $\xi_k=x_k$. Det ger

$$R_1 = f(2)(2-0) + f(4)(4-2) + f(6)(6-4) = \frac{2}{9} + \frac{2}{65} + \frac{2}{217}$$

P.s.s. tar vi för $R_2 \, \xi_k = x_{k-1}$, som gör $f(\xi_k)$ till f:s största värde i $[x_{k-1}, x_k]$.

$$R_2 = f(0)(2-0) + f(2)(4-2) + f(4)(6-4) = \frac{2}{1} + \frac{2}{9} + \frac{2}{65}.$$

Svar.

$$R_1 = \frac{2}{9} + \frac{2}{65} + \frac{2}{217}, \qquad R_2 = \frac{2}{1} + \frac{2}{9} + \frac{2}{65}.$$

4

DEL B

4. a. (2p) Hur många lösningar har ekvationen $x^3 - 3x = 3$?

b. (2p) Bestäm ett närmevärde till varje lösning genom att först välja ett grovt (men inte för grovt) närmevärde x_0 och sedan göra en iteration med Newton-Raphsons metod (dvs, approximera med lämplig tangentlinje i x_0). Tips: eftersom ni inte har miniräknare kan det vara lämpligt att välja det grova närmevärdet x_0 som ett heltal.

Lösningsförslag. a. Vi låter $f(x) = x^3 - 3x - 3$ och söker nollställen till f(x). Först gör vi en grov skiss av funktionen med hjälp av en teckentabell för derivatan $f'(x) = 3x^2 - 3$ som har nollställen då $x^2 - 1 = 0$, dvs $x = \pm 1$.

Vi ser alltså att f(x) < 0 då $x \le 1$ så nollställen kan bara finnas då x > 1. Dessutom är f(x) växande då x > 1 så det finns högst ett nollställe $(x_1 > x_2 \Rightarrow f(x_1) > f(x_2)$ då $x_1, x_2 > 1$). Att det finns ett nollställe är, enligt satsen om mellanliggande värden, klart, eftersom f(1) < 0, $f(x) \to \infty$ när $x \to \infty$ och f(x) är kontinuerlig. Det finns alltså exakt en lösning till den givna ekvationen.

b. Vi har sett att det finns en lösning i intervallet $(1,\infty)$. Att välja $x_0=1$ fungerar inte eftersom derivatan är noll i den punkten. Vi noterar att $f(2)=8-3\cdot 2-3=-1$ och $f(3)=27-3\cdot 3-3=15$ så lösningen finns i intervallet (2,3) och förmodligen närmare 2 än 3. Vi väljer därför $x_0=2$ och finner $f(x_0)=-1$ (som sagt) och $f'(x_0)=3x_0^2-3=3\cdot 2^2-3=9$. Vi gör en iteration med Newton-Raphson:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 2 - \frac{-1}{9} = 2 + \frac{1}{9} = 2.111\dots$$

(Om man inte minns uttrycket för iterationen, kan man härleda det: tangenten i x_0 har ekvationen $y=f(x_0)+f'(x_0)(x-x_0)$ och den skär x-axeln där y=0, dvs $f'(x_0)(x-x_0)=-f(x_0)$ etc.) Vårt närmevärde till lösningen är alltså $x\approx 2.111$.

Svar. a. Precis en lösning.

b. T.ex. $x \approx 2.111$. (Exakt lösning är 2.103803...)

- 5. Man vill approximera funktionen $f(x) = \sin(2x)$ med Maclaurinpolynom.
 - a. (2p) Bestäm ett närmevärde till f(0.1) med ett fel vars absolutbelopp är mindre än 0.01.
 - b. (2p) Finn ett polynom p(x) som för alla $x \mod |x| \le \frac{\pi}{8}$ uppfyller $|p(x) f(x)| < 10^{-4}$.

Lösningsförslag.

Maclaurinutvecklingen av $\sin t$ är

$$t - \frac{t^3}{3!} + \ldots + (-1)^n \frac{t^{2n+1}}{(2n+1)!} + R_{2n+3}(t),$$

där feltermen är $R_{2n+3}(t) = (-1)^{n+1} \frac{\cos(\xi_t) \cdot t^{2n+3}}{(2n+3)!}$, där ξ_t ligger mellan 0 och t. Eftersom $|\cos \xi_t| \le 1$ ger det

$$|R_{2n+3}(t)| \le \left| \frac{t^{2n+3}}{(2n+3)!} \right|.$$

Motsvarande för f(x) får vi genom att ersätta $t \mod 2x$.

(Utvecklingen av $g(t) = \sin t$ är en standardutveckling som man kan hämta från minnet eller finna med $g(0) = \sin 0 = 0$, $g'(t) = \cos t$, g'(0) = 1, $g''(t) = -\sin t$, g''(0) = 0 etc.)

a. Vi har x=0.1, dvs t=0.2, och ser att felet blir tillräckligt litet redan med n=0, $|R_3(0.2)| \leq \frac{0.2^3}{3!} = \frac{0.004}{3} < 0.01$. Ett tillräckligt bra närmevärde är alltså f(0.1)=0.2. b. Nu vill vi ha absolutbeloppet av felet $<10^{-4}$ för alla $|x| \leq \frac{\pi}{8}$, dvs $|t| \leq \frac{\pi}{4} < 1$.

b. Nu vill vi ha absolutbeloppet av felet $< 10^{-4}$ för alla $|x| \le \frac{\pi}{8}$, dvs $|t| \le \frac{\pi}{4} < 1$. Enligt uppskattningen av felet ovan räcker det att välja n så att $(2n+3)! > 10^4 = 10000$. 3! = 6, 5! = 120, 7! = 5040, $9! = 9 \cdot 8 \cdot 7! > 10000$, så det räcker att ta med termer upp till t^7 (dvs x^7). Vi kan alltså ta

$$p(x) = 2x - \frac{(2x)^3}{3!} + \frac{(2x)^5}{5!} - \frac{(2x)^7}{7!} = 2x - \frac{4}{3}x^3 + \frac{4}{15}x^5 - \frac{8}{315}x^7.$$

(Eftersom $\frac{\pi}{4} < 0.8$ räcker det i själva verket med femtegradspolynomet för att få önskad noggrannhet. 0.8^7 är ju < 0.5.)

Svar.

- a. Ett sådant närmevärde är 0.2.
- b. Ett tillräckligt polynom är $p(x)=2x-\frac{4}{3}x^3+\frac{4}{15}x^5-\frac{8}{315}x^7.$

6. Adam delar en sfärformad apelsin med radien R i åtta delar genom att skära fyra snitt enligt figuren härintill.

Är bitarna lika stora? Om inte, vilka är störst?

Lösningsförslag.

Vi beräknar volymen av mittbitarna som en (halv) rotationsvolym (kurvan som roteras är en cirkelbåge med radie R, $x^2 + y^2 = R^2$, så $y^2 = R^2 - x^2$):

$$V_{\text{mitt}} = \frac{1}{2} \int_0^{R/3} \pi (R^2 - x^2) dx = \frac{\pi}{2} \left[R^2 x - \frac{x^3}{3} \right]_0^{R/3}$$
$$= \frac{\pi}{2} \left(\frac{R^3}{3} - \frac{R^3}{3^4} \right) = \frac{\pi}{2} \cdot \frac{26}{81} R^3$$

Sidobitarna kan också beräknas med en rotationsvolym:

$$V_{\text{sida}} = \frac{1}{2} \int_{R/3}^{R} \pi (R^2 - x^2) dx = \frac{\pi}{2} \left[R^2 x - \frac{x^3}{3} \right]_{R/3}^{R}$$
$$= \frac{\pi}{2} \left(\left(R^3 - \frac{R^3}{3} \right) - \left(\frac{R^3}{3} - \frac{R^3}{3^4} \right) \right) = \frac{\pi}{2} \left(\left(\frac{R^3}{3} + \frac{R^3}{3^4} \right) \right) = \frac{\pi}{2} \cdot \frac{28}{81} R^3$$

Alltså är sidobitarna något större än mittbitarna.

 $V_{
m sida}$ kan också fås från $V_{
m mitt}$, eftersom vi känner sfärens totala volym $\frac{4\pi}{3}R^3$. Nu när vi beräknat $V_{
m sida}$ kan vi i stället kontrollera att bitarna tillsammans har volymen av en sfär:

$$V_{\text{apelsin}} = 4V_{\text{mitt}} + 4V_{\text{sida}} = 2\pi \left(\frac{26}{81} + \frac{28}{81}\right)R^3 = \frac{4\pi}{3}R^3.$$

Svar.

Sidobitarna är något ($\frac{1}{13}$, dvs knappt 8%) större än mittbitarna.

DEL C

7. a. (2p) Definiera vad det innebär att funktionen f(x) är deriverbar i x = a.

b. (2p) Verifiera att funktionen

$$f(x) = \begin{cases} 2x + 3x^2 \sin\frac{1}{x} & \text{om } x \neq 0\\ 0 & \text{om } x = 0 \end{cases}$$

är deriverbar för x=0 och beräkna med hjälp av derivatans definition f'(0).

Lösningsförslag.

a. f(x) är enligt definition deriverbar i x = a precis om den är definierad i en omgivning till a och gränsvärdet

$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h} \quad \text{ alt. } \lim_{x\to a}\frac{f(x)-f(a)}{x-a}$$

existerar. Gränsvärdet kallas då derivatan av f(x) i x = a, betecknad f'(a).

b. Enligt definitionen skall vi visa att följande gränsvärde existerar och finna dess värde:

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{f(h) - 0}{h} = \lim_{h \to 0} (2 + 3h \sin \frac{1}{h}) = 2,$$

ty eftersom $|\sin\frac{1}{h}| \le 1$ gäller $\lim_{h\to 0} h\sin\frac{1}{h} = 0$. Den givna funktionen f(x) är alltså deriverbar för x=0 och f'(0)=2.

Svar. a. Se ovan.

b.
$$f'(0) = 2$$
.

8. Vi betraktar differentialekvationen

$$xy'' + 2y' - xy = xe^x, \quad x > 0.$$

a. (2p) Finn alla funktioner y(x) som uppfyller ekvationen (för x > 0, förstås), t.ex. genom att införa den nya beroende variabeln z(x) = x y(x).

b. (2p) Finn alla lösningar som uppfyller

$$\lim_{x \to 0^+} y(x) = 0.$$

Lösningsförslag.

a. z=xy ger z'=xy'+y och z''=xy''+2y', så ekvationen blir $z''-z=xe^x,$

en linjär ekvation med konstanta koefficienter. Den kan vi lösa med våra vanliga metoder. Karakteristiska ekvationen för motsvarande homogena ekvation är $r^2-1=0$, med rötterna $r_{1,2}=\pm 1$, så den homogena ekvationens allmänna lösning är

$$z_h(x) = Ae^x + Be^{-x}.$$

För att finna en partikulärlösning till den inhomogena ekvationen gör vi en ansats, nämligen $z(x) = (cx^2 + dx)e^x$, c, d konstanter (eftersom e^x (men inte xe^x) löser den homogena ekvationen behövs ett polynom av grad ett mer än det i inhomogeniteten, men ingen konstantterm).

Det ger $z' = (cx^2 + dx + 2cx + d)e^x$ och $z'' = (cx^2 + (4c + d)x + 2c + 2d)e^x$. Insättning i ekvationen ger $(4cx + 2c + 2d)e^x = xe^x$, så vi får en lösning om 4c = 1 och 2c + 2d = 0,

$$z_p(x) = \frac{1}{4}x(x-1)e^x.$$

Den allmänna lösningen till den givna ekvationen är alltså

$$y(x) = \frac{1}{x}(z_h(x) + z_p(x)) = \frac{Ae^x + Be^{-x}}{x} + \frac{1}{4}(x - 1)e^x, \ x > 0.$$

b. $\lim_{x\to 0^+} y(x) = 0$ ger villkor för konstanterna A och B. Maclaurinutveckling i den första termen ger

$$y(x) = \frac{A(1+x+x^2 \cdot C(x)) + B(1-x+x^2 \cdot C(-x))}{x} + \frac{1}{4}(x-1)e^x =$$

$$= \frac{A+B}{x} + (A-B) + x(A \cdot C(x) + B \cdot C(-x)) + \frac{1}{4}(x-1)e^x, \ x > 0,$$

där funktionen C är begränsad nära 0.

 $\lim_{x\to 0^+}y(x)=0$ ger A+B=0 och $A-B+0-\frac{1}{4}=0$, så $A=\frac{1}{8}=-B$. Den enda lösningen som uppfyller villkoret är alltså

$$y(x) = \frac{e^x - e^{-x}}{8x} + \frac{1}{4}(x - 1)e^x, \ x > 0.$$

Svar. a. Allmän lösning: $y(x) = \frac{Ae^x + Be^{-x}}{x} + \frac{1}{4}(x-1)e^x, \ x>0; \ A, \ B$ konstanter. b. Den enda lösningen som uppfyller villkoret är $y(x) = \frac{e^x - e^{-x}}{8x} + \frac{1}{4}(x-1)e^x, \ x>0.$

9. Låt

$$I = \int_0^{\frac{\pi}{2}} \ln(\sin x) \, dx.$$

a. (1p) Visa att
$$I = \int_0^{\frac{\pi}{2}} \ln(\cos x) dx$$
.

b. (1p) Visa att
$$I = \int_0^{\frac{\pi}{2}} \ln(\sin(2x)) dx$$
.

c. (2p) Använd a. och b. för att beräkna I.

Lösningsförslag.

Integralen är generaliserad, eftersom $\ln(\sin x) \to -\infty$ då $x \to 0^+$, men $\frac{x}{2} < \sin x < 1$ då $0 < x < \frac{\pi}{2}$, så $0 < -\ln(\sin x) < \ln 2 - \ln x$ i intervallet. $\int_0^{\frac{\pi}{2}} \ln x \, dx$ är konvergent, så det är vår integral också (enligt jämförelsesatsen). Nedan står integralerna som vanligt för de definierande gränsvärdena.

a. Eftersom $\sin x = \cos(\frac{\pi}{2} - x)$ byter vi variabel i integralen:

$$\int_0^{\frac{\pi}{2}} \ln(\cos x) \, dx = \begin{bmatrix} t = \frac{\pi}{2} - x; & x = \frac{\pi}{2} \Rightarrow t = 0 \\ dt = -dx; & x = 0 \Rightarrow t = \frac{\pi}{2} \end{bmatrix} =$$

$$= \int_{\frac{\pi}{2}}^0 \ln(\cos(\frac{\pi}{2} - t)) \, (-1) dt = -\int_{\frac{\pi}{2}}^0 \ln(\sin t) \, dt = \int_0^{\frac{\pi}{2}} \ln(\sin x) \, dx = I.$$

b. Nu gör vi ett annat variabelbyte och sedan ett till:

$$\int_0^{\frac{\pi}{2}} \ln(\sin(2x)) \, dx = \begin{bmatrix} t = 2x; & x = \frac{\pi}{2} \Rightarrow t = \pi \\ dt = 2dx; & x = 0 \Rightarrow t = 0 \end{bmatrix} = \int_0^{\pi} \ln(\sin t) \, \frac{1}{2} dt = 0$$

$$= \frac{1}{2} \int_0^{\frac{\pi}{2}} \ln(\sin t) \, dt + \frac{1}{2} \int_{\frac{\pi}{2}}^{\pi} \ln(\sin t) \, dt = \begin{bmatrix} u = \pi - t; & t = \pi \Rightarrow u = 0 \\ du = -dt; & t = \frac{\pi}{2} \Rightarrow u = \frac{\pi}{2} \end{bmatrix} = 0$$

$$= \frac{1}{2} \int_0^{\frac{\pi}{2}} \ln(\sin t) \, dt + \frac{1}{2} \int_{\frac{\pi}{2}}^{0} \ln(\sin u) \, (-1) \, du = 2 \cdot \frac{1}{2} \int_0^{\frac{\pi}{2}} \ln(\sin x) \, dx = I.$$

c. $\sin(2x) = 2\sin(x)\cos(x)$ ger med b. och a. (eftersom $\sin x$, $\cos x > 0$ då $0 < x < \frac{\pi}{2}$) att

$$I \stackrel{\text{b.}}{=} \int_0^{\frac{\pi}{2}} \ln(\sin(2x)) \, dx = \int_0^{\frac{\pi}{2}} \ln(2\sin(x)\cos(x)) \, dx =$$

$$= \int_0^{\frac{\pi}{2}} \ln 2 \, dx + \int_0^{\frac{\pi}{2}} \ln(\sin x) \, dx + \int_0^{\frac{\pi}{2}} \ln(\cos x) \, dx \stackrel{\text{a.}}{=} \frac{\pi}{2} \ln 2 + I + I,$$

så

$$I = -\frac{\pi}{2} \ln 2.$$

Svar. a. och b. visade ovan.

c.
$$I = -\frac{\pi}{2} \ln 2$$
.