Prob-1. In the 'Open' form, the protein domains 'A' and 'B' can independently adopt 27 and 81 microscopic states, respectively, The ligand 'L' can always adopt 3 states.

 $\Delta E_{A-B} = E_{(AB)} - (E_A)$

When shifting from the 'Open' to the 'Bound' state, the interaction energies change as:

 ΔE_{A-B} : -35.0 kcal/mol

 $\triangle E_{\Delta-1}$: -7.0 kcal/mol

 ΔE_{B-L} : -4.0 kcal/mol

Also, the number of states in 'A' and 'B' in the closed form reduce to 18 and 54 respectively.

Determine if the 'Open' to 'Bound' transition is spontaneous.

$$\Delta G = \Delta E - T\Delta S$$

$$= \left(\Delta E_{A-B} + \Delta E_{A-L} + \Delta E_{B-L}\right) - T\left(\Delta S_A + \Delta S_B + \Delta S_L\right)$$

$$= \left(\Delta E_{A-B} + \Delta E_{A-L} + \Delta E_{B-L}\right) - T\left[\ln \frac{S_A^f}{S_{A^i}}\right] + \ln \left(\frac{S_L^f}{S_{L^i}}\right]$$

$$= -46.0 - 300 R\left[\ln \Omega_{find} - \ln \Omega_{inipial}\right]$$
To The Day of Find - In Ω inipial Ω

Is THE PROCESS ENERGETICALLY OR ENTROPICALLY DRIVEN?

From "Binding-Induced Folding of a Natively Unstructured Transcription Factor". See https://doi.org/10.1371/journal.pcbi.1000060

- Prob-2. a) Find the ratio of the probabilities of finding states A, B, C and D at room temperature.
 - b) Find the ratio of the transition rate from (D \rightarrow A) and from (A \rightarrow D), ignoring any intermediary metastable state.

 $\frac{R_{A\rightarrow D}}{R_{D\rightarrow A}} = e$ $\frac{-0.25}{0.58}$ $\approx e$ ≈ 0.6

AGAB-AGDA
= 0.25

check

Prob 3. In an experiment (E1), the diffusion coefficient of human Hemoglobin was measured as 8.0×10^{-7} cm²/s at 35 deg C.

Another experiment (E2) under a different condition measured the value as 6.8×10^{-7} cm²/s. If E2 reported a 10% decrease in the average radius of Hemoglobin, what is the closest approximation to the temperature corresponding to E2?

(Assume Hemoglobin's movement was purely diffusive)

Assumptions. 6TMaD=RBT
- Spherical assumption
- Memains constant

 $\frac{a_1D_1}{a_2D_2} = \frac{T_1}{T_2}$

Prob 4. Find the closest approximation to 1 unit of room temperature thermal energy (k_BT_r) in electron Volts (<u>eV</u>).

[1 eV is the work done in moving a charge of 1 electron across a potential difference of 1 volt, in SI units]

Ans: Thermal energy is approximately 0.025 eV at 300K