

Matt Mazur

Home

About

Archives

Contact

Now

Projects

Follow via Email

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,555 other followers

Enter your email address

Follow

About

A Step by Step Backpropagation Example

Background

Backpropagation is a common method for training a neural network. There is <u>no shortage of papers</u> online that attempt to explain how backpropagation works, but few that include an example with actual numbers. This post is my attempt to explain how it works with a concrete example that folks can compare their own calculations to in order to ensure they understand backpropagation correctly.

If this kind of thing interests you, you should <u>sign up for my newsletter</u> where I post about Al-related projects that I'm working on.

Backpropagation in Python

You can play around with a Python script that I wrote that implements the backpropagation algorithm in this Github repo.

Backpropagation Visualization

For an interactive visualization showing a neural network as it learns, check out my <u>Neural Network visualization</u>.

Hey there! I'm a data scientist at Help Scout where I wrangle data to gain insights into our product and business. I also built Lean Domain Search, Preceden and many other software products over the years.

Search ...

Follow me on Twitter

Tweets by @mhmazt

Adrian Rosebrock @PyImageSearch

Here it is, the best post I've ever written! How to build a Santa/Not Santa detector with #DeepLearning + #Keras, #Python, and the @Raspberry Pi: pyimg.co/notsanta #NotHotdog #MachineLearning #ArtificialIntelligence #AI

Additional Resources

If you find this tutorial useful and want to continue learning about neural networks, machine learning, and deep learning, I highly recommend checking out Adrian Rosebrock's new book, Deep Learning for Computer Vision with Python. I really enjoyed the book and will have a full review up soon.

Overview

For this tutorial, we're going to use a neural network with two inputs, two hidden neurons, two output neurons. Additionally, the hidden and output neurons will include a bias.

Here's the basic structure:

Yet another #AI milestone: superhuman performance in no-limit poker for the 1st time (wow)

science.sciencemag.org/cont ent/sci/ea...

- @sciencemagazine
- @CarnegieMellon by
- @polynoamial & Tuomos

Sandholm

Sorry but

[→ 15<u>h</u>

In order to have some numbers to work with, here are the initial weights, the biases, and training inputs/outputs:

The goal of backpropagation is to optimize the weights so that the neural network can learn how to correctly map arbitrary inputs to outputs.

For the rest of this tutorial we're going to work with a single training set: given inputs 0.05 and 0.10, we want the neural network to output 0.01 and 0.99.

The Forward Pass

To begin, lets see what the neural network currently predicts given the weights and biases above and inputs of 0.05 and 0.10. To do this we'll feed those inputs forward though the network.

The Messy Middle bit.ly/2ClOmYC via @breezyskies

Dec 15, 2017

Matt Mazur Retweeted

Shiya

@ShiyaLuo

Sharing knowledge is one of the most rewarding things you can do. Occasionally I've written just a couple of beginner level how-tos on things I didn't find an immediate answer for and people are still thanking me for them a couple of years later.

Dec 13, 2017

Matt Mazur Retweeted

Pieter Levels @ 🛂 @levelsio

Replying to @levelsio

RemoteOK.io is a single PHP file called "index.php" generating \$2,342.04 in a day No frameworks No.

We figure out the total net input to each hidden layer neuron, squash the total net input using an activation function (here we use the logistic function), then repeat the process with the output layer neurons.

Total net input is also referred to as just net input by some sources.

Here's how we calculate the total net input for h_1 :

$$net_{h1} = w_1 * i_1 + w_2 * i_2 + b_1 * 1$$

$$net_{h1} = 0.15 * 0.05 + 0.2 * 0.1 + 0.35 * 1 = 0.3775$$

We then squash it using the logistic function to get the output of h_1 :

$$out_{h1} = \frac{1}{1+e^{-net_{h1}}} = \frac{1}{1+e^{-0.3775}} = 0.593269992$$

Carrying out the same process for h_2 we get:

$$out_{h2} = 0.596884378$$

We repeat this process for the output layer neurons, using the output from the hidden layer neurons as inputs.

Here's the output for O_1 :

$$net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1$$

$$net_{o1} = 0.4 * 0.593269992 + 0.45 * 0.596884378 + 0.6 * 1 = 1.105905967$$

$$out_{o1} = \frac{1}{1 + e^{-net_{o1}}} = \frac{1}{1 + e^{-1.105905967}} = 0.75136507$$

 \bigcirc

Dec 7, 2017

Embed

View on Twitter

And carrying out the same process for O_2 we get:

$$out_{o2} = 0.772928465$$

Calculating the Total Error

We can now calculate the error for each output neuron using the <u>squared error</u> <u>function</u> and sum them to get the total error:

$$E_{total} = \sum \frac{1}{2} (target - output)^2$$

<u>Some sources</u> refer to the target as the *ideal* and the output as the *actual*.

The $\frac{1}{2}$ is included so that exponent is cancelled when we differentiate later on. The result is eventually multiplied by a learning rate anyway so it doesn't matter that we introduce a constant here [1].

For example, the target output for o_1 is 0.01 but the neural network output 0.75136507, therefore its error is:

$$E_{o1} = \frac{1}{2}(target_{o1} - out_{o1})^2 = \frac{1}{2}(0.01 - 0.75136507)^2 = 0.274811083$$

Repeating this process for O_2 (remembering that the target is 0.99) we get:

$$E_{o2} = 0.023560026$$

The total error for the neural network is the sum of these errors:

$$E_{total} = E_{o1} + E_{o2} = 0.274811083 + 0.023560026 = 0.298371109$$

The Backwards Pass

Our goal with backpropagation is to update each of the weights in the network so that they cause the actual output to be closer the target output, thereby minimizing the error for each output neuron and the network as a whole.

Output Layer

Consider w_5 . We want to know how much a change in w_5 affects the total error, aka $\frac{\partial E_{total}}{\partial w_5}$.

 $\frac{\partial E_{total}}{\partial w_5}$ is read as "the partial derivative of E_{total} with respect to w_5 ". You can also say "the gradient with respect to w_5 ".

By applying the <u>chain rule</u> we know that:

$$\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial w_5}$$

Visually, here's what we're doing:

We need to figure out each piece in this equation.

First, how much does the total error change with respect to the output?

$$E_{total} = \frac{1}{2}(target_{o1} - out_{o1})^2 + \frac{1}{2}(target_{o2} - out_{o2})^2$$

$$\frac{\partial E_{total}}{\partial out_{o1}} = 2 * \frac{1}{2} (target_{o1} - out_{o1})^{2-1} * -1 + 0$$

$$\frac{\partial E_{total}}{\partial out_{o1}} = -(target_{o1} - out_{o1}) = -(0.01 - 0.75136507) = 0.74136507$$

-(target-out) is sometimes expressed as out-target

When we take the partial derivative of the total error with respect to out_{o1} , the quantity $\frac{1}{2}(target_{o2}-out_{o2})^2$ becomes zero because out_{o1} does not affect it which means we're taking the derivative of a constant which is zero.

Next, how much does the output of o_1 change with respect to its total net input?

The partial <u>derivative of the logistic function</u> is the output multiplied by 1 minus the output:

$$out_{o1} = \frac{1}{1 + e^{-net_{o1}}}$$

$$\frac{\partial out_{o1}}{\partial net_{o1}} = out_{o1}(1 - out_{o1}) = 0.75136507(1 - 0.75136507) = 0.186815602$$

Finally, how much does the total net input of o_1 change with respect to w_5 ?

$$net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1$$

$$\frac{\partial net_{o1}}{\partial w_5} = 1 * out_{h1} * w_5^{(1-1)} + 0 + 0 = out_{h1} = 0.593269992$$

Putting it all together:

$$\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial w_5}$$

$$\frac{\partial E_{total}}{\partial w_5} = 0.74136507 * 0.186815602 * 0.593269992 = 0.082167041$$

You'll often see this calculation combined in the form of the delta rule:

$$\frac{\partial E_{total}}{\partial w_5} = -(target_{o1} - out_{o1}) * out_{o1}(1 - out_{o1}) * out_{h1}$$

Alternatively, we have $\frac{\partial E_{total}}{\partial out_{o1}}$ and $\frac{\partial out_{o1}}{\partial net_{o1}}$ which can be written as $\frac{\partial E_{total}}{\partial net_{o1}}$, aka δ_{o1} (the Greek letter delta) aka the *node delta*. We can use this to rewrite the calculation above:

$$\delta_{o1} = \frac{\partial E_{total}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} = \frac{\partial E_{total}}{\partial net_{o1}}$$

$$\delta_{o1} = -(target_{o1} - out_{o1}) * out_{o1}(1 - out_{o1})$$

Therefore:

$$\frac{\partial E_{total}}{\partial w_5} = \delta_{o1} out_{h1}$$

Some sources extract the negative sign from δ so it would be written as:

$$\frac{\partial E_{total}}{\partial w_5} = -\delta_{o1}out_{h1}$$

To decrease the error, we then subtract this value from the current weight (optionally multiplied by some learning rate, eta, which we'll set to 0.5):

$$w_5^+ = w_5 - \eta * \frac{\partial E_{total}}{\partial w_5} = 0.4 - 0.5 * 0.082167041 = 0.35891648$$

Some sources use α (alpha) to represent the learning rate, others use η (eta), and others even use ϵ (epsilon).

We can repeat this process to get the new weights w_6 , w_7 , and w_8 :

$$w_6^+ = 0.408666186$$

$$w_7^+ = 0.511301270$$

$$w_8^+ = 0.561370121$$

We perform the actual updates in the neural network *after* we have the new weights leading into the hidden layer neurons (ie, we use the original weights,

not the updated weights, when we continue the backpropagation algorithm below).

Hidden Layer

Next, we'll continue the backwards pass by calculating new values for $w_1,\,w_2,\,w_3$, and $w_4.$

Big picture, here's what we need to figure out:

$$\frac{\partial E_{total}}{\partial w_1} = \frac{\partial E_{total}}{\partial out_{h1}} * \frac{\partial out_{h1}}{\partial net_{h1}} * \frac{\partial net_{h1}}{\partial w_1}$$

Visually:

We're going to use a similar process as we did for the output layer, but slightly different to account for the fact that the output of each hidden layer neuron contributes to the output (and therefore error) of multiple output neurons. We know that out_{h1} affects both out_{o1} and out_{o2} therefore the $\frac{\partial E_{total}}{\partial out_{h1}}$ needs to take into consideration its effect on the both output neurons:

$$\frac{\partial E_{total}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial out_{h1}} + \frac{\partial E_{o2}}{\partial out_{h1}}$$

Starting with $\frac{\partial E_{o1}}{\partial out_{h1}}$:

$$\frac{\partial E_{o1}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial out_{h1}}$$

We can calculate $\frac{\partial E_{o1}}{\partial net_{o1}}$ using values we calculated earlier:

$$\frac{\partial E_{o1}}{\partial net_{o1}} = \frac{\partial E_{o1}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} = 0.74136507 * 0.186815602 = 0.138498562$$

And $\frac{\partial net_{o1}}{\partial out_{h1}}$ is equal to w_5 :

$$net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1$$

$$\frac{\partial net_{o1}}{\partial out_{h1}} = w_5 = 0.40$$

Plugging them in:

$$\frac{\partial E_{o1}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial out_{h1}} = 0.138498562 * 0.40 = 0.055399425$$

Following the same process for $\frac{\partial E_{o2}}{\partial out_{b1}}$, we get:

$$\frac{\partial E_{o2}}{\partial out_{h1}} = -0.019049119$$

Therefore:

$$\frac{\partial E_{total}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial out_{h1}} + \frac{\partial E_{o2}}{\partial out_{h1}} = 0.055399425 + -0.019049119 = 0.036350306$$

Now that we have $\frac{\partial E_{total}}{\partial out_{h1}}$, we need to figure out $\frac{\partial out_{h1}}{\partial net_{h1}}$ and then $\frac{\partial net_{h1}}{\partial w}$ for each weight:

$$out_{h1} = \frac{1}{1 + e^{-net_{h1}}}$$

$$\frac{\partial out_{h1}}{\partial net_{h1}} = out_{h1}(1 - out_{h1}) = 0.59326999(1 - 0.59326999) = 0.241300709$$

We calculate the partial derivative of the total net input to h_1 with respect to w_1 the same as we did for the output neuron:

$$net_{h1} = w_1 * i_1 + w_3 * i_2 + b_1 * 1$$

$$\frac{\partial net_{h1}}{\partial w_1} = i_1 = 0.05$$

Putting it all together:

$$\frac{\partial E_{total}}{\partial w_1} = \frac{\partial E_{total}}{\partial out_{h1}} * \frac{\partial out_{h1}}{\partial net_{h1}} * \frac{\partial net_{h1}}{\partial w_1}$$

$$\frac{\partial E_{total}}{\partial w_1} = 0.036350306 * 0.241300709 * 0.05 = 0.000438568$$

You might also see this written as:

$$\frac{\partial E_{total}}{\partial w_1} = \left(\sum_{o} \frac{\partial E_{total}}{\partial out_o} * \frac{\partial out_o}{\partial net_o} * \frac{\partial net_o}{\partial out_{h1}}\right) * \frac{\partial out_{h1}}{\partial net_{h1}} * \frac{\partial net_{h1}}{\partial w_1}$$

$$\frac{\partial E_{total}}{\partial w_1} = \left(\sum_o \delta_o * w_{ho}\right) * out_{h1}(1 - out_{h1}) * i_1$$

$$\frac{\partial E_{total}}{\partial w_1} = \delta_{h1} i_1$$

We can now update w_1 :

$$w_1^+ = w_1 - \eta * \frac{\partial E_{total}}{\partial w_1} = 0.15 - 0.5 * 0.000438568 = 0.149780716$$

Repeating this for w_2 , w_3 , and w_4

$$w_2^+ = 0.19956143$$

$$w_3^+ = 0.24975114$$

$$w_4^+ = 0.29950229$$

Finally, we've updated all of our weights! When we fed forward the 0.05 and 0.1 inputs originally, the error on the network was 0.298371109. After this first round of backpropagation, the total error is now down to 0.291027924. It might not seem like much, but after repeating this process 10,000 times, for example, the error plummets to 0.0000351085. At this point, when we feed forward 0.05 and 0.1, the two outputs neurons generate 0.015912196 (vs 0.01 target) and 0.984065734 (vs 0.99 target).

If you've made it this far and found any errors in any of the above or can think of any ways to make it clearer for future readers, don't hesitate to drop me a note. Thanks!

Related

Experimenting with a Neural Network-based Poker Bot In "Poker Bot"

The State of Emergent Mind In "Emergent Mind"

I'm going to write more often. For real this time. In "Writing"

Posted on March 17, 2015 by Mazur. This entry was posted in Machine Learning and tagged ai, backpropagation, machine learning, neural networks. Bookmark the permalink.

TetriNET Bot Source Code Published

on Github \rightarrow

← Introducing ABTestCalculator.com, an Open Source A/B Test Significance Calculator

576 thoughts on "A Step by Step Backpropagation Example"

← Older Comments

Pavel Koryakin

— December 4, 2017 at 10:25 pm

Great tutorial!

But how can I update biases using back propagation?

Reply

December 7, 2017 at 4:03 am

Same way. Just take the partial with respect to the bias instead of the weight.

Reply

shikha purwar

— December 8, 2017 at 4:08 am

very good

Reply

The best explanaition of backpropagation I've read! Really helped me, thank you!

A quick overview of back propagation | Panthmas

← Older Comments

Leave a Reply

Enter your comment here...

Blog at WordPress.com.