MA2047 Algebra och diskret matematik

Något om kombinatorik

Mikael Hindgren

23 september 2024

Vad är kombinatorik?

Huvudfråga:

På hur många sätt kan en viss operation utföras?

Några exempel:

- Hur många gånger genomlöps en slinga i ett visst datorprogram?
- Hur många kodord är möjliga vid konstruktion av en viss kod?
- På hur många sätt kan man få exakt 10 rätt på en stryktipsrad?
- På hur många sätt kan man dela in ett antal individer i lika stora grupper av en viss storlek?
- r identiska objekt ska läggas i n lådor. På hur många sätt kan det ske?

Dirichlets lådprincip

Sats 1 (Dirichlets lådprincip)

Om n + 1 föremål fördelats på n lådor måste någon låda innehålla minst 2 föremål.

Exempel 1

I en grupp av fler än 31 personer finns det alltid minst två personer som är födda på samma dag i månaden.

Exempel 2

Om man väljer 8 tal bland 1, 2, ..., 13 finns det alltid minst 1 talpar med summa 14. Gruppera talen i 7 lådor: [1, 13], [2, 12], [3, 11], [4, 10], [5, 9], [6, 8], [7]

- "Stoppa ner" de 8 talen i de lådor där de hör hemma Lådprincipen: Någon låda innehåller 2 tal.
- Det kan inte vara i lådan [7] eftersom den bara kan innehålla 1 tal
 Det måste finnas 2 tal i minst 1 av de andra lådorna.
 Eftersom de 2 talen ligger i samma låda har de summan 14.

Dirichlets lådprincip

Exempel 3

Hur många stryktipsrader måste man tippa för att få minst 5 rätt?

Svaret är 3:

- En rad med bara 1:or
- En med bara kryss
- En med bara 2:or

Motivering:

- Antag att vi har tre lådor: [1], [x], [2].
- Placera resultatet från varje spelad match (13 st) i rätt låda.
- Den f\u00f6rdelning som ger minst antal r\u00e4tta resultat i varje l\u00e4da \u00e4r 4,4,5
 Minst en av de tre l\u00e4dorna inneh\u00e4ller 5 resultat och motsvarande tipsrad har d\u00e4 5 r\u00e4tt.

Additions- och multiplikationsprinciperna

Antag att vi har möjlighet att välja mellan m varianter av ett objekt A och n varianter av ett objekt B:

- Additionsprincipen: Antalet sätt att göra ett val mellan m varianter av A och n varianter av B är m + n.
- Multiplikationsprincipen: Antalet sätt att först välja en av m varianter av A och därefter en av n varianter av B är m · n.

Exempel 4

I en butik väljer vi bland 4 olika tröjor och 5 olika byxor:

- Additionsprincipen ger totala antalet valmöjligheter om vi ska köpa ett plagg:
 4 + 5 = 9.
- Om vi ska köpa en tröja och ett par byxor ger multiplikationsprincipen
 4 · 5 = 20 olika alternativ.

Additions- och multiplikationsprinciperna

Exempel 5

En person ska resa från stad A till stad D och att passera städerna B och C.

Multiplikationsprincipen:

möjliga vägar mellan stad A och stad D = $3 \cdot 2 \cdot 4 = 24$

Anm: Vi använder "#" för antal

Additions- och multiplikationsprinciperna

Exempel 6

En kastserie består av att 4 kast görs med en tärning.

- Hur många kastserier är möjliga?
- Hur många innehåller minst en 6:a?
- Bör vi "slå vad om" att minst en 6:a kommer upp?

Lösning:

- $\bigcirc \ \, \text{Multiplikationsprincipen} \Rightarrow 6^4 = 1296 \ \text{m\"{o}jliga kastserier}.$
- # serier med minst 1 6:a
 - = # möjliga serier # serier utan 6:a

$$= 1296 - 5^4 = 1296 - 625 = 671$$

Sannolikheten för att en händelse A inträffar:

$$P(A) = \frac{n}{N} = \frac{\text{Antalet gynnsamma utfall}}{\text{Totala antalet möjliga utfall}} \Rightarrow 0 \le P(A) \le 1$$

Additions- och multiplikationsprinciperna

Exempel 7

 $M = \{1, 2, 3, 4, 5, 6, 7, 8\}.$

$$A = \{1, 3, 4\}, \quad B = \{3, 8\}, \quad \emptyset$$

är 3 delmängder av M. Hur många delmängder av M finns det?

Lösning:

Antag att vi ska bilda delmängden M₁:

- ullet Vi går igenom varje element och bestämmer om det ska ingå i M_1
- För varje element $a \in M$ har vi 2 alternativ: $a \in M_1$ eller $a \notin M_1$
- Multiplikationsprincipen \Rightarrow Totala antalet möjligheter $= 2 \cdot 2 \cdots 2 = 2^8$

Allmänt:

Totala antalet delmängder till en mängd med n element är 2^n .

Additions- och multiplikationsprinciperna

Exempel 8

I den tidig version av BASIC utgjordes en identifierare av en bokstav (A-Z) eller en bokstav följt av en siffra (0-9). Hur många identifierare fanns det?

Lösning:

Additions- och multiplikationsprinciperna ⇒ Totala antalet identifierare

- = # identifierare med en bokstav + # identifierare med 1 bokstav och 1 siffra
- $= 26 + 26 \cdot 10 = 286 \text{ st}$

Vi ska studera fyra huvudfall:

Vi ska välja r element ur en mängd med n element. Processen kan göras:

- med eller utan återläggning
- med eller utan hänsyn till i vilken ordning vi väljer elementen

Urval med hänsyn till ordning - Permutationer *Utan upprepning*

En permutation är en uppställning av ett antal objekt i en viss ordning.

Exempel 9

- En permutation av två element ur $M = \{A, B, C\}$ är t.ex. AB.
- Alla möjliga premutationer av 2 element bland 3 olika i *M* är

- # permutationer av två element bland 3 olika i *M* är enligt multiplikationsprincipen:
 - # sätt att välja 1:a bokstaven \cdot # sätt att välja 2:a bokstaven = $3 \cdot 2 = 6$
- Totala antalet permutationer av 3 element är: 3 · 2 · 1 = 3! = 6

Definition 1 (*n*-fakultet)

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \cdot \cdot 3 \cdot 2 \cdot 1$$
 för $n \ge 1$, $0! = 1$

Urval med hänsyn till ordning - Permutationer Med upprepning

Exempel 10

Hur många "ord" kan bildas mha bokstäverna i ordet "DATORN" om

- Alla bokstäverna skall användas exakt en gång?
- Tre av bokstäverna skall användas exakt en gång?
- Upprepning är tillåtet och alla ord ska innehålla 10 bokstäver?

Lösning:

 $Multiplikationsprincipen \Rightarrow$

- 1:a bokstaven kan väljas på 6 sätt, 2:a på 5 sätt, 3:dje på 4 sätt osv
 ⇒ 6 · 5 · 4 · 3 · 2 · 1 = 6! = 720 ord
- ② $6 \cdot 5 \cdot 4 = \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1} = \frac{6!}{3!} = \frac{6!}{(6-3)!} = 120 \text{ ord}$
- **③** Eftersom upprepning är tillåten kan varje bokstav i ordet väljas bland de 6 bokstäverna \Rightarrow 6 · 6 · · · 6 = 6¹⁰ = 60466176 ord

Urval med hänsyn till ordning

Allmänt:

Antalet sätt att välja ut r objekt bland n olika objekt med hänsyn till ordningen är

- $n \cdot n \cdot n \cdot n = n^r$ upprepning tillåten
- $P(n,r) = \frac{n!}{(n-r)!}$ upprepring ej tillåten

P(n, r) = Antalet permutationer av r element bland n.

Urval med hänsyn till ordning

Exempel 11

Hur många "ord" med 9 bokstäver kan man bilda mha bokstäverna i ordet "ANFALLARE"?

Lösning:

- Om alla bokstäver hade varit olika hade antalet varit 9! st
- 3 st A:

$$A_1\mathsf{NEFL}_1\mathsf{L}_2\mathsf{A}_2\mathsf{A}_3\mathsf{R} = A_2\mathsf{NEFL}_1\mathsf{L}_2\mathsf{A}_1\mathsf{A}_3\mathsf{R} = ...$$

- ⇒ 3! olika varianter av samma ord
- 2 st L:

$$\mathsf{ENA}_1\mathsf{FL}_1\mathsf{A}_2\mathsf{L}_2\mathsf{A}_3\mathsf{R} = \mathsf{ENA}_1\mathsf{FL}_2\mathsf{A}_2\mathsf{L}_1\mathsf{A}_3\mathsf{R}$$

- ⇒ 2! olika varianter av samma ord
- Totalt: $\frac{9!}{3! \cdot 2!} = 30240$ olika ord

Urval med hänsyn till ordning

Exempel 11 (forts.)

Hur många "ord" med 9 bokstäver kan man bilda mha bokstäverna i ordet "ANFALLARE" om

- alla A:n ska stå intill varandra?
- det dessutom ska finnas minst en bokstav mellan två L?

Lösning:

● Betrakta A:na som en bokstav $A = AAA \Rightarrow$ totalt 7 bokstäver: ANFLLRE Eftersom vi har 2 st L får vi totalt

$$\frac{7!}{2!} = 2520$$
 olika ord

Om L:n skulle stått intill varandra hade vi fått 6 bokstäver: \mathcal{A} NF \mathcal{L} RE ($\mathcal{L}=$ LL) \Rightarrow 6! = 720 olika ord

Om samtliga A:n står intill varandra och det finns minst en bokstav mellan två L får vi därför

$$\frac{7!}{2!} - 6! = 1800$$
 olika ord

En kombination av r objekt bland n olika objekt är ett urval där ingen hänsyn tas till ordningsföljden och där urvalet sker utan upprepning.

Exempel 12

Hur många kombinationer av två tal kan vi välja ur $M = \{A, B, C\}$?

Permutationer:

• Kombinationer:

$$AB = BA$$
, $AC = CA$, $BC = CB$ (3 st)

kombinationer

$$= \frac{\text{\# permutationer av 2 ur 3}}{\text{\# permutationer av 2 element}} = \frac{\frac{3!}{(3-2)!}}{2!} = \frac{3!}{(3-2)!2!}$$

Allmänt:

Antalet sätt att välja ut r objekt bland n olika objekt utan hänsyn till ordningen och utan upprepning = antalet kombinationer av r element bland n

$$= \frac{n!}{(n-r)!r!} = \binom{n}{r} \quad \leftarrow \text{Binomialkoefficient ("} n \text{ \"{o}ver } r")$$

Exempel 13

| Mathematica: Binomial [13, 4]

Exempel 14

På en studentfest hälsar alla de 14 deltagarna på varandra en gång. Hur många hälsningar blir det totalt?

Lösning:

Numreras studenterna (1, 2, 3, ..., 14) motsvarar en hälsning ett talpar. Ordningen oväsentlig \Rightarrow Vi söker # kombinationer av 2 element bland 14:

$$\binom{14}{2} = \frac{14!}{(14-2)!2!} = \frac{14 \cdot 13}{2 \cdot 1} = 91$$

Allmänt: Om n personer hälsar på varandra blir totala antalet hälsningar

$$\binom{n}{2} = \frac{n(n-1)}{2} = 1 + 2 + 3 + 4 + \dots + n - 1 \leftarrow \text{Aritmetisk summa}$$

Rekursiv beskrivning: $y_{n+1} = y_n + n$, $y_1 = 0$. Jfr med uppgifterna 1a och 3d på paket 2.

Exempel 15

En student ska besvara 7 av 10 tentafrågor. På hur många sätt kan studenten välja de 7 frågorna?

Lösning:

Ordningen oväsentlig ⇒ Vi söker # kombinationer av 7 element bland 10:

$$\binom{10}{7} = \frac{10!}{(10-7)!7!} = \frac{10!}{3!7!} = \frac{10!}{(10-3)!3!} = \binom{10}{3} = \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1} = 120$$

Anm: Från exemplet inser vi att

$$\binom{n}{r} = \binom{n}{n-r}$$

Exempel 15 (forts)

Tentafrågorna är indelade i 2 delar med 5 frågor i varje. På hur många sätt kan studenten välja ut frågorna om

- Exakt 3 från den 1:a delen ska besvaras?
- 2 Minst 3 från den 1:a delen ska besvaras?

Lösning:

Additions- och multiplikationsprinciperna ⇒

3, 4 eller 5 frågor från del 1 och resten från del 2:

$$\binom{5}{3}\binom{5}{4}+\binom{5}{4}\binom{5}{3}+\binom{5}{5}\binom{5}{2}=110 \text{ olika sätt}$$

Exempel 16

I en urna finns 20 röda och 30 blåa kulor. På hur många sätt kan man välja ut 5 kulor så att

- alla är röda?
- 3 är röda och 2 är blåa?
- minst 3 är röda?

Lösning:

Additions- och multiplikatonsprinciperna ⇒

- \bigcirc $\binom{20}{5} = \frac{20 \cdot 19 \cdot 18 \cdot 17 \cdot 16}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 15504$ olika sätt
- $\binom{20}{3} \cdot \binom{30}{2} = 495900$ olika sätt
- $\textcircled{3} \ \, \binom{20}{3} \cdot \binom{30}{2} + \binom{20}{4} \cdot \binom{30}{1} + \binom{20}{5} \cdot \binom{30}{0} = 656754 \text{ olika sätt}$

Exempel 17 (Dela ut bullar)

12 bullar ska delas ut till de fyra duktiga studenterna A, B, C och D. På hur många sätt kan detta ske?

- Vi lägger bullarna i 4 lådor med x₁ = # bullar i låda 1 (till student A) osv
 ⇒ Vi söker antalet icke-negativa heltalslösningar till x₁ + x₂ + x₃ + x₄ = 12
- Lägg de 12 bullarna på rad och placera ut 4 1 = 3 lådväggar

• # sätt att fördela de 12 + 4 - 1 = 15 symbolerna (12 bullar + 3 väggar)

$$\frac{(12+4-1)!}{12!(4-1)!} = \binom{4+12-1}{12} = \binom{15}{12} = \binom{15}{3} = \frac{15 \cdot 14 \cdot 13}{3 \cdot 2 \cdot 1} = 455$$

Jfr Ex 11: Antal olika ord med 15 bokstäver mha 12 A:n och 3 B:n är $\frac{15!}{12!3!}$

Allmänt fördelningsproblem:

På hur många sätt kan r st identiska kulor placeras ut i n st olika lådor?

Alternativ formulering:

På hur många sätt kan man välja ut r kulor från en samling med n kulor utan hänsyn till ordningen och med återläggning?

- Sätt x_i = antalet gånger kula nr i väljs ⇒
- Svaret är återigen antalet icke-negativa heltalslösningar till

$$x_1 + x_2 + ... + x_n = r$$

Sammanfattning:

Antalet sätt att placera ut r st identiska kulor i n st olika lådor

Antalet icke-negativa heltalslösningar till

$$x_1 + x_2 + ... + x_n = r$$

 Antalet sätt att välja ut r st kulor från n st utan hänsyn till ordningen och med upprepning tillåten

$$=$$
 $\begin{pmatrix} n+r-1\\r \end{pmatrix}$

Urval utan hänsyn till ordning

Med upprepning

Exempel 18 (Dela ut 12 bullar igen)

Varje student ska nu ha minst en bulle.

- Dela ut en var. Då återstår 8 bullar att dela ut dvs r = 8, n = 4
- # sätt att fördela dessa på är

$$\binom{n+r-1}{r} = \binom{4+8-1}{8} = \binom{11}{8} = \binom{11}{3} = \frac{11 \cdot 10 \cdot 9}{3 \cdot 2 \cdot 1} = 165$$

Urval utan hänsyn till ordning

Med upprepning

Exempel 19 (Ytterligare ett bullproblem...)

På hur många sätt kan vi dela ut högst 12 bullar till de duktiga studenterna?

Vi söker alltså antalet icke-negativa heltalslösningar till olikheten

$$x_1 + x_2 + x_3 + x_4 \le 12$$

Inför hjälpvariabeln x_5 och studera ekvationen $x_1 + x_2 + x_3 + x_4 + x_5 = 12$:

- icke-negativa heltalslösningar $\Rightarrow 0 \le x_5 \le 12$
- $x_5 = 0 \Rightarrow x_1 + ... + x_4 = 12$, $x_5 = 1 \Rightarrow x_1 + ... + x_4 = 11$, osv

Problemet är alltså ekvivalent med att hitta antalet icke-negativa heltalslösningar till ekvationen

$$x_1 + x_2 + x_3 + x_4 + x_5 = 12$$

Vi får

$$\binom{n+r-1}{r} = \binom{5+12-1}{12} = \binom{16}{12} = \binom{16}{4} = \frac{16\cdot 15\cdot 14\cdot 13}{4\cdot 3\cdot 2\cdot 1} = 1820 \text{ s\"{a}tt}$$

Urval utan hänsyn till ordning

Exempel 20

Med upprepning

Hur många olika kastserier kan göras med 4 tärningar?

Lösning:

Vi ska göra 4 urval (r = 4) bland 6 element (n = 6) med återläggning och ordningen är oväsentlig.

Sätter vi $x_1 = #1:$ or, $x_2 = #2:$ or osv, söker vi#icke-negativa heltalslösningar till

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 4$$

$$\Rightarrow$$
 # olika kastserier $=$ $\binom{6+4-1}{4}$ $=$ $\binom{9}{4}$ $=$ $\frac{9\cdot 8\cdot 7\cdot 6}{4\cdot 3\cdot 2\cdot 1}$ $=$ 126

Exempel 21

Vilket värde har a då programmet exekverats?

```
a = 0
for i = 1 to 25
for j = 1 to i
    for k = 1 to j
    a = a + 1
```

- a ökar med 1 för varje taltrippel (i, j, k), $1 \le k \le j \le i \le 25$
- # taltripplar = # urval av r = 3 tal bland n = 25 tal, upprepning tillåten, ej hänsyn till ordningen

= # icke-negativa heltalslösningar till $x_1 + x_2 + ... + x_{25} = 3$

$$\Rightarrow a = \binom{n+r-1}{r} = \binom{25+3-1}{3} = \binom{27}{3} = 2925$$

Sammanfattning

De fyra huvudfallen:

Antalet sätt att välja ut r st objekt bland n stycken olika objekt:

Urval	med återläggning	utan återläggning
med hänsyn till ordn	n ^r	$P(n,r)=\frac{n!}{(n-r)!}$
utan hänsyn till ordn	$\binom{n+r-1}{r}$	$\binom{n}{r}$

P(n, r) = # permutationer av r element bland n element

 $\binom{n}{r}$ = # kombinationer av r element bland n element.

Vi vet att

$$(a+b)^{2} = (a+b)(a+b) = a^{2} + 2ab + b^{2}$$

$$(a+b)^{3} = (a+b)(a+b)(a+b) = (a+b)(a^{2} + 2ab + b^{2})$$

$$= a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a+b)^{4} = (a+b)(a+b)(a+b)(a+b) = (a+b)(a^{3} + 3a^{2}b + 3ab^{2} + b^{3})$$

$$= a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$$

$$\vdots$$

$$(a+b)^{100} = ?$$

Finns det ett snabbare sätt att utveckla $(a+b)^{100}$?

$$(a+b)^{100} = \underbrace{(a+b)(a+b)\cdots(a+b)}_{100 \text{ st faktorer}}$$

Multiplicerar vi ihop parenteserna får vi termer av typen a^{100} , $a^{99}b$, $a^{98}b^2$, $a^{97}b^3$, ..., ab^{99} , b^{100} dvs $a^{100-r}b^r$, r = 0, 1, 2, 3, ..., 100

• Vi får en term
$$a^{100} \Rightarrow \text{Koefficienten framför } a^{100} \text{ är } \binom{100}{0}$$

- Vi får termer av typen $a^{99}b$ genom att multiplicera ett b ur en parentes med 99 a:n från de övriga.
 - Parentesen med b kan väljas ut på (100 olika sätt
 - \Rightarrow Koefficienten framför $a^{99}b$ blir $\binom{100}{1}$
- Vi får termer av typen a⁹⁸ b² genom att multiplicera två b:n ur två parenteser med 98 a:n från de övriga.
 - Parenteserna med b:n kan väljas ut på $\binom{100}{2}$ olika sätt
 - \Rightarrow Koefficienten framför $a^{98}b^2$ blir $\binom{100}{2}$
- Vi får termer av typen $a^{100-r}b^r$ genom att multiplicera r st b:n som väljs bland r parenteser med (100-r) st a:n som väljs bland de övriga.
 - De *r* parenteserna kan väljas på $\binom{100}{r}$ olika sätt \Rightarrow Koefficienten framför $a^{100-r}b^r$ blir $\binom{100}{r}$

Sats 2 (Binomialteoremet)

$$(a+b)^{n} = \binom{n}{0}a^{n} + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + \binom{n}{n}b^{n}$$
$$= \sum_{r=0}^{n} \binom{n}{r}a^{n-r}b^{r}$$

Koefficienterna (n) kallas binomialkoefficienter

Några samband mellan binomialkofficienter:

$$\binom{n}{0} = \frac{n!}{(n-0)!0!} = \frac{n!}{n!(n-n)!} = \binom{n}{n} = 1$$

$$\binom{n}{n-r} = \frac{n!}{(n-(n-r))!(n-r)!} = \frac{n!}{r!(n-r)!} = \binom{n}{r}$$

$$\binom{n+1}{r} = \frac{(n+1)!}{(n+1-r)!r!} = \dots = \binom{n}{r} + \binom{n}{r-1}$$
 (Pascals triangel)

HÖGSKOLAN I HALMSTAD

Pascals triangel

$$\binom{n+1}{r} = \binom{n}{r} + \binom{n}{r-1}$$

kan användas vid beräkning av binomialkoefficienter:

Exempel 22

$$(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$$

Exempel 23

Bestäm koefficienten framför x^3 i $\left(x + \frac{3}{x}\right)^7$

Lösning:

- Allmän term: $\binom{7}{r} x^{7-r} (\frac{3}{x})^r = \binom{7}{r} x^{7-2r} 3^r$
- $7-2r=3 \Leftrightarrow r=2$
- \therefore Koefficienten framför x^3 blir: $\binom{7}{2}3^2 = \frac{7 \cdot 6}{2 \cdot 1}3^2 = 21 \cdot 9 = 189$