MOWNiT - Arytmetyka zmiennoprzecinkowa

Michał Bert

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS

IEEE 754

- Standard zapisu liczb zmiennoprzecinkowych
- Definiuje zapis liczb dla pojedynczej precyzji oraz podwójnej precyzji
- Określa także m.in. wartości szczególne (+0, -0, +inf, -inf, NaN) oraz reguły zaokrąglania

IEEE 754 - Zapis liczb

- Liczba składa się z trzech elementów:
 - ▶ Bit znaku pierwszy bit liczby, ustawiany jest na 0 dla liczb dodatnich oraz 1 dla liczb ujemnych
 - ► Cecha ilość bitów przeznaczona na wykładnik podstawy systemu (w naszym wypadku 2)
 - Mantysa liczba ułamkowa
- Ilość bitów przeznaczona na cechę oraz mantysę różni się w zależności od precyzji

IEEE 754 - Exponent Bias

- Bias to przesunięcie wykładnika w celu reprezentacji go jako liczbę nieujemną
- Cecha liczby zapisywana jest jako ciąg bitów bez znaku, co ułatwia porównania
- ightharpoonup W przypadku n bitów na wykładnik bias wynosi $2^{n-1}-1$
- Np. dla typu podwójnej precyzji:
 - ▶ Ilość bitów na cechę 8
 - ▶ Bias = $2^{8-1} 1 = 2^7 1 = 128 1 = 127$
 - Wartość wykładnika w zapisie 8 bitów ∈ <1, 254>
 - ▶ Realna wartość wykładnika ∈ <-126, 127>

IEEE 754 - float

- Standard pojedynczej precyzji
- Cecha 8 bitów
- Mantysa 23 bity

IEEE 754 - double

- Standard podwójnej precyzji
- Cecha 11 bitów
- ► Mantysa 52 bity

IEEE 754 - long double

- Standard poczwórnej precyzji
- Cecha 15 bitów
- Mantysa 112 bitów

IEEE 754 - 0

- +0
 - Wszystkie bity ustawione na 0
 - Otrzymane np. w wyniku dzielenia 1 przez odpowiednio wielką liczbę
- -0
 - ▶ Wszystkie bity ustawione na 0, z wyjątkiem bitu znaku
 - ▶ Otrzymane np. w wyniku dzielenia -1 przez odpowiednio wielką liczbę

IEEE 754 - inf

- +inf
 - ▶ Wszystkie bity wykładnika ustawione na 1, mantysy na 0. Bit znaku ustawiony na 0
 - ▶ Otrzymane np. w wyniku dzielenia 1.0/0.0
- -inf
 - ▶ Wszystkie bity wykładnika ustawione na 1, mantysy na 0. Bit znaku ustawiony na 1
 - ▶ Otrzymane np. w wyniku dzielenia -1.0/0.0

IEEE 754 - NaN

- NaN Not a Number
- Wartość zwracana w przypadku niepoprawnych operacji matematycznych
- Otrzymywana np. w wyniku operacji inf * 0, sqrt(-1), itp.

Pomiary

Wartości do wyznaczenia

- llość bajtów użyta do przechowywania zmiennej danego typu
- Liczba bitów mantysy
- Liczba bitów cechy
- Maszynowy epsilon
- Wartości specjalne
 - +0
 - -0
 - +inf
 - -inf
 - NaN

Obliczanie rozmiaru typu danych

▶ Do sprawdzenia rozmiaru typu danych wykorzystany został operator *sizeof*

```
Sizes in bytes:
float: 4
double: 8
long double: 16
```

Maszynowy epsilon

- Ustalamy początkową wartość ε, a następnie dzielimy ją przez 2 do momentu, aż 1 + ε == 1
- Dzielenie przez 2 można traktować jako przesunięcie bitowe, co jest przydatne w przypadku obliczania ilości bitów dla mantysy

```
float float_epsilon = 1.0f, float_tmp_epsilon = 1.0f;
while (1.0f + float_tmp_epsilon != 1.0f)
{
    float_epsilon = float_tmp_epsilon;
    float_tmp_epsilon /= 2.0f;
}
```

Rozmiar mantysy

- Sposób analogiczny do wyznaczania maszynowego epsilonu, z różnicą sumowania bitów przy każdej operacji
- Wynik porównany ze stałą biblioteczną (podaną w nawiasie)

Rozmiar cechy

▶ Obliczony ze wzoru $log_2(MAX_{EXP} - MIN_{EXP} + 1)$

```
Exponent bits:
float: 8
double: 11
long double: 15
```


Wartości 0

Otrzymywane przez dzielenie 1 oraz -1 przez wielką liczbę

Wartości inf

Otrzymane przez podzielenie wartości 1 oraz -1 przez 0

```
Infinity check:
Positive infinity: inf
Negative infinity: -inf
-inf < FLT_MIN -> 1
```


Wartość NaN

- Otrzymana w wyniku operacji $\sqrt{(-2)}$
- ► NaN!= NaN

Porównania

Porównanie systemów

Kompilator: g++

Systemy: Windows 11 oraz Ubuntu 22.04 LTS

g++	Windows 11			Ubuntu 22.04 LTS			
Typ danych	float	double	long double	float	double	long double	
Rozmiar (B)	4	8	16	4	8	16	
Rozmiar mantysy (b)	24	53	64	24	53	64	
Rozmiar cechy (b)	8	11	15	8	11	15	
Maszynowy epsilon	1.19209e-07	2.22045e-16	1.0842e-19	1.19209e-07	2.22045e-16	1.0842e-19	
Występowanie +0/-0	tak / tak			tak / tak			
Występowanie +inf/-inf	tak / tak			tak / tak			
Wynik sqrt(-2)	nan			-nan			

Porównanie kompilatorów

► Kompilatory: g++ oraz Microsoft Visual C++

System: Windows 11

Windows 11	g++			MSVC		
Typ danych	float	double	long double	float	double	long double
Rozmiar (B)	4	8	16	4	8	8
Rozmiar mantysy (b)	24	53	64	24	53	53
Rozmiar cechy (b)	8	11	15	8	11	11
Maszynowy epsilon	1.19209e-07	2.22045e-16	1.0842e-19	1.19209e-07	2.22045e-16	2.22045e-16
Występowanie +0/-0	tak / tak			tak / tak		
Występowanie +inf/-inf	tak / tak			tak / tak		
Wynik sqrt(-2)	nan			-nan(ind)		

Restrykcyjność MSVC

Dzielenie przez 0

Deklarowanie rozmiaru tablicy jako zmiennej

```
int n = 10;
int arr[n];
```


Porównanie architektur

- Systemy:
 - ▶ Ubuntu 22.04 LTS 64-bit
 - ▶ Ubuntu 14.04 LTS 32-bit

Ubuntu	22.04 LTS 64-bit			14.04 LTS 32-bit			
Typ danych	float	double	long double	float	double	long double	
Rozmiar (B)	4	8	16	4	8	12	
Rozmiar mantysy (b)	24	53	64	24	53	64	
Rozmiar cechy (b)	8	11	15	8	11	15	
Maszynowy epsilon	1.19209e-07	2.22045e-16	1.0842e-19	1.0842e-19	1.0842e-19	1.0842e-19	
Występowanie +0/-0	tak / tak			tak / tak			
Występowanie +inf/-inf	tak / tak			tak / tak			
Wynik sqrt(-2)	-nan			-nan			

Dziękuję za uwagę

Żródła:

- https://www.geeksforgeeks.org/ieee-full-form/
- https://en.wikipedia.org/wiki/IEEE_754
- https://stackoverflow.com/questions/502022/how-to-find-mantissa-lengthon-a-particular-machine
- https://www.codeproject.com/Articles/824516/Concept-of-NaN-IND-INF-and-DEN