Introduction to Markov Chain Monte Carlo

Introduction

- ▶ What is Markov chain Monte Carlo (MCMC)?
 - ightharpoonup Run an ergodic Markov chain with invariant distribution π ,
 - Use sample averages from this Markov chain to compute expectations
- ► Contributed to the success of Bayesian Statistics
 - and is still very popular with practioners in many applications

Introduction

- ► Long and classic literature
 - N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller 53
 - ► Hastings 71, Geman and Geman 84, Gelfand and Smith 90, Tierney 94, ...
- Very popular topic with theorists from Applied Probability
 - very elegant and interesting theory: Markov chains on general state spaces

Outline

- ► Introduction to Markov chain Monte Carlo (MCMC)
 - Basic principle, and Metropolis Hastings algorithm
- Different implementations of MCMC
 - MH with RW, MALA, pCN
 - Gibbs Sampling
- Assessing the performance of MCMC

Setting

Consider an arbitrary distribution on \mathcal{X} with a density π w.r.t to dx, such that

$$\pi(dx) = \frac{\gamma(x)}{Z} dx$$

and is Z unknown.

We want to compute expectations:

$$\pi(\varphi) = \int_{\mathcal{X}} \varphi(x) \pi(dx)$$

here $\varphi: \mathcal{X} \longrightarrow \mathbb{R}^{n_x}$, examples: $\varphi = x^n$, $\varphi = 1_A,...$

Bayesian Inference

- Bayesian inference
 - ▶ Parameter *X* is a random variable and *Y* is some dataset
 - ▶ Bayes rule: posterior ≈ likelihood × prior

$$p(x|y) \propto \underbrace{p(y|x)p(x)}_{\gamma(x)}$$

MCMC simulates an appropriate ergodic Markov chain $(X_k)_{k\geq 0}$ with stationary distribution p(x|y)dx

Introduction to MCMC

- lets say we have access to
 - ▶ a Markov Probability kernel K such that $\pi K = \pi$, i.e.

$$\int \pi(dx)K(x,dy)=\pi(dy)$$

- \blacktriangleright an initial distribution ν (possibly δ_x)
- MCMC sampling procedure:

$$X_0 \sim \nu, X_1 \sim K(X_0, \cdot), X_2 \sim K(X_1, \cdot), \ldots, X_N \sim K(X_{N-1}, \cdot), \ldots$$

Approximation:

$$\widehat{\pi}(\varphi) = \frac{1}{N} \sum_{i=1}^{N} \varphi(X_i)$$

mixing of chain is important as we want algorithm to converge fast

Introduction to MCMC

- ▶ What principles does it make sense to invoke for $\widehat{\pi}(\varphi)$?
- 1. convergence of K^n to π in some sense (e.g. L^2 , total variation norm, Wasserstein distance,...)
- 2. SLLN $\widehat{\pi}(\varphi) \to_{N \to \infty} \pi(\varphi)$ for $\varphi \in L^1(\pi)$
- 3. CLT for $\sqrt{N}(\widehat{\pi}(\varphi) \pi(\varphi)) \to \mathcal{N}(0, \sigma^2), \ \varphi \in L^2(\pi)$,
 - 3.1 CLT variance useful to characterise asymptotic sampling error in $\widehat{\pi}(\varphi)$
 - 3.2 can be used to derive measure of Effective Sample Size

Introduction to MCMC theory

- ► Above clearly relate with theory of Markov Chains in general spaces
 - (...,Revuz 75, Nummelin 84, Kipnis & Varhadhan 86, Meyn & Tweedie 92,)
- ▶ Given K and x_0 , one typically checks
 - $ightharpoonup \pi$ is unique invariant distribution
 - irreducibility, aperiodicity, reversibility
- ▶ Rates of convergence of $\widehat{\pi}(\varphi)$
 - uniform or geometric ergodicity
- Significant MCMC theory relate with tuning of K in various contexts
 - e.g. diffusive limits of Roberts et. al.

Introduction to MCMC

- ▶ On faces the following issues:
- 1. need to design K
 - 1.1 this might involve certain tuning parameters
- 2. we start from initial distribution ν (and not π)
 - 2.1 so it might take a while for chain to reach stationarity
- 3. we would like to get quick convergence to π
 - 3.1 the speed of which can depend on ν or
 - 3.2 at stationarity we can safely treat samples from K as approx. samples of π

An incomplete list of MCMC designs

- Many MCMC approaches:
 - Metropolis-Hastings,
 - Gibbs sampling,
 - Langevin diffusions,
 - independence sampler,
 - Metropolis within Gibbs,
 - reversible jump MCMC
 - hybrid (or Hamiltonian) Monte Carlo,
 - Multiple try Metropolis sampling
 - random scan Gibbs sampler
 - slice sampler
 - simulated tempering
 - simulated annealing
 - pseudo-marginal MCMC (particle MCMC)
 - ABC-MCMC
 - delayed acceptance MCMC
 - pre-conditioned Crank-Nicholson MCMC
 - piecewise deterministic MCMC
 -

Metropolis Hastings (MH)

Sample $X_0 \sim \nu$.

For $n \geq 1$

- 1. Sample a candidate proposal: $Y_n \sim Q(X_{n-1}, \cdot)$
- 2. Compute acceptance ratio

$$\alpha(X_{n-1},Y_n)=1\wedge\frac{\gamma(Y_n)Q(Y_n,X_{n-1})}{\gamma(X_{n-1})Q(X_{n-1},Y_n)}$$

- 3. With probability $\alpha(X_{n-1}, Y_n)$
 - ▶ Set $X_n = Y_n$ (accept proposal)
- 4. otherwise (with probability $1 \alpha(X_{n-1}, Y_n)$)
 - ▶ Set $X_n = X_{n-1}$ (reject sample)

On the construction of MH

- ▶ Design of *Q* is crucial
 - determines at each step how far each exploration goes
 - shapes acceptance ratio
 - hence determines convergence speed and efficiency of MCMC
- ightharpoonup We will assume that Q has a density w.r.t dx
 - but one can write more general formulations as in (Tierney 98)

Understanding MCMC

Resulting Markov transition kernel:

$$K(x, dy) = \alpha(x, y)Q(x, dy) + \delta_x(dy) \int (1 - \alpha(x, y))Q(x, dy)$$

▶ The aim here is to deduce **reversibility** of K with π , i.e.

$$\pi(dx)K(x,dy) = \pi(dy)K(y,dx)$$

Reversibility implies

$$\pi K = \pi$$

► This is done by ensuring

$$\pi(dx)Q(x,dy)\alpha(x,y) = \pi(dy)Q(y,dx)\alpha(y,x)$$

On the acceptance probability

► Taking densities w.r.t dx: let dQ = qdx

$$\alpha(x,y) = \begin{cases} 1 \wedge \frac{\gamma(y)q(y,x)}{\gamma(x)q(x,y)} & \gamma(x)q(x,y) > 0\\ 0 & \gamma(x)q(x,y) = 0 \end{cases}$$

To see reversibility:

$$\pi(dx)Q(x,dy)\alpha(x,y) = \frac{1}{Z}\gamma(x)q(x,y)\alpha(x,y)dxdy$$

$$= \frac{1}{Z}\gamma(x)q(x,y)\left[1 \wedge \frac{\gamma(y)q(y,x)}{\gamma(x)q(x,y)}\right]dxdy$$

$$= \frac{1}{Z}\left[\gamma(x)q(x,y) \wedge \gamma(y)q(y,x)\right]dxdy$$

▶ Similarly $\pi(dy)Q(y,dx)\alpha(y,x)$ gives the same expression.

Metropolis Hastings (MH): implementation

- Steps 3. & 4. can be implemented as:
 - $V_n \sim U[0,1)$
 - if $U_n < \alpha(X_{n-1}, Y_n)$ accept: $X_n = Y_n$
 - ightharpoonup else reject: $X_n = X_{n-1}$
- Often a small (but significant) number of samples (of order 10² to 10³ or more some cases) is not taken into account when computing estimates, so

$$\widehat{\pi}(\varphi) = \frac{1}{N - M + 1} \sum_{i=M}^{N} \varphi(X_i)$$

- This is called burn-in: wait to allow for the chain to reach stationarity.
- ► How big usually should N be?
 - ightharpoonup from 10^4 to 10^6 depending on the problem, dimensionality, etc.

Designing proposals: random walk proposal

Most common choice for Q is random walk (RW)

$$Y_n = X_{n-1} + \varrho Z_n, \quad Z_n \sim h(\cdot)$$

• if h is symmetric q(x, y) = q(y, x) then

$$\alpha(x,y) = 1 \wedge \frac{\gamma(y)}{\gamma(x)}$$

- ▶ Very often a Gaussian random walk is used: $h = \mathcal{N}(0, I)$
- $ightharpoonup \varrho$ is a tuning parameter for step size
 - what values should one aim for $\alpha(X_{n-1}, Y_n)$? for MH around 0.2-0.3.

RW-MCMC in practice

- ► Compute posterior p(x|y) for the following model
 - Prior $x \sim IG(a, b)$, a, b = 1,
 - ▶ Observations $Y_i \sim \mathcal{N}(0, X)$, i = 1, ..., 5.
- Consider a Gaussian RW proposal
 - with $\varrho = 0.01, 0.07, 10, 30, 50$
- Resulting average acceptance ratio: 0.9881, 0.9352, 0.1229, 0.0299, 0.0134

Figure: Trace plots $\varrho = 0.01, 0.07, 10, 30, 50$

Figure: Trace plots $\varrho = 0.01, 50$

Figure: Trace plots $\varrho=10$

Figure: Trace plots $\varrho = 0.01, 0.07, 10, 30, 50$

Figure: Autocorrelation function (ACF) for different lags

Metropolis adjusted Langevin algorithm (MALA)

Let q come directly from a discretised Langevin diffusion

$$Y_n = X_{n-1} + \delta \frac{1}{2} \nabla \log \pi(X_{n-1}) + \sqrt{\delta} Z_n, \quad Z_n \sim \mathcal{N}(0, I)$$

- ▶ Note here *q* is **not** symmetric
- Metropolis accept reject step
 - corrects the discretisation bias
 - lacktriangleright restores reversibility with π

Independence Sampler

- Q does need to be a Markov kernel.
- Independence sampler:
 - ▶ Replace step 1. in MH with $Y_n \sim Q(\cdot)$ and step 2. with

$$\alpha(X_{n-1}, Y_n) = 1 \wedge \frac{\gamma(Y_n)Q(X_{n-1})}{\gamma(X_{n-1})Q(Y_n)}$$

- Similarly to Importance and Rejection sampling, in this case Q needs to be similar to π for this algorithm to accept often
 - if accepted one ends with a fresh new sample
- ▶ Uniformly ergodic when $\gamma(x)/q(x) < \infty$

Auto-regressive proposals

- Let $\frac{d\pi}{d\lambda}(x) = \vartheta(x)$ and assume $\lambda Q = \lambda$
 - ▶ Keep step 1. as in MH with $Y_n \sim Q(X_{n-1}, \cdot)$ and
 - Replace step 2. with

$$\alpha(X_{n-1}, Y_n) = 1 \wedge \frac{\vartheta(Y_n)}{\vartheta(X_{n-1})}$$

- **Q** is invariant to prior λ so α corrects for likelihood only
 - useful for high dimensional x

Auto-regressive proposals

▶ When $\lambda = N(\mu, S)$ this is implemented as

$$Y_n = \mu + \rho (X_{n-1} - \mu) + (1 - \rho^2)^{\frac{1}{2}} Z, \quad Z \sim \mathcal{N}(0, S)$$

with $\rho \in (0,1)$

- recent name: pre conditioned Crank Nicolson sampler
 - very popular in high dimensional inverse problems for PDEs/ODEs
 - $ightharpoonup \lambda$ can be infinitely dimensional Gaussian
 - (Stuart, Law, Cotter et. al.)

The Gibbs Sampler

- ▶ Let $x = (x^1, ..., x^d)$ and $\mathcal{X} = \mathcal{X}_1 \times \mathcal{X}_2 \times \cdots \times \mathcal{X}_d$
- ▶ Define also $x^{-i} = (x^1, ..., x^{i-1}, x^{i+1}, ..., x^d)$ and assume that the Gibbs full conditional distributions

$$\pi_i(x^i|x^{-i}) = \frac{\gamma(x)}{\int \gamma(x)dx^i} = \frac{\pi(x)}{\pi_i(x^{-i})}$$

are available.

► A Gibbs sampler samples iteratively from each conditional distribution

The Gibbs Sampler

Understanding the Gibbs Sampler

- Sampler is only π -invariant and **not** reversible w.r.t. π
- **Only** each **conditional move** is reversible to π

$$\pi(x)q_{i}(x,y) = \pi(x)\pi_{i}(y^{i}|y^{-i})1_{x^{-i}=y^{-i}}$$

$$= \frac{\pi(x)\pi(y)}{\pi_{i}(y^{-i})}1_{x^{-i}=y^{-i}}$$

$$= \frac{\pi(x)\pi(y)}{\pi_{i}(x^{-i})}1_{x^{-i}=y^{-i}}$$

$$= \pi(y)q_{i}(y,x)$$

Understanding the Gibbs Sampler

- ▶ Each move q_i acts on \mathcal{X} , is hence π invariant
 - ightharpoonup so composition of all moves means $K=q_1q_2\cdots q_d$ is also π invariant.
- Every coordinate moves so can have irreducibility
- No tuning parameters, so method can be quite efficient
 - ▶ if a good parameterisation of x in terms of π is chosen so that sampler explores nicely areas where π is high

- ► Compute $\pi = \mathcal{N}(\mu, \Sigma)$ with $\mu = [\mu_1, \mu_2], \quad \Sigma = \begin{bmatrix} 1 & \rho_{12} \\ \rho_{21} & 1 \end{bmatrix}$
- Gibbs conditionals:

$$\pi_1(x_1|x_2) = \mathcal{N}(\mu_1 + \rho_{21}(x_2 - \mu_2), \sqrt{1 - \rho_{21}^2})$$

and

$$\pi_2(x_2|x_1) = \mathcal{N}(\mu_2 + \rho_{12}(x_1 - \mu_1), \sqrt{1 - \rho_{12}^2}),$$

Lets look at example

$$\mu = [0, 0], \quad \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}$$

Lets take 5000 samples (a bit low so in principle sample more)

Figure: Scatter plot and illustration of Gibbs trajectory

Figure: ACFs

Figure: Kernel density estimates of pdfs

The Gibbs Sampler: extensions

- Metropolis Within Gibbs
 - ▶ What happens when cannot sample from π_i directly?
 - use MH accept reject step for each π_i instead
- Random Scan Gibbs
 - can randomly permute order of steps
 - ightharpoonup can pick randomly i and then sample from π_i
- Collapsed Gibbs sampler
 - often one does not need full conditional
 - can marginalises over one or more variables when sampling for some other variable xⁱ
 - lacktriangle care needs to be taken so that all moves are invariant to π

Measuring efficiency using autocorrelations

ightharpoonup Define the integrated auto-correlation time for φ as

$$\tau_{\varphi} = \frac{v(\varphi, K)}{\mathbb{V}ar_{\pi} [\varphi]}$$
$$= 1 + 2 \sum_{i \geq 1} Cor [\varphi(X_0), \varphi(X_i)]$$

with $v(\varphi, K)$ being an asymptotic CLT variance

- Lower τ_{φ} means higher efficiency
 - faster mixing and decorrelation reduces Monte Carlo variance
 - lacktriangleright loosely speaking samples au_{arphi} apart are "closer to independent".
- It makes sense to look at ACF to assess mixing

Simple diagnostics of MCMC

- So far diagnostics we have seen
 - ► trace plot
 - ACF
 - \triangleright ESS = $\frac{N}{\tau_{\omega}}$
 - Acceptance ratio
 - Expected square jumping distance. Use samples to approximate

$$ESJD = E\left[(X_n - X_{n-1})^2 \right]$$

- i.e. just look at first order correlation and linear test functions
- ▶ More elaborate diagnostics exist (e.g. Robert & Casella Ch. 8) but often these test whether MCMC samples can be viewed as samples of π
 - often these require multiple chains

Discussion

- MCMC is a very powerful and simple algorithm
- Some weaknesses
 - it is quite hard to parallelise
 - it can often struggle in multimodal settings, and it might take long time to switch between modes.
 - could use simulated tempering and multiple chains
 - iterative/batch method: If new data arrives need to re-run everything again
 - tricky to estimate normalising constant Z
- This is often motivation for using Sequential Monte Carlo
 - ▶ note MCMC is still extremely valuable
 - can use MCMC within SMC and SMC within MCMC