Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики

Высшая школа прикладной математики

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

по дисциплине «Математическая статистика»

Выполнила студентка гр.3630102/80101

А.А. Тимофеева

Руководитель доцент, к.ф.-м.н.

А.Н.Баженов

ОГЛАВЛЕНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	. 4
2 ТЕОРИЯ	. 4
2.1 Вариационный ряд	. 4
2.2 Выборочные числовые характеристики	. 4
2.2.1 Характеристики положения	. 4
2.2.2 Характеристики рассеяния	. 5
3 РЕАЛИЗАЦИЯ	. 5
4 РЕЗУЛЬТАТЫ	. 6
4.1 Характеристики положения и рассеяния	. 6
5 ОБСУЖДЕНИЕ	. 8
6 ПРИЛОЖЕНИЕ	8

СПИСОК ИЛЛЮСТРАЦИЙ

Таблица 1: Нормальное распределение	6
Таблица 2: Распределение Коши	6
Таблица 3: Распределение Лапласа	7
Таблица 4: Распределение Пуассона	7
Таблица 5: Равномерное распределение	8

1 ПОСТАНОВКА ЗАДАЧИ

Для 5 распределений:

- Нормальное распределение N(x,0,1)
- Распределение Коши С(x, 0, 1)
- Распределение Лапласа $L(x, 0, \frac{1}{\sqrt{2}})$
- Распределение Пуассона P(k, 10)
- Равномерное распределение $U(x, -\sqrt{3}, \sqrt{3})$

Сгенерировать выборки размером 10, 100 и 1000 элементов. Для каждой выборки вычислить следующие статистические характеристики положения данных: \bar{x} , $med\ x$, z_R , z_Q , z_{tr} . Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов:

$$E(z) = \bar{z} \tag{1}$$

Вычислить оценку дисперсии по формуле:

$$D(z) = \overline{z^2} - \bar{z}^2 \tag{2}$$

Представить полученные данные в виде таблиц.

2 ТЕОРИЯ

2.1 Вариационный ряд

Вариационным ряд - последовательность элементов выборки, расположенных в неубывающем порядке. Одинаковые элементы повторяются.

2.2 Выборочные числовые характеристики

2.2.1 Характеристики положения

• Выборочное среднее

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{8}$$

• Выборочная медиана

$$med \ x = \begin{cases} x_{(l+1)} & \text{при } n = 2l + 1\\ \frac{x_{(l)} + x_{(l+1)}}{2} & \text{при } n = 2l \end{cases}$$
 (9)

• Полусумма экстремальных выборочных элементов

$$z_R = \frac{x_{(1)} + x_{(n)}}{2} \tag{10}$$

• Полусумма квартилей

Выборочная квартиль z_p порядка р определяется формулой

$$z_p = \begin{cases} x_{([np]+1)} & \text{при } np \text{ дробном,} \\ x_{(np)} & \text{при } np \text{ целом.} \end{cases}$$
 (11)

Полусумма квартилей

$$z_Q = \frac{z_{1/4} + z_{3/4}}{2} \tag{12}$$

• Усечённое среднее

$$z_{tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_{(i)}, \quad r \approx \frac{n}{4}$$
 (13)

2.2.2 Характеристики рассеяния

Выборочная дисперсия

$$D = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
 (14)

3 РЕАЛИЗАЦИЯ

Лабораторная работа выполнена с помощью встроенных средств языка программирования Python в среде разработки PyCharm. Исходный код лабораторной работы приведён в приложении.

4 РЕЗУЛЬТАТЫ

4.1 Характеристики положения и рассеяния

normal $n = 10$					
	\bar{x}	med x	Z_R	Z_Q	z_{tr}
E(z)	-0.004338	-0.00925	0.008048	-1.52961	-0.008546
D(z)	0.097559	0.128845	0.1927	0.335784	0.108283
normal $n = 100$					
	\bar{x}	med x	z_R	Z_Q	z_{tr}
E(z)	-0.000552	0.000319	0.015145	2.49625	0.002149
D(z)	0.009666	0.015613	0.07951	0.157491	0.012196
normal $n = 1000$					
	\bar{x}	med x	Z_R	z_Q	z_{tr}
E(z)	0.001124	0.001568	-0.004424	-3.24306	0.001248
D(z)	0.001029	0.001623	0.063177	0.132868	0.001231

Таблица 1: Нормальное распределение

cauchy n = 10					
	\bar{x}	med x	z_R	Z_Q	z_{tr}
E(z)	-1.11772	-0.017291	-5.50592	-36.9671	-0.03492
D(z)	1774.66	0.349684	44099.2	135775	0.485216
cauchy $n = 100$					
	\bar{x}	med x	z_R	z_Q	z_{tr}
E(z)	-74.2657	0.007803	-3713.14	-7788.45	0.003806
D(z)	5.66154e+06	0.024063	1.41534e+10	5.6593e+10	0.02453
cauchy $n = 1000$					
	\bar{x}	med x	Z_R	Z_Q	z_{tr}
E(z)	1.8232	0.00152	906.043	-3269.07	0.000953
D(z)	9042.75	0.002409	2.25563e+09	1.75294e+09	0.002461

Таблица 2: Распределение Коши

laplace $n = 10$					
	\bar{x}	med x	Z_R	Z_Q	z_{tr}
E(z)	-0.000385	-0.00926	0.004718	-1.568	-0.001904
D(z)	0.09132	0.066313	0.388683	0.714907	0.067542
laplace $n = 100$					
	\bar{x}	med x	z_R	Z_Q	z_{tr}
E(z)	-0.001006	0.000539	0.001968	-3.15861	0.000639
D(z)	0.009647	0.006202	0.394381	0.723435	0.006316
laplace $n = 1000$					
	\bar{x}	med x	z_R	Z_Q	z_{tr}
E(z)	-3.4e-05	0.000317	0.033139	-4.77729	0.000297
D(z)	0.00094	0.000463	0.413942	0.793404	0.000546

Таблица 3: Распределение Лапласа

pois n = 10					
	\bar{x}	med x	Z_R	z_Q	z_{tr}
E(z)	9.9829	9.8445	10.006	5.441	9.87567
D(z)	1.02012	1.44657	1.93396	2.24252	1.19393
pois $n = 100$					
	\bar{x}	med x	z_R	z_Q	z_{tr}
E(z)	10.0046	9.8495	10.754	3.151	9.859
D(z)	0.092736	0.1971	1.11748	0.972199	0.110149
pois $n = 1000$					
	\bar{x}	med x	z_R	z_Q	z_{tr}
E(z)	10.0017	9.998	11.476	1.638	9.85874
D(z)	0.009068	0.001996	0.717424	0.452956	0.010221

Таблица 4: Распределение Пуассона

unif n = 10					
	\bar{x}	med x	Z_R	z_0	z_{tr}
E(z)	0.002133	0.001893	-0.001417	-1.42513	0.004001
D(z)	0.09879	0.221074	0.045399	0.083785	0.160963
unif n = 100					
	\bar{x}	med x	Z_R	Z_Q	z_{tr}
E(z)	-0.003062	-0.00955	0.000666	-1.69605	-0.006562
D(z)	0.010923	0.03158	0.000643	0.001226	0.021384
unif $n = 1000$					
	\bar{x}	med x	Z_R	Z_Q	z_{tr}
E(z)	-0.000807	0.000543	-0.000122	-1.72867	-0.000666
D(z)	0.00102	0.003004	7e-06	1.2e-05	0.001988

Таблица 5: Равномерное распределение

5 ОБСУЖДЕНИЕ

Исходя из данных, приведенных в таблицах, можно судить о том, что дисперсия характеристик рассеяния для распределения Коши является некой аномалией: значения слишком большие даже при увеличении размера выборки - понятно, что это результат выбросов, которые мы могли наблюдать в результатах предыдущего задания.

6 ПРИЛОЖЕНИЕ

Код программы URL:https://github.com/tmffv/MathStat/blob/master/lab2/lab2.py