TD N°2 MACHINES THERMIQUES

Exercice 1:

Turbine à gaz à dans laquelle un gaz que l'on supposera parfait décrit en circuit considéré fermé les opérations réversibles suivantes :

- Le gaz initialement dans l'état $1(p_1, T_1)$ traverse un compresseur dans lequel il subit une évolution adiabatique jusqu'à l'état $2(p_2, T_2)$,
- Il se trouve alors en contact avec " une " source chaude où il se réchauffe à pression constante p_2 jusqu'à la température p_3 , il est alors dans l'état 3 p_3 , p_3 ,
- Le gaz pénètre ensuite dans la turbine où il se détend de manière adiabatique jusqu'à la pression \mathcal{P}_1 ; en fin de détente il est dans l'état 4 (\mathcal{P}_1 , \mathcal{T}_4),
- Il achève de se refroidir à la pression p_1 , au contact "d'une "source froide jusqu'à la température q_1 où il se trouve dans l'état 1.
- 1) Tracer en diagramme p, V le cycle théorique de cette machine et déterminer en fonction de P_1 , P_2 , T_1 , T_3 les volumes V_1 , V_2 , V_3 , V_4 d'une mole de gaz dans les états 1, 2, 3, 4 ainsi que les températures T_2 et T_4 .
- 2) Préciser les quantités de chaleur Q et q échangées par une mole de gaz avec les sources chaude et froide, ainsi que le travail global W de cette mole au cours du cycle.
- 3) Exprimer uniquement en fonction de $r = p_2 / p_1$ le rendement théorique η de cette machine. Le rapport r étant imposé par les limites de résistance de l'installation, avec lequel des trois gaz suivants obtiendra-t-on le meilleur rendement ? Argon g = 1,667; Air g = 1,40; Dioxyde de Carbone g = 1,31
- 4) Préciser alors pour le gaz ainsi choisi et pour les valeurs r = 4, p_1 = $10^5~N_{\cdot}m^{-2}$, T_1 = 300~K , T_3 = 900K , les valeurs de η , V_1 , V_2 , V_3 , V_4 , T_2 , T_4 et W.
- 5) Comparer $^{\eta}$ * au rendement d'une machine fonctionnant selon le cycle de Carnot entre deux sources aux températures uniformes T_1 et T_3 .

Exercice 2:

Un débit d'air atmosphérique de 20 Kg/s à la température t_1 = 30 °C entre dans le compresseur d'une installation de turbine à gaz fonctionnant suivant le cycle de Brayton. Le taux de compression est de 7 et la température à l'entrée de la turbine est t_3 = 650 °C. Les rendements isentropiques de la turbine et du compresseur sont respectivement égaux à 0,85 et 0,80 'et le rendement de la chambre de combustion

est de 0,80. On considère que $Cp_{air}=Cp_{gaz}=1KJ/Kg.K$, que $\Upsilon_{air}=\Upsilon_{gaz}=1,4$, que le gaz circulant est assimilable à un gaz parfait et que quantité du carburant est négligeable devant la quantité d'air mis en jeu durant un cycle.

Calculer:

- 1- La puissance réelle nécessaire pour la compression de l'air
- 2- La puissance totale réelle produite par la turbine
- 3- La puissance disponible (reçue par la génératrice électrique) si le rendement de l'accouplement est égal à 0,90
- 4- Le rendement thermique théorique du cycle
- 5- Le rendement réel du cycle