Task 4 — Scenario Week & Price

Prediction

Question:

Build a simple forecasting setup. Apply scenario tweaks to the drivers and forecast dayahead prices for a target week. Explain the setup and show the results.

Window and scenarios

- Target week: 2024-06-13 → 2024-06-19 (UTC).
- Base for scenarios: the previous week shifted forward by 7 days.
- Tweaks applied to the base week: 1) Solar +10% (solar *= 1.10).
 - 2) Wind +210 MW from 2024-06-13 onward (flat add to wind).

Note: 210 ≈ 300 MW × 70% utilization.

3) Cold surge at night: add +15% total load across hours 00-06 each night.

Explanatory variables and rationale

The model uses a **small**, **engineered set** to avoid multicollinearity (see Task 1 discussion):

- net_load = total load minus wind/solar.
 Why: proxies the demand that must be met by thermal/expensive units. Reduces overlap with renewables.
- **renewable_share** = renewable generation / total generation. Why: A share is scale-free and less collinear with level variables.
- **conventional_gen** = aggregated thermal output.

 Why: availability/commitment of thermal fleet without splitting into many highly correlated series.
- interconnection_share = net imports / load.

 Why: scarcity relief or stress from cross-border flows, normalized by system size.

Why not "use everything"?

Many raw columns move **together** (load, conventional gen, imports/exports, wind, solar, etc.).

Feeding all of them into least squares makes the **betas unstable** and hard to read; tiny data changes flip signs.

Using **shares**, **net** quantities, and **aggregates** keeps the model **parsimonious** and the hour-by-hour coefficient curves **interpretable**.

Model

A concurrent functional linear model is fitted on hour-of-day curves.

For hour \$t\in{0,\dots,23}\$:

 $P(t)=\lambda(t)+\sum_j(t)\X_j(t)+\nabla(t)$. Fows are **days**; columns are **hours**.

- Predictors are centered by hour.
- Curves are smoothed with a **Fourier basis** (K=9).
- Train on all data except the target week.
- Predict the target week using the **scenario** drivers.

Coefficient shapes (hour-of-day)

Reading: $\alpha(t)$ is the baseline profile. $\beta(t)$ are hour-specific pass-throughs for the engineered drivers. Larger $\beta(t)$ \Rightarrow stronger effect at that hour.

Result — actual vs prediction (daily averages)

What it shows.

- **Blue line:** realized daily averages **before** the scenario week (2024-06-01 \rightarrow 2024-06-12).
- **Red line: predicted** daily averages for 2024-06-13 → 2024-06-19 under the scenario.
- The vertical split marks the move from actuals to predictions.

Prediction table (daily averages)

Values from task4/predictions daily.csv for the scenario week.

Metric	Thu	Fri	Sat	Sun	Mon	Tue	Wed
	13	14	15	16	17	18	19
	Jun						
Predicted day- ahead avg (€/ MWh)	93.25	95.60	54.88	57.96	94.83	68.47	85.20

Files referenced

- Tables: task4/train_set.csv , task4/test_set.csv , task4/predictions_daily.csv , task4/model_basis_weights.csv , task4/combined_actual_and_prediction.csv , task4/actual_daily.csv
- Plots: task4/coefficients_alpha_beta.png
 task4/actual_vs_prediction.png

Notes and limits

- Effects are **concurrent** (no lag/lead). Cross-hour dynamics are not modeled.
- The night +15% load uplift is a **distributed** uplift (00–06). A fuller approach could build **seven** scenario datasets (each night chosen in turn), score each, and **average** the results to reflect timing uncertainty.
- A **single** model is shown here for clarity. For production, an **ensemble** with weights tuned by cross-validation would be more robust.