CS 150 (Closed-book) Midterm Test I

May 3, Friday, 2019 Total: 50 points

QUESTION 1. [10 pts] Design a DFA to accept the following language:

 $L = \{x \mid x \in \{0,1\}^*, \text{ the number of 0's in } x \text{ is divisible by 4 and the number of 1's in } x$ is divisible by 2}

Answer:

	0	1
$* \rightarrow q_{0,0}$	$q_{1,0}$	$q_{0,1}$
$q_{0,1}$	$q_{1,1}$	$q_{0,0}$
$q_{1,0}$	$q_{2,0}$	$q_{1,1}$
$q_{1,1}$	$q_{2,1}$	$q_{1,0}$
$q_{2,0}$	$q_{3,0}$	$q_{2,1}$
$q_{2,1}$	$q_{3,1}$	$q_{2,0}$
$q_{3,0}$	$q_{0,0}$	$q_{3,1}$
$q_{3,1}$	$q_{0,1}$	$q_{3,0}$

Give partial credits for DFAs that handles the number of 0's or the number of 1's correctly.

QUESTION 2. [10 pts] Design an ϵ -NFA to accept the following language:

 $L = \{x \mid x \in \{0,1\}^*, \ x \text{ begins or ends with } 101\}$

Answer:

	ϵ	0	1
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$\{q_1,q_2\}$	Ø	Ø
q_1	Ø	Ø	$\{q_3\}$
q_3	Ø	$\{q_5\}$	Ø
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Ø	Ø	$\{q_7\}$
$*q_{7}$	Ø	$\{q_7\}$	$\{q_7\}$
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Ø	$\{q_2\}$	$\{q_2\}$
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Ø	Ø	$\{q_4\}$
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Ø	$\{q_6\}$	Ø
$\overline{q_6}$	Ø	Ø	$\{q_8\}$
$*q_{8}$	Ø	Ø	Ø

Note that the answer is not unique.

 ${\bf QUESTION}$ 3. [10 pts] Convert the following NFA to a DFA:

	0	1
$\rightarrow q_0$	$\{q_1\}$	$\{q_0,q_1\}$
q_1	$\{q_1,q_2\}$	$\{q_2\}$
$*q_2$	$\{q_1\}$	Ø

Answer:

	0	1
$\rightarrow \{q_0\}$	$\{q_1\}$	$\{q_0,q_1\}$
$\{q_1\}$	$\{q_1,q_2\}$	$\{q_2\}$
$*{q_2}$	$\{q_1\}$	Ø
$\overline{\{q_0,q_1\}}$	$\{q_1,q_2\}$	$\{q_0, q_1, q_2\}$
$*\{q_1, q_2\}$	$\{q_1,q_2\}$	$\{q_2\}$
$*\{q_0, q_1, q_2\}$	$\{q_1,q_2\}$	$\{q_0,q_1,q_2\}$
Ø	Ø	Ø

It's okay to includue inaccessible states (i.e., $\{q_0,q_2\}$). Give partial credits for correct steps.

QUESTION 4. [10 pts] Give a regular expression for the following language:

$$L = \{x \mid x \in \{0,1\}^*, x \text{ has at most two 0's between consecutive 1's} \}$$

For example, the language constains strings 000,01000,00100101101000, but not strings like 010001 or 10001011.

Answer:

$$0^* + 0^*1((\epsilon + 0 + 00)1)^*0^*$$

The regex is not unique. Give partial credits for regex's containing some correct components.

QUESTION 5. [10 pts] Prove or disprove the following identities. Note that, you can disprove an identity by means of a counterexample.

1.
$$(0^*1^*)^* = (0^*1)^* + (01^*)^*$$

2.
$$1(01)^* = (10)^*1$$

Answer:

- 1. False (2 pts). E.g., 10 (2 pts).
- 2. True (2 pts). Consider any string $w \in L(1(01)^*)$. Clearly, $w = 1(01)^n$ for some integer $n \geq 0$. But, such a string can also be rewritten as $w = (10)^n 1$. Hence, $w \in L((10)^*1)$ and $L(1(01)^*) \subseteq L((10)^*1)$. Similarly, we can prove that $L((10)^*1) \subseteq L(1(01)^*)$. (4 pts)