Continuous optimization PGE305

Laurent Pfeiffer

Inria and CentraleSupélec, Université Paris-Saclay

Ensta-Paris Institut Polytechnique de Paris November 2021

Edge e	Initial node $d(e)$	Terminal node $s(e)$	Resistance R_e
1	1	2	1
2	1	4	1
3	2	4	1
4	1	3	1
5	3	4	1

Definition: $\sigma(k) = \{e \mid s(e) = k\}, \ \mu(k) = \{e \mid d(e) = k\}.$

Constraints: $J_k + \sum_{e \in \sigma(k)} I_e = \sum_{e \in \mu(k)} I_e$, for all k.

 \rightarrow Kirchhoff's law. Explicite constraints:

$\sigma(1) = \emptyset$	$\mu(1) = \{1, 2, 4\}$	J_1	$= I_1 + I_2 + I_4$
$\sigma(2) = \{1\}$	$\mu(2) = \{3\}$	$J_2 + I_1$	$=I_3$
$\sigma(3) = \{4\}$	$\mu(3) = \{5\}$	$J_3 + I_4$	$=I_5$
$\sigma(4) = \{2, 3, 5\}$	μ (4) = \emptyset	$J_4 + I_2 + I_3 + I_5$	= 0

Lagrangian:

$$L(I, V) = \frac{1}{2}(R_1I_1^2 + ... + R_5I_5^2) + V_1(I_1 + I_2 + I_4 - J_1) + V_2(I_3 - I_1 - J_2) + V_3(I_5 - I_4 - J_3) + V_4(-I_2 - I_3 - I_5 - J_4).$$

KKT conditions:

$$R_1I_1 + V_1 - V_2 = 0$$

$$R_2I_2 + V_1 - V_4 = 0$$

$$R_3I_3 + V_2 - V_4 = 0$$

$$R_4I_4 + V_1 - V_3 = 0$$

$$R_5I_5 + V_3 - V_4 = 0$$

Interpretation: Ohm's law.

General case. Lagrangian:

$$L(I, V) = \frac{1}{2} \sum_{e=1}^{M} R_e I_e^2 - \sum_{k=1}^{N} \left(\sum_{e \in \mu(k)} I_e - \sum_{e \in \sigma(k)} I_e - J_k \right) V_k.$$

We have:

$$\sum_{k=1}^{N} \sum_{e \in \mu(k)} I_e V_k = \sum_{e=1}^{M} I_e V_{s(e)}$$
$$\sum_{k=1}^{N} \sum_{e \in \sigma(k)} I_e V_k = \sum_{e=1}^{M} I_e V_{d(e)}.$$

Lagrangian:
$$L(I, V) = \sum_{e=1}^{M} \left(\frac{1}{2}R_eI_e^2 - I_e(V_{s(e)} - Vd(e))\right) + \text{ Cte.}$$

KKT conditions: $R_e I_e = V_{s(e)} - V_{d(e)}$.

Similar principle for gas networks.

- \blacksquare I_e : massic flow rate in pipe e
- V_k : pression at node k
- \blacksquare R_e : coefficient characteristic from pipe e.

Kirchhoff's law + Darcy-Weisbach's law:

$$V_{s(e)} - V_{d(e)} = egin{cases} R_e I_e^2 & ext{if } V_e \geq 0 \ -R_e I_e^2 & ext{otherwise.} \end{cases}$$

Corresponding potential problem:

inf
$$\sum_{e=1}^{M} \frac{1}{3} R_e |I_e|^3$$
 subject to: Kirchhoff's law.