

Chip Nomenclature for 7400 Series IC

74 industrial

64 rare - extended temperature range

54 military

Next 2 letters describe solvan technology used LS Bipolar transisters HC CMOS

The numbers of the end specify function

74 xx 00 Quad 2-input NAND

74xx 74 Dual D flip flop

74xx 164 8-bit parallel out shift rag

74xx 166 8-bit parallel in serial out

MC74HC73A

Dual J-K Flip-Flop with Reset

High-Performance Silicon-Gate CMOS

The MC74HC73A is identical in pinout to the LS73. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

Each flip-flop is negative-edge clocked and has an active-low asynchronous reset.

The MC74HC73A is identical in function to the HC107, but has a different pinout.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the JEDEC Standard No. 7.0 A Requirements
- Chip Complexity: 92 FETs or 23 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These are Pb-Free Devices

LOGIC DIAGRAM

PIN 4 = V_{CC} PIN 11 = GND

FUNCTION TABLE

	Inputs	5		Out	puts
Reset	Clock	J	K	Q	Q
L	X	Х	Х	L	Н
Н	~	L	L	No Cl	nange
H	7	L	Н	L	Н
Н	~	H	L	Н	L
Н	1	H	Н	Tog	gle
Н	L	X	X		nange
Н	Н	X	X		nange
Н	_	X	X		nange

active los reset

PIN ASSIGNMENT

14 J J1

13 QT

12 D Q1

11 GND

10 K2

9 Q2

8 Q2

CLOCK 1 [1 0

RESET 1 [2

K1 [

Vcc [

CLOCK 2 [

RESET 2 [6

J2 🛛

ON Semiconductor®

www.onsemi.com

MARKING **DIAGRAMS**

SOIC-14 D SUFFIX CASE 751A

HC73AG **AWLYWW** 100000

TSSOP-14 DT SUFFIX CASE 948G

= Assembly Location

WL, L = Wafer Lot YY, Y

= Year

WW, W = Work Week

G or = = Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

74HC74

PIN ASSIGNMENT

FUNCTION TABLE

LOGIC DIAGRAM

*Both outputs will remain high as long as Set and Reset are low, but the output states are unpredictable if Set and Reset go high simultaneously.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	- 0.5 to + 7.0	V
Vin	DC Input Voltage (Referenced to GND)	- 0.5 to V _{CC} + 0.5	٧
Vout	DC Output Voltage (Referenced to GND)	- 0.5 to V _{CC} + 0.5	٧
lin	DC Input Current, per Pin	±20	mA
lout	DC Output Current, per Pin	±25	mA
Icc	DC Supply Current, V _{CC} and GND Pins	±50	mA
PD	Power Dissipation in Still Air, SOIC Package† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds (SOIC or TSSOP Package)	260 300	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

SOIC Package: - 7 mW/°C from 65° to 125°C † Derating

TSSOP Package: - 6.1 mW/°C from 65° to 125°C
For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
Vcc	DC Supply Voltage (Referenced to GND)		2.0	6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)		0	Vcc	V
TA	Operating Temperature, All Package Types		- 55	+ 125	°C
t _r , t _f	Input Rise and Fall Time (Figures 1, 2, 3)	V _{CC} = 2.0 V V _{CC} = 3.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	0 0 0	1000 600 500 400	ns

MC74HC73A

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	DC Supply Voltage (Referenced to GND)	- 0.5 to + 7.0	٧
V _{in}	DC Input Voltage (Referenced to GND)	-1.5 to V _{CC} + 1.5	٧
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	٧
lin	DC Input Current, per Pin	± 20	mA
lout	DC Output Current, per Pin	± 25	mA
lcc	DC Supply Current, V _{CC} and GND Pins	± 50	mA
PD	Power Dissipation in Still Air SOIC Package†	500	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds (PSOIC Package)	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating — SOIC Package: -7 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
Vcc	DC Supply Voltage (Referenced to	GND)	2.0	6.0	٧
V _{in} , V _{out}	DC Input Voltage, Output Voltage	(Referenced to GND)	0	Vcc	٧
TA	Operating Temperature, All Package Types		- 55	+ 125	°C
t _n t _f	Input Rise and Fall Time (Figure 1)	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	0 0	1000 500 400	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Guaranteed Limit		mit	
Symbol	Parameter	Test Conditions	V _{CC} V	- 55 to 25°C	≤ 85°C	≤ 125°C	Unit
VIH	Minimum High-Level Input Voltage	$V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	٧
V _{IL}	Maximum Low-Level Input Voltage	$V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	0.3 0.9 1.2	0.3 0.9 1.2	0.3 0.9 1.2	V
VoH	Minimum High-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	٧
		$V_{in} = V_{IH} \text{ or } V_{IL} $ $ I_{out} \le 4.0 \text{ mA}$ $ I_{out} \le 5.2 \text{ mA}$	4.5 6.0	3.98 5.48	3,84 5,34	3.70 5.20	
VoL	Maximum Low-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \ \mu\text{A}$	2,0 4,5 6,0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$V_{in} = V_{IH} \text{ or } V_{IL} $ $ I_{out} \le 4.0 \text{ mA}$ $ I_{out} \le 5.2 \text{ mA}$	4.5 6.0	0.26 0.26	0.33 0.33	0.40 0.40	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	± 0.1	±1.0	±1.0	μΑ
Icc	Maximum Quiescent Supply Current (per Package)	V _{in} = V _{CC} or GND I _{out} = 0 μA	6.0	4	40	80	μА

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

MC74HC73A

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$)

	Parameter		Guaranteed Limit			
Symbol		V _{CC}	− 55 to 25°C	≤ 85°C	≤ 125°C	Unit
f _{max}	Maximum Clock Frequency (50% Duty Cycle) (Figures 1 and 4)	2.0 4.5 6.0	6.0 30 35	4.8 24 28	4.0 20 24	MHz
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Clock to Q or Q (Figures 1 and 4)	2.0 4.5 6.0	125 25 21	155 31 26	190 38 32	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Reset to Q or Q (Figures 2 and 4)	2,0 4,5 6,0	155 31 26	195 39 33	235 47 40	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 1 and 4)	2.0 4.5 6.0	75 15 13	95 19 16	110 22 19	ns
Cin	Maximum Input Capacitance	_	10	10	10	pF

		Typical @ 25°C, V _{CC} = 5.0 V	
CPD	Power Dissipation Capacitance (Per Flip-Flop)*	35	DF

^{*}Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

TIMING REQUIREMENTS (Input $t_r = t_f = 6 \text{ ns}$)

			Gu	aranteed Li	imit	Unit
Symbol	Parameter	V _{CC}	– 55 to 25°C	≤ 85°C	≤ 125°C	
t _{su}	Minimum Setup Time, J or K to Clock	2.0	100	125	150	ns
	(Figure 3)	4.5	20	25	30	
		6,0	17	21	26	
th	Minimum Hold Time, Clock to J or K	2.0	3	3	3	ns
	(Figure 3)	4.5	3	3	3	
		6.0	3	3	3	
trec	Minimum Recovery Time, Reset Inactive to Clock	2.0	100	125	150	ns
	(Figure 2)	4.5	20	25	30	
	ii.	6.0	17	21	26	
t _w	Minimum Pulse Width, Clock	2.0	80	100	120	ns
	(Figure 1)	4.5	16	20	24	
		6.0	14	17	20	
tw	Minimum Pulse Width, Reset	2,0	80	100	120	ns
	(Figure 2)	4.5	16	20	24	
		6.0	14	17	20	
t _r , t _f	Maximum Input Rise and Fall Times	2.0	1000	1000	1000	ns
	(Figure 1)	4.5	500	500	500	
		6.0	400	400	400	

In addition to the three general routing outputs, LEs in an LAB have register chain outputs, which allows registers in the same LAB to cascade together. The register chain output allows the LUTs to be used for combinational functions and the registers to be used for an unrelated shift register implementation. These resources speed up connections between LABs while saving local interconnect resources.

LE Operating Modes

Cyclone IV LEs operate in the following modes:

- Normal mode
- Arithmetic mode

The Quartus® II software automatically chooses the appropriate mode for common functions, such as counters, adders, subtractors, and arithmetic functions, in conjunction with parameterized functions such as the library of parameterized modules (LPM) functions. You can also create special-purpose functions that specify which LE operating mode to use for optimal performance, if required.

Normal Mode

Normal mode is suitable for general logic applications and combinational functions. In normal mode, four data inputs from the LAB local interconnect are inputs to a four-input LUT (Figure 2–2). The Quartus II Compiler automatically selects the carry-in (cin) or the data3 signal as one of the inputs to the LUT. LEs in normal mode support packed registers and register feedback.

Figure 2-2 shows LEs in normal mode.

Figure 2-2. Cyclone IV Device LEs in Normal Mode

