Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-223. Вариант 10

1. Пусть
$$z = \frac{1}{2} + \frac{\sqrt{3}i}{2}$$
. Вычислить значение $\sqrt[7]{z^3}$, для которого число $\frac{\sqrt[7]{z^3}}{\frac{3\sqrt{3}}{2} + \frac{3i}{2}}$ имеет аргумент $\frac{23\pi}{42}$.

2. Решить систему уравнений:

$$\begin{cases} x(-3+14i) + y(-15+2i) = 8-30i \\ x(13+12i) + y(3-14i) = -38-308i \end{cases}$$

- 3. Найти корни многочлена $-5x^6 + 20x^5 + 40x^4 960x^3 + 640x^2 + 5120x 20480$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = 2 + 2i$, $x_2 = 4 + 4i$, $x_3 = -4$.
- 4. Даны 3 комплексных числа: 3+17i, -26+2i, 10. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -3$, $z_2 = \frac{3}{2} \frac{3\sqrt{3}i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+3i| < 2\\ |arg(z+5)| < \frac{\pi}{6} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (1, 0, 1), b = (-1, -2, -4), c = (5, -6, -1). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(10,9,6) и плоскость P:28x+10y+2z+62=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-11, 6, 10), $M_1(-1, 60, -8)$, $M_2(11, 0, -8)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -19x - 17y + 6z - 210 = 0 \\ -11x + 3y - 11z - 102 = 0 \end{cases} \qquad L_2: \begin{cases} -8x - 20y + 17z + 3657 = 0 \\ -13x + 14y - 16z - 2450 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.