SAMSUNG Al Center

- Moscow

Cross-Pollinated Deep Ensembles

 $p(\mathbf{B}|\mathbf{A})$ yesgroup.ru

Alexander Lyzhov*13, Daria Voronkova*2, Dmitry Vetrov²¹
*Equal contribution 1 Samsung AI Center Moscow 2 Samsung-HSE Laboratory, HSE university 3 Center on Long-Term Risk

How to estimate uncertainty more efficiently? Form an ensemble by combining blocks of multiple networks

BUCKETS

I. Independent pre-training

Train a Deep Ensemble [1]. Split networks into blocks.

BUCKETS

II. Joint finetuning

On each step, finetune a random combination of blocks (path). Learn 3x3 conv interfaces between each consecutive pair of blocks. Also use **separate batchnorms** for each consecutive pair of blocks. Use low learning rates to preserve the diversity from stage I.

TWORK

3

III. Ensemble pruning

Start with an empty ensemble. Greedily add paths by minimizing NLL of the ensemble on validation data after calibration with temperature scaling [2].

BUCKETS

CPDE (Cross-Pollinated Deep Ensembles) vs. DE (Deep Ensembles) on image classification (CIFAR-100 / WideResNet28x10):

References

CPDE enables better generalization and uncertainty estimation than DE with equal test-time compute, and is much cheaper to train and store given large compute budgets. In the future we plan to compare and combine CPDE with MIMO [3]

Training time Test time Memory CPDE N/3...NDE

Requirements in budgets for an ensemble of size N (1 budget = resources required by 1 network)

	Accuracy	NLL post-calibration
CPDE	84.1	0.571
w/o separate batchnorms	83.6	0.616
w/o interfaces	83.8	0.626
w/o separate batchnorms, w/o interfaces	83.7	0.623
with 2 (instead of 4) buckets	83.9	0.611
with random (instead of greedy) path selection	80.8	0.717
with joint (instead of independent) pre-training	70.3	1.094

[11] Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017), Simple and scalable predictive uncertainty estimation using deep ensembles, NeurlPS'17.

[2] Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017). On calibration of modern neural networks. arXiv preprint arXiv:1706.04599.

Acknowledgements Dmitry Vetrov was supported by the Russian Science Foundation grant no. 19-71-30020. CPDE ablations (10 ensemble members trained on 45K objects)

[3] Havasi, M., Jenatton, R., Fort, S., Liu, J. Z., Snoek, J., Lakshminarayanan, B., ... & Tran, D. (2020). Training independent subnetworks for robust prediction. arXiv preprint arXiv:2010.06610.