Warm Up: Objects in Free-Fall, Projectiles

Prof. Jordan C. Hanson

September 26, 2022

1 Memory

- 1. $y(t) = -\frac{1}{2}gt^2 + v_{i,y}t + y_i$... Vertical displacement.
- 2. $v_y(t) = -gt + v_{i,y}$... Vertical velocity.
- 3. $R = (v_i^2 \sin(2\theta))/g$... The range formula.

2 Objects in Free-Fall, Projectiles

1. Use the *second* equation in the Memory Bank to show that the total time spent in the air of a projectile launched from the origin is

$$T = \frac{2v_i \sin \theta}{g} \tag{1}$$

2. Suppose we have a device that, when launching a marble straight upwards ($\theta = 90$ degrees) from the origin, it produces a measured flight time of T. (a) What is v_i in terms of the other variables? (b) Suppose that we now aim that device at $\theta = 45$ degrees. Derive an algebraic expression for where it will land, that is, the range R. (c) If T = 2 seconds, and g = 9.81 m s⁻², what is R?

¹Hint: $T = 2v_i/g$, if we've done the derivation correctly. Use this to find the **general** result for the range, then plug in numbers.