Frederik Rieß Pit-Aurel Ehlers Jascha Schmidt Felix Willrich

[Intelligente Parkplatzerkennung mit künstlichen neuronalen Netzwerken]

Product Backlog Sprint 3

1.	Ziel Sprint 3	. 2
	Arbeitspakete	
	. Tests	
2.2	. Anhänge	4

Versionen:

Rev.	Datum	Autor	Bemerkungen	Status
0.1	15.05.2019 Felix Willrich 1. Entwurf + Eintragen aller		Abgeschlossen	
			Informationen	
1.0	16.05.2019	Felix Willrich	Finale Version	Abgeschlossen

1. Ziel Sprint 3

Am 14.05.2019 wurde ein weiteres Treffen mit dem Kunden vereinbart. Dies sollte dazu dienen den Sprint 2 abzuschließen und den dritten Sprint zu besprechen.

Während der Besprechung von Sprint 2 und 3 wurden die Komplikationen von Sprint 2 beschrieben und dass die Tests nicht zufriedenstellend erfüllt worden sind. Gleichzeitig wurden Mängel in dem Standardnetz festgestellt, die während der Besprechung korrigiert worden sind. Aus diesem Grund werden alle Tests vom vorherigen Sprint in den dritten Sprint mit übernommen. Es gelten die gleichen Ziele wie in Sprint 2. Es sollen möglichst viele Testdaten akquiriert werden. Diese Testdaten sollen zum Ende des Sprints alle dem Kunden zur Verfügung gestellt werden. Erkenntnisse über das Netz sind wichtiger als ein vollends perfektes System.

2. Arbeitspakete

Die Arbeitspakete bestehen nur aus Tests, da die Hilfsarbeiten in diesem Sprint soweit abgeschlossen sein sollten.

2.1. Tests

Bei den Tests kommen alle Aufgaben zu tragen, die sich damit beschäftigen die Parameter bzw. Einflüsse des Programms zu verändern. Ziel dabei ist es, herauszufinden welche Einstellung das bestmöglichste Ergebnis ergibt. Die Arbeitspakete in diesem Bereich sind gröber formuliert, da es während der Arbeit zu verschiedenen Tests kommen kann, die im Nachhinein alle dokumentiert werden.

Arbeitspaket	(Haupt-) Verantwortli- cher	Beschreibung	Benötigte Ressourcen	Abhängigkeiten
Batch- Normalization	Jascha Schmidt	Die Auswirkungen der Batch Normalization auf unsere Ergebnisse soll überprüft und dokumentiert werden.	Jupyter Notebook mit Frameworks	keine
Hyperparameter optimieren	Frederik Rieß	Die Layergrößen des CNNs sollten auf die Umgebung angepasst werden. Eine Libary kann diese Arbeit unterstüzten.	Jupyter Notebook mit Frameworks	https://github.co m/hyperopt/hype ropt
Verschiedene Inputgrößen testen	Pit Ehlers	Die Bilder können in verschiedenen Größen eingelesen werden. Dies gilt zu testen, welches die optimalste Art ist.	Jupyter Notebook mit Frameworks	Skalierte Bilder
Augmentation	Felix Willrich	Die Bilder können verändert werden und dann zum Anlernen benutzt werden. Es soll geschaut werden, ob dies einen Vorteil bringt.	Jupyter Notebook mit Frameworks	https://github.co m/aleju/imgaug
Regularization	Jascha Schmidt	Die Bilder können Overfitting erzeugen im Netz. Dies führt zu einem zu sensiblen Netz. Dies sollte verhindert werden,	Jupyter Notebook mit Frameworks	keine
Weitere Tests	Felix Willrich, Frederik Rieß, Pit Ehlers, Jascha Schmidt	Während des Arbeitens werden weitere Tests möglich sein, bzw. überhaupt erst auffallen.	Jupyter Notebook mit Frameworks	Unterschiedlich

2.2. Anhänge
1. Gantt Diagramm

