Trazado Asintótico de Diagramas de Bode

Análisis Dinámico de Sistemas 2º curso Ingeniería de Telecomunicación

Anatomía de un Diagrama de Bode

Factorización de una función de transferencia

 La idea esencial es factorizar la G(s) en fdt sencillas cuyos diagramas de Bode asintóticos conocemos.

- Al ser logarítmico, el Bode del producto de fdt's es la suma de los Bodes de cada fdt por separado
- Una vez factorizada, el diagrama de Bode total es la suma de los diagramas de Bode sencillos

Términos constantes: G(s) = K

- Las curvas de magnitud son constantes
- La fase es siempre 0° (o bien -180° si la constante es negativa)

Un polo en el origen: G(s) = 1/s

Varios polos en el origen: $G(s) = 1/s^N$ Pasan todas por el punto Diagrama de Bode (w=1 rad/s, A = 0 dB)100 $1/s^2$ 50 Amplitud (dB) -50 -100 Varios polos en el origen $1/s^2$ -40 dB/dec -90 -180 -270 -360 -180° 10⁻² 10° 10⁻¹ 10¹ 10² ω (rads/seg) $20\log_{10}\left|\frac{1}{(j\omega)^2}\right| = -20\log_{10}\left|\omega^2\right| = -20 \times 2\log_{10}\left|\omega\right| = -40\log_{10}\left|\omega\right|$ $\rightarrow \arg \left\{ \frac{1}{(i\omega)^2} \right\} = -180^{\circ}$

Varios ceros en el origen

$$20\log_{10} \left| (j\omega)^N \right| = 20N \log_{10} |\omega|$$
$$\arg \left\{ (j\omega)^N \right\} = +90N^{\circ}$$

Polo real

$$\frac{p_i}{s + p_i}$$

Frecuencias bajas ($\omega \approx 0$):

$$20\log_{10}\left|\frac{p_i}{j\omega+p_i}\right| \approx 20\log_{10}\left|\frac{p_i}{p_i}\right| = 0$$

$$\arg\left\{\frac{p_i}{j\omega+p_i}\right\} \approx \arg\left\{\frac{p_i}{p_i}\right\} = 0$$

Frecuencias medias ($\omega \approx p_i$):

$$20 \log_{10} \left| \frac{p_i}{jp_i + p_i} \right| \approx 20 \log_{10} \left| \frac{1}{j+1} \right| = -3 \text{dB}$$
 $\arg \left\{ \frac{p_i}{j\omega + p_i} \right\} \approx \arg \left\{ \frac{1}{j+1} \right\} = -45^{\circ}$ Pendiente -20 dB/dec

Frecuencias altas ($\omega \approx \infty$):

$$20\log_{10}\left|\frac{p_i}{j\omega+p_i}\right| \approx 20\log_{10}\left|\frac{p_i}{j\omega}\right| = 20\log_{10}|p_i| - 20\log_{10}|j\omega|$$

$$\arg\left\{\frac{p_i}{j\omega+p_i}\right\} \approx \arg\left\{\frac{1}{j\omega}\right\} = -90^{\circ}$$

Cero real

$$\frac{s+c_i}{c_i}$$

Frecuencias bajas ($\omega \approx 0$):

$$20\log_{10}\left|\frac{j\omega+c_i}{c_i}\right| \approx 20\log_{10}\left|\frac{c_i}{c_i}\right| = 0$$

$$\arg\left\{\frac{j\omega+c_i}{c_i}\right\} \approx \arg\left\{\frac{c_i}{c_i}\right\} = 0$$

Frecuencias medias ($\omega \approx c_i$):

$$20\log_{10} \left| \frac{jc_i + c_i}{c_i} \right| \approx 20\log_{10} \left| \frac{j+1}{1} \right| = +3dB$$

$$\arg \left\{ \frac{j\omega + c_i}{c_i} \right\} \approx \arg \left\{ \frac{j+1}{1} \right\} = +45^{\circ}$$

Frecuencias altas ($\omega \approx \infty$):

$$20\log_{10} \left| \frac{j\omega + c_i}{c_i} \right| \approx 20\log_{10} \left| \frac{j\omega}{c_i} \right| = -20\log_{10} |c_i| + 20\log_{10} |j\omega|$$
$$\arg \left\{ \frac{j\omega + c_i}{c_i} \right\} \approx \arg \left\{ j\omega \right\} = +90^{\circ}$$

Polos complejos conjugados

La resonancia depende del factor de amortiguamiento ξ pequeño → resonancia grande (ver tablas graficas Puente)

Ejemplo

$$G(s) = \frac{10}{(s+2)(s+10)}$$

Lo primero: factorizamos en bloques básicos (de Bodes conocidos)

$$G(s) = \frac{10}{(s+2)(s+10)} = 0.5 \cdot \frac{2}{s+2} \cdot \frac{10}{s+10}$$

$$+ \frac{10}{w=2} + \frac{10}{w=10}$$

Ejemplo (dos polos reales y term. constante)

Ejemplo

Trazar el Bode asintótico de

$$G(s) = \frac{s+5}{(s+0,1)(s+3)}$$

Factorización en Bodes Básicos

$$G(s) = \frac{s+5}{(s+0,1)(s+3)} = \frac{5}{0,1\cdot 3} \cdot \frac{0,1}{s+0,1} \cdot \frac{s+5}{5} \cdot \frac{3}{s+3}$$

Ejemplos: sistemas de fase mínima

Sistemas de fase no mínima

- Son sistemas que tienen polos o ceros en el semiplano positivo
- Su diagrama de módulos es idéntico al de sus homólogos de fase mínima
- Sus fases, sin embargo son distintas

Polo de fase no mínima

$$G(s) = \frac{-1}{s-1}$$

Cero de fase no mínima

$$G(s) = \frac{s-1}{-1}$$

Ejemplos: sistemas de fase no mínima

