SISTEMAS LINEARES

AULA 1 - INTRODUÇÃO

Equação linear

Chamaremos de equação linear toda equação do tipo:

$$a_1x_1 + a_2x_2 + a_3x_3 + \dots + a_nx_n = c$$

Chamaremos:

- $a_1, a_2, a_3, \dots, a_n$: coeficientes reais, não todos nulos
- $x_1, x_2, x_3, ..., x_n$: são as incógnitas
- c: termo independente

Se o termo independente for igual a zero (c = 0), a equação recebe um nome específico: equação linear homogênea.

Sistemas lineares

Um **sistema linear** é um conjunto de duas ou mais equações lineares. Designamos os sistemas lineares pelo número de equações e de incógnitas que eles possuem.

De forma geral, um sistema linear de m equações e n incógnitas também pode ser chamado de sistema linear $m \times n$ (lê-se "m por n"), e é constituído de m equações, onde cada equação contém as mesmas n incógnitas:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = c_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = c_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = c_3 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = c_m \end{cases}$$

Solução de um sistema linear

Uma solução de um sistema linear é um conjunto de valores que satisfaz ao mesmo tempo todas as equações do sistema linear.

Sistema linear homogêneo

Um sistema linear homogêneo é um sistema composto apenas por equações lineares homogêneas, ou seja, são sistemas onde todas as equações tem termo independente igual a zero.

Todo **sistema linear homogêneo** admite **pelo menos uma** solução: a **solução nula** (0,0,0,...,0), também chamada de **solução trivial**. Obviamente, o sistema pode admitir também outras soluções, além da trivial.

AULA 2 - CLASSIFICAÇÃO DE UM SISTEMA LINEAR

Um sistema linear é classificado de acordo com a quantidade de soluções que ele admite:

- Sistema possível determinado (SPD): admite uma única solução;
- Sistema possível indeterminado (SPI): admite infinitas soluções;
- Sistema impossível (SI): não admite solução alguma.

Esquematicamente:

Obs: sistemas homogêneos **NUNCA** serão SI, pois sempre admitirão **pelo menos** a **solução nula**.

AULA 3 - ESCALONAMENTO

O sistema de escalonamento consiste em levar o sistema a um formato de "escada", ou seja, de equação para equação, no sentido de cima para baixo, há um aumento dos coeficientes nulos da esquerda para a direita.

Para isso, podemos realizar à vontade ações que não alteram a solução do sistema:

- trocar equações de posição;
- multiplicar uma equação por um número real qualquer;
- substituir equações pelo resultado da soma ou subtração dela mesma com outra equação do sistema.

Copyright © 2014 Stoodi Ensino e Treinamento à Distância www.stoodi.com.br

1

SISTEMAS LINEARES

Observações importantes

- Se, ao escalonarmos um sistema, chegarmos a alguma equação do tipo $0.x_1+0.x_2+\cdots+0.x_n=0$, esta equação deverá ser eliminada do sistema.
- Se, ao escalonarmos um sistema, chegarmos a alguma equação do tipo $0.x_1+0.x_2+\cdots+0.x_n=c$, com $c\neq 0$, o sistema será impossível, pois não há valor que multiplicado por zero resulte em um número diferente de zero.

AULA 4 – REGRA DE CRAMER

Definições

A Regra de Cramer fornece uma alternativa ao escalonamento, para solucionarmos sistemas lineares $n \times n$. Ela utiliza-se do conceito de matrizes.

Para efeito didático, vamos exemplificar a Regra de Cramer com um sistema 2×2 , embora ele se aplique a qualquer sistema $n \times n$.

Considere o sistema
$$\begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases}$$

Definiremos então:

A matriz composta pelos coeficientes do sistema é chamada de matriz incompleta do sistema:

- $D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$ é o determinante da matriz dos coeficientes do sistema, que chamamos de matriz incompleta do sistema;
- $D_x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}$ é o determinante da matriz obtida através da troca dos coeficientes de x pelos termos independentes, na matriz incompleta;
- $D_y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}$ é o determinante da matriz obtida através da troca dos coeficientes de y pelos termos independentes, na matriz incompleta.

Soluções

Se $D \neq 0$, as soluções do sistema serão dadas por:

$$x = \frac{D_x}{D}$$

$$y = \frac{D_y}{D}$$

Para sistemas com mais incógnitas a lógica de solução é análoga, substituindo-se no cálculo do determinante D_i os coeficientes pelos termos independentes.

Classificação de sistemas com a Regra de Cramer

- Sistema possível determinado (SPD): se D ≠ 0, o sistema será SPD.
- Sistema possível indeterminado (SPI): se D = 0 e todos os $D_i = 0$, o sistema será SPI.
- Sistema impossível (SI): se D = 0 e pelo menos um $D_i \neq 0$, o sistema será SI.

Esquematicamente:

AULA 5 – DISCUSSÃO DE SISTEMAS LINEARES

Discutir um sistema é dizer para quais valores de um parâmetro o sistema é SPD, SPI ou SI.