Визначити густину ймовірності знайти частинку в точці з координатою x, якщо її хвильова функція $\psi(x,t) = C \exp(ik x)$, де C – ста.	па. (№41,а)

2. Знайти власні значення енергії та хвильову функцію вільної частинки. (№40)		

3. Знайти власні значення енергії та хвильову функцію частинки, що перебуває в нескінченно глибокій прямокутній потенціальнії	й ямі шириною 2а.

4. Частинка, яка перебуває в нескінченно глибокій потенціальній ямі, знаходиться в основному стані. Яка ймовірність виявлення частинки: а) в сере ній третині ящика; б) в крайній третині ящика? (№42)

5. Кінетична енергія електрона в атомі водню складає величину порядку мальні лінійні розміри атому.	$K = 10\;\;{\rm eB.}\;\;$ Використовуючи співвідношення невизначеності, оцінити міні-