MATH411-22S1 Topics in Algebra Homework 1:

- **1.1.** Let $\phi: G \to H$ be a homomorphism of groups. Prove or disprove the following statements
 - (1) If G' < G, then $\phi(G') < H$.
 - (2) If H' < H, then $\phi^{-1}(H') < G$.
 - (3) If $G' \triangleleft G$, then $\phi(G') \triangleleft H$.
 - (4) If $H' \triangleleft H$, then $\phi^{-1}(H') \triangleleft G$.
- **1.2.** Let $N \triangleleft G$ and H < G be subgroups of G. Prove or disprove the following statements.
 - (1) $H \cap N \triangleleft H$
 - (2) $H \cap N \triangleleft G$
 - (3) $HN \triangleleft G$
- **1.3.** Suppose $n = n_1 + \cdots + n_r$ for positive integers n_i . Use Lagrange's theorem to prove that $\prod n_i!$ divides n!.
- **1.4.** Let G be a group and H < G a subgroup of index 2. Prove that H is a normal subgroup.
- **1.5.** Show that $\mu_4 = \{\pm 1, \pm i\} \subset \mathbb{C}^{\times}$ is a normal subgroup and that $\mathbb{C}^{\times}/\mu_4 \simeq \mathbb{C}^{\times}$. Is $\mathbb{R}^{\times}/\{\pm 1\}$ isomorphic to \mathbb{R}^{\times} ?
- **1.6.** Let H < G be a subgroup. For $g \in G$ we call gHg^{-1} a "conjugate subgroup" of H. Show that this is actually a subgroup of G. Show that conjugacy determines an equivalence relation on the set of subgroups of G. Find all conjugacy classes of subgroups of S_3 (and D_4 but don't hand this in!).
- **1.7.** Determine the order of $GL_n(\mathbb{F}_q)$.
- **1.8.** How many subgroups of $GL_n(\mathbb{F}_{11})$ contain $SL_n(\mathbb{F}_{11})$. How many of these are normal in $GL_n(\mathbb{F}_{11})$?
- **1.9.** How many homomorphisms $\phi: S_3 \to S_4$ are there?
- **1.10.** Find all groups of order 8 up to isomorphism. How many groups of order 64 are there (you don't need to prove this, just google it)?