

Network Intrusion Detection Using Various Deep Learning Approaches Matt Canute, Young-min Kim, Adriena Wong, Donggu Lee, and Kamila Bekshentayeva

PROBLEM

Cyber attacks are continuously evolving and becoming more sophisticated and difficult to detect.

QUESTIONS

How do deep learning models detect network intrusions?

Can they be bypassed by adjusted attacks?

If so, what approaches are less easily fooled? **GOAL**

To experiment with various adversarial attacks, custom intrusion sets, and various neural network architectures, employing Communications Security Establishment (CSE) & the Canadian Institute of Cybersecurity (CIC) intrusion data set of 2018 that reflects current network trends.

Long Short Term Memory (LSTM) LSTM output layer tanh LSTM cell σ | tanh | σ LSTM input layer The outputs of the forget gate f_t , the input gate i_t , and the output gate o_t at time t are: $f_{t} = \sigma (W_{if}x_{t} + b_{if} + U_{hf}h_{t-1} + b_{hf})i_{t} = \sigma (W_{ii}x_{t} + b_{ii} + U_{hi}h_{t-1} + b_{hi})$ $o_t = \sigma(W_{io}x_t + b_{io} + U_{ho}h_{t-1} + b_{ho})$ The cell state c_t is calculated as: $\mathbf{c_t} = \mathbf{f_t} \mathbf{c_{t-1}} + \mathbf{i_t} \mathbf{tanh} (\mathbf{W_{ic}} \mathbf{x_t} + \mathbf{b_{ic}} + \mathbf{U_{hc}} \mathbf{h_{t-1}} + \mathbf{b_{hc}})$ The output of the LSTM cell is: $h_t = o_t tanh(c_t)$

EXPERIMENTS (Feature selection and adversarial landscape)

RESULTS

LSTM

ESN

		FFNN	
	FFNN Test Set H	ulk/Slow HTTF	• Attack: 99.8%
		Actual	
		Benign	Attack
Predicted	Benign	89,265	337
	۸		120,113
	Attack Test Set Golden		
		Eye/Slowloris Actual Benign	
Predicted	Test Set Golden	Actual	Attacks:99.7%
Predicted	Test Set Golden	Actual Benign	Attacks:99.7% Attack
Predicted	Test Set Golden Benign Attack	Actual Benign 199,005	Attacks:99.7% Attack 145 9,993
Predicted	Test Set Golden Benign Attack	Actual Benign 199,005 572	Attacks:99.7% Attack 145 9,993
Predicted	Test Set Golden Benign Attack	Actual Benign 199,005 572 v 2019 Hulk At	Attacks:99.7% Attack 145 9,993
Predicted	Test Set Golden Benign Attack FFNN Nev	Actual Benign 199,005 572 v 2019 Hulk At Actual	Attacks:99.7% Attack 145 9,993 tack: 3.2%

References:

[1] Intrusion Detection Evaluation Dataset (CICIDS2017) [Online]. Available: https://www.unb.ca/cic/datasets/ids-2017.html. Accessed: Oct. 28, 2019.

[2] CICFlowMeter [Online]. Available: http://netflowmeter.ca/\netflowmeter.html. Accessed: Oct. 28, 2019. [3] M. Lukoševičius, "A Practical Guide to Applying Echo State Networks," in Neural Networks: Tricks of the Trade. Springer, 2012, pp.659-686.

[4] H. Jaeger, "The 'echo state' approach to analysing and training recurrent neural networks, "Tech. Rep. GMD Rep. 148, German Nat. Res. Center for Inf. Technol., 2001. [5] Z. Li, P. Batta, and Lj. Trajkovic, "Comparison of machine learning algorithms for detection of network intrusions," in Proc. IEEE International Conference on Systems, Man, and Cybernetics (SMC 2018), Miyazaki, Japan, Oct. 2018, pp. 4248-4253.