

金融领域应用系统的故障检测与根因定位

参赛队伍: pa_tech(平安科技)

答辩选手: 陈桢博

平安科技运营工具平台团队&平安科技混合增强算法团队介绍

团队简介

负责平安集团AIOPS建设,以全链路监控 和业务数据为基础,大数据分析处理和机器学习 等技术为支撑,为现有运维管理工具和管理体系 赋予统一数据管控能力和智能化数据分析能力, 全面提升运维管理效率。

目前已实现异常检测、根因分析、智能预测等三大场景的数据平台和AI模型建设和落地。

第一章节

赛题分析

赛题分析-典型运维场景根因分析,包含两大挑战

赛题解析

算法实时分析数据

发现故障则预测根因报出

图1. 根因定位流程

图2. 调用链路简化示意图

挑战1: Trace数据差异

• 系统A、B的trace数据存在差异,需研发通用化方法;

挑战2: 历史数据不足

• 历史数据不足, 需针对性改进异常检测与根因分析方法

第二章节

方案阐述

01 异常检测

02 故障触发

03

根因分析

痛点分析

痛点: 固定超参+标准化异常检测模型 方案(各指标用的模型和超参数相同),无法适配各种指标特性。

图3. 异常检测痛点图示

解决方案

✓ 解决方案:用Bayes方法,结合历史 标注动态估计各类指标异常性。

polability . ped $= P(Y = about | X, \sigma, W)$ mention of the menti

构建观测值X,涨幅W,与异常性Y的概率估计关系,以此计算阈值的边界,从而将指标特性加入模型的阈值估计中。

优势阐述

- ◆ 相比N-Sigma等传统异常检测算法具备以下优势:
- 在传统时间序列的基础上,
 引入故障标注结果,使其对理论上的正常波形的估计更加准确;
- 2. 新方法确定临界值可自适应 指标异常敏感性,减少误告、 漏告概率。

异常检测-通用性: 能够泛化至各种数据场景下的通用方案

当前短时数据

指标关联分析

Bayes异常探测方法

阈值=分位数Q*F(涨幅/降幅)

$$\frac{\sum (X_t - \overline{X}_t)(Y_{t+n} - \overline{Y}_{t+n})}{\sum (X_t - \overline{X}_t)^2 (Y_{t+n} - \overline{Y}_{t+n})^2}$$

$$w_{j}^{\square} = \xi_{j}^{2}$$

$$\{\delta_{j} \left[(x_{j} - \sum_{i=1}^{p} \varphi_{i} z_{j-i}) + \sum_{t=j+1}^{T} \varphi_{i-j} \left(\sum_{i=1}^{p} \varphi_{i} x_{t-i}^{*} - x_{t}^{*} \right) \right] + \mu \}$$

历史长期数据(如果可用)

时序预处理

异常检测算法

确定数据分布阈值边界

时序预处理,例如去除outlier 处理,或者对周期性指标进行 STL时序分解。 采用S-H-ESD等算法,为历史数据分布范围、统计特性计算相应阈值。

若当前值同时不 满足两种阈值

连续k次异常的 metric记录异常

故障时Metirc异常数量的下5%分位数,作为连续异常数量阈值

- 算法整体泛化性能较高,可适应不同粒度、长度、特点的观测数据,从而延伸至各种业务场景;
- Bayes方案不仅能保证精度,而且在线上过程中仅需输入较少数据即可快速完成预测。

故障触发:将相关数据缓存以便实时触发根因分析

01 时序异常检测结果

时间序列异常检测的告警记录,即若干告警的cmdb组件及其metric。

03 系统KPI时序值

系统服务KPI时序值,用于触发 根因分析条件(后续弃用)。

02 日志异常检测结果

日志分析异常检测的告警记录, 包含异常cmdb组件与指标。

04 链路数据

Kafka推送的trace数据按id进行整合,当trace完整且trace耗时高于预设值(低于该值则没有分析的必要)则将其缓存。

● 数据将缓存在Detector类中,准备随时触发根因分析,并定时将无用的历史数据删除。

故障触发-实用性:分析缓存数据,避免以KPI作为触发条件导致漏告

图4. 故障触发数据分析图示

以A系统2月26日KPI响应耗时为例,标注故障时段KPI未必伴随 发生异常。若通过KPI异常检测判定是否触发根因分析,会造成 故障遗漏。

取0:02:30至0:07:30的异常检测 告警记录与trace数据,进行分析。

按5min滑窗,取切片时段内的异常检测记录与trace数据触发一次根因分析。

根因分析-前期思路:通过特征工程+监督学习实现根因预测

Cmdb组件 Tomcat01 Tomcat02 Tomcat03 MG01 MG02 IG01 IG02

特征 工程

cmdb组 件	异常频次	被调次数	
Tomcat0 1	10	30	
Tomcat0 2	7	56	
Tomcat0 3	8	20	
MG01	0	12	
MG02	1	17	
IG01	4	45	
IG02	3	62	

步骤1:数据获取

从前文所述的数据缓存之中,获取各类数据在某一时段下的切片。

为切片数据下的cmdb组件计算相应特征工程(异常频次、被调次数、执行耗时等)。

	cmdb组 件	预测概率
	Tomcat0 1	0.32
-	Tomcat0 2	0.21
	Tomcat0 3	0.14
	MG01	0.05
	MG02	0.06
	IG01	0.09
	IG02	0.11
沙		

机器

建立随机森林监督学习模型,根据特征工程预测各cmdb作为根因的概率。

根因分析-创新性: 迁移项目训练模型特征信息, 解决新场景下标注少的问题

难点1: 标注样本少

• 用户标注样本少,难以训练得到较优模型

难点2:数据偶然性

• 标注数据集中在一两天或某种类型, 存在偶然性

✓ 解决方案:

参考项目建模特征重要性作为权重,将各特征归一化后进行加权,得到根因得分score从而定位根因。

soe	= f atie	$_1 \times w_1 + f$ at e	$_2 \times w_2 + \cdots + f$ at e	$_n \times W_n$
-----	----------	----------------------------	-------------------------------------	-----------------

特征	权重(特征重要性)
trace层级	0.305
duration超时频次	0.174
异常metric数	0.122
异常关键metric数	0.069
异常频次	0.042
被调用次数	0.027

- 较小的启动成本,新场景提供少量标注样本即可适配;
- 商业场景中可更早完成上线部署,不断积累数据并迭代优化。

根因分析-通用性: 适配各种应用系统, 具备较高泛化性

为trace切片中的各cmdb组件,结合相关数据计算特征工程。

В

为每一cmdb组件计算加权分数score,并输出分数最高者作为预测结果。

cmdb	异常metric数	duration超 时频次	 trace层级	加权得分
Tomcat0 4	0.24	0.31	 0.7	0.34
Tomcat0 3	0.19	0.27	 0.7	0.31
Tomcat0 2	0.19	0.27	 0.7	0.31
MG01	0.0	0.0	 8.0	0.02
MG02	0.0	0.0	 0.8	0.02
IG01	0.05	0.0	 0.6	0.11
IG02	0.05	0.0	 0.6	0.11

通用性:对于A系统(无法重组trace)部分特征无法计算,但是仅需关注系统内score的相对大小,因此同样可以沿用这一模式。

第三章节

拓展空间

A 联合模型方案

- 摒弃现有"异常检测-根因分析"两步流程,从而避免误差在该流程中传播。
- 联合时间序列分析与链路trace分析特征工程共同建模训练,直接定位得到根因。

B】异常检测拓展空间

- 尝试采用VAE(包括我们之前发表的T2IVAE)、LSTM等深度学习模型进行更精确的异常检测。
- 在数据支持的前提下,可取历史数据作为补充,计算同比等特征加入模型以提高精度。

C 根因分析拓展空间

根据项目经验,如果标注样本量能够达到80,采用监督学习建模就能达到较理想精度。

T2IVAE论文: NVAE-GAN Based Approach for Unsupervised Time Series Anomaly Detection arXiv: https://arxiv.org/abs/2101.02908v1

2021国际AIOps挑战赛决赛暨AIOps创新高峰论坛

THANKS

谢谢观看

