Continuous Probability Distributions. R

Administrator

Thu Mar 24 15:21:42 2016

```
# Continuous probability distributions
# 24 March 2016
# NJG

# uniform
# params specific minimum and maximum

# dunif for density plot
limits <- seq(0,10,by=0.01)
z <-dunif(x=limits,min=0,max=5)
names(z) <- limits
plot(x=limits, y=z,type="l",xlim=c(0,10))</pre>
```



```
#punif for cumulative density (= tail probabilities)
limits <- seq(0,10,by=0.01)
z <-punif(q=limits,min=0,max=5)
names(z) <- limits
plot(x=limits, y=z,type="l",xlim=c(0,10))</pre>
```



```
#qunif for quantiles
qunif(p=c(0.025,0.975),min=0,max=5)
```

[1] 0.125 4.875

#runif for random data
hist(runif(n=100,min=0,max=5))

Histogram of runif(n = 100, min = 0, max = 5)

normal

hist(rnorm(n=100,mean=100,sd=2))

Histogram of rnorm(n = 100, mean = 100, sd = 2)

 $\label{lem:mean} \begin{picture}(200,0) \put(0,0){\line(1,0){100}} \put(0$

Histogram of rnorm(n = 100, mean = 2, sd = 2)

gamma distribution, continuous positive values, but bounded at 0
hist(rgamma(n=100,shape=1,scale=1))

Histogram of rgamma(n = 100, shape = 1, scale = 1)

shape <=1 gives a mode near zero; very small shape rounds to zero
hist(rgamma(n=100,shape=0.1,scale=1))</pre>

Histogram of rgamma(n = 100, shape = 0.1, scale = 1)

large shape parameters moves towards a normal
hist(rgamma(n=100,shape=2,scale=1))

Histogram of rgamma(n = 100, shape = 2, scale = 1)

scale parameter changes mean- and the variance!
hist(rgamma(n=100,shape=2,scale=10))

Histogram of rgamma(n = 100, shape = 2, scale = 10)

hist(rgamma(n=100,shape=2,scale=100))

Histogram of rgamma(n = 100, shape = 2, scale = 100)

hist(rgamma(n=100,shape=2,scale=1))

Histogram of rgamma(n = 100, shape = 2, scale = 1)

hist(rgamma(n=100,shape=2,scale=0.1))

Histogram of rgamma(n = 100, shape = 2, scale = 0.1)


```
# unlike the normal, the two parameters affect both mean and variance
# mean = shape*scale
# variance= shape*scale^2
```