Reconnaissance du code postal sur une enveloppe

PROBLÉMATIQUE : COMMENT PEUT-ON DÉVELOPPER UN PROGRAMME PERMETTANT D'OBTENIR LE CODE POSTAL INSCRIT SUR UNE ENVELOPPE À PARTIR DE SA PHOTO ?

Mousieur Pierre MARQUÉ
Saint Rene
Saint EVRAN

Plan:

- I Récupération des chiffres sur une photo d'enveloppe
- II Méthodes de reconnaissances d'images
 Classifiation Bayesienne
 Perceptron multicouche
 Deep Belief Network

Présentation de l'algorithme

92342

92342

Détection de contour

Détection de contour par opérateur de Sobel

Module

I – Récupération des chiffres sur une photo d'enveloppe

Filtrage sur les couleurs

I – Récupération des chiffres sur une photo d'enveloppe

Lissage

Filtre gaussien

$$exp\left(-\left(\frac{x^2+y^2}{2\,\sigma^2}\right)\right)$$

Exemple pour $\sigma = 1.6$

$$M = \frac{1}{103} \begin{pmatrix} 10 & 12 & 10 \\ 12 & 15 & 12 \\ 10 & 12 & 10 \end{pmatrix}$$

Fin de l'algorithme

92342 92342

Variables caractéristiques

- Profil orienté (PFO)
- Profil gauche (PFG
- Profil droit (PFD)

Total de 100 variables : $X_1, X_2, ... X_{100}$ dans $[0, 1]^{100}$

Classification naïve Bayésienne

C variable de classe dans [0,9]. Les X_i sont indépendants.

Formule de Bayes :
$$\mathbb{P}(C = k \mid X_1 ... X_{100}) = \frac{\mathbb{P}(C=k)}{\mathbb{P}(X_1 ... X_{100})} \prod_{i=1}^{100} \mathbb{P}(X_i \mid C=k)$$

Calcul des X_i

Calcul des $\mathbb{P}(C = k \mid X_1 \dots X_{100})$

Renvoie de la valeur k pour laquelle $\mathbb{P}(C = k \mid X_1 \dots X_{100})$ est maximale.

Modélisation : loi normale

Résultat : 65,19%

Un neurone

Obtention de e et de la sortie attendue a.

Mise à jour des valeurs des neurones jusqu'à obtenir s.

Erreur quadratique :
$$E = \frac{1}{2} \sum_{j=1}^{m} (s_j - a_j)^2$$

Calcul de E, mise à jour des poids pour faire diminuer E.

Mise à jour des poids :
$$w_{i,j} \leftarrow w_{i,j} - \alpha \frac{\partial E}{\partial w_{i,j}}$$

Résultat : 99,76% $e_Q=2,07$

Deep Belief Network (DBN)

Deep Belief Network (DBN)

1achines de Boltzmann non supervisé

Résultat : 97,21% $e_0 = 31,37$

Conclusion

enveloppes	Réseau bayésien : N	$(MLP): e_Q$	(DBN): e_Q
1	2	0,0036	0,84
2	2	0,033	3,2
3	2	0,021	0,00040
4	3	0,00054	0,18
5	erreur	erreur	erreur
6	0	3,3	3,8
7	2	1,0	2,5
8	2	1,9	2,1
9	2	0,000019	1,2
10	2	0,00035	2,3
11	0	0,00033	0,22
12	4	0,012	0,039
13	2	0,0056	2,0
14	1	0,000049	1,3
15	3	1,5	0,31
16	4	1,4	0,013
17	2	0,044	1,5
18	5	0,00032	0,00031
moyenne	N = 2,2	$N = 4.7 \ e_Q = 0.012$	$N = 3.9 \ e_Q = 0.28$

13 6

N = 5 N = 4 N = 3 N = 2 N = 1N = 0

Programme final

Reconnaissance de code postal : enveloppe18.jpg - aze.net				_#		×			
	Ouvrir Image	Choisir Réseau	Obtenir Images	Résultats					
5 2 7 5 9									
(99.75387 97.907845 95.76867 78.090744 99.7454)									
Clémence L'Espérance Régie des Rentes du Auébec Case postale 5200 Québec G1K 759 52759 (Québec)									
CANADA									
5	2	? 7	2 5	S	9				

Matrice de convolution

$$\frac{1}{4} \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}$$

V: 0

B: 4

$$\frac{1}{4} \begin{pmatrix} -168 + 0 \times 168 + 255 \\ -2 \times 168 + 0 \times 168 + 2 \times 255 \\ -168 + 0 \times 168 + 255 \end{pmatrix}$$

Erreur (MLP)

On cherche la dérivée de l'erreur par rapport à $w_{i,j}$: $\frac{\partial E}{\partial w_{i,j}} = \frac{\partial E}{\partial h_j} \frac{\partial h_j}{\partial w_{i,j}} = \delta_j x_i$ où $\delta_j = \frac{\partial E}{\partial h_j} = \frac{\partial E}{\partial x_j} \frac{\partial x_j}{\partial h_j}$

Pour la couche de sortie on a alors : $\delta_j = (x_j - a_j) f'(h_j)$

Sinon on a:
$$\delta_j = \left(\sum_{k \in succ(j)} \frac{\partial E}{\partial h_k} \frac{\partial h_k}{\partial x_j}\right) f'(h_j) = \left(\sum_{k \in succ(j)} w_{i,j} \delta_k\right) f'(h_j)$$

En prenant f = sigm on obtient : f' = sigm' = sigm (1 - sigm) soit $f'(h_j) = x_j (1 - x_j)$

Inertie (moment)

Nombre d'itérations d'apprentissages

$$\begin{array}{c} \text{Solution:} \\ w_{i,j}(t+1) \leftarrow w_{i,j}(t) + \Delta w_{i,j}(t) + \lambda \Delta w_{i,j}(t-1) \\ \\ \lambda \, \epsilon \, [0,1] \end{array}$$

Surapprentissage

Nombre d'itérations d'apprentissages (en milliers)

Génération d'exemples

7	7	7	7	7	7	7	7	7	7
test3.png	test4.png	test5.png	test6.png	test7.png	test8.png	test9.png	test10.png	test11.png	test12.png
test13.png	test14.png	test15.png	test16.png	test17.png	test18.png	test19.png	test20.png	test21.png	test22.png
7	7	7	7	3	3	\mathcal{F}	\mathcal{J}	\mathcal{J}	7
test23.png	test24.png	test25.png	test26.png	test27.png	test28.png	test29.png	test30.png	test31.png	test32.png
\mathcal{F}	\mathcal{I}	\mathcal{I}	\mathcal{I}	$ \mathcal{I} $	$ \mathcal{I} $	\mathcal{I}	\mathcal{I}	\mathcal{I}	\mathcal{I}
test33.png	test34.png	test35.png	test36.png	test37.png	test38.png	test39.png	test40.png	test41.png	test42.png
\mathcal{I}	\mathcal{I}	\mathcal{I}	\mathcal{I}	\mathbf{Z}	\mathbf{Z}	\mathcal{I}	\mathbf{Z}	\mathbf{Z}	3
test43.png	test44.png	test45.png	test46.png	test47.png	test48.png	test49.png	test50.png	test51.png	test52.png
2	2	2	2	2	2	7	2	2	2
test53.png	test54.png	test55.png	test56.png	test57.png	test58.png	test59.png	test60.png	test61.png	test62.png

