LEC 22 2025.1.19

(ast time if $\vec{F} = \nabla f$ gradient field

then \int_C "path—independent $\int_C \vec{F}' d\vec{r} = f(\vec{p}_0) - f(\vec{p}_0)$ If $\vec{F} = \nabla f$, $M = f_X$, $N = f_Y$ then $f_{XY} = f_{YX} \Rightarrow A_X = M_Y = N_X$ and if $M_Y = N_X \Rightarrow \vec{F}$ is a gradient field and $\vec{F} = \langle XM, N \rangle$ defined, differentiable everwhere

Example: $\vec{F} = -y \hat{i} + x \hat{j}$ $\frac{\partial M}{\partial y} = 1$, $\frac{\partial N}{\partial y} = 1$ M N $\Rightarrow \vec{F}$ is not agradient Example: $\vec{F} = (4x^2 + axy)\hat{i} + (3y^2 + 4x^2)\hat{j}$ My = ax, Ax $Nx = 8x <math>\Rightarrow a = 8$

Finding the potential? Conly if NX=My)

(1) Computing line integrals

—> next page

$$= y_1^3 + 4x_1^2 y_2$$

$$C_1+C_2=\frac{4}{3}X_1^3+Y_1^3+Y_1+C$$

$$C(tC_2 = \frac{4}{3}X_1^3 + y_1^3 + \frac{4}{3}X_1^2y_1 + C$$
the potential: = $\frac{4}{3}X_1^3 + y_2^3 + \frac{4}{3}X_1^3 + y_3^3 + \frac{4}{3}X_1^3 + y_4^3 + \frac{4}{3}X_1^3 + y_5^3 + y_5^3$

Want to solve
$$\begin{cases} f_x = 4x^2 + 8xy \\ f_y = 3y^2 + 4x^2 \end{cases}$$

 $f = \frac{3}{5}x^3 + 4x^2y + gcy$

 $f_y = 4x^2 + g'(y) - match this with (2)$ $4x^2 + g'(y) = 3y^2 + 4x^2 \Rightarrow g(y) = y^3 + c$ $\Rightarrow f(x,y) = \frac{4}{3}x^3 + 4x^2y + y^3 (+ c) = potential$

 $\vec{F}(M,N)$ is a gradient field in a region of the plane \Rightarrow conservative $\int_{C} \vec{F} \cdot d\vec{r} = 0$ for deed C, new notation: $\int_{C} \vec{F} \cdot d\vec{r}$

Nx = My at every point (where \vec{F}) definited)

Defination: $\int curl(\vec{F}) = 0$

 $curl(\vec{F}) = N_X - M_Y$

(旋角) (test for conservative ness: carl(序)=0)

lifer a velocity field

our measure notation component of motion

 $\vec{F} = (-y, x) \Rightarrow curl(\vec{F}) = \frac{\partial (x)}{\partial x} - \frac{\partial (x)}{\partial y} = 2$

Curl measure (2x) angular velocity of retation

W- T- W- T- F- O- O-	Memo No
Mo Tu We Th Fr Sa Su	Date / /
(AZ-FE)	
Force Field measure	torque exerted on a test
object in the field	
torque	= dt (angluar velocity)
moment of 1	nert)a
	- d (velocity)
mass /	dt
	,