Equivalence of Deterministic One-Counter Automata is NL-complete

Stanislav Böhm (Ostrava) Stefan Göller (Bremen) Petr Jančar (Ostrava)

Highlights 2013, Paris September 19th

Deterministic One-counter automaton (DOCA)

$$A = (Q, \Sigma, \delta)$$
$$\delta: Q \times \{=_0, >_0\} \times (\Sigma \cup \{\varepsilon\}) \to Q \times \{-1, 0, 1\}$$

Input:

A doca language

$$P = \{b_3, b_{17}, b_{29}\}\$$

$$L = \{a^n x \mid x \in P \land n \equiv 0 \text{ (mod } x)\}\$$

Note: L = L(A) for DFA A with $3 \cdot 17 \cdot 29 + 1$ states. (Exponentiality!)

Decision problem

Input: $A = (Q, \Sigma, \delta, F), p, q \in Q$

Question: $L(p(0)) \stackrel{?}{=} L(q(0))$

Language equivalence

Configuration pairs in 3D space

2D projection

Nonequivalence witness paths and equivalence levels

Nonequivalence witness paths and equivalence levels

$$p(m) \xrightarrow{e} q(n)$$
 ... e is the length of a shortest witness for $(p(m), q(n))$

$$p(m) \stackrel{\omega}{\longleftarrow} q(n) \dots L(p(m)) = L(q(n))$$

Claim: Finite eq-levels of pairs of zero configurations are small (i.e. polynomial)

Configuration q(413) (of a doca)

Input:

Configuration Mod(q(413)) (of the extended doca)

Input:

$$Periods = \{7, 4, 6\}$$

 $d_1 = 0 = 413 \mod 7$
 $d_1 = 1 = 413 \mod 4$
 $d_3 = 5 = 413 \mod 6$

Configuration q(413) (of a doca)

Input:

Configuration Mod(q(413)) (of the extended doca)

Input:

$$Periods = \{7, 4, 6\}$$

 $d_1 = 0 = 413 \mod 7$
 $d_1 = 1 = 413 \mod 4$
 $d_3 = 5 = 413 \mod 6$

Transition system of extended doca

Linearity of "independence levels"

$$p(m) \xrightarrow{l} \operatorname{Mod}(p(m)) = (\overline{p}, d_1, d_2, \dots, d_\ell)$$

$$v_1$$

$$z(0) \xrightarrow{f} \operatorname{Mod}(z(0)) = (\overline{z}, 0, 0, \dots, 0)$$

$$w_2$$

$$C_1 \xrightarrow{0} C_2 \qquad \text{by}$$

$$l = |w_1| + f$$

$$l = \frac{\alpha}{\beta}m + \frac{\gamma}{\delta} + f$$

$$\text{steps}$$

Quadruples (b, l, r, o) of eq-levels

Observation:

At least two of b, l, r, o are the minimum in $\{b, l, r, o\}$

First step of the proof

 $(l \neq r \text{ only few times})$

Second step of the proof

(linear belt climbing is short)

Thank you for your attention!