

Today's Outline

- · Addressing one of our problems
- Single and Double Rotations
- AVL Tree Implementation

2

Beauty is Only $\Theta(\log n)$ Deep

- Binary Search Trees are fast if they're shallow:
 - perfectly complete
 - perfectly complete except the one level fringe (like a heap)
 - anything else?

What matters here?

Problems occur when one subtree is much taller than the other!

Balance

- Balance
 - height(left subtree) height(right subtree)
 - zero everywhere ⇒ perfectly balanced
 - small everywhere \Rightarrow balanced enough

Balance between -1 and 1 everywhere \Rightarrow maximum height of \sim 1.44 lg n

AVL Tree Dictionary Data Structure

- Binary search tree properties
 - binary tree invariant
- search tree invariant
 Balance invariant
 - balance of every node is:
- $-1 \le b \le 1$
- result:depth is **② (log n)**

Note that (statically... ignoring how it updates) an AVL tree is a §BST.

Testing the Balance Property

NULLs have height **-1**

FIRST calculate heights
THEN calculate balances

Today's Outline

- Addressing one of our problems
- Single and Double Rotations
- AVL Tree Implementation

But, How Do We Stay Balanced?

Need: three volunteers proud of their very diverse height.

9

Beautiful Balance (SIMPLEST version) Insert(middle) Insert(small) Insert(tall) But... BSTs are under-constrained in unfortunate ways; ours may not look like this.

Bad Case #1 (SIMPLEST version) Insert(small) Insert(middle) Insert(tall) How do we fix the bad case? How do we transition among different possible trees?

Well.. what do we know? Scenario: k is one of the 1%; we want a revolution to depose k and give m root privileges. What's everything we know about nodes k and m and subtrees X, Y, and Z?

- Height of subtree still the same as it was before insert!
- Height of all ancestors unchanged.

19

Today's Outline

- Addressing one of our problems
- Single and Double Rotations
- AVL Tree Implementation

20

Insert Algorithm

- · Find spot for value
- · Hang new node
- · Search back up for imbalance
- If there is an imbalance:
 - case #1: Perform single rotation and exit
 - case #2: Perform double rotation and exit

Mirrored cases also possible

21

AVL Algorithm Revisited · Recursive · Iterative 1. Search downward for 1. Search downward for spot spot, stacking 2. Insert node parent nodes Unwind stack, 2. Insert node correcting heights 3. Unwind stack, a. If imbalance #1, correcting heights single rotate a. If imbalance #1, b. If imbalance #2, single rotate and double rotate b. If imbalance #2, double rotate and exit

AVL

- · Automatically Virtually Leveled
- Architecture for inVisible Leveling (the "in" is inVisible)
- · All Very Low
- · Articulating Various Lines
- Amortizing? Very Lousy!
- Absolut Vodka Logarithms
- Amazingly Vexing Letters

Adelson-Velskii Landis

33

To Do

• Posted readings on priority queues and sorts, but de-emphasizing heaps

34

Coming Up

- Quick Jump Back to Priority Queue ADT
 - A very familiar data structure gives us O(lg n) performance!
- · On to sorts
- · Then forward again!

35