Agenda

Lambda Calculus

Church-Turing Hypothesis

Computers vs. Programs

- They have independent existence.
- Programs pre-date (at least digital) computers Church's lambda calculus (1935) about the same time as Turing Machines (1936)

Church-Turing Hypothesis

"Computability" is defined by Turing-Computability

Practical Programming

- TM ⇔ RAM ⇔ Von. Nuemann Computers ⇔ Assembly Language ⇔ C Language
- Thus TM model serves as foundation for "imperative languages" like C.
- There is a similar foundation for functional programming: Lambda Calculus.

Church-Turing Equivalence

Church-Turing equivalence:

- ▶ Lambda Calculus ⇔ (Partial) Recursive Functions
 ⇔ Turing Machines
- To prove:
 Lambda Calculus ⇔ (Partial) Recursive Functions

Lambda Calculus

- Recursive functions include simple notions of:
 - Numeric Functions, Names (for functions),
 Recursion, Iteration (i.e. Minimization)
- Lambda calculus (LC) includes (only):
 - Functions and Names (i.e variables)
- In LC,
 - Everything is a function (variables also denote functions)
 - Functions take functions as arguments and return functions as values

Lambda Calculus - Abstraction

- Consider the following example:
 - $(\lambda x. 3x^2+1) 5 = 3*5^2 + 1 = 76$
- This is an expression
 - in particular the application of a function on a value: λx . $3x^2+1$ is a function.
- In LC, a function is known as an abstraction:
 - $3*5^2 + 1$, $3*2^2 + 1$, $3*10^2 + 1$ are all concrete instances of the abstraction $3x^2+1$ over variable x.
 - So, we refer to λx . $3x^2+1$ as an abstraction and
 - we refer to x as a bound variable
 - because the abstraction binds the variable to the expression.

Lambda Calculus - Bound Variable

- The notion of a bound variable is analogous to that in calculus or predicate logic
 - If we write $\int f(x,y) dx$,
 - then x is a bound variable (e.g. it is bound to the integral)
 - but y is not bound it is referred to as a free variable.
 - Similarly, if we write $\forall x$. P(x,y)
 - then x is a bound variable (e.g. it is bound to the quantifier)
 - but y is a free variable
- Thus, in LC
 - If we write (λx. x+y)
 - then x is a bound variable and y is a free variable.
 - The scope of this x is the abstraction (in which it is bound).

Lambda Calculus - Syntax

- Back to the first example,
 - $(\lambda x. 3x^2+1)$ 5 is an application of the abstraction $(\lambda x. 3x^2+1)$ on the value 5.
- So, in LC, there are two essential constructs
 - Abstraction which is of the form (λx. M) where M is in LC
 - Application which is of the form M N where M and N are in LC
- Formally, LC syntax is defined by the grammar
 - Term \rightarrow Var | (λ Var. Term) | Term Term

Lambda Calculus - Semantics

- The semantics of LC is obtained by defining the meaning of how application is evaluated.
- Considering the old example
 - $(\lambda x. 3x^2+1) 5 = 3*5^2 + 1 = 76$
 - I.e the abstraction is opened up: $3x^2+1$
 - The value 5 is substituted for x: $3*5^2 + 1$
 - Continue...
 - To generalize, (λx. M) N is evaluated by
 - Replacing occurrences of x by N in M
- Formally, $(\lambda x. M) N = M [N/x]$
 - where T[N/x] is T in which var. x is replaced by N

Lambda Calculus - Substitution

Consider more examples of substitution and application:

- a. $(x^2+x+1)[N/x]=N^2+N+1$
- b. $(x+((\lambda x. x+3) 5)) [N/x] = N + ((\lambda x. x+3) 5)$ Observe that the scope of the outer x is occluded by the inner abstraction, which introduces a new binding.
- So, M [N / x] refers to M where all free occurrences of x have been replaced with N:
 - In example (b) above the inner occurrence of x (as in x + 3) is not free.

Lambda Calculus – Substitution [2]

- \sim When we evaluate M [N/x],
 - N may be any LC term in particular, N may contain free occurrences of (some) variables bound in M:
 - e.g. (λ y. x y) [y / x]
 - In such cases, blind replacement would be inappropriate.
 - But bound variables can be consistently renamed e.g.
 - $(\lambda y. xy) = (\lambda z. xz)$

Lambda Calculus – Substitution [3]

- So, we define the substitution M [N / x] as follows:
- replace all free occurrences of x in M with N if the free variables of N are not bound in M
- 2. otherwise apply the renaming rule on M until the first case applies

Lambda Calculus – Substitution [4]

Examples

- (x x) [y / x] = (y y)
- (x y) [y / x] = (y y)
- $(x y) [(\lambda x. x x) / x] = (\lambda x. x x) y$
- $(\lambda x. xx)[y/x] = (\lambda x. xx)$
- $(\lambda y. yy)[y/x] = (\lambda y. yy)$
- $(\lambda y. y x) [(y z) / x] = (\lambda w. w x) [(y z) / x]$ = $(\lambda w. w (y z))$

Lambda Calculus

- In our examples we were using numbers like 3 and 5, and operators like + and *, but
 - LC syntax allows only variables or functions or applications.
- However, it turns out that this rudimentary syntax is enough to reconstruct all these elements.
 - i.e. LC is Turing-equivalent.
- We proceed to construct booleans, conditionals, numbers, numeric operations and eventually recursion.

Power of Lambda

Booleans:

- True = $(\lambda x. (\lambda y. x))$
- False = $(\lambda x. (\lambda y. y))$

What is the motivation?

- Efficacy of Data representations are based on their use.
- True and False are values useful in evaluating conditionals.
- Conditionals take two expressions (say a then part and an else part) and choose one of the two.
 - True chooses the then part
 - False chooses the else part

Power of Lambda [2]

- Conditional (IF is defined as follows)
 - B E1 E2

where B is boolean

Consider

```
• True E1 E2 = (True E1) E2
= ((\lambda x. (\lambda y. x)) E1) E2
= (\lambda y. E1) E2
= E1
```

```
• False E1 E2 = (False E1) E2
= ((\lambda x. (\lambda y. y)) E1) E2
= (\lambda y. y) E2
= E2
```

Power of Lambda [3]

- Formally
 - IF = $(\lambda b. (\lambda e1. (\lambda e2. b e1 e2)))$
- Other boolean operations can also be constructed:
 - NOT = $(\lambda b. b. b. False True)$
 - Check this out:
 - NOT True = ?
 - NOT False = ?

Power of Lambda [4]

Pairing

- [M, N] \equiv (λ b. IF b M N)
- FIRST \equiv ($\lambda p. p True$)
- SECOND \equiv ($\lambda p. p False$)

Lists

Obtain by nested pairing.

Lambda Calculus - Review

Syntax

Abstraction

Application

• Term \rightarrow Var | (λ Var. Term) | Term Term

Semantics

- Rule for Application: β-reduction
- $(\lambda x. M) N = M[N/x]$
- where T[N/x] is T in which var. x is replaced by N substitution

Evaluation is repeated application, because everything in LC is a function!

Lambda Calculus - Review

substitution M [N / x]:

- replace all free occurrences of x in M with N if the free variables of N are not bound in M
- 2. otherwise apply the renaming rule on M until the first case applies
- Substitution requires renaming
 - Rule for renaming:
 - $(\lambda x. M) = (\lambda y. N)$ where y does not appear in M and N is M[y/x]

α-equivalence

Lambda Calculus – Review

- Church Booleans:
 - True = $(\lambda x. (\lambda y. x))$
 - False \equiv ($\lambda x.$ ($\lambda y.$ y))
- Conditional (IF is defined as follows)
 - B E1 E2

where B is boolean

Lambda Calculus

Points of Notation:

- Application is left-associative
 - i.e. P Q R is actually (P Q) R
- Currying
 - $(\lambda x y. M)$ is same as $(\lambda x. \lambda y. M)$
- [Theoretical aside: Currying is in effect equivalent to s-m-n Theorem on Turing machines - Refer to Hopcroft, Ullman]

Church Lists

Pairing

- [M, N] \equiv (λ b. IF b M N)
- FIRST \equiv ($\lambda p. p True$)
- REST \equiv ($\lambda p. p$ False)
- E.g.

FIRST [M,N] = $(\lambda p. p True) (\lambda b. IF b M N)$

- \rightarrow (λ b. IF b M N) True
- → IF True M N
- **→** M

Church Lists

- Lists are obtained by nested pairing:
 - e.g. The list (a,e,i,o,u) is encoded as [a,[e,[i,[o,u]]]]
- Getting the Nth element:
 - Get2 = $(\lambda I. FIRST (REST I))$
 - Get5 = $(\lambda I. FIRST (REST (REST (REST (REST I)))))$

Church Numerals

- Numerals (close to unary notation):
 - $\underline{0} \equiv \lambda x. x$
 - $N+1 \equiv [False, N]$
 - E.g. 4 = (False, False, False, False, 0)
- (Elementary) Arithmetic
 - We need Succ, Pred, Zero? to start:
 - Succ $N \rightarrow N+1$
 - Pred $N+1 \rightarrow N$
 - Zero? $\underline{0} \rightarrow \text{True}$ and Zero? $\underline{N+1} \rightarrow \text{False}$

Church Numerals

- ✓ Succ $\equiv \lambda n$. [False, n]
- Pred = REST
- **Zero?** $\equiv \lambda n$. n True
 - E.g.
 - Zero? $\underline{0} = (\lambda n. n \text{ True}) (\lambda n. n)$
 - \rightarrow (λ n. n) True
 - → True
 - Zero? $N+1 = (\lambda n. n True)$ [False, N]
 - → [False, N] True
 - = $(\lambda b. b. False N)$ True
 - → True False N
 - → False

Repetition

- Recursion: To introduce recursion, we introduce a simple non-terminating construct.
 - Omega = $(\lambda x. x x) (\lambda x. x x)$
 - Omega → ??
- But Omega isn't useful as it simply repeats itself.
- To make it useful, we introduce a function parameter:
 - Omega' \equiv (λx . f (x x)) (λx . f (x x))
 - Omega' → ??

Repetitive Application

```
    Omega' = (λx. f (x x)) (λx. f (x x))
    → f (λx. f (x x)) (λx. f (x x))
    = f Omega'
    → f Omega'
```

- How do we control/terminate this?
 - Make an abstraction out of Omega'
 - Call it Y
 - $Y = (\lambda f. (\lambda x. f(x x)) (\lambda x. f(x x)))$

Controlled Repetition

What does Y do?

- Yg = $(\lambda f. (\lambda x. f(x x)) (\lambda x. f(x x)))$ g
- \rightarrow g (λ x. g (x x)) (λ x. g (x x))
- \rightarrow g (Y g)

Recursive Function – Example

Church

How do we use it?

representation of 1

- Consider the factorial function (not exactly in LC):
- fact = $(\lambda n. \text{ IF (zero? n)} \ \underline{1}'(\text{prod n (fact (pred n)))})$
- This isn't permissible because
 - we are defining fact but using it as a free variable in the definition.
- To circumvent this, introduce another abstraction:
 Define F as
- $F = (\lambda fact. (\lambda n. IF (zero? n) 1 (prod n (fact (pred n)))))$
- Now consider, Y F → ??

Recursive Function - Example

```
YF m = (\lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))) F m

\rightarrow F (Y F) m

= (\lambda fact. (\lambda n. IF (zero? n) 1 (prod n (fact (pred n))))) (Y F) m

\rightarrow (\lambda n. IF (zero? n) 1 (prod n ((Y F) (pred n)))) m

<math>\rightarrow IF (zero? m) 1 (prod m ((Y F) (pred m)))

= IF (zero? m) 1 (prod m ((Y F) m-1)))
```

- Note: m is the Church representation of the numeral m
- Why is this correct? Proof by induction:
- Base Case: m=0 returns 1
- Hypothesis: Y F m-1 returns (m-1)! (for m > 0)
- Step: Y F m returns m * (m-1)! (for m > 0)

Recursion

- In general, given a function f,
 - X is known as a fix-point of f, if f X = X
- Y computes fix-point for any f because,
 - Y f = f (Y f)
- Fix-Point theorem says:
 - For any recursive function f, a fix point exists (as witnessed by Y f).
- Now we can write other arithmetic functions such as add, mult and so on recursively.
 - Exercise!

Fix-points and Recursion [1]

Consider the following (partial) functions:

- $f0(n) \equiv if(n=0) 1 else \perp$
- $f1(n) = if (n=0) 1 else if (n <=1) n*f0(n-1) else \bot$
- $f2(n) = if (n=0) 1 else if (n<=2) n*f1(n-1) else \bot$
- $f3(n) = if (n=0) 1 else if (n<=3) n*f2(n-1) else \bot$
- ...
- fj(n) = if (n=0) 1 else if (n<=j) n*fj-1(n-1) else \perp
- Observation: The infinite union of all fj for j ε N is the *factorial* function.
 - A function is a set of ordered pairs (such that first elements are unique).
 - Therefore the union is a well-defined operation.
 - Each fj is consistent with fk for all k < j and all n < k.
 - Therefore the resulting union is also a function.

Note:

Recursion captures this infinite union.

Fix-points and Recursion [2]

Simplified form:

- $f^0(n) = if (n=0) 1 else \perp$
- $f^1(n) = if (n=0) 1 else n*f^0(n-1)$
- $f^2(n) = if (n=0) 1 else n*f^1(n-1)$
- $f^3(n) = if (n=0) 1 else n*f^2(n-1)$
- .
- $f^{j}(n) = if(n=0) 1 else n*f^{j-1}(n-1)$

And

• fact = $U_{j \epsilon N} f^{j}$

Fix-points and Recursion [3]

- Simplified form using LC notation:
 - $f^0 = \lambda n. (= n \ 0) \ 1 \perp$
 - $f^1 = \lambda n$. (= n 0) 1 (* n (f^0 (pred n)))
 - $f^2 \equiv \lambda n$. (= n 0) 1 (* n (f^1 (pred n)))
 - $f^3 = \lambda n$. (= n 0) 1 (* n (f^2 (pred n)))
 - ...
 - $f^{j} \equiv \lambda n$. (= n 0) 1 (* n (f^{j-1} (pred n)))
- Each f^j is defined from its predecessor f^{j-1}
 - Can we automate this construction?
 - Consider

$$F = \lambda f. \ \lambda n. \ (= n \ 0) \ 1 \ (* n \ (f \ (pred \ n)))$$

• Then, $F f^{j} = f^{j+1}$

Fix-points and Recursion [4]

- Given the definition
 - $F = \lambda f. \lambda n. (= n \ 0) \ 1 (* n \ (f \ (pred \ n)))$
- And the fact
 - $F f^{j} = f^{j+1}$
- We can ask, what is the fix-point of F?
 - F fact = fact where fact = $U_{j \epsilon N} f^{j}$
- Thus if you define the meta-function F for any iterative sequence of functions f^j,
 - Then the fix-point of F is equivalent to the recursive function defining (U f^j)

Fix-points and Recursion [4]

- Recall that Y computes the fix-point for any given function.
- we can define F as
 - $F = \lambda f. \lambda n. (= n \ 0) \ 1 \ (* n \ (f \ (pred \ n)))$
- And obtain its fix-point (Y F).

Partial Recursive Functions

Recursive Functions –

- The smallest set of numeric functions including initial functions and closed under composition, primitive recursion, and minimalization.
- See Induction definition on the next slide.

Partial Recursive Functions

- Constant functions (for each n and k) are p.r:
 - F(x1 x2 ... xk) = n
 - Successor function is p.r.
 - Projection functions (for each k and i) are p.r:
 - $P(x1 \ x2 \dots xk) = xi$
 - If h, g1, g2, ... gm, are p.r then f (as defined below) is p.r:
 - $f(x_1,x_2,...,x_k) = h(g_1(x_1,...x_k), g_2(x_1,...x_k),...g_m(x_1,...x_k))$
 - If χ and ψ are p.r., then so is φ , where :

$$\varphi(0, n) = \chi(n)$$

$$\varphi(m+1, n) = \psi(\varphi(m, n), m, n)$$

if χ is p.r, then so is φ , where :

$$\varphi(m) = \min_{n} [\chi(m, n) = 0]$$

Lambda Calculus vs. Partial Recursive Functions

To prove that lambda calculus is as powerful:

- 1. Prove that initial functions are λ -definable.
- 2. Prove that if g, h1, h2, ... are λ -definable, then f is λ -definable where f x = g(h1(x), h2(x), ...)
- 3. Prove that if χ and ψ are λ -definable, then so is ϕ , where :

```
\varphi(0, n) = \chi(n)
\varphi(m+1, n) = \psi(\varphi(m, n), m, n)
```

4. Prove that if χ is λ -definable, then so is φ , where : $\varphi(m) = \min_n \left[\chi(m, n) = 0 \right]$

Lambda Calculus vs. Partial Recursive Functions

Proof of 1 (obvious):

- Constant functions (for each n and k):
 - λx1 x2 ... xk. n
- Successor (already defined)
- Projection functions (for each k and i):
 - λx1 x2 ... xk. xi

Proof of 2:

- Composition (for each m and k):
 - λh g1 g2 ... gm. λx1 x2 ... xk.
 h (g1 x1 x2 ... xk) (g2 x1 x2 ... xk) ... gm(x1 x2 ... xk)

Partial Recursive Functions in LC

- Proof of 3:
- (Try to)Define φ by: λ mn. IF (zero? m) (χ n) (ψ (φ (pred m) n) (pred m) n)
- But this is recursive, so define F by
 - $F \equiv \lambda \phi mn$ IF (zero? m) (χ n) (ψ (ϕ (pred m) n) (pred m) n)
- By Fix-Point Theorem,
 - $\varphi = Y F$.

Partial Recursive Functions in LC

- Proof of 4:
- Define φ by:

```
\lambda n. (\lambda m. IF (zero? (\chi m n)) n (\phi (succ n) m))
```

But this is recursive, so define F by

```
F \equiv \lambda \varphi. \lambda n. (\lambda m. IF (zero? (\chi m n)) n (\varphi (succ n) m))
```

- By Fix-Point Theorem,
 - $\bullet \phi = Y F$

- Single step of application is known as reduction (in particular as β-reduction):
 - $(\lambda x. M) N = M[N/x]$
- Evaluation of a lambda term is achieved by repeated reductions:
 - (λn. n (λx. λy. x)) (λb. b (λx. λy. y) N
 - \rightarrow (λ b. b (λ x. λ y. y) \underline{N}) (λ x. λ y. x)
 - \rightarrow ($\lambda x. \lambda y. x$) ($\lambda x. \lambda y. y$) \underline{N}
 - \rightarrow (λ y. (λ x. λ y. y)) \underline{N}
 - \rightarrow ($\lambda x. \lambda y. y$)

- When does evaluation step?
 - When there is no more reduction possible.
- Reduction of a term is possible only
 - if it is an application i.e. of the form u v
 - and u evaluates to an abstraction
- A term of the form
 - U V where U is an abstraction
 - is known as reducible expression i.e. a redex

- (λn. n (λx. λy. x)) (λb. b (λx. λy. y) N)
 - \rightarrow (λ b. b (λ x. λ y. y) \underline{N}) (λ x. λ y. x)
 - \rightarrow ($\lambda x. \lambda y. x$) ($\lambda x. \lambda y. y$) \underline{N}
 - \rightarrow ($\lambda y. (\lambda x. \lambda y. y)) <math>\underline{N}$
 - \rightarrow ($\lambda x. \lambda y. y$)

This expression cannot be reduced further

- this is known as a *normal form*

Evaluation may not terminate

- (λx. x x) (λx. x x)
- \rightarrow ($\lambda x. x x$) ($\lambda x. x x$)
- \rightarrow ($\lambda x. \times x$) ($\lambda x. \times x$)

This expression does not ever result in a normal form.

Reduction Order

- Evaluate the expression
 - (λx. y) ((λx. x x) (λx. x x))
- Observations?

Reduction Order

(Normal Order) Theorem:

 If a lambda expression s can be reduced to a normal form, then the reduction sequence arising from s by reducing the left-most outermost redex will always result in normal form.

Church-Rosser Theorem

If a term t reduces to s1 and t also reduces to s2, then there exists a term u such that both s1 and s2 reduce to u.

Corollary:

 Normal forms if they exist are unique (upto αequivalence) for a given expression.