An efficient inverse model of the ocean's coupled nutrient cycles.

Benoît Pasquier Ph.D. student

Under the supervision of Mark Holzer School of Mathematics and Statistics UNSW

10 microns

What is inverse modeling?

Motivation

- 1. Understand and quantify how nutrient cycles are coupled
- 2. Quantify the pathways and timescales of the global response to large-scale iron perturbations
- 3. Quantify the role of marine diatoms and the silicon cycle in mediating the response
- 4. Quantify the sensitivity of elemental ratios (e.g., Si: P) to iron pertrubations

Nutrient cycle and coupling

- complex ecosystem
- large amount of species
- multiple nutrients
- poorly understood mechanisms (e.g. iron scavenging)
- simulation can be costly
- large parameter space
- lack of data (e.g. iron)
- poorly constrained parameters

Distill essentials and simplify

- Zooplankton grazing embedded in phytoplankton mortality
- plankton not explicitly transported as tracers
- only nutrients tracers
- data constrained
- embedded in a data-assimilated global circulation
- numerically highly efficient; allows for optimization and novel diagnostics *Pasquier et* al. (in prep.)

Plankton population model

 population local equation, a modified logistic equation, for each phytoplankton class

$$\partial_t b(t) = \mu b(t) - \lambda \left(\frac{b(t)}{b^*}\right)^{\frac{1}{\alpha}} b(t)$$

assumed fast evolution to

$$b_{\infty} = b^* \left(\frac{\mu}{\lambda}\right)^{\alpha}$$

associated nutrient uptake is population × growth rate

$$J = b_{\infty} \mu = b^* \left(\frac{\mu}{\lambda}\right)^{\alpha} \mu$$

- \bullet b(t) plankton concentration
- $\bullet \, \mu$ growth rate
- ullet λ mortality rate
- \bullet b^{\ast} pivotal concentration sets the scale of grazing

Galbraith et al. [2010] Dunne et al. [2004] Armstrong [1999, 2003]

A versatile coupling approach

mortality rate dependencies

$$\lambda = \lambda_0 F_T$$

growth rate dependencies

$$\mu = \mu_0 F_T F_I \min (m_P, r_{Fe} m_{Fe}, \dots)$$

• $F_T = e^{\kappa T}$, temperature dependence *Eppley* [1972]

- \bullet F_I , irradiance dependence
- m_X , nutrient X deficiency
- P, phosphate concentration
- Fe, iron concentration

Galbraith et al. [2010]

Michaelis-Menten kinetics

$$m_P = rac{P}{P + k_P}$$
 $m_{Fe} = rac{Fe}{Fe + k_{Fe}}$

Coupled nutrient cycling and biogenic transport embedded in global circulation

total uptake is summed over phytoplankton classes X

$$J_{\sf up}(P, \mathit{Fe}, \mathit{Si}) = \sum_X J_X(P, \mathit{Fe}, \mathit{Si})$$

modeled P and Fe obey tracer equation

$$\partial_t P + \mathcal{T} P = -J_{\rm up} + \underbrace{\mathcal{S} J_{\rm up}}_{\rm source}$$

uptake ratio sources and sink of the sources
$$\partial_t Fe + \mathcal{T} Fe = R_{Fe:P}(Fe)(-J_{\mathsf{up}} + \mathcal{S} J_{\mathsf{up}}) + J_{\mathsf{ext}(Fe)}(-J_{\mathsf{up}} + \mathcal{S} J_{\mathsf{up}})$$

- T data-assimilated transport operator

 Primeau et al. [2013]
- S (biogenic transport) instantly redistributing $J_{\rm up}$ as the sinking particle flux divergence

similar equation for Si

Discretized equations

An expression of the form $\partial_t \mathbf{x} = \mathbf{f}(\mathbf{x})$ where the variable \mathbf{x} is

$$\mathbf{x} = \begin{bmatrix} \mathbf{p} \\ \mathbf{f} \\ \mathbf{s} \end{bmatrix} \qquad \text{with } \mathbf{p} = \begin{bmatrix} P_1 \\ P_2 \\ \vdots \\ P_n \end{bmatrix}, \mathbf{f} = \begin{bmatrix} Fe_1 \\ Fe_2 \\ \vdots \\ Fe_n \end{bmatrix}, \text{ and } \mathbf{s} = \begin{bmatrix} Si_1 \\ Si_2 \\ \vdots \\ Si_n \end{bmatrix}.$$

and the right-hand side function is

$$\mathbf{f}(\mathbf{x}) = - \left[\begin{array}{c|c} \mathbf{T} & & \\ \mathbf{T} & & \\ & \mathbf{T} & \\ & & \mathbf{T} \end{array} \right] \mathbf{x} + \left[\begin{array}{c} (\mathbf{S} - \mathbf{I}) \mathbf{J}_{\mathsf{up}}(\mathbf{x}) \\ (\mathbf{S} - \mathbf{I}) \mathrm{diag}(\mathbf{R_{f:p}}) \mathbf{J}_{\mathsf{up}}(\mathbf{x}) + \mathbf{J}_{\mathsf{ext}(\mathbf{Fe})} \\ (\mathbf{S} - \mathbf{I}) \mathrm{diag}(\mathbf{R_{s:p}}) \mathbf{J}_{\mathsf{up}}(\mathbf{x}) + \mathbf{J}_{\mathsf{ext}(\mathbf{Si})} \end{array} \right]$$

Newton PDE solution

- lacksquare steady state: $\partial_t \mathbf{x} = \mathbf{f}(\mathbf{x}) = \mathbf{0}$
- use Newton's Method (generalized zero search) linear approximation:

$$f(\mathbf{x}_1) = f(\mathbf{x}_0) + \mathbf{D}f(\mathbf{x}_0) \left(\mathbf{x}_1 - \mathbf{x}_0\right) + o\left(\|\mathbf{x}_1 - \mathbf{x}_0\|\right)$$

where \mathbf{Df} is the Jacobian, a $n \times n$ sparse matrix where $n \approx \mathbf{200000}k$ for k nutrients!

To get $\mathbf{f}(\mathbf{x_1}) \approx \mathbf{0}$, we take

$$\mathbf{x_1} = \mathbf{x_0} - \mathbf{D}\mathbf{f}(\mathbf{x_0})^{-1}\mathbf{f}(\mathbf{x_0})$$

Objective parameter determination

• Chosing appropriate weights w, we build an objective function of the quadratic concentration mismatch:

$$c(p_i) = (\mathbf{x}_{\mathsf{mod}} - \mathbf{x}_{\mathsf{obs}})^T \mathrm{diag}(\mathbf{w}) (\mathbf{x}_{\mathsf{mod}} - \mathbf{x}_{\mathsf{obs}})$$

- nonlinear w.r.t. parameters
- optimisation only possible with efficient simulation

Preliminary model setup

- prescribed iron from Frantz et al. (in prep.)
- some data interpolated from different grid
- only 2 parameters optimised

Model vs. observed Phosphate

Model vs. observed Phosphate

Model vs. observed Phosphate

Future outlook and conclusion

- from prescribed iron to coupled iron
- refine coupling parameters
- optimise larger set of parameters
- formulate iron perturbations
- diagnose the teleconnections of the response using Green functions forward and adjoint models Pasquier et al. (in prep.)
- include silicon cycle
- elucidate elemental ratios

Future outlook and conclusion

- from prescribed iron to coupled iron
- refine coupling parameters
- optimise larger set of parameters
- formulate iron perturbations
- diagnose the teleconnections of the response using Green functions forward and adjoint models Pasquier et al. (in prep.)
- include silicon cycle
- elucidate elemental ratios

