Reinforcement Learning

Lectured by Paul Bilokun

Typed by Aris Zhu Yi Qing

October 13, 2022

Contents

1	Ma	rkov Concept Definitions	
2	Markov Decision Process		
	2.1	Definition	
	2.2	State Value Function (Bellman Equation)	
	2.3	Policy Evaluation (Prediction Problem)	
	2.4	State-Action Value Function (Cost-To-Go)	
	2.5	Optimal Value Function	

1 Markov Concept Definitions

- Markov Process: a tuple (S, P), where:
 - $-\mathcal{S}$ a set of states
 - $\mathcal{P}_{ss'} = P[S_{t+1} = s' | S_t = s]$ a state transition probability matrix
 - $-\sum_{s'} \mathcal{P}_{ss'} = 1$ (to satisfy the probability axiom)
- A state s_t is Markov $\iff P[s_{t+1}|s_t] = P[s_{t+1}|s_1,\ldots,s_t]$
 - once the state is known, then any data of the history is no longer needed
- Stationarity (Homogeneous): $P[s_{t+1}|s_t]$ doesn't depend on t, but only on the origin and destination states.
- Markov Reward Process (MRP): a tuple (S, P, R, γ) , where:
 - $-\mathcal{S}$ a set of states
 - $-\mathcal{P}_{ss'}$ a state transition probability matrix
 - $-\mathcal{R}_s = \mathbb{E}[r_{t+1}|S_t = s]$ an expected immediate reward that we collect upon departing state s, whose collection occurs at time step t+1
 - $-\gamma \in [0,1]$ a discount factor
- Return (R_t) : the total discounted reward from time-step t:

$$R_t = r_{t+1} + \gamma r_{t+1} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

- $-\gamma$ close to 0 leads to myopic evaluation
- $-\gamma$ close to 1 leads to far-sighted evaluation
- if T is the time to reach the terminal state, then

$$R_1 = r_2 + \gamma r_3 + \dots + \gamma^{T-2} r_T.$$

• State Value Function v(s) of an MRP: the expected return R starting from state s at time t:

$$v(s) = \mathbb{E}[R_t|S_t = s].$$

• Bellman Equation for MRPs:

$$v(s) = \mathbb{E}[R_t|S_t = s]$$

$$= \mathbb{E}[r_{t+1} + \gamma(r_{t+2} + \gamma r_{t+3} + \cdots)|S_t = s]$$

$$= \mathbb{E}[r_{t+1} + \gamma R_{t+1}|S_t = s]$$

$$= \mathbb{E}[r_{t+1} + \gamma v(S_{t+1})|S_t = s]$$

i.e. v(s) decomposes into

- immediate reward r_{t+1}
- discounted return of successor state $\gamma v(S_{t+1})$.

Alternative forms:

- sum notation: $v(s) = \mathcal{R}_s + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'} v(s')$
- <u>vector notation</u>: $\mathbf{v} = \mathcal{R} + \gamma \mathcal{P} \mathbf{v}$, where $\mathbf{v} \in \mathbb{R}^n$.

Solving the equation in vector notation, we obtain

$$\mathbf{v} = (\mathbb{1} - \gamma \mathcal{P})^{-1} \mathcal{R}$$

while the iterative methods to solve this include:

- 1. dynamic programming
- 2. Monte-Carlo evaluation
- 3. temporal-difference learning
- Policy: the conditional probability distribution to execute an action $\overline{a \in \mathcal{A}}$ given that one is in state $s \in \mathcal{S}$ at time t:

$$\pi_t(a,s) = P[A_t = a|S_t = s]$$

This is considered as **probabilistic** or **stochastic**.

- Policy is **deterministic** if $\pi(a,s) = 1$ and $\pi(a',s) = 0 \ \forall a \neq a'$.
- Alternative notation for deterministic policy: $\pi_t(s) = a$.

Optimal policy (action) maximises expected return.

2 Markov Decision Process

2.1 Definition

- S State space
- A Action space
- $\mathcal{P}_{ss'}^a$ transition probability $p(s_{t+1}|s_t, a_t)$
- $\gamma \in [0,1]$ discount factor
- $\mathcal{R}^a_{ss'} = r(s, a, s')$ immediate/instantaneous reward function.
 - temporal notation: $r_{t+1} = r(s_{t+1}, s_t, a_t)$
- π policy
 - stochastic: $\mathbf{a} \sim p_{\pi}(\mathbf{a}|\mathbf{s}) \equiv \pi(\mathbf{a}|\mathbf{s}) \equiv \pi(a,s)$
 - * each entry of the distribution is $\pi(a_1|\mathbf{s})$ or $\pi(a_1|s)$, depending on whether it is a collection of states of different objects \mathbf{s} or just state of one object s.
 - deterministic: $\mathbf{a} = \pi(\mathbf{s})$

2.2 State Value Function (Bellman Equation)

$$\begin{split} V^{\pi}(s) &= \mathbb{E}[R_t | S_t = s] \\ &= E\left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | S_t = s\right] \\ &= E\left[r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} | S_t = s\right] \\ &= \sum_{a \in \mathcal{A}} \pi(a, s) \left\{\sum_{s' \in \mathcal{S}} \mathcal{P}^a_{ss'} \left(\mathcal{R}^a_{ss'} + \gamma \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+2} | S_{t+1} = s'\right]\right)\right\} \end{split}$$

2 MARKOV DECISION PROCESS 3

$$= \sum_{a \in \mathcal{A}} \pi(a, s) \left\{ \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \left(\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s') \right) \right\}$$

where, for instance,

$$\mathbb{E}[r_{t+1}|S_t = s] = \sum_{a \in \mathcal{A}} P[a|s] \left(\sum_{s' \in \mathcal{S}} P[s'|s, a] r(s, a, s') \right).$$

Policy Evaluation (Prediction Problem)

- Iterative policy evaluation: $V_1(s), V_2(s), \dots, V_k(s)$
 - Pseudocode:

Input π the policy to be evaluated Initialize $V(s) = 0, \forall s \in \mathcal{S}^+$ Repeat

 $\Delta \leftarrow 0$

For each $s \in \mathcal{S}$:

 $v \leftarrow V(s)$

 $V(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}_{ss'}^{a} [\mathcal{R}_{ss'}^{a} + \gamma V(s')]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$

until $\Delta < \theta$ (a small positive number as a threshold)

Output $V \approx V^{\pi}$

State-Action Value Function (Cost-To-Go)

• Definition:

$$Q^{\pi}(s, a) = \mathbb{E}[R_t | S_t = s, A_t = a] = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | S_t = s, A_t = a\right]$$

• relation to State Value Function:

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(s, a) Q^{\pi}(s, a)$$

Optimal Value Function

• Optimal State Value Function:

$$V^*(s) = \max_{\pi} V^{\pi}(s), \ \forall s \in \mathcal{S}$$

The policy π^* that maximises the value function is the **optimal policy**.

• Optimal State-Action Value Function:

$$Q^*(s, a) = \max_{\pi} Q^{\pi}(s, a), \ \forall s \in \mathcal{S}, a \in \mathcal{A}$$