مدارهای الکتریکی ۱

جلسه اول: معرفی

محمدرضا اشرف دانشگاه صنعتی شاهرود

اهداف درس

🗖 هدف:

- فراهم آوردن تئوری پایه ای لازم برای دیگر دروس
- □ آشنایی با عناصر پایه مدار و روابط و رفتار آنها (مقاومت، خازن، سلف، منابع ولتاژ و جریان)
 - روشهای تحلیل مدارهای خطی در حوزه زمان و فرکانس
- پس از گذراندن این درس قادر خواهید بود تا هر نوع مدار خطی و تغییرناپذیر بازمان شامل مقاومت، سلف، خازن و منابع ولتاژ و جریان را تحلیل کنید.

چی یاد می گیریم؟

برای گذراندن این درس نیاز به چی داریم؟

از مباحث ریاضی:

- مشتق و انتگرال (انتگرال یگانه)
- معادلات مرتبه اول و دوم و بالاتر (صرفا معادلات خطی با ضرایب ثابت، پاسخ همگن،
 پاسخ ناهمگن، پاسخ خصوصی و پاسخ عمومی)
 - □ اعداد مختلط و عملیات بر روی اعداد مختلط

نحوه مطالعه:

- □ ا پیش مطالعه
- □ ۲ حواس جمع در کلاس و نکته برداری (جزوه نویسی نکنید لطفا)
 - □ ۳– مطالعه کتاب پس از کلاس
 - □ ۴ حل کردن تمرین ها و مثال های بسیار

سرفصل درس

- مبانی مدارهای الکتریکی (۴ جلسه):
- معرفی اجزای مدار (مقاومت، خازن، سلف، منابع ولتاژ و جریان)
 - □ مدارهای مقاومتی و روشهای تحلیل آنها (۳ جلسه):
 - تحلیل گره، مش و مدار معادل تونن
 - □ تقویت کننده عملیاتی (۱ جلسه):
- معرفی کاربردهای آپامپ وتحلیل مدارهای شامل آپامپ ایدهآل
 - □ مدارهای مرتبه اول (۴ جلسه):
 - تحلیل مدارهای مرتبه اول شامل سلف یا خازن
 - □ مدارهای مرتبه دوم (۴ جلسه):
 - □ تحلیلمدارهای مرتبه دوم شامل سلف و خازن

سرفصل درس

- خواص اساسی مدارهای خطی تغییرناپذیر با زمان (۲ جلسه):
 - به دست آوردن پاسخ ضربه بدون حل معادله
 - □ تجزیه و تحلیل حالت دائمی سینوسی (۵ جلسه):
- □ معرفی فازور، امپدانس، ادمیتانس، تحلیل مدارها در حالت سینوسی، مدارهای تشدید، فیلترها و توان در حالت سینوسی
 - □ سلف های تزویج شده و ترانسفورماتور (۲ جلسه):
 - ם معرفی ترانسفورمر و تحلیل آن

سرفصل درس

مدارهاي الكتريكي ا

تعداد واحد: 3 (نظری)

پیشنیــاز: -

همنيساز: فيزيك ٢، معادلات ديفرانسيل

هدف: آشنایی با مدلسازی اجزاء و تحلیل مدارهای الکتریکی درحوزه زمان و حالت دائمی سینوسی

شــرح درس:

هقدمه : شمای کلی درس، ضرورت و مبنای مدلسازی در تحلیل و طراحی مهندسی

اجزاء، مدلها و مدارهای مقاومتی : مدارهای فشرده، قوانین کیرشف، اجزاء مدار شامل مقاومتها، خازنها، سلفها، منابع نابسته و وابسته و شکل موجها، توان و انرژی، روشهای تحلیل گره و مش در مدارهای مقاومتی، مدار معادل تونن و نرتن، استفاده از جمع

آثار و تقارن در تحلیل مدار، تقویت کننده های عملیاتی و کاربردهای آن

مدارهای مرتبه اول: پاسخ گذرا و حالت دائمی، پاسخهای پله و ضربه

مدارهای موتبه دوم : پاسخهای پله و ضربه، نوسان و مقاومت منفی و پایداری

مدارهای موتبه بالاتو: روش تحلیل گره و مش، محاسبه پاسخ ضربه

انتكرال كانولوشن

تجزیه و تحلیل حالت دائمی سینوسی: فازورها، مفاهیم امپدانس و ادمیتانس، تحلیل حوزه فرکانسی، تابع شبکه و پاسخ فرکانسی، توان لحظهای، توان متوسط و توان مختلط، مقادیر مؤثر، قضیه انتقال توان حداکثر

آشنائی با مدارهای سه فاز

سلفهای تزویج شده و ترانسفورماتور

زمان بندی درس

🛭 مراجع اصلی:

- □ نظریه اساسی مدارها و شبکه ها (جلد اول)، ارنست کوه، چارلز دسور، ترجمه دکتر پرویز جبه دار مارالانی، (چاپ سال ۱۳۸۴ به بعد)
 - □ William Hayt, *Engineering Circuit Analysis*, 8th Ed.

🛭 مراجع کمکی:

- □ R.C. Dorf and J.A. Svoboda, *Introduction to Electric Circuits*, 8th Ed. John Wiley, 2010.
- □ J.W. Nilsson and S. A. Reidel, *Electric Circuits*, 9th Ed., Prentice-Hall, 2010.

ارزشیابی (نمرات اصلی)

- کوییزها: (۱۴نمره)
- □ کوییز ۱ (۳/۵ نمره): از ابتدای درس تا پایان فصل ۳ (۲۰ اسفند ۹۸)
 - کوییز ۲ (۳/۵ نمره): فصل آپامپ و فصل ۴ (۳۱ فروردین ۹۹)
 - □ کوییز ۳ (۳/۵ نمره): فصل ۵ و فصل ۶ (۲۱ اردیبهشت ۹۹)
 - کوییز ۴ (۳/۵ نمره): فصل ۷ (۱۱ خرداد ۹۹)
 - پایان ترم: (۶ نمره)
 - □ فصل ۵ و فصل ۷: طبق اعلام آموزش

ارزشیابی (نمرات مازاد)

- در صورت کسب حداقل ۷ نمره از مجموع نمرات کوییز و پایان ترم (۲۰ نمره)، دانشجویان مشمول نمره مازاد زیر خواهند بود:
 - 🛭 پروژه: (تا ۱/۵ نمره اضافی)
 - تحلیل و شبیه سازی یک مدار با نرم افزار: ۱۴ خرداد ۹۹
- ت در صورت حضور در جلسه اول و دوم، دانشجویان مشمول نمرات <mark>مازاد</mark> زیر خواهند شد:
 - حل تمرین: (۱ نمره اضافی)
 - ۴ شنبه ها ۱۲ ۱۴، سر کار خانم طاهری
 - نمره ارفاقی پایان ترم

راه های ارتباطی

- اطلاع رسانی:
- ه کانال اطلاع رسانی در پیام رسان (با افتخار) ایرانی سروش drashraf.sut

پست الکترونیکی:

□ m.r.ashraf@chmail.ir

برنامه هفتگی

18-11	14-18	17-14	17-1.	١٠-٨	
ا <mark>لکترونیک ۱</mark> (ک. ۱۲)	<mark>مبدل داده</mark> (ک. ۸)	-	دفتر انجمنهای علمی (پردیس مرکزی)	دفتر انجمنهای علمی (پردیس مرکزی)	شنبه
مطالعه و تحقیق	<mark>* مبدل داده</mark> ک. ۷)	-	م دار۱ (ک. ۱۲)	<mark>پاسخ گویی</mark>	۱شنبه
<mark>الکترونیک ۱</mark> ** (ک. ۱۲)	مطالعه و تحقیق	-	جلسه گروه	<mark>پاسخ گویی</mark>	۲شنبه
دفتر انجمنهای علمی (پردیس مرکزی)	دفتر انجمنهای علمی (پردیس مرکزی)	-	<mark>پاسخ گویی</mark>	<mark>مدار۱</mark> (ک. ۱۲)	۳شنبه
مطالعه و تحقیق	مطالعه و تحقیق	-	مطالعه و تحقیق	مطالعه و تحقیق	۴شنبه

مدارهای خطی

- 🗅 خطی بودن یعنی چه؟
- آیا تمامی مدارها خطی هستند؟
 - 🛛 چرا مطالعه مدارهای خطی؟

$$f(x) = e^x \rightarrow \approx 1 + x$$

х	f(x)*	1 + x	Relative error**
0.0001	1.0001	1.0001	0.0000005%
0.001	1.0010	1.001	0.00005%
0.01	1.0101	1.01	0.005%
0.1	1.1052	1.1	0.5%
1.0	2.7183	2.0	26%

واحدها و یکاهای SI

Base Quantity	Name	Symbol
length	meter	m
mass	kilogram	kg
time	second	S
electric current	ampere	A
thermodynamic temperature	kelvin	K
amount of substance	mole	mol
luminous intensity	candela	cd

پیشوندهای SI

Factor	Name	Symbol	Factor	Name	Symbol
10^{-24}	yocto	у	10^{24}	yotta	Y
10^{-21}	zepto	Z	10^{21}	zetta	Z
10^{-18}	atto	a	10^{18}	exa	Е
10^{-15}	femto	f	10^{15}	peta	P
10^{-12}	pico	p	10^{12}	tera	T
10^{-9}	nano	n	10^{9}	giga	G
10^{-6}	micro	μ	10^{6}	mega	M
10^{-3}	milli	m	10^{3}	kilo	k
10^{-2}	centi	С	10^{2}	hecto	h
10^{-1}	deci	d	10^{1}	deka	da

بار (Charge) و جریان (Charge)

- □ انواع بار: مثبت و منفی: (واحد کولن (coulomb (C)
- در درس مدار فرض میکنیم بارهای منفی (الکترون ها) جریان تولید می کنند.
 - □ باریک الکترون: 1.6×10×20 کولن

ם قانون بقای بار (Charge conservation):

در یک مدار، بار نه به وجود آمده و نه از بین می رود، فقط از نقطه ای به نقطه دیگر حرکت می کند.

ם جریان: (واحد آمپر (Ampere (A)

- ناشی از حرکت بارها
- تعریف: تعداد کل بارهای عبوری از سطح مقطع یک ماده

در یک ثانیه

$$i = \frac{\Delta Q}{\Delta t} = \frac{dQ}{dt}$$

اختلاف ولتاژيا اختلاف پتانسيل

□ برای برقراری جریان، الکترون ها نیازمند انرژی هستند.

 $_{\mathbf{B}}$ مقدار انرژی لازم برای انتقال یک کولن بار از نقطه $_{\mathbf{B}}$ به

توان (power)

- (J/s) انرژی در واحد زمان \Box
 - □ واحد وات (Watt (W

$$\frac{J}{S} = \frac{V.C}{S} = \frac{V.A.S}{S} = V.A$$

پس توان یک قطعه برابر با حاصل ضرب ولتاژ در جریان آن است.

مقاومت (Resistor)

- 🗅 مقاومت در برابر جریان
- جنس از کربن، سیم یا گچ

🛭 تعریف خازن:

□ دو ورقه رسانا که با فاصله کمی از یکدیگر به صورت موازی قرار دارند و بین آنها عایق وجود دارد

🛭 انواع خازن

۱ - سرامیکی (عدسی): ظرفیت های کم در حدود پیکوفاراد تا حداکثر ۱ میکروفاراد

- 🛭 انواع خازن
- ם ورقه ای: ابعاد بزرگ، ظرفیت کم، تحمل ولتاژ و جریان زیاد
 - کاغذی
 - پلاستیکی

- 🛭 انواع خازن
- □ میکا : ورقه های نازک میکا بین ورقه های نازک فلزی
 - ם ظرفیت بین ۱/۱ تا ۱ میکروفاراد

- 🛭 انواع خازن
- □ الكتروليتي (شيميايي) استوانه اي قطب دار: ظرفيت هاي زياد
 - ם آلومینیومی
 - تانتالیومی

(Inductor) القاكر

القاگر همان سیم پیچ است که شار الکتریکی را در خود ذخیره می کند.

ترانس (Transformator)

ترانس در واقع دو سیم پیچ است که روی هم پیچیده شده است. ترانس قابلیت افزایش یا کاهش ولتاژیا جریان را دارد.

(Voltage & Current Source) منبع ولتاژ و جریان

- منبع ولتاژ: هر چیزی که ولتاژ دو سر آن ثابت است.
- □ منبع جریان: هر چیزی که جریان دو سر آن ثابت است.

كاربرد مدار 1 درالكترونيك

□ تقویت سیگنال های چشمی (EOG)

کاربرد مدار ۱

□ سیگنال های چشمی (EOG)

کاربرد مدار ۱

□ تقویت سیگنال های چشمی (EOG)

- کنترل ویلچیر
- کنترل ماوس
- 🗅 ساخت چشم مصنوعی
 - ... 🗆

کاربرد مدار ۱ در قدرت

□ تحلیل مدارهای تبدیل ولتاژ پایین به بالا و بالعکس

کاربرد مدار ۱ در مخابرات

□ تحلیل مدارهای فرستنده و گیرنده

کاربرد مدار ۱ در کنترل

□ بلوک دیاگرام یک سیستم کنترلی

نکاتی در مورد تمرین ها

نکاتی در مورد پروژه

- □ چرا نرم افزار؟!
- برای تأیید طراحی تئوری، و یا تحلیل مدارهای پیچیده
 - 🗅 نکات مهم در پروژه:
- □ انجام دقیق تحلیل های تئوری و نوشتن موارد مورد سوال
 - 🛭 انجام دقیق شبیه سازی ها
 - 🗖 مقایسه شبیه سازی و تئوری
 - گزارش نویسی و ارسال به موقع