Нахождение корней линейной системы уравнения с помощью метода Гаусса с нахождением максимального элемента по столбцу

Шерстобитов Андрей 332 группа

9 ноября 2020 г.

Содержание

1	Постановка задачи		
2	Алі	горитм	
	2.1	Разбиение матрицы на блоки	
	2.2	Прямой ход	
	2.3	Обратный ход	
	-	анение в памяти	
4	•	енка сложности	
		Прямой ход	
	4.2	Обратный ход	
	4.3	Сложность алгоритма	

1 Постановка задачи

Пусть дана матрица A размера $n \times n$, вектор b размера n. Требуется найти решение линейной системы Ax = b, используя метод Гаусса с выбором максимального элмента по столбцу.

2 Алгоритм

2.1 Разбиение матрицы на блоки

Разобьем матрицу A на блоки размера $m \times m$ по формуле $n = k \cdot m + l$:

$$\begin{pmatrix} A_{1,1}^{m \times m} & A_{1,2}^{m \times m} & \dots & A_{1,k}^{m \times m} & A_{1,k+1}^{m \times l} & B_1^m \\ A_{2,1}^{m \times m} & A_{2,2}^{m \times m} & \dots & A_{2,k}^{m \times m} & A_{2,k+1}^{m \times l} & B_2^m \\ \dots & \dots & \dots & \dots & \dots & \dots \\ A_{k,1}^{m \times m} & A_{k,2}^{m \times m} & \dots & A_{k,k}^{m \times m} & A_{k,k+1}^{m \times l} & B_k^n \\ A_{k+1,1}^{l \times m} & A_{k+1,2}^{l \times m} & \dots & A_{k+1,k}^{l \times m} & A_{k+1,k+1}^{l \times l} & B_{k+1}^l \end{pmatrix}$$

2.2 Прямой ход

1. $A_{1,1}^{m\times m}\to V_1$, методом Гаусса с выбором максимального элемента по столбцу для находим обратную матрицу $V_1|V_3\Rightarrow V_3=V_1^{-1}=(A_{1,1}^{m\times m})^{-1},$ $min=\|V_3\|$

Если $\sharp (A_{1,1}^{m \times m})^{-1}$, то выбираем следующую строчку.

Если $\forall A_{i,1}^{m \times m}, i = 1, \dots k \not\equiv (A_{i,1}^{m \times m})^{-1}$, то алгоритм не применим.

 $\forall i=2,\dots k\ A_{i,1}^{m imes m} o V_1.\ V_1|V_2\Rightarrow V_2=V_1^{-1},$ если $\|V_2\|< min,$ то меняем местами указатели V_3 и $V_2.$

- 2. $I_i \leftrightarrow I_1$ (строчки)
- 3. $A_{1,1}^{m \times m} = E_{1,1}^{m \times m}, \ V_3 \times (A_{1,2}^{m \times m} \ \dots \ A_{1,k}^{m \times m} \ A_{1,k+1}^{m \times l} = B_1^m)$: $A_{1,j}^{m \times m}, j = 2, \dots, k; \ A_{1,j}^{m \times l}, j = k+1$ сохраняем в V_1 , затем $V_2 = V_3 \cdot V_1$ и $V_2 \to A_{1,j}$. В итоге получаем: $E_{1,1}^{m \times m} \ A_{1,2}^{m \times m^*} \ \dots \ A_{1,k}^{m \times m^*} \ A_{1,k+1}^{m \times l^*} = B_1^{m^*}$

4. Далее действуем по формуле $A_{i,j} = A_{i,j} - A_{i,1} \cdot A_{1,j}$, получим матрицу:

$$\begin{pmatrix} E_{1,1}^{m \times m} & A_{1,2}^{m \times m^*} & \dots & A_{1,k}^{m \times m^*} & A_{1,k+1}^{m \times l^*} & B_1^{m^*} \\ 0 & A_{2,2}^{m \times m^*} & \dots & A_{2,k}^{m \times m^*} & A_{2,k+1}^{m \times l^*} & B_2^{m^*} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & A_{k,2}^{m \times m^*} & \dots & A_{k,k}^{m \times m^*} & A_{k,k+1}^{m \times l^*} & B_k^{m^*} \\ 0 & A_{k+1,2}^{l \times m^*} & \dots & A_{k+1,k}^{l \times m^*} & A_{k+1,k+1}^{l \times l^*} & B_{k+1}^{l^*} \end{pmatrix}$$

5. Далее повторяем алгоритм для матрицы $(n-m) \times (n-m)$:

$$\begin{pmatrix} A_{2,2}^{m \times m^*} & \dots & A_{2,k}^{m \times m^*} & A_{2,k+1}^{m \times l^*} & B_2^{m^*} \\ \dots & \dots & \dots & \dots & \dots \\ A_{k,2}^{m \times m^*} & \dots & A_{k,k}^{m \times m^*} & A_{k,k+1}^{m \times l^*} & B_k^{m^*} \\ A_{k+1,2}^{l \times m^*} & \dots & A_{k+1,k}^{l \times m^*} & A_{k+1,k+1}^{l \times l^*} & B_{k+1}^{l^*} \end{pmatrix}$$

На r < k + 1 ходу алгоритма:

- 1. Ищем вышеописанную обратную среди матриц $A_{qr}^{m \times m}, \ q = r, \dots, k$
- 2. $I_r \leftrightarrow I_q$ (строчки)

3.
$$A_{r,r}^{m \times m} = E_{r,r}^{m \times m}, \ (A_{r,r}^{m \times m})^{-1} \times (A_{r,r+1}^{m \times m} \dots A_{r,k}^{m \times m} A_{r,k+1}^{m \times l} = B_r^m)$$

$$\begin{aligned} 4. \ i,j &= r+1, \dots, k \\ i &= r+1, \dots, k \\ j &= r+1, \dots, k \end{aligned} \qquad A_{i,j}^{m \times m} &= A_{i,j}^{m \times m} - A_{i,r}^{m \times m} \times A_{r,j}^{m \times m} \\ A_{i,k+1}^{m \times l} &= A_{i,k+1}^{m \times l} - A_{i,r}^{m \times m} \times A_{r,k+1}^{m \times l} \\ A_{i,k+1}^{l \times m} &= A_{i,k+1}^{l \times m} - A_{i,r}^{l \times m} \times A_{r,k+1}^{m \times l} \\ A_{k+1,j}^{l \times l} &= A_{k+1,j}^{l \times m} - A_{k+1,r}^{l \times m} \times A_{r,j}^{m \times m} \\ A_{k+1,k+1}^{l \times l} &= A_{k+1,k+1}^{l \times l} - A_{k+1,r}^{l \times m} \times A_{r,k+1}^{m \times l} \\ i &= r+1, \dots, k \end{aligned} \qquad \begin{aligned} B_{i}^{m} &= B_{i}^{m} - A_{i,r}^{m \times m} \times B_{r}^{m} \\ B_{k+1}^{l} &= B_{k+1}^{l} - A_{k+1,r}^{l \times m} \times B_{r}^{m} \\ i &= r+1, \dots, k \end{aligned} \qquad \begin{aligned} A_{i,r}^{m \times m} &= 0 \\ A_{i,r}^{l \times m} &= 0 \\ A_{k+1,r}^{l \times m} &= 0 \end{aligned}$$

На r = k + 1 ходу алгоритма:

- 1. Ищем вышеописанную обратную к $A_{k+1,k+1}^{l imes l}$
- $3. \ A_{k+1,k+1}^{l \times l} = E_{k+1,k+1}^{l \times l}, \ B_{k+1}^{l} = (A_{k+1,k+1}^{l \times l})^{-1} \times B_{k+1}^{l}$

После прямого хода получаем матрицу:

$$\begin{pmatrix} E_{1,1}^{m \times m} & A_{1,2}^{m \times m^*} & \dots & A_{1,k}^{m \times m^*} & A_{1,k+1}^{m \times l^*} \\ 0 & E_{2,2}^{m \times m^*} & \dots & A_{2,k}^{m \times m^*} & A_{2,k+1}^{m \times l^*} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & E_{k,k}^{m \times m^*} & A_{k,k+1}^{m \times l^*} & B_k^{m^*} \\ 0 & 0 & \dots & 0 & E_{k+1,k+1}^{l \times l^*} & B_{k+1}^{l^*} \end{pmatrix}$$

2.3 Обратный ход

$$r = 1: \ E_{k+1,k+1}^{l \times l} = X_{k+1}^{l}$$

$$r = 2: \ X_k^m = B_i^k - A_{k,k+1}^{m \times l} \cdot B_{k+1}^{l}, \ A_{k,k+1}^{m \times l} = 0$$

$$\begin{pmatrix} E_{1,1}^{m \times m} & A_{1,2}^{m \times m^*} & \dots & A_{1,k}^{m \times m^*} & A_{1,k+1}^{m \times l^*} & B_1^m \\ 0 & E_{2,2}^{m \times m} & \dots & A_{2,k}^{m \times m^*} & A_{2,k+1}^{m \times l^*} & B_2^m \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & E_{k,k}^{m \times m} & 0 & X_k^m \\ 0 & 0 & \dots & 0 & E_{k+1,k+1}^{l \times l} & X_{k+1}^{l} \end{pmatrix}$$

$$\forall r = 3, \dots, k : X_i^m = B_i^m - \sum_{j=i+1}^n A_{i,j}^{m \times h} \cdot X_j^h, \ A_{i,j}^{m \times h} = 0, i = k-2, \dots, 0$$

$$h = (j < k) ? m : l$$

$$\begin{pmatrix} E_{1,1}^{m \times m} & 0 & \dots & 0 & 0 & | X_1^m \\ 0 & E_{2,2}^{m \times m} & \dots & 0 & 0 & | X_2^m \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & E_{k,k}^{m \times m} & 0 & | X_k^m \\ 0 & 0 & \dots & 0 & E_{k,k}^{l \times l} + 1 & | X_{k+1}^{l} \end{pmatrix}$$

3 Хранение в памяти

Матрицу A храним в памяти таким образом:

$$A = \{a_{1,1}, a_{1,2}, \dots, a_{1,m}, a_{2,1}, a_{2,2}, \dots, a_{2,m}, \dots, a_{m,1}, a_{m,2}, \dots, a_{m,m}, a_{1,m+1}, a_{1,m+2}, \dots, a_{1,2m}, \dots, a_{n,n}, b_1, \dots, b_n\}$$

В блочном виде:

$$A = \{A_{1,1}, A_{1,2}, \dots, A_{1,k+1}, A_{2,1}, A_{2,2}, \dots, A_{2,k+1}, \dots, A_{k+1,1}, A_{k+1,2}, \dots, A_{k+1,k+1}, B_1, \dots, B_{k+1}\}$$

Тогда указатель на блок $A_{i,j}: A+(i-1)\cdot n\cdot m+(j-1)\cdot last_i\cdot m$,. Указатель на элемент (p,q) этой же матрицы: $A+(i-1)\cdot n\cdot m+(j-1)\cdot last_i\cdot m+(p-1)\cdot last_j+(q-1)$, где $last_i=i$ < k ? m : l, $last_j=j$ < k ? m : l.

Указатель на *i*-ый элемент $B: A + n \cdot n + (i-1)$

4 Оценка сложности

- 1. Нахождение обратной матрицы для $A^{n \times n}$: $\frac{8}{3}n^3 + O(n^2)$
- 2. Умножение матриц $A^{n\times m} \times A^{m\times l}$: 2mnl nl
- 3. Сложение матриц $A^{n\times m} + A^{n\times m}$: nm

4.1 Прямой ход

```
На r < k + 1 ходу прямого хода:
```

На шаге 1:

(k-r+1) нахождений обратной матрицы к матрице $m \times m$ На шаге 3:

(k-r) умножений матриц $m \times m$ на $m \times m$

1 умножение матрицы $m \times m$ на матрицу $m \times l$

1 умножение матрицы $m \times m$ на матрицу $m \times 1$

На шаге 4:

 $m \times m$: по $(k-r)^2$ умножений и сложений

по (k-r) умножений матриц $l \times m$ на $m \times m$ и $m \times m$ на $m \times l$

по (k-r) сложений матриц $l \times m$ и $m \times l$

(k-r) умножений матрицы $m \times m$ на $m \times 1$

(k-r) сложений матриц $m \times 1$

1 умножение матрицы $l \times m$ на $m \times l$

1 сложение $l \times l$

1 умножение $l \times m$ матрицы на $m \times 1$

1 сложение $l \times 1$ матриц

Ha r = k + 1 ходу:

На шаге 1:

1 нахождение обратной матрицы к матрице $l \times l$

На шаге 3:

1умножение матрицы $l\times l$ на матрицу $l\times 1$ Сложнось прямого хода:

$$\sum_{i=0}^{k-1} ((i+1)\frac{8}{3}m^3 + i(i+1)(2m^3 - m^2) + i^2m^2 + (1+2i)(2m^2l - ml) + 2iml + 2ml^2 - ml + l^2 + (1+i)(2m^2 - m) + im + 2ml - l + l) + \frac{8}{3}l^3 + 2l^2 - l$$

4.2 Обратный ход

На шаге 1: k умножений матриц $m \times l$ на $l \times 1$ и k сложений $m \times 1$ матриц. На каждом следующем шаге r: (k-r) умножений $m \times m$ на $m \times 1$ и (k-r) сложений $m \times 1$ матриц.

Сложность обратного хода:

$$\sum_{i=0}^{k-2} (i(2m^2 - m) + im) + k(ml - m) + km$$

4.3 Сложность алгоритма

Сложность всего алгоритма:

$$\boxed{\frac{2}{3}n^3 + \frac{4}{3}mn^2 + \frac{2}{3}m^2n + O(n^2)}$$

При
$$m=1$$
: $\frac{2}{3}n^3+O(n^2)$;
При $m=n$: $\frac{8}{3}n^3+O(n^2)$;