CLAIMS

4	A 1. 1 .	• •		1 .	
1.	A light	emitting	display	device	comprising:

- a gate electrode provided formed over a substrate having an insulating surface
 with a substance having a photocatalytic function therebetween;
 - a gate insulating layer formed over the gate electrode;
 - a semiconductor layer and a first electrode formed over the gate insulating layer;
 - a wiring layer formed over the semiconductor layer;
- a partition wall covering an edge portion of the first electrode and the wiring layer;
 - an electroluminescent layer over the first electrode; and a second electrode over the electroluminescent layer, wherein the wiring layer covers the edge portion of the first electrode.

15

25

- 2. A light emitting display device comprising:
- a wiring layer and a first electrode formed over a substrate having an insulating surface with a substance having a photocatalytic function therebetween;
 - a semiconductor layer formed over the wiring layer;
- a gate insulating layer formed over the semiconductor layer;
 - a gate electrode formed over the gate insulating layer;
 - a partition wall covering an edge portion of the first electrode and the wiring layer;
 - an electroluminescent layer over the first electrode; and
 a second electrode over the electroluminescent layer,
 wherein the wiring layer covers the edge portion of the first electrode.
 - 3. A light emitting display device comprising:
- a gate electrode formed over a substrate having an insulating surface with a substance having a photocatalytic function therebetween;

a gate insulating layer formed over the gate electrode;

		a semiconductor layer and a first electrode formed over the gate insulating
	layer;	
		a wiring layer formed over the semiconductor layer;
5		a partition wall covering an edge portion of the first electrode and the wiring
	layer;	
		an electroluminescent layer over the first electrode; and
		a second electrode over the electroluminescent layer,
		wherein the first electrode covers an edge portion of the wiring layer.
10		
		4. A light emitting display device comprising:
		a wiring layer and a first electrode formed over a substrate having an insulating
	surface	with a substance having a photocatalytic function therebetween;
		a semiconductor layer formed over the wiring layer;
15		a gate insulating layer formed over the semiconductor layer;
		a gate electrode formed over the gate insulating layer;
		a partition wall covering an edge portion of the first electrode and the wiring
	layer;	
		an electroluminescent layer over the first electrode; and
20		a second electrode over the electroluminescent layer,
		wherein the first electrode covers an edge portion of the wiring layer.
		5. A light emitting display device according to any one of claims 1 to 4,
	wherein	the substance having a photocatalytic function comprises titanium oxide.
25		
		6. A light emitting display device comprising:
		a conductive layer including a refractory metal over a substrate having an
	insulatir	ng surface;
		a gate electrode formed over the conductive layer;
30		a gate insulating layer formed over the gate electrode;

a semiconductor layer and a first electrode formed over the gate insulating layer;

a wiring layer formed over the semiconductor layer;

a partition wall covering an edge portion of the first electrode and the wiring

5 layer;

20

25

an electroluminescent layer over the first electrode; and a second electrode over the electroluminescent layer, wherein the wiring layer covers the edge portion of the first electrode.

7. A light emitting display device comprising:

a conductive layer including a refractory metal over a substrate having an insulating surface;

a wiring layer and a first electrode formed over the conductive layer;

a semiconductor layer formed over the wiring layer;

a gate insulating layer formed over the semiconductor layer;

a gate electrode formed over the gate insulating layer;

a partition wall covering an edge portion of the first electrode and the wiring layer;

an electroluminescent layer over the first electrode; and a second electrode over the electroluminescent layer, wherein the wiring layer covers the edge portion of the first electrode.

8. A light emitting display device comprising:

a conductive layer including a refractory metal over a substrate having an insulating surface;

a gate electrode formed over the conductive layer;

a gate insulating layer formed over the gate electrode;

a semiconductor layer and a first electrode formed over the gate insulating layer;

a wiring layer formed over the semiconductor layer;

a partition wall covering an edge portion of the first electrode and the wiring layer;

an electroluminescent layer over the first electrode; and
a second electrode over the electroluminescent layer,
wherein the first electrode covers an edge portion of the wiring layer.

9. A light emitting display device comprising:

a conductive layer including a refractory metal over a substrate having an insulating surface;

a wiring layer and a first electrode formed over the conductive layer;

a semiconductor layer formed over the wiring layer;

a gate insulating layer formed over the semiconductor layer;

a gate electrode formed over the gate insulating layer;

a partition wall covering an edge portion of the first electrode and the wiring

15 layer;

5

an electroluminescent layer over the first electrode; and
a second electrode over the electroluminescent layer,
wherein the first electrode covers an edge portion of the wiring layer.

20 10. A light emitting display device according to any one of claims 6 to 9, wherein the refractory metal is selected from the group consisting of Ti (titanium), W (tungsten), Cr (chromium), Al (aluminum), Ta (tantalum), Ni (nickel), Zr (zirconium), Hf (hafnium), V (vanadium), Ir (iridium), Nb (niobium), Pd (lead), Pt (platinum), Mo (molybdenum), Co (cobalt), and Rh (rhodium).

25

- 11. A light emitting display device according to any one of claims 1-4 and 6-9, wherein the gate electrode and the wiring layer are made of a material selected from the group consisting of silver, gold, copper, and indium tin oxide.
- 30 12. A light emitting display device according to any one of claims 1-4 and

6-9, wherein the semiconductor layer is a semi-amorphous semiconductor containing hydrogen and halogen and having a crystal structure.

- 13. A TV set including a display screen having the light emitting display device according to any one of claims 1-4 and 6-9.
 - 14. A method for manufacturing a light emitting display device, comprising: forming a gate electrode over a substrate having an insulating surface with a substance having a photocatalytic function therebetween by a droplet discharge method;

forming a gate insulating layer over the gate electrode;

forming a semiconductor layer over the gate insulating layer;

forming a first electrode over the gate insulating layer by a droplet discharge method;

forming a wiring layer over the semiconductor layer by a droplet discharge method to cover an edge of the first electrode;

forming a partition wall to cover the edge portion of the first electrode and the wiring layer;

forming an electroluminescent layer over the first electrode; and

forming a second electrode over the electroluminescent layer by a droplet discharge method.

15. A method for manufacturing a light emitting display device, comprising:

forming a first electrode over a substrate having an insulating surface with a substance having a photocatalytic function therebetween by a droplet discharge method;

forming a wiring layer over the substrate having an insulating surface with a substance having a photocatalytic function therebetween to cover an edge portion of the first electrode;

forming a semiconductor layer over the wiring layer;

forming a gate insulating layer over the semiconductor layer;

forming a gate electrode over the gate insulating layer by a droplet discharge

10

15

20

25

method;

5

10

20

25

30

forming a partition wall to cover the edge portion of the first electrode and the wiring layer;

forming an electroluminescent layer over the first electrode; and forming a second electrode over the electroluminescent layer by a droplet

discharge method.

16. A method for manufacturing a light emitting display device, comprising:

forming a gate electrode over a substrate having an insulating surface with a substance having a photocatalytic function therebetween by a droplet discharge method;

forming a gate insulating layer over the gate electrode;

forming a semiconductor layer over the gate insulating layer;

forming a wiring layer over the semiconductor layer by a droplet discharge method;

forming a first electrode over the gate insulating layer by a droplet discharge method to cover an edge portion of the wiring layer;

forming a partition wall to cover an edge portion of the first electrode and the wiring layer;

forming an electroluminescent layer over the first electrode; and

forming a second electrode over the electroluminescent layer by a droplet discharge method.

17. A method for manufacturing a light emitting display device, comprising:

forming a wiring layer over a substrate having an insulating surface with a substance having a photocatalytic function therebetween by a droplet discharge method;

forming a first electrode over the substrate having an insulating surface with a substance having a photocatalytic function therebetween by a droplet discharge method to cover an edge portion of the wiring layer;

forming a semiconductor layer over the wiring layer;

forming a gate insulating layer over the semiconductor layer;

forming a gate electrode over the gate insulating layer by a droplet discharge method;

forming a partition wall to cover an edge portion of the first electrode and the wiring layer;

forming an electroluminescent layer over the first electrode; and

5

20

forming a second electrode over the electroluminescent layer by a droplet discharge method.

- 18. A method for manufacturing a light emitting display device according to any one of claims 14 to 17, wherein titanium oxide is used as the substance having a photocatalytic function.
- 19. A method for manufacturing a light emitting display device, comprising:
 forming a conductive layer including a refractory metal over a substrate having
 an insulating surface;

forming a gate electrode over the conductive layer by a droplet discharge method;

forming a gate insulating layer over the gate electrode;

forming a semiconductor layer over the gate insulating layer;

forming a first electrode over the gate insulating layer by a droplet discharge method;

forming a wiring layer over the semiconductor layer by a droplet discharge method to cover an edge portion of the first electrode;

forming a partition wall to cover the edge portion of the first electrode and the wiring layer;

forming an electroluminescent layer over the first electrode; and

forming a second electrode over the electroluminescent layer by a droplet discharge method.

20. A method for manufacturing a light emitting display device, comprising: forming a conductive layer including a refractory metal over a substrate having an insulating surface;

forming a first electrode over the conductive layer by a droplet discharge method;

forming a wiring layer over the conductive layer by a droplet discharge method to cover an edge portion of the first electrode;

forming a semiconductor layer over the wiring layer;

15

20

forming a gate insulating layer over the semiconductor layer;

forming a gate electrode over the gate insulating layer by a droplet discharge method;

forming a partition wall to cover the edge portion of the first electrode and the wiring layer;

forming an electroluminescent layer over the first electrode; and

forming a second electrode over the electroluminescent layer by a droplet discharge method.

21. A method for manufacturing a light emitting display device, comprising: forming a conductive layer including a refractory metal over a substrate having an insulating surface;

forming a gate electrode over the conductive layer by a droplet discharge method;

forming a gate insulating layer over the gate electrode;

forming a semiconductor layer over the gate insulating layer;

forming a wiring layer over the semiconductor layer by a droplet discharge method;

forming a first electrode over the gate insulating layer by a droplet discharge method to cover an edge portion of the wiring layer;

forming a partition wall to cover an edge portion of the first electrode and the wiring layer;

forming an electroluminescent layer over the first electrode; and forming a second electrode over the electroluminescent layer by a droplet discharge method.

22. A method for manufacturing a light emitting display device, comprising: forming a conductive layer including a refractory metal over a substrate having an insulating surface;

forming a wiring layer over the conductive layer by a droplet discharge method;

forming a first electrode over the conductive layer by a droplet discharge method to cover an edge portion of the wiring layer;

forming a semiconductor layer over the wiring layer;

5

15

20

25

forming a gate insulating layer over the semiconductor layer;

forming a gate electrode over the gate insulating layer by a droplet discharge method;

forming a partition wall to cover an edge portion of the first electrode and the wiring layer;

forming an electroluminescent layer over the first electrode; and forming a second electrode over the electroluminescent layer by a droplet discharge method.

- 23. A method for manufacturing a light emitting display device according to any one of claims 19 to 22, wherein the refractory metal is selected from the group consisting of Ti (titanium), W (tungsten), Cr (chromium), Al (aluminum), Ta (tantalum), Ni (nickel), Zr (zirconium), Hf (hafnium), V (vanadium), Ir (iridium), Nb (niobium), Pd (lead), Pt (platinum), Mo (molybdenum), Co (cobalt), and Rh (rhodium).
- 24. A method for manufacturing a light emitting display device according to any one of claims 14 to 22, wherein the gate electrode and the wiring layer are formed by using a material selected from the group consisting of silver, gold, copper, and

indium tin oxide.

25. A method for manufacturing a light emitting display device according to any one of claims 14 to 22, wherein the semiconductor layer is formed by using a
 5 semi-amorphous semiconductor containing hydrogen and halogen and having a crystal structure.