On Finding Minimum Satisfying Assignments

Alexey Ignatiev^{1,2}, Alessandro Previti¹, and Joao Marques-Silva¹ September 9, 2016

¹ LaSIGE, FC, University of Lisbon, Portugal

² ISDCT SB RAS, Irkutsk, Russia

Problem definition

what is a *minimum satisfying assignment* (MSA)?

what is a *minimum satisfying assignment* (MSA)?

$$x + y + z > 0 \quad \lor \quad w + x + y + z < 5$$

 $w, x, y, z \in \mathbb{Z}$

what is a *minimum satisfying assignment* (MSA)?

$$x + y + z > 0 \quad \lor \quad w + x + y + z < 5$$

 $w, x, y, z \in \mathbb{Z}$

$$w = 5$$
 $x = -1$ $y = -1$ $z = -1$ — SA (satisfying assignment)

what is a *minimum satisfying assignment* (MSA)?

$$x + y + z > 0 \quad \lor \quad w + x + y + z < 5$$

 $w, x, y, z \in \mathbb{Z}$

$$w=5$$
 $x=-1$ $y=-1$ $z=-1$ — SA (satisfying assignment) $w=2$ $x=1$ $y=0$ $z=0$ — SA

what is a *minimum satisfying assignment* (MSA)?

$$x + y + z > 0 \quad \lor \quad w + x + y + z < 5$$

 $w, x, y, z \in \mathbb{Z}$

$$w=5$$
 $x=-1$ $y=-1$ $z=-1$ — SA (satisfying assignment)
 $w=2$ $x=1$ $y=0$ $z=0$ — SA
* $x=1$ $y=0$ $z=0$ — minimal SA (mSA)

what is a *minimum satisfying assignment* (MSA)?

$$x + y + z > 0 \quad \lor \quad w + x + y + z < 5$$

 $w, x, y, z \in \mathbb{Z}$

```
given \mathbb{U} = \{a, b, c, d, e, f, g, h\} and its subsets \{a, b, c\} \{d, e, f\} \{a, f, g\} \{b, g, h\} \{d, f, g\}
```

```
given \mathbb{U} = \{a, b, c, d, e, f, g, h\} and its subsets \{a, b, c\} \{d, e, f\} \{a, f, g\} \{b, g, h\} \{d, f, g\} \{b, e, f, g\} — HS (hitting set)
```

```
given \mathbb{U}=\{a,b,c,d,e,f,g,h\} and its subsets \{a,b,c\} \{d,e,f\} \{a,f,g\} \{b,g,h\} \{d,f,g\} \{b,e,f,g\} — HS (hitting set) \{a,d,g,h\} — HS
```

```
given \mathbb{U} = \{a, b, c, d, e, f, g, h\} and its subsets \{a, b, c\} \{d, e, f\} \{a, f, g\} \{b, g, h\} \{d, f, g\}
```

$$\{b, e, f, g\}$$
 — HS (hitting set)
 $\{a, d, g, h\}$ — HS
 \star $\{a, d, g, h\}$ — minimal HS (mHS)

```
given \mathbb{U} = \{a, b, c, d, e, f, g, h\} and its subsets \{a, b, c\} \{d, e, f\} \{a, f, g\} \{b, g, h\} \{d, f, g\}
```

```
\{b, e, f, g\} — HS (hitting set)

\{a, d, g, h\} — HS

\star \{a, d, g, h\} — minimal HS (mHS)

\star \{a, d, g, h\} — minimal HS (mHS)
```

```
given \mathbb{U} = \{a, b, c, d, e, f, g, h\} and its subsets \{a, b, c\} \{d, e, f\} \{a, f, g\} \{b, g, h\} \{d, f, g\}
```

given
$$F$$
 s.t. $var(F) = X \cup Y$,

given F s.t. $var(F) = X \cup Y$,

given F s.t. $var(F) = X \cup Y$,

given F s.t. $var(F) = X \cup Y$,

given
$$F$$
 s.t. $var(F) = X \cup Y$,

$$F = x + y + z > 0 \quad \lor \quad w + x + y + z < 5$$

given
$$F$$
 s.t. $var(F) = X \cup Y$,

$$F = x + y + z > 0 \quad \lor \quad w + x + y + z < 5$$

$$\{x\} \cup \{w, y, z\}$$
 $\exists_x \forall_{w,y,z}. F = false \quad \{w, y, z\}$ — falsifying subset (FS)

given
$$F$$
 s.t. $var(F) = X \cup Y$,

$$F = x + y + z > 0 \quad \lor \quad w + x + y + z < 5$$

given
$$F$$
 s.t. $var(F) = X \cup Y$,

$$F = x + y + z > 0 \quad \lor \quad w + x + y + z < 5$$

$$\begin{cases} x\} \cup \{w,y,z\} & \exists_x \forall_{w,y,z}. \ F = \textit{false} \\ * \{x,y\} \cup \{w,z\} & \exists_{x,y} \forall_{w,z}. \ F = \textit{false} \\ \{w,x\},y,z\} \cup \emptyset & \exists_{w,x,y,z}. \ F = \textit{true} \end{cases} \begin{cases} w,x,y,z\} & -\textit{falsifying subset (FS)} \\ -\textit{minimal FS (mFS)} \\ -\textit{existential set (ES)} \end{cases}$$

given
$$F$$
 s.t. $var(F) = X \cup Y$,

$$F = x + y + z > 0 \quad \lor \quad w + x + y + z < 5$$

```
 \begin{cases} x\} \cup \{w,y,z\} & \exists_x \forall_{w,y,z}. \ F = false & \{w,y,z\} & -falsifying \ subset \ (FS) \\ \star & \{x,y\} \cup \{w,z\} & \exists_{x,y} \forall_{w,z}. \ F = false & \{w,z\} & -minimal \ FS \ (mFS) \\ \{w,x,y,z\} \cup \{w\} & \exists_{x,y,z} \forall_{w}. \ F = true & \{x,y,z\} & -minimal \ ES \ (mES) \end{cases}
```

given
$$F$$
 s.t. $var(F) = X \cup Y$,

$$\begin{array}{c} (X - \text{existential}) & \xrightarrow{\text{true}} & (\exists_X \forall_Y. F?) & \xrightarrow{\text{false}} & (Y - \text{falsifying}) \\ \text{subset} & \text{subset} & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\ \text{subset} & (Y - \text{falsifying}) & (Y - \text{falsifying}) \\$$

$$F = x + y + z > 0 \quad \lor \quad w + x + y + z < 5$$

```
— falsifying subset (FS)
     \{x\} \cup \{w, y, z\}
                         \exists_x \forall_{w,v,z}. F = false
                                                    \{W, y, z\}
\star {X, y} \cup {W, Z}
                         \exists_{x,y} \forall_{w,z}. F = false
                                                    \{W,Z\}
                                                                    minimal FS (mFS)
     \{w, x, y, z\} \cup \emptyset
                        \exists_{w,x,y,z}. F = true \{w, x, y, z\} - existential set (ES)
                                                                    minimal ES (mES)
\star \{x, y, z\} \cup \{w\} \exists_{x,y,z} \forall_w. F = true
                                                  \{X, V, Z\}
\star \{W\} \cup \{X, Y, Z\}
                        \exists_w \forall_{x,v,z}. F = true
                                                     {w}
                                                                    minimum ES (MES)
```

Approach

given *F*,

given F, \mathcal{E} — set of **all mESes** for F

given F, \mathcal{E} — set of all mESes for F — set of all mFSes for F

given F, \mathcal{E} — set of **all mESes** for F \mathcal{F} — set of **all mFSes** for F

1. set $e \in \mathcal{E}$

given F, \mathcal{E} — set of all mESes for F \mathcal{F} — set of all mFSes for F

1. set $e \in \mathcal{E} \iff e$ is an mHS of \mathcal{F}

given
$$F$$
,
 \mathcal{E} — set of all mESes for F
 \mathcal{F} — set of all mFSes for F

- 1. set $e \in \mathcal{E} \iff e$ is an mHS of \mathcal{F}
- 2. set $f \in \mathcal{F}$

given
$$F$$
,
 \mathcal{E} — set of all mESes for F
 \mathcal{F} — set of all mFSes for F

- 1. set $e \in \mathcal{E} \Leftrightarrow e$ is an mHS of \mathcal{F}
- 2. set $f \in \mathcal{F} \Leftrightarrow f$ is an mHS of \mathcal{E}

```
input : formula F
   output: an MSA of F
1 \mathcal{H} \leftarrow \emptyset
2 while true:
       X \leftarrow MinHS(\mathcal{H})
                                                                     # get a new MHS with MaxSAT
   Y \leftarrow var(F) \setminus X
                                                                            \# take complement of X
    (st, \mu_X) \leftarrow Solve(\exists_X \forall_Y. F)
                                                                    # check if X is a minimum FS
    if st:
             I \leftarrow \text{Reduce}(Y)
                                                                           # reduce counterexample
             \mathcal{H} \leftarrow \mathcal{H} \cup \mathcal{I}
                                                                 # hit counterexample next time
11 return MSA \leftarrow \mu_X
```

```
input : formula F
   output: an MSA of F
1 \mathcal{H} \leftarrow \emptyset
2 while true:
        X \leftarrow MinHS(\mathcal{H})
                                                                      # get a new MHS with MaxSAT
      Y \leftarrow var(F) \setminus X
                                                                             \# take complement of X
      (st, \mu_X) \leftarrow Solve(\exists_X \forall_Y. F)
                                                                     # check if X is a minimum FS
    if st:
             I \leftarrow \text{Reduce}(Y)
                                                                           # reduce counterexample
             \mathcal{H} \leftarrow \mathcal{H} \cup \mathcal{I}
                                                                 # hit counterexample next time
11 return MSA \leftarrow \mu_X
```

```
input : formula F
   output: an MSA of F
1 \mathcal{H} \leftarrow \emptyset
2 while true:
        X \leftarrow MinHS(\mathcal{H})
                                                                      # get a new MHS with MaxSAT
        Y \leftarrow var(F) \setminus X
                                                                              \# take complement of X
      (st, \mu_X) \leftarrow Solve(\exists_X \forall_Y. F)
                                                                     # check if X is a minimum FS
    if st:
             I \leftarrow \text{Reduce}(Y)
                                                                            # reduce counterexample
             \mathcal{H} \leftarrow \mathcal{H} \cup \mathcal{I}
                                                                  # hit counterexample next time
11 return MSA \leftarrow \mu_X
```

```
input : formula F
   output: an MSA of F
1 \mathcal{H} \leftarrow \emptyset
2 while true:
        X \leftarrow MinHS(\mathcal{H})
                                                                       # get a new MHS with MaxSAT
        Y \leftarrow var(F) \setminus X
                                                                              \# take complement of X
        (st, \mu_X) \leftarrow Solve(\exists_X \forall_Y. F)
                                                                     # check if X is a minimum FS
     if st:
             I \leftarrow \text{Reduce}(Y)
                                                                            # reduce counterexample
             \mathcal{H} \leftarrow \mathcal{H} \cup \mathcal{I}
                                                                  # hit counterexample next time
11 return MSA \leftarrow \mu_X
```

Algorithm

```
input : formula F
  output: an MSA of F
1 \mathcal{H} \leftarrow \emptyset
2 while true:
       X \leftarrow MinHS(\mathcal{H})
                                                                     # get a new MHS with MaxSAT
       Y \leftarrow var(F) \setminus X
                                                                             # take complement of X
       (st, \mu_X) \leftarrow Solve(\exists_X \forall_Y. F)
                                                                    # check if X is a minimum FS
    if st:
             break
            I \leftarrow \text{Reduce}(Y)
                                                                           # reduce counterexample
             \mathcal{H} \leftarrow \mathcal{H} \cup \mathcal{I}
                                                                 # hit counterexample next time
  return MSA \leftarrow \mu_X
```

Algorithm

5

```
input : formula F
  output: an MSA of F
1 \mathcal{H} \leftarrow \emptyset
2 while true:
       X \leftarrow MinHS(\mathcal{H})
                                                                     # get a new MHS with MaxSAT
      Y \leftarrow var(F) \setminus X
                                                                             \# take complement of X
     (st, \mu_X) \leftarrow Solve(\exists_X \forall_Y. F)
                                                                    # check if X is a minimum FS
    if st:
       else:
             I \leftarrow \text{Reduce}(Y)
                                                                           # reduce counterexample
             \mathcal{H} \leftarrow \mathcal{H} \cup \mathcal{I}
                                                                 # hit counterexample next time
  return MSA \leftarrow \mu_X
```

Algorithm

```
input : formula F
    output: an MSA of F
 1 \mathcal{H} \leftarrow \emptyset
 2 while true:
        X \leftarrow MinHS(\mathcal{H})
                                                                     # get a new MHS with MaxSAT
        Y \leftarrow var(F) \setminus X
                                                                             \# take complement of X
       (st, \mu_X) \leftarrow Solve(\exists_X \forall_Y. F)
 5
                                                                    # check if X is a minimum FS
     if st:
        else:
              I \leftarrow \text{Reduce}(Y)
                                                           # no need to reduce counterexample
              \mathcal{H} \leftarrow \mathcal{H} \cup \mathsf{Y}
10
                                                                 # hit counterexample next time
11 return MSA \leftarrow \mu_X
```

$$F = ((a+b \ge 0) \lor (c \le 0)) \land ((a+b \ge 0) \lor (b-a \le 0))$$
$$\operatorname{var}(F) = \{a, b, c\}$$

$$F = ((a+b \ge 0) \lor (c \le 0)) \land ((a+b \ge 0) \lor (b-a \le 0))$$
$$\mathsf{var}(F) = \{a, b, c\}$$

$$\mathsf{MinHS}(\mathcal{H}) \quad \mathsf{Solve}(\exists_{\mathsf{X}} \forall_{\mathsf{Y}}.\, \mathit{F}) \quad \mathit{I} \leftarrow \mathsf{Reduce}(\mathsf{Y}) \quad \mathcal{H} = \mathcal{H} \cup \mathit{I}$$

 \emptyset

$$F = ((a+b \ge 0) \lor (c \le 0)) \land ((a+b \ge 0) \lor (b-a \le 0))$$
$$\mathsf{var}(F) = \{a, b, c\}$$

$$\text{MinHS}(\mathcal{H}) \quad \text{Solve}(\exists_X \forall_Y.\, F) \quad \textit{I} \leftarrow \text{Reduce}(Y) \quad \mathcal{H} = \mathcal{H} \cup \textit{I}$$

Ø

$$X \leftarrow \{\emptyset\}$$

$$F = ((a+b \ge 0) \lor (c \le 0)) \land ((a+b \ge 0) \lor (b-a \le 0))$$
$$\mathsf{var}(F) = \{a, b, c\}$$

$$\textbf{MinHS}(\mathcal{H}) \quad \textbf{Solve}(\exists_{\textbf{X}} \forall_{\textbf{Y}}. \, \textbf{\textit{F}}) \quad \textbf{\textit{I}} \leftarrow \textbf{Reduce}(\textbf{\textit{Y}}) \quad \mathcal{H} = \mathcal{H} \cup \textbf{\textit{I}}$$

 \emptyset

$$X \leftarrow \{\emptyset\}$$
 false

$$F = ((a+b \ge 0) \lor (c \le 0)) \land ((a+b \ge 0) \lor (b-a \le 0))$$
$$\mathsf{var}(F) = \{a, b, c\}$$

$$\mathsf{MinHS}(\mathcal{H}) \quad \mathsf{Solve}(\exists_{\mathsf{X}} \forall_{\mathsf{Y}}. \mathit{F}) \quad \mathit{I} \leftarrow \mathsf{Reduce}(\mathsf{Y}) \quad \mathcal{H} = \mathcal{H} \cup \mathit{I}$$

 \emptyset

$$X \leftarrow \{\emptyset\}$$
 false $I \leftarrow \{b, c\}$

$$F = ((a+b \ge 0) \lor (c \le 0)) \land ((a+b \ge 0) \lor (b-a \le 0))$$
$$\mathsf{var}(F) = \{a, b, c\}$$

$$F = ((a+b \ge 0) \lor (c \le 0)) \land ((a+b \ge 0) \lor (b-a \le 0))$$
$$\mathsf{var}(F) = \{a, b, c\}$$

$$F = ((a+b \ge 0) \lor (c \le 0)) \land ((a+b \ge 0) \lor (b-a \le 0))$$
$$\mathsf{var}(F) = \{a, b, c\}$$

$$F = ((a + b \ge 0) \lor (c \le 0)) \land ((a + b \ge 0) \lor (b - a \le 0))$$
$$var(F) = \{a, b, c\}$$

MinHS(
$$\mathcal{H}$$
) Solve($\exists_X \forall_Y . F$) $I \leftarrow \mathsf{Reduce}(Y)$ $\mathcal{H} = \mathcal{H} \cup I$

$$\emptyset$$

$$X \leftarrow \{\emptyset\} \qquad false \qquad I \leftarrow \{b,c\}$$

$$X \leftarrow \{b\} \qquad false \qquad I \leftarrow \{a\}$$

$$F = ((a+b \ge 0) \lor (c \le 0)) \land ((a+b \ge 0) \lor (b-a \le 0))$$
$$\mathsf{var}(F) = \{a, b, c\}$$

$MinHS(\mathcal{H})$	$Solve(\exists_X \forall_Y. F)$	$I \leftarrow Reduce(Y)$	$\mathcal{H} = \mathcal{H} \cup I$
			Ø
$X \leftarrow \{\emptyset\}$	false	$I \leftarrow \{b, c\}$	{{ <i>b</i> , <i>c</i> }}
$X \leftarrow \{b\}$	false	$I \leftarrow \{a\}$	$\{\{b,c\},\{a\}\}$

$$F = ((a+b \ge 0) \lor (c \le 0)) \land ((a+b \ge 0) \lor (b-a \le 0))$$
$$\mathsf{var}(F) = \{a, b, c\}$$

$$F = ((a+b \ge 0) \lor (c \le 0)) \land ((a+b \ge 0) \lor (b-a \le 0))$$
$$\mathsf{var}(F) = \{a, b, c\}$$

MinHS(
$$\mathcal{H}$$
) Solve($\exists_X \forall_Y. F$) $I \leftarrow \mathsf{Reduce}(Y)$ $\mathcal{H} = \mathcal{H} \cup I$

$$\emptyset$$

$$X \leftarrow \{\emptyset\} \qquad false \qquad I \leftarrow \{b,c\} \qquad \{\{b,c\}\}\}$$

$$X \leftarrow \{b\} \qquad false \qquad I \leftarrow \{a\} \qquad \{\{b,c\},\{a\}\}\}$$

$$X \leftarrow \{a,c\} \qquad true \qquad \{a=1,c=0\} \text{ is an MSA of } F$$

 $((b+1 \ge 0) \lor (0 \le 0)) \land ((b+1 \ge 0) \lor (b-1 \le 0))$

Experimental results

- · new IHS-based approach:
 - 1. MINT
 - 2. MINT+ = MINT + bootstrapping with unit sets:

- · new IHS-based approach:
 - 1. MINT
 - 2. MINT+ = MINT + bootstrapping with unit sets:
- minimum hitting set engine incremental MaxSAT

- · new IHS-based approach:
 - 1. MINT
 - 2. MINT+ = MINT + bootstrapping with unit sets:
- minimum hitting set engine incremental MaxSAT
- implemented in PySMT:

- new IHS-based approach:
 - 1. MINT
 - 2. MINT+ = MINT + bootstrapping with unit sets:
- minimum hitting set engine incremental MaxSAT
- · implemented in PySMT:
 - · supports Z3, CVC4, Yices2, etc.

- new IHS-based approach:
 - 1. MINT
 - 2. MINT+ = MINT + bootstrapping with unit sets:
- minimum hitting set engine incremental MaxSAT
- · implemented in PySMT:
 - · supports Z3, CVC4, Yices2, etc.
 - not limited to LIA formulas

- new IHS-based approach:
 - 1. MINT
 - 2. MINT+ = MINT + bootstrapping with unit sets:
- minimum hitting set engine incremental MaxSAT
- · implemented in PySMT:
 - · supports Z3, CVC4, Yices2, etc.
 - · not limited to LIA formulas
- · MISTRAL state of the art
 - · implemented in C++
 - · branch-and-bound approach
 - targets LIA formulas

- new IHS-based approach:
 - 1. MINT
 - 2. MINT+ = MINT + bootstrapping with unit sets:
- minimum hitting set engine incremental MaxSAT
- implemented in PySMT:
 - · supports Z3, CVC4, Yices2, etc.
 - · not limited to LIA formulas
- MISTRAL state of the art
 - · implemented in C++
 - · branch-and-bound approach
 - · targets LIA formulas
- Machine configuration:
 - Intel Xeon E5-2630 2.60GHz with 64GByte RAM

- new IHS-based approach:
 - 1. MINT
 - 2. MINT+ = MINT + bootstrapping with unit sets:
- minimum hitting set engine incremental MaxSAT
- implemented in PySMT:
 - · supports Z3, CVC4, Yices2, etc.
 - · not limited to LIA formulas
- MISTRAL state of the art
 - · implemented in C++
 - · branch-and-bound approach
 - · targets LIA formulas
- Machine configuration:
 - · Intel Xeon E5-2630 2.60GHz with 64GByte RAM
 - · running Ubuntu Linux

- new IHS-based approach:
 - 1. MINT
 - 2. MINT+ = MINT + bootstrapping with unit sets:
- minimum hitting set engine incremental MaxSAT
- implemented in PySMT:
 - · supports Z3, CVC4, Yices2, etc.
 - · not limited to LIA formulas
- · MISTRAL state of the art
 - · implemented in C++
 - · branch-and-bound approach
 - · targets LIA formulas
- Machine configuration:
 - Intel Xeon E5-2630 2.60GHz with 64GByte RAM
 - · running Ubuntu Linux
 - · 3600s timeout

- new IHS-based approach:
 - 1. MINT
 - 2. MINT+ = MINT + bootstrapping with unit sets:
- minimum hitting set engine incremental MaxSAT
- implemented in PySMT:
 - · supports Z3, CVC4, Yices2, etc.
 - · not limited to LIA formulas
- · MISTRAL state of the art
 - · implemented in C++
 - · branch-and-bound approach
 - · targets LIA formulas
- Machine configuration:
 - Intel Xeon E5-2630 2.60GHz with 64GByte RAM
 - · running Ubuntu Linux
 - · 3600s timeout
 - · 10GByte memout

Original CAV12 benchmarks

too easy!

Hardened instances (with PHP_n)

 $\forall F \in \text{CAV}$ 12 consider $F^H = F \vee PHP_n$, $n \in \{5, 6, 7\}$

Hardened instances (with PHP_n)

$\forall F \in \text{CAV}$ 12 consider $F^H = F \vee PHP_n, n \in \{5, 6, 7\}$

(a) cactus plot

(b) scatter plot (MINT+ vs. MISTRAL)

Hardened instances (with GT_n)

 $\forall F \in \text{CAV}$ 12 consider $F^H = F \vee GT_n, n \in \{5, 6, 7\}$

Hardened instances (with GT_n)

$\forall F \in \text{CAV}$ 12 consider $F^H = F \vee GT_n, n \in \{5, 6, 7\}$

(a) cactus plot

(b) scatter plot (MINT+ vs. MISTRAL)

Performance of MINT+ vs. MISTRAL

	PHP_5	PHP_6	PHP ₇
MINT+	373	373	371
	(4.74s)	(15.3s)	(>84.0s)
MISTRAL	373	195	9
	(149.4s)	(>2784.1s)	(>3513.2s)
	GT_5	GT_6	GT_7
MINT+	373	373	371
	(6.9s)	(24.0s)	(>165.2s)
MISTRAL	373	18	9
	(421.9s)	(>3431.8s)	(>3474.6s)

new approach for MSA:

- new approach for MSA:
 - based on implicit hitting sets
 - underlying technology incremental MaxSAT

- new approach for MSA:
 - based on implicit hitting sets
 - underlying technology incremental MaxSAT
 - uses PySMT
 - · supports Z3, CVC4, Yices2, etc.
 - not limited to LIA formulas

- new approach for MSA:
 - based on implicit hitting sets
 - underlying technology incremental MaxSAT
 - uses PySMT
 - · supports Z3, CVC4, Yices2, etc.
 - not limited to LIA formulas
 - outperforms state of the art (B&B)

- new approach for MSA:
 - based on implicit hitting sets
 - underlying technology incremental MaxSAT
 - uses PySMT
 - · supports Z3, CVC4, Yices2, etc.
 - not limited to LIA formulas
 - outperforms state of the art (B&B)

better IHS-based algorithms

- new approach for MSA:
 - based on implicit hitting sets
 - underlying technology incremental MaxSAT
 - · uses PySMT
 - · supports Z3, CVC4, Yices2, etc.
 - not limited to LIA formulas
 - outperforms state of the art (B&B)

- better IHS-based algorithms
- more practical applications of MSA

