FLOPs: floating-point operations
FLOP/s: floating point operations per second
FLOP/s:
$C = 2 \times N_c \times R \times D \times E$
Nc: number of corrections
between neuros in an unrolled NN
R = Operations per backward pass = 2 Operations per forward pass
Operations per forward pass 22
(backward-forward FLOP ratio)
D: number of training examples
E: number of training epochs

Moore's Law:

transistor density doubles roughly

every two years

Period	Data	Scale (start to end)	Slope	Doubling time
1952 to 2010	No low outliers	3e+04 to 2e+14 FLOPs	0.2 OOMs/year	21.3 months
Pre Deep Learning Era	(n = 19)	30+04 to 20+14 FLOPS	[0.1; 0.2; 0.2]	[17.0; 21.2; 29.3]
2010 to 2022	No outliers	7e+14 to 2e+18 FLOPs	0.6 OOMs/year	5.7 months
Deep Learning Era	(n = 80)	76+14 to 26+16 FLOFS	[0.4; 0.7; 0.9]	[4.3; 5.6; 9.0]
September 2015 to 2022	High outliers	4e+21 to 8e+23 FLOPs	0.4 OOMs/year	9.9 months
Large-Scale Era	(n = 19)	4C+21 to 6C+25 1 LOI 8	[0.2; 0.4; 0.5]	[7.7; 10.1; 17.1]

TABLE I: Summary of our main results. In 2010 the trend accelerated along the with the popularity of Deep Learning, and in late 2015 a new trend of large-scale models emerged.

log-linear trands

Training compute (FLOPs) of milestone Machine Learning systems over time

Fig. 1: Trends in n = 118 milestone ML models between 1952 and 2022. We distinguish three eras. Notice the change of slope circa 2010, matching the advent of Deep Learning; and the emergence of a new large-scale trend in late 2015.

Alex Net 2012 - 7 2012 Image New Competition

Period	Outliers	Scale (FLOPs)	Slope	Doubling time	R ²
1952-2009	All models $(n = 19)$	3e+04 / 2e+14	0.2 OOMs/year [0.1; 0.2; 0.2]	21.3 months [16.2; 21.3; 31.3]	0.77
1952-2011	All models $(n=26)$	1e+04 / 3e+15	0.2 OOMs/year [0.1; 0.2; 0.2]	19.6 months [15.6; 19.4; 25.0]	0.83
2010-2022	All models $(n = 98)$	1e+15 / 6e+22	0.7 OOMs/year [0.6; 0.7; 0.7]	5.6 months [5.0; 5.6; 6.2]	0.70
	Regular-scale $(n = 77)$	4e+14 / 2e+22	0.7 OOMs/year [0.6; 0.7; 0.7]	5.6 months [5.1; 5.6; 6.2]	0.78
2012-2022	All models $(n = 91)$	1e+17 / 6e+22	0.6 OOMs/year [0.5; 0.6; 0.7]	5.7 months [4.9; 5.7; 6.7]	0.58
	Regular-scale $(n = 80)$	4e+16 / 2e+22	0.6 OOMs/year [0.5; 0.6; 0.7]	5.7 months [4.9; 5.7; 6.7]	0.69

TABLE II: Log-linear regression results for ML models from 1952 to 2022.

Training compute (FLOPs) of milestone Machine Learning systems over time

Fig. 2: Trends in training compute of n=99 milestone ML systems between 2010 and 2022. Notice the emergence of a possible new trend of large-scale models around 2016. The trend in the remaining models stays the same before and after 2016.

