Distribuição Eletrônica

 $\begin{array}{c} 1s^2,\, 2s^2,\, 2p^6,\, 3s^2,\, 3p^6,\, 4s^2,\, 3s^{10},\\ 4p^6,\, 5s^2,\, 4d^{10},\, 5p^6,\, 4f^{14},\, 5d^{10},\, 6p^6,\\ 7s^2,\, 5f^{14},\, 6d^{10},\, 7p^6,\, 8s^2 \end{array}$

Obs¹: Camada de valência é o maior número na distribuição eletrônica.

Obs²: Subnível + energética é o último número escrito na distribuição.

Ligações químicas

Ligação Iônica

·Regra do octeto

A maioria dos átomos ficam estáveis com 2 ou 8 elétrons na camada de valência.

Ex:
$$He_2 = \underline{1s}^2 \rightarrow 2$$
 elétrons = $2\overline{e}$

$$He_2 = 1s^2, \, \underline{2s}^2, \, \underline{2p}^6 \rightarrow 8$$
 elétrons = $8\overline{e}$

·Conceito

Ligação em que ocorre transferência de elétrons, ou seja, quem tem mais dá a quem tem menos.

Metal (ganha) + Ametal (perde)

Ex¹: NaCl \rightarrow Na⁺Cl⁻ Ex²: Al³O² \rightarrow Al₂O₃

Ligação Covalente

·Ligação covalente simples

Compartilhamento de apenas um par de elétrons.

Ex:

Ou:

Ligação covalente dupla

Compartilhamento de dois pares de elétrons.

Ex:

Ou:

Ligação covalente tripla

Compartilhamento de três pares de elementos.

Ex:

0u:

Ligação covalente dativa

 $\acute{\text{E}}$ uma "sociedade eletrônica". Quando os átomos do segundo período fazem mais ligações do que o esperado.

EX:

Ou:

$$0 = 0 - 0$$

Ligação Metálica

·Conceito

Ligação que ocorre entre metais.

·Propriedades dos metais

- 1. Sólidos (exceto o mercúrio);
- 2. Bons condutores de calor e eletricidade;
- 3. PF e PE altíssimos (PF = ponto de fusão) (PE = ponto de ebulição);
- 4. Ductos e maleáveis (consigo esticá-los, modelá-los);
- 5. Brilho característico.

Densidade

·Conceito

Determina a quantidade de massa presente em um determinado volume.

$$Xg/ml \rightarrow Yg/Zml$$

Ex: 0,79g/ml e ?g/100ml

100ml - X

 $X = 100 \times 0,79$

X = 799