

HiPerFRED²

$$V_{RRM} = 200V$$
 $I_{FAV} = 2x$
 $30A$
 $t_{rr} = 55 \text{ ns}$

High Performance Fast Recovery Diode Low Loss and Soft Recovery Common Cathode

Part number

DPF60C200HB

Backside: cathode

Features / Advantages:

- Planar passivated chips
- Very low leakage current
 Very short recovery time
- Very short recovery time
- Improved thermal behaviourVery low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package: TO-247

- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0

Fast Diode				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse blockii	ng voltage	$T_{VJ} = 25^{\circ}C$			200	V
V _{RRM}	max. repetitive reverse blocking vo	oltage	$T_{VJ} = 25^{\circ}C$			200	V
I _R	reverse current, drain current	V _R = 200 V	$T_{VJ} = 25^{\circ}C$			5	μΑ
		$V_R = 200 V$	$T_{VJ} = 150$ °C			0.25	mΑ
V _F	forward voltage drop	I _F = 30 A	$T_{VJ} = 25^{\circ}C$			1.11	V
		I _F = 60 A				1.30	V
		I _F = 30 A	T _{VJ} = 150°C			0.91	V
		$I_F = 60 \text{ A}$				1.11	V
I _{FAV}	average forward current	T _c = 150°C	T _{vJ} = 175°C			30	Α
		rectangular d = 0.5					1 1 1 1 1
V _{F0}	threshold voltage	an coloulation only	T _{vJ} = 175°C			0.67	V
r _F	slope resistance	ss calculation only				6.6	mΩ
R _{thJC}	thermal resistance junction to case	9				0.95	K/W
R _{thCH}	thermal resistance case to heatsin	k			0.25		K/W
P _{tot}	total power dissipation		$T_{\rm C}$ = 25°C			160	W
I _{FSM}	max. forward surge current	$t = 10 \text{ ms}; (50 \text{ Hz}), \text{ sine}; V_R = 0 \text{ V}$	$T_{VJ} = 45^{\circ}C$			400	Α
C	junction capacitance	V _R = 150 V f = 1 MHz	$T_{VJ} = 25^{\circ}C$		42		pF
I _{RM}	max. reverse recovery current	\	T _{VJ} = 25°C		6		Α
		$I_F = 30 \text{ A}; V_R = 100 \text{ V}$	$T_{VJ} = 125$ °C		10		Α
t _{rr}	reverse recovery time	-di _F /dt = 200 A/μs	$T_{VJ} = 25^{\circ}C$		55		ns
)	$T_{VJ} = 125$ °C		85		ns

Package TO-247			Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal 1)			50	Α
T _{VJ}	virtual junction temperature		-55		175	°C
T _{op}	operation temperature		-55		150	°C
T _{stg}	storage temperature		-55		150	°C
Weight				6		g
M _D	mounting torque		0.8		1.2	Nm
F _c	mounting force with clip		20		120	N

Product Marking IXYS تا ∻ Logo Part No. →XXXXXXXXX

→ Zyyww

Assembly Line

Assembly Code

Part number

D = Diode

P = HiPerFRED

F = ultra fast

60 = Current Rating [A]

C = Common Cathode

200 = Reverse Voltage [V] HB = TO-247AD (3)

Ordering	Part Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DPF60C200HB	DPF60C200HB	Tube	30	511115

Similar Part	Package	Voltage class
DPF60C200HJ	ISOPLUS247 (3)	200
DPG60C200HB	TO-247AD (3)	200
DPG60C200QB	TO-3P (3)	200
DPF80C200HB	TO-247AD (3)	200

Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 175 ^{\circ}C$
$I \rightarrow V_0$	R_0	Fast Diode		
V _{0 max}	threshold voltage	0.67		V
R _{0 max}	slope resistance *	4		mΩ

Outlines TO-247

Sym.	Inches		Millimeter	
	min.	max.	min.	max.
Α	0.185	0.209	4.70	5.30
A1	0.087	0.102	2.21	2.59
A2	0.059	0.098	1.50	2.49
D	0.819	0.845	20.79	21.45
E	0.610	0.640	15.48	16.24
E2	0.170	0.216	4.31	5.48
е	0.215	BSC	5.46	BSC
L	0.780	0.800	19.80	20.30
L1	-	0.177	-	4.49
ØР	0.140	0.144	3.55	3.65
Q	0.212	0.244	5.38	6.19
S	0.242	BSC	6.14 BSC	
b	0.039	0.055	0.99	1.40
b2	0.065	0.094	1.65	2.39
b4	0.102	0.135	2.59	3.43
С	0.015	0.035	0.38	0.89
D1	0.515	-	13.07	-
D2	0.020	0.053	0.51	1.35
E1	0.530	-	13.45	-
Ø P1	-	0.29	-	7.39

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS:

DPF60C200HB