Vector products

$$\mathbf{a} \cdot \mathbf{b} = ab \cos \theta$$

$$\mathbf{a} \times \mathbf{b} = ab\sin\theta\hat{\mathbf{n}}$$

$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$
 and $\mathbf{a} \times \mathbf{a} = \mathbf{0}$

$$a \times (b \times c) = b(a \cdot c) - c(a \cdot b)$$

Suffix notation

- 1. A suffix that appears <u>twice</u> implies a summation.
- 2. Any suffix <u>cannot appear</u> more than twice in any term.

We define the **Kronecker delta** as:

$$\delta_{ij} = \left\{ \begin{array}{ll} 1 & i = j \\ 0 & i \neq j \end{array} \right.$$

and the Levi-Civita as:

$$\epsilon_{ijk} = \left\{ \begin{array}{ll} +1 & 123, 312, 231 \\ -1 & 132, 213, 321 \\ 0 & \text{repeat indices.} \end{array} \right.$$

Consequently:

$$\epsilon_{ijk} = \epsilon_{kij} = \epsilon_{jki}$$
$$= -\epsilon_{ijk} = -\epsilon_{ijk} = -\epsilon_{ijk}$$

and we have the following identities:

$$\boldsymbol{a} = \sum_{i=1}^{3} a_i \boldsymbol{e}_i = a_i \boldsymbol{e}_i$$

 $A\mathbf{x} = a_{ij}x_j\mathbf{e}_i$ for $m \times n$ matrix A

$$\delta_{ii} = 3$$

$$[\ldots]_i \delta_{ik} = [\ldots]_k$$

$$e_i \cdot e_j = \delta_{ij}$$

$$e_i \times e_j = \epsilon_{ijk} e_k$$

$$\boldsymbol{a} \times \boldsymbol{b} = \epsilon_{ijk} a_j b_k \boldsymbol{e}_i$$

$$\boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c}) = \epsilon_{ijk} a_i b_j c_k$$

$$\epsilon_{ijk}\epsilon_{klm} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}$$

$$\epsilon_{ijk}\epsilon_{ijl} = 2\delta_{kl}$$
 and $\epsilon_{ijk}\epsilon_{ijk} = 6$.

Transformations

Let matrix L relate basis $\{e_i\}$ to basis $\{e'_i\}$ with rule:

$$e'_i = \ell_{ij}e_j$$
 where $(L)_{ij} = \ell_{ij}$.

Then $L^T L = L L^T = I$, and:

$$\ell_{ik}\ell_{jk} = \ell_{ki}\ell_{kj} = \delta_{ij}$$

$$p'_i = \ell_{ij} p_j$$
 for $\boldsymbol{p} = p_i \boldsymbol{e}_i = p'_i \boldsymbol{e}'_i$.

Tensors

A rank 3 tensor is defined as:

$$T'_{ijk} = \ell_{ip}\ell_{jq}\ell_{kr}T_{pqr}$$

which relates frame S in $\{e_i\}$ to frame S' in $\{e'_i\}$ with rule $e'_i = \ell_{ij}e_j$, etc.

Properties of tensors:

- 1. The <u>addition</u> of two rank n tensors is also a rank n tensor.
- 2. The <u>multiplication</u> of a rank m tensor with a rank n tensor yields a rank m + n tensor.
- 3. If $T_{ijk...s}$ is a rank m tensor then $T_{iik...s}$ is a rank m-2 tensor.
- 4. If T_{ij} is a tensor then T_{ji} is also a tensor. Explicitly:

$$T'_{ij} = \ell_{ip}\ell_{jq}T_{pq} \implies T' = LTL^T$$
$$T'_{ii} = \ell_{ip}\ell_{iq}T_{pq}.$$

Symmetric tensors

 T_{ij} is a symmetric tensor when $T_{ij} = T_{ji}$ in frame S. Then $T'_{ij} = T'_{ji}$ in frame S'.

Similarly T_{ij} is an anti-symmetric tensor if $T_{ij} = -T_{ji}$ and $T'_{ij} = -T'_{ji}$.

Finally any tensor can be written as a sum of symmetric and anti-symmetric parts:

$$T_{ij} = \frac{1}{2}(T_{ij} + T_{ji}) + \frac{1}{2}(T_{ij} - T_{ji}).$$

Quotient theorem

Consider 9 entities T_{ij} in frame S and T'_{ij} in frame S'. Let $b_i = T_{ij}a_j$ where a_j is a vector. If b_i always transforms as a vector then T_{ij} is a rank 2 tensor.

Generalising, let $R_{ijk...r}$ be a rank m tensor and $T_{ijk...s}$ a set of 3^n numbers where n > m. If $T_{ijk...s}R_{ijk...r}$ is a rank n - m tensor then $T_{ijk...s}$ is a rank n tensor.

Matrices

We define a $m \times n$ matrix A as $(A)_{ij} = a_{ij}$ where i = 1, ..., m and j = 1, ..., n.

- $\operatorname{Tr} A = a_{ii}$
- \bullet $(A^T)_{ij} = a_{ii}$
- $\bullet \ (AB)^T = B^T A^T$
- $(I)_{ij} = \delta_{ij}$

The determinant of a 3×3 matrix A is:

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
$$= \epsilon_{lmn} a_{1l} a_{2m} a_{3n}$$

 $=\epsilon_{lmn}a_{l1}a_{m2}a_{n3}.$

Furthermore:

$$\epsilon_{ijk} \det A = \epsilon_{lmn} a_{il} a_{jm} a_{kn}$$

$$\epsilon_{lmn} \det A = \epsilon_{ijk} a_{il} a_{jkm} a_{kn}$$

$$\det A = \frac{1}{3!} \epsilon_{ijk} \epsilon_{lmn} a_{il} a_{jm} a_{kn}.$$

Properties of determinants:

- 1. Adding rows to each other does not change the determinant.
- 2. Interchanging two rows changes determinant signs.
- 3. $\det A = \det A^T$
- 4. $det(AB) = det A \cdot det B$

These also apply to columns. Finally:

$$\epsilon_{ijk}\epsilon_{lmn} \det A = \begin{vmatrix} a_{il} & a_{im} & a_{in} \\ a_{jl} & a_{jm} & a_{jn} \\ a_{kl} & a_{km} & a_{kn} \end{vmatrix}$$

and setting A = I yields:

$$\epsilon_{ijk}\epsilon_{lmn} = \left| \begin{array}{ccc} \delta_{il} & \delta_{im} & \delta_{in} \\ \delta_{jl} & \delta_{jm} & \delta_{jn} \\ \delta_{kl} & \delta_{km} & \delta_{kn} \end{array} \right|.$$

Linear equations

Let $\mathbf{y} = A\mathbf{x}$. Then $x_i = A_{ij}^{-1}y_i$ with:

$$\begin{split} A_{ij}^{-1} &= \frac{1}{2} \frac{1}{\det A} \epsilon_{imn} \epsilon_{jpq} a_{pm} a_{qn} \\ &= \frac{1}{\det A} C_{ij}^T \end{split}$$

where C is the cofactor matrix of A.

Pseudotensors

A rank 2 pseudotensor is defined as:

$$T'_{ij} = (\det L)\ell_{ip}\ell_{jq}T_{pq}$$

where $(L)_{ij} = \ell_{ij}$ and $\det L = \pm 1$.

Pseudovectors are rank 1 pseudotensors.

Invariant tensors

Tensor T is invariant or isotropic if:

$$T_{ijk...} = \ell_{i\alpha}\ell_{j\beta}\ell_{k\gamma}\cdots T_{\alpha\beta\gamma...}$$

for every orthogonal matrix L.

- If a_{ij} is a rank 2 invariant tensor then $a_{ij} = \lambda \delta_{ij}$.
- The most general rank 3 invariant pseudotensor is $a_{ijk} = \lambda \epsilon_{ijk}$. There are no rank 3 invariant true tensors.
- Invariant true tensors can only be even ranked.
- Invariant pseudotensors can only be odd ranked.

Rotation tensors

The clockwise <u>rotation</u> of position vector x to y about unit vector \hat{n} is given by:

$$y_i = R_{ij}(\theta, \hat{\boldsymbol{n}})x_j$$

$$R_{ij}(\theta, \hat{\boldsymbol{n}}) = \delta_{ij} \cos \theta + (1 - \cos \theta) n_i n_j - \epsilon_{ijk} n_k \sin \theta$$

and is the rotation tensor.

Reflections and inversions

The <u>reflection</u> of vector \boldsymbol{x} to \boldsymbol{y} in plane with unit vector $\hat{\boldsymbol{n}}$ is:

$$y_i = \sigma_{ij} x_j$$

$$\sigma_{ij} = \delta_{ij} - 2n_i n_j.$$

The <u>inversion</u> of vector x to y is given by y = -x and is defined as:

$$y_i = P_{ij}x_j$$

$$P_{ij} = \delta_{ij}$$
.

Projections

We define P to be a <u>parallel</u> projection operator to vector \boldsymbol{u} if:

$$Pu = u$$
 and $Pv = 0$

where $\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{0}$. Then:

$$P_{ij} = \frac{u_i u_j}{u^2}.$$

Similarly we define Q to be an <u>orthogonal</u> projection to vector \boldsymbol{u} if:

$$Q\mathbf{u} = \mathbf{0}$$
 and $Q\mathbf{v} = \mathbf{v}$.

Here Q = I - P.

Inertia tensors

Let L denote the angular momentum of a rigid body about the origin of mass m, volume V and density ρ at position r with velocity v. Then:

$$L_i = I_{ij}\omega_i$$

$$I_{ij} = I_{ij}(O) = \int_{V} \rho(r^2 \delta_{ij} - x_i x_j) dV$$

where $I_{ij}(O)$ is the inertia tensor about the origin. The <u>kinetic energy</u> of such a body is:

$$T = \frac{1}{2} I_{ij} \omega_i \omega_j = \frac{1}{2} \mathbf{L} \cdot \boldsymbol{\omega}.$$

Parallel axis theorem

Consider the same rigid body now with centre of mass G and let $\overrightarrow{OG} = \mathbf{R}$. Then:

$$I_{ij}(O) = I_{ij}(G) + M(R^2 \delta_{ij} - X_i X_j)$$
$$M = \int_V \rho'(\mathbf{r}') dV'.$$

Diagonalisation

Let $L = I_{ij}\omega_j$ where I_{ij} is a rank 2 tensor and let $L = \lambda \omega$. Then:

$$(I_{ij} - \lambda \delta_{ij})\omega_j = 0 \implies \det(I_{ij} - \lambda \delta_{ij}) = 0$$

where expanding this gives:

$$P - Q\lambda + R\lambda^2 - \lambda^3 = 0$$

for $P = \det I$, $Q = \frac{1}{2}[(\operatorname{tr} I)^2 - \operatorname{tr}(I^2)]$ and $R = \operatorname{tr} I$ given tensor I.

Real symmetric tensors

Let rank 2 real symmetric tensor T be diagonalisable with real eigenvalues $\lambda^{(i)}$ and orthonormal eigenvectors $\boldsymbol{\ell}^{(i)}$ where i=1,2,3. Let transformation matrix be:

$$L_{ij} = \ell_j^{(i)} = \begin{pmatrix} \ell_1^{(1)} & \ell_2^{(1)} & \ell_3^{(1)} \\ \ell_1^{(2)} & \ell_2^{(2)} & \ell_3^{(2)} \\ \ell_1^{(3)} & \ell_2^{(3)} & \ell_3^{(3)} \end{pmatrix}_{ij}$$

and always defined such that $\det L = +1$ which transforms frame $S \to S'$.

Then since $T_{pq}\ell_q^{(i)} = \lambda^{(i)}\ell_p^{(i)}$:

$$T'_{ij} = \ell_{ip}\ell_{jq}T_{pq}$$

$$= \lambda^{(i)} \delta_{ij} = \begin{pmatrix} \lambda^{(1)} & 0 & 0 \\ 0 & \lambda^{(2)} & 0 \\ 0 & 0 & \lambda^{(3)} \end{pmatrix}_{ii}.$$

Taylor expansions

In the one-dimensional case we have:

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(a) (x - a)^n$$

and is f expanded about x = a.

Trignometric expansions are in radians!

$$\therefore f(x+a) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(x) a^n$$
$$= \exp\left(a \frac{\mathrm{d}}{\mathrm{d}x}\right) f(x)$$

Then for three dimensions:

$$\phi(\mathbf{r} + \mathbf{a}) = \sum_{n=0}^{\infty} \frac{1}{n!} (\mathbf{a} \cdot \nabla_r)^n \phi(\mathbf{r})$$
$$= \exp(\mathbf{a} \cdot \nabla_r) \phi(\mathbf{r}).$$

Curvilinear coordinates

Let x_i denote Cartesian coordinates and u_i denote curvilinear coordinates. Then:

$$(x_1, x_2, x_3) \rightarrow (u_1, u_2, u_3)$$

where each $u_i = u_i(x_1, x_2, x_3)$ and:

$$r = x_1 e_1 + x_2 e_2 + x_3 e_3$$

= $u_1 e_{u_1} + u_2 e_{u_2} + u_3 e_{u_3}$.

Scale factors

Let $u_1 \to u_1 + du_1$ in $\mathbf{r} = \mathbf{r}(u_1, u_2, u_3)$. Then $d\mathbf{r}$ in $\mathbf{r} \to \mathbf{r} + d\mathbf{r}$ is defined as:

$$\mathrm{d}\boldsymbol{r} = \frac{\partial \boldsymbol{r}}{\partial u_1} \mathrm{d}u_1 := h_1 \boldsymbol{e}_1 \mathrm{d}u_1.$$

 h_1 is the scale factor of unit vector e_1 :

$$h_1 = \left| \frac{\partial \boldsymbol{r}}{\partial u_1} \right| \text{ and } \boldsymbol{e}_1 = \frac{1}{h_1} \frac{\partial \boldsymbol{r}}{\partial u_1}.$$

If $e_i \cdot e_j = \delta_{ij}$ then u_i is an **orthogonal** curvilinear coordinate system.

Vector and arc length

The vector length $d\mathbf{r}$ of \mathbf{r} is defined as:

$$\mathrm{d}\boldsymbol{r} = \sum_{i=1}^{3} h_i \mathrm{d}u_i \boldsymbol{e}_i$$

where $u_i \to u_i + du_i$ for $\forall i = 1, 2, 3$.

Then the arc length ds is defined as:

$$(\mathrm{d}s)^2 = \mathrm{d}\mathbf{r} \cdot \mathrm{d}\mathbf{r}$$
$$= g_{ij} \, \mathrm{d}u_i \, \mathrm{d}u_j$$

where g_{ij} is the metric tensor:

$$g_{ij} = g_{ji} = \frac{\partial x_k}{\partial u_i} \frac{\partial x_k}{\partial u_j}$$
$$= h_i h_j (\mathbf{e}_i \cdot \mathbf{e}_j).$$

Area and volume

Let $d\mathbf{r}_i = h_i \mathbf{e}_i du_i$ denote vector length when $u_i \to u_i + du_i$. (**No** sum!)

The infinitesimal <u>vector area</u> or **surface element** formed by $d\mathbf{r}_1$ and $d\mathbf{r}_2$ is:

$$d\mathbf{S} = (h_1 d\mathbf{u}_1 \mathbf{e}_1) \times (h_2 d\mathbf{u}_2 \mathbf{e}_2).$$

Similarly the infinitesimal volume formed by edges $d\mathbf{r}_1$, $d\mathbf{r}_2$ and $d\mathbf{r}_3$ is:

$$dV = |(d\mathbf{r}_1 \times d\mathbf{r}_2) \cdot d\mathbf{r}_3|$$
$$= \sqrt{g} du_1 du_2 du_3$$

where $g = \det(g_{ij})$.

Cylindrical coordinates

 $(u_1, u_2, u_3) = (\rho, \phi, z)$ where ρ represents the radial distance from the origin and ϕ is the anticlockwise rotation angle on the x-y plane. In Cartesian unit vectors:

$$r = \rho \cos \phi e_1 + \rho \sin \phi e_2 + z e_3$$

 $h_\rho = 1, \quad e_\rho = \cos \phi e_1 + \sin \phi e_2$

$$h_{\phi} = \rho, \quad \boldsymbol{e}_{\phi} = -\sin\phi \boldsymbol{e}_1 + \cos\phi \boldsymbol{e}_2$$

$$\rho = \rho, \quad \epsilon_{\phi} = -\sin \varphi \epsilon_1 + \cos \varphi \epsilon_2$$

$$h_z = 1$$
, $e_z = e_3$

and forms an orthogonal set.

Spherical coordinates

 $(u_1, u_2, u_3) = (r, \theta, \phi)$ where θ represents the clockwise rotation angle in y-z plane and ϕ the anticlockwise rotation angle in x-y plane. In Cartesian unit vectors:

 $r = r \sin \theta \cos \phi e_1 + r \sin \theta \sin \phi e_2 + r \cos \theta e_3$ where curve δC encloses plane δS .

$$h_r = 1, \ h_\theta = r, \ h_\phi = r \sin \theta$$

 $e_r = \sin \theta \cos \phi e_1 + \sin \theta \sin \phi e_2 + \cos \theta e_3$

 $\mathbf{e}_{\theta} = \cos \theta \cos \phi \mathbf{e}_1 + \cos \theta \sin \phi \mathbf{e}_2 - \sin \theta \mathbf{e}_3$

$$\mathbf{e}_{\phi} = -\sin\phi\mathbf{e}_1 + \cos\phi\mathbf{e}_2$$

and also forms an orthogonal set.

The inverse relations are given by:

$$e_1 = \sin \theta \cos \phi e_r + \cos \theta \cos \phi e_\theta - \sin \phi e_\phi$$

 $e_2 = \sin \theta \sin \phi e_r + \cos \theta \sin \phi e_\theta + \cos \phi e_\phi$

$$\boldsymbol{e}_3 = \cos\theta \boldsymbol{e}_r - \sin\theta \boldsymbol{e}_\theta.$$

We notice that the transformation is an orthogonal matrix – its inverse is simply its transpose.

Gradient

The gradient of a scalar field $f(\mathbf{r})$ is:

$$\mathrm{d}f(\boldsymbol{r}) := \boldsymbol{\nabla}f(\boldsymbol{r}) \cdot \mathrm{d}\boldsymbol{r}$$

when $r \to r + dr \implies f \to f + df$. Taking the total differential of f yields:

$$\nabla f = \sum_{i=1}^{3} \frac{1}{h_i} \frac{\partial f}{\partial u_i} e_i$$

where $\{e_i\}$ is orthogonal.

Divergence

The divergence of a <u>vector</u> field F is:

$$\mathbf{\nabla} \cdot \mathbf{F} := \lim_{\delta V \to 0} \frac{1}{\delta V} \int_{\delta S} \mathbf{F} \cdot \mathrm{d}\mathbf{S}$$

for surface δS bounds infinitesimal δV . In orthogonal curvilinear coordinates:

$$\nabla \cdot \mathbf{F} = \frac{1}{h_1 h_2 h_3} \left\{ \frac{\partial}{\partial u_1} (F_1 h_2 h_3) + \frac{\partial}{\partial u_2} (h_1 F_2 h_3) + \frac{\partial}{\partial u_3} (h_1 h_2 F_3) \right\}.$$

Curl

The curl of a vector field F in the direction of unit vector \hat{n} is:

$$\hat{m{n}}\cdot(m{
abla} imesm{F})\coloneqq\lim_{\delta S o 0}rac{1}{\delta S}\oint_{\delta C}m{F}\cdot\mathrm{d}m{r}$$

where curve δC encloses plane δS . In orthogonal curvilinear coordinates:

$$\boldsymbol{\nabla}\times\boldsymbol{F} = \frac{1}{h_1h_2h_3} \begin{vmatrix} h_1\boldsymbol{e}_1 & h_2\boldsymbol{e}_2 & h_3\boldsymbol{e}_3 \\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3} \\ h_1F_1 & h_2F_2 & h_3F_3 \end{vmatrix}.$$

Laplacian

The Laplacian of a scalar field f is:

$$\nabla^2 f = \nabla \cdot (\nabla f)$$

and in orthogonal curvilinear coordinates:

$$\nabla^2 f = \frac{1}{h_1 h_2 h_3} \left\{ \frac{\partial}{\partial u_1} \left(\frac{h_2 h_3}{h_1} \frac{\partial f}{\partial u_1} \right) + \frac{\partial}{\partial u_2} \left(\frac{h_3 h_1}{h_2} \frac{\partial f}{\partial u_2} \right) + \frac{\partial}{\partial u_3} \left(\frac{h_1 h_2}{h_3} \frac{\partial f}{\partial u_3} \right) \right\}.$$

The Laplacian of a vector field F is:

$$\nabla^2 \mathbf{F} = \nabla(\nabla \cdot \mathbf{F}) - \nabla \times (\nabla \times \mathbf{F}).$$

Vector calculus identities

Particularly for Cartesian coordinates we can apply the suffix notation:

$$\nabla f = \frac{\partial f}{\partial x_i} e_i$$

$$\nabla \cdot \boldsymbol{F} = \frac{\partial F_i}{\partial x_i}$$

$$\mathbf{\nabla} \times \mathbf{F} = \epsilon_{ijk} \frac{\partial F_k}{\partial x_i} \mathbf{e}_i$$

$$\frac{\partial x_i}{\partial x_j} = \delta_{ij}$$
 and $\frac{\partial x_i}{\partial x_i} = \delta_{ii} = 3$.

The following operator acts on **both** scalar and vector fields:

$$(\boldsymbol{u}\cdot\boldsymbol{\nabla})\boldsymbol{F}=u_j\frac{\partial}{\partial x_j}F_i.$$

If ψ is a scalar field and \boldsymbol{v} a vector field:

$$\nabla \times (\nabla \psi) = \mathbf{0}$$

$$oldsymbol{
abla}\cdot(oldsymbol{
abla} imesoldsymbol{v})=oldsymbol{0}$$

$$\nabla \cdot (\psi \boldsymbol{v}) = \nabla \psi \cdot \boldsymbol{v} + \psi \nabla \cdot \boldsymbol{v}$$

$$\nabla \times (\psi \mathbf{v}) = \nabla \psi \times \mathbf{v} + \psi \nabla \times \mathbf{v}.$$

Let $r = x_i e_i$ and $r = (x_i^2)^{1/2}$. Then:

•
$$\nabla r = \frac{\mathbf{r}}{r}$$
 and $\nabla \left(\frac{1}{r}\right) = -\frac{\mathbf{r}}{r^3}$

- $\nabla \cdot r = 3$ and $\nabla \times r = 0$
- $\nabla \times (\boldsymbol{c} \times \boldsymbol{r}) = 2\boldsymbol{c}$
- $\nabla \cdot (c \times r) = 0$ for constant c.

Divergence theorem

Let surface S enclose volume V. Then:

$$\int_{V} \mathbf{\nabla} \cdot \mathbf{F} dV = \oint_{S} \mathbf{F} \cdot d\mathbf{S}$$

where \boldsymbol{F} is a vector field.

Stokes' theorem

Let closed curve C bound open surface S and let F be a vector field. Then:

$$\oint_C m{F} \cdot \mathrm{d}m{r} = \int_S (m{
abla} imes m{F}) \cdot \mathrm{d}m{S}$$

for C is traversed in anticlockwise sense.

Dirac delta function

The Dirac delta in 1D is defined as:

$$\delta(x-a) := \left\{ \begin{array}{ll} \infty & x = a \\ 0 & \text{otherwise.} \end{array} \right.$$

In three dimensions this becomes:

$$\delta^{(3)}(\boldsymbol{r} - \boldsymbol{r}_0) := \delta(\boldsymbol{r} - \boldsymbol{r}_0)$$
$$= \delta(x - x_0)\delta(y - y_0)\delta(z - z_0)$$

where (x, y, z) are Cartesian coordinates.

In orthogonal curvilinear coordinates:

$$\delta(\mathbf{r} - \mathbf{a}) = \frac{1}{h_1 h_2 h_3} \delta(u_1 - a_1)$$
$$\cdot \delta(u_2 - a_2) \delta(u_3 - a_3).$$

Importantly we have the **sift** property:

$$\int_{-\infty}^{\infty} f(x)\delta(x-a)dx = f(a)$$

$$\int_{-\infty}^{\infty} \delta(x) \mathrm{d}x = 1$$

which yields:

$$x\delta(x) = 0$$
 and $\delta(cx) = \frac{1}{|c|}\delta(x)$.

If simple solutions of g(x) = 0 are x_i :

$$\int_{-\infty}^{\infty} f(x)\delta(g(x))dx = \sum_{i} \frac{f(x_i)}{|g'(x_i)|}$$

Coulomb's law

Consider charges q and q_1 at positions r and r_1 . The force on charge q at r due to charge q_1 at r_1 is:

$$\boldsymbol{F}_1(\boldsymbol{r}) = \frac{1}{4\pi\epsilon_0} \frac{qq_1(\boldsymbol{r} - \boldsymbol{r}_1)}{|\boldsymbol{r} - \boldsymbol{r}_1|^3}$$

where $qq_1 > 0$ denotes repulsion.

The permittivity of free space is given by:

$$\epsilon_0 = 8.85419 \times 10^{-12} \text{C}^2 \text{N}^{-1} \text{m}^{-2}.$$

Charge has units Coulombs (C) and an electron has charge -1.60218×10^{-19} C.

Electric fields

The electric field is induced by a charge distribution and defined in terms of the force on a small positive test charge q:

$$\boldsymbol{E}(\boldsymbol{r}) := \lim_{q \to 0} \frac{1}{q} \boldsymbol{F}.$$

Then for our two charges q and q_1 :

$$\boldsymbol{F}_1(\boldsymbol{r}) = q\boldsymbol{E}_1(\boldsymbol{r})$$

where q_1 produces electric field E_1 .

$$\therefore \boldsymbol{E}_1(\boldsymbol{r}) = \frac{1}{4\pi\epsilon_0} \frac{q_1(\boldsymbol{r} - \boldsymbol{r}_1)}{|\boldsymbol{r} - \boldsymbol{r}_1|^3}$$

$$\therefore \phi_1(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{q_1}{|\mathbf{r} - \mathbf{r}_1|}$$

Principle of superposition

For a set of charges q_i at position r_i the total electric field at r is:

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\epsilon_0} \sum_i \frac{q_i(\boldsymbol{r} - \boldsymbol{r}_i)}{|\boldsymbol{r} - \boldsymbol{r}_i|^3}.$$

For object with **charge density** $\rho(\mathbf{r}')$ its overall electric field at \mathbf{r} is:

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\epsilon_0} \int_{V} \rho(\boldsymbol{r}') \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3} dV'$$

where $\rho(\mathbf{r}')$ is charge divided by volume. The **type** of integral (surface or line) is dependent on the object in consideration.

Electrostatic Maxwell's equations

Because
$$\nabla \left(\frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} \right) = -\frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$
:

$$\boldsymbol{E}(\boldsymbol{r}) = -\boldsymbol{\nabla} \left(\frac{1}{4\pi\epsilon_0} \int_{V} \frac{\rho(\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|} dV' \right)$$

and therefore for all static electric fields:

$$\nabla \times E = 0$$
.

E is a **conservative** vector field where its line integral is independent of path. Furthermore it may be written as:

$$E(r) = -\nabla \phi(r)$$

for $\phi(\mathbf{r})$ is the potential of \mathbf{E} .

$$\therefore \phi(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int_{V} \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} dV'$$

The **potential difference** between two points A and B is the energy per unit charge needed to move a small charge q from A to B:

$$V_{A \to B} = \lim_{q \to 0} \frac{1}{q} W_{A \to B}$$
$$= -\frac{1}{q} \int_{C} \mathbf{F} \cdot d\mathbf{r}$$
$$= \phi_{B} - \phi_{A}.$$

A charge distribution $\rho(\mathbf{r}')$ in an <u>external</u> electric field has potential energy:

$$W = \int_{V} \rho(\mathbf{r}') \phi_{ext}(\mathbf{r}') \mathrm{d}V'.$$

Because $\nabla^2 \left(\frac{1}{|\boldsymbol{r} - \boldsymbol{r'}|} \right) = -4\pi \delta(\boldsymbol{r} - \boldsymbol{r'})$:

$$m{
abla} \cdot m{E} = rac{
ho(m{r})}{\epsilon_0}.$$

Electric dipoles

An electric dipole at r_0 is defined as two charges -q at r_0 and +q at $r_0 + d$ which generates **dipole moment**:

$$p = qd$$

and in the dipole limit this is defined as:

$$oldsymbol{p} \coloneqq \lim_{\substack{q o \infty \ oldsymbol{d} o oldsymbol{0}}} q oldsymbol{d}$$

known as an ideal dipole.

The electrostatic potential generated by this ideal dipole at r_0 is given by:

$$\phi(\mathbf{r}) = \phi_q + \phi_{-q}$$

$$= \frac{q}{4\pi\epsilon_0} \left(\frac{1}{|\mathbf{r} - \mathbf{r}_0 - \mathbf{d}|} - \frac{1}{|\mathbf{r} - \mathbf{r}_0|} \right)$$

$$\approx \frac{1}{4\pi\epsilon_0} \frac{\mathbf{p} \cdot (\mathbf{r} - \mathbf{r}_0)}{|\mathbf{r} - \mathbf{r}_0|^3}$$

for the first term is expanded in powers of $-\mathbf{d}$ about $\mathbf{r} - \mathbf{r}_0$.

The electric field generated is:

$$egin{aligned} m{E}(m{r}) = & rac{1}{4\pi\epsilon_0} igg[-rac{m{p}}{|m{r}-m{r}_0|^3} \ & + rac{3m{p}\cdot(m{r}-m{r}_0)}{|m{r}-m{r}_0|^5}(m{r}-m{r}_0) igg]. \end{aligned}$$

If the ideal dipole is at the origin:

$$\phi(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{\mathbf{p} \cdot \mathbf{r}}{r^3}$$

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\epsilon_0} \left(\frac{3\boldsymbol{p}\cdot\boldsymbol{r}}{r^5} \boldsymbol{r} - \frac{\boldsymbol{p}}{r^3} \right).$$

Let ideal dipole moment p be parallel to the z-axis. Then in spherical coordinates $(r, \theta, \chi), r = re_r, p = pe_z$ and:

$$\phi(\mathbf{r}) = \frac{p}{4\pi\epsilon_0} \frac{\cos\theta}{r^2}$$

$$E(r) = \frac{p}{4\pi\epsilon_0} \left(\frac{2\cos\theta}{r^3} e_r + \frac{\sin\theta}{r^3} e_\theta \right).$$

Force, torque and energy

The force on a dipole at r from external electric field $E_{ext}(r)$ is:

$$F = -qE_{ext}(r) + qE_{ext}(r+d)$$

$$\approx (p \cdot \nabla)E_{ext}(r).$$

The **torque** on a dipole at r about the axis r due to $E_{ext}(r)$ is:

$$egin{aligned} m{G} &= m{ au}_{-q} + m{ au}_q \ &= -q m{0} imes m{E}_{ext}(m{r}) + q m{d} imes m{E}_{ext}(m{r} + m{d}) \ &pprox m{p} imes m{E}_{ext}(m{r}). \end{aligned}$$

The **energy** of a dipole at r from external electric field $E_{ext}(r) = -\nabla \phi_{ext}(r)$ is:

$$W = -q\phi_{ext}(\mathbf{r}) + q\phi_{ext}(\mathbf{r} + \mathbf{d})$$

$$\approx -\mathbf{p} \cdot \mathbf{E}_{ext}(\mathbf{r})$$

and $\mathbf{F} = -\nabla W$.

Multipole expansion

Consider object with volume V and charge distribution $\rho(\mathbf{r}')$. Let origin be in the object. Then the potential at \mathbf{r} is:

$$\phi(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int_V \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} dV'$$

$$\approx \frac{1}{4\pi\epsilon_0} \left(\frac{Q}{r} + \frac{\mathbf{p} \cdot \mathbf{r}}{r^3} + \frac{Q_{ij} x_i x_j}{2r^5} \right)$$

where Q is the **total charge** in V:

$$Q = \int_{V} \rho(\mathbf{r}') \mathrm{d}V'$$

p the dipole moment about the origin:

$$p = \int_{V} r' \rho(r') dV'$$

and Q_{ij} the quadrupole tensor:

$$Q_{ij} = \int_{V} \rho(\mathbf{r}') \left[3x'_{i}x'_{j} - (r')^{2} \delta_{ij} \right] dV'.$$

If $Q \neq 0$ then in the far zone $(r \gg r_0)$ the first term (monopole term) dominates.

If Q = 0 and p = 0 then the third term (quadruple term) dominates in the far zone and etc.

Interaction energy

By expanding $\phi_{ext}(\mathbf{r})$ about $\mathbf{r} = \mathbf{0}$:

$$W = \int_{V} \rho(\mathbf{r}') \phi_{ext}(\mathbf{r}') dV'$$
$$= Q \phi_{ext}(\mathbf{0}) - \mathbf{p} \cdot \mathbf{E}_{ext}(\mathbf{0})$$
$$- \frac{1}{6} Q_{ij} \frac{\partial (\mathbf{E}_{ext}(\mathbf{0}))_{i}}{\partial x_{j}} + \dots$$

and is the potential energy of a charge distribution $\rho(\mathbf{r})$ in \mathbf{E}_{ext} .

Gauss' law

For object with charge distribution $\rho(\mathbf{r}')$ and volume V enclosed by surface S:

$$\int_{S} \mathbf{E} \cdot \mathrm{d}\mathbf{S} = \frac{Q_{enc}}{\epsilon_0}$$

where Q_{enc} is total charge enclosed by V:

$$Q_{enc} = \int_{V} \rho(\mathbf{r}') \mathrm{d}V'$$

and is useful for symmetric problems.

Boundaries in electrostatics

Let σ be the charge density of a surface separating electric fields E_1 and E_2 .

1. Normal component of electric field is <u>discontinuous</u> across surface by:

$$\hat{m{n}}\cdot(m{E}_2-m{E}_1)=rac{\sigma}{\epsilon_0}.$$

2. Tangential component of electric field is continuous across surface:

$$m{E}_{\parallel} \coloneqq \hat{m{n}} imes m{E}_1 = \hat{m{n}} imes m{E}_2.$$

Conductors

Conductors have surplus electrons that can move freely when an electric field is applied. **In electrostatics**:

1. Conductors are in equilibrium, all charges are at rest and reside on the surface of the conductor.

Hence inside a conductor $\rho(\mathbf{r}) = 0$, $\mathbf{E}(\mathbf{r}) = \mathbf{0}$ and $\phi = \text{constant}$.

2. An electric field is always <u>normal</u> to the surface of a conductor:

$$E_{\perp} = \frac{\sigma}{\epsilon_0}$$
 and $E_{\parallel} = 0$.

The presence of an external electric field induces a charge distribution σ on the surface of our conductor. This changes the external electric field as it needs to be normal to the surface of the conductor.

Poisson's equation

Because $\mathbf{E} = -\nabla \phi$ and $\nabla \cdot \mathbf{E} = \rho(\mathbf{r})/\epsilon_0$:

$$\nabla^2 \phi = -\frac{\rho(\mathbf{r})}{\epsilon_0}.$$

We can solve this by direct integration or using the **method of images**.

Given volume under consideration place fictitious charge <u>outside</u> the volume such that the system still satisfies Poisson's equation with boundary conditions.

This potential is our solution.

Electrostatic energy

The work needed to move point charge q from r_A to r_B in E(r) is:

$$W_{A\to B} = qV_{A\to B}.$$

Then $W_{\infty \to B} = q\phi(\mathbf{r}_B)$ since potential ϕ vanishes at infinity.

Generalising, the work needed to move a system of n charges q_i from infinity to r is a double sum with overcounting as each charge contributes to the electric field:

$$W_e = \frac{1}{2} \frac{1}{4\pi\epsilon_0} \sum_{i,j(i\neq j)}^n \frac{q_i q_j}{|\boldsymbol{r}_j - \boldsymbol{r}_i|}.$$

Furthermore the energy needed to move a continuous charge distribution $\rho(\mathbf{r}')$ from infinity to position \mathbf{r} is:

$$W_e = \frac{1}{2} \int_V \rho(\mathbf{r}) \phi(\mathbf{r}) dV$$
$$= \frac{\epsilon_0}{2} \int_V |\mathbf{E}(\mathbf{r})|^2 dV.$$

Capacitors

A capacitor is formed by two conductors 1 and 2 with equal and opposite charges Q and -Q. The **capacitance** (1CV⁻¹) of a capacitor is defined as:

$$C := \frac{Q}{V}$$

where $Q = \sigma A$ for A is the surface area of one conductor and potential difference $V = \phi_1 - \phi_2$ from the conductors.

The energy stored in a capacitor is the amount of work done to move charge across the two conductors. So to move charge dq from conductor with +q:

$$dW = \left(\frac{q}{C}\right) dq$$

and integrating this up to Q gives:

$$W = \frac{1}{2} \frac{Q^2}{C}.$$

Currents

An elementary current is generated by a charge q moving at velocity v.

The bulk current density is:

$$\boldsymbol{J}(\boldsymbol{r}) := \rho(\boldsymbol{r})\boldsymbol{v}$$

for $\rho(\mathbf{r})$ is the volume charge density.

The surface current density is:

$$K(r) := \sigma(r)v$$

for $\sigma(\mathbf{r})$ is the surface charge density.

The line charge density is:

$$I(r) := \lambda(r)v$$

for $\lambda(\mathbf{r})$ is the line charge density.

The infinitesimal current element is:

$$\mathrm{d} \boldsymbol{I}(\boldsymbol{r}) \coloneqq \left\{ \begin{array}{ll} \boldsymbol{J}(\boldsymbol{r}) \mathrm{d} \boldsymbol{V} & \text{volume current} \\ \boldsymbol{K}(\boldsymbol{r}) \mathrm{d} \boldsymbol{S} & \text{surface current} \\ \boldsymbol{I}(\boldsymbol{r}) \mathrm{d} \boldsymbol{r} & \text{line current} \end{array} \right.$$

Current I has units Ampères (A) but the infinitesimal current element $d\mathbf{I}(\mathbf{r})$ has units of current/volume, etc.

Note: $1A := 1Cs^{-1}$

Consider volume V bounded by surface S with total charge Q. Because the total charge is conserved:

$$\frac{\partial \rho(\boldsymbol{r},t)}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{J}(\boldsymbol{r},t) = 0$$

$$Q = \int_{V} \rho(\boldsymbol{r}, t) dV.$$

An electric field can induce a current in a conductor, via **Ohm's law**:

$$\boldsymbol{J} \approx \sigma_{ij} E_j$$

where σ_{ij} is the conductivity tensor.

- 1. Perfect conductors: $\sigma \to \infty$ and E = 0.
- 2. Insulators: $\sigma = 0$.

The **electromotive force** (emf) is:

$$\mathcal{E}_{1\to 2} := \int_{\boldsymbol{r}_1}^{\boldsymbol{r}_2} \boldsymbol{E} \cdot d\boldsymbol{r}$$
$$= \phi(\boldsymbol{r}_1) - \phi(\boldsymbol{r}_2)$$

since
$$\boldsymbol{E} = -\boldsymbol{\nabla}\phi$$
. (static case)

Biot-Savart law

The magnetic field at r generated by a static current loop carrying current I is:

$$\boldsymbol{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \oint_C \frac{I d\boldsymbol{r}' \times (\boldsymbol{r} - \boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

and is the right grip rule.

Magnetic fields have units Teslas (T), where $NC^{-1}m^{-1}s = T$ and:

$$\mu_0 = 1.25664 \cdots \times 10^{-6} \text{NA}^{-2}.$$

No force is induced from perpendicular currents.

Lozentz force

Through physical experiments the force **density** on a charge distribution $\rho(r)$ in electric field \boldsymbol{E} and magnetic field \boldsymbol{B} is:

$$f := \rho E + J \times B$$

where J is the current density and integrating yields the **right hand rule**.

Current is the movement of charge.

For point charge q at r' with velocity vin E and B its net force is the integral of the force density over volume V:

$$F = q(E + v \times B)$$

since $\rho(\mathbf{r}) = q\delta(\mathbf{r} - \mathbf{r}')$ and $\mathbf{J} = \rho(\mathbf{r})\mathbf{v}$.

Magnetostatic Maxwell's equations

Because
$$\nabla \left(\frac{1}{|r-r'|} \right) = -\frac{r-r'}{|r-r'|^3}$$
:

$$\boldsymbol{B}(\boldsymbol{r}) = -\frac{\mu_0}{4\pi} \int_{V} \boldsymbol{J}(\boldsymbol{r}') \times \boldsymbol{\nabla} \left(\frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|}\right) dV'$$
 where we set $\boldsymbol{\nabla} \cdot \boldsymbol{A} = 0$ and solution:

therefore $\nabla \cdot \boldsymbol{B} = \boldsymbol{0}$ due to:

This implies that magnetic fields always form **closed loops** — there are no sources or sinks for magnetic fields.

Similarly using the following identity:

$$oldsymbol{
abla} egin{aligned} oldsymbol{
abla} imes (oldsymbol{u} imes oldsymbol{v}) &= oldsymbol{u} (oldsymbol{
abla} \cdot oldsymbol{v}) + oldsymbol{v} \cdot oldsymbol{
abla} oldsymbol{u} &= oldsymbol{u} \cdot oldsymbol{v} - oldsymbol{u} \cdot oldsymbol{
abla} oldsymbol{v} - oldsymbol{v} \cdot oldsymbol{v} - oldsymbol{v} - oldsymbol{v} \cdot oldsymbol{v} - oldsymbol{v} \cdot oldsymbol{v} - oldsymbol{v} - oldsymbol{v} - oldsymbol{v} - ol$$

and
$$\nabla^2 \left(\frac{1}{|\boldsymbol{r} - \boldsymbol{r'}|} \right) = -4\pi \delta(\boldsymbol{r} - \boldsymbol{r'})$$
:
 $\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{J}$.

Ampère's law

Using the divergence theorem, there is no magnetic flux through a closed surface:

$$\oint_{S} \boldsymbol{B} \cdot \mathrm{d}\boldsymbol{S} = 0.$$

From Stokes' theorem:

$$\oint_C \boldsymbol{B} \cdot \mathrm{d}\boldsymbol{r} = \mu_0 I_{enc}$$

which implies that the circulation of a magnetic field \boldsymbol{B} around a closed loop Cis proportional to the total current I that passes through the enclosed surface.

Boundaries in magnetostatics

Let conductor with current density Kseparate magnetic fields B_1 and B_2 .

1. Normal component of magnetic field is continuous across surface:

$$\boldsymbol{B}_{\perp} := \boldsymbol{B}_1 \cdot \hat{\boldsymbol{n}} = \boldsymbol{B}_2 \cdot \hat{\boldsymbol{n}}.$$

2. Tangential component of magnetic field is discontinuous across surface:

$$\hat{\boldsymbol{n}} \times (\boldsymbol{B}_2 - \boldsymbol{B}_1) = \mu_0 \boldsymbol{K}.$$

Magnetic vector potentials

Because $\nabla \cdot (\nabla \times v) = 0$ and $\nabla \cdot B = 0$:

$$\exists A : B = \nabla \times A$$

known as the **vector potential**. Then:

$$egin{aligned} oldsymbol{
abla} imes oldsymbol{B} &= oldsymbol{
abla} imes (oldsymbol{
abla} imes oldsymbol{A}) - oldsymbol{
abla}^2 oldsymbol{A} \ &= \mu_0 oldsymbol{J} \end{aligned}$$

$$: \boldsymbol{\nabla}^2 \boldsymbol{A} = -\mu_0 \boldsymbol{J}$$

$$\boldsymbol{A}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \int_V \frac{\boldsymbol{J}(\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|} \mathrm{d}V'$$

 $oldsymbol{
abla} \cdot (oldsymbol{u} imes oldsymbol{v}) = (oldsymbol{
abla} imes oldsymbol{u}) \cdot oldsymbol{v} - (oldsymbol{
abla} imes oldsymbol{v}) \cdot oldsymbol{u}. \quad ext{and boundary condition } \lim_{n \to \infty} oldsymbol{A}(oldsymbol{r}) = oldsymbol{0}.$

Magnetic dipoles

The vector potential for a current loop positioned at the origin in the far zone is:

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \oint_C \frac{I d\mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}$$

$$= \frac{\mu_0}{4\pi} \oint_C \frac{1}{r} \left(1 + \frac{\mathbf{r} \cdot \mathbf{r}'}{r^2} + \dots \right) d\mathbf{r}'$$

$$\approx \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \mathbf{r}}{r^3}$$

where m is the magnetic dipole moment:

$$egin{aligned} oldsymbol{m} &= I \int_S \mathrm{d} oldsymbol{S} \ &= rac{1}{2} \oint_C oldsymbol{r} imes \mathrm{d} oldsymbol{I} \end{aligned}$$

via Stokes' theorem.

Force and torque

The Lorentz force on a current loop due to an external magnetic field \boldsymbol{B} is:

$$egin{aligned} m{F} &= I \oint_C \mathrm{d} m{r}' imes m{B}(m{r}') \ &= m{\nabla} (m{m} \cdot m{B}). \end{aligned}$$

The torque on a current loop due to an external magnetic field \boldsymbol{B} is:

$$egin{aligned} G &= \oint_C oldsymbol{r}' imes [I \mathrm{d} oldsymbol{r}' imes oldsymbol{B}(oldsymbol{r}')] \ &= oldsymbol{m} imes oldsymbol{B}. \end{aligned}$$

Motional electromotive force

The electromotive force (emf) is the work needed for unit point charge to circulate around a conductor loop:

$$\mathcal{E} = \oint_C \mathbf{f} \cdot d\mathbf{r}$$

= $\oint_C (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot d\mathbf{r}$

for v is the velocity of the charge and fis the force density on point charge.

Magnetic induction

Faraday's law of induction states that a **change** in magnetic flux Φ induces an emf in a conductor loop:

$$\mathcal{E} = -\frac{\mathrm{d}\Phi}{\mathrm{d}t}$$

where **magnetic flux** is defined as the total magnetic field passing through the region bounded by the conductor loop:

$$\Phi = \int_{S} \boldsymbol{B} \cdot d\boldsymbol{S}$$

$$= \boldsymbol{B} \cdot \boldsymbol{S} \text{ if constant } \boldsymbol{B}$$

and any surface S enclosing the region.

For static charges in a conductor loop C with time dependent magnetic field:

$$\mathcal{E} = \oint_C \mathbf{E} \cdot d\mathbf{r} = -\int_S \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S}$$

and using Stokes' theorem:

$$oldsymbol{
abla} imesoldsymbol{E}=-rac{\partial oldsymbol{B}}{\partial t}.$$

In words, a time dependent magnetic field always accompanies a spatial and time dependent electric field.

Galilean relativity

If the velocity of frame S' in S is v:

$$r' = r - vt$$

$$dt' = dt$$

for point P has position r in frame S and position r' in frame S'.

Let circuit C be in motion in frame S with velocity v with respect to B(r,t). Then let C be stationary in frame S'. Since the electromotive force generated is the same regardless of frames, in frame S:

$$\mathcal{E} = \oint_C (\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}) \cdot d\boldsymbol{r}$$

and as v = 0 in frame S':

$$\mathcal{E} = \oint_C \mathbf{E}' \cdot \mathrm{d}\mathbf{r}.$$

Equating the two statements:

$$E' = E + v \times B$$

but only applies at $v \ll c$.

Mutual and self inductance

Consider conductor loops 1 and 2 with current I_1 and I_2 . The magnetic vector potential generated by loop 1 is:

$$\boldsymbol{A}_1(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \oint_{C_1} \frac{I_1 d\boldsymbol{r}_1'}{|\boldsymbol{r} - \boldsymbol{r}_1'|}$$

and the magnetic flux in loop 2 is:

$$\Phi_{2\leftarrow 1} = \frac{\mu_0 I_1}{4\pi} \oint_{C_2} d\mathbf{r}_2' \cdot \oint_{C_1} \frac{d\mathbf{r}_1'}{|\mathbf{r}_2' - \mathbf{r}_1'|}$$
$$= M_{21} I_1$$

where M_{21} is the Neumann's formula for mutual induction. Then for two loops:

$$\begin{pmatrix} \mathcal{E}_1 \\ \mathcal{E}_2 \end{pmatrix} = - \begin{pmatrix} L_1 & M \\ M & L_2 \end{pmatrix} \begin{pmatrix} \frac{\mathrm{d}I_1}{\mathrm{d}t} \\ \frac{\mathrm{d}I_2}{\mathrm{d}t} \end{pmatrix}$$

where $M = M_{21} = M_{12}$. L_1 and L_2 are the self-inductance for each loop.

formula for self inductance

 M_{21} only equal when we have equal areas

Magnetic field energy

Consider an inductor generating field B with current I and self-inductance L:

$$dW_m = idt \cdot -\mathcal{E}$$

$$= idt \cdot \frac{d\Phi_i}{dt}$$

$$= iLdi$$

and since $\Phi_{1\leftarrow 1} = IL$ the energy stored our inductor is an integral over current:

$$W_m = \int_0^I dW_m = \frac{\Phi_{1\leftarrow 1}^2}{2L} \text{ or } \frac{1}{2}\Phi_{1\leftarrow 1}I.$$

Because $\Phi_{1\leftarrow 1} = \int_{S} \boldsymbol{B} \cdot d\boldsymbol{S}$:

$$W_m = \frac{1}{2} \oint_C \mathbf{A} \cdot I \mathrm{d}\mathbf{r}$$

and generalising this to volume integrals:

$$W_m = \frac{1}{2} \int_V \boldsymbol{J} \cdot \boldsymbol{A} dV$$

where J is the current density. Since:

$$\nabla \cdot (\boldsymbol{u} \times \boldsymbol{v}) = (\nabla \times \boldsymbol{u}) \cdot \boldsymbol{v} - (\nabla \times \boldsymbol{v}) \cdot \boldsymbol{u}$$

and assuming that the field vanish at ∞ :

$$W_m = \frac{1}{2\mu_0} \int_V B^2 \mathrm{d}V$$

with magnetic field density:

$$w_m = \frac{1}{2\mu_0} B^2.$$

Circuits

Consider an LRC circuit with alternating current source and electromotive force:

$$\mathcal{E}_S = V_S \cos(\phi + \omega t)$$
$$= \text{Re}[V_0 e^{i\omega t}]$$

where $V_0 = V_S e^{i\phi}$. Equating emfs:

$$\mathcal{E}_S = V_L + V_C + V_R$$
$$= L\frac{\mathrm{d}I}{\mathrm{d}t} + V_C(t) + IR$$
$$I = C\frac{\mathrm{d}V_C}{\mathrm{d}t}$$

and due to linearity we assume that:

$$I(t) = \operatorname{Re}[I_0 e^{i\omega t}]$$

$$V_C(t) = \text{Re}[V_{C_0}e^{i\omega t}].$$

After subsituting into our equations:

$$V_0 = i\omega L I_0 + V_{C_0} + R I_0$$

$$I_0 = i\omega C V_0$$
 and $Z := \frac{V_0}{I_0}$

which yields solutions:

$$\begin{split} I(t) &= \mathrm{Re} \left[\frac{V_0}{Z} e^{i \omega t} \right] \\ &= \frac{V_S \cos(\omega t + \phi - \psi)}{\left[R^2 + (\omega L - \frac{1}{\omega C})^2 \right]^{1/2}} \end{split}$$

and
$$\psi = \arctan \left[\frac{\omega L - \frac{1}{\omega C}}{R} \right]$$
.

current/voltage in series/parallel circuits voltage of specific components

Electromagnetic waves

From considering the capacitor paradox:

$$\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{J} + \mu_0 \epsilon_0 \frac{\partial \boldsymbol{E}}{\partial t}.$$

Since in vacuum $\rho = 0$ and $\mathbf{J} = \mathbf{0}$:

$$\nabla \times (\nabla \times \boldsymbol{B}) = \mu_0 \epsilon_0 \frac{\partial}{\partial t} (\nabla \times \boldsymbol{E})$$

and using $\nabla \times \boldsymbol{E} = \frac{\partial \boldsymbol{B}}{\partial t}$:

$$\nabla(\nabla \cdot \boldsymbol{B}) - \nabla^2 \boldsymbol{B} = -\mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} \boldsymbol{B}$$
$$\implies \nabla^2 \boldsymbol{B} = \mu_0 \epsilon_0 \frac{\partial^2 \boldsymbol{B}}{\partial t^2}.$$

Similarly for our electric field E:

$$egin{aligned} oldsymbol{
abla} (oldsymbol{
abla} \cdot oldsymbol{E}) - oldsymbol{
abla}^2 oldsymbol{E} &= -\mu_0 \epsilon_0 rac{\partial^2 oldsymbol{E}}{\partial t^2} oldsymbol{E} \ &\Longrightarrow oldsymbol{
abla}^2 oldsymbol{E} &= \mu_0 \epsilon_0 rac{\partial^2 oldsymbol{E}}{\partial t^2}. \end{aligned}$$

Let F be any component of fields E(r,t) or B(r,t). Then it satisfies the following:

$$\nabla^2 F = \mu_0 \epsilon_0 \frac{\partial^2 F}{\partial t^2}.$$

Substituting solutions of form:

$$F(t, x, y, z) = f(\mathbf{k} \cdot \mathbf{x} - \omega t)$$

$$\implies |\mathbf{k}|^2 = \mu_0 \epsilon_0 \omega^2$$

and with phase velocity:

$$v_{phase} = \frac{\omega}{|\mathbf{k}|} = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$$
$$= 3.10 \times 10^8 \text{ms}^{-1} = c$$

which is the speed of light and implies that light is also an electromagnetic wave!

Lorentz transformations

It is then postulated that:

• The speed of light is universal. c is frame invariant and classically only propagate forwards in time.

In Minkowsky spacetime we have that:

$$(\Delta S)^2 = (\Delta S')^2$$

between two frames S, S' and:

$$(\Delta S)^2 := (c\Delta t)^2 - (\Delta x)^2 - (\Delta y)^2 - (\Delta z)^2$$

for events A and B, $\Delta x = x_B - x_A$, etc.

- $(\Delta S)^2 = 0$: light-like separated
- $(\Delta S)^2 > 0$: time-like separated
- $(\Delta S)^2 < 0$: space-like separated

A **boost** B_x in the e_x direction is defined:

$$m{x}' = egin{pmatrix} \gamma & -eta\gamma & 0 & 0 \ -eta\gamma & \gamma & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix} m{x}$$

where $\mathbf{x} = (ct, x, y, z)^T$.

Generally we can relate reference frames S and S' by a composition of rotations and boosts. This forms a group, denoted by $SO(3) = \{R_x, R_y, R_z, B_x, B_y, B_z\}.$

Practically if frame S' is moving at ve_x with respect to frame S then:

$$ct' = \gamma(ct - \beta x)$$

$$x' = \gamma(-\beta ct + x)$$

$$y' = y$$
 and $z' = z$

where $\gamma = (1 - \beta^2)^{-1/2}$ and $\beta = v/c$.

Time and length

Consider object in rest in frame S', which is moving with respect to frame S. Then:

- lifetime in $S: \gamma \tau$
- length in S: ℓ_0/γ

for time τ and length ℓ_0 are its physical quantities in frame S'.

Electromagnetic energy

By considering the Lorentz force with:

$$dW = \mathbf{F} \cdot d\mathbf{r} = \mathbf{F} \cdot \mathbf{v} dt$$

and generalising to a charge distribution:

$$\frac{\mathrm{d}W}{\mathrm{d}t} = \int_{V} \boldsymbol{J} \cdot \boldsymbol{E} \, \mathrm{d}^{3} \boldsymbol{r}.$$

Using Maxwell's equations:

$$\frac{\mathrm{d}W}{\mathrm{d}t} + \int_{\partial V} \mathbf{S} \cdot \mathrm{d}\mathbf{a} + \frac{\mathrm{d}U_{em}}{\mathrm{d}t} = 0$$

where U_{em} represents the total energy stored in the electric and magnetic fields:

$$U_{em} = \int_{V} \left(\frac{1}{\mu_0} |\boldsymbol{B}|^2 + \epsilon_0 |\boldsymbol{E}|^2 \right) d^3 \boldsymbol{r}$$

and we define the **Poynting vector**:

$$oldsymbol{S} = rac{1}{\mu_0} oldsymbol{E} imes oldsymbol{B}.$$

Likewise its surface integral denotes the *rate* at which energy flows.

If $\int_{\partial V} \mathbf{S} \cdot d\mathbf{a} < 0$ then power flows into the bounded surface and vice versa.

Maxwell's stress tensor

Since Newton's second law states that:

$$\boldsymbol{F} = \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{P}_{mech}$$

using the Lorentz force we have that:

$$\frac{\mathrm{d}\boldsymbol{P}_{mech}}{\mathrm{d}t} = -\frac{\mathrm{d}}{\mathrm{d}t} \int_{V} \epsilon_{0} \mu_{0} \boldsymbol{S} \, \mathrm{d}^{3} \boldsymbol{r} + \int_{\partial V} \boldsymbol{T} \cdot \mathrm{d}\boldsymbol{a}$$

where T is the stress tensor:

$$T_{ij} = \epsilon_0 \left(E_i E_j - \frac{1}{2} \delta_{ij} |\mathbf{E}|^2 \right)$$

$$+ \frac{1}{\mu_0} \left(B_i B_j - \frac{1}{2} \delta_{ij} |\mathbf{B}|^2 \right).$$

Relativistic kinematics

Monochromatic plane waves

In *vacuum*, the Maxwell's equations may be recast into a classical wave equation:

$$\mathbf{\nabla}^2 \{ \boldsymbol{E}, \boldsymbol{B} \} = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \{ \boldsymbol{E}, \boldsymbol{B} \}$$

$$\mu_0 \epsilon_0 = c^{-2}.$$

We then look for solutions of linear form:

$$\boldsymbol{E} = \operatorname{Re} \Big\{ \boldsymbol{E}_0 e^{i(\omega t - \boldsymbol{k} \cdot \boldsymbol{x})} \Big\}$$

$$\boldsymbol{B} = \operatorname{Re} \left\{ \boldsymbol{B}_0 e^{i(\omega t - \boldsymbol{k} \cdot \boldsymbol{x})} \right\}$$

known as **plane wave** solutions:

$$|\mathbf{k}| = \frac{\omega}{c}$$

from substituting into our wave equation. Since $\rho = 0$ and J = 0 we have that:

$$\mathbf{k} \cdot \mathbf{E} = 0, \quad \mathbf{k} \cdot \mathbf{B} = 0,$$

$$\mathbf{k} \times \mathbf{E} = \omega \mathbf{B}$$
 and $-\mathbf{k} \times \mathbf{B} = \frac{\omega}{c^2} \mathbf{E}$.

i.e. that $(\hat{k}, \hat{E}, \hat{B})$ forms a right-handed orthonormal basis and:

$$\boldsymbol{E} = \left(a_1 e^{i\delta_1} \hat{\boldsymbol{\epsilon}}_1 + a_2 e^{i\delta_2} \hat{\boldsymbol{\epsilon}}_2\right) e^{i(\omega t - \boldsymbol{k} \cdot \boldsymbol{x})}$$

where $a_1, a_2, \delta_1, \delta_2 \in \mathbb{R}$. The unit vectors $\hat{\epsilon}_1$ and $\hat{\epsilon}_2$ are perpendicular to each other.

Radiation

compute electric field potential magnetic field vector potential

4-vectors