Effectiveness of Social Media Ads.

GAM - Classification | Assignment - 5 | Pattern Recognition

RAMIT NANDI || MD2211

2023-11-15

Contents

DATA	2
GAM in R using mgcv	5
Full Model	5
Simplified Model after variable selection	7
Comparison with GLM (Logistic Regression)	7
Accuracy & Confusion Matrix	8
Conclusion	8

DATA

The dataset contains details of the purchase of a product based on social network advertisements. The data has 400 observations, looks as follows . . .

User.ID	Gender	Age	EstimatedSalary	Purchased
15624510	Male	19	19000	0
15810944	Male	35	20000	0
15668575	Female	26	43000	0
15603246	Female	27	57000	0
15804002	Male	19	76000	0
15728773	Male	27	58000	0
15598044	Female	27	84000	0
15694829	Female	32	150000	1
15600575	Male	25	33000	0
15727311	Female	35	65000	0

GOAL: Predicting whether a person will buy a product displayed on a social network advertisement based on his/her gender, age and approximate Salary.

EDA

• Target class belongs to two discrete categories of purchased and not purchased. [Throughout the report , Red colour will denote 'Not Purchased' , Green colour will denote 'Purcased']

• Gender: Gender does not affect the purchase status much here. Given a person is male, the chance that he will buy the product is very similar to the chance of purchase , given the person is female.

• Salary: Those who purchase the product , have on average higher salary than those who do not.

• Age: Those who purchase the product, are on average older than those who do not.

NOTE: Based on some earlier analysis on this data , we know -

- The decision boundary is not linear in terms of the predictors.
- The predictor 'Gender' is not that much important.

Let's check what GAM concludes on this data.

```
# preprocessing ..........
Data$Gender = factor(Data$Gender)
Scaled_ = scale(Data[c("Age","EstimatedSalary")])
Data[c("Age","EstimatedSalary")] = Scaled_
# 80-20 Train-Test split
split_ix = caTools::sample.split(Data$Purchased,0.8)
TRAIN = subset(Data,split_ix==T)
TEST = subset(Data,split_ix==F)
```

GAM in R using mgcv

Full Model

We start our model with cubic splines on 'Age' and 'Salary', the categorical predictor 'Gender' and its interaction with 'Age' and 'Salary'.

```
##
## Family: binomial
## Link function: logit
## Formula:
## Purchased ~ s(EstimatedSalary, bs = "cr", k = 20) + s(Age, bs = "cr",
      k = 20) + Gender + s(EstimatedSalary, by = Gender) + s(Age,
##
      by = Gender)
##
##
## Parametric coefficients:
             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.6016 0.3437 -4.660 3.16e-06 ***
## GenderMale 0.6986 0.4477 1.561
                                            0.119
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                                       edf Ref.df Chi.sq p-value
## s(EstimatedSalary)
                                             19 62.909 <2e-16 ***
                                 5.884e+00
## s(Age)
                                 9.761e-01
                                              11 34.930 <2e-16 ***
## s(EstimatedSalary):GenderFemale 4.127e-05
                                              9 0.000 0.458
## s(EstimatedSalary):GenderMale
                                               9 0.237
                                 2.126e-01
                                                          0.282
## s(Age):GenderFemale
                                               9 0.000 0.340
                                 2.816e-05
## s(Age):GenderMale
                                           9 1.534
                                 6.148e-01
                                                          0.105
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.736 Deviance explained = 66.4\%
## -REML = 85.181 Scale est. = 1
                                      n = 320
```

Interpretation: Based on the partial effects plots (i.e. effect of a variable on the response , given the other variables are fixed) we see -

- Salary has quite non-linear effect.
- The effect of Age is almost linear.
- We do not see significant effect of Gender, as the confidence interval for estimated effect of Gender-Male contains the baseline 0.

Simplified Model after variable selection

Based on the partial effects plots as well as the p-values in model summary above, we get -

- 'Age' & 'Salary' as significant predictors.
- The 'Gender' is not significant, so it is discarded along with its interaction terms.
- Also we replace spline of 'Age' with just a linear term.

Comparing AIC and BIC with full-model, we see the simple one is actually better one here (rule of thumb: >2unit difference in AIC or BIC is considered as statistically significant, lower the AIC or BIC better the model).

	df	AIC
full_GAM	11.570960	163.0930
Model	8.606467	164.4732
	df	BIC
full_GAM	11.570960	206.6961
Model	8.606467	196.9052

Hence, our simplified model is accepted.

Comparison with GLM (Logistic Regression)

	df	AIC
Model	8.606467	164.4732
$Model_GLM$	4.000000	216.8761

	df	BIC
Model	8.606467	196.9052
Model_GLM	4.000000	231.9494

Clearly, GAM performs much better than GLM, though it uses more df, so more complex model and more computation involved.

Accuracy & Confusion Matrix

On Train Data

##							
##			true	Not	Purchased	true	Purchased
##	pred.	Not Purchased			194		13
##	pred.	Purchased			12		101

Accuracy: 0.921875

On Test Data

##							
##			true	Not	Purchased	true	${\tt Purchased}$
##	pred.	Not Purchased			47		8
##	pred.	Purchased			4		21

Accuracy: 0.85

Conclusion

GAM classification works well on this dataset.

Based on the decision boundary we can say - Those with high salary are likely to puchase the product. Even with low salary, Young peoples are likely to purchase the product based on social-media ads.

For time constrain here we used default hyperparameters for penalty coefficients and used only one 80-20 split to check model performance instead of k-folds. With those adjustments may me the model could be improved or generalized better.