

ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА НАНОЖИДКОСТЕЙ НА ОСНОВЕ ВОДЫ, МОДИФИЦИРОВАННЫХ МАЛОСЛОЙНЫМ ГРАФЕНОМ

Калашникова Екатерина Игоревна, аспирант, младиий научный сотрудник, Возняковский Алексей Александрович, к.х.н., старший научный сотрудник, Кидалов Сергей Викторович, д.ф-м.н., старший научный сотрудник, Возняковский Александр Петрович, д.х.н., заведующий сектором ФГУП "НИИСК"

Актуальность

Для отвода тепла в современной технике активно используется жидкостное охлаждение.

Проблемы: Развитие техники требует отвода все большего объема тепла без изменения размеров охлаждающих систем.

Однако, дальнейший рост эффективности охлаждающих жидкостей (ОЖ) невозможен из-за перебора существующей номенклатуры материалов.

Задача: нужны новые охлаждающие жидкости с теплофизическими свойствами превосходящими, уже известные, по низкой себестоимости.

Предлагаемое решение

Теплопроводность углеродных наноструктур составляет до 5 000 Вт/(м*К)

Опубликованные результаты

3–0.4 mass. % FLG; 4–0.8 mass. % FLG.

Dependence of the cooling rate coefficient on the FLG concentration

Синтез МГ методом СВС-процесса

к насосу — воронка Бюхнера сушильный шкаф — колба Бунзена Сушка малослойного графена

Достоинства технологии:

1) Дешевизна

Используются дешевые реагенты

2) Простота

Не требует спец. оборудования, есть возможность создания мобильной версии установки

3) Высокая производительность.

Раньше использовали:

$$NH_4NO_3 \rightarrow N_2 \uparrow +O_2 \uparrow +H_2O \uparrow$$

Сейчас:

$$KNO_3 \rightarrow KNO_2 + O_2 \uparrow$$

<u>Цель исследования</u> — изучить влияние природы окислителя и соотношения реагентов в условиях СВС-синтеза на химический состав углеродного материала для установления взаимосвязи между начальными условиями и свойствами конечного продукта.

Характеризация синтезированных образцов МГ

СЭМ изображение порошка графена, синтезированного методом СВС из глюкозы в соотношении биополимер-окислитель (а) 90/10, (b) 85/15 и (c) 80/20.

Элемент/Масс. %	50/50 (GL/NH4NO3)		Элемент/Масс. %	90/10 (GL/KNO ₃)	85/15 (GL/KNO ₃)	80/20 (GL/KNO ₃)
C	80 ± 1		C	84 ± 1	88 ± 1	88 ± 1
O	10 ± 1		О	14 ± 1	10 ± 1	10 ± 1
N	10 ± 1		N		0 ± 1	
		-	K		2 ± 1	

Удалось синтезировать образцы не содержащие азот (по данным EDX анализа)

Характеризация синтезированных образцов МГ

Методом низкотемпературной адсорбции азота измерена удельная поверхность синтезированных углеродных материалов от исходной доли окислителя (KNO₃).

Соотношение биополимер(глюкоза)/окислитель(KNO ₃) в исходной смеси	Удельная поверхность, м ² /г	
90/10	$36,3 \pm 0,7$	
85/15	96,7 ± 1,9	
80/20	157,8 ± 3,2	

Методика синтеза наножидкостей

Aleksei A. Vozniakovskii, **Ekaterina I. Kalashnikova**, Sergey V. Kidalov, Alexander P. Voznyakovskii, Thermophysical properties of water-based nanofluids modified with few-layer graphene, Carbon, Volume 233, 2025, 119911, ISSN 0008-6223, https://doi.org/10.1016/j.carbon.2024.119911.

Дисперсность и дзета-потенциал

Дисперсность графеновых наноструктур в воде, синтезированных методом СВС из глюкозы и нитрата калия, в зависимости от разного соотношения биополимер-окислитель

Соотношение биополимер/окислитель в исходной смеси	Дзета-потенциал, мВ	
90/10	-34 ± 2	
85/15	-46 ± 2	
80/20	-44 ± 2	

Дзета-потенциал больше 30 мВ (по модулю) высокая стабильность суспензий

Динамическая вязкость НЖ в зависимости от соотношения реагентов в исходной смеси и от концентрации МГ

Динамическая вязкость измерялась с помощью ротационного вискозиметра NDJ-9S (XZBELEC, Китай).

При 25 °C: вязкость увеличивается в 2 раза при 10–15 % окислителя, но при 20 % остаётся на уровне воды. **При 55 °C:** вязкость растёт с концентрацией МГ, однако при 20 % окислителя её рост минимален, что указывает на лучшую дисперсность.

Теплопроводность НЖ в зависимости от соотношения реагентов в исходной смеси и от концентрации МГ

Теплопроводность была измерена с помощью теплового анализатора Tempos (METER Group, США) методом горячей нити.

Результаты

- 1. Синтезированы графеновые наноструктуры, а именно малослойный графен (МГ), из глюкозы методом самораспространяющегося высокотемпературного синтеза.
- 2. На основе полученного МГ синтезированы стабильные водные наножидкости. Установлено, что данная методика позволяет получать устойчивые наножидкости без использования ПАВ, что было подтверждено путем измерения дзета-потенциала, который составил 46±1 мВ.
- 4. Проведенные исследования влияния МГ на теплофизические свойства воды показали, что введение малослойного графена (МГ) в концентрации 1,5 мас. % при исходной доле окислителя 20 % обеспечивает двукратное увеличение теплопроводности по сравнению с чистой водой, при этом вызывая лишь минимальное повышение вязкости по сравнению с наножидкостями, приготовленными с другими долями окислителя (10 и 15 %).

Работа выполнена в рамках проекта РНФ №24-29-00252.

Спасибо за внимание!

Контакты:

E-mail – <u>kalashnikatja@bk.ru</u>

Измерение вязкости наножидкостей с МГ на водной основе

Определение вязкости полученных наножидкостей проводились на ротационном вискозиметре NDJ-9S.

$$\eta = \frac{(R_2^2 - R_1^2)G\tau}{8\pi^2 L R_1^2 R_2^2 L}$$

L – длина ротора ротационного вискозиметра; р

R1 – радиус ротора;

R2 – радиус вращающей цистерны;

 η — вязкость исследуемой среды;

G – момент, требующий для обязательного сохранения постоянной частоты вращения, то есть один оборот ротора вискозиметра происходит за τ секунд

Методика измерения теплопроводности (метод горячей нити)

Характеризация синтезированных образцов МГ

Спектры комбинационного рассеяния и результаты рентгеновской спектроскопии синтезированных образцов МГ, синтезированных методом СВС из глюкозы в соотношении биополимер-окислитель (KNO₃) (1) 90/10, (2) 85/15 и (3) 80/20