ACH2033 – Matrizes, Vetores e Geometria Analítica (1/2012)

Prova de Recuperação – Julho/2012

Nome:	Nº USP:				
Turma /Horário:	Curso				

Observação 1: Duração da prova: 90 (cem) minutos.

Observação 2: O uso de calculadora/computador na prova é proibido.

- 1) [3,5 pontos] Determinar a fórmula geral de x_n se $x_{n+1} = 5x_n 6x_{n-1}$ $(n \in \{1, 2, 3, \dots\})$, com $x_0 = 0$ e
- 1) Representa-se, inicialmente, a relação de recorrência em sua forma matricial

$$u_n := \begin{pmatrix} x_n \\ x_{n-1} \end{pmatrix} = \overbrace{\begin{pmatrix} 5 & -6 \\ 1 & 0 \end{pmatrix}}^M \begin{pmatrix} x_{n-1} \\ x_{n-2} \end{pmatrix} = Mu_{n-1}, \quad n \in \{2, 3, \dots\} \subset \mathbb{N}, \quad \text{com} \quad u_1 = \begin{pmatrix} x_1 \\ x_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Como $u_n = Mu_{n-1} = M^2u_{n-2} = \cdots = M^{n-1}u_1$, deve-se obter M^{n-1} , sendo conveniente encontrar a forma diagonal de M. Os autovalores de M são determinados pela imposição de soluções não-triviais (autovetores) da equação $Mv = \lambda v$, onde v é um autovetor. Tal condição conduz a

$$0 = \det (M - \lambda I) = \det \begin{pmatrix} 5 - \lambda & -6 \\ 1 & 0 - \lambda \end{pmatrix} = (\lambda - 3) (\lambda - 2) ,$$

donde se tem os autovalores $\lambda_1 = 3$ e $\lambda_2 = 2$. O autovetor $v_1 = \begin{pmatrix} x_1 & y_1 \end{pmatrix}^T$ associado a $\lambda_1 = 3$ satisfaz

$$0 = (M - \lambda_1 I) v_1 = \begin{pmatrix} 5 - (3) & -6 \\ 1 & 0 - (3) \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \Rightarrow x_1 = 3y_1,$$

donde se tem $v_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ com a escolha $y_1 = 1$.

O autovetor $v_2 = \begin{pmatrix} x_2 & y_2 \end{pmatrix}^T$ associado a $\lambda_2 = 2$ satisfaz

$$0 = (M - \lambda_2 I) v_2 = \begin{pmatrix} 5 - (2) & -6 \\ 1 & 0 - (2) \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \Rightarrow y_2 = x_2,$$

donde se tem $v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ com a escolha $x_2 = 1$.

Os autovetores permitem identificar a matriz de diagonalização

$$S = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$$
 e sua inversa $S^{-1} = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}$,

que é obtida com a prescrição abaixo (o detalhamento das passagens – que são evidentes – será omitida): $\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 2 & 1 & 0 \\ 0 & 1/3 & -1/3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2/3 & 1/3 & 0 \\ 0 & 1 & -1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & -1 & 3 \end{pmatrix}.$

Seja $\Lambda = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$ a matriz diagonal dos autovalores. Como $\Lambda = S^{-1}MS$, tem-se $M = S\Lambda S^{-1}$, donde

$$M^{n-1} = (S\Lambda S^{-1})(S\Lambda S^{-1})\cdots(S\Lambda S^{-1}) = S\Lambda^{n-1}S^{-1},$$

que leva a

$$u_n = \begin{pmatrix} x_n \\ x_{n-1} \end{pmatrix} = S\Lambda^{n-1}S^{-1}u_1 = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}^{n-1} \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} 3^n - 2^n \\ 3^{n-1} - 2^{n-1} \end{pmatrix}.$$

Logo,

$$x_n = 3^n - 2^n$$
, $n \in \{0, 1, 2, \dots\} \subset \mathbb{Z}_+$.

2) [3,5 pontos] Uma confeitaria recebeu um pedido de bolos que podem ser de até três tipos, A, B e C. Nesta confeitaria, há um estoque de 500 cerejas que precisa ser integralmente usado neste pedido, visto que a data de validade das cerejas está próxima de expirar. O número total de bolos é 50. Determinar todas as combinações possíveis do número de cada um dos três tipos de bolos de forma a aproveitar todas as cerejas do estoque (a possibilidade de haver zero bolo de um ou dois tipos também deve ser considerada). Sabe-se que os bolos A, B e C requerem, respectivamente, 5, 7 e 13 cerejas. Nota: O exercício deve ser resolvido, necessariamente, passando pelas etapas de encontrar uma solução particular e o kernel.

2) Denotando por a, b e c, respectivamente, o número de bolos do tipo A, B e C, as informações acima podem ser representadas pelo sistema linear

$$\begin{cases} a+b+c &= 50 \\ 5a+7b+13c &= 500 \end{cases},$$

sujeita aos vínculos $0 \le a, b, c \le 50$. A primeira equação corresponde ao número total de bolos, ao passo que a segunda indica o número total de cerejas. Como

$$\left(\begin{array}{cc|cc|c} 1 & 1 & 1 & 50 \\ 5 & 7 & 13 & 500 \end{array} \right) \underset{(+)}{\times} (-5) \ \Rightarrow \left(\begin{array}{cc|cc|c} 1 & 1 & 1 & 50 \\ 0 & 2 & 8 & 250 \end{array} \right) \ \times (1/2) \ \Rightarrow \left(\begin{array}{cc|cc|c} 1 & 1 & 1 & 50 \\ 0 & 1 & 4 & 125 \end{array} \right) \, ,$$

o sistema pode ser reescrito como Ax = b, onde

$$A:=\begin{pmatrix}1&1&1\\0&1&4\end{pmatrix}, b:=\begin{pmatrix}50\\125\end{pmatrix}$$
 e x a solução geral do problema.

Uma solução particular x_p do problema pode ser obtida impondo c = 0, implicando $x_p = \begin{pmatrix} -75 & 125 & 0 \end{pmatrix}^T$. Esta solução, embora satisfaça $Ax_p = b$, não é realística (número negativo de bolos), mas este ponto será consertado mais adiante.

A solução geral do problema é dada por $x = x_p + x_k$, onde $\{x_k\}$ gera o kernel de A $(Ax_k = 0)$. Logo, denotando $x_k = \begin{pmatrix} \mu & \beta & \tau \end{pmatrix}^T$,

$$Ax_k = 0 \Rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 4 \end{pmatrix} \begin{pmatrix} \mu \\ \beta \\ \tau \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \left\{ \begin{array}{ccc} \mu + \beta + \tau & = & 0 \\ \beta + 4\tau & = & 0 \end{array} \right. \Rightarrow \ker(A) = \left\{ \begin{pmatrix} 3\tau \\ -4\tau \\ \tau \end{pmatrix} : \tau \in \mathbb{R} \right\}.$$

A solução geral do sistema Ax = b é dada por

$$x = x_p + x_k = \begin{pmatrix} -75\\125\\0 \end{pmatrix} + \tau \begin{pmatrix} 3\\-4\\1 \end{pmatrix}, \quad \tau \in \mathbb{R}.$$

Contudo, para obter soluções realísticas e que obedeçam às condições impostas pelo problema (número de brinquedos como inteiros não-negativos e menores que 50^1), o valor de τ deve percorrer um subconjunto da reta real, que é o intervalo dos inteiros entre 25 e 31, ou $[25,31] \subset \mathbb{Z}$. De forma mais explícita, tem-se

 $^{^1 \}mathrm{No}$ caso, especificar $m,b,t \geq 0$ implica $m,b,t \leq 40.$

Bolo(s) do tipo A	00	03	06	09	12	15	18
Bolo(s) do tipo B	25	21	17	13	09	05	01
Bolo(s) do tipo C	25	26	27	28	29	30	31
au	25	26	27	28	29	30	31

Tabela 1: Quantidade dos bolos do tipo $A, B \in C$ que satisfazem as condições exigidas.

- 3) [3,0 pontos] Dividir um número positivo a como a soma de três termos não-negativos de sorte que o produto destes seja máximo (fazer, no exercício, um estudo dos ponto(s) crítico(s) – ponto(s) de máximo/ mínimo/ sela/ inconclusivo?).
- 3) Denote por $x, y \in a x y$ os três números em questão, sendo $x \ge 0, y \ge 0$ e $a-x-y\geq 0$ (ou $x+y\leq a$). Estas três condições definem o interior do triângulo esquematizado na Figura 1, juntamente com as fronteiras $0 \le x \le a$ com y = 0, $0 \le y \le a$ com x = 0 e a reta y = -x + a com $0 \le x \le a$. O problema consiste na maximização da função $P:[0,a]\times[0,a]\to\mathbb{R}$ com $P(x,y):=xy\,(a-x-y)$. O conjunto de pontos críticos desta função é determinado segundo $\vec{\nabla}P(x,y) = \vec{0}$, id est, a solução do sistema

$$\begin{cases} 0 = \frac{\partial}{\partial x} P(x, y) = y (a - x - y) - xy \\ \\ 0 = \frac{\partial}{\partial y} P(x, y) = x (a - x - y) - xy \end{cases}$$

Figura 1: Domínio do problema.

define os pontos críticos. As possíveis soluções são (0,0), (a,0), (0,a) e $(\frac{a}{3},\frac{a}{3})$. Como as três primeiras raízes pertencem ao contorno, serão analisadas mais adiante. Como $A = \frac{\partial^2}{\partial x^2} P(\frac{a}{3}, \frac{a}{3}) = C = \frac{\partial^2}{\partial y^2} P(\frac{a}{3}, \frac{a}{3}) = -\frac{2a}{3}$ $B = \frac{\partial^2}{\partial x \partial y} P(\frac{a}{3}, \frac{a}{3}) = -\frac{a}{3} e AC - B^2 = \frac{a^2}{3} > 0 \text{ com } A < 0, \text{ o ponto crítico } (\frac{a}{3}, \frac{a}{3}) \text{ úm ponto de máximo local,}$ sendo $P(\frac{a}{3}, \frac{a}{3}) = \frac{a^3}{27}$. A fim de averiguar se se trata de um máximo global, verificar-se-á o comportamento de P nas fronteiras:

Fronteira
$$\gamma_1$$
 : $y = 0$ e $0 \le x \le a$ $\Rightarrow P(x,0) = 0$

Fronteira
$$\gamma_2$$
: $x = 0$ e $0 < y < a$ $\Rightarrow P(0, y) = 0$

Fronteira
$$\gamma_1$$
 : $y=0$ e $0 \le x \le a$ \Rightarrow $P(0,y)=0$
Fronteira γ_3 : $y=a-x$ e $0 \le x \le a$ \Rightarrow $P(x,y=a-x)=0$

Como o valor da função é nula nas três fronteiras, o ponto $(\frac{a}{3}, \frac{a}{3})$ é, também, um ponto de máximo global. Logo, os três números requisitados pelo exercício são idênticos e iguais a $\frac{a}{3}$.