

Processo ETL

Sistemas de Apoio à Decisão

Processo ETL

- Sumário
 - Introdução
 - Extração de Dados
 - Transformação de Dados
 - Carregamento de Dados
 - Mapa Lógico de Dados
 - Passos Típicos do Processo ETL

Introdução

- Processo ETL
 - Permite migrar dados dos sistemas fonte para a BD do Data Warehouse, procedendo às necessárias transformações
 - Formato e conteúdo
 - Não é apenas a mera justaposição de três processos bem definidos:
 - Extração
 - Transformação
 - Carregamento

Introdução

- Processo ETL
 - Existe grande interdependência entre estes três processos
 - Numa perspetiva pedagógica podem ser abordados de forma independente
 - ETL é apontado como o grande problema escondido dos Data Warehouses
 - Normalmente consome cerca de 70% dos custos de construção e manutenção do Data Warehouse

Introdução

- Processo ETL
 - Área de Tratamento de Dados (DSA)
 - Tem associado um conjunto de processos que permitem extrair, transformar e carregar os dados fonte para serem utilizados no Data Warehouse
 - Analogia entre um Data Warehouse e um restaurante
 - A área de tratamento de dados corresponde à cozinha do restaurante

Processo ETL

- Sumário
 - Introdução
 - Extração de Dados
 - Transformação de Dados
 - Carregamento de Dados
 - Mapa Lógico de Dados
 - Passos Típicos do Processo ETL

Arquitetura do Data Warehouse

- Introdução
 - A extração consiste no processo de compreender, selecionar e copiar os dados fonte para a área de tratamento de dados (DSA)
 - Duas abordagens principais
 - Exportação de dados
 - Os dados são convertidos num ficheiro que é depois lido para a DSA
 - Extração de dados
 - Utilização de código específico que transfere diretamente os dados para a DSA

- Introdução
 - O processo de extração precisa da cooperação dos sistemas fonte
 - No processo de extração existem duas situações bem distintas
 - Primeira extração de dados
 - Extrações incrementais
 - Novos dados
 - Dados que sofreram alterações

- Análise dos sistemas fonte
 - Começar pelo DER, se existir
 - Se n\u00e3o existir um DER fazer o reverse engineering da BD operacional
 - As ferramentas de modelação de dados e de ETL possuem esta funcionalidade
 - Procurar descrições das tabelas e dos campos da base de dados, mesmo que estas estejam desatualizadas
 - Falar com o "guru" da BD para perceber as modificações que ocorreram

- Análise do conteúdo dos dados
 - Detetar anomalias nos dados
 - Valores nulos em chaves estrangeiras
 - Valores nulos noutras colunas (regra de negócio para lidar com os valores a NULL)
 - Datas em campos que não representam datas
 - Existem vários formatos para as datas
 - 29-11-2021
 - 2021/11/29
 - novembro 29, 2021, etc.

- Extração de diferentes plataformas
 - Integração de dados de fontes heterogéneas
 - Processo semelhante ao que ocorre quando há uma fusão entre empresas
 - Fontes de dados típicas:
 - Mainframes
 - Ficheiros
 - Fontes XML
 - Web logs
 - ERP's, ...

- Extração de dados que mudam
 - CDC Change Data Capture
 - No primeiro carregamento esta questão não se coloca
 - O planeamento para a extração de dados que mudam tem de ser feito antes do primeiro carregamento
 - Capturar as modificações nos dados fonte é crucial

- Extração de dados que mudam
 - Existem várias técnicas para deteção de dados que mudam
 - Timestamps
 - Partições
 - Processo de eliminação
 - Outras técnicas
 - Análise de logs
 - Baseadas numa data
 - •

- Técnicas CDC: Timestamps
 - É feita a adição de uma coluna na qual é registada a hora/data da alteração de cada registo nos sistemas operacionais
 - Para preencher a coluna são utilizados triggers que disparam automaticamente sempre que são inseridos ou atualizados registos
 - Técnica de extração incremental

- Técnicas CDC: Partições
 - As tabelas de dados são divididas em partições
 - Cada partição representa um horizonte temporal
 - 1 partição = 1 dia
 - Técnica de extração incremental

- Técnicas CDC: Processo de eliminação
 - Retém uma cópia da última extração na área de tratamento de dados (DSA)
 - Na próxima extração todos os dados fonte são carregados
 - Os dados são comparados e as diferenças são transformadas e carregadas para o data warehouse
 - Técnica de extração completa

- Técnicas CDC: Processo de eliminação
 - Extração inicial e incrementais
 - Criam-se duas tabelas na DSA
 - table_new e table_old
 - Os dados extraídos vão para a table_new
 - Selecionar table_new MINUS table_old
 - Transformar e carregar o resultado da seleção para a BD do Data Warehouse
 - Por último na DSA fazer:
 - drop table_old
 - rename table_new to table_old
 - create empty table_new

Processo ETL

- Sumário
 - Introdução
 - Extração de Dados
 - Transformação de Dados
 - Carregamento de Dados
 - Mapa Lógico de Dados
 - Passos Típicos do Processo ETL

Arquitetura do Data Warehouse

- Introdução
 - Ao contrário do processo de extração, onde geralmente os dados apenas são movidos e reformatados, no processo de transformação os dados são modificados
 - Após a extração de dados é crucial garantir a limpeza e conformidade dos mesmos

- Introdução
 - O processo de transformação envolve duas atividades principais
 - Verificação da qualidade dos dados
 - Transformações de dados
 - Existem várias formas de transformar os dados provenientes dos sistemas fonte:
 - Limpeza dos dados
 - Eliminação de campos inúteis
 - Combinação de dados provenientes de fontes diferentes

- Introdução
 - A limpeza e conformidade geram metadados que permitem um diagnóstico sobre o que está errado nos sistemas fonte
 - Estes metadados acompanham os dados até estes chegarem aos utilizadores finais do Data Warehouse
 - O objetivo final é garantir a qualidade dos dados

- Qualidade dos dados
 - Correção
 - Os valores dos dados são genuínos
 - Clareza
 - Os dados só podem ter um significado
 - Consistência
 - Utilizar apenas uma convenção para a representação dos dados
 - Completude
 - Os valores dos campos existem

- Qualidade dos dados
 - Verificação da qualidade dos dados
 - Deteção de erros ("Screens")
 - Registo de erros
 - Análise de erros
 - A correção de problemas nos dados deve ser feita nos sistemas fonte
 - As soluções adotadas na DSA são sempre temporárias
 - Dados sem qualidade comprometem o funcionamento do Data Warehouse

- Transformações de dados
 - Limpeza de dados
 - Integração de dados
 - Outras transformações
 - Modificar códigos
 - Valores calculados
 - Agregações prévias
 - Introdução de referências temporais para casos excecionais
 - . . .

- Limpeza de dados: Dados "sujos"
 - Valores sem sentido
 - Correção de erros ortográficos
 - Ausência de dados
 - Tratamento de campos vazios
 - Dados duplicados
 - Eliminação de duplicações
 - Dados cujo significado não é claro (e que os metadados não esclarecem)

- Limpeza de dados: Dados "sujos"
 - Dados contraditórios
 - Resolução de conflitos (Exemplo: cidade incompatível com código postal)
 - Dados que violam regras de integridade
 - Referencial
 - Temporal
 - Domínio
 - Colocar os dados em formatos standard

- Limpeza de dados: Eliminação de inconsistências
 - Devidas à recolha dos mesmos dados em mais do que um sistema ou plataforma
 - Devido a insuficiências no processo de extração
 - Causadas por alterações nos sistemas operacionais
 - Devidas a problemas técnicos nos sistemas operacionais
 - Situações de falha

Limpeza de dados: Exemplo

CUST#	NAME	ADDRESS	TYPE
90328574	Digital Equipment	187 N. PARK St. Salem NH 01458	OEM
90328575	• DEC	187 N. Pk. St. Salem NH 01458 ●	OEM
90238475	• Digital	187 N. Park St Salem NH 01458	\$#%
90233479	Digital Corp	187 N. Park Ave. Salem NH 01458	Comp
90233489	Digital Consulting	15 Main Street Andover MA 02341	Consult
90234889	Digital Info Service	PO Box 9 Boston MA 02210	Mail List
90345672	Digital Integration	Park Blvd. Boston MA 04106	SYS INT

No Unique Key Anomalies

No Standardization

Spelling

Noise in **Blank Fields**

- Processo de limpeza de dados
 - Processos automáticos permitem resolver normalmente com eficácia:
 - Problemas relacionados com formatos dos dados, conversões, etc.
 - Falta de estandardização
 - Preenchimento de valores em falta, etc.
 - Processos manuais
 - Necessários quando a correção é semântica
 - Apoiados por ferramentas

- Integração de dados: Conformidade
 - Dados que deviam estar relacionados mas que não podem ser relacionados corretamente
 - Devido à ausência de chaves primárias nos dados ou a chaves não unívocas
 - Dados que estão relacionados, mas que na verdade não devem ter qualquer relacionamento entre eles
 - Quando se utilizam atributos ou registos para vários fins

- Tipos de transformações
 - Ao nível do registo
 - Seleção: particionamento dos dados
 - Junção: combinação dos dados
 - Agregação: resumo dos dados
 - Ao nível dos campos
 - Envolvendo um único campo: de um campo para outro campo
 - Envolvendo múltiplos campos: de muitos campos para um ou de um campo para muitos

Processo ETL

- Sumário
 - Introdução
 - Extração de Dados
 - Transformação de Dados
 - Carregamento de Dados
 - Mapa Lógico de Dados
 - Passos Típicos do Processo ETL

Arquitetura do Data Warehouse

Carregamento de Dados

- Introdução
 - Depois de transformados, é necessário carregar os dados para a BD do Data Warehouse
 - Geralmente são carregados muitos registos de uma só vez
 - Técnicas de bulk loading
 - Ordem do carregamento
 - Tabelas de minidimensão
 - Tabelas de dimensão
 - Tabelas de factos

- Introdução
 - Criação de chaves primárias independentes das chaves utilizadas nos sistemas fonte
 - Criação de registos especiais para situações de exceção
 - Evitar a interrupção do carregamento
 - Construção de agregados de modo a acelerar as pesquisas
 - Depois de carregados, os dados são indexados

- Carregamento das tabelas
 - É uma fase crítica em que eventuais falhas podem levar a recuperações complexas
 - Quase tudo o que é feito para otimizar o desempenho do Data Warehouse tende a atrasar o carregamento:
 - Índices
 - Agregados
 - Particionamento de tabelas, ...

- Carregamento inicial
 - Disponibilização no Data Warehouse dos dados extraídos das fontes operacionais e corretamente validados na DSA
 - Geralmente o primeiro carregamento corre sempre bem
 - Importa minimizar ao máximo a janela de carregamento

- Carregamentos periódicos
 - Para além do carregamento inicial é necessário resolver os carregamentos periódicos, com características diferentes
 - Atualizações de dimensões
 - Agregados, etc.
 - Questões a considerar:
 - Duração estimada do carregamento
 - Impacto na coerência do Data Warehouse caso o processo tenha de ser interrompido

- Sumário
 - Introdução
 - Extração de Dados
 - Transformação de Dados
 - Carregamento de Dados
 - Mapa Lógico de Dados
 - Passos Típicos do Processo ETL

- Definição do mapa lógico de dados
 - Essencial para o sucesso do Processo ETL
 - Descreve os relacionamentos entre as fontes de dados e os campos destino no Data Warehouse
 - Este documento permite estabelecer uma ligação entre o ponto inicial e o ponto final do Processo ETL

- Definição do mapa lógico de dados
 - Antes de se implementar o Processo ETL é necessário
 - Ter um plano (Mapa Lógico de Dados)
 - Identificar as fontes de dados candidatas
 - Analisar os sistemas fonte (qualidade dos dados, etc.)
 - Percorrer a linhagem dos dados e regras de negócio
 - Percorrer o modelo físico de dados do DW
 - Validar cálculos e fórmulas

- Estrutura do Mapa
 - É geralmente apresentado na forma de uma tabela ou folha de cálculo e inclui três componentes principais:
 - Destino
 - Origem
 - Transformação
 - Para cada um dos componentes principais são definidas várias colunas

- Estrutura do Mapa: Destino
 - Nome da tabela destino
 - Nome da coluna destino
 - Tipo de dados da coluna destino
 - Tamanho
 - Tipo de tabela
 - Tabela de Dimensão
 - Tipo de alteração (SCD: Tipo 1, 2 ou 3)
 - Tabela de Factos
 - Tipo de facto (Aditivo, Semi-aditivo ou Não aditivo)

- Estrutura do Mapa: Origem
 - Base de Dados
 - Base de dados origem
 - Nome da tabela origem
 - Nome da coluna origem
 - Tipo de dados da coluna origem
 - Ficheiro
 - Ficheiro origem
 - Nome da folha/elemento origem
 - Nome da coluna origem
 - Tipo de dados da coluna origem

- Estrutura do Mapa: Transformação
 - Descrição exata da forma como é feita a manipulação dos dados fonte de forma a corresponder ao formato destino que é esperado
 - Código SQL
 - Pseudocódigo

- Sumário
 - Introdução
 - Extração de Dados
 - Transformação de Dados
 - Carregamento de Dados
 - Mapa Lógico de Dados
 - Passos Típicos do Processo ETL

- Passos Típicos
 - Planeamento
 - Carregamento de dimensões
 - Carregamento de factos
 - Automatizar o processo ao máximo
 - Infraestrutura para a área de tratamento de dados
 - Carregamento inicial e periódicos
 - Administração

- Planeamento
 - Definir um plano geral (tipo end-to-end)
 - Mapa Lógico de Dados
 - Definir infraestrutura para a área de tratamento de dados
 - Escolher as ferramentas de ETL
 - Fazer plano detalhado analisando todos os problemas que é necessário resolver para carregar cada tabela destino
 - Fontes, transformações, etc.

- Carregamento de dimensões
 - Elaborar, testar e executar planos ETL para as dimensões estáticas e simples
 - Permite testar toda a infraestrutura
 - Elaborar, testar e executar planos ETL para as dimensões que mudam
 - Tratar todos os restantes casos
 - Dimensões geradas com dados manuais, dimensões especiais, etc.

- Carregamento de factos
 - Elaborar, testar e executar planos ETL para tabelas de factos
 - Elaborar e testar processo de carregamentos periódicos

- Automatizar o processo ao máximo
 - Utilização de ferramentas sofisticadas de suporte
 - Escalonamento dos processos
 - Execução automática

Exemplo: Cadeia de Lojas

Exemplo: Cadeia de Lojas

- Infraestrutura da DSA
 - Pode ir de uma simples conta no servidor do Data Warehouse a máquinas dedicadas de grande capacidade
 - A decisão depende do volume de dados e da complexidade das operações a fazer nos dados antes de os carregar
 - Tipicamente, para cada dimensão e tabela de factos, prepara-se tudo na área de tratamento de dados para depois fazer um carregamento direto

- Carregamento inicial
 - Feito diretamente da área de tratamento de dados para as tabelas do Data Warehouse (depois dos dados preparados)
 - Alguns cuidados:
 - Desligar sistemas de logging
 - Ordenar previamente os dados a carregar pela chave primária
 - Fazer, eventualmente, algumas agregações básicas durante o carregamento

- Carregamentos periódicos
 - Definir estratégia para identificar novos dados nos sistemas fonte
 - Novas transações
 - Atualizações a dados de transações anteriores
 - Identificar:
 - Registos novos para cada dimensão
 - Atualizações de atributos de dimensões e como estas vão ser tratadas
 - Novos factos ou medidas numéricas

- Administração
 - Construir, utilizar e manter as ferramentas de extração de dados
 - Garantir a qualidade dos dados, após cada extração
 - Construir e manter agregados
 - Vigiar e afinar o desempenho do sistema
 - Fazer cópias de segurança e recuperar o estado da BD do Data Warehouse em caso de falha

- Referências
 - The Data Warehouse ETL Toolkit, R. Kimball e J. Caserta, John Wiley & Sons, 2004
 - Capítulos 1, 2, 3, 4, 5 e 6
 - Sistemas de Suporte à Decisão, B. Cortes, FCA, 2005
 - Capítulo 3

