Today

- Finish off model checking
- Generalized linear models (GLM)
 - McElreath Ch 9

Independent project

- Complete analysis (EDA through inference & conclusions)
- ggplot, dplyr
- Preferably hierarchical model:
 - rstanarm: stan_glmer or stan_lmer
- Submit .md from .R or .Rmd
- Due end of semester

Model checking

- When is normality of errors important?
 - Not critical for inference about means
 - Frequentist: sampling distribution will still be approximately normal
 - Bayesian: posterior distribution will still be approximately normal or insensitive
 - Can be important for inference about prediction
 - Because: data generating process
- Good information for improving model

Model checking

- How can I know what to look for in a diagnostic plot?
 - simulate it!
- Continue coding demo

How to proceed?

Main points McElreath Ch 9

Generalized linear models

Main points McElreath Ch 9

Generalized linear models

Main points McElreath Ch 9

- Exponential family (some)
 - Exponential, Gamma, Normal, Poisson, Binomial
- Other distributions
 - with write-your-own or Bayesian, this doesn't have to be from the exponential family
 - even more generalized!
- Link functions (some)
 - identity, log, logit

Most common models

Normal

+

Identity link

 $y_i \sim \text{Normal}(\mu_i, \sigma)$

$$\mu_i = \beta_0 + \beta_1 x_i$$

Poisson

+

Log link

$$y_i \sim \text{Poisson}(\mu_i)$$

$$\log(\mu_i) = \beta_0 + \beta_1 x_i$$

Binomial

+

Logit link

$$y_i \sim \text{Binomial}(\mu_i, n)$$

$$\log\left(\frac{\mu_i}{1-\mu_i}\right) = \beta_0 + \beta_1 x_i$$

Key properties:

y: -∞ to ∞, continuous

 μ : -\infty to \infty, continuous

y: 0 to ∞, discrete, integer

 μ : 0 to ∞ , continuous

y: 0, 1, discrete, binary

 μ : 0 to 1, probability

Most common models

Normal

Identity link

Poisson

Log link

Binomial

Logit link

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$

$$y_i \sim \text{Poisson}(\mu_i)$$

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$
 $y_i \sim \text{Poisson}(\mu_i)$ $y_i \sim \text{Binomial}(\mu_i, n)$

$$\mu_i = \beta_0 + \beta_1 x_i$$

$$\log(\mu_i) = \beta_0 + \beta_1 x_i$$

$$\log\left(\frac{\mu_i}{1-\mu_i}\right) = \beta_0 + \beta_1 x_i$$

Linear predictor (always the same):

$$\eta_i = \beta_0 + \beta_1 x_i \qquad \eta_i = \beta_0 + \beta_1 x_i$$

$$\eta_i = \beta_0 + \beta_1 x_i$$

$$\eta_i = \beta_0 + \beta_1 x_i$$

Inverse link function:

$$\mu_i = \eta_i$$

$$\mu_i = e^{\eta_i}$$

$$\mu_i = \frac{e^{\eta_i}}{1 + e^{\eta_i}}$$

Which makes the most sense?

Most common models

Normal	Poisson	Binomial
+	+	+
Identity link	Log link	Logit link
$y_i \sim \text{Normal}(\mu_i, \sigma)$	$y_i \sim \text{Poisson}(\mu_i)$	$y_i \sim \text{Binomial}(\mu_i, n)$
$\mu_i = \beta_0 + \beta_1 x_i$	$\log(\mu_i) = \beta_0 + \beta_1 x_i$	$\log\left(\frac{\mu_i}{1-\mu_i}\right) = \beta_0 + \beta_1 x_i$

Inverse link functions:

$$\mu_i = \eta_i \qquad \qquad \mu_i = \frac{e^{\eta_i}}{1 + e^{\eta_i}}$$

Which makes the most sense?

Poisson
+
Log link

$$y_i \sim \text{Poisson}(\mu_i)$$
 $\log(\mu_i) = \beta_0 + \beta_1 x_i + ...$
 $\eta_i = \beta_0 + \beta_1 x_i + ...$
 $\mu_i = e^{\eta_i}$