SCIENCE I - Assignment 5

Quantum Mechanics

Total Marks: 3 * 4 + 3 * 4 = 24

Problem I: The matrix representation of the three operators are given by:

$$\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 $\sigma_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ $\sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

- a) Evaluate the commutation relations among the operators $[\sigma_i, \sigma_i]$
- b) Calculate eigenvalues and orthogonal eigen vectors of σ_1 , σ_2 and σ_3
- C) Calculate the probability distribution of measuring σ_1 , σ_3 in the one of the eigenstates of σ_2
- d) Evaluate the variances in measuring $\sigma_1(\Delta\sigma_1^2)$ and $\sigma_3(\Delta\sigma_3^2)$ and the corresponding uncertainty relation $\Delta\sigma_1^2 \star \Delta\sigma_3^2$.

Problem II: An electron is moving inside an infinite 1D potential wall of length L. The wave function for the particle is given by (at t=0)

$$| \psi > = \frac{1}{\sqrt{2}} | \phi_1 > + \frac{1}{\sqrt{2}} | \phi_2 >$$

Where | ϕ_1 > and | ϕ_2 > are first two lowest energy eigenstates

- a) Calculate the average energy and variance in energy measurements at t= 0 and later time t
- b) Calculate the probability density of finding the particle at x = L/2 at t = 0
- c) Evaluate the average measuring X and variance of X at t = 0 and later time t
- d) Calculate the average momentum in the state | ψ >