FÍSICA 1

LISTA 2

FORMULÁRIO

Relações Trigonométricas

$$sen \theta = C_o/h$$
 $cos \theta = C_a/h$

$$tan \theta = C_o/C_a$$
 $h^2 = C_o^2 + C_a^2$

Cinemática unidimensional

Fórmulas para aceleração constante:

$$v = v_0 + at \tag{1}$$

$$x - x_0 = v_0 t + a t^2 / 2$$
(2)

$$v^2 = v_0^2 + 2a\Delta x \tag{3}$$

$$x - x_0 = (v_0 + v)t/2 \tag{4}$$

$$x - x_0 = vt - at^2/2 (5)$$

Vetores

Dado um referencial com dois eixos perperdiculares x e y e dois vetores unitários î e ĵ, cujas direções são as dos eixos coordenados, temos:

$$a_{x} = a\cos\theta \tag{6}$$

$$a_y = a \operatorname{sen} \theta$$
 (7)

$$a = \sqrt{a_x^2 + a_y^2} \tag{8}$$

$$an \theta = a_y/a_x \tag{9}$$

onde θ é o ângulo entre o vetor e o semieixo x positivo. Se

$$\vec{a} = a_x \hat{\imath} + a_y \hat{\jmath} \tag{10}$$

$$\vec{b} = b_x \hat{\imath} + b_y \hat{\jmath} \tag{11}$$

então

$$\vec{c} = \vec{a} + \vec{b} \tag{12}$$

$$= (a_x + b_x)\hat{i} + (a_y + b_y)\hat{j}$$
 (13)

Leis de Newton

- 1. Quando a força resultante que age sobre um corpo é zero, o corpo permanece em repouso ou se move em linha reta com velocidade escalar constante.
- 2. A força resultante \vec{F}_R que age sobre um corpo de massa m está relacionada à aceleração \vec{a} do corpo através de:

$$\vec{F} = m\vec{a} \tag{14}$$

$$\vec{F}_{A \to B} = -\vec{F}_{B \to A} \qquad (15)$$

Forças

Peso:

$$P = mg \tag{16}$$

Força de atrito:

$$f_{\rm at}^{\rm c} = \mu_{\rm c} N \tag{17}$$

$$f_{\text{at}}^{\text{e, Máx}} = \mu_{\text{e}} N \tag{18}$$

Força de arrasto:

$$F_a = C\rho A v^2 / 2 \tag{19}$$

Aceleração e força centrípeta:

$$a_c = v^2/r \tag{20}$$

$$F_c = mv^2/r \tag{21}$$

Força de uma mola:

$$F_e = -k\Delta x \tag{22}$$

Lista 2

PROBLEMAS

Problemas recomendados do livro-texto.

Capítulo 5, Halliday, Resnick, Walker; Oitava edição: 13, 14, 17, 19, 20, 23, 32, 35, 37, 39, 43, 47, 51, 53, 59.

Capítulo 6, Halliday, Resnick, Walker; Oitava edição: 13, 16, 17, 23, 25, 29, 31, 33, 38, 47, 49, 51, 53, 55.

QUESTÕES DISCURSIVAS

Exemplos de questões discursivas.

- 1. Um homem está sentado em um assento suspenso por uma corda. A corda passa por uma polia presa ao teto e o homem segura a outra extremidade. Qual é a tensão na corda e que força o assento exerce sobre o homem? Desenhe um diagrama de corpo livre para o homem.
- 2. "No caso mais geral, não podemos afirmar que a normal é igual ao peso." Justifique essa afirmação e explique em que condições a normal seria igual ao peso.
- 3. Uma caixa possui duas alças laterais. Uma sala tem outras duas alças em paredes opostas. Dois segmentos de corda são amarrados nas alças da caixa e passal pelas duas alças da parede, de forma que a caixa possa ser suspensa puxando as cordas. É possivel tensionar as cordas o suficente para que fiquem completamente horizontais? Faça um diagrama de corpo livre para a caixa e explique seu raciocínio.
- 4. Uma pessoa está em um elevador e deixa cair um objeto, notando que ele não atinge o piso do elevador. O que está acontecendo? Há razões para entrar em pânico?
- 5. Você está em pé dentro do ônibus sem segurar-se nas alças de teto pois está guardando o cartão de passagens. O motorista freia subitamente. O que acontece? Faça um diagrama de forças para explicar essa situação.
- 6. Um bloco está em repouso sobre um plano inclinado que possui atrito suficiente para impedir seu deslizamento para baixo. Para fazer o bloco se mover, é mais fácil empurrá-lo para cima ou para baixo? Por quê?
- 7. Uma revista de automóveis chama uma curva com raio decrescente de "a desgraça do motorista inexperiente". Explique.
- 8. Você faz uma bola girar na extremidade de um fio descrevendo um plano horizontal. o fio está contido no plano ou está inclinado? A inclinação, se diferente de zero, é para cima ou para baixo? Faça um diagrama de forças da bola.
- 9. Você pega duas bolas de tênis idênticas a enche uma delas de água. Você as larga simultaneamente de cima de um prédio. O que acontece se você desprezar a resistência do ar? E se não desprezá-la?

QUESTÕES DE PROVAS ANTERIORES

Algumas questões são do livro-texto, outras da lista de exemplos de questões discursivas acima.

1. **Discursiva:** Se alguém lhe disser que os astronautas não têm peso em órbita por que estão além do alcance da força da gravidade, você concordaria? Explique.

LEIS DE NEWTON (ESTÁTICA)

2. Um saco de cimento com peso 325 N está pendurado conforme mostra a Figura 1. Dois dos fios fazem ângulos $\theta_1 = 60^\circ$ e $\theta_2 = 40^\circ$ com a horizontal. Assumindo que o sistema se encontra em equilíbrio, encontre a tensão nos três fios. **R.:** $T_1 = 252,8$ N, $T_2 = 165,0$ N.

Figura 1: Questão 2

- 3. Indiana Jones precisa atravessar um abismo utilizando uma corda, de acordo com a Figura 2. A corda se romperá se a tensão exceder 2.5×10^4 N; A massa de nosso herói é de 90 kg e ele está exatamente no meio da travessia (o que implica que as tensões nos segmentos esquerdo e direito da corda têm o mesmo módulo).
 - (a) Se o ângulo θ é de 10° , encontre o módulo da tensão na corda. **R.:** $T=2\,539,62\,\mathrm{N}.$
 - (b) Qual é o valor de θ mínimo, isto é, aquele para o qual corda está prestes a se romper? **R.:** $\theta_{\min} = 1.01^{\circ}$.

Figura 2: Questão 3

4. A Figura 3 mostra um barco de brinquedo que viaja para o norte com velocidade v constante. Para o valor de velocidade em questão, a força de arrasto da água sobre o casco é $F_a = 220,0$ N. Sabendo que a quilha exerce uma força n = 112 N para o oeste, quais são o módulo P e o ângulo θ da força exercida pelo vento sobre a vela? **R.:** P = 246,86 N, $\theta = 63,0^{\circ}$.

Figura 3: Questão 4

- 5. A bola de demolição mostrada na Figura 4 é mantida na posição mostrada através da tensão exercida por dois cabos. Se a massa da bola é $m=4\,090\,\mathrm{kg}$, calcule
 - (a) A tensão T_B no cabo que faz um ângulo $\theta = 40.0^\circ$ com a vertical. **R.:** $T_B = 52\,323.3\,\mathrm{N}$
 - (b) A tensão T_A no cabo horizontal. **R.:** $T_A = 33632.8$ N.

Figura 4: Questão 5

- 6. O semáforo da Figura 5 está preso a dois cabos que fazem ângulos de 37,0° e 53,0° com a haste a qual estão ligados. Se a tensão T_2 no cabo da direita é de 97,4 N, quais são
 - (a) A tensão T_1 no cabo à esquerda? **R.:** $T_1 = 73,40$ N.
 - (b) A massa do semáforo? R.: $m_s = 12,44 \text{ kg}$.

Considere que a massa dos cabos é desprezível.

Figura 5: Questão 6

- 7. Na Figura 6, o peso do bloco é de 60,0 N. Determine:
 - (a) (10 pontos) A tensão no cabo diagonal. R.: $T=84,85\,\mathrm{N}.$
 - (b) (10 pontos) O módulo das forças F_1 e F_2 . R.: $F_1 = F_2 = 60.0$ N.

Considere que a massa dos cabos é desprezível.

Figura 6: Questão 7.

- 8. Uma bola sólida e uniforme (Figura 7), de 45,0 kg e diâmetro de 32,0 cm está presa a um suporte vertical livre de atrito por um fio de 30,0 cm e massa desprezível.
 - (a) (10 pontos) Faça um diagrama de corpo livre para a bola e o use para achar a tensão no fio. **R.:** T = 470.4 N.
 - (b) (10 pontos) Qual é a força que a bola exerce sobre a parede? R.: $N=163.6\,\mathrm{N}.$

Figura 7: Questão 8.

LEIS DE NEWTON (DINÂMICA)

- 9. Na Figura 8, um bloco de massa $m=5.00\,\mathrm{kg}$ é puxado através de uma corda que exerce uma força $F=12.0\,\mathrm{N}$ com um ângulo $\theta=25.0^\circ$.
 - (a) Qual é a magnitude da aceleração do bloco? **R.:** $a = 2.18 \,\mathrm{m/s^2}$.
 - (b) Suponha que força passe a aumentar gradualmente. Qual é o valor da aceleração horizontal do bloco quando ele está na iminência de ser levantado? **R.:** $a = 21,02 \, \text{m/s}^2$.
- 10. Dois objetos estão conectados por uma corda de massa desprezível que passa por uma polia que pode girar sem atrito em torno de um eixo e cuja massa também é desprezível (Figura 9).

Figura 8: Questão 9

O coeficiente de atrito entre o bloco e o plano inclinado é zero. Se $m_1 = 2.0$ kg, $m_2 = 6.0$ kg e $\theta = 55.0^\circ$, determine

- (a) A aceleração dos blocos. **R.:** $a = 3.57 \,\text{m/s}^2$.
- (b) A tensão na corda. **R.:** $T = 26,74 \,\text{N}$.
- 11. A Figura 9 mostra um sistema que se move com velocidade constante, fazendo com que a esfera de massa $m_1 = 3.0 \,\text{kg}$ suba. Sabendo que o ângulo θ é de 30,0° e desprezando a massa da polia, determine:
 - (a) A tensão T no cabo que liga a esfera ao bloco. **R.:** T = 29.4 N.
 - (b) A massa m_2 do bloco. **R.:** $m_2 = 6.0$ kg.

Figura 9: Questões 10 e 11

- 12. A Figura 10 mostra um bloco e uma esfera de massas diferentes que estão ligados a uma polia de massa desprezível por uma corda, também de massa desprezível. Se as massas dos blocos são $m_1 = 4.0 \,\mathrm{kg}$ e $m_2 = 6.0 \,\mathrm{kg}$, determine
 - (a) A aceleração dos blocos. **R.:** $a = 1.96 \,\text{m/s}^2$.
 - (b) A tensão na corda. **R.:** $T = 47,04 \,\text{N}$.
- 13. Dois blocos de massa m=3.5 kg estão pendurados no teto de um elevador, conforme mostra a Figura 11. Se o elevador se move com uma aceleração de 1,6 m/s² para cima, encontre as trações T_1 e T_2 nas cordas. **R.:** $T_1=39.9$ N, $T_2=79.8$ N.
- 14. Uma pessoa resolve pesar um peixe dentro de um elevador utilizando uma balança de mola (Figura 12). Este tipo de instrumento determina a força exercida por um gancho em sua parte inferior e apresenta diferentes leituras dependendo da aceleração a que o sistema está sujeito.
 - (a) Se ao submetermos o sistema a uma aceleração de $2.5 \,\mathrm{m/s^2}$ para cima obtemos uma leitura de $500.0 \,\mathrm{N}$, qual é a massa do peixe? **R.:** $m = 40.65 \,\mathrm{kg}$.

Figura 10: Questão 12

Figura 11: Questão 13

(b) Se nessa situação a tensão no cabo do elevador é de 3 000 N, a massa da pessoa é $m_p = 50$ kg e a massa da balança é $m_b = 2.0$ kg, qual é a massa do elevador? R.: $m_{\rm el} = 151.25$ kg.

Figura 12: Questão 14

- 15. Duas massas estão ligadas através de uma corda como na Figura 13. Sobre a segunda, age uma força \vec{F} , horizontal, no sentido positivo do eixo x.
 - (a) Identifique as forças que atuam sobre cada corpo (faça um diagrama de corpo livre).
 - (b) Mostre que a tensão no cabo que liga os dois blocos é dada por

$$T = \frac{m_1}{m_1 + m_2} F. (23)$$

(c) O que acontecerá com a e T se m_1 for zero (F se mantém constante)? Justifique sua resposta através de seus cálculos. **R.:** T = 0, a aumenta.

Figura 13: Questões 15, 18 e 19.

- 16. No sistema mostrado na Figura 14, as massas dos blocos 1 e 2 são $m_1 = 2$ kg e $m_2 = 8$ kg e a superfície horizontal não possui atrito. A força \vec{F}_x pode atuar sobre o bloco 2 tanto da direita para a esquerda, quanto da esquerda para a direita.
 - (a) Para que valores de F a aceleração do bloco 2 é para a direita? \mathbf{R} .: $F_x > m_1 g$
 - (b) Para que valor de F a tensão na corda é nula? \mathbf{R} : $F_x = m_2 g$ para a esquerda.

Figura 14: Questão 16

FORÇA DE ATRITO

- 17. Você precisa levar duas caixas até uma plataforma de carregamento através de uma rampa, conforme mostra a Figura 15. A corda através da qual você puxa as caixas está alinhada paralelamente à superfície da rampa. As duas caixas se movem juntas com velocidade constante de 15 cm/s. O coeficiente de atrito estático entre as duas caixas é 0,8, enquanto o coeficiente de atrito cinético entre a caixa maior e o chão é de 0,444.
 - (a) Qual é a força que você precisa exercer para conseguir realizar esta tarefa? Considere que as duas caixas são um objeto só. \mathbf{R} : $F=672,91\,\mathrm{N}$.
 - (b) Qual é a magnitude e a direção da força de atrito que atua na caixa superior? **R.:** $f_{at} = 146 \,\mathrm{N}$.
- 18. Dois blocos inicialmente em movimento, conectados por uma corda de massa negligível, são puxados por uma força \vec{F} horizontal, conforme mostra a Figura 13. As massas dos blocos são $m_1 = 12,0 \,\mathrm{kg}$ e $m_2 = 18,0 \,\mathrm{kg}$, enquanto $F = 68,0 \,\mathrm{N}$. Os coeficientes de atrito cinético entre cada um dos blocos e o piso são $\mu_1^c = 0,200 \,\mathrm{e} \,\mu_2^c = 0,500 \,(\mu_1^c \,\mathrm{\acute{e}}$ o coeficiente de atrito entre a massa m_1 e o piso, enquanto $\mu_2^c \,\mathrm{\acute{e}}$ o coeficiente de atrito entre o bloco de massa m_2 e o piso). Determine
 - (a) A tensão na corda que liga os dois blocos. **R.:** T = 6 N.

Figura 15: Questão 17

- (b) A aceleração do sistema. R.: $a = -1.46 \,\mathrm{m/s^2}$.
- 19. Na Figura 13, dois blocos são puxados para a direita com uma aceleração de $4.3 \,\mathrm{m/s^2}$ por uma força \vec{F} . Se as massas dos blocos são $m_1 = 3.0 \,\mathrm{kg}$ e $m_2 = 2.0 \,\mathrm{kg}$ e os coeficientes de atrito cinético entre os blocos e a superfície são $\mu_1^c = 0.1 \,\mathrm{e}$ $\mu_2^c = 0.3$, determine
 - (a) O módulo da força \vec{F} . R.: F = 30,32 N.
 - (b) A tensão na corda que liga os dois blocos. R.: $T = 15,84 \,\mathrm{N}$.
- 20. Na Figura 16, o bloco é puxado para a direita por uma força \vec{F} cujo módulo é de 35 N, fazendo um ângulo de 35° com a horizontal. O coeficiente de atrito cinético entre o bloco e a mesa é $\mu_c = 0.1$. Se as massas m_1 e m_2 são de 0,5 kg e 2,5 kg, respectivamente, determine
 - (a) A aceleração do sistema. **R.:** $a = 7.78 \,\text{m/s}^2$.
 - (b) A tensão na corda. **R.:** $T = 8,79 \,\text{N}$.

Figura 16: Questão 20

- 21. Uma camionete tem em sua caçamba uma caixa de ferramentas, no entanto, sua tampa traseira está quebrada e não fecha. Se o veículo for submetido a uma aceleração muito grande, a caixa deslizará e poderá acabar caindo. Suponha que o coeficiente de atrito estático entre a caixa e o assoalho da caçamba seja de 0,650. Qual é o menor tempo possível para que o veículo atinja a velocidade de 30 m/s, assumindo que ele partiu do repouso? R.: t = 4,71 s.
- 22. Na Figura 17, o bloco B tem massa de 5,0 kg e repousa sobre o bloco A, cuja massa é de 8,0 kg. Não há atrito entre o bloco A e a mesa, porém há entre o bloco A e o bloco B, sendo que o coeficiente de atrito estático é $\mu_e = 0,750$. Uma corda de massa desprezível é amarrada ao bloco A, passando por uma polia, e a outra extremidade é amarrada a um bloco C de massa desconhecida. Quando o sistema for liberado para se mover, qual é o valor máximo da massa

do bloco C para a qual o bloco B se move juntamente com o bloco A, sem deslizar? Dica: Tente fazer sem substituir os valores! R: m = 39,0 kg

Figura 17: Questão 22.

- 23. Os blocos A, B e C na Figura 18 estão ligados por cordas de massa desprezível. A massa dos blocos A e B é de 2,5 kg cada e o coeficiente de atrito cinético entre os blocos e as superfícies sobre as quais se apoiam é $\mu_c = 0,35$, sendo que a superfície inclinada faz um ângulo de 36,9° com a horizontal. O bloco C desce com velocidade constante.
 - (a) (10 pontos) Qual é a tensão no segmento de corda que liga os blocos A e B. R.: T = 8,575 N.
 - (b) (10 pontos) Qual é a massa do bloco C?

Figura 18: Questão 23.

- 24. Um bloco se move para cima em um plano inclinado que faz um ângulo θ com a horizontal. Sobre ele age uma força F paralela à superfície do plano. A velocidade de deslocamento do bloco é constante. Existe uma força de atrito entre o bloco e a superfície do plano, dada por $f_{at} = \mu_c N$.
 - (a) Mostre que o peso do bloco é dado por

$$P = \frac{F}{\sin \theta + \mu \cos \theta}. (24)$$

- (b) Se $\mu = 0$, qual o valor da força F para que a velocidade seja constante? O que essa situação representa? Explique. **R.:** $F = P_x$.
- (c) Suponha agora que $\theta=0$, com $\mu\neq 0$. Qual é o valor da força para que a velocidade seja constante? O que essa situação representa? **R.:** $F=f_{\rm at}$.
- 25. Três massas estão ligadas por cordas de acordo com a Figura 19 abaixo. As massas são tais que $m_1 > m_3 > m_2$. Além disso, entre o bloco 2 e a mesa há uma força de atrito, no entanto, o sistema se move.

Figura 19: Questão 25.

- (a) Identifique as forças que atuam sobre cada corpo (faça um diagrama de corpo livre). *Cuidado, as tensões em cada corda são diferentes!*
- (b) Mostre que a aceleração dos blocos é dada por

$$a = \frac{m_1 - \mu m_2 - m_3}{m_1 + m_2 + m_3} g. (25)$$

- 26. Um bloco é empurrado contra a parede por uma força que faz um ângulo θ com a normal, conforme a Figura 20.
 - (a) Mostre que a força mínima para que o bloco não deslize para baixo é dada por

$$F = \frac{mg}{\operatorname{sen}\theta + \mu \cos\theta}. (26)$$

(b) Mostre que a força máxima para que o bloco não deslize para cima é dada por

$$F = \frac{mg}{\sin \theta - \mu \cos \theta}. (27)$$

Figura 20: Questão 26.

FORÇA DE ARRASTO

- 27. Um para-quedista com massa de 80,0 kg pula de um balão que encontra-se parado em relação ao solo, em um dia sem vento. Após algum tempo, ele atinge uma velocidade terminal de 50,0 m/s. Considere que o arrasto experimentado pelo para-quedista é dado pela a equação $F_A = C\rho Av^2/2$.
 - (a) Quais são as forças de arrasto que atuam sobre o para quedista quando ele tem velocidades de 30,0 m/s e de 50,0 m/s? **R.:** $F_A(v=30\,\text{m/s})=282,24\,\text{N}$, $F_A(v=50\,\text{m/s})=784\,\text{N}$.
 - (b) Qual é sua aceleração quando sua velocidade é de 30,0 m/s? R.: a = 6,272 m/s².

- 28. Calcule a razão entre a força de arrasto experimentada por um avião a jato voando a 1 000 km/h a uma altitude de 10 km e a força de arrasto experimentada por um avião a hélice voando com a metade da velocidade e a metade da altitude. A densidade do ar é de 0,38 kg/m³ a 10 km e de 0,67 kg/m³ a 5 km. Suponha que os aviões possuem a mesma área de seção reta efetiva e o mesmo coeficiente de arrasto C. R: $F_{10}/F_{5} = 2,27$.
- 29. Ao descer uma encosta, um esquiador é freado pela força de arrasto que o ar exerce sobre o seu corpo e pela força de atrito cinético que a neve exerce sobre os esquis. Suponha que o ângulo da encosta é $\theta=40.0^{\circ}$, que a neve tem um coeficiente de atrito cinético $\mu_c=0.040$, que a massa do esquiador e seu equipamento é m=85.0 kg, que a área de seção reta do esquiador (agachado) é A=1.3 m², que o coeficiente de arrasto é C=0.150 e que a densidade do ar é de 1.2 kg/m³ Qual é a velocidade terminal do esquiador? **R.:** v=66.0 m/s.
- 30. Para determinar o arrasto aerodinâmico sobre um carro, engenheiros automotivos usam frequentemente o método do "ponto morto". O carro é colocado a percorrer uma estrada longa e reta, a uma velocidade conveniente (tipicamente 90,0 km/h) e então é posto em ponto morto, acabando por parar após um tempo. O tempo que o carro leva para que a velocidade decresça de intervalos sucessivos de 5,0 km/h é medido e usado para calcular a força resultante que o freia.
 - (a) Suponha que um carro com massa de $1\,020\,\mathrm{kg}$ levou $3,92\,\mathrm{s}$ para reduzir de $60,0\,\mathrm{km/h}$ para $55,0\,\mathrm{km/h}$. Estime a força resultante média que freou este carro, nesta faixa de valores de velocidade. \mathbf{R} : $\overline{F}=361,39\,\mathrm{N}$.
 - (b) Se o coeficiente de atrito de rolamento (um coeficiente total que leva em conta as diversas forças de atrito que atuam sobre as diferentes partes do carro) for conhecido, valendo 0,020, qual é o valor médio da força de arrasto que atua sobre o carro? Esse valor será o mesmo para todos os intervalos de velocidade? Justifique? \mathbf{R} : $F_a = 161,47\,\mathrm{N}$.

FORÇAS NO MOVIMENTO CIRCULAR

- 31. A Figura 21 mostra um *pêndulo cônico*. Nesse tipo de pêndulo, uma massa m pendurada em uma corda de comprimento L e massa negligível descreve uma trajetória circular com velocidade constante v. Se $m=0.040\,\mathrm{kg},\,L=0.90\,\mathrm{m}$ e o perímetro da trajetória circular é $\ell=0.94\,\mathrm{m}$, calcule
 - (a) A tensão na corda. **R.:** $T = 0.402 \,\text{N}$.
 - (b) A velocidade v da massa. **R.:** $v = 0.5 \,\text{m/s}$.
- 32. Um pêndulo cônico consiste em uma massa presa a um fio e que executa um movimento circular uniforme (veja a Figura 21)
 - (a) Faça um diagrama de corpo livre e identifique quais as forças atuam sobre o corpo. Qual delas exerce o papel de força centripeta? **R.:** $F_R = T_x$.
 - (b) Mostre que a velocidade da massa está relacionada com o raio R e com o ângulo θ através de

$$v = \sqrt{Rg \tan \theta}. (28)$$

Figura 21: Questões 32 e 31.

33. A Figura 22 mostra um brinquedo de parque de diversões. A cadeira fica ligada ao eixo central através de um cabo de aço e o conjunto gira. Se a distância do assento ao eixo central é de 7,5 m, o assento tem massa $m_a = 25,0$ kg e o passageiro $m_p = 75,0$ kg, quais são a tensão no cabo e o módulo da velocidade do passageiro? **R.:** T = 1279,3 N, v = 7,85 m/s.

Figura 22: Questão 33

34. Uma conta pode deslizar em um arco circular disposto na extremidade de uma haste como mostrado na Figura 23. O atrito entre a conta e o arco é desprezível. A haste é disposta verticalmente e posta para rodar. O raio do arco circular é de 15 cm. Se $\theta=45^{\circ}$, qual é a velocidade da conta? *Tenha em mente que o raio do arco e o da trajetória circular não são necessariamente iguais.* **R.:** $v=1,21\,\mathrm{m/s}$.

Figura 23: Questão 34

35. A Figura 24 mostra um disco de massa m_1 desconhecida e que gira com velocidade v constante. A corda a que o disco está ligado passa por um furo no centro da mesa e, na outra ex-

tremidade, está amarrada a uma massa m_2 . Apesar de a corda poder deslizar através do furo, o sistema permanece em equilíbrio. Sabendo que $v=15,0\,\mathrm{m/s},\,R=0,65\,\mathrm{m}$ e $m_2=1,25\,\mathrm{kg},$ calcule o valor de m_1 . **R.:** $m_1=35,4\,\mathrm{g}.$

Figura 24: Questão 35

36. Um carro de brinquedo com massa m se desloca com velocidade constante em uma pista circular vertical (um loop), conforme mostrado na figura abaixo. A pista tem um raio R de 5,00 m e a velocidade do carro é v=12,00 m/s. Se a força normal exercida pela pista quando o carro está no topo (posição B) é de 6,00 N, qual é a força normal quando o carro está na parte mais baixa da pista (posição A)? R: N=12,19 N.

Figura 25: Questão 36

- 37. Na Figura 26, duas esferas de massa $m_1=4.0\,\mathrm{kg}$ e $m_2=3.0\,\mathrm{kg}$ estão ligadas por uma corda de comprimento $\ell=0.5\,\mathrm{m}$. Além disso, a esfera de massa m_2 está ligada a um eixo por outra corda, também de comprimento ℓ . O sistema gira em torno do eixo de forma que as cordas permanecem colineares e, nessa situação, as velocidades das esferas são $v_1=4.0\,\mathrm{m/s}$ e $v_2=2.0\,\mathrm{m/s}$.
 - (a) Qual é a tensão na corda mais externa? **R.:** $T_e = 64 \,\mathrm{N}$
 - (b) Qual é a tensão na corda mais interna? **R.:** $T_i = 88 \,\mathrm{N}$.

Despreze o raio das esferas.

- 38. Um carro de montanha-russa tem massa de 500 kg quando completamente lotado de passageiros. Em uma certa seção da pista, os trilhos fazem um movimento de descida, subida e novamente descida, conforme mostrado na Figura 27.
 - (a) Se o veículo tem uma velocidade de $20.0 \,\mathrm{m/s}$ no ponto A (ponto mais baixo desta seção da pista), qual é a força normal exercida pelos trilhos sobre o carro? **R.:** $N = 24\,900\,\mathrm{N}$.

Figura 26: Questões 39 e 37.

(b) Qual é a velocidade máxima que o carro pode ter no ponto B (ponto mais alto) de forma a não perder contato com o trilho? Considere a situação de iminência de perder contato, ou seja N=0. R.: $v=12,12\,\mathrm{m/s}$.

Considere que a a depressão e o cume da pista são circulos com raios $r_1=10.0\,\mathrm{m}$ e $r_2=15.0\,\mathrm{m}$, respectivamente.

Figura 27: Questão 38

- 39. Um objeto de massa m_1 está amarrado através de uma corda de comprimento ℓ a um outro objeto de massa m_2 . O segundo objeto está amarrado a um eixo por uma corda de comprimento R, e o conjunto gira de modo que o centro do eixo e os dois objetos estão sempre colineares (veja a Figura 26). Além disso, a velocidade do objeto mais próximo do centro é \vec{v} .
 - (a) Calcule a velocidade da esfera externa. (*Ambos objetos descrevem uma circunferência completa ao mesmo tempo.*) **R.:** $v_e = \frac{R+\ell}{R}v$.
 - (b) Faça um diagrama de corpo livre e identifique quais forças atuam sobre os corpos. Qual delas exerce o papel de força centripeta em cada caso? **R.:** Externa: Tensão T_e no fio que liga as duas esferas. Interna: $T T_e$, onde T é a tensão na corda interna.
 - (c) Mostre que a tensão na corda entre o eixo e o primeiro objeto é dada por

$$T = \left(m_2 + m_1 \frac{(R+\ell)}{R}\right) \frac{v^2}{R}.$$
 (29)