Теорема Поста

Критерий полноты множества булевых функций дает следующая

Теорема Поста

Множество B булевых функций является полной системой $\Leftrightarrow B$ не содержится ни в одном из классов L, S, M, T_0 , T_1 .

Теорема Поста

Критерий полноты множества булевых функций дает следующая

Теорема Поста

Множество B булевых функций является полной системой $\Leftrightarrow B$ не содержится ни в одном из классов L,S,M,T_0,T_1 .

Доказательство необходимости:

- \star ни один из классов L, S, M, T $_0$, T $_1$ не совпадает со множеством всех булевых функций
- ullet если $B\subseteq C$, где $C\in \{\mathsf{L},\mathsf{S},\mathsf{M},\mathsf{T}_0,\mathsf{T}_1\}$ замкнутый класс, то $\langle B
 angle\subseteq C$
- ⇒ В не является полной системой

Теорема Поста

Критерий полноты множества булевых функций дает следующая

Теорема Поста

Множество B булевых функций является полной системой $\Leftrightarrow B$ не содержится ни в одном из классов $\mathsf{L},\mathsf{S},\mathsf{M},\mathsf{T}_0,\mathsf{T}_1.$

Доказательство необходимости:

- \star ни один из классов L, S, M, T $_0$, T $_1$ не совпадает со множеством всех булевых функций
- ullet если $B\subseteq C$, где $C\in \{\mathsf{L},\mathsf{S},\mathsf{M},\mathsf{T}_0,\mathsf{T}_1\}$ замкнутый класс, то $\langle B
 angle\subseteq C$
- ⇒ В не является полной системой

Доказательство достаточности:

- будем доказывать, что формулами над В можно задать отрицание и конъюнкцию
- так как $\{\land, \bar{\ }\}$ полная система, отсюда будет следовать полнота B
- доказательство опирается на леммы из предыдущего фрагмента

Теорема Поста — доказательство достаточности

- ullet Выберем в B функции $f_0
 otin T_0$, $f_1
 otin T_1$, $f_s
 otin S$, $f_m
 otin M$, $f_l
 otin L$
 - некоторые из выбранных функций могут совпадать

Теорема Поста — доказательство достаточности

- Выберем в B функции $f_0 \notin T_0$, $f_1 \notin T_1$, $f_s \notin S$, $f_m \notin M$, $f_1 \notin L$ • некоторые из выбранных функций могут совпадать
- Зададим конъюнкцию и отрицание формулой над $\{f_0, f_1, f_s, f_m, f_l\}$:

Теорема Поста — доказательство достаточности

- Выберем в B функции $f_0 \notin T_0$, $f_1 \notin T_1$, $f_s \notin S$, $f_m \notin M$, $f_1 \notin L$ некоторые из выбранных функций могут совпадать
- Зададим конъюнкцию и отрицание формулой над $\{f_0, f_1, f_s, f_m, f_l\}$:

 \star Чтобы проверить произвольную систему булевых функций на полноту, надо уметь проверять функцию на принадлежность к каждому из классов L, S, M, T_0 , T_1

- \star Чтобы проверить произвольную систему булевых функций на полноту, надо уметь проверять функцию на принадлежность к каждому из классов L, S, M, T_0 , T_1
 - пусть функция $f(x_1,\ldots,x_n)$ задана таблицей значений, т.е. битовым вектором $F[0..2^n-1]$
- Принадлежность f ко всем классам может быть проверена за время $O(n \cdot 2^n)$:

- \star Чтобы проверить произвольную систему булевых функций на полноту, надо уметь проверять функцию на принадлежность к каждому из классов L, S, M, T_0 , T_1
 - пусть функция $f(x_1,\ldots,x_n)$ задана таблицей значений, т.е. битовым вектором $F[0..2^n-1]$
- Принадлежность f ко всем классам может быть проверена за время $O(n \cdot 2^n)$:
 - \star T_0 , T_1 : проверить один бит в F

- \star Чтобы проверить произвольную систему булевых функций на полноту, надо уметь проверять функцию на принадлежность к каждому из классов L, S, M, T_0 , T_1
 - пусть функция $f(x_1,\dots,x_n)$ задана таблицей значений, т.е. битовым вектором $F[0..2^n-1]$
- Принадлежность f ко всем классам может быть проверена за время $O(n \cdot 2^n)$:
 - \star T_0 , T_1 : проверить один бит в F
 - \star **S**: сравнить биты F[i] и $F[2^n-i-1]$ для всех i

- * Чтобы проверить произвольную систему булевых функций на полноту, надо уметь проверять функцию на принадлежность к каждому из классов L.S.M.To.T1
 - пусть функция $f(x_1,\ldots,x_n)$ задана таблицей значений, т.е. битовым вектором $F[0..2^n-1]$
- Принадлежность f ко всем классам может быть проверена за время $O(n \cdot 2^n)$:
 - \star T_0 , T_1 : проверить один бит в F
 - \star **S**: сравнить биты F[i] и $F[2^n-i-1]$ для всех i
 - \star L: записать равенство $f(x_1,\ldots,x_n)=a_0+a_1x_1+\cdots a_nx_n$
 - подставить каждое значение вектора \vec{x} и соответствующее значение $f(\vec{x})$
 - ullet получится система 2^n уравнений с n+1 неизвестными a_0,\ldots,a_n над \mathbb{F}_2
 - проверить совместность системы

- * Чтобы проверить произвольную систему булевых функций на полноту, надо уметь проверять функцию на принадлежность к каждому из классов L.S.M.To.T1
 - ullet пусть функция $f(x_1,\dots,x_n)$ задана таблицей значений, т.е. битовым вектором $F[0..2^n-1]$
- Принадлежность f ко всем классам может быть проверена за время $O(n \cdot 2^n)$:
 - \star T_0 , T_1 : проверить один бит в F
 - * **S** сравнить биты F[i] и $F[2^n-i-1]$ для всех i
 - \star L: записать равенство $f(x_1,\ldots,x_n)=a_0+a_1x_1+\cdots a_nx_n$
 - подставить каждое значение вектора \vec{x} и соответствующее значение $f(\vec{x})$
 - ullet получится система 2^n уравнений с n+1 неизвестными a_0,\ldots,a_n над \mathbb{F}_2
 - проверить совместность системы
 - ! придумайте, как сделать это за время $O(n\cdot 2^n)$

- * Чтобы проверить произвольную систему булевых функций на полноту, надо уметь проверять функцию на принадлежность к каждому из классов L.S.M.To.T1
 - пусть функция $f(x_1,\dots,x_n)$ задана таблицей значений, т.е. битовым вектором $F[0..2^n-1]$
- Принадлежность f ко всем классам может быть проверена за время $O(n \cdot 2^n)$:
 - \star T_0 , T_1 : проверить один бит в F
 - \star **S** сравнить биты F[i] и $F[2^n-i-1]$ для всех i
 - \star L: записать равенство $f(x_1,\ldots,x_n)=a_0+a_1x_1+\cdots a_nx_n$
 - подставить каждое значение вектора \vec{x} и соответствующее значение $f(\vec{x})$ получится система 2^n уравнений с n+1 неизвестными a_0,\ldots,a_n над \mathbb{F}_2
 - проверить совместность системы
 - ! придумайте, как сделать это за время $O(n \cdot 2^n)$
 - \star **М**: для каждого из $O(n\cdot 2^n)$ ребер n-мерного куба проверить, что значение f на верхнем конце не меньше значения на нижнем