TD 2 bis : Dérivabilité, convexité

1 Convexité

On admettra (dans un premier temps) la chose suivante. Soit f une fonction convexe. Alors pour tout entier n, pour tout x_1, \ldots, x_n dans I et tout t_1, \ldots, t_n dans [0, 1] tels que $\sum_{i=1}^n t_i = 1$ on a :

$$f\left(\sum_{i=1}^{n} t_i x_i\right) \le \sum_{i=1}^{n} t_i f\left(x_i\right).$$

Exercice 1 Soient p, q > 0 tels que $\frac{1}{p} + \frac{1}{q} = 1$. Montrer les inégalités suivantes

- 1. $xy \le \frac{x^p}{p} + \frac{y^q}{q}$ pour tout x, y > 0.
- 2. $1 + x^{\frac{1}{p}}y^{\frac{1}{q}} \le (1+x)^{\frac{1}{p}}(1+y)^{\frac{1}{q}}$ pour tout x, y > 0.
- 3. En déduire que si $\sum_{i=1}^{n} x_i^p = \sum_{i=1}^{n} y_i^q = 1$ alors $\sum_{i=1}^{n} x_i y_i \leq 1$ (on suppose les x_i, y_i tous strictement positifs).
- 4. Montrer l'inégalité de Hölder

$$\sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} x_i^p\right)^{1/p} \left(\sum_{i=1}^{n} y_i^q\right)^{1/q}.$$

5. Montrer l'inégalité arithmético-géométrique

$$\frac{x_1 + \dots x_n}{n} \ge \sqrt[n]{x_1 \dots x_n}.$$

Exercice 2 Soit $n \geq 3$ et \mathcal{C} un cercle de rayon 1. Parmi tous les polygones à n côtés inscrits dans \mathcal{C} , déterminer ceux de périmètre maximal.

Exercice 3 Soit f une fonction de classe C^2 sur un intervalle [a, b] et $\lambda \in \mathbb{R}$ fixé. On suppose que pour tout $x \in [a, b], f''(x) \geq \lambda$.

1. Montrer que pour $t \in [0,1]$ on a

$$(1-t)f(a) + tf(b) - f((1-t)a + tb) \ge \lambda t(1-t)(b-a)^2/2.$$

On pourra faire deux développements de Taylor entre des points bien choisis.

- 2. Pour la fonction $f(x) = \frac{1}{2}x^2$, quel λ peut-on prendre et que devient la formule ci-dessus?
- 3. Comment s'interprète le résultat du 1. lorsque $\lambda=0$? Montrer que le cas général peut se déduire du cas $\lambda=0$.

Exercice 4 Soit f une fonction convexe sur \mathbb{R} . Montrer que si elle est majorée alors elle est constante.

Exercice 5 Montrer le résultat admis au début de cette section.

2 Encore un peu de dérivabilité

Exercice 6 Soit h_3 définie par $h_3(x) = e^{-1/x^2}$ si $x \ge 0$ et $h_3(x) = 0$ si x < 0. Montrer que h_3 est de classe C^{∞} .

Exercice 7 Soit f dérivable en 0. Déterminer les limites suivantes

$$\lim_{x \to 0} \frac{f(2x) - f(0)}{2x} \quad \text{et} \quad \lim_{x \to 0} \frac{f(2x) - f(x)}{x}.$$

Exercice 8 Soit f dérivable sur \mathbb{R} . Déterminer, pour tout réel a, la valeur de $\lim_{x\to a} \frac{xf(a)-af(x)}{x-a}$.

Exercice 9 Montrer qu'une fonction C^1 est Lispschitz sur tout intervalle. Montrer que $x \mapsto x^2$ et $x \mapsto e^x$ ne sont pas Lipschitz sur \mathbb{R} . Est-ce que tout fonction Lipschitz est forcément C^1 ?

Exercice 10 Soit f dérivable sur \mathbb{R} .

- 1. On suppose que $\lim_{x\to\infty} f'(x) = +\infty$. Montrer que $\lim_{x\to\infty} \frac{f(x)}{x} = +\infty$.
- 2. On suppose $\lim_{x\to\infty} f'(x) = l$ pour un certain $l \in \mathbb{R}$. Montrer que $\lim_{x\to\infty} \frac{f(x)}{x} = l$.

Exercice 11 Soit f de classe C^2 sur \mathbb{R}_+ . On suppose que f et f'' sont bornées sur \mathbb{R}_+ . Montrer que f' est bornée sur \mathbb{R}_+ . Plus précisément, si l'on suppose que $|f| \leq M_0$ et $|f''| \leq M_2$ montrer que $|f'| \leq 2\sqrt{M_0M_2}$.

3 Variation autour de Rolle

Soient $(f_k)_{1 \le k \le n}$ et $(g_k)_{1 \le k \le n}$ deux familles de fonctions à valeurs réelles, continues sur [a,b], dérivables sur [a,b] et telles que $g_k(a) \ne g_k(b)$ pour tout entier k compris entre 1 et n. Considérons la fonction Φ définie sur [a,b] par :

$$\Phi(x) = \sum_{k=1}^{n} (f_k(x) - f_k(a) - \lambda_k (g_k(x) - g_k(a))).$$

- 1. Φ est-elle continue sur [a,b]? Calculez $\Phi(a)$.
- 2. Déterminer des constantes λ_k (k compris entre 1 et n), telles que $\Phi(b) = \Phi(a)$.
- 3. Φ est-elle dérivable sur a, b? Si oui, quelle est sa dérivée?
- 4. Énoncez le théorème de Rolle.
- 5. En déduire qu'il existe un réel $c \in]a, b[$ tel que

$$\sum_{k=1}^{n} f'_k(c) = \sum_{k=1}^{n} g'_k(c) \frac{f_k(b) - f_k(a)}{g_k(b) - g_k(a)}.$$