

Schletter, Inc.		25° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

g_{MAX}	=	3.00	psf
g _{мім}	=	1.75	psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, P_g =
(ASCE 7-05, Eq. 7-2)	18.56 psf	Sloped Roof Snow Load, P_s =
	1.00	I _s =
	0.82	$C_s =$
	0.90	$C_e =$

 $C_t =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 26.53 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.500	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	approx and morning contact.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	1.67	$C_{S} = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>712.08</u>	<u>6854.05</u>	k
Compressive Load =	3542.83	<u>4939.47</u>	k
Lateral Load =	<u>281.23</u>	<u>3595.48</u>	k
Moment (Weak Axis) =	0.55	0.22	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (3) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 192730.6 in-lbs Resisting Force Required = 2695.53 lbs A minimum 143in long x 36in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4492.55 lbs to resist overturning. Minimum Width = <u>36 in</u> in Weight Provided = 7775.63 lbs Sliding 864.67 lbs Force = Use a 143in long x 36in wide x 18in tall Friction = 0.4 Weight Required = 2161.68 lbs ballast foundation to resist sliding. Resisting Weight = 7775.63 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 864.67 lbs Cohesion = 130 psf Use a 143in long x 36in wide x 18in tall 35.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3887.81 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

ASD LC		1.0D	+ 1.0S			1.0D+	+ 1.0W		1	.0D + 0.75L +	0.75W + 0.75	S		0.6D +	+ 1.0W	
Width	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in
FA	983 lbs	983 lbs	983 lbs	983 lbs	1501 lbs	1501 lbs	1501 lbs	1501 lbs	1769 lbs	1769 lbs	1769 lbs	1769 lbs	-338 lbs	-338 lbs	-338 lbs	-338 lbs
F _B	996 lbs	996 lbs	996 lbs	996 lbs	2168 lbs	2168 lbs	2168 lbs	2168 lbs	2279 lbs	2279 lbs	2279 lbs	2279 lbs	-3292 lbs	-3292 lbs	-3292 lbs	-3292 lbs
F _V	97 lbs	97 lbs	97 lbs	97 lbs	1533 lbs	1533 lbs	1533 lbs	1533 lbs	1215 lbs	1215 lbs	1215 lbs	1215 lbs	-1729 lbs	-1729 lbs	-1729 lbs	-1729 lbs
P _{total}	9755 lbs	9971 lbs	10187 lbs	10403 lbs	11445 lbs	11661 lbs	11877 lbs	12093 lbs	11824 lbs	12040 lbs	12256 lbs	12472 lbs	1035 lbs	1164 lbs	1294 lbs	1424 lbs
M	2424 lbs-ft	2424 lbs-ft	2424 lbs-ft	2424 lbs-ft	3880 lbs-ft	3880 lbs-ft	3880 lbs-ft	3880 lbs-ft	4498 lbs-ft	4498 lbs-ft	4498 lbs-ft	4498 lbs-ft	5302 lbs-ft	5302 lbs-ft	5302 lbs-ft	5302 lbs-ft
е	0.25 ft	0.24 ft	0.24 ft	0.23 ft	0.34 ft	0.33 ft	0.33 ft	0.32 ft	0.38 ft	0.37 ft	0.37 ft	0.36 ft	5.12 ft	4.55 ft	4.10 ft	3.72 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft									
f _{min}	238.7 psf	238.1 psf	237.6 psf	237.1 psf	265.5 psf	264.2 psf	263.0 psf	261.8 psf	267.4 psf	266.1 psf	264.8 psf	263.6 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf

37 in

<u>36 in</u>

Ballast Width

307.0 psf 304.6 psf 302.3 psf 300.1 psf 374.8 psf 370.5 psf 366.5 psf 366.5 psf 362.7 psf 394.1 psf 389.3 psf 384.8 psf 380.5 psf 275.4 psf 179.2 psf 146.4 psf 130.7 psf

38 in

39 in

Maximum Bearing Pressure = 394 psf Allowable Bearing Pressure = 1500 psf

 $P_{ftg} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(3 \text{ ft}) =$

Use a 143in long x 36in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 1992.3 \text{ ft-lbs}$

Resisting Force Required = 1328.21 lbs S.F. = 1.67

Weight Required = 2213.69 lbs Minimum Width = 36 in in Weight Provided = 7775.63 lbs A minimum 143in long x 36in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		36 in			36 in			36 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	257 lbs	465 lbs	150 lbs	668 lbs	1645 lbs	586 lbs	113 lbs	136 lbs	6 lbs		
F _V	165 lbs	161 lbs	167 lbs	122 lbs	119 lbs	129 lbs	165 lbs	162 lbs	166 lbs		
P _{total}	9883 lbs	10091 lbs	9776 lbs	9831 lbs	10809 lbs	9749 lbs	2927 lbs	2951 lbs	2821 lbs		
M	640 lbs-ft	629 lbs-ft	646 lbs-ft	478 lbs-ft	475 lbs-ft	501 lbs-ft	640 lbs-ft	628 lbs-ft	641 lbs-ft		
е	0.06 ft	0.06 ft	0.07 ft	0.05 ft	0.04 ft	0.05 ft	0.22 ft	0.21 ft	0.23 ft		
L/6	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft		
f _{min}	240.6 psf	247.0 psf	237.3 psf	248.3 psf	275.7 psf	244.7 psf	46.1 psf	47.4 psf	43.0 psf		
f _{max}	312.3 psf	317.5 psf	309.6 psf	301.7 psf	328.9 psf	300.7 psf	117.7 psf	117.7 psf	114.8 psf		

Maximum Bearing Pressure = 329 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 36in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 36in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	2.725 k 12.808 k 7.421 k <u>37%</u>	Rear Strut Maximum Axial Load = 4.671 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k Utilization = 63%	
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	2.556 k 12.808 k 7.421 k <u>34%</u>	Bolt and bearing capacities are accounting for double she (ASCE 8-02, Eq. 5.3.4-1)	ear.
	0	Struts under compression are shown to de transfer from the girder. Single M12 bolts end of the strut and are subjected to doub.	are i

er compression are shown to demonstrate the load m the girder. Single M12 bolts are located at each strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 56.48 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 1.130 in Max Drift, Δ_{MAX} = 0.493 in 0.493 ≤ 1.13, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 75 \text{ in} \\ \mathsf{J} = & 0.432 \\ & 207.485 \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*} \sqrt{(\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))} \end{array}$$

3.4.16

$$\begin{aligned} \text{b/t} &=& 32.195 \\ S1 &=& \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp} \\ \text{S1} &=& 12.2 \\ S2 &=& \frac{k_1 Bp}{1.6Dp} \\ \text{S2} &=& 46.7 \\ \phi F_L &=& \phi b [\text{Bp-1.6Dp*b/t}] \\ \phi F_L &=& 25.1 \text{ ksi} \end{aligned}$$

 $\phi F_1 = 28.7 \text{ ksi}$

3.4.16.1 Rb/t =

 $S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$ S1 = 1.1 $S2 = C_t$ S2 = 141.0 $\phi F_1 = 1.17 \phi y Fcy$

 $\phi F_L = 38.9 \text{ ksi}$

h/t = 37.0588

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$pF_LST = 25.1 \text{ ks}$$
 $pF_LST = 25.1 \text{ ks}$
 $pF_LST = 25.1 \text{ ks}$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 75 \\ \mathsf{J} &= 0.432 \\ &= 131.948 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F_L} &= \varphi \mathsf{b}[\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_L} &= 29.6 \end{split}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 446476 \text{ mm}^4$$

$$V = 45.5 \text{ mm}$$

$$V = 0.599 \text{ in}^3$$

1.152 k-ft

 $M_{max}Wk =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
 $\phi F_L = 1.88 \text{ in}^2$
 $\phi F_L = 41.32 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14 $L_b = 104.56 \text{ in}$ J = 1.08

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi$$
F_L= ϕ b[Bc-1.6Dc* $\sqrt{(\text{LbSc})/(\text{Cb*}\sqrt{(\text{lyJ})/2}))}$]

$$\varphi F_L =$$

$$φF_L$$
= $φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2)]$
 $φF_I$ = 29.0 ksi

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

 $\phi F_L = 31.6 \text{ ksi}$

$$L_b = 104.56$$
 $J = 1.08$
 190.335

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

$$\phi F_L = 28.9$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = \varphi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

31.1 ksi

 $\phi F_L =$

3.4.18

 $M_{max}Wk =$

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.0 \text{ ksi}$$

 $lx = 984962 \text{ mm}^4$

y = 43.717 mm

2.366 in⁴

1.375 in³

3.323 k-ft

h/t = 16.2

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\phi F_L Wk = 32.544 \text{ mm}^4$$

$$2.219 \text{ in}^4$$

$$x = 40 \text{ mm}$$

$$Sy = 1.409 \text{ in}^3$$

3.904 k-ft

Compression

 $M_{max}St =$

Sx =

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c [Bt-Dt^* \sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$
 $J = 0.942$
 38.7028
 $\left(R_C - \frac{\theta_y}{2} F_{CY}\right)^2$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L \text{= } \phi b [\text{Bc-1.6Dc*} \\ \text{$\sqrt{(\text{LbSc})/(\text{Cb*} \\ \sqrt{(\text{lyJ})/2)})}]}$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$C_1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{\theta_b}\right)$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$
$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\phi F_{L} = 28.2 \text{ ks}$$

3.4.16.1

1.16.1 Not Used Rb/t =
$$0.0$$
 Rt = $1.17 \frac{\theta_y}{\rho_y} F_{CY}$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \begin{bmatrix} 1.1 \\ S2 = C_t \end{bmatrix}$$

$$S2 = C_t$$

$$φF_L$$
= 1.17 $φyFcy$
 $φF_L$ = 38.9 ksi

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$St = 28.2 \text{ Ks}$$

 $Ix = 279836 \text{ mm}^4$

$$y = 27.5 \text{ mm}$$

 $Sx = 0.621 \text{ in}^3$

$$M_{max}St = 1.460 \text{ k-ft}$$

$$S1 = \frac{Bp - \frac{3y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$8br - \frac{\theta_y}{\theta_b} 1.3Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$M_{max}St = 1.460 \text{ k-ft}$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$0.672 \text{ in}^4$$

x = 27.5 mm

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

0.0

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

S2 = 32.70
$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0
$$Bt - \frac{\theta_y}{\theta_b} Fcy$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 6.29 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14 $L_b =$ 69.80 in

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Bc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$$

$$\phi F_L =$$

$$\varphi F_L = 30.0 \text{ ksi}$$

Weak Axis:

$$L_b = 69.8$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6P}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.0$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

S2 = 141.0 ϕF_L = 1.17 $\phi y F_C y$ ϕF_L = 38.9 ksi

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\begin{array}{lll} \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L St = & 28.2 \text{ ksi} \\ \\ k = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \\ y = & 27.5 \text{ mm} \\ \\ Sx = & 0.621 \text{ in}^3 \\ \\ M_{max} St = & 1.460 \text{ k-ft} \\ \end{array}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$Iy = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max} Wk = 1.460 \text{ k-ft}$$

S2 = 77.3

 $\phi F_L = 1.3 \phi y F c y$

 $\varphi F_L =$

43.2 ksi

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.61471 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.80606 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 10.8205 \text{ ksi} \end{array}$$

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$$

 $\varphi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$
 $\varphi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-55.176	-55.176	0	0
2	M14	Υ	-55.176	-55.176	0	0
3	M15	Υ	-55.176	-55.176	0	0
4	M16	Υ	-55 176	-55 176	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-95.761	-95.761	0	0
2	M14	٧	-95.761	-95.761	0	0
3	M15	V	-147.995	-147.995	0	0
4	M16	V	-147.995	-147.995	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	217.64	217.64	0	0
2	M14	V	165.406	165.406	0	0
3	M15	V	87.056	87.056	0	0
4	M16	y	87.056	87.056	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	7.874	7.874	0	0
2	M14	Ζ	7.874	7.874	0	0
3	M15	Ζ	7.874	7.874	0	0
4	M16	Ζ	7.874	7.874	0	0
5	M13	Ζ	0	0	0	0
6	M14	Ζ	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:__

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	. Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	817.262	2	1314.829	2	.371	1	.002	1	0	1	0	1
2		min	-971.437	3	-1767.566	3	-33.453	5	169	4	0	1	0	1
3	N7	max	.016	9	959.817	1	401	10	0	10	0	1	0	1
4		min	278	2	-154.028	3	-216.33	4	424	4	0	1	0	1
5	N15	max	.008	9	2725.257	2	0	3	0	3	0	1	0	1
6		min	-2.448	2	-547.756	3	-206.359	4	41	4	0	1	0	1
7	N16	max	2489.108	2	3799.594	2	0	10	0	10	0	1	0	1
8		min	-2765.751	3	-5272.345	3	-33.7	5	17	4	0	1	0	1
9	N23	max	.03	4	959.817	1_	6.123	1	.012	1	0	1	0	1
10		min	278	2	-154.028	3	-211.121	4	417	4	0	1	0	1
11	N24	max	817.262	2	1314.829	2	022	10	0	10	0	1	0	1
12		min	-971.437	3	-1767.566	3	-34.033	5	17	4	0	1	0	1
13	Totals:	max	4120.629	2	11060.581	2	0	12						
14		min	-4709.303	3	-9663.291	3	-731.842	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	50.937	4	434.28	2	-8.417	12	0	15	.125	4	0	4
2			min	1.829	10	-818.2	3	-124.406	1	012	3	.005	10	0	3
3		2	max	42.742	4	301.945	2	-7.192	12	0	15	.083	4	.486	3
4			min	1.829	10	-580.319	3	-94.5	1	012	3	002	10	256	2
5		3	max	36.124	1	169.611	2	-5.052	10	0	15	.053	5	.806	3
6			min	1.829	10	-342.438	3	-64.595	1	012	3	031	1	419	2
7		4	max	36.124	1	37.276	2	-1.721	10	0	15	.031	5	.961	3
8			min	1.829	10	-104.558	3	-38.847	4	012	3	065	1	491	2
9		5	max	36.124	1	133.323	3	1.609	10	0	15	.01	5	.951	3
10			min	1.829	10	-95.058	2	-30.48	4	012	3	079	1	471	2
11		6	max	36.124	1	371.204	3	25.122	1	0	15	005	12	.776	3
12			min	.941	15	-227.393	2	-26.768	5	012	3	072	1	359	2
13		7	max	36.124	1	609.085	3	55.028	1	0	15	002	10	.436	3
14			min	-6.703	5	-359.727	2	-24.903	5	012	3	044	1	155	2
15		8	max	36.124	1	846.966	3	84.933	1	0	15	.008	2	.14	2
16			min	-14.897	5	-492.062	2	-23.038	5	012	3	044	4	07	3
17		9	max	36.124	1	1084.847	3	114.839	1	0	15	.074	1	.528	2
18			min	-23.092	5	-624.396	2	-21.173	5	012	3	059	5	741	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	44	4	1322.727	3	144.744	1	.01	2	.164	1	1.008	2
20			min	1.829	10	-756.731	2	-91.428	14	012	3	008	3	-1.577	3
21		11	max	36.124	1	624.396	2	-1.385	12	.012	3	.083	4	.528	2
22			min	1.829	10	-1084.847	3	-114.839	1	0	15	01	3	741	3
23		12	max	36.124	1	492.062	2	.074	3	.012	3	.044	4	.14	2
24			min	1.829	10	-846.966	3	-84.933	1	0	15	01	3	07	3
25		13	max	36.124	1	359.727	2	1.912	3	.012	3	.021	5	.436	3
26			min	1.829	10	-609.085	3	-55.028	1	0	15	044	1	155	2
27		14	max	36.124	1	227.393	2	3.75	3	.012	3	0	15	.776	3
28		17	min	1.829	10	-371.204	3	-35.114	4	0	15	072	1	359	2
29		15	max	36.124	1	95.058	2	5.588	3	.012	3	003	12	.951	3
30		13	min	-5.053	5	-133.323	3	-27.801	5	_	15	079	1	471	2
31		16					3			.012	3	0			3
		16	max	36.124	1	104.558		34.689	1				3	.961	
32		47	min	-13.248	5	-37.276	2	-25.936	5	0	15	065	1	491	2
33		17	max	36.124	1	342.438	3	64.595	1	.012	3	.006	3	.806	3
34		10	min	-21.443	5	-169.611	2	-24.071	5	0	15	063	4	419	2
35		18	max	36.124	1	580.319	3	94.5	1	.012	3	.024	1	.486	3
36			min	-29.638	5	-301.945	2	-22.206	5	0	15	072	5	256	2
37		19	max	36.124	1	818.2	3	124.406	1	.012	3	.1	1	0	2
38			min	-37.832	5	-434.28	2	-20.341	5	0	15	087	5	0	3
39	M14	1	max	31.041	4	541.811	2	-8.829	12	.016	3	.192	4	0	2
40			min	1.744	10	-682.267	3	-130.7	1	017	2	.007	10	0	3
41		2	max	26.599	1	409.477	2	-7.604	12	.016	3	.135	4	.411	3
42			min	1.744	10	-502.424	3	-100.794	1	017	2	0	10	33	2
43		3	max	26.599	1	277.142	2	-5.582	10	.016	3	.085	5	.698	3
44			min	1.744	10	-322.581	3	-70.889	1	017	2	014	1	569	2
45		4	max	26.599	1	144.808	2	-2.252	10	.016	3	.049	5	.859	3
46			min	.382	15	-142.738	3	-60.907	4	017	2	053	1	715	2
47		5	max	26.599	1	37.105	3	1.078	10	.016	3	.014	5	.896	3
48			min	-7.639	5	685	9	-52.54	4	017	2	071	1	77	2
49		6	max	26.599	1	216.948	3	18.828	1	.016	3	004	12	.808	3
50		Ĭ	min	-15.834	5	-119.861	2	-47.115	5	017	2	068	1	733	2
51		7	max	26.599	1	396.791	3	48.733	1	.016	3	002	10	.595	3
52		<u>'</u>	min	-24.029	5	-252.196	2	-45.251	5	017	2	062	4	603	2
53		8	max	26.599	1	576.634	3	78.639	1	.016	3	.002	2	.257	3
54		0	min	-32.224	5	-384.53	2	-43.386	5	017	2	084	4	382	2
55		9				756.477	3		1	.016		.065	_	.004	9
		9	max	<u>26.599</u> -40.418	1			108.545			3		1	206	3
56		40	min		5	-516.865	2	-41.521	5	017	2	111	5		
57		10	max	57.827	4	936.32	3	138.45	1	.017	2	.191	4	.336	2
58		4.4	min	1.744	10	-649.199	2	-98.362	14	016	3	008	3	794	3
59		11	max		4	516.865	2	973	12		2	.133	4	.004	9
60		40	min	1.744	10	-756.477	3	-108.545		016	3	01	3	206	3
61		12	max	41.437	4	384.53	2	.706	3	.017	2	.082	4	.257	3
62			min	1.744	10	-576.634	3	-78.639	1	016	3	01	3	382	2
63		13		33.242	4	252.196	2	2.544	3	.017	2	.045	5	.595	3
64			min	1.744	10	-396.791	3	-61.938	4	016	3	045	1	603	2
65		14	max	26.599	1_	119.861	2	4.382	3	.017	2	.01	5	.808	3
66			min	1.744	10	-216.948	3	-53.571	4	016	3	068	1	733	2
67		15	max	26.599	1_	.685	9	11.078	1	.017	2	002	12	.896	3
68			min	1.744	10	-37.105	3	-47.347	5	016	3	071	1	77	2
69		16	max	26.599	1	142.738	3	40.983	1	.017	2	.002	3	.859	3
70			min	1.674	15	-144.808	2	-45.482	5	016	3	067	4	715	2
71		17	max	26.599	1	322.581	3	70.889	1	.017	2	.009	3	.698	3
72			min	-5.69	5	-277.142	2	-43.617	5	016	3	09	4	569	2
73		18	max	26.599	1	502.424	3	100.794	1	.017	2	.046	1	.411	3
74			min	-13.884	5	-409.477	2	-41.752	5	016	3	116	5	33	2
75		19			1	682.267	3	130.7	1	.017	2	.126	1	0	2
_,		- 10	mux	20.000		302.201		100.7		.017		20			

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:____

The color of the	76	Member	Sec	min	Axial[lb] -22.079	LC 5	y Shear[lb]	LC 2	z Shear[lb] -39.887	LC 5	Torque[k-ft]	LC 3	y-y Mome	LC 5	z-z Mome	. LC
Temporal		M15	1												_	
Record R		IVITO														
80			2													
82						_										
82			2			_								_		
83			3													
84			1													
86 max 35.095 5 -0.048 15 927 10 0.17 2 0.023 5 568 8 86 min -27.558 1 23.479 2 -72.203 4 -0.013 3 -0.04 12 549 3 88 min -27.558 1 -213.851 2 -66.74 5 -0.03 1 -91 2 -004 12 549 3 89 7 max 18.766 5 166.684 3 48.672 1 -0.17 2 -0.03 10 .465 3 90 min -27.558 1 -404.224 2 -64.875 5 -0.13 3 -0.03 10 .465 3 91 min -27.558 1 -594.596 2 -63.01 5 -0.013 3 -116 4 -349 2 93 9 max 2.318 <td></td> <td></td> <td>4</td> <td></td>			4													
86 min 227,558 1 -23,479 2 -72,203 4 -0.01 3 -0.04 12 -594 3 88 min -227,558 1 -213,851 2 -66,74 5 -0.013 3 -0.06 1 -9.91 2 89 7 max 18,706 5 166,684 3 48,672 1 -0.017 2 -0.03 1 -48 2 90 min -27,558 1 -404,224 2 -64,875 5 -0.03 3 -08 4 -0.92 91 8 max 10,511 5 259,472 3 78,577 1 -0.17 2 -0.04 1 13 2 13 14 404,241 2 -0.04 1 13 2 13 1,16 4 -349 2 13 3 -116 4 -349 2 13 3 -116			-													
88			3													
Record Proceedings Record Recor			6			_										
89			0													
90			7													
91						_										
92			0			_										
93			8													
Max -1.378 10 445.047 3 138.389 1 .013 3 .251 4 .742 2 96 min -27.558 1 -975.34 2 -108.354 14 .017 2 .007 3 .172 3 3 .757 5 97 11 max -1.378 10 784.968 2 -1.27 12 .013 3 .179 4 .13 2 98 min -27.558 1 .352.259 3 .108.483 1 .017 2 .009 3 0 15 3 3 .157 3 3 .179 4 .13 2 .108 3 .108 3 .179 4 .13 2 .108 3 .179 4 .13 2 .109 3 .108 3 .108 3 .103 3 .179 4 .13 2 .109 3 .108 3 .108 .109 .1																
96			9													
96			4.0									_				
98			10													
98			4.4			_										
100			11													
100																
101			12													
102																
103			13													
104										_						
105			14			10								5		
106				min												_
107			15													
108																
109			16													
110																
111 18 max -1.378 10 297.253 3 100.856 1 .013 3 .046 1 .239 3 112 min -70.598 4 -547.638 2 -61.377 5 017 2 165 5 446 2 113 19 max -1.378 10 390.041 3 130.762 1 .013 3 .126 1 0 2 114 min -78.793 4 -738.01 2 -59.512 5 017 2 -207 5 0 3 115 M16 1 max 62.396 5 637.118 2 -7.5 12 .003 1 .174 4 0 4 116 min -40.917 1 -298.702 3 -125.142 1 011 3 .007 10 0 3 117 2 max 54.201 5<			17											3		
112 min -70.598 4 -547.638 2 -61.377 5 017 2 165 5 446 2 113 19 max -1.378 10 390.041 3 130.762 1 .013 3 .126 1 0 2 114 min -78.793 4 -738.01 2 -59.512 5 017 2 -207 5 0 3 115 M16 1 max 62.396 5 637.118 2 -7.5 12 .003 1 .174 4 0 4 116 min -40.917 1 -298.702 3 -125.142 1 011 3 .007 10 0 3 117 2 max 54.201 5 446.746 2 -62.75 12 .003 1 .081 5 .286 3 119 3 max																
113 19 max -1.378 10 390.041 3 130.762 1 .013 3 .126 1 0 2 114 min -78.793 4 -738.01 2 -59.512 5 017 2 207 5 0 3 115 M16 1 max 62.396 5 637.118 2 -7.5 12 .003 1 .174 4 0 4 116 min -40.917 1 -298.702 3 -125.142 1 011 3 .007 10 0 3 117 2 max 54.201 5 446.746 2 -6.275 12 .003 1 .122 4 .175 3 118 min -40.917 1 -205.915 3 -95.237 1 011 3 .00 10 376 2 120 min -40.917			18			10										
114 min -78.793 4 -738.01 2 -59.512 5 017 2 207 5 0 3 115 M16 1 max 62.396 5 637.118 2 -7.5 12 .003 1 .174 4 0 4 116 min -40.917 1 -298.702 3 -125.142 1 011 3 .007 10 0 3 117 2 max 54.201 5 446.746 2 -6.275 12 .003 1 .122 4 .175 3 118 min -40.917 1 -205.915 3 -95.237 1 011 3 0 10 -376 2 119 3 max 46.006 5 256.374 2 -5.05 12 .003 1 .081 5 .286 3 120 min -40.917				min												
115 M16 1 max 62.396 5 637.118 2 -7.5 12 .003 1 .174 4 0 4 116 min -40.917 1 -298.702 3 -125.142 1 011 3 .007 10 0 3 117 2 max 54.201 5 446.746 2 -6.275 12 .003 1 .122 4 .175 3 118 min -40.917 1 -205.915 3 -95.237 1 011 3 0 10 376 2 119 3 max 46.006 5 256.374 2 -5.05 12 .003 1 .081 5 .286 3 120 min -40.917 1 -113.127 3 -65.331 1 011 3 03 1 62 2 121 4 max			19			10									0	
116 min -40.917 1 -298.702 3 -125.142 1 011 3 .007 10 0 3 117 2 max 54.201 5 446.746 2 -6.275 12 .003 1 .122 4 .175 3 118 min -40.917 1 -205.915 3 -95.237 1 011 3 0 10 376 2 119 3 max 46.006 5 256.374 2 -5.05 12 .003 1 .081 5 .286 3 120 min -40.917 1 -113.127 3 -65.331 1 011 3 03 1 62 2 121 4 max 37.811 5 66.001 2 -2.251 10 .003 1 .049 5 .332 3 122 min -40.917 1 <td></td> <td></td> <td></td> <td>min</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td>5</td> <td>0</td> <td>3</td>				min								2		5	0	3
117 2 max 54.201 5 446.746 2 -6.275 12 .003 1 .122 4 .175 3 118 min -40.917 1 -205.915 3 -95.237 1 011 3 0 10 376 2 119 3 max 46.006 5 256.374 2 -5.05 12 .003 1 .081 5 .286 3 120 min -40.917 1 -113.127 3 -65.331 1 011 3 03 1 62 2 121 4 max 37.811 5 66.001 2 -2.251 10 .003 1 .049 5 .332 3 122 min -40.917 1 -20.34 3 -53.833 4 011 3 065 1 732 2 123 5 max 29.616 5 72.448 3 1.079 10 .003 1 .018 5	115	<u>M16</u>	1	max												
118 min -40.917 1 -205.915 3 -95.237 1 011 3 0 10 376 2 119 3 max 46.006 5 256.374 2 -5.05 12 .003 1 .081 5 .286 3 120 min -40.917 1 -113.127 3 -65.331 1 011 3 03 1 62 2 121 4 max 37.811 5 66.001 2 -2.251 10 .003 1 .049 5 .332 3 122 min -40.917 1 -20.34 3 -53.833 4 011 3 065 1 732 2 123 5 max 29.616 5 72.448 3 1.079 10 .003 1 .018 5 .314 3 124 min -40.917 1 <td></td> <td></td> <td></td> <td>min</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td>10</td> <td></td> <td></td>				min		1						3		10		
119 3 max 46.006 5 256.374 2 -5.05 12 .003 1 .081 5 .286 3 120 min -40.917 1 -113.127 3 -65.331 1 011 3 03 1 62 2 121 4 max 37.811 5 66.001 2 -2.251 10 .003 1 .049 5 .332 3 122 min -40.917 1 -20.34 3 -53.833 4 011 3 065 1 732 2 123 5 max 29.616 5 72.448 3 1.079 10 .003 1 .018 5 .314 3 124 min -40.917 1 -124.371 2 -45.466 4 011 3 079 1 712 2 125 6 max 21.422 5 165.235 3 24.386 1 .003 1 004 12 </td <td></td> <td></td> <td>2</td> <td>_</td> <td></td>			2	_												
120 min -40.917 1 -113.127 3 -65.331 1 011 3 03 1 62 2 121 4 max 37.811 5 66.001 2 -2.251 10 .003 1 .049 5 .332 3 122 min -40.917 1 -20.34 3 -53.833 4 011 3 065 1 732 2 123 5 max 29.616 5 72.448 3 1.079 10 .003 1 .018 5 .314 3 124 min -40.917 1 -124.371 2 -45.466 4 011 3 079 1 712 2 125 6 max 21.422 5 165.235 3 24.386 1 .003 1 004 12 .232 3 126 min -40.917																
121 4 max 37.811 5 66.001 2 -2.251 10 .003 1 .049 5 .332 3 122 min -40.917 1 -20.34 3 -53.833 4 011 3 065 1 732 2 123 5 max 29.616 5 72.448 3 1.079 10 .003 1 .018 5 .314 3 124 min -40.917 1 -124.371 2 -45.466 4 011 3 079 1 712 2 125 6 max 21.422 5 165.235 3 24.386 1 .003 1 004 12 .232 3 126 min -40.917 1 -314.743 2 -41.582 5 011 3 072 1 56 2 127 7 max 13.227 5 258.023 3 54.291 1 .003 1 003 1			3			5				12						
122 min -40.917 1 -20.34 3 -53.833 4 011 3 065 1 732 2 123 5 max 29.616 5 72.448 3 1.079 10 .003 1 .018 5 .314 3 124 min -40.917 1 -124.371 2 -45.466 4 011 3 079 1 712 2 125 6 max 21.422 5 165.235 3 24.386 1 .003 1 004 12 .232 3 126 min -40.917 1 -314.743 2 -41.582 5 011 3 072 1 56 2 127 7 max 13.227 5 258.023 3 54.291 1 .003 1 003 10 .085 3 128 min -40.917 <				min		1				_		3				
123 5 max 29.616 5 72.448 3 1.079 10 .003 1 .018 5 .314 3 124 min -40.917 1 -124.371 2 -45.466 4 011 3 079 1 712 2 125 6 max 21.422 5 165.235 3 24.386 1 .003 1 004 12 .232 3 126 min -40.917 1 -314.743 2 -41.582 5 011 3 072 1 56 2 127 7 max 13.227 5 258.023 3 54.291 1 .003 1 003 10 .085 3 128 min -40.917 1 -505.115 2 -39.717 5 011 3 051 4 275 2 129 8 max 5.032 5 350.81 3 84.197 1 .003 1 .006 2 .142 2 130 min -40.917 1 -695.488 2 -37.853 5 011 3			4			5								5		
124 min -40.917 1 -124.371 2 -45.466 4 011 3 079 1 712 2 125 6 max 21.422 5 165.235 3 24.386 1 .003 1 004 12 .232 3 126 min -40.917 1 -314.743 2 -41.582 5 011 3 072 1 56 2 127 7 max 13.227 5 258.023 3 54.291 1 .003 1 003 10 .085 3 128 min -40.917 1 -505.115 2 -39.717 5 011 3 051 4 275 2 129 8 max 5.032 5 350.81 3 84.197 1 .003 1 .006 2 .142 2 130 min -40.917																
125 6 max 21.422 5 165.235 3 24.386 1 .003 1 004 12 .232 3 126 min -40.917 1 -314.743 2 -41.582 5 011 3 072 1 56 2 127 7 max 13.227 5 258.023 3 54.291 1 .003 1 003 10 .085 3 128 min -40.917 1 -505.115 2 -39.717 5 011 3 051 4 275 2 129 8 max 5.032 5 350.81 3 84.197 1 .003 1 .006 2 .142 2 130 min -40.917 1 -695.488 2 -37.853 5 011 3 068 4 127 3			5	max		5										
126 min -40.917 1 -314.743 2 -41.582 5 011 3 072 1 56 2 127 7 max 13.227 5 258.023 3 54.291 1 .003 1 003 10 .085 3 128 min -40.917 1 -505.115 2 -39.717 5 011 3 051 4 275 2 129 8 max 5.032 5 350.81 3 84.197 1 .003 1 .006 2 .142 2 130 min -40.917 1 -695.488 2 -37.853 5 011 3 068 4 127 3				min		1		2		4	011	3				
127 7 max 13.227 5 258.023 3 54.291 1 .003 1 003 10 .085 3 128 min -40.917 1 -505.115 2 -39.717 5 011 3 051 4 275 2 129 8 max 5.032 5 350.81 3 84.197 1 .003 1 .006 2 .142 2 130 min -40.917 1 -695.488 2 -37.853 5 011 3 068 4 127 3			6	max		5								12	.232	
128 min -40.917 1 -505.115 2 -39.717 5 011 3 051 4 275 2 129 8 max 5.032 5 350.81 3 84.197 1 .003 1 .006 2 .142 2 130 min -40.917 1 -695.488 2 -37.853 5 011 3 068 4 127 3				min		1				5		3		1		
129 8 max 5.032 5 350.81 3 84.197 1 .003 1 .006 2 .142 2 130 min -40.917 1 -695.488 2 -37.853 5011 3068 4127 3			7	max		5										
130 min -40.917 1 -695.488 2 -37.853 5011 3068 4127 3				min							011	3				
			8	max		5		3		1	.003	1		2		
131				min		1		2		5		3		4		
	131		9	max	-2.095	15	443.598	3	114.102	1	.003	1	.072	1	.691	2
132 min -40.917 1 -885.86 2 -35.988 5011 3093 5402 3	132			min	-40.917	1	-885.86	2	-35.988	5	011	3	093	5	402	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
133		10	max	-2.573	10	536.385	3	144.008	1	.011	3	.172	4	1.372	2
134			min	-40.917	1	-1076.232	2	-98.816	14	003	1	003	3	743	3
135		11	max	-1.328	15	885.86	2	-2.302	12	.011	3	.117	4	.691	2
136			min	-40.917	1	-443.598	3	-114.102	1	003	1	006	3	402	3
137		12	max	-2.573	10	695.488	2	-1.077	12	.011	3	.068	4	.142	2
138			min	-40.917	1	-350.81	3	-84.197	1	003	1	007	3	127	3
139		13	max	-2.573	10	505.115	2	.447	3	.011	3	.034	5	.085	3
140			min	-40.917	1	-258.023	3	-58.294	4	003	1	045	1	275	2
141		14	max	-2.573	10	314.743	2	2.284	3	.011	3	.003	5	.232	3
142			min	-40.917	1	-165.235	3	-49.927	4	003	1	072	1	56	2
143		15	max	-2.573	10	124.371	2	5.52	1	.011	3	003	12	.314	3
144			min	-44.626	4	-72.448	3	-42.592	5	003	1	079	1	712	2
145		16	max	-2.573	10	20.34	3	35.425	1	.011	3	0	12	.332	3
146			min	-52.821	4	-66.001	2	-40.727	5	003	1	071	4	732	2
147		17	max	-2.573	10	113.127	3	65.331	1	.011	3	.004	3	.286	3
148			min	-61.015	4	-256.374	2	-38.862	5	003	1	091	4	62	2
149		18	max	-2.573	10	205.915	3	95.237	1	.011	3	.026	1	.175	3
150			min	-69.21	4	-446.746	2	-36.997	5	003	1	11	5	376	2
151		19	max	-2.573	10	298.702	3	125.142	1	.011	3	.103	1	0	2
152			min	-77.405	4	-637.118	2	-35.132	5	003	1	136	5	0	5
153	M2	1	max	1113.549	2	2.074	4	.284	1	0	3	0	3	0	1
154			min	-1562.185	3	.508	15	-26.117	4	0	4	0	2	0	1
155		2	max	1114.023	2	2.037	4	.284	1	0	3	0	1	0	15
156				-1561.83	3	.5	15	-26.528	4	0	4	008	4	0	4
157		3		1114.497	2	2	4	.284	1	0	3	0	1	0	15
158			min	-1561.475	3	.491	15	-26.94	4	0	4	017	4	001	4
159		4		1114.97	2	1.963	4	.284	1	0	3	0	1	0	15
160			min	-1561.119	3	.482	15	-27.351	4	0	4	026	4	002	4
161		5		1115.444	2	1.926	4	.284	1	0	3	0	1	0	15
162			min	-1560.764	3	.474	15	-27.762	4	0	4	034	4	003	4
163		6		1115.918	2	1.889	4	.284	1	0	3	0	1	0	15
164			min	-1560.409	3	.465	15	-28.174	4	0	4	043	4	003	4
165		7		1116.391	2	1.852	4	.284	1	0	3	0	1	0	15
166			min	-1560.053	3	.456	15	-28.585	4	0	4	052	4	004	4
167		8		1116.865	2	1.815	4	.284	1	0	3	0	1	001	15
168			min	-1559.698	3	.447	15	-28.996	4	0	4	062	4	004	4
169		9		1117.339	2	1.778	4	.284	1	0	3	0	1	001	15
170			min	-1559.343	3	.439	15	-29.408	4	0	4	071	4	005	4
171		10		1117.813	2	1.741	4	.284	1	0	3	0	1	001	15
172			min	-1558.987	3	.426	12	-29.819	4	0	4	081	4	005	4
173		11		1118.286		1.704	4	.284	1	0	3	0	1	001	15
174			min		3	.411	12	-30.23	4	0	4	09	4	006	4
175		12		1118.76	2	1.667	4	.284	1	0	3	0	1	002	15
176		12	min		3	.397	12	-30.642	4	0	4	1	4	007	4
177		13		1119.234	2	1.63	4	.284	1	0	3	.001	1	002	15
178		10	min		3	.382	12	-31.053	4	0	4	11	4	007	4
179		14		1119.708	2	1.593	4	.284	1	0	3	.001	1	002	15
180		17	min		3	.368	12	-31.464	4	0	4	12	4	008	4
181		15		1120.181	2	1.556	4	.284	1	0	3	.001	1	002	15
182		10	min	-1557.211	3	.354	12	-31.876	4	0	4	13	4	002	4
183		16		1120.655	2	1.519	4	.284	1	0	3	.001	1	002	15
184		10	min	-1556.856	3	.339	12	-32.287	4	0	4	14	4	002	4
185		17		1121.129	2	1.482	4	.284	1	0	3	.001	1	009	15
186		17		-1556.5	3	.325	12	-32.698	4	0	4	151	4	002	4
187		18		1121.603	2	1.445	4	.284	1	0	3	.002	1	009	12
188		10	min		3	.31	12	-33.11	4	0	4	161	4	002 01	4
189		10		1122.076	2	1.408	4	.284	1		3	.002		002	12
LIOS		l 19	шах	1122.070		1.400	4	.204		00	_ა	.002	1	002	14

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC '	v-v Mome	LC	z-z Mome	. LC
190			min	-1555.79	3	.296	12	-33.521	4	0	4	172	4	01	4
191	M3	1	max	772.809	2	9.028	4	.139	1	0	10	0	1	.01	4
192			min	-902.747	3	2.136	15	747	5	0	4	011	4	.002	12
193		2	max	772.639	2	8.156	4	.139	1	0	10	0	1	.006	4
194		_	min	-902.875	3	1.931	15	14	5	0	4	011	4	0	12
195		3	max	772.468	2	7.284	4	.545	4	0	10	0	1	.003	2
196			min	-903.002	3	1.726	15	.009	10	0	4	011	4	0	3
197		4	max		2	6.412	4	1.152	4	0	10	0	1	0	2
198			min	-903.13	3	1.521	15	.009	10	0	4	01	5	002	3
199		5	max	772.128	2	5.54	4	1.759	4	0	10	0	1	0	15
200		<u> </u>	min	-903.258	3	1.316	15	.009	10	0	4	01	5	004	3
201		6	max	771.957	2	4.668	4	2.367	4	0	10	0	1	001	15
202		_ <u> </u>	min	-903.386	3	1.111	15	.009	10	0	4	009	5	006	6
203		7	max	771.787	2	3.796	4	2.974	4	0	10	<u>.005</u>	1	002	15
204			min	-903.513	3	.906	15	.009	10	0	4	008	5	002	6
205		8	max	771.617	2	2.924	4	3.581	4	0	10	<u>.000</u>	1	002	15
206			min	-903.641	3	.701	15	.009	10	0	4	006	5	01	6
207		9	max		2	2.052	4	4.188	4	0	10	<u>.000</u>	1	002	15
208		1 3	min	-903.769	3	.496	15	.009	10	0	4	004	5	002	6
209		10	max	771.276	2	1.18	4	4.795	4	0	10	004	1	003	15
210		10	min	-903.897	3	.288	12	.009	10	0	4	002	5	012	6
211		11	max	771.106	2	.4	2	5.402	4	0	10	<u>002</u> 0	1	003	15
212				-904.024	3	093	3	.009	10	0	4	0	10	012	6
213		12	min	770.935	2	093 119	15	6.009	4		10	.003	4	012	
		12	max	-904.152					10	0			10		15
214		13	min	770.765	3	603 324	3 15	.009 6.616	4	0	10	.006		012 003	15
		13	max		2								4		
216		4.4	min	<u>-904.28</u>	3	-1.438	6	.009	10	0	4	0	10	011	6
217		14	max		2	529	15	7.223	4	0	10	.009	4	002	15
218		4.5	min	-904.408	3	-2.31	6	.009	10	0	4	0	10	011	6
219		15	max	770.424	2	734	15	7.831	4	0	10	.013	4	002	15
220		4.0	min	-904.535	3	-3.182	6	.009	10	0	4	0	10	009	6
221		16	max	770.254	2	939	15	8.438	4	0	10	.017	4	002	15
222		47	min	-904.663	3	-4.054	6	.009	10	0	4	0	10	008	6
223		17	max	770.084	2	-1.144	15	9.045	4	0	10	.021	4	001	15
224		40	min	-904.791	3	-4.926	6	.009	10	0	4	0	10	005	6
225		18	max	769.913	2	-1.348	15	9.652	4	0	10	.025	4	0	15
226		40	min	-904.919	3	-5.798	6	.009	10	0	4	0	10	003	6
227		19	max		2	-1.553	15	10.259	4	0	10	.03	4	0	1
228	B 4 4		min	-905.047	3	-6.67	6	.009	10	0	4	0	10	0	1
229	M4	1	max	956.751	1	0	1	407	10	0	1	.021	4	0	1
230				-156.328		0	1	-214.131		0	1	0	10	0	1
231		2		956.921	1	0	1	407	10	0	1	0	1	0	1
232					3	0	1	-214.279		0	1	004	4	0	1
233		3		957.091	1	0	1	407	10	0	1	0	10	0	1
234				-156.072		0	1	-214.427		0	1	028	4	0	1
235		4		957.262	1	0	1	407	10	0	1	0	10	0	1
236				-155.945	3	0	1	-214.574		0	1	053	4	0	1
237		5		957.432	1_	0	1	407	10	0	1	0	10	0	1
238				-155.817	3	0	1	-214.722		0	1	078	4	0	1
239		6		957.602	1	0	1	407	10	0	1	0	10	0	1
240					3	0	1	-214.87	4	0	1	102	4	0	1
241		7		957.773	1_	0	1	407	10	0	1	0	10	0	1
242				-155.561	3	0	1	-215.017		0	1	127	4	0	1
243		8		957.943	1	0	1	407	10	0	1	0	10	0	1
244				-155.434	3	0	1	-215.165		0	1	152	4	0	1
245		9		958.113	1	0	1	407	10	0	1	0	10	0	1
246			min	-155.306	3	0	1	-215.313	4	0	1	176	4	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
247		10	max		1	0	1	407	10	0	1	0	10	0	1
248			min		3	0	1	-215.46	4	0	1	201	4	0	1
249		11	max	958.454	1	0	1	407	10	0	1	0	10	0	1
250			min	-155.05	3	0	1	-215.608	4	0	1	226	4	0	1
251		12	max	958.624	1	0	1	407	10	0	1	0	10	0	1
252			min	-154.923	3	0	1	-215.755	4	0	1	251	4	0	1
253		13	max	958.795	1	0	1	407	10	0	1	0	10	0	1
254			min	-154.795	3	0	1	-215.903	4	0	1	275	4	0	1
255		14	max	958.965	1	0	1	407	10	0	1	0	10	0	1
256			min	-154.667	3	0	1	-216.051	4	0	1	3	4	0	1
257		15	max	959.135	1	0	1	407	10	0	1	0	10	0	1
258			min	-154.539	3	0	1	-216.198	4	0	1	325	4	0	1
259		16	max	959.306	1	0	1	407	10	0	1	0	10	0	1
260				-154.412	3	0	1	-216.346	4	0	1	35	4	0	1
261		17	max		1	0	1	407	10	0	1	0	10	0	1
262			min		3	0	1	-216.494	4	0	1	375	4	0	1
263		18	max	959.646	1	0	1	407	10	0	1	0	10	0	1
264			min		3	0	1	-216.641	4	0	1	4	4	0	1
265		19		959.817	1	0	1	407	10	0	1	0	10	0	1
266			min	-154.028	3	0	1	-216.789	4	0	1	424	4	0	1
267	M6	1		3214.494	2	2.405	2	0	1	0	1	0	4	0	1
268			min	-4670.996	3	.107	3	-26.387	4	0	5	0	1	0	1
269		2		3214.968	2	2.376	2	0	1	0	1	0	1	0	3
270		_		-4670.64	3	.085	3	-26.799	4	0	5	009	4	0	2
271		3		3215.442	2	2.347	2	0	1	0	1	0	1	0	3
272			min	-4670.285	3	.064	3	-27.21	4	0	5	017	4	002	2
273		4		3215.915	2	2.318	2	0	1	0	1	0	1	0	3
274			min		3	.042	3	-27.621	4	0	5	026	4	002	2
275		5		3216.389	2	2.289	2	0	1	0	1	0	1	<u>002</u> 0	3
276		J	min	-4669.574	3	.02	3	-28.033	4	0	5	035	4	003	2
277		6		3216.863	2	2.261	2	0	1	0	1	0	1	<u>003</u> 0	3
278		-	min	-4669.219	3	001	3	-28.444	4	0	5	044	4	004	2
279		7		3217.337	2	2.232	2	0	1	0	1	0	1	- <u>004</u> 0	3
280			min	-4668.864	3	023	3	-28.855	4	0	5	053	4	004	2
281		8		3217.81	2	2.203	2	0	1	0	1	0	1	004 0	3
282		0	max min	-4668.508	3	045	3	-29.267	4	0	5	062	4	005	2
283		9		3218.284	2	2.174	2	0	1	0	1	0	1	<u>005</u> 0	3
284		9	min	-4668.153	3	066	3	-29.678	4	0	5	072	4	006	2
285		10		3218.758	2	2.145	2	0	1		1	072	1		3
286		10	min	-4667.798	3	088	3	-30.089	4	0	5		4	0 007	2
287		11	mov	3219.232		2.116	2	0	1	0	1	081 0	1	<u>007</u> 0	3
											5				2
288		12	min	3219.705	3	109	2	-30.501 0	1	0	1	091 0	1	007 0	3
289		12				2.087				0					
290		40	min		3	131	3	-30.912	4	0	5	101	4	008	2
291		13		3220.179	2	2.059	2	0	1	0	1	0	1	0	3
292		4.4	min		3	153	3	-31.323	4	0	5	111	4	009	2
293		14	_	3220.653	2	2.03	2	0	1	0	1	0	1	0	3
294		4.5	min		3	174	3	-31.735	4	0	5	121	4	009	2
295		15		3221.127	2	2.001	2	0	1	0	1	0	1	0	3
296		40	min	-4666.021	3	196	3	-32.146	4	0	5	131	4	<u>01</u>	2
297		16		3221.6	2	1.972	2	0	1	0	1	0	1	0	3
298			min		3	218	3	-32.557	4	0	5	141	4	<u>011</u>	2
299		17		3222.074		1.943	2	0	1	0	1	0	1	0	3
300			min		3	239	3	-32.969	4	0	5	152	4	<u>011</u>	2
301		18		3222.548	2	1.914	2	0	1	0	1_	0	1	0	3
302			min		3	261	3	-33.38	4	0	5	163	4	012	2
303		19	max	3223.022	2	1.885	2	0	1	0	1	0	1	00	3

Schletter, Inc. HCV

Job Number :
Model Name : Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]			LC	Torque[k-ft]			LC	z-z Mome	LC_
304			min	-4664.6	3	283	3	-33.791	4	0	5	173	4	012	2
305	M7	1_	max	2365.573	2	9.015	6	0	1	0	_1_	0	1	.012	2
306			min	-2554.167	3	2.117	15	974	5	0	4	011	4	0	3
307		2	max	2365.402	2	8.143	6	0	1	0	1	0	1	.009	2
308			min	-2554.295	3	1.912	15	367	5	0	4	011	4	003	3
309		3	max	2365.232	2	7.271	6	.283	4	0	1	0	1	.006	2
310			min	-2554.422	3	1.707	15	0	1	0	4	011	4	004	3
311		4	max	2365.062	2	6.399	6	.89	4	0	1	0	1	.003	2
312			min	-2554.55	3	1.502	15	0	1	0	4	011	4	006	3
313		5	max	2364.891	2	5.527	6	1.498	4	0	1	0	1	0	2
314			min	-2554.678	3	1.297	15	0	1	0	4	01	4	007	3
315		6	max	2364.721	2	4.655	6	2.105	4	0	1	0	1	001	15
316			min	-2554.806	3	1.092	15	0	1	0	4	009	4	008	3
317		7	+	2364.551	2	3.783	6	2.712	4	0	1	0	1	002	15
318			min	-2554.933	3	.887	15	0	1	0	4	008	4	009	3
319		8	max	2364.38	2	2.911	6	3.319	4	0	1	0	1	002	15
320			min	-2555.061	3	.67	12	0.010	1	0	4	007	5	01	4
321		9	max	2364.21	2	2.133	2	3.926	4	0	1	0	1	003	15
322		 	min	-2555.189	3	.33	12	0.020	1	0	4	005	5	011	4
323		10	max		2	1.453	2	4.533	4	0	1	003	1	003	15
324		10	min	-2555.317	3	059	3	0	1	0	4	003	5	012	4
325		11		2363.869	2	.774	2	5.14	4	0	1	0	1	003	15
326		- ' '	min	-2555.445	3	569	3	0	1	0	4	001	5	012	4
327		12		2363.699	2	.094	2	5.747	4	0	1	.002	4	012	15
		12		-2555.572	3		3	0.747	1	0	4	.002	1	012	
328		12	min			-1.079			-		1	_			4
329		13		2363.528	2	342	15	6.354	4	0		.005	4	003	15
330		4.4	min	-2555.7	3	-1.588	3	0	1	0	4	0	1	012	4
331		14		2363.358	2	547	15	6.962	4	0	1	.008	4	003	15
332		4.5	min	-2555.828	3	-2.321	4	0	1	0	4	0	1	011	4
333		15		2363.188	2	752	15	7.569	4	0	1	.011	4	002	15
334		40	min	-2555.956	3	-3.193	4	0	1	0	4	0	1	009	4
335		16		2363.017	2	957	15	8.176	4	0	1	.015	4	002	15
336		47	min	-2556.083	3	-4.065	4	0	1	0	4	0	1	008	4
337		17		2362.847	2	-1.162	15	8.783	4	0	1	.019	4	001	15
338		40	min	-2556.211	3	-4.937	4	0	1	0	4	0	1	005	4
339		18		2362.677	2	-1.367	15	9.39	4	0	1	.023	4	0	15
340		40	min	-2556.339	3	-5.809	4	0	1	0	4	0	1	003	4
341		19		2362.506	2	-1.572	15	9.997	4	0	1	.028	4	0	1
342	140		min	-2556.467	3	-6.681	4	0	1	0	4	0	1	0	1
343	<u>M8</u>	1	max		2	0	1	0	1	0	1	.019	4	0	1
344				-550.056		0	1	-206.402		0	1	0	1	0	1
345		2		2722.361	2	0	1	0	1	0	1	0	1	0	1
346			min			0	1	-206.549		0	1	004	4	0	1
347		3		2722.531	2	0	1	0	1	0	1	0	1	0	1
348				-549.801	3	0	1	-206.697	4	0	1_	028	4	0	1
349		4		2722.701	2	0	1	0	1_	0	1	0	1	0	1
350		_		-549.673		0	1	-206.845		0	1_	052	4	0	1
351		5		2722.872	2	0	1	0	1	0	1	0	1	0	1
352				-549.545		0	1	-206.992	4	0	1	076	4	0	1
353		6		2723.042	2	0	1	0	1	0	1	0	1	0	1
354				-549.417	3	0	1	-207.14	4	0	1	099	4	0	1
355		7	max	2723.212	2	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	-207.287		0	1	123	4	0	1
357		8	max	2723.383		0	1	0	1	0	1	0	1	0	1
358			min		3	0	1	-207.435	4	0	1	147	4	0	1
359		9		2723.553		0	1	0	1	0	1_	0	1	0	1
360			min	-549.034	3	0	1	-207.583	4	0	1	171	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
361		10	max	2723.723	2	0	1	0	1	0	1	0	1	0	1
362			min	-548.906	3	0	1	-207.73	4	0	1	195	4	0	1
363		11	max	2723.894	2	0	1	0	1	0	1	0	1	0	1
364			min	-548.779	3	0	1	-207.878	4	0	1	219	4	0	1
365		12	max	2724.064	2	0	1	0	1	0	1	0	1	0	1
366			min		3	0	1	-208.026	4	0	1	242	4	0	1
367		13	max	2724.234	2	0	1	0	1	0	1	0	1	0	1
368			min	-548.523	3	0	1	-208.173	4	0	1	266	4	0	1
369		14		2724.405	2	0	1	0	1	0	1	0	1	0	1
370			min	-548.395	3	0	1	-208.321	4	0	1	29	4	0	1
371		15		2724.575	2	0	1	0	1	0	1	0	1	0	1
372		10	min	-548.268	3	0	1	-208.469	4	0	1	314	4	0	1
373		16		2724.745	2	0	1	0	1	0	1	0	1	0	1
374		10	min	-548.14	3	0	1	-208.616	4	0	1	338	4	0	1
375		17		2724.916	2	0	1	0	1	0	1	0	1	0	1
376		17			3	0	1	-208.764	4	0	1	362	4	0	1
		10	min				1		1		1		1		1
377		18		2725.086	2	0	_	0		0		0		0	
378		40	min	-547.884	3	0	1_	-208.911	4	0	1_	386	4	0	1
379		19		2725.257	2	0	1	0	1	0	1	0	1	0	1
380	1440		min	-547.756	3	0	1	-209.059	4	0	1_	41	4	0	1
381	M10	1_		1113.549	2	1.979	6	014	10	0	_1_	0	4	0	1
382			min	-1562.185	3_	.444	15	-26.285	4	0	5	0	3	0	1_
383		2		1114.023	2	1.942	6	014	10	0	1	0	10	0	15
384			min	-1561.83	3	.435	15	-26.696	4	0	5	008	4	0	6
385		3	max	1114.497	2	1.905	6	014	10	0	_1_	0	10	0	15
386			min	-1561.475	3	.427	15	-27.107	4	0	5	017	4	001	6
387		4	max		2	1.868	6	014	10	0	<u>1</u>	0	10	0	15
388			min	-1561.119	3	.418	15	-27.519	4	0	5	026	4	002	6
389		5	max	1115.444	2	1.831	6	014	10	0	1	0	10	0	15
390			min	-1560.764	3	.409	15	-27.93	4	0	5	035	4	002	6
391		6	max	1115.918	2	1.794	6	014	10	0	1	0	10	0	15
392			min	-1560.409	3	.401	15	-28.341	4	0	5	044	4	003	6
393		7	max	1116.391	2	1.757	6	014	10	0	1	0	10	0	15
394			min	-1560.053	3	.392	15	-28.753	4	0	5	053	4	004	6
395		8		1116.865	2	1.72	6	014	10	0	1	0	10	0	15
396			min	-1559.698	3	.383	15	-29.164	4	0	5	062	4	004	6
397		9		1117.339	2	1.683	6	014	10	0	1	0	10	001	15
398			min	-1559.343	3	.374	15	-29.575	4	0	5	071	4	005	6
399		10		1117.813	2	1.646	6	014	10	0	1	0	10	001	15
400		10	min	-1558.987	3	.366	15	-29.987	4	0	5	081	4	005	6
401		11		1118.286	2	1.609	6	014	10	_	1	0	10		15
402			min	-1558.632	3	.357	15	-30.398	4	0	5	091	4	006	6
403		12		1118.76	2	1.572	6	014	10	0	1	0	10		15
404		14	min		3	.348	15	-30.809	4	0	5	1	4	006	6
405		13		1119.234	2	1.535	6	014	10	0	<u>5</u> 1	0	10	002	15
406		13	min		3	.34	15	-31.221	4	0	5	11	4	002	6
407		14		1119.708		1.498	6	014	10	0	<u> </u>	0	10	007	15
407		14	min	-1557.566	<u>2</u> 3	.331	15	-31.632	4	0	5	12	4	002	6
		4.5			_										
409		15		1120.181	2	1.461	6	014	10	0	1	0	10	002	15
410		40	min		3	.322	15	-32.043	4	0	5	131	4	008	6
411		16		1120.655	2	1.424	6	014	10	0	1_	0	10	002	15
412		-	min	-1556.856	3	.313	15	-32.455	4	0	5	141	4	008	6
413		17		1121.129	2	1.391	2	014	10	0	_1_	0	10		15
414			min		3	.305	15	-32.866	4	0	5	151	4	009	6
415		18		1121.603	2	1.362	2	014	10	0	1	0	10	002	15
416			min		3	.296	15	-33.277	4	0	5	162	4	009	6
417		19	max	1122.076	2	1.333	2	014	10	0	1	0	10	002	15

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
418			min	-1555.79	3	.287	15	-33.689	4	0	5	173	4	009	6
419	M11	1	max	772.809	2	8.963	6	009	10	0	1	0	10	.009	6
420			min	-902.747	3	2.093	15	765	5	0	4	011	4	.002	15
421		2	max	772.639	2	8.091	6	009	10	0	1	0	10	.006	2
422			min	-902.875	3	1.888	15	158	5	0	4	011	4	0	12
423		3	max	772.468	2	7.219	6	.464	4	0	1	0	10	.003	2
424			min	-903.002	3	1.683	15	139	1	0	4	011	4	0	3
425		4	max	772.298	2	6.347	6	1.071	4	0	1	0	10	0	2
426			min	-903.13	3	1.478	15	139	1	0	4	011	4	002	3
427		5	max	772.128	2	5.475	6	1.679	4	0	1	0	10	001	15
428			min	-903.258	3	1.273	15	139	1	0	4	01	4	004	4
429		6	max	771.957	2	4.603	6	2.286	4	0	1	0	10	002	15
430			min	-903.386	3	1.068	15	139	1	0	4	009	4	007	4
431		7	max	771.787	2	3.731	6	2.893	4	0	1	0	10	002	15
432			min	-903.513	3	.863	15	139	1	0	4	008	4	009	4
433		8	max	771.617	2	2.859	6	3.5	4	0	1	0	10	002	15
434			min	-903.641	3	.658	15	139	1	0	4	006	4	01	4
435		9	max	771.446	2	1.987	6	4.107	4	0	1	0	10	003	15
436			min	-903.769	3	.453	15	139	1	0	4	004	4	011	4
437		10	max	771.276	2	1.115	6	4.714	4	0	1	0	10	003	15
438			min	-903.897	3	.248	15	139	1	0	4	002	4	012	4
439		11	max	771.106	2	.4	2	5.321	4	0	1	0	5	003	15
440			min	-904.024	3	093	3	139	1	0	4	0	1	012	4
441		12	max	770.935	2	162	15	5.928	4	0	1	.003	5	003	15
442			min	-904.152	3	63	4	139	1	0	4	0	1	012	4
443		13	max	770.765	2	367	15	6.536	4	0	1	.006	5	003	15
444			min	-904.28	3	-1.502	4	139	1	0	4	0	1	012	4
445		14	max	770.595	2	572	15	7.143	4	0	1	.009	5	003	15
446			min	-904.408	3	-2.374	4	139	1	0	4	0	1	011	4
447		15	max	770.424	2	777	15	7.75	4	0	1	.012	5	002	15
448			min	-904.535	3	-3.246	4	139	1	0	4	001	1	009	4
449		16	max	770.254	2	982	15	8.357	4	0	1	.016	5	002	15
450			min	-904.663	3	-4.118	4	139	1	0	4	001	1	008	4
451		17	max	770.084	2	-1.187	15	8.964	4	0	1	.02	5	001	15
452			min	-904.791	3	-4.99	4	139	1	0	4	001	1	006	4
453		18	max	769.913	2	-1.392	15	9.571	4	0	1	.025	5	0	15
454			min	-904.919	3	-5.862	4	139	1	0	4	001	1	003	4
455		19	max	769.743	2	-1.597	15	10.178	4	0	1	.029	5	0	1
456			min	-905.047	3	-6.734	4	139	1	0	4	001	1	0	1
457	M12	1	max	956.751	1	0	1	6.293	1	0	1	.02	5	0	1
458			min	-156.328	3	0	1	-210.44	4	0	1	0	1	0	1
459		2	max	956.921	1	0	1	6.293	1	0	1	0	10	0	1
460			min	-156.2	3	0	1	-210.588	4	0	1	004	4	0	1
461		3	max	957.091	1	0	1	6.293	1	0	1	0	1	0	1
462			min	-156.072	3	0	1	-210.735	4	0	1	028	4	0	1
463		4	max	957.262	1	0	1	6.293	1	0	1	.001	1	0	1
464			min	-155.945	3	0	1	-210.883	4	0	1	052	4	0	1
465		5	max	957.432	1	0	1	6.293	1	0	1	.002	1	0	1
466				-155.817	3	0	1	-211.031	4	0	1	076	4	0	1
467		6		957.602	1	0	1	6.293	1	0	1	.003	1	0	1
468				-155.689	3	0	1	-211.178	4	0	1	101	4	0	1
469		7		957.773	1	0	1	6.293	1	0	1	.003	1	0	1
470				-155.561	3	0	1	-211.326		0	1	125	4	0	1
471		8		957.943	1	0	1	6.293	1	0	1	.004	1	0	1
472			min	-155.434	3	0	1	-211.473	4	0	1	149	4	0	1
473		9		958.113	1	0	1	6.293	1	0	1	.005	1	0	1
474				-155.306	3	0	1	-211.621	4	0	1	174	4	0	1
					_	_					_				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
475		10	max	958.284	1	0	1	6.293	1	0	1	.006	1	0	1
476			min	-155.178	3	0	1	-211.769	4	0	1	198	4	0	1
477		11	max	958.454	1	0	1	6.293	1	0	1	.006	1	0	1
478			min	-155.05	3	0	1	-211.916	4	0	1	222	4	0	1
479		12	max	958.624	1	0	1	6.293	1	0	1	.007	1	0	1
480			min	-154.923	3	0	1	-212.064	4	0	1	246	4	0	1
481		13	max	958.795	1	0	1	6.293	1	0	1	.008	1	0	1
482			min	-154.795	3	0	1	-212.212	4	0	1	271	4	0	1
483		14	max	958.965	1	0	1	6.293	1	0	1	.009	1	0	1
484			min	-154.667	3	0	1	-212.359	4	0	1	295	4	0	1
485		15	max	959.135	1	0	1	6.293	1	0	1	.009	1	0	1
486			min	-154.539	3	0	1	-212.507	4	0	1	32	4	0	1
487		16	max	959.306	1	0	1	6.293	1	0	1	.01	1	0	1
488			min	-154.412	3	0	1	-212.654	4	0	1	344	4	0	1
489		17	max	959.476	1	0	1	6.293	1	0	1	.011	1	0	1
490			min	-154.284	3	0	1	-212.802	4	0	1	368	4	0	1
491		18	max		1	0	1	6.293	1	0	1	.011	1	0	1
492			min	-154.156	3	0	1	-212.95	4	0	1	393	4	0	1
493		19	max	959.817	1	0	1	6.293	1	0	1	.012	1	0	1
494		1	min	-154.028	3	0	1	-213.097	4	0	1	417	4	0	1
495	M1	1	max	124.41	1	818.108	3	37.796	5	0	2	.1	1	0	15
496			min	-20.341	5	-433.481	2	-36.082	1	0	3	087	5	012	3
497		2	max	125.122	1	816.963	3	39.256	5	0	2	.078	1	.26	2
498			min	-20.009	5	-435.008	2	-36.082	1	0	3	063	5	52	3
499		3	max	587.296	3	593.209	2	15.128	5	0	3	.056	1	.519	2
500			min	-358.072	2	-644.211	3	-35.878	1	0	2	039	5	-1.01	3
501		4	max	587.83	3	591.682	2	16.588	5	0	3	.033	1	.151	2
502			min	-357.36	2	-645.356	3	-35.878	1	0	2	029	5	61	3
503		5	max	588.364	3	590.155	2	18.048	5	0	3	.011	1	005	15
504			min	-356.648	2	-646.501	3	-35.878	1	0	2	018	5	216	2
505		6	max	588.898	3	588.628	2	19.508	5	0	3	0	10	.192	3
506		_ <u> </u>	min	-355.936	2	-647.646	3	-35.878	1	0	2	011	1	581	2
507		7	max	589.432	3	587.101	2	20.969	5	0	3	.006	5	.595	3
508			min	-355.224	2	-648.791	3	-35.878	1	0	2	034	1	946	2
509		8	max	589.966	3	585.574	2	22.429	5	0	3	.02	5	.998	3
510			min	-354.512	2	-649.937	3	-35.878	1	0	2	056	1	-1.31	2
511		9	max	604.071	3	48.363	2	45.843	5	0	9	.038	1	1.161	3
512		1 3	min	-304.197	2	.456	15	-62.505	1	0	3	102	5	-1.49	2
513		10	max	604.605	3	46.836	2	47.304	5	0	9	0	10	1.138	3
514		10	min	-303.485	2	01	5	-62.505	1	0	3	074	4	-1.52	2
515		11		605.139	3	45.309	2	48.764	5	0	9	002	10		3
516		11	min	-302.773	2	-1.948	4	-62.505	1	0	3	052	4	-1.549	2
517		12		618.772	3	432.368	3	121.943	5	0	2	.055	1	.982	3
518		14	min	-252.233	2	-690.051	2	-34.951	1	0	3	202	5	-1.376	2
519		12		619.306	3	431.222	3	123.403	5	0	2	.033	1	.714	3
520		13	min	-251.521	2	-691.578	2	-34.951	1	0	3	126	5	948	2
		11													_
521		14		619.84 -250.809	3	430.077	3	124.863	<u>5</u>	0	2	.012	1	.446	3
522		4.5			2	-693.105	2	-34.951		0	3	049	5	518	2
523		15		620.374	3	428.932	3	126.324	5	0	2	.029	5	.18	3
524		10		-250.097	2	<u>-694.632</u>	2	-34.951	1	0	3	01	1	099	1
525		16		620.908	3	427.787	3	127.784	5	0	2	.108	5	.344	2
526		4-		-249.385	2	-696.159		-34.951	1	0	3	032	1	086	3
527		17	max		3	426.642	3	129.244	5	0	2	.188	5	.777	2
528		4.0	min	-248.673	2	-697.686	2	-34.951	1	0	3	053	1	351	3
529		18	max		5	639.366	2	-2.573	10	0	5	.178	5	.394	2
530		4.0		-125.851	1	-297.7	3	-78.844	4	0	2	077	1	175	3
531		19	max	35.131	5	637.839	2	-2.573	10	0	5	.136	5	.011	3

Model Name

Schletter, Inc. HCV

. : Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
532			min	-125.139	1	-298.845	3	-77.383	4	0	2	103	1	003	1
533	M5	1	max		1	2645.461	3	67.236	5	0	_1_	0	_1_	.025	3
534			min	5.222	12	-1510.479	2	0	1	0	4	168	4	0	15
535		2	max	290.193	1	2644.316	3	68.697	5	0	1	0	1	.958	2
536			min	5.578	12	-1512.006	2	0	1	0	4	126	4	-1.617	3
537		3	max	1718.371	3	1441.136	2	46.265	4	0	4	0	1_	1.864	2
538			min	-1053.489	2	-1743.073	3	0	1	0	1	083	4	-3.21	3
539		4	max	1718.905	3	1439.609	2	47.725	4	0	4	0	1	.97	2
540			min	-1052.777	2	-1744.218	3	0	1	0	1	054	4	-2.128	3
541		5	max	1719.439	3	1438.083	2	49.185	4	0	4	0	1	.107	1
542			min	-1052.065	2	-1745.364	3	0	1	0	1	024	4	-1.045	3
543		6	max	1719.973	3	1436.556	2	50.645	4	0	4	.007	4	.039	3
544			min	-1051.353	2	-1746.509	3	0	1	0	1	0	1	815	2
545		7	max	1720.507	3	1435.029	2	52.105	4	0	4	.039	4	1.123	3
546			min	-1050.641	2	-1747.654	3	0	1	0	1	0	1	-1.706	2
547		8	max	1721.041	3	1433.502	2	53.565	4	0	4	.072	4	2.208	3
548			min	-1049.929	2	-1748.799	3	0	1	0	1	0	1	-2.596	2
549		9	max	1727.516	3	166.699	2	155.758	4	0	1	0	1	2.552	3
550			min	-930.751	2	.458	15	0	1	0	1	158	4	-2.982	2
551		10	max	1728.05	3	165.173	2	157.218	4	0	1	0	1	2.453	3
552			min	-930.039	2	003	15	0	1	0	1	061	4	-3.085	2
553		11		1728.584	3	163.646	2	158.678	4	0	1	.037	4	2.354	3
554			min	-929.327	2	-1.835	6	0	1	0	1	0	1	-3.187	2
555		12		1736.002	3	1091.333	3	167.276	4	0	1	0	1	2.05	3
556		12	min	-810.598	2	-1762.547	2	0	1	0	4	283	4	-2.843	2
557		13	max		3	1090.188	3	168.736	4	0	1	0	1	1.373	3
558		13	min	-809.886	2	-1764.073	2	0	1	0	4	179	4	-1.749	2
559		14	max	1737.07	3	1089.042	3	170.196	4	0	1	0	1	.697	3
560		17	min	-809.174	2	-1765.6	2	0	1	0	4	074	4	654	2
561		15		1737.604	3	1087.897	3	171.656	4	0	1	.032	4	.442	2
562		13	min	-808.462	2	-1767.127	2	0	1	0	4	0	1	.001	15
563		16		1738.138	3	1086.752	3	173.116	4	0	1	.139	4	1.54	2
564		10	min	-807.75	2	-1768.654	2	0	1	0	4	0	1	654	3
565		17		1738.672	3	1085.607	3	174.577	4	0	1	.247	4	2.638	2
566		17		-807.038	2	-1770.181	2	0	1	0	4	0	1	-1.328	3
567		18	min max	-7.409	12	2156.218	2	0	1	0	4	.267	4	1.342	2
568		10	_	-288.735	1	-1071.852	3	-18.946	5	0	1	0	1	687	3
569		19	min	-7.053	12	2154.691	2	0	1	0	4	.256	4	.007	1
		19	max		1	-1072.997			5		1	.236	1		3
570	MO	1	min	-288.023	1		3	-17.486	4	0	3	-		021	
571	<u>M9</u>		max	124.41		818.108	3	51.048 1.829		0		005	<u>10</u>	0	15
572		2	min		12	-433.481			10	0	4	125	4	012	3
573		2	max		1	816.963	3	52.508	4	0	3	004	10	.26 52	2
574		2	min	8.772	12	-435.008		1.829	10	0	4	092	4		3
575		3		587.296	3	593.209	2	35.878	1	0	2	003	10	.519	2
576		4	min	-358.072	2	-644.211	3	1.815	10	0	3	06	4	-1.01	3
577		4	max		3	591.682	2	35.878	1	0	2	002	10	.151	2
578		-	min	-357.36	2	-645.356	3	1.815	10	0	3	041	4	61	3
579		5		588.364	3	590.155	2	35.878	1	0	2	0	10	005	15
580		_	min		2	-646.501	3	1.815	10	0	3	022	4	216	2
581		6	_	588.898	3	588.628	2	35.878	1	0	2	.011	1_	.192	3
582			min		2	-647.646	3	1.815	10	0	3	005	5	581	2
583		7		589.432	3	587.101	2	35.878	1	0	2	.034	_1_	.595	3
584			min	-355.224	2	-648.791	3	1.815	10	0	3	.002	10	946	2
585		8		589.966	3	585.574	2	36.059	4	0	2	.056	_1_	.998	3
586			min	-354.512	2	-649.937	3	1.815	10	0	3	.003	10	-1.31	2
587		9		604.071	3	48.363	2	68.82	4	0	3	002	10	1.161	3
588			min	-304.197	2	.474	15	3.56	10	0	9	116	4	-1.49	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	604.605	3	46.836	2	70.28	4	0	3	0	1	1.138	3
590			min	-303.485	2	.013	15	3.56	10	0	9	073	4	-1.52	2
591		11	max	605.139	3	45.309	2	71.74	4	0	3	.039	1	1.115	3
592			min	-302.773	2	-1.819	6	3.56	10	0	9	038	5	-1.549	2
593		12	max	618.772	3	432.368	3	135.751	4	0	3	003	10	.982	3
594			min	-252.233	2	-690.051	2	2.181	10	0	2	224	4	-1.376	2
595		13	max	619.306	3	431.222	3	137.211	4	0	3	002	10	.714	3
596			min	-251.521	2	-691.578	2	2.181	10	0	2	139	4	948	2
597		14	max	619.84	3	430.077	3	138.671	4	0	3	0	10	.446	3
598			min	-250.809	2	-693.105	2	2.181	10	0	2	054	4	518	2
599		15	max	620.374	3	428.932	3	140.131	4	0	3	.033	4	.18	3
600			min	-250.097	2	-694.632	2	2.181	10	0	2	0	10	099	1
601		16	max	620.908	3	427.787	3	141.592	4	0	3	.12	4	.344	2
602			min	-249.385	2	-696.159	2	2.181	10	0	2	.002	10	086	3
603		17	max	621.442	3	426.642	3	143.052	4	0	3	.209	4	.777	2
604			min	-248.673	2	-697.686	2	2.181	10	0	2	.003	10	351	3
605		18	max	-7.857	12	639.366	2	40.957	1	0	4	.207	4	.394	2
606			min	-125.851	1	-297.7	3	-64.002	5	0	3	.005	10	175	3
607		19	max	-7.501	12	637.839	2	40.957	1	0	4	.174	4	.011	3
608			min	-125.139	1	-298.845	3	-62.542	5	0	3	.007	10	003	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x	Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.239	2	.011	3 '	1.635e-2	2	NC	1	NC	1
2			min	512	4	074	3	007	2 -	4.926e-3	3	NC	1	NC	1
3		2	max	0	1	.201	2	.013	3	1.695e-2	2	NC	4	NC	1
4			min	512	4	.005	15	006	5 -	4.176e-3	3	1379.55	3	NC	1
5		3	max	0	1	.172	2	.017	1 1	1.756e-2	2	NC	4	NC	2
6			min	512	4	.004	15	008	5 -	3.426e-3	3	752.234	3	7974.855	1
7		4	max	0	1	.185	3	.025	1 1	1.816e-2	2	NC	4	NC	2
8			min	512	4	.004	15	007	5 -	2.676e-3	3	577.45	3	5562.229	1
9		5	max	0	1	.21	3	.029	1 1	1.876e-2	2	NC	4	NC	2
10			min	512	4	.004	15	005	10 -	1.925e-3	3	528.425	3	4962.186	1
11		6	max	0	1	.198	3	.026	3 '	1.936e-2	2	NC	4	NC	2
12			min	512	4	.004	15	007	10 -	1.175e-3	3	551.294	3	5446.971	1
13		7	max	0	1	.225	2	.029	3	1.996e-2	2	NC	2	NC	2
14			min	512	4	.005	15	009	10 -	4.253e-4	3	648.957	3	7716.241	1
15		8	max	0	1	.268	2	.031	3 2	2.057e-2	2	NC	4	NC	1
16			min	512	4	.005	15	015	2 3	3.247e-4	3	861.829	3	7768.506	3
17		9	max	0	1	.305	2	.032	3 2	2.117e-2	2	NC	4	NC	1
18			min	512	4	.006	15	02	2 4	4.056e-4	15	1248.341	3	7362.902	3
19		10	max	0	1	.321	2	.032	3 2	2.177e-2	2	NC	4	NC	1
20			min	512	4	.006	15	022	2 4	4.119e-4	15	1576.577	3	7244.26	3
21		11	max	0	10	.305	2	.032	3 2	2.117e-2	2	NC	4	NC	1
22			min	512	4	.006	15	02	2 4	4.048e-4	15	1248.341	3	7362.902	3
23		12	max	0	10	.268	2	.031	3 2	2.057e-2	2	NC	4	NC	1
24			min	512	4	.005	15	015	2 3	3.247e-4	3	861.829	3	7768.506	3
25		13	max	0	10	.225	2	.029	3 '	1.996e-2	2	NC	2	NC	2
26			min	512	4	.004	15	009	10 -	4.253e-4	3	648.957	3	7716.241	1
27		14	max	0	10	.198	3	.026	3	1.936e-2	2	NC	4	NC	2
28			min	512	4	.004	15	007		1.175e-3	3	551.294	3	5446.971	1
29		15	max	0	10	.21	3	.029	1 1	1.876e-2	2	NC	4	NC	2
30			min	512	4	.003	15	005	10 -	1.925e-3	3	528.425	3	4962.186	1
31		16	max	0	10	.185	3	.025	1 1	1.816e-2	2	NC	4	NC	2
32			min	512	4	.003	15	005	10 -	2.676e-3	3	577.45	3	5562.229	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			(n) L/y Ratio	LC		
33		17	max	0	10	.172	2	.017	14 1.756		NC	4	NC	2
34			min	512	4	.003	15	004	10 -3.426		752.234	3	7974.855	
35		18	max	0	10	.201	2	.013	3 1.695		NC	4	NC	1
36			min	512	4	.004	15	005	2 -4.176		1379.55	3	NC	1
37		19	max	0	10	.239	2	.011	3 1.635		NC NC	1	NC	1
38		-	min	<u>512</u>	4	074	3	007	2 -4.926		NC NC	1	NC	1
39	M14	1_	max	0	1	<u>.49</u>	3	.01	3 8.847	e-3 2	NC NC	1	NC NC	1
40			min	393	4	695	2	007	2 -7.322		NC NC	1	NC NC	1
41		2	max	0	1	.641	3	.011	3 9.856		NC 077.40	5	NC NC	1
42		-	min	393	4	848 770	2	01	5 -8.273		977.13	2	NC NC	1
43		3	max	0	1	.776	3	.014	3 1.086	e-2 2	NC 500,007	5	NC 0075 547	1
44		-	min	393	4	989	2	013	5 -9.224		509.037	2	9875.547	5
45		4	max	0	1	.885	3	.02	1 1.187		NC 004,000	5	NC	2
46		_	min	<u>393</u>	4	<u>-1.109</u>	2	01	5 -1.018		361.998	2	7002.667	1
47		5	max	0	1	.961	3	.024	1 1.288		NC 205,000	5	NC	2
48			min	393	4	-1.202	2	005	10 -1.113		295.869	2	5939.323	
49		6	max	0	1	1.004	3	.023	3 1.389	e-2 2	NC NC	15	NC	2
50		-	min	<u>393</u>	4	<u>-1.265</u>	2	006	10 -1.208		262.961	2	6305.075	
51		7	max	0	1	1.016	3	.025	3 1.496		NC 0.47.474	15	NC	2
52		_	min	<u>393</u>	4	-1.301	2	008	10 -1.303		247.471	2	7673.755	
53		8	max	0	1	1.005	3	.027	3 1.591		NC	15	NC	1
54		_	min	393	4	<u>-1.314</u>	2	<u>013</u>	2 -1.398		242.31	2	7284.524	
55		9	max	0	1	.986	3	.028	3 1.692		NC 0.40.074	15	NC	1
56		1.0	min	393	4	-1.312	2	018	2 -1.493		242.871	2	8351.676	
57		10	max	0	1	.974	3	.028	3 1.793		NC 244 222	15	NC	1
58		1	min	393	4	-1.309	2	02	2 -1.588		244.369	2	8192.016	
59		11	max	0	10	.986	3	.028	3 1.692		NC NC	15	NC	1
60			min	393	4	-1.312	2	018	2 -1.493		242.871		8351.676	
61		12	max	0	10	1.005	3	.027	3 1.591		NC	15	NC	1
62		10	min	<u>393</u>	4	-1.314	2	<u>013</u>	5 -1.398		242.31	2	8890.298	
63		13	max	0	10	1.016	3	.025	3 1.496		NC 0.47.474	15	NC 0704 000	2
64		1.4	min	393	4	-1.301	2	009	5 -1.303		247.471	2	8704.632	1
65		14	max	0	10	1.004	3	.023	3 1.389		NC NC	15	NC	2
66		-	min	393	4	-1.265	2	006	10 -1.208		262.961	2	6305.075	
67		15	max	0	10	.961	3	.024	1 1.288		NC NC	5	NC 5000 000	2
68		1.0	min	393	4	-1.202	2	005	10 -1.113		295.869	2	5939.323	
69		16	max	0	10	.885	3	.02	1 1.187		NC	5	NC	2
70		-	min	<u>393</u>	4	<u>-1.109</u>	2	004	10 -1.018		361.998	2	7002.667	1
71		17	max	0	10	<u>.776</u>	3	.019	4 1.086		NC NC	5	NC	1
72		10	min	<u>393</u>	4	989	2	004	10 -9.224		509.037	2	7172.558	
73		18	max	0	10	.641	3	.013	4 9.856			5		1
74		10	min	393	4	848	2	005	2 -8.273		977.13	2	NC NC	1
75		19		0	10	<u>.49</u>	3	.01	3 8.847		NC NC	1	NC NC	1
76			min	<u>393</u>	4	<u>695</u>	2	007	2 -7.322		NC NC	1	NC NC	1
77	M15	1	max	0	10	.502	3	.009	3 6.186		NC NC	1	NC NC	1
78		_	min	326	4	<u>693</u>	2	006	2 -9.183		NC NC	1	NC	1
79		2	max	0	10	.62	3	.01	3 6.963		NC 050 500	5	NC 0.450,407	1
80		_	min	326	4	<u>869</u>	2	016	5 -1.024		850.523	2	8450.187	5
81		3	max	0	10	.73	3	.013	1 7.747		NC 140 0 40	5	NC	1
82			min	326	4	-1.029	2	02	5 -1.129		446.346	2	6731.275	
83		4	max	0	10	.824	3	.02	1 8.536		NC OO4 440	5	NC 00.40,000	2
84		+-	min	326	4	<u>-1.16</u>	2	016	5 -1.235		321.146	2	6940.888	
85		5	max	0	10	.898	3	.024	1 9.313		NC NC	5	NC	2
86		-	min	326	4	<u>-1.256</u>	2	006	5 -1.34		266.695	2	5879.688	
87		6	max	0	10	.951	3	.023	1 1.01e		NC 244 222	15	NC 2222 12	2
88		+-	min	326	4	<u>-1.313</u>	2	006	10 -1.445		241.839	2	6222.13	1
89		7	max	00	10	.983	3	.023	3 1.088	e-2 3	NC NC	15	NC	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
90			min	326	4	-1.337	2	008	10 -1.551e-2	2	233.046	2	7302.051	
91		8	max	0	10	.997	3	.025	3 1.166e-2	3	NC	<u>15</u>	NC	1
92			min	326	4	<u>-1.334</u>	2	012	2 -1.656e-2	2	234.059	2	6516.663	
93		9	max	0	10	.999	3	.026	3 1.245e-2	3	NC 000,000	<u>15</u>	NC 0774 0	1
94		10	min	326	1	<u>-1.318</u> .998	3	017 .026	2 -1.762e-2	2	239.939 NC	<u>2</u> 15	8771.2 NC	1
96		10	max min	0 326	4	-1.308	2	019	3 1.323e-2 2 -1.867e-2	2	243.954	2	8873.908	
97		11	max	320 0	1	<u>-1.306</u> .999	3	.026	3 1.245e-2	3	NC	15	NC	1
98			min	326	4	-1.318	2	017	2 -1.762e-2	2	239.939	2	9033.279	
99		12	max	0	1	.997	3	.025	3 1.166e-2	3	NC	15	NC	1
100		12	min	326	4	-1.334	2	018	5 -1.656e-2	2	234.059	2	8246.015	
101		13	max	0	1	.983	3	.023	3 1.088e-2	3	NC	15	NC	2
102		10	min	326	4	-1.337	2	013	5 -1.551e-2	2	233.046	2	8521.502	1
103		14	max	0	1	.951	3	.023	1 1.01e-2	3	NC	15	NC	2
104			min	326	4	-1.313	2	006	10 -1.445e-2	2	241.839	2	6222.13	1
105		15	max	0	1	.898	3	.024	1 9.313e-3	3	NC	5	NC	2
106			min	326	4	-1.256	2	004	10 -1.34e-2	2	266.695	2	5879.688	1
107		16	max	0	1	.824	3	.025	4 8.53e-3	3	NC	5	NC	2
108			min	326	4	-1.16	2	004	10 -1.235e-2	2	321.146	2	5828.889	
109		17	max	0	1	.73	3	.027	4 7.747e-3	3	NC	5	NC	1
110			min	326	4	-1.029	2	004	10 -1.129e-2	2	446.346	2	5438.726	4
111		18	max	0	1	.62	3	.019	4 6.963e-3	3	NC	5	NC	1
112			min	326	4	869	2	005	2 -1.024e-2	2	850.523	2	7581.569	4
113		19	max	0	1	.502	3	.009	3 6.18e-3	3	NC	1	NC	1
114			min	326	4	693	2	006	2 -9.183e-3	2	NC	1	NC	1
115	M16	1_	max	0	10	.215	2	.008	3 1.225e-2	3	NC	_1_	NC	1
116			min	112	4	182	3	006	2 -1.403e-2	2	NC	1_	NC	1
117		2	max	0	10	.147	2	.01	3 1.289e-2	3	NC	4_	NC	1
118			min	112	4	162	3	011	5 -1.416e-2	2	2204.582	2	NC	1
119		3	max	0	10	.097	1	.018	1 1.354e-2	3	NC	4_	NC	2
120			min	112	4	148	3	015	5 -1.429e-2	2	1228.504	2	7917.714	
121		4	max	0	10	.076	1	.026	1 1.418e-2	3	NC	4	NC	2
122		+_	min	112	4	144	3	012	5 -1.442e-2	2	981.445	2	5483.64	1
123		5	max	0	10	.076	1	.03	1 1.483e-2	3_	NC	4_	NC 40.40.000	2
124			min	112	4	1 <u>54</u>	3	006	5 -1.456e-2	2	961.755	2	4848.823	1
125		6	max	0	10	.096	1	.027	1 1.547e-2	3	NC 4424.44	3	NC FOAF COO	2
126		7	min	112	4	175	3	005	10 -1.469e-2 3 1.612e-2	2	1134.11 NC	<u>2</u> 4	5245.602	2
127			max	0	10	.132	3	.021		2	1713.05	2	NC 7198.41	4
128 129		8	min	112 0	10	<u>205</u> .182	2	007 .022	10 -1.482e-2 3 1.676e-2	3	NC	1	NC	1
130		0	max min		4	237	3	01	2 -1.495e-2					
131		9	max	0	10	.231	2	.022	3 1.741e-2	3	NC	4	NC	1
132		+ =	min	112	4	265	3	015	2 -1.508e-2	2	1805.36	3	NC	1
133		10	max	0	1	.253	2	.023	3 1.805e-2	3	NC	4	NC	1
134		10	min	112	4	277	3	017	2 -1.521e-2	2	1575.066	3	NC	1
135		11	max	0	1	.231	2	.022	3 1.741e-2	3	NC	4	NC	1
136			min	112	4	265	3	015	2 -1.508e-2	2	1805.36	3	NC	1
137		12	max	0	1	.182	2	.022	3 1.676e-2	3	NC	1	NC	1
138		T'-	min	112	4	237	3	01	2 -1.495e-2	2	2711.037	3	NC	1
139		13	max	0	1	.132	1	.021	3 1.612e-2	3	NC	4	NC	2
140		1.0	min	112	4	205	3	007	10 -1.482e-2	2	1713.05	2	7198.41	1
141		14	max	0	1	.096	1	.027	1 1.547e-2	3	NC	3	NC	2
142			min	112	4	175	3	005	10 -1.469e-2	2	1134.11	2	5245.602	
143		15	max	0	1	.076	1	.03	1 1.483e-2	3	NC	4	NC	2
144			min	112	4	154	3	003	10 -1.456e-2	2	961.755	2	4848.823	
145		16	max	0	1	.076	1	.026	1 1.418e-2	3	NC	4	NC	2
146			min	112	4	144	3	003	10 -1.442e-2	2	981.445	2	5483.64	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC	· ·	
147		17	max	0	1	.097	1	.023	4	1.354e-2	3	NC	4_	NC	2
148			min	112	4	148	3	003	10	-1.429e-2	2	1228.504	2	6319.187	4
149		18	max	0	1	.147	2	.015	4	1.289e-2	3	NC	4	NC	1
150			min	112	4	162	3	003	10	-1.416e-2	2	2204.582	2	9434.967	4
151		19	max	0	1	.215	2	.008	3	1.225e-2	3	NC	1_	NC	1_
152			min	112	4	182	3	006	2	-1.403e-2	2	NC	1_	NC	1
153	M2	1	max	.007	2	.011	2	.005	1	1.836e-3	5	NC	1_	NC	1
154			min	01	3	016	3	484	4	-9.9e-5	1	6435.488	2	142.803	4
155		2	max	.007	2	.009	2	.004	1	1.845e-3	5	NC	1_	NC	1
156			min	01	3	016	3	444	4	-9.357e-5	1	7378.064	2	155.487	4
157		3	max	.007	2	.008	2	.004	1	1.854e-3	5	NC	1	NC	1
158			min	009	3	015	3	405	4	-8.814e-5	1	8627.563	2	170.551	4
159		4	max	.006	2	.007	2	.004	1	1.863e-3	5	NC	1	NC	1
160			min	009	3	015	3	366	4	-8.271e-5	1	NC	1	188.618	4
161		5	max	.006	2	.005	2	.003	1	1.872e-3	5	NC	1	NC	1
162			min	008	3	014	3	328	4	-7.728e-5	1	NC	1	210.536	4
163		6	max	.005	2	.004	2	.003	1	1.881e-3	5	NC	1	NC	1
164			min	007	3	013	3	291	4	-7.186e-5	1	NC	1	237.479	4
165		7	max	.005	2	.003	2	.002	1	1.89e-3	5	NC	1	NC	1
166			min	007	3	013	3	255	4	-6.643e-5	1	NC	1	271.117	4
167		8	max	.005	2	.002	2	.002	1	1.9e-3	4	NC	1	NC	1
168		<u> </u>	min	006	3	012	3	22	4	-6.1e-5	1	NC	1	313.889	4
169		9	max	.004	2	.001	2	.002	1	1.91e-3	4	NC	1	NC	1
170		-	min	006	3	011	3	187	4	-5.557e-5	1	NC	1	369.469	4
171		10	max	.004	2	0	2	.001	1	1.92e-3	4	NC	1	NC	1
172		10	min	005	3	01	3	156	4	-5.014e-5	1	NC	1	443.615	4
173		11		.003	2	<u>01</u>	2	.001	1	1.931e-3		NC	•	NC	
			max								4		<u>1</u> 1		1
174		40	min	005	3	009	3	127	4	-4.471e-5		NC NC	•	545.766	4
175		12	max	.003	2	0	15	0	1	1.941e-3	4	NC NC	1	NC COO COO	1
176		40	min	004	3	008	3	<u>1</u>	4	-3.929e-5	1_4	NC NC	_	692.297	4
177		13	max	.002	2	0	15	0	1	1.952e-3	4_	NC NC	1_	NC 040.700	1
178		4.4	min	003	3	008	3	076	4	-3.386e-5	1_	NC NC	1_	913.726	4
179		14	max	.002	2	0	15	0	1	1.962e-3	4_	NC	1	NC	1
180			min	003	3	006	3	054	4	-2.843e-5	1_	NC	1_	1272.45	4
181		15	max	.002	2	0	15	0	1	1.972e-3	_4_	NC	1	NC	1
182			min	002	3	005	3	036	4	-2.3e-5	_1_	NC	1_	1913.349	4
183		16	max	.001	2	0	15	0	1	1.983e-3	_4_	NC	1_	NC	1
184			min	002	3	004	3	021	4	-1.757e-5	_1_	NC	<u>1</u>	3241.206	4
185		17	max	0	2	0	15	0	1	1.993e-3	4_	NC	_1_	NC	1_
186			min	001	3	003	3	01	4	-1.214e-5	<u>1</u>	NC	1_	6783.429	4
187		18	max	0	2	0	15	00	1	2.003e-3	4_	NC	_1_	NC	1_
188			min	0	3	001	3	003	4	-6.715e-6	1_	NC	1_	NC	1_
189		19	max	0	1	0	1	0	1	2.014e-3	4_	NC	<u>1</u>	NC	1
190			min	0	1	0	1	0	1	-1.287e-6	1_	NC	1_	NC	1
191	M3	1	max	0	1	0	1	0	1	1.477e-7	3	NC	<u>1</u>	NC	1_
192			min	0	1	0	1	0	1	-4.184e-4	4	NC	1	NC	1
193		2	max	0	3	0	15	.011	4	9.07e-5	4	NC	1	NC	1
194			min	0	2	003	6	0	3	7.697e-7	10	NC	1_	NC	1
195		3	max	0	3	001	15	.021	4	5.998e-4	4	NC	1	NC	1
196			min	0	2	005	6	0	3	1.622e-6	10	NC	1	9458.745	14
197		4	max	.001	3	002	15	.031	4	1.109e-3	4	NC	1	NC	1
198			min	001	2	008	6	0	3	2.474e-6	10	NC	1	6492.021	14
199		5	max	.002	3	002	15	.04	4	1.618e-3	4	NC	1	NC	1
200			min	002	2	011	6	0	3	3.326e-6		9004.934	6	5013.315	_
201		6	max	.002	3	003	15	.048	4	2.127e-3	4	NC	2	NC	1
202			min	002	2	014	6	0	3	4.178e-6		7253.419	6	4128.163	_
203		7	max	.002	3	004	15	.056	4	2.636e-3	4	NC	5	NC	1
		1 1	πιαλ	.000	J	.00+	IU	.000	_ +	L0006-0	т_	110		110	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
204		_	min	003	2	016	6	0	12	5.03e-6	10	6200.853	6	3538.064	
205		8	max	.003	3	004	15	.064	4	3.145e-3	_4_	NC	5	NC	1
206			min	003	2	018	6	0	12	5.882e-6	10	5551.196	<u>6</u>	3114.762	
207		9	max	.004	3	004	15	.071	4	3.654e-3	4	NC	5	NC 0700 044	1
208		40	min	003	2	02	6	0	12	6.735e-6		5165.279	6	2793.841	14
209		10	max	.004	3	004	15	.078	4	4.163e-3	4	NC	5	NC 2520,260	1
210		11	min	004	2	02	6	0	12	7.587e-6		4975.379	6	2539.269	
211			max	.005 004	3	004 021	15	.085 0	10	4.672e-3 8.439e-6	<u>4</u> 10	NC 4953.343	<u>5</u>	NC 2329,248	1
213		12		.005	3	021 004	15	.092	4	5.181e-3	4	NC	5	NC	1
214		12	max	005	2	02	6	<u>.092</u>	10	9.291e-6	10	5099.776	6	2149.812	
215		13	max	.006	3	02 004	15	.099	4	5.69e-3	4	NC	5	NC	1
216		13	min	005	2	019	6	0	10	1.014e-5	10	5445.629	6	1991.649	_
217		14	max	.006	3	004	15	.107	4	6.2e-3	4	NC	5	NC	1
218		17	min	005	2	017	6	0	10	1.1e-5	10	6068.428	6	1848.417	
219		15	max	.007	3	003	15	.115	4	6.709e-3	4	NC	3	NC	1
220		10	min	006	2	014	6	0	10	1.185e-5		7140.695	6	1715.795	
221		16	max	.007	3	002	15	.124	4	7.218e-3	4	NC	1	NC	1
222		10	min	006	2	011	6	0	10	1.27e-5		9080.791	6	1590.914	
223		17	max	.008	3	001	15	.133	4	7.727e-3	4	NC	1	NC	1
224			min	007	2	008	6	0	10	1.355e-5	10	NC	1	1471.983	_
225		18	max	.008	3	0	15	.144	4	8.236e-3	4	NC	1	NC	1
226			min	007	2	005	1	0	10	1.44e-5	10	NC	1	1358.026	14
227		19	max	.009	3	0	5	.156	4	8.745e-3	4	NC	1	NC	1
228			min	008	2	002	3	0	10	1.526e-5	10	NC	1	1248.663	14
229	M4	1	max	.002	1	.007	2	0	10	1.221e-4	4	NC	1	NC	2
230			min	0	3	009	3	156	4	3.781e-6	10	NC	1	158.587	4
231		2	max	.002	1	.007	2	0	10	1.221e-4	4	NC	1	NC	2
232			min	0	3	009	3	144	4	3.781e-6	10	NC	1	172.438	4
233		3	max	.002	1	.006	2	0	10	1.221e-4	4	NC	1_	NC	2
234			min	0	3	008	3	131	4	3.781e-6	10	NC	1	188.921	4
235		4	max	.002	1	.006	2	0	10	1.221e-4	4	NC	_1_	NC	2
236			min	0	3	008	3	119	4	3.781e-6	10	NC	1_	208.721	4
237		5	max	.002	1	.006	2	0	10	1.221e-4	4	NC	_1_	NC	2
238			min	0	3	007	3	107	4	3.781e-6	10	NC	1_	232.768	4
239		6	max	.002	1	.005	2	0	10	1.221e-4	4	NC	_1_	NC	2
240		_	min	0	3	007	3	095	4	3.781e-6	10	NC	_1_	262.349	4
241		7	max	.002	1	.005	2	0	10	1.221e-4	4	NC	1	NC	1
242			min	0	3	006	3	083	4	3.781e-6	10	NC	1_	299.293	4
243		8	max	.001	1	.004	2	0	10	1.221e-4	4	NC	1	NC 0.40.07	1
244		_	min	0	3	006	3	072		3.781e-6		NC	1	346.27	4
245		9	max	.001	1	.004	2	0		1.221e-4	4	NC	1_	NC 407.005	1
246		40	min	0	3	005	3	061	4	3.781e-6	<u>10</u>	NC NC	1_	407.295	4
247		10	max	.001	1	.004	2	0	10	1.221e-4	4	NC	1_4	NC 400 C4C	1
248		4.4	min	0	3	005	3	051	4	3.781e-6	<u>10</u>	NC NC	1_	488.646	4
249		11	max	.001	1	.003	2	0	10	1.221e-4	4	NC NC	1	NC COO FO1	1
250		12	min	0	3	<u>004</u>	3	<u>041</u>	4	3.781e-6	<u>10</u>	NC NC	1	600.591	4
251		12	max	0	1	.003	2	0	10	1.221e-4	4	NC	1	NC 700,005	1
252		12	min	0	1	004	2	033	10	3.781e-6 1.221e-4	<u>10</u>	NC NC	<u>1</u> 1	760.895 NC	1
253 254		13	max min	0	3	.002 003	3	0 025	10	3.781e-6	4	NC NC	1	1002.526	_
		1.1				003 .002	2	<u>025</u> 0		1.221e-4	<u>10</u>	NC NC		NC	
255 256		14	max	0	3	002 003	3	018	10	3.781e-6	4	NC NC	<u>1</u> 1	1392.546	1
257		15		0	1	.002	2	<u>016</u> 0	10	1.221e-4	<u>10</u> 4	NC NC	1	NC	1
258		10	max	0	3	002	3	012	4	3.781e-6	10	NC NC	1	2085.534	
259		16	min	0	1	002 .001	2	012 0	10	1.221e-4	4	NC NC	1	NC	1
260		10	max		3		3		4	3.781e-6	10	NC NC	1	3508.746	_
200			min	0	J	002	3	007	4	3.7016-0	IU	INC		3300.746	4

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
261		17	max	0	1	0	2	0	10		4	NC	1_	NC	1
262			min	0	3	001	3	003	4	3.781e-6	10	NC	1	7246.031	4
263		18	max	0	1	0	2	0	10	1.221e-4	4	NC	1	NC	1
264			min	0	3	0	3	001	4	3.781e-6	10	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.221e-4	4	NC	1	NC	1
266		10	min	0	1	0	1	0	1	3.781e-6	10	NC	1	NC	1
267	M6	1	max	.021	2	.033	2	0	1	1.901e-3	4	NC	4	NC	1
268	IVIO		min	031	3	047	3	488	4	0	1	1479.241	3	141.472	4
		2							1	_				NC	
269			max	.02	2	.03	2	0	_	1.908e-3	4	NC 4500 400	4		1
270			min	029	3	044	3	<u>449</u>	4	0	1_	1566.106	3	154.039	4
271		3	max	.019	2	.027	2	0	1	1.916e-3	4	NC	4	NC	1
272			min	028	3	042	3	409	4	0	1_	1663.841	3	168.964	4
273		4	max	.018	2	.024	2	0	1	1.924e-3	4	NC	4	NC	1
274			min	026	3	039	3	37	4	0	1	1774.651	3	186.865	4
275		5	max	.017	2	.022	2	0	1	1.932e-3	4	NC	4	NC	1
276			min	024	3	036	3	331	4	0	1	1901.371	3	208.58	4
277		6	max	.015	2	.019	2	0	1	1.939e-3	4	NC	4	NC	1
278			min	022	3	034	3	294	4	0	1	2047.707	3	235.275	4
279		7	max	.014	2	.016	2	0	1	1.947e-3	4	NC	4	NC	1
280			min	021	3	031	3	257	4	0	1	2218.604	3	268.604	4
281		8		.013	2	.014	2	<u>257</u> 0	1	1.955e-3	4	NC	<u> </u>	NC	1
		0	max							_					
282			min	019	3	029	3	222	4	0	1_	2420.802	3_	310.982	4
283		9	max	.012	2	.012	2	0	1	1.962e-3	4	NC	_1_	NC	1
284			min	017	3	026	3	189	4	0	1_	2663.736	3	366.051	4
285		10	max	.011	2	.009	2	0	1	1.97e-3	4	NC	1_	NC	1
286			min	016	3	023	3	157	4	0	1	2961.04	3	439.515	4
287		11	max	.01	2	.008	2	0	1	1.978e-3	4	NC	1	NC	1
288			min	014	3	021	3	128	4	0	1	3333.16	3	540.725	4
289		12	max	.008	2	.006	2	0	1	1.986e-3	4	NC	1	NC	1
290		1-	min	012	3	018	3	101	4	0	1	3812.229	3	685.907	4
291		13	max	.007	2	.004	2	0	1	1.993e-3	4	NC	1	NC	1
292		13	min	01	3	016	3	076	4	0	1	4451.804	3	905.292	4
		11								-			_		4
293		14	max	.006	2	.003	2	0	1	2.001e-3	4	NC 5040.007	1_	NC 4000.7	1
294			min	009	3	013	3	055	4	0	1_	5348.287	3	1260.7	4
295		15	max	.005	2	.002	2	0	1	2.009e-3	4	NC	1_	NC	1
296			min	007	3	01	3	036	4	0	1	6694.486	3	1895.653	4
297		16	max	.004	2	0	2	0	1	2.017e-3	4	NC	_1_	NC	1
298			min	005	3	008	3	022	4	0	1	8940.288	3	3211.116	4
299		17	max	.002	2	0	2	0	1	2.024e-3	4	NC	1	NC	1
300			min	003	3	005	3	01	4	0	1	NC	1	6719.91	4
301		18	max	.001	2	0	2	0	1	2.032e-3	4	NC	1	NC	1
302			min	002	3	003	3	003	4	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	2.04e-3	4	NC	1	NC	1
		13		0	1	0	1	0	1	0	1	NC	1	NC	1
304	N/7	4	min		1		1			_			•		
305	M7	1_	max	0	_	0	_	0	1	0	1	NC	1_	NC NC	1
306			min	0	1	0	1	0	1	-4.241e-4	4	NC	1_	NC	1
307		2	max	.001	3	0	2	.011	4	7.16e-5	_4_	NC	_1_	NC	1
308			min	001	2	004	3	0	1	0	1_	NC	1_	NC	1
309		3	max	.003	3	001	15	.021	4	5.673e-4	4	NC	_1_	NC	1
310			min	003	2	007	3	0	1	0	1	NC	1	NC	1
311		4	max	.004	3	002	15	.031	4	1.063e-3	4	NC	1	NC	1
312			min	004	2	011	3	0	1	0	1	NC	1	NC	1
313		5	max	.006	3	003	15	.04	4	1.559e-3	4	NC	1	NC	1
314			min	005	2	014	3	0	1	0	1	8077.391	3	NC	1
315		6		.005	3	014	15	.049	4	2.054e-3	4	NC	<u> </u>	NC	1
		0	max		2				1		1		3		1
316		7	min	006		016	3	0 057		0	•	6811.808		NC NC	
317		7	max	.008	3	004	15	.057	4	2.55e-3	4	NC	<u>1</u>	NC	_1_

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:____

040	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
318		0	min	008	2	019	3	0	1	0	1_1	6051.562	3	NC NC	1
319 320		8	max	.01 009	3	004 02	15	.065 0	1	3.046e-3 0	<u>4</u> 1	NC 5516.748	4	NC NC	1
321		9	min	.011	3	02 005	15	.072	4	3.541e-3	4	NC	2	NC NC	1
322		9	max	01	2	005 021	3	0	1	0	1	5135.348	4	NC NC	1
323		10	max	.013	3	021 005	15	.079	4	4.037e-3	4	NC	5	NC	1
324		10	min	012	2	022	3	<u>.079</u>	1	0	1	4948.256	4	NC	1
325		11	max	.014	3	022 005	15	.085	4	4.533e-3	4	NC	5	NC	1
326			min	013	2	005 022	3	<u>.085</u>	1	0	1	4927.768	4	NC	1
327		12	max	.015	3	022	15	.092	4	5.028e-3	4	NC	5	NC	1
328		12	min	014	2	021	3	0	1	0	1	5074.68	4	NC	1
329		13	max	.017	3	005	15	.099	4	5.524e-3	4	NC	5	NC	1
330		10	min	015	2	02	3	0	1	0.0240 0	1	5419.937	4	NC	1
331		14	max	.018	3	004	15	.106	4	6.019e-3	4	NC	2	NC	1
332		17	min	017	2	018	3	0	1	0.01000	1	6040.821	4	NC	1
333		15	max	.02	3	004	15	.113	4	6.515e-3	4	NC	1	NC	1
334		1.0	min	018	2	016	3	0	1	0	1	7109.19	4	NC	1
335		16	max	.021	3	003	15	.121	4	7.011e-3	4	NC	1	NC	1
336			min	019	2	014	3	0	1	0	1	9041.706	4	NC	1
337		17	max	.022	3	002	15	.13	4	7.506e-3	4	NC	1	NC	1
338			min	021	2	011	3	0	1	0	1	NC	1	NC	1
339		18	max	.024	3	001	15	.14	4	8.002e-3	4	NC	1	NC	1
340			min	022	2	008	3	0	1	0	1	NC	1	NC	1
341		19	max	.025	3	0	10	.151	4	8.498e-3	4	NC	1	NC	1
342			min	023	2	005	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.007	2	.022	2	0	1	0	1	NC	1	NC	1
344			min	001	3	026	3	151	4	-8.402e-6	5	NC	1	163.973	4
345		2	max	.006	2	.021	2	0	1	0	1	NC	1	NC	1
346			min	001	3	024	3	139	4	-8.402e-6	5	NC	1	178.31	4
347		3	max	.006	2	.02	2	0	1	0	1	NC	1	NC	1
348			min	001	3	023	3	127	4	-8.402e-6	5	NC	1	195.372	4
349		4	max	.005	2	.019	2	0	1	0	1	NC	<u>1</u>	NC	1
350			min	001	3	021	3	115	4	-8.402e-6	5	NC	1_	215.866	4
351		5	max	.005	2	.017	2	0	1	0	_1_	NC	1_	NC	1
352			min	001	3	02	3	103	4	-8.402e-6	5	NC	1_	240.753	4
353		6	max	.005	2	.016	2	0	1	0	1	NC	1_	NC	1
354			min	0	3	018	3	091	4	-8.402e-6	5	NC	1_	271.369	4
355		7	max	.004	2	.015	2	0	1	0	1	NC	1_	NC	1
356			min	0	3	017	3	08	4	-8.402e-6	5	NC	1_	309.605	4
357		8	max	.004	2	.014	2	0	1	0	1_	NC NC	1_	NC 050,000	1
358			min	004	3	016	3	069	4	-8.402e-6	5	NC NC	1_4	358.223	4
359		9	max	.004	3	.012 014	3	0 059	4	0 -8.402e-6	<u>1</u> 5	NC NC	<u>1</u> 1	NC 421.381	4
360		10	min	.003	2	014 .011	2	<u>059 </u>	1	0	<u> </u>	NC NC	1	NC	1
361 362		10	max	_	3	013	3	049	4	-8.402e-6	5	NC NC	1	505.575	
363		11		.003	2	<u>013</u> .01	2	<u>049</u> 0	1	0	1	NC NC	1	NC	1
364		11	max	0	3	011	3	04	4	-8.402e-6	5	NC	1	621.434	4
365		12	max	.003	2	.009	2	04	1	0	1	NC	1	NC	1
366		12	min	0	3	01	3	032	4	-8.402e-6	5	NC	1	787.345	4
367		13	max	.002	2	.007	2	032 0	1	0	<u> </u>	NC NC	1	NC	1
368		13	min	0	3	009	3	024	4	-8.402e-6	5	NC	1	1037.43	4
369		14	max	.002	2	.006	2	0	1	0	1	NC	1	NC	1
370		-	min	0	3	007	3	017	4	-8.402e-6	5	NC	1	1441.104	
371		15	max	.001	2	.005	2	0	1	0	1	NC	1	NC	1
372		10	min	0	3	006	3	011	4	-8.402e-6	5	NC	1	2158.373	
373		16	max	.001	2	.004	2	0	1	0	1	NC	1	NC	1
374		1.0	min	0	3	004	3	007	4	-8.402e-6	5	NC	1	3631.496	_
017			1111111		_	.00-	_	.001		3.1020 0				300 1. 1 00	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

376		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
378	375		17	max		2	.002	2			_		NC	1_	NC	_
378												-		•		
1379			18						-		_					
1880			40									-				•
1881 M10			19			-		-								-
1882		N440	1											_		
1883		MTU	1								1.886e-3					
384			2								4.106e-6					
386									-							
386			2													_
388			3													
388			1													
389			-													
390			5											•		
391																-
392			6													
393			Ť													
395			7											_		
395																
396			8											1		_
397									221			10		1		4
398			9							10				1		1
399				min	006		011		188	4		10		1	367.418	4
Month			10	max	.004	2	0	2	0	10		4	NC	1	NC	1
More More					005	3	01	3	157	4		10	NC	1	441.161	4
12 max	401		11	max	.003		0	2	0	10	1.957e-3	4	NC	1		1
404				min		3	009		127	4	1.713e-6	10		1	542.759	4
405			12						00	10	1.964e-3	4		_1_		1
Mode Min 003 3 008 3 076 4 1.234e-6 10 NC 1 908.748 4 407 14 max .002 2 002 15 0 10 1.979e-3 4 NC 1 NC 1 408 Min 003 3 006 3 055 4 9.948e-7 10 NC 1 1265.573 4 409 15 max .002 2 001 15 0 10 1.986e-3 4 NC 1 NC 1 410 Min 002 3 005 3 036 4 7.555e-7 10 NC 1 1903.118 4 411 16 max .001 2 001 15 0 10 1.993e-3 4 NC 1 NC 1 412 Min 002 3 004 3 021 4 5.162e-7 10 NC 1 3224.153 4 413 17 max 0 2 0 15 0 10 2.e-3 4 NC 1 NC 1 414 Min 001 3 003 4 01 4 2.768e-7 10 NC 1 6748.751 4 415 18 max 0 2 0 15 0 10 2.007e-3 4 NC 1 NC 1 416 Min 0 3 002 4 003 4 3.753e-8 10 NC 1 NC 1 418 Min 0 1 0 1 0 1 2.014e-3 4 NC 1 NC 1 418 Min 0 1 0 1 0 1 -2.018e-7 10 NC 1 NC 1 420 Min 0 1 0 1 0 1 0 1 -2.018e-7 1 NC 1 NC 1 422 Min 0 2 003 4 0 10 -1.239e-5 1 NC 1 NC 1 422 Min 0 2 003 4 0 10 -1.239e-5 1 NC 1 NC 1 424 Min 0 2 006 4 0 2 -2.515e-5 1 NC 1 NC 1 426 Min 001 2 006 4 0 2 -2.515e-5 1 NC 1 NC 1 426 Min 001 2 006 4 0 1 -3.791e-5 1 NC 1 NC 1 426 Min 001 2 009 4 0 1 -3.791e-5 1 NC 1 NC 1 428 Min 002 2 012 4 0 1 -5.067e-5 1 861.662 4 NC 1 429 6 Max .002 3 003 15 .04 4 1.58e-3 4 NC 1 NC 1 428 Min 002 2 012 4 0 1 -5.067e-5 1 861.662 4 NC 1 430 Min 002 2 015 4 0 1 -6.343e-5 1 6965.317 4 NC 1 430 Min 002 2 015 4 0 1 -6.343e-5 1 6965.317 4 NC 1 430 Min 002 2 015 4 0														_		_
407			13													
Most														•		_
15 max			14													- 1
410 min 002 3 005 3 036 4 7.555e-7 10 NC 1 1903.118 4 411 16 max .001 2 001 15 0 10 1.93e-3 4 NC 1 NC 1 412 min 002 3 004 3 021 4 5.162e-7 10 NC 1 3224.153 4 413 17 max 0 2 0 15 0 10 2.e-3 4 NC 1 NC 1 414 min 001 3 003 4 01 4 2.768e-7 10 NC 1 NC 1 415 18 max 0 2 0 15 0 10 2.07e-3 4 NC 1 NC 1 416 min 0 3 002 4			-											•		
411 16 max .001 2 001 15 0 10 1.993e-3 4 NC 1 NC 1 412 min 002 3 004 3 021 4 5.162e-7 10 NC 1 3224.153 4 413 17 max 0 2 0 15 0 10 2.e-3 4 NC 1 NC 1 414 min 001 3 003 4 01 4 2.768e-7 10 NC 1 6748.751 4 415 18 max 0 2 0 15 0 10 2.076e-7 10 NC 1 6748.751 4 416 min 0 3 002 4 003 4 3.753e-8 10 NC 1 NC 1 417 19 max 0 1 0			15													_
412 min 002 3 004 3 021 4 5.162e-7 10 NC 1 3224.153 4 413 17 max 0 2 0 15 0 10 2.e-3 4 NC 1 NC 1 414 min 001 3 003 4 01 4 2.768e-7 10 NC 1 6748.751 4 415 18 max 0 2 0 15 0 10 2.007e-3 4 NC 1 NC 1 416 min 0 3 002 4 003 4 3.753e-8 10 NC 1 NC 1 417 19 max 0 1 0 1 2.014e-3 4 NC 1 NC 1 418 min 0 1 0 1 2.014e-3 4 NC<			40											_		
413 17 max 0 2 0 15 0 10 2.e-3 4 NC 1 NC 1 414 min 001 3 003 4 01 4 2.768e-7 10 NC 1 6748.751 4 415 18 max 0 2 0 15 0 10 2.007e-3 4 NC 1 NC 1 416 min 0 3 002 4 003 4 3.753e-8 10 NC 1 NC 1 417 19 max 0 1 0 1 2.018e-3 4 NC 1 NC 1 418 min 0 1 0 1 2.018e-3 10 NC 1 NC 1 418 min 0 1 0 1 2.018e-7 10 NC 1 NC <td< td=""><td></td><td></td><td>16</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></td<>			16													_
414 min 001 3 003 4 01 4 2.768e-7 10 NC 1 6748.751 4 415 18 max 0 2 0 15 0 10 2.007e-3 4 NC 1 NC 1 416 min 0 3 002 4 003 4 3.753e-8 10 NC 1 NC 1 417 19 max 0 1 0 1 0 1 2.014e-3 4 NC 1 NC 1 418 min 0 1 0 1 0 1 2.014e-3 4 NC 1 NC 1 418 min 0 1 0 1 2.018e-7 10 NC 1 NC 1 419 M11 1 0 1 3.718e-7 1 NC 1 NC			47											1_		
415 18 max 0 2 0 15 0 10 2.007e-3 4 NC 1 NC 1 416 min 0 3 002 4 003 4 3.753e-8 10 NC 1 NC 1 417 19 max 0 1 0 1 0 1 2.014e-3 4 NC 1 NC 1 418 min 0 1 0 1 0 1 -2.018e-7 10 NC 1 NC 1 419 M11 1 max 0 1 0 1 -2.018e-7 10 NC 1 NC 1 419 M11 1 max 0 1 0 1 -2.018e-7 10 NC 1 NC 1 419 min 0 1 0 1 -3.18e-7 1 NC			17											1		
416 min 0 3 002 4 003 4 3.753e-8 10 NC 1 NC 1 417 19 max 0 1 0 1 0 1 2.014e-3 4 NC 1 NC 1 418 min 0 1 0 1 0 1 -2.018e-7 10 NC 1 NC 1 419 M11 1 max 0 1 0 1 3.718e-7 1 NC 1 NC 1 420 min 0 1 0 1 -4.181e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .011 4 8.396e-5 5 NC 1 NC 1 422 min 0 2 003 4 0 10 -1.239e-5 1 NC	414		10	mov							2.7686-7					_
417 19 max 0 1 0 1 0 1 2.014e-3 4 NC 1 NC 1 418 min 0 1 0 1 0 1 -2.018e-7 10 NC 1 NC 1 419 M11 1 max 0 1 0 1 3.718e-7 1 NC 1 NC 1 420 min 0 1 0 1 0 1 -4.181e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .011 4 8.396e-5 5 NC 1 NC 1 422 min 0 2 003 4 0 10 -1.239e-5 1 NC 1 NC 1 423 3 max 0 3001 15 .021 4 5.85e-4 4 NC <td></td> <td></td> <td>10</td> <td></td>			10													
418 min 0 1 0 1 -2.018e-7 10 NC 1 NC 1 419 M11 1 max 0 1 0 1 3.718e-7 1 NC 1 NC 1 420 min 0 1 0 1 0 1 -4.181e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .011 4 8.396e-5 5 NC 1 NC 1 422 min 0 2 003 4 0 10 -1.239e-5 5 NC 1 NC 1 423 3 max 0 3 001 15 .021 4 5.85e-4 4 NC 1 NC 1 424 min 0 2 006 4 0 2 -2.515e-5 1 NC			10													
419 M11 1 max 0 1 0 1 3.718e-7 1 NC 1 NC 1 420 min 0 1 0 1 -4.181e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .011 4 8.396e-5 5 NC 1 NC 1 422 min 0 2 003 4 0 10 -1.239e-5 1 NC 1 NC 1 423 3 max 0 3 001 15 .021 4 5.85e-4 4 NC 1 NC 1 424 min 0 2 006 4 0 2 -2.515e-5 1 NC 1 NC 1 425 4 max .001 3 002 15 .031 4 1.087e-3 <t< td=""><td></td><td></td><td>19</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			19						-							
420 min 0 1 0 1 -4.181e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .011 4 8.396e-5 5 NC 1 NC 1 422 min 0 2 003 4 0 10 -1.239e-5 1 NC 1 NC 1 423 3 max 0 3 001 15 .021 4 5.85e-4 4 NC 1 NC 1 424 min 0 2 006 4 0 2 -2.515e-5 1 NC 1 NC 1 425 4 max .001 3 002 15 .031 4 1.087e-3 4 NC 1 NC 1 426 min 001 2 009 4 0 1 -3.791e-5		M11	1											_		
421 2 max 0 3 0 15 .011 4 8.396e-5 5 NC 1 NC 1 422 min 0 2 003 4 0 10 -1.239e-5 1 NC 1 NC 1 423 3 max 0 3 001 15 .021 4 5.85e-4 4 NC 1 NC 1 424 min 0 2 006 4 0 2 -2.515e-5 1 NC 1 NC 1 425 4 max .001 3 002 15 .031 4 1.087e-3 4 NC 1 NC 1 426 min 001 2 009 4 0 1 -3.791e-5 1 NC 1 NC 1 427 5 max .002 3 003 15		IVIII				_		-		-						
422 min 0 2 003 4 0 10 -1.239e-5 1 NC 1 NC 1 423 3 max 0 3 001 15 .021 4 5.85e-4 4 NC 1 NC 1 424 min 0 2 006 4 0 2 -2.515e-5 1 NC 1 NC 1 425 4 max .001 3 002 15 .031 4 1.087e-3 4 NC 1 NC 1 426 min 001 2 009 4 0 1 -3.791e-5 1 NC 1 NC 1 427 5 max .002 3 003 15 .04 4 1.588e-3 4 NC 1 NC 1 428 min 002 2 012 4 0 <td></td> <td></td> <td>2</td> <td></td> <td>•</td> <td></td> <td></td>			2											•		
423 3 max 0 3 001 15 .021 4 5.85e-4 4 NC 1 NC 1 424 min 0 2 006 4 0 2 -2.515e-5 1 NC 1 NC 1 425 4 max .001 3 002 15 .031 4 1.087e-3 4 NC 1 NC 1 426 min 001 2 009 4 0 1 -3.791e-5 1 NC 1 NC 1 427 5 max .002 3 003 15 .04 4 1.588e-3 4 NC 1 NC 1 428 min 002 2 012 4 0 1 -5.067e-5 1 8611.662 4 NC 1 429 6 max .002 3 004 15 .048 4 2.09e-3 4 NC 1 430 min <td></td> <td>-1 239e-5</td> <td></td> <td></td> <td></td> <td></td> <td></td>											-1 239e-5					
424 min 0 2 006 4 0 2 -2.515e-5 1 NC 1 NC 1 425 4 max .001 3 002 15 .031 4 1.087e-3 4 NC 1 NC 1 426 min 001 2 009 4 0 1 -3.791e-5 1 NC 1 NC 1 427 5 max .002 3 003 15 .04 4 1.588e-3 4 NC 1 NC 1 428 min 002 2 012 4 0 1 -5.067e-5 1 8611.662 4 NC 1 429 6 max .002 3 004 15 .048 4 2.09e-3 4 NC 2 NC 1 430 min 002 2 015 4			3											_		
425 4 max .001 3 002 15 .031 4 1.087e-3 4 NC 1 NC 1 426 min 001 2 009 4 0 1 -3.791e-5 1 NC 1 NC 1 427 5 max .002 3 003 15 .04 4 1.588e-3 4 NC 1 NC 1 428 min 002 2 012 4 0 1 -5.067e-5 1 8611.662 4 NC 1 429 6 max .002 3 004 15 .048 4 2.09e-3 4 NC 2 NC 1 430 min 002 2 015 4 0 1 -6.343e-5 1 6965.317 4 NC 1																_
426 min 001 2 009 4 0 1 -3.791e-5 1 NC 1 NC 1 427 5 max .002 3 003 15 .04 4 1.588e-3 4 NC 1 NC 1 428 min 002 2 012 4 0 1 -5.067e-5 1 8611.662 4 NC 1 429 6 max .002 3 004 15 .048 4 2.09e-3 4 NC 2 NC 1 430 min 002 2 015 4 0 1 -6.343e-5 1 6965.317 4 NC 1			4	1 1										_		
427 5 max .002 3 003 15 .04 4 1.588e-3 4 NC 1 NC 1 428 min 002 2 012 4 0 1 -5.067e-5 1 8611.662 4 NC 1 429 6 max .002 3 004 15 .048 4 2.09e-3 4 NC 2 NC 1 430 min 002 2 015 4 0 1 -6.343e-5 1 6965.317 4 NC 1			Ė													
428 min 002 2 012 4 0 1 -5.067e-5 1 8611.662 4 NC 1 429 6 max .002 3 004 15 .048 4 2.09e-3 4 NC 2 NC 1 430 min 002 2 015 4 0 1 -6.343e-5 1 6965.317 4 NC 1			5											•		
429 6 max .002 3004 15 .048 4 2.09e-3 4 NC 2 NC 1 430 min002 2015 4 0 1 -6.343e-5 1 6965.317 4 NC 1																
430 min002 2015 4 0 1 -6.343e-5 1 6965.317 4 NC 1			6									•				1
431 7 max .003 3 004 15 .056 4 2.591e-3 4 NC 5 NC 1	431		7	max	.003	3	004	15	.056	4	2.591e-3	4	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
432			min	003	2	018	4	0	1	-7.619e-5	1	5974.395	4	NC	1
433		8	max	.003	3	005	15	.064	4	3.093e-3	4	NC	5	NC	1
434			min	003	2	02	4	0	1	-8.895e-5	1_	5363.058	4_	NC	1
435		9	max	.004	3	005	15	.071	4	3.594e-3	_4_	NC	_5_	NC	1
436		40	min	003	2	021	4	0	1	-1.017e-4	1_	5001.511	4_	NC	1
437		10	max	.004	3	005	15	.078	4	4.096e-3	4	NC	5_	NC	1
438		44	min	004	2	022	4	0	1	-1.145e-4	1_	4826.745	4_	NC NC	1
439		11	max	.005	3	005	15	.085	4	4.598e-3	4	NC 4040,000	5	NC	1
440		40	min	004	2	022	4	0	1	-1.272e-4	1_	4813.008	4_	NC NC	1
441		12	max	.005	3	005 021	15	.092 001	4	5.099e-3	<u>4</u> 1	NC 4961.922	<u>5</u> 4	NC NC	1
442		13	min	005	3		15	.098	4	-1.4e-4 5.601e-3	4	NC	_	NC NC	1
444		13	max min	.006 005	2	005 02	4	001	1	-1.527e-4	1	5304.371	<u>5</u>	NC NC	1
445		14		.006	3	02 005	15	.106	4	6.102e-3	4	NC	5	NC NC	1
446		14	max min	005	2	005 018	4	002	1	-1.655e-4	1	5916.523	4	NC NC	1
447		15	max	.003	3	018 004	15	.114	4	6.604e-3	4	NC	3	NC	1
448		10	min	006	2	016	4	002	1	-1.783e-4	1	6967.235	4	NC	1
449		16	max	.007	3	003	15	.122	4	7.106e-3	4	NC	1	NC	1
450		10	min	006	2	013	4	003	1	-1.91e-4	1	8865.491	4	NC	1
451		17	max	.008	3	002	15	.131	4	7.607e-3	4	NC	1	NC	1
452		<u> </u>	min	007	2	009	4	003	1	-2.038e-4	1	NC	1	NC	1
453		18	max	.008	3	002	15	.142	4	8.109e-3	4	NC	1	NC	1
454			min	007	2	005	4	004	1	-2.165e-4	1	NC	1	NC	1
455		19	max	.009	3	0	10	.154	4	8.61e-3	4	NC	1	NC	1
456			min	008	2	002	3	004	1	-2.293e-4	1	NC	1	NC	1
457	M12	1	max	.002	1	.007	2	.004	1	9.437e-5	5	NC	1	NC	2
458			min	0	3	009	3	154	4	-6.437e-5	1	NC	1	161.262	4
459		2	max	.002	1	.007	2	.004	1	9.437e-5	5	NC	1	NC	2
460			min	0	3	009	3	141	4	-6.437e-5	1	NC	1	175.349	4
461		3	max	.002	1	.006	2	.004	1	9.437e-5	5	NC	1_	NC	2
462			min	0	3	008	3	129	4	-6.437e-5	1_	NC	1_	192.114	4
463		4	max	.002	1	.006	2	.003	1	9.437e-5	5	NC	_1_	NC	2
464		_	min	0	3	008	3	117	4	-6.437e-5	_1_	NC	_1_	212.251	4
465		5	max	.002	1	.006	2	.003	1	9.437e-5	_5_	NC	1_	NC	2
466			min	0	3	007	3	<u>105</u>	4	-6.437e-5	_1_	NC	1_	236.707	4
467		6	max	.002	1	.005	2	.003	1	9.437e-5	5_	NC	1_	NC	2
468		-	min	0	3	007	3	093	4	-6.437e-5	1_	NC	1_	266.792	4
469		7	max	.002	1	.005	2	.002	1	9.437e-5	5_	NC	1	NC 004.007	1
470			min	0	3	006	3	081	4	-6.437e-5	_1_	NC NC	1_	304.367	4
471 472		8	max	.001	3	.004	3	.002 07	1	9.437e-5 -6.437e-5	5	NC NC	1	NC 352.144	4
			min			006	2								
473 474		9	max min	.001 0	3	.004 005	3	.002 06	4	9.437e-5 -6.437e-5	<u>5</u> 1	NC NC	<u>1</u> 1	NC 414.208	4
475		10		.001	1	.004	2	.001	1	9.437e-5	5	NC NC	1	NC	1
476		10	max min	0	3	005	3	05	4	-6.437e-5	1	NC	1	496.944	4
477		11	max	.001	1	.003	2	.001	1	9.437e-5	5	NC	1	NC	1
478			min	0	3	004	3	041	4	-6.437e-5	1	NC	1	610.796	4
479		12	max	0	1	.003	2	0	1	9.437e-5	5	NC	1	NC	1
480		12	min	0	3	004	3	032	4	-6.437e-5	1	NC	1	773.831	4
481		13	max	0	1	.002	2	<u>032</u> 0	1	9.437e-5	5	NC	1	NC	1
482		13	min	0	3	003	3	024	4	-6.437e-5	1	NC	1	1019.578	_
483		14	max	0	1	.002	2	0	1	9.437e-5	5	NC	1	NC	1
484		1,7	min	0	3	003	3	018	4	-6.437e-5	1	NC	1	1416.245	
485		15	max	0	1	.002	2	0	1	9.437e-5	5	NC	1	NC	1
486			min	0	3	002	3	012	4	-6.437e-5	1	NC	1	2121.045	4
487		16	max	0	1	.002	2	0	1	9.437e-5	5	NC	1	NC	1
488			min	0	3	002	3	007	4	-6.437e-5	1	NC	1	3568.523	
.00					_	.002	_	1001		0.10100			_	0000.020	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
489		17	max	0	1	0	2	0	1	9.437e-5	5	NC	_1_	NC	1
490			min	0	3	001	3	003	4	-6.437e-5	1_	NC	1_	7369.557	4
491		18	max	0	1	0	2	0	1	9.437e-5	5_	NC	_1_	NC	1
492			min	0	3	0	3	001	4	-6.437e-5	1_	NC	1_	NC	1
493		19	max	0	1	0	1	0	1	9.437e-5	5_	NC	1_	NC	1
494	244		min	0	1	0	1	0	1	-6.437e-5	1	NC	1_	NC	1
495	<u>M1</u>	1	max	.011	3	.239	2	.512	4	4.814e-3	2	NC	1_	NC NC	1
496			min	007	2	074	3	0	10	-1.35e-2	3	NC NC	<u>1</u>	NC NC	1
497		2	max	.011	3	.116	2	.499	4	5.519e-3	4	NC	5	NC NC	1
498		2	min	007	2	036	3	003	4	-6.707e-3	3	1106.999 NC	2	NC NC	1
499		3	max	.011	3	.017	2	.484	1	1.021e-2	4	537.52	5	7953.756	5
500 501		4	min	007 .011	3	013 .095	3	005 .468	4	-8.955e-5 8.742e-3	3	NC	<u>2</u> 5	NC	
502		4	max	007	2	155	2	004	1	-3.486e-3	3	343.483	2	5790.731	5
503		5	max	.011	3	.19	3	.451	4	7.272e-3	4	NC	15	NC	1
504			min	007	2	302	2	003	1	-6.883e-3	3	250.407	2	4688.092	5
505		6	max	.011	3	.291	3	.434	4	1.04e-2	2	9230.887	15	NC	1
506			min	007	2	442	2	001	1	-1.028e-2	3	198.758	2	4000.593	5
507		7	max	.01	3	.386	3	.417	4	1.386e-2	2	7827.024	15	NC	1
508			min	007	2	567	2	0	3	-1.368e-2	3	168.092	2	3494.648	4
509		8	max	.01	3	.465	3	.4	4	1.732e-2	2	6993.398	15	NC	1
510			min	007	2	665	2	0	10	-1.707e-2	3	149.88	2	3090.399	4
511		9	max	.01	3	.517	3	.382	4	1.924e-2	2	6555.682	15	NC	1
512			min	006	2	727	2	0	1	-1.768e-2	3	140.364	2	2792.51	4
513		10	max	.01	3	.536	3	.362	4	2.013e-2	2	6421.431	15	NC	1
514			min	006	2	748	2	0	10	-1.643e-2	3	137.576	2	2674.868	4
515		11	max	.01	3	.524	3	.34	4	2.102e-2	2	6555.215	15	NC	1
516			min	006	2	726	2	0	10	-1.518e-2	3	140.85	2	2678.747	4
517		12	max	.009	3	.481	3	.316	4	1.997e-2	2	6992.282	15	NC	1
518			min	006	2	662	2	0	1	-1.335e-2	3	151.272	2	2794.665	4
519		13	max	.009	3	.411	3	.287	4	1.601e-2	2	7824.863	15	NC	1
520			min	006	2	56	2	0	1	-1.068e-2	3	171.315	2	3255.808	4
521		14	max	.009	3	.321	3	.254	4	1.204e-2	2	9226.978	<u>15</u>	NC	1
522			min	006	2	431	2	0	10	-8.014e-3	3	205.404	2	4348.006	4
523		15	max	.009	3	.218	3	.22	4	8.081e-3	2	NC	<u>15</u>	NC	1
524		40	min	006	2	288	2	0	10	-5.345e-3	3	263.646	2	7017.16	4
525		16	max	.008	3	.111	3	.187	4	7.127e-3	4_	NC 070 407	5	NC	1
526		47	min	006	2	143	2	0	10	-2.675e-3	3	370.437	2	NC NC	1
527		17	max	.008	3	.006	3	.157	4	8.231e-3	4	NC FOC. COA	5_	NC	1
528		10	min	006	3	007	2	122	10	-5.394e-6	3	596.281	2	NC NC	1
529		18	max	.008	2	.109	3	.132 0		4.505e-3		NC	5	NC NC	1
530 531		19	min	006 .008	3	091 .215	2	.112	10	-1.281e-3 8.524e-3	3	1253.473 NC	<u>2</u> 1	NC NC	1
532		19	max	006	2	182	3	0	1	-2.627e-3	3	NC NC	1	NC NC	1
533	M5	1	max	.032	3	.321	2	.512	4	0	<u> </u>	NC	1	NC	1
534	IVIO		min	022	2	.006	15	0	1	-1.457e-5	4	NC	1	NC	1
535		2	max	.032	3	.156	2	.502	4	5.217e-3	4	NC	3	NC	1
536			min	023	2	.003	15	0	1	0	1	830.737	2	NC	1
537		3	max	.032	3	.047	3	.488	4	1.032e-2	4	NC	5	NC	1
538			min	023	2	036	2	0	1	0	1	383.815	2	6558.59	4
539		4	max	.023	3	.164	3	.472	4	8.41e-3	4	NC	15	NC	1
540			min	022	2	274	2	0	1	0.410.0	1	229.677	2	5100.846	4
541		5	max	.031	3	.34	3	.454	4	6.497e-3	4	8143.704	15	NC	1
542		Ť	min	022	2	539	2	0	1	0.43700	1	158.666		4391.863	_
543		6	max	.03	3	.545	3	.435	4	4.585e-3	4	6212.985	15	NC	1
544		Ĭ	min	021	2	806	2	0	1	0	1	120.962	2	3935.674	_
545		7	max	.029	3	.748	3	.417	4	2.673e-3	4	5108.757	15	NC	1
									<u> </u>	,	_				

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 23, 2015

Checked By:__

- 10	Member	Sec		x [in]	LC	y [in]	LC	<u>z [in]</u>		_		(n) L/y Ratio L		
546			min	021	2	<u>-1.051</u>	2	0	1	0	1_	99.368 2		
547		8	max	.029	3	.921	3	399	4	7.605e-4	4	4471.477 1		1
548		_	min	021	2	-1.248	2	0	1	0	1_	86.892 2		4
549		9	max	.028	3	1.032	3	.383	4	0	1	4146.01 1		1
550 551		10	min	02 .027	3	<u>-1.374</u> 1.073	3	0 .362	4	-8.754e-6	<u>5</u> 1	80.516 2 4048.115 1		1
552		10	max	02 <i>1</i>	2	-1.417	2	30 <u>2</u>	1	-8.396e-6	5	78.656 2		
553		11	max	.027	3	1.045	3	.339	4	0.3306-0	1	4146.448 1		1
554			min	019	2	-1.375	2	0	1	-8.038e-6	5	80.831 2		
555		12	max	.026	3	.953	3	.317	4	5.826e-4	4	4472.488 1		1
556		12	min	019	2	-1.244	2	0	1	0	1	87.962 2		
557		13	max	.025	3	.804	3	.288	4	2.048e-3	4	5110.724 1		1
558			min	019	2	-1.035	2	0	1	0	1	102.241 2		4
559		14	max	.025	3	.617	3	.254	4	3.514e-3	4	6216.688 1	5 NC	1
560			min	018	2	778	2	0	1	0	1	127.671 2	4364.478	4
561		15	max	.024	3	.411	3	.218	4	4.979e-3	4	8150.862 1		1
562			min	018	2	503	2	0	1	0	1_	173.925		4
563		16	max	.023	3	.204	3	.183	4	6.445e-3	4	NC 1		1
564			min	018	2	239	2	0	1	0	1_	266.116 2		1
565		17	max	.023	3	.015	3	.152	4	7.911e-3	4_	NC 5		1
566		10	min	017	2	<u>019</u>	2	0	1	0	1_	479.982 2		1
567		18	max	.023	3	.136	2	.128	4	4.e-3	4	NC 5		1
568		40	min	017	2	<u>141</u>	3	0	1	0	1_	1107.374 2		1
569		19	max	.023	3	.253	2	.112	4	7 201 2 6	1_1	NC 1		1
570 571	M9	1	min	<u>017</u> .011	3	<u>277</u> .239	2	0 .512	4	-7.891e-6 1.35e-2	<u>4</u> 3	NC 1	110	1
572	IVIÐ		max	007	2	074	3	0	1	-4.814e-3	2	NC 1		1
573		2	max	.011	3	.116	2	.501	4	6.707e-3	3	NC 5		1
574			min	007	2	036	3	0	10	-2.365e-3		1106.999		1
575		3	max	.011	3	.017	3	.486	4	1.027e-2	4	NC 5		1
576			min	007	2	013	2	0	10	-2.881e-5	10	537.52		4
577		4	max	.011	3	.095	3	.47	4	8.157e-3	5	NC 5		1
578			min	007	2	155	2	0	10	-3.48e-3	2	343.483 2		4
579		5	max	.011	3	.19	3	.453	4	6.883e-3	3	NC 1	5 NC	1
580			min	007	2	302	2	0	10	-6.939e-3	2	250.407 2		4
581		6	max	.011	3	.291	3	.435	4	1.028e-2	3	9187.418 1		1
582			min	007	2	442	2	0	10	-1.04e-2	2	198.758 2		4
583		7	max	.01	3	.386	3	.417	4	1.368e-2	3_	7790.997 1		1
584			min	007	2	567	2	0	1	-1.386e-2	2	168.092 2		
585		8	max	.01	3	.465	3	4	4	1.707e-2	3	6961.702 1	5 NC	1
586			min	007	2	665	2	0		-1.732e-2			3107.298	
587 588		9	max	.01 006	2	.517 727	2	.383	10	1.768e-2 -1.924e-2	2		5 NC 2 2785.482	1
589		10	max	<u>006</u> .01	3	.536	3	0 .362	4	1.643e-2	3	6392.531 1		1
590		10	min	006	2	748	2	<u></u> 0	1	-2.013e-2	2	137.576 2		4
591		11	max	.01	3	.524	3	.34	4	1.518e-2	3		5 NC	1
592			min	006	2	726	2	0	1	-2.102e-2	2	140.85		4
593		12	max	.009	3	.481	3	.316	4	1.335e-2	3	6960.426 1		1
594		<u> </u>	min	006	2	662	2	0	10	-1.997e-2	2	151.272		4
595		13	max	.009	3	.411	3	.287	4	1.068e-2	3	7788.878 1		1
596			min	006	2	56	2	0	10	-1.601e-2	2	171.315		4
597		14	max	.009	3	.321	3	.253	4	8.014e-3	3	9184.007 1	5 NC	1
598			min	006	2	431	2	001	1	-1.204e-2	2	205.404 2	4422.339	5
599		15	max	.009	3	.218	3	.219	4	5.345e-3	3	NC 1		1
600			min	006	2	288	2	003	1	-8.081e-3	2	263.646		5
601		16	max	.008	3	.111	3	.185	4	6.453e-3	5_	NC 5		1
602			min	006	2	143	2	004	1	-4.119e-3	2	370.437 2	NC NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 23, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	o LC
603		17	max	.008	3	.006	3	.154	4	8.066e-3	4	NC	5	NC	1
604			min	006	2	007	2	004	1	-3.115e-4	1	596.281	2	NC	1
605		18	max	.008	3	.109	2	.13	4	3.987e-3	5	NC	5	NC	1
606			min	006	2	091	3	003	1	-4.268e-3	2	1253.473	2	NC	1
607		19	max	.008	3	.215	2	.112	4	2.627e-3	3	NC	1	NC	1
608			min	006	2	182	3	0	10	-8.524e-3	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{ m ed,Na}$ $\Psi_{ m p,Na}$

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ eg \Psi_{h,V} V_{by} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)								
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)				
4.00	0.50	1.00	2500	7.87				

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	2/(NVC) / NVCO) I ed, v I C, v I II, v v by (OCO. D.4.1, D.O.Z. NO) & Eq. D Z 1)						
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:			_		

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	1/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

1.Project information

Customer company: Customer contact name: Customer e-mail:

Comment:

Project description:

Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 32-	40 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 32	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2732.0	1650.0	0.0	1650.0
2	2732.0	1650.0	0.0	1650.0
Sum	5464.0	3300.0	0.0	3300.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5464 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5} \text{ (Eq. D-7)}$

Kc	λ	ť _c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	I,N $\Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	$f_{ extit{short-term}}$	K _{sat}	τ _{k,cr} (psi)	
1035	1.00	1.00	1035	_
$N_{a0} = \tau_{k,cr} \pi d_{a}$	hef (Eq. D-16f)			
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	_
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ	$Y_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N$	ao (Sec. D.4.1 & Eq.	D-16b)

A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)	
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093	

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 32-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc/Avco) Yec, v Ye	$_{ed,V} arPsi_{c,V} arPsi_{h,V} arV_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
576.00	648.00	1.000	0.928	1.000	1.000	15593	0.70	9001

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.66	18939		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
737.64	839.68	1.000	1.000	1.000	18939	0.70	23292

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\textit{Cpg}} = \phi \min |\textit{KcpNag}\;;\; \textit{KcpNcbg}| = \phi \min |\textit{Kcp}(\textit{A}_\textit{Na} / \textit{A}_\textit{Na0}) \, \Psi_{\textit{ed},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, N_{\textit{a0}}\;;\; \textit{Kcp}(\textit{A}_\textit{Nc} / \textit{A}_\textit{Nco}) \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, N_{\textit{b}}|\; (\text{Eq. D-30b})$

, ,,,	1 1 3 7 1		(3,	r, , , , , , , ,	, ,		
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2732	6071	0.45	Pass
Concrete breakout	5464	10231	0.53	Pass
Adhesive	5464	8093	0.68	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1650	3156	0.52	Pass (Governs)
T Concrete breakout x+	3300	9001	0.37	Pass

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

Concrete breako	ut y- 1650	23292	2 0.0	07	Pass	
Pryout	3300	20601	0.1	16	Pass	
					-	
Interaction check	$N_{ua}/\phi N_n$	$V_{ua}/\phi V_n$	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.68	0.52	119.8 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.