Suppose functions F and G have limits toward C and suppose $A, b \in \mathbb{R}$ and C is a positive integer. Then

Rule #0 (constant) $\lim_{x\to c}(a)=a$.

Rule #1 (linearity) $\lim_{x \to c} (aF(x) + bG(x)) = a \lim_{x \to c} (F(x)) + b \lim_{x \to c} (G(x)).$

Rule #2 (product) $\lim_{x \to c} (F(x)G(x)) = \lim_{x \to c} (F(x)) \times \lim_{x \to c} (G(x)).$

Rule #3 (quotient) Provided $\lim_{x\to c}(G(x))\neq 0$, we have $\lim_{x\to c}\frac{F(x)}{G(x)}=\frac{\lim_{x\to c}(F(x))}{\lim_{x\to c}(G(x))}$.

Rule #4 (power) $\lim_{x \to c} F(x)^n = \left(\lim_{x \to c} F(x)\right)^n$.

Rule #5 (root) Provided $\left(\lim_{x\to c} F(x)\right)^{1/n}$ is real, $\lim_{x\to c} F(x)^{1/n} = \left(\lim_{x\to c} F(x)\right)^{1/n}$.

Rule #6 (polynomial) Provided *F* is a polynomial, we have $\lim_{x\to c} F(x) = F(c)$

Rule #7 (rational) Provided *F* is a rational function and $c \in \text{dom}(F)$, we have $\lim_{x \to c} F(x) = F(c)$.