Detecting, Mapping and Verifying Signage with Computer Vision and Machine Learning

The Problem

There exists no system available to ensure reliable inspection, documentation, purchasing and remediation of a train vehicle's signs.

T

The Proposed Solution

AutoSign

What?

Digitise the existing, manual approach, and introduce machine learning and computer vision techniques to provide automation.

How?

AutoSign: A proof-of-concept system made up of: a **mobile application** to capture footage of the train, a **processing server** to detect missing + damaged signs, and a **cloud server** to host the data.

Project Goals

Develop the system

Demonstrate real world feasibility

Evaluate performance

Consider user perception

System Overview

. Mobile Application

- Implemented using Flutter
- Supports:
- Inspection of vehicle, and viewing results of inspection
- Purchasing replacement signs
- Logging remediation of signs

Train footage uploaded

Train footage downloaded

Cloud Server

- Implemented using Firebase
- Stores:
- System data via Firestore
- 3ysterri data via Firestore

Report downloaded Report uploaded

Processing Server

- Detects presence of signs using YOLOv7
 model [1] trained on custom datasets
- Classifies damage using BEiT classification model [2] trained on custom dataset
- Implements custom algorithm for video processing

Results

Custom ML models show high levels of accuracy

Application provides all required functionality

System components successfully integrated

System able to detect missing and damaged signs in the real-world

Potential users reacted positively

V

Conclusions

Successfully developed system

Demonstrated feasibility

Laid foundations for future development

X F

Future Work

- Deployment workflow
- Improve processor
- Improve applicationAdditional data collection

- More field testing
- More user testing

Group 52: Charles Powell | Benjamin Sanati | Isaac Dunford | Killian Clarke | Gerasim Tsonev

Supervisor: Prof. Jonathan Hare **Client**: Adam Wellings, Stewart Signs

[2] Hangbo Bao, Li Dong, and Furu Wei. "Beit: Bert pre-training of image transformers". In: arXiv preprint arXiv:2106.08254 (2021).