1. Create an Product class.

A product has

• A name

• A price

• A quantity

This class "looks" like

Product
name
price
quantity

Create a constructor method that initializes all instance variables. You should write getters and setters for each of the instance variables. Instantiate an instance of the class. You may pass any initial values of your choosing.

2. Create a Book class.

A Book has

- title
- author
- page_count

This class "looks" like

Book
1.1
title
author
author
nogo gount
page_count

Create a constructor method that initializes all instance variables. You should write getters and setters for each of the instance variables. Instantiate an instance of the class. You may pass any initial values of your choosing.

3. Create a Movie class.

A Movie has

- \bullet title
- director
- runtime_minutes

This class "looks" like

Movie
title
director
runtime_minutes

Create a constructor method that initializes all instance variables. You should write getters and setters for each of the instance variables. Instantiate an instance of the class. You may pass any initial values of your choosing.

4. Create a Song class.

A Song has

- title
- artist
- duration_seconds

This class "looks" like

Song
title
artist
duration_seconds

Create a constructor method that initializes all instance variables. You should write getters and setters for each of the instance variables. Instantiate an instance of the class. You may pass any initial values of your choosing.

5. Create a Vehicle class.

A Vehicle has

- make
- model
- year

A Vehicle can do

• print_vehicle_type

This class "looks" like

Vehicle
make
model
year
print_vehicle_type

Create a constructor method that initializes all instance variables. You should write getters and setters for each of the instance variables.

Instantiate an instance of the class. You may pass any initial values of your choosing.

Write a method called *print_vehicle_type*, which prints in the form "[year] [make] [model]" example. "2021 Toyota Camry".

6. Create a Course class.

A Course has

- \bullet course_code
- course_name
- instructor

An Course can do

• print_info

This class "looks" like

Course
course_code
course_name
instructor
print_info

Create a constructor method that initializes all instance variables.

You should write getters and setters for each of the instance variables.

Instantiate an instance of the class. You may pass any initial values of your choosing.

Write a method called *print_info*, which prints in the form

"[course_code]: [course_name] taught by [instructor]"

example. "CIS101: Introduction to programming taught by Matt".

7. Create a *Point* class.

A Point has

- x_coordinate
- y_coordinate

A Point can do

• print_info

This class "looks" like

Course
$x_{coordinate}$
$y_coordinate$
print_info

Create a constructor method that initializes all instance variables.

You should write getters and setters for each of the instance variables.

Instantiate an instance of the class. You may pass any initial values of your choosing.

Write a method called $print_info$, which prints in the form

"(x,y)=([x_coordinate], [y_coordinate])"

example. "(x,y)=(4,5)".

- 8. Create an Employee class. An Employee has
 - A name
 - A title
 - A salary

An Employee can do

- a greeting
- request raise

This class "looks" like

Employee
name
title
salary
greeting
$request_raise$

You should write getters and setters for each of the instance variables.

A greeting should be of the form: <u>Hello. My name is name. I'm the title.</u> eg. Hello. My name is Eugene. I'm the CEO.

A raise request should request a 6% raise.

It should be of the form: I'm currently making *salary*. I'd like new salary of *new amount*. eg. I'm currently making \$100. I'd like new salary of \$106.

- 9. Create a Student class. A Student has
 - A name
 - A major
 - A GPA

A Student can do

- introduce themselves
- study for exam

This class "looks" like

Ę	Student
r	name
r	najor
(GPA
i	ntroduce
s	tudy_for_exam

You should write getters and setters for each of the instance variables.

An introduction should be of the form: Hi, I'm name. I'm studying major. eg. Hi. I'm Maria. I'm studying Computer Science.

Studying for an exam should increase the GPA by $\underline{0.2}$ points. (up to a maximum of 4.0) It should be of the form:

I'm hitting the books! My GPA increased from *old GPA* to *new GPA*. eg. I'm hitting the books! My GPA increased from 3.5 to 3.7.

10. Create a Vector class.

A Vector has

- x_direction
- y_direction

A Vector can do

• get_magnitude

This class "looks" like

Vector
x_direction
y_direction
get_magnitude

Create a constructor method that initializes all instance variables. You should write getters and setters for each of the instance variables. Instantiate an instance of the class. You may pass any initial values of your choosing.

Hint: magnitude is calculated as $\sqrt{x^2 + y^2}$.

11. Create a ColorRGB class.

A ColorRGB has

- \bullet red
- green
- blue

A ColorRGB can do

• to_grayscale

This class "looks" like

ColorRGB
red
green
blue
to_grayscale

Create a constructor method that initializes all instance variables. You should write getters and setters for each of the instance variables. Instantiate an instance of the class. You may pass any initial values of your choosing.

The to_grayscale() method should return the grayscale value calculated as:

$$0.3 * red + 0.59 * green + 0.11 * blue$$

That is, it will just return a number (a float).

- 12. Create a TemperatureInCelsius class.
 - A Temperature In Celsius has
 - temp_value

A TemperatureInCelsius can do

• to_fahrenheit

This class "looks" like

TemperatureInCelsius
temp_value
$to_fahrenheit$

Clarification: temp_value is the temperature in Celsius.

Create a constructor method that initializes all instance variables.

You should write getters and setters for each of the instance variables.

Instantiate an instance of the class. You may pass any initial values of your choosing.

The to_fahrenheit() method should return the temperature in Fahrenheit calculated as: Fahrenheit = (Celsius * 9/5) + 32.

13. Create a Rectangle class.

A Rectangle has

- \bullet width
- height

A Rectangle can do

• calculate_area

This class "looks" like

Rectangle
width
height
calculate_area

Create a constructor method that initializes all instance variables. You should write getters and setters for each of the instance variables. Instantiate an instance of the class. You may pass any initial values of your choosing. The calculate_area() method should return the area calculated as: width * height.

14. Create a Circle class.

A Circle has

• radius

A Circle can do

• calculate_circumference

This class "looks" like

Circle
radius
calculate_circumference

Create a constructor method that initializes all instance variables.

You should write getters and setters for each of the instance variables.

Instantiate an instance of the class. You may pass any initial values of your choosing.

The calculate_circumference() method should return the circumference calculated as: $2 \cdot \pi$ radius.