Fundamental Theorem of Calculus MATH 1441, BCIT

Technical Mathematics for Food Technology

November 28, 2017

Antiderivatives

Remember these two problems that we wanted to solve when we started with calculus:

We have solved the problem on the left. Now it is time to solve the problem on the right. For areas under a curve, we need antiderivatives. The antiderivative F(x) of a function f(x) is the function for which F'(x) = f(x).

Differential Equations

Differential equations are like regular equations except that the unknown is a function, not a variable. Remember that

$$dy = f'(x) dx$$
, therefore $f'(x) = \frac{dy}{dx}$ (1)

Now consider this differential equation,

$$\frac{dy}{dx} = f(x) \tag{2}$$

This is an ODE, an ordinary differential equation.

Differential Equations

$$\frac{dy}{dx} = f(x) \tag{3}$$

This is an ODE, an ordinary differential equation. Any function

$$f(x) = e^{x} + C, C \in \mathbb{R}$$
 (4)

would solve it. Often, an initial condition is provided to make the solution unique. Therefore, the solution to the differential equation

$$\frac{dy}{dx} = f(x) \tag{5}$$

with initial condition f(0) = 1 is $f(x) = e^x$.

Differential Equations

Antiderivatives are solutions to special differential equations. For example, the antiderivative of f(x) = 6x is the solution to the differential equation

$$\frac{dy}{dx} = 6x\tag{6}$$

With an initial condition, the solution to this equation may be unique.

Rules for Finding Antiderivatives

Antiderivatives are not unique. If F(x) is an antiderivative for f(x), then F(x)+c is an antiderivative as well, where c is any real number. In the following, we will use the notation F(x) for one arbitrary antiderivative. There are many rules for finding antiderivatives called *table of integrals*. Here are a few.

Rule 1

If you find a function g(x) for which g'(x) = f(x), then F(x) = g(x) + c.

Exercise: show that the function g(x) is an antiderivative of $f(x) = (x^3 + 3)^6 (3x^2)$.

$$g(x) = \frac{(x^3 + 3)^7}{7} \tag{7}$$

More Rules for Finding Antiderivatives I

Rule 2

If F(x) is an antiderivative for f(x), then aF(x) is an antiderivative for af(x), where a is a constant.

More Rules for Finding Antiderivatives II

Rule 3

If $F_1(x)$ is an antiderivative for $f_1(x)$ and $F_2(x)$ is an antiderivative for $f_2(x)$, then $F_1(x) + F_2(x)$ is an antiderivative for $f_1(x) + f_2(x)$.

More Rules for Finding Antiderivatives III

Rule 4

If $f(x) = x^n$ and $n \neq -1$, then $F(x) = \frac{x^{n+1}}{n+1}$ is an antiderivative of f(x).

Exercise: Find an antiderivative of f(x) = 1/x. The answer is not quite what you would expect (but very close).

Summary

Here is a table of antiderivatives, where F is an antiderivative of f and G is an antiderivative of g.

cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
x^n with $n \neq -1$	$\frac{x^{n+1}}{n+1}$
$\begin{bmatrix} \frac{1}{X} \\ e^X \end{bmatrix}$	$\ln x $
e ^x	e ^x
cos x	sin x
sin x	$-\cos x$
sec ² x	tan x
sec x tan x	sec x
$\frac{1}{\sqrt{1-x^2}}$	arcsin x
$\frac{1}{1+x^2}$	arctan x

Integration

The process of finding a derivative is called differentiation. The process of finding an antiderivative is called integration. Instead of the symbol 'prime' (f'(x)) for differentiation we use the sign \int for integration. The symbol \int stands for the word 'sum' because we take the limit of a sum of areas in order to find the area under a curve.

$$\int f(x) dx = F(x) + c \tag{8}$$

The differential helps to identify which letter is the variable for the function (there may be other letters that are just constants), for example

$$\int ax^2 dx = \frac{ax^3}{3} + c \tag{9}$$

$$\int ax^2 \, da = \frac{a^2 x^2}{2} + c \tag{10}$$

Integration Exercises I

Find the following indefinite integrals (another expression for antiderivatives).

$$\int 6 dx \tag{11}$$

$$\int -2 dx \tag{12}$$

$$\int 8x^4 dx \tag{13}$$

$$\int \pi x^3 dx \tag{14}$$

$$\int (x^3 + 7 - 2x^2) \ dx \tag{15}$$

$$\int \sqrt{x} \, dx \tag{16}$$

$$\int \frac{7}{2} x^{\frac{5}{2}} dx \tag{17}$$

Integration Exercises II

Find the following indefinite integrals (another expression for antiderivatives).

$$\int 9\sqrt[5]{2x} \, dx \tag{18}$$

$$\int \frac{3}{x^3} \, dx \tag{19}$$

$$\int \frac{7}{\sqrt[3]{x}} \, dx \tag{20}$$

$$\int \frac{7}{\sqrt[3]{x}} dx \tag{20}$$

$$\int \sqrt{x} (3x - 2) dx \tag{21}$$

$$\int (x+1)^2 dx \tag{22}$$

$$\int \frac{4x^2 - 2\sqrt{x}}{x} \, dx \tag{23}$$

$$\int \frac{x^3 + 2x^2 - 3x - 6}{x + 2} \, dx \tag{24}$$

Definite Integrals I

Evaluating an integral at a point doesn't give us anything particularly meaningful.

$$\int x^2 \, dx = \frac{x^3}{3} + c \tag{25}$$

$$\int x^2 \, dx \bigg|_{x=6} = \frac{6^3}{3} + c = 72 + c \tag{26}$$

However, if we subtract one evaluated integral from another, we get a number.

$$\int x^2 dx \bigg|_{x=6} - \int x^2 dx \bigg|_{x=3} = \frac{6^3}{3} + c - \left(\frac{3^3}{3} + c\right) = 72 - 9 = 63$$

Definite Integrals II

We call this difference between evaluated integrals definite integral. The notation is

$$\int_{3}^{6} x^{2} dx = \int x^{2} dx \bigg|_{x=6} - \int x^{2} dx \bigg|_{x=3} = 63$$

Definite Integrals Exercises

Evaluate each definite integral.

$$\int_{1}^{2} x \, dx \qquad \qquad \int_{-2}^{2} x^{2} \, dx \tag{27}$$

$$\int_{1}^{3} 7x^{2} dx \qquad \qquad \int_{-2}^{2} 3s^{4} ds \qquad (28)$$

$$\int_0^4 (x^2 + 2x) \, dx \qquad \qquad \int_1^e \frac{1}{x} \, dx \tag{29}$$

$$\int_{5}^{10} \sqrt{x} \, dx$$

$$\int_{-1}^{2} (3u - 2)(u + 1) du$$

$$\int_{1}^{4} \frac{2+x^2}{\sqrt{x}} dx \tag{30}$$

$$\int_{\frac{\pi}{6}}^{\pi} \sin \vartheta \, d\vartheta \tag{31}$$

Fundamental Theorem of Calculus I

It turns out that the definite integral $\int_a^b f(x) dx$ gives you the area under the curve y = f(x) between a and b. This area can be approximated by a series of rectangles.

Fundamental Theorem of Calculus II

Let's assume our function is positive between a and b, so $f(x) \ge 0$ for $a \le x \le b$. Let F be an antiderivative of f. Here is the mean value theorem, a theorem we need to assume without proof: between two arguments r and s we can always find a point q such that the slope of the secant line between F(r) and F(s) equals the slope of the tangent line at F(q), so

$$F'(q) = \frac{F(s) - F(r)}{s - r}$$
(MVT)

Fundamental Theorem of Calculus III

Now divide the interval from a to b (the notation for this interval is [a,b]) into n intervals that are of equal length. For this, we need intermediate points $a=x_0,x_1,x_2,\ldots,x_{n-1},x_n=b$. The approximate area under the curve between a and b is

$$A \approx \frac{x_1 - a}{n} f(x_1^*) + \frac{x_2 - x_1}{n} f(x_2^*) + \ldots + \frac{b - x_{n-1}}{n} f(x_n^*)$$
 (32)

where x_1^* is some point in the first interval and so on. Notice that the fractions all equal (b-a)/n because the intervals are all of equal length. Therefore

$$A = \lim_{n \to \infty} \frac{b - a}{n} \left(f(x_1^*) + \ldots + f(x_n^*) \right)$$
 (33)

Fundamental Theorem of Calculus IV

Now choose x_1^* such that

$$f(x_1^*) = F'(x_1^*) = \frac{F(x_1) - F(x_0)}{x_1 - x_0}$$
(34)

and so on with $x_2^*, x_3^*, \dots, x_n^*$. Then

$$A = \lim_{n \to \infty} \frac{b - a}{n} \left(\frac{F(x_1) - F(x_0)}{x_1 - x_0} + \dots + \frac{F(x_n) - F(x_{n-1})}{x_n - x_{n-1}} \right)$$
(35)

Note that $x_i - x_{i-1}$ (where i is any number between 1 and n) is again just the length of the intervals (b-a)/n. After appropriate simplification,

$$A = F(b) - F(a) = \int_{a}^{b} f(x) dx$$
 (36)

Fundamental Theorem of Calculus V

Here are two different ways to express the Fundamental Theorem of Calculus.

The Fundamental Theorem of Calculus

Suppose f is continuous on [a, b].

- **1** If $g(x) = \int_a^x f(t) dt$, then g'(x) = f(x).
- ② $\int_a^b f(x) dx = F(b) F(a)$, where F is any antiderivative of f, that is, F' = f.

Note that we need not require $a \le b$. If the limits of integration are unintuitively placed, you can rectify the situation by using

$$\int_{b}^{a} f(x) dx = F(a) - F(b) = -(F(b) - F(a)) = -\int_{a}^{b} f(x) dx$$

Fundamental Theorem of Calculus Exercises

Exercise 1: Find the area under the parabola

$$y = x^2 \tag{37}$$

from 0 to 1.

Negative Area

Consider the following problem.

Find the area under the curve $y = x^2 - 4$ between x = 1 and x = 3.

Negative Area

To solve this problem, find the *x*-intercept and treat the positive and negative area separately.

$$|A_1| + |A_2| = -\int_1^2 (x^2 - 4) dx + \int_1^2 (x^2 - 4) dx = -\left(-\frac{5}{3}\right) + \frac{7}{3} = 4$$

Integration by Substitution

We know how to integrate the following functions

$$f_1(y) = y^3 \text{ and } f_2(x) = 2x + 5$$
 (38)

but how do you integrate $f = f_1 \circ f_2$, so

$$f(x) = (2x+5)^3 (39)$$

We use the method of substitution. Write

$$y = 2x + 5 \tag{40}$$

The important part here is that the substitution changes the differential and the limits.

$$dy = 2dx$$
 and therefore $dx = \frac{1}{2}dy$ (41)

Therefore,

$$\int_{3}^{b} (2x+5)^{3} dx = \int_{2a+5}^{2b+5} y^{3} \cdot \frac{1}{2} dy \tag{42}$$

Integration by Substitution Example

Let's evaluate $\int_0^4 x\sqrt{9+x^2}dx$. We will do this two ways. For method 1, we find the indefinite integral of $x\sqrt{9+x^2}$ and then use the limits a=0, b=4 to evaluate the definite integral. For method 2, we proceed as on the previous slide and change both differential and limits for the definite interval. Here is method 1. Substitute $y=9+x^2$. Then, dy=2xdx, so

$$\frac{1}{2}dy = xdx \tag{43}$$

Notice that we need the factor x on the right-hand side in order to make this integration work.

$$\int x\sqrt{9+x^2}dx = \frac{1}{2}\int \sqrt{y}dy = \frac{1}{2}\cdot \frac{y^{\frac{3}{2}}}{\frac{3}{2}}$$
 (44)

Integration by Substitution Example

Now reverse the substitution

$$\frac{1}{2} \cdot \frac{y^{\frac{3}{2}}}{\frac{3}{2}} = \frac{1}{3} (9 + x^2)^{\frac{3}{2}} \tag{45}$$

and evaluate the definite integral

$$\int_{0}^{4} x \sqrt{9 + x^{2}} dx = \frac{1}{3} (9 + x^{2})^{\frac{3}{2}} \Big|_{x=4} - \frac{1}{3} (9 + x^{2})^{\frac{3}{2}} \Big|_{x=0} = \frac{98}{3}$$
 (46)

Integration by Substitution Example

Here is method 2.

$$\int_{0}^{4} x \sqrt{9 + x^{2}} dx = \frac{1}{2} \int_{9}^{25} \sqrt{y} dy =$$

$$\frac{1}{3} \left(y^{\frac{3}{2}} \Big|_{y=25} - y^{\frac{3}{2}} \Big|_{y=9} \right) = \frac{1}{3} (125 - 27) = \frac{98}{3}$$
(47)

Exercises

Exercise 2: Evaluate the following definite integrals.

$$\int_{0}^{2} x(x^{2} - 1)^{3} dx \qquad \int_{0}^{1} x^{2} (2x^{3} - 1)^{4} dx \qquad (48)$$

$$\int_{0}^{1} x\sqrt{5x^{2} + 4} dx \qquad \int_{1}^{3} x\sqrt{3x^{2} - 2} dx \qquad (49)$$

$$\int_{0}^{2} x^{2} (x^{3} + 1)^{\frac{3}{2}} dx \qquad \int_{1}^{5} (2x - 1)^{\frac{5}{2}} dx \qquad (50)$$

$$\int_{0}^{1} \frac{1}{\sqrt{2x + 1}} dx \qquad \int_{0}^{2} \frac{x}{\sqrt{x^{2} + 5}} dx \qquad (51)$$

Exercises

Exercise 3: Evaluate the following definite integrals.

$$\int_{1}^{2} (2x+4)(x^{2}+4x-8)^{3} dx \qquad \qquad \int_{-1}^{1} x^{2}(x^{3}+1)^{4} dx \quad (52)$$

$$\int_{0}^{2} x e^{x^{2}} dx \qquad \qquad \int_{0}^{1} e^{-1} dx \qquad (53)$$

$$\int_{3}^{6} \frac{2}{x-2} dx \qquad \qquad \int_{0}^{1} \frac{e^{x}}{1+e^{x}} dx \qquad (54)$$

$$\int_{0}^{1} \frac{x}{1+2x^{2}} dx \qquad \qquad \int_{1}^{2} \frac{\ln x}{x} dx \qquad (55)$$

Negative Area Exercise

Exercise 4: Find the area between the curve $y = 2(x-5)^2 - 2$ and the x-axis between x = 3 and x = 7.

Area Between Curves

Exercise 5: Find the area bounded by the curves f(x) and g(x).

To find this area, solve for the two solutions x_1, x_2 of

$$f(x) = g(x) \tag{56}$$

(you may have to use Newton's method) and then integrate

$$A = \int_{x_1}^{x_2} (g(x) - f(x)) dx$$
 (57)

Area Between Curves Exercise

Exercise 6: Find the area of the region enclosed by the parabola $y = 2 - x^2$ and the line y = -x.

End of Lesson

Next Lesson: That's all, folks! See you next year!