

正则语言

- ➤ 语言L是正则语言,当且仅当存在Σ上的DFA、NFA、ε-NFA 或者RE(统称为语言识别器),接受L。
- ① 对于正则语言上的连接、并和闭包运算,其结果都是正则语言。语言上的运算还有很多,运算结果会不会超出正则语言范畴呢? 这就是有关正则语言的"封闭性"问题。
- ② 断言某语言是正则的,只需要找到一个能接受它的语言识别器即可,但是要断言某语言是非正则的,就难以证明不存在接受它的语言识别器,需要依赖"泵引理"进行证明。
- ③ 通过自动机的判定性质知道给定串是否为它所接受。那么正则语言的判定性质呢? (空性、成员性、复杂度)
- ④ 我们知道,接受语言L的DFA不是唯一的,势必让我们对最简(状态最少)的那个DFA感兴趣,这就是"DFA最小化"问题。

3.4.1 正则语言的泵引理

- 》 观察有n个状态的DFA A=(Q, Σ, υ, q₀, F),
 - 若L(A)所有成员的长度都小于n,那么L(A)是正则语言。
 - 若w∈L(A),且|w|>=n,那么A中有PATH(q₀,q,w),其中q∈F。(始端为q₀末端属于F标记为w的路径)
 - PATH(q_0,q,w)有|w|+1个顶点,那么其中至少两个顶点必然相同。(鸽巢原理)
 - 如果p就是这样的顶点,那么PATH(q₀,q,w)可分段为 PATH(q₀,p,x), PATH(p,p,y), PATH(p,q,z)。
 - 那么必然有xy^kz∈L(A), k≥0。
- ➤ 语言L不是正则语言,当且仅当没有能识别L的DFA、NFA和 RE存在。

讨论PATH(q₀,q,w)分段情形

- \rightarrow 讨论PATH(q_0,q,w)分段情形,也就是正则语言上的情形:
 - PATH (q_0,p,x) , $|x| \ge 0$, $|xy| \le n$
 - PATH(p,p,y), $|y| \ge 1$, $|xy| \le n$
 - PATH(p,q,z), $|xyz| \ge n_{\circ}$
 - 满足w=xyz, xy^kz∈L(A), k≥0。
- > 例: L={0^m1^l | m,l≥0}
 - 对于n=2, w=01∈L, w=xyz, 其中,
 - $x=\varepsilon$, y=0, z=1
 - $|xy|=|0| \le n$, $|w|=|xyz| \ge n$
 - $xy^kz\in L$, $k\geq 0$, $\forall \epsilon 0^k 1\in L$, $k\geq 0$

• w有: 000*1*、011*、111*, 故x有:?

例: L={0^m1^l | m,l≥0}

- \triangleright w=0^m1^l, 其中m+l≥2, m,l≥0
- > n=2,所有w, |w|≥2,为: 000*1*、011*、111*

W	w ≥r	1? x	V	Z	xv <	≤n? xy ^k z∈L?	
000*1*	是 是	3	0	00*1*	是	 - 是	
000*1*	是	ε	00	0*1*	是	是	
000*1*	是	0	0	0*1*	是	是	
011*	是	3	0	11*	是	是	
011*	是	3	01	1*	是	不是	
011*	是	0	1	1*	是	是	
111*	是	3	1	11*	是	是	
111*	是	ε	11	1*	是	是	
1111*	是	1	1	11*	是	是	15

正则语言的泵引理

- ➤ 定理3.3 (泵引理)设L是正则语言,则存在正整数n,对任意w∈L,如果|w|≥n,那么有分段w=xyz,使得:
 - 1 $y \neq \epsilon$
 - $|xy| \le n$
 - 3 $xy^kz \in L$, $k \ge 0$
- > 正则语言满足泵引理;满足泵引理的不一定是正则语言。
- > 不满足泵引理必定不是正则语言。
- > 泵引理常用于证明语言L是非正则语言(反证法):
 - 对于任意正整数n,存在w∈L, |w|≥n,存在切分w=xyz, 其中,条件(1)和(2)满足但条件(3)不满足。

例: 非正则语言{0^m1^m|m>1}

- \rightarrow L={0^m1^m|m>1}
- > 对于任意正整数n,选w=0ⁿ1ⁿ, w∈L, |w|≥n,
- 没w=xyz, 其中x=0^{m-k}, y=0^k, z=0^{n-m}1ⁿ, m≤n, k>0,
 则有:
- \rightarrow 1y \neq ϵ
- \triangleright (2)|xy| \leq n
- **>** ③对于i=0, xyⁱz=0^{n-k}1ⁿ∉L, 矛盾

证明泵引理

- ightharpoonup 证明:假设L是正则语言,那么存在DFA A=(Q, Σ , δ , q₀, F)有 L=L(A)。
- ightharpoonup 不妨假设A有n个状态,|Q|=n并考虑长度不小于n的串 $w=a_1...a_m$,其中m ≥ n并且 $a_1,...,a_m$ ∈Σ。
- \rightarrow 对于i=0,1,...,n定义状态 p_i = $\tilde{v}(q_0, a_1 ... a_i)$, 注意 p_0 = q_0 。
- ▶ 由鸽巢原理, p_0 到 p_n 这n+1个状态不可能都不同,因为Q只有 n个元素。因此,我们能够找到两个不同的非负整数i和j,满足0≤i<j≤n,使得 p_i = p_i 。
- ightarrow 至此,取w=xyz,其中x= a_1 ... a_i ,y= a_{i+1} ... a_j ,z= a_{j+1} ... a_m ,得到xy k z∈L, k≥0。

- ➤ 证明L = {1^p|p是素数}不是正则语言。
- ➤ 反证法,假定L是正则的,
- > 考虑某个素数q ≥n+2, 其中n是泵长度
- ▶ 选择串 $w = 1^q$,我们可以写成w = xyz使得 $y \neq ε$ 且 $|xy| \le n$
- ➤ 令|y|=m, 那么|xz|=q-m, 考虑串s=xy^{q-m}z, 根据泵引理属于L
- $|xy^{q-m}z| = |xz| + (q-m)|y| = q-m + (q-m)m = (m+1)(q-m)$
- ▶ 注意到m+1>1, 当y≠ε
- > 矛盾。

3.7 DFA最小化

- DFA (Q, Σ, υ, q₀, F)的任意两个状态之间会有什么关系?
- ➤ 状态p和q是等价的,如果,
 - $\forall w \in \Sigma^* \cdot (\tilde{v}(p, w) \in F \leftrightarrow \tilde{v}(q, w) \in F)$
- ➤ 状态p和q是可区分的,如果,
 - ∃w∈Σ*·(ῦ(p, w)∈F ∧ ῦ(q, w)∉F), 或者,
 - $\exists w \in \Sigma^* \cdot (\tilde{v}(p, w) \notin F \land \tilde{v}(q, w) \in F)$

例: 状态p和q等价或可区分

 (q_b, q_h) : $1q_c$ 或 $0q_g$ (q_d, q_f) : $0q_c$ 或 $1q_g$ (q_a, q_e) : $1q_f$ 或 $01q_c$ 或 $00q_g$ 等价的

最小化DFA的填表算法

输入:DFA (Q,Σ,υ, q_0 ,F)

输出: DFA (\mathcal{P} ,Σ,move[G,a],G₀,F'), q₀∈G₀, \forall G∈F'·G∩F \neq φ

对Q元素建立索引Q[i], i=1,..|Q|

 $C = F \times (Q \setminus F);$

对Q\F表示为序列S,有(Q\F)#个元素;

 $for(q \in Q \setminus F)$

发现等价对的填表算法

```
输入: DFA A=(Q, Σ, υ, q<sub>0</sub>, F)
输出: {(q,p)|q,p∈Q且q与p是等价的}
T初始化为Q×Q的下三角;
foreach q∈F do 标记T的q行和q列诸元素;
置c为yes;
while c do {
       置c为no;
       foreach T的未标记元素T[q,p]do
             for each a \in \Sigma do
                    if (ͳ[υ(q, a), υ(p, a)]有标记) {
                           标记T[q,p];
                           置c为yes; }}
return T的所有未带标记元素。
```

2024/3/19

例: 填表算法

例: 填表算法

图(b)

图(c)

	0	1
→{0}	{0}	{1}
{1}	{0}	{2,3}
*{2,3}	{2,3}	{2,3}

例: 填表算法

▶ 定理4.20 如果通过填表算法不能区分两个状态,那么它们是 等价的。

反证法:假定不能发现q和q'

> 为什么当我们合并等价状态时不会产生不一致性?

不一致: 合并了q3和q7到A中 B和C可区分,所以存在w一个到达接受状态另一个不能结果A中状态不全是等价的

➤ 为什么没有更小的DFA了?

假定有

根据鸽巢原理必定出现下面情况:

➤ 为什么没有更小的DFA了?

但是之后

每个状态序对都是可 区分的.

q"不能存在!

DFA最小化的划分算法

也称Hopcroft算法

- ► G相对于尹是一致的,当且仅当, ∀a∈Σ·∃G'∈尹·∀q∈G·υ(q, a)∈G'
- ▶ 如果G是相对于 \mathbf{P} 一致的,记为 \forall a∈ Σ ·∃G'∈ \mathbf{P} ·move[G, a]=G'
- G是极大的,当且仅当, 如果∃G'∈**P**·∀a∈Σ·move[G, a]=move[G', a]那么G=G'

39

DFA最小化的划分算法

```
输入: DFA (Q, \Sigma, \upsilon, q<sub>0</sub>, F)
输出: DFA (\mathcal{P}, \Sigma, move[G, a], G_0, F'), q_0 \in G_0, \forall G \in F' \cdot G \cap F \neq \varphi
\mathcal{P} = \{F, Q \setminus F\}
while (G∈ア&&G未标记)
    if (G是一致的)标记G //G是一致的,
    //若\forallp,q\inG·\foralla\inΣ· MOVE[G,p,a]=MOVE[G,q,a]
    else{按最大化一致性原则得出G的划分G;
         \boldsymbol{\mathcal{P}}中去除G; \quad \boldsymbol{\mathcal{P}} = \boldsymbol{\mathcal{P}} \cup \boldsymbol{\mathcal{G}};
         \mathbf{p}中去除所有元素的标记; }
\diamondsuitMOVE[G,q,a]=G', 其中G,G'\inP,a\inΣ,υ(q,a)\inG',q\inG;
\Leftrightarrow move[G,a]=MOVE[G,-,a].
  (DFA最小化的Hopcroft算法)
```


例: 采用Hopcroft算法最小化

$G1=\{c\}$
$G2=\{a,b,d,e,f,g,h\}$

G2	0	1
a	G2	G2
b	G2	G1
d	G1	G2
e	G2	G2
f	G1	G2
g	G2	G2
h	G2	G1

$$G1=\{c\}$$

 $G2=\{a,e,g\}$
 $G3=\{d,f\}$
 $G4=\{b,h\}$

检查一致性并构建转移表

g

 $G1=\{c\}$ $G2=\{a,e\}$ $G3=\{d,f\}$ $G4=\{b,h\}$ $G5=\{g\}$

G1 0 1 G2 G1C

G2 0 1 G5 0 G4 G3 a G5 G2 **G4** G3 e

G3	0	1
d	G1	G5
f	G1	G5

G4	0	1
b	G5	G1
b 20 1 4/3/19	G5	G1

	0	1
$*G1=\{c\}$	G2	G1
→G2={a,e}	G4	G3
$G3=\{d,f\}$	G1	G5
$G4=\{b,h\}$	G5	G1
$G5=\{g\}$	G5	G2

3-后缀为101的0-1串

3-后缀为101的0-1串

用划分法进行最小化

$G1 = \{q3, q6\}$	
$G2 = \{q0, q1, q2, q2, q2, q2, q2, q2, q2, q2, q2, q2$	<u>,q4,q5,q7</u> }

		· 1 · 1 .
G2	0	1
q0	G2	G2
q1	G2	G2
q2	G2	G1
q4	G2	G1
q5	G2	G2
q20)24/3/1 G 2	G2

$G1=\{q3, q6\}$
$G2 = \{q0,q1,q5,q7\}$
$G3 = \{q2,q4\}$

G2	0	1
q0	G2	G2
q1	G3	G2
q5	G3	G2
q7	G2	G2 ·

G2	0	1
q0	G2	G4
q7	G2	G4

G3	0	1
q2	G2	G1
q4	G2	G1

G4	0	1
q1	G3	G4
q5	G3	G4

G1	0	1
q3	G3	G4
q6	G3	G4

 $G2 = \{q0,q7\}$

 $G3 = \{q2,q4\}$

 $G4 = \{q1,q5\}$

3-后缀为101的0-1串

两种方法最小化 DFA方法的比较

填表算法

Hopcropt算法

- ① 找出等价状态;
- ② 合并等价状态。
- ③ 构建等价块间转移 关系。

- ① 分裂划分块为最大化一 致性划分块;
- ② 构建划分块间转移关系。

2024/3/19

- > 知识点: 泵引理、最小化
- > 知识点:可区分的状态、等价的状态
- > 最小化算法

▶ 作业: p73:3.7(c); 3.10-12