Exercises for 3.13-3.14

1. Here is something obvious. If we have evidence that $P \vee Q$ and we have evidence that $\neg P$, we have evidence that Q. Our proof system confirms this. Add the missing datums in the following derivation:

1. Γ	$\vdash P \lor Q$	premise
2. Δ	$\vdash \neg P$	premise
3. <i>P</i>	$\vdash P$	A
4	$\vdash \neg P$	2
5	$\vdash P$	3
6	$\vdash \neg \neg Q$	4,5,¬I
7. Δ, <i>P</i>	$\vdash Q$	6,¬E
8. <i>Q</i>	$\vdash Q$	A
9	$\vdash Q$	1,7,8,∨E

2. Derivations can often be adapted to prove something similar. For instance, the above can be adapted easily to derive from $\Gamma \vdash \neg P \lor Q$ and $\Delta \vdash P$ to $\Gamma, \Delta \vdash Q$. Fill in the missing datums and annotations.

1. Γ	$\vdash \neg P \lor 0$	Q premise
2. Δ	$\vdash P$	premise
3	$\vdash \neg P$	A
4	$\vdash P$	2
5	$\vdash \neg P$	3
6	$\vdash \neg \neg Q$	4,5,¬I
7	$\vdash Q$	6,¬E
8. <i>Q</i>	$\vdash Q$	A
9	$\vdash Q$	1,7,8,∨E

- 3. The Greek capital letters on the datum side are place-holders. You can plug anything you want into them. Take the derivation in Problem 2 above. You can plug P into Δ and add one more step at the end to show that you can infer from $\Gamma \vdash \neg P \lor Q$ to $\Gamma \vdash P \supset Q$ (which we should expect given the way the conditional is defined). Construct such a derivation.
- 4. The following is a derivation from $\Gamma \vdash P \supset Q$ to $\Gamma \vdash \neg P \lor Q$. Again, we should expect that there is such a derivation given the way the conditional was defined. Fill in the missing parts of the derivation:

1.
$$\Gamma$$
 $\vdash P \supset Q$
 premise

 2. $\neg(\neg P \lor Q)$
 $\vdash \neg P$
 .A

 3. $_$
 $\vdash \neg P$
 .A

 4. $\neg P$
 $\vdash \neg P \lor Q$
 ...

 5. $_$
 $\vdash \bot$
 .2

 6. $\neg(\neg P \lor Q)$
 $\vdash \neg \neg P$
 .4,5,¬I

 7. $_$
 $\vdash \bot$
 .6,¬E

 8. $_$
 $\vdash \bot$
 .1,7,⊃E

 9. Γ , $\neg(\neg P \lor Q)$
 $\vdash \neg P \lor Q$
 ...

 10. Γ
 $\vdash \neg \neg(\neg P \lor Q)$
 ...

 11. Γ
 $\vdash \neg P \lor Q$
 ...

5. Suppose there is evidence that P ⊃ Q. In that case, there is is evidence that ¬Q ⊃ ¬P. Our proof system confirms this. Construct a derivation from Γ ⊢ P ⊃ Q to Γ ⊢ ¬Q ⊃ ¬P. Hint: you can adapt and modify one the derivations given in Section 3.13.

6. Correct any errors in the annotations of the following derivation from $\Gamma \vdash P \supset Q$ and $\Delta \vdash R \lor \neg Q$ to $\Gamma, \Delta \vdash P \supset R$ (the only errors are in the annotations):

1. Γ	$\vdash P \supset Q$ premise
2. Δ	$\vdash R \lor \neg Q$
3. <i>R</i>	$\vdash R$
4. R, P	⊢ <i>R</i> 3
5. <i>R</i>	$\vdash P \supset R$
6. $\neg Q$	$\vdash \neg Q \qquad \qquad \dots \qquad 2,4,\lor E$
7. <i>P</i>	⊢ <i>P</i> A
8. Γ, <i>P</i>	$\vdash Q \qquad \qquad$
9. $\neg Q, P$	$\vdash \neg Q$ 6
10. $\Gamma, \neg Q$	$\vdash \neg P$
11. $\Gamma, \neg Q$	$\vdash \neg P \lor R$
12. ¬ <i>P</i>	$\vdash \neg P$
13. $\neg P, \neg R$	⊢ ¬P11,3,⊃E
14. $P, \neg R$	$\vdash P$
15. $\neg P, P$	$\vdash \neg \neg R$ 13,14, $\neg E$
16. $\neg P, P$	⊢ <i>R</i> 15,¬I
17. ¬ <i>P</i>	$\vdash P \supset R$
18. $\Gamma, \neg Q$	$\vdash P \supset R$
19. Γ, Δ	$\vdash P \supset R \qquad \qquad \dots \dots$

7. If you have evidence that $(W \vee Y) \supset Z$, you have evidence that $W \supset Z$. Construct a derivation from $\Gamma \vdash (W \vee Y) \supset Z$ to $\Gamma \vdash W \supset Z$.