

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (currently amended): A-An electrolyte membrane comprising a fluoropolymer containing acid/acid salt groups and having $-CF_2H$ groups at polymer chain terminals, wherein said acid/acid salt groups are sulfonic acid groups, $-SO_2NR^1R^2$, $-SO_3NR^3R^4R^5R^6$, $-SO_3M^1_{1/L}$, phosphoric acid groups, $-PO_3(NR^7R^8R^9R^{10})_2$ and/or $-PO_3M^2_{2/L}$, in the formula R^1 represents H or $M^6_{1/L}$, R^2 represents H, $M^7_{1/L}$, an alkyl group or a sulfonyl-containing group, R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 and R^{10} are the same or different and each represents H or an alkyl group containing 1 to 4 carbon atoms, M^1 , M^2 , M^6 and M^7 are the same or different and each represents a metal having a valence of L, said metal having a valence of L being a metal belonging to the group 1, 2, 4, 8, 11, 12 or 13 of the long-form periodic table.

2. (currently amended): The electrolyte membrane fluoropolymer according to Claim 1,

said fluoropolymer being one obtained by subjecting a fluoropolymer precursor containing acid/acid salt groups and having $-CF_2COOX$ groups at polymer chain terminals, in the formula X represents H, $NR^{11}R^{12}R^{13}R^{14}$ or $M^4_{1/L}$; R^{11} , R^{12} , R^{13} and R^{14} are the same or different and each represents H or an alkyl group containing 1 to 4 carbon atoms and M^4 represents a metal having a valence of L, said metal having a valence of L being as defined above, to heat treatment by which said $-CF_2COOX$ groups can be converted to $-CF_2H$ groups, X being as defined above.

3. (currently amended): The fluoropolymer electrolyte membrane according to

Claim 1,

wherein said acid/acid salt groups are sulfonic acid groups, $-\text{SO}_3\text{NR}^3\text{R}^4\text{R}^5\text{R}^6$ and/or $-\text{SO}_3\text{M}^1_{1/L}$, R^3 , R^4 , R^5 , R^6 and M^1 being as defined above.

4. (currently amended): The A method of producing the fluoropolymer electrolyte membrane according to Claim 1, by subjecting a fluoropolymer precursor containing acid/acid salt groups and having $-\text{CF}_2\text{COOX}$ groups at polymer chain terminals, in the formula X represents H, $\text{NR}^{11}\text{R}^{12}\text{R}^{13}\text{R}^{14}$ or $\text{M}^4_{1/L}$; R^{11} , R^{12} , R^{13} and R^{14} are the same or different and each represents H or an alkyl group containing 1 to 4 carbon atoms and M^4 represents a metal having a valence of L, said metal having a valence of L being a metal belonging to the group 1, 2, 4, 8, 11, 12 or 13 of the long-form periodic table, to heat treatment for the conversion of said $-\text{CF}_2\text{COOX}$ groups to $-\text{CF}_2\text{H}$ groups, X being as defined above,

wherein said fluoropolymer precursor is one obtained by polymerizing a perhalovinyl ether derivative represented by the general formula (I):

wherein Y^1 represents F, Cl or a perfluoroalkyl group, n represents an integer of 0 to 3, the n atoms/groups of Y^1 are the same or different, Y^2 represents F or Cl, m represents an integer of 1 to 5, the m atoms of Y^2 are the same or different and Z represents F, Cl, Br, I, $-\text{OM}^5_{1/L}$ or $-\text{ONR}^{15}\text{R}^{16}\text{R}^{17}\text{R}^{18}$; M^5 represents a metal having a valence of L and the metal having a valence of L is as defined above, and R^{15} , R^{16} , R^{17} and R^{18} are the same or different and each represents H or an alkyl group containing 1 to 4 carbon atoms,

said fluoropolymer precursor constitutes a membrane-shaped molding,

when the group $-\text{SO}_2\text{Z}$ in the general formula (I) is not said acid/acid salt group but is a group convertible to such acid/acid salt group, said fluoropolymer precursor is one subjected to a conversion treatment, after the above-mentioned polymerization, for the conversion of said group $-\text{SO}_2\text{Z}$ to the above-mentioned acid/acid salt group, and

said heat treatment comprises heating said fluoropolymer precursor at 120 to 400°C.

5. (currently amended): The method of producing ~~a fluoropolymer~~an electrolyte membrane according to Claim 4,

wherein the heat treatment comprises heating the fluoropolymer precursor at 120 to 200°C in the presence of water or an organic solvent having compatibility with water.

6. (currently amended): The method of producing ~~a fluoropolymer~~an electrolyte membrane according to Claim 5,

wherein the organic solvent having compatibility with water is an organic liquid having a boiling point exceeding 100°C but not exceeding 300°C.

7. (currently amended): The method of producing ~~a fluoropolymer~~an electrolyte membrane according to Claim 4,

wherein the fluoropolymer precursor is an at least binary copolymer obtained by polymerizing the perhalovinyl ether derivative and a monomer copolymerizable with said perhalovinyl ether derivative.

8. (currently amended): The method of producing ~~a fluoropolymer~~an electrolyte membrane according to Claim 4,

wherein Y^2 is F, n is 0 or 1 and m is 2 or 3.

9-16. (canceled).

17. (currently amended): A solid polymer electrolyte fuel cell comprising the electrolyte membrane according to ~~Claim 11~~ Claim 1.

18. (new): An immobilized active substance material comprising a fluoropolymer and an active substance,

said fluorocopolymer containing acid/acid salt groups and having -CF₂H groups at polymer chain terminals,

wherein said acid/acid salt groups are sulfonic acid groups, -SO₂NR²R², -SO₃NR³R⁴R⁵R⁶, -SO₃M¹_{1/L}, phosphoric acid groups, -PO₃(NR⁷R⁸R⁹R¹⁰)₂ and/or -PO₃M²_{2/L}, in the formula R¹ represents H or M⁶_{1/L}, R² represents H, M⁷_{1/L}, an alkyl group or a sulfonyl-containing group, R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹ and R¹⁰ are the same or different and each represents H or an alkyl group containing 1 to 4 carbon atoms, M¹, M², M⁶ and M⁷ are the same or different and each represents a metal having a valence of L, said metal having a valence of L being a metal belonging to the group 1, 2, 4, 8, 11, 12 or 13 of the long-form periodic table.

19. (new): The immobilized active substance material according to Claim 18, said fluoropolymer being one obtained by subjecting a fluoropolymer precursor containing acid/acid salt groups and having -CF₂COOX groups at polymer chain terminals, in the formula X represents H, NR¹¹R¹²R¹³R¹⁴ or M⁴_{1/L}; R¹¹, R¹², R¹³ and R¹⁴ are the same or different and each represents H or an alkyl group containing 1 to 4 carbon atoms and M⁴ represents a metal having a valence of L, said metal having a valence of L being as defined above, to heat treatment by which said -CF₂COOX groups can be converted to -CF₂H groups, X being defined above.

20. (new): The immobilized active substance material according to Claim 13, wherein said acid/acid salt groups are sulfonic acid groups, $-\text{SO}_3\text{NR}^3\text{R}^4\text{R}^5\text{R}^6$ and/or $-\text{SO}_3\text{M}^1_{1/L}$, R^3 , R^4 , R^5 , R^6 and M^1 being defined above.
21. (new): The immobilized active substance material according to Claim 18, wherein the active substance is a catalyst.
22. (new): The immobilized active substance material according to Claim 21, wherein the catalyst is a platinum-containing metal.
23. (new): A membrane-electrode assembly comprising the immobilized active substance material according to Claim 21.
24. (new): A solid polymer electrolyte fuel cell comprising the membrane-electrode assembly according to Claim 23.