lab7_109062320

Draw the strong scalability of data parallel training

Explain why such observation

By observing the data, we can see that using more GPUs allows for more parallel processing of the data. This means that more training samples can be processed simultaneously, leading to a higher throughput (more samples per second). However, we observe only sub-linear scaling, and I guess it's because of the following reasons:

- 1. Communication Overhead: More GPUs entail more data synchronization, which can become a bottleneck, especially with a higher number of GPUs.
- 2. Data Loading and Preprocessing Bottlenecks: If the data pipeline isn't optimized to match the GPUs' processing speed, it can limit the rate at which data is available for training, thus reducing overall efficiency.
- Inefficient Utilization of GPUs: Not all models or training configurations
 fully utilize the computational power of multiple GPUs, which can lead to
 underutilization and decreased scaling efficiency.

Your experiment process

Modifying the Script for Different GPU Counts:

- For 1 GPU: Set --nproc_per_node=1 and SBATCH --gres=gpu:1. This means the job will use 1 GPU.
- For 2 GPUs: Change these to --nproc_per_node=2 and SBATCH -- gres=gpu:2. The job now utilizes 2 GPUs for training.