You submitted this quiz on **Mon 11 Nov 2013 2:09 PM PST**. You got a score of **4.50** out of **5.00**. You can attempt again in 10 minutes.

Question 1

Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x)$ = 0.7. This means (check all that apply):

Your Answer		Score	Explanation
Our estimate for $P(y=0 x;\theta)$ is 0.7.	~	0.25	$h_{ heta}(x)$ is $P(y=1 x; heta)$, not $P(y=0 x; heta)$.
lacktriangledown Our estimate for $P(y=1 x; heta)$ is 0.3.	~	0.25	$h_{ heta}(x)$ gives $P(y=1 x; heta)$, not $1-P(y=1 x; heta)$.
lacksquare Our estimate for $P(y=1 x; heta)$ is 0.7.	~	0.25	$h_{ heta}(x)$ is precisely $P(y=1 x; heta)$, so each is 0.7
$lackbox{oxed}{oxed}$ Our estimate for $P(y=0 x; heta)$ is 0.3.	~	0.25	Since we must have $P(y=0 x;\theta)=1-P(y=1 x;\theta) \ \mbox{, the former is 1 - 0.7 = 0.3.}$
Total		1.00 / 1.00	

Question 2

Suppose you train a logistic classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$. Suppose $\theta_0=6, \theta_1=-1, \theta_2=0$. Which of the following figures represents the decision boundary found by your classifier?

Your Score Explanation
Answer

Question 3

Suppose you have the following training set, and fit a logistic regression classifier $h_{ heta}(x)=g(heta_0+ heta_1x_1+ heta_2x_2)$.

x_1	x_2	y
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

Your Answer		Score	Explanation
Adding polynomial features (e.g., instead using $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_1x_2+\theta_5x_2^2)$) could increase how well we can fit the training data.	•	0.25	Adding new features can only improve the fit on the training set: since setting $\theta_3=\theta_4=\theta_5=0$ makes the hypothesis the same as the original one, gradient descent will use those features (by making the corresponding θ_j non-zero) only if doing so improves the training set fit.
${\overline{\!$	~	0.25	The cost function $J(\theta)$ is always nonnegative for logistic regression.
Because the positive and negative examples cannot be separated using a straight line, linear regression will perform as well as logistic regression on this data.	*	0.25	While it is true they cannot be separated, logistic regression will outperform linear regression since its cost function focuses on classification, not prediction.
The positive and negative examples cannot be separated using a straight line. So, gradient descent will fail to converge.	*	0.25	While it is true they cannot be separated, gradient descent will still converge to the optimal fit. Some examples will remain misclassified at the optimum.
Total		1.00 /	

Question 4

For logistic regression, the gradient is given by $rac{\partial}{\partial heta_j} J(heta) = \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$.

Which of these is a correct gradient descent update for logistic regression with a learning rate of α ? Check all that apply.

Your Answer		Score	Explanation
$m{ heta}_j := heta_j - lpha rac{1}{m} \sum_{i=1}^m igg(rac{1}{1+e^{- heta^T x^{(i)}}} - y^{(i)}igg) x_j^{(i)}$ (simultaneously update for all j).	~	0.25	This substitutes the exact form of $h_{\theta}(x^{(i)})$ used by logistic regression into the gradient descent update
$oldsymbol{oldsymbol{artheta}} heta := heta - lpha rac{1}{m} \sum_{i=1}^m \left(rac{1}{1 + e^{- heta^T x^{(i)}}} - y^{(i)} ight) \! x^{(i)} .$	✓	0.25	This is a vectorized version of gradient descent that substitues in the exact form of $h_{\theta}(x^{(i)})$ used by logistic regression.
$lacksquare heta := heta - lpha rac{1}{m} \sum_{i=1}^m \Big(heta^T x - y^{(i)} \Big) x^{(i)} .$	*	0.25	This vectorized version uses the linear regression hypothesis $\theta^T x$ instead of that for logistic regression.
$ heta_j := heta_j - lpha rac{1}{m} \sum_{i=1}^m \left(heta^T x - y^{(i)} ight) x_j^{(i)}$ (simultaneously update for all j).	~	0.25	This uses the linear regression hypothesis $\theta^T x$ instead of that for logistic regression.
Total		1.00 / 1.00	

Question 5

Which of the following statements are true? Check all that apply.

Your Answer	Score	Explanation
Since we train one classifier when there are two classes, we train two classifiers when there are three classes (and we do one-vs-all classification).	✔ 0.25	We need to train three classifiers if there are three classes; each one treats one of the three classes as the $y=1$ examples and the rest as the $y=0$ examples.
The cost function $J(\theta)$ for logistic regression trained with $m \geq 1$ examples is always greater than or equal to zero.	× 0.00	The cost for any example $x^{(i)}$ is always ≥ 0 since it is the negative log of a quantity less than one. The cost function $J(\theta)$ is a summation over the cost for each eample, so the cost function itself must be greater than or equal to zero.
The one-vs-all technique allows you to use logistic regression for problems in which each $y^{(i)}$ comes from a fixed, discrete set of values.	✔ 0.25	If each $y^{(i)}$ is one of k different values, we can give a label to each $y^{(i)} \in \{1,2,\ldots,k\}$ and use one-vs-all as described in the lecture.
Linear regression always works well for classification if you classify by using a threshold on the prediction made by linear regression.	× 0.00	As demonstrated in the lecture, linear regression often classifies poorly since its training producedure focuses or predicting real-valued outputs, not classification.
Total	0.50 /	