Sia E una curva ellittica definita su un campo \mathbf{F}_q di q elementi. In questa nota stimiamo $\#E(\mathbf{F}_{q^2})$ seguendo il metodo di Stepanov.

Teorema 1. Sia \mathbf{F}_q un campo di $q \geq 5$ elementi e sia E una curva ellittica su \mathbf{F}_q . Allora si ha che

$$\#E(\mathbf{F}_{q^2}) \le q^2 + 3q.$$

Supponiamo che E sia data tramite un'equazione di Weierstrass:

$$Y^2 + a_1 XY + a_3 Y = X^3 + a_2 X^2 + a_4 X + a_6,$$
 con $a_i, a_2, a_3, a_4, a_6 \in \mathbf{F}_q$.

Sia ∞ l'unico punto all'infinito. Allora l'anello R di funzioni su E senza poli fuori ∞ è la \mathbf{F}_q -algebra generato dalle funzioni X e Y. Ogni elemento $f \in R$ ha la forma g(X) + Yh(X) per polinomi unici $g, h \in \mathbf{F}_q[X]$. Per ogni $f \in R$ non nullo, sia deg f l'ordine del polo di f in ∞ . Si ha quindi che deg X = 2 e deg Y = 3. In generale, se f = g(X) + Yh(X) con $g, h \in \mathbf{F}_q[X]$ polinomi di grado d, e rispettivamente, allora deg $f = \max(2d, 3 + 2e)$.

Per $a \ge 1$ sia H_a lo \mathbf{F}_q -spazio vettoriale di funzioni

$$H_a = \{ f \in R : \deg f \le a \}.$$

Poiché E ha genere 1, non esistono funzioni $f \in R$ con deg f = 1. Questo implica che per a = 1 lo spazio H_a consiste solo nelle funzioni costanti \mathbf{F}_q ed ha dimensione 1. Per a = 2 lo spazio H_a è generato dalle funzioni 1 e X ed ha dimensione 2. In generale si ha il seguente risultato.

Lemma 2. Per $a \ge 1$ si ha che dim $H_a = a$.

Dimostrazione. Dopo quello che è già stato detto, possiamo supporre che a > 2. Allora per a pari, le funzioni

$$1, X, \dots, X^{a/2}, Y, YX, \dots YX^{a/2-2}$$

formano una base di H_a , mentre per a dispari sono le funzioni

$$1, X, \dots, X^{(a-1)/2}, Y, YX, \dots YX^{(a-3)/2}$$

che formano una base di H_a . In ogni caso la base ha esattamente a elementi, come richiesto.

Per $a \geq 1$ l'insieme $H_a^q = \{f^q : f \in H_a\}$ è uno spazio vettoriale di dimensione $a = \dim H_a$. Infatti, l'applicazione $f \mapsto f^q$ è una biezione $H_a \leftrightarrow H_a^q$.

Lemma 3. Siano $a, b \ge 1$ e sia $H_a^q H_b$ lo \mathbf{F}_q -spazio vettoriale generato dalle funzioni fg con $f \in H_a^q$ e $g \in H_b$. Se b < q, allora lo spazio $H_a^q H_b$ ha dimensione ab.

Dimostrazione. Per il Lemma 2 esiste una base e_1, \ldots, e_a di H_a e una base f_1, \ldots, f_b di H_b . È chiaro che le funzioni $e_i^q f_j$ con $1 \le i \le a$ e $1 \le j \le b$ generano $H_a^q H_b$. Si ha che

$$\deg e_i^q f_j = q \deg e_i + \deg f_i.$$

Dal fatto che deg $f_i \leq b < q$ segue che le funzioni $e_i^q f_j$ hanno deg $e_i^q f_j$ distinti. Se una combinazione \mathbf{F}_q -lineare $\sum_{i,j} \lambda_{ij} e_i^q f_j$ si annulla, si ha quindi necessariamente $\lambda_{ij} = 0$ per ogni i, j. Questo dimostra che le funzioni $e_i^q f_j$ sono indipendenti e formano una \mathbf{F}_q -base. Come consequenza la dimensione di $H_a^q H_b$ è ab come richiesto.

Da ora in poi supponiamo che $a,b \geq 1$ con b < q. Grazie al Lemma 3, l'applicazione \mathbf{F}_q -lineare

$$\vartheta: H_a^q H_b \longrightarrow H_a H_b^q$$

data da

$$e_i^q f_j \mapsto e_i f_j^q$$
, per $1 \le i \le a$ e $1 \le j \le b$,

è ben definita. L'osservazione chiave è la seguente.

Osservazione. Se $F \in H_a^q H_b$ sta in ker ϑ , allora F si annulla nei punti di $E(\mathbf{F}_{q^2}) - \{\infty\}$.

Dimostrazione. Sia $P \neq \infty$ in $E(\mathbf{F}_{q^2})$. Scriviamo $F = \sum \lambda_{ij} e_i^q f_j$ per certi $\lambda_{ij} \in \mathbf{F}_q$ e supponiamo che F sta nel nucleo di ϑ . Allora

$$F(P)^{q} = \sum_{i} \lambda_{ij} e_{i}^{q^{2}}(P) f_{j}^{q}(P) = \sum_{i} \lambda_{ij} e_{i}(P) f_{j}^{q}(P) = (\sum_{i} \lambda_{ij} e_{i} f_{j}^{q})(P) = 0$$

e quindi F(P)=0. La seconda uguaglianza segue dal fatto che $P\in E(\mathbf{F}_{q^2})$ e quindi $f^{q^2}(P)=f(P)$ per ogni funzione $f\in R$.

Se la funzione F nella osservazione non è la funzione zero, allora otteniamo la stima

$$\#E(\mathbf{F}_{q^2}) - 1 \le \#\{\text{zeri di } F\} = \#\{\text{poli di } F\} = \deg(F) \le aq + b.$$
 (*)

La seconda disugaglianza segue dal fatto che $F \in H_a^q H_b \subset H_{aq+b}$. L'esistenza di una tale funzione F è garantita quando $a, b \ge 1$ hanno la proprietà che

$$\dim H_a^q H_b > \dim H_a H_b^q.$$

Poiché b < q, il Lemma 3 ci dice che $H_a^q H_b$ ha dimensione ab. Non è detto che il Lemma 3 si applica allo spazio $H_a H_b^q$. Usiamo invece il fatto che $H_a H_b^q$ è sottospazio di H_{a+bq} ed ha quindi dimensione $\leq a + bq$. Una funzione F non nulla in ker ϑ esiste quindi quando

$$ab > a + bq$$
.

Per dedurre una stima buona dalla disuguglianza (*), scegliamo a più piccolo possibile. Per soddisfare la disuguglianza ab > a + bq, la scelta minimale di a è a = q + 2. In questo caso possiamo prendere b = q - 1, almeno per $q \ge 5$. Con questa scelta la quantità aq + b della stima (*) diventa $(q + 2)q + q - 1 = q^2 + 3q - 1$, implicando il Teorema 1.