Exercise 54.7:

We want to generalize the proof of Theorem 54.5 to show that the fundamental group of the torus is isomorphic to the group $\mathbb{Z} \times \mathbb{Z}$.

Name: James Wang

Using Theorem 53.1, we see that the map $p: \mathbb{R} \to S^1$ given by $p(x) = (\cos 2\pi x, \sin 2\pi x)$ is a covering map, so $p \times p: \mathbb{R} \times \mathbb{R} \to S^1 \times S^1$ with the same definition of p is also a covering map. Let $(e_{0_1}, e_{0_2}) = (0, 0)$, and let $b_0 = (p \times p)((e_{0_1}, e_{0_2}))$. Then $(p \times p)^{-1}(b_0)$ is the set $\mathbb{Z} \times \mathbb{Z}$. Since $\mathbb{R} \times \mathbb{R}$ is convex, it must be simply connected, so the lifting correspondence

$$\phi: \pi_1(S^1 \times S^1, b_0) \to \mathbb{Z} \times \mathbb{Z}$$

is bijective. We show that ϕ is a homomorphism, then the problem would be proved.

Given [f] and [g] in $\pi_1(S^1 \times S^1, b_0)$, let \tilde{f} and \tilde{g} be their respective liftings to paths on $\mathbb{R} \times \mathbb{R}$ beginning at (0,0). Let $(n_1, n_2) = \tilde{f}(1)$ and $(m_1, m_2) = \tilde{g}(1)$; then $\phi([f]) = (n_1, n_2)$ and $\phi([g]) = (m_1, m_2)$, by definition. Let $\tilde{\tilde{g}}$ be the path

$$\tilde{\tilde{g}} = (n_1, n_2) + \tilde{g}(s)$$

on \mathbb{R} . Because $(p \times p)((n_1, n_2) + (x_1, x_2)) = (p \times p)((x_1, x_2))$ for all $(x_1, x_2) \in \mathbb{R} \times \mathbb{R}$, the path \tilde{g} is a lifting of g; it begins at (n_1, n_2) . Then the product $f * \tilde{g}$ is defined, and it is the lifting of f * g that begins at (0, 0), which we check:

$$(p \times p) \circ (f * \tilde{\tilde{g}})(s) = \begin{cases} (p \times p)(\tilde{f}(s)), & s \in [0, \frac{1}{2}] \\ (p \times p)(\tilde{\tilde{g}}(s)), & s \in [\frac{1}{2}, 1] \end{cases}$$

$$= \begin{cases} f(s), & s \in [0, \frac{1}{2}] \\ g(s), & s \in [\frac{1}{2}, 1]. \end{cases}$$
(1)

The end point of the path $f * \tilde{\tilde{g}}$ is $\tilde{\tilde{g}}(1) = (n_1, n_2) + (m_1, m_2)$. Then by definition,

$$\phi([f] * [g]) = (n_1, n_2) + (m_1, m_2) = \phi([f]) + \phi([g]).$$

Exercise 58.5:

Recall that a space X is said to be contractible if the identity map of X to itself is nullhomotopic. We want to show that X is contractible if and only if X has the homotopy type of a one-point space.

(\Longrightarrow) :

Suppose X is contractible, so there exists some $m \in X$ such that $\mathrm{Id}_X \simeq c_m$. Specifically, $c_m: X \to X$ is defined by $c_m(x) = m$ for all $x \in X$. Note that by restricting the codomain, we can obtain $c_{m'}: X \to \{m\}$. Now let $h: \{m\} \to X$ defined by h(m) = m. Together, first consider $c_{m'} \circ h: \{m\} \to \{m\}$, by which we have $c_{m'}(h(m)) = c_{m'}(m) = m$, meaning it is the identity map on $\{m\}$, so it must be $c_{m'} \circ h \simeq \mathrm{Id}_m$. We then consider $h \circ c_{m'}: X \to X$, by which we have $h(c_{m'}(x)) = h(m) = m$ for all $x \in X$, meaning it is a constant map to m, so it must be $h \circ c_{m'} \simeq c_m \simeq \mathrm{Id}_X$. Note that $c_{m'} \circ h$ and $h \circ c_{m'}$ are both continuous because $c_{m'}$ is a constant function and h is the inclusion function. By definition, X has the homotopy type of the one-point space $\{m\}$.

(\Longleftrightarrow) :

Suppose X has the homotopy type of a one-point space, say $Y = \{y\}$. Then there exist continuous maps $f: X \to Y$ and $g: Y \to X$ such that $g \circ f \simeq \operatorname{Id}_X$ and $f \circ g \simeq \operatorname{Id}_Y$. Note that since $Y = \{y\}$, it must be that f(x) = y for all $x \in X$ and g(y) = k for some $k \in X$. Take an arbitrary $x \in X$, then we have g(f(x)) = g(y) = k, meaning $g \circ f$ has to be a constant map. We have thus proved Id_X is homotopic to a constant map, so Id_X is nullhomotopic and X is contractible.

Exercise 55.1:

We want to show that if A is a retract of B^2 , then every continuous map $f:A\to A$ has a fixed point.

Suppose r is a retraction of B^2 onto A:

Hence y is a fixed point of f.

$$r: B^2 \to A$$
 defined by $r(a) = a$ for all $a \in A$.

We then consider an arbitrary continuous $f:A\to A$, and define $g:B^2\to B^2$ as $g(x)=f\circ r(x)$ for all $x\in B^2$. Since r and f are both continuous, g is continuous, and the Brouwer fixed point theorem tells us that there exists $y\in B^2$ such that g(y)=y=f(r(y)). Since $\operatorname{im}(f)\subseteq A$, $f(r(y))=y\in A$. Thus r(y)=y by definition, so f(r(y))=f(y)=y.

Exercise 57.2:

We want to show that if $g: S^2 \to S^2$ is continuous and $g(x) \neq g(-x)$ for all x, then g is surjective. (Hint: If $p \in S^2$, then $S^2 - \{p\}$ is homeomorphic to \mathbb{R}^2 .)

Suppose for a contradiction that g is not surjective, and take some $p \in S^2$ such that $p \notin \operatorname{im}(g)$. By the given hint, we know $S^2 - \{p\}$ is homeomorphic to \mathbb{R}^2 , so let $\varphi : S^2 - \{p\} \to \mathbb{R}^2$ be the homeomorphism. We know φ must be continuous from the definition.

Now consider $\varphi \circ g: S^2 \to \mathbb{R}^2$, which must also be continuous. Note that this composition only makes sense because of our assumption that g is not surjective. By the Borsuk-Ulam Theorem, we know there exists $y \in S^2$ such that $\varphi(g(y)) = \varphi(g(-y))$, or equivalently g(y) = g(-y).

We have reached a contradiction with the initial assumption that $g(x) \neq g(-x)$ for all $x \in S^1$, so g must be surjective.