Online Control of Cost-Minimizing Multi-source Power Supply for Datacenters with Uncertain Demand

Shengkai Shi (HKU)

October 18, 2013

Background

• Major power-related challenges.

Background

- Major power-related challenges.
 - Skyrocketing power consumption.

Background

- Major power-related challenges.
 - Skyrocketing power consumption.
 - Serious environment impact.

Background

- Major power-related challenges.
 - Skyrocketing power consumption.
 - Serious environment impact.
 - Unexpected power outage.

Datacenter Power Supply System (DPSS)

Figure: An illustration of the datacenter power supply system (DPSS).

Key Control Decisions

• Minimize long-term cost of running datacenters.

Key Control Decisions

- Minimize long-term cost of running datacenters.
 - How much demand should the DPSS serve at each time?

Key Control Decisions

- Minimize long-term cost of running datacenters.
 - How much demand should the DPSS serve at each time?
 - How much energy to be purchased from the long-term and real-time grid market respectively?

Key Control Decisions

- Minimize long-term cost of running datacenters.
 - How much demand should the DPSS serve at each time?
 - How much energy to be purchased from the long-term and real-time grid market respectively?
 - How to use the UPS to store and discharge energy?

Related Work

• Drawbacks of previous work.

Related Work

- Drawbacks of previous work.
 - Assume a priori knowledge of the power demand.

Related Work

- Drawbacks of previous work.
 - Assume a priori knowledge of the power demand.
 - Require substantial statistics of the system dynamics.

Related Work

- Drawbacks of previous work.
 - Assume a priori knowledge of the power demand.
 - Require substantial statistics of the system dynamics.
 - Limited to only a single-day optimization.

Salient Features

Stochastic model.

Salient Features

- Stochastic model.
- Two-stage Lyapunov optimization.

Salient Features

- Stochastic model.
- Two-stage Lyapunov optimization.
- Online DPSS control algorithm.

Salient Features

- Stochastic model.
- Two-stage Lyapunov optimization.
- Online DPSS control algorithm.
- No priori knowlegde of system dynamics and demand pattern.

Online Control Decisions Constraints Stochastic Constrained Cost Minimization Problem

System Overview

Figure: System model of multi-source energy delivery to serve demand.

Online Control Decisions Constraints Stochastic Constrained Cost Minimization Problem

Two Timescales

• K coarse-grained time slots.

Online Control Decisions Constraints Stochastic Constrained Cost Minimization Problem

Two Timescales

- K coarse-grained time slots.
 - Length T.

Online Control Decisions Constraints Stochastic Constrained Cost Minimization Problem

Two Timescales

- K coarse-grained time slots.
 - Length T.
- *T* fine-grained time slots.

Online Control Decisions Constraints Stochastic Constrained Cost Minimization Problem

Two Timescales

- K coarse-grained time slots.
 - Length T.
- *T* fine-grained time slots.
 - Length 1.

Online Control Decisions

Constraints
Stochastic Constrained Cost Minimization Problem

Supply Side

• At each coarse-grained time slot t = KT(k = 1, 2, ..., K).

Online Control Decisions

Constraints
Stochastic Constrained Cost Minimization Problem

- At each coarse-grained time slot t = KT(k = 1, 2, ..., K).
 - *d*(*t*): demand.

Online Control Decisions

Constraints
Stochastic Constrained Cost Minimization Problem

Supply Side

- At each coarse-grained time slot t = KT(k = 1, 2, ..., K).
 - d(t): demand.
 - r(t): renewable energy generation.

Possible Application

Online Control Decisions

Constraints
Stochastic Constrained Cost Minimization Problem

- At each coarse-grained time slot t = KT(k = 1, 2, ..., K).
 - d(t): demand.
 - r(t): renewable energy generation.
 - $g_{bef}(t)$ and $p_{lt}(t)$: amount and price of energy purchased from long-term market.

Constraints

Stochastic Constrained Cost Minimization Problem

Supply Side

- At each coarse-grained time slot t = KT(k = 1, 2, ..., K).
 - d(t): demand.
 - r(t): renewable energy generation.

Possible Application

- $g_{bef}(t)$ and $p_{lt}(t)$: amount and price of energy purchased from long-term market.
- At each fine-grained time slot $\tau \in [t, t + T 1]$.

Constraints
Stochastic Constrained Cost Minimization Problem

- At each coarse-grained time slot t = KT(k = 1, 2, ..., K).
 - d(t): demand.
 - r(t): renewable energy generation.
 - $g_{bef}(t)$ and $p_{lt}(t)$: amount and price of energy purchased from long-term market.
- At each fine-grained time slot $\tau \in [t, t+T-1]$.
 - $d(\tau)$: demand.

Constraints
Stochastic Constrained Cost Minimization Problem

- At each coarse-grained time slot t = KT(k = 1, 2, ..., K).
 - d(t): demand.
 - r(t): renewable energy generation.
 - $g_{bef}(t)$ and $p_{lt}(t)$: amount and price of energy purchased from long-term market.
- At each fine-grained time slot $\tau \in [t, t+T-1]$.
 - $d(\tau)$: demand.
 - $r(\tau)$: renewable energy generation.

Constraints
Stochastic Constrained Cost Minimization Problem

- At each coarse-grained time slot t = KT(k = 1, 2, ..., K).
 - d(t): demand.
 - r(t): renewable energy generation.
 - $g_{bef}(t)$ and $p_{lt}(t)$: amount and price of energy purchased from long-term market.
- At each fine-grained time slot $\tau \in [t, t+T-1]$.
 - $d(\tau)$: demand.
 - $r(\tau)$: renewable energy generation.
 - $g_{rt}(\tau)$ and $p_{rt}(\tau)$: amount and price of energy purchased from real-time market.

Online Control Decisions

Constraints
Stochastic Constrained Cost Minimization Problem

Energy Supply

Energy supply from grid and renewable energy at τ :

$$s(\tau) = g_{bef}(t)/T + g_{rt}(\tau) + r(\tau), 0 \le s(\tau) \le S_{max}.$$
 (1)

Online Control Decisions

Constraints
Stochastic Constrained Cost Minimization Problem

Demand Side

$$d(\tau) = d_{ds}(\tau) + d_{dt}(\tau).$$

• $d_{ds}(\tau)$: delay-sensitive demand.

Background
Related Work
Salient Features
System Model
Optimal Offline Algorithm
Lyapunov Optimization for Cost Minimization
Online Control Algorithm Design

Possible Application

Online Control Decisions

Constraints
Stochastic Constrained Cost Minimization Problem

Demand Side

$$d(\tau) = d_{ds}(\tau) + d_{dt}(\tau).$$

- $d_{ds}(\tau)$: delay-sensitive demand.
- $d_{dt}(\tau)$: delay-tolerant demand.

Possible Application

Online Control Decisions

Constraints
Stochastic Constrained Cost Minimization Problem

Demand Side

$$d(\tau) = d_{ds}(\tau) + d_{dt}(\tau).$$

- $d_{ds}(\tau)$: delay-sensitive demand.
- $d_{dt}(\tau)$: delay-tolerant demand.
 - λ_{max} : maximal allowed delay.

Possible Application

Online Control Decisions

Constraints
Stochastic Constrained Cost Minimization Problem

Demand Side

$$d(\tau) = d_{ds}(\tau) + d_{dt}(\tau).$$

- $d_{ds}(\tau)$: delay-sensitive demand.
- $d_{dt}(\tau)$: delay-tolerant demand.
 - λ_{max} : maximal allowed delay.
 - $Q(\tau)$: total delay-tolerant demand in the queue.

Possible Application

Online Control Decisions

Constraints
Stochastic Constrained Cost Minimization Problem

Demand Side

$$d(\tau) = d_{ds}(\tau) + d_{dt}(\tau).$$

- $d_{ds}(\tau)$: delay-sensitive demand.
- $d_{dt}(\tau)$: delay-tolerant demand.
 - λ_{max} : maximal allowed delay.
 - $Q(\tau)$: total delay-tolerant demand in the queue.
 - $s_{dt}(\tau) = \gamma(\tau)Q(\tau)$: served delay-tolerant demand.

Online Control Decisions

Constraints

Stochastic Constrained Cost Minimization Problem

Update of the Delay-tolerant Demand Queue

Update of the delay-tolerant demand queue:

$$Q(\tau+1) = \max(Q(\tau) - s_{dt}(\tau), 0) + d_{dt}(\tau). \tag{2}$$

Online Control Decisions

Constraints
Stochastic Constrained Cost Minimization Problem

Dynamics of UPS Battery Level

• $b_{rc}(\tau) = s(\tau) - d_{ds}(\tau) - s_{dt}(\tau)$: energy recharged to the battery.

Online Control Decisions

Constraints

Stochastic Constrained Cost Minimization Problem

Dynamics of UPS Battery Level

- $b_{rc}(\tau) = s(\tau) d_{ds}(\tau) s_{dt}(\tau)$: energy recharged to the battery.
- $b_{dc}(\tau) = d_{ds}(\tau) + s_{dt}(\tau) s(\tau)$: energy discharged to the supplement the supply.

Online Control Decisions

Constraints

Stochastic Constrained Cost Minimization Problem

Update of UPS Battery Level

Update of UPS battery level:

$$b(\tau+1) = \min(b(\tau) + b_{rc}(\tau)\eta_c - b_{dc}(\tau)\eta_d, B_{max}), \quad (3)$$

where B_{max} is the maximum battery capacity, η_c is recharging efficiency and η_d is the discharging efficiency.

Possible Application

Online Control Decisions
Constraints
Stochastic Constrained Cost Minimization Problem

Matching Demand and Supply

At each fine-grained time slot τ ,

$$s(\tau) + b_{dc}(\tau) - b_{rc}(\tau) = d_{ds}(\tau) + \gamma(\tau)Q(\tau). \tag{4}$$

Online Control Decisions
Constraints
Stochastic Constrained Cost Minimization Problem

Maximal Energy Supply from Grid

The maximal amount energy from grid at τ is limited by P_{grid} .

$$0 \le g_{bef}(t)/T + g_{rt}(\tau) \le P_{grid}. \tag{5}$$

Online Control Decisions
Constraints
Stochastic Constrained Cost Minimization Problem

Guaranteeing Dealy-tolerant Demand Deadline

To guarantee the maximal deadline λ_{max} , any control policy should satisfy

$$Q(\tau) < Q_{max}, \tag{6}$$

where Q_{max} is the maximal backlog.

Online Control Decisions
Constraints
Stochastic Constrained Cost Minimization Problem

Ensuring Datacenter Availability

To avoid discretionary UPS discharging, UPS battery has a minimum energy level B_{min} .

$$B_{min} \le b(\tau) \le B_{max}.$$
 (7)

UPS battery also has constraints on the maximal recharge and discharge energy.

$$0 \le b_{rc}(\tau) \le B_{max}^c, 0 \le b_{dc}(\tau) \le B_{max}^d.$$
 (8)

Online Control Decisions
Constraints
Stochastic Constrained Cost Minimization Problem

UPS Battery Lifetime

The maximum discharging and charging number N_{max} during the time horizon t satisfies

$$0 \le \sum_{\tau=0}^{t-1} n(\tau) \le N_{max},\tag{9}$$

where $n(\tau) = 1$ if $b_{rc}(\tau) > 0$ or $b_{dc}(\tau) > 0$, 0 otherwise.

Online Control Decisions
Constraints
Stochastic Constrained Cost Minimization Problem

UPS Battery Operation Cost

If a UPS costs C_{buy} to purchase and it can sustain C_{cycle} charge/discharge cycles, then the cost of battery charging and discharging per time is $C_b = C_{buy}/C_{cycle}$. At time τ , the UPS operation cost is $n(\tau)C_b$

Online Control Decisions Constraints Stochastic Constrained Cost Minimization Problem

Stochastic Constrained Cost Minimization Problem

At each fine-grained time slot τ , the operation cost is

$$Cost(\tau) = g_{bef}(t) / Tp_{lt}(t) + g_{rt}(\tau)p_{rt}(\tau) + n(\tau)C_b.$$
 (10)

The objective is to solve the following stochastic cost minimization problem P1

$$\min_{\substack{g_{bef}, g_{rt}, \gamma \\ \text{s.t.}}} Cost_{av} \triangleq \liminf_{t \to \infty} \frac{1}{t} \sum_{\tau=0}^{t-1} \mathbb{E}[Cost(\tau)]$$
s.t.
$$\forall \tau : \text{constraints } (4)(5)(6)(7)(8)(9).$$

An Optimal Offline Algorithm

Lemma 1: In every optimal solution of the optimization problem **P1**, it holds that $\forall \tau$, $g_{rt}(\tau) \equiv 0$ or $p_{rt}(\tau) \equiv 0$ *.

Workload Delay-Aware Virtual Queue

In order to guarantee the maximum delay λ_{max} , a delay-aware virtual queue Y(t) is defined.

$$Y(t+1) = \max[Y(t) - s_{dt}(t) + \epsilon 1_{Q(t)>0}, 0], \quad (11)$$

where $\epsilon 1_{Q(t)>0}$ is an indicator variable that is 1 if Q(t)>0 and 0 otherwise.

Datacenter Availability-Aware Virtual Queue

In order to constraint (7), X(t) is defined to track the battery level.

$$X(t) = b(t) - U_{max} - B_{min} - B_{max}^{d} \eta_{d}.$$
 (12)

The dynamics of X(t) is given as

$$X(t+1) = \min[B_{max}, X(t) + b_{rc}(t)\eta c - b_{dc}(t)\eta_d].$$
 (13)

Two-Timescale Lyapunov Optimization

 $\Theta(t) = [Q(t), X(t), Y(t)]$ is a concatenated vector of the actual and virtual queues. The quadratic Lyapunov function is defined as

$$L(\Theta(t)) \triangleq \frac{1}{2}[Q^2(t) + X^2(t) + Y^2(t)].$$

The T-slot conditional Lyapunov drift is defined as

$$\Delta_T (\Theta(t)) \triangleq \mathbb{E}[L(\Theta(t+T)) - L(\Theta(t))|\Theta(t)].$$

The drift-plus-penalty term every T slots is defined as

$$\Delta_T \left(\Theta(t) \right) + V \mathbb{E} \left\{ \sum_{\tau=t}^{t+T-1} Cost(\tau) | \Theta(t) \right\},\,$$

where V is a control parameter.

Background Related Work Salient Features Lyapunov Optimization for Cost Minimization Online Control Algorithm Design Possible Application

Drift-plus-Penalty-Bound

Theorem 1: (Drift-plus-Penalty Bound) Let V > 0, $\epsilon > 0$, $T \geq 1$ and $t = kT, \tau \in [t, t + T - 1]$. To ensure twotimescale power purchasing $0 \le g_{bef}(t)/T + g_{rt}(\tau) \le P_{grid}$, demand management decision $\gamma(\tau) \in [0,1]$, battery level $b(\tau) \in [B_{min}, B_{max}]$ and demand backlog $Q(t) < Q_{max}$ under any operation actions, the drift-plus-penalty satisfies:

$$\Delta_{T}(\Theta(t)) + V \mathbb{E} \{ \sum_{\tau=t}^{t+T-1} Cost(\tau) | \Theta(t) \}$$
(19)
$$\leq H_{1}T + V \mathbb{E} \{ \sum_{\tau=t}^{t+T-1} Cost(\tau) | \Theta(t) \}$$

$$- \mathbb{E} \{ \sum_{\tau=t}^{t+T-1} Q(\tau) [s_{dt}(\tau) + d_{dt}(\tau)] | \Theta(t) \}$$

$$+ \mathbb{E} \{ \sum_{\tau=t}^{t+T-1} X(\tau) [b_{rc}(\tau) - b_{dc}(\tau)] | \Theta(t) \}$$

$$+ \mathbb{E} \{ \sum_{\tau=t}^{t+T-1} Y(\tau) [\epsilon - s_{dt}(\tau)] | \Theta(t)] \}$$

$$H_{1} = S_{ttr}^{dt} + \frac{1}{2} [D_{trox}^{dt} + B_{trox}^{c} \gamma_{c}^{2} + B_{trox}^{d} \gamma_{d}^{2} + \epsilon^{2}].$$

Relaxed Optimization Problem

Approximate near future statistics as the current statistics:

$$Q(\tau) = Q(t)$$
, $X(\tau) = X(t)$ and $Y(\tau) = Y(t)$ for $t < \tau \le t + T - 1$.

Corollary 1: (Loosening Drift-plus-Penalty Bound) Let $V>0,\ \epsilon>0$ and $T\geq 1$. Considering Theorem 1 under approximation, the drift-plus-penalty term satisfies:

$$\Delta_{T}(\Theta(t)) + V\mathbb{E}\left\{\sum_{\tau=t}^{t+T-1} Cost(\tau)|\Theta(t)\right\} (20)$$

$$\leq H_{2}T + V\mathbb{E}\left\{\sum_{\tau=t}^{t+T-1} Cost(\tau)|\Theta(t)\right\}$$

$$- \mathbb{E}\left\{\sum_{\tau=t}^{t+T-1} Q(t)[s_{dt}(\tau) + d_{dt}(\tau)]|\Theta(t)\right\}$$

$$+ \mathbb{E}\left\{\sum_{\tau=t}^{t+T-1} X(t)[b_{rc}(\tau) - b_{dc}(\tau)]|\Theta(t)\right\}$$

$$+ \mathbb{E}\left\{\sum_{\tau=t}^{t+T-1} Y(t)[\epsilon - s_{dt}(\tau)]|\Theta(t)\right\},$$
where $H_{2} = H_{1} + T(T - 1)B_{rog}^{c} \mathcal{I}_{t}^{2} + T(T - 1)\epsilon^{2}.$

Online Control Algorithm

Algorithm 1: SmartDPSS Online Control Algorithm.

1) Long-term Ahead Planning: At each time $t = kT(k \in \mathbb{Z}_+)$, observing system states Q(t), Y(t), renewable energy r(t), power demand $d_{dx}(t)$, maximum available battery level b(t) and energy prices $p_{tt}(t)$, DPSS decides the optimal power procurement in the long-term market $g_{tt}(t)$ to minimize the following problem P4:

$$\min_{g_{hef}} g_{hef}(t) \left[V p_{lt}(t) - Q(t) - Y(t) \right]$$
s.t. $g_{hef}(t) / T + r(t) + b(t) \ge d_{ds}(t),$
 $0 \le g_{hef}(t) / T \le P_{meit}, B_{min} \le b(t) \le B_{max}.$

2) Real-time Balancing: At each fine-grained time slot $\tau \in [t, t + T - 1]$, with system statistics Q(t), X(t), Y(t), renewable production $r(\tau)$, power demand $d(\tau)$ and energy prices $p_{r+}(\tau)$, DPSS performs real-time procurement $p_{r+}(\tau)$ and delay-tolerant demand management decision $\gamma(\tau)$ to minimize the following optimization problem PS:

$$\begin{split} \prod_{g_{rt}, \gamma} & \sum_{\tau=t}^{t+T-1} \left\{ g_{rt}(\tau) \left[V_{Prt}(\tau) - Q(t) - Y(t) \right] \right. \\ & + \left. \gamma(\tau) \left[Q(t)^2 - Q(t)Y(t) \right] + Vn(\tau)C_b + VW(\tau) \right. \\ & + \left. \left[Q(t) + X(t) + Y(t) \right] [b_{rc}(\tau) - b_{dc}(\tau)] \right\} \\ \text{s.t.} & \quad (4)(5)(6)(7)(8)(9). \end{split}$$

 Queue Update: Update the actual and virtual queues using Eq. (2) (3) (12) (15).

Impact of Control Parameter V

Impact of Long-term Time Slot T

Impact of Battery Size and Two-timescale Markets

Possible Application

Cloud Service

Possible Application

- Cloud Service
 - How to minimize long-term cost by choosing among different pricing options.

Thanks!