Prova scritta di Logica Matematica 27 luglio 2021

Cognome Nome Matricola

Indicate su ogni foglio che consegnate cognome, nome e numero di matricola.

Nella prima parte ogni riposta corretta vale 1, ogni risposta sbagliata -1, ogni risposta non data 0. Il punteggio minimo per superare questa parte è 6. Il punteggio della prima parte viene sommato a quello della seconda per ottenere il voto dello scritto.

Nella seconda parte per ogni esercizio è indicato il relativo punteggio.

	PRIMA PARTE			
	Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.			
a.	$\neg(\neg p \to \neg q) \lor (\neg s \land t) \vDash \neg((p \land \neg t) \lor \neg(s \to q)).$	\mathbf{V}	\mathbf{F}	
b.	Se $F \vDash \neg G$ e $G \vDash \neg F$ allora F e $\neg G$ sono logicamente equivalenti.	$\overline{\mathbf{V}}$	F	
c.	Esiste un insieme di Hintikka che contiene le formule			
	$\neg (p \to \neg q), \neg q \lor r \in r \to s.$	\mathbf{V}	\mathbf{F}	
$\mathbf{d}.$	Sia I l'interpretazione con $D^I = \{A, B, C, D, E\},\$			
	$f^{I}(A) = C, f^{I}(B) = D, f^{I}(C) = A, f^{I}(D) = E, f^{I}(E) = C, p^{I} = \{A, D, E\} $ e			
	$r^{I} = \{(A, B), (A, E), (B, B), (B, D), (C, C), (D, D), (E, A), (E, D)\}.$			
	Allora $I \models \forall x (r(x, f(x)) \rightarrow \exists y (p(y) \land r(f(x), y))).$	$\lfloor \mathbf{V} floor$	\mathbf{F}	
e.	Quante sono le variabili libere nella seguente formula?		_	
	$\forall x \neg \exists y (r(x, y) \rightarrow p(y) \lor r(x, y)) \rightarrow \forall z (\exists u r(z, u) \lor r(u, z))$	$2 \mid 3$	4	
f.	$\exists z (p(z) \to r(z, f(z))) \equiv \exists x p(x) \to \exists y r(y, f(y)).$	\mathbf{V}	\mathbf{F}	
g.	La formula $\exists z(z=a \land p(a) \land \neg p(z))$ è soddisfacibile nella logica con uguaglianza.	\mathbf{V}	\mathbf{F}	
h.	Se \sim è una relazione di congruenza su I			
	è possibile che $d \sim d'$ e $f^I(d) \nsim f^I(d')$.	$oxed{\mathbf{V}}$	\mathbf{F}	
i.	Se F è un enunciato soddisfacibile allora			
	qualunque tableaux sistematico per F è aperto.	\mathbf{V}	\mathbf{F}	
j.	Questo albero rappresenta una deduzione naturale corretta:	\mathbf{V}	\mathbf{F}	
	$\frac{\exists y p(y) \qquad \frac{[p(c)]^1 \qquad p(c) \to q(a)}{q(a)}}{q(a)}_1$			
	$\exists y p(y)$ $q(a)$			
	$\frac{g'(\sigma)}{g(g)}$ 1			
1,	Nol riquadro serivate l'enunciate del Lemma di Sestituzione per termini			
ĸ.	Nel riquadro scrivete l'enunciato del Lemma di Sostituzione per termini.			

SECONDA PARTE

Usate il retro del foglio per svolgere tutti gli esercizi salvo il primo e l'ultimo, per cui c'è spazio sufficiente sotto l'esercizio stesso.

1. Sia $\mathcal{L} = \{c, m, s, u, =\}$ un linguaggio con uguaglianza, dove c è un simbolo di costante, m è un simbolo di funzione unario, e s e u sono simboli di relazione binari. Interpretando c come "Chiara", m(x) come "la maestra di x", s(x,y) come "x è severo con y" e u(x,y) come "x ubbidisce ad y", traducete la frase:

3pt

5pt

- "qualcuno che ubbidisce alla maestra di Chiara è severo con tutti quelli che hanno la stessa maestra di Chiara ma non le ubbidiscono."
- 2. Sia $\mathcal{L} = \{f, p\}$ il linguaggio con un simbolo di funzione unario ed un simbolo di relazione unario. Siano I e J le seguenti interpretazioni per \mathcal{L} :

$$\begin{split} D^I = \{A, B, C, D\}, \quad f^I(A) = C, f^I(B) = A, f^I(C) = D, f^I(D) = B, \quad p^I = \{B, C\}; \\ D^J = \mathbb{Z}, \quad f^J(n) = n + 3, \quad p^J = \{n : n \text{ \`e dispari}\}\,. \end{split}$$

- Definite un omomorfismo forte di J in I;
- \bullet I e J sono elementarmente equivalenti?
- Consideriamo il linguaggio $\mathcal{L} \cup \{=\}$ e espandiamo I e J a due interpretazioni normali. Scrivete un enunciato del nuovo linguaggio che sia soddisfatto da I ma non da J.
- 3. Dimostrate che 5pt

$$\forall x(p(x) \lor \forall y(p(y) \to r(y,x))), \exists x(p(x) \land \neg p(h(x))) \vDash \exists z \, r(z,h(z)).$$

4. Usando il metodo dei tableaux dimostrate che l'insieme di enunciati

5. Dimostrate, usando solo le regole della deduzione naturale predicativa (comprese le sei regole derivate) che

 $\{\exists z(p(z) \land \neg \exists y \, r(z,y)), \forall x \, \forall y(q(x) \land p(y) \rightarrow r(y,x)), \exists u \, q(u)\}$

5pt

$$\forall x (p(x) \to \exists y \, r(x, f(y))), \forall w \, p(f(w)), \forall z (\exists u \, r(u, z) \to \neg p(z)) \rhd \neg p(c).$$

6. Nello spazio qui sotto, usando l'algoritmo di Fitting, mettete in forma normale 2pt disgiuntiva la formula

$$\neg ((p \land \neg w \to \neg (q \lor \neg r)) \to \neg (s \land \neg (t \to u))).$$

Soluzioni

- a. V come si verifica per esempio con le tavole di verità.
- **b.** F per esempio quando $F
 eq p \land \neg q \in G
 eq q$.
- **c.** V per esempio $\{\neg(p \to \neg q), \neg q \lor r, r \to s, p, \neg \neg q, q, r, s\}$ è un insieme di Hintikka.
- **d.** V perché l'unico $d \in D^I$ tale che $I, \sigma[x/d] \models r(x, f(x))$ è $B \in I, \sigma[x/B, y/D] \models p(y) \land r(f(x), y)$.
- e. 1 l'ultima occorrenza di u è l'unica occorrenza libera di una variabile in questa formula.
- **f.** F è facile costruire un'interpretazione I che soddisfa l'enunciato a sinistra del simbolo di equivalenza logica (ad esempio perché esiste $d \notin p^I$), ma non quello a sinistra.
- **g.** F se I è un'interpretazione normale e $d \in D^I$ è tale che $I, \sigma[z/d] \models z = a$ deve essere $d = a^I$ e quindi $a^I \in p^I$ e $d \notin p^I$ non possono essere entrambe vere.
- **h.** F per il secondo punto nella definizione di relazione di congruenza (Definizione 10.20 delle dispense).
- i. V per il teorema di correttezza (Teorema 11.29 delle dispense), che si applica a tutti i tableaux, anche quelli sistematici.
- **j.** F perché nelle applicazioni della regola $(\exists e)^g$ si possono utilizzare solo variabili; si noti inoltre che $\exists y \ p(y), p(c) \rightarrow q(a) \nvDash q(a)$.
- **k.** Siano σ uno stato di un'interpretazione I, x una variabile e s e t due termini. Allora $\sigma(s\{x/t\}) = \sigma[x/\sigma(t)](s)$.
- 1. $\exists x(u(x, m(c)) \land \forall y(m(y) = m(c) \land \neg u(y, m(y)) \rightarrow s(x, y))).$
- **2.** Sia φ l'omomorfismo forte di J in I che cerchiamo di costruire. Se $n \in \mathbb{Z}$ è tale che $n \equiv 0 \mod 4$ si ha $n \notin p^J$ e deve essere $\varphi(n) \in \{A, D\}$. Supponiamo $\varphi(n) = A$ in questo caso. Allora, $f^J(n) \equiv 3 \mod 4$ e perciò per gli $m \in \mathbb{Z}$ tali che $m \equiv 3 \mod 4$ deve essere $\varphi(m) = f^I(A) = C$ (notiamo che in questo caso $m \in p^J$ e $C \in p^I$). Ripetendo il ragionamento si ottiene che se $\ell \equiv 2 \mod 4$ si deve porre $\varphi(\ell) = f^I(C) = D$ (in questo caso $\ell \notin p^J$ e $D \notin p^I$). Infine se $\ell \equiv 1 \mod 4$ deve essere $\varphi(k) = f^I(D) = B$ (in questo caso $\ell \in p^J$ e $\ell \in p^I$). Riassumendo, definiamo

$$\varphi(n) = \begin{cases} A, & \text{se } n \equiv 0 \mod 4; \\ B, & \text{se } n \equiv 1 \mod 4; \\ D, & \text{se } n \equiv 2 \mod 4; \\ C, & \text{se } n \equiv 3 \mod 4. \end{cases}$$

Si verifica che la φ così definita è effettivamente un omomorfismo forte.

- Dato che l'omomorfismo forte di J in I definito nel punto precedente è suriettivo, possiamo utilizzare il Corollario 10.14 delle dispense e concludere che I e J sono elementarmente equivalenti.
- L'enunciato $\exists x \,\exists y \,\forall z (p(z) \to z = x \vee z = y)$ è soddisfatto da I ma non da J.
- 3. Supponiamo che I sia un'interpretazione che soddisfa i due enunciati a sinistra del simbolo di conseguenza logica, che indichiamo con F e G. Il nostro obiettivo è dedurre che I soddisfa anche l'enunciato a destra.

Dato che $I \vDash G$ esiste $d_0 \in D^I$ tale che $d_0 \in p^I$ e $h^I(d_0) \notin p^I$. Dato che $I \vDash F$ si ha in particolare $I, \sigma[x/h^I(d_0)] \vDash p(x) \lor \forall y(p(y) \to r(y,x))$ da cui, dato che $I, \sigma[x/h^I(d_0)] \nvDash p(x)$ per quanto ottenuto in precedenza, segue che $I, \sigma[x/h^I(d_0)] \vDash \forall y(p(y) \to r(y,x))$.

In particolare $I, \sigma[x/h^I(d_0), y/d_0] \vDash p(y) \to r(y, x)$. Dato che $I, \sigma[x/h^I(d_0), y/d_0] \vDash p(y)$ deve essere $(d_0, h^I(d_0)) \in r^I$. Perciò $I, \sigma[z/d_0] \vDash r(z, h(z))$, da cui si deduce che $I \vDash \exists z \, r(z, h(z))$ come richiesto.

4. Per mostrare l'insoddisfacibilità del'insieme di enunciati dobbiamo costruire (utilizzando l'Algoritmo 11.50 e le Convenzioni 11.19 e 11.21 delle dispense) un tableau chiuso con la radice etichettata dall'insieme di enunciati.

Indichiamo con F, G e H le γ -formule $\forall x \forall y (q(x) \land p(y) \rightarrow r(y,x)), \neg \exists y \, r(a,y)$ e $\forall y (q(b) \land p(y) \rightarrow r(y,b)).$

$$\begin{array}{c|c} \underline{\exists z(p(z) \land \neg \exists y\, r(z,y))}, F, \exists u\, q(u) \\ & | \\ \underline{p(a) \land G}, F, \exists u\, q(u) \\ & | \\ p(a), G, F, \underline{\exists u\, q(u)} \\ & | \\ p(a), G, F, \underline{H}, q(b) \\ & | \\ p(a), G, F, H, \underline{q(b) \land p(a)} \rightarrow r(a,b), q(b) \\ & | \\ p(a), G, F, H, \underline{\neg (q(b) \land p(a))}, q(b) & p(a), \underline{G}, F, H, r(a,b), q(b) \\ & \otimes & \otimes & \otimes \\ \end{array}$$

Si noti l'importanza di scegliere in modo opportuno le istanze delle γ -formule. Con altre scelte il tableau cresce rapidamente di dimensione.

5. Ecco una deduzione naturale che mostra quanto richiesto:

6. Utilizziamo l'Algoritmo 3.22 delle dispense, adottando le semplificazioni suggerite nella Nota 3.30:

$$\begin{split} \left[\left\langle \neg \left((p \wedge \neg w \to \neg (q \vee \neg r)) \to \neg (s \wedge \neg (t \to u)) \right) \right\rangle \right] \\ \left[\left\langle p \wedge \neg w \to \neg (q \vee \neg r), s \wedge \neg (t \to u) \right\rangle \right] \\ \left[\left\langle p \wedge \neg w \to \neg (q \vee \neg r), s, \neg (t \to u) \right\rangle \right] \\ \left[\left\langle p \wedge \neg w \to \neg (q \vee \neg r), s, t, \neg u \right\rangle \right] \\ \left[\left\langle \neg (p \wedge \neg w), s, t, \neg u \right\rangle, \left\langle \neg (q \vee \neg r), s, t, \neg u \right\rangle \right] \\ \left[\left\langle \neg p, s, t, \neg u \right\rangle, \left\langle w, s, t, \neg u \right\rangle, \left\langle \neg q, r, s, t, \neg u \right\rangle \right] \end{split}$$

La formula in forma normale disgiuntiva ottenuta è

$$(\neg p \land s \land t \land \neg u) \lor (w \land s \land t \land \neg u) \lor (\neg q \land r \land s \land t \land \neg u).$$