Missing Modality Robustness in Semi-Supervised Multi-Modal Semantic Segmentation

Harsh Maheshwari

Yen-Cheng Liu

Zsolt Kira

Getting segmentation labels is laborious and costly

Getting segmentation labels is laborious and costly

Getting segmentation labels is laborious and costly

Solutions to these challenges

Getting segmentation labels is laborious and costly

Semi-Supervised

Getting segmentation labels is laborious and costly

Semi-Supervised

Getting segmentation labels is laborious and costly

Semi-Supervised

Guaranteeing the presence of all modalities is difficult

Robustness to Missing-Modalities

Linear Fusion

For low-label setting, a multi-modal model with simple fusion mechanism

M3L: Multi-modal teacher for Masked Modality Learning

A Semi-Supervised framework to increase robustness to Missing-Modalities

Linear Fusion

For low-label setting, a multi-modal model with simple fusion mechanism

M3L: Multi-modal teacher for Masked Modality Learning

A Semi-Supervised framework to increase robustness to Missing-Modalities

For low-label setting, a multi-modal model with simple fusion mechanism and no extra trainable parameters

is desirable

simple fusion mechanism

no extra trainable parameters

Linear Fusion

simple fusion mechanism

no extra trainable parameters

Linear Fusion

simple fusion mechanism

no extra trainable parameters

Linear Fusion

Linear Fusion

For low-label setting, a multi-modal model with simple fusion mechanism

M3L: Multi-modal teacher for Masked Modality Learning

A Semi-Supervised framework to increase robustness to Missing-Modalities

Linear Fusion

For low-label setting, a multi-modal model with simple fusion mechanism

M3L: Multi-modal teacher for Masked Modality Learning

A Semi-Supervised framework to increase robustness to Missing-Modalities

(b) Unsupervised

(c) Inference with missing modality

M3L: as unimodal semi-supervised segmentation framework

Training with both modalities

Inference with RGB only

M3L: as unimodal semi-supervised segmentation framework

Contributions

Linear Fusion

Simple fusion mechanism No extra trainable parameters

M₃L

Semi-Supervised
Robustness to
Missing-Modalities

Thank you for listening!

Email: <u>harsh.maheshwari@gatech.edu</u>

Code: https://github.com/harshm121/M3L

Project Page: https://harshm121.github.io/projects/m31

