Aufgabe 1. Induktionsanfang: Für n = 0 gilt

$$\sum_{k=0}^{0} (-1)^k \binom{m+1}{k} = (-1)^0 \binom{m}{0}$$
$$(-1)^0 \binom{m+1}{0} = (-1)^0 \binom{m}{0}$$
$$1 = 1$$

nachdem für beliebiges $x \in \mathbb{N}$ gilt, dass $x^0 = 1$ und $\binom{x}{0} = 1$.

Induktionsvorraussetzung: Angenommen $n \in \mathbb{N}$ ist so, dass

$$\sum_{k=0}^{n} (-1)^k \binom{m+1}{k} = (-1)^n \binom{m}{n} \tag{1}$$

gilt.

Induktionsschritt: Zu zeigen ist, dass dann auch

$$\sum_{k=0}^{n+1} (-1)^k \binom{m+1}{k} = (-1)^{n+1} \binom{m}{n+1}$$

$$\left(\sum_{k=0}^n (-1)^k \binom{m+1}{k}\right) + (-1)^{n+1} \binom{m+1}{n+1} = (-1)^{n+1} \binom{m}{n+1}$$

$$(-1)^n \binom{m}{n} + (-1)^{n+1} \binom{m+1}{n+1} = (-1)^{n+1} \binom{m}{n+1}$$
(3)

gilt. In (3) wurde (1) angewendet. Wenn n gerade dann $(-1)^n = 1$, andernfalls $(-1)^n = -1$. Angenommen n gerade (also n + 1 ungerade), dann gilt für (3), dass

$$\binom{m}{n} - \binom{m+1}{n+1} = -\binom{m}{n+1}$$
$$-\binom{m+1}{n+1} = -\binom{m}{n+1} - \binom{m}{n}$$
$$\binom{m+1}{n+1} = \binom{m}{n} + \binom{m}{n+1}.$$

Angenommen n ungerade (also n+1 gerade), dann gilt für (3), dass

$$-\binom{m}{n} + \binom{m+1}{n+1} = \binom{m}{n+1}$$
$$\binom{m+1}{n+1} = \binom{m}{n} + \binom{m}{n+1}.$$

Gemäß der Rekurrenz des Pascal-Dreiecks $\binom{m+1}{n+1} = \binom{m}{n} + \binom{m}{n+1}$ ist nun (2) bewiesen.

Aufgabe 2 Wir wissen $F_0 = 0$ und $F_1 = 1$.

Induktionsanfang: Für n = 0 gilt

$$F_0 = (2F_1 - F_0)F_0$$

$$0 = (2 - 0)0$$

$$0 = 0$$

$$F_1 = F_1^2 + F_0^2$$

$$1 = 1 + 0$$

$$1 = 1$$

Induktionsvorraussetzung: Angenommen $n \in \mathbb{N}$ ist so, dass

$$F_{2n} = (2F_{n+1} - F_n)F_n$$
 $F_{2n+1} = F_{n+1}^2 + F_n^2$

gilt.

Induktionsschritt: Zu zeigen ist, dass dann auch

$$F_{2n+2} = (2F_{n+2} - F_{n+1})F_{n+1} (4) F_{2n+3} = F_{n+2}^2 + F_{n+1}^2 (5)$$

gilt. Wir wissen $F_{2n+2} = F_{2n+1} + F_{2n}$ und somit

$$(2F_{n+2} - F_{n+1})F_{n+1} = F_{n+1}^2 + F_n^2 + (2F_{n+1} - F_n)F_n$$

$$(2F_{n+2} - F_{n+1})F_{n+1} = F_{n+1}^2 + F_n^2 + 2F_{n+1}F_n - F_n^2$$

$$(2F_{n+2} - F_{n+1})F_{n+1} = F_{n+1}^2 + 2F_{n+1}F_n$$

$$2F_{n+2} - F_{n+1} = F_{n+1} + 2F_n$$

$$F_{n+2} = F_{n+1} + F_n,$$

womit (4) bewiesen ist.

Wir wissen $F_{2n+3} = F_{2n+2} + F_{2n+1}$ und somit

$$F_{n+2}^2 + F_{n+1}^2 = (2F_{n+2} - F_{n+1})F_{n+1} + F_{n+1}^2 + F_n^2$$

$$F_{n+2}^2 = (2F_{n+2} - F_{n+1})F_{n+1} + F_n^2.$$

Nachdem $F_{n+2} - F_{n+1} = F_n$ und somit $2F_{n+2} - F_{n+1} = F_{n+2} + F_{n+2} - F_{n+1} = F_{n+2} + F_n$, gilt

$$F_{n+2}^2 = (F_{n+2} + F_n)F_{n+1} + F_n^2$$

$$F_{n+2}^2 - F_n^2 = (F_{n+2} + F_n)F_{n+1}$$

$$F_{n+2} - F_n = F_{n+1}$$

$$F_{n+2} = F_{n+1} + F_n,$$

womit (5) bewiesen ist.

Aufgabe 3

a) Wir haben
$$f(x)=rx(1-x)$$
, es gilt $f'(x)=-2rx+r$ und $f''(x)=-2r$. An der Stelle
$$f'(x)=0=-2rx+r$$

$$\frac{-r}{-2r}=x$$

$$\frac{1}{2}=x$$

befindet sich eine Extremstelle. Nachdem f'' für unser r immer negativ ist, ist an dieser Stelle das Maximum von f. Die Funktion $f(x_n)$ modelliert den Wert x_{n+1} . Somit ist n_{x+1} das Maximum wenn $x_n = \frac{1}{2}$, das größtmögliche x_{n+1} kann nun durch

$$x_{n+1} = r \cdot \frac{1}{2} \left(1 - \frac{1}{2} \right) = \frac{1}{4}r$$

beschrieben werden. Nachdem 0 < r < 4 gilt demzufolge $0 < x_{n+1} < 1$.

b) Induktionsanfang: Zu zeigen ist, dass $x_1 < 1$. Unter der Annahme $0 \le x_0 \le 1$ ist x_1 nach a) immer kleiner als 1.

Induktionsvorraussetzung: Angenommen $n \in \mathbb{N}$ ist so, dass $x_n < \frac{1}{n}$ gilt.

Induktionsschritt: Zu zeigen ist nun, dass $x_{n+1} < \frac{1}{n+1}$. Es gilt $x_{n+1} = rx_n(1-x_n)$ und hierfür $rx_n(1-x_n) \le x_n(1-x_n)$ nachdem $r \le 1$, somit wird r nicht weiter beachtet. Wir wissen $x_n(1-x_n) < \frac{1}{n}(1-\frac{1}{n})$ nachdem $x_n < \frac{1}{n}$. Es gilt

$$\frac{1}{n}(1-\frac{1}{n}) = \frac{n-1}{n^2} = \frac{(n-1)(n+1)}{n^2(n+1)} = \frac{n^2-1}{n^2} \cdot \frac{1}{n+1} = \left(1-\frac{1}{n^2}\right) \cdot \frac{1}{n+1},$$

woraus folgt, dass $\frac{n-1}{n^2} \le \frac{1}{n+1}$ beziehungsweise in weiterer Folge $x_n < \frac{1}{n} < \frac{1}{n+1}$, was zu zeigen war.

c) Man betrachte f aus a). Im gegebenen Fall muss gelten, dass

$$n = f(n) = rn(1 - n)$$

$$\frac{1}{r} = 1 - n$$

$$\frac{r - 1}{r} = n.$$
(6)

Man wähle nun also ein $n \in \mathbb{N}$ mit $x_{n+1} = \frac{r-1}{r}$, dann gilt gemäß (6) $x_n = x_{n+1}$.