Design and analysis of algorithms

Exam 4.11.2016

Instructions:

Answer using Finnish or English language

1. There are 10 algorithms and 10 claims. Connect each algorithm with one claim that is true for the algorithm. Do it by drawing a line between them. Points are given +1 for a correct and -1 for an incorrect link. Leave those unlinked that you do not know answer (don't guess).

Algorithm:

Brute force Christofides Djikstra

Divide-and-Conquer MST

Insertion sort Karatsuba-Ofman

Kruskal Las Vegas Quicksort Satisfiability

Claim:

Dynamic programming

Works in $O(N^2)$ in the worst case

Greedy algorithm

Solves both MST and TSP Works in $O(N^{1.58})$ time Works in $O(N^{1.5})$ time

Does not always find solution

It is not an algorithm

Works in O(N) in the best case

Works in $O(2^N)$ time

- 2. Company X published a new sorting algorithm that works as follows. It first calculates $k=\operatorname{SQRT}(N)$, where N is the number of elements to be sorted. It then proceeds by sorting the first bunch containing elements 1 to k. Then it sorts the next bunch from k+1 to 2k, and so on, until all elements have been sorted. Now solve the following tasks:
 - Which type of algorithm is it?
 - Is this algorithm correct? If yes, give proof. If not, fix it.
 - Give pseudo code of the algorithm.
 - Analyze its time complexity.
 - Give five other existing sorting algorithms deal with during the course.
 - List them from fastest to slowest in terms of time complexities.
 - Compare the new sorting algorithms to the existing ones.

- **3.** Are the following claims TRUE or FALSE? Answer only if you know. Don't guess. Correct answer gives +1 point and incorrect -1 point. If no answer then 0 points. No arguments needed but allowed if you think your answer requires clarification.
 - a. $100 \cdot n^2 = O(n^{100})$
 - b. $a^{\log n} = n^{\log a}$
 - c. Heapsort is better than Mergesort in that it does not use extra memory.
 - d. Heapsort takes O(N) in the best case.
 - e. To find a solution to 8-Queens problem is NP-hard.
 - f. Christofides algorithm can provide result that is 40% longer than the optimal solution, but never solution that is longer than 60%.
 - g. Algorithm Z finds the solution to a problem Q with the probability of 90%. It is therefore 10%-approximation algorithm.
 - h. If there exists an NP-hard problem that can be solved polynomial time by non-deterministic Turing machine, then P=NP.
 - i. Minimum Spanning Tree problem belongs to the class NP.
 - j. There exists NP-hard problem solvable in polynomial time by Turing machine.