Distributed Density Estimation

Amartya Shankha Biswas *

1 Random Coloring of a Graph

We wish to locally sample an uniformly random coloring of a graph. A q-coloring of a graph G = (V, E) is a function $\sigma : V \to [q]$, such that for all $(u, v) \in E$, $\sigma_u \neq \sigma_v$. We will consider only bounded degree graphs, i.e. graphs with max degree $\leq \Delta$. Otherwise, the coloring problem becomes NP-hard.

cite

Using the technique of path-coupling, Vigoda showed that for $q > 2\Delta$, one can sample an uniformly random coloring by using a MCMC algorithm.

1.1 Glauber Dynamics

The Markov Chain proceeds in T steps. The state of the chain at time t is given by $\mathbf{X}^t \in [q]^{|V|}$. Specifically, the color of vertex v at step t is \mathbf{X}_v^t .

In each step of the Markov process, a pair $(v,c) \in V \times [q]$ is sampled uniformly at random. Subsequently, if the recoloring of vertex v with color c does not result in a conflict with v's neighbors, i.e. $c \notin \{X_u^t : u \in \Gamma(v)\}$, then the vertex is recolored i.e. $X_v^{t+1} \leftarrow c$.

After running the MC for $T = \mathcal{O}(n \log n)$ steps we reach the stationary distribution (ϵ close), and the coloring is an uniformly random one.

1.2 Local Coloring Algorihhm

Given a vertex v, the local-access generator has to output the color of v after running $T = \mathcal{O}(n \log n) = k \cdot n \log n$ steps of Glauber Dynamics where k is a constant. For this algorithm to work, we will take $q > 2k\Delta \log n = \mathcal{O}(\Delta \log n)$.

^{*}MIT, Cambridge MA 02139. E-mail: asbiswas@mit.edu.

1.3 Modified Glauber Dynamics

Now we define a modified Markov Chain, with each step called an epoch. In the i^{th} epoch, denoted by \mathcal{E}_i ,

- Pick a random permutation $\pi^{(i)}$ of the vertices V.
- Sample n = |V| colors $\langle c_1, c_2, \cdots, c_n \rangle$ from [q].
- Perform the standard update using the pairs $\langle (\pi_1^{(i)}, c_1), (\pi_2^{(i)}, c_2), \cdots, (\pi_n^{(i)}, c_n) \rangle$.

Theorem 1. After $k \log n$ epochs, the Markov Chain is mixed.

First we consider T iterations of the above MC, and the corresponding vertex and color samples.

$$\langle (v_1, c_1), (v_2, c_2), (v_3, c_3), \cdots, (v_T, c_T) \rangle \sim_{\mathcal{U}} (V \times [q])^T$$

A position i in the sequence is labeled "ACCEPT" if at the i^{th} step, v_i was recolored to c_i (no conflicts with neighbors). Otherwise, position i is marked "REJECT".

Given a vertex v, we consider all instances of (v, *), where $* \in [q]$. Let the last such occurrence be (v, c_t) . We now need to compute whether position i was marked "ACCEPT" or "REJECT".

References