Bayesian Inference for Gaussians, Working With Gaussians

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

Jan 14, 2019

Recap: Bayesian Inference for Mean of a Gaussian

• Consider N i.i.d. observations $\mathbf{X} = \{x_1, \dots, x_N\}$ drawn from a one-dim Gaussian $\mathcal{N}(x|\mu, \sigma^2)$

$$p(x_n|\mu, \sigma^2) = \mathcal{N}(x|\mu, \sigma^2) \propto \exp\left[-\frac{(x_n - \mu)^2}{2\sigma^2}\right]$$

$$p(\mu) = \mathcal{N}(\mu|\mu_0, \sigma_0^2)$$

• Due to conjugacy, posterior is also Gaussian: $p(\mu|\mathbf{X}) \propto \exp\left[-\frac{(\mu-\mu_N)^2}{2\sigma_N^2}\right]$ with

$$\begin{array}{lll} \frac{1}{\sigma_N^2} & = & \frac{1}{\sigma_0^2} + \frac{N}{\sigma^2} \\ \\ \mu_N & = & \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \bar{x} \end{array} \qquad \text{(where } \bar{x} = \frac{\sum_{n=1}^N x_n}{N} \text{)} \end{array}$$

• Posterior predictive for a new observation x_* is also Gaussian

$$p(\mathbf{x}_*|\mathbf{X}) = \int p(\mathbf{x}_*|\mu,\sigma^2)p(\mu|\mathbf{X})d\mu = \int \mathcal{N}(\mathbf{x}_*|\mu,\sigma^2)\mathcal{N}(\mu|\mu_N,\sigma_N^2)d\mu = \mathcal{N}(\mathbf{x}_*|\mu_N,\sigma^2+\sigma_N^2)$$
 (can also obtain the above by noting that $\mathbf{x}_* = \mu + \epsilon_*$ where $\mu \sim \mathcal{N}(\mu_N,\sigma_N^2)$ and $\epsilon_* \sim \mathcal{N}(\mathbf{0},\sigma^2)$)

• Exercise: Compute the posterior if $p(\mu) = \mathcal{N}(\mu|\mu_0, \frac{\sigma^2}{\kappa_0})$. Also, what does κ_0 mean intuitively?

Recap: Bayesian Inference for Variance/Precision of a Gaussian

- The Gaussian likelihood: $p(x_n|\mu,\sigma^2) \propto (\sigma^2)^{-1/2} \exp\left[-\frac{(x_n-\mu)^2}{2\sigma^2}\right]$
- Conjugate prior for variance σ^2 is inverse-gamma: $p(\sigma^2|\alpha,\beta) = \mathsf{IG}(\alpha,\beta)$

$$p(\sigma^2) \propto (\sigma^2)^{-(\alpha+1)} \exp\left[-\frac{\beta}{\sigma^2}\right] \qquad \quad (\text{note: } \alpha = \text{shape, } \beta = \text{scale; mean of IG}(\alpha,\beta) = \frac{\beta}{\alpha-1})$$

• Given N i.i.d. observations $\mathbf{X} = \{x_1, \dots, x_N\}$, the posterior over σ^2 will also be inverse-gamma

$$p(\sigma^2|\mathbf{X}) = IG\left(\alpha + \frac{N}{2}, \beta + \frac{\sum_{n=1}^{N}(x_n - \mu)^2}{2}\right)$$

- ullet Likewise, we can infer the posterior over the precision parameter (say $\lambda=1/\sigma^2$)
 - The Gaussian likelihood in precision notation: $p(x_n|\mu,\lambda) = \mathcal{N}(x|\mu,\lambda) = \sqrt{\frac{\lambda}{2\pi}} \exp\left[-\frac{\lambda}{2}(x_n-\mu)^2\right]$
 - Conjugate prior for precision λ is gamma: $p(\lambda|\alpha,\beta) = \text{Gamma}(\alpha,\beta)$

$$p(\lambda) \propto (\lambda)^{(\alpha-1)} \exp[-\beta \lambda]$$
 (note: note: $\alpha = \text{shape}, \ \beta = \text{rate}; \ \text{mean of } \mathsf{Gamma}(\alpha, \beta) = \frac{\alpha}{\beta}$)

- The posterior is also gamma: $p(\lambda|\mathbf{X}) = \text{Gamma}(\alpha + \frac{N}{2}, \beta + \frac{\sum_{n=1}^{N}(x_n \mu)^2}{2})$
- Exercise: Work out (or look up) the posterior predictive $p(x_*|\mathbf{X})$ in these cases (isn't Gaussian)

Bayesian Inference for Both Parameters of a Gaussian

- Goal: Infer the mean and precision of a univariate Gaussian $\mathcal{N}(x|\mu,\lambda^{-1})$
- Given N i.i.d. observations $\mathbf{X} = \{x_1, \dots, x_N\}$, the likelihood will be

$$p(\mathbf{X}|\mu,\lambda) \quad = \quad \prod_{n=1}^N \sqrt{\frac{\lambda}{2\pi}} \exp\left[-\frac{\lambda}{2} (\mathbf{x}_n - \mu)^2\right] \, \propto \left[\lambda^{1/2} \exp\left(-\frac{\lambda \mu^2}{2}\right)\right]^N \exp\left[\lambda \mu \sum_{n=1}^N \mathbf{x}_n - \frac{\lambda}{2} \sum_{n=1}^N \mathbf{x}_n^2\right]$$

ullet Let's choose the following joint distribution as the prior (compare its form with $p(\mathbf{X}|\mu,\lambda)$)

$$p(\mu,\lambda) \propto \left[\lambda^{1/2} \exp\left(-\frac{\lambda\mu^2}{2}\right)\right]^{\kappa_0} \exp\left[\lambda\mu c - \lambda d\right] = \underbrace{\exp\left[-\frac{\kappa_0\lambda}{2}(\mu - c/\kappa_0)^2\right]}_{\text{prop. to a Gaussian}} \underbrace{\lambda^{\kappa_0/2} \exp\left[-\left(d - \frac{c^2}{2\kappa_0}\right)\lambda\right]}_{\text{prop. to a gamma}}$$

The above is known as the Normal-gamma (NG) distribution (product of a Normal and a gamma)

$$p(\mu,\lambda) = \mathcal{N}(\mu|\mu_0,(\kappa_0\lambda)^{-1}) \text{Gamma}(\lambda|\alpha_0,\beta_0) = \text{NG}(\mu,\lambda|\mu_0,\kappa_0,\alpha_0,\beta_0) \qquad \text{(note: μ and λ are coupled in the Gaussian part)}$$

where
$$\mu_0 = c/\kappa_0$$
, $\alpha_0 = 1 + \kappa_0/2$, $\beta_0 = d - c^2/2\kappa_0$ are prior's hyperparameters

• NG is conjugate to Gaussian when both mean & precision are unknown

Bayesian Inference for Both Parameters of a Gaussian

• Due to conjugacy, $p(\mu, \lambda | \mathbf{X})$ will also be NG: $p(\mu, \lambda | \mathbf{X}) \propto p(\mathbf{X} | \mu, \lambda) p(\mu, \lambda)$

$$p(\mu, \lambda | \mathbf{X}) = \mathsf{NG}(\mu_N, \kappa_N, \alpha_N, \beta_N) = \mathcal{N}(\mu | \mu_N, (\kappa_N \lambda)^{-1}) \mathsf{Gamma}(\lambda | \alpha_N, \beta_N)$$

where the updated posterior hyperparameters are given by¹

$$\mu_{N} = \frac{\kappa_{0}\mu_{0} + N\bar{x}}{\kappa_{0} + N}, \quad \kappa_{N} = \kappa_{0} + N$$

$$\alpha_{N} = \alpha_{0} + N/2, \quad \beta_{N} = \beta_{0} + \frac{1}{2} \sum_{n=1}^{N} (x_{n} - \bar{x})^{2} + \frac{\kappa_{0}N(\bar{x} - \mu_{0})^{2}}{2(\kappa_{0} + N)}$$

ullet Note: The above is the joint posterior. We can also get marginal posteriors for μ and λ

$$p(\lambda|\mathbf{X}) = \int p(\mu, \lambda|\mathbf{X}) d\mu = \operatorname{Gamma}(\lambda|\alpha_N, \beta_N)$$

$$p(\mu|\mathbf{X}) = \int p(\mu, \lambda|\mathbf{X}) d\lambda = \int p(\mu|\lambda, \mathbf{X}) p(\lambda|\mathbf{X}) d\lambda = \underbrace{t_{2\alpha_N}(\mu|\mu_N, \beta_N/(\alpha_N \kappa_N))}_{}$$

• Posterior predictive distribution of a new observation x_*

$$p(x_*|\mathbf{X}) = \int \underbrace{p(x_*|\mu,\lambda)}_{\text{Gaussian}} \underbrace{p(\mu,\lambda|\mathbf{X})}_{\text{Normal-Gaussian}} d\mu d\lambda = t_{2\alpha_N} \left(x_*|\mu_N, \frac{\beta_N(\kappa_N+1)}{\alpha_N \kappa_N}\right)$$

¹For full derivation, refer to "Conjugate Bayesian analysis of the Gaussian distribution" - Murphy (2007)

An Aside: generalized-t and Student-t distribution

Obtained if we integrate out the precision of a Gaussian using a conjugate gamma prior

$$p(x|\mu,a,b) = \int \mathcal{N}(x|\mu,\lambda^{-1}) \mathsf{Gamma}(\lambda|a,b) d\lambda$$

= $t_{2a}(x|\mu,b/a) = t_{\nu}(x|\mu,\sigma^2)$ (generalized-t distribution)

• $\mu=0,\sigma^2=1$: Student-t distribution $(t_{\nu}(0,1))$. Note: If $x\sim t_{\nu}(\mu,\sigma^2)$ then $\frac{x-\mu}{\sigma}\sim t_{\nu}(0,1)$

- The t-distribution has a "fatter" tail than a Gaussian and also sharper around the mean
 - Also a useful prior for sparsity prior (e.g., for weights in regression/classification)
 - For $\nu \to \infty$, it is equivalent to a Gaussian

Bayesian Inference for Multivariate Gaussian?

- The parameters are now the mean vector and the covariance/precision matrix
- Posterior updates for these have forms similar to that in the univariate case
- For the mean, commonly a multivariate Gaussian prior is used
 - Posterior is also Gaussian due to conjugacy
- For the covariance matrix (with mean fixed), commonly an inverse-Wishart prior is used
 - Posterior is also inverse-Wishart due to conjugacy
- For the precision matrix (with mean fixed), commonly a Wishart prior is used
 - Posterior is also Wishart due to conjugacy
- When both parameters are unknown, there still exist conjugate joint priors
 - Normal-Inverse Wishart for mean + cov matrix, Normal-Wishart for mean + precision matrix
- For further details (e.g., full equations, posterior predictive, etc), refer to "Conjugate Bayesian analysis of the Gaussian distribution" by Murphy (2007), or MLAPP Chapter 4

Some Useful Properties of Gaussians

Multivariate Gaussian: Some Alternative Representations

ullet The (multivariate) Gaussian with mean μ and cov. matrix $oldsymbol{\Sigma}$

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right\}$$

$$= \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} \exp \left\{ -\frac{1}{2} \operatorname{trace} \left[\boldsymbol{\Sigma}^{-1} \mathbf{S} \right] \right\} \quad \text{where } \mathbf{S} = (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^\top$$

An alternate representation: The "information form"

$$\mathcal{N}_c(\mathbf{x}|\boldsymbol{\xi},\boldsymbol{\Lambda}) = (2\pi)^{-D/2} |\boldsymbol{\Lambda}|^{1/2} \exp\left\{-\frac{1}{2} \left(\mathbf{x}^{\top} \boldsymbol{\Lambda} \mathbf{x} + \boldsymbol{\xi}^{\top} \boldsymbol{\Lambda}^{-1} \boldsymbol{\xi} - 2\mathbf{x}^{\top} \boldsymbol{\xi}\right)\right\}$$

where ${f \Lambda}={f \Sigma}^{-1}$ and ${m \xi}={f \Sigma}^{-1}{m \mu}$ are the "natural parameters" (more when we discuss exp. family).

- ullet Note that there is a term quadratic in $m{x}$ (involves $m{\Lambda} = m{\Sigma}^{-1}$) and linear in $m{x}$ (involves $m{\xi} = m{\Sigma}^{-1} \mu$)
- ullet Information form can help recognize μ and Σ of a Gaussian when doing algebraic manipulations

Multivariate Gaussian: The Covariance Matrix

The covariance matrix can be spherical, diagonal, or full

Marginals and Conditionals from Gaussian Joint Distribution

• Given **x** having multivariate Gaussian distribution $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma})$ with $\boldsymbol{\Lambda}=\boldsymbol{\Sigma}^{-1}$. Suppose

$$egin{array}{lll} oldsymbol{x} &=& egin{bmatrix} oldsymbol{x}_{a} \ oldsymbol{x}_{b} \end{bmatrix} & oldsymbol{\mu} = egin{bmatrix} oldsymbol{\mu}_{a} \ oldsymbol{\mu}_{b} \end{bmatrix} & oldsymbol{\Lambda} = egin{bmatrix} oldsymbol{\Lambda}_{aa} & oldsymbol{\Lambda}_{ab} \ oldsymbol{\Lambda}_{ba} & oldsymbol{\Lambda}_{bb} \end{bmatrix} & oldsymbol{\Lambda} = egin{bmatrix} oldsymbol{\Lambda}_{aa} & oldsymbol{\Lambda}_{ab} \ oldsymbol{\Lambda}_{ba} & oldsymbol{\Lambda}_{bb} \end{bmatrix} & oldsymbol{\Lambda} = egin{bmatrix} oldsymbol{\Lambda}_{aa} & oldsymbol{\Lambda}_{ab} \ oldsymbol{\Lambda}_{ba} & oldsymbol{\Lambda}_{bb} \end{bmatrix} & oldsymbol{\Lambda} = egin{bmatrix} oldsymbol{\Lambda}_{aa} & oldsymbol{\Lambda}_{ab} \ oldsymbol{\Lambda}_{ba} & oldsymbol{\Lambda}_{bb} \end{bmatrix} & oldsymbol{\Lambda} = egin{bmatrix} oldsymbol{\Lambda}_{ab} & oldsymbol{\Lambda}_{ab} \ oldsymbol{\Lambda}_{bb} & oldsymbol{\Lambda}_{bb} \end{bmatrix} & oldsymbol{\Lambda} = oldsymbol{\Lambda}_{ab} & oldsymbol{\Lambda}_{ab} & oldsymbol{\Lambda}_{ab} \ oldsymbol{\Lambda}_{ab} & oldsymbol{\Lambda}_{ab} & oldsymbol{\Lambda}_{ab} \end{bmatrix}$$

• The marginal distribution of one block, say x_a , is a Gaussian

$$p(\mathbf{x}_a) = \int p(\mathbf{x}_a, \mathbf{x}_b) d\mathbf{x}_b = \mathcal{N}(\mathbf{x}_a | \boldsymbol{\mu}_a, \boldsymbol{\Sigma}_{aa})$$

• The conditional distribution of x_a given x_b , is Gaussian, i.e., $p(x_a|x_b) = \mathcal{N}(x_a|\mu_{a|b}, \Sigma_{a|b})$ where

$$egin{array}{lll} oldsymbol{\Sigma}_{a|b} &=& oldsymbol{\Lambda}_{aa}^{-1} &=& oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} oldsymbol{\Sigma}_{ba} & ext{("smaller" than Σ_{aa}; makes sense intuitively)} \ \mu_{a|b} &=& oldsymbol{\Sigma}_{a|b} \left\{ oldsymbol{\Lambda}_{aa} \mu_a - oldsymbol{\Lambda}_{ab} (x_b - \mu_b)
ight\} \ &=& \mu_a - oldsymbol{\Lambda}_{aa}^{-1} oldsymbol{\Lambda}_{ab} (x_b - \mu_b) \ &=& \mu_a + oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{bb}^{-1} (x_b - \mu_b) \end{array}$$

Both results are extremely useful when working with Gaussian joint distributions

An Aside: Linear Transformations of Random Variables

- Suppose x = f(z) = Az + b be a linear function of an r.v. z (not necessarily Gaussian)
- ullet Suppose $\mathbb{E}[{m{z}}] = {m{\mu}}$ and $\mathsf{cov}[{m{z}}] = {m{\Sigma}}$
 - Expectation of x

$$\mathbb{E}[x] = \mathbb{E}[\mathsf{A}z + \mathsf{b}] = \mathsf{A}\mu + \mathsf{b}$$

Covariance of x

$$cov[x] = cov[Az + b] = A\Sigma A^T$$

- Likewise if $x = f(z) = a^T z + b$ is a scalar-valued linear function of an r.v. z:
 - $\bullet \ \mathbb{E}[x] = \mathbb{E}[\boldsymbol{a}^T\boldsymbol{z} + \boldsymbol{b}] = \boldsymbol{a}^T\boldsymbol{\mu} + \boldsymbol{b}$
 - $\bullet \text{ var}[x] = \text{var}[a^T z + b] = a^T \Sigma a$
- These properties are often helpful in obtaining the marginal distribution p(x) from p(z)

Linear Gaussian Model

ullet Consider linear transformation of a Gaussian r.v. z with $p(z)=\mathcal{N}(z|\mu, \mathbf{\Lambda}^{-1})$, plus Gaussian noise

$$oxed{x = \mathbf{A} z + oldsymbol{b} + oldsymbol{\epsilon}}$$
 where $p(oldsymbol{\epsilon}) = \mathcal{N}(oldsymbol{\epsilon}|\mathbf{0}, \mathbf{L}^{-1})$

ullet Easy to see that, conditioned on z, x too has a Gaussian distribution

$$p(x|z) = \mathcal{N}(x|Az + b, L^{-1})$$

- This is called a Linear Gaussian Model. Very commonly encountered in probabilistic modeling
- ullet The following two distributions are of particular interest. Defining $oldsymbol{\Sigma}=(oldsymbol{\Lambda}+oldsymbol{\mathsf{A}}^{ op}oldsymbol{\mathsf{L}}oldsymbol{\mathsf{A}})^{-1}$, we have

$$p(z|x) = \frac{p(x|z)p(z)}{p(z)} = \mathcal{N}(z|\mathbf{\Sigma}\left\{\mathbf{A}^{\top}\mathbf{L}(x-b) + \mathbf{\Lambda}\boldsymbol{\mu}\right\}, \mathbf{\Sigma}) \qquad \text{(a Gaussian posterior :-))}$$

$$p(x) = \int p(x|z)p(z)dz = \mathcal{N}(x|\mathbf{A}\boldsymbol{\mu} + b, \mathbf{A}\mathbf{\Lambda}^{-1}\mathbf{A}^{\top} + \mathbf{L}^{-1}) \qquad \text{(a Gaussian predictive/marginal :-))}$$

• Exercise: Prove the above two results (MLAPP Chap. 4 and PRML Chap. 2 contain the proof)

Applications?

- Gaussians and Linear Gaussian Models are widely used in probabilistic/Bayesian models
- Some popular applications are
 - Probability density estimation: Given x_1, \ldots, x_N , estimate p(x) assuming Gaussian likelihood/noise
 - Given N sensor obs. $\{x_n\}_{n=1}^N$ with $x_n = \mu + \epsilon_n$ (Gaussian noise ϵ_n), estimate the "source" value μ (possibly along with the variance of the estimate of μ)
 - Estimating missing data: $p(x_n^{miss}|x_n^{obs})$ can also get other quantities, such as $\mathbb{E}[x_n^{miss}|x_n^{obs}]$
 - Linear Regression with Gaussian Likelihood

$$y = Xw + \epsilon$$
 (w is Gaussian weight vector, ϵ is $N \times 1$ indep. Gaussian noise)

Linear latent variable models (probabilistic PCA, factor analysis, Kalman filters) and their mixtures

$$\mathbf{z}_n = \mathbf{W}\mathbf{z}_n + \boldsymbol{\epsilon}_n$$
 (\mathbf{z}_n is Gaussian low-dim $K \times 1$ latent var, $\boldsymbol{\epsilon}_n$ is $D \times 1$ indep. Gaussian noise)

Gaussian Processes (GP) extensively use Gaussian conditioning and marginalization rules

$$y = f + \text{noise}$$
 (GP assumes $f = [f(x_1), \dots, f(x_N)]$ is jointly Gaussian)

More complex models where parts of the model use Gaussian likelihoods/priors