de Rham Cohomology and a crash course on differential geometry

Noah Chrein

Department of Mathematics University of Rochester

November 30, 2016

Credits

- Introduction to Smooth Manifolds, John M. Lee
- "de Rham Theorem", Marco Perez (http://www1.mat.uniroma1.it/people/piazza/deRhamthm.pdf)

de Rham Cohomology

and a crash course on differential geometry

- 1 Smooth Manifolds
 - Smooth Manifolds
 - Visualization
 - Smooth Maps
- 2 Tangent space
- Definition
 - Push Forward
 - Tangent Bundle and Sections
 - Cotangent Space
 - Pullback
 - Differential Map
- 5 Differential Map
- Tensors
 - Tensors ■ Tensor Product
 - Tensor space and bundle
 - Alternating Tensors
 - Wedge Product
- B.W.
- Differential Forms
 - Differential Forms
 - Exterior Derivative
 - Closed and Exact Forms
- 5 de Rham Cohomology
 - The Chain Complex
 - Invariance of Homology
 - Proof of Homotopy Equivalence
 - Calculating some de Rham groups
 - Mayer-Vietoris SequenceSmooth Singlar Cohomology
 - Smooth Singlar Con
 - de Rham Theorem

Smooth Manifolds Definition

■ An n-dimensional manifold M is a "nice" locally euclidean space. That is, there is a collection of open sets $\{U_i\}$ and homeomorphisms $\{\phi_i: U_i \to R^n\}$ that covers all of M

Smooth Manifolds Definition

- An n-dimensional manifold M is a "nice" locally euclidean space. That is, there is a collection of open sets $\{U_i\}$ and homeomorphisms $\{\phi_i: U_i \to R^n\}$ that covers all of M
- These local homeomorphisms, called coordinate charts, allow us to talk about "local coordinates" around each point in M

Smooth Manifolds Definition

- An n-dimensional manifold M is a "nice" locally euclidean space. That is, there is a collection of open sets $\{U_i\}$ and homeomorphisms $\{\phi_i: U_i \to R^n\}$ that covers all of M
- These local homeomorphisms, called coordinate charts, allow us to talk about "local coordinates" around each point in M
- A smooth manifold is a manifold who's transition maps, $\phi_a \circ \phi_b^{-1}$, are smooth maps (as defined for maps between \mathbb{R}^n)

Smooth Manifolds Visualization

Smooth Manifolds Smooth Maps

■ A smooth map is a continuous map $F: M \to N$ such that the composition $\phi^{-1} \circ F \circ \psi$ is a smooth map (as defined for maps from R^m to R^n)

Smooth Manifolds Smooth Maps

- A smooth map is a continuous map $F: M \to N$ such that the composition $\phi^{-1} \circ F \circ \psi$ is a smooth map (as defined for maps from R^m to R^n)
- Smoothness is a local property, that is, smoothness need only apply in some neighborhood around each point to be smooth globally

Smooth Manifolds Smooth Maps

- A smooth map is a continuous map $F: M \to N$ such that the composition $\phi^{-1} \circ F \circ \psi$ is a smooth map (as defined for maps from R^m to R^n)
- Smoothness is a local property, that is, smoothness need only apply in some neighborhood around each point to be smooth globally
- Define $C^{\infty}(M,N)$ to be the set of smooth maps from M to N. $C^{\infty}(M) := C^{\infty}(M,\mathbb{R})$

■ let $p \in M$ A derivation at p is a linear map $X : C^{\infty}(M) \to R$ such that $X(f \cdot g) = X(f) \cdot g(p) + f(p) \cdot X(g)$

- let $p \in M$ A derivation at p is a linear map $X : C^{\infty}(M) \to R$ such that $X(f \cdot g) = X(f) \cdot g(p) + f(p) \cdot X(g)$
- Define the vector space T_pM as the set of derivations at p

- let $p \in M$ A derivation at p is a linear map $X : C^{\infty}(M) \to R$ such that $X(f \cdot g) = X(f) \cdot g(p) + f(p) \cdot X(g)$
- Define the vector space T_pM as the set of derivations at p
- If $M = R^n$ and $v \in R^n$ define $D_v \in T_p R^n$ by $D_v f_p = \frac{\partial}{\partial t} f(p + tv)_{t=0}$

- let $p \in M$ A derivation at p is a linear map $X : C^{\infty}(M) \to R$ such that $X(f \cdot g) = X(f) \cdot g(p) + f(p) \cdot X(g)$
- Define the vector space T_pM as the set of derivations at p
- If $M = R^n$ and $v \in R^n$ define $D_v \in T_p R^n$ by $D_v f_p = \frac{\partial}{\partial t} f(p + tv)_{t=0}$
- All derivations of R^n are of this form. if $v = v^i e_i$ then $D_v f(p) = v^i \frac{\partial f}{\partial x^i}(a)$, so the derivations $\frac{\partial}{\partial x^i}$ form a basis for $T_p R^n$

- let $p \in M$ A derivation at p is a linear map $X : C^{\infty}(M) \to R$ such that $X(f \cdot g) = X(f) \cdot g(p) + f(p) \cdot X(g)$
- lacksquare Define the vector space T_pM as the set of derivations at p
- If $M = R^n$ and $v \in R^n$ define $D_v \in T_p R^n$ by $D_v f_p = \frac{\partial}{\partial t} f(p + tv)_{t=0}$
- All derivations of R^n are of this form. if $v = v^i e_i$ then $D_v f(p) = v^i \frac{\partial f}{\partial x^i}(a)$, so the derivations $\frac{\partial}{\partial x^i}$ form a basis for $T_p R^n$
- Likewise if $\{x^i\}$ are local coordinates for a point $p \in M$ then the derivations $\frac{\partial}{\partial x^i}$ form a basis for T_pM

- let $p \in M$ A derivation at p is a linear map $X : C^{\infty}(M) \to R$ such that $X(f \cdot g) = X(f) \cdot g(p) + f(p) \cdot X(g)$
- lacksquare Define the vector space T_pM as the set of derivations at p
- If $M = R^n$ and $v \in R^n$ define $D_v \in T_p R^n$ by $D_v f_p = \frac{\partial}{\partial t} f(p + tv)_{t=0}$
- All derivations of R^n are of this form. if $v = v^i e_i$ then $D_v f(p) = v^i \frac{\partial f}{\partial x^i}(a)$, so the derivations $\frac{\partial}{\partial x^i}$ form a basis for $T_p R^n$
- Likewise if $\{x^i\}$ are local coordinates for a point $p \in M$ then the derivations $\frac{\partial}{\partial x^i}$ form a basis for T_pM
- Thus one can think of the tangent space as the directional derivatives on a smooth manifold.

Tangent Space Push Forward

■ For $F: M \to N$ define the pushforward $F_*: T_pM \to T_{F(p)}N$ by $(F_*X)(f) = X(f \circ F)$

Tangent Space Push Forward

- For $F: M \to N$ define the pushforward $F_*: T_pM \to T_{F(p)}N$ by $(F_*X)(f) = X(f \circ F)$
- $(G \circ F)_* = G_* \circ F_*$ and $Id_* = Id_{(T_pM)}$, so $T_p : Man^{\infty} \to Vect_R$ is a covariant functor.

Tangent Space Push Forward

- For $F: M \to N$ define the pushforward $F_*: T_pM \to T_{F(p)}N$ by $(F_*X)(f) = X(f \circ F)$
- $(G \circ F)_* = G_* \circ F_*$ and $Id_* = Id_{(T_pM)}$, so $T_p : Man^{\infty} \to Vect_R$ is a covariant functor.
- If one looks at a coordinate neighborhood of p, one will find that the pushforward is none other than the jacobian of the map $\phi F \phi^{-1}$.

Tangent Space Tangent Bundle and Sections

■ Define the Tangent Bundle $TM = \coprod_{p \in M} T_p M$ and define the projection $\pi : TM \to M$ by $\pi(p, X) = p$

Tangent Space Tangent Bundle and Sections

- Define the Tangent Bundle $TM = \coprod_{p \in M} T_p M$ and define the projection $\pi : TM \to M$ by $\pi(p, X) = p$
- There is a unique smooth structure on TM such that the projection and pushforwards are smooth, making TM into a smooth 2n-dimensional manifold

Tangent Space Tangent Bundle and Sections

- Define the Tangent Bundle $TM = \coprod_{p \in M} T_p M$ and define the projection $\pi : TM \to M$ by $\pi(p, X) = p$
- There is a unique smooth structure on TM such that the projection and pushforwards are smooth, making TM into a smooth 2n-dimensional manifold
- A smooth section, or a smooth vector field, is a map $\sigma: M \to TM$ such that $\pi \circ \sigma = Id_M$

- Define the Tangent Bundle $TM = \coprod_{p \in M} T_p M$ and define the projection $\pi : TM \to M$ by $\pi(p, X) = p$
- There is a unique smooth structure on TM such that the projection and pushforwards are smooth, making TM into a smooth 2n-dimensional manifold
- A smooth section, or a smooth vector field, is a map $\sigma: M \to TM$ such that $\pi \circ \sigma = Id_M$
- Define $\mathfrak{T}(M)$ the $C^{\infty}(M)$ module of sections of TM. $(f \cdot \sigma \text{ is a section of TM, and } \sigma(p), \tau(p) \in T_pM \text{ so } \sigma + \tau \text{ is well defined.})$

- Define the Tangent Bundle $TM = \coprod_{p \in M} T_p M$ and define the projection $\pi : TM \to M$ by $\pi(p, X) = p$
- There is a unique smooth structure on TM such that the projection and pushforwards are smooth, making TM into a smooth 2n-dimensional manifold
- A smooth section, or a smooth vector field, is a map $\sigma: M \to TM$ such that $\pi \circ \sigma = Id_M$
- Define $\mathfrak{T}(M)$ the $C^{\infty}(M)$ module of sections of TM. $(f \cdot \sigma \text{ is a section of TM, and } \sigma(p), \tau(p) \in T_pM \text{ so } \sigma + \tau \text{ is well defined.})$
- We can pushforward sections on M to N by applying F_* , however, these maps aren't always sections on N

lacktriangle Recall the definition of the dual space of a vector space V^*

- lacktriangle Recall the definition of the dual space of a vector space V^*
- define for each point p in M, the cotangent space $T_p^*M = (T_pM)^*$.

- lacktriangle Recall the definition of the dual space of a vector space V^*
- define for each point p in M, the cotangent space $T_p^*M = (T_pM)^*$.
- Analogous to the tangent bundle and the space of sections, define cotangent bundle and it's sections $T^*M = \coprod_{p \in M} T_p^*M$ and $\mathfrak{T}^*(M)$

- lacktriangle Recall the definition of the dual space of a vector space V^*
- define for each point p in M, the cotangent space $T_p^*M = (T_pM)^*$.
- Analogous to the tangent bundle and the space of sections, define cotangent bundle and it's sections $T^*M = \coprod_{p \in M} T_p^*M$ and $\mathfrak{T}^*(M)$
- For local coordinates $\{x_p^i\}$, to the basis $\frac{\partial}{\partial x^i}$ of T_pM , there is a dual basis $\{\epsilon^i\}$ for T_p^*M .

Tangent Space

• for a smooth map $F:M\to N$ define the pullback map $F^*:T^*_{F(p)}N\to T^*_pM$ by $(F^*\epsilon)_p(X)=\epsilon_{F(p)}(F_*X)$

Tangent Space

- for a smooth map $F:M\to N$ define the pullback map $F^*:T^*_{F(p)}N\to T^*_pM$ by $(F^*\epsilon)_p(X)=\epsilon_{F(p)}(F_*X)$
- Unlike the pushforward, the pullback of a section of N will be a section of M

Tangent Space Pullback

- for a smooth map $F:M\to N$ define the pullback map $F^*:T^*_{F(p)}N\to T^*_pM$ by $(F^*\epsilon)_p(X)=\epsilon_{F(p)}(F_*X)$
- Unlike the pushforward, the pullback of a section of N will be a section of M
- note that $(F \circ G)^* = G^* \circ F^*$ and that $Id^* = Id_{T_p^*M}$ thus $T^* : Man^{\infty} \to Vect_R$ is a contravariant functor

lacksquare Define the map $d:C^\infty(M) o \mathfrak{T}^*(M)$ by $[df]_p(X)=X_p(f)$

- lacksquare Define the map $d:C^\infty(M) o \mathfrak{T}^*(M)$ by $[df]_p(X)=X_p(f)$
- Locally, we can write the differential of a function in terms of a basis for T_p^*M $df_p = \frac{\partial f}{\partial x^i}(p)\epsilon^i$

- lacksquare Define the map $d:C^\infty(M) o \mathfrak{T}^*(M)$ by $[df]_p(X)=X_p(f)$
- Locally, we can write the differential of a function in terms of a basis for T_p^*M $df_p = \frac{\partial f}{\partial \omega^i}(p)\epsilon^i$
- Thus we have $\{dx^i\}$ as a basis for T_p^*M

- lacksquare Define the map $d:C^\infty(M) o \mathfrak{T}^*(M)$ by $[df]_p(X)=X_p(f)$
- Locally, we can write the differential of a function in terms of a basis for T_p^*M $df_p = \frac{\partial f}{\partial \omega^i}(p)\epsilon^i$
- Thus we have $\{dx^i\}$ as a basis for T_p^*M
- A generalization of this differential map to tensor spaces is the main object of study for de Rham Cohomology.

Tensors

■ A k-covariant Tensor on a vector space V is a linear map $T: V^k \to \mathbb{R}$

Tensors

- A k-covariant Tensor on a vector space V is a linear map $T: V^k \to \mathbb{R}$
- denote the vector space of such tensors $T^k(V)$. Addition and scalar multiplication are defined pointwise.

Tensors

- A k-covariant Tensor on a vector space V is a linear map $T: V^k \to \mathbb{R}$
- denote the vector space of such tensors $T^k(V)$. Addition and scalar multiplication are defined pointwise.
- note that $T^1(V) = V^*$

Tensors Tensor Product

■ if $T \in T^k(V)$, $S \in T^{k'}(V)$ define $T \otimes S \in T^{k+k'}(V)$ by $T \otimes S(X_1, ..., X_{k+k'}) = T(X_1, ..., X_k) \cdot S(X_{k+1}, ..., X_{k+k'})$

- if $T \in T^k(V)$, $S \in T^{k'}(V)$ define $T \otimes S \in T^{k+k'}(V)$ by $T \otimes S(X_1, ..., X_{k+k'}) = T(X_1, ..., X_k) \cdot S(X_{k+1}, ..., X_{k+k'})$
- If $\{e_i\}$ is a basis for V and $\{\epsilon_j\}$ is the dual basis for V^* , then $\epsilon_{j_1} \otimes ... \otimes \epsilon_{j_k}\}$ is a basis for $T^k(V)$. Thus $T^k(V) \cong \underbrace{V^* \otimes ... \otimes V^*}$

Tensors Tensor space and bundle

■ let M be a smooth manifold, at every point $p \in M$ define $T_p^k M = T^k (T_p M)$, and the tensor bundle $T^k M = \coprod_{p \in M} T_p^k M$

Tensors Tensor space and bundle

- let M be a smooth manifold, at every point $p \in M$ define $T_p^k M = T^k (T_p M)$, and the tensor bundle $T^k M = \prod_{p \in M} T_p^k M$
- define $\mathfrak{T}^k(M) = \{\text{Sections of } T^k M\}$

- let M be a smooth manifold, at every point $p \in M$ define $T_p^k M = T^k (T_p M)$, and the tensor bundle $T^k M = \coprod_{p \in M} T_p^k M$
- define $\mathfrak{T}^k(M) = \{\text{Sections of } T^k M\}$
- Note: $T^1M = T^*M$ and $\mathfrak{T}^1(M) = \mathfrak{T}^*(M)$. define $T^0(M) = R$

- let M be a smooth manifold, at every point $p \in M$ define $T_p^k M = T^k (T_p M)$, and the tensor bundle $T^k M = \coprod_{p \in M} T_p^k M$
- define $\mathfrak{T}^k(M) = \{\text{Sections of } T^k M\}$
- Note: $T^1M = T^*M$ and $\mathfrak{T}^1(M) = \mathfrak{T}^*(M)$. define $T^0(M) = R$
- for a smooth map $F:M\to N$ define the pullback map $F^*:\mathfrak{T}^k(N)\to\mathfrak{T}^k(M)$ by $(F^*\sigma)_p(X_1,...,X_k)=\sigma_{F(p)}(F_*X_1,...,F_*X_k)$

■ The ideas behind a signed k-dimensional volume are captured by Alternating Tensors.

- The ideas behind a signed k-dimensional volume are captured by Alternating Tensors.
- An alternating tensor $T \in T^k(V)$ is one that $\forall i \neq j$ $T(X_1,...,X_i,...,X_j,...,X_k) = -T(X_1,...,X_j,...,X_i,...,X_k)$.

- The ideas behind a signed k-dimensional volume are captured by Alternating Tensors.
- An alternating tensor $T \in T^k(V)$ is one that $\forall i \neq j$ $T(X_1,...,X_i,...,X_j,...,X_k) = -T(X_1,...,X_j,...,X_i,...,X_k)$.
- The alternating Tensors form a subspace $\Lambda^k(V) \subset T^k(V)$

- The ideas behind a signed k-dimensional volume are captured by Alternating Tensors.
- An alternating tensor $T \in T^k(V)$ is one that $\forall i \neq j$ $T(X_1,...,X_i,...,X_j,...,X_k) = -T(X_1,...,X_j,...,X_i,...,X_k)$.
- lacksquare The alternating Tensors form a subspace $\Lambda^k(V)\subset \mathcal{T}^k(V)$
- For the basis $\{\epsilon^i\}$ of V^* , and an ordered k-tuple I, define the elemetary alternating k-tensor ϵ^I , by

$$\epsilon'(X_1,...,X_k) = \det \begin{pmatrix} \epsilon^{i_1}(X_1) & \cdots & \epsilon^{i_k}(X_1) \\ \vdots & & \vdots \\ \epsilon^{i_1}(X_k) & \cdots & \epsilon^{i_k}(X_k) \end{pmatrix}$$

- The ideas behind a signed k-dimensional volume are captured by Alternating Tensors.
- An alternating tensor $T \in T^k(V)$ is one that $\forall i \neq j$ $T(X_1,...,X_i,...,X_j,...,X_k) = -T(X_1,...,X_j,...,X_i,...,X_k)$.
- lacksquare The alternating Tensors form a subspace $\Lambda^k(V)\subset \mathcal{T}^k(V)$
- For the basis $\{\epsilon^i\}$ of V^* , and an ordered k-tuple I, define the elemetary alternating k-tensor ϵ^I , by

$$\epsilon'(X_1,...,X_k) = \det \begin{pmatrix} \epsilon^{i_1}(X_1) & \cdots & \epsilon^{i_k}(X_1) \\ \vdots & & \vdots \\ \epsilon^{i_1}(X_k) & \cdots & \epsilon^{i_k}(X_k) \end{pmatrix}$$

lacksquare then the set $\{\ \epsilon^l | \ {\sf I} \ {\sf is increasing} \}$ is a basis for ${\sf \Lambda}^k(V)$

- The ideas behind a signed k-dimensional volume are captured by Alternating Tensors.
- An alternating tensor $T \in T^k(V)$ is one that $\forall i \neq j$ $T(X_1,...,X_i,...,X_j,...,X_k) = -T(X_1,...,X_j,...,X_i,...,X_k)$.
- lacksquare The alternating Tensors form a subspace $\Lambda^k(V)\subset T^k(V)$
- For the basis $\{\epsilon^i\}$ of V^* , and an ordered k-tuple I, define the elemetary alternating k-tensor ϵ^I , by

$$\epsilon'(X_1,...,X_k) = \det \begin{pmatrix} \epsilon^{i_1}(X_1) & \cdots & \epsilon^{i_k}(X_1) \\ \vdots & & \vdots \\ \epsilon^{i_1}(X_k) & \cdots & \epsilon^{i_k}(X_k) \end{pmatrix}$$

- then the set $\{ \epsilon^I | I \text{ is increasing} \}$ is a basis for $\Lambda^k(V)$
- some simple consequences of this is that $\Lambda^k(V) = 0$ if k > dim(V) and that $\Lambda^1(V) = T^1(V)$

Tensors Wedge Product

■ define $A/t: T^k(V) \to \Lambda^k(V)$ by $A/tT(X_1,...,X_k) = \frac{1}{k!} \sum_{\sigma \in S_k} (sgn\sigma) T(X_{\sigma 1},...,X_{\sigma k})$

Tensors Wedge Product

- define $A/t: T^k(V) \to \Lambda^k(V)$ by $A/tT(X_1,...,X_k) = \frac{1}{k!} \sum_{\sigma \in S_k} (sgn\sigma) T(X_{\sigma 1},...,X_{\sigma k})$
- for two alternating tensors $\omega \in \Lambda^k(V), \eta \in \Lambda^l(V)$ define the wedge product $\omega \wedge \eta = \frac{(k+l)!}{k!l!} Alt(\omega \otimes \eta)$

Tensors Wedge Product

- define $A/t: T^k(V) \to \Lambda^k(V)$ by $A/tT(X_1,...,X_k) = \frac{1}{k!} \sum_{\sigma \in S_k} (sgn\sigma) T(X_{\sigma 1},...,X_{\sigma k})$
- for two alternating tensors $\omega \in \Lambda^k(V), \eta \in \Lambda^l(V)$ define the wedge product $\omega \wedge \eta = \frac{(k+l)!}{k! l!} Alt(\omega \otimes \eta)$
- $\bullet^I \wedge \epsilon^J = \epsilon^{IJ}$

- define $A/t: T^k(V) \to \Lambda^k(V)$ by $A/tT(X_1,...,X_k) = \frac{1}{k!} \sum_{\sigma \in S_k} (sgn\sigma) T(X_{\sigma 1},...,X_{\sigma k})$
- for two alternating tensors $\omega \in \Lambda^k(V), \eta \in \Lambda^l(V)$ define the wedge product $\omega \wedge \eta = \frac{(k+l)!}{k! l!} Alt(\omega \otimes \eta)$
- \bullet $\epsilon^I \wedge \epsilon^J = \epsilon^{IJ}$
- The key properties of the wedge product are billinearity, associativity, anticommutativity ($\omega \wedge \eta = (-1)^{kl} \eta \wedge \omega$) and the two following formula:

$$\epsilon^{i_1} \wedge ... \wedge \epsilon^{i_k} = \epsilon^I$$

 $\omega^1 \wedge ... \wedge \omega^k(X_1, ..., X_k) = det\omega^i(X_j)$

■ Define the space of alternating k-tensors at p, $\Lambda_p^k(M) = \Lambda^k(T_pM)$ and the bundle $\Lambda^k(M) = \coprod_{p \in M} \Lambda_p^k(M)$.

- Define the space of alternating k-tensors at p, $\Lambda_p^k(M) = \Lambda^k(T_pM)$ and the bundle $\Lambda^k(M) = \coprod_{p \in M} \Lambda_p^k(M)$.
- define the space of "k-forms" as the sections of $\Lambda^k(M)$, that is $\Omega^k(M) = \{\omega \text{ section of } \Lambda^k(M)\}$

- Define the space of alternating k-tensors at p, $\Lambda_p^k(M) = \Lambda^k(T_pM)$ and the bundle $\Lambda^k(M) = \coprod_{p \in M} \Lambda_p^k(M)$.
- define the space of "k-forms" as the sections of $\Lambda^k(M)$, that is $\Omega^k(M) = \{\omega \text{ section of } \Lambda^k(M)\}$
- in a neighborhood around a point p, $\{dx^i\}$ is a basis for T_p^*M so a section $\omega \in \Omega^k(M)$ can be written locally as $\omega = \omega_I \cdot dx^{i_1} \wedge ... \wedge dx^{i_k}$ $(\omega_I \text{ are smooth functions})$

- Define the space of alternating k-tensors at p, $\Lambda_p^k(M) = \Lambda^k(T_pM)$ and the bundle $\Lambda^k(M) = \coprod_{p \in M} \Lambda_p^k(M)$.
- define the space of "k-forms" as the sections of $\Lambda^k(M)$, that is $\Omega^k(M) = \{\omega \text{ section of } \Lambda^k(M)\}$
- in a neighborhood around a point p, $\{dx^i\}$ is a basis for T_p^*M so a section $\omega \in \Omega^k(M)$ can be written locally as $\omega = \omega_I \cdot dx^{i_1} \wedge ... \wedge dx^{i_k}$ $(\omega_I \text{ are smooth functions})$
- Note: $\Omega^0(M) = C^\infty(M)$, $\Omega^1(M) = \mathfrak{T}^*(M)$ and $\Omega^k(M) = 0$ if k > dim(M)

Differential Forms Exterior Derivative

• We can define a unique linear map $d: \Omega^k(M) \to \Omega^{k+1}(M)$ with the following properties:

- We can define a unique linear map $d: \Omega^k(M) \to \Omega^{k+1}(M)$ with the following properties:
- 1) if f is smooth df(X) = X(f) 2) if $\omega \in \Omega^k(M), \eta \in \Omega^l(M)$ then $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$ 3) $d(d(\omega)) = 0$.

- We can define a unique linear map $d: \Omega^k(M) \to \Omega^{k+1}(M)$ with the following properties:
- 1) if f is smooth df(X) = X(f) 2) if $\omega \in \Omega^k(M), \eta \in \Omega^l(M)$ then $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$ 3) $d(d(\omega)) = 0$.
- It is non-trivial to show that this map exists and is unique, the proof can be found on page 215 of Lee.

- We can define a unique linear map $d: \Omega^k(M) \to \Omega^{k+1}(M)$ with the following properties:
- 1) if f is smooth df(X) = X(f) 2) if $\omega \in \Omega^k(M)$, $\eta \in \Omega^l(M)$ then $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$ 3) $d(d(\omega)) = 0$.
- It is non-trivial to show that this map exists and is unique, the proof can be found on page 215 of Lee.
- if $\{x^i\}$ are local coordinates around p, there is an explicit formulation for the map d.

$$d(\sum_{I}' \omega_{I} dx^{i_{1}} \wedge ... \wedge dx^{i_{k}}) = \sum_{I}' \left[\sum_{i} \frac{\partial \omega_{I}}{\partial x^{i}} dx^{i} \wedge dx^{i_{1}} \wedge ... \wedge dx^{i_{k}} \right]$$

Differential Forms Closed and Exact Forms

• if $d\omega=0$, we call ω closed, and if there is an η such that $d\eta=\omega$ we say it is exact. If ω is exact, then it is closed, but the converse is not true. Measuring the extent of this failure is the point of de Rham Cohomology.

- if $d\omega = 0$, we call ω closed, and if there is an η such that $d\eta = \omega$ we say it is exact. If ω is exact, then it is closed, but the converse is not true. Measuring the extent of this failure is the point of de Rham Cohomology.
- Why is this important? As the notation $d\omega$ suggests, we are able to integrate these forms. Evaluating the integrals of these forms is implicitly linked to the differential of said forms by means of stokes theorem

$$\int_{M} d\omega = \int_{\partial M} \omega$$

- if $d\omega = 0$, we call ω closed, and if there is an η such that $d\eta = \omega$ we say it is exact. If ω is exact, then it is closed, but the converse is not true. Measuring the extent of this failure is the point of de Rham Cohomology.
- Why is this important? As the notation $d\omega$ suggests, we are able to integrate these forms. Evaluating the integrals of these forms is implicitly linked to the differential of said forms by means of stokes theorem

$$\int_{M} d\omega = \int_{\partial M} \omega$$

■ For example, if $\gamma: I \to M$ is a smooth curve, and ω a 1-form, then we can evaluate $\int_{\gamma} \omega$ by means of the fundamental theorem of calculus when ω is exact.

de Rham Cohomology The Cochain Complex

• the vector spaces $\Omega^k(M)$ along with the homomorphism $d_k: \Omega^k(M) \to \Omega^{k+1}(M)$ define a cochain complex.

de Rham Cohomology The Cochain Complex

- the vector spaces $\Omega^k(M)$ along with the homomorphism $d_k: \Omega^k(M) \to \Omega^{k+1}(M)$ define a cochain complex.
- define the de Rham cohomology group $H_{dR}^k(M) = Ker(d_{k+1})/Im(d_k)$

- the vector spaces $\Omega^k(M)$ along with the homomorphism $d_k: \Omega^k(M) \to \Omega^{k+1}(M)$ define a cochain complex.
- define the de Rham cohomology group $H_{dR}^k(M) = Ker(d_{k+1})/Im(d_k)$
- If $F: M \to N$ smooth, then $F^*: \Omega^k(N) \to \Omega^k(M)$, if we can show that $F^*d = dF^*$ then we can induce a map $H(F): H^k_{dR}(N) \to H^k_{dR}(M)$

- the vector spaces $\Omega^k(M)$ along with the homomorphism $d_k: \Omega^k(M) \to \Omega^{k+1}(M)$ define a cochain complex.
- define the de Rham cohomology group $H_{dR}^k(M) = Ker(d_{k+1})/Im(d_k)$
- If $F: M \to N$ smooth, then $F^*: \Omega^k(N) \to \Omega^k(M)$, if we can show that $F^*d = dF^*$ then we can induce a map $H(F): H^k_{dR}(N) \to H^k_{dR}(M)$
- But this is easy, since $G^*d(fdx^{i_1} \wedge ... \wedge d^{i_k}) = G^*(df \wedge dx^{i_1} \wedge ... \wedge dx^{i_k}) = d(f \circ G) \wedge d(x^{i_1} \circ G) \wedge ... \wedge d(x^{i_k} \circ G) = d((f \circ G)d(x^{i_1} \circ G) \wedge ... \wedge d(x^{i_k} \circ G)) = dG^*(fdx^{i_1} \wedge ... \wedge dx^{i_k})$

de Rham Cohomology

Invariance of cohomology

■ it's simple to see that $H^k_{dR}: Man^\infty \to \mathfrak{Ab}$ is a contravariant functor, so the homology groups are invarient under diffeomorphism.

Invariance of cohomology

- it's simple to see that $H^k_{dR}: Man^\infty \to \mathfrak{Ab}$ is a contravariant functor, so the homology groups are invarient under diffeomorphism.
- What's more is that they are actually invarient under homotopy equivalence, yes the continous homotopy equivalence. This means that de Rham cohomology is actually a topological invarient

- it's simple to see that $H^k_{dR}: Man^\infty \to \mathfrak{Ab}$ is a contravariant functor, so the homology groups are invarient under diffeomorphism.
- What's more is that they are actually invarient under homotopy equivalence, yes the continous homotopy equivalence. This means that de Rham cohomology is actually a topological invarient
- This is the first clue toward the central theorem of de Rham, that the singular cohomology of a smooth manifold is isomorphic to it's de Rham cohomology.

de Rham Cohomology Proof of Homotopy Equivalence

 We will prove homotopy equivalence by constructing a chain homotopy

- We will prove homotopy equivalence by constructing a chain homotopy
- for $X \in T_pM$ define $X \lrcorner : \Lambda_p^kM \to \Lambda_p^{k-1}M$, the "contraction by X" by $X \lrcorner \omega(Y_1,...,Y_{k-1}) = \omega(X,Y_1,...,Y_{k-1})$
- Let $i_t: M \to M \times I$ be the injection $i_t(p) = (p, t)$

- We will prove homotopy equivalence by constructing a chain homotopy
- for $X \in T_pM$ define $X \lrcorner : \Lambda_p^kM \to \Lambda_p^{k-1}M$, the "contraction by X" by $X \lrcorner \omega(Y_1,...,Y_{k-1}) = \omega(X,Y_1,...,Y_{k-1})$
- Let $i_t : M \to M \times I$ be the injection $i_t(p) = (p, t)$
- then define $h: \Omega^k(M \times I) \to \Omega^{k-1}(M)$ by $h(\omega) = \int_0^1 (\frac{\partial}{\partial t} \Box \omega) dt$

- We will prove homotopy equivalence by constructing a chain homotopy
- for $X \in T_pM$ define $X \lrcorner : \Lambda_p^kM \to \Lambda_p^{k-1}M$, the "contraction by X" by $X \lrcorner \omega(Y_1,...,Y_{k-1}) = \omega(X,Y_1,...,Y_{k-1})$
- Let $i_t: M \to M \times I$ be the injection $i_t(p) = (p, t)$
- then define $h: \Omega^k(M \times I) \to \Omega^{k-1}(M)$ by $h(\omega) = \int_0^1 (\frac{\partial}{\partial t} \Box \omega) dt$
- we will show that for $\omega \in \Omega^{k-1}(M \times I)$, $h(d\omega) + d(h\omega) = i_1^*\omega i_0^*\omega$

- We will prove homotopy equivalence by constructing a chain homotopy
- for $X \in T_pM$ define $X \lrcorner : \Lambda_p^kM \to \Lambda_p^{k-1}M$, the "contraction by X" by $X \lrcorner \omega(Y_1,...,Y_{k-1}) = \omega(X,Y_1,...,Y_{k-1})$
- Let $i_t: M \to M \times I$ be the injection $i_t(p) = (p, t)$
- then define $h: \Omega^k(M \times I) \to \Omega^{k-1}(M)$ by $h(\omega) = \int_0^1 (\frac{\partial}{\partial t} J\omega) dt$
- we will show that for $\omega \in \Omega^{k-1}(M \times I)$, $h(d\omega) + d(h\omega) = i_1^*\omega i_0^*\omega$
- this will then imply that when $H: F \to G$ is a homotopy, $F = H \circ i_0, \ G = H \circ i_1 \ \text{and} \ \tilde{h} = h \circ H^*: \Omega^k(N) \to \Omega^{k-1}(M)$

- We will prove homotopy equivalence by constructing a chain homotopy
- for $X \in T_pM$ define $X \lrcorner : \Lambda_p^kM \to \Lambda_p^{k-1}M$, the "contraction by X" by $X \lrcorner \omega(Y_1,...,Y_{k-1}) = \omega(X,Y_1,...,Y_{k-1})$
- Let $i_t: M \to M \times I$ be the injection $i_t(p) = (p, t)$
- then define $h: \Omega^k(M \times I) \to \Omega^{k-1}(M)$ by $h(\omega) = \int_0^1 (\frac{\partial}{\partial t} J\omega) dt$
- we will show that for $\omega \in \Omega^{k-1}(M \times I)$, $h(d\omega) + d(h\omega) = i_1^*\omega i_0^*\omega$
- this will then imply that when $H: F \to G$ is a homotopy, $F = H \circ i_0$, $G = H \circ i_1$ and $\tilde{h} = h \circ H^*: \Omega^k(N) \to \Omega^{k-1}(M)$
- We will then find that \tilde{h} is the chain homotopy we are looking for, that is:

$$ilde{h}(d\omega)+d(ilde{h}\omega)=F^*\omega-G^*\omega$$

■ We need to show that as $h: \Omega^k(M \times I) \to \Omega^{k-1}(M)$ is defined:

$$h(d\omega) + d(h\omega) = i_1^*\omega - i_0^*\omega$$

• We need to show that as $h: \Omega^k(M \times I) \to \Omega^{k-1}(M)$ is defined:

$$h(d\omega) + d(h\omega) = i_1^*\omega - i_0^*\omega$$

explicitly:

$$(h\omega)_{q}(X_{1},...,X_{k-1}) = \int_{0}^{1} \left(\frac{\partial}{\partial t} \sqcup \omega_{(q,t)}\right)(X_{1},...,X_{k-1})dt = \int_{0}^{1} \omega_{(q,t)}\left(\frac{\partial}{\partial t},X_{1},...,X_{k-1}\right)dt$$

• We need to show that as $h: \Omega^k(M \times I) \to \Omega^{k-1}(M)$ is defined:

$$h(d\omega) + d(h\omega) = i_1^*\omega - i_0^*\omega$$

explicitly:

$$(h\omega)_{q}(X_{1},...,X_{k-1}) = \int_{0}^{1} (\frac{\partial}{\partial t} \cup \omega_{(q,t)})(X_{1},...,X_{k-1})dt = \int_{0}^{1} \omega_{(q,t)}(\frac{\partial}{\partial t},X_{1},...,X_{k-1})dt$$

but we need only show this holds for basis elements, there are two cases of basis elements, $\omega = f(x,t)dt \wedge dx^{i_1} \wedge ... \wedge dx^{i_{k-1}}$ and $\omega = f(x,t)dx^{i_1} \wedge ... \wedge dx^{i_k}$

• We need to show that as $h: \Omega^k(M \times I) \to \Omega^{k-1}(M)$ is defined:

$$h(d\omega) + d(h\omega) = i_1^*\omega - i_0^*\omega$$

explicitly:

$$(h\omega)_{q}(X_{1},...,X_{k-1}) = \int_{0}^{1} (\frac{\partial}{\partial t} \cup \omega_{(q,t)})(X_{1},...,X_{k-1})dt = \int_{0}^{1} \omega_{(q,t)}(\frac{\partial}{\partial t},X_{1},...,X_{k-1})dt$$

- but we need only show this holds for basis elements, there are two cases of basis elements, $\omega = f(x,t)dt \wedge dx^{i_1} \wedge ... \wedge dx^{i_{k-1}}$ and $\omega = f(x,t)dx^{i_1} \wedge ... \wedge dx^{i_k}$
- I'll do the second case, as it is more enlightening, the first case is rather simple however.

since ω does not have any dt term, $\frac{\partial}{\partial t} \lrcorner \omega = 0$ thus $h\omega = 0$ so $d(h\omega) = 0$. On the other hand $h(d\omega) = h(\sum_i \frac{\partial f}{\partial t} dx^i \wedge dx^{i_1} \wedge ... \wedge dx^{i_k})$

since ω does not have any dt term, $\frac{\partial}{\partial t} \lrcorner \omega = 0$ thus $h\omega = 0$ so $d(h\omega) = 0$. On the other hand $h(d\omega) = h(\sum_i \frac{\partial f}{\partial t} dx^i \wedge dx^{i_1} \wedge ... \wedge dx^{i_k})$ $= h(\frac{\partial f}{\partial t} dt \wedge dx^{i_1} \wedge ... \wedge dx^{i_k})$

since ω does not have any dt term, $\frac{\partial}{\partial t} \lrcorner \omega = 0$ thus $h\omega = 0$ so $d(h\omega) = 0$. On the other hand $h(d\omega) = h(\sum_i \frac{\partial f}{\partial t} dx^i \wedge dx^{i_1} \wedge ... \wedge dx^{i_k})$ $= h(\frac{\partial f}{\partial t} dt \wedge dx^{i_1} \wedge ... \wedge dx^{i_k})$ $= \int_0^1 (\frac{\partial f}{\partial t} dt) dx^{i_1} \wedge ... \wedge dx^{i_k}$

since ω does not have any dt term, $\frac{\partial}{\partial t} \lrcorner \omega = 0$ thus $h\omega = 0$ so $d(h\omega) = 0$. On the other hand $h(d\omega) = h(\sum_i \frac{\partial f}{\partial t} dx^i \wedge dx^{i_1} \wedge ... \wedge dx^{i_k})$ $= h(\frac{\partial f}{\partial t} dt \wedge dx^{i_1} \wedge ... \wedge dx^{i_k})$ $= \int_0^1 (\frac{\partial f}{\partial t} dt) dx^{i_1} \wedge ... \wedge dx^{i_k}$ $= (f(x,1) - f(x,0)) dx^{i_1} \wedge ... \wedge dx^{i_k}$

since ω does not have any dt term, $\frac{\partial}{\partial t} \lrcorner \omega = 0$ thus $h\omega = 0$ so $d(h\omega) = 0$. On the other hand $h(d\omega) = h(\sum_i \frac{\partial f}{\partial t} dx^i \wedge dx^{i_1} \wedge ... \wedge dx^{i_k})$ $= h(\frac{\partial f}{\partial t} dt \wedge dx^{i_1} \wedge ... \wedge dx^{i_k})$ $= \int_0^1 (\frac{\partial f}{\partial t} dt) dx^{i_1} \wedge ... \wedge dx^{i_k}$ $= (f(x,1) - f(x,0)) dx^{i_1} \wedge ... \wedge dx^{i_k}$ $= i_1^* \omega - i_0^* \omega$

■
$$H^0_{dR}(M) = R$$
 when M is connected $H^k_{dR}(M) = 0$ when $k > dim(M)$ $H^K(\{p\}) = 0$ for $k > 0$. $H^K(M) = 0$ for $k > 0$ if M is contractible.

- $H_{dR}^0(M) = R$ when M is connected $H_{dR}^k(M) = 0$ when k > dim(M) $H^K(\{p\}) = 0$ for k > 0. $H^K(M) = 0$ for k > 0 if M is contractible.
- if $M = \coprod_i M_i$ then $H^k_{dR}(M) \cong \prod_i H^k_{dR}(M_i)$ This is due to the stronger statement that the pullbacks of inclusion maps \imath_i^* induce an isomorphism $\Psi : \Omega^k(M) \to \prod_i \Omega^K(M_i)$ by $\omega \mapsto \{\imath_i^*\omega\}$

- $H_{dR}^0(M) = R$ when M is connected $H_{dR}^k(M) = 0$ when k > dim(M) $H^K(\{p\}) = 0$ for k > 0. $H^K(M) = 0$ for k > 0 if M is contractible.
- if $M = \coprod_i M_i$ then $H^k_{dR}(M) \cong \prod_i H^k_{dR}(M_i)$ This is due to the stronger statement that the pullbacks of inclusion maps \imath_i^* induce an isomorphism $\Psi : \Omega^k(M) \to \prod_i \Omega^K(M_i)$ by $\omega \mapsto \{\imath_i^*\omega\}$
- For $k \ge 1$, $H_{dR}^k(R^n) = 0$

consider the pullbacks i^*, j^*, k^*, I^* the following sequence is exact:

$$0 \to \Omega^k(X) \xrightarrow{k^* \oplus I^*} \Omega^k(U) \bigoplus \Omega^k(V) \xrightarrow{i^* - j_*} \Omega(U \cap V) \to 0$$

consider the pullbacks i^*, j^*, k^*, l^* the following sequence is exact:

$$0 \to \Omega^k(X) \xrightarrow{k^* \oplus I^*} \Omega^k(U) \bigoplus \Omega^k(V) \xrightarrow{i^* - j^*} \Omega(U \cap V) \to 0$$

Which it turn yields the long exact sequence

$$\dots \xrightarrow{\Delta} H_{dR}^{k}(X) \xrightarrow{k^* \oplus I^*} H_{dR}^{k}(U) \oplus H_{dR}^{k}(V) \xrightarrow{i^* - j^*} H_{dR}^{k}(U \cap V) \xrightarrow{\Delta}$$
$$\xrightarrow{\Delta} H_{dR}^{k+1}(X) \to \dots$$

de Rham Cohomology Smooth Singular Cohomology

• define the abelian group $\mathfrak{C}_k^{\infty}(M) = Fr(\{C^{\infty}(\Delta^k, M)\})$

- define the abelian group $\mathfrak{C}_k^{\infty}(M) = Fr(\{C^{\infty}(\Delta^k, M)\})$
- for $\sigma \in \mathfrak{C}_k^{\infty}(M)$ define $\partial_k : \mathfrak{C}_k^{\infty}(M) \to \mathfrak{C}_{k-1}^{\infty}(M)$ by $\partial_k(\sigma) = \sum_{i=1}^k (-1)^i \sigma \circ F_{i,k}$, where $F_{i,k}$ is the i-th face map.

- define the abelian group $\mathfrak{C}_k^{\infty}(M) = Fr(\{C^{\infty}(\Delta^k, M)\})$
- for $\sigma \in \mathfrak{C}_k^{\infty}(M)$ define $\partial_k : \mathfrak{C}_k^{\infty}(M) \to \mathfrak{C}_{k-1}^{\infty}(M)$ by $\partial_k(\sigma) = \sum_{i=1}^k (-1)^i \sigma \circ F_{i,k}$, where $F_{i,k}$ is the i-th face map.
- From this chain complex, define the cochain complex $\mathfrak{C}_{\infty}^k(M) = Hom(\mathfrak{C}_k^{\infty}(M), R)$ with coboundary map $\delta^k = Hom(\partial_k, R)$ and retrieve the *smooth* singular cohomology.

- define the abelian group $\mathfrak{C}_k^{\infty}(M) = Fr(\{C^{\infty}(\Delta^k, M)\})$
- for $\sigma \in \mathfrak{C}_k^{\infty}(M)$ define $\partial_k : \mathfrak{C}_k^{\infty}(M) \to \mathfrak{C}_{k-1}^{\infty}(M)$ by $\partial_k(\sigma) = \sum_{i=1}^k (-1)^i \sigma \circ F_{i,k}$, where $F_{i,k}$ is the i-th face map.
- From this chain complex, define the cochain complex $\mathfrak{C}_{\infty}^k(M) = Hom(\mathfrak{C}_k^{\infty}(M), R)$ with coboundary map $\delta^k = Hom(\partial_k, R)$ and retrieve the *smooth* singular cohomology.
- It can be shown that the normal singular cohomology with coefficients in R is equivalent to the smooth singular cohomology on smooth manifolds.

• fix a k-form ω on M and a simplex σ . Pullback ω by σ and we have a k-form on Δ^K , define: $\Psi_k(\omega)(\sigma) = \int_{\sigma} \omega = \int_{\Delta^k} \sigma^* \omega$

• fix a k-form ω on M and a simplex σ . Pullback ω by σ and we have a k-form on Δ^K , define: $\Psi_k(\omega)(\sigma) = \int_{\sigma} \omega = \int_{\Delta^k} \sigma^* \omega$

■ this defines a homomorphism $\Psi_k : \Omega^k(M) \to \mathfrak{C}_\infty^k$ which, upon showing these maps commute with the boundary map and differential yields a chain map $\Psi : \Omega^*(M) \to \mathfrak{C}_\infty^*$

• fix a k-form ω on M and a simplex σ . Pullback ω by σ and we have a k-form on Δ^K , define: $\Psi_k(\omega)(\sigma) = \int_{\sigma} \omega = \int_{\Delta k} \sigma^* \omega$

• this defines a homomorphism
$$\Psi_k:\Omega^k(M)\to\mathfrak{C}^k_\infty$$
 which, upon showing these maps commute with the boundary map and differential yields a chain map

$$\Psi:\Omega^*(M)\to \mathfrak{C}_\infty^*$$

de Rham's Theorem

 $H(\Psi): H_{dR}(M) \to H_{\infty}(M)$ is an isomorphism for all smooth manifolds