Instructor: Tatsunari Watanabe

TA: Carlos Salinas

MA 26500-215 Quiz 11

August 1, 2016

1. (6 points) Find the least squares solution $\bar{\mathbf{x}}$ of the system $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$ where

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ -1 & 0 \end{bmatrix}, \qquad \bar{\mathbf{b}} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}.$$

Solution: First, compute all the necessary matrices and vectors

$$A^{T}A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ -1 & 0 \end{bmatrix}^{T} \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ -1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ -1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$A^{T}\bar{\mathbf{b}} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$
$$= \begin{bmatrix} 3 \\ -2 \end{bmatrix}.$$

Then, to find $\bar{\mathbf{x}}$ we compute

$$\bar{\mathbf{x}} = (A^{\mathrm{T}}A)^{-1}(A^{\mathrm{T}}\bar{\mathbf{b}})$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

$$= \begin{bmatrix} 3 \\ -2 \end{bmatrix}.$$

2. (4 points) Suppose that *A* and *B* are conjugate matrices. Show that if λ is an eigenvalue of *A* then it is an eigenvalue of *B*.

Solution: Suppose that λ is an eigenvalue of A and that A is conjugate to B. Then, λ is an eigenvalue of A means that there exists a vector (the associated eigenvector) \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$; while A is conjugate to B means that there exists an invertible matrix P such that $A = PBP^{-1}$. Thus,

$$PBP^{-1}\mathbf{x} = A\mathbf{x} = \lambda\mathbf{x}$$

so

$$PBP^{-1}\mathbf{x} = \lambda \mathbf{x}$$
$$BP^{-1}\mathbf{x} = P^{-1}\lambda \mathbf{x}$$
$$= \lambda P^{-1}\mathbf{x}$$

now let $y = P^{-1}x$ and we have

$$B\mathbf{y} = \lambda \mathbf{y}$$
.

So λ is an eigenvalue of B with associated eigenvector $\mathbf{y} = P^{-1}\mathbf{x}$.

3. (8 points) Suppose that P is an idempotent matrix, i.e., $P^2 = I$. Show that the only possible eigenvalues for P are $\lambda = 0$ and $\lambda = 1$.

Solution: Suppose that *P* is an idempotent matrix and λ is an eigenvalue of *P*. Then $P\mathbf{x} = \lambda \mathbf{x}$ for some eigenvector $\mathbf{x} \neq \mathbf{0}$. Now, since we have

$$P^2\mathbf{x} = P\mathbf{x}$$

then

$$P^{2}\mathbf{x} = P(P\mathbf{x})$$
$$P\mathbf{x} = \lambda P\mathbf{x}$$
$$\lambda \mathbf{x} = \lambda^{2}\mathbf{x}.$$

Thus, $\lambda^2 = \lambda$ so $\lambda^2 - \lambda = \lambda(\lambda - 1) = 0$. Thus, $\lambda = 0$ or $\lambda = 1$.