Álgebra Linear I – Prof. José Luiz Neto – Resumo_A11

Livro de preparação do resumo: Álgebra Linear → Boldrine/Costa e Figueiredo/Wetzler (BOLDRINI, J. L. et al. Álgebra Linear. 3 ed. São Paulo: Harbra, 1986) e https://www.ufjf.br/andre_hallack/files/2018/04/linear17.pdf, acessado no dia 17/08/2020.

Soma e Interseção de subespaços vetoriais. Combinação Linear e Subespaço Gerado.

Nota: Os teoremas e corolários que constam neste assunto serão denominados (chamados) de **resultados importantes**, pois o principal objetivo é apresentar um resumo e não fazer demonstrações.

Definição de soma de subespaços vetoriais

Dados k subconjuntos $S_1, S_2, ..., S_k \subset V$ (espaço vetorial), definimos sua SOMA como

$$S_1 + S_2 + ... + S_k = \{v = u_1 + u_2 + ... + u_k : u_i \in S_i\} \subset V.$$

Resultado importante!

 $Se\ W_1\ e\ W_2\ s\~ao\ subespaços\ de\ um\ espaço\ vetorial\ V\ ,\ ent\~ao\ sua\ soma\ W_1+W_2\ \'e\ tamb\'em\ um\ subespaço\ de\ V\ .$

Definição de Soma Direta

Sejam W_1 e W_2 dois subespaços de um espaço V. Quando $W_1 \cap W_2 = \{0\}$ então $W_1 + W_2$ é chamada SOMA DIRETA DE W_1 E W_2 e denotada por $W_1 \oplus W_2$.

Exemplo 1

Sejam
$$W_1 = \{(x, y, 0) : x, y \in \mathbb{R}\}\ e\ W_2 = \{(0, 0, z) : z \in \mathbb{R}\}\ subespaços\ do\ \mathbb{R}^3.$$

É fácil de ver que

$$\mathbb{R}^3 = W_1 \oplus W_2$$
.

Interseção de subespaços vetoriais

 $Se\ W_1\ e\ W_2\ s\~ao\ subespaços\ de\ um\ espaço\ vetorial\ V,$ então sua interseção $w_1\cap W_2$ é também um subespaço de V .

Exemplo 1

Consideremos os conjuntos $W_1=\{(x,y,z)\in\mathbb{R}^3: 3x-y+2z=0\}\subset\mathbb{R}^3$ e $W_2=\{(x,y,z)\in\mathbb{R}^3: x+2y+z=0\}\subset\mathbb{R}^3,$ subespaços de \mathbb{R}^3

É fácil ver que a interseção $W_1 \cap W_2$ é dada por

$$W_1 \cap W_2 = \{ (x, y, z) \in \mathbb{R}^3 ; 3x - y + 2z = 0 \text{ e } x + 2y + z = 0 \}$$

é também um subespaço vetorial de R³.

Cuidado! A união de dois subespaços nem sempre será um subespaço.

Definição de Combinação Linear

Problema: Queremos saber o seguinte: dados os vetores v_1 , v_2 , ..., v_n , a equação acima admite solução?

Exemplo 1

Seja $V = \mathbb{R}^3$. Consideremos os vetores $v_1 = (1, 2, 0)$ e $v_2 = (0, 1, 1)$.

O vetor u=(-3,-1,5) é uma combinação linear de v_1 e v_2 , pois $u=(-3).v_1+5.v_2$.

De fato: $(-3) \cdot (1, 2, 0) + 5 \cdot (0, 1, 1) = (-3, -6, 0) + (0, 5, 5) = (-3, -1, 5) = u$.

Já o vetor w=(2,3,-3) não é combinação linear de v_1 e v_2 , pois não existem $a,b\in\mathbb{R}$ tais que $w=a.v_1+b.v_2$.

De fato, para que um vetor $v=(x,y,z)\in \mathbb{R}^3$ seja combinação linear de v_1 e v_2 , devemos ter $a,b\in \mathbb{R}$ tais que (x,y,z)=a.(1,2,0)+b.(0,1,1)=(a,2a+b,b), ou seja, devemos ter

$$\begin{cases} a = x \\ 2a + b = y \\ b = z \end{cases}$$

que é um sistema linear que não admite solução para x = 2, y = 3 e z = -3. Lembre-se que as incógnitas são a e b. Faça a verificação.

Subespaço Gerado

Uma vez fixados vetores \mathbf{v}_1 , ..., \mathbf{v}_n em V, o conjunto W de todos os vetores de V que são combinação linear destes, é um subespaço vetorial. (Mostre isto como exercício.) W é chamado subespaço gerado por \mathbf{v}_1 , ..., \mathbf{v}_n e usamos a notação

$$W = [\mathbf{v}_1, ..., \mathbf{v}_n]$$

Note que, formalmente, podemos escrever

$$W = [\mathbf{v}_1, ..., \mathbf{v}_n] = \{ \mathbf{v} \in V; \mathbf{v} = a_1 \mathbf{v}_1 + ... + a_n \mathbf{v}_n, a_i \in \mathbb{R}, 1 \le i \le n \}$$

Exemplo 1

Se
$$V = \mathbb{R}^3$$
, $v \in V$, $v \neq 0$. então, $[v] = \{av/a \in \mathbb{R}\}$, isto é, $[v]$ é a reta que contém o vetor v .

Exemplo 2

Se
$$V=\mathbb{R}^3$$
, $v_1,v_2\in V$, $\alpha v_{1\neq}v_2$, $\forall \alpha\in\mathbb{R}$, então, $[v_1,v_2]=\{a_1v_1+a_2v_2/a_1,a_2\in\mathbb{R}\}$, isto é, $[v_1,v_2]$ é o plano determinado por v_1 e v_2 , e que passa pela a origem; $0=(0,0,0)$.

Problema

Dados
$$V=\mathbb{R}^3,\ v_{1,}v_2\in V,\ \alpha v_{1\neq}v_2, \,\forall \alpha\in\mathbb{R},$$
 encontrar a expressão da equação do plano determinado por v_1 e v_2 .

Exemplo 3

Resolva o problema para $v_1=(1,2,0)$ e $v_2=(0,1,1)$

Solução:

$$(x, y, z) = a(1, \lambda, 0) + b(0, 1, 1) \Leftrightarrow$$

$$(x) \begin{cases} a = x \\ 2a + b = y \\ b = z \end{cases} \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 1 \\ 0 &$$

Seja $W = [v_1, v_2]$, o subespaço gerado por v_1 e v_2 .

Então,

$$W = [v_1, v_2] = \left\{ \; (x, y, z) \in {\rm I\!R}^3 \; ; \; y = 2x + z \right\} = \left\{ \; (x, 2x + z, z) \; ; \; x, z \in {\rm I\!R} \right\}$$

Observemos que W (subespaço do \mathbb{R}^3 gerado por v_1 e v_2 = conjunto de todas as combinações lineares de v_1 e v_2) é um plano que passa pela origem:

