

Computer Organization

605.204

Module Three

Part One

Assembly Language

Module Three

- Part One
- This week:
- A simple machine
- Language of the machine
- People Language
- Assembly Language
- MIPS Machine Code

A Simple Organization

A Big Picture

A Program

swap:	muli	\$v0, \$a1, 4	
	add	\$v0, \$a0, \$v0	
	lw	\$t7, 0(\$v0)	
	lw	\$s0, 4(\$v0)	
	SW	\$s0, 0(\$v0)	
	SW	\$t7, 4(\$v0)	
	ir	\$ra	

This program swaps data from one memory location to the next.

Stored Program Idea

- Two key principals are the foundation of today's computers:
- Second: Programs can be stored in memory as numbers in the same way that data is stored in memory as numbers.
- The instructions are fetched from memory in the same way that data operands are retrieved from memory.
- Instructions are decoded by the processor to control the actions of the computer.

Memory Organization

- Viewed as a large, single-dimension array, with an address.
- A memory address is an index into the array.
- "Byte addressing" means that the index points to a byte of memory.
- Bytes, 8 bits of data, are the smallest addressable unit.

0	8 bits of data
1	8 bits of data
2	8 bits of data
3	8 bits of data
4	8 bits of data
5	8 bits of data
6	8 bits of data

. .

Memory Organization

Bytes are nice, but to be useful most data items use larger "words".

•	For MIPS,	a word is	4 bytes	or 32 bits.
---	-----------	-----------	---------	-------------

2³² bytes with byte addresses from 0 to 2³²-1

• 2³⁰ words with byte addresses 0, 4, 8, 12, 16, 20, ...

0	32 bits of data
4	32 bits of data
8	32 bits of data
12	32 bits of data

Words are aligned:

What are the values of the 2 least significant bits of a word address?

Registers

Registers are small memory elements

Special locations, within the Processor

Registers

Datapath

Processor

- Registers hold 32 bits of data, 4 bytes, one word
- The MIPS processor has 32 registers.

The General Register Machine

It is the most common choice in today's general-purpose computers.

load R8, Op1 (R8 \leftarrow Op1) **R8**

Op1Addr

Instruction formats

load

add R2, R4, R6 (R2 ← R4 + R6) R2 R4 add R6

Operands: Memory or Registers

MIPS is a general register machine.

MIPS Arithmetic instruction requires that the operands be in

registers,

However,
only 32 registers
are provided

What about programs with lots of variables?

Summary

- A Simple Machine Organization
- Stored Program Idea
- General Register Machine

Next: Machine Code