Regression Trees

Analytics Modeling Options

	Modeling Method		
	Structured		Visual, Text, Unstructured, etc.
Descriptive	Cluster analysis, correlation, market basket analysis, sample statistics, ANOVA		Bubble charts, network diagrams, natural language processing, clustering dendograms, etc.
Predictive	Association	Decision Tree	Charts
Quantitative Value	Regression	Regression Trees	Regression plots, scatter plots, Tableau diagrams, trend charts, etc.
Classification	Logistic Regression; Other Categorical Regression Models	Classification Trees	Tree maps, interactive diagrams,
Prescriptive	Operations research, decision modeling, optimization, linear programming		Simulations, etc.

Regression Trees: Intuition

- Regression tree is NOT a classification method, but a regression method with a quantitative outcome. It is covered here for consistency with classification tree methods.
- The intuition is simple. If we have a quantitative outcome Y, we find the predictor X_1 that can **separate** the outcomes the **farthest** in the **training** data and **split** it at that "node", creating 2 tree branches.
- We then find the predictor X_2 (or X_1 again) that can separate the outcomes the farthest within each branch; and so on
- We predict an outcome using the mean of the training observation in the region they belong
- In the tree illustration (see textbook) we are predicting baseball player Log(salaries) based on the player's number of years in the major leagues and number of hits that year.
- So a player with more than 4.5 years and more than 117.5 hits will make a Log(salary) of 6.74 or a salary of \$845.6K

Regression Trees: Explained

- Essentially, we are partitioning the data into "regions" such that the distance within regions is minimal and the distance between regions is largest.
- "Nodes" the points where the branches split
- Any region can be further subdivided into more regions
- All observations within a region are assigned the same prediction equal to the mean of all training outcomes in the region
- The red dotted lines in the graph show the nodes that separate regions, where branches split in a tree with a single predictor X
- All predictions within a region use the y
 the mean value for that region
- In essence regression trees are a hybrid between step regressions and K Nearest Neighbors

Tree Regions

- The diagram shows two partitions in the baseball salary example, with the first partition at *Years* < 4.5 and the region for Years >= 4.5 further sub-partitioned at *Hits* < 117.5
- This partitioning is also called "Stratification" or "Segmenting"
- With P predictors, the regression tree method finds the specific

predictor x_i and **cutoff node** within that predictor which minimizes the training **ESS**

- It then find which of the resulting partitions to split, one at a time, and where, such that ESS is further reduced and minimized again
- We then repeat the process
- We can continue until each branch has exactly one data point, but where do we stop?

KOGOD SCHOOL of BUSINESS

