

SMART CONTRACT CODE REVIEW AND SECURITY ANALYSIS REPORT

Customer: BattleCraft

Date: October 11th, 2022

This report may contain confidential information about IT systems and the intellectual property of the Customer, as well as information about potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication of this report shall be without mandatory consent.

Document

Name	Smart Contract Code Review and Security Analysis Report for BattleCraft
Approved By	Evgeniy Bezuglyi SC Audits Department Head at Hacken OU
Туре	ERC20 token
Platform	EVM
Network	BSC
Language	Solidity
Methods	Manual Review, Automated Review, Architecture Review
Website	https://battlecraft.space/
Timeline	25.08.2022 - 11.10.2022
Changelog	31.08.2022 - Initial Review 11.10.2022 - Second Review

Table of contents

Introduction	4
Scope	4
Severity Definitions	5
Executive Summary	6
Checked Items	7
System Overview	10
Findings	11
Disclaimers	13

Introduction

Hacken OÜ (Consultant) was contracted by Battle Craft(Customer) to conduct a Smart Contract Code Review and Security Analysis. This report presents the findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope

Repository:

https://github.com/battlecraftspace/battleCraftToken

Commit:

6ea79bc07bd861ad8e4ee9d562c7347580c5697a

Documentation:

Whitepaper (partial functional requirements provided)

Integration and Unit Tests: No

Contracts:

File: ./BattleCraft.sol

SHA3: 598ed4422e44dca1d7b96ba71383b0d94477f80d696ca908513d8df5ff81d3ae

Second review scope

Repository:

https://github.com/battlecraftspace/battleCraftToken

Commit:

a764e72f8fdfb854a051fb5ad2ebac24f90a6bb8

Documentation:

Whitepaper (partial functional requirements provided)

Integration and Unit Tests: Yes

Contracts:

File: ./BattleCraft.sol

SHA3: 598ed4422e44dca1d7b96ba71383b0d94477f80d696ca908513d8df5ff81d3ae

Severity Definitions

Risk Level	Description
Critical	Critical vulnerabilities are usually straightforward to exploit and can lead to assets loss or data manipulations.
High	High-level vulnerabilities are difficult to exploit; however, they also have a significant impact on smart contract execution, e.g., public access to crucial functions.
Medium	Medium-level vulnerabilities are important to fix; however, they cannot lead to assets loss or data manipulations.
Low	Low-level vulnerabilities are mostly related to outdated, unused, etc. code snippets that cannot have a significant impact on execution.

Executive Summary

The score measurement details can be found in the corresponding section of the <u>scoring methodology</u>.

Documentation quality

The total Documentation Quality score is 3 out of 10.

- Functional requirements are partially missed.
- Technical description is not provided.

Code quality

The total Code Quality score is 10 out of 10.

Test coverage

Test coverage of the project is 100%.

• According to the scoring methodology, test coverage is 100% when the amount of lines of code is less than 250.

Security score

As a result of the audit, the code contains 1 medium and 3 low severity issues. The security score is 9 out of 10.

All found issues are displayed in the "Findings" section.

Summary

According to the assessment, the Customer's smart contract has the following score: **8.6**.

Table. The distribution of issues during the audit

Review date	Low	Medium	High	Critical
31 August 2022	3	1	0	0
13 October 2022	3	1	0	0

Checked Items

We have audited the Customers' smart contracts for commonly known and more specific vulnerabilities. Here are some items considered:

Item	Туре	Description	Status
Default Visibility	SWC-100 SWC-108	Functions and state variables visibility should be set explicitly. Visibility levels should be specified consciously.	Passed
Integer Overflow and Underflow	<u>SWC-101</u>	If unchecked math is used, all math operations should be safe from overflows and underflows.	Passed
Outdated Compiler Version	SWC-102	It is recommended to use a recent version of the Solidity compiler.	Failed
Floating Pragma	SWC-103	Contracts should be deployed with the same compiler version and flags that they have been tested thoroughly.	Passed
Unchecked Call Return Value	SWC-104	The return value of a message call should be checked.	Passed
Access Control & Authorization	CWE-284	Ownership takeover should not be possible. All crucial functions should be protected. Users could not affect data that belongs to other users.	Passed
SELFDESTRUCT Instruction	SWC-106	The contract should not be self-destructible while it has funds belonging to users.	Not Relevant
Check-Effect- Interaction	SWC-107	Check-Effect-Interaction pattern should be followed if the code performs ANY external call.	Passed
Assert Violation	SWC-110	Properly functioning code should never reach a failing assert statement.	Passed
Deprecated Solidity Functions	SWC-111	Deprecated built-in functions should never be used.	Passed
Delegatecall to Untrusted Callee	SWC-112	Delegatecalls should only be allowed to trusted addresses.	Not Relevant
DoS (Denial of Service)	SWC-113 SWC-128	Execution of the code should never be blocked by a specific contract state unless required.	Passed
Race Conditions	SWC-114	Race Conditions and Transactions Order Dependency should not be possible.	Passed

Authorization through tx.origin	SWC-115	tx.origin should not be used for authorization.	Passed
Block values as a proxy for time	SWC-116	Block numbers should not be used for time calculations.	Not Relevant
Signature Unique Id	SWC-117 SWC-121 SWC-122 EIP-155	Signed messages should always have a unique id. A transaction hash should not be used as a unique id. Chain identifiers should always be used. All parameters from the signature should be used in signer recovery	Not Relevant
Shadowing State Variable	SWC-119	State variables should not be shadowed.	Passed
Weak Sources of Randomness	SWC-120	Random values should never be generated from Chain Attributes or be predictable.	Not Relevant
Incorrect Inheritance Order	SWC-125	When inheriting multiple contracts, especially if they have identical functions, a developer should carefully specify inheritance in the correct order.	Passed
Calls Only to Trusted Addresses	EEA-Lev el-2 SWC-126	All external calls should be performed only to trusted addresses.	Not Relevant
Presence of unused variables	<u>SWC-131</u>	The code should not contain unused variables if this is not <u>justified</u> by design.	Passed
EIP standards violation	EIP	EIP standards should not be violated.	Passed
Assets integrity	Custom	Funds are protected and cannot be withdrawn without proper permissions.	Passed
User Balances manipulation	Custom	Contract owners or any other third party should not be able to access funds belonging to users.	Passed
Data Consistency	Custom	Smart contract data should be consistent all over the data flow.	Passed
Flashloan Attack	Custom	When working with exchange rates, they should be received from a trusted source and not be vulnerable to short-term rate changes that can be achieved by using flash loans. Oracles should be used.	Not Relevant
Token Supply manipulation	Custom	Tokens can be minted only according to rules specified in a whitepaper or any other documentation provided by the customer.	Failed

Gas Limit and Loops	Custom	Transaction execution costs should not depend dramatically on the amount of data stored on the contract. There should not be any cases when execution fails due to the block Gas limit.	Passed
Style guide violation	Custom	Style guides and best practices should be followed.	Passed
Requirements Compliance	Custom	The code should be compliant with the requirements provided by the Customer.	Failed
Environment Consistency	Custom	The project should contain a configured development environment with a comprehensive description of how to compile, build and deploy the code.	Passed
Secure Oracles Usage	Custom	The code should have the ability to pause specific data feeds that it relies on. This should be done to protect a contract from compromised oracles.	Not Relevant
Tests Coverage	Custom	The code should be covered with unit tests. Test coverage should be 100%, with both negative and positive cases covered. Usage of contracts by multiple users should be tested.	Passed
Stable Imports	Custom	The code should not reference draft contracts, that may be changed in the future.	Not Relevant

System Overview

BattleCraft is an ERC-20 token that is Burnable, Pausable, and mints all initial supply to a deployer and has the following attributes:

• Name: BattleCraft

Symbol: CHRGDecimals: 18

• Total supply: 200m tokens.

Findings

Critical

No critical severity issues were found.

-- High

No high severity issues were found.

Medium

1. Requirements Incompilance

The whitepaper states that the total supply of the token should be 200 million tokens. The smart contract does not fix the amount of tokens that can be initially minted.

Path: ./BattleCraft.sol

Contract: BattleCraft

Recommendation: Make the amount of tokens minted in the constructor to satisfy the requirements (200 million) or provide a deployed smart contract with the stated amount of minted tokens.

Status: Reported

Low

1. Redundant Inheritance

The contract inherits from ERC20 contract directly and via ERC20 extensions ERC20Burnable and ERC20Pausable. Such inheritance will create unnecessary function collisions (such as in _beforeTokenTransfer hook) and pollute the code. Thus they should be removed from the code.

Path: ./BattleCraft.sol

Contract: BattleCraft

Recommendation: Remove direct inheritance from ERC20 contract.

Status: Reported

2. Unused Import

The contract inherits from ERC20Pausable contract, which allows the smart contract to be stopped. However, there are no external accessors for internal pausing methods.

Path: ./BattleCraft.sol

Contract: BattleCraft

Recommendation: Remove ERC20Pausable contract or implement Pausable functionality: add Pauser role that will handle pausing and unpausing

the smart contract; add to documentation information that the contract may be stopped.

Status: Reported

3. Outdated Solidity Version

Using an outdated compiler version can be problematic, especially if publicly disclosed bugs and issues affect the current compiler version. The project uses compiler version 0.6.12.

Path: ./BattleCraft.sol

Contract: BattleCraft

Recommendation: Use a contemporary compiler version.

Status: Reported

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry practices at the date of this report, with cybersecurity vulnerabilities and issues in smart contract source code, the details of which are disclosed in this report (Source Code); the Source Code compilation, deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security of the code. The report covers the code submitted to and reviewed, so it may not be relevant after any modifications. Do not consider this report as a final and sufficient assessment regarding the utility and safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to note that you should not rely on this report only — we recommend proceeding with several independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming language, and other software related to the smart contract can have vulnerabilities that can lead to hacks. Thus, Consultant cannot guarantee the explicit security of the audited smart contracts.