

# NATIONAL CERTIFICATE INDUSTRIAL INSTRUMENTS N5

(8080205)

17 April 2020 (X-paper) 09:00-12:00

This question paper consists of 5 pages and a formula sheet of 2 pages.

299Q1A2017

(8080205) -2-

## DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE
INDUSTRIAL INSTRUMENTS N5
TIME: 3 HOURS
MARKS: 100

## INSTRUCTIONS AND INFORMATION

- 1. Answer all the questions.
- 2. Read all the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Use only a black or blue pen.
- 5. Write neatly and legibly.

(8080205) -3-

## **SECTION A: FLOW MEASUREMENTS**

#### **QUESTION 1**

1.1 Two water pipes of different diameters both have blunt objects (bluff bodies) in the paths of their respective water flow. A pressure-sensor device located near each of the bluff bodies measures the frequency of vortices produced.



If the bluff bodies in both pipes have the same physical dimensions, and the vortex-shedding frequencies are the same in both scenarios, which pipe, if any, carries a greater volumetric flow rate of water? Give a reason for the answer.

(6)

(2)

(6) **[24]** 

- 1.2 Name TWO parts of a flowmeter.
  - 2 Name 1110 parts of a novimetor.
- 1.3 Give TWO ways of setting up pressure so that fluid can flow. (2) [10]

#### **QUESTION 2**

- 2.1 If a pipe goes from a 9 cm diameter to a 6 cm diameter and the velocity in the 9 cm section is 2,21 m/s, what is the average velocity in the 6 cm section? (6)
- 2.2 A swirl flowmeter is a velocity-sensitive device that measures the volumetric flow of gasses and liquids.
  - 2.2.1 Make a neat, labelled sketch of a swirl flowmeter. (6)
  - 2.2.2 Give THREE advantages and THREE disadvantages of a swirl flowmeter. (3 + 3) (6)
  - 2.2.3 Show, by means of a labelled sketch, how pressure and temperature are compensated when using a swirl flowmeter.

TOTAL SECTION A: 34

(8080205) -4-

## SECTION B: DENSITY, HUMIDITY AND VISCOSITY

## **QUESTION 3**

| 3.1    | Explain the operating principle of a displacement hydrometer.                                                                                                               |                                                                                          |                      |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------|--|
| 3.2    | Explain, with the aid of sketches, Newtonian and non-Newtonian fluids. (3 + 3)                                                                                              |                                                                                          |                      |  |
| 3.3    | Explain the mounting place of a hair hygrometer.                                                                                                                            |                                                                                          |                      |  |
| 3.4    | Although there are several circuits used for measuring electrical conductivity, a Wheatstone bridge is most widely applied and is potentially the most stable and accurate. |                                                                                          |                      |  |
|        | 3.4.1                                                                                                                                                                       | Draw a neat, labelled measuring circuit for conductivity measurement.                    | (6)                  |  |
|        | 3.4.2                                                                                                                                                                       | Explain how automatic compensation can be performed in a conductivity-measuring circuit. | (3)<br><b>[28]</b>   |  |
|        |                                                                                                                                                                             | TOTAL SECTION B:                                                                         | 28                   |  |
| SECTIO | ON C: pH                                                                                                                                                                    | MEASUREMENT                                                                              |                      |  |
| QUEST  | ION 4                                                                                                                                                                       |                                                                                          |                      |  |
| 4.1    | Why is screening and earthing important in pH measurement?                                                                                                                  |                                                                                          |                      |  |
| 4.2    | What is the main purpose of a reference electrode?                                                                                                                          |                                                                                          |                      |  |
| 4.3    | If the pH meter registers an alkaline solution, would there be an abundance of hydrogen ions or hydroxyl ions?                                                              |                                                                                          |                      |  |
| 4.4    | •                                                                                                                                                                           | explain, with the aid of a drawing, the measuring principle of a pH embrane electrode.   | (10)<br><b>[18</b> ] |  |
|        |                                                                                                                                                                             | TOTAL SECTION C:                                                                         | 18                   |  |

(8080205) -5-

## **SECTION D: AUTOMATIC CONTROL**

## **QUESTION 5**

Use the sketch of a pneumatic receiver controller below and answer the questions.



| 5.1 | Which conditions apply when the controller is balanced?                                                                                                           | (3)                |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 5.2 | Which conditions apply if the measured variable increases by 10 kPa? The gain adjustment is 1,0 and no reset (integral) or derivative (rate) action is generated. | (5)                |
| 5.3 | What is the proportional band of the controller if the gain setting is as in QUESTION 5.2?                                                                        | (1)                |
| 5.4 | How would one reverse the action on this type of controller?                                                                                                      | (1)                |
| 5.5 | Explain what is means when the integral action of a controller is marked r/min.                                                                                   | (3)                |
| 5.6 | Explain the terms derivative action time and integral action time.                                                                                                | (3)                |
| 5.7 | Give THREE advantages of a live zero-based signal and ONE advantage of a zero-based signal controller as used in an electronic controller.                        | (4)<br><b>[20]</b> |

TOTAL SECTION D: 20 GRAND TOTAL: 100 (8080205) -1-

## **FORMULA SHEET**

$$W = 359 \cong 2CZ, Ed^2 \sqrt{(h\rho)}$$
  $R_d = W/15 \cong 8 \mu d$ 

Q = 359
$$\cong$$
2CZ,Ed<sup>2</sup> $\sqrt{(h\rho)}$  R<sub>d</sub> = QΔ/15 $\cong$ 8 μd

$$W = 0 = 0.1252 \text{CZ.Ed}^2 \sqrt{(h\rho)}$$
  $R_d = 3 = 54 \text{ W/ud}$ 

$$Q = 0 \approx 0.1252 \text{CZ,Ed}^2 \sqrt{(h\rho)}$$

$$R_d = 3 \approx 54 \text{ QA/}\mu\text{d}$$

$$Q_g = 2238CZEd^2\sqrt{(h\rho)}$$
  $R_d = Q_g\Delta/98\cong6 \mu d$ 

$$m = (d/D)^2$$
  $E = 1/\sqrt{(1-m^2)}$ 

$$N = \frac{W}{0.01252D^2\sqrt{(h\rho)}} = \frac{Q\sqrt{(\rho)}}{0.01252D^2\sqrt{(h)}}$$

mE = N/CZ, CmE = N/Z, mE = CmE/C  
m = 
$$(d/D)^2$$
 E =  $1/\sqrt{(1-m^2)}$ 

$$R_d = \frac{W}{15 \cdot 8 \,\mu D \sqrt{(m)}} = \frac{Q\rho}{15 \cdot 8 \,\mu D \sqrt{(m)}} = \frac{Q_g \rho}{98 \cdot 6 \,\mu D \sqrt{(m)}}$$

$$N = \frac{W}{3592 D^2 \sqrt{(h)}} = \frac{Q\sqrt{(\rho)}}{3592 D^2 \sqrt{(h)}} = \frac{Q_g \sqrt{(\rho)}}{2238 D^2 \sqrt{(h)}}$$

$$d/D = [(mE)^2/1 + (mE)^2]^{\frac{1}{4}}$$
 mE = N/CZ,

W = 1890 Ud<sup>2</sup>  $\sqrt{(\rho P)}$  for critical flow

$$CmE = N/Z$$
,  $mE = CmE/C$ 

$$d = [W/1 890U\sqrt{(\rho P)}]^{\frac{1}{2}}$$
 for critical flow

$$R_d = \frac{3.54W}{\mu D \sqrt{(m)}} = \frac{3.54Q\rho}{\mu D \sqrt{(m)}}$$

$$d/D = [(mE)^2/1 + (mE)^2]^{\frac{1}{4}}$$

(8080205) -2-

$$W = 1252 Ud^2 \sqrt{(\rho P)}$$
 for critical flow 
$$d = [W/1.252 U\sqrt{(\rho P)}]^{\frac{1}{2}}$$
 for critical flow

$$1 \text{ kPa} = 102 \text{ mmWD} = 102 \text{ mmWG}$$

$$1 \text{ lb/ft}^3 = 16,0183 \text{ kg/m}^3$$

Atmospheric pressure = 101,325 kPa

Gravitation acceleration =  $9.81 \text{ m/s}^2$ 

For D + D/2 tappings and flange tappings

$$\frac{h}{Pa} \times 27,2 = \frac{kPa}{kPa} \times 27,2$$

$$Q = \frac{8}{15} \tan \frac{\theta}{2} \sqrt{2g.H^5}$$

$$Q = \frac{2}{3} \qquad B \sqrt{2g.H^3}$$