3.2 Reduction of Order

Suppose that y_1 denotes a non-trivial solution of $a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$ on the interval I. If we want y_2 , a linearly independent solution to the equation, then $u(x) = y_2(x)/y_1(x)$ is non-constant on I. Therefore, $y_2(x) = u(x)y_1(x)$ would give a second linearly independent solution. We can solve for u(x) by substituting y_2 into the differential equation. This results in solving a first-order deferential equation, and is known as **reduction of order.**

• Example: Given that $y_1 = e^x$ is a solution of y'' - y = 0 on the interval $(-\infty, \infty)$, find a second solution.

Solution: By reduction of order, we can find a second solution of the form $y_2 = ue^x$. By the product rule, we get that

$$y_2' = ue^x + u'e^x$$
, $y_2'' = ue^x + 2u'e^x + u''e^x$,

giving

$$y'' - y = ue^x + 2u'e^x + u''e^x - ue^x = e^x(u'' + 2u') = 0.$$

Since $e^x \neq 0$, we are left with u'' + 2u' = 0. If we let w = u', this becomes w' + 2w = 0, which is a first-order linear DE in w. By use of the integrating factor e^{2x} , we get the solution

$$w = c_a e^{-2x} \rightarrow u' = c_a e^{-2x} \rightarrow u = -\frac{1}{2} c_a e^{-2x} + c_b.$$

Thus,

$$y_2 = ue^x = -\frac{1}{2}c_ae^{-x} + c_be^x.$$

Since we don't want arbitrary constants in our answer, we can let $c_a=-2$, $c_b=0$, resulting in a second solution of $y_2=e^{-x}$. Clearly y_1 and y_2 are linearly independent solutions, so we have created a fundamental set of $\{e^x,e^{-x}\}$, or a general solution of $y=c_1e^x+c_2e^{-x}$.

*Our choices for c_a and c_b were arbitrary, and any choice where $c_a \neq 0$ would have worked in producing a linearly independent solution. However, any other choice of c_a and c_b would be "absorbed" by c_1 and c_2 in the general solution. Therefore, we tend to choose c_a and c_b so as to give the "cleanest" y_2 .

While reduction of order can be used on a generic case to obtain a formula for y_2 , it is generally better to remember the process above as opposed to the formula.