

Discrete Time Fourier Transform

A couple of things

- Read Ch 2 2.0-2.9
- It's OK to use 2nd edition
- Class webcast in bcourses.berkeley.edu or linked from our website
- My office hours: posted on-line
 - W 4-5pm (EE123 priority), 5pm-6pm (ham-shack)
 Th 2p-3p (EE225E Priority) Cory 506 / 504
- Reward: 2\$ for every typo/errors in my slides/slide
- ham radio lectures. Wednesday 6:30-8:30pm Cory 521

Discrete Time Systems

- Causality
- Memoryless
- Linearity
- Time Invariance
- BIBO stability

Discrete-Time LTI Systems

 The impulse response h[n] completely characterizes an LTI system "DNA of LTI"

Sum of weighted, delayed impulse responses!

BIBO Stability of LTI Systems

 An LTI system is BIBO stable iff h[n] is absolutely summable

$$\sum_{k=-\infty}^{\infty} |h[k]| < \infty$$

BIBO Stability of LTI Systems

Proof: "if"

$$|y[n]| = \left| \sum_{k=-\infty}^{\infty} h[k]x[n-k] \right|$$

$$\leq \sum_{k=-\infty}^{\infty} |h[k]| \cdot |x[n-k]|$$

$$\leq B_{\ell}$$

$$\leq B_x \sum_{k=-\infty}^{\infty} |h[k]| < \infty$$

BIBO Stability of LTI Systems

- Proof: "only if"
 - -suppose $\sum_{k=-\infty}^{\infty} |h[k]| = \infty$ show that there exists bounded x[n] that gives unbounded y[n]

$$x[n] = \frac{h[-n]}{|h[-n]|} = \text{Sign}\{h[-n]\}$$

$$y[n] = \sum h[k]x[n-k]$$

$$y[0] = \sum h[k]x[-k] = \sum h[k]h[k]/|h[k]| = \sum |h[k]| = \infty$$

Discrete-Time Fourier Transform (DTFT)

$$X(e^{j\omega})=\sum_{k=-\infty}^{\infty}x[k]e^{-j\omega k}$$
 Why one is sum and the other integral?

integral?

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Why use one over the other?

Alternative

$$X(f) = \sum_{k=-\infty}^{\infty} x[k]e^{-j2\pi fk}$$
$$x[n] = \int_{-0.5}^{0.5} X(f)e^{j2\pi fn}df$$

$$W(e^{j\omega}) = \sum_{k=-N}^{N} e^{-j\omega k}$$

$$= e^{-j\omega N} \left(1 + e^{j\omega} + \dots + e^{j\omega 2N}\right)$$

Recall:
$$1 + p + p^2 + \dots + p^M = \frac{1 - p^{M+1}}{1 - p}$$
 $p = e^{j\omega}$ $M = 2N$

Example 1 cont.

DTFT:

Example 1 cont.

DTFT:

Example 1 cont.

$$W(e^{j\omega}) = \frac{\sin[(N+\frac{1}{2})\omega]}{\sin(\frac{\omega}{2})} \to (2N+1) \quad \text{as} \quad \omega \to 0$$
 also, $\Sigma x[n]$ from l'Hôpital

Properties of the DTFT

Periodicity:
$$X(e^{j(\omega+2\pi)}) = X(e^{j\omega})$$

Conjugate Symmetry:

$$X^*(e^{j\omega}) = X(e^{-j\omega}) \quad \text{if x[n] is real}$$

$$\mathcal{R}e\left\{X(e^{-j\omega})\right\} = \mathcal{R}e\left\{X(e^{j\omega})\right\}$$
$$\mathcal{I}m\left\{X(e^{-j\omega})\right\} = -\mathcal{I}m\left\{X(e^{j\omega})\right\}$$

Big deal for: MRI, Communications, more....

Half Fourier Imaging in MR

k-space (Raw Data)

Image

Complete based on conjugate symmetry Half the Scan time!

SSB Modulation

Real Baseband signal has conjugate symmetric spectrum

Single sideband (USB) half bandwidth

SSB

Amateur radio on shortwaves often use SSB modulation

Example: Websdr

http://websdr.org

http://100.1.108.103:8902

Properties of the DTFT cont.

Time-Reversal

$$x[n] \leftrightarrow X(e^{i\omega})$$
 $x[-n] \leftrightarrow X(e^{-i\omega})$
 $= X^*(e^{j\omega}) \text{ if } x[n] \in \mathcal{R}eal$

If x[n] = x[-n] and x[n] is real, then:

$$X(e^{j\omega}) = X^*(e^{j\omega})$$

 $\to X(e^{j\omega}) \in \mathcal{R}eal$

Q: Suppose:

$$x[n] \leftrightarrow X(e^{j\omega})$$
 $\Rightarrow ? \leftrightarrow \mathcal{R}e\{X(e^{j\omega})\}$

A: Decompose x[n] to even and odd functions

$$x[n] = x_e[n] + x_o[n]$$

$$x_e[n] := \frac{1}{2}(x[n] + x[-n])$$

$$x_o[n] := \frac{1}{2}(x[n] - x[-n])$$

$$x_e[n] + x_o[n] \to \mathcal{R}e\left\{X(e^{j\omega})\right\} + j\mathcal{I}m\left\{X(e^{j\omega})\right\}$$

Oops!

Properties of the DTFT cont.

<u>Time-Freq Shifting/modulation:</u>

$$x[n] \leftrightarrow X(e^{j\omega})_{ ext{Good for MRI! Why}} \ x[n-n_d] \leftrightarrow e^{-j\omega n_d}X(e^{j\omega}) \ e^{j\omega_0 n}x[n] \leftrightarrow X(e^{j(\omega-\omega_o)})$$

Thursday, January 26, 12

What is the DTFT of:

High Pass Filter

See 2.9 for more properties

Frequency Response of LTI Systems

Check response to a pure frequency:

$$e^{i\omega_0 n} \longrightarrow \text{LTI} \longrightarrow y[n]$$

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]e^{j\omega_0(n-k)}$$

$$= \left(\sum_{k=-\infty}^{\infty} h[k]e^{-j\omega_0 k}\right) e^{j\omega_0 n}$$

$$H\left(e^{j\omega}\right)|_{\omega=\omega_0}$$

Frequency Response of LTI Systems

Check response to a pure frequency:

$$e^{i\omega_0 n} \longrightarrow \text{LTI} \longrightarrow y[n]$$

$$H(e^{j\omega}) = DTFT\{h[n]\}$$

$$y[n] = H(e^{j\omega})|_{\omega = \omega_0} e^{j\omega_0 n}$$

Output is the same pure frequency, scaled and phase-shifted!

 $e^{\jmath\omega_0 n}$ is an eigen function of LTI systems

Recall eigen vectors satisfy: $A\nu = \lambda \nu$

Frequency response of a causal moving average filter

$$y[n] = \frac{x[n-M] + \dots + x[n]}{M+1}$$

Q: What type of filter is it? A: Low-Pass

$$h[n] = \frac{1}{M+1} w[n - \frac{M}{2}]$$

Example 3 Cont.

Frequency response of a causal moving average filter

$$h[n] = \frac{1}{M+1} w[n - \frac{M}{2}]$$

Same as example 1, only: Shifted by N, divided by M+1, M=2N

$$H(e^{j\omega}) = \frac{e^{-j\omega\frac{M}{2}}}{M+1} \cdot \frac{\sin\left(\left(\frac{M}{2} + \frac{1}{2}\right)\omega\right)}{\sin\left(\frac{\omega}{2}\right)}$$

Example 3 Cont.

Frequency response of a causal moving average filter

$$H(e^{j\omega})=rac{e^{-j\omegarac{M}{2}}}{M+1}\cdotrac{\sin\left((rac{M}{2}+1)\omega
ight)}{\sin(rac{\omega}{2})}$$
 Not a sinc!

Example 4:

Impulse Response of an Ideal Low-Pass Filter

$$h_{\rm LP}[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{\rm LP}(e^{jw}) e^{j\omega n} d\omega$$
$$= \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega$$

Impulse Response of an Ideal Low-Pass Filter

$$egin{aligned} h_{ ext{LP}}[n] &= rac{1}{2\pi} \int_{-\pi}^{\pi} H_{ ext{LP}}(e^{jw}) e^{j\omega n} d\omega \ &= rac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega \ &= rac{1}{2\pi j n} e^{j\omega n} igg|_{-\omega_c}^{\omega_c} = 2j \sin(w_c n) \ &= rac{\sin(w_c n)}{\pi n} \end{aligned}$$

Impulse Response of an Ideal Low-Pass Filter

$$h_{ ext{LP}}[n] = rac{\sin(w_c n)}{\pi n}$$
 sampled "sinc"

Non causal! Truncate and shift right to make causal

Impulse Response of an Ideal Low-Pass Filter

Non causal! Truncate and shift right to make causal

How does it changes the frequency response?

Truncation:

$$\tilde{h}_{\mathrm{LP}}[n] = w_N[n] \cdot h_{\mathrm{LP}}[n]$$

property 2.9.7:

$$\tilde{H}_{LP}(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{LP}(e^{j\theta}) W(e^{j(\omega-\theta)}) d\theta$$

Periodic convolution

We get "smearing" of the frequency response We get rippling

