Laboratorium Podstaw Elektroniki					
Kierunek	Specjalność	Rok studiów	Symbol grupy lab.	Symbol grupy lab.	
Informatyka	_	I		13	
Temat Laboratorium	·			Numer lab.	
Elementy RLC				3	
Skład grupy ćwiczeniowej oraz numery inde	eksów				
Piotr Więtczak(132339), Robert Ciemny(136693), Kamil Basiukajc(136681)					
Uwagi			Ocena		

1 Krzywa ładowania pojemności

1.1 Cel zadania

Celem tego zadania jest empiryczne wyznaczenie krzywej ładowania pojemności, przy pomocy pomiaru czasu i woltomierza.

1.2 Przebieg Ćwiczenia

Do przeprowadzenia ćwiczenia użyto rezystorów $1M\Omega$ (rzeczywista wartość 0.986 $M\Omega$), $1k\Omega$ (rzeczywista wartość 0.972 $k\Omega$), oraz kondensatora 35V 47 μF (rzeczywista wartość 45.450 μF).

Rozpoznano konfiguracje przełącznika, a następnie przy pomocy prototypowej płytki stykowej zbudowano obwód zaprezentowany poniżej i przeprowadzono pomiary napięć co 10 sekund.

Rysunek 1: Obwód do wyznaczania czasu ładowania pojemności.

1.3 Wyznaczenie przebiegu prądu ładowania pojemności w czasie, na podstawie bilansu napięć w oczku oraz wartości rezystancji R_1

$$(E(1 - e^{\frac{-t}{R_C}}))' =$$

$$= E'(1 - e^{\frac{-t}{R_C}}) + E(1' - \ln e^{\frac{-1}{R_C}} \cdot e^{\frac{t}{R_C}}) =$$

$$0 + E(\frac{1}{R_C})e^{\frac{-t}{R_C}} =$$

$$E\frac{1}{R_C} \cdot e^{\frac{-t}{R_C}}$$

$$I_C(t) = \frac{E}{R_C}e^{\frac{-t}{R_C}}$$

Wykres wyznaczonej zależności

2 Obwód RC zasilany prądem przemiennym

2.1 Cel zadania

Obserwacja zmiany skutecznej wartości prądu w obwodzie w funkcji częstotliwości pobudzenia

2.2 Wybrana częstotliwość pobudzenia

Wybrano częstotliwość 20kHz. Wartości skuteczne napięć:

• na źródle: 1.71V

• na rezystorze: 1.28V

 $\triangle x = 4.80 \mu s$

3 Układ RL

3.1 Wybrana częstotliwość pobudzenia

Wybrano częstotliwość 20kHz. Wartości skuteczne napięć:

• na źródle: 1.85V

• na rezystorze: 447m

 $\triangle x = 11.2 \mu s$