ECS 122A Lecture 10 Jasper Lee Greedy Algorithms
Def (From course textbook) (partial) (orstruct a solution iteratively, via a seq of short-sighted decisions/choice, and hope that it works out at the end.
and hope that it works out out the end.
WARNING: "Most" greedy als are wrong!
Note: But greedy algs can be good "approximation" as (Very out of scope for 122A). Proximation" as
Fractional knapsack
·
Setting: - Knapsack has capacity CZO
- List of n divisible items (think liquid) - weight wize
- Renard rizo U can take only a fraction piof itemi
fraction piofitemi
and get reward piri.
Constraint: Total weight < C
What are some possible greedy strategies
(which might be wrong)?

```
Hg candidates:
  Greedily fill knapsack w/:
     - Smallest Wi?
     - Biggest ri?
     - Biggest reward density ri/wi?
Counterexample:
    - Smallest Wi: Capacity |
Item 1: weight 1, revora 0
2: 100,
    - Brggest ri:
Item 1: wright 100, reward 100
Item 2: 1 2
Alg:
    Sort Items in decreasing rilvi
    total_weight <0
         If total-weight + wi ≤ C:
Take Pi=1
        else take Pi=max((C-total-weight)/wij
```

Yeah but why is it correct?!
Correctness of greedy alg:
WRONG intaition (commonly held):
Make a series of locally opt choices to get a globally opt soln.
Issue: - Partial solutions might not be evaluable
- Doesn't apply to "find me any soln" problems
Correct intuition: By induction
For every choice we made,
we did not tokk up.
Common framework to turn this into a proof:
Sometimes Toduction variable: # of choices made in alg / partial Soln may not
follow this Induction hypothesis:
template for the partial soln constructed from the first il choices of the alg, there exists
an optimal (feasible soln that is "compatible

Need to be specific about what "compatible" means.

Analyzing fractional knapsack alg:

Induction hypothesis for the loop:

Let p1,..., pi be the partial sola constructed at the end of lith 100 p.

not "the"

Then exists an opt sola p",...,p"

st. $\rho = \rho^{(opt)}, \ldots, \rho_i = \rho^{(opt)}.$

Base case (i=0): trivially true.

Induction step:

Assume there is an opt soln

(opt), ..., p n

80 that p, = p(opt), ..., pi = p(opt)

Now consider the it1st iter.

Either Pit1=1 or Pit1 <1, either way

Pit(> Pit).

It piti = piti ve're done.

If not then pits > pits

	There must be (Piti-Piti), Wi weight taken in items it2 to n in propti, otherwise just take more items in propti to give it at least as much reward.
	taken in items its propti attention
	Just take make items in North to air it at
	les et as an all related
	(Eas) as mach remare.
	Leis now construct a new oft som
	Let's now construct a new opt soln
0	S.t. p' = P1, p'i+1 = Pie1
Swappil	
0)(-1, 1-	to do so, Start from p(opt) and swap (prin - piti) - wi weight from items it2 to n to item itl.
argum	(prei - piff)-wi weight from items
Common	7 THZ to N to Itam Itl.
proof st	$\Omega[\Phi]$ [$\Omega[\Phi]$
for one	Since item it! has at least as much reword density as items it? to n p' has reward no worse than p'opti'.
alg.	reword densitur as items it to in
()	o' has reward no worse than a copt).
	So o' is an ent soln too
	So p'is an opt soln too.
	By construction o' = Pour Parana
	By construction, p',=p,, pint=pin
	Man Di Al the and futh 1 an
	Wrap up: At the end of nth loop,
	7 apt soln p (-p+) s.t. p, =p(-p+),, pn = p(op+)
	$C \cap \overline{S} = 0 + S \cap \overline{S} = 0$
	So p is an opt solu.
	-

	Choose your team tournament
	Setting: 2 teams of n numbers each
	Members have power levels A[1n] 7 nt necessarily sorted BT1n]
	Fach number competes with I number of other
	Team A chooses the matching
	Can Team A win all matches?
	Alg: (Thre is at least one other correct greedy alg)
Zuntime	for i = 1 to n
O(n logn	for i = 1 to n find weakest A member n- weaker than Blit if exists, match w/ Blit and remove this A man 7 if none exists, output "no".
	arch
tree for	outputs yer, by construction
eleven	Need to Show: It Team A can win, then we'll find a soly.
	Induction by pothesis:
	If Team A can win, then I a winning matching that agrees w/ the matches made in
	V

first [loop iters. Induction step: ASSUME I a winning matching agree w/ the alg's first i match choices. Now suppose alg matches Bti+1] w/ If M matches ACj) w/ Btitl), then done. Otherwise M matches Btitl w/some ALj'I, and Alj] w/som B[i] w/i/sit1. Note that Alj'J ZACjJ by alg. and snæ M is a winning matching for team A, ALj'] Z BCi+1] A [j] Z BCi'] So swap. Know A [j] >B [iti] since als chose. AEj'JZAEjJZBTi'J NOW matching MI still winning, and agrees w) also on first itl chics. Wronp up: It Team A can win, then
after non 100p vill have found
a winning matching (5)