Question Number	Scheme	Marks
2 (a)	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}, = (3\mathbf{i} + 9\mathbf{j}) - (6\mathbf{i} + 5\mathbf{j}) = -3\mathbf{i} + 4\mathbf{j}$	M1,A1cao (2)
	$\frac{\lambda}{12} = \frac{4}{(-)3}, \lambda = -16$	M1,A1cao (2)
ALT:	$\overrightarrow{PQ} = \mu \overrightarrow{AB}$ $12\mathbf{i} + \lambda \mathbf{j} = \mu \left(-3\mathbf{i} + 4\mathbf{j} \right)$ M1 (Their \overrightarrow{AB}) Allow $\mu = \frac{12\mathbf{i} + \lambda \mathbf{j}}{-3\mathbf{i} + 4\mathbf{j}}$ $\mu = -4$ $\lambda = -16$ A1	
	$\mu = -4 \lambda = -16 $ A1	
(c)	$\left \overline{AB} \right = \sqrt{\left(3^2 + 4^2\right)} = 5 \text{ or } \left \overline{PQ} \right = 20$	M1
	$=\pm\frac{1}{5}(3\mathbf{i}-4\mathbf{j})$ oe	A1 (2)
		[6]
(a)M1	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ or $\overrightarrow{OB} + \overrightarrow{AO}$ or use a diagram. Column vectors allowed for the M mark.	
A1cao	$-3\mathbf{i} + 4\mathbf{j}$ or $4\mathbf{j} - 3\mathbf{i}$ or $\begin{pmatrix} -3\mathbf{i} \\ 4\mathbf{j} \end{pmatrix}$ but \mathbf{i} , \mathbf{j} must be included	
(b)M1	Finding and equating the gradients of the two lines. Fractions can be either way up as long	
	as consistent and attempting to solve for λ There may be sign errors in the equation. Or	
	compare the components.	
A 1	NB: Using $\overrightarrow{PQ} = \overrightarrow{AB}$ scores M0 unless a fresh start is made.	
A1cao	$\lambda = -16$	
(c)M1	Use Pythagoras with $a + sign$ to obtain the length of their AB or their PQ	
A1	A correct unit vector in either direction and any equivalent form inc column vector	