Analiza descendenta. Gramatici $\mathsf{LL}(\mathsf{k})$

Analiza descendenta. Gramatici LL(k)

Letia& Chifu 4.2

Analiza descendenta. Predictive parser - reluare curs anterior

Fie G=(T,N,P,Z) o CFG si automatul stiva $A=(T,\{q\},R,q,\{q\},V,Z)$ cu $V=T\cup N$ si R: (alfabet, stari, productii, stare initiala, stari finale, alfabet stiva, continut initial stiva)

$$\{tqt \rightarrow q | t \in T\} \cup \{Xq \rightarrow x_n....x_1q | X \rightarrow x_1x_2...x_n \in P, n \ge 0, X \in N, X_i \in V\}$$

Automatul accepta un sir din L(G) prin

- construirea unei derivari cea mai din stanga a acelui sir si
- compararea simbolurilor generate (de la stanga la dreapta) cu simbolurile care apar in sir.

Gramatica LL(3)

Fie
$$G_1 = (T, N, E, P)$$

$$T = \{a, b, c\}, N = \{Z, X, Y\}$$

- cu productiile P
 - \blacktriangleright (1) $Z \rightarrow X$
 - \blacktriangleright (2,3) $X \rightarrow Y|bYa$
 - ▶ $(4,5) Y \to c | ca$

Automatul $({a, b, c}, {q}, R, q, {q}, {a, b, c, X, Y, Z}, Z)$:

- ightharpoonup aga ightharpoonup g
- ▶ $bqb \rightarrow q$
- ightharpoonup cqc
 ightarrow q
- ightharpoonup Zq
 ightarrow Xq
- ightharpoonup Xq
 ightarrow Yq
- ightharpoonup Xq
 ightarrow aYbq
- ightharpoonup Yq
 ightarrow cq
- Yq → acq

No backtracking

Analiza descendenta sau predictiva - traseaza derivarea de la simbolul de start la propozitie, prezicand simbolurile care trebuie sa fie prezente.

- stiva precizeaza sirul din V* utilizat pentru derivarea restului sirului de la intrare
- \triangleright automat stiva determinist: pentru gramatici LL(k)

reamintire

• $k: \omega$ primele $min(k, |\omega| + 1)$ simboluri din $\omega \#$

$$\mathbf{k}: \omega = egin{cases} \omega\#, \; \mathit{daca} \; |\omega| < \mathbf{k} \ lpha, \; \; \mathit{daca} \; \omega = lpha \gamma \; \mathit{si} \; |lpha| = \mathbf{k} \end{cases}$$

▶ $FIRST_k(\omega)$ setul tuturor capetelor $k:\omega$ terminale ale sirurilor derivabile din ω

$$FIRST_k(\omega) = \{ \tau | \exists \nu \in T^* \text{ a.i. } \omega \Rightarrow^* \nu, \tau = k : \nu \}$$

▶ $EFF_k(\omega)$ (ε – free first, primul fara ε) - toate sirurile din $FIRST_k(\omega)$ pentru care nu s-a aplicat nicio productie ε in ultimul pas din derivarea cea mai din dreapta

$$EFF_k(\omega) = \{ \tau \in FIRST_k(\omega) | \nexists A \in N, \nu \in T^* \text{ a.i. } \omega \Rightarrow^R A \tau \nu \Rightarrow \tau \nu \}$$

► $FOLLOW(\omega)$ captele k care ar putea urma lui ω ; $FOLLOW_k(Z) = \{\#\}$

Exemplu de valori FIRST, FOLLOW pt k = 1

- $T = \{id, *, +, (,)\}, N = \{E, E', T, T', F\}$
- cu productiile P
 - ightharpoonup Z
 ightharpoonup E
 - $F \rightarrow TF'$
 - $E' \rightarrow +TE'|\varepsilon$
 - $T \rightarrow FT'$
 - $T' \rightarrow *FT' | \varepsilon$
 - $F \rightarrow (E)|id$

simbol	$FIRST_1(X)$	$FOLLOW_1(X)$
E	{(, id}	{),#}
E'	$\{+, \varepsilon\}$	$\{),\#\}$
Τ	$\{(,id\}$	$\{+,\#,)\}$
T'	$\{*, arepsilon\}$	$\{+,\#,)\}$
F	$\{(,id\}$	$\{*,+,\#,)\}$

Exemplu

$$E \Rightarrow TE' \Rightarrow FT'E' \Rightarrow (E)T'E' \Rightarrow^{+} (id) * FT'E' \Rightarrow$$

$$(id) * F * T' + TE' \Rightarrow (id) * id * id + id$$

Gramatici LL(k)

O gramatica independenta de context G = (T, N, P, Z) este LL(k) pentru un $k \ge 0$ daca pentru derivari arbitrare

$$Z \Rightarrow^L \mu X \chi \Rightarrow \mu \nu \chi \Rightarrow^* \mu \gamma$$

$$Z \Rightarrow^L \mu X \chi \Rightarrow \mu \omega \chi \Rightarrow^* \mu \gamma'$$

unde
$$\mu, \gamma, \gamma' \in T^*, \nu, \chi, \omega \in V^*, X \in N$$

avem urmatoarea proprietate: $\mathbf{k}: \gamma = \mathbf{k}: \gamma'$ implica $\nu = \omega$

Curs 7: Gramatica LL(k)

Pentru orice gramatica G de tip LL(k) exista un automat stiva determinist A astfel incat L(A) = L(G).

Automatul citeste fiecare propozitie a limbajului L(G)

- de la stanga la dreapta (Left to right)
- trasand o derivare cea mai din stanga (Left)
- si fara sa examineze mai mult de k simboluri de intrare la fiecare pas.

Definitie situatie

Situatie = O stare a automatului stiva specificata de un triplet (p, j, Ω) :

p - productia

$$X_p \rightarrow x_{p,1}...x_{p,n_p}$$

- ▶ j, unde $0 \le j \le n_p$ numarul de simboluri
 - din partea dreapta a productiei cu numarul p
 - deja analizate
- $ightharpoonup \Omega$ multimea capetelor k care ar putea urma sirului derivat din X_p

Situatie

$$[X_p \to \mu.\nu; \Omega]$$

$$\mu = x_{p,1}...x_{p,j}, \nu = x_{p,j+1}...x_{p,n_p},$$

$$|\mu| = j, |\nu| = n_p - j$$

Punctul nu face parte din vocabular. Marcheaza pozitia curenta a analizei in partea dreapta a productiei

ex:
$$q_7 = [X \to b. Ya; \#]$$

Fie G = (T, N, P, Z). Pt automatul stiva se determina Q si tranzitiile R:

1. $Q = \{q_0\}$ si $R = \emptyset$ cu $q_0 = [Z \to .S, \{\#\}]$ Obs: $FOLLOW_k(Z) = \{\#\}$. q_0 starea initiala si a stivei. Automatul se opreste daca aceasta stare se intalneste din nou, stiva este vida, simbolul de intrare urmator este #.

Fie G = (T, N, P, Z). Pt automatul stiva se determina Q si tranzitiile R:

- 1. $Q = \{q_0\}$ si $R = \emptyset$ cu $q_0 = [Z \to .S, \{\#\}]$ Obs: $FOLLOW_k(Z) = \{\#\}$. q_0 starea initiala si a stivei. Automatul se opreste daca aceasta stare se intalneste din nou, stiva este vida, simbolul de intrare urmator este #.
- 2. fie $q = [X \to \mu.\nu; \Omega]$ un element al lui Q care inca nu a fost tratat

Fie G = (T, N, P, Z). Pt automatul stiva se determina Q si tranzitiile R:

- 1. $Q = \{q_0\}$ si $R = \emptyset$ cu $q_0 = [Z \to .S, \{\#\}]$ Obs: $FOLLOW_k(Z) = \{\#\}$. q_0 starea initiala si a stivei. Automatul se opreste daca aceasta stare se intalneste din nou, stiva este vida, simbolul de intrare urmator este #.
- 2. fie $q = [X \to \mu.\nu; \Omega]$ un element al lui Q care inca nu a fost tratat
- 3. Daca $v = \varepsilon$ atunci se include $q\varepsilon \to \varepsilon$ in R.

Fie G = (T, N, P, Z). Pt automatul stiva se determina Q si tranzitiile R:

- 1. $Q = \{q_0\}$ si $R = \emptyset$ cu $q_0 = [Z \to .S, \{\#\}]$ Obs: $FOLLOW_k(Z) = \{\#\}$. q_0 starea initiala si a stivei. Automatul se opreste daca aceasta stare se intalneste din nou, stiva este vida, simbolul de intrare urmator este #.
- 2. fie $q = [X \to \mu.\nu; \Omega]$ un element al lui Q care inca nu a fost tratat
- 3. Daca $v = \varepsilon$ atunci se include $q\varepsilon \to \varepsilon$ in R.
- 4. Daca $v = t\gamma$, $t \in T$ si $\gamma \in V^*$, fie $q' = [X \to \mu t. \gamma; \Omega]$. Adauga q' in Q si $qt \to q'$ in R.

Fie G = (T, N, P, Z). Pt automatul stiva se determina Q si tranzitiile R:

- 1. $Q = \{q_0\}$ si $R = \emptyset$ cu $q_0 = [Z \to .S, \{\#\}]$ Obs: $FOLLOW_k(Z) = \{\#\}$. q_0 starea initiala si a stivei. Automatul se opreste daca aceasta stare se intalneste din nou, stiva este vida, simbolul de intrare urmator este #.
- 2. fie $q = [X \to \mu.\nu; \Omega]$ un element al lui Q care inca nu a fost tratat
- 3. Daca $\nu = \varepsilon$ atunci se include $q\varepsilon \to \varepsilon$ in R.
- 4. Daca $\nu = t\gamma$, $t \in T$ si $\gamma \in V^*$, fie $q' = [X \to \mu t. \gamma; \Omega]$. Adauga a' in Q si $at \rightarrow a'$ in R.
- 5. Daca $\nu = Y\gamma$, $Y \in \mathbb{N}$ si $\gamma \in \mathbb{V}^*$.
 - fie $q' = [X \rightarrow \mu Y.\gamma; \Omega]$
 - ▶ si $H = \{ [Y \to .\beta_i; FIRST_k(\gamma\Omega)] | Y \to \beta_i \in P \}.$
 - ▶ actualizeaza $Q = Q \cup \{q'\} \cup H$
 - ightharpoonup si $R = R \cup \{q\tau_i \rightarrow q'h_i\tau_i|h_i \in H, \tau_i \in FIRST_k(\beta_i\gamma\Omega)\}$
- 6. daca toate starile din q au fost analizate, stop. Altfel continua cu 2.

Construirea automatului se termina datorita numarului finit de situatii.

Automatul rezultat este determinist daca si numai daca G este o gramatica LL(k).

Exemplu de construire

- Z → S
- ► *S* → 0*S*
- S → 1

		-
1/	_	- 1
n	-	_

	stari noi	tranzitii noi
		$q_0 = [Z \to .S; \{\#\}]$
5	$q'=[Z o S.;\#]=q_1$	$q_0 au$? $ o q_1h$? $ au$?
	$H = \{[S \rightarrow .0S; \#] = q_2,$	$q_00 o q_1q_20$
	$[S\rightarrow .1;\#]=q_3\}$	$q_01 ightarrow q_1q_31$
3	-	$q_1 \varepsilon o \varepsilon$
4	$q'=[S o 0.S;\#]=q_4$	$q_2 0 o q_4$
4	$q'=[\mathcal{S} ightarrow 1.;\#]=q_5$	$q_31 o q_5$
5	1 1 1 10	?
	$H = Ia$ fel cu analiza pt q_0	$q_40 ightarrow q_6q_20$
		$q_41 o q_6q_31$
3	-	$q_5 \varepsilon o \varepsilon$
3	-	$q_6 \varepsilon o \varepsilon$
	3 4 4 5	5 $q' = [Z \rightarrow S.; \#] = q_1$ $H = \{[S \rightarrow .0S; \#] = q_2,$ $[S \rightarrow .1; \#] = q_3\}$ 3 - 4 $q' = [S \rightarrow 0.S; \#] = q_4$ 4 $q' = [S \rightarrow 1.; \#] = q_5$ 5 $q' = [S \rightarrow 0S.; \#] = q_6$ H = la fel cu analiza pt q_0

derivare

Care e derivarea pt 001#?

$$q_0 q_0 001 \# \Rightarrow ?$$

Incercare cu $k=1; Z \rightarrow S, S \rightarrow 0S1, S \rightarrow 01$

		stari noi	No	tranzitii noi
		$q_0 = [Z \rightarrow .S; \{\#\}]$		
$\overline{q_0}$	5	$q' = [Z \rightarrow S.; \#] = q_1$		$q_0 \tau$? $\rightarrow q_1 h$? τ ?
		$H = \{[S \rightarrow .0S1; \#] = q_2,$		$ au \in \mathit{FIRST}_1(0S1\#);$
			1	$q_00 ightarrow q_1q_20$
		$[S ightarrow .01;\#]=q_3\}$		$ au \in \mathit{FIRST}_1(01\#);$
			2	$q_00 ightarrow q_1q_30$
q_1	3	-	3	$q_1 \varepsilon o \varepsilon$
q_2	4	$q'=[S ightarrow 0.S1;\#]=q_4$	4	$q_20 o q_4$
q ₃	4	$q'=[S ightarrow 0.1;\#]=q_5$	5	$q_30 \rightarrow q_5$
q_4	5	$q' = [S \to 0S.1; \#] = q_6$		
		$H = \{[S \rightarrow .0S1; FIRST_1(1\#)]\}$		$ au \in \mathit{FIRST}_1(0S11\#);$
		$=q_7,$	6	$q_40 ightarrow q_6q_70$
		$[S ightarrow .01; \mathit{FIRST}_1(1\#)] = q_8 \}$		$ au \in \mathit{FIRST}_1(011\#);$
			7	$q_40 ightarrow q_6 q_8 0$
q_5	4	$[S ightarrow 01.;\#]=q_9$	8	$q_51 o q_9$
q 6	4	$[S ightarrow 0S1.;\#]=q_{10}$	9	$q_61 o q_{10}$
q 9	3		10	$q_9arepsilon o arepsilon$

k=1 : automat nedeterminist: $q_00 \to q_1q_20$ si $q_00 \to q_1q_30$ Derivare 01: cu un lookahead de 1 nu stim care productie sa o aplicam

$$q_0q_001\# \stackrel{1}{\Rightarrow} q_0q_1q_201\# \stackrel{4}{\Rightarrow} q_0q_1q_41\# \quad \textit{deadend}$$

$$q_0q_001\# \stackrel{2}{\Rightarrow} q_0q_1q_301\# \stackrel{5}{\Rightarrow} q_0q_1q_51\# \stackrel{8}{\Rightarrow} q_0q_1q_9\# \stackrel{10}{\Rightarrow} q_0q_1\varepsilon\# \Rightarrow q_0\#$$

Incercare cu k=2; $Z \rightarrow S$, $S \rightarrow 0S1$, $S \rightarrow 01$

-ei cai	16 (Lu K $-$ Z, Z \rightarrow 3, 3 \rightarrow 0,	ЭΙ,	$\rightarrow 01$
		stari noi	No	tranzitii noi
		$q_0 = [Z \rightarrow .S; \{\#\}]$		
$\overline{q_0}$	5	$q' = [Z \to S.; \#] = q_1$		$q_0 au$? $ o q_1h$? $ au$?
		$H = \{[S \rightarrow .0S1; \#] = q_2,$		$ au \in \mathit{FIRST}_2(0S1\#);$
			1	$q_000 ightarrow q_1q_200$
		$[S \to .01; \#] = q_3$		$ au \in \mathit{FIRST}_2(01\#);$
			2	$q_001 ightarrow q_1q_301$
q_1	3	-	3	$q_1arepsilon o arepsilon$
q_2	4	$q' = [S \to 0.S1; \#] = q_4$	4	$q_2 0 ightarrow q_4$
q 3	4	$q'=[S ightarrow 0.1;\#]=q_5$	5	$q_30 o q_5$
q_4	5	$q' = [S \to 0S.1; \#] = q_6$		
		$H = \{[S \rightarrow .0S1; FIRST_2(1\#)]\}$		$ au \in \mathit{FIRST}_2(0S11\#);$
		$=q_7,$	6	$q_400 ightarrow q_6q_700$
		$[S\rightarrow .01; \textit{FIRST}_2(1\#)] = q_8\}$		$ au \in \mathit{FIRST}_2(011\#);$
			7	$q_401 ightarrow q_6 q_8 01$
q 5	4	$[S ightarrow 01.;\#]=q_9$	8	$q_51 o q_9$
q 6	4	$[S ightarrow 0S1.;\#]=q_{10}$	9	$q_61 o q_{10}$
q_7	4	$\left[S ightarrow0.S1;1\# ight]=q_{11}$	10	$q_70 ightarrow q_{11}$
q 8	4	$[S ightarrow 0.1;1\#]=q_{12}$	11	$q_80 ightarrow q_{12}$
q_9	3		10	$q_9arepsilon o arepsilon$
q_{10}	3		10	$q_{10}arepsilon ightarrow arepsilon$
q_{11}	5	$q' = [S o 0S.1; \{1\#\}] = q_{13}$		
		$H = \{[S \rightarrow .0S1; FIRST_2(11\#)]\}$		$ au \in \mathit{FIRST}_2(0S111\#);$
		$=q_{14},$	6	$q_{11}00 o q_{13}q_{14}00$
		$[S \to .01; FIRST_2(11\#)] = q_{15}$		$ au \in \mathit{FIRST}_2(0111\#);$
			7 4	$\Box q_{11} 0 $ $\Rightarrow q_{1\overline{3}} q_{15} 0 $ \Rightarrow

Derivare $Z \Rightarrow 0011$

Stiva	Stare	Intrare	Derivarea cea mai din stanga
$\overline{q_0}$	q 0	0011#	Z
$q_0 q_1$	q_2	0011#	S
$q_0 q_1$	q_4	011#	0S1
9 0 9 1 9 6	q 8	011#	0011
9 0 9 1 9 6	q_{12}	11#	

Gramatica *LL*(3)

- ightharpoonup Z
 ightarrow X
- ightharpoonup X
 ightarrow Y | b Y a
- ightharpoonup Y
 ightharpoonup c | ca

		stari noi		tranzitii noi
		$q_0 = [Z \rightarrow .X; \#]$		
q_0	5	$q' = [Z \rightarrow X.; \#] = q_1$		$ au \in \mathit{FIRST}_3(Y\#) = \{c\#, \mathit{ca}_7\}$
		$H = \{[X \rightarrow .Y; \#] = q_2,$	1	$q_0c\# o q_1q_2c\#$
			2	$q_0ca\# o q_1q_2ca\#$
		$[extit{X} ightarrow .b extit{Ya};\#] = extit{q}_3 \}$		$ au \in \mathit{FIRST}_3(\mathit{bYa}) = \{\mathit{bca}\}$
			3	$q_0 bca ightarrow q_1 q_3 bca$
$\overline{q_2}$	5	$q' = [X \rightarrow Y.; \#] = q_4$		$ au \in FIRST_3(c\#) = \{c\#\}$
		$H = \{[Y \rightarrow .c; \#] = q_5,$	4	$q_2c\# o q_4q_5c\#$
		$Y ightarrow .ca;\#]=q_{6}\}$	5	q_2 ca $\# o q_4q_6$ ca $\#$

Gramatica LL(3)

 \triangleright $Z \rightarrow X$

 $q_6 = [Y \rightarrow \bullet ca; \#]$

 $q_7 = [X \to b \bullet Ya; \#]$ $q_8 = [Y \to c \bullet; \#]$

 $\blacktriangleright X \rightarrow Y|bYa$ ightharpoonup Y
ightharpoonup c | ca $q_0 = [Z \rightarrow \bullet X; \#]$ $q_9 = [Y \rightarrow c \bullet a; \#]$ $q_1 = [Z \to X \bullet; \#]$ $= [X \rightarrow bY \bullet a; \#]$ q_{10} $q_2 = [X \rightarrow \bullet Y; \#]$ $= [Y \rightarrow \bullet c; a\#]$ q_{11} $q_3 = [X \rightarrow \bullet bYa; \#]$ $= [Y \rightarrow \bullet ca; a\#]$ q_{12} $q_4 = [X \rightarrow Y \bullet; \#]$ $= [Y \rightarrow ca \bullet; \#]$ q_{13} $q_5 = [Y \rightarrow \bullet c; \#]$ $= [X \rightarrow bYa\bullet; \#]$ q_{14}

 q_{15}

 $= [Y \rightarrow c \bullet; a \#]$

 $q_{16} = [Y \rightarrow c \bullet a; a\#]$

 $q_{17} = [Y \rightarrow ca \bullet; a\#]$

$$\begin{array}{llll} q_0 &= [Z \to \bullet X; \#] & q_9 &= [Y \to c \bullet a; \#] \\ q_1 &= [Z \to X \bullet; \#] & q_{10} &= [X \to bY \bullet a; \#] \\ q_2 &= [X \to \bullet Y; \#] & q_{11} &= [Y \to \bullet c; a\#] \\ q_3 &= [X \to \bullet bY a; \#] & q_{12} &= [Y \to \bullet ca; a\#] \\ q_4 &= [X \to Y \bullet; \#] & q_{13} &= [Y \to ca \bullet; \#] \\ q_5 &= [Y \to \bullet c; \#] & q_{14} &= [X \to bY a \bullet; \#] \\ q_6 &= [Y \to \bullet ca; \#] & q_{15} &= [Y \to c \bullet; a\#] \\ q_7 &= [X \to b \bullet Y a; \#] & q_{16} &= [Y \to c \bullet a; a\#] \\ q_8 &= [Y \to c \bullet; \#] & q_{17} &= [Y \to ca \bullet; a\#] \\ R &= \{q_0 c \# \to q_1 q_2 c \#, & q_7 c a \# \to q_{10} q_{11} c a \# \\ & q_0 c a \# \to q_1 q_2 c a \#, & q_7 c a \to q_{10} q_{12} c a a, \\ & q_0 b c a \to q_1 q_3 b c a, & q_8 \to \epsilon, \\ q_1 \to \epsilon, & q_9 a \to q_{13}, \\ & q_2 c \# \to q_4 q_5 c \#, & q_{10} a \to q_{14}, \\ & q_2 c a \# \to q_4 q_6 c a \#, & q_{11} c \to q_{15}, \\ & q_3 b \to q_7, & q_{12} c \to q_{16}, q_{13} \to \epsilon, \\ & q_4 \to \epsilon, & q_{14} \to \epsilon, \\ & q_5 c \to q_8, & q_{15} \to \epsilon, \\ & q_6 c \to q_9, & q_{16} a \to q_{17}, q_{17} \to \epsilon \end{array} \}$$

aceeasi gramatica dar cu k=2

$$q_7$$
ca $ightarrow$ $q_{10}q_{11}$ ca q_7 ca $ightarrow$ $q_{10}q_{12}$ ca

Cu
$$k=3$$

$$q_7 ca\# \to q_{10} q_{11} ca\#$$

$$q_7 caa \to q_{10} q_{12} caa$$

unde pt k = 3

- ▶ $q_7 = [X \to b. Ya; \#]$
- ▶ $q_{10} = [X \to bY.a; \#]$
- ▶ $q_{11} = [Y \to .c; a\#]$
- ▶ $q_{12} = [Y \rightarrow .ca; a\#]$

Derivare $Z \Rightarrow X \Rightarrow bYa \Rightarrow bcaa$

Stiva	Stare	Intrare	Derivarea cea mai din stanga
$\overline{q_0}$	q_0	bcaa#	Z
$q_0 q_1$	q_3	bcaa#	X
$q_0 q_1$	q 7	caa#	bYa
$q_0q_1q_{10}$	q_{12}	caa#	bcaa
$q_0q_1q_{10}$	q_{16}	aa#	
$q_0q_1q_{10}$	q_{17}	a#	
$q_0 q_1$	q_{10}	a#	
$q_0 q_1$	q_{14}	#	
q_0	q_1	#	
	q_0	#	

- La tranzitiile de stivuire sunt examinate simbolurile dinainte (lookaheads symbols).
- Aceste tranzitii corespund intrarii intr-o productie noua

 Citirea simbolurilor terminale si decizia de terminare a productiei printr-o tranzitie de destivuire se realizaeaza fara inspectarea simbolurilor dinainte

Teorema

4.2.2, 4.2.3 Teorema. O gramatica LL(k) nu poate avea simbol nonterminal recursiv stanga.

Daca $X\Rightarrow X\omega, \omega
eq \varepsilon$ - X nonterminal recursiv stanga

- \triangleright $E \rightarrow E + T | T$
- ightharpoonup T
 ightharpoonup T
 ightharpoonup T
 ightharpoonup F | F
- **▶** *F* → (*E*)|*id*

are doua productii cu recursivitate stanga

Teorema

Teorema. Pentru orice gramatica CFG G = (T, N, P, Z) cu simboluri nonterminale recursive stanga exista o gramatica echivalenta G' = (T, N', P', Z) fara nonterminale recursive stanga.

Idee

$$X o X \alpha | \beta$$
 devine $\begin{cases} X o \beta X' \\ X' o \alpha X' | \varepsilon \end{cases}$

$$E \rightarrow E + T \mid T$$

$$T \to T * F | F$$

$$ightharpoonup F
ightharpoonup (E)|id$$

$$ightharpoonup E'
ightarrow + TE' | \varepsilon$$

$$ightharpoonup$$
 $T' o *FT' | \varepsilon$

Dar...

- ightharpoonup S
 ightarrow Aa|b
- $ightharpoonup A
 ightharpoonup Ac|Sd|\varepsilon$

$$S \Rightarrow Aa \Rightarrow Sda$$

ne trebuie un algoritm care sa elimine toate nonterminalele cu recursivitate stanga

- ► Consideram ca $N = \{X_1, X_2, ... X_n\}$ simbolurile nonterminale sunt numerotate consecutiv.
- ▶ Daca putem alege indicii a.i. indicii sa respecte i < j pentru toate productiile $X_i \to X_j \omega$ atunci G nu are recursivitate stanga.
- ▶ Daca o astfel de numerotare nu este posibila pentru G, atunci se genereaza G'.

Exemple:

- \triangleright $S \rightarrow Aa|b$
- ▶ $A \rightarrow Ac|Sd|\varepsilon$
- ▶ Daca S e 1, A e 2, prima productie respecta i < j dar nu si a doua
- ▶ $E \rightarrow E + T$ nu respecta i < j

Algoritm de eliminare recursivitate stanga

- 1. Fie N' = N, P' = P. Se executa pasii 2,3 pentru i = 1,...n
- 2. Pentru j=1,...i-1 $X_i \to X_j \omega \in P'$ se inlocuiesc cu $\{X_i \to \chi_j \omega | X_j \to \chi_j \in P'\}$. In consecinta, $X_i \Rightarrow^+ X_j \gamma$ implica $i \leq j$.
- 3. Se inlocuiesc $X_i \to X_i \omega \in P'$ cu $\{Y_i \to \omega Y_i\} \cup \{Y_i \to \varepsilon\}$ adaugand un nou simbol Y_i la N'. + se inlocuiesc $X_i \to \chi, \chi \neq X_i \gamma$ cu $X_i \to \chi Y_i$. Simbolurile noi se numeroteaza cu n+1, n+2,..

- \triangleright $E \rightarrow E + T | T$
- ightharpoonup T
 igh
- ightharpoonup F
 ightarrow (E)|id

presupunem ordinea E(1) < T(2) < F(3)

picsu	puncin ordinca L(1) <	(2) < (3)	
i	pasul2	pasul 3	variabila noua
1	nu se executa	$E \rightarrow E + T T$ devin	E'(4)
		E' ightarrow + TE' ert arepsilon si	
		E ightarrow TE';	
2	j = 1	$T \rightarrow T * F F$ devin	T'(5)
	$ au o E\omega$ nu exista	$T' \to *FT' \varepsilon$	
		T o FT'	
3	j = 1, 2	$ extstyle F o F \omega$ nu exista	
	$ extstyle F o E\omega$ sau		
	$ extstyle F o T\omega$ nu exista		
45	nu se modifica nimic		

4,5 nu se modifica nimic

Rezultat:

- ightharpoonup E
 ightarrow E + T | T
- ightharpoonup T
 ightharpoonup T
 ightharpoonup T
 ightharpoonup T
 ightharpoonup F | F
- ightharpoonup F
 ightarrow (E)|id

- ightharpoonup E
 ightarrow TE'
- $ightharpoonup E'
 ightarrow + TE' | \varepsilon$
- ightharpoonup T
 ightarrow FT'
- ightharpoonup $T' o *FT' | \varepsilon$
- ightharpoonup F
 ightarrow (E)|id

- \triangleright $S \rightarrow Aa|b$
- ▶ $A \rightarrow Ac|Sd|\varepsilon$

...pasul 2 al algoritmului: Pentru j=1,...i-1 $X_i \to X_j \omega \in P'$ se inlocuiesc cu $\{X_i \to \chi_j \omega | X_j \to \chi_j \in P'\}$.

Daca S(1) < A(2)

- i = 1 nimic
- ▶ i = 2 la pasul 2 $A \rightarrow Sd$ se inlocuieste cu $\{A \rightarrow Aad|bd\}$

- \triangleright $S \rightarrow Aa|b$
- ▶ $A \rightarrow Ac|Sd|\varepsilon$

...pasul 3 al algoritmului: Se inlocuiesc $X_i \to X_i \omega \in P'$ cu $\{Y_i \to \omega Y_i\} \cup \{Y_i \to \varepsilon\}$ adaugand un nou simbol Y_i la N'. + se inlocuiesc $X_i \to \chi, \chi \neq X_i \gamma$ cu $X_i \to \chi Y_i$.

Daca S(1) < A(2)

- i = 1 nimic
- ▶ i = 2 la pasul 2 $A \rightarrow Sd$ se inlocuieste cu $\{A \rightarrow Aad|bd\}$
- ▶ i = 2 la pasul 3 $A \to Ac|Aad|bd|\varepsilon$ se inlocuieste cu $A' \to cA', A' \to adA', A' \to \varepsilon$ si $A \to bdA', A \to A'$

Teorema. Daca sirul ω din $X_i \to X_i \omega$ nu incepe cu $X_j, j \le i$ atunci $X_i \to X_i \omega$ se poate inlocui cu $\{Y_i \to \omega, Y_i \to \omega Y_i\}$ si $X_i \to \chi$ cu $\{X_i \to \chi, X_i \to \chi Y_i\}$ la pasul 3.

pasul 3 anterior ...se inlocuiesc
$$X_i \to X_i \omega \in P'$$
 cu $\{Y_i \to \omega Y_i\} \cup \{Y_i \to \varepsilon\}$ adaugand un nou simbol Y_i la N' . + se inlocuiesc $X_i \to \chi, \chi \neq X_i \gamma$ cu $X_i \to \chi Y_i$.

Se evita introducerea productiilor ε .

- ightharpoonup E
 ightharpoonup E
 ightharpoonup E + T | T
- $T \to T * F | F$
- ightharpoonup F
 ightarrow (E)|id

Cu productii ε

- E → TE'
- $\blacktriangleright E' \rightarrow +TE'|\varepsilon$
- ► T → FT'
- $T' \rightarrow *FT' | \varepsilon$
- F → (E)|id

Fara productii arepsilon

- ightharpoonup E o TE' | T
- ightharpoonup E'
 ightarrow + T| + TE'
- ▶ $T \rightarrow FT'|F$
- ightharpoonup T'
 ightarrow *F| *FT'
- ightharpoonup F
 ightarrow (E)|id

Observatii

- Recursivitatea stanga precum $E \to T|E+T$ utilizata pentru a reflecta asociativitatea stanga a operatorilor.
- ▶ Aceeasi proprietate avem si in $E \to TE', E' \to +TE', E' \to \varepsilon$
- ▶ Insa asociativitate dreapta $E \rightarrow T, E \rightarrow T + E$.

Productiile ε se pot elimina intotdeauna dintr-o gramatica LL(k), dar aceasta poate mari valoare lui k. 4.2.3

Teorema

TEOREMA. Pentru orice gramatica LL(k) cu productii ε exista o gramatica LL(k+1) fara productii ε care genereaza limbajul $L(G) - \varepsilon$.

Prin introducerea productiilor ε se poate reduce k.

Teorema

TEOREMA. Pentru orice gramatica LL(k+1), k > 0 fara productii ε exista o gramatica LL(k) echivalenta cu productii ε .

Fie
$$P = \{ Z \rightarrow X \ X \rightarrow Yc | Yd \ Y \rightarrow a | bY \}$$

Productiile $X \to Yc$ si $X \to Yd$ nu pot fi distinse chiar prin examinarea oricarui numar fix de simboluri din sirul de intrare deoarece din Y se poate deriva un sir de lungime si mai mare.

Solutie: evitarea problemei prin amanarea deciziei. Ambele incep cu Y, nu trebuie facauta distinctie intre ele decat dupa ce Y a fost recunoscut.

Fie
$$P = \{ Z \rightarrow X \ X \rightarrow Yc | Yd \ Y \rightarrow a | bY \}$$
devine
Fie $P = \{ Z \rightarrow X \ X \rightarrow YX' \ X' \rightarrow c | d \ Y \rightarrow a | bY \}$

Se poate examina un singur caracter inainte pt a face diferente intre cele doua variante c sau d.

```
Fie \ P = \{ \quad Z \rightarrow X \\  \qquad \qquad X \rightarrow if \ E \ then \ S|if \ E \ then \ S \ else \ S|a \\  \qquad \qquad E \rightarrow b \} devine Fie \ P = \{ \quad Z \rightarrow X \\  \qquad \qquad X \rightarrow if \ E \ then \ S \ S'|a \\  \qquad \qquad S' \rightarrow else \ S|\varepsilon \\  \qquad \qquad E \rightarrow b \}
```

Kahoot

- ▶ Pentru $G = (\{id, (,), +\}, \{E, E', T\}, E, P)$ si P:
- E → TE'
- $ightharpoonup E'
 ightarrow + TE' | \varepsilon$
- ightharpoonup T
 ightarrow (E)|id

O gramatica G este LL(k) daca exista un automat stiva determinist A cu L(A)=L(G) care

- 1. citeste inputul de la stanga la dreapta
- 2. citeste inputul de la dreapta la stanga
- 3. traseaza derivarea cea mai din dreapta
- 4. traseaza derivarea cea mai din stanga
- 5. examineaza mai mult de k simboluri de intrare la fiecare pas
- nu examineaza mai mult de k simboluri de intrare la fiecare pas

Situatia [$S \rightarrow 0.S1$; #] exprima o stare a automatului stiva in care:

- 1. Din productia $S \to 0S1$ s-a analizat deja 0S, se asteapta un sir derivat din 1, urmat de #
- 2. Din productia $S \to 0S1$ s-a analizat deja 0, se asteapta un sir derivat din S1, urmat de #
- 3. Din productia $S \to 0S1$ se asteapta un 0, urmat de un sir derivat din S1, urmat de #
- 4. Din productia $S \to 0S1$ s-a analizat deja 0, se asteapta un sir derivat din S, urmat de 1#

- ightharpoonup Z
 ightarrow X
- ightharpoonup X
 ightarrow Y | bYa
- $Y \rightarrow c | ca$

		stari noi	tranzitii noi
		$q_0 = [Z \rightarrow .X; \#]$	
q_0	5	q'=?	

- ightharpoonup Z
 ightarrow X
- ightharpoonup X
 ightarrow Y | b Y a
- ightharpoonup Y
 ightharpoonup c | ca

		stari noi	tranzitii noi
		$q_0 = [Z \rightarrow .X; \#]$	
q_0	5	$q' = [Z \rightarrow X.; \#] = q_1]$	

- ightharpoonup Z
 ightarrow X
- ightharpoonup X
 ightarrow Y | bYa
- ightharpoonup Y
 ightarrow c | ca

		stari noi	tranzitii noi
		$q_0 = [Z \rightarrow .X; \#]$	
q 0	5	$q' = [Z o X.; \#] = q_1$ $H = \{[X o .Y; \#] = q_2,$ $[X o .bYa; \#] = q_3\}$	$q_0 au_2 o q_1q_2 au_2\ q_0 au_3 o q_1q_3 au_3$

- ightharpoonup Z
 ightarrow X
- $ightharpoonup X
 ightarrow Y | \mathit{bYa}$
- ightharpoonup Y
 ightarrow c | ca

		stari noi	tranzitii noi
		$q_0 = [Z \to .X; \#]$	
q_0	5	$q' = [Z \rightarrow X.; \#] = q_1$	$\tau_2 \in FIRST_3(Y\#) = \{c\#, ca\#\}$
		$H = \{[X \rightarrow .Y; \#] = q_2,$	$q_0 au_2 o q_1q_2 au_2$
		$[X ightarrow .bYa;\#]=q_3\}$	$q_0 au_3 o q_1q_3 au_3$
			$ au_3 \in FIRST_3(bYa) = \{bca\}$