AD-A283 379

SHRUCTURAL, INTERMETABLICS

PERSPECTIVES ON SCIENCE AND TECHNOLOGY

February 5 & 6, 1994

DEFENCE METALLURGICAL RESEARCH LABORATORY HYDERABAD INDIA

Vol. II

Metals Group,
MATERIALS RESEARCH SOCIETY OF INDIA

ASIAN OFFICE OF AEROSPACE RESEARCH & DEVELOPMENT US Air Force

This checument has been approved for public release and selve in distribution is unlimited.

Best Available Copy

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

STRUCTURAL INTERMETALLICS

PERSPECTIVES ON SCIENCE AND TECHNOLOGY

February 5 & 6, 1994

DEFENCE METALLURGICAL RESEARCH LABORATORY

HYDERABAD INDIA

Accesion For

NTIS CRA&I D
DTIC TAB Unannounced Unannounced D
Justification

By
Distribution I

Vol. II

Metals Group,
MATERIALS RESEARCH SOCIETY OF INDIA

ASIAN OFFICE OF AEROSPACE RESEARCH & DEVELOPMENT US Air Force

94-25385

CONTENTS

Voi. II

_			***	\sim T	`
1.	FΟ	RE	·W	ΟŁ	ΚD

- 2. PROGRAMME
- 3. European Intermetallics Activities and Contribution from France
 T.Khan and S.Naka
 ONERA, France
- Microstructure, Processing and Properties of MoSi₂
 D.A. Hardwick
 Rockwell Science Centre, USA
- Effect of Microstructure on the Creep of Molybdenum Disilicides and their Composites
 K. Sadananda and R. Feng Naval Research Laboratory, USA
- 6. Ordered Ground State Structures in HCP Alloys
 A.K. Singh
 Defence Metallurgical Research Laboratory, India
 and
 Prof. S.Lele
 Banaras Hindu University, India
- 7. Stability
 S. Raju, E.Mohandas and V.S.Raghunathan
 Indira Gandhi Centre for Atomic Research, India

FOREWORD

A two day symposium on "Structural Intermetallics - Perspectives on Science and Technology" was held at the Defence Metallurgical Research Laboratory, Hyderabad, India on February 5 and 6, 1994, preceding the Annual General Meeting of the Materials Research Society of India. The Symposium was organised by the Metals Group of the Materials Research Society of India and co-sponsored by the Asian Office of Aerospace Research and Development, US Air Force. C.V.Sundaram, Chairman, Metals Group of the Materials Research Society of India noted in his introductory remarks that the progress towards the development of intermetallics to application has been 'exasperatingly' slow. Robert Cahn of the University of Cambridge, UK, in a keynote lecture provided a historical perspective on early research on 'weakly ordered' alloys and examples of more recent work on 'strongly ordered' compounds.

The symposium featured ten overview talks. Dan Miracle of Air Force Wright Laboratory addressed both science-based issues and engineering concerns related to the metallurgy of NiAl. He noted that NiAl could be significantly strengthened to the levels of several superalloys and, in any case, possessed a variety of attractive properties such as low density, high thermal conductivity and excellent environmental resistance. Nevertheless, a reasonable combination of toughness and high temperature strength continues to be an elusive goal, and the current approach emphasises design methodologies which can use low toughness materials with adequate factors of safety. The alloy system presents large opportunities for research in fabrication (casting technology), strengthening and deformation behaviour. Vinod Sikka presented the status of Fe₃Al and Ni₃Al from an applications engineering perspective with emphasis on work at the Oak Ridge National Laboratory, USA. He stressed specially the excellent corrosion and sulphidation resistance of the Fe₃Al base alloys and their cost benefits in relation to stainless steel. High temperature strength levels continue to be of concern and strong environmental effects on ductility at room temperature have been identified. It appears unlikely that Ni₃Al base alloys will find aeroengine applications, but their excellent carburisation resistance and high temperature strength lend them to applications in heat treatment furnaces, automotive vehicles and in manufacturing. Cost is a key concern in these applications. A summary of the work on Ti₃Al and Ti₂AlNb base alloys at the Defence Metallurgical Research Laboratory, with emphasis on the key issues that limit application, was provided by Ashok Gogia. He described microstructural and compositional effects on primary creep in some detail emphasising that this area has not received adequate attention

in the literature, although the major contribution to creep strain arises from transient behaviour. Other drawbacks relate to oxygen induced dynamic embrittlement over the range of application temperatures and poor burn resistance, a feature common to all titanium alloys with the exception of TiAl. Patrick Martin from Rockwell Science Centre, USA described the current status on TiAl. Successful engine ground tests at General Electric of cast Ti-47Al-2Cr-Nb offer a positive outlook for application of an intermetallic alloy in rotating applications. His talk emphasised issues related to thermomechanical processing of these alloys as they affect microstructure evolution and emphasised the need to refine the processing-microstructure-property envelope in full scale ingot conversion and the development of low cost processing approaches for potential automotive applications.

Work on molybdenum disilicide was covered in two presentations : Dallis Hardwick summarised the physical metallurgy of MoSi₂ and described in some detail Rockwell Science Centre work on this material, while Sadananda from the Naval Research Laboratory, USA concentrated on the effect of SiC particulates and whisker composites with MoSi₂ on creep resistance. While composite microstructure can be designed to provide creep resistance much superior to superalloys and approaching ceramic-ceramic systems at temperatures greater than 1000°C, it was clear that low temperature toughness must be enhanced, perhaps utilising ductile phase toughening or laminate design. Two approaches to the stability of intermetallics were described by Raju from Indira Gandhi Centre for Atomic Research, India, and Ashok Singh from the Defence Metallurgical Research Laboratory, India. Raju described the variety of semi-empirical approaches using alloy theory parameters and concluded with his own work in developing a new structure map parameter which offers advantages over the Pettifor scheme. Ashok Singh offered a description of a variety of thermodynamic approaches including CVM to developing ground state structures in ordered hexagonal systems. Tassaduq Khan of ONERA, France described the nature and substance of European Community Schemes such as BRITE-EURAM, COST and CEASI as related to intermetallic programmes and provided a summary of ONERA work on B2 alloys based on the Ti-Al-Nb system and approaches to TiAl alloy development.

A variety of contributed presentations from various research groups in India covered work on phase transformations in TiAl, $\rm Zr_3Al$ and B2-DO $_3$ systems, powder metallurgy and ingot approaches to processing $\rm Fe_3Al$ and $\rm Al_3Ti$ alloys, the mechanical behaviour of alloys of the $\rm Ti_3Al$ -Nb system and oxidation resistance of $\rm Ti_3Al$ alloys. A dominant metallurgical theme that emerged from the symposium was the dichotomy that exists between high temperature strength and low temperature ductility in the

intermetallics. Alloying and processing schemes that enhance the one, almost inevitably do so at the expense of the other.

A hard copy of the material presented in the overview talks is provided in two volumes. The first covers the aluminides: NiAl, TiAl, Ni $_3$ Al, Fe $_3$ Al and Ti $_3$ Al. The second presents the material on European intermetallic activities, molybdenum disilicide and its composites, the ground state structures and stability of intermetallics.

March, 1994

D. Banerjee Defence Metallurgical Research Laboratory Hyderabad-500258, India

PROGRAMME Saturday, Feb 5

9.00 - 9.45	Saturday, Feb 5 Intermetallics - The Fashionable and Unfashionable <i>R.W.Cahn</i> University of Cambridge, U.K.
9.45 - 10.15	Coffee
10.15 - 11.00	Understanding and Applications of NiAl <i>D.B.Miracle</i> Air Force Wright Laboratory, USA
11.00 - 11.45	Technology and Applications of Ni ₃ Al-Based Materials <i>V. K. Sikka</i> Oakridge National Laboratory, USA
11.45 - 12.05	Development of Cold Rolling Texture in Ni ₃ Al (B) <i>R.K.Ray</i> Indian Institute of Technology, Kanpur, India
12.05 - 12.25	Recrystallisation of Ni ₃ Al <i>A.K.Jena</i> Indian Institute of Technology, Kanpur, India
12.25 - 1.15	Lunch
1.15 - 2.00	Promise versus Reality for High Temperature Applications of Gamma TiAl - A Perspective <i>P.L.Martin</i> Rockwell Science Centre, USA
2.00 - 2.20	Diffusional Composition Invariant and Coarsening Phase Transformations in TiAl Base Alloys <i>R.V.Ramanujam</i> Bhabha Atomic Research Centre, Bombay, India
2.20 - 2.40	Interface Modification in two phase $(\gamma+\alpha_2)$ Titanium Aluminide by Ternary Additions and their Deformation Behaviour <i>S.R.Singh</i> National Metallurgical Laboratory, Jamshedpur, India
2.40 - 3.15	Tea
3.15 - 4.00	The Stability of Intermetallics <i>S.Raju</i> Indira Gandhi Centre for Atomic Research, Kalpakkam, India
4.00 - 4.45	Ground State Structures of Ordered Alloys S. Lele & A.K.Singh Banaras Hindu University, Varanasi, India

	Sunday, Feb 6
9.00 - 9.45	European Intermetallic Activities - Contributions from France <i>T. Khan</i> ONERA, France
9.45 - 10.15	Coffee
10.15 - 11.00	Composites Based on Molybdenum Silicide: Progress and Prospects <i>D.A. Hardwick</i> Rockwell Science Centre, USA
11.00 - 11.45	Technology and Applications of Fe ₃ Al-based materials <i>V.K. Sikka</i> Oak Ridge National Laboratory, USA
11.4 12.05	Preparation and Processing of Fe ₃ Al Strips through Ingot and P/M processing <i>S.Bagchl, S.Suwas, S.Bhargava, S.Sangal and R.K.Dube</i> Indian Institute of Technology, Kanpur, India
12.05 - 12.25	Anti-phase boundaries in B2 and DO ₃ Fe-Al-X (X=Cr, Mo) and DO ₂ /L1, Al- Ti-Ni Intermetallics <i>Ujjwal Prakash</i> Delence Metallurgical Research Laboratory, Hyderabad, India
12.25 - 12.45	Improvement in Mechanical Properties of Iron Aluminides <i>Aruna Bahadur</i> National Metallurgical Laboratory, Jamshedpur, India
12.45 - 2.00	Lunch
2.50 - 2.45	The Metallurgy of Ti ₃ Al Base alloys A.A.Gogia Defence Metallurgical Research Laboratory, Hyderabad, India
2.45 - 3.05	Low Cycle Fatigue Behaviour of Ti-27Al-15Nb <i>P.N.Singh, B.K.Singh, C.Ramachandra and V.Singh</i> Banaras Hindu University, Varanasi, India
3.05 - 3.25	High Temperature Oxidation of Ti ₃ Al <i>T.K.Roy, R.Balasubramaniam and A.Ghosh</i> Indian Institute of Technology, Kanpur, India
3.25 - 4.00	Tea
4.00 - 4.20	Morphological Features of Ti ₃ Al Based Intermetallic Alloys Prepared by Reaction Synthesis <i>M. Sujata, S. Bhargava and S. Sangal</i> Indian Institute of Technology, Kanpur, India
4.20 - 4.40	Phase Transformations in Zr ₃ Al Base Alloys <i>R.1ewari, G.K.Dey and P.Mukhopadhyay</i> Bhabha Atomic Research Centre, Bombay, India

3. European Intermetallics Activities and Contribution from France T.Khan and S.Naka ONERA, France

European Intermetallics Activities and Contribution from France

T. KHAN and S. NAKA

ONERA, 29, Av. de la Division Leclerc, 92322 Châtillon, France

February, 5-6, 1994, Hyderabad

Principal European Programme on Advanced Materials

- 1) BRITE/EURAM
- 2) COST 513
- 3) CEASI

ONERA

BRITE - EURAM

TABLE 1: GENERAL CONDITIONS FOR PARTICIPATION

Type 1 Projects

(up to 90% of available budget)

Industrial Applied Research

-indicative Priority Themes

-precompetitive and collaborative

-potential for exploitation

-subsequent development expected

Size

-10 Man-years minimum

-1 to 3 Mecu

Duration -2 to 4 years

Partners

-at least 2 independent industrial enterprises -at least 2 different

Member States

Type 2 Projects (7% to 10% of available budget)

Focused Fundamental Research

-upstream of Type 1

-indicative Priority Themes

-precompetitive and collaborative

-industrial endorsement from

2 Member States

Size

-10 Man-years minimum

0.4 to 1 Mecu

Duration -2 to 4 years

Partners

-at least 2 organisations

-at least 2 different

Member States

Co-ordinated Activity

Co-ordination of related research

EC Funding-up to 100% coordination

-within Technical Areas

-in different Member States

-co-ordination activities only

-proposers must justify activity

-not research costs

Partners

-as appropriate

Calls

-continuous

COST

PRESENTING NEW PROPOSALS & JOINING PROJECTS Flow Charts on Project Procedures

Concerted European Action on Structural Intermetallics (CEASI)

The objectives of CEASI are:

- (i) To provide a framework by which a coherent pre-competitive research programme can be carried out in the field of structural intermetallic-based alloys.
- (ii) To ensure that there is a balance of activity in the research programme across the whole discipline, so that European intermetallics research goes ahead in a well-balanced way.
- (iii) To supply, process and circulate reference materials to participants.
- (iv) To develop a fundamental understanding of alloying behaviour in intermetallics so that alloy development and alloy processing is on a firm basis for future application to the manufacture of components.

CEASI Project Management

EEC Brussels

Industrial Advisory Board

Thien (Siemens) and Smarsly (MTU) Germany

Lasalmonie (SNECMA) and Brun (Turbomeca) France

Regis (ENEL) Italy

Harkegard (ABB) and Harkegar (Sulzer) Switzerland

Kearns (IMI) and Postans (Rolls-Royce) UK

Project Management Board

Loretto (IRC Birmingham, UK)

Project coordinator

Khan (ONERA, Paris, France)
Coordinator of processing and applications

Sauthoff (Max Planck Düsseldorf, Germany)

Coordinator for property assessment

Plus seven elected members from CEASI

Participant groups

Alloy development
Material properties
Material Processing

Joining

- Various Intermetallics
- Ti3Al (or Ti2AlNb) and Nb-base intermetallic alloys
- TiAl
- NiAl
- · Ni3Al
- Fe₃Al and FeAl
- · Two-phase A2+B2 alloys
- Interaction with the industry

SNECMA, Turboméca, Aérospatiale Dassault and SEP

- Formation of a GDR (research group) Basic research oriented

Ti3Al or Ti2AINb base

High Niobium Titanium Aluminides (B2)

Increasing Nb beyond 25 at.%

Advantages

- Fine microstructure ⇒ yield stress
- Higher amount of ordered β phase

⇒ high temperature strength

⇒ room temperature ductility

Orthorhombic phase ⇒ room temperature ductility

Disadvantage

• High density (> 5)

in the phase diagram of the Ti-Al-Nb system (Isothermal section at 1200°C), Compositions of alloys of the Ti-Al-Nb system in which the B2 phase was observed. They were plotted proposed by Perepezko et al. (1990).

TiAl base

Activities on $\gamma + \alpha_2$ TiAl-based Alloys

- Effect of various alloying elements

Fe, Cr, Mo, W: γ -stabilizing

Nb, Ta

: α₂-stabilizing

⇒ Development of new compositions

- Thermomechanical processings (isothermal forging and extrusion)

e.g. on Ti₄₈Al₄₈Nb₂Cr₂

• microstructure control before and after processing

- Casting: e.g. on TiAl-Fe-V-B

• good castability: addition of B? and/or \beta-phase solidification?

Powder metallurgy

reactive sintering

- Basic study on phase transformation mechanisms

ONERA

Key Metallurgical Factors

- Alloy composition
- Some beneficial alloying elements identified
 - Microstructure
- Lamellar structure: most frequent and important
- Various microstructures resulting

from various phase-transformation sequences

Texture

- Solidification texture often extremely pronounced
- Porosity
- Macro- and micro-porosities

Impurity level

- High purity materials required
 - Machining
- Good quality of the surface

Texture

During solidification

$$L \uparrow \alpha$$

$$\alpha: HCP \Rightarrow crystal growth direction // [0001]$$

During the formation of lamellar structure

$$\alpha \Rightarrow \alpha + \gamma \Rightarrow \alpha_2 + \gamma \text{ (or } \alpha \Rightarrow \alpha_2 \Rightarrow \alpha_2 + \gamma)$$

$$(0001)\alpha$$
 or α_2 // $\{1111\}\gamma$

1600

1400

1200

Temperature (°C)

3.14

F

Atomic Percent Al

30

Ξ

 α_2

.008

1000

9

scattering of mechanical properties data Acute solidification texture ⇑

Future directions in the research activities related to the texture

• Investigate the evolution of texture during thermal and thermomechanical processings

⇒ reduce or suppress the solidification texture

⇒ • Identify suitable alloy compositions to promote solidification with the β phase \Rightarrow weaker texture

Phase transition sequence

L
$$\Rightarrow \beta + \gamma$$
 (interdendritic)
 $\downarrow 12$ variants due to the Burgers
 $\downarrow relationship: \{110\}_{\beta}/\{0001\}_{\alpha}$
 $\downarrow \alpha$
 $\downarrow \alpha$
 $\downarrow \gamma + \alpha_2 + \beta$ (B2)

Impurity level

- Atom-probe analysis of the two phases γ and α_{γ} in the lamellar structure Maximum solubility of oxygen is very low: ≈300at.ppm.
 - Textatitive explanation of the origin of a better ductility
- of $\gamma + \alpha_2$ two-phase alloys, compared to γ single-phase alloys
- in two-phase alloys: oxygen is "dispersed" throughout the α_2 lamellae.
 - in single phase: oxygen is strongly segregated in the form of oxide.

ONERA

ONERA

Volume Fraction of the α_2 Phase estimated through TEM. Composition determined by Chemical Analysis and

	Ti ₅₂ Al ₄₈	Ti ₅₄ Al ₄₆
Aluminium	47.9±0.4 at.%	46±0.4 at.%
Titanium	51.8±0.4 at.%	53.7±0.4 at.%
Oxygen	2290+230 at.ppm	2505±250 at.ppm
$\mathbf{F_{v}} \propto 2$	10±5%	30±5%

Oxygen Concentrations as well as Volume Fractions of the α_2 Phase deduced from Atom-Probe Analysis.

	Ti ₅₂ Al ₄	Al48	Ti54	Ti ₅₄ Al ₄₆
	α_2	>-II	α_2	2-11
Oxygen	19200±1200 at.ppm	230±70 at.ppm	8100±700 at.ppm	200±100 at.ppm
F α2	10	10 ±2%	29	29 ±7%

Future directions in the research activities related to the impurity level

- containing less than 250 at.ppmΩ (≈ 100 wt.ppmO) • Prepare two phase $\gamma + \alpha_2$ alloys
- mobility of 1/2<110] and 1/2<112] dislocations ⇒ change in plastic deformation mechanisms? • Investigate their deformation behaviour
 - → influence on macroscopic ductility?

Various transformation modes

1) Formation of lamellar structure

$$-\alpha \Rightarrow \alpha + \gamma \Rightarrow \alpha_2 + \gamma \text{ or } \alpha \Rightarrow \alpha_2 \Rightarrow \alpha_2 + \gamma$$

- nature of various interfaces:

 $1/\alpha_2$ and $1/\gamma$ (TB's, ODB's, PTB's, MB's)

2) Massive transformation

 $-\alpha \Rightarrow \gamma$

- numerous defects and interfaces including γ APB's

3) Discontinuous coarsening of γ lamellae

- solute redistribution through moving grain boundaries?

- mechanism less clarified

Two-Phase Systems

γ-γ' microstructure (Ni-base superalloy)

Two-phase A2+B2 (or A2+L21) alloys $(\gamma-\gamma)$ type microstructure)

Nb base, Ta base, Fe base etc.

- A2 matrix containing a high volume fraction of sencond
 - "compatible" phase
- "compatible": crystal structure and lattice parameter
 - Solid state decomposition of solid solution

into two phases

evaluate both size effect and chemical interaction • Empirical "Crystallo-chemical approach

Two-phase (A2+L2₁) microstructure observed in Fe-Ni₂AlTi system

Two-phase (B2+A2) microstructure observed

in a Ta-base alloy (Ta-Ti-Zr-Al-Nb-Mo system)

Temperature dependence of yield stress for various alloys: Comparison made between a two-phase B2+A2 allay and three single-phase B2 alloys NiAl base

Travaux ONERA

ductilité

durcissement

20µm

100nm

3.28

4. Microstructure, Processing and Properties $\begin{array}{l} \text{ of MoSi}_2 \\ \text{ D.A. Hardwick} \\ \text{Rockwell Science Centre, USA} \end{array}$

Microstructure, Processing and Properties of MoSi₂

Rockwell International Science Center D. A. Hardwick

work supported by AFOSR

SUMMARY

Introduction : Historical Background

Crystal Structure, Dislocations

DBTT, Oxidation

Silica as Impurity

RISC Work : Our AFOSR program

Processing, Microstructure, Properties

Comments on Future Directions

Composites :

Bright Phase Ductile Phase Laminates

Composite Design

Background of MoSi₂ Development

- Early NACA reports, R. A. Long and W. A. Maxwell; 1950 1952
 Hot pressed PM material; <100% dense
 Oxygen, carbon and grain size effects quantified
 Hot tensile, hot compression, tensile creep and oxidation
 measured to at least 1300°C
 Thermal shock resistance (under stress) of turbine blade
 shapes
- German work began in early 50's as well; Fitzer and students
 which has continued to the present time
 Ductile phase (wire) composites with Ta and Nb
- Soviet reports beginning in mid 50's; Samsonov and coworkers on transition element silicides
 Thermophysical properties
- SiC whisker composites work began in mid 80's in US; Carter,
 Gibbs, Petrovic (LANL)
 Strength and toughness benefits

Los Alamos

Assessed Mo-Si Phase Diagram

Mo-Si Crystal Structure Data

Phase	Composition, at% Si	Pearson symbol	Space group	Struktur- bericht designation	Prototype
(Mo)	0	cI2	lm3m	A2	w
Mo ₃ Si	25	cP8	Pm3n	A 15	Cr ₃ Si
MosSis	37.5	<i>4</i> 38	14/mcm	$D8_m$	W _s Si,
aMoSi2	66.7	46	I4/mmm	Cli.	MoSi ₂
βMoSi ₂	66.7	•••	C6,2	*	
(Si)	100	cF8	Fd3m	A4	C (diamono

Dislocations in MoSi₂

TABLE 1. Possible Burger's vectors and slip planes for MoSi2

<i>p</i>	Slip planes	b (A)	$ b ^2(A^2)$	
(100)	(0KI) 011,001	3.21 •	10.24	
(110)	(110), (111)	4.54	20.61	
(1/2)(111)	/101% (110)/	4.53	20.56	
[001]	(100); (110)	7.85	61.62	
(1/2)[001]	{110} {013}	2.62	6.84	
(1/2)[331)	(110), (013)	7.86	61.78	
(1/6)(331)	(110), (013)	2.61	6.82	
/* O O / * /				

Boldt et al. Mat. Sci. Eng A

Mitchell et al. Mat. Sci. Eng A

0.2% OFFSET YIELD STRESS (MPa)

TEMPERATURE (°C)

4.6 Mallow et et MRS Symposium "Silicides & Refractory Metals"

Ductile to Brittle Transition Temperature

Accelerated Oxidation of MoSi₂

Fig. 2—Cyclic oxidation of CERAC MoSi₂ samples in dry air as a function of temperature: (\square) 400 °C; (\triangle) 450 °C; (\bigcirc) 500 °C; (\bigcirc) 550 °C; and (\bigcirc) 600 °C.

Schematic of Reactive HIP Process

Characteristics of Our Processing Route

- Begins with high purity elemental powder, not commercial silicide powder
- All processing steps in inert environment ⇒ clean but tedious
- Produces a 98% dense material with large grain size and low silica content
- Densification assisted by adiabatic heating low external heat input
- Probably not a feasible process for large scale production

Microstructure of MoSi₂; as processed

Optical - polarized light

Experimental Parameters

- Simple specimen geometry, simple stress state (cf. bending) Compression of right circular cylinders
- Temperature range: 1200°C 1400°C (likely range for DBTT)
- Strain rate range: 10⁻³ sec⁻¹ to 10⁻⁵ sec⁻¹
- Strain range: 1% to 50% (average strain ≈10%)
- Flow stress, influence of stress on microstructure, deformation mechanisms

Effect of Microstructure on Mechanical Properties

Stress-Strain Curve for Sample Tested at 1200°C and 10 /sec Non-linearity in Stress-Strain Curve ≡ Plastic Deformation ?

Yield Stress vs Temperature and Strain Rate

4.14

Microstructure of MoSi₂ deformed at 10⁻⁴sec⁻¹

1250°C; $\varepsilon_{\tau} = 0.087$

 1300° C; $\epsilon_{\rm t} = 0.15$

Microstructure of MoSi₂ deformed at 10⁻⁴sec⁻¹

1250°C; $\varepsilon_{\tau} = 0.087$

1300°C; $\epsilon_t = 0.15$

4.16

Large Strain Deformation of MoSi₂

Optical - polarized light

Microstructure of $MoSi_2$; $e_t = 0.57$ at 1300°C and 10⁻⁴sec⁻¹

Optical - polarized light

SEM - backscatter contrast

Dislocations in MoSi₂ strained at 10⁻⁴sec⁻¹

 $E_t = 0.16$; T = 1300°C

 $E_t = 0.14$; T = 1400°C

Implications for Future Work

- Reduce CRSS of hardest orientations by alloying must be done in single crystals
- Alloying to promote additional slip systems altering the crystal
- Directional solidification to enhance "soft" orientations
- Additions of benign second phase to reduce grain size decrease slip length so that initial cracks are not catastrophic

Additions of C or rare earths would have combined effect of producing second phase while scavanging oxygen

high concentrations, enhances grain boundary sliding. This is one Silica should be avoided - it does promote a fine grain size but, in way to avoid microcracking but not the best way!

MoSi₂ Composite Approaches

- Brittle Whiskers or Rods: Increase in creep strength and toughness (via pull-out)
- · Hard Dispersoids: Increase in flow stress and work hardening rate
- temperature toughness (via energy absorption) -- implied creep Ductile Phases (Particulates, Whiskers, Wires): Increase in low detriment (?)
- · Laminates: Can dramatically affect both strength and toughness depending on the details of the interfacial properties

Strength and Toughness of MoSi₂ Composites

Table 1: Room Temperature Fracture Toughness Data

	MoSl ₂	MoSl ₂ + VLS SIC(w)	MoSi ₂ + VS SiC(w)
MPa·m [†]	5.32	8.20	6.59
(ksl·ln [†])	(4.84)	(7.45)	(5.99)

From: D. H. Carter, J. J. Petrovic, R. E. Honnell and W.Scott Gibbs, "Sic - MoSi₂ Composites", Los Alamos National Laboratory, LA-11577-MS, June 1989.

Strength of Molybdenum Disilicide

4.24

Toughness of Molybdenum Disilicide

4.25

Ductile Phase Toughening by Crack Bridging (Evans, Ashby, McMeeking, Mehrabian et al)

Nb Wire Reinforced MoSi₂

- Hot pressed; ≈95% dense; 5 mm dia. wires; 50 vol%;
 reaction zone ≈10µm
- Impact resistance increased 700% vs. unreinforced MoSi₂
- · High Temperature Bend Strength*:

500 MPa @ 1200°C 200 MPa @ 1300°C

Room Temperature Bend Strength**:

- * Ref.: J. Schlichting, High Temp. High Pressures, 10, (1978), 241.
- ** Hef.: E. Fitzer and W. Remmele, Fifth International Conf. on Composite Materials ICCM-V, (1985), 515.

Parabolic Rate Constant for Growth of $\rm M_5Si_3$ in Contact with $\rm MoSi_2$

Ref.: E. Fitzer and F. K. Schmidt, High Temp. - High Pressures, 3, (1971) 445.

Table III. Measured Toughness of the Laminated Composites Reinforced with 20 Vol Pct of Nb Foils with a Thickness of 0.25 mm*

Toughness of Laminated Composites

	Monolithic	Uncoated Nb	Al ₂ O ₃ Coated	ZrO ₂ Coated	ZrO ₂ Coated
Material	MoSi2	Reinforced	Nb Reinforced	Nb Reinforced	Nb Reinforced
Hot-pressing	J. 00/1	1700 °C	1400 °C	1400 °C	1700 °C
temperature		and 1400 °C			
(MPa·m ^{1/2})	3.3 ± 0.3	15.2 ± 1.3	14.0 ± 1.5	12.8 ± 1.5	8.6 ± 1.3
Work of fracture					
$(1/m^2)$	690 ± 30	$21,600 \pm 3000$	$28,700 \pm 1900$	$28,700 \pm 4600$	2800 ± 300
Interfacial					
fracture energy **	I	high	medium	wol	low
Ductility of the					•
reinforcement **		high	high	high	Mol

^{*}Four specimens for each condition were tested except for Al₂O₃ coated Nb system for which eight specimens were tested.

CTE Cracking in Brittle Matrix Composites

radial r-cracks

normal z-cracks

 $\mathcal{R} = R(E_m \varepsilon_T/K_m)^2$

R = reinforcement size

 K_m = matrix toughness

 $E_m = matrix modulus$

 ε_T = misfit strain = $f(\Delta \alpha)$

 $\mathcal{R}_{\mathbf{c}}$ = critical size below which no cracking occurs

Lu, Evans, Hecht & Mehrabian, Acta Met 8 (1991)

CTE-induced Matrix Cracking

 ${\it R}_{\rm C}$ depends on

f= volume fraction of reinforcement

 Σ = ratio of elastic moduli

v = Poisson's ratio

 μ = interface response (friction coefficient)

Trends in cracking coefficent with volume fraction

CTE Matrix Cracking - Bonded Interfaces

MoSi₂ reinforced with Al₂C₃

CTE Matrix Cracking - Debonding Interfaces

MoSi₂ reinforced with SiC

Molybdenum Disilicides and their Composites Effect of Microstructure on the Creep of Naval Research Laboratory, USA K. Sadananda and R. Feng ιυ ·

EFFECT OF MICROSTRUCTURE ON THE CREEP OF MOLYBDENUM DISILICIDES AND THEIR COMPOSITES

K. SADANANDA AND C.R. FENG NAVAL RESEARCH LABORATORY WASHINGTON D.C.

OUTLINE

- 1. WHY MOLYBDENUM DISILICIDES?
- MICROSTRUCTURE: MONOLITHIC MATERIAL VS COMPOSITES (a) PARTICULATES VS WHISKERS ر. ن
 - DISTRIBUTION OF REINFORCEMENTS AND ASPECT RATIO GRAIN SIZE EFFECTS VS REINFORCEMENT EFFECTS ALLOYING EFFECTS ပြ
- CREEP PROCESS က
- 4. HOW DO THE MOLYDISILICIDES COMPARE WITH OTHER POTENTIAL CANDIDATE MATERIALS FOR HIGH TEMPERATURE **APPLICATIONS**

TABLE - 1

CANDIDATE MATERIALS FOR HIGH & LOW TEMPERATURE APPLICATIONS

< 1000°C

TEMPERATURE Nickel base Superalloys <-- USE

> 1000°C Si-based Ceramics SiC, Si₃N₄, SiC/SiC

• ^: 1000 °C NIAI, NbAI3, TaAI3

Ti-aluminides

Ni-aluminides

M-246

MAR

MoS12

COMPGLAS

List of candidate materials for high (>1000 °C) and low (<1000 °C) temperature applications. TABLE. 1

(p)

NRL EFFORT ON MOLYBDENUM DISILICIDE COMPOSITES

MONOLITHIC MOSI,

MoSi2 + 20% SiC WHISKERS

2 + SIC PARTICULATES

MONOLITHIC MOSI2 + WSI2 ALLOY

MoS₁₂ + WS₁₂ ALLOY + 20% S₁C WHISKERS

MOSI2 MONOLITHIC - EFFECT OF GRAIN SIZE

* ALL MATERIALS PROVIDED BY J. PETROVIC OF LOS ALAMOS NATIONAL LABORATORY

Creep Data for MoSi₂

Material Tenup. Stress, N/Pa Ref. M/Pa Ref. M/Pa N/Pa		Croop =				
Material 1093-1371 8-70 1.3 Surviki et al	,	Temn	Stress,			Ref.
Ninternal 1093-1371 8-70 1.3		i citip.,			KJ/moi	
NIOS12	Material		8-70		-	
MoSi ₂ HIP 1200 35-70 2.8 3 50ss MoSi ₂ HIP 1100-1400 10-80 1.7, 4.4 372 Shosh et al Sadaranda et al HIO-1400 10-80 1.7, 4.4 372 Shosh et al Sadaranda et al HIO-1400 10-80 1.7, 4.4 372 Shosh et al Sadaranda et al HIO-1400 10-80 1.7, 4.4 372 Shosh et al Sadaranda et al HIO-1400 10-80 1.7, 4.4 372 Shosh et al Sadaranda et al HIO-1400 10-80 1.7, 4.4 372 Shosh et al Sadaranda et al HIO-1400 10-80 1.7, 4.4 372 Shosh et al Sadaranda et al HIO-1400 10-50 2.7 Shosh et al Sadaranda et al HIO-1400 10-50 2.7 Shosh et al Sadaranda et al HIO-1400 10-50 2.7 Shosh et al Sadaranda et al HIO-1400 10-50 3.1 Shosh et al Sadaranda et al HIO-1400 10-250 3.1 Shosh et al Sadaranda et al HIO-1450 10-250 3.1 Shosh et al Sadaranda et al HIO-1450 10-250 3.1 Shosh et al Sadaranda et al HIO-1450 10-250 3.3, 5.2 596 Shosh et al Sadaranda et al HIO-1450 10-250 3.3, 5.2 596 Shosh et al Sadaranda et al HIO-1450 10-250 3.3, 5.2 596 Shosh et al Sadaranda et al HIO-1450 10-250 3.3, 5.2 596 Shosh et al Sadaranda et al HIO-1450 10-250 3.3, 5.2 596 Shosh et al Sadaranda et al HIO-1450 10-250 3.3, 5.2 596 Shosh et al Sadaranda et al HIO-1450 10-250 3.3, 5.2 596 Shosh et al Sadaranda et al HIO-1450 10-250 3.3, 5.2 596 Shosh et al Sadaranda et al HIO-1450 10-250 3.3, 5.2 596 Shosh et al Shosh et	MoSi ₂			3.5	-	
MoSi ₂ , HP	MoSi ₂			2.8	-	-
MoSi2	MoSi ₂ , HP			2.8	272	
MoSi2 MoSi2 MoSi2 MoSi2* 1100-1300 1200 10-80 70-170 2 2 2 2 35-70 3-30 35-70 Bose 35-36 35-36 Bose 35-36 Bose 35-37 Bose 3	MoSi2, HIP		10-80			Sadananda et al
MoSi2 MoSi2, single crystal <210> 1200 10-50 70-170 2.7 2 Chosh et al MoSi2* MoSi2* 1200 10-50 35-70 2.40 1.6 536 536 536 MoSi2* MoSi2*20v%SiCw, HP MoSi2*18v%SiCw, HIP MoSi2*20v%SiCw 1200 1200 1200 1200 1200 1200 1200 1200	MoSi ₂	1100-1400	10-80		433	
MoSi2, single crystal	Masia		70-170		-	
MoSi2*	MoSia, single crystal <210>		10-50	2.7	-	Ollogi et al
Mo, W) Si2, HP	MoSia*	1200	2000			Dogo
(Mo, W)Si ₂ + PP (Mo, W)Si ₂ 1100-1400 2-200 2.4-3.6 550 Saction (Mo, W)Si ₂ + 18v %SiC _w , HP 1200 35-100 3.1 - Bose (MoSi ₂ +20v %SiC _w 11P 1200 100-250 3.1 - Ghosh et al (MoSi ₂ +20v %SiC _w 1100-1450 20-200 3.3, 5.2 596 Saction and at et al (Mo, W)Si ₂ +20v %SiC _w 1100-1450 20-200 3.3, 5.2 596 Saction (Mo, W)Si ₂ +20v %SiC _w 1175 30-50 2.3 557 Wiederhorn et al (Mo, W)Si ₂ +20v %SiC _w * 1225 30-50 2.3 557 Wiederhorn et al (Mo, W)Si ₂ +20v %SiC _w * 1225 30-50 2.3 557 Wiederhorn et al (Mo, W)Si ₂ +20v %SiC _p 1100 65-120 3.5 Deve et al (MoSi ₂ +20v %SiC _p 1100 70-150 3.5 Deve et al (MoSi ₂ +20v %SiC _p 1100 70-150 3.1 Ghosh et al (MoSi ₂ +20v %SiC _p 1100 70-150 3.1 Ghosh et al (MoSi ₂ +20v %SiC _p 1100 70-150 3.1 Ghosh et al (MoSi ₂ +20v %SiC _p 1050-1300 35-300 3.5 - Deve et al (MoSi ₂ +20v %SiC _p 1050-1300 35-300 3.5 - Patrick et al (MoSi ₂ +20v %Erg/Mo ₃ Si ₄ P 1200-1300 100-280 3.5 - Patrick et al (MoSi ₂ +20v %CaO _p 1200-1300 100-100 4.5 Along MoSi ₂ +20v %CaO _p 1200-1300 100-100 4.5 Along MoSi ₂ +30v %GiC _p 1100-1200 20-180 1 460 Sadananda et al (MoSi ₂ +30v %SiC _p 1100-1200 20-250 1 460 Sadananda et al (MoSi ₂ +30v %SiC _p 1100-1200 20-250 1 460 Sadananda et al (MoSi ₂ +40v %SiC _p 1000-1150 10-30 1 5-75 Wiederhorn et (MoSi ₂ +40v %SiC _p 1000-1150 10-30 5 684 Wiederhorn et (MoSi ₂ +10v %SiC _p 1000-1150 10-30 5 684 Wiederhorn et (MoSi ₂ +10v %SiC _p 1000-1150 10-30 5 684 Wiederhorn et (MoSi ₂ +10v %SiC _p 1050-1150 10-30 5 684 Wiederhorn et (MoSi ₂ +10v %SiC _p 1050-1150 10-30 5 684 Wiederhorn et (MoSi ₂ +10v %SiC _p 1150-1250 30-50 5 5 684 Wiederhorn et (MoSi ₂ +10v %SiC _p 1150-1250 30-50 5 5 684 Wiederhorn et (MoSi ₂ +10v %SiC _p 1150-1250 30-50 5 5 684 Wiederhorn et (MoSi ₂ +10v %SiC _p 1150-1250 30-50 5 5 684 Wiederhorn et (MoSi ₂ +10v %SiC _p 1150-1250 30-50 5 5 684 Wiederhorn et (MoSi ₂ +20v %SiC _p 1150-1250 30-50 5 5 684 Wiederhorn et (MoSi ₂ +20v %SiC _p 1150-1250 30-50 5 5 684 Wiederhorn et (MoSi ₂ +20v %SiC _p 1150-1250 30-50 5 5 684 Wiederhorn et (MoSi ₂ +20v %SiC _p 1150-1250	14100.2	1200	35-70	1.6	-	
MoSiz+20v%SiCw, HP	(Ma W)Sia HP			2.4-3.6	536	Sadananda et al
MoSi2+20v%SiCw, HIP	(NO, 47)312, 122	11(10-1400	2-200	3.		
MoSi₂+20v%SiCw, HIP MoSi₂+18v%SiCw MoSi₂+20v%SiCw MoSi₂+20v%SiCw MoSi₂+20v%SiCw MoSi₂+20v%SiCw MoSi₂+20v%SiCw MoSi₂+20v%SiCw MoSi₂+20v%SiCw MoSi₂+20v%SiCp MoSi₂+30v%SiCp MoSi₂+20v%SiCp MoSi₂+20v%SiCp MoSi₂+20v%SiCp MoSi₂+20v%SiCp MoSi₂+20v%SiCp MoSi₂+20v%SiCp MoSi₂+20v%SiCp MoSi₂+45v%MoSi3,JNS MoSi₂+45v%MoSi3,JNS MoSi₂+45v%MoSi3,DS MoSi₂+5v%SiCp MoSi₂+10v%SiCp MoSi₂+10v%SiCp MoSi₂+20v%SiCp MoSi₂+10v%SiCp MoSi₂+10vSiCp MoSi₂+10vSiCp MoSi₂+10vSiCp MoSi₂+10vSiCp MoSi₂+10vSiCp MoSi₂+10vSiCp MoSi₂+10vSiCp MoSi₂+20v%SiCp MoSi₂+10vSiCp MoSi₂+20vSiCp MoSi₂+20vSi	(Mo, W)312		25 70	3 1	•	
MoSi2+18V%SiCw	at at anomatic HP	1200			_	
MoSi2+20v%SiCw 1100-1450 20-200 3.3, 3.2 350 (Mo,W)Si2+20v%SiCw 1100-1400 8-250 2, 4 57 Wiederhorn et al Wiederhorn	MoSi2+20V%SiCw, In	1200	35-100		-	Ghosh et al
MoSi2+20v%SiCw	MoSi2+18V%SICw, 1111	1200	100-250	2.1	596	Sadananda et al
MoS12+20v%SiCw	MoSi2+20v%SICw	1100-1450	20-200	3.3, 3.2	570	
(Mo, W)Si2+20v%SiCw 1100-1400 8-250 2, 4 (Mo, W)Si2+20v%SiCw* 557 Wiederhorn et al Wi	MoSi2+20v%SICw			~ 4	_	Sadananda et al
(Mo, W)Si ₂ +20v%SiC _w * (Mo, W)Si ₂ +20v%SiC _w * MoSi ₂ +20v%SiC _p , HIP MoSi ₂ +20v%SiC _p 10Nb _p , HIP MoSi ₂ +20v%SiC _p MoSi ₂ +30v%SiC _p MoSi ₂ +20v%CaO _p MoSi ₂ +20v%CaO _p MoSi ₂ +20v%CaO _p MoSi ₂ +5v%Mo ₅ Si ₃ , HP MoSi ₂ +5v%Mo ₅ Si ₃ , DS MoSi ₂ +5v%SiC _p MoSi ₂ +10v%SiC _p MoSi ₂ +10v%SiC _p MoSi ₂ +20v%SiC _p MoSi ₂ +30v%SiC _p MoSi ₂ +20v%SiC _p MoSi ₂ +30v%SiC _p MoSi ₂ +30v%SiC _p MoSi ₂ +5v%SiC _p MoSi ₂ +5v%SiC _p MoSi ₂ +5v%SiC _p MoSi ₂ +10v%SiC _p MoSi ₂ +5v%SiC _p MoSi ₂ +10v%SiC _p MoSi ₂ +10v%SiC _p MoSi ₂ +10v%SiC _p MoSi ₂ +5v%SiC _p MoSi ₂ +10v%SiC _p MoSi ₂ +10v%SiC _p MoSi ₂ +10v%SiC _p MoSi ₂ +20v%SiC _p MoSi ₂ +10v%SiC _p MoSi ₂ +20v%SiC _p MoSi ₂ +10v%SiC _p MoSi ₂ +20v%SiC _p MoSi ₂ +20v%		1100-1400			557	Wiederhorn et al
MoSi2+20v%SiCw	(Mo,W)Si2+20v%SiCw					Wiederhorn et al
MoSi2+20v%SiCp, HIP	(Ma W)Si2+2UV%31Cw		30-50	2.3	331	*****
MoSi2+20v%SiCp, HIP 1200 50-100 2.5 Bose MoSi2+20v%SiCp+10Nbp,HIP 1200 65-120 3.5 - Deve et al MoSi2+20v%SiCp 1100 40-90 5 - Deve et al MoSi2+20v%SiCp 1100 70-150 3 - Ghosh et al MoSi2+20v%SiCp 1200 8-100 3.1 430 Suzuki et al MoSi2+30v%SiCp 1050-1300 35-300 3.5 - Patrick et al MoSi2+20v%Er2Mo3Si4p 1200-1300 100-280 3.5 - Patrick et al MoSi2+20v%CaOp 1200-1300 10-110 2.5, 3.5 - Mosan et al MoSi2-45v%Mo5Si3,HP 1100-1300 150-1000 4.5 300 Mosan et al MoSi2-45v%Mo5Si3,DS 1100-1200 20-180 1 460 Sadananda et al MoSi2+5v%SiCp 1100-1200 20-250 1 460 Sadananda et al MoSi2+20v%SiCp 1100-1200 35-300 3, 5.7 460 Sadananda et al MoSi2+30v%SiCp 1000-1200 40-400 <td>(Mo.W)Si2+20v%SiCw*</td> <td>1223</td> <td></td> <td>_</td> <td></td> <td>Bose</td>	(Mo.W)Si2+20v%SiCw*	1223		_		Bose
MoSi2+20v%SiCp		1200	50-100		-	
MoSi2+20v%SiCp	MoSi2+20v%SiCp, HIP				-	
MoSi2+20v%SiCp	Masin+20v%SiCn+10t40p,cm			5	-	
MoSi2+20v%SiCp	N1~Si~+7UV%51Un			3	-	
MoSi2+20v%SiCp	Masia+20v%SiCn/Mo		8-100	3.1	-	
No.	Masia + 20v%SiCn			3.5	430	
MoSi2+20v%CaOp MoSi2+45v%Mo5Si3,HP MoSi2-45v%Mo5Si3,DS MoSi2+5v%SiCp MoSi2+10v%SiCp MoSi2+20v%SiCp MoSi2+20v%SiCp MoSi2+30v%SiCp MoSi2+40v%SiCp* MoSi2+10v%SiCp* MoSi2+10v%SiCp* MoSi2+10v%SiCp* MoSi2+10v%SiCp* MoSi2+10v%SiCp* MoSi2+20v%SiCp* MoSi2+20v%SiCp* MoSi2+20v%SiCp* MoSi2+20v%SiCp* MoSi2+20v%SiCp* MoSi2+30v%SiCp* MoSi2+20v%SiCp* MoSi2+20v%SiCp* MoSi2+20v%SiCp* MoSi2+20v%SiCp* MoSi2+20v%SiCp* MoSi2+20v%SiCp* MoSi2+20v%SiCp* MoSi2+20v%SiCp* MoSi2+20v%SiCp* MoSi2+20v%SiCp* MoSi2+20v%SiCp* MoSi2+20v%SiCp* MoSi2+20v%SiCp* MoSi2+20v%SiCp* MoSi2+20v%SiCp* MoSi2+20v%SiCp* MoSi2+20v%SiCp* MoSi2+40v%SiCp* MoSi2+20v%SiCp* MoSi2+40v%SiCp* MoSi2+20v%SiCp* MoSi2+	VD Masia+30v%SiCn	1050-1300		3.5	-	
MoSi2+20v%CaOp MoSi2-45v%Mo5Si3,HP MoSi2-45v%Mo5Si3,DS 1200-1300 10-110 2.3, 3.3 300 Mosan et al MoSi2-45v%Mo5Si3,DS MoSi2+5v%SiCp MoSi2+10v%SiCp MoSi2+20v%SiCp 1100-1200 20-180 1 460 Sadananda et al MoSi2+20v%SiCp MoSi2+30v%SiCp MoSi2+40v%SiCp* 1100-1200 20-250 1, 4 460 Sadananda et al MoSi2+40v%SiCp MoSi2+40v%SiCp* 1100-1200 35-300 3, 5.7 460 Sadananda et al MoSi2+5v%SiCp* 1000-1200 40-400 5 460 Sadananda et al MoSi2+10v%SiCp* 1050-1150 10-30 1 815 Wiederhorn et wiederhorn et wiederhorn et mosi2+10v%SiCp* MoSi2+20v%SiCp* 1050-1150 10-30 3 575 Wiederhorn et wiederhorn et mosi2+10v-120v MoSi2+40v%SiCp* 1150-1250 30-50 5 684 Wiederhorn et mosi2+10v-120v MoSi2+40v%SiCp* 1100-1200 30-50 5 460 Sadananda et al MoSi2+40v%SiCp* 1100-1200 30-50 5 684 Wiederhorn et wiederhorn et mosi2+10v-120v MoSi2+10v%SiCp* </td <td>XD MOSIZ+30V 763-54n</td> <td></td> <td>100-200</td> <td></td> <td>-</td> <td></td>	XD MOSIZ+30V 763-54n		100-200		-	
MoSi2-45v%Mo5Si3,HP 1200-1300 150-1000 4.5 300 Sadananda et al MoSi2-45v%Mo5Si3,DS 1100-1200 20-180 1 460 Sadananda et al MoSi2+5v%SiCp 1100-1200 20-250 1 460 Sadananda et al MoSi2+20v%SiCp 1100-1200 20-250 1,4 460 Sadananda et al MoSi2+30v%SiCp 1100-1200 35-300 3,5.7 460 Sadananda et al MoSi2+40v%SiCp 1000-1200 40-400 5 460 Sadananda et al MoSi2+5v%SiCp* 1050-1150 10-30 1 815 Wiederhorn et MoSi2+10v%SiCp* 1050-1150 10-30 3 894 Wiederhorn et MoSi2+20v%SiCp* 1050-1150 10-30 5 684 Wiederhorn et MoSi2+40v%SiCp* 1150-1250 30-50 5 628 Wiederhorn et MoSi2+40v%SiCp* 1100-1200 30-50 5 460 Sadananda et al MoSi2+10v%SiCp* 100-1400 20-250 2,5 </td <td>M0212+204 /021211030-14</td> <td></td> <td></td> <td>25 3.5</td> <td>; -</td> <td></td>	M0212+204 /021211030-14			25 3.5	; -	
MoSi2-45v%MoSi3,DS 1100-1300 150-1000 1 460 Sadananda et al MoSi2+5v%SiCp 1100-1200 20-180 1 460 Sadananda et al MoSi2+10v%SiCp 1100-1200 20-250 1 460 Sadananda et al MoSi2+20v%SiCp 900-1200 15-450 1,4 460 Sadananda et al MoSi2+30v%SiCp 1100-1200 35-300 3,5.7 460 Sadananda et al MoSi2+40v%SiCp 1000-1200 40-400 5 460 Sadananda et al MoSi2+5v%SiCp* 1050-1150 10-30 1 815 Wiederhorn et MoSi2+10v%SiCp* 1050-1150 10-30 3 575 Wiederhorn et MoSi2+20v%SiCp* 1050-1150 10-30 5 684 Wiederhorn et MoSi2+30v%SiCp* 1150-1250 30-50 5, 10 628 Wiederhorn et MoSi2+40v%SiCp* 1100-1200 20-250 2, 5 460 Sadananda et al MoSi2+2vt%C 1200-1400 20-250 3 460 Sadananda et al MoSi2+2vt%C 1200-1400 2	MoSi2+20V%CaOb	1200-1300	10-110	45	300	Mosan et al
MoSi2+39v%NioSi3,303 1100-1200 20-180 1 460 Sadananda et al 460 MoSi2+10v%SiCp 1100-1200 20-250 1 460 Sadananda et al 460 MoSi2+20v%SiCp 900-1200 15-450 1, 4 460 Sadananda et al 460 MoSi2+30v%SiCp 1100-1200 35-300 3, 5.7 460 Sadananda et al 460 MoSi2+40v%SiCp 1000-1200 40-400 5 460 Sadananda et al 460 MoSi2+5v%SiCp* 1050-1150 10-30 1 815 Wiederhorn et 460 MoSi2+10v%SiCp* 1050-1150 10-30 3 575 Wiederhorn et 460 MoSi2+20v%SiCp* 1150-1250 30-50 5 684 Wiederhorn et 460 MoSi2+30v%SiCp* 1150-1250 30-50 5 628 Wiederhorn et 562 MoSi2+40v%SiCp* 1100-1200 30-50 5 460 Sadananda et 362 MoSi2+1wt%C 1200-1400 20-250 2, 5 460 Sadananda et 362 MoSi2+2wt%C 1200-1400 20-250 3 460 Sadananda et 362 MoSi2+2wt%C	MoS12-45V%(NOSS13,12	1100-1300	150-1000	•		Sadananda et ai
MoSi2+3v%SiCp 1100-1200 20-250 1, 4 460 Sadananda et al sadananda et	MoSi2-45V%N05313,D3	1100-1200				Sadananda et al
MoSi2+10V%SiCp 900-1200 15-430 1,5.7 460 Sadananda et al. MoSi2+20V%SiCp 1100-1200 35-300 3,5.7 460 Sadananda et al. MoSi2+40V%SiCp 1000-1200 40-400 5 460 Sadananda et al. MoSi2+5V%SiCp* 1050-1150 10-30 1 815 Wiederhorn et. MoSi2+10V%SiCp* 1050-1150 10-30 3 894 Wiederhorn et. MoSi2+20V%SiCp* 1150-1250 30-50 5 684 Wiederhorn et. MoSi2+30V%SiCp* 1150-1250 30-50 5, 10 628 Wiederhorn et. MoSi2+40V%SiCp* 1100-1200 30-50 5, 10 628 Wiederhorn et. MoSi2+1wt%C 1200-1400 20-250 2, 5 460 Sadananda et. MoSi2+2wt%C 1200-1400 20-250 3 460 Sadananda et.	MoSi2+5v%SICp	1100-1200		-		Sadananda et al
MoSi2+20v%SiCp 1100-1200 35-300 5, 3.7 460 Sadananda et al Wiederhorn	MOS12+10V%SICP	900-1200			440	Sadananda et al
MoSi2+30v%SiCp 1000-1200 40-400 3 815 Wiederhorn et au wiederhorn et a	MaSia+2UV%SICD	1100-1200	35-300			Sadananda et al
MoSi2+40v%SiCp 1050-1150 10-30 1 575 Wiederhorn et MoSi2+5v%SiCp* 1050-1150 10-30 3 894 Wiederhorn et MoSi2+20v%SiCp* 1050-1150 10-30 5 684 Wiederhorn et MoSi2+30v%SiCp* 1150-1250 30-50 5 628 Wiederhorn et MoSi2+40v%SiCp* 1100-1200 30-50 5 460 Sadananda et MoSi2+1wt%C 1200-1400 20-250 2, 5 460 Sadananda et MoSi2+2wt%C 1200-1400 20-300 3 460 Sadananda et	Masin+30v%SlCn	1000-1200	40-400			Wiederhorn et
MoSi ₂ +5v%SiCp* 1050-1150 10-30 5 894 Wiederhorn et 1050-1150 10-30 5 684 Wiederhorn et 1050-1150 10-30 5 684 Wiederhorn et 1150-1250 30-50 5 628 Wiederhorn et 1150-1250 30-50 5, 10 628 Wiederhorn et 1000-1200 30-50 5, 10 Sadananda et 1000-1400 20-250 3 460 Sadananda et 1000-1400 20-250 3 460 Sadananda et 1200-1400	Masia+40v%3lCp	1050-1200	40.00	1		Wiederhorn et
MoSi ₂ +20v%SiCp* MoSi ₂ +30v%SiCp* MoSi ₂ +40v%SiCp* MoSi ₂ +40v%SiCp* MoSi ₂ +1wt%C MoSi ₂ +2wt%C 1030-1130 30-50 5, 10 628 Wiederhom et 1100-1200 30-50 5, 10 628 Wiederhom et 1200-1400 20-250 3, 460 Sadananda et a	MaSia+5v%51Ca"	1050-1150		3		seri takamat
MoSi ₂ +20v%SiCp* MoSi ₂ +30v%SiCp* MoSi ₂ +40v%SiCp* MoSi ₂ +40v%SiCp* MoSi ₂ +1wt%C MoSi ₂ +2wt%C 1030-1130 30-50 5, 10 628 Wiederhom et 1100-1200 30-50 5, 10 628 Wiederhom et 1200-1400 20-250 3, 460 Sadananda et a	MoSiz+10v%SiCp*	1020-1120		5		10 cmm de 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MoSi ₂ +30v%SiCp* MoSi ₂ +40v%SiCp* 1100-1200 30-50 5, 10 100-1200 30-50 5, 10 Sadananda et a de	MoSia+20v%SiCn*	1020-1350		5		
MoSi ₂ +40v%SiCp* 1200-1400 20-250 2,5 460 Sadananda et a MoSi ₂ +1wt%C 1000-1400 20-300 3 460 Sadananda et a MoSi ₂ +2wt%C 1200-1400 20-250 3 460 Sadananda et a	Masia+30v%SiCa*	1150-1250		5, 10) 628	A legernorn er
MoSi ₂ +1wt%C 1200-1400 20-250 2, 3 460 Sadananda et 1000-1400 20-300 3 460 Sadananda et 1200-1400 20-250 3 460 Sadananda et 1200-1400 20-250 3	Masia+40v%SiCn*	1100-1200	30-30			. Cadananda at (
MoSi ₂ +1wt%C 1000-1400 20-300 3 460 Sadananda et	MO2154401 /001-0h		20.250	2. 5		, a
MoSi2+2wt%C 1200 1400 20-250 3 460 3adamate 5	Macia Llwt%C	1200-1400	*** ***	~	460	, a i
V(0,317124170 C	MOSIZTIWI/OC	1000-1400		_	460) Sadananda et a
	MoSi ₂ +4wt%C	1200-1400	J 20-230		والمستوال والمستوال والمستوال والمستوال	

^{*} Tensile Creep Test

100 MICRONS

50/50 MOLE % MoSI2/WSI2

100 MICRONS

30 VOL. SIC PARTICLE-50/50 MOLE & MoSI2/WSI2 MATRIX

СКЕЕР КАТЕ,

STRESS, MPa

MOLYDISILICIDE WITH SIC PARTICULATES

COMBINED EFFECT OF GRAIN SIZE AND VOLUME FRACTION

CREEP OF NIAI WITH DISPERSOIDS AND REINFORCEMENTS

HIGH VOLUME FRACTION OF REINFORCEMENT REQUIRED TO ENHANCE CREEP RESISTANCE

TEM MICROGRAPHS OF MoSi2 + 20vc1 % SiC DEFORMED BY CREEP AT 1200°C AND AT 11.5ksi

DEFORMED BY CREEP AT 1200°C AND AT 11.5ksi TEM MICROGRAPH OF MoSi2

5.26

TEM MICROGRAPHS OF MoSi2+20vol% SiC (しゃ deformed) 5.27

SUMMARY AND CONCLUSIONS

CREEP DEFORMATION BEHAVIOR OF ALUMINIDES AND SILICIDES AND THEIR COMPOSITES.

SIGNIFICANT IMPROVEMENT IN CREEP RESISTANCE BY REINFORCEMENT

IN ALL CASES THE REINFORCEMENTS DEFORMS MOSTLY ELASTICALLY AT 1HE TEMPERATURES AND STRESSES INVESTIGATED.

ROLE OF BACK STRESSES OR INTERNAL STRESSES IN THESE MATERIALS ARE INSIGNIFICANT.

RATE CONTROLLING PROCESSES ARE PREDOMINANTLY CLIMB RELATED.

MOLYDISILICIDES ARE FAR SUPERIOR TO ALUMINIDES AND SUPERALLOYS IN TERMS OF CREEP RESISTANCE AT T > 1000°C.

CONCLUSIONS

- Creep resistance of molydisilicides for superior to superalloys and intermetallic composites
- Grain size effects are very significant even in power-law creep regime

*

- Creep strengths of $MoSi_2$ Composites comparable to ceramic-ceramic systems *
- Efforts should now be concentrated in enhancing low temperature toughness

*

6. Ordered Ground State Structures in HCP Alloys

A.K. Singh
Defence Metallurgical Research Laboratory,
and

Prof. S.Lele

Banaras Hindu University, India

ORDERED GROUND STATE STRUCTURES IN HCP ALLOYS

A.K.SINGH¹ AND S. LELE²

- 1. Defence Metallurgical Research Laboratory P.O. Kanchanbagh, Hyderabad-500258, India
- 2. Department of Metallurgical Engineering Institute of Technology Banaras Hindu University VARANASI-221005, India

THERMODYNAMIC STABILITY

ORDERED
GROUND
STATE
STRUCTURES

ORDERING
FROM
ENTROPY
CONSIDERATIONS

GROUND STATE STRUCTURES

CONFIGURATION ENERGY

$$E = \sum_{i} (1/2) q_{i} W_{i}$$

q_i: number of jth neighbour A-B bonds

 $W_j : 2V_{AB}^j - V_{AA}^j - V_{BB}^j = Interchange energy$

For third neighbour interaction

$$E = (1/2) (q_1 W_1 + q_2 W_2 + q_3 W_3)$$

$$E/W = (1/2) (q_1 + q_2 v_1 + q_3 v_2)$$

where : $v_1 = W_2/W_1$ and $v_2 = W_3/W_1$

- DETAILS OF HCP STRUCTURE
- SPACE GROUR P63/mme

- ATOMIC POSITIONS

2c
$$\frac{1}{3}, \frac{2}{3}, \frac{1}{4}; \frac{2}{3}, \frac{1}{3}, \frac{3}{4}$$

- CO-ORDINATION NUMBER 6: 6: 6:
- IDEAL AND NON-IDEAL AXIAL RATIO GENERAL ASSUMPTIONS!
- BINARY ALLOY
 - NON-IDEAL AXIAL RATIO

PAIRWISE INTERACTIONS UPTO THIRD HEIGHBOUR

. ENERGY IS FUNCTION OF PAIRWISE INTERACTIONS

VIBRATIONAL AND SIZE EFFECTS ARE IGNORED ... VACANT SITES ARE NOT ALLOWED

CLASSIFICATION OF DISTINCT LAYER

(7 SUBLATTICES/LAYER

LAYER	SITES OCCUPIED BY	FRACTION OF
DESIGNATION	B ATOMS	BATOMS IN LAYER
L1	_	0
L2	1	1/7
L 3	1, 2	217
L4	1, 2, 3	317
L5	1.2.4	317
L 6	4,5,6,7	417
۱7	3,5,6,7	417
LB	3,4,5,6.7	s 17
L9	2,3,4,5,6.7	617
C 10	1,2,3,4,5,4.7	1

6.8

6.11

SUBLATTICE DIVISION METHOD

- ATOMIC SITES OF HCP STRUCTURE CAN BE DIVIDED INTO 6, 8, 10, 16, 20, 24 AND 28 SUBLATTICES
- _ SUBLATTICE / LAYER
- POPULATE LAYERS : ALL POSSIBLE ARB ATOMS
- STRUCTURES ! STACKING OF LAYERS
- RELATIVE STABILITY OF STRUCTURES
- STABILITY DOMAINS
- COMPOSITE MAP

RESULTS : 15 STRUCTURES

AsB, A3B(3), A2B(4), A9Bs, A7Bs, AB(5)

CRYSTALLOGRAPHIC DETAILS!

BRAVAIS LATTICE

SPACE GROUP

NO OF ATOMS PER UNIT CELL

PEARSON SYMBOL

LATTICE PARAMETERS

COORDINATES OF EQUIVALENT POSITION

- RESULTS

- -- SUBLATTICES 6, 8(2), 10, 12(2), 14(2),

 16(1), 20, 24(2), 28(2)

 FOR GROUND STATE 6, 8(2), 10, 12(2), 14(1)
- WICO
- 15 GROUND STATE STRUCTURES
 ASB, A3B(3), A2B(4), A9B5, A7B5, AB(S)
- W1 > 0 4 GROUND STATE STRUCTURES OUT OF ABILE
- DEGENERATE STRUCTURES
- 1. ASB (II) ASB (III)
 HEXAGONAL ORTHORHOMIC MONOCLINIC
- PARTIAL ORDERD & SUBLATTICES

 ORDERED B SUBLATTICES
- " SOLID SOLVTION

" ISCIBILITY GAT

ADJACENT STOICHIOMETRIC STRUCTURES RASEDON

CLUSTER METHOD

- **→** MOTIF
- → CLUSTER
- **→** WEIGHT

- → ENERGY: Linear function of cluster concentration
- → MINIMISATION OF ENERGY: Linear programming method (Two cluster solution)
- → Realisation of solution on hcp atomic sites in a consistent manner
- ⇒ RESULT : 9 structures A_5B , $A_3B(3)$, A_2B , AB(4)
- **→ LIMITATIONS**

_ CLUSTER METHOD

Xk Wk = Yk (WEIGHTED FRACTION

- CLUSTER

13 POSSIBLE CLUSTES

- WEIGHT

$$Y_1 + Y_2 + Y_3 + Y_4 + Y_5 + Y_6 + Y_7 + Y_8 + Y_9 + Y_{10} + Y_{11} + Y_{12} + Y_{13} = 1$$
 (1)

$$Y_3 + 2Y_3 + 2Y_4 + 2Y_5 + 3Y_6 + 3Y_7 + 3Y_8 + 4Y_9 + 4Y_{10}$$

+4 $Y_{11} + 5Y_{12} + 6Y_{13} = 6C -(0)$

- ONE CAN WRITE 140 OF AB BOND (Q_j) AS $\frac{q_j}{N} = \frac{1}{2} \sum_{k} Q_{jk} Y_k \qquad \text{FOR } j = 1, 2$

 $= \sum_{k} q_{jk} Y_{k} \qquad \text{for } j = 3$

- ONE CAN OBTAIN THE CONFIGURATIONAL ENERGY $E = \frac{1}{2} NW_1 \left[Y_2 \left(1 + U_1 + U_2 \right) + Y_3 \left(1 + 2U_1 + 2U_2 \right) + Y_4 \left(2 + U_1 + 2U_1 \right) + Y_5 \left(2 + 2U_1 \right) + Y_6 \left(3U_1 + 3U_2 \right) + Y_7 \left(2 + U_1 + 3U_2 \right) + Y_8 \left(2 + 2U_1 \right) + Y_9 \left(2 + 2U_1 \right) + Y_{10} \left(2 + U_1 + 2U_2 \right) + Y_{11} \left(1 + 2U_1 + 2U_2 \right) + Y_{12} \left(1 + U_1 + U_1 \right) \right]$

- SOLUTIONS : LINEAR PROGRAMMING
METHOD

RESULTS

		W1 < 0				
v ₁ ≥ -1 v ₁ ≥ 2v ₂ v ₂ ≤ 0	A + A	/3 H ₁	·	B ²		
v ₁ ≥ 2v ₂ 0 ≥ v ₂ ≥ 1/2 v ₁ + 2v ₂ ≤ 2	A A5B	A5B A3B ³		A	B ⁴	
v ₁ + 2v ₂ ≥ 2 v ₂ ≤ 1/2	A → A5B	A5H A3B3				
$v_1 \ge 1$ $v_2 \ge 1/2$	A → A ₅ B	A58 -→	A ₂ B ¹	A2B1 AB1		
v ₁ ± 1 v ₂ ≥ 1/2	AA5B			A2B1-►AB3		
$v_1 \leqslant 1$ $v_1 \leqslant 2v_2$ $2v_1 \leqslant v_2$	A → A5B					
0≤v1≤1 2v2 > v1	A►A5B	A5B A3B ²	,		1	
	1/6 1/4 1/3 1/2 COMPOSITION (c)					

Fig. 7. Different structures obtained by cluster method as a function of composition

Fig. 3. Stability regions of structures obtained by cluster method as a function of interchange energy ratios v_1 and v_2 for $W_1 < 0$ and $0 \le C \le 1/6$. Arrows indicate stable solid solution at intermediate composition while the plus sign corresponds to a miscibility gap.

CONFIGURATION POLYHEDRON METHOD

- **→** MOTIF
- → Structural inequalities: half space (r₁, r₂, r₃, C)
- **→** Convex polyhedron: Configuration polyhedron
- Realisation of solution on hcp atomic sites in a consistent manner
- **→** RESULTS
 - → 15 structures
 - → Series of long period APB modulated superstructures with stoichiometries A_{n+3}B_{n+1}
 - → Entire surface of the configuration polyhedron corresponds to ground state structures

→ LIMITATIONS

CONFIGURATION POLYHEDRON METHOD

. MOTIF

 $EINW_1 = (3c - \frac{r_1}{N}) + (3c - \frac{r_2}{N})v_1 + (3c - \frac{r_3}{N})v_2$

STRUCTURAL INEQUALITIES (M=14)

1, 1, 1, 12, C

EACH INEQUALITY REPRESENTS A HALF SPACE BOUNDED BY A HYPERPLANE ON WHICH THE INEQUALITY BECOMES EQUALITY

SOLUTION! 4 INEQUALITIES FROM THE SET OFM

ARE SELECTED AND TREATED EQUALITY

POSSIBILITIES (U SOLUTION DOES NOT EXIST

OR MORE REMAINING INEQUALITIES

QU A SOLUTION EXISTS THAT SATISFIES THE REMAINING INEQUALITIES

ONLY CASE (III) CORRESPONDS TO A VERTEX OF CONFIGURATION POLYHEDRON

REALISATION OF STRUCTURE ON HCP ATOMIC

RESULTS

LIMITATIONS (1) VIRTUAL STRUCTURE

One can write a general expression for the number r1, r3 of B-B bonds, concentration Y, Y, Y, and energy of the nth member of the series as follows:

(E)

(61) 3n(n+1) $r_1 = 2(n+2)^2$

 $r_2 = 0$,

(20)

 $r_3 = \frac{3(n+1)}{(n+2)^2}$

n+1

 $C_n = \overline{2(n+2)},$

 $Y_1 = \overline{(n+2)^2}$

 $Y_{5} = \frac{3(n+1)}{(n+2)^{2}},$

p 63 (mmc

SPACE GROUP

(24)

(23)

(22)

(21)

 $Y_6 = \frac{n(n+1)}{(n+2)^2}$

a= aa[n+1] [100] (25) $\frac{E_n}{NW_1} = \frac{3(n+1)}{2(n+2)^2} [2 + (n+2)v_1 + nv_2].$

and

6.21

The structures succeeding A₄B₃ (n > 5) are not shown in the sigure, since the points vertices which correspond to real and virtual structures while the chain lines join the The solid lines join the vertices corresponding to real structures. The broken lines join the points which correspond to the structures obtained by appropriate cluster combinations. 2D planar surface of configuration polyhedron obtained by intersection of hyperplanes 2 and 8.

(c)

2D planar surface of configuration polyhedron obtained by intersection of hyperplanes (a) 4 and 5, (b) 5 and 9 and (c) 1 and 2.

MULTI-ATOM INTERACTION METHOD

- **→** CLUSTER METHOD
- → MOTIF [Tetrahedron]
- → Multi-atom interaction parameters [4 body force]
- **→** Look for minimum number of variables
- **→** MINIMISE ENERGY IN PARAMETER SPACE
- → RESULTS

A₃B, A₂B, AB, AB₂ and AB₃

Table 1. Possible cluster configurations on the motif (Fig. 1) and their energies.

cluster cluster type configu- ration/ sites occupied by B		weight of the cluster	composit- ion of the cluster	first neigh- bour unlike paits	second neigh- bour unlike pairs	cluster energy	
i	aloms	\mathbf{w}_{i}	c _i	n_i^t	n <mark>!!</mark>	$\mathbf{\epsilon_{i}}$	
							
0	-	. 1	. Q	0	0	. 0	
1	1	3	1/4	2	1	3/2W(1+α)	
2	4	1	1/4	O	3	3/2W(1+ß)	
3	1,2	3	1/2	2	2	2W	
4	1,4	3	1/2	2	2	2W	
5	1,2,3	1	3/4	. 0	3	3/2W(1+γ)	
6	1,2,4	3	3/4	2	1	3/2W(1+δ)	
7	1,2,3,4	. 1	1	0	0	0	

•

Table 3. Crystallographic data for the structures pertinent to the ground state ordered h.c.p. alloys.

Phase		Lattice vector in units of a_a and c_a					Sublattice
	Space group	Pearson symbol	u	.: b	······································	M/K	type occupied by B atoms
A , B(1)	1545m	hP6	[210]	[110]	[601]	6	1
A 5 B(11)	Pnmm (Pmmn) D13 D26	oP12	[110]	[330]	[100]	12	1,9
A 5 B(111)	Pm C!	mP12	[720]	[220]	[001]	12 3	1,9
A ₂ B1	P6 ₃ /mmc D _{6h}	hP8	[200]	[020]	[100]	8	1,5
$A_3B^2(1)$	C2mm (Amm2) C14 C2*	oC16	[420]	[020]	[001]	8	1,6
(11) B ² (11)	♥ Pm C¦	mP8	[110]	[220]	[001]	8 2	1,5
۸٬B٬	$\frac{\mathrm{Primm}\left(\mathrm{Primn}\right)}{\mathrm{D}_{2h}^{1.5}}$	oP8	[210]	[020]	[001]	8	1,6
A ₂ B¹	Pő2m D <u>.</u> h	hP6	[210]	[110]	[100]	6 2	1,2
A ₂ B ²	Cemm (Cmem) D _{2h}	oC12	[120]	[300]	[001]	6 2	1,4
$A_2B^3(1)$	Pn2 ₁ m (Pmn2 ₁) C ₂ ,	oP12	[110]	[330]	[001]	12	1, 2, 9, 10
A ₂ B ₃ (II)	Cemm (Cmem) D _{2h}	oC12	[330]	[110]	[001]	12 3	1, 4, 9, 12
$A_2B^4(1)$	Pnmm (Pmmn) D _{2h}	oP12	[710]	[330]	[001]	12	1, 3, 5, 1
A ₂ B ⁴ (11)	Pm C!	mP12	[120]	[220]	[001]	12	1, 3, 9, 1
A ₉ B ₅	Pm C¦	mP14	[310]	[230]	[001]	14	1, 2, 3, 5, 11
A7B5	Pm C!	mP12	[120]	[220]	[001]	12	, 2, 4, 9, 12
AB¹	₽Շm2 D¦ _b	1:12	[100]	[010]	[[001]	К 3	1, 2, 3, 4
AB ²	Pemm (Pmma) D26	aP4	[210]	[010]	[[001]	8 3	1, 2, 5, 6
AB ³	Pomm (Pmmn) D _{2h} 10 2 13	oP4	[210]	[[010]	[001]	н 3	1, 2, 7, 8
AD4	Pnam (Pnma) D _{2h}	оРХ	[110]	220	j [001]	8 2	1, 2, 6, 7
AB ⁵	Peam (Pbem) D11 2h	oP8	£11e	[220	[001]	8 2	1, 2, 5, 8

SPACE GROUP : P63/mmc

NO OF ATOMS PER : 8

UNIT CELL

PEARSON'S SYMBOL : 4P8

EASB = = (1+12, +122)

ASB : HEXAGONAL

PEZM OR D3 ; 6 ATOMS PER UNIT CELL AP6

a=ad[210], b=ad[10] and C=cd[00]] co-ordinates of equivalent positions

(1) 1 B atom at (0,0,0) (72m)

(2) 2 A atoms at $(\frac{1}{3}, \frac{1}{3}, 0)$; $(\frac{2}{3}, \frac{1}{3}, 0)$ (6)

(3) 3 A atoms at $(\frac{1}{3},0,\frac{1}{2})$; $(0,\frac{1}{3},\frac{1}{2})$; $(\frac{7}{3},\frac{1}{3},\frac{1}{2})$ (m_{2})

STABILITY OF OBSERVED HCP SUPERSTRUCTURE

A3B1 TisAl, Mrssn, MgsCd (Dolo) WC & LiRh AB1 Mq cd ABZ Cuzsn. - E(TWO PHASE MIXTURE OF A3B1 + A3B3) - E(TWO PHASE MIXTURE Sb3 Cu10 A + A3B3) E(POLY PHASE MIXTURE AsB + ABB1+ ABB3) ZrAU4 . (AsB + AzB3) ALSW (ASB)

STABILITY OF EXPERIMENTALLY **OBSERVED HCP SUPERSTRUCTURES**

 A_3B^1 :

 Ni_3Sn, Mg_3Cd, Ti_3Al $W_1 < 0, v_1 > -1, v_2 < 0$

 A_2B^2 :

 $Pt_{2}Ta$ $W_{1} < 0$, $0 < v_{1} < 1$, $v_{2} < 0$, $v_{1} - v_{2} > 0$

AB1:

WC, LiRh

 $W_1 < 0, v_1 > -1, v_2 > 1/2$

AB²:

MgCd

 $W_1 < 0, v_1 > -1, v_2 < 0$

 $A_5B + A_3B^3$:

Au₄Zr

 $W_1 < 0, v_1 > 1, 0 < v_2 < 1$

 $A_3B^1 + A_3B^3$: Cu_3Sn

 $W_1 < 0, v_1 > 0, v_2 = 0$

 $A + A_5B + A_3B^1 + A_3B^3$: $Cu_{10}Sb_3$ $W_1 < 0, v_1 > 0, v_2 > 0$

7. Stability S. Raju, E.Mohandas and V.S.Raghunathan Indira Gandhi Centre for Atomic Research, India

STABILITY

S. Raju E. Mohandas V.S.Raghunathan

Indira Gandhi Centre for Atomic Research Kalpakkam-603102, India

STABILITY OF INTERMETALLICS

A Metallurgical Physics Perspective

S. Raju

Indira Gandhi Centre for Atomic Research Kalpakkam-603102, India

PHYSICAL METALLURGY

Empirical nextlanationing filalboying

CONDENSED COMATTER PHYSICS

SOLID COLSTATE: CHEMISTRY

MIRSICS

QUANTUM, THEORY OF

electronegalivi

Banding

DOES THIS ALLOYING MODEL VALIDE

fight binding DETS

Protagonists

Such basic splitting.

Sinot warranted for

transition metal

Acceptable

Pseudo potential:

theorists

Chelikowsky & Phillips,

Hafner & Similalco

Hodges & Stoff

physical status

STRUCTURAL STABILITY

FIRST PRINCIPLES
APPROACH

EMPIRICAL SCHEMES

UNDERSTANDING ALLOYING PREDICTION

THEORY/MODEL FOR COHESION

BTRUCTURAL BYSTEMATICS

SEMIEMPIRICAL METHODS

- Establish the trend using appropriate allor theory parameters
- Set up a microscopic model in terms of these parameters.

- . Pseudopotential & Tight binding methods
- · Pair potential analysis (Machlin)
- Macroscopic Atom model
 (Miedema)
- Interstitial electron density model (Schubert, Johnson)

PAIR POTENTIALS

$$E = \frac{1}{2}(N) \sum_{ij \neq 0} \phi(R_{ij})$$

- · Absence of volume dependence
- · Ordering Energy may be represented

$$E = F(9) + \frac{1}{2} \sum \phi(R)$$

Volume dependence (structural term)

EMBEDDED ATOM MODEL

MIEDEMA'S MODEL

ALLOY = ASSEMBLY OF NEUTRAL W-S CELLS

PARAMETERS:

- · electron density (3: p")
- Chemical potential due to electronic Charge (4*)
- · Molar volume

$$\Delta^{\circ}H_{f} = \left\{-p\left(\Delta\phi^{*}\right)^{2} + o\left(\Delta^{\gamma_{3}}\right)^{2} \pm R\right\}$$

$$\times f(c)$$

$$V_{d} = No. \text{ of d e}^{As} \times \text{ energy of d electron}$$

$$V_{d} = \int_{E_{f}}^{E_{f}} N(E) dE \cdot E - Na = \frac{at}{at}$$

$$= -\frac{Wd}{20} (10 - Na) Na \qquad \text{FRIEDEL}$$
We width of d-band

Nd: No of d-electrons

For an
$$A_z B_{1-z}$$
 alloy
$$z = V_2$$

$$\begin{cases} E_F \\ \int E N(E) dE - V_2 \int E N(E) dE - V_2 \int E N(E) dE \end{cases}$$

$$= \frac{-W_{AB}}{20} \bar{\pi} (10-\bar{n}) + \frac{W_{A}}{40} n_{A} (10-n_{A}) + \frac{W_{B}}{40} n_{B} (10-n_{B})$$

$$-\frac{1}{40} \Delta \delta n$$

$$\bar{n} = | m_A + m_B | / 2$$

$$\delta n = m_A - m_B$$

PETTIFOR'S MODEL

the periodic table in D Stringing

Each element in the periodic table is the main text by arranging the elements along a one-dimensional axis, their relative directly namely tures of binary compounds, I have reduced this to a single co-ordinate, as described in ordering being given by what I have called in the periodic table. This two-dimensional is period and group. To classify the struc-Schrödinger's equation. ŏ elements characterised by two co-ordinates, chemical elements is reflected character the Mendeleev number CUANTUM ö Consequence arrangement INCOMEN:

leads to a marginally better arrangement places the group IIA elements rconium. My arrangement of spunoduo n to platinum. The anomalous The arrangement of the periodic table (New Scientist, 7 March 1985, p 32). This beryllium and magnesium with group IIB and separates the divalent rare earths or भूत ध anthanides (those that have two valence contraction: hafnium has a smaller core ng the string straight from nickel shown here is slightly different from usual lanthanide have ordered the elements in group IVA electrons) from the trivalent. The way respect so-called pallium with STUCTURE size than group V OT TATING than run Scoaratic 디코이 70075

core of d electrons. Chemists well know boron, oxygen and fluorine minium arises because gallium has a full the second row elements ntrogen, carbon.

that

more electronegative due to the absence of behave differently from the other elements in their respective groups. They are much p electrons in the core.

The string running through this modified periodic table puts all the elements in sequential order, given by the Mendeleev number こけ ぼりょうきょう

li

10

Typically What do the Material Scientists Hant from Systematization Studies?

- Under What conditions do two elements A & B
 Combine and if so
- Do they form compounds or Solid/liquid Solutions?

More Specifically they look for

- · Number of compounds
- · Crystal Structure information
- * Stability of compounds

 (polymorphic & other transition,

 (ohesive energy, Lattice Stability

 Parameters etc.)
- · Extent of solid solubility
- Type of solid Solubility
 isomorphous
 eutectic
 peritectic A a host
 of others
- . If they are insoluble then Whr?
- Basically, these are the primary information, which
 together form a comprehensive physical Metallurgical
 data base. No doubt, one can take other properties like
 - thermodynamic
 - electrical, magnetic
 - transport properties

but in my opinion they do not form a simple a minimal basis.

· CRITICAL APPRAISAL

- In its core the model is empirical.
- · Subtle effects like magnetic contribution to stability is neglected
- · Allors with Si, Ge etc are not satisfactorily represented.
- . The physics of alloying as advanced by this model is Strictly incorrect, although its numerical agreement with precise first principle calculations is surprisingly good.

. APPLICATIONS

- . Extrapolation/ Interpolation for limited DH; data bank.
- · Calculation of interfacial energies
- · Prediction of glass formation ranges
- · Assessing the relative stability treds
- . Analysing solid solubility data
- * USE OF BASIC COORDINATES TO CRYSTAL STRUCTURE SYSTEMATICS

- An algorithm to generate probable Structural alternatives
 - · Structure maps
 - · Simple phenomenological correlations
 - · A truly first principles approach is a non starter by itself
- . Effect of various approximations on the output!
- . Is there a UNIVERSAL THEORY?

SIMPLE METAL ALLOYS

TRANSITION
METAL ALLOYS

· Pseudo potential

· Tight binding

. LMTO(ASA)

Hybrid Varieties

DFT (LDA); ? ASW

STABILITY ?

$$F = -\beta^{-1} \ln Z$$

$$Z = Tr \left\{ \exp(-\beta H) \right\}$$

$$Q = \frac{1}{k_B T}$$

$$Z = Partition function$$

$$H = a (ground state) energy function$$

$$H = \sum_{k=0}^{\infty} H_{e-k} + H_{i-k} + H_{i-k}$$

$$H = \sum_{k=0}^{\infty} H_{e-k} + \sum_{i=0}^{\infty} \left(\operatorname{Schröedinger equation}_{i=0}^{\infty} \right)$$

$$V(rial theorem , ...)$$

SIMPLE METAL ALLOYS

METAL = SCREENED + DELOCALIZED

ION CORE CONDUCTION

ELECTRONS

$$\triangle H_{A} = \alpha \triangle H_{A} + (1-\alpha) \triangle H_{B}$$

$$\triangle H_{A} = (E_{A} - E_{A})$$

$$E = E(Y_{S})$$

$$Y_{S} = \text{volume/electron electron density}$$

$$E = \sum_{k} \frac{E_{el} + E_{ex} + E_{c}}{E_{eg}} + \mathcal{U}_{Pot.} + \mathcal{U}_{Madelung}$$

E = Eg + Structure dependent contribution.

Depending on the sophistication. plug in appropriate Ei

 $\frac{dE}{dr_s}\Big|_{r=r_s}$, $\frac{\partial E}{\partial r_s}$, give equilibrium conditions.

For a binary Ax Bi-x, the final expression

$$E (Per atom) = Z^{\frac{1}{4}} \left(\frac{2 \cdot 21}{r_s^2} - \frac{0.916}{r_s} - 0.115 + 0.031 \ln r_s \right)$$

$$+ \frac{1}{4 / \pi i \Gamma_s^{-5}} \left[x \mu_A + (1 - x) \mu_B \right] - \frac{\alpha}{r_s} Z^{\frac{1}{4} \frac{5}{3}}$$

$$Z^* = \chi Z_A + (1-\chi) Z_B$$

$$\alpha = 1.792 \text{ (fcc)}$$

$$\mu_{\alpha} = 2\pi e^2 Z_{\alpha} (r_{c}^{\alpha})^2$$

$$\Delta F = \Delta E - T \Delta S_{mix}$$

The present study attempts to derise a Single Coordinate Structure map.

Why one parameter?

Periodic tails has one dimension. namely Z Is it possible by just providing one extra parameter to correctly account for the bonding trend.?

Secondly is it possible to combine a few other independent parameters to get a Single one Which have a Compromise of Competing tendencies?

Ans (i). Yes - one parameter

(ii) No - not truly independent

PRESENT PARAMETER

$$\chi \equiv \frac{\phi^*}{m \cdot v} = \frac{\text{Volt | electrons}}{\text{ws}}$$

φ^N = Work function related Electronegativity
(α E_F)

M = electron density at N-S cell surface

V = Volume / niole · ·

X AS A STRUCTURE MAP PARAMETER

- · Prediction of Solid Solubility
- · Prediction of Compound formation
- · AB Structure type sorting
- The range of X is increased by artificially Stringing it in the decreasing order.

Ce: 1 (actinide omitted)
H: 72

- Predicts reasonably solid solution exclusion and compound formation exclusion zone.
- Sort AB Structure type only as good as any other single coordinate Map.

. The χ variation for Transition Metal Periods is rather Irregular

- Also there is a drop in X in going from IA → IIA
 ie. Li, + Be: Næ + Mg etc.
 15'-15² 25'-25²
- χ does not appear to be a smooth function of Z.
- · X ≠ Electronegativity ?
 - condensed State, not the elemental state
 - : It may not therefore obey the trends of an atomic coordinate.

- If we propose $X \approx measure of electronegativity then the high electroneyalive elements on the extreme right has no option other than Covalent bond.$
- Low X values of metals indicates that electron redistribution is tather easy upon homopolar bond formation. Low electronegativity suggests that transfer and delocalization of stomic valence shell in to Conduction band is easy energy in expensive

· 'Position' of H2 requires reshufiling?

RELEVANCE OF χ Min > Periodic Table

• A decreases down the group, (save for Si-Ge)
for s, p elements

Pown the Group, the Size (at radii) increases, and S.P. d lords in the solid state converges. a difference in Ep-Ed comes down.

- ~ increased delocalization
- ~ increased metallicity

X Value decreases .

Of $X \approx av$. one e^{-n} energy of valence Shall then this trend is accepted.

- Slight upward Shift in Si→Ge

 Si: P block element no d-band

 Ge- imperfect Screening by d-band of the

 Valence S and p. As a net result there is

 a Slight d-band Contribution → Shifting if to

 Semiconductivity.
 - · Compared to Si, Ge has a lower band gup. (and high X)

Fig.			T										
H		N. Sarras	⁸⁸	0.14614			0.13558	39	Sp	0.12073	45	ii ii	0.13762
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		70	Si	0.16179	62	Ge	0.17935	43	Sn	0.1335	50	Pb	0.14745
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.0 CU #	54 A1	0.15847	52	Ga	0.15425	53	In	0.15477	56	E	0.161147
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					64	Zn	0.19447	58	Cd	0.1633	35	Б	0.15649
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					65	Ca	0.1963	59	AE	0.16164	40	Au	0.13061
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					49	Z	0.1488	41	Pd	0.1317	30	ρt	0.11004
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ב באישטו			46	Co	0.14227	33	Rh	0.11931	2.8	Ir	3.12635
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					36	F Fe	0.12543	29	Ru	0.10771	24	08	0.1009
H Eli Be Va Mg So 0.1338 So 0.1338 Ca SC K Ca SC So 0.1338 Ch Sr 16 Ch Sr 16		 			47	Mn	0.14509	26	Tc	0.1035	18	Re	0.09276
H Eli Be Va Mg So 0.1338 So 0.1338 Ca SC K Ca SC So 0.1338 Ch Sr 16 Ch Sr 16	EMENTS				35	Cr	Q.124167	11	Mo	0.08933	۲	M	0.0846
H Eli Be Va Mg So 0.1338 So 0.1338 Ca SC K Ca SC So 0.1338 Ch Sr 16 Ch Sr 16	72 EL				32	\triangleright	Q11522	2	NP	0.084:11	c)	Та	0.086 -8
H Eli Be Va Mg So 0.1338 So 0.1338 Ca SC K Ca SC So 0.1338 Ch Sr 16 Ch Sr 16	CALE FOR				25	Ţ	a.102258		Zr	0.06788	8	Hf	2.0679.3
H* H* S* X* C* S*	*~	<u> </u>			27	Sc	0.1057	16	>	0.09834	4	La	0.057928
Hairia Sa Aa Ca Sa		I M =	Mg	0.1538	38	Сa	0.12919	34	Sr	0.11935	31	ES ES	0.11462
60 60 60 60 60 60 60 60 60 60 60 60 60 6	H Here	69 T.1	Na Na	0.2059	83	X	0.17953	61	Rb	0.17338	90	Cs	0.1683

RARE EARTHS

$\left { m Yb} \right { m Lu}$	3 0.095032	$\begin{vmatrix} +2 \\ Yb \end{vmatrix}$
$ \frac{z}{Tm} ^{\frac{23}{4}}$	0.09547 0.0963	0. Y
EI	0.09:53	
$^{^{21}}$	0.09453	
ё <u></u> Н	a09305	
17 Tb	0.09151	
15 Gd	0.0983	
Eu ta	0.09046	0. +2 Eu
S S T S	0.090::	
Pm	0.0831	
PN ²	0.08969	
[©] 된	0.0889	
Ce #	0.0842	Ce Ce

PRELIMINARY CONCLUSIONS ABOUT X

- · For s.p elements, the metallic state valence orbitals
- · Tetain a large portion of atomic character

 and therefore X exhibits a trend, coinciding with an atomic electronegativity
- The more the s'orbitals are involved in bonding the larger is the X. This is evidenced by X Le > X Be etc.
 7 Na > X Ng
- * Transition Metals exhibit a low range of ΔX , besides having low X themselves.
- Rare e riths tend to group, mingle with the d-transition metals, thus unifying the general metallicity of these group. Note, the Present form of periodic table tends to muddle this trend. ie, After La, Le La must be followed: But we write La-Hf- Ta-w... etc..

BASIC STEPS

CELL PREPARATION

CELL PREPARATION: YOLUME EFFECT

STEP

Generates repulsive forces

CHARGE TRANSFER STEP

THIS IS ATTRACTIVE AS CHARGE TRANSFER, DRIVEN BY CHEMICAL POTENTIAL GRADIENT. ($\Delta \phi^{*}$)

ELECTRO CHEMICAL FACTOR.

Thus \mathcal{P} , ϕ could be BASIC ALLOY THEORY PARAMETERS.

BES'DES, THEY ARE CONNECTED TO AH.

ELECTRON DENSITY

$$\int or \, m = \left(\frac{V}{z} \right)^{-1}$$
 $4 / _{5} \pi r_{5} = \frac{V}{z}$
 $r_{5} = \frac{r_{5}}{a_{0}}$

- Z Cannot be solved exactly in 3-D
- H is a composite term, again exact
 Calculations are impossible
- · Approximations at this very basic level
 - · Adiabatic appreximation
 - · one electron approximation
 - Self consistent treatments of e-e
 (Various band structure models, DFT, PPT)
 EMA, Molecular dynamics, cluster calculations)
- · Incorporation of temperature effects
 - o harmonic, quasi harmonic models
 - . in adequate portrayal of lower Tregime
- · Calculational accuracy kcal < lev (tacks/g.atom)

REQUIRED INPUT

- · Set of Zi
- · eqlm. spacing (Vegard's Law: Zen's Law)
- · Core size, Madelung Constant OUTPUT

FORMATION ENTHALPY.

ELECTRONEGATIVITY

BULK MODULUS (?)

SFE, APBE (?)

ORDERING ENERGY

VALIDITY

ONLY S, P ALLOYS

ATTRACTION

SIMPLE, ALLOWS EASY BREAK UP

INPUT

Wi, Mi (i= A, B); WAB,

SIMPLE;

NO STRUCTURE DEPENDENCE
ABSENCE OF REPULSION TERM
BUT EXPERIMENTAL AGREEMENT
GOOD ?

How?

How to incorporate structure?

STRATEGY

(i) N(E) → density of states, structure sensitive.

(ii) Force THEOREM

1.2

Further Al Si P
$$X_{Si} = \frac{\chi_{A1} + \chi_{P}}{2}$$

Ga Ge As $\chi_{Ge} = \frac{\chi_{AS} + \chi_{Gq}}{2}$

In Sn Sb $\chi_{Sn} = \frac{\chi_{In} + \chi_{Sb}}{2}$

Al P Ga As are also semiconducting. In Sb

As We go from Left > right in the periodic table

We make from

χ ---->

What is special about transition metals?

d electrons - spatially localized

- Covalent interaction
- Strongly bound to the core

TIGHT BINDING SCHEME

$$E = \underbrace{u_{att}}_{att} + \underbrace{u_{s-d}}_{s-d} + \underbrace{u_{others}}_{s}$$

RECTANGULAR
BAND ASSUMPTION

TRANSITION METAL COHESION

$$E = E_d + E_{s,p} + E_{s+d} + others$$

Ed = band theory route

Es.p = Pseudo potential

Estd = Tight binding

E others = Magnetic.

OCCURRENCE OF MgCu₂ STRUCTURE

yb Lu Tb Dy Ho Er Im Th Pa U Np Pu Am Cm -- Lack of data Ce Pr Nd (Pm) Sm Eu Gd -- RAREEARTHS +ACTINIDES

- S) BOTH A' AND 'B' ELEMENTS
- PREDICTED TO FORM MyCuz STRUCTURE

 (X) PREDICTED TO FORM MyCuz WITH SUITABLE 'B' ELEMENT Thinz, $\label{eq:ersimple} \text{ErSi}, \text{DrS}_2, \text{AgBe}_2, \text{FeBe}_2, \text{CuEn}_2, \text{LiPt}_2 \text{ ARE SPECIAL CASES.}$

OCCURRENCE OF MgZn2 STRUCTURE

2 Tm Yb ----Lack of experimental data --RUCE EARTHS - [Ce] Pr Nd (Pm) Sm Eu Gd Th Dy Ho Er Th (Pa) U A::TINIDES

X)BOTH 'A' AND 'B' ELEMENTS

PREDICTED TO FROM MgCu₂

Cr, Mn, Fe, Ru, Re FORM 'A' ELEMENTS ONLY WITH

Caliz SPECIAL CASE

			I			:	1		1				Ī:	111	<u></u>	: .	i]]	-	i	:	-		1		<u> </u>	:	!		<u> </u>		i		::::	i	
			=		-		<u>-i</u>								j-			: <u>: : :</u>	<u>:</u>	-		<u> </u>	-	- -							: **:					<u>-</u>	· .
								I,						<u> </u>																						_ _	
								-						iiii T			<u>.</u>				-	<u> </u>	<u>:</u>	<u>:</u>	-	-			-		-					- -	
				-						=						: :							<u>!</u>		-		-										-:-
								-														İ														+	
						ļ										1							1														
				E		E						==	===			!:::		<u> </u>					İ	<u>: -</u>												4	
			1	0			7	1	: :=:: ::::::::::::::::::::::::::::::::	;;;; ;;;							1 :				1 1 2	1::	: ···] TI F		1	1 = 1								-	
				E							-							Ē			-=																
								310	a s	5	<u> </u>	={	۱ ۴	כ						::	1111							/ :	E								
						زا		cla	255			Ā	11	5 :												<u> </u>	/:								==::		
																					===			Ξ		/_				=		===		===			
																				=	111			1-:	7					×	5 In			==:	7.5	1	E
					=								≣											7	ĝΫ	y.	ΑL	憶		V ₃ (a						
													===								Hiii		1	X.		7	X						. 1				
		雌	O	Ō					1.1.1	=:		::::		:=:	::::	1335)::::	1			-	12	1:5::	111	1	X		7. V:	55n	= 1	lb.	Ga,	/ 			_	
1	H				111													V3	ΛŒ	42.	, <	X -		Мо	3 <u>.5</u>	l X	X	<u> </u>	K	- X	><	/ _\	Nb	5 1			
<u>}</u>		臘			-				1											7				, פעא							<i>y</i>	NБ	.5n	, N	6 ₃ 8i	1	
		匮		E	72														7		V5	S		V 3	6e	7K -		×	()	90	AL	- V	,50				
Vole																		١,		===	1111		X		7	××	ļ	Nb	Ge							: 1	
Ţ																	7			== 1		ľΩ	5	∍e		×÷		[{ ₃	Sb.							-	11111
Po				Ë	===									C		ا او	Me	عاد		• :	:::		=	X.		×	- 2	ref	b								
4												C	3 5	h-	2.	<u>/_</u>	=	=		}.			z	: (: . Sı		7										1=	
			4.	Ō								ν γ	ورة N.	ir		=		7 (<u>.</u>	===	(7	5 lr	4	7												
		#												温	11				.V=	6 ú	ζ.	Mo X	5 P	t :/	Ņ	Ь,	Àι	1,1	a 3	Αų							
				1111									<i>L</i>	٧ ₅	Qs	→ •			7.5	-			7						===	==			=			-	
				H										!!:! \!\			ē	٧3		-	٧.	ra,					:::: :::::										
					1111						7.			1					ht,	Ņ.	7			Au.													
	Ш			Щ	1	E					Ш		Ш	i. Mr	3.			1		7		Z	3	世													里
	Щ								4					=		:: N	l=/ 5.1	HE ST	7															븳			
												1																===								1	
			7	ā	##										3	1																\equiv					
				11.										Н.:	Ш		皇														Ξ	=					
	III		E	H.	#			iΕ		1	=										===			10.00		1:		::::						_		1	Ŧ
						ii				Ō.	5			:::: :::::	豐					Q	·O		: =						, ni	<u> </u> Ç) · [;					
	#				===																																
																						7	3	7		0.0	į,į,		ıni	l c	1						
																					111	M	S	7	JE	11(2	بااد	/		_							
																						:::::: :::::::::::::::::::::::::::::::															
]]	:::				====								1		1.																						E
																													i								
	1111																										ļ					!					
1	*****				لنتتنا		لنتث	لنتنا			:1:	1	:1	لتخدد	ءَ تـــا		• • •			:1	1															-	

CONCLUSION # 1

The direct method is seldom transparent and transferable

but

It offers to validate or otherwise as successful empirical correlation

CONCLUSION # 2

Miedema coordinates: Bond Indicators?

STRUCTURE SORTING
PARAMETERS

Pettifor's us Miedemas