Illustrating Hilbert's Nullstellensatz

Timothy Cho

UC Irvine, MATH 195

30 November 2023

• It's cool

- It's cool
- Historical: shapes/patterns ⇒ equations

- It's cool
- Historical: shapes/patterns ⇒ equations

- It's cool
- Historical: shapes/patterns ⇒ equations
- Connections: analysis, topology, commutative algebra, etc.

Roots of Polynomials

Find the real roots of $(x^2 + 4y^2 - 4)^2 \in \mathbb{R}[x, y]$.

Roots of Polynomials

Find the real roots of $(x^2 + 4y^2 - 4)^2 \in \mathbb{R}[x, y]$.

$$(x^2 + 4y^2 - 4)^2 = 0 \implies x^2 + 4y^2 - 4 = 0 \implies x^2 + 4y^2 = 4$$

Roots of Polynomials

Find the real roots of $(x^2 + 4y^2 - 4)^2 \in \mathbb{R}[x, y]$.

$$(x^2 + 4y^2 - 4)^2 = 0 \implies x^2 + 4y^2 - 4 = 0 \implies x^2 + 4y^2 = 4$$

Algebraic Varieties

Definition

Let k be a field, and let $S \subseteq k[x_1, \dots, x_n]$. The algebraic variety of S is the set

$$\mathbb{V}(S) := \{x \in k^n : f(x) = 0 \text{ for all } f \in S\}.$$

Similarly, $V \subseteq k^n$ is an algebraic set if $V = \mathbb{V}(S)$ for some $S \subseteq k[x_1, \ldots, x_n]$.

Algebraic Varieties

Definition

Let k be a field, and let $S \subseteq k[x_1, \dots, x_n]$. The algebraic variety of S is the set

$$\mathbb{V}(S) := \{ x \in k^n : f(x) = 0 \text{ for all } f \in S \}.$$

Similarly, $V \subseteq k^n$ is an algebraic set if $V = \mathbb{V}(S)$ for some $S \subseteq k[x_1, \ldots, x_n]$.

Advantage: points \iff pictures \iff shapes

Disadvantages: hard to work with

Let
$$S = \{(x^2 + y^2 - 4)(x - 1), (x^2 + y^2 - 4)(y - 1)\} \subseteq \mathbb{R}[x, y]$$
. What is $\mathbb{V}(S) \subseteq \mathbb{R}^2$?

Let
$$S = \{(x^2 + y^2 - 4)(x - 1), (x^2 + y^2 - 4)(y - 1)\} \subseteq \mathbb{R}[x, y].$$
 What is $\mathbb{V}(S) \subseteq \mathbb{R}^2$?
$$\begin{cases} (x^2 + y^2 - 4)(x - 1) = 0\\ (x^2 + y^2 - 4)(y - 1) = 0 \end{cases}$$

Let
$$S = \{(x^2 + y^2 - 4)(x - 1), (x^2 + y^2 - 4)(y - 1)\} \subseteq \mathbb{R}[x, y].$$

What is $\mathbb{V}(S) \subseteq \mathbb{R}^2$?
$$\begin{cases} (x^2 + y^2 - 4)(x - 1) = 0\\ (x^2 + y^2 - 4)(y - 1) = 0 \end{cases}$$

$$\implies 0 = (x^2 + y^2 - 4)(x - 1) = (x^2 + y^2 - 4)(y - 1)$$

$$\implies x^2 + y^2 = 4 \text{ or } (x, y) = (1, 1)$$

Figure: $\mathbb{V}((x^2+y^2-4)(x-1),(x^2+y^2-4)(y-1))$

Motivation: "the other way around"

Motivation: "the other way around"

Definition

Let k be a field, and let $V \subseteq k^n$. The *ideal* of V to be the set

$$\mathbb{I}(V) := \{ f \in k[x_1, \dots, x_n] : f(x) = 0 \text{ for all } x \in V \}.$$

Motivation: "the other way around"

Definition

Let k be a field, and let $V \subseteq k^n$. The *ideal* of V to be the set

$$\mathbb{I}(V) := \{ f \in k[x_1, \dots, x_n] : f(x) = 0 \text{ for all } x \in V \}.$$

Proposition

Let k be a field, and let $V \subseteq k^n$. Then $\mathbb{I}(V)$ is an ideal in $k[x_1, \ldots, x_n]$.

Motivation: "the other way around"

Definition

Let k be a field, and let $V \subseteq k^n$. The *ideal* of V to be the set

$$\mathbb{I}(V) := \{ f \in k[x_1, \dots, x_n] : f(x) = 0 \text{ for all } x \in V \}.$$

Proposition

Let k be a field, and let $V \subseteq k^n$. Then $\mathbb{I}(V)$ is an ideal in $k[x_1, \ldots, x_n]$.

Advantage: we understand ideals!

What is $\mathbb{I}(V)$?

Figure: $V \subseteq \mathbb{R}^2$

Figure: $V \subseteq \mathbb{R}^2$

What is $\mathbb{I}(V)$?

$$V = \{(x,y) \in \mathbb{R}^2 : x^2 + y - 4 = 0\}.$$

Figure: $V \subseteq \mathbb{R}^2$

What is $\mathbb{I}(V)$?

$$V = \{(x,y) \in \mathbb{R}^2 : x^2 + y - 4 = 0\}.$$

$$f(x,y) = g(x,y)(x^2 + y - 4)$$

vanishes for all $g(x,y) \in \mathbb{R}[x,y]$

Figure: $V \subseteq \mathbb{R}^2$

What is $\mathbb{I}(V)$?

$$V = \{(x,y) \in \mathbb{R}^2 : x^2 + y - 4 = 0\}.$$

$$f(x,y) = g(x,y)(x^2 + y - 4)$$

vanishes for all $g(x,y) \in \mathbb{R}[x,y]$

$$\mathbb{I}(V) = \langle x^2 + y - 4 \rangle.$$

Attribute	\mathbb{V}	I

Attribute	\mathbb{V}	I
Input	$S\subseteq k[x_1,\ldots,x_n]$	$V\subseteq k^n$

Attribute	\mathbb{V}	I
Input	$S\subseteq k[x_1,\ldots,x_n]$	$V\subseteq k^n$
Output	$\mathbb{V}(S)\subseteq k^n$	$\mathbb{I}(V) \leq k[x_1,\ldots,x_n]$

Attribute	\mathbb{V}	I
Input	$S\subseteq k[x_1,\ldots,x_n]$	$V\subseteq k^n$
Output	$\mathbb{V}(S)\subseteq k^n$	$\mathbb{I}(V) \leq k[x_1,\ldots,x_n]$
Advantages	Very visual	Easy to manipulate

Attribute	\mathbb{V}	I
Input	$S\subseteq k[x_1,\ldots,x_n]$	$V\subseteq k^n$
Output	$\mathbb{V}(S)\subseteq k^n$	$\mathbb{I}(V) \leq k[x_1,\ldots,x_n]$
Advantages	Very visual	Easy to manipulate
Disadvantages	Hard to manipulate	Not visual

Let k be a field.

Attribute	\mathbb{V}	I
Input	$S\subseteq k[x_1,\ldots,x_n]$	$V\subseteq k^n$
Output	$\mathbb{V}(S)\subseteq k^n$	$\mathbb{I}(V) \leq k[x_1,\ldots,x_n]$
Advantages	Very visual	Easy to manipulate
Disadvantages	Hard to manipulate	Not visual

In an ideal world: \mathbb{I} and \mathbb{V} are mutually inverse

$$\mathbb{V}(\mathbb{I}(V)) = V$$

Proposition

Let $V \subseteq k^n$ be an algebraic set. Then $\mathbb{V}(\mathbb{I}(V)) = V$. That is, \mathbb{V} is a left-inverse to \mathbb{I} .

Proof.

Definition-chase.

$\mathbb{V}(\mathbb{I}(V)) = \mathbb{V}$: Example

Figure: $V \subseteq \mathbb{R}^2$

Know:

$$I := \mathbb{I}(V) = \langle x^2 + y - 4 \rangle$$

 $I := \mathbb{I}(V) = \langle x^2 + y - 4 \rangle.$ $\mathbb{V}(I)$: points in \mathbb{R}^2 that vanish on all of I

$\mathbb{V}(\mathbb{I}(V)) = \mathbb{V}$: Example

Figure: $V \subseteq \mathbb{R}^2$

Know:

$$I := \mathbb{I}(V) = \langle x^2 + y - 4 \rangle.$$

 $\mathbb{V}(I)$: points in \mathbb{R}^2 that vanish on all of I — but this is just V.

$$\mathbb{I}(\mathbb{V}(I)) = I?$$

Figure: $\mathbb{V}(I)$

Let
$$I := \langle (x^2 + 4y^2 - 4)^2 \rangle$$
.

$\mathbb{I}(\mathbb{V}(I)) = I?$

Figure: $\mathbb{V}(I)$

Let $I := \langle (x^2 + 4y^2 - 4)^2 \rangle$. $\mathbb{I}(\mathbb{V}(I))$: polynomials in $\mathbb{R}[x, y]$ that vanish on $\mathbb{V}(I)$

$$\mathbb{I}(\mathbb{V}(I)) = \langle x^2 + 4y^2 - 4 \rangle \neq I.$$

$$\mathbb{I}(\mathbb{V}(I)) = I?$$

Figure: $\mathbb{V}(I)$

Let $I := \langle (x^2 + 4y^2 - 4)^2 \rangle$. $\mathbb{I}(\mathbb{V}(I))$: polynomials in $\mathbb{R}[x, y]$ that vanish on $\mathbb{V}(I)$

$$\mathbb{I}(\mathbb{V}(I)) = \left\langle x^2 + 4y^2 - 4 \right\rangle \neq I.$$

But how are $\mathbb{I}(\mathbb{V}(I))$ and I related?

Radical of an Ideal

"Set of *n*th roots"

Radical of an Ideal

"Set of nth roots"

Definition

Let $I \subseteq R$ be an ideal. Then the *radical* of I is the set

$$\sqrt{I} := \{ r \in R : r^n \in I \text{ for some } n \in \mathbb{Z}^+ \}.$$

Similarly, we say that an ideal I is radical if $I = \sqrt{I}$.

Radical of an Ideal

"Set of nth roots"

Definition

Let $I \subseteq R$ be an ideal. Then the *radical* of I is the set

$$\sqrt{I} := \{ r \in R : r^n \in I \text{ for some } n \in \mathbb{Z}^+ \}.$$

Similarly, we say that an ideal I is radical if $I = \sqrt{I}$.

Proposition

The radical of an ideal is an ideal.

Proposition

Prime ideals are radical.

A Rad(ical) Example

Let
$$I := \langle (x^2 + 4y^2 - 4)^2 \rangle$$
.

$$\mathbb{I}(\mathbb{V}(I)) = \langle x^2 + 4y^2 - 4 \rangle.$$

Figure: $\mathbb{V}(I)$

A Rad(ical) Example

Figure:
$$\mathbb{V}(I)$$

Let
$$I := \langle (x^2 + 4y^2 - 4)^2 \rangle$$
.

$$\mathbb{I}(\mathbb{V}(I)) = \langle x^2 + 4y^2 - 4 \rangle.$$

But how are $\mathbb{I}(\mathbb{V}(I))$ and I related?

A Rad(ical) Example

Let
$$I := \left\langle (x^2 + 4y^2 - 4)^2 \right\rangle$$
.

$$\mathbb{I}(\mathbb{V}(I)) = \left\langle x^2 + 4y^2 - 4 \right\rangle.$$

But how are $\mathbb{I}(\mathbb{V}(I))$ and I related?

$$\mathbb{I}(\mathbb{V}(I)) = \sqrt{I}$$

The Nullstellensatz

Theorem (Hilbert's Nullstellensatz)

Let k be an algebraically closed field, and let $I \subseteq k[x_1, \ldots, x_n]$. Then $\mathbb{I}(\mathbb{V}(I)) = \sqrt{I}$. In particular, if I is radical, then $\mathbb{I}(\mathbb{V}(I)) = I$.

The Nullstellensatz

Theorem (Hilbert's Nullstellensatz)

Let k be an algebraically closed field, and let $I \subseteq k[x_1, \ldots, x_n]$. Then $\mathbb{I}(\mathbb{V}(I)) = \sqrt{I}$. In particular, if I is radical, then $\mathbb{I}(\mathbb{V}(I)) = I$. Restricting to the set of radical ideals:

$$\Big\{ \text{algebraic sets in } k^n \Big\} \longleftrightarrow \Big\{ \text{radical ideals of } k[x_1, \dots, x_n] \Big\}$$

The Nullstellensatz

Theorem (Hilbert's Nullstellensatz)

Let k be an algebraically closed field, and let $I \subseteq k[x_1, \ldots, x_n]$. Then $\mathbb{I}(\mathbb{V}(I)) = \sqrt{I}$. In particular, if I is radical, then $\mathbb{I}(\mathbb{V}(I)) = I$. Restricting to the set of radical ideals:

$$\Big\{ \text{algebraic sets in } k^n \Big\} \longleftrightarrow \Big\{ \text{radical ideals of } k[x_1, \dots, x_n] \Big\}$$

The field k must be algebraically closed!

The Nullstellensatz, Applications

• "Fundamental theorem of algebraic geometry"

The Nullstellensatz, Applications

- "Fundamental theorem of algebraic geometry"
- Nullstellensatz: Shapes \implies abstraction

The Nullstellensatz, Applications

- "Fundamental theorem of algebraic geometry"
- Nullstellensatz: Shapes \implies abstraction
- Curves in weird fields: $\overline{\mathbb{F}_2}$, etc.
- Elliptic curves, number theory, FLT, etc.