Estimation sans échantillon d'apprentissage

- Soit $X=(X_s)_{s\in S}$, avec X_s à valeur dans $\Omega=\{\omega_1,\omega_2\}$ et $Y=(Y_s)_{s\in S}$ avec Y_s à valeur dans R. On suppose les lois des couples (X_s,Y_s) indépendantes et identiquement distribuées. Les lois de Y_s conditionnelles a $X_s=\omega_1$ et $X_s=\omega_2$ sont gaussiennes (on les notes f_1 et f_2).
- θ est donc un vecteur de 5 composantes $\pi = p(X_s = \omega_1)$ et $\mu_1, \sigma_1, \mu_2, \sigma_2$ les paramètres des gaussiennes f_1 et f_2
- On dispose d'observations $(y_1, ..., y_N)$ des Y_s seulement.

Estimation sans échantillon d'apprentissage

Algorithme EM:

- On se donne une valeur initiale $\theta_0=(\pi^0,\mu_1^0,\sigma_1^0,\mu_2^0,\sigma_2^0)$
- On itère pour k allant de 0 à K:
 - On calcule $\forall n, p(x_n = \omega_1 | y_n, \theta^k) = \frac{\pi^k f_1(y_n; \mu_1^k, \sigma_1^k)}{\pi^k f_1(y_n; \mu_1^k, \sigma_1^k) + (1 \pi^k) f_2(y_n; \mu_2^k, \sigma_2^k)}$
 - Et $p(x_n = \omega_2 | y_n, \theta^k) = \frac{(1-\pi^k)f_2(y_n; \mu_2^k, \sigma_2^k)}{\pi^k f_1(y_n; \mu_1^k, \sigma_1^k) + (1-\pi^k)f_2(y_n; \mu_2^k, \sigma_2^k)}$
 - On calcule $\theta_{k+1}=\left(\pi^{k+1},\mu_1^{k+1},\sigma_1^{k+1},\mu_2^{k+1},\sigma_2^{k+1}\right)$ a partir de θ^k de la manière suivante:
 - $\pi^{k+1} = \frac{1}{N} \times (p(x_1 = \omega_1 | y_1, \theta^k) + \dots + p(x_N = \omega_1 | y_N, \theta^k))$
 - $\mu_i^{k+1} = \frac{y_1 p(x_1 = \omega_i | y_1, \theta^k) + \dots + y_N p(x_N = \omega_i | y_N, \theta^k)}{p(x_1 = \omega_i | y_1, \theta^k) + \dots + p(x_N = \omega_i | y_N, \theta^k)}$
 - $\sigma_i^{k+1^2} = \frac{(y_1 \mu_i^{k+1})^2 p(x_1 = \omega_i | y_1, \theta^k) + \dots + (y_N \mu_i^{k+1})^2 p(x_N = \omega_i | y_N, \theta^k)}{p(x_1 = \omega_i | y_1, \theta^k) + \dots + p(x_N = \omega_i | y_N, \theta^k)}$