ICT & Business Intelligence & CRM Introduction

Andrea Vandin

Scuola Superiore Sant'Anna

Paolo Ferragina

Scuola Superiore Sant'Anna

Anna Monreale

Università di Pisa

General Information

Andrea Vandin

- Email: andrea.vandin@santannapisa.it

Paolo Ferragina

Email: paolo.ferragina@santannapisa.it

Anna Monreale

– Email: <u>anna.monreale@unipi.it</u>

Learning Material

- Slides github wiki
- Databases essentials Antonio Albano
 - Pdf available on github wiki
- A First Course in Database Systems, Jeffrey D. Ullman and Jennifer Widom
- Decision Support Database Antonio Albano
 - Pdf available on github wiki

Exam

- Assignments to be handed-in during the course
 - Similar to exercises done in class
- Project Work: 3 people
- Final Mark:
 - 100% project

Overview of the course topics

Andrea Vandin
Scuola Superiore Sant'Anna
Paolo Ferragina
Scuola Superiore Sant'Anna
Anna Monreale
Università di Pisa

Topics

Part 1, Andrea Vandin

- Databases
 - What is a DBMS
 - Designing a DB
 - Querying a DB

Part 2, Anna Monreale

- Business intelligence
 - Decision Support Databases
 - Data warehouses
 - Designing a data warehouse
 - Querying a data warehouse

Part 3, Paolo Ferragina

- Graph Databases
 - Introduction to Graphs: definition, properties and implementation
 - Graph Data Bases (GDB): modeling, principles, and structure.
 - An example of GDB query language: Cypher
 - Hands-on with a Graph DB: Neo4J

Calendar of Part 1

Intro to DB, Structure of DB, Create a DB

•	17/02/25	09:00-11:00	2	Vandin	Introduction to course, to DB, to DBeaver.
•	19/02/25	09:00-11:00	2	Vandin	Conceptual model. Exercises conceptual model.
•	24/02/25	09:00-11:00	2	Vandin	Complete ex. conc. model. Logical model (ex.?)
•	26/02/25	09:00-11:00	2	Vandin	Complete exercises logical model

Query a DB

•	07/03/25	09:00-11:00	2	Vandin	Exercises on SQL.	Moved to	06/03/25 from 9 to 11
٠	05/03/25	09:00-11:00	2	Vandin	SQL2 with hands or	n examples	
•	03/03/25	09:00-11:00	2	Vandin	SQL1 with hands on	examples	

Query a DB and Exercises on all topics

•	10/03/24	09:00-13:00	2	Vandin	SQL3. Ex. on conceptual & logical model & So	QL
·	10/03/24	14:30-16:40	2	Vandin	Ex. on conceptual & logical model & SQL	
N	Moved to Wed 12 from 9 to 11					

Calendar of Part 1

	Weekly PLAN (SALA CONFERENZE - Palazzo Boyl)							
	MON 10	TUS 11	WED 12	THU 13	FRI 14			
09:00-09:45	ICT1: Business Intelligence & CRM	Innovation in Cost & Perf. Mgmt.	HomoJ	Horol	Innovation in Cost & Perf. Mgmt.			
10:00-10:45	ICT1: Business Intelligence & CRM	Innovation in Cost & Perf ingmt.	Here?	Here?	Innovation in Cost & Perf. Mgmt.			
11:00-11:45	Open Innovation Modelling & R&D	Open Innovation Modelling & R&D	Open Innovation Modelling & R&D	Open Innovation Modelling & R&D	Open Innovation Modelling & R&D			
12:00-12:45	Open Innovation Modelling & R&D	Open Innovation Modelling & R&D	Open Innovation Modelling & R&D	Open Innovation Modelling & R&D	Open Innovation Modelling & R&D			
13:00-14:30								
14:30-15:15	ICT1: Business Intelligence & CRM	Innovation Lab	Innovation Lab	Innovation Lab	Innovation in Cost & Perf. Mgmt.			
15:30-16:15	ICT1: Business Intelligence & CRM	Innovation Lab	Innovation Lab	Innovation Lab	Innovation in Cost & Perf. Mgmt.			
16:30-17:15	Innovation Lab							
17:30-18:15	Innovation Lab							

Can we move it to Wed 12 or Thu 13 from 9 to 11?

We start with some terminology

Information as a Resource

 Information is one of the most important resources of any organization

 An intelligent management of the information can help the organization generating new knowledge

 It becomes more and more important to learn how to represent, organize, manage and use information

Organization

Organizations

- es: companies, banks, public administrations,
- An organic collection of
 - resources (people, materials, information),
 - tools
 - procedures
- Has the goal to create/offer products/services
 - a bank provides financial services
 - a hospital supplies medical services

Information System

- Component of an organization finalized to information management for supporting the organization's activities
 - Collects, stores, processes and communicates the information

Any organization has an Information System

Information System & Computerization

- Information system is indipendent of computerization
- Organizations as Libraries, Banks, etc ... existed and managed information long before computerization...

Library of Alexandria

Computerized Information System

- The hardware and sofware used for storing, retrieving, and processing the information which supports the functions of an organization
- In practice, in many cases:
 - information system is used as synonym of computerized information system
- Implemented by database technology
 - operational database and
 - a collection of application programs used to
 - access and update the data efficiently

Computerized Information System

Goal of DBMS: processing data for getting information

Data vs Information

- In information systems
 - information is represented by data
- Information (def): news, or element enabling knowledge about facts and situations
- Datum (def): element of an information composed of symbols to be processed

Without interpretation datum is useless

Database

- Collection of permanent data representing facts
 - interesting for an organization (data or istances) and
 - related to the data organization (metadata or schema)

STUDENTS

ID	Surname	Name	BirthofDate
276545	Rossi	Maria	25/11/1991
485745	Neri	Anna	23/04/1992
200768	Verdi	Fabio	12/02/1992
587614	Rossi	Luca	10/10/1991
937653	Bruni	Mario	01/12/1991

DBMS:

Database Management Systems

- A set of tools to manage homogeneous sets of structured data
 - Databases!

- Able to deal with
 - Huge amounts of data
 - Mission-critical data
 - Shared data
 - Queries and updates

Architecture based on DBMS

- DBMS manages huge amount of data shared
 - Efficiently:
 - optimization, parallelization
 - Effectively
- And guaranteeing:
 - Sharing: concurrency control
 - Reliability:
 - Failure resilience, data replication
 - Security:
 - authorizations, access control

Some DBMS

Commercial

- IBM DB2, Oracle, Microsoft SQL Server, Sybase
- Microsoft Access, FileMaker

Open Source

- MySQL (www.mysql.com)
- PostgreSQL (www.postgresql.org)
- SQLite (www.sqlite.org/index.html)

Users of DBMSs

Analyst

- defines a schema
 - the structure of the DB. We will see more on this

Programmer

Writes applications

Data Base Administrator (DBA):

- Manages data structures
- Manages user rights

Operator (final user):

- Uses applications
- Uses query tools

DBMS Architecture

Transactions

- Transactional execution of a piece of code:
 - Atomicity in presence of failures (all or nothing)
 - An atomic transaction is not a 'very strong' transaction :D
 - It is an action that involves several steps. If any of these steps fails, all the performed steps are reverted
 - Durability: transaction effects can be recovered after a failure
 - Serializability: no interference by concurrent transactions