Alejandro Rojas - Santiago Passos

Homework 6 - Numerical Analysis

Interpolation

We selected the function $f(x) = e^x - 1$, then we calculated the value for the given points.

Table 1: Points used with the interpolation method.

x	f(x)		
-2.5	-0.9179150013761012		
-1	-0.6321205588285577		
0.5	0.6487212707001282		
1.2	2.3201169227365472		

With these points and their values we run the interpolation methods Vandermonde, Newton and Lagrange. For each method we obtained the following results:

Fig 1: Approximation with Vandermonde method.

Fig 2: Approximation with Newton method.

Fig 2: Approximation with Lagrange method.

Root finding methods

For this section we used the vandermonde polynomial which had the following coefficients:

0.12866657 X ^{^3} + 0.60712136X ^{^2} + 1.0609553 X - 0.04962004

We used the incremental search method starting from **-3** and with a step of **0.001**. The interval found was **[-2.1938700855983484e-13**, **0.00099999999780613**].

Using the previous interval we run the methods bisection, regula falsi, newton and secant. For each method we obtained the following results using a tolerance of **1e-7** and an iteration limit of **10000**:

Result	Bisection	Regula falsi	Newton	Secant
Iterations	14	2	5	6
Error	0.0000000648	0.0000000000	0.0000000000	0.0000000005
х	0.0000000610	0.0000000000	0.0000000000	0.0000000000

The approximate polynomial obtained using the Vandermonde method was good enough to obtain a very close value to the real root of the original function.

X0 for newton: -0.1

x0 and x1 for secant: -0.12, -0.1