#### **Confusion matrix**





#### **Confusion matrix**

Actual Class: Positive Actual Class: Negative

Predicted Positive

Predicted Negative



Sensitivity (Recall) = TP / (TP + FN)

Specificity = TN / (TN + FP)

Precision = TP / (TP + FP)

Negative Predictive Value = TN / (TN + FN)

Accuracy = (TP + TN) / (TP + TN + FP + FN)

F1 Score = 2 \* (Precision \* Recall) / (Precision + Recall)



### Accuracy / Dokładność

- Accuracy = ogólna trafność klasyfikatora
- Stosunek ilości poprawnie zaklasyfikowanych obserwacji do ilości wszystkich obserwacji

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$



# Precision - spośród wszystkich przewidzianych "tak", ile faktycznie było "tak"?

- Precision = dokładność klasyfikacji w obrębie prognozowanej klasy "positive" (jakość przewidzianych "tak")
- Inne nazwy: Positive Predictive Value (PPV),
  Precyzja

$$\text{Precision} = \frac{TP}{TP + FP}$$



# Sensitivity (Recall) - spośród wszystkich rzeczywistych "tak", ile model poprawnie wykrył jako "tak"?

- Sensitivity = dokładność klasyfikacji w obrębie rzeczywistej klasy "positive" (kompletność wykrycia rzeczywistych "tak")
- Inne nazwy: True Positive Rate (TPR), Recall,
  Czułość / wrażliwość

$$ext{Recall} = rac{TP}{TP + FN}$$



# Specificity - spośród wszystkich rzeczywistych "nie", ile model poprawnie wykrył jako "nie"?

- Specificity = dokładność klasyfikacji w obrębie rzeczywistej klasy "negative" (kompletność wykrycia rzeczywistych "nie")
- Inne nazwy: True Negative Rate (TNR),
  Specyficzność

Specificity = 
$$\frac{TN}{TN + FP}$$



# Negative Predictive Value - spośród wszystkich przewidzianych "nie", ile faktycznie było "nie"?

- NPV = dokładność klasyfikacji w obrębie prognozowanej klasy "negative" (jakość przewidzianych "nie")
- Inne nazwy: Negative Predictive Value (NPV), Precyzja negatywna

$$ext{NPV} = rac{TN}{TN + FN}$$



# Porównanie metryk

| Metryka                         | Pytanie, na które odpowiada                                                                                                 |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Precision (PPV)                 | Jeśli model przewiduje "tak", czy przypadek rzeczywiście jest<br>"tak"?                                                     |
| Recall (Sensitivity, TPR)       | Jeśli przypadek rzeczywiście jest "tak", czy model go poprawnie rozpozna jako "tak"?                                        |
| Specificity (TNR)               | Jeśli przypadek rzeczywiście jest "nie", czy model go poprawnie rozpozna jako "nie"?                                        |
| Negative Predictive Value (NPV) | Jeśli model przewiduje "nie", czy przypadek rzeczywiście jest<br>"nie"?                                                     |
| F1 Score                        | Jak dobrze model równoważy poprawność przewidywań "tak"<br>(Precision) i ich kompletność (Recall)?                          |
| Accuracy                        | Jaki procent wszystkich przypadków został poprawnie<br>sklasyfikowany (zarówno "tak", jak i "nie")?                         |
| AUC (Area Under ROC Curve)      | Jak dobrze model rozróżnia wszystkie przypadki "tak"<br>od wszystkich przypadków "nie" przy różnych progach<br>decyzyjnych? |



#### F-measure

- F-measure = wykorzystuje średnią harmoniczną precyzji (precision) i czułości (sensitivity, recall)
- Inne nazwy: Miara F1, F1-measure, F1-score

Miara F (F-measure)

$$F_{\beta} = (1 + \beta^2) \cdot \frac{\text{precision} \cdot \text{recall}}{\beta^2 \cdot \text{precision} + \text{recall}}.$$

Miara F1 (F1-measure, F1-score) – w powyższym wzorze beta=1

$$F = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}.$$



### Krzywa ROC

- Receiver Operating Characteristics
- wykres charakterystyczny dla danego klasyfikatora, bada stosunek wielkości TP do FP
- narzędzie pomagające w określeniu wydajności klasyfikatorów binarnych
- zawiera wiele punktów dla różnych wartości progu decyzyjnego klasyfikatora
- Fall-out (False Positive Rate) = 1-Specificity =:

$$FPR = \frac{False \ Positives \ (FP)}{False \ Positives \ (FP) + True \ Negatives \ (TN)}$$



## **Krzywa ROC**





### Do przeczytania o miarach

- Accuracy, precision, recall, F1 co to za czary?
  https://jakbadacdane.pl/accuracy-precision-recall-f1-co-to-za-czary/
- Precision, recall i F1 miary oceny klasyfikatora
  https://ksopyla.com/machine-learning/precision-recall-f1-miary-oceny-klasyfikatora/
- What is Confusion Matrix and Advanced Classification Metrics?
  https://manisha-sirsat.blogspot.com/2019/04/confusion-matrix.html
- Performance Metrics for Classification problems in ML
  https://medium.com/@MohammedS/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b

