Лекция 10. Числовые ряды

Определение. Пусть задана бесконечная последовательность действительных или комплексных чисел $u_1, u_2, u_3, ..., u_n, ...$

Выражение вида

$$u_1 + u_2 + u_3 + \dots + u_n + \dots = \sum_{n=1}^{\infty} u_n$$
 (1)

называется *числовым рядом*. При этом числа $u_1, u_2, u_3, ..., u_n, ...$ называются *членами* pяда.

Определение. Сумма $S_n = u_1 + u_2 + u_3 + ... + u_n$ первых n членов ряда называется его $n - \check{u}$ частичной суммой.

Рассмотрим частичные суммы:

Определение. Если существует конечный предел $S = \lim_{n \to \infty} S_n$, то $p n \partial$ (1) называется сходящимся, а число $S - суммой p n \partial a$ (1). Записывают $S = \sum_{n=1}^{\infty} u_n$.

Если $\lim_{n\to\infty} S_n$ не существует или бесконечен, то $p n \partial$ (1) называется расходящимся.

<u>Пример.</u> Показать, что ряд $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ сходится и найти его сумму.

◀ Так как дробь $\frac{1}{n(n+1)}$ представима в виде $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$, то $S_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{(n-1)n} + \frac{1}{n(n+1)} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n-1} - \frac{1}{n} + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1}$.

Следовательно, $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \left(1 - \frac{1}{n+1}\right) = 1$, т.е. заданный ряд сходится и его сумма равна 1.

Исследование ряда из членов геометрической прогрессии

Исследуем на сходимость ряд

$$\sum_{n=1}^{\infty} aq^{n-1}, \ a \neq 0 \tag{2}$$

и в случае сходимости найдем его сумму.

 $\P_n = a + aq + aq^2 + ... + aq^{n-1}$. Используя формулу для суммы n первых членов геометрической прогрессии, получаем

$$S_n = \frac{a - aq^n}{1 - q} = \frac{a}{1 - q} - \frac{aq^n}{1 - q}, \quad q \neq 1$$

Вычислим $\lim_{n\to\infty} S_n$ при различных значениях q.

1) Если |q| < 1, то $\lim_{n \to \infty} q^n = 0$. Поэтому $\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{a}{1-q} - \lim_{n \to \infty} \frac{aq^n}{1-q} = \frac{a}{1-q}$, ряд (2) сходится,

а его сумма равна $\frac{a}{1-q}$.

- 2) Если |q|>1, то $\lim_{n\to\infty}q^n=\infty$. Поэтому $\lim_{n\to\infty}S_n=\lim_{n\to\infty}\frac{a-aq^n}{1-q}=\infty$, т.е. ряд (2) расходится.
- 3) Если q=1, $S_n=an$, $\lim_{n\to\infty}S_n=\infty$, и, следовательно ряд расходится.
- 4) Если q = -1, ряд (2) принимает вид $a a + a a + \dots$ Его n-я частичная сумма равна

$$S_n = \begin{cases} a, & \text{при } n = 2k - 1, \\ 0, & \text{при } n = 2k, \end{cases}$$
 $k \in \mathbb{N}.$

Поскольку две подпоследовательности $\{S_{2k-1}\}_{k=1}^{\infty}$ и $\{S_{2k}\}_{k=1}^{\infty}$

последовательности $\{S_n\}_{n=1}^{\infty}$ имеют различные пределы: $\lim_{k\to\infty} S_{2k-1} = a$ и $\lim_{k\to\infty} S_{2k} = 0$, то предел последовательности S_n частичных сумм рассматриваемого ряда при $n\to\infty$ не существует и ряд расходится.

Таким образом, ряд $\sum_{n=1}^{\infty} aq^{n-1}$ сходится при |q| < 1 и его сумма равна $\frac{a}{1-q}$ и расходится при $|q| \ge 1$.

Необходимое условие сходимости

Теорема (необходимое условие сходимости). *Если ряд* $\sum_{n=1}^{n} u_n \, cxoдится, mo$ $\lim_{n \to \infty} u_n = 0$.

Доказательство. Так как ряд $\sum_{n=1}^{\infty} u_n$ сходится, то существует конечный предел S последовательности $\{S_n\}$, где S_n-n -я частичная сумма ряда. Тогда $\lim_{n\to\infty} S_n=S$ и $\lim_{n\to\infty} S_{n-1}=S$ (при $n\to\infty$ и $(n-1)\to\infty$).

Тогда
$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} (S_n - S_{n-1}) = \lim_{n\to\infty} S_n - \lim_{n\to\infty} S_{n-1} = S - S = 0$$
.

Следствие (достаточное условие расходимости). *Если* $\lim_{n \to \infty} u_n \neq 0$, *то ряд* $\sum_{n=1}^{\infty} u_n$ *расходится*.

Доказательство. Действительно, если бы ряд сходился, то (по теореме) $\lim_{n\to\infty} u_n = 0$. Но это противоречит условию. Значит, ряд расходится.

Пример. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{5n+2}{3n+1}$.

Фрад $\sum_{n=1}^{\infty} \frac{5n+2}{3n+1}$ расходится, т.к. $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{5n+2}{3n+1} = \frac{5}{3} \neq 0$, т.е. не выполняется необходимое условие сходимости ряда. ▶

Пример. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \left(\frac{n+5}{n+9} \right)^n$.

 $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \left(\frac{n+5}{n+9}\right)^n = \lim_{n\to\infty} e^{n\ln\frac{n+5}{n+9}} = \lim_{n\to\infty} e^{n\ln\left(1-\frac{4}{n+9}\right)}.$ Так как $\ln(1+t) \sim t$ при $t\to 0$, то $\ln\left(1-\frac{4}{n+9}\right) \sim -\frac{4}{n+9}$ при $n\to\infty$, и $\lim_{n\to\infty} u_n = \lim_{n\to\infty} e^{n\ln\left(1-\frac{4}{n+9}\right)} = \lim_{n\to\infty} e^{-\frac{4n}{n+9}} = e^{-4} \neq 0$. Следовательно, ряд расходится, так как не выполняется необходимое условие сходимости ряда.

Замечание: Условие $\lim_{n\to\infty} u_n = 0$ является необходимым, но не достаточным условием сходимости ряда: из условия $\lim_{n\to\infty} u_n = 0$ не следует, что ряд сходится. Это означает, что существуют расходящиеся ряды, для которых $\lim_{n\to\infty} u_n = 0$.

В качестве примера рассмотрим ряд $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$. Здесь $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$. Однако этот ряд расходится.

 \P Действительно, $S_n = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} + \dots + \frac{1}{\sqrt{n}} = n \cdot \frac{1}{\sqrt{n}} = \sqrt{n}$,

т.е. $S_n > \sqrt{n}$, откуда следует, что $S_n \to +\infty$ при $n \to \infty$, и, значит, ряд расходится.

Свойства сходящихся рядов

Определение. Ряд

$$u_{k+1} + u_{k+2} + \dots = \sum_{n=k+1}^{\infty} u_n = R_k,$$
(3)

полученный из ряда (1) путём отбрасывания его первых k членов, называется $ocmankom\ psda$ (1) после k-го члена.

Свойство 1. Ряд сходится тогда и только тогда, когда сходится любой его остаток.

Другими словами, на сходимость ряда не влияет отбрасывание любого числа его первых членов.

Доказательство. а) Пусть ряд (1) сходится и имеет сумму S, т.е. $\lim_{n\to\infty} S_n = S$. Обозначим через S_k сумму отброшенных членов ряда (1), а через σ_{n-k} сумму первых n-k первых членов ряда (3), где k — фиксировано. Тогда $S_n = S_k + \sigma_{n-k}$, где S_k — некоторое число, не зависящее от n. Отсюда $\sigma_{n-k} = S_n - S_k$ и

$$\lim_{n\to\infty} \sigma_{n-k} = \lim_{n\to\infty} (S_n - S_k) = \lim_{n\to\infty} S_n - \lim_{n\to\infty} S_k = S - S_k$$

т.е. последовательность частичных сумм $\{\sigma_{n-k}\}$ ряда (3) имеет предел, что означает сходимость ряда (3).

б) Пусть теперь ряд (3) сходится и имеет сумму σ , т.е. $\lim_{n\to\infty} \sigma_{n-k} = \sigma$. Тогда $\lim_{n\to\infty} S_n = \lim_{n\to\infty} (S_k + \sigma_{n-k}) = \lim_{n\to\infty} S_k + \lim_{n\to\infty} \sigma_{n-k} = S_k + \sigma$, что и означает сходимость ряда (1). \blacksquare

Свойство 2. Если ряд $\sum_{n=1}^{\infty} u_n$ сходится и его сумма равна S, то ряд $\sum_{n=1}^{\infty} Cu_n$, где C – любое число, также сходится и его сумма равна CS.

Доказательство. Пусть S_n — частичная сумма ряда $\sum_{n=1}^{\infty} u_n$, а σ_n — частичная сумма

ряда
$$\sum_{n=1}^{\infty} Cu_n$$
 . Тогда $\sigma_n = Cu_1 + Cu_2 + \ldots + Cu_n = C(u_1 + u_2 + \ldots + u_n) = CS_n$. Отсюда,

переходя к пределу при $n \to \infty$, получим

$$\lim_{n\to\infty}\sigma_n=\lim_{n\to\infty}CS_n=C\lim_{n\to\infty}S_n=CS.$$

Следовательно, $\sum_{n=1}^{\infty} Cu_n = CS$.

Свойство 3. Если ряды $\sum_{n=1}^{\infty} u_n$ и $\sum_{n=1}^{\infty} v_n$ сходятся и их суммы, соответственно, равны S_1 и S_2 , то ряд $\sum_{n=1}^{\infty} (u_n + v_n)$ также сходится и его сумма, соответственно, равна $S_1 + S_2$.

Доказательство. Пусть U_n и V_n — частичные суммы рядов $\sum_{n=1}^\infty u_n$ и $\sum_{n=1}^\infty v_n$, а σ_n — частичная сумма ряда $\sum_{n=1}^\infty (u_n+v_n)$. Тогда $\sigma_n=(u_1+v_1)+(u_2++v_2)+\ldots+(u_n+v_n)=(u_1+u_2+\ldots+u_n)+(v_1+v_2+\ldots+v_n)=U_n+V_n$.

Отсюда, переходя к пределу при $n \to \infty$, получаем

$$\lim_{n\to\infty}\sigma_n=\lim_{n\to\infty}(U_n+V_n)=\lim_{n\to\infty}U_n+\lim_{n\to\infty}V_n=S_1+S_2.$$

Следовательно, $\sum_{n=1}^{\infty} (u_n + v_n) = S_1 + S_2$.

Критерий Коши сходимости ряда

Теорема (критерий Коши сходимости ряда). Для того, чтобы ряд $\sum_{n=1}^{\infty} u_n$ сходился, необходимо и достаточно, чтобы для любого $\varepsilon > 0$ существовал такой номер $N=N(\varepsilon)$, что при любом $n \geq N$ выполнялось неравенство $|R_k| < \varepsilon$.