PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: C07D 417/14, 417/06, 413/14, A61K

A1

(11) International Publication Number:

WO 96/11196

• 17

(43) International Publication Date:

18 April 1996 (18.04.96)

(21) International Application Number:

PCT/JP95/02041

(22) International Filing Date:

5 October 1995 (05.10.95)

(30) Priority Data:

31/425

6/242865 7/246171 6 October 1994 (06.10.94) JP

25 September 1995 (25.09.95) J

(71) Applicant (for all designated States except US): NISSAN CHEMICAL INDUSTRIES, LTD. [JP/JP]; 7-1, Kanda-Nishiki-cho 3-chome, Chiyoda-ku, Tokyo 101 (JP).

(72) Inventors; and

(75) Inventors/Applicants (for US only): OHARA, Yoshio [JP/JP]; Nissan Chemical Industries, Ltd., Central Research Institute, 722-1, Tsuboi-cho, Funabashi-shi, Chiba 274 (JP). SUZUKI, Mikio [JP/JP]; Nissan Chemical Industries, Ltd., Central Research Institute, 722-1, Tsuboi-cho, Funabashi-shi, Chiba 274 (JP). MIYACHI, Nobuhide [JP/JP]; Nissan Chemical Industries, Ltd., Central Research Institute, 722-1, Tsuboi-cho, Funabashi-shi, Chiba 274 (JP). KATO, Katsuhiro [JP/JP]; Nissan Chemical Industries, Ltd., Central Research Institute, 722-1, Tsuboi-cho, Funabashi-shi, Chiba 274 (JP). OHDOI, Keisuke [JP/JP]; Nissan Chemical Industries, Ltd., Central Research Institute, 722-1, Tsuboi-cho, Funabashi-shi, Chiba 274 (JP). KOBAYASHI, Tetsuya

[JP/JP]; Nissan Chemical Industries, Ltd., Central Research Institute, 722-1, Tsuboi-cho, Funabashi-shi, Chiba 274 (JP). SHIKADA, Ken-ichi [JP/JP]; Nissan Chemical Industries, Ltd., Seibutsukagaku Kenkyusho, 1470, Oaza-shiraoka, Shiraoka-machi, Minamisaitama-gun, Saitama 349-02 (JP). NAITO, Takeshi [JP/JP]; Nissan Chemical Industries, Ltd., Seibutsukagaku Kenkyusho, 1470, Oaza-shiraoka, Shiraoka-machi, Minamisaitama-gun, Saitama 349-02 (JP). YOTSUMOTO, Takashi [JP/JP]; Nissan Chemical Industries, Ltd., Seibutsukagaku Kenkyusho, 1470, Oaza-shiraoka, Shiraoka-machi, Minamisaitama-gun, Saitama 349-02 (JP).

- (74) Agents: YAMAMOTO, Ryozo et al.; Torimoto Kogyo Building, 38, Kanda-Higashimatsushitacho, Chiyoda-ku, Tokyo 101 (JP).
- (81) Designated States: AU, CA, CN, CZ, FI, HU, KR, LT, MX, NO, NZ, RO, RU, SI, SK, UA, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PYRAZOLYLMETHYL-THIAZOLIDINES USEFUL AS HYPOGLYCEMIC AGENTS

(57) Abstract

A pyrazole type thiazolidine compound of formula (I) and its salt, wherein X^1 is S or O; X^2 is S, O or NH; Y is CR^6R^7 (R^6 is a hydrogen atom, a C_1 - C_7 alkyl group or a C_3 - C_7 cycloalkyl group, and R^7 is a hydrogen atom, a C_1 - C_7 alkyl group or a C_3 - C_7 cycloalkyl group, or forms a bond together with R^4); R^1 is a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, etc., or - V_k - W_1 -Z (Z is a Z_3 - Z_{10} cycloalkyl group, a Z_4 - Z_1 - Z_4 heterocyclic aromatic group, etc., Z_4 - Z_4 - Z_5 - Z_5 - Z_6 - Z_7 -

which may be substituted with at most 3 of hydroxyl, oxo and C_1 - C_7 alkyl groups, and each of k and l is 0 or 1), -V-W-V-W-Z, -W-V-W-Z, -V-W-V-Z, or -W-V-Z (V, W and Z are as defined above, and two V's and W's may, respectively, be the same or different); each of R^2 and R^3 is independently a hydrogen atom, a C_1 - C_7 alkyl group, etc.; R^4 is a hydrogen atom or a C_1 - C_7 alkyl group, etc.; and R^5 is a hydrogen atom or a carboxymethyl group. The compound of formula (I) and its salt are useful for a preventive or curative agent for diabetes mellites and diabetic complications.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	İtaly	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
СН	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		-		

- 1 -

DESCRIPTION

TITLE OF THE INVENTION

PYRAZOLYLMETHYL-THIAZOLIDINES USEFUL AS HYPOGLYCEMIC AGENTS

5 <u>TECHNICAL FIELD</u>

10

The present invention relates to novel pyrazole type thiazolidines having a hypoglycemic effect and an antiglycation effect, which are useful in medical and veterinary fields, particularly useful for preventing or treating diabetes mellitus and diabetic complications.

BACKGROUND ART

Heretofore, various sulfonylurea derivatives and biguanide derivatives have been widely used as oral hypoglycemic agents for lowering blood sugar values. However, these agents had disadvantages of causing 15 serious hypoglycemic coma and lactic acidosis revelation, and therefore every possible care must have been taken for practical use. "Chem. Pharm. Bull., vol. 30, p. 3563 (1982)", "J. Med. Chem., vol. 32, p. 421 (1989)", "J. Med. Chem., vol. 34, p. 318 (1991)", "J. Med. Chem., vol. 20 33, p. 1418 (1990)", Japanese Unexamined Patent Publication No. 64586/1980, and European Laid Open Patent Publications No. 177353, No. 283035, No. 283036, No. 332331, and No. 332332 disclose various thiazolidindiones which achieve a hypoglycemic effect, and these are 25 particularly useful for treating Type II diabetes and are

noted as agents for hardly causing such hypoglycemic

PCT/JP95/02041 WO 96/11196

- 2 -

symptoms as caused by the above-mentioned oral hypoglycemic agents. However, although these compounds have a function of effectively lowering a blood sugar value, it is not proved that these compounds have effects for reducing or preventing various chronic symptoms caused by diabetes, such as diabetic nephropathy, diabetic cataract, diabetic retinopathy, diabetic neuropathy and the like.

Further, some compounds having a pyrazole methylene bonded to the 5-position of a thiazolidindione ring, have been known. For example, U.S. Patent 3,615,608 discloses N-ethylthiazolidindione derivatives, and Japanese Unexamined Patent Publications No. 204640/1991 and No. 224749/1989 disclose N-sulfoethyl or N-carboxyethylthiazolidindione derivatives, as compounds useful for 15 silver halide photographic materials. However, it has never been known that these compounds have a hypoglycemic effect.

10

On the other hand, non-enzymatic glycosylation of vital protein has been recently noted for causing various 20 diseases accompanied by diabetes and arteriosclerosis. Generally, the reaction of reducing sugars with amino acids and proteins caused by heat treatment of foods or during storing foods is known as Maillard reaction. was recognized in 1970's that the Maillard reaction is 25 actually caused in a living body, and this reaction is recently called as glycation (see "J. Biol. Chem., vol.

- 3 -

252, p. 2998 (1977)"). Also, it has been proved that glycation is exacerbated in such chronic hyperglycemic state as in diabetes, and it is presumed that the glycation becomes a trigger for causing various diabetic complications (see "New Eng. J. Med., vol. 314, p. 403(5 The process of glycation is not completely clear, but it is considered that various vital proteins are reacted with reducing sugars to non-enzymatically form Schiff base, and that this is crosslinked after 10 causing Amadori rearrangement and is converted to fluorescent browning materials, i.e. AGE (advanced glycosylation end products). It was recognized in rat's diabetic cataract that glycation of crystalline of lens protein is exacerbated. Also, it is presumed that glycation of myelin protein causes diabetic neuropathy 15 and that glycation of collagen and elastin present in connective tissue causes renal dysfunction-inducing thickening of renal glomerular basement membrane and atherosclerosis. Brownlee et al reported that the anti-20 glycation effect of aminoguanidine prevents formation of AGE protein on arterial walls of a rat suffering from diabetes, and the aminoquanidine becomes remarkable as an agent for preventing diseases including diabetes mellitus (see "Science, vol. 232, p. 1629 (1986)"). However, the above-mentioned function of aminoquanidine is not always 25 sufficient, and an agent achieving an anti-glycation effect satisfactory for practical use has not been found

- 4 -

yet.

5

10

15

20

25

On the other hand, aldose reductase (AR) is known to be an enzyme for reducing aldoses such as glucose and galactose to polyols such as sorbitol and galactitol in a living body. It is also known that accumulation of the polyols thus produced by the enzyme in organs induces or exacerbates various diabetic complications such as diabetic retinopathy, diabetic neuropathy and diabetic nephropathy, and therefore an inhibitor against this enzyme is useful as an agent for treating these diabetic complications.

Under these circumstances, the present inventors have synthesized various thiazolidines which are not disclosed in the above-mentioned literatures, and have studied their properties. As this result, the present inventors have found a compound having an anti-glycation effect and aldose-reductase inhibitory activities which were not exhibited by the above-mentioned known compounds. Thus, the present invention provides pyrazole type thiazolidines capable of preventing or treating diabetes mellitus and diabetic complications.

DISCLOSURE OF THE INVENTION

The novel pyrazole type thiazolidine derivatives of the present invention are pyrazole type thiazolidines of the following formula (I) and their salts: 10

5 wherein X1 is S or O;

 X^2 is S, O or NH;

Y is CR^6R^7 (R^6 is a hydrogen atom, a C_1-C_7 alkyl group or a C_3-C_7 cycloalkyl group, and R^7 is a hydrogen atom, a C_1-C_7 alkyl group or a C_3-C_7 cycloalkyl group, or forms a bond together with R^4);

 R^1 is a C_1 - C_{10} alkyl group, a C_2 - C_{10} alkenyl group, a C_2 - C_{10} alkynyl group, a C_1 - C_{10} alkoxy group, a C_2 - C_{10} alkenyloxy group, a C_1 - C_{10} alkylthio group, a C_1 - C_{10} monoalkylamino group or a di- C_1 - C_{10} alkylamino group (each of said C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_1 - C_{10} monoalkylamino and di- C_1 - C_{10} alkylamino groups may be substituted with a hydroxyl group or a C_1 - C_7 alkyl group), or

 $-V_k-W_1-Z$ (Z is a C_3-C_{10} cycloalkyl group, a C_3-C_7 cycloalkenyl group, a C_6-C_{14} aromatic group, a C_4-C_{12} heterocyclic aromatic group (said heterocyclic aromatic group may contain at most 5 hetero atoms selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom as constituents for the heterocyclic ring), or a C_4-C_6 heterocycloaliphatic group (said heterocycloaliphatic group may contain at most 3 hetero

- 6 -

atoms selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom as constituents for the heterocyclic ring) (each of said C_3-C_{10} cycloalkyl, C_3-C_7 cycloalkenyl, C_6-C_{14} aromatic, C_4-C_{12} heterocyclic aromatic and C4-C6 heterocycloaliphatic 5 groups may have at most 5 substituents selected from the group consisting of a hydrogen atom, a C1-C7 alkyl group, a C_3-C_7 cycloalkyl group, a C_3-C_7 cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a 10 C_1-C_7 alkoxy group, a C_1-C_7 alkylthio group, a halogen atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C1-C3 alkoxycarbonyl group, a nitrile group, a 15 carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 20 substituents selected from the group consisting of a C1- C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_1-C_3 alkoxy group, a C₁-C₃ alkylthio group, a hydroxyl group, a halogen atom, a nitro group and a dimethylamino group), a 1-tetrazolyl group, a 3-tetrazolyl group, a 5-tetrazolyl 25 group, a thiazolidindion-5-yl group and a thiazolidindion-5-yl methyl group),

- 7 -

V is O, S, SO, SO $_2$ or NR 8 (R 8 is a hydrogen atom or a C_1-C_3 alkyl group),

W is a divalent C_1 - C_6 saturated or C_2 - C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1 - C_7 alkyl groups, and

each of k and ℓ is 0 or 1),

5

10

-V-W-V-W-Z (V, W and Z are as defined above, and two V's and W's may, respectively, be the same or different),

-W-V-W-Z (V, W and Z are as defined above, and two W's may be the same or different),

-V-W-V-Z (V, W and Z are as defined above, and two V's may be the same or different), or

-W-V-Z (V, W and Z are as defined above);

each of R² and R³ is independently a hydrogen atom, a

15 C₁-C₇ alkyl group, a C₃-C₇ cycloalkyl group (said C₁-C₇
alkyl and C₃-C₇ cycloalkyl groups may be substituted with
a hydroxyl group), a phenyl group, a naphthyl group, a
benzyl group, a pyridyl group, a pyrimidinyl group, a
pyridazinyl group, a furanyl group, a thienyl group, a

20 pyrrolyl group, a pyrazolyl group, an imidazolyl group, a
pyranyl group, a quinolyl group, a benzoxazolyl group, a
benzothiazolyl group or a benzimidazolyl group (each of
said phenyl, naphthyl, benzyl, pyridyl, pyrimidinyl,
pyridazinyl, furanyl, thienyl, pyrrolyl, pyrazolyl,
imidazolyl, pyranyl, quinolyl, benzoxazolyl,
benzothiazolyl and benzimidazolyl groups may be

substituted with at most 5 members selected from the

- 8 -

group consisting of a hydroxyl group, a C_1 - C_7 alkyl group, a C_1 - C_7 alkoxy group and a halogen atom), and R^2 or R^3 may further be a halogen atom when it is bonded to a carbon atom at the 3-, 4- or 5-position of the pyrazole ring;

 \mathbb{R}^4 is a hydrogen atom or a \mathbb{C}_1 - \mathbb{C}_7 alkyl group, or forms a bond together with \mathbb{R}^7 ; and

R⁵ is a hydrogen atom or a carboxymethyl group.

The substituents of the compound of the formula (I)

10 of the present invention will be explained with reference
to typical examples, but it should be understood that the
scope of the present invention is by no means limited by
these examples.

Each substituent in the formula (I) will be specifically described hereinafter.

In the definition of R1:

5

The C₁-C₁₀ alkyl group includes, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, l-pentyl, 2-pentyl, 3-pentyl, i-pentyl, neo-pentyl, t-pentyl, l-hexyl, 2-hexyl, 3-hexyl, l-methyl-lethyl-n-pentyl, l,1,2-trimethyl-n-propyl, 1,2,2-trimethyl-n-propyl, 3,3-dimethyl-n-butyl, l-heptyl, 2-heptyl, l-ethyl-l,2-dimethyl-n-propyl, l-ethyl-2,2-dimethyl-n-propyl, l-octyl, 3-octyl, 4-methyl-3-n-heptyl, 6-methyl-2-n-heptyl, 2-propyl-l-n-heptyl, 2,4,4-trimethyl-l-n-pentyl, l-nonyl, 2-nonyl, 2,6-dimethyl-4-n-heptyl, 3-ethyl-2,2-dimethyl-3-n-pentyl, 3,5,5-trimethyl-

l-n-hexyl, l-decyl, 2-decyl, 4-decyl, 3,7-dimethyl-l-noctyl, and 3,7-dimethyl-3-n-octyl. Preferred is a C_4-C_{10} alkyl group which includes, for example, n-butyl, ibutyl, s-butyl, t-butyl, l-pentyl, 2-pentyl, 3-pentyl, ipentyl, neo-pentyl, t-pentyl, 1-hexyl, 2-hexyl, 3-hexyl, 5 1-methyl-l-ethyl-n-pentyl, 1,1,2-trimethyl-n-propyl, 1,2,2-trimethyl-n-propyl, 3,3-dimethyl-n-butyl, 1-heptyl, 2-heptyl, l-ethyl-1,2-dimethyl-n-propyl, l-ethyl-2,2dimethyl-n-propyl, l-octyl, 3-octyl, 4-methyl-3-n-heptyl, 6-methyl-2-n-heptyl, 2-propyl-1-n-heptyl, 2,4,4-10 trimethyl-l-n-pentyl, l-nonyl, 2-nonyl, 2,6-dimethyl-4-nheptyl, 3-ethyl-2,2-dimethyl-3-n-pentyl, 3,5,5-trimethyll-n-hexyl, l-decyl, 2-decyl, 4-decyl, 3,7-dimethyl-l-noctyl and 3,7-dimethyl-3-n-octyl. Each group may be substituted by a hydroxyl group or a C₁-C₇ alkyl group. 15 The C_2-C_{10} alkenyl group includes, for example, ethenyl, 1-propenyl, 2-propenyl, 1-methylvinyl, 1butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 1methyl-2-propenyl, 2-methyl-2-propenyl, 1-ethyl-2-vinyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1,2-20 dimethyl-l-propenyl, 1,2-dimethyl-2-propenyl, 1-ethyl-lpropenyl, 1-ethyl-2-propenyl, 1-methyl-1-butenyl, 1methyl-2-butenyl, 2-methyl-1-butenyl, 1-i-propylvinyl, 2,4-pentadienyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4hexenyl, 5-hexenyl, 2,4-hexadienyl, 1-methyl-1-pentenyl, 25 1-heptenyl, 1-octenyl, 1-nonenyl and 1-decenyl.

Preferred is a C_5-C_{10} alkenyl group which includes, for

- 10 -

example, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1,2-dimethyl-1-propenyl, 1,2-dimethyl-2-propenyl, 1-ethyl-1-propenyl, 1-methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-1-butenyl, 1-i-propylvinyl, 2,4-pentadienyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 2,4-hexadienyl, 1-methyl-1-pentenyl, 1-heptenyl, 1-octenyl, 1-nonenyl and 1-decenyl. Each group may be substituted by a hydroxyl group or a C₁-C₇ alkyl group.

5

The C₂-C₁₀ alkynyl group includes, for example, ethynyl,1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 1-heptynyl, 1-octynyl, 1-nonynyl, and 1-decynyl. Preferred is a C₅-C₁₀ alkynyl group which includes, for example, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 1-heptynyl, 1-octynyl, 1-nonynyl and 1-decynyl. Each group may be substituted by a hydroxyl group or a C₁-C₇ alkyl group.

The C₁-C₁₀ alkoxy group includes, for example,
methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, ibutoxy, s-butoxy, t-butoxy, pentyloxy, hexyloxy,
heptyloxy, octyloxy, nonyloxy and decyloxy. Preferred is
a C₄-C₁₀ alkoxy group which includes, for example, nbutoxy, i-butoxy, s-butoxy, t-butoxy, pentyloxy,
hexyloxy, heptyloxy, octyloxy, nonyloxy and decyloxy.
Each group may be substituted by a hydroxyl group or a

- 11 -

 C_1-C_7 alkyl group.

20

The C_2-C_{10} alkenyloxy group includes, for example, ethenyloxy, 1-propenyloxy, 2-propenyloxy, 1-butenyloxy, 2-butenyloxy, 3-butenyloxy, 1-pentenyloxy, 2-pentenyloxy, 3-pentenyloxy, 4-pentenyloxy, 2,4-pentadienyloxy, 1-5 hexenyloxy, 2-hexenyloxy, 3-hexenyloxy, 4-hexenyloxy, 5hexenyloxy, 2,4-hexadienyloxy, 1-heptenyloxy, 1octenyloxy, 1-nonenyloxy and 1-decenyloxy. Preferred is a C_5-C_{10} alkenyloxy which includes, for example, 1pentenyloxy, 2-pentenyloxy, 3-pentenyloxy, 4-pentenyloxy, 10 2,4-pentadienyloxy, 1-hexenyloxy, 2-hexenyloxy, 3hexenyloxy, 4-hexenyloxy, 5-hexenyloxy, 2,4hexadienyloxy, 1-heptenyloxy, 1-octenyloxy, 1-nonenyloxy and 1-decenyloxy. Each group may be substituted by a 15 hydroxyl group or a C_1-C_7 alkyl group.

The C_1 - C_{10} alkylthio group includes, for example, methylthio, ethylthio, n-propylthio, i-propylthio, n-butylthio, i-butylthio, s-butylthio, t-butylthio, pentylthio, hexylthio, heptylthio, octylthio, nonylthio and decylthio. Preferred is a C_5 - C_{10} alkylthio which includes, for example, pentylthio, hexylthio, heptylthio, octylthio, nonylthio and decylthio. Each group may be substituted by a hydroxyl group or a C_1 - C_7 alkyl group.

The C₁-C₁₀ monoalkylamino group includes, for

example, methylamino, ethylamino, n-propylamino, i
propylamino, n-butylamino, i-butylamino, s-butylamino, t
butylamino, pentylamino, hexylamino, heptylamino,

- 12 -

octylamino, nonylamino and decylamino. Preferred is a C_5-C_{10} monoalkylamino group which includes, for example, pentylamino, hexylamino, heptylamino, octylamino, nonylamino and decylamino. Each group may be substituted by a hydroxyl group or a C_1-C_7 alkyl group.

The di-C₁-C₁₀ alkylamino group includes, for example, dimethylamino, diethylamino, di-n-propylamino, di-i-propylamino, d-n-hexylamino, N-methyl-N-n-pentylamino, N-methyl-N-n-hexylamino, N-methyl-N-n-heptylamino, N-methyl-N-n-nonylamino, and N-methyl-N-n-decylamino, N-methyl-N-n-nonylamino, and N-methyl-N-n-pentylamino, N-methyl-N-n-hexylamino, N-methyl-N-n-hexylamino, N-methyl-N-n-heptylamino, N-methyl-N-n-octylamino, N-methyl-N-n-decylamino, N-methyl-N-n-decylamino, Each group may be substituted by a hydroxyl group or a C₁-C₇ alkyl group.

In the definition of Z:

5

The C_3 - C_{10} cycloalkyl group includes, for example, cyclopropyl, l-methyl-cyclopropyl, 2-methyl-cyclopropyl, 4-methyl-cyclohexyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cycloctyl, cyclononyl, cyclodecyl, bicyclo[2.2.1]heptyl, bicyclo[3.1.1]heptyl, bicyclo[2.2.2]octyl, l-adamantyl, and 2-adamantyl. Preferred is a C_6 - C_{10} cycloalkyl group which includes, for example, cyclohexyl, bicyclo[2.2.1]heptyl, bicyclo[3.1.1]heptyl, bicyclo[2.2.2]octyl, l-adamantyl and 2-adamantyl. Each group may have at most 5

substituents (the substituents may, for example, be a hydrogen atom, a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C3-C7 cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, 5 a C_1-C_7 alkylthio group, a halogen atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C₁-C₃ alkoxycarbonyl group, a nitrile group, a carbamoyl 10 group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected 15 from the group consisting of a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_1-C_3 alkoxy group, a C_1-C_3 alkylthio group, a hydroxyl group, a halogen atom, a nitro group and a dimethylamino group), a 1-tetrazolyl group, a 3tetrazolyl group, a 5-tetrazolyl group, a 20 thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group).

The C₃-C₇ cycloalkenyl group includes, for example, l-cyclohexenyl, 2-cyclohexenyl, 3-cyclohexenyl, cyclopentadienyl, 2-bicyclo[2.2.1]heptenyl, and 2,5-bicyclo[2.2.1]heptadienyl. Each group may have at most 5 substituents (said substituents may, for example, be a

- 14 -

hydrogen atom, a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C3-C7 cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C₁-C₇ alkoxy group, a C₁-C₇ alkylthio group, a halogen atom, a 5 trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1-C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy 10 group, a phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a C_1-C_7 alkyl group, a C_3-C_7 15 cycloalkyl group, a C_1-C_3 alkoxy group, a C_1-C_3 alkylthio group, a hydroxyl group, a halogen atom, a nitro group and a dimethylamino group), a 1-tetrazolyl group, a 3tetrazolyl group, a 5-tetrazolyl group, a thiazolidindion-5-yl group or a thiazolidindion-5-yl 20 methyl group).

The C_6-C_{14} aromatic group includes, for example, phenyl, naphthyl (said naphthyl includes α -naphthyl, and β -naphthyl), indenyl (said indenyl includes l-indenyl, 2-indenyl, 3-indenyl, 4-indenyl, 5-indenyl, 6-indenyl, and 7-indenyl), indanyl (said indanyl includes l-indanyl, 2-indanyl, 4-indanyl, and 5-indanyl), and fluorenyl (said

25

fluorenyl includes 1-fluorenyl, 2-fluorenyl, 3-fluorenyl, 4-fluorenyl, and 9-fluorenyl). Preferred is a C_6-C_{14} aromatic group which includes, for example, phenyl, naphthyl (said naphthyl includes α -naphthyl, and β naphthyl), and fluorenyl (said fluorenyl includes 1-5 fluorenyl, 2-fluorenyl, 3-fluorenyl, 4-fluorenyl, and 9fluorenyl). Each group may have at most 5 substituents (said substituents may, for example, be a hydrogen atom, a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_3-C_7 cycloalkenyl group (said alkyl, cycloalkyl and 10 cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C_1-C_7 alkylthio group, a halogen atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a 15 methanesulfonylamide group, a carboxyl group, a C1-C3 alkoxycarbonyl group, a nitrile group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, naphthyl, furanyl, 20 thienyl, imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_1-C_3 alkoxy group, a C_1-C_3 alkylthio 25 group, a hydroxyl group, a halogen atom, a nitro group and a dimethylamino group), a 1-tetrazolyl group, a 3tetrazolyl group, a 5-tetrazolyl group, a

- 16 -

thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group).

The C_4-C_{12} heterocyclic aromatic group includes, for example, furyl (said furyl includes 2-furyl, and 3furyl), thienyl (said thienyl includes 2-thienyl, and 3-5 thienyl), pyrrolyl (said pyrrolyl includes 1-pyrrolyl, 2pyrrolyl, and 3-pyrrolyl), oxazolyl (said oxazolyl includes 2-oxazolyl, 4-oxazolyl, and 5-oxazolyl), thiazolyl (said thiazolyl includes 2-thiazolyl, 4thiazolyl, and 5-thiazolyl), isoxazolyl (said isoxazolyl 10 includes 3-isoxazolyl, 4-isoxazolyl, and 5-isoxazolyl), isothiazolyl (said isothiazolyl includes 3-isothiazolyl, 4-isothiazolyl, and 5-isothiazolyl), furazanyl (said furazanyl includes 3-furazanyl), pyrazolyl (said pyrazolyl includes 1-pyrazolyl, 3-pyrazolyl, and 4-15 pyrazolyl), oxopyrazolyl (said oxopyrazolyl includes 3oxopyrazol-1-yl, 3-oxopyrazol-2-yl, 3-oxopyrazol-3-yl, 3oxopyrazol-4-yl, and 4-oxopyrazol-3-yl), imidazolyl (said imidazolyl includes 1-imidazolyl, 2-imidazolyl, and 4imidazolyl), oxoimidazolyl (said oxoimidazolyl includes 20 2-oxoimidazol-l-yl, and 2-oxoimidazol-4-yl), triazolyl (said triazolyl includes 1,2,3-triazol-1-yl, 1,2,3triazol-2-yl, 1,2,3-triazol-4-yl, 1,2,4-triazol-1-yl, 1,2,4-triazol-3-yl, and 1,2,4-triazol-4-yl), triazolonyl (said triazolonyl includes 1,2,4(2H,4H)-triazol-3-on-2-25 yl, 1,2,4-(2H,4H)-triazol-3-on-4-yl, 1,2,4(2H,4H)triazol-3-on-5-yl, 1,2,4(lH,2H)-triazol-3-on-1-yl,

1,2,4(1H,2H)-triazol-3-on-2-yl, and 1,2,4(1H,2H)-triazol-3-on-5-yl), tetrazolyl (said tetrazolyl includes 1tetrazolyl, 2-tetrazolyl, and 5-tetrazolyl), pyranyl (said pyranyl includes 2-pyranyl, 3-pyranyl, and 4pyranyl), pyridyl (said pyridyl includes 2-pyridyl, 3-5 pyridyl, and 4-pyridyl), pyridonyl (said pyridonyl includes 2-pyridon-l-yl, 2-pyridon-3-yl, 2-pyridon-4-yl, 2-pyridon-5-yl, 2-pyridon-6-yl, 4-pyridon-1-yl, 4pyridon-2-yl, and 4-pyridon-3-yl), pyridazinyl (said pyridazinyl includes 3-pyridazinyl, and 4-pyridazinyl), 10 pyridazinonyl (said pyridazinonyl includes 3(2H)pyridazinon-2-yl, 3(2H)-pyridazinon-4-yl, 3(2H)pyridazinon-5-yl, 3(2H)-pyridazinon-6-yl, 4(lH)pyridazinon-l-yl, 4(lH)-pyridazinon-3-yl, 4(lH)pyridazinon-5-yl, and 4(lH)-pyridazinon-6-yl), 15 pyrimidinyl (said pyrimidinyl includes 2-pyrimidinyl, 4pyrimidinyl, and 5-pyrimidinyl), pyrimidinonyl (said pyrimidinonyl includes (2(1H)-pyrimidinon-1-yl, 2(1H)pyrimidinon-4-yl, 2(lH)-pyrimidinon-5-yl, 2(lH)pyrimidinon-6-yl, 4(3H)-pyrimidinon-2-yl, 4(3H)-20 pyrimidinon-3-yl, 4(3H)-pyrimidinon-5-yl, 4(3H)pyrimidinon-6-yl, 4(lH)-pyrimidinon-l-yl, 4(lH)pyrimidinon-2-yl, 4(lH)-pyrimidinon-5-yl, and 4(lH)pyrimidinon-6-yl), pyrazinyl (said pyrazinyl includes 2pyrazinyl, 2(lH)-pyrazin-l-yl, 2(lH)-pyrazin-3-yl, 2(lH)-25 pyrazin-5-yl, and 2(lH)-pyrazin-6-yl), triazinyl (said triazinyl includes 1,2,3-triazin-4-yl, 1,2,3-triazin-5-

- 18 -

yl, 1,2,4-triazin-3-yl, 1,2,4-triazin-5-yl, and 1,2,4triazin-6-yl), tetrazinyl (said tetrazinyl includes 1,2,3,4-tetrazin-5-yl, and 1,2,4,5-tetrazin-3-yl), indolyl (said indolyl includes 1-indolyl, 2-indolyl, 3indolyl, 4-indolyl, 5-indolyl, 6-indolyl, and 7-indolyl), 5 quinolyl (said quinolyl includes 2-quinolyl, 3-quinolyl, 4-quinolyl, 5-quinolyl, 6-quinolyl, 7-quinolyl, and 8quinolyl), quinolonyl (said quinolonyl includes 2quinolon-1-yl, 2-quinolon-3-yl, 2-quinolon-4-yl, 2quinolon-5-yl, 2-quinolon-6-yl, 2-quinolon-7-yl, 2-10 quinolon-8-yl, 4-quinolon-1-yl, 4-quinolon-2-yl, 4quinolon-3-yl, 4-quinolon-5-yl, 4-quinolon-6-yl, 4quinolon-7-yl, and 4-quinolon-8-yl), benzofuranyl (said benzofuranyl includes 2-benzofuranyl, 3-benzofuranyl, 4benzofuranyl, 5-benzofuranyl, 6-benzofuranyl, and 7-15 benzofuranyl), benzothienyl (said benzothienyl includes 2-benzothienyl, 3-benzothienyl, 4-benzothienyl, 5benzothienyl, 6-benzothienyl, and 7-benzothienyl), isoquinolyl (said isoquinolyl includes 1-isoquinolyl, 3isoquinolyl, 4-isoquinolyl, 5-isoquinolyl, 6-isoquinolyl, 20 7-isoquinolyl, and 8-isoquinolyl), isoquinolonyl (said isoquinolonyl includes l-isoquinolon-2-yl, l-isoquinolon-3-yl, 1-isoquinolon-4-yl, 1-isoquinolon-5-yl, 1isoquinolon-6-yl, l-isoquinolon-7-yl, l-isoquinolon-8-yl, 3-isoquinolon-2-yl, 3-isoquinolon-4-yl, 3-isoquinolon-5-25 yl, 3-isoquinolon-6-yl, 3-isoquinolon-7-yl, and 3isoquinolon-8-yl), benzoxazolyl (said benzoxazolyl

includes 2-benzoxazolyl, 4-benzoxazolyl, 5-benzoxazolyl, 6-benzoxazolyl, and 7-benzoxazolyl), benzothiazolyl (said benzothiazolyl includes 2-benzothiazolyl, 4benzothiazolyl, 5-benzothiazolyl, 6-benzothiazolyl, and 7-benzothiazolyl), benzopyrazolyl (said benzopyrazolyl 5 includes 1-benzopyrazolyl, 2-benzopyrazolyl, 3benzopyrazolyl, 4-benzopyrazolyl, 5-benzopyrazolyl, 6benzopyrazolyl, and 7-benzopyrazolyl), benzimidazolyl (said benzimidazolyl includes 1-benzimidazolyl, 2benzimidazolyl, 4-benzimidazolyl, and 5-benzimidazolyl), 10 benzotriazolyl (said benzotriazolyl includes 1benzotriazolyl, 4-benzotriazolyl, and 5-benzotriazolyl), benzopyranyl (said benzopyranyl includes 2-benzopyranyl, 3-benzopyranyl, 4-benzopyranyl, 5-benzopyranyl, 6-15 benzopyranyl, 7-benzopyranyl, and 8-benzopyranyl), indolizinyl (said indolizinyl includes 1-indolizinyl, 2indolizinyl, 3-indolizinyl, 5-indolizinyl, 6-indolizinyl, 7-indolizinyl, and 8-indolizinyl), purinyl (said purinyl includes 2-purinyl, 6-purinyl, 7-purinyl, and 8-purinyl), phthalazinyl (said phthalazinyl includes 1-phthalazinyl, 20 5-phthalazinyl, and 6-phthalazinyl), oxophthalazinyl (said oxophthalazinyl includes 1-oxophthalazin-2-yl, 1oxophthalazin-4-yl, l-oxophthalazin-5-yl, loxophthalazin-6-yl, l-oxophthalazin-7-yl, and loxophthalazin-8-yl), naphthyridinyl (said naphthyridinyl 25 includes 2-naphthyridinyl, 3-naphthyridinyl, and 4naphthyridinyl), quinoxalinyl (said quinoxalinyl includes

2-quinoxalinyl, 5-quinoxalinyl, and 6-quinoxalinyl), quinazolinyl (said quinazolinyl includes 2-quinazolinyl, 4-quinazolinyl, 5-quinazolinyl, 6-quinazolinyl, 7quinazolinyl, and 8-quinazolinyl), cinnolinyl (said cinnolinyl includes 3-cinnolinyl, 4-cinnolinyl, 5-5 cinnolinyl, 6-cinnolinyl, 7-cinnolinyl, and 8cinnolinyl), benzodioxanyl (said benzodioxanyl includes 1,4-benzodioxan-2-yl, 1,4-benzodioxan-5-yl, and 1,4benzodioxan-6-yl), oxonaphthalenyl (said oxonaphthalenyl includes 1,4-oxonaphthalen-2-yl, 1,4-oxonaphthalen-5-yl, 10 and 1,4-oxonaphthalen-6-yl), 2,3-dihydrobenzofuranyl (said 2,3-dihydrobenzofuranyl includes 2,3-dihydro-4benzofuranyl, 2,3-dihydro-5-benzofuranyl, 2,3-dihydro-6benzofuranyl, and 2,3-dihydro-7-benzofuranyl), benzothiazinyl (said benzothiazinyl includes 1,4-15 benzothiazin-2-yl, 1,4-benzothiazin-3-yl, 1,4benzothiazin-4-yl, 1,4-benzothiazin-5-yl, 1,4benzothiazin-6-yl, 1,4-benzothiazin-7-yl, and 1,4benzothiazin-8-yl), pteridinyl (said pteridinyl includes 2-pteridinyl, 4-pteridinyl, 6-pteridinyl, and 7-20 pteridinyl), pyrazolo[1,5-a]pyrimidinyl (said pyrazolo[1,5-a]pyrimidinyl includes pyrazolo[1,5a]pyrimidin-2-yl, pyrazolo[1,5-a]pyrimidin-3-yl, pyrazolo[1,5-a]pyrimidin-5-yl, pyrazolo[1,5-a]pyrimidin-6-yl, and pyrazolo[1,5-a]pyrimidin-7-yl), pyrazolo[5,1-25 c][1,2,4]triazinyl (said pyrazolo[5,1-c][1,2,4]triazinyl includes pyrazolo[5,1-c][1,2,4]triazin-3-yl,

pyrazolo[5,1-c][1,2,4]triazin-4-yl, pyrazolo[5,1c][1,2,4]triazin-7-yl, and pyrazolo[5,1-c][1,2,4]triazin-8-yl), thiazolo[3,2-b]triazolyl (said thiazolo[3,2b]triazolyl includes thiazolo[3,2-b]triazol-2-yl, thiazolo[3,2-b]triazol-5-yl, and thiazolo[3,2-b]triazol-5 6-yl), benzopyrano[2,3-b]pyridyl (said benzopyrano[2,3b]pyridyl includes benzopyrano[2,3-b]pyridin-2-yl, benzopyrano[2,3-b]pyridin-3-yl, benzopyrano[2,3b)pyridin-4-yl, benzopyrano[2,3-b)pyridin-5-yl, benzopyrano[2,3-b]pyridin-6-yl, benzopyrano[2,3-10 b]pyridin-7-yl, benzopyrano[2,3-b]pyridin-8-yl, and benzopyrano[2,3-b]pyridin-9-yl), 5H-benzopyrano[2,3b]pyridonyl (said 5H-benzopyrano[2,3-b]pyridonyl includes 5H-benzopyrano[2,3-b]pyridin-5-on-2-yl, 5Hbenzopyrano[2,3-b]pyridin-5-on-3-yl, 5H-benzopyrano[2,3-15 b]pyridin-5-on-4-yl, 5H-benzopyrano[2,3-b]pyridin-5-on-6yl, 5H-benzopyrano[2,3-b]pyridin-5-on-7-yl, and 5Hbenzopyrano[2,3-b]pyridin-5-on-8-y1), xanthenyl (said xanthenyl includes l-xanthenyl, 2-xanthenyl, 3-xanthenyl, 4-xanthenyl, and 9-xanthenyl), phenoxathiinyl (said 20 phenoxathiinyl includes 1-phenoxathiinyl, 2phenoxathiinyl, 3-phenoxathiinyl, and 4-phenoxathiinyl), carbazolyl (said carbazolyl includes 1-carbazolyl, 2carbazolyl, 3-carbazolyl, 4-carbazolyl, and 9carbazolyl), acridinyl (said acridinyl includes 1-25 acridinyl, 2-acridinyl, 3-acridinyl, 4-acridinyl, and 9acridinyl), phenazinyl (said phenazinyl includes 1-

- 22 -

phenazinyl, 2-phenazinyl, 3-phenazinyl, and 4phenazinyl), phenothiazinyl (said phenothiazinyl includes 1-phenothiazinyl, 2-phenothiazinyl, 3-phenothiazinyl, 4phenothiazinyl, and 10-phenothiazinyl), phenoxazinyl (said phenoxazinyl includes 1-phenoxazinyl, 2-5 phenoxazinyl, 3-phenoxazinyl, 4-phenoxazinyl, and 10phenoxazinyl), and thianthrenyl (said thianthrenyl includes 1-thianthrenyl, 2-thianthrenyl, 3-thianthrenyl, 4-thianthrenyl, 6-thianthrenyl, 7-thianthrenyl, 8thianthrenyl, and 9-thianthrenyl). Preferred examples of 10 the C₄-C₁₂ heterocyclic aromatic group include furyl (said furyl includes 2-furyl, and 3-furyl), thienyl (said thienyl includes 2-thienyl, and 3-thienyl), pyrrolyl (said pyrrolyl includes 1-pyrrolyl, 2-pyrrolyl, and 3-15 pyrrolyl), oxazolyl (said oxazolyl includes 2-oxazolyl, 4-oxazolyl, and 5-oxazolyl), thiazolyl (said thiazolyl includes 2-thiazolyl, 4-thiazolyl, and 5-thiazolyl), isoxazolyl (said isoxazolyl includes 3-isoxazolyl, 4isoxazolyl, and 5-isoxazolyl), isothiazolyl (said isothiazolyl includes 3-isothiazolyl, 4-isothiazolyl, and 20 5-isothiazolyl), imidazolyl (said imidazolyl includes 1imidazolyl, 2-imidazolyl, and 4-imidazolyl), pyridyl (said pyridyl includes 2-pyridyl, 3-pyridyl, and 4pyridyl), pyridazinyl (said pyridazinyl includes 3pyridazinyl, and 4-pyridazinyl), pyridazinonyl (said 25 pyridazinonyl includes 3(2H)-pyridazinon-2-yl, 3(2H)pyridazinon-4-yl, 3(2H)-pyridazinon-5-yl, and 3(2H)-

- 23 -

pyridazinon-6-yl), pyrimidinyl (said pyrimidinyl includes 2-pyrimidinyl, 4-pyrimidinyl, and 5-pyrimidinyl), pyrazinyl (said pyrazinyl includes 2-pyrazinyl), indolyl (said indolyl includes 1-indolyl, 2-indolyl, 3-indolyl, 4-indolyl, 5-indolyl, 6-indolyl, and 7-indolyl), quinolyl 5 (said quinolyl includes 2-quinolyl, 3-quinolyl, 4quinolyl, 5-quinolyl, 6-quinolyl, 7-quinolyl, and 8quinolyl), benzoxazolyl (said benzoxazolyl includes 2benzoxazolyl, 4-benzoxazolyl, 5-benzoxazolyl, 6benzoxazolyl, and 7-benzoxazolyl), benzothiazolyl (said 10 benzothiazolyl includes 2-benzothiazolyl, 4benzothiazolyl, 5-benzothiazolyl, 6-benzothiazolyl, and 7-benzothiazolyl), benzimidazolyl (said benzimidazolyl includes 1-benzimidazolyl, 2-benzimidazolyl, 4benzimidazolyl, and 5-benzimidazolyl), phthalazinyl (said 15 phthalazinyl includes 1-phthalazinyl, 5-phthalazinyl, and 6-phthalazinyl), quinoxalinyl (said quinoxalinyl includes 2-quinoxalinyl, 5-quinoxalinyl, and 6-quinoxalinyl), benzothiazinyl (said benzothiazinyl includes 1,4benzothiazin-2-yl, 1,4-benzothiazin-3-yl, 1,4-20 benzothiazin-4-yl, 1,4-benzothiazin-5-yl, 1,4benzothiazin-6-yl, 1,4-benzothiazin-7-yl, and 1,4benzothiazin-8-yl), pyrazolo[1,5-a]pyrimidinyl (said pyrazolo[1,5-a]pyrimidinyl includes pyrazolo[1,5a]pyrimidin-2-yl, pyrazolo[1,5-a]pyrimidin-3-yl, 25 pyrazolo[1,5-a]pyrimidin-5-yl, pyrazolo[1,5-a]pyrimidin-6-yl, and pyrazolo[1,5-a]pyrimidin-7-yl), pyrazolo[5,1-

- 24 -

c][1,2,4]triazinyl (said pyrazolo[5,1-c][1,2,4]triazinyl includes pyrazolo[5,1-c][1,2,4]triazin-3-yl, pyrazolo[5,1-c][1,2,4]triazin-4-yl, pyrazolo[5,1c][1,2,4]triazin-7-yl, and pyrazolo[5,1-c][1,2,4]triazin-8-yl), thiazolo[3,2-b]triazolyl (said thiazolo[3,2-5 b]triazolyl includes thiazolo[3,2-b]triazol-2-yl, thiazolo[3,2-b]triazol-5-yl, and thiazolo[3,2-b]triazol-6-yl), and benzopyrano[2,3-b]pyridyl (said benzopyrano[2,3-b]pyridyl includes benzopyrano[2,3b]pyridin-2-yl, benzopyrano[2,3-b]pyridin-3-yl, 10 benzopyrano[2,3-b]pyridin-4-yl, benzopyrano[2,3b]pyridin-5-yl, benzopyrano[2,3-b]pyridin-6-yl, benzopyrano[2,3-b]pyridin-7-yl, benzopyrano[2,3b]pyridin-8-yl, and benzopyrano[2,3-b]pyridin-9-yl). 15 Each group may have at most 5 substituents (said substituents may, for example, be a hydrogen atom, a C_1 - C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_3-C_7 cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C_1-C_7 20 alkylthio group, a halogen atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1-C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl group, 25 a sulfamoyl group, a phenoxy group, a benzyloxy group, a phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl

- 25 -

or benzyl group (each of said phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_1-C_3 alkoxy group, a C_1-C_3 alkylthio 5 group, a hydroxyl group, a halogen atom, a nitro group and a dimethylamino group), a 1-tetrazolyl group, a 3tetrazolyl group, a 5-tetrazolyl group, a thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group).

10

The C_4-C_6 heterocycloaliphatic group includes, for example, piperidyl (said piperidyl includes 1-piperidyl, 2-piperidyl, 3-piperidyl, and 4-piperidyl), pyrrolidinyl (said pyrrolidinyl includes 1-pyrrolidinyl, 2pyrrolidinyl, and 3-pyrrolidinyl), imidazolidinyl (said 15 imidazolidinyl includes l-imidazolidinyl, 2imidazolidinyl, and 4-imidazolidinyl), pyrazolidinyl (said pyrazolidinyl includes 1-pyrazolidinyl, 3pyrazolidinyl, and 4-pyrazolidinyl), morpholinyl (said morpholinyl includes 2-morpholinyl, 3-morpholinyl, and 4-20 morpholinyl), and tetrahydrofuranyl (said tetrahydrofuranyl includes 2-tetrahydrofuranyl, and 3tetrahydrofuranyl). Each group may have at most 5 substituents (said substituents may, for example, be a hydrogen atom, a C₁-C₇ alkyl group, a C₃-C₇ cycloalkyl 25 group, a C_3 - C_7 cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a

hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C₁-C₇ alkylthio group, a halogen atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a 5 C_1-C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups 10 may be substituted with at most 5 substituents selected from the group consisting of a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_1-C_3 alkoxy group, a C_1-C_3 alkylthio group, a hydroxyl group, a halogen atom, a nitro group and a dimethylamino group), a 1-tetrazolyl group, a 3-15 tetrazolyl group, a 5-tetrazolyl group, a thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group).

In the definitions of Ra, Rb and Rc:

The C₁-C₇ alkyl group includes, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl, and n-heptyl. Preferred are methyl, ethyl and n-propyl. Each group may be substituted with a hydroxyl group.

The C₃-C₇ cycloalkyl group includes, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, bicyclo[2.2.1]heptyl, and

bicyclo[3.1.1]heptyl. Preferred are cyclopropyl and cyclohexyl. Each group may be substituted by a hydroxyl group.

The C₃-C₇ cycloalkenyl group includes, for example, 1-cyclohexenyl, 2-cyclohexenyl, 3-cyclohexenyl, cyclopentadienyl, 2-bicyclo[2.2.1]heptenyl and 2,5-bicyclo[2.2.1]heptadienyl. Each group may be substituted by a hydroxyl group.

The C_1 - C_7 alkoxy group includes, for example, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, pentyloxy, hexyloxy and heptyloxy.

5

10

15

20

25

The C_1 - C_7 alkylthio group includes, for example, methylthio, ethylthio, n-propylthio, i-propylthio, n-butylthio, i-butylthio, s-buthylthio, t-butylthio, pentylthio, hexylthio and heptylthio.

The naphthyl group includes an α -naphthyl group, a β -naphthyl group. The furanyl group includes a 2-furanyl group and a 3-furanyl group. The thienyl group includes a 2-thienyl group and a 3-thienyl group. The imidazolyl group includes a 1-imidazolyl group, a 2-imidazolyl group and a 4-imidazolyl group. The pyridyl group includes a 2-pyridyl group and a 3-pyridyl group and a 4-pyridyl group. Each groups may be substituted with at most 5 substituents selected from the group consisting of a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_1 - C_3 alkoxy group, a C_1 - C_3 alkylthio group, a hydroxyl group, a

fluorine atom, a chlorine atom, a bromine atom, a nitro group and a dimethylamino group.

The phenyl and the benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_1 - C_3 alkoxy group, a C_1 - C_3 alkylthio group, a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, a nitro group and a dimethylamino group.

5

The C_1 - C_3 alkoxycarbonyl group includes, for example, 10 methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl and i-propoxycarbonyl.

The halogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Preferred are a fluorine atom, a chlorine atom and a bromine atom.

Each of R² and R³ independently is a hydrogen atom, a C_1 - C_7 alkyl group (which may, for example, be methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl or n-heptyl, preferably methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl or t-butyl, and said C_1 - C_7 alkyl group may be substituted with at most two hydroxyl groups, preferably one hydroxyl group), a C_3 - C_7 cycloalkyl group (which may, for example, be cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, bicyclo[2.2.1]heptyl or

bicyclo[3.1.1]heptyl, preferably cyclopropyl or
cyclohexyl, and said C₃-C₇ cycloalkyl group may be
substituted with at most 2 hydroxyl group, preferably one

hydroxyl group), a naphthyl group (which may be an α naphthyl group, or a β -naphthyl group), a benzyl group, a pyridyl group (which may, for example, be a 2-pyridyl group, a 3-pyridyl group or a 4-pyridyl group, preferably a 2-pyridyl group), a pyrimidinyl group (which may, for 5 example, be a 2-pyrimidinyl group, a 4-pyrimidinyl group or a 5-pyrimidinyl group), a pyridazinyl group (which may, for example, be a 3-pyridazinyl group or a 4pyridazinyl group), a furanyl group (which may, for example, be a 2-furanyl group or a 3-furanyl group), a 10 thienyl group (which may, for example, be a 2-thienyl group or a 3-thienyl group), a pyrrolyl group (which may, for example, be a 1-pyrrolyl group, a 2-pyrrolyl group or a 3-pyrrolyl group), a pyrazolyl group (which may, for 15 example, be a 1-pyrazolyl group, a 3-pyrazolyl group or a 4-pyrazolyl group), an imidazolyl group (which may, for example, be a 1-imidazolyl group, a 2-imidazolyl group or a 4-imidazolyl group), a pyranyl group (which may, for example, be 2-pyranyl, 3-pyranyl or 4-pyranyl, preferably 20 2-pyranyl), a quinolyl group (which may, for example, be 2-quinolyl, 3-quinolyl, 4-quinolyl, 5-quinolyl, 6quinolyl, 7-quinolyl or 8-quinolyl, preferably 2quinolyl), a bezoxazolyl group (which may, for example, be a 2-benzoxalyl group, a 4-benzoxazolyl group, a 5benzoxazolyl group, a 6-benzoxazolyl group or a 7-25 benzoxazolyl group, preferably a 2-benzoxazolyl group), a benzothiazolyl group (which may, for example, be a 2-

- 30 -

benzothiazolyl group, a 4-benzothiazolyl group, a 5-benzothiazolyl group, a 6-benzothiazolyl group or a 7-benzothiazolyl group, preferably a 2-benzothiazolyl group), or a benzimidazolyl group (which may, for example, be a 1-benzimidazolyl group, a 2-benzimidazolyl group, a 4-benzimidazolyl group or a 5-benzimidazolyl group, preferably a 2-benzimidazolyl group).

5

10

25

The halogen atom in a case where R² and R³ are bonded to a carbon atom at the 3-, 4- or 5-position of the pyrazole ring, may be a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a fluorine atom, a chlorine atom or a bromine atom, more preferably a chlorine atom or a bromine atom.

When R² or R³ is a phenyl, naphthyl, benzyl, pyridyl,

pyrimidinyl, pyridazinyl, furanyl, thienyl, pyrrolyl,

pyrazolyl, imidazolyl, pyranyl, quinolyl, benzoxazolyl,

benzothiazolyl, or benzimidazolyl group, the substituents

for such a phenyl, naphthyl, benzyl, pyridyl,

pyrimidinyl, pyridazinyl, furanyl, thienyl, pyrrolyl,

pyrazolyl, imidazolyl, pyranyl, quinolyl, benzoxazolyl,

benzothiazolyl, benzimidazolyl group may be as follows.

The C_1 - C_7 alkyl group includes, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl and n-heptyl. Preferred may, for example, be methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl or t-butyl.

The C_1-C_7 alkoxy group includes, for example,

- 31 -

methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, pentyloxy, hexyloxy and heptyloxy. Preferred may, for example, be methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy or t-butoxy.

5

The halogen atom may, for example, be a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably, a fluorine atom, a chlorine atom or a bromine atom.

R² and R³ are preferably bonded on the nitrogen atom at the 1-position or on the carbon atom at the 4-position of the pyrazole ring. When R² and R³ are bonded on the carbon atom at the 4-position of the pyrazole ring, each of R² and R³ is more preferably hydrogen, methyl, ethyl, phenyl, fluorine, chlorine or bromine. When R² and R³ are bonded on the nitrogen atom at the 1-position of the pyrazole ring, each of them is more preferably hydrogen, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, α-naphthyl, β-naphthyl, 2-pyridyl or benzyl.

R⁴ is a hydrogen atom or a C₁-C₇ alkyl group (which may, for example, be methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl or n-heptyl, preferably methyl), or forms a bond together with R⁷. It is preferably a hydrogen atom or a methyl group, or forms a bond together with R⁷. More

- 32 -

preferably, it is a hydrogen atom, or forms a bond together with \mathbb{R}^7 .

 ${\tt R}^{\tt 5}$ is a hydrogen atom or a carboxymethyl group, preferably a hydrogen atom.

R⁶ is a hydrogen atom, a C₁-C₇ alkyl group (which may, for example, be methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl or n-heptyl, preferably methyl) or a C₃-C₇ cycloalkyl group (which may, for example, be cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl, preferably cyclopropyl). It is preferably a hydrogen atom or

 R^7 is a hydrogen atom, a C_1 - C_7 alkyl group (which may, for example, be methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl or n-heptyl, preferably methyl) or a C_3 - C_7 cycloalkyl group (which may, for example, be cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl, preferably cyclopropyl), or forms a bond together with R^4 . It is preferably a hydrogen atom, or forms a bond together with

X¹ is S or O, preferably S.

15

20

 R^4 .

methyl, more preferably a hydrogen atom.

 \mathbf{X}^{2} is S, O or NH, preferably O or S, more preferably O.

V is O, S, SO, SO₂ or NR⁸ (R⁸ is a hydrogen atom or C_1 - C_3 alkyl (which may, for example, be methyl, ethyl, n-propyl or i-propyl, preferably methyl)). It is

5

15

20

25

preferably O, S or NR⁸, more preferably O.

W is a divalent C_1-C_6 saturated or C_2-C_6 unsaturated hydrocarbon group which may be substituted with at most 3, preferably at most 2, of hydroxyl, oxo and C_1-C_7 alkyl groups.

The C_1 - C_7 alkyl group includes, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl and n-heptyl. Preferred may, for example, be methyl.

10 W is preferably

wherein m is from 1 to 5, and each of R^d and R^e is a hydrogen atom, a methyl group or a hydroxyl group, or R^d and R^e together form an oxo group, or adjacent R^d's together form a double bond, or adjacent R^d's and R^e's together form a triple bond (provided that R^d and R^e on the first carbon atom adjacent to 0 are not hydroxyl groups or do not together form an oxo group).

Y is preferably bonded on the carbon atom at the 3- or 5-position of the pyrazole ring, and R^1 is preferably bonded on the carbon atom at the 3-, 4- or 5-position of the pyrazole ring, more preferably on the carbon atom at the 3- or 5-position.

 R^1 may be $-V_k-W_1-Z$, -V-W-V-W-Z, -W-V-W-Z, -V-W-V-Z or -W-V-Z in addition to the one mentioned above.

 $-V_k-W_1-Z$ may, for example, be -O-W-Z or -W-Z. Preferably, the above -O-W- may, for example, be

$$-O-CH_{2}CH_{2}-, -O-CH_{2}CH-, -O-CH-CH_{2}-, -O-CH_{2}CH_{2}-, -O-CH_{2}-, -O-CH_{2}-, -O-CH_{2}-, -O-CH_{2}-, -O-CH_{2}-, -O-CH_{2}-, -O-CH_{2}-, -O-CH_{2}-, -O-CH_{2}-,$$

More preferably, it may, for example, be

-O-CH=CH-CH₂-

Preferably, -W- may, for example, be

More preferably, it may, for example, be

$$-CH_{2}-CH_{2}-CH_{2}- , -CH_{2}-CH_{2}-C - , -CH_{2}-CH_{2}-CH - , -CH_{2}-CH_{2}-CH - , -CH_{2}-CH_{2}-CH - , -CH_{2}-CH_{2}-CH - , -CH_{2}-CH_{2}-CH_{2}- , -CH_{2}-CH_{2}- , -CH_{2}- ,$$

Preferably, -V-W-V-W-Z may, for example, be -O-W-V-W-Z. More preferably, it may, for example, be

25

Preferably, -W-V-W-Z may, for example, be

$$-CH_{2}-O-CH_{2}-\ , \qquad -CH_{2}-NH-CH_{2}-\ , \qquad -CH_{2}-N-CH_{2}-\ , \qquad CH_{3}$$

$$-CH_{2}-O-CH_{2}-C-\ , \qquad -CH_{2}-NH-CH_{2}-C-\ , \qquad -CH_{2}-N-CH_{2}-C-\ , \qquad CH_{3}-N-CH_{2}-C-\ , \qquad CH_{3}-N-CH_{2}-C-\ , \qquad CH_{3}-N-CH_{2}-C-\ , \qquad -CH_{2}-NH-C-\ , \qquad -CH_{2}-O-CH_{2}-CH-\ , \qquad -CH_{2}-O-CH_{2}-CH-\ , \qquad -CH_{2}-NH-CH_{2}-CH_{2}-\ , \qquad -CH_{2}-NH-CH_{2}-\ , \qquad -C$$

Preferably, -V-W-V-Z may, for example, be -O-W-V-Z.

15 More preferably, it may, for example, be

Preferably, -W-V may, for example, be

10

15

25

In the present specification, "n" means normal, "i" means iso, "s" means secondary, "t" means tertiary, "c" means cyclo, "Me" means methyl, "Et" means ethyl, "Pr" means propyl, "Bu" means butyl, "Pen" means pentyl, "Hex" means hexyl, "Ph" means phenyl, and "Hal" means halogen.

Among these compounds, there is a compound having an asymmetric carbon atom at the 5-position of thiazolidine ring. The compound having the above formula (I) includes all of these optical isomers and their mixtures.

- 20 The following compounds (1) to (23) may be mentioned as preferred examples of the compound of the formula (I) of the present invention.
 - (1) The pyrazole type thiazolidine compound and its salt of the present invention, wherein the compound of the formula (I) is represented by the following formula (Ia):

wherein R^1 is a C_1 - C_{10} alkyl group, a C_2 - C_{10} alkenyl group, a C_2 - C_{10} alkynyl group, a C_1 - C_{10} alkoxy group, a C_2 - C_{10} alkenyloxy group, a C_1 - C_{10} alkylthio group, a C_1 - C_{10} monoalkylamino group or a di- C_1 - C_{10} alkylamino group (each of said C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_1 - C_{10} monoalkylamino and di- C_1 - C_{10} alkylamino groups may be substituted with a hydroxyl group or a C_1 - C_1 alkyl group), or

 $-V_k-W_1-Z$ (among groups of Z as defined for the formula (I), said C_3-C_{10} cycloalkyl group is cyclopropyl, 15 cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, bicyclo[2.2.1]heptyl, bicyclo[3.1.1]heptyl, bicyclo[2.2.2]octyl, or adamantyl, said C3-C7 cycloalkenyl group is cyclohexenyl, cyclopentadienyl, 2-bicylo[2.2.1]heptenyl or 2,5-20 bicyclo[2.2.1]heptadienyl, said C_6-C_{14} aromatic group is phenyl, naphthyl, indenyl, indanyl or fluorenyl, said C4-C₁₂ heterocyclic aromatic group is furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, furazanyl, pyrazolyl, oxopyrazolyl, imidazolyl, 25 oxoimidazolyl, triazolyl, triazolonyl, tetrazolyl, pyranyl, pyridyl, pyridonyl, pyridazinyl, pyridazinonyl,

- 40 -

pyrimidinyl, pyrimidinonyl, pyrazinyl, triazinyl, tetrazinyl, indolyl, quinolyl, quinolonyl, benzofuranyl, benzothienyl, isoquinolyl, isoquinolonyl, benzoxazolyl, benzothiazolyl, benzopyrazolyl, benzimidazolyl, benzotriazolyl, benzopyranyl, indolizinyl, purinyl, 5 phthalazinyl, oxophthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, benzodioxanyl, oxonaphthalenyl, dihydrobenzofuranyl, benzothiazinyl, pteridinyl, pyrazolo[1,5-a]pyrimidinyl, pyrazolo[5,1c][1,2,4]triazinyl, thiazolo[3,2-b]triazolyl, 10 benzopyrano[2,3-b]pyridyl, 5H-benzopyrano[2,3b]pyridonyl, xanthenyl, phenoxathiinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, phenoxazinyl, or thianthrenyl, and said C_4-C_6 heterocycloaliphatic group is piperidyl, pyrrolidinyl, imidazolidinyl, 15 pyrazolidinyl, morpholinyl, or tetrahydrofuranyl, (each of said C_3-C_{10} cycloalkyl, C_3-C_7 cycloalkenyl, C_6-C_{14} aromatic, C_4-C_{12} heterocyclic aromatic and C_4-C_6 heterocycloaliphatic groups may have at most 5 20 substituents selected from the group consisting of a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_3 - C_7 cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C_1-C_7 alkylthio group, a halogen atom, a 25 trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide

group, a methanesulfonylamide group, a carboxyl group, a C_1-C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, naphthyl, 5 furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_1-C_3 alkoxy group, a C_1-C_3 alkylthio 10 group, a hydroxyl group, a halogen atom, a nitro group and a dimethylamino group), a 1-tetrazolyl group, a 3tetrazolyl group, a 5-tetrazolyl group, a thiazolidindion-5-yl group and a thiazolidindion-5-yl methyl group),

V is O, S, SO, SO₂ or NR⁸ (R⁸ is a hydrogen atom or a C_1-C_3 alkyl group),

W is a divalent C_1 - C_6 saturated or C_2 - C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1 - C_7 alkyl groups, and

20 each of k and ℓ is 0 or 1),

-V-W-V-W-Z (V, W and Z are as defined above, and two V's and W's may, respectively, be the same or different),

-W-V-W-Z (V, W and Z are as defined above, and two W's may be the same or different),

25 -V-W-V-Z (V, W and Z are as defined above, and two V's may be the same or different), or

-W-V-Z (V, W and Z are as defined above);

(2) The pyrazole type thiazolidine compound and its salt according to the above-mentioned (1), wherein the compound of the formula (Ia) is represented by the formula (Ib):

5

(3) The pyrazole type thiazolidine compound and its salt according to the above-mentioned (2), wherein R^1 is -V-W-Z, -W-Z, -V-W-V-W-Z, -W-V-W-Z, -V-W-V-Z or -W-V-Z (V is O, S or NR^8 (R^8 is a hydrogen atom or a C_1-C_3 alkyl group), W is a divalent C_1-C_6 saturated or C_2-C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1-C_7 alkyl groups, when two V's or W's are present, such V's or W's may be the same or different, and Z is

wherein each of R^a and R^b is independently a hydrogen atom, a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_3- C₇ cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C_1-C_7 5 alkylthio group, a fluorine atom, a chlorine atom, a bromine atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1-C_3 alkoxycarbonyl group, a nitrile 10 group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a phenyl, α -naphthyl, β naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, α -naphthyl, β -naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups 15 may be substituted with at most 5 substituents selected from the group consisting of a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_1-C_3 alkoxy group, a C_1-C_3 alkylthio group, a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, a nitro group and a dimethylamino 20 group), a 1-tetrazolyl group, a 3-tetrazolyl group, a 5tetrazolyl group, a thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group, and R^c is a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group or a hydroxymethyl group); 25

 R^2 or R^3 is a hydrogen atom, a C_1-C_4 alkyl group, a C_3-C_6 cycloalkyl group, a phenyl group, a naphthyl group,

a benzyl group or a pyridyl group, when it is on the nitrogen atom at the 1-position of the pyrazole ring; and

 ${\bf R^2}$ or ${\bf R^3}$ is a hydrogen atom, a ${\bf C_1-C_4}$ alkyl group, a phenyl group or a halogen atom, when it is on the carbon atom at the 4-position of the pyrazole ring.

(4) The pyrazole type thiazolidine compound and its salt according to the above-mentioned (3), wherein said compound is represented by the formula:

5

15

20

wherein Y is CR^6R^7 (R^6 is a hydrogen atom or a methyl group, and R^7 is a hydrogen atom, or forms a bond together with R^4);

 R^1 is -V-W-Z, -W-Z, -V-W-V-W-Z, -W-V-W-Z, -V-W-V-Z or -W-V-Z (V is O, S or NR^8 (R^8 is a hydrogen atom or a C_1-C_3 alkyl group), W is a divalent C_1-C_6 saturated or C_2-C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1-C_7 alkyl groups, when two V's or W's are present, such V's or W's may be the same or different, and Z is

wherein each R^a and R^b is independently a hydrogen atom, a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_3-C_7 cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a fluorine atom, a chlorine atom, a bromine atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1-C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl 10 group, a phenoxy group, a benzyloxy group, a phenyl, α naphthyl, β -naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, α -naphthyl, β -naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 15 substituents selected from the group consisting of a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_1 - C_3 alkoxy group, a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, a nitro group and a dimethylamino group), a 5-tetrazolyl group, a thiazolidindion-5-yl 20 group or a thiazolidindion-5-yl methyl group, and R^c is a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group or a hydroxymethyl group);

 \mathbb{R}^4 is a hydrogen atom or a methyl group, or forms a bond together with \mathbb{R}^7 ;

 ${\tt R}^{\tt 5}$ is a hydrogen atom or a carboxymethyl group.

(5) The pyrazole type thiazolidine compound and its

salt according to the above-mentioned (4), wherein:

 R^1 is -O-W-Z, wherein W is a divalent C_1 - C_6 saturated or C_2 - C_6 unsaturated hydrocarbon group which may be substituted with at most 2 of hydroxyl, oxo and C_1 - C_7 alkyl groups (provided that the first carbon atom bonded with the oxygen atom is not substituted with a hydroxyl group or an oxo group).

- (6) The pyrazole type thiazolidine compound and its salt according to the above-mentioned (4), wherein:
- R¹ is -O-W-V-W-Z, -W-V-W-Z, -O-W-V-Z or -W-V-Z, wherein V is O or NR⁸ (R⁸ is a hydrogen atom or a C₁-C₃ alkyl group), W is a divalent C₁-C₆ saturated or C₂-C₆ unsaturated hydrocarbon group which may be substituted with at most 2 of hydroxyl, oxo and C₁-C₇ alkyl groups (provided that the first carbon atom bonded with the oxygen atom is not substituted with a hydroxyl group or an oxo group when two W's are present, such W's may be the same or different).
- (7) The pyrazole type thiazolidine compound and its 20 salt according to the above-mentioned (4), wherein:

 R^1 is -W-Z, wherein W is a divalent C_1 - C_6 saturated or C_2 - C_6 unsaturated hydrocarbon group which may be substituted with at most 2 hydroxyl, oxo and C_1 - C_7 alkyl groups.

25 (8) The pyrazole type thiazolidine compound and its salt according to the above-mentioned (5), wherein:

 R^1 is -O-W-Z, wherein W is

- 50 -

$$\begin{array}{c}
 & R^{d} \\
 & C \\
 & R^{e} \\
 & m
\end{array}$$

wherein m is from 1 to 5, and each of R^d and R^e is independently a hydrogen atom, a methyl group or a hydroxyl group, or R^d and R^e together form an oxo group, or adjacent R^d's together form a double bond, or adjacent R^d's and R^e's together form a triple bond (provided that R^d and R^e on the first carbon atom adjacent to 0 are not hydroxyl groups or do not together form an oxo group).

(9) The pyrazole type thiazolidine compound and its salt according to the above-mentioned (6), wherein:

 R^1 is -O-W-V-W-Z, -W-V-W-Z, -O-W-V-Z or -W-V-Z, wherein W is

15

20

10

wherein m is from 1 to 5, and each of R^d and R^e is independently a hydrogen atom, a methyl group or a hydroxyl group, or R^d and R^e together form an oxo group, or adjacent R^d's together form a double bond, or adjacent R^d's and R^e's together form a triple bond (provided that R^d and R^e on the first carbon atom adjacent to 0 are not hydroxyl groups or do not together form an oxo group).

(10) The pyrazole type thiazolidine compound and its salt according to the above-mentioned (7), wherein:

 R^1 is -W-Z, wherein W is

5

10

$$\begin{array}{c}
\begin{pmatrix}
\mathsf{R}^{\mathsf{d}} \\
\mathsf{C} \\
\mathsf{R}^{\mathsf{e}}
\end{pmatrix}_{\mathsf{m}}$$

wherein m is from 1 to 5, each of R^d and R^e is independently a hydrogen atom, a methyl group or a hydroxyl group, or R^d and R^e together form an oxo group, or adjacent R^d 's together form a double bond, or adjacent R^d 's and R^e 's together form a triple bond.

- (11) The pyrazole type thiazolidine compound and its salt according to the above-mentioned (8), wherein:
- 15 R^1 is -O-W-Z, wherein -O-W- is

$$\begin{array}{c} -\text{O-CH}_2\text{-CH}_2 - , & -\text{O-CH}_2\text{-CH}_- \ , & -\text{O-CH-CH}_2 - , & -\text{O-C}_-\text{CH}_2 - , \\ -\text{O-CH}_2\text{-CH}_2 - , & -\text{O-CH}_2\text{-CH}_- \ , & -\text{O-CH-CH}_2 - , & -\text{O-C}_-\text{CH}_2 - , \\ -\text{O-CH}_2\text{-C}_- \ , & -\text{O-CH-CH}_- \ , & -\text{O-CH-CH}_2 - , & -\text{O-C}_-\text{CH}_- \ , \\ -\text{O-CH}_2\text{-C}_- \ , & -\text{O-CH-CH}_- \ , & -\text{O-CH-CH}_- \ , & -\text{O-CH-CH}_- \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_3 \ \text{CH}_3 \ \text{CH}_3 \ , & -\text{O-CH}_2 - \ , & -\text{O-CH-CH}_- \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_2 \ \text{CH}_3 \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_2 \ \text{CH}_3 \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_2 \ \text{CH}_3 \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_3 \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_2 \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_3 \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_3 \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_3 \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_3 \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_3 \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_3 \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_3 \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_3 \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_3 \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_3 \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_3 \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_3 \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_3 \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_3 \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_3 \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , & -\text{O-CH}_2 - \ , \\ -\text{O-CH}_3 \ , & -\text{O-CH}_2 - \ , & -\text$$

(12) The pyrazole type thiazolidine compound and its salt according to the above-mentioned (9), wherein:

 ${\tt R^1}$ is -O-W-V-W-Z, -W-V-W-Z, -O-W-V-Z or -W-V-Z, wherein -O-W-V-W- is

-W-V-W- is

$$-CH_{2}-O-CH_{2}-\ , \qquad -CH_{2}-NH-CH_{2}-\ , \qquad -CH_{2}-N-CH_{2}-\ , \qquad CH_{3}$$

$$-CH_{2}-O-CH_{2}-C-\ , \qquad -CH_{2}-NH-CH_{2}-C-\ , \qquad -CH_{2}-N-CH_{2}-C-\ , \qquad -CH_{2}-N-CH_{2}-C-\ , \qquad -CH_{2}-N-CH_{2}-C-\ , \qquad -CH_{2}-NH-C-\ , \qquad -CH_{2}-O-CH_{2}-CH-\ , \qquad -CH_{2}-O-CH_{2}-CH-\ , \qquad -CH_{2}-O-CH_{2}-CH-\ , \qquad -CH_{2}-O-CH_{2}-CH-\ , \qquad -CH_{2}-NH-CH_{2}-CH_{2}-\ , \qquad -CH_{2}-NH-CH_{2}-\ $

ĊНа

- 54 -

$$-O-CH_{2}-NH- \ , \quad -O-CH_{2}-N- \ , \quad -O-CH_{2}-CH_{2}-NH- \ , \quad CH_{3}$$

$$-O-CH_{2}-CH_{2}-N- \ , \quad -O-CH_{2}-C-NH- \ , \quad -O-CH_{2}-C-N- \ , \quad O \ CH_{3}$$

$$-O-CH_{2}-CH_{2}-N- \ , \quad -O-CH_{2}-C-NH- \ , \quad O \ CH_{3}$$

$$-O-CH_{2}-CH_{2}-O- \ , \quad -O-CH_{2}-CH_{2}-C-NH- \ , \quad O \ CH_{3}$$

$$or \quad -O-CH_{2}-CH_{2}-C-N- \ , \quad O \ CH_{3}$$

10 and -W-V- is

or ·—CH₂-CH₂-C-Ņ-Ö CH₃

(13) The pyrazole type thiazolidine compound and its salt according to the above-mentioned (10), wherein:

 R^1 is -W-Z, wherein W is

20

(14) The pyrazole type thiazolidine compound and its salt according to the above-mentioned (11), wherein:

 R^1 is -O-W-Z, wherein -O-W- is

(15) The pyrazole type thiazolidine compound and its salt according to the above-mentioned (13), wherein:

 R^1 is -W-Z, wherein W is

(16) The pyrazole type thiazolidine compound and its salt according to the above-mentioned (5), (6) or (7), wherein:

Y is $-CH_2-$; and

20

25 R⁴ is a hydrogen atom.

(17) The pyrazole type thiazolidine compound and its salt according to the above-mentioned (5), (6) or (7),

wherein:

Y is CHR^7 (R^7 forms a bond together with R^4); and R^4 forms a bond together with R^7 .

(18) The pyrazole type thiazolidine compound and its salt according to the above-mentioned (14), which is represented by the formula:

$$R^{a}$$
 NH
 R^{a}
 NH

10

5

wherein each of R^a, R^b and R^c is independently a hydrogen atom, a C₁-C₇ alkyl group, a C₁-C₇ alkoxy group, a fluorine atom, a chlorine atom, a bromine atom or a phenyl group (said phenyl group may be substituted with at most 3 of a methyl group, a methoxy group and a chlorine atom), R² is a hydrogen atom, a C₁-C₇ alkyl group or a phenyl group, R³ is a hydrogen atom or a C₁-C₇ alkyl group, Y is CR⁶R⁷ (R⁶ is a hydrogen atom or a methyl group, and R⁷ is a hydrogen atom, or forms a bond together with R⁴), and R⁴ is a hydrogen atom, or forms a bond together with R⁷.

(19) The pyrazole type thiazolidine compound and its salt according to the above-mentioned (14), which is represented by the formula:

25

- 58 -

wherein each of R^a , R^b and R^c is independently a hydrogen atom, a C_1 - C_7 alkyl group, a C_1 - C_7 alkoxy group, a fluorine atom, a chlorine atom, a bromine atom or a phenyl group (said phenyl group may be substituted with at most 3 of a methyl group, a methoxy group and a chlorine atom), R^2 is a hydrogen atom, a C_1 - C_7 alkyl group or a phenyl group, R^3 is a hydrogen atom or a C_1 - C_7 alkyl group, Y is CR^6R^7 (R^6 is a hydrogen atom or a methyl group, and R^7 is a hydrogen atom, or forms a bond together with R^4), and R^4 is a hydrogen atom, or forms a bond together with R^7 .

(20) The pyrazole type thiazolidine compound and its salt according to the above-mentioned (14), which is represented by the formula:

15

10

5

wherein each of R^a , R^b and R^c is independently a hydrogen atom, a C_1 - C_7 alkyl group, a C_1 - C_7 alkoxy group, a fluorine atom, a chlorine atom, a bromine atom or a phenyl group (said phenyl group may be substituted with at most 3 of a methyl group, a methoxy group and a chlorine atom), R^2 is a hydrogen atom, a C_1 - C_7 alkyl group or a phenyl group, R^3 is a hydrogen atom or a C_1 - C_7 alkyl group, Y is CR^6R^7 (R^6 is a hydrogen atom or a

10

25

methyl group, and \mathbb{R}^7 is a hydrogen atom, or forms a bond together with \mathbb{R}^4), and \mathbb{R}^4 is a hydrogen atom, or forms a bond together with \mathbb{R}^7 .

(21) The pyrazole type thiazolidine compound and its salt according to the above-mentioned (14), which is represented by the formula:

$$R^{a}$$
 R^{a}
 NH
 R^{a}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}

wherein each of R^a, R^b and R^c is independently a hydrogen atom, a C₁-C₇ alkyl group, a C₁-C₇ alkoxy group, a fluorine atom, a chlorine atom, a bromine atom or a phenyl group (said phenyl group may be substituted with at most 3 of a methyl group, a methoxy group and a chlorine atom), R² is a hydrogen atom, a C₁-C₇ alkyl group or a phenyl group, R³ is a hydrogen atom or a C₁-C₇ alkyl group, Y is CR⁶R⁷ (R⁶ is a hydrogen atom or a methyl group, and R⁷ is a hydrogen atom, or forms a bond together with R⁴), and R⁴ is a hydrogen atom, or forms a bond together with R⁷.

(22) The pyrazole type thiazolidine compound and its salt according to the above-mentioned (14), which is represented by the formula:

wherein each of R^a, R^b and R^c is independently a hydrogen atom, a C₁-C₇ alkyl group, a C₁-C₇ alkoxy group, a fluorine atom, a chlorine atom, a bromine atom or a phenyl group (said phenyl group may be substituted with at most 3 of a methyl group, a methoxy group and a chlorine atom), R² is a hydrogen atom, a C₁-C₇ alkyl group or a phenyl group, R³ is a hydrogen atom or a C₁-C₇ alkyl group, Y is CR⁶R⁷ (R⁶ is a hydrogen atom or a methyl group, and R⁷ is a hydrogen atom, or forms a bond together with R⁴), and R⁴ is a hydrogen atom, or forms a bond together with R⁷.

(23) The pyrazole type thiazolidine compound and its salt according to the above-mentioned (14), which is represented by the formula:

wherein each of R^a , R^b and R^c is independently a hydrogen atom, a C_1 - C_7 alkyl group, a C_1 - C_7 alkoxy group, a fluorine atom, a chlorine atom, a bromine atom or a phenyl group (said phenyl group may be substituted with

- 61 -

at most 3 of a methyl group, a methoxy group and a chlorine atom), R^2 is a hydrogen atom, a C_1 - C_7 alkyl group or a phenyl group, R^3 is a hydrogen atom or a C_1 - C_7 alkyl group, Y is CR^6R^7 (R^6 is a hydrogen atom or a methyl group, and R^7 is a hydrogen atom, or forms a bond together with R^4), and R^4 is a hydrogen atom, or forms a bond together with R^7 .

The following Tables 1 to 23 illustrate examples of the compounds of the present invention. Further, the salts derived by treating a basic nitrogen at the 3-position of the thiazolidine ring by means of a well known method are also the compounds of the present invention.

In the Tables, Ql to Q90 and Jl to J54 represent the following substituents:

- 64 -Q1 Q2 Q3 Ме Ме Ме Q4 Q5 **Q6** ОМе ОМе ОМе Q7 Q8 Q9 Q10 Q11 Q12 ОН Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24

Q28

Q30

Q31

Q32

Q33

Q34 S

Q35 N Me

Q38

Q41

Q44

Q36

N Me

Me

Q37

N OEt

Q39

Q40 N CI

N CI

Q42

Q43
CI
CF₃

N CI CF₃

Q45

Q46 Me_N Q47

Q 48
Me N
Me

Q50 Q49 Q51 Me Me. Ме Q52 Q53 Q54 Q55 Q56 Q57 CI Ме Q58 Q59 Q60 Ме HO. ,OH Q61 Q62 Q63 HO. ОН HO. OH Me Q64 Q66 Q65 MeO. EtO. MeO ОМе Q68 MeS. Q67 Q69 PhO. EtS Q70 nPrS Q71 Q72

ĊF₃

Q75

Q78

Q80

Q83

Q86

Table 1

5

wherein X^1 , X^2 , R^2 , R^3 , R^4 , R^6 and R^7 are as identified in the following Table.

	x1	X ²	R ²	R ³	R ⁴	R ⁶	R ⁷
10							
	S	0	Me	H	H	H	H
	S	S	Me	H	H	H	H
	0	S	Me	H	H	H	H
	0	0	Me	H	H	H	H
	s 0 s s	NH	Me	H	H	Н	H
	0	NH	Me	H	H	H	Н
	S	0	^t Bu	H	H	H	H
	S	S	^t Bu	H	H	H	H
	0	s s o	^t Bu	H	H	H	H
15	0 S 0		^t Bu	H	H	H	H
	S	NH	^t Bu	H	H	H	H
	0	NH	^t Bu	H	H	H	H
	S S	0	Ph	H	H	H	H
	S	S	Ph	H	H	Н	H
	0	S	Ph	H	H	H	H
	0	0	Ph	H	H	H	H
	S	NH	Ph	H	H	H	H
	0	NH	Ph	H	H	H	H
	s 0 s s	0	Me	H	H	H	Me
20	S	s s	Me	H	H	H	Me
		S	Me	H	H	H	Me
	0	0	Me	H	H	H	Me
	S	NH	Me	H	H	H	Me
	0	NH	Me	H	H	H	Me
	S	0	^t Bu	H	H	H	Me
	S	s s	^t Bu	H	H	H	Me
	0	S	^t Bu	H	H	H	Me
	0	0	^t Bu	H	H	H	Me
	S	NH	^t Bu	Ħ	H	H	Me
25	0	NH	^t Bu	H	H	H	Me
	0 % 0 % % 0 0 % 0 % % 0 0	0	Ph	H	H	H	Me
	S	S	Ph	H	Н	H	Me
	0	s O	Ph	H	H	H	Me
	0	0	Ph	H	H	H	Me
							-

				- 69	_		
	s	NH	Ph	H	Н	Н	Me
	0	NH	Ph	H	H	H	Me
	s	0	Me	H	Me	H	H
	s	S	Me	H	Me	H	H
	0	S	Me	H	Me	H	H
	0	0	Me	H	Me	H	H
	S	NH	Me	H	Me	H	H
	0	NH	Ме	H	Me	H	H
_	s s	0	^t Bu	H	Me	H	H
5	S	S	^t Bu	H	Me	H	H
	0	S	^t Bu	H	Me	H	H
	0	0	^t Bu	H	Me	H	H
	S	NH	^t Bu	H	Me	H	H
	0	NH	^t Bu	H	Me	H	H
	s s	0	Ph	H	Me	H	H
	5	S	Ph	H	Me	H	H
	0	S	Ph	H	Me	H	H
	0	0	Ph	H	Me	H	H
10	S	NH	Ph	H	Me	H	H
10	0	NH	Ph	H	Me	H	H
	s s	0	Me	H	Me	H	Me
		S	Me	H	Me	H	Me
	0	S	Me	H	Me	H	Me
	o s	0	Me	H	Me	H	Me
	0	NH	Me	H	Me	H	Me
	O	ИН	Me	H	Me	H	Me
	s s	O S	^t Bu ^t Bu	H	Me	H	Me
	0	S	t _{Bu}	H	Me	H	Me
15	0	0	t _{Bu}	H	Me	H	Me
	S	NH	t Bu	H	Me	H	Me
	0	NH NH	t _{Bu}	H	Me	H	Me
	S	0	Ph	H	Me	H	Me
	2	S	Ph Ph	H	Me	H	Me
	s s o	S	Ph Ph	H H	Me	H	Me
	Ö	0	Ph Ph	H H	Me	H	Me
	S	NH	Ph	H H	Me	H	Me
	s o	NH NH	Ph Ph	H H	Me	H	Me
	O	1417	FII	п	Me	H	Me

25

20

wherein X^1 , X^2 , R^2 , R^3 and R^6 are as identified in the following Table.

X1	X ²	R ²	R ³	R ⁶	X1	X²	R ²	R ³	R ⁶
s	0	Me	Н	Н	s	0	Me	Н	Me
S	S	Me	H	H	S	S	Me	H	Me
0	S	Me	H	H	0	S	Me	H	Me
0	0	Me	H	H	0	0	Me	H	Me
S	NH	Me	H	H	S	NH	Me	H	Me
0	NH	Мe	H	H	0	NH	Мe	H	Me
S	0	^t Bu	H	H	S	0	^t Bu	H	Me
S	S	t _{Bu}	H	H	S	S	^t Bu	H	Me
0	S	t Bu	H	H	0	S	^t Bu	H	Me
0	0	t _{Bu}	H	H	0	0	^t Bu	H	Me
S	NH	tBu	H	H	S	NH	^t Bu	H	Me
0	NH	^t Bu	H	H	0	NH	^t Bu	H	Me
S	0	Ph	H	H	S	0	Ph	H	Me
S	S	Ph	H	H	S	S	Ph	H	Me
0	S	Ph	H	H	0	S	Ph	H	Me
0	0	Ph	H	H	0	0	Ph	H	Me
S	NH	Ph	H	H	S	NH	Ph	H	Me
0	NH	Ph	H	H	0	NH	Ph	H	Me

Table 3

wherein ${\ensuremath{R^2}}$ and ${\ensuremath{R^3}}$ are as identified in the following 20 Table.

	R ²	R ³	R ²	R ³	R ²	R ³	R ²	R ³		
25	H H Me Me Me Me Me Et	H Me Me Et Ph Cl Br H	ipr ipr nBu nBu nBu nBu nBu nBu	Cl Br H Me Et Ph Cl Br	tBu tBu tBu nPen nPen nPen nPen nPen nPen nPen	Ph Cl Br H Me Et Ph Cl	cPr cPr cPr cPr cBu cBu cBu cBu	Et Ph Cl Br H Me Et Ph		

5	tttttrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr	MethClr MethPClr MethPClr MethPClr MethPClr MethPh	iBu iBu iBu iBBu sBu sBu sBu sBu sBu sBu sBu sBu	H Meth Clr Meth Meth Meth Meth Meth Meth Meth Meth	nPen nHeex nHeex nHeex nHeep nHeep nHeep nHeep nHeep nHeep nHeep cpr	H Methlr BH MEthlr BH Me	cBu cPen cPen cPen cPen cPen cHex cHex cHex cHex cHex	Cl Br Me Eth Cl Br Me Eth Cl Br He Cl Br He He He He He He He He He He He He He
10	Q1 Q1 Q1 Q1 Q1	Me Et Ph Cl Br	Q5 Q5 Q5 Q5 Q5	H Me Et Ph Cl	Q8 Q9 Q9 Q9 Q9	Br H Me Et Ph	Q12 Q12 Q13 Q13 Q13	Cl Br H Me Et
	Q2 Q2 Q2 Q2 Q2 Q2	H Me Et Ph Cl	Q5 Q6 Q6 Q6 Q6	Br H Me Et Ph	Q9 Q9 Q10 Q10 Q10	Cl Br H Me Et	Q13 Q13 Q13 Q14 Q14	Ph Cl Br H Me
15	Q2 Q3 Q3 Q3 Q3 Q3 Q3 Q4 Q4	Br H Me Et Ph Cl Br H Me	Q6 Q6 Q7 Q7 Q7 Q7 Q7 Q7 Q8	Cl Br H Me Et Ph Cl Br H	Q10 Q10 Q10 Q11 Q11 Q11 Q11 Q11	Ph Cl Br H Me Et Ph Cl Br	Q14 Q14 Q14 Q15 Q15 Q15 Q15 Q15 Q15	Et Ph Cl Br H Me Et Ph Cl
20	Q4 Q4 Q4 Q16 Q16 Q17 Q17 Q17 Q17	Et Ph Cl Br Ph Me Et Ph	Q8 Q8 Q8 Q20 Q20 Q20 Q20 Q21 Q21	Me Et Ph Cl Me Et Ph Cl Br H Me	Q12 Q12 Q12 Q12 Q23 Q24 Q24 Q24 Q24 Q24 Q24 Q24	H Me Eh H Me Eh Cl Br	Q15 Q16 Q16 Q16	Br H Me Et
25	Q17 Q17 Q18 Q18 Q18 Q18 Q18 Q18 Q19	Cl Br H Me Et Ph Cl Br H	Q21 Q21 Q21 Q21 Q22 Q22 Q22 Q22 Q22	Et Ph Cl Br H Me Et Ph Cl	Q25 Q25 Q25 Q25 Q25 Q25 Q26 Q26 Q26	H Me Et Ph Cl Br H Me Et		

- 71 -

Table 4

5

wherein \mathbb{R}^2 and \mathbb{R}^3 are as identified in the following Table.

	R ²	R ³
15	Me Et Ph Me Me ipr ipr ipr	H H Me Cl Br Me Cl Br
20	^t Bu ^t Bu ^t Bu	Me Cl Br

5

- 73 -

Table 5

10 wherein W and V are as identified in the following Table.

	7 W	v	W	V
. ווד.				
J12 C J13 C J14 C J15 C J16 C J17 C J18 C	J2 J2 J2 J2 J2 J2 J2 J2 J2 J2	1 0 2 0 3 0 4 0 5 0 6 0	J29 J10 J10 J10 J10 J10	O S SO SO ₂ NH NMe
	J12 C J13 C J14 C J15 C J16 C J17 C J18 C	J12 O J2 J13 O J2 J14 O J2 J15 O J2 J16 O J2 J17 O J2 J18 O J2	J12 O J21 O J13 O J22 O J14 O J23 O J15 O J24 O J16 O J25 O J17 O J26 O J18 O J27 O	J12 O J21 O J10 J13 O J22 O J10 J14 O J23 O J10 J15 O J24 O J10 J16 O J25 O J10 J17 O J26 O J18 O J27 O

Table 6

20

25

- 74 -

wherein W-O-W is as identified in the following Table.

	W-O-W
5	J30 J31 J32 J33 J34 J35

Table 7

wherein W is as identified in the following Table.

20	W	W	W	W
	J27 J29 J36	J40 J41 J42	J45 J46 J47	J50 J51 J52
	J37 J38 J39	J43 J44	J48 J49	J53 J54

5

- 75 -

Table 8

10 wherein R^1 is as identified in the following Table.

n-Hexyl
l-Hexenyl
l-Hexynyl
shape of the state of the sta

Table 9

wherein Z is as identified in the following Table.

						
	Z	Z	Z	z	Z	Z
5	CHex Q27 Q28 Q11 Q12 Q14 Q15 Q16 Q29 Q30	Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39 Q40	Q41 Q42 Q43 Q44 Q45 Q46 Q47 Q48 Q49 Q50	Q51 Q52 Q53 Q54 Q55 Q56 Q57 Q58 Q59 Q60	Q61 Q62 Q63 Q64 Q65 Q66 Q67 Q68 Q69 Q70	Q71 Q72 Q73 Q74 Q75 Q76 Q77 Q78

Table 10

10

wherein R^a , R^b and R^c are as identified in the following 15 Table.

	R ^a	R ^b	Rc	R ^a	Rb	R ^c
-	2-Me	Н	н	4-Q79	н	Н
	3-Me	H	H	2-OH	H	H
	4-Me	H	H	3-OH	H	H
	2-OMe	H	H	4-OH	H	H
	3-OMe	H	H	2-F	H	H
	4-OMe	H	H	3-F	H	H
	2-Ph	H	H	4-F	H	H
	3-Ph	H	H	2-C1	H	H
	4-Ph	H	H	3-C1	H	H
	4-Q11	H	H	4-C1	H	H
	4-Q17	H	H	2-Br	н	H
	4-Q18	H	H	3-Br	H	H
	4-Q45	H	H	4-Br	H	H
	4-Q13	H	H	3-CF ₃	H	H
	4-OPh	H	H	3		

Table 11

wherein R^a and R^b are as identified in the following Table.

	Rª	Rb	R ^a	R ^b	Rª	Rb
15	H Me Et	Me Me Me Me	Q81 Q82 Q83 Q10	Me Me Me Me	Q18 Q14 Q45 Q72	Me Me Me Me
	iPr	Me	Q7	Me	Q13	Me
	tBu	Me	Q84	Me	OPh	Me
	cpr	Me	Q85	Me	Q79	Me
	^c Hex	Me	Q8	Me	Ph	H
	Q80	Me	Q9	Me	Ph	Me
	Ph	Me	Q86	Me	Ph	Et
	Q1	Me	Q87	Me	Ph	ⁿ Pr
20	Q2	Me	Q88	Me	Ph	iPr
	Q3	Me	4-Ph-Ph	Me	Ph	tBu
	Q4	Me	Q11	Me	Ph	c _{Pr}
	Q5	Me	Q12	Me	Ph	^c Hex
	Q6	Me	Q17	Me	Ph	Ph

Table 12

- 78 -

wherein $\mathbf{R}^{\mathbf{a}}$ and $\mathbf{R}^{\mathbf{b}}$ are as identified in the following Table.

R ⁴	a R	l p	Ra	Rb
H	H		^c Hex	H
н		le	^c Hex	Me
H	С	Hex	^c Hex	^c Hex
H	P		^c Hex	Ph
Me	₽ H	· •	Ph	H
Me		e	Ph	Me
Me	e C	Hex	Ph	^c Hex
Me	P	h :	Ph	Ph

10

Table 13

wherein $R^{\mathbf{a}},\ R^{\mathbf{b}}$ and $R^{\mathbf{c}}$ are as identified in the following Table.

_						
-	Rª	R ^b	R°	Rª	Rb	R ^c
-	Н	Me	н	Q86	Me	Н
	Me	Me	H	Q87	Me	H
	Et	Me	H	Q88	Me	H
5	ⁿ Pr	Me	H	4-Ph-Ph	Me	H
	iPr	Me	H	Q11	Me	H
	^t Bu	Me	H	Q12	Me	H
	^c Pr	Me	H	Q17	Me	H
	^c Hex	Me	H	Q18	Me	H
	Q80	Me	H	Q14	Me	H
	Ph	Me	H	Q45	Me	H
	Ql	Me	H	Q72	Me	H
	Q2	Me	H	Q13	Me	H
	Q3	Me	Н	OPh	Me	H
)	Q4	Me	H	Q79	Me	H
	Q5	Me	H	Ph	H	H
	Q6	Me	H	Ph	Me	H
	Q81	Me	H	Ph	Et	H
	Q82	Me	H	Ph	n _{Pr}	H
	Q83	Me	H	Ph	ⁱ Pr	H
	Q10	Me	H	Ph	^t Bu	H
	Q7	Me	H	Ph	$^{\mathtt{c}_{\mathtt{Pr}}}$	H
	Q84	Me	H	Ph	cHex	H
	Q85	Me	H	Ph	Ph	H
	Q8	Me	H	Ph	Me	Me
	Q9	Me	H			

Table 14

W ¹	W ²	M_3	W ⁴	W ⁵	W ⁶	W ⁷	M ₈	W ⁹
 СН	СН	СН	С	СН	СН	СН	СН	С
С	CMe	NH	С	CH	CH	CH	CH	Ċ
С	CMe	NMe	С	CH	CH	CH	CH	С
С	CH	NH	С	CH	CH	CH	CH	С
С	CH	S	С	CH	CH	CH	CH	С
N	CH	N	С	CH	CH	CH	CH	С
С	CH	0	С	CH	CH	CH	CH	С
С	CH	CH	С	CH	CH	CH	CH	N
С	N	NH	С	CH	CH	CH	CH	С
С	N	NMe	С	CH	CH	CH	CH	С
N	N	N	С	CH	CH	CH	CH	С
N	CH	N	С	N	CH	N	CH	С
С	CH	N	N	CH	CH	CH	N	С
С	CH	N	N	CH	CH	N	N	С
С	CMe	S	С	N	CCF ₃	N	-*	N
С	CMe	S	С	N	CMe	N	_	N
С	CH	S	С	N	CH	N	_	N

* : covalent bond

25	W ¹	W ²	W ₃	W ⁴	W ⁵	W ⁶	W ⁷	W8	W ₉	
	CH ₂	С	CMe	С	СН	СН	СН	СН	С	

					- 81 -				
5	CH ₂ NMe NH NMe NH NH NH NMe NMe	000000000	CH CH CMe CMe CH CH CH	000000000	CH CH CH CH CH CH	CH CH CH CH CMe CBr CPh	CH CH CH CH CH CH	CH CH CH CH CH CH	000000000
3	NMe S S S S O O	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CH CMe CMe CH CH CMe CH CMe CH	0000000000	CH CH CH CH CH CH CH	CBr CPh CC1 CH CPh CPh CH CH	CH CH CH CH CH CH CH CH	CH CH CH CH CH CH CH COMe CH	0000000000
10	O O NH NMe NH NMe NH NMe NH NMe NH	000000000	CH CMe N N N N N N	0000000000	CH CH CH CH CH CH CH	CPh CPh CH CMe CMe CPh CPh CH	CH CH CH CMe CMe CH CH	CH CH CH CH CH CH CH	0000000000
15	N N N N N N	00000000	000000000000000000000000000000000000000	00000000	CH CH CH CH CH CH CH CH	CPh CH CMe CH CH CPh CH CMe CH	CH CPh CH CMe CH CH CPh CH	CH CH CH CH CH CH CH	0000000000
20	CH NH NMe N N S S	0000000	CH N CH CH CMe CMe CMe	CCCCNNN	CH N N N N N N	CH CH CH N CCF ₃ CMe	CH N CH CH N N	CH CH CH CH -*	N C C N N C C C

Table 16

W ¹ W	 M3	W ⁴	W ⁵	W ⁶	W ⁷	W8	W ₉
	 		**				W
CH ₂ C	СН	С	С	СН	СН	СН	С
CH C	CH ₂	C C C	С	CH	CH	CH	С
NMe C	CH		C	CH	CH	CH	C C
CH C	NMe	C	C	CH	CH	CH	C
S CI CH CI	CH	C	C	CH	CH	CH	C C
CH CI	S CH	C	0	CH CH	CH	CH	C
CH C	O	C	<u></u>	CH	CH CH	CH CH	C
O CI	CH ₂	Č	C	CH	CH	CH	C C
CH ₂ CI	0	C	C	CH	CH	CH	
O CI	ŏ	0000000000	č	CH	CH	CH	C C C
NH C	N	Ċ	Č	CH	CH	CH	Č
NH C NMe C	N	С	С	CH	CH	CH	Ċ
N C	NMe	С С С	С	CH	CH	CH	0000
N C	0	С	С	CH	CH	CH	С
C	N		С	CH	CH	CH	С
N C	S	C	С	CH	CH	CH	С
	N	C	C	CH	CH	CH	С
CH CE	CH	С	C	CH	CH	CH	N
CH CH	CH	N	C	CH	CH	СН	C
NH CH	N	C	C	N	CH	N	C
			C				C C
CH CH	N N	N N	000000000000000000	CH CH	CH N	N N	

5

_					· · · · · · · · · · · · · · · · · · ·				
	W ₁	W ²	W ³	W ⁴	W ⁵	W ⁶	W ⁷	W ₈	₩ ⁹
	CH ₂	СН	СН	С	СН	С	СН	СН	С
	CH	CH	CH ₂	С	CH	C	CH	CH	С
	NMe	CH	CH	C	CH	С	CH	CH	0000000000000000
	CH	CH	NMe	000000	CH	C	CH	CH	C
	S	CH	CH	C	CH	C C	CH	CH	C
	CH	CH	S	C	CH	С	CH	CH	C
	S	CH ₂	CH ₂	C	CH	С	CH	CH	C
	CH ₂	CH ₂	S	C	CH	000	CH	CH	C
	0	CH	СН	C	CH	C	CH	CH	C
	CH	CH	0	C	CH	C	CH	CH	Č
	0	CH ₂	CH ₂	C C	СН	C	CH	CH	C
	CH ₂	CH ₂	0 _	C	CH	C	CH	СН	C
	0	CH ₂	0	C C	CH	С	CH	CH	C
	NH	C -	N	C	CH	C	CH	CH	C
	NMe	C C	N	C	CH	С	СН	CH	C
	N	C	NMe	C	CH	C	СН	CH	C
	N	C	0	C	CH	C C	CH	CH	C
	0	C C C	N	C	·CH	C	CH	CH	C
	N	C	S	C	CH	C	CH	CH	C
	S	C	N	C	CH	C	CH	CH	C
	CH	CH	CH	C	CH	C	CH	CH	N
	CH	CH	CH	N	CH	с с с	CH	CH	C
	NH	CH	N	C	N	C	N	CH	C C C
	CH	CH	N	N	CH	C	CH	N	C
	CH	CMe	N	N	CMe	C	CH	N	C
	CH	CH	N	N	CH	C	N	N	C
	CH	CMe	N	N	CMe	C	N	N	C
	CH	CPh	N	N	CMe	C	CH	N	0000
	CH	CPh	N	N	CMe	С	N	N	C

- 84 -

Table 18

Wl	W ²	M ₃	W ⁴	W ⁵	W ₆	W ⁷	W8
С	СН	СН	СН	СН	СН	СН	СН
С	CH	CH	CH	CH	CH	CH	N
С	CH	CH	CH	N	CH	CH	CH
C C	CH	CH	N	CH	CH	CH	CH
С	CH	CH	CH	CH	CH	N	CH
С	CH	CH	CH	CH	N	CH	CH
С	CH	N	CH	CH	CH	CH	CH
C C	N	CH	CH	CH	CH	CH	CH
С С С	CH	CH	CH	0	CH ₂	CH ₂	0
С	CH	CH	CH	0	CH	CH	0
С	N	N	CH	CH	CH	CH	CH
C .	CH	CH	CH	CH	N	N	CH
С	CH	CH	N	N	CH	CH	CH
С	CH	CH	CH	N	CH	CH	N
С	CH	CH	CH	CH	N	CH	N
С	CH	CH	CH	N	CH	N	CH
С	CH	CH	CH	CH	CH	N	N
С	CH	CH	CH	N	N	CH	CH
С	N	CH	N	N	CH	CH	N
N	CH	CH	S	CH	CH	CH	CH
С	CH	CH	CH	S	CH	CH	NH
С	CH	CH	CH	S	CH	CH	NMe
С	CH	CH	CH	NH	CH	CH	S
С	CH	CH	CH	NMe	CH	CH	S

					- 85 -			
	N C C C C C C	CO CH CH CH CH CH CH	CH CH CH CH CH CH	CH CO CH CH CH CH	CH CH NH NMe CH CH NH	CH CO CO CH CH CH	CH CH CH CO CO CH CH	CH CH CH CH NH CO CO
5	00000000	CH CH CH CH CH CH CH	CH CH NH NMe CH CH CH	CH CH CO CH CH CH	CO CH CH CO CO CH	CH CH CH CH NH NMe CH	CH CH CH CH CH CH NH	NH NMe CH CH CH CH CO
10	00000000	CO CO NH NMe CH CH CH CH	NH NMe CO CO CH CH CH CH CH	CH CH CH CH CH CH CH	CH CH CH CH CH CH CH	CH CH CH CH NH NMe CO CO	CH CH CH CO CO NH NMe CH	CH CH CH CH CH CH CH
15	0000	N CH CH CH CH	NMe CH CH CH CH	CO CH CH CH	CH CH CO CO	CH N N NH NMe	CH NH NMe N N	CH CO CH CH

Table 19

	W ¹	W ²	W ³	W ⁴	W ⁵	We	W ⁷	M ₈	
5	CH CH CH CH CH CH CH	00000000	CH CH CH CH CH CH CH	CH CH CH CH CH CH CH	CH CH CH CH CH CH	CH CH CH CH CH CH CH	CH CH CH CH CH CH CH	CH N CH CH CH CH CH	
10	CH CH N N CH N CH	00000000	CH CH CH CH CH CH CH	CH CH N CH CH CH CH	O CH N CH CH N CH	CH N CH CH CH CH CH	CH N CH CH CH CH CH	O CH CH N CH N CH N	
15	CH CH N N S S	00000000	N CH CH CH CH CH	N CH CH N N NH NMe S	CH CH N CH CH CH CH	CH CH N CH CH CH CH	CH N CH CH CH CH CH	CH N CH N CH CH CH	
20	NMe CH CH CH S S CH CH	0000000000	CH CH CH CH CMe CMe CO CO	S CH CH CH NH NMe NH NMe	CH NH NMe S S CH CH CH	CH CH CH CH CH CH CH	CH CH CH CH CH CH CH	CH S S NH NMe CH CH CH CH	
25	CH CH NH NMe CO CO CO CH CH	0002000000000	CH CH CH CH CH CH NH NMe CH	CH CH CO CO NH NMe CH CO CH	NMe CH CH CH CH CH CH CH	CO CH CH CH CH CH CH CH	CH CO CH CH CH CH CH CH	CH NH NMe CH CH CH CH CH CH	

				-	- 87 -			
5	CH CH CH CH CH CH CH CH	002000200	CH CH CO CH CH CH CH CH	CH CH CH CH CH CH CH	CO CH CH CH CH CH CH CH	NMe CH CH CO CO NH NMe CH N	CH NH NMe CH NH CO CO CH NH NMe	CH CO CH CH CH CH CO CO
	CH CH	C	CH CH	CH CH	C O C O	NH NMe	N N	CH CH

Table 20

wherein W^1 , W^2 , W^3 , W^4 , W^5 , W^6 , W^7 , W^8 , W^9 and W^{10} are as identified in the following Table.

15

	W ¹	W ²	W3	W ⁴	₩5	W ⁶	W ⁷	W ₈	W ⁹	W ₁₀
20	0000	CH CH CH CH	CH CH CH CH	CH CH CH CH	O CH ₂ O S S	CH CH CH CH	CH CH CH CH CH	CH CH CH CH	CH CH CH CH	CH ₂ O S O S
	00000	CH CH CH CH	CH CH CH CH	CH CH CH CH	N CH N S	CH CH CH CH	CH CH CH CH	CH CH CH CH	CH CH CH CH	CH N N NH
	000	CH CH CH CH	CH CH CH CH	CH CH CH CH	NH NMe O NH	CH CH CH CH	CH CH CH CH	CH CH CH CH	CH CH CH CH	NMe S S NH O
25	0000	CH CH CH CH	CH CH CH CH	N CH CH N CH	O O CH ₂ O	CH N CH CH N	CH CH CH CH	CH CH CH CH	CH CH N CH CH	CH ₂ CH ₂ O CO CO

				- 88	-				
С	CH	CH	CH	co	СН	CH	CH	N	0
С	CH	CH	CH	-*	CH	CH	CH	CH	CH ₂
С	CH	CH	CH	CH,	CH	CH	CH	CH	_ 2
С	CH	CH	CH		CH	CH	CH	CH	NH
С	CH	CH	CH	_	CH	CH	CH	CH	NMe
С	CH	CH	CH	NH	CH	CH	CH	CH	-
С	CH	CH	CH	NMe	CH	CH	CH	CH	_

*: covalent bond

5

$$10 \qquad \begin{array}{c} W^8 \\ W^9 \\ W^7 \\ W^6 \\ W^5 \\ W^4 \\ W^3 \\ W^2 \\ W^4 \\ W^3 \\ W^5 \\ W^5 \\ W^5 \\ W^4 \\ W^3 \\ W^5 \\ W^5 \\ W^4 \\ W^3 \\ W^5 \\ W^6 \\ W^6 \\ W^7 \\ W^6 \\ W^5 \\ W^6 \\ W^5 \\ W^6 \\ W^6 \\ W^7 \\ W^6 \\ W^5 \\ W^6 \\ W^6 \\ W^7 \\ W^6 \\ W^5 \\ W^6 \\ W^6 \\ W^7 \\ W^6 \\ W^5 \\ W^6 \\ W^6 \\ W^7 \\ W^6 \\$$

	W^1	W ²	W ³	W ⁴	W ⁵	W ⁶	W ⁷	W8	W ⁹	W ¹⁰
20	CH CH CH	C C C	CH CH CH CH	CH CH CH	O CH ₂ O S	CH CH CH	CH CH CH CH	CH CH CH	CH CH CH CH	CH ₂ O S
	CH CH CH	C C C	CH CH CH	CH CH CH	S N CH N	CH CH CH	CH CH CH	CH CH CH	CH CH CH	S CH N N
25	CH CH CH CH CH	00000	CH CH CH CH CH	CH CH CH CH CH	S S NH NMe O NH	CH CH CH CH	CH CH CH CH CH	CH CH CH CH CH	CH CH CH CH CH	NH NMe S S NH O
	CH	С	CH	N	0	CH	CH	CH	CH	CH_2

W	റ	6/1	11	96

PCT/JP95/02041

					- 89	_				
	N CH CH CH	0000	CH CH CH	CH CH CH N	CH ₂ O CH ₂ O	CH N CH CH	CH CH CH	CH CH CH	CH CH N CH	O CH ₂ O CO
	N CH CH CH	0000	CH CH CH CH CH	CH CH CH CH	CH CO CO	CH N CH CH CH	CH CH CH CH	CH CH CH CH	CH CH N CH CH	O CO O CH ₂
5	CH CH CH CH CH	000000	CH CH CH CH CMe CMe	CH CH CH CH N	CH ₂ NH NMe O	CH CH CH CH CH	CH CH CH CH CH	CH CH CH CH CH CMe	CH CH CH CH CH	NH NMe - - CO CO

*: covalent bond

10

Table 22

_							
	W1	W ²	M ₃	₩4	₩5	₩ ⁶	
5	00000000	CH CMe CH CH CEt CH CH C ¹ Pr CH	CH CMe CH CH CEt CH CH C ⁱ Pr	CH CH CMe CH CH CEt CH CH	CH CH CH CH CH CH CH	CH CH CH CH CH CH CH	
10	0000000000000000000000000	CH C ^t Bu CH CH COMe CH CH CC1 CH	CH CH CH CH COMe CH CH CH	C ⁱ Pr CH CH C ^t Bu CH CH CH COMe CH CH	CH CH CH CH CH CH	CH CH CH CH CH CH	
15	С	CH CH CH CH CH CH COH CH CH CH	CH CF CH CH CH CH CH	CH CH CF CH CH CBr CH CH	CH CH CH CH CH CH CH CH	CH CH CH CH CH CH CH CH	
20	0000000000000	CH CH COPh CH CH CPh CH CH CNH ₂	COBn CH CH COPh CH CH CPh CH CH CNH ₂	CH COBn CH COPh CH CH CH CH	CH CH CH CH CH CH CH CH	CH CH CH CH CH CH CH CH	
25	00000000000	CH CNMe ₂ CH CH CNO ₂ CH CH CCN	CH CNMe CH CNO CH CNO CH CNO	CNH ₂ CH CH CNMe ₂ CH CH CH CH CH CH CNO ₂ CH CH	CH CH CH CH CH CH CH	CH CH CH CH CH CH CH	

- 91 -

5	0000000000	CH CMe CMe CMe CPh CH CH CH	CH CPh CH CH CMe CMe CMe CMe CMe	CCN CH CPh CH CH CH CPh CH CH CH CH	CH CH CPh CH CH CH CH CH	CH CH CH CPh CH CH CH CH CH
10	0000000	CH CH CMe CMe CMe CMe CMe CME CME	CPh CH CMe CH CH CH CH CH CMe	CMe CMe CH CMe CH CH CH CH	CH CPh CH CH CH CMe CH CH CH	CH CPh CH CH CH CMe CH CH
15	ממטטטטטטטמ	COME COME COME CH CH CH CH CH	CH CH CH COMe COMe CH N CH	COMe CH CH OMe CH CH CH CH	CH COMe CH CH COMe CH CH CH	CH CH COMe CH CH CH CH CH
	N N N N N N	CH CH CMe CMe CH CH CH CCN CH	CPh CH CH CMe CMe CH CH CCN	CH CH CH CH CH CH CMe CH CH	CH CH CPh CH CH CH CH CH CH	CO CO CO CO CO CO CO
20	и и с с с с с	CH CH N N N N CMe CH	CH CH CMe CMe CH CH N N	CCN CH CO CH CMe CH CH CH CH	CH CCN CH CH CH CMe CH CH CH	CO CH CH CH CH CMe CH CH
25	0000	CH CMe CH N	N CH CMe CEt CH	CH N N CH CEt	CH CH CH CH CH	CH CMe CH CH CH

- 92 -

	טטטטטטטט	N N CEt CH CH CH CEt CH N	CH CH N N N CH CEt CC1	CH CH CEt CH CH N N	CEt CH CH CEt CH CH CH	CH CET CH CH CET CH
5	000000000	N N N CC1 CH CH CH CC1 CH	CH CH CH N N N N CH	CH CH CH CH CH CH N	CH CC1 CH CC1 CH CH CH	CH CH CC1 CH CH CC1
10	0000000	N N N CF CH CH	CC1 CF CH CH CH N N N	N CH CF CH CH CF CH	CH CH CF CH CH CH CH	CH CH CH CF CH CH CF
15	0000000000000	CF CH N N N COMe CH	CH CF COMe CH CH CH N N	N CH COMe CH CH CH CH CH CH	CH CH CH COMe CH CH CH CH	CH CH CH CH COMe CH CH
20	CCC	CH COMe CH N N N COPh CH CH	N CH COMe COPh CH CH N N N	CH N N CH COPh CH CH CH COPh CH	CH CH CH CH COPh CH CH CH CH CH	CH CH CH CH CH COPh CH CH CH
25	000000000000	COPh CH N N N N COBn CH	CH COPh COBn CH CH CH N	N N CH COBn CH CH CH COBn	CH CH CH CH COBn CH CH CH	CH CH CH CH CH COBn CH

	- 93					
5	0000000000000	CH CH COBn CH N N CPh CH CH CH	N N CH COBn CPh CH CH N N N N N CH	CH CH N N CH CPh CH CH CH CH CH	COBn CH CH CH CH CPh CH CH CH CH	CH COBn CH CH CH CH CH CH CH
10	000000000	CH N N N CCN CH CH CH CCN CH	CPh CCN CH CH N N N CH CCN	N CH CCN CH CH CCN CH CH N	CH CH CCN CH CH CH CCN CH CH	CH CH CH CCN CH CH CH CH
15	00000	N N CH CH N N	CH CH N N CH	CH N N CH CH	CH CH CH N N	N CH CH CH CH

wherein R^a and R^b are as identified in the following Table.

5 _						
	Rª	Rb	Rª .	R ^b	R ^a	R ^b
_	н	Me	Q81	Me	Q18	Me
	Me	Me	Q82	Me	Q18 Q14	Me
	Et	Me	Q83	Me	Q45	Me
	$^{ m n}{ m Pr}$	Me	Q10	Me	Q72	Me
	ⁱ Pr	Me	Q7	Me	Q13	Me
)	^t Bu	Me	Q84	Me	OPh	Me
	^c Pr	Me	Q85	Me	Q79	Me
	^c Hex	Me	Q8	Me	Ph	H
	Q80	Me	Q 9	Me	Ph	Me
	Ph	Me	Q86	Me	Ph	Et
	Q1	Me	Q87	Me	Ph	n _{Pr}
	Q2	Me	Q88	Me	Ph	ⁱ Pr
	Q3	Me	4-Ph-Ph	Me	Ph	^t Bu
	Q4	Me	Q11	Me	Ph	$^{\mathtt{c}}\mathtt{Pr}$
	Q 5	Me	Q12	Me	Ph	^c Hex
5	Q6	Me	Q17	Me	Ph	Ph

The compound of the above formula (I) of the present

- 95 -

invention has acidic hydrogen on a thiazolidine ring or on an oxazolidine ring. Further, when substituent Z is a heterocyclic aromatic group or a heterocyclicaliphatic group, it sometimes has a basic nitrogen. compound may be converted to a pharmaceutically 5 acceptable non-toxic salt with an appropriate base or acid, if desired. The compound of the formula (I) can be used for the purpose of the present invention either in the free form or in the form of a pharmaceutically acceptable salt. Examples of the basic salt include an 10 alkali metal salt (lithium salt, sodium salt, potassium salt and the like), an alkali earth metal salt (calcium salt, magnesium salt and the like), an aluminum salt, an ammonium salt which may be unsubstituted or substituted 15 with a methyl, ethyl or benzyl group, an organic amine salt (methylamine salt, ethylamine salt, dimethylamine salt, diethylamine salt, trimethylamine salt, triethylamine salt, cyclohexylamine salt, ethylenediamine salt, bicyclohexylamine salt, ethanolamine salt, diethanolamine salt, triethanolamine salt, piperazine 20 salt, dibenzylpiperidine salt, dehydroabietilamine salt, N,N'-bisdehydroabietilamine salt, benzathine(N,N'dibenzylethylenediamine) salt, glucamine salt, meglumine(N-methylglucamine) salt, benetamine(Nbenzylphenetylamine)salt, trometamine(2-amino-2-25 hydroxymethyl-1,3-propanediol)salt, choline salt, procaine salt), a basic amino acid salt (lysine salt,

- 96 -

ornithine salt, arginine salt and the like), a pyridine salt, a collidine salt, a quinoline salt, and the like. Examples of an acid-addition salt include a mineral acid salt (hydrochloride, hydrobromide, sulfate,

hydrogensulfate, nitrate, phosphate, hydrogenphosphate, dihydrogenphosphate and the like), an organic acid salt (formate, acetate, propionate, succinate, malonate, oxalate, maleate, fumarate, malate, citrate, tartrate, lactate, glutamate, asparate, picrate, carbonate and the like), a sulfonic acid salt (methanesulfonate, benzenesulfonate, toluenesulfonate and the like), and the like. Each of these salts can be prepared by a known method.

The compound having the formula (I), i.e. pyrazole

15 type thiazolidines, can be prepared by the following

synthetic methods.

20

25

A reaction solvent used in the preparation is stable under the reaction conditions, and is preferably so inert as not to inhibit the reaction. Examples of the reaction solvent include water, alcohols (such as methanol, ethanol, propanol, butanol and octanol), cellosolves (such as methoxyethanol and ethoxyethanol), aprotic polar organic solvents (such as dimethylformamide, dimethylsulfoxide, dimethylacetamide, tetramethylurea, sulfolane and N,N-dimethylimidazolidinone), ethers (such as diethyl ether, diisopropyl ether, tetrahydrofuran and dioxane), aliphatic hydrocarbons (such as pentane, n-

hexane, c-hexane, octane, decaline and petroleum ether), aromatic hydrocarbons (such as benzene, chlorobenzene, nitrobenzene, toluene, xylene and tetralin), halogenated hydrocarbons (such as chloroform, dichloromethane and dichloroethane), ketones (such as acetone, methyl ethyl ketone and methyl butyl ketone), lower aliphatic acid esters (such as methyl acetate, ethyl acetate and methyl propionate), alkoxy alkanes (such as dimethoxyethane and diethoxyethane), acetonitrile, and the like. solvents are optionally selected depending on the reactivity of the aimed reaction, and are respectively used alone or in a mixture. In some cases, there are used as a non-aqueous solvent by using a dehydrating agent or a drying agent. The above-mentioned solvents are merely examples which can be used in the reaction of the present invention, and the present invention is not limited to these conditions.

Process 1

5

10

15

(wherein R^1 , R^2 , R^3 , R^6 , X^1 and X^2 are as defined above, and R^9 is a hydrogen atom or a protecting group of amide (such as Tr: trityl)).

A compound wherein R⁴ and R⁷ are bonded together in the formula (I), i.e. a compound of the formula (I-1), can be obtained by dehydration-condensation of a compound of the formula (II) and a compound of the formula (VI). The compound of the formula (VI) is a well known compound or can be synthesized by the method disclosed in "J. Prakt. Chem." (vol. 2, p. 253, 1909), "J. Prakt. Chem." (vol. 3, p. 45, 1919), "Chem. Ber." (vol. 118, p. 774, 1985), and German Laid Open Patent Publication No. DE-3045059. The compound of the formula (VI) wherein R⁹ is hydrogen, can be used in this reaction after protecting its acidic amideproton at the 3-position of thiazolidine or oxazolidine with an appropriate substituent (such as TR: trityl) by a well known method.

5

10

25

This reaction is conducted usually in an appropriate organic solvent in the presence of base or acid.

Examples of such a solvent include alcohols, cellosolves, aprotic polar organic solvents, ethers, aromatic hydrocarbons, halogenated hydrocarbons, alkoxyalkanes and acetonitrile.

Examples of the base and the acid include organic amines (such as dimethylamine, diethylamine, diisopropylamine, diisopropylethylamine, trimethylamine, triethylamine, piperidine, piperazine, pyrrolidine, morpholine, pyridine, methanolamine and ethanolamine), metal alkoxides (such as sodium methoxide, sodium ethoxide and lithium isopropoxide), inorganic alkali

metal salts (such as potassium carbonate, sodium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, sodium hydride, sodium acetate and potassium acetate), organic acids (such as acetic acid, trichloroacetic acid and trifluoroacetic acid), inorganic acids (such as phosphoric acid), and the like. These materials are selected appropriately depending on the reactivity of the aimed reaction.

5

10

15

This reaction can be accelerated by removing water formed during reaction out of the system by using an appropriate dehydrating agent such as molecular sieves and anhydrous sodium sulfate or by azeotropic distillation using Dean-Stark tube.

This reaction is conducted usually at a temperature ranging from 0°C to a boiling point of a solvent used, preferably from 20°C to 120°C, for from 0.5 to 30 hours. Process 2

20
$$R^{3} \stackrel{R^{6}}{\mapsto} CO_{2}R^{10}$$

$$R^{2} \stackrel{NH_{2}}{\mapsto} NH$$

$$(VII)$$

$$(I-2e)$$

$$(X^{1}=S, X^{2}=NH)$$

(wherein R^1 , R^2 , R^3 and R^6 are as defined above, R^{10} is C_1-C_4 alkyl such as methyl, ethyl, n-propyl, i-propyl, n-butyl and t-butyl, and Hal is a chlorine atom, a bromine atom or an iodine atom).

A compound of the formula (I) wherein R^4 and R^7 are hydrogen, X^1 is S and X^2 is NH, i.e. a compound of the formula (I-2e) (R^4 , R^7 =H, X^1 =S, X^2 =NH), can be obtained by reacting thiourea with a halocarboxylic acid ester of the formula (VII).

This reaction is conducted usually in an appropriate organic solvent in the presence of base or acid.

Examples of the solvent used include alcohols, cellosolves and aprotic polar organic solvents, and preferably sulfolane is used.

This reaction is conducted usually at a temperature ranging from 0°C to a boiling point of a solvent used, preferably from 50°C to 150°C, for 0.5 to 10 hours.

During the reaction, hydrogen halide is by-produced,

but can be captured with an appropriate base to

accelerate the reaction. Examples of the base thus used

include organic amines (such as dimethylamine,

diethylamine, diisopropylamine, diisopropylethylamine,

trimethylamine, triethylamine, piperidine, piperazine,

pyrrolidine, morpholine, pyridine, methanolamine and

ethanolamine), inorganic alkali metal salts (such as

sodium acetate and potassium acetate), and the like.

Process 3

5

10

25
$$R^3$$
 R^6 CO_2R^{10} $NH_4CS_2NH_4$ R^3 R^6 NH_2 NH_3 NH_4 N

- 101 -

(wherein R^1 , R^2 , R^3 , R^6 , R^{10} and Hal are as defined above).

5

15

20

25

A compound of the formula (I) wherein R^4 and R^7 are H, and X^1 and X^2 are S, i.e. a compound of the formula (I-2b) (R^4 , R^7 =H, X^1 , X^2 =S), can be obtained by reacting ammonium dithiocarbamate with a halocarboxylic acid ester of the formula (VII) and by treating the compound with acid.

This reaction is conducted usually in water or an appropriate organic solvent, or in a mixture thereof. Examples of the solvent thus used include alcohols, cellosolves and aprotic polar organic solvents.

This reaction is conducted usually at a temperature ranging from -10°C to 50°C, preferably from 0°C to 30°C, for 0.5 to 50 hours.

During this reaction, hydrogen halide is by-produced, but can be captured with an appropriate base to accelerate the reaction. Examples of the base thus used include organic amines (such as dimethylamine,

diethylamine, diisopropylamine, diisopropylethylamine, trimethylamine, triethylamine, piperidine, piperazine, pyrrolidine, morpholine, pyridine, methanolamine and ethanolamine), inorganic alkali metal salts (such as potassium carbonate, sodium carbonate, sodium acetate and potassium acetate), and the like.

The adduct thus obtained is treated with an acid (such as hydrochloric acid) to obtain a compound of the

- 102 -

formula (I-2b).

Process 4

5
$$R^{1}$$
 R^{2} R^{10} R^{2} R

10

25

(wherein \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^6 , \mathbb{R}^{10} and Hal are as defined above).

A compound of the formula (I) wherein R⁴ and R⁷ are H, X¹ is S and X² is O, i.e. a compound of the formula (I-2a) (R⁴, R⁷=H, X¹=S, X²=O), can be obtained by reacting an alkalithiocyanate (such as potassium thiocyanate or sodium thiocyanate) with a halocarboxylic acid ester of the formula (VII) to prepare a compound of the formula (XIII) and by treating the compound with an acid.

This reaction is conducted usually in an appropriate organic solvent. Examples of the solvent thus used include aprotic polar organic solvents.

This reaction is conducted usually at a temperature ranging from 50°C to 150°C, preferably from 80°C to

5

10

120°C, for 0.5 to 10 hours.

A compound of the formula (XIII) is isolated, or it is further subjected to acid treatment in the reaction system without being isolated therefrom to obtain the aimed compound of the formula (I-2a). Examples of the acid thus used include hydrochloric acid, and the acid treatment is conducted in an alcohol or an aprotic polar organic solvent. This reaction is conducted at a temperature of from 50°C to 150°C, preferably from 70°C to 100°C, for 5 to 50 hours.

Process 5

15
$$R^4$$
 R^5 R^7 R^6 R^7 R^7 R^8 R

25 (wherein R^1 , R^2 , R^3 , R^4 , R^6 , R^7 , R^9 , X^1 , X^2 and Hal are as defined above).

A compound of the formula (I) other than the one

wherein R⁴ and R⁷ together form a bond, i.e. a compound of the formula (I-2), can be obtained by reacting a compound of the formula (VI) with a halomethylpyrazole of the formula (IX). The compound of the formula (VI) used herein is a well known compound or can be synthesized by a method disclosed in "Ukr. Khim. Zh." (vol. 16, p. 545, 1950), "J. Med. Chem." (vol. 34, p. 1538, 1991), "J. Prakt. Chem." (vol. 2, 79, P. 259 (1909), "J. Prakt. Chem." (vol. 2, 99, P. 56 (1919) or Japanese Unexamined Patent Publication No. 216882/1984. The compound of the formula (VI) wherein R⁹ is hydrogen, is used in this reaction preferably after protecting its acidic amide proton with an appropriate substituent (such as Tr: trityl) by a known method.

This reaction is conducted usually in an appropriate organic solvent in the presence of base. Examples of the solvent thus used include aprotic polar organic solvents, ethers and alkoxyalkanes. Examples of the base thus used include a strong base such as alkali metal amides (e.g. sodium amide and potassium amide). These materials are selected optionally depending on the reactivity of the aimed reaction.

Also, this reaction can be conducted in accordance with a method disclosed in "J. Amer. Chem. Soc." (vol. 87, p. 4588, 1965) or "J. Med. Chem." (vol. 34, p. 1538, 1991). In such a case, a compound of the formula (VI) is reacted with magnesium methylcarbonate in an inert gas

- 105 -

atmosphere such as nitrogen and in an aprotic polar organic solvent such as dimethylformamide to form a chelate compound, and the chelate compound thus formed is further reacted with a halomethylpyrazole of the formula (IX) to obtain a compound of the formula (I-2). This reaction is conducted usually at a temperature ranging from 20°C to 150°C, preferably from 70°C to 100°C. The reaction time varies depending on the materials used, but the formation of the chelate compound takes from 0.5 to 2 hours and the reaction with the halomethylpyrazole takes from 0.5 to 5 hours.

10

In some cases, an amide group at the 3-position of thiazolidine of the compound of the formula (I-2) thus obtained may be deprotected by a well-known method. When R9 is Tr (trityl), this method is conducted by using an organic acid such as trifluoroacetic acid and trichloroacetic acid or an inorganic acid such as hydrochloric acid and sulfuric acid. This reaction is conducted in the absence of a solvent or in the presence of a solvent such as ethers including tetrahydrofuran and dioxane and halogenated solvents including chloroform and dichloromethane, at a temperature ranging from 0°C to 100°C, preferably from 10°C to 50°C, for 0.1 to 5 hours.

Process 6

$$Z-W-V-W-N$$

$$(X)$$

$$Z-W-V-W-N$$

$$(XVIII)$$

$$(X-1;Y=CR^6R^7 \text{ and } R^4, R^7 = b \text{ ond } X-2;Y=CR^6R^7 \text{ and } R^4, R^7 = H)$$

(I-1a;Y=
$$CR^6R^7$$
 and R^4 , R^7 =bond
I-2a;Y= CR^6R^7 and R^4 , R^7 =H
 R^9 \neq H)

$$Z-W-V-W-V$$

$$(I)$$

(I-1a;Y= CR^6R^7 and R^4 , R^7 =bond I-2a;Y= CR^6R^7 and R^4 , R^7 =H R^9 =H)

15

20

25

5

(wherein R², R³, R⁴, R⁹, V, W, Y and Z are as defined above, and R¹² is an appropriate leaving group in nucleophilic substitution reaction, examples of which include a halogen such as chlorine, bromine and iodine, and an aromatic or aliphatic sulfonyloxy group such as ptoluenesulfonyloxy, benzenesulfonyloxy and methanesulfonyloxy).

Among compounds of formula (I), a compound wherein R^1 is -V-W-Z and W is $COCH_2$, can be obtained by using a compound of $Z-COCH_2-Hal$ ($W=COCH_2$, $R^{12}=Hal$, Z and Hal are substituents explained above) instead of the formula (XI). Such a compound is well known and is commercially

available, or can be obtained by a well known method (for example, British Laid Open Patent Publication No. 1107677 discloses a compound wherein Z is pyrrole, Japanese Unexamined Patent Publication No. 85372/1986 discloses a compound wherein Z is oxazole or thiazole and U.S. Patent 5 No. 4,167,626 discloses a compound wherein Z is triazole). Also, such a compound can be obtained by halogenating Z-COCH3 (for example, "Bull. Soc. Chim. Fr., p. 1760 (1973)" discloses a compound wherein Z is furan, "Tetrahedron, 29(2), p. 413 (1973)" discloses a compound 10 wherein Z is thiophene, "J. Heterocyclic Chem., 27(5), p. 1209 (1990)" discloses a compound wherein Z is pyrrole, "Bull. Soc. Chim. Fr., p. 540 (1988)", "Bull. Soc. Chim. Fr., p. 318 (1987)", "J. Heterocyclic Chem., 23(1), P. 275 (1986)", "Arch. Pharm., 316(7), p. 608 (1983)" and 15 "Synlett., (7), p. 483 (1991)" disclose a compound wherein Z is pyrazole, "J. Heterocyclic Chem., 17(8), p. 1723 (1980)" discloses a compound wherein Z is imidazole, and "J. Chem. Soc. C(20), p. 2005 (1976)" and "Heterocycles, 26(3), p. 745 (1987)" disclose a compound 20 wherein Z is triazole) as a starting material by means of an appropriate well known halogenation method (e.g. a method disclosed in Japanese Unexamined Patent Publication No. 85372/1986). Also, such a compound can be obtained by subjecting $Z-CO_2R'$ (R'=lower alkyl or 25 substituted or unsubstituted benzyl) (for example, "Z. Chem., 9(1), p. 22 (1969)" and "Synth. Commun., 20(16),

p. 2537 (1990)" disclose a compound wherein Z is thiophene, "J. Org. Chem., 55(15), p. 4735 (1990)" and "Chem. Pharm. Bull., 17(3), p. 582 (1969)" disclose a compound wherein Z is pyrrole, European Laid Open Patent Publication No. 506194 discloses a compound wherein Z is 5 imidazole, and "Chem. Ber., 117(3), p. 1194 (1984)" discloses a compound wherein Z is pyrazole or triazole) as a starting material to an appropriate well known reduction-oxidation reaction (for example, reduction by 10 diisobutyl aluminum hydride and then oxidation by manganese dioxide) to obtain Z-CHO, and further by converting the product thus obtained to Z-COCH2-hal by an appropriate method (e.g. a method disclosed in "Tetrahedron Letters, p. 4661 (1972)").

15 Among compounds of formula (I), a compound wherein R¹ is -O-W-N(R⁸)-Z and W is CH₂CH₂, can be obtained by using a compound of Z-N(R⁸)-CH₂CH₂-R¹² (W=CH₂CH₂, R¹² is a substituent explained above) among the compounds of the formula (XI). Such a compound is well known and is commercially available, or can be obtained by a well known method, for example, by a method disclosed in J. Med. Chem., 1994, vol., 37, p3980.

A compound of the formula (I) can also be obtained by reacting a compound of the formula (XI) with a hydroxyl group, a thiol group or an amino group of a compound of the formula (X) by nucleophilic substitution reaction.

The compound of the formula (X) is preferably protected

- 109 -

by substituting hydrogen of R⁹ with an appropriate substituent (e.g. Tr: trityl).

5

This reaction is usually conducted in an appropriate organic solvent in the presence of base. Examples of the solvent used include aprotic polar organic solvents, ethers, aromatic hydrocarbons, hydrogenated hydrocarbons, alkoxyalkanes, acetonitrile, and the like.

Examples of the base thus used include organic amines (such as dimethylamine, diethylamine, diisopropylamine, diisopropylethylamine, trimethylamine, triethylamine, 10 piperidine, piperazine, pyrrolidine, morpholine, pyridine, methanolamine and ethanolamine), Acid Captor H: 3,4-dihydro-2H-pyrido[1,2-a]pyrimidin-2-one and Acid Captor 9M: 9-methyl-3,4-dihydro-2H-pyrido[1,2a]pyrimidin-2-one), metal alkoxides (such as sodium 15 methoxide, sodium ethoxide, lithium isopropoxide and potassium t-butoxide), inorganic alkali metal salts (such as sodium hydroxide, potassium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, sodium 20 hydride, sodium acetate and potassium acetate), and alkali metal amides (such as sodium amide). materials are selected appropriately depending on the reactivity of the aimed reaction.

25 This reaction is conducted usually at a temperature ranging from -20°C to a boiling point of the solvent used, preferably from 20°C to 150°C, for from 0.5 to 30

hours.

5

Among compounds thus obtained, the one having a protecting group on the thiazolidine ring, as represented by the formula (XVIII) can be led to a compound of the formula (I) either in accordance with the method disclosed by T.W. Greene, P.G.M. Wuts in "Protective Groups in Organic Synthesis" (1991) or deprotecting the amide group at the 3-position of the thiazolidine ring by the method described in Process 5.

Now, processes for producing intermediates useful for the preparation of the compounds of the present invention will be described.

Process 7

10

15

20

(wherein R^2 , R^3 , R^6 , R^{12} , V, W and Z are as defined above, and R^{13} is a C_1 - C_7 alkyl group, or a benzyl group which may be substituted by a methoxy group or an ethoxy group).

A compound of the formula (II) wherein R⁶ is hydrogen, can be prepared by using a pyrazole carboxylic acid ester of the formula (V) as a starting material. Namely, a hydroxyl group, a thiol group or an amino group directly bonded to the pyrazole of the compound (V) (VH, V=O, S, NR⁸) is subjected to nucleophilic substitution with a compound of the formula (XI) to obtain a compound of the formula (IV). The carboxylic acid ester group of the compound (IV) is reduced to obtain a compound of the formula (III). The compound (III) can be converted to a compound of the formula (III) by oxidizing its hydroxymethyl group.

Among pyrazole carboxylic acid esters of the formula (V), a compound wherein VH is a hydroxyl group can be prepared by methods disclosed in, for example, Chem. Pharm. Bull., vol. 31(4), Pl228 (1983) (R²=H, R³=H), Can. J. Chem., vol 55(1), pl45 (1977) (R²=H, R³=Ph), J.

Heterocyclic Chem., vol 30(4), Pl097 (1993), Japanese Unexamined Patent Publication No. 185964/1988, Chem. Pharm. Bull., vol. 31(4), Pl228 (1983), Chem. Ber., vol. 109(1), P253(1976) and the like ($R^2=1-Me$, $R^3=H$), German Laid Open Patent Application No. 2219484 ($R^2=1-Me$, 5 R³=Me), German Laid Open Patent Application 2219484 $(R^2=1-Me, R^3=C\ell)$, Chem. Ber., vol. 109(1), P261 (1976) $(R^2=1-Me,\ R^3=Br)$, German Laid Open Patent Application 2928136 ($R^2=1-Ph$, $R^3=H$), Chem. Ber., vol. 112(5), P1712 (1979) ($R^2=1-CH_2Ph$, $R^3=H$), Justus Liebigs Ann. Chem., 10 vol., 757, Pl00 (1972) ($R^2=1-(2-Py)$, $R^3=H$), J. Chem. Soc., Perkin Trans. 1, vol.(2), P297 (1974) $(R^2=1-(2$ benzthiazolyl), R3=H), J. Chem. Soc., Perkin Trans. 1, vol. (2), P297 (1974) ($R^2=1-(2-benzimidazoly1), R^3=H$). Further, a compound represented by $(R^2=2-Me,\ R^3=H)$ can be 15 obtained by hydrolyzing, by a conventional method, a benzoyloxy compound obtained by the method disclosed in Chem. Ber., vol. 111(2), P780 (1978). Likewise, a compound represented by $(R^2=2-Et, R^3=H)$ can be obtained by hydrolyzing, by a conventional method, an acetoxy 20 compound obtained by the method disclosed in Chem. Ber., vol. 107(4), P1318 (1974). Similarly, a compound represented by $(R^2=2-Ph, R^3=H)$ can be obtained by hydrolyzing, by a conventional method, an acetoxy compound obtained by the method disclosed in e.g. 25 Yakugaku Zasshi, vol. 83, P725 (1963).

Further, a compound represented by $(R^2=2-Me, R^3=Me)$

or (R²=2-Me, R³=Br) can also be prepared by subjecting a methoxypyrazole carboxylic acid amide derivative obtained by the method disclosed in European Patent Publication No. 394043 to methyl removal and hydrolysis of the amide group by appropriate conventional methods to obtain a pyrazole carboxylic acid, and esterifying the pyrazole carboxylic acid by means of a conventional method.

Among pyrazole carboxylic acid esters of the formula (V), a compound wherein VH is a thiol group, can be

10 obtained, for example, by preparing a pyrazolesulfonyl halide using a pyrazolesulfonic acid disclosed in e.g. J. Org. Chem., vol. 28(12), P3433 (1963) (V=S, R²=H, R³=H) as a starting material and a conventional appropriate halogenating agent such as phosphorus pentachloride,

15 phosphoryl chloride or chorosulfuric acid, and then reducing the pyrazolesulfonyl halide with an appropriate reducing agent such as zinc/hydrochloric acid, zinc amalgam, tin chloride, lithium aluminum hydride or diborane.

Among pyrazole carboxylic acid esters of the formula (V), a compound wherein VH is an amino group can be prepared in accordance with a method disclosed in e.g. Khim.-Farm. Zh., vol. 20(8), P947 (1986) (V=NH, R²=H, R³=H), German Laid Open Patent Application No. 2838029, Japanese Unexamined Patent Publication No. 65089/1984, J. Org. Chem., vol. 54(2), P428(1989), Chem. Pharm. Bull., vol. 35(8), P3235 (1987) and the like (V=NH, R²=1-Me,

- 114 -

 $R^3=H$), Japanese Unexamined Patent Publication No. 20955/1992 (V=NH, $R^2=1-Ph$, $R^3=H$).

5

The step for preparing the compound of the formula (IV) is usually carried out in the same manner under the same condition as described in Process 6.

Further, among compounds of the formula (IV), a compound represented by $(-V-Z=NHPh, R^2=H, R^3=H)$ can be prepared also in accordance with the method disclosed in Collect. Czech. Chem. Commun., vol. 57(3), P656 (1992).

- A compound represented by (-V-Z=SPh, R²=1-Ph, R³=H) can be prepared also by the method disclosed in Chem. Ber., vol. 112(4), P1193 (1979). Likewise, a compound represented by (-V-Z=SPh, R²=2-Ph, R³=H) can be prepared also by the method disclosed in Chem. Ber., vol. 112(4),
- Pl206 (1979). Similarly, a compound represented by (-V-Z=SO₂Ph, R²=H, R³=Me) can be prepared also by the method disclosed in Bull. Soc. Chim. Fr., vol. 9-10, Pt.2, P2746 (1973).

The step for preparing the compound of the formula

(III) is carried out by using a conventional appropriate reducing agent (for example, a metal hydrogen complex compound such as LAH: lithium aluminum hydride, SAH: sodium aluminum hydride, triethoxyaluminum sodium hydride, Red-Al: bis(2-methoxyethoxy)aluminum sodium hydride, SBH: sodium boron hydride or LBH: lithium boron hydride, a metal hydride compound such as DIBAH: diisobutyl aluminum hydride, or catalytic hydrogenation

using CuBaCrO as the catalyst).

Further, the compound of the formula (III) can be obtained also by subjecting a hydroxymethylpyrazole derivative of the formula (XVIII) wherein R², R³, R⁶ and V are as defined above, to nucleophilic substitution with a compound of the formula (XI). The compound of the formula (XIII) can be prepared also by the method disclosed in e.g. J. Heterocycl. Chem., vol. 16(3), P505 (1979) (R²=H, 1-CH₂Ph, 1-Ph, R³=H, R⁶=H, Me) or Arabian J. Sci. Eng., vol 6(1), P3 (1981) (R²=1-Me, R³=H, R⁶=H, Me). This step is usually carried out in the same manner under the same condition as described in Process 6.

The step of preparing the compound of the formula

(II) can be conducted by using an appropriate oxidizing

agent (such as manganese dioxide, PCC: pyridinium chlorochromate, PDC: pyridinium dichromate, DDQ: dichlorodicyanobenzoquinone, chloranil, Swern oxidation: oxalylchloride-dimethylsulfoxide-tertiary amine, and sulfur trioxide-pyridine complex).

The compound of the formula (II) $(R^6=H)$ obtained by the above-mentioned method, can be further modified into a compound of the formula (II) $(R^6 \neq H)$ by alkylating a formyl group with an appropriate alkylating agent by means of a well known method.

This step can be conducted by a method using diazomethane as described in "Tetrahedron Letters, p. 955 (1963)" and "Chem. Ber. vol. 40, p 479 (1907)", a method

- 116 -

using alkyl halide as described in "Synth. Commun., vol. 14(8), p. 743 (1984)" or a method using alkyl lithium as described in "J. Org. Chem., vol. 30, p. 226 (1965)".

5
$$R^{1}$$
 R^{2} R^{1} R^{2} R^{2} R^{1} R^{2} $R^$

15

20

25

(wherein R^1 , R^2 , R^3 , R^6 , R^{10} and Hal are as defined above, and R^{11} represents OR^{10} (R^{10} is as defined above) or C_1-C_3 alkyl such as methyl, ethyl, n-propyl and i-propyl).

A halocarboxylic acid ester of the formula (VII) can be obtained by reacting a halomethylpyrazole of the formula (XVI) with a malonic acid ester or a lower acylacetic acid ester by a known method to form a compound of the formula (XVII), and by halogenating the compound thus formed.

The halomethylpyrazole of the formula (XVI) can be obtained also by halogenating a hydroxymethylpyrazole derivative of the formula (XIII) wherein R^2 , R^3 , R^6 and V are as defined above, by a conventional method, for example by using e.g. $SOC\ell_2$, $POC\ell_3$, $PC\ell_5$, $HC\ell$, $SnC\ell_4$, HBr, PBr_3 , Br_2 , $POBr_3$, mecylchloride or tosylchloride.

15

20

25

Among the compounds having the formula (XVII), a compound wherein R^{11} is C_1 - C_3 alkyl, can be obtained by reacting a halomethylpyrazole of the formula (XVI) with a lower acylacetic acid ester such as methyl acetoacetate and ethyl acetoacetate in the presence of an appropriate base (such as sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide, sodium amide, potassium amide, diisopropyl amide, butyl lithium, metal sodium and potassium carbonate) in accordance with such a method as described in "J. Amer. Chem. Soc., vol. 64, p. 435 (1942)".

Among the compounds having the formula (VII), a compound wherein R¹¹ is OR¹⁰, can be obtained by reacting a halomethylpyrazole of the formula (XVI) with a malonic acid ester such as diethyl malonate and di-t-butyl malonate in the presence of an appropriate base as mentioned above, in accordance with such a method as described in "J. Amer. Chem. Soc., vol. 74, p. 831 (1952)" and "Org. Synth. Coll. vol. 3, p. 705 (1955)".

The step of synthesizing a compound of the formula (VII) can be conducted by using an appropriate halogenating agent (such as bromine and N-chlorosuccinimide) in the presence of an appropriate base (such as potassium hydroxide, sodium methoxide and potassium carbonate) in accordance with such a method as described in "J. Amer. Chem. Soc., vol. 71, p. 3107 (1949)" and "Tetrahedron Letters, vol. 28, p. 5505

(1987)".

5

Also, a compound of the formula (VII) can be obtained by reacting a halomethylpyrazole of the formula (XVI) with a diazoacetic acid ester in the presence of a copper catalyst in accordance with such a method as described in "Zur. Russ. Fiz-Chim., vol. 21, p. 851 (1951)".

10

$$R^3$$
 CO_2R^{13}
 R^{14} -Hall
 R^2
 (V)
 $(V=O, S, NR^8)$
 R^3
 CO_2R^{13}
 R^3
 CO_2R^{13}
 R^3
 CO_2R^{13}
 R^3
 10

(XII-1;Y= CR^6R^7 and R^4 , R^7 =bond XII-2;Y= CR^6R^7 and R^4 , R^7 =H)

 $(X-1;Y=CR^6R^7)$ and $R^4,R^7=b$ ond $X-2;Y=CR^6R^7$ and $R^4,R^7=H$)

(wherein R^2 , R^3 , R^9 , R^{13} , Hal and V are as defined above, Y is CR^6R^7 (R^6 is hydrogen atom, and R^7 forms a bond together with R^4), and R^{14} is a protecting group for the V-H substituent on the pyrazole ring).

An intermediate of the formula (X) can be prepared also by the following method. Namely, V-H of a compound of the formula (V) is protected by an appropriate protecting group R^{14} to obtain a compound (XV). ester group of this compound is reduced to obtain a 15 compound (XIV), which is further oxidized to obtain a compound (XIII). This compound (XIII) can be condensed with a compound (VI) ($X^1=S$, $X^2=O$, R^9 is a hydrogen atom or a protecting group for amide, e.g. Tr: a trityl group) to obtain a compound (XII-1). The compound (XII-1) can 20 be converted to a compound (XII-2) by reducing its olefin bond portion. By removing the protecting group \mathbb{R}^{14} for V-H, the compound (XII-1) or the compound (XII-2) can be converted to a compound (X-1) or a compound (X-2), respectively. The compound (X-1) or the compound (X-2)25 can be converted to a compound (I-1) or a compound (I-2), respectively, by introducing a -W-V-W-Z group to the V-H

- 120 -

group on the respective pyrazole ring by nucleophilic substitution with a compound (XI).

The compound of the formula (XV) can be obtained by protecting the V-H group of a pyrazole carboxylic acid ester derivative of the formula (V) wherein R^2 , R^3 , R^{13} 5 and V are as defined above, with an appropriate protecting group R^{14} . As such a protecting group, the one which is stable under the reaction conditions of the subsequent steps, is preferred. For example, a C_1-C_4 alkoxymethyl group (such as MOM: methoxymethyl, MEM: 2-10 methoxyethoxymethyl, ethoxymethyl, n-propoxymethyl, ipropoxymethyl, n-butoxymethyl, iBM-isobutyloxymethyl, BUM: t-butoxymethyl, POM: pivaloyloxymethyl or SEM: trimethylsilylethoxymethyl, preferably a C_1-C_2 alkoxymethyl), a substituted thiomethyl group (such as 15 MTM: methylthiomethyl), a trialkylsilyl group (such as TMS: trimethylsilyl, TES: triethylsilyl, TIPS: triisopropylsilyl, DEIPS: diethylisopropylsilyl, DMIPS: dimethylisopropylsilyl, DTBMS: di-t-butylmethylsilyl, IPDMS: isopropyldimethylsilyl, TBDMS: t-20 butyldimethylsilyl or TDS: thexyldimethylsilyl, preferably t-butyldimethylsilyl) or a trialkylarylsilyl group (such as DPMS: diphenylmethylsilyl, TBDPS: tbutyldiphenylsilyl, TBMPS: t-butyldimethoxyphenylsilyl, or TPS: triphenylsilyl), may be mentioned. More 25 preferably, an alkoxyalkyl group such as MOM: a

methoxymethyl group, or MEM: a methoxyethoxymethyl group,

- 121 -

or a substituted silyl group such as TBDMS: a tbutyldimethylsilyl group, may, for example, be mentioned. Particularly preferred is a methoxymethyl group.

Such a reaction can be conducted in accordance with the method disclosed e.g. by T.W. Greene, P.G.M. Wuts in "Protective Groups in Organic Synthesis" (1991). In a case where R¹⁴ is a methoxymethyl group, the reaction can be conducted at room temperature by using e.g. methoxymethyl chloride in the presence of diisopropylethylamine.

5

10

15

20

The compound (XV) thus obtained is subjected to reduction of the ester group in the same method as in the step for producing a compound (II) from a compound (IV) as disclosed in Process 7, to obtain a compound (XIV), which is further oxidized to obtain a compound (XIII).

The step for preparing the compound of the formula (XII-1) is a step of dehydrating and condensing the compound (XIII) and a thiazolidine derivative of the formula (VI) wherein X^1 is S, X^2 is O, and R^9 is a hydrogen atom or a protecting group for amide (such as Tr: trityl) under an appropriate condition, and such dehydration condensation can be carried out in the same manner under the same condition as described in Process 1.

The compound (XII-1) thus obtained can be converted to a compound (XII-2) by reducing the olefin bond portion under an appropriate reducing condition. Such a method

- 122 -

will be described in detail in the paragraph relating to mutual conversion of a partial structure of the compound (I).

The compound (XII) can be converted to a compound (X) by removing the protecting group ${\ensuremath{\mathsf{R}}}^{14}$ for the V-H group. 5 Such a reaction can be conducted in accordance with e.g. the method disclosed by T.W. Greene, P.G.M. Wuts in "Protective Groups in Organic Synthesis" (1991). In a case where R^{14} is an alkoxyalkyl group such as MOM: a methoxymethyl group or MEM: a methoxyethoxymethyl group, 10 the reaction can be conducted within a temperature range of from room temperature to the boiling point of the solvent in methanol, ethanol or tetrahydrofuran by means of an inorganic acid such as hydrochloric acid or sulfuric acid, or an organic acid such as trifluoroacetic 15 acid, or within a temperature range of from room temperature to -78°C in methylene chloride by means of e.g. zinc bromide, dimethylborane bromide, diisopropylthioborane bromide or diphenylborane bromide. Further, in a case where R^{14} is substituted silyl group 20 such as TBDMS: a t-butyldimethylsilyl group, the reaction can be conducted within a temperature range of from -78°C to the boiling point of the solvent used, in tetrahydrofuran, dioxane or acetonitrile by means of tetrabutylammonium fluoride, potassium fluoride, a 25 pyridine/hydrogen fluoride complex, or a trifluoroborane/ether complex.

benzyloxycarbonyl.

In a case where a substituent is to be introduced by nucleophilic substitution to the V-H group on the pyrazole ring in the compound of the formula (X), it is preferred to protect the acidic hydrogen atom at the thiazolidine ring with an appropriate protecting group. 5 In such a case, in the process for obtaining the compound (XII-1) from the compound (XIII), it is possible to employ a compound (VI) wherein hydrogen for R^9 is protected by an appropriate substituent (such as Tr: trityl), as the starting material. Further, in the 10 compound (XII-1), the compound (XII-2) and the compound (X), the substituent \mathbb{R}^9 on the thiazolidine ring is a hydrogen atom, such acidic proton may be protected by means of an appropriate protecting group. In such a case, the protecting group is preferably the one which is 15 stable even in the nucleophilic substitution reaction of the V-H group as described in Process 6. For example, a C_1-C_4 alkoxymethyl group (such as MOM: methoxymethyl), a substituted silyl group (such as TBDMS: tbutyldimethylsilyl), an arylmethyl group (such as Tr: 20 trityl, DMTr: Di(4-methoxyphenyl)phenylmethyl, or DAM: di(4-methoxyphenyl)methyl), an aryloxycarbonyl group (such as Z: benzyloxycarbonyl), or a C_1-C_4 alkoxycarbonyl group (such as BOC: t-butoxycarbonyl) may be mentioned. Preferred may, for example, be trityl or 25

Such a protecting group may be introduced or removed

- 124 -

in accordance with e.g. the methods disclosed by T.W.

Greene, P.G.M. Wuts in "Protective Groups in Organic

Synthesis" (1991). For example, the reactions may be

conducted under such conditions as follows: MOM:

methoxymethyl (introduction: methoxymethyl chloride;

removal: hydrochloric acid or trifluoroacetic acid),

TBDMS: t-butyldimethylsilyl (introduction: t
butyldimethylsilyl chloride; removal: tetrabutylammonium

5

20

triethylamine; removal: hydrochloric acid or trifluoroacetic acid), Z: benzyloxycarbonyl (introduction: benzyloxycarbonyl chloride; removal: catalytic hydrogenation in the presence of a palladium carbon catalyst), and BOC: t-butoxycarbonyl

fluoride), Tr: trityl (introduction: trityl chloride,

(introduction: t-butoxycarbonyl anhydride; removal: catalytic hydrogenation in the presence of a palladium/carbon catalyst).

Now, with respect to the compound of the formula (I) thus obtained, a method for mutual conversion of its partial structure, will be described.

(wherein R^1 , R^2 , R^3 , R^6 , R^9 , X^1 and X^2 are as defined

- 125 -

above).

5

10

A compound of the formula (I-1) (wherein R^4 and R^7 are bonded together) obtained by the above method can be modified into a compound of the formula (I-2) (R^4 , R^7 =H) by appropriately reducing a double bond between a pyrazole ring and a thiazolidine or oxazolidine ring (for example by catalytic hydrogenation in the presence of an appropriate catalyst, by using an appropriate metal-hydrogen complex compound, or by using magnesium or sodium amalgam in a lower alcohol such as methanol).

The catalytic hydrogenation is conducted usually in alcohols, cellosolves, aprotic polar organic solvents, ethers, alkoxyalkanes, lower aliphatic acid esters or lower aliphatic acids, and particularly methanol, ethanol, methoxyethanol, dimethylformamide, tetrahydrofuran, dioxane, dimethoxyethane, ethyl acetate or acetic acid is preferably used alone or in a mixture. Examples of the catalyst used include palladium black, palladium carbon and platinum oxide. This reaction can proceed at normal temperature under normal pressure, but it is preferable to conduct the reaction at an elevated temperature under a increased pressure depending on the reactivity of the aimed reaction.

The reduction by a metal-hydrogen complex compound is conducted by using sodium borohydride, potassium borohydride, lithium borohydride, tetramethyl ammonium borohydride or zinc borohydride in an aprotic polar

organic solvent at a temperature ranging from 0°C to 150°C, preferably from 0°C to 30°C. In this reduction, undesired side-reaction can be inhibited by using a Co reagent such as $CoC\ell_2$, $CoC\ell_3$ or $Co(OAc)_2$ in the presence of a ligand such as dimethyl glyoxime, 2,2'-bipyridyl or 1,10-phenanthroline (see WO93/13095).

5

10

25

In the case of using amalgam, the reduction can be conducted usually in an alcohol, preferably in methanol or ethanol, within a temperature range of from -20°C to the boiling point of the solvent, preferably from 0°C to 50°C. Further, the reduction method by magnesium/methanol as disclosed in J. Org. Chem., vol. 40, Pl27 (1975), may also be employed.

15
$$R^6 H$$
 $R^6 H$ $R^7 = H$ $R^6 H$ $R^7 = H$ $R^6 H$ $R^7 = H$

20 (wherein R^1 , R^2 , R^3 , R^4 , R^6 , R^9 , X^1 and X^2 are as defined above).

A compound of the formula (I-2) (R^4 , R^7 =H) can be modified into a compound of the formula (I-2) (R^4 #H, R^7 =H) by alkylating hydrogen at the 5-position of thiazolidine or oxazolidine with an appropriate alkylating agent (such as alkyl halide including methyl iodide or ethyl iodide, alkyl sulfate including dimethyl

10

15

sulfate or diethyl sulfate, and aliphatic or aromatic sulfonic acid esters including methyl tosylate or methyl mesylate) in accordance with a well known method.

This reaction is conducted usually in an appropriate organic solvent in the presence of base. Examples of the solvent thus used include aprotic polar organic solvents, ethers, alkoxyalkanes and the like, and among them, tetrahydrofuran and dimethoxyethane are particularly preferable. Examples of the base include alkali metal amides (such as lithium diisopropylamide (LDA) and potassium amide) and aliphatic or aromatic lithium compounds (such as n-butyl lithium, t-butyl lithium and phenyl lithium). These materials are selected appropriately depending on the reactivity of the aimed reaction.

This reaction is conducted usually at a temperature ranging from $-20\,^{\circ}\text{C}$ to $100\,^{\circ}\text{C}$, preferably from $-10\,^{\circ}\text{C}$ to $30\,^{\circ}\text{C}$, for from 0.1 to 10 hours.

20
$$R^3$$
 R^6 R^6 R^7 R^7 R^8 R

25 (wherein R^1 , R^2 , R^3 and R^6 are as defined above).

A compound of the formula (I-2e) ($X^1=S$, $X^2=NH$) can be modified into a compound of the formula (I-2a) ($X^1=S$,

 $X^2=0$) by hydrolyzing an imino group at the 2-position of the thiazolidine in accordance with a well known method.

This reaction is conducted usually in an appropriate

organic solvent in the presence of water or acid.

Examples of the solvent thus used include alcohols, cellosolves, aprotic polar organic solvents, ethers, alkoxyalkanes, and the like, and particularly methanol, ethanol, methoxyethanol, sulfolane, dioxane and dimethoxyethane are preferably used. Examples of the acid thus used include inorganic acids (such as hydrochloric acid, sulfuric acid and hydrobromic acid). These materials are selected appropriately depending on the reactivity of the aimed reaction.

5

10

25

This reaction is conducted usually at a temperature of from 50°C to a boiling point of a solvent used, preferably from 80°C to 150°C, for from 0.5 to 30 hours.

20
$$(Ic)$$
 $(X^1=0, X^2=S)$ (Id) $(X^1=0, X^2=0)$

A compound of the formula (Ic) $(X^1=0, X^2=S)$ can be modified into a compound of the formula (Id) $(X^1=0, X^2=0)$ by oxidizing a thioxo group at the 2-position of thiazolidine in accordance with a well known method.

This reaction is conducted by using an appropriate

- 129 -

oxidizing agent (such as hydrogen peroxide, an organic peroxide including peracetic acid, perbenzoic acid, methachloroperbenzoic acid, monopermaleic acid, monoperphthalic acid and the like, mercury ion, bromine, chlorine and meta-periodic acid) generally in water or in 5 a solvent such as aprotic polar organic solvents (e.g. dimethylformamide, dimethylsulfoxide, dimethylacetamide, tetramethylurea, sulfolane and N,Ndimethylimidazolidinone), ethers (e.g. tetrahydrofuran and dioxane), and alkoxyalkanes (e.g. dimethoxyethane and 10 diethoxyethane). These materials are selected appropriately depending on the reactivity of the aimed reaction, and are used respectively alone or in combination.

This reaction is conducted generally at a temperature ranging from 0°C to a boiling point of a solvent used, preferably from 20°C to 100°C, for from 0.5 to 30 hours.

The above-mentioned compounds (II), (III), (IV), (VII), (VIII), (IX), (X), (XII), (XIII), (XIV), (XV),

20 (XVI) and (XVII) are novel compounds, and are useful as intermediate products for preparing the compound of the formula (I) of the present invention.

- 130 -

BEST MODE FOR CARRYING OUT THE INVENTION

Now, the present invention will be described in further detail with reference to Examples for preparation of the compounds of the present invention,

Pharmacological Test Examples and Formulation Examples.

However, it should be understood that the present invention is by no means restricted by such specific Examples.

EXAMPLE 1

Preparation of 5-((5-(2-hydroxy-2-phenylethoxy)-1-methyl-3-pyrazolyl)methylidene)thiazolidin-2,4-dione (Compound No. I-la-1)

Ph OH Me O (I-1a-1)

15

Step 1

Ethyl 1-methyl-5-phenacyloxy-3-pyrazolecarboxylate (Compound No. IV-1)

20

$$\begin{array}{c} CO_2Et \\ \hline \\ O \\ \hline \\ O \\ \hline \\ Me \end{array}$$
 (IV-1)

171 mg (1.00 mmol) of ethyl 5-hydroxy-l-methyl-325 pyrazolecarboxylate (Compound No. V-1) (prepared in accordance with a method disclosed in Japanese Unexamined Patent Publication No. 185964/1988) and 170 mg (1.10

mmol) of phenacyl chloride (TCI) were dissolved in dimethylformamide dehydrated with molecular sieves. this solution, 144 mg of anhydrous potassium carbonate was added, and the mixture was stirred at room temperature overnight. To this reaction solution, 5 m ℓ 5 of a saturated sodium chloride aqueous solution was added, and the mixture was extracted with 45 m ℓ of chloroform. The organic layer was washed with a saturated sodium chloride aqueous solution and then dried over anhydrous magnesium sulfate. The drying agent was 10 filtered off, and the solvent was distilled off under reduced pressure. The residue thereby obtained was subjected to silica gel column chromatography (eluent: ethyl acetate/hexane = 2/1) to obtain 285 mg (98.6%) of the desired substance (Compound No. IV-1) as colorless 15 powder.

MS(FAB) m/e: $289(M+H)^+$ 60 MHz 1 H-NMR(CDCl₃) δ : 1.35(3H, t), 3.79(3H, s), 4.33(2H, q), 5.31(2H, s), 5.98(1H, s), 7.40-7.65(3H, m), 7.8-8.0(2H, m)

In the same manner as above, Compounds Nos. IV-2 to IV-13 were prepared by using Compound No. V-1, ethyl 1-t-butyl-5-hydroxy-3-pyrazolecarboxylate (Compound No. V-2) and ethyl 5-hydroxy-1-phenyl-3-pyrazolecarboxylate

(Compound No. V-3) as starting materials. (R², R³, R¹³, W and Z in the Table correspond to the substituents of Compound No. IV.)

$$Z-W-O$$
 N
 R^{2}
 $CO_{2}R^{13}$
 (IV)
 $R^{1}=O-W-Z$

Starting material	Compound	R ²	R ³	R ¹³	Z-W
V-1	IV-2	l-Me	Н	Et	PhCH ₂ CH ₂
V-2	IV-3	1- <u>t</u> -Bu	H	Et	PhCOCH ₂
V-3	IV-4	l-Ph	н	Et	PhCOCH ₂
V-1	IV-5	l-Me	H	Et	5-Me-2-Ph-4-oxazolyl COCH ₂
V-2	IV-6	1- <u>t</u> -Bu	н	Et	5-Me-2-Ph-4-oxazolyl COCH ₂
V-3	IV-7	l-Ph	H	Et	5-Me-2-Ph-4-oxazolyl
V-1	IV-8	l-Me	Н	Et	3-Me-2-benzo[b]thio-phenyl-COCH2
V-1	IV-9	l-Me	н .	Et	2-benzo[b]furanyl- COCH ₂
V-1	IV-10	l-Me	Н	Et	5-Me-1-Ph-4- pyrazolyl-COCH ₂
V-1	IV-11	l-Me	Н	Et	3-Br-l-Me-2-indolyl-COCH ₂
v-1	IV-12	l-Me	Н	Et	3-indolyl-CH ₂ CH ₂
V-1	IV-13	l-Me	Н	Et	3-Ph-5-isoxazolyl- COCH ₂

- 133 -

	Compound No.	- Properties		MS (m/e)
	IV-2	Colorless powder		274(M) ⁺ EI
	IV-3	Brown powder		331(M+H) ⁺ FAB
5	IV-4	Brown oil		351(M+H) ⁺ FAB
	IV-5	Pale yellow powder	181.8-183.2	370(M+H) ⁺ FAB
	IV-6	Pale brown powder		411(M) ⁺ EI
	IV-7	Pale brown powder		431(M) ⁺ EI
	IV-8	Pale brown powder		358(M) ⁺ EI
10	IV-9	Pale yellow powder		328(M) ⁺ EI
	IV-10	Colorless powder		368(M) ⁺ EI
	IV-11	Colorless crystals		419(M) ⁺ EI
	IV-12	Purple powder		313(M) ⁺ EI
	IV-13	Pale brown powder	<u> </u>	356(M+H) +FAB

IV-2

15

60 MHz 1 H-NMR(CDCl₃) δ : 1.35(3H, t), 3.07(2H, t), 3.66(3H, s), 4.29(2H, t), 4.3(2H, q), 6.07(1H, s), 7.25(5H, s)

20 IV-3

60 MHz 1 H-NMR(CDCl₃) δ : 1.34(3H, t), 1.68(9H, s), 4.30(2H, q), 5.32(2H, s), 6.02(1H, s), 7.3-7.6(3H, m), 7.8-8.0(2H, m)

IV-4

25 60 MHz 1 H-NMR(CDCl₃) δ : 1.35(3H, t), 4.35(2H, q), 5.38(2H, s), 6.12(1H, s), 7.3-7.6(6H, m), 7.7-7.9(4H, m) IV-5

```
60 MHz ^{1}H-NMR(CDCl<sub>3</sub>)\delta: 1.40(3H, t), 2.73(3H, s),
      3.86(3H, s), 4.35(2H, q), 5.36(2H, s), 6.06(1H, s), 7.3-
      7.5(3H, m), 7.8-8.1(2H, m)
      IV-6
      60 MHz ^{1}H-NMR(CDCl<sub>3</sub>)\delta: 1.35(3H, t), 1.70(9H, s),
  5
      2.72(3H, s), 4.32(2H, q), 5.33(2H, s), 6.07(1H, s), 7.4-
      8.1(5H, m)
      IV-7
       60 MHz ^{1}H-NMR(CDCl<sub>3</sub>)\delta: 1.37(3H, t), 2.72(3H, s),
      4.37(2H, q), 5.42(2H, s), 6.18(1H, s), 7.3-8.1(10H, m)
10
      IV-8
       60 MHz ^{1}H-NMR(CDCl<sub>3</sub>)\delta: 1.35(3H, t), 2.79(3H, s),
      3.85(3H, s), 4.35(2H, q), 5.18(2H, s), 6.07(1H, s), 7.42-
      7.55(2H, m), 7.78-7.98(2H, m)
     IV-9
15
      60 MHz ^{1}H-NMR(CDCl<sub>3</sub>)\delta: 1.40(3H, t), 3.88(3H, s),
     4.39(2H, q), 5.38(2H, s), 6.12(1H, s), 7.32-7.88(5H, m)
     IV-10
      60 MHz ^{1}H-NMR(CDCl<sub>3</sub>)\delta: 1.37(3H, t), 2.61(3H, s),
     3.85(3H, s), 4.36(2H, q), 5.11(2H, s), 6.07(1H, s),
20
     7.50(5H, s), 8.09(1H, s)
     IV-11
      60 MHz ^{1}H-NMR(CDCl<sub>3</sub>)\delta: 1.36(3H, t), 3.84(3H, s),
     4.01(3H, s), 4.37(2H, q), 5.51(2H, s), 6.07(1H, s), 7.11-
     7.77(4H, m)
25
     IV-12
      60 MHz ^{1}H-NMR(CDCl<sub>3</sub>)\delta: 1.35(3H, t), 3.26(2H, t),
```

3.66(3H, s), 4.31(2H, t), 4.37(2H, q), 6.03(1H, s), 7.05-8.1(6H, m)

IV-13

25

60 MHz 1 H-NMR(CDCl₃) δ : 1.37(3H, t), 3.87(3H, s),

4.37(2H, q), 5.35(2H, s), 6.07(1H, s), 7.35-7.92(6H, m)5 Step 2

3-Hydroxymethyl-5-(2-hydroxy-2-phenylethoxy)-lmethylpyrazole (Compound No. III-1)

A suspension of 897 mg (23.6 mmol) of lithium aluminum hydride in 50 m ℓ of tetrahydrofuran dehydrated by molecular sieves, was cooled to 0°C in a nitrogen 15 atmosphere, and a solution of 4.53 g (15.7 mmol) of Compound IV-1 in 100 m ℓ of tetrahydrofuran dehydrated by molecular sieves, was gradually dropwise added thereto. After the dropwise addition, ice bath was taken off, and the mixture was stirred at room temperature for 5.5 20 hours. To this reaction solution, hydrous magnesium sulfate was added to terminate the reaction. Then, the inorganic salt was removed by filtration with celite and thoroughly washed with tetrahydrofuran. The solvent in the filtrate was distilled off under reduced pressure. The residue thereby obtained was subjected to silica gel column chromatography (eluent: 6% methanol/chloroform) to

- 136 -

obtain 4.44 g (quantitative) of the desired substance (Compound No. III-1) as pale yellow solid.

 $MS(EI) m/e: 248(M)^{+}$

60 MHz 1 H-NMR(CDCl₃) δ : 3.2-4.2(2H, br), 3.44(3H, s),

4.06(2H, d), 4.41(2H, s), 5.02(1H, t), 5.44(1H, s), 7.30(5H, s)

In the same manner, Compounds Nos. III-2 to III-13 were prepared by using Compounds Nos. IV-2 to IV-13 as starting materials. (\mathbb{R}^2 , \mathbb{R}^3 , W and Z in the Table correspond to the substituents of Compound No. III.)

$$Z-W-O$$
 N
 R^2
 $R^1=O-W-Z$

15

10

Starting material	Compound No.		R ³	Z-W
	·			
IV-2	III-2	1-Me	H	PhCH ₂ CH ₂
IV-3	III-3	1- <u>t</u> -Bu	H	PhCH(OH)CH ₂
IV-4	III-4	1-Ph	H	PhCH(OH)CH ₂
IV-5	III-5	1-Me	н	5-Me-2-Ph-4-oxazolyl- CH(OH)CH ₂
IV-6	III-6	1- <u>t</u> -ви	H	5-Me-2-Ph-4-oxazolyl- CH(OH)CH ₂
IV-7	III-7	l-Ph	Н	5-Me-2-Ph-4-oxazolyl- CH(OH)CH ₂

- 137 -	
---------	--

		- 13	5 / –	
IV-8	III-8	l-Me	Н	3-Me-2-benzo[b]thio- phenyl-CH(OH)CH ₂
IV-9	III-9	l-Me	Н	2-benzo[b]furanyl- CH(OH)CH ₂
IV-10	III-10	l-Me	Н	5-Me-1-Ph-4-pyrazolyl-CH(OH)CH2
IV-11	III-11	l-Me	Н	3-Br-l-Me-2-indolyl- CH(OH)CH ₂
IV-12	III-12	l-Me	Н	3-indolyl-CH ₂ CH ₂
IV-13	III-13	l-Me	Н	3-Ph-5-isoxazolyl- CH(OH)CH ₂
	IV-9 IV-10 IV-11 IV-12	IV-9 III-9 IV-10 III-10 IV-11 III-11 IV-12 III-12	IV-8 III-8 1-Me IV-9 III-9 1-Me IV-10 III-10 1-Me IV-11 III-11 1-Me IV-12 III-12 1-Me	IV-9 III-9 1-Me H IV-10 III-10 1-Me H IV-11 III-11 1-Me H IV-12 III-12 1-Me H

	Compound No.	Properties	mp (°C)	MS (m/e)
15	III-2	Colorless powder		232(M) ⁺ EI
	III-3	Brown oil		290(M) ⁺ EI
	III-4	Pale yellow powder		310(M) ⁺ EI
	III-5	Brown oil		329(M) ⁺ EI
	III-6	Red amorphous	;	371(M) ⁺ EI
20	III-7	Brown amorphous	:	391(M) ⁺ EI
	III-8	Pale brown powder	:	318(M) ⁺ EI
	III-9	Reddish brown amorphous	:	288(M) ⁺ EI
	III-10	Pale yellow amorphous	:	329(M+H) ⁺ FAB
	III-11	Orange amorphous	3	380(M+H) ⁺ FAB
25	III-12	Brown amorphous	2	271(M) ⁺ EI
ر ہے۔	III-13	Reddish brown amorphous	3	315(M) ⁺ EI

```
Compound No. (III-2)
      60 MHz ^{1}H-NMR(CDCl<sub>3</sub>)\delta: 3.0(1H, br s), 3.03(2H, t),
      3.48(3H, s), 4.16(2H, t), 4.48(2H, br s), 5.46(1H, s),
      7.16(5H, s)
     Compound No. (III-3)
  5
       60 MHz ^{1}H-NMR(CDCl<sub>3</sub>)\delta: 1.46(9H, s), 2.9(2H, br),
      4.08(2H, d), 4.43(2H, s), 5.04(1H, t), 5.50(1H, s),
      7.31(5H, s)
     Compound No. (III-4)
      60 MHz ^{1}H-NMR(CDCl<sub>3</sub>) \delta: 2.2(2H, br), 4.19(2H, d),
10
      4.60(2H, s), 5.1(1H, t), 5.66(1H, s), 7.2-7.5(10H, m)
     Compound No. (III-5)
      60 MHz ^{1}H-NMR(CDCl<sub>3</sub>)\delta: 2.42(3H, s), 2.6(2H, br s),
     3.57(3H, s), 4.26(2H, m), 4.49(2H, s), 5.0(1H, m),
     5.54(1H, s), 7.3-8.1(5H, m)
15
     Compound No. (III-6)
      60 MHz ^{1}H-NMR(CDCl<sub>3</sub>)\delta: 1.48(9H, s), 2.40(3H, s), 2.4(2H,
     br s), 4.28(2H, d), 4.51(2H, s), 5.03(1H, t), 5.57(1H,
     s), 7.2-8.0(5H, m)
     Compound No. (III-7)
20
      60 MHz ^{1}H-NMR(CDCl<sub>3</sub>)\delta: 2.25(3H, s), 4.33(2H, d),
     4.55(2H, s), 4.98(1H, t), 5.70(1H, s), 7.2-8.0(10H, m)
     Compound No. (III-8)
      60 MHz ^{1}H-NMR(CDCl<sub>3</sub>)\delta: 2.42(3H, s), 3.3(2H, br),
     3.59(3H, s), 4.26(2H, d), 4.46(2H, s), 5.53(1H, t),
25
     5.58(1H, s), 7.35-7.92(4H, m)
     Compound No. (III-9)
```

60 MHz 1 H-NMR(CDCl₃) δ : 3.53(3H, s), 4.4(2H, s), 4.40(2H, br), 4.43(2H, d), 5.22(1H, t), 5.68(1H, s), 6.79(1H, s), 7.12-7.57(4H, m)

Compound No. (III-10)

5 60 MHz 1 H-NMR(CDCl₃) δ : 2.31(3H, s), 3.55(3H, s), 3.7(2H, br), 4.19(2H, d), 4.48(2H, s), 5.05(1H, m), 5.55(1H, s), 7.40(5H, s), 7.59(1H, s)

Compound No. (III-11)

60 MHz 1 H-NMR(CDCl₃) δ : 2.96(3H, s), 3.50(2H, s),

10 3.88(3H, s), 4.35(2H, d), 4.46(2H, s), 5.53(1H, s), 5.6(1H, m), 7.00-7.57(4H, m)

Compound No. (III-12)

60 MHz 1 H-NMR(CDCl₃) δ : 2.53(lH, s), 3.22(2H, t),

3.53(3H, s), 4.27(2H, t), 4.51(2H, s), 5.49(1H, s), 7.05-

15 8.29(6H, m)

Compound No. (III-13)

60 MHz 1 H-NMR(CDCl₃) δ : 3.49(3H, s), 3.6(2H, br),

4.32(2H, d), 4.49(2H, s), 5.23(1H, t), 5.56(1H, s),

6.62(1H, s), 7.25-7.86(5H, m)

20 <u>Step 3</u>

25

5-(2-Hydroxy-2-phenylethoxy)-1-methylpyrazole-3-carbaldehyde (Compound No. II-1)

Preparation of Compound No. 2 by oxidation of manganese

- 140 -

dioxide

9.62(1H, s)

20

2.72 g (11.0 mmol) of Compound No. III-1 was dissolved in 108 me of chloroform and 2 me of methanol. To this solution, 5.23 g of active manganese dioxide was added, and the mixture was stirred at room temperature 5 for 8 hours. The oxidant residue was removed by filtration with celite. Then, the solvent in the obtained filtrate was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography (eluent: ethyl acetate/hexane = 5/2) to 10 obtain 1.53 g (56.6%) of the desired substance (Compound No. II-1) as colorless oil. MS(EI) m/e: 246(M)⁺ 60 MHz 1 H-NMR(CDCl₃) δ : 2.80(1H, brs), 3.69(3H, s), 15 4.13(2H, d), 5.07(1H, t), 5.95(1H, s), 7.34(5H, s),

In the same manner, Compounds Nos. II-2 to II-6 were prepared by using Compounds Nos. III-2 to III-5 as starting materials. Compounds Nos. II-3 and II-4 were simultaneously formed by the reaction of Compound No. III-3 as the starting material. (R², R³, W and Z in the Table correspond to the substituents of Compound No. II.)

25
$$Z-W-O$$
 N
 R^{3}
 CHO
 $R^{1}=O-W-Z$
 $R^{6}=H$

- 141 -

Starting material	Compound No.	R ²	R ³	Z-W
III-2	II-2	l-Me	Н	PhCH ₂ CH ₂
111-3	II-3	1- <u>t</u> -Bu	Н	PhCH(OH)CH ₂
III-3	II-4	l- <u>t</u> -Bu	Н	PhCOCH ₂
III-4	II-5	1-Ph	H	PhCH(OH)CH ₂
III-5	II-6	l-Me	Н	5-Me-2-Ph-4- oxazolyl-CH(OH)(

	Compound No.	Properties	mp (°C)	MS (m/e)		
	II-2	Colorless oil	2	30(M) ⁺ EI		
15 II-3 P		Pale yellow oil	2	288(M) ⁺ EI		
	II-4	Colorless needles	2	44(M) ⁺ EI		
	II-5	Yellow oil	3(08(M) ⁺ EI		
	II-6	Brown oil	3:	27(M) ⁺ EI		

20 Compound No. (II-2)

60 MHz 1 H-NMR(CDCl $_{3}$) δ : 3.08(2H, t), 3.67(3H, s), 4.25(2H,

t), 5.95(lH, s), 7.21(5H, s), 9.67(lH, s)

Compound No. (II-3)

60 MHz 1 H-NMR(CDCl₃) δ : 1.56(9H, s), 2.69(1H, br),

25 4.16(2H, d), 5.10(1H, t), 6.01(1H, s), 7.32(5H, s),

9.65(lH, s)

Compound No. (II-4)

- 142 -

60 MHz ¹H-NMR(CDCl₃)δ: 3.84(3H, s), 5.34(2H, s), 5.96(1H, s), 7.4-7.9(5H, m), 9.70(1H, s)

Compound No. (II-5)

60 MHz ¹H-NMR(CDCl₃)δ: 2.63(1H, br), 4.19(2H, d),

5.05(1H, t), 6.11(1H, s), 7.2-7.6(10H, m), 9.77(1H, s)

Compound No. (II-6)

60 MHz ¹H-NMR(CDCl₃)δ: 2.36(3H, s), 3.6(1H, br s),

3.65(3H, s), 4.3(2H, m), 5.02(1H, t), 6.01(1H, s), 7.2-8.0(5H, m), 9.63(1H, s)

10 l-Methyl-5-phenacyloxypyrazole-3-carbaldehyde (Compound
No. II-7)

15

Preparation of Compound No. II by Swern oxidation

A solution of 175 μℓ (2.01 mmol) of oxalyl chloride in 2.5 mℓ of dichloromethane dehydrated by molecular sieves was cooled to -78°C in a nitrogen atmosphere, and 20 a solution of 353 mg (4.98 mmol) of dimethylsulfoxide dehydrated by molecular sieves in 1.5 mℓ of dichloromethane dehydrated by molecular sieves, was dropwise added thereto, and the mixture was stirred at -78°C for 30 minutes. To this solution, a solution of 124 mg (0.500 mmol) of Compound No. III-l in 3.0 mℓ of dichloromethane dehydrated by molecular sieves, was gradually dropwise added, and then the mixture was

stirred at -78°C for one hour. To this reaction solution, 1.4 m² of triethylamine dehydrated by molecular sieves, was dropwise added. Then, the temperature was raised to room temperature, and 5 m² of water was added thereto. The mixture was extracted with 45 m² of chloroform. The organic layer was dried over anhydrous sodium sulfate, and then the drying agent was filtered off. Then, the solvent in the filtrate was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography (eluent: ethyl acetate/hexane = 1/1) to obtain 101 mg (82.4%) of the desired substance (Compound No. II-7) as colorless needles.

mp 140-141°C

25

15 MS(EI) m/e: $244(M)^{+}$ 60 MHz 1 H-NMR(CDCl₃) δ : 3.84(3H, s), 5.34(2H, s), 5.96(1H, s), 7.4-7.9(5H, m), 9.70(1H, s)

In the same manner, Compounds Nos. II-8 to II-14 were prepared by using Compounds Nos. III-5 to III-11 as

20 starting materials. (R², R³, W and Z in the Table correspond to the substituents of Compound No. II.)

Z-W-O
$$\stackrel{R^3}{N}$$
 CHO $\stackrel{(II)}{R^2}$ $\stackrel{R^1=O-W-Z}{R^6=H}$

	Starting		R ²	R ³		z-w
5	III-5	II-8	l-Me	Н	5-Me-2-1	Ph-4-oxazolyl-
	III-6	11-9	1- <u>t</u> -Bu	н	5-Me-2-I oxazolyl	
	III-7	II-10	l-Ph	Н	5-Me-2-I COCH ₂	Ph-4-oxazolyl-
10	III-8	11-11	l-Me	н	3-Me-2-benzo[b]thiophenyl-COCH2	
	III-9	II-12	l-Me	н	2-benzo[b]furanyl- COCH ₂	
15	III-10	II-13	l-Me	H	5-Me-1-Ph-4- pyrazolyl-COCH ₂	
	111-11	II-14	l-Me	н	3-Br-l-M	e-2-indolyl-
20	Compound No.	Prop	erties		mp (°C)	MS (m/e)
	11-8	Pale yellow	powder			325(M) ⁺ EI
	11-9	Pale brown	powder		158-160	367(M) ⁺ EI
	II-10	Pale brown	powder		125-128	387(M) ⁺ EI
	11-11	Pale yellow	powder			314(M) ⁺ EI
25	II-12	Orange powd	er			284(M) ⁺ EI
	11-13	Colorless p	owder			324(M) ⁺ EI
	II-14	Pale brown	powder			375(M) ⁺ EI

Compound No. (II-8)

- 60 MHz 1 H-NMR(CDCl₃) δ : 2.69(3H, s), 3.86(3H, s), 5.37(2H,
- s), 5.99(1H, s), 7.39-7.53(3H, m), 7.90-8.09(2H, m),
- 9.73(1H, s)
- 5 Compound No. (II-9)
 - 60 MHz 1 H-NMR(CDCl₃) δ : 1.74(9H, s), 2.72(3H, s), 5.40(2H,
 - s), 6.09(lH, s), 7.4-7.6(3H, m), 7.9-8.1(2H, m), 9.77(lH, s)

Compound No. (II-10)

- 10 60 MHz 1 H-NMR(CDCl₃) δ : 2.67(3H, s), 5.43(2H, s), 6.13(1H,
 - s), 7.3-8.1(10H, m), 9.86(1H, s)

Compound No. (II-11)

- 60 MHz 1 H-NMR(CDCl₃) δ : 2.79(3H, s), 3.90(3H, s), 5.18(2H,
- s), 6.02(1H, s), 7.42-8.10(4H, m), 9.72(1H, s)
- 15 Compound No. (II-12)
 - 60 MHz 1 H-NMR(CDCl₃) δ : 3.89(3H, s), 5.38(2H, s), 6.06(1H,
 - s), 7.28-7.84(5H, m), 9.78(1H, s)

Compound No. (II-13)

- 60 MHz 1 H-NMR(CDCl₃) δ : 2.59(3H, s), 3.89(3H, s), 5.12(2H,
- 20 s), 6.01(1H, s), 7.50(5H, s), 8.07(1H, s), 9.79(1H, s)
 Compound No. (II-14)
 - 60 MHz 1 H-NMR(CDCl₃) δ : 3.87(3H, s), 4.00(3H, s), 5.53(2H,
 - s), 6.03(1H, s), 7.40-7.76(4H, m), 9.75(1H, s)

Preparation of Compound No. II by PCC oxidation

- To a suspension of 1.041 g (4.828 mmol) of pyridinium chlorochromate, 401 mg (4.89 mmol) of sodium acetate,
 - 0.50 g of pulverized molecular sieves 4A and 1.01 g of

- 146 -

celite in 30 mℓ of dichloromethane dehydrated by molecular sieves, a solution of 210 mg (0.846 mmol) of Compound III-l in 10 mℓ of dichloromethane dehydrated by molecular sieves, was dropwise added at 0°C, and the mixture was stirred at 0°C for 90 minutes and then at room temperature for 140 minutes. The inorganic salt was filtered off. Then, the solvent was distilled off under reduced pressure. The residue thereby obtained was subjected to silica gel column chromatography (eluent: 4% methanol/chloroform) to obtain 86 mg (41.5%) of the desired substance (Compound No. II-7) as colorless needles.

Preparation of Compound No. II by oxidation of a sulfur trioxide-pyridine complex salt

10

To a solution of 80 mg (0.32 mmol) of Compound No. 15 III-l in 4 mℓ of dimethylsulfoxide dehydrated by molecular sieves, a solution of 304 mg (1.91 mmol) of a sulfur trioxide-pyridine complex salt and 196 mg (1.94 mmol) of triethylamine in 4 me of dimethylsulfoxide dehydrated by molecular sieves, was dropwise added, and 20 the mixture was stirred at room temperature for 4 hours. Ice water was added thereto, and the mixture was extracted with ethyl acetate. Then, the organic layer was dried over anhydrous sodium sulfate, and the drying agent was filtered off. Then, the solvent was distilled 25 off under reduced pressure. The residue thereby obtained was subjected to thin layer chromatography (developer:

- 147 -

ethyl acetate/hexane = 1/1) to obtain 39 mg (48.9%) of the desired substance (Compound No. II-1) as colorless oil and 3 mg (4.0%) of Compound No. II-7 as colorless needles.

5 Step 4

5-((5-(2-Hydroxy-2-phenylethoxy)-1-methyl-3pyrazolyl)methylidene)thiazolidin-2,4-dione (Compound No. I-la-1)

1.53 g (6.21 mmol) of Compound No. II-1 and 974 mg of thiazolidinedione were suspended in 60 m ℓ of toluene. this solution, 108 $\mu\ell$ of glacial acetic acid and then 122 15 $\mu\ell$ of piperidine were added, and the mixture was stirred at 130°C for 140 minutes. After confirming disappearance of the starting material by thin layer chromatography, the solvent was distilled off under reduced pressure. The residue thereby obtained was dissolved in 20 tetrahydrofuran/chloroform. This solution was washed with a saturated sodium chloride aqueous solution and then dried over anhydrous magnesium sulfate. The drying agent was filtered off. Then, the solvent was distilled off under reduced pressure. The residue thereby obtained 25 was subjected to silica gel column chromatography (eluent: tetrahydrofuran/hexane = 1/2) and then to thin

- 148 -

layer chromatography (developer: tetrahydrofuran/hexane = 1/2) to obtain 2.11 g (98.3%) of the desired substance (Compound No. I-la-1) as colorless powder.

mp 172.8-174.3°C

15

20

5 MS(EI) m/e: $345(M)^{+}$ 500 MHz $^{1}H-NMR(d^{6}-acetone)\delta$: 3.70(3H, s), $4.21(1H, dd, ^{2}J_{HH} = 10.3 Hz, ^{3}J_{HH} = 7.6 Hz)$, $4.27(1H, dd, ^{2}J_{HH} = 10.3 Hz, ^{3}J_{HH} = 3.9 Hz)$, $4.94(1H, d, ^{3}J_{HH} = 4 Hz)$, $5.15(1H, ddd, ^{3}J_{HH} = 7.6 Hz, ^{3}J_{HH} = 3.9 Hz, ^{3}J_{HH} = 4 Hz)$, $5.77(1H, dd, ^{3}J_{HH} = 7.6 Hz, ^{3}J_{HH} = 7.3 Hz)$, $7.38(2H, dd, ^{3}J_{HH} = 7.3 Hz, ^{3}J_{HH} = 7.6 Hz)$, 7.51(1H, s), $7.52(2H, d, ^{3}J_{HH} = 7.6 Hz)$, 12.3(1H, s)

In the same manner, Compounds Nos. I-la-2 to I-la-14 were prepared by using Compounds Nos. II-2 to II-l4 as starting materials. **R², R³, W and Z in the Table correspond to the substituents of Compound No. 1-la.)

Starting Compound R^2 R^3 material No. z-w1-Me II-2 I-la-2 25 Η PhCH2CH2 II-3 I-la-3 $1-\underline{t}-Bu$ PhCH(OH)CH2 H II-4 I-la-4l-t-Bu Η PhCOCH₂

	- 149 -					
	II-5	I-la-5	l-Ph	Н	F	PhCH(OH)CH ₂
	II-6	I-la-6	l-Me	H	5-Me-2- CH(OH)C	Ph-4-oxazolyl H ₂
	II-7	I-la-7	1-Me	Н	P	hCOCH ₂
5	II-8	I-la-8	l-Me	Н	5-Me-2- COCH ₂	Ph-4-oxazolyl-
	II-9	I-la-9	1- <u>t</u> -Bu	Н	5-Me-2-1 COCH ₂	Ph-4-oxazolyl-
10	II-10	I-la-10	l-Ph	Н	5-Me-2-I COCH ₂	Ph-4-oxazolyl-
	II-11	I-la-ll	l-Me	H	3-Me-2-b phenyl-0	penzo[b]thio-
	II-12	I-la-12	l-Me	H	2-benzo[COCH ₂	b]furanyl-
15	II-13	I-la-13	l-Me	Н	5-Me-l-P pyrazoly	
	II-14 	I-la-14	l-Me	н	3-Br-1-M	e-2-indolyl-
20						
	Compound	No. Prop	perties	m	p (°C)	MS (m/e)
	I-la-2	Pale yel	low powder	r 15	8-161	329(M) ⁺ EI
	I-la-3	Colorles	s crystals		8.4-110.6	387(M) ⁺ EI
25	I-la-4	Pale bro	wn crystal			385(M) ⁺ EI
	I-la-5		wn crystal			407(M) ⁺ EI
	I-la-6	Colorles	s crystals	185	5-187	426(M) ⁺ EI

- 150 -

	I-la-7	Colorless powder	214-216	344(M+H)+FAB
	I-la-8	Pale brown crystals	208-211	424(M) +EI
	I-la-9	Brown crystals	213-216	466(M) ⁺ EI
5	I-la-10	Yellowish brown powder	275-280 (decomp.)	486(M) ⁺ EI
5	I-la-ll	Pale brown powder	258-260	413(M) ⁺ EI
	I-la-12	Pale brown powder	250-260 (decomp.)	383(M) ⁺ EI
	I-la-13	Pale brown powder	236-240	424(M+H)+FAB
	I-la-14	Brown powder	243-246	475(M+H)+FAB
.0				

10

Compound No. (I-la-2)

500 MHz 1 H-NMR(6 -DMSO) δ : 3.06(2H, t, 3 J_{HH} = 6.7 Hz), 3.59(3H, s), 4.31(2H, t, 3 J_{HH} = 6.7 Hz), 6.12(1H, s), 7.24-7.48(5H, m), 7.48(1H, s),12.3(1H, br s)

15 Compound No. (I-la-3) $500 \text{ MHz} \quad ^{1}\text{H-NMR}(\text{CDCl}_{3})\delta: \ 1.58(9\text{H, s}), \ 2.35(1\text{H, d}, \ ^{3}\text{J}_{\text{HH}} = \\ 3.2 \text{ Hz}), \ 4.18(2\text{H, m}), \ 5.15(1\text{H, m}), \ 5.77(1\text{H, s}), \ 7.36- \\ 7.45(5\text{H, m}), \ 7.56(1\text{H, s}), \ 8.20(1\text{H, s})$

Compound No. (I-la-4)

20 500 MHz 1 H-NMR(6 -DMSO) $^{\delta}$: 1.63(9H, s), 5.70(2H, s), 6.15(1H, s), 7.44(1H, s), 7.58(2H, dd, 3 J_{HH} = 7.4, 7.8 Hz), 7.71(1H, t, 3 J_{HH} = 7.4 Hz), 8.00(2H, d, 3 J_{HH} = 7.8 Hz), 12.26(1H, s)

Compound No. (I-la-5)

25 500 MHz 1 H-NMR(CDCl₃) δ : 2.40(1H, d), 4.29(2H, d), 5.17(1H, m), 5.91(1H, s), 7.23-7.46(8H, m), 7.62(1H, s), 7.75(2H, d, 3 J_{HH} = 7.6 Hz), 8.12(1H, br s)

```
Compound No. (I-la-6)
      500 MHz ^{1}H-NMR(^{6}-DMSO)\delta: 2.50(3H, s), 3.65(3H, s),
      4.31(2H, d, ^{3}J_{HH} = 5.4 Hz), 4.97(1H, dt, ^{3}J_{HH} = 4.9 Hz,
      ^{3}J_{HH} = 5.4 \text{ Hz}), 5.75(lH, d, ^{3}J_{HH} = 4.9 \text{ Hz}), 6.12(lH, s),
      7.47(1H, s), 7.50(3H, m), 7.92(2H, d, ^{3}J_{HH} = 8.1 Hz),
      12.3(lH, s)
      Compound No. (I-la-7)
      500 MHz ^{1}H-NMR(^{6}-DMSO)\delta: 3.76(3H, s), 5.74(2H, s),
      6.11(1H, s), 7.44(1H, s), 7.58(2H, t, ^{3}J_{HH} = 7.3, 7.7
      Hz), 7.71(1H, t, ^{3}J_{HH} = 7.7 Hz), 7.88(2H, d, ^{3}J_{HH} = 7.3
10
      Hz), 12.4(1H, br s)
      Compound No. (I-la-8)
      500 MHz ^{1}H-NMR(CDCl<sub>3</sub>)\delta: 2.74(3H, s), 3.87(3H, s),
      5.41(2H, s), 5.76(1H, s), 7.49-7.52(3H, m), 7.56(1H, s),
     8.03-8.05(2H, m), 8.14(1H, br s)
15
     Compound No. (I-la-9)
     500 MHz ^{1}H-NMR(CDCl<sub>3</sub>)\delta: 1.71(9H, s), 2.75(3H, s),
     5.39(2H, s), 5.81(1H, s), 7.50-7.51(3H, m), 7.56(1H, s),
     8.04-8.06(2H, m), 8.08(1H, br s)
     Compound No. (I-la-10)
20
     500 MHz ^{1}H-NMR(CDCl<sub>3</sub>)\delta: 2.71(3H, s), 5.68(2H, s),
     6.38(lH, s), 7.41(lH, t, ^{3}J_{HH} = 7.3 \text{ Hz}), 7.52(lH, s),
     7.56-7.60(5H, m), 7.91-7.93(2H, m), 8.02-8.04(2H, m),
     12.4(lH, br s)
     Compound No. (I-la-ll)
25
     500 MHz ^{1}H-NMR(^{6}-DMSO)\delta: 2.77(3H, s), 3.77(3H, s),
     5.62(2H, s), 6.16(1H, s), 7.44(1H, s), 7.53(1H, dd, ^{3}J_{HH}
```

- 152 -

= 7.2, 8.3 Hz), 7.60(lH, dd, $^{3}J_{HH}$ = 7.2, 8.3 Hz), 8.07(lH, d, $^{3}J_{HH}$ = 8.3 Hz), 8.09(lH, d, $^{3}J_{HH}$ = 8.3 Hz), 12.4(lH, br s)

Compound No. (I-la-12)

- 5 500 MHz 1 H-NMR(6 -DMSO) δ : 3.77(3H, s), 5.64(2H, s), 6.16(1H, s), 7.41(1H, dd, 3 J_{HH} = 7.1, 7.9 Hz), 7.45(1H, s), 7.60(1H, dd, 3 J_{HH} = 7.1, 8.3 Hz), 7.77(1H, d, 3 J_{HH} = 8.3 Hz), 7.90(1H, d, 3 J_{HH} = 7.9 Hz), 8.06(1H, s), 12.4(1H, br s)
- 10 Compound No. (I-la-l3) $500 \text{ MHz} \quad ^{1}\text{H-NMR}(\text{d}^{6}-\text{DMSO})\delta \colon 2.52(3\text{H, s}), \ 3.76(3\text{H, s}), \\ 5.47(2\text{H, s}), \ 6.10(1\text{H, s}), \ 7.46(1\text{H, s}), \ 7.52-7.60(5\text{H, m}), \\ 8.37(1\text{H, s}), \ 12.4(1\text{H, br s}) \\ \text{Compound No. (I-la-l4)}$
- 15 500 MHz 1 H-NMR(6 -DMSO) δ : 3.76(3H, s), 3.96(3H, s), 5.69(2H, s), 6.16(1H, s), 7.30(1H, dd, 3 J_{HH} = 7.3, 7.9 Hz), 7.46(1H, s), 7.50(1H, dd, 3 J_{HH} = 7.3, 8.5 Hz), 7.64(1H, d, 3 J_{HH} = 7.9 Hz), 7.70(1H, d, 3 J_{HH} = 8.5 Hz), 12.3(1H, br s)
- 20 EXAMPLE 2

Step 5

Preparation of 5-((5-(2-hydroxy-2-phenylethoxy)-1-methyl-3-pyrazolyl)methyl)thiazolidin-2,4-dione (Compound No. I-2a-1)

Ph O N S

(I-2a-1)

25

348 mg (1.01 mmol) of 5-((5-(2-hydroxy-2phenylethoxy)-1-methy1-3pyrazolyl)methylidene)thiazolidin-2,4-dione (Compound No. I-la-l) was dissolved in 15 me of tetrahydrofuran dehydrated by molecular sieves. To this solution, 271 mg 5 of 10% palladium carbon was added, followed by catalytic reduction at room temperature under hydrogen pressure of 5 atm for 48.5 hours. The catalyst was filtered off. Then, the solvent was distilled off under reduced pressure. The residue thereby obtained was subjected to 10 silica gel column chromatography (eluent: 6% methanol/chloroform) to obtain 363 mg (quantitative) of the desired substance (Compound No. I-2a-1) as colorless powder.

15 mp 68-71°C MS(EI) m/e: 347(M)⁺ 60 MHz 1 H-NMR(CDCl₃) δ : 3.23(2H, m), 3.54(3H, s), 4.10(2H, d), 4.56(1H, dd), 5.08(1H, t), 5.37(1H, s), 7.36(5H, s)

In the same manner, Compounds Nos. I-2a-2 to I-2a-8 were prepared by using Compounds Nos. I-la-2 to I-la-6, I-la-ll and I-la-l2 as starting materials. (\mathbb{R}^2 , \mathbb{R}^3 , W and Z in the Table correspond to the substituents of Compound No. I-2a.)

5

	Starting material	Compound No.	R ²	R ³	z-w
	I-la-2	I-2a-2	l-Me	Н	PhCH ₂ CH ₂
10	I-la-3	I-2a-3	l- <u>t</u> -Bu	H	PhCH(OH)CH ₂
	I-la-4	I-2a-4	1- <u>t</u> -Bu	H	PhCOCH ₂
	I-la-5	I-2a-5	l-Ph	H	PhCH(OH)CH ₂
	I-la-6	I-2a-6	l-Me	н	5-Me-2-Ph-4- oxazolyl-CH(OH)CH ₂
15	I-la-ll	I-2a-7	l-Me	Н	3-Me-2-benzo[b]-thiophenyl-COCH2
	I-la-12	I-2a-8	1-Me	H	5-Me-1-Ph-4- pyrazolyl-COCH ₂

20	Compound Properties		mp (°C)	MS (m/e)
	I-2a-2	Pale yellow powder	103-105	331(M) ⁺ EI
	I-2a-3	Pale yellow oil		389(M) ⁺ EI
	I-2a-4	Brown solid		387(M) ⁺ EI
	I-2a-5	Pale yellow amorphous		409(M) ⁺ EI
25	I-2a-6	Colorless solid	95-97	428(M) ⁺ EI
	I-2a-7	Colorless solid	211-212	414(M) ⁺ EI
	I-2a-8	Colorless solid	140-142	425(M) *EI

Compound No. (I-2a-2) 500 MHz 1 H-NMR(CDCl₃) δ :2.95(2H, t), 3.0-3.5(2H, m), 3.43(3H, s), 4.08(2H, t), 4.5(1H, m), 5.27(1H, s), 7.14(5H, s), 7.60(1H, br s) Compound No. (I-2a-3) 5 500 MHz 1 H-NMR(CDCl₃) δ : 1.50(9H, s), 3.06(1H, m), 3.44(1H, m), 4.11(2H, m), 4.66(1H, m), 5.11(1H, m), 5.40(lH, s), 7.3-7.5(5H, m), 8.89(lH, s), 9.08(lH, br s) Compound No. (I-2a-4) 500 MHz 1 H-NMR(CDCl₃) δ : 1.4(9H, s), 3.00-3.07(1H, m), 10 3.40-3.46(1H, m), 4.65-4.70(1H, m), 5.25(2H, s), 5.38(1H, m)s), 7.50-7.55(2H, m), 7.63-7.65(1H, m), 7.95-7.98(2H, m), 8.45(1H, s)Compound No. (I-2a-5) 500 MHz 1 H-NMR(CDCl₃) δ : 2.45(1H, br s), 3.16(1H, m), 15 3.56(lH, m), 4.20-4.21(2H, m), 4.75(lH, m), 5.13(lH, m), 5.56(lH, s), 7.25-7.42(8H, m), 7.61(lH, m), 8.10(lH, s) Compound No. (I-2a-6) 500 MHz 1 H-NMR(CDCl₃) δ : 2.42(3H, s), 3.11(1H, dd), 3.41(1H, dd), 3.58(3H, s), 4.22(1H, dd), 4.35(1H, dd), 20 4.61(1H, dd), 5.04(1H, dd), 5.44(1H, s), 7.43(3H, m), 7.97(2H, m), 9.0(1H, s) Compound No. (I-2a-7) 500 MHz 1 H-NMR(6 -DMSO) δ : 2.75(3H, s), 2.95(1H, dd, 2 J_{HH} = 15.5 Hz, $^{3}J_{HH}$ = 10.6 Hz), 3.24(1H, dd, $^{2}J_{HH}$ = 15.5 Hz, 25 $^{3}J_{HH} = 3.6 \text{ Hz}$), 3.59(3H, s), 4.77(1H, dd, $^{3}J_{HH} = 3.6$, 10.6 Hz), 5.49(2H, s), 5.62(1H, s), 7.52(1H, dd, $^{3}J_{HH} =$

- 156 -

7.1, 8.1 Hz), 7.59(1H, dd, ${}^{3}J_{HH}$ = 7.1, 8.2 Hz), 8.06(1H, d, ${}^{3}J_{HH}$ = 8.2 Hz), 8.08(1H, d, ${}^{3}J_{HH}$ = 8.1 Hz), 12.0(1H, br s)

Compound No. (I-2a-8)

5 500 MHz 1 H-NMR(6 -DMSO) δ : 2.52(3H, s), 2.97(1H, m), 3.26(1H, m), 3.58(3H, s), 4.78(1H, m), 5.34(2H, s), 5.56(1H, s), 7.54-7.59(5H, m), 8.35(1H, s), 12.0(1H, br s)

EXAMPLE 3

15

Preparation of 5-((1-methyl-5-phenacyloxy-3pyrazolyl)methylidene)thiazolidin-2,4-dione (Compound No.
I-la-7)

127 mg (0.367 mmol) of 5-((5-(2-hydroxy-2-phenylethoxy)-1-methyl-3-

pyrazolyl)methylidene)thiazolidin-2,4-dione (Compound No. I-la-1) was dissolved in 6 me of dichloromethane dehydrated by molecular sieves, together with 114 mg (0.527 mmol) of pyridinium chlorochromate and 549 mg of celite, and the mixture was stirred at 0°C for 40 minutes and then at room temperature for 3.75 hours under a nitrogen atmosphere. Further, 90 mg (0.42 mmol) of pyridinium chlorochromate was added thereto, and the

mixture was stirred at room temperature overnight. The inorganic salt was filtered off. Then, the solvent was distilled off. The residue thereby obtained was subjected to silica gel column chromatography (eluent: ethyl acetate/benzene = 1/2) to obtain 120 mg (95.5%) of the desired substance (Compound No. I-la-7) as colorless powder.

EXAMPLE 4

5

15

20

25

Preparation of 5-((l-methyl-5-phenacyloxy-3
pyrazolyl)methyl)thiazolidin-2,4-dione (Compound No. I
2a-9)

$$\begin{array}{c|c}
\text{Ph} & O \\
\text{N} & S \\
\text{NH} & O
\end{array}$$

$$(I-2a-9)$$

mg of anhydrous sodium acetate and 503 mg of celite were suspended in 10 me of dichloromethane dehydrated by molecular sieves. To this suspension, a solution of 135 mg (0.390 mmol) of 5-((5-(2-hydroxy-2-phenylethoxy)-1-methyl-3-pyrazolyl)methyl)thiazolidin-2,4-dione (Compound No. I-2a-1) in 5 me of dichloromethane dehydrated by molecular sieves, was dropwise added. The mixture was stirred at 0°C for 1.5 hours and then at room temperature for 1.75 hours. Then, the inorganic salt was filtered off, and the solvent was distilled off under reduced

- 158 -

pressure. The residue thereby obtained was subjected to silica gel column chromatography (eluent: 4% methanol/chloroform), followed by recrystallization from ethyl acetate/hexane to obtain 69 mg (51.2%) of the desired substance (Compound No. I-2a-9) as colorless crystals.

mp 141-143°C

 $MS(EI) m/e: 345(M)^{+}$

500 MHz 1 H-NMR(CDCl₃) δ : 3.06(1H, dd, 2 J_{HH} = 15.4 Hz, 3 J_{HH} = 10.0 Hz), 3.44(1H, dd, 2 J_{HH} = 15.4 Hz, 3 J_{HH} = 3.8 Hz), 3.68(3H, s), 4.63(1H, dd, 3 J_{HH} = 3.8 Hz, 3 J_{HH} = 10.0 Hz), 5.27(2H, s), 5.35(1H, s), 7.52(1H, dd, 3 J_{HH} = 7.6 Hz, 3 J_{HH} = 7.9 Hz), 7.64(1H, t, 3 J_{HH} = 7.6 Hz), 7.94(2H, d, 3 J_{HH} = 7.9 Hz), 8.33(1H, br s)

15 EXAMPLE 5

Preparation of sodium salt of 5-((1-methyl-5-(2-(3-methylbenzo[b]thiophen-2-yl)-2-oxoethoxy)-3
pyrazolyl)methylidene)thiazolidin-2,4-dione (Compound No. I-la-ll-Na)

20

25 69 mg (0.17 mmol) of 5-((1-methyl-5-(2-(3-methylbenzo[b]thiophen-2-yl)-2-oxoethoxy-3-pyrazolyl)methylidene)thiazolidin-2,4-dione (Compound No.

5

I-la-l1) was dissolved in 5 m ℓ of tetrahydrofuran and 3 m ℓ of chloroform. To this solution, 0.32 m ℓ (0.17 mmol) of an aqueous solution of 0.5 mol/ ℓ of sodium hydroxide was dropwise added at room temperature. The solvent was distilled off under reduced pressure. Then, 5 m ℓ of deionized water was added, and the solution thereby obtained was freeze-dried to obtain 69 mg (94.9%) of the desired substance (Compound No. I-la-ll-Na) as pale brown powder.

mp 180-240°C (decomp.)

MS(FAB) m/e: 436(M+H)

In the same manner, Compounds Nos. I-la-l3-Na, I-2a-7-Na and I-2a-8-Na were prepared by using Compounds Nos. I-la-l3, I-2a-7 and I-2a-8, respectively, as starting materials.

20

15

Compound No. I-la-13-Na
Colorless powder
mp 200-220°C (decomp.)
MS(FAB) m/e: 446(M+H)+

$$\begin{array}{c|ccccc}
Me & O & O \\
\hline
S & NNa & (I-2a-7-Na) \\
\hline
O & Me & O & O
\end{array}$$

5 Compound No. I-2a-7-Na

Pale pink powder

mp 90-110°C (decomp.)

MS(FAB) m/e: $438(M+H)^+$

$$\begin{array}{c|ccccc}
Ph & & & & & & & & & & & \\
N & & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & \\
O & & & & & & & & & \\
N & & & & & & & & & \\
N & & & & & & & & \\
N & & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & \\
N & & & & & \\
N & & & & \\
N & & & & & \\
N & & & & \\
N & & & & \\$$

Compound No. I-2a-8-Na

Colorless powder

15 mp 185-220°C (decomp.)

MS(FAB) m/e: 448(M+H)+

EXAMPLE 6

<u>Preparation of 5-((5-methoxymethoxy-l-methyl-3-</u> <u>pyrazolyl)methylidene)thiazolidin-2,4-dione (Compound No.</u>

20 <u>XII-1-1)</u>

25 Ethyl 5-methoxymethoxy-l-methyl-3-pyrazolecarboxylate (Compound No. XV-l)

$$\begin{array}{c} & & CO_2Et \\ \hline N & N \\ \hline Me \end{array}$$

In the same manner as in Step 1 in Example 1, 3.09 g (81.8%) of the desired substance (Compound No. XV-1) was obtained as pale yellow oil by using 3.00 g (17.6 mmol) of ethyl 5-hydroxy-1-methyl-3-pyrazolecarboxylate (Compound No. V-1), 2.0 me (26 mmol) of chloromethyl

10 methyl ether and 4.0 m ℓ (23 m ℓ) of diisopropylethylamine. MS(EI) m/e: 214(M) $^+$

60 MHz 1 H-NMR(CDCl₃) δ : 1.38(3H, t), 3.49(3H, s), 3.74(3H, s), 4.35(2H, q), 5.13(2H, s), 6.17(1H, s)

In the same manner, Compounds Nos. XV-2 and XV-3 were prepared using Compound No. V-1 as starting material. $(R^2, R^3, R^{13} \text{ and } R^{14} \text{ in the Table correspond to the substituents of Compound No. XV.)}$

	Compound No.	R ²	R ³	R ¹³	R ¹⁴
25	XV-2 XV-3	l-Me l-Me	н	Et Et	MeOCH ₂ CH ₂ OCH ₂ <u>t</u> -Bu(Me) ₂ Si

- 162 -

Compound No	. Properties	mp (°C)	MS (m/e)	
xv-2 xv-3	Pale yellow oil		258(M) ⁺ EI 284(M) ⁺ EI	
	· · · · · · · · · · · · · · · · · · ·			

5

XV-2

60 MHz
1
H-NMR(CDCl₃) δ : 1.39(3H, t), 3.42(3H, s), 3.75(3H, s), 3.4-3.9(4H, m), 4.39(2H, q), 5.25(2H, s), 6.22(1H, s)

10 XV-3

60 MHz 1 H-NMR(CDCl₃) δ : 0.28(6H, s), 1.00(9H, s), 1.37(3H, t), 3.70(3H, s), 4.28(2H, q), 5.89(1H, s) 3-Hydroxymethyl-5-methoxymethoxy-l-methylpyrazole (Compound No. XIV-1)

15

In the same manner as in Step 2 in Example 1, 54 mg (64%) of the desired substance (Compound No. XIV-1) was obtained as pale yellow oil by using 105 mg (0.488 mmol) of Compound No. XV-1 and 108 mg (2.83 mmol) of lithium aluminum hydride.

MS(FAB) m/e: $173(M+H)^+$ 25 60 MHz 1 H-NMR(CDCl₃) δ : 2.6(lH, br), 3.47(3H, s),
3.62(3H, s), 4.53(2H, s), 5.10(2H, s), 5.65(lH, s)
5-Methoxymethoxy-1-methylpyrazole-3-carbaldehyde

(Compound No. XIII-1)

5

10

In the same manner as the Swern oxidation shown in Step 3 in Example 1, 132 mg (95.2%) of the desired substance (Compound No. XIII-1) was obtained as pale brown oil by using 141 mg (0.817 mmol) of Compound No. XIV-1, 277 $\mu\ell$ (3.18 mmol) of oxalyl chloride, 622 mg (7.96 mmol) of dimethylsulfoxide dehydrated by molecular sieves and 2.2 m ℓ (16 mmol) of triethylamine dehydrated by molecular sieves.

This compound was obtained also by the manganese dioxide oxidation method and the PCC oxidation method shown in Step 3 in Example 1.

MS(FAB) m/e: 171(M+H) +

60 MHz 1 H-NMR(CDCl₃) δ : 3.50(3H, s), 3.77(3H, s), 5.12(2H, s), 6.16(1H, s), 9.74(1H, s)

5-((5-Methoxymethoxy-l-methyl-3-pyrazolyl)methylidene)-thiazolidin-2,4-dione (Compound No. XII-l-1)

25

In the same manner as in Step 4 in Example 1, 337 mg (99.9%) of the desired substance (Compound No. XII-1-1)

- 164 -

was obtained as pale brown needles by using 213 mg (1.25 mmol) of Compound No. XIII-1, 164 mg (1.26 mmol) of thiazolidinedione (Compound No. VI-1) , 25 $\mu\ell$ of piperidine and 22 $\mu\ell$ of acetic acid.

5 mp 161-164°C

10

 $MS(EI) m/e: 269(M)^{+}$

60 MHz 1 H-NMR(CDCl₃) δ : 3.52(3H, s), 3.76(3H, s), 5.16(2H, s), 5.92(1H, s), 7.30(1H, t, 3 J_{HH} = 7.3 Hz), 7.38(2H, dd, 3 J_{HH} = 7.3 Hz, 3 J_{HH} = 7.6 Hz), 7.59(1H, s), 8.17(1H, br s)

Preparation of 5-((5-methoxymethoxy-l-methyl-3pyrazolyl)methyl)thiazolidin-2,4-dione (Compound No. XII2-1)

15 NH (XII-2-1)

In the same manner as in Example 2, 167 mg (quantitative) of the desired substance (Compound No.

20 XII-2-1) was obtained as pale yellow powder by using 144 mg (0.533 mmol) of 5-((5-methoxmethoxy-1-methyl-3-pyrazolyl)methylidene)thiazolidin-2,4-dione (Compound No. XII-1-1) and 129 mg of 10% palladium carbon.

mp 114-117°C

25 MS(EI) m/e: $271(M)^{+}$ 60 MHz 1 H-NMR(CDCl₃) δ : 3.09-3.5(2H, m), 3.46(3H, s), 3.61(3H, s), 4.48-4.72(1H, m), 5.05(2H, s), 5.51(1H, s), 10.13(1H, br s)

Protection by Z group (benzyloxycarbonyl) of 5-((5-methoxymethoxy-1-methyl-3-pyrazolyl)methylidene)thiazolidin-2,4-dione (Compound No. XII-1-1)

5

15

20

25

$$MOMO N S N-Z$$

$$Me O (XII-1-2)$$

To a solution of 81 mg (0.30 mmol) of 5-((5-

10 methoxymethoxy-1-methy1-3-

pyrazolyl)methylidene)thiazolidin-2,4-dione (Compound No. XII-1-1) in 10 m ℓ of tetrahydrofuran dehydrated by molecular sieves, 49 mg (0.46 mmol) of anhydrous sodium carbonate and then 64 $\mu\ell$ (0.45 mmol) of benzyl

chloroformate were added at room temperature, and the reaction solution was stirred overnight. To this solution, 5 ml of a saturated sodium chloride aqueous solution was added, and the mixture was extracted with 45 ml of ethyl acetate. Then, the organic layer was dried over anhydrous sodium sulfate. The drying agent was filtered off. Then, the solvent was distilled off under reduced pressure. The residue thereby obtained was recrystallized from ethyl acetate and hexane to obtain 71 mg (59%) of the desired substance (Compound No. XII-1-2) as colorless crystals.

MS(EI) m/e: 403(M)

500 MHz 1 H-NMR(CDCl₃) δ : 3.53(3H, s), 3.77(3H, s),

- 166 -

5.14(2H, s), 5.46(2H, s), 5.92(1H, s), 7.42(5H, s), 7.66(1H, s)

REFERENCE EXAMPLE 1

Removal of protective Z group of Compound No. XII-1-2

- dissolved in 10 me of tetrahydrofuran dehydrated by molecular sieves. To this solution, 6 mg of 10% palladium carbon was added, followed by catalytic reduction at room temperature under a hydrogen pressure of 1 atm overnight and then for 3 days by an addition of 6 mg of the catalyst. The catalyst was filtered off, and then the solvent was distilled off under educed pressure. The residue thereby obtained was subjected to thin layer chromatography (developer: 5%
- 15 methanol/chloroform) to obtain 16 mg (quantitative) of the desired substance (Compound No. XII-1-1) as pale brown powder.

<u>Preparation of 5-((5-hydroxy-l-methyl-3-</u> <u>pyrazolyl)methylidene)thiazolidin-2,4-dione (Compound No.</u>

20 X-1-1) (Removal of protective MOM group)

To a solution of 54 mg (0.20 mmol) of 5-((5-methoxymethoxy-1-methyl-3-pyrazolyl)methylidene)thiazolidin-2,4-dione (Compound No.

5

XII-1-1) in 5 me of tetrahydrofuran and 1 me of methanol, one drop of concentrated hydrochloric acid was added at room temperature, and the reaction solution was stirred at 56°C for 5 hours. To the reaction solution, toluene was added, and the solvent was distilled off under reduced pressure. The residue thereby obtained was recrystallized from methanol to obtain 31 mg (69%) of the desired substance (Compound No. X-1-1) as yellow crystals.

10 mp 248-250°C (decomp.)

MS(EI) m/e: 225(M) +

500 MHz 1 H-NMR(CDCl₃) δ : 3.61(3H, s), 5.76(1H, s), 7.46(1H, s), 11.5(1H, br), 12.3(1H, br)

In the same manner, Compound No. X-1-2 was prepared by using Compound (XII-1-2) as starting material.

20 Pale yellow powder

mp 153-158°C (decomp.)

 $MS(FAB) m/e: 360(M+H)^{+}$

In the same manner, Compound No. X-2-1 was prepared by using Compound No. XII-2-1 as starting material.

5 Pale yellow crystals

mp 150-154°C

MS(FAB) m/e: 228(M+H)+

EXAMPLE 7

Preparation of 5-((1-methyl-5-phenacyloxy-3-

pyrazolyl)methylidene)thiazolidin-2,4-dione (Compound No.
l-la-7)

15

69 mg (0.31 mmol) of 5-((5-hydroxy-1-methyl-3pyrazolyl)methylidene)thiazolidin-2,4-dione (Compound No.
X-1-1) and 57 mg (0.37 mmol) of phenacyl chloride were
dissolved in 2 mℓ of dimethylformamide dehydrated by

20 molecular sieves. To this solution, 65 μℓ of
triethylamine was added, and the mixture was stirred at
room temperature overnight. To this reaction solution, 1
mℓ of a saturated sodium chloride aqueous solution was
added, and the mixture was extracted with 120 mℓ of ethyl

25 acetate. The organic layer was dried over anhydrous
magnesium sulfate. The drying agent was filtered off,
and then the solvent was distilled off under reduced

- 169 -

pressure. The residue thereby obtained was subjected to silica gel column chromatography (eluent: ethyl acetate/hexane = 5/6) to obtain 17 mg (16%) of the desired substance (Compound No. 1-la-7) as pale yellow powder.

In the same manner, Compound No. I-2a-9 was prepared by using Compound No. X-2-1 by the reaction with phenacyl chloride.

Further, using Compound No. X-1-2 (Z group protected product of Compound No. X-1-1) as starting material, R¹ substituent was introduced in the same manner to obtain Compound No. XVIII-1, followed by removal of the protective group in the same manner as in Example 6 to obtain the desired Compound No. I-la-7.

 $\begin{array}{c|c}
 & O \\
 & N \\
 & N \\
 & N \\
 & N \\
 & O \\
 & Me \\
 & O \\$

Pale yellow powder (yield: 16.6%)

5

15

20 MS(EI) m/e: $477(M)^{+}$ 500 MHz 1 H-NMR(CDCl₃) δ : 3.80(3H, s), 5.15(2H, s), 5.33(2H, s), 6.42(1H, s), 7.36-7.63(8H, m), 7.70(1H, s), 7.99(2H, m)

In the same manner, using Compound No. X-1-2 and
phenetyl bromide as starting materials, Z group protected
product of Compound I-la-2 (Compound No. XVIII-2) was
prepared, followed by removal of the protective group in

5

the same manner as in Example 6 to obtain the desired Compound I-la-2.

$$\begin{array}{c|c}
O \\
N \\
O \\
\end{array} (XVIII-2)$$

Pale brown powder (yield: 35.1%)

MS(EI) m/e: 463(M) +

500 MHz 1 H-NMR(CDCl₃) δ : 2.96(2H, t, 3 J_{HH} = 7.8 Hz), 10 3.78(3H, s), 3.95(2H, t, 3 J_{HH} = 7.8 Hz), 5.32(2H, s), 6.39(1H, s), 7.21-7.45(10H, m), 7.62(1H, s)

- 171 -

TEST EXAMPLE 1: Measurement of hypoglycemic effect

KK mouse and KKAY mouse, NIDDM models (male, 6-7)

weeks old) (Nakamura, Proc. Jpn. Acad. 38, 348-352, 1962;

Iwatsuka et al. Endocrinol. Jpn., 17, 23-35, 1970) were

purchased from Nihon Clea. They were allowed free access

to high-calories' chow (CMF, Oriental Yeast) and water.

Around 40 g-weighted mice were examined.

5

10

15

20

25

Blood (20 $\mu\ell$) collected from the retro-orbital sinus was diluted in 60 units heparin sodium-solution and was centrifuged in a microfuge. The supernatant was assayed. The glucose concentration was determined by glucose oxidase method (Glucose Analyzer II, Beckman). A group of 3 to 4 mice having a blood glucose value of higher than 200 mg/d ℓ , the blood glucose value of which did not reduce by more than 10% for 24 hours after once oral administration of 0.5% carboxymethyl cellulose (CMC)-saline, were tested.

All test-compounds suspended in 0.5% carboxy-methyl cellulose (CMC)-saline were orally administered in mice. Before and 24 hours after the administration, blood was collected from the retro-orbital sinus, and a blood glucose value was measured in the above-mentioned manner. The hypoglycemic activity was expressed by the percentage of reducing blood glucose calculated before and 24 hours after the administration.

Compound No.	Dose (mg/kg)	% decrease
I-la-2	30	15.1
I-la-5	30	3.8
I-la-6	30	22.1
I-la-9	30	35.9
I-la-ll-Na	30 ·	11.1
I-la-12	30	6.4
I-2a-1	30	3.2
I-2a-3	30	24.1
I-2a-4	30	10.8
I-2a-5	30	10.5
I-2a-6	30	12.9
CS-045	30	-3.0
Glibenclamide	30	-2.5

The compounds of the present invention exhibited

25 hypoglycemic activities at substantially the same or
higher degree as compared with CS-045 and CP-86325 used
as controls. Glibenclamide (insulin-releasing agent) did

not exhibit hypoglycemic activity in this test.

TEST EXAMPLE 2: Measurement of anti-glycation effect

When high-glucose concentrations in diabetic patients sustain for a long time, some kinds of proteins are glycated non-enzymatically. It is considered that the glycated proteins induce diabetic complications (Brownlee, Diabetes, 41 suppl 2, 57-60, 1992).

5

10

15

20

25

Because glycated protein is fluorescent, the amount of glycated protein can be determined using fluorescence, according to the previous reports (Doi et al., Proc. Natl. Acad. Sci. U.S.A., 89, 2873-2877, 1992: Mitsuhashi et al., Diabetes, vol. 42, 826-832, 1993). The experimental procedure was modified as follows. Five percent of bovine serum albumin (BSA) containing 0.5M glucose-6-phosphate-2Na (5% BSA-0.5M G6P) was filtrationsterilized (with 0.45 $\mu\mathrm{m}\mathrm{-pore}$ size filter) and was incubated at 37°C; positive control was incubated with 1% dimethyl sulfoxide (DMSO) at 37°C; blank was incubated at 4°C. All test-compounds dissolved in DMSO (final concentration of DMSO was less than 1%) were added in 5% BSA-0.5M G6P. After 10 day-incubation 5% BSA-0.5M G6P with a compound, positive control and blank were dialyzed against 2L phosphate buffered saline for 24 hours (fractional molecular weight: 12,000-14,000). dialyzed solution was diluted in water 4 times and was determined the fluorescence (ex. 370 nm-em. 440 nm). protein concentration of the dialyzed solution (10 μL of

- 174 -

which was diluted to 20 times with distilled water) was determined by Lowry-method and the fluorescence was expressed per mg protein. Control (100%) was positive control minus blank. Anti-glycation effect was calculated as the percentage of the control.

	compound No.	concentration	% decrease
	I-la-l	100 μg/ml (0.24mM)	42.3
	I-1a-2	100 µg/ml (0.38mM)	24.1
	I-la-3	100 μg/ml (0.32mM)	34.1
0	CS-045	100 μg/ml	10.1
	CP-86325	100 μg/ml	10.3
	aminoguanidine	(1 mM)	21.4
	aminoguanidine	(10mM)	48.9
	aminoguanidine	(100mM)	80.2

15

20

5

$$H_{1}^{NH}$$
 $H_{2}^{N-N-C-NH_{2}}$
aminoguanidine

The compounds of the present invention exhibited anti-glycation activities stronger than aminoguanidine used as a control. CS-045 and CP-86325 did not exhibit anti-glycation activities.

TEST EXAMPLE 3: Measurement of aldose-reductase inhibitory activities

Rat kidney AR was prepared as follows; Rat kidney was perfused by ice-cold saline to remove blood and then homogenized in a Teflon homogenizer with 3 time volumes of cold 5 mM Tris-HCl buffer (pH 7.4). The homogenate

was centrifuged at $45,000 \times g$ for 40 minutes to remove insoluble materials, and the supernatant fraction was used as an aldose reductase sample.

Determination of AR and effects of test compounds AR activity was assayed by the modified method of 5 Inukai et al. (Jpn. J. Pharmacol. 61, 221-227, 1993). The absorbance of NADPH (340 nm), oxidation of the cofactor for AR, was determined by spectrophotometer (UV-240, Shimadzu, Kyoto). The assay was carried out in 0.1M sodium phosphate (pH 6.2) containing 0.4M lithium 10 sulfate, 0.15 mM NADPH, the enzyme, various concentrations of test compounds and 10 mM DLglyceraldehyde. The reference blank contained all of the above ingredients, except for DL-glyceraldehyde. reaction was started by addition of the substrate (DL-15 glyceraldehyde). The reaction rate was measured at 30°C for 2 minutes. All test compounds were dissolved in dimethyl sulfoxide (DMSO). The final concentration of DMSO in reaction mixture never exceeded 1%. The effects of inhibitors were estimated as the concentration of test 20 compounds required for 50% inhibition of enzyme activity $(IC_{50}).$

- 176 - Aldose-reductase inhibitory activities

_	Compound No.	IC ₅₀ (M)	
5	I-Ia-3 I-Ia-6	1.25×10^{-5} 1.40×10^{-5}	
-	Sulindac	2.4 × 10 ⁻⁵	
10	Guercetin Alrestatin	> 3 × 10 ⁻⁵ >10 × 10 ⁻⁵	
	CS-045 CP-86325	>10 × 10 ⁻⁵ > 3 × 10 ⁻⁵	

OH O HO OH OH Quercetin

 CO_2H O N OAlrestatin

25

The compounds of the present invention exhibited stronger aldose-reductase inhibitory activities than sulindac, quercetin or alrestatin used as control. Further, CS-045 and CP-86325 exhibited no activities.

5 FORMULATION EXAMPLE 1

Tablets

	The compound of the present invention	1.0 g
	Lactose	5.0 g
	Crystal cellulose powder	8.0 g
10	Corn starch	3.0 g
	Hydroxypropyl cellulose	1.0 g
	CMC-Ca	1.5 g
	Magnesium stearate	0.5 g
-		17 III
15	Total	20.0 g

The above components were mixed by a usual method and then tabletted to produce 100 tablets each containing 10 mg of the active ingredient.

20 FORMULATION EXAMPLE 2

Capsules

	The compound of the present invention	1.0 g
	Lactose	3.5 g
	Crystal cellulose powder	10.0 g
25	Magnesium stearate	0.5 g
		7.1
	Total	15.0 g

- 178 -

The above components were mixed by a usual method and then packed in No. 4 gelatin capsules to obtain 100 capsules each containing 10 mg of the active ingredient. FORMULATION EXAMPLE 3

5 Soft capsules

•	Total	20.00 g
10	Polysorbate 80	0.10 g
	Peppermint oil	0.01 g
	Saturated fatty acid triglyceride	15.00 g
	PEG (polyethylene glycol) 400	3.89 g
	The compound of the present invention	1.00 g

The above compounds were mixed and packed in No. 3

15 soft gelatin capsules by a usual method to obtain 100 soft capsules each containing 10 mg of the active ingredient.

FORMULATION EXAMPLE 4

Ointment

20	The compound of the present invention	n 1.0	g	(10.0	g)
	Liquid paraffin	10.0	g	(10.0	g)
	Cetanol	20.0	g	(20.0	g)
	White vaseline	68.4	g	(59.4	g)
	Ethylparaben	0.1	g	(0.1	g)
25	<pre>ℓ-menthol</pre>	0.5	g	(0.5	g)

Total 100.0 g

- 179 -

The above components were mixed by a usual method to obtain a 1% (10%) ointment.

FORMULATION EXAMPLE 5

Suppository

5	The compound of the present invention	1.0 g	
	Witepsol H15*	46.9 g	
	Witepsol W35*	52.0 g	
	Polysorbate 80	0.1 g	

10 Total 100.0 g

The above components were melt-mixed by a usual method and poured into suppository containers, followed by cooling for solidification to obtain 100 suppositories of 1 g each containing 10 mg of the active ingredient. FORMULATION EXAMPLE 6

Granules

15

20	The compound of the present invention Lactose	•
20	Crystal cellulose powder	6.0 g 6.5 g
	Corn starch	5.0 g
	Hydroxypropyl cellulose	1.0 g
	Magnesium stearate	0.5 g
25		
	Total	20.0 g

^{*:} Trademark for triglyceride compound

WO 96/11196 PCT/JP95/02041

- 180 -

The above components were granulated by a usual method and packaged to obtain 100 packages each containing 200 mg of the granules so that each package contains 10 mg of the active ingredient.

INDUSTRIAL APPLICABILITY

5

10

Since the compound of the present invention has a hypoglycemic effect, an anti-glycation activity and an aldose-reductase inhibitory activity and has less toxicity, it is useful for preventing or treating diabetic complications including diabetic eye diseases (such as diabetic cataract and diabetic retinopathy), diabetic neuropathy, diabetic nephropathy, diabetic gangrene, and the like.

- 181 -

CLAIMS:

1. A pyrazole type thiazolidine compound of the following formula (I) and its salt:

5

wherein X^{1} is S or O;

 X^2 is S, O or NH;

Y is CR^6R^7 (R^6 is a hydrogen atom, a C_1 - C_7 alkyl group or a C_3 - C_7 cycloalkyl group, and R^7 is a hydrogen atom, a C_1 - C_7 alkyl group or a C_3 - C_7 cycloalkyl group, or forms a bond together with R^4);

 $m R^1$ is a $m C_1-C_{10}$ alkyl group, a $m C_2-C_{10}$ alkenyl group, a $m C_2-C_{10}$ alkynyl group, a $m C_1-C_{10}$ alkoxy group, a $m C_2-C_{10}$ alkenyloxy group, a $m C_1-C_{10}$ alkylthio group, a $m C_1-C_{10}$ monoalkylamino group or a $m di-C_1-C_{10}$ alkylamino group (each of said $m C_1-C_{10}$ alkyl, $m C_2-C_{10}$ alkenyl, $m C_2-C_{10}$ alkynyl, $m C_1-C_{10}$ alkoxy, $m C_2-C_{10}$ alkenyloxy, $m C_1-C_{10}$ alkylthio, $m C_1-C_{10}$ monoalkylamino and $m di-C_1-C_{10}$ alkylamino groups may be substituted with a hydroxyl group or a $m C_1-C_1$ alkyl group), or

 $-V_k-W_1-Z$ (Z is a C_3-C_{10} cycloalkyl group, a C_3-C_7 cycloalkenyl group, a C_6-C_{14} aromatic group, a C_4-C_{12} heterocyclic aromatic group (said heterocyclic aromatic group may contain at most 5 hetero atoms selected from the group consisting of an oxygen atom, a sulfur atom and

a nitrogen atom as constituents for the heterocyclic ring), or a C_4-C_6 heterocycloaliphatic group (said heterocycloaliphatic group may contain at most 3 hetero atoms selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom as constituents 5 for the heterocyclic ring) (each of said C_3-C_{10} cycloalkyl, C_3-C_7 cycloalkenyl, C_6-C_{14} aromatic, C_4-C_{12} heterocyclic aromatic and C_4-C_6 heterocycloaliphatic groups may have at most 5 substituents selected from the group consisting of a hydrogen atom, a C_1-C_7 alkyl group, 10 a C_3 - C_7 cycloalkyl group, a C_3 - C_7 cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C_1-C_7 alkylthio group, a halogen atom, a trifluoromethyl group, a nitro group, an amino 15 group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1 - C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a phenyl, naphthyl, furanyl, thienyl, 20 imidazolyl, pyridyl or benzyl group (each of said phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 substituents selected from the group consisting of a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_1 - C_3 alkoxy 25 group, a C_1-C_3 alkylthio group, a hydroxyl group, a halogen atom, a nitro group and a dimethylamino group), a

20

25

l-tetrazolyl group, a 3-tetrazolyl group, a 5-tetrazolyl
group, a thiazolidindion-5-yl group and a
thiazolidindion-5-yl methyl group),

V is O, S, SO, SO $_2$ or NR 8 (R 8 is a hydrogen atom or a 5 $\rm C_1\text{--}C_3$ alkyl group),

W is a divalent C_1 - C_6 saturated or C_2 - C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1 - C_7 alkyl groups, and

each of k and ℓ is 0 or 1),

-V-W-V-W-Z (V, W and Z are as defined above, and two V's and W's may, respectively, be the same or different), -W-V-W-Z (V, W and Z are as defined above, and two W's may be the same or different),

-V-W-V-Z (V, W and Z are as defined above, and two l5 V's may be the same or different), or

-W-V-Z (V, W and Z are as defined above);

each of R^2 and R^3 is independently a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group (said C_1 - C_7 alkyl and C_3 - C_7 cycloalkyl groups may be substituted with a hydroxyl group), a phenyl group, a naphthyl group, a benzyl group, a pyridyl group, a pyrimidinyl group, a pyridazinyl group, a furanyl group, a thienyl group, a pyrrolyl group, a pyrazolyl group, an imidazolyl group, a pyranyl group, a quinolyl group, a benzoxazolyl group, a benzothiazolyl group or a benzimidazolyl group (each of said phenyl, naphthyl, benzyl, pyridyl, pyrimidinyl, pyridazinyl, furanyl, thienyl, pyrrolyl, pyrazolyl,

imidazolyl, pyranyl, quinolyl, benzoxazolyl, benzothiazolyl and benzimidazolyl groups may be substituted with at most 5 members selected from the group consisting of a hydroxyl group, a C_1 - C_7 alkyl group, a C_1 - C_7 alkoxy group and a halogen atom), and R^2 or R^3 may further be a halogen atom when it is bonded to a carbon atom at the 3-, 4- or 5-position of the pyrazole ring;

 ${\bf R^4}$ is a hydrogen atom or a ${\bf C_1-C_7}$ alkyl group, or 10 forms a bond together with ${\bf R^7};$ and

R⁵ is a hydrogen atom or a carboxymethyl group.

2. The pyrazole type thiazolidine compound and its salt according to Claim 1, wherein the compound of the formula (I) is represented by the following formula (Ia):

5

wherein R^1 is a C_1 - C_{10} alkyl group, a C_2 - C_{10} alkenyl group, a C_2 - C_{10} alkynyl group, a C_1 - C_{10} alkoxy group, a C_2 - C_{10} alkenyloxy group, a C_1 - C_{10} alkylthio group, a C_1 - C_{10} monoalkylamino group or a di- C_1 - C_{10} alkylamino group (each of said C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_1 - C_{10} monoalkylamino and di- C_1 - C_{10} alkylamino groups may be substituted with a hydroxyl group or a C_1 - C_2 alkyl group), or

 $^{-\mathrm{V}}{}_{k}^{\,-\mathrm{W}}{}_{1}^{\,-\mathrm{Z}}$ (among groups of Z as defined for the formula (I), said C_3-C_{10} cycloalkyl group is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, bicyclo[2.2.1]heptyl, bicyclo[3.1.1]heptyl, bicyclo[2.2.2]octyl, or adamantyl, 5 said C3-C7 cycloalkenyl group is cyclohexenyl, cyclopentadienyl, 2-bicylo[2.2.1]heptenyl or 2,5bicyclo[2.2.1]heptadienyl, said C_6-C_{14} aromatic group is phenyl, naphthyl, indenyl, indanyl or fluorenyl, said C_4 - C_{12} heterocyclic aromatic group is furyl, thienyl, 10 pyrrolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, furazanyl, pyrazolyl, oxopyrazolyl, imidazolyl, oxoimidazolyl, triazolyl, triazolonyl, tetrazolyl, pyranyl, pyridyl, pyridonyl, pyridazinyl, pyridazinonyl, pyrimidinyl, pyrimidinonyl, pyrazinyl, triazinyl, 15 tetrazinyl, indolyl, quinolyl, quinolonyl, benzofuranyl, benzothienyl, isoquinolyl, isoquinolonyl, benzoxazolyl, benzothiazolyl, benzopyrazolyl, benzimidazolyl, benzotriazolyl, benzopyranyl, indolizinyl, purinyl, phthalazinyl, oxophthalazinyl, naphthyridinyl, 20 quinoxalinyl, quinazolinyl, cinnolinyl, benzodioxanyl, oxonaphthalenyl, dihydrobenzofuranyl, benzothiazinyl, pteridinyl, pyrazolo[1,5-a]pyrimidinyl, pyrazolo[5,1c][1,2,4]triazinyl, thiazolo[3,2-b]triazolyl, benzopyrano[2,3-b]pyridyl, 5H-benzopyrano[2,3-25 b]pyridonyl, xanthenyl, phenoxathiinyl, carbazolyl,

acridinyl, phenazinyl, phenothiazinyl, phenoxazinyl, or

WO 96/11196 PCT/JP95/02041

thianthrenyl, and said C_4-C_6 heterocycloaliphatic group is piperidyl, pyrrolidinyl, imidazolidinyl, pyrazolidinyl, morpholinyl, or tetrahydrofuranyl, (each of said C_3-C_{10} cycloalkyl, C_3-C_7 cycloalkenyl, C_6-C_{14} aromatic, $C_4 - C_{12}$ heterocyclic aromatic and $C_4 - C_6$ 5 heterocycloaliphatic groups may have at most 5 substituents selected from the group consisting of a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group, a C_3 - C_7 cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a 10 hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C_1-C_7 alkylthio group, a halogen atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a 15 C_1-C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups 20 may be substituted with at most 5 substituents selected from the group consisting of a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_1-C_3 alkoxy group, a C_1-C_3 alkylthio group, a hydroxyl group, a halogen atom, a nitro group and a dimethylamino group), a 1-tetrazolyl group, a 3-25 tetrazolyl group, a 5-tetrazolyl group, a thiazolidindion-5-yl group and a thiazolidindion-5-yl

5

methyl group),

V is O, S, SO, SO $_2$ or NR 8 (R 8 is a hydrogen atom or a $\rm C_1-\rm C_3$ alkyl group),

W is a divalent C_1-C_6 saturated or C_2-C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1-C_7 alkyl groups, and

each of k and ℓ is 0 or 1),

-V-W-V-W-Z (V, W and Z are as defined above, and two V's and W's may, respectively, be the same or different),

10 -W-V-W-Z (V, W and Z are as defined above, and two W's may be the same or different),

-V-W-V-Z (V, W and Z are as defined above, and two V's may be the same or different), or

-W-V-Z (V, W and Z are as defined above).

3. The pyrazole type thiazolidine compound and its salt according to Claim 2, wherein the compound of the formula (Ia) is represented by the formula (Ib):

20

4. The pyrazole type thiazolidine compound and its salt according to Claim 3, wherein R^1 is -V-W-Z, -W-Z, -V-W-Z, -V-W-Z, -V-W-Z, -V-W-Z or -W-V-Z (V is 0, S or NR⁸ (R⁸ is a hydrogen atom or a C_1-C_3 alkyl group), W is a divalent C_1-C_6 saturated or C_2-C_6 unsaturated hydrocarbon group which may be substituted with at most 3

of hydroxyl, oxo and C_1-C_7 alkyl groups, when two V's or W's are present, such V's or W's may be the same or different, and Z is

WO 96/11196 PCT/JP95/02041

- 190 -

wherein each of R^a and R^b is independently a hydrogen atom, a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_3-C_7 C, cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a C_1-C_7 5 alkylthio group, a fluorine atom, a chlorine atom, a bromine atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1-C_3 alkoxycarbonyl group, a nitrile 10 group, a carbamoyl group, a sulfamoyl group, a phenoxy group, a benzyloxy group, a phenyl, lpha-naphthyl, etanaphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, α -naphthyl, β -naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups 15 may be substituted with at most 5 substituents selected from the group consisting of a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_1-C_3 alkoxy group, a C_1-C_3 alkylthio group, a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, a nitro group and a dimethylamino 20 group), a 1-tetrazolyl group, a 3-tetrazolyl group, a 5tetrazolyl group, a thiazolidindion-5-yl group or a thiazolidindion-5-yl methyl group, and R^c is a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group or a hydroxymethyl group); 25

 R^2 or R^3 is a hydrogen atom, a C_1 - C_4 alkyl group, a C_3 - C_6 cycloalkyl group, a phenyl group, a naphthyl group,

5

15

20

a benzyl group or a pyridyl group, when it is on the nitrogen atom at the 1-position of the pyrazole ring; and

 ${\bf R}^2$ or ${\bf R}^3$ is a hydrogen atom, a ${\bf C_1}-{\bf C_4}$ alkyl group, a phenyl group or a halogen atom, when it is on the carbon atom at the 4-position of the pyrazole ring.

5. The pyrazole type thiazolidine compound and its salt according to Claim 4, wherein said compound is represented by the formula:

wherein Y is CR^6R^7 (R^6 is a hydrogen atom or a methyl group, and R^7 is a hydrogen atom, or forms a bond together with R^4);

 R^1 is -V-W-Z, -W-Z, -V-W-V-W-Z, -W-V-W-Z, -V-W-V-Z or -W-V-Z (V is O, S or NR^8 (R^8 is a hydrogen atom or a C_1-C_3 alkyl group), W is a divalent C_1-C_6 saturated or C_2-C_6 unsaturated hydrocarbon group which may be substituted with at most 3 of hydroxyl, oxo and C_1-C_7 alkyl groups, when two V's or W's are present, such V's or W's may be the same or different, and Z is

wherein each Ra and Rb is independently a hydrogen atom, a C_1-C_7 alkyl group, a C_3-C_7 cycloalkyl group, a C_3-C_7 cycloalkenyl group (said alkyl, cycloalkyl and cycloalkenyl groups may be substituted with a hydroxyl group), a hydroxyl group, a C_1-C_7 alkoxy group, a 5 fluorine atom, a chlorine atom, a bromine atom, a trifluoromethyl group, a nitro group, an amino group, a methylamino group, a dimethylamino group, an acetamide group, a methanesulfonylamide group, a carboxyl group, a C_1-C_3 alkoxycarbonyl group, a nitrile group, a carbamoyl 10 group, a phenoxy group, a benzyloxy group, a phenyl, α naphthyl, β -naphthyl, furanyl, thienyl, imidazolyl, pyridyl or benzyl group (each of said phenyl, α -naphthyl, β -naphthyl, furanyl, thienyl, imidazolyl, pyridyl and benzyl groups may be substituted with at most 5 15 substituents selected from the group consisting of a $\mathrm{C}_1 C_7$ alkyl group, a C_3 - C_7 cycloalkyl group, a C_1 - C_3 alkoxy group, a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, a nitro group and a dimethylamino group), a 5-tetrazolyl group, a thiazolidindion-5-yl 20 group or a thiazolidindion-5-yl methyl group, and Rc is a hydrogen atom, a C_1 - C_7 alkyl group, a C_3 - C_7 cycloalkyl group or a hydroxymethyl group);

 \mathbb{R}^4 is a hydrogen atom or a methyl group, or forms a bond together with \mathbb{R}^7 ;

 \mathbb{R}^5 is a hydrogen atom or a carboxymethyl group.

6. The pyrazole type thiazolidine compound and its salt

5

according to Claim 5, wherein:

 R^1 is -O-W-Z, wherein W is a divalent C_1 - C_6 saturated or C_2 - C_6 unsaturated hydrocarbon group which may be substituted with at most 2 of hydroxyl, oxo and C_1 - C_7 alkyl groups (provided that the first carbon atom bonded with the oxygen atom is not substituted with a hydroxyl group or an oxo group).

- 7. The pyrazole type thiazolidine compound and its salt according to Claim 5, wherein:
- R^1 is -O-W-V-W-Z, -W-V-W-Z, -O-W-V-Z or -W-V-Z, wherein V is O or NR^8 (R^8 is a hydrogen atom or a C_1-C_3 alkyl group), W is a divalent C_1-C_6 saturated or C_2-C_6 unsaturated hydrocarbon group which may be substituted with at most 2 of hydroxyl, oxo and C_1-C_7 alkyl groups (provided that the first carbon atom bonded with the oxygen atom is not substituted with a hydroxyl group or an oxo group when two W's are present, such W's may be the same or different).
- 8. The pyrazole type thiazolidine compound and its salt 20 according to Claim 5, wherein:

 R^1 is -W-Z, wherein W is a divalent C_1 - C_6 saturated or C_2 - C_6 unsaturated hydrocarbon group which may be substituted with at most 2 hydroxyl, oxo and C_1 - C_7 alkyl groups.

25 9. The pyrazole type thiazolidine compound and its salt according to Claim 6, wherein:

 R^1 is -O-W-Z, wherein W is

$$\begin{array}{c}
\begin{pmatrix}
\mathsf{R}^{\mathsf{d}} \\
\mathsf{I} \\
\mathsf{C} \\
\mathsf{R}^{\mathsf{e}}
\end{pmatrix}_{\mathsf{m}}$$

wherein m is from 1 to 5, and each of R^d and R^e is independently a hydrogen atom, a methyl group or a hydroxyl group, or R^d and R^e together form an oxo group, or adjacent R^d's together form a double bond, or adjacent R^d's and R^e's together form a triple bond (provided that R^d and R^e on the first carbon atom adjacent to 0 are not hydroxyl groups or do not together form an oxo group).

10. The pyrazole type thiazolidine compound and its salt according to Claim 7, wherein:

 \mathbb{R}^1 is -O-W-V-W-Z, -W-V-W-Z, -O-W-V-Z or -W-V-Z, wherein W is

15

20

25

10

$$\begin{array}{c}
\begin{pmatrix}
\mathsf{R}^{\mathsf{d}} \\
\mathsf{C} \\
\mathsf{R}^{\mathsf{e}}
\end{pmatrix}_{\mathsf{m}}$$

wherein m is from 1 to 5, and each of R^d and R^e is independently a hydrogen atom, a methyl group or a hydroxyl group, or R^d and R^e together form an oxo group, or adjacent R^d's together form a double bond, or adjacent R^d's and R^e's together form a triple bond (provided that R^d and R^e on the first carbon atom adjacent to 0 are not hydroxyl groups or do not together form an oxo group).

11. The pyrazole type thiazolidine compound and its salt

 R^1 is -W-Z, wherein W is

according to Claim 8, wherein:

wherein m is from 1 to 5, each of R^d and R^e is

independently a hydrogen atom, a methyl group or a
hydroxyl group, or R^d and R^e together form an oxo group,
or adjacent R^d's together form a double bond, or adjacent
R^d's and R^e's together form a triple bond.

12. The pyrazole type thiazolidine compound and its salt
10 according to Claim 9, wherein:

 \mathbb{R}^1 is -O-W-Z, wherein -O-W is

13. The pyrazole type thiazolidine compound and its salt according to Claim 10, wherein:

 ${\tt R^1}$ is -O-W-V-W-Z, -W-V-W-Z, -O-W-V-Z or -W-V-Z, wherein -O-W-V-W- is

-CH₂-NH-CH-CH₂-

CH₃

- 199 -

10 and -W-V- is

20

14. The pyrazole type thiazolidine compound and its salt according to Claim 11, wherein:

 R^1 is -W-Z, wherein W is

WO 96/11196 PCT/JP95/02041

15. The pyrazole type thiazolidine compound and its salt according to Claim 12, wherein:

 R^1 is -O-W-Z, wherein -O-W- is

16. The pyrazole type thiazolidine compound and its salt

according to Claim 14, wherein:

 R^1 is -W-Z, wherein W is

$$-CH_{2}-CH_{2}-CH_{2}- \ , -CH_{2}-CH_{2}-C - \ , -CH_{2}-CH_{2$$

15 17. The pyrazole type thiazolidine compound and its salt according to Claim 6, 7 or 8, wherein:

Y is -CH₂-; and

 \mathbb{R}^4 is a hydrogen atom.

18. The pyrazole type thiazolidine compound and its salt 20 according to Claim 6, 7 or 8, wherein:

Y is CHR^7 (R^7 forms a bond together with R^4); and R^4 forms a bond together with R^7 .

- 19. The pyrazole type thiazolidine compound and its salt according to Claim 15, which is represented by the
- 25 formula:

wherein each of R^a, R^b and R^c is independently a hydrogen atom, a C₁-C₇ alkyl group, a C₁-C₇ alkoxy group, a fluorine atom, a chlorine atom, a bromine atom or a phenyl group (said phenyl group may be substituted with at most 3 of a methyl group, a methoxy group and a chlorine atom), R² is a hydrogen atom, a C₁-C₇ alkyl group or a phenyl group, R³ is a hydrogen atom or a C₁-C₇ alkyl group, Y is CR⁶R⁷ (R⁶ is a hydrogen atom or a methyl group, and R⁷ is a hydrogen atom, or forms a bond together with R⁴), and R⁴ is a hydrogen atom, or forms a bond together with R⁷.

20. The pyrazole type thiazolidine compound and its salt according to Claim 15, which is represented by the formula:

$$R^{b} \longrightarrow R^{c} \longrightarrow R^{3} \longrightarrow NH$$

wherein each of R^a , R^b and R^c is independently a hydrogen atom, a C_1 - C_7 alkyl group, a C_1 - C_7 alkoxy group, a fluorine atom, a chlorine atom, a bromine atom or a phenyl group (said phenyl group may be substituted with at most 3 of a methyl group, a methoxy group and a

chlorine atom), R^2 is a hydrogen atom, a C_1 - C_7 alkyl group or a phenyl group, R^3 is a hydrogen atom or a C_1 - C_7 alkyl group, Y is CR^6R^7 (R^6 is a hydrogen atom or a methyl group, and R^7 is a hydrogen atom, or forms a bond together with R^4), and R^4 is a hydrogen atom, or forms a bond together with R^7 .

21. The pyrazole type thiazolidine compound and its salt according to Claim 15, which is represented by the formula:

10

5

- wherein each of R^a, R^b and R^c is independently a hydrogen atom, a C₁-C₇ alkyl group, a C₁-C₇ alkoxy group, a fluorine atom, a chlorine atom, a bromine atom or a phenyl group (said phenyl group may be substituted with at most 3 of a methyl group, a methoxy group and a chlorine atom), R² is a hydrogen atom, a C₁-C₇ alkyl group or a phenyl group, R³ is a hydrogen atom or a C₁-C₇ alkyl group, Y is CR⁶R⁷ (R⁶ is a hydrogen atom or a methyl group, and R⁷ is a hydrogen atom, or forms a bond together with R⁴), and R⁴ is a hydrogen atom, or forms a bond together with R⁷.
 - 22. The pyrazole type thiazolidine compound and its salt according to Claim 15, which is represented by the

formula:

5

20

$$R^{2}$$
 R^{3}
 NH
 R^{3}
 NH

wherein each of R^a, R^b and R^c is independently a hydrogen atom, a C₁-C₇ alkyl group, a C₁-C₇ alkoxy group, a fluorine atom, a chlorine atom, a bromine atom or a phenyl group (said phenyl group may be substituted with at most 3 of a methyl group, a methoxy group and a chlorine atom), R² is a hydrogen atom, a C₁-C₇ alkyl group or a phenyl group, R³ is a hydrogen atom or a C₁-C₇ alkyl group, Y is CR⁶R⁷ (R⁶ is a hydrogen atom or a methyl group, and R⁷ is a hydrogen atom, or forms a bond together with R⁴), and R⁴ is a hydrogen atom, or forms a bond together with R⁷.

23. The pyrazole type thiazolidine compound and its salt according to Claim 15, which is represented by the formula:

wherein each of R^a , R^b and R^c is independently a hydrogen atom, a C_1 - C_7 alkyl group, a C_1 - C_7 alkoxy group, a fluorine atom, a chlorine atom, a bromine atom or a

5

15

20

25

phenyl group (said phenyl group may be substituted with at most 3 of a methyl group, a methoxy group and a chlorine atom), R^2 is a hydrogen atom, a C_1 - C_7 alkyl group or a phenyl group, R^3 is a hydrogen atom or a C_1 - C_7 alkyl group, Y is CR^6R^7 (R^6 is a hydrogen atom or a methyl group, and R^7 is a hydrogen atom, or forms a bond together with R^4), and R^4 is a hydrogen atom, or forms a bond together with R^7 .

24. The pyrazole type thiazolidine compound and its salt according to Claim 15, which is represented by the formula:

wherein each of R^a , R^b and R^c is independently a hydrogen atom, a C_1 - C_7 alkyl group, a C_1 - C_7 alkoxy group, a fluorine atom, a chlorine atom, a bromine atom or a phenyl group (said phenyl group may be substituted with at most 3 of a methyl group, a methoxy group and a chlorine atom), R^2 is a hydrogen atom, a C_1 - C_7 alkyl group or a phenyl group, R^3 is a hydrogen atom or a C_1 - C_7 alkyl group, Y is CR^6R^7 (R^6 is a hydrogen atom or a methyl group, and R^7 is a hydrogen atom, or forms a bond together with R^4), and R^4 is a hydrogen atom, or forms a bond together with R^7 .

WO 96/11196 PCT/JP95/02041

- 206 -

- 25. A hypoglycemic agent containing the pyrazole type thiazolidine compound or its salt according to Claim 1 as an active agent.
- 26. An anti-glycation agent containing the pyrazole type 5 thiazolidine compound or its salt according to Claim 1 as an active agent.
 - 27. An aldose reductase inhibitor containing the pyrazole type thiazolidine compound or its salt according to Claim 1 as an active agent.
- 10 28. A pharmaceutical agent for preventing and treating diabetes mellitus and diabetic complications, which contains the pyrazole type thiazolidine compound or its salt according to Claim 1 as an active agent.

INTERNATIONAL SEARCH REPORT

Int ional Application No PCT/JP 95/02041

A. CLASS IPC 6	CO7D417/14 CO7D417/06 CO7D413	/14 A61K31/425					
:							
According to International Patent Classification (IPC) or to both national classification and IPC							
	S SEARCHED ocumentation searched (classification system followed by classification system followed by classi	tion symbols)					
IPC 6	CO7D A61K	acii symoosy					
Documenta	ion searched other than minimum documentation to the extent that	such documents are included in the fields s	earched				
Electronic d	ata base consulted during the international search (name of data ba	se and, where practical, search terms used)					
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT						
Category *	Citation of document, with indication, where appropriate, of the r	elevant passages	Relevant to claim No.				
x	JUSTUS LIEBIGS ANN. CHEM., vol. 585, - 1954		1				
	pages 115-123, HUETTEL ET AL. see page 123, line 10						
A	EP-A-0 389 699 (PFIZER) 3 October see page 1; claim 1	r 1990	1-28				
A	EP-A-0 332 331 (PFIZER) 13 Septer cited in the application see page 1; claim 1	nber 1989	1-28				
A	EP-A-0 177 353 (TAKEDA) 9 April : cited in the application see page 1; claim 1	1986	1-28				
Furt	her documents are listed in the continuation of box C.	X Patent family members are listed	in annex.				
* Special ca	legories of cited documents :	"T" later document published after the inte	ernational filing date				
	ent defining the general state of the art which is not ered to be of particular relevance	or priority date and not in conflict wi cited to understand the principle or the	th the application but neory underlying the				
"E" earlier	document but published on or after the international	invention "X" document of particular relevance; the	claimed invention				
filing date "L" document which may throw doubts on priority claim(s) or "cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone							
citatio	which is cited to establish the publication date of another citation or other special reason (as specified) cannot be considered to involve an inventive step when the						
other i	"O" document referring to an oral disclosure, use, exhibition or other means and disclosure of the means and document is combined with one or more other such document, such combination being obvious to a person skilled in the art.						
	'P' document published prior to the international filing date but later than the priority date claimed '&' document member of the same patent family						
Date of the	actual completion of the international search	Date of mailing of the international se	arch report				
11 January 1996			14.02.1996				
Name and r	nailing address of the ISA	Authorized officer					
	European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Lauro, P					

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int ional Application No PCT/JP 95/02041

Patent document cited in search report	Publication Patent family date member(s)			Publication date
EP-A-389699	03-10-90	WO-A-	8908652	21-09-89
		CA-A-	1328265	05-04-94
		CN-B-	1026234	19-10-94
		FI-B-	92696	15-09-94
		NO-B-	178068	09-10-95
		PT-B-	89922	01-03-95
		US-A-	5330998	19-07-94
EP-A-332331	13-09-89	WO-A-	8908650	21-09-89
		CA-A-	1328872	26-04-94
		DE-D-	68912952	24-03-94
		DE-T-	68912952	11-05-94
		PT-B-	89913	31-05-94
		US-A-	5061717	29-10-91
		US-A-	5120754	09-06-92
		US-A-	5223522	29-06-93
EP-A-177353	09-04-86	WO-A-	8602073	10-04-86
		WO-A-	8606069	23-10-86
		AU-B-	583537	04-05-89
		AU-B-	4817685	10-04-86
		CA-A-	1263655	05-12-89
		JP-C-	1859452	27-07-94
		JP-A-	61085372	30-04-86
		US-A-	4725610	16-02-88
		SU-A-	1436876	07-11-88