Comparison of Multimodal Methods for Video Energy Levels Recognition & Detection

Attribute	Optical Flow	Frame Difference	Background Subtraction	Motion History	Combined Methods
Accuracy	• 85-92% for	• 65-75% for	• 80-88% with	• 70-80% for	• 90-95% with
-	dense flow	basic	MOG2	gesture	proper
Score	dense now	basic	WIOGZ	recognition	integration
	75 950/ 6	70.000/:41	75 050/	recognition	integration
	• 75-85% for	• 70-80% with	• 75-85% with	75 050/ 6	05.000/
	sparse flow	adaptive	KNN	• 75-85% for	• 85-92% in
		thresholding		action analysis	challenging
	TT' 1	G: 1	G 1.C	0 1	conditions
Pros	• High	• Simple	• Good for	• Good	Highest
	accuracy in	implementatio	static cameras	temporal	accuracy
	motion	n		information	
	tracking		Handles		• Robust to
		• Low	gradual	 Works well 	various
	 Works well 	computational	changes	for gesture	conditions
	with complex	cost		analysis	
	movements		Can detect		•
		Real-time	stopped	Compact	Comprehensiv
	Can detect	capable	objects	representation	e motion
	motion	<u>F</u>	,	l P	analysis
	direction	• Good for	Works well	Memory	anary 515
	direction	quick detection	with crowds	efficient	Adaptive to
	• Good for	quick detection	will clowds	emcient	different
					scenarios
	velocity estimation				scenarios
•	estimation	• Lower	D	• Limited	37
Cons	·		• Requires		• Very
	Computational	accuracy	static camera	spatial	computationall
	ly expensive			information	y expensive
		Sensitive to	Sensitive to		
	 Sensitive to 	camera	sudden	• Can miss	• Complex
	noise	movement	lighting	quick	implementatio
			changes	movements	n
	 Can struggle 	• Cannot			
	with	handle slow	Memory	 Dependent 	 Requires
	illumination	motion	intensive	on motion	careful
	changes			duration	parameter
		No direction	Background		tuning
	• Complex	information	model updates	Not suitable	
	implementatio	momunon	needed	for tracking	• High
	n		necucu	101 trucking	resource
	"				requirements
Best Use	• Sports	Real-time	Security	Gesture	High-security
	analysis	surveillance	surveillance	recognition	systems
Case	allalysis	Surveinance	Surveinance	recognition	Systems
	- Ct-	. D:	- D1		- A -1
	• Gesture	• Basic motion	• People	• Human	• Advanced
	recognition	detection	counting	action analysis	sports analysis
	• Vehicle	• Resource-	• Traffic	Movement	• Medical
	tracking	constrained	monitoring	pattern	motion
		systems		analysis	tracking
	• High-		• Retail		
	****	1	1000011	i .	1

	precision	• Quick	analytics	Interactive	• Professional
	motion	movement	anarytics	systems	video analysis
	analysis	detection		Systems	video dilalysis
Companies	• Tesla	Hikvision	• Axis	Microsoft	Google
& Products	(Autopilot	(Basic	Communicatio	(Kinect SDK)	(Cloud Video
	vision system)	surveillance	ns (IP	(Rimeet SDR)	Intelligence
Using the	vision system)	cameras)	cameras)	• Sony	API)
Method	• Intel	cumerus)	cumerus)	(PlayStation	7111)
	(RealSense	Raspberry Pi	• Bosch	camera games)	Amazon
	cameras)	(Motion	(Security	camera games)	(AWS
	Cameras)	detection	systems)	. NI:	Rekognition
	DII (D	software)	systems)	• Nintendo	Video)
	• DJI (Drone	Software)	• Hanwha	(Motion	v ideo)
	tracking	• Wryge (Heme	Techwin	gaming)	Microsoft
	systems)	• Wyze (Home security	(Surveillance		(Azure Video
	NI AIDI A	•	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	• Leap Motion	
	• NVIDIA	cameras)	solutions)	(Hand	Analyzer)
	(Optical Flow	. 1 (0		tracking)	IDM (47' 1
	SDK)	• Arlo (Smart	• Panasonic		• IBM (Video
		security	(Security	• Meta (Quest	Analytics
	• BMW	systems)	cameras)	hand tracking)	Suite)
	(Driver	D.			
	assistance	• Ring	Honeywell		• Palantir
	systems)	(Doorbell	(Commercial		(Gotham video
		cameras)	security)		analytics)
Resource	• Processing	• Processing	• Processing	• Processing	• Processing
Consumptio	time: 45-60	time: 8-12	time: 15-25	time: 12-18	time: 70-90
n	minutes	minutes	minutes	minutes	minutes
(10min					
video,	• CPU usage:	• CPU usage:	• CPU usage:	• CPU usage:	• CPU usage:
1080p@30fp	70-80%	20-30%	40-50%	30-40%	80-90%
\mathbf{s})					
	• RAM: 4-6GB	• RAM: 1-2GB	• RAM: 2-4GB	• RAM: 1.5-	• RAM: 8-
				3GB	12GB
	• GPU highly	GPU optional	• GPU		
	recommended		recommended	GPU optional	• GPU
					required
Latest	• "RAFT:	• "Real-time	• "Self-	• "Deep	• "Unified
Research	Recurrent All-	Adaptive	Supervised	Motion	Deep Learning
Paper	Pairs Field	Frame	Background	History	Framework for
	Transforms for	Differencing	Subtraction	Networks for	Multi-Modal
	Optical Flow"	Through	with Deep	Action	Motion
	(2023)	Motion	Neural	Recognition"	Detection"
	A 41	Analysis"	Networks"	(2023)	(2023)
	• Authors:	(2023)	(2023)	A 41 F	A .1
	Zachary Teed	A 41	A 41	• Authors: Lee,	• Authors:
	& Jia Deng	• Authors:	• Authors:	S., & Kim, J.	Chen, R., &
		Sun, J., &	Wang, D., et		Zhang, L.
	• Location:	Yang, M.	al.	• Location:	T
	Princeton	T	T	KAIST	• Location: UC
	University	• Location:	• Location:		Berkeley
		Tsinghua	ETH Zürich	• Published:	
	• Published:	University	.	CVPR 2023	• Published:
	ECCV 2023	B 1111 1	• Published:		NeurIPS 2023
		• Published:	ICCV 2023	• Link:	
	• Link:	IEEE TPAMI		https://doi.org/	• Link:
	https://arxiv.or		• Link:	10.1109/CVPR	https://doi.org/

g/abs/2003.12	• Link:	https://doi.org/	52729.2023.01	10.48550/arXi
39	https://doi.org/	10.1109/ICCV	892	v.2309.12077
	10.1109/TPA	48053.2023.00		
• DOI:	MI.2023.3236	981		
10.1007/978-	435			
3-030-58536-				
5_45				