Fonctions génératrices des moments [CNC-2016]

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé, par la suite, les variables aléatoires considérées sont des variables aléatoires réelles discrètes ou à densité. Si X est une variable aléatoire sur $(\Omega, \mathcal{A}, \mathbb{P})$, la fonction génératrice des moments de X, lorsqu'elle existe, est la fonction numérique de la variable réelle t, $M_X : t \longrightarrow \mathbb{E}\left(e^{tX}\right)$, où $\mathbb{E}\left(e^{tX}\right)$ désigne l'espérance de la variable aléatoire e^{tX} .

Partie I: Variables aléatoires discrètes finies

Soit X une variable aléatoire discrète prenant un nombre fini de valeurs x_1, \dots, x_r avec les probabilités respectives p_1, \dots, p_r , où $r \in \mathbb{N}^*$. On définit la fonction φ_X sur \mathbb{R}^* par,

$$\forall t \in \mathbb{R}^*, \varphi_X(t) = \frac{1}{t} \ln(M_X(t))$$

- 1. Déterminer M_Z , lorsque Z suit une loi de Bernoulli de paramètre $p, p \in [0, 1]$.
- 2. Montrer que M_X est de classe \mathcal{C}^{∞} sur \mathbb{R} , et que pour tout entier naturel k, $M_X^{(k)}(0) = \mathbb{E}(X^k)$.
- 3. (a) Montrer que φ_X est bien définie sur \mathbb{R}^* et prolongeable par continuité en 0. On pose $\varphi_X(0) = \mathbb{E}(X)$ et on note encore φ_X la fonction ainsi prolongée.
 - (b) Démontrer que φ_X est dérivable en 0 et calculer $\varphi_X'(0)$ en fonction de la variance $\mathbb{V}(X)$ de X.
- 4. (a) Montrer que pour tout $u \le 0$, $e^u \le 1 + u + \frac{1}{2}u^2$;
 - (b) Montrer que si X ne prend que des valeurs négatives ou nulles, alors, pour tout $t \ge 0$,

$$\varphi_X(t) \leqslant \mathbb{E}(X) + \frac{t}{2}\mathbb{E}(X^2)$$

- 5. (a) Pour tout entier i tel que $1 \leq i \leq r$, on note f_i la fonction définie sur \mathbb{R} , part $t \mapsto e^{tx_i}$. Montrer que la famille (f_1, \dots, f_r) est libre.
 - (b) En déduire que deux variables discrètes finies X et Y ont la même loi si, et seulement si, les fonctions φ_X et φ_Y sont égales.
- 6. Montrer que si X et Y sont des variables discrètes finies indépendantes, alors,

$$\varphi_{X+Y} = \varphi_X + \varphi_Y$$

- 7. En déduire M_X , lorsque X suit une loi binomiale de paramètre s et p, s est un entier naturel non nul et $0 \le p \le 1$.
- 8. On dit qu'une variable aléatoire réelle X est symétrique si X et -X ont la même loi. Montrer que φ_X est impaire si, et seulement si, X est une variable aléatoire réelle symétrique.
- 9. On considère une suite $(X_n)_{n\geqslant 1}$ de variables aléatoires discrètes finies mutuellement indépendantes sur $(\Omega, \mathcal{A}, \mathbb{P})$, qui suivent la même loi que X. On note m l'espérance de X et σ son écart-type que l'on suppose strictement positif.

On pose, pour tout entier naturel non nul, $S_n = \sum_{k=1}^n X_k$ et $S_n^* = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{\mathbb{V}(S_n)}}$.

(a) Montrer que, pour tout entier naturel non nul n et tout réel non nul t,

$$\varphi_{S_n^*}(t) = \frac{-m\sqrt{n}}{\sigma} + \frac{\sqrt{n}}{\sigma}\varphi_X\left(\frac{t}{\sigma\sqrt{n}}\right)$$

(b) En déduire que $\lim_{n\to +\infty} \varphi_{S_n^*}(t) = \frac{t}{2}$.

Partie II: Cas des variables aléatoires discrètes réelles infinies

Soit X une variable aléatoire discrète réelle infinie, notons I_X l'ensemble des réels t pour lesquels M_X existe.

- 10. (a) Montrer que, pour tous réels a, b, c tels que $a \le b \le c$ et tout réel $x, e^{bx} \le e^{ax} + e^{cx}$.
 - (b) En déduire que I_X est un intervalle contenant 0.
- 11. Soit Y une variable aléatoire discrète réelle qui suit une loi de Poisson de paramètre $\lambda > 0$. Déterminer la fonction génératrice des moments M_Y de Y.
- 12. On suppose que la fonction M_X est définie sur un intervalle de la forme]-a,a[,(a>0). Notons $(x_n)_{n\in\mathbb{N}}$ une énumération des valeurs de X.

Posons, pour tout $n \in \mathbb{N}$ et tout $t \in]-a, a[, u_n(t) = P(X = x_n)e^{tx_n}$ et x_n . Soit $\alpha > 0$ tel que $[-\alpha, \alpha] \subset]-a, a[$, et soit $\rho \in]\alpha, a[$.

(a) Montrer que, pour tout $k \in \mathbb{N}$, tout $t \in]-\alpha, \alpha[$ et tout $n \in \mathbb{N}$,

$$|u_n^{(k)}(t)| \le P(X = x_n)(|x_n|)^k e^{\alpha |x_n|}$$

où $u_n^{(k)}$ désigne la dérivée k-ème de la fonction u_n .

(b) Montrer que, pour tout $k \in \mathbb{N}$, il existe $M_k > 0$, pour tout $t \in]-\alpha, \alpha[$ et tout $n \in \mathbb{N}$,

$$|u_n^{(k)}(t)| \leqslant M_k P(X = x_n) |e^{\rho|x_n|}.$$

- (c) En déduire que M_X est de classe \mathcal{C}^{∞} sur]-a,a[, et que pour tout $k\in\mathbb{N},\mathbb{E}\left(X^k\right)=M_X^{(k)}(0)$
- 13. En déduire l'espérance et la variance d'une variable aléatoire Y qui suit une loi de Poisson de paramètre $\lambda > 0$.

Partie III: Cas des variables aléatoires à densité

- Si X est une variable aléatoire à densité, on note I_X l'intervalle de \mathbb{R} , qui contient 0, pour lequel M_X existe.
 - 14. Soient X et Y deux variables aléatoires à densité indépendantes, qui admettent respectivement des fonctions génératrices des moments M_X et M_Y , montrer que

$$\forall t \in I_X \cap I_Y, \quad M_{X+Y}(t) = M_X(t)M_Y(t)$$

- 15. Soit X une variable aléatoire à densité possédant une fonction génératrice des moments M_X et une densité f. On suppose que cette fonction génératrice des moments soit définie sur $I_X =]a, b[, (a, b) \in \mathbb{R}^2, a < 0 < b,$ et soit s un réel tel que, $0 < s < \min(-a, b)$.
 - (a) Montrer que, pour tout $k \in \mathbb{N}^*$ et tout $t \in \mathbb{R}, |t^k| \leqslant \frac{k!}{s^k} e^{s|t|}$.
 - (b) En déduire que, pour tout $k \in \mathbb{N}^*$, $\mathbb{E}(|X|^k)$ est finie.
 - (c) Montrer que, pour tout $t \in]-s, s[, M_X(t) = \sum_{k=0}^{+\infty} \mathbb{E}\left(X^k\right) \frac{t^k}{k!}$
 - (d) En déduire que, pour tout $k \in \mathbb{N}, M_X^{(k)}(0) = \mathbb{E}(X^k)$

Partie I: Cas particulier : variables aléatoires discrètes finies

1. $Z \hookrightarrow \mathcal{B}(p)$, alors e^{tZ} est finie, par le théorème du transfert, pour tout $t \in \mathbb{R}$,

$$M_Z(t) = \mathbb{P}(Z=0) + e^t \mathbb{P}(Z=1) = p(e^t - 1) + 1$$

2. X est finie, alors pour tout $t \in \mathbb{R}$ la variable e^{tX} est finie, en particulier elle admet une espérance, par le théorème du transfert, pour tout $t \in \mathbb{R}$,

$$M_X(t) = \sum_{i=1}^r e^{tx_i} \mathbb{P}(X = x_i) = \sum_{i=1}^r p_i e^{tx_i}$$

Donc M_X est de classe \mathcal{C}^{∞} sur \mathbb{R} , comme somme de fonctions de classe \mathcal{C}^{∞} et pour tout entier naturel k,

$$M_X^{(k)}(t) = \sum_{i=1}^r x_i^k e^{tx_i} \mathbb{P}(X = x_i)$$

En particulier $M_X^{(k)}(0) = \sum_{i=1}^r x_i^k \mathbb{P}\left(X = x_i\right) = \mathbb{E}\left(X^k\right)$

3. (a) La famille $([X = x_i])_{i \in [\![1,r]\!]}$ est un système complet d'événements, en particulier $\sum_{i=1}^r p_i = 1$. En outre pour

tous $t \in \mathbb{R}$ et $i \in [1, r]$, on a $e^{tx_i} > 0$, donc $M_X(t) = \sum_{i=1}^r e^{tx_i} \mathbb{P}(X = x_i) > 0$. Ainsi φ_X est définie sur \mathbb{R}^* .

Le développement limité à l'ordre 1 en 0 de ${\cal M}_X$ est donné par

$$M_X(t) = M_X(0) + tM'_X(0) + \circ(t) = 1 + t\mathbb{E}(X) + \circ(t)$$

Par composition $\varphi_X(t) = \mathbb{E}(X) + o(1)$, donc φ_X est prolongeable par continuité en 0.

(b) Le développement limité à l'ordre 2 en 0 de M_X est donné par

$$M_X(t) = M_X(0) + tM_X'(0) + \frac{M_X''(0)}{2}t^2 + o(t^2) = 1 + t\mathbb{E}(X) + \frac{\mathbb{E}(X^2)}{2}t^2 + o(t^2)$$

Par composition

$$\varphi_X(t) = \frac{1}{t} \ln(M_X(t))$$

$$= \frac{1}{t} \ln\left(1 + t\mathbb{E}(X) + \frac{\mathbb{E}(X^2)}{2}t^2 + \circ(t^2)\right)$$

$$= \frac{1}{t} \left(t\mathbb{E}(X) + \frac{\mathbb{E}(X^2)}{2}t^2 - \frac{\left(t\mathbb{E}(X) + \frac{\mathbb{E}(X^2)}{2}t^2\right)^2}{2} + \circ(t^2)\right)$$

$$= \mathbb{E}(X) + \frac{\mathbb{E}(X^2) - \mathbb{E}(X)^2}{2}t + \circ(t)$$

Donc φ_X est dérivable en 0 et $\varphi_X'(0) = \frac{\mathbb{E}\left(X^2\right) - \mathbb{E}\left(X\right)^2}{2} = \frac{\mathbb{V}\left(X\right)}{2}$

4. (a) Soit $u \leq 0$, d'après la formule de Taylor avec reste intégral, on a

$$e^{u} = 1 + u + \frac{1}{2}u^{2} + \int_{0}^{u} \frac{(u-t)^{2}}{2} e^{t} dt$$

La fonction $t \mapsto \frac{(u-t)^2}{2}e^t$ est continue et positive sur [u,0], donc $\int_0^u \frac{(u-t)^2}{2}e^t dt \leqslant 0$, soit

$$e^u \leqslant 1 + u + \frac{1}{2}u^2$$

(b) Soit t > 0, comme $\forall i \in [1, r]$ on a $x_i \leq 0$, alors

$$\forall i \in [1, r], \quad e^{tx_i} \leqslant 1 + tx_i + \frac{t^2}{2}x_i^2$$

Par le théorème du transfert et par positivité de la probabilité

$$\mathbb{E}\left(e^{tX}\right) = \sum_{i=1}^{r} e^{tx_i} \mathbb{P}\left(X = x_i\right)$$

$$\leqslant \sum_{i=1}^{r} \left(1 + tx_i + \frac{t^2}{2}x_i^2\right) \mathbb{P}\left(X = x_i\right)$$

$$\leqslant \sum_{i=1}^{r} \mathbb{P}\left(X = x_i\right) + t\sum_{i=1}^{r} x_i \mathbb{P}\left(X = x_i\right) + \frac{t^2}{2} \sum_{i=1}^{r} x_i^2 \mathbb{P}\left(X = x_i\right)$$

$$\leqslant 1 + t\mathbb{E}\left(X\right) + \frac{t^2}{2} \mathbb{E}\left(X^2\right)$$

Finalement, la croissance de ln et l'inégalité de convexité: $\forall x > -1$, $\ln(1+x) \leq x$, donnent

$$\varphi_X(t) \leqslant \mathbb{E}(X) + \frac{t}{2}\mathbb{E}(X^2)$$

Une telle inégalité reste valable si t = 0, car $\varphi_X(0) = \mathbb{E}(X)$

5. (a) Quitte à réordonner les x_i , on peut supposer que $x_1 > x_2 > \ldots > x_r$. Supposons qu'il existe des réels $\lambda_1, \ldots, \lambda_r$ tels que $\sum_{i=1}^r \lambda_i f_i = 0$. Cela signifie que, quelque soit $t \in \mathbb{R}$, alors $\sum_{i=1}^r \lambda_i f_i(t) = 0$, autrement dit pour tout $t \in \mathbb{R}$: $\sum_{i=1}^r \lambda_i e^{tx_i} = 0$. Factorisons par e^{tx_1} : $e^{tx_1} \sum_{i=1}^r \lambda_i e^{t(x_i - x_1)} = 0$. Mais $e^{tx_1} \neq 0$ donc: $\sum_{i=1}^r \lambda_i e^{t(x_i - x_1)} = 0$. Lorsque $t \to +\infty$ alors $e^{t(x_i - x_1)} \to 0$ (pour tout $i \geqslant 2$, car $x_i - x_1 < 0$). Donc pour

 $i\geqslant 2,\ \lambda_i e^{t(x_i-x_1)}\to 0$ et en passant à la limite dans l'égalité ci-dessus on trouve : $\lambda_1=0$. Le premier coefficients est donc nul. On repart de la combinaison linéaire qui est maintenant $\sum_{i=2}^r \lambda_i f_i = 0$ et en appliquant le raisonnement ci-dessus on prouve par récurrence $\lambda_1=\lambda_2=\cdots=\lambda_r=0$. Donc la famille (f_1,\cdots,f_r) est libre.

(b) \Rightarrow) Si X et Y suivent la même loi, alors $X(\Omega) = Y(\Omega)$ et $\forall x \in X(\Omega)$, $\mathbb{P}(X = x) = \mathbb{P}(Y = x)$. On tire $\mathbb{E}(X) = \mathbb{E}(Y)$ et par le théorème du transfert pour tout $t \in \mathbb{R}^*$,

$$\mathbb{E}\left(e^{tX}\right) = \sum_{x \in X(\Omega)} e^{tx} \mathbb{P}\left(X = x\right) = \sum_{x \in X(\Omega)} e^{tx} \mathbb{P}\left(Y = x\right) = \mathbb{E}\left(e^{tY}\right)$$

Donc les fonctions φ_X et φ_Y sont égales;

 \Leftarrow) Posons $X\left(\Omega\right)=\left\{ x_{1},\cdots,x_{n}\right\}$ et $Y\left(\Omega\right)=\left\{ y_{1},\cdots,y_{m}\right\}$ l'ensemble des valeures prises effectivement par X et Y tels que $x_{1}>\cdots>x_{n}$ et $y_{1}>\cdots>y_{m}$. L'hypothèse $\varphi_{X}=\varphi_{Y}$ donne

$$\forall t \in \mathbb{R}, \quad \sum_{i=1}^{n} e^{tx_i} \mathbb{P}(X = x_i) = \sum_{j=1}^{m} e^{ty_j} \mathbb{P}(X = y_j)$$

Par unicité de l'écriture $n=m, x_i=y_i$ et $\mathbb{P}(X=x_i)=\mathbb{P}(Y=y_i)$

6. Soit $t \in \mathbb{R}^*$, les deux variables e^{tX} et e^{tY} sont indépendantes, car X et Y le sont, donc

$$M_{X+Y}(t) = \mathbb{E}\left(e^{t(X+Y)}\right) = \mathbb{E}\left(e^{tX}e^{tY}\right) = \mathbb{E}\left(e^{tX}\right)\mathbb{E}\left(e^{tY}\right)$$

Par définition, on a

$$\varphi_{X+Y}(t) = \frac{1}{t} \ln(M_{X+Y}(t)) = \frac{1}{t} \ln\left(\mathbb{E}\left(e^{tX}\right)\right) + \frac{1}{t} \ln\left(\mathbb{E}\left(e^{tY}\right)\right) = \varphi_X(t) + \varphi_Y(t)$$

Pour t = 0, on a $\varphi(0) = \mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y) = \varphi_X(0) + \varphi_Y(0)$. Bref

$$\varphi_{X+Y} = \varphi_X + \varphi_Y$$

7. $X \hookrightarrow \mathcal{B}(s,p)$, alors $X = \sum_{i=1}^{s} X_i$, où X_1, \cdots, X_s sont indépendantes et suivent la loi de Bernoulli de paramètre p. Pour $t \in \mathbb{R}$, les variables $e^{tX_1}, \cdots, e^{tX_s}$ sont indépendantes, donc

$$M_X(t) = \mathbb{E}\left(e^{tX}\right) = \mathbb{E}\left(\prod_{i=1}^s e^{tX_i}\right) = \prod_{i=1}^s \mathbb{E}\left(e^{tX_i}\right) = \left(p\left(e^t - 1\right) + 1\right)^s$$

8. \Leftarrow) Supposons que X est une variable aléatoire réelle symétrique, alors $X(\Omega) = -X(\Omega)$ et pour tout $x \in X(\Omega)$, on a $\mathbb{P}(X = x) = \mathbb{P}(X = -x)$. On montre que $\forall t \in \mathbb{R}, \mathbb{E}(e^{-tX}) = \mathbb{E}(e^{tX})$, pour le faire on fixe $t \in \mathbb{R}$, par le théorème du transfert

$$\mathbb{E}\left(e^{-tX}\right) = \sum_{x \in X(\Omega)} e^{-tx} \mathbb{P}\left(X = x\right)$$

l'application $x \longmapsto -x$ est une bijection de $X\left(\Omega\right)$ vers lui même, alors

$$\mathbb{E}\left(e^{-tX}\right) = \sum_{x \in X(\Omega)} e^{tx} \mathbb{P}\left(X = -x\right)$$
$$= \sum_{x \in X(\Omega)} e^{tx} \mathbb{P}\left(X = x\right)$$
$$= \mathbb{E}\left(e^{tX}\right)$$

Donc pour tout $t \in \mathbb{R}^*$, on a $\varphi_X(-t) = -\varphi_X(t)$ et pour t = 0, on a $\mathbb{E}(X) = \mathbb{E}(-X)$, cela entraı̂ne $\mathbb{E}(X) = 0$, c'est-à-dire $\varphi_X(0) = 0$. On conclut alors φ_X est impaire.

 \Rightarrow) Soit $t \in \mathbb{R}^*$, on a

$$\varphi_{-X}(t) = \frac{1}{t} \ln \left(\mathbb{E} \left(e^{-tX} \right) \right) = -\varphi_X(-t) = \varphi_X(t)$$

D'autre part $\varphi_X(0) = 0$, car φ_X est impaire, donc $\varphi_{-X}(0) = \mathbb{E}(-X) = -\mathbb{E}(X) = 0$, ceci montre que $\varphi_X = \varphi_{-X}$. D'après la question 5b, X et -X ont la même loi

9. (a) Soit $n \in \mathbb{N}^*$ et $t \in \mathbb{R}^*$. On a $\mathbb{E}(S_n) = nm$ et $\mathbb{V}(S_n) = n\sigma^2$, d'autre part les variables $t \frac{X_1 - m}{\sigma \sqrt{n}}, \cdots, t \frac{X_n - m}{\sigma \sqrt{n}}$ sont finies et mutullement indépendantes, et par un calcul direct

$$\varphi_{S_n^*}(t) = \frac{1}{t} \ln \left(\mathbb{E} \left(e^{tS_n^*} \right) \right) = \frac{1}{t} \ln \left(\mathbb{E} \left(\sum_{e=1}^n t \frac{X_i - m}{\sqrt{n}\sigma} \right) \right)$$

$$= \frac{1}{t} \ln \left(\mathbb{E} \left(\prod_{i=1}^n e^{t \frac{X_i - m}{\sqrt{n}\sigma}} \right) \right) = \frac{1}{t} \ln \left(\prod_{i=1}^n \mathbb{E} \left(e^{t \frac{X_i - m}{\sqrt{n}\sigma}} \right) \right) \quad \text{Par indépendance}$$

$$= \frac{1}{t} \sum_{i=1}^n \ln \left(\mathbb{E} \left(e^{t \frac{X_i - m}{\sqrt{n}\sigma}} \right) \right) = \frac{1}{t} \sum_{i=1}^n \ln \left(e^{t \frac{-tm}{\sqrt{n}\sigma}} \mathbb{E} \left(e^{t \frac{X_i}{\sqrt{n}\sigma}} \right) \right)$$

$$= \frac{1}{t} \sum_{i=1}^n \ln \left(e^{t \frac{-m}{\sqrt{n}\sigma}} \right) + \frac{1}{t} \sum_{i=1}^n \ln \left(\mathbb{E} \left(e^{t \frac{X_i}{\sqrt{n}\sigma}} \right) \right)$$

$$= \frac{-nm}{\sqrt{n}\sigma} + \frac{1}{\sqrt{n}\sigma} \sum_{i=1}^n \varphi_{X_i} \left(\frac{t}{\sqrt{n}\sigma} \right)$$

$$= \frac{-m\sqrt{n}}{\sigma} + \frac{\sqrt{n}}{\sigma} \varphi_{X} \left(\frac{t}{\sigma\sqrt{n}} \right) \quad \text{car } \forall i, \ \varphi_{X_i} = \varphi_{X_i}$$

elamdaoui@gmail.com 5 www.elamdaoui.com

(b) Le développement limité à l'ordre 1 en 0 de φ_X donne

$$\begin{split} \varphi_X \left(\frac{t}{\sigma \sqrt{n}} \right) &= \varphi_X \left(0 \right) + \frac{t}{\sigma \sqrt{n}} \varphi_X' \left(0 \right) + \circ \left(\frac{1}{\sqrt{n}} \right) \\ &= \mathbb{E} \left(X \right) + \frac{t}{\sigma \sqrt{n}} \frac{\mathbb{V} \left(X \right)}{2} + \circ \left(\frac{1}{\sqrt{n}} \right) \\ &= m + \frac{t}{\sigma \sqrt{n}} \frac{\sigma^2}{2} + \circ \left(\frac{1}{\sqrt{n}} \right) \\ &= m + \frac{t\sigma}{2\sqrt{n}} + \circ \left(\frac{1}{\sqrt{n}} \right) \end{split}$$

puis

$$\varphi_{S_n^*}(t) = \frac{-m\sqrt{n}}{\sigma} + \frac{\sqrt{n}}{\sigma} \left(m + \frac{t\sigma}{2\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right) \right)$$
$$= \frac{t}{2} + o(1)$$

On en déduit $\lim_{n \to +\infty} \varphi_{S_n^*}(t) = \frac{t}{2}$.

Partie II: Cas des variables aléatoires discrètes réelles infinies

10. (a) On peut écrire $b = \lambda a + (1 - \lambda)c$, avec $\lambda \in [0, 1]$, et par convexité de la fonction exponentielle

$$e^{bx} = e^{\lambda ax + (1-\lambda)cx} \leqslant \lambda e^{ax} + (1-\lambda)e^{cx} \leqslant e^{ax} + e^{cx}$$

- (b) $1 \in I_X$, car $\mathbb{E}\left(e^{0X}\right) = \sum_{x \in X(\Omega)} \mathbb{P}\left(X = x\right) = 1$
 - Soit $a,c \in I_X$ tel que $a \leqslant c$. Montrons que $[a,c] \subset I_X$. D'après la question précédente, pour tout $x \in \mathbb{R}$, $e^{bx} \leqslant e^{ax} + e^{cx}$, donc $e^{bX} \leqslant e^{aX} + e^{cX}$, et comme les deux variables positives admettent des espérances, alors la variable positive e^{bX} admet une espérance, donc $b \in I_X$, ainsi l'inclusion $[a,c] \subset I_X$. On déduit I_X est un intervalle de \mathbb{R} .
- 11. Soit $t \in \mathbb{R}$, la variable e^{tX} admet une espérance si, et seulement, si la série à termes positifs $\sum_{n\geqslant 0} e^{tn} \frac{\lambda^n}{n!} e^{-\lambda}$

converge. Or la série exponentielle $\sum_{n\geqslant 0} \frac{(\lambda e^t)^n}{n!}$ converge de somme $e^{\lambda e^t}$, donc M_Y est définie sur \mathbb{R} et

$$\forall t \in \mathbb{R}, \quad M_Y(t) = e^{\lambda e^t - \lambda}$$

12. (a) Soit $k \in \mathbb{N}$, l'application $u_n : t \in]-\alpha, \alpha[\longmapsto P(X=x_n)e^{tx_n}$ est de classe \mathcal{C}^k et,

$$u_n^{(k)}(t) = P(X = x_n)x_n^k e^{tx_n}$$

les inégalités $e^{tx_n} \leq e^{|t||x_n|} \leq e^{\alpha|x_n|}$ donnent

$$\left| u_n^{(k)}(t) \right| \leqslant P(X = x_n) \left| x_n \right|^k e^{\alpha |x_n|}$$

 $\psi_k'(t)$

 ψ_k

(b) Soit $k \in \mathbb{N}^*$. La fonction $\psi_k : x \in \mathbb{R}_+ \longmapsto x^k e^{(\alpha - \rho)x}$ est continue, positive, strictement décroissante sur $\left[\frac{k}{\rho - \alpha}, +\infty\right[$ et strictement croissante sur $\left[0, \frac{k}{\rho - \alpha}\right]$ il existe $M_k = \psi_k \left(\frac{k}{\rho - \alpha}\right) > 0$,

Pour k=0, la fonction $\psi_k: x\in \mathbb{R}_+ \longmapsto e^{(\alpha-\rho)x}$ est décroissante sur \mathbb{R}_+ , alors $M_0=1$.

Bref pour tout $t \in]-\alpha, \alpha[$ et tout $n \in \mathbb{N}$,

$$|u_n^{(k)}(t)| \leqslant P(X = x_n) |x_n|^k e^{\alpha |x_n|} = P(X = x_n) \psi_k(|x_n|) e^{\rho |x_n|} \leqslant M_k P(X = x_n) |e^{\rho |x_n|}.$$

- (c) Pour tout $n \in \mathbb{N}$, la fonction u_n est de classe \mathcal{C}^{∞} sur $]-\alpha, \alpha[$
 - Soit $k \in \mathbb{N}$, on a pour tout $n \in \mathbb{N}$, $e^{\rho|x_n|} \leq e^{\rho x_n} + e^{-\rho x_n}$ et $-\rho, \rho \in]-\alpha, \alpha[$, donc la série à termes positifs $\sum_{n\geqslant 0} P(X=x_n)|e^{\rho|x_n|}$ converge et, par suite, la série $\sum_{n\geqslant 0} u_n^{(k)}$ converge normalement sur tout segment [-a,a] inclus dans $]-\alpha,\alpha[$

Donc, par le théorème de dérivation terme à terme, $M_X = \sum_{n=0}^{+\infty} u_n$

est de classe C^{∞} sur $]-\alpha, \alpha[$, et

$$\forall t \in]-\alpha, \alpha[, \quad \forall k \in \mathbb{N}, \quad M_X^{(k)}(t) = \sum_{n=0}^{+\infty} x_n^k e^{tx_n} \mathbb{P}(X = x_n)$$

En particulier pour tout $k \in \mathbb{N}$ la série $\sum_{n \geqslant 0} x_n^k \mathbb{P}(X = x_n)$ est absolument convergente, donc X admet un moment d'ordre k. Ainsi

$$\forall k \in \mathbb{N}, \quad M_X^{(k)}(0) = \mathbb{E}(X^k)$$

13. Dans ce cas $M_Y: t \longmapsto e^{\lambda e^t - \lambda}$ qui est de classe \mathcal{C}^{∞} et pour tout $t \in \mathbb{R}$

$$M'_Y(t) = \lambda e^t e^{\lambda e^t - \lambda}$$

$$M'_Y(0) = \lambda$$

$$M''_Y(t) = \lambda^2 e^t e^{\lambda e^t - \lambda} + \lambda e^{2t} e^{\lambda e^t - \lambda}$$

$$M''_Y(0) = \lambda^2 + \lambda$$

Alors $\mathbb{E}(Y) = M'_{V}(0) = \lambda$ et par la formule de Huygens kænig

$$\mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = M_Y''(0) - M_Y'(0) = \lambda$$

Partie III: Cas des variables aléatoires à densité

14. Soit $t \in I_X \cap I_Y$, les deux variables e^{tX} et e^{tY} sont indépendantes, car X et Y le sont. Comme e^{tX} et e^{tY} admettent des espérances alors, par indépendance, $e^{t(X+Y)} = e^{tX}e^{tY}$ admet une espérance et

$$M_{X+Y}(t) = \mathbb{E}\left(e^{t(X+Y)}\right) = \mathbb{E}\left(e^{tX}e^{tY}\right) = \mathbb{E}\left(e^{tX}\right)\mathbb{E}\left(e^{tY}\right) = M_X(t)M_Y(t)$$

Remarque : Les deux applications ne sont pas forcément égales mais elles coïncident sur $I_X \cap I_Y$

- 15. (a) Soit $t \in \mathbb{R}$, la série à termes positifs $\sum_{k \geqslant 0} \frac{|st|^k}{k!}$ converge de somme $e^{s|t|}$, donc pour tout $k \in \mathbb{N}^*$, $\frac{|st|^k}{k!} \leqslant e^{s|t|}$ ou encore $|t^k| \leqslant \frac{k!}{c^k} e^{s|t|}$.
 - (b) Soit $k \in \mathbb{N}^*$, d'après la question précédente

$$\forall t \in \mathbb{R}, \quad |t^k| \leqslant \frac{k!}{s^k} e^{s|t|} \leqslant \frac{k!}{s^k} \left(e^{st} + e^{-st} \right)$$

Soit

$$|X|^k \leqslant \frac{k!}{s^k} \left(e^{sX} + e^{-sX} \right)$$

Les deux variables positives e^{sX} et e^{-sX} admettent des espérances car $-s, s \in]a, b[$, alors par comparaison, la variable $|X|^k$ admet une espérance.

Remarque : On a aussi l'inégalité $\mathbb{E}\left(\left|X\right|^k\right) \leqslant \frac{k!}{s^k}\left(M_X(s) + M_X(-s)\right)$ qui sera utilisée à la question suivante

- (c) Soit $-\infty = a_0 < a_1 < \cdots < a_r = +\infty$ tels que pour tout $i \in [0, r-1]$ la fonction f est continue sur $]a_i, a_{i+1}[$. On va appliquer le théorème de convergence dominée sur chaque intervalle $]a_i, a_{i+1}[$. Fixons $t \in]-s, s[$
 - Pour tout $k \in \mathbb{K}$, l'application $f_k : x \longmapsto \frac{t^k x^k}{k!} f(x)$ est continue sur $]a_i, a_{i+1}[$ et intégrable car $\mathbb{E}\left(|X|^k\right)$ est finie
 - La série $\sum_{k\geqslant 0} f_k$ converge simplement sur $]a_i, a_{i+1}[$ de somme $x\longmapsto e^{tx}f(x)$ qui est continue sur $]a_i, a_{i+1}[$
 - Pour tout $k \in \mathbb{N}$, on a

$$\int_{a_{i}}^{a_{i+1}} |f_{k}(x)| dx = \int_{a_{i}}^{a_{i+1}} \left| \frac{t^{k} x^{k}}{k!} f(x) \right| dx$$

$$\leqslant \frac{|t|^{k}}{k!} \mathbb{E}\left(|X|^{k}\right)$$

$$\leqslant \frac{|t|^{k}}{k!} \frac{k!}{s^{k}} \left(M_{X}(s) + M_{X}(-s)\right)$$

$$\leqslant \left(M_{X}(s) + M_{X}(-s)\right) \frac{|t|^{k}}{s^{k}}$$

et la série géométrique du terme général $\frac{|t|^k}{s^k}$ converge. Bref la série du terme général $\int_{a_i}^{a_{i+1}} |f_k(x)| dx$ converge

Donc d'après le théorème de la convergence dominée, on peut intégrer terme à terme, soit

$$\int_{a_i}^{a_{i+1}} e^{tx} f(x) dx = \int_{a_i}^{a_{i+1}} \sum_{k=0}^{+\infty} \frac{t^k x^k}{k!} f(x) dx$$
$$= \sum_{k=0}^{+\infty} \frac{t^k}{k!} \int_{a_i}^{a_{i+1}} x^k f(x) dx$$

Ceci vrai pour tout $i \in [0, r-1]$, alors on conclut par la relation de Chasles que, pour tout $t \in]-s, s[, M_X(t) = \sum_{k=0}^{+\infty} \mathbb{E}\left(X^k\right) \frac{t^k}{k!}$

Remarque : On ne peut pas appliquer le théorème d'intégration terme à terme sur \mathbb{R} , car f n'est pas forcément continue par morceaux sur \mathbb{R}

(d) M_X est développable en série entier en 0, alors elle est de classe \mathcal{C}^{∞} sur]-s,s[et

$$\forall k \in \mathbb{N}, \quad \frac{M_X^{(k)}(0)}{k!} = \frac{\mathbb{E}\left(X^k\right)}{k!}$$