INPHEST Development Journal

October 29, 2015

1 Simulation of Summary Statistics

- 1. Generate target host tree \bar{H} .
 - Inputs Sequence data.
 - Divergence time calibration priors.
 - **Outputs** Time-calibrated phylogeny, \bar{H} .
 - **Procedure** Use BEAST to generate sample from the posterior distribution of trees given the data, \mathcal{H} .
 - Summarize \mathcal{H} using MCCT or other criteria to produce \bar{H} .
- 2. Generate samples of augmented host trees, \mathbf{h}^* , conditioned on target host tree, \bar{H} .
 - **Inputs** Time-calibrated phylogeny, H.
 - Labeling of tips on \bar{H} by geography (distributional range, specified as presence/absence over set of areas, for each tip).
 - Outputs Samples of host tree augmented with biogeographical history **h***.
 - **Procedure** Use BayArea or RevBayes to generate stochastic mapped samples.
- 3. For each augmented host tree, derive schedule of events, \mathbb{E} , consisting of ordered pairs of (τ, η) , where τ is the simulation time of an event and η is the event (host speciation, host extinction, host dispersal, etc.) that occurs at that time on that particular tree.
- 4. For each simulation replicate:
 - (a) Sample a schedule of events, \mathbb{E} .

- (b) Simulate symbiont tree, ψ , conditioned on the schedule of events on host tree.
- (c) Scale symbiont tree by each substitution rate scaling factor to yield scaled symbiont tree $\psi\prime$.
- (d) Calculate summary statistics on scaled symbiont tree, $\psi \iota$.