

Этикетка

Микросхема 1564ТМ7Т1ЭП

КСНЛ.431253.004 ЭТ

Микросхема интегральная 1564ТМ7Т1ЭП Функциональное назначение: 4-х разрядная защелка

Условное графическое обозначение

Схема расположения выводов Номера выводов показаны условно

Таблица назначения выводов

№	Обозначение	Назначение вывода	№	Обозначение	Назначение
вывода	вывода		вывода	вывода	вывода
1	1 Q 1	Инверсный выход 1-го триггера 1-ой группы	9	2Q2	Выход 2-го триггера 2-ой группы
2	1D1	Вход 1-го триггера 1-ой группы	10	2Q1	Вход 1-го триггера 2-ой группы
3	1D2	Вход 2-го триггера 1-ой группы	11	2 Q 1	Инверсный выход 1-го триггера 2-ой группы
4	2CLK	Управление 2-ой группой триггеров	12	0V	Общий
5	V_{CC}	Питание	13	1CLK	Управление 1-ой группой триггеров
6	2D1	Вход 1-го триггера 2-ой группы	14	1\overline{Q2}	Инверсный выход 2-го триггера 1-ой группы
7	2D2	Вход 2-го триггера 2-ой группы	15	1Q2	Выход 2-го триггера 1-ой группы
8	2 <u>Q</u> 2	Инверсный выход 2-го триггера 2-ой группы	16	1Q1	Выход 1-го триггера 1-ой группы

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при t = 25+10 °C)

1.1 Основные электрические пара	метры (при $t = 25 \pm 10$ С	/	
Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
U_{CC} =2,0 B, U_{IL} =0,3 B, U_{IH} =1,5 B I_{O} = 20 мкА	$U_{ m OL\; max}$	=	0,10
$U_{CC}=4,5 \text{ B}, U_{IL}=0,9 \text{ B}, U_{IH}=3,15, I_0=20 \text{ MKA}$		-	0,10
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 мкА		=	0,10
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15, I_{O} =4,0 mA		=	0,26
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 MA		-	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, U_{IH}=1.5 \text{ B}, I_{O}=20 \text{ MKA}$	U_{OHmin}	1,9	-
$U_{CC}=4.5 \text{ B}, U_{IL}=0.9 \text{ B}, U_{IH}=3.15, I_{O}=20 \text{ MKA}$		4,4	-
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 MKA		5,9	-
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} =4,0 MA		3,98	-
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 MA		5,48	-
3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	$ m I_{IL}$	=	/-0,1/
4. Входной ток высокого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IH}	=	0,1
5. Ток потребления, мкА, при			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	=	3,0
6. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B}, f = 1.0 \text{ M}\Gamma_{II}, U_{II} = 0 \text{ B}, U_{IH} = U_{CC}$	Iocc	-	1,0

8. Время задержки распространения при включении и выключении, нс,			
при:			
$U_{CC} = 2,0 \text{ B, } C_L = 50 \text{ п}\Phi$	$t_{\mathrm{PHL1}}, t_{\mathrm{PLH1}}$	-	175
	$t_{PHL,2}, t_{PLH,2}$	-	154
	t_{PHL3} , t_{PLH3}	-	203
	t_{PHL4} , t_{PLH4}	-	175
$U_{CC} = 4.5 \text{ B, } C_L = 50 \text{ п}\Phi$	t _{PHL1} , t _{PLH1}	_	35
	t _{PHL2} , t _{PLH2}	-	31
	t _{PHL3} , t _{PLH3}	-	41
	$t_{PHL4,}$ t_{PLH4}	-	35
$U_{CC} = 6.0 \text{ B, } C_1 = 50 \text{ п}\Phi$	t _{PHL1} , t _{PLH1}	-	34
	t _{PHL2} , t _{PLH2}	_	27
	t _{PHL3} , t _{PLH3}	_	35
	t _{PHL4} , t _{PLH4}	-	31
	,		15 (входы
9. Входная емкость, пФ,			4, 13)
при: $U_{CC} = 0$ В	C_{I}	-	10 (входы
			2, 3, 6, 7)

Время задержки распространения сигнала при включении и выключении, t_{PHL} , t_{PLH}

 t_{PHL1}, t_{PLH1} – от входа данных D к выходу \overline{Q} t_{PHL2}, t_{PLH2} – от входа данных D к выходу \overline{Q} t_{PHL3}, t_{PLH3} – от входа разрешения CLK к выходу \overline{Q} t_{PHL4}, t_{PLH4} – от входа разрешения CLK к выходу \overline{Q}

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г. серебро г. в том числе: г/мм на 16 выводах длиной мм.

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

 $2.2\ \Gamma$ амма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.424-15ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ТМ7Т1ЭП соответствуют техническим условиям АЕЯР.431200.424-15ТУ и признаны годными для эксплуатации.

Приняты по от (извещение, акт и др.) (дата)	_
Место для штампа ОТК	Место для штампа ПЗ
Место для штампа « Перепроверка произведена	»
Приняты по от от дата)	_
Место для штампа ОТК	Место для штампа ПЗ

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.