Exercise Solutions for Math 20

Half-Angle, Product-to-Sum, Sum-to-Product Identities

 ${\it Nile Jocson < novoseiversia@gmail.com}{>}$

December 15, 2024

1 Given $\sin(\beta) = \frac{3}{5}$ where β lie in the interval $(\frac{\pi}{2}, 2\pi)$, find $\cos(\frac{\beta}{2})$

. (5)	
$\Rightarrow \beta \in (\frac{\pi}{2}, \pi)$	Since $\sin(\beta)$ is positive, β must be in $(0,\pi)$. Combining the two
	intervals, we can see that we are in QII.
$\Rightarrow \cos(\beta) = \pm \sqrt{1 - \sin^2(\beta)}$	Find $\cos(\theta)$ using Pythagoras.
$\Rightarrow \cos(\beta) = \pm \sqrt{1 - \left(\frac{3}{5}\right)^2}$	
$\Rightarrow \cos(\beta) = \pm \sqrt{1 - \frac{9}{25}}$	
$\Rightarrow \cos(\beta) = \pm \sqrt{\frac{25}{25} - \frac{9}{25}}$	
$\Rightarrow \cos(\beta) = \pm \sqrt{\frac{16}{25}}$	
$\Rightarrow \cos(\beta) = \pm \frac{4}{5}$	
$\Rightarrow \cos(\beta) = -\frac{4}{5}$	Since we are in QII, $\cos(\beta)$ is negative.
$\Rightarrow \cos\left(\frac{\beta}{2}\right) = \pm\sqrt{\frac{1+\cos(\beta)}{2}}$	$\cos\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1+\cos(\theta)}{2}}$
$\Rightarrow \cos\left(\frac{\beta}{2}\right) = \pm\sqrt{\frac{1-\frac{4}{5}}{2}}$	
$\Rightarrow \cos\left(\frac{\beta}{2}\right) = \pm\sqrt{\frac{\frac{5}{5} - \frac{4}{5}}{2}}$	
$\Rightarrow \cos\left(\frac{\beta}{2}\right) = \pm\sqrt{\frac{\frac{1}{5}}{2}}$	
$\Rightarrow \cos\left(\frac{\beta}{2}\right) = \pm\sqrt{\frac{1}{10}}$	
$\Rightarrow \cos\left(\frac{\beta}{2}\right) = \pm \frac{1}{\sqrt{10}}$	
$\Rightarrow \cos\left(\frac{\beta}{2}\right) = \pm \frac{1}{\sqrt{10}} \cdot \frac{\sqrt{10}}{\sqrt{10}}$	Rationalize.
$\Rightarrow \cos\left(\frac{\beta}{2}\right) = \pm \frac{\sqrt{10}}{10}$	
$\Rightarrow \cos\left(\frac{\beta}{2}\right) = \frac{\sqrt{10}}{10}$	Final answer. Given $\beta \in (\frac{\pi}{2}, \pi), \frac{\beta}{2} \in (\frac{\pi}{4}, \frac{\pi}{2}),$ which is in QI. Therefore
	$\cos\left(\frac{\beta}{2}\right)$ is positive.
	-

2 Express the following as indicated then evaluate if possible.

2.1 $\sin(105^{\circ})\cos(15^{\circ})$ as a sum.

$$\Rightarrow \sin(105^{\circ})\cos(15^{\circ}) = \frac{1}{2}(\sin(105^{\circ} + 15^{\circ}) + \sin(105^{\circ} - 15^{\circ}))$$

$$\Rightarrow \sin(105^{\circ})\cos(15^{\circ}) = \frac{1}{2}(\sin(120^{\circ}) + \sin(90^{\circ}))$$

$$\Rightarrow \sin(105^{\circ})\cos(15^{\circ}) = \frac{1}{2}(\frac{\sqrt{3}}{2} + 1)$$

$$\Rightarrow \sin(105^{\circ})\cos(15^{\circ}) = \frac{\sqrt{3}}{4} + \frac{1}{2}$$

$$\Rightarrow \sin(105^{\circ})\cos(15^{\circ}) = \frac{\sqrt{3}}{4} + \frac{2}{4}$$

$$\Rightarrow \sin(105^{\circ})\cos(15^{\circ}) = \frac{2+\sqrt{3}}{4}$$
Final answer.

2.2 $\cos\left(\frac{5\pi}{24}\right) + \cos\left(\frac{\pi}{24}\right)$ as a product.

$$\Rightarrow \cos\left(\frac{5\pi}{24}\right) + \cos\left(\frac{\pi}{24}\right) = 2\cos\left(\frac{5\pi}{24} + \frac{\pi}{24}\right)\cos\left(\frac{5\pi}{24} - \frac{\pi}{24}\right)$$

$$\Rightarrow \cos\left(\frac{5\pi}{24}\right) + \cos\left(\frac{\pi}{24}\right) = 2\cos\left(\frac{6\pi}{24}\right)\cos\left(\frac{4\pi}{24}\right)$$

$$\Rightarrow \cos\left(\frac{5\pi}{24}\right) + \cos\left(\frac{\pi}{24}\right) = 2\cos\left(\frac{6\pi}{24}\right)\cos\left(\frac{4\pi}{24}\right)$$

$$\Rightarrow \cos\left(\frac{5\pi}{24}\right) + \cos\left(\frac{\pi}{24}\right) = 2\cos\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{2}\right)$$

$$\Rightarrow \cos\left(\frac{5\pi}{24}\right) + \cos\left(\frac{\pi}{24}\right) = 2\sqrt{\frac{1+\cos(\frac{\pi}{4})}{2}}\sqrt{\frac{1+\cos(\frac{\pi}{6})}{2}}$$

$$\Rightarrow \cos\left(\frac{5\pi}{24}\right) + \cos\left(\frac{\pi}{24}\right) = 2\sqrt{\frac{1+\frac{\sqrt{2}}{2}}{2}}\sqrt{\frac{1+\frac{\sqrt{3}}{2}}{2}}$$

$$\Rightarrow \cos\left(\frac{5\pi}{24}\right) + \cos\left(\frac{\pi}{24}\right) = 2\sqrt{\frac{1}{2} + \frac{\sqrt{2}}{4}}\sqrt{\frac{1}{2} + \frac{\sqrt{3}}{4}}}$$

$$\Rightarrow \cos\left(\frac{5\pi}{24}\right) + \cos\left(\frac{\pi}{24}\right) = 2\sqrt{\frac{2}{4} + \frac{\sqrt{2}}{4}}\sqrt{\frac{2}{4} + \frac{\sqrt{3}}{4}}}$$

$$\Rightarrow \cos\left(\frac{5\pi}{24}\right) + \cos\left(\frac{\pi}{24}\right) = 2\sqrt{\frac{2+\sqrt{2}}{4}}\sqrt{\frac{2+\sqrt{3}}{4}}$$

$$\Rightarrow \cos\left(\frac{5\pi}{24}\right) + \cos\left(\frac{\pi}{24}\right) = 2\sqrt{\frac{2+\sqrt{2}}{4}}\sqrt{\frac{2+\sqrt{3}}{4}}}$$

2.3 $\sin(3x)\cos(2x)$ **as a sum.**

$$\Rightarrow \sin(3x)\cos(2x) = \frac{1}{2}(\sin(3x+2x) + \sin(3x-2x)) \qquad \sin(a)\cos(b) = \frac{1}{2}(\sin(a+b) + \sin(a-b))$$

$$\Rightarrow \sin(3x)\cos(2x) = \frac{1}{2}(\sin(5x) + \sin(x))$$

$$\Rightarrow \sin(3x)\cos(2x) = \frac{\sin(5x) + \sin(x)}{2}$$
Final answer.

3 Establish the following identities.

3.1
$$\frac{\cos(3x) + \cos(x)}{\sin(3x) + \sin(x)} = \frac{\cot(x) - \tan(x)}{2}$$

$$\begin{array}{l} \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{2 \cos\left(\frac{3x + x}{2}\right) \cos\left(\frac{3x - x}{2}\right)}{\sin(3x) + \sin(x)} & \cos(a) + \cos(b) = 2 \cos\left(\frac{a + b}{2}\right) \cos\left(\frac{a - b}{2}\right) \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{2 \cos\left(\frac{4x}{2}\right) \cos\left(\frac{2x}{2}\right)}{\sin(3x) + \sin(x)} \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{2 \cos(2x) \cos(x)}{\sin(3x) + \sin(x)} \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{2 \cos(2x) \cos(x)}{2 \sin\left(\frac{3x + x}{2}\right) \cos\left(\frac{3x - x}{2}\right)} & \sin(a) + \sin(b) = 2 \sin\left(\frac{a + b}{2}\right) \cos\left(\frac{a - b}{2}\right) \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{2 \cos(2x) \cos(x)}{2 \sin\left(\frac{3x + x}{2}\right) \cos\left(\frac{3x - x}{2}\right)} \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{2 \cos(2x) \cos(x)}{2 \sin(2x) \cos(x)} \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{2 \cos(2x) \cos(x)}{2 \sin(2x)} \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{2 \cos(2x) \cos(x)}{2 \sin(2x)} \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{2 \cos(2x) - \sin^2(x)}{2 \sin(2x)} \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{2 \cos^2(x) - \sin^2(x)}{2 \sin(x) \cos(x)} \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{2 \cos^2(x) - \sin^2(x)}{2 \sin(x) \cos(x)} \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{1}{2} \left(\frac{\cos^2(x) - \sin^2(x)}{\sin(x) \cos(x)}\right) \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{1}{2} \left(\frac{\cos^2(x) - \sin^2(x)}{\sin(x) \cos(x)}\right) \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{1}{2} \left(\frac{\cos^2(x) - \sin^2(x)}{\sin(x) \cos(x)}\right) \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{1}{2} \left(\frac{\cos^2(x) - \sin^2(x)}{\sin(x) \cos(x)}\right) \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{1}{2} \left(\frac{\cos(x) - \sin^2(x)}{\sin(x) \cos(x)}\right) \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{1}{2} \left(\frac{\cos(x) - \sin^2(x)}{\sin(x) \cos(x)}\right) \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{1}{2} \left(\frac{\cos(x) - \sin^2(x)}{\sin(x) \cos(x)}\right) \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{1}{2} \left(\cot(x) - \frac{\sin(x)}{\cos(x)}\right) \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{1}{2} \left(\cot(x) - \frac{\sin(x)}{\cos(x)}\right) \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{1}{2} \left(\cot(x) - \frac{\sin(x)}{\cos(x)}\right) \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{1}{2} \left(\cot(x) - \frac{\sin(x)}{\cos(x)}\right) \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{1}{2} \left(\cot(x) - \frac{\sin(x)}{\cos(x)}\right) \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{1}{2} \left(\cot(x) - \frac{\sin(x)}{\cos(x)}\right) \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{1}{2} \left(\cot(x) - \frac{\sin(x)}{\cos(x)}\right) \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{1}{2} \left(\cot(x) - \frac{\sin(x)}{\cos(x)}\right) \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{1}{2} \left(\cot(x) - \frac{\sin(x)}{\cos(x)}\right) \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{1}{2} \left(\cot(x) - \frac{\sin(x)}{\cos(x)}\right) \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{1}{2} \left(\cot(x) - \frac{\sin(x)}{2}\right) \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{1}{2} \left(\cot(x) - \frac{\sin(x)}{2}\right) \\ \displaystyle \Rightarrow \frac{\cot(x) - \tan(x)}{2} = \frac{1}{2} \left(\cot(x) - \frac{\sin(x)}{2}\right) \\ \displaystyle$$

3.2
$$2\sin^2(\frac{x}{2}) + \tan(\frac{x}{2}) = \frac{1+\sin(x)}{\csc(x)+\cot(x)}$$

$$\Rightarrow \frac{1+\sin(x)}{\csc(x)+\cot(x)} = 2\sin^2(\frac{x}{2}) + \frac{\sin(x)}{1+\cos(x)}$$

$$\Rightarrow \frac{1+\sin(x)}{\csc(x)+\cot(x)} = 2(\frac{1-\cos(x)}{2}) + \frac{\sin(x)}{1+\cos(x)}$$

$$\Rightarrow \frac{1+\sin(x)}{\csc(x)+\cot(x)} = 1 - \cos(x) + \frac{\sin(x)}{1+\cos(x)}$$

$$\Rightarrow \frac{1+\sin(x)}{\csc(x)+\cot(x)} = \frac{(1-\cos(x))(1+\cos(x))}{1+\cos(x)} + \frac{\sin(x)}{1+\cos(x)}$$

$$\Rightarrow \frac{1+\sin(x)}{\csc(x)+\cot(x)} = \frac{(1-\cos(x))(1+\cos(x))}{1+\cos(x)} + \frac{\sin(x)}{1+\cos(x)}$$
Factor using difference of two squares.
$$\Rightarrow \frac{1+\sin(x)}{\csc(x)+\cot(x)} = \frac{\sin^2(x)}{1+\cos(x)} + \frac{\sin(x)}{1+\cos(x)}$$

$$\Rightarrow \frac{1+\sin(x)}{\csc(x)+\cot(x)} = \frac{\sin^2(x)}{1+\cos(x)}$$

$$\Rightarrow \frac{1+\sin(x)}{\csc(x)+\cot(x)} = \frac{\sin^2(x)+\sin(x)}{1+\cos(x)}$$

$$\Rightarrow \frac{1+\sin(x)}{\csc(x)+\cot(x)} = \frac{\sin^2(x)+\sin(x)}{1+\cos(x)}$$

$$\Rightarrow \frac{1+\sin(x)}{\csc(x)+\cot(x)} = \frac{\sin(x)(1+\sin(x))}{1+\cos(x)}$$

$$\Rightarrow \frac{1+\sin(x)}{\csc(x)+\cot(x)} = \frac{1+\sin(x)}{\frac{1+\cos(x)}{\sin(x)}}$$

$$\Rightarrow \frac{1+\sin(x)}{\csc(x)+\cot(x)} = \frac{1+\sin(x)}{\frac{1+\cos(x)}{\sin(x)}}$$

$$\Rightarrow \frac{1+\sin(x)}{\csc(x)+\cot(x)} = \frac{1+\sin(x)}{\frac{1+\cos(x)}{\sin(x)}}$$

$$\Rightarrow \frac{1+\sin(x)}{\csc(x)+\cot(x)} = \frac{1+\sin(x)}{\frac{1+\cos(x)}{\sin(x)}}$$

Continued on next page

$\Rightarrow \frac{1+\sin(x)}{\csc(x)+\cot(x)} = \frac{1+\sin(x)}{\csc(x)+\frac{\cos(x)}{\sin(x)}}$	$\csc(\theta) = \frac{1}{\sin(\theta)}$
$\Rightarrow \frac{1+\sin(x)}{\csc(x)+\cot(x)} = \frac{1+\sin(x)}{\csc(x)+\cot(x)}$	Final answer. $\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}$