Task

Determine the RE of the language, defined over $\Sigma = \{a, b\}$ of words beginning with a.

Solution:

The required RE may be a(a+b)*

 \triangle Determine the RE of the language, defined over Σ ={a, b} of words beginning with and ending in same letter.

Solution:

The required RE may be $(a+b)+a(a+b)^*a+b(a+b)^*b$

Task Continued ...

Determine the RE of the language, defined over $\Sigma = \{a, b\}$ of **words ending in b.**

Solution:

The required RE may be $(a+b)^*b$.

 \triangle Determine the RE of the language, defined over $\Sigma = \{a, b\}$ of words not ending in a.

Solution: The required RE may be $(a+b)^*b + \Lambda \text{ Or } ((a+b)^*b)^*$

An important example

The Language EVEN-EVEN:

Language of strings, defined over $\Sigma = \{a, b\}$ having **even number of a's and even number of b's**. *i.e.*

EVEN-EVEN = $\{\Lambda, aa, bb, aaaa, aabb, abab, abba, baab, baba, bbaa, bbbb,...\}$, its regular expression can be written as $(aa+bb+(ab+ba)(aa+bb)^*(ab+ba))^*$

It is important to be clear about the difference of the following regular expressions

$$r_1 = a^* + b^*$$

 $r_2 = (a+b)^*$

Here r_1 does not generate any string of concatenation of a and b, while r_2 generates such strings.

Equivalent Regular Expressions

#Definition:

Two regular expressions are said to be equivalent if they generate the same language.

Example:

Consider the following regular expressions

$$r_1$$
= $(a + b)^*$ $(aa + bb)$
 r_2 = $(a + b)^*$ aa + $(a + b)^*$ bb then
both regular expressions define the language of
strings **ending in aa or bb**.

```
# If r_1 = (aa + bb) and r_2 = (a + b) then

1. r_1 + r_2 = (aa + bb) + (a + b)

2. r_1 r_2 = (aa + bb) (a + b)

= (aaa + aab + bba + bbb)

3. (r_1)^* = (aa + bb)^*
```

Regular Languages

Definition:

The language generated by any regular expression is called a **regular language**.

It is to be noted that if r_1 , r_2 are regular expressions, corresponding to the languages L_1 and L_2 then the languages generated by $r_1 + r_2$, r_1r_2 (or r_2r_1) and r_1^* (or r_2^*) are also regular languages.

- \mathbb{H} It is to be noted that if L₁ and L₂ are expressed by r₁ and r₂, respectively then the language expressed by
 - 1) $r_1 + r_2$, is the language $L_1 + L_2$ or $L_1 U L_2$
 - 2) $r_1r_{2,}$, is the language L_1L_2 , of strings obtained by prefixing every string of L_1 with every string of L_2
 - 3) r_1^* , is the language L_1^* , of strings obtained by concatenating the strings of L, including the null string.

Example

- # If r_1 =(aa+bb) and r_2 =(a+b) then the language of strings generated by r_1+r_2 , is also a regular language, expressed by (aa+bb)+(a+b)
- \Re If r_1 =(aa+bb) and r_2 =(a+b) then the language of strings generated by r_1r_2 , is also a regular language, expressed by (aa+bb)(a+b)
- \Re If r=(aa+bb) then the language of strings generated by r^* , is also a regular language, expressed by (aa+bb)*

All finite languages are regular.

Example:

Consider the language L, defined over $\Sigma = \{a,b\}$, of strings of length 2, **starting with a**, then L= $\{aa, ab\}$, may be expressed by the regular expression aa+ab. Hence L, by definition, is a regular language.

It may be noted that if a language contains even thousand words, its RE may be expressed, placing ' + ' between all the words.

Here the special structure of RE is not important.

Consider the language $L=\{aaa, aab, aba, abb, baa, bab, bba, bbb\}$, that may be expressed by a RE aaa+aab+aba+aba+bab+baa+bab+bba+bbb, which is equivalent to (a+b)(a+b)(a+b).