Space and Congruence Compression of Proofs

Andreas Fellner

European Master in Computational Logic

Master Thesis Presentation Vienna, 23rd of September 2014

Congruence

Knowledge

- **1** f(a) = a
- a = b
- **3** b = f(b)
- $f(a) \neq f(b)$

Knowledge

- **1** f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Unsatisfiable!

Knowledge[®]

- **1** f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Unsatisfiable!

Proof

Equality is transitive, therefore from f(a) = a, a = b and b = f(b) follows f(a) = f(b), which contradicts $f(a) \neq f(b)$

Knowledge

- **1** f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Unsatisfiable!

Proof

Equality is transitive, therefore from f(a) = a, a = b and b = f(b) follows f(a) = f(b), which contradicts $f(a) \neq f(b)$

A different Proof

f(.) is a function, therefore from a = b follows f(a) = f(b), which contradicts $f(a) \neq f(b)$

A proof

A different proof

Ground Terms

- Constants a, b, c, \dots
- Compound Terms $f(t_1, \ldots, t_n)$

Ground Terms

- Constants a, b, c, \dots
- Compound Terms $f(t_1, \ldots, t_n)$

Congruence Relation R

- Reflexive: $\forall t(t, t) \in R$
- Symmetric: $(s, t) \in R \Rightarrow (t, s) \in R$
- Transitive: $(t_1, t_2) \in R \dots (t_{m-1}, t_m) \in R \Rightarrow (t_1, t_m) \in R$
- Compatible: $\forall i(t_i, s_i) \in R \Rightarrow (f(t_1, \dots, t_n), f(s_1, \dots, s_n)) \in R$

Ground Terms

- Constants a, b, c, \dots
- Compound Terms $f(t_1, \ldots, t_n)$

Congruence Relation R

- Reflexive: $\forall t(t, t) \in R$
- Symmetric: $(s, t) \in R \Rightarrow (t, s) \in R$
- Transitive: $(t_1, t_2) \in R \dots (t_{m-1}, t_m) \in R \Rightarrow (t_1, t_m) \in R$
- Compatible: $\forall i(t_i, s_i) \in R \Rightarrow (f(t_1, \dots, t_n), f(s_1, \dots, s_n)) \in R$

Congruence Closure E^* of set of equations E

- Smallest Congruence Relation containing E
- Computable in $O(n \log(n))$
- E is explanation for $(s, t) \in E^*$

Knowledge

- f(a) = a
- $\mathbf{a} = b$
- **3** b = f(b)
- $f(a) \neq f(b)$

Knowledge

- f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Explanation for f(a) = f(b)

$$\{ f(a) = a, a = b, b = f(b) \}$$

Knowledge

- f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Explanation for f(a) = f(b)

$$\{ a = b, b = f(b) \}$$

Knowledge

- f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- **4** $f(a) \neq f(b)$

Explanation for f(a) = f(b)

$$a = b$$

Knowledge

- f(a) = a
- $\mathbf{a} = \mathbf{b}$
- **3** b = f(b)
- $f(a) \neq f(b)$

Explanation for
$$f(a) = f(b)$$

{ $a = b$ }

Short explanation → short (sub)proof

Short Explanation Decision Problem

Given a set of input equations E, a target equation s = t and $k \in \mathbb{N}$, does there exist an explanation $E' \subseteq E$ of s = t with $|E'| \le k$?

Short Explanation Decision Problem

Given a set of input equations E, a target equation s = t and $k \in \mathbb{N}$, does there exist an explanation $E' \subseteq E$ of s = t with $|E'| \le k$?

NP-complete

NP-completeness proof sketch

From a propositional logic formula Φ obtain ...

- a set of equations E_{Φ}
- a target equation $s_{\Phi} = t_{\Phi}$
- $k_{\Phi} \in \mathbb{N}$

such that ...

 Φ is satisfiable if and only if there is an explanation $E'\subseteq E_{\Phi}$ of $s_{\Phi}=t_{\Phi}$ with $|E'|\leq k_{\Phi}$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

$$t_{1}(\top_{1})$$
 $t_{1}(\hat{x}_{1})$
 $f_{1}(\perp_{1})$
 $t_{1}(\top_{2})$
 $\hat{c}_{1} - t_{1}(\hat{x}_{2})$
 $f_{1}(\perp_{2})$
 $f_{1}(\hat{x}_{3})$
 $f_{1}(\perp_{3})$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Formula

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2)$$

Small subset corresponding to satisfying assignment

$$\hat{c}_1 - t_1(\hat{x}_1) \quad t_1(\top_1) - \hat{c}_2 - f_2(\hat{x}_2) \quad f_2(\bot_2) - \hat{c}_3 - f_3(\hat{x}_2) \quad f_3(\bot_2) - \hat{c}_4$$

$$\hat{x}_1 - \!\!\!\!- \top_1$$

$$\perp_2 - - \hat{x}_2$$

$$\hat{x}_1 - T_1$$
 $\perp_2 - \hat{x}_2$ $\hat{x}_3 - T_3$

Space

Space Compression

Space measure of a proof

Maximal amount of nodes that have to be kept in memory at once while processing the proof

Deletion information

- Extra lines in proof output
- Example: *y* is the last child of *x*
 - Read and check node x
 - . . .
 - Read and check node y
 - Delete node *x*

. . .

- Not in memory
- In memory

- O Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- O Not in memory
- In memory

- O Not in memory
- In memory

- O Not in memory
- In memory

- O Not in memory
- In memory

- O Not in memory
- In memory

- O Not in memory
- In memory

- Not in memory
- In memory

- O Not in memory
- In memory

- Not in memory
- In memory

- Not in memory
- In memory

- O Not in memory
- In memory

- O Not in memory
- In memory

- O Not in memory
- In memory

Construct Traversal Orders

Construct Optimal Order

- NP-complete
- Optimal strategy in some pebbling game

Construct Good Order

- Top-Down
- Bottom-Up
- Heuristics

