Московский Физико-Технический Институт (государственный университет)

Работа 3.5.1 Изучение плазмы газового разряда в неоне

Цель работы:

изучение вольт-амперной характеристики тлеющего разряда; изучение свойств плазмы методом зондовых характеристик.

В работе используются:

стеклянная газоразрядная трубка, наполненная неоном; высоковольтный источник питания; источник питания постоянного тока; делитель напряжения; потенциометр; амперметры; вольтметры; переключатели.

Описание работы

Газовый разряд - любой процесс возникновения ионизации газа под действием приложенного электрического поля.

Введём понятие дифференциального сопротивления как производную от напряжения по току:

$$R_{diff} = \frac{dU}{dI}$$

Характерной особенностью вольт-амперной характеристики газового разряда, не свойственной обычным проводникам, являются участки с отрицательным дифференциальным сопротивлением, $R_{diff} < 0$. Такие участки называются неустойчивыми: незначительное уменьшение подаваемого на элемент напряжения приводит к росту тока - и поскольку для поддержания возросшего тока требуется ещё меньшее напряжение, это провоцирует неограниченный рост тока.

Экспериментальная установка

Параметры зонда:

d = 0,2mm

l=5,2mm

Ход работы

 $1.\mathrm{C}$ помощью вольтметра V1 и амперметра A1 измерим вольт-амперную характеристику разряда $I_{raz}(U_{raz})$. Проводим две серии измерений: при нарастании и при убывании тока.

Для начала определим напряжение зажигания разряда: $U_z=215\pm 3~\mathrm{B}$ - такая погрешность взята из соображений реакции челолвеческого глаза на зажигание.

Таблицы значений:

На убывание:

I, mA, $\sigma_I = 0.02 \text{ mA}$	$\mathrm{U,B,}\sigma_{U}=0.1\mathrm{\;B}$
4,76	15,8
4,32	16,1
3,80	16,9
3,20	18,7
2,8	18,6
2,36	19,9
1,96	22,4
1,52	29,8
1,20	33,4
0,96	34,0
0,64	34,5
0,24	35,6
0	51,2

На возрастание:

$\mathrm{U,B,}\sigma_{U}=0.1\mathrm{\;B}$
21,8
20,2
19,0
18,8
19,1
18,7
17,8
16,9
16,6
16,3
16,1
15,9

Построение графиков:

Измерение погрешностей:

Исходный график напоминает функциональную зависимость $\sim k/x^{(2)} + b$

. Проверим это предположение, посчитав МНК именно для неё и построив аппроксимирующую кривую:

$$y = \frac{k}{x^2} + b$$

$$b = \langle y \rangle - k \langle \frac{1}{x^2} \rangle$$

$$k = \frac{\langle y \frac{1}{x^2} \rangle - \langle y \rangle \langle \frac{1}{x^2} \rangle}{\langle \frac{1}{x^4} \rangle - (\langle \frac{1}{x^2} \rangle)^2}$$

$$\sigma_k = \sqrt{\frac{1}{n-1}} \left(\frac{\langle y^2 \rangle - (\langle y \rangle)^2}{\langle \frac{1}{x^4} \rangle - (\langle \frac{1}{x^2} \rangle)^2} - k^2\right)$$

$$\sigma_b = \sigma_k \sqrt{\langle \frac{1}{x^4} \rangle - (\langle \frac{1}{x^2} \rangle)^2}$$

$$k = \frac{0,00853 - 0,007}{0,0000076 - 0,0000072} \approx 3824,6$$

$$b = 2,73 - 3825 \times 0,00135 \approx -2,43 \approx -2,4$$

$$\sigma_k = \sqrt{\frac{1}{25}} \left(\frac{9,339 - 7,45}{0,0000076 - 0,0000072} - 3824,6^2 \approx 87\right)$$

$$\sigma_b = 87\sqrt{0,0000076 - 0,0000072} \approx 0,06$$

Итоговая аппроксимирующая кривая: $\boxed{y = 3824, 6\frac{1}{x^2} - 2, 4}$

$$y = 3824, 6\frac{1}{x^2} - 2, 4$$

Перестроим BAX в координатах U(I), чтобы можно было проще найти максимальное дифференциальное сопротивление разряда. По наклону кривой определим максимальное дифференциальное сопротивление разряда:

 $R_{diff}=rac{dU}{dI}$ Касательная к кривой с максимальным наклоном имеет вид: y=-65x+51,2. Поэтому $R_{diff}=6,5 imes10^4$ Ом

Рассчитаем погрешность данной величины:

$$(\sigma_R/R)^2 = (\sigma_U/U)^2 + (\sigma_I/I)^2$$
$$\sigma_R/R \approx 0,06$$
$$\sigma_R \approx 0,4 \times 10^4 Om$$

Поэтому итоговое дифференциальное сопротивление $R_{diff} = (6, 5 \pm 0, 4) \times 10^4 Om$

- 2. Снимем ВАХ двойного зонда $I_z(U_z)$ при различных фиксированных токах разряда I_r в диапазоне -25 \div 25 В:
- a) $I_r = 5mA$

I, mkA, $\sigma_I = 0, 1$ mkA	${ m U,B,}\sigma_U=0,1\;{ m (положит.пол)}$	I, mkA, $\sigma_I = 0, 1$ mkA	$\mathrm{U,B,}\sigma_U=0,1\mathrm{(отриц.пол)}$
110,9	24,9	118,4	-25
108,4	21,8	117,2	-23,7
105,3	18,5	116	-22,4
101,7	15,7	114,4	-20,7
96,3	12,9	112,4	-18,8
89,2	10,5	110,1	-17,1
82,3	8,8	107,2	-15,5
75,7	7,5	105,1	-14,4
66,7	6,0	101,4	-12,9
61,9	5,3	95,8	-11,2
53,4	4,2	90,7	-10,1
47,8	3,6	84,0	-8,7
43,5	2,9	76,5	-7,3
31,9	1,65	67,5	-6,0
23,9	0,95	58,2	-4,8
19,1	0,3	49,1	-3,8
107,6	19,8	40	-2,6
108,2	20,4	30,3	-1,5
110,7	23,2	22,8	-0,9
107,7	16,6	14,1	-0,1
99,2	13,8		

б) $I_r = 3mA$

$O) I_r = 3mA$			
I, mkA, $\sigma_I = 0.1$ mkA	$U, B, \sigma_U = 0, 1 $ (положит.пол)	I, mkA, $\sigma_I = 0, 1$ mkA	$ m U, B, \sigma_U = 0,1 \; (отриц.пол)$
59,8	25	-62,1	-25
59,2	23,8	-61,3	-23,8
57,6	21,1	-60,2	-21,8
56,6	19,3	-58,8	-19,4
55,2	16,9	-57,7	-17,6
53,7	14,7	-55,9	-15,0
52,4	13,3	-54,6	-13,6
51,1	11,9	-52,5	-12,0
47,5	10	-49	-10,1
42,9	8,2	-42,4	-7,8
40,0	7,2	-38,2	-6,6
35,9	6,1	-30,2	-4,9
29,1	4,5	-25,1	-3,8
22,1	3,2	-18,4	-2,6
13,7	1,8	-12,2	-1,6
8,3	0,9	-7,2	-0,8
3,6	0,1	-2,7	-0,1

в) $I_r = 1,5 mA$

I, mkA, $\sigma_I = 0, 1$ mkA	$U, B, \sigma_U = 0, 1$ (положит.пол)	I, mkA, $\sigma_I = 0, 1$ mkA	$U, B, \sigma_U = 0, 1 \text{ (отриц.пол)}$
28,0	25	-29,3	-25
27,6	23,7	-28,6	-23
26,9	21,6	-28,1	-21,4
26,5	20,4	-27,8	-20,3
26,3	19,3	-27,1	-18,4
25,8	17,8	-26,6	-17
25,3	16,2	-26	-15,4
24,9	15,1	-25,7	-14,5
24,3	13,7	-25,1	-13,3
23,0	11,4	-24,2	-12
21,4	9,6	-23,0	-10,4
20,0	8,3	-21	-8,8
18,1	7,0	-19,2	-7,6
16,1	5,9	-16	-5,8
14,2	4,9	-13,5	-4,7
11,5	3,7	-10,6	-3,6
8,6	2,6	-8,3	-2,8
4,8	1,5	-5,0	-1,6
2,1	0,7	-3,0	-0,9
0,4	0,1	-1,7	-0,5
		-0,2	-0,1

Зондовые характеристики Iz(Uz)

Далее по каждой зондовой характеристике определяем:

а) ионный ток насыщения I_{in} по пересечению асимптот к графику, проведенных при $U_z \to \pm U_{zmax}$, с

осью ординат

б) наклон характеристики dI/dU(U=0) в начале координат

Результаты занесём в таблицу для каждой из характеристик:

	5 mA	3 mA	1,5 mA
$I_{in}, \pm 0,02mA \text{ mkA}$	85	45	20
$dI/dU(U=0), 10^{-6}A/V$	$25,1 \pm 4,2$	$9,2 \pm 1,7$	$3,3 \pm 0,6$

По результатам предыдущего пункта найдем температуру электронов T_e в Кельвинах по формуле:

 $kT_e = \frac{1}{2} \frac{eI_{in}}{dI/dU(U=0)}$

	5 mA	3 mA	1.5 mA
kT_e , эВ	$1,7\pm0,3$	$2,4 \pm 0,5$	$3,0 \pm 0,6$
$T_e, 10^3 K (1 \text{ pB} \simeq 11800 \text{ K})$	20 ± 2	$28,3 \pm 4,1$	$35,4 \pm 5,7$

Полагая концентрацию электронов n_e равную концентрации ионов n_i , определим её по формуле Бома:

$$I_{in} = 0, 4n_e e S \sqrt{\frac{2kT_e}{m_i}}$$

Сделав расчёт размерностей, понимаем, что удобнее всего будет считать в $10^{15} m^{-3}$

	5 mA	$\mid 3 \text{ mA} \mid$	1,5 mA
$n_e, 10^{15} m^{-3}$	$133,3 \pm 60,1$	$70,6 \pm 30,2$	$31,4 \pm 14,7$

Далее рассчитаем плазменую частоту колебаний электронов по формуле:

$$\omega_p = \sqrt{\frac{4\pi n_e e^2}{m_e}} \approx 5,6 \times 10^4 \sqrt{n_e} \; \mathrm{pag/cek}$$

	5 mA	3 mA	1,5 mA
$\omega_p, 10^{13} rad/sec$	$64,6 \pm 4,3$	$47,1 \pm 5,2$	$31,4 \pm 4,9$

Рассчитаем электронную поляризационную длину r_{de} по формуле: $r_{de} = \sqrt{\frac{kT_e}{4\pi n_e e^2}}$ м

$$r_{de} = \sqrt{rac{kT_e}{4\pi n_e e^2}}$$
 M

Ve.			
	5 mA	3 mA	1,5 mA
$r_{de}, 10^{-2} \text{ M}$	$6,3 \pm 0,7$	$17 \pm 2, 3$	$47 \pm 5, 1$

Рассчитаем дебаевский радиус экранирования r_d : $r_{de} = \sqrt{\frac{kT_i}{4\pi n_e c^2}}$

$$r_{de} = \sqrt{\frac{kT_i}{4\pi n_e e^2}}$$

	5 mA		1,5 mA
$r_d, 10^{-4} \text{ M}$	$9,7 \pm 1,2$	$18 \pm 2, 5$	$41 \pm 5, 0$

Оценим среднее число ионов в дебаевской сфере:

$$N_d = \frac{4}{3}\pi(r_d)^3 n_i$$

	5 mA	3 mA	1,5 mA
$N_d, 10^5$	5,1	17,2	90,6

Так как число Дебая получилось »1, то плазму можно считать идеальной.

Оценим степень ионизации плазмы:

	5 mA	3 mA	1,5 mA
$\alpha, 10^{-7}$	20,8	11	4,9

(погрешности везде в этом пункте считались по формулам погрешности отношения и произведения) Построим графики зависимостей электронной температуры и концентрации электронов от тока разряда: $T_e(I_p), n_e(I_p)$

Вывод:

Полученные результаты по порядку, (либо отличаются на порядок) совпадают с табличными данными из интернета. Разница могла возникнуть из-за того, что вблизи нуля зондовые характеристики (BAX) снимались не очень тщательно и точек было мало.