Université Mohamed Khider Biskra	Probabilités
Faculté des FSENV	$2^{\grave{\epsilon}me}$ Année.
Département de Mathématiques	2019/2020.

TD 5: Variables aléatoires et lois de probabilités continues

Exercice §1.

La fonction de densité de X, variable aléatoire représentant la durée de vie en heures d'un certain composant électronique, est donnée par

$$f(x) = \begin{cases} 10/x^2 & x > 10\\ 0 & x \le 10 \end{cases}$$

- 1. Trouver $\mathbb{P}(X > 20)$.
- 2. Quelle est la fonction de répartition de X?
- 3. Calculer $\mathbb{E}(X)$.

Exercice §2 _

La quantité de pain (en centaines de kilos) qu'une boulangerie vend en 1 journée est une variable aléatoire X de fonction de densité

$$f(x) = \begin{cases} cx & 0 \le x \le 3 \\ c(6-x) & 3 \le x \le 6 \\ 0 & sinon. \end{cases}$$

- 1. Calculer la valeur de c.
- 2. Quelle est la fonction de répartition de X?
- 3. Soit A l'événement : « le nombre de kilos de pain vendus dans une journée est supérieur à 300 kg ». Soit B l'événement : « le nombre de kilos de pain vendus dans une journée est compris entre 150 et 450kq». Les événements sont-ils indépendants

Exercice §3_

On dit que la variable aléatoire X suit la loi exponentielle de paramètre λ , notée $\mathcal{E}(\lambda)$, si sa densité est

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & sinon \end{cases}$$

1. Calculer la fonction de répartition F(x).

2. Calculer $\mathbb{E}(X)$ et $\mathbb{V}ar(X)$.

Exercice §4:____

La durée de vie X en années d'une télévision suit une loi exponentielle de densité

$$f(x) = \frac{1}{8}e^{\frac{-x}{8}} \qquad x \ge 0$$

- 1. Calculer la probabilité que la télévision que venez d'acheter ait une durée de vie supérieure à 8 ans.
- 2. Vous possédez une telle télévision depuis 2 ans. Quelle est la probabilité que sa durée de vie soit encore de 8 ans à partir de maintenant? Conclusion
- 3. Quelle est la durée de vie moyenne $\mathbb{E}(X)$ d'une télévision? et la variance de cette durée de vie?

Exercice §5:_____

Rappeler la densité d'une loi exponentielle de paramètre $\lambda>0$, ainsi que sa fonction de répartition. Montrer que X vérifie:

$$\forall s \ge 0, \forall t \ge 0 : \mathbb{P}(X > t + s \mid X > t) = \mathbb{P}(X > s).$$

c'est-à-dire la propriété d'absence de mémoire.