The number of legal Go positions

John Tromp

http://tromp.github.io/

65 year annivesary Go Club Amsterdam, Bergen aan Zee 2023

Overview

- Numbers
- Positions
- Legal
- Why
- History
- Algorithm
- Verifiability
- Concluding

Numbers

- positional notation, a.k.a. place-value, or base-b notation
- decimal (base 10) notation uses the 10 digits 0,1,2,3,4,5,6,7,8,9 $4125 = 4125_{10} = 4 \cdot 1000 + 1 \cdot 100 + 2 \cdot 10 + 5 \cdot 1$ $= 4 \cdot 10^3 + 1 \cdot 10^2 + 2 \cdot 10^1 + 5 \cdot 10^0$
- binary (base 2) notation uses the 2 binary digits 0,1 $1010_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$ $= 1 \cdot 8 + 0 \cdot 4 + 1 \cdot 2 + 0 \cdot 1$ = 8 + 2 = 10
- ternary (base 3) notation uses the 3 ternary digits 0,1,2 $2010_3 = 2 \cdot 3^3 + 0 \cdot 3^2 + 1 \cdot 3^1 + 0 \cdot 3^0$ $= 2 \cdot 27 + 0 \cdot 9 + 1 \cdot 3 + 0 \cdot 1$ = 54 + 3 = 57
- Go gives a new meaning to "positional notation"

Go positions

- Go-ternary notation uses the symbols +, ●, instead of 0,1,2
- Go positions denote first $3^{n \times n}$ numbers

- 0 1 2 3 4 5 ... 79 80

Legal positions

Definition

A position is *legal* iff all strings have liberties

Theorem

A position is legal iff it's reachable in a game

Proof.

- ⇒ have White pass while placing black stones, then have Black pass while placing white stones
- game rules ensure strings have liberties

Illegal and legal 2×2

16 illegal 4-stone positions

8 illegal 3-stone positions

- all positions with at most 2 stones are legal
- leaving 81 24 = 57 legal 2×2 positions
- in Go-ternary

Symmetry

- Rotations and reflections generally produce different positions
- Identity of positions matters in superko
- Pinwheel ko

• Superko prevents White 8 at 'x' but not White 2

386,356,909,593 simple paths

- "Because it's there" George Mallory
- "more than the number of atoms in the universe" is a horrible understatement
- interesting computational challenge
- major open problem left in "Combinatorics of Go" by myself and Gunnar Farnebäck from CG2006 http://tromp.github.io/go/gostate.pdf

- "Because it's there" George Mallory
- "more than the number of atoms in the universe" is a horrible understatement
- interesting computational challenge
- major open problem left in "Combinatorics of Go" by myself and Gunnar Farnebäck from CG2006 http://tromp.github.io/go/gostate.pdf

- "Because it's there" George Mallory
- "more than the number of atoms in the universe" is a horrible understatement
- interesting computational challenge
- major open problem left in "Combinatorics of Go" by myself and Gunnar Farnebäck from CG2006 http://tromp.github.io/go/gostate.pdf

- "Because it's there" George Mallory
- "more than the number of atoms in the universe" is a horrible understatement
- interesting computational challenge
- major open problem left in "Combinatorics of Go" by myself and Gunnar Farnebäck from CG2006 http://tromp.github.io/go/gostate.pdf

- "Because it's there" George Mallory
- "more than the number of atoms in the universe" is a horrible understatement
- interesting computational challenge
- major open problem left in "Combinatorics of Go" by myself and Gunnar Farnebäck from CG2006 http://tromp.github.io/go/gostate.pdf

The number of legal 19x19 positions is ...

L19 in Go-ternary

L19 in decimal

208168199381979984699478633344862770286522453884530548425 639456820927419612738015378525648451698519643907259916015 628128546089888314427129715319317557736620397247064840935

confirming 2006 estimate of 2.081681994 · 10170

History

1992 Achim Flammenkamp estimates L19 at 1.2% of 3³⁶¹ 1994 Jonathan Cano computes up to L(4,5) by brute force enumeration 2000 Les Fables describes a dynamic programming method 2005 Gunnar Farnebäck computes up to L(10,10) 2005 Tromp computes up to L(13,13) with optimized implementation 2006 Tromp+Koucky compute up to L(17,17) on CWI cluster 2014 Piet Hut at Princeton Institute for Advanced Studies (IAS) 2015 Tromp computes L(18,18); requests more computing power 2015 Michael Di Domenico at Princeton Institute for Defense Analysis (IDA)

Chinese Remainder Theorem

- Given some relatively prime numbers m_1, \ldots, m_k
- any number $n < \Pi m_i$ is uniquely determined by its remainders $n \mod m_1, \ldots, n \mod m_k$
- Example with $m_1 = 5, m_2 = 8$

	0	1	2	3	4	5	6	7
0	0	25	10	35	20	5	30	15
1	16	1	26	11	36	21	6	31
2	32	17	2	27	12	37	22	7
3	8	33	18	3	28	13	38	23
4	24	9	34	19	4	29	14	39

error detection

Independent jobs

- for *d* in {0, 3, 5, 7, 9, 11, 15, 45, 83}
- compute L19 modulo $2^{64} d$

where	d	$2^{64} - d$	L19 $mod(2^{64} - d)$
IAS	0	18446744073709551616	8090796072333351655
IDA	3	18446744073709551613	2915461546443917794
IDA	5	18446744073709551611	7586469474294957788
IDA	7	18446744073709551609	6473614947737753186
IDA	9	18446744073709551607	10169697560205166237
IDA	11	18446744073709551605	8330618849129880355
IDA	15	18446744073709551601	15770133769769565723
IAS	45	18446744073709551571	18086767044943672066
IAS	83	18446744073709551533	4954386835027564217

- ullet 9 imes 64 bits = 576 bits, enough for 566 bit answer
- compute L19 using Chinese Remainder Theorem

Count on partial boards

- partial board of *i* points has 3^{*i*} partial positions
- one count for all illegal partial positions
- other counts for legal partial positions
- extend partial positions one point at a time

Abstract from irrelevant details

Only the last n points of the partial position matter

Distinguish stones with and without liberties

Identify connections between libertyless stones

Efficient border state encoding

- infer string connections from left/right flags
- infer color of gray liberty less stones
- also exploit color symmetry (swapping all black/white)
- uses only 3 bits per point; 57 bits for L19

Huge datasets

- L19 has over 363 billion border states
- 16 bytes per <state,count> pair
- set of partial board counts takes 5.8TB of pairs
- ordered pairs allow delta state encoding
- redundancy unavoidable
- over 4TB per dataset
- partitioning allows for parallel processing

State density in code space

Extending all states

Verifiability

- Software available at
 - https://github.com/tromp/golegal
- Use beefy server for additional congruences
 - 15TB of fast scratch diskspace
 - 8 to 16 cores
 - 192GB of RAM
 - a few months of running time
- checksums on all files
- check summing to 3ⁱ
- check that L(19, n) = L(n, 19) computed earlier
- check against estimate 2.081681994 · 10¹⁷⁰ extrapolated from earlier results

Approximation formula

•

•

•

• $L(m, n) \approx \alpha \beta^{m+n} L^{mn}$ for some constants α , β , and L.

$$L = \lim_{n \to \infty} \frac{L(n, n)L(n+1, n+1)}{L(n, n+1)^2}$$

$$B = \lim_{n \to \infty} \frac{L(n, n+1)}{L(n, n)L^n} = \lim_{n \to \infty} \frac{L(n, n)}{L(n, n-1)L^n}$$

$$A = \lim_{n \to \infty} \frac{L(n, n)}{B^{2n} L^{n^2}}$$

Base of Liberties

n	$L(n,n)L(n+1,n+1)/L(n,n+1)^2$
3	2.979
4	2.9756
5	2.975732
6	2.9757343
7	2.9757341927
8	2.9757341918
9	2.975734192044
10	2.975734192044
11	2.975734192043350
12	2.975734192043355
13	2.97573419204335727
14	2.975734192043357255
15	2.97573419204335724932
16	2.975734192043357249362
17	2.9757341920433572493811
18	2.97573419204335724938097

- Dynamic Programming reduces an problem exponential in n² (impossible) to a problem exponential in n (feasible). For factoring numbers as big as L19, similar improvements are possible over trial division.
- answered
 Ultimate question of liberties, the universe, and everystring
- newly computed L(19, 19), L(19, 18), and L(18, 18) improve accuracy in approximation formula $L(m, n) \equiv 2.975734192043357249381^{mn} \times 0.96553505933837387^{m+n} \times 0.8506399258457145$
- Go counting could make nice server benchmark
- The king of games versus the game of kings

- Dynamic Programming reduces an problem exponential in n² (impossible) to a problem exponential in n (feasible). For factoring numbers as big as L19, similar improvements are possible over trial division.
- answered
 Ultimate question of liberties, the universe, and everystring
- newly computed L(19, 19), L(19, 18), and L(18, 18) improve accuracy in approximation formula $L(m, n) \equiv 2.975734192043357249381^{mn} \times 0.96553505933837387^{m+n} \times 0.8506399258457145$
- Go counting could make nice server benchmark
- The king of games versus the game of kings

- Dynamic Programming reduces an problem exponential in n² (impossible) to a problem exponential in n (feasible). For factoring numbers as big as L19, similar improvements are possible over trial division.
- answered
 Ultimate question of liberties, the universe, and everystring
- newly computed L(19, 19), L(19, 18), and L(18, 18) improve accuracy in approximation formula $L(m, n) \equiv 2.975734192043357249381^{mn} \times 0.96553505933837387^{m+n} \times 0.8506399258457145$
- Go counting could make nice server benchmark
- The king of games versus the game of kings

- Dynamic Programming reduces an problem exponential in n² (impossible) to a problem exponential in n (feasible). For factoring numbers as big as L19, similar improvements are possible over trial division.
- answered
 Ultimate question of liberties, the universe, and everystring
- newly computed L(19, 19), L(19, 18), and L(18, 18) improve accuracy in approximation formula $L(m, n) \equiv 2.975734192043357249381^{mn} \times 0.96553505933837387^{m+n} \times 0.8506399258457145$
- Go counting could make nice server benchmark
- The king of games versus the game of kings

- Dynamic Programming reduces an problem exponential in n² (impossible) to a problem exponential in n (feasible). For factoring numbers as big as L19, similar improvements are possible over trial division.
- answered
 Ultimate question of liberties, the universe, and everystring
- newly computed L(19, 19), L(19, 18), and L(18, 18) improve accuracy in approximation formula $L(m, n) \equiv 2.975734192043357249381^{mn} \times 0.96553505933837387^{m+n} \times 0.8506399258457145$
- Go counting could make nice server benchmark
- The king of games versus the game of kings

Chess counting

Server benchmark

- Task is well defined, easily understood, and non-artificial
- Program code is small and self-contained
- Generated data sets are huge
- Problem is a typical instance of map-reduce, and thus representative of a wide class of popular problems
- Computation requires a good balance of multi-core processing power, memory for sorting, and disk-IO
- Board size parameter gives family of benchmarks, in 5x effort increments