

### Learn a new processor

- Top-down approach (for example, pic16F917 data sheet, see http://www.microchip.com)
- Bottom-up approach (our textbook)

# Compiling Two C Assignment Statements into MIPS (Section 2.2)

High-level programming language:

$$a = b + c;$$

$$-d = a - e;$$

MIPS instructions:

- add a, b, c
- sub d, a, e

### What have we learned?

• A MIPS instruction operates on two source operands and places the result in one destination operand.

# Compiling a Complex C Assignment into MIPS

High-level language statement:

f = (g + h) - (i + j)

#### **MIPS Instructions**

- add t0, g, h #temporary variable t0
- add t1, i, j #
- sub f, t0, t1 #

### What have we learned?

MIPS can't perform this task in one operation.

### Why?

MIPS only has one ALU (Arithmetic Logic Unit), which can only perform one operation (e.g., add or sub) at a time.

## Any observations?

- Q. What are those t0 and t1?
- A. They are so-called registers.
  - Q. What are those f, g, h, i and j?
  - A. They are memory cells (locations).

## How many registers should we have?

If you want a lot:

#### Pros:

- Plenty of storage spaces for holding values
- Reducing traffic to and from memory cells

#### Cons:

- More hardware
- Take more time to select/activate/specify the intended register.

# So how many did the MIPS designer choose?

Possible answers: 2, 4, 8, 16, 32, 64, 128, 256

Answer:

MIPS has 32 registers. (Design Principle 2: Smaller is faster.)

Observation: Can we have 30 registers instead of 32?

A: