```
In [ ]:
         import numpy as np
         import pandas as pd
         import os
         import matplotlib.pyplot as plt
         import seaborn as sns
         from functions.linear_models import PCA_function, OLS_regression
         from functions.number_PC import rule_thumb, informal_way, biggest_drop
In [ ]:
         # hide warning messages
         import warnings
         warnings.filterwarnings("ignore")
In [ ]:
         # better plots
         sns.set(rc={'figure.figsize':(12,8)});
In [ ]:
         directory = os.path.dirname(os.getcwd())
         directory
        'd:\\github\\AssignmentEconometricsIV'
Out[]:
```

Question

The first question consists of a factor analysis of a large dataset. We consider monthly close-to-close excess returns from a cross-section of 9,456 firms traded in the New York Stock Exchange. The data starts on November 1991 and runs until December 2018. There are 326 monthly observations in total.

In addition to the returns we also consider 16 monthly factors:

- Market (MKT)
- Small-minus-Big (SMB)
- High-minus-Low (HML)
- Conservative-minus-Aggressive (CMA)
- Robust-minus-Weak (RMW)
- earning/price ratio (EP)
- cash-flow/price ratio (CFP)
- dividend/price ratio
- accruals (ACC)
- market beta (BETA)
- net share issues
- daily variance (RETVOL)
- daily idiosyncratic variance (IDIOVOL)
- 1-month momentum (MOM1)
- 36-month momentum (MOM36)

The dataset is organized as an excel file named returns.xlsx.

```
In [ ]:
          input_path = f'{directory}\\data\\returns.xlsx'
          df = pd.read excel(input path, index col=0)
In [ ]:
          df.head()
Out[]:
                    MKT
                              HML
                                        SMB
                                                 MOM1
                                                          MOM36
                                                                       ACC
                                                                                 BETA
                                                                                            CFP CHCSH
          dates
         1991-
                -0.041264 -0.028083
                                     0.004779 -0.007336 -0.025496 -0.013692
                                                                              0.035433 -0.015116 -0.00677
         11-29
         1991-
                 0.107984
                          -0.022529
                                    -0.027366
                                               0.010963 -0.021188 -0.027887 -0.082499 -0.032122 -0.00589
         12-31
         1992-
                -0.007668
                           0.051012
                                     0.085547
                                               0.050916
                                                         0.108588
                                                                   0.021978 -0.072801
                                                                                        0.028117 -0.00819
         01-31
         1992-
                 0.010796
                           0.070501
                                     0.002794
                                              -0.027398
                                                         0.079286
                                                                   0.003860 -0.024906
                                                                                        0.037363
                                                                                                  0.01562
         02-28
         1992-
                -0.025367
                           0.039029 -0.015135 -0.009367
                                                         0.024631
                                                                   0.004612
                                                                              0.041266
                                                                                        0.037916
                                                                                                  0.01711
         03-31
        5 rows × 9472 columns
In [ ]:
          factors_name = df.columns[:16]
          factors name
         Index(['MKT', 'HML', 'SMB', 'MOM1', 'MOM36', 'ACC', 'BETA', 'CFP', 'CHCSHO',
Out[ ]:
                 'DY', 'EP', 'IDIOVOL', 'CMA', 'UMD', 'RMW', 'RETVOL'],
                dtype='object')
In [ ]:
          factors = df[factors_name]
          factors.head()
                                                                       ACC
Out[]:
                    MKT
                              HML
                                        SMB
                                                 MOM1
                                                          MOM36
                                                                                 BETA
                                                                                            CFP
                                                                                                 CHCSH
          dates
         1991-
                -0.041264 -0.028083
                                     0.004779 -0.007336 -0.025496 -0.013692
                                                                              0.035433 -0.015116 -0.00677
         11-29
         1991-
                 0.107984
                          -0.022529
                                    -0.027366
                                               0.010963
                                                        -0.021188 -0.027887 -0.082499 -0.032122 -0.00589
         12-31
         1992-
                -0.007668
                           0.051012
                                                                   0.021978 -0.072801
                                     0.085547
                                               0.050916
                                                         0.108588
                                                                                        0.028117 -0.00819
         01-31
         1992-
                                              -0.027398
                                                         0.079286
                 0.010796
                           0.070501
                                     0.002794
                                                                   0.003860 -0.024906
                                                                                        0.037363
                                                                                                  0.01562
         02-28
         1992-
                -0.025367
                           0.039029 -0.015135 -0.009367
                                                         0.024631
                                                                    0.004612
                                                                              0.041266
                                                                                        0.037916
                                                                                                  0.01711
         03-31
        4
In [ ]:
          returns name = df.columns[16:]
          returns_name
```

```
09/08/2023, 14:16
             5', 'r_ 6', 'r_ 7',
                                             3',
     Out[ ]:
                     'r_9447', 'r_9448', 'r_9449', 'r_9450', 'r_9451', 'r_9452', 'r_9453',
                     'r 9454', 'r 9455', 'r 9456'],
                    dtype='object', length=9456)
     In [ ]:
              returns = df[returns_name]
              returns.head()
     Out[]:
                                                    r_ 4
                                                             r_ 5
                                                                     r_ 6
                                                                                        r_ 8
                         r_ 1
                                 r_ 2
                                           r_ 3
                                                                               r_ 7
                                                                                                 r_ !
              dates
              1991-
                     0.130715 -0.053900 -0.110696 -0.043900 0.218322 0.050645
                                                                          0.575047
                                                                                    0.008921 -0.105349
              11-29
              1991-
                    -0.010580 -0.056432 0.213591
                                                0.183700
                                                         1.299230 0.306545
                                                                          0.040644 -0.003800
                                                                                             0.31878
              12-31
              1992-
                    -0.055124 \quad -0.003400 \quad -0.164114 \quad -0.205154 \quad -0.082347 \quad 0.075547 \quad -0.024677 \quad -0.066691
                                                                                             0.15513
              01-31
              1992-
                                      0.039753 -0.057745 -0.117086 0.204517 -0.089757 -0.083881
                    -0.202800 5.219422
                                                                                             0.01825
              02-28
              1992-
                     03-31
             5 rows × 9456 columns
     In [ ]:
              daterange = returns.index
              daterange
             Out[ ]:
                             '2018-03-29', '2018-04-30', '2018-05-31', '2018-06-29', '2018-07-31', '2018-08-31', '2018-09-28', '2018-10-31', '2018-11-30', '2018-12-31'],
                            dtype='datetime64[ns]', name='dates', length=326, freq=None)
     In [ ]:
              plt.hist(returns.std(axis=0), bins=100)
              plt.xlabel('Standard Deviation of Returns')
```

plt.title('Histogram of the Standard Deviation of Returns');

plt.ylabel('Frequency')

In []: standardized_returns = (returns - returns.mean(axis=0))/returns.std(axis=0)
standardized_returns.head()

Out[]:		r_ 1	r_ 2	r_ 3	r_ 4	r_ 5	r_ 6	r_ 7	r_ 8	r _
	dates									
	1991- 11-29	1.483764	-0.219996	-0.914187	-0.665776	1.031984	0.207163	3.474317	-0.028135	-0.77523
	1991- 12-31	-0.223389	-0.226904	1.435410	2.066812	6.526489	1.869218	0.235135	-0.125593	2.07608
	1992- 01-31	-0.761584	-0.082197	-1.301224	-2.601812	-0.496389	0.368900	-0.160796	-0.607431	0.97594
	1992- 02-28	-2.545832	14.169328	0.175881	-0.832001	-0.672972	1.206552	-0.555266	-0.739131	0.05571
	1992- 03-31	0.851900	-0.569465	-0.284648	0.378895	2.036596	0.298978	-0.897734	-1.474551	-1.47598

5 rows × 9456 columns

Out[]:		MKT	HML	SMB	MOM1	MOM36	ACC	BETA	CFP	CHCSH	
	dates										
	1991- 11-29	-1.146021	-0.942950	0.110054	-0.298999	-0.981611	-0.855086	0.608329	-0.530965	-0.39099	

	MKT	HML	SMB	MOM1	MOM36	ACC	BETA	CFP	CHCSH
dates									
1991- 12-31	2.438375	-0.768570	-0.927363	0.228826	-0.830584	-1.573833	-1.458119	-1.015147	-0.35606
1992- 01-31	-0.339177	1.540227	2.716591	1.381237	3.719257	0.951073	-1.288179	0.699949	-0.44761
1992- 02-28	0.104274	2.152085	0.045976	-0.877648	2.691977	0.033673	-0.448956	0.963170	0.50052
1992- 03-31	-0.764238	1.164027	-0.532641	-0.357583	0.775803	0.071737	0.710532	0.978913	0.55994

The model

$$egin{aligned} Y_t &= eta_0 + eta_1 X_{1t} + \dots + eta_p X_{nt} + U_t, \quad t = 1, \dots, T \ &= eta' oldsymbol{X}_t + U_t \ oldsymbol{Y} &= oldsymbol{X} eta + oldsymbol{U} \quad ext{(matrix notation)}. \end{aligned}$$

However, n>T (more columns than rows in X).

The usual ordinary least squares (OLS) solution

$$\widehat{oldsymbol{eta}} = \left(X'X
ight)^{-1}X'Y$$

is not valid anymore.

Solution: reduce the dimension of \boldsymbol{X} by postulating that:

$$oldsymbol{X}_t = oldsymbol{\Lambda}_{(n imes 1)} oldsymbol{F}_t + oldsymbol{V}_t, \ (n imes 1)$$

where:

- F_t is a set of k << n unobserved factors;
- V_t is the vector of idiosyncratic errors;
- Λ is the matrix of unobserved factor loadings.

(a) (30 points)

Compute the principal components of the returns and determine the optimal number of principal factors by one the methods described in Lecture 2. How much of the variance will the factors be able to explain?

The transformed dataset containing only the first k PCs is the (T imes k) matrix is given by

$$egin{aligned} Z_{(k)} &:= oldsymbol{X}oldsymbol{\Gamma}_k \ &:= (Z_1, \dots, Z_k)\,. \end{aligned}$$

n []:	pcs									
:[]:		PC 1	PC 2	PC 3	PC 4	PC 5	PC 6	PC 7	PC 8	PC
	dates									
	1991- 11-29	-0.932311	0.655585	0.023695	-0.023417	-0.126589	0.216290	-0.287319	0.317324	0.36757
	1991- 12-31	0.684426	-0.766075	0.098573	0.101246	0.403129	-0.197598	0.258110	-0.600949	-0.53229
	1992- 01-31	2.223682	-0.458117	-0.226293	-0.012401	0.090334	-0.388412	0.722587	-1.958945	-1.08676
	1992- 02-28	0.562873	-0.140579	0.159400	0.006865	0.158465	-0.255173	0.436401	-0.784899	-0.00900
	1992- 03-31	-0.743650	0.306019	0.224420	-0.089483	-0.141921	0.050060	-0.242078	0.170550	0.23308
	•••				•••					
	2018- 08-31	0.161871	-0.265360	-0.020674	-0.097998	0.026575	-0.056679	-0.109673	-0.051071	0.16519
	2018- 09-28	-0.942054	0.462936	0.124402	-0.082200	-0.051525	0.076335	-0.044931	0.278179	0.3815(
	2018- 10-31	-2.535630	2.642636	-0.063295	0.056235	0.753975	0.545761	-0.142676	-0.170747	0.01582

PC 1 PC 2 PC₃ PC 4 PC 5 PC 6 **PC 7 PC** 8 PC dates 2018--0.418945 0.200803 0.180173 0.041064 0.087297 0.077100 -0.050033 0.015725 0.00710 11-30 2018--0.011031 -3.014504 3.133093 0.038419 0.759613 0.698890 -0.215036 -0.120849 0.34036 12-31

326 rows × 326 columns

Given the desired number of PCs, say $1 \le k \le n$, we collect all the vectors $\gamma_1, \ldots \gamma_k$ in a $(n \times k)$ matrix

$$\Gamma_k := (\gamma_1, \ldots \gamma_k)$$

```
In [ ]: gammas
```

Out[]: gamma 1 gamma 2 gamma 3 gamma 4 gamma 5 gamma 6 gamma 7 gamma 8 gamma 0.002032 -0.002777 -0.000804 0.000050 0.002960 0.001060 -0.002195 0.001189 0.0032 r 1 0.027143 0.015565 -0.009166 -0.002057 0.016365 0.000631 0.050304 -0.038719 0.0310 r_ 2 r 3 -0.013071 -0.003946 -0.000183 -0.011596 -0.007778 0.006669 -0.008175 -0.0016 0.005707 -0.010162 -0.002122 -0.000947 0.001569 -0.003475 0.010309 -0.008786 -0.0131 0.012439 -0.006495 -0.005756 0.003450 0.002966 -0.002718 0.000583 0.010150 -0.0251 r_9452 0.000369 -0.000801 0.000187 0.000163 -0.000448 -0.000325 -0.000036 0.000097 -0.0000 -0.000733 -0.001478 r_9453 -0.000875 0.001381 -0.001983 -0.002800 -0.001009 0.006402 0.0069 r_9454 0.000287 -0.000691 0.000124 0.000281 -0.000370 -0.000841 0.000233 -0.000081 -0.0000 r_9455 0.002324 -0.005739 0.001035 -0.000288 -0.003415 -0.003190 0.000175 0.002162 0.0001 r_9456 0.001238 -0.003543 0.000601 -0.000469 -0.002063 -0.002022 -0.000150 0.002713 0.0014

9456 rows × 326 columns

```
In [ ]: # PCA function centered the data before to compute the PCs
    centered_returns = (returns - returns.mean(axis=0))
    centered_factors = (factors - factors.mean(axis=0))
```

```
In [ ]:  # just checking
    sum(round(centered_returns.dot(np.array(gammas["gamma 1"])), 10) == round(pcs["PC 1"])
```

Out[]: 326

Also, by construction, the columns of $Z_{(k)}$ (the PCs) are orthogonal random variables, and with sample variances $\lambda_1, \ldots, \lambda_k$.

Thus, the sample covariance matrix of $Z_{(k)}$ is given by the $(k \times k)$ diagonal matrix

$$\mathbf{\Lambda}_k := \operatorname{diag}(\lambda_1, \ldots, \lambda_k)$$

```
In [ ]: lambdas[:10]
```

It is a good idea to start by running a full PCA (k=n) and plotting the quantity

$$lpha_j = rac{\lambda_j}{\sum_{j=1}^n \lambda_j}$$

for $j \in \{1, \dots, n\}$.

Also, by construction, the columns of $Z_{(k)}$ (the PCs) are orthogonal random variables, and with sample variances $\lambda_1, \ldots, \lambda_k$. Thus, the sample covariance matrix of $Z_{(k)}$ is given by the $(k \times k)$ diagonal matrix

$$\Lambda_k := \operatorname{diag}(\lambda_1, \ldots, \lambda_k).$$

```
In [ ]: Lambda.head(10)[['PC 1', 'PC 2', 'PC 3', 'PC 4', 'PC 5', 'PC 6', 'PC 7', 'PC 8', 'PC
```

```
PC 1
                           PC 2
                                  PC 3
                                          PC 4 PC 5
                                                        PC 6
                                                               PC 7
                                                                      PC 8
                                                                              PC 9 PC 10
Out[]:
             PC 1
                   10.59
                            0.00
                                   0.00
                                          0.00
                                                  0.00
                                                         0.00
                                                               -0.00
                                                                      -0.00
                                                                              -0.00
                                                                                       0.00
            PC 2
                    0.00
                            5.05
                                  -0.00
                                         -0.00
                                                  0.00
                                                        -0.00
                                                                0.00
                                                                      -0.00
                                                                              -0.00
                                                                                       0.00
            PC 3
                                          0.00
                    0.00
                           -0.00
                                   3.33
                                                 -0.00
                                                         0.00
                                                                0.00
                                                                      -0.00
                                                                              -0.00
                                                                                       0.00
            PC 4
                    0.00
                                                               -0.00
                           -0.00
                                   0.00
                                          2.77
                                                  0.00
                                                         0.00
                                                                       0.00
                                                                              -0.00
                                                                                       0.00
            PC 5
                    0.00
                            0.00
                                  -0.00
                                                                0.00
                                                                       0.00
                                          0.00
                                                  2.41
                                                        -0.00
                                                                              0.00
                                                                                       0.00
            PC 6
                    0.00
                           -0.00
                                   0.00
                                          0.00
                                                 -0.00
                                                         1.94
                                                                0.00
                                                                       0.00
                                                                              -0.00
                                                                                      -0.00
                   -0.00
                            0.00
                                   0.00
                                          -0.00
                                                                1.76
                                                                       0.00
                                                                              0.00
                                                  0.00
                                                         0.00
                                                                                       0.00
            PC8
                   -0.00
                           -0.00
                                  -0.00
                                          0.00
                                                                0.00
                                                                       1.62
                                                                             -0.00
                                                  0.00
                                                         0.00
                                                                                      -0.00
            PC 9
                   -0.00
                           -0.00
                                  -0.00
                                          -0.00
                                                  0.00
                                                        -0.00
                                                                0.00
                                                                      -0.00
                                                                               1.52
                                                                                      -0.00
           PC 10
                    0.00
                            0.00
                                   0.00
                                          0.00
                                                 0.00
                                                       -0.00
                                                                0.00
                                                                      -0.00
                                                                             -0.00
                                                                                       1.46
```

Rule of Thumb

Stop at a k such that the (k+1)-th PC does not add much to the already explained variance (say < 3%).

q1

The first 2 PCs explain 12.82% of the returns variance.

Informal Way

Choose the number of components such that a large portion (say 90\%) of the variance is explained.

The first 207 PCs explain 89.91% of the returns variance.

Biggest Drop

Onatski (2010) suggests looking for the biggest drop computing

$$r := rg \max_{1 \leq j < n} rac{\lambda_j}{\lambda_{j+1}}.$$

The first 1 PCs explain 8.68% of the returns variance.

(b) (30 points)

Regress the selected factors on the 16 observed "anomaly" factors described above. How do the "principal component factors" relate to the "anomaly factors"?

```
In [ ]: # rule of thumb
pc_ret_rt = pcs.iloc[:,:n_pc_rt]
pc_ret_rt.head()
```

```
Out[]: PC 1 PC 2
```

```
      dates

      1991-11-29
      -0.932311
      0.655585

      1991-12-31
      0.684426
      -0.766075

      1992-01-31
      2.223682
      -0.458117

      1992-02-28
      0.562873
      -0.140579

      1992-03-31
      -0.743650
      0.306019
```

```
corr = round(factors['MKT'].corr(pc_ret_rt['PC 1']), 2)
plt.scatter(pc_ret_rt['PC 1'], factors['MKT'], s=5)
plt.xlabel('First Principal Component')
plt.ylabel('Market Factor')
plt.title(f'Correlation between 1st PC and Market Factor is {corr}');
```


In []: print(pc1.summary())

OLS Regression Results

PC 1 Dep. Variable: R-squared: 0.878 Model: OLS Adj. R-squared: 0.872 Method: Least Squares F-statistic: 139.3 Date: Sat, 15 Jul 2023 Prob (F-statistic): 1.04e-130 16:35:49 Time: Log-Likelihood: -503.55 No. Observations: 326 AIC: 1041. Df Residuals: 309 BIC: 1105.

Df Model: 16 Covariance Type: nonrobust

========	:=======	=======	========		========	========
	coef	std err	t	P> t	[0.025	0.975]
const	-0.1940	0.074	-2.629	0.009	-0.339	-0.049
MKT	26.4644	2.614	10.123	0.000	21.321	31.608
HML	19.4347	6.242	3.114	0.002	7.153	31.717
SMB	29.7067	3.142	9.455	0.000	23.524	35.889
MOM1	5.6690	2.073	2.734	0.007	1.589	9.749
MOM36	8.2647	3.877	2.131	0.034	0.635	15.894
ACC	30.3074	5.272	5.748	0.000	19.933	40.682
BETA	4.4525	4.636	0.960	0.338	-4.670	13.575
CFP	-40.7554	6.249	-6.522	0.000	-53.051	-28.460
CHCSH0	-1.5690	7.657	-0.205	0.838	-16.636	13.498
DY	-1.9132	1.005	-1.903	0.058	-3.891	0.065
EP	20.9376	6.344	3.301	0.001	8.455	33.420
IDIOVOL	-17.4350	5.192	-3.358	0.001	-27.652	-7.218
CMA	-3.4515	5.189	-0.665	0.506	-13.662	6.759
UMD	-12.2663	1.692	-7.250	0.000	-15.595	-8.937
RMW	-5.8582	4.399	-1.332	0.184	-14.514	2.798
RETVOL	-3.6166	4.429	-0.817	0.415	-12.331	5.097
Omnibus:		 186	.517 Durb	in-Watson:		1.791
Prob(Omnibu	ıs):	0	.000 Jaro	que-Bera (JB	;):	3153.860
Skew:		1	.974 Prob	(ЈВ):		0.00
Kurtosis:		17	.717 Cond	l. No.		147.
========			========		========	========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

```
In [ ]: pc1std = OLS_regression(y = pc_ret_rt, X = standardized_factors, y_column = "PC 1",
```


In []: print(pc1std.summary())

OLS Regression Results

==========	=======================================		
Dep. Variable:	PC 1	R-squared:	0.878
Model:	OLS	Adj. R-squared:	0.872
Method:	Least Squares	F-statistic:	139.3
Date:	Sat, 15 Jul 2023	<pre>Prob (F-statistic):</pre>	1.04e-130
Time:	16:35:50	Log-Likelihood:	-503.55
No. Observations:	326	AIC:	1041.
Df Residuals:	309	BIC:	1105.
Df Model:	16		
	1 1		

Covariance Type: nonrobust

	7 1									
=======	coef	std err	t	P> t	[0.025	0.975]				
const	-1.162e-16	0.065	-1.8e-15	1.000	-0.127	0.127				
MKT	1.1019	0.109	10.123	0.000	0.888	1.316				
HML	0.6190	0.199	3.114	0.002	0.228	1.010				
SMB	0.9205	0.097	9.455	0.000	0.729	1.112				
MOM1	0.1965	0.072	2.734	0.007	0.055	0.338				
MOM36	0.2357	0.111	2.131	0.034	0.018	0.453				
ACC	0.5986	0.104	5.748	0.000	0.394	0.803				
BETA	0.2541	0.265	0.960	0.338	-0.266	0.775				
CFP	-1.4315	0.219	-6.522	0.000	-1.863	-1.000				
CHCSH0	-0.0394	0.192	-0.205	0.838	-0.418	0.339				
DY	-0.1430	0.075	-1.903	0.058	-0.291	0.005				
EP	0.7719	0.234	3.301	0.001	0.312	1.232				
IDIOVOL	-0.9774	0.291	-3.358	0.001	-1.550	-0.405				
CMA	-0.0798	0.120	-0.665	0.506	-0.316	0.156				
UMD	-0.5809	0.080	-7.250	0.000	-0.739	-0.423				
RMW	-0.1117	0.084	-1.332	0.184	-0.277	0.053				
RETVOL	-0.1943	0.238	-0.817	0.415	-0.663	0.274				
Omnibus:	:: 186.517 Durbin-Watson:									

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 3153.860

 Skew:
 1.974
 Prob(JB):
 0.00

 Kurtosis:
 17.717
 Cond. No.
 14.8

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

In []: print(pc2.summary())

OLS Regression Results

______ Dep. Variable: PC 2 R-squared: 0.662 Model: 0LS Adj. R-squared: 0.645 Method: Least Squares F-statistic: 37.87 Date: Sat, 15 Jul 2023 Prob (F-statistic): 4.19e-63 Time: 16:35:50 Log-Likelihood: -549.10 No. Observations: 326 AIC: 1132. Df Residuals: BIC: 309 1197.

Df Model: 16 Covariance Type: nonrobust

=======		========	.=======			
	coef	std err	t	P> t	[0.025	0.975]
const	0.3155	0.085	3.718	0.000	0.149	0.482
MKT	-34.5536	3.006	-11.494	0.000	-40.469	-28.638
HML	3.3906	7.178	0.472	0.637	-10.733	17.514
SMB	-11.3074	3.613	-3.130	0.002	-18.417	-4.198
MOM1	3.7126	2.384	1.557	0.120	-0.979	8.404
MOM36	10.9439	4.459	2.454	0.015	2.170	19.718
ACC	20.8124	6.063	3.433	0.001	8.883	32.742

BETA	-5.5253	5.331	-1.036	0.301	-16.015	4.965
CFP	-56.8628	7.186	-7.913	0.000	-71.002	-42.724
CHCSH0	-16.7244	8.805	-1.899	0.058	-34.050	0.601
DY	-2.1662	1.156	-1.874	0.062	-4.440	0.108
EP	28.5162	7.295	3.909	0.000	14.162	42.870
IDIOVOL	1.4526	5.971	0.243	0.808	-10.296	13.201
CMA	-7.5439	5.967	-1.264	0.207	-19.286	4.198
UMD	2.6894	1.946	1.382	0.168	-1.139	6.518
RMW	2.6344	5.059	0.521	0.603	-7.320	12.589
RETVOL	4.6764	5.093	0.918	0.359	-5.344	14.697
========					:======	
Omnibus:		257.2	l83 Durbir	Durbin-Watson:		1.685
Prob(Omnib	ous):	0.0	000 Jarque	e-Bera (JB):		11439.574
Skew:		2.7	753 Prob(3	JB):		0.00
Kurtosis:		31.4	193 Cond.	No.		147.
========	=========	========			:======:	========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In []: pc2std = OLS_regression(y = pc_ret_rt, X = standardized_factors, y_column = "PC 2",

In []: print(pc2std.summary())

OLS Regression Results

Dep. Variable:	PC 2	R-squared:	0.662
Model:	OLS	Adj. R-squared:	0.645
Method:	Least Squares	F-statistic:	37.87
Date:	Sat, 15 Jul 2023	<pre>Prob (F-statistic):</pre>	4.19e-63
Time:	16:35:50	Log-Likelihood:	-549.10
No. Observations:	326	AIC:	1132.
Df Residuals:	309	BIC:	1197.

Df Model: 16 Covariance Type: nonrobust

========		=======	========			========
	coef	std err	t	P> t	[0.025	0.975]
	4 604- 17	0 074	C 21 - 1C	1 000	0.146	0.146
const	4.684e-17	0.074	6.31e-16	1.000	-0.146	0.146
MKT	-1.4387	0.125	-11.494	0.000	-1.685	-1.192
HML	0.1080	0.229	0.472	0.637	-0.342	0.558
SMB	-0.3504	0.112	-3.130	0.002	-0.571	-0.130
MOM1	0.1287	0.083	1.557	0.120	-0.034	0.291
MOM36	0.3122	0.127	2.454	0.015	0.062	0.562
ACC	0.4110	0.120	3.433	0.001	0.175	0.647
BETA	-0.3153	0.304	-1.036	0.301	-0.914	0.283
CFP	-1.9972	0.252	-7.913	0.000	-2.494	-1.501
CHCSH0	-0.4201	0.221	-1.899	0.058	-0.855	0.015
DY	-0.1619	0.086	-1.874	0.062	-0.332	0.008
EP	1.0513	0.269	3.909	0.000	0.522	1.581
IDIOVOL	0.0814	0.335	0.243	0.808	-0.577	0.740
CMA	-0.1744	0.138	-1.264	0.207	-0.446	0.097
UMD	0.1274	0.092	1.382	0.168	-0.054	0.309
RMW	0.0502	0.096	0.521	0.603	-0.140	0.240
RETVOL	0.2513	0.274	0.918	0.359	-0.287	0.790
Omnibus:		======== 257	:======= 7.183 Durb	======== oin-Watson:	=======	1.685
Prob(Omnik	ous):	_		ue-Bera (JB):	11439.574
Skew:	/ •			(JB):	, -	0.00
Kurtosis:				l. No.		14.8
========	:=======	======	========	:=======	========	=========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

```
In [ ]: corr_matrix = round(pd.concat([pc_ret_rt, factors], axis=1).corr(), 2)
    corr_matrix[factors.columns][:2]
```

Out[]:		МКТ	HML	SMB	мом1	мом36	ACC	BETA	CFP	СНСЅНО	DY	EP	IDIOVOL	СМА	
	PC 1	0.70	-0.38	0.70	0.31	0.16	0.40	-0.87	-0.54	-0.73	-0.39	-0.69	-0.85	-0.36	
	PC 2	-0.47	-0.46	-0.03	-0.11	-0.19	0.21	0.11	-0.47	-0.15	-0.12	-0.24	0.00	-0.24	
	4													>	

(c) (30 points)

Now, run a principal component analysis on the 16 "anomaly factors" and select the optimal number of principal components using the same criterion adopted in the first item of the exercise. By inspecting the principal eigenvectors can you identify a dominating "anomaly"?

```
In [ ]: pcs, gammas, lambdas, alphas = PCA_function(factors)
```


The transformed dataset containing only the first k PCs is the (T imes k) matrix is given by

$$egin{aligned} Z_{(k)} &:= oldsymbol{X}oldsymbol{\Gamma}_k \ &:= (Z_1, \dots, Z_k)\,. \end{aligned}$$

In []:	pcs									
Out[]:		PC 1	PC 2	PC 3	PC 4	PC 5	PC 6	PC 7	PC 8	РС
	dates									
	1991- 11-29	-0.040773	-0.040907	-0.034789	-0.042608	0.021649	0.016281	-0.002945	0.013785	-0.01715
	1991- 12-31	0.112512	-0.012316	-0.038009	0.025986	-0.097625	-0.067016	0.003296	0.040766	-0.00733
	1992- 01-31	0.121870	0.061630	0.066577	0.094953	0.039049	0.094894	-0.019855	-0.018094	0.02758
	1992- 02-28	-0.005106	0.043395	0.047053	0.084682	0.035254	-0.009129	0.001453	-0.009655	0.01877
	1992- 03-31	-0.108007	0.012929	0.026053	0.021665	0.019578	0.005955	0.008637	-0.012087	-0.00738
	•••									
	2018- 08-31	0.070953	-0.020014	-0.064739	-0.014552	-0.031384	0.001708	0.000216	0.006447	0.03309
	2018- 09-28	0.006513	-0.057196	0.004248	-0.013213	0.005573	-0.003490	0.028139	-0.015625	0.00580
	2018- 10-31	-0.167718	-0.033319	0.045695	-0.010240	0.027620	0.030816	0.020208	-0.008359	-0.03652

	PC I	PC 2	PC 3	PC 4	PC 5	PC 6	PC /	PC 8	PC
dates									
2018- 11-30	-0.058530	0.037814	-0.010477	-0.049877	-0.016665	-0.006877	0.009479	0.020282	0.00273
2018- 12-31	-0.101082	0.010640	-0.083628	-0.054505	0.049028	0.031435	0.002180	-0.014540	-0.03352

326 rows × 16 columns

Given the desired number of PCs, say $1 \le k \le n$, we collect all the vectors $\gamma_1, \ldots \gamma_k$ in a $(n \times k)$ matrix

$$\Gamma_k := (\gamma_1, \ldots \gamma_k)$$

gammas Out[]: gamma 1 gamma 2 gamma 3 gamma 4 gamma 5 gamma 6 gamma 7 gamma 8 gami **MKT** 0.228449 0.191721 0.189615 0.091736 -0.553227 -0.518328 0.175670 0.206177 0.36 **HML** -0.154749 0.062009 0.342674 0.383140 -0.006026 0.005076 -0.142897 -0.089115 -0.18**SMB** 0.168694 0.058650 0.028389 0.137712 0.194181 0.452578 -0.387099 0.476201 0.35 MOM1 0.066700 -0.201040 -0.644130 0.070393 -0.177102 0.065963 0.211633 0.663915 -0.05 **MOM36** 0.003330 0.127738 0.096021 0.497916 0.209302 0.227409 0.441680 -0.126307 0.40 ACC 0.081187 0.003743 -0.132634 -0.012960 0.050161 0.014296 -0.020514 -0.583009 0.32 **BETA** -0.447878 -0.218960 -0.081117 -0.134744 0.020983 0.067217 0.129617 0.021959 0.16 **CFP** -0.204639 0.012831 0.344791 -0.350681 0.252459 -0.054861 -0.105223 -0.433638 0.13 **CHCSHO** -0.182823 -0.029610 0.115116 0.107098 0.027947 0.004601 0.053857 0.082061 0.13 DY -0.388018 0.862257 -0.301306 -0.070640 -0.025850 0.012490 -0.094100 0.008833 -0.00 -0.256139 -0.056180 0.290519 0.065395 -0.105811 -0.090116 -0.339623 0.191388 -0.12 **IDIOVOL** 0.024197 -0.447106 -0.141603 -0.067057 0.211033 0.162011 0.03 0.120198 -0.128713 **CMA** -0.105896 0.053198 0.110473 0.264680 -0.007434 0.081863 0.393200 0.296365 -0.20 -0.081444 **UMD** -0.254533 -0.653139 0.526627 -0.407090 0.031903 -0.176837 0.052899 -0.06 **RMW** 0.011606 -0.055604 -0.054078 -0.243840 -0.045945 -0.031349 -0.182397 0.216336 0.46 -0.221104 -0.106175 -0.080566 -0.070598 RETVOL -0.417622 -0.064418 -0.024605 0.052871 0.28

Also, by construction, the columns of $Z_{(k)}$ (the PCs) are orthogonal random variables, and with sample variances $\lambda_1, \ldots, \lambda_k$.

Thus, the sample covariance matrix of $Z_{(k)}$ is given by the (k imes k) diagonal matrix

$$\mathbf{\Lambda}_k := \operatorname{diag}(\lambda_1, \dots, \lambda_k)$$

•

```
In [ ]: lambdas[:10]
```

Out[]: array([0.0143643 , 0.00424359, 0.00277031, 0.00168956, 0.00119888, 0.00093209, 0.00052007, 0.00042722, 0.00032125, 0.00027015])

It is a good idea to start by running a full PCA $\left(k=n
ight)$ and plotting the quantity

$$lpha_j = rac{\lambda_j}{\sum_{j=1}^n \lambda_j}$$

for $j \in \{1, \dots, n\}$.

Also, by construction, the columns of $Z_{(k)}$ (the PCs) are orthogonal random variables, and with sample variances $\lambda_1,\ldots,\lambda_k$. Thus, the sample covariance matrix of $Z_{(k)}$ is given by the $(k\times k)$ diagonal matrix

$$\mathbf{\Lambda}_k := \operatorname{diag}(\lambda_1, \ldots, \lambda_k).$$

```
In [ ]:
            Lambda.head(10)[['PC 1', 'PC 2', 'PC 3', 'PC 4', 'PC 5', 'PC 6', 'PC 7', 'PC 8', 'PC
Out[]:
                     PC 1
                               PC 2
                                        PC<sub>3</sub>
                                                  PC 4
                                                           PC 5
                                                                     PC 6
                                                                              PC 7
                                                                                        PC 8
                                                                                                 PC 9
                                                                                                         PC 10
            PC<sub>1</sub>
                    0.0144
                             0.0000
                                       0.0000
                                                0.0000
                                                         -0.0000
                                                                  -0.0000
                                                                            0.0000
                                                                                      0.0000
                                                                                               0.0000
                                                                                                         0.0000
            PC 2
                             0.0042
                                       0.0000
                                                         -0.0000
                                                                   0.0000
                                                                                               -0.0000
                    0.0000
                                                0.0000
                                                                           -0.0000
                                                                                      0.0000
                                                                                                        -0.0000
            PC 3
                    0.0000
                             0.0000
                                      0.0028
                                               -0.0000
                                                         0.0000
                                                                  -0.0000
                                                                           -0.0000
                                                                                     -0.0000
                                                                                               -0.0000
                                                                                                        -0.0000
            PC 4
                    0.0000
                             0.0000
                                      -0.0000
                                                0.0017
                                                         0.0000
                                                                   0.0000
                                                                           -0.0000
                                                                                     -0.0000
                                                                                               0.0000
                                                                                                         0.0000
                                      0.0000
                                                         0.0012
                                                                            0.0000
                   -0.0000
                            -0.0000
                                                0.0000
                                                                  -0.0000
                                                                                     -0.0000
                                                                                               -0.0000
                                                                                                        -0.0000
            PC 6
                  -0.0000
                             0.0000
                                      -0.0000
                                                0.0000
                                                         -0.0000
                                                                   0.0009
                                                                            0.0000
                                                                                      0.0000
                                                                                               0.0000
                                                                                                         0.0000
            PC 7
                                      -0.0000
                                                         0.0000
                                                                            0.0005
                    0.0000
                            -0.0000
                                               -0.0000
                                                                   0.0000
                                                                                      0.0000
                                                                                               -0.0000
                                                                                                        -0.0000
            PC 8
                    0.0000
                             0.0000
                                      -0.0000
                                               -0.0000
                                                         -0.0000
                                                                   0.0000
                                                                            0.0000
                                                                                      0.0004
                                                                                               0.0000
                                                                                                         0.0000
            PC 9
                    0.0000
                            -0.0000
                                      -0.0000
                                                         -0.0000
                                                                            -0.0000
                                                                                               0.0003
                                                0.0000
                                                                   0.0000
                                                                                      0.0000
                                                                                                         0.0000
           PC 10
                                      -0.0000
                                                0.0000
                                                                   0.0000
                                                                                               0.0000
                                                                                                         0.0003
                    0.0000
                            -0.0000
                                                         -0.0000
                                                                           -0.0000
                                                                                      0.0000
```

Rule of Thumb

Stop at a k such that the (k+1)-th PC does not add much to the already explained variance (say <3%).

```
In [ ]:
        n_pc_rt = rule_thumb(alphas)
```

The first 6 PCs explain 92.14% of the returns variance.

Informal Way

Choose the number of components such that a large portion (say 90\%) of the variance is explained.

```
In [ ]:
        n_pc_iw = informal_way(alphas)
```

The first 5 PCs explain 88.73% of the returns variance.

Biggest Drop

Onatski (2010) suggests looking for the biggest drop computing

$$r := rg \max_{1 \leq j < n} rac{\lambda_j}{\lambda_{j+1}}.$$

```
In [ ]:
         n_pc_bd = biggest_drop(lambdas)
```

The first 1 PCs explain 52.52% of the returns variance.

PC 2

PC 1

```
In [ ]:
         # rule of thumb
         pc_fac_rt = pcs.iloc[:,:n_pc_rt]
         pc_fac_rt.head()
```

PC 4

PC 5

PC 6

PC 3

```
Out[]:
               dates
          1991-11-29 -0.040773 -0.040907 -0.034789 -0.042608
                                                              0.021649
                                                                          0.016281
          1991-12-31
                      0.112512 -0.012316 -0.038009
                                                     0.025986 -0.097625 -0.067016
          1992-01-31
                      0.121870
                                0.061630
                                           0.066577
                                                     0.094953
                                                                0.039049
                                                                          0.094894
          1992-02-28 -0.005106
                                 0.043395
                                           0.047053
                                                     0.084682
                                                                0.035254
                                                                         -0.009129
          1992-03-31 -0.108007
                                 0.012929
                                           0.026053
                                                     0.021665
                                                                0.019578
                                                                          0.005955
```

By inspecting the principal eigenvectors can you identify a dominating anomaly?

```
In [ ]:
          gammas
```

Out[]:		gamma 1	gamma 2	gamma 3	gamma 4	gamma 5	gamma 6	gamma 7	gamma 8	gamı
•	МКТ	0.228449	0.191721	0.189615	0.091736	-0.553227	-0.518328	0.175670	0.206177	0.36
	HML	-0.154749	0.062009	0.342674	0.383140	-0.006026	0.005076	-0.142897	-0.089115	-0.18
	SMB	0.168694	0.058650	0.028389	0.137712	0.194181	0.452578	-0.387099	0.476201	0.35
	MOM1	0.066700	0.065963	0.211633	-0.201040	-0.644130	0.663915	0.070393	-0.177102	-0.05
	мом36	0.003330	0.127738	0.096021	0.497916	0.209302	0.227409	0.441680	-0.126307	0.40

gamma 2 gamma 3 gamma 4

gamma 5 gamma 6 gamma 7 gamma 8

gami

gamma 1

```
ACC
                  0.081187
                            0.003743 -0.132634
                                              -0.012960
                                                         0.050161
                                                                   0.014296 -0.020514 -0.583009
                                                                                                0.32
            BETA -0.447878
                           -0.218960 -0.081117 -0.134744
                                                         0.020983
                                                                   0.067217
                                                                             0.129617
                                                                                      0.021959
                                                                                                0.16
             CFP -0.204639
                            0.012831
                                      0.344791
                                               0.252459
                                                        -0.054861
                                                                  -0.105223 -0.433638 -0.350681
                                                                                                0.13
         CHCSHO -0.182823 -0.029610
                                      0.115116
                                               0.107098
                                                         0.027947
                                                                   0.004601
                                                                             0.053857
                                                                                      0.082061
                                                                                                0.13
              DY -0.388018
                            0.862257 -0.301306 -0.070640
                                                        -0.025850
                                                                   0.012490 -0.094100
                                                                                      0.008833
                                                                                               -0.00
              EP
                 -0.256139 -0.056180
                                      0.290519
                                               0.065395
                                                        -0.105811
                                                                  -0.090116 -0.339623
                                                                                      0.191388
                                                                                               -0.12
         IDIOVOL -0.447106 -0.141603
                                      0.120198 -0.128713
                                                        -0.067057
                                                                   0.024197
                                                                             0.211033
                                                                                      0.162011
                                                                                                0.03
            CMA -0.105896
                            0.053198
                                      0.110473
                                               0.264680
                                                        -0.007434
                                                                   0.081863
                                                                             0.393200
                                                                                      0.296365
                                                                                               -0.20
            UMD -0.081444 -0.254533
                                     -0.653139
                                               0.526627
                                                        -0.407090
                                                                   0.031903 -0.176837
                                                                                      0.052899
                                                                                               -0.06
           RMW
                  0.011606 -0.055604 -0.054078
                                               -0.243840
                                                        -0.045945
                                                                  -0.031349
                                                                           -0.182397
                                                                                      0.216336
                                                                                                0.46
         RETVOL -0.417622 -0.221104 -0.064418 -0.106175 -0.080566 -0.024605
                                                                             0.052871
                                                                                     -0.070598
                                                                                                0.28
In [ ]:
          sum(round(centered_factors.dot(np.array(gammas["gamma 1"])), 10) == round(pcs["PC 1"])
         326
Out[ ]:
In [ ]:
         fig, ax = plt.subplots(nrows=3, ncols=2, figsize=(20, 26))
         aux1 = gammas["gamma 1"].abs().sort_values(ascending=False)
         ax[0,0].bar(aux1.index, aux1.values, color='red')
         ax[0,0].tick_params(axis='x', rotation=45)
         ax[0,0].set_xlabel('Anomaly Factors')
         ax[0,0].set_ylabel('Loadings ($\gamma$)')
         ax[0,0].set_title(f'Loadings ($\gamma$) of the 1st PC');
         aux2 = gammas["gamma 2"].abs().sort_values(ascending=False)
         ax[0,1].bar(aux2.index, aux2.values, color='orange')
         ax[0,1].tick params(axis='x', rotation=45)
         ax[0,1].set_xlabel('Anomaly Factors')
         ax[0,1].set_ylabel('Loadings ($\gamma$)')
         ax[0,1].set_title(f'Loadings ($\gamma$) of the 2nd PC');
         aux3 = gammas["gamma 3"].abs().sort values(ascending=False)
         ax[1,0].bar(aux3.index, aux3.values, color='purple')
         ax[1,0].tick_params(axis='x', rotation=45)
         ax[1,0].set xlabel('Anomaly Factors')
         ax[1,0].set_ylabel('Loadings ($\gamma$)')
         ax[1,0].set_title(f'Loadings ($\gamma$) of the 3rd PC');
         aux4 = gammas["gamma 4"].abs().sort_values(ascending=False)
         ax[1,1].bar(aux4.index, aux4.values, color='green')
         ax[1,1].tick_params(axis='x', rotation=45)
         ax[1,1].set_xlabel('Anomaly Factors')
         ax[1,1].set ylabel('Loadings ($\gamma$)')
         ax[1,1].set title(f'Loadings ($\gamma$) of the 4th PC');
         aux5 = gammas["gamma 5"].abs().sort_values(ascending=False)
         ax[2,0].bar(aux5.index, aux5.values, color='blue')
         ax[2,0].tick_params(axis='x', rotation=45)
         ax[2,0].set_xlabel('Anomaly Factors')
```

```
ax[2,0].set_ylabel('Loadings ($\gamma$)')
ax[2,0].set_title(f'Loadings ($\gamma$) of the 5th PC');

aux6 = gammas["gamma 6"].abs().sort_values(ascending=False)
ax[2,1].bar(aux6.index, aux6.values, color='black')
ax[2,1].tick_params(axis='x', rotation=45)
ax[2,1].set_xlabel('Anomaly Factors')
ax[2,1].set_ylabel('Loadings ($\gamma$)')
ax[2,1].set_title(f'Loadings ($\gamma$) of the 6th PC');
```



```
In [ ]: gammas["gamma 1"]
```

Out[]: MKT 0.228449 HML -0.154749

```
0.168694
        SMB
        MOM1
                   0.066700
        MOM36
                   0.003330
                   0.081187
        ACC
        BETA
                  -0.447878
        CFP
                  -0.204639
        CHCSH0
                  -0.182823
                  -0.388018
        DY
        ΕP
                  -0.256139
        IDIOVOL
                  -0.447106
        CMA
                  -0.105896
        UMD
                  -0.081444
                   0.011606
        RMW
        RETVOL
                  -0.417622
        Name: gamma 1, dtype: float64
In [ ]:
         (gammas["gamma 1"].abs()).nlargest(2)
        BETA
                   0.447878
Out[]:
        IDIOVOL
                   0.447106
        Name: gamma 1, dtype: float64
In [ ]:
         (gammas["gamma 1"].abs()).nsmallest(2)
        MOM36
                 0.003330
Out[]:
                 0.011606
        Name: gamma 1, dtype: float64
In [ ]:
         fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(18, 12))
         corr_1 = round(factors['BETA'].corr(pc_fac_rt['PC 1']), 2)
         ax[0,0].scatter(pc fac rt['PC 1'], factors['BETA'], s=5)
         ax[0,0].set_xlabel('First Principal Component')
         ax[0,0].set_ylabel('Beta Factor')
         ax[0,0].set_title(f'Correlation between 1st PC and Beta Factor is {corr_1}');
         corr_2 = round(factors['IDIOVOL'].corr(pc_fac_rt['PC 1']), 2)
         ax[0,1].scatter(pc_fac_rt['PC 1'], factors['IDIOVOL'], s=5)
         ax[0,1].set_xlabel('First Principal Component')
         ax[0,1].set ylabel('Idiosyncratic Variance Factor')
         ax[0,1].set title(f'Correlation between 1st PC and Idiosyncratic Variance Factor is
         corr_3 = round(factors['MOM36'].corr(pc_fac_rt['PC 1']), 2)
         ax[1,0].scatter(pc_fac_rt['PC 1'], factors['MOM36'], s=5)
         ax[1,0].set_xlabel('First Principal Component')
         ax[1,0].set_ylabel('36-Month Momentum Factor')
         ax[1,0].set_title(f'Correlation between 1st PC and 36-Month Momentum Factor is {corr
         corr 4 = round(factors['RMW'].corr(pc fac rt['PC 1']), 2)
         ax[1,1].scatter(pc fac rt['PC 1'], factors['RMW'], s=5)
         ax[1,1].set_xlabel('First Principal Component')
         ax[1,1].set ylabel('Robust-minus-Weak Factor')
         ax[1,1].set_title(f'Correlation between 1st PC and Robust-minus-Weak Factor is {corr
```

q1

(d) (30 points)

How do the "anomaly-based principal factors" related to the "return-based principal factors"?

```
In [ ]:
           pc_ret_rt.head()
                            PC 1
Out[]:
                                       PC 2
                dates
          1991-11-29
                       -0.932311
                                   0.655585
          1991-12-31
                        0.684426
                                  -0.766075
          1992-01-31
                        2.223682
                                  -0.458117
          1992-02-28
                        0.562873
                                  -0.140579
          1992-03-31 -0.743650
                                   0.306019
In [ ]:
           pc_fac_rt.head()
                            PC 1
Out[]:
                                       PC 2
                                                  PC 3
                                                             PC 4
                                                                        PC 5
                                                                                   PC 6
                dates
          1991-11-29
                       -0.040773
                                  -0.040907
                                             -0.034789
                                                        -0.042608
                                                                    0.021649
                                                                               0.016281
          1991-12-31
                        0.112512
                                  -0.012316
                                             -0.038009
                                                         0.025986
                                                                    -0.097625
                                                                               -0.067016
          1992-01-31
                        0.121870
                                   0.061630
                                              0.066577
                                                         0.094953
                                                                    0.039049
                                                                               0.094894
          1992-02-28
                       -0.005106
                                   0.043395
                                              0.047053
                                                         0.084682
                                                                    0.035254
                                                                               -0.009129
          1992-03-31
                       -0.108007
                                   0.012929
                                              0.026053
                                                         0.021665
                                                                    0.019578
                                                                               0.005955
```

In []: pc1 = OLS_regression(y = pc_ret_rt, X = pc_fac_rt, y_column = "PC 1", is_pc = True)

In []: print(pc1.summary())

		OLS	Regress	sion Re	sults		
======	========		======	======	========	======	=======
Dep. Var	`iable:		PC 1	R-squ			0.834
Model:			OLS	Adj.	R-squared:		0.831
Method:		Least Sq	uares	F-sta	tistic:		268.0
Date:		Sat, 15 Jul	2023	Prob	(F-statistic)	•	2.33e-121
Time:		17:	02:03	Log-L	ikelihood:		-553.61
No. Obse	ervations:		326	AIC:			1121.
Df Resid	luals:		319	BIC:			1148.
Df Model	:		6				
Covariar	nce Type:	nonn	obust				
=======	.=======		======		=========	======	=======
	CO	ef std err	•	t	P> t	[0.025	0.975]
const	-1.162e-1	16 0.074	-1.57	7e-15	1.000	-0.146	0.146
PC 1	23.536	0.619	38	3.038	0.000	22.313	24.747
PC 2	11.819	98 1.138	10	3.385	0.000	9.581	14.059
PC 3	8.644	1.409	•	5.137	0.000	5.873	11.416
PC 4	3.678	31 1.804	. 2	2.039	0.042	0.129	7.227
PC 5	-2.522	26 2.141	1	L.178	0.240	-6.735	1.690
PC 6	7.749	91 2.428	3	3.191		2.971	12.527
Omnibus:	:=======:	 17	1.684	 Durbi	======== n-Watson:	======	 1.764
Prob(Omr	nibus):		0.000	Jarqu	e-Bera (JB):		2422.522
Skew:	•		1.820		• •		0.00
Kurtosis	: :	1	5.849	Cond.	No.		32.8

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In []:	<pre>print(pc2.summary())</pre>

OLS Regression Results								
=======================================								
Dep. Variable:	PC 2	R-squared:	0.550					
Model:	OLS	Adj. R-squared:	0.542					
Method:	Least Squares	F-statistic:	65.07					
Date:	Sat, 15 Jul 2023	<pre>Prob (F-statistic):</pre>	1.72e-52					
Time:	17:02:05	Log-Likelihood:	-595.75					
No. Observations:	326	AIC:	1206.					
Df Residuals:	319	BIC:	1232.					
Df Model:	6							
Covariance Type:	nonrobust							

	coef	std err	t	P> t	[0.025	0.975]
const PC 1 PC 2 PC 3 PC 4 PC 5 PC 6	4.684e-17 0.3608 -10.3232 -21.6396 -14.2854 15.7840 20.3048	0.084 0.704 1.295 1.603 2.053 2.437 2.764	5.56e-16 0.513 -7.971 -13.500 -6.960 6.478 7.347	1.000 0.609 0.000 0.000 0.000 0.000	-0.166 -1.024 -12.871 -24.793 -18.324 10.990 14.868	0.166 1.746 -7.775 -18.486 -10.247 20.578 25.742
Omnibus: Prob(Omnibus: Skew: Kurtosis:	======= bus):	2.		,	:	1.704 7600.490 0.00 32.8
=======	=========	========				=======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [ ]:
    pc_ret_rt.rename(columns={'PC 1': 'PC 1 (returns)', 'PC 2': 'PC 2 (returns)'}, inpla
    pc_fac_rt.rename(columns={'PC 1': 'PC 1 (factors)', 'PC 2': 'PC 2 (factors)', 'PC 3'
```

Out[]:		PC 1 (factors)	PC 2 (factors)	PC 3 (factors)	PC 4 (factors)	PC 5 (factors)	PC 6 (factors)
	PC 1 (returns)	0.87	0.24	0.14	0.05	-0.03	0.07
	PC 2 (returns)	0.02	-0.30	-0.51	-0.26	0.24	0.28