Mass transfer II 2024

1. <u>Liquid-liquid extraction: Counter current operation, construction of stages and calculation of concentration of solute in extract and raffinate.</u>

feed redu theor	enters ced to retical	the extages the ra	om a so tractor the fin require	cascae al raffi d. Extra	in docide at a nate. Taction is	osane (rate of the solving to be	(A) using f 2000 went raise carried	kg/h verte is 25 double at	re' furf with 45 600 kg/ 45°C.	ural (B 5% DP h. Dete Severa	H (C) ermine comp	e solve that ha the nur ositions	phenyl nt. The s to be mber of s on the 5°C are	
Equilibrium data														
A:	96.0	84.0	67.0	52.5	32.6	21.3	13.2	7.7	4.4	2.6	1.5	1.0	0.7	
B:	4.0	5.0	7.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0	99.3	
C:	0	11.0	26.0	37.5	47.4	48.7	46.8	42.3	35.6	27.4	18.5	9.0	0.0	
						Tie-l	line data	ı						
	Raffinate (Docosane) phase, mass%									Extract (Furfural) phase, mass%				
	A		В		C				A		В		C	
	85.2		4.8		10.0				1.1		89.1		9.8	
	69.0		6.5		24.5				2.2		73.6		24.2	
	43.9		13.3		42.6				6.8		52.3		40.9	

Stage 1: Draw the ternary phase diagram in right angles triangle coordinate (blue points). Mention the feed and the solvent on the diagram (green). Draw FE1 and RS to construct **Delta point**: [previous class, fit a polynomial of degree 5 through the LLE curve]

Today's class:

i=1

- A. Show the tie lines (red).
- B. If R(i) < Rn, join R(i) and delta point to get E(i+1)
- C. Find the Equation of the line R(i) and delta
- D. Find the intersection of the line R(i)-delta and the polynomial representing the LLE curve to get E(i+1) ---- using vpasolve function
- E. Draw a tie line from E(i+1) to get R(i+1).
- F. Find the tie_slope to find the intersection of tie line and polynomial for LLe curve. --- to get R(i+1)---using vpasolve function
- G. Calculate the composition of E(i+1) and R(i+1) --- vpasolve function.
- H. Calculate the flow rate E(i+1) and R(i+1)

i=i+1

- 1. Calculate the number of stages for achieving 4% DPH in the raffinate with **countercurrent operation**. Calculate the number of stages if 8% DPH and 1.5 % can stay in the raffinate (for 2500 kg/hr solvent rate) [30]
- 2. Plot the concentration of DPH in the raffinate vs number of stages for the three cases. Also plot the concentration of solute in the extract vs number of stages (When you perform a <u>countercurrent operation</u>). [10]
- **3.** Plot the curve for percentage removal of DPH vs number of stages for 1.5%, and 4%, 8% DPH in raffinate. [10]

```
B = [0.04\ 0.05\ 0.07\ 0.1\ 0.2\ 0.3\ 0.4\ 0.5\ 0.6\ 0.7\ 0.8\ 0.9\ 0.993\ 1]; C = [0\ 0.11\ 0.26\ 0.375\ 0.474\ 0.487\ 0.468\ 0.423\ 0.356\ 0.274\ 0.185\ 0.09\ 0.001\ 0]; tiexc = [0.1\ 0.245\ 0.426]; tieyb = [0.048\ 0.065\ 0.133]; tieyc = [0.098\ 0.242\ 0.409]; tieyb = [0.891\ 0.736\ 0.523];
```

Locating the point R (raffinate) for i the stage. [raffinate composition, amount of solute in raffinate]

Calculation of the extract composition for i+1 th stage.

```
text(double(x)-0.05,double(y),['R',num2str(count),' - '])

% calculation of the slope of the line joining R and delta point
slope3 = .......;
syms x y
[x,y] = vpasolve([y == ......., y == .......],[x,y],[0.3 1; 0 Ey(count)]);
plot([........],[.........],':','Color',[0,0.75,0.75],'linewidth',1.5)
Ex(count + 1) = ;
Ey(count + 1) = ;
text(double(x),double(y),[' - E',num2str(count+1)])

Ri = Ry(count);
count = .......;
end
```

Calculation of the stage number and the final concentration of solute in raffinate...

For Plotting the raffimate and extract, saving stage number in intermediate.

Calculation of amount of raffinate and extract in each stage:

This is required for calculation of percentage removal.

Plotting the solute level in extract and raffinate as a function of number of stages.

