12 Parties génératrices de SL(E) et GL(E)

Leçons 106, 108

Ref: [Perrin] IV.2

On se donne un \mathbb{K} -espace vectoriel E de dimension finie $n \in \mathbb{N}^*$ (où \mathbb{K} est un corps commutatif).

Théorème 1 Le groupe spécial linéaire SL(E) est engendré par les transvections.

 $D\acute{e}monstration$. La démonstration repose sur deux lemmes qui construisent des transvections utiles pour décomposer un endomorphisme quelconque de SL(E).

Lemme 2 On se donne deux hyperplans distincts H_1 et H_2 de E, et un point x qui n'est dans aucun des deux (voir figure 12.1). Alors il existe une transvection $u \in SL(E)$ telle que

$$\left\{ \begin{array}{l} u(H_1) = H_2 \\ u(x) = x \end{array} \right. .$$

FIGURE 12.1 – Hyperplans concernés par le premier lemme

Démonstration. On note H l'hyperplan contenant x et $H_1 \cap H_2$ (voir figure 12.1), qui est celui qui est fixé par la transvection recherchée. On remarque que puisque x est dans H et pas dans H_1 , on dispose de l'égalité

$$E = H + H_1.$$

On se donne $z \in H_2 \backslash H$. Alors il existe $a \in H$ et $y \in H_1$ tels que z = a + y. De plus, comme z n'est pas dans H, y n'est pas dans H. Si l'on se donne une équation f de H (i.e. une forme linéaire non nulle f telle que $H = \ker(f)$), y n'annule donc pas f, et on peut ainsi supposer f(y) = 1. On pose alors

$$\forall t \in E, \quad u(t) = t + f(t)a.$$

Puisque a est un élément non nul de H (sinon, z serait dans $H_1 \cap H_2$ et donc dans H), u est une transvection qui laisse stable l'hyperplan H. En particulier, u(x) = x. De plus, on a

$$u(y) = y + f(y)a = z.$$

Ainsi, comme y n'est pas dans H_2 (car sinon il serait dans $H_1 \cap H_2$ et donc dans H), $\mathbb{K}y$ est un supplémentaire de $H_1 \cap H_2$ dans H_1 , et donc tout élément t de H_1 s'écrit $t = h + \lambda y$, avec $\lambda \in \mathbb{K}$ et $h \in H_1 \cap H_2 \subset H$. Ainsi, on a

$$u(t) = u(h) + \lambda u(y) = h + z \in H_2.$$

Lemme 3 Soient x et y deux points de E non nuls. Si E est de dimension supérieure à 2, il existe un produit u de une ou deux transvections de E tel que u(x) = y.

Démonstration. On traite deux cas distincts.

– Si x et y ne sont pas colinéaires, alors x et x-y non plus, et il existe donc un hyperplan H de E qui contient x-y et pas x. On se donne alors une équation f de H telle que f(x)=1, et la transvection u définie par

$$\forall t \in E, \quad u(t) = t + f(t)(y - x)$$

convient.

- Si x et y sont colinéaires, comme E est au moins de dimension 2, on peut se donner un point $z \in E$ non colinéaire à x et y. Le premier cas permet alors de construire deux transvections u_1 et u_2 telles que

$$\begin{cases} u_1(x) = z \\ u_2(z) = y \end{cases}$$

Alors l'endomorphisme $u_2 \circ u_1$ convient.

On démontre maintenant le théorème par récurrence sur la dimension n de E. Dans le cas où n=1, il n'y a rien à démontrer. On suppose maintenant que le théorème est vrai au rang n-1, avec $n \geq 2$. On se donne alors $u \in SL(E)$, $x \in E$, et H un hyperplan de E ne contenant pas x.

Quitte à composer u à gauche par le produit d'une ou deux transvections obtenu en appliquant le second lemme aux points u(x) et x, on peut supposer que u(x) = x. De plus, comme x n'est pas dans H, ni dans l'hyperplan u(H) (car u(x) = x), d'après le premier lemme, quitte à composer une nouvelle fois à gauche par un transvection, on peut supposer u(H) = H. Alors on peut écrire, par hypothèse de récurrence, $u_{|H} \in SL(H)$ comme un produit de transvections sur H:

$$u_{|H} = \prod_{i=1}^{r} v_i.$$

Maintenant, comme les v_i sont des transvections, elles s'étendent de manière unique à E comme transvections (notées u_i), de la manière suivante :

$$\begin{cases} \forall h \in H, & u_i(h) = v_i(h) \\ u_i(x) = x \end{cases}$$

Ainsi, on a
$$u = \prod_{i=1}^{r} u_i$$
.

Corollaire 4 GL(E) est engendré par les transvections et les dilatations.

Démonstration. Si $u \in GL(E)$ est de déterminant $\lambda \neq 0$, et si on pose $v = \frac{1}{\lambda}$ Id la dilatation de rapport $\frac{1}{\lambda}$, alors $u \circ v \in SL(E)$, et le théorème permet de conclure.