# do the same thing, but use scikitlearn randomforest classifier

```
!pip install scikit-learn==1.3.0 --upgrade
!pip install --upgrade xgboost
```

Requirement already satisfied: scikit-learn==1.3.0 in /usr/local/lib/python3.11/dist-packages (1.3.0)
Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.11/dist-packages (from scikit-le Requirement already satisfied: scipy>=1.5.0 in /usr/local/lib/python3.11/dist-packages (from scikit-le Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.11/dist-packages (from scikit-le Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.11/dist-packages (from scikit-le Requirement already satisfied: xgboost in /usr/local/lib/python3.11/dist-packages (2.1.4)
Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (from xgboost) (1.26.4)
Requirement already satisfied: nvidia-nccl-cu12 in /usr/local/lib/python3.11/dist-packages (from xgboost) (1.13.1)

```
#classify with cycle features including alignment
import pandas as pd
# import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.metrics import classification_report
import xgboost as xgb
from sklearn.metrics import confusion_matrix
from sklearn.metrics import roc curve
import seaborn as sns
from matplotlib import pyplot as plt
import numpy as np
from IPython import get_ipython
from IPython.display import display
from sklearn.impute import SimpleImputer # Import SimpleImputer for imputation
import shap
shap.initjs()
\rightarrow
```

# Set up

df = pd.read csv('/content/cycle and HMM features true bw-12-9 dataset 48days.csv')

df.head()

| <b>→</b> |   | hub_id          | pat_cat_map | cycle_min | cycle_max | cycle_median | cycle_mean | cycle_range | cycle_s |
|----------|---|-----------------|-------------|-----------|-----------|--------------|------------|-------------|---------|
|          | 0 | U2CCD5D16315123 | PCOS        | 27        | 42        | 35.0         | 34.434783  | 15          | 4.4089  |
|          | 1 | U303F6B17404145 | PCOS        | 19        | 33        | 26.5         | 26.250000  | 14          | 7.8049  |
|          | 2 | U2B70EC15755124 | PCOS        | 28        | 43        | 38.0         | 37.785714  | 15          | 3.9258  |
|          | 3 | U2F65CA17170226 | PCOS        | 27        | 40        | 40.0         | 36.400000  | 13          | 5.6833  |
|          | 4 | U2F823A17212446 | PCOS        | 27        | 36        | 34.0         | 32.750000  | 9           | 4.0311  |

```
# LOOK AT LAUREN'S GITHUB FOR CODE
# try w xgboost
# try w subset of features
# explanatory tools to see which variables are important (SHAP values)
df = df.loc[df['pat_cat_map'].isin(['Baseline','PCOS'])]
df['label_01'] = df['pat_cat_map'].map({'Baseline':0, 'PCOS':1})
<ipython-input-1380-1fe60784182b>:1: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing</a>
       df['label_01'] = df['pat_cat_map'].map({'Baseline':0, 'PCOS':1})
df = df.replace(-np.inf, np.nan)
df.columns
→ Index(['hub_id', 'pat_cat_map', 'cycle_min', 'cycle_max', 'cycle_median',
             'cycle_mean', 'cycle_range', 'cycle_std', 'num_cycles',
             'viterbi_logprob_mean', 'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std', 'viterbi_logprob_median',
             'complete_logprob_mean', 'complete_logprob_min', 'complete_logprob_max',
             'complete_logprob_std', 'complete_logprob_median', 'label_01'],
            dtype='object')
HMM_features = [ 'viterbi_logprob_mean',
        'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
        'viterbi_logprob_median', 'complete_logprob_mean',
        'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
        'complete logprob median']
cycle_features = ['cycle_min', 'cycle_max', 'cycle_median',
        'cycle_mean', 'cycle_range', 'cycle_std']
target = 'label_01'

    All features

print('Performance with all features')
X_train_all, X_test_all, y_train_all, y_test_all = train_test_split(df[HMM_features+cycle_features], df[tari
                                                        shuffle=True, random_state=51)
→ Performance with all features
clf = xgb.XGBClassifier(random_state=51)
clf.fit(X train all, y train all)
y_pred_all = clf.predict(X_test_all)
```

print(classification\_report(y\_pred\_all, y\_test\_all))

| <b>₹</b> |              | precision | recall | f1-score | support |
|----------|--------------|-----------|--------|----------|---------|
|          | 0            | 0.33      | 0.40   | 0.37     | 57      |
|          | 1            | 0.85      | 0.81   | 0.83     | 238     |
|          | accuracy     |           |        | 0.73     | 295     |
|          | macro avg    | 0.59      | 0.61   | 0.60     | 295     |
|          | weighted avg | 0.75      | 0.73   | 0.74     | 295     |

fpr\_full, tpr\_full, thresholds\_full = roc\_curve(y\_test\_all, y\_score\_all[:,1])#, pos\_label='PCOS')
sns.lineplot(x=fpr\_full, y=tpr\_full, label='Cycle + HMM features - False Missigness 0-3 Days', errorbar=No
#plt.savefig('/content/drive/MyDrive/fall\_research/feature distribution plots/xgb\_full\_features.pdf')



#overall accuracy:
print((y\_pred\_all==y\_test\_all).sum()/len(y\_pred\_all))

**→** 0.7288135593220338

# Cycle features only

#PERFORMANCE WITH CYCLE FEATURES ONLY
print('Performance with cycle features only')

## Performance with cycle features only

```
clf = xgb.XGBClassifier(random_state=51)
clf.fit(X_train_cycle, y_train_cycle)
y_pred_cycle = clf.predict(X_test_cycle)
y_score_cycle = clf.predict_proba(X_test_cycle)
print(confusion_matrix(y_test_cycle, y_pred_cycle, normalize='true'))
```

(0.17391304 0.82608696) [0.09292035 0.90707965]]

print(classification\_report(y\_pred\_cycle, y\_test\_cycle))

| <del>_</del> | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.17      | 0.36   | 0.24     | 33      |
| 1            | 0.91      | 0.78   | 0.84     | 262     |
| accuracy     |           |        | 0.74     | 295     |
| macro avg    | 0.54      | 0.57   | 0.54     | 295     |
| weighted avg | 0.83      | 0.74   | 0.77     | 295     |

fpr\_cycle, tpr\_cycle, thresholds\_cycle = roc\_curve(y\_test\_cycle, y\_score\_cycle[:,1])#, pos\_label='PCOS')
sns.lineplot(x=fpr\_cycle, y=tpr\_cycle, label='Cycle features only', errorbar=None)
#plt.savefig('/content/drive/MyDrive/fall\_research/feature distribution plots/xgb\_cycle\_features\_only.pdf')





#overall accuracy:
print((y\_pred\_cycle==y\_test\_cycle).sum()/len(y\_pred\_cycle))

HMM Features only

```
#PERFORMANCE WITH HMM FEATURES ONLY
print('Performance with HMM features only')
X train hmm, X test hmm, y train hmm, y test hmm = train test split(df[HMM features], df[target],
                                                    shuffle=True, random_state=51)
    Performance with HMM features only
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_hmm = imputer.fit_transform(X_train_hmm)
X_test_hmm = imputer.transform(X_test_hmm)
clf = RFC(random_state=101)
clf.fit(X_train_hmm, y_train_hmm)
y_pred_hmm = clf.predict(X_test_hmm)
y_score_hmm = clf.predict_proba(X_test_hmm)
print(confusion_matrix(y_test_hmm, y_pred_hmm, normalize='true'))
fpr_hmm, tpr_hmm, thresholds_hmm = roc_curve(y_test_hmm, y_score_hmm[:,1])#, pos_label='PCOS')
sns.lineplot(x=fpr_hmm, y=tpr_hmm, label='HMM features only', errorbar=None)
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/xgb_hmm_features_only.pdf')
     [[0.30434783 0.69565217]
      [0.09734513 0.90265487]]
     <Axes: >
      1.0
                 HMM features only
      0.8
      0.6
      0.4
      0.2
```

print(classification\_report(y\_pred\_cycle, y\_test\_cycle))

0.4

0.6

0.8

1.0

0.2

0.0

0.0

```
0.17
                                  0.36
                                            0.24
                                                        33
                0
                        0.91
                                  0.78
                                            0.84
                                                        262
                1
                                                        295
                                            0.74
         accuracy
                        0.54
                                  0.57
                                                        295
                                            0.54
        macro avg
     weighted avg
                        0.83
                                  0.74
                                            0.77
                                                        295
#overall accuracy:
print((y_pred_cycle==y_test_cycle).sum()/len(y_pred_cycle))
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)
```

recall f1-score support

**→** 0.735593220338983

**→** 

```
#make kdeplots of all features
for feature in HMM_features+cycle_features:
    sns.kdeplot(data=df, x=feature, hue='pat_cat_map', common_norm=False)
    #plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/xgb_kdeplots_feature_dis
    plt.clf()
```

→ <Figure size 640x480 with 0 Axes>

precision

#### ROC Curves

```
# put 3 ROC curves on one axis (cycle, hmm, all)
# # Create subplots
# fig, axes = plt.subplots(1, 3, figsize=(15, 5)) # 1 row, 3 columns
# Plot Cycle + HMM features
sns.lineplot(x=fpr_full, y=tpr_full, label='Cycle + HMM features', errorbar=None)
# axes[0].set_title("Cycle + HMM ROC Curve")
# Plot Cycle features only
sns.lineplot(x=fpr_cycle, y=tpr_cycle, label='Cycle features only', errorbar=None)
# axes[1].set_title("Cycle Only ROC Curve")
# Plot HMM features only
sns.lineplot(x=fpr_hmm, y=tpr_hmm, label='HMM features only', errorbar=None)
# axes[2].set_title("HMM Only ROC Curve")
# Adjust layout
# plt.tight layout()
plt.show()
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/xgb_roc_curves.pdf')
```



use HMM features and take one out to see if any features are important (leave one out version)

# without viterbi\_logprob\_mean

```
clf = RFC(random_state=101)
clf.fit(X_train_without_viterbi_logprob_mean, y_train_without_viterbi_logprob_mean)
y_pred_without_viterbi_logprob_mean = clf.predict(X_test_without_viterbi_logprob_mean)
y_score_without_viterbi_logprob_mean = clf.predict_proba(X_test_without_viterbi_logprob_mean)
print(confusion_matrix(y_test_without_viterbi_logprob_mean, y_pred_without_viterbi_logprob_mean, normalize
fpr_without_viterbi_logprob_mean, tpr_without_viterbi_logprob_mean, thresholds_without_viterbi_logprob_mea
sns.lineplot(x=fpr_without_viterbi_logprob_mean, y=tpr_without_viterbi_logprob_mean, label='HMM features w
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w
```





print(classification\_report(y\_pred\_without\_viterbi\_logprob\_mean, y\_test\_without\_viterbi\_logprob\_mean))

| <b>→</b> |                    | precision    | recall       | f1-score             | support           |
|----------|--------------------|--------------|--------------|----------------------|-------------------|
|          | 0<br>1             | 0.32<br>0.88 | 0.46<br>0.81 | 0.38<br>0.85         | 48<br>247         |
| mad      | ccuracy<br>cro avg | 0.60<br>0.79 | 0.63<br>0.75 | 0.75<br>0.61<br>0.77 | 295<br>295<br>295 |

#### #overall accuracy:

print((y\_pred\_without\_viterbi\_logprob\_mean==y\_test\_without\_viterbi\_logprob\_mean).sum()/len(y\_pred\_without\_
#fpr\_algn, tpr\_algn, thresholds\_algn = roc\_curve(y\_test, -1\*X\_test, pos\_label='PCOS')
#sns.lineplot(x=fpr\_algn, y=tpr\_algn, label='HMM features only', errorbar=None)

#### → 0.752542372881356

# without viterbi\_logprob\_min

```
HMM_features = ['viterbi_logprob_mean',
        'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
       'complete_logprob_median']
print('Performance with HMM features _without_viterbi_logprob_min ')
X_train_without_viterbi_logprob_min, X_test_without_viterbi_logprob_min, y_train_without_viterbi_logprob_m
                                                    shuffle=True, random state=51)
    Performance with HMM features _without_viterbi_logprob_min
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_viterbi_logprob_min = imputer.fit_transform(X_train_without_viterbi_logprob_min)
X_test_without_viterbi_logprob_min = imputer.transform(X_test_without_viterbi_logprob_min)
clf = RFC(random state=101)
clf.fit(X_train_without_viterbi_logprob_min, y_train_without_viterbi_logprob_min)
y_pred_without_viterbi_logprob_min = clf.predict(X_test_without_viterbi_logprob_min)
y_score_without_viterbi_logprob_min = clf.predict_proba(X_test_without_viterbi_logprob_min)
print(confusion_matrix(y_test_without_viterbi_logprob_min, y_pred_without_viterbi_logprob_min, normalize='
fpr_without_viterbi_logprob_min, tpr_without_viterbi_logprob_min, thresholds_without_viterbi_logprob_min =
sns.lineplot(x=fpr_without_viterbi_logprob_min, y=tpr_without_viterbi_logprob_min, label='HMM features wit
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w
```

[[0.31884058 0.68115942] [0.10619469 0.89380531]]



print(classification\_report(y\_pred\_without\_viterbi\_logprob\_min, y\_test\_without\_viterbi\_logprob\_min))

```
0.32
                               0.48
                                          0.38
                                                       46
            0
                    0.89
                               0.81
                                          0.85
                                                      249
                                          0.76
                                                      295
    accuracy
                    0.61
                               0.64
                                                      295
   macro avg
                                          0.62
weighted avg
                    0.80
                               0.76
                                          0.78
                                                      295
```

```
#overall accuracy:
print((y_pred_without_viterbi_logprob_min==y_test_without_viterbi_logprob_min).sum()/len(y_pred_without_vi
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)
```

→ 0.7593220338983051

## without viterbi\_logprob\_max

```
HMM_features = ['viterbi_logprob_mean',
                          'viterbi_logprob_min', 'viterbi_logprob_std',
                          'viterbi_logprob_median', 'complete_logprob_mean',
                          'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
                          'complete_logprob_median']
print('Performance with HMM features _without_viterbi_logprob_max ')
X_train_without_viterbi_logprob_max, X_test_without_viterbi_logprob_max, y_train_without_viterbi_logprob_max
                                                                                                                                                                                            shuffle=True, random_state=51)
                Performance with HMM features without viterbi logprob max
# Impute missing values using SimpleImputer
 imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_viterbi_logprob_max = imputer.fit_transform(X_train_without_viterbi_logprob_max)
X_test_without_viterbi_logprob_max = imputer.transform(X_test_without_viterbi_logprob_max)
clf = RFC(random state=101)
clf.fit(X_train_without_viterbi_logprob_max, y_train_without_viterbi_logprob_max)
y_pred_without_viterbi_logprob_max = clf.predict(X_test_without_viterbi_logprob_max)
y_score_without_viterbi_logprob_max = clf.predict_proba(X_test_without_viterbi_logprob_max)
print(confusion_matrix(y_test_without_viterbi_logprob_max, y_pred_without_viterbi_logprob_max, normalize='transportations' normalize and the print(confusion_matrix(y_test_without_viterbi_logprob_max, y_pred_without_viterbi_logprob_max, y_pred_witerbi_logprob_max, y_pred_witerbi_logprob_max, y_pred_witerbi_logprob_max, y_pred_witerb
fpr without viterbi logprob max, tpr without viterbi logprob max, thresholds without viterbi logprob max = |
sns.lineplot(x=fpr\_without\_viterbi\_logprob\_max,\ y=tpr\_without\_viterbi\_logprob\_max,\ label='HMM features \ without\_viterbi\_logprob\_max,\ label='HMM features \ without\_viter
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_wi
```

```
[[0.30434783 0.69565217]
     [0.09292035 0.90707965]]
```

<Axes: >



print(classification\_report(y\_pred\_without\_viterbi\_logprob\_max, y\_test\_without\_viterbi\_logprob\_max))

| <b>→</b>     | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.30      | 0.50   | 0.38     | 42      |
| 1            | 0.91      | 0.81   | 0.86     | 253     |
| accuracy     |           |        | 0.77     | 295     |
| macro avg    | 0.61      | 0.66   | 0.62     | 295     |
| weighted avg | 0.82      | 0.77   | 0.79     | 295     |

```
#overall accuracy:
print((y_pred_without_viterbi_logprob_max==y_test_without_viterbi_logprob_max).sum()/len(y_pred_without_vi
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)
```

0.7661016949152543

# without viterbi\_logprob\_std

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
       'complete_logprob_median']
print('Performance with HMM features _without_viterbi_logprob_std ')
```

→ Performance with HMM features \_without\_viterbi\_logprob\_std

# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X\_train\_without\_viterbi\_logprob\_std = imputer.fit\_transform(X\_train\_without\_viterbi\_logprob\_std)
X\_test\_without\_viterbi\_logprob\_std = imputer.transform(X\_test\_without\_viterbi\_logprob\_std)

clf = RFC(random\_state=101)
clf.fit(X\_train\_without\_viterbi\_logprob\_std, y\_train\_without\_viterbi\_logprob\_std)
y\_pred\_without\_viterbi\_logprob\_std = clf.predict(X\_test\_without\_viterbi\_logprob\_std)
y\_score\_without\_viterbi\_logprob\_std = clf.predict\_proba(X\_test\_without\_viterbi\_logprob\_std)
print(confusion\_matrix(y\_test\_without\_viterbi\_logprob\_std, y\_pred\_without\_viterbi\_logprob\_std, normalize='
fpr\_without\_viterbi\_logprob\_std, tpr\_without\_viterbi\_logprob\_std, thresholds\_without\_viterbi\_logprob\_std =
sns.lineplot(x=fpr\_without\_viterbi\_logprob\_std, y=tpr\_without\_viterbi\_logprob\_std, label='HMM features wit
#plt.savefig('/content/drive/MyDrive/fall\_research/feature distribution plots/viterbi adjusted plots/xgb\_w

[[0.30434783 0.69565217] [0.09734513 0.90265487]] <Axes: >



print(classification\_report(y\_pred\_without\_viterbi\_logprob\_std, y\_test\_without\_viterbi\_logprob\_std))

| <b>→</b>                  | precision | recall       | f1-score     | support    |
|---------------------------|-----------|--------------|--------------|------------|
| 6                         |           | 0.49         | 0.38         | 43         |
| 1                         | 0.90      | 0.81         | 0.85         | 252        |
| accuracy                  |           |              | 0.76         | 295        |
| macro avg<br>weighted avg |           | 0.65<br>0.76 | 0.61<br>0.78 | 295<br>295 |

```
#overall accuracy:
print((y_pred_without_viterbi_logprob_std==y_test_without_viterbi_logprob_std).sum()/len(y_pred_without_vi
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)

→ 0.7627118644067796
```

## without viterbi\_logprob\_median

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std',
       'complete_logprob_median']
print('Performance with HMM features _without_viterbi_logprob_median ')
X_train_without_viterbi_logprob_median, X_test_without_viterbi_logprob_median, y_train_without_viterbi_log
                                                    shuffle=True, random_state=51)
    Performance with HMM features _without_viterbi_logprob_median
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_viterbi_logprob_median = imputer.fit_transform(X_train_without_viterbi_logprob_median)
X_test_without_viterbi_logprob_median = imputer.transform(X_test_without_viterbi_logprob_median)
clf = RFC(random_state=101)
clf.fit(X train without viterbi logprob median, y train without viterbi logprob median)
y_pred_without_viterbi_logprob_median = clf.predict(X_test_without_viterbi_logprob_median)
y_score_without_viterbi_logprob_median = clf.predict_proba(X_test_without_viterbi_logprob_median)
print(confusion_matrix(y_test_without_viterbi_logprob_median, y_pred_without_viterbi_logprob_median, norma
fpr_without_viterbi_logprob_median, tpr_without_viterbi_logprob_median, thresholds_without_viterbi_logprob
sns.lineplot(x=fpr_without_viterbi_logprob_median, y=tpr_without_viterbi_logprob_median, label='HMM featur
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w
```

```
[[0.28985507 0.71014493]
[0.11946903 0.88053097]]
```

<Axes: >



print(classification\_report(y\_pred\_without\_viterbi\_logprob\_median, y\_test\_without\_viterbi\_logprob\_median))

| <b>→</b>     | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.29      | 0.43   | 0.34     | 47      |
| 1            | 0.88      | 0.80   | 0.84     | 248     |
| accuracy     |           |        | 0.74     | 295     |
| macro avg    | 0.59      | 0.61   | 0.59     | 295     |
| weighted avg | 0.79      | 0.74   | 0.76     | 295     |

```
#overall accuracy:
```

print((y\_pred\_without\_viterbi\_logprob\_median==y\_test\_without\_viterbi\_logprob\_median).sum()/len(y\_pred\_with
#fpr\_algn, tpr\_algn, thresholds\_algn = roc\_curve(y\_test, -1\*X\_test, pos\_label='PCOS')
#sns.lineplot(x=fpr\_algn, y=tpr\_algn, label='HMM features only', errorbar=None)

→ 0.7423728813559322

# without complete\_logprob\_mean

Performance with HMM features \_without\_complete\_logprob\_mean

# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X\_train\_without\_complete\_logprob\_mean = imputer.fit\_transform(X\_train\_without\_complete\_logprob\_mean)
X\_test\_without\_complete\_logprob\_mean = imputer.transform(X\_test\_without\_complete\_logprob\_mean)

clf = RFC(random\_state=101)
clf.fit(X\_train\_without\_complete\_logprob\_mean, y\_train\_without\_complete\_logprob\_mean)
y\_pred\_without\_complete\_logprob\_mean = clf.predict(X\_test\_without\_complete\_logprob\_mean)
y\_score\_without\_complete\_logprob\_mean = clf.predict\_proba(X\_test\_without\_complete\_logprob\_mean)
print(confusion\_matrix(y\_test\_without\_complete\_logprob\_mean, y\_pred\_without\_complete\_logprob\_mean, normali
fpr\_without\_complete\_logprob\_mean, tpr\_without\_complete\_logprob\_mean, thresholds\_without\_complete\_logprob\_
sns.lineplot(x=fpr\_without\_complete\_logprob\_mean, y=tpr\_without\_complete\_logprob\_mean, label='HMM features
#plt.savefig('/content/drive/MyDrive/fall\_research/feature distribution plots/viterbi adjusted plots/xgb\_w

[[0.31884058 0.68115942] [0.11946903 0.88053097]] <Axes: >



 $\verb|print(classification_report(y_pred_without\_complete\_logprob\_mean, y\_test\_without\_complete\_logprob\_mean)||$ 

| <del></del>                           | precision    | recall       | f1-score             | support           |
|---------------------------------------|--------------|--------------|----------------------|-------------------|
| 0<br>1                                | 0.32<br>0.88 | 0.45<br>0.81 | 0.37<br>0.84         | 49<br>246         |
| accuracy<br>macro avg<br>weighted avg | 0.60<br>0.79 | 0.63<br>0.75 | 0.75<br>0.61<br>0.77 | 295<br>295<br>295 |

```
#overall accuracy:

print((y_pred_without_complete_logprob_mean==y_test_without_complete_logprob_mean).sum()/len(y_pred_withou

#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')

#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)

→ 0.7491525423728813
```

## without complete\_logprob\_min

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_max', 'complete_logprob_std',
       'complete_logprob_median']
print('Performance with HMM features _without_complete_logprob_min ')
X_train_without_complete_logprob_min, X_test_without_complete_logprob_min, y_train_without_complete_logpro
                                                    shuffle=True, random_state=51)
    Performance with HMM features _without_complete_logprob_min
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_complete_logprob_min = imputer.fit_transform(X_train_without_complete_logprob_min)
X_test_without_complete_logprob_min = imputer.transform(X_test_without_complete_logprob_min)
clf = RFC(random_state=101)
clf.fit(X train without complete logprob min, y train without complete logprob min)
y_pred_without_complete_logprob_min = clf.predict(X_test_without_complete_logprob_min)
y_score_without_complete_logprob_min = clf.predict_proba(X_test_without_complete_logprob_min)
print(confusion_matrix(y_test_without_complete_logprob_min, y_pred_without_complete_logprob_min, normalize
fpr_without_complete_logprob_min, tpr_without_complete_logprob_min, thresholds_without_complete_logprob_mi
sns.lineplot(x=fpr_without_complete_logprob_min, y=tpr_without_complete_logprob_min, label='HMM features w
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w
```

```
[[0.31884058 0.68115942]
     [0.11061947 0.88938053]]
```

<Axes: >



print(classification\_report(y\_pred\_without\_complete\_logprob\_min, y\_test\_without\_complete\_logprob\_min))

| <b>→</b>     | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.32      | 0.47   | 0.38     | 47      |
| 1            | 0.89      | 0.81   | 0.85     | 248     |
| accuracy     |           |        | 0.76     | 295     |
| macro avg    | 0.60      | 0.64   | 0.61     | 295     |
| weighted avg | 0.80      | 0.76   | 0.77     | 295     |

```
#overall accuracy:
```

print((y\_pred\_without\_complete\_logprob\_min==y\_test\_without\_complete\_logprob\_min).sum()/len(y\_pred\_without\_ #fpr\_algn, tpr\_algn, thresholds\_algn = roc\_curve(y\_test, -1\*X\_test, pos\_label='PCOS') #sns.lineplot(x=fpr\_algn, y=tpr\_algn, label='HMM features only', errorbar=None)

0.7559322033898305

# without complete\_logprob\_max

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_std',
       'complete_logprob_median']
print('Performance with HMM features _without_complete_logprob_max ')
```

Performance with HMM features \_without\_complete\_logprob\_max

# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X\_train\_without\_complete\_logprob\_max = imputer.fit\_transform(X\_train\_without\_complete\_logprob\_max)
X\_test\_without\_complete\_logprob\_max = imputer.transform(X\_test\_without\_complete\_logprob\_max)

clf = RFC(random\_state=101)
clf.fit(X\_train\_without\_complete\_logprob\_max, y\_train\_without\_complete\_logprob\_max)
y\_pred\_without\_complete\_logprob\_max = clf.predict(X\_test\_without\_complete\_logprob\_max)
y\_score\_without\_complete\_logprob\_max = clf.predict\_proba(X\_test\_without\_complete\_logprob\_max)
print(confusion\_matrix(y\_test\_without\_complete\_logprob\_max, y\_pred\_without\_complete\_logprob\_max, normalize
fpr\_without\_complete\_logprob\_max, tpr\_without\_complete\_logprob\_max, thresholds\_without\_complete\_logprob\_ma
sns.lineplot(x=fpr\_without\_complete\_logprob\_max, y=tpr\_without\_complete\_logprob\_max, label='HMM features w
#plt.savefig('/content/drive/MyDrive/fall\_research/feature distribution plots/viterbi adjusted plots/xgb\_w

### [[0.31884058 0.68115942] [0.09292035 0.90707965]] <Axes: >



print(classification\_report(y\_pred\_without\_complete\_logprob\_max, y\_test\_without\_complete\_logprob\_max))

| <b>⇒</b>                              | precision    | recall       | f1-score             | support           |
|---------------------------------------|--------------|--------------|----------------------|-------------------|
| 0<br>1                                | 0.32<br>0.91 | 0.51<br>0.81 | 0.39<br>0.86         | 43<br>252         |
| accuracy<br>macro avg<br>weighted avg | 0.61<br>0.82 | 0.66<br>0.77 | 0.77<br>0.63<br>0.79 | 295<br>295<br>295 |

```
print((y_pred_without_complete_logprob_max==y_test_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete_logprob_max).sum()/len(y_pred_without_complete
```

→ 0.7694915254237288

## without complete\_logprob\_std

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max',
       'complete_logprob_median']
print('Performance with HMM features _without_complete_logprob_std ')
X_train_without_complete_logprob_std, X_test_without_complete_logprob_std, y_train_without_complete_logpro
                                                    shuffle=True, random_state=51)
Performance with HMM features _without_complete_logprob_std
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X train without complete logprob std = imputer.fit transform(X train without complete logprob std)
X_test_without_complete_logprob_std = imputer.transform(X_test_without_complete_logprob_std)
clf = RFC(random_state=101)
clf.fit(X_train_without_complete_logprob_std, y_train_without_complete_logprob_std)
y_pred_without_complete_logprob_std = clf.predict(X_test_without_complete_logprob_std)
y_score_without_complete_logprob_std = clf.predict_proba(X_test_without_complete_logprob_std)
print(confusion_matrix(y_test_without_complete_logprob_std, y_pred_without_complete_logprob_std, normalize
fpr_without_complete_logprob_std, tpr_without_complete_logprob_std, thresholds_without_complete_logprob_st
sns.lineplot(x=fpr_without_complete_logprob_std, y=tpr_without_complete_logprob_std, label='HMM features w
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w
```

[[0.31884058 0.68115942] [0.07964602 0.92035398]] <Axes: >



print(classification\_report(y\_pred\_without\_complete\_logprob\_std, y\_test\_without\_complete\_logprob\_std))

| <b>→</b>     | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.32      | 0.55   | 0.40     | 40      |
| 1            | 0.92      | 0.82   | 0.86     | 255     |
| accuracy     |           |        | 0.78     | 295     |
| macro avg    | 0.62      | 0.68   | 0.63     | 295     |
| weighted avg | 0.84      | 0.78   | 0.80     | 295     |

```
#overall accuracy:
```

print((y\_pred\_without\_complete\_logprob\_std==y\_test\_without\_complete\_logprob\_std).sum()/len(y\_pred\_without\_ #fpr\_algn, tpr\_algn, thresholds\_algn = roc\_curve(y\_test, -1\*X\_test, pos\_label='PCOS') #sns.lineplot(x=fpr\_algn, y=tpr\_algn, label='HMM features only', errorbar=None)

0.7796610169491526

# without complete\_logprob\_median

```
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std']
```

print('Performance with HMM features \_without\_viterbi\_logprob\_median ')

Performance with HMM features \_without\_viterbi\_logprob\_median

# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X\_train\_without\_viterbi\_logprob\_median = imputer.fit\_transform(X\_train\_without\_viterbi\_logprob\_median)
X\_test\_without\_viterbi\_logprob\_median = imputer.transform(X\_test\_without\_viterbi\_logprob\_median)

clf = RFC(random\_state=101)
clf.fit(X\_train\_without\_viterbi\_logprob\_median, y\_train\_without\_viterbi\_logprob\_median)
y\_pred\_without\_viterbi\_logprob\_median = clf.predict(X\_test\_without\_viterbi\_logprob\_median)
y\_score\_without\_viterbi\_logprob\_median = clf.predict\_proba(X\_test\_without\_viterbi\_logprob\_median)
print(confusion\_matrix(y\_test\_without\_viterbi\_logprob\_median, y\_pred\_without\_viterbi\_logprob\_median, norma
fpr\_without\_viterbi\_logprob\_median, tpr\_without\_viterbi\_logprob\_median, thresholds\_without\_viterbi\_logprob
sns.lineplot(x=fpr\_without\_viterbi\_logprob\_median, y=tpr\_without\_viterbi\_logprob\_median, label='HMM featur
#plt.savefig('/content/drive/MyDrive/fall\_research/feature distribution plots/viterbi adjusted plots/xgb\_w

#### [[0.27536232 0.72463768] [0.09292035 0.90707965]] <Axes: >



print(classification\_report(y\_pred\_without\_viterbi\_logprob\_median, y\_test\_without\_viterbi\_logprob\_median))

| <b>→</b> |              | precision | recall | f1-score | support |
|----------|--------------|-----------|--------|----------|---------|
|          | 0            | 0.28      | 0.47   | 0.35     | 40      |
|          | 1            | 0.91      | 0.80   | 0.85     | 255     |
|          | accuracy     |           |        | 0.76     | 295     |
|          | macro avg    | 0.59      | 0.64   | 0.60     | 295     |
|          | weighted avg | 0.82      | 0.76   | 0.78     | 295     |

```
#overall accuracy:
print((y_pred_without_viterbi_logprob_median==y_test_without_viterbi_logprob_median).sum()/len(y_pred_with
#fpr_algn, tpr_algn, thresholds_algn = roc_curve(y_test, -1*X_test, pos_label='PCOS')
#sns.lineplot(x=fpr_algn, y=tpr_algn, label='HMM features only', errorbar=None)
    0.7593220338983051
HMM_features = ['viterbi_logprob_mean',
       'viterbi_logprob_min', 'viterbi_logprob_max', 'viterbi_logprob_std',
       'viterbi_logprob_median', 'complete_logprob_mean',
       'complete_logprob_min', 'complete_logprob_max', 'complete_logprob_std']
print('Performance with HMM features without viterbi alignment ')
X_train_without_viterbi_alignment, X_test_without_viterbi_alignment, y_train_without_viterbi_alignment, y_
                                                    shuffle=True, random state=51)
    Performance with HMM features without viterbi alignment
# Impute missing values using SimpleImputer
imputer = SimpleImputer(strategy='mean') # Replace 'mean' with other strategies if needed
X_train_without_viterbi_alignment = imputer.fit_transform(X_train_without_viterbi_alignment)
X_test_without_viterbi_alignment = imputer.transform(X_test_without_viterbi_alignment)
clf = RFC(random state=101)
clf.fit(X_train_without_viterbi_alignment, y_train_without_viterbi_alignment)
y_pred_without_viterbi_alignment = clf.predict(X_test_without_viterbi_alignment)
y_score_without_viterbi_alignment = clf.predict_proba(X_test_without_viterbi_alignment)
print(confusion matrix(y test without viterbi alignment, y pred without viterbi alignment, normalize='true
fpr_without_viterbi_alignment, tpr_without_viterbi_alignment, thresholds_without_viterbi_alignment = roc_c
sns.lineplot(x=fpr_without_viterbi_alignment, y=tpr_without_viterbi_alignment, label='HMM features without
#plt.savefig('/content/drive/MyDrive/fall_research/feature distribution plots/viterbi adjusted plots/xgb_w
     [[0.27536232 0.72463768]
      [0.09292035 0.90707965]]
     <Axes: >
      1.0
                 HMM features without all viterbi_alignment
      0.8
```

0.6

0.4

0.2