Econ 103: Introduction to Simple Linear Regression

Manu Navjeevan

UCLA

July 12, 2021

Content Outline

Table of Contents

The Basic Model

Estimation

Consistency and Inference

Suppose we have two variables, Y and X. We are interested in using data to learning about the relationship between Y and X.

Suppose we have two variables, Y and X. We are interested in using data to learning about the relationship between Y and X.

Examples:

• How are education and wages related?

Suppose we have two variables, Y and X. We are interested in using data to learning about the relationship between Y and X.

Examples:

- How are education and wages related?
- How are unemployment and inflation related?

Suppose we have two variables, Y and X. We are interested in using data to learning about the relationship between Y and X.

Examples:

- How are education and wages related?
- How are unemployment and inflation related?
- What is the relationship between receiving a treatment and a health outcome?

One way to model the relationship between Y and X would be to try to find the line of best fit between the two variables.

By the line of best fit we mean finding the line, characterized by a slope and an intercept, that minimizes the distance between Y and $\tilde{\beta}_0 + \tilde{\beta}_1 \cdot X$.

One way to model the relationship between Y and X would be to try to find the line of best fit between the two variables.

By the line of best fit we mean finding the line, characterized by a slope and an intercept, that minimizes the distance between Y and $\tilde{\beta}_0 + \tilde{\beta}_1 \cdot X$.

Formally, we are interested in the parameters β_0 and β_1 that solve

$$\begin{split} \beta_0, \beta_1 &= \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - (\tilde{\beta}_0 + \tilde{\beta}_1 \cdot X) \right)^2 \right] \\ &= \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X \right)^2 \right] \end{split}$$

One way to model the relationship between Y and X would be to try to find the line of best fit between the two variables.

By the line of best fit we mean finding the line, characterized by a slope and an intercept, that minimizes the distance between Y and $\tilde{\beta}_0 + \tilde{\beta}_1 \cdot X$.

Formally, we are interested in the parameters β_0 and β_1 that solve

$$\beta_0, \beta_1 = \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - (\tilde{\beta}_0 + \tilde{\beta}_1 \cdot X)\right)^2\right]$$
$$= \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X\right)^2\right]$$

• By $\arg \min$ we just mean we are interested in the arguments β_0 and β_1 that minimize

$$\mathbb{E}[(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X)^2]$$

rather than the value $\mathbb{E}[(Y - \beta_0 - \beta_1 \cdot X)^2]$ itself.

One way to model the relationship between Y and X would be to try to find the line of best fit between the two variables.

By the line of best fit we mean finding the line, characterized by a slope and an intercept, that minimizes the distance between Y and $\tilde{\beta}_0 + \tilde{\beta}_1 \cdot X$.

Formally, we are interested in the parameters β_0 and β_1 that solve

$$\beta_0, \beta_1 = \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - (\tilde{\beta}_0 + \tilde{\beta}_1 \cdot X)\right)^2\right]$$
$$= \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X\right)^2\right]$$

· Another way of saying this is that

$$\mathbb{E}[(Y-\beta_0-\beta_1\cdot X)^2]<\mathbb{E}[(Y-\tilde{\beta}_0-\tilde{\beta}_1\cdot X)^2]$$
 for any $(\tilde{\beta}_0,\tilde{\beta}_1)\neq(\beta_0,\beta_1)$.

We are interested in the parameters β_0 and β_1 that solve

$$\beta_0, \beta_1 = \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X\right)^2\right]$$

- ullet Knowing the line of best fit will help us predict Y using X
 - \circ Will provide the best linear prediction of Y using X.
 - Even though a linear model may seem to simple, ends up being tremendously useful in practice.

We are interested in the parameters β_0 and β_1 that solve

$$\beta_0, \beta_1 = \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X\right)^2\right]$$

Why do we care about these parameters?

• We can also interpret the parameters β_0 and β_1 to learn (to a first order degree) about the relationship between Y and X

We are interested in the parameters β_0 and β_1 that solve

$$\beta_0, \beta_1 = \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X\right)^2\right]$$

- We can also interpret the parameters β_0 and β_1 to learn (to a first order degree) about the relationship between Y and X
 - \circ Is there a positive or negative relationship between Y and $X?\iff$ Is β_1 positive or negative?

We are interested in the parameters β_0 and β_1 that solve

$$\beta_0, \beta_1 = \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X\right)^2\right]$$

- We can also interpret the parameters β_0 and β_1 to learn (to a first order degree) about the relationship between Y and X
 - \circ Is there a positive or negative relationship between Y and $X?\iff$ Is β_1 positive or negative?
 - How much can we expect Y to change if we see an increase in X of one unit? \iff What is β_1 ?

We are interested in the parameters β_0 and β_1 that solve

$$\beta_0, \beta_1 = \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X\right)^2\right]$$

- We can also interpret the parameters β_0 and β_1 to learn (to a first order degree) about the relationship between Y and X
 - \circ Is there a positive or negative relationship between Y and $X?\iff$ Is β_1 positive or negative?
 - How much can we expect Y to change if we see an increase in X of one unit? \iff What is β_1 ?
 - What is the average value of Y when X is zero? \iff What is β_0 ?

We are interested in the parameters β_0 and β_1 that solve

$$\beta_0, \beta_1 = \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X\right)^2\right]$$

- We can also interpret the parameters β_0 and β_1 to learn (to a first order degree) about the relationship between Y and X
 - \circ Is there a positive or negative relationship between Y and $X?\iff$ Is β_1 positive or negative?
 - How much can we expect Y to change if we see an increase in X of one unit? \iff What is β_1 ?
 - What is the average value of Y when X is zero? \iff What is β_0 ?
 - o To a first order degree because β_0 and β_1 describe the line of best fit rather than the "true" relationship.
 - No need to worry about this difference for now though.

We are interested in the parameters β_0 and β_1 that solve

$$\beta_0, \beta_1 = \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X\right)^2\right]$$

We are interested in the parameters β_0 and β_1 that solve

$$\beta_0, \beta_1 = \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X\right)^2\right]$$

Let's solve for β_0 and β_1 by taking first order conditions:

$$\frac{\partial}{\partial \tilde{\beta}_0} : \mathbb{E}\left[Y - \beta_0 - \beta_1 \cdot X\right] = 0$$

$$\frac{\partial}{\partial \tilde{\beta}_1} : \mathbb{E}\left[(Y - \beta_0 - \beta_1 \cdot X) \cdot X \right] = 0$$

We are interested in the parameters β_0 and β_1 that solve

$$\beta_0,\beta_1 = \arg\min_{\tilde{\beta}_0,\tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X \right)^2 \right]$$

Let's solve for β_0 and β_1 by taking first order conditions:

$$\frac{\partial}{\partial \tilde{\beta}_0} : \mathbb{E}\left[Y - \beta_0 - \beta_1 \cdot X\right] = 0$$

$$\frac{\partial}{\partial \tilde{\beta}_1} : \mathbb{E}\left[(Y - \beta_0 - \beta_1 \cdot X) \cdot X \right] = 0$$

We will return to these first order conditions shortly. For now, after rearranging we get that

$$\beta_1 = \frac{\mathbb{E}[YX] - \mathbb{E}[Y]\mathbb{E}[X]}{\mathbb{E}[X^2] - \mathbb{E}[X]\mathbb{E}[X]} = \frac{\operatorname{Cov}(Y, X)}{\operatorname{Var}(X)}$$
$$\beta_0 = \mathbb{E}[Y] - \beta_1 \mathbb{E}[X]$$

We are interested in the parameters β_0 and β_1 that solve

$$\beta_0,\beta_1 = \arg\min_{\tilde{\beta}_0,\tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X \right)^2 \right]$$

Let's solve for β_0 and β_1 by taking first order conditions:

$$\frac{\partial}{\partial \tilde{\beta}_0} : \mathbb{E}\left[Y - \beta_0 - \beta_1 \cdot X\right] = 0$$

 $\frac{\partial}{\partial \tilde{\beta}_1} : \mathbb{E}\left[(Y - \beta_0 - \beta_1 \cdot X) \cdot X \right] = 0$

We will return to these first order conditions shortly. For now, after rearranging we get that

$$\beta_1 = \frac{\mathbb{E}[YX] - \mathbb{E}[Y]\mathbb{E}[X]}{\mathbb{E}[X^2] - \mathbb{E}[X]\mathbb{E}[X]} = \frac{\operatorname{Cov}(Y, X)}{\operatorname{Var}(X)}$$
$$\beta_0 = \mathbb{E}[Y] - \beta_1 \mathbb{E}[X]$$

Exercise: Show this rearrangement.

Linear Regression: The Error Term

Let's define the random variable

$$\epsilon = Y - (\beta_0 + \beta_1 \cdot X)$$
$$= Y - \beta_0 - \beta_1 \cdot X$$

We can then write

$$Y = \beta_0 + \beta_1 \cdot X + \epsilon.$$

which is the linear regression equation you may have seen before. The random variable ϵ will be important later on as we try to do inference.

Linear Regression: The Error Term

Let's define the random variable

$$\epsilon = Y - (\beta_0 + \beta_1 \cdot X)$$
$$= Y - \beta_0 - \beta_1 \cdot X$$

We call ϵ the linear regression error variable.

Linear Regression: The Error Term

Let's define the random variable

$$\epsilon = Y - (\beta_0 + \beta_1 \cdot X)$$
$$= Y - \beta_0 - \beta_1 \cdot X$$

We call ϵ the linear regression error variable.

Recall that from the first order conditions for β_0 and β_1 we have that

$$\mathbb{E}\left[\underbrace{Y - \beta_0 - \beta_1 \cdot X}_{=\epsilon}\right] = 0$$

$$\mathbb{E}\left[\underbrace{(Y - \beta_0 - \beta_1 \cdot X)}_{=\epsilon} \cdot X\right] = 0$$

These give us the properties that

$$\mathbb{E}[\epsilon] = 0 \ \ \text{and} \ \ \mathbb{E}[\epsilon X] = 0.$$

In total our line of best fit parameters

$$\beta_0, \beta_1 = \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X\right)^2\right]$$

generate a model betwen \boldsymbol{Y} and \boldsymbol{X} that can be written as

$$Y = \beta_0 + \beta_1 \cdot X + \epsilon \tag{1}$$

where

$$\mathbb{E}[\epsilon] = 0 \ \ \text{and} \ \ \mathbb{E}[\epsilon X] = 0.$$

In total our line of best fit parameters

$$\beta_0, \beta_1 = \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X\right)^2\right]$$

generate a model betwen Y and X that can be written as

$$Y = \beta_0 + \beta_1 \cdot X + \epsilon \tag{1}$$

where

$$\mathbb{E}[\epsilon] = 0 \ \ \text{and} \ \ \mathbb{E}[\epsilon X] = 0.$$

- It is often convenient to work directly with this representation or make assumptions about ϵ .
- You may have seen this representation before, the prior slides go over where this model comes from

Our line of best fit parameters

$$\beta_0, \beta_1 = \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X\right)^2\right]$$

are useful for

- Making predictions about Y using X.
 - Predict Y when X = x with $\beta_0 + \beta_1 \cdot x$

Our line of best fit parameters

$$\beta_0, \beta_1 = \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X\right)^2\right]$$

are useful for

- Making predictions about Y using X.
 - Predict Y when X = x with $\beta_0 + \beta_1 \cdot x$
- Learning about the relationship between Y and X.
 - $\circ~$ Interpret the signs and magnitutdes of β_0 and β_1

Linear Regression: Questions

Questions?

Table of Contents

The Basic Mode

Estimation

Consistency and Inference

Linear Regression: Estimation Introduction

As we went over in the last section we are interested in the line of best fit parameters

$$\beta_0,\beta_1 = \arg\min_{\tilde{\beta}_0,\tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X \right)^2 \right]$$

Problem: We do not know know the joint distribution of (Y, X), so we cannot to solve for β_0 and β_1 by evaluating the expectation above.

Linear Regression: Estimation Introduction

As we went over in the last section we are interested in the line of best fit parameters

$$\beta_0, \beta_1 = \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X \right)^2 \right]$$

Problem: We do not know know the joint distribution of (Y, X), so we cannot to solve for β_0 and β_1 by evaluating the expectation above.

Solution: Use data to estimate the parameters β_0 and β_1 .

Solution: Use data to try and estimate the parameters β_0 and β_1 .

How do we do this?

Solution: Use data to try and estimate the parameters β_0 and β_1 .

How do we do this?

Intuition:

• Suppose we have access to n randomly collected samples $\{Y_i, X_i\}_{i=1}^n$

Solution: Use data to try and estimate the parameters β_0 and β_1 .

How do we do this?

Intuition:

- Suppose we have access to n randomly collected samples $\{Y_i, X_i\}_{i=1}^n$
- ullet We are interested in the line of best fit between Y and X in the population

$$\beta_0, \beta_1 = \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X\right)^2\right]$$

Solution: Use data to try and estimate the parameters β_0 and β_1 .

How do we do this?

Intuition:

- Suppose we have access to n randomly collected samples $\{Y_i, X_i\}_{i=1}^n$
- We are interested in the line of best fit between Y and X in the population

$$\beta_0, \beta_1 = \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X\right)^2\right]$$

• We estimate the line of best fit between Y and X in the population using the line of best fit between Y_i and X_i in our sample:

$$\hat{\beta}_0, \hat{\beta}_1 = \arg\min_{b_0, b_1} \frac{1}{n} \sum_{i=1}^n (Y_i - b_0 - b_1 \cdot X_i)^2$$

o Same idea as using \bar{X} to estimate $\mathbb{E}[X]$, etc.

Solution: Use data to try and estimate the parameters β_0 and β_1 .

How do we do this?

Intuition:

- Suppose we have access to n randomly collected samples $\{Y_i, X_i\}_{i=1}^n$
- We are interested in the line of best fit between Y and X in the population

$$\beta_0, \beta_1 = \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 \cdot X \right)^2 \right]$$

• We estimate the line of best fit between Y and X in the population using the line of best fit between Y_i and X_i in our sample:

$$\hat{\beta}_0, \hat{\beta}_1 = \arg\min_{b_0, b_1/n} \frac{1}{n} \sum_{i=1}^n (Y_i - b_0 - b_1 \cdot X_i)^2$$

o Same idea as using \bar{X} to estimate $\mathbb{E}[X]$, etc.

Let's see how this looks like in practice. Suppose we are interested in the relationship between X, a car's weight, and Y a car's miles per gallon (mpg).

We collect some data $\{Y_i,X_i\}_{i=1}^n$ where each (Y_i,X_i) pair represents the miles per gallon and weight of a particular vehicle in our dataset. We can represent our data using a scatterplot

Weight vs. mpg for assorted cars

Now to estimate $\hat{\beta}_0, \hat{\beta}_1$ we simply find the line of best fit between the Y_i and X_i 's in our data.

Now to estimate $\hat{\beta}_0, \hat{\beta}_1$ we simply find the line of best fit between the Y_i and X_i 's in our data.

The blue line represents the line of best fit whereas the green line represents a straight line through \bar{Y} . We can see that the blue line is much closer to the data than the green line.

In this case we have that $\hat{\beta}_0=37.2851$ and $\hat{\beta}_1=-5.3445$.

How do we interpret these estimates?

In this case we have that $\hat{\beta}_0 = 37.2851$ and $\hat{\beta}_1 = -5.3445$.

How do we interpret these estimates?

- $\hat{\beta}_0 = 37.2851$: We estimate that the average value of Y when X=0 is 37.2851
 - \circ In context: we estimate that the average mpg for a car that weights 0 tons is 37.2851 miles per gallon

In this case we have that $\hat{\beta}_0 = 37.2851$ and $\hat{\beta}_1 = -5.3445$.

How do we interpret these estimates?

- $\hat{\beta}_0 = 37.2851$: We estimate that the average value of Y when X=0 is 37.2851
 - \circ In context: we estimate that the average mpg for a car that weights 0 tons is 37.2851 miles per gallon
- $\hat{\beta}_1 = -5.3445$: We estimate that, on average, a one unit increase in X is associated with a 5.3445 unit decrease in Y.
 - In context: we estimate that, on average, a one ton increase in car weight is associated with a 5.3445 unit decrease in miles per gallon.

Notice a couple things in the above interpretations

- The intercept is often uninterpretable (What car would weigh 0 tons?). For this reason we often focus our analysis on the slope coefficient.
- The interpretation is deliberately not causal. We use "associated with a decrease..." as opposed to "leads to a decrease..."

Now that we've gotten some intuition for what linear regression is doing and how to use our sample to estimate the parameters of interest, let's derive explicit formulas for $\hat{\beta}_0$ and $\hat{\beta}_1$.

Now that we've gotten some intuition for what linear regression is doing and how to use our sample to estimate the parameters of interest, let's derive explicit formulas for $\hat{\beta}_0$ and $\hat{\beta}_1$.

Recall that

$$\hat{\beta}_0, \hat{\beta}_1 = \arg\min_{b_0, b_1} \frac{1}{n} \sum_{i=1}^n (Y_i - b_0 - b_1 \cdot X_i)^2.$$

Now that we've gotten some intuition for what linear regression is doing and how to use our sample to estimate the parameters of interest, let's derive explicit formulas for $\hat{\beta}_0$ and $\hat{\beta}_1$.

Recall that

$$\hat{\beta}_0, \hat{\beta}_1 = \arg\min_{b_0, b_1} \frac{1}{n} \sum_{i=1}^n (Y_i - b_0 - b_1 \cdot X_i)^2.$$

Taking first order conditions gives us that

$$\frac{\partial}{\partial b_0} : \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{\beta}_0 - \hat{\beta}_1 \cdot X_i) = 0$$

$$\frac{\partial}{\partial b_1} : \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{\beta}_0 - \hat{\beta}_1 \cdot X_i) \cdot X_i = 0$$

Rearranging the first equality gives us

$$\frac{1}{n}\sum_{i=1}^{n} Y_i - \frac{1}{n}\sum_{i=1}^{n} \hat{\beta}_0 - \frac{1}{n}\sum_{i=1}^{n} \hat{\beta}_1 \cdot X_i = 0$$

Rearranging the first equality gives us

$$\frac{1}{n} \sum_{i=1}^{n} Y_i - \frac{1}{n} \sum_{i=1}^{n} \hat{\beta}_0 - \frac{1}{n} \sum_{i=1}^{n} \hat{\beta}_1 \cdot X_i = 0$$
$$\bar{Y} - \hat{\beta}_0 - \hat{\beta}_1 \frac{1}{n} \sum_{i=1}^{n} X_i = 0$$

Rearranging the first equality gives us

$$\frac{1}{n} \sum_{i=1}^{n} Y_i - \frac{1}{n} \sum_{i=1}^{n} \hat{\beta}_0 - \frac{1}{n} \sum_{i=1}^{n} \hat{\beta}_1 \cdot X_i = 0$$

$$\bar{Y} - \hat{\beta}_0 - \hat{\beta}_1 \frac{1}{n} \sum_{i=1}^{n} X_i = 0$$

$$\bar{Y} - \hat{\beta}_0 - \hat{\beta}_1 \bar{X} = 0$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

So that what remains is to solve for $\hat{\beta}_1$.

Rearranging the second equality gives us

$$\frac{1}{n}\sum_{i=1}^{n}Y_{i}X_{i} - \hat{\beta}_{0}\frac{1}{n}\sum_{i=1}^{n}X_{i} - \hat{\beta}_{1}\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} = 0$$

Rearranging the second equality gives us

$$\frac{1}{n}\sum_{i=1}^{n} Y_i X_i - \hat{\beta}_0 \frac{1}{n}\sum_{i=1}^{n} X_i - \hat{\beta}_1 \frac{1}{n}\sum_{i=1}^{n} X_i^2 = 0$$

Using the prior result that $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$ gives:

$$\frac{1}{n} \sum_{i=1}^{n} Y_i X_i - (\bar{Y} - \hat{\beta}_1 \bar{X}) \bar{X} - \hat{\beta}_1 \frac{1}{n} \sum_{i=1}^{n} X_i^2 = 0$$

$$\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}X_{i} - \bar{Y}\bar{X}\right) + \hat{\beta}_{1}\left((\bar{X})^{2} - \frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\right) = 0$$

Rearranging the second equality gives us

$$\frac{1}{n}\sum_{i=1}^{n} Y_i X_i - \hat{\beta}_0 \frac{1}{n}\sum_{i=1}^{n} X_i - \hat{\beta}_1 \frac{1}{n}\sum_{i=1}^{n} X_i^2 = 0$$

Using the prior result that $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$ gives:

$$\frac{1}{n} \sum_{i=1}^{n} Y_i X_i - (\bar{Y} - \hat{\beta}_1 \bar{X}) \bar{X} - \hat{\beta}_1 \frac{1}{n} \sum_{i=1}^{n} X_i^2 = 0$$

$$\left(\frac{1}{n} \sum_{i=1}^{n} Y_i X_i - \bar{Y} \bar{X}\right) + \hat{\beta}_1 \left((\bar{X})^2 - \frac{1}{n} \sum_{i=1}^{n} X_i^2\right) = 0$$

So, finally

$$\hat{\beta}_1 = \frac{\frac{1}{n} \sum_{i=1}^n Y_i X_i - \bar{Y} \bar{X}}{\frac{1}{n} \sum_{i=1}^n X_i^2 - (\bar{X})^2}.$$

Let's make use of the following equalities to represent \hat{eta}_1

$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y})(X_i - \bar{X}) = \frac{1}{n} \sum_{i=1}^{n} Y_i X_i - \bar{Y} \bar{X}$$
$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - (\bar{X})^2$$

Let's make use of the following equalities to represent \hat{eta}_1

$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y})(X_i - \bar{X}) = \frac{1}{n} \sum_{i=1}^{n} Y_i X_i - \bar{Y} \bar{X}$$
$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - (\bar{X})^2$$

Then:

$$\hat{\beta}_1 = \frac{\frac{1}{n} \sum_{i=1}^n (Y_i - \bar{Y})(X_i - \bar{X})}{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2}$$
Sample Variance of X

Let's make use of the following equalities to represent \hat{eta}_1

$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y})(X_i - \bar{X}) = \frac{1}{n} \sum_{i=1}^{n} Y_i X_i - \bar{Y} \bar{X}$$
$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - (\bar{X})^2$$

Then:

$$\hat{\beta}_1 = \frac{\frac{1}{n} \sum_{i=1}^n (Y_i - \bar{Y})(X_i - \bar{X})}{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2}$$
Sample Variance of X

This ties in nicely as, if we recall from earlier, we found that

$$\beta_1 = \frac{\operatorname{Cov}(Y, X)}{\operatorname{Var}(X)} = \frac{\mathbb{E}[(Y - \mu_Y)(X - \mu_X)]}{\mathbb{E}[(X - \mu_X)^2]}.$$

We have now gone over how use data to obtain estimates $\hat{\beta}_0, \hat{\beta}_1$ of our parameters of interest β_0, β_1 .

$$\hat{\beta}_{0}, \hat{\beta}_{1} = \arg\min_{b_{0}, b_{1}} \frac{1}{n} \sum_{i=1}^{n} (Y_{i} - b_{0} - b_{1} \cdot X_{i})^{2}$$

$$\beta_{0}, \beta_{1} = \arg\min_{\tilde{\beta}_{1}, \tilde{\beta}_{1}} \mathbb{E} \left[\left(Y - \tilde{\beta}_{0} - \tilde{\beta}_{1} \cdot X \right)^{2} \right]$$

Notice that, while the parameters of interest β_0 and β_1 are fixed quantities, the estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ are functions of the data; they depend on the specific sample of data collected.

We have now gone over how use data to obtain estimates $\hat{\beta}_0, \hat{\beta}_1$ of our parameters of interest β_0, β_1 . Notice that, while the parameters of interest β_0 and β_1 are fixed quantities, the estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ are functions of the data; they depend on the specific sample of data collected.

Some Questions to Consider:

1. What would happen to our estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ if we were to collect a different sample of data?

25 / 28

We have now gone over how use data to obtain estimates $\hat{\beta}_0, \hat{\beta}_1$ of our parameters of interest β_0, β_1 . Notice that, while the parameters of interest β_0 and β_1 are fixed quantities, the estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ are functions of the data; they depend on the specific sample of data collected.

Some Questions to Consider:

- 1. What would happen to our estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ if we were to collect a different sample of data?
- 2. How can we model the distribution of our estimates $\hat{\beta}_0$ and $\hat{\beta}_1$?

We have now gone over how use data to obtain estimates $\hat{\beta}_0, \hat{\beta}_1$ of our parameters of interest β_0, β_1 . Notice that, while the parameters of interest β_0 and β_1 are fixed quantities, the estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ are functions of the data; they depend on the specific sample of data collected.

Some Questions to Consider:

- 1. What would happen to our estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ if we were to collect a different sample of data?
- 2. How can we model the distribution of our estimates $\hat{\beta}_0$ and $\hat{\beta}_1$?
- 3. What happens to this distribution as $n \to \infty$?

Question: What would happen to our estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ if we were to collect a different sample of data?

Question: What would happen to our estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ if we were to collect a different sample of data?

Let's return to the cars data and see how our regression lines look when we consider two different (random) samples.

Question: What would happen to our estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ if we were to collect a different sample of data?

Let's return to the cars data and see how our regression lines look when we consider two different (random) samples.

Weight vs. mpg for assorted cars

- Sample 1: $\hat{\beta}_0 = 37.1285$ and $\hat{\beta}_1 = -5.2341$.
- Sample 2: $\hat{\beta}_0 = 42.352$ and $\hat{\beta}_1 = -7.307$.

Linea

Table of Contents

The Basic Mode

Estimation

Consistency and Inference