EA²E: Improving Consistency with Event Awareness for Document-Level Argument Extraction

Qi Zeng*, Qiusi Zhan*, Heng Ji

University of Illinois at Urbana-Champaign

INTRODUCTION

Events are inter-related in documents.

Motivated by the one-sense-per-discourse theory, we hypothesize that a participant tends to play consistent roles across multiple events in the same document.

For example, the *Attacker* in the *DetonateExplode* event is likely to be:

- the *IdentifiedRole* in the *IdentifyCategorize* event,
- the *Detainee* in the *ArrestJailDetain* event,
- as well as the *Defendant* in the *ChargeIndict* event.

Recent work models each individual event in isolation and therefore causes inconsistency among extracted arguments across events.

To improve event argument consistency, we introduce the Event-Aware Argument Extraction (EA²E) model with augmented context for training and inference.

Experiment results on WIKIEVENTS and ACE2005 datasets demonstrate the effectiveness of EA\$^2\$E compared to baseline methods.

METHOD

- Template: a pre-defined unfilled template for each type of event (eg. the template for Attack event is <arg> detonated or exploded <arg> explosive device using <arg> to attack <arg> target at <arg> place).
- Augmented context: tagging the argument labels of the other events

Alignment-enhanced Training

Pull close the argument representation distributions under regular context c and under augmented context c'.

Iterative Inference

Explicitly introduces event awareness by utilizing extracted results in multiple inference iterations.

RESULTS & ANALYSIS

	Argument Identification						Argument Classification					
Model	Head Match			Coref Match			Head Match			Coref Match		
	P	R	F1	P	R	F1	P	R	F1	P	R	F1
BERT-CRF	72.66	53.82	61.84	74.58	55.24	63.47	61.87	45.83	52.65	63.79	47.25	54.29
ONEIE	68.16	56.66	61.88	70.09	58.26	63.63	63.46	52.75	57.61	65.17	54.17	59.17
BART-Gen	70.43	71.94	71.18	71.83	73.36	72.58	65.39	66.79	66.08	66.78	68.21	67.49
$\mathbf{E}\mathbf{A}^2\mathbf{E}$	76.51	72.82	74.62	77.69	73.95	75.77	70.35	66.96	68.61	71.47	68.03	69.70
EA^2E w/o AT	77.26	71.23	74.12	78.61	72.47	75.42	71.10	65.54	68.21	72.25	66.61	69.32
EA ² E w/o II	75.96	72.29	74.07	77.13	73.42	75.22	69.61	66.25	67.89	70.72	67.32	68.97

The upper table shows that EA²E performs better than strong baseline methods.

- Alignment-enhanced training brings a significant improvement but comes with higher training costs.
- Iterative inference brings unstable improvement. The right figure shows that more iterations brings higher performance only to a certain range.

CONCLUSIONS

We introduce Event-Aware
Argument Extraction (EA²E) model
to improve self-contained
consistency in document-level event
argument extraction.

We conclude that iterative inference brings higher performance only to a certain range of iterations and alignment-enhanced training brings significant improvement with costs.

