

August 18, 2025

Contents

1															2
	1.1	Ayudantía 2 (18/08)													2

Chapter 1

1.1 Ayudantía 2 (18/08)

1. Considere la ecuación canónica

$$y^{n} = f(t, y, y', \dots, y^{(n-1)})$$
(1)

Proof. Como y es solución de (1), en particular $y \in C^n(I)$. Por lo tanto la función $t \mapsto (t, y(t), y'(t), \dots, y^{(n-1)}(t)) \in C^1(I, \mathbb{R}^n)$, y luego $\underline{f(t, y(t), \dots, y^{(n-1)}(t))} \in C^1(I)$. Por lo tanto $y \in C^{n+1}(I)$.

Por inducción en $k \in \mathbb{N}$ Caso base: Facil!

Paso inductivo: Suponer que $\exists k \in \mathbb{N}$ tal que se cumple lo anterior y que $f \in C^{k+1}(\mathbb{R}^n)$. Por hipótesis, $y \in C^{n+k}(I)$, y por lo tanto $g(t) = (t, y, y', \dots, y^{(n-1)}) \in C^{n+k-(n-1)}(I) = C^{k+1}(I; \mathbb{R}^n)$. Luego , la composición $(y^{(n)}(t) =) f \circ g(t) \in C(I)^{k+1}$, por lo que $y \in C^{n+k+1}(I)$. Concluimos que si $f \in C^{\infty}(\mathbb{R}^n)$, entonces $y \in C^{\infty}(I)$.

2. Considere el sistema

(*)
$$\begin{cases} y''(t) + y(t)^2 = 0 & \forall \ t \in [0, 1]; \\ y(0) = y(1) = 0. \end{cases}$$

Demuestre que si y es una solución no trivial de (*), entonces $y(t) > 0 \ \forall t \in (0,1)$.

Proof. Notemos que $y''(t) = -y(t)^2 \le 0$. Entonces, y es convava; es decir, $\forall a, b \in [0, 1]$, y $\forall s \in [0, 1]$ se tiene la desigualdad

$$y(a + (b - a)s) \ge y(a) + (y(b) - y(a))s.$$
 (C)

Con a = 0, b = 1, tenemos que $\forall t \in [0, 1]$,

$$y(t) \ge 0 + t(0 - 0) = 0.$$

Ahora, como $y \not\equiv 0$, $\exists t_0 \in (0,1)$ tal que $y(t_0) > 0$. Sea $t_1 \in (0,t_0)$, y

 $s=\frac{t_1}{t_1}\in(0,1)$. Por (C), con $a=0,\ b=t_0$, tenemos que

$$y(t_1) = y(0 + t_0 \cdot s) \stackrel{(C)}{\geq} y(0) + s(y(t_0) - y(0))$$

= 0 + s \cdot y(t_0) > 0.

Por lo tanto, y>0 en $(0,t_0)$. Por otro lado, para $t_1\in(t_0,1)$, definimos $s=\frac{t_1-t_0}{1-t_0}$, y ocupando (C) con $a=t_0$ y b=1 obtenemos

$$y(t_1) = y(t_0 + s(1 - t_0)) \stackrel{(C)}{\ge} y(t_0) + s(y(1) - y(t_0))$$

= $(1 - s)y(t_0) > 0$.

3. Considere

$$(+) \begin{cases} y' = \sqrt{|y|}; \\ y(t_0) = y_0. \end{cases}$$

(a) Resuelva el sistema para $y_0 \neq 0$ y determine el invervalo maximal de la solución.

Proof.

(a) Primero asumamos que $y_0>0$. Dividiendo la EDO por \sqrt{y} e integrando alrededor de t_0 , obtenemos

$$(t - t_0) = \int_{t_0}^{t} 1 ds = \int_{t_0}^{t} \frac{y'(s)}{\sqrt{y(s)}} ds \stackrel{(c.v.)}{=} \int_{y_0}^{y(t)} \frac{1}{\sqrt{u}} du$$
$$= 2(\sqrt{y(t)} - \sqrt{y_0})$$
$$\Rightarrow y(t) = \left(\frac{t - t_0}{2} + \sqrt{y_0}\right)^2.$$

Para $y_0 < 0$

$$(t - t_0) = \int_{|y_0|}^{|y(t)|} \frac{-1}{\sqrt{v}} dv = -2(|\sqrt{y(t)}| - \sqrt{|y_0|})$$

Por lo tanto, $y(t) = \left(\sqrt{|y_0|} - \frac{t - t_0}{2}\right)^2$. Sea

$$F_1(r) = \int_{y_0}^r \frac{dx}{\sqrt{x}} = 2(\sqrt{r} - \sqrt{y_0}).$$

Esta función es monótona (estricta) en el intervalo $(0, \infty)$ y por lo tanto biyectiva. $F_1(y(t)) = t - t_0$. Calculamos

$$T_{+} = \lim_{r \to \infty} F_{1}(r) = \infty$$

$$T_{-} = \lim_{r \to 0} F_{1}(r) = -2\sqrt{y_{0}}.$$

Entonces
$$t-t_0\in(-2\sqrt{y_0},\infty),\ t\in(t_0-2\sqrt{y_0},\infty).$$

$$F_2(r)=2(\sqrt{|y_0|}-\sqrt{|r|},\quad r\in(-\infty,0)$$

$$T_-=\lim_{r\to-\infty}F_2(r)=\infty$$

$$T_+=\lim_{r\to\infty}.$$