Package 'motif4node'

January 29, 2023

Title Motif4node, motif analysis using all non-redundant four-node

Type Package

gene circuits

Author Benjamin Clauss, Mingyang Lu	
Maintainer Benjamin Clauss <b.clauss@northeastern.edu></b.clauss@northeastern.edu>	
Description R package for circuit motif analysis.	
License MIT + file LICENSE	
Encoding UTF-8	
LazyData true	
NeedsCompilation no	
VignetteBuilder knitr	
Imports igraph, visNetwork, sRACIPE, scales, ggplot2, cowplot, pheatmap, htmlwidgets, SummarizedExperiment, webshot, combinat, RColorBrewer, grDevices	
Suggests knitr	
RoxygenNote 7.2.3	
Depends R ($>= 3.5.0$)	
Depends 1 (>= 5.5.0)	
R topics documented:	
R topics documented:	2
R topics documented: adj_to_tpo	2
R topics documented: adj_to_tpo	2
R topics documented: adj_to_tpo	2 3 3
R topics documented: adj_to_tpo	2 3 4
R topics documented: adj_to_tpo all.circuits analysis_circuit_2node analysis_circuit_4node circuit_grouping dist_ks	2 3 4 4
R topics documented: adj_to_tpo all.circuits analysis_circuit_2node analysis_circuit_4node circuit_grouping dist_ks enrichment_coupling	2 3 4 5
R topics documented: adj_to_tpo all.circuits analysis_circuit_2node analysis_circuit_4node circuit_grouping dist_ks enrichment_coupling enrichment_coupling_all_cases	2 3 4 4
R topics documented: adj_to_tpo all.circuits analysis_circuit_2node analysis_circuit_4node circuit_grouping dist_ks enrichment_coupling enrichment_coupling_all_cases enrichment_single	2 3 4 5 6
R topics documented: adj_to_tpo all.circuits analysis_circuit_2node analysis_circuit_4node circuit_grouping dist_ks enrichment_coupling enrichment_coupling_all_cases enrichment_single generate_index_conversion	2 3 4 4 5 6 7
Adj_to_tpo all.circuits analysis_circuit_2node analysis_circuit_4node circuit_grouping dist_ks enrichment_coupling enrichment_coupling generate_index_conversion generate_motif_list gen_network_scalefree	2 3 4 4 5 7 7 8 8
R topics documented: adj_to_tpo all.circuits analysis_circuit_2node analysis_circuit_4node circuit_grouping dist_ks enrichment_coupling enrichment_coupling_all_cases enrichment_single generate_index_conversion generate_motif_list gen_network_scalefree get_motif_adj	2 3 4 4 5 6 7 7 8

2 all.circuits

Index	17
	z_score
	trig_score
	single_motif_permute
	sim_4node
	simu_rnorm
	plot_RACIPE
	plot_net
	plot_motif
	plot_adj
	motif_analysis
	map_and_project

Convert an adjacency matrix to a topology

Description

adj_to_tpo

Convert an adjacency matrix to a topology

Usage

```
adj_to_tpo(adj)
```

Arguments

adj the adjacency martix to be converted to a topology file

all.circuits	Data file containing the topology of all 60212 non-redundant four-
	node gene circuits

Description

This data contains the topology of all 60212 non-redundant four-node gene circuits.

Usage

all.circuits

Format

A list of 60212 circuits, each element is a matrix of adjacency matrix. Four columns/rows represent genes "A", "B", "C", and "D". In each adjacency matrix, 1 represents activation, 2 represents inhibition, and 0 represents no interaction.

analysis_circuit_2node

analysis_circuit_2node

Analysis script to evaluate the state distribution of a two-node circuit motif

Description

Analysis script to evaluate the state distribution of a two-node circuit motif

Usage

```
analysis_circuit_2node(tpo, numModels = 10000)
```

Arguments

tpo Data frame. Topology data of a two-node circuit motif. The data frame contains

three columns: Source, Target, Interaction type

numModels Numeric. Number of models to be simulated. Default: 10000

analysis_circuit_4node

Analysis script to evaluate the state distribution of a four-node gene circuit

Description

Analysis script to evaluate the state distribution of a four-node gene circuit

Usage

```
analysis_circuit_4node(rSet, numModels = 10000)
```

Arguments

rSet sRACIPE object. RACIPE simulation data.

numModels Numeric. Number of models to be simulated. Default: 10000

Value

List. plot objects.

4 dist_ks

circuit_grouping

Grouping two-node circuit motifs by their types

Description

Grouping two-node circuit motifs by their types

Usage

```
circuit_grouping()
```

Value

Vector of factor: types for all two-node motifs.

dist_ks

Calculate th KS distance of two gene expression distributions

Description

Calculate th KS distance of two gene expression distributions

Usage

```
dist_ks(query, reference, experimental)
```

Arguments

query sRACIPE object or PCA matrix of the query data

reference sRACIPE object of the reference data

experimental Logical. T: query is the PCA matrix from an experimental dataset. F: query is

an sRACIPE object

Value

the distance between the gene expression distributions from the query and reference.

enrichment_coupling 5

enrichment_coupling	Motif enrichment analysis for the coupling of two two-node circuit motifs
---------------------	---

Description

Motif enrichment analysis for the coupling of two two-node circuit motifs

Usage

```
enrichment_coupling(
  all.circuits = all.circuits,
  all.scores,
  motif_list,
  new_ind,
  overlap_list,
  decreasing = T,
  if_overlap = 2,
  topCircuits = 600,
  nhill = 20
)
```

Arguments

all.circuits	List of the topologies of all 60212 non-redundant 4-node circuits. Default "all.circuits" from the package data.
all.scores	Data frame. 1st column: scores; 2nd column: circuit index. The data frame is ordered by the scores.
motif_list	List of 2 by 2 integer matrix. 2-node motif info generated by the function: generate_motif_list.
new_ind	Vector of integer. mapping to non-redundant 2-node motifs generated by the function: generate_index_conversion.
overlap_list	Matrix (6 by 6 integers). Info of overlapping from the motif location in the 4-node circuit generated by the function: generate_overlap_data.
decreasing	Logic. Whether circuits are ranked by the scores in a decreasing order (T) or not (F). Default T.
if_overlap	Whether consider two motifs with overlapping (1), without overlapping (0), or both (2). Default 2.
topCircuits	Integer. Number of top circuits for the enrichment analysis. Default 600.
nhill	Integer/Numeric. Hill coefficient for the Hill function as the weighting factor for motif counts, large n makes the Hill function more binary. Default 20.

Value

A data frame containing the enrichment scores of the coupling between 2-node circuit motifs (39 by 39)

```
enrichment_coupling_all_cases
```

A convenient function to perform different motif coupling analyses altogether

Description

A convenient function to perform different motif coupling analyses altogether

Usage

```
enrichment_coupling_all_cases(
  all.circuits,
  all.scores,
  motif_list,
  new_ind,
  overlap_list,
  decreasing = decreasing,
  topCircuits = 600,
  nhill = 20
)
```

Arguments

all.circuits	List of the topologies of all 60212 non-redundant 4-node circuits. Default "all.circuits from the package data.
all.scores	Data frame. 1st column: scores; 2nd column: circuit index. The data frame is ordered by the scores.
motif_list	List of 2 by 2 integer matrix. 2-node motif info generated by the function: generate_motif_list.
new_ind	Vector of integer. mapping to non-redundant 2-node motifs generated by the function: generate_index_conversion.
overlap_list	Matrix (6 by 6 integers). Info of overlapping from the motif location in the 4-node circuit generated by the function: generate_overlap_data.
decreasing	Logic. Whether circuits are ranked by the scores in a decreasing order (T) or not (F). Default T.
topCircuits	Integer. Number of top circuits for the enrichment analysis. Default 600.
nhill	Integer/Numeric. Hill coefficient for the Hill function as the weighting factor for motif counts, large n makes the Hill function more binary. Default 20.

Value

List containing the enrichment of coupling between 2-node motifs for all cases (without overlapping, overlapping, and both)

enrichment_single 7

enrichment_single

Motif enrichment analysis for single two-node circuit motifs

Description

Motif enrichment analysis for single two-node circuit motifs

Usage

```
enrichment_single(
  all.circuits = all.circuits,
  all.scores,
  motif_list,
  new_ind,
  decreasing = T,
  topCircuits = 600,
  nhill = 20
)
```

Arguments

all.circuits	List of the topologies of all 60212 non-redundant 4-node circuits. Default "all.circuits" from the package data.
all.scores	Data frame. 1st column: scores; 2nd column: circuit index. The data frame is ordered by the scores.
motif_list	List of 2 by 2 integer matrix. 2-node motif info generated by the function: generate_motif_list.
new_ind	Vector of integer. mapping to non-redundant 2-node motifs generated by the function: generate_index_conversion.
decreasing	Logic. Whether circuits are ranked by the scores in a decreasing order (T) or not (F). Default T.
topCircuits	Integer. Number of top circuits for the enrichment analysis. Default 600.
nhill	Integer/Numeric. Hill coefficient for the Hill function as the weighting factor for motif counts, large n makes the Hill function more binary. Default 20.

Value

Data frame containing the enrichment scores of each 2-node circuit motif (39 by 1)

```
{\it Convert\ redundant\ indices\ to\ the\ indices\ for\ all\ 39\ non-redundant\ motifs}
```

Description

Convert redundant indices to the indices for all 39 non-redundant motifs

Usage

```
generate_index_conversion()
```

Description

Generate a list of all 72 2-node circuit motifs (including redundant ones)

Usage

```
generate_motif_list()
```

Value

list of all 72 2-node circuit motifs

gen_network_scalefree Generate a random scale-free gene network consisting the two-node motifs of choice

Description

Generate a random scale-free gene network consisting the two-node motifs of choice

Usage

```
gen_network_scalefree(num_nodes, motif_list, motif_choice)
```

Arguments

motif_list List of 2 by 2 integer matrix. 2-node motif info generated by the function:

generate_motif_list.

motif_choice Vector of integer. A vector of indices of the selected two-node circuit motifs

Value

Matrix. Adjacency matrix of the generated network

get_motif_adj 9

get_motif_adj Obtain the adjacency matrix for a specific two-node circuit motion (number should be from 1 to 39)	if
---	----

Description

Obtain the adjacency matrix for a specific two-node circuit motif (number should be from 1 to 39)

Usage

```
get_motif_adj(number, motif_list)
```

Arguments

number Integer. Index of the two-node circuit motif.

motif_list List of 2 by 2 integer matrix. 2-node motif info generated by the function:

generate_motif_list.

Value

Integer matrix. 2 by 2 adjacency matrix.

lin_score	The scoring function for ranking circuits with a linear state distribu-
	tion

Description

The scoring function for ranking circuits with a linear state distribution

Usage

```
lin_score(rset)
```

Arguments

rset

The sRACIPE object of the simulated circuit.

Value

return(min(score_vector)): returns the score for the linear state distribution.

10 motif_analysis

map_and_project	Compare the state distributions of two four-node circuits, find the most matched genes, and project the simulated gene expression data of the 2nd circuit to the PCs of the 1st circuit

Description

Compare the state distributions of two four-node circuits, find the most matched genes, and project the simulated gene expression data of the 2nd circuit to the PCs of the 1st circuit

Usage

```
map_and_project(rset1, rset2)
```

Arguments

rset1 sRACIPE object. RACIPE simulation data for the first circuit rset2 sRACIPE object. RACIPE simulation data for the second circuit

Value

Numeric matrix. PC coordinates of RACIPE simulated gene expression of the second circuit projected onto the PCs of the RACIPE simulated gene expression of the first circuit

motif_analysis

A combined motif enrichment analysis for single two-node circuit motifs and motif coupling

Description

A combined motif enrichment analysis for single two-node circuit motifs and motif coupling

Usage

```
motif_analysis(
  all.circuits = all.circuits,
  all.scores,
  ylim = NULL,
  color_breaks = NULL,
  filename = NULL,
  decreasing = T,
  topCircuits = 600
)
```

plot_adj

Arguments

all.circuits	List of the topologies of all 60212 non-redundant 4-node circuits. Default "all.circuits" from the package data.
all.scores	Data frame. 1st column: scores; 2nd column: circuit index. The data frame is ordered by the scores.
ylim	Vector of numerics (2). Y axis limit for single motif enrichment. Default: NULL.
color_breaks	Vector that defines color scaling for pheatmap. Default: NULL
filename	Character. Prefix of filenames for plotting. Default: NULL. If provided, plots are also saved to files.
decreasing	Logical. Whether circuits are ranked by the scores in a decreasing order (T) or not (F). Default T.
topCircuits	Integer. Number of top circuits for the enrichment analysis. Default 600.

Value

List of plotting objects for single motif and motif coupling enrichment analyses.

plot_adj Plot a network from the adjacency matrix	
---	--

Description

Plot a network from the adjacency matrix

Usage

```
plot_adj(adj)
```

Arguments

adj Matrix (4 by 4, integer). Adjacency matrix of a four node circuit.

Value

empty

plot_net

plot_motif

Plot a specific circuit motif

Description

Plot a specific circuit motif

Usage

```
plot_motif(number, motif_list)
```

Arguments

number

Integer. Index of a two-node circuit motif

 $motif_list$

List of 2 by 2 integer matrix. 2-node motif info generated by the function:

generate_motif_list.

Value

empty

plot_net

Network plotting function

Description

Network plotting function

Usage

```
plot_net(tf_links = tf_links)
```

Arguments

tf_links

Data frame of circuit edge list. Three columns: Source, Target, Interaction Types – 1: Activation; 2: Inhibition

Value

empty

plot_RACIPE 13

plot_RACIPE

Scatterplots of PCA and Gene expression from any 4-node circuit

Description

Scatterplots of PCA and Gene expression from any 4-node circuit

Usage

```
plot_RACIPE(rset)
```

Arguments

rset

The sRACIPE object of the simulated circuit

Value

list(g,p)

simu_rnorm

RACIPE simulations with random kinetic parameters from Gaussian distributions

Description

RACIPE simulations with random kinetic parameters from Gaussian distributions

Usage

```
simu_rnorm(rset, numModels = 10000)
```

Arguments

rset sRACIPE object. sRACIPE output from a standard RACIPE simulation

numModels Numeric. Number of models to be simulated. Default: 10000.

- •	4node
C 1 m	4noge

Simulate one of the 4-node circuits from the 60212 unique circuits

Description

Simulate one of the 4-node circuits from the 60212 unique circuits

Usage

```
sim_4node(index, Gaussian = F, numModels = 10000, all.circuits = all.circuits)
```

Arguments

index	Numeric index number of 4-node circuit to be simulate. Takes values from 1:60212
Gaussian	Logical. If T, kinetic parameters will be sampled from a gaussian distribution. If F, kinetic parameters will be sampled from a uniform distribution
numModels	Numeric. Number of models to be simulated. Default: 10000
all.circuits	List. The topology of all 60212 circuit motifs. Default "all.circuits" from the

List. The topology of all 60212 circuit motifs. Default "all.circuits" from the

package data.

Value

rset: sRACIPE object. RACIPE simulation results for a circuit

```
single_motif_permute
                         Generate permutations for p-value calculations
```

Description

Generate permutations for p-value calculations

Usage

```
single_motif_permute(
 all.circuits = all.circuits,
 all.scores,
 decreasing = T,
  topCircuits = 600,
 nhill = 20,
 num_perm = 1000
)
```

trig_score 15

Arguments

all.circuits	List of the topologies of all 60212 non-redundant 4-node circuits. Default "all.circuits" from the package data.
all.scores	Data frame. 1st column: scores; 2nd column: circuit index. The data frame is ordered by the scores.
decreasing	Logical. Whether circuits are ranked by the scores in a decreasing order (T) or not (F). Default T.
topCircuits	Integer. Number of top circuits for the enrichment analysis. Default 600.
nhill	Integer/Numeric. Hill coefficient for the Hill function as the weighting factor for motif counts, large n makes the Hill function more binary. Default 20.
num_perm	Integer. Number of permutations. (1000)

Value

Numeric vector. Adjusted p values for the enrichement of each two-node circuit motif (a total of 39)

trig_score	The scoring function for ranking circuits with a triangular state distribution

Description

The scoring function for ranking circuits with a triangular state distribution

Usage

```
trig_score(rset)
```

Arguments

rset The sRACIPE object of the simulated circuit.

Value

return(min(score_vector)): returns the score for the triangular state distribution.

z_score

z_score

Calculate z-score for a specific distance

Description

Calculate z-score for a specific distance

Usage

z_score(distances, score)

Arguments

distances list of distances

score Numeric. score to calculate the z-score

Value

z-score

Index

```
*Topic datasets
     all.circuits, 2
adj_to_tpo, 2
all.circuits, 2
analysis_circuit_2node, 3
analysis_circuit_4node, 3
circuit_grouping, 4
\texttt{dist\_ks}, \textcolor{red}{4}
\verb"enrichment_coupling", 5
enrichment_coupling_all_cases, 6
enrichment_single, 7
gen_network_scalefree, 8
generate_index_conversion, 7
{\tt generate\_motif\_list, 8}
\texttt{get\_motif\_adj}, \textcolor{red}{9}
lin_score, 9
\texttt{map\_and\_project}, \textcolor{red}{10}
\verb|motif_analysis|, \\ 10
plot_adj, 11
plot_motif, 12
plot_net, 12
plot_RACIPE, 13
sim_4node, 14
simu_rnorm, 13
single\_motif\_permute, 14
trig_score, 15
z_score, 16
```