1 Schwach konstruierbare Garben auf Simplizialkomplexen

Ziel dieses Abschnitts ist die Charakterisierung schwach konstruierbarer Garben auf Simplizialkomplexen und ihrer derivierten Kategorie. Die Darstellung folgt im Wesentlichen [?] und [?].

In diesem Abschnitt bezeichne (V, \mathcal{K}) einen lokal-endlichen Simplizialkomplex mit Eckenmenge V. Für einen Simplex $\sigma \in \mathcal{K}$ definieren wir seine geometrische Realisierung $|\sigma| \subset \mathbb{R}^V = \operatorname{Ens}(V, \mathbb{R})$:

$$|\sigma| = \{x \in \mathbb{R}^V | x(v) = 0 \text{ für } v \notin \sigma, x(v) > 0 \text{ für } v \in \sigma, \sum_{v \in V} x(v) = 1\},$$

sowie die geometrische Realisierung $|\mathcal{K}| \subset \mathbb{R}^V$ von \mathcal{K}

$$\bigcup_{\sigma \in \mathcal{K}} |\sigma|,$$

jeweils versehen mit der induzierten Topologie von $\mathbb{R}^V.$

Wir erhalten eine Abbildung

$$p: |\mathcal{K}| \to \mathcal{K}$$
,

genannt Simplexanzeiger oder Indikatorabbildung, der einem Punkt $x \in |\mathcal{K}|$ in der geometrischen Realisierung den eindeutigen Simplex $\sigma \in \mathcal{K}$ mit $x \in |\sigma|$ zuordnet.

Lemma 1. Der Simplexanzeiger $p: |\mathcal{K}| \to \mathcal{K}$ ist stetig.

Beweis. Das Urbild einer Basismenge ($\geq \sigma$) ist

$$p^{-1}((\geq \sigma)) = |\mathcal{K}| \cap \{x \in \mathbb{R}^V | x(v) > 0 \text{ für } v \in \sigma\},$$

der offene Stern um σ , den wir auch als $U(\sigma)$ notieren.

Definition 2. Eine Garbe $F \in \mathrm{Ab}_{/|\mathcal{K}|}$ heißt schwach $|\mathcal{K}|$ -konstruierbar (oder kurz: schwach konstruierbar), falls für alle $\sigma \in \mathcal{K}$, die Einschränkungen $F|_{|\sigma|}$ konstante Garben sind. Wir bezeichnen die volle Unterkategorie der schwach konstruierbaren Garben in $\mathrm{Ab}_{/|\mathcal{K}|}$ mit s-Kons (\mathcal{K}) .

Eine derivierte Garbe $F \in \text{Der}(\text{Ab}_{/|\mathcal{K}|})$ heißt schwach $|\mathcal{K}|$ -konstruierbar, falls für alle $j \in \mathbb{Z}$ die Kohomologiegarben $H^j(F)$ schwach konstruierbar sind. Wir bezeichnen die volle Unterkategorie der schwach konstruierbaren derivierten Garben in $\text{Der}(\text{Ab}_{/|\mathcal{K}|})$ mit $\text{Der}_{\text{sk}}(|\mathcal{K}|)$.

Wir bemerken zunächst:

Lemma 3. Die Kategorie s-Kons(K) ist abelsch.

Beweis. Durch den offensichtlichen Isomorphismus zur Kategorie der abelschen Gruppen (durch den Funktor der globalen Schnitte) ist die Kategorie der konstanten abelschen Garben auf einem topologischen Raum X eine abelsche Kategorie. Nun folgt die Aussage aus der Exaktheit des Pullbacks i_{σ}^* entlang den Inklusionen $i_{\sigma}: |\sigma| \hookrightarrow |\mathcal{K}|$.

Entscheidend ist die folgende Charakterisierung schwach $|\mathcal{K}|$ -konstruierbarer Garben:

Proposition 4 ([?]). Für $F \in Ab_{/|\mathcal{K}|}$ sind äquivalent:

- 1. F ist schwach $|\mathcal{K}|$ -konstruierbar
- 2. Die Koeinheit der Adjunktion ist auf F ein Isomorphismus $p^*p_*F \xrightarrow{\sim} F$.
- 3. F liegt im wesentlichen Bild des Rückzugs p*.
- 4. Die Restriktion $F(U(\sigma)) \to F_x$ ist für alle $\sigma \in \mathcal{K}$ und alle $x \in |\sigma|$ ein Isomorphismus.

Beweis. Die Äquivalenz (2) \Leftrightarrow (3) ist allgemein kategorientheoretischer Natur. Dabei ist (3) \Rightarrow (2) offensichtlich (nimm p_*F) und (2) \Rightarrow (3) folgt aus den Dreiecksidentitäten.

Die Äquivalenz (2) \Leftrightarrow (4) folgt aus der Bestimmung der Halme von p^*p_*F . Zunächst bemerken wir, dass in \mathcal{K} die Menge ($\geq \sigma$) die kleinste offene Umgebung von σ ist, und wir also $p_*F((\geq \sigma)) \xrightarrow{\sim} (p_*F)_{\sigma}$ erhalten. Somit gilt für $x \in |\sigma|$:

$$(p^*p_*F)_x \xrightarrow{\sim} (p_*F)_\sigma \xrightarrow{\sim} p_*F((\geq \sigma)) \xrightarrow{\sim} F(U(\sigma)).$$

Dabei wurde die Beschreibung der Halme des Rückzugs (mit $p(x) = \sigma$), obige Darstellung der Halme auf \mathcal{K} und die Definition des Vorschubs (mit $p^{-1}((\geq \sigma)) = U(\sigma)$) verwendet.

Die Implikation $(4) \Rightarrow (1)$ folgt direkt aus dem nachgestellten Lemma, angewandt auf die Einschränkung von F auf $U(\sigma)$, und der Tatsache, dass beliebige Einschränkungen konstanter Garben wieder konstant sind.

Für die umgekehrte Richtung reicht es, die Aussage für die Einschränkung von F auf $U(\sigma)$ zu zeigen. Wir betrachten für $x \in |\sigma|$ die Zusammenziehung

$$h: (0,1] \times U(\sigma) \to U(\sigma),$$

$$(t,y) \mapsto h(t,y) = ty + (1-t)x.$$

Die Mengen $h(\{t\} \times U(\sigma))$ bilden für $t \in (0,1]$ eine Umgebungsbasis von x, wir müssen also nur noch den Kolimes der Schnitte über diese Mengen bestimmen. Bezeichne $\pi: (0,1] \times U(\sigma) \to U(\sigma)$ die Projektion auf den zweiten Faktor. Nach der simplizialen Konstanz von F und wegen $h(t,y) \in |\tau| \Leftrightarrow y \in |\tau|$ ist der Rückzug h^*F konstant auf den Fasern von π und lässt sich somit nach dem zweiten nachgestellten Lemma schreiben als $\pi^*\pi_*h^*F \xrightarrow{\sim} h^*F$. Bezeichne $\iota_t: U(\sigma) \hookrightarrow (0,1] \times U(\sigma)$ die Inklusion. Dann erhalten wir wie gewünscht mit der Funktorialität des Rückzugs, $\pi \circ \iota_t = \mathrm{id}_{U(\sigma)}$ sowie $\Gamma \pi_* = \Gamma$

$$F_{x} \xrightarrow{\sim} \operatorname{colf}_{t \in (0,1]} F(h(\lbrace t \rbrace \times U(\sigma)))$$

$$\xrightarrow{\sim} \operatorname{colf}_{t \in (0,1]} \Gamma \iota_{t}^{*} h^{*} F$$

$$\xrightarrow{\sim} \operatorname{colf}_{t \in (0,1]} \Gamma \iota_{t}^{*} \pi^{*} \pi_{*} h^{*} F$$

$$\xrightarrow{\sim} \Gamma \operatorname{id}^{*} \pi_{*} h^{*} F$$

$$\xrightarrow{\sim} \Gamma h^{*} F$$

$$\xrightarrow{\sim} \Gamma F = F(U(\sigma)),$$

im letzten Schritt nach der Surjektivität von h.

Wir tragen die benötigten Lemmata nach.

Lemma 5 ([?], 2.1.41). Sei X ein topologischer Raum, $F \in \text{Ens}_{/X}$ eine Garbe auf X, für die die Restriktion $\Gamma F \xrightarrow{\sim} F_x$ für alle $x \in X$ bijektiv ist. Dann ist F eine konstante Garbe auf X mit Halm ΓF .

Beweis. Bezeichne $c:X\to \text{top}$ die konstante Abbildung. Die Koeinheit der Adjunktion $c^*c_*F\to F$ induziert auf den Halmen gerade die vorausgesetzten Bijektionen, ist also ein Garben-Isomorphismus.

Lemma 6 ([?], 6.4.17). Sei X ein topologischer Raum, $I \subset \mathbb{R}$ ein nichtleeres Intervall, $F \in \operatorname{Ens}_{/X \times I}$ eine Garbe und $\pi : X \times I \to X$ die Projektion auf den ersten Faktor. Ist F konstant auf den Fasern von π , so ist die Koeinheit der Adjunktion auf F ein Isomorphismus $\pi^*\pi_*F \xrightarrow{\sim} F$.

Beweis. Die Aussage ist äquivalent zum folgenden Fortsetzungsresultat:

Für alle $U \odot X$ und $t \in I$ ist die Restriktion ein Isomorphismus

$$\Gamma(U \times I, F) \xrightarrow{\sim} \Gamma(U \times \{t\}, F).$$

Denn ist die Koeinheit der Adjunktion ein Isomorphismus $\pi^*\pi_*F \xrightarrow{\sim} F$, so bestimmen wir die Schnitte über $U \times \{t\}$ wie folgt: Sei $\iota: U \times \{t\} \hookrightarrow X \times I$ die Inklusion. Wir bemerken, dass $\pi \circ \iota$ die Inklusion von U nach X ist und erhalten:

$$\Gamma(U \times \{t\}, F) = \Gamma \iota^* F \xrightarrow{\sim} \Gamma \iota^* \pi^* \pi_* F = \Gamma(U, \pi_* F) = \Gamma(U \times I, F).$$

Andersherum folgt der Isomorphismus der Koeinheit der Adjunktion aber auch aus dem Fortsetzungsresultat, denn wir können sofort den Isomorphismus auf den Halmen über $(x,t) \in X \times I$ zeigen:

$$(\pi^*\pi_*F)_{(x,t)} \xrightarrow{\sim} (\pi_*F)_x$$

$$= \operatorname{colf}_{U\ni x} \Gamma(U\times I, F)$$

$$\xrightarrow{\sim} \operatorname{colf}_{U\ni x} \Gamma(U\times \{t\}, F)$$

$$\xrightarrow{\sim} \operatorname{colf}_{V\ni (x,t)} F(V)$$

$$= F_{(x,t)}.$$

Dabei erhalten wir die Surjektivität von $F(V) \to \Gamma(U \times \{t\}, F)$ aus der Bijektivität der Verknüpfung

$$\Gamma(U \times I, F) \to F(V) \to \Gamma(U \times \{t\}, F)$$

und die Injektivität aus der Eigenschaft, dass bereits die faserweise stetige Fortsetzung eindeutig ist nach der Konstantheit der Einschränkungen von F auf die Fasern von π .

Nun können wir die Aussage zeigen. Zunächst folgt sie für I kompakt sofort aus eigentlichem Basiswechsel über dem kartesischen Diagramm mit eigentlichen und separierten Vertikalen

$$(x,t) \longleftrightarrow X \times I$$

$$\downarrow \qquad \qquad \downarrow^{\pi}$$

$$x \longleftrightarrow X.$$

Ist nun $I \subset \mathbb{R}$ ein beliebiges Intervall, so können wir es als aufsteigende Vereinigung von Kompakta $I = \bigcup_j I_j$ schreiben und erhalten für die Schnitte ebenfalls

$$\Gamma(U \times I, F) = \text{Top}(U \times I, \overline{F})$$

$$\xrightarrow{\sim} \text{colf}_j \text{Top}(U \times I_j, \overline{F}) = \text{colf}_j \Gamma(U \times I_j, F) \xrightarrow{\sim} \Gamma(U \times \{t\}, F).$$

Wir bezeichnen den Funktor $p^*p_*: \mathrm{Ab}_{/\mathrm{X}} \to \mathrm{s}\text{-}\mathrm{Kons}$ kurz mit β und bemerken, dass er nach obiger Proposition ein Rechtsadjungierter zur Inklusion $\iota: \mathrm{s}\text{-}\mathrm{Kons} \to \mathrm{Ab}_{/|\mathcal{K}|}$ ist:

Als Komposition zweier linksexakter Funktoren ist β natürlich wieder linksexakt. Der allgemeinen Terminologie folgend bezeichnen wir eine Garbe $F \in \mathrm{Ab}_{/|\mathcal{K}|}$ β -azyklisch, falls ihre höheren Derivierten von β verschwinden, also falls

$$R^k \beta F = 0$$
 für alle $k > 0$.

Später benötigen wir die folgende Charakterisierung β -azyklischer Garben:

Proposition 7. Eine Garbe $F \in \text{Ab}_{/|\mathcal{K}|}$ ist β -azyklisch genau dann, wenn $H^k(U(\sigma); F) = 0$ für alle $\sigma \in \mathcal{K}, k > 0$.

Insbesondere gilt:

- 1. Schwach $|\mathcal{K}|$ -konstruierbare Garben sind β -azyklisch.
- 2. Welke Garben sind β -azyklisch.

Beweis. Nach der Charakterisierung höherer direkter Bilder ist $R^q \beta F = p^* R^q p_* F$ für $F \in Ab_{/|\mathcal{K}|}$ isomorph zur Garbifizierung der Prägarbe

$$(> \sigma) \mapsto H^q(p^{-1}((> \sigma)); F) = H^q(p^{-1}(U(\sigma)); F).$$

.. \square

Proposition 8. Sei $F \in \text{Ket}^+(\text{Ab}_{/|\mathcal{K}|})$ ein gegen die Richtung der Pfeile beschränkter Kettenkomplex aus β -azyklischen Garben mit schwach $|\mathcal{K}|$ -konstruierbaren Kohomologiegarben $H^q(F)$. Dann ist $\beta F \to F$ ein Quasi-Isomorphismus.

Beweis. Wir schneiden aus dem Kettenkomplex $({\cal F}^n,d^n)$ kurze exakte Sequenzen aus:

$$\begin{split} H^0 = \ker d^0 &\hookrightarrow F^0 \twoheadrightarrow \operatorname{im} d^0 \\ &\operatorname{im} d^0 \hookrightarrow \ker d^1 \twoheadrightarrow H^1 \\ &\ker d^1 \hookrightarrow F^1 \twoheadrightarrow \operatorname{im} d^1 \\ & \vdots \end{split}$$

Sind in einer kurzen exakten Sequenz zwei der drei Objekte azyklisch, so nach dem Fünferlemma auch das dritte. Da nach Voraussetzung und 7 F^q und H^q β -azyklisch sind, sind alle oben betrachteten Objekte β -azyklisch und die kurzen exakten Sequenzen bleiben exakt nach Anwendung von β . Es folgt $H^q(\beta F) \xrightarrow{\sim} \beta(H^q F)$ und weiter $\beta(H^q F) \xrightarrow{\sim} H^q F$ nach der schwachen Konstruierbarkeit von $H^q F$.

Damit ist der entscheidende Schritt für unser Ziel gezeigt. Wir erhalten:

Theorem 9. Sei K ein lokal-endlicher Simplizialkomplex.

Die oben definierten Funktoren ι, β induzieren auf den derivierten Kategorien eine Äquivalenz

$$\operatorname{Der}^+(\operatorname{s-Kons}(\mathcal{K})) \stackrel{\iota}{\underset{R\beta}{\rightleftharpoons}} \operatorname{Der}^+_{\operatorname{sk}}(|\mathcal{K}|).$$

Beweis. Die Kategorien $\operatorname{Der}^+(\operatorname{s-Kons}(\mathcal{K}))$ und $\operatorname{Der}^+_{\operatorname{sk}}(|\mathcal{K}|)$ haben genug Injektive. Mit der Grothendieck-Spektralsequenz für derivierte Kategorien ([?], 3.4.18) und der Exaktheit von ι erhalten wir somit

$$R\beta \circ R\iota \xrightarrow{\sim} R(\beta \circ \iota) \xrightarrow{\sim} R\operatorname{Id} = \operatorname{Id}$$

auf $\operatorname{Der}^+(s\text{-}\operatorname{Kons}(\mathcal{K}))$, da welke Garben β -azyklisch sind, sowie

$$\iota \circ R\beta \xrightarrow{\sim} \mathrm{Id}$$

auf $\operatorname{Der}^+_{\operatorname{sk}}(|\mathcal{K}|)$ nach der vorangegangenen Proposition.

Bemerkung 10. Kashiwara und Schapira beschränken sich auf die Äquivalenz der beschränkten derivierten Kategorien, allerdings mit der gleichen Argumentation. In [?] 1.7.12 wird eine allgemeine Aussage für solche Situationen gezeigt, die hier aber m.E. nicht benötigt wird.