Définition : Espérance

Si la loi de probabilité de X est donnée par

a_i	a_1	a_2		a_n
$P(X = a_i)$	p_{1}	p_{2}	•••	p_n

Alors son espérance est

$$E(X) =$$

Définition: Espérance

Si la loi de probabilité de X est donnée par

a_i	a_1	a_2	 a_n
$P(X = a_i)$	p_{1}	p_{2}	 p_n

Alors son espérance est

$$E(X) =$$

Définition : Espérance

Si la loi de probabilité de X est donnée par

a_i	a_1	a_2	 a_n
$P(X = a_i)$	p_{1}	p_{2}	 p_n

Alors son espérance est

$$E(X) =$$

Définition : Espérance

Si la loi de probabilité de X est donnée par

a_i	a_1	a_2	 a_n
$P(X = a_i)$	p_{1}	p_2	 p_n

Alors son espérance est

$$E(X) =$$

Définition : Espérance

Si la loi de probabilité de X est donnée par

a_i	a_{1}	a_2	 a_n
$P(X = a_i)$	p_{1}	p_{2}	 p_n

Alors son espérance est

$$E(X) =$$