Imperial College London

Computer Networks and Distributed Systems

Computer Networks – Introduction

Course 527 – Spring Term 2014-2015

Anandha Gopalan

a.gopalan@imperial.ac.uk http://www.doc.ic.ac.uk/~axgopala

Aims and Assumptions

- Course covers basic principles of networking through examples of real technology
- Networks enable distributed systems
 - Understanding networks helps analyse, design, implement distributed systems
- Assumptions
 - Familiarity with basic concepts of computer architecture
 - We're all network users
- Acknowledgements: based on material by Dan Chalmers, Ian Harries and Peter Pietzuch

Recommended Books (for CN)

- "Computer Networks", Andrew S. Tanenbaum, Prentice Hall, 2005 (4th Edition)
 - Main reference and worth reading
- "<u>Distributed Systems: Concepts and Design</u>",
 George Coulouris, Jean Dollimore, Tim Kindberg,
 Gordon Blair Addison-Wesley, 2005 (5th Edition)
- IEEE, IETF, ITU, OSI and W3C standards form basis of much of the material, but not designed as tutorials

Syllabus Overview

- Introduce networking concepts and terminology
 - Introduce OSI and TCP/IP engineering models
 - Course loosely follows OSI Reference Model
- Describe basic network standards and protocols
 - Learn how design choices affect network behaviour
- Describe how networks inter-connect
- Illustrate how networks interact with applications

Terminology

Information

Stimuli that have meaning in some context for receiver

Data

Information translated into form more convenient to move or process by computer

Channel

Path through which signals can flow

Network

Graph of devices interconnected by channels

Node

- Device on network graph
- May refer to end-point (e.g. computer) or communications device (e.g. router)

Network Metrics

Bandwidth

- (Informally) used for channel capacity
- Data transferred per unit time (usually bits/second)
- How much data can be sent through a channel?
- Refers to transmission rate (throughput) e.g. "This is a high bandwidth connection"
- Careful! Bandwidth also technical (EE) term → measure of frequency range of analogue channel

Delay or Latency

Time a bit takes to get from source to destination (seconds)

Jitter

Variation in delay (usually % of delay or value +/- seconds)

Loss

 Rate of loss of units of transfer (percentage, unit depends on what is being lost)

Classes of Communication

- Many ways to describe a network
 - Wires (or media) that form channels
 - Behaviour of channels
 - Range in physical and organisational terms
 - Needs and capabilities of nodes
- We need models to describe diverse networks

From Connections to Networks

- Most networks have >2 devices that connect dynamically
- Individual wires between each pair of computers
 - Simple but clearly not scalable
- Shared wires between computers
 - Only listen to messages addressed to you
 - Larger networks by having switches make dynamic connections over shared pool of channels
- Types of Networks
 - Two forms of switch operation for networks
 - Two types of service that networks can provide
 - Each valid but offer different behaviour → compare telephone network
 vs. computer network

Circuit Switching (CS)

Circuit Switching Features

- One maintained path (circuit) (e.g. telephone call)
- Three phases:
 - 1. Circuit establishment
 - 2. Data transfer
 - 3. Circuit disconnection
- Overhead for call set-up, no overhead for use
- Provides guaranteed resources
- Connection breaks if any link or switch on route fails
- Charging typically by time

Packet Switching (PS)

Packet Switching Features

- Route calculated for each packet (e.g. postal service)
 - Packets may arrive out of order
 - Switches may store and forward packets
- All data has addressing and control overhead
 - But no initial overhead
- Usually no guaranteed resources
- Failures accommodated transparently
 - Different routes may have different properties
 - Packets may be lost/retransmitted due to failure
- Charging typically by packet

Circuit Switching vs. Packet Switching

Circuit Switching

- Fixed bandwidth
- Unused bandwidth wasted
- Call set-up required
- Congestion may occur at call set-up (arrival rate = transmission rate)
- Overhead on call setup only
- In-order delivery
- Circuit fails if any link or switch fails

Packet Switching

- Variable bandwidth
- Uses only bandwidth required
- No call set-up
- Congestion may occur on any packet (causing delay and reordering)
- Overhead on every packet
- Out-of-order delivery
- New route found if any link or switch fails (some data may be lost)

Types of Connection Service

- Network provides connection service to programs
 - May be connectionless or connection-oriented

- Uses underlying network to achieve this
 - Network may be PS or CS
 - Network doesn't determine service type provided
 - Software can add behaviour

Connectionless Service (CL)

- No conceptual connection or maintained route
- Unit of connection is datagram (packet)
- No guarantee of order
- Packet switched networks provide pure CL service
 - Packets addressed by destination and routed accordingly
 - Each packet handled separately
 - No state at switches or set-up/tear-down calls

Connection-Oriented Service (CO)

- Connection maintained between end-points
- Unit of connection is the circuit
- Order is preserved
- Circuit switched networks provide pure CO service
 - Circuit defines destination and route
- Packet switched networks can provide CO service by using virtual circuits

Scale of Networks

Inter-device distance	Devices located in same	Connection environment	
0.1m	Circuit board	Dataflow machine	
1m	System board	Multiprocessor	
10m	Room	Local-Area Network	
100m	Building		
1km	Campus		
10km	City	Metropolitan-Area	
100km	Country	- Wide-Area Network	
1000km	Continent		
10000km	Planet	Internet	

Local Area Networks (LANs)

- Transmission through buildings
 - Typically 80% of communications are local
- Many and varied devices
 - Different message sizes and rates
 - Nodes may connect and disconnect, or fail
 - Systems may compete or co-operate
- Typically under single admin domain

Metropolitan, Wide-Area, Inter-nets

- Formed from interconnected LANs
 - Longer distances
 - Costs of long cables, satellite links
 - Delay and bandwidth restrictions due to distance
- Politics of shared ownership and international connections

19

Network Abstractions

- Applications view network as black box service
 - Hide the details of the network
 - Many parameters are orthogonal
- How do we describe a complete network architecture?
- General-purpose networks are complex
 - Different networking technologies
 - Equipment provided by multiple manufacturers
 - Managed by different people
- How do we define intended behaviour?

Standards

- Standardised ways of connecting systems
 - Hardware and software (protocol) standards
 - Freeze technology and require backwards compatibility
 - Do not prescribe implementation
- Many standard bodies exist
 - e.g. ISO, ITU, IEEE, IETF, W3C, ...
- Different types of standards
 - Open (published, free) vs. proprietary standards
 - e.g. industry provides (de-facto) standards

Network Stack Model

- Model network as layered stack
 - Layer N provides well-defined service to Layer N + 1
 - Layer N uses Layer N 1 for communication

- Layering provides modularity
 - Layers do not process data from higher layers
 - May replace implementation of layers
- But too many layers lead to inefficiency

Protocols

- Protocol

 "an agreement between parties on how communication is to proceed"
 - Defines msg formats, relationships between msgs, ...
 - Reuse protocol implementations across apps

- Entity at one host exchanges protocol data units (PDU) with peer entity at another host
 - Actual connection only at lowest layer

OSI Reference Model

PDUs

OSI – Physical and Data Link Layers

- Physical Layer
 - Transmission of bit-stream over medium
 - Encodes data according to signalling standards
 - Connectors and cables defined
- Data Link Layer
 - Arranges data into bit stream for sending over physical link
 - Data encoded in transmission frames
 - Low-level flow and error control for single hop
 - Possible services to network layer
 - Unacknowledged CL
 - Acknowledged CL
 - Acknowledged CO

OSI – Network and Transport Layers

- Network Layer
 - Provides end-to-end transmission of data
 - Set-up and termination of connections (CO)
 - Global addressing and routing (CL)
 - Hides differences in underlying networks
 - Uses data link layer to provide transmission over single hops
- Transport Layer
 - Provides transparent transfer service
 - End-to-end flow control and error recovery
 - Can be more reliable than underlying network

OSI – Session and Presentation Layers

- Session Layer
 - Enhances transport for sessions with special services
 - e.g. dialogue synchronisation, exception handling
- Presentation Layer
 - Manages syntax and semantics of data exchanged
 - e.g. data encryption, authentication, and compression
 - e.g. data marshalling, byte ordering, ...
- We don't look at session and presentation layers much in this course

OSI – Application Layer

- Provides interface to application
 - But does not include the application!
 - Network functionality specific to given application
 - Most users only have contact with app layer

- Protocols for common application interactions
 - e.g. file transfer, e-mail, web

TCP/IP Model

OSI TCP/IP

Application	Application	
Presentation	Not present	
Session		
Transport	Transport	
Network	Internet	
Data Link	Host-to-host	
Physical	network	

- Developed by DoD for ARPANET
 - Still used in Internet
 - Designed to be resilient to failures
- Presentation and session functions not seen as necessary
- Host-to-host network largely undefined

Internet Layer

- Packet-switched (PS), connectionless (CL), inter-networking layer
- Delivery to destination
 - Routing, congestion control
 - Hides different physical networks
- IP protocol realises layer
 - Defines packet format

Transport and Application Layers

- Transport Layer
 - End-to-end connections
 - Flow control
 - Error recovery
 - TCP and UDP realise layer

- Application Layer
 - Protocols for application interaction
 - HTTP (web), SMTP (e-mail), DNS (host naming), FTP (file transfer), NNTP (usenet news)

Comparing Reference Models

OSI Model

- The standard model
- Can be complex, not all layers always used
- OSI protocols unpopular and poor implementation

TCP/IP Model

- Concepts lack generality
- Host-network layer poorly defined
- TCP/IP protocol most widely used

Computing (and this course) tends to use OSI model but Internet protocols