Anurat Bhattacharya Assign 1 Q1) To prove that Pn(21) is a real vector space (i) With respect to addition 't' a) Closure Let P, P2 & Pn(n) $\frac{n}{n}$ $\frac{n}{n}$ = \(\(\alpha_{1i} + a_{2i} \) \(n \) \(\text{P}_{n} \(\alpha \) Hence Closione holds b) Commutativity, Let P, P2 & Pn (x) $\forall P_1, P_2 \in \mathbb{P}_n(\alpha)$ So Commutative a) Associativity, Let P, P2, P3 & Pn(n) p_{1} p_{2} p_{3} p_{4} p_{5} p_{6} p_{7} p_{7 $= \sum_{i=1}^{n} (a_{i}i + a_{2i} + a_{3i})_{n} = \sum_{i=1}^{n} a_{i}i_{n} + \sum_{i=1}^{n} (a_{2i} + a_{3i})_{n}$ $= P_1 + (P_2 + P_3) \quad \forall \quad \text{such } P_1, P_2, P_3 \in P_2(x)$

Hence Associativity holds

Additive I dentity = 0

"For any
$$P_1 \in P_n(x)$$
,

 $P_1 \neq 0 = P_2 + 0 = P_2$, so Additive I dentity exists

e) Additive In verse = Let $P_1 \in P_n(x)$,

 $P_1 = \sum_{i=0}^{n} (a_{i,i}) x^i$ Let $P_2 = \sum_{i=0}^{n} (-a_{i,i}) x^i$

"Let $P_1 = P_2 + P_1 = 0$ and $P_2 = P_1$.

Hence Additive In verse exists.

With respect to scalar multiplication

a) Closure: $x P_1 = \alpha \sum_{i=0}^{n} (a_i, x^i) = \sum_{i=0}^{n} (x_i, x^i)$

Hence dosure holds

 $P_1 \in P_n(x)$
 $P_2 \in P_n(x)$
 $P_3 \in P_n(x)$
 $P_4 \in P_1(x)$
 $P_4 \in P_2(x)$
 $P_4 \in P_3(x)$
 $P_4 \in P_4(x)$

Hence left distantiable on holds

i) Associativity; For
$$P_{n} \in P_{n}(x)$$
,

 $(x B) P_{i} = x B \sum_{i \ge 0}^{\infty} (a_{i}; x^{i}) = x \sum_{i \ge 0}^{\infty} (B a_{i}; x^{i})$

Hence associativity holds.

d) Right Distail button, Let $P_{n} = P_{n}(x)$
 $P_{n} = P_{n}(x)$
 $P_{n} = P_{n}(x)$

Hence Right distail buttons holds.

e) Multiplicative Identity exists and $P_{n}(x)$

Hence $P_{n}(x)$ is a vector space.

ii) $P_{n}(x) = P_{n}(x)$

for some $P_{n}(x) = P_{n}(x)$

Let
$$p, \& p_2 \in P_n(x)$$

i. $F(p_1+p_2) = \frac{1}{p_1} \int_{1=0}^{\infty} a_{11} x^1 + \sum_{i=0}^{\infty} a_{2i} x^i$
 $= a_{11} + a_{21} = F(p_1) + F(p_2)$

i. $F(p_1+p_3) = F(p_1) + F(p_3) + F(p_4)$

ii. $F(x, p_1) = \int_{1}^{\infty} \int_{x=0}^{\infty} a_{11} x^i + \sum_{i=0}^{\infty} a_{2i} x^i$
 $= a_{11} + a_{21} = F(p_1) + F(p_2) + F(p_3) + F(p_4)$

Again $F(x, p_4) = \int_{1}^{\infty} \int_{x=0}^{\infty} \int_{1}^{\infty} a_{11} x^1 + \sum_{i=0}^{\infty} a_{2i} x^i$
 $= a_{11} + a_{21} = F(p_1) + F(p_2) + F(p_3) + F(p_4) + F(p_4)$

Hen $F(x, p_4) = \int_{1}^{\infty} \int_{x=0}^{\infty} \int_{1}^{\infty} a_{11} x^1 + \sum_{i=0}^{\infty} a_{2i} x^i$
 $= a_{11} + a_{21} = F(p_1) + F(p_2) + F(p_3) + F(p_4) + F(p$