

Machine Learning

Advice for applying machine learning

Deciding what to try next

Debugging a learning algorithm:

Suppose you have implemented regularized linear regression to predict housing prices.

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{m} \theta_j^2 \right]$$

However, when you test your hypothesis on a new set of houses, you find that it makes unacceptably large errors in its predictions. What should you try next?

X1, X2, X3, ..., X100

- -> Get more training examples
 - Try smaller sets of features
- -> Try getting additional features
 - Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, \text{etc.})$
 - Try decreasing λ
 - Try increasing λ

Machine learning diagnostic:

Diagnostic: A test that you can run to gain insight what is/isn't working with a learning algorithm, and gain guidance as to how best to improve its performance.

Diagnostics can take time to implement, but doing so can be a very good use of your time.

Machine Learning

Advice for applying machine learning

Evaluating a hypothesis

Evaluating your hypothesis

Fails to generalize to new examples not in training set.

```
x_1= size of house x_2= no. of bedrooms x_3= no. of floors x_4= age of house x_5= average income in neighborhood x_6= kitchen size .
```

Evaluating your hypothesis

Dataset: best are randomly distributed

Andrew Ng

Training/testing procedure for linear regression

 \rightarrow - Learn parameter θ from training data (minimizing training error $J(\theta)$)

- Compute test set error:

$$\frac{1}{1 + est} \left(\frac{1}{est} \right) = \frac{1}{2m_{test}} \left(\frac{1}{1 + est} \left(\frac{1}{1 + est} \right) - \frac{1}{2m_{test}} \right)^{2}$$

Training/testing procedure for logistic regression

- Learn parameter heta from training data
- Compute test set error:

$$J_{test}(\theta) = -\frac{1}{m_{test}} \sum_{i=1}^{m_{test}} y_{test}^{(i)} \log h_{\theta}(x_{test}^{(i)}) + (1 - y_{test}^{(i)}) \log h_{\theta}(x_{test}^{(i)})$$
0: right model 1:wrong model

- Misclassification error (0/1 misclassification error):

Type text here

Machine Learning

Advice for applying machine learning

Model selection and training/validation/test sets

Overfitting example

Once parameters $\theta_0, \theta_1, \ldots, \theta_4$ were fit to some set of data (training set), the error of the parameters as measured on that data (the training error $J(\theta)$) is likely to be lower than the actual generalization error.

Model selection

didigle of polynomial

Choose
$$\theta_0 + \dots \theta_5 x^5$$

How well does the model generalize? Report test set error $J_{test}(\theta^{(5)})$.

Problem: $J_{test}(\theta^{(5)})$ is likely to be an optimistic estimate of generalization error. I.e. our extra parameter $\underline{d} = \text{degree}$ of polynomial) is fit to test set.

Evaluating your hypothesis

Dataset:

	Size	Price	7
	2104	400	
60%	1600	330	
	2400	369 Town	
	1416	232	
	3000	540	7
	1985	300	
20%	1534	315 7 Cross ve	kidutiun
204	1427	199	۲۷)
70.1	1380	212 } test set	
200.	1494	243	

Train/validation/test error

Training set: 60%

Cross validation set: 20%

Test set: 20%

Training error:

$$\rightarrow J_{train}(\theta) = \frac{1}{2m} \sum_{i=1} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cross Validation error:

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

m

Test error:

- 1. Optimize the parameters in theta using the training i = 1 for each polynomial degree.
- 2. Find the polynomial degree d with the least error using the cross validation set.
- 3. Estimate the generalization error using the test set with J_{tes} (theta), (d = theta from polynomial with lower error);

Model selection according to the error of cross validation model

Pick
$$\theta_0 + \theta_1 x_1 + \cdots + \theta_4 x^4 \leftarrow$$

Estimate generalization error for test set $J_{test}(\theta^{(4)})$

For the final model (with parameters \theta), we might generally expect $J_{cv}(\theta)$ To be lower than $J_{tes}(\theta)$ because: An extra parameter (dd, the degree of the polynomial) has been fit to the cross validation set.

Machine Learning

Advice for applying machine learning

Diagnosing bias vs. variance

Bias/variance

High bias (underfit)

"Just right"

High variance (overfit)

Bias/variance

The training error will tend to decrease as we increase the degree d of the polynomial. At the same time, the cross validation error will tend to decrease as we increase d up to a point, and then it will increase as d is increased, forming a convex curve.

Training error:
$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cross validation error:
$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

Diagnosing bias vs. variance

Suppose your learning algorithm is performing less well than you were hoping. ($J_{cv}(\theta)$ or $J_{test}(\theta)$ is high.) Is it a bias problem or a variance problem?

Machine Learning

Advice for applying machine learning

Regularization and bias/variance

Linear regression with regularization

$$\text{Model: } h_{\theta}(x) = \theta_0 + \underbrace{\theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4}_{m} \leftarrow J(\theta) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \underbrace{\frac{\lambda}{2m} \sum_{j=1}^m \theta_j^2}_{j=1} \leftarrow J(\theta)$$

Large λ ← → High bias (underfit)

 $\lambda = 10000. \ \theta_1 \approx 0, \theta_2 \approx 0, \dots$

"Just right"

 \rightarrow Small λ High variance (overfit)

$$\rightarrow \lambda = 0$$

Choosing the regularization parameter λ

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4}$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^{2}$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x^{(i)}_{test}) - y^{(i)}_{test})^{2}$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x^{(i)}_{test}) - y^{(i)}_{test})^{2}$$

Choosing the regularization parameter λ

Model:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$

$$Try \lambda = 0 \leftarrow \gamma \longrightarrow \min J(\Theta) \longrightarrow \Theta'' \longrightarrow J_{co}(\Theta'')$$

1. Try
$$\lambda = 0 \leftarrow 1$$
 \longrightarrow min $J(\Theta) \rightarrow \Theta'' \rightarrow J_{CU}(\Theta''')$

2. Try $\lambda = 0.01$ \longrightarrow $J_{CU}(\Theta'')$

3. Try $\lambda = 0.02$ \longrightarrow $J_{CU}(\Theta'')$

4. Try $\lambda = 0.04$ \longrightarrow $J_{CU}(\Theta'')$

5. Try $\lambda = 0.08$

3. Try
$$\lambda = 0.02$$
 \longrightarrow \searrow \searrow \searrow \searrow \swarrow

4. Try
$$\lambda = 0.04$$

Fry
$$\lambda = 10$$
 Pick (say) $\theta^{(5)}$. Test error: $\sum_{k \in \mathcal{L}} \left(\delta^{(5)} \right)$

Andrew Ng

Bias/variance as a function of the regularization parameter $\,\lambda$

when lambda is small, cost function likely to cause overfit, so training error should be small, but cross validation error should be large, when lambda is large, cost function likely to cause underfit, so training error should be large, to cause underfit, so training error should be large. pius but cross validation error should be also large. $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m}$ $J_{train}(\theta) = \frac{1}{2m} \sum (h_{\theta}(x^{(i)}) - y^{(i)})^2$ $= \frac{1}{2m_{cv}} \sum (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$

Advice for applying machine learning

Learning curves

1.Lower-order polynomials (low model complexity) have high bias and low variance. In this case, the model fits poorly consistently.

2. Higher-order polynomials (high model complexity) fit the training data extremely well and the test data extremely poorly. These have low bias on the training data, but very high variance.

3. In reality, we would want to choose a model somewhere in between, that can generalize well but also fits the data reasonably well.

Machine Learning

Learning curves

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \leftarrow$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

High bias underfit

If a learning algorithm is suffering from high bias, getting more training data will not (by itself) help much.

High variance overfit

If a learning algorithm is suffering from high variance, getting more training data is likely to help.

size

Machine Learning

Advice for applying machine learning

Deciding what to try next (revisited)

Debugging a learning algorithm:

Suppose you have implemented regularized linear regression to predict housing prices. However, when you test your hypothesis in a new set of houses, you find that it makes unacceptably large errors in its prediction. What should you try next?

- Get more training examples -> fixe high vocione overfit
- Try smaller sets of features -> -> high voice overfit
- Try getting additional features -> free high bias underfit
- Try adding polynomial features $(x_1^2, x_2^2, x_1^{underfit}, etc)$ figh bias.
- Try decreasing λ -> fixes high him underfi
- Try increasing λ -> fixes high voice overfit

Neural networks and overfitting

"Small" neural network (fewer parameters; more prone to underfitting)

Computationally cheaper

"Large" neural network (more parameters; more prone to overfitting) Computationally more expensive.

Use regularization (λ) to address overfitting.

