

SDAIA X STANFORD HACKATHON

Predicting Progression Free Survival In NSCLC using Multi-Modal Data

Team #2

Ahmed Abul
Hasanaath
Computer Science

Amjad
Almubarak
Information System

Faisal
Alarjani
Health Informatics

Yahya Laghbi Pharmacist

Project Timeline

Step 1: Exploration and Processing

- EXPLORED DATA; PARTICULARLY:
 - CLINICAL DATA
 - **O GENOMIC DATA**
 - EXTRACTED PATHOLOGY FEATURES
 - RADIOMICS DATA
- CLEANED THE DATA
 - REMOVE UNNECESSARY COLUMNS
 - DELETED ROWS WITH EMPTY CELLS
 - o ETC

Step 2: Extracted Feature Selection

Target and Feature Correlation Based Selection

- Trained ML models on features with high correlation
 - Trained ML models on individual datasets:
 - radiomic
 - genomic
 - clinical
 - pathology
 - Trained ML models on combinations of aforementioned datasets

Positive Correlation

No Correlation

Negative Correlation

Selected Features

Criteria

- Significant Correlation with PFS
- Decent Performance on Preliminary Training of ML Models

Step 3: Multi-Modality and Data Fusion

Step 4: Final Solution

Results

Clinical Data + Extracted Pathology Features on Bagging Regressor

MSE: 36.91 | PCC: 0.4991

Clinical Data + Pathology Features + Pathology Patches on CNN-R
MSE: 41.02 | PCC: 0.3922

Clinical Data + Path. Features + Path. Patches on CNN-E + BaggingRegressor

MSE: 35.43 | PCC: 0.4009

