* Composition n°03 de Physique-Chimie – Durée : 02h *

Exercice 01: « QCM » 05 points

Pour chaque question, choisir la bonne réponse.

<u>Donnée:</u>

Vitesse du son dans l'air à 20 °C : V_{son} = 340 m.s⁻¹.

Question	Α	В	С
1- Un signal sonore est une vibration qui peut se propager :	Dans l'espace	Dans un milieu matériel	Dans le vide
2- La vitesse de propagation d'un signal sonore dépend :	Du milieu	Du son émis	De son volume
3- En 3 secondes, un signal sonore dans l'air s'est propagé sur une distance :	D'environ 100 m	D'environ 1 km	D'environ 3 m
4- La fréquence f et la période T d'un signal sonore périodique sont reliées par :	$f = \frac{A}{T}$	T = f	$f = \frac{1}{T}$
5- Un signal sonore à pour fréquence 5000 Hz, sa période est :	0,02 s	0,0002 s	0,002 s
6- 8 U(V) 4 0 -4 20 40 60 80 t (s)	Sa période T est égale à 60 s	Sa période T est égale à 80 s	Sa période T est égale à 40 s
7- La vitesse de propagation de la lumière dans le vide vaut environ :	3,00 x 10 ⁸ m.s ⁻¹	3,00 x 10 ⁻⁸ m.s ⁻¹	300 000 km.h ⁻¹
8- Une radiation est caractérisée par sa longueur d'onde. Celle-ci s'exprime généralement en :	nanomètre	hertz	volt
9- Pour réaliser le spectre d'une lumière, on peut utiliser :	Un thermomètre	Un prisme	Une lentille
10- La longueur d'onde et la fréquence sont reliées par :	$\lambda = c \times f$	$\lambda = \frac{c}{f}$	$\lambda = \frac{f}{c}$

Exercice 02: « Le verre Crown » 05 points

On souhaite déterminer l'indice de réfraction d'un verre de type Crown.

- 1. À l'aide du schéma, déterminer les angles d'incidence et de réfraction.
- 2. En utilisant la loi de SNELL-DESCARTES, calculer l'indice de réfraction du verre de type Crown sachant que le premier milieu est l'air dont l'indice vaut $\mathbf{n}_{air} = \mathbf{1,00}$.
- 3. Le rayon réfléchi n'a pas été représenté. Quel est l'angle entre la normale et ce rayon?

Exercice 03: « Une lentille convergente » 05 points

- 1. Tracer la marche d'un rayon lumineux issu de B et parallèle à l'axe optique de (L).
- 2. Tracer la marche d'un autre rayon lumineux issu de B et passant par le centre optique O.
- 3. Dessiner alors l'image A'B' de AB.
- 4. Donner la nature et la grandeur de A'B'.
- 5. Vérifier par le calcul la taille de l'image.

Exercice 04: « Étude prévisionnelle d'un circuit électrique »05 points

Un circuit est alimenté par une pile de 4,5 V. La tension U_{DC} aux bornes de la DEL est 2,0 V.

L'intensité du courant qui circule de **E** vers **C** dans la branche comportant la DEL est **25 mA**, celle du courant qui circule dans le moteur électrique **M**, de **G** vers **F** est **50 mA**.

- **1.** Calculer la tension \mathbf{U}_{ED} aux bornes du conducteur ohmique.
- 2. Calculer la résistance R du conducteur ohmique.
- 3. Calculer l'intensité du courant qui traverse la pile.

