云南大学 2020 年秋季学期理工类本科 2020 级 《大学物理 A》力学期末考试(闭卷)试卷 B

쓰므.

满分 100 分 考试时间 120 分钟 任课教师:

夫训, .

子师:	i	₹ 11.		子 与:		
题号	_	_	=	四四	总分	
得分						

归	八
行	П

坐吃.

- 一、单项选择题(本大题共15小题,每小题2分,共30分)
- 1.某质点的运动学方程 $x=6+3t+5t^3$,则该质点作 ()
- (A) 匀加速直线运动,加速度为正值; (B) 匀加速直线运动,加速度为负值;

卅夕.

- (C) 变加速直线运动,加速度为正值; (D) 变加速直线运动,加速度为负值。
- 2.下列说法哪一条正确? ()
 - (A) 加速度恒定不变时, 物体运动方向也不变;
 - (B) 平均速率等于平均速度的大小:
 - (C) 不管加速度如何, 平均速率总可以写成初、末速率的平均值;
 - (D) 运动物体速率不变时,速度可以变化。
- 3. 一根绳子穿过无摩擦力的滑轮(不计质量),在其一端悬挂着一只 10kg 重的砝码,绳 子的另一端有只猴子,同砝码正好取得平衡。当猴子开始向上爬时,砝码将如何动作 呢? ()。
 - (A) 砝码将向上升,而且速度越来越快;
 - (B) 砝码将以与猴子一样的速度向上升起;
 - (C) 砝码将会向下降;
 - (D) 猴子速度比砝码的大。

度由 v 增加到 $2v$,设 F 在 t_1 内作的功是 W_1 ,冲量是 I_1 ,在 t_2 内作的功是 W_2 ,冲量
是 I2. 那么, ()。
(A) $W_1 = W_2$, $I_2 > I_1$; (B) $W_1 = W_2$, $I_2 < I_1$;
(C) $W_1 < W_2$, $I_2 = I_1$; (D) $W_1 > W_2$, $I_2 = I_1$.
5.元功为力 \vec{F} 与受力质点元位移 $d\vec{r}$ 的标量积, \vec{F} 与 $d\vec{r}$ 的夹角为 α ,则下列表述错误的是()。
(A) 作用在质点上的力的瞬时功率 P 等于 \vec{F} 与质点在该瞬时的速度 \vec{v} 的标量积;
(B) 若 0 ≤α< 90°, 力做正功;
(C) 可以通过力的均值与位移的标量积来计算一段时间内力做的总功;
(D) 可以通过力对位移的积分来求力做的总功。
6.下列叙述正确的是: ()
(A) 作用于质点的力不为零,质点所受的力矩也不为零;
(B) 作用于质点的外力矢量和为零,但是外力矩之和不一定为零;
(C) 质点的角动量不为零,则作用于该质点上的力也不为零;
(D) 质点作直线运动也可能受到力矩的作用。
7. 考虑下列四个实例. 你认为哪一个实例中物体和地球构成的系统的机械能不守恒?
(A) 物体作圆锥摆运动;
(B) 抛出的铁饼作斜抛运动(不计空气阻力);
(C) 物体在拉力作用下沿光滑斜面匀速上升;
(D) 物体在光滑斜面上自由滑下。
8. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为 2J ₀ ,角速
度为 ω_0 . 然后她将两臂收回,使转动惯量减少为 $\frac{1}{6}J_0$. 这时她转动的角速度变为

4. 物体在恒力F作用下作直线运动,在时间 t_1 内速度由0增加到v,在时间 t_2 内速

() 。

- (A) $3 \omega_0$; (B) $4 \omega_0$; (C) $6 \omega_0$; (D) $12 \omega_0$.

9、火车以速率v 驶过一个在车站上的观察者、火车发出的汽笛声频率为f. 设声速是 $v_0 > v$, 问观察者听到声音频率的变化 $\triangle f$ 为()。

- (A) $\frac{v}{v_0 v} f$; (B) $\frac{v_0}{v_0 + v} f$; (C). $\frac{2v_0 v}{v_0^2 v^2} f$; (D) $\frac{v_0^2 v^2}{2v_0 v} f$

10、单摆悬挂于以加速度 a 沿水平方向直线行驶的车厢内,已知摆长为 l,则此情况下 单摆的周期为()。

- (A) $2\pi \sqrt{\frac{l}{\sqrt{g+a}}}$; (B) $2\pi \sqrt{\frac{l}{\sqrt{g^2+a^2}}}$;
- (C) $2\pi\sqrt{\frac{l}{\sqrt{g-a}}}$; (D) $2\pi\sqrt{\frac{l}{g}}$.

得分

二、填空题(本大题共5小题,每小题2分,共10分)

1. 有一平面简谐波, 其波函数为 $y = 0.2\cos 2\pi (100t - 0.4x)$ (SI 单位制),则该简谐波的振 幅是 , 波长是 , 频率是 , 波速是 。

2. 棒球质量为0.14kg, 用棒击棒球的力随时间的变化如图所示, 设棒球被击前后速度增量大小为70m/s, 求力的最大值 为_____, 打击时, 不计重力。

3. 利用皮带传动,用电动机拖动一个真空泵. 电动机上装 一半径为 0.1m 的轮子,真空泵上装一半径为 0.3m 的轮子, 如图所示. 如果电动机的转速为 1500 转/min,则真空泵上

得分

三、简答题(本大题共4小题,每小题5分,共20分)

1. 弹簧A和B,劲度系数 $K_A > K_B$ 。(1)将弹簧拉长相同的距离;(2)拉长弹簧到某个长度时,所用的力相同。分别阐述在两种情况下拉弹簧的过程中,对那个弹簧做的功更多?为什么?

2. 如图所示,现有一个质量为 m、半径为 R、长为 l 的实圆柱体,求证绕过中心直径且与圆柱垂直的轴线的转动惯量 $I=\frac{1}{4}mR^2+\frac{1}{12}ml^2$.

4. 简答: 试举出驻波和行波不同的地方。

得分

四、计算题(本大题共4小题,每小题10分,共40分)

1. 跳水运动员沿竖直方向入水,进入水面时的速率为 v_0 ,入水后地球对他的吸引和水的浮力作用相抵消,仅受水的阻碍而减速。自水面向下区 O_y 轴,其加速度为 $a_y = -kv_y^2$, v_y

为速度, k 为常量。求运动员入水后速度 v_y 随时间的变化关系以及最终速度大小。
(10分)
2. 质量为m的托盘用弹簧悬挂起来,使弹簧伸长L。今有另一质量为m的铁块在距离托盘高H处从静止开始落进托盘,求托盘向下移动的最大距离。
無同II发外群亚月知役过11年,不11年四千岁约时取入此内。

3.轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为M/4,均匀分布在其边缘上,绳子A端有一质量为M的人抓住了绳端,而在绳的另一端B系了一质量为M/4的重物,如图。已知滑轮对O轴的转动惯量 $J=MR^2/4$,设人从静止开始以相对绳匀速向上爬时,绳与滑轮间无相对滑动,求B端重物上升的加速度?

4.弹簧下面悬挂质量为 50g 的物体,物体沿竖直方向的运动学方程为 $x = 2\sin 10t$,平衡位置为势能零点(单位: cm, s).(1)求弹簧的劲度系数;(2)求最大动能;(3)求总能。