Part IA - Analysis I Theorems with Proof

Lectured by W. T. Gowers

Lent 2015

Limits and convergence

Sequences and series in R and C. Sums, products and quotients. Absolute convergence; absolute convergence implies convergence. The Bolzano-Weierstrass theorem and applications (the General Principle of Convergence). Comparison and ratio tests, alternating series test.

Continuity

Continuity of real- and complex-valued functions defined on subsets of \mathbb{R} and \mathbb{C} . The intermediate value theorem. A continuous function on a closed bounded interval is bounded and attains its bounds.

Differentiability

Differentiability of functions from \mathbb{R} to \mathbb{R} . Derivative of sums and products. The chain rule. Derivative of the inverse function. Rolle's theorem; the mean value theorem. One-dimensional version of the inverse function theorem. Taylor's theorem from \mathbb{R} to \mathbb{R} ; Lagranges form of the remainder. Complex differentiation.

Power series

Complex power series and radius of convergence. Exponential, trigonometric and hyperbolic functions, and relations between them. *Direct proof of the differentiability of a power series within its circle of convergence*.

Integration

Definition and basic properties of the Riemann integral. A non-integrable function. Integrability of monotonic functions. Integrability of piecewise-continuous functions. The fundamental theorem of calculus. Differentiation of indefinite integrals. Integration by parts. The integral form of the remainder in Taylor's theorem. Improper integrals. [6]

Contents

1	The	e real number system	3
2	Convergence of sequences		
	2.1	Sums, products and quotients	4
	2.2	Monotone-sequences property	5
	2.3	Cauchy sequences	7
	2.4	Limit supremum and infimum	8
3	Cor	nvergence of infinite sums	9

1 The real number system

Lemma. Let \mathbb{F} be an ordered field and $x \in \mathbb{F}$. Then $x^2 \geq 0$.

Proof. By trichotomy, either x < 0, x = 0 or x > 0. If x = 0, then $x^2 = 0$. So $x^2 \ge 0$. If x > 0, then $x^2 > 0 \times x = 0$. If x < 0, then x - x < 0 - x. So 0 < -x. But then $x^2 = (-x)^2 > 0$.

Lemma (Archimedean property v1)). Let $\mathbb F$ be an ordered field with the least upper bound property. Then the set $\{1,2,3,\cdots\}$ is not bounded above. (Note that these need not refer to natural numbers. We simply define 1 to be the multiplicative identity, $2=1+1,\ 3=1+2$ etc.)

Proof. If it is bounded above, then it has a supremum x. But then x-1 is not an upper bound. So we can find $n \in \{1, 2, 3, \dots\}$ such that n > x-1. But then n+1 > x but x is supposed to be an upper bound.

2 Convergence of sequences

Lemma (Archimedean property v2). $1/n \rightarrow 0$.

Proof. Let $\varepsilon > 0$. We want to find an N such that $|1/N - 0| = 1/N < \varepsilon$. So pick N such that $N > 1/\varepsilon$. This exists such an N by the Archimedean property v1. Then for all n > N, we have $0 < 1/n \le 1/N < \varepsilon$. So $|1/n - 0| \to \varepsilon$.

Lemma. Every eventually bounded sequence is bounded.

Proof. Let C and N be such that $\forall n \geq N \ |a_n| \leq C$. Then $\forall n \in \mathbb{N}, \ |a_n| \leq \max\{|a_1|, \cdots, |a_{N-1}|, C\}$.

2.1 Sums, products and quotients

Lemma (Sums of sequences). If $a_n \to a$ and $b_n \to b$, then

(i)
$$a_n + b_n \rightarrow a + b$$

Proof. Let $\varepsilon > 0$. We want to show that $\exists N$ such that $\forall n \geq N, |a_n + b_n - (a + b)| < \varepsilon$. We know that a_n is very close to a and b_n is very close to b. So their sum must be very close to a + b.

Formally, since $a_n \to a$ and $b_n \to b$, we can find N_1, N_2 such that $\forall n \geq N_1, |a_n - a| < \varepsilon/2$ and $\forall n \geq N_2, |b_n - b| < \varepsilon/2$.

Now let $N = \max\{N_1, N_2\}$. Then by the triangle inequality,

$$|(a_n + b_n) - (a+b)| \le |a_n - a| + |b_n - b| < \varepsilon.$$

Lemma (Scalar multiplication of sequences). Let $a_n \to a$ and $\lambda \in \mathbb{R}$. Then $\lambda a_n \to \lambda a$.

Proof. If $\lambda = 0$, then the result is trivial.

Otherwise, let $\varepsilon > 0$. Then $\exists N$ such that $\forall n \geq N$, $|a_n - a| < \varepsilon/|\lambda|$. So $|\lambda a_n - \lambda a| < \epsilon$.

Lemma. Let a_n be bounded $b_n \to 0$. Then $a_n b_n \to 0$.

Proof. Let $C \neq 0$ be such that $\forall n : |a_n| \leq C$. Let $\varepsilon > 0$. Then $\exists N$ such that $\forall n \geq N, |b_n| < \varepsilon/C$. Then $|a_n b_n| < \varepsilon$.

Lemma. Every convergent sequence is bounded.

Proof. Let $a_n \to l$. Then $\exists N : \forall n \geq N, |a_n - l| \leq 1$. So $|a_n| \leq |l| + 1$. So a_n is eventually bounded, and therefore bounded.

Lemma (Product of sequences). Let $a_n \to a$ and $b_n \to b$. Then $a_n b_n \to ab$.

Proof. Let $c_n = a_n - a$ and $d_n = b_n - b$. Then $a_n b_n = (a + c_n)(b + d_n) = ab + ad_n + bc_n + c_n d_n$.

But by "sum of sequences", $c_n \to 0$ and $d_n \to 0$. So $ad_n \to 0$ and $bc_n \to 0$. Since c_n is bounded, $c_n d_n \to 0$. Hence by sum of sequences, $a_n b_n \to ab$

Proof. (alternative) Observe that $a_n b_n - ab = (a_n - a)b_n + (b_n - b)a$. We know that $a_n - a \to 0$ and $b_n - b \to 0$. Since (b_n) is bounded, so $(a_n - a)b_n + (b_n - b)a \to 0$. So $a_n b_n \to ab$.

Lemma (Quotient of sequences). Let (a_n) be a sequence such that $\forall n \neq 0$. Suppose that $a_n \to a$ and $a \neq 0$. Then $1/a_n \to 1/a$.

Proof. We have

$$\frac{1}{a_n} - \frac{1}{a} = \frac{a - a_n}{aa_n}.$$

We want to show that $1/(aa_n)$ is bounded: Since $a_n \to a$, $\exists N \, \forall n \geq N$, $|a_n - a| \leq n$ a_2 . Then $\forall n \geq N, |a_n| \geq |a|/2$. Then $|1/(a_n a)| \leq 2/|a|^2$. So $1/(a_n a)$ is bounded. So $(a-a_n)/(aa_n) \to 0$ and the result follows.

Corollary. If $a_n \to a, b_n \to b, b_n, b \neq 0$. Then $a_n/b_n = a/b$.

Proof. We know that $1/b_n \to 1/b$. So the result follows by the product rule.

Lemma (Sandwich rule). Let (a_n) and (b_n) be sequences that both converge to a limit x. Suppose that $a_n \leq c_n \leq b_n$ for every n. Then $c_n \to x$.

Proof. Let $\varepsilon > 0$. We can find N such that $\forall n \geq N, |a_n - x| < \varepsilon$ and $|b_n - x| < \varepsilon$. The $\forall n \geq N$, we have $x - \varepsilon < a_n \leq c_n \leq b_n < x + \varepsilon$. So $|c_n - x| < \varepsilon$.

2.2Monotone-sequences property

Lemma. Least upper bound property \Rightarrow monotone-sequences property.

Proof. Let (a_n) be an increasing sequence and let C an upper bound for (a_n) . The C is an upper bound for the set $\{a_n : n \in \mathbb{N}\}$. By the least upper bound property, it has a supremum s.

Let $\varepsilon > 0$. Since $s = \sup\{a_n : n \in \mathbb{N}\}$, there exists an N such that $a_N > s - \varepsilon$. The $\forall n \geq N$, we have $s - \varepsilon < a_n \leq a_n \leq s$. So $|a_n - s| < \epsilon$.

Lemma. Monotone-sequences property. \Rightarrow Archimedean property.

Proof. We prove version 2, i.e. that $1/n \to 0$.

Since 1/n > 0 and is decreasing, by MSP, in converges. Let δ be the limit. We must have $\delta \geq 0$, since if $\delta < 0$, then there would exist n with $3\delta/2 < 1/n < \delta/2 < 0$. Contradiction.

If $\delta > 0$, then we can find N such that $1/N < 2\delta$. But then for all $n \ge 4N$, we have $1/n \le 1/(4N) < \delta/2$. Contradiction. Therefore $\delta = 0$.

Lemma. Monotone sequences property \Rightarrow least upper bound property.

Proof. Let A be a non-empty set that's bounded above. Pick u_0, v_0 such that u_0 is not an upper bound for A and v_0 is an upper bound. Now do a repeated bisection: having chosen u_n and v_n such that u_n is not an upper bound and v_n is, if $(u_n + v_n)/2$ is an upper bound, then let $u_{n+1} = u_n$, $v_{n+1} = (u_n + v_n)/2$. Otherwise, let $u_{n+1} + \frac{u_n + v_n}{2}$, $v_{n+1} = v_n$. Then $u_0 \le u_1 \le u_2 \le \cdots$ and $v_0 \ge v_1 \ge v_2 \ge \cdots$. Then

$$v_n - u_n = \frac{v_0 - u_0}{2^n} \to 0.$$

Note that here we used the Archimidean property since to prove $1/2^n \to 0$, we sandwich it with 1/n. But to show $1/n \to 0$, we need the Archimedean property.

By the monotone sequences property, $u_n \to s$ (since (u_n) is bounded above by v_0). Since $v_n - u_n \to 0$, $v_n \to s$. We now show that $s = \sup A$.

If s is not an upper bound, then there exists $a \in A$ such that a > s. Since $v_n \to s$, then there exists m such that $v_m < a$, contradicting the fact that v_m is an upper bound.

Let t < s. Then since $u_n \to s$, we can find m such that $u_m > t$. So t is not an upper bound. Therefore s is the least upper bound.

Lemma. Let (a_n) be a sequence and suppose that $a_n \to a$. If $\forall n, a_n \le x$, then $a \le x$.

Proof. If a > x, then set $\epsilon = a - x$. Then we can find N such that $a_N > x$. Contradiction.

Lemma. A sequence can have at most 1 limit.

Proof. Let (a_n) be a sequence, and suppose $a_n \to x$ and $a_n \to y$. Let $\epsilon > 0$ and pick N such that $\forall n \geq N$, $|a_n - x| < \varepsilon/2$ and $|a_n - y| < \varepsilon/2$. Then $|x - y| \leq |x - a_N| + |a_N - y| < \varepsilon/2 + \varepsilon/2 = \varepsilon$. Since ϵ was arbitrary, x must equal y.

Lemma (Nested intervals property). Let \mathbb{F} be an ordered field with the monotone sequences property. Let $I_1 \supseteq I_2 \supseteq \cdots$ be closed bounded non-empty intervals. Then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Proof. Let $T_n = [a_n, b_n]$ for each n. Then $a_1 \le a_2 \le \cdots$ and $b_1 \ge b_2 \ge \cdots$. For each n, $a_n \le b_n \le b_1$. So the sequence a_n is bounded above. So by the monotone sequences property, it has a limit a. For each n, $a_n \le a$, since if ever we had $a_n > a$, then $\forall m \ge n$, $a_m \ge a_n \Rightarrow a > a$, which is a contradiction.

Also, for each fixed n, we have that $\forall m \geq n, \ a_m \leq b_m \leq b_n$. So $a \leq b_n$. Thus, for all $n, \ a_n \leq a \leq b_n \Rightarrow a \in O_m$. So $a \in \bigcap_{n=1}^{\infty} I_n$.

Proposition. \mathbb{R} is uncountable.

Proof. Suppose the contrary. Let x_1, x_2, \cdots be a list of all real numbers. Find an interval that does not contain x_1 . Within that interval, find an interval that does not contain x_2 . Continue ad infinitum. Then the intersection of all these intervals is non-empty, but the elements in the intersection are not in the list. Contradiction.

Theorem (Bolzano-Weierstrass theorem). Let \mathbb{F} be an ordered field with the monotone sequences property (i.e. $\mathbb{F} = \mathbb{R}$).

Then every bounded sequence has a convergent subsequence.

Proof. Let u_0 and v_0 be a lower and upper bound, respectively, for a sequence $(a_n)_1^{\infty}$. By repeated bisection, we can find a sequence of intervals $[u_0, v_0] \supseteq [u_1, v_1] \supseteq [u_2, v_2] \supseteq \cdots$ such that $v_n - u_n = (v_0 - u_0)/2^n$, and such that each $[u_n, v_n]$ contains infinitely many terms of (a_n) .

By the nested intervals property, $\bigcap_{n=1}^{\infty} [u_n, v_n] = \emptyset$. Let x belong to the intersection. Now pick a subsequence a_{n_1}, a_{n_2}, \cdots such that $a_{n_k} \in [u_k, v_k]$. We

can do this because $[u_k, v_k]$ contains infinitely many a_n , and we have only picked finitely many of them.

Let $\varepsilon > 0$. By the Archimedean property, we can find K such that $(v_0 - u_0)/2^K \le \varepsilon$. This implies that $[u_K, v_K] \subseteq (x - \varepsilon, x + \varepsilon)$, since $x \in [u_K, v_K]$. Then $\forall k \ge K$, $a_{n_k} \in [u_k, v_k] \subseteq [u_K, v_K] \subseteq (x - \varepsilon, x + \varepsilon)$. So $|a_{n_k} - x| < \varepsilon$. \square

2.3 Cauchy sequences

Lemma. Every convergent sequence is Cauchy.

Proof. Let
$$a_n \to a$$
. Let $\varepsilon > 0$. Then $\exists N$ such that $\forall n \geq N$, $|a_n - a| < \epsilon/2$. Then $\forall p, q \geq N$, $|a_p - a_q| \leq |a_p - a| + |a - a_q| < \epsilon/2 + \epsilon/2 = \epsilon$.

Lemma. Let (a_n) be a Cauchy sequence with a subsequence (a_{n_k}) that converges to a. Then $a_n \to a$.

Proof. Let $\varepsilon > 0$. Pick N such that $\forall p, q \geq N$, $|a_p - a_q| < \varepsilon/2$. Then pick K such that $n_K \geq N$ and $|a_{n_K} - a| < \varepsilon/2$.

Then $\forall n \geq N$, we have

$$|a_n - a| \le |a_n - a_{n_K}| + |a_{n_K} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Theorem (The general principle of convergence). Let \mathbb{F} be an ordered field with the monotone-sequence property. Then every Cauchy sequence of \mathbb{F} converges.

Proof. Let (a_n) be a Cauchy sequence. Then it is eventually bounded, since $\exists N$, $\forall n \geq N$, $|a_n - a_N| \leq 1$ by the Cauchy condition. So it is bounded. Hence by Bolzano-Weierstrass, it has a convergent subsequence. Then (a_n) converges to the same limit.

Lemma. Let \mathbb{F} be an ordered field with the Archimedean property such that every Cauchy sequence converges. The \mathbb{F} satisfies the monotone sequences property.

Proof. We will show the equivalent statement that every increasing non-Cauchy sequence is not bounded above.

Let (a_n) be an increasing sequence. If (a_n) is not Cauchy, then

$$\exists \varepsilon > 0 \ \forall N \ \exists p, q > N : \ |a_p - a_q| \ge \varepsilon.$$

Since a_n is increasing, if we set q = n, we may deduce

$$\exists \varepsilon > 0 \ \forall N \ \exists p > N : \ a_p \ge a_N + \varepsilon.$$

We can construct a subsequence a_{n_1}, a_{n_2}, \cdots such that

$$a_{n_{k+1}} - a_{n_k} \ge \varepsilon$$
.

Therefore

$$a_{n_k} \geq a_{n_1} + (k-1)\varepsilon$$
.

So by the Archimedean property, (a_{n_k}) and hence (a_n) is unbounded.

2.4 Limit supremum and infimum

Lemma. Let (a_n) be a sequence. The following two statements are equivalent:

- $-a_n \rightarrow a$
- $\limsup a_n = \liminf a_n = a$.

Proof. If $a_n \to a$, then let $\varepsilon > 0$. Then

$$\exists n \ \forall m \ge n : \ a - \varepsilon \le a_m \le a + \varepsilon.$$

It follows that

$$a - \varepsilon \le \inf_{m \ge n} a_m \le \sup_{m \ge n} \le a + \varepsilon.$$

Since ε was arbitrary, it follows that

$$\lim\inf a_n = \lim\sup a_n = a.$$

Conversely, if $\liminf a_n = \limsup a_n = a$, then let $\varepsilon > 0$. Then we can find n such that

$$\inf_{m \ge n} a_m > a - \varepsilon \text{ and } \sup_{m \ge n} a_m < a + \varepsilon.$$

It follows that $\forall m \geq n$, we have $|a_m - a| < \varepsilon$.

3 Convergence of infinite sums

Lemma. If $\sum_{n=1}^{\infty} a_n$ converges. Then $a_n \to 0$.

Proof. Let
$$\sum_{n=1}^{\infty} a_n = s$$
. Then $S_N \to s$ and $S_{N-1} \to s$. Then $a_N = S_N - S_{N-1} \to 0$.

Lemma. Suppose that $a_n \geq 0$ for every n and the partial sums S_n are bounded above. Then $\sum_{n=1}^{\infty} a_n$ converges.

Proof. The sequence (S_n) is increasing and bounded above. So the result follows form the monotone sequences property.

Lemma (Comparison test). Let (a_n) and (b_n) be non-negative sequences, and suppose that $\exists C, N$ such that $\forall n \geq N, a_n \leq CB_n$. Then if $\sum b_n$ converges, then so does $\sum a_n$.

Proof. Let M > N. Also for each R, let $S_R = \sum_{n=1}^R a_n$ and $T_R = \sum_{n=1}^R b_n$. We want S_R to be bounded above.

$$S_M - S_N = \sum_{n=N+1}^M a_n \le C \sum_{n=N+1}^M b_n \le C \sum_{n=N+1}^\infty b_n.$$

So $\forall M \geq N, S_M \leq S_n + C \sum_{n=N+1}^{\infty} b_n$. Since $theS_M$ are increasing and bounded, it must converge. Note: N is fixed from the very beginning in the statement of the lemma.