Números complejos

Biomecatrónica 2025-1

Objetivos de la Clase

- Comprender el concepto de números complejos y su representación en el plano complejo
- Realizar operaciones algebraicas básicas con números complejos: suma, resta, multiplicación y división
- Aplicar la representación polar y exponencial de números complejos
- Introducir el uso de números complejos en análisis de sistemas de control

Un poco de historia (1545)

Gerolamo Cardano presenta una fórmula general para hallar la raíz de una ecuación cúbica

$$x^3 + ax + b = 0$$

$$x = \sqrt[3]{-\frac{b}{2} + \sqrt{\frac{b^2}{4} + \frac{a^3}{27}}} + \sqrt[3]{-\frac{b}{2} - \sqrt{\frac{b^2}{4} + \frac{a^3}{27}}}$$

Tan sutil, como inútil

Un poco de historia (1637)

René Descartes fue el primero en denominar a las raíces de números negativos como números imaginarios

"Para cualquier ecuación se pueden imaginar tantas raíces [como su grado sugiera], pero en muchos casos no existe ninguna cantidad que corresponda a lo que uno imagina"

Un poco de historia (1777)

Leonhard Euler fue el primero en acuñar i (j) como representación de la unidad imaginaria

Un poco de historia (1799)

Carl Friedrich Gauss demostró que toda ecuación de orden n tiene exactamente n soluciones (raíces), ni más ni menos y acuñó el término número complejo

"El camino más corto entre dos verdades en el dominio real pasa por el dominio complejo"

Jacques Hadamard

Número complejo

Un número complejo es un par ordenado de números reales (a,b) con una estructura algebraica definida por las operaciones de suma y multiplicación

a se denomina parte real y b parte imaginaria

Plano de Argand

El plano de Argand es una representación geométrica de los números complejos en un sistema de coordenadas cartesianas

La abscisa es la parte real y la ordenada representa la parte imaginaria del número complejo

Suma compleja

La suma de dos números complejos se define como

$$(a,b) + (c,d) \triangleq (a+c,b+d)$$

Producto complejo

El producto entre dos números complejos se define como

$$(a,b)\cdot(c,d)\triangleq(ac-bd,ad+bc)$$

Unidad imaginaria

Se conoce como unidad imaginaria al número complejo (0,1) y se representa por la letra j

$$(0,1) \triangleq j$$

Notación rectangular

Las definiciones anteriores implican que

$$(x_1, 0) + (x_2, 0) = (x_1 + x_2, 0)$$

 $(x_1, 0) \cdot (x_2, 0) = (x_1 x_2, 0)$

por lo que se puede asegurar que los complejos son una extensión de los reales, así $(x,0)=x,\,(0,y)=jy$

Se puede entonces usar una notación diferente, llamada rectangular, así

$$(a,b) = a + jb$$

Notación polar (trigonométrica)

La representación polar de un número complejo z=a+jb expresa el número en términos de su módulo r y su argumento θ

$$z = r \cos \theta + jr \sin \theta$$

Fórmula de Euler

La fórmula de Euler establece la relación fundamental entre las funciones trigonométricas y la función exponencial compleja

$$e^{jx} = \cos x + j\sin x$$

Identidades auxiliares

A partir de la fórmula de Euler se pueden obtener algunas identidades auxiliares para trabajo con funciones trigonométricas,

$$\cos x = \frac{e^{jx} + e^{-jx}}{2}$$

$$\sin x = \frac{e^{jx} - e^{-jx}}{2j}$$

Y establece le ecuación más bella

$$e^{j\pi} + 1 = 0$$

Operaciones aritméticas

Sean $z_1=a_1+jb_1=r_1e^{j\theta_1}$ y $z_2=a_2+jb_2=r_2e^{j\theta_2}$ se definen entonces las siguientes operaciones aritméticas

- Suma/Resta: $z_1 \pm z_2 = (a_1 + a_2) + j(b_1 \pm b_2)$
- Producto: $z_1 \cdot z_2 = r_1 r_2 e^{j(\theta_1 + \theta_2)}$
- División: $\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{j(\theta_1 \theta_2)}$
- Conjugado: $z_1^* = a_1 jb_1 = r_1 e^{-j\theta_1}$
- Exponenciación: $z_1^n = r_1^n e^{jn\theta}$

Potencia de números complejos

Las potencias enteras de números complejos son fácil de calcular en representación exponencial

$$z^n = r^n e^{jn\theta}$$

esta relación da paso a la fórmula de Moivre

$$(\cos\theta + j\sin\theta)^n = \cos n\theta + j\sin n\theta$$

que tiene diferentes utilidades en ingeniería, como por ejemplo en el diseño de filtro Chebyshev

Raíces de un número complejo

A diferencia de un número real, un número complejo tiene n raíces n-ésimas

$$\sqrt[n]{z} = \sqrt[n]{r}e^{j(\theta + 2\pi k)/n}$$

Problemas guiados

- 1. Dados $z_1 = \sqrt{2} + j\sqrt{2}$ y $z_2 = 8e^{j\pi/3}$, halle
 - a. $2z_1 z_2$
 - b. z_1^{-1}
 - c. z_1/z_2^2
 - d. $\sqrt[3]{z_1 z_2}$
- 2. Exprese la siguiente función de variable compleja en su forma polar y cartesiana $2 + i\omega$

$$X(\omega) = \frac{2 + j\omega}{3 + j4\omega}$$

Problemas guiados

3. Exprese cada una de las expresiones siguientes como una única señal senoidal

$$f(t) = \cos \omega_0 t - \sqrt{3} \sin \omega_0 t$$

$$g(t) = -3\cos\left(\omega_0 t + \frac{\pi}{4}\right) + 4\sin\left(\omega_0 t - \frac{\pi}{6}\right)$$