[0077]An example of a manufacturing method of an electrode substrate provided with a TFT element is shown below.

[0078]A chrome thin film is formed by sputtering on an alkali-free-glass board, and a gate electrode is patterned in photo lithography. Next, continuously forming of the silicon nitride film is carried out as a silicon nitride film, an amorphous silicon film, and an etching stopper as an insulator layer by plasma CVD. Next, a silicon nitride film of an etching stopper is patterned in photo lithography. Membrane formation of n+ amorphous silicon film and patterning for a TFT terminal to take a metal electrode and ohmic contact are carried out, and an ITO film used as a display electrode is formed and patterned further. Furthermore, film attachment of the aluminum is carried out by sputtering as a wiring material, and signal wiring and a metal electrode of TFT are produced in photo lithography. Etching removal of the n+ amorphous silicon film of a channel part is carried out by using a drain electrode and a source electrode as a mask, and <u>JFT</u> element preparation \*\*\*\*\*\*\*\*\*\* is obtained. In the case of a reflection type liquid crystal display substrate provided element, let a display electrode be material with high reflectance of aluminum, silver, etc. [0079] Vertical orientation films are provided on a light filter. Vertical orientation films are ( provided also about an electrode substrate provided with a thin film transistor which counters similarly. A projection for orientation division is provided so that it may correspond to an electrode substrate which counters with a projection for orientation division provided on a light filter. After pasting these two substrates together, using epoxy adhesion material as a sealing compound, a liquid crystal which carries out perpendicular orientation from an inlet established in a seal part is poured in. An inlet is closed after pouring in a liquid crystal, a polarizing plate is further pasted together to the outside of a substrate, and a liquid crystal display is produced.

144.19 of

[0087], It mixinexample Acreation of resin black matrix 3,3',4,4'-biphenyl tetracarboxylic dianhydride, The gamma-butyrolactone 1095g, 209 g of N-methyl-2-pyrrolidone, and 95.1 g of 4-4'-diaminodiphenylether, and 6.2 g of bis(3-aminopropyl)tetramethyl disiloxane and making it react at 70 the for 3 hours, added 2.96 g of phthalic anhydride, it was made to react at 70 the for 1 hour, and the polyimide precursor (polyamic acid) solution was obtained. [0088] The carbon black mill base which has the following presentation was scattered by for 30 minutes at 7000 rpm using the homogenizer, the glass bead was filtered, and the black paste was prepared. [0089]

carbon black mill base Carbon black . (MA100, Mitsubishi Chemical make) with a [ 4.6 copies of ] 90.0 copy [ 300x350-mm size ] alkali free glass Polyimide precursor solution (the product made from NEC Glass.) 24.0-copy N-methyl-2-pyrrolidone 61.4 copies Glass bead The spinner was used on the OA-2 board, the black paste was applied, and the semi-cure was carried out for 20 minutes at 135 \*\* among oven. Then, POSHI type photoresist (product [ made by SHIPURE ]"Microposit" solvent refined coal100 30cp) was applied by the spinner, and 80 \*\* dried for 210 minutes. Photoresist film thickness could be 1.5 micrometers. It exposed via the photo mask using product exposure machine PLA[ made from Canon ]-501F. [0090]Next, use for a developing solution the 23 📸 solution which contained tetramethylammonium hydroxide 2% of the weight, made the substrate dip into a developing solution, the substrate was made to rock so that it may go and come back to 10-cm width one time in 5 seconds simultaneously, and development of positive type photoresist and etching of the polyimide precursor were performed simultaneously. Developing time was made into 60 seconds. Then, positive type photoresist was exfoliated of methyl Cellosolve acetate, further, the cure was carried out for 30 minutes at 300 \*\*, and the resin black-matrix board was obtained. The thickness of a resin black matrix is 0.90 micrometer. The OD value was 3.0.

[0091](Creation of a coloring layer) Red, the JIAN truck quinone system paints respectively shown by Color index No.65300 Pigment Red 177 as green and blue paints, The Phthalocyanine Green system paints shown by Color Index No.74265 Pigment Green 36 and the copperphthalocyanine-blue system paints shown by Color Index No.74160 Pigment Blue 15-4 were prepared. Mixture dispersion of the above-mentioned paints was respectively carried out to the polyimide precursor solution used for the black matrix, and red and three kinds of green and blue coloring pastes were obtained. First, the semi-cure of the blue paste was applied and carried out for 120, ≠ 20 minutes on the resin-black-matrix board. Then, positive type photoresist (product "Microposit" solvent-refined-coalmade by SHIPURE 100 30cp) was dried at 80 🚁 after spreading by the spinner for 20 minutes. It exposed using the photo mask, and development of positive type photoresist and etching of the polyimide precursor were performed simultaneously, making 2 % of the weight of tetramethylammonium HIDOROKIDO solution immerse and rock a substrate. Then, it exfoliated of methyl Cellosolve acetate and the cure of the positive type photoresist was further carried out for 30 minutes at 300 ₹. The thickness of the blue coloring layer was 2 micrometers. The 1st step of the spacer was formed on the resin black matrix simultaneously with formation of a blue picture element. Size of the spacer was made into a 20micrometer angle.

[0092] After substrate rinsing, the 2nd step of the spacer was formed on the resin black matrix with formation of the green picture element like the blue coloring layer. The thickness of the green coloring layer made size of 2 micrometers and a spacer a 20-micrometer angle. [0093] Furthermore, after substrate rinsing, like the blue coloring layer, the 3rd step of the spacer was formed on the resin black matrix with formation of the red picture element, and the light filter was produced. The thickness of the red picture element part made size of 2 micrometers and a spacer a 15-micrometer angle.

[0094] The chelate solution 1.5g obtained in the amic acid system polyorganosiloxane solution 7.5g obtained in the example 1 of preparation, the polyorganosiloxane solution 10g obtained in the example 2 of preparation, and the example 3 of preparation was mixed, and the constituent

for transparent resin was obtained. First half transparent resin was applied on the substrate with which the black matrix and the trichromatic coloring layer were formed, it dried for 10 minutes at 80,\*\*, subsequently the cure was carried out for 60 minutes at 280,\*\*, and 1-micrometer-thick transparent protection layer was formed.

[0095]In thickness, on the substrate with which transparent protection layer was formed, surface resistance formed the ITO film of 20ohms / \*\* at 150 nm by sputtering process.

[0096] The polyimide precursor solution used for the black matrix was applied to said ITO film Kami, and the semi-cure was carried out to him for 20 minutes at 135. Then, positive type photoresist was applied and it dried for 20 minutes at 80. It exposed via the photo mask, it was immersed in 2% of the weight of tetramethylammonium hydroxide solution, and development of photoresist and etching of the polyimide precursor were carried out simultaneously. It exfoliated in methyl Cellosolve, subsequently the cure of the photoresist was carried out for 30 minutes at 300. And the 1-micrometer-thick spacer top layer and the stripe shape projection for division orientation were formed.

[0097]The size of the spacer top layer was 12 micrometers x 12 micrometers, and the lower side of the section made the projection of stripe shape the trapezoid 15 micrometers and whose top chord are 14 micrometers. The stripe shape projection has been arranged at intervals of a pixel in the position which bisects a 1-pixel long side, as shown in <u>drawing 2</u>, and it has pierced through the whole indicator of the light filter.

[0098] The light filter of this invention was obtained in this way. The volume resistance of the transparent polyimide layer in which the projection was formed was 10 <sup>13</sup> omegacm. [0099] The height of the spacer which are the thickness which lengthened the indicator thickness of the target pigmented layer with the paste characteristic from the sum total of the thickness of each pigmented layer and resin BM thickness which were laminated, and the height from the surface of the ITO layer of a light transmission portion provided on one layer of coloring layers to a spacer crowning differs. Spacer height was 5.5 micrometers.

[0100]The area of the spacer pars basilaris ossis occipitalis provided by lamination of the coloring layer on the resin black matrix, i.e., the spacer crowning to which the area of a blue part contacts 400-micrometer<sup>2</sup> and a counter substrate, was 144-micrometer<sup>2</sup>. Formed the spacer by a color pile also on the frame formed around the screen by the resin black matrix. It is made for the area of the top layer to become twice a spacer in a screen, and the number of the spacer per unit area is set to one half, and it was made for the touch area of the spacer to the counter substrate per unit area to become the same as the inside of a screen in that case. Furthermore, also on the substrate besides a frame, by lamination of the pattern by the resin layer used for production of a resin black matrix like the inside of a screen, and the pattern of a resin layer used for production of a coloring layer, at the same time as it produced the spacer in a light filter and a screen, the spacer was formed. It formed so that the touch area of the spacer per unit area and a counter substrate might become the same as that of the inside of a screen in that case.

[0101](Production of an electrode substrate) The chrome thin film was formed by sputtering on the alkali-free-glass board, and it patterned after the gate electrode in photo lithography. Next, by plasma CVD, carried out the 700-nm-thick silicon nitride film as an insulating layer, the 100-nm-thick amorphous silicon film was carried out as channel layers, and continuously forming of the 500-nm-thick silicon nitride film was carried out as an etching stopper layer. Next, the silicon nitride film of the etching stopper layer was patterned in photo lithography. n+ amorphous silicon film for a TFT terminal and a metal electrode to take ohmic contact was formed. Besides, the ITO film used as a display electrode was formed and patterned. Furthermore, film attachment of the aluminum as a wiring material was carried out by sputtering, and signal wiring and the metal electrode of TFT were produced in photo lithography. The electrode substrate which carried out etching removal of the n+ amorphous silicon film of a channel part by having used the drain electrode and the source electrode as the mask, and was provided with the TFT element was obtained.

[0102](Production and evaluation of a color liquid crystal display) Vertical orientation films were

provided on the light filter of this invention. Vertical orientation films were provided also about the electrode substrate provided with the thin film transistor which counters similarly. The stripe shape projection on a light filter and the same stripe shape projection have been arranged at intervals of a pixel in the position which bisects a 1-pixel long side also about the electrode substrate which counters. However, when it pasted together to a light filter, the stripe shape projection was arranged by turns for every pixel with the stripe projection on a light filter. After pasting these two substrates together, using epoxy adhesion material as a sealing compound, the liquid crystal which carries out perpendicular orientation from the inlet established in the seal part was poured in. The inlet was closed after pouring in a liquid crystal, the polarizing plate was further pasted together to the outside of a substrate, and the liquid crystal display was produced.

[0103]When 20 liquid crystal displays were produced in this way, there was no liquid crystal display which the transparent conductive layer on a light filter and the electrode substrate which counters short-circuited, and it was good. The orientation of the liquid crystal was good, and since there was no spacer in a light transmission section, there was no light leakage by a spacer.

[0104]When 20 liquid crystal displays were produced like Example 1 except not having provided example 2 transparent protection layer, there was no liquid crystal display which the transparent conductive layer on a light filter and the electrode substrate which counters short-circuited, and it was good. Liquid crystal orientation was good, and since there was no spacer in a light transmission section, there was no light leakage by a spacer.

Example 31 ed, the JIAN truck quinone system paints respectively shown by Color index No.65300 Pigment Red 177 as green and blue paints, The Phthalocyanine Green system paints shown by Color Index No.74265 Pigment Green 36 and the copper-phthalocyanine-blue system paints shown by Color Index No.74160 Pigment Blue 15-4 were prepared.

[0105]styrene: — methyl methacrylate: — the acrylic copolymer resin powder 6g which is methacrylic acid =30:30:40. Mixture dispersion of the above-mentioned paints was respectively carried out to the cyclopentanone solution which contains 6 g of trimethylolpropane triacrylate, and 3 g of photopolymerization initiators (Tiba Speciality Chemicals "IRGACURE" 369) as polyfunctional monomer, and red and three kinds of green and blue coloring pastes were obtained.

[0106] The blue paste was applied on the resin-black-matrix board produced like Example 1, and hot air drying was carried out for 10 minutes at 80 me. It exposed using the photo mask, and negatives were developed, dipping a substrate into an alkali developing solution and making a substrate rock simultaneously. Subsequently, the cure was carried out for 30 minutes at 220 me. The thickness of the blue coloring layer was 2 micrometers. The 1st step of the spacer was formed on the resin black matrix simultaneously with formation of a blue picture element. Size of the spacer was made into a 30-micrometer angle.

[0107]After substrate rinsing, the 2nd step of the spacer was formed on the resin black matrix with formation of the green picture element like the blue coloring layer. The thickness of the green coloring layer made size of 2 micrometers and a spacer a 30-micrometer angle. [0108]Furthermore, after substrate rinsing, like the blue coloring layer, the 3rd step of the spacer was formed on the resin black matrix with formation of the red picture element, and the light filter was produced. The thickness of the red picture element part made size of 2 micrometers and a spacer a 20-micrometer angle.

[0109]In thickness, surface resistance formed the ITO film of 20ohms / \*\* at 150 nm by sputtering process on the substrate with which a black matrix, red, blue, and a green coloring layer were formed.

[0110]styrene: — methyl methacrylate: — the acrylic copolymer resin powder 6g which is methacrylic acid =30:30:40. The cyclopentanone solution which contains 6 g of trimethylolpropane triacrylate and 3 g of photopolymerization initiators (Tiba Speciality Chemicals "IRGACURE" 369) as polyfunctional monomer was applied on said ITO film, and hot air drying was carried out for 10 minutes at 80. It exposed using the photo mask, and negatives were developed, a substrate being immersed in an alkali developing solution and making

a substrate rock simultaneously. Subsequently, the cure was carried out for 30 minutes at 220 %, and the 1-micrometer-thick spacer top layer and the stripe shape projection for division orientation were formed. The size of the spacer top layer was 12 micrometers x 12 micrometers, and the lower side of the section made the projection of stripe shape the trapezoid 15 micrometers and whose top chord are 14 micrometers. The stripe shape projection has been arranged at intervals of a pixel in the position which bisects a 1-pixel long side, as shown in drawing 3, and it has pierced through the whole indicator of the light filter.

[0111]The light filter of this invention was obtained in this way. The volume resistance of the transparent acrylic resin layer in which the projection was formed was 10 <sup>12</sup> omegacm. [0112]The height of the thickness which lengthened the indicator thickness of the target pigmented layer from the sum total of the thickness of each pigmented layer and resin BM thickness which were laminated from the spreading characteristic of the paste, and the spacer which is the height from the surface of an ITO layer to a spacer crowning differs. Spacer height was 5.3 micrometers.

[0113] The area of the spacer pars basilaris ossis occipitalis provided by lamination of the coloring layer on the resin black matrix, i.e., the spacer crowning to which the area of a blue part contacts 400-micrometer<sup>2</sup> and a counter substrate, was 144-micrometer<sup>2</sup>. The spacer by a color pile was formed also on the frame formed around the screen by the resin black matrix like Example 1.

[0114] The light filter and the electrode substrate were pasted together like Example 1, liquid crystal pouring, inlet closure, and polarizing plate attachment were carried out, and the liquid crystal display was produced.

[0115]When 20 liquid crystal displays were produced in this way, there was no liquid crystal display which the transparent conductive layer on a light filter and the electrode substrate which counters short-circuited, and it was good. The orientation of the liquid crystal was good, and since there was no spacer in a light transmission section, there was no light leakage by a spacer.

[0116] The portion which reduced transmissivity by two coats of the coloring layer was formed instead of forming example 4 black matrix. That is, red and a blue and green coloring layer were formed like Example 1 on the alkali-free-glass board without a black matrix, and between two adjacent pixels which the black matrix was burying at this time was filled up with the two coats of coloring material which is coloring two pixels.

[0117] Three amorous glance is formed on the two coats portion of two coloring layers between pixels at dot form, and a part of spacer is constituted. After forming an ITO layer still like Example 2, without providing transparent protection layer, the top layer of a dot form spacer and the projection for orientation division were simultaneously formed using the polyimide precursor solution.

[0118] The height of the spacer which is the height from the surface of an ITO layer to a spacer crowning was 4.8 micrometers.

[0119]. Formed the spacer by a color pile also on the frame formed around the screen by two coats of the coloring layer. It is made for the area of the top layer to become twice a spacer in a screen, and the number of the spacer per unit area is set to one half, and it was made for the touch area of the spacer to the counter substrate per unit area to become the same as the inside of a screen in that case. Furthermore, also on the substrate besides a frame, at the same time as it produced the spacer in a light filter and a screen, the spacer was formed. It formed so that the touch area of the spacer per unit area and a counter substrate might become the same as that of the inside of a screen in that case.

[0120] The light filter and the electrode substrate were pasted together like Example 1, liquid crystal pouring, inlet closure, and polarizing plate attachment were carried out, and the liquid crystal display was produced.

[0121]When 20 liquid crystal displays were produced in this way, there was no liquid crystal display which the transparent conductive layer on a light filter and the electrode substrate which counters short-circuited, and it was good. The orientation of the liquid crystal was good, and

since there was no spacer in a light transmission section, there was no light leakage by a spacer.

[0122] The black matrix, the coloring layer, the transparent protective film, and the ITO layer were formed like example 5 example 1. The red paste was applied on this ITO layer, and the semi-cure was carried out for 20 minutes at 120 \*\* Then, positive type photoresist was applied and it dried for 20 minutes at 80 \*. It exposed using the photo mask, it was immersed in 2 % of the weight of tetramethylammonium hydroxide solution, and development of photoresist and etching of the polyimide precursor were carried out simultaneously. Photoresist was exfoliated of methyl Cellosolve acetate, the cure was carried out for 30 minutes at 300 more \*\*, and the spacer top layer with a thickness of 1 micrometer of the same pattern as Example 1 and the projection for division orientation were produced. The red coloring layer raised the light blocking effect in piles also to the frame part still more nearly simultaneous.

[0123]The volume resistance value of the red coloring layer in which the projection for division orientation was formed was 10 <sup>12</sup>omegacm. The spacer height which is height from the ITO surface to a spacer crowning was 5.5 micrometers.

[0124] The light filter and the electrode substrate were pasted together like Example 1, liquid crystal pouring, inlet closure, and polarizing plate attachment were carried out, and the liquid crystal display was produced.

[0125]When 20 liquid crystal displays were produced in this way, there was no liquid crystal display which the transparent conductive layer on a light filter and the electrode substrate which counters short-circuited, and it was good. The orientation of the liquid crystal was good, and since there was no spacer in a light transmission section, there was no light leakage by a spacer.

[0126] The polyimide precursor solution was used for example 6 ITO-film Kami, only the projection for orientation division was formed, and the liquid crystal display was produced like Example 1 except not having made the top layer of the dot form spacer, and having made the size of the 3rd step of spacer by a blue coloring layer into a 10-micrometer angle. Therefore, the spacer crowning is covered with the ITO layer. The area of the spacer crowning in contact with a counter substrate was 100-micrometer<sup>2</sup>. The height of the spacer which is the height from the surface of an ITO layer to a spacer crowning was 4.7 micrometers.

[0127] The light filter and the electrode substrate were pasted together like Example 1, liquid crystal pouring, inlet closure, and polarizing plate attachment were carried out, and the liquid crystal display was produced.

[0128]When 20 liquid crystal displays were produced in this way, there were three liquid crystal displays which the pixel which the transparent conductive layer on a light filter and the electrode substrate which counters short—circuit, and does not operate generated. The orientation of the liquid crystal was good, and since there was no spacer in a light transmission section, there was no light leakage by a spacer.

[0129] The black matrix, the coloring layer, the transparent protective film, and the ITO layer were formed like example 7 Example 1. The black paste of Example 1 was applied on this ITO layer, and the semi-cure was carried out for 20 minutes at 135 \*\*. Then, positive type photoresist was applied and it dried for 20 minutes at 80 \*\*. It exposed using the photo mask, it was immersed in 2 % of the weight of tetramethylammonium hydroxide solution, and development of photoresist and etching of the polyimide precursor were carried out simultaneously.

Photoresist was exfoliated of methyl Cellosolve acetate, the cure was carried out for 30 minutes at 300 more \*\*, and the spacer top layer with a thickness of 1 micrometer of the same pattern as Example 1 and the projection for division orientation were produced.

[0130]The volume resistance value of the black coloring layer in which the projection for division orientation was formed was 10  $^6$  omegacm.

[0131] The spacer height which is height from the ITO surface to a spacer crowning was 5.5 micrometers.

[0132] The light filter and the electrode substrate were pasted together like Example 1, liquid crystal pouring, inlet closure, and polarizing plate attachment were carried out, and the liquid

# 拒絕理由通知書

特許出願の番号

特願2000-007176

起案日

平成19年11月27日

特許庁審查官

右田 昌士

9513 2L00

特許出願人代理人

岡本 啓三 様

適用条文

第29条第2項、第37条

この出願は、次の理由によって拒絶をすべきものです。これについて意見がありましたら、この通知書の発送の日から60日以内に意見書を提出してください。

## 理 由

理由1

この出願は、下記の点で特許法第37条に規定する要件を満たしていない。

記

請求項1-7に記載される発明と請求項8-29に記載される発明に共通する課題は、表示品質の向上であるが、この課題は、本願出願前に周知であり、本願出願時未解決の課題ではないから、両発明は特許法第37条第1号の関係を満たさない。

また、請求項1-7に記載される発明の主要部は、「セルギャップを一定に維持するためのスペーサと、該スペーサよりも高さが低いドメイン規制用突起部とを、同時に形成すること」であり、請求項8-29に記載される発明の主要部は、上記のものとは相違するから、特許法第37条第2号に規定する関係を有すると認められない。

さらに、各発明は、特許法第37条第3号、第4号、第5号に規定する関係のいずれを満たすものとも認められない。

この出願は特許法第37条の規定に違反しているので、請求項1-7以外の請求項に係る発明については特許法第37条以外の要件についての審査を行っていない。

理由2

この出願の下記の請求項に係る発明は、その出願前に日本国内又は外国において、頒布された下記の刊行物に記載された発明又は電気通信回線を通じて公衆に

crystal display was produced.

[0133]When 20 liquid crystal displays were produced in this way, there was no liquid crystal display which the transparent conductive layer on a light filter and the electrode substrate which counters short-circuited, and it was good. However, the volume resistance value of the projection for division orientation was insufficient, and the orientation of the liquid crystal near the projection was in disorder. Since there was no spacer in a light transmission section, there was no light leakage by a spacer.

[0134] The dot form spacer which laminated 1 suit of comparative example pigmented layer was not formed, but only the projection for orientation division was formed on the ITO film, The liquid crystal display was instead produced like Example 1 in front of a light filter and electrode substrate lamination except having sprinkled a polystyrene sphere spacer 5.5 micrometers in diameter on the light filter.

[0135]When 20 liquid crystal displays were produced in this way, there was no liquid crystal display which the transparent conductive layer on a light filter and the electrode substrate which counters short-circuited, and it was good. However, since a light transmission section had a spacer, there was light leakage by a spacer, and also this projection was crushed in the portion whose light filter the polystyrene sphere suited on the projection for division orientation at the time of electrode substrate lamination, and the orientation disorder of the liquid crystal was seen in this neighborhood.

# (19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

# 特開平11-248921

(43)公開日 平成11年(1999)9月17日

| (51) Int.Cl. <sup>6</sup> |        | 識別記号 | <b>F</b> I |        |     |
|---------------------------|--------|------|------------|--------|-----|
| G02B                      | 5/20   | 101  | G 0 2 B    | 5/20   | 101 |
| G02F                      | 1/1335 | 505  | G02F       | 1/1335 | 505 |
|                           | 1/1339 | 500  |            | 1/1339 | 500 |

### 審査請求 未請求 請求項の数9 OL (全 13 頁)

| (21)出願番号 | 特顯平10-46875       | (71)出願人 000003159<br>東レ株式会社                      |
|----------|-------------------|--------------------------------------------------|
| (22)出願日  | 平成10年(1998) 2月27日 | 東京都中央区日本橋室町2丁目2番1号                               |
|          |                   | (72)発明者 野中 晴支<br>滋賀県大津市園山一丁目1番1号 東レ<br>式会社滋賀事業場内 |
|          |                   | (72)発明者 赤松 孝義<br>滋賀県大津市園山一丁目1番1号 東レ<br>式会社滋賀事業場内 |
|          |                   |                                                  |

### (54) 【発明の名称】 カラーフィルター及びこれを用いた液晶表示装置

### (57)【要約】

【課題】本発明の課題は、表示品位に優れるとともに高 視野角を達成できる液晶表示装置を提供することと、さ らに生産性に優れ、かつ基板の貼り合わせズレによるカ ラーフィルター上の透明導電層と対向する電極基板間の 短絡が発生しない液晶表示装置を提供することにある。

【解決手段】カラーフィルター上に固定されたドット状 スペーサーと分割配向用の突起とを有するカラーフィル ター、さらには、前記ドット状スペーサー最上層と分割 配向用突起とが同じ材料からなるカラーフィルターおよ びこれを使用した液晶表示装置。



#### 【特許請求の範囲】

【請求項1】カラーフィルター上に固定された複数個のドット状スペーサーを有し、かつカラーフィルター上に分割配向のための突起を有することを特徴とするカラーフィルター。

【請求項2】前記ドット状スペーサーが非表示領域にあることを特徴とする請求項1記載のカラーフィルター。 【請求項3】カラーフィルターが少なくとも3原色からなる着色層および3原色の少なくとも1色を積層して形成された複数個のドット状スペーサーから構成されることを特徴とする請求項1記載のカラーフィルター。

【請求項4】前記ドット状スペーサーを構成する最上層と前記突起が同一の組成であることを特徴とする請求項1記載のカラーフィルター。

【請求項5】前記ドット状スペーサーを構成する最上層と前記突起が着色されていることを特徴とする請求項1 記載のカラーフィルター。

【請求項6】導電層上に前記ドット状スペーサーの最上 層および前記突起が配置されてなることを特徴とする請 求項1記載のカラーフィルター。

【請求項7】前記ドット状スペーサーの最上層の体積抵抗値が $10^7\Omega$ c m以上であることを特徴とする請求項1記載のカラーフィルター。

【請求項8】前記ドット状スペーサーおよび前記突起がポリイミド系樹脂またはアクリル系樹脂であることを特徴とする請求項1記載のカラーフィルター。

【請求項9】請求項1~8に記載のカラーフィルターを 使用したことを特徴とする液晶表示装置。

#### 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は、スペーサー機能を 有するカラーフィルター及びこれを用いた液晶表示装置 に関する。

### [0002]

【従来の技術】従来使用されている液晶表示装置は、液晶層の厚み(セルギャップ)を保持するために、一般に、2枚の液晶表示装置用基板間にプラスチックビーズ、ガラスビーズ又はガラス繊維を挟んでスペーサーとして使用している。プラスチックビーズ等のスペーサーは気流に乗せて散布されるため、電極基板とカラーフィルター基板のどの位置に配置されるか定まらない。

【0003】セルギャップを保持するために、特開昭56-140324、特開昭63-824054、特開平4-93924、特開平5-196946、特開平7-318950には、カラーフィルターを形成する着色層を重ね合わせた構造をスペーサーとして用いた液晶表示装置が提案されている。

### [0004]

【発明が解決しようとする課題】プラスチックビーズ等 の体積抵抗値が  $1 \times 10^7 \Omega$  c m以上であをスペーサーとして用いる液晶表示装置においては、プ 50 とする (1) に記載のカラーフィルター。

ラスチックビーズ等のスペーサーの位置が定まらず、液晶表示装置用基板上の表示領域(遮光部を除く画面内の光透過部)にもスペーサーが存在する。このスペーサーによる光の散乱や透過により、液晶表示装置の表示品位が低下するという問題がある。

【0005】プラスチックビーズ等のスペーサーを散布して使用する液晶表示装置には、この他にも下記の問題がある。すなわち、気流や静電気の影響でスペーサーが均一に散布されず、スペーサーが凝集することがある。 70 スペーサーが凝集すると凝集部分の表示品質が悪化し、またセルギャップの正確な保持の面でも問題がある。

【0006】この問題点に対して、特開昭56-140324、特開昭63-824054、特開平4-93924、特開平5-196946では、2色あるいは3色の着色層を重ね合わせた構造をスペーサーとして用いることが提案されている。一方、液晶表示装置の大画面化やモニタ用途への展開に伴い視野角の拡大が求められている。視野角拡大のために液晶の配向方向を1ピクセル内で分割する分割配向技術が採用されているが、その1つとしてセルギャップ内に形成したテーパー付き突起で液晶の配向方向を変える技術が提案されている。

【0007】本発明の目的は、十分なセルギャップを実現するとともに、セルギャップ内に形成された突起による配向分割を実現するカラーフィルターの簡素化された構成を提供し、表示品位を向上し、液晶表示装置の生産性を上げることにある。

#### [0008]

【課題を解決するための手段】本発明の目的は以下の構成により達成される。

30 【0009】1)カラーフィルター上に固定された複数 個のドット状スペーサーを有し、かつカラーフィルター 上に分割配向のための突起を有することを特徴とするカラーフィルター。

【0010】2)ドット状スペーサーが非表示領域にあることを特徴とする(1)に記載のカラーフィルター。 【0011】3)カラーフィルターが少なくとも3原色からなる着色層および3原色の少なくとも1色を積層して形成された複数個のドット状スペーサーから構成されることを特徴とする(1)に記載のカラーフィルター。 【0012】4)ドット状スペーサーを構成する最上層と前記突起が同一の組成であることを特徴とする(1)に記載のカラーフィルター。

【0013】5) 前記突起が着色されていることを特徴とする(1) に記載のカラーフィルター。

【0014】6)導電層上に前記ドット状スペーサーの 最上層および前記突起が配置されてなることを特徴とす る(1)に記載のカラーフィルター。

【0015】7)ドット状スペーサーを構成する最上層の体積抵抗値が $1 \times 10^7 \Omega$  c m以上であることを特徴とする(1)に記載のカラーフィルター。

40

(3)

3

【0016】8)ドット状スペーサーおよび突起がポリイミド系樹脂またはアクリル系樹脂であることを特徴とする(1)に記載のカラーフィルター。

【0017】9)(1)~(8)に記載のカラーフィル ターを使用したことを特徴とする液晶表示装置。

#### [0018]

【発明の実施の形態】通常、液晶表示装置はスペーサーを介して貼り合わされた2枚の基板の間に液晶を挟んだ構造をとる。本発明の液晶表示装置は、カラーフィルターおよびカラーフィルターと対向する電極基板とが貼り合わせられる。本発明の電極基板は、例えばTFT基板のようなトランジスターで駆動される電極を複数個有する基板や透明導電膜による配線が施された基板である。本発明のドット状スペーサーはカラーフィルター上に形成されるが、これと対向する位置の電極基板上にもドット状スペーサーを形成してもよい。

【0019】液晶表示装置において、表示品位を向上させるために、基板上の非表示領域に固定されたスペーサーを有することが好ましい。非表示領域とは、液晶表示装置に組みあがった状態での画面内の遮光部と画面外に相当する領域を指す。遮光部は基板上に形成された金属配線やTFTなどの能動素子を外部から見えないように黒色樹脂や黒色金属酸化物を配置した部分である。また、遮光部は、画素間や画素と配線間の隙間から抜けてくる光を遮光する役割もある。また、本発明においては液晶に電圧が印加されず実質的に常時黒表示状態である部分も非表示領域とする。一方、表示領域は、前記の非表示領域以外の領域を指す。

【0020】本発明のドット状スペーサーは非表示領域 にあることが開口率を高め光を有効利用できる点や傾斜\*30

\*による液晶配向の乱れが表示不良につながりにくい点で 好ましい。

【0021】本発明のドット状スペーサーを構成する材料としては、ポリイミド系樹脂、エポキシ系樹脂、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂等の感光性又は非感光性の材料が好ましく用いられる。着色層でスペーサーを形成する場合には、これらの樹脂中に着色剤を分散又は溶解させたものを用いる。

10 【0022】感光性の樹脂としては、光分解型樹脂、光 架橋型樹脂、光重合型樹脂などのタイプがあり、特に、 エチレン不飽和結合を有するモノマ、オリゴマ又はポリ マと紫外線によりラジカルを発生する開始剤とを含む感 光性組成物、感光性ポリアミック酸組成物等が好適に用 いられる。

【0023】非感光性の樹脂としては、上記の各種ポリマなどで現像処理が可能なものが好ましく用いられるが、透明導電層の製膜工程や液晶表示装置の製造工程でかかる熱に耐えられるような耐熱性を有する樹脂が好ましく、また、液晶表示装置の製造工程で使用される有機溶剤への耐性を持つ樹脂が好ましく、中でもポリイミド系樹脂が特に好ましい。

【0024】ここで、ポリイミド系樹脂としては、特に限定されるものではないが、通常下記一般式で表される構造単位を主成分とするポリイミド前駆体を、加熱又は適当な触媒によってイミド化したものが好適に用いられる。

[0025]

【化1】

(СООН) л

ここで上記一般式のnは0あるいは1~4の数である。R<sup>1</sup>は酸成分残基であり、R<sup>1</sup>は少なくとも2個の炭素原子を有する3価または4価の有機基を示す。耐熱性の面から、R<sup>1</sup>は環状炭化水素、芳香族環または芳香族複素環を含有し、かつ炭素数6から30の3価または4価の基が好ましい。R<sup>1</sup>の例として、フェニル基、ビフェニル基、ターフェニル基、ナフタレン基、ペリレン基、ジフェニルエーテル基、ジフェニルスルフォン基、ジフェニルプロパン基、ベンゾフェノン基、ビフェニルトリフルオロプロパン基、シクロブチル基、シクロペンチル基などから誘導された基が挙げられるがこれらに限定されるものではない。

【0026】R<sup>2</sup>は少なくなくとも2個の炭素原子を有する2価の有機基を示す。耐熱性の面から、R<sup>2</sup>は環状

炭化水素、芳香族環または芳香族複素環を含有し、かつ 炭素数 6 から 3 0 の 2 価の基が好ましい。 R<sup>2</sup>の例として、フェニル基、ビフェニル基、ターフェニル基、ナフタレン基、ペリレン基、ジフェニルエーテル基、ジフェニルスルフォン基、ジフェニルプロパン基、ベンゾフェノン基、ビフェニルトリフルオロプロパン基、ジフェニルメタン基、シクロヘキシルメタン基などから誘導された基が挙げられるがこれらに限定されるものではない。一般式(1)で表される構造単位を主成分とするポリマーは R<sup>1</sup>、 R<sup>2</sup>がこれらの内各々 1 個から構成されていても良いし、各々 2 種以上から構成される共重合体であっても良い。

【0027】またアクリル系樹脂を含むスペーサーも好 50 ましく使用される。このとき用いられるアクリル系樹脂

は、アクリル酸、メタクリル酸、メチルアクリレート、 メチルメタクリレートなどのアルキルアクリレートまた はアルキルメタクリレート、環状のアクリレートまたは メタクリレート、ヒドロキシエチルアクリレートまた は、メタクリレートなどの内から3~5種類程度のモノ マを用いて、分子量5000~20000程度に重合 した樹脂を用いる。なお、スペーサーがアクリル樹脂を 含むものである場合、スペーサーを構成する成分中のア クリル樹脂の含有量は、50重量%以上が好ましく、6 0重量%以上がさらに好ましい。アクリル系樹脂スペー 10 サーを構成する材料が感光性か非感光性は制限されない が、スペーサーの微細加工のしやすさの点から感光性の 材料が好ましく用いられる。感光性樹脂の場合には、ア クリル系樹脂と光重合性モノマ、光重合開始剤を配合し た組成物が好ましく用いられる。光重合性モノマとして は、2官能、3官能、多官能モノマがあり、2官能モノ マとして、1,6-ヘキサンジオールジアクリレート、 エチレングリコールジアクリレート、ネオペンチルグリ コールジアクリレート、トリエチレングリコールアクリ レートなどがあり、3官能モノマとして、トリメチロー 20 ルプロパントリアクリレート、ペンタエリスリトールト リアクリレート、トリス(2-ヒドロキシエチル)イソ シアネートなどがあり、多官能モノマとしてジトリメチ ロールプロパンテトラアクリレート、ジペンタエリスリ トールペンタおよびヘキサアクリレートなどがある。ま た、光重合開始剤としては、ベンゾフェノン、チオキサ ントン、イミダゾール、トリアジン系などが単独もしく は混合で用いられる。

【0028】上記スペーサーを構成する樹脂には、必要 に応じて、着色剤を添加しても良い。着色剤としては、 有機顔料、無機顔料、染料等を好適に用いることがで き、さらには、紫外線吸収剤、分散剤、レベリング剤等 の種々の添加剤を添加してもよい。スペーサーに遮光性 が要求される際には、カーボンブラック、酸化チタン、 四酸化鉄等の金属酸化物粉、金属硫化物粉、金属粉とい った遮光剤の他に、赤、青、緑色等の顔料の混合物等を 用いることができる。この中でも、特にカーボンブラッ クは遮光性が優れており、特に好ましい。スペーサーに 遮光性と絶縁性が要求される際には、酸化アルミニウ ム、酸化チタン、酸化鉄等の絶縁性無機化合物微粒子や 40 表面に樹脂を被覆したカーボンブラックを用いても良 い。

【0029】ドット状スペーサーを構成する樹脂に着色 剤や遮光剤を添加する量に特に制限はないが、樹脂成分 と着色剤と遮光剤成分との重量比が10:0~1:9で あることが、ドット状スペーサー形成の点から好まし い。

【0030】スペーサーを形成する工程としては、未硬 化の樹脂を基板上に塗布、乾燥した後に、パターニング を行う方法が、精度良くスペーサーを形成できる点から

好ましく用いられる。未硬化の樹脂を塗布する方法とし ては、ディップ法、ロールコーター法、スピナー法、ダ イコーティング法、ワイヤバーコーティング法などが好 適に用いられ、この後、オーブンやホットプレートを用 いて加熱乾燥(セミキュア)を行う。セミキュア条件 は、使用する樹脂、溶媒、樹脂塗布量により異なるが、 通常60~200℃で1~60分加熱することが好まし い。このようにして得られた樹脂被膜は、樹脂が非感光 性の樹脂である場合は、その上にフォトレジスト膜を形 成した後に、また、樹脂が感光性の樹脂である場合は、 そのままかあるいは酸素遮断膜を形成した後に、露光、 現像を行う。必要に応じて、フォトレジスト膜又は酸素 遮断膜を除去し、また、加熱乾燥(本キュア)する。本 キュア条件は、樹脂の種類や塗布量により若干異なる が、ポリイミド系樹脂の場合には、通常200~300 ℃で1~60分加熱するのが一般的である。アクリル系 樹脂の場合には、本キュア条件は、通常150~300 ℃で1~60分加熱するのが一般的である。以上のプロ セスにより、透明基板上にスペーサーが形成される。1 回のパターニングで十分な高さを得られることが困難で ある場合には、複数の樹脂層を積層することも可能であ

【0031】転写法によってスペーサーを形成してもよ い。すなわち、あらかじめ基材上に感光性を付与した樹 脂層を形成した転写基板を準備し、これを必要に応じ熱 や圧力を加えつつ基板の上に重ね合わせ、露光・現像 し、しかる後に基材を剥離してスペーサーを基板上に形 成する方法、もしくはあらかじめフォトリソグラフィー 等にて転写基板上にスペーサーを形成しておいてから基 板上に熱や圧力を加えてスペーサーを転写する方法であ る。

【0032】スペーサーの形状、すなわち、スペーサー を基板と平行な面で切断した場合の横断面の形状は、特 に限定されないが、円、楕円、角が丸い多角形、十字、 T字又はL字形が好ましい。また、積層によりスペーサ ーを形成する場合においても、それぞれの層のスペーサ 一の形状は、特に制限されないが、円、楕円、角が丸い 多角形、十字、T字又はL字形が好ましく、これらを任 意に積層しスペーサーを形成してよい。

【0033】ドット状スペーサーの高さは、1~9 µ m が好ましく、さらには2~8 $\mu$ mが好ましい。スペーサ 一の高さが1μmよりも低いと、十分なセルギャップを 確保することが困難である。一方、9 µ mを超えると、 液晶表示装置のセルギャップが大きくなりすぎて駆動に 要する電圧が高くなり好ましくない。なお、スペーサー の高さとは、1個のスペーサーに着目し、カラーフィル ターの開口部着色層と該スペーサーの最上表面との間の 距離を意味する。基板上の表示部平坦部の高さにムラが ある場合には、スペーサーの最上表面と各表示部平坦部 との間の距離の内、最大のものを指す。

50

30

【0034】ドット状スペーサーの形成方法としては、 着色層形成時に画素の着色部分とスペーサーとが同時に 形成されることが生産性を高める点と十分な高さのスペ ーサーを形成できる点で好ましい。ただし本発明におい てはスペーサーの最上層は配向分割用突起と同時に形成 される。また、ドット状スペーサーの髙さが分割配向用 突起と同じ高さであっても良い場合、すなわち、分割配 向用突起の一部または全部が対向する電極基板に接触し ても良い場合、もしくはドット状スペーサー下に着色層 層よりも厚いブラックマトリックスが配置されて、ドッ ト状スペーサーと分割配向用突起とを同時に形成しても ドット状スペーサーの高さが大きくなることで分割配向 用突起が対向電極基板に接しない場合などでは、着色層 をドット状スペーサー位置に置かなくとも良い。つまり このときドット状スペーサーは分割配向用突起と同じく 1層からなる。

【0035】スペーサーによって保たれる2枚の液晶表 示装置用基板間の間隔の画面内均一性を高める点から、 画面内および画面外の非表示領域にスペーサーを形成す ることが好ましいが、場合によっては画面内または画面 外のどちらか一方の非表示領域に形成しても良い。

【0036】スペーサーの1個あたりの面積や配置場所 は液晶表示装置の構造に大きく影響を受ける。固定され たドット状スペーサーを有するカラーフィルターにおい て1画素中の非表示領域の面積の制約から、画面内の1 個あたりのスペーサー面積は、 $10 \mu m^2 \sim 1000 \mu$ m<sup>2</sup>であることが好ましい。さらに好ましくは、10μ  $m^2 \sim 250 \mu m^2$ である。ここでいうスペーサー面積と はカラーフィルター上に形成されたスペーサー最頂部で あって、液晶表示装置を作製した際に対向基板に接触す る部分の面積もしくは対向基板上に作製されたスペーサ ーに接触する部分の面積を指す。1個あたりのスペーサ ーの面積が10μm²よりも小さい場合は、精密なパタ ーンの形成や積層が難しくなる他、液晶表示装置装置製 造時の圧力印加でスペーサーが破壊されることがある。 1 個あたりのスペーサーの面積が 1 0 0 0 μ m² よりも 大きい場合は、スペーサーの周辺においてラビングによ る十分な配向処理が困難になる。また、画面内のスペー サーは、スペーサー部の形状にもよるが画面内の非表示 領域に完全に配置することが難しくなる。一方、画面外 のスペーサーは、表示領域に現れることが無い。したが って、面内および画面外にスペーサーを有する液晶表示 装置用基板の場合、画面外のスペーサーのひとつ当たり の面積は、スペーサーの形成を容易にするために画面内 のスペーサーのひとつ当たりの面積と等しいかもしくは 大きいことが好ましい。

【0037】また、本発明のカラーフィルターは透明導 電層形成前に透明保護層を形成しても良い。このような 透明保護層の形成は、カラーフィルターの構造を複雑に し製造コストが高くする点で不利であるが、一方スペー 50 ーサーと分割配向用突起とを同時に形成する生産性に優

サー高さの制御、カラーフィルターからの不純物のシミ 出し防止、表面平坦化に有利である。

【0038】3色の着色層を形成後、もしくは透明保護 層形成後に透明導電層が形成される。透明導電層として はITOなどの酸化物薄膜を採用することができる。

【0039】液晶分子の傾きが一方向だけであると液晶 分子が傾いた方向において視野角の非対称性が大きく、 かつ視野角が小さくなる。分割配向とは液晶表示装置の 1 画素内を複数の領域に分け、各領域で液晶分子の傾き を変える技術である。分割配向技術としてはフォトリソ グラフィーを利用して液晶配向膜のラビングの向きが異 なる領域を1画素内に作る技術が知られているが、工程 が多いフォトリソグラフィーを採用することによる生産 性の低下やフォトリソグラフィーで使用する現像液や剥 離液で先に形成した液晶配向膜がダメージを受ける問題 があった。

【0040】一方、液晶表示方式として電圧無印加のと きに液晶分子長軸が基板表面に対して垂直に配向してお り、電圧印加で液晶長軸が基板面と平行方向に倒れる垂 直配向方式が提案されている。また、垂直配向方式の分 割配向技術として基板上に形成した傾斜を利用するもの が提案されている。すなわち、基板上の一部に突起を作 り、この側面の傾斜で基板面に垂直方向に長軸を配向し ようとする液晶分子を傾け、将棋倒し状に表示領域の液 晶分子の配向をわずかに垂直方向から倒す方法である。 液晶分子は電圧印加すると突起の作用で傾いている方向 にさらに深く倒れていく。突起が三角形または台形の断 面を持つストライプであれば2つの斜面において液晶分 子は二方向に分かれて倒されて二方向の分割配向ができ る。また、突起が角錐であればその斜面の数によって配 向分割数が決まり、突起が円錐であれば放射状の液晶配 向が得られる。該側面の傾斜は順テーパである。また、 突起の頂部は表示に寄与しないのでなるべく狭いことが 望ましい。

【0041】該突起はカラーフィルター側と対向する電 極基板側とで一対になっている必要があるので断面が台 形または三角形のストライプ状でカラーフィルター側と 対向する電極基板側とで交互に配置されていることが特 に好ましい。

【0042】本発明のドット状スペーサーの最上層の体 積抵抗値は  $10^7\Omega$  c m以上であることが好ましい。ド ット状スペーサーの最上部の体積抵抗値が $10^7\Omega$  c m 未満であると、貼り合わせずれによりカラーフィルター 上の透明電極層と対向する電極基板とが導通し、表示不 良を引き起こす。該体積抵抗値は10°Ωcm以上であ ることがさらに好ましい。

【0043】本発明は固定された複数個のドット状スペ ーサーと分割配向用の突起を備えたことによって表示性 能に優れた液晶表示装置を提供すると共にドット状スペ

れた液晶表示装置を提供する。また、ドット状スペーサーの最上層を透明導電層上に配置した場合は、基板貼り合わせ時の位置ずれによってカラーフィルター上の透明 導電層と対向する電極基板とが短絡する欠陥を避けることができる。短絡の防止は、電極や配線が密に配置され

【0044】本発明の分割配向用突起は、この上に液晶配向膜が形成されることから、高い耐熱性、耐溶媒性が要求される。また、0.1 µ m以下の薄い液晶配向膜を介して液晶と分割配向用突起とが隣接することから、不 10 純物の溶出が少ないことも要求される。本発明の分割配向用突起は上記の条件を備えたポリイミド系樹脂、アクリル系樹脂、エポキシ系樹脂の採用が好ましい。

ている髙開口率の液晶表示装置において効果が大きい。

【0045】以下、本発明をさらに詳細に説明する。

【0046】本発明のカラーフィルターは、透明基板上に必要に応じてブラックマトリックスを設け、さらにその上に3原色から成る着色層を複数配列したものが好ましい。カラーフィルターは3原色から成る各着色層により被覆された画素を1絵素とし、多数の絵素により構成されている。ここで言う、ブラックマトリックスは、各画素間に配列された遮光領域を示し、液晶表示装置の表示コントラストを向上させ、またTFTなどの能動素子に光が入射して誤動作することを防ぐために設けられる。

【0047】カラーフィルターに用いられる透明基板としては、特に限定されるものではなく、石英ガラス、ホウケイ酸ガラス、アルミノケイ酸塩ガラス、表面をシリカコートしたソーダライムガラスなどの無機ガラス類、有機プラスチックのフィルム又はシート等が好ましく用いられる。

【0048】この透明基板上に必要に応じてブラックマ トリックスが設けられる。ブラックマトリックスは、ク ロムやニッケル等の金属又はそれらの酸化物等や着色膜 の重ね塗りで形成してもよいが、樹脂及び遮光剤から成 る樹脂ブラックマトリックスを形成することが製造コス トや廃棄物処理コストの面から好ましい。また、スペー サーを高くする面からも樹脂プラックマトリックスの採 用が好ましい。この場合、ブラックマトリックスに用い られる樹脂としては、特に限定されないが、エポキシ系 樹脂、アクリル系樹脂、ウレタン系樹脂、ポリエステル 系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂など の感光性又は非感光性の材料が好ましく用いられる。ブ ラックマトリックス用樹脂は、画素や保護膜に用いられ る樹脂よりも高い耐熱性を有する樹脂が好ましく、ま た、ブラックマトリックス形成後の工程で使用される有 機溶剤に耐性を持つ樹脂が好ましいことからポリイミド 系樹脂が特に好ましく用いられる。なお、好ましいポリ イミド系樹脂としては、前述のスペーサーを形成するの に適した樹脂を挙げることができる。

【0049】ブラックマトリックス用の遮光剤として

は、カーボンブラック、酸化チタン、四酸化鉄等の金属酸化物粉、金属硫化物粉、金属粉の他に、赤、青、緑色等の顔料の混合物等を用いることができる。この中でも、特にカーボンブラックは遮光性が優れており、特に好ましい。分散の良い粒径の小さいカーボンブラックは

10

主として茶系統の色調を呈するので、カーボンブラック に対する補色の顔料を混合させて無彩色にするのが好ま Lio

【0050】ブラックマトリックス用の樹脂がポリイミドの場合、黒色ペースト溶媒としては、通常、Nーメチルー2ーピロリドン、N, Nージメチルアセトアミド、N, Nージメチルホルムアミド等のアミド系極性溶媒、yーブチロラクトンなどのラクトン系極性溶媒等が好適に使用される。

【0051】カーボンブラックや、カーボンブラックに対して補色の顔料等の遮光剤を分散させる方法としては、例えば、ポリイミド前駆体溶液中に遮光剤や分散剤等を混合させた後、三本ロール、サンドグラインダー、ボールミルなどの分散機中で分散させる方法などがあるが、この方法に特に限定されない。また、カーボンブラックの分散性向上、あるいは塗布性やレベリング性向上のために種々の添加剤が加えられていてもよい。

【0052】樹脂ブラックマトリックスの製法としては、黒色ペーストを透明基板上に塗布、乾燥した後に、パターニングを行う。黒色ペーストを塗布する方法としては、ディップ法、ロールコーター法、スピナー法、ダイコーティング法、ワイヤバーコーティング法などが好適に用いられ、この後、オーブンやホットプレートを用いて加熱乾燥(セミキュア)を行う。セミキュア条件は、使用する樹脂、溶媒、ペースト塗布量により異なるが、通常60~200℃で1~60分加熱することが好ましい。

【0053】このようにして得られた黒色ペースト被膜は、樹脂が非感光性の樹脂である場合は、その上にフォトレジスト膜を形成した後に、また、樹脂が感光性の樹脂である場合は、そのままかあるいは酸素遮断膜を形成した後に、露光、現像を行う。必要に応じて、ポジ形フォトレジスト膜まは酸素遮断膜を除去し、また、加熱乾燥(本キュア)する。本キュア条件は、前駆体からポリイミド系樹脂を得る場合には、塗布量により若干異なるが、通常200~300℃で1~60分加熱するのが一般的である。アクリル系樹脂の場合には、本キュア条件は、通常150~300℃で1~60分加熱するのが一般的である。以上のプロセスにより、基板上にブラックマトリックスが形成される。

【0054】また、転写法によって樹脂ブラックマトリックスを形成してもよい。後述する着色層を重ねてブラックマトリックスを形成しても良い。

【0055】樹脂ブラックマトリックスの膜厚は、好ま50 しくは $0.5\sim2.0\mu m$ 、より好しくは $0.8\sim1.$ 

 $5 \mu$  mである。この膜厚が $0.5 \mu$  mよりも薄い場合には、樹脂プラックマトリックス上に樹脂層を積層してスペーサーを作製する場合、十分な高さのスペーサーを形成することが難しくなり、また、遮光性が不十分になることからも好ましくない。一方、膜厚が $2.0 \mu$  mよりも厚い場合には、遮光性は確保できるものの、カラーフィルターの平坦性が犠牲になり易く、段差が生じやすい。

【0056】樹脂ブラックマトリックスの遮光性は、OD値(透過率の逆数の常用対数)で表されるが、液晶表 10 示装置の表示品位を向上させるためには、好ましくは 1.6以上であり、より好ましくは 2.0以上である。また、樹脂ブラックマトリックスの膜厚の好適な範囲を前述したが、OD値の上限は、これとの関係で定められるべきである。

【0057】樹脂ブラックマトリックス間には通常( $20\sim200$ ) $\mu$ m×( $20\sim300$ ) $\mu$ mの開口部が設けられるが、この開口部を少なくとも被覆するように3原色のそれぞれの着色層が複数配列される。すなわち、1つの開口部は、3原色のいずれか1つの着色層により被覆され、各色の着色層が複数配列される。

【0058】カラーフィルターの場合、着色層は、少なくとも 3 原色、赤(R)、緑(G)、青(B) または、シアン(C)、マゼンダ(M)、イエロー(Y)の 3 層を包含するものであり、各画素にはこれらの 3 色のいずれかの 1 つの着色層が設けられる。

【0059】着色層に用いられる着色剤としては、有機 額料、無機額料、染料等を好適に用いることができ、さ らには、紫外線吸収剤、分散剤、レベリング剤等の種々 の添加剤を添加してもよい。顔料としては、赤(R)と してColor Index No. 9、97、122、123、14 9、168、177、180、192、215など、緑 (G)としてColor Index No. 7、36など、青(B) としてはColor Index No. 15、22、60、64など が一般的に用いられる。分散剤としては界面活性剤、顔 料の中間体、染料の中間体、高分子分散剤などの広範囲 のものが使用される。

【0060】着色層に用いられる樹脂としては、特に限定されないが、エポキシ系樹脂、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂などの感光性又は非感光性の材料が採用できる。本発明のドット状スペーサーは微細な加工が可能でかつ加圧に耐えるような強靱な樹脂で形成されていることが好ましいので、アクリル系樹脂、ポリイミド系樹脂の採用が好ましく、ポリイミド系樹脂がより好ましく用いられる。

【0061】着色層を形成する方法としては、ブラックマトリックスを形成した基板上に着色剤を含むペーストを塗布、乾燥した後に、パターニングを行う。着色剤を分散又は溶解させ着色ペーストを得る方法としては、溶 50

媒中に樹脂と着色剤を混合させた後、三本ロール、サンドグラインダー、ボールミルなどの分散機中で分散させる方法などがあるが、この方法に特に限定されない。

【0062】着色ペーストを塗布する方法としては、黒色ペーストの場合と同様、ディップ法、ロールコーター法、スピナー法、ダイコーティング法、ワイヤーバーコーティング法等が好適に用いられ、この後、オーブンやホットプレートを用いて加熱乾燥(セミキュア)を行う。セミキュア条件は、使用する樹脂、溶媒、ペースト塗布量により異なるが通常60~200℃で1~60分加熱することが好ましい。

【0063】このようにして得られた着色ペースト被膜は、樹脂が非感光性の樹脂である場合は、その上にフォトレジスト膜を形成した後に、また、樹脂が感光性の樹脂である場合は、そのままかあるいは酸素遮断膜を形成した後に、露光、現像を行う。必要に応じて、フォトレジスト膜まは酸素遮断膜を除去し、加熱乾燥(本キュア)する。

【0064】本キュア条件は、前駆体からポリイミド系樹脂を得る場合には、塗布量により若干異なるが、通常200~300℃で1~60分加熱するのが一般的である。アクリル系樹脂の場合には、本キュア条件は、通常150~300℃で1~60分加熱するのが一般的である。以上のプロセスにより、ブラックマトリックスを形成した基板上にパターニングされた着色層が形成される。また、いわゆる転写法で着色層を形成してもよい。【0065】ブラックマトリックスを形成した基板上に、上記のように、第1色目の着色層を全面にわたって形成した後に、不必要な部分をフォトリソグラフィ法により除去し、所望の第1色目の着色層のパターンを形成する。同様の操作を繰り返し、第2色目の着色パターン、第3色目の着色パターンを形成する。

【0066】カラーフィルターにスペーサーを形成する際に、スペーサーを形成する工程が別途必要とならないように、または十分な高さのスペーサーを実現するために着色層の加工と同時にカラーフィルターの着色層で構成されたスペーサーを形成するのが好ましい。ただし本発明においては前記スペーサーを構成する最上層と分割配向用の突起とが同一の組成で同時に加工されることが好ましい。スペーサーを構成する最上層と分割配向用突起は着色されていても透明であっても良いが、スペーサーを構成する最上層と分割配向用突起とが着色されている場合はブラックマトリックス、画面の非表示部を遮光する額縁やアクティブ素子の遮光部も同時に加工することが可能であり製造工程を短縮できる点で本発明の効果を大きくし好ましい。

【0067】スペーサーを構成する最上層と分割配向用の突起とが同一組成で同時に加工されることが好ましいことから、カラーフィルターを構成する3原色の着色層とは別にこれらを作製することが好ましい。着色層を透

(8)

10

14

13 明導電層の上に配置すると着色層による電圧降下で液晶 駆動電圧が大きくなる問題がある。

【0068】分割配向用突起の高さは $0.5\mu$ m~ $6\mu$ mであることが好ましい。突起高さが $0.5\mu$ m未満であると分割配向の効果が十分でなく、一方、突起高さが $6\mu$ m超であると1回のフォトリソグラフィーによる突起形成が難しくなる他、液晶注入の妨げになる。分割配向用突起の高さは $0.6\mu$ m~ $3\mu$ mの範囲がさらに好ましい。

【0069】ドット状スペーサーはその最上層以外は着色層の1層、2層又は3層で構成することができる。例えば、上記のようにブラックマトリックスを形成した基板上に第1色目の着色層で所望の第1色目の着色層のパターンを形成する際に、ブラックマトリックスの開口部を被覆する部分と、着色層の積層によりスペーサーを形成する部分に着色層を残す。第2色目、第3色目も同様な操作を繰り返し、ブラックマトリックスの開口部上には1層の着色層が形成される。また、スペーサーとして十分なセルギャップを確保するためには、好ましくは2層から3層の着色層がスペーサー形成位置に積層されることが好ましい。

【0070】非表示領域であるブラックマトリックス上に着色層を1層、2層又は3層積層しスペーサーを構成することが、表示部の面積を減じることなく、また十分なセルギャップを確保する点から好ましい。しかしながら、ドット状スペーサーの高さが分割配向用突起と同じの一部または全部が対向する電極基板に接触しても良い場合、もしくはドット状スペーサーに着色層層よりも厚いブラックマトリックスが配置されて、ドット状スペーサーと分割配向用突起とを同時に形成してもドット状スペーサーの高さが大きくなることで分割配向用突起が対向電極基板に接しない場合などでは、着色層をドット状スペーサー位置に置かなくとも良い。つまりこのときドット状スペーサー位置に置かなくとも良い。つまりこのとかる。

【0071】また、スペーサーの形成とともに、スペーサーとして機能しない高さの積層物を形成しても良い。例えば、ドット状スペーサーが4層で形成される場合、3層、2層もしくは1層からなる積層物で形成され、ドット状スペーサーが3層で形成される場合、2層もしくは1層からなる積層物で形成される。これらは、通常時は対向する電極基板と接することは無いが、液晶表示装置に圧力が加わった際に対向する電極基板と接することでセルギャップを確保して、液晶表示装置の表示品位の信頼性を高めることができる。

【0072】着色層の積層によりスペーサーを形成する場合は、スペーサーを構成する着色層の樹脂成分と着色剤成分との重量比が3:7~9:1であることが、所望のスペーサーの高さをもたせる点とカラーフィルターに

所望のカラー表示性能をもたせる点などから、好ましい。

【0073】開口部上の着色層とスペーサーを形成する 着色層とは連続していても、また、分離されていてもよ い。

【0074】本発明のスペーサーは、パターンを積層する際には、対向基板への接触部の面積がスペーサーの底部の面積より小さくなるように設計することが望ましい。

【0075】本発明のカラーフィルターおよびこれを用いた液晶表示装置の製造方法を図1および図2を用いて以下に説明するがこれに限定されるものではない。

【0076】無アルカリガラス1の上に黒ペーストを用いてブラックマトリックス2を形成する。ブラックマトリックスの開口部を埋めるように青着色層3を形成し同時にブラックマトリックス上にドット状スペーサー形成位置6を形成し、次いで緑着色層をブラックマトリックスの開口部7とドット状スペーサー形成位置6を形成し、次いで緑着色層をブラックマトリックスの開口部7とドット状スペーサー形成位置8を形成する。次に透明保護層9を形成し、さらに透明導電層10を積層する。透明導電層の上に分割配向用突起11 およびドット状スペーサー最上層12を同時に形成する。

【0077】TFT素子を備えた電極基板の製造方法の一例を以下に示す。

【0078】無アルカリガラス基板上にスパッタリング によりクロム薄膜を形成し、フォトリソグラフィーにて ゲート電極をパターニングする。次に、プラズマCVD により、絶縁膜として窒化珪素膜、アモルファスシリコ ン膜およびエッチングストッパとして窒化珪素膜を連続 形成する。次に、フォトリソグラフィーにてエッチング ストッパの窒化珪素膜をパターニングする。TFT端子 が金属電極とオーミックコンタクトをとるためのn+ア モルファスシリコン膜の成膜とパターニングをし、さら に、表示電極となる I T O 膜を成膜しパターニングす る。さらに配線材料としてアルミニウムをスパッタリン グにより膜付けし、フォトリソグラフィーにて信号配線 およびTFTの金属電極を作製する。ドレイン電極とソ ース電極をマスクとしてチャンネル部のn+アモルファ スシリコン膜をエッチング除去し、TFT素子備えた電 極基板を得る。反射型の液晶表示素子の場合は、表示電 極をアルミニウムや銀などの反射率の高い材料とする。 【0079】カラーフィルター上に垂直配向膜を設け る。同様にして対向する薄膜トランジスタを備えた電極 基板についても垂直配向膜を設ける。対向する電極基板 にカラーフィルター上に設けた配向分割用突起と対応す るように配向分割用突起を設ける。この2枚の基板をエ ポキシ接着材をシール剤として用いて貼り合わせた後

に、シール部に設けられた注入口から垂直配向する液晶

を注入する。液晶を注入後、注入口を封止し、さらに偏 光板を基板の外側に貼り合わせ液晶表示装置を作製す る。

【0080】図2に本発明のカラーフィルターの平面図の一例を示す。ブラックマトリックス13の開口部14とブラックマトリックス上のドット状スペーサー形成位置15に着色膜を形成する。ブラックマトリックス開口部の長辺方向を二分するように断面が台形のストライプ状突起16を画素一つおきに形成する。対向する電極基板上にはカラーフィルター上のストライプ状突起と交互に配置されるように画素一つおきにストライプ状突起を形成する。

【0081】本発明のカラーフィルターおよびこれを用いた液晶表示装置は、パソコン、ワードプロセッサー、エンジニアリング・ワークステーション、ナビゲーションシステム、液晶テレビなどの表示画面に用いられる。また、液晶プロジェクション等にも好適に用いられる。また、光通信や光情報処理の分野において、液晶を用いた空間変調素子としても好適に用いられる。空間変調素子は、素子への入力信号に応じて、素子に入射する光の強 20度や位相、偏光方向等を変調させるもので、実時間ホログラフィーや空間フィルター、インコヒーレント/コヒーレント変換等に用いられるものである。

#### [0082]

【実施例】以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれらに限定されない。

#### 【0083】(測定法)

#### 体積抵抗値の測定

アルミニウム薄膜を蒸着したガラス基板上に対象となる 材料を  $1 \mu$  mの厚さにコーティングする。コーティング 膜上にさらに直径  $15 \mu$  mmのアルミニウム電極を蒸着する。コーティング膜を挟んだ  $2 \mu$  つの電極間に直流  $1 \mu$  Vを 印加して、電圧印加後  $5 \mu$  分での電流値とコーティング膜 の厚みから体積抵抗値を求めた。

#### 【0084】調製例1

メチルトリメトキシシラン4. 08g、フェニルトリメトキシシラン9. 9g、y-アミノプロピルメチルジエトキシシラン28. 8gをy-ブチロラクトン156. 3g、3-メチル-3-メトキシブタノール150gに溶解し、30で撹拌しなが59. 12gの蒸留水を加\*40

カーボンブラックミルベース

カーボンブラック

(MA100、三菱化学(株)製)

ポリイミド前駆体溶液

N-メチル-2-ピロリドン

ガラスピーズ

300×350mmのサイズの無アルカリガラス(日本電気ガラス(株)製、OA-2)基板上にスピナーを用いて、ブラックペーストを塗布し、オーブン中135℃で20分間セミキュアした。続いて、ポシ型フォトレジ

\*えた後、50℃で2時間加熱撹拌し、加水分解・縮合を おこなった。ついで130℃に昇温してさらに縮合を進 めながら生成したアルコールと水を留去させた。この溶 液を50℃に冷却した後、撹拌しつつ3, 3', 4, 4'-ベンゾフェノンテトラカルボン酸2無水物24.

16

17gを添加してアミック酸系ポリオルガノシロキサン 溶液を得た。

#### 【0085】調製例2

メチルトリメトキシシラン272g、フェニルトリメトキシシラン396gを3-メチルー3-メトキシブタノール785.6gに溶解した後に、撹拌しつつ燐酸3.34gと蒸留水216gの混合物を加えた。得られた溶液を105℃で1時間加熱し、主としてメタノールからなる成分302gを留去させた。ついで130℃で2時間加熱し、主としてアルコールと水からなる成分147gを留去させた。これを室温まで冷却してから3-メチルー3-メトキシブタノール86gを加えてポリオルガノシロキサン系溶液を得た。

#### 【0086】調製例3

アセト酢酸エチルエステル650gと3ーメチルー3ーメトキシブタノール1567gの混合液にテトラブトキシジルコニウム383gを添加して30℃で1時間撹拌した後、24時間放置してジルコニアキレート溶液を得た。

#### 【0087】実施例1

(樹脂ブラックマトリクスの作成) 3, 3  $\hat{}$ , 4, 4  $\hat{}$  ービフェニルテトラカルボン酸二無水物  $\hat{}$  1 4 4 . 1 gを  $\hat{}$  y ーブチロラクトン  $\hat{}$  1 0 9 5 g、Nーメチルー  $\hat{}$  2 ーピロリドン  $\hat{}$  2 0 9 gに混合し、4, 4  $\hat{}$  ージアミノジフェニルエーテル  $\hat{}$  5 . 1 g、ビス( $\hat{}$  3 ーアミノプロピル)テトラメチルジシロキサン  $\hat{}$  6. 2 gを添加して  $\hat{}$  7 0  $\hat{}$  で 3 時間反応させた後、無水フタル酸  $\hat{}$  2 . 9 6 gを添加して さらに  $\hat{}$  7 0  $\hat{}$  で  $\hat{}$  1 時間反応させてポリイミド前駆体(ポリアミック酸)溶液を得た。

【0088】下記の組成を有するカーボンブラックミルベースをホモジナイザーを用いて、7000rpmで30分間分散し、ガラスビーズを濾過して、ブラックペーストを調製した。

[0089]

4. 6部 24. 0部 61. 4部

90.0部

スト (シプレー社製 "Microposit" SRC100 30cp) をスピナーで塗布し、80℃210分間乾燥した。フォトレジスト膜厚は1.5 μ m とした。キャノン (株) 製露光50 機PLA-501Fを用い、フォトマスクを介して露光

17

した。

【0090】次に、テトラメチルアンモニウムヒドロキシドを2重量%含んだ23℃の水溶液を現像液に用い、基板を現像液にディップさせ、同時に10cm幅を5秒で1往復するように基板を揺動させて、ポジ型フォトレジストの現像とポリイミド前駆体のエッチングを同時に行った。現像時間は60秒とした。その後、メチルセルソルブアセテートでポジ型フォトレジストを剥離し、さらに、300℃で30分間キュアし、樹脂ブラックマトリクス基板を得た。樹脂ブラックマトリクスの膜厚は、0.90μmであり、OD値は3.0であった。

【0091】(着色層の作成)赤、緑、青の顔料として 各々Color index No.65300 Pigment Red 177で示される ジアントラキノン系顔料、Color Index No. 74265 Pigme nt Green 36 で示されるフタロシアニングリーン系顔 料、Color Index No. 74160 Pigment Blue 15-4で示され るフタロシアニンブルー系顔料を用意した。ブラックマ トリックスに使用したポリイミド前駆体溶液に上記顔料 を各々混合分散させて、赤、緑、青の3種類の着色ペー ストを得た。まず、樹脂ブラックマトリックス基板上に 青ペーストを塗布し、120℃20分間セミキュアし た。この後、ポジ型フォトレジスト(シプレー社製"Mic roposit" SRC100 30cp )をスピナーで塗布後、80℃ で20分乾燥した。フォトマスクを用いて露光し、テト ラメチルアンモニウムヒドロキド2重量%水溶液に基板 を浸漬し揺動させながら、ポジ型フォトレジストの現像 およびポリイミド前駆体のエッチングを同時に行なっ た。その後、ポジ型フォトレジストをメチルセルソルブ アセテートで剥離し、さらに、300℃で30分間キュ アした。青着色層の膜厚は2μmであった。青画素の形 成と同時に樹脂ブラックマトリクス上にスペーサーの1 段目を形成した。なおスペーサーのサイズは20μm角 とした。

【0092】基板水洗後に、青着色層と同様にして、緑画素の形成とともに樹脂ブラックマトリクス上にスペーサーの2段目を形成した。緑着色層の膜厚は、2μm、スペーサーのサイズは20μm角とした。

【0093】さらに基板水洗後に、青着色層と同様にして、赤画素の形成とともに樹脂プラックマトリクス上にスペーサーの3段目を形成し、カラーフィルターを作製した。赤色画素部の膜厚は2 $\mu$ m、スペーサーのサイズは15 $\mu$ m角とした。

【0094】調製例1で得たアミック酸系ポリオルガノシロキサン溶液7.5gと調製例2で得たポリオルガノシロキサン溶液10gおよび調製例3で得たキレート溶液1.5gを混合し、透明樹脂用組成物を得た。ブラックマトリックスと3原色の着色層が形成された基板の上に前期透明樹脂を塗布し、80℃で10分間乾燥し、次いで280℃で60分間キュアして、厚さが1 $\mu$ mの透明保護層を形成した。

【0095】透明保護層が形成された基板上に、スパッタリング法にて膜厚が150nmで表面抵抗が20Ω/□のITO膜を形成した。

【0096】前記ITO膜上に、ブラックマトリックスに使用したポリイミド前駆体溶液を塗布し135℃で20分間セミキュアした。この後、ポジ型フォトレジストを塗布して80℃で20分間乾燥した。フォトマスクを介して露光し、テトラメチルアンモニウムヒドロキシド2重量%水溶液に浸漬してフォトレジストの現像とポリイミド前駆体のエッチングとを同時に実施した。フォトレジストをメチルセルソルブで剥離し、次いで300℃で30分間キュアして厚さ1μmのスペーサー最上層と分割配向用のストライプ状突起とを形成した。

【0097】スペーサー最上層の大きさは $12\mu$ m× $12\mu$ mとし、ストライプ状の突起は断面の下辺が $15\mu$ m、上辺が $14\mu$ mの台形とした。ストライプ状突起は図2に示したように1 画素の長辺を二分する位置に1 画素おきに配置し、カラーフィルターの表示部全体を貫いている。

【0098】かくして本発明のカラーフィルターを得た。突起を形成した透明ポリイミド層の体積抵抗は $10^{13}\Omega$ cmであった。

【0099】ペースト特性により、積層した各色層の厚みと樹脂 B M 膜厚との合計から対象の色層の表示部膜厚を引いた厚みと、着色層 1 層の上に設けられた光透過部分の I T O 層の表面からスペーサー頂部までの高さであるスペーサーの高さは異なる。スペーサー高さは 5.5 μ m であった。

【0100】着色層の積層によって樹脂ブラックマトリ ックス上に設けられたスペーサー底部、すなわち青色部 の面積は400μm²、対向基板に接触するスペーサー 頂部の面積は144μm<sup>2</sup>であった。また画面周辺に樹 脂ブラックマトリクスで形成した額縁上にも色重ねによ るスペーサーを設けた、その際、最上層の面積は画面内 のスペーサーの 2 倍となるようにし、単位面積当たりの スペーサーの個数を1/2とし単位面積あたりの対向基 板へのスペーサーの接触面積が画面内と同じになるよう にした。さらに額縁外の基板上にも、画面内と同様に樹 脂ブラックマトリックスの作製に用いた樹脂層によるパ ターンと着色膜の作製に用いた樹脂層のパターンの積層 により、カラーフィルター並びに画面内のスペーサーを 作製するのと同時にスペーサーを形成した。その際単位 面積当たりのスペーサーと対向基板との接触面積が画面 内と同一になるように形成した。

【0101】(電極基板の作製)無アルカリガラス基板上にスパッタリングによりクロム薄膜を形成し、フォトリソグラフィーにてゲート電極にパターニングした。次に、プラズマCVDにより、絶縁層として厚さ700nmの窒化珪素膜、チャンネル層として厚さ100nmの50アモルファスシリコン膜、エッチングストッパ層として

30

19

厚さ500nmの窒化珪素膜を連続形成した。次に、フォトリソグラフィーにてエッチングストッパ層の窒化珪素膜をパターニングした。TFT端子と金属電極がオーミックコンタクトをとるためのn+アモルファスシリコン膜を形成した。この上に表示電極となるITO膜を成しパターニングした。さらに配線材料としてのアルミニウムをスパッタリングにより膜付けし、フォトリソグラフィーにて信号配線およびTFTの金属電極を作製した。ドレイン電極とソース電極をマスクとしてチャンネル部のn+アモルファスシリコン膜をエッチング除去しTFT素子を備えた電極基板を得た。

【0102】(カラー液晶表示装置の作製と評価)本発明のカラーフィルター上に垂直配向膜を設けた。同様にして対向する薄膜トランジスタを備えた電極基板についても、垂直配向膜を設けた。対向する電極基板についても1画素の長辺を二分する位置に1画素おきにカラーフィルター上のストライプ状突起と同様のストライプ状突起を配置した。ただし、カラーフィルターと貼り合わせたときにストライプ状突起がカラーフィルター上のストライプ突起と1画素毎に交互に配置されるようにした。この2枚の基板をエポキシ接着材をシール剤として用いて貼り合わせた後に、シール部に設けられた注入口から垂直配向する液晶を注入した。液晶を注入後、注入口を封止し、さらに偏光板を基板の外側に貼り合わせ液晶表示装置を作製した。

【0103】かくして20個の液晶表示装置を作製したところ、カラーフィルター上の透明導電層と対向する電極基板とが短絡した液晶表示装置はなく良好であった。液晶の配向は良好であり、また、光透過部にスペーサーがないためにスペーサーによる光漏れがなかった。

### 【0104】実施例2

透明保護層を設けなかったこと以外は実施例1と同様にして液晶表示装置を20個作製したところ、カラーフィルター上の透明導電層と対向する電極基板とが短絡した液晶表示装置はなく良好であった。液晶配向は良好であり、また、光透過部にスペーサーがないためにスペーサーによる光漏れがなかった。

#### 実施例3

赤、緑、青の顔料として各々Color index No. 65300 Pig ment Red 177で示されるジアントラキノン系顔料、Color Index No. 74265 Pigment Green 36 で示されるフタロシアニングリーン系顔料、Color Index No. 74160 Pigme nt Blue 15-4で示されるフタロシアニンブルー系顔料を用意した。

【0105】スチレン:メタクリル酸メチル:メタクリル酸=30:30:40であるアクリル共重合体樹脂粉末6g、多官能モノマーとしてトリメチロールプロパントリアクリレート6g、光重合開始剤(チバスペシャリティケミカルズ社製"イルガキュア"369)3gを含むシクロペンタノン溶液に上記顔料を各々混合分散させ

て、赤、緑、青の3種類の着色ペーストを得た。

【0106】実施例1と同様にして作製した樹脂ブラックマトリックス基板上に青ペーストを塗布し、80℃で10分間熱風乾燥した。フォトマスクを用いて露光し、アルカリ現像液に基板をディップし同時に基板を揺動させながら現像した。次いで、220℃で30分間キュアした。青着色層の膜厚は2μmであった。青画素の形成と同時に樹脂ブラックマトリクス上にスペーサーの1段目を形成した。なおスペーサーのサイズは30μm角とした。

【0107】基板水洗後に、青着色層と同様にして、緑画素の形成とともに樹脂ブラックマトリクス上にスペーサーの2段目を形成した。緑着色層の膜厚は、 $2\mu m$ 、スペーサーのサイズは $30\mu m$ 角とした。

【0108】さらに基板水洗後に、青着色層と同様にして、赤画素の形成とともに樹脂ブラックマトリクス上にスペーサーの3段目を形成し、カラーフィルターを作製した。赤色画素部の膜厚は2 $\mu$ m、スペーサーのサイズは20 $\mu$ m角とした。

20 【0109】ブラックマトリックスと赤、青、緑着色層が形成された基板上に、スパッタリング法にて膜厚が150nmで表面抵抗が20Ω/□のITO膜を形成した

【0110】スチレン:メタクリル酸メチル:メタクリ ル酸=30:30:40であるアクリル共重合体樹脂粉 末6g、多官能モノマーとしてトリメチロールプロパン トリアクリレート6g、光重合開始剤(チバスペシャリ ティケミカルズ社製"イルガキュア"369)3gを含 むシクロペンタノン溶液を前記ITO膜上に塗布し80 ℃ で10分間熱風乾燥した。フォトマスクを用いて露 光し、アルカリ現像液に基板を浸漬し同時に基板を揺動 させながら現像した。次いで、220℃で30分間キュ アして厚さ1μmのスペーサー最上層と分割配向用のス トライプ状突起とを形成した。スペーサー最上層の大き さは  $12 \mu m \times 12 \mu m$ とし、ストライプ状の突起は断 面の下辺が $15\mu$ m、上辺が $14\mu$ mの台形とした。ス トライプ状突起は図3に示したように1画素の長辺を二 分する位置に1画素おきに配置し、カラーフィルターの 表示部全体を貫いている。

【0112】ペーストの塗布特性から積層した各色層の 厚みと樹脂 B M 膜厚との合計から対象の色層の表示部膜 厚を引いた厚みと、ITO層の表面からスペーサー頂部 までの高さであるスペーサーの高さは異なる。スペーサ ー高さは5.3μmであった。

【0113】着色層の積層によって樹脂ブラックマトリックス上に設けられたスペーサー底部、すなわち青色部の面積は  $400 \mu m^2$ 、対向基板に接触するスペーサー

50

た。

頂部の面積は144μm<sup>2</sup>であった。また実施例1と同様にして画面周辺に樹脂ブラックマトリクスで形成した額緑上にも色重ねによるスペーサーを設けた。

【0114】実施例1と同様にしてカラーフィルターと 電極基板とを貼り合わせ、液晶注入、注入口封止、偏光 板貼り付けを実施して液晶表示装置を作製した。

【0115】かくして20個の液晶表示装置を作製したところ、カラーフィルター上の透明導電層と対向する電極基板とが短絡した液晶表示装置はなく良好であった。液晶の配向は良好であり、また、光透過部にスペーサー 10がないためにスペーサーによる光漏れがなかった。

#### 【0116】実施例4

ブラックマトリックスを形成する代わりに着色層の重ね 塗りで透過率を低減した部分を形成した。すなわち、ブラックマトリックスがない無アルカリガラス基板の上に 赤、青、緑の着色層を実施例1と同様に形成し、このときブラックマトリックスが埋めていた隣り合う2つの画素間を2つの画素を着色している着色材料の重ね塗りで埋めた。

【0117】画素間の2つの着色層の重ね塗り部分の上に3色目がドット状に形成されてスペーサーの一部を構成する。さらに実施例2と同様にして、透明保護層を設けずに1TO層を形成した後、ポリイミド前駆体溶液を用いてドット状スペーサーの最上層と配向分割用突起とを同時に形成した。

【0118】 ITO層の表面からスペーサー頂部までの高さであるスペーサーの高さは、 $4.8\mu$  mであった。

【0119】また画面周辺に着色層の重ね塗りで形成した額縁上にも色重ねによるスペーサーを設けた、その際、最上層の面積は画面内のスペーサーの2倍となるようにし、単位面積当たりのスペーサーの個数を1/2とし単位面積あたりの対向基板へのスペーサーの接触面積が画面内と同じになるようにした。さらに額縁外の基板上にも、カラーフィルター並びに画面内のスペーサーを作製するのと同時にスペーサーを形成した。その際単位面積当たりのスペーサーと対向基板との接触面積が画面内と同一になるように形成した。

【0120】実施例1と同様にしてカラーフィルターと 電極基板とを貼り合わせ、液晶注入、注入口封止、偏光 板貼り付けを実施して液晶表示装置を作製した。

【0121】かくして20個の液晶表示装置を作製したところ、カラーフィルター上の透明導電層と対向する電極基板とが短絡した液晶表示装置はなく良好であった。液晶の配向は良好であり、また、光透過部にスペーサーがないためにスペーサーによる光漏れがなかった。

### 【0122】実施例5

実施例1と同様にしてブラックマトリックス、着色層、透明保護膜、ITO層を形成した。このITO層上に赤ペーストを塗布し、120℃ で20分間セミキュアした。続いてポジ型フォトレジストを塗布し80℃ で2

0分間乾燥した。フォトマスクを用いて露光し、テトラメチルアンモニウムヒドロキシド2重量%水溶液に浸漬してフォトレジストの現像とポリイミド前駆体のエッチングを同時に実施した。メチルセルソルブアセテートでフォトレジストを剥離して、さらに300℃で30分間キュアして実施例1と同じパターンの厚さ1μmのスペーサー最上層と分割配向用突起とを作製した。さらに同時に額縁部にも赤着色層を重ねて遮光性を向上させ

【0.1.2.3】分割配向用突起を形成した赤着色層の体積抵抗値は $1.0^{12}\Omega$  c mであった。 ITO表面からスペーサ頂部までの高さであるスペーサー高さは $5...5\mu$  mであった。

【0124】実施例1と同様にしてカラーフィルターと 電極基板とを貼り合わせ、液晶注入、注入口封止、偏光 板貼り付けを実施して液晶表示装置を作製した。

【0125】かくして20個の液晶表示装置を作製したところ、カラーフィルター上の透明導電層と対向する電極基板とが短絡した液晶表示装置はなく良好であった。液晶の配向は良好であり、また、光透過部にスペーサーがないためにスペーサーによる光漏れがなかった。

#### 【0126】実施例6

ITO膜上にポリイミド前駆体溶液を用いて配向分割用 突起のみ形成し、ドット状スペーサーの最上層を作らな かったことと、青着色層によるスペーサー3段目の大き さを10μm角としたこと以外は実施例1と同様にして 液晶表示装置を作製した。したがってスペーサー頂部は ITO層に覆われている。対向基板に接触するスペーサー頂部の面積は100μm²であった。ITO層の表面 30 からスペーサー頂部までの高さであるスペーサーの高さ は、4.7μmであった。

【0127】実施例1と同様にしてカラーフィルターと 電極基板とを貼り合わせ、液晶注入、注入口封止、偏光 板貼り付けを実施して液晶表示装置を作製した。

【0128】かくして20個の液晶表示装置を作製したところ、カラーフィルター上の透明導電層と対向する電極基板とが短絡して動作しない画素が発生した液晶表示装置が3個あった。液晶の配向は良好であり、また、光透過部にスペーサーがないためにスペーサーによる光漏40れがなかった。

#### 【0129】実施例7

実施例1と同様にしてブラックマトリックス、着色層、透明保護膜、ITO層を形成した。このITO層上に実施例1のブラックペーストを塗布し、135℃で20分間セミキュアした。続いてポジ型フォトレジストを塗布し80℃で20分間乾燥した。フォトマスクを用いて露光し、テトラメチルアンモニウムヒドロキシド2重量%水溶液に浸漬してフォトレジストの現像とポリイミド前駆体のエッチングを同時に実施した。メチルセルソルブアセテートでフォトレジストを剥離して、さらに30

0℃ で30分間キュアして実施例1と同じパターンの 厚さ1  $\mu$  mのスペーサー最上層と分割配向用突起とを作 製した。

【0130】分割配向用突起を形成した黒着色層の体積 抵抗値は106Ωcmであった。

【0.1.3.1】 ITO表面からスペーサ頂部までの高さであるスペーサー高さは $5.5\mu$ mであった。

【0132】実施例1と同様にしてカラーフィルターと 電極基板とを貼り合わせ、液晶注入、注入口封止、偏光 板貼り付けを実施して液晶表示装置を作製した。

【0133】かくして20個の液晶表示装置を作製したところ、カラーフィルター上の透明導電層と対向する電極基板とが短絡した液晶表示装置はなく良好であった。しかしながら、分割配向用突起の体積抵抗値が不足して突起近傍の液晶の配向が乱れていた。光透過部にスペーサーがないためにスペーサーによる光漏れはなかった。

### 【0134】比較例1

着色層を積層したドット状スペーサーを形成せず I T O 膜上に配向分割用突起のみを形成したこと、またこの代わりにカラーフィルターと電極基板貼り合わせ前に、直 20 径 5.  $5 \mu$  mのポリスチレン球スペーサーをカラーフィルター上に散布したこと以外は実施例 1 と同様にして液晶表示装置を作製した。

【0135】かくして20個の液晶表示装置を作製したところ、カラーフィルター上の透明導電層と対向する電極基板とが短絡した液晶表示装置はなく良好であった。しかしながら、光透過部にスペーサーがあるためにスペーサーによる光漏れがあった他、カラーフィルターと電

極基板貼り合わせ時にポリスチレン球が分割配向用突起 の上にあった部分で該突起が押しつぶされて、この近傍 で液晶の配向乱れが見られた。

#### [0136]

(13)

【発明の効果】本発明の液晶表示装置は、固定されたドット状スペーサーと液晶の分割配向用突起とを有しているので表示品位に優れるとともに高視野角を達成できる。さらにドット状スペーサーと液晶の分割配向用突起とを同時に形成することによって生産性に優れ、かつ基10 板の貼り合わせズレによるカラーフィルター上の透明導電層と対向する電極基板間の短絡が発生しない液晶表示装置を提供できる。

#### 【図面の簡単な説明】

【図1】本発明の固定されたドット状スペーサーと配向 分割用突起とを有するカラーフィルター基板の断面図の 一例である。

【図2】本発明のドット状スペーサーと配向分割用突起とを有するカラーフィルター基板の平面図の一例である。

#### 20 【符号の説明】

1:ガラス基板

2、13:ブラックマトリックス

3、4、5、6、7、8:着色層

9:透明保護層

10:透明導電層

11、16:配向分割用突起

12:ドット状スペーサー最上層

15:ドット状スペーサー

[図1]



【図2】



【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第6部門第2区分

【発行日】平成13年9月26日(2001.9.26)

【公開番号】特開平11-248921

【公開日】平成11年9月17日(1999. 9. 17)

【年通号数】公開特許公報11-2490

【出願番号】特願平10-46875

【国際特許分類第7版】

G02B 5/20 101

G02F 1/1335 505 1/1339 500

[FI]

G02B 5/20 101

G02F 1/1335 505

1/1339 500

### 【手続補正書】

【提出日】平成12年12月7日(2000.12.7)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0089

【補正方法】変更

【補正内容】

[0089]

カーボンブラックミルベース カーボンブラック

(MA100、三菱化学(株)製)

4.6部

ポリイミド前駆体溶液

24.0部

N-メチル-2-ピロリドン

61.4部

ガラスビーズ

90.0部

300×350mmのサイズの無アルカリガラス (日本電気ガラス (株) 製、OA-2) 基板上にスピナーを用いて、ブラックペーストを塗布し、オーブン中135℃で20分間セミキュアした。続いて、ポシ型フォトレジスト (シプレー社製 "Microposit" SRC100 30cp) をス

ピナーで塗布し、80  $^{\circ}$   $^{\circ}$ 

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第6部門第2区分

【発行日】平成13年12月14日(2001.12.14)

【公開番号】特開平11-248921

【公開日】平成11年9月17日(1999.9.17)

【年通号数】公開特許公報11-2490

【出願番号】特願平10-46875

【国際特許分類第7版】

G02B 5/20 101

G02F 1/1335 505

1/1339 500

[FI]

G02B 5/20 101

G02F 1/1335 505

1/1339 500

### 【手続補正書】

【提出日】平成13年5月29日(2001.5.29)

#### 【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】全文

【補正方法】変更

【補正内容】

【書類名】明細書

【発明の名称】カラーフィルター及びこれを用いた液晶 表示装置

#### 【特許請求の範囲】

【請求項1】 <u>導電層</u>上に固定された複数個のドット状スペーサーを有し、かつ<u>導電層</u>上に分割配向のための突起を有することを特徴とするカラーフィルター。

【請求項2】 前記<u>導電層上に固定された</u>ドット状スペーサーが非表示領域にあることを特徴とする請求項1記載のカラーフィルター。

【請求項3】 カラーフィルターが少なくとも3原色からなる着色層および3原色の少なくとも1色を積層して形成された複数個のドット状スペーサーから構成されることを特徴とする請求項1記載のカラーフィルター。

【請求項4】 前記<u>導電層上に固定されたドット状スペーサーと</u>前記突起が同一の組成であることを特徴とする 請求項1記載のカラーフィルター。

【請求項5】 前記<u>導電層上に固定されたドット状スペーサーと</u>前記突起が着色されていることを特徴とする請求項1記載のカラーフィルター。

【請求項<u>6</u>】 前記<u>導電層上に固定された</u>ドット状スペーサ<u>ーの</u>体積抵抗値が  $10^7\Omega$  c m以上であることを特徴とする請求項 1 記載のカラーフィルター。

【請求項<u>7</u>】 前記<u>導電層上に固定された</u>ドット状スペーサーおよび前記突起がポリイミド系樹脂またはアクリ

ル系樹脂であることを特徴とする請求項1記載のカラーフィルター。

【請求項<u>8</u>】 請求項 $1 \sim 7$  に記載のカラーフィルターを使用したことを特徴とする液晶表示装置。

#### 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は、スペーサー機能を 有するカラーフィルター及びこれを用いた液晶表示装置 に関する。

#### [0002]

【従来の技術】従来使用されている液晶表示装置は、液晶層の厚み(セルギャップ)を保持するために、一般に、2枚の液晶表示装置用基板間にプラスチックビーズ、ガラスビーズ又はガラス繊維を挟んでスペーサーとして使用している。プラスチックビーズ等のスペーサーは気流に乗せて散布されるため、電極基板とカラーフィルター基板のどの位置に配置されるか定まらない。

【0003】セルギャップを保持するために、特開昭56-140324、特開昭63-824054、特開平4-93924、特開平5-196946、特開平7-318950には、カラーフィルターを形成する着色層を重ね合わせた構造をスペーサーとして用いた液晶表示装置が提案されている。

#### [0004]

【発明が解決しようとする課題】プラスチックビーズ等をスペーサーとして用いる液晶表示装置においては、プラスチックビーズ等のスペーサーの位置が定まらず、液晶表示装置用基板上の表示領域(遮光部を除く画面内の光透過部)にもスペーサーが存在する。このスペーサーによる光の散乱や透過により、液晶表示装置の表示品位が低下するという問題がある。

【0005】プラスチックビーズ等のスペーサーを散布

して使用する液晶表示装置には、この他にも下記の問題がある。すなわち、気流や静電気の影響でスペーサーが均一に散布されず、スペーサーが凝集することがある。スペーサーが凝集すると凝集部分の表示品質が悪化し、またセルギャップの正確な保持の面でも問題がある。

【0006】この問題点に対して、特開昭56-140324、特開昭63-824054、特開平4-93924、特開平5-196946では、2色あるいは3色の着色層を重ね合わせた構造をスペーサーとして用いることが提案されている。

【0007】一方、液晶表示装置の大画面化やモニタ用途への展開に伴い視野角の拡大が求められている。視野角拡大のために液晶の配向方向を1ピクセル内で分割する分割配向技術が採用されているが、その1つとしてセルギャップ内に形成したテーパー付き突起で液晶の配向方向を変える技術が提案されている。

【0008】本発明の目的は、十分なセルギャップを実現するとともに、セルギャップ内に形成された突起による配向分割を実現するカラーフィルターの簡素化された構成を提供し、表示品位を向上し、液晶表示装置の生産性を上げることにある。

#### [0009]

【課題を解決するための手段】本発明の目的は以下の構成により達成される。

- 1) <u>導電層</u>上に固定された複数個のドット状スペーサーを有し、かつ<u>導電層</u>上に分割配向のための突起を有することを特徴とするカラーフィルター。
- 2) <u>導電層上に固定された</u>ドット状スペーサーが非表示 領域にあることを特徴とする(1)記載のカラーフィル ター
- 3) カラーフィルターが少なくとも3原色からなる着色 層および3原色の少なくとも1色を積層して形成された 複数個のドット状スペーサーから構成されることを特徴 とする(1)に記載のカラーフィルター。
- 4) <u>導電層上に固定された</u>ドット状スペーサ<u>ーと</u>前記突起が同一の組成であることを特徴とする(1)に記載のカラーフィルター。
- 5) <u>導電層上に固定されたドット状スペーサーと</u>前記突起が着色されていることを特徴とする(1) に記載のカラーフィルター。
- <u>6</u>) <u>導電層上に固定された</u>ドット状スペーサ<u>ーの</u>体積抵抗値が $10^7\Omega$  c m以上であることを特徴とする (1) に記載のカラーフィルター。
- 7) <u>導電層上に固定された</u>ドット状スペーサーおよび突起がポリイミド系樹脂またはアクリル系樹脂であることを特徴とする(1)に記載のカラーフィルター。
- 8)  $(1) \sim (7)$  に記載のカラーフィルターを使用したことを特徴とする液晶表示装置。

#### [0010]

【発明の実施の形態】通常、液晶表示装置はスペーサー

を介して貼り合わされた2枚の基板の間に液晶を挟んだ構造をとる。本発明の液晶表示装置は、カラーフィルターおよびカラーフィルターと対向する電極基板とが貼り合わせられる。本発明の電極基板は、例えばTFT基板のようなトランジスターで駆動される電極を複数個有する基板や透明導電膜による配線が施された基板である。本発明のドット状スペーサーは<u>導電層</u>上に形成されるが、これと対向する位置の電極基板上にもドット状スペーサーを形成してもよい。

【0011】液晶表示装置において、表示品位を向上させるために、基板上の非表示領域に固定されたスペーサーを有することが好ましい。非表示領域とは、液晶表示装置に組みあがった状態での画面内の遮光部と画面外に相当する領域を指す。遮光部は基板上に形成された金属配線やTFTなどの能動素子を外部から見えないように黒色樹脂や黒色金属酸化物を配置した部分である。また、遮光部は、画素間や画素と配線間の隙間から抜けてくる光を遮光する役割もある。また、本発明においては液晶に電圧が印加されず実質的に常時黒表示状態である部分も非表示領域とする。一方、表示領域は、前記の非表示領域以外の領域を指す。

【0012】本発明のドット状スペーサーは非表示領域にあることが開口率を高め光を有効利用できる点や傾斜による液晶配向の乱れが表示不良につながりにくい点で好ましい。

【0013】本発明のドット状スペーサーを構成する材料としては、ポリイミド系樹脂、エポキシ系樹脂、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂等の感光性又は非感光性の材料が好ましく用いられる。着色層でスペーサーを形成する場合には、これらの樹脂中に着色剤を分散又は溶解させたものを用いる。

【0014】感光性の樹脂としては、光分解型樹脂、光 架橋型樹脂、光重合型樹脂などのタイプがあり、特に、エチレン不飽和結合を有するモノマ、オリゴマ又はポリマと紫外線によりラジカルを発生する開始剤とを含む感光性組成物、感光性ポリアミック酸組成物等が好適に用いられる。

【0015】非感光性の樹脂としては、上記の各種ポリマなどで現像処理が可能なものが好ましく用いられるが、透明導電層の製膜工程や液晶表示装置の製造工程でかかる熱に耐えられるような耐熱性を有する樹脂が好ましく、また、液晶表示装置の製造工程で使用される有機溶剤への耐性を持つ樹脂が好ましく、中でもポリイミド系樹脂が特に好ましい。

【0016】ここで、ポリイミド系樹脂としては、特に限定されるものではないが、通常下記一般式で表される構造単位を主成分とするポリイミド前駆体を、加熱又は適当な触媒によってイミド化したものが好適に用いられる。

[0017]

【化1】ここで上記一般式のnは0あるいは1~4の数である。R¹は酸成分残基であり、R¹は少なくとも2個の炭素原子を有する3価または4価の有機基を示す。耐熱性の面から、R¹は環状炭化水素、芳香族環または芳香族複素環を含有し、かつ炭素数6から30の3価または4価の基が好ましい。R¹の例として、フェニル基、ビフェニル基、ターフェニル基、ナフタレン基、ベリレン基、ジフェニルエーテル基、ジフェニルスルフォン基、ジフェニルプロパン基、ベンゾフェノン基、ピフェニルトリフルオロプロパン基、シクロブチル基、シクロペンチル基などから誘導された基が挙げられるがこれらに限定されるものではない。

【0018】R²は少なくなくとも2個の炭素原子を有する2価の有機基を示す。耐熱性の面から、R²は環状炭化水素、芳香族環または芳香族複素環を含有し、かつ炭素数6から30の2価の基が好ましい。R²の例として、フェニル基、ビフェニル基、ターフェニル基、ナフタレン基、ペリレン基、ジフェニルエーテル基、ジフェニルスルフォン基、ジフェニルプロパン基、ベンゾフェノン基、ビフェニルトリフルオロプロパン基、ジフェニルメタン基、シクロヘキシルメタン基などから誘導された基が挙げられるがこれらに限定されるものではない。一般式(1)で表される構造単位を主成分とするポリマーはR¹、R²がこれらの内各々1個から構成されていても良いし、各々2種以上から構成される共重合体であっても良い。

【0019】またアクリル系樹脂を含むスペーサーも好 ましく使用される。このとき用いられるアクリル系樹脂 は、アクリル酸、メタクリル酸、メチルアクリレート、 メチルメタクリレートなどのアルキルアクリレートまた はアルキルメタクリレート、環状のアクリレートまたは メタクリレート、ヒドロキシエチルアクリレートまた は、メタクリレートなどの内から3~5種類程度のモノ マを用いて、分子量5000~20000程度に重合 した樹脂を用いる。なお、スペーサーがアクリル樹脂を 含むものである場合、スペーサーを構成する成分中のア クリル樹脂の含有量は、50重量%以上が好ましく、6 0重量%以上がさらに好ましい。アクリル系樹脂スペー サーを構成する材料が感光性か非感光性は制限されない が、スペーサーの微細加工のしやすさの点から感光性の 材料が好ましく用いられる。感光性樹脂の場合には、ア クリル系樹脂と光重合性モノマ、光重合開始剤を配合し た組成物が好ましく用いられる。光重合性モノマとして は、2官能、3官能、多官能モノマがあり、2官能モノ マとして、1,6-ヘキサンジオールジアクリレート、 エチレングリコールジアクリレート、ネオペンチルグリ コールジアクリレート、トリエチレングリコールアクリ レートなどがあり、3官能モノマとして、トリメチロー ルプロパントリアクリレート、ペンタエリスリトールト

リアクリレート、トリス(2ーヒドロキシエチル)イソ シアネートなどがあり、多官能モノマとしてジトリメチ ロールプロパンテトラアクリレート、ジペンタエリスリ トールペンタおよびヘキサアクリレートなどがある。ま た、光重合開始剤としては、ベンゾフェノン、チオキサ ントン、イミダゾール、トリアジン系などが単独もしく は混合で用いられる。

【0020】上記スペーサーを構成する樹脂には、必要に応じて、着色剤を添加しても良い。着色剤としては、有機顔料、無機顔料、染料等を好適に用いることができ、さらには、紫外線吸収剤、分散剤、レベリング剤等の種々の添加剤を添加してもよい。スペーサーに遮光性が要求される際には、カーボンブラック、酸化チタン、四酸化鉄等の金属酸化物粉、金属硫化物粉、金属粉といった遮光剤の他に、赤、青、緑色等の顔料の混合物等を用いることができる。この中でも、特にカーボンブラックは遮光性が優れており、特に好ましい。スペーサーに遮光性と絶縁性が要求される際には、酸化アルミニウム、酸化チタン、酸化鉄等の絶縁性無機化合物微粒子や表面に樹脂を被覆したカーボンブラックを用いても良い。

【0021】ドット状スペーサーを構成する樹脂に着色 剤や遮光剤を添加する量に特に制限はないが、樹脂成分 と着色剤と遮光剤成分との重量比が10:0~1:9であることが、ドット状スペーサー形成の点から好ましい。

【0022】スペーサーを形成する工程としては、未硬 化の樹脂を基板上に塗布、乾燥した後に、パターニング を行う方法が、精度良くスペーサーを形成できる点から 好ましく用いられる。未硬化の樹脂を塗布する方法とし ては、ディップ法、ロールコーター法、スピナー法、ダ イコーティング法、ワイヤバーコーティング法などが好 適に用いられ、この後、オーブンやホットプレートを用 いて加熱乾燥(セミキュア)を行う。セミキュア条件 は、使用する樹脂、溶媒、樹脂塗布量により異なるが、 通常60~200℃で1~60分加熱することが好まし い。このようにして得られた樹脂被膜は、樹脂が非感光 性の樹脂である場合は、その上にフォトレジスト膜を形 成した後に、また、樹脂が感光性の樹脂である場合は、 そのままかあるいは酸素遮断膜を形成した後に、露光、 現像を行う。必要に応じて、フォトレジスト膜又は酸素 遮断膜を除去し、また、加熱乾燥(本キュア)する。本 キュア条件は、樹脂の種類や塗布量により若干異なる が、ポリイミド系樹脂の場合には、通常200~300 ℃で1~60分加熱するのが一般的である。アクリル系 樹脂の場合には、本キュア条件は、通常150~300 ℃で1~60分加熱するのが一般的である。以上のプロ セスにより、透明基板上にスペーサーが形成される。1 回のパターニングで十分な高さを得られることが困難で ある場合には、複数の樹脂層を積層することも可能であ

る。

【0023】転写法によってスペーサーを形成してもよい。すなわち、あらかじめ基材上に感光性を付与した樹脂層を形成した転写基板を準備し、これを必要に応じ熱や圧力を加えつつ基板の上に重ね合わせ、露光・現像し、しかる後に基材を剥離してスペーサーを基板上に形成する方法、もしくはあらかじめフォトリソグラフィー等にて転写基板上にスペーサーを形成しておいてから基板上に熱や圧力を加えてスペーサーを転写する方法である

【0024】スペーサーの形状、すなわち、スペーサーを基板と平行な面で切断した場合の横断面の形状は、特に限定されないが、円、楕円、角が丸い多角形、十字、T字又はL字形が好ましい。また、積層によりスペーサーを形成する場合においても、それぞれの層のスペーサーの形状は、特に制限されないが、円、楕円、角が丸い多角形、十字、T字又はL字形が好ましく、これらを任意に積層しスペーサーを形成してよい。

【0025】  $Z^{\text{-}}$   $Z^{\text{-}}$ 

【0026】  $Z^{\mathcal{N}}$ ーサーの形成方法としては、着色層形成時に画素の着色部分とスペーサーとが同時に形成されることが生産性を高める点と十分な高さのスペーサーを形成できる点で好ましい。ただし本発明においてはスペーサーの最上層  $\underline{\mathbf{m}}$   $\underline{\mathbf{m$ 

【0027】スペーサーによって保たれる2枚の液晶表示装置用基板間の間隔の画面内均一性を高める点から、画面内および画面外の非表示領域にスペーサーを形成することが好ましいが、場合によっては画面内または画面外のどちらか一方の非表示領域に形成しても良い。

【0028】スペーサーの1個あたりの面積や配置場所は液晶表示装置の構造に大きく影響を受ける。固定され

たドット状スペーサーを有するカラーフィルターにおい て1画素中の非表示領域の面積の制約から、画面内の1 個あたりのスペーサー面積は、 $10 \mu m^2 \sim 1000 \mu$ m<sup>2</sup>であることが好ましい。さらに好ましくは、10μ  $m^2 \sim 250 \mu m^2$  である。ここでいうスペーサー面積と は導電層上に形成されたドット状スペーサー最頂部であ って、液晶表示装置を作製した際に対向基板に接触する 部分の面積もしくは対向基板上に作製されたスペーサー に接触する部分の面積を指す。1個あたりのスペーサー の面積が10μm<sup>2</sup>よりも小さい場合は、精密なパター ンの形成や積層が難しくなる他、液晶表示装置装置製造 時の圧力印加でスペーサーが破壊されることがある。1 個あたりのスペーサーの面積が1000μm²よりも大 きい場合は、スペーサーの周辺においてラビングによる 十分な配向処理が困難になる。また、画面内のスペーサ ーは、スペーサー部の形状にもよるが画面内の非表示領 域に完全に配置することが難しくなる。一方、画面外の スペーサーは、表示領域に現れることが無い。したがっ て、面内および画面外にスペーサーを有する液晶表示装 置用基板の場合、画面外のスペーサーのひとつ当たりの 面積は、スペーサーの形成を容易にするために画面内の スペーサーのひとつ当たりの面積と等しいかもしくは大 きいことが好ましい。

【0029】また、本発明のカラーフィルターは透明導電層形成前に透明保護層を形成しても良い。このような透明保護層の形成は、カラーフィルターの構造を複雑にし製造コストが高くする点で不利であるが、一方スペーサー高さの制御、カラーフィルターからの不純物のシミ出し防止、表面平坦化に有利である。

【0030】3色の着色層を形成後、もしくは透明保護層形成後に透明導電層が形成される。透明導電層としてはITOなどの酸化物薄膜を採用することができる。

【0031】液晶分子の傾きが一方向だけであると液晶分子が傾いた方向において視野角の非対称性が大きく、かつ視野角が小さくなる。分割配向とは液晶表示装置の1画素内を複数の領域に分け、各領域で液晶分子の傾きを変える技術である。分割配向技術としてはフォトリソグラフィーを利用して液晶配向膜のラビングの向きが異なる領域を1画素内に作る技術が知られているが、工程が多いフォトリソグラフィーを採用することによる生産性の低下やフォトリソグラフィーで使用する現像液や剥離液で先に形成した液晶配向膜がダメージを受ける問題があった。

【0032】一方、液晶表示方式として電圧無印加のときに液晶分子長軸が基板表面に対して垂直に配向しており、電圧印加で液晶長軸が基板面と平行方向に倒れる垂直配向方式が提案されている。また、垂直配向方式の分割配向技術として基板上に形成した傾斜を利用するものが提案されている。すなわち、基板上の一部に突起を作り、この側面の傾斜で基板面に垂直方向に長軸を配向し

ようとする液晶分子を傾け、将棋倒し状に表示領域の液晶分子の配向をわずかに垂直方向から倒す方法である。液晶分子は電圧印加すると突起の作用で傾いている方向にさらに深く倒れていく。突起が三角形または台形の断面を持つストライプであれば2つの斜面において液晶分子は二方向に分かれて倒されて二方向の分割配向ができる。また、突起が角錐であればその斜面の数によって配向分割数が決まり、突起が円錐であれば放射状の液晶配向が得られる。該側面の傾斜は順テーパーである。また、突起の頂部は表示に寄与しないのでなるべく狭いことが望ましい。

【0033】 該突起はカラーフィルター側と対向する電極基板側とで一対になっている必要があるので断面が台形または三角形のストライプ状でカラーフィルター側と対向する電極基板側とで交互に配置されていることが特に好ましい。

【0034】本発明のドット状スペーサ<u>ーの</u>体積抵抗値は  $10^7\Omega$  c m以上であることが好ましい。ドット状スペーサ<u>ーの</u>体積抵抗値が  $10^7\Omega$  c m未満であると、貼り合わせずれによりカラーフィルター上の透明電極層と対向する電極基板とが導通し、表示不良を引き起こす。該体積抵抗値は  $10^9\Omega$  c m以上であることがさらに好ましい。

【0035】本発明は<u>導電層上に</u>固定された複数個のドット状スペーサーと分割配向用の突起を備えたことによって表示性能に優れた液晶表示装置を提供すると共にドット状スペーサーと分割配向用突起とを同時に形成する生産性に優れた液晶表示装置を提供する。また、ドット状スペーサーを透明導電層上に配置した場合は、基板貼り合わせ時の位置ずれによってカラーフィルター上の透明導電層と対向する電極基板とが短絡する欠陥を避けることができる。短絡の防止は、電極や配線が密に配置されている高開口率の液晶表示装置において効果が大きい。

【0036】本発明の分割配向用突起は、この上に液晶配向膜が形成されることから、高い耐熱性、耐溶媒性が要求される。また、0.1 μ m以下の薄い液晶配向膜を介して液晶と分割配向用突起とが隣接することから、不純物の溶出が少ないことも要求される。本発明の分割配向用突起は上記の条件を備えたポリイミド系樹脂、アクリル系樹脂、エポキシ系樹脂の採用が好ましい。

【0037】以下、本発明をさらに詳細に説明する。

【0038】本発明のカラーフィルターは、透明基板上に必要に応じてブラックマトリックスを設け、さらにその上に3原色から成る着色層を複数配列したものが好ましい。カラーフィルターは3原色から成る各着色層により被覆された画素を1絵素とし、多数の絵素により構成されている。ここで言う、ブラックマトリックスは、各画素間に配列された遮光領域を示し、液晶表示装置の表示コントラストを向上させ、またTFTなどの能動素子

に光が入射して誤動作することを防ぐために設けられ ス

【0039】カラーフィルターに用いられる透明基板としては、特に限定されるものではなく、石英ガラス、ホウケイ酸ガラス、アルミノケイ酸塩ガラス、表面をシリカコートしたソーダライムガラスなどの無機ガラス類、有機プラスチックのフィルム又はシート等が好ましく用いられる。

【0040】この透明基板上に必要に応じてブラックマ トリックスが設けられる。ブラックマトリックスは、ク ロムやニッケル等の金属又はそれらの酸化物等や着色膜 の重ね塗りで形成してもよいが、樹脂及び遮光剤から成 る樹脂ブラックマトリックスを形成することが製造コス トや廃棄物処理コストの面から好ましい。また、スペー サーを高くする面からも樹脂ブラックマトリックスの採 用が好ましい。この場合、ブラックマトリックスに用い られる樹脂としては、特に限定されないが、エポキシ系 樹脂、アクリル系樹脂、ウレタン系樹脂、ポリエステル 系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂など の感光性又は非感光性の材料が好ましく用いられる。ブ ラックマトリックス用樹脂は、画素や保護膜に用いられ る樹脂よりも高い耐熱性を有する樹脂が好ましく、ま た、ブラックマトリックス形成後の工程で使用される有 機溶剤に耐性を持つ樹脂が好ましいことからポリイミド 系樹脂が特に好ましく用いられる。なお、好ましいポリ イミド系樹脂としては、前述のスペーサーを形成するの に適した樹脂を挙げることができる。

【0041】ブラックマトリックス用の遮光剤としては、カーボンブラック、酸化チタン、四酸化鉄等の金属酸化物粉、金属硫化物粉、金属粉の他に、赤、青、緑色等の顔料の混合物等を用いることができる。この中でも、特にカーボンブラックは遮光性が優れており、特に好ましい。分散の良い粒径の小さいカーボンブラックは主として茶系統の色調を呈するので、カーボンブラックに対する補色の顔料を混合させて無彩色にするのが好ましい。

【0042】ブラックマトリックス用の樹脂がポリイミドの場合、黒色ペースト溶媒としては、通常、Nーメチルー2ーピロリドン、N, Nージメチルアセトアミド、N, Nージメチルホルムアミド等のアミド系極性溶媒、yーブチロラクトンなどのラクトン系極性溶媒等が好適に使用される。

【0043】カーボンブラックや、カーボンブラックに対して補色の顔料等の遮光剤を分散させる方法としては、例えば、ポリイミド前駆体溶液中に遮光剤や分散剤等を混合させた後、三本ロール、サンドグラインダー、ボールミルなどの分散機中で分散させる方法などがあるが、この方法に特に限定されない。また、カーボンブラックの分散性向上、あるいは塗布性やレベリング性向上のために種々の添加剤が加えられていてもよい。

【0044】樹脂ブラックマトリックスの製法としては、黒色ペーストを透明基板上に塗布、乾燥した後に、パターニングを行う。黒色ペーストを塗布する方法としては、ディップ法、ロールコーター法、スピナー法、ダイコーティング法、ワイヤバーコーティング法などが好適に用いられ、この後、オーブンやホットプレートを用いて加熱乾燥(セミキュア)を行う。セミキュア条件は、使用する樹脂、溶媒、ペースト塗布量により異なるが、通常60~200℃で1~60分加熱することが好ましい。

【0045】このようにして得られた黒色ペースト被膜は、樹脂が非感光性の樹脂である場合は、その上にフォトレジスト膜を形成した後に、また、樹脂が感光性の樹脂である場合は、そのままかあるいは酸素遮断膜を形成した後に、露光、現像を行う。必要に応じて、ポジ形フォトレジスト膜まは酸素遮断膜を除去し、また、加熱乾燥(本キュア)する。本キュア条件は、前駆体からポリイミド系樹脂を得る場合には、塗布量により若干異なるが、通常200~300℃で1~60分加熱するのが一般的である。アクリル系樹脂の場合には、本キュア条件は、通常150~300℃で1~60分加熱するのが一般的である。以上のプロセスにより、基板上にブラックマトリックスが形成される。

【0046】また、転写法によって樹脂ブラックマトリックスを形成してもよい。後述する着色層を重ねてブラックマトリックスを形成しても良い。

【0047】樹脂ブラックマトリックスの膜厚は、好ましくは $0.5\sim2.0~\mu$  m、より好しくは $0.8\sim1.5~\mu$  mである。この膜厚が $0.5~\mu$  mよりも薄い場合には、樹脂ブラックマトリックス上に樹脂層を積層してスペーサーを作製する場合、十分な高さのスペーサーを形成することが難しくなり、また、遮光性が不十分になることからも好ましくない。一方、膜厚が $2.0~\mu$  mよりも厚い場合には、遮光性は確保できるものの、カラーフィルターの平坦性が犠牲になり易く、段差が生じやすい。

【0048】樹脂ブラックマトリックスの遮光性は、OD値(透過率の逆数の常用対数)で表されるが、液晶表示装置の表示品位を向上させるためには、好ましくは1.6以上であり、より好ましくは2.0以上である。また、樹脂ブラックマトリックスの膜厚の好適な範囲を前述したが、OD値の上限は、これとの関係で定められるべきである。

【0049】樹脂ブラックマトリックス間には通常( $20\sim200$ )  $\mu$ m×( $20\sim300$ )  $\mu$ mの開口部が設けられるが、この開口部を少なくとも被覆するように3原色のそれぞれの着色層が複数配列される。すなわち、1つの開口部は、3原色のいずれか1つの着色層により被覆され、各色の着色層が複数配列される。

【0050】カラーフィルターの場合、着色層は、少な

くとも 3 原色、赤(R)、緑(G)、青(B)または、シアン(C)、マゼンダ(M)、イエロー(Y)の 3 層を包含するものであり、各画素にはこれらの 3 色のいずれかの 1 つの着色層が設けられる。

【0051】着色層に用いられる着色剤としては、有機 顔料、無機顔料、染料等を好適に用いることができ、さ らには、紫外線吸収剤、分散剤、レベリング剤等の種々 の添加剤を添加してもよい。顔料としては、赤(R)と してColor Index No. 9、97、122、123、14 9、168、177、180、192、215など、緑 (G)としてColor Index No. 7、36など、青(B) としてはColor Index No. 15、22、60、64など が一般的に用いられる。分散剤としては界面活性剤、顔 料の中間体、染料の中間体、高分子分散剤などの広範囲 のものが使用される。

【0052】着色層に用いられる樹脂としては、特に限定されないが、エポキシ系樹脂、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂などの感光性又は非感光性の材料が採用できる。本発明のドット状スペーサーは微細な加工が可能でかつ加圧に耐えるような強靱な樹脂で形成されていることが好ましいので、アクリル系樹脂、ポリイミド系樹脂の採用が好ましく、ポリイミド系樹脂がより好ましく用いられる。

【0053】着色層を形成する方法としては、ブラックマトリックスを形成した基板上に着色剤を含むペーストを塗布、乾燥した後に、パターニングを行う。着色剤を分散又は溶解させ着色ペーストを得る方法としては、溶媒中に樹脂と着色剤を混合させた後、三本ロール、サンドグラインダー、ボールミルなどの分散機中で分散させる方法などがあるが、この方法に特に限定されない。

【0054】着色ペーストを塗布する方法としては、黒色ペーストの場合と同様、ディップ法、ロールコーター法、スピナー法、ダイコーティング法、ワイヤーバーコーティング法等が好適に用いられ、この後、オーブンやホットプレートを用いて加熱乾燥(セミキュア)を行う。セミキュア条件は、使用する樹脂、溶媒、ペースト塗布量により異なるが通常60~200℃で1~60分加熱することが好ましい。

【0055】このようにして得られた着色ペースト被膜は、樹脂が非感光性の樹脂である場合は、その上にフォトレジスト膜を形成した後に、また、樹脂が感光性の樹脂である場合は、そのままかあるいは酸素遮断膜を形成した後に、露光、現像を行う。必要に応じて、フォトレジスト膜まは酸素遮断膜を除去し、加熱乾燥(本キュア)する。

【0056】本キュア条件は、前駆体からポリイミド系 樹脂を得る場合には、塗布量により若干異なるが、通常 200~300℃で1~60分加熱するのが一般的であ る。アクリル系樹脂の場合には、本キュア条件は、通常 150~300℃で1~60分加熱するのが一般的である。以上のプロセスにより、ブラックマトリックスを形成した基板上にパターニングされた着色層が形成される。また、いわゆる転写法で着色層を形成してもよい。【0057】ブラックマトリックスを形成した基板上に、上記のように、第1色目の着色層を全面にわたって形成した後に、不必要な部分をフォトリソグラフィ法により除去し、所望の第1色目の着色層のパターンを形成する。同様の操作を繰り返し、第2色目の着色パターン、第3色目の着色パターンを形成する。

【0058】カラーフィルターにスペーサーを形成する際に、スペーサーを形成する工程が別途必要とならないように、または十分な高さのスペーサーを実現するために着色層の加工と同時にカラーフィルターの着色層で構成されたスペーサーを形成するのが好ましい。ただし本発明においては前記スペーサーを構成する最上層すなわち導電層上に形成されたドット状スペーサーと分割配向用の突起とが同一の組成で同時に加工されることが好ましい。ドット状スペーサーと分割配向用突起は着色されていても透明であっても良いが、ドット状スペーサーと分割配向用突起は着色されていても透明であっても良いが、ドット状スペーサーと分割配向用突起とが着色されている場合はブラックマトリックス、画面の非表示部を遮光する額縁やアクティブ素子の遮光部も同時に加工することが可能であり製造工程を短縮できる点で本発明の効果を大きくし好ましい。

【0059】<u>ドット状スペーサー</u>と分割配向用の突起とが同一組成で同時に加工されることが好ましいことから、カラーフィルターを構成する3原色の着色層とは別にこれらを作製することが好ましい。着色層を透明導電層の上に配置すると着色層による電圧降下で液晶駆動電圧が大きくなる問題がある。

【0060】分割配向用突起の高さは $0.5\mu$ m~ $6\mu$ mであることが好ましい。突起高さが $0.5\mu$ m未満であると分割配向の効果が十分でなく、一方、突起高さが $6\mu$ m超であると1回のフォトリソグラフィーによる突起形成が難しくなる他、液晶注入の妨げになる。分割配向用突起の高さは $0.6\mu$ m~ $3\mu$ mの範囲がさらに好ましい。

【0061】 スペーサー<u>は着</u>色層の1層、2層又は3層で構成することができる。例えば、上記のようにブラックマトリックスを形成した基板上に第1色目の着色層で所望の第1色目の着色層のパターンを形成する際に、ブラックマトリックスの開口部を被覆する部分と、着色層の積層によりスペーサーを形成する部分に着色層を残す。第2色目、第3色目も同様な操作を繰り返し、ブラックマトリックスの開口部上には1層の着色層が形成される。また、スペーサーとして十分なセルギャップを確保するためには、好ましくは2層から3層の着色層がスペーサー形成位置に積層されることが好ましい。

【0062】非表示領域であるブラックマトリックス上に着色層を1層、2層又は3層積層しスペーサーを構成

することが、表示部の面積を減じることなく、また十分なセルギャップを確保する点から好ましい。しかしながら、スペーサーの高さが分割配向用突起と同じ高さであっても良い場合、すなわち、ドット状スペーサー下に着色層よりも厚いブラックマトリックスが配置されて、ドット状スペーサーと分割配向用突起とを同時に形成してもスペーサーの高さが大きくなることで分割配向用突起が対向電極基板に接しない場合などでは、着色層をスペーサー位置に置かなくとも良い。つまりこのときスペーサーは分割配向用突起と同じく1層からなる。

【0063】また、スペーサーの形成とともに、スペーサーとして機能しない高さの積層物を形成しても良い。例えば、スペーサーが4層で形成される場合、3層、2層もしくは1層からなる積層物で形成され、スペーサーが3層で形成される場合、2層もしくは1層からなる積層物で形成される。これらは、通常時は対向する電極基板と接することは無いが、液晶表示装置に圧力が加わった際に対向する電極基板と接することでセルギャップを確保して、液晶表示装置の表示品位の信頼性を高めることができる。

【0064】着色層の積層によりスペーサーを形成する場合は、スペーサーを構成する着色層の樹脂成分と着色剤成分との重量比が3:7~9:1であることが、所望のスペーサーの高さをもたせる点とカラーフィルターに所望のカラー表示性能をもたせる点などから、好ましい。

【0065】 開口部上の着色層とスペーサーを形成する 着色層とは連続していても、また、分離されていてもよい。

【0066】本発明のスペーサーは、パターンを積層する際には、対向基板への接触部の面積がスペーサーの底部の面積より小さくなるように設計することが望ましい。

【0067】本発明のカラーフィルターおよびこれを用いた液晶表示装置の製造方法を図1および図2を用いて以下に説明するがこれに限定されるものではない。

【0068】無アルカリガラス1の上に黒ペーストを用いてブラックマトリックス2を形成する。ブラックマトリックスの開口部を埋めるように青着色層3を形成し同時にブラックマトリックス上にスペーサー形成位置に青着色層4を配置した。同様にして、赤着色層をブラックマトリックスの開口部7とスペーサー形成位置6を形成し、次いで緑着色層をブラックマトリックスの開口部5とスペーサー形成位置8を形成する。次に透明保護層9を形成し、さらに透明導電層10を積層する。透明導電層の上に分割配向用突起11およびドット状スペーサー12を同時に形成する。

【0069】TFT素子を備えた電極基板の製造方法の一例を以下に示す。

【0070】無アルカリガラス基板上にスパッタリング

によりクロム薄膜を形成し、フォトリソグラフィーにて ゲート電極をパターニングする。次に、プラズマCVD により、絶縁膜として窒化珪素膜、アモルファスシリコ ン膜およびエッチングストッパとして窒化珪素膜を連続 形成する。次に、フォトリソグラフィーにてエッチング ストッパの窒化珪素膜をパターニングする。 TFT端子 が金属電極とオーミックコンタクトをとるためのn+ア モルファスシリコン膜の成膜とパターニングをし、さら に、表示電極となるITO膜を成膜しパターニングす る。さらに配線材料としてアルミニウムをスパッタリン グにより膜付けし、フォトリソグラフィーにて信号配線 およびTFTの金属電極を作製する。ドレイン電極とソ ース電極をマスクとしてチャンネル部のn+アモルファ スシリコン膜をエッチング除去し、TFT素子を備えた 電極基板を得る。反射型の液晶表示素子の場合は、表示 電極をアルミニウムや銀などの反射率の高い材料とす る。

【0071】カラーフィルター上に垂直配向膜を設ける。同様にして対向する薄膜トランジスタを備えた電極基板についても垂直配向膜を設ける。対向する電極基板にカラーフィルター上に設けた配向分割用突起と対応するように配向分割用突起を設ける。この2枚の基板をエポキシ接着材をシール剤として用いて貼り合わせた後に、シール部に設けられた注入口から垂直配向する液晶を注入する。液晶を注入後、注入口を封止し、さらに偏光板を基板の外側に貼り合わせ液晶表示装置を作製する。

【0072】図2に本発明のカラーフィルターの平面図の一例を示す。ブラックマトリックス13の開口部14とブラックマトリックス上<u>のス</u>ペーサー形成位置15に着色膜を形成する。ブラックマトリックス開口部の長辺方向を二分するように断面が台形のストライプ状突起16を画素一つおきに形成する。対向する電極基板上にはカラーフィルター上のストライプ状突起と交互に配置されるように画素一つおきにストライプ状突起を形成する。

【0073】本発明のカラーフィルターおよびこれを用いた液晶表示装置は、パソコン、ワードプロセッサー、エンジニアリング・ワークステーション、ナビゲーションシステム、液晶テレビなどの表示画面に用いられる。また、液晶プロジェクション等にも好適に用いられる。また、光通信や光情報処理の分野において、液晶を用いた空間変調素子としても好適に用いられる。空間変調素子は、素子への入力信号に応じて、素子に入射する光の強度や位相、偏光方向等を変調させるもので、実時間ホログラフィーや空間フィルター、インコヒーレント/コヒーレント変換等に用いられるものである。

### [0074]

【実施例】以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれらに限定されない。

#### (測定法)

#### 体積抵抗値の測定

アルミニウム薄膜を蒸着したガラス基板上に対象となる 材料を  $1~\mu$  mの厚さにコーティングする。コーティング 膜上にさらに直径 1~5 mmのアルミニウム電極を蒸着する。コーティング膜を挟んだ 2 つの電極間に直流 1~V を 印加して、電圧印加後 5~0 分での電流値とコーティング膜の厚みから体積抵抗値を求めた。

### 【0075】調製例1

メチルトリメトキシシラン4. 08g、フェニルトリメトキシシラン9. 9g、y-アミノプロピルメチルジエトキシシラン28. <math>8gをy-ブチロラクトン156. 3g、3-メチル-3-メトキシブタノール150gに溶解し、30 でで撹拌しながら9. 12gの蒸留水を加えた後、50 でで2時間加熱撹拌し、加水分解・縮合をおこなった。ついで130 でに昇温してさらに縮合を進めながら生成したアルコールと水を留去させた。この溶液を50 でに冷却した後、撹拌しつつ3, 3', 4, 4' -ベンゾフェノンテトラカルボン酸2無水物24. 17gを添加してアミック酸系ポリオルガノシロキサン溶液を得た。

### 【0076】調製例2

メチルトリメトキシシラン272g、フェニルトリメトキシシラン396gを3-メチルー3-メトキシブタノール785.6gに溶解した後に、撹拌しつつ燐酸3.34gと蒸留水216gの混合物を加えた。得られた溶液を105℃で1時間加熱し、主としてメタノールからなる成分302gを留去させた。ついで130℃で2時間加熱し、主としてアルコールと水からなる成分147gを留去させた。これを室温まで冷却してから3-メチルー3-メトキシブタノール86gを加えてポリオルガノシロキサン系溶液を得た。

#### 【0077】調製例3

アセト酢酸エチルエステル650gと3-メチル-3-メトキシブタノール1567gの混合液にテトラブトキシジルコニウム383gを添加して30℃で1時間撹拌した後、24時間放置してジルコニアキレート溶液を得た。

### 【0078】実施例1

(樹脂ブラックマトリクスの作成) 3, 3´, 4, 4´ービフェニルテトラカルボン酸二無水物 1 4 4. 1 gを y ーブチロラクトン 1 0 9 5 g、Nーメチルー 2 ーピロリドン 2 0 9 gに混合し、4, 4´ージアミノジフェニルエーテル 9 5. 1 g、ビス(3 ーアミノプロピル)テトラメチルジシロキサン 6. 2 gを添加して 7 0  $\mathbb C$  で 3 時間反応させた後、無水フタル酸 2 . 9 6 gを添加して さらに 7 0  $\mathbb C$  で 1 時間反応させてポリイミド前駆体(ポリアミック酸)溶液を得た。

【0079】下記の組成を有するカーボンブラックミルベースをホモジナイザーを用いて、7000rpmで3

0分間分散し、ガラスビーズを濾過して、ブラックペーストを調製した。

[0080]

カーボンブラックミルベース カーボンブラック

(MA100、三菱化学(株)製)4.6部ポリイミド前駆体溶液24.0部Nーメチルー2ーピロリドン61.4部ガラスビーズ90.0部

 $300 \times 350$  mmのサイズの無アルカリガラス(日本電気ガラス(株)製、OA-2)基板上にスピナーを用いて、ブラックペーストを塗布し、オーブン中135  $^{\circ}$  で20分間セミキュアした。続いて、ポシ型フォトレジスト(シプレー社製 "Microposit" SRC100 30cp)をスピナーで塗布し、80  $^{\circ}$   $^{\circ}$ 

【0081】次に、テトラメチルアンモニウムヒドロキシドを2重量%含んだ23℃の水溶液を現像液に用い、基板を現像液にディップさせ、同時に10cm幅を5秒で1往復するように基板を揺動させて、ポジ型フォトレジストの現像とポリイミド前駆体のエッチングを同時に行った。現像時間は60秒とした。その後、メチルセルソルプアセテートでポジ型フォトレジストを剥離し、さらに、300℃で30分間キュアし、樹脂ブラックマトリクス基板を得た。樹脂ブラックマトリクスの膜厚は、0.90 $\mu$ mであり、OD値は3.0であった。

(着色層の作成) 赤、緑、青の顔料として各々Color in dex No. 65300 Pigment Red 177で示されるジアントラキ ノン系顔料、Color Index No.74265 Pigment Green 36 で示されるフタロシアニングリーン系顔料、Color Inde x No. 74160 Pigment Blue 15-4で示されるフタロシアニ ンブルー系顔料を用意した。ブラックマトリックスに使 用したポリイミド前駆体溶液に上記顔料を各々混合分散 させて、赤、緑、青の3種類の着色ペーストを得た。ま ず、樹脂ブラックマトリックス基板上に青ペーストを塗 布し、120℃20分間セミキュアした。この後、ポジ 型フォトレジスト(シプレー社製"Microposit" SRC100 30cp ) をスピナーで塗布後、80℃で20分乾燥し た。フォトマスクを用いて露光し、テトラメチルアンモ ニウムヒドロキド2重量%水溶液に基板を浸漬し揺動さ せながら、ポジ型フォトレジストの現像およびポリイミ ド前駆体のエッチングを同時に行なった。その後、ポジ 型フォトレジストをメチルセルソルブアセテートで剥離 し、さらに、300℃で30分間キュアした。青着色層 の膜厚は2μmであった。 青画素の形成と同時に樹脂ブ ラックマトリクス上にスペーサーの1段目を形成した。 なおスペーサーのサイズは20μm角とした。

【0082】基板水洗後に、青着色層と同様にして、緑画素の形成とともに樹脂ブラックマトリクス上にスペー

サーの 2 段目を形成した。緑着色層の膜厚は、 2  $\mu$  m、 スペーサーのサイズは 2 0  $\mu$  m角とした。

【0083】さらに基板水洗後に、青着色層と同様にして、赤画素の形成とともに樹脂ブラックマトリクス上にスペーサーの3段目を形成し、カラーフィルターを作製した。赤色画素部の膜厚は $2\mu$ m、スペーサーのサイズは $15\mu$ m角とした。

【0084】調製例1で得たアミック酸系ポリオルガノシロキサン溶液7.5gと調製例2で得たポリオルガノシロキサン溶液10gおよび調製例3で得たキレート溶液1.5gを混合し、透明樹脂用組成物を得た。ブラックマトリックスと3原色の着色層が形成された基板の上に前期透明樹脂を塗布し、80 で10分間乾燥し、次いで280 で60分間キュアして、厚さが $1\mu$  mの透明保護層を形成した。

【0085】透明保護層が形成された基板上に、スパッタリング法にて膜厚が150nmで表面抵抗が20Ω/□のITO膜を形成した。

【0086】前記ITO膜上に、ブラックマトリックス に使用したポリイミド前駆体溶液を塗布し135℃で 20分間セミキュアした。この後、ポジ型フォトレジス トを塗布して80℃ で20分間乾燥した。フォトマス クを介して露光し、テトラメチルアンモニウムヒドロキ シド2重量%水溶液に浸漬してフォトレジストの現像と ポリイミド前駆体のエッチングとを同時に実施した。フ ォトレジストをメチルセルソルブで剥離し、次いで30 0℃ で30分間キュアして厚さ1 μmのドット状スペ ーサーと分割配向用のストライプ状突起とを形成した。 【0087】<u>ドット状</u>スペーサ<u>ーの</u>大きさは12μm× 12μmとし、ストライプ状の突起は断面の下辺が15 μ m、上辺が14μmの台形とした。ストライプ状突起 は図2に示したように1画素の長辺を二分する位置に1 画素おきに配置し、カラーフィルターの表示部全体を貫 いている。

【0088】かくして本発明のカラーフィルターを得た。 突起を形成した透明ポリイミド層の体積抵抗は  $10^{13}$   $\Omega$  c mであった。

【0089】ペースト特性により、積層した各色層の厚みと樹脂BM膜厚との合計から対象の色層の表示部膜厚を引いた厚みと、着色層1層の上に設けられた光透過部分のITO層の表面からスペーサー頂部までの高さであるスペーサーの高さは異なる。スペーサー高さは5.5

μmであった。

【0090】着色層の積層によって樹脂ブラックマトリ ックス上に設けられたスペーサー底部、すなわち青色部 の面積は400μm<sup>2</sup>、対向基板に接触するドット状ス ペーサー頂部の面積は144μm<sup>2</sup>であった。また画面 周辺に樹脂ブラックマトリクスで形成した額縁上にも色 重ねによるスペーサーを設けた、その際、ドット上スペ <u>ーサー</u>の面積は画面内のドット状スペーサーの2倍とな るようにし、単位面積当たりのスペーサーの個数を1/ 2とし単位面積あたりの対向基板へのスペーサーの接触 面積が画面内と同じになるようにした。さらに額縁外の 基板上にも、画面内と同様に樹脂ブラックマトリックス の作製に用いた樹脂層によるパターンと着色膜の作製に 用いた樹脂層のパターンの積層により、カラーフィルタ 一並びに画面内のスペーサーを作製するのと同時にスペ ーサーを形成した。その際単位面積当たりのスペーサー と対向基板との接触面積が画面内と同一になるように形

(電極基板の作製) 無アルカリガラス基板上にスパッタ リングによりクロム薄膜を形成し、フォトリソグラフィ ーにてゲート電極にパターニングした。次に、プラズマ CVDにより、絶縁層として厚さ700nmの窒化珪素 膜、チャンネル層として厚さ100nmのアモルファス シリコン膜、エッチングストッパ層として厚さ500n mの窒化珪素膜を連続形成した。次に、フォトリソグラ フィーにてエッチングストッパ層の窒化珪素膜をパター ニングした。TFT端子と金属電極がオーミックコンタ クトをとるためのn+アモルファスシリコン膜を形成し た。この上に表示電極となるITO膜を成膜しパターニ ングした。さらに配線材料としてのアルミニウムをスパ ッタリングにより膜付けし、フォトリソグラフィーにて 信号配線およびTFTの金属電極を作製した。ドレイン 電極とソース電極をマスクとしてチャンネル部のn+ア モルファスシリコン膜をエッチング除去しTFT素子を 備えた電極基板を得た。

(カラー液晶表示装置の作製と評価)本発明のカラーフィルター上に垂直配向膜を設けた。同様にして対向する薄膜トランジスタを備えた電極基板についても、垂直配向膜を設けた。対向する電極基板についても1画素の長辺を二分する位置に1画素おきにカラーフィルター上のストライプ状突起と同様のストライプ状突起を配置した。ただし、カラーフィルターと貼り合わせたときにストライプ状突起がカラーフィルター上のストライプ突起と1画素毎に交互に配置されるようにした。この2枚の基板をエポキシ接着材をシール剤として用いて貼り合わせた後に、シール部に設けられた注入口から垂直配向する液晶を注入した。液晶を注入後、注入口を封止し、さらに偏光板を基板の外側に貼り合わせ液晶表示装置を作製した。

【0091】かくして20個の液晶表示装置を作製した

ところ、カラーフィルター上の透明導電層と対向する電極基板とが短絡した液晶表示装置はなく良好であった。 液晶の配向は良好であり、また、光透過部にスペーサー がないためにスペーサーによる光漏れがなかった。

#### 【0092】実施例2

透明保護層を設けなかったこと以外は実施例1と同様にして液晶表示装置を20個作製したところ、カラーフィルター上の透明導電層と対向する電極基板とが短絡した液晶表示装置はなく良好であった。液晶配向は良好であり、また、光透過部にスペーサーがないためにスペーサーによる光漏れがなかった。

#### 【0093】実施例3

赤、緑、青の顔料として各々Color index No.65300 Pig ment Red 177で示されるジアントラキノン系顔料、Color Index No.74265 Pigment Green 36 で示されるフタロシアニングリーン系顔料、Color Index No.74160 Pigment Blue 15-4で示されるフタロシアニンブルー系顔料を用意した。

【0094】スチレン:メタクリル酸メチル:メタクリル酸=30:30:40であるアクリル共重合体樹脂粉末6g、多官能モノマーとしてトリメチロールプロパントリアクリレート6g、光重合開始剤(チバスペシャリティケミカルズ社製"イルガキュア"369)3gを含むシクロペンタノン溶液に上記顔料を各々混合分散させて、赤、緑、青の3種類の着色ペーストを得た。

【0095】実施例1と同様にして作製した樹脂ブラックマトリックス基板上に青ペーストを塗布し、80℃で10分間熱風乾燥した。フォトマスクを用いて露光し、アルカリ現像液に基板をディップし同時に基板を揺動させながら現像した。次いで、220℃で30分間キュアした。青着色層の膜厚は2 $\mu$ mであった。青画素の形成と同時に樹脂ブラックマトリクス上にスペーサーの1段目を形成した。なおスペーサーのサイズは30 $\mu$ m角とした。

【0096】基板水洗後に、青着色層と同様にして、緑画素の形成とともに樹脂ブラックマトリクス上にスペーサーの2段目を形成した。緑着色層の膜厚は、 $2 \mu m$ 、スペーサーのサイズは $30 \mu m$ 角とした。

【0097】さらに基板水洗後に、青着色層と同様にして、赤画素の形成とともに樹脂ブラックマトリクス上にスペーサーの3段目を形成し、カラーフィルターを作製した。赤色画素部の膜厚は $2\mu$ m、スペーサーのサイズは $20\mu$ m角とした。

【0098】ブラックマトリックスと赤、青、緑着色層が形成された基板上に、スパッタリング法にて膜厚が150nmで表面抵抗が20Ω/□のITO膜を形成した。

【0099】スチレン:メタクリル酸メチル:メタクリル酸=30:30:40であるアクリル共重合体樹脂粉末6g、多官能モノマーとしてトリメチロールプロパン

【0100】かくして本発明のカラーフィルターを得た。突起を形成した透明アクリル樹脂層の体積抵抗は $10^{12}\Omega$  c mであった。

【0101】ペーストの塗布特性から積層した各色層の厚みと樹脂 B M 膜厚との合計から対象の色層の表示部膜厚を引いた厚みと、1TO層の表面からスペーサー頂部までの高さであるスペーサーの高さは異なる。スペーサー高さは $5.3\mu$  mであった。

【0102】着色層の積層によって樹脂ブラックマトリックス上に設けられたスペーサー底部、すなわち青色部の面積は $400\mu m^2$ 、対向基板に接触する<u>ドット状</u>スペーサー頂部の面積は $144\mu m^2$ であった。また実施例1と同様にして画面周辺に樹脂ブラックマトリクスで形成した額縁上にも色重ねによるスペーサーを設けた。

【0103】実施例1と同様にしてカラーフィルターと 電極基板とを貼り合わせ、液晶注入、注入口封止、偏光 板貼り付けを実施して液晶表示装置を作製した。

【0104】かくして20個の液晶表示装置を作製したところ、カラーフィルター上の透明導電層と対向する電極基板とが短絡した液晶表示装置はなく良好であった。液晶の配向は良好であり、また、光透過部にスペーサーがないためにスペーサーによる光漏れがなかった。

### 【0105】実施例4

ブラックマトリックスを形成する代わりに着色層の重ね塗りで透過率を低減した部分を形成した。すなわち、ブラックマトリックスがない無アルカリガラス基板の上に赤、青、緑の着色層を実施例1と同様に形成し、このときブラックマトリックスが埋めていた隣り合う2つの画素間を2つの画素を着色している着色材料の重ね塗りで

【0106】画素間の2つの着色層の重ね塗り部分の上に3色目<u>が形</u>成されてスペーサーの一部を構成する。さらに実施例2と同様にして、透明保護層を設けずにITO層を形成した後、ポリイミド前駆体溶液を用いてドット状スペーサ<u>ーと</u>配向分割用突起とを同時に形成した。【0107】ITO層の表面からスペーサー頂部までの高さであるスペーサーの高さは、4.8 μmであった。

【0108】また画面周辺に着色層の重ね塗りで形成した額縁上にも色重ねによるスペーサーを設けた、その際、ドット状スペーサーの面積は画面内のドット状スペーサーの2倍となるようにし、単位面積当たりのスペーサーの個数を1/2とし単位面積あたりの対向基板へのスペーサーの接触面積が画面内と同じになるようにした。さらに額縁外の基板上にも、カラーフィルター並びに画面内のスペーサーを作製するのと同時にスペーサーを形成した。その際単位面積当たりのスペーサーと対向基板との接触面積が画面内と同一になるように形成した。

【0109】実施例1と同様にしてカラーフィルターと 電極基板とを貼り合わせ、液晶注入、注入口封止、偏光 板貼り付けを実施して液晶表示装置を作製した。

【0110】かくして20個の液晶表示装置を作製したところ、カラーフィルター上の透明導電層と対向する電極基板とが短絡した液晶表示装置はなく良好であった。液晶の配向は良好であり、また、光透過部にスペーサーがないためにスペーサーによる光漏れがなかった。

### 【0111】実施例5

実施例 1 と同様にしてブラックマトリックス、着色層、透明保護膜、ITO層を形成した。このITO層上に赤ペーストを塗布し、120 $^{\circ}$ で20分間セミキュアした。続いてポジ型フォトレジストを塗布し80 $^{\circ}$ で20分間乾燥した。フォトマスクを用いて露光し、テトラメチルアンモニウムヒドロキシド2重量%水溶液に浸漬してフォトレジストの現像とポリイミド前駆体のエッチングを同時に実施した。メチルセルソルブアセテートでフォトレジストを剥離して、さらに300 $^{\circ}$ で30分間キュアして実施例1と同じパターンの厚さ1 $^{\circ}$ ル冊のドット状スペーサーと分割配向用突起とを作製した。さらに同時に額縁部にも赤着色層を重ねて遮光性を向上させた

【0 1 1 2】分割配向用突起を形成した赤着色層の体積抵抗値は  $10^{12}\,\Omega$  c mであった。 I T O表面からスペーサ頂部までの高さであるスペーサー高さは 5 .  $5\,\mu$  mであった。

【0113】実施例1と同様にしてカラーフィルターと 電極基板とを貼り合わせ、液晶注入、注入口封止、偏光 板貼り付けを実施して液晶表示装置を作製した。

【0114】かくして20個の液晶表示装置を作製したところ、カラーフィルター上の透明導電層と対向する電極基板とが短絡した液晶表示装置はなく良好であった。液晶の配向は良好であり、また、光透過部にスペーサーがないためにスペーサーによる光漏れがなかった。

#### 【0115】実施例6

実施例1と同様にしてブラックマトリックス、着色層、透明保護膜、ITO層を形成した。このITO層上に実施例1のブラックペーストを塗布し、135℃で20分間セミキュアした。続いてポジ型フォトレジストを塗布

し80℃ で20分間乾燥した。フォトマスクを用いて露光し、テトラメチルアンモニウムヒドロキシド2重量%水溶液に浸漬してフォトレジストの現像とポリイミド前駆体のエッチングを同時に実施した。メチルセルソルプアセテートでフォトレジストを剥離して、さらに300℃で30分間キュアして実施例1と同じパターンの厚さ1μmのスペーサー最上層と分割配向用突起とを作製した。

【0116】分割配向用突起を形成した黒着色層の体積 抵抗値は106Ωcmであった。

【0117】 ITO表面からスペーサ頂部までの高さであるスペーサー高さは $5.5\mu$  mであった。

【0118】実施例1と同様にしてカラーフィルターと 電極基板とを貼り合わせ、液晶注入、注入口封止、偏光 板貼り付けを実施して液晶表示装置を作製した。

【0119】かくして20個の液晶表示装置を作製したところ、カラーフィルター上の透明導電層と対向する電極基板とが短絡した液晶表示装置はなく良好であった。しかしながら、分割配向用突起の体積抵抗値が不足して突起近傍の液晶の配向が乱れていた。光透過部にスペーサーがないためにスペーサーによる光漏れはなかった。

着色層を積層したスペーサーを形成せずITO膜上に配向分割用突起のみを形成したこと、またこの代わりにカラーフィルターと電極基板貼り合わせ前に、直径5.5 $\mu$ mのポリスチレン球スペーサーをカラーフィルター上に散布したこと以外は実施例1と同様にして液晶表示装置を作製した。

【0121】かくして20個の液晶表示装置を作製したところ、カラーフィルター上の透明導電層と対向する電極基板とが短絡した液晶表示装置はなく良好であった。しかしながら、光透過部にスペーサーがあるためにスペーサーによる光漏れがあった他、カラーフィルターと電極基板貼り合わせ時にポリスチレン球が分割配向用突起の上にあった部分で該突起が押しつぶされて、この近傍で液晶の配向乱れが見られた。

#### 【0122】比較例2

【0120】比較例1

ITO膜上にポリイミド前駆体溶液を用いて配向分割用 突起のみ形成し、ドット状スペーサ<u>ーを</u>作らなかったことと、青着色層によるスペーサー3段目の大きさを10

【0123】実施例1と同様にしてカラーフィルターと 電極基板とを貼り合わせ、液晶注入、注入口封止、偏光 板貼り付けを実施して液晶表示装置を作製した。

【0124】かくして20個の液晶表示装置を作製したところ、カラーフィルター上の透明導電層と対向する電極基板とが短絡して動作しない画素が発生した液晶表示装置が3個あった。液晶の配向は良好であり、また、光透過部にスペーサーがないためにスペーサーによる光漏れがなかった。

#### [0125]

【発明の効果】本発明の液晶表示装置は、<u>導電層上に</u>固定されたドット状スペーサーと液晶の分割配向用突起とを有しているので表示品位に優れるとともに高視野角を達成できる。さらにドット状スペーサーと液晶の分割配向用突起とを同時に形成することによって生産性に優れ、かつ基板の貼り合わせズレによるカラーフィルター上の透明導電層と対向する電極基板間の短絡が発生しない液晶表示装置を提供できる。

#### 【図面の簡単な説明】

【図1】本発明の<u>導電層上に</u>固定されたドット状スペーサーと配向分割用突起とを有するカラーフィルター基板の断面図の一例である。

【図2】本発明のドット状スペーサーと配向分割用突起とを有するカラーフィルター基板の平面図の一例である。

### 【符号の説明】

1:ガラス基板

2、13:ブラックマトリックス

3、4、5、6、7、8:着色層

9:透明保護層

10:透明導雷層

11、16:配向分割用突起

12<u>、15</u>:ドット状スペーサ<u>ー</u>