

### A Primer for Statistical Tests

R FOR BEGINNERS

BASIC STATISTICS FOR BIOLOGISTS

#### Erik Kusch

Research Assistant
University of Leipzig
Faculty of Life Sciences
Institute of Biology
Behavioral Ecology Research Group
Talstrasse 33
D-04103 Leipzig
Germany
email: erik.kusch@uni-leipzig.de

## **Summary:**

These are the solutions to the exercises contained within the handout to "A Primer For Statistical Tests" which walks you through the basics of variables, their scales and distributions. Keep in mind that there is probably a myriad of other ways to reach the same conclusions as presented in these solutions.

## Contents

| 1        | Loa  | ding the R Environment Object | 2  |
|----------|------|-------------------------------|----|
| <b>2</b> | Var  | iables                        | 2  |
|          | 2.1  | Finding Variables             | 2  |
|          | 2.2  | Colour                        |    |
|          | 2.3  | Depth                         | 3  |
|          | 2.4  | IndividualsPassingBy          | 4  |
|          | 2.5  | Length                        | F  |
|          | 2.6  | Reproducing                   |    |
|          | 2.7  | Sex                           | 7  |
|          | 2.8  |                               |    |
|          | 2.9  | Temperature                   | Ć  |
| 3        | Dist | tributions                    | 10 |
|          | 3.1  | Length                        | 10 |
|          | 3.2  | Reproducing                   | 11 |
|          | 3.3  | IndividualsPassingBy          | 12 |
|          | 3.4  | Depth                         | 13 |

# 1. Loading the R Environment Object

```
load("Data/Primer.RData") # load data file from Data folder
```

## 2. Variables

### 2.1 Finding Variables

#### 2.2 Colour

```
class(Colour) # mode

## [1] "character"
barplot(table(Colour)) # fitting?
```



| Question             | Answer                                 |
|----------------------|----------------------------------------|
|                      | character                              |
| Which scale?         | Nominal                                |
| What's implied?      | Categorical data that can't be ordered |
| Does data fit scale? | Yes                                    |

## 2.3 Depth

```
class(Depth) # mode

## [1] "numeric"

barplot(Depth) # fitting?
```



| Question             | Answer                                             |
|----------------------|----------------------------------------------------|
| Mode?                | numeric                                            |
| Which scale?         | Interval/Discrete                                  |
| What's implied?      | Continuous data with a non-absence point of origin |
| Does data fit scale? | Debatable (is 0 depth absence of depth?)           |

## 2.4 IndividualsPassingBy

```
class(IndividualsPassingBy) # mode

## [1] "integer"

barplot(IndividualsPassingBy) # fitting?
```



| Question             | Answer                                               |
|----------------------|------------------------------------------------------|
| Mode?                | integer                                              |
| Which scale?         | Integer                                              |
| What's implied?      | Only integer numbers with an absence point of origin |
| Does data fit scale? | Yes                                                  |

### 2.5 Length

```
class(Length) # mode

## [1] "numeric"

barplot(Length) # fitting?
```



| Question     | Answer                                                                     |
|--------------|----------------------------------------------------------------------------|
| Which scale? | numeric Relation/Ratio Continuous data with an absence point of origin Yes |

## 2.6 Reproducing

```
class(Reproducing) # mode

## [1] "integer"
barplot(Reproducing) # fitting?
```



| Question             | Answer                                               |
|----------------------|------------------------------------------------------|
| Mode?                | integer                                              |
| Which scale?         | Integer                                              |
| What's implied?      | Only integer numbers with an absence point of origin |
| Does data fit scale? | Yes                                                  |

### 2.7 Sex

```
class(Sex) # mode

## [1] "factor"

barplot(table(Sex)) # fitting?
```



| Question             | Answer                     |
|----------------------|----------------------------|
| Mode?                | factor                     |
| Which scale?         | Binary                     |
| What's implied?      | Only two possible outcomes |
| Does data fit scale? | Yes                        |

### 2.8 Size

```
class(Size) # mode

## [1] "character"

barplot(table(Size)) # fitting?
```



| Question     | Answer                               |
|--------------|--------------------------------------|
| Which scale? | Categorical data that can be ordered |

### 2.9 Temperature

```
class(Temperature) # mode

## [1] "numeric"

barplot(Temperature) # fitting?
```



| Question             | Answer                                               |
|----------------------|------------------------------------------------------|
| Mode?                | numeric                                              |
| Which scale?         | Interval/Discrete                                    |
| What's implied?      | Continuous data with a non-absence point of origin   |
| Does data fit scale? | Yes (the data is clearly recorded in degree Celsius) |

# 3. Distributions

## 3.1 Length

```
plot(density(Length)) # distribution plot
```

#### density.default(x = Length)



```
shapiro.test(Length) # normality check
```

```
##
## Shapiro-Wilk normality test
##
## data: Length
## W = 1, p-value = 0.4
```

The data is **normal distributed**.

### 3.2 Reproducing

```
plot(density(Reproducing)) # distribution
```

#### density.default(x = Reproducing)



shapiro.test(Reproducing) # normality check

```
##
## Shapiro-Wilk normality test
##
## data: Reproducing
## W = 1, p-value = 0.3
```

The data is **binomial distributed** (i.e. "How many individuals manage to reproduce") but looks **normal distributed**. The normal distribution doesn't make sense here because it implies continuity whilst the data only comes in integers.

### 3.3 IndividualsPassingBy

```
plot(density(IndividualsPassingBy)) # distribution
```

#### density.default(x = IndividualsPassingBy)



shapiro.test(IndividualsPassingBy) # normality check

```
##
## Shapiro-Wilk normality test
##
## data: IndividualsPassingBy
## W = 1, p-value = 0.02
```

The data is **poisson distributed** (i.e. "How many individuals pass by an observer in a given time frame?").

### 3.4 Depth

```
plot(density(Depth)) # distribution
```

#### density.default(x = Depth)



The data is **uniform distributed**. You don't know this distribution class from the lectures and I only wanted to confuse you with this to show you that there's much more out there than I can show in our lectures.