Grupa A

Trajanje: 120 minuta. Rješenja zadataka 1–17 potrebno je označiti na obrascu (jedan od ponuđenih odgovora je točan). Problemski zadaci I – V rješavaju se na košuljici i po potrebi na zasebnim papirima (na košuljici zaokružiti redni broj rješavanog zadatka). Odgovore 18–24 potrebno je dodatno označiti na obrascu.

zaokružiti redni broj rješavanog zadatka). Odgovore 18–24 potrebno je dodatno označiti na obrascu.	
1	(1 bod) Kod konstrukcije gramatike za jezik zadan TS $M=(Q,\Sigma,\Gamma,\delta,q_o,B,F)$, produkcija koja simulira pomak u desno je oblika $q[a,X] \to [a,Y]p$, pri čemu vrijedi:
ä	a) $a \in B \text{ i } q \in F$ b) $a \in \Sigma \text{ i } q \in Q$ c) $a \in \Sigma \text{ i } p \notin F$ d) $a \in \Sigma \cup \{B\} \text{ i } p \in Q$ e) $a \in \Sigma \cup \{\varepsilon\} \text{ i } p \in Q$
	(1 bod) Razred najjednostavnijeg oblika automata koji prihvaća nizove iz jezika $a^nb^{2n}c^n$, gdje je $n \ge 1$, je: a) DKA b) NKA c) PA d) LOA e) TS
	(1 bod) Prilikom konstrukcije NKA $(Q', \Sigma', \delta', q_0', F')$ iz ε -NKA $(Q, \Sigma, \delta, q_0, F)$, skup prihvatljivih stanja NKA F' jednak je:
Ç	a) $F' = F$ b) $F' = F \cup \{q_0\}$ ako ε -okruženje q_0 nema prihvatljivih stanja c) $F' = F \cup \{q_0\}$ ako je u ε -okruženju q_0 barem jedno prihvatljivo stanje d) $F' = F \setminus \{q_0\}$ ako je u ε -okruženju q_0 barem jedno prihvatljivo stanje e) $F' = F \setminus \{q_0\}$ ako ε -okruženje q_0 nema prihvatljivih stanja
7	(1 bod) Ako se bilo koji niz z jezika L može rastaviti na podnizove $z=uvw$ pri čemu postoji cjelobrojna konstanta n takva da vrijedi $ uv \le n$ i $ v \ge 1$ pri čemu su nizovi uv^iw , $i \ge 1$ isto u jeziku L , onda je jezik L po najužem razredu:
á	a) regularan b) kontekstno neovisan c) kontekstno ovisan d) rekurzivan e) rekurzivno prebrojiv
	(1 bod) Odredite minimalan broj stanja DKA koji prihvaća jezik: a^+b^*cd : a) 2 b) 3 c) 4 d) 5 e) 6
	(1 bod) Dijagonalni jezik je: a) regularan b) odlučiv c) izračunljiv d) neizračunljiv e) kontekstno ovisan
	(1 bod) Ako je jezik L u klasi $NSPACE(n^4)$ onda je sigurno i u: a) $DSPACE(2*n^4)$ b) $DSPACE((n^4)/2)$ c) $DSPACE((n^8)$ d) $NTIME(n^4)$ e) $NTIME(n^8)$
8. ((1 bod) Produkcije lijevo-linearne gramatike zadane su kao $(A, B \in V, w \in T^*)$:
	a) $A \to Bw, A \to w$ b) $A \to ABw, A \to \varepsilon, B \to \varepsilon$ c) $A \to wAB, A \to \varepsilon, B \to \varepsilon$ d) $A \to AwB, A \to w, B \to w$ e) $A \to wB, A \to w$
	(1 bod) Nakon konstrukcije minimalnog DKA iz sljedeće desno-linearne gramatike: $S \to aA aB bC$, $A \to aA a$, $B \to aB a$, $C \to bC b$, konstruirani minimalni DKA ima:
ä	a) 2 stanja b) 3 stanja c) 4 stanja d) 5 stanja e) 6 stanja
10. ((1 bod) Jezik najuže klase kojem pripadaju nizovi koje generira gramatika $S \to aSa aBa, B \to bB b$ je:
ä	a) regularan b) konteksno neovisan c) konteksno ovisan d) rekurzivan e) rekurzivno prebrojiv
11. ((1 bod) Budući da za jezike postoji TS koji uvijek stane, za takve jezike kažemo da
	a) rekurzivne su odlučivi b) rekurzivne nisu odlučivi c) rekurzivno prebrojive su odlučivi d) rekurzivno prebrojive nisu izračunljivi
	(1 bod) Da bi regularni izraz $(\varepsilon + b)\Box(\varepsilon + a)$ prihvaćao nizove u kojima alterniraju znakovi a i b , npr. $ababab$, na označeno mjesto (\Box) je potrebno upisati:
ä	a) $(ab)^*$ b) $(ba)^*$ c) a^*b^* d) $(ba)^+$ e) $(a+b+\varepsilon)^*$

13. (1 bod) Koliko produkcija ostaje u sljedećoj gramatici: $S \to abB|acC|abc, B \to bC|cD, C \to cC, D \to dC,$

a) 1 **b)** 2 **c)** 4 **d)** 5 **e)** 6

 $E \rightarrow edE|ed,$ nakon izbacivanja beskorisnih znakova?

- 14. (1 bod) Ako je jezik L u klasi jezika K i svi jezici iz klase K su polinomno svodivi na jezik L, onda kažemo da je jezik L ______ s obzirom na klasu K i s obzirom na polinomno vremensko svođenje.
 a) težak b) potpun c) odlučiv d) izračunljiv e) neizračunljaiv
 15. (1 bod) Ako je L₁ regularan jezik nad abecedom ∑ i L₂ = ∑* − L₁, onda vrijedi:
 a) L₂ nije nužno regularan b) L₂ nije regularan i L₁ = ∑* ∪ L² c) L₂ je regularan i L₁ = ∑* − L² d) L₂ je regularan i L₂ = L¹ e) L₂ nije regularan i L₂ = L¹
 16. (1 bod) Neka DKA M prihvaća regularni jezik L(M). Jezik L je beskonačan ako i samo ako prihvaća niz duljine l gdje vrijedi:
 a) n < l, n je broj stanja DKA M b) l ≤ n < 2n, n je broj stanja DKA M c) n ≤ l < 2n, n je broj stanja DKA M d) n ≤ l < 2n, 2n je broj stanja DKA M e) l ≤ n < 2n, 2n je broj stanja DKA M
- 17. (1 bod) Konstruirati minimalni DKA nad abecedom $\{a,b\}$ koji prihvaća proizvoljan niz u kojem vrijedi $n_a \mod 3 = n_b \mod 3$, gdje je n_a broj znakova a u nizu, a n_b broj znakova b u nizu. Koliko stanja ima konstruirani automat? a) $n_a + n_b$ b) n_a c) 3 d) Jezik nije regularan pa nije moguće kontruirati DKA e) n_b

* * *

- I. (3 boda) Zadana je gramatika $S \to A\Box$, $A \to a\Box a|b\Box b|xT$, $T \to \Box$.
 - (18) (0.75 boda) Ako želimo dobiti gramatiku koja generira jezik $L = wxw^R$, gdje je w niz znakova $\{a, b\}$, na prazna mjesta (\square) potrebno je redom upisati:

a) T, S, S, x b) A, T, T, x c) T, A, A,
$$\varepsilon$$
 d) S, T, T, x e) x, A, A, ε

(19) (0.75 boda) Nakon što se primjene promjene iz prethodnog podzadatka (18), ako želimo dobiti gramatiku koja generira jezik L = wxy, gdje je w^R podniz od y, a y je niz znakova $\{a,b\}$, potrebno je još dodati i produkcije:

a)
$$T \to xS$$
 b) $T \to aT|bT$ c) $T \to aA|bT$ d) $T \to aT|bA$ e) $T \to aA|bA$

- (20) (0.75 boda) Ako se nizovi zadanog jezika iz podzadatka (19) prikažu kao $wxuw^Rv$, onda nezavršni znak T generira:
 - a) u b) v c) u i v d) w e) w^R
- (21) (0.75 boda) Za podnizove u i v iz podzadatka (20) uvijek vrijedi:

a)
$$|u| = |v|$$
 b) $|u| <> |v|$ c) $u = v$ d) $u <> v$ e) u i v su nezavisni po duljini i sadržaju

II. (3 boda) Primjenom zadane gramatike i tablice LR parsera parsirati niz **aaacabac**. Akcija prihvati (PR) se također broji kao akcija. Gramatika: $1)S \rightarrow aS$; $2)S \rightarrow AB$; $3)A \rightarrow ac$; $4)A \rightarrow aAa$; $5)B \rightarrow bA$;

Tablica LR parsera a \mathbf{c} \mathbf{S} Α \mathbf{B} 0 s23 PR 1 2 s2s53 s97 4 r15 r3 r3 r3 6 s8 s9r28 r4r4r49 10 s1110 r511 s11s512 s8

- (22) (1 bod) Za zadani niz vrijedi:
 - a) parser ga prihvaća nakon 12 akcija b) parser ga prihvaća nakon 15 akcija c) parser ga ne prihvaća
 - d) parser ga prihvaća nakon 17 akcija e) parser ga prihvaća nakon 20 akcija

- (23) (1 bod) Nakon 6. akcije, na stogu se nalazi:
 - a) 0b2c3A6 b) 0a2a2a2a2 c) 0a2a2A6a8 d) 0a2a8A10a2 e) 0S1
- (24) (1 bod) Nakon 10. akcije, na stogu se nalazi:
 - **a)** 0a2A6b9a11c5 **b)** ⊥ **c)** 0S1 **d)** 1a2S4b9b9 **e)** 0a2A6b9a11
- III. (4 boda) Konstruirajte minimalni **DKA** koji prihvaća nizove nad abecedom {0,1} koji su binarni zapisi dekatskog broja djeljivog s 5. Primjer ulaznog niza koji se prihvaća je 1010 (zapis broja 10), a primjer niza koji se ne prihvaća je 1011 (zapis broja 11).
- IV. (4 boda) Konstruirajte gramatiku koja generira nizove oblika ab^nc , pri čemu je $n=2^k, k\in\mathbb{N}_0$.
- V. (4 boda) Opišite postupak konstrukcije **TS** logaritamske prostorne složenosti za jezik L=wcw pri čemu je w iz abecede $(a+b+c+d)^*$

Napomena: Riječima ukratko objasniti ulogu ključnih stanja i pripadnih prijelaza u radu TS.