Reirradiation in Cervical Cancer

Mitchell Kamrava, MD
Associate Professor
Residency Program Director
Director Brachytherapy Services
Department of Radiation Oncology

Conflicts of interest

None

Learning Objectives

Treatment options for cervical cancer central recurrences

Clinical evidence for reirradiation with brachytherapy

Dose/constraints/planning issues

Future directions

Clinical Case: Central recurrence of cervical cancer in previously irradiated field

- 69 yo, IB1G3 SCC of the cervix
- Robotic RH, Pelvic LND
- Pathology sig for 1 positive pelvic LN
- Adjuvant CRT, 45 Gy IMRT + cis
- 2 y later vaginal bleeding
- 1.5 cm right upper vaginal recurrence
- Biopsy + for recurrence
- PET/CT: no regional/distant disease

What is the most appropriate treatment?

NCCN Guidelines Version 4.2019 Cervical Cancer

NCCN Guidelines Index Table of Contents Discussion

Reirradiation accounts for a small proportion of cases

20. How many gynecologic retreatment cases do you do a year?

- Gyn brachy reirradiation literature review
- Included 20 question survey of 9 rad oncs specializing in gyn

Sturdza A et al. Manuscript submitted.

Cervical Cancer: Brachytherapy reirradiation series

Author	# of pts	Median F/U	Median Time b/w RT	Median ReRT Brachy dose (EQD2)	Outcomes	Toxicity	Comments
Mahantshetty U, 2014	30 (20 post-op)	25 m	25 m	42 Gy	2 y LC 50% 2 y DFS 42% 2 y OS 52%	G3 23%	
Umezawa R, 2018	18 (14 post-op)	18 m	15 m	D90 63 Gy	2 y LC 51% 2 y PFS 20% 2 y OS 61%	≥ G2 28%	Hgb, tumor size sig for LC
Mabuchi S, 2014	52 (35 post-op)	56 m	13 m	60 Gy	77% 2 m CR 5y OS 53%	G3/4 25%	DFI, tumor size sig for OS

Mahantshetty U *et al*. Brachytherapy. 2014. Umezawa R *et al*. Brachytherapy. 2018. Mabuchi S *et al*. Int J Gyn Cancer. 2014.

Factors to consider for Re-irradiation

- Performance status/Comorbidities
- Prior RT dose/field
- Time from prior RT
- Prior chemo
- Size of recurrence
- Histology (SCC vs adeno)
- Central/sidewall recurrence
- Isolated local failure vs part of regional/distant failure
- Treatment intent: palliative vs curative
- Institutional expertise to manage a complication

Time between 1st and 2nd course of RT

14. Is there a minimum time that you require between a person's prior radiation and considering retreatment?

Can you "forget" prior RT dose after a certain amount of time?

- 5/9 responded NO
- 4 other responses:
 - 10% per year
 - 50%
 - 30% after 5 years and 50% after 10 years
 - Allow cumulative D2cc rectum to 75 Gy (rather than 65) and bladder to 90 Gy (rather than 80)

Constraints - Rectum

16. For the rectum what dose constraint do you utilize in the retreatment setting?

If you exceed tolerance, do you have a hard stop cumulative dose for the rectum?

5 responses: D2cc < 80-85 Gy

2 responses: No clear upper limit

For bladder 6 responses: D2cc < 90-100 Gy

Sturdza A et al. Manuscript submitted.

Dose and Planning

- Dose
 - Goal was EQD2 > 40 Gy, < 50 Gy
 - D2cc rectum/sigmoid < 75 Gy¹
 - D2cc bladder < 90 Gy¹
- Planning
 - Weighed tandem heavily to limit hot spots in vaginal mucosa

Improving the therapeutic ratio: Normal tissues

- 36 Gyn patients
 - -30 definitive, 6 re-RT
- Mean 20 cc of hyaluronate gel
- No ≥ G3 acute/late SE from gel at median 222 days

Rectum D2cc pre vs post gel: 4.8 vs 3.7 Gy (p < 0.001)

Improving the therapeutic ratio: Radiosensitizing tumor tissue, Pembro?

Optimism?

- Pembrolizumab
 - FDA approved recurrent/metastatic cervical cancer
 - Keynote 158 (Chung H et al, JCO, 2019)
 - ORR ~12-14%
 - FDA approved for MSI-High and dMMR metastatic/unresectable tumors w/ no standard therapy options
 - Pooled data from 5 Keynote trials
 - ORR ~40%

Caution?

Dose-limiting Urinary Toxicity With Pembrolizumab Combined With Weekly Hypofractionated Radiation Therapy in Bladder Cancer

Alison Claire Tree, FRCR, MD(Res),*,† Kelly Jones, MSc,*
Shaista Hafeez, FRCR, PhD,*,† Mansour Taghavi Azar Sharabiani, PhD,*
Kevin Joseph Harrington, FRCP, PhD,*,†
Susan Lalondrelle, FRCR, MD(Res),*,† Merina Ahmed, FRCR, MD(Res),*,†
and Robert Anthony Huddart, FRCR, PhD*,†

- Trial stopped after 5 patients
 - -3 pts G3 GU, 1 pt G4 rectal perforation

Tree A et al. IJROBP. 2018.

Improving the therapeutic ratio: Radiosensitizing tumor tissue, Bevacizumab?

- GOG 240 chemo doublet + bev
 - 14.5% fistula rate (any grade)
 - All patients with fistula had prior RT

Increased Bowel Toxicity in Patients Treated With a Vascular Endothelial Growth Factor Inhibitor (VEGFI) After Stereotactic Body Radiation Therapy (SBRT)

Brandon M. Barney, MD,* Svetomir N. Markovic, MD, PhD,† Nadia N. Laack, MD,* Robert C. Miller, MD,* Jann N. Sarkaria, MD,* O. Kenneth Macdonald, MD,‡ Heather J. Bauer, RN,* and Kenneth R. Olivier, MD*

6 m estimate of SBI in 26 pts getting VEGFI w/n 3 m of SBRT was 38%

Tewari K et al. Lancet. 2017.

Barney B et al. IJROBP. 2013.

Conclusions

- Reirradiation with brachytherapy reasonable to consider in select cases
- Based on published data:
 - Expected 2 y local control ~50%
 - –Expected ≥ G3 toxicities ~25%
- With an individualized dose and tighter constraints may be able to maintain similar local control (~50%) but reduce toxicities
- Late toxicities happen late
- Even if you achieve local control these patients are still at high risk of elsewhere failures