PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-124873

(43) Date of publication of application: 06.05.1994

(51)Int.CI.

H01L 21/027 G03F 7/20 G03F 7/20

(21)Application number : **04-296518**

(71)Applicant: CANON INC

(22)Date of filing:

09.10.1992

(72)Inventor: TAKAHASHI KAZUO

(54) LIQUID-SOAKING TYPE PROJECTION EXPOSURE APPARATUS

(57)Abstract:

PURPOSE: To improve resolution and focus depth by applying a liquid soaking method for putting high refractive liquid index liquid between an objective lens of a microscope and a sample to a projection exposure apparatus as production equipment.

CONSTITUTION: A projection exposure apparatus comprises a illuminating means 3 for illuminating a reticle 3, an optical projecting means 4 for projecting a pattern on the reticle 1 illuminated by the illuminating means 3 onto a wafer 2 and positioning means 11-1 to 11-4 for positioning the wafer 2 on a predetermined position. The optical projecting means 4 comprises an optic element 7 opposite to an exposed face of the wafer 2 having a plane or a protruding face protruding toward the wafer 2

and a liquid reservoir 9 for holding liquid 30 which at least fills a space between the plane or the protruding face of this optic element 7 and the exposed face of the wafer 2. Thus a liquid soaking method which improves resolution and focus depth can be applied to an exposure apparatus, so that an inexpensive exposure apparatus with which effect according respective wavelengths irrespective of a wavelength of an exposure light source can be expected can be obtained.

LEGAL STATUS

[Date of request for examination] [Date of sending the examiner's decision of rejection]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] In the projection aligner equipped with a lighting means to illuminate a reticle, a projection optics means to project on a wafer the pattern on the reticle illuminated by this, and a positioning means to position a wafer in a predetermined location a projection optics means counters the exposure side of a wafer, and is **** in a flat-surface or wafer side -- the immersion type projection aligner characterized by providing the cistern for holding the liquid which fills at least between the optical element which has a convex and the flat surface of this optical element, or convexes and the exposure sides of a wafer. [Claim 2] An alignment measurement means by which a positioning means detects a wafer location, and a focal location detection means to detect the location of the wafer exposure side over the focal location of a projection optics means, The wafer driving means which holds and drives a wafer in the direction which leans X and the direction of Y parallel to the exposure side, the surrounding direction of theta of a shaft perpendicular to these, a Z direction, and a wafer in the direction of arbitration for a wafer, The immersion type projection aligner according to claim 1 characterized by having a wafer conveyance means to carry in a wafer on the maintenance location of a wafer driving means, and to take out. [Claim 3] The optical element which counters a wafer is an immersion type projection aligner according to claim 2 which is a plane parallel plate.

[Claim 4] It is the immersion type projection aligner according to claim 2 characterized by for a projection optics means having a lens-barrel, attaching in the lower limit of the lens-barrel the optical element which counters a wafer, and having prepared the seal member between the optical element and lens-barrel.

[Claim 5] The optical element which counters a wafer is an immersion type projection aligner according to claim 2 characterized by the ability to move in the direction of an optical axis, and position in the location of arbitration.

[Claim 6] it is **** in a flat-surface [of the optical element which counters a wafer], or wafer side -the immersion type projection aligner according to claim 2 characterized by having applied the liquid
used for either [at least] a convex or the exposure side of a wafer in order to fill between these both
sides, and the coating agent with ******.

[Claim 7] The top face of a cistern is an immersion type projection aligner according to claim 2 characterized by being released.

[Claim 8] A cistern is an immersion type projection aligner according to claim 2 characterized by constituting a closed space.

[Claim 9] A cistern is an immersion type projection aligner according to claim 8 characterized by having the aperture for wafer conveyance which can be opened and closed.

[Claim 10] A cistern is an immersion type projection aligner according to claim 8 which constitutes the vacuum chamber.

[Claim 11] The immersion type projection aligner according to claim 8 which has a pressure gage for detecting the pressure in a cistern.

[Claim 12] The pressurizer of the liquid supplied in a cistern, the immersion type projection aligner according to claim 8 which has at least one side among decompression devices.

[Claim 13] The immersion type projection aligner according to claim 8 which has the pressurization means of the liquid in a cistern.

[Claim 14] A cistern is an immersion type projection aligner according to claim 7 or 8 characterized by being fixed in location to an optical means.

[Claim 15] A wafer driving means is an immersion type projection aligner according to claim 7 or 8 which has an X-Y stage for moving a wafer in X parallel to the exposure side, and the direction of Y, and its driving means, and is characterized by fixing the cistern to an X-Y stage in location.

[Claim 16] It is the immersion type projection aligner according to claim 14 or 15 which a wafer driving means has an X-Y stage for moving a wafer in X parallel to the exposure side, and the direction of Y, and its driving means, and is characterized by locating the mechanical component of an X-Y stage in the exterior of a cistern.

[Claim 17] It is the immersion type projection aligner according to claim 7 or 8 which a wafer driving means has the jogging stage which leans the X-Y stage and wafer for moving a wafer in X and the direction of Y in the direction of arbitration, and is characterized by arranging the cistern on an X-Y stage.

[Claim 18] It is the immersion type projection aligner according to claim 17 characterized by arranging a jogging stage in a cistern, and for the cistern consisting of ingredients with high permeability, and carrying out magnetic coupling of a jogging stage and the X-Y stage through a cistern.

[Claim 19] A cistern is an immersion type projection aligner according to claim 14 or 15 characterized by consisting of low-fever expansion ingredients.

[Claim 20] It is the immersion type projection aligner according to claim 14 or 15 which a positioning means has a means by which a laser interferometer detects a wafer location, and is characterized by a cistern having an aperture for this laser interferometer.

[Claim 21] It is the immersion type projection aligner according to claim 14 or 15 which a positioning means has a means by which a laser interferometer detects a wafer location, and is characterized by fixing this laser interferometer to a cistern.

[Claim 22] The immersion type projection aligner according to claim 14 or 15 characterized by having the liquid supply control means which supplies a liquid to a cistern and controls the level and amount. [Claim 23] A liquid supply control means is an immersion type projection aligner according to claim 22 characterized by having a means to filter the liquid to supply.

[Claim 24] An immersion type projection aligner [equipped with a means to excite the liquid filled by the cistern] according to claim 14 or 15.

[Claim 25] The immersion type projection aligner according to claim 14 or 15 which has a means to excite a wafer.

[Claim 26] The immersion type projection aligner according to claim 14 or 15 which has a means to excite the optical element which counters a wafer.

[Claim 27] An excitation means is an immersion type projection aligner according to claim 25 or 26 which is ultrasonic excitation equipment.

[Claim 28] An immersion type projection aligner [equipped with a temperature control means to measure and control the temperature of the liquid supplied in the cistern] according to claim 14 or 15. [Claim 29] An immersion type projection aligner [equipped with a refractometry means to measure the refractive index of the liquid supplied in the cistern] according to claim 14 or 15.

[Claim 30] An immersion type projection aligner [equipped with the stabilizer which prevents a flow of the liquid supplied in the cistern] according to claim 14 or 15.

[Claim 31] The outer wall of a cistern is an immersion type projection aligner according to claim 14 or 15 covered by the heat insulation member.

[Claim 32] It is the immersion type projection aligner according to claim 14 or 15 which a wafer driving means is equipped with the wafer chuck which adsorbs a wafer and holds it, and is characterized by this wafer chuck having the shutter which prevents that a liquid flows the path for carrying out vacuum suction and adsorbing a wafer, and in this path.

[Claim 33] It is the immersion type projection aligner according to claim 14 or 15 with which a wafer driving means is equipped with a wafer conveyance means to carry in a wafer to the exposure location in a cistern, and to take out, and the conveyance means of this wafer is characterized by arranging at least the part in a cistern.

[Claim 34] A conveyance means is an immersion type projection aligner according to claim 33 which has the means which carries in a wafer to the liquid held in the cistern perpendicularly or aslant, and levels a wafer in a liquid.

[Claim 35] The immersion type projection aligner according to claim 33 which has the means which carries out the Ayr blow at least of one side of a wafer in case a wafer is taken out out of the liquid with which the conveyance means was held in the cistern.

[Claim 36] The immersion type projection aligner according to claim 14 or 15 characterized by having the pump which supplies a liquid in a cistern and is made to discharge. *****.

[Claim 37] It is the immersion type projection aligner according to claim 7 or 8 which has the jogging stage which a wafer driving means is moved in X and the direction of Y by the X-Y stage and this which move in X and the direction of Y, and leans a wafer in the direction of arbitration, and is characterized by fixing the cistern on a jogging stage.

[Claim 38] The immersion type projection aligner according to claim 37 characterized by the base of a cistern constituting the wafer chuck holding a wafer.

[Claim 39] The immersion type projection aligner according to claim 37 characterized by consisting of flat surfaces at which at least 2 side faces of a cistern intersected perpendicularly, and these flat surfaces constituting the anti-slant face of a laser beam.

[Claim 40] The immersion type projection aligner according to claim 18 characterized by the bottom surface part material and jogging stage base of a cistern constituting the flat-surface guide of fluid bearing.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Industrial Application] This invention relates to the immersion type projection aligner for exposing a detailed circuit pattern on a wafer in a semi-conductor production process.
[0002]

[Description of the Prior Art] Detailed-ization of a semiconductor device progressed and it has shifted to i line with short wavelength from g line of a high pressure mercury vapor lamp as the exposure light source conventionally. And since high resolution is needed more, NA (numerical aperture) of a projection lens must be enlarged and, for the reason, the depth of focus is in the inclination which becomes still shallower. These relation can be expressed with a degree type as generally known well. = (Resolution) k1 (lambda/NA)

(Depth of focus) =**k2 lambda/NA 2 -- the wavelength of the light source which uses lambda for exposure here, and NA -- NA (numerical aperture) of a projection lens, k1, and k2 It is a multiplier related to a process.

[0003] in recent years, it is called excimer laser with more short wavelength from g line of the conventional high pressure mercury vapor lamp, and i line (KrF, ArF) -- use of an X-ray is also considered further. Moreover, on the other hand, examination of the high resolution by the phase shift mask or deformation lighting and a raise in depth is also beginning to be made and used. however, it is called excimer laser -- having (KrF, ArF) -- as for the approach of using an X-ray, equipment cost becomes high, and a phase shift mask or deformation lighting has problems -- effectiveness may not be expectable with a circuit pattern.

[0004] Then, the attempt which applies the method of immersion is made. For example, the nozzle which encloses the tip of reducing glass and has liquid input in an aligner is prepared in JP,63-49893,B, a liquid is supplied through this, and what held the liquid between reducing glass and a wafer is indicated.

[0005]

[Problem(s) to be Solved by the Invention] However, in this conventional technique, a liquid is only merely supplied and it is a request, and in order to use it by the actual production process, it has various problems -- the conventional process technique cannot be employed efficiently.

[0006] In view of the trouble of the above-mentioned conventional technique, irrespective of the wavelength of the exposure light source used [excimer laser / g line, i line, or], the purpose of this invention offers the cheap immersion type aligner of the cost which can expect the effectiveness according to each wavelength on every wavelength, and aims at offering the immersion type aligner which can employ the further conventional process technique efficiently.

[Means for Solving the Problem] A lighting means to illuminate a reticle in this invention in order to attain this purpose, In the projection aligner equipped with a projection optics means to project on a wafer the pattern on the reticle illuminated by this, and a positioning means to position a wafer in a predetermined location a projection optics means counters the exposure side of a wafer, and is **** in a flat-surface or wafer side -- the cistern for holding the liquid which fills at least between the optical element which has a convex and the flat surface of this optical element, or convexes and the exposure sides of a wafer is provided.

[0008] An alignment measurement means by which a positioning means usually detects a wafer

location, A focal location detection means to detect the location of the wafer exposure side over the focal location of a projection optics means, The wafer driving means which holds and drives a wafer in the direction which leans X and the direction of Y parallel to the exposure side, the surrounding direction of theta of a shaft perpendicular to these, a Z direction, and a wafer in the direction of arbitration for a wafer, It has a wafer conveyance means to carry in a wafer on the maintenance location of a wafer driving means, and to take out.

[0009] A cistern may constitute a closed space and may have the pressurization means of the liquid in a cistern etc. It may be fixed in location to an optical means, or the cistern may be fixed to the X-Y stage in location again. When the cistern is being fixed in location to the optical means, a jogging stage is arranged in a cistern, a cistern consists of ingredients with high permeability, and magnetic coupling of a jogging stage and the X-Y stage is carried out through a cistern. [0010]

[Function] As an approach of raising the resolution of an optical microscope, the so-called immersion method which fills between an objective lens and samples with the liquid of a high refractive index is known from the former (for example, D.W.Pohl, W.Denk & M.Lanz, Appl.Phys.Lett.44652 (1984)). As an example which applied this effectiveness to the imprint of the detailed circuit pattern of a semiconductor device, there are "H.Kawata, J.M.Carter, A.Yen, H.I.Smith, Microelectronic Engineering 9 (1989)", or "T.R.Corle, G.S.kino, USP 5,121,256" (9 Jun. 1992). A last paper is what examined the effectiveness of dipping in exposure, the configuration as a practical semi-conductor aligner is not discussed, but the latter patent is indicating the approach of placing an immersion lens near the front face

[0011] According to this invention, this invention becomes possible [offering the aligner using the effectiveness of dipping] about the concrete approach for the projection aligner as a production facility to realize the approach of filling with the liquid of a high refractive index between the objective lens of the microscope known from the former, and samples.

[0012] It is lambda 0 as this "effectiveness of dipping". As it considers as the wavelength in the inside of the air of exposure light and is shown in drawing 10, when make into the convergence half width of a beam of light the refractive index and alpha to the air of the liquid which uses n for dipping, and and it immerses, above-mentioned resolution and the above-mentioned depth of focus become like a degree type. [NA0 =sin] (Resolution) =k1/(lambda0 / n) NA0(depth of focus) =**k2 / (lambda0 / n) (NA0) 2, i.e., the effectiveness of dipping, has wavelength equivalent to using the exposure wavelength which is 1/n. When in other words the same projection optics of NA is designed, the depth of focus can be increased n times by dipping. This is effective also to the configuration of all patterns, and can still also be combined with the phase shift method by which current examination is carried out, deformation illumination, etc. In order to employ this effectiveness efficiently, the purity of a liquid, homogeneity, temperature, etc. need to be managed precise, and in the aligner which is exposed serially and goes by step-and-repeat actuation on a wafer, it becomes a problem how the air bubbles which remain on the wafer front face at the time of carrying in in a liquid to lessen a flow and vibration of the liquid generated working as much as possible and a wafer are removed. The configuration of the equipment for solving many of these problems is proposed, and it enables it to employ the effectiveness of dipping efficiently enough in this invention, so that an example may explain. Although the aligner of an X-ray or an electron beam (EB) was conventionally considered to be the need by production of DRAM of 256Mbit - 1Gbit from the conventional stepper which makes i line and excimer laser the light source, the manufacture process conventional by the conventional stepper which makes i line or excimer laser the light source can be diverted by this invention, and the advantageous production also in cost is attained in the manufacture process established technically.

[0013] Below, it explains more through an example at a detail. [0014]

[Example]

Example 1 drawing 1 is the block diagram of the immersion type projection aligner concerning the 1st example of this invention. The wafer with which, as for one, a reticle is applied among drawing, as for 2, a sensitization agent is applied, and the circuit pattern on a reticle 1 is exposed and imprinted. The illumination-light study system equipped with a shutter, a dimmer, etc. for 3 to project the circuit pattern on a reticle 1 on a wafer 2, In order that the reticle stage for the projection optics to which 4 projects the circuit pattern on a reticle 1 on a wafer 2, and 5 holding a reticle 1, and positioning to a position, and 6 may position a reticle 1, And it is the alignment optical system for making a reticle image agree to the

circuit pattern already imprinted on the wafer 2.

[0015] If the lens which counters wafer 2 front face of projection optics 4 will be called the 2nd optical element 7, the field which counters wafer 2 front face of this 2nd optical element 7 is constituted so that it may become a convex toward a flat surface or wafer 2 front face, as shown in <u>drawing 2</u> and <u>drawing 3</u>. In case this immerses, it is for making it neither an air space nor air bubbles remain in the 2nd optical element 7 front face. Moreover, as for the front face of the optical element 7 to immerse, and the front face of the sensitization agent on a wafer 2, it is desirable to perform the liquid 30 used for dipping and coating with ******. The seal 8 for preventing invasion to the lens-barrel of a liquid 30 is between the 2nd optical element 7 and the lens-barrel of projection optics 4. This seal is unnecessary, if it is made a configuration so that the function to manage the height which takes the thick thickness of the 2nd optical element 7 as shown in <u>drawing 4</u>, and dips a liquid 30 may be added.

[0016] A cistern (chamber) for 9 to fill a liquid 30 and 10 A wafer cassette, A wafer chuck for 12 to hold a wafer 2 and 11-1 to 11-4 The rough pointing device of a wafer, An X-Y stage for 13 to position a wafer 2 to a position and 14 are jogging stages which have a tilt function for being arranged on an X-Y stage and amending the amendment function of the direction location of theta of a wafer 2, the adjustment function of Z location of a wafer 2, and the inclination of a wafer 2. There are some of wafer transport devices for carrying in a wafer from the wafer cassette 10 and setting on the wafer chuck 12 into a chamber 9, rough positioning devices 11-1 to 11-4 or the whole, the wafer chuck 12, X-Y stage 13, and a jogging stage 14.

[0017] Since the reference mirror which reflects the light of a laser interferometer 15 in order to attach 15 on the jogging stage 14 at a laser interferometer, to attach 16 in X and the direction (the direction of Y is un-illustrating) of Y and to measure the location of the jogging stage 14, and 17 pass the light of a laser interferometer 15, the aperture prepared in the chamber 9 and 18 are heat insulators which are prepared in the outside of a chamber 9 and maintain thermal cutoff with the exterior. If chamber 9 the very thing is constituted from an ingredient with adiabatic efficiency, for example, an ENJINI rear ring ceramic, the heat insulator 18 is unnecessary. Furthermore, as a low-fever expansive additive (trade name), for example, a zero joule, is used and the quality of the material of a chamber 9 is shown in drawing 5, it is also possible to make it the measurement precision of direct installation and a laser interferometer 15 not receive the effect of the index of air for a laser interferometer 15 in the side face. [0018] The oil-level gage 19 for measuring the height of a liquid 30, the thermometer 20 which measures the temperature of a liquid 30, and the temperature controller 21 are formed in the chamber 9 again. The pump 22 for controlling the height of a liquid 30 is further formed in the chamber 9. A pump 22 is equipped also with the function to circulate the liquid 30 by which temperature control was carried out, and the filter 23 for filtering the impurity in a liquid 30 is also set. In order that a measuring instrument for 24 to measure the refractive index of a liquid 30 and 25 may make a liquid 30 homogeneity, the ultrasonic excitation equipment installed in wafer 2 front face or the 2nd optical element 7 front face in order to prevent air bubbles adhering, and 26 are the vibration free pedestals of

[0019] Next, actual actuation of the equipment of the above-mentioned configuration, an operation, effectiveness, etc. are explained. In case it exposes, after picking out the wafer 2 which has applied the sensitization agent beforehand from the wafer cassette 10 and carrying and rough-positioning it by the wafer transport device 11-1 first in the wafer location rough detection device 11-2 (it is usually called the PURIARAIMENTO device), a wafer 2 is handled by the wafer sending hand 11-3, and a wafer 2 is set on the wafer chuck 12 installed in the chamber 9. Flat-surface correction of the wafer 2 carried on the wafer chuck 12 is fixed and carried out by vacuum adsorption. The liquid 30 for immersion which could come, simultaneously was controlled by the temperature controller 21 by constant temperature is sent in in a chamber 9 through a filter 23 with the transportation pump 22. If a liquid 30 becomes a predetermined amount, the oil-level gage 19 will detect this and will suspend a pump 22. [0020] When it is monitoring continuously with the temperature sensor 20 and shifts from predetermined temperature, the temperature of a liquid 30 operates the transportation pump 22 again, and circulates the liquid 30 of constant temperature. Homogeneous measurement is also performed by refractometry equipment 24, although a flow of a liquid 30 by circulation of a liquid 30 takes place and the homogeneity of a liquid 30 collapses in that case. Moreover, the air bubbles in a liquid 30, the air bubbles adhering to wafer 2 front face, and the air bubbles adhering to the 2nd optical element 7 front face operate ultrasonic excitation equipment 25, and are removed. The effectiveness made into homogeneity also has liquid 30 the very thing, this ultrasonic excitation has the small amplitude of

vibration, and since the frequency is high, it does not influence positioning or exposure of a wafer 2. [0021] If the homogeneity of a liquid 30 is checked with refractometry equipment 24, precision positioning (the alignment, focus, etc.) and exposure of a wafer 2 will be performed like the usual aligner. Although a flow of a liquid 30 occurs by step-and-repeat actuation at this time, spacing of the 2nd optical element 7 and wafer 2 front face is several mm to about dozens of mm, and a flow of the liquid 30 of this part disappears from a liquid 30 having viscosity comparatively for a short time. Therefore, what is necessary is to take a time delay after a step for every shot, or to measure the flow condition of the liquid 30 of this part with refractometry equipment 24, and just to make a sequence continue, when a flow stops. Moreover, since the periphery of a chamber 9 is covered with the heat insulator 18, time amount extent which processes one wafer needs to operate the transportation pump 22, and does not usually need to circulate the liquid 30 of constant temperature.

[0022] If exposure of the whole surface of a wafer 2 is completed, the transportation pump 22 will operate again to this and coincidence, and it is begun to discharge the liquid 30 in a chamber 9. A transportation pump is stopped, when the oil-level gage 19 is always detecting the height of a liquid 30 and the height of a liquid 30 becomes low slightly from the 12th page of a wafer chuck at this time. Therefore, the amounts of the liquid 30 to discharge are few. Then, the vacuum of the wafer chuck 12 is cut, and by the taking-out hand 11-4, the wafer 2 on the wafer chuck 12 is handled, and it contains to the wafer cassette 10. Both sides of a wafer 2 are blown with clean air, and you may make it remove a liquid 30 from wafer 2 front face just before receipt at this time.

[0023] The block diagram of the immersion type projection aligner which example 2 drawing 11 requires for the 2nd example of this invention, the sectional view of the wafer chuck [in / in drawing 12 / drawing 11] 12, and drawing 14 are the mimetic diagrams showing the modification of the stage part in drawing 11 . Set to these drawings and a fluid bearing guide for conveyance opening for 31 to carry in and take out a wafer 2 in a chamber 9 and 32 to make the jogging stage 14 movable horizontally and 33 make the interior of a chamber 9 negative pressure. The vacuum pump for removing the air bubbles in a liquid 30, the bulb by which 34 was connected to the vacuum pump 33, In order that 35 may remove a liquid 30, a manometer for Blois which has a nozzle for spraying clean air on wafer 2 front face, and 36 to measure the internal pressure of a chamber 9, and 37 are the shutter styles built in the wafer chuck. Although other configurations are the same as that of the case of drawing 1, a seal 8 also has the function to which the secrecy of a chamber 9 is maintained. Moreover, in addition to the function to circulate a liquid 30, a pump 22 is equipped also with the function to control the pressure of a liquid 30.

[0024] In this configuration, when [each] conveying a wafer 2 and taking out into a chamber 9 as a point that the case and actuation of an example 1 differ from each other, closing motion of the conveyance opening 31 is performed. Moreover, after setting a wafer 2 on the wafer chuck 12, carrying out specified quantity **** of the liquid 30 and suspending a pump 22, the vacuum pump 33 linked to the vacuum chamber 9 operates further, and the air bubbles in a liquid 30 are removed. At this time, ultrasonic excitation equipment 25 is operated to coincidence, and the air bubbles in a liquid 30, the air bubbles adhering to wafer 2 front face, and the air bubbles adhering to the 2nd optical element 7 front face are also removed. If it finishes removing air bubbles, it will stop, the bulb 34 connected to coincidence at this will also be closed, a pump 22 will operate, and a vacuum pump 33 will begin to pressurize a liquid 30. And when the pressure of the pressure gage 36 which has measured the internal pressure of a chamber 9 shows a predetermined value, temperature of the liquid 30 by the temperature sensor 20 is continuously monitored like the case of an example 1. Moreover, just before containing to the wafer cassette 10, both sides of a wafer 2 are blown with clean air with bulla 35, and a liquid 30 is removed from a wafer front face. Other actuation is the same as that of the case of an example 1. [0025] According to this, since the liquid 30 is pressurized, a flow of the liquid 30 by step-and-repeat actuation disappears more for a short time. Moreover, it is possible to also make the flat-surface correction capacity of the wafer 2 on the wafer chuck 12 increase with the pressure of the pressurized

[0026] Example 3 drawing 12 is the sectional view of the wafer chuck part of the immersion type aligner concerning the 3rd example of this invention. Fill [the liquid 30], it enables it to process here, as a shutter is opened and vacuum adsorption is carried out, only when the shutter style 37 is added to the wafer chuck 12 and a wafer 2 is on the wafer chuck 12, as shown in drawing 12 although it flows and he is trying to discharge a liquid for every wafer in ****. Thereby, improvement in a throughput is achieved. In this case, the wafer 2 conveyed is inserted by the wafer sending hand 11-3 into a liquid 30

so that air bubbles may not remain aslant or perpendicularly to a liquid 30, it is leveled in a liquid 30, and is set on the wafer chuck 12.

[0027] Example 4 drawing 6 is the sectional view showing the stage part of the immersion type aligner concerning the 4th example of this invention. In the configuration of an example 1, in order to prevent an impurity mixing into a liquid 30, this is constituted so that the drive system of X-Y stage 13 may be put on the exterior of a chamber 9. In this case, as shown in this drawing, the X-Y stage 13 whole is arranged besides a chamber 9, carries a chamber 9 on X-Y stage 13, and is positioned the whole chamber 9. In this case, since the liquid 30 of the chamber 9 interior flows with the acceleration at the time of migration in order to carry out step-and-repeat actuation of the liquid 30 whole, the stabilizer 29 which combined the plate as shown in drawing 7 in the shape of a mesh is inserted into a liquid 30 at the time of a step, and it has the structure where a flow and ***** of a liquid 30 can be pressed down. In addition, the same stage configuration is applicable also to the configuration of an example 2. Moreover, you may make it the configuration where the hole for letting the projection lens 4 pass for a stabilizer 29 at the core as shown in drawing 13 was prepared.

[0028] Example 5 drawing 8 is the sectional view showing the stage part of the immersion type aligner concerning the 5th example of this invention. In the configuration of an example 1, in order to prevent an impurity mixing into a liquid 30, this is constituted so that the drive system of X-Y stage 13 may be put on the exterior of a chamber 9 like the case of an example 4. However, it constitutes so that the jogging stage 14 in a chamber 9 may be made to drive indirectly in this case by arranging a magnet 27 on the base of the jogging stage 14, constituting the base of a chamber 9 from an ingredient of permeability, making it combine with the magnet 28 on X-Y stage 13 in the lower part of a chamber 9 magnetically, and moving X-Y stage 13 for the base of a chamber 9 as a guide of the jogging stage 14, as shown in this drawing.

[0029] Example 6 drawing 14 is the sectional view showing the stage part of the immersion type aligner concerning the 6th example of this invention. In order to prevent an impurity mixing this into a liquid 30 in the configuration of an example 2 Put the drive system of X-Y stage 13 on the exterior of a chamber 9 like the case of an example 5, arrange a magnet 27 on the base of the jogging stage 14, and the base of a chamber 9 is constituted from an ingredient of permeability. By making it combine with the magnet 28 on X-Y stage 13 in the lower part of a chamber 9 magnetically, and moving X-Y stage 13 for the base of a chamber 9 as a guide of the jogging stage 14, it constitutes so that the jogging stage 14 in a chamber 9 may be made to drive indirectly. Furthermore, as the nozzle which blows off a liquid is prepared in jogging stage 14 inferior surface of tongue and the liquid 30 currently used for dipping is made to blow off from there, the fluid bearing guide 32 is constituted. Thereby, since mass for moving part at the time of step-and-repeat actuation can be made light, a throughput can be raised further.

[0030] Example 7 drawing 9 is the sectional view showing the stage part of the immersion type aligner concerning the 7th example of this invention. This arranges only the part containing the wafer chuck 12 in a chamber 9, or constitutes the wafer chuck 12 directly on the base of a chamber 9, and arranges a chamber 9 on the jogging stage 14. In this case, it is also possible to constitute these from a low-fever expansion ingredient so that the 2nd page which adjoins the base of a chamber 9 and this may become a right angle, respectively, and to consider as this reference side for [2nd page] measurement of a laser interferometer 15.

[0031] In addition, in above-mentioned each example, the transport device for carrying in a wafer on the wafer chuck 12, or taking out a wafer from on a chuck 12 can also be constituted [constituting in a chamber 9, and] besides a chamber 9.

[Effect of the Invention] As explained above, according to this invention, the immersion method which raises resolution and the depth of focus can be applied now to an aligner in the mode which can be used for the ten sections by the actual production process. Therefore, irrespective of wavelength of the exposure light source, such as g line, i line, or excimer laser, the cheap immersion type aligner of the cost which can expect the effectiveness according to each wavelength can be offered on every wavelength, and the immersion type aligner which can employ the further conventional process technique efficiently can be offered.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 1]

[Drawing 11]

[Translation done.]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-124873

(43)公開日 平成6年(1994)5月6日

(51)Int.Cl. ⁵ H 0 1 L 21/027	識別記号 7	庁内整理番号	FΙ			技術表示箇所
G03F 7/20	5 0 2 5 2 1	9122-2H 9122-2H 7352-4M	HOIL	21/ 30	3 1	1 L
			;	審査請求	未請求 請	骨求項の数40(全 8 頁)
(21)出願番号	特顯平4-296518		(71)出願人			
(22)出願日	平成 4年(1992)10月 9日			東京都大		3丁目30番2号
		,	(72)発明者	神奈川県		区今井上町53番地キャ 業所内
			(74)代理人			(外1名)
		·				

(54)【発明の名称】 液浸式投影露光装置

(57)【要約】

【目的】 従来のプロセス技術を生かせる液浸式露光装置を提供する。

【構成】 レチクルを照明する照明手段、これによって 照明されたレチクル上のパターンをウエハ上に投影する 投影光学手段、ウエハを所定位置に位置決めする位置決 め手段を備えた投影露光装置において、投影光学手段は ウエハの露光面に対向し、平面もしくはウエハ側へ凸ん だ凸面を有する光学素子、およびこの光学素子の平面も しくは凸面とウエハの露光面との間を少なくとも満たす 液体を保持するための液槽を具備する。

30

【特許請求の範囲】

【請求項1】 レチクルを照明する照明手段、これによ って照明されたレチクル上のパターンをウエハ上に投影 する投影光学手段、ウエハを所定位置に位置決めする位 置決め手段を備えた投影露光装置において、投影光学手 段はウエハの露光面に対向し、平面もしくはウエハ側へ 凸んだ凸面を有する光学素子、およびこの光学素子の平 面もしくは凸面とウエハの露光面との間を少なくとも満 たす液体を保持するための液槽を具備することを特徴と する液浸式投影露光装置。

【請求項2】 位置決め手段は、ウエハ位置を検出する アライメント計測手段と、投影光学手段のフォーカス位 置に対するウエハ露光面の位置を検出するフォーカス位 置検出手段と、ウエハをその露光面に平行なXおよびY 方向、これらに垂直な軸の回りの $\, heta$ 方向、 $\, ext{Z}$ 方向、なら びにウエハを任意の方向に傾ける方向にウエハを保持し て駆動するウエハ駆動手段と、ウエハ駆動手段の保持位 置上にウエハを搬入しおよび搬出するウエハ搬送手段と を備えることを特徴とする請求項1記載の液浸式投影露 光装置。

【請求項3】 ウエハに対向する光学素子は平行平面ガ ラスである請求項2記載の液浸式投影露光装置。

【請求項4】 投影光学手段は鏡筒を有し、ウエハに対 向する光学素子はその鏡筒の下端に取り付けられてお り、その光学素子と鏡筒との間にはシール部材が設けて あることを特徴とする請求項2記載の液浸式投影露光装 置。

【請求項5】 ウエハに対向する光学素子はその光軸方 向に移動させ、任意の位置に位置決め可能であることを 特徴とする請求項2記載の液浸式投影露光装置。

ウエハに対向する光学素子の平面もしく 【請求項6】 はウエハ側へ凸んだ凸面およびウエハの露光面の少なく とも一方には、これら両面間を満たすために使用する液 体と浸和性のあるコーティング剤が塗布してあることを 特徴とする請求項2記載の液浸式投影露光装置。

【請求項7】 液槽の上面は解放されていることを特徴 とする請求項2記載の液浸式投影露光装置。

【請求項8】 液槽は閉空間を構成していることを特徴 とする請求項2記載の液浸式投影露光装置。

【請求項9】 液槽は開閉可能なウエハ搬送用の窓を有 することを特徴とする請求項8記載の液浸式投影露光装

【請求項10】 液槽はバキュームチャンバを構成して いる請求項8記載の液浸式投影露光装置。

【請求項11】 液槽内の圧力を検出するための圧力計 を有する請求項8記載の液浸式投影露光装置。

【請求項12】 液槽内に供給する液体の加圧装置、減 圧装置のうち少なくとも一方を有する請求項8記載の液 浸式投影露光装置。

【請求項13】

項8記載の液浸式投影露光装置。

【請求項14】 液槽は光学手段に対して位置的に固定 されていることを特徴とする請求項7または8記載の液 浸式投影露光装置。

2

【請求項15】 ウエハ駆動手段は、ウエハをその露光 面に平行なXおよびY方向に移動させるためのXYステ ージおよびその駆動手段を有し、液槽はXYステージに 位置的に固定されていることを特徴とする請求項7また は8記載の液浸式投影露光装置。

【請求項16】 ウエハ駆動手段は、ウエハをその露光 10 面に平行なXおよびY方向に移動させるためのXYステ ージおよびその駆動手段を有し、XYステージの駆動部 は液槽の外部に位置することを特徴とする請求項14ま たは15記載の液浸式投影露光装置。

【請求項17】 ウエハ駆動手段はXおよびY方向にウ エハを移動させるためのXYステージおよびウエハを任 意の方向に傾ける微動ステージを有し、液槽はXYステ ージ上に配置されていることを特徴とする請求項7また は8記載の液浸式投影露光装置。

【請求項18】 微動ステージは液槽内に配置され、液 20 **槽は透磁率の高い材料で構成されており、液槽を介して** 微動ステージとXYステージが磁気結合されていること を特徴とする請求項17記載の液浸式投影露光装置。

【請求項19】 液槽は低熱膨張材料で構成されている ことを特徴とする請求項14または15記載の液浸式投 影露光装置。

【請求項20】 位置決め手段はレーザ干渉計によりウ エハ位置を検出する手段を有し、液槽はこのレーザ干渉 計のための窓を有することを特徴とする請求項14また は15記載の液浸式投影露光装置。

【請求項21】 位置決め手段はレーザ干渉計によりウ エハ位置を検出する手段を有し、このレーザ干渉計は液 槽に固定されていることを特徴とする請求項14または 15記載の液浸式投影露光装置。

【請求項22】 液槽に液体を供給しそのレベルおよび 量を制御する液体供給制御手段を備えることを特徴とす る請求項14または15記載の液浸式投影露光装置。

【請求項23】 液体供給制御手段は供給する液体をろ 過する手段を有することを特徴とする請求項22記載の 液浸式投影露光装置。

【請求項24】 液槽に満たされた液体を加振する手段 を備える請求項14または15記載の液浸式投影露光装 置。

【請求項25】 ウエハを加振する手段を有する請求項 14または15記載の液浸式投影露光装置。

【請求項26】 ウエハに対向する光学素子を加振する 手段を有する請求項14または15記載の液浸式投影露 光装置。

【請求項27】 加振手段は超音波加振装置である請求 液槽内の液体の加圧手段を有する請求 50 項25または26記載の液浸式投影露光装置。

【請求項28】 液槽内に供給された液体の温度を計測 し制御する温度制御手段を備える請求項14または15 記載の液浸式投影露光装置。

【請求項29】 液槽内に供給された液体の屈折率を測定する屈折率測定手段を備える請求項14または15記載の液浸式投影露光装置。

【請求項30】 液槽内に供給された液体の流動を阻止するスタビライザを備える請求項14または15記載の液浸式投影露光装置。

【請求項31】 液槽の外壁は、断熱部材で覆われてい 10 る請求項14または15記載の液浸式投影露光装置。

【請求項32】 ウエハ駆動手段は、ウエハを吸着して保持するウエハチャックを備え、このウエハチャックはウエハを真空吸引して吸着するための経路、およびこの経路内に液体が流入するのを防止するシャッタを有することを特徴とする請求項14または15記載の液浸式投影露光装置。

【請求項33】 ウエハ駆動手段はウエハを液槽内の露 光位置に搬入しおよび搬出するウエハ搬送手段を備え、 このウエハの搬送手段は、少なくとも一部が液槽内に配 20 置されていることを特徴とする請求項14または15記 載の液浸式投影露光装置。

【請求項34】 搬送手段は、液槽内に保持された液体にウエハを垂直もしくは斜めに搬入し、液体中でウエハを水平にする手段を有する請求項33記載の液浸式投影露光装置。

【請求項35】 搬送手段が液槽内に保持された液体中からウエハを搬出する際に、ウエハの少なくとも片面をエアーブローする手段を有する請求項33記載の液浸式投影露光装置。

【請求項36】 液体を液槽内に供給しおよび排出させるポンプを有することを特徴とする請求項14または15記載の液浸式投影露光装置。がある。

【請求項37】 ウエハ駆動手段はXおよびY方向に移動するXYステージおよびこれによってXおよびY方向に移動されかつウエハを任意の方向に傾ける微動ステージを有し、液槽は微動ステージ上に固定されていることを特徴とする請求項7または8記載の液浸式投影露光装置。

【請求項38】 液槽の底面がウエハを保持するウエハチャックを構成していることを特徴とする請求項37記載の液浸式投影露光装置。

【請求項39】 液槽の少なくとも2側面が直交した平面で構成され、これらの平面がレーザ光の反斜面を構成していることを特徴とする請求項37記載の液浸式投影露光装置。

【請求項40】 液槽の底面部材と微動ステージ底面と が流体ベアリングの平面ガイドを構成していることを特 徴とする請求項18記載の液浸式投影露光装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体製造工程においてウエハ上に微細な回路パターンを露光する為の液浸式投影露光装置に関する。

[0002]

【従来の技術】半導体素子の微細化が進み、従来、露光 光源としては、高圧水銀灯のg線からより波長の短いi 線へと移行してきた。そしてより高解像力を必要とする 為、投影レンズのNA(開口数)を大きくしなければな らず、その為、焦点深度はますます浅くなる傾向にあ る。これらの関係は一般に良く知られている様に、次式 で表すことができる。

(解像力) = k₁ (λ/NA)

(焦点深度) = $\pm k_2 \lambda / NA^2$

ここに、 λ は露光に使用する光源の波長、NA は投影レンズのNA (開口数)、 k_1 , k_2 はプロセスに関係する係数である。

【0003】近年では、従来の高圧水銀灯のg線、i線から、より波長の短いエキシマレーザと呼ばれる(KrF,ArF)、更には、X線の使用も検討されている。また一方では、位相シフトマスク、或は変形照明等による高解像力、高深度化の検討もなされ、実用され始めている。しかし、エキシマレーザと呼ばれる(KrF,ArF)やX線を利用する方法は、装置コストが高くなり、位相シフトマスク、或は変形照明等は、回路パターンによって効果が期待できない場合もある等の問題を抱えている。

【0004】そこで、液浸方を適用する試みがなされている。例えば、特公昭63-49893号公報には、露光装置において、縮小レンズの先端を取り囲んで液体流入口を有するノズルを設け、これを介して液体を供給し、縮小レンズとウエハとの間に液体を保持するようにしたものが記載されている。

[0005]

【発明が解決しようとする課題】しかしながら、この従来技術においては、ただ単に液体を供給するようにしたのみであり、実際の製造工程で使用するには、従来のプロセス技術が生かせない等、種々の問題を有している。 【0006】本発明の目的は、上述従来技術の問題点に

鑑み、g線、i線、或はエキシマレーザ等の使用する露光光源の波長に拘らず、どの波長でも、それぞれの波長に応じた効果を期待できるコストの安い液浸式露光装置を提供し、更には、従来のプロセス技術を生かせる液浸式露光装置を提供することを目的とする。

[0007]

【課題を解決するための手段】この目的を達成するため本発明では、レチクルを照明する照明手段、これによって照明されたレチクル上のパターンをウエハ上に投影する投影光学手段、ウエハを所定位置に位置決めする位置決め手段を備えた投影露光装置において、投影光学手段

はウエハの露光面に対向し、平面もしくはウエハ側へ凸んだ凸面を有する光学素子、およびこの光学素子の平面もしくは凸面とウエハの露光面との間を少なくとも満たす液体を保持するための液槽を具備する。

【0008】位置決め手段は、通常、ウエハ位置を検出するアライメント計測手段と、投影光学手段のフォーカス位置に対するウエハ露光面の位置を検出するフォーカス位置検出手段と、ウエハをその露光面に平行なXおよびY方向、これらに垂直な軸の回りの θ 方向、 Z 方向、ならびにウエハを任意の方向に傾ける方向にウエハを保持して駆動するウエハ駆動手段と、ウエハ駆動手段の保持位置上にウエハを搬入しおよび搬出するウエハ搬送手段とを備える。

【0009】液槽は閉空間を構成し、液槽内の液体の加圧手段等を有する場合もある。液槽はまた、光学手段に対して位置的に固定され、あるいはXYステージに位置的に固定されている場合もある。液槽が光学手段に対して位置的に固定されている場合は、例えば、微動ステージが液槽内に配置され、液槽は透磁率の高い材料で構成され、そして液槽を介して微動ステージとXYステージが磁気結合される。

[0010]

【作用】光学式顕微鏡の解像力をあげる方法としては、 従来から、対物レンズと試料の間を高屈折率の液体で満 たす、所謂、液浸法が知られている(例えば、D. W. Pohl, W. Denk & M. Lanz, App 1. Phys. Lett. 44652 (1984)). この効果を半導体素子の微細回路パターンの転写に応用 した例としては、『H. Kawata, J. M. Car ter, A. Yen, H. I. Smith, Micro electronic Engineering 9 (1989)』、或は、『T. R. Corle, G. S. kino, USP 5, 121, 256 (Jun. 9,1992)』がある。前論文は、露光における液浸 の効果を検討したもので、実用的な半導体露光装置とし ての構成を論じておらず、後者のパテントは、液浸レン ズをウエハの表面近くに置く方法を開示しているに過ぎ ない。

【0011】本発明は、従来から知られている顕微鏡の対物レンズと試料の間を高屈折率の液体で満たすという方法を、生産設備としての投影露光装置で実現する為の具体的方法に関するものであり、本発明によれば、液浸の効果を利用した露光装置を提供することが可能となる。

【0012】この「液浸の効果」とは、 λ 。 を露光光の空気中での波長とし、また、図10に示すように、nを液浸に使用する液体の空気に対する屈折率、 α を光線の収束半角とし、NA。=sin α とすると、液浸した場合、前述の解像力および焦点深度は、次式のようになる。(解像力)=k₁(λ 。/n)/NA。

(焦点深度) = $\pm k_2$ (λ_0 / n) / (NA₀)² すなわち、液浸の効果は波長が 1 / n の露光波長を使用 するのと等価である。言い換えれば、同じNAの投影光 学系を設計した場合、液浸により、焦点深度をn倍にす ることができる。これは、あらゆるパターンの形状に対 しても有効であり、更に、現在検討されている位相シフ ト法、変形照明法等と組み合わせることも可能である。 この効果を生かすためには、液体の純度、均一性、温度 等の精密な管理が必要であり、ステップ・アンド・リピ ート動作でウエハ上に逐次露光して行く露光装置では、 動作中に発生する液体の流動や振動を極力少なくするこ と、ウエハを液体内に搬入する際のウエハ表面に残留す る気泡をいかにして除去するか等が問題になる。本発明 では、実施例で説明するように、これらの諸問題を解決 するための装置の構成を提案し、液浸の効果を十分生か せるようにしている。従来、256Mbit~1Gbi tのDRAMの生産では、i線、エキシマレーザを光源 とする従来のステッパから、X線、或は電子ビーム(E B)の露光装置が必要と考えられていたが、本発明によ って、i線、或はエキシマレーザを光源とする従来のス テッパで従来の製造プロセスを流用出来、技術的に確立 された製造プロセスでコスト的にも有利な生産が可能と なる。

6

【0013】以下に、実施例を通じてより詳細に説明する。

[0014]

【実施例】

実施例1

図1は、本発明の第1の実施例に係る液浸式投影露光装置の構成図である。図中、1はレチクル、2は感光剤が塗布され、レチクル1上の回路パターンが露光・転写されるウエハ、3はウエハ2上にレチクル1上の回路パターンを投影するためのシャッタ及び調光装置等を備えた照明光学系、4はウエハ2上にレチクル1上の回路パターンを投影する投影光学系、5はレチクル1を保持し、所定の位置に位置決めするためのレチクルステージ、6はレチクル1を位置決めするため、及びレチクル像をウエハ2上に既に転写されている回路パターンに合致させるためのアライメント光学系である。

【0015】投影光学系4のウエハ2表面に対向するレンズを第2の光学素子7と呼ぶことにすると、この第2の光学素子7のウエハ2表面に対向する面は、図2および図3に示すように、平面あるいはウエハ2表面に向かって凸となる様に構成されている。これは、液浸する際に、第2の光学素子7表面に空気層や気泡が残らない様にするためである。また、液浸される光学素子7の表面およびウエハ2上の感光剤の表面は、液浸に使用する液体30と浸和性のあるコーチングを施すことが望ましい。第2の光学素子7と投影光学系4の鏡筒との間に

〕 は、液体30の鏡筒への侵入を防ぐためのシール8があ

る。このシールは、第2の光学素子7の厚さを、図4に 示すように厚く収り、液体30を浸す高さを管理する機 能を付加するように構成にすれば不要である。

【0016】9は液体30を満たすための液槽(チャン バ)、10はウエハカセット、12はウエハ2を保持す るためのウエハチャック、11-1~11-4はウエハ の粗位置決め装置、13はウエハ2を所定の位置に位置 決めするためのXYステージ、14はXYステージ上に 配置され、ウエハ2の θ 方向位置の補正機能、ウエハ2 の Z 位置の調整機能、およびウエハ2の傾きを補正する ためのチルト機能を有する微動ステージである。チャン バ9の中に、ウエハカセット10からウエハを搬入しウ エハチャック12上にセットするためのウエハ搬送装 置、粗位置決め装置11-1~11-4の一部もしくは 全体、ウエハチャック12、XYステージ13、および 微動ステージ14がある。

【0017】15はレーザ干渉計、16は微動ステージ 14上にXおよびY方向(Y方向は不図示)に取り付け られ、微動ステージ14の位置を計測するためにレーザ 干渉計15の光を反射する参照ミラー、17はレーザ干 20 渉計15の光を通過させるためチャンバ9に設けられた 窓、18はチャンバ9の外側に設けられ、外部との熱的 遮断を保つ断熱材である。チャンバ9自体を断熱効果の ある材料、例えばエンジニリアリングセラミックで構成 すれば、断熱材18は不要である。更に、チャンバ9の 材質を低熱膨張材、例えばゼロジュール(商品名)を使 用し、図5に示すように、レーザ干渉計15をその側面 に直接取り付け、レーザ干渉計15の計測精度が空気の インデックスの影響を受けないようにすることも可能で ある。

【0018】チャンバ9にはまた、液体30の高さを測 定するための液面ゲージ19、液体30の温度を測定す る温度計20、および温度コントローラ21が設けられ ている。チャンバ9には、さらに、液体30の高さを制 御するためのポンプ22が設けられている。ポンプ22 は温度制御された液体30を循環させる機能も備え、液 体30中の不純物をろ過するためのフィルタ23もセッ トされている。24は液体30の屈折率を測定するため の測定器、25は液体30を均質にするため、およびウ エハ2表面や第2の光学素子7表面に気泡が付着するの を防ぐ目的で設置された超音波加振装置、26は露光装 置の防振架台である。

【0019】次に、上記構成の装置の実際の動作、作 用、および効果等を説明する。露光をする際には、ま ず、あらかじめ感光剤を塗布してあるウエハ2をウエハ 搬送装置11-1で、ウエハカセット10より取り出 し、ウエハ位置粗検出機構11-2(通常、プリアライ メント機構と呼んでいる) に載せ、粗位置決めした後 に、ウエハ送り込みハンド11-3でウエハ2をハンド リングし、チャンバ9内に設置されたウエハチャック1 50

2上にウエハ2をセットする。ウエハチャック12上に 載せられたウエハ2は、バキューム吸着によって固定さ れ、平面矯正される。これと同時に、温度制御装置21 で一定温度に制御された液浸用の液体30が輸送ポンプ 22によって、フィルタ23を介して、チャンバ9内に 送り込まれる。液体30が所定の量になると、液面ゲー ジ19がこれを検知して、ポンプ22を停止する。

8

【0020】液体30の温度は、温度センサ20により 常時監視しており、所定の温度からずれた場合は、再度 輸送ポンプ22を作動させ、一定温度の液体30を循環 させるようになっている。その際、液体30の循環によ る、液体30の流動が起こり、液体30の均一性が崩れ るが、屈折率測定装置24で、均一性の測定も行われ る。また、液体30中の気泡、ウエハ2表面に付着した 気泡、第2の光学素子7表面に付着した気泡は、超音波 加振装置25を作動させて除去する。この超音波加振 は、液体30自体を均一にする効果も有しており、振動 の振幅が小さく、周波数が高いために、ウエハ2の位置 決めや露光には影響しない。

【0021】屈折率測定装置24で液体30の均一性が 確認されると、通常の露光装置と同様に、ウエハ2の精 密位置決め(アライメント、フォーカス等)と露光が行 われる。このとき、ステップ・アンド・リピート動作に より、液体30の流動が発生するが、第2の光学素子7 とウエハ2表面との間隔が数mmから数十mm程度であ り、液体30が粘性を有する事から、比較的短時間で、 この部分の液体30の流動はなくなる。従って、各ショ ット毎にステップ後に遅延時間を取るか、屈折率測定装 置24で、この部分の液体30の流動状態を測定し、流 動が停止した時点でシーケンスを継続させれば良い。ま た、チャンバ9の外周は、断熱材18で覆ってあるた め、通常、1枚のウエハを処理する時間程度は、輸送ポ ンプ22を作動させ、一定温度の液体30を循環させる 必要はない。

【0022】ウエハ2の全面の露光が完了すると、これ と同時に輸送ポンプ22が再び作動し、チャンバ9内の 液体30を排出し始める。この時、液面ゲージ19が常 時液体30の高さを検知しており、液体30の高さがウ エハチャック12面より僅かに低くなった時点で、輸送 ポンプを停止させる。従って、排出する液体30の量 は、僅かである。この後、ウエハチャック12のバキュ - ムを切り、搬出ハンド11-4で、ウエハチャック1 2上のウエハ2をハンドリングして、ウエハカセット1 0に収納する。この時、収納直前に、ウエハ2の両面を クリーンなエアでプローして、液体30をウエハ2表面 から除去するようにしてもよい。

【0023】実施例2

図11は本発明の第2の実施例に係る液浸式投影露光装 置の構成図、図12は図11におけるウエハチャック1 2の断面図、そして図14は図11におけるステージ部

分の変形例を示す模式図である。これらの図において、 3 1 はウエハ2をチャンバ9内に搬入および搬出するた めの搬送口、32は微動ステージ14を水平方向に移動 可能にするための流体ベアリングガイド、33はチャン バ9の内部を負圧にして、液体30中の気泡を除去する ための真空ポンプ、34は真空ポンプ33に接続された バルブ、35は液体30を除去するためにクリーンなエ アをウエハ2表面に吹き付けるためのノズルを有するブ ロア、36はチャンバ9の内圧を測定するための圧力 計、37はウエハチャックに内蔵されたシャッタ機構で ある。他の構成は図1の場合と同様であるが、シール8 はチャンバ9の機密を保たせる機能をも有する。また、 ポンプ22は、液体30を循環させる機能に加え、液体 30の圧力をコントロールする機能をも備える。

【0024】この構成においては、実施例1の場合と動 作が異なる点として、チャンバ9内へウエハ2を搬送し および搬出するそれぞれの場合において、搬送口31の 開閉が行われる。またウエハ2をウエハチャック12上 にセットし、液体30を所定量満たしてポンプ22を停 止した後、さらに、バキュームチャンバタに接続してい る真空ポンプ33が作動され、液体30中の気泡が除去 される。このとき同時に、超音波加振装置25を作動さ せて、液体30中の気泡、ウエハ2表面に付着した気 泡、第2の光学素子7表面に付着した気泡も除去する。 気泡を除去し終ると、真空ポンプ33は停止し、同時 に、これに接続されているバルブ34も閉じられ、ポン プ22が作動して、液体30を加圧し始める。そしてチ ャンバ9の内圧を測定している圧力計36の圧力が所定 の値を示した時点で、実施例1の場合と同様に、温度セ ンサ20による液体30の温度の常時監視を行う。ま た、ウエハカセット10への収納直前には、プラ35に よりウエハ2の両面がクリーンなエアでブローされ、液 体30がウエハ表面から除去される。他の動作は実施例 1の場合と同様である。

【0025】これによれば、液体30が加圧されている ため、ステップ・アンド・リピート動作による液体30 の流動は、より短時間で消失する。また、加圧された液 体30の圧力によって、ウエハチャック12上のウエハ 2の平面矯正能力も増加させることが可能である。

【0026】実施例3

図12は本発明の第3の実施例に係る液浸式露光装置の ウエハチャック部分の断面図である。上述においては、 ウエハ毎に液体を流入し排出するようにしているが、こ こでは、図12に示すように、ウエハチャック12にシ ャッタ機構37を付加し、ウエハ2がウエハチャック1 2上にある場合のみシャッタを開いてバキューム吸着す るようにして、液体30を満たしたままでも処理できる ようにしている。これにより、スループットの向上が図 られる。この場合、搬送されるウエハ2は、ウエハ送り

は垂直に気泡が残らないように液体30中に挿入され、 液体30中で水平にされてウエハチャック12上にセッ トされる。

【0027】 実施例4

図6は、本発明の第4の実施例に係る液浸式露光装置の ステージ部分を示す断面図である。これは、実施例1の 構成において、液体30中に不純物が混入するのを防ぐ ために、XYステージ13の駆動系を、チャンバ9の外 部に置くように構成したものである。この場合、同図に 示すように、XYステージ13全体がチャンバ9の外に 配置され、XYステージ13上にチャンバ9を載せてチ ャンバ9ごと位置決めされる。この場合、液体30全体 をステップ・アンド・リピート動作させるために、チャ ンバ9内部の液体30が移動時の加速度によって流動す るので、図7に示すような、板材をメッシュ状に組み合 わせたスタビライザ29をステップ時に液体30中に挿 入して、液体30の流動や波立ちを押さえられる構造に なっている。なお、実施例2の構成に対しても、同様の ステージ構成を適用することができる。また、スタビラ イザ29を、図13に示すように、中心に投影レンズ4 を通すための穴を設けた形状にしてもよい。

【0028】実施例5

図8は、本発明の第5の実施例に係る液浸式露光装置の ステージ部分を示す断面図である。これは、実施例1の 構成において、液体30中に不純物が混入するのを防ぐ ために、XYステージ13の駆動系を、実施例4の場合 と同様に、チャンバ9の外部に置くように構成したもの である。ただしこの場合は、同図に示すように、微動ス テージ14の底面に磁石27を配し、チャンバ9の底面 を透磁性の材料で構成して、チャンバ9の下部にあるX Yステージ13上の磁石28と磁気的に結合させ、チャ ンバ9の底面を微動ステージ14のガイドとして、XY ステージ13を移動させることにより、チャンバ9内の 微動ステージ14を間接的に駆動させるように構成す る。

【0029】<u>実施例6</u>

図14は、本発明の第6の実施例に係る液浸式露光装置 のステージ部分を示す断面図である。これは、実施例2 の構成において、液体30中に不純物が混入するのを防 ぐために、XYステージ13の駆動系を、実施例5の場 合と同様に、チャンバ9の外部に置き、微動ステージ1 4の底面に磁石27を配し、チャンバ9の底面を透磁性 の材料で構成して、チャンバ9の下部にある XYステー ジ13上の磁石28と磁気的に結合させ、チャンバ9の 底面を微動ステージ14のガイドとして、XYステージ 13を移動させることにより、チャンバ9内の微動ステ ージ14を間接的に駆動させるように構成したものであ る。またさらに、微動ステージ14下面に液体を吹き出 すノズルを設け、液浸に使用している液体30をそこか 込みハンド11-3によって、液体30に対して斜め或 50 ら噴出させるようにして、流体ベアリングガイド32を

構成している。これにより、ステップ・アンド・リピート動作時の可動部分の質量を軽くすることができるため、スループットをさらに向上させることができる。

【0030】 実施例7

図9は、本発明の第7の実施例に係る液浸式露光装置のステージ部分を示す断面図である。これは、ウエハチャック12を含む部分のみをチャンバ9内に配置しあるいはチャンバ9の底面にウエハチャック12を直接構成し、微動ステージ14上にチャンバ9を配置したものである。この場合、チャンバ9の底面とこれに隣接する2面とがそれぞれ直角になるようにこれらを低熱膨張材料で構成し、この2面をレーザ干渉計15の計測用の参照面とすることも可能である。

【0031】なお、上述各実施例において、ウエハをウエハチャック12上に搬入しあるいはチャック12上からウエハを搬出するための搬送装置は、チャンバ9の中に構成することもチャンバ9の外に構成することも可能である。

[0032]

【発明の効果】以上説明したように本発明によれば、解 20 像度や焦点深度を高める液浸法を、実際の製造工程で十部に使用できる態様で、露光装置に適用することができるようになる。したがって、g線、i線、或はエキシマレーザ等の、露光光源の波長に拘らず、どの波長でも、それぞれの波長に応じた効果を期待できるコストの安い液浸式露光装置を提供し、更には、従来のプロセス技術を生かせる液浸式露光装置を提供することができる。

【図面の簡単な説明】

【図1】 本発明の第1の実施例に係る液浸式投影露光装置の構成を示す構成図である。

【図2】 図1の装置に適用される光学素子の断面図である。

【図3】 図1の装置に適用される他の光学素子の断面 図である。

【図4】 図1の装置に適用されるさらに他の光学素子*

*の断面図である。

【図5】 図1の装置において、チャンバの側面にレーザ干渉計を直接取り付けた場合を示すの断面図である。

【図6】 本発明の第4の実施例に係る液浸式露光装置のステージ部分を示す断面図である。

【図7】 図6の装置に適用されるスタビライザの斜視図である。

【図8】 本発明の第5の実施例に係る液浸式露光装置のステージ部分を示す断面図である。

【図9】 本発明の第7の実施例に係る液浸式露光装置のステージ部分を示す断面図である。

【図10】 液浸の効果を説明するための断面図である。

【図11】 本発明の第2の実施例に係る液浸式投影露 光装置の構成図である。

【図12】 図11におけるウエハチャックの断面図である。

【図13】 図14の装置に適用できるスタビライザの斜視図である。

【図14】 図11におけるステージ部分の変形例を示す模式図である。

【符号の説明】

1:レチクル、2:ウエハ、3:照明光学系、4:投影光学系、5:レチクルステージ、6:アライメント光学系、7:光学素子、8:シール、9:液槽、10:ウエハカセット、12:ウエハチャック、11-1~11-4:粗位置決め装置、13:XYステージ、14:微動ステージ、15:レーザ干渉計、16:参照ミラー、17:窓、18:断熱材、19:液面ゲージ、20:温度計、21:温度コントローラ、22:ポンプ、23:フィルタ、24:測定器、25:超音波加振装置、26:防振架台、27,28:磁石、29:スタビライザ、:30:液体、31:搬送口、32:流体ベアリングガイド、33:真空ポンプ、34:バルブ、35:ブロア、36:圧力計、37:シャッタ機構。

