Total No. of Questions—8]

suitable example.

[Total No. of Printed Pages—3

Seat No.	[5252]-563
NT.	[5252]-568

S.E. (Computer Engineering) (I Semester) EXAMINATION, 2017 DATA STRUCTURES AND ALGORITHMS

(2015 PATTERN)Time: Two Hours Maximum Marks: 50 Attempt Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6 and Q.7 or Q.8. *N.B.* :— Neat diagrams must be drawn wherever necessary. Assume suitable data, if necessary. 1. Define and explain the following terms: [3] (a) (a) Data structure (*b*) ADT Algorithm (c)Give pseudo C/ C++ code to concatenate two strings. (*b*) [3] Explain the Greedy strategy with suitable example. Comment (c)on its time complexity. Or2. Define and explain the following terms: $\lceil 4 \rceil$ (a) Linear data structure (a) (*b*) Non-linear data structure Time complexity (c)(d)Space complexity What is sparse matrix? Explain with suitable example. [2] (*b*) Explain the Asymptotic notation Big O, Omega and Theta with (c)

P.T.O.

[6]

3.	(a)	Write a pseudo C/C++ code to delete intermediate node from	L	
		singly linked list. [3]		
	(<i>b</i>)	Explain Generalized linked list with example. [3]		
	(c)	What is stack? Write an ADT for stack. [6] Or	İ	
4.	(a)	What is recursion? Explain use of stack for recursion. [4]		
	(<i>b</i>)	Explain the stepwise conversion using stack for the given infix	-	
		expression to the postfix expression: [2]		
		A * (B + C) * D		
	(<i>c</i>)	Write pseudo C/ C++ code to represent Singly linked list as	,	
		an ADT. [6]]	
5.	(a)	Define the following terms with example: [6]		
		(a) Dequeue		
	(b) Priority queue			
		(c) Linear queue		
	(<i>b</i>)	Write a pseudo C/C++ code to implement circular queue using	,	
		arrays. [7]		
		Or		
6.	(a)	Explain linear queue and circular queue with suitable example.		
		Give the advantages of circular queue over linear queue.[6]		
	(<i>b</i>)	Explain priority queue. Give pseudo C/C++ code for array	r	
		implementation of priority queue. [7]		
7 .	(a)	Sort the following numbers using Merge sort. [6]		
		55, 85, 45, 11, 34, 05, 89, 99, 67		
		Discuss its time complexity and space complexity.		
		No.		

(b) Explain sequential search and binary search with appropriate example and compare their time complexity and space complexity. [7]

Or

- 8. (a) Explain the algorithm of Quick sort with suitable example.

 Discuss its time complexity and space complexity. [6]
 - (b) Explain heap sort and sort the given list using heap sort :[7] 18, 13, 12, 22, 15, 24, 10, 16, 19, 14, 30.