

CLASSROOM CONTACT PROGRAMME

(Academic Session: 2024 - 2025)

JEE (Advanced)
FULL SYLLABUS
02-03-2025

JEE(Main + Advanced) : ENTHUSIAST COURSE (SCORE-II)

ANSWER KEY PAPER-1 (OPTIONAL)

PART-1	۱:	PH	YS	ICS
--------	----	----	----	-----

SECTION-I (i)	Q.	1	2	3	4	5	6		
	A.	A,B,C,D	В,С	B,C,D	Α	A,C	C,D		
SECTION-I (ii)	Q.	7	8	9	10		•	-	
	A.	С	С	С	С				
SECTION-II	Q.	1	2	3	4	5	6	7	8
	A.	0.41	1.50	6.25	1.25	12.75	4.00	3.00	0.80

PART-2: CHEMISTRY

SECTION-I (i)	Q.	1	2	3	4	5	6		
3E0110N-1 (I)	A.	A,B	A,C	A,B,D	B,D	В,С	A,C		
SECTION-I (ii)	Q.	7	8	9	10				
	A.	С	D	С	Α				
SECTION-II	Q.	1	2	3	4	5	6	7	8
	A.	0.06	5.00	5.00	3.00	6.00	3.00	6.00	7.00

PART-3: MATHEMATICS

SECTION-I (i)	Q.	1	2	3	4	5	6		
	A.	B,C,D	B,D	B,D	В	A,B,D	B,C,D		
SECTION-I (ii)	Q.	7	8	9	10				
	A.	Α	В	Α	Α				
SECTION-II	Q.	1	2	3	4	5	6	7	8
	A.	4.00	2688.00	17.00	2.00	5.00	47.50	2.00	2.00

(HINT – SHEET)

PART-1: PHYSICS

SECTION-I (i)

1. Ans (A,B,C,D)

$$E 4\pi r^2 = \frac{q_0 - Q_t}{\epsilon_0}$$

$$J = \frac{E}{\rho} = \frac{q_0 - Q_t}{4\pi \epsilon_0 \rho r^2}$$

$$I = J A = \frac{1}{\epsilon_0 \rho} (q_0 - Q)$$

$$I = \frac{dQ}{dt} \Rightarrow \frac{dQ}{q_0 - Q} = \frac{dt}{\epsilon_0 \rho} \Rightarrow \frac{Q}{q_0} = 1 - e^{-t/\epsilon_0 \rho}$$

2. Ans (B,C)

Initial pressure at the bottom

$$= \rho g \times 2H + 2\rho \times g \times H = 4 \rho g H$$

$$\frac{\rho \times A \times 2H + 2\rho \times 2A \times H}{A \times 2H + 2A \times H} = \frac{3}{2}\rho$$

Final pressure =
$$\frac{3}{2} \rho \times g \times 3H = \frac{9}{2} \rho gH$$
.

3. Ans (B,C,D)

For adiabatic process $(A \rightarrow B)$

$$P_A V_A^{\ \gamma} = P_B V_B^{\ \gamma}$$

$$10^5 \times (0.8)^{\frac{5}{3}} = 3 \times 10^5 (V_B)^{\frac{5}{3}}$$

$$\Rightarrow V_B = 0.8 \times \left(\frac{1}{3}\right)^{0.6} = 0.4 \text{ m}^3$$

Work done in process $A \rightarrow B$

$$W_{AB} = \frac{P_A V_A - P_B V_B}{\gamma - 1}$$

$$\Rightarrow W_{AB} = \frac{10^5 \times 0.8 - 3 \times 10^5 \times 0.4}{\frac{5}{3} - 1}$$

$$\Rightarrow$$
 W_{AB} = $-60 \text{ kJ} = \Rightarrow |W_{AB}| = 60 \text{ kJ}$

Work done in process $B \rightarrow C$ (Isothermal process)

$$W_{BC} = nRT \, \ell n \frac{V_C}{V_B} = P_B V_B \ell n \frac{V_C}{V_B}$$

$$\Rightarrow W_{BC} = 3 \times 10^5 \times 0.4 \ln \frac{0.8}{0.4}$$

$$\Rightarrow$$
 W_{BC} = 84 kJ

Work done in process $C \rightarrow A$

$$W_{CA} = P\Delta V = 0 \ (\because \Delta V = 0)$$

So total work done in the process $A \rightarrow B \rightarrow C$

$$W_{ABC} = W_{AB} + W_{BC} + W_{CA} = -60 + 84 + 0$$

$$W_{ABC} = 24 \text{ kJ}$$

4. Ans (A)

(B) For dipole
$$E_{min} = \frac{KP}{r^3}$$
 and $E_{max} = \frac{2KP}{r^3}$.

So maximum value of E may be 10 N/C

(C), (D) net force or net torque on dipole in nonuniform electric field may be zero.

5. Ans (A,C)

Moment of inertia of the plate about y-axis is

$$I_y = 2 \int dm. x^2$$

$$=2\int \rho. y dx. x^2$$

$$=2\int_{0}^{a}\rho 2x^{4}.\ dx$$

$$= \left\lceil \frac{4\rho x^5}{5} \right\rceil_0^a = \frac{4\rho a^5}{5}$$

Now,

Moment of inertia of the plate about x-axis

$$I_{x} = 2 \int \frac{dmy^{2}}{3}$$

$$=\frac{2}{3}\int \rho y. dx. y^2$$

$$=\frac{16}{3}\rho\left(\frac{x^7}{7}\right)_0^a=\frac{16}{3}\rho\frac{a^7}{7}$$

$$=\frac{16\rho a^7}{21}$$

6. Ans (C,D)

$$f = -Kv$$

$$m \cdot \frac{dv}{dt} = -Kv$$

$$\int_{v_0}^{v} \frac{dv}{v} = -\frac{k}{m} \int_{0}^{t} dt$$

$$\ln\left(\frac{v}{v_0}\right) = -\frac{K}{m} \cdot t$$

$$v = v_0 e^{-\frac{K}{m} \cdot t}$$

$$R = \frac{mv}{qB} = \frac{mv_0}{qB} e^{-\frac{K}{m} \cdot t}$$

$$F \operatorname{rom} f - = Kv$$

$$m. v \frac{dv}{dx} - = Kv$$

$$\int_{v_0}^{v} dv = -\frac{K}{m} \cdot \int_{x}^{0} dx$$

$$v = v_0 - \frac{K}{m} \cdot x = v_0 - \frac{K}{m} \cdot \frac{mv_0}{2K}$$

$$v = \frac{v_0}{2}$$

$$R = \frac{mv}{qB} = \frac{mv_0}{2qB}$$

PART-1: PHYSICS

SECTION-I (ii)

9. Ans (C)

The equation of rotating surface is given by $y = \frac{\omega^2 x^2}{2g}$ also the radius of curvature at any point is

$$\begin{split} &\rho = \left[1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right]^{3/2} \\ &\frac{\frac{\mathrm{d}^2y}{\mathrm{d}x^2}}{2g}; \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\omega^2x}{g} \\ &\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{\omega^2}{g} \\ &\therefore \rho = \frac{\left[1 + \frac{\omega^2x^2}{g^2}\right]}{\omega^2/g}^{3/2} \\ &\rho\left(\frac{r_0}{2}\right) = \frac{\left[1 + \frac{\omega^4r_0^2}{4g^2}\right]}{\omega^2/g}^{3/2} \\ &h\left(\frac{r_0}{2}\right) = \frac{\omega^2\frac{r_0^2}{4}}{2g} \end{split}$$

10. Ans (C)

$$2SW = P(dhW)g$$

$$W_{ST} - W_g = \Delta H$$

Force of attraction

$$P_0hW - (P_0 - \frac{2S}{d} + \rho g \frac{h}{2})hW = F$$

$$F = \frac{2S^2W}{\rho g d^2}$$

PART-1: PHYSICS

SECTION-II

3. Ans (6.25)

v = 325 m/s

$$v = \frac{V}{4L} \qquad \therefore \quad v_{10} = \frac{325}{4 \times 0.52}$$

$$v_{20} = \frac{325}{4 \times 0.50}$$

$$v_{10} - v_{20} = \frac{325}{4} \left(1 - \frac{1}{0.264} \right) = \frac{325}{4} \left(\frac{0.004}{0.260 \times 0.0264} \right)$$

$$= \frac{0.325}{0.260 \times 0264} = 6.25 \text{Hz}$$

4. Ans (1.25)

$$\Delta X = 2 \mu t$$

For destructive interference

$$2\mu t = \lambda/2$$

$$\mu = \frac{\lambda}{4t} = 1.25$$

5. Ans (12.75)

For first refraction from lens

$$\frac{1}{v} - \frac{1}{30} = \frac{1}{20} \Rightarrow \frac{1}{v} = \frac{1}{20} - \frac{1}{30}$$

v = +60 cm (image on principal axes)

2nd refraction from lens

$$\frac{1}{v} - \frac{1}{+60} = \frac{1}{20}$$

$$\frac{1}{v} = \frac{1}{20} + \frac{1}{60} \Rightarrow \frac{1}{v} = \frac{3+1}{60}$$

V = +15 cm

Now for second lens principal axis is 3mm below

the original principal axis

Hence
$$\frac{h_i}{h_o} = \frac{v}{u} \Rightarrow \frac{h_i}{+3} = \frac{+15}{+60}$$

 $h_i = \frac{3}{4} \text{ mm}$

∴ y coordinate =
$$-\left(3 - \frac{3}{4}\right) = -\frac{9}{4}$$
mm
Coordinates = $\left(15, \frac{-9}{4}\right)$

6. Ans (4.00)

$$C_{eq} = 3 \mu F$$

P.D. across R_1 in steady state = $\frac{30}{100+50} \times 100 = 20 \text{ V}$

:.
$$U = \frac{1}{2}(1+2) \times 10^{-6} \times 400 = 6 \times 10^{-4} J$$

After switch is opened, heat is generated is R₁ and

R₂ only.

Heat developed,

$$\begin{aligned} \frac{H_1}{H_2} &= \frac{\int I^2 R_1 dt}{\int I^2 R_2 dt} = \frac{R_1}{R_2} \\ H_2 &= \frac{U R_2}{R_1 + R_2} = 6 \times 10^{-4} \times \frac{200}{300} = 4 \times 10^4 J \end{aligned}$$

7. Ans (3.00)

$$V_1 = 3 \sin \omega t$$
;

$$V_2 = 5\sin(\omega t + \phi_1);$$

$$V_3 = 5 \sin(\omega t - \phi_2)$$

8. Ans (0.80)

$$\lambda_{L_{\alpha}} = 124 \, \text{pm}$$

$$E_1 = \frac{hc}{\lambda_{L_{cc}}} = 10 \, keV$$

$$E_3 = E_1 + E_2$$

$$E_3 = 10 + 5.5 = 15.5 \text{ keV}$$

Energy required to ionise e^{Θ} from 'L' shell is 15.5

keV i.e. the minimum wavelength of characteristics

x-ray we can produce

$$\lambda_{\text{min}} = \frac{\text{hc}}{15.5 \,\text{keV}} = 0.8 \text{Å}$$

HS-4/12

ALLEN®

PART-2: CHEMISTRY SECTION-I (i)

1. Ans (A,B)

 $[Co(NH_3)_4\ Cl(ONO)]Cl\ -\ Tetraammine$ $chloridonitrito\ -\ o\ cobalt\ (III)\ chloride$ $K_3[VF_6]\ -\ has\ unpaired\ d\ -electron\ therefore\ colored$

2. Ans (A,C)

More is value of T_C , more will be adsorption in Cl_2 . T_C is higher than H_2 .

3. Ans (A,B,D)

- (A) As the ratio of coordination numbers is 1:1, the positions of cations and anions can be interchanged.
- (B) Void is surrounded by 6 face centre atoms.
- (C) No. of octahedral voids = 4 per unit cellNo. of tetrahedral voids = 8 per unit cell
- (D) Ratio of $\frac{\text{No. of THV}}{\text{No. of OHV}} = \frac{2}{1}$

4. Ans (B,D)

B₂H₆ burns spontaneously in air to form oxide BN is bad conductor of electricity.

5. Ans (B,C)

When leaving group is present at equatorial position, ring contraction occurs.

6. Ans (A,C) Conceptual

1

PART-2: CHEMISTRY SECTION-I (ii)

7. Ans (C)

$$\begin{split} & (A) \, \log \frac{k_2}{k_1} = \frac{E_a}{2.303\,R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) = \frac{4.606 \times 10^3}{2.303 \times 2} \left(\frac{1}{500} - \frac{1}{1000} \right) \\ & \therefore \, \frac{k_2}{k_1} = 10 \end{split}$$

(B)
$$K = 0.0693 \text{ s}^{-1}$$

Order of reaction is first as per unit of k.

$$\therefore t = \frac{2.303}{k} \log \frac{A_o}{A_t} = \frac{2.303}{0.0693} \log \frac{16}{2} = \frac{2.303}{0.0693} \log 8$$

$$= \frac{2.303 \times 3 \times 0.301}{0.0693} = 30 \text{ s} = 0.5 \text{ min}$$

$$(C) t_{1/2} \propto \frac{1}{(\text{conc})^{n-1}} \therefore n - 1 = 1$$

10. Ans (A)

Phenol
$$\left(\begin{array}{c} OH \\ OB \end{array}\right)$$
 gives white precipitate of $\left(\begin{array}{c} OH \\ OB \end{array}\right)$ $\left(\begin{array}{c} OH \\ OB \end{array}\right)$

with bromine water & violet complex with FeCl₃.

Aniline
$$\left(\begin{array}{c} NH_2 \\ O \end{array}\right)$$
 gives white ppt of $\begin{array}{c} Br \\ O \end{array}$ with

bromine water and Lassagne's test for

Nitrogen Methionine
$$\begin{pmatrix} COOH \\ NH_2 & H \\ CH_3-S-CH_2-CH_2 \end{pmatrix}$$
 gives

Lassagne's test for both sulphur and nitrogen and effervescence with NaHCO₃.

PART-2: CHEMISTRY SECTION-II

1. Ans (0.06)

Let after 200 min,

x mole of A remained.

$$P = X_{A}.\,P_{A}^{\,o} + X_{B}.\,P_{B}^{\,o}$$

$$400 = \frac{x}{21+x} \times 300 \frac{20}{21+x} \times 500$$

$$\therefore x = 16$$

Now, K =
$$\frac{1}{t}$$
. $\ln \frac{n_A^o}{n_A}$
= $\frac{1}{200/60} \times \ln \frac{20}{16}$
= 0.06 hr^{-1}

3. Ans (5.00)

Cane sugar + $H_2O(\ell)$ \longrightarrow Glucose + Fructose

$$t=0$$
 0.05 mole

0 (

 0.05α

t
$$0.05-0.05\alpha$$

 0.05α

Total moles = $0.05 - 0.05\alpha + 0.05\alpha + 0.05\alpha = 0.05(1 + \alpha)$

$$\Delta T_f = iK_f m$$

$$0.279 = (1 + \alpha) \cdot 1.86 \times \left(\frac{0.05}{500/1000} \right)$$

$$(1+\alpha) = \frac{0.279 \times 5}{1.86 \times 0.5} = 1.5$$

$$\alpha = 0.5$$

Moles of cane sugar left = $0.05 - 0.05\alpha = 0.025$

Mass of cane sugar left = $342 \times 0.025 = 8.55$ gm.

4. Ans (3.00)

$$\frac{2\pi r_{n_1}}{2\pi r_{n_2}} = \frac{n_1\lambda_1}{n_2\lambda_2} \quad(i)$$

Also we know that

$$r_n = \frac{0.529n^2}{z}$$

Putting the value in equation (i)

$$\Rightarrow \frac{n_1}{n_2} = \frac{\lambda_1}{\lambda_2}$$

Also $n_1 = 1$ and if we provide energy equal to 12.09 eV, then electron will jump to $n_2 = 3$

$$\Rightarrow \frac{\lambda_1}{\lambda_2} = \frac{1}{3}$$

$$\Rightarrow \lambda_2 = 3\lambda_1$$

So, wavelength increases 3 times.

5. Ans (6.00)

6. Ans (3.00)

All aldehyde isomers of 'A' and PhCOCH₂CH₃ and PhCH₂COCH₃ does not give iodoform

7. Ans(6.00)

(i), (ii), (iii), (v), (vii) & (viii) gives aldehydes.

PART-3: MATHEMATICS

SECTION-I (i)

1. Ans (B,C,D)

$$T_{r} = \frac{r^{2}}{(2r-1)(2r+1)} = \frac{1}{4} \left(\frac{r}{2r-1} + \frac{r}{2r+1} \right)$$

$$4S = \sum_{r=1}^{500} \left(\frac{r}{2r-1} + \frac{r}{2r+1} \right)$$

$$= 1 + \left(\frac{1}{3} + \frac{2}{3} \right) + \left(\frac{2}{5} + \frac{3}{5} \right) + \left(\frac{3}{7} + \frac{4}{7} \right) + \dots + \frac{500}{999} + \frac{500}{1001}$$

$$\Rightarrow 4S = 1 + 499 + \frac{500}{1001} \Rightarrow [S] = 125$$

2. Ans (B,D)

Let
$$\vec{w} = \lambda_1 \vec{u} + \lambda_2 \vec{v} + \lambda_3 (\vec{u} \times \vec{v})$$

Taking dot product with $\vec{u} \times \vec{v}$, we get $\lambda_3 = \frac{5}{3}$.

$$\vec{w} \cdot \vec{u} = \lambda_1 ; \vec{w} \cdot \vec{v} = \lambda_2$$

$$\Rightarrow$$
 3 $\lambda_1 + 2\lambda_2 = 0$

Given:
$$\int_{-2\lambda_1}^{2\lambda_1} \frac{x^3 + 1}{x^2 + 1} dx = 2 \int_{0}^{2\lambda_1} \frac{dx}{x^2 + 1}$$
$$\Rightarrow \lambda_1 = \frac{1}{2}, \ \lambda_2 = -\frac{3}{4}$$

$$\vec{w} \cdot \vec{w} = \frac{19}{8}$$

3. Ans (B,D)

$$A+B^T=adjB\;;\;\;B+A^T=adjA$$

$$\Rightarrow A^T + B = (adj B)^T$$

$$\Rightarrow$$
 adj A = $(adj B)^T$

$$\Rightarrow |B|^2 = |A|^2$$

$$|\mathbf{B}| = \pm |\mathbf{A}|$$

(a)
$$|A| = |B|$$

$$(B^{-1})^T = A^{-1}$$

$$\Rightarrow A = B^T$$

$$adi B = 2B^T$$

$$\Rightarrow |B|^2 = 8|B|$$

$$\Rightarrow |B| = |A| = 8$$

(b)
$$|A| = -|B|$$

similarly
$$\Rightarrow A = -B^T$$

 \therefore adj B = 0 (Not possible)

4. Ans (B)

$$Z^9 - 9 = (Z - Z_1)(Z - Z_2)....(Z - Z_9)$$

Put $Z = -Z_1, -Z_2, \ldots, -Z_9$ and multiply

$$-18 = -2Z_1(Z_1 + Z_2)(Z_1 + Z_3)...(Z_1 + Z_9)$$

$$-18 = -(Z_9 + Z_1)(Z_9 + Z_2)... 2(Z_9)$$

$$(18)^9 = 2^9 Z_1 Z_2 \dots Z_9 \dots \prod_{\substack{i \neq i \\ i \neq j}} (z_i + z_j)$$

 $=2^{9}.9(\lambda^{2})$

$$\lambda^{2} = 9^{8}$$

5. Ans (A,B,D)

$$A = \int_{0}^{1} e^{-\left(z^{2} + \frac{1}{z^{2}}\right)} dz + \int_{1}^{\infty} e^{-\left(z^{2} + \frac{1}{z^{2}}\right)} dz$$

Let
$$z = \frac{1}{t}$$

$$A = \int_{1}^{\infty} \frac{1}{t^{2}} e^{-\left(t^{2} + \frac{1}{t^{2}}\right)} dt + \int_{1}^{\infty} e^{-\left(z^{2} + \frac{1}{z^{2}}\right)} dz$$

$$A = \int_{1}^{\infty} \left(1 + \frac{1}{x^2} \right) e^{-\left(x^2 + \frac{1}{x^2}\right)} dx \quad \text{let } x - \frac{1}{x} = u$$

$$= \int_{0}^{\infty} e^{-(u^{2}+2)} du = \frac{B}{e^{2}}$$

6. Ans (B,C,D)

Let $x = \tan \theta$

$$x \leqslant 0 \ \left(\theta \in \left(-\frac{\pi}{2}, 0\right]\right)$$

$$f(x) = \cos^{-1}\left(\frac{\sin\theta + \cos\theta}{\sqrt{2}}\right)$$

$$f(x) = \cos^{-1}\left(\cos\left(\theta - \frac{\pi}{4}\right)\right)$$

$$f(x) = -(\theta - \pi/4) = \frac{\pi}{4} - \tan^{-1}x$$

$$f\left(x\right) = \left[\begin{array}{cc} \frac{\pi}{4} - tan^{-1}x, & x \leqslant 0 \\ \\ tan^{-1}x, & x > 0 \end{array} \right.$$

ALLEN®

PART-3: MATHEMATICS SECTION-I (ii)

7. Ans (A)

(I) A, B, C are the 3 critical points of y = f(x)f''(x) = 0 for x = 2 and fails to exists at x = 0

(II) x = 1/4 and 2. Make a quadratic in log_2x and interpret the result.

(III)
$$\frac{dy}{dx} = -1 + 2x_1^3 = -\frac{3}{4} \implies x_1 = \frac{1}{2}$$
$$\Rightarrow \frac{1}{32} = \frac{1}{2} + y_1 \qquad \text{or}$$
$$y_1 = -\frac{15}{32} \implies c = -\frac{57}{32}$$

- (IV) $f'(x) = 2x^3 3x + 1$ this is always positive in (1, 2)
 - ∴ increasing [1, 2]
 - \therefore f(2) will be greatest value.

8. Ans (B)

$$f(x) = 2x^2 - 10px + 7p - 1$$

$$D = (-10p)^2 - 4.2. (7p - 1)$$

$$= 100p^2 - 8(7p - 1)$$

$$= 4(25 p^2 - 14p + 2)$$

 \therefore For the equation $25p^2 - 14p + 2 = 0$

$$\Rightarrow$$
 a - 25 > 0 and

$$D = (-14)^2 - 4 \cdot 25 = 2 - 4 < 0$$

$$\Rightarrow$$
 4(25p² - 14p + 2) > 0 for all p \in R

$$\Rightarrow$$
 D > 0

Now.

(I) Both roots of f(x) = 0 are confined in (-1, 1)

$$\Rightarrow$$
 (i) D \geqslant 0 (for all p \in R)

(ii)
$$-1 < \frac{-b}{2a} < 1$$

 $\Rightarrow -1 < -\left(\frac{-10p}{4}\right) < 1 \Rightarrow p \in \left(\frac{-2}{5}, \frac{2}{5}\right)$

(ii)
$$f(-1) > 0$$
 and $f(1) > 0$

$$2(-1)^2 - 10p(-1) + 7p - 1 > 0$$
 and

$$2(1)^2 - 10p(1) + 7p - 1 > 0$$

$$17p + 1 > 0$$
 and $-3p + 1 > 0$

$$\Rightarrow$$
 p $\in \left(\frac{-1}{17}, \frac{1}{3}\right)$

From (i), (ii) and (iii)
$$p \in \left(\frac{-1}{17}, \frac{1}{3}\right)$$

(II) Exactly one roots of f(x) = 0 lies in (-1, 1)

$$f(-1) \cdot f(1) < 0$$

$$(17p+1)(-3p+1) < 0$$

$$(17p+1)(3p-1) > 0$$

$$\Rightarrow$$
 $p \in \left(-\infty, \frac{-1}{17}\right) \cup \left(\frac{1}{3}, \infty\right)$

Also when
$$f(-1) = 0$$
 $\Rightarrow p = \frac{-1}{17}$

$$f(x) = 2x^2 + \frac{10}{17}x - \frac{24}{17}$$

$$f(x) = 34x^2 + 10x - 24$$

Here,
$$f(1) = 34(1)^2 + 10(1) - 24 > 0$$

 \Rightarrow Other root is lies in (-1, 1)

$$p = \frac{-1}{17}$$
 is also possible.

Again
$$f(1) = 0 \Rightarrow -3p + 1 = 0 \Rightarrow p = \frac{1}{2}$$

$$f(x) = 2x^2 - \frac{10}{3}x + \frac{4}{3} = 6x^2 - 10x + 4$$

$$f(-1) = 6(-1)^2 - 10(-1) + 4 > 0$$

- \Rightarrow Other root lies in (-1, 1)
- \therefore So exactly one root of f(x) = 0 lies in (-1, 1)

If
$$p \in \left(-\infty, \frac{-1}{17}\right] \cup \left[\frac{1}{3}, \infty\right)$$

- (III) Both roots of f(x) = 0 are greater than I.
 - (i) $D \geqslant 0$ (always)

(ii)
$$\frac{-b}{2a} > 1$$
 \Rightarrow $\frac{5p}{2} > 1$ \Rightarrow $p = \left(\frac{2}{5}, \infty\right)$

(iii)
$$f(1) > 0 \Rightarrow -3p+1 > 0 \Rightarrow p < \frac{1}{3}$$

$$\Rightarrow p \in \left(-\infty, \frac{1}{3}\right)$$

From (i), (ii) and (iii) $p \in \phi$

(IV) One root of f(x) = 0 is greater than 1 and other root of f(x) = 0 is less then -1.

$$f(1) < 0$$
 and $f(-1) < 0$

$$\Rightarrow$$
 f(1) < 0 and f(-1) < 0

$$\Rightarrow$$
 17p + 1 < 0 and -3p + 1 < 0

$$\Rightarrow$$
 $p < \frac{-1}{17}$ and $p > \frac{1}{3}$

$$\Rightarrow$$
 p \in 0

9. Ans (A)

(I) We have
$$f(x) = \sqrt[5]{x} + \sin^{-1}x$$

Clearly domain of f(x) = [-1, 1].

Also, f(x) is increasing so f(x) is one-one

function

Ans. P, S

(II)
$$f(x) = sgn \frac{(1-|x|)}{(1+|x|)}$$

$$D_f = R$$

 $R_f = \{-1, 0, 1\}$ even function

Ans. Q, R, T

(III)
$$f(x) = \frac{2^{[-x]}}{2^{\{x\}}} - 2^{|x|} = 2^{-x} - 2^{-x} = 0 \ \forall \ x \le 0$$

Ans. T

(IV) For domain of f(x) we must have

$$8-2x-x^2 \geqslant 0$$

$$\Rightarrow x^2 + 2x - 8 \leq 0$$

$$\Rightarrow$$
 $(x+4)(x-2) \leqslant 0$

$$\Rightarrow$$
 x \in [-4, 2]

$$\Rightarrow$$
 R_f = [0, 3]

10. Ans (A)

(I)
$$\frac{x^2}{9} + \frac{y^2}{16} = 1$$

Mid point (0, 3)

$$T = S_1$$

$$x(0) + y\left(\frac{3}{16}\right) - 1 = \frac{0}{9} + \frac{9}{16} = 1$$

$$y = 3$$

$$\frac{x^2}{9} + \frac{9}{16} = 1$$

$$x = \pm \frac{3}{4} \sqrt{7}$$

Length of chord = $\frac{3}{2}\sqrt{7}$

(II) Equation of chord of parabola is

$$y(t_1 + t_2) = 2x + 2at_1t_2$$

$$y(t+1) = 2x + 2t$$

$$\frac{2x = (t+1)y}{-2t} = 1 \qquad(1)$$

$$y^2 = 4x(1)$$

$$y^2 = 4x \left(\frac{2x - (t+1)y}{-2t} \right)$$

$$-2 + y^2 = 8x^2 - 4(t+1)xy$$

$$8x^2 + 2 + y^2 - 4(t+1)xy = 0$$

As it subtend 90° at origin

$$8 + 2t = 0$$

$$t = -4$$

(III) As all three given lines are parallel hence no circle will touch all the lines.

(IV)
$$x^2 + y^2 - 7x + 9y + 10 = 0$$

$$\left(x - \frac{7}{2}\right)^2 + \left(y + \frac{9}{2}\right)^2 = \left(\frac{7}{2}\right)^2 + \left(\frac{9}{2}\right)^2 - 10$$
$$= \frac{90}{4} = \frac{45}{2}$$

$$x^2 + y^2 = \frac{45}{2}$$

PART-3: MATHEMATICS SECTION-II

1. Ans (4.00)

$$\begin{split} &l = \underset{x \to \infty}{\text{Lim}} \; x \; ln \left(\frac{e(1+(1/x))}{(1+(1/x))^x} \right) \; (\infty \times 0 \; \text{form}) \\ &= \underset{x \to \infty}{\text{Lim}} \; \left(1 + ln \left(1 + \frac{1}{x} \right) - x \, ln \left(1 + \frac{1}{x} \right) \right) \\ &\text{put} \; x = \frac{1}{t}; \; \text{as} \; x \to \infty, \; t \to 0 \\ &\text{Hence} \; l = \underset{t \to 0}{\text{Lim}} \; \frac{1}{t} \left(1 + ln(1+t) - \frac{ln(1+t)}{t} \right) \\ &= \underset{t \to 0}{\text{Lim}} \left[ln \left(1 + t \right)^{1/t} + \frac{t - ln(1+t)}{t^2} \right] \\ &= 1 + \underset{y \to 0}{\text{Lim}} \left(\frac{e^y - 1 - y}{y^2} \right) \; \text{where} \; ln(1+t) = y; \; 1 + t \\ &= e^y, \; \text{hence} \; t = e^y - 1 \end{split}$$

2. Ans (2688.00)

$$8 \leftarrow \begin{array}{ccc} 1 & & 1 \\ 2 & \text{or} & 3 \\ 4 & & \end{array}$$

 $=1+\frac{1}{2}=\frac{3}{2}=\frac{m}{n}$

So, total number of ways to distribute chocolates among his grand children

$$= \left(\frac{8!}{1!2!5!} + \frac{8!}{1!3!4!}\right)3!$$
$$= 2688$$

3. Ans (17.00)

$$P(G G \underline{G} \underline{G})$$

$$\downarrow \qquad \downarrow$$

$$= \frac{4}{8} \times \frac{3}{7} = \frac{3}{14}$$

4. Ans (2.00)

If
$$|z| = |z - 2|$$

 $z.\overline{z} = z\overline{z} - 2z - 2\overline{z} + 4$
 $z.\overline{z} = 2$

$$\therefore |z + \overline{z}| = 2$$
If $|z| = |z + 2|$
 $z.\overline{z} = z\overline{z} + 2z + 2\overline{z} + 4$
 $z + \overline{z} = -2$

$$\therefore |z + \overline{z}| = 2$$

5. Ans (5.00)

$$y = 2 + (1 - x) - \sqrt{x^2 - 2x + 1}, \ x < 1$$
$$= 2 + (1 - x) - (1 - x)$$

$$y = 2$$

A,
$$y = 2$$
 $x^2 + 4 = 13$

$$x^2 = 9$$

$$x = 3, -3, x < 1$$

$$x_1 = -3$$

$$A(-3, 2, 0)$$

$$x_2^2 + y_2^2 < 13$$

$$x_2^2 < 9$$

$$-3 < x_2 < 3, \quad x_2 < 1$$

$$Max(x_2) = 0$$

Equation of line

$$\frac{x+3}{3} = \frac{y-2}{4} = \frac{z-3}{5}$$

$$P(-3,2,0)$$

$$3(3\lambda) + 4(4\lambda) + 5(5\lambda + 3) = 0$$

$$50\lambda = -15$$

$$\lambda = \frac{-3}{10}$$

$$PQ = \sqrt{\left(\frac{9}{10}\right)^2 + \left(\frac{12}{10}\right)^2 + \left(\frac{15}{10}\right)^2}$$

$$= \frac{1}{10}\sqrt{81 + 144 + 225}$$

$$= \frac{\sqrt{450}}{10} = \frac{3 \times 5\sqrt{2}}{10} = \frac{3}{\sqrt{2}}$$

$$A = 3, b = 2$$

$$a + b = 5$$

HS-10/12

6. Ans (47.50)

$$I(a, b) = \int \frac{1}{2} x^{b-1} \frac{2x}{(1+x^2)^a} dx$$

$$=\frac{1}{2}x^{b-1}\,\frac{1}{1-a}\times\frac{1}{\left(1+x^2\right)^{a-1}}-\int\frac{b-1}{2}x^{b-2}\times\frac{1}{1-a}\frac{1}{\left(1+x^2\right)^{a-1}}dx$$

$$=\frac{1}{2(1-a)}\;\frac{x^{b-1}}{\left(1+x^2\right)^{a-1}}\;-\;\frac{b-1}{2(1-a)}\;\int\frac{x^{b-2}(1+x^2)}{\left(1+x^2\right)^a}\,dx$$

$$=\frac{1}{2(1-a)}\frac{x^{b-1}}{(1+x^2)^{a-1}}-\frac{b-1}{2(1-a)}\int\frac{x^{b-2}}{(1+x^2)^a}dx-\frac{(b-1)I(a,b)}{2(1-a)}$$

$$I(a, \ b) \ \left(\frac{2-2a+b-1}{2(1-a)}\right) \ = \ \frac{x^{b-1}}{2(1-a)\left(1+x^2\right)^{a-1}} \ - \ \frac{b-1}{2(1-a)}I\left(a, \ b-2\right)$$

$$I(a, b) (1-2a+b) = \frac{x^{b-1}}{(1+x^2)^{a-1}} - (b-1) I(a, b-2)$$

$$I(a,b) = \frac{1}{b+1-2a} \cdot \frac{x^{b-1}}{(1+x^2)^{a-1}} - \frac{b-1}{b+1-2a} I(a,b-2)$$

$$A = \frac{1}{b+1-2a}, B = \frac{1-b}{b+1-2a}$$

$$b = 97$$
, $a = 50$

$$A = \frac{-1}{2}, B = 48$$

$$A + B = 47.5$$

7. Ans (2.00)

Let the equation of curve is Y = F(x)

Equation of tangent at point P(x, y) is

$$Y - y = F'(x)$$
 for point A

$$X = 0$$

$$\Rightarrow Y = y - x F'(x)$$

Equation of Normal at P(x, y)

$$Y - y = -\frac{1}{F'(x)}(x - x)$$

For B,
$$Y = 0$$
 $x = x + yF'(x)$

$$B(x + tF'(x), 0)$$

Circumcenter of ΔPAB is Midpoint of AB

$$x + yF'(x) = y - xF'(x)$$

$$F'(x)(x+y) = y-x$$

$$F'(x) = \frac{y-x}{y+x}$$

Let
$$y = tx$$

$$t + x \frac{dt}{dx} = \frac{t - 1}{t + 1}$$

$$x \frac{dt}{dx} = \frac{t - 1 - t - t^{2}}{t + 1}$$

$$\frac{(t + 1) dt}{t^{2} + 1} = \frac{-dx}{x}$$

$$\left(\frac{1}{2} \frac{2t}{t^{2} + 1} + \frac{1}{t^{2} + 1}\right) dt = -\frac{dx}{x}$$

$$\frac{1}{2} \ln(t^{2} + 1) + \tan^{-1}t = -\ln x + C$$

$$\frac{1}{2} \ln\left(\frac{x^{2} + y^{2}}{x^{2}}\right) + \tan^{-1}\frac{y}{x} = -\ln x + C$$

$$\frac{1}{2} \ln(x^{2} + y^{2}) + \tan^{-1}\frac{y}{x} = C$$

$$f(1) = 0 \implies \frac{1}{2} \ln(1) + \tan^{-1}(0) = C \implies C = 0$$

$$\frac{1}{2} \ln(x^{2} + y^{2}) = -\tan^{-1}\left(\frac{y}{x}\right)$$

8. Ans (2.00)

$$f(k) = \lim_{z \to \infty} z^k \int_0^{\frac{1}{z}} t^{t+k-1} dt$$

Put
$$z = \frac{1}{x}$$

$$= \lim_{x \to 0} \frac{\int\limits_0^x t^{t+k-1} \, dt}{x^k}$$

$$= \lim_{x \to 0} \frac{x^x \cdot x^{k-1}}{K x^{k-1}}$$

$$= \frac{1}{K} \lim_{x \to 0} x^x$$

$$= \frac{1}{K} \lim_{x \to 0} e^{x \ln x}$$

$$= \frac{1}{K} \lim_{x \to 0} e^{\frac{\ln x}{1/x}}$$

$$f(k) = \frac{1}{K}$$

$$f(4) = \frac{1}{4}$$

$$xy = 4$$
, $x^2 + y^2 = 8$

$$x^2 + \frac{16}{x^2} = 8$$

$$x^4 - 8x^2 + 16 = 0$$

$$x^2 = 4 \Rightarrow x = \pm 2$$

$$y = \pm 2$$

"Two common points" (2, 2) and (-2, -2)

HS-12/12