Convolutional Neural Network

Case Study

LeNet-5 (LeCun et al., 1998)

- A father of CNN
- Convolution filters were 5x5, applied at stride 1
- Subsampling(Pooling) layers were 2x2 applied at stride 2
- [Conv Pool Conv Pool FC FC FC]

Large Scale Image Classification

- ImageNet
 - Over 15 million labeled high-resolution images
 - Roughly 22,000 categories
 - Collected from the web
 - Labeled by human labelers using Amazon's Mechanical Turk crowdsourcing tool
- ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)
 - Uses a subset of ImageNet
 - ➤ 1,000 categories
 - ➤ 1.2 million training images
 - ➤ 50,000 validation images
 - ➤ 150,000 test images
 - Report two error rates:
 - ➤ Top-1 and top-5

ImageNet Classification Results

Human error (5.1%) surpassed in 2015

- AlexNet (2012): First CNN (15.4%)
 - 8 layers
 - · 61 million parameters
- ZFNet (2013): 15.4% to 11.2%
 - 8 layers
 - · More filters. Denser stride.
- VGGNet (2014): 11.2% to 7.3%
 - Beautifully uniform:
 3x3 conv, stride 1, pad 1, 2x2 max pool
 - 16 layers
 - 138 million parameters
- GoogLeNet (2014): 11.2% to 6.7%
 - Inception modules
 - 22 layers
 - 5 million parameters (throw away fully connected layers)
- ResNet (2015): 6.7% to 3.57%
 - More layers = better performance
 - 152 layers
- CUImage (2016): 3.57% to 2.99%
 - Ensemble of 6 models
- SENet (2017): 2.99% to 2.251%
 - Squeeze and excitation block: network is allowed to adaptively adjust the weighting of each feature map in the convolutional block.

AlexNet (Krizhevsky, 2012)

- First use of ReLU
- Used norm layers(not common anymore)
- Data Augmentation
- Dropout 0.5
- Batch size 128
- SGD Momentum o.9
- Learning rate 0.01, reduced by 10
- L2 weight decay 5e-4
- 7 CNN ensemble: $18.2\% \rightarrow 15.4\%$

AlexNet (Krizhevsky, 2012)

- Input: 227 x 227 x 3 images
- First layer(CONV1): 96 11x1 filters applied at stride 4
- \rightarrow Output size : 55 x 55 x 96
- \rightarrow # of parameters : (11 x 11 x 3) x 96 = 35K

AlexNet (Krizhevsky, 2012)

- [Conv1 Pool1 Norm1 Conv2 Pool2 Norm2 Conv3 Conv4 Conv5 Pool 5 FC6 FC7 FC8]
- 7 hidden layers, 650,000 neurons, 60M parameters
- Training for 1 week, using 2-GPUs
 - Trained on GTX 580 GPU with only 3GB of memory. Network spread across 2 GPUs, half the neurons(feature maps) on each GPU

AlexNet Result

ZFNet (Zeiler and Fergus, 2013)

- Similar to AlexNet except:
 - Conv1 change from (11x11 stride 4) to (7x7 stride 2)
 - Conv3, 4, 5: instead of 384, 384, 256 filters use 512, 1024, 512
 - Top 5 error : 16.4% → 11.7%

VGGNet (Simonyan and Zisserman, 2014)

- ILSVRC'14 2nd in classification, 1st in localization
- Small filters, Deeper networks
 - 8 layers(AlexNet) → 16~19 layers(VGG16, VGG19)
 - Only use 3x3 conv stride 1, pad 1 & 2x2 maxpool stride 2
 - 11.7% top 5 error(ZFNet) \rightarrow 7.3% top 5 error
- Why use only 3x3 filters?
 - Stack of 3x3 conv layers has same effective receptive field as 5x5 or 7x7 conv layer
 - Deeper means more non-linearities
 - Fewer parameters:
 - 2 x (3 x 3 x C) vs (5 x 5 x C)
 - → regularization effect

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128

pool/2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

9001/2 3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool/2 fc 4096

fc 4096

fc 4096

VGGNet

ConvNet Configuration									
A	A-LRN	В	C	D	Е				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
input (224 × 224 RGB image)									
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
	maxpool								
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
		max	pool						
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
	maxpool								
FC-4096									
FC-4096									
FC-1000									
soft-max									

Memory Usages and Parameters of VGGNet

```
(not counting biases)
INPUT: [224x224x3]
                     memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2.359.296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
TOTAL memory: 24M * 4 bytes ~= 96MB / image (for a forward pass)
TOTAL params: 138M parameters
```

3x3 conv, 64 3x3 conv, 64 pool/2 3x3 conv, 128 3x3 conv, 128 pool/2 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 pool/2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 pool/2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 pool/2 fc 4096 fc 4096 fc 4096

GoogLeNet (Szegedy, 2014)

- Deeper networks, with computational efficiency
 - 22 layers
 - Efficient "Inception" module
 - Global average pooling
 - Only 5 million parameters
 - ILSVRC'14 classification winner
 - ➤ 6.7% top 5 error

Inception module

Inception Module

- Naïve Inception module
 - Apply parallel filter operations on the input from previous layer
 - Multiple receptive field sizes for convolution
 - ➤ Pooling operation(3x3)
 - Concatenate all filter outputs together channel-wise
 - What is the problem with this?
 - ➤ Very expensive compute
 - ➤ Depth after concatenation can grow and grow at every layer!
 - → Use Bottleneck layers

1x1 convolutions

Inception Module

Naive Inception module

1x1 conv "bottleneck" layers

Inception module with dimension reduction

Stem Network:

Conv-Pool-2x Conv-Pool

Modules

Auxiliary classification outputs to inject additional gradient at lower layers

(AvgPool-1x1Conv-FC-FC-Softmax)

Slide Credit: Stanford CS231n

type	patch size/	output	depth	#1×1	#3×3	#3×3	#5×5	#5×5	pool	params	ops
	stride	size			reduce		reduce		proj		
convolution	7×7/2	$112 \times 112 \times 64$	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1 \times 1 \times 1024$	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

Table 1: GoogLeNet incarnation of the Inception architecture

Inception-v3

Factorization of filters

ResNet (He, 2015)

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

ResNet, 152 layers (ILSVRC 2015)

• Swept 1st place in all ILSVRC and COCO 2015 competitions

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd
- ILSVRC'15 classification winner(3.6% top 5 error) better than "human performance" (Russakovsky 2014)

 What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

- 56-layer model performs worse on both training and test error
 - The deeper model performs worse, but it's not caused by overfitting!

- Hypothesis: the problem is an optimization problem, deeper models are harder to optimize
 - The deeper model should be able to perform at least as well as the shallower model
 - A solution by construction is copying the learned layers from the shallower model and setting additional layers to identity mapping

 Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

ResNet – Experimental Results

CIFAR-10 experiments

- Deep ResNets can be trained without difficulties
- Deeper ResNets have lower training error, and also lower test error

- Full ResNet architecture
 - Stack residual blocks
 - Every residual block has two 3x3 conv layers
 - Periodically double # of filters and downsample spatially using stride 2
 - Additional conv layer at the beginning
 - No FC layers at the end(only FC 100 to output classes)

Bottleneck Architecture

 For deeper networks(ResNet-50+), use "bottleneck" layer to improve efficiency(similar to GoogLeNet)

- Batch Normalization after every Conv layer
- Xavier/2 initialization from He et al.
- SGD + Momentum(0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

Inception-ResNet

Inception + ResNet

"Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning"

Comparing Complexity

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

2016 ILSVRC Classification Result

Team name	Entry description	Classification error	Localization error
Trimps-Soushen	Ensemble 2	0.02991	0.077668
Trimps-Soushen	Ensemble 3	0.02991	0.077087
Trimps-Soushen	Ensemble 4	0.02991	0.077429
ResNeXt	Ensemble C, weighted average, tuned on val. [No bounding box results]	0.03031	0.737308
CU-DeepLink	GrandUnion + Fused-scale EnsembleNet	0.03042	0.098892
CU-DeepLink	GrandUnion + Multi-scale EnsembleNet	0.03046	0.099006
CU-DeepLink	GrandUnion + Basic Ensemble	0.03049	0.098954
ResNeXt	Ensemble B, weighted average, tuned on val. [No bounding box results]	0.03092	0.737484
CU-DeepLink	GrandUnion + Class-reweighted Ensemble	0.03096	0.099369
CU-DeepLink	GrandUnion + Class-reweighted Ensemble with Per-instance Normalization	0.03103	0.099349
ResNeXt	Ensemble C, weighted average. [No bounding box results]	0.03124	0.737526
Trimps-Soushen	Ensemble 1	0.03144	0.079068
ResNeXt	Ensemble A, simple average. [No bounding box results]	0.0315	0.737505
SamExynos	3 model only for classification	0.03171	0.236561
ResNeXt	Ensemble B, weighted average. [No bounding box results]	0.03203	0.737681
KAISTNIA_ETRI	Ensembles A	0.03256	0.102015
KAISTNIA_ETRI	Ensembles C	0.03256	0.102056
KAISTNIA_ETRI	Ensembles B	0.03256	0.100676
DeepIST	EnsembleC	0.03291	1.0
DeepIST	EnsembleD	0.03294	1.0
DGIST-KAIST	Weighted sum #1 (five models)	0.03297	0.489969
DGIST-KAIST	Weighted sum #2 (five models)	0.03324	1.0
NUIST	prefer multi class prediction	0.03351	0.094058
KAISTNIA_ETRI	Ensembles A (further tuned in class-dependent model I)	0.03352	0.100552
KAISTNIA_ETRI	Ensembles B (further tuned in class-dependent models I)	0.03352	0.099286
DGIST-KAIST	Averaging five models	0.03357	1.0
DGIST-KAIST	Averaging six models	0.03357	1.0
DGIST-KAIST	Averaging four models	0.03378	0.490373

2017 ILSVRC Classification Result

http://image-net.org/challenges/LSVRC/2017/results

Team name	Entry description	Classification error	Localization error
WMW	Ensemble C [No bounding box results]	0.02251	0.590987
WMW	Ensemble E [No bounding box results]	0.02258	0.591018
WMW	Ensemble A [No bounding box results]	0.0227	0.591153
WMW	Ensemble D [No bounding box results]	0.0227	0.591039
WMW	Ensemble B [No bounding box results]	0.0227	0.59106
Trimps-Soushen	Result-1	0.02481	0.067698
Trimps-Soushen	Result-2	0.02481	0.06525
Trimps-Soushen	Result-3	0.02481	0.064991
Trimps-Soushen	Result-4	0.02481	0.065261
Trimps-Soushen	Result-5	0.02481	0.065302
NUS- Qihoo_DPNs (CLS-LOC)	[E2] CLS:: Dual Path Networks + Basic Ensemble	0.0274	0.088093
NUS- Qihoo_DPNs (CLS-LOC)	[E1] CLS:: Dual Path Networks + Basic Ensemble	0.02744	0.088269
BDAT	provide_class	0.02962	0.086942
BDAT	provide_box	0.03158	0.081392
MIL_UT	Ensemble of 9 models (classification-only)	0.03205	0.596164
SIIT_KAIST-SKT	ensemble 2	0.03226	0.128924