## Lecture 4: Value-at-Risk

Alex Donov

1 February 2019

• Value-at-Risk is probably the most widely used risk measure in financial institutions.

- It is used by banks, pensions funds, etc.
- It is also used outside finance in situations where it is necessary to quantify how much an individual or institution stands to lose over some given period of time.

- Value-at-Risk is probably the most widely used risk measure in financial institutions.
- It is a measure for assessing the risk (i.e. the amount of potential loss) associated with an investment or a portfolio of investments.
- It is used by banks, pensions funds, etc.
- It is also used outside finance in situations where it is necessary to quantify how much an individual or institution stands to lose over some given period of time.

- Value-at-Risk is the *market risk* measure prescribed by Basel Accord II and III to ensure that a bank has adequate capital to be able to absorb losses.
- Basel III is a set of international banking regulations established by the Basel Committee on Banking Supervision in order to promote stability in the international financial system.
- It builds on Basel I and Basel II, and was developed in response to the deficiencies in financial regulation revealed by the financial crisis of 2007-08

### Value-at-Risk - Introduction

- Suppose a company holds a certain number of financial assets such as stocks, bonds, derivatives, etc. This collection of assets is called a **portfolio**.
- Every day, the value of the portfolio will change, since the price of the individual assets in the portfolio change frequently.
- The company typically wants to know the answer to questions such as "what is the probability of the value of the portfolio dropping by more than \$10 million on a given day?". Knowing this is essential to risk management.

Let the random variable L denote the loss of a portfolio over the period h.

#### Definition 1.1 (Value-at-Risk)

$$\operatorname{VaR}_{\pmb{\alpha}} = \inf \big\{ l \in \mathbb{R} : P(L > l) \leqslant \mathbf{1} - \pmb{\alpha} \big\} = \inf \big\{ l \in \mathbb{R} : F_L(l) \geqslant \pmb{\alpha} \big\}$$

Given some confidence level  $\alpha \in (0,1)$ , the Value-at-Risk of a given portfolio is the threshold such that the probability of losing more than this threshold over a time horizon h is equal to  $1-\alpha$ .

### Value at Risk - Definition

- VaR is hence a measure of **risk exposure**
- For example, if  $\alpha = 0.99$  and the VaR is \$1m, this means that there is a 1% probability of losing more than \$1m in a single day.
- Normally, we will be given the portfolio, and the value  $\alpha$ , then asked to find the VaR i.e. for risk management the company will choose some value of  $\alpha$  (e.g.  $\alpha = 0.99$ ) then try to find what sum of money it has a  $100(1-\alpha)\%$  chance of losing in a single day.
- Typical values for  $\alpha$  are  $\alpha = 0.95$  or  $\alpha = 0.99$ .
- In market risk management the time horizon h is usually 1 or 10 days. In credit risk and operational risk management h is usually 1 year.

### Value at Risk - Estimation

- There are many ways of computing the VaR, which have varying degrees of sophistication. We will consider a very simple method.
- In this course, rather than working with monetary loss, we will instead usually focus on **percentage loss**, since this is typically more informative.
- In the simple method, we assume that the percentage change in the portfolio on each day t is a random variable Y<sub>t</sub>, and that the percentage change on each day is independent of the percentage change on all other days.
- In other words, If  $V_t$  denotes the value of the portfolio on day t, then  $V_t = Y_t \times V_{t-1}$  where  $Y_t$  is a random variable drawn from some distribution  $F_Y(\cdot)$ . By the above assumption, the  $Y_t$  values are independent and identically distributed.

### Value at Risk - Estimation

- The VaR will be estimated based on historical data. Suppose the company has held the portfolio for n + 1 days. They hence have n observations  $\mathbf{y} = (y_1, \dots, y_n)$ .
- For example, suppose that on the first day the portfolio was worth \$100m, then on the second day it was worth \$99m, then on the third day it was worth \$101m, then on the fourth it was worth \$102m.

## Percentage Loss - Empirical Density

• The first 3 values of  $Y_t$  are then:

$$Y_1 = \frac{99}{100} = 0.99$$
 (a 1% loss)  
 $Y_2 = \frac{101}{99} = 1.0202$  (a 2.02% gain)  
 $Y_3 = \frac{102}{101} = 1.0099$  (a 0.99% gain)

Values smaller than 1 denote a loss.

# Percentage Loss - Empirical Density



## Value at Risk - Computation

- Suppose we know the true distribution  $F_Y(\cdot)$  of  $Y_t$ . Then we can compute the VaR as follows:
- Find the  $100(1-\alpha)^{th}$  quantile of the **true** density of  $Y_t$ . Denote this by q.
- For example if  $\alpha = 0.99$  then q is equal to the  $1^{st}$  quantile<sup>1</sup>, i.e. we find q to satisfy  $p(Y_t < q) = 0.01$ . In other words, q is the point at which the total area under the curve below that point is equal to 0.01
- Then q is the VaR.



 $<sup>^{1}</sup>$ To be precise:  $1^{st}$  100-quantile or  $1^{st}$  percentile

## Percentage Loss - Computation

For example, if the following is the true distribution of  $Y_t$  and  $\alpha = 0.99$ .



Then q = 0.97. This means that there is a 1% probability that the value of the portfolio will drop by 3% or more on any given day (since  $Y_t = 0.97$  denotes a 3% loss).

### Value at Risk - Calculation

- In the simplest possible model we might assume that the distribution of each  $Y_t$  is Gaussian,  $Y_t \sim N(\mu, \sigma^2)$  Then, we would estimate  $\mu$  and  $\sigma$ , and use this to compute q.
- We use the historical data  $\mathbf{y} = (y_1, \dots, y_n)$  to estimate  $\mu$  and  $\sigma^2$ .
- First suppose we are frequentists. The maximum likelihood estimates are the usual  $\hat{\mu} = 1/n \sum_{t=1}^{n} Y_t$ , and  $\hat{\sigma}^2 = 1/n \sum_{t=1}^{n} (Y_t \hat{\mu})^2$ .
- For a given  $\alpha$ , a simple estimate of q would be the value satisfying:

$$\int_{-\infty}^{\mathbf{q}} p(y_t|\hat{\mu}, \hat{\sigma}^2) dy_t = (1 - \alpha)$$

Lecture 4 Bayesian Inference 13 / 46

## Value at Risk - Simple Frequentist Example

• For example, suppose the empirical mean of the historical  $Y_t$  was 1.01, with standard deviation 0.01, i.e.  $Y_i \sim N(1.01, 0.01)$ .

- This means that on average the portfolio gains 1% in value each day, but the returns have a standard deviation of 1%.
- If  $\alpha = 0.99$  then q can be easily computed using  $\mathbb{Q}$  software: qnorm(0.01, 1.01, 0.01) = 0.9867
- So there is a 1% chance of the portfolio dropping by 1.33% or more in a given day (Note: 1 0.9867 = 0.0133).

## Value at Risk - Bayesian Approach

Several problems with this simple frequentist approach:

- It does not take uncertainty about  $\mu$  and  $\sigma^2$  into account we used point estimates (MLE). But these estimates will not be accurate we could potentially underestimate risk because we are not taking this uncertainty into account.
- It does not incorporate prior information about the future portfolio returns using historical data is important, but we may also have beliefs about the future which aren't reflected in previous history.
- 3 The usual issues about the difficulty of communicating frequentist statements to non-statisticians, and how they get misinterpreted.

We will hence explore a Bayesian approach to VaR analysis instead. In this case we need to perform Bayesian inference for the parameters  $\mu$ ,  $\sigma^2$  of the Gaussian distribution.

## Value at Risk - Bayesian Approach

- Suppose we are Bayesians. We start with a prior distribution  $p(\mu, \sigma^2)$  on the unknown parameters of the Gaussian distribution governing the percentage daily change  $Y_t$ .
- This prior is chosen to reflect our beliefs about the future portfolio returns. Remember:  $\mu_t$  is the average return on a given day  $E[Y_t]$ , and  $\sigma^2$  is the variance  $Var[Y_t]$ .
- We then update this to get the posterior  $p(\mu, \sigma^2 | y_1, \dots, y_n)$  given the historical data.
- This posterior then captures all our knowledge about the distribution of  $Y_t$  based on both our prior knowledge, and the historical data. We can then obtain q based on this.

### Value at Risk - Calculation

- So, the first question is: how do we go about computing the posterior  $p(\mu, \sigma^2|\mathbf{y})$ ?
- We saw how to do this in Lecture 1 when the likelihood  $p(y|\theta)$  was Binomial, and the prior  $p(\theta)$  was a Beta distribution.
- We now need to choose a suitable prior  $p(\mu, \sigma^2)$  and update this given the Gaussian likelihood  $p(y|\mu, \sigma^2)$ .

## Bayesian Inference for the Gaussian Distribution

- We now discuss how to perform Bayesian inference for parameters of the Gaussian distribution which describes the daily percentage changes in the portfolio value.
- Let's start with the simplest case. Suppose that the variance  $\sigma^2$  is **known**. In this case we only need to estimate  $\mu$  (which, remember, denotes the average daily percentage change in value).
- It can be shown that the conjugate prior in this case is also Gaussian:  $p(\mu) = N(\mu_0, \sigma_0^2)$  where  $\mu_0$  and  $\sigma_0^2$  control the shape of the prior, and hence reflect prior beliefs about  $\mu$ .
- In other words, we represent our prior beliefs about the average change in the portfolio value  $\mu$  by a Gaussian distribution, with parameters  $\mu_0$  and  $\sigma_0^2$ .

Lecture 4 Bayesian Inference 18 / 46

## Bayesian Inference for the Gaussian Distribution

- So in summary, we have that  $Y_1, \ldots, Y_n \sim N(\mu, \sigma^2)$ . We know  $\sigma^2$  (for now) and need to estimate  $\mu$ .
- The prior on  $\mu$  is  $p(\mu) = N(\mu_0, \sigma_0^2)$ .
- It is **vital** to understand that  $\sigma^2$  and  $\sigma_0^2$  here denote two very different quantities:
  - $\sigma^2$  is the variance of  $Y_t$  (i.e. the variance of the percentage returns).
  - $\sigma_0^2$  is a parameter of the prior distribution for  $\mu$  and represents the uncertainty in our prior beliefs about  $\mu$ .
- Similarly,  $\mu$  and  $\mu_0$  are different quantities:
  - $\mu_0$  is the mean of the prior distribution for  $\mu$  and, hence represents our prior beliefs about  $\mu$ .

Lecture 4 Bayesian Inference 19 / 46

Let's consider Bayesian estimation of the mean of a univariate Gaussian distribution whose variance is assumed to be known.

### 1 Likelihood

$$p(\mathbf{y}|\mu,\sigma^{2}) = \prod_{i=1}^{n} p(y_{i}|\mu,\sigma^{2})$$

$$= \frac{1}{(2\pi\sigma^{2})^{\frac{n}{2}}} \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i} - \mu)^{2}\right)$$
(1)

$$p(\mathbf{y}|\mu,\sigma^2) = \frac{1}{(2\pi)^{\frac{n}{2}}} \frac{1}{(\sigma^2)^{\frac{n}{2}}} \exp\left(-\frac{1}{2\sigma^2} \{ns^2 + n(\bar{y} - \mu)^2\}\right)$$

$$\approx \frac{1}{(\sigma^2)^{\frac{n}{2}}} \exp\left(-\frac{ns^2}{2\sigma^2}\right) \exp\left(-\frac{n}{2\sigma^2}(\bar{y} - \mu)^2\right)$$
(2)

where 
$$s^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2$$

When  $\sigma^2$  is known, it can be treated as constant, and the above expression can be written as:

$$p(\mathbf{y}|\mu) \propto \exp\left(-\frac{n}{2\sigma^2}(\bar{y}-\mu)^2\right)$$
  
 $\propto \mathcal{N}(\bar{y}|\mu, \frac{\sigma^2}{n})$ 

#### 2 Prior

Since the likelihood has the form:

$$p(\mathbf{y}|\mu) \propto \exp\left(-\frac{n}{2\sigma^2}(\bar{y}-\mu)^2\right)$$

The *conjugate prior* will have the following form:

$$p(\mu) \propto \exp\left(-\frac{1}{2\sigma_0^2}(\mu - \mu_0)^2\right)$$

That is,  $\mu \sim \mathcal{N}(\mu_0, \sigma_0^2)$ :

$$p(\mu) = \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp\left(-\frac{1}{2\sigma_0^2}(\mu - \mu_0)^2\right)$$

#### 3 Posterior Distribution

$$p(\mu|\mathbf{y},\sigma^2) \propto p(\mu) \times p(\mathbf{y}|\mu,\sigma^2)$$

$$\propto \exp\left(-\frac{1}{2\sigma_0^2}(\mu-\mu_0)^2\right) \times \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n(y_i-\mu)^2\right)$$

$$= \exp\left(-\frac{1}{2\sigma_0^2}(\mu - \mu_0)^2 - \frac{1}{2\sigma^2}\sum_{i=1}^n(y_i - \mu)^2\right)$$

◆ロ > ◆ 日 > ◆ 豆 > ◆ 豆 > ・ 豆 ・ り へ ○

$$= \exp\left(-\frac{1}{2\sigma_0^2}(\mu^2 - 2\mu\mu_0 + \mu_0^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i^2 - 2y_i\mu + \mu^2)\right)$$

$$= \exp\left(-\frac{\mu^2}{2\sigma_0^2} + \frac{\mu\mu_0}{\sigma_0^2} - \frac{\mu_0^2}{2\sigma_0^2} - \frac{\sum_{i=1}^n y_i^2}{2\sigma^2} + \frac{\mu\sum_{i=1}^n y_i}{\sigma^2} - \frac{n\mu^2}{2\sigma^2}\right)$$

$$= \exp\left(-\frac{\mu^2}{2} \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right) + \mu\left(\frac{\mu_0}{\sigma_0^2} + \frac{\sum_{i=1}^n y_i}{\sigma^2}\right) - \left(\frac{\mu_0^2}{2\sigma_0^2} + \frac{\sum_{i=1}^n y_i^2}{2\sigma^2}\right)\right)$$

Let's define new parameters  $\sigma_n^2$  and  $\mu_n$ :

$$\sigma_n^2 = \frac{1}{\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}} \tag{3}$$

$$\mu_n = \sigma_n^2 \left( \frac{\mu_0}{\sigma_0^2} + \frac{n\bar{y}}{\sigma^2} \right) \tag{4}$$

Then:

$$p(\mu|\mathbf{y}, \sigma^2) \propto \exp\left(-\frac{1}{2\sigma_n^2}(\mu^2 - 2\mu\mu_n + \mu_n^2)\right)$$
$$= \exp\left(-\frac{1}{2\sigma_n^2}(\mu - \mu_n)^2\right) \tag{5}$$

## Example

- Suppose a company has held a stock portfolio for 10 days.
- The observed returns on these days are:

```
\mathbf{y} = (0.997, \, 1.034, \, 1.012, \, 1.042, \, 1.017, \, 0.994, \, 1.040, \, 1.037, \, 1.022, \, 0.994)
```

• The company is interested in learning about the distribution of the returns, for the purpose of computing the VaR and controlling risk.

## Example

- It is assumed that the percentage returns follow a Gaussian distribution  $\mathcal{N}(\mu, \sigma^2)$ .
- Based on previous experience, the company knows that the true standard deviation of the returns is equal to  $\sigma = 0.02$  (so  $\sigma^2 = 0.0004$ ).
- The company does not know the true mean  $\mu$ , so it has to be estimated.
- Based on its knowledge of other stock portfolios, it decides that its prior beliefs are best represented by a prior  $p(\mu) \sim N(1,0.01^2)$  i.e. it believes the average percentage daily change is 1 (no change), and the standard deviation 0.01 measures the uncertainty in this prior belief.

## Example (continued)

• Substituting information provided in the example into the equations (3) and (4) gives  $\mu_n = \mu_{10} = 1.0135$  and  $\sigma_n^2 = \sigma_{10}^2 = 0.0053^2$ , so the posterior is:

$$p(\mu|\mathbf{y}, \sigma^2) = \mathcal{N}(1.0135, 0.0053^2)$$

• The empirical mean of company's gross returns:

$$\bar{y} = \frac{1}{10} \sum_{t=1}^{10} = 1.0189$$

## Example (continued)

The company's posterior beliefs about  $\mu$ :



Note that the posterior mean has shifted towards the empirical mean of the data ( $\bar{y} = 1.0189$ ).

- In practice we may not have strong prior beliefs about  $\mu$ .
- It could also be that we do not want our analysis to be influenced by our prior beliefs (e.g. Beta(1,1)).
- In this case we can choose a prior that has an extremely large uncertainty and doesn't impose much prior information on the likelihood.
- In the current case we can represent complete uncertainty about  $\mu$  by making the prior variance parameter  $\sigma_0^2$  very large.
- This parameter reflects how uncertain we are about  $\mu$  before observing the data.

Consider what happens when the prior on  $\mu$  is  $N(1, \sigma_0^2)$ , and the variance  $\sigma_0^2$  increases.



The prior is getting more and more disperse, corresponding to less and less information.

- As  $\sigma^2$  becomes larger and larger, the prior  $p(\mu) = N(\mu_0, \sigma_0^2)$  becomes less and less informative.
- Ideally to represent complete ignorance we would take  $\sigma_0^2 = \infty$  (or more formally, take the limit as  $\sigma_0^2$  tends to infinity).
- This leads to something called an improper prior the prior is no longer a valid probability distribution.
- Does this matter? In this case no. The posterior works out to be well-defined.

Recall we had:

$$\sigma_n^2 = \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)^{-1}$$

$$\mu_n = \frac{\left(\frac{\mu_0}{\sigma_0^2} + \frac{\sum_{t=1}^n Y_t}{\sigma^2}\right)}{\left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)}$$

As we let  $\sigma_0^2 \to \infty$ , the choice of  $\mu_0$  no longer matters, and the above expressions can be written as follows:

$$\sigma_n^2 = \left(\frac{n}{\sigma^2}\right)^{-1} = \frac{\sigma^2}{n}$$

$$\mu_n = \frac{\left(\frac{\sum_{t=1}^n Y_i}{\sigma^2}\right)}{\left(\frac{n}{\sigma^2}\right)} = \frac{\sum_{t=1}^n Y_i}{n}$$

• So if we have no strong prior beliefs about  $\mu$  and use an uninformative prior, the posterior is simply:

$$p(\mu|\mathbf{y},\sigma^2) = N\left(\frac{\sum_{t=1}^n Y_i}{n}, \frac{\sigma^2}{n}\right)$$

- This makes intuitive sense without any prior knowledge, our posterior mean is simply the empirical mean, and the posterior variance is the empirical variance.
- So we can still do Bayesian inference even when we have no strong prior beliefs about the parameter  $\mu$  just take prior that has a very high variance.

## Back to the Example

• Suppose the company in the previous example had no strong beliefs about  $\mu$  and they used this non-informative prior. Plugging in the numbers, their posterior would now be:

$$p(\mu|\mathbf{y},\sigma^2) = N(1.0189,0.0063^2)$$

(recall that 1.0189 was the empirical mean)

- Previously, the posterior was  $N(1.0135, 0.0053^2)$ . This has been pulled away from the empirical mean, due to the prior belief that  $\mu$  was around 1.
- Note that the posterior variance when using the non-informative prior is larger than when using the informative prior.

- Let  $\tilde{Y}$  denote the simple gross return on an arbitrary day, d, in the future, which has the same distribution as the gross returns in the historical sample, i.e  $\tilde{Y} \sim N(\mu, \sigma^2)$ .
- We don't know  $\mu$ , but we have its posterior distribution  $p(\mu|y_1,\ldots,y_n)$ .
- We now want to ask questions like "what is the probability of the portfolio losing more than 3% of its value on this day?".
- In the simple frequent ist example, we did not incorporate any uncertainty about  $\mu$  when we computed VaR - we simply used a point estimate.

Lecture 4 Bayesian Inference

- To answer "what is the probability of the portfolio losing more than 3% of its value on an arbitrary day?", we need to compute  $p(\tilde{Y} < 0.97)$ .
- Similarly, to answer "what is the probability of the portfolio losing more than 5% of its value on an arbitrary day?", we need  $p(\tilde{Y} < 0.95)$ .

## Posterior predictive distribution

- Let Y be a random variable with a known distribution  $p(y|\theta)$ , where  $\theta$  is unknown.
- Before the data y is observed, the marginal distribution of the unknown but observable y is as follows:

$$p(y) = \int p(y,\theta)d\theta = \int p(\theta)p(y|\theta)d\theta$$

• Once the data  $\mathbf{y}$  have been observed, we can predict an unknown  $\tilde{y}$  from the same process:

$$p(\tilde{y}|\mathbf{y}) = \int p(\tilde{y}, \theta|\mathbf{y}) d\theta$$
$$= \int p(\tilde{y}|\theta, \mathbf{y}) p(\theta|\mathbf{y}) d\theta$$
$$= \int p(\tilde{y}|\theta) p(\theta|\mathbf{y}) d\theta$$

- We are essentially trying to predict  $p(\tilde{Y} < z)$  based on the historical data  $\mathbf{y} = (y_1, \dots, y_n)$ .
- We do this by using the historical data to find the posterior distribution for the unknown  $\mu$ , and then predict based on this.
- In other words, we are interested in the distribution of  $\tilde{Y}$  based on incorporating information from the historical data. We write this distribution as  $p(\tilde{y}|\mathbf{y})$ .

• So, we have:

$$p(\tilde{y}|\mu) = N(\mu, \sigma^2) \text{ (where } \sigma^2 \text{ is known)}$$
  
$$p(\mu|\mathbf{y}, \sigma^2) = N(\mu_n, \sigma_n^2) \text{ (posterior based on historic data } \mathbf{y})$$

• By the theorem of total probability we have:

$$p(\tilde{y}|\mathbf{y}) = \int p(\tilde{y}|\mu)p(\mu|\mathbf{y})d\mu$$

• This is the fundamental equation of Bayesian prediction.

Lecture 4

• It can be shown that in our conjugate Gaussian case:

$$p(\tilde{y}|\mathbf{y}) = N(\mu_n, \sigma_n^2 + \sigma^2)$$

• In order to find:

$$p(\tilde{Y} < z | \mathbf{y})$$

we need:

$$\int_{-\infty}^{z} p(\tilde{y}|\mathbf{y}) d\tilde{y}$$

• which is just a Gaussian integral which can be easily computed.

## Example

• To return to our previous example, recall that the company (using the informative prior) had a posterior distribution

$$p(\mu|\mathbf{y}) = N(1.0135, 0.0053^2)$$

so  $\mu_n = 1.0135$  and  $\sigma_n^2 = 0.0053^2$ . The variance  $\sigma^2$  was known to be 0.0004.

• Hence have:

$$\tilde{y}|\mathbf{y} \sim N(1.0135, 0.0053^2 + 0.0004) = N(1.0135, 0.000428)$$

## Example

• If the company wants to know the probability of the portfolio dropping in value by more than 3% on a given day, we compute the following integral:

$$\int_{-\infty}^{0.97} \frac{1}{\sqrt{2 \times 0.000428\pi}} e^{\left(\frac{(\tilde{y}-1.0135)^2}{2 \times 0.000428}\right)} d\tilde{y} = 0.01774811$$

• Thus, there is a 1.8% probability of the portfolio dropping in value by more than 3% in one day.

#### Note on Bayesian Inference With Unknown Variance

- In the previous analysis we assumed that the gross returns  $Y_t$  had a  $N(\mu, \sigma^2)$  distribution where  $\sigma^2$  was known.
- In practice  $\sigma^2$  will usually be unknown. We must hence estimate both  $\mu$  and  $\sigma^2$ .
- For a Bayesian analysis, we need a prior  $p(\mu, \sigma^2)$  on both parameters. Ideally, to make it easier to specify the prior, we perhaps want to treat the parameters as being independent and put a separate prior on each:  $p(\mu, \sigma^2) = p(\mu)p(\sigma^2)$ .
- Unfortunately, this leads to a prior distribution that is not conjugate! We do not yet have the tools to work with non-conjugate priors, so we will leave this for now and revisit it later in the course.

#### Next week:

- Estimating the probability of extreme events occurring.
- We will look at techniques from the area of extreme value statistics.