G. GCD Counting

time limit per test: 4.5 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

You are given a tree consisting of n vertices. A number is written on each vertex; the number on vertex i is equal to a_i .

Let's denote the function g(x, y) as the greatest common divisor of the numbers written on the vertices belonging to the simple path from vertex x to vertex y (including these two vertices).

For every integer from 1 to $2 \cdot 10^5$ you have to count the number of pairs (x, y) $(1 \le x \le y \le n)$ such that g(x, y) is equal to this number.

Input

The first line contains one integer n — the number of vertices $(1 \le n \le 2 \cdot 10^5)$.

The second line contains n integers a_1 , a_2 , ..., a_n ($1 \le a_i \le 2 \cdot 10^5$) — the numbers written on vertices.

Then n - 1 lines follow, each containing two integers x and y $(1 \le x, y \le n, x \ne y)$ denoting an edge connecting vertex x with vertex y. It is guaranteed that these edges form a tree.

Output

For every integer i from 1 to $2 \cdot 10^5$ do the following: if there is no pair (x, y) such that $x \le y$ and g(x, y) = i, don't output anything. Otherwise output two integers: i and the number of aforementioned pairs. You have to consider the values of i in ascending order.

See the examples for better understanding.

Examples

```
input

3
1 2 3
1 2
2 3

Output

1 4
2 1
3 1
```

```
input

6
1 2 4 8 16 32
1 6
6 3
3 4
4 2
6 5

output
```

16 2 32 1	
input	
4 9 16 144 6 1 3 2 3 4 3	
output	
1 1 2 1 3 1 6 2 9 2 16 2 144 1	