Пример функции двух переменных:

$$y = \frac{10\sin(\sqrt{x^2 + y^2})\cos^2(\sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}}$$

График функции

Одна из точек локального максимума:

Эквипотенциальные линии:

Начальный вектор:

Правила арифметики векторов в языке R полностью соответствуют алгебраическим правилам операций с векторами, т. е., если задано:

$$ex <- c(1,0)$$

h <- 5

то результат сложения \mathbf{a} + $\mathbf{h}^*\mathbf{e}\mathbf{x}$ графически будет соответствовать рисунку сложения векторов, например, по правилу треугольника:

Функцию f(x,y) = x + y можно представить как функцию векторной переменной:

$$F(\overline{X}) = \overline{X}[1] + \overline{X}[2]$$

и функцию двух переменных $y=\frac{10\sin(\sqrt{x^2+y^2})\cos^2(\sqrt{x^2+y^2})}{\sqrt{x^2+y^2}}$ на языке R можно реализовать следующим образом:

```
F-function(X) {
    r = sqrt ( X[1]^2 + X[2]^2 )
    return ( (10 * sin(r) * cos(r) ) / r )
}
```

где роль ${\bf x}$ и ${\bf y}$ играют соответствующие компоненты вектора ${\bf X}$.

4 возможных варианта приращения вектора $\stackrel{-}{\bf a}$ (вдоль осей X и Y):

На рисунке видно, что значение $f(\overline{a} + h\overline{e}_x)$ ближе к экстремуму, чем $f(\overline{a})$.

Логично предположить, что вероятнее всего, в том же направлении нас также ждет приближение к экстремуму:

Трансформация положения вектора $\overline{\mathbf{a}}$ после первого успешного «движения в выбранном направлении»

Вторая попытка приращения не приводит к приближению значения функции к экстремуму:

Следовательно, «движение в выбранном направлении» завершается, фиксируется последнее успешно найденное положение вектора $\overline{\mathbf{a}}$ и повторяется поиск нужного значения приращения:

Вторая итерация и третий поиск приращения:

После следующей итерации ни одно из направлений движения не приблизит к значение функции к экстремуму:

Следовательно, мы уменьшаем \mathbf{h} , (например, вдвое) и весь цикл повторяется:

Как только величина приращения \mathbf{h} станет достаточно малой (задается в качестве параметра), это будет означать, что координаты вектора $\overline{\mathbf{a}}$ — найденный экстремум.