Teoria da Informação

Departamento de Engenharia Informática Faculdade de Ciências e Tecnologia Universidade de Coimbra 16, Janeiro 2023

Exame Época Recurso

Duração: 2h

	NOME:		Nº Estudante:				
	Observe que: Exame com consulta condicionada (uma página A4 de apontamentos) Não são permitidos meios electrónicos (computador, telemóveis, etc.), excepto calculadoras. Qualquer tentativa de fraude conduzirá à anulação da prova para todos os intervenientes. Respostas na folha de prova Nas respostas múltiplas, as respostas erradas subtraem cotação.						
1.	P(x=3)=a/2, a resposta(s) cert a) H(X) b)	E[0,1]. Nestas c ta(s)): 0 é máximo para: 10 a = 1 11 a = 1/2 11(X) ≥ 0 11(X,X) = H(X) 11(X,X) = H(X)+H(X X 11(X,X) = H(X) 11(X,X) = H(X) 11(X,X) = H(X) 11(X,X) = H(X)	ndo a = 1				
2.	□ n e	• , ,					
	□ H(b) □ H($(X,Y) \ge 0$ $(Y) \ge 0$ $(X,Y) = H(Y)$ $(X,Y) = H(X) + H(Y X)$	 □ H(X,Y) ≤ 1 □ nenhuma das anteriores □ H(X,Y) =H(Y)+H(X) □ nenhuma das anteriores 				

5 – Considere uma fonte de informação com alfabeto A={0,1,2}. Seja X a variável estocástica correspondente ao símbolo e Y a variável estocástica correspondente ao símbolo anterior numa cadeia de símbolos. Assuma que a distribuição conjunta P(X,Y) é a que se apresenta na tabela seguinte:

P(X,Y)	X=0	X=1	X=2
Y=0	1/9	1/9	1/9
Y=1	1/9	1/9	1/9
Y=2	1/9	1/9	1/9

a)	É possível	afirmar-se	que a	representação	mais	eficiente	atingível	por	um	código
que permite codificar X é (arredondado às milésimas):										

□ 1.102 bits/símb. □ 1.299 bits/símb.

 b) Aplicando um código de Huffman para codificar X, é possível garantir-se que o p desempenho será: □ 1.299 bits/símb. □ 2.299 bits/símb. □ 4.170 bits/símb. □ Nenhuma das anteriores c) Seja D() a distância KL. Observa-se que D(X,Y): □ 1.499 □ 3.300 □ 1.399 □ Nenhuma das anteriores d) Considere a sequência de X "001". A codificação da sequência usando um algorit aritmético poderá resultar na transmissão do seguinte código: □ 0.1000 □ 0.1756 □ 0.5000 □ Nenhuma das anteriores 6 – Uma moeda de 2€ é lançada até que ocorra a primeira cara. a) Sendo X o número requerido de lançamentos, calcule a entropia de X bits. Assuma a situação genérica em que a moeda possa estar vicia sendo f a probabilidade de ocorrência de caras. Observe que: ∑	
 d.170 bits/símb. □ Nenhuma das anteriores c) Seja D() a distância KL. Observa-se que D(X,Y): □ 1.499 □ 3.300 □ 1.399 □ Nenhuma das anteriores d) Considere a sequência de X "001". A codificação da sequência usando um algorit aritmético poderá resultar na transmissão do seguinte código: □ 0.1000 □ 0.1756 □ 0.5000 □ Nenhuma das anteriores 6 – Uma moeda de 2€ é lançada até que ocorra a primeira cara. a) Sendo X o número requerido de lançamentos, calcule a entropia de X bits. Assuma a situação genérica em que a moeda possa estar vicia sendo f a probabilidade de ocorrência de caras. Observe que: 	ior
 □ 1.499 □ 1.399 □ Nenhuma das anteriores d) Considere a sequência de X "001". A codificação da sequência usando um algorit aritmético poderá resultar na transmissão do seguinte código: □ 0.1000 □ 0.1756 □ 0.5000 □ Nenhuma das anteriores 6 – Uma moeda de 2€ é lançada até que ocorra a primeira cara. a) Sendo X o número requerido de lançamentos, calcule a entropia de X bits. Assuma a situação genérica em que a moeda possa estar vicia sendo f a probabilidade de ocorrência de caras. Observe que: 	
aritmético poderá resultar na transmissão do seguinte código: □ 0.1000 □ 0.1756 □ 0.5000 □ Nenhuma das anteriores 6 – Uma moeda de 2€ é lançada até que ocorra a primeira cara. a) Sendo X o número requerido de lançamentos, calcule a entropia de X bits. Assuma a situação genérica em que a moeda possa estar vicia sendo f a probabilidade de ocorrência de caras. Observe que:	
 a) Sendo X o número requerido de lançamentos, calcule a entropia de X bits. Assuma a situação genérica em que a moeda possa estar vicia sendo f a probabilidade de ocorrência de caras. Observe que: 	mo
$\sum_{n=1}^{\infty} r^n = \frac{r}{1-r}$ $\sum_{n=1}^{\infty} nr^n = \frac{r}{(1-r)^2}$	

Qual a entro	opia quando a mo	peda é totalment	e equilibrada?			
Considere	uma fonte de info ão todos equipro	váveis, indique	ente ao dicionár a sequência de teiro com 7 bits.	bits resultante	S). Assumindo qda codificação	ue da

İ	
İ	
	Dada a fonte S e o alfabeto A, indique uma função do Python que perm
argu	representação gráfica do respetivo histograma. Especifique os de umentos de entrada que a função requer para uma correta representaç
no h	nsiderando que para cada elemento do alfabeto é apresentada uma ba nistograma).
	no calculamos a entropia a partir dos valores (amplitudes) do histogram a responde a esta última questão apresente unicamente equações.

9 - Quer se converter uma imagem em cores numa imagem em escala de cinzas (Y). Para tal pretende-se utilizar o standard NTSC que aplica a seguinte transformação:
$Y_{cinza}[i,j] = 0.2978R[i,j] + 0.5870G[i,j] + 0.1140B[i,j]$
onde R, G e B representam as cores vermelha, verde e azul, respetivamente. A seguir é apresentada parte de uma função implementada em Python que, dada a imagem em cores, retorna a imagem pretendida. Complete o código nos espaços indicados.
def rgb2gray():
import matplotlib.pyplot as plt

return		
plt.imshow(, cmap='g plt.show()	gray')	
Y =		
R, G, B =		