ON ASYMPTOTIC DISTRIBUTION OF THE TEST STATISTIC FOR THE MEAN OF THE NON-..(U) PITTSBURGH UNIV PA CENTER FOR MULTIVARIATE ANALYSIS C FANG ET AL. MAY 85 TR-95-20 AFDSR-1R-85-0551 F49620-85-C-0008 F/G 12/1 AD-A158 255 1/1 UNCLASSIFIED NL END FILMED

NATIONAL BUREAU OF STANDARDS MICROCOPY RESOLUTION TEST CHART

AFOSR-TR- 85-0551

ON ASYMPTOTIC DISTRIBUTION OF THE TEST STATISTIC FOR THE MEAN OF THE NON-ISOTROPIC PRINCIPAL COMPONENT

C. Fang University of South Carolina

and

P. R. Krishnaiah University of Pittsburgh

Center for Multivariate Analysis University of Pittsburgh

OTIC FILE COPY

Approved for public release; distribution unlimited.

REPRODUCEU AT CO

ABSTRACT

In this paper, the authors derived the large sample distribution of the t statistic based upon the observations on the first principal component instead of the original variables. It is shown that the above statistic is distributed asymptotically as Student's t distribution.

Key Words and Phrases: Principal components and asymptotic distribution.

Angeseion For
; canal
1 10 TAB
U compounced 🔲
Justiff ation
i Ey
Distribution/
Avails! Thy Coles
Av. i ana/or
Dist Special
A-1

ON ASYMPTOTIC DISTRIBUTION OF THE TEST STATISTIC FOR THE MEAN OF THE NON-ISOTROPIC PRINCIPAL COMPONENT

C. Fang University of South Carolina

and

....

P. R. Krishnaiah University of Pittsburgh

May 1985

Technical Report No. 85-20

Center for Multivarite Analysis University of Pittsburgh 516 Thackeray Hall Pittsburgh, PA 15260

The work of this author is sponsored by the Air Force Office of Scientific Research (AFSC) under contract F49620-85-C-0008. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation herein.

ABSTRACT

In this paper, the authors derived the large sample distribution of the t statistic based upon the observations on the first principal component instead of the original variables. It is shown that the above statistic is distributed asymptotically as Student's t distribution.

Key Words and Phrases: Principal components and asymptotic distribution.

سان تعديم م و پ	n For	
•	ana¥I NB	
<u></u>	t 100	
Distr	107/	
Avail	Av and	/or
Dist	Speci tal	
A-1		

and expression investigated the property of the contraction of the contraction of the property of the contraction of the contra

E	CI	JR	ITY	CL	ASS	IFI	CA	TION	CrF.	THIS	PA	GE

					د س نوس
	REPORT DOCUME	NTATION PAGE	E		
1a. REPORT SECURITY CLASSIFICATION		16. RESTRICTIVE M	ARKINGS		
Unclassified 28 SECURITY CLASSIFICATION AUTHORITY	······································				
28 SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/A		release; dis	twibution
2b. DECLASSIFICATION/DOWNGRADING SCHED	ULE	unlimited	or public	release, uis	cribacion
N/A ·					
4. PERFORMING ORGANIZATION REPORT NUM	BER(S)	5. MONITORING OR	IGANIZATION R	EPORT NUMBER(S)	
		AFOSR	-TR- 8	5-0551	
64 NAME OF PERFORMING ORGANIZATION	Sb. OFFICE SYMBOL	7a. NAME OF MONI	TORING ORGAN	IZATION	
Hatarak e Bilikahan	(If applicable)	AFOCD			l
University of Pittsburgh BC. ADDRESS (City, State and ZIP Code)	l	AFOSR			
515 Thackery Hall		76. ADDRESS (City, Bldg. 410	State and ZIP Coa	ie)	
Pittsburgh, PA 15260			B, D.C. 20	0332-6448	
86. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT I	NSTRUMENT ID	ENTIFICATION NU	MBER
AFOSR _	NM	F49620-85-	C-0008		
8c. ADDRESS (City, State and ZIP Code)		10. SOURCE OF FU	NDING NOS.		
B1dg. 410	_	PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT
Bolling AFB, D.C. 20332-644	8	61102F	1	1	NO.
11. TITLE (Include Security Classification)		91105t	2304	A5	
On Asymptotic Distribution of	f the Test Stati	stic for the	Mean of the	e Non-Isotro	oic Princip
12. PERSONAL AUTHOR(S)	 -				Component
C. Fang and P. R. Krishnaiah			41/		
Technical FROM	TO	14. DATE OF REPOR	11 (27., MEO., Day)	15. PAGE CO	JUNI
16. SUPPLEMENTARY NOTATION		1103 2300			
17. COSATI CODES					
17. COSATI CODES FIELD GROUP SUB. GR.	18. SUBJECT TERMS (C.	ontinue on reverse if ne	cemary and identi	ify by block number)	
XXXXXXXXXXXX	Principal con	nponents and a	symptotic	distribution	
19. ABSTRACT (Continue on reverse if necessary and	•				
In this paper, the authors d	erived the large	sample distr	ibution of	the t stati	Stic
based upon the observations variables. It is shown that					
Student's t distribution.	the above stati	13616 13 41361	ibacca asy	mptotically	u3
					ı
					1
					•
					1
		•			Ī
					I
	,				I
					ŀ
20. DISTRIBUTION/AVAILABILITY OF ABSTRAC	T	21. ABSTRACT SECU	JRITY CLASSIFI	CATION	
UNCLASSIFIED/UNLIMITED 🖾 SAME AS RPT.	DTIC USERS	Unclassifie	ed		
22s. NAME OF RESPONSIBLE INDIVIDUAL		226. TELEPHONE N		22c. OFFICE SYME	IOL
Brian W. Woodruff, Maj, USAF		(Include Area Co (202)767-50		NM	
				1	

1. INTRODUCTION

Data analysts are often confronted with the problem of large dimensional data. In some of these situations, it is customary to reduce the dimensionality of the problem by using principal component analysis and to perform statistical analysis of the data using the new variables (principal components). For example, the new variables are used in the area of classification. Chestnut and Floyd (1981) used the principal components as variables in identification of underwater targets. However, the statistical data analysis using the principal components is adhoc since the distributions of the test statistics based upon the principal components are complicated when the covariance matrix is unknown. Very little work was done in the literature on deriving the distributions of these test statistics even in the asymptotic case. In this paper, we derive the asymptotic distribution of the t statistic based upon the new variable (the most important principal component) instead of using any of the original variables. The above asymptotic distribution is shown to be Student's t distribution. The accuracy of the above approximation is studied by comparing the simulated values using the asymptotic expression with the standard Student's t table. It is found that the accuracy of the above approximation is sufficient for many practical situations.

2. ASYMPTOTIC DISTRIBUTION OF t-STATISTIC BASED UPON A PRINCIPAL COMPONENT

Consider a random matrix $X = (X_1, \dots, X_{n+1})$; $p \times (n+1)$ whose columns are distributed independently as multivariate normal with a common covariance matrix Σ and mean vector μ . Now,

$$E(S/n) = \Sigma \tag{2.1}$$

where $S = \sum_{i=1}^{n+1} (X_i \rightarrow X_i) (X_i \rightarrow X_i)$, $X = \sum_{i=1}^{n+1} X_i / (n+1)$. Let Γ : $p \times p$ be an orthogonal matrix such that $\Gamma^{\dagger} \Sigma \Gamma = \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_p)$ and $\lambda_1 \geq \dots \geq \lambda_p$. Also, let G be an orthogonal matrix such that $\frac{G^{\dagger} S G}{n} = L = \operatorname{diag}(\ell_1, \dots, \ell_p)$ and $\ell_1 \geq \dots \geq \ell_p$. Now, let

$$Y = \sqrt{n}((S/n) - \Sigma)$$
 (2.2)

so that

$$\frac{\Gamma^{\dagger}S\Gamma}{n} = \Lambda + Z \tag{2.3}$$

where $Z = \frac{\Gamma^{\dagger}Y\Gamma}{\sqrt{n}} = (Z_{ij})$. So,

$$\Lambda H + ZH = HL \tag{2.4}$$

where $H = \Gamma'G$. Now, let $\Gamma = (\gamma_{ij})$ and $G = (g_{ij})$. It is known (see Mallows (1961), Fang and Krishnaiah (1981)) by applying perturbation technique that for $\lambda_{\alpha-1} > \lambda_{\alpha} > \lambda_{\alpha+1}$,

$$\ell_{\alpha} = \lambda_{\alpha} + Z_{\alpha\alpha} + \sum_{i \neq \alpha} \frac{Z_{\alpha i}^{2}}{\lambda_{\alpha} - \lambda_{i}} + 0 (n^{-3/2})$$

$$h_{j\alpha} = \frac{Z_{j\alpha}}{\lambda_{\alpha} - \lambda_{j}} + \sum_{m \neq \alpha} \frac{Z_{jm}^{2} Z_{m\alpha}}{(\lambda_{\alpha} - \lambda_{m})(\lambda_{\alpha} - \lambda_{j})} - \frac{Z_{j\alpha}^{2} Z_{\alpha\alpha}}{(\lambda_{\alpha} - \lambda_{j})^{2}} + 0 (n^{-3/2}), \quad j \neq \alpha$$

$$h_{\alpha\alpha} = 1 - \frac{1}{2} \sum_{m \neq \alpha} \frac{Z_{\alpha m}^{2} Z_{m\alpha}}{(\lambda_{\alpha} - \lambda_{m})^{2}} + 0 (n^{-3/2})$$
(2.5)

where

$$Z_{ij} = \frac{1}{\sqrt{n}} a_{ij} = \frac{1}{\sqrt{n}} \sum_{k,k}^{p} \gamma_{kj} \gamma_{kj} Y_{kk}. \qquad (2.6)$$

Using $H = \Gamma^{\dagger}G$, we obtain

$$g_{j\alpha} = \sum_{m=1}^{p} \gamma_{jm} h_{m\alpha}$$

$$= \gamma_{j\alpha} + \frac{1}{\sqrt{n}} \sum_{m \neq \alpha} \gamma_{jm} \frac{a_{m\alpha}}{\lambda_{\alpha} - \lambda_{m}}$$

$$+ \frac{1}{n} \left[\sum_{m \neq \alpha} \sum_{i \neq \alpha} \gamma_{jm} \frac{a_{mi}^{a} i\alpha}{(\lambda_{\alpha} - \lambda_{i})(\lambda_{\alpha}^{-} - \lambda_{m})} - \sum_{m \neq \alpha} \gamma_{jm} \frac{a_{m\alpha}^{a} \alpha\alpha}{(\lambda_{\alpha} - \lambda_{m})^{2}} - \frac{1}{2} \sum_{m \neq \alpha} \gamma_{j\alpha} \frac{a_{m\alpha}^{a} \alpha\alpha}{(\lambda_{\alpha} - \lambda_{m})^{2}} \right] + O(n^{-3/2})$$

$$= \gamma_{j\alpha} + g_{j\alpha}(n^{-1/2}) + g_{j\alpha}(n^{-1}) + O(n^{-3/2}). \tag{2.7}$$

Under the assumption of a single non-isotropic principal component, the eigenvalue λ_1 is simple. Let the corresponding eigenvector be denoted by Γ_1 . Let $g_1 = (g_{11}, \dots, g_{p1})^*$ be the sample eigenvector corresponding to the largest eigenvalue ℓ_1 of S/n, and

$$g_1 = \Gamma_1 + g_1(n^{-1/2}) + g_1(n^{-1}) + 0(n^{-3/2})$$
 (2.8)

according to Eq. (2.7). Now consider the statistic

$$T = \sqrt{n} g_1^* (\bar{X} - \mu) / \sqrt{g_1^* S g_1 / n}. \qquad (2.9)$$

We know that

$$\sqrt{n} \ \underline{g}_{1}^{*}(\bar{X} - \mu) = \sqrt{n} \ \underline{\Gamma}_{1}^{*}(\bar{X} - \mu) + \underline{g}_{1}^{*}(n^{-1/2}) \sqrt{n}(\bar{X} - \mu) + \dots$$

$$= \sqrt{n} \ \underline{\Gamma}_{1}^{*}(\bar{X} - \mu) + o_{n}(1)$$
(2.10)

$$(g_{1}^{*}Sg_{1}/n)^{-1/2} = (\Gamma_{1}^{*}S\Gamma_{1}/n)^{-1/2}$$

$$\times [1 - \frac{1}{2} (\frac{2\Gamma_{1}^{*}Sg_{1}(n^{-1/2})}{\Gamma_{1}^{*}S\Gamma_{1}} + \frac{2\Gamma_{1}^{*}Sg_{1}(n^{-1})}{\Gamma_{1}^{*}S\Gamma_{1}}$$

$$+ \frac{g_{1}^{*}(n^{-1/2})Sg_{1}(n^{-1/2})}{\Gamma_{1}^{*}S\Gamma_{1}} + \dots]$$

$$= (\Gamma_{1}^{*}S\Gamma_{1}/n)^{-1/2} + o_{p}(1). \qquad (2.11)$$

Since \sqrt{n} $(\bar{X} - \mu)$ is of order $0_p(1)$, and the Y_{ij} 's in $g_1'(n^{-r/2})$, r = 1, 2, ..., are also of order $0_p(1)$, the order of probability convergence in Eq. (2.10), (2.11) is valid according to the Chernoff-Pratt definition of 0_p (Bishop, Fienberg and Holland (1975)).

The statistic

$$T = \frac{\sqrt{n}g_1^*(\bar{X} - \mu)}{\sqrt{g_1^*Sg_1/n}} = \frac{\sqrt{n} \Gamma_1^*(\bar{X} - \mu)}{\sqrt{\Gamma_1^*S\Gamma_1/n}} + o_p(1). \qquad (2.12)$$

So the statistic T converges in distribution to Student's t distribution with n degrees-of-freedom.

Suppose, we wish to test the hypothesis that $\Gamma_1^*\mu=0$. Then, we use $T=\frac{\sqrt{n}}{\sqrt[n]{g_1^*Sg_1/n}}$

as a test statistic.

3. AN EMPIRICAL STUDY ON THE ACCURACY OF THE APPROXIMATION

In this section, we study the accuracy of the asymptotic expression given in the preceding section. In Table 1, the entries in the rows corresponding to t_{α} give the values of t_{α} where

$$P[t \le t_{\alpha}] = (1 - \alpha) \tag{3.1}$$

and t is distributed as Student's t distribution with n degrees of freedom. The entries in the rows corresponding to α are the simulated values of α obtained by using the IMSL subroutines GGNSM, EIGRS for the Monte Carlo methods. In computing the simulated values, 5000 trials are performed and each trial consisted of a random sample of size n+1 from a multivariate normal population with covariance matrix $\Sigma = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3)$. The entries in the table are computed for different values of n, λ_1 , λ_2 , λ_3 and p. From the table, we observe that the approximation is satisfactory when n is moderately large like 23. The approximation is not good when α is small and n = 10. But, the accuracy of the approximation increased as α increased even when n = 10. From Tables 2 and 3, we observe that the approximation is good when n = 23 and α increases for p = 4,5.

COMPARISON OF ASYMPTOTIC SIGNIFICANCE LEVELS OF t WITH SIMULATED VALUES WHEN p = 3

n = 10

TABLE 1

Q

TABLE 1 (continued)

n = 23

TOTAL CHARLES OF THE CONTROL OF THE

TABLE 1 (continued)

PRINCIPLE PRINCIPLE CONTRACTOR OF THE PRINCIPLE OF THE PR

$$(\lambda_1, \lambda_2, \lambda_3) = (3, 1, 1)$$
 $n = 23$

1												
8	.55	9*	.65	.7	.75	. α.	.85	6.	.95	.975	66.	. 995
⊅ ₂	.127 .256	.256	.390	.532	.685	.858	1.060	1,319	1.714	2.069	2.5	2.807
Simu.^	.5594	5594 .6130	9799.	.7158	.7646	.8194	.8644	.9106	.9556	86.	.991	.997
$2\sqrt{\frac{\hat{\alpha}(1-\hat{\alpha})}{5000}}$.0140 .0138	.0138	.0134	.0128	.0120	.0109	9600•	.0081	.0058	.004	.0027	.0015

TABLE 1 (continued) $(\lambda_1, \lambda_2, \lambda_3) = (5, 1, 1)$ n = 23

.5	0.0	.5090	.0141				
.45	127	.4614	.0141	.995	2,807	9366.	.0019
4.	256	.1518 .2044 .2544 .3070 .3556 .4060 .4614	.0135 .0139 .0141	66.	.858 1.060 1.319 1.714 2.069 2.500 2.807	66.	.0111 .0099 .0084 .0061 .0042 .0028 .0019
.35	390	.3556		.975	2.069	.8110 .8574 .9018 .9518 .9774	.0042
.3	532	.3070	.0061 .0086 .0101 .0114 .0123 .013	.95	1,714	,9518	.0061
.25	685	.2544	.0123	6.	1,319	.9018	.0084
.2		.2044	.0114	.85	1.060	.8574	6600.
.15	-1.060	.1518	.0101	φ.	.858		.0111
1.	-1,319	.1020	9800.	.75	.685	132 .7630	128 .012
.05	-1.714	0494	.0061	.7	.532	17	.0128
.025	-2.069	.0242	.0020 .0026 .0043	•65	.390	.6588	.0134
.01	-2.500	.0048 .0086	.0026	9.	.256	.5572 .6070	.0140 .0138
.005	-2.807 -2.500 -2.069 -1.714 -1.319 -1.060858	.0048	.0020	.55	.127	.5572	.0140
ಶ	۵۲	Simu.	$2\sqrt{\frac{\alpha(1-\alpha)}{5000}}$	8	ي د	Simu.^	$2\sqrt{\frac{\hat{\alpha}(1-\hat{\alpha})}{5000}}$

TABLE 2

				COMPAR	COMPARISON OF OF t WITH	ASYMPT SIMULA	OTIC SI	ASYMPTOTIC SIGNIFICANCE LEVELS SIMULATED VALUES WHEN p =4	NCE LEVI	3LS			
								$(\lambda_1, \lambda_2, \lambda_3, \lambda_4) = (5, 1, 1, 1)$	\ ₃ , γ ₄) =	(5,1,1	1)	n = 23	
5	.005	.01	.025	.05	i.	.15	.2	.25	.3	.35	4.	.45	.5
عر ت	-2.807 -2.500 -2.069 -1.	-2.500	-2.069	-1.714	714 -1.319 -1.060	-1.060	858	685	532	-, 390	256	127	0.0
Simu.	.002	.0064	0.02	0.039	.087	.1328	.1784	.229	. 2856	.3374	.3922	.4428	.4928
$\sqrt{\frac{\alpha(1-\alpha)}{5000}}$.0013	.0023	.0040	.0055	0000	9600*	.0108	.0199	.0128	.0134	.0138	.0140	.0141
8	.55	9.	.65	۲.	.75	8.	.85	6.	.95	.975	.99	.995	
Ą	.127	.256	.390	.532	.685	.858	1.060	1.319	1.714	2.069	2.5	2.807	
Simu.	.5414	.5934	679.	. 7054	.7562	.8078	.8578	.9054	.9548	9626.	.9912	766.	
$2\sqrt{\frac{\alpha(1-\alpha)}{5000}}$.0141	.0139	.0135	.0129	.0121	.0111	6600.	.0083	.0059	.0040	.0026	.0015	
					TAT	TABLE 2 (c	2 (continued)	a)					
							<u> </u>	$(\lambda_1,\lambda_2,\lambda_3,\lambda_4)=(3,1,1,1)$	3, 14) =	(3,1,1,		n = 23	
8	.005	.0	.025	.05	1:	.15	.2	.25	.3	.35	4.	.45	5,
'ng	-2.807	-2.500	-2.807 -2.500 -2.069 -1.		714 -1.319 -1.060	-1.060	858	685	532	- 390	256	127	0.0
Simu.	.0016	.0038	.0038 .0136	.0346	.079	.1214	.1646	.2168	.2698	. 3296	.3812	.433	. 4868
$2\sqrt{\frac{\alpha(1-\alpha)}{5000}}$.0011	.0017	.0032	.0052	.0076	.0092	.0105	.0117	.0126	.0133	.1037	.014	.0141

TABLE 2 (continued)

$$(\lambda_1, \lambda_2, \lambda_3, \lambda_4) = (3, 1, 1, 1)$$
 n = 23

•							6 7 T	J.					
ಕ	.55	9.	•65	.7	.75	∞ .	.85	6.	.95	85 .9 .95 .978	66.	. 995	
۵۴	1127	.256	.390	.532	.685	.858		1.319	1.714	1.060 1.319 1.714 2.069 2.5 2.807	2.5	2.807	
Simu.	.5392	5392 .5968	.6520 .7102		.7568	.8092	.8644	.9138 .9612 .9814	.9612	.9814	7966.	8266.	
$2\sqrt{\frac{\alpha(1-\alpha)}{5000}}$.0141	0141 .0139	.0135	.0128	.0121	.0111	.0097	.0079	.0055	.0097 .0079 .0055 .0038 .0021	.0021	.0013	

TABLE 3

COMPARISON OF ASYMPTOTIC SIGNIFICANCE LEVELS
OF k WITH SIMULATED VALUES WHEN p = 5

$$\frac{(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5) = (5,1,1,1,1)}{\alpha} \quad n = 23$$

$$\frac{\epsilon_{\alpha}}{2} \quad .005 \quad .01 \quad .025 \quad .05 \quad .1 \quad .15 \quad .2 \quad .25 \quad .3 \quad .35 \quad .4 \quad .45 \quad .5$$

$$\frac{\epsilon_{\alpha}}{2} \quad -2.807 \quad -2.500 \quad -2.069 \quad -1.714 \quad -1.319 \quad -1.060 \quad -.858 \quad -.685 \quad -.532 \quad -.390 \quad -.256 \quad -.127 \quad 0.0$$

$$\frac{s_{\text{thu},\alpha}}{5000} \quad .0015 \quad .0015 \quad .0018 \quad .0016 \quad .0082 \quad .0098 \quad .0111 \quad .0121 \quad .0129 \quad .0135 \quad .0139 \quad .0141 \quad .0141$$

$$\frac{\epsilon_{\alpha}}{5000} \quad .55 \quad .6 \quad .65 \quad .7 \quad .75 \quad .8 \quad .85 \quad .9 \quad .95 \quad .975 \quad .99 \quad .995$$

$$\frac{\epsilon_{\alpha}}{5000} \quad .0140 \quad .0137 \quad .0133 \quad .0127 \quad .0120 \quad .0109 \quad .0096 \quad .0081 \quad .0058 \quad .0043 \quad .0014 \quad .0014$$

	n = 23
	λ_{ξ}) = (3,1,1,1,1)
(continued)	$(\lambda_1,\lambda_2,\lambda_2,\lambda_k)$
TABLE 3	

		<u>ლ</u>	.0141
.5	0.0	.513	
.45	127	.453	.0141
4.	256	. 395	.0138
.35	390	.3382	.0134
۴.	532	. 2844	.0128
.25	685	.2324	0110
7.	858	.1822	.0109
.15	-1.060	.1262	.0094
.1	-1.714 -1.319 -1.060	9080.	.0077
.05	-1.714	.0362	.0053
.025	-2.069	.016	.0035
.01	-2.807 -2.500 -2.069	0012 .0032	0010 .0016 .0035
.005	-2.807	.0012	.0010
•		Simu.	<u>a(1-a)</u> 5000
8	ħg	SŦ	2/2/2

TABLE 3 (continued)

	ı						(λ_1, λ_2)	$, \gamma_3, \gamma_4,$	γ ²) = (3	$(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5) = (3, 1, 1, 1, 1, 1)$		n = 23
ಶ	.55	9.	.65	7. 59	.75	80.	.85	6.	.95	995 96. 376. 36. 6.	66.	.995
ħg	.127	.256	.390	.532	.685	.858	1.060	1.319	1.714	390 .532 .685 .858 1.060 1.319 1.714 2.069 2.5 2.807	2.5	2.807
Simu.	: 5698	.6236	:5698 .6236 .6800 .733 .782 .8314	.733	.782	.8314	.8802 .92	.92	.965	.965 .9836 .9858	.9858	.9988
$\sqrt[3]{\frac{\alpha(1-\alpha)}{5000}}$.0140	.0137	.0132	.0125	.0117	.0106	.0092	.0077	.0052	.0140 .0137 .0132 .0125 .0117 .0106 .0092 .0077 .0052 .0036 .0018 .001	.0018	.001

REFERENCES

- 1. Bishop, Y.M.M., Fienberg, S.E. and Holland, P.W. (1975). Discrete Multivariate Analysis. MIT Press.
- 2. Chestnut, P.C. and Floyd, R.W. (1981). An aspect-independent sonar target recognition method. <u>Journal of the Acoustic Society of America</u>, 70, 727-734.
- 3. Fang, C. and Krishnaiah, P.R. (1981). Asymptotic distributions of functions of the eigenvalues of the real and complex noncentral Wishart matrices.

 Statistics and Related Topics, pp. 89-108 (D.A. Dawson, J.N.K. Rao and A.K. Md. E. Saleh, Editors). North-Holland Publishing Company.
- 4. Mallows, C.L. (1961). Latent vectors of random symmetric matrices. Biometrika, 48, 133-149.

END

FILMED

10-85

DTIC