Esercizi

Per le equazioni di ricorrenza indicate di seguito, utilizzare il Master Theorem per ottenere una esplicita espressione per T(n), indicando anche il caso di riferimento. Sono riportate le soluzioni.

Esempio:

```
T(n) = T(2n/3) + 1:
a = 1, b = 3/2, f(n) = n^{0} = \Theta (n^{\log}b^{a}) = \Theta(n^{0}),
caso 2 del MT, T(n) = \Theta(\log n)
T(n) = 3T(n/4) + n\log n, \qquad T(n) = \Theta(n\log n)
T(n) = T(n - 10) + n^{2}; \qquad T(n) = \Theta(n^{3})
T(n) = T(n - 2) + T(n - 1) + 1; \qquad T(n) = \Theta(2^{n})
T(n) = 7T(n/2) + n^{2}; \qquad T(n) = \Theta(n^{\log}2^{7})
T(n) = 6T(n/3) + n^{2}\log n; \qquad T(n) = \Theta(n^{2}\log n)
```

Esercizi

$$T(n) = T(n/2) + 2^n$$
,

$$T(n) = 16T(n/4) + n$$
;

$$T(n) = 2T(n/4) + n^{0.51}$$
;

$$T(n) = \Theta(2^n)$$

$$\mathsf{T}(\mathsf{n}) = \Theta(\mathsf{n}^2)$$

$$\mathsf{T}(\mathsf{n}) = \Theta(\mathsf{n}^{0.51})$$

Esempio sottovettore di valore massimo

- Consideriamo un vettore V[] di n elementi (positivi o negativi che siano)
- Vogliamo individuare il sottovettore di V la cui somma di elementi sia massima

Domanda: quanti sono i sottovettori di V?

Totale: n(n-1)/2 ->n²

- 1 sottovettore di lunghezza n
- 2 sottovettori di lunghezza n-1
- 3 sottovettori di lunghezza n-2

$$\frac{M(M-1)}{2} \rightarrow M^2$$

- k sottovettori di lunghezza n-k+1
- n sottovettori di lunghezza i Strutture Dati

Soluzione $\rightarrow n^3$

```
real SommaMax1( real V[1..n] )
          real smax \leftarrow V[1];
          for integer i \leftarrow 1 to n do
                     for integer j \leftarrow i to n do
                               real s \leftarrow 0;
                               for integer k \leftarrow i to j do
                                          s \leftarrow s + V[k];
                               endfor
                               if (s > smax) then
                                          smax \leftarrow s;
                               endif
                     endfor
          endfor
          return smax;
```

L'efficienza conta!

- Confrontiamo i due algoritmi su due piattaforme hardware molto diverse
- Algoritmo $O(n^3)$
 - CPU: Intel i7 @ 3.6GHz
 - Ubuntu Linux 16.04
 - OpenJDK 11.0.6
- Algoritmo O(n)
 - Commodore 64 (anno 1982)
 - CPU: MOS 6502 @ 1MHz
 - Linguaggio: BASIC

Tempi di esecuzione

Sottovettore di somma massima

Lunghezza vettore