MATH620 - Algebraic Number Theory

Taught by Niranjan Ramachandran Notes taken by Haoran Li $2020 \,\, \mathrm{Spring}$

Department of Mathematics University of Maryland

Contents

1	Disciminant	2
Inc	dex	5

1 Disciminant

Definition 1.1. An algebraic number field K is a finite field extension of \mathbb{Q} , its ring of algebraic integers is denoted \mathcal{O}_K

$$\begin{array}{ccc}
\mathbb{O}_K & \longrightarrow & K \\
\uparrow & & \uparrow \\
\mathbb{Z} & \longrightarrow & \mathbb{O}
\end{array}$$

More generally, if E/F is a finite separable field extension, B,A are their ring of integers

$$\begin{array}{ccc}
B & \longrightarrow & E \\
\uparrow & & \uparrow \\
A & \longrightarrow & F
\end{array}$$

Definition 1.2. [E:F]=n, then $B \cong A^n$ as an A module, assume β_1, \dots, β_n is a basis, define

$$D(\beta_1, \dots, \beta_n) = \det(\operatorname{Tr}_{B/A}(\beta_i\beta_i)) \in A$$

The discriminant $\operatorname{disc}(B/A) = D(\beta_1, \dots, \beta_n)$ is well-defined in $A/(A^{\times})^2$. In particular, $\operatorname{disc}(O_K/\mathbb{Z})$ is a well-defined integer

Lemma 1.3. $\gamma_1, \dots, \gamma_n \in \mathcal{O}_K$ is an \mathbb{Z} -basis for \mathcal{O}_K iff $D(\gamma_1, \dots, \gamma_n) = \operatorname{disc}(\mathcal{O}_K/\mathbb{Z})$. More generally, if A is integral closed and Noetherian, $\gamma_1, \dots, \gamma_n \in B$ is an A-basis of B iff $D(\gamma_1, \dots, \gamma_n) = \operatorname{disc}(B/A)$

Proof. Write $\gamma_i = \sum c_{ji}\beta_j$, then $\det(\operatorname{Tr}(\gamma_i\gamma_j)) = (\det C)^2\operatorname{disc}(\mathcal{O}_K/\mathbb{Z})$. Thus $D(\gamma_1,\cdots,\gamma_n) = \operatorname{disc}(\mathcal{O}_K/\mathbb{Z}) \Leftrightarrow \det C = \pm 1 \Leftrightarrow C \in \operatorname{GL}_n(\mathbb{Z}) \Leftrightarrow \gamma_1,\cdots,\gamma_n \text{ is an } \mathbb{Z}\text{-basis}$

Example 1.4. $K = \mathbb{Q}(\sqrt{d})$, d is square free. \mathcal{O}_K has $\{1, \sqrt{d}\}$ as an \mathbb{Z} -basis if $d \equiv 2, 3 \mod 4$

$$\operatorname{disc}(\mathbb{O}_K/\mathbb{Z}) = \operatorname{det} \operatorname{Tr}_{\mathbb{O}_K/\mathbb{Z}} \begin{pmatrix} 1 & \sqrt{d} \\ \sqrt{d} & d \end{pmatrix} = \operatorname{det} \begin{pmatrix} 2 & 0 \\ 0 & 2d \end{pmatrix} = 4d$$

 O_K has $\{1, \frac{1+\sqrt{d}}{2}\}$ as an \mathbb{Z} -basis if $d \equiv 1 \mod 4$

$$\mathrm{disc}(\mathbb{O}_K/\mathbb{Z}) = \det \mathrm{Tr}_{\mathbb{O}_K/\mathbb{Z}} \begin{pmatrix} 1 & \frac{1+\sqrt{d}}{2} \\ \frac{1+\sqrt{d}}{2} & \frac{1+2\sqrt{d}+d}{4} \end{pmatrix} = \det \begin{pmatrix} 2 & 1 \\ 1 & \frac{2+2d}{4} \end{pmatrix} = d$$

Therefore 7 can never be a discriminant

Proposition 1.5. $\gamma_1, \dots, \gamma_n \in \mathcal{O}_K$, $N = \mathbb{Z}\gamma_1 + \dots + \mathbb{Z}\gamma_n \leq \mathcal{O}_K$ has finite index in \mathcal{O}_K iff $D(\gamma_1, \dots, \gamma_n) \neq 0$, $D(\gamma_1, \dots, \gamma_n) = [\mathcal{O}_K : N]^2 \operatorname{disc}(\mathcal{O}_K/\mathbb{Z})$

Proof. Suppose β_1, \dots, β_n is an \mathbb{Z} -basis, $D(\beta - 1, \dots, \beta_n) = \operatorname{disc}(\mathcal{O}_K/\mathbb{Z}), \ \gamma_i = \sum c_{ji}\beta_j, \ \det C = [\mathcal{O}_K : N]$

Proposition 1.6. If $D(\gamma_1, \dots, \gamma_n)$ is square free, then $\gamma_1, \dots, \gamma_n$ is an \mathbb{Z} -basis

Example 1.7. $K = \mathbb{Q}(\alpha)$, α is a root of irreducible polynomial $x^3 - x - 1$, $D(1, \alpha, \alpha^2) = -23$ which is square free, hence $\mathcal{O}_K = \mathbb{Z} + \mathbb{Z}\alpha + \mathbb{Z}\alpha^2 = \mathbb{Z}[\alpha]$

Proposition 1.8. [E:F]=n is separable, Ω is the Galois closure of E, $\operatorname{Hom}_F(E,\Omega)=\{\sigma_1,\cdots,\sigma_n\}$ are distinct F-embeddings of E

$$\begin{array}{ccc}
B & \longrightarrow & E \\
\uparrow & & \uparrow \\
A & \longrightarrow & F
\end{array}$$

If β_1, \cdots, β_n is an F-basis of E, then $D(\beta_1, \cdots, \beta_n) = \det(\sigma_i(\beta_j))^2 \neq 0$

Proof. Deonte $Q = \sigma_i(\beta_j)$, then

$$\begin{split} D(\beta_1,\cdots,\beta_n) &= \det(\mathrm{Tr}_{E/F}(\beta_i\beta_j)) \\ &= \det(\sum \sigma_k(\beta_i\beta_j)) \\ &= \det(\sum \sigma_k(\beta_i)\sigma_k(\beta_j)) \\ &= \det(Q^TQ) \\ &= \det(\sigma_i(\beta_j))^2 \\ &\stackrel{\mathrm{Theorem \ 1.9}}{\neq} 0 \end{split}$$

 $\hfill\Box$ Dedekind's theorem

Theorem 1.9 (Dedekind's theorem). G is group, Ω is a field, $\sigma_1, \dots, \sigma_n$ are distinct homomorphisms $G \to \Omega^{\times}$, then σ_i 's are linear independent over Ω

References

Index

Algebraic number field, 2

Discriminant, 2