PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESCUELA DE POSGRADO

ÁLGEBRA CONMUTATIVA

Semestre académico 2020-2

Examen Parcial

Indicaciones:

- Fecha de entrega: Miércoles 4 de noviembre 2020, a las 23:59, en Paideia. No habrá prórrogas.
- La evaluación consta de dos partes. Leer cuidadosamente las indicaciones de cada parte.

Parte I: Resolver solo <u>cinco</u> preguntas en esta parte.

- 1. a) Muestre que $(\mathbb{Z}/m\mathbb{Z}) \otimes (\mathbb{Z}/n\mathbb{Z}) = 0$ si m y n son coprimos.
 - b) Sea A un anillo, sea \mathfrak{a} un ideal y M un A-módulo. Pruebe que $(A/\mathfrak{a}) \otimes_A M$ y $M/\mathfrak{a}M$ son isomorfos.
- 2. Sea A un anillo local. Sean M y N A-módulos finitamente generados. Muestre que si $M \otimes N = 0$ entonces M = 0 ó N = 0.
- 3. Sea M un A-módulo finitamente generado. Sea $\phi: M \to A^n$ un homomorfismo sobreyectivo. Pruebe que $Ker(\phi)$ es un A-módulo finitamente generado.
- 4. Sea (A, \mathfrak{m}) un anillo local con cuerpo residual $\mathbb{k} = A/\mathfrak{m}$.
 - a) Pruebe que todo A-módulo proyectivo finitamente generado es libre.
 - b) Sea $\varphi: M \to N$ un homomorfismo de R-módulos, donde N un módulo libre. Si $\overline{\varphi}: M/\mathfrak{m}M \to N/\mathfrak{m}N$ es un isomorfismo de \mathbb{k} -espacios vectoriales, entonces φ es un isomorfismo (y por tanto M es libre).
 - c) Supongamos, además, que A es un dominio integral. Sea $\mathcal Q$ el cuerpo de fracciones de A. Sea M un A-módulo finitamente generado. Pruebe que M es libre si y sólo si

$$\dim_{\mathbb{k}}(M/\mathfrak{m}M) = \dim_{\mathcal{Q}} M \otimes_{A} \mathcal{Q}.$$

- 5. Sea R un anillo conmutativo. Un R-módulo M se denomina Noetheriano si todo submódulo de M es finitamente generado; equivalentemente, toda secuencia creciente $M_1 \subset M_2 \subset M_3 \subset \ldots$ de submódulos de M se estabiliza, es decir, existe n tal que $M_n = M_{n+1} = \ldots$ Sea M un R-módulo Noetheriano. Pruebe que si $\varphi: M \to M$ es un homomorfismo sobreyectivo de R-módulos, entonces φ es un isomorfismo.
 - (Sugerencia: considere los submódulos $\operatorname{Ker}(\varphi^n)$, con $n \geq 1$).
- 6. Sea \mathbb{k} un cuerpo infinito y $F \in \mathbb{k}[X_1, \ldots, X_n]$. Supongamos que $F(a_1, \ldots, a_n) = 0$ para todo $a_1, \ldots, a_n \in \mathbb{k}$. Demuestre que F = 0. (Sugerencia: escriba $F = \sum F_i X_n^i$, donde $F_i \in \mathbb{k}[X_1, \ldots, X_{n-1}]$. Use inducción sobre n y el hecho de que $F(a_1, \ldots, a_{n-1}, X_n)$ tiene solo un número finito de raíces si algún $F_i(a_1, \ldots, a_{n-1}) \neq 0$).

- 7. a) Sea \mathbb{k} un cuerpo algebraicamente cerrado y F un polinomio no constante en $\mathbb{k}[x_1, \ldots, x_n]$. Demuestre que $\mathbb{A}^n_{\mathbb{k}} \setminus V(F)$ es infinito si $n \geq 1$. Además, pruebe que V(F) es infinito si $n \geq 2$. Concluya que el complemento de cualquier subconjunto algebraico propio es infinito.
 - b) Calcule el ideal de $\{(0,0),(0,1)\}$ en \mathbb{k}^2 .
 - c) Sea \mathbb{k} un cuerpo infinito. Muestre que la subvariedad de \mathbb{k}^3 definida por las ecuaciones $X^2 = YZ$ y XZ = X tiene tres componentes irreducibles. Descríbalas y halle sus ideales primos.
- 8. Sea \mathbb{k} un cuerpo. Sean F y G dos polinomios en $\mathbb{k}[X,Y]$ sin factor común.
 - a) Demuestre que $V(F) \cap V(G)$ es finito. (Sugerencia: use el teorema de Bézout en el anillo principal $\mathbb{k}(X)[Y]$ para mostrar la existencia de polinomios A(X,Y), B(X,Y) y D(X), con $D \neq 0$, tal que D = AF + BG).
 - b) Demuestre que si F es irreducible y V(F) es infinito, entonces I(V(F)) = (F) y V(F) es irreducible. Brinde un ejemplo donde V(F) es reducible a pesar de que F es irreducible.

Parte II: Resolver solo <u>cinco</u> preguntas en esta parte. Las preguntas están escritas en inglés, pero usted puede responderlas ya sea en inglés o en español.

- 1. Let \mathbb{k} be an algebraically closed field. Let $f \in \mathbb{k}[X_1, \ldots, X_n]$ be a non-constant polynomial. Write $f = \prod_{i=1}^r f_i^{n_i}$ with irreducible polynomials f_i such that $(f_i) \neq (f_j)$ for all $i \neq j$ and integers $n_i \geq 1$. Show that rad $(f) = (f_1 \cdots f_r)$ and that the irreducible components of $V(f) \subset \mathbb{A}^n$ are the closed subsets $V(f_i)$, $i = 1, \ldots, r$.
- 2. Let k be an algebraically closed field. Let $f \in k[T_1]$ be a non-constant polynomial. Show that

$$X_1 := V(T_2 - f) \subset \mathbb{A}^2_{\mathbb{k}}$$

is isomorphic to \mathbb{A}^1 , and show that

$$X_2 := V(1 - fT_2) \subset \mathbb{A}^2$$

is isomorphic to $\mathbb{A}^1 \setminus \{x_1, \dots, x_n\}$ for some $n \geq 1$. Show that X_1 and X_2 are not isomorphic (look at the invertible elements of their coordinate rings).

3. Let \mathbb{k} be an algebraically closed field. We identify the space M_2 of 2×2 -matrices over \mathbb{k} with \mathbb{A}^4 (with coordinates a, b, c, d). A matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2$ is nilpotent if $A^2 = 0$ or, equivalently, if its determinant and trace are zero. Thus if

$$\mathfrak{a} := (a^2 + bc, d^2 + bc, (a+d)b, (a+d)c), \quad \mathfrak{b} = (ad - bc, a+d),$$

we have that

$$V(\mathfrak{a}) = V(\mathfrak{b}) = \{ A \in M_2 ; A \text{ nilpotent } \}.$$

Show that $rad(\mathfrak{a}) = \mathfrak{b}$ and that $V(\mathfrak{b})$ is an irreducible closed affine cone in $M_2 = \mathbb{A}^4$ (the so-called *nilpotent cone*).

[Note: An affine variety $X \subset \mathbb{A}^n$ is called an affine cone if for all $x \in X$, we have $\lambda x \in X$ for all $\lambda \in \mathbb{k}^*$ or, equivalently, if its defining ideal I(X) is generated by homogeneous polynomials).]

- 4. Let X be any affine scheme. Let $P \in X$. Show that there is a 1-1 correspondence between the prime ideals of the local ring $\mathcal{O}_{X,P}$ and the closed irreducible subsets of X containing P.
- 5. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves on X. Show that φ is surjective if and only if the following condition holds: for every open set $U \subset X$, and for every $s \in \mathcal{G}(U)$, there is a covering $\{U_i\}$ of U, and there are elements $t_i \in \mathcal{F}(U_i)$, such that $\varphi(t_i) = s|_{U_i}$, for all i. Provide an example of a surjective morphism of sheaves $\varphi : \mathcal{F} \to \mathcal{G}$, and an open set U such that $\varphi(U) : \mathcal{F}(U) \to \mathcal{G}(U)$ is not surjective.
- 6. For any open subset $U \subset X$, prove that the functor $\Gamma(U,\cdot)$ from sheaves on X to abelian groups is a left exact functor, i.e. if $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}''$ is an exact sequence of sheaves, then $0 \to \Gamma(U,\mathcal{F}') \to \Gamma(U,\mathcal{F}) \to \Gamma(U,\mathcal{F}'')$ is an exact sequence of groups. Moreover, show that the functor $\Gamma(U,\cdot)$ need not be exact.
- 7. Let $X = \operatorname{Spec}(A)$, where A is a ring.
 - (a) Show that every locally closed irreducible subset of X contains a unique generic point (recall that a point $\eta \in Y$ is a generic point if $\overline{\{\eta\}} = Y$).
 - (b) Show that every irreducible subset of X contains at most one generic point.
 - (c) Now let A be a PID with infinitely many maximal ideals (e.g. $A = \mathbb{Z}$ or $A = \mathbb{k}[T]$). Show that any subset of Spec (A) that consists of infinitely many closed points is irreducible but does not contain a generic point. (Here recall that a point $y \in Y$ is called *closed* if the set $\{y\}$ is closed).
- 8. Let $\varphi: X \to Y$ be a continuous map between topological spaces. Let \mathcal{F} (resp. \mathcal{G}) be a sheaf over X (resp. over Y). Prove that there exist natural morphisms $\lambda: \varphi^{-1}\varphi_*\mathcal{F} \to \mathcal{F}$ and $\mu: \mathcal{G} \to \varphi_*\varphi^{-1}\mathcal{G}$. Deduce the following identity (called the adjunction formula):

$$\operatorname{Hom}_X(\varphi^{-1}\mathcal{G},\mathcal{F}) \simeq \operatorname{Hom}_Y(\mathcal{G},\varphi_*\mathcal{F}).$$

- 9. Let $\varphi: X \to Y$ be a morphism of schemes.
 - (a) Prove that there is a sheaf morphism $j: \varphi^{-1}\mathcal{O}_Y \to \mathcal{O}_X$.
 - (b) Let \mathcal{G} be a \mathcal{O}_Y -module. Prove that we can define a \mathcal{O}_X -module, called the inverse image of \mathcal{G} and written $\varphi^*\mathcal{G}$ via the formula

$$\varphi^*\mathcal{G} = \varphi^{-1}\mathcal{G} \otimes_{\varphi^{-1}\mathcal{O}_Y} \mathcal{O}_X.$$

Prove that this operation is functorial. Prove that $\varphi^*\mathcal{O}_Y = \mathcal{O}_X$.

(c) Let \mathcal{F} (resp. \mathcal{G}) be a \mathcal{O}_X -module (resp. a \mathcal{O}_Y -module). Prove that there are natural morphisms $\lambda: \varphi^*\varphi_*\mathcal{F} \to \mathcal{F}$ and $\mu: \mathcal{G} \to \varphi_*\varphi^*\mathcal{G}$. Deduce the following identity (called the adjunction formula):

$$\operatorname{Hom}_{\mathcal{O}_X}(\varphi^*\mathcal{G},\mathcal{F}) \simeq \operatorname{Hom}_{\mathcal{O}_Y}(\mathcal{G},\varphi_*\mathcal{F}).$$

Profesor: Richard Gonzales Vilcarromero