- Repeat forever
 - Randomly select m^{th} (x, k, f, θ) sample tuple from M in the store.
 - Sample a new value $x' \sim f(\cdot | \theta)$
 - Resume \mathcal{P} by calling ($\mathbf{k} \times \mathbf{x}'$) if sample, observe, or predict reached do:
 - * sample: \mathcal{P} passes us a continuation \mathbf{k}' and an object (f', θ') consisting of a distribution f' with parameter θ' . We sample a value $x' \sim f'(\cdot|\theta')$, store $(x', \mathbf{k}', f', \theta')$, then call $(\mathbf{k}' \times \mathbf{x}')$.
 - * observe: \mathcal{P} passes us a continuation \mathbf{k}' , an object (g', ϕ') consisting of a distribution g' with parameter ϕ' , and a observed value g. We store $(g, \mathbf{k}', g', \phi')$, and call (\mathbf{k}') .
 - * predict: \mathcal{P} passes us a continuation \mathbf{k}' , a label ℓ' , and a value z'. We store (ℓ', z') and call (\mathbf{k}') .
 - When \mathcal{P} terminates we compute

$$\alpha = \min \left(1, \frac{\gamma(\mathbf{x}') M \prod_{j=m}^{M} f_j(x_j | \theta_j)}{\gamma(\mathbf{x}) M' \prod_{j=m}^{M'} f'_j(x'_j | \theta'_j)} \right)$$

and accept proposed trace and and output (ℓ',z') w.p. α , keep old trace and output (ℓ,z) otherwise.