Noise-Induced Randomization in Regression Discontinuity Designs

Dean Eckles, Nikolaos Ignatiadis, Stefan Wager, Han Wu

Presented by: Sai Zhang

November 18, 2022

Outline

Key Argument

Key Argument

Assumption 1: Sharp RD design

- **I.I.D.** samples $\{Y_i(0), Y_i(1), Z_i\} \in \mathbb{R}^3, i = 1, \dots, n$
- treatment assignment: $W_i = 1$ ($\{Z_i \ge c\}$), where $c \in \mathbb{R}$ is the <u>cutoff</u>
- lacksquare observation: $\{Y_i,Z_i\}$ where $Y_i=Y_i(W_i)$

Assumption 2: Noisy running variable

$$Z_i \mid U_i \sim p\left(\cdot \mid U_i\right)$$

where $p(\cdot \mid \cdot)$ is a **known** conditional density w.r.t. to a measure λ , the latent variable U_i has an **unknown** distribution G

Assumption 2: Noisy running variable

$$Z_i \mid U_i \sim \mathcal{N}(U_i, \nu^2), \nu > 0$$

where $p(\cdot \mid \cdot)$ is a **known** conditional density w.r.t. to a measure λ , the latent variable U_i has an **unknown** distribution G

Assumption 2: Noisy running variable

$$Z_i \mid U_i \sim \text{Binomial}(K, U_i), K \in \mathbb{N}$$

where $p(\cdot \mid \cdot)$ is a **known** conditional density w.r.t. to a measure λ , the latent variable U_i has an **unknown** distribution G

Assumption 3: Exogeneity

$$[\{Y_i(0),Y_i(1)\}\perp Z_i]\mid U_i$$

which implies $\mathbb{E}\left[Y_{i}\mid U_{i},Z_{i}\right]=\alpha_{\left(W_{i}\right)}\left(u\right)$

Assumption 3: Exogeneity

$$[\{Y_i(0), Y_i(1)\} \perp Z_i] \mid U_i$$

which implies $\mathbb{E}\left[Y_i \mid U_i, Z_i\right] = \alpha_{(W_i)}\left(u\right)$, where $\alpha_{(w)}\left(u\right) = \mathbb{E}\left[Y_i\left(w\right) \mid U_i = u\right]$ is the response functions for the potential oucomes conditional on the latent variable u

- A1 Sharp RD
- A2 Noisy Z_i : $Z_i \mid U_i \sim p(\cdot \mid U_i)$
- A3 Exogeneity: $\overline{\left[\left\{Y_{i}\left(0\right),Y_{i}\left(1\right)\right\} \perp Z_{i}\right] \mid U_{i}}$

- A1 **Sharp** RD
- A2 Noisy Z_i : $Z_i \mid U_i \sim$
- A3 Exogeneity: $\overline{\left[\left\{Y_{i}\left(0\right),Y_{i}\left(1\right)\right\} \perp Z_{i}\right] \mid U_{i}}$

Proposition 1

Let $\gamma_+(\cdot), \gamma_-(\cdot)$ be measurable functions of Z, then under A1-A3:

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right],$$

$$\mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]$$

where $h(u, \gamma) \coloneqq \int \gamma(z) p(z \mid u) d\lambda(z)$

Proposition 1

Let $\gamma_{+}(\cdot), \gamma_{-}(\cdot)$ be measurable functions of Z, then under A1-A3:

$$\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right], \qquad \qquad \mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)h\left(U,\gamma_{-}\right)\right]$$

where $h(u, \gamma) := \int \gamma(z) p(z \mid u) d\lambda(z)$

Proposition 1

Let $\gamma_+(\cdot), \gamma_-(\cdot)$ be measurable functions of Z, then under A1-A3:

 $\mathbb{E}\left[\gamma_{+}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(1)}\left(U\right)h\left(U,\gamma_{+}\right)\right],$

$$\gamma_+(\cdot), \gamma_-(\cdot)$$
 be measurable functions of Z , then under $A1-A3$

where
$$h(u, \gamma) := \int \gamma(z) p(z \mid u) d\lambda(z)$$

Sai Zhang Eckles et al., 2020

 $\mathbb{E}\left[\gamma_{-}\left(Z\right)Y\right] = \mathbb{E}\left[\alpha_{(0)}\left(U\right)\overline{h}\left(U,\gamma_{-}\right)\right]$

References I

Eckles, D., Ignatiadis, N., Wager, S., & Wu, H. (2020). Noise-induced randomization in regression discontinuity designs. arXiv preprint arXiv:2004.09458.

Thank you!