MATH 7310 Homework 3

James Harbour

February 17, 2022

Problem 1

Let F be increasing and right continuous, and let μ_F be the associated measure. Then $\mu_F(\{a\}) = F(a) - F(a-)$, $\mu_F([a,b]) = F(b-) - F(a-)$, $\mu_F([a,b]) = F(b-) - F(a-)$, and $\mu_F((a,b)) = F(b-) - F(a)$.

Proof. Let $a, b \in \mathbb{R}$ with a < b. Then, take x < a. Then by definition, as (x, a] is an h-interval,

$$\mu_F(\{a\}) \le F(a) - F(x) \implies F(x) \le F(a) - \mu_F(\{a\}).$$

Hence, taking the infimum over all such x < a, we have that

$$F(a-) \le F(a) - \mu_F(\{a\}) \implies \mu_F(\{a\}) \le F(a) - F(a-)$$
.

On the other hand, note that

$$\mu_F(\{a\}) = \inf\left(\sum_{i=1}^{\infty} \mu_F((a_i, b_i]) : a \in \bigcup_{i=1}^{\infty} (a_i, b_i]\right) \le \inf\left(\sum_{i=1}^{\infty} \mu_F((a_i, a]) : a \in \bigcup_{i=1}^{\infty} (a_i, a]\right) = \inf\{\mu_F((a_i, a)) : a \in A\} = 0$$

Also, observe that

$$F(b) - F(a) = \mu_F((a,b)) = \mu_F(([a,b) \setminus \{a\}) \sqcup \{b\}) = \mu_F([a,b)) - \mu_F(\{a\}) + \mu_F(\{b\})$$
$$= \mu_F([a,b)) - F(a) + F(a-) + F(b) - F(b-) \implies \mu_F([a,b)) = F(b-) - F(a-)$$

$$F(b) - F(a) = \mu_F((a, b]) = \mu_F(([a, b] \setminus \{a\})) = \mu_F([a, b]) - F(a) + F(a-) \implies \mu_F([a, b]) = F(b) - F(a-)$$

$$\mu_F((a,b)) = \mu((a,b] \setminus \{b\}) = F(b) - F(a) - F(b) + F(b-) = F(b-) - F(a).$$

Problem 2

Let (X, Σ, μ) be a measure space. We say that $E \subseteq X$ is an atom if

- $E \in \Sigma$,
- $\mu(E) > 0$,

• $\{\mu(F): F \subseteq E, F \in \Sigma\} = \{0, \mu(E)\}.$

We say the μ is diffuse if it has no atoms.

(a) Let (X, d, μ) be a metric measure space. Assume that μ is outer regular, and that

$$\mu(E) = \sup \{ \mu(K) : K \subseteq E \text{ compact} \} \text{ for all Borel } E \subseteq X.$$

If $\mu(\{p\}) = 0$ for all $p \in X$, show that μ is diffuse.

Proof. Note that, for all $p \in X$, by outer regularity we have that

$$0 = \mu(\{p\}) = \inf\{\mu(U) : U \supset \{p\} \text{ open}\}.$$

Suppose, for the sake of contradiction, that μ is not diffuse. Then there exists an atom $E \subseteq X$. As $0 < \mu(E) = \sup\{\mu(K) : K \subseteq E \text{ compact}\}\$ and $\{\mu(K) : K \subseteq E \text{ compact}\}\ = \{0, \mu(E)\}\$, there exists a $K \subseteq E$ compact such that $\mu(K) = \mu(E) > 0$.

For each $p \in K$, as $0 = \inf\{\mu(U) : U \supset \{p\} \text{ open}\}$, there exists an open U_p such that $\mu(U_p) < \mu(K)$. Then $\{U_p : p \in K\}$ is an open cover for K, so there exist $p_1, \ldots, p_n \in K$ such that $\{U_{p_1}, \ldots, U_{p_n}\}$ covers K. Then, as E is an atom, $\mu(U_p \cap K) \leq \mu(U_p) < \mu(K) \implies \mu(U_p \cap K) = 0$. But then, as $K = \bigcup_{i=1}^n U_{p_i} \cap K$,

$$\mu(K) \le \mu\left(\bigcup_{i=1}^n U_{p_i} \cap K\right) \le \sum_{i=1}^n \mu(U_{p_i} \cap K) = 0,$$

contradicting that $\mu(K) > 0$.

(b) Let $F : \mathbb{R} \to \mathbb{R}$ be an increasing, right-continuous function. Show that for $p \in \mathbb{R}$ we have that $\{p\}$ is an atom of μ_F if and only if F is discontinuous at p. Show that μ_F is diffuse if and only if F is continuous.

Proof. Suppose that $\{p\}$ is an atom of μ_F . Then $\mu(p) > 0$. By problem (1), $0 < \mu(\{p\}) = F(p) - F(p-) \implies F(p) > F(p-)$, whence $F(p) \neq F(p-)$ so F is discontinuous at p.

Coversely, suppose that F is discontinuous at p. As F is already right continuous, it follows that $F(p) \neq F(p-)$, as otherwise F would be continuous at p. Then $\mu(p) = F(p) - F(p-) > 0$ as a priori $F(p) \geq F(p-)$, so $\{p\}$ is an atom.

Now suppose that μ_F is diffuse. Then, for $p \in \mathbb{R}$, $\{p\}$ is not an atom whence $\mu(\{p\}) = 0$ so part (a) implies that $0 = \mu(\{p\}) = F(p) - F(p-)$. Thus F(p+) = F(p) = F(p-), so F is continuous.

Conversely, suppose that F is continuous. Then for all $p \in \mathbb{R}$, $\mu(\{p\}) = F(p) - F(p-) = F(p) - F(p) = 0$. As μ_F is outer regular and inner regular with respect to compacts, by part (a) μ_F we have that is diffuse. \square

Problem 3

Let (X, Σ, μ) be a σ -finite measure space.

(i) Suppose that $(E_j)_{j\in J}$ is a collection of sets with $E_j\in\Sigma$ for all $j\in J$ and with $\mu(E_j)>0$ for all $j\in J$, and so that $\mu(E_j\cap E_k)=0$ for all $j\neq k$ in J. Show that J is countable.

Proof. Without loss of generality, assume that $X = \bigsqcup_{n=1}^{\infty} X_n$ where $X_n \in \Sigma$, $\mu(X_n > 0)$ for all $n \in \mathbb{N}$, and $X_i \cap X_j = \emptyset$ for $i \neq j$.

Suppose, for the sake of contradiction, that J is uncountable. For $j \in J$, note that

$$0 < \mu(E_j) = \sum_{n=1}^{\infty} \mu(E_j \cap X_n),$$

whence there exists an $n_j \in \mathbb{N}$ such that $\mu(E_j \cap X_n) > 0$. As there can only be countably many such n_j 's and there are uncountably many E_j 's, there exists a $k \in \mathbb{N}$ and $J_0 \subseteq J$ uncountable such that $\mu(E_j \cap X_k) > 0$ for all $j \in J_0$. By a pigeonhole argument, there exists a b > 0 and an infinite $J'_0 \subseteq J_0$ such that $\mu(E_j \cap X_k) > b$ for all $j \in J'_0$.

Choose a countable sequence $(j_l)_{l=1}^{\infty}$ in J_0 such that $j_l \neq j_s$ for $l \neq s$. For $n \in \mathbb{N}$, set $F_n = E_j \cap X_k$. Note that, for $l \neq s$, we have that $\mu(F_l \cap F_s) = 0$.

We claim that $\mu(\sum_{l=1}^n F_l) = \sum_{l=1}^n \mu(F_l)$ for all $n \in \mathbb{N}$ by induction. Observe that

$$\mu(F_1 \cup F_2) = \mu(F_1) + \mu(F_2) - \mu(F_1 \cap F_2) = \mu(F_1) + \mu(F_2).$$

Now fix n > 2 and suppose that $\mu(\sum_{l=1}^{n-1} F_l) = \sum_{l=1}^{n-1} \mu(F_l)$. Observe that

$$\mu\left(F_n \cap \bigcup_{j=1}^{n-1} F_j\right) = \mu\left(\bigcup_{j=1}^{n-1} F_n \cap F_j\right) \le \sum_{j=1}^{n-1} \mu(F_n \cap F_j) = 0,$$

SO

$$\mu\left(\bigcup_{j=1}^{n} F_{j}\right) = \mu\left(F_{n} \cup \bigcup_{j=1}^{n-1} F_{j}\right) = \mu(F_{n}) + \sum_{j=1}^{n-1} \mu(F_{j}) - \mu\left(F_{n} \cap \bigcup_{j=1}^{n-1} F_{j}\right) = \sum_{j=1}^{n} \mu(F_{j}).$$

By induction, the claim holds for all $n \in \mathbb{N}$.

Observe that, for all $n \in \mathbb{N}$,

$$\mu\left(\bigcup_{j=1}^{\infty} F_j\right) \ge \mu\left(\bigcup_{j=1}^{n} F_j\right) = \sum_{j=1}^{n} \mu(F_j) \ge n \cdot b.$$

Hence $\mu\left(\bigcup_{j=1}^{\infty} F_j\right) = +\infty$, contradicting the fact that $\mu(X_k) < +\infty$.

(ii) Let (Ω, ρ) be the metric space defined in Problem 12 of Chapter 1 of Folland. For $E \in \Sigma$, let [E] be its equivalence class in Ω . Show that

$$\{[E]: E \subseteq X \text{ is an atom}\},\$$

is countable.

Proof. Let \sim be the equivalence relation $E \sim F \iff \mu(E\Delta F) = 0$. Let $\mathcal{E} = \{E : E \subseteq X \text{ is an atom}\}$. Let $\pi : \mathcal{E} \to \mathcal{E}/\sim$ be the canonical surjection. By the axiom of choice, there exists a section $s : \mathcal{E}/\sim \mathcal{E}$ such that $\pi \circ s = id_{\mathcal{E}/\sim}$. Take $E \neq F \in s(\mathcal{E}/\sim)$. Then, as s is injective, $[E] \neq [F]$, so $\mu(E_i\Delta E_j) > 0$.

Suppose, without loss of generality, that $\mu(E_i \setminus E_j) > 0$. Then, as E_i is an atom, $\mu(E_i \setminus E_j) = \mu(E_i)$. Hence

$$\mu(E_i) = \mu(E_i \setminus E_j) + \mu(E_i \cap E_j) = \mu(E_i) + \mu(E_i \cap E_j) \implies \mu(E_i \cap E_j) = 0$$

Hence, $s(\mathcal{E}/\sim)$ has the properties of the collection in part (i), so $s(\mathcal{E}/\sim)$ is countable whence injectivity implies that \mathcal{E}/\sim is countable.

Problem 4

Let (X, Σ, μ) be a diffuse σ -finite measure space. For $A \in \Sigma$, show that:

$$\{\mu(B) : B \subseteq A, B \in \Sigma\} = [0, \mu(A)].$$

Suggestions: Reduce to the finite case. It might be helpful to first show that for every $E \in \Sigma$ with $\mu(E) > 0$, we have $0 = \inf\{\mu(B) : B \subseteq E \text{ and } \mu(B) > 0\}$.

Proof.

(reduction to finite case): Suppose we have shown the claim for finite measure spaces. Write $X = \bigcup_{i=1}^{\infty} X_i$ where $X_i \in \Sigma$ and $\mu(X_i) < +\infty$, and without loss of generality the X_i 's are pairwise disjoint.

If $\mu(E) < +\infty$, then we are done as we assumed that we have already shown the finite case. So, suppose that $\mu(E) = +\infty$. Then $E \subseteq E$ is a witness for $\mu(E) = +\infty$, so take $b \in (0, +\infty)$. As

$$+\infty = \mu(E) = \sum_{i=1}^{\infty} \mu(E \cap X_i),$$

there exist $k, l \in \mathbb{N}$ such that $\sum_{i=k}^{l} \mu(E \cap X_i) > b$. Noting that $\mu(\bigsqcup_{i=k}^{l} E \cap X_i) = \sum_{i=k}^{l} \mu(E \cap X_i) < +\infty$, by the finite case there exists a $B \subseteq \bigsqcup_{i=k}^{l} E \cap X_i$ with $B \in \Sigma$ such that $\mu(B) = b$.

(finite case): Suppose that $E \in \Sigma$ with $\mu(E) > 0$. Since μ is diffuse, there exists a $B_1 \subseteq E$ such that $B_1 \in \Sigma$ and $0 < \mu(B_1) < \mu(E)$. Note that either $\mu(B_1)$ or $\mu(E \setminus B_1)$ is less than $2^{-1}\mu(E)$, so without loss of generality assume that $\mu(B_1) < 2^{-1}\mu(E)$. Now, again as μ is diffuse, there exists a $B_2 \subseteq B_1$ such that $B_2 \in \Sigma$ and $0 < \mu(B_2) < \mu(B_1) < \mu(E)$. Again, we may assume without loss of generality that $\mu(B_2) < 2^{-1}\mu(B_1) < 2^{-2}\mu(E)$. Continuing as such, we obtain a decreasing sequence of sets $E \supset B_1 \supset B_2 \supset \cdots$ such that $0 < \mu(B_n) < 2^{-n}\mu(E)$. It follows that

$$0 = \inf\{\mu(B) : B \subseteq E \text{ and } \mu(B) > 0\}. \tag{1}$$

Suppose, for the sake of contradiction, that the claim is false. Then there exists an $A \in \Sigma \setminus \{\emptyset\}$ and $b \in (0, \mu(A))$ such that $\mu(B) \neq b$ for all $B \subseteq A$ with $B \in \Sigma$. We proceed via transfinite recursion.

First, note that we may choose B_0 such that $0 < \mu(B_0) \le b$. If $\mu(B_0) = b$ then stop; otherwise, we have that $0 < \mu(B_0) < b$. Suppose now that α is an ordinal and we have constructed $(B_{\eta})_{\eta < \alpha}$ pairwise disjoint elements of Σ which are subsets of A such that $\mu(B_{\eta}) > 0$ for all $\eta \in \alpha$, and $b - \sum_{\eta \in \alpha} \mu(B_{\eta}) > 0$. By (1), there exists a $B_{\alpha} \in \Sigma$ with $B_{\alpha} \subseteq A \setminus \bigcup_{\eta \in \alpha} B_{\eta}$ such that

$$0 < \mu(B_{\alpha}) \le b - \sum_{\eta \in \alpha} \mu(B_{\eta}).$$

If $\mu(B_{\alpha}) = b - \sum_{\eta \in \alpha} \mu(B_{\eta})$, stop; otherwise, we have $0 < \sum_{\eta \leq \alpha} \mu(B_{\eta}) < b$.

We claim that this recursion halts at some countable ordinal. Suppose, for the sake of contradiction, that this recursion does not halt at some countable ordinal. Then we reach ω_1 , so we have pairwise disjoint subsets $(B_{\eta})_{\eta < \omega_1}$ of A in Σ such that $\mu(B_{\eta}) > 0$ for all $\eta < \omega_1$. Noting that each $\mu(B_{\eta})$ is finite, we have that

$$\{\eta < \omega_1 : \mu(B_\eta) > 0\} = \bigcup_{n=1}^{\infty} \{\eta < \omega_1 : \frac{1}{n} \le \mu(B_\eta) < \frac{1}{n-1}\}$$

where $1/0 := +\infty$. By uncountability of ω_1 , there exists an $n \in \mathbb{N}$ such that $\{\eta < \omega_1 : \frac{1}{n} \leq \mu(B_{\eta}) < \frac{1}{n-1}\}$ is infinite. Take a countable sequence η_1, η_2, \ldots in $\{\eta < \omega_1 : \frac{1}{n} \leq \mu(B_{\eta}) < \frac{1}{n-1}\}$ with $\eta_i \neq \eta_j$ for $i \neq j$. Then $\bigsqcup_{i=1}^{\infty} B_{\eta_i} \in \Sigma$, whence for all $N \in \mathbb{N}$,

$$\mu\left(\bigsqcup_{i=1}^{\infty} B_{\eta_i}\right) = \sum_{i=1}^{\infty} \mu(B_{\eta_i}) \ge \sum_{i=1}^{N} \mu(B_{\eta_i}) \ge \frac{N}{n}$$

so $\mu(\bigsqcup_{i=1}^{\infty} B_{\eta_i}) = +\infty$, contradicting that $\mu(A) < +\infty$.

Hence, the recursion halts at some countable ordinal α . Then $\sum_{\eta \in \alpha} \mu(B_{\eta}) = \sum_{\eta < \alpha} \mu(B_{\eta}) = b$. Let $\varphi : \mathbb{N} \to \alpha$ be a bijection. By nonnegativity, $b = \sum_{\eta \in \alpha} \mu(B_{\eta}) = \sum_{i=1}^{\infty} \mu(B_{\varphi(i)})$. Moreover, $\bigsqcup_{i=1}^{\infty} B_{\varphi(i)} \in \Sigma$, so

$$b = \sum_{i=1}^{\infty} \mu(B_{\varphi(i)}) = \mu\left(\bigsqcup_{i=1}^{\infty} B_{\varphi(i)}\right)$$

as desired.

Problem 5

Let E be a Lebesgue measurable set.

(a) Let $E \subseteq N$ where N is the nonmeasurable set described in section 1.1. Prove that m(E) = 0.

Proof. As in class, we have that $\bigsqcup_{q \in [-1,1] \cap \mathbb{Q}} E + q \subseteq \bigsqcup_{q \in [-1,1] \cap \mathbb{Q}} N + q \subseteq [-2,3]$, so

$$\sum_{q \in [-1,1] \cap \mathbb{Q}} m(E) = \sum_{q \in [-1,1] \cap \mathbb{Q}} m(E+q) = m \left(\bigsqcup_{q \in [-1,1] \cap \mathbb{Q}} E+q \right) \leq 5$$

so $\sum_{q\in[-1,1]\cap\mathbb{Q}} m(E)$ is whence we must have that m(E)=0.

(b) Prove that if m(E) > 0, then E contains a nonmeasurable set.

Proof. As m(E) > 0, $E \neq \emptyset$ so there exists a $k \in \mathbb{Z}$ such $(E + k) \cap [0, 1] \neq \emptyset$.

Performing the same construction of the Vitali set on $(E + k) \cap [0, 1]$, we obtain a set $V \subseteq (E + k) \cap [0, 1]$ which is non-measurable. Hence, by translation invariance, V - k is non-measurable.

Problem 6

(a) Let \mathcal{E}_q be the family of h-intervals in \mathbb{R} with rational endpoints. Show that \mathcal{E}_q is an elementary family and that the σ -algebra generated by this elementary family is all Borel subsets of \mathbb{R} .

Proof. We have shown in previous homework that \mathcal{E}_q is indeed an elementary family.

Take
$$(a,b] \in \mathcal{E}_q$$
. As $(a,b] = \bigcap_{n=1}^{\infty} (a,b+\frac{1}{n}), (a,b] \in \mathcal{B}_{\mathbb{R}}$. Thus $\Sigma(\mathcal{E}_q) \subseteq \mathcal{B}_{\mathbb{R}}$.

On the other hand, any $(\alpha, \beta) \in \mathcal{B}_{\mathbb{R}}$ can be written as a countable union of open rational intervals, so $(\alpha, \beta) \in \Sigma(\mathcal{E}_q)$. Hence, as open intervals generate $\mathcal{B}_{\mathbb{R}}$, it follows that $\mathcal{B}_{\mathbb{R}} \subseteq \Sigma(\mathcal{E}_q)$.

(b) Suppose that $\mu: \mathcal{B}_{\mathbb{R}} \to [0, \infty]$ is a measure such that $\mu(E + x) = \mu(E)$ for all $E \in \mathcal{B}_{\mathbb{R}}, x \in \mathbb{R}$. Assume that $0 < \mu((0, 1]) < +\infty$. Show that $\mu(E) = \mu((0, 1])m(E)$ for all $E \in \mathcal{B}_{\mathbb{R}}$.

Proof. First, suppose that $n \in \mathbb{N}$. Observe that

$$\mu((0,1]) = \mu\left(\bigsqcup_{j=0}^{n-1}(\frac{j}{n},\frac{j+1}{n}]\right) = \sum_{j=0}^{n-1}\mu((\frac{j}{n},\frac{j+1}{n}]) = n \cdot \mu((0,\frac{1}{n}]) \implies \mu((0,\frac{1}{n}]) = \frac{1}{n}\mu((0,1]) = \mu((0,1])m((0,\frac{1}{n}])$$

Now let $q = \frac{k}{n} \in \mathbb{Q}$. Then

$$\mu((0,q]) = \sum_{i=0}^{k} \mu\left(\left(\frac{k}{n}, \frac{k+1}{n}\right]\right) = \sum_{i=0}^{k} \mu\left(\left(0, \frac{1}{n}\right]\right) = k \cdot \mu\left(\left(0, \frac{1}{n}\right]\right) = k \cdot \mu\left(\left(0, 1\right]\right) \frac{1}{n} = \mu((0,1])m((0,q]).$$

Consider the algebra $\mathcal{A} = \{\text{finite disjoint unions of elements of } E_q \}$. Note that, by part (a), $\Sigma(\mathcal{A}) = \mathcal{B}_{\mathbb{R}}$. Consider the measure $\nu : \mathcal{B}_{\mathbb{R}} \to [0, +\infty]$ given by $\nu(E) = \mu((0, 1]) \cdot m(E)$ for $E \in \mathcal{B}_{\mathbb{R}}$.

We have shown that $\mu|_{\mathcal{A}} = \nu|_{\mathcal{A}}$, whence $\mu = \nu$, as desired.