Curso de Cálculo Diferencial e Integral II DPAA-2.086 - Cálculo Diferencial e Integral II

Prof. Thiago VedoVatto thiago.vedovatto@ifg.edu.br thiagovedovatto.site

Instituto Federal de Educação, Ciência e Tecnologia de Goiás Campus de Goiânia

17 de dezembro de 2020

Teste da Comparação termo à termo

Suponha que $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ sejam séries com termos positivos.

- **1** Se $\sum_{n=1}^{\infty} b_n$ for convergente e $a_n \leq b_n$ para todo n, então $\sum_{n=1}^{\infty} a_n$ também será convergente.
- 2 Se $\sum_{n=1}^{\infty} b_n$ for divergente e $a_n \ge b_n$ para todo n, então $\sum_{n=1}^{\infty} a_n$ também será divergente.

Determine se a série $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{\sqrt{n^3 + 4n + 3}}$ é convergente ou divergente.

A série dada é uma série com termos positivos. Observe que para todo $n \ge 1$.

$$\frac{\sqrt[3]{n}}{\sqrt{n^3 + 4n + 3}} \le \frac{\sqrt[3]{n}}{\sqrt{n^3}} = \frac{n^{1/3}}{n^{3/2}} = \frac{1}{n^{7/6}}$$

Dessa forma podemos aplicar o teste da comparação usando a série $\sum_{n=1}^{\infty} \frac{1}{n^{7/6}}$.

Note que se trata de uma série-p com p=7/6>1, portanto é uma série convergente.

Como $\frac{\sqrt[3]{n}}{\sqrt{n^3+4n+3}} \le \frac{1}{n^{7/6}}$ para todo $n \ge 1$, então a série $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{\sqrt{n^3+4n+3}}$ é convergente pelo Teste da Comparação termo à termo.

Determine se a série $\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n-1}}$ é convergente ou divergente.

A série dada é uma série com termos positivos. O termo geral da sequência que define a série não é definido quando n=1, portanto:

$$\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n-1}} = \sum_{n=2}^{\infty} \frac{n^2}{\sqrt{n-1}}$$

Observe que para todo $n \geq 2$.

$$\frac{n^2}{\sqrt{n-1}} > \frac{1}{\sqrt{n-1}} > \frac{1}{n-1} > \frac{1}{n}$$

Dessa forma podemos aplicar o teste da comparação usando a série $\sum_{n=1}^{\infty} \frac{1}{n}$.

Note que se trata da série harmônica, portanto é uma série divergente.

Como $\frac{n^2}{\sqrt{n-1}} \ge \frac{1}{n}$ para todo $n \ge 2$, então a série $\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n-1}}$ é divergente pelo Teste da Comparação termo à termo.

Determine se a série $\sum_{n=0}^{\infty} \frac{4}{3^n+1}$ é convergente ou divergente.

A série dada é uma série com termos positivos. Observe que para todo $n \ge 1$.

$$\frac{4}{3^n+1} < \frac{4}{3^n} = \frac{4}{3} \left(\frac{1}{3}\right)^{n-1}$$

Dessa forma podemos aplicar o teste da comparação usando a série geométrica

$$\sum_{n=1}^{\infty} \frac{4}{3} \left(\frac{1}{3}\right)^{n-1}.$$

com termo inicial $a = \frac{4}{3}$ e razão comum $r = \frac{1}{3}$.

Note que r < 1, então essa série geométrica será convergente.

Como
$$\frac{4}{3^n+1} \le \frac{4}{3} \left(\frac{1}{3}\right)^{n-1}$$
 para todo $n \ge 1$, então a série $\sum_{n=1}^{\infty} \frac{4}{3^n+1}$ é convergente pelo Teste da

Comparação termo à termo.

Teste da Comparação com Limite

Suponha que $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ sejam séries com termos positivos. Se

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c$$

onde c é um número finito e c>0, então ambas as séries convergem ou ambas as séries divergem.

Determine se a série $\sum_{i=1}^{\infty} \frac{\ln n}{n}$ é convergente ou divergente.

A série dada é uma série com termos positivos cujo termo geral é $a_n = \frac{\ln n}{n}$. Vamos aplicar

o Teste da Comparação com limite usando a série harmônica $\sum_{n=1}^{\infty} \frac{1}{n}$. Seu termo geral é

 $b_n = \frac{1}{n}$. Note que:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{\ln n}{n}}{\frac{1}{n}} = \lim_{n \to \infty} \ln n = \infty$$

Como o limite é infinito, então pelo Teste da Comparação com limite a série $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ é divergente.

Determine se a série $\sum_{n=1}^{\infty} \frac{1}{n^2 + 2n}$ é convergente ou divergente.

A série dada é uma série com termos positivos cujo termo geral é $a_n = \frac{1}{n^2 + 2n}$. Vamos aplicar o

Teste da Comparação com limite usando a série- $p \sum_{n=1}^{\infty} \frac{1}{n^2}$ com p=2. Seu termo geral é $b_n=\frac{1}{n^2}$.

Note que:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{n^2 + 2n}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^2}{n^2 + 2n} = \lim_{n \to \infty} \frac{n^2/n^2}{(n^2 + 2n)/n^2} = \lim_{n \to \infty} \frac{1}{1 + 2/n} = 1$$

Como o limite e uma constante positiva, então pelo Teste da Comparação com limite a série $\sum_{n=1}^{\infty} \frac{1}{n^2 + 2n}$ é convergente.

Exercício¹

Determine se a série $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ é convergente ou divergente.

A série dada é uma série com termos positivos cujo termo geral é $a_n = \frac{1}{\sqrt{n}}$. Vamos aplicar o Teste

da Comparação com limite usando a série harmônica $\sum_{n=0}^{\infty} \frac{1}{n}$. Seu termo geral é $b_n = \frac{1}{n}$. Note que:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{\sqrt{n}}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{\sqrt{n}} = \lim_{n \to \infty} \sqrt{n} = \infty$$

Como o limite é infinito, então pelo Teste da Comparação com limite a série $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ é divergente.