TAREFA 6 - Algoritmo Genético

- Diego Santos Gonçalves 20183012537
- Mariana Bulgarelli Alves dos Santos 20183000330

Para executar este notebook, é necessária a instalação das seguintes bibliotecas:

- numpy
- pandas
- random
- matplotlib para criação dos gráficos
- mpl_toolkits para criação dos gráficos 3d
- tqdm para barra progresso

Importe das bibiliotecas utilizadas no código

```
In [17]:
```

```
from tqdm import tqdm
import math
import random
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits import mplot3d
```

Função Objetivo

Nós implementamos a função objetivo dada para o problema: função alpine 02. Neste caso nossa função terá apenas duas entradas (x1, x2).

```
In [18]:
```

```
# Funcao Objetivo
def f_alpine02(x):
    resultado = 1
    for i, x_i in x.iteritems():
        resultado = resultado * math.sin(x_i) * math.sqrt(x_i)
    return resultado
```

Com base na função objetivo, nós ordenamos a população que temos

```
In [19]:
```

```
# Ordenar
def ordena(df):
    df['aux'] = df.apply(f_alpine02, axis=1)
    df = df.sort_values('aux', ascending=False).drop('aux', axis = 1)
    return df.reset_index(drop=True)
```

Função Fitness

A função de aptidão escolhida, foi o Ranking Linear. Nesta função é necessário ordenar pelo valor da função objetivos os individuos da população. Depois disso é atribuido um valor entre um máximo e um mínimo escolhido.

```
In [20]:
```

```
def ranking_linear(df, max, min):
    Fx = []
    df_ordenado = ordena(df)
    df_ordenado = df_ordenado.reset_index(drop = True)
    for i, row in df_ordenado.iterrows():
        resultado = min + (max - min)*(( len(df_ordenado) - i - 1)/( len(df_ordenado) - 1))
        Fx.append(resultado)
    return Fx
```

Mutação Uniforme

A mutação escolhida foi a uniforme. Neste caso, se para o atributo do individuo, se o valor randômico for menor que a taxa de mutação (5%) será atribuído um valor randômico do espaço de busca (entre 0 e 10).

```
In [21]:
```

```
# Mutacao
def mutacao_uniforme(individuo, tx_mutacao):
    individuo_mutado = []
    # como a taxa de mutacao eh entre 0 e 1, temos:
    for x_i in individuo:
        rand = np.random.random()
        if rand < tx_mutacao:
            x_i = np.random.uniform(0.0, 10.0)
        individuo_mutado.append(x_i)
    return individuo_mutado</pre>
```

Crossover Aritmético

O crossover escolhido foi o aritmético. Aqui, um valor randomico alfa é selecionado. Esse alfa será utilizado para fazer combinação linear dos atributos dos pais para a geração dos filhos, caso seja menor que a taxa de crosover.

In [22]:

```
def crossover(P1, P2, tx_crossover):
    C1 = P1
    C2 = P2
    alpha = np.random.random()
    rand = np.random.random()
    for i in range(len(P1)):
        t = alpha*P1[i] + (1 - alpha)*P2[i]
        s = alpha*P2[i] + (1 - alpha)*P1[i]

        if (t >= 0 and t <= 10 and s >= 0 and s <= 10) and tx_crossover > rand:
            C1[i] = t
            C2[i] = s
return (C1, C2)
```

Metodo de Seleção: Roleta

Usando o Ranking Linear para fazer a soma acumulada, o indivíduo é escolhido com base num valor randômico (no caso utilizamos a função random.triangular(), que aumenta a probabilidade do valor escolhido estar próximo de um ponto escolhido, dessa forma queremos priorizar a escolha de melhores indivíduos).

In [44]:

```
# Metodo de selecao - roleta
def selecao_roleta(Fx, df):
    posicao = 0
    soma_acumulada = np.cumsum(Fx)
    tamanho = len(Fx)
    limite = soma_acumulada[tamanho-1]
    divisao = np.random.randint(1,9)
    rand = random.triangular(0, 100,limite)

for i, valor in enumerate(soma_acumulada):
    if rand <= valor:
        posicao = i
        break

return df.loc[posicao]</pre>
```

In [45]:

```
def plot_geracao_3d(df, geracao):
   populacao = df.copy()
   populacao['fx'] = populacao.apply(f_alpine02, axis=1)
   if geracao%10 == 0:
       fig = plt.figure(figsize= (16,9))
       ax = plt.axes(projection = '3d')
       ax.grid(b = True, color = 'grey', linestyle = '-.', linewidth = 0.3, alpha = 0.2)
       my_cmap = plt.get_cmap('hsv')
       sctt = ax.scatter3D(populacao['X1'],populacao['X2'], populacao["fx"], alpha = 0.8, c=populacao["fx"], cma
p= my_cmap, marker = '.')
       plt.title(f"Funcao alpine2 - Geracao {geracao}")
       ax.set_xlabel('x1')
       ax.set_ylabel('x2')
       ax.set_zlabel('f(x1,x2)')
       fig.colorbar(sctt, ax=ax, shrink= 0.5, aspect = 5)
       plt.show()
       plt.clf()
       plt.close()
```

In [46]:

```
def plot_evolucao_temporal(melhores, piores, medias):
    x = [i for i in range(0,len(melhores))]
    y_melhor = []
    y_pior = []
    y_media = []
    for i in range(len(melhores)):
         y_melhor.append(f_alpine02(melhores[i]))
         y_media.append(f_alpine02(medias[i]))
         y_pior.append(f_alpine02(piores[i]))
    fig = plt.figure(figsize= (16,9))
    ax = plt.axes()
    plt.plot(x,y_melhor,'b-.', label = "Melhor")
plt.plot(x,y_media, 'g-.', label = "Media")
plt.plot(x,y_pior, 'r-.', label = "Pior")
    plt.title("Evolucao temporal do algoritmo")
    ax.set xlabel('Geracao')
    ax.set ylabel('f(x1,x2)')
    plt.legend()
    plt.show()
    plt.clf()
    plt.close()
```

In [47]:

```
def plot_variaveis_populacao(melhores, piores, medias):
    x1 melhores = []
    x2_melhores = []
    x1_{medias} = []
    x2 \text{ medias} = []
    x1 piores = []
    x2_piores = []
    for i in range(len(melhores)):
        x1 melhores.append(melhores[i]['X1'])
        x2_melhores.append(melhores[i]['X2'])
        x1_medias.append(medias[i]['X1'])
        x2 medias.append(medias[i]['X2'])
        x1 piores.append(piores[i]['X1'])
        x2_piores.append(piores[i]['X2'])
    fig = plt.figure(figsize= (16,9))
    ax = plt.axes()
    plt.plot(x1_melhores,x2_melhores,'b-.', label = "Melhor")
    plt.plot(x1_medias, x2_medias, 'g-.', label = "Media")
plt.plot(x1_piores, x2_piores, 'r-.', label = "Pior")
    plt.title("Evolucao dos atributos da populacao")
    ax.set_xlabel('x1')
    ax.set_ylabel('x2')
    plt.legend()
    plt.show()
    plt.clf()
    plt.close()
```

```
In [48]:
```

```
def populacao_media(populacao):
    return populacao.mean(axis = 0)
```

Algorítmo Genético

Na célula abaixo está a implementação do algorítmo genético. Criamos uma população inicial com tamanho 1000 com atributos com valores aleatórios entre 0 e 10. Escolhemos uma taxa de mutação de 5% e uma taxa de cruzamento de 80%, que será aplicado nos métodos correspondentes. Após experimentos, vimos que 50 gerações já são suficiente para a convergência do método. Outra decisão que tivemos, era que um indivíduo não poderia se reproduzir com ele mesmo, de forma que não gere indivíduos duplicados.

In [49]:

```
# Parametros do algoritmo genetico
tamanho_pop: int = 1000
tx mutacao = 0.05
tx_crossover = 0.8
# num geracoes
total_geracoes = 50
melhor\_geracao = 0
# Cria dataframe e preenche com valores randomicos
populacao = pd.DataFrame(np.random.uniform(0.0, 10.0, size=(tamanho pop, 2)), columns=['X1', 'X2'])
#print(populacao)
# melhor
best = []
pior = []
melhor = []
media = []
for geracao in tqdm(range(total_geracoes)) :
    # ordena
   populacao_ordenada = ordena(populacao.copy()).reset_index(drop = True)
    # Pegar melhor individuo da geracao atual
   if geracao == 0:
       best = populacao ordenada.loc[0]
   elif f alpine02(best) < f alpine02(populacao ordenada.loc[0]):</pre>
       best = populacao ordenada.loc[0]
       melhor geracao = geracao
   melhor.append(populacao_ordenada.loc[0])
   pior.append(populacao ordenada.loc[tamanho pop-1])
   media.append(populacao_media(populacao_ordenada.copy()))
   Fx = ranking_linear(populacao_ordenada, 10, 0)
   populacao ordenada = populacao ordenada.drop('aux', axis=1)
   nova populacao = pd.DataFrame(columns = ['X1', 'X2'])
   for i in range(0, int(tamanho pop/2)):
        # chama selecao
       P1 = selecao_roleta(Fx, populacao_ordenada)
        # para que não haja repetição de individuos
       while(True):
           P2 = selecao roleta(Fx, populacao ordenada)
            if( P2['X1'] == P1['X1'] and P2['X2'] == P1['X2']):
       # transforma P1 e P2 em vetor
       P1 = P1.to_numpy()
       P2 = P2.to_numpy()
        # faz crossover
       C1, C2 = crossover(P1, P2, tx crossover)
        # Realizar mutacao de C1 e C2
       C1 = mutacao_uniforme(C1, tx_mutacao)
       C2 = mutacao uniforme(C2, tx mutacao)
        nova\_populacao=nova\_populacao.append(pd.DataFrame(data=[C1, C2], columns = ['X1', 'X2'] ))
    populacao = nova_populacao.reset_index(drop=True)
   plot_geracao_3d(populacao,geracao)
plot_geracao_3d(populacao, geracao)
print("======="")
print("Best individuo: ")
print(best)
print("Funcao alpine02: ",f_alpine02(best))
print("Geracao: ", melhor geracao)
```

Geracao: 0

| 0/50 [00:00<?, ?it/s]

20%| | 10/50 [00:54<02:13, 3.35s/it]

Geracao: 10

40%| | 20/50 [01:15<01:14, 2.50s/it]

Geracao: 20

60%| 30/50 [01:40<00:41, 2.05s/it]

Geracao: 30

80%| 40/50 [02:01<00:14, 1.47s/it]

Geracao: 40

100%| 50/50 [02:19<00:00, 2.79s/it]

Best individuo: X1 7.879557 X2 7.929424

Name: 0, dtype: float64

Funcao alpine02: 7.879389838147665

Geracao: 24

Análises

Gráfico População por geração

Como podemos ver nos gráficos tridimensionais acima, nosso algorítmo apresentou uma rápida taxa de convergência, atingindo o máximo do espaço de buscas com poucas gerações. Isso aconteceu pois, os melhores indivíduos tem maior prioridades de seleção devido a função triangular aplicada para escolher um valor aleatório. Antes de utilizarmos este método, nosso algorítmo ficava convergino no máximo local em torno de 4.75 nas primeiras gerações. Após a aplicação conseguimos um máximo local proximo a 7.88 na maioria dos casos.

Gráfico Evolução Temporal do algoritmo

O gráfico abaixo apresenta a evolução temporal do algorítmo genético que implementamos. Neste gráfico podemos notar que houve rápida convergência para o melhor resultado em poucas gerações. É possível ver também que os valores médios e máximos por geração são bem proximos, enquanto os piores estão bem abaixo.

In [50]:

plot_evolucao_temporal(melhor,media,pior)

Gráfico evolução das variáveis por geração

O gráfico abaixo fizemos apenas para testar como as variáveis (x1 e x2) do pior e o melhor indivíduo e o valor médio da população de cada geração ficaram. Cada ponto representa uma geração diferente e os eixos são as variáveis. Algo interessante de notar é que os atributos dos melhores indivíduos apareceram bem próximos, enquanto o pior de cada geração apareceu bastante variado.

In [51]:

Tabela Final

Genético

Tamanho da população	1000
Forma de seleção	Roleta
Tipo de crossover	Aritmético
Função objetivo	Alpine2
Função de Fitness	Ranking Linear
Número de Gerações	50
Taxa de Crossover	0.8
Taxa de Mutação	0.05