Semillero de Programación Algoritmos de Teoría de Números

Ana Echavarría – Juan Francisco Cardona

Universidad EAFIT

17 de mayo de 2013

Contenido

- Problemas semana anterior
- 2 Hallar los divisores de un número
- 3 Máximo común divisor y mínimo común múltiplo
- Criba de Eratóstenes
- 6 Hallar la factorización prima de un número
- 6 Exponenciación logarítmica
- Combinatoria
- 8 Tarea

Contenido

Problemas semana anterior

Problema A - Internet Bandwidth

Hay que hallar el máximo flujo que puede enviarse desde una fuente a un sumidero

Implementación I

```
const int MAXN = 105;
  // Lista de adyacencia de la red residual. Solo las conexiones no
   // los pesos. Se usa para que el BFS sea rapido
   vector <int> g [MAXN];
   int c [MAXN] [MAXN]; // Capacidad de aristas de la red de flujos
   int f [MAXN][MAXN]; // El flujo de cada arista
   //El predecesor de cada nodo en el camino de aumentacion de s a t
   int prev [MAXN];
9
10
   void connect (int i, int j, int cap){
        // Agregar SIEMPRE las dos aristas al grafo la red de flujos
11
       // sea dirigida. Esto es porque g representa la red residual
12
       // que tiene aristas en los dos sentidos
13
       g[i].push_back(j);
14
       g[j].push_back(i);
15
       c[i][j] += cap;
16
       // Omitir esta linea si el grafo es dirigido
17
       c[j][i] += cap;
18
```

Implementación II

37

```
19 }
20
    int maxflow(int s, int t, int n){
21
22
        // Inicializar el flujo en 0
        for (int i = 0; i <= n; i++)</pre>
23
            for (int j = 0; j <= n; j++)
24
                 f[i][j] = 0;
25
26
        int flow = 0;
27
        while (true){
28
            // Encontrar camino entre s y t con bfs
29
            for (int i = 0; i <= n; i++) prev[i] = -1;</pre>
30
31
            queue <int> q;
32
            q.push(s);
33
            prev[s] = -2; // s no tiene nodo anterior en el camino
34
35
36
```

Implementación III

56

```
38
            while (q.size() > 0){
39
                 int u = q.front(); q.pop();
40
                 if (u == t) break;
41
                 for (int i = 0; i < g[u].size(); ++i){</pre>
42
                     int v = g[u][i];
43
                     // Si el nodo no esta visitado
44
                     // y el peso en la red residual es > 0
45
                     if (prev[v] == -1 \text{ and } c[u][v] - f[u][v] > 0){
46
                          q.push(v);
47
                         prev[v] = u;
48
49
50
51
            // Si no se llego a t en el camino es porque no hay mas
52
            // caminos de aumentacion y el ciclo se detiene
53
            if (prev[t] == -1) break;
54
55
```

Implementación IV

75

```
57
58
59
60
            // Hallar el cuello de botella
61
            // Se recorre el camino desde t hasta s
62
            int extra = 1 << 30;</pre>
63
            int end = t:
64
            while (end != s){
65
                 int start = prev[end];
66
                // El cuello de botella es el minimo peso del camino
67
                // en la red residual. El peso en la red residual es
68
                 // la capacidad de la arista menos el flujo
69
                extra = min(extra, c[start][end] - f[start][end]);
70
                end = start;
71
72
73
74
```

Implementación V

```
76
77
78
79
            // Bombear el flujo extra por la arista
            end = t;
80
            while (end != s){
81
                 int start = prev[end];
82
                 f[start][end] += extra;
83
                 f[end][start] = -f[start][end];
84
                 end = start;
85
            }
86
87
            // Agregar el flujo enviado a la respuesta
88
            flow += extra;
89
90
91
92
        return flow;
   }
93
94
```

Implementación VI

```
int main(){
95
         int run = 1;
96
         int n;
97
98
         while (cin >> n){
              if (n == 0) break;
99
100
             // Limpiar el grafo y la capacidad
101
             for (int i = 0; i \le n; i++){
102
                  g[i].clear();
103
                  for (int j = 0; j \le n; j++){
104
                     c[i][j] = 0;
105
106
107
108
             // Leer el grafo
109
              int s, t, edges;
110
111
              cin >> s >> t >> edges;
             for (int i = 0; i < edges; i++){</pre>
112
                  int n1, n2, cap;
113
```

Implementación VII

```
cin >> n1 >> n2 >> cap;
114
                  connect(n1, n2, cap);
115
             }
116
117
             // Imprimir la respuesta
118
             printf("Network %d\n", run++);
119
             printf("The bandwidth is %d.\n\n", maxflow(s, t, n));
120
121
122
         return 0;
123
124
```

Problema B - Angry Programmer

- Usar el algoritmo de máximo flujo para hallar el mínimo corte
- Dividir cada nodo en 2 para poder tener en cuenta la capacidad de los nodos.
- Para que no se puedan destruir la fuente y el sumidero ponerles capacidad infinita.

Implementación I

```
const int MAXN = 2 * 50 + 5;
2 const int INF = INT_MAX;
  vector < int > g [MAXN];
   int c [MAXN] [MAXN];
   int f [MAXN] [MAXN];
   int prev [MAXN];
7
   void refresh (int n){
        for (int i = 0; i < 2 * n; i++){
9
            g[i].clear();
10
            for (int j = 0; j < 2 * n; j++){
11
                f[i][j] = 0;
12
                c[i][j] = 0;
13
14
15
16
17
18
```

Implementación II

```
void join (int u, int v, int cost){
19
        int in_u = 2 * u;
20
        int out_u = 2 * u + 1;
21
22
        int in_v = 2 * v;
23
        int out v = 2 * v + 1:
24
25
        g[out_u].push_back(in_v);
26
        g[in_v].push_back(out_u);
27
        c[out_u][in_v] += cost;
28
29
        g[out_v].push_back(in_u);
30
        g[in_u].push_back(out_v);
31
        c[out_v][in_u] += cost;
32
33
   }
34
35
36
37
```

Implementación III

```
void join_self (int u, int cost){
38
        g[2 * u].push_back(2 * u + 1);
39
        g[2 * u + 1].push_back(2 * u);
40
        c[2 * u][2 * u + 1] += cost:
41
        c[2 * u + 1][2 * u] += cost;
42
   }
43
44
    bool path(int s, int t){
45
        for (int i = 0; i <= t; i++)</pre>
46
            prev[i] = -2;
47
48
        queue <int> q;
49
        q.push(s);
50
        prev[s] = -1;
51
        while (q.size() > 0){
52
             int u = q.front();
53
            q.pop();
54
             if (u == t) return true;
55
            for (int i = 0; i < g[u].size(); i++){</pre>
56
```

Implementación IV

```
int v = g[u][i];
57
                 if (prev[v] == -2 \text{ and } c[u][v] - f[u][v] > 0){
58
                      q.push(v);
59
                      prev[v] = u;
60
61
62
63
        return false:
64
    }
65
66
    int bottleneck(int s, int t){
67
        int curr = t;
68
        int ans = INF;
69
        while (curr != s){
70
             ans = min (ans, c[prev[curr]][curr] -
71
        f[prev[curr]][curr]);
             curr = prev[curr];
72
73
        assert(prev[s] == -1);
74
```

Implementación V

```
return ans;
75
    }
76
77
78
    void pump (int s, int t, int extra){
        int curr = t;
79
        while (curr != s){
80
            f[prev[curr]][curr] += extra;
81
            f[curr][prev[curr]] -= extra;
82
            curr = prev[curr];
83
84
    }
85
86
    int max_flow(int s, int t){
87
        int ans = 0;
88
        while (true){
89
            // Find path
90
            if (!path(s, t)) break;
91
            // Find bottleneck
92
            int extra = bottleneck(s, t);
93
```

Implementación VI

```
// Pump bottleneck
94
             pump(s, t, extra);
95
             // Add flow to answer
96
             ans += extra:
97
98
         return ans;
99
    }
100
101
     int main(){
102
         int nodes, edges;
103
         while (scanf("%d %d", &nodes, &edges) == 2){
104
             if (nodes == 0 and edges == 0) break;
105
106
             refresh(nodes);
107
             // Crear los nodos (entrada y salida)
108
             for (int i = 1; i < nodes - 1; i++){</pre>
109
                  int j, cost;
110
111
                  cin >> j >> cost;
112
                  j--;
```

Implementación VII

```
join_self(j, cost);
113
114
              // El peso de la fuente y el sumidero es INF
115
              join_self(0, INF);
116
              join_self(nodes - 1, INF);
117
118
              // Unir las aristas
119
              for (int i = 0; i < edges; i++){</pre>
120
                  int u, v, cost;
121
                  cin >> u >> v >> cost;
122
                  u--; v--;
123
                  join(u, v, cost);
124
              }
125
126
              cout << max_flow(0, 2 * nodes - 1) << endl;</pre>
127
128
         return 0;
129
130
```

Contenido

2 Hallar los divisores de un número

Divisores de un número

- \bullet Los divisores vienen de a parejas, si a|b entonces $\frac{b}{a}|b$
- Es por esto que basta con mirar hasta la raíz cuadrada del número para hallar sus divisores

Divisores de un número

```
void divisors(int n){
int i;
for (i = 1; i * i < n; ++i){
        if (n % i == 0) printf("%d\n%d\n", i, n/i);
}

// Si el numero es un cuadrado perfecto, imprimir su raiz cuadrara una sola vez

if (i * i == n) printf("%d\n", i);
}</pre>
```

Complejidad

Pregunta

¿Cuántos números hay que revisar para hallar todos los divisores de un número n?

De acuerdo a eso, ¿cuál es la complejidad del algoritmo?

Complejidad

Pregunta

¿Cuántos números hay que revisar para hallar todos los divisores de un número n?

De acuerdo a eso, ¿cuál es la complejidad del algoritmo?

Respuesta

La complejidad de este algoritmo es $O(\sqrt{n})$

Contenido

3 Máximo común divisor y mínimo común múltiplo

Máximo común divisor

GCD

Para hallar el máximo común divisor entre dos números a y b ejecutar el comando __gcd(a, b)

Mínimo común múltiplo

LCM

El mínimo común múltiplo se puede hallar en términos del máximo común divisor así:

$$lcm(a,b) = \frac{|a \cdot b|}{\gcd(a,b)}$$

Propiedades

- Si $c|a \ y \ c|b$ entonces $c|\gcd(a,b)$
- Si $a|b \cdot c$ y gcd(a,b) = 1 entonces a|c
- \bullet gcd(a,b) es una combinación lineal entera de a y b

Contenido

- ullet Es un algoritmo para hallar todos los números primos hasta un límite n
- Inicialmente asume marca todos los números de 2 hasta n como no visitados y el 1 como visitado
- Empieza a recorrer los números uno por uno
- Cuando encuentra un número no visitado empieza a marcar todos sus múltiplos (no él) como visitados
- Cuando llega al número n, los números que estén marcados como no visitados son los números primos del intervalo [1, n]

										P
_	2	3	4	5	6	7	8	9	10	
11	12	13	14	15	16	17	18	19	20	2
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	
71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95	96	97	98	99	100	
101	102	103	104	105	106	107	108	109	110	
111	112	113	114	115	116	117	118	119	120	

Prime numbers

	2	3	4	5	6	7	8	9	10	Prime numbers
11	12	13	14	15	16	17	18	19	20	2
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	
71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95	96	97	98	99	100	
101	102	103	104	105	106	107	108	109	110	
111	112	113	114	115	116	117	118	119	120	

	2	3	4	5	6	7	8	9	10	Prime numbers
11	12	13	14	15	16	17	18	19	20	2 3
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	
71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95	96	97	98	99	100	
101	102	103	104	105	106	107	108	109	110	
111	112	113	114	115	116	117	118	119	120	

	2	3	4	5	6	7	8	9	10	Prim	e numbers
11	12	13	14	15	16	17	18	19	20	2	3
21	22	23	24	25	26	27	28	29	30		
31	32	33	34	35	36	37	38	39	40		
41	42	43	44	45	46	47	48	49	50		
51	52	53	54	55	56	57	58	59	60		
61	62	63	64	65	66	67	68	69	70		
71	72	73	74	75	76	77	78	79	80		
81	82	83	84	85	86	87	88	89	90		
91	92	93	94	95	96	97	98	99	100		
101	102	103	104	105	106	107	108	109	110		
111	112	113	114	115	116	117	118	119	120		

	2	3	4	5	6	7	8	9	10	Pri	ne nu	mbers
11	12	13	14	15	16	17	18	19	20	2	3	5
21	22	23	24	25	26	27	28	29	30			
31	32	33	34	35	36	37	38	39	40			
41	42	43	44	45	46	47	48	49	50			
51	52	53	54	55	56	57	58	59	60			
61	62	63	64	65	66	67	68	69	70			
71	72	73	74	75	76	77	78	79	80			
81	82	83	84	85	86	87	88	89	90			
91	92	93	94	95	96	97	98	99	100			
101	102	103	104	105	106	107	108	109	110			
111	112	113	114	115	116	117	118	119	120			

	2	3	4	5	6	7	8	9	10	Pri	me nu	ımbers
11	12	13	14	15	16	17	18	19	20	2	3	5
21	22	23	24	25	26	27	28	29	30			
31	32	33	34	35	36	37	38	39	40			
41	42	43	44	45	46	47	48	49	50			
51	52	53	54	55	56	57	58	59	60			
61	62	63	64	65	66	67	68	69	70			
71	72	73	74	75	76	77	78	79	80			
81	82	83	84	85	86	87	88	89	90			
91	92	93	94	95	96	97	98	99	100			
101	102	103	104	105	106	107	108	109	110			
111	112	113	114	115	116	117	118	119	120			

	2	3	4	5	6	7	8	9	10	Pri	me nu	mber	s
11	12	13	14	15	16	17	18	19	20	2	3	5	7
21	22	23	24	25	26	27	28	29	30				
31	32	33	34	35	36	37	38	39	40				
41	42	43	44	45	46	47	48	49	50				
51	52	53	54	55	56	57	58	59	60				
61	62	63	64	65	66	67	68	69	70				
71	72	73	74	75	76	77	78	79	80				
81	82	83	84	85	86	87	88	89	90				
91	92	93	94	95	96	97	98	99	100				
101	102	103	104	105	106	107	108	109	110				
111	112	113	114	115	116	117	118	119	120				

	2	3	4	5	6	7	8	9	10	Pri	ne nu	mber	s
11	12	13	14	15	16	17	18	19	20	2	3	5	7
21	22	23	24	25	26	27	28	29	30				
31	32	33	34	35	36	37	38	39	40				
41	42	43	44	45	46	47	48	49	50				
51	52	53	54	55	56	57	58	59	60				
61	62	63	64	65	66	67	68	69	70				
71	72	73	74	75	76	77	78	79	80				
81	82	83	84	85	86	87	88	89	90				
91	92	93	94	95	96	97	98	99	100				
101	102	103	104	105	106	107	108	109	110				
111	112	113	114	115	116	117	118	119	120				

	2	3	4	5	6	7	8	9	10	Prir	ne nu	mber	s
11	12	13	14	15	16	17	18	19	20	2	3	5	7
21	22	23	24	25	26	27	28	29	30	11			
31	32	33	34	35	36	37	38	39	40				
41	42	43	44	45	46	47	48	49	50				
51	52	53	54	55	56	57	58	59	60				
61	62	63	64	65	66	67	68	69	70				
71	72	73	74	75	76	77	78	79	80				
81	82	83	84	85	86	87	88	89	90				
91	92	93	94	95	96	97	98	99	100				
101	102	103	104	105	106	107	108	109	110				
111	112	113	114	115	116	117	118	119	120				

	2	3	4	5	6	7	8	9	10	Prin	ne nu	mber	s
11	12	13	14	15	16	17	18	19	20	2	3	5	7
21	22	23	24	25	26	27	28	29	30	11	13		
31	32	33	34	35	36	37	38	39	40				
41	42	43	44	45	46	47	48	49	50				
51	52	53	54	55	56	57	58	59	60				
61	62	63	64	65	66	67	68	69	70				
71	72	73	74	75	76	77	78	79	80				
81	82	83	84	85	86	87	88	89	90				
91	92	93	94	95	96	97	98	99	100				
101	102	103	104	105	106	107	108	109	110				
111	112	113	114	115	116	117	118	119	120				

	2	3	4	5	6	7	8	9	10	Prim	e nur	nbers	
11	12	13	14	15	16	17	18	19	20	2	3	5	7
21	22	23	24	25	26	27	28	29	30	11	13	17	19
31	32	33	34	35	36	37	38	39	40	23 41	29 43	31	37
41	42	43	44	45	46	47	48	49	50	59	61	47 67	53 71
51	52	53	54	55	56	57	58	59	60	73	79	83	89
61	62	63	64	65	66	67	68	69	70	97	101	103	107
71	72	73	74	75	76	77	78	79	80	109	113		
81	82	83	84	85	86	87	88	89	90				
91	92	93	94	95	96	97	98	99	100				
101	102	103	104	105	106	107	108	109	110				
111	112	113	114	115	116	117	118	119	120				

```
const int MAXN = 1000000;
   bool sieve[MAXN + 5];
   vector <int> primes;
4
    void build_sieve(){
6
        memset(sieve, false, sizeof(sieve));
        sieve[0] = sieve[1] = true;
8
        for (int i = 2; i * i <= MAXN; i ++){</pre>
9
             if (!sieve[i]){
10
                 for (int j = i * i; j <= MAXN; j += i){</pre>
11
                     sieve[j] = true;
12
13
14
15
        for (int i = 2; i <= MAXN; ++i){</pre>
16
             if (!sieve[i]) primes.push_back(i);
17
18
19
```

Complejidad

Pregunta

¿Cuántas veces se visita cada número? De acuerdo a eso, ¿cuál es la complejidad de la criba?

Complejidad

Pregunta

¿Cuántas veces se visita cada número? De acuerdo a eso, ¿cuál es la complejidad de la criba?

Respuesta

Como cada número se visita una única vez, la complejidad del algoritmo es O(n).

Contenido

5 Hallar la factorización prima de un número

Factorización prima

Pregunta

Si se conocen todos los primos desde 0 hasta \sqrt{a} ¿cómo usarlos para hallar la factorización prima de a?

Factorización prima

Pregunta

Si se conocen todos los primos desde 0 hasta \sqrt{a} ¿cómo usarlos para hallar la factorización prima de a?

Respuesta

- La factorización prima de a contiene máximo un solo primo mayor que \sqrt{a}
- Se divide a por todos los primos menores o iguales a su raíz cuadrada
- Hay que tener en cuenta que un primo puede aparecer varias veces en la factorización
- Si luego de dividirlo queda un número mayor que 1, ese número es primo

Factorización prima

```
const int MAXN = 1000000; // MAXN > sqrt(a)
   bool sieve[MAXN + 5];
   vector <int> primes;
4
   vector <int> factorization(long long a){
        // Se asume que se tiene y se llamo la funcion build_sieve()
6
        vector <int> ans:
        long long b = a;
        for (int i = 0; 1LL * primes[i] * primes[i] <= a; ++i){</pre>
9
            int p = primes[i];
10
            while (b > 1 \text{ and } b \% p == 0){
11
                ans.push_back(p);
12
                b /= p;
13
14
15
        if (b != 1) ans.push_back(b);
16
        return ans;
17
18
```

Complejidad

Complejidad

La complejidad del algoritmo para hallar la factorización prima de un número es aproximadamente $O(\sqrt{n})$

Contenido

6 Exponenciación logarítmica

La operación módulo

La operación $a \mod n$ es el residuo que queda de dividir a por n.

- $\bullet \ (a \bmod n) \bmod n = a \bmod n$
- $\bullet (a+b) \bmod n = ((a \bmod n) + (b \bmod n)) \bmod n$
- $\bullet \ (a \cdot b) \bmod n = ((a \bmod n) \cdot (b \bmod n)) \bmod n$
- $\left(\frac{a}{b}\right) \mod n \neq \left(\frac{a \mod n}{b \mod n}\right) \mod n$

La operación módulo

Pregunta

¿Cómo utilizar el módulo para hallar los últimos k dígitos del número a?

La operación módulo

Pregunta

¿Cómo utilizar el módulo para hallar los últimos k dígitos del número a?

Respuesta

Los últimos k dígitos del número a se pueden hallar con la operación $a \mod 10^k$

Exponenciación logarítmica

Bigmod

Se quiere hallar el valor de $b^p \mod m$ para valores de b y de p muy grandes (b^p no cabe en un unsigned long long). ¿Cómo hacer eso eficientemente?

Exponenciación logarítmica

Bigmod

Se quiere hallar el valor de $b^p \mod m$ para valores de b y de p muy grandes (b^p no cabe en un unsigned long long). ¿Cómo hacer eso eficientemente?

Algoritmo

El valor de $b^p \mod m = \text{bigmod}(b, p, m)$ se puede calcular en orden $\log(p)$ de la siguiente manera:

$$\operatorname{bigmod}(b, p, m) = \begin{cases} 1 & \text{si } p = 0\\ \left(\operatorname{bigmod}(b, \frac{p}{2}, m)\right)^2 \operatorname{mod} m & \text{si } p \text{ es par}\\ \left(b \cdot \operatorname{bigmod}(b, p - 1, m)\right) \operatorname{mod} m & \text{si } p \text{ es impar} \end{cases}$$

Bigmod

```
int bigmod(int b, int p, int m){
        if (p == 0) return 1;
        if (p \% 2 == 0){
3
            int mid = bigmod(b, p/2, m);
4
            return (1LL * mid * mid) % m;
5
       }else{
6
            int mid = bigmod(b, p-1, m);
7
            return (1LL * mid * b) % m;
8
9
10
```

Contenido

Combinatoria

Coeficientes binomiales

El valor de $\binom{n}{k}$ que es el número de subconjuntos de k elementos escogidos de un conjunto con n elementos se puede definir como:

$$\binom{n}{k} = \begin{cases} 1 & \text{si } n = k \\ 1 & \text{si } k = 0 \\ \binom{n-1}{k-1} + \binom{n-1}{k} & \text{si } k < n \end{cases}$$

Nótese que $\binom{n}{k}$ está definido solo si $k \leq n$.

Coeficientes binomiales

```
const int MAXN = 30;
   long long choose[MAXN][MAXN];
3
   void build_binomial(int N){
        for (int n = 0; n \le N; ++n) choose[n][0] = choose[n][n] = 1;
5
        for (int n = 1; n \le N; ++n){
            for (int k = 1; k < n; ++k){
                choose[n][k] = choose[n-1][k-1] + choose[n-1][k];
9
10
11
12
```

Complejidad

Pregunta

¿Cuál es la complejidad del algoritmo para hallar los coeficientes binomiales?

Complejidad

Pregunta

¿Cuál es la complejidad del algoritmo para hallar los coeficientes binomiales?

Respuesta

El algoritmo tiene una complejidad de $O(n^2)$

Una permutación de un conjunto es un ordenamiento particular de sus elementos.

Permutaciones de elementos diferentes

El número de permutaciones de n elementos diferentes es n!

Permutaciones con elementos repetidos

El número de permutaciones de n elementos donde hay m_1 elementos repetidos de tipo 1, m_2 elementos repetidos de tipo 2, ..., m_k elementos repetidos de tipo k es

$$\frac{n!}{m_1!m_2!\cdots m_k!}$$

Ejemplo

¿De cuántas formas diferentes se pueden reordenar los números 313?

Permutaciones con elementos repetidos

El número de permutaciones de n elementos donde hay m_1 elementos repetidos de tipo 1, m_2 elementos repetidos de tipo 2, ..., m_k elementos repetidos de tipo k es

$$\frac{n!}{m_1!m_2!\cdots m_k!}$$

Ejemplo

¿De cuántas formas diferentes se pueden reordenar los números 313?

Se pueden reordenar de $\frac{3!}{1!2!} = 3$ maneras diferentes

Permutaciones de subconjuntos

El número de permutaciones de k elementos diferentes tomados de un conjunto de n elementos es

$$\frac{n!}{(n-k)!} = k! \binom{n}{k}$$

Contenido

8 Tarea

Tarea

Tarea

Resolver los problemas de

http://contests.factorcomun.org/contests/60