Risk-Evaluation: Breast Cancer Royston-Altman

Jose Tamez

2023-04-25

Evaluation of RISK survival models

This document highlights the use of

- RRPlot(),
- CoxRiskCalibration(), and
- CalibrationProbPoissonRisk,

for the evaluation (RRPlot), and calibration of cox models (CoxRiskCalibration) or logistic models (CalibrationProbPoissonRisk) of survival data.

Furthermore, it can be used to evaluate any Risk index that reruns the probability of a future event on external data-set.

This document will use the survival::rotterdam, and survival::gbsg data-sets to train and predict the risk of cancer recurrence after surgery. Both Cox and Logistic models will be trained and evaluated.

Here are some sample plots returned by the evaluated functions:

Type 'citation("pROC")' for a citation.

Attaching package: 'pROC'

The libraries

```
library(survival)
library(FRESA.CAD)

## Loading required package: Rcpp

## Loading required package: stringr

## Loading required package: miscTools

## Loading required package: Hmisc

## ## Attaching package: 'Hmisc'

## The following objects are masked from 'package:base':

## format.pval, units

## Loading required package: pROC
```

```
## The following objects are masked from 'package:stats':
##

## cov, smooth, var

source("~/GitHub/FRESA.CAD/R/RRPlot.R")
source("~/GitHub/FRESA.CAD/R/PoissonEventRiskCalibration.R")
op <- par(no.readonly = TRUE)
pander::panderOptions('digits', 3)
pander::panderOptions('table.split.table', 400)
pander::panderOptions('keep.trailing.zeros',TRUE)</pre>
```

Breast Cancer Royston-Altman data

data(gbsg, package="survival") and data(rotterdam, package="survival")

```
gbsgdata <- gbsg
rownames(gbsgdata) <- gbsgdata$pid</pre>
gbsgdata$pid <- NULL</pre>
odata <-rotterdam
rownames(odata) <- odata$pid
odata$pid <- NULL
odata$rfstime <- odata$rtime
odata$status <- odata$recur
odata$rtime <- NULL
odata$recur <- NULL
odata <- odata[,colnames(odata) %in% colnames(gbsgdata)]</pre>
odata$size <- 10*(odata$size=="<=20") +
  35*(odata\$size=="20-50") +
  60*(odata$size==">50")
data <- as.data.frame(model.matrix(Surv(rfstime,status)~.*.,odata))</pre>
data$`(Intercept)` <- NULL</pre>
dataBrestCancerTrain <- cbind(time=odata[rownames(data), "rfstime"], status=odata[rownames(data), "status"]</pre>
colnames(dataBrestCancerTrain) <-str_replace_all(colnames(dataBrestCancerTrain),":","_")</pre>
colnames(dataBrestCancerTrain) <-str_replace_all(colnames(dataBrestCancerTrain), " ","")</pre>
colnames(dataBrestCancerTrain) <-str_replace_all(colnames(dataBrestCancerTrain),"\\.","_")</pre>
colnames(dataBrestCancerTrain) <-str_replace_all(colnames(dataBrestCancerTrain),"-","_")</pre>
colnames(dataBrestCancerTrain) <-str_replace_all(colnames(dataBrestCancerTrain),">","_")
dataBrestCancerTrain$time <- dataBrestCancerTrain$time/365 ## To years
pander::pander(table(odata[rownames(data), "status"]), caption="rotterdam")
```

Table 1: rotterdam

0	1
1464	1518

data(gbsg, package="survival") data conditioning

```
gbsgdata <- gbsgdata[,colnames(odata)]
data <- as.data.frame(model.matrix(Surv(rfstime,status)~.*.,gbsgdata))

data$`(Intercept)` <- NULL

dataBrestCancerTest <- cbind(time=gbsgdata[rownames(data),"rfstime"],status=gbsgdata[rownames(data),"st

colnames(dataBrestCancerTest) <-str_replace_all(colnames(dataBrestCancerTest),":","_")
colnames(dataBrestCancerTest) <-str_replace_all(colnames(dataBrestCancerTest),"","")
colnames(dataBrestCancerTest) <-str_replace_all(colnames(dataBrestCancerTest),"\\.","_")
colnames(dataBrestCancerTest) <-str_replace_all(colnames(dataBrestCancerTest),"\\.","_")
colnames(dataBrestCancerTest) <-str_replace_all(colnames(dataBrestCancerTest),"-","_")
dataBrestCancerTest$time <- dataBrestCancerTest$time/365

pander::pander(table(odata[rownames(data),"status"]), caption="gbsg")</pre>
```

Table 2: gbsg

0	1
499	183

Cox Modeling

```
ml <- BSWiMS.model(Surv(time, status)~., data=dataBrestCancerTrain, loops=1, NumberofRepeats = 5)
```

```
sm <- summary(ml)
pander::pander(sm$coefficients)</pre>
```

```
Estimatewer HR upperu.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract.Accuract
age node$00716001 1.001 1.001 0.626
                                                                                                                                                                    0.630\, 0.601\, 0.634\  \  \, 0.03040.459412.81\, 14.37\, 0.0330561
                                                                                                                     0.600
                                                                                                                                           0.632
size_grad@05649.005 1.006 1.006 0.598
                                                                                                                                           0.632
                                                                                                                                                                    0.599\,0.626\,0.634 0.01868.39149.82 11.29\,0.0079471
                                                                                                                     0.623
\mathbf{nodes} \quad 0.086582082\,1.090\,1.099\,0.637
                                                                                                                                                                    0.640\, 0.643\, 0.644\ \ 0.0074 \\ 6.05648.33\ \ 1.66\ \ 0.0001481
                                                                                                                     0.642
                                                                                                                                           0.643
                          0.0068880051.0071.0090.595
                                                                                                                                                                    0.595\,0.642\,0.644 0.0144 0.35878.05 9.97 0.0013221
  size
                                                                                                                     0.641
                                                                                                                                           0.643
                                               1.000\,1.000\,1.000\,0.624
                                                                                                                    0.643
                                                                                                                                           0.643
                                                                                                                                                                    0.629\,0.644\,0.644\,0.00346.34307.25\,9.57
size nodes
                          0.000378
                                                                                                                                                                                                                                                                                              0.000377
age_size -
                                              1.000\,1.000\,1.000\,0.567 0.627
                                                                                                                                           0.632
                                                                                                                                                                    0.568\,0.630\,0.634 0.0063\overline{0}.19355.95 5.36 0.0040781
                          0.000149
                          0.2049341461.2271.3140.565
                                                                                                                                                                    0.561\, 0.638\, 0.644\ \ 0.0092 \\ \textbf{0}.20695.88\ \ 6.31\ \ 0.0053441
                                                                                                                    0.637
                                                                                                                                           0.643
grade
                                              0.996\,0.997\,0.998\,0.513
                                                                                                                                           0.643
                                                                                                                                                                    0.513\,0.628\,0.644 0.00416.09175.27 2.51 0.0154651
   age
                          0.003113
grade_nodes 0.981 0.986 0.992 0.635 0.645 0.643
                                                                                                                                                                   0.639 0.646 0.644 0.00207 -
                                                                                                                                                                                                                                                            5.03
                                                                                                                                                                                                                                           0.0910
                                                                                                                                                                                                                                                                              2.55 \quad 0.002609
                          0.013784
```

Cox Model Performance

Here we evaluate the model using the RRPlot() function.

The evaluation of the raw Cox model with RRPlot()

Here we will use the predicted event probability assuming a baseline hazard for events withing 5 years

```
timeinterval <- 5 # Five years

h0 <- sum(dataBrestCancerTrain$status & dataBrestCancerTrain$time <= timeinterval)
h0 <- h0/sum((dataBrestCancerTrain$time > timeinterval) | (dataBrestCancerTrain$status==1))
pander::pander(t(c(h0=h0,timeinterval=timeinterval)),caption="Initial Parameters")
```

Table 4: Initial Parameters

h0	timeinterval
0.429	5

Cumulative vs. Observed: Train: Breast Cancer

Decision Curve

Relative Risk: Train: Breast Cancer

ROC: Train: Breast Cancer

ROC: Train: Breast Cancer

Time vs. Events: Train: Breast Cancer

Number at risk

Low	1985	1260	393	23	0
0.389 <= Risk < 0.459		166	51	2	0
Risk $>= 0.459$	601	145	39	1	0

As we can see the Observed probability as well as the Time vs. Events are not calibrated.

Uncalibrated Performance Report

pander::pander(t(rrAnalysisTrain\$0ERatio),caption="0/E Ratio")

Table 5: O/E Ratio

est	lower	upper
1.13	1.07	1.19

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Ratio")

Table 6: O/E Ratio

mean	50%	2.5%	97.5%
1.13	1.13	1.12	1.14

pander::pander(t(rrAnalysisTrain\$OAcum95ci),caption="0/Acum Ratio")

Table 7: O/Acum Ratio

mean	50%	2.5%	97.5%
1.34	1.34	1.34	1.34

pander::pander(rrAnalysisTrain\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.676	0.677	0.663	0.691

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 9: ROC AUC

est	lower	upper
0.694	0.675	0.713

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 10: Sensitivity

est	lower	upper
0.299	0.276	0.323

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 11: Specificity

est	lower	upper
0.9	0.883	0.915

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 12: Probability Thresholds

90%	80%
0.459	0.389

pander::pander(t(rrAnalysisTrain\$RR_atP), caption="Risk Ratio")

Table 13: Risk Ratio

est	lower	upper
1.69	1.59	1.8

pander::pander(rrAnalysisTrain\$sufdif,caption="Logrank test")

Table 14: Logrank test Chisq = 465.079317 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	1985	816	1144	93.9	385.7
class=1	396	248	177	28.0	31.8
class=2	601	454	197	336.3	391.3

Cox Calibration

calprob <- CoxRiskCalibration(ml,dataBrestCancerTrain,"status","time")</pre>

pander::pander(c(h0=calprob\$h0,

Gain=calprob\$hazardGain,
 DeltaTime=calprob\$timeInterval),
caption="Cox Calibration Parameters")

h0	Gain	DeltaTime
0.698	1.35	6.97

The RRplot() of the calibrated model

Cumulative vs. Observed: Cal. Train: Breast Cancer

Decision Curve

Relative Risk: Cal. Train: Breast Cancer

ROC: Cal. Train: Breast Cancer

ROC: Cal. Train: Breast Cancer

Time vs. Events: Cal. Train: Breast Cancer

Number at risk

Low	1985	1260	393	23	0
0.551 <= Risk < 0.632	396	166	51	2	0
Risk $>= 0.632$	601	145	39	1	0

Calibrated Train Performance

pander::pander(t(rrAnalysisTrain\$0ERatio),caption="0/E Ratio")

Table 16: O/E Ratio

est	lower	upper
0.998	0.949	1.05

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Ratio")

Table 17: O/E Ratio

mean	50%	2.5%	97.5%
0.977	0.977	0.969	0.985

pander::pander(t(rrAnalysisTrain\$0Acum95ci),caption="0/Acum Ratio")

Table 18: O/Acum Ratio

me	ean	50%	2.5%	97.5%
1.	.01	1.01	1.01	1.01

pander::pander(rrAnalysisTrain\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.676	0.676	0.662	0.691

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 20: ROC AUC

est	lower	upper
0.694	0.675	0.713

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 21: Sensitivity

est	lower	upper
0.299	0.276	0.323

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 22: Specificity

est	lower	upper
0.9	0.883	0.915

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 23: Probability Thresholds

90%	80%
0.632	0.551

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 24: Risk Ratio

est	lower	upper
1.69	1.59	1.8

pander::pander(rrAnalysisTrain\$sufdif,caption="Logrank test")

Table 25: Logrank test Chisq = 465.079317 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	1985	816	1144	93.9	385.7
class=1	396	248	177	28.0	31.8
class=2	601	454	197	336.3	391.3

Performance on the external data set

index <- predict(ml,dataBrestCancerTest)
pp <- predictionStats_binary(cbind(dataBrestCancerTest\$status,index),plotname="Breast Cancer")</pre>

Breast Cancer

Breast Cancer

Cumulative vs. Observed: Test: Breast Cancer

Decision Curve

Relative Risk: Test: Breast Cancer

ROC: Test: Breast Cancer

ROC: Test: Breast Cancer

Time vs. Events: Test: Breast Cancer

par(op)

External Data Report

pander::pander(t(rrCoxTestAnalysis\$OERatio),caption="0/E Ratio")

Table 26: O/E Ratio

est	lower	upper
1.33	1.19	1.49

pander::pander(rrCoxTestAnalysis\$c.index,caption="C. Index")

• C Index: 0.664

Dxy: 0.328S.D.: 0.0311

• n: 686

• missing: θ

• uncensored: 299

• Relevant Pairs: 266144

• Concordant: 176737

• Uncertain: 203702

• cstatCI:

mean.C Index	median	lower	upper
0.664	0.664	0.633	0.695

pander::pander(t(rrCoxTestAnalysis\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 28: ROC AUC

est	lower	upper
0.66	0.619	0.7

pander::pander((rrCoxTestAnalysis\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 29: Sensitivity

est	lower	upper
0.328	0.275	0.384

pander::pander((rrCoxTestAnalysis\$ROCAnalysis\$specificity), caption="Specificity")

Table 30: Specificity

est	lower	upper
0.873	0.836	0.905

pander::pander(t(rrCoxTestAnalysis\$thr_atP),caption="Probability Thresholds")

Table 31: Probability Thresholds

90%	80%
0.632	0.551

pander::pander(t(rrCoxTestAnalysis\$RR_atP),caption="Risk Ratio")

Table 32: Risk Ratio

est	lower	upper
1.79	1.53	2.09

pander::pander(rrCoxTestAnalysis\$sufdif,caption="Logrank test")

Table 33: Logrank test Chisq = 81.471750 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	457	164	221.4	14.888	58.181
class=1	82	37	33.2	0.438	0.494
class=2	147	98	44.4	64.710	77.254

Calibrating the index on the test data

h0	Gain	DeltaTime
0.535	0.925	4.87

Cumulative vs. Observed: Cal. Test: Breast Cancer

Decision Curve

Cumulative Probability

Relative Risk: Cal. Test: Breast Cancer

ROC: Cal. Test: Breast Cancer

ROC: Cal. Test: Breast Cancer

Time vs. Events: Cal. Test: Breast Cancer

After Calibration Report

pander::pander(t(rrAnalysis\$0ERatio),caption="0/E Ratio")

Table 35: O/E Ratio

est	lower	upper
1.23	1.09	1.37

pander::pander(rrAnalysis\$c.index,caption="C. Index")

• C Index: 0.664

Dxy: 0.328S.D.: 0.0311

• n: 686

• missing: θ

• uncensored: 299

• Relevant Pairs: 266144

Concordant: 176737Uncertain: 203702

• cstatCI:

 mean.C Index
 median
 lower
 upper

 0.664
 0.664
 0.633
 0.693

pander::pander(t(rrAnalysis\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 37: ROC AUC

est	lower	upper
0.66	0.619	0.7

pander::pander((rrAnalysis\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 38: Sensitivity

est	lower	upper
0.264	0.215	0.318

pander::pander((rrAnalysis\$ROCAnalysis\$specificity), caption="Specificity")

Table 39: Specificity

est	lower	upper
0.899	0.865	0.927

pander::pander(t(rrAnalysis\$thr_atP), caption="Probability Thresholds")

Table 40: Probability Thresholds

90%	80%
0.585	0.484

pander::pander(t(rrAnalysis\$RR_atP),caption="Risk Ratio")

Table 41: Risk Ratio

est	lower	upper
1.74	1.48	2.05

pander::pander(rrAnalysis\$sufdif,caption="Logrank test")

Table 42: Logrank test Chisq = 80.835092 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	482	173	232.4	15.20	69.5
class=1	86	47	32.0	7.02	7.9
class=2	118	79	34.6	57.14	65.4

Logistic Model

Here we train a logistic model on the same data set

```
## Only label subjects that present event withing five years

dataBrestCancerR <- subset(dataBrestCancerTrain, time>=5 | status==1)
dataBrestCancerR$status <- dataBrestCancerR$status * (dataBrestCancerR$time < 5)
dataBrestCancerR$time <- NULL</pre>
```

 $\#ml <-BSWiMS.model(status~1,data=dataBrestCancerR,loops=20,NumberofRepeats~=~5) \\ \texttt{mlog} <-BSWiMS.model(status~1,data=dataBrestCancerR,loops=1,NumberofRepeats~=~5)} \\$

```
sm <- summary(mlog)
pander::pander(sm$coefficients)</pre>
```

Estimalower OR upperu.	Accuna <i>e</i> yccuraudy	.Accura&y.C.AUGull.Au	UKOI NRI z.ID	I z.NRIDelta. Æ @uency
size_node\$5e- 1.001 1.001 1.001 0.6	669 0.571 0.6	68 0.627 0.500 0.628	0.1123 0 .6365 4 7.8	6 18.87(0.1284901
nodes 4.33e- 1.040 1.044 1.048 0.6	676 0.634 0.6	90 0.639 0.621 0.662	0.07110.571064.1	3 16.1790.0404941
grade_nbdes 1.0141.0151.0160.6	682 0.637 0.6	86 0.649 0.624 0.655	0.06580.548663.6	6 15.6500.0310871
age_nodle9 6e- 1.0011.0011.0010.6	678 0.653 0.6	86 0.642 0.621 0.657	0.0334 6 .2131 2 .39	5.710 0.0358961
size_grable5e- 1.0011.0021.0020.6	632 0.682 0.6	86 0.626 0.646 0.655	0.0178 0 .2941 6 .74	7.728 0.0086481
age_size 8.73e- 1.000 1.000 1.000 0.6	608 0.682 0.6	86 0.577 0.649 0.657	0.0153 0 .2915 % .41	7.652 0.0076001
grade 2.27e- 1.1681.2541.3470.5	571 0.683 0.6	90 0.500 0.653 0.662	0.0134 0 .1903 6 .20	4.983 0.0084611
age_meno 0.992 0.994 0.996 0.5 6.04e- 03	571 0.676 0.6	86 0.500 0.645 0.657	0.0078 2 .0805 7 .76	2.337 0.0120651
age_pgr - 1.000 1.000 1.000 0.5 5.42e- 06	571 0.686 0.6	86 0.500 0.656 0.657	0.0051 0 .0074 3 .11	0.194 0.0004171
age_grade 0.997 0.998 0.999 0.5 1.65e- 03	574 0.690 0.6	90 0.507 0.661 0.662	0.0045 0 .1137 2 .60	2.960 0.0003151
meno_grade - 1.045 1.107 1.173 0.5	571 0.683 0.6	86 0.500 0.652 0.657	0.0042 6 .2042 8 .47	5.343 0.0044411
nodes_hormon0.979 0.986 0.994 0.5 1.38e- 02	587 0.688 0.6	86 0.526 0.658 0.655	0.0028 0 .4552 2 .44	12.150 - 1 0.002853
size 3.94e- 1.002 1.004 1.006 0.6	311 0.693 0.6	90 0.618 0.663 0.662	0.0050 7 .2105 3 .42	5.600 - 1 0.001075
meno_p&d9e- 1.0001.0001.0010.5	571 0.687 0.6	86 0.500 0.657 0.657	0.0031 6 .0597 7 .35	$1.558 - 1 \\ 0.000429$
pgr - 1.000 1.000 1.000 0.5 1.07e- 04	571 0.689 0.6	86 0.500 0.659 0.655	0.0025 \(\pi .1975 \(\pi .64\)	5.745 - 1 0.004123
meno_nodes 0.955 0.974 0.994 0.6 2.60e- 02	340 0.686 0.6	86 0.595 0.656 0.657	0.00264 - 2.59 0.06329	- 0.0006311 1.645
grade_pgr 1.000 1.000 1.000 0.5 3.51e- 05	571 0.669 0.6	68 0.500 0.627 0.628	0.0024 0 .1747 2 .55	5.058 0.0012521
meno_si\(264\)e- 1.000 1.002 1.004 0.6	604 0.691 0.6	90 0.578 0.663 0.662	0.0018 6 .1022 7 .43	2.662 - 1 0.001378

Logistic Model Performance

```
op <- par(no.readonly = TRUE)

cprob <- predict(mlog,dataBrestCancerTrain)</pre>
```

Cumulative vs. Observed: Logistic Train: Breast Cancer

Decision Cur

Relative Risk: Logistic Train: Breast Cancer

ROC: Logistic Train: Breast Cancer

ROC: Logistic Train: Breast Cancer

Time vs. Events: Logistic Train: Breast Cancer

Number at risk

	1975	1268	399	23	0
$0.431 \le Risk < 0.542$	364	160	47	2	0
Risk $>= 0.542$	643	143	37	1	0

par(op)

Training Report

pander::pander(t(rrAnalysisTrain\$OERatio),caption="0/E Ratio")

Table 44: O/E Ratio

est	lower	upper
0.957	0.91	1.01

pander::pander(rrAnalysisTrain\$c.index,caption="C. Index")

• C Index: 0.68

• **Dxy**: 0.36

S.D.: 0.014n: 2982

• missing: θ

•

• uncensored: 1518

• Relevant Pairs: 6184528

• Concordant: 4206588

• Uncertain: 2703838

• cstatCI:

mean.C Index	median	lower	upper
0.68	0.68	0.667	0.694

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 46: ROC AUC

est	lower	upper
0.695	0.677	0.714

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 47: Sensitivity

est	lower	upper
0.327	0.303	0.351

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity),caption="Specificity")

Table 48: Specificity

est	lower	upper
0.9	0.883	0.915

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 49: Probability Thresholds

90%	80%
0.542	0.431

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 50: Risk Ratio

est	lower	upper	
1.77	1.66	1.88	

pander::pander(rrAnalysisTrain\$sufdif,caption="Logrank test")

Table 51: Logrank test Chisq = 543.347175 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	1975	804	1145	101.5	418.9
class=1	364	218	169	14.1	15.9
class=2	643	496	204	418.2	490.7

Results on the validation set using Logistic model

Cumulative vs. Observed: Logistic Test: Breast Cancer

Decision Curv

Cumulative Probability

Relative Risk: Logistic Test: Breast Cancer

ROC: Logistic Test: Breast Cancer

ROC: Logistic Test: Breast Cancer

Time vs. Events: Logistic Test: Breast Cancer

Number at risk

Low	369	274	154	29	0
0.431 <= Risk < 0.542	134	96	46	6	0
Risk $>= 0.542$	183	89	29	1	0

par(op)

Validation Report

pander::pander(t(rrAnalysis\$0ERatio),caption="0/E Ratio")

Table 52: O/E Ratio

est	lower	upper
1.13	1	1.26

pander::pander(rrAnalysis\$c.index,caption="C. Index")

• C Index: 0.669

Dxy: 0.338S.D.: 0.0309

• n: 686

• missing: θ

• uncensored: 299

• Relevant Pairs: 266144

• Concordant: 178115

• Uncertain: 203702

• cstatCI:

mean.C Index	median	lower	upper
0.669	0.669	0.637	0.698

pander::pander(t(rrAnalysis\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 54: ROC AUC

est	lower	upper
0.669	0.628	0.709

pander::pander((rrAnalysis\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 55: Sensitivity

est	lower	upper
0.395	0.339	0.453

pander::pander((rrAnalysis\$ROCAnalysis\$specificity), caption="Specificity")

Table 56: Specificity

est	lower	upper
0.832	0.791	0.868

pander::pander(t(rrAnalysis\$thr_atP), caption="Probability Thresholds")

Table 57: Probability Thresholds

90%	80%
0.542	0.431

pander::pander(t(rrAnalysis\$RR_atP),caption="Risk Ratio")

Table 58: Risk Ratio

est	lower	upper
1.8	1.54	2.11

pander::pander(rrAnalysis\$sufdif,caption="Logrank test")

Table 59: Logrank test Chisq = 92.507991 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	369	121	181.7	20.2997	52.3868
class=1	134	60	61.7	0.0479	0.0604
class=2	183	118	55.5	70.2342	88.0195

Logistic Model Poisson Calibration

riskdata <- cbind(dataBrestCancerTrain\$status,predict(mlog,dataBrestCancerTrain,type="prob"),dataBrestCalprob <- CalibrationProbPoissonRisk(riskdata)

h0	Gain	DeltaTime
0.676	1.31	7.14

```
timeinterval <- calprob$timeInterval;
gain <- calprob$hazardGain

rdata <- cbind(dataBrestCancerTrain$status,calprob$prob)</pre>
```

Cumulative vs. Observed: Cal. Logistic Train: Breast Cancer

Decision C

Relative Risk: Cal. Logistic Train: Breast Cancer

ROC: Cal. Logistic Train: Breast Cancer

ROC: Cal. Logistic Train: Breast Cancer

Time vs. Events: Cal. Logistic Train: Breast Cancer

Number at risk

Low	1975	1268	399	23	0
0.521 <= Risk < 0.639	364	160	47	2	0
Risk $>= 0.639$	643	143	37	1	0

par(op)

Report of the calibrated logistic: training

pander::pander(t(rrAnalysisTrain\$OERatio),caption="0/E Ratio")

Table 61: O/E Ratio

est	lower	upper
1.02	0.974	1.08

pander::pander(rrAnalysisTrain\$c.index,caption="C. Index")

• C Index: 0.68

• **Dxy**: 0.36

• **S.D.**: 0.014

• n: 2982

• missing: θ

• uncensored: 1518

• Relevant Pairs: 6184528

• Concordant: 4206588

• Uncertain: 2703838

• cstatCI:

mean.C Index	median	lower	upper
0.68	0.68	0.666	0.693

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 63: ROC AUC

est	lower	upper
0.695	0.677	0.714

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 64: Sensitivity

est	lower	upper
0.327	0.303	0.351

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity),caption="Specificity")

Table 65: Specificity

est	lower	upper
0.9	0.883	0.915

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 66: Probability Thresholds

90%	80%
0.639	0.521

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 67: Risk Ratio

est	lower	upper
1.77	1.66	1.88

pander::pander(rrAnalysisTrain\$sufdif,caption="Logrank test")

Table 68: Logrank test Chisq = 543.347175 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	1975	804	1145	101.5	418.9
class=1	364	218	169	14.1	15.9
class=2	643	496	204	418.2	490.7

Cumulative vs. Observed: Cal. Logistic Test: Breast Cancer

Decision C

Cumulative Probability
Relative Risk: Cal. Logistic Test: Breast Cancer

ROC: Cal. Logistic Test: Breast Cancer

ROC: Cal. Logistic Test: Breast Cancer

Time vs. Events: Cal. Logistic Test: Breast Cancer

Kaplan-Meier: Cal. Logistic Test: Breast Cancer

Low	369	274	154	20	<u> </u>
		2/4	194	29	U
0.521 <= Risk < 0.639	12/	06	16	6	0
		90	40	U	U
Risk >= 0.639	100	00	20	1	0
Nisk >= 0.008	100	89	29		U

par(op)

Report of the calibrated validation

pander::pander(t(rrAnalysisTestLogistic\$0ERatio),caption="0/E Ratio")

Table 69: O/E Ratio

est	lower	upper
1.22	1.08	1.36

pander::pander(rrAnalysisTestLogistic\$c.index,caption="C. Index")

• C Index: 0.669

Dxy: 0.338S.D.: 0.0309

• n: 686

• missing: θ

• uncensored: 299

• Relevant Pairs: 266144

• Concordant: 178115

• Uncertain: 203702

• cstatCI:

mean.C Index	median	lower	upper
0.669	0.669	0.638	0.699

pander::pander(t(rrAnalysisTestLogistic\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 71: ROC AUC

est	lower	upper
0.669	0.628	0.709

pander::pander((rrAnalysisTestLogistic\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 72: Sensitivity

est	lower	upper
0.395	0.339	0.453

pander::pander((rrAnalysisTestLogistic\$ROCAnalysis\$specificity), caption="Specificity")

Table 73: Specificity

est	lower	upper
0.832	0.791	0.868

pander::pander(t(rrAnalysisTestLogistic\$thr_atP), caption="Probability Thresholds")

Table 74: Probability Thresholds

90%	80%
0.639	0.521

pander::pander(t(rrAnalysisTestLogistic\$RR_atP),caption="Risk Ratio")

Table 75: Risk Ratio

est	lower	upper
1.8	1.54	2.11

pander::pander(rrAnalysisTestLogistic\$sufdif,caption="Logrank test")

Table 76: Logrank test Chisq = 92.507991 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	369	121	181.7	20.2997	52.3868
class=1	134	60	61.7	0.0479	0.0604
class=2	183	118	55.5	70.2342	88.0195

Comparing the COX and Logistic Models on the Independent Data

pander::pander(t(rrCoxTestAnalysis\$OAcum95ci))

mean	50%	2.5%	97.5%
0.841	0.841	0.839	0.842

pander::pander(t(rrAnalysisTestLogistic\$OAcum95ci))

mean	50%	2.5%	97.5%
0.791	0.791	0.791	0.792

pander::pander(t(rrCoxTestAnalysis\$0E95ci))

mean	50%	2.5%	97.5%
1.07	1.07	1.04	1.1

pander::pander(t(rrAnalysisTestLogistic\$0E95ci))

mean	50%	2.5%	97.5%
0.955	0.955	0.927	0.985

```
maxobs <- sum(dataBrestCancerTest$status)</pre>
par(mfrow=c(1,2),cex=0.75)
plot(rrCoxTestAnalysis$CumulativeOvs,type="l",lty=1,
    main="Cumulative Probability",
    xlab="Observed",
     vlab="Cumulative Probability",
    ylim=c(0,maxobs),
    xlim=c(0,maxobs))
lines(rrAnalysisTestLogistic$CumulativeOvs,lty=2,col="red")
lines(x=c(0,maxobs),y=c(0,maxobs),lty=3,col="gray")
legend("topleft",legend = c("Cox","Logistic","Ideal"),
       col=c("black","red","gray"),
       lty=c(1,2,3),
       cex=0.75
)
plot(rrCoxTestAnalysis$CumulativeOvs$Observed,
     rrCoxTestAnalysis$CumulativeOvs$Cumulative-
       rrCoxTestAnalysis$CumulativeOvs$Observed,
     main="Cumulative Risk Difference",
    xlab="Observed",
    ylab="Cumulative Risk - Observed",
     type="1",
     lty=1)
lines(rrAnalysisTestLogistic$CumulativeOvs$Observed,
     rrAnalysisTestLogistic$CumulativeOvs$Cumulative-
       rrAnalysisTestLogistic$CumulativeOvs$Observed,
     1ty=2,
     col="red")
legend("topleft",legend = c("Cox","Logistic"),
       col=c("black","red"),
       lty=c(1,2),
       cex=0.75
```


Cumulative Risk Difference


```
plot(rrCoxTestAnalysis$0EData[,2:3],type="1",lty=1,
     main="Expected over Time",
     xlab="Observed",
     ylab="Expected",
     vlim=c(0,maxobs),
     xlim=c(0,maxobs))
lines(rrAnalysisTestLogistic$OEData[,2:3],lty=2,col="red")
lines(x=c(0,maxobs),y=c(0,maxobs),lty=3,col="gray")
legend("topleft",legend = c("Cox","Logistic","Ideal"),
       col=c("black","red","gray"),
       lty=c(1,2,3),
       cex=0.75
)
plot(rrCoxTestAnalysis$0EData$0bserved,
     rrCoxTestAnalysis$OEData$Expected-
       rrCoxTestAnalysis$0EData$0bserved,
     main="Expected vs Observed Difference",
     xlab="Observed",
     vlab="Cumulative - Observed",
     type="1",
     lty=1)
lines(rrAnalysisTestLogistic$0EData$0bserved,
     rrAnalysisTestLogistic$OEData$Expected-
       rrAnalysisTestLogistic$OEData$Observed,
     lty=2,col="red")
legend("bottomleft",legend = c("Cox","Logistic"),
       col=c("black","red"),
       lty=c(1,2),
       cex=0.75
```

