DOC 221 Dinámica orbital y control de actitud Problems Lecture ADCS – IXB

Problem 1:

Given a homogenous cylinder of radius R and height h, what is the smallest possible cylinder height such that this object would still be gravity gradient stabilized in attitude (assume height is aligned with \hat{o}_3)?

Problem 2:

A spacecraft with a principal axes body-fixed frame b, has corresponding principal moments of inertia $I_x = 100 \, \mathrm{kg \cdot m^2}$, $I_y = 120 \, \mathrm{kg \cdot m^2}$ and $I_z = 80 \, \mathrm{kg \cdot m^2}$.

The spacecraft attitude relative to the Earth centered inertial frame G is described by a yaw-pitch-roll (3-2-1) Euler sequence, represented by the rotation matrix

$$\mathbf{C}_{bG}(\phi, \theta, \psi) = \begin{bmatrix} c_{\theta}c_{\psi} & c_{\theta}s_{\psi} & -s_{\theta} \\ s_{\phi}s_{\theta}c_{\psi} - c_{\phi}s_{\psi} & s_{\phi}s_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}c_{\theta} \\ c_{\phi}s_{\theta}c_{\psi} + s_{\phi}s_{\psi} & c_{\phi}s_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}c_{\theta} \end{bmatrix}$$

Where s_b = sin b and c_b = cos b. Where φ , Θ and ψ are the roll, pitch and yaw angles, respectively. Currently, the attitude is represented by $\varphi = \Theta = \psi = \pi/4$ rad, and the spacecraft orbital position (in ECI) coordinates is

$$\vec{\mathbf{R}}_o = \begin{bmatrix} 0 \\ 0 \\ R_o \end{bmatrix} \, \mathrm{km} \,,$$

with $R_o = 7000$ km.

Determine the gravity-gradient torque acting on the spacecraft. Express the result in spacecraft body coordinates. Note that μ = 3.986 \cdot 10^5 km³/s² is the Earth's gravitational constant.

Problem 3:

A spacecraft with a principal axes body-fixed frame b, has corresponding principal moments of inertia $I_x = 8 \text{ kg} \cdot \text{m}^2$, $I_y = 12 \text{ kg} \cdot \text{m}^2$, $I_z = 10 \text{ kg} \cdot \text{m}^2$.

It is desired to spin the spacecraft about the principal z-axis with angular velocity $\omega_z = 0.1$ rad/s. Assuming that the spacecraft has the momentum wheel with spin-axis aligned with the principal z-axis, determine the required relative wheel angular momentum h_s , to make the desired attitude motion passively stable under torque-free conditions and without energy dissipation.

Problem 4:

Consider a nominally non-spinning dual-spin spacecraft with principal inertias I_1 , I_2 and I_3 . The wheel axis coincides with the 3-axis of a body-fixed principal axes frame. The wheel relative angular momentum is given by $h_s > 0$.

- a) Show that this situation corresponds to an equilibrium for torque-free motion
- b) Show that small perturbations to the spacecraft angular velocity lead to purely oscillatory behavior in ω_1 and ω_2 with frequency

$$\Omega_p = \frac{h_s}{\sqrt{I_1 I_2}}.$$