Università degli Studi di Verona

Corso di Laurea in Informatica e Informatica Multimediale

I Prova scritta di Fondamenti dell'Informatica (tempo a disposizione 2h)

9 dicembre 2010

Classificare nella gerarchia di Chomsky i seguenti linguaggi motivando formalmente la risposta, ovvero: nel caso il linguaggio sia regolare fornire un ASF, nel caso sia CF dare una grammatica CF che lo genera e dimostrare che non è regolare, altrimenti dimostrare che il linguaggio non è CF:

• (13pt) Sia data la seguente famiglia di linguaggi sull'alfabeto $\Sigma = \{0,1\}$, al variare di $m \in \mathbb{N}$:

 $L_m = \{ \sigma \in \Sigma^* \mid \text{il numero di occorrenze di 1 in } \sigma \ \text{\'e} \ f(m) \},$

dove la funzione $f: \mathbb{N} \to \mathbb{N}$ è definita come:

$$f(m) = \begin{cases} 1 & \text{se } m = 0 \lor m = 1 \\ f(m-1) + f(m-2) & \text{altriment} \end{cases}$$

Classificare i linguaggi L_m , al variare di $m \in \mathbb{N}$, $\bigcup_{m \in \mathbb{N}} L_m$ e $\bigcap_{m \in \mathbb{N}} L_m$.

• (12pt) Sia $J = \{ww^R \mid w \in \{0,1\}^* \land |w| \ge 1\}$ l'insieme delle stringhe palindrome di lunghezza pari, ovvero w^R rappresenta la stringa w rovesciata. Classificare il seguente linguaggio sull'alfabeto $\Sigma = \{0,1,2\}$:

$$L = \{2^n s_1 \dots s_n \mid n \ge 1 \land \forall i \in [1..n]. s_i \text{ è una stringa appartenente a } J\}.$$

Più precisamente, tutte le stringhe $s \in L$ iniziano con 2^n , dove n è il contatore che specifica quante stringhe di J dovremmo aspettare nel resto della stringa s. Ad esempio, $2^201101111$ e 2^10110 sono in L, mentre ϵ , $2^101101111$ e 2^1010 non sono in L.

• (5pt) $L_m \cdot L$, $L \cdot L_m$, $L \cdot \bigcap_{m \in \mathbb{N}} L_m$.