CMPT 210: Probability and Computing

Lecture 13

Sharan Vaswani

February 27, 2024

Recap

Random variable: A random "variable" R on a probability space is a total function whose domain is the sample space S. The codomain is denoted by V (usually a subset of the real numbers), meaning that R: S Bandom variables = function C is a function with S as a domain.

Example: Suppose we toss three independent, unbiased coins. In this case, $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$. C is a random variable equal to the number of heads that appear such that $C: S \to \{0, 1, 2, 3\}$. C(HHT) = 2. An random variable

partitions the sample space into several blocks. For r.v. R, for all $i \in \text{Range}(R)$, the event

$$[R=i]=\{\omega\in\mathcal{S}|R(\omega)=i\}.$$
 For any r.v. R , $\sum_{i\in\mathsf{Range}(\mathsf{R})}\mathsf{Pr}[R=i]=1.$

Example: For the above r.v. C, $[C = 2] = \{HHT, HTH, THH\}$ and $Pr[C = 2] = \frac{3}{8}$.

 $\sum_{i \in \mathsf{Range}(\mathsf{C})} \mathsf{Pr}[\mathit{C} = i] = \mathsf{Pr}[\mathit{C} = 0] + \mathsf{Pr}[\mathit{C} = 1] + \mathsf{Pr}[\mathit{C} = 2] + \mathsf{Pr}[\mathit{C} = 3] = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = 1.$ This is a uniform probability space, and as a result we can treat the partitions as events.

Recap

Indicator Random Variable: An indicator random variable corresponding to an event E is denoted as \mathcal{I}_E and is defined such that for $\omega \in E$, $\mathcal{I}_E[\omega] = 1$ and for $\omega \notin E$, $\mathcal{I}_E[\omega] = 0$.

Example: When throwing two dice, if E is the event that both throws of the dice result in a prime number, then $\mathcal{I}_E((2,4))=0$ and $\mathcal{I}_E((2,3))=1$.

Probability density function (PDF): Let R be a r.v. with codomain V. The probability density function of R is the function $PDF_R: V \to [0,1]$, such that $PDF_R[x] = Pr[R = x]$ if $x \in Range(R)$ and equal to zero if $x \notin Range(R)$.

Cumulative distribution function (CDF): The cumulative distribution function of R is the function $CDF_R : \mathbb{R} \to [0,1]$, such that $CDF_R[x] = Pr[R \le x]$.

Does not depend on the sample space. Importantly, neither PDF_R nor CDF_R involves the sample space of an experiment.

Example: If we flip three coins, and C counts the number of heads, then $PDF_C[0] = Pr[C = 0] = \frac{1}{8}$, and $CDF_C[2.3] = Pr[C \le 2.3] = Pr[C = 0] + Pr[C = 1] + Pr[C = 2] = \frac{7}{9}$.

Bernoulli Distribution

Canonical Example: We toss a biased coin such that the probability of getting a heads is p. Let R be the random variable such that R=1 when the coin comes up heads and R=0 if the coin comes up tails. R follows the Bernoulli distribution.

$$PDF_R : \{0, 1\} \rightarrow [0, 1]$$

Bernoulli random variables only take values in 0 and 1.

Bernoulli Distribution

Canonical Example: We toss a biased coin such that the probability of getting a heads is p. Let R be the random variable such that R=1 when the coin comes up heads and R=0 if the coin comes up tails. R follows the Bernoulli distribution.

PDF_R for Bernoulli distribution: $f: \{0,1\} \to [0,1]$ meaning that Bernoulli random variables take values in $\{0,1\}$. It can be fully specified by the "probability of success" (of an experiment) p (probability of getting a heads in the example). Formally, PDF_R is given by:

Success = heads
Failure = tails
$$f(1) = p$$
; $f(0) = q := 1 - p$.

In the example, Pr[R = 1] = f(1) = p = Pr[event that we get a heads].

f denotes the pdf. F denotes the cdf.

Valid pdf conditions: summing value of pdf over all values in V must give you one.

 $R \sim Ber(p) \Rightarrow R: S \Rightarrow \{0, 1\}$ s(1) = p Frievalds algorithm: each value followed a bernoulli distribution, being either 0 or 1.

Bernoulli Distribution

Canonical Example: We toss a biased coin such that the probability of getting a heads is p. Let R be the random variable such that R=1 when the coin comes up heads and R=0 if the coin comes up tails. R follows the Bernoulli distribution.

PDF_R for Bernoulli distribution: $f: \{0,1\} \to [0,1]$ meaning that Bernoulli random variables take values in $\{0,1\}$. It can be fully specified by the "probability of success" (of an experiment) p (probability of getting a heads in the example). Formally, PDF_R is given by:

$$f(1) = p$$
 ; $f(0) = q := 1 - p$.

In the example, Pr[R = 1] = f(1) = p = Pr[event that we get a heads].

 CDF_R for Bernoulli distribution: $F: \mathbb{R} \to [0,1]$:

Since the pdf only has domain {0, 1}
$$F(x) = 0 \qquad \qquad (\text{for } x < 0)$$

$$= 1 - p \qquad \qquad (\text{for } 0 \le x < 1)$$

$$= 1 \qquad \qquad (\text{for } x \ge 1)$$

Canonical Example: We roll a standard die. Let R be the random variable equal to the number that shows up on the die. R follows the uniform distribution.

Canonical Example: We roll a standard die. Let R be the random variable equal to the number that shows up on the die. R follows the uniform distribution.

A random variable R that takes on each possible value in its codomain V with the same probability is said to be uniform.

Canonical Example: We roll a standard die. Let R be the random variable equal to the number that shows up on the die. R follows the uniform distribution.

A random variable R that takes on each possible value in its codomain V with the same probability is said to be uniform.

PDF_R for Uniform distribution: $f: V \to [0,1]$ such that for all $v \in V$, f(v) = 1/|v|. In the example, $f(1) = f(2) = \ldots = f(6) = \frac{1}{6}$.

Canonical Example: We roll a standard die. Let R be the random variable equal to the number that shows up on the die. R follows the uniform distribution.

A random variable R that takes on each possible value in its codomain V with the same probability is said to be uniform.

PDF_R for Uniform distribution: $f: V \to [0,1]$ such that for all $v \in V$, f(v) = 1/|v|. In the example, $f(1) = f(2) = \ldots = f(6) = \frac{1}{6}$.

 CDF_R for Uniform distribution: For n elements in V arranged in increasing order – (v_1, v_2, \ldots, v_n) , the CDF is:

$$F(x) = 0$$
 (for $x < v_1$)
 $= k/n$ (for $v_k \le x < v_{k+1}$)
 $= 1$ (for $x \ge v_n$)

Canonical Example: We roll a standard die. Let R be the random variable equal to the number that shows up on the die. R follows the uniform distribution.

A random variable R that takes on each possible value in its codomain V with the same probability is said to be uniform.

PDF_R for Uniform distribution: $f: V \to [0,1]$ such that for all $v \in V$, f(v) = 1/|v|. In the example, $f(1) = f(2) = \ldots = f(6) = \frac{1}{6}$.

 CDF_R for Uniform distribution: For n elements in V arranged in increasing order – (v_1, v_2, \ldots, v_n) , the CDF is:

It is convenient to order the elements for defining the CDF.

$$F(x) = 0$$
 (for $x < v_1$)
 $= k/n$ (for $v_k \le x < v_{k+1}$)
1- p = p, so it is uniform. = 1 (for $x \ge v_n$)

Dice rolling is not bernoulli since it involves six values, and we only want two.

Q: If X has a Bernoulli distribution, when is X also uniform? Ans: When p = 1/2

Canonical Example: We toss n biased coins independently. The probability of getting a heads for each coin is p. Let R be the random variable equal to the number of heads in the n coin tosses. R follows the Binomial distribution.

If given "We throw n darts", assume each throw is independent.

Canonical Example: We toss n biased coins independently. The probability of getting a heads for each coin is p. Let R be the random variable equal to the number of heads in the n coin tosses. R follows the Binomial distribution.

PDF_R for Binomial distribution:
$$f:\{0,1,2,\ldots,n\} \to [0,1]$$
. For $k \in \{0,1,\ldots,n\}$, $f(k) = \binom{n}{k} p^k (1-p)^{n-k}$. Let E_k be the event we get k heads. Pr(E_k] = Pr(R = K) = s(k) A_i is event

Canonical Example: We toss n biased coins independently. The probability of getting a heads for each coin is p. Let R be the random variable equal to the number of heads in the n coin tosses. R follows the Binomial distribution.

PDF_R for Binomial distribution: $f: \{0, 1, 2, ..., n\} \rightarrow [0, 1]$. For $k \in \{0, 1, ..., n\}$, $f(k) = \binom{n}{k} p^k (1-p)^{n-k}$.

Proof: Let E_k be the event we get k heads. Let A_i be the event we get a heads in toss i.

Canonical Example: We toss n biased coins independently. The probability of getting a heads for each coin is p. Let R be the random variable equal to the number of heads in the n coin tosses. R follows the Binomial distribution.

PDF_R for Binomial distribution:
$$f: \{0, 1, 2, ..., n\} \rightarrow [0, 1]$$
. For $k \in \{0, 1, ..., n\}$, $f(k) = \binom{n}{k} p^k (1-p)^{n-k}$.

Proof: Let E_k be the event we get k heads. Let A_i be the event we get a heads in toss i.

$$E_k = (A_1 \cap A_2 \dots A_k \cap A_{k+1}^c \cap A_{k+2}^c \cap \dots \cap A_n^c) \cup (A_1^c \cap A_2 \dots A_k \cap A_{k+1} \cap A_{k+2}^c \cap \dots \cap A_n^c) \cup \dots$$

In this case, you got k heads on the first k tosses. We get a tails on the first toss and get heads on the r

All these events are mutually exclusive.

Canonical Example: We toss n biased coins independently. The probability of getting a heads for each coin is p. Let R be the random variable equal to the number of heads in the n coin tosses. R follows the Binomial distribution.

PDF_R for Binomial distribution:
$$f: \{0, 1, 2, ..., n\} \rightarrow [0, 1]$$
. For $k \in \{0, 1, ..., n\}$, $f(k) = \binom{n}{k} p^k (1-p)^{n-k}$.

Proof: Let E_k be the event we get k heads. Let A_i be the event we get a heads in toss i.

$$E_k = (A_1 \cap A_2 \dots A_k \cap A_{k+1}^c \cap A_{k+2}^c \cap \dots \cap A_n^c) \cup (A_1^c \cap A_2 \dots A_k \cap A_{k+1} \cap A_{k+2}^c \cap \dots \cap A_n^c) \cup \dots$$

$$Pr[E_k] = Pr[(A_1 \cap A_2 \dots A_k \cap A_{k+1}^c \cap A_{k+2}^c \cap \dots \cap A_n^c)] + Pr[A_1^c \cap A_2 \dots A_k \cap A_{k+1} \cap \dots \cap A_n^c)] + \dots$$

Generalizing bernoulli distribution. If you set n = k = 1, you obtain the bernoulli distribution.

Canonical Example: We toss n biased coins independently. The probability of getting a heads for each coin is p. Let R be the random variable equal to the number of heads in the n coin tosses. R follows the Binomial distribution.

PDF_R for Binomial distribution:
$$f: \{0, 1, 2, ..., n\} \rightarrow [0, 1]$$
. For $k \in \{0, 1, ..., n\}$, $f(k) = \binom{n}{k} p^k (1-p)^{n-k}$.

Proof: Let E_k be the event we get k heads. Let A_i be the event we get a heads in toss i.

$$E_{k} = (A_{1} \cap A_{2} \dots A_{k} \cap A_{k+1}^{c} \cap A_{k+2}^{c} \cap \dots \cap A_{n}^{c}) \cup (A_{1}^{c} \cap A_{2} \dots A_{k} \cap A_{k+1} \cap A_{k+2}^{c} \cap \dots \cap A_{n}^{c}) \cup \dots$$

$$Pr[E_{k}] = Pr[(A_{1} \cap A_{2} \dots A_{k} \cap A_{k+1}^{c} \cap A_{k+2}^{c} \cap \dots \cap A_{n}^{c})] + Pr[A_{1}^{c} \cap A_{2} \dots A_{k} \cap A_{k+1} \cap \dots \cap] + \dots$$

$$= Pr[A_{1}] Pr[A_{2}] Pr[A_{k}] Pr[A_{k+1}^{c}] Pr[A_{k+2}^{c}] \dots Pr[A_{n}^{c}] + \dots$$
 (Independence of tosses)

Canonical Example: We toss n biased coins independently. The probability of getting a heads for each coin is p. Let R be the random variable equal to the number of heads in the n coin tosses. R follows the Binomial distribution.

PDF_R for Binomial distribution:
$$f: \{0, 1, 2, ..., n\} \rightarrow [0, 1]$$
. For $k \in \{0, 1, ..., n\}$, $f(k) = \binom{n}{k} p^k (1-p)^{n-k}$.

Proof: Let E_k be the event we get k heads. Let A_i be the event we get a heads in toss i.

$$E_{k} = (A_{1} \cap A_{2} \dots A_{k} \cap A_{k+1}^{c} \cap A_{k+2}^{c} \cap \dots \cap A_{n}^{c}) \cup (A_{1}^{c} \cap A_{2} \dots A_{k} \cap A_{k+1} \cap A_{k+2}^{c} \cap \dots \cap A_{n}^{c}) \cup \dots$$

$$Pr[E_{k}] = Pr[(A_{1} \cap A_{2} \dots A_{k} \cap A_{k+1}^{c} \cap A_{k+2}^{c} \cap \dots \cap A_{n}^{c})] + Pr[A_{1}^{c} \cap A_{2} \dots A_{k} \cap A_{k+1} \cap \dots \cap] + \dots$$

$$= Pr[A_{1}] Pr[A_{2}] Pr[A_{k}] Pr[A_{k+1}^{c}] Pr[A_{k+2}^{c}] \dots Pr[A_{n}^{c}] + \dots \quad \text{(Independence of tosses)}$$

$$= p^{k} (1 - p)^{n-k} + p^{k} (1 - p)^{n-k} + \dots$$

Canonical Example: We toss n biased coins independently. The probability of getting a heads for each coin is p. Let R be the random variable equal to the number of heads in the n coin tosses. R follows the Binomial distribution.

PDF_R for Binomial distribution:
$$f: \{0, 1, 2, ..., n\} \rightarrow [0, 1]$$
. For $k \in \{0, 1, ..., n\}$, $f(k) = \binom{n}{k} p^k (1-p)^{n-k}$.

Proof: Let E_k be the event we get k heads. Let A_i be the event we get a heads in toss i.

$$\begin{split} E_k &= (A_1 \cap A_2 \dots A_k \cap A_{k+1}^c \cap A_{k+2}^c \cap \dots \cap A_n^c) \cup (A_1^c \cap A_2 \dots A_k \cap A_{k+1} \cap A_{k+2}^c \cap \dots \cap A_n^c) \cup \dots \\ \Pr[E_k] &= \Pr[(A_1 \cap A_2 \dots A_k \cap A_{k+1}^c \cap A_{k+2}^c \cap \dots \cap A_n^c)] + \Pr[A_1^c \cap A_2 \dots A_k \cap A_{k+1} \cap \dots \cap A_n^c)] + \dots \\ &= \Pr[A_1] \Pr[A_2] \Pr[A_k] \Pr[A_{k+1}^c] \Pr[A_{k+2}^c] \dots \Pr[A_n^c] + \dots & \text{(Independence of tosses)} \\ &= p^k (1-p)^{n-k} + p^k (1-p)^{n-k} + \dots \\ &\Longrightarrow \Pr[E_k] &= \binom{n}{k} p^k (1-p)^{n-k} \end{split}$$

(Number of terms = number of ways to choose the k tosses that result in heads = $\binom{n}{k}$)

Canonical Example: We toss n biased coins independently. The probability of getting a heads for each coin is p. Let R be the random variable equal to the number of heads in the n coin tosses. R follows the Binomial distribution.

PDF_R for Binomial distribution:
$$f: \{0, 1, 2, ..., n\} \rightarrow [0, 1]$$
. For $k \in \{0, 1, ..., n\}$, $f(k) = \binom{n}{k} p^k (1-p)^{n-k}$.

Proof: Let E_k be the event we get k heads. Let A_i be the event we get a heads in toss i.

$$\begin{split} E_k &= (A_1 \cap A_2 \dots A_k \cap A_{k+1}^c \cap A_{k+2}^c \cap \dots \cap A_n^c) \cup (A_1^c \cap A_2 \dots A_k \cap A_{k+1} \cap A_{k+2}^c \cap \dots \cap A_n^c) \cup \dots \\ \Pr[E_k] &= \Pr[(A_1 \cap A_2 \dots A_k \cap A_{k+1}^c \cap A_{k+2}^c \cap \dots \cap A_n^c)] + \Pr[A_1^c \cap A_2 \dots A_k \cap A_{k+1} \cap \dots \cap A_n^c)] + \dots \\ &= \Pr[A_1] \Pr[A_2] \Pr[A_k] \Pr[A_{k+1}^c] \Pr[A_{k+2}^c] \dots \Pr[A_n^c] + \dots \\ &= \Pr[A_1] \Pr[A_2] \Pr[A_k] \Pr[A_{k+1}^c] \Pr[A_{k+2}^c] \dots \Pr[A_n^c] + \dots \\ &= \Pr[E_k] = \binom{n}{k} p^k (1-p)^{n-k} \end{split}$$
 (Independence of tosses)

(Number of terms = number of ways to choose the k tosses that result in heads = $\binom{n}{k}$)

For the Binomial distribution, $PDF_R(k) = \binom{n}{k} p^k (1-p)^{n-k}$.

For the Binomial distribution, $PDF_R(k) = \binom{n}{k} p^k (1-p)^{n-k}$.

For the Binomial distribution, $PDF_R(k) = \binom{n}{k} p^k (1-p)^{n-k}$.

Q: Prove that $\sum_{k \in \text{Range}(R)} PDF_R[k] = 1$.

For the Binomial distribution, $PDF_R(k) = \binom{n}{k} p^k (1-p)^{n-k}$.

$$f_{20}$$
, 0.75} = 20 trials with p = 0.75

Q: Prove that $\sum_{k \in \mathsf{Range}(\mathsf{R})} \mathsf{PDF}_R[k] = 1$. non-zero but small By the Binomial Theorem, $\sum_{k \in \mathsf{Range}(\mathsf{R})} \mathsf{PDF}_R[k] = \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} = (p+1-p)^n = 1$.

For the Binomial distribution, $PDF_R(k) = \binom{n}{k} p^k (1-p)^{n-k}$.

Q: Prove that $\sum_{k \in \text{Range}(R)} \text{PDF}_R[k] = 1$.

By the Binomial Theorem, $\sum_{k \in \text{Range}(R)} \text{PDF}_R[k] = \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} = (p+1-p)^n = 1.$

 CDF_R for Binomial distribution: $F: \mathbb{R} \to [0,1]$:

$$F(x) = 0$$

$$= \sum_{i=0}^{k} {n \choose i} p^{i} (1-p)^{n-i}$$

$$= 1.$$
(for $k \le x < k+1$)
(for $x \ge n$)

Canonical Example: We toss a biased coin independently multiple times. The probability of getting a heads is p. Let R be the random variable equal to the number of tosses needed to get the first heads. R follows the geometric distribution.

Binomial: toss n times and analyze results

Geometric: toss until you get a heads. Can be less or greater than n.

Mean time to fallure uses a geometric distribution.

Canonical Example: We toss a biased coin independently multiple times. The probability of getting a heads is p. Let R be the random variable equal to the number of tosses needed to get the first heads. R follows the geometric distribution.

PDF_R for Geometric distribution: $f: \{1, 2, ...\} \rightarrow [0, 1]$. For $k \in \{1, 2, ..., \infty\}$, $f(k) = (1 - p)^{k-1} p$.

Canonical Example: We toss a biased coin independently multiple times. The probability of getting a heads is p. Let R be the random variable equal to the number of tosses needed to get the first heads. R follows the geometric distribution.

PDF_R for Geometric distribution:
$$f: \{1, 2, ...\} \rightarrow [0, 1]$$
. For $k \in \{1, 2, ..., \infty\}$, $f(k) = (1 - p)^{k-1} p$.

Proof: Let E_k be the event that we need k tosses to get the first heads. Let A_i be the event that we get a heads in toss i.

Canonical Example: We toss a biased coin independently multiple times. The probability of getting a heads is p. Let R be the random variable equal to the number of tosses needed to get the first heads. R follows the geometric distribution.

PDF_R for Geometric distribution:
$$f: \{1, 2, ...\} \rightarrow [0, 1]$$
. For $k \in \{1, 2, ..., \infty\}$, $f(k) = (1 - p)^{k-1} p$.

Proof: Let E_k be the event that we need k tosses to get the first heads. Let A_i be the event that we get a heads in toss i.

$$E_k = A_1^c \cap A_2^c \cap \ldots \cap A_k$$

Canonical Example: We toss a biased coin independently multiple times. The probability of getting a heads is p. Let R be the random variable equal to the number of tosses needed to get the first heads. R follows the geometric distribution.

PDF_R for Geometric distribution:
$$f: \{1, 2, ...\} \rightarrow [0, 1]$$
. For $k \in \{1, 2, ..., \infty\}$, $f(k) = (1 - p)^{k-1} p$.

Proof: Let E_k be the event that we need k tosses to get the first heads. Let A_i be the event that we get a heads in toss i.

$$E_k = A_1^c \cap A_2^c \cap \ldots \cap A_k$$

$$\Pr[E_k] = \Pr[A_1^c \cap A_2^c \cap \ldots \cap A_k] = \Pr[A_1^c] \Pr[A_2^c] \ldots \Pr[A_k] \quad \text{(Independence of tosses)}$$

Canonical Example: We toss a biased coin independently multiple times. The probability of getting a heads is p. Let R be the random variable equal to the number of tosses needed to get the first heads. R follows the geometric distribution.

PDF_R for Geometric distribution:
$$f: \{1, 2, ...\} \rightarrow [0, 1]$$
. For $k \in \{1, 2, ..., \infty\}$, $f(k) = (1 - p)^{k-1} p$.

Proof: Let E_k be the event that we need k tosses to get the first heads. Let A_i be the event that we get a heads in toss i.

$$\begin{split} E_k &= A_1^c \cap A_2^c \cap \ldots \cap A_k \\ \Pr[E_k] &= \Pr[A_1^c \cap A_2^c \cap \ldots \cap A_k] = \Pr[A_1^c] \Pr[A_2^c] \ldots \Pr[A_k] \quad \text{(Independence of tosses)} \\ &\implies \Pr[E_k] = (1-p)^{k-1} p \end{split}$$

Canonical Example: We toss a biased coin independently multiple times. The probability of getting a heads is p. Let R be the random variable equal to the number of tosses needed to get the first heads. R follows the geometric distribution.

PDF_R for Geometric distribution:
$$f: \{1, 2, ...\} \rightarrow [0, 1]$$
. For $k \in \{1, 2, ..., \infty\}$, $f(k) = (1 - p)^{k-1} p$.

Proof: Let E_k be the event that we need k tosses to get the first heads. Let A_i be the event that we get a heads in toss i.

$$\begin{split} E_k &= A_1^c \cap A_2^c \cap \ldots \cap A_k \\ \Pr[E_k] &= \Pr[A_1^c \cap A_2^c \cap \ldots \cap A_k] = \Pr[A_1^c] \Pr[A_2^c] \ldots \Pr[A_k] \quad \text{(Independence of tosses)} \\ &\implies \Pr[E_k] = (1-p)^{k-1} p \end{split}$$

Q: Prove that $\sum_{k \in \mathsf{Range}(\mathsf{R})} \mathsf{PDF}_R[k] = 1$.

Canonical Example: We toss a biased coin independently multiple times. The probability of getting a heads is p. Let R be the random variable equal to the number of tosses needed to get the first heads. R follows the geometric distribution.

PDF_R for Geometric distribution:
$$f: \{1, 2, ...\} \rightarrow [0, 1]$$
. For $k \in \{1, 2, ..., \infty\}$, $f(k) = (1 - p)^{k-1} p$.

Proof: Let E_k be the event that we need k tosses to get the first heads. Let A_i be the event that we get a heads in toss i.

$$\begin{aligned} E_k &= A_1^c \cap A_2^c \cap \ldots \cap A_k \\ \Pr[E_k] &= \Pr[A_1^c \cap A_2^c \cap \ldots \cap A_k] = \Pr[A_1^c] \Pr[A_2^c] \ldots \Pr[A_k] \end{aligned} \quad \text{(Independence of tosses)} \\ \implies \Pr[E_k] &= (1-p)^{k-1}p \end{aligned}$$

Q: Prove that $\sum_{k \in \mathsf{Range}(\mathsf{R})} \mathsf{PDF}_R[k] = 1$.

By the sum of geometric series, $\sum_{k \in \mathsf{Range}(R)} \mathsf{PDF}_R[k] = \sum_{k=1}^\infty (1-p)^{k-1} p = \frac{p}{1-(1-p)} = 1$.

For the Geometric distribution, $PDF_R(k) = (1-p)^{k-1}p$.

For the Geometric distribution, $PDF_R(k) = (1-p)^{k-1}p$.

For the Geometric distribution, $PDF_R(k) = (1-p)^{k-1}p$.

 CDF_R for Geometric distribution: $F: \mathbb{R} \to [0,1]$:

$$F(x) = 0$$

$$= \sum_{i=1}^{k} (1 - p)^{i-1} p$$

(for
$$x < 1$$
)

(for
$$k \le x < k + 1$$
)

