1

Q1. a) Convert to simple English sentences

```
i) \pi_{sname}(\pi_{sid}(\sigma_{tagname='PPE'}ProductTag) \bowtie (\sigma_{cost<6}Catalog)) \bowtie Suppliers)
```

Get the names of the suppliers that have PPE that costs less than 6. [Outputs the suppliers that have products tagged with 'PPE' and a cost of less than 6]

```
ii) \pi_{sname}(\pi_{sid}(\sigma_{tagname='PPE'}ProductTag)\bowtie(\sigma_{cost<6}Catalog)\bowtie Suppliers)
```

Nothing is returned from this operation.

 $[(\sigma_{tagname='PPE'}ProductTag) \bowtie (\sigma_{cost<6}Catalog)$ returns the products with tag PPE and cost ; 6, columns are: tid, pid, tagname, sid, pid, cost. Natural join with supplier looks at common sid, so that returns the suppliers with products of tag PPE and cost ; 6. Projecting sid will result in each tuple only having an sid. Projecting the sname of a table where the tuples have only sid results in nothing being returned.]

```
iii) \pi_{sname}(\sigma_{tagname='PPE'}ProductTag)\bowtie(\sigma_{cost<6}Catalog)\bowtie Suppliers )\cap\pi_{sname}(\sigma_{tagname='SuperTech'}ProductTag)\bowtie(\sigma_{cost<6}Catalog)\bowtie Suppliers )
```

Gets the names of the suppliers that offer PPE made by SuperTech that costs less than 6.

```
 \begin{array}{l} \mathrm{iv}) \\ \pi_{sid}( \\ \hspace{0.5cm} (\sigma_{tagname='PPE'}ProductTag) \bowtie (\sigma_{cost<6}Catalog) \bowtie Suppliers \\ ) \cup \pi_{sid}( \\ \hspace{0.5cm} (\sigma_{tagname='SuperTech'}ProductTag) \bowtie (\sigma_{cost<6}Catalog) \bowtie Suppliers \\ ) \end{array}
```

Gets the supplier IDs of suppliers that offer PPE or (inclusive) SuperTech products, both having a cost less than 6.

```
v) \pi_{sname}(\\ (\pi_{sid,sname}(\\ (\sigma_{tagname='PPE'}ProductTag)\bowtie(\sigma_{cost<6}Catalog)\bowtie Suppliers)\\ )\cap(\pi_{sid,sname}(\\ (\sigma_{tagname='SuperTech'}ProductTag)\bowtie(\sigma_{cost<6}Catalog)\bowtie Suppliers)\\ ))
```

Get the names of the suppliers that offer PPE made up SuperTech with a cost less than 6.

Q1. b) Write relational algebra

- i) $\pi_{snames}(\sigma_{(tagname='PPE') \lor (tagname='Testing')} ProductTag \bowtie Suppliers)$
- ii) $(\pi_{sid}((\sigma_{tagname='PPE'}ProductTag)\bowtie (\sigma_{cost<10\land cost>420}Catalog)\bowtie Suppliers))$
- iii) $(\pi_{sid}((\sigma_{tagname='PPE'}ProductTag) \bowtie (\sigma_{cost \geq 10 \land cost \leq 1337}Catalog) \bowtie Suppliers))$
- iv)
- $R1 := \sigma_{tagname = 'Cleaning'} Product Tag$
- $R2 := \pi_{sid,pid}(R1 \bowtie Catalog)$
- $R3 := \pi_{pid}(R1 \bowtie Catalog)$ $R4 := R2 \div R3$
- v)
- vi)
- vii)
- viii)
- ix)
- x)