

Indian Institute of Information Technology, Sri City, Chittoor

(An Institute of National Importance under an Act of Parliament)

Overview of Computers Module-IV Computer Networks

Contents

- Introduction to Computer Networks
- Networks and Types of Networks
- Protocol Layers
- Ethernet

Enterprise access networks (Ethernet)

- typically used in companies, universities, etc
- ♦ 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
- today, end systems typically connect into Ethernet switch

Ethernet Generations

- Original Ethernet:
 - Coaxial cable (10Base5)
 - Thicknet.
- Next Generation:
 - Thin coax cable (10Base2)
 - Thinnet.
- Modern Ethernet:
 - Twisted pair ethernet (10BaseT)
 - Uses hub: physical star but logical bus.

Ethernet Components

- NIC Network Interface Card
 - Integrated Tx/Rx direct interface to medium.
- MAU Media Attachment Unit
 - Attaches network interface to the medium (integrated into NIC).
- AUI Attachment Unit Interface
 - Decouple physical layer -reuse MAC design with different media.
- MII Media Independent Interface
 - Like AUI for gigabit / faster ethernets.

Ethernet Addressing

- 48-bit address
- Address assigned when NIC card is manufactured.
- Packets can be sent to
 - Single address Unicast
 - All stations on network Broadcast (address = all 1s.)
 - Subset of stations Multicast

- Broadcast (address = all 1s.)
 - All receivers accepts unicast / broadcats.
- Half addresses reserved for multicast (2⁴⁷)
 - NIC can accepts zero or more multicasts.

Ethernet Frame

Recent Developments

100Base-FX

- LED light source / MMF / 2 km max distance.
- Modal dispersion limited bandwidth

100Base-SX (IEEE 802.3z)

- Short wavelength laser (850 nm)
- Max distance = 5 km.

100Base-LX

- Long wavelength laser (1310 nm)
- Max distance = 5 km.

How do loss and delay occur?

packets queue in router buffers

- packet arrival rate to link (temporarily) exceeds output link capacity
- packets queue, wait for turn

Four sources of packet delay

d_{proc} : nodal processing

- check bit errors
- determine output link
- typically < msec

d_{queue}: queueing delay

- time waiting at output link for transmission
- depends on congestion level of router

Four sources of packet delay

d_{trans}: transmission delay:

- L: packet length (bits)
- R: link bandwidth (bps)

d_{trans} and d_{prop}

d_{prop} : propagation delay:

- d: length of physical link
- s: propagation speed in medium ($\sim 2 \times 10^8$ m/sec)

^{*} Check out the Java applet for an interactive animation on trans vs. prop delay

Processing Delay

- Time required to examine the packets header
 - Determines where to direct the packet
 - Check for errors
- Order of microseconds

Queuing Delay

- If a router is busy in processing and transmitting a packet, a freshly arrived packet has to wait in queue (buffer) for its turn.
- No queuing delay if the router is idle.
- Queuing delay varies with time and location. In general, it is a random variable.
- Order of microseconds to milliseconds.

Transmission Delay

- Time required to push the packet into the link
- If the length of the packet is L bits and transmission rate of the link is R bps, then

Transmission delay =
$$\frac{L}{R}$$

Order of microseconds to milliseconds

Propagation Delay

- Time required to propagate from one end of the link to the other end
- The propagation speed depends on the physical link between the routers
- In general, propagation speed s, is in the order of $2 \times 10^8 3 \times 10^8 m/s$.
- Propagation speed depends on the distance bewteen the routers, d
- Propagation delay = $\frac{d}{s}$

Traffic Intensity

- Queuing delays are random in nature
- Arrivals to a queue are also random in nature
- Traffic intensity is an indication of queuing delay
- Let a be the average number of packets arriving at a queue
- Each packet is of length L bits adn transmission rate is R bps
- Traffic intensity = $\frac{La}{R}$

Caravan analogy

- cars "propagate" at 100 km/hr
- toll booth takes 12 sec to service car (bit transmission time)
- car~bit; caravan ~ packet
- Q: How long until caravan is lined up before 2nd toll booth?

- time to "push" entire caravan
 through toll booth onto highway
 = 12*10 = 120 sec
- time for last car to propagate from 1st to 2nd toll both: 100km/(100km/hr)= 1 hr
- A: 62 minutes

Caravan analogy (more)

- suppose cars now "propagate" at 1000 km/hr
- and suppose toll booth now takes one min to service a car
- Q: Will cars arrive to 2nd booth before all cars serviced at first booth?

• A: Yes! after 7 min, 1st car arrives at second booth; three cars still at 1st booth.

Queueing delay (revisited)

- R: link bandwidth (bps)
- L: packet length (bits)
- a: average packet arrival rate

- \star La/R \sim 0: avg. queueing delay small
- ❖ La/R -> I: avg. queueing delay large
- ❖ La/R > I: more "work" arriving
 than can be serviced, average delay infinite!

 $La/R \sim 0$

La/R -> 1

Introduction1-19

^{*} Check out the Java applet for an interactive animation on queuing and loss

Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- packet arriving to full queue dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not at all

^{*} Check out the Java applet for an interactive animation on queuing and loss