Métodos computacionales para la clasificación de Polítopos de Fano Suaves y Aditivos

Fabián Levicán Profesor guía: Pedro Montero

> PUCV Valparaíso, Chile

V-Encuentro de Teoría de Números, 2022

§1. Polítopos y variedades

TÓRICAS

DEFINICIONES

Sean M,N retículos duales con espacios vectoriales asociados $M_{\mathbb{R}},N_{\mathbb{R}}$ de dimensión $d\in\mathbb{N}.$

Un polítopo es un subconjunto $P \subset M_{\mathbb{R}}$ tal que P = Conv(S), donde $S \subset M_{\mathbb{R}}$ es finito. En este caso, decimos que S es una \mathcal{V} -representación de P. En adelante estudiamos polítopos reticulares $(S \subset M)$ y de dimensión completa (dim(P) = d).

Sean $0 \neq u \in N_{\mathbb{R}}, b \in \mathbb{R}$. El hiperplano afín $H_{u,b}$ es el subconjunto

$$\{m \in M_{\mathbb{R}}: \langle u, m \rangle = b\}.$$

El semiespacio cerrado $H_{u,b}^{\scriptscriptstyle +}$ es el subconjunto

$$\{m \in M_{\mathbb{R}}: \langle u, m \rangle \ge b\}.$$

DEFINICIONES

Una cara de P es un subconjunto $Q \subset P$ tal que

$$Q = H_{u,b} \cap P$$
, $P \subset H_{u,b}^+$.

Una faceta es una cara de codimensión 1, y una arista (resp., vértice) es una de dimensión 1 (resp., 0).

Sea $P \subset M_{\mathbb{R}}$ un polítopo. Si existe una colección finita $(H^+_{u_i,b_i})_{1 \leq i \leq s}$ de semiespacios tales que

$$P = \bigcap_{i=1}^{s} H_{u_i,b_i}^+,$$

entonces decimos que la colección $(u_i, -b_i)_{1 \le i \le s} \subset N_{\mathbb{R}} \times \mathbb{R}$ es una \mathcal{H} -representación de P.

Teorema de representación de Minkowski-Weyl

Teorema [Minkowski, Weyl]

Sean $P \subset M_{\mathbb{R}}$ un polítopo, y V (resp., \mathcal{F}) el conjunto de sus vértices (resp., facetas). Entonces,

- $\mathbf{0}$ $V \subset M_{\mathbb{R}}$ es la única \mathcal{V} -representación minimal de P.
- ① Existen \mathcal{H} -representaciones de P.
- ① Para cada faceta $F \subset \mathcal{F}$, existen únicos H_F, H_F^+ asociados a F. Si escribimos

$$H_F = \{ m \in M_{\mathbb{R}} : \quad \langle u_F, m \rangle = -a_F \},$$

$$H_F^+ = \{ m \in M_{\mathbb{R}} : \quad \langle u_F, m \rangle \ge -a_F \},$$

entonces $(u_F, a_F) \in N_{\mathbb{R}} \times \mathbb{R}$ es único (módulo multiplicación por $\lambda \in \mathbb{R}^+$).

Teorema de representación de Minkowski-Weyl

Teorema [Minkowski, Weyl] (Continuación)

② La colección $(u_F, a_F)_{F \in \mathcal{F}} \subset N_{\mathbb{R}} \times \mathbb{R}$ es la única (módulo multiplicación por $(\lambda_F)_{F \in \mathcal{F}} \subset \mathbb{R}^+$) \mathcal{H} -representación minimal de P. Es posible escoger u_F primitivo y $a_F \in \mathbb{Z}$.

Se puede demostrar que la intersección (finita, acotada) de semiespacios cerrados es un polítopo, luego el teorema anterior implica que todo polítopo se puede representar de dos maneras equivalentes.

Sean $P \subset M_{\mathbb{R}}$ un polítopo tal que $0 \in int(P)$, y \mathcal{F} el conjunto de sus facetas. El polítopo dual o polar de P es el polítopo (*¡no necesariamente reticular!*) $P^{\circ} \subset N_{\mathbb{R}}$ dado por la \mathcal{V} -representación $((1/a_F)u_F)_{F \in \mathcal{F}} \subset N_{\mathbb{R}}$.

Variedad tórica asociada a un polítopo

Sea $P \subset M_{\mathbb{R}}$ un polítopo tal que $0 \in int(P)$.

P es muy amplio si para cada vértice $m \in P$ el semigrupo $S_{P,m} = \mathbb{N}(P \cap M - m)$ es saturado en M.

Los polítopos muy amplios tienen "suficientes puntos", lo que implica que el abanico generado por los vértices de P° corresponde, a través de la construcción de variedades tóricas, a una variedad proyectiva.

Polítopos reflexivos

Sea X una variedad algebraica normal y completa. Recordemos que X es de Gorenstein Fano si el divisor anticanónico $-K_X$ es Cartier y amplio.

Sea $P \subset M_{\mathbb{R}}$ un polítopo. Decimos que P es un polítopo reflexivo si P° también es un polítopo reticular.

Teorema [Cox, Theorem 8.3.4]

Sean X_Σ una variedad algebraica de Gorenstein Fano tórica, y $P \in M_\mathbb{R}$ un polítopo reflexivo. Entonces, el polítopo asociado al divisor anticanónico $-K_{X_\Sigma}$ es reflexivo, y X_P es de Gorenstein Fano.

Polítopos de Fano suaves

Sea X una variedad algebraica de Gorenstein Fano. Recordemos que X es de Fano suave si X es suave.

Sea $P \subset M_{\mathbb{R}}$ un polítopo. Decimos que P es suave si para cada vértice v y aristas E_1, \ldots, E_n de P tales que

$$v \in E_i, \quad \forall i \in \{1, \dots, n\},\$$

los vectores primitivos e_i en las aristas E_i son una base de M. Decimos que P es de Fano suave si P es reflexivo y suave.

Existe una correspondencia entre los polítopos suaves y las variedades proyectivas tóricas suaves, ¡luego también entre los polítopos de Fano suaves y las variedades de Fano tóricas suaves!

CLASIFICACIÓN

Hay finitas clases de equivalencia de polítopos reflexivos, pero los números crecen muy rápido (16, 4319, 473 millones, ...) [Kreuzer, Skarke]

Es más interesante, entonces, estudiar polítopos de Fano suaves (5, 18, 124, ...) [Batyrev], [Sato], [Öbro].

Figure: Polítopos de Fano suaves para d = 2

Fuente: La Conferencia Fano, Debarre, 2002.

§2. Acciones aditivas

DEFINICIÓN Y EJEMPLO

Sean K un cuerpo algebraicamente cerrado de característica 0, X una variedad algebraica irreducible de dimensión n sobre K, y $\mathbb{G}_a = (\mathbb{K}, +)$.

Una acción aditiva sobre X es una acción (efectiva, regular) del grupo commutativo unipotente $\mathbb{G}_a = (\mathbb{K}, +)$ en X con una órbita abierta. Decimos que X es aditiva (resp., únicamente aditiva) si admite una acción aditiva (resp., si admite una acción aditiva única módulo isomorfismo con una acción normalizada).

Clasificación de acciones aditivas sobre \mathbb{P}^2 [Hassett, Tschinkel, 1999]

Existen dos estructuras aditivas distintas sobre \mathbb{P}^2 , y están dadas por las siguientes expresiones para todos $a = (a_1, a_2) \in \mathbb{G}^2$, $x = [x : y : z] \in \mathbb{P}^2$:

$$\tau(a)(x) = \begin{bmatrix} 1 & 0 & a_2 \\ 0 & 1 & b_1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \rho(a)(x) = \begin{bmatrix} 1 & a_1 & a_2 + \frac{1}{2}a_1^2 \\ 0 & 1 & a_1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

Criterio de existencia

Sea $P \subset M_{\mathbb{R}}$ un polítopo muy amplio, y sea \mathcal{F} el conjunto de sus facetas.

Decimos que P está inscrito en un rectángulo si existe un vértice $v_0 \in P$ tal que:

- ① Los vectores primitivos en las aristas $(E_i)_{1 \le i \le d}$ de P cuyo punto inicial es v_0 forman una base $(e_i)_{1 \le i \le d} \subset M_{\mathbb{R}}$ de M.
- ① Para toda $F \in \mathcal{F}$ e $i \in \{1, \ldots, dim(M)\}$, si $v_0 \notin F$, entonces $\langle -u_F, e_i \rangle \geq 0$.

Teorema [Arzhantsev, Romanskevich, 2017]

La variedad proyectiva X_P es aditiva si y sólo si P está inscrito en un rectángulo.

Algoritmo de existencia

Algorithm 1 Algorithm to decide if a Fano polytope given by both its minimal ${\mathcal V}$ and inward \mathcal{H} -representations is additive or not.

```
Precondition: P \subset M_{\mathbb{R}} is a Fano polytope. V[|I|][d] is a minimal \mathcal{V}-representation of P.
     H[|J|][d] is a minimal inward \mathcal{H}-representation of P.
```

Postcondition: The algorithm returns True if P is additive, and False if not.

```
1: VF \leftarrow A zero array of dimension |I| \times |J|.
```

2: **for** $0 \le j < |J|$ **do**

 \triangleright Fill in VF

3: $IndicesInFacet \leftarrow Argmin_{0 \le i < |I|} \{ \langle H[j], V[i] \rangle \}$

4: for $i \in IndicesInFacet do$ 5:

 $VF[i,j] \leftarrow 1$

end for

7: end for

8: for $0 \le i < |I|$ do

Check each vertex

9: if CheckVertex(H, VF, i) then

Return True 10:

11: end if

12: end for

13: Return False

FUNCIÓN CHECKVERTEX

Return True.

Algorithm 2 Function to check if a vertex satisfies the condition described in [Arzhantsev, Romanskevich, 2017] or not.

Precondition: H[|J|][d], VF[|I|][|J|], i are as in Algorithm 1. **Postcondition:** The function returns True if V[i] satisfies the condition described in [Arzhantsev, Romanskevich, 2017], and False if not. 1: Edges \leftarrow FindEdgesFromVertex(V, VF, i) 2: **for** $0 \le j < |J|$ **do** 3: if VF[i][j] == 0 then 4: for $0 \le k < \#$ Edges do 5: if $\langle Edges[k], H[j] \rangle > 0$ then 6: Return False. 7: end if 8: end for end if 10: end for

Criterio de unicidad

Sea $P \subset M_{\mathbb{R}}$ un polítopo muy amplio, y sea $\mathcal{P} = (p_i)_{1 \leq i \leq s}$ una \mathcal{H} -representación primitiva ordenada* de P.

Para cada $i \in \{1, ..., s\}$, definamos

$$\mathfrak{R}_i \coloneqq \{x \in M: \quad \langle p_i, x \rangle = -1, \quad \forall j \in \{1, \dots, s\} \smallsetminus \{i\}, \quad \langle p_j, x \rangle \geq 0\}.$$

Una raíz de Demazure es un elemento del conjunto $\cup_{i=1}^s \mathfrak{R}_i \subset M$.

Teorema [Dzhunusov, 2020]

Sea $\mathcal{P}^* = (p_i^*)_{1 \leq i \leq s} \subset N_{\mathbb{R}}$ el dual de \mathcal{P} (en el sentido del álgebra lineal). Si X_P es completa y aditiva, entonces X_P es únicamente aditiva si y sólo si para cada $i \in \{1, \ldots, d\}$ se tiene $\mathfrak{R}_i = \{-p_i^*\}$.

Algoritmo de unicidad

end if

15:

Algorithm 3 Algorithm to decide if the projective variety associated to an additive Fano polytope given by its minimal inward \mathcal{H} -representation admits a unique additive action or not.

Precondition: $\varepsilon > 0$ is a small tolerance. $P \in M_{\mathbb{R}}$ is an additive Fano polytope. X_P is the projective variety associated to P. H[d][|J|] is a minimal inward \mathcal{H} -representation of P. Note: H is the transpose of its homonym in Algorithm 1!

Postcondition: The algorithm returns True if X_P admits a unique additive action, and False if not.

```
1: PossibleBases \leftarrow Subsets(H, d)
 2: for B \in Possible Bases do.
 3:
          if |det(B)| \ge \varepsilon then
                                                                                                                \triangleright If B is a basis.
 4:
               SortedH \leftarrow Sort^*(H, B)
 5:
               R \leftarrow \mathsf{SortedH}[:, d:]
                                                                                \triangleright Slice vectors in H that are not in B.
6:
               R \leftarrow B^{-1}R

    ▷ Change of basis.

7:
               if IsNegative(R) then
8:
                    for 0 < i < d do
9:
                          B^* \leftarrow (B^{-1})^t
                                                                                               \triangleright Linear algebraic dual of B.
10:
                          S_0 \leftarrow B^*[:,i]
                                                                                                             > A priori solution.
11:
                          M \leftarrow \mathsf{DefineLPModel}(\mathsf{Maximise}, \ x = (x_j)_{0 \le j < d}, \ f(x), \ A, \ b)
12:
                          S_1 \leftarrow \mathsf{LPSolve}(M)
13:
                          if ||S_1 - S_0|| \ge \varepsilon then
14:
                               Return False.
```

§3. Resultados

RESULTADOS

La siguiente tabla resume los resultados que obtuvimos por métodos computacionales:

Para d=2, los polítopos únicamente aditivos corresponden a $\mathbb{P}^1 \times \mathbb{P}^1, Bl_{p,q}(\mathbb{P}^2)$, etc.

Conjetura

¡En dimensiones superiores sucede algo similar!

RESULTADOS

¡Muchas gracias por su atención! :)