

Modelle in der Informatik

Prof. Dr. Stefan Eckstein

- **A** Modellverständnis
- B Modelle als Problembeschreibungen
- C Modelltheorie
- D Literatur

- A Modellverständnis
- B Modelle als Problembeschreibungen
- C Modelltheorie
- **D** Literatur

Arten und Aufgaben von Modellen (in der Informatik)

- Arten von Modellen
 - Beschreibungs- und Erfassungsmodelle
 - Erklärungsmodelle
 - Gestaltungsmodelle
 - Meta- und generische Modelle
 - sonstige Modelle
- Aufgaben von Modellen:
 - Beschreibung
 - Vereinfachung
 - Abstraktion
 - Verdeutlichung
 - Explizierung von Informationskonzepten

Ein Spatz in der der Hand

Die Realität ist nicht abbildbar

Sinnestäuschung

Modelle können keine Abbildungen der Realität sein.

Modellverständnis

- Ein konstruktivistisches Modellverständnis ist notwendig.
 - Auslassungen und Hinzufügungen sind die Regel.
 - Realität hat keine objektiv wahrnehmbaren Strukturen.
 - Nicht Homomorphie, sondern
 Zweckdienlichkeit wird zum Qualitätskriterium.
- Modelle sollen helfen Probleme zu lösen.

- A Modellverständnis
- B Modelle als Problembeschreibungen
- C Modelltheorie
- Literatur

© 2012-21 Stefan Eckstein

Erste Annäherung an den Modellbegriff

- Modelleigenschaften (nach Stachowiak (1973))
 - Abbildung: Abbildung eines Originals oder anderen Modells
 - Abstraktion: Modell abstrahiert vom Original
 - Pragmatik: Modelle erfüllen einen bestimmten Zweck

Zweite Annäherung an den Modellbegriff

- Objekte werden durch Zuweisungen von Eigenschaften zu Modellen (nach Mahr (2009))
 - Modell = Zweckgerichteter Auswahl- und Konstruktionsprozess
 - Unterscheidung zw. Modellobjekt und Modell
 - Zwei Perspektiven:
 - Herstellungsperspektive: Modell von etwas
 - Anwendungsperspektive: Modell für etwas

Die Basis von Modellen sind Probleme

- Subjektivität der Probleme überträgt sich auf Modelle.
 - Ziele
 - Wahrnehmungsgewohnheiten
 - Deutungsmuster, Informationen und
 - kognitive Fähigkeiten bestimmen die Probleme und die Modellkonstruktion.
- Wohlstrukturierte Probleme sind keine echten Probleme.
 - Mangel an Struktur ist Problemeigenschaft.
 - Nicht die Anwendung eines Lösungsalgorithmus sondern die Aufstellung eines adäquaten Modells ist der Hauptbeitrag bei der Problemlösung.

Problembegriff

- definierende Konzepte
 - Bewusstsein
 - Unerwünschtheit
 - Schwierigkeit
 - Lösbarkeit

Probleme sind subjektiv wahr genommene Abweichungen zwischen Erreichtem und Erwünschtem, verbunden mit einem ursprünglichen Mangel an Wissen über Möglichkeiten, diese Lücke zu schließen.

Bretzke (1980), S. 34

Modell

- Modelle erben die Problemeigenschaften. Konsequenzen:
 - Subjektivität
 - Ziel-/ Zweckgerichtetheit
 - Lösbarkeit
- Modelle werden gebildet nach dem Frageschema
 - Modell wovon,
 - für wen,
 - wann und
 - wozu.

Modelle sind symbolische, immaterielle, subjektive, zweckdienliche, kritisierbare, gleichzeitig abstrahierende wie explizierende, ganzheitliche Beziehungsgefüge zur Beschreibung von Problemen bzw. Problemsituationen.

Dresbach (1999), S. 79

- **A** Modellverständnis
- B Modelle als Problembeschreibungen
- C Modelltheorie
- Literatur

© 2012-21 Stefan Eckstein

Theorie

- Menge geordneter Sätze und ihrem Inhalt nach semantisch interpretierte, komplexe Gebilde von Begriffen und Aussagen. Diese Gebilde bestehen – neben empirischen Befunden, deren Verallgemeinerungen und universellen Prinzipien – aus Definitionen und einem System von Gesetzesaussagen.
- Theorien sind nomologische Hypothesen: hypothetische Festsetzungen unterschiedlicher Abstraktheit und Allgemeinheit, als Sätze bzw. Satzsysteme, die sich bewährt haben i.d.S., dass sie wohl begründet und empirisch bestätigt worden sind

Quelle: Spinner (1974), Schanz (1988).

Anforderungen an Theorien

- eher formal
 - formale Einheit (syntaktische Gleichheit und Gleichmäßigkeit)
 - Widerspruchsfreiheit
 - Allgemeingültigkeit
- eher inhaltlich
 - Realitätsbezug
 - Definition des Anwendungsbereichs
 - intendierter Geltungsbereich

Beispiel für Theorie-Elemente

- Gesetzesaussagen:
 - "Modelle bestehen aus Elementen."
 - "Probleme werden beschrieben durch Modelle."
- Prüfung der Widerspruchsfreiheit z.B. über die Gültigkeit der Transitivitätsbedingung:

Symbolische Darstellung	Erläuterung
(2) Probleme → Modelle	Probleme werden beschrieben durch Modelle
(1) Modelle \rightarrow Elemente	Modelle bestehen aus Elementen.
=> Diese Abdeckung wird in der Vorlesung entfernt	

Kritik und Konsequenz

- Eine solche Modelltheorie g\u00e4be keine Auskunft \u00fcber die Benutzung der Theorie!
- Besser im Kontext der Informatik wäre es, die Theorie als Methodenlehre aufzufassen, eine Methodologie zu entwerfen.
 - Metatheoretischer Ansatz
 - Normativer Charakter
 - Methodenfragen als wichtiger Teil des Erkenntnisobjektes

