Universidade Veiga de Almeida

Curso: Básico das engenharias

Disciplina: Cálculo Diferencial e Integral II

Professora: Adriana Nogueira

2^a Lista de Exercícios

Exercício 1: Seja $f(x,y) = 4x^2y + 3y^2 - 7x^3$.

- (a) Calcule $f_x(1,3)$
- (b) Calcule $f_y(-1,2)$

Exercício 2: Seja $f(x,y) = \frac{xy^2 + 3x}{\cos x}$.

- (a) Determine a derivada parcial $f_x(x, y)$;
- (b) Determine a derivada parcial $f_y(x, y)$.

Exercício 3: Dada $f(x,y) = ln(x + \sqrt{x^2 + y^2})$, calcule $f_x(3,4)$.

Exercício 4: Seja $f(x, y, z) = z^3 cos(x + y)$. Calcule $f_z(0, 0, 2)$.

Exercício 5: Seja $f(x, y, z) = \sqrt{sen^2x + sen^2y + sen^2z}$. Calcule $f_z(0, 0, \frac{\pi}{4})$.

Exercício 6: Determine se cada uma das funções abaixo é solução da equação de Laplace: $u_{xx}+u_{yy}=0$.

(a)
$$u(x,y) = x^2 - y^2$$

(b)
$$u(x,y) = 2\cos x - 2\sin x$$

(c)
$$u(x,y) = 2\cos x + 2\sin x$$

Exercício 7: Dada $u = s^2 r^3 t^5$, determine as derivadas parciais $\frac{\partial u}{\partial s}$, $\frac{\partial u}{\partial r}$, $\frac{\partial u}{\partial t},\ \frac{\partial^2 u}{\partial s \partial t},\ \frac{\partial^2 u}{\partial s^2},\ \frac{\partial^3 u}{\partial s^2 \partial t}.$

Respostas:

Exercício 1: a) 3 b) 16

Exercício 2:

a)
$$f_x(x,y) = \frac{(y^2+3)(\cos x)-(xy^2+3x)(-\sin x)}{\cos^2 x}$$

b)
$$f_y(x,y) = \frac{2xy}{\cos x}$$

Exercício 3: 1/5

Exercício 4: 12

Exercício 5: $\frac{\sqrt{2}}{2}$

Exercício 6: a) É solução b) Não é solução c) Não é solução

Exercício 7:

$$\frac{\partial u}{\partial s} = 2sr^3t^5$$

$$\frac{\partial u}{\partial r} = 3s^2r^2t^5$$

$$\frac{\partial u}{\partial t} = 5s^2r^3t^4$$

$$\frac{\partial^2 u}{\partial s \partial t} = 10sr^3t^4$$

$$\frac{\partial^2 u}{\partial s^2} = 2r^3t^5$$

$$\frac{\partial^3 u}{\partial s^2 \partial t} = 10r^3 t^4$$