AUTOMATA FORMAL LANGUAGES AND LOGIC

Lecture notes CYK (Membership algorithm)

Prepared by:
Kavitha K N
Assistant Professor

Department of Computer Science & Engineering PES UNIVERSITY

(Established under Karnataka Act No.16 of 2013) 100-ft Ring Road, BSK III Stage, Bangalore - 560 085

Table of Contents:

Section	Topic	Page number
1	Introduction	3
2	Example	

Examples Solved:

#	Problems on CYK	Page number
1	S -> aSb bSa SS λ	4
2	S -> AB , A -> BB a , B -> AB b	6
3	$S \rightarrow AA \mid BC$, $A \rightarrow BA \mid a$, $B \rightarrow CC \mid b$, $C \rightarrow AB \mid a$	7

CYK Algorithm

1. Introduction

The CocKe - Younger - Kasami algorithm alternatively called as CYK or CKY is a parsing algorithm for context free grammar named after its inventors, John , Daniel Younger and Tadao Kasami. It is a membership algorithm for Context free grammar.. It employs bottom up parsing and dynamic programming.is

It is used to decide whether a given string belongs to the language of the grammar or not.

CYK algorithm operates only CFG given CNF.

The worst case running time of CYK algorithm is Θ (n3. |G|)

Where n is the length of the parsed string and |G| is the size of the CNF

To check whether the string belongs to the grammar, we should construct a table (similar to table filling algorithm).

Construct a triangular table such that

- -> Each row corresponds to the length of the substring
 - Bottom row represents the substring of length 1
 - second row from bottom row represents substring of length 2
 - third row from bottom row represents substring of length 3 and so on
 - top row represents the entire string 'w' length

For example , consider the string of length 5, $\mathbf{w}_1 \ \mathbf{w}_2 \ \mathbf{w}_3 \ \mathbf{w}_4 \ \mathbf{w}_5$ For this the table looks like

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

Each cell will enumerate some variable, for example X_{11} should see the terminal with length 1, X_{12} enumerated with w_2 Length.

To enumerate each cell you should compute utmost n previously generated sets,

For example, to compute the X_{12} you should make use of X_{11} , X_{22} . If you want to fill the cell, you should see the previous pair in the row below.

To compute X_{23} you should see X_{22} , X_{33} to compute X_{34} you should see X_{33} , X_{44} and so on.

Suppose we manage to get all the possible values of \boldsymbol{X}_{ij} , then it is quite clear that the string X belongs to L(G) iff

 X_{in} , Contains the start symbol S, where n is the length if the string, (ie, the top cell should contain S in it)

2. Example:

1) Parse the string abba using CYK algorithm,

Grammar:

$$S \rightarrow aSb \mid bSa \mid SS \mid \lambda$$

Note:

If we want to fill X_{ij} we should see what is previously computed utmost n pairs so X_{ij} can be expanded as:

$$X_{ij} = (\ X_{i,j}\ X_{i+1,\,j})\ \cup\ (X_{i,i+1,\,}X_{i+2,j}\ \dots\ X_{i,\,j-1,\,}X_{jj})$$

Solution:

Step 1:

Convert given CFG to CNF

Eliminate λ production

 $S \rightarrow aSb \mid bSa \mid ab \mid ba \mid S \mid SS \mid \lambda$

Eliminate unit production

 $S \rightarrow aSb \mid bSa \mid ab \mid ba \mid SS \mid \lambda$

There are no useless production

Conversion to CNF

$$S \rightarrow AB \mid BA \mid AC \mid BD \mid SS \mid \lambda$$

 $A \rightarrow a$

 $B \rightarrow b$

C -> **SB**

D -> SA

Step 2:

CYK algorithm

1) Strings of the length 1 can be generated by

 $A \rightarrow a$

 $B \rightarrow b$

2) Strings of the length 2 can be generated by

For AB

S -> AB

For BA

 $S \rightarrow BA$

For BB it is Ø

3) Strings of the length $\bf 3$ can be generated by

a) A.
$$\varnothing$$
 \cup S.B = \varnothing .SB (SB is generated by C)

b) B.S $\cup \emptyset$.A

BS is not generated by any rule

4) Strings of the length 4 can be generated by

$$A.Ø \cup SS \cup CA$$

The given string belongs to the grammar

Example 2:

S -> AB

A -> BB | a

B -> AB | b

String: aabba

Length 3:

1) $A(S, B) \cup \varnothing .B (S -> AB, B -> AB)$

AS, AB, Ø

2) AA U (S,B) (B) (A -> BB)

AA U SB,BB

3) A.Ø

Ø

Length 4:

1) $AA \cup \varnothing A \cup (S,B)(B)$

AA UøUSBUBB

(A -> BB)

2) A. ∅ U (S,B) ∅ U AA

 $\emptyset \cup \emptyset \cup AA$

≡Ø

Length 5:

 $A \varnothing \cup \varnothing . \varnothing \cup (S,B) \varnothing \cup AA$

= Ø

The string does not belong to grammar

Example 3:

 $\mathbf{S} \rightarrow \mathsf{AA} \mid \mathsf{BC}$

 $A \rightarrow BA \mid a$

 $B \rightarrow CC \mid b$

 $C \rightarrow AB \mid a$

W= baaa

4	S,A,C			
3	Ø	S,A,C		
2	A,S A	В —	В	
1	В	A,C	A,C	A,C
	b	а	а	а

Length 3:

1) BB U {A, S }{A,C}

BB U AA U AC U SA U SC

=Ø

2) (A,C) (B) ∪ B(A,C)

AB U CB U BA UBC

 $S \rightarrow AB \mid BC \quad A \rightarrow BA$

 $C \rightarrow AB$

Length 4:

 $B(S,A,C) \cup (A,S) B \cup \emptyset (A,C)$

= **BS** \cup BA \cup BC \cup AB,SB

 $A \rightarrow BA$

 $S \rightarrow BC$

 $S \rightarrow AB$

 $C \rightarrow AB$

The string baaa belongs to the grammar