

Master 1 EMIMEO - Exam of "Basics of active and nonlinear electronics" (M. Campovecchio)

A- Narrow-band power amplifier (2 stages)

Specifications:

Output Power $P_{OUT} > 2 \text{ W}$; Center frequency $f_0 = 20 \text{ GHz}$;

Total power gain $G_P > 20 \text{ dB}$; Source and Load resistors $R_G = R_L = R_{50} = 50 \Omega$

MMIC technology (0.25 μm GaAs HEMT foundry):

<u>Power density</u> **PD** = 1 W/mm ; <u>Measured maximum gain @ 20 GHz $G_{MAX(@20GHz)}$ = 16 dB \approx 40 ; <u>Maximum drain current</u> I_{DSmax} = 800 mA/mm; <u>Limits of V_{DS} voltage</u> (V_{DSmin} =1 V and V_{DSmax} =11 V) Optimum power resistance: R_{OPT} = 12,5 Ω .mm</u>

<u>Linear electrical model</u>: C_{GS} = 2,7 pF/mm; C_{DS} = 0,6 pF/mm; Ri = 1 Ω .mm; R_{DS} = 125 Ω .mm Selected transistor (unitary size **T1 of 0.6mm**) @ 20 GHz = **8x75** μ m GaAs HEMT

In the problem (C_{GS1} ; C_{DS1} ; Ri_1 ; R_{IN1} ; R_{DS1} ; R_{OPT1}) stand for the values of transistor $T1 = 8x75 \mu m = 0.6 \ mm$

In this problem, each stage has to be matched to its optimum power load ROPTA and ROPTB

- 1) Using scaling rules, calculate the numerical values (C_{GS1}; C_{DS1}; Ri₁; R_{DS1}; R_{OPT1}; R_{IN1} @ 20GHz) of T1.
- 2) Power gain:
 - $G_P(R_{OPT})$ is the power gain of a transistor T when it is loaded by its optimum power load ($L_{OPT}//R_{OPT}$).
 - G_{MAX} = $G_P(R_{DS})$ is the maximum power gain of T when it is loaded by its optimum gain load ($L_{OPT}//R_{DS}$). In both cases, L_{OPT} =1/(C_{DS} ω^2).

It can be demonstrated that the power gain $G_P(R_{OPT})$ can be expressed as a function of G_{MAX} by:

$$G_{P}(R_{OPT}) \; = \; R_{OPT} \left[\frac{R_{DS}}{R_{DS} + R_{OPT}} \right]^2 \frac{g_m^2}{R_i \; C_{GS}^2 \; \omega^2} \; = \; 4 \; R_{OPT} \frac{R_{DS}}{[R_{DS} + R_{OPT}]^2} \; G_{MAX}$$

Using this equation and the measured value of $G_{MAX(@20GHz)}=16dB=40$, determine the expression of $G_{P1}(R_{OPT1})$ for the transistor T1 when it is matched to its optimum power load R_{OPT1} . Demonstrate that the numerical value of G_{P1} at 20GHz is $G_{P1}(@20GHz)=13,2=11,2dB$.

- 3) Using the specifications of output power and the technological data of power density, determine the sizing of the 2-stage amplifier (size of each stage with numbers n_B and n_A of transistors T1 per stage / optimum load resistance required by each stage R_{L_B} and R_{L_A} as a function of R_{OPT1} / output power P_{OUT} of 2^{nd} stage/ gain of 2^{nd} stage $G_{P_B} = G_{P_1}$ / inter-stage power $P_{IN_B} = P_{OUT_A}$ / gain of 1^{st} stage $G_{P_A} = G_{P_1}$ / input power $P_{IN} = P_{IN_A}$).
- 4) On the amplifier schematic (next page), indicate the numerical values of each stage when the amplifier operates at the maximum output power of the last stage.
- 5) Input and inter-stage matching
 - a) Calculate the equivalent series input resistances $\mathbf{R}_{i_{\text{A}}}$ and $\mathbf{R}_{i_{\text{B}}}$ of each stage.
 - b) Calculate the equivalent parallel input resistances R_{IN_A} and R_{IN_B} of each stage at 20GHz.
- 6) Draw the electrical matching circuits (inductors and transformers) of the two-stage amplifier when matched to $R_G=R_L=50\Omega$ and determine the expression of matching elements <u>without calculating</u> numerical values. For the sake of simplicity, you can use the notations:

$$L_1 = 1/(C_{GS1} \omega_0^2)$$
 and $L_2 = 1/(C_{DS1} \omega_0^2)$

7) If both stages operate in class-A, calculate the total DC power to determine the maximum PAE of the amplifier? Why is-it less than 50%?

