VIRUSES AND SUPPRESSION

MARKERS AND TARGETING

oncoCURES 3 Ideas Presentation

Anonymous students MK, NM, and AW 20.020: Intro to Biological Engineering Design

onco CURES

3 Ideas Presentation

SIGNALING AND GENETICS

VIRUSES AND SUPPRESSION

MARKERS AND TARGETING

MISSION:

to create an inexpensive and efficient treatment for cancer to substitute current damaging therapies such as chemotherapy and radiation

- CHALLENGE
- PROJECT
- QUESTIONS

VIRUSES AND SUPPRESSION

MARKERS AND TARGETING

SIGNALLING AND GENETICS

PHILOSOPHY:

- prevention before cancer reaches later
 stages and health is jeopardized
- stopping growth as a cure

IDEA:

 look at cellular pathways and enzymes in order to understand pathways taken by cancerous growth, and how to prevent it

- CHALLENGE
 - PROJECT
 - QUESTIONS

VIRUSES AND SUPPRESSION

MARKERS AND TARGETING

SIGNALLING AND GENETICS

CHALLENGE:

- IMPORTANCE:
 - to avoid use of chemotherapy
 - to find pathways similar in different types of cancer
- IMPACT:
 - keep healthy cells alive while stopping growth of cancerous cells
 - better understanding of cellular pathways

- CHALLENGE
- PROJECT
 - QUESTIONS

VIRUSES AND SUPPRESSION

MARKERS AND TARGETING

SIGNALLING AND GENETICS

PROJECT:

- POSSIBLE COMPETITION:
 - similar research in area at University of California, "Glivec," pill for treatment of leukemia, inhibitor
- KNOWNS:
 - certain pathways over-expressed during cancerous growth
 - lack of certain enzymes leads to uncontrollable replication
- UNKNOWNS:
 - which ones, how many different pathways are involved

- CHALLENGE
- PROJECT
- QUESTIONS

VIRUSES AND SUPPRESSION

MARKERS AND TARGETING

SIGNALLING AND GENETICS

QUESTIONS:

- BUILDABLE?
 - done before for other cell types, specific pathways used for cure
- SAFE? SECURE?
 - interrupting normal cell growth
 - effects of introducing "working" enzymes to replace lack

VIRUSES AND SUPPRESSION

- CHALLENGE
- PROJECT
- QUESTIONS

MARKERS AND TARGETING

VIRUSES AND SUPPRESSION

PHILOSOPHY:

- to discover efficient ways to attack cancerous cells of the immune system
- to find pattern which will enable just tumorprone cells to be targeted and suppressed/destroyed

IDEA:

- using recombinant DNA, and viruses (retrovirus and DNA), to insert sequence to cease mitotic divisions in cancer cells
- insert nonsense sequences into important regions or use lysogenic/lytic cycle to destroy the cell

VIRUSES AND SUPPRESSION

- CHALLENGE
 - PROJECT
 - QUESTIONS

MARKERS AND TARGETING

VIRUSES AND SUPPRESSION

CHALLENGE:

- IMPORTANCE:
 - improve lives of those living with cancer
 - use model to target a wider range of cancers and inhibit metastasis
- IMPACT:
 - easy to program virus to change DNA of cells, easy to produce
 - could halt tumor growth early on
 - ends the possibility of metastasis which leads to further health problems in a patient

VIRUSES AND SUPPRESSION

- CHALLENGE
- PROJECT
 - QUESTIONS

MARKERS AND TARGETING

VIRUSES AND SUPPRESSION

PROJECT:

- POSSIBLE COMPETITION:
 - research in cold virus against tumor cells
- KNOWNS:
 - gene types a retrovirus needs to transform a cell to a cancerous cell
 - mechanism of cancer-causing viruses
 - link between oncogenes in viruses and oncogenes in cancerous cells
- UNKNOWNS:
 - how to make virus only attack cancer cells, the markers on cancer cells and how they may change

VIRUSES AND SUPPRESSION

- CHALLENGE
- PROJECT
- QUESTIONS

MARKERS AND TARGETING

VIRUSES AND SUPPRESSION

QUESTIONS:

- BUILDABLE?
 - genetic recombination of this type has been done before
 - virus previously engineered to fight disease
- SAFE? SECURE?
 - how to ensure that only cancerous cells are attacked by virus
 - possibility that virus administered in-vivo could become cause of cancer in other cells, examples: "Bubble Boy Disease"

VIRUSES AND SUPPRESSION

MARKERS AND TARGETING

- CHALLENGE
- PROJECT
- QUESTIONS

Image removed due to copyright restrictions.

Diagram of tumor initiation and metastasis.

Figure 1 in Chiang, A. C., and J. Massague. "Molecular Basis of Metastasis." *NEJM* 359, no. 26 (2008): 2814-2823.

MARKERS AND TARGETING

PHILOSOPHY:

- way to attack or inhibit cancer cells without introducing foreign agents/chemicals
- combat metastasis by targeting late-stage
 tumor cells or cancer cells in transit

IDEA:

- identify specific markers on late-stage cancer cells and develop chemotaxis to track movements of tumors
- engineer cells from patient to target cells at source or in blood/lymph
- release chemical agents through cell-to-cell juxtacrine sensing

VIRUSES AND SUPPRESSION

MARKERS AND TARGETING

- CHALLENGE
 - PROJECT
 - QUESTIONS

MARKERS AND TARGETING

CHALLENGE:

- IMPORTANCE:
 - to eliminate cancer cells or prevent spread without harming normal cells
 - to counteract metastasis, decisive process
- IMPACT:
 - will deter destruction of normal cell function and keep organ systems intact
 - could help deal with major cause of death due to cancer
 - if tailored with chemical markers for each cell type, could work as general inhibitor of tumor spread

VIRUSES AND SUPPRESSION

MARKERS AND TARGETING

- CHALLENGE
- PROJECT
 - QUESTIONS

MARKERS AND TARGETING

PROJECT:

- POSSIBLE COMPETITION:
 - "dBaits," other "decoy" mechanisms
 - research in juxtacrine signaling can trigger non-growth in cancer cells
- KNOWNS:
 - effective chemicals for killing cancerous cells, hormones and receptors for growth
- UNKNOWNS:
 - exact markers on cancer cell types
 - if markers proliferate and at what rate,
 is tracking possible in human body
 - possible consequences in systems

Image: US DOE / PNNL, http://www.sysbio.org/research/bsi/

VIRUSES AND SUPPRESSION

MARKERS AND TARGETING

- CHALLENGE
- PROJECT
- QUESTIONS

MARKERS AND TARGETING

QUESTIONS:

- BUILDABLE?
 - possible to build chassis from nondifferentiated patient cell
 - recombination DNA to manufacture chemicals, protein receptors on membrane and chemotaxis ability
- SAFE? SECURE?
 - possible that attack cells are rejected,
 could compete with normal cells too
 - chemicals could reach outside of adjacent tumor cells and harm the body

VIRUSES AND SUPPRESSION

MARKERS AND TARGETING

IN SUMMARY

OUR IDEAS:

- SIGNALING AND GENETICS
 - figure out cancer's cellular pathways and involved enzymes in order to understand pathways and use DNA techniques and enzymes to prevent or treat
- VIRUSES AND SUPPRESSION
 - use viruses to infiltrate cancerous cells
 and cause cell-death or end mitosis
- MARKERS AND TARGETING
 - develop tracking ability of tumor cells and cancer cells undergoing metastasis, use receptors for markers to find, touch sensing to trigger chemical deployment

VIRUSES AND SUPPRESSION

MARKERS AND TARGETING

WORKS CITED

SIGNALING AND GENETICS

http://cancertutor.com/

VIRUSES AND SUPPRESSION

- http://medlineplus.gov/
- http://www.pubmedcentral.nih.gov/articlerender.fcgi? artid=39356
- Schleif, R., Genetics and Molecular Biology: 2nd
 Edition

MARKERS AND TARGETING

- http://www.jci.org/articles/view/24652
- http://content.nejm.org/cgi/content/full/359/26/28 14
- http://cancerres.aacrjournals.org/cgi/content/full/68 /14/5716
- http://jco.ascopubs.org/cgi/content/full/25/33/528
 7
- http://www.jbc.org/cgi/content/full/281/49/37728

MIT OpenCourseWare http://ocw.mit.edu

20.020 Introduction to Biological Engineering Design Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.