Departamento de Matemática Aplicada – Instituto de Matemática Universidade Federal do Rio de Janeiro

GABARITO – Cálculo Infinitesimal III 2022-1 - Prof Gregorio - 2ª prova.

Primeira Questão(2 pontos): Calcular a integral dupla $\iint_S y \, dx \wedge dy$ onde S é a região limitada pelo eixo das abcissas e o arco de ciclóide

$$x(t) = R(t - sen (t))$$

$$y(t) = R(1 - cos(t))$$

para $0 \le t \le 2\pi$.

Introduzimos a mudança de coordenadas

$$\Phi: \quad [0, 2\pi] \times [0, 1] \quad \longrightarrow \quad S$$

$$(t, s) \quad \longmapsto \quad \begin{bmatrix} R(t - \text{sen } (t)) \\ sR(1 - \cos(t)) \end{bmatrix}.$$

O Jacobiano é

$$\det D\Phi(t,s) = \det \left(R \begin{bmatrix} 1 - \cos(t) & 0 \\ s \, \sin(t) & 1 - \cos(t) \end{bmatrix} \right) = R^2 (1 - \cos(t))^2.$$

Pelo Teorema de mudança de variáveis,

$$\iint_{\Phi([0,2\pi]\times[0,1]} y \, dx \wedge dy = \iint_{[0,2\pi]\times[0,1]} |\det D\Phi(t,s)| sR(1-\cos(t)) \, dt \, ds$$

$$= \int_0^{2\pi} \left(\int_0^1 sR^3 (1-\cos(t))^3 ds \right) dt$$

$$= \frac{R^3}{2} \int_0^{2\pi} (1-\cos(t))^3 \, dt$$

$$= \frac{R^3}{2} \int_0^{2\pi} 1 - 3\cos^2(t) \, dt$$

$$= \frac{5}{2}\pi R^3.$$

Segunda Questão(2 pontos): Em que caso a integral de linha

$$\oint_C P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$$

será igual a zero para qualquer contorno fechado C que é borda de um disco D em \mathbb{R}^3 ? Justifique.

Uma condição necessária é que $\nabla \times \begin{pmatrix} P \\ Q \\ R \end{pmatrix} = 0$. Pelo Teorema de Stokes,

$$\oint_{\partial D} CP(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz = \iint_{D} \nabla \times \begin{pmatrix} P \\ Q \\ R \end{pmatrix} dn$$

o que mostra a suficiência. Se $\nabla \times \begin{pmatrix} P \\ Q \\ R \end{pmatrix} \neq 0$ em um ponto Ω , então existe um disco D ortogonal

a
$$\nabla \times \begin{pmatrix} P \\ Q \\ R \end{pmatrix}$$
 e centrado em Ω , de raio suficientemente pequeno, onde $\nabla \times \begin{pmatrix} P \\ Q \\ R \end{pmatrix}$ d $n > 0$. Logo a integral de contorno não se anula em ∂D .

Terceira Questão (2 pontos): Seja S a esfera de centro 0 e raio a em \mathbb{R}^3 . Calcular

$$I = \iint_S x^3 \, dy \wedge dz + y^3 \, dz \wedge dx + z^3 \, dx \wedge dy.$$

Seja $\omega=x^3$ d $y\wedge$ d $z+y^3$ d $z\wedge$ d $x+z^3$ d $x\wedge$ dy, então d $\omega=3(x^2+y^2+z^2)$ d $x\wedge$ d $y\wedge$ dz. Se B é a bola de raio a, $S=\partial B$ e

$$I = \iint_{\partial B} \omega = \iiint_{B} \mathrm{d}\omega = 4\pi \int_{0}^{a} 3r^{4} \mathrm{d}r = \frac{12}{5}\pi a^{5},$$

usando coordenadas esféricas.

Quarta Questão(2 pontos): Ache a área da figura delimitada pelo laço da folha de Descartes, $x^3 + y^3 - 3axy$, a > 0.

R. $\frac{3}{2}a^2$. Esta questão é reciclada, resposta no gabarito da $3^{\underline{a}}$ lista.

Quinta Questão(4 pontos): Seja $\omega = \frac{1}{x^2 + y^2}(x \, dy - y \, dx)$. Seja C o círculo de centro 0 e raio r > 0 em \mathbb{R}^2 .

- 1. Calcule $d\omega$.
- 2. Calcule $\oint_C \omega$.
- 3. Seja $\mathcal S$ uma superfície em $\mathbb R^3$. Dizemos que duas curvas fechadas $\gamma,\eta:S^1\to\mathcal S$ são homólogas se e somente se existe

$$\begin{array}{cccc} F: & S^1 \times [0,1] & \longrightarrow & \mathcal{S} \\ & (\alpha,t) & \longmapsto & F(\alpha,t) \end{array}$$

de classe \mathcal{C}^1 tal que $F(\alpha, 0) \equiv \gamma(\alpha)$ e $F(\alpha, 1) \equiv \eta(\alpha)$. Mostre que se γ e α são homólogas, então para qualque 1-forma μ com d $\mu = 0$,

$$\oint_{\gamma} \mu = \oint_{\alpha} \mu.$$

4. Agora seja S o toro obtido como imagem de Φ , onde

$$\Phi: S^1 \times S^1 \longrightarrow \mathbb{R}^3$$

$$(\alpha, \beta) \longmapsto \begin{bmatrix} \cos(\alpha)(1 + \frac{1}{2}\cos(\beta)) \\ \sin(\alpha)(1 + \frac{1}{2}\cos(\beta)) \\ \frac{1}{2}\sin(\beta) \end{bmatrix}.$$

Mostre que os círculos $\Phi(\alpha,0)$ e $\Phi(0,\beta)$ não são curvas homólogas.

- 1. $d\omega = 0$.
- 2. A integral é 2π
- 3. Aplicar o Teorema de Stokes, a borda do domínio são duas cópias de S^1 .
- 4. A integral de ω no primeiro círculo é 2π (item 2), no segundo círculo é 0 (usar item 1).