

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Tarea 1

Tópicos Avanzados en Algoritmos, Combinatoria y Optimización Fecha de Entrega: 2020-08-24

Problema 1:

Show that if M is a cost minimizing social welfare function, and N is odd, then for any preference profile $[>] \in L^n$, if a Condorcet winner of [>] exists, then M will put the Condorcet winner on top of M([>]).

Solución problema 1: Sea [>] una colección de N ordenes tales que existe un ganador de Condorcet, llamaremos o' a este ganador. Además, se denotará > a M([>]). Dado lo anterior, se demostrará por contradicción lo pedido, se asume que existe un $o'' \in O$ tal que o'' > o', luego se define >' como > con la diferencia que o' cumple que la propiedad de Condorcet. Luego, sea $>_i \in L$ entonces se tiene que $d(>',>_i) = d(>,>_i) - \#(a>o' y o'>_i a) + \#(o'>a y a>_i o')$. Se nota que en el caso donde $>_i$ cumple que la propiedad de Condorcet con o' se tiene que $d(>',>_i) = d(>,>_i) - \#(a>o' y o'>_i a)$, en caso contrario se tiene que $d(>',>_i) \leq d(>,>_i) + \#(o'>a y a>_i o')$. Por lo que se puede ver lo siguiente:

$$c(>,[>]) - c(>',[>]) = \sum_{i=1}^{n} \#(a > o' \ y \ o' >_i a) - \sum_{i=1}^{n} \#(o' > a \ y \ a >_i o')$$

Ahora se nota que la primera sumatoria corresponde a al menos $k \cdot c$ donde k es la cantidad de posiciones que 'avanzó' o' entre > y >', más formalmente k = #(a > o'), y c es la cantidad de $>_i$ que cumplen la propiedad de Condorcet con o'. Mientras, la segunda sumatoria corresponde a lo más $k \cdot (N - c)$, ya que hay N - c ordenes que no cumplen la propiedad de Condorcet con o', y o' 'avanzó' k posiciones. Por ende se tiene la siguiente desigualdad

$$c(>,[>]) - c(>',[>]) \ge k \cdot c - k \cdot (N - c)$$
 $\ge k \cdot (2c - N) \ge k \cdot 1$ > 0

Por lo que c(>,[>])>c(>',[>]), lo que es una contradicción, ya que >=M([>]). Por lo tanto se tiene que no existe un $o''\in O$ tal que o''>o.

1