

DNLRS final Project

Anthropomorphic model (ZXZ wrist configuration)

Prof: Alexandr Klimchik

TA: Albert Demian

Prepared by: Siba Issa

Mechanical Structure

$$T_i^{i-1} = \begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i) \cdot \cos(\alpha_i) & \sin(\theta_i) \cdot \sin(\alpha_i) & r \cdot \cos(theta_i) \\ \sin(\theta_i) & \cos(\theta_i) \cdot \cos(\alpha_i) & -\cos(\theta_i) \cdot \sin(\alpha_i) & r \cdot \sin(theta_i) \\ 0 & \sin(\alpha_i) & \cos(\alpha_i) & d \\ 0 & 0 & 1 \end{bmatrix}$$

$$T_6^0 = T_1^0 \cdot T_2^1 \cdot T_3^2 \cdot T_4^3 \cdot T_5^4 \cdot T_6^5$$

$$T_n^0 = \begin{bmatrix} s_x & n_x & a_x & p_x \\ s_y & n_y & a_y & p_y \\ s_z & n_z & a_z & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_6^0 = T_1^0(q_1)T_2^1(q_2)....T_6^5$$

 $T_1^0(q_1)T_6^0 = T_2^1(q_2)....T_5^4T_6^5$

$cos(\theta) = a$	$\theta = a \tan 2(\pm \sqrt{1 - a^2}, a)$	1
$\sin(\theta) = a$	$\theta = a \tan 2(a, \pm \sqrt{1 - a^2})$	2
$ sin(\theta) = a cos(\theta) = b $	$\theta = a \tan 2(a,b)$	3
$a\cos(\theta) - b\sin(\theta) = 0$	$\begin{cases} \theta = a \tan 2(a,b) \\ \theta = a \tan 2(-a,-b) \end{cases}$	4
$a.\cos(\theta) + b.\sin(\theta) = c$	$\theta = a \tan 2(c, \pm \sqrt{a^2 + b^2 - c^2}) - a \tan 2(a, b)$	5
$a.\cos(\theta) + b.\sin(\theta) = c$ $a.\cos(\theta) - b.\sin(\theta) = d$	$\theta = a \tan 2(ac - ad, bc + bd)$	6

$$M(q) + C(q, \dot{q})\dot{q} + g(q) = \tau$$

$$M(q) + C(q, \dot{q})\dot{q} + g(q) = \tau$$

$$M(q) + C(q, \dot{q})\dot{q} + g(q) = \tau$$

$$M(q) = \sum_{i=1}^{6} m_i \mathbb{J}_v^{i T} \mathbb{J}_v^i + \mathbb{J}_w^{i T} R_i I R_i^T \mathbb{J}_w^i$$

$$M(q) + C(q, \dot{q})\dot{q} + g(q) = \tau$$

$$C_{ij} = \sum_{k=1}^{6} c_{ijk} \dot{q}_k$$

Euler-Lagrange Method (Coriolis Matrix)

$$M(q) + C(q,\dot{q})\dot{q} + g(q) = \tau$$

$$g = \sum_{k=1}^{6} (\mathbb{J}_{wi}^k)^T g_0$$

•					Q1	Q2	Q3
					0	-5.7853	7.5921
					0	3.7521	0.5532
					0	2.4453	11.1868
				IK	0	1.2217	3.4214
	X	У	Z		0	2.1942	0.0872
Point 1	-0.3400	0	0.639				0.00.2
Point 2	0.0753	0.1964	0.2085		0	1.7433	5.7279
Point 3	-0.1337	-0.5156	0.5834				

Task (Joint space) ps: the orientation is not displayed here

	q1	q2	q3	q4	q5	q6
Max velocity [rad/sec]	3.14159	1.5708	2.35619	3.14159	3.14159	3.66519
Max Acceleration [rad/(s^2)]	12	8	10	4	4	2

Trajectory Planning (defining the inputs)

Q1	Q2	Q3
0	-5.7853	7.5921
0	3.7521	0.5532
0	2.4453	11.1868
0	1.2217	3.4214
0	2.1942	0.087
0	1.7433	5.7279

Trajectory Planning (defining the inputs)

$$A = \begin{bmatrix} 1 & t_0 & t_0^2 & t_0^3 & t_0^4 & t_0^5 \\ 0 & 1 & 2t_0 & 3t_0^2 & 4t_0^3 & 5t_0^4 \\ 0 & 0 & 2 & 6t_0 & 12t_0^2 & 20t_0^3 \\ 1 & t_f & t_f^2 & t_f^3 & t_f^4 & t_f^5 \\ 0 & 1 & 2t_f & 3t_f^2 & 4t_f^3 & 5t_f^4 \\ 0 & 0 & 2 & 6t_f & 12t_f^2 & 20t_f^3 \end{bmatrix} \qquad B = \begin{bmatrix} q_{i0} \\ q_{i0} \\ q_{i0} \\ q_{if} \\ q_{if} \\ q_{if} \end{bmatrix}$$

$$B = \begin{bmatrix} q_{i0} \\ q_{i0} \\ q_{i0} \\ q_{if} \\ q_{if} \\ q_{if} \\ q_{if} \\ q_{if} \\ \end{bmatrix}$$

Ax=B

Trajectory Planning (results)

Trajectory Planning (results)

Trajectory Planning (results)

Thank You