$0\mathrm{em}$

Домашнее задание №1

Драчов Ярослав Факультет общей и прикладной физики МФТИ

17 декабря 2020 г.

Задача 1

Peшение. Гомотопическая эквивалетность — это napa непрерывных отображений $f:X \to Y$ и $g:Y \to X\dots$

Как понимать утверждение « $f: X \to Y$ — это гомотопическая эквивалентность»?

 $f\circ g:Y\to Y$ — гомотопическая эквивалентность $\Leftrightarrow\exists\gamma:Y\to Y:\gamma\circ f\circ g\simeq \mathrm{id}_Y$ и $f\circ g\circ\gamma\simeq\mathrm{id}_Y$

 $h\circ f:X\to X$ — гомотопическая эквивалентность $\Leftrightarrow\exists \rho:X\to X:$ $\rho\circ h\circ f\simeq \mathrm{id}_X$ и $h\circ f\circ \rho\simeq \mathrm{id}_X$

 $f \circ g \simeq h \circ f$

Требуется доказать, что $f:X\to Y$ — гомотопическая эквивалентность, т. е. $\exists \varphi:Y\to X:\varphi\circ f\simeq \mathrm{id}_X$ и $f\circ \varphi\simeq \mathrm{id}_Y$

$$\varphi \circ h \circ f \simeq \varphi \circ f \circ g \simeq g.$$

$$h \circ f \circ \varphi \simeq h$$
.

Задача 2

Решение. Пусть $F(x,y)=\frac{xy^2}{x^2+y^4}$, тогда $f_{1,\,x_0}(y)=\frac{x_0y^2}{x_0^2+y^4}$ — непрерывна $\forall x_0\in\mathbb{R},\,f_{2,\,y_0}(x)=\frac{xy_0^2}{x^2+y_0^4}$ — непрерывна $\forall y_0\in\mathbb{R},\,$ однако при $x=y^2$ справедливо равенство $F(x,y)=\frac{y^4}{2y^4}=\frac{1}{2},\,$ а при $x=0,\,y\neq0$ — равенство F(x,y)=0, следовательно F(x,y)— не непрерывна.

Задача 3

Peшение. Будем задавать координаты на торе $\mathbb{T}^2=S^1\times S^1$ углами α и β , а на сфере S^2 — комплексным числом z=x+iy (стереографическая проекция S^2 на $\overline{\mathbb{C}}$). Тогда отображение $f(\alpha,\beta)=\operatorname{tg}\alpha+i\operatorname{tg}\beta$ будет гомотопически нетривиальным.

Задача 4

Решение. См. рис. **1**.

Рис. 1

Задача 5

Доказательство. $\pi_1(X \vee Y)$ представляет из себя группу классов эквивалентности путей, построенных на $X \vee Y$. Каждый путь на $X \vee Y$ представим в виде последовательного произведения (в смысле путей) отдельных его частей на X и на Y. Соответственно класс эквивалентности от такого произведения будет представим в виде последовательного произведения классов эквивалентности частей данного пути на X и Y, т. е. будет являться словом, составленным из алфавитов $\pi_1(X)$ и $\pi_1(Y)$, следовательно $\pi_1(X \vee Y) = \pi_1(x) * \pi_1(Y)$.

Задача 6

Доказательство. Рассмотрим две петли $\alpha, \beta: [0,1] \to G$ в $\pi_1(G)$, определим отображение $A: [0,1] \times [0,1] \to G$ правилом $A(s,t) = \alpha(s) \cdot \beta(t)$, где умножение происходит в смысле G. Рассмотрим гомотопическое семейство путей в прямоугольнике от (s,t) = (0,0) до (1,1), которое начинается с горизонтального-затем-вертикального пути, двигается дальше через диагональные пути и заканчивается на вертикальном-затем-горизонтальном пути. Применяя к этому семейству A, получим гомотопию $\alpha*\beta \simeq \beta*\alpha$, которая показывает, что фундаментальная группа — абелева.