Review: The space L(V, W)

$$\left(\begin{array}{cccc} f + g \end{array} \right) \left(\chi \right) = \left(f \right) \left(\eta \right) = \left(f \right) \left(f \right) = \left(f \right) = \left(f \right) \left(f \right) = \left(f \right) =$$

Definition

Let V and W be vector spaces. The set of all linear transformations from V to W is called L(V, W).

Proposition

L(V, W) is a vector space under pointwise addition of functions and pointwise multiplication of functions by real numbers.

Review

((v,R) ~ M, (R) dim w= 1.

Theorem

Let dim V = n and dim W = m. Then L(V, W) is isomorphic to the vector space $M_{m \times n}(\mathbb{R})$ of $m \times n$ matrices.

(In other words there exists a bijective linear transformation from L(V,W) to $M_{m\times n}(\mathbb{R})$).

Review

Theorem

Let U, V and W be finite dimensional vector spaces of dimensions m, n and k respectively, having bases \mathcal{A}, \mathcal{B} and \mathcal{C} respectively.

Let $S \in L(U, V)$ and $T \in L(V, W)$. Then $T \circ S \in L(U, W)$ and

$$[T \circ S]_{\mathcal{A},\mathcal{C}} = [T]_{\mathcal{B},\mathcal{C}}[S]_{\mathcal{A},\mathcal{B}}$$

Linear Operators

Definition

Let V be a vector space. A linear mapping $T:V\to V$ is called a *linear operator*.

Remark

The vector space of all linear operators on a vector space is called L(V, V). This is a special case of an L(V, W) type space with V = W. The space L(V, V) is isomorphic to $M_{n \times n}$, the set of all $n \times n$ square matrices having real entries.

Av=>v

Definition

Let V be a vector space. Let $T \in L(V, V)$. We say $\underline{\lambda} \in \mathbb{R}$ is an eigenvalue of T if there exists a non-zero vector $v \in V$, called an eigenvector of T such that

$$T(v) = \lambda v$$
.

Theorem

Let V be a finite dimensional vector space. Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be a basis of V. Let $T \in L(V, V)$. Then λ is an eigenvalue of T iff λ is an eigenvalue of $[T]_{\mathcal{B}}$.

smidure. $= \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) = \left(\begin{array}{c} 1 \end{array} \right) = \left(\begin{array}{c} 1 \\ 1 \end{array} \right) = \left(\begin{array}{c} 1 \end{array} \right) = \left(\begin{array}{c} 1 \\ 1 \end{array} \right) = \left(\begin{array}{c} 1 \end{array} \right) = \left(\begin{array}{c} 1 \\ 1 \end{array} \right) = \left(\begin{array}{c} 1$ We whom that

T(V)) = (T) (D) (D) (I) Inition of (T). Blisan ligandone of MB.

Conversed and a is a significant of the =) - VERMENTED Let we have what that

3) and (1), we have $\int_{\mathcal{R}} \left[\mathcal{W} \right]_{\mathcal{B}} = \sum_{i=1}^{n} \left[\mathcal{W} \right]_{\mathcal{B}}.$

Definition

Let V be a finite dimensional vector space. A linear operator $T \in L(V, V)$ is said to be *diagonalizable* if there exists a basis of V consisting of eigenvectors of T.

Theorem

Let V be a finite dimensional vector space. Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be a basis of V. Let $T \in L(V, V)$. Then T is diagonalizable iff $[T]_{\mathcal{B}}$ is diagonalizable.

Chasis of consisting of light vectors of Trie. Twi) = Diwin, for j=1,...,n

lighvalues of the cenarils

Se, en bee and Jann 5 1/1 diagmalization.

Corversely, assume Mat is diagnalizable. hen there exists a basis Swin..., why constive of eigense der 1 [T].

re exist /1...., /r (... Roch tha $\frac{1}{\sqrt{2}}$ 1-1, ..., N. et Wie hosen Such that [Ui] B= Wi-2, For each j=1,...,r.

 $\frac{1}{2} = 1, \dots, N.$

deal & Mi, ..., und is a basis of v. d'agonalijalle

Review - March 11th and March 22nd

Proposition

Let V be a finite dimensional vector space. Let \mathcal{B},\mathcal{C} be bases for V. Let $T:V\to V$ be a linear transformation. Then the matrix of T with respect to \mathcal{B} and \mathcal{C} are similar to each other. If $\underset{\mathcal{C}\leftarrow\mathcal{B}}{P}$ is the change-of-basis matrix from \mathcal{B} to \mathcal{C} , then

$$[T]_{\mathcal{B}} = \underset{\mathcal{C} \leftarrow \mathcal{B}}{P}^{-1} [T]_{\mathcal{C}} \underset{\mathcal{C} \leftarrow \mathcal{B}}{P}.$$

Theorem

Let A be an $n \times n$ matrix. Then A is diagonalizable if and only if there exists a basis of \mathbb{R}^n consisting of eigenvectors of A.

$V \longrightarrow \mathbb{R}$

Definition

When $W=\mathbb{R}$, the set $L(V,W)=L(V,\mathbb{R})$ is called the *dual* of V, denoted by V^* . Each element of $L(V,\mathbb{R})$ is called a *linear* functional.

isomorphism.
$$\bigvee_{n=1}^{\infty} = \langle \langle V_{n} | \hat{K} \rangle$$
 $V_{n}^{*} \cong M_{1 \times n} \cong \mathbb{R}^{n}$

.

Theorem

Let V be a finite dimensional vector space and let $\langle .,. \rangle$ be an inner product on V. If $T \in V^*$, then there exists a unique vector $w_T \in V$ such that

$$T(v) = \langle v, w_T \rangle, \ \forall v \in V.$$

 $T(v) = \langle w, v \rangle, \forall v \in V$ 15 a linear Auctional.

 $\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array}$ - $(\omega, \vee, \rightarrow + (\omega, \vee_2)$

VED CER. $\left(\begin{array}{c} \end{array}\right)$ From (1) (2), $T \in (\sqrt{\sqrt{R}} = 2)$ Deorem (2): By the vaulc-nullity The or win Kert - h - dim vage < h - dim (R) = h -1

dim (Rent) = N-(N-1) Since (Rent) is one-dimensional, it contains exactly two unit vectors. Mel a anit vector in (Rent) +.
Define Wy = T(a) a

T(y) = T(y-proj V) Kent V + T(y-proj V) T (V - Project V)

Since V- Project V (- (Kont)) => V-proj Kart V = / U, some > CR =) T (J-PNJKONTV)=> T (U).

$$= \sum_{i=1}^{n} \left(\sum_{i=1}^{n} \sum_{i=1}^{n} \left(\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \left(\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \left(\sum_{i=1}^{n} \sum_$$

$$= \lambda T(u) (u,u)$$

Singular Values of an $m \times n$ Matrix

Let $A \in M_{m \times n}(\mathbb{R})$.

Since A^TA is symmetric, it is orthogonally diagonalizable. In other words, there exists an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A^TA .

Claim: The eigenvalues of A^TA are non-negative.

Idea behind proof: Each eigenvalue λ is the square of the length of Av, where v is a unit norm eigenvector corresponding to λ .

The length of Av has a special name - it's called a singular value of A.

Definition

The singular values of A are the square roots of the eigenvalues of A^TA , denoted by $\sigma_1, \ldots, \sigma_n$, and they are arranged in decreasing order.

Singular Value Decomposition

Theorem

Let A be an $m \times n$ matrix with rank r. Then there exists an $m \times n$ matrix Σ of the form

$$\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$$

where D is an $r \times r$ diagonal matrix having as entries the first r singular values of $A, \sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$, and there exist an $m \times m$ orthogonal matrix U and an $n \times n$ orthogonal matrix V such that

$$A = U\Sigma V^T$$

Algorithm for Finding SVD

- **Step 1.** Find an orthogonal diagonalization of A^TA .
- **Step 2.** Arrange eigenvalues of A^TA in decreasing order. The corresponding unit eigenvectors are the columns of V. The decreasing singular values are the entries of D in Σ .
- **Step 3.** The first r columns of U are obtained by normalizing the vectors $A\mathbf{v}_1, \ldots, A\mathbf{v}_r$, where

$$V = [\mathbf{v}_1 \dots \mathbf{v}_n]$$

and the remaining columns are obtained by extending to an orthonormal basis of \mathbb{R}^{p} .