## **Standard Normal Table**

|     | .00   | .01   | .02   | .03   | .04   | .05   | .06   | .07   | .08   | .09   |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.0 | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359 |
| 0.1 | .5398 | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | .5675 | .5714 | .5753 |
| 0.2 | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141 |
| 0.3 | .6179 | .6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517 |
| 0.4 | .6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879 |
| 0.5 | .6915 | .6950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224 |
| 0.6 | .7257 | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549 |
| 0.7 | .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823 | .7852 |
| 0.8 | .7881 | .7910 | .7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .8133 |
| 0.9 | .8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389 |
| 1.0 | .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .8621 |
| 1.1 | .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 | .8810 | .8830 |
| 1.2 | .8849 | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 | .8997 | .9015 |
| 1.3 | .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177 |
| 1.4 | .9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319 |
| 1.5 | .9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .9441 |
| 1.6 | .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545 |
| 1.7 | .9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633 |
| 1.8 | .9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706 |
| 1.9 | .9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .9767 |

The standard normal table. The entries in this table provide the numerical values of  $\Phi(y) = \mathbf{P}(Y \leq y)$ , where Y is a standard normal random variable, for y between 0 and 1.99. For example, to find  $\Phi(1.71)$ , we look at the row corresponding to 1.7 and the column corresponding to 0.01, so that  $\Phi(1.71) = .9564$ . When y is negative, the value of  $\Phi(y)$  can be found using the formula  $\Phi(y) = 1 - \Phi(-y)$ .



## **Student's-t Table**

|          | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
|----------|-------|-------|-------|-------|-------|-------|
| 1        | 3.078 | 6.314 | 12.71 | 31.82 | 63.66 | 318.3 |
| 2        | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 22.33 |
| 3        | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 10.21 |
| 4        | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 7.173 |
| 5        | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 5.893 |
| 6        | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 5.208 |
| 7        | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 4.785 |
| 8        | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 4.501 |
| 9        | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 4.297 |
| 10       | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 4.144 |
| 11       | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 4.025 |
| 12       | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | 3.930 |
| 13       | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 | 3.852 |
| 14       | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 | 3.787 |
| 15       | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 3.733 |
| 20       | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 3.552 |
| 30       | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | 3.385 |
| 60       | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 | 3.232 |
| 120      | 1.289 | 1.658 | 1.980 | 2.358 | 2.617 | 3.160 |
| $\infty$ | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | 3.090 |

The t-tables for the CDF  $\Psi_{n-1}(z)$  of the t-distribution with a given number n-1 of degrees of freedom. The entries in this table are:

Left column: Number of degrees of freedom n-1.

*Top row:* A desired tail probability  $\beta$ .

Entries under the top row: A value z such that  $\Psi_{n-1}(z) = 1 - \beta$ .