代数学 XC・代数構造論 II レポート問題

問 1. n が素数の冪ではない 2 以上の整数ならば、射影的な $\mathbf{Z}/n\mathbf{Z}$ 加群で自由加群でないものが存在することを示せ、

問 2. n が素数の冪ならば、射影的な $\mathbf{Z}/n\mathbf{Z}$ 加群はすべて自由加群であることを示せ.

問 3. p を素数とする. $f: M_1 \to M_2, g: M_2 \to M_3$ を $g \circ f = 0$ をみたす加群の準同型とし、p 倍写像 $M_i \to M_i; x \mapsto px$ (i=1,2,3) は単射であるとする. このとき、次は同値であることを示せ. f_n, g_n は f, g より自然に誘導される準同型とする.

- (i) ある正の整数 $n \ge 1$ に対し, $0 \to M_1/p^n M_1 \stackrel{f_n}{\to} M_2/p^n M_2 \stackrel{g_n}{\to} M_3/p^n M_3 \to 0$ は完全.
- (ii) 任意の正整数 $n \ge 1$ に対し、 $0 \to M_1/p^n M_1 \stackrel{f_n}{\to} M_2/p^n M_2 \stackrel{g_n}{\to} M_3/p^n M_3 \to 0$ は完全.

問 4. n を 2 以上の整数とし、 $R = \mathbf{Z}/n\mathbf{Z}$ とおく.

- (1) R 加群 M が単射的であるためには、次の条件が成り立つことが必要十分であることを示せ、 「 $\forall a\in M\setminus\{0\},\ \exists b\in M,\ \exists m|n\ \mathrm{s.t.}\ a$ の位数は $\frac{n}{m}$, かつ a=mb.」
- (2) m, l e n の約数とする. $\mathbf{Z}/m\mathbf{Z}$ の R 加群としての単射的分解を用いて, $\operatorname{Ext}_R^i(\mathbf{Z}/l\mathbf{Z},\mathbf{Z}/m\mathbf{Z})$ を計算せよ.

問 5. $R = \mathbb{C}[X,Y]$ とおく.

- (1) $\operatorname{Ext}_{R}^{i}(R/(X,Y),R)$ を計算せよ.
- (2) $\mathbf{C}(X,Y)$, $\mathbf{C}(X,Y)/\mathbf{C}[X,Y]$ は単射的 R 加群か?

問 6. p を素数とする. 環 $\mathbf{Z}[X]$ のイデアル (p, X) は $\mathbf{Z}[X]$ 加群として平坦か?

問 7. A を可換環とし,B を可換な A代数とする.d を正の整数とし,A 加群 M が $\mathrm{Tor}_A^n(B,M)=0$ $(0<\forall n\leq d)$ をみたすとする.このとき,任意の B 加群 N に対して,次の同型があることを示せ. $\mathrm{Ext}_B^m(B\otimes_A M,N)\cong\mathrm{Ext}_A^m(M,N)$ $(0\leq m\leq d)$

問 8. L_{\bullet} を有限生成自由加群からなる鎖複体であるとする. $(L_n=0 \ (n<0)$ は仮定しない.)素数 p と整数 n に対し, $r_{n,p}=\dim_{\mathbf{F}_n}H_n(L_{\bullet}\otimes_{\mathbf{Z}}\mathbf{F}_p)$ とおく.このとき次は同値であることを示せ.

- (i) すべてのnに対し、 $r_{n,n}$ はpによらない。
- (ii) すべてのnに対し、 $H_n(L_{\bullet})$ は自由加群.

問 9. 圏 C を次のように定義する.

対象:加群 M_0 , M_1 とその間の準同型 f_i : $M_0 \to M_1$ (i=0,1) の組 $\mathcal{M}=(M_0,M_1,f_0,f_1)$. 射:対象 $\mathcal{M}=(M_0,M_1,f_0,f_1)$ から対象 $\mathcal{M}'=(M_0',M_1',f_0',f_1')$ への射は,加群の準同型 φ_i : $M_i \to M_i'$ (i=0,1) の組 $\varphi=(\varphi_0,\varphi_1)$ で $\varphi_1\circ f_j=f_j'\circ\varphi_0$ (j=0,1) をみたすもの.

- (1) C はアーベル圏であることを示せ.
- (2) 加群 N に対して,圏 \mathcal{C} の対象 $r_0(N)$, $r_1(N)$ を次のように定める. $r_0(N)=(N,0,0,0)$, $r_1(N)=(N\oplus N,N,\operatorname{pr}_0,\operatorname{pr}_1)$.ただし $\operatorname{pr}_0(a,b)=a$, $\operatorname{pr}_1(a,b)=b$ $(a,b\in N)$ とする.このとき,圏 \mathcal{C} の対象 $\mathcal{M}=(M_0,M_1,f_0,f_1)$ に対し,次の自然な同型があることを示せ.

 $\operatorname{Hom}_{\mathcal{C}}(\mathcal{M}, r_0(N)) \cong \operatorname{Hom}(M_0, N), \qquad \operatorname{Hom}_{\mathcal{C}}(\mathcal{M}, r_1(N)) \cong \operatorname{Hom}(M_1, N)$

- (3) 圏 C は十分多くの単射的対象をもつことを示せ.
- (4) 圏 \mathcal{C} から加群の圏 $\mathcal{A}b$ への関手 F を $F(\mathcal{M}) = \{m \in M_0 | f_0(m) = f_1(m)\}$ で定義する.関手 F の右導来関手を $R^i F$ $(i \in \mathbf{Z}, i \geq 0)$ とする. $R^1 F(\mathcal{M}) = \operatorname{Cok}(f_0 f_1), R^i F = 0$ $(i \geq 2)$ を示せ.

- **問 10.** A を十分多くの単射的対象をもつアーベル圏とし、次数が負の成分が 0 の A における複体 K^{\bullet} , $K^n=0$ ($\forall n<0$) 全体のなすアーベル圏を $C^{\geq 0}(A)$ とする.
- (1) 非負整数 n に対して,関手 e_n^* : $C^{\geq 0}(A) \to A$; $K^{\bullet} \to K^n$ の右随伴関手を求めよ.
- (2) $C^{\geq 0}(A)$ は十分多くの単射的対象を持つことを示せ.
- (3) 左完全関手 H^0 : $C^{\geq 0}(\mathcal{A}) \to \mathcal{A}; K^{\bullet} \mapsto H^0(K^{\bullet})$ の右導来関手は H^n : $C^{\geq 0}(\mathcal{A}) \to \mathcal{A}; K^{\bullet} \mapsto H^n(K^{\bullet})$ ($n \in \mathbb{N}$) で与えられることを示せ.
- **問 11.** アーベル群全体のなす圏 Ab では直積は右完全列を保つ. すなわち,アーベル群の完全列の族 $L_{\lambda} \to M_{\lambda} \to N_{\lambda} \to 0 \ (\lambda \in \Lambda)$ に対して, $\prod_{\lambda \in \Lambda} L_{\lambda} \to \prod_{\lambda \in \Lambda} M_{\lambda} \to \prod_{\lambda \in \Lambda} N_{\lambda} \to 0$ は完全列である. 直積が存在するアーベル圏において,一般にこの主張は成り立たない. 成り立たないアーベル圏の例を一つ挙げ,成り立たないことの証明を与えよ.
- **問 12.** 射の核と余核が存在する加法圏 C と C における射 $f: A \to B$ で,f より誘導される射 $Coimf \to Imf$ が epimorphism でない,すなわち C における相異なる二つの射 $g_1, g_2: Imf \to C$ で $g_1 \circ f = g_2 \circ f$ となるものが存在する例を一つ挙げよ.

2023.7.13 辻 雄