DISEÑO DE UN **ROBOT CARTESIANO** CIBERFÍSICO CON INTEGRACIÓN **HARDWARE IN** THE LOOP

Adan Rodrigo De la Cruz Osorio 192637 Daniela Yazmin Tarango Montes 201153 José Orlando Martinez Gonzalez 201471 Bernardo David Burciaga Medina 201489

INTRODUCCIÓN

PROYECTO

 Diseño de robot cartesiano con movimiento en ejes X,Y y Z.

HARDWARE-IN-THE-LOOP

• Para simular el sistema en entorno virtual conectado al hardware real.

HERRAMIENTAS

- SolidWorks
- ROS2 y Gazebo
- KiCad
- ESP32-S3

META

 Aprender y aplicar conceptos de diseño mecatrónico en un robot funcional.

OBJETIVOS

OBJETIVO GENERAL

 Diseñar un robot cartesiano físico-virtual con integración hardware in the loop

OBJETIVOS ESPECÍFICOS

- Diseñar un modelo de un robot cartesiano.
- Simular el robot cartesiano en un entorno virtual.
- Ensamblar el robot cartesiano utilizando componentes mecánicos y electrónicos.
- Programar el nodo de comunicación entre el robot y el entorno simulado

MARCO TEORICO

ROBOTS CARTESIANOS

HIL

ROS2

Gazebo Y RViz2

URDF y SDF

EDA

CONCEPTO Y PLANIFICACIÓN INICIAL

El concepto de este proyecto es simplicidad, bajo costo, compatibilidad HIL, modularidad.

FASES

- Diseño conceptual
- Modelado 3D
- Simulación en Gazebo
- Construcción física
- Pruebas.

DISEÑO ELECTRONICO

PCB diseñada en KiCad diseñada para la conexión de:

- La placa de desarrollo ESP32-S3.
- Los controladores de motores L298.
- Los motores con encoder JGA-371.
- Los LEDs
- La fuente de alimentación

El circuito fue exportado en formato Gerber para su fabricación y ensamblaje físico.

MODELADO 3D

En esta fase, se modelaron las piezas principales del sistema, incluyendo la base, los ejes móviles, los soportes y la estructura general formada con perfiles de aluminio.

ENTORNO DE TRABAJO

Creación de paquetes de ROS2

>> ros2 pkg create

Cargar la configuración del robot (URDF)

>> ros_gz_sim créate

Comunicar ROS2 con Gazebo

>> ros_gz_bridge

>> joint_state_publisher

TÓPICOS

SIMULACIÓN DE MOVIMIENTO

- Simulación de movimiento en Gazebo mediante controladores PID
- Visualización en RViz2

gz-sim-joint-position-controller-system

gz-sim-joint-state-publisher-system

ros_gz_bridge

>>> sensor_msgs/msg/JointState

gz.msgs.Model

>>> std_msgs/msg/Float64

gz.msgs.Double

CONSTRUCCIÓN DEL ROBOT

Adquisición de materiales

• Perfiles de aluminio, motores con encoder, tornillos sin fin, soportes y electrónica.

Fabricación de piezas

 Soportes y adaptadores diseñados e impresos en PLA

Ensamble mecánico

 Montaje de la estructura utilizando perfiles de aluminio 45x45 mm, tornillos y ángulos de unión

Conexiones eléctricas

 Instalación de la fuente de alimentación, drivers L298, placa ESP32-S3 y cableado de motores y sensores.

INTERFAZ GRÁFICA

La interfaz gráfica de usuario (GUI) fue desarrollada utilizando Neutralinojs.

Estado de comunicación: Leer el estado de comunicación de ROS2, el socket de comunicación, µROS y Gazebo.

Posicion de las juntas: Leer la posición de las juntas del robot y mostrarlas en la GUI.

Comandos de movimiento: Enviar comandos de movimiento al robot.

Tareas: Visualizar las posiciones que el robot debe alcanzar.

Historial de movimiento: Visualizar el historial de movimiento del robot.

RESULTADOS

- Modelado 3D completo del robot cartesiano en SolidWorks.
- Diseño y fabricación de la shield para la placa de desarrollo ESP32-S3.
- Simulación exitosa del comportamiento del robot en Gazebo utilizando ROS2
- .Construcción parcial de la estructura física del robot.

CONCLUSIÓN

Se ha logrado progresar en el modelado 3D, adquisición de materiales, diseño electrónico y simulación inicial del robot cartesiano. Aún queda trabajo por hacer, particularmente en la programación de controladores, integración HIL y pruebas funcionales. Sin embargo, los resultados hasta ahora son prometedores y sientan una base sólida para continuar con el proyecto.

GRACIAS