Course 3: 08.03.2021

1.5 Group homomorphisms

Let us now define some special maps between groups. We denote by the same symbol operations in different arbitrary structures.

Definition 1.5.1 Let (G,\cdot) and (G',\cdot) be groups and let $f:G\to G'$. Then f is called a (group) homomorphism if

$$f(x \cdot y) = f(x) \cdot f(y), \quad \forall x, y \in G.$$

A group homomorphism $f: G \to G'$ is called *isomorphism* if it is bijective, *endomorphism* if $(G, \cdot) = (G', \cdot)$ and *automorphism* if it is bijective and $(G, \cdot) = (G', \cdot)$.

The sets of endomorphisms and automorphisms of a group G are denoted by $\operatorname{End}(G)$ and $\operatorname{Aut}(G)$ respectively.

We denote by $G \simeq G'$ or $G \cong G'$ the fact that two groups G and G' are isomorphic. Usually, we denote by 1 and 1' the identity elements in G and G' respectively.

Example 1.5.2 (a) Let (G, \cdot) and (G', \cdot) be groups and let $f: G \to G'$ be defined by $f(x) = 1', \forall x \in G$. Then f is a homomorphism, called the *trivial homomorphism*.

- (b) Let (G,\cdot) be a group. Then the identity map $1_G:G\to G$ is an automorphism of G.
- (c) Let (G, \cdot) be a group and let $H \leq G$. Define $i: H \to G$ by $i(x) = x, \forall x \in H$. Then i is a homomorphism, called the *inclusion homomorphism*.
- (d) Let $a \in \mathbb{Z}$ and let $t_a : \mathbb{Z} \to \mathbb{Z}$ be defined by $t_a(x) = ax$. Then t_a is a group homomorphism from the group $(\mathbb{Z}, +)$ to itself.
- (e) Let $n \in \mathbb{N}$ with $n \geq 2$. The map $f : \mathbb{Z} \to \mathbb{Z}_n$ defined by $f(x) = \widehat{x}$ is a group homomorphism between the groups $(\mathbb{Z}, +)$ and $(\mathbb{Z}_n, +)$.
- (f) Let $f: \mathbb{C}^* \to \mathbb{R}^*$ be defined by f(z) = |z|. Then f is a group homomorphism between (\mathbb{C}^*, \cdot) and (\mathbb{R}^*, \cdot) . But $f: \mathbb{C} \to \mathbb{R}$ defined by f(z) = |z| is not a group homomorphism between the groups $(\mathbb{C}, +)$ and $(\mathbb{R}, +)$.
- (g) Let $n \in \mathbb{N}$, $n \geq 2$ and let $f : GL_n(\mathbb{R}) \to \mathbb{R}^*$ be defined by $f(A) = \det(A)$. Then f is a group homomorphism between the groups $(GL_n(\mathbb{R}), \cdot)$ and (\mathbb{R}^*, \cdot) .
 - (h) Let (G,\cdot) be a group and $g\in G$. Let $i_g:G\to G$ be defined by

$$i_g(x) = g^{-1}xg.$$

Then i_g is an automorphism of (G, \cdot) , called the *inner automorphism* defined by g. The element $g^{-1}xg$ is called the *conjugate* of x by g.

Theorem 1.5.3 (i) Let $f: G \to G'$ be a group isomorphism. Then $f^{-1}: G' \to G$ is again a group isomorphism.

(ii) Let $f: G \to G'$ and $g: G' \to G''$ be group homomorphisms. Then $g \circ f: G \to G''$ is a group homomorphism.

Proof. (i) Clearly, f^{-1} is bijective. Now let $x', y' \in G'$. By the surjectivity of f, $\exists x, y \in G$ such that f(x) = x' and f(y) = y'. Since f is a homomorphism, it follows that

$$f^{-1}(x' \cdot y') = f^{-1}(f(x) \cdot f(y)) = f^{-1}(f(x \cdot y)) = x \cdot y = f^{-1}(x') \cdot f^{-1}(y')$$
.

Therefore, f^{-1} is an isomorphism.

(ii) Let $x, y \in G$. We have:

$$(g \circ f)(x \cdot y) = (g(f(x \cdot y)) = g(f(x) \cdot f(y)) = g(f(x)) \cdot g(f(y)) = (g \circ f)(x) \cdot (g \circ f)(y)).$$

This shows that $g \circ f$ is a group homomorphism.

Corollary 1.5.4 Let (G, \cdot) be a group. Then $(\operatorname{End}(G), \circ)$ is a monoid and its group of invertible elements is

$$U(\operatorname{End}(G), \circ) = \operatorname{Aut}(G).$$

Theorem 1.5.5 Let $f: G \to G'$ be a group homomorphism. Then:

(i)
$$f(1) = 1'$$
;

$$(ii)'(f(x))^{-1} = f(x^{-1}), \forall x \in G.$$

Proof. (i) We have $\forall x \in G$, $1 \cdot x = x \cdot 1 = x$, so that $f(1 \cdot x) = f(x \cdot 1) = f(x)$. Since f is a homomorphism, it follows that

$$f(1) \cdot f(x) = f(x) \cdot f(1) = f(x),$$

whence we get f(1) = 1' by multiplying by $(f(x))^{-1}$.

(ii) Let $x \in G$. Since $x \cdot x^{-1} = x^{-1} \cdot x = 1$, f is a homomorphism and f(1) = 1', it follows that

$$f(x) \cdot f(x^{-1}) = f(x^{-1}) \cdot f(x) = 1'$$
.

Hence $(f(x))^{-1} = f(x^{-1})$.

Let us now define two important sets related to a group homomorphism, that will be even subgroups.

Definition 1.5.6 Let $f: G \to G'$ be a group homomorphism. Then the set

$$\operatorname{Ker} f = \{ x \in G \mid f(x) = 1' \}$$

is called the kernel of the homomorphism f and the set

$$Im f = \{ f(x) \mid x \in G \}$$

is called the *image* of the homomorphism f.

Theorem 1.5.7 Let $f: G \to G'$ be a group homomorphism. Then

$$\operatorname{Ker} f \leq G \text{ and } \operatorname{Im} f \leq G'$$
.

Proof. Since f(1) = 1', we have $1 \in \text{Ker} f \neq \emptyset$. Now let $x, y \in \text{Ker} f$. Then f(x) = f(y) = 1'. It follows that

$$f(xy^{-1}) = f(x)f(y^{-1}) = f(x)(f(y))^{-1} = 1' \cdot 1' = 1',$$

hence $xy^{-1} \in \text{Ker } f$. Therefore, $\text{Ker } f \leq G$.

Since 1' = f(1), we have $1' \in \text{Im} f \neq \emptyset$. Now let $x', y' \in \text{Im} f$. Then $\exists x, y \in G$ such that f(x) = x' and f(y) = y'. It follows that

$$x'y'^{-1} = f(x)(f(y))^{-1} = f(x)f(y^{-1}) = f(xy^{-1}) \in \text{Im } f$$

hence $x'y'^{-1} \in \text{Im } f$. Therefore, $\text{Im } f \leq G'$.

More generally, we have the following property.

Theorem 1.5.8 Let $f: G \to G'$ be a group homomorphism and let H be a subgroup of G. Then

$$f(H) = \{ f(x) \mid x \in H \}$$

is a subgroup of G'.

Proof. Since H is a subgroup of G, we have $H \neq \emptyset$, and thus $f(H) \neq \emptyset$. Now let $x', y' \in f(H)$. Then x' = f(x) and y' = f(y) for some $x, y \in H$. It follows that

$$x'y'^{-1} = f(x)(f(y))^{-1} = f(x)f(y^{-1}) = f(xy^{-1}) \in f(H),$$

hence $x'y'^{-1} \in f(H)$. Therefore, f(H) < G'.

It is well-known that a group homomorphism (and even a function) $f: G \to G'$ is surjective if and only if Im f = G'. We have a similar characterization of injective group homomorphisms by their kernel.

Theorem 1.5.9 Let $f: G \to G'$ be a group homomorphism. Then

$$\operatorname{Ker} f = \{1\} \iff f \text{ is injective.}$$

Proof. \Longrightarrow . Suppose that $\operatorname{Ker} f = \{1\}$. Let $x, y \in G$ be such that f(x) = f(y). Then

$$f(x)(f(y))^{-1} = 1',$$

whence it follows that $f(xy^{-1}) = 1'$, that is, $xy^{-1} \in \text{Ker} f = \{1\}$. Hence x = y. Therefore, f is injective. \iff . Suppose that f is injective. Clearly, $\{1\} \subseteq \text{Ker} f$. Now let $x \in \text{Ker} f$. Then

$$f(x) = 1' = f(1),$$

whence x = 1. Hence $\operatorname{Ker} f \subseteq \{1\}$, so that $\operatorname{Ker} f = \{1\}$.

Theorem 1.5.10 (Factorization by an injective group homomorphism) Let $f: A \to B$ be a group homomorphism. Let $g: B' \to B$ be an injective group homomorphism with $\operatorname{Im}(f) \subseteq \operatorname{Im}(g)$. Then there exists a unique group homomorphism $h: A \to B'$ such that $f = g \circ h$.

Proof. Let $a \in A$. Then $f(a) \in \text{Im}(f) \subseteq \text{Im}(g)$, hence there exists $b' \in B'$ such that f(a) = g(b'). If there exists $b'' \in B'$ such that f(a) = g(b''), then we have g(b') = g(b''), hence b' = b'' because g is injective. Hence for every $a \in A$, there exists a unique $b' \in B'$ such that f(a) = g(b').

It follows that we can define the function

$$h: A \to B', \quad h(a) = b',$$

where $b' \in B'$ is uniquely determined as above. We have g(h(a)) = g(b') = f(a) for every $a \in A$. Hence $f = g \circ h$.

We show that h is a group homomorphism. Let $a_1, a_2 \in A$. Then there exist $b'_1, b'_2 \in B'$ unique such that $f(a_1) = g(b'_1)$ and $f(a_2) = g(b'_2)$. Hence $h(a_1) = b'_1$ and $h(a_2) = b'_2$. We have

$$f(a_1 + a_2) = f(a_1) + f(a_2) = g(b'_1) + g(b'_2) = g(b'_1 + b'_2).$$

It follows that

$$h(a_1 + a_2) = b'_1 + b'_2 = h(a_1) + h(a_2).$$

Thus h is a group homomorphism.

For uniqueness, suppose that there exists a homomorphism $h': A \to B'$ such that $f = g \circ h'$. It follows that $g \circ h = g \circ h'$. For every $a \in A$, we have g(h(a)) = g(h'(a)), whence h(a) = h'(a) by the injectivity of g. Hence h = h'.

Theorem 1.5.11 (Factorization by a surjective group homomorphism) Let $f: A \to B$ be a group homomorphism. Let $g: A \to A'$ be a surjective group homomorphism with $\operatorname{Ker}(g) \subseteq \operatorname{Ker}(f)$. Then there exists a unique group homomorphism $h: A' \to B$ such that $f = h \circ g$.

Proof. Let $a' \in A'$. Since g is surjective, there exists $a \in A$ such that g(a) = a'. If there exists $a_0 \in A$ such that $g(a_0) = a'$, then we have $g(a) = g(a_0)$. It follows that $g(a - a_0) = 0$, hence $a - a_0 \in \text{Ker}(g) \subseteq \text{Ker}(f)$. Then $f(a - a_0) = 0$, hence $f(a) = f(a_0)$.

It follows that we can define the function

$$h: A' \to B, \quad h(a') = f(a),$$

where f(a) is uniquely determined as above. We have h(g(a)) = a for every $a \in A$. Hence $f = h \circ g$.

We show that h is a group homomorphism. Let $a'_1, a'_2 \in A'$. Then there exist $a_1, a_2 \in A$ such that $g(a_1) = a'_1$ and $g(a_2) = a'_2$. Hence $h(a'_1) = f(a_1)$ and $h(a'_2) = f(a_2)$. We have

$$g(a_1 + a_2) = g(a_1) + g(a_2) = a'_1 + a'_2.$$

It follows that

$$h(a'_1 + a'_2) = h(g(a_1 + a_2)) = f(a_1 + a_2) = f(a_1) + f(a_2) = h(a'_1) + h(a'_2).$$

Thus h is a group homomorphism.

For uniqueness, suppose that there exists a group homomorphism $h': A' \to B$ such that $f = h' \circ g$. It follows that $h \circ g = h' \circ g$. For every $a' \in A'$, there is $a \in A$ such that g(a) = a' by the surjectivity of g, which implies that h(a') = h(g(a)) = h'(g(a)) = h'(a'). Hence h = h'.

Theorem 1.5.12 Let $f: G \to G'$ be a group homomorphism and let $X \subseteq G$. Then

$$f(< X >) = < f(X) > .$$

Proof. If $X = \emptyset$, then $f(<\emptyset>) = f(\{1\}) = \{f(1)\} = \{1'\} = \langle f(\emptyset) \rangle$. Now assume that $X \neq \emptyset$. We have seen that

$$\langle X \rangle = \{x_1 x_2 \dots x_n \mid x_i \in X \cup X^{-1}, i = 1, \dots, n, n \in \mathbb{N}^*\}.$$

Since f is a group homomorphism, it follows that

$$f(\langle X \rangle) = f(\{x_1 \dots x_n \mid x_i \in X \cup X^{-1}, i = 1, \dots, n, n \in \mathbb{N}^*\}) =$$

$$= \{f(x_1 \dots x_n) \mid x_i \in X \cup X^{-1}, i = 1, \dots, n, n \in \mathbb{N}^*\} =$$

$$= \{f(x_1) \dots f(x_n) \mid x_i \in X \cup X^{-1}, i = 1, \dots, n, n \in \mathbb{N}^*\} = \langle f(X) \rangle,$$

which proves the theorem.

Corollary 1.5.13 Let $f: G \to G'$ be a group homomorphism and let $x \in G$. Then

$$f(\langle x \rangle) = \{ f(x)^k \mid k \in \mathbb{Z} \}.$$

Proof. Recall that we have $\langle x \rangle = \{x^k \mid k \in \mathbb{Z}\}$. By Theorem 1.5.12, it follows that

$$f(\langle x \rangle) = \langle f(x) \rangle = \{ f(x)^k \mid k \in \mathbb{Z} \} \},$$

as required.