MATH 131B: Homework #2

Professor Dave Penneys
Assignment: 10, 12, 13, 15, 17

Eric Chuu

UID: 604406828

June 30, 2016

Problem 10

Let (X, d) be a metric space.

(a) Let E be a subset of X. Then E is open if and only if E = int(E).

Solution

Suppose that E is open. To show $E = \operatorname{int}(E)$, we show inclusion in both directions. Let $x \in E$. Since E is open, then $\partial(E) \cap E = \phi$. This means $x \notin \partial E$. Then there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \cap \partial E = \phi$. Then x can either be in the interior or exterior of E. Suppose $x \in \operatorname{ext}(E)$, then there exists $\delta > 0$ such that $B_{\delta}(x) \cap E = \phi$, which contradicts $x \in E$, so $x \in \operatorname{int}(E)$, and so $E \subset \operatorname{int}(E)$. For the reverse inclusion, since every $x \in \operatorname{int}(E)$ has an $\epsilon > 0$ such that $B_{\epsilon}(x) \subset E$, then $\operatorname{int}(E) \subset E$, so we have $E = \operatorname{int}(E)$.

Conversely, suppose that E = int(E). Since for all $x \in \partial E$, x is not in the exterior nor the interior, then $\partial E \cap E = \phi$, so E is open.

(b) Let E be a subset of X. Then E is closed if and only if E contains all its adherent points.

Solution

Suppose E is closed. Then it contains all of its boundary points, i.e., $\partial E \subset E$. Let x be adherent to E. Then for all r > 0, $B_r(x) \cap E \neq 0$, so $x \notin \text{ext}(E)$, so $x \in \text{Int}(E) \cup \partial E$, so $x \in E$.

Conversely, suppose E contains all its adherent points. We show that E is closed, $\partial E \subset E$. Let $x \in \partial E$. $x \notin \text{ext}(E)$, so for all r > 0, $B_r(x) \cap E \neq \phi$, so x is adherent to E, and since E contains all of its adherent points, we've shown that $\partial E \subset E$.

(c) For any $x_0 \in X$ and r > 0, then the ball $B_r(x_0)$ is an open set. The set $\{x \in X : d(x, x_0) \le r\}$ is a closed set.

Solution

To show that $B_r(x_0)$ is an open set, we show that for any $x \in B_r(x_0)$, there exists an $\epsilon > 0$ such that $B_{\epsilon}(x) \subset B_r(x_0)$. Let $s := r - d(x_0, x)$. Then let $y \in B_s(x)$. Then

$$d(x_0, y) \le d(x_0, x) + d(x, y) \le d(x_0, x) + s = d(x_0, x) + r - d(x_0, x) = r$$

so $d(x_0, y) < r$, and we've shown that $B_s(x) \subset B_r(x_0)$, so $B_r(x_0)$ is open.

Let $K := \{x \in X : d(x, x_0) \le r\}$. To show K is closed, it suffices to show that $K^c = \{x \in X : d(x, x_0) > r\}$ is open, that is, for all $x \in K^c$, there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subset K^c$. Let $x \in K^c$, $x_0 \in K$. Then let $s := d(x, x_0) - r$. Note this is greater than 0 since $x \notin K$. Let $y \in B_s(x)$. Then,

$$d(x,x_0) \le d(x,y) + d(y,x_0) < s + d(y,x_0) = d(x,x_0) - r + d(y,x_0)$$

$$\implies r < d(y,x_0),$$

which implies that $B_s(x_0) \subset K^c$, so K^c is open $\Leftrightarrow K$ is closed.

(d) Any singleton set $\{x_0\}$, where $x_0 \in X$, is automatically closed.

Solution

By part (b), to show that $\{x_0\}$ is closed, it suffices to show that $\{x_0\}$ contains all of its adherent points. Let x be adherent to $\{x_0\}$. Then for all r > 0, $B_r(x) \cap \{x_0\} \neq \phi$, so $d(x, x_0) < r$ for all r > 0. Since r is arbitrary $d(x, x_0) \to 0$, so $x = x_0$, so $\{x_0\}$ contains all of its adherent points, and $\{x_0\}$ is closed.

(e) If E is a subset of X, then E is open if and only if the complement $E^c := \{x \in X : x \notin E\}$ is closed.

Solution

Suppose that E is open. In order to show that E^c is closed, it suffices to show that it contains all of its adherent points. Let x be adherent to E^c . Then for all $\epsilon > 0$, $B_{\epsilon}(x) \cap E^c \neq \phi$. Then it follows that there is no such $\epsilon > 0$ such that $B_{\epsilon}(x) \subset E$, so $x \notin \text{Int}(E)$. Since E = Int(E) by openness of E, so $x \notin E$, so $x \in E^c$, so E^c is closed.

Conversely, suppose that E^c is closed. To show that E is open, it suffices to show that for all $x \in E$, there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subset E$. Let $x \in E$. Since E^c closed, it contains all of its adherent points, so x is not adherent to E^c . Then there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \cap E^c = \phi$, so for this ϵ , $B_{\epsilon}(x) \subset E$. Thus, E is open.

(f) If E_1, \ldots, E_n is a finite collection of open sets in X, then $E_1 \cap E_2 \ldots \cap E_n$ is also open. If F_1, \ldots, F_n is a finite collection of closed sets in X, then $F_1 \cup \ldots \cup F_n$ is also closed.

Solution

In order to show that $\bigcap_{i=1}^n E_i$ is open, it suffices to show for any $x \in \bigcap_{i=1}^n E_i$, there exists an $\epsilon > 0$ such that $B_{\epsilon}(x) \subset \bigcap_{i=1}^n E_i$. Let $x \in \bigcap_{i=1}^n E_i$. Then $x \in E_i$ for every $1 \leq i \leq n$. Since each of these E_i is open, there exists $\epsilon_i > 0$ such that $B_{\epsilon_i}(x) \subset E_i$. Then choose $\epsilon := \min\{\epsilon_1, \dots \epsilon_n\}$. Note we can take the minimum because this collection of ϵ_i 's forms a finite set. Then $B_{\epsilon}(x) \subset E_i$ for $1 \leq i \leq n$, which implies that $B_{\epsilon}(x) \subset \bigcap_{i=1}^n E_i$, and it follows that $\bigcap_{i=1}^n E_i$ is open. From part (e), we know that $\bigcap_{i=1}^n E_i$ is open $\Leftrightarrow (\bigcap_{i=1}^n E_i)^c$ is closed. Applying De Morgan's law,

$$\left(\bigcap_{i=1}^{n} E_i\right)^c = \bigcup_{i=1}^{n} E_i^c,$$

where each E_i^c is closed since E_i is open for $1 \le i \le n$. Thus, if we take $F_1 = E_1^c, F_2 = E_2^c, \ldots, F_n = E_n^c$, then we find that finite unions of closed sets are closed.

(g) If $\{E_{\alpha}\}_{{\alpha}\in I}$ is a collection of open sets in X, then $\bigcup_{{\alpha}\in I}E_{\alpha}$ is open. If $\{F_{\alpha}\}_{{\alpha}\in I}$ is a collection of closed sets in X, then $\bigcap_{{\alpha}\in I}F_{\alpha}$ is closed.

Solution

To show that the arbitrary union of open sets is open, we show that for any $x \in \bigcup_{\alpha \in I} E_{\alpha}$, there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subset \bigcup_{\alpha \in I} E_{\alpha}$. Let $x \in E_{\alpha}$ for one of the open sets in the union. Since E_{α} is open, there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subset E_{\alpha} \subset \bigcup_{\alpha \in I} E_{\alpha}$, so it follows that $\bigcup_{\alpha \in I} E_{\alpha}$ is open. $\bigcup_{\alpha \in I} E_{\alpha}$ open $\Leftrightarrow (\bigcup_{\alpha \in I} E_{\alpha})^{c}$ is closed. Applying De Morgan's law,

$$\left(\bigcup_{\alpha \in I} E_{\alpha}\right)^{c} = \bigcap_{\alpha \in I} E_{\alpha}^{c},$$

where each E_{α}^{c} is closed since each E_{α} is open. Then it follows that arbitrary intersections of closed sets are closed.

(h) If E is any subset of X, then Int(E) is the largest open set which is contained in E; in other words int(E) is open, and given any other open set $V \subset E$, we have $V \subset int(E)$. Similarly, \overline{E} is the smallest closed set which contains E; in other words, \overline{E} is closed, and given any other closed set $K \supset E, K \supset \overline{E}$.

Solution

We first show that $\operatorname{Int}(E)$ is open. Since $\operatorname{Int}(E)$ is defined as the set of interior points of E, for all $x \in \operatorname{Int}(E)$, there exists r > 0 such that $B_r(x) \subset E$. To show that $\operatorname{Int}(E)$ is open, we show that for all $y \in \operatorname{Int}(E)$, there exists s > 0 such that $B_s(y) \subset \operatorname{Int}(E)$. Let $y \in B_r(x)$. Then let s := r - d(x, y). Then let $z \in B_s(y)$, and the triangle inequality yields

$$d(x,z) \le d(x,y) + d(y,z) < d(x,y) + s = d(x,y) + r - d(x,y) = r,$$

so $B_s(y) \subset B_r(x) \subset E$, so we've shown that for an arbitrary point in the interior of E, there exists a ball around that point whose points are also in the interior of E, so $B_r(x) \subset \text{Int}(E)$, and Int(E) is open.

Let V be open in E. Then for all $x \in V$, there exists r > 0 such that $B_r(x) \subset V \subset E$, so $x \in \text{Int}(E)$, and we conclude that $V \subset \text{Int}(E)$.

We first show that \overline{E} is closed. Let x be adherent to \overline{E} . Then it suffices to show that $x \in \overline{E}$, that is, for all r > 0, $B_r(x) \cap E \neq \phi$. Since x is adherent to \overline{E} , then for all r > 0, $B_{r/2}(x) \cap \overline{E} \neq \phi$. Let $y \in B_{r/2}(x) \cap \overline{E}$. Then $y \in \overline{E}$, the set containing all points adherent to E, which implies that $B_{r/2}(y) \cap E \neq \phi$. Let $z \in B_{r/2}(y) \cap E$. Then,

$$d(x,z) \le d(x,y) + d(y,z) < \frac{r}{2} + \frac{r}{2} = r,$$

so $z \in B_r(x)$, and since $z \in E, z \in B_r(x) \cap E$, and we've shown that $B_r(x) \cap E \neq \phi$, so \overline{E} is closed.

Suppose K is closed and $K \supset E$. We want to show that $\overline{E} \subset K$, that for all $x \in \overline{E}$, $x \in K$. This is equivalent to showing that if $x \notin K$, then $x \notin \overline{E}$. Let $x \in K^c$. Since K is closed, then K^c is open, so there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subset K^c$. Then $B_{\epsilon}(x) \cap K = \phi$, which means that x is not adherent to K. Since $E \subset K$, then it follows that $B_{\epsilon}(x) \cap E = \phi$, so x is not adherent to E, so $x \notin \overline{E}$. Thus, we've shown that if $x \notin K$, then $x \notin \overline{E}$, or equivalently, $\overline{E} \subset K$.

Problem 12

Let (X, d) be a nonempty metric space.

- (a) Fix $x_0 \in X$. Suppose we have a convergent sequence $y_n \to y_0$ in (X, d). Show that $d(x_0, y_n) \to d(x_0, y_0)$ in $(\mathbb{R}, |\cdot|)$.
- (b) Fix $x_0, y_0 \in X$. Suppose we have two convergent sequences $x_m \to x_0$ and $y_n \to y_0$ in (X, d). Show that $d(x_m, y_m) \to d(x_0, y_0)$ in $(\mathbb{R}, |\cdot|)$, i.e., show that for every $\epsilon > 0$, there is an N > 0 such that m, n > N implies $|d(x_m, y_n) d(x_0, y_0)| < \epsilon$.

Solution

(a) Let $\epsilon > 0$. Since $y \to y_0$ in (X, d), there exists N > 0 such that for all $n > N, d(y_n, y_0) < \epsilon$. We want to show that for all $n > N, |d(x_0, y_n) - d(x_0, y_0)| < \epsilon$. By the triangle inequality,

$$d(x_0, y_n) \le d(x_0, y_0) + d(y_0, y_n),$$

so for all n > N,

$$|d(x_0, y_n) - d(x_0, y_0)| \le |d(x_0, y_0) + d(y_0, y_n) - d(x_0, y_0)|$$

$$\le |d(y_0, y_n)| = d(y_0, y_n) < \epsilon.$$

Note we can safely take off the absolute value because the distance is non-negative, so we've shown that $d(x_0, y_n) \to d(x_0, y_0)$ in $(\mathbb{R}, |\cdot|)$.

(b) Let $\epsilon > 0$. Since $x_m \to x_0$ in (X, d), then there exists $N_1 > 0$ such that for all $m > N_1$, $d(x_m, x_0) < \epsilon/2$. Similarly, since $y_n \to y_0$ in (X, d), then there exists $N_2 > 0$ such that for all $n > N_2$, $d(y_n, y_0) < \epsilon/2$. We want to show that there exists N such that for all m, n > N, $|d(x_m, y_n) - d(x_0, y_0)| < \epsilon$. Take $N = \max\{N_1, N_2\}$. Then applying the triangle inequality twice, we have that for all m, n < N

$$\begin{aligned} |d(x_m, y_n) - d(x_0, y_0)| &\leq |d(x_m, x_0) + d(x_0, y_0) + d(y_0, y_n) - d(x_0, y_0)| \\ &= |d(x_m, x_0) + d(y_0, y_n)| \\ &\leq |d(x_m, x_0)| + |d(y_0, y_n)| \\ &= d(x_m, x_0) + d(y_0, y_n) \\ &\leq \epsilon/2 + \epsilon/2 = \epsilon, \end{aligned}$$

so $d(x_m, y_m) \to d(x_0, y_0)$ in $(\mathbb{R}, |\cdot|)$.

Problem 13

Prove the following conditions are equivalent for a subset S of a metric space (X, d).

- (a) For every $x \in X$, there is an R > 0 such that $S \subset B_R(x)$.
- (b) There exists an $x \in X$ and an R > 0 such that $S \subset B_R(x)$.
- (c) diam $(S) = \sup\{d(x,y)|x,y \in S\} < \infty$.

We say S is bounded if it satisfies one and thus all of the conditions above.

Solution

We show that (a) \implies (b).

By (a), we have that for all $x \in X$, there exists R > 0 such that $S \subset B_R(x)$, so we pick $x \in X$. Then it follows directly from (a) that there exists R > 0 such that $S \subset B_R(x)$.

We show (b) \implies (a).

Suppose that there exists $x \in X$ and R > 0 such that $S \subset B_R(x)$. Let $y \in X$, and set R' := R + d(x, y). Let $z \in S$. Then

$$d(y, z) \le d(y, x) + d(x, z) < d(y, x) + R = R'$$

so $z \in B_{R'}(y)$, so we've shown that for all $y \in X$, there exists an R' such that $S \subset B_{R'}(y)$, so (a) holds.

We show that (b) \implies (c).

By (b), there exists $x \in X$ and R > 0 such that $S \subset B_R(x)$. Then for any $s \in S$, $s \in B_R(x)$, so d(x, s) < R. Let $s, t \in S$. Then

$$d(s,t) \le d(s,x) + d(x,t) < R + R = 2R.$$

Then 2R is an upper bound for d(x,y) for all $x,y \in S$, so $\operatorname{diam}(S) = \sup\{d(x,y)|x,y \in S\} \le 2R < \infty$.

We show (c) \implies (b).

We're given that $\operatorname{diam}(S) = \sup\{d(x,y)|x,y \in S\} < \infty$. Let $x \in S$. Then take $R := \operatorname{diam}(S) + 1$. Let $y \in S$. Then $d(x,y) \leq \operatorname{diam}(S) < R$, $S \subset B_R(x)$.

Problem 15

A subset $S \subset X$ is called dense if for every nonempty open $U \subset X, S \cap U \neq \phi$.

- (a) Show that S is dense in X if and only if for every $\epsilon > 0$ and every $x \in X$, $B_{\epsilon}(x) \cap S \neq \phi$.
- **(b)** Show that S is dense in X if and only if $X = \overline{S}$.

Solution

(a) Suppose S is dense in X. Then we show that for every $\epsilon > 0$ and every $x \in X$, $B_{\epsilon}(x) \cap S \neq \phi$. Let $\epsilon > 0, x \in X$. Then consider the open ball $B_{\epsilon}(x)$ is a nonempty open subset of X, and since S is dense in $X, B_{\epsilon}(x) \cap S \neq \phi$, which is what we wanted to show.

Conversely, suppose that for every $\epsilon > 0$ and $x \in X$, $B_{\epsilon}(x) \cap S \neq \phi$. let U be an open subset of X. Let $x \in U$. Then there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subset U$. By hypothesis, $B_{\epsilon}(x) \cap S \neq \phi$, and since $B_{\epsilon}(x) \subset U$, then it follows that $U \cap S \neq \phi$, so S is dense in X.

(b) Suppose S is dense in X. We want to show that $X = \overline{S}$. Let $x \in X$, $\epsilon > 0$. Then $B_{\epsilon}(x)$ is open in X. By hypothesis, $B_{\epsilon} \cap S \neq \phi$, so x is adherent to S, so $x \in \overline{S}$, and $X \subset \overline{S}$. For the reverse inclusion, let $x \in \overline{S}$. Then x is adherent to S, and for all r > 0, $B_r(x) \cap S \neq \phi$. Since $x \in B_r(x)$, $x \in X$, so $\overline{S} \subset X$, and it follows that $X = \overline{S}$.

Conversely, suppose $X = \overline{S}$. Then we want to show that for every nonempty open $U \subset X$, $U \cap S \neq \phi$. Let U be open in X, and let $x \in U$. Then there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subset U$. Since $x \in X = \overline{S}$, then x is adherent to S, so $B_{\epsilon}(x) \cap S \neq \phi$, so it follows that $U \cap S \neq \phi$, and we are done.

Problem 17

Find a Cauchy sequence in a metric space (X, d) which does not converge. You must prove that your sequence is Cauchy, and you must prove that it does not converge.

Solution

Let (X,d) be a metric space, where X=(0,1]. Then let $\{x_n\}$ be a sequence in X, where $x_n=\frac{1}{n+1}$ for $n\geq 1$. We claim that $\{x_n\}$ is Cauchy. Let $\epsilon>0$. Then by the Archimedean Property, there exists N>0 such that $\frac{1}{N}<\epsilon/2$. Then we can inductively construct a sequence such that for $x_1\in B_1(0), x_2\in B_{1/2}(0),\ldots,x_n\in B_{1/n}(0)$, so we have that for all n,m>N, $x_n\in B_{\epsilon/2}(0)$ and $x_m\in B_{\epsilon/2}(0)$ that is $d(x_n,x_m)\leq d(x_n,0)+d(0,x_m)<\epsilon/2+\epsilon/2=\epsilon$, so $\{x_n\}$ is Cauchy. However, as $n\to\infty$, the sequence approaches 0, but $0\notin X$, so $\{x_n\}$ does not converge in (X,d).