Exercises to Section 8

Exercises in red are from the list of the typical exercises for the exam. Exercises marked with a star * are for submission to your tutor.

Theory

1. Assume that the integral $\int_{-\infty}^{\infty} f(x)dx$ converges. Prove that

$$\int_{-\infty}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{c}^{b} f(x)dx + \lim_{a \to -\infty} \int_{a}^{c} f(x)dx$$

for any choice of the point $c \in \mathbb{R}$.

- 2. Prove the "only if" part of the Lemma in the section on the absolute and conditional convergence of integrals: for a bounded f on $[a,\infty)$, if the limit $\lim_{x\to\infty}f(x)$ exists, then for any $\varepsilon>0$ there exists R>0 such that for any $x_1\geqslant R$ and $x_2\geqslant R$ we have $|f(x_1)-f(x_2)|<\varepsilon$.
- 3. Prove the integral convergence test for series (see lecture notes). Proceed as follows.
 - (a) Check that for any $k \in \mathbb{N}$,

$$f(k+1) \leqslant \int_{k}^{k+1} f(t)dt \leqslant f(k).$$

(b) Denote

$$A_n = \sum_{k=1}^n f(k), \quad B_n = \int_0^n f(t)dt, \quad n \in \mathbb{N}.$$

Using the previous step, prove that A_n is a Cauchy sequence if and only if B_n is a Cauchy sequence.

(c) Show that B_n converges as $n \to \infty$ if and only if $\int_0^x f(t)dt$ converges as $x \to \infty$. Conclude the proof.

Improper integrals

4. Determine whether the following improper integrals converge:

(a)
$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$$

(b)
$$\int_{-1}^{1} \frac{dx}{\sqrt{1-x^2}}$$

(c)
$$\int_0^\infty \frac{x^2 + 1}{x^4 + 1} dx$$

$$(\mathsf{d})^* \int_0^\infty \frac{x \log x}{(1+x^2)^2} dx$$

(e)
$$\int_0^2 \frac{dx}{\log x}$$

(f)
$$\int_{0}^{\infty} x^{p-1}e^{-x}dx$$
, $p \in \mathbb{R}$

(g)
$$\int_0^\infty \frac{\log(1+x)}{x^n} dx$$
, $n \in \mathbb{N}$

(h)
$$\int_0^1 \frac{x^n dx}{\sqrt{1-x^4}}, n \in \mathbb{N}$$

(i)
$$\int_0^{\pi/2} \frac{\log(\sin x)}{\sqrt{x}} dx$$

(j)
$$\int_0^\infty \frac{(\sin x)^2}{x} dx$$

5. Using the integral test, determine whether the following series converge:

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}, p > 0$$

(b)
$$\sum_{n=3}^{\infty} \frac{1}{n(\log n)(\log \log n)^p}, p > 0$$

Absolute and conditional convergence

6. Do the following improper integrals converge absolutely? Conditionally? You can use Theorem 8.3 from the lecture notes.

(a)
$$\int_0^\infty \frac{\sin x}{\sqrt[4]{x+1}} dx$$

(b)
$$\int_0^\infty \frac{\sqrt{x}\cos x}{x+100} dx$$

$$(c)^* \int_{-\infty}^{\infty} \frac{\sin x \tan^{-1} x}{\sqrt{x^4 + 1}} dx$$

Challenging exercises

7. Using integration by parts, prove Theorem 8.3 from the lecture notes. The statement is repeated below.

Theorem. Let f and g be continuous functions on $[a, \infty)$, such that (i) the integral

$$\int_{a}^{x} f(t)dt$$

is bounded and (ii) g(x) is continuously differentiable, goes to zero as $x\to\infty$ and is monotone. Then the integral

 $\int_{-\infty}^{\infty} f(x)g(x)dx$

converges.

8. Do the following improper integrals converge absolutely? Conditionally?

(a)
$$\int_{0}^{\infty} \sin x^2 dx$$
 Hint: change of variable

(b)
$$\int_0^\infty x^p \cos x \, dx, \, p < 0.$$

9. Let n < m be natural numbers, and let $f \in C^1[n,m]$. Prove the first *Euler-Maclaurin formula*

$$\sum_{i=n}^{m} f(i) - \int_{n}^{m} f(x)dx = \frac{1}{2}(f(n) + f(m)) + \int_{n}^{m} f'(x)(x - \lfloor x \rfloor - \frac{1}{2})dx.$$

10. In the Euler-Maclaurin formula, take $f(i)=i^{-s},\ s>1,\ n=1$ and let $m\to\infty.$ Conclude that

$$\zeta(s) = \frac{1}{s-1} + O(1), \quad s \to 1_+,$$

where $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$ is the Riemann zeta function.