



# Finding Home

# Finding Home





What is an exoplanet? - Data - The Goal - The Process - ML - Summarizing Thoughts vercris forth water NOT IN LST => TRUE

- Before cleaning: 4048 rows x 112 columns
- After cleaning: 4046 rows x 32 columns



- Before cleaning: 4048 rows x 112 columns
- After cleaning: 4046 rows x 32 columns
- Originates from the Planetary Habitability Laboratory
- Managed by the University of Puerto Rico



- Before cleaning: 4048 rows x 112 columns
- After cleaning: 4046 rows x 32 columns
- Originates from the Planetary Habitability Laboratory
- Managed by the University of Puerto Rico
- Contains information about exoplanets and the stars they orbits















- Before cleaning: 4048 rows x 112 columns
- After cleaning: 4046 rows x 32 columns
- Originates from the Planetary Habitability Laboratory
- Managed by the University of Puerto Rico
- Contains information about exoplanets and the stars they orbits
- Unbalanced, ca 1 % of planets are habitable





# GOAL:

# GOAL:

Is the planet habitable?

The process: DAE

#### The process: DAE

Lots and lots of columns have high correlation



$$g_p = G \frac{1}{r_p^2}$$

$$L_s = 4\pi r_s^2 \sigma T^4$$

#### The process: DAE

- Lots and lots of columns have high correlation
- Feature Creation: SSI

$$SSI = \sum_{i} \sqrt{(S_{exo,i} - S_{sun,i})^2}$$

$$S_i = [Mass, Radius, ...]$$



#### The process: EDA - Habitable vs Inhabitable

#### The process: EDA - Habitable vs Inhabitable

PCA





#### The process: EDA - Habitable vs Inhabitable

- PCA
- What specifically makes the hab/inhab planets differ?





#### The process: EDA - Habitable vs Inhabitable

- PCA
- What specifically makes the hab/inhab planets differ?
- Answer: hab are more earth-like

#### ML model: target var = P\_HABITABLE

- Estimator: LogisticalRegression
- Scorer: kappa





### ML model: target var = P\_HABITABLE (only star data)

- Estimator: RandomForestClassifier
- Scorer: kappa



Precision: 84 %

#### ML model: target var = P\_HABITABLE (only star data)

Estimator: RandomForestClassifier

Scorer: kappa

Precision: 33 %



## Summarizing thoughts

A model such as this might not be as inapplicable as one might think

- A model such as this might not be as inapplicable as one might think
- Reducing complexity is important

- A model such as this might not be as inapplicable as one might think
- Reducing complexity is important
- Problem with feature creation but it was useful

- A model such as this might not be as inapplicable as one might think
- Reducing complexity is important
- Problem with feature creation but it was useful
- Try resampling next time

## The End