CODE CONVERTERS

Lecture 7 & 8

Code converters

- A code converter circuit will convert coded information in one form to a different coding form.
- Coded representation for 10 decimal symbols is known as binary coded decimal (or BCD) or decimal codes.
- Minimum 4-bits are required to represent decimal symbol.
- Out of 16, 4-bit combinations, only 10 combinations are used to represent 10 decimal symbols and remaining 6 will not be used (don't cares)

Difference between binary and BCD representation

(28)₁₀

Binary representation: (11100) 2

8421 BCD representation: (0010 1000) 2

Introduction to BCD codes

	•					
Decimal digit	8421 (BCD)	Excess 3	84-2-1	2421	Gray code	> Unit - di
0 ·	0000	0011	0000	0000	0000 <	\
1	0001	70100	0111	0001	0001 70	(6010)
72	0010	70101	0110	0010/100	0011	
13	0011	70110	0101	0011 100		~> 0010
4	0100	0111	0010	01001010	37 10110	
5 4	0101	1000	101	> 1011010	. /	70110
100	0110	\$001	0101	1100	0101	
7	0111	1010	1001	7/10/	0100	
8	1000	7011	1000	1110	1100	
9	1001	1100	1111	1110	1101	
Don't cares	1010,1011, 1100,1101, 1110,1111	0000,0001, 0010,1101, 1110,1111	0001,0010, 0011,1100, 1101,1110	0101,0110, 0111,1000, 1001,1010	1010, 100 1010, 11	5 I

Complements

Are used for simplifying the subtraction operation and for logical manipulation.

There are two complements for each base:

- (R-1)'s complement (Diminished radix complement)
- R's complement (Radix complement)
- (R-1)'s complement:

(R-1)'s complement of a number is $(R^n - 1) - N$

Where R → base

N → number who's complement is to be taken

n → number of digits/bits in the number N

R's complement

R's complement of a number is $R^n - N$

Where R → base

N → number who's complement is to be taken

 $n \rightarrow$ number of digits/bits in the number N

Code converter design steps:

- 1. Write the truth table
- 2. Identify the don't care inputs from input code
- 3. Write the minterms/maxterms for every output variable
- 4. Simplify the expressions for output variables
- 5. Draw the circuit using the specified gates.

Design a 3 bit binary to gray code converter.

3-bit Binary B2 B1 B0	Gray G2 G1 G0
000	000
001	001
010	011
011	010
100	1 0
101	111
4 10	101
111	100

$$G_{2} = Em(4,5,6,7)$$
 $G_{1} = Em(2,3,4,5)$
 $G_{3} = Em(1,2,5,6)$
 $G_{4} = Em(1,2,5,6)$

$$G_1 = B_2 B_1 + B_1 B_2 = B_2 + B_1$$

$$G_1 = B_1 + B_2 + B_2 + B_3 + B_4 + B_4 + B_5 + B_5 + B_6 + B_$$

$$G_{10} = B_{1}B_{0} + B_{1}B_{0} = B_{1}B_{0}$$
 $G_{10} = B_{1}B_{0} + B_{1}B_{0} = B_{1}B_{0}$
 $G_{10} = B_{1}B_{0} + B_{1}B_{0} = B_{1}B_{0}$
 $G_{10} = B_{1}B_{0} + B_{1}B_{0} = B_{1}B_{0}$

Decimal	8421	Excess 3 code
digit	ABCD	E3 E2 E1 E0
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100
Don't	1010,1011,	
cares	1100,1101,1110,	
	1111	

Design a code converter to convert a decimal digit represented in 8421 code to a decimal digit represented in Excess 3 code.
$$\mathbb{N}$$
 \mathbb{N} \mathbb

$$E_{3} = A + BD + BC$$

$$E_{0} = CD + CD$$

$$E_{0} = CD + CD$$

$$E_3 = A + BD + BCD$$

$$B_2 = BC + BD + BCD$$

$$E_3 = BC + BD + BCD$$

Design a code converter to convert a decimal digit represented in 8 4 2 1 code to a decimal digit represented in 8 4 -2 -1 code.

Decimal	8421	8 4 -2 -1
digit	ABCD	Y3 Y2 Y1 Y0
0		
1		
2		
3		
4		
5		
6		
7		
8		
9		
Don't		
cares		

