DECISION TREE MODEL

Bùi Tiến Lên

2023

Contents

- 1. Decision Tree Representation
- 2. Learning Algorithm
- 3. Generalization And Overfitting
- 4. Continuous Valued Attributes
- 5. Regression Trees
- 6. Multivariate Trees

Continuou Valued Attributes

Attribute

Multivariate

Notation

symbol	meaning		
$a, b, c, N \dots$	scalar number		
$\boldsymbol{w}, \boldsymbol{v}, \boldsymbol{x}, \boldsymbol{y} \dots$	column vector		
$oldsymbol{X},oldsymbol{Y}\dots$	matrix	operator	meaning
\mathbb{R}	set of real numbers	$oldsymbol{w}^{\intercal}$	transpose
$\mathbb Z$	set of integer numbers	XY	matrix multiplication
\mathbb{N}	set of natural numbers	$oldsymbol{\mathcal{X}}^{-1}$	inverse
\mathbb{R}^D	set of vectors		
$\mathcal{X},\mathcal{Y},\dots$	set		
$\mathcal A$	algorithm		

ecision Tree epresentation

Learning

Entropy

MAN I I'M

Generalization
And Overfittin

Continuous Valued

Valued Attributes

A A - I b' - - - ' -

Multivariate Trees

Learning diagram

Decision Tree Representation

Decision Tree Representation

Learning

Algorith

Misclassifica

Generalization
And Overfittin

Valued Attributes

Regressio

Multivariat Trees

Decision tree representation

- Each internal node tests an attribute
- Each branch corresponds to attribute value
- Each leaf node assigns a classification

Day	Outlook	Temperature	Humidity	Wind	PlayTennis?
D1	Sunny	Hot	High	Weak	No ⊖
D2	Sunny	Hot	High	Strong	No ⊖
D3	Overcast	Hot	High	Weak	Yes ⊕
D4	Rain	Mild	High	Weak	Yes ⊕
D5	Rain	Cool	Normal	Weak	Yes ⊕

Decision Tree Representation

Learning

Entropy

Gini

Generalization
And Overfittin

Continuou Valued Attributes

Regression

Multivariat

When to Consider Decision Trees

- Classification problems
- Instances describable by attribute—value pairs
- Attributes are discrete valued
- Target function is discrete valued

Multivariat

Problem Statement

- Hypothesis set \mathcal{H} (**finite set**, there are 2^{2^n} trees for n binary attributes and binary target)
 - With 6 binary attributes, there are 18,446,744,073,709,551,616 trees

- Task T: to predict y from x by outputting $\hat{y} = h_T(x) = T(x)$
- Performance measure P: classification error

Learning Algorithm

- Entropy
- Gini
- Misclassification

Which tree is best?

• Which tree would be chosen? if both trees are fitted to $\mathcal{D} = \{(\mathbf{x}_1, y_1)...(\mathbf{x}_N, y_N)\}$

Occam's Razor

Principle of Occam's Razor

The simplest model that fits the data is also the most plausible (prefer the shortest hypothesis that fits the data)

• Inductive Bias: Preference for short trees, and for those with high information gain attributes near the root

Learning Algorithm

Entro

Gini Misslessifis

Generalization

Continuou Valued

Attributes

Regression Trees

Multivariat Trees

Top-Down Algorithm

function Decision-Tree-Learning(examples, attributes)

if all examples have the same classification then return the classification else if attributes is \emptyset then return PLURALITY-VALUE(examples) else

A ← the "best" decision attribute for next node
 Assign A as decision attribute for node
 For each value of A, create new descendant of node
 Sort training examples to child nodes and repeat these steps

Misclassification

Algorithm

Learning

Top-Down Algorithm (cont.)

Which attribute is best?

Big Picture

Learning

Algorithm

Misclassification

Trees

Multivariat Trees

Information Gain

- S is a sample of training examples
- p_{\oplus} is the proportion of positive examples in S
- ullet p_{\ominus} is the proportion of negative examples in S

Concept 1

Entropy measures the impurity of S

$$Entropy(S) = -(p_{\oplus} \log_2 p_{\oplus} + p_{\ominus} \log_2 p_{\ominus})$$
 (1)

Information Gain (cont.)

• S is a set of items with C classes, and let $\mathbf{p} = \{p_i\}_{i=1}^C$ be the fraction of items labeled with class i in the set.

Concept 2

• **Entropy** measures the impurity of S

$$Entropy(S) = -\sum_{i=1}^{C} p_i \log_2 p_i$$
 (2)

Information Gain (cont.)

Concept 3

• Average entropy on attribute A

$$AE(S,A) = \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$
 (3)

• **Information gain** is expected reduction in entropy on A

$$Gain(S, A) = Entropy(S) - AE(S, A)$$
 (4)

• The best attribute is an attribute that has the highest **information gain**

Gini index

Concept 4

• **Gini** impurity for a set of items S with C classes, and let $\mathbf{p} = \{p_i\}_{i=1}^C$ be the fraction of items labeled with class i in the set.

$$GiniImp(S) = 1 - \sum_{i=1}^{C} p_i^2$$
 (5)

• **Gini index** on attribute A

$$GiniIndex(S, A) = \sum_{v \in Values(A)} \frac{|S_v|}{|S|} GiniImp(S_v)$$
 (6)

Continuou Valued Attributes

Trees

Multivariat Trees

Misclassification index

Concept 5

• Misclassification impurity index for a set of items S with C classes, and let $\mathbf{p} = \{p_i\}_{i=1}^C$ be the fraction of items labeled with class i in the set.

$$MisImp(S) = 1 - \max\{p_i\}_{i=1}^{C}$$
(7)

Misclassification index on attribute A

$$MisIndex(S, A) = \sum_{v \in Values(A)} \frac{|S_v|}{|S|} MisImp(S_v)$$
 (8)

ecision Tree

Learning

Entro

Misclassification

Generalization

And Overfittin

Continuor Valued

Attribute

Trees

Multivariat

Entropy, Gini and Misclassification

cision Tree

Learning Algorithm

Misclassification

Generalization

And Overfittin

Continuo Valued

Regressio

Multivariate

Example 1

• Find decision tree T given the following training data

	Day	Outlook	Temperature	Humidity	Wind	PlayTennis?
	D1	Sunny	Hot	High	Weak	No
	D2	Sunny	Hot	High	Strong	No
	D3	Overcast	Hot	High	Weak	Yes
	D4	Rain	Mild	High	Weak	Yes
	D5	Rain	Cool	Normal	Weak	Yes
	D6	Rain	Cool	Normal	Strong	No
$\mathcal{D} =$	D7	Overcast	Cool	Normal	Strong	Yes
	D8	Sunny	Mild	High	Weak	No
	D9	Sunny	Cool	Normal	Weak	Yes
	D10	Rain	Mild	Normal	Weak	Yes
	D11	Sunny	Mild	Normal	Strong	Yes
	D12	Overcast	Mild	High	Strong	Yes
	D13	Overcast	Hot	Normal	Weak	Yes
	D14	Rain	Mild	High	Strong	No

cision Tree

Learning Algorithm

Entro

Misclassification

Generalization

And Overfitti

Continuou Valued Attributes

Regression Trees

Multivariate

IF

Example 1 - Finding Decision Tree and Converting to Rules

ELIF		THEN	failure
ELIF	$(\textit{Outlook} = \textit{Rain}) \land (\textit{Wind} = \textit{Weak})$	THEN	PlayTennis = Yes
ELIF	$(\textit{Outlook} = \textit{Rain}) \land (\textit{Wind} = \textit{Strong})$	THEN	PlayTennis = No
ELIF	Outlook = Overcast	THEN	PlayTennis = Yes
ELIF	$(\mathit{Outlook} = \mathit{Sunny}) \land (\mathit{Humidity} = \mathit{Normal})$	THEN	PlayTennis = Yes
••	(Satistic Sainty) / (Haintaity = High)		ridy rennis — rio

Continuor Valued Attributes

Regress

Multivariat

Evaluating Association Rules

Concept 6

An association rule is an implication of the form $X \to Y$ or IF X THEN Y

• Support of the association rule

$$support(X, Y) = P(X, Y) = \frac{\#count(X, Y)}{total \ samples}$$
 (9)

Confidence of the association rule

$$confidence(X \to Y) = P(Y \mid X) = \frac{\#count(X, Y)}{\#count(X)}$$
(10)

cision Tree presentation

Learning Algorithm

Misclassification

Generalization
And Overfitting

Continuo Valued Attribute

Regressio

Multivariat

Example 2

.

• Find decision tree T given the following training data

	#	Input attributes								Goal		
		Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Will Wait
	1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	Т
	2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	F
	3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	Т
	4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	Т
) —	5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	F
_	6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	Т
	7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	F
	8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	Т
	9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	F
	10	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	F
	11	No	No	No	No	None	\$	No	No	Thai	0-10	F
	12	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	Т

cision Tree

Learning Algorithm

Entropy

Misclassification

Generalization
And Overfittin

Valued

Regressio

Multivariate

Example 2 - Finding Decision Tree

cision Tree

Learning Algorithm Entropy

Misclassification

Generalization
And Overfittin

Continuou Valued Attributes

Regress Trees

Multivariate Trees

Word Example

- 1. Find decision tree T given the following training datasets
- 2. Find all **stumps** (decision tree with one node)

#	Vį	Màu	Vỏ	Độc tính
1	Ngọt	Đỏ	Nhẵn	Không
2	Cay	Đỏ	Nhẵn	Có
3	Chua	Vàng	Có gai	Không
4	Cay	Vàng	Có gai	Có
5	Ngọt	Tím	Có gai	Không
6	Chua	Vàng	Nhẵn	Không
7	Ngọt	Tím	Nhẵn	Không
8	Cay	Tím	Có gai	Có
9	Cay	Tím	Có gai	Không
10	Cay	Tím	Có gai	Có
11	Cay	Vàng	Có gai	Có

Generalization And Overfitting

ecision Tree

Learning

Entropy

Misclassifica

Generalization And Overfitting

Continuou Valued

Attribute

Trees

Multivariat

Overfitting in Decision Tree Learning

Generalization And Overfitting

Continuous Valued Attributes

Regression Trees

Multivariat Trees

Avoiding Overfitting

How can we avoid overfitting?

- stop growing when data split not statistically significant
- grow full tree, then post-prune

How to select "best" tree:

- Measure performance over training data
- Measure performance over separate validation data set
- Minimize

$$error(tree) + \lambda size(tree)$$

Continuous Valued **Attributes**

Continuous Valued Attributes

Create a discrete attribute for continuous variable

- Binary node Temperature > 36 or Temperature < 36
- General node Temperature $\in \{(-\infty, 0], (0, 10], (10, 20], (20, \infty)\}$

ecision Tree

Learning Algorithm

Entropy

Misclassifica

Generalization

Continuous Valued

Attributes

Multivariat

Decision Tree with Continuous Valued Attributes

Continuous Valued **Attributes**

```
procedure GENERATETREE(\mathcal{D})
      if Entropy(\mathcal{D}) < \epsilon
            Create leaf labelled by majority class in \mathcal D
            return
      i \leftarrow \text{SplitAttribute}(\mathcal{D})
      for each branch of X_i
            Find \mathcal{D}_i falling in branch
            GENERATE TREE (\mathcal{D}_i)
```

Extended Top-Down Algorithm

cision Tree

Learning

Gini

Generalization

Continuous Valued

Attributes

Multivariat

Extended Top-Down Algorithm (cont.)


```
function SplitAttribute(\mathcal{D})
        entropv_{min} \leftarrow \infty
       for all attributes X_i where i = 1, ..., d
               if X_i is discrete with n values
                      Split \mathcal{D} into \mathcal{D}_1, ..., \mathcal{D}_n by X_i
                      e \leftarrow \text{AVERAGEENTROPY}(\mathcal{D}_1, ..., \mathcal{D}_n)
                      if e < entropy_{min}: entropy_{min} \leftarrow e, i_{min} \leftarrow i
               if X_i is numeric
                      for all possible splits
                              Split \mathcal{D} into \mathcal{D}_1, \mathcal{D}_2 on X_i
                              e \leftarrow \text{AVERAGEENTROPY}(\mathcal{D}_1, \mathcal{D}_2)
                              if e < entropy_{min}: entropy_{min} \leftarrow e, i_{min} \leftarrow i
       return i<sub>min</sub>
```

cision Tree

Learning Algorithm

Gini

Generalization
And Overfitting

Continuous Valued Attributes

Regressio Trees

Multivariate

Example 3

• Find decision tree T given the following training data

	Day	Outlook	Temperature	Humidity	Wind	PlayTennis?
	D1	Sunny	37	High	Weak	No
	D2	Sunny	37	High	Strong	No
	D3	Overcast	38	High	Weak	Yes
	D4	Rain	28	High	Weak	Yes
	D5	Rain	20	Normal	Weak	Yes
	D6	Rain	18	Normal	Strong	No
$\mathcal{D} =$	D7	Overcast	19	Normal	Strong	Yes
	D8	Sunny	27	High	Weak	No
	D9	Sunny	21	Normal	Weak	Yes
	D10	Rain	26	Normal	Weak	Yes
	D11	Sunny	26	Normal	Strong	Yes
	D12	Overcast	27	High	Strong	Yes
	D13	Overcast	36	Normal	Weak	Yes
	D14	Rain	28	High	Strong	No

cision Tree

Learning Algorithm

Gini

Generalization

Continuous Valued

Valued Attributes

Regres Trees

Multivariate

Example 4

020

ullet Find decision tree T given the following training data

#	x ₁	x_2	label
Α	0.4	0.8	1
В	0.6	0.9	1
C	0.7	8.0	1
D	0.9	8.0	-1
E	0.4	0.6	-1
F	0.1	0.5	1
G	0.6	0.5	1
Н	0.2	0.2	-1
	0.9	0.2	-1
J	0.5	0.1	-1

Regression Trees

Generalization

And Overfittin

Continuou Valued

Regression Trees

Multivariate

Regression Trees

• A **regression tree** is constructed in almost the same manner as a classification tree, except that the impurity measure that is appropriate for classification is replaced by a measure appropriate for regression.

Valued Attributes

Regression Trees

Multivariate

Loss Function

	Classification	Regression			
Dataset	$\mathcal{D} = \{(x_1, y_1),, (x_n, y_n)\}$				
Target	y _i categorical value	y _i real value			
oss function	Entropy	Error			
		$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ $e = \frac{1}{n} \sum (y_i - \overline{y})^2$			
		$cv = \frac{\sqrt{e}}{\overline{y}}$			

Regression Trees

Top-Down Algorithm

procedure GENERATETREE(\mathcal{D}) if Error(\mathcal{D}) < ϵ Create leaf valued by \overline{y} return $i \leftarrow \text{SplitAttribute}(\mathcal{D})$ **for** each branch of X_i Find \mathcal{D}_i falling in branch GENERATETREE(\mathcal{D}_i)

Generalization

Continuous

Valued Attributes

Regression Trees

Multivariate Trees

Top-Down Algorithm (cont.)


```
function SplitAttribute(\mathcal{D})
        e_{min} \leftarrow \infty
        for all attributes X_i where i = 1, ..., d
               if X_i is discrete with n values
                       Split \mathcal{D} into \mathcal{D}_1, ..., \mathcal{D}_n by X_i
                        e \leftarrow \text{AVERAGEERROR}(\mathcal{D}_1, ..., \mathcal{D}_n)
                        if e < e_{min}: e_{min} \leftarrow e, i_{min} \leftarrow i
               if X_i is numeric
                        for all possible splits
                                Split \mathcal{D} into \mathcal{D}_1, \mathcal{D}_2 on X_i
                                e \leftarrow \text{AVERAGEERROR}(\mathcal{D}_1, \mathcal{D}_2)
                                if e < e_{min}: e_{min} \leftarrow e. i_{min} \leftarrow i
       return i<sub>min</sub>
```

cision Tree

Learning Algorithm

Gini

Misclassification

And Overfittin

Valued

Regression Trees

Multivariate

Example 5

• Find regression tree T given the following training data

	Day	Outlook	Temperature	Humidity	Wind	Play time (m)
$\mathcal{D} =$	D1	Rainy	Hot	High	Weak	26
	D2	Rainy	Hot	High	Strong	30
	D3	Overcast	Hot	High	Weak	46
	D4	Sunny	Mild	High	Weak	46
	D5	Sunny	Cool	Normal	Weak	62
	D6	Sunny	Cool	Normal	Strong	23
	D7	Overcast	Cool	Normal	Strong	43
	D8	Rainy	Mild	High	Weak	36
	D9	Rainy	Cool	Normal	Weak	38
	D10	Sunny	Mild	Normal	Weak	46
	D11	Rainy	Mild	Normal	Strong	48
	D12	Overcast	Mild	High	Strong	62
	D13	Overcast	Hot	Normal	Weak	44
	D14	Sunny	Mild	High	Strong	30

Multivariate Trees

ecision Tree

Learning Algorithm

Entropy

Misclassificat

Generalization

And Overfittin

Continuou Valued

Regressio

Multivariate Trees

Multivariate Trees

- In the case of a univariate tree, only **one** input dimension **is used** at a split.
- In a multivariate tree, at a decision node, **all** input dimensions **can be used** and thus it is more general.

ecision Tree

Learning Algorithm

Gini

Misclassificat

Generalization
And Overfittin

Continuou

Valued

Trees

Multivariate Trees

Programming Examples


```
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier, plot_tree
iris = load_iris()
clf = DecisionTreeClassifier(criterion="entropy")
clf.fit(iris.data, iris.target)
plot_tree(clf, filled=True)
plt.show()
```

Multivariate Trees

Programming Examples (cont.)

Misclassification

Multivariate Trees

A Learning Puzzle Revisited

References

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Lê, B. and Tô, V. (2014).
Cở sở trí tuệ nhân tạo.
Nhà xuất bản Khoa học và Kỹ thuật.

Russell, S. and Norvig, P. (2021).

Artificial intelligence: a modern approach.

Pearson Education Limited.