ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА»

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

КУРСОВАЯ РАБОТА

Классическое рассеяние частицы в центрально-симметричном поле

Выполнил студент 2 курса 213 группы Световидов Валентин Александрович

Научный руководитель к.ф-м.н., научный сотрудник Дергачев Александр Александрович

Москва 2019 г.

Содержание

1.	Вве	дение	3	
2.	Задача о классическом рассеянии в центрально-симметричном			
	поле			
	2.1.	Постановка задачи	4	
	2.2.	Аналитический подход	4	
3.	Чис	гленные методы	7	
	3.1.	Метод Рунге-Кутты четвертого порядка	7	
4.	Численное решение задачи			
	4.1.	Описание программы	9	
	4.2.	Верификация программы	10	
5.	Постановка численного эксперемента для конкретного вида по-			
	тені	циала	11	
	5.1.	Кулоновский потенциал	11	
	5.2.	Задача Резерфорда	13	
6.	Резу	ультаты	15	
Сі	тисон	к литературы	20	

1. Введение

Одной из важнейших физических задач, в которой рассматривается инфинитное непериодическое движение в потенциале произвольного вида, является движение в центрально – симметричном поле. Спектр задач, в которых применимы теоретические методы анализа и полученные практические результаты – велик. В рамках темы настоящей курсовой работы преставляется к рассмотрению частный случай – движение частицы в кулоновском потенциале. Задача состоит в моделировании ее движения, получении траектории, определении необходимых параметров, а также их последующем анализе. Классическим примером рассеяния является опыт по бомбардированию альфа-частицами ядра золота, проведенный Резерфордом. Именно в области резерфордовского рассеяния будет происходить данный численный эксперимент.

2. Задача о классическом рассеянии в центральносимметричном поле

2.1. Постановка задачи

Пусть частица, движущаяся из бесконечности в центрально-симметричном поле (ЦСП) с потенциалом вида $V(r)=\frac{Const}{r^n}$, налетает на рассеивающий центр и рассеивается на нем. Необходимо получить траекторию частицы, а также рассчитать угол рассеяния.

Поскольку в центральном поле потенциал является функцией расстояния V=V(r) до частицы, характеризуемое модулем радиус-вектора $r\equiv |\vec{r}|=\sqrt{x^2+y^2+z^2},$ а так же имеет место сферическая симметрия, то удобро решать задачу, полагая рассеивающий центр в начале прямоугольной Декартовой пространственной системы координат (ПДСК) .

2.2. Аналитический подход

Рассматривать задачу будем с точки зрения аппарата теоретической механики. Известно, что в силу свойств Центрального поля, из законов движения следует два важнейших фактора:

- 1. Движение в ЦСП является плоским. То есть существует плоскость π , называемая Лапласовой, такая что, если с ней связать ПДСК, то частица имеет S=2 степени свободы.
- 2. Момент количества движения частицы $\vec{L} \perp \pi$ и является интегралом движения.

Используя эти результаты, получим дифференциальные уравнения движения частицы. Построим лагранжиан системы

$$\mathcal{L} = \mathcal{L}(\dot{q}, q, t) = T - U = \frac{mv^2}{2} - V(r)$$
(2.1)

В ПДСК выражение для квадрата модуля скорости имеет вид: $v^2 = \dot{x}^2 + \dot{y}^2 + \dot{z}^2$, а потенциал $V(r) = \frac{C}{(x^2+y^2+z^2)^{\frac{n}{2}}}$. Учитывая, что $y=0,\dot{y}=0$ и, подставляя все в Лагранжиан (2.1), получим:

$$\mathcal{L} = \frac{m}{2}(\dot{x}^2 + \dot{z}^2) - \frac{C}{(x^2 + z^2)^{\frac{n}{2}}}$$
 (2.2)

Уравнение Лагранжа в отсутствии диссипаций системы имеет вид:

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}_i} - \frac{\partial \mathcal{L}}{\partial q_i} = 0 \tag{2.3}$$

где $i = \overline{1,2}, q_1 = x, q_2 = z.$

Решая уравнение (2.3) совместно с (2.2), получим систему дифференциальных уравнений, описывающих закон движения частицы в ЦСП:

$$\begin{cases}
m\ddot{x} = \frac{Cnx}{(x^2 + z^2)^{\frac{n+2}{2}}} \\
m\ddot{z} = \frac{Cnz}{(x^2 + z^2)^{\frac{n+2}{2}}}
\end{cases}$$
(2.4)

Для того, чтобы найти в явном виде решение этой системы, необходимо поставить задачу Коши, добавив, тем самым, начальные условия, исходя из физики задачи, а именно, начальные значения скоростей $v_x(t_0), v_z(t_0)$ и координат $x(t_0), z(t_0)$:

$$\ddot{x} = \frac{Cnx}{m(x^2 + z^2)^{\frac{n+2}{2}}}
\ddot{z} = \frac{Cnz}{m(x^2 + z^2)^{\frac{n+2}{2}}}
x(0) = -\infty
z(0) = b
\dot{x}(0) = v_0
\dot{z}(0) = 0$$
(2.5)

Однако используя известные методы из курса «Дифференциальные уравнения», задача (2.5) решена аналитически быть не может. Мы имеем систему из двух автономных связанных дифференциальных уравнений. Автономность упро-

щает расчет, но наличие их связанности, а также показателя степени n не дает возможности применить какой либо из методов решения успешно. Однозначное решение задачи существует только для определенного частного случая.

Пусть C=0, тогда решение Дифференциальных уравнений из системы (2.5) будет иметь следующий вид:

$$\begin{cases} x(t) = C_1 t + C_2 \\ z(t) = C_3 t + C_4 \\ x(0) = x_0 \\ z(0) = b \\ \dot{x}(0) = v_0 \\ \dot{z}(0) = 0 \end{cases}$$
(2.6)

где под x_0 подразумевается бесконечно большая величина, что

$$\lim_{t\to 0} x_0 = -\infty.$$

Непосредственное определение констант $C_i, i = \overline{1,4}$ путем подстановки в решение начальных условий, дает решение поставленной задачи Коши:

$$\begin{cases} x(t) = v_0 t + x_0 \\ z(t) = b = const \\ x_0 \longrightarrow -\infty \end{cases}$$
 (2.7)

Это решение описывает поведение системы в ЦСП в случае отсутствия рассеивающего центра. Таким образом частица, движется из $-\infty$ в $+\infty$ по прямой линии, на расстоянии прицельного параметра b от мнимого рассеивающего центра, расположенного в начале ПДСК.

3. Численные методы

Для того, чтобы не ограничивать общность задачи, ее необходимо решить в самом общем случае при $C \neq 0, n \neq 0$, применяя численное приближение. Из различного набора численных методов в работе будет использоваться метод Рунге-Кутты 4- го порядка (РК) [3], имеющий достаточную степень точности для рассмотренной ситуации.

3.1. Метод Рунге-Кутты четвертого порядка

Пусть имеется система дифференциальных уравнений первого порядка:

$$\frac{dy_i}{dx} = f_i(x, y_1, \dots, y_n) \tag{3.1}$$

где $i=\overline{1,n}$. Тогда необходимо вычислить коэффициенты по следующим формулам:

$$\begin{cases}
m_{i1} = f_i(x_k, y_{1k}, y_{2k}, \dots, y_{nk}) \\
m_{i2} = f_i(x_k + \frac{h}{2}, y_{1k} + \frac{hm_{11}}{2}, y_{2k} + \frac{hm_{21}}{2}, \dots, y_{nk} + \frac{hm_{n1}}{2}) \\
m_{i3} = f_i(x_k + \frac{h}{2}, y_{1k} + \frac{hm_{12}}{2}, y_{2k} + \frac{hm_{22}}{2}, \dots, y_{nk} + \frac{hm_{n2}}{2}) \\
m_{i4} = f_i(x_k + h, y_{1k} + hm_{13}, y_{2k} + hm_{23}, \dots, y_{nk} + hm_{n3})
\end{cases}$$

зная которые, находим $y_{i,k+1}$:

$$y_{i,k+1} = y_{i,k} + \frac{h}{6}(m_{i1} + 2m_{i2} + 2m_{i3} + m_{i4})$$

где $i = \overline{1, n}$.

Погрешность метода для системы дифференциальных уравнений такая же как и в случае одиночного уравнения $\sim (b-a)M_5h^4$, где $M_5=max_{x\in[a;b]}|y^5(x)|$. Шаг h выбирают в зависимости от точности требуемого результата с учетом погрешностей в применяемых формулах и вычисляется путем пробных вычислений с шагами h и $\frac{h}{2}$.

В рассматриваемой задаче шаг интегрирования по времени выбирался из следующих соображений. Необходимо, чтобы на всем интервале интегрирования, при заданных параметрах системы, сохранялась высокая точность. Важно учесть следующее требование: при движении частицы за промежуток ~ 10 шагов, она проходила расстояние порядка прицельного параметра. Принимая во внимание требования, описанные выше, получена оценка на значение шага интегрирования: $h=2.1\times 10^{-22}$ секунды.

4. Численное решение задачи

В системе (2.5) дифференциальные уравнения имеют порядок отличный от первого и для того, чтобы ее свести к виду (3.1), можно воспользоваться следующим приемом:

$$\begin{cases} \dot{x} = q \\ \dot{q} = \frac{Cnx}{m(x^2 + z^2)^{\frac{n+2}{2}}} \\ \dot{z} = v \\ \dot{v} = \frac{Cnz}{m(x^2 + z^2)^{\frac{n+2}{2}}} \\ x(0) = x_0 \\ x_0 \longrightarrow -\infty \\ z(0) = b \\ q(0) = v_0 \\ v(0) = 0 \end{cases}$$

$$(4.1)$$

причем значение $x_0 \longrightarrow -\infty$ выбиралось таким образом, чтобы частица считалась бесконечно удаленной относительно теоретически оцененной, при заданных параметрах системы, точки поворота. Она получается на основе законов сохранения энергии, путем решения системы (5.3) относительно r_{min} . Таким образом $r_{min} \sim 40$ Фм. Значит, выбираемая начальная координата по оси Ox, с учетом требований на шаг, будет оценена как $x_0 \sim 10^{-12}$ м, что считается бесконечным удалением от

рассеивающего центра для исследуемой системы.

Мы свели задачу к виду, когда имеем право применить численное приближение. Следующий шаг подразумевает использование программного моделирования на язке C++ в кроссплатформенной среде программирования «Qt Creator» с использованием графической библиотеки «qwt».

4.1. Описание программы

Для реализации метода РК был создан метод класса «System» (в котором описана система), при использовании которого программа возвращает массив чисел, отвечающий решению системы (4.1) в виде параметрической зависимости соответствующих координат X[t] и Z[t] от времени. Благодаря наличию интегрированного графического интерфейса в среде, представляется возможным произвести разработку приложения, запуская которое, пользователь может (в режиме реального времени) наблюдать за движением частицы и, варьируя начальные параметры исследуемой системы, приступить к ее анализу.

В качестве инструментов, необходимых для создания визуализации, в среде Qt creator используются графические интерфейсы: qwt и Qt. Базовыми объектами служат так называемые формы и виджеты. Под формой мы можем понимать некоторую платформу, на которой будет отображаться вид будующего окна программы с набором необходимого функционала. Чтобы реализовать на форме необходимые поля ввода, диалоговые окна, кнопки действий, поле графической визуализации, на котором будет отображаться графическая зависимость, используем библиотеку виджетов, в которой определен класс «QWidgets». У него существует множество объектов и методов, например, «QLabel» (надпись), «QPushButton» (обычная кнопка), «QTextEdit» (поле ввода) и другие. Их использование в коде программы позволяет создать форму изображенную на Puc(4.1). Для активации виджетов и кнопок, между слотами на форме и задействующих их сигналами установливается связь посредством «QObject», наследники которого «QWidget» и «QLayout». Построение графиков возможно благодаря подключению внешней библиотеки qwt. Приминительно к нашей программе, используется набор из 7 виждетов «QLabel» в которых отображеются названия соответствующих им «QdoubleSpinBox»-ов. В них пользователь задает необходимые ему начальные параметры системы. Однако так как максимальное значение «QdoubleSpinBox»-а, по умолчанию, выставляется равным 99.99, то необходимо произвести расширение диапазона принимаемых значений при помощи методов «SetMaximum» и «SetMinimum». На графиках (правая часть формы Puc.(4.1) отображается траектория движения частицы в плоскости XoZ. В текстовом окне выводятся значения текущих координат X,Z., а также значение угла рассеяния.

Рис. 4.1. Интерфейс программы, разработанной в среде Qt creator.

4.2. Верификация программы

Чтобы удостовериться в корректности работы программы, необходимо протестировать ее для известного частного случая, который имеет аналитическое решение. Таковым будет являться ситуация описанная в разделе 2.2. Графическая интерпретация результата работы программы для системы (2.7) представлена на Рис. (4.2) при различных значениях прицельного параметра.

Как и ожидалось, траектория частицы представляет собой прямую линию исходящую из $-\infty$ и устремленную в $+\infty$, на расстоянии прицельного параметра b от начала координат, в котором располагается мнимый рассеивающий центр. Значение угла рассеяния на всем пути движения неизменно и тождественно равно

Рис. 4.2. Траектория частицы летящей из бесконечности в отсутствие потенциала при значениях прицельного параметра $b = \{10^{-5}, 10^0, 10^5\}$ м.

нулю. Таким образом, частица в процессе движения не испытывает рассеяния, а значит не отклоняется от прямолинейной траектории. Следовательно, программу можно считать верифицированной и готовой к использованию для последующего анализа движения частицы в ЦСП.

5. Постановка численного эксперемента для конкретного вида потенциала

Важнейшим физическим потенциалом, для которого в данной работе производится моделирование, является потенциал Кулона. Необходимость его исследования обуславливается широким спектром задач, в которых он играет ключевую роль, в частности, задача рассеяния Резерфорда.

5.1. Кулоновский потенциал

Кулоновским называют потенциал следующего вида:

$$V(r) = \frac{C}{r},$$

получаемый из $V(r) = \frac{C}{(x^2+y^2+z^2)^{\frac{n}{2}}}$, путем выбора степени n=1 и конкретизации значения константы C. В зависимости от ее знака характер потенциала изменяется: при C<0 потенциал притягивающий, а при C>0 — отталкивающий. В рамках нашей задачи будем подразумевать последнее, а под количественной характеристикой понимать такое определение:

$$C = \frac{1}{4\pi\varepsilon_0} Q_1 Q_2,$$

где $\frac{1}{4\pi\varepsilon_0}$ -коэффициент пропорциональности, записанный для системы СИ, а $Q_i, i=\overline{1,2}$ -соответствующие заряды налетающей частицы и силового центра.

Рис. 5.1. Форма эффективного потенциала и значение энергии, необходимое для классически разрешенного движения.

Для того, чтобы определить аналитически траекторию частицы в заданном потенциале, необходимо применить метод качественного исследования одномерного движения частиц в центральном поле. На основе знаний о форме потенциала и закона движения в ЦСП в виде квадратуры [2]:

$$t - t_0 = \pm \int_{\rho_0}^{\rho} \frac{d\rho}{\sqrt{\frac{2}{m}(E - V_{eff}(\rho))}}$$
 (5.1)

$$V_{eff}(\rho) = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{\rho^2} + \frac{p^2}{2m\rho^2}$$

следует, что движение частицы классически разрешено только при условии, если

 $E > U_{eff}$, в частности, из Рис.(5.1) E > 0. Необходимость этого условия состоит в том, что в противном случае появятся отрицательные значения в подкоренном выражении, а следовательно все выражение станет чисто мнимым, что не физично в классическом рассмотрении. Как известно, решением (5.1) является уравнение конического сечения (в полярной системе координат) [2]:

$$\rho(\phi) = \frac{\widetilde{p}}{1 - \varepsilon \cos(\phi - \phi_0)},\tag{5.2}$$

где \widetilde{p} – фокальный параметр. В силу требования E>0 следует, что эксцентриситет $\varepsilon>1$ и выражение (5.2) выродится в уравнение гиперболы. Таким образом, получим инфинитное апериодическое движение, соответствующее задаче рассеяния. Тогда искомая траектория частицы, отображенная на Рис.(5.2) – гипербола.

Рис. 5.2. Траектория частицы налетающей на рассеивающий центр.

5.2. Задача Резерфорда

Рассеянием Резерфорда называется феномен, описанный Эрнестом Резерфордом в 1909 г., и приведший к развитию планетарной модели Бора-Резерфорда.

Рассеяние Резерфорда также называют кулоновским рассеянием, потому что оно базируется исключительно на силах электростатического взаимодействия, и минимальное расстояние между частицами зависит от потенциала поля и скорости частицы. Классическое рассеяние Резерфорда представляет собой рассеяние α -частиц на ядрах атомов золота (бомбардировка золотой фольги α -частицами), что является примером так называемого упругого рассеяния, так как энергия и скорость рассеянной частицы такая же, как и у налетающей.

Чтобы смоделировать Резерфордовское рассеяние, необходимо первостепенно произвести вычисления начальных параметров системы. Для этого поставим подзадачу, в ходе решения которой, без ограничения общности, сможем получить оценки на характерные масштабы рассматриваемой системы: минимальное расстояние на которое приближается α -частица к рассеивающему центру (так называемую точку поворота) и прицельный параметр для заданного угла.

Пусть α -частица с массой $m_{\alpha}=6.7\times 10^{-27}$ кг, налетает из бесконечности с начальной скоростью $v_{\alpha}=2\times 10^7$ м/с на ядро золота (A=197,Z=79) и испытывает резерфордовское рассеяние под углом $\theta=\frac{\pi}{2}$. Определим необходимые для нас величины, описанные ранее. Траектория частицы в поставленной задаче представлена на Рис.(5.3).

Рис. 5.3. Тра
ектория частицы, испытывающей рассеяние Резерфорда на атоме золота при угле рассеяния
 $\theta=\frac{\pi}{2}.$ [5]

Получим зависимость угла рассеяния θ от прицельного параметра b. Для этого запишем закон сохранения энергии и момента количества движения в полярной

системе координат:

$$\begin{cases} \frac{m}{2}(\dot{\rho}^2 + \rho^2\dot{\theta}^2) + k\frac{Z_{\alpha}Z_{Au}e^2}{r} = \frac{mv_0^2}{2} \\ m\rho^2\dot{\theta} = mv_0b \end{cases}$$
 (5.3)

Решая (5.3), получим:
$$tg \frac{\theta}{2} = \frac{kZ_{\alpha}Z_{Au}e^2}{mv_0^2b}$$
 После расчета получим:

Угол рассеяния θ : 1,24 ×10⁻¹⁴ рад. Прицельный параметр b: 1,24 ×10⁻¹⁴ м. Точка поворота r_{min} : 42 ×10⁻¹⁵ м.

6. Результаты

Полученные оценки на начальные условия при подстановке в (2.5) позволяют численно решить задачу о движении частицы в написанной программе. Аналогичным образом расчитываются значения прицельных параметров в зависимости от угла рассеяния.

Параметры исследуемой системы для Резерфордовского рассеяния α -частицы, налетающей на ядро золота (A=197, Z=79) представлены в Табл.(1).

Macca:	2.7×10^{-27}	ΚΓ
Степень потенциала:	1	
Коэффициент пропорциональности:	3.32×10^{-26}	
Начальная координата по оси x :	1.0×10^{-12}	M
Начальная скорость по оси x :	2.7×10^7	м/с
Начальная скорость по оси z :	0	м/с

Таблица 1. Начальные параметры системы.

Рассчитанные значения прицельного параметра b, угол рассеяния, полученный из численного эксперимента θ^* , отражены в Табл.(2), график теоретической и экспериментальной зависимостей на Puc.(6.1), а траектории движения на Puc.(6.4).

Если рассматривать движение α -частицы в потенциалах отличных от кулоновского Рис.(6.2), то можно обратить внимание, что рассеяние происходит при

Таблица 2. Результаты выполения программы при заданных параметрах с учетом сравнения.

Обознач.	$b, 10^{-14}$ M.	θ^* , град.
a)	4.64	29.5708
b)	2.99	44.6112
c)	2.05	59.2544
d)	1.24	89.6658
e)	0.717	120.2797
f)	0.515	135.0742
g)	0.332	150.2043
h)	0.163	165.3081
i)	0	180

Рис. 6.1. График зависимости угла рассеяния θ от прицельного параметра b для потенциала: n=1.

больших расстояниях и больших углах рассеяния. Следовательно, при росте степени потенциала n, точка поворота удаляется от положения рассеивающего центра, а угол рассеяния увеличивается.

Соответствующая зависимость $\theta = \theta(b)$ изображена на Рис. (6.3). Видно, что при росте степени потенциала угол рассеивания увеличивается.

 $^{^{1}}$ Частица, для которой отражена зависимость $\theta(b)$ на графике – электрон. При ее заданных параметрах и соответствующих начальных условиях, аналогичным образом получено значение шага интегрирования по времени $h=1.0\times 10^{-9}{
m c}$.

Рис. 6.2. Траектории альфа частиц в потенциалах, соответствующих степеням: a)n=2, b)n=3, c)n=4.

Рис. 6.3. График зависимости угла рассеяния θ от прицельного параметра b для частицы в потенциалах: n=2, n=3.

Рис. 6.4. Зависимость угла рассеяния θ от прицельного параметра b для значений a)-i).

Заключение

Таким образом, в ходе выполнения работы по моделированию задачи рассеяния была проведена экспериментальная проверка зависимости угла рассеяния θ от прицельного параметра b для кулоновского потенциала, в частности, для резерфордовского рассеяния. Теоретические расчеты прицельных параметров, соответствующие набору значений углов, при которых происходило взаимодействие, с высокой степенью точности совпадают с наблюдаемыми в эксперименте. Получены траектории движения частицы в кулоновском потенциале, из которых следует справедливое подтверждение зависимости угла рассеяния от прицельного параметра: угол рассеяния уменьшается с ростом значения прицельного параметра, что соответствует удалению частицы от силового центра и последующему ослабеванию взаимодействия. Аналогично рассмотрено движение частицы в других потенциалах. С ростом степени потенциала растет значение точки поворота, следовательно, увеличивается силовая характеристика рассеивающего центра и, как результат, возникает рост угла рассеяния.

Список литературы

- 1. Г. Шилдт. C++ базовый курс. Изд. Бином, 2016.
- 2. Л. Д. Ландау, Е. М. Лифшиц. Теоретическая физика: Учеб. пособ.: Для вузов. В 10 т. Т. 1. Механика. 6-е изд., стереот. М., ФИЗМАТЛИТ, 2013.
- 3. Л. Э. Эльсгольц. Дифференциальные уравнения и вариационное исчисления. URSS, 2012.
- 4. Е. Р. Алексеев, Г. Г. Злобин, Д. А. Костюк, О. В. Чеснокова, А. С. Чмыхало. Программирование на языке C++ в среде Qt Creator. Библиотека ALT Linux, 2015.
- 5. И. М. Капитонов, Б. С. Ишханов. Физика атомного ядра и частиц. Учебник. Изд. 5-е, испр. и доп. М.:ЛЕНАНД, 2017.