1. Introduction

This report presents a comprehensive evaluation of three popular machine learning models: Neural Networks, Random Forests, and Support Vector Machines (SVM), across different cross-validation setups. The aim is to identify the model and parameter configuration that yields the highest classification accuracy in our dataset.

2. Methodology

We employed three types of cross-validation methods to evaluate the robustness of the models:

- **K-Fold Cross-Validation:** The dataset was divided into (K = 4, 5, 6, 8) subsets. Each subset was used as a training set sequentially, with the remaining subsets forming the test set.
- Subject-Wise Cross-Validation: The dataset was divided into sub-groups of (N = 4, 5, 6) participants. Data from each sub-group was used as a training set sequentially, with the remaining sub-groups forming the test set.
- Trial-Wise Cross-Validation: The dataset was divided into sub-sets of (T = 22, 24, 26) trials. Each sub-set was used as a training set sequentially, with the remaining trials forming the test set.

Model Configurations and Hyperparameters:

A. Neural Networks (NN)

• Training Specifications:

Batch Size: 32 or 64Epoch: 150 or 200

Patience: 20 (related to validation loss)

Learning Rate Decay: Factor of 10 (related to validation loss)

Validation Split: 20%Optimizer: ADAM

■ Learning Rate: 0.0001

Beta_1: 0.9Beta 2: 0.999

Number of neurons in each layer:

(3,3), (3,8), (3,6,6), (3,16,8), (3,16,8,4), (16,8,8), (32,16,8), (32,16,16,8)

• The number of different architectures: 8

B. Random Forest

• Training Specifications:

Number of decision trees: 10, 50

Maximum depth of each tree: 2, 5, 10

Minimum number of samples required to split a node: 2, 5

• The number of different architectures: 12

C. Support Vector Machine (SVM)

• Training Specifications:

Regularization parameter: 0.1, 1, 10

Kernel: Polynomial, Radial Basis Function (RBF)

Degree: 3, 4, 5Gamma: Scale. Auto

• The number of different architectures: 24

3. Results

The evaluation metrics focused on classification accuracies for each class and overall accuracy. The Random Forest model demonstrated superior performance with the following optimal configuration:

Number of decision trees: 10
Maximum depth of each tree: 10

• Minimum number of samples required to split a node: 5

This configuration achieved the highest overall accuracy, particularly when using the subject-wise, with the number of folds (k) set to 6, cross-validation setup.

4. Discussion

In our evaluation, we considered the performance of each model across all cross-validation methods (k-fold, subject-wise, and trial-wise) to ensure a comprehensive analysis. The decision on which model to employ was influenced not only by classification accuracy but also by computational efficiency.

The Random Forest model demonstrated superior performance, likely due to its robustness in handling complex data structures and its ability to avoid overfitting. When evaluating the effect of increasing the number of trees from 10 to 50, we observed only a marginal improvement in accuracy (1-2%), which did not justify the significant increase in computational cost for our specific application. Therefore, we identified the configuration with 10 trees and a maximum depth of 10 as the optimal setup. This choice strikes an effective balance between computational efficiency and model performance, ensuring robust results across different CV setups without excessive resource utilization.

While the SVM with polynomial kernels of degrees 3, 4, and 5 also showed competitive performance, their accuracies, though close, did not surpass the optimized Random Forest model. This underscores the effectiveness of the Random Forest approach, particularly when considering the ensemble's ability to provide consistent and stable results across different

testing scenarios.

Further analysis was conducted on the impact of feature selection, particularly comparing models using only 15 'force' features against models utilizing all 30 features (15 force-based + 15 torque-based). Interestingly, the accuracy results were very similar, with models using just the 'force-based features achieving nearly the same classification performance as those using the full feature set. This suggests that the force-based features alone carry substantial predictive power, and the addition of torque-based features does not significantly enhance the model's ability to predict outcomes. Consequently, this minimal difference in accuracy highlights a potential redundancy in the torque-based features, suggesting that a model employing only force-based features can be both computationally more efficient and just as effective.

This holistic approach allowed us to not only assess the effectiveness of the models in various validation contexts but also to consider the practical implications of deploying these models in real-world scenarios, where computational resources and time are often critical constraints. Our findings emphasize the importance of strategic feature selection in developing efficient and effective predictive models, particularly in settings where simplicity and speed are valued alongside accuracy.

5. Summarized Results

We searched for the best set of hyperparameters that maximize the model's performance as measured by the cross-validation process. Hence, for each hyperparameter configuration, the average classification accuracy of each ML model was calculated based on the cross-validation methods discussed above. Table 1 reports the results for each model with the best hyperparameter configuration. Based on these results, we selected Random Forest as our ML classifier.

Model	WH Accuracy	CD Accuracy	CP Accuracy	Total Accuracy
ANN	0.894	0.838	0.883	0.868
Random Forest	0.909	0.826	0.888	0.875
SVM	0.908	0.834	0.897	0.872

Table 1. Averaged Cross-Validation Performances of ML Models for the Best Hyperparameter Configuration

6. Detailed Results

This section provides a detailed overview of the classification accuracies achieved by each model under various cross-validation setups. Tables and graphs will illustrate the performance metrics for each class and the overall accuracy, highlighting the strengths and weaknesses of each model configuration.

K-Fold Cross-Validation

K-fold cross-validation was used to evaluate neural networks, random forests, and SVM models across multiple hyperparameters. Classification accuracies were reported for each class as well as the overall accuracy.

Neural Network - Hyperparameters

Training Specifications

o Batch Size: 32 or 64

Epoch: 150 or 200

Patience: 20 (related validation loss)

Learning Rate Decay: 10 (related validation loss)

Validation Split: 20%

ADAM optimizer

Learning Rate: 0.0001

■ Beta_1: 0.9

■ Beta_2: 0.999

# of Folds	Feature	Lavor Sizo	Enoch	Batch Size	(Class Accuracy	/	Total
# 01 Folus	Туре	Layer Size	Epoch	Dater Size	WH	CD	СР	Accuracy
4	All	3,3	150	32	0.88	0.75	0.81	0.81
4	All	3,8	150	32	0.87	0.60	0.74	0.73
4	All	3,6,6	150	32	0.87	0.65	0.86	0.78
4	All	3,16,8	150	32	0.88	0.79	0.86	0.84
4	All	3,16,8,4	150	32	0.87	0.78	0.81	0.82
4	All	16,8,8	150	32	0.87	0.78	0.87	0.84
4	All	32,16,8	150	32	0.88	0.78	0.89	0.85
4	All	32,16,16,8	150	32	0.88	0.78	0.87	0.84

# of Folds	Feature	Lavar Cina	Frach	Datab Cina		Class Accuracy	/	Total
# of Folds	Туре	Layer Size	Epoch	Batch Size	WH	CD	СР	Accuracy
4	Force	3,3	150	32	0.85	0.84	0.61	0.77
4	Force	3,8	150	32	0.86	0.84	0.71	0.80
4	Force	3,6,6	150	32	0.85	0.80	0.73	0.79
4	Force	3,16,8	150	32	0.87	0.75	0.80	0.81
4	Force	3,16,8,4	150	32	0.90	0.69	0.86	0.81
4	Force	16,8,8	150	32	0.89	0.79	0.86	0.85
4	Force	32,16,8	150	32	0.91	0.83	0.90	0.88
4	Force	32,16,16,8	150	32	0.91	0.83	0.88	0.87

# of Folds	Feature	Lavar Cina	Frach	Datab Cina		Class Accuracy	/	Total
# of Folds	Туре	Layer Size	Epoch	Batch Size	WH	CD	СР	Accuracy
5	All	3,3	150	32	0.84	0.75	0.81	0.79
5	All	3,8	150	32	0.86	0.76	0.85	0.83
5	All	3,6,6	150	32	0.85	0.75	0.80	0.80
5	All	3,16,8	150	32	0.85	0.79	0.75	0.80
5	All	3,16,8,4	150	32	0.86	0.75	0.74	0.78
5	All	16,8,8	150	32	0.86	0.81	0.83	0.84
5	All	32,16,8	150	32	0.86	0.81	0.84	0.83
5	All	32,16,16,8	150	32	0.88	0.82	0.86	0.85

# of Folds	Feature	Lavar Siza	Frach	Datab Cina		Class Accuracy	/	Total
# of Folds	Туре	Layer Size	Epoch	Batch Size	WH	CD	СР	Accuracy
5	Force	3,3	150	32	0.83	0.68	0.80	0.77
5	Force	3,8	150	32	0.85	0.78	0.85	0.83
5	Force	3,6,6	150	32	0.86	0.78	0.85	0.83
5	Force	3,16,8	150	32	0.84	0.80	0.71	0.78
5	Force	3,16,8,4	150	32	0.86	0.81	0.84	0.84
5	Force	16,8,8	150	32	0.87	0.82	0.86	0.85
5	Force	32,16,8	150	32	0.90	0.85	0.88	0.87
5	Force	32,16,16,8	150	32	0.90	0.84	0.89	0.88

# of Folds	Feature	Lawar Cina	Carab	Datah Cina	(Class Accuracy	/	Total
# of Folds	Туре	Layer Size	Epoch	Batch Size	WH	CD	СР	Accuracy
6	All	3,3	150	32	0.82	0.56	0.47	0.67
6	All	3,8	150	32	0.87	0.78	0.81	0.81
6	All	3,6,6	150	32	0.87	0.68	0.83	0.79
6	All	3,16,8	150	32	0.87	0.76	0.77	0.80
6	All	3,16,8,4	150	32	0.87	0.80	0.75	0.80
6	All	16,8,8	150	32	0.89	0.81	0.81	0.84
6	All	32,16,8	150	32	0.88	0.81	0.81	0.83
6	All	32,16,16,8	150	32	0.88	0.83	0.82	0.84

# of Folds	Feature	Laviar Ci-a	Freeh	Datah Cina	(Class Accuracy		
# of Folds	Туре	Layer Size	Epoch	Batch Size	WH	CD	СР	Accuracy
6	Force	3,3	150	32	0.85	0.76	0.80	0.81
6	Force	3,8	150	32	0.86	0.80	0.86	0.83
6	Force	3,6,6	150	32	0.88	0.79	0.85	0.83
6	Force	3,16,8	150	32	0.86	0.79	0.85	0.83
6	Force	3,16,8,4	150	32	0.84	0.80	0.79	0.80
6	Force	16,8,8	150	32	0.89	0.83	0.89	0.86
6	Force	32,16,8	150	32	0.89	0.85	0.88	0.88
6	Force	32,16,16,8	150	32	0.90	0.82	0.89	0.87

# of Folds	Feature	Lavar Siza	Frach	Datab Cina	(Class Accuracy	/	Total
# of Folds	Туре	Layer Size	Epoch	Batch Size	WH	CD	СР	Accuracy
8	All	3,3	150	32	0.67	0.70	0.65	0.67
8	All	3,8	150	32	0.86	0.73	0.83	0.80
8	All	3,6,6	150	32	0.85	0.69	0.81	0.78
8	All	3,16,8	150	32	0.86	0.75	0.83	0.81
8	All	3,16,8,4	150	32	0.75	0.82	0.72	0.76
8	All	16,8,8	150	32	0.89	0.80	0.87	0.85
8	All	32,16,8	120	32	0.91	0.81	0.83	0.85
8	All	32,16,16,8	200	32	0.88	0.82	0.80	0.83

# of Folds	Feature	Lavar Cina	Frach	Datab Cina		Class Accuracy	/	Total
# of Folds	Туре	Layer Size	Epoch	Batch Size	WH	CD	СР	Accuracy
8	Force	3,3	150	32	0.85	0.76	0.80	0.81
8	Force	3,8	150	32	0.86	0.80	0.86	0.83
8	Force	3,6,6	150	32	0.88	0.79	0.85	0.83
8	Force	3,16,8	150	32	0.86	0.79	0.85	0.83
8	Force	3,16,8,4	150	32	0.84	0.80	0.79	0.80
8	Force	16,8,8	150	32	0.89	0.83	0.89	0.86
8	Force	32,16,8	150	32	0.89	0.85	0.88	0.88
8	Force	32,16,16,8	150	32	0.91	0.82	0.89	0.88

Randomforest - Hyperparameters

- Training Specifications
 - n_estimator: the number of decision trees
 - **1**0, 50
 - max_depth: the maximum depth allowed for each decision tree
 - **2**, 5, 10
 - min_samples_split: the minimum number of samples required to split a node (related overfit)
 - **2**, 5

# of Folds	Feature	N	May Donth	Min Sample	,	Class Accuracy	Į.	Total Accuracy 0.83 0.83 0.86 0.87 0.87 0.87 0.83 0.84 0.87 0.87
# UI FUIUS	Туре	estimator	Max Depth	Min Sample Split	WH	CD	СР	
4	Force	10	5	2	0.86	0.79	0.86	0.83
4	Force	10	5	5	0.87	0.77	0.87	0.83
4	Force	10	10	2	0.90	0.82	0.88	0.86
4	Force	10	10	5	0.91	0.81	0.88	0.87
4	Force	10	None	2	0.92	0.81	0.87	0.87
4	Force	10	None	5	0.92	0.82	0.87	0.87
4	Force	50	5	2	0.87	0.77	0.88	0.83
4	Force	50	5	5	0.87	0.77	0.89	0.84
4	Force	50	10	2	0.92	0.82	0.90	0.87
4	Force	50	10	5	0.91	0.81	0.88	0.87
4	Force	50	None	2	0.93	0.80	0.89	0.87
4	Force	50	None	5	0.93	0.81	0.88	0.87

# of Folds	Feature	N	Max Depth	Min Sample	ı	Class Accuracy		Total Accuracy 0.83 0.82 0.87 0.87 0.86 0.84 0.84 0.87 0.87
# OI FOIUS	Type	estimator	Max Deptii	Min Sample Split	WH	CD	СР	Accuracy
4	All	10	5	2	0.84	0.77	0.86	0.83
4	All	10	5	5	0.84	0.77	0.84	0.82
4	All	10	10	2	0.90	0.82	0.88	0.87
4	All	10	10	5	0.89	0.83	0.87	0.87
4	All	10	None	2	0.92	0.84	0.86	0.87
4	All	10	None	5	0.90	0.83	0.85	0.86
4	All	50	5	2	0.85	0.77	0.89	0.84
4	All	50	5	5	0.84	0.78	0.88	0.84
4	All	50	10	2	0.90	0.83	0.89	0.87
4	All	50	10	5	0.90	0.83	0.90	0.87
4	All	50	None	2	0.91	0.83	0.89	0.88
4	All	50	None	5	0.91	0.82	0.89	0.87

# of Folds	Feature	N	Max Depth	Min Sample		Class Accuracy	′	Total Accuracy 0.83 0.82 0.86 0.87 0.86 0.84 0.84 0.87
# OI FOIUS	Туре	estimator	wax Depth	Min Sample Split	WH	CD	СР	Accuracy
5	Force	10	5	2	0.84	0.77	0.86	0.83
5	Force	10	5	5	0.84	0.77	0.84	0.82
5	Force	10	10	2	0.89	0.82	0.88	0.86
5	Force	10	10	5	0.90	0.83	0.89	0.87
5	Force	10	None	2	0.92	0.84	0.86	0.87
5	Force	10	None	5	0.90	0.83	0.85	0.86
5	Force	50	5	2	0.85	0.77	0.89	0.84
5	Force	50	5	5	0.84	0.78	0.88	0.84
5	Force	50	10	2	0.90	0.83	0.89	0.87
5	Force	50	10	5	0.90	0.83	0.89	0.87
5	Force	50	None	2	0.91	0.83	0.88	0.88
5	Force	50	None	5	0.91	0.82	0.89	0.87

# of Folds	Feature	N	Max Depth	Min Sample		Class Accuracy	,	Total
# OI FOIGS	Туре	estimator	wax Depth	Min Sample Split	WH	CD	СР	Accuracy
5	All	10	5	2	0.87	0.76	0.86	0.83
5	All	10	5	5	0.85	0.77	0.86	0.82
5	All	10	10	2	0.90	0.82	0.86	0.85
5	All	10	10	5	0.91	0.83	0.88	0.87
5	All	10	None	2	0.91	0.82	0.86	0.86
5	All	10	None	5	0.91	0.81	0.84	0.85
5	All	50	5	2	0.87	0.77	0.88	0.83
5	All	50	5	5	0.87	0.78	0.87	0.84
5	All	50	10	2	0.91	0.82	0.88	0.87
5	All	50	10	5	0.91	0.83	0.88	0.87
5	All	50	None	2	0.92	0.80	0.87	0.86
5	All	50	None	5	0.92	0.81	0.88	0.87

# of Folds	Feature	N	May Donth	Min Sample		Class Accuracy	1	Total
# OI FOIGS	Туре	estimator	Max Depth	Min Sample Split	WH	CD	СР	Accuracy
6	Force	10	5	2	0.87	0.77	0.86	0.83
6	Force	10	5	5	0.87	0.78	0.86	0.83
6	Force	10	10	2	0.91	0.83	0.89	0.87
6	Force	10	10	5	0.91	0.83	0.90	0.88
6	Force	10	None	2	0.91	0.82	0.87	0.87
6	Force	10	None	5	0.91	0.82	0.88	0.87
6	Force	50	5	2	0.87	0.78	0.88	0.84
6	Force	50	5	5	0.87	0.78	0.88	0.84
6	Force	50	10	2	0.92	0.83	0.89	0.88
6	Force	50	10	5	0.91	0.81	0.89	0.86
6	Force	50	None	2	0.90	0.83	0.88	0.87
6	Force	50	None	5	0.91	0.82	0.89	0.87

# of Folds	Feature	N	Max Depth	Min Sample		Class Accuracy	,	Total
# OI FOIUS	Туре	estimator	wax Depth	Min Sample Split	WH	CD	СР	Accuracy
6	All	10	5	2	0.87	0.76	0.86	0.83
6	All	10	5	5	0.85	0.77	0.86	0.82
6	All	10	10	2	0.89	0.82	0.86	0.85
6	All	10	10	5	0.91	0.81	0.88	0.87
6	All	10	None	2	0.91	0.82	0.86	0.86
6	All	10	None	5	0.91	0.81	0.84	0.85
6	All	50	5	2	0.87	0.77	0.88	0.83
6	All	50	5	5	0.87	0.78	0.87	0.84
6	All	50	10	2	0.91	0.82	0.88	0.87
6	All	50	10	5	0.91	0.83	0.88	0.87
6	All	50	None	2	0.92	0.80	0.87	0.86
6	All	50	None	5	0.92	0.81	0.88	0.87

# of Folds	Feature	N	May Donth	Min Sample	, I	/	Total	
# of Folds	Туре	estimator	Max Depth	Min Sample Split	WH	CD	СР	Accuracy
8	Force	10	5	2	0.85	0.77	0.88	0.83
8	Force	10	5	5	0.87	0.76	0.88	0.83
8	Force	10	10	2	0.90	0.82	0.90	0.87
8	Force	10	10	5	0.91	0.83	0.89	0.88
8	Force	10	None	2	0.92	0.84	0.88	0.88
8	Force	10	None	5	0.92	0.82	0.88	0.87
8	Force	50	5	2	0.88	0.78	0.88	0.84
8	Force	50	5	5	0.88	0.78	0.88	0.84
8	Force	50	10	2	0.92	0.82	0.90	0.88
8	Force	50	10	5	0.92	0.82	0.91	0.88
8	Force	50	None	2	0.93	0.83	0.89	0.88
8	Force	50	None	5	0.92	0.83	0.89	0.88

# of Folds	Feature	N	Max Depth	Min Sample		Class Accuracy	1	Total
# OI FOIGS	Type	estimator	iviax Deptili	Min Sample Split	WH	CD	СР	Accuracy
8	All	10	5	2	0.86	0.79	0.86	0.83
8	All	10	5	5	0.87	0.77	0.87	0.83
8	All	10	10	2	0.90	0.82	0.87	0.86
8	All	10	10	5	0.91	0.81	0.88	0.86
8	All	10	None	2	0.92	0.81	0.87	0.87
8	All	10	None	5	0.92	0.82	0.87	0.87
8	All	50	5	2	0.87	0.77	0.88	0.83
8	All	50	5	5	0.87	0.77	0.88	0.84
8	All	50	10	2	0.91	0.82	0.89	0.87
8	All	50	10	5	0.91	0.82	0.88	0.87
8	All	50	None	2	0.93	0.81	0.89	0.87
8	All	50	None	5	0.93	0.81	0.89	0.88

SVM - Hyperparameters

- Training Specifications
 - C: The regularization parameter (controls the trade-off between maximizing the margin and minimizing the classification error)
 - **0.1, 1, 10**
 - Kernel: Type of kernel function
 - Polynomial, Radial Basis Function (RBF)
 - Degree: The degree of the polynomial function
 - **3**, 4, 5
 - Gamma: defines the influence of a single training example (related overfit)
 - Scale: 1 / (n_features * X.var())
 - Auto: 1 / n_features

	Feature	_		_		C	Class Accurac	у	Total
# of Folds	Type	С	Kernel	Degree	Gamma	WH	CD	СР	Accuracy
4	All	0.1	poly	3	auto	0.82	0.69	0.66	0.72
4	All	0.1	poly	4	auto	0.79	0.84	0.41	0.69
4	All	0.1	poly	5	auto	0.74	0.79	0.60	0.71
4	All	0.1	poly	3	scale	0.005	0.99	0.004	0.37
4	All	0.1	poly	4	scale	0.007	0.99	0.001	0.37
4	All	0.1	poly	5	scale	0.007	0.99	0.01	0.37
4	All	1	poly	3	auto	0.85	0.56	0.92	0.77
4	All	1	poly	4	auto	0.87	0.66	0.86	0.79
4	All	1	poly	5	auto	0.82	0.67	0.85	0.78
4	All	1	poly	3	scale	0.79	0.68	0.81	0.76
4	All	1	poly	4	scale	0.91	0.81	0.90	0.87
4	All	1	poly	5	scale	0.91	0.87	0.91	0.89

# of Folds	Feature	С	Kernel	Dograd	Gamma	C	Class Accurac	у	Total
# OI FOIUS	Туре	C	Kemei	Degree	Gaiiiiia	WH	CD	СР	Accuracy
4	All	10	poly	3	auto	0.92	0.81	0.90	0.88
4	All	10	poly	4	auto	0.91	0.84	0.91	0.88
4	All	10	poly	5	auto	0.88	0.76	0.86	0.81
4	All	10	poly	3	scale	0.84	0.75	0.85	0.80
4	All	10	poly	4	scale	0.82	0.73	0.81	0.77
4	All	10	poly	5	scale	0.92	0.81	0.91	0.88
4	All	0.1	rbf	-	auto	0.85	0.76	0.84	0.82
4	All	0.1	rbf	-	scale	0.22	0.87	0.22	0.45
4	All	1	rbf	-	auto	0.87	0.69	0.87	0.80
4	All	1	rbf	-	scale	0.23	0.87	0.24	0.47
4	All	10	rbf	-	auto	0.89	0.86	0.86	0.87
4	All	10	rbf	-	scale	0.44	0.89	0.26	0.56

# of Folds	Feature	С	Kernel	Degree	Gamma	(Class Accurac	у	Total
# OI FOIGS	Туре	C	Keillei	Degree	Gaiiiiia	WH	CD	СР	Accuracy
4	Force	0.1	poly	3	auto	0.82	0.60	0.88	0.76
4	Force	0.1	poly	4	auto	0.79	0.65	0.81	0.74
4	Force	0.1	poly	5	auto	0.74	0.79	0.60	0.71
4	Force	0.1	poly	3	scale	0.91	0.78	0.87	0.85
4	Force	0.1	poly	4	scale	0.92	0.81	0.90	0.88
4	Force	0.1	poly	5	scale	0.91	0.84	0.91	0.88
4	Force	1	poly	3	auto	0.87	0.66	0.86	0.79
4	Force	1	poly	4	auto	0.85	0.67	0.85	0.78
4	Force	1	poly	5	auto	0.81	0.68	0.81	0.76
4	Force	1	poly	3	scale	0.92	0.81	0.91	0.88
4	Force	1	poly	4	scale	0.93	0.84	0.91	0.89
4	Force	1	poly	5	scale	0.92	0.85	0.90	0.89

# of Folds	Feature	С	Kernel	Degree	Gamma	C	Class Accurac	У	Total
# OI Folus	Туре		Keiriei	Degree	Gamma	WH	CD	СР	Accuracy
4	Force	10	poly	3	auto	0.89	0.76	0.86	0.83
4	Force	10	poly	4	auto	0.88	0.74	0.85	0.82
4	Force	10	poly	5	auto	0.87	0.74	0.84	0.81
4	Force	10	poly	3	scale	0.91	0.84	0.91	0.89
4	Force	10	poly	4	scale	0.92	0.85	0.90	0.89
4	Force	10	poly	5	scale	0.92	0.85	0.89	0.88
4	Force	0.1	rbf	-	auto	0.87	0.60	0.90	0.78
4	Force	0.1	rbf	-	scale	0.90	0.76	0.87	0.84
4	Force	1	rbf	-	auto	0.89	0.67	0.90	0.81
4	Force	1	rbf	-	scale	0.93	0.80	0.88	0.87
4	Force	10	rbf	-	auto	0.91	0.77	0.87	0.85
4	Force	10	rbf	-	scale	0.92	0.83	0.91	0.89

# of Folds	Feature	С	Kernel	Dograo	Gamma	C	Class Accurac	у	Total
# 01 Folus	Туре	C	Keinei	Degree	Gaiiiiia	WH	CD	СР	Accuracy
5	All	0.1	poly	3	auto	0.79	0.60	0.86	0.75
5	All	0.1	poly	4	auto	0.76	0.66	0.78	0.73
5	All	0.1	poly	5	auto	0.71	0.77	0.61	0.71
5	All	0.1	poly	3	scale	0.90	0.78	0.89	0.86
5	All	0.1	poly	4	scale	0.91	0.82	0.90	0.88
5	All	0.1	poly	5	scale	0.90	0.85	0.90	0.89
5	All	1	poly	3	auto	0.84	0.67	0.85	0.79
5	All	1	poly	4	auto	0.82	0.67	0.83	0.77
5	All	1	poly	5	auto	0.79	0.69	0.80	0.76
5	All	1	poly	3	scale	0.91	0.82	0.90	0.88
5	All	1	poly	4	scale	0.91	0.85	0.91	0.89
5	All	1	poly	5	scale	0.91	0.86	0.89	0.89

# of Folds	Feature	С	Kernel	Dograd	Gamma	(Class Accurac	у	Total
# OI FOIGS	Туре	C	Kemei	Degree	Gaillilla	WH	CD	СР	Accuracy
5	All	10	poly	3	auto	0.88	0.76	0.87	0.84
5	All	10	poly	4	auto	0.87	0.76	0.85	0.83
5	All	10	poly	5	auto	0.85	0.75	0.83	0.81
5	All	10	poly	3	scale	0.91	0.84	0.91	0.89
5	All	10	poly	4	scale	0.91	0.86	0.89	0.89
5	All	10	poly	5	scale	0.91	0.86	0.88	0.88
5	All	0.1	rbf	-	auto	0.82	0.55	0.91	0.75
5	All	0.1	rbf	-	scale	0.16	0.96	0.06	0.44
5	All	1	rbf	-	auto	0.85	0.70	0.88	0.81
5	All	1	rbf	-	scale	0.18	0.90	0.19	0.47
5	All	10	rbf	-	auto	0.88	0.77	0.87	0.84
5	All	10	rbf	-	scale	0.49	0.86	0.40	0.59

# of Folds	Feature	С	Kernel	Dograd	Gamma	(у	Total	
# OI Folus	Туре		Keiriei	Degree	Gaiiiiia	WH	CD	СР	Accuracy
5	Force	0.1	poly	3	auto	0.79	0.60	0.86	0.75
5	Force	0.1	poly	4	auto	0.76	0.66	0.78	0.73
5	Force	0.1	poly	5	auto	0.71	0.77	0.61	0.71
5	Force	0.1	poly	3	scale	0.90	0.78	0.89	0.86
5	Force	0.1	poly	4	scale	0.91	0.82	0.90	0.88
5	Force	0.1	poly	5	scale	0.90	0.85	0.90	0.89
5	Force	1	poly	3	auto	0.84	0.67	0.85	0.79
5	Force	1	poly	4	auto	0.82	0.67	0.83	0.77
5	Force	1	poly	5	auto	0.79	0.69	0.80	0.76
5	Force	1	poly	3	scale	0.91	0.82	0.90	0.88
5	Force	1	poly	4	scale	0.91	0.85	0.91	0.89
5	Force	1	poly	5	scale	0.91	0.86	0.89	0.89

# of Folds F	Feature		Kernel	Degree	Gamma	(Total		
	Туре	C				WH	CD	СР	Accuracy
5	Force	10	poly	3	auto	0.88	0.76	0.87	0.84
5	Force	10	poly	4	auto	0.87	0.76	0.85	0.83
5	Force	10	poly	5	auto	0.85	0.75	0.83	0.81
5	Force	10	poly	3	scale	0.91	0.84	0.91	0.89
5	Force	10	poly	4	scale	0.91	0.86	0.89	0.89
5	Force	10	poly	5	scale	0.91	0.86	0.88	0.88
5	Force	0.1	rbf	-	auto	0.85	0.60	0.89	0.78
5	Force	0.1	rbf	-	scale	0.89	0.76	0.87	0.84
5	Force	1	rbf	-	auto	0.87	0.69	0.89	0.81
5	Force	1	rbf	-	scale	0.91	0.81	0.89	0.87
5	Force	10	rbf	-	auto	0.90	0.77	0.89	0.85
5	Force	10	rbf	-	scale	0.91	0.84	0.91	0.89

# of Folds Fea	Feature	e C	Kernel	Degree	Gamma	C	У	Total	
	Туре	C				WH	CD	СР	Accuracy
6	All	0.1	poly	3	auto	0.83	0.83	0.83	0.83
6	All	0.1	poly	4	auto	0.83	0.83	0.83	0.83
6	All	0.1	poly	5	auto	0.83	0.83	0.83	0.83
6	All	0.1	poly	3	scale	0.83	0.83	0.83	0.83
6	All	0.1	poly	4	scale	0.83	0.83	0.83	0.83
6	All	0.1	poly	5	scale	0.83	0.83	0.83	0.83
6	All	1	poly	3	auto	0.83	0.83	0.83	0.83
6	All	1	poly	4	auto	0.83	0.83	0.83	0.83
6	All	1	poly	5	auto	0.83	0.83	0.83	0.83
6	All	1	poly	3	scale	0.83	0.83	0.83	0.83
6	All	1	poly	4	scale	0.83	0.83	0.83	0.83
6	All	1	poly	5	scale	0.83	0.83	0.83	0.83

# of Folds	Feature	С	Kernel	Degree	Gamma	(у	Total	
	Туре					WH	CD	СР	Accuracy
6	All	10	poly	3	auto	0.89	0.76	0.87	0.84
6	All	10	poly	4	auto	0.89	0.75	0.86	0.83
6	All	10	poly	5	auto	0.87	0.74	0.84	0.81
6	All	10	poly	3	scale	0.93	0.84	0.92	0.89
6	All	10	poly	4	scale	0.92	0.85	0.90	0.89
6	All	10	poly	5	scale	0.92	0.85	0.89	0.89
6	All	0.1	rbf	-	auto	0.84	0.55	0.88	0.74
6	All	0.1	rbf	-	scale	0.15	0.90	0.14	0.43
6	All	1	rbf	-	auto	0.87	0.70	0.88	0.81
6	All	1	rbf	-	scale	0.15	0.91	0.16	0.44
6	All	10	rbf	-	auto	0.89	0.77	0.87	0.84
6	All	10	rbf	-	scale	0.60	0.88	0.30	0.59

# of Folds F	Feature	С	Kernel	Degree	Gamma	(Total		
	Туре					WH	CD	СР	Accuracy
6	Force	0.1	poly	3	auto	0.83	0.59	0.89	0.75
6	Force	0.1	poly	4	auto	0.79	0.66	0.77	0.73
6	Force	0.1	poly	5	auto	0.75	0.79	0.53	0.68
6	Force	0.1	poly	3	scale	0.91	0.80	0.89	0.86
6	Force	0.1	poly	4	scale	0.90	0.82	0.88	0.86
6	Force	0.1	poly	5	scale	0.91	0.84	0.89	0.87
6	Force	1	poly	3	auto	0.87	0.67	0.86	0.79
6	Force	1	poly	4	auto	0.85	0.68	0.84	0.78
6	Force	1	poly	5	auto	0.82	0.70	0.80	0.76
6	Force	1	poly	3	scale	0.90	0.80	0.89	0.86
6	Force	1	poly	4	scale	0.89	0.81	0.88	0.86
6	Force	1	poly	5	scale	0.88	0.82	0.89	0.85

# of Folds	Feature Type	ature C	Kernel	Degree	Gamma	(у	Total	
		C				WH	CD	СР	Accuracy
6	Force	10	poly	3	auto	0.89	0.77	0.86	0.84
6	Force	10	poly	4	auto	0.88	0.76	0.85	0.83
6	Force	10	poly	5	auto	0.87	0.75	0.82	0.81
6	Force	10	poly	3	scale	0.91	0.82	0.88	0.85
6	Force	10	poly	4	scale	0.90	0.80	0.89	0.84
6	Force	10	poly	5	scale	0.89	0.83	0.88	0.85
6	Force	0.1	rbf	-	auto	0.87	0.61	0.90	0.78
6	Force	0.1	rbf	-	scale	0.90	0.76	0.86	0.84
6	Force	1	rbf	-	auto	0.88	0.70	0.90	0.82
6	Force	1	rbf	-	scale	0.90	0.81	0.89	0.86
6	Force	10	rbf	-	auto	0.91	0.80	0.89	0.85
6	Force	10	rbf	-	scale	0.89	0.84	0.90	0.86

# of Folds Fea	Feature	С	Kernel	Degree	Gamma	C	Total		
	Туре	C		Degree		WH	CD	СР	Accuracy
8	All	0.1	poly	3	auto	0.89	0.76	0.86	0.83
8	All	0.1	poly	4	auto	0.88	0.74	0.85	0.82
8	All	0.1	poly	5	auto	0.87	0.74	0.84	0.81
8	All	0.1	poly	3	scale	0.90	0.84	0.91	0.86
8	All	0.1	poly	4	scale	0.89	0.83	0.90	0.85
8	All	0.1	poly	5	scale	0.90	0.82	0.89	0.85
8	All	1	poly	3	auto	0.87	0.60	0.90	0.78
8	All	1	poly	4	auto	0.90	0.76	0.87	0.84
8	All	1	poly	5	auto	0.89	0.67	0.90	0.81
8	All	1	poly	3	scale	0.91	0.80	0.88	0.86
8	All	1	poly	4	scale	0.91	0.80	0.87	0.85
8	All	1	poly	5	scale	0.90	0.83	0.89	0.86

# of Folds	Feature	С	Kernel	Dograo	Gamma	C	Class Accurac	СУ	Total
# OI Folus	Туре	C	Kemei	Degree	Gamma	WH	CD	СР	Accuracy
8	All	10	poly	3	auto	0.79	0.65	0.81	0.74
8	All	10	poly	4	auto	0.74	0.79	0.60	0.71
8	All	10	poly	5	auto	0.91	0.80	0.87	0.85
8	All	10	poly	3	scale	0.89	0.81	0.90	0.86
8	All	10	poly	4	scale	0.90	0.82	0.88	0.85
8	All	10	poly	5	scale	0.87	0.66	0.86	0.79
8	All	0.1	rbf	-	auto	0.86	0.52	0.94	0.75
8	All	0.1	rbf	-	scale	0.11	0.92	0.14	0.41
8	All	1	rbf	-	auto	0.88	0.70	0.89	0.81
8	All	1	rbf	-	scale	0.11	0.93	0.13	0.43
8	All	10	rbf	-	auto	0.90	0.77	0.88	0.85
8	All	10	rbf	-	scale	0.73	0.89	0.40	0.68

# of Folds	Feature	С	Kernel	Dograd	Gamma	C	Class Accurac	;y	Total	
# OI FOIUS	Туре		Keillei	Degree	Gaiiiiia	WH	CD	СР	Accuracy	
8	Force	0.1	poly	3	auto	0.83	0.60	0.89	0.76	
8	Force	0.1	poly	4	auto	0.79	0.65	0.82	0.75	
8	Force	0.1	poly	5	auto	0.75	0.76	0.65	0.72	
8	Force	0.1	poly	3	scale	0.91	0.79	0.89	0.86	
8	Force	0.1	poly	4	scale	0.92	0.82	0.91	0.85	
8	Force	0.1	poly	5	scale	0.92	0.84	0.92	0.86	
8	Force	1	poly	3	auto	0.87	0.67	0.87	0.79	
8	Force	1	poly	4	auto	0.85	0.67	0.85	0.78	
8	Force	1	poly	5	auto	0.82	0.68	0.82	0.76	
8	Force	1	poly	3	scale	0.91	0.81	0.90	0.86	
8	Force	1	poly	4	scale	0.90	0.84	0.88	0.86	
8	Force	1	poly	5	scale	0.91	0.82	0.89	0.85	

# of Folds	Feature	С	Kernel	Dograd	Gamma	C	Class Accurac	у	Total
# OI FOIUS	Туре		Kerriei	Degree	Gaiiiiia	WH	CD	СР	Accuracy
8	Force	10	poly	3	auto	0.89	0.76	0.87	0.84
8	Force	10	poly	4	auto	0.89	0.75	0.86	0.83
8	Force	10	poly	5	auto	0.87	0.74	0.84	0.81
8	Force	10	poly	3	scale	0.90	0.84	0.89	0.85
8	Force	10	poly	4	scale	0.89	0.85	0.90	0.86
8	Force	10	poly	5	scale	0.88	0.85	0.89	0.85
8	Force	0.1	rbf	-	auto	0.87	0.61	0.91	0.78
8	Force	0.1	rbf	-	scale	0.90	0.76	0.87	0.84
8	Force	1	rbf	-	auto	0.89	0.68	0.90	0.81
8	Force	1	rbf	-	scale	0.89	0.81	0.88	0.86
8	Force	10	rbf	-	auto	0.90	0.80	0.87	0.85
8	Force	10	rbf	-	scale	0.90	0.81	0.89	0.85

1. Introduction

This report presents a comprehensive evaluation of three popular machine learning models: Neural Networks, Random Forests, and Support Vector Machines (SVM), across different cross-validation setups. The aim is to identify the model and parameter configuration that yields the highest classification accuracy in our dataset.

2. Methodology

We employed three types of cross-validation methods to evaluate the robustness of the models:

- **K-Fold Cross-Validation:** The dataset was divided into the subsets of (K = 4, 5, 6, 8). Each subset was used as a training set sequentially, with the remaining subsets forming the test set.
- Subject-Wise Cross-Validation: The dataset was divided into the subsets of (N = 4, 5, 6) participants. Each subset was used as a training set sequentially, with the remaining subsets forming the test set.
- Trial-Wise Cross-Validation: The dataset was divided into the subsets of (T = 22, 24, 26) trials. Each subset was used as a training set sequentially, with the remaining trials forming the test set.

Model Configurations and Hyperparameters:

A. Neural Networks (NN)

• Training Specifications:

Batch Size: 32 or 64Epoch: 150 or 200

Patience: 20 (related to validation loss)

Learning Rate Decay: Factor of 10 (related to validation loss)

Validation Split: 20%Optimizer: ADAM

Learning Rate: 0.0001Beta_1: 0.9 | Beta_2: 0.999

Number of neurons in each layer:

(3,3), (3,8), (3,6,6), (3,16,8), (3,16,8,4), (16,8,8), (32,16,8), (32,16,16,8)

The number of different architectures: 8

B. Random Forest

Training Specifications:

Number of decision trees: 10, 50

o Maximum depth of each tree: 2, 5, 10

Minimum number of samples required to split a node: 2, 5

• The number of different architectures: 12

C. Support Vector Machine (SVM)

Training Specifications:

Regularization parameter: 0.1, 1, 10

Kernel: Polynomial, Radial Basis Function (RBF)

Degree: 3, 4, 5Gamma: Scale. Auto

The number of different architectures: 24

3. Results

The evaluation metrics focused on classification accuracies for each class and overall accuracy. The Random Forest model demonstrated superior performance with the following optimal configuration:

Number of decision trees: 10
Maximum depth of each tree: 10

• Minimum number of samples required to split a node: 5

This configuration achieved the highest overall accuracy, particularly when using the subject-wise, with the number of folds (k) set to 6, cross-validation setup.

4. Discussion

In our evaluation, we considered the performance of each model across all cross-validation methods (k-fold, subject-wise, and trial-wise) to ensure a comprehensive analysis. The decision on which model to employ was influenced not only by classification accuracy but also by computational efficiency.

The Random Forest model demonstrated superior performance, likely due to its robustness in handling complex data structures and its ability to avoid overfitting. When evaluating the effect of increasing the number of trees from 10 to 50, we observed only a marginal improvement in accuracy (1-2%), which did not justify the significant increase in computational cost for our specific application. Therefore, we identified the configuration with 10 trees and a maximum depth of 10 as the optimal setup. This choice strikes an effective balance between computational efficiency and model performance, ensuring robust results across different CV setups without excessive resource utilization.

While the SVM with polynomial kernels of degrees 3, 4, and 5 also showed competitive performance, their accuracies, though close, did not surpass the optimized Random Forest model. This underscores the effectiveness of the Random Forest approach, particularly when considering the ensemble's ability to provide consistent and stable results across different testing scenarios.

Further analysis was conducted on the impact of feature selection, particularly comparing models using only 15 'force' features against models utilizing all 30 features (15 force-based + 15 torque-based). Interestingly, the accuracy results were very similar, with models using just the 'force-based features achieving nearly the same classification performance as those using the full feature set. This suggests that the force-based features alone carry substantial predictive power, and the addition of torque-based features does not significantly enhance the model's ability to predict outcomes. Consequently, this minimal difference in accuracy highlights a potential redundancy in the torque-based features, suggesting that a model employing only force-based features can be both computationally more efficient and just as effective.

This holistic approach allowed us to not only assess the effectiveness of the models in various validation contexts but also to consider the practical implications of deploying these models in real-world scenarios, where computational resources and time are often critical constraints. Our findings emphasize the importance of strategic feature selection in developing efficient and effective predictive models, particularly in settings where simplicity and speed are valued alongside accuracy.

5. Summarized Results

We searched for the best set of hyperparameters that maximize the model's performance as measured by the cross-validation process. Hence, for each hyperparameter configuration, the average classification accuracy of each ML model was calculated based on the cross-validation methods discussed above. Table 1 reports the results for each model with the best hyperparameter configuration. Based on these results, we selected Random Forest as our ML classifier.

Model	WH Accuracy	CD Accuracy	CP Accuracy	Total Accuracy
ANN	0.894	0.838	0.883	0.868
Random Forest	0.909	0.826	0.888	0.875
SVM	0.908	0.834	0.897	0.872

Table 1. Averaged Cross-Validation Performances of ML Models for the Best Hyperparameter Configuration

6. Detailed Results

This section provides a detailed overview of the classification accuracies achieved by each model under various cross-validation setups. Tables and graphs will illustrate the performance metrics for each class and the overall accuracy, highlighting the strengths and weaknesses of each model configuration.

Subject Wise Cross-Validation

Subject wise cross-validation was used to evaluate neural networks, random forests, and SVM models across multiple hyperparameters. Classification accuracies were reported for each class as well as the overall accuracy.

Neural Network - Hyperparameters

Training Specifications

o Batch Size: 32 or 64

o Epoch: 150 or 200

Patience: 20 (related validation loss)

Learning Rate Decay: 10 (related validation loss)

Validation Split: 20%

ADAM optimizer

Learning Rate: 0.0001

■ Beta_1: 0.9

■ Beta_2: 0.999

# of	Feature	Lavar Siza	Frach	Datab Cina		Class Accuracy	/	Total	
Subjects	Туре	Layer Size	Epoch	Batch Size	WH	CD CP		Accuracy	
4	All	3,3	150	32	0.63	0.84	0.46	0.66	
4	All	3,8	150	32	0.86	0.75	0.77	0.79	
4	All	3,6,6	150	32	0.86	0.57	0.80	0.73	
4	All	3,16,8	150	32	0.88	0.67	0.77	0.76	
4	All	3,16,8,4	150	32	0.87	0.58	0.76	0.73	
4	All	16,8,8	150	32	0.86	0.70	0.75	0.77	
4	All	32,16,8	150	32	0.89	0.79	0.84	0.84	
4	All	32,16,16,8	150	32	0.89	0.79	0.82	0.84	

# of	Feature	Lavar Siza	Frach	Datab Cina		Class Accuracy	/	Total	
Subjects	Туре	Layer Size	Epoch	Batch Size	WH	WH CD CP		Accuracy	
4	Force	3,3	150	32	0.88	0.68	0.86	0.80	
4	Force	3,8	150	32	0.89	0.62	0.77	0.76	
4	Force	3,6,6	150	32	0.85	0.46	0.82	0.69	
4	Force	3,16,8	150	32	0.86	0.61	0.78	0.74	
4	Force	3,16,8,4	150	32	0.87	0.76	0.86	0.83	
4	Force	16,8,8	150	32	0.89	0.81	0.85	0.85	
4	Force	32,16,8	150	32	0.90	0.82	0.87	0.86	
4	Force	32,16,16,8	150	32	0.87	0.82	0.86	0.85	

# of	Feature	Lavar Ciza	Frach	Datab Cina	(Class Accuracy	/	Total	
Subjects	Туре	Layer Size	Epoch	Batch Size	WH	WH CD CP		Accuracy	
5	All	3,3	150	32	0.81	0.56	0.75	0.70	
5	All	3,8	150	32	0.69	0.74	0.62	0.69	
5	All	3,6,6	150	32	0.87	0.65	0.57	0.69	
5	All	3,16,8	150	32	0.85	0.64	0.68	0.72	
5	All	3,16,8,4	150	32	0.83	0.70	0.72	0.75	
5	All	16,8,8	150	32	0.85	0.77	0.82	0.81	
5	All	32,16,8	150	32	0.87	0.77	0.83	0.82	
5	All	32,16,16,8	150	32	0.87	0.78	0.81	0.82	

# of	Feature	Lavar Ciza	Frach	Datab Cina		Class Accuracy	/	Total	
Subjects	Туре	Layer Size	Epoch	Batch Size	WH	WH CD CP		Accuracy	
5	Force	3,3	150	32	0.87	0.57	0.63	0.68	
5	Force	3,8	150	32	0.85	0.70	0.81	0.78	
5	Force	3,6,6	150	32	0.87	0.73	0.79	0.79	
5	Force	3,16,8	150	32	0.83	0.62	0.81	0.75	
5	Force	3,16,8,4	150	32	0.87	0.68	0.86	0.79	
5	Force	16,8,8	150	32	0.85	0.81	0.77	0.81	
5	Force	32,16,8	150	32	0.88	0.83	0.78	0.83	
5	Force	32,16,16,8	150	32	0.88	0.81	0.88	0.86	

# of	Feature	Lavar Ciza	Casab	Datah Cina		Class Accuracy	/	Total
Subjects	Туре	Layer Size	Epoch	Batch Size	WH	CD	СР	Accuracy
6	All	3,3	150	32	0.85	0.73	0.85	0.80
6	All	3,8	150	32	0.86	0.83	0.86	0.85
6	All	3,6,6	150	32	0.87	0.76	0.84	0.82
6	All	3,16,8	150	32	0.83	0.76	0.84	0.81
6	All	3,16,8,4	150	32	0.88	0.80	0.82	0.84
6	All	16,8,8	150	32	0.88	0.79	0.84	0.84
6	All	32,16,8	150	32	0.90	0.79	0.86	0.85
6	All	32,16,16,8	150	32	0.88	0.76	0.88	0.84

# of	Feature	Lavar Cina	Freeh	Datah Cina	(Class Accuracy	/	Total
Subjects	Туре	Layer Size	Epoch	Batch Size	WH	CD	СР	Accuracy
6	Force	3,3	150	32	0.87	0.79	0.80	0.82
6	Force	3,8	150	32	0.86	0.78	0.81	0.80
6	Force	3,6,6	150	32	0.84	0.81	0.80	0.82
6	Force	3,16,8	150	32	0.87	0.79	0.85	0.84
6	Force	3,16,8,4	150	32	0.88	0.75	0.86	0.83
6	Force	16,8,8	150	32	0.92	0.84	0.88	0.88
6	Force	32,16,8	150	32	0.88	0.83	0.87	0.86
6	Force	32,16,16,8	150	32	0.88	0.83	0.89	0.87

Randomforest - Hyperparameters

- Training Specifications
 - n_estimator: the number of decision trees
 - **1**0, 50
 - max_depth: the maximum depth allowed for each decision tree
 - **2**, 5, 10
 - min_samples_split: the minimum number of samples required to split a node (related overfit)
 - **2**, 5

# of	Feature	N	Max Depth	Min Sample		Class Accuracy	,	Total
Subjects	Type	estimator	wax Depth	Min Sample Split	WH	CD	СР	Accuracy
4	All	10	5	2	0.86	0.75	0.88	0.83
4	All	10	5	5	0.89	0.74	0.87	0.83
4	All	10	10	2	0.91	0.81	0.88	0.87
4	All	10	10	5	0.91	0.82	0.88	0.88
4	All	10	None	2	0.93	0.82	0.87	0.87
4	All	10	None	5	0.92	0.81	0.87	0.87
4	All	50	5	2	0.87	0.76	0.89	0.84
4	All	50	5	5	0.88	0.77	0.88	0.84
4	All	50	10	2	0.92	0.82	0.90	0.87
4	All	50	10	5	0.92	0.81	0.90	0.87
4	All	50	None	2	0.94	0.81	0.89	0.88
4	All	50	None	5	0.94	0.81	0.89	0.88

# of	Feature	N	May Donth	Min Sample		Class Accuracy	/	Total
Subjects	Туре	estimator	Max Depth	Min Sample Split	WH	CD	СР	Accuracy
4	Force	10	5	2	0.88	0.76	0.88	0.84
4	Force	10	5	5	0.87	0.75	0.88	0.83
4	Force	10	10	2	0.91	0.81	0.90	0.87
4	Force	10	10	5	0.91	0.81	0.90	0.87
4	Force	10	None	2	0.92	0.84	0.86	0.86
4	Force	10	None	5	0.92	0.80	0.88	0.86
4	Force	50	5	2	0.87	0.76	0.88	0.84
4	Force	50	5	5	0.87	0.76	0.89	0.84
4	Force	50	10	2	0.92	0.82	0.91	0.88
4	Force	50	10	5	0.92	0.81	0.91	0.88
4	Force	50	None	2	0.92	0.81	0.90	0.88
4	Force	50	None	5	0.92	0.81	0.90	0.88

# of	Feature	N	Max Depth	Min Sample		Class Accuracy	/	Total
Subjects	Type	estimator	wax Depth	Min Sample Split	WH	CD	СР	Accuracy
5	All	10	5	2	0.88	0.76	0.88	0.84
5	All	10	5	5	0.87	0.77	0.85	0.83
5	All	10	10	2	0.91	0.80	0.89	0.85
5	All	10	10	5	0.91	0.81	0.88	0.86
5	All	10	None	2	0.92	0.80	0.87	0.86
5	All	10	None	5	0.92	0.82	0.86	0.86
5	All	50	5	2	0.88	0.76	0.89	0.84
5	All	50	5	5	0.84	0.78	0.88	0.84
5	All	50	10	2	0.89	0.77	0.85	0.83
5	All	50	10	5	0.92	0.82	0.88	0.87
5	All	50	None	2	0.93	0.84	0.88	0.88
5	All	50	None	5	0.93	0.82	0.87	0.87

# of	Feature	N	Max Depth	Min Sample	ı	Class Accuracy	1	Total
Subjects	Туре	estimator	Max Depui	Min Sample Split	WH	CD	СР	Accuracy
5	Force	10	5	2	0.86	0.77	0.89	0.83
5	Force	10	5	5	0.88	0.77	0.88	0.84
5	Force	10	10	2	0.91	0.82	0.90	0.87
5	Force	10	10	5	0.91	0.82	0.89	0.87
5	Force	10	None	2	0.91	0.82	0.87	0.87
5	Force	10	None	5	0.91	0.82	0.87	0.87
5	Force	50	5	2	0.88	0.76	0.88	0.84
5	Force	50	5	5	0.88	0.76	0.89	0.84
5	Force	50	10	2	0.91	0.82	0.90	0.88
5	Force	50	10	5	0.92	0.82	0.90	0.88
5	Force	50	None	2	0.92	0.83	0.89	0.88
5	Force	50	None	5	0.91	0.82	0.89	0.87

# of	Feature	N	Max Depth	Min Sample		Class Accuracy	/	Total
Subjects	Type	estimator	Max Depth	Min Sample Split	WH	CD	СР	Accuracy
6	All	10	5	2	0.88	0.75	0.87	0.83
6	All	10	5	5	0.88	0.76	0.88	0.84
6	All	10	10	2	0.92	0.83	0.88	0.87
6	All	10	10	5	0.92	0.85	0.87	0.88
6	All	10	None	2	0.93	0.83	0.87	0.87
6	All	10	None	5	0.92	0.83	0.86	0.87
6	All	50	5	2	0.89	0.77	0.88	0.84
6	All	50	5	5	0.88	0.78	0.89	0.85
6	All	50	10	2	0.92	0.83	0.89	0.88
6	All	50	10	5	0.92	0.82	0.88	0.87
6	All	50	None	2	0.93	0.82	0.88	0.88
6	All	50	None	5	0.93	0.83	0.89	0.88

# of	Feature	N	Max Depth	Min Sample Split		Class Accuracy	,	Total
Subjects	Type	estimator	Max Depth	Split '	WH	CD	СР	Accuracy
6	Force	10	5	2	0.89	0.77	0.88	0.84
6	Force	10	5	5	0.89	0.76	0.89	0.84
6	Force	10	10	2	0.92	0.82	0.87	0.88
6	Force	10	10	5	0.92	0.84	0.87	0.89
6	Force	10	None	2	0.92	0.83	0.88	0.87
6	Force	10	None	5	0.91	0.83	0.88	0.87
6	Force	50	5	2	0.87	0.77	0.89	0.85
6	Force	50	5	5	0.89	0.76	0.89	0.85
6	Force	50	10	2	0.92	0.83	0.89	0.88
6	Force	50	10	5	0.91	0.84	0.90	0.88
6	Force	50	None	2	0.92	0.84	0.89	0.88
6	Force	50	None	5	0.92	0.84	0.89	0.88

SVM - Hyperparameters

- Training Specifications
 - C: The regularization parameter (controls the trade-off between maximizing the margin and minimizing the classification error)
 - **0.1, 1, 10**
 - Kernel: Type of kernel function
 - Polynomial, Radial Basis Function (RBF)
 - Degree: The degree of the polynomial function
 - **3**, 4, 5
 - Gamma: defines the influence of a single training example (related overfit)
 - Scale: 1 / (n_features * X.var())
 - Auto: 1 / n_features

# of	Feature	С	Kernel	Dograo	Gamma	C	Class Accurac	у	Total
Subjects	Type	C	Kemei	Degree	Gaiiiiia	WH	CD	СР	Accuracy
4	All	0.1	poly	3	auto	0.82	0.58	0.87	0.75
4	All	0.1	poly	4	auto	0.81	0.68	0.68	0.72
4	All	0.1	poly	5	auto	0.78	0.84	0.49	0.68
4	All	0.1	poly	3	scale	0.002	0.99	0.001	0.38
4	All	0.1	poly	4	scale	0.003	0.99	0.001	0.37
4	All	0.1	poly	5	scale	0.004	0.99	0.03	0.37
4	All	1	poly	3	auto	0.87	0.59	0.92	0.78
4	All	1	poly	4	auto	0.85	0.59	0.91	0.77
4	All	1	poly	5	auto	0.84	0.58	0.91	0.77
4	All	1	poly	3	scale	0.25	0.88	0.23	0.48
4	All	1	poly	4	scale	0.003	0.99	0.001	0.38
4	All	1	poly	5	scale	0.004	0.99	0.03	0.37

# of	Feature	С	Kernel	Dograd	Gamma	C	Class Accurac	у	Total
Subjects	Туре	C	Kemei	Degree	Gaillilla	WH	CD	СР	Accuracy
4	All	10	poly	3	auto	0.89	0.71	0.88	0.82
4	All	10	poly	4	auto	0.89	0.72	0.87	0.82
4	All	10	poly	5	auto	0.88	0.75	0.87	0.82
4	All	10	poly	3	scale	0.80	0.70	0.63	0.71
4	All	10	poly	4	scale	0.30	0.87	0.27	0.50
4	All	10	poly	5	scale	0.24	0.95	0.15	0.48
4	All	0.1	rbf	-	auto	0.86	0.52	0.94	0.75
4	All	0.1	rbf	-	scale	0.11	0.92	0.14	0.41
4	All	1	rbf	-	auto	0.88	0.70	0.89	0.81
4	All	1	rbf	-	scale	0.11	0.93	0.13	0.43
4	All	10	rbf	-	auto	0.90	0.77	0.88	0.85
4	All	10	rbf	-	scale	0.73	0.89	0.40	0.68

# of	Feature	С	Kernel	Dograd	Gamma	(Class Accurac	у	Total
Subjects	Туре	C	Keinei	Degree	Gaillilla	WH	CD	СР	Accuracy
4	Force	0.1	poly	3	auto	0.82	0.60	0.88	0.76
4	Force	0.1	poly	4	auto	0.79	0.65	0.81	0.74
4	Force	0.1	poly	5	auto	0.74	0.79	0.60	0.71
4	Force	0.1	poly	3	scale	0.90	0.80	0.88	0.85
4	Force	0.1	poly	4	scale	0.90	0.82	0.90	0.86
4	Force	0.1	poly	5	scale	0.92	0.83	0.89	0.86
4	Force	1	poly	3	auto	0.87	0.66	0.86	0.79
4	Force	1	poly	4	auto	0.85	0.67	0.85	0.78
4	Force	1	poly	5	auto	0.81	0.68	0.81	0.77
4	Force	1	poly	3	scale	0.92	0.81	0.91	0.88
4	Force	1	poly	4	scale	0.93	0.84	0.91	0.89
4	Force	1	poly	5	scale	0.92	0.85	0.90	0.89

# of	Feature	С	Kernel	Dograo	Gamma	C	Class Accurac	sy .	Total
Subjects	Туре	C	Kemei	Degree	Gaiiiiia	WH	CD	СР	Accuracy
4	Force	10	poly	3	auto	0.89	0.76	0.86	0.83
4	Force	10	poly	4	auto	0.88	0.74	0.85	0.82
4	Force	10	poly	5	auto	0.87	0.74	0.84	0.81
4	Force	10	poly	3	scale	0.90	0.84	0.91	0.87
4	Force	10	poly	4	scale	0.91	0.83	0.90	0.87
4	Force	10	poly	5	scale	0.90	0.85	0.89	0.86
4	Force	0.1	rbf	-	auto	0.87	0.60	0.90	0.78
4	Force	0.1	rbf	-	scale	0.90	0.76	0.87	0.84
4	Force	1	rbf	-	auto	0.89	0.67	0.90	0.81
4	Force	1	rbf	-	scale	0.93	0.80	0.88	0.87
4	Force	10	rbf	-	auto	0.91	0.77	0.90	0.85
4	Force	10	rbf	-	scale	0.91	0.83	0.90	0.87

# of	Feature	С	Kernel	Dograd	Gamma	(Class Accurac	у	Total
Subjects	Туре	C	Keillei	Degree	Gamma	WH	CD	СР	Accuracy
5	All	0.1	poly	3	auto	0.82	0.60	0.88	0.76
5	All	0.1	poly	4	auto	0.79	0.65	0.81	0.74
5	All	0.1	poly	5	auto	0.74	0.79	0.60	0.71
5	All	0.1	poly	3	scale	0.91	0.78	0.87	0.85
5	All	0.1	poly	4	scale	0.92	0.81	0.88	0.86
5	All	0.1	poly	5	scale	0.90	0.84	0.90	0.87
5	All	1	poly	3	auto	0.87	0.66	0.86	0.79
5	All	1	poly	4	auto	0.85	0.67	0.85	0.78
5	All	1	poly	5	auto	0.81	0.68	0.81	0.76
5	All	1	poly	3	scale	0.92	0.81	0.91	0.88
5	All	1	poly	4	scale	0.91	0.84	0.89	0.87
5	All	1	poly	5	scale	0.90	0.85	0.88	0.86

# of	Feature	С	Kernel	Dograd	Gamma	(Class Accurac	у	Total
Subjects	Туре	C	Kemei	Degree	Gaillilla	WH	CD	СР	Accuracy
5	All	10	poly	3	auto	0.89	0.76	0.86	0.83
5	All	10	poly	4	auto	0.88	0.74	0.85	0.82
5	All	10	poly	5	auto	0.87	0.74	0.84	0.81
5	All	10	poly	3	scale	0.90	0.81	0.91	0.88
5	All	10	poly	4	scale	0.89	0.82	0.90	0.87
5	All	10	poly	5	scale	0.91	0.84	0.89	0.87
5	All	0.1	rbf	-	auto	0.82	0.55	0.91	0.75
5	All	0.1	rbf	-	scale	0.16	0.96	0.06	0.44
5	All	1	rbf	-	auto	0.85	0.70	0.88	0.81
5	All	1	rbf	-	scale	0.18	0.90	0.19	0.47
5	All	10	rbf	-	auto	0.88	0.77	0.87	0.84
5	All	10	rbf	-	scale	0.49	0.86	0.40	0.59

# of	Feature	С	Kernel	Dograd	Gamma	(Class Accurac	у	Total
Subjects	Туре	C	Keiriei	Degree	Gamma	WH	CD	СР	Accuracy
5	Force	0.1	poly	3	auto	0.79	0.60	0.86	0.75
5	Force	0.1	poly	4	auto	0.76	0.66	0.78	0.73
5	Force	0.1	poly	5	auto	0.71	0.77	0.61	0.71
5	Force	0.1	poly	3	scale	0.90	0.80	0.89	0.86
5	Force	0.1	poly	4	scale	0.89	0.82	0.90	0.85
5	Force	0.1	poly	5	scale	0.90	0.81	0.89	0.86
5	Force	1	poly	3	auto	0.84	0.67	0.85	0.79
5	Force	1	poly	4	auto	0.82	0.67	0.83	0.77
5	Force	1	poly	5	auto	0.79	0.69	0.80	0.76
5	Force	1	poly	3	scale	0.91	0.82	0.90	0.88
5	Force	1	poly	4	scale	0.89	0.85	0.90	0.87
5	Force	1	poly	5	scale	0.90	0.82	0.89	0.86

# of	Feature	С	Kernel	Dograd	Gamma	(Class Accurac	У	Total
Subjects	Туре	C	Kemei	Degree	Gaillilla	WH	CD	СР	Accuracy
5	Force	10	poly	3	auto	0.88	0.76	0.87	0.84
5	Force	10	poly	4	auto	0.87	0.76	0.85	0.83
5	Force	10	poly	5	auto	0.85	0.75	0.83	0.81
5	Force	10	poly	3	scale	0.91	0.84	0.90	0.85
5	Force	10	poly	4	scale	0.90	0.86	0.89	0.86
5	Force	10	poly	5	scale	0.91	0.86	0.88	0.87
5	Force	0.1	rbf	-	auto	0.85	0.60	0.89	0.78
5	Force	0.1	rbf	-	scale	0.89	0.76	0.87	0.84
5	Force	1	rbf	-	auto	0.87	0.69	0.89	0.81
5	Force	1	rbf	-	scale	0.91	0.81	0.89	0.87
5	Force	10	rbf	-	auto	0.90	0.77	0.89	0.85
5	Force	10	rbf	-	scale	0.89	0.82	0.90	0.86

# of Subjects	Feature Type	С	Kernel	Degree	Gamma	Class Accuracy			Total
						WH	CD	СР	Accuracy
6	All	0.1	poly	3	auto	0.79	0.60	0.86	0.75
6	All	0.1	poly	4	auto	0.76	0.66	0.78	0.73
6	All	0.1	poly	5	auto	0.71	0.77	0.61	0.71
6	All	0.1	poly	3	scale	0.90	0.78	0.89	0.86
6	All	0.1	poly	4	scale	0.89	0.82	0.88	0.85
6	All	0.1	poly	5	scale	0.90	0.82	0.89	0.86
6	All	1	poly	3	auto	0.84	0.71	0.85	0.81
6	All	1	poly	4	auto	0.82	0.73	0.83	0.80
6	All	1	poly	5	auto	0.81	0.69	0.86	0.76
6	All	1	poly	3	scale	0.83	0.71	0.78	0.80
6	All	1	poly	4	scale	0.74	0.83	0.77	0.80
6	All	1	poly	5	scale	0.91	0.80	0.89	0.86

# of Subjects	Feature Type	С	Kernel	Degree	Gamma	Class Accuracy			Total
						WH	CD	СР	Accuracy
6	All	10	poly	3	auto	0.89	0.82	0.86	0.84
6	All	10	poly	4	auto	0.90	0.82	0.85	0.84
6	All	10	poly	5	auto	0.87	0.80	0.85	0.83
6	All	10	poly	3	scale	0.90	0.84	0.87	0.88
6	All	10	poly	4	scale	0.89	0.83	0.86	0.84
6	All	10	poly	5	scale	0.90	0.85	0.89	0.88
6	All	0.1	rbf	-	auto	0.84	0.55	0.88	0.74
6	All	0.1	rbf	-	scale	0.15	0.90	0.14	0.43
6	All	1	rbf	-	auto	0.87	0.70	0.88	0.81
6	All	1	rbf	-	scale	0.15	0.91	0.16	0.44
6	All	10	rbf	-	auto	0.89	0.77	0.87	0.84
6	All	10	rbf	-	scale	0.60	0.88	0.30	0.59

# of Subjects	Feature Type	С	Kernel	Degree	Gamma	Class Accuracy			Total
						WH	CD	СР	Accuracy
6	Force	0.1	poly	3	auto	0.83	0.59	0.89	0.75
6	Force	0.1	poly	4	auto	0.79	0.66	0.77	0.73
6	Force	0.1	poly	5	auto	0.75	0.79	0.53	0.68
6	Force	0.1	poly	3	scale	0.91	0.80	0.89	0.86
6	Force	0.1	poly	4	scale	0.92	0.82	0.90	0.86
6	Force	0.1	poly	5	scale	0.91	0.84	0.91	0.87
6	Force	1	poly	3	auto	0.87	0.67	0.86	0.79
6	Force	1	poly	4	auto	0.85	0.68	0.84	0.78
6	Force	1	poly	5	auto	0.82	0.70	0.80	0.76
6	Force	1	poly	3	scale	0.89	0.83	0.90	0.86
6	Force	1	poly	4	scale	0.90	0.80	0.88	0.85
6	Force	1	poly	5	scale	0.90	0.81	0.89	0.86

# of	Feature Type	С	Kernel	Degree	Gamma	C	Total		
Subjects						WH	CD	СР	Accuracy
6	Force	10	poly	3	auto	0.89	0.77	0.86	0.84
6	Force	10	poly	4	auto	0.88	0.76	0.85	0.83
6	Force	10	poly	5	auto	0.87	0.75	0.82	0.81
6	Force	10	poly	3	scale	0.89	0.81	0.90	0.87
6	Force	10	poly	4	scale	0.90	0.85	0.88	0.86
6	Force	10	poly	5	scale	0.89	0.83	0.89	0.86
6	Force	0.1	rbf	-	auto	0.87	0.61	0.90	0.78
6	Force	0.1	rbf	-	scale	0.90	0.76	0.86	0.84
6	Force	1	rbf	-	auto	0.88	0.70	0.90	0.82
6	Force	1	rbf	-	scale	0.92	0.81	0.90	0.87
6	Force	10	rbf	-	auto	0.91	0.77	0.89	0.85
6	Force	10	rbf	-	scale	0.90	0.82	0.88	0.86

Trial Wise Cross-Validation

Trial wise cross-validation was used to evaluate neural networks, random forests, and SVM models across multiple hyperparameters. Classification accuracies were reported for each class as well as the overall accuracy.

Neural Network - Hyperparameters

Training Specifications

o Batch Size: 32 or 64

Epoch: 150 or 200

o Patience: 20

Learning Rate Decay: 10

Validation Split: 20%

ADAM optimizer

Learning Rate: 0.0001

■ Beta_1: 0.9

■ Beta_2: 0.999

# of Trials	Feature	Lavar Siza	Casab	Datah Cina		Class Accuracy	/	Total
# of Trials	Туре	Layer Size	Epoch	Batch Size	WH	CD	СР	Accuracy
22	All	3,3	150	32	0.88	0.75	0.81	0.81
22	All	3,8	150	32	0.87	0.60	0.74	0.73
22	All	3,6,6	150	32	0.87	0.65	0.86	0.78
22	All	3,16,8	150	32	0.88	0.79	0.86	0.84
22	All	3,16,8,4	150	32	0.87	0.78	0.81	0.82
22	All	16,8,8	150	32	0.87	0.78	0.87	0.84
22	All	32,16,8	150	32	0.88	0.78	0.89	0.85
22	All	32,16,16,8	150	32	0.88	0.78	0.87	0.84

# of Trials	Feature	Laviar Ci-a	Frank	Datah Cina	(/	Total	
# of Trials	Туре	Layer Size	Epoch	Batch Size	WH	CD	СР	Accuracy
22	Force	3,3	150	32	0.85	0.84	0.61	0.77
22	Force	3,8	150	32	0.86	0.84	0.71	0.80
22	Force	3,6,6	150	32	0.85	0.80	0.73	0.79
22	Force	3,16,8	150	32	0.87	0.75	0.80	0.81
22	Force	3,16,8,4	150	32	0.90	0.69	0.86	0.81
22	Force	16,8,8	150	32	0.89	0.79	0.86	0.85
22	Force	32,16,8	150	32	0.91	0.83	0.90	0.88
22	Force	32,16,16,8	150	32	0.91	0.83	0.88	0.87

# of Trials	Feature	Lavar Siza	Casab	Datah Cina	(Class Accuracy	/	Total
# of Trials	Туре	Layer Size	Epoch	Batch Size	WH	CD	СР	Accuracy
24	All	3,3	150	32	0.31	0.83	0.12	0.48
24	All	3,8	150	32	0.86	0.76	0.85	0.83
24	All	3,6,6	150	32	0.85	0.75	0.80	0.80
24	All	3,16,8	150	32	0.85	0.79	0.75	0.80
24	All	3,16,8,4	150	32	0.86	0.75	0.74	0.78
24	All	16,8,8	150	32	0.86	0.81	0.83	0.84
24	All	32,16,8	150	32	0.86	0.81	0.84	0.83
24	All	32,16,16,8	150	32	0.88	0.82	0.86	0.85

# of Trials	Feature	Layer Size	Casab	Datah Cina	(Class Accuracy	/	Total
# of Trials	Туре	Layer Size	Epoch	Batch Size	WH	CD	СР	Accuracy
24	Force	3,3	150	32	0.83	0.68	0.80	0.77
24	Force	3,8	150	32	0.85	0.78	0.85	0.83
24	Force	3,6,6	150	32	0.86	0.78	0.85	0.83
24	Force	3,16,8	150	32	0.84	0.80	0.71	0.78
24	Force	3,16,8,4	150	32	0.86	0.81	0.84	0.84
24	Force	16,8,8	150	32	0.87	0.82	0.86	0.85
24	Force	32,16,8	150	32	0.90	0.85	0.88	0.87
24	Force	32,16,16,8	150	32	0.90	0.84	0.89	0.88

# of Trials	Feature	Lawar Cina	Frank	Datah Cina	(Class Accuracy	/	Total
# of Trials	Туре	Layer Size	Epoch	Batch Size	WH	CD	СР	Accuracy
26	All	3,3	150	32	0.72	0.56	0.47	0.57
26	All	3,8	150	32	0.87	0.78	0.81	0.81
26	All	3,6,6	150	32	0.87	0.68	0.83	0.79
26	All	3,16,8	150	32	0.87	0.76	0.77	0.80
26	All	3,16,8,4	150	32	0.87	0.80	0.75	0.80
26	All	16,8,8	150	32	0.89	0.81	0.81	0.84
26	All	32,16,8	150	32	0.88	0.81	0.81	0.83
26	All	32,16,16,8	150	32	0.88	0.83	0.82	0.84

# of Trials	Feature	Lavrag Oi-a	Faceb	Datab Oi-a	(Class Accuracy	/	Total
# of Trials	Туре	Layer Size	Epoch	Batch Size	WH	CD	СР	Accuracy
26	Force	3,3	150	32	0.85	0.76	0.80	0.81
26	Force	3,8	150	32	0.86	0.80	0.86	0.83
26	Force	3,6,6	150	32	0.88	0.79	0.85	0.83
26	Force	3,16,8	150	32	0.86	0.79	0.85	0.83
26	Force	3,16,8,4	150	32	0.84	0.80	0.79	0.80
26	Force	16,8,8	150	32	0.89	0.83	0.89	0.86
26	Force	32,16,8	150	32	0.89	0.85	0.88	0.88
26	Force	32,16,16,8	150	32	0.90	0.82	0.89	0.87

Randomforest - Hyperparameters

- Training Specifications
 - n_estimator: the number of decision trees
 - **1**0, 50
 - max_depth: the maximum depth allowed for each decision tree
 - **2**, 5, 10
 - min_samples_split: the minimum number of samples required to split a node
 - **2**, 5

# of Trials	Feature	N	Max Depth	Min Sample		Class Accuracy	1	Total
# UI IIIais	Туре	estimator	Max Depui	Min Sample Split	WH	CD	СР	Accuracy
22	Force	10	5	2	0.86	0.79	0.86	0.83
22	Force	10	5	5	0.87	0.77	0.87	0.83
22	Force	10	10	2	0.90	0.82	0.88	0.86
22	Force	10	10	5	0.91	0.84	0.88	0.88
22	Force	10	None	2	0.92	0.83	0.87	0.87
22	Force	10	None	5	0.92	0.82	0.87	0.87
22	Force	50	5	2	0.87	0.77	0.88	0.83
22	Force	50	5	5	0.87	0.77	0.89	0.84
22	Force	50	10	2	0.92	0.82	0.90	0.87
22	Force	50	10	5	0.91	0.81	0.88	0.87
22	Force	50	None	2	0.93	0.80	0.89	0.87
22	Force	50	None	5	0.93	0.81	0.88	0.87

# of Trials	Feature	N	Max Depth	Min Sample	(Class Accuracy	,	Total
# OI IIIais	Туре	estimator	wax Depth	Min Sample Split	WH	CD	СР	Accuracy
22	All	10	5	2	0.84	0.77	0.86	0.83
22	All	10	5	5	0.84	0.77	0.84	0.82
22	All	10	10	2	0.90	0.82	0.88	0.87
22	All	10	10	5	0.89	0.83	0.87	0.87
22	All	10	None	2	0.92	0.84	0.86	0.87
22	All	10	None	5	0.90	0.83	0.85	0.86
22	All	50	5	2	0.85	0.77	0.89	0.84
22	All	50	5	5	0.84	0.78	0.88	0.84
22	All	50	10	2	0.90	0.83	0.89	0.87
22	All	50	10	5	0.90	0.83	0.90	0.87
22	All	50	None	2	0.91	0.83	0.89	0.88
22	All	50	None	5	0.91	0.82	0.89	0.87

# of Trials	Feature	N	May Donth	Min Sample		Class Accuracy	,	Total
# Of Thats	Type	estimator	Max Depth	Min Sample Split	WH	CD	СР	Accuracy
24	Force	10	5	2	0.84	0.77	0.86	0.83
24	Force	10	5	5	0.84	0.77	0.84	0.82
24	Force	10	10	2	0.90	0.82	0.88	0.87
24	Force	10	10	5	0.90	0.83	0.87	0.87
24	Force	10	None	2	0.92	0.84	0.86	0.87
24	Force	10	None	5	0.90	0.83	0.85	0.86
24	Force	50	5	2	0.85	0.77	0.89	0.84
24	Force	50	5	5	0.84	0.78	0.88	0.84
24	Force	50	10	2	0.90	0.83	0.89	0.87
24	Force	50	10	5	0.90	0.83	0.89	0.87
24	Force	50	None	2	0.91	0.83	0.88	0.88
24	Force	50	None	5	0.91	0.82	0.89	0.87

# of Trials	Feature	N	Max Depth	Min Sample	i I	Class Accuracy	1	Total
# Of Thats	Type	estimator	iviax Deptii	Min Sample Split	WH	CD	СР	Accuracy
24	All	10	5	2	0.87	0.76	0.86	0.83
24	All	10	5	5	0.85	0.77	0.86	0.82
24	All	10	10	2	0.90	0.82	0.86	0.86
24	All	10	10	5	0.91	0.81	0.86	0.86
24	All	10	None	2	0.91	0.82	0.86	0.86
24	All	10	None	5	0.91	0.81	0.84	0.85
24	All	50	5	2	0.87	0.77	0.88	0.83
24	All	50	5	5	0.87	0.78	0.87	0.84
24	All	50	10	2	0.91	0.82	0.88	0.87
24	All	50	10	5	0.91	0.83	0.88	0.87
24	All	50	None	2	0.92	0.80	0.87	0.86
24	All	50	None	5	0.92	0.81	0.88	0.87

# of Trials	Feature	N	Max Depth	Min Sample		Class Accuracy	1	Total
# UI IIIais	Type	estimator	Max Deptii	Min Sample Split	WH	CD	СР	Accuracy
26	Force	10	5	2	0.87	0.77	0.86	0.83
26	Force	10	5	5	0.87	0.78	0.86	0.83
26	Force	10	10	2	0.91	0.83	0.89	0.87
26	Force	10	10	5	0.91	0.82	0.89	0.87
26	Force	10	None	2	0.91	0.82	0.87	0.87
26	Force	10	None	5	0.91	0.82	0.88	0.87
26	Force	50	5	2	0.87	0.78	0.88	0.84
26	Force	50	5	5	0.87	0.78	0.88	0.84
26	Force	50	10	2	0.92	0.83	0.89	0.88
26	Force	50	10	5	0.91	0.83	0.90	0.88
26	Force	50	None	2	0.92	0.83	0.88	0.88
26	Force	50	None	5	0.91	0.82	0.89	0.87

# of Trials	Feature	N	Max Depth	Min Sample Split		Class Accuracy	1	Total
# Of Thais	Туре	estimator	Max Depth	Split '	WH	CD	СР	Accuracy
26	All	10	5	2	0.87	0.76	0.86	0.83
26	All	10	5	5	0.85	0.77	0.86	0.82
26	All	10	10	2	0.90	0.82	0.86	0.86
26	All	10	10	5	0.91	0.81	0.86	0.86
26	All	10	None	2	0.91	0.82	0.86	0.86
26	All	10	None	5	0.91	0.81	0.84	0.85
26	All	50	5	2	0.87	0.77	0.88	0.83
26	All	50	5	5	0.87	0.78	0.87	0.84
26	All	50	10	2	0.91	0.82	0.88	0.87
26	All	50	10	5	0.91	0.83	0.88	0.87
26	All	50	None	2	0.92	0.80	0.87	0.86
26	All	50	None	5	0.92	0.81	0.88	0.87

SVM - Hyperparameters

- Training Specifications
 - C: The regularization parameter (controls the trade-off between maximizing the margin and minimizing the classification error)
 - **0.1, 1, 10**
 - Kernel: Type of kernel function
 - Polynomial, Radial Basis Function (RBF)
 - Degree: The degree of the polynomial function
 - **3**, 4, 5
 - o Gamma: defines the influence of a single training example
 - Scale: 1 / (n_features * variance)
 - Auto: 1 / n_features

# of Trials	Feature	С	Kernel	Dograd	Gamma	C	Class Accurac	;y	Total
# Of Thats	Туре	C	Keinei	Degree	Gaiiiiia	WH	CD	СР	Accuracy
22	All	0.1	poly	3	auto	0.82	0.69	0.66	0.72
22	All	0.1	poly	4	auto	0.79	0.84	0.41	0.69
22	All	0.1	poly	5	auto	0.74	0.79	0.60	0.71
22	All	0.1	poly	3	scale	0.005	0.99	0.004	0.37
22	All	0.1	poly	4	scale	0.007	0.99	0.001	0.37
22	All	0.1	poly	5	scale	0.007	0.99	0.01	0.37
22	All	1	poly	3	auto	0.85	0.56	0.92	0.77
22	All	1	poly	4	auto	0.85	0.69	0.84	0.76
22	All	1	poly	5	auto	0.84	0.70	0.80	0.75
22	All	1	poly	3	scale	0.79	0.72	0.82	0.76
22	All	1	poly	4	scale	0.91	0.83	0.92	0.88
22	All	1	poly	5	scale	0.93	0.82	0.89	0.87

# of Trials	Feature	С	Kernel	Dograd	Gamma	(Class Accurac	у	Total
# OI IIIais	Туре	C	Keillei	Degree	Gaillilla	WH	CD	СР	Accuracy
22	All	10	poly	3	auto	0.85	0.77	0.88	0.83
22	All	10	poly	4	auto	0.87	0.76	0.88	0.83
22	All	10	poly	5	auto	0.90	0.82	0.91	0.88
22	All	10	poly	3	scale	0.91	0.81	0.89	0.87
22	All	10	poly	4	scale	0.92	0.84	0.88	0.88
22	All	10	poly	5	scale	0.92	0.82	0.88	0.87
22	All	0.1	rbf	-	auto	0.85	0.57	0.93	0.75
22	All	0.1	rbf	-	scale	0.22	0.87	0.22	0.45
22	All	1	rbf	-	auto	0.87	0.69	0.87	0.80
22	All	1	rbf	-	scale	0.23	0.87	0.24	0.47
22	All	10	rbf	-	auto	0.89	0.86	0.86	0.87
22	All	10	rbf	-	scale	0.44	0.89	0.26	0.56

# of Trials	Feature	С	Kernel	Dograd	Gamma	(Class Accurac	;y	Total
# Of Thats	Туре	C	Keinei	Degree	Gaillilla	WH	CD	СР	Accuracy
22	Force	0.1	poly	3	auto	0.82	0.60	0.88	0.76
22	Force	0.1	poly	4	auto	0.79	0.65	0.81	0.74
22	Force	0.1	poly	5	auto	0.74	0.79	0.60	0.71
22	Force	0.1	poly	3	scale	0.91	0.78	0.87	0.85
22	Force	0.1	poly	4	scale	0.89	0.81	0.89	0.86
22	Force	0.1	poly	5	scale	0.90	0.84	0.89	0.85
22	Force	1	poly	3	auto	0.87	0.66	0.86	0.79
22	Force	1	poly	4	auto	0.85	0.67	0.85	0.78
22	Force	1	poly	5	auto	0.81	0.68	0.81	0.76
22	Force	1	poly	3	scale	0.89	0.83	0.89	0.86
22	Force	1	poly	4	scale	0.91	0.84	0.90	0.87
22	Force	1	poly	5	scale	0.90	0.85	0.89	0.86

# of Trials	Feature	С	Kernel	Degree	Gamma	C	Class Accurac	У	Total
# Of Thats	Туре		Keillei	Degree	Gaiiiiia	WH	CD	СР	Accuracy
22	Force	10	poly	3	auto	0.89	0.76	0.86	0.83
22	Force	10	poly	4	auto	0.88	0.74	0.85	0.82
22	Force	10	poly	5	auto	0.87	0.74	0.84	0.81
22	Force	10	poly	3	scale	0.90	0.84	0.88	0.85
22	Force	10	poly	4	scale	0.90	0.85	0.90	0.86
22	Force	10	poly	5	scale	0.91	0.85	0.89	0.86
22	Force	0.1	rbf	-	auto	0.87	0.60	0.90	0.78
22	Force	0.1	rbf	-	scale	0.90	0.76	0.87	0.84
22	Force	1	rbf	-	auto	0.89	0.67	0.90	0.81
22	Force	1	rbf	-	scale	0.93	0.80	0.88	0.87
22	Force	10	rbf	-	auto	0.91	0.77	0.87	0.85
22	Force	10	rbf	-	scale	0.90	0.83	0.91	0.88

							:V	Total	
# of Trials	Feature Type	С	Kernel	Degree	Gamma		Class Accurac		Total Accuracy
	. , , , ,					WH	CD	СР	
24	All	0.1	poly	3	auto	0.80	0.62	0.86	0.76
24	All	0.1	poly	4	auto	0.81	0.64	0.83	0.74
24	All	0.1	poly	5	auto	0.76	0.81	0.62	0.71
24	All	0.1	poly	3	scale	0.89	0.80	0.86	0.85
24	All	0.1	poly	4	scale	0.90	0.81	0.88	0.86
24	All	0.1	poly	5	scale	0.90	0.82	0.90	0.87
24	All	1	poly	3	auto	0.88	0.72	0.84	0.81
24	All	1	poly	4	auto	0.81	0.69	0.85	0.79
24	All	1	poly	5	auto	0.84	0.71	0.83	0.77
24	All	1	poly	3	scale	0.89	0.80	0.88	0.85
24	All	1	poly	4	scale	0.88	0.82	0.88	0.87
24	All	1	poly	5	scale	0.90	0.84	0.89	0.86

# of Trials	Feature	С	Vornol	Dograd	Commo	C	Class Accurac	;y	Total
# Of Thais	Type	C	Kernel	Degree	Gamma	WH	CD	СР	Accuracy
24	All	10	poly	3	auto	0.89	0.80	0.86	0.83
24	All	10	poly	4	auto	0.86	0.80	0.85	0.82
24	All	10	poly	5	auto	0.87	0.75	0.82	0.81
24	All	10	poly	3	scale	0.88	0.78	0.88	0.84
24	All	10	poly	4	scale	0.88	0.78	0.88	0.84
24	All	10	poly	5	scale	0.92	0.84	0.90	0.86
24	All	0.1	rbf	-	auto	0.82	0.55	0.91	0.75
24	All	0.1	rbf	-	scale	0.16	0.96	0.06	0.44
24	All	1	rbf	-	auto	0.85	0.70	0.88	0.81
24	All	1	rbf	-	scale	0.18	0.90	0.19	0.47
24	All	10	rbf	-	auto	0.88	0.77	0.87	0.84
24	All	10	rbf	-	scale	0.49	0.86	0.40	0.59

# of Trials	Feature	С	Kernel	Dograd	Gamma	(Class Accurac	у	Total
# Of Thats	Туре	C	Kemei	Degree	Gaillilla	WH	CD	СР	Accuracy
24	Force	0.1	poly	3	auto	0.79	0.60	0.86	0.75
24	Force	0.1	poly	4	auto	0.76	0.66	0.78	0.73
24	Force	0.1	poly	5	auto	0.71	0.77	0.61	0.71
24	Force	0.1	poly	3	scale	0.88	0.78	0.86	0.83
24	Force	0.1	poly	4	scale	0.87	0.80	0.86	0.84
24	Force	0.1	poly	5	scale	0.88	0.81	0.89	0.85
24	Force	1	poly	3	auto	0.84	0.67	0.85	0.79
24	Force	1	poly	4	auto	0.82	0.67	0.83	0.77
24	Force	1	poly	5	auto	0.79	0.69	0.80	0.76
24	Force	1	poly	3	scale	0.91	0.82	0.88	0.86
24	Force	1	poly	4	scale	0.90	0.85	0.90	0.87
24	Force	1	poly	5	scale	0.91	0.85	0.89	0.88

# of Trials	Feature	С	Kernel	Dograd	Gamma	(Class Accurac	;y	Total
# Of Thats	Туре	C	Kemei	Degree	Gaillilla	WH	CD	СР	Accuracy
24	Force	10	poly	3	auto	0.88	0.76	0.87	0.84
24	Force	10	poly	4	auto	0.87	0.76	0.85	0.83
24	Force	10	poly	5	auto	0.85	0.75	0.83	0.81
24	Force	10	poly	3	scale	0.86	0.82	0.91	0.85
24	Force	10	poly	4	scale	0.89	0.84	0.88	0.86
24	Force	10	poly	5	scale	0.88	0.84	0.86	0.85
24	Force	0.1	rbf	-	auto	0.85	0.60	0.89	0.78
24	Force	0.1	rbf	-	scale	0.89	0.76	0.87	0.84
24	Force	1	rbf	-	auto	0.87	0.69	0.89	0.81
24	Force	1	rbf	-	scale	0.91	0.81	0.89	0.87
24	Force	10	rbf	-	auto	0.90	0.77	0.89	0.85
24	Force	10	rbf	-	scale	0.91	0.83	0.89	0.87

# of Trials	Feature	С	Kernel	Dograo	Gamma	C	Class Accurac	у	Total
# Of Thats	Туре	C	Kerrier	Degree	Gamma	WH	CD	СР	Accuracy
26	All	0.1	poly	3	auto	0.83	0.60	0.89	0.76
26	All	0.1	poly	4	auto	0.79	0.65	0.82	0.75
26	All	0.1	poly	5	auto	0.75	0.76	0.65	0.72
26	All	0.1	poly	3	scale	0.91	0.79	0.89	0.86
26	All	0.1	poly	4	scale	0.92	0.81	0.90	0.87
26	All	0.1	poly	5	scale	0.92	0.84	0.90	0.87
26	All	1	poly	3	auto	0.87	0.67	0.87	0.79
26	All	1	poly	4	auto	0.85	0.67	0.85	0.78
26	All	1	poly	5	auto	0.82	0.68	0.82	0.76
26	All	1	poly	3	scale	0.90	0.81	0.88	0.84
26	All	1	poly	4	scale	0.91	0.82	0.91	0.86
26	All	1	poly	5	scale	0.90	0.80	0.90	0.85

# of Trials	Feature	С	Kornol	Dograd	Commo	C	Class Accurac	;y	Total
# UI IIIdis	Type		Kernel	Degree	Gamma	WH	CD	СР	Accuracy
26	All	10	poly	3	auto	0.90	0.82	0.86	0.85
26	All	10	poly	4	auto	0.87	0.80	0.88	0.83
26	All	10	poly	5	auto	0.87	0.81	0.88	0.84
26	All	10	poly	3	scale	0.90	0.82	0.86	0.85
26	All	10	poly	4	scale	0.90	0.82	0.88	0.86
26	All	10	poly	5	scale	0.91	0.81	0.89	0.88
26	All	0.1	rbf	-	auto	0.84	0.55	0.88	0.74
26	All	0.1	rbf	-	scale	0.15	0.90	0.14	0.43
26	All	1	rbf	-	auto	0.87	0.70	0.88	0.81
26	All	1	rbf	-	scale	0.15	0.91	0.16	0.44
26	All	10	rbf	-	auto	0.89	0.77	0.87	0.84
26	All	10	rbf	-	scale	0.60	0.88	0.30	0.59

# of Trials	Feature	С	Kernel	Degree	Gamma	(Class Accurac	у	Total
# Of Thats	Туре	C	Keiriei	Degree	Gaiiiiia	WH	CD	СР	Accuracy
26	Force	0.1	poly	3	auto	0.83	0.59	0.89	0.75
26	Force	0.1	poly	4	auto	0.79	0.66	0.77	0.73
26	Force	0.1	poly	5	auto	0.75	0.79	0.53	0.68
26	Force	0.1	poly	3	scale	0.91	0.78	0.89	0.86
26	Force	0.1	poly	4	scale	0.92	0.83	0.90	0.87
26	Force	0.1	poly	5	scale	0.91	0.83	0.89	0.86
26	Force	1	poly	3	auto	0.87	0.67	0.86	0.79
26	Force	1	poly	4	auto	0.85	0.68	0.84	0.78
26	Force	1	poly	5	auto	0.82	0.70	0.80	0.76
26	Force	1	poly	3	scale	0.92	0.82	0.91	0.88
26	Force	1	poly	4	scale	0.92	0.82	0.90	0.88
26	Force	1	poly	5	scale	0.91	0.84	0.90	0.87

# of Trials	Feature	С	Kernel	Dograd	Gamma	(Class Accurac	;y	Total
# Of Thats	Туре	C	Kemei	Degree	Gaillilla	WH	CD	СР	Accuracy
26	Force	10	poly	3	auto	0.89	0.77	0.86	0.84
26	Force	10	poly	4	auto	0.88	0.76	0.85	0.83
26	Force	10	poly	5	auto	0.87	0.75	0.82	0.81
26	Force	10	poly	3	scale	0.92	0.81	0.88	0.83
26	Force	10	poly	4	scale	0.92	0.82	0.89	0.85
26	Force	10	poly	5	scale	0.90	0.84	0.87	0.88
26	Force	0.1	rbf	-	auto	0.87	0.61	0.90	0.78
26	Force	0.1	rbf	-	scale	0.90	0.76	0.86	0.84
26	Force	1	rbf	-	auto	0.88	0.70	0.90	0.82
26	Force	1	rbf	-	scale	0.92	0.81	0.90	0.87
26	Force	10	rbf	-	auto	0.91	0.77	0.89	0.85
26	Force	10	rbf	-	scale	0.92	0.83	0.89	0.86