STAT 431 — Applied Bayesian Analysis — Course Notes

More About Conjugacy

Fall 2022

Perspective

Let the data model for Y with parameter θ be a family ${\mathcal F}$ of distributions with densities

$$f(\boldsymbol{y} \mid \boldsymbol{\theta})$$

Consider a family ${\mathcal P}$ of distributions for ${m heta}$ with densities

$$\pi(\boldsymbol{\theta} \mid \boldsymbol{\phi})$$

where the index ϕ is a **hyperparameter**.

Then \mathcal{P} is **conjugate** for \mathcal{F} if:

Using the prior from ${\mathcal P}$ with density

$$\pi(\boldsymbol{\theta} \mid \boldsymbol{\phi}_0)$$

yields a posterior from ${\mathcal P}$ with density

$$\pi(\boldsymbol{\theta} \mid \boldsymbol{\phi}_1(\boldsymbol{\phi}_0, \boldsymbol{y}))$$

regardless of the observed data values y.

Note that the posterior's hyperparameter

$$\boldsymbol{\phi}_1 = \boldsymbol{\phi}_1(\boldsymbol{\phi}_0, \boldsymbol{y})$$

depends on ϕ_0 and y.

Example: Normal Mean

Family \mathcal{F} is defined by

$$Y_1, \ldots, Y_n \mid \mu \sim iid \operatorname{Normal}(\mu, 1/\tau^2)$$

with τ^2 known, so that

$$\theta \equiv \mu \text{ only.}$$

Take family \mathcal{P} to be

$$Normal(\mu_*, 1/\tau_*^2) \qquad -\infty < \mu_* < \infty \qquad \tau_*^2 > 0$$

so that

$$\phi \equiv (\mu_*, \tau_*^2)$$

Recall: Using the prior for μ from $\mathcal P$ that has ϕ equal to

$$\phi_0 = (\mu_0, \tau_0^2)$$

led to a posterior from ${\cal P}$ that has ϕ equal to

$$\phi_1 = \phi_1(\phi_0, \mathbf{y})$$

$$= (\mu_1, \tau_1^2) = \left(\frac{n\tau^2 \bar{y} + \tau_0^2 \mu_0}{n\tau^2 + \tau_0^2}, n\tau^2 + \tau_0^2\right)$$

Regard ϕ_1 as having been "updated" from ϕ_0 by the data y.

Natural Conjugacy

Let Y_1, \ldots, Y_n be *iid* with common density

$$f(y \mid \boldsymbol{\theta})$$

Consider specifying values

$$\boldsymbol{\phi}_0 = \left(y_1^0, \dots, y_m^0, m\right)$$

where m is a positive integer and y_1^0, \ldots, y_m^0 are values possible under f, such that

$$\pi(\boldsymbol{\theta} \mid \boldsymbol{\phi}_0) \propto \prod_{j=1} f(y_j^0 \mid \boldsymbol{\theta})$$

is a legitimate density in θ .

Then the class \mathcal{P} of distributions defined by densities of that form is conjugate.

We call it the **natural conjugate** prior family.

See BSM, Section 2.1.5, for proof of conjugacy and application to

binomial data (Bernoulli trials):

Beta is natural conjugate

► Poisson counts:

Gamma is natural conjugate

mean-only normal samples:

Normal is natural conjugate

Mixture Densities

Suppose we have two different PDFs for θ :

$$\pi_1(\boldsymbol{\theta})$$
 $\pi_2(\boldsymbol{\theta})$

Then, if $0 \le q \le 1$,

$$q \pi_1(\boldsymbol{\theta}) + (1-q) \pi_2(\boldsymbol{\theta})$$

is also a PDF for θ . (Similarly for two PMFs.)

We call it a **mixture** density, and may use it as a prior for θ .

-

For example, a half-and-half mixture of $\mathrm{Normal}(0,1)$ and $\mathrm{Normal}(4,4)$ has density

$$\pi(\theta) = \frac{1}{2} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\theta^2} + \frac{1}{2} \cdot \frac{1}{\sqrt{2\pi \cdot 4}} e^{-\frac{1}{2\cdot 4}(\theta - 4)^2}$$

More generally, a mixture density can have J components:

$$\pi(\boldsymbol{\theta}) = \sum_{j=1}^{J} q_j \, \pi_j(\boldsymbol{\theta})$$

where all $q_i \geq 0$ and $q_1 + \cdots + q_J = 1$.

 q_1, \ldots, q_J are the mixture **weights**.

Conjugate Mixtures

Suppose family \mathcal{P} of distributions for $\boldsymbol{\theta}$ (all having densities) is conjugate for family \mathcal{F} of data distributions for \boldsymbol{Y} (all having densities).

Then the family $\widetilde{\mathcal{P}}$ of distributions with mixture densities

$$\pi(\boldsymbol{\theta}) = \sum_{j=1}^{J} q_j \, \pi_j(\boldsymbol{\theta})$$

$$q_j \ge 0, \qquad q_1 + \dots + q_J = 1, \qquad \pi_j \text{ from } \mathcal{P}$$

is also conjugate for \mathcal{F} .

Reason:

$$p(\boldsymbol{\theta} \mid \boldsymbol{y}) \propto f(\boldsymbol{y} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta}) = f(\boldsymbol{y} \mid \boldsymbol{\theta}) \sum_{j=1}^{J} q_{j} \pi_{j}(\boldsymbol{\theta})$$

Bayes' rule gives $f(\boldsymbol{y} \mid \boldsymbol{\theta}) \, \pi_j(\boldsymbol{\theta}) = m_j(\boldsymbol{y}) \, p_j(\boldsymbol{\theta} \mid \boldsymbol{y})$, so

$$p(\boldsymbol{\theta} \mid \boldsymbol{y}) \propto \sum_{j=1}^{J} q_{j} f(\boldsymbol{y} \mid \boldsymbol{\theta}) \pi_{j}(\boldsymbol{\theta}) = \sum_{j=1}^{J} q_{j} m_{j}(\boldsymbol{y}) p_{j}(\boldsymbol{\theta} \mid \boldsymbol{y})$$

If Q_1, \ldots, Q_J are $q_1 m_1(\boldsymbol{y}), \ldots, q_J m_J(\boldsymbol{y})$ after normalizing them to sum to 1, we get

$$p(\boldsymbol{\theta} \mid \boldsymbol{y}) = \sum_{j=1}^{J} Q_{j} p_{j}(\boldsymbol{\theta} \mid \boldsymbol{y})$$

Since each p_j is from \mathcal{P} (by conjugacy), the posterior is in $\widetilde{\mathcal{P}}$.

See BSM, Section 2.1.8 for an example.

Note: Computing the updated weights Q_1, \ldots, Q_J requires evaluating the marginal density values $m_1(\mathbf{y}), \ldots, m_J(\mathbf{y})$.

Although evaluating marginal densities is usually hard, it is often possible analytically for "natural" conjugate families.