

	WYPEŁNIA ZDAJĄCY	
KOD	PESEL	miejsce na naklejkę

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

Część I

DATA: kwiecień 2020 r.

CZAS PRACY: 60 minut

LICZBA PUNKTÓW DO UZYSKANIA: 15

MIN-R1	1 P

WYPEŁNIA ZDAJĄCY	WYBRANE:	
	(system operacyjny)	
	(program użytkowy)	
	(środowisko programistyczne)	

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamietaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz zadeklarowany (wybrany) przez Ciebie na egzamin system operacyjny, program użytkowy oraz środowisko programistyczne.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w notacji wybranej przez siebie: listy kroków, pseudokodu lub języka programowania, który wybierasz na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

NOWA FORMUŁA

Zadanie 1. Rekurencja

Dana jest dodatnia liczba całkowita n oraz uporządkowana rosnąco tablica różnych liczb całkowitych T[1..n]. Przeanalizuj następującą funkcję rekurencyjnq, której parametrami są liczby całkowite x, p, k, przy czym $1 \le p \le k \le n$.

```
Rek(x, p, k)

jeżeli p < k

s \leftarrow (p + k) div 2

jeżeli T[s] \ge x

wynikiem jest Rek(x, p, s)

w przeciwnym razie

wynikiem jest Rek(x, s + 1, k)

w przeciwnym razie

jeżeli T[p] = x

wynikiem jest p

w przeciwnym razie

wynikiem jest p

w przeciwnym razie

wynikiem jest p
```

Uwaga: div jest operatorem oznaczającym część całkowitą z dzielenia.

Zadanie 1.1. (0-2)

Podaj największą i najmniejszą możliwą liczbę wywołań funkcji Rek w wyniku wywołania Rek(2020, 5, 14) dla n=17 i pewnej, uporządkowanej rosnąco tablicy T[1..17] różnych liczb całkowitych.

Uwaga: Pierwsze wywołanie funkcji *Rek*(2020, 5, 14) włączamy do ogólnej liczby wywołań.

Odpowiedź:

najmniejsza liczba wywołań

największa liczba wywołań

Miejsce na obliczenia

	_			
704	ania	1 7	α	7)
<i>7</i> / <i>A</i> U	anie	1.4.	(U-	-41

Podaj, jakie będą wartości parametrów przekazywanych do funkcji Rek w kolejnych jej wywołaniach dla n = 11, tablicy T = [1, 5, 8, 10, 12, 14, 19, 20, 23, 30, 38] oraz pierwszego wywołania Rek(7, 1, 11).

Ko	ole	jn	e v	vy	W	oła	nia	:																									
••	•••	•••	••		•••	•••	• • • •	• •	•••	• • •		• • •			•••	•••	• • • •	•••	• • • •	•••		• • •	• • • •		•••	• • • •	 • • • •	•••	• • • •	•••	• • • •	• • •	••
• • •	•••	•••		•••	• • •	• • •	• • •	•••	•••	•••	•••	•••	•••	• • • •		•••	• • • •	• • • •	•••		• • •	• • • •	•••		•••	•••	 •••	• • • •	•••	• • • •		•••	• •
		•••					• • •				•••	•••		• • • •					• • •		• • •		•••	• • • •	•••	•••	 •••		•••		• • • •	• • •	•••
•••	•••	•••		•••	• • •	•••	• • •	•••	•••	•••	•••	•••	•••	• • • •		•••	• • • •	• • • •	• • •		• • •		•••		•••	•••	 •••		•••	• • • •	••••	• • •	•••
M	iej	SC	e 1	ıa	ob	lic	zer	iia	l																								

Zadanie 1.3. (0–1)

Złożoność czasowa algorytmu opisanego funkcją Rek dla parametrów x = 1, p = 1, k = n jest

- A. sześcienna.
- **B.** kwadratowa.
- C. liniowa.
- D. logarytmiczna.

Wybierz właściwą odpowiedź.

Zadanie 2. Moda

Moda (dominanta) zestawu danych to element, który występuje w tym zestawie najczęściej. Np. dla zestawu danych 2, 3, 4, 2, 3, 5, 2, 100, 67 liczba 2 jest *modą* tego zestawu.

W zestawie danych 2, 3, -4, 2, 3, -5, 2, 3 są dwie *mody*: 2 i 3.

Jeśli wszystkie elementy zestawu występują w nim z taką samą liczebnością, to przyjmujemy, że taki zestaw nie ma *mody*. Np. w zestawie danych 4, 4, 2, 3, 2, 3 nie ma *mody*.

7 1 .	2 1	(0	4 \
Zadanie	. Z. I.	. (()-	=11)

	uu	1110		T• (0 .	L)																									
									тó																			ıyc	h?	Po	daj
prz	zyk	ład	10	el	em	ent	ow	ego) Z(esta	wu	ı da	ıny	ch	z d	okł	adı	nie	trz	em	a r	óżn	yn	ni n	noa	lan	ıi.				
• • •	• • • •	• • •		• • •	• • • •	• • • •	•••	• • • •	• • •		• • •	• • • •	• • •		• • • •	• • •		•••	• • • •	• • •		• • •	• • •	• • •	• • • •	• • •		• • • •	• • •	• • • •	•
•••	• • • •	•••	• • • •	• • •	• • • •	• • • •	•••	• • • •	•••	• • • •	• • •	• • • •	•••	• • • •	• • • •	• • • •	• • • •	•••	• • • •	•••		•••	• • • •	• • •	• • • •	• • •	• • • •	• • • •	•••	• • • •	•
• • •		• • •		• • •			•••		• • •		• • •		• • •		• • • •			•••		• • •		• • • •		• • •		• • •			• • •		•
Mi	ejs	ce	na	obl	icz	eni	a.																								
1	1	1	1	1	1	1	1	1	1																						

Zadanie 2.2. (0–5)

W wybranej przez siebie notacji (w postaci pseudokodu, listy kroków, lub języka programowania) napisz algorytm zgodny z poniższa specyfikacja:

Dane:

n – dodatnia liczba całkowita większa niż 2

T[1..n] – tablica n liczb całkowitych, w której występuje dokładnie jedna moda

Wynik:

m − *moda* zestawu liczb zapisanego w tablicy *T*

Uwaga: w zapisie możesz wykorzystać tylko operacje arytmetyczne (dodawanie, odejmowanie, mnożenie, dzielenie, dzielenie całkowite, reszta z dzielenia), odwoływanie się do pojedynczych elementów tablicy, porównywanie liczb, instrukcje sterujące i przypisania do zmiennych lub samodzielnie napisane funkcje zawierające wyżej wymienione operacje.

Algorytm

Zadanie 3. Test (0-4)

Oceń prawdziwość podanych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.

W każdym zadaniu punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

Zadanie 3.1. (0-1)

W tabeli T zapisano wiele rekordów danych zawierających informacje o zawodnikach. Pola rekordu to: *id*, *nazwisko*, *imie*, *plec*, *wzros*t, *numer_startowy*, *punkty*, *id_klubu*.

Polecenie SQL obliczające średnią punktów zawodników z klubu o id_klubu równym liczbie 100, może mieć postać:

1.	<pre>select count(punkty) as srednia from T where id_klubu=100;</pre>	P	F
2.	<pre>select avg(punkty) as srednia from T where id=100;</pre>	P	F
3.	<pre>select sum(punkty) from T where id_klubu=100;</pre>	P	F
4.	<pre>select avg(punkty) from T where id_klubu=100;</pre>	P	F

Zadanie 3.2. (0-1)

Różnica 11001001₂ –11111110₂ (dwóch liczb zapisanych w systemie binarnym) jest równa

1.	$4C_{16}$	P	F
2.	1138	P	F
3.	10234	P	F
4.	10010102	P	F

Zadanie 3.3. (0–1)

Protokół HTTPS

1.	jest protokołem pobierania poczty elektronicznej ze zdalnego serwera przez połączenie TCP/IP.	P	F
2.	jest szyfrowaną wersją protokołu HTTP.	P	F
3.	przydziela adresy IP poszczególnym komputerom.	P	F
4.	obsługuje system nazywania domen.	P	F

Zadanie 3.4. (0–1)

Liczba, która w zapisie binarnym ma dokładnie 16 cyfr i jedynkę na najbardziej znaczącej pozycji ma w zapisie

1.	czwórkowym dokładnie 9 cyfr	P	F
2.	ósemkowym dokładnie 7 cyfr.	P	F
3.	szesnastkowym dokładnie 4 cyfry.	P	F
4.	dziesiętnym dokładnie 5 cyfr.	P	F

BRUDNOPIS (nie podlega ocenie)