HW Assignment 1

Due date: Thursday 10/3/2016

Question 1

1. Plot the signal

$$u(t) = \begin{cases} -1 & t \in [0,1] \\ 2-t & t \in [1,2] \\ 0 & else \end{cases}$$

- 2. Given the system $T[x](t) = x\left(\frac{3}{2}t + 1\right)$, plot the effect of T on u(t).
- 3. Is T linear? Is T time-invariant?
- 4. Given the system $R[x](t) = x^2(t)$, plot the effect of R[T[x]](t) on u(t).
- 5. Is *R* linear? Is *R* time-invariant?
- 6. Is $R \circ T$ linear? Is $R \circ T$ time-invariant?

Question 2

Find the energy of the signal u(t), v(t), u(t) + v(t) and u(t) - v(t) for the following pairs of signals:

1.
$$u(t) = \begin{cases} 1 & t \in [0,2] \\ 0 & else \end{cases}$$
 $v(t) = \begin{cases} 1 & t \in [0,1] \\ -1 & t \in [1,2] \\ 0 & else \end{cases}$.

Can you make any observation from these results?

Question 3

- 1. Show that the derivative operator $D[x](t) = \frac{d}{dt}x(t)$ is LTI.
- 2. Show that the second derivative operator $D^2[x](t) = \frac{d^2}{dt^2}x(t)$ is LTI. Use two methods direct and by using the result of the previous question.
- 3. Prove that the nth derivative operator $D^n[x](t) = \frac{d^n}{dt^n}x(t)$ is LTI (i.e linear <u>and</u> time-invariant), <u>hint</u>: prove by induction.

Question 4

Let T_a , T_b be two LTI systems.

- 1. Show that $T_{sum} = T_a + T_b$ is LTI (i.e linear <u>and</u> time-invariant).
- 2. Show that $T_{series} = T_b [T_a[x]](t)$ is time-invariant (we showed linearity in class).

Question 5 - generalization of question 3 and 4

Given a system T, we denote by T^n the application of T to the signal n times in series (see example in the diagram).

- 1. Show that if T is LTI than T^n is LTI.
- 2. Show that if T is LTI than the polynomial system $\sum_{n} \alpha_{n} T^{n}$ is LTI.