

3 1176 00154 3694

NASA CR-159134

NASA Contractor Report.159134

NASA-CR-159134
19800006811

Exploratory Studies of the Cruise Performance of Upper Surface Blown Configurations

Experimental Program - High - Speed Force Tests

J. A. Braden, J. P. Hancock,
K. P. Burdges, and J. E. Hackett

LOCKHEED-GEORGIA COMPANY
Marietta, Georgia 30063

NASA Contract NAS1-13871
OCTOBER 1979

DEC 17 1979

LANGLEY RESEARCH CENTER
HAMPTON, VIRGINIA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665
AC 804 827-3966

FOREWORD

This document is submitted in accordance with the requirements of NASA Contract NAS1-13871, Exploratory Studies of the Cruise Performance of Upper Surface Blown Configurations. W. C. Sleeman, Jr. is the NASA-Langley Contract Monitor and J. A. Braden is the Lockheed-Georgia Project Manager.

The technical results under this contract are presented in five reports.

For convenience, the overall program documentation is summarized below:

DOCUMENTATION SUMMARY

<u>CR Number</u>	<u>Title</u>
CR-3193	Summary Report
CR-3192	Experimental Program - Test Facilities, Model Design, Instrumentation, and Low-Speed, High-Lift Tests
CR-159134	Experimental Program - High-Speed Force Tests
CR-159135	Experimental Program - High-Speed Pressure Tests
CR-159136	Program Analysis and Conclusions

TABLE OF CONTENTS

<u>Section</u>	<u>Title</u>	<u>Page</u>
	FOREWORD	ii
	LIST OF FIGURES	v
	SUMMARY	xviii
1.0	INTRODUCTION	1
2.0	SYMBOLS	2
3.0	MODEL AND INSTRUMENTATION DETAILS	4
3.1	Model Design	4
3.2	Data Acquisition System	13
4.0	TEST DESCRIPTION	14
4.1	Test Objectives	14
4.2	Run Schedule Summary	14
5.0	STRAIGHT WING TEST RESULTS	18
5.1	Clean Wing-Body	18
5.2	Data for Pylon Mounted versus Integrated Nacelle Comparison	22
5.3	Data for Faired-Over versus Flo-Thru Nacelle Comparison	22
5.4	Results from CFF Tests, Standard Configurations	29
5.5	Results from 4x4 Tests, Standard Configurations	29
6.0	SWEPT WING TEST RESULTS	114
6.1	Clean Wing-Body	114
6.2	Data for Pylon Mounted Nacelle Configuration	118
6.3	Results from CFF Tests, Standard Configurations	118

TABLE OF CONTENTS (CONT'D)

<u>Section</u>	<u>Title</u>	<u>Page</u>
7.0	NOZZLE CALIBRATION	151
7.1	Basic Isolated Nozzle Performance	151
7.2	Summary of Nozzle Performance Coefficients, Isolated & Installed	180
7.3	Nozzle Thrust Coefficients for Wind-On Data Reduction	186
8.0	OIL FLOW PHOTOGRAPHS	199
9.0	REFERENCES	212

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>	<u>Page</u>
1	Dual D-duct installation on 3-D swept wing force model in CFF.	5
2	AR4 nozzle installation on 3-D straight wing force model in 4x4.	5
3	Straight wing planform and instrumentation layout.	7
4	Swept wing planform and instrumentation layout.	8
5	Force model fuselage with provision for mounting either straight wing or swept wing.	9
6	Summary of model and test hardware components.	10
7	Key dimensions for nozzles in test matrix.	12
8	Run schedule summary for CFF force tests.	15
9	Run schedule summary for 4 x 4 force tests.	16
10	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$.	19
11	Variation of measured lift coefficient with measured drag coefficient, $R_{NC} = 3.5 \times 10^6$.	20
12	Variation of measured lift coefficient with measured moment coefficient, $R_{NC} = 3.5 \times 10^6$.	21
13	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $H_j/p_\infty = RPR$.	23
14	Variation of measured lift coefficient with measured drag coefficient, $R_{NC} = 3.5 \times 10^6$, $H_j/p_\infty = RPR$.	24
15	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $H_j/p_\infty = RPR$	25
16	Variation of measured lift coefficient with measured drag coefficient, $R_{NC} = 3.5 \times 10^6$, $H_j/p_\infty = RPR$.	26
17	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $H_j/p_\infty = RPR$.	27
18	Variation of measured lift coefficient with measured drag coefficient, $R_{NC} = 3.5 \times 10^6$, $H_j/p_\infty = RPR$.	28

LIST OF FIGURES (CONT'D)

<u>Figure</u>	<u>Title</u>	<u>Page</u>
19	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60.$	30
20	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60.$	31
21	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68.$	32
22	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68.$	33
23	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.72.$	34
24	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.72.$	35
25	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio; $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60.$	36
26	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60.$	37
27	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68.$	38
28	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68.$	39
29	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.72.$	40
30	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.72.$	41
31	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60.$	42

LIST OF FIGURES (CONT'D)

<u>Figure</u>	<u>Title</u>	<u>Page</u>
32	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.	43
33	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.72$.	44
34	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.72$.	45
35	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_\infty = 0.60$.	46
36	Variation of measured lift coefficient with angle of attack and moment coefficient, $M_\infty = 0.60$.	47
37	Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_\infty = 0.60$.	48
38	Variation of measured drag coefficient with nozzle pressure ratio, $M_\infty = 0.60$.	49
39	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_\infty = 0.68$.	50
40	Variation of measured lift coefficient with angle of attack and moment coefficient, $M_\infty = 0.68$.	51
41	Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_\infty = 0.68$.	52
42	Variation of measured drag coefficient with nozzle pressure ratio, $M_\infty = 0.68$.	53
43	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_\infty = 0.70$.	54
44	Variation of measured lift coefficient with angle of attack and moment coefficient, $M_\infty = 0.70$.	55
45	Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_\infty = 0.70$.	56
46	Variation of measured drag coefficient with nozzle pressure ratio, $M_\infty = 0.70$.	57

LIST OF FIGURES (CONT'D)

<u>Figure</u>	<u>Title</u>	<u>Page</u>
47	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_{\infty} = 0.72$.	58
48	Variation of measured lift coefficient with angle of attack and moment coefficient, $M_{\infty} = 0.72$.	59
49	Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_{\infty} = 0.72$.	60
50	Variation of measured drag coefficient with nozzle pressure ratio, $M_{\infty} = 0.72$.	61
51	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_{\infty} = 0.60$.	62
52	Variation of measured lift coefficient with angle of attack and moment coefficient, $M_{\infty} = 0.60$.	63
53	Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_{\infty} = 0.60$.	64
54	Variation of measured drag coefficient with nozzle pressure ratio, $M_{\infty} = 0.60$.	65
55	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_{\infty} = 0.68$.	66
56	Variation of measured lift coefficient with angle of attack and moment coefficient, $M_{\infty} = 0.68$.	67
57	Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_{\infty} = 0.68$.	68
58	Variation of measured drag coefficient with nozzle pressure ratio, $M_{\infty} = 0.68$.	69
59	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_{\infty} = 0.72$.	70
60	Variation of measured lift coefficient with angle of attack and moment coefficient, $M_{\infty} = 0.72$.	71
61	Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_{\infty} = 0.72$.	72
62	Variation of measured drag coefficient with nozzle pressure ratio, $M_{\infty} = 0.72$.	73

LIST OF FIGURES (CONT'D)

<u>Figure</u>	<u>Title</u>	<u>Page</u>
63	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_{\infty} = 0.60.$	74
64	Variation of measured lift coefficient with angle of attack and moment coefficient, $M_{\infty} = 0.60.$	75
65	Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_{\infty} = 0.60.$	76
66	Variation of measured drag coefficient with nozzle pressure ratio, $M_{\infty} = 0.60.$	77
67	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_{\infty} = 0.68.$	78
68	Variation of measured lift coefficient with angle of attack and moment coefficient, $M_{\infty} = 0.68.$	79
69	Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_{\infty} = 0.68.$	80
70	Variation of measured drag coefficient with nozzle pressure ratio, $M_{\infty} = 0.68.$	81
71	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_{\infty} = 0.72.$	82
72	Variation of measured lift coefficient with angle of attack and moment coefficient, $M_{\infty} = 0.72.$	83
73	Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_{\infty} = 0.72.$	84
74	Variation of measured drag coefficient with nozzle pressure ratio, $M_{\infty} = 0.72.$	85
75	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_{\infty} = 0.60.$	86
76	Variation of measured lift coefficient with angle of attack and moment coefficient, $M_{\infty} = 0.60.$	87
77	Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_{\infty} = 0.60.$	88
78	Variation of measured drag coefficient with nozzle pressure ratio, $M_{\infty} = 0.60.$	89

LIST OF FIGURES (CONT'D)

<u>Figure</u>	<u>Title</u>	<u>Page</u>
79	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_{\infty} = 0.68.$	90
80	Variation of measured lift coefficient with angle of attack and moment coefficient, $M_{\infty} = 0.68.$	91
81	Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_{\infty} = 0.68.$	92
82	Variation of measured drag coefficient with nozzle pressure ratio, $M_{\infty} = 0.68.$	93
83	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_{\infty} = 0.72.$	94
84	Variation of measured lift coefficient with angle of attack and moment coefficient, $M_{\infty} = 0.72.$	95
85	Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_{\infty} = 0.72.$	96
86	Variation of measured drag coefficient with nozzle pressure ratio, $M_{\infty} = 0.72.$	97
87	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_{\infty} = 0.60.$	98
88	Variation of measured lift coefficient with angle of attack and moment coefficient, $M_{\infty} = 0.60.$	99
89	Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_{\infty} = 0.60.$	100
90	Variation of measured drag coefficient with nozzle pressure ratio, $M_{\infty} = 0.60.$	101
91	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_{\infty} = 0.68.$	102
92	Variation of measured lift coefficient with angle of attack and moment coefficient, $M_{\infty} = 0.68.$	103
93	Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_{\infty} = 0.68.$	104
94	Variation of measured drag coefficient with nozzle pressure ratio, $M_{\infty} = 0.68.$	105

LIST OF FIGURES (CONT'D)

<u>Figure</u>	<u>Title</u>	<u>Page</u>
95	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_{\infty} = 0.$	106
96	Variation of measured lift coefficient with angle of attack and moment coefficient, $M_{\infty} = 0.72.$	107
97	Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_{\infty} = 0.72.$	108
98	Variation of measured drag coefficient with nozzle pressure ratio, $M_{\infty} = 0.72.$	109
99	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_{\infty} = 0.68.$	110
100	Variation of measured lift coefficient with angle of attack and moment coefficient, $M_{\infty} = 0.68.$	111
101	Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_{\infty} = 0.68.$	112
102	Variation of measured drag coefficient with nozzle pressure ratio, $M_{\infty} = 0.68.$	113
103	Variation of measured lift coefficient with measured drag coefficient, $R_{NC} = 3.5 \times 10^6.$	
104	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6.$	116
105	Variation of measured lift coefficient with measured moment coefficient, $R_{NC} = 3.5 \times 10^6.$	117
106	Variation of measured lift coefficient with measured drag coefficient, $R_{NC} = 3.5 \times 10^6, H_j/p_{\infty} = RPR.$	119
107	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6, H_j/p_{\infty} = RPR.$	120
108	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6, M_{\infty} = 0.60.$	121
109	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6, M_{\infty} = 0.60.$	122

LIST OF FIGURES (CONT'D)

<u>Figure</u>	<u>Title</u>	<u>Page</u>
110	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68$.	123
111	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68$.	124
112	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.73$.	125
113	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.73$.	126
114	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.	127
115	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.	128
116	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68$.	129
117	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68$.	130
118	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.73$.	131
119	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.73$.	132
120	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.	133
121	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.	134
122	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68$.	135

LIST OF FIGURES (CONT'D)

<u>Figure</u>	<u>Title</u>	<u>Page</u>
123	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68$.	136
124	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.73$.	137
125	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.73$.	138
126	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.	139
127	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.	140
128	Variotion of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68$.	141
129	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68$.	142
130	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.73$.	143
131	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.73$.	144
132	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.	145
133	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.	146
134	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68$.	147
135	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68$.	148
136	Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.73$.	149

LIST OF FIGURES (CONT'D)

<u>Figure</u>	<u>Title</u>	<u>Page</u>
137	Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.73$.	150
138	Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_2E .	152
139	Isolated nozzle performance coefficients from static test rig, N_2E .	153
140	Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_2 .	154
141	Isolated nozzle performance coefficients from static test rig, N_2 .	155
142	Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_3 .	156
143	Isolated nozzle performance coefficients from static test rig, N_3 .	157
144	Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_4 .	158
145	Isolated nozzle performance coefficients from static test rig, N_4 .	159
146	Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_5 .	160
147	Isolated nozzle performance coefficients from static test rig, N_5 .	161
148	Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_3E .	162
149	Isolated nozzle performance coefficients from static test rig, N_3E .	163
150	Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_4E .	164
151	Isolated nozzle performance coefficients from static test rig, N_4E .	165
152	Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_1E .	166

LIST OF FIGURES (CONT'D)

<u>Figure</u>	<u>Title</u>	<u>Page</u>
153	Isolated nozzle performance coefficients from static test rig, N_{1E} .	167
154	Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_g .	168
155	Isolated nozzle performance coefficients from static test rig, N_g .	169
156	Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_3 .	170
157	Isolated nozzle performance coefficients from static test rig, N_3 .	171
158	Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_8^1 .	172
159	Isolated nozzle performance coefficients from static test rig, N_8^1 .	173
160	Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_8^2 .	174
161	Isolated nozzle performance coefficients from static test rig, N_8^2 .	175
162	Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_{11} .	176
163	Isolated nozzle performance coefficients from static test rig, N_{11} .	177
164	Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_{12} .	178
165	Isolated nozzle performance coefficients from static test rig, N_{12} .	179
166	Summary of nozzle performance coefficients, isolated and installed.	181
167	Variation of nozzle gross thrust with Mach No. and pressure ratio, nozzle N_{2E} .	187
168	Variation of nozzle gross thrust with Mach No. and pressure ratio, nozzle N_{3E} .	188

LIST OF FIGURES (CONT'D)

<u>Figure</u>	<u>Title</u>	<u>Page</u>
169	Variation of nozzle gross thrust with Mach No. and pressure ratio, nozzle N_{4E} .	189
170	Variation of nozzle gross thrust with Mach No. and pressure ratio, nozzle N_2 (circular).	190
171	Variation of nozzle gross thrust with Mach No. and pressure ratio, nozzle N_{3B} .	191
172	Variation of nozzle gross thrust with Mach No. and pressure ratio, nozzle N_4 .	192
173	Variation of nozzle gross thrust with Mach No. and pressure ratio, nozzle N_5 .	193
174	Variation of nozzle gross thrust with Mach No. and pressure ratio, nozzle $N_8^1 + N_8^2$.	194
175	Variation of nozzle gross thrust with Mach No. and pressure ratio, nozzle N_8^2 .	195
176	Variation of nozzle gross thrust with Mach No. and pressure ratio, nozzle N_{11} .	196
177	Variation of nozzle gross thrust with Mach No. and pressure ratio, nozzle N_{12} .	197
178	Variation of nozzle gross thrust with Mach No. and pressure ratio, nozzle N_{13} .	198
179	Oil flow pattern, nozzle N_{1E} , $M_\infty = 0.70$, $H_j/p_\infty = 2.6$, $\alpha = 2.6^\circ$.	200
180	Oil flow pattern, nozzle N_{3E} , $M_\infty = 0.70$, $H_j/p_\infty = 2.0$, $\alpha = 2.6^\circ$.	201
181	Oil flow pattern, nozzle N_{4E} , $M_\infty = 0.70$, $H_j/p_\infty = 2.6$, $\alpha = 2.6^\circ$.	202
182	Oil flow pattern, nozzle N_2 , $M_\infty = 0.68$, $H_j/p_\infty = RPR$, $\alpha = 3^\circ$.	203
183	Oil flow pattern, nozzle N_5 , $M_\infty = 0.70$, $H_j/p_\infty = 2.6$, $\alpha = 2.6^\circ$.	204
184	Oil flow pattern, clean swept wing, $M_\infty = 0.75$, $\alpha = 3^\circ$.	205

LIST OF FIGURES (CONT'D)

<u>Figure</u>	<u>Title</u>	<u>Page</u>
185	Oil flow pattern, nozzle N ₁₁ , $M_{\infty} = 0.75$, $H_j/p_{\infty} = 2.6$, $\alpha = 2.6^\circ$.	206
186	Oil flow pattern, nozzle N ₈ ¹ , $M_{\infty} = 0.75$, $H_j/p_{\infty} = 2.6$, $\alpha = 2.6^\circ$.	207
187	Oil flow pattern, nozzles N ₈ ¹ & N ₈ ² , $M_{\infty} = 0.70$, $H_j/p_{\infty} = 1.8$, $\alpha = 2.6^\circ$.	208
188	Oil flow pattern, nozzle N ₁₂ , $M_{\infty} = 0.75$, $H_j/p_{\infty} = 2.6$, $\alpha = 2.6^\circ$.	209
189	Oil flow pattern, nozzle N ₁₃ , $M_{\infty} = 0.75$, $H_j/p_{\infty} = 2.6$, $\alpha = 2.6^\circ$.	210
190	Oil flow pattern, pylon mounted nacelle with nozzle N ₂ , $M_{\infty} = 0.75$, $H_j/p_{\infty} = RPR$, $\alpha = 2.6^\circ$.	211

SUMMARY

The purpose and scope of the Cruise Performance Data Base Contract (NAS1-13871) are reviewed briefly in Section 1 of this document. Pertinent model and installation details are then described briefly. Objectives of the force test are discussed and the run schedule is outlined. Data are presented for testing performed in two separate facilities. These are the Lockheed-Georgia Compressible Flow Facility (CFF) and Lockheed California 4 x 4 Blowdown Tunnel. For this type of test, the primary difference between the two facilities is test section size. The CFF test section is 50.8 x 71.1 cm (20 x 28 in.) while the 4 x 4 test section is roughly a square 122 cm (48 in.) on a side. The effects of a wide range of nozzle geometric variations are covered by the data. Nozzle aspect ratio, boattail angle and chordwise position are among the more important parameters investigated. Both straight and swept wing aircraft configurations were simulated. Each of the study configurations was tested across a range of nozzle pressure ratios, lift coefficients and Mach numbers.

1.0 INTRODUCTION

In early 1975, the NASA awarded a contract (NAS1-13871) to the Lockheed-Georgia Company for the acquisition of a high-speed, experimental data base for aircraft configurations featuring nacelles mounted on the upper wing surface. This design concept, known as USB (upper-surface blowing), had received earlier, experimental endorsements as a viable means of achieving moderate-to-good powered lift performance along with beneficial noise reduction in the STOL environment. In the interest of further development of the USB-system, the contractual work performed by the Lockheed-Georgia Company emphasizes an exploratory investigation of the transonic cruise characteristics of USB nacelle-wing combinations. Included in the Program Plan is the commitment to perform three dimensional force tests of a selected range of nacelle/wing/fuselage combinations. This effort is an important part of the Task II, Cruise Performance Data Base, which is described in CR-3193. The force test results provide comparative values of total configuration performance parameters not readily obtained in any other way. They also provided a basis for correlation of the analytical and pressure data, as performed in CR-159136, Program Analysis and Conclusions.

2.0 SYMBOLS

Dimensional data are presented herein in both the International System of Units (SI) and the U. S. Customary Units. The measurements and calculations were made in the U. S. Customary Units.

A	area, cm^2 (in. 2)
A5	nozzle exit area, cm^2 (in. 2)
AR	aspect ratio
BL	abbreviation for "boundary-layer"
b	model span, cm (in.)
c	local wing chord, cm (in.)
\bar{c}	mean aerodynamic chord, cm (in.)
CD	nozzle discharge coefficient
CDC	calculated nozzle discharge coefficient
C_{DM}	measured drag coefficient, $D/q_\infty S_W$
CGS =	specific gross thrust coefficient = $(\frac{F_{gM}}{W_{aM}})/(\frac{F_{gi}}{W_{ai}})$
CGSC =	calculated specific thrust coefficient = $(\frac{F_{gc}}{W_{ac}})/(\frac{F_{gi}}{W_{ai}})$
C_{LM}	measured lift coefficient, $L/q_\infty S_W$
C_{MM}	measured pitching moment coefficient, $M_Y/q_\infty S_W$
C_μ	model gross thrust coefficient, $F_M/q_\infty S_W$
C_T	nozzle gross thrust coefficient, $F_{NZ}/q_\infty S_W$
CVE	effective nozzle velocity coefficient = V_e/V_G ;
CV5	nozzle throat velocity coefficient = V_{S_M}/V_S ;
D	drag, N(lb)
F_A	axial force, N(lb)
FGM	measured gross thrust, N (lb)

$F_{GM}/A5^*PS0$	isolated nozzle gross thrust parameter
F_M	nozzle gross thrust installed on wing, N(1b)
F_N	normal force, N(1b)
F_{NZ}	isolated nozzle gross thrust, N(1b)
H_j	jet nozzle total pressure, N/m ² (lb/in. ²)
$H_j/p_\infty, PT5M/PS0$	measured jet nozzle exit pressure ratio
L	lift, N(1b)
M_Y	model pitching moment about quarter chord, m-N (in.-1b)
$M_{YS}, MYFS$	model pitching moment about quarter chord measured statically, m-N (in.-1b)
M_∞	freestream (tunnel) Mach number
p_∞	freestream static pressure, N/m ² (lb/in. ²)
$PS0$	ambient static pressure, N/m ² (lb/in. ²)
$PT4M/PS0$	reference nozzle pressure ratio, based on nozzle internal rake
$PT5I/PS0$	ideal jet exit pressure ratio
q_∞	freestream dynamic pressure, N/m ² (lb/in. ²)
R_N	Reynolds number
R_{NC}	Reynolds number based on chord length
RPR	Ram pressure ratio
S_W	wing area, m ² (ft ²)
W_a	airflow, N/sec (lb/sec)
x	distance parallel to tunnel centerline, cm (in.)
z	vertical distance, cm (in.)
α	angle of attack, degrees
δ_j	jet deflection angle, degrees
η	percent semispan
η_t	jet turning efficiency, $\frac{\sqrt{F_N^2 + F_A^2}}{F_M}$

3.0 MODEL AND INSTRUMENTATION DETAILS

The basic objective of the model design effort was to develop a wing-nacelle arrangement which could accommodate a wide range of USB nozzle types for comparative evalution. An arrangement for metering smooth-profile, high-pressure air to the nozzle entrance was considered necessary. Means for obtaining force measurements with a high pressure air line bridging the balance were also required.

3.1 Model Design

To accomplish the desired objectives, the high-speed test configurations were developed around two wing-body combinations with untapered wings swept 0 and 25 degrees. These basic test vehicles could be combined in build-up fashion with a series of nacelle forebodies to form a wide range of powered or unpowered configurations. The choice of piped-in nozzle supply air over a powered simulator was made for simplicity and economy. A smooth flow profile at the nozzle entry was ensured by a choke plate with 0.159 cm (1/16 in.) diameter holes evenly distributed over the plate. The substitution of nacelles with other configuration designs, as well as conversion to the clean wing configurations, was made possible by the build-up design of the nacelle pylon, and nozzle mounting block.

Figure 1 shows an example of a 3-D swept wing force model installation in the CFF. Extensive filleting used to minimize the sharpness of the nacelle-wing junctures is evident in the photo. A 3-D straight wing force model installation in the Lockheed California 4 x 4 wind tunnel is pictured in Figure 2.

Subscripts

c	calculated
i	ideal
m	measured
STA 5	represents nozzle exit conditions
STA 6	represents fully-expanded flow

USB CRUISE PROGRAM

Figure 1. Dual D-duct installation on 3-D swept wing force model in CFF.

Figure 2. AR4 nozzle installation on 3-D straight wing force model in 4 x 4.

Except for the size of the test section, the setup was essentially the same here as for the CFF.

Basic planforms for the straight and swept wing models are shown in Figures 3 and 4. In both cases the planform area is 898 cm^2 (139.2 in.^2). Although locations of the surface static pressure rows are pictured, they were not hooked up during the force test phase of the program.

Details of the fuselage half-body installation are shown in Figure 5. The major portion of the fuselage, including forebody and afterbody, is identical for both straight and swept wings. A hollow center insert, however, as represented by the dashed line, is changed when a wing change is made. Spacing from the tunnel wall is set by a half-inch thick boundary layer plate represented by the section lines in A-A.

A table, shown in Figure 6, has been prepared to summarize the various model components and symbol designations. The symbol designations are used herein for defining configurations in run schedules and plot labels. Where practical, the designations selected are the first letters of the component names. For instance, F is for fuselage, W for wing, P for pylon, C for cowl (forebody), and N for nozzle. Subscripted numbers identify different variations of a given configuration type.

Key dimensions for all of the test nozzles are presented in the table of Figure 7. Four primary variables were used to establish the matrix of test nozzles. These were relative size, aspect ratio, discharge location, and

USB CRUISE PROGRAM

Figure 3. Straight wing planform and instrumentation layout

UNSWEPT WING DESIGN, W_2
 STREAMWISE SECTION, $t/c = 14.5\%$
 CHORD = 17.8 cm (7.0 in.)

Figure 4. Swept wing planform and instrumentation layout

USB CRUISE PROGRAM

Figure 5. Force model fuselage with provision for mounting either straight wing or swept wing

USB CRUISE PROGRAM

COMPONENT TYPE	COMPONENT DESCRIPTION	NO. REQD.	NEW	EXISTING	DESIGNATION
FUSELAGE	Nose	1	X		N ₁
	Afterbody	1	X		A ₁
	Center Section for High Existing Wing	1	X		F ₁
	Center Section for High New Wing	1	X		F ₂
WING	Straight Wing	1		X	W ₁
	Swept Wing ($\delta = 25^\circ$)	1	X		W ₂
	Straight Wing Tip Fairing	1	X		T ₁
	Swept Wing Tip Fairing	1	X		T ₂
	Instrumented T.E. for Swept Wing	1	X		E ₁
	Segmented Flap for Swept Wing	1	X		S ₁
	Straight Clean Wing Fairing Block	1		X	B ₁
	Swept Clean Wing Fairing Blocks	2	X		B ₂ , B ₃
	Straight Wing Nozzle Mounting Block	1		X	B ₄
	Swept Wing Nozzle Mounting Blocks	3	X		B ₅ , B ₆ , B ₇
PYLON	Straight Wing Short Pylon for Pipe Nacelles	1	X		P ₁
	Straight Wing Long Pylon for Pipe Nacelles	2	X		P ₂ , P ₃
	Swept Wing Short Pylon for Pipe Nacelles	1	X		P ₄
	Swept Wing Long Pylon for Pipe Nacelles	2	X		P ₅ , P ₆
	Straight Wing Short Pylon for Fairied Nacelles	1		X	P ₇
	Straight Wing Long Pylon for Fairied Nacelles	1	X		P ₈
	Swept Wing Long Pylon for Fairied Nacelles	2	X		P ₉ , P ₁₀
	Straight Wing Pylon for Flo-Thru Nacelles	1	X		P ₁₁
	Straight Wing Long Pylon for Streamline Nacelles	1	X		P ₁₂
	Swept Wing Long Pylon for Streamline Nacelles	1	X		P ₁₃
	Straight Wing Pylon for Integr. Pipe Nacelles	1	X		P ₁₄
	Swept Wing Pylon for Integr. Pipe Nacelles	1	X		P ₁₅
NACELLE	Short Fairied Forebody for Straight Wing	1		X	C ₁
	Long Fairied Forebody for Straight Wing	1	X		C ₂
	Long Fairied Forebody for Swept Wing	2	X		C ₃ , C ₄
	Flow-Thru Forebody for Straight Wing	1	X		C ₅
	Streamline Forebody for Straight Wing	1	X		C ₆
	Streamline Forebody for Swept Wing	1	X		C ₇
	Upstream Pipe Forebody for Large Nacelle	1	X		C ₈
	Upstream Pipe Forebody for Intermediate Nacelle	1	X		C ₉
NOZZLE	Large D-Duct Nozzle Pipe Mounted	1	X		N ₁
	Intermediate Long Circular Nozzle, Wing & Pipe Mounted	1	X		N ₂
	Intermediate Long D-Duct Nozzle, Wing & Pipe Mounted	1	X		N ₃
	Intermediate Long High AR Nozzle, Wing & Pipe Mounted	1	X		N ₄
	Intermediate Very High AR Nozzle, Wing & Pipe Mounted	1	X		N ₅
	Small Streamline Nacelle Nozzle, Straight Wing	1	X		N ₆
	Small Streamline Nacelle Nozzle, Swept Wing	1	X		N ₇

Figure 6. Summary of model and test hardware components (Sheet 1)

USB CRUISE PROGRAM

COMPONENT TYPE	COMPONENT DESCRIPTION	NO. REQD.	NEW	EXISTING	DESIGNATION
NOZZLE (cont'd)	Small D-Duct Nacelle Nozzle, Swept Wing	2	X		N ₈ ¹ & N ₈ ²
	Large Circular Nozzle, Pipe Mounted	1	X		N ₉
	Large Very High AR Nozzle, Pipe Mounted	1	X		N ₁₀
	Small Circular Nozzle, Swept Wing	1	X		N ₁₁
	Small High AR Nozzle, Swept Wing	1	X		N ₁₂
	Small Very High AR Nozzle, Swept Wing	1	X		N ₁₃
	Intermediate Short Circular Nozzle, Discharge at 20° C	1		X	N _{1E}
	Intermediate Short Circular Nozzle, Discharge at 35° C	1		X	N _{2E}
	Intermediate Short D-Duct Nozzle, Discharge at 35° C	1		X	N _{3E}
	Intermediate Short High AR Nozzle, Discharge at 35° C	1		X	N _{4E}
	Intermediate Long D-Duct Nozzle Extension	3	X		X ₁ , X ₂ , X ₃
	Intermediate Long Circular Nozzle Flow Deflector	1	X		D ₁
	Large Spacers to Position Pipe Nozzles	3	X		L ₁ , L ₂ , L ₃
	Intermediate Spacers to Position Pipe Nozzles	3	X		L ₄ , L ₅ , L ₆
	Transition Adapter for Pipe Area Change	1	X		L ₇
	Constant Area Adapter for Pipe Nozzle	1	X		L ₈
	Choke Plates for Small Nozzles	2	X		K ₅ , K ₆
	Choke Plate for Intermediate Nozzles	1		X	K ₇
	Choke Plate for Large Nozzles	1	X		K ₈
INSTRUMENTATION	3 Rows Additional Pressure Taps, Straight Wing	30	X		R ₁ , R ₂ , R ₃
	3 Rows Basic Pressure Taps, Straight Wing	61		X	R ₄ , R ₅ , R ₆
	6 Rows Pressure Taps, Swept Wing	91	X		R ₇ - R ₁₂
	Nozzle Afterbody Pressure Taps (5 Nozzle)	20		X	R ₁₃ - R ₁₆
	Nozzle Afterbody Pressure Taps (5 Nozzle)	70	X		R ₁₇ - R ₃₀
	Duct Plenum Pressure Taps (1 Wing Block)	1		X	P _t ₁
	Duct Plenum Pressure Taps (1 Wing Block)	2	X		P _t ₂ , P _t ₃
	57 Tube Calibration Rake for All Nozzles	1	X		Q ₁
	214 Tube Wake Rake for Drag Measurements	2	X		J ₁
TEST HARDWARE	Orifice Pressure Taps for Flow Measurements	3		X	P _t ₄ , P _t ₅
	Double Wall Upstream Pipe for Large Nozzles	1	X		Z ₁
	Motor Driven Traverse for Wake Rakes	1	X		Y ₁
	Wall Fitting for Straight & Swept Wings, Upper End	1	X		V ₁ , V ₂
	Straight & Swept Wing-to-Floor Balance Adapters	1	X		ba ₁ , ba ₂
	Floor Porosity Disc for Both Wings	1	X		pd ₁
	Basic Wall Plates for Straight Wing	2		X	~P ₁ , ~P ₂
	Basic Wall Plates for Swept Wing	2	X		~P ₃ , ~P ₄
	Orifice Assembly & Air Supply Piping	1		X	os ₁
	Orifice Plate for Intermediate & Small Nozzles	1		X	O ₁
	Orifice Plate for Large Nozzles	1	X		O ₂

Figure 6. Summary of model and test hardware components (Sheet 2)

USB CRUISE PROGRAM

GEOMETRIC		RELATIVE SIZE	ASPECT RATIO	DISCHARGE LOCATION	BOATTAIL ANGLE	NOZZLE LENGTH		MAXIMUM DIAMETER		NOZZLE AREA		WINGS		MOUNTING	
NO.	NOZZLE DESCRIPTION	c^2/A_N	AR	x/c	$\beta \sim$ DEG	cm	(in)	cm	(in)	cm^2	(in ²)	STRAIT	SWEPT	PIPE	WING
N ₁	LARGE D-DUCT, LONG	12	2.5	0.1 - 0.5	9.0	28.915	11.384	9.088	3.578	26.923	4.173	X		X	
N ₂	INTERMED. CIRCL., LONG	24	1.25	0.35	5.90	20.447	8.050	6.426	2.530	13.464	2.087	X	X	X	X
N ₃	INTERMED. D-DUCT, LONG	24	2.5	0.35	9.0	20.447	8.050	6.426	2.530	12.935	2.005	X		X	X
N ₄	INTERMED. HIGH AR, LONG	24	4.0 ^A	0.35	11.0	20.447	8.050	6.426	2.530	13.464	2.087	X		X	X
N ₅	INTERMED. VERY HI-AR, LONG	24	6.0 ^A	0.35	12.5	20.447	8.050	6.426	2.530	13.464	2.087	X		X	X
N ₆	SM. STRMLIN. D-DUCT, LONG	48	2.5	0.35	9.00*	14.458	5.692	4.544*	1.789*	6.729	1.043	X			X
N ₇ ^E	SM. INBD. D-DUCT, LONG	48	2.5	0.20	9.50	11.791	4.642	4.544	1.789	6.729	1.043		X		X
N ₈ ^E	SM. OUTBD. D-DUCT, LONG	48	2.5	0.20	9.50	11.791	4.642	4.544	1.789	6.729	1.043		X		X
N ₉	LARGE CIRCULAR, SHORT	12	1.25	0.1 - 0.5	12.00	28.915	11.384	9.088	3.578	26.923	4.173	X	X	X	
N ₁₀	LARGE VERY HI-AR, LONG	12	6.0 ^A	0.1 - 0.5	12.50	28.915	11.384	9.088	3.578	26.923	4.173	X		X	
N ₁₁	SMALL CIRCL., SHORT	48	1.25	0.10	12.00	10.013	3.942	4.544	1.789	6.729	1.043		X		X
N ₁₂	SMALL HI-AR, LONG	48	4.0 ^A	0.35	11.00	14.458	5.692	4.544	1.789	6.729	1.043		X		X
N ₁₃	SMALL VERY HI-AR, LONG	48	6.0 ^A	0.50	11.00	17.125	6.742	4.544	1.789	6.729	1.043		X		X
N _{1E}	INTERMED. CIRCL., SHORT	24	1.25	0.20	16.78	9.629	3.791	6.426	2.530	12.813	1.986	X			X
N _{2E}	INTERMED. CIRCL., SHORT	24	1.25	0.35	16.78	12.296	4.841	6.426	2.530	12.813	1.986	X			X
N _{3E}	INTERMED. D-DUCT, SHORT	24	2.5	0.35	24.52	12.296	4.841	6.426	2.530	13.464	2.087	X			X
N _{4E}	INTERMED. HI-AR, SHORT	24	4.0 ^A	0.35	35.88	12.296	4.841	6.426	2.530	13.464	2.087	X			X

^A THESE ASPECT RATIOS ARE EXPRESSED FOR EQUIVALENT RECTANGULAR NOZZLE CROSSECTIONS

* APPROXIMATELY EQUIVALENT DIMENSIONS FOR NON-CIRCULAR, NON-SYMMETRIC NACELLES

Figure 7. Key dimensions for nozzles in test matrix

boattail angle. Relative size was expressed by the parameter c^2/A_N , which relates the square of the wing chord to the nozzle area. Three relative sizes, 12, 24 and 48, were included in the program. Nozzle aspect ratios varied from 1.25 (circular) to 6.0. Chordwise discharge positions varied from 10 to 50 percent, with 35% being the baseline value. For the nozzle designed with the combination circular-arc, straight line contours, boattail angles ranged from 6 to 13 degrees. Boattail angles for the "E" nozzles, however, ranged from 16 to 36 degrees. The wings to which each of the nozzles are matched and the applicable mounting arrangements are also presented in the table.

3.2 Data Acquisition System

Model forces were measured in the CFF by means of a 5-component, floor mounted balance. It could measure lift, drag, pitching moment, rolling moment, and yawing moment. High pressure air was provided to the model by means of a dual-opposed bellows arrangement.

A wall mounted 6-component balance was employed in the 4 x 4 for force measurement. Its basic design and air ducting arrangement was essentially similar to the system used in the CFF.

Airflow was metered by means of a calibrated rake installed in each nozzle just downstream of the choke plate. Calibration curves for each nozzle were developed in a separate test conducted earlier in the program.

4.0 TEST DESCRIPTION

Both the pressure and force test phases of the USB Cruise Program were formulated around the use of minimum-cost, powered models in a porous wall, blowdown test facility. This combination permitted a test program covering a comprehensive series of test configurations and parameter variations over an extensive range of test conditions. Tests were conducted in both the Lockheed-Georgia CFF and the Lockheed-California 4x4 blowdown tunnels. A facility description is contained in Reference 2.

4.1 Test Objectives

The principal objective of the force test program was to generate a lift/drag data base sufficiently broad to accurately evaluate the potential of USB systems for cruise propulsion. In cases where a decision has been made to employ USB for its terminal area performance benefits, the data would need to be suitable for designing an installation with low cruise drag. An important goal was to obtain data which can be used to generate parametric curves describing the effects of systematic changes in key design variables.

4.2 Run Schedule Summary

The USB force test program can be broken down into two major efforts. The first of these, which is summarized in Figure 8, was conducted in the Lockheed-Georgia CFF and consisted of tests 20 and 21 covering the straight and swept wing configurations, respectively. All configurations were included in this part of the program. In the second effort, which is summarized in Figure 9, selected configurations from the first were tested in the Lockheed California

USB CRUISE PROGRAM

TEST DESCRIPTION	CONFIGURATION DESCRIPTION	CONFIGURATION DEFINITION	TEST		RUN NOS.	MACH NO. M_∞	ANGLE OF ATTACK $\alpha \sim$ DEG	NOZZLE PRES. RATIO, H/P_∞	REMARKS
			NO.	SERIES					
Wall Interference, Lift & Drag Forces Plus Moments	3-D, Clean Swept Wing-Body	$F_2 W_2$	20	0	1 - 569	0.5 - 0.82	-1 to 5		R_N from 3.5 to $7.0 \times 10^6/c$ Porosities from 2 to 5%
Lift & Drag, Forces & Moments	3-D Swept Wing-Body								
	+ Outbd. D-Duct Nacelle	$F_2 W_2 B_5 P_9 C_3 N_8^1$	20	1	1 - 171	Static + 0.6 - 0.82	1 to 5	1.0 - 3.0	Run No. 171 is Oil Flow
	+ 2D-Duct Nacelles	$F_2 W_2 B_{5,6} P_9,10 C_{3,4} N_8^1, N_8^2$		2	172 - 255	Static + 0.6 - 0.75	1 to 5	1.0 - 2.9	Run Nos. 254 & 255 are Oil Flow
	+ Inbd. D-Duct Nacelle	$F_2 W_2 B_6 P_{10} C_4 N_8^2$		3	256 - 335	Static + 0.6 - 0.75	1 to 5	1.0 - 3.0	
	+ Circular Nacelle	$F_2 W_2 B_5 P_9 C_3 N_{11}$		4	336 - 453	Static + 0.6 - 0.8	1 to 5	1.0 - 3.5	Run No. 453 is Oil Flow
	+ AR 4 Nacelle	$F_2 W_2 B_5 P_9 C_3 N_{12}$		5	454 - 538	Static + 0.6 - 0.75	1 to 5	1.0 - 3.2	Run No. 538 is Oil Flow
	+ AR 6 Nacelle	$F_2 W_2 B_5 P_9 C_3 N_{13}$		6	539 - 647	Static + 0.6 - 0.75	1 to 5	1.0 - 3.3	
	+ AR 6 Nac. & Mid-Flap 5° Down	$F_2 W_2 B_5 P_9 C_3 N_{13A}$		7	648 - 687	Static + 0.6 - 0.78	1 to 5	1.0 - 3.4	
	+ AR 6 Nac. & Mid-Flap 5° Up	$F_2 W_2 B_5 P_9 C_3 N_{13B}$		8	688 - 754	Static + 0.6 - 0.78	1 to 5	1.0 - 3.4	
	+ Short Pylon & Flow-Thru Nac.	$F_2 W_2 B_2 P_5 C_5 N_2$		9	755 - 810	0.6 - 0.8	1 to 5		Run Nos. 809 & 810 are Oil Flow
	+ Long Pylon & Flow-Thru Nac.	$F_2 W_2 B_2 P_6 C_5 N_2$		10	811 - 857	0.6 - 0.8	1 to 5		
	+ D-Duct Nacelle, Inboard	$F_2 W_2 B_6 P_{10} C_4 N_8^2$		11	858 - 971	Static + 0.6 - 0.75	1 to 5	1.0 - 3.2	
	+ 2D-Duct Nacelles	$F_2 W_2 B_{5,6} P_9,10 C_{3,4} N_8^1 N_8^2$		12	1 - 132	Static + 0.6 - 0.78	1 to 5	1.0 - 3.1	
Lift & Drag, Forces & Moments	+ D-Duct Nacelle, Outboard	$F_2 W_2 B_5 P_9 C_3 N_8^1$		13	133 - 165	0.6 - 0.8	1 to 5	2.6 - 3.6	
	+ D-Duct Nac. with Fillet Reshaped	$F_2 W_2 B_5 P_9 A_3 N_8^1$		14	166 - 185	0.77	1 to 4	1.0 - 3.6	Run No. 166 is Oil Flow
Lift & Drag, Forces & Moments	3-D, Clean Straight Wing-Body	$F_1 W_1$	21	0	1 - 60	0.5 - 0.76	1 to 5		
	+ Short D-Duct Nacelle	$F_1 W_1 B_4 P_7 C_1 N_{3E}$		1	61 - 186	Static + 0.5 - 0.72	1 to 4	1.0 - 3.2	Run No. 115 is Oil Flow
	+ AR 4 Nacelle	$F_1 W_1 B_4 P_7 C_1 N_{4E}$		2	187 - 306	Static + 0.5 - 0.72	1 to 4	1.0 - 3.2	
	+ Circular Nacelle	$F_1 W_1 B_4 P_7 C_1 N_{2E}$		3	307 - 416	Static + 0.6 - 0.72	1 to 4	1.0 - 3.2	
	+ Short Circular Nacelle	$F_1 W_1 B_4 P_7 C_1 N_{1E}$		4	417 - 524	Static + 0.6 - 0.72	1 to 4	1.0 - 3.2	Run Nos. 523 & 524 are Oil Flow
	+ Long D-Duct & Deflector	$F_1 W_1 B_7 P_8 C_2 N_{3A}$		5	525 - 629	Static + 0.6 - 0.72	1 to 4	1.0 - 4.0	Run No. 666 is Oil Flow
	+ Long D-Duct without Deflector	$F_1 W_1 B_7 P_8 C_2 N_{3B}$		6	630 - 744	Static + 0.6 - 0.72	1 to 4	1.0 - 3.2	Run-No. 665 is Oil Flow
	+ Long AR 4 Nacelle	$F_1 W_1 B_7 P_8 C_2 N_4$		7	745 - 845	Static + 0.6 - 0.72	1 to 4	1.0 - 3.0	
	+ Long AR 4 Nac. with Fillet Removed	$F_1 W_1 B_7 P_8 C_2 N_{4A}$		8	846 - 851	0.70	1	1.0 - 2.8	
	+ Long AR 6 Nacelle	$F_1 W_1 B_7 P_8 C_2 N_5$		9	852 - 961	Static + 0.6 - 0.72	1 to 4	1.0 - 3.0	Run No. 961 is Oil Flow
	+ Long AR 6 Nac. with Fillet Removed	$F_1 W_1 B_7 P_8 C_2 N_{5A}$		10	962 - 981	0.68	1 to 4	1.0 - 2.6	
	+ Long Circular Nacelle	$F_1 W_1 B_7 P_8 C_2 N_2$		11	1 - 92	Static + 0.6 - 0.72	1 to 4	1.0 - 3.0	
	+ Flo-Thru Inlet	$F_1 W_1 B_7 P_8 C_5 N_2$		12	93 - 128	0.50 - 0.75	1 to 4		Run No. 128 is Oil Flow
	+ Flo-Thru Inlet + Short Pylon	$F_1 W_1 B_1 P_1 C_5 N_2$		13	129 - 158	0.50 - 0.75	1 to 4		Run No. 158 is Oil Flow
	+ Flo-Thru Inlet + Long Pylon	$F_1 W_1 B_1 P_2 C_5 N_2$		14	159 - 194	0.50 - 0.75	1 to 4		Run No. 159 is Oil Flow
	+ Streamlined Nacelle	$F_1 W_1 B_9 P_{12} C_6 N_6$		15	195 - 257	Static + 0.6 - 0.72	1 to 4	1.0 - 4.0	
	+ Streamlined Nac. + Pylon Fillet	$F_1 W_1 B_9 P_{12} C_6 N_6$		16	258 - 370	Static + 0.6 - 0.72	1 to 4	1.0 - 3.2	
	+ Long Circular Nacelle	$F_1 W_1 B_7 P_8 C_2 N_2$		17	371 - 385	Static	0		

NOTES: (1) $R_N = 3.5 \times 10^6/c$, except where noted. (2) Wall porosity = 5% for force tests and 4% for pressure tests, except as noted.

Figure 8. Run schedule summary for CFF force tests.

USB CRUISE PROGRAM									
TEST DESCRIPTION	CONFIGURATION DESCRIPTION	CONFIGURATION DEFINITION	TEST		RUN NOS.	MACH. NO. M _a	ANGLE OF ATTACK α - DEG.	NOZZLE PRESS. RATIO H_j/P_∞	
			NO.	SERIES					
Calibration & Tares	3-D Clean Straight Wing-Body + Short D-Duct Nacelle	F ₁ W ₄ P ₇ C ₁ N ₃ E	345	I	1 - 58	Static	0	1.4 - 3.0	Static & Flow Tares Investigated
Lift & Drag, Forces & Moments	3-D Clean Straight Wing-Body + Short Pyl. & Flo-Thru Cir. Nac. + Integr. Flo-Thru Cir. Nac.	F ₁ W ₁ F ₁ W ₁ B ₁ P ₁ C ₅ N ₂ F ₁ W ₁ B ₇ P ₁ C ₅ N ₂			82 - 88 89 - 96 125 - 132	0.6 - 0.72 0.6 - 0.74 0.6 - 0.72	0 to 5		
Calibration & Tares	3-D Clean Straight Wing-Body + Long Circular Nacelle	F ₁ W ₁ B ₇ P ₈ C ₂ N ₂	345	II	1 - 84	Static	0	1.4 - 3.0	Runs 70 & 73 - 81 were made using nozzle isolation rig
Lift & Drag, Forces	3-D Clean Straight Wing-Body + Long Circular Nacelle + Long AR 4 Nacelle + Long AR 6 Nacelle + Short D-Duct Nacelle + Streamlined Nacelle + Short AR 4 Nacelle + Short D-Duct Nacelle	F ₁ W ₁ F ₁ W ₁ B ₇ P ₈ C ₂ N ₂ F ₁ W ₁ B ₇ P ₈ C ₂ N ₄ F ₁ W ₁ B ₇ P ₈ C ₂ N ₅ F ₁ W ₁ B ₄ P ₇ C ₁ N ₃ E F ₁ W ₁ B ₉ P ₁₂ C ₆ N ₆ F ₁ W ₁ B ₄ P ₇ C ₁ N ₄ E F ₁ W ₁ B ₄ P ₇ C ₁ N ₃ E			85 - 97 98 - 124 125 - 142 143 - 164 165 - 186 187 - 206 207 - 213 214 - 217	0.6 - 0.72 Static + 0.6-0.72 0.6 - 0.72 0.6 - 0.72 0.6 - 0.72 0.6 - 0.72 0.6 - 0.68 Static	0 to 5 0	1.4 - 3.0 1.4 - 3.0	
Lift & Drag, Forces & Moments	2 D-Duct Nacelles + 3-D Clean Swept Wing-Body + Null Thrust Rig + AR 4 Nacelle + Outb'd D-Duct Nacelle + AR 6 Nacelle	F ₂ W ₂ B _{5,6} P _{9,10} C _{3,4} N ₈ ^{1,2} F ₂ W ₂ F ₂ W ₂ B ₅ P ₉ C ₃ N ₁₄ F ₂ W ₂ B ₅ P ₉ C ₃ N ₁₂ F ₂ W ₂ B ₅ P ₉ C ₃ N ₈ F ₂ W ₂ B ₅ P ₉ C ₃ N ₁₃			218 - 246 247 - 255 256 - 271 272 273 274 - 285	Static + 0.6-0.73 0.6 - 0.81 Static	0 to 5 0 to 5 0 0 0 0	1.4 - 3.0 1.4 - 3.0 1.4 - 3.0 1.4 - 3.0 1.4 - 3.0 1.4 - 3.0	Additional Tare Study

NOTES: (1) $R_N = 3.5 \times 10^6/c$, except where noted.

Figure 9. Run schedule summary for 4 x 4 force tests.

4 x 4 wind tunnel. This was also a two-part effort with test numbers assigned by the facility as 345-1 and 345-11. Calibration and tare runs, plus clean wing and flow-through configuration tests were made in Part I. The selected power configurations were included in Part II.

5.0 STRAIGHT WING TEST RESULTS

The presentation of the straight wing force data is divided into 5 parts. The basic clean wing-body is presented first followed by special sets of data taken for comparisons of the integrated with the pylon mounted nacelles and the faired-over with the flow-through nacelles. Finally, the results of running the standard configurations for the basic parametric analyses are presented for the CFF and 4×4 tests in that order.

5.1 Clean Wing-Body

Basic data for the clean wing-body are presented in Figures 10 through 12. These include lift, drag and pitching moment. Curves are presented for 5 different Mach numbers to assure adequate coverage of the full test range.

USB CRUISE PROGRAM

CONFIGURATION F₁W₁

CLEAN STRAIGHT WING

Figure 10. Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$.

Figure 11. Variation of measured lift coefficient with measured drag coefficient,
 $R_{NC} = 3.5 \times 10^6$.

USB CRUISE PROGRAM

CONFIGURATION F₁W₁

Figure 12. Variation of measured lift coefficient with measured moment coefficient, $R_{NC} = 3.5 \times 10^6$.

5.2 Data For Pylon Mounted Versus Integrated Nacelle Comparison

To perform a comparison of pylon mounted and integrated nacelle configurations, it was necessary to run the flow-through versions of these two installations. This was true because, in the pylon mounted configuration, it was not possible to supply the required high pressure air to the nozzle. The pylon mounted nacelle data are provided in Figures 13 and 14 while the integrated nacelle data are contained in 15 and 16.

5.3 Data For Faired-Over Versus Flow-Through Nacelle Comparison

In using the faired-over forebody nacelle configuration for power tests, it was assumed that the drag of this configuration would be essentially the same as that of a flow-through nacelle operating at design mass flow ratio. To prove this assumption, it was necessary to run the faired-over nacelle at flow-through pressure ratios and at least two Mach numbers for comparison with the identical configuration, but with an open forebody. Data for the faired forebody runs at flow-through pressure ratios are presented in Figures 17 and 18.

USB CRUISE PROGRAM

CONFIGURATION F₁W₁B₁P₁C₅N₂

SHORT PYLON MOUNTED FLOW-THROUGH NACELLE ON STRAIGHT WING

Figure 13. Variation of measured lift coefficient with angle of attack, $R_N C = 3.5 \times 10^6$, $H_j/p_\infty = RPR$.

USB CRUISE PROGRAM

CONFIGURATION F₁W₁B₁P₁C₅N₂

SHORT PYLON MOUNTED FLOW-THROUGH NACELLE ON STRAIGHT WING

Figure 14. - Variation of measured lift coefficient with measured drag coefficient,
 $RNC = 3.5 \times 10^6$, $H_j/p_\infty = RPR$.

USB CRUISE PROGRAM

CONFIGURATION F₁W₁B₇P₁₆C₅N₂

INTEGRATED FLOW-THROUGH NACELLE ON STRAIGHT WING

Figure 15. - Variation of measured lift coefficient with angle of attack, $R_N C = 3.5 \times 10^6$, $H_j/p_\infty = RPR$.

USB CRUISE PROGRAM
 CONFIGURATION F₁W₁B₇P₁₆C₅N₂
 INTEGRATED FLOW-THROUGH NACELLE ON STRAIGHT WING

Figure 16. - Variation of measured lift coefficient with measured drag coefficient, $R_{NC} = 3.5 \times 10^6$, $H_j/p_\infty = RPR$.

USB CRUISE PROGRAM

CONFIGURATION F₁W₁B₇P₈C₂N₂

INTEGRATED NACELLE WITH FAIRED FOREBODY ON STRAIGHT WING

Figure 17. - Variation of measured lift coefficient with angle of attack, $R_N C = 3.5 \times 10^6$, $H_j/p_\infty = RPR$.

Figure 18. - Variation of measured lift coefficient with measured drag coefficient,
 $R_{NC} = 3.5 \times 10^6$, $H_j/p_\infty = RPR$.

5.4 Results From CFF Tests, Standard Configurations

Data for those straightwing configurations tests in the CFF only are presented in Figures 19 through 34. The data are presented as measured and contains nozzle thrust forces. Nozzle pressure ratios typically range from 1.4 to 2.6 and, in some cases, up to 3.0. A complete discussion of how these data have been reconciled with that obtained from the 4 x 4 is contained in Reference 3.

5.5 Results From 4 x 4 Tests, Standard Configurations

Data for all straight wing configurations tested in the 4 x 4 are presented in Figures 35 through 102. Ranges of variables are essentially the same as those obtained for the CFF data.

Figure 19. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.

USB CRUISE PROGRAM

CONFIGURATION F₁W₁B₇P₈C₂N₃B

STRAIGHT WING AND LONG D-DUCT NACELLE

Figure 20. - Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.

Figure 21. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68$.

USB CRUISE PROGRAM

CONFIGURATION F₁W₁B₇P₈C₂N₃B

STRAIGHT WING AND LONG D-DUCT NACELLE

Figure 22. - Variation of measured lift coefficient with angle of attack, $R_N C = 3.5 \times 10^6$, $M_\infty = 0.68$.

USB CRUISE PROGRAM

CONFIGURATION F₁W₁B₇P₈C₂N₃B

STRAIGHT WING & LONG D-DUCT NACELLE

Figure 23. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.72$.

USB CRUISE PROGRAM

CONFIGURATION F₁W₁B₇P₈C₂N₃B

STRAIGHT WING AND LONG D-DUCT NACELLE

Figure 24. - Variation of measured lift coefficient with angle of attack, $RNC = 3.5 \times 10^6$, $M_\infty = 0.72$.

USB CRUISE PROGRAM

CONFIGURATION F₁W₁B₄P₇C₁N₂E

STRAIGHT WING & SHORT CIRCULAR NACELLE @ x/c = 0.35

Figure 25. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio; $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.

USB CRUISE PROGRAM

CONFIGURATION F₁W₁B₄P₇C₁N₂E

STRAIGHT WING AND SHORT CIRCULAR NACELLE @ x/c = 0.35.

Figure 26. - Variation of measured lift coefficient with angle of attack, $R_N C = 3.5 \times 10^6$, $M_\infty = 0.60$.

Figure 27. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68$.

USB CRUISE PROGRAM

CONFIGURATION F₁W₁B₄P₇C₁N₂E

STRAIGHT WING AND SHORT CIRCULAR NACELLE @ x/c = 0.35

Figure 28. - Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68$.

USB CRUISE PROGRAM

CONFIGURATION F₁W₁B₄P₇C₁N₂E

STRAIGHT WING & SHORT CIRCULAR NACELLE @ x/c = 0.35

Figure 29. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.72$.

USB CRUISE PROGRAM

CONFIGURATION F₁W₁B₄P₇C₁N₂E

STRAIGHT WING AND SHORT CIRCULAR NACELLE @ x/c = 0.35

Figure 30. - Variation of measured lift coefficient with angle of attack, $R_N C = 3.5 \times 10^6$, $M_\infty = 0.72$.

USB CRUISE PROGRAM

CONFIGURATION F₁W₁B₄P₇C₁N₄E

STRAIGHT WING & SHORT AR4 NACELLE

Figure 31. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.

USB CRUISE PROGRAM

CONFIGURATION F₁W₁B₄P₇C₁N₄E

STRAIGHT WING & SHORT AR4 NACELLE

Figure 32. Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.

USB CRUISE PROGRAM

CONFIGURATION F₁W₁B₄P₇C₁N₄E

STRAIGHT WING & SHORT AR4 NACELLE

Figure 33. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.72$.

USB CRUISE PROGRAM

CONFIGURATION F₁W₁B₄P₇C₁N₄E

STRAIGHT WING & SHORT AR4 NACELLE

Figure 34. Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.72$.

USB CRUISE PROGRAM

Figure 35. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_\infty = 0.60$.

USB CRUISE PROGRAM

Figure 36. Variation of measured lift coefficient with angle of attack and moment coefficient, $M_\infty = 0.60$.

USB CRUISE PROGRAM

Figure 37. Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_\infty = 0.60$.

Figure 38. Variation of measured drag coefficient with nozzle pressure ratio, $M_\infty = 0.60$.

USB CRUISE PROGRAM

LFL 5-345-11
USB CRUISE PROGRAM

CALAC 4-FT TUNNEL

MEASURED DRAG POLARS

FOR SEVERAL NOZZLE PRESSURE RATIOS

 $M_\infty = 0.68$ $R_N = 3.6 \times 10^6$

CONFIGURATION: F, W, P, C, N

STRAIGHT WING & CIRCULAR NACELLE

Figure 39. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_\infty = 0.68$.

Figure 40. Variation of measured lift coefficient with angle of attack and moment coefficient, $M_\infty = 0.68$.

USB CRUISE PROGRAM

LFL S-345-II USB CRUISE PROGRAM CALAC 4-FT TUNNEL

EFFECT OF NOZZLE PRESSURE RATIO ON
MEASURED LIFT & PITCHING MOMENT COEFFICIENTS

$M_\infty = 0.68$

$R_N C = 3.6 \times 10^6$

CONFIGURATION : F_T, H, P, C_s, N_s

STRAIGHT WING & CIRCULAR NACELLE

Figure 41. Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_\infty = 0.68$.

USB CRUISE PROGRAM

LFL S-345-JI CALAC 4-FT TUNNEL
USB CRUISE PROGRAM

EFFECT OF NOZZLE PRESSURE RATIO ON
MEASURED DRAG COEFFICIENTS

$M_\infty = 0.68$ $R_N = 3.8 \times 10^6$

CONFIGURATION: F, H, P, C, M

STRAIGHT WING & CIRCULAR NACELLE

Figure 42. Variation of measured drag coefficient with nozzle pressure ratio, $M_\infty = 0.68$.

USB CRUISE PROGRAM

Figure 43. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_\infty = 0.70$.

Figure 44. Variation of measured lift coefficient with angle of attack and moment coefficient, $M_\infty = 0.70$.

USB CRUISE PROGRAM

LFL S-345-11 USB CRUISE PROGRAM CALAC 4-FT TUNNEL

Figure 45. Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_\infty = 0.70$.

USB CRUISE PROGRAM

Figure 46. Variation of measured drag coefficient with nozzle pressure ratio, $M_\infty = 0.70$.

Figure 47. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_\infty = 0.72$.

Figure 48. Variation of measured lift coefficient with angle of attack and moment coefficient, $M_\infty = 0.72$.

USB CRUISE PROGRAM

Figure 49. Variation of lift coefficient and moment coefficient with nozzle pressure ratio,
 $M_\infty = 0.72$.

Figure 50. Variation of measured drag coefficient with nozzle pressure ratio, $M_\infty = 0.72$.

USB CRUISE PROGRAM

EPL 5-345-111
USB CRUISE PROGRAM

ORAC 4-FT TUNNEL

MEASURED DRAG POLARS

FOR SEVERAL NOZZLE PRESSURE RATIOS

Figure 51. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_{\infty} = 0.60$.

USB CRUISE PROGRAM

LFL S-345-11

USB CRUISE PROGRAM

CALAC 4-FT TUNNEL

Figure 52. Variation of measured lift coefficient with angle of attack and moment coefficient, $M_\infty = 0.60$.

USB CRUISE PROGRAM

LFL S-345-11 CALAC 4-FT TUNNEL
USB CRUISE PROGRAMEFFECT OF NOZZLE PRESSURE RATIO ON
MEASURED LIFT & PITCHING MOMENT COEFFICIENTSFigure 53. Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_\infty = 0.60$.

Figure 54. Variation of measured drag coefficient with nozzle pressure ratio, $M_\infty = 0.60$.

Figure 55. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_\infty = 0.68$.

Figure 56. Variation of measured lift coefficient with angle of attack and moment coefficient, $M_\infty = 0.68$.

USB CRUISE PROGRAM

LFL S-345-11

USA CRUISE PROGRAM

CALAC 4-FT TUNNEL

Figure 57. Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_\infty = 0.68$.

USB CRUISE PROGRAM

Figure 58. Variation of measured drag coefficient with nozzle pressure ratio, $M_\infty = 0.68$.

USB CRUISE PROGRAM

LFL S-345-11 CALAC 4-FT TUNNEL
USB CRUISE PROGRAM

MEASURED DRAG POLARS

FOR SEVERAL NOZZLE PRESSURE RATIOS

M_∞ = 1.00 1.02 1.04 1.06 1.08 1.10

SYM 115.7 - MM

■ PLANE-TAIL

▲ PLANE-TAIL

△ PLANE-TAIL

× PLANE-TAIL

◆ PLANE-TAIL

M_∞ = .72

R_c = 3.5 x 10⁶

CONFIGURATION = F₄ M₄ P₄ C₄ M₄

STRAIGHT WING & AR4 NACELLE

Figure 59. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_{\infty} = 0.72$.

Figure 60. Variation of measured lift coefficient with angle of attack and moment coefficient, $M_\infty = 0.72$.

USB CRUISE PROGRAM

LFL S-145-II CALAC 4-FT TUNNEL
USB CRUISE PROGRAMEFFECT OF NOZZLE PRESSURE RATIO ON
MEASURED LIFT & PITCHING MOMENT COEFFICIENTSFigure 61. Variation of lift coefficient and moment coefficient with nozzle pressure ratio,
 $M_\infty = 0.72$.

USB CRUISE PROGRAM

LFL S-345-11
USB CRUISE PROGRAM CALAC 4-FT TUNNEL

EFFECT OF NOZZLE PRESSURE RATIO ON
MEASURED DRAG COEFFICIENTS

 $M_\infty = 0.72$ $R_N = 3.5 \times 10^6$

CONFIGURATION: F, M, P, C, N

STRAIGHT WING & AR4 NACELLE

Figure 62. Variation of measured drag coefficient with nozzle pressure ratio, $M_\infty = 0.72$.

USB CRUISE PROGRAM

Figure 63. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_\infty = 0.60$.

USB CRUISE PROGRAM

LFL 5-345-11
CALAC 4-FT TUNNEL
USB CRUISE PROGRAM

MEASURED LIFT & PITCHING MOMENT COEFFICIENTS
FOR SEVERAL NOZZLE PRESSURE RATIOS

Figure 64. Variation of measured lift coefficient with angle of attack and moment coefficient, $M_\infty = 0.60$.

Figure 65. Variation of lift coefficient and moment coefficient with nozzle pressure ratio,
 $M_\infty = 0.60$.

Figure 66. Variation of measured drag coefficient with nozzle pressure ratio, $M_\infty = 0.60$.

USB CRUISE PROGRAM

BLOW: 155 154 153 152 151

SYM	H_j/p_∞ NOM
—□—	FLOW-THRU
—+—	1.8
—△—	2.2
—×—	2.6
—◇—	3.0

LFL 5-345-11

CALAC 4-FT TUNNEL

USB CRUISE PROGRAM

MEASURED DRAG POLARS

FOR SEVERAL NOZZLE PRESSURE RATIOS

$$M_\infty = .68$$

$$R_{NC} = 3.6 \times 10^6$$

CONFIGURATION: F₁W₁P₈C₂N₅
STRAIGHT WING & AR5 NACELLE

Figure 67. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_\infty = 0.68$.

USB CRUISE PROGRAM

LFL S-345-11 CALAC 4-FT TUNNEL
USB CRUISE PROGRAM

MEASURED LIFT & PITCHING MOMENT COEFFICIENTS

FOR SEVERAL NOZZLE PRESSURE RATIOS

 $M_\infty = 0.68$ $R_N = 3.6 \times 10^6$ CONFIGURATION: F, H, P, C_e, N_s

STRAIGHT WING & AR5 NACELLE

Figure 68. Variation of measured lift coefficient with angle of attack and moment coefficient, $M_\infty = 0.68$.

USB CRUISE PROGRAM

LFL S-345-11 USB CRUISE PROGRAM CALAC 4-FT TUNNEL

Figure 69. Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_\infty = 0.68$.

USB CRUISE PROGRAM

BLOW: 155 154 153 152 151

LFL 5-345-11

CALAC 4-FT. TUNNEL

SYM	$(H_j/p_\infty)_{NOM}$
□	FLOW-THRU
+	1.8
△	2.2
×	2.6
Y	3.0

USB CRUISE PROGRAM

EFFECT OF NOZZLE PRESSURE RATIO
ON MEASURED DRAG COEFFICIENTS $M_\infty = .68$ $R_{NC} = 3.6 \times 10^6$
CONFIGURATION: $F_1W_1P_8C_2N_5$
STRAIGHT WING & AR5 NACELLEFigure 70. Variation of measured drag coefficient with nozzle pressure ratio, $M_\infty = 0.68$.

USB CRUISE PROGRAM

Figure 71. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_\infty = 0.72$.

Figure 72. Variation of measured lift coefficient with angle of attack and moment coefficient, $M_\infty = 0.72$.

USB CRUISE PROGRAM

LFL S-345-II CALAC 4-FT TUNNEL
USB CRUISE PROGRAM

BLDS: 150 149 148 146 147

SYM □ NOM

EFFECT OF NOZZLE PRESSURE RATIO ON
MEASURED LIFT & PITCHING MOMENT COEFFICIENTS $M_\infty = 0.72$ $R_N = 3.6 \times 10^6$

CONFIGURATION: E, H, P, D, N,

STRAIGHT WING & AR5 NACELLE

Figure 73. Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_\infty = 0.72$.

Figure 74. Variation of measured drag coefficient with nozzle pressure ratio, $M_\infty = 0.72$.

Figure 75. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_\infty = 0.60$.

USB CRUISE PROGRAM

LFL S-345-II

USB CRUISE PROGRAM

CALAC 4-FT TUNNEL

MEASURED LIFT & PITCHING MOMENT COEFFICIENTS

FOR SEVERAL NOZZLE PRESSURE RATIOS

$$M_\infty = 0.60$$

$$R_N = 3.6 \times 10^6$$

CONFIGURATION : F, H, P, C, N

STRAIGHT WING & STREAMLINE NACELLE

Figure 76. Variation of measured lift coefficient with angle of attack and moment coefficient, $M_\infty = 0.60$.

USB CRUISE PROGRAM

LFL S-345-11 CALAC 4-FT TUNNEL
USB CRUISE PROGRAM

SLOWS 204 202 201 200 199

SYM + NON

3	1
+	1
▲	2
X	3
◆	4
▼	5

EFFECT OF NOZZLE PRESSURE RATIO ON
MEASURED LIFT & PITCHING MOMENT COEFFICIENTS $M_\infty = 0.60$ $R_N = 3.6 \times 10^6$

CONFIGURATION I F, H, P, C, N

STRAIGHT WING & STREAMLINE NACELLE

Figure 77. Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_\infty = 0.60$.

Figure 78. Variation of measured drag coefficient with nozzle pressure ratio, $M_\infty = 0.60$.

Figure 79. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_\infty = 0.68$.

USB CRUISE PROGRAM

LFL S-345-11 USB CRUISE PROGRAM CALAC 4-FT TUNNEL

MEASURED LIFT & PITCHING MOMENT COEFFICIENTS
FOR SEVERAL NOZZLE PRESSURE RATIOS

Figure 80. Variation of measured lift coefficient with angle of attack and moment coefficient, $M_\infty = 0.68$.

USB CRUISE PROGRAM

Figure 81. Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_\infty = 0.68$.

USB CRUISE PROGRAM

LFL S-345-II CALAC 4-FT TUNNEL
USA CRUISE PROGRAM

EFFECT OF NOZZLE PRESSURE RATIO ON MEASURED DRAG COEFFICIENTS

$M_{\infty} = 0.65$ $R_N = 3.8 \times 10^6$
CONFIGURATION = F, M, P, N
STRAIGHT WING & STREAMLINE NACELLE

Figure 82. Variation of measured drag coefficient with nozzle pressure ratio, $M_\infty = 0.68$.

USB CRUISE PROGRAM

Figure 83. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_\infty = 0.72$.

USB CRUISE PROGRAM

LFL S-345-11

USB CRUISE PROGRAM

CALAC 4-FT. TUNNEL

MEASURED LIFT & PITCHING MOMENT COEFFICIENTS

FOR SEVERAL NOZZLE PRESSURE RATIOS

Figure 84. Variation of measured lift coefficient with angle of attack and moment coefficient, $M_\infty = 0.72$.

USB CRUISE PROGRAM

LFL S-245-11 CALAC 4-FT TUNNEL
USB CRUISE PROGRAM

EFFECT OF NOZZLE PRESSURE RATIO ON
MEASURED LIFT & PITCHING MOMENT COEFFICIENTS

Figure 85. Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_\infty = 0.72$.

Figure 86. Variation of measured drag coefficient with nozzle pressure ratio, $M_\infty = 0.72$.

Figure 87. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_{\infty} = 0.60$.

Figure 88. Variation of measured lift coefficient with angle of attack and moment coefficient, $M_\infty = 0.60$.

USB CRUISE PROGRAM

LFL S-345-11 | CALRC 4-FT TUNNEL
USB CRUISE PROGRAMEFFECT OF NOZZLE PRESSURE RATIO ON
MEASURED LIFT & PITCHING MOMENT COEFFICIENTS

ALDH. 162 181 180 179 178

SYM | NOM

□	□
+	+
△	△
×	×
◆	◆
▽	▽

 $M_\infty = 0.60$ $R_N = 3.6 \times 10^6$

CONFIGURATION : F, H, P, Q, N

STRAIGHT WING & SHORT D-DUCT NACELLE

Figure 89. Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_\infty = 0.60$.

Figure 90. Variation of measured drag coefficient with nozzle pressure ratio, $M_\infty = 0.60$.

Figure 91. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_\infty = 0.68$.

Figure 92. Variation of measured lift coefficient with angle of attack and moment coefficient, $M_\infty = 0.68$.

USB CRUISE PROGRAM

LFL S-345-11 CALAC 4-FT TUNNEL
USB CRUISE PROGRAM
EFFECT OF NOZZLE PRESSURE RATIO ON
MEASURED LIFT & PITCHING MOMENT COEFFICIENTS

$M_\infty = 0.68$ $R_N = 3.6 \times 10^6$
CONFIGURATION: F, H, P, C, N_m
STRAIGHT WING & SHORT D-DUCT NACELLE

Figure 93. Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_\infty = 0.68$.

Figure 94. Variation of measured drag coefficient with nozzle pressure ratio, $M_\infty = 0.68$.

Figure 95. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_{\infty} = 0$.

Figure 96. Variation of measured lift coefficient with angle of attack and moment coefficient, $M_\infty = 0.72$.

USB CRUISE PROGRAM

LFL S-345-II USB CRUISE PROGRAM CALAC 4-FT TUNNEL

BLOK: 173 174 175 176 177

SYM \square \diamond \times \triangle \circ \cdot

0
1
2
3
4
5

EFFECT OF NOZZLE PRESSURE RATIO ON
MEASURED LIFT & PITCHING MOMENT COEFFICIENTS $M_\infty = 0.72$ $R_Nc = 3.5 \times 10^6$ CONFIGURATION = F, H, P, C, N_{*}

STRAIGHT WING & SHORT D-DUCT NACELLE

Figure 97. Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_\infty = 0.72$.

Figure 98. Variation of measured drag coefficient with nozzle pressure ratio, $M_\infty = 0.72$.

USB CRUISE PROGRAM

Figure 99. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $M_\infty = 0.68$.

Figure 100. Variation of measured lift coefficient with angle of attack and moment coefficient, $M_\infty = 0.68$.

USB CRUISE PROGRAM

LFL S-345-11 USB CRUISE PROGRAM CALRC 4-FT TUNNEL

EFFECT OF NOZZLE PRESSURE RATIO ON
MEASURED LIFT & PITCHING MOMENT COEFFICIENTS $M_\infty = 0.68$ $R_N = 3.5 \times 10^6$

CONFIGURATION: F, H, P, Q, N*

STRAIGHT WING & SHORT AR4 NACELLE

Figure 101. Variation of lift coefficient and moment coefficient with nozzle pressure ratio, $M_\infty = 0.68$.

Figure 102. Variation of measured drag coefficient with nozzle pressure ratio, $M_\infty = 0.68$.

6.0 SWEPT WING TEST RESULTS

The presentation of the swept wing force data is divided into 3 parts. The basic clean wing-body is presented first followed by data for the pylon mounted nacelle configuration. Finally, the results of running the standard configurations for the basic parametric analyses are presented.

6.1 Clean Wing-Body

Basic data for the clean wing-body are presented in Figures 103 through 105. These include lift, drag and pitching moment. Curves are presented for 4 different Mach numbers to assure adequate coverage of the full test range.

Figure 103. Variation of measured lift coefficient with measured drag coefficient, $R_{NC} = 3.5 \times 10^6$.

USB CRUISE PROGRAM

CONFIGURATION F₂W₂

CLEAN SWEPT WING

Figure 104. Variation of measured lift coefficient with angle of attack, $R_N C = 3.5 \times 10^6$.

USB CRUISE PROGRAM
CONFIGURATION F₂W₂
CLEAN SWEPT WING

Figure 105. Variation of measured lift coefficient with measured moment coefficient,
 $RNC = 3.5 \times 10^6$.

6.2 Data For Pylon Mounted Nacelle Configuration

To provide data for performing a comparison between pylon mounted and integrated nacelle configurations, it was necessary to run flow-through versions of these installations. Data for the short pylon mounted circular nacelle on the swept wing are presented in Figures 106 and 107. Test results for the integrated version of the short circular nacelle are contained in the next section.

6.3 Results From CFF Tests, Standard Configurations

Data for the swept wing configurations as tested in the CFF are presented in Figures 108 through 137. The data are presented as measured and contain nozzle thrust forces. Nozzle pressure ratios typically range from 1.4 to 3.0, while Mach numbers extend from 0.60 to 0.73.

USB CRUISE PROGRAM

Figure 106. Variation of measured lift coefficient with measured drag coefficient, $R_{NC} = 3.5 \times 10^6$, $H_j/p_\infty = RPR$.

USB CRUISE PROGRAM

CONFIGURATION F₂W₂B₂P₅C₅N₂

SHORT PYLON MOUNTED, FLOW-THROUGH NACELLE ON SWEPT WING

Figure 107. Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $H_j/p_\infty = RPR$.

USB CRUISE PROGRAM

CONFIGURATION $F_2W_2B_{5,6}P_{9,10}C_{3,4}N_8^1, N_8^2$

Figure 108. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_N C = 3.5 \times 10^6$, $M_\infty = 0.60$.

USB CRUISE PROGRAM

CONFIGURATION $F_2W_2B_{5,6}P_{9,10}C_{3,4}N_8^1, N_8^2$

Figure 109. Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.

USB CRUISE PROGRAM

CONFIGURATION $F_2W_2B_{5,6}P_{9,10}C_{3,4}N_8^1, N_8^2$

Figure 110. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_N C = 3.5 \times 10^6$, $M_\infty = 0.68$.

USB CRUISE PROGRAM

CONFIGURATION $F_2W_2B_{5,6}P_{9,10}C_{3,4}N_8^1, N_8^2$

SWEPT WING & 2 D-DUCT NACELLES

Figure 111. Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68$.

USB CRUISE PROGRAM

CONFIGURATION F₂W₂B_{5,6}P_{9,10}C_{3,4}N_{8¹},N_{8²}

Figure 112. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.73$.

USB CRUISE PROGRAM

CONFIGURATION F₂W₂B_{5,6}P_{9,10}C_{3,4}N₈¹,N₈²

Figure 113. Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.73$.

USB CRUISE PROGRAM

CONFIGURATION $F_2W_2B_6P_{10}C_4N_8^2$

SWEPT WING & D-DUCT NACELLE

Figure 114. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.

USB CRUISE PROGRAM

CONFIGURATION $F_2W_2B_6P_{10}C_4N_8^2$

Figure 115. Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.

USB CRUISE PROGRAM

CONFIGURATION $F_2W_2B_6P_{10}C_4N_8^2$

SWEPT WING & D-DUCT NACELLE

Figure 116. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68$.

USB CRUISE PROGRAM

CONFIGURATION $F_2W_2B_6P_{10}C_4N_8^2$

Figure 117. Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68$.

Figure 118. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_N C = 3.5 \times 10^6$, $M_\infty = 0.73$.

USB CRUISE PROGRAM

CONFIGURATION $F_2W_2B_6P_{10}C_4N_8^2$

Figure 119. Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.73$.

USB CRUISE PROGRAM

CONFIGURATION F₂W₂B₅P₉C₃N₁₁

Figure 120. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.

USB CRUISE PROGRAM

CONFIGURATION F₂W₂B₅P₉C₃N₁₁

SWEPT WING WITH CIRCULAR NACELLE

Figure 121. Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.

USB CRUISE PROGRAM

CONFIGURATION F₂W₂B₅P₉C₃N₁₁

Figure 122. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68$.

USB CRUISE PROGRAM

CONFIGURATION F₂W₂B₅P₉C₃N₁₁

Figure 123. Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68$.

USB CRUISE PROGRAM

CONFIGURATION F₂W₂B₅P₉C₃N₁₁

SWEPT WING WITH CIRCULAR NACELLE

Figure 124. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.73$.

USB CRUISE PROGRAM

CONFIGURATION F₂W₂B₅P₉C₃N₁₁

Figure 125. Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.73$.

USB CRUISE PROGRAM

CONFIGURATION F₂W₂B₅P₉C₃N₁₂

Figure 126. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.

USB CRUISE PROGRAM

CONFIGURATION F₂W₂B₅P₉C₃N₁₂

Figure 127. Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.

USB CRUISE PROGRAM

CONFIGURATION F₂W₂B₅P₉C₃N₁₂

Figure 128. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68$.

USB CRUISE PROGRAM

CONFIGURATION F₂W₂B₅P₉C₃N₁₂

Figure 129. Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68$.

USB CRUISE PROGRAM

CONFIGURATION $F_2W_2B_5P_9C_3N_{12}$

Figure 130. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.73$.

USB CRUISE PROGRAM

CONFIGURATION F₂W₂B₅P₉C₃N₁₂

Figure 131. Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.73$.

USB CRUISE PROGRAM

CONFIGURATION F₂W₂B₅P₉C₃N₁₃

SWEPT WING & AR6 NACELLE

Figure 132. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.

USB CRUISE PROGRAM

CONFIGURATION F₂W₂B₅P₉C₃N₁₃

Figure 133. Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.60$.

USB CRUISE PROGRAM

CONFIGURATION F₂W₂B₅P₉C₃N₁₃

SWEPT WING & AR6 NACELLE

Figure 134. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_N C = 3.5 \times 10^6$, $M_\infty = 0.68$.

USB CRUISE PROGRAM

CONFIGURATION F₂W₂B₅P₉C₃N₁₃

Figure 135. Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.68$.

USB CRUISE PROGRAM

CONFIGURATION F₂W₂B₅P₉C₃N₁₃

SWEPT WING & AR6 NACELLE

Figure 136. Variation of measured lift coefficient with measured drag coefficient and nozzle pressure ratio, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.73$.

USC CRUISE PROGRAM

CONFIGURATION F₂W₂B₅P₉C₃N₁₃

Figure 137. Variation of measured lift coefficient with angle of attack, $R_{NC} = 3.5 \times 10^6$, $M_\infty = 0.73$.

7.0 NOZZLE CALIBRATION

The nozzles designed for the USB Cruise Performance Program covered a wide range of types and shapes. To accurately determine the effects of installing these nozzles on upper surface blowing models, it was considered necessary to first obtain actual nozzle performance on an isolated basis. Static tests were later performed on the fully integrated wing-nozzle combinations.

7.1 Basic Isolated Nozzle Performance

The isolated test nozzles were calibrated using a rig set up in Lockheed-Georgia Low Speed Wind Tunnel. There were three sizes of test nozzles with aspect ratios which ranged from 1.25 to 6. Both forces and pressures were measured in separate sets of runs. Test dates were from 9-8 through 9-19-75. Actual and ideal nozzle pressure ratio as well as thrust parameter were plotted versus reference pressure ratio for each of the test configurations. Discharge coefficients, velocity coefficients and various forms of thrust coefficients were also plotted. These are presented in Figures 138 through 165.

USB CRUISE PROGRAM

SYM	RUN	CONFIGURATION
○	9	RAKE ON
×	10	RAKE OFF

USB NOZZLES CALIBRATION
N2E EXISTING INTERMEDIATE CIRCULAR 0.36C

DATE SEPT 1975
LWT L60
LOCKHEED

WEIGHTED AVERAGE NOZZLE EXIT TOTAL
PRESSURE FROM CALIBRATION RAKE (PT6M/P80) .
AND IDEAL NOZZLE EXIT TOTAL PRESSURE (PT6I/P80)

CORRECTED NOZZLE DROPS THRUST

Figure 138. Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_{2E}.

Figure 139. Isolated nozzle performance coefficients from static test rig, N₂E.

Figure 140. Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_2 .

Figure 141. Isolated nozzle performance coefficients from static test rig, N₂.

Figure 142 Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_3 .

Figure 143. Isolated nozzle performance coefficients from static test rig, N₃.

Figure 144. Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_4 .

USB CRUISE PROGRAM

SYM	RUM	CONFIGURATION
O	15	RUM ON
X	16	RUM OFF

USB NOZZLES CALIBRATION
N4 NEW INTERMEDIATE AR=4 0.95C

DATE SEPT 1975
LWT 160
~~LOCKHEED~~

Figure 145. Isolated nozzle performance coefficients from static test rig, N4.

USB CRUISE PROGRAM

Figure 146. Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N5.

Figure 147. Isolated nozzle performance coefficients from static test rig, N₅.

SYM	RUN	CONFIGURATION
O	20	RAKE ON
X	21	RAKE OFF

USB CRUISE PROGRAM

USB NOZZLES CALIBRATION
N_{3E} EXISTING INTERMEDIATE AR=2.5 0.35C

DATE SEPT 1976
LWT 160
LOCKHEED

WEIGHTED AVERAGE NOZZLE EXIT TOTAL
PRESSURE FROM CALIBRATION RAKE (PT6M/P80),
AND IDEAL NOZZLE EXIT TOTAL PRESSURE (PT6I/P80)

CORRECTED NOZZLE GROSS THRUST

Figure 148. Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_{3E}.

Figure 149. Isolated nozzle performance coefficients from static test rig, N_{3E}.

USB CRUISE PROGRAM

Figure 150. Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_{4E} .

Figure 151. Isolated nozzle performance coefficients from static test rig, N_{4E}.

USB CRUISE PROGRAM

SYM	RUN	CONFIGURATION
O	24	RAKE ON
X	25	RAKE OFF

USB NOZZLES CALIBRATION
NIE EXISTING: INTERMEDIATE CIRCULAR 0-20C

DATE SEPT 1976
LBNR 163
LOCKHEED

WEIGHTED AVERAGE NOZZLE EXIT TOTAL
PRESSURE FROM CALIBRATION RAKE (PT6M/P80),
AND IDEAL NOZZLE EXIT TOTAL PRESSURE (PT6I/P80)

CORRECTED NOZZLE GROSS THRUST

Figure 152. Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_{IE} .

Figure 153. Isolated nozzle performance coefficients from static test rig, N_{1E}.

USB CRUISE PROGRAM

SYM	RUN	CONFIGURATION
○	26	BACH ON
X	27	BACH OFF

USB NOZZLES CALIBRATION
NB NEW LARGE CIRCULAR

DATE SEPT 1976
LBHT 160 LOCKHEED

WEIGHTED AVERAGE NOZZLE EXIT TOTAL
PRESSURE FROM CALIBRATION RAKE (PT5M/P60),
AND IDEAL NOZZLE EXIT TOTAL PRESSURE (PT6I/P60)

CORRECTED NOZZLE CROSS THRUST

Figure 154. Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_9 .

USB CRUISE PROGRAM

Figure 155. Isolated nozzle performance coefficients from static test rig, N9.

USB CRUISE PROGRAM

SYM	RUN	CONFIGURATION
O	29	RAKE ON
X	29	RAKE OFF

U8B NOZZLES CALIBRATION
N3 NEW INTERMEDIATE D-DUCT (MOD) 0.35C

DATE SEPT 1976
L8HT 160
LOCKHEED

WEIGHTED AVERAGE NOZZLE EXIT TOTAL
PRESSURE FROM CALIBRATION RAKE (PT6M/P80),
AND IDEAL NOZZLE EXIT TOTAL PRESSURE (PT6I/P80)

CORRECTED NOZZLE CROSS THRUST

Figure 156. Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_3 .

Figure 157. Isolated nozzle performance coefficients from static test rig, N₃.

USB CRUISE PROGRAM

SYM	NUM	CONFIGURATION
o	31	RAKE ON
x	32	RAKE OFF

U8B NOZZLES CALIBRATION
N8(1) NEW SMALL D-DUCT AR=2.5 0.20C

DATE SEPT 1976
LWT 160 LOCKHEED

WEIGHTED AVERAGE NOZZLE EXIT TOTAL
PRESSURE FROM CALIBRATION RAKE (PT6M/P80)
AND IDEAL NOZZLE EXIT TOTAL PRESSURE (PT6I/P80)

CORRECTED NOZZLE CROSS THRUST

Figure 158. Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_8^1 .

Figure 159. Isolated nozzle performance coefficients from static test rig, N₈¹.

USB CRUISE PROGRAM

Figure 160. Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_8^2 .

Figure 161. Isolated nozzle performance coefficients from static test rig, N_8^2 .

USB CRUISE PROGRAM

Figure 162. Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_{11} .

Figure 163. Isolated nozzle performance coefficients from static test rig, N₁₁.

USB CRUISE PROGRAM

Figure 164. Nozzle exit pressure ratio and thrust parameter versus internal reference pressure ratio, N_{12} .

USB CRUISE PROGRAM

SYM	RUN	CONFIGURATION
o	39	RAKE ON
x	40	RAKE OFF

USB NOZZLES CALIBRATION
N12 NEW SMALL D-DUCT AR=4 0.35C

DATE SEPT 1976
LWT 100
LOCKHEED

Figure 165. Isolated nozzle performance coefficients from static test rig, N₁₂.

7.2 Summary of Nozzle Performance Coefficients, Isolated and Installed

A tabulated summary of the essential performance coefficients for all the test nozzles is presented in Figure 166, sheets 1 through 5. In addition to the thrust parameter, discharge coefficient and nozzle pressure ratio, the parameters which relate isolated to installed nozzle performance are included. These are turning efficiency, η_t (ETAT), turning angle, δ_j (DJ) and static moment, M_{Y_s} (MYFS). Also included are nozzle areas.

The isolated nozzle coefficients are taken directly from the plots presented earlier. Turning efficiency, turning angle and static moment are data measured in a subsequent static test of the complete wing-nacelle configurations. Both sets of data are provided exactly as utilized in the basic data reduction program.

USB CRUISE PROGRAM

NOZ.	PARAM. H4M/P0	<u>H5I</u>	<u>FGM</u>	CD	<u>H5M</u>	ETAT	DJ	MYFS	A 5	
		P0	A5*P0		P0				cm ²	in ²
N1E ↓	1.0	1.0	0	.963	1.0	1.0	0	0	12.813	1.986
	1.3	1.33	.574	.966	1.31	1.0	-1.3	-.48		
	1.6	1.65	1.018	.968	1.60	.996	-1.1	-.81		
	2.0	2.07	1.556	.970	2.01	.980	-1.0	-1.14		
	2.6	2.70	2.325	.971	2.62	.989	-.9	-1.40		
	3.2	3.31	3.085	.972	3.24	.990	-1.5	-1.48		
	4.0	4.17	4.125	.972	4.04	.990	-1.5	-1.50		
N2E ↓	1.0	1.0	0	.963	1.0	1.0	0	0	12.813	1.986
	1.3	1.33	.530	.966	1.31	1.0	-1.2	-.48		
	1.6	1.65	.980	.968	1.60	.992	-1.2	-.81		
	2.0	2.07	1.520	.970	2.01	.984	-1.0	-1.14		
	2.6	2.70	2.284	.971	2.62	.989	-1.0	-1.40		
	3.2	3.31	3.059	.972	3.24	.989	-1.0	-1.48		
	4.0	4.17	4.081	.972	4.04	.989	-1.0	-1.50		
N3E ↓	1.0	1.0	0	.940	1.0	1.0	0	0	13.464	2.087
	1.3	1.34	.550	.966	1.32	1.0	-5.8	-.50		
	1.6	1.65	.980	.976	1.62	.993	-4.5	-.93		
	2.0	2.07	1.500	.980	2.03	.988	-3.2	-1.30		
	2.6	2.68	2.250	.979	2.63	.978	-3.0	-1.40		
	3.2	3.30	3.000	.980	3.23	.975	-4.0	-1.50		
	4.0	4.13	4.010	.970	4.00	.975	-4.0	-1.63		
N4E ↓	1.0	1.0	0	.916	1.0	1.0	0	0	13.464	2.087
	1.3	1.35	0.550	.943	1.30	.957	-13.0	-.78		
	1.6	1.67	1.000	.956	1.60	.964		-1.22		
	2.0	2.07	1.530	.963	2.00	.975		-1.60		
	2.6	2.68	2.300	.967	2.60	.969		-1.70		
	3.2	3.32	3.070	.968	3.20	.975		-1.70		
	4.0	4.17	4.100	.968	4.03	.975		-1.70		

Figure 166. Summary of nozzle performance coefficients,
isolated and installed. (Sheet 1)

USB CRUISE PROGRAM

NOZ.	PARAM. H4M/P0	H5I P0	FGM A5*P0	CD	H5M P0	ETAT	DJ	MYFS	A 5	
									cm ²	in ²
N2	1.0	1.0	0	.957	1.0	1.0	0	0	13.464	2.087
	1.3	1.34	.524	.960	1.31		-1.3	-.50		
	1.6	1.65	.975	.964	1.60		-1.0	-.82		
	2.0	2.06	1.492	.969	1.99		0	-1.17		
	2.6	2.66	2.252	.968	2.59		-.6	-1.40		
	3.2	3.29	3.013	.965	3.19		-1.3	-1.42		
	4.0	4.11	4.007	.963	3.96		-1.3	-1.43		
N3A	1.0	1.0	0	.941	1.0	1.0	0	0	8.894	1.379
	1.3	1.32	.500	.953	1.29	.939	-15.8	-.47		
	1.6	1.63	.920	.962	1.58	.949		-.81		
	2.0	2.04	1.410	.967	1.98	.965		-1.18		
	2.6	2.66	2.120	.969	2.57	.956		-1.42		
	3.2	3.28	2.830	.968	3.16	.965		-1.58		
	4.0	4.10	3.790	.968	3.95	.965		-1.64		
N3B	1.0	1.0	0	.920	1.0	1.0	0	0	12.935	2.005
	1.3	1.32	.526	.954	1.29	1.0	-4.5	-.54		
	1.6	1.63	.950	.964	1.59	1.0	-5.2	-.87		
	2.0	2.04	1.470	.971	1.98	1.0	-5.0	-1.19		
	2.6	2.66	2.220	.973	2.56	.994	-6.0	-1.39		
	3.2	3.27	2.960	.973	3.16	.990	-6.1	-1.40		
	4.0	4.09	3.940	.972	3.95	.990	-6.2	-1.40		
N4	1.0	1.0	0	.961	1.0	1.0	0	0	13.464	2.087
	1.3	1.32	.520	.962	1.29	.925	-8.5	-.70		
	1.6	1.63	.950	.963	1.58	.933	-8.6	-1.12		
	2.0	2.02	1.470	.969	1.96	.966	-9.2	-1.37		
	2.6	2.63	2.205	.966	2.54	.968	-9.8	-1.40		
	3.2	3.23	2.950	.955	3.09	.970	-10.0	-1.44		
	4.0	4.04	3.940	.939	3.80	.970	-10.0	-1.49		

Figure 166. Summary of nozzle performance coefficients,
isolated and installed. (Sheet 2)

USB CRUISE PROGRAM

NOZ.	PARAM. H4M/P0	H5I P0	FGM A5*P0	CD	H5M P0	ETAT	DJ	MYFS	A 5	
									cm ²	in ²
N5	1.0	1.0	0	.906	1.0	1.0	0	0	13.464	2.087
	1.3	1.33	.525	.954	1.29	.973	-11.4	-.60		
	1.6	1.63	.950	.959	1.58	.971	-12.0	-1.00		
	2.0	2.03	1.462	.963	1.96	.993	-12.0	-1.35		
	2.6	2.63	2.220	.963	2.53	.977	-12.5	-1.50		
	3.2	3.23	2.975	.950	3.08	.985	-11.0	-1.50		
	4.0	4.04	3.975	.932	3.77	.985	-11.0	-1.50		
N6	1.0	1.0	0	.845	1.0	1.0	0	0	6.732	1.043
	1.3	1.30	.512	.881	1.28	.946	-1.8	-.25		
	1.6	1.60	.908	.891	1.56	.946	-2.0	-.36		
	2.0	2.00	1.356	.898	1.95	.972	-2.0	-.41		
	2.6	2.60	2.030	.901	2.53	.982	-2.8	-.54		
	3.2	3.22	2.710	.902	3.12	.978	-3.3	-.62		
	4.0	4.03	3.613	.902	3.90	.978	-3.3	-.70		
								N81 ONLY	N82 ONLY	
N81 OR N82	1.0	1.0	0	.907	1.0	1.0	0	0	6.732	1.043
	1.3	1.30	.550	.946	1.28	.946	-1.8	-.25	-.08	
	1.6	1.60	.975	.957	1.56	.946	-2.0	-.36	-.16	
	2.0	2.00	1.456	.964	1.95	.972	-2.0	-.41	-.23	
	2.6	2.60	2.180	.968	2.53	.982	-2.8	-.54	-.30	
	3.2	3.22	2.910	.969	3.12	.978	-3.3	-.62	-.37	
	4.0	4.03	3.880	.969	3.90	.978	-3.3	-.70	-.46	
*N81 AND N82	1.0	1.0	0	.907	1.0	1.0	0	0	6.732	1.043
	1.3	1.30	.550	.946	1.28	.941	-1.3	-.70		
	1.6	1.60	.975	.957	1.56	.941	-1.5	-1.19		
	2.0	2.00	1.456	.964	1.95	.967	-1.5	-1.57		
	2.6	2.60	2.180	.968	2.53	.977	-2.1	-1.80		
	3.2	3.22	2.910	.969	3.12	.973	-2.4	-1.84		
	4.0	4.03	3.880	.969	3.90	.973	-2.4	-1.85		

* Dual Eng. Installation

Figure 166. Summary of nozzle performance coefficients,
isolated and installed. (Sheet 3)

USB CRUISE PROGRAM

NOZ.	PARAM. H4M/P0	H5I P0	FGM A5*P0	CD	H5M P0	ETAT	DJ	MYFS	A 5	
									cm ²	in ²
N11	1.0	1.0	0	.918	1.0	1.0	0	0	6.732	1.043
	1.3	1.31	.522	.964	1.28		+1.6	-.25		
	1.6	1.61	.950	.973	1.57		+2.3	-.40		
	2.0	2.01	1.430	.978	1.96		+2.8	-.49		
	2.6	2.60	2.160	.980	2.55		+2.5	-.66		
	3.2	3.20	2.875	.982	3.13		+2.0	-.82		
	4.0	4.00	3.850	.982	3.92		+2.0	-.99		
N12	1.0	1.0	0	.932	1.0	1.0	0	0	6.732	1.043
	1.3	1.30	.580	.961	1.27		-.2	-.28		
	1.6	1.60	.975	.976	1.58		-.5	-.44		
	2.0	2.01	1.470	.981	1.97		-2.5	-.56		
	2.6	2.62	2.220	.978	2.55		-4.7	-.66		
	3.2	3.22	2.950	.977	3.15		-4.8	-.76		
	4.0	4.02	3.950	.977	3.93		-4.8	-.88		
N13	1.0	1.0	0	.879	1.0	1.0	0	0	6.732	1.043
	1.3	1.30	.560	.954	1.26		-5.5	-.35		
	1.6	1.60	.950	.972	1.57		-7.0	-.56		
	2.0	2.01	1.430	.975	1.96		-7.5	-.71		
	2.6	2.62	2.180	.975	2.54		-7.3	-.83		
	3.2	3.22	2.920	.972	3.13		-7.0	-.96		
	4.0	4.02	3.920	.970	3.90		-7.0	-1.11		
N13A (F+5°)	1.0	1.0	0	.879	1.0	1.0	0	0	6.732	1.043
	1.3	1.30	.560	.954	1.26		-7.1	-.50		
	1.6	1.60	.950	.972	1.57		-8.2	-.60		
	2.0	2.01	1.430	.975	1.96		-9.0	-.70		
	2.6	2.62	2.180	.975	2.54		-9.2	-.79		
	3.2	2.62	2.920	.975	2.54		-8.2	-.80		
	4.0	4.02	3.920	.970	3.90		-8.2	-.81		

Figure 166. Summary of nozzle performance coefficients,
isolated and installed. (Sheet 4)

USB CRUISE PROGRAM

NOZ.	PARAM. H4M/P0	H5I P0	FGM A5*P0	CD	H5M P0	ETAT	DJ	MYFS	A 5	
									cm ²	in ²
N13B (F-5°) UP	1.0	1.0	0	.879	1.0	1.0	0	0	6.732	1.043
	1.3	1.30	.560	.954	1.26	.968	-3.1	-.25		
	1.6	1.60	.950	.972	1.57	1.0	-3.2	-.39		
	2.0	2.01	1.430	.975	1.96	.980	-4.2	-.46		
	2.6	2.62	2.180	.975	2.54	.982	-4.5	-.58		
	3.2	3.22	2.920	.972	3.13	.974	-4.4	-.60		
	4.0	4.02	3.920	.970	3.90	.974	-4.4	-.62		

Figure 166. Summary of nozzle performance coefficients,
isolated and installed. (Sheet 5)

7.3 Nozzle Thrust Coefficients For Wind-On Data Reduction

For many types of performance calculations it is more convenience to use thrust coefficient, C_T , rather than thrust parameter as presented in Figure 166. Accordingly, thrust coefficients were calculated and plotted for each of the more common test pressure ratios and Mach numbers. These are presented in Figures 167 through 178.

Figure 167 . Variation of nozzle gross thrust with
Mach No., and pressure ratio, nozzle N_2E .

USB CRUISE PROGRAM

Figure 168 . Variation of nozzle gross thrust with
Mach No. and pressure ratio, nozzle N_{3E}.

Figure 169 . Variation of nozzle gross thrust with
Mach No. and pressure ratio, nozzle N_{4E}.

USB CRUISE PROGRAM

Figure 170 . Variation of nozzle gross thrust with
Mach No. and pressure ratio, nozzle N₂
(circular).

Figure 171 . Variation of nozzle gross thrust with
Mach No. and pressure ratio, nozzle N_{3B}.

Figure 172 . Variation of nozzle gross thrust with
Mach No. and pressure ratio, nozzle N₄.

Figure 173 . Variation of nozzle gross thrust with
Mach No. and pressure ratio, nozzle N₅.

USB CRUISE PROGRAM

Figure 174 . Variation of nozzle gross thrust with
Mach No. and pressure ratio, nozzle
 $N_8^1 + N_8^2$.

Figure 175 . Variation of nozzle gross thrust with
Mach No. and pressure ratio, nozzle N_g^2 .

Figure 176 . Variation of nozzle gross thrust with
Mach No. and pressure ratio, nozzle N_{11} .

Figure 177 . Variation of nozzle gross thrust with
Mach No. and pressure ratio, nozzle N₁₂.

Figure 178 . Variation of nozzle gross thrust with
Mach No. and pressure ratio, nozzle N₁₃.

8.0 OIL FLOW PHOTOGRAPHS

In order to visually understand the complex flow phenomena which occur on the surfaces of the nacelle-wing interference regions, oil flow photographs were taken of most of the test configurations after the completion of each configuration series. The more interesting examples of these photos are presented in Figures 179 through 190.

USB CRUISE PROGRAM

Figure 179. Oil flow pattern, nozzle N_{1E}, $M_{\infty} = 0.70$, $H_j/p_{\infty} = 2.6$, $\alpha = 2.6^\circ$.

USB CRUISE PROGRAM

Figure 180. Oil flow pattern, nozzle N_{3E} , $M_\infty = 0.70$, $H_j/p_\infty = 2.0$, $\alpha = 2.6^\circ$.

USB CRUISE PROGRAM

Figure 181. Oil flow pattern, nozzle N_{4E} , $M_\infty = 0.70$, $H_j/p_\infty = 2.6$, $\alpha = 2.6^\circ$.

USB CRUISE PROGRAM

Figure 182. Oil flow pattern, nozzle N₂, M_∞ = 0.68, H_j/p_∞ = RPR, α = 3°.

USB CRUISE PROGRAM

Figure 183. Oil flow pattern, nozzle N₅, M_∞ = 0.70, H_j/p_∞ = 2.6, α = 2.6°.

USB CRUISE PROGRAM

Figure 184. Oil flow pattern, clean swept wing, $M_\infty = 0.75$, $\alpha = 3^\circ$.

USB CRUISE PROGRAM

Figure 185. Oil flow pattern, nozzle N₁₁, $M_{\infty} = 0.75$, $H_j/p_{\infty} = 2.6$, $\alpha = 2.6^\circ$.

USB CRUISE PROGRAM

Figure 186. Oil flow pattern, nozzle N_8^1 , $M_\infty = 0.75$, $H_j/p_\infty = 2.6$, $\alpha = 2.6^\circ$.

USB CRUISE PROGRAM

Figure 187. Oil flow pattern, nozzles N₈¹ & N₈², M_∞ = 0.70, H_j/p_∞ = 1.8, α = 2.6°.

USB CRUISE PROGRAM

Figure 188. Oil flow pattern, nozzle N_{12} , $M_\infty = 0.75$, $H_j/p_\infty = 2.6$, $\alpha = 2.6^\circ$.

USB CRUISE PROGRAM

Figure 189. Oil flow pattern, nozzle N₁₃, $M_{\infty} = 0.75$, $H_j/p_{\infty} = 2.6$, $\alpha = 2.6^\circ$.

USB CRUISE PROGRAM

Figure 190. Oil flow pattern, pylon mounted nacelle with nozzle N₂,
 $M_{\infty} = 0.75$, $H_j/p_{\infty} = RPR$, $\alpha = 2.6^\circ$.

9.0 REFERENCES

1. Braden, J. A., Hancock, J. P., Burdges, K. P., and Hackett, J. E.
"Exploratory Studies of the Cruise Performance of Upper Surface Blown Configuration, Experimental Program - Test Facilities, Model Design, Instrumentation and Low-Speed High-Lift Tests." NASA CR-3192, 1979.
3. Braden, J. A., Hancock, J. P., Burdges, K. P., and Hackett, J. E.,
"Exploratory Studies of the Cruise Performance of Upper Surface Blown Configuration, Program Analysis and Conclusions," NASA CR-159136, 1979.

1. Report No. CR-159134	2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle EXPLORATORY STUDIES OF THE CRUISE PERFORMANCE OF UPPER-SURFACE BLOWN CONFIGURATIONS - Experimental Program - High-Speed Force Tests		5. Report Date October 1979	
7. Author(s) J. A. Braden, J. P. Hancock, J. E. Hackett, V. Lyman		6. Performing Organization Code	
9. Performing Organization Name and Address Lockheed-Georgia Company 86 South Cobb Drive Marietta, Georgia 30063		8. Performing Organization Report No. LG77ER0028	
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23665		10. Work Unit No.	
		11. Contract or Grant No. NAS1-13871	
		13. Type of Report and Period Covered Contractor Report	
15. Supplementary Notes Part of a Series of Reports Covering Various Phases of the USB Program: CR-3193, CR-3192, CR-159134, CR-159135, CR-159136			
16. Abstract <p>The present report provides basic force data obtained from an experimental/analytical study of upper-surface blown (USB) configurations at cruise. The high-speed (subsonic) experimental work, studying the aerodynamic effects of wing-nacelle geometric variations, was conducted around semi-span model configurations composed of diversified, interchangeable components. Power simulation was provided by high-pressure air ducted through closed forebody nacelles. Nozzle geometry was varied across size, exit aspect ratio, exit position and boattail angle. Both 3-D force and 2-D pressure measurements were obtained at cruise Mach numbers from 0.5 to 0.8 and at nozzle pressure ratios up to about 3.0. The experimental investigation was supported by an analytical synthesis of the system using a vortex lattice representation with first-order power effects. Results are also presented from a compatibility study in which a short-haul transport is designed on the basis of the aerodynamic findings in the experimental study as well as acoustical data obtained in a concurrent program. High-lift test data are used to substantiate the projected performance of the selected transport design.</p>			
17. Key Words (Suggested by Author(s)) Subsonic cruise performance Propulsion integration High-lift Transport design		18. Distribution Statement Unclassified - Unlimited	
19. Security Classif. (of this report) UNCLASSIFIED	20. Security Classif. (of this page) UNCLASSIFIED	21. No. of Pages 212	22. Price*

