

- Network Engineering
 - Build your network to carry your predicted traffic!
 - Traffic patterns are impossible to predict!
 - Routing is based on the destination and does not allow to take the maximum possible advantage of the network resources.
 - IP source routing (using options field of IP header) is not usable in practice due to security reasons.
- Traffic Engineering
 - Manipulate your traffic path to fit your network!
 - Can be done with routing protocol costs (difficult deployment), or MPLS.
 - With RIP or OSPF or ANY OTHER IGP it is not possible to condition multiple traffic flows.
 - Increase efficiency of bandwidth resources.
 - Prevent over-utilized (congested) links whilst other links are under-utilized.
 - Ensure the most desirable/appropriate path for some/all traffic.
 - Override the shortest path selected by the routing protocols.

2

Ū

IP/MPLS Network Establishment

Discovery link and topology

- IP routing table is built
 - LSRs and LERs use routing protocols to discover network topology eg. OSPF, ISIS, (BGP);
 - CEs advertise their addresses using routing protocols into MPLS cloud;
- Forwarding Information Base (FIB) is built, initially without label information

Label Assignment

- FECs creation
 - LSRs classify with the same FEC all packets handled on the same way;
- Allocate Labels
 - Every LSR allocates locally labels for every destination in the IP routing table (LIB and LFIB setup);

38

Label Distribution Protocols

- Unconstrained routing
 - Label Distribution Protocol (LDP).
 - Path is chosen based on IGP shortest path.
- Constrained routing
 - Constrained by explicit path definition and/or performance requirements (e.g., available bandwidth).
 - Resource Reservation Protocol with Traffic Engineering (RSVP-TE).
 - Evolution of RSVP to support traffic engineering and label distribution.
 - Constrained based Routing LDP (CR-LDP).
 - Evolution of LDP to support constrained routing.
 - Deprecated!
- MPLS VPN scope
 - MP-BGP using address family VPN IPv4 and family specific MP_REACH_NLRI attribute.

39

- Dynamic distribution of label binding information.
- LSR discovery.
- Reliable transport with TCP.
- Incremental maintenance of label swapping tables (only deltas are exchanged).
- Designed to be extensible with Type-Length-Value (TLV) coding of messages.
- Modes of behavior that are negotiated during session initialization
 - Label distribution control (ordered or independent).
 - Label retention (liberal or conservative).
 - Label advertisement (unsolicited or on-demand).

41

LDP Messages

- Discovery messages
 - Announce and maintain the presence of an LSR in a network.
 - Hello Messages (UDP) sent to "all-routers" multicast address.
 - Once neighbor is discovered, a LDP session is established over TCP.
- Session messages
 - Establish (Initialization Message) and maintain (KeepAlive Message) sessions between LDP peers.
- Advertisement messages
 - When a new LDP session is initialized and before sending label information an LSR advertises its interface addresses with one or more Address Messages.
 - An LSR withdraw previously advertised interface addresses with Address Withdraw Messages.
 - Create, change, and delete label mappings for FECs.
 - Label Mapping, Label Request, Label Abort Request, Label Withdraw, and Label Release Messages.
- Notification messages
 - Provide advisory information and to signal error information.

42

42

Constrained based Routing

- A cost is associated to each link
- Each link has a further set of attributes that represent performance metrics

The routing objective is to determine the lowest cost path that does not violate the restrictions that were assigned

- Restrictions can be associated to a set of performance characteristics, like for example, bandwidth, delay, priority, etc.
 - → For the bandwidth case, the restriction that is imposed to the routing algorithm is that the path must have, on each connection it traverses, a bandwidth higher than a certain threshold
 - ▶ In this case, the connection attribute used is the available bandwidth.

47

ReSerVation Protocol (RSVP)

- ReSerVation Protocol (RSVP) was developed to communicate resource needs between hosts and network devices
 - Associated to the Intserv QoS model
- RSVP allows:
 - The source to describe the characteristics of the IP packets flow.
 - Destinations to describe the reservation they want.
 - Routers to know how to process the packets flow in order to fulfil the requested reservation.
- Encapsulated on IP (protocol type = 46 (0x2E))
- Signalling is based on PATH and RESV messages.
 - PATH announces the traffic characteristics at the sender.
 - RESV achieves reservations that were initiated by the receivers.
 - If the reservation is not possible, a RESV ERR message is sent.
- The routers reservation states have to be periodically refreshed (soft states).

54

54

Resource Reservation Protocol with Traffic Engineering (RSVP-TE)

- Evolution of RSVP
 - RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels. (12/2001)
 - RFC 5151: Resource Reservation Protocol-Traffic Engineering (RSVP-TE) Extensions. (2/2008)
- To map traffic flows onto the physical network topology through label switched paths, resource and constraint network information are required
 - Provided by Extend Link State Protocols (IS-IS or OSPF with TE extensions).
 - RFC 3630: Traffic Engineering (TE) Extensions to OSPF Version 2. (9/2003)
 - RFC 5305: IS-IS Extensions for Traffic Engineering. (10/2008)

55

- Provide IP VPN Services "the leased line"
 - Scalable IP VPN service Build once and sell many
 - Managed Central Services Building value added services and offering them across VPNs
- Managing traffic on the network using MPLS Traffic Engineering
 - Providing tighter SLA/QoS (Guaranteed BW Services)
 - Protecting bandwidth Bandwidth Protection Services
- Integrating Layer 2 & Layer 3 Infrastructure
 - Layer 2 services such as ATM (or Frame Relay) over MPLS
 - Mimic layer 2 services over a highly scalable layer 3 infrastructure

57

VPN Routing and Forwarding Instance (VRF)

- PE routers maintain separate routing tables.
 - Virtual Routing and Forwarding (VRF) instance is separate from the global routing table that exists on PE routers
- Global routing table
 - Contains all PE and P routes (perhaps BGP)
 - Populated by the VPN backbone IGP
- VRF (VPN routing and forwarding)
 - Routing and forwarding table associated with one or more directly connected sites (CE routers)
 - VRF is associated with any type of interface, whether logical or physical (e.g. sub/virtual/tunnel)
 - Interfaces may share the same VRF if the connected sites share the same routing information
 - Routes are injected into the VRF from the CE-PE routing protocols for that VRF and any MP-BGP announcements that match the defined VRF.

75

Carrying VPN Routes in BGP

- VRFs by themselves aren't all that useful
 - Need some way to get the VRF routing information off the PE and to other PEs
 - This is done with BGP
- Additions to MP-BGP to Carry MPLS-VPN Info
 - RD: Route Distinguisher
 - RT: Route Target
 - VPNv4 address family
 - MPLS Label

Path attributes

Path Attribut - ORIGIN: INCOMPLETE

Path Attribut - AS_PATH: empty

Path Attribut - MULTI_EXIT_DISC: 0

Path Attribut - LOCAL PREF: 10 Path Attribut - EXTENDED COMMUNITIES

Flags: 0xc0: Optional, Transitive, Complete Type Code: EXTENDED_COMMUNITIES (16) Length: 8 Carried extended communities: (1 community)

Pocommunity Transitive Two-Octet AS Route Target: 200:1
Path Attribut - MP_REACH_NLRI
Plags: 0880: Optional, Non-transitive, Complete
Type Code: MP_REACH_NLRI (14)

Hype tode: HT LERCH MLNI (14) Length: 33 Address family: IPv4 (1) Subsequent address family identifier: Labeled VPN Unicast (128) Next hop network address (12 bytes) Subnetwork points of attachment: 0

Network layer reachability information (16 bytes)
▶ Label Stack=24 (bottom) RD=200:1, IPv4=192.1.1.0/25

Terminology, 1/2

- RR—Route Reflector
 - A router (usually not involved in packet forwarding) that distributes BGP routes within a provider's network
- PE—Provider Edge router
 - → The interface between the customer and the MPLS-VPN network; only PEs (and maybe RRs) know anything about MPLS-VPN routes
- P—Provider router
 - → A router in the core of the MPLS-VPN network, speaks LDP/RSVP but not necessarily VPNv4
- CE—Customer Edge router
 - The customer router which connects to the PE; does not know anything about labels, only IP (most of the time)
- LDP—Label Distribution Protocol
 - → Distributes labels with a provider's network that mirror the IGP, one way to get from one PE to another
- LSP—Label Switched Path
 - The chain of labels that are swapped at each hop to get from one PE to another

77

77

Terminology, 2/2

- VPN—Virtual Private Network
 - A network deployed on top of another network, where the two networks are separate and never communicate
- VRF—Virtual Routing and Forwarding instance
 - Mechanism in IOS used to build per-interface route and forwarding information bases (RIB and FIB)

 Example:
 - ◆ VRF exports and imports one or more RT (route targets)

VPNv4

→ Address family used in BGP to carry MPLS-VPN routes

ip vrf VPN-A rd 100:1 route-target export 100:1 route-target import 100:1

- RD
 - → Route Distinguisher, used to uniquely identify the same network/mask from different VRFs (i.e., 10.0.0.0/8 from VPN A and 10.0.0.0/8 from VPN B)
 - objective: make routes unique, hide routes from different customers

RT

- → Route Target, used to control import and export policies, to build arbitrary VPN topologies for customers
- exported RTs can be carried in BGP

78

