СОДЕРЖАНИЕ

ВВЕДЕНИЕ

ЛОКАЛЬНАЯ СИСТЕМА УПРАВЛЕНИЯ

- структурная схема
- схема прохождения входного сигнала
- схема прохождения выходного сигнала
- схема прохождения выходного сигнала (управление двигателем)

ЦЕНТРАЛИЗОВАННАЯ СИСТЕМА УПРАВЛЕНИЯ

- структурная схема
- схема прохождения входного сигнала
- схема прохождения выходного сигнала
- схема прохождения выходного сигнала (управление двигателем)

РАСПРЕДЕЛЕННАЯ СИСТЕМА УПРАВЛЕНИЯ

ТИПЫ КАБЕЛЕЙ

РАСПРЕДЕЛИТЕЛЬНАЯ КОРОБКА

ШКАФ РАСПРЕДЕЛИТЕЛЬНЫЙ

ШКАФ УПРАВЛЕНИЯ

ШКАФ УПРАВЛЕНИЯ ДВИГАТЕЛЯМИ

ШКАФ ТЕЛЕКОММУНИКАЦИОННЫЙ

БАЗОВЫЕ ПРИНЦИПЫ КОМПОНОВКИ ШКАФА

ВВЕДЕНИЕ

От архитектуры АСУ ТП зависит набор оборудования, программного обеспечения, наличие соответствующего инженерно-технического персонала. При разработке архитектуры АСУ ТП необходимо, в первую очередь, учитывать предоставленное пространство для размещения оборудования (исключать избыточность и перенасыщение), а также размещать оборудование с учетом безопасности и удобства их последующей эксплуатации.

Далее будут рассмотрены расширенные структурные схемы (с указанием конкретного базового оборудования), используемые в различных архитектурах систем управления, а также будут даны некоторые рекомендации по монтажу оборудования.

ЛОКАЛЬНАЯ СИСТЕМА УПРАВЛЕНИЯ

СТРУКТУРНАЯ СХЕМА

ДИСПЕТЧЕРСКАЯ / ОПЕРАТОРСКАЯ (опционально)

ЦЕХ / ПОЛЕ / ОБЪЕКТ УПРАВЛЕНИЯ

ШУ — шкаф управления (низковольтный) ШУД — шкаф управления двигателями (силовой)

РП — распределительная панель

В/В — ввод/вывод (сигналы, каналы)

Field I/O — полевой ввод/вывод для системы управления

ЛОКАЛЬНАЯ СИСТЕМА УПРАВЛЕНИЯ

СХЕМА ПРОХОЖДЕНИЯ ВХОДНОГО СИГНАЛА

ЦЕХ / ПОЛЕ

цех / поле	ДИСПЕТЧЕРСКАЯ / ОПЕРАТОРСКАЯ
шкаф управления (ШУ)	станция оператора
местная панель управления и индикации	ПК
TT001_VAL	TT001_VAL
1 TIC H	TIC H
DATA	

TT (Temperature Transmiter) - датчик температуры (сенсор и преобразователь сигнала)

TP (Terminal Panel) - распределительная панель

TS (Transformer Section) - промежуточная секция преобразования сигнала

TAI (Terminal Analog Input) — группа сигналов аналогового ввода

PLC-AI (PLC Analog Input) — каналы В/В ПЛК

*_VAL (Value) — значение переменной, тег, регистр

TC (Temperature Controller) — регулятор температуры, программа, алгоритм

TIC (Temperature Indicator Controller) — регулятор и индикация температуры

ТТ, ТС, ТІС, Н, L - см. АСУТП: Схема автоматизации (коды измеряеых величин, функций) ТТ-001, ТР-001, ... - позиционное обозначение

ЛОКАЛЬНАЯ СИСТЕМА УПРАВЛЕНИЯ

СХЕМА ПРОХОЖДЕНИЯ ВЫХОДНОГО СИГНАЛА

ЦЕХ / ПОЛЕ

ЦЕХ / ПОЛЕ	ДИСПЕТЧЕРСКАЯ / ОПЕРАТОРСКАЯ
шкаф управления (ШУ)	станция оператора
местная панель управления и индикации	ПК
ZV001_VAL	ZV001_VAL
1 ZVIC H	ZVIC H
DATA	

ZV (Valve) — позиционирующее устройство клапана, задвижки

TP (Terminal Panel) - распределительная панель

TS (Transformer Section) - промежуточная секция преобразования сигнала

TAI (Terminal Analog Input) — группа сигналов аналогового ввода

PLC-AO (PLC Analog Output) — каналы аналогового вывода ПЛК

*_VAL (Value) — значение переменной, тег, регистр

ZVC (Valve Controller) — регулятор позиции клапана, программа, алгоритм

ZVIC (Valve Indicator Controller) — регулятор и индикация позиции клапана

ZV, ZVC, ZVIC, H, L - см. АСУТП: Схема автоматизации (коды измеряеых величин, функций) ZV-001, TP-001, ... - позиционное обозначение

ЛОКАЛЬНАЯ СИСТЕМА УПРАВЛЕНИЯ

СХЕМА ПРОХОЖДЕНИЯ ВЫХОДНОГО СИГНАЛА (УПРАВЛЕНИЕ ДВИГАТЕЛЕМ)

ЦЕХ / ПОЛЕ

объект управления	шкаф упра	авления двигателями (ШУД)	шкаф управления (ШУ)
двигатель		ПЧ	ПЛК управляющая программа
SS-001		VFD-001	SS001_VAL
SS +		S + S -	SSC H 1
•			
кабель:	BC		DATA

ЦЕХ / ПОЛЕ	ДИСПЕТЧЕРСКАЯ / ОПЕРАТОРСКАЯ
шкаф управления (ШУ)	станция оператора
местная панель управления и индикации	ПК
SS001_VAL	SS001_VAL
1 SSIC H	SSIC H
•	
DATA	

SS (Speed Switcher) — регулятор скорости двигателя, частоты VFD (Variable Frequency Drive) — частотно-регулируемый привод, преобразователь, ПЧ *_VAL (Value) — значение переменной, тег, регистр SSC (Speed Switcher Controller) — регулятор скорости, программа, алгоритм SSIC (Speed Switcher Indicator Controller) — регулятор и индикация скорости

SS, SSC, SSIC, H, L - см. АСУТП: Схема автоматизации (коды измеряеых величин, функций) SS-001, TP-001, ... - позиционное обозначение

ЦЕНТРАЛИЗОВАННАЯ СИСТЕМА УПРАВЛЕНИЯ

РК — распределительная коробка ШР — шкаф распределительный

ШУД — шкаф управления двигателями (силовой)

В/В — ввод/вывод (сигналы, каналы)

Field I/O — полевой ввод/вывод для системы управления

ЦЕНТРАЛИЗОВАННАЯ СИСТЕМА УПРАВЛЕНИЯ

СХЕМА ПРОХОЖДЕНИЯ ВХОДНОГО СИГНАЛА

ДИСПЕТЧЕРСКАЯ / ОПЕРАТОРСКАЯ

ЦЕНТРАЛИЗОВАННАЯ СИСТЕМА УПРАВЛЕНИЯ

СХЕМА ПРОХОЖДЕНИЯ ВЫХОДНОГО СИГНАЛА

ЦЕХ / ПОЛЕ		ДИСПЕТЧЕРСКАЯ / ОПЕРАТОРСКАЯ
объект управления	распределительная коробк (РК)	а шкаф распределительный (ШР)
датчик		распределительные панели
ZV-001	JB-001	TP-001 TS-001 TAO-001
ZV +		1 S + S _{IN} + 1 1 2 2
4		- \
кабель:	BC MMF	CC CW CW PFC

ДИСПЕТЧЕРСКАЯ / ОПЕРАТОРСКАЯ

ЦЕНТРАЛИЗОВАННАЯ СИСТЕМА УПРАВЛЕНИЯ

СХЕМА ПРОХОЖДЕНИЯ ВЫХОДНОГО СИГНАЛА (УПРАВЛЕНИЕ ДВИГАТЕЛЕМ)

ЦЕХ / ПОЛЕ		ДИСПЕТЧЕРСКАЯ / ОПЕРАТОРСКАЯ
объект управления	распределительная коробка (PK)	шкаф управления двигателями (ШУД)
датчик		ПЧ
SS-001	JB-001	VFD-001
SS +		S + ЦАП •••• 1
кабель:	BC BC	DATA

ДИСПЕТЧЕРСКАЯ / ОПЕРАТОРСКАЯ

шкаф управления (ШУ)	шкаф телекоммуникационный (ШТК)
ПЛК управляющая программа	преобразователь коммутатор сервер интерфейсов ETHERNET SCADA
SS001_VAL	SS001_VAL SS001_VAL SS001_VAL
1 SSC H	SS H SS H SSRCY H 2

DATA

ДИСПЕТЧЕРСКАЯ / ОПЕРАТОРСКАЯ		ОФИСНАЯ СЕТЬ / ИНТЕРНЕТ
шкаф телекоммуникационный (ШТК)	станция оператора	удаленные станции, ERP, MES, BPMS
маршрутизатор / файрвол	ПК	ПК, сервер
SS001_VAL	SS001_VAL	SS001_VAL
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SSIC H L	SSIRCY H
DATA	A	

РАСПРЕДЕЛЕННАЯ СИСТЕМА УПРАВЛЕНИЯ

Пример структурной схемы приведен в ПРИЛОЖЕНИИ А.

Схему прохождения сигналов В/В можно составить самостоятельно исходя из выше приведенной структурной схемы и примеров схем для локальной и централизованной систем.

ТИПЫ КАБЕЛЕЙ

Все компоненты системы управления маркируются

- датчики, исполнительные механизмы, технологическое оборудование
- распределительные коробки и шкафы
- изоляторы, защитные барьеры, блоки питания, контроллеры, станции и модули В/В
- кабели, кабельные концы, наконечники
- клеммы, каналы В/В

На концах кабелей, которые заводятся в клеммы, желательно устанавливать обжимные наконечники.

Типы кабелей

BC (Branch Cables)

- сигнальный кабель, полевой кабель
- от прибора
- для каждого прибора свой кабель
- обычно 1-, 2-, 3-жильный кабель

MMPC (Main MultiPair Cable)

- основной многожильный кабель
- от распределительной коробки
- для каждой распредительной коробки свой кабель
- обычно 24-жильный кабель (или более)

CW (Cross Wiring)

- промежуточный / перекрестный кабель
- от клеммной панели распределительного шкафа
- для каждого сигнала свой кабель (жила)
- обычно 1-жильный кабель (или более)

PFC (Prefabricated Cable)

- сборный кабель / жгут / системный сборный кабель (на конце может быть обжат или распаян в специальный разъем для модуля В/В)
- от перекрестной клеммы или клеммы изолятора / барьера
- для каждого сигнала свой кабель (жила)
- обычно 1-жильный кабель (или более)

DATA

- цифровой сигнал / данные
- от канала модуля В/В

РАСПРЕДЕЛИТЕЛЬНАЯ КОРОБКА

PK

JB (Junction Box)

- Расположение:
 - цех / поле / рядом с объектом управления.
- Coctab:
 - « корпус с кабельным вводом и системой внешних и внутренних креплений (может быть: пыле-, влаго-, взрывозащищенным)
 - клеммная панель с клеммными колодками.
- Применение в архитектурах систем управления:
 - централизованная, распределенная.

От каждого прибора Объекта управления отходят свои Сигнальные кабели (Branch Cable).

Практически (в плане удобства размещения и последующего обслуживания) сложно проложить кабели от каждого прибора к модулям В/В системы управления. Поэтому, вводят промежуточное место — Распределительная коробка (РК, Junction Box).

В Распределительную коробку сводятся сигнальные кабели от нескольких приборов, где они расключаются по клеммным колодкам. Затем с выхода этих клеммных колодок сигналы сводятся в один многожильный кабель (Основной кабель, Main Multipair Cable) и уходят до Распределительного шкафа (ШР, Marchaling Cabinet).

Таким образом, вместо прокладки нескольких различных кабелей от цеха к системе управления требуется всего один основной кабель с Распределительной коробкой.

В соответствии с конструкцией Объекта управления, определенное количество приборов группируется в соответствие с их категорией и подключается к соответствующей Распределительной коробке. Количество Распределительных коробок зависит от общего количества приборов и их классификации (например, по типу сигнала: дискретный или аналоговый, ввод или вывод).

Площадь поперечного сечения Основного кабеля может составлять: 1,5, 2,5 мм² и т.д.

Например, 20 различных датчиков подключены к одной Распределительной коробке.

От каждого датчика отходит один сигнальный кабель (пусть будет один 1-жильный кабель). Таким образом, от датчиков до Распределительной коробки прокладываются 20 отдельных Сигнальных кабелей. Соответственно, от Распредилительной коробки будет отходить один Основной кабель на 20-жил. Обычно, для Основного кабеля добавляют несколько запасных (резервных) жил — например, в данном случае для Основного кабеля можно взять 24-жильный кабель (4-жилы резервные).

Если к системе управления подключается небольшое количество приборов, то для снижения затрат из проекта можно исключить Распределительные коробки и Распределительные шкафы. В данном случае Сигнальные кабели от приборов будут уходить напримик на модули В/В системы управления.

ШКАФ РАСПРЕДЕЛИТЕЛЬНЫЙ

ШР

MC (Marshalling Cabinet)

- Расположение:
 - диспетчерская / операторская.
- Coctan;
 - « корпус с кабельным вводом и системой внешних и внутренних креплений (может быть: пыле-, влаго-, взрывозащищенным)
 - секции клеммных панелей;
 - вертикальные и/или горизонтальные кабельканалы.
- Применение в архитектурах систем управления:
 - централизованная, распределенная.

Представим, что в Поле (Цех) имеется несколько Распределительных коробок — например, пусть будет 100. Таким образом, до системы управления будет проложено 100 Основных кабелей.

Практически (в плане удобства размещения и последующего обслуживания) сложно подключить все кабели к модулям В/В системы управления. Поэтому, вводят еще одно промежуточное место — Распределительный шкаф (ШР, Marshaling Cabinet). Иное название — Шкаф сортировки или Панель сортировки.

В Распределительный шкаф сводятся основные кабели и пожильно расключаются в клеммные панели и клеммы заземления.

Секция клеммных панелей (TP, Terminal Panel)

- клеммные колодки для сигнальных кабелей
- экранирующие клеммы

Далее, с помощью промежуточных кабелей выполняется расключение сигнальных линий (кроссировка) через секции преобразования к панели системных клемм. Один сигнальный кабель может проходить как через одну или несколько секций преобразования, так и напрямик уходить на системные клеммы.

Секция промежуточных панелей преобразования сигнала (Transformer Section)

- блоки питания;
- блоки защиты сигнала:
 - · предохранители, изоляторы, барьеры искрозащиты, диодная защита и т. п.;
- блоки преобразования сигнала:
 - вторичные преобразователи, конвертеры и т.п.

Секция системных панелей (TDI, TDO, TAI, TAO, ..., System Panel)

- клеммные колодки, сгруппированные по типам сигнальных линий:
 - ∘ ввод или вывод,
 - дискретный или аналоговый,
 - ∘ и т.д.

ШКАФ РАСПРЕДЕЛИТЕЛЬНЫЙ

От клемм системных панелей сигнальные линии с помощью специального кабеля (Системный сборный кабель) уходят в следующий шкаф — Шкаф управления (Системный шкаф, System Cabinet).

- на входе ШР
 - сигнальные линии полевых приборов (напрямую или от РК)
- на выходе ШР
 - сигнальные линии приборов, преобразованные и сгруппированные по типам В/В

ШКАФ УПРАВЛЕНИЯ

ШУ

SC (Системный шкаф, System Cabinet)

- Расположение (в зависимости от архитектуры системы управления):
 - цех / поле / рядом с объектом управления;
 - диспетчерская / операторская.
- Состав:
 - корпус с кабельным вводом и системой внешних и внутренних креплений (может быть: пыле-, влаго-, взрывозащищенным)
 - вертикальные и/или горизонтальные кабельканалы;
 - распределительные панели с клеммными колодками;
 - система поддержания микроклимата (минимум управляемая вентиляция)
 - система питания шкафа и его компонентов (может быть расположена в ШР)
 - ПЛК (с модулями В/В или без них)
 - станции удаленного В/В.
- Применение в архитектурах систем управления:
 - локальная, централизованная, распределенная.

В Шкаф управления сводятся сборные (системные) кабели из Распределительного шкафа и подключаются к соответствующим каналам модулей В/В.

ПЛК, а также некоторые системы шкафа, подключаются в промышленную сеть с помощью коммуникационного оборудования.

- на входе ШУ
 - сигнальные линии, кроссированные в Распределительном шкафу
- на выходе ШУ
 - цифровые данные промышленной сети

ШКАФ УПРАВЛЕНИЯ ДВИГАТЕЛЯМИ

ШУД

MCC (Motor Control Cabinet)

- Расположение (в зависимости от архитектуры системы управления):
 - цех / поле / рядом с объектом управления;
 - диспетчерская / операторская.
- Состав:
 - корпус с кабельным вводом и системой внешних и внутренних креплений (может быть: пыле-, влаго-, взрывозащищенным)
 - вертикальные и/или горизонтальные кабельканалы;
 - распределительные панели с клеммными колодками;
 - система поддержания микроклимата (минимум управляемая вентиляция)
 - система питания шкафа и его компонентов (может быть расположена в ШР)
 - устройства управления / пуска двигателей
 - прямой пуск / пускатели (DOL),
 - плавный пуск (SOFT),
 - преобразователи частоты (VFD).
- Применение в архитектурах систем управления:
 - локальная, централизованная, распределенная.

В Шкаф управления двигателями сводятся Сигналные или Основные кабели от исполнительных механизмов (приводов / двигателей) объекта управления, а также сборные (системные) кабели из Распределительного шкафа и подключаются к соответствующим каналам В/В устройства управления / пуска двигателя.

Устройства управления двигателя, а также некоторые системы шкафа, подключаются в промышленную сеть с помощью коммуникационного оборудования.

- на входе ШУД
 - сигнальные линии двигателей (приводов) объекта управления
 - сигнальные линии, кроссированные в Распределительном шкафу
- на выходе ШУД
 - цифровые данные промышленной сети

ШКАФ ТЕЛЕКОММУНИКАЦИОННЫЙ

ШТК

NC (Net / Telecommunication Cabinet)

- Расположение:
 - диспетчерская / операторская.
- Состав:
 - « корпус с кабельным вводом и системой внешних и внутренних креплений (может быть: пыле-, влаго-, взрывозащищенным)
 - вертикальные и/или горизонтальные кабельканалы;
 - распределительные панели с клеммными колодками;
 - система поддержания микроклимата (минимум управляемая вентиляция)
 - система питания шкафа и его компонентов (может быть расположена в ШР)
 - коммуникационное оборудование:
 - преобразователи цифровых сетевых интерфейсов (включая «Оптика-Медь»),
 - коммутаторы (L2, L3),
 - маршрутизаторы / файрволы;
 - серверное оборудование:
 - сервер SCADA,
 - сервер часов реального времени (NTPD).
- Применение в архитектурах систем управления:
 - централизованная, распределенная.

В Шкаф управления двигателями сводятся сетевые цифровые кабели для распределения цифровых данных по различным цифровым сетям: промышленные, офисные, Интернет.

- на входе ШТК
 - сетевые цифровые кабели ШУ / ШУД / ШР
 - сетевые цифровые кабели сторонних систем управления
- на выходе ШТК
 - цифровые данные для различных цифровых сетей

БАЗОВЫЕ ПРИНЦИПЫ КОМПОНОВКИ ШКАФА

Группировка оборудования:

• по функциональному назначению.

Очередность, рядность:

• слева направо и сверху вниз.

В зависимости от габаритов, массы, функциональности и удобства эксплуатации аппараты располагать на определенных уровнях от пола:

- в самых нижних рядах: габаритные и тяжелые,
- на высоте 700 ... 1700 мм: кнопки, переключатели,
- на высоте 1000 ... 1800 мм: измерительные приборы с индикацией,
- сверху и снизу должна быть свободная зона (до 250 мм) для подвода кабеля.

Для удобства обслуживания использовать зоны аппаратов:

- со стороны присоединения проводов: габариты аппарат +30 мм
- с других сторон: габариты аппарата +10мм.

Для прокладки продов и жил использовать:

- кабель-каналы,
- жгуты.

Недопускается непосредственное крепление проводников (жгутов) к металлическим элементам шкафа без применения дополнительной изоляции в месте крепления.

Способ крепления аппаратов (включая клемм) на стенках шкафов:

DIN-рейка.

Для объединения (скрутки) нескольких проводов использовать:

 шинную клемму, кросс-модуль, модульный распределительный блок (например, для шин: рабочего нуля N, фазы L, заземления PE).

В шкафу необходимо маркировать:

• аппараты, клеммы, провода (на входе и выходе шкафа).

Рекомендуется следующая схема подключения источника питания и нагрузки:

• источник сверху — нагрузка снизу (если позволяет конструкция аппарата).

СПИСОК ИЗМЕНЕНИЙ

Дата	Стр.	Описание изменения
2023-10-31		Изменено название документа - АСУ ТП :: РСУ + АСУ ТП :: МОНТАЖ ~ Обновлены схемы