IN-LINE SLIDER CRANK MECHANISM

A MAJOR PROJECT REPORT

Submitted by

CH.EN.U4AIE20001 ANBAZHAGAN E

CH.EN.U4AIE20053 RAMYA POLAKI

CH.EN.U4AIE20069 TRINAYA KODAVATI

CH.EN.U4AIE20031 SMITHIN REDDY

CH.EN.U4AIE20035 ABHIRAM KUNCHAPU

in partial fulfilment for the award of the degree

Of

BACHELOR OF TECHNOLOGY

IN

COMPUTATIONAL ENGINEERING MECHANICS II

AMRITA SCHOOL OF ENGINEERING, CHENNAI

AMRITA VISHWA VIDYAPEETHAM

CHENNAI – 601103, TAMIL NADU

JULY -2021

AMRITA VISHWA VIDYAPEETHAM AMRITA SCHOOL OF ENGINEERING, CHENNAI, 601103

BONAFIDE CERTIFICATE

This is to certify that the major project report entitled "IN-LINE SLIDER CRANK MECHANISM" submitted by

CH.EN.U4AIE20001	ANBAZHAGAN E
CH.EN.U4AIE20053	RAMYA POLAKI
CH.EN.U4AIE20069	TRINAYA KODAVATI
CH.EN.U4AIE20031	SMITHIN REDDY
CH.EN.U4AIE20035	ABHIRAM KUNCHAPU

in partial fulfilment of the requirements for the award of the **bachelor of**Master of Technology in COMPUTATIONAL ENGINEERING

MECHANICS is a bonafide record of the work carried out under my guidance and supervision at Amrita School of Engineering, Chennai.

Signature
Mr.KL Vasudev
Asst.Professor, Mechanics Dept
This project report was evaluated by us on

INTERNAL EXAMINER

Signature

EXTERNAL EXAMINER

TABLE OF CONTENTS

I. DERIVATION	4
2. POSITIONAL ANALYSIS	5
3. VELOCITY ANALYSIS	6
4. ACCELERATION ANALYSIS	6
5. STATIC FORCE ANALYSIS	7
6. EXAMPLE	7
7. APPENDIX	9
8 REFERENCE	14

IN-LINE SLIDER CRANK MECHANISM:

This is basically the off-set slider crank mechanism. So, to make it in-line slider crank we have to make θ_{1} and r_{4} to zero.

DERIVATION:

From the above diagram we can observe that,

- The link r_1 is a fixed link making an angle $\theta_{1 \text{ i.e.}} 0$.
- The link r_2 is the crank making an angle θ_2 .
- The link r_3 is the slider making an angle θ_3 .
- The link r_4 is not considered here as it is in-line slider-crank mechanism.

4

Considering the link lengths as r_1 , r_2 and r_3

Time period for crank to rotate a full revolution:

$$T = \frac{2\pi}{\omega_2}$$

$$\frac{d\theta_2}{dt} = \omega_2$$

$$\int d\theta_2 = \omega_2 \int dt$$

Integrating on both sides:

$$\theta_2 = \omega_2 \times t + \theta_0$$

POSITIONAL ANALYSIS:

$$\overrightarrow{r_B} = \overrightarrow{r_2} + \overrightarrow{r_4} = \overrightarrow{r_2} + \overrightarrow{r_3}$$

$$r_1(\cos\theta_1 i + \sin\theta_1 j) + r_4(\cos\theta_4 i + \sin\theta_4 j) = r_2(\cos\theta_2 i + \sin\theta_2 j) + r_3(\cos\theta_3 i + \sin\theta_3 j)$$

By separating i ang j terms

$$i = r_1 \cos \theta_1 + r_4 \cos \theta_4 = r_2 \cos \theta_2 + r_3 \cos \theta_3 \rightarrow 1$$

 $j = r_1 \sin \theta_1 + r_4 \sin \theta_4 = r_2 \sin \theta_2 + r_3 \sin \theta_3 \rightarrow 2$

$$r_1, r_2, r_3, r_4 \rightarrow \text{Given}(r_4 = 0)$$

 $\theta_1, \theta_4 \rightarrow \text{constant } (\theta_1 = \theta_4 = 0)$

$$\theta_2, \theta_3 \rightarrow Variable$$

Substituting equation 1 and 2 with the above values

$$r_3 cos\theta_3 + r_2 cos\theta_2 = r_1 \rightarrow 3$$

$$r_3 sin\theta_3 = -r_2 sin\theta_2 \rightarrow 4$$

$$(r_1 - r_2 cos\theta_2)^2 = (r_3 cos\theta_3)^2$$

$$(-r_2 sin\theta_2)^2 = (-r_3 sin\theta_3)^2$$

$$r_3^2 = (r_1 - r_2 cos\theta_2)^2 + r_2^2 sin^2\theta_2$$

$$r_3^2 = r_1^2 + r_2^2 \cos^2 \theta_2 - 2r_1 r_2 \cos \theta_2 + r_2^2 \sin^2 \theta_2$$

$$r_3^2 = r_1^2 + r_2^2 - 2r_1r_2\cos\theta_2$$

$$\cos \theta_2 = \frac{{r_3}^2 - ({r_1}^2 + {r_2}^2)}{-2r_1r_2}$$

$$\sin \theta_3 = \frac{-r_2 \sin \theta_2}{r_3}$$

VELOCITY ANALYSIS:

$$\dot{\vec{r}}_1 + \dot{\vec{r}}_4 = \dot{\vec{r}}_2 + \dot{\vec{r}}_3$$

$$\dot{r}_1 (\cos \theta_1 i + \sin \theta_1 j) = r_2 \dot{\theta}_2 (-\sin \theta_2 i + \cos \theta_2 j) + r_3 \dot{\theta}_3 (-\sin \theta_3 i + \cos \theta_3 j)$$

$$\dot{r}_1 \cos \theta_1 = -(r_2 \dot{\theta}_2 \sin \theta_2 + r_3 \dot{\theta}_3 \sin \theta_3)$$

$$\dot{r}_1 \sin \theta_1 = -(r_2 \dot{\theta}_2 \cos \theta_2 + r_3 \dot{\theta}_3 \cos \theta_3)$$

$$\dot{r}_1 = -(r_2 \omega_2 \sin \theta_2 + r_3 \omega_3 \sin \theta_3) \rightarrow 5$$

$$0 = r_2 \omega_2 \cos \theta_2 + r_3 \omega_3 \cos \theta_3$$

$$\omega_3 = -\frac{r_2 \omega_2 \cos \theta_2}{r_3 \cos \theta_3} \rightarrow 6$$

ACCELERATION ANALYSIS:

$$\begin{split} \dot{r}_1(\cos\theta_1i + \sin\theta_1j) &= r_2\dot{\theta}_2(-\sin\theta_2i + \cos\theta_2j) + r_3\dot{\theta}_3(-\sin\theta_3i + \cos\theta_3j) \\ \dot{r}_1(\cos\theta_1i + \sin\theta_1j) &= r_2\ddot{\theta}_2(-\sin\theta_2i + \cos\theta_2j) - r_2\dot{\theta}_2(-\cos\theta_2i + \sin\theta_2j) + r_3\ddot{\theta}_3(-\sin\theta_3i + \cos\theta_3j) + r_3\dot{\theta}_3^2(-\cos\theta_3i + \sin\theta_3j) \\ \ddot{r}_1\cos\theta_1 &= -r_2\ddot{\theta}_2\sin\theta_2 - r_2\dot{\theta}_2^2\cos\theta_2 - r_3\ddot{\theta}_3\sin\theta_3 - r_3\dot{\theta}_3^2\cos\theta_3 \rightarrow 7 \\ \ddot{r}_1\sin\theta_1 &= r_2\ddot{\theta}_2\cos\theta_2 - r_2\dot{\theta}_2^2\sin\theta_2 - r_3\ddot{\theta}_3\cos\theta_3 - r_3\dot{\theta}_3^2\sin\theta_3 \rightarrow 8 \end{split}$$

$$r_1, r_2, r_3, r_4 \rightarrow \text{Given}(r_4 = 0)$$

 $\theta_1, \theta_4 \rightarrow \text{constant} \ (\theta_1 = \theta_4 = 0)$
 $\theta_2, \theta_3 \rightarrow Variable$
 $\ddot{\theta}_2 = 0 \ as \ angular \ velocity \ is \ constant$

Substituting equation 7 and 8 with the above values

$$\ddot{r}_1 = -r_2 \dot{\theta}^2 \cos \theta_2 - r_3 \ddot{\theta}_3 \sin \theta_3 - r_3 \dot{\theta}^2 \cos \theta_3 \rightarrow 9$$

$$0 = -r_2 \dot{\theta}^2_2 \sin \theta_2 - r_3 \ddot{\theta}_3 \cos \theta_3 - r_3 \dot{\theta}^2_3 \sin \theta_3 \rightarrow 10$$

From eq 10

$$\ddot{\theta}_3 = \frac{-r_2\dot{\theta}^2 \sin\theta_2 - r_3\dot{\theta}^2 \sin\theta_3}{r_3\cos\theta_3} \rightarrow 11$$

Now we can substitute the value of $\ddot{\theta}_3$ in eq 9 to find \ddot{r}_1

STATIC FORCE ANALYSIS:

This is basically the off-set slider crank mechanism. So, to make it in-line slider crank we have to make θ_{1} and r_{4} to zero .

Considering link A*A:

Considering the block:

Applying equilibrium conditions:

$$\sum F_x = 0$$
:

$$P = F_{23}cos\theta_3 \rightarrow 12$$

$$\sum F_y = 0$$
:

$$F_n = F_{23} sin \theta_3$$

Moment at A^* :

$$T = -F_{32} \times l_2(\sin(\theta_2 + \theta_3) \rightarrow 13)$$

Substituting [1] in [2]:

$$T = -\frac{P}{\cos\theta_3} \times l_2(\sin(\theta_2 + \theta_3)) = -P \times l_2[\sin\theta_2 + \cos\theta_2 \tan\theta_3]$$

EXAMPLE:

APPENDIX:

Main Frame Of GUI:


```
Position:
```

```
% r2 = crank ; r3 = connecting rod
          r2 = str2num(app.CrankLengthEditField.Value);
          r3 = str2num(app.ConnectingrodLengthEditField.Value);
            if(app.InputRangeDropDown.Value=="Position of slider , r → 1")
                r1 = str2num(app.InputRangeEditField.Value);
                for i =1: length(r1)
                theta2(i) =acosd(((r1(i)^2)+(r2^2)-(r3^2))/(2*r1(i)*r2));
                theta3(i) = asin((-r2*sind(theta2(i)))/r3);
                end
              negtheta2= 180+fliplr(theta2);
               if(app.LinkDropDown.Value=="Crank")
                   x = r2*cosd(theta2);
                   y = r2*sind(theta2);
                   x_= r2*cosd(negtheta2);
                   y_= r2*sind(negtheta2);
                    plot(x,y,"Parent",app.UIAxes);
                    hold(app.UIAxes,'on');
                    plot(x_,y_,"Parent",app.UIAxes);
                    hold(app.UIAxes,'off');
               elseif(app.LinkDropDown.Value=="Slider")
                   plot(theta2,r1,"Parent",app.UIAxes);
               end
            elseif(app.InputRangeDropDown.Value=="Angle of Crank
                                                                     \theta_2")
               theta2=str2num(app.InputRangeEditField.Value);
                theta3 = asin((-r2*sind(theta2))/r3);
                 if(app.LinkDropDown.Value=="Crank")
                   x = r2*cosd(theta2);
                   y= r2*sind(theta2);
                  plot(x,y,"Parent",app.UIAxes);
                 elseif(app.LinkDropDown.Value=="Slider")
                   r1=r2.*cosd(theta2)+r3.*cosd(theta3);
                    plot(theta2,r1,"Parent",app.UIAxes);
                 end
Velocity:
[r1,r2,r3,theta2,theta3] = func(app);
n=(r3/r2);
```

```
if(app.InputRangeDropDown.Value=="Position of slider , r → 1")
for i = 1:length(theta2)
                     w_{crank(i)} = (((r1(i)/r2)-
1)*2*n)/(sind(2*theta2(i))+(2*n*sind(theta2(i))));
                      w_{conn(i)} = (-
r2*cosd(theta2(i))*w_crank(i))/(r3*cosd(theta3(i)));
                       v_s(i)=((-r2*sind(theta2(i))*w_crank(i))+(-
r3*sind(theta3(i))*w_conn(i)));
                        v crankx=w crank(i)*r2*cosd(theta2);
                        v_cranky= w_crank(i)*r2*sind(theta2)';
                        v_connx =w_conn(i)*r3*cosd(theta3);
                         v conny = w conn(i)*r3*sind(theta3);
                end
                if(app.TypeDropDown.Value=="Angular Velocity of Crank")
                     plot(r1,w_crank,"Parent",app.UIAxes2);
                      hold(app.UIAxes2, 'on');
plot(r1,v_crankx+v_cranky,"Parent",app.UIAxes2,"Color",'red');
                        hold(app.UIAxes2, 'off');
                elseif(app.TypeDropDown.Value=="Angular Velocity of
Connectiong Rod")
                     plot(r1,w_conn,"Parent",app.UIAxes2);
                     hold(app.UIAxes2, 'on');
plot(theta2,v_connx+v_conny,"Parent",app.UIAxes2,"Color",'red');
                        hold(app.UIAxes2, 'off');
                elseif(app.TypeDropDown.Value=="Vleocity of Slider")
                    plot(r1,v_s, "Parent", app.UIAxes2);
                end
             elseif(app.InputRangeDropDown.Value=="Angle of Crank
                                                                    , θ 2")
               for i = 1:length(theta2)
                      w_{crank(i)} = (((r1(i)/r2)-
1)*2*n)/(sind(2*theta2(i))+(2*n*sind(theta2(i))));
                      w conn(i) = (-
r2*cosd(theta2(i))*w_crank(i))/(r3*cosd(theta3(i)));
                 v_s(i)=((-r2*sind(theta2(i))*w_crank(i))+(-
r3*sind(theta3(i))*w_conn(i)));
                     v crankx=w crank(i)*r2*cosd(theta2);
                        v_cranky= w_crank(i)*r2*sind(theta2)';
                        v connx =w conn(i)*r3*cosd(theta3);
                         v_conny = w_conn(i)*r3*sind(theta3);
               end
                if(app.TypeDropDown.Value=="Angular Velocity of Crank")
                       plot(theta2,w_crank,"Parent",app.UIAxes2);
                       hold(app.UIAxes2, 'on');
plot(theta2,v_crankx+v_cranky,"Parent",app.UIAxes2,"Color",'red');
                        hold(app.UIAxes2,'off');
```

REFERENCE:

- ► Lecture 12 Position, velocity and acceleration analysis of planar mechanism
- ► Lecture 13 Static Force Analysis
- https://in.mathworks.com/matlabcentral/answers/352410-in-app-designer-how-do-i-make-a-button-to-save-that-saves-my-data-from-the-different-uitables-and-e
- https://www.sathyabama.ac.in/sites/default/files/course-material/2020-10/SME1206-1_0.pdf