Imputación de Datos

- La imputación de datos es clave para manejar datos faltantes en análisis.
- Evita sesgos y mejora la calidad de los resultados.

por conectiva oficial

Viabilidad de la imputación

% Faltantes	Acción recomendada
< 5%	Imputar sin problema
5%-20%	Imputar con precaución
20%-40%	Imputar solo si es importante y hay buena justificación, de lo contrario eliminar la variable
> 40%	Mejor eliminar o tratar como categoría aparte

Métodos de imputación según el contexto

Imputación simple

- Para datos numéricos: Usar la media, mediana o moda.
- Para datos categóricos: Usar la categoría más frecuente o crear una nueva categoría llamada "Desconocido".

Imputación avanzada

- Regresiones: Usar variables relacionadas para predecir los valores faltantes.
- Modelos basados en vecinos cercanos (KNN): Ideal si los datos tienen patrones complejos.
- Técnicas basadas en aprendizaje automático: Por ejemplo, árboles de decisión, Random Forest entre otros.

- Media: si los datos siguen una distribución normal o se acerca a ella. Es sensible a valores extremos, un solo dato puede distorsionar el valor
- Mediana: Se usa cuando los datos están sesgados o tienen outliers. Si embargo no tiene en cuenta todo el conjunto de datos como lo tiene la media
- Moda: Es útil para datos categóricos o datos numéricos donde un valor especifico se repite con mucha frecuencia. Si no hay un valor que predomine o si todos tiene la misma frecuencia, la moda es inútil

Como analizar la distribución de los datos

- Gráficos: histogramas, box plot, diagramas de densidad
- Pruebas estadísticas: coeficiente de asimetría, test de normalidad

```
# Test de normalidad
from scipy.stats import shapiro
stat, p = shapiro(df['columna'])
print(f"Estadístico W = {stat:.4f}")
print(f"p-valor = {p:.4f}")
```

Nota: si es > 0.05 Los datos parecen seguir una distribución normal

Como analizar la distribución de distribución de los datos

Asimetría
from scipy.stats import skew
asimetria = df['Nota'].skew()
print(f"Asimetría (skewness): {asimetria:.4f}")

Skewness	Interpretación	Forma de la distribución
≈ 0	Distribución aproximadamente simétrica	Como la normal
> 0 (positiva)	Sesgo a la derecha (cola más larga hacia la derecha)	Valores extremos altos
< 0 (negativa)	Sesgo a la izquierda (cola más larga hacia la izquierda)	Valores extremos bajos
> 1 o < -1	Asimetría alta o severa	Muy inclinada
0.5 a 1 o -0.5 a -1	Asimetría moderada	
-0.5 a 0.5	Asimetría ligera o despreciable	Muy cerca a simétrica

Naturaleza de los datos

- MCAR (Completamente Aleatorios): Los datos faltantes no dependen de ninguna variable.
- MAR (Aleatorios Condicionales): Los datos faltantes dependen de otras variables conocidas (por ejemplo, ingresos afectan si falta el sexo).
- NMAR (No Aleatorios): Los datos faltantes dependen de la propia variable faltante (por ejemplo, alguien no indica su sexo porque es sensible al tema).

Pasos para imputar datos

1. Analizar los datos faltantes

- Identifica el porcentaje de valores faltantes.
- Verifica si los datos faltantes están distribuidos de forma aleatoria o tienen un patrón MCAR, MAR, NMAR.

2. Entender la variable afectada:

- ¿Es categórica o numérica?
- ¿Cuál es su distribución (usando histogramas o proporciones)?

3. Seleccionar un método:

- Si los datos parecen normales → probar con la media.
- Si hay outliers o sesgo → probar con la **mediana**.
- Si los datos son categóricos -> probar con la **moda** o imputación condicional (relacionada con otras variables)

4. Validar los resultados:

 Compara cómo cambian las distribuciones antes y después de la imputación para asegurarse que no estás distorsionando el análisis.

Pasos para imputar datos

Análisis de Datos

• Resumen de análisis

por conectiva oficial

ANOVA

¿El método de estudio afecta la nota?

- Si las medias de los grupos son similares, entonces NO hay efecto → se acepta la hipótesis nula (H₀).
- Si las **medias son diferentes**, entonces **SÍ** hay efecto → se acepta la **hipótesis** alternativa (H₁).

¿Qué compara?

- Compara la variabilidad entre grupos (diferencias de medias) vs. la variabilidad dentro de los grupos (dispersión individual).
- Si las medias son muy diferentes entre grupos en comparación con su dispersión \rightarrow H_1 .
- Si las medias son similares (o la variación dentro del grupo es muy grande) $\rightarrow H_0$.

Nota

- Una diferencia entre medias grande sugiere que los grupos se comportan de forma distinta (por ejemplo, un método de enseñanza funciona mejor).
- Una diferencia pequeña sugiere que los grupos son similares.

Made with **GAMMA**

TUKEY

- Diferencia de medias = grupo 2 grupo 1
- Si meandiff es positivo, entonces group2 tiene mayor media que group1.
- Si meandiff es negativo, entonces group2 tiene menor media que group1

group1	group2	meandiff	p-adj	lower	upper	reject
А	В	-0,6	0.5676	-2.1403	0.9403	False
А	С	1,6	0.0417	0.0597	3.1403	True
В	С	2,2	0.0065	0.6597	3.7403	True

- El grupo C tiene en promedio 1.6 puntos más que el grupo A.
- El grupo C tiene en promedio 2.2 puntos más que el grupo B.
- El grupo C tiene notas más altas que A y B

Made with **GAMMA**

Tabla comparativa

Método	Tipo de variables	Qué mide	Cuándo usarlo
Cramér's V	Categóricas	Fuerza de la asociación entre 2 variables categóricas	Para medir la asociación entre 2 variables categóricas
Phik	Categóricas	Fuerza de la asociación corregida entre 2 variables categóricas	Para medir la asociación entre 2 variables categóricas con corrección ante distribuciones desbalanceadas
Chi ²	Categóricas	Independencia entre 2 variables categóricas	Para verificar si dos variables categóricas son independientes (no tienen asociación)
ANOVA	Categórica (independiente) y numérica (dependiente)	Diferencia entre medias de más de 2 grupos categóricos	Para comparar si las medias de más de 2 grupos (categóricos) son significativamente diferentes entre sí
Regresión	Numéricas (continuas)	Relación cuantitativa entre variables	Para evaluar si una o más variables numéricas afectan de manera significativa a una variable dependiente numérica