Linguaggi regolari

a.a. 2020-2021

Corso di Fondamenti di Informatica - 1 modulo Corso di Laurea in Informatica Università di Roma "Tor Vergata"

Prof. Giorgio Gambosi

Data l'espressione regolare a^* , definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Data l'espressione regolare a^* , definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Stringhe w di lunghezza $|w| \ge 0$ composte di soli caratteri a.

 $\{\varepsilon, a, aa, aaa, aaaa\}$

Data l'espressione regolare $(ab)^*$, definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Data l'espressione regolare $(ab)^*$, definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Stringhe w di lunghezza $|w| \ge$ o composte come una sequenza di coppie ab.

 $\{\varepsilon, ab, abab, ababab, abababab\}$

Data l'espressione regolare $a(a+b)^*a$, definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Data l'espressione regolare $a(a+b)^*a$, definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Stringhe w di lunghezza $|w| \ge 2$ che iniziano e terminano con il carattere a.

{aa, aaa, aba, aaaa, abaa}

Data l'espressione regolare $(a + b)^*a(a + b)^*$, definita su $\{a, b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Data l'espressione regolare $(a + b)^*a(a + b)^*$, definita su $\{a, b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Stringhe w di lunghezza $|w| \ge 1$ che contengono almeno un carattere a.

 $\{a,ab,ba,bba,aa\}$

Data l'espressione regolare $a(a+b)^*a$, definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Data l'espressione regolare $a(a+b)^*a$, definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Stringhe w di lunghezza $|w| \ge 2$ che iniziano e terminano con il carattere a.

{aa, aaa, aba, aaaa, abaa}

Data l'espressione regolare $(a + b)^*a(a + b)^*$, definita su $\{a, b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Data l'espressione regolare $(a + b)^*a(a + b)^*$, definita su $\{a, b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Stringhe w di lunghezza $|w| \ge 1$ che contengono almeno un carattere a.

 $\{a, ab, ba, bba, aa\}$

Data l'espressione regolare $(a(cd)^*a)^*$, definita su $\{a,b,c,d\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Data l'espressione regolare $(a(cd)^*a)^*$, definita su $\{a,b,c,d\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Stringhe w di lunghezza $|w| \ge 0$ composte da una sequenza (eventualmente nulla) di sottostringhe, ognuna delle quali inizia per a, continua con una sequenza (eventualmente nulla) di caratteri c e d, e termina per b.

 $\{\varepsilon, ab, accddcdb, acccb, abab\}$

Data l'espressione regolare $(a + b)^*ab$, definita su $\{a, b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Data l'espressione regolare $(a + b)^*ab$, definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Stringhe w di lunghezza $|w| \ge 2$ che terminano per ab.

{ab, aab, bab, abab, aaaab}

Data l'espressione regolare $(aa)^*$, definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Data l'espressione regolare $(aa)^*$, definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Stringhe w di lunghezza $|w| \ge 0$ pari composte di soli caratteri a.

 $\{\varepsilon$, aa, aaaa, aaaaaa, aaaaaaaa $\}$

Data l'espressione regolare $(a^*ba^*ba^*)^*$, definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Data l'espressione regolare $(a^*ba^*ba^*)^*$, definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Stringhe w di lunghezza $|w| \ge 0$ con un numero pari di caratteri b.

 $\{\varepsilon, bb, aabab, abaabbb, bbbb\}$

Data l'espressione regolare a^*b^* , definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Data l'espressione regolare a^*b^* , definita su $\{a,b\}$, descrivere il linguaggio corrispondente ed elencare 5 stringhe del linguaggio stesso.

Stringhe w di lunghezza $|w| \ge 0$ composte da una sequenza di a seguita da una sequenza di b.

 $\{\varepsilon, ab, aab, abbb, aaa\}$

Data l'espressione regolare $(ba+a)^*(b+ba)^*$, definita su $\{a,b\}$ fornire 1 stringa che non appartiene al linguaggio relativo.

Data l'espressione regolare $(ba + a)^*(b + ba)^*$, definita su $\{a, b\}$ fornire 1 stringa che non appartiene al linguaggio relativo.

{bbaa}

Data l'espressione regolare $a^*(b+aaa^*)^*a^*$, definita su $\{a,b\}$ fornire 1 stringa che non appartiene al linguaggio relativo.

Data l'espressione regolare $a^*(b+aaa^*)^*a^*$, definita su $\{a,b\}$ fornire 1 stringa che non appartiene al linguaggio relativo.

{bab}

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono la sottostringa ooo.

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono la sottostringa ooo.

$$(0+1)^*000(0+1)^*$$

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che non contengono la sottostringa ooo.

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che non contengono la sottostringa ooo.

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono la sottostringa ooo, ma non come caratteri iniziali.

Definire un'espressione regolare che descriva l'insieme delle stringhe su {0, 1} che contengono la sottostringa 000, ma non come caratteri iniziali.

$$1(0+1)^*000(0+1)^*$$

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono la sottostringa ooo, ma non all'inizio n \tilde{A} l'alla fine.

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono la sottostringa ooo, ma non all'inizio n \tilde{A} l'alla fine.

$$1(0+1)^*000(0+1)^*1$$

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono esattamente tre caratteri o

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono esattamente tre caratteri o

1*01*01*01*

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono al più tre caratteri o

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono al più tre caratteri o

$$1*(0+1*)1*(0+1*)1*(0+1*)1*$$

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono almeno tre caratteri o

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono almeno tre caratteri o

$$1*(0+1*)1*(0+1*)1*(0+1*)(0+1)*$$

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che inziano e terminano con due caratteri diversi.

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che inziano e terminano con due caratteri diversi.

$$0(0+1)^*1+1(0+1)^*0$$

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono un numero dispari di o

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono un numero dispari di o

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono un numero pari di o

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,1\}$ che contengono un numero pari di o

```
1*01*0(1*01*0)*1*
```

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,\dots,9\}$ che rappresentano interi divisibili per 5

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{0,\dots,9\}$ che rappresentano interi divisibili per 5

$$(0+1+2+3+4+5+6+7+8+9)^*(0+5)$$

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{a,b,c\}$ che contengono un numero di caratteri a pari a 4k+1, per qualche $k\geq 0$.

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{a,b,c\}$ che contengono un numero di caratteri a pari a 4k+1, per qualche $k \ge 0$.

$$(b+c)^*a(b+c)^*(a(b+c)^*a(b+c)^*a(b+c)^*a(b+c)^*)^*$$

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{a,b,c\}$ di lunghezza pari a 3k, per qualche $k \geq 0$.

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{a,b,c\}$ di lunghezza pari a 3k, per qualche $k \ge 0$.

$$((a+b+c)(a+b+c)(a+b+c))^*$$

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{a,b,c\}$ contenenti un numero di caratteri c pari a 3k, per qualche $k \geq 0$.

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{a,b,c\}$ contenenti un numero di caratteri c pari a 3k, per qualche $k \ge 0$.

$$((a + b)^*c(a + b)^*c(a + b)^*c(a + b)^*)^*$$

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{a,b,c\}$ contenenti 2 caratteri a o 3 caratteri b.

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{a,b,c\}$ contenenti 2 caratteri a o 3 caratteri b.

$$(b+c)^*a(b+c)^*a(b+c)^* + (a+c)^*b(a+c)^*b(a+c)^*b(a+c)^*$$

Definire un'espressione regolare che descriva l'insieme delle stringhe su $\{a,b,c\}$ contenenti 2 caratteri a e 3 caratteri b.

Definire le espressioni regolari che descrivono i seguenti linguaggi. Si intende che l'alfabeto è $\{0,1\}$.

- 1. $L_1 = \{w \mid w \text{ contiene la stringa o1o1}\}$
- 2. $L_2 = \{w \mid w \text{ non contiene la stringa 100 come sottostringa}\}$
- 3. $L_3 = \{w \mid w \text{ initial } c$

 \boldsymbol{w} inizia con o e ha lunghezza dispari, o inizia con 1 e ha lunghezza pari

- 4. $L_4 = \{w \mid w \text{ ha al più 5 caratteri}\}$
- 5. $L_1 = \{ w \mid w \neq \varepsilon \}$

Definire espressioni regolari per i seguenti linguaggi sull'alfabeto $\{a,b\}$.

- 1. Il linguaggio di tutte le stringhe che contengono almeno tre a.
- 2. Il linguaggio di tutte le stringhe che iniziano e terminano con lo stesso simbolo.
- 3. Il linguaggio di tutte le stringhe aventi sia *ab* che *ba* come sottostringhe.

Fornire le espressioni regolari che descrivono i seguenti linguaggi.

- 1. $L = \{a^{2i} \mid i > 0\}$
- 2. $L = {\sigma \mid \sigma \text{ contiene esattamente 2 caratteri } a}$
- 3. $L = {\sigma \mid \sigma \text{ contiene un numero pari di caratteri } a}$
- 4. $L = {\sigma \mid \sigma \text{ contiene un numero dispari di caratteri } a}$

Sia L un linguaggio su $\{a,b\}$ tale che per ogni stringa $w \in L$:

- 1. w non contiene coppie di a adiacenti
- 2. ogni b in w è adiacente ad un'altra b
- 3. |w|è pari.

Dimostrare che L è regolare.

(Prova d'esame del 30-1-2006). Dimostrare che il linguaggio $L=\{a^nb^m|n\leq m\}$ non è regolare.

(Prova d'esame del 24-2-2006). Dimostrare che il linguaggio $L=\{a^nb^{2n}\}$ non è regolare.

(Prova d'esame del 4-7-2006). Illustrare come sia possibile verificare, date due espressioni regolari r_1 e r_2 , se esse definiscono lo stesso linguaggio. Mostrare come tale procedimento possa essere applicato per verificare che $a^*(ab+ba)^*b$ e $a^*b(a+ab)^*b^*$ non definiscono uno stesso linguaggio.

Il linguaggio $\{a^ib^j|i+j\geq 4\}$ è regolare? Dimostrare la propria risposta.

Il linguaggio $\{a^ib^j|i-j\geq 4\}$ è regolare? Dimostrare la propria risposta.

Dimostrare che le espressioni regolari $r_1=ab+c^*$, $r_2=(ab+c)^*$, $r_3=a(b+c)^*$ descrivono linguaggi diversi.

Sia dato l'ASFND & con $\Sigma=\{0,1\}$, $Q=\{q_0,q_1,q_2,q_3\}$, $F=\{q_3\}$ e δ definita dalla tabella seguente:

	$q_{\rm o}$	q_1	q_2	q_3
О		q_1	q_3	
1		$\{q_1,q_2\}$	q_3	
\mathcal{E}	$\{q_1,q_3\}$			

Derivare una espressione regolare che descriva il linguaggio accettato da $\mathcal A$

41

Per ognuna delle seguenti proposizioni, dire se è vera o falsa, giustificando obbligatoriamente la risposta data.

- 1. Se L è un linguaggio regolare allora ogni $L' \subseteq L$ è regolare
- 2. Se L e L' sono linguaggi regolari allora L-L' è regolare
- 3. 11000 appartiene al linguaggio o*1(11)*10*
- 4. 01110 appartiene al linguaggio 0*1(11)*10*

Dimostrare che il linguaggio $L = \{a^i b^j \mid i < j\}$ non è regolare.

43

Fornire le espressioni regolari che descrivono i seguenti linguaggi.

- 1. $L = \{a^{2i} \mid i > 0\}$
- 2. $L = {\sigma \in {a,b} | \sigma \text{ contiene esattamente 2 caratteri }a}$
- 3. $L = {\sigma \in {a,b} | \sigma \text{ contiene un numero pari di caratteri } a}$
- 4. $L = \{ \sigma \in \{a, b\} \mid \sigma \text{ contiene un numero dispari di caratteri } a \}$

Sia dato l'ASFD $\mathcal A$ con $\Sigma=\{0,1\},$ $Q=\{q_0,q_1,q_2\},$ $F=\{q_2\}$ e δ definita dalla tabella seguente:

Derivare una espressione regolare che descriva il linguaggio $L(\mathcal{A})$ riconosciuto dall'automa.

Dimostrare che il linguaggio $L = \{a^n b^m c^n \mid n, m > 0\}$ non è regolare.

Sia dato il linguaggio $L = \{\sigma \in \{a,b,c\}^* \mid \#a(\sigma) = \#b(\sigma) = \#c(\sigma)\}$, dove $\#x(\sigma)$ indica il numero di caratteri x nella stringa σ . Il linguaggio L è regolare? Dimostrare la risposta data.

Data l'espressione regolare $r=a(b^*+a)$, derivare un automa a stati finiti deterministico che riconosca il linguaggio L(r).

Si consideri il linguaggio $L=\{a^rb^sc^t|t=r-s\}.$ Dimostrare che questo linguaggio non è regolare.

Dimostrare che il seguente linguaggio è regolare $L=\{a^kb^jc^i|i,j,k>0\}$ dove k è dispari e i>2, oppure j è dispari e $i\leq 3$.

Si definisca una grammatica di tipo 3 che generi il linguaggio $L=\{xoy|x\in\{0,1\}^*,y\in\{0,1\}^3\}.$

Sia dato il linguaggio

$$L = \{w \in \{a, b\}^* | w \text{ non è della forma } vv\}$$

Mostrare se L è regolare o meno.

Si definisca una grammatica di tipo 3 che generi il seguente linguaggio

$$L = \{a^n b^m c^k | n + m + k \text{ dispari}\}\$$

Definire una grammatica regolare che generi il seguente linguaggio

 $L = \{w \in \{0,1\}^* : w \text{ non contiene la sottostringa 101}\}$

descrivendo e giustificando le scelte effettuate.

Si determini se i linguaggi

$$L = \{a^i b^j c^i | i, j \ge 1\}$$

e

$$L = \{a^i b^j c^k | i, j, k \ge 0\}$$

sono regolari.

Definire una grammatica di tipo 3, priva di simboli inutili, che generi il linguaggio descritto dall'espressione regolare $a^*bc^*+a(ab+c^*b)$

Si definisca una grammatica regolare che generi il linguaggio L composto da tutte le stringhe su $\Sigma=\{a,b\}$ non contenenti la sequenza aba