

XL7015

Features

- Wide 5V to 80V Operation Voltage
- Output Adjustable from 1.25V to 20V
- Maximum Duty Cycle 100%
- Minimum Drop Out 1V
- Fixed 150KHz Switching Frequency
- Maximum 0.8A Output Current
- Recommend output power less than 7W
- Internal Optimize HV Power Transistor
- High efficiency up to 85%
- Excellent line and load regulation
- TTL shutdown capability
- Built in thermal shutdown function
- Built in output short Protection Function
- Built in current limit function
- TO252-5L package

Applications

- Ebike Controller Power Supply
- Telecom / Networking Equipment

General Description

The XL7015 is a 150KHz fixed frequency PWM buck (step-down) DC/DC converter, capable of driving a 0.8A load with high efficiency, low ripple and excellent line and load regulation. Requiring a minimum number of external components, the regulator is simple to use and include internal frequency compensation and a fixed-frequency oscillator.

The PWM control circuit is able to adjust the duty ratio linearly from 0 to 100%. An enable function, an over current protection function is built inside. When output short protection function happens, the operation frequency will be reduced from 150KHz to 45KHz. An internal compensation block is built in to minimize external component count.

Figure 1. Package Type of XL7015

Pin Configurations

Figure 2. Pin Configuration of XL7015 (Top View)

Table 1 Pin Description

Pin Number	Pin Name	Description
1	VIN	Supply Voltage Input Pin. XL7015 operates from a 5V to 80V DC voltage. Bypass Vin to GND with a suitably large capacitor to eliminate noise on the input.
2	SW	Power Switch Output Pin (SW). Output is the switch node that supplies power to the output.
3	GND	Ground Pin. Care must be taken in layout. This pin should be placed outside of the Schottky Diode to output capacitor ground path to prevent switching current spikes from inducing voltage noise into XL7015. The exposed PAD is GND.
4	FB	Feedback Pin (FB). Through an external resistor divider network, Feedback senses the output voltage and regulates it. The feedback threshold voltage is 1.25V.
5	EN	Enable Pin. Drive EN pin low to turn on the device, drive it high to turn it off. Floating is default low.

XL7015

Function Block

Figure 3. Function Block Diagram of XL7015

Typical Application Circuit

Figure 4. XL7015 Typical Application Circuit

0.8A 150KHz 80V Buck DC to DC Converter	XL7015

Ordering Information

Order Information	Marking ID	Package Type	Packing Type Supplied As
XL7015E1	XL7015E1	TO252-5L	2500 Units on Tape & Reel

Absolute Maximum Ratings (Note1)

Parameter	Symbol	Value	Unit
Input Voltage	Vin	-0.3 to 85	V
Feedback Pin Voltage	V_{FB}	-0.3 to Vin	V
EN Pin Voltage	$V_{\rm EN}$	-0.3 to Vin	V
Output Switch Pin Voltage	V_{SW}	-0.3 to Vin	V
Power Dissipation	P_{D}	Internally limited	mW
Thermal Resistance (TO252-5L)	n	50	°C/W
(Junction to Ambient, No Heatsink, Free Air)	R_{JA}	30	C/ W
Maximum Junction Temperature	T_J	-40 to 150	°C
Operating Junction Temperature	T_{J}	-40 to 125	°C
Storage Temperature	T_{STG}	-65 to 150	°C
Lead Temperature (Soldering, 10 sec)	T_{LEAD}	260	°C
ESD (HBM)		>3000	V

Note1: Stresses greater than those listed under Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

XL7015

XL7015 Electrical Characteristics

 $T_a = 25$;unless otherwise specified.

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit		
System parameters test circuit figure4								
VFB	FB Voltage	Vin =20V to 80V Iload=0.1A to 0.4A	1.225	1.25	1.275	V		
ŋ	Efficiency	Vin=36V ,Vout=15V Iout=0.4A	-	86	-	%		
ŋ	Efficiency	Vin=48V ,Vout=15V Iout=0.4A	-	83	-	%		
ŋ	Efficiency	Vin=60V ,Vout=15V Iout=0.4A	-	81	-	%		

Electrical Characteristics (DC Parameters)

Vin = 48V, GND=0V, Vin & GND parallel connect a 33uf/100V capacitor; Iout=0.2A, $T_a = 25$; the others floating unless otherwise specified.

Parameters	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Input operation voltage	Vin		5		80	V
Shutdown Supply Current	I_{STBY}	V _{EN} =2V		85	200	uA
Quiescent Supply Current	I_q	V _{EN} =0V, V _{FB} =Vin		2.5	5	mA
Oscillator Frequency	Fosc		120	150	180	KHz
Switch Current Limit	I_{L}	$V_{FB}=0$		1		A
EN Pin Threshold	V_{EN}	High (Regulator OFF)		1.6		V
LIVI III TIIICSIIOIG		Low (Regulator ON)		0.8		ľ
EN Pin Input Leakage	I_{H}	V _{EN} =2.5V (OFF)		6	20	uA
Current	I_{L}	V _{EN} =0.5V (ON)		1	10	uA
Output Saturation Voltage	V_{CE}	V _{FB} =0V I _{out} =0.5A		0.87		V
Max. Duty Cycle	D_{MAX}	$V_{FB}=0V$		100		%

XL7015

Typical System Application (Recommend output current safe work range)

Figure 5. Max output current (VOUT=5V)

Figure 6. Max output current (VOUT=12V)

Figure 7. Max output current (VOUT=15V)

XL7015

Typical System Application(VOUT=15V/0.4A)

Figure 8. XL7015 System Application (VIN=20V~80V, VOUT=15V/0.4A)

Figure 9. XL7015 System Application (Efficiency VS Output Current)

XL7015

Typical System Application(VOUT=5V/0.8A)

Figure 10. XL7015 System Application (VIN=8V~80V, VOUT=5V/0.8A)

Figure 11. XL7015 System Application (Efficiency VS Output Current)

XL7015

Package Information

Package Information (TO252-5L)

XL7015

Important Notice

XLSEMI reserve the right to make modifications, enhancements, improvements, corrections or other changes without notice at any time. XLSEMI does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. XLSEMI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using XLSEMI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. XLSEMI warrants performance of its products to the specifications applicable at the time of sale, in accordance with the warranty in XLSEMI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent XLSEMI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

For the latest product information, go to www.xlsemi.com.