

Introdução Machine Learning

Aula 06

Professora: Dra. Rosana Rego

Sumário

- 1. Introdução a machine learning
- 2. Workflow
- 3. Algoritmo Árvore de Decisão
- 4. Prática

Machine Learning (ML)

Algoritmos de Machine Learning

Computational IntelligenceLaboratory

Computational Laboratory

Diferenças entre algoritmos de ML e algoritmos tradicionais baseados em regras

Machine learning workflow

Data collection

Data cleansing

Feature extraction and selection

Model training Model evaluation

Model deployment and integration

Computational Intelligence

Laboratory

EXEMPLO

Árvore de Decisão

Exemplo

- Predição de hipotireoidismo com Machine Learning

Divisão do dataset

Overfitting e Underfitting

Overfitting e Underfitting

- Quando a capacidade atende à complexidade da tarefa e à quantidade de dados de treinamento fornecidos, o efeito do algoritmo geralmente é ótimo.
- Modelos com capacidade insuficiente não podem resolver tarefas complexas e pode ocorrer subajuste (underfitting).
- Um modelo de alta capacidade pode resolver tarefas complexas, mas pode ocorrer overfitting se a capacidade for maior do que a exigida por uma tarefa.

Causa de Overfitting - Erro

Erro total da previsão final

- Geralmente, o erro de previsão pode ser dividido em dois tipos:
 - Erro causado por viés/tendência
 - Erro causado pela variância

Variância

- Deslocamento do resultado da previsão do valor médio;
- Erro causado pela sensibilidade do modelo a pequenas flutuações no conjunto de treinamento.

Tendência

 Diferença entre o valor de previsão esperado (ou médio) e o valor correto que estamos tentando prever.

Variância e bias

- À medida que a complexidade do modelo aumenta, o erro de triagem diminui.
- À medida que a complexidade do modelo aumenta, o erro de teste diminui até certo ponto e depois aumenta na direção inversa, formando uma curva convexa.

Computational Intelligence

Laboratory

Métricas

Computational Intelligence

Métricas para avaliação do modelo: Regressão

Mean Absolute Error (MAE)

$$MAE = \frac{1}{m} \sum_{i=1}^{m} |y_i - \hat{y}_i|$$

Quanto mais próximo o MAE estiver de 0, melhor o modelo pode ajustar os dados de treinamento.

- Mean Square Error (MSE)

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$

Um erro quadrático médio de zero (0) é ideal, mas na maioria dos casos isso não é possível.

- Root Mean Square Error (RMSE)

RMSE =
$$\sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

Avaliação da performance do modelo: Classificação

- Matriz de Confusão : A matriz de confusão é uma tabela que mostra a frequência com que um classificador classifica cada classe.
 - Cada linha da matriz de confusão representa a instância de uma classe real e cada coluna representa a instância de uma classe prevista.

		Valor Predito	
		Sim	Não
Real	Sim	Verdadeiro Positivo (TP)	Falso Negativo (FN)
	Não	Falso Positivo (FP)	Verdadeiro Negativo (TN)

Availação da performance do modelo: Classificação de la computational de la computatio

Measurement	Ratio
Accuracy and recognition rate	$\frac{TP + TN}{P + N}$
Error rate and misclassification rate	$\frac{FP + FN}{P + N}$
Sensitivity, true positive rate, and recall	$\frac{TP}{P}$
Specificity and true negative rate	$\frac{TN}{N}$
Precision	$\frac{TP}{TP + FP}$
F_1 , harmonic mean of the recall rate and precision	$\frac{2 \times precision \times recall}{precision + recall}$
F_{eta} , where eta is a non-negative real number	$\frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$

Aplicações

Scale of the problem

Aplicações

Rules are complex or cannot be described, such as voice recognition.

Task rules change over time. For example, in the part-of-speech tagging task, new words or meanings are generated at any time.

Data distribution changes over time, requiring constant readaptation of programs, such as predicting the trend of commodity sales.

Aplicações - Mitigação de problemas psicológicos

Os robôs de bate-papo com IA ajudam a aliviar problemas de saúde mental, como o autismo, combinando conhecimento psicológico

Seguro Automático de Veículos e Avaliação de Perdas

As tecnologias de IA ajudam as seguradoras a otimizar as reivindicações de seguro de veículos e concluir a avaliação de perda de seguro de veículo usando algoritmos de ML.

Vehicle Damage Assessment

Contato

Profa. Rosana Rego

- <u>rosana.rego@ufersa.edu.br</u>
- github.com/roscibely
- in linkedin.com/in/rosanacibely/

Agradecimentos

