MAC0239: Exercício-Programa 2 Lógica de Primeira Ordem

12 de novembro de 2017

1 Cabeçalho

Vinícius Moreno da Silva. Número USP: 10297776.

2 Respostas

Questão 2.1 Sendo κ definido no modelo como operador, o qual estabelece uma relação de sucessão entre x e y, ou seja, $x\kappa y$ conclui que y é o sucessor de x. Como possuímos o operador, definimos também um predicado \mathcal{F} tal que $\mathcal{F}(x,y)$ resultaria em y suceder x. Em um domínio infinito, $\forall x \exists y \mathcal{F}(x,y)$ é sempre verdadeiro, já em um domínio finito, caso seja selecionado o último termo como x, não haverá um y, portanto seria falso.

Questão 2.2 (a) Seja \mathcal{A} o domínio do modelo e x, y $\in \mathcal{A}$, x \neq y. Assumindo z como uma terceira variável também pertencente à \mathcal{A} , caso a fórmula seja:

$$\forall z((z = x) \lor (z = y))$$

para qualquer valor de z, z vai ser igual a x ou a y, ou seja, o domínio do modelo equivaleria a [x,y], portanto ela seria verdadeira caso possuísse somente 2 elementos no domínio.

(b) Seja \mathcal{A} o domínio do modelo e x, y, w, z $\in \mathcal{A}$, sendo x, y, w e z todos diferentes entre si. Assumindo k como uma quinta variável também pertencente à \mathcal{A} , caso a fórmula seja:

$$\forall k((k = x) \lor (k = y) \lor (k = w) \lor (k = z))$$

para qualquer valor de k, ou z vai ser igual a x ou a y ou a w ou a z, ou seja, o domínio do modelo seria [x,y,w,z], portanto ela seria verdadeira caso possuísse somente 4 elementos no domínio.

Questão 2.3 Sendo Ξ definido no modelo como operador, o qual estabelece uma relação de paridade entre x e y, ou seja, x Ξ y conclui que x é o par de y. Como possuímos o operador, definimos também um predicado $\in \mathcal{P}$ estabelecedor da partidade dos elementos tal que $\in \mathcal{P}(x,y)$ é igual a $\in \mathcal{P}(y,x)$, com cada elemento possuindo somente um par e todos elementos diferentes entre si. Desta forma, considerando uma variável z também pertencente ao domínio do modelo, $\in \mathcal{P}(z,?)$ será igual a algum $\in \mathcal{P}(x,y)$, visto que ele estará sozinho, mas como a fórmula assume $\in \mathcal{P}(x,y)$ verdadeiro, um elemento sozinho não conseguirá fazer par, ou seja, o domínio do modelo será par(2n).

Questão 2.4 Para n=1 o domínio do modelo (\mathcal{A}) possui 2 elementos, w, $z \in \mathcal{A}$, w diferente de z. Assumindo j como uma terceira possível variável também pertencente à \mathcal{A} , caso a fórmula seja:

$$\forall j((j = w) \lor (j = z))$$

para qualquer valor de j, j será w ou z, ou seja, o domínio do modelo equivaleria a [w,z], portanto ela estaria provada para 2 elementos.

Questão 2.5