ALEVELS P3 MARKING SCHEME Integration A11

1 (i) State or imply $\frac{du}{dx} = \sec^2 x$ B1

Express integrand in terms of u and du M1

Integrate to obtain $\frac{u^{n+1}}{n+1}$ or equivalent A1

Substitute correct limits correctly to confirm given result $\frac{1}{n+1}$ A1 [4]

(ii) (a) Use $\sec^2 x = 1 + \tan^2 x$ twice M1

Obtain integrand $\tan^4 x + \tan^2 x$

Apply result from part (i) to obtain $\frac{1}{3}$ Or

M1

[3]

Obtain $\int u^2 du$ A1

Apply limits correctly and obtain $\frac{1}{3}$ A1

(b) Arrange, perhaps implied, integrand to $t^9 + t^7 + 4(t^7 + t^5) + t^5 + t^3$

Use $\sec^2 x = 1 + \tan^2 x$ and the substitution from (i)

Attempt application of result from part (i) at least twice M1

Obtain $\frac{1}{8} + \frac{4}{6} + \frac{1}{4}$ and hence $\frac{25}{24}$ or exact equivalent

[3]

5

5

2 (i) Use product rule M1

Obtain derivative in any correct form

A1

Differentiate first derivative using the product rule

M1

Obtain second derivative in any correct form, e.g. $-\frac{1}{2}\sin\frac{1}{2}x - \frac{1}{4}x\cos\frac{1}{2}x - \frac{1}{2}\sin\frac{1}{2}x$ A1

Verify the given statement

A1

(ii) Integrate and reach $kx \sin \frac{1}{2}x + l \int \sin \frac{1}{2}x \, dx$ M1*

Obtain $2x \sin \frac{1}{2}x - 2 \int \sin \frac{1}{2}x \, dx$, or equivalent

Obtain indefinite integral $2x \sin \frac{1}{2}x + 4\cos \frac{1}{2}x$ A1

Use correct limits x = 0, $x = \pi$ correctly M1(dep*)

Obtain answer $2\pi - 4$, or exact equivalent

3	(i)	<u>Either</u>	Substitute $x = -1$ and evaluate Obtain 0 and conclude $x + 1$ is a factor	M1 A1	
		<u>Or</u>	Divide by $x + 1$ and obtain a constant remainder Obtain remainder = 0 and conclude $x + 1$ is a factor	M1 A1	[2]
	(ii)	Attempt division, or equivalent, at least as far as quotient $4x^2 + kx$		M 1	
		Obtain o	complete quotient $4x^2 - 5x - 6$	A1	
		State form $\frac{A}{x+1} + \frac{B}{x-2} + \frac{C}{4x+3}$			
	Use relevant method for finding at least one constant			M 1	
		Obtain one of $A = -2$, $B = 1$, $C = 8$		A1	
Obtain all three		Obtain a	all three values	A1	
			e to obtain three terms each involving natural logarithm of linear form $-2 \ln(x+1) + \ln(x-2) + 2 \ln(4x+3)$, condoning no use of modulus signs	M1	
		and abse	ence of $\dots + c$	A1	[8]

4 (i)	Remove logarithms correctly and obtain $e^x = \frac{1-y}{y}$		B1
	Obtain the given answer $y = \frac{e^{-x}}{1 + e^{-x}}$ following full working		B1
		Total:	2
(ii)	State integral $k \ln(1 + e^{-x})$ where $k = \pm 1$		*M1
	State correct integral $-\ln(1+e^{-x})$		A1
	Use limits correctly		DM1
	Obtain the given answer $\ln\left(\frac{2e}{e+1}\right)$ following full working		A1
		Total:	4