Name		Period
Chemical Formulas		
Your Tasks (Mark these off as	s vou go)	
Assign group roles Review molar mass of compounds Review mass-mole-molecule convers Determine the formula for a compou Write your own conclusion Receive credit for this lab	ions	
☐ Assign group roles		
Before you continue, record your group nu Each role and a description is provided belo	-	aborate with your group and assign each person a role.
Project manager (PM)	Leads the team discussion and keeps the team on task and on schedule. Considers how the team is working and ensures all voices are heard. Makes sure the final lab is submitted.	
Recorder (R)	Ensures that all members have correct answers. Presents answers (or questions) to the class, instructor, or other teams.	
Group Number:		
Name		Role
☐ Review molar mass of com The molar mass of a compound is the mass		ne compound. It can be calculated by summing the
atomic masses that make up the compound and 1 oxygen, which has a mass of 16.0 g.		, H_2O contains 2 hydrogens, each with a mass of 1.0 g mole of H_2O is therefore,
1 mole = 2(1.0 g) + 16.0g = 18 g		
Calculate the mass of 1 mole of each of the CuSO ₄	ne following	
Al(NO ₃) ₃		

How much in moles is each of the following?
122.55 g of KClO₃
98.079 g of H ₂ SO ₄

Recall that 1 mole is also equivalent to 6.022×10^{23} things. So, if we wanted to know the mass of 6.022×10^{23} molecules of oxygen we can calculated the same way we did for 1 mole,

1 mole = 6.022×10^{23} molecules = 2(1.0 g) + 16.0 g = 18 g

Calculate the mass of 6.022 x 10 ²³ of each of the following
Al_2O_3
(NH ₄) ₂ SO ₄

How many molecules are in each of the following?

17 g of NH₃

28 g of CO

□ Review mass-mole-molecule conversions

Knowledge of the mass of the compound enables for the calculation of the number of moles, mass, or individual molecules in a given sample.

1 mole = 6.022×10^{23} atoms = mass of compound (g)

Just as before, when using this relationship, it is important to show your work. Using the units to guide you through the problem-solving process will help ensure you arrive at the correct result. Below is an example of how this can be done.

Example

Determine the number of moles in 12.0 g of H_2O .

To set up this problem we first identify the given which is 12.0 g of H₂O and the unknown which is moles.

given	conversion	asked to find (unknown)
12.0 g H ₂ O		moles oxygen

Next, we identify the conversion factor.

1 mole = mass of H₂O (g)

On the <u>periodic table</u> we see that the mass of oxygen is 16.0 g and the mass of hydrogen is 1.0 g. So the mass of 1 mole of H₂O is,

Or,

1 mole = 18.0 g

Next, we arrange the conversion factor such that what we are asked to find appears on top and what we are given appears on the bottom.

given	conversion	asked to find (unknown)
12.0 g H₂O	1 mole H₂O	moles H ₂ O
units must match	18.0 g H₂O	

Now that we have set up our problem, we can solve for what we are asked to find. To do this, we multiply the quantities on top, then divide by the quantities on the bottom. The result is 0.50 moles oxygen. Notice, that the grams cancel, and we end with moles as our final unit.

given	conversion	asked to find (unknown)
12.0 H ₂ O	1 mole H ₂ O	0.67 moles oxygen
	18.0 g/H ₂ O	

a cancet

3		
Skill 10.03 Exercise 1		
How much in moles is 10	0.0 g of water (H ₂ O)?	
Conversion factor		
Given	Conversion	Asked to find (unknown)
Have reveloir average in 1	25 mades of southern many suids (CO)2	
How much in grams is 1	.25 moles of carbon monoxide (CO)?	
Conversion factor		
Given	Conversion	Asked to find (unknown)

Conversion factor		
Given	Conversion	Asked to find (unknown)
low many malaculas a	re the in 4.25 g of hydrogen peroxide	(H O)3
low many molecules a	Te the iii 4.25 g of hydrogen peroxide	(H ₂ O ₂):
C		
Conversion factor		
Given	Conversion	Asked to find (unknown)
Given	Conversion	Asked to find (unknown)

□ Determine the formula for a compound

For the is part of the lab we will be using the virtual simulator located at the link below. This simulator using the Flash plugin and will require you to enable it.

 $\underline{https://hpluska.github.io/Chemistry/labs/ChemicalFormulas/Index.html}$

Before we get started, we need to make sure the crucible is completely dry. To do this, we will heat it with the Bunsen burner.

Click on the base of the Bunsen burner to turn on the flame. Click on the base of the Bunsen burner again, to turn it off.

Heat until the timer reads about 1:00

To get the weight of the crucible, click the "COOL AND WEIGH" button.

Record the mass of the empty crucible in the data table below as "Mass after first heating".

Click on the "REPLACE CRUCIBLE" button to place the crucible back on the ring stand.

Click on the base of the Bunsen burner to turn on the flame.

Heat until the timer reads about 2:00

Click the "COOL AND WEIGH" button.

Record the mass of the empty crucible in the data table below as "Mass after second heating".

Repeat the above until you have two mass measurements that are the same.

With the crucible on the ring stand and the burner turned off, move the slider to add between 1 and 2 grams of red copper powder to the crucible.

Record the weight of the red powder in the data table below.

Data Table

Trial 1	
Empty Crucible	
Mass after first heating	
Mass after second heating	
Mass after third heating	
Mass of red copper powder	
Mass of crucible and black copper	
oxide powder	
Trial 2	
Empty Crucible	
Mass after first heating	
Mass after second heating	
Mass after third heating	
Mass of red copper powder	
Mass of crucible and black copper oxide powder	

<u>Analysis</u>

In this experiment, copper (Cu) reacted with oxygen (O) to create a compound containing copper oxide (Cu_xO_y) . This process can be represented with the following reaction. Notice we use x and y to represent the amounts of copper and oxygen in our final formula, because we do not know what they are. In the section below, you will figure it out!

 $Cu + O_2 \rightarrow Cu_xO_y$

Refer to the data you collected above. What is the n	nass of the crucible?
Trial 1 mass crucible	Trial 2 mass crucible
How do you know which mass to use?	
Refer to the data you collected above. Calculate the	mass of the black copper oxide powder for each trial.
Show your work.	
Trial 1 mass copper oxide	Trial 2 mass oxide
	mass of oxygen that reacted for each trial. Then convert
the mass of oxygen to moles. Show your work in the	
Trial 1 mass of oxygen	Trial 2 mass of oxygen
Trial 1 moles of oxygen	Trial 2 moles of oxygen
1 mole O = 15.999 g	1 mole O = 15.999 g
Conversion	Conversion
	moles of red copper powder that reacted. Show your
work in the tables provided.	
Trial 1 moles of copper	Trial 2 moles of copper
1 mole Cu = 63.546 g	1 mole Cu = 63.546 g
Conversion	Conversion

Recall that the reaction between copper and oxygen can be depicted as follows.

 $Cu + O_2 \rightarrow Cu_xO_y$

Now that we know the moles of copper and the moles of oxygen, we can determine subscripts x and y.

Let x equal the moles of copper. And, let y equal the moles the oxygen. To figure out the subscripts, simply reduce the moles to their simplest ratio. For example, consider the following results,

0.01873 moles Cu and 0.01297 moles O

We can rewrite the formula for Cu_xO_y by replacing x and y with amounts in moles of Cu and O.

 $Cu_{0.01873}O_{0.01297}$

Now we reduce the subscri	nts by dividing	each subscript by	v the smaller of	the two values
NOW WE reduce the subscri	pts by dividing	s cacin subscript b	y tire simuner of	tile two values

Cho Na73	00.01297	=>	CW1.44	>
0.01297		=/	CW1.44	

Notice, in the result, $Cu_{1.44}O$ still has a decimal as a subscript. While this isn't ideal, it is an experiment, and experiments sometimes produce unexpected results.

Using the moles of Cu and O you calculated, determine the formula for Cu _x O _y for each trial.	
Trial 2	
in should include the following elements (1) The purpose the purpose (3) A summary of your results (4) A summary parts.	
e the purpose of this lab.	
what you did to accomplish the purpose. You could say the formula for Cu_xO_y . We began by weighing a	
e your results. Also indicate whether or not results make trail we obtained a formula of Cu _{1.44} O. For the second had expected, because "	

□ Receive Credit for this lab

Each group member must complete and submit their own lab to receive credit