Underwater Communication and Navigation Laboratory http://unavlab.com support@unavlab.com

UART-SP

Преобразователь последовательного интерфейса v1.0 22.08.2017

Underwater Communication and Navigation Laboratory http://unavlab.com support@unavlab.com

Содержание

Оглавление

1.	Опи	ісани	ıe	. 3
2.	Coc	тав		. 3
	2.1.	Пла	та модуля преобразователя последовательного интерфейса	. 3
3.	Пар	амет	ры системы	. 4
:	3.1.	Техн	нические характеристики	. 4
:	3.2.	Tpe	бования по подключению	. 4
4.	Нас	тройі	ка и режимы работы	. 4
	4.1.	Упра	авление режимами работы при помощи переключателя	. 4
	1.2.	Про	токол конфигурационного порта	. 5
	4.2.	1.	Протокол физического уровня	. 5
	4.2.	2.	Стандарт протокола диалогового уровня NMEA0183	. 6
	4.2.	3.	Система команд TNT для настройки устройства	. 7
	4.2.	4.	Внутренний транспортный протокол	10
Пр	илож	ение	А - Модуль UART-SP. Габаритный чертеж	11
Пр	илож	ение	Б	11

Underwater Communication and Navigation Laboratory http://unavlab.com support@unavlab.com

1. Описание

Модуль преобразователя интерфейса предназначен для комбинирования цифровых сигналов нескольких последовательных интерфейсов (UART) и передачи их с большей скоростью по одной (half-duplex, RS-485) или двум (full-duplex, RS-422) витым парам.

Транспортный интерфейс имеет гальваническую развязку. Дополнительно питание модуля выведено на разъемы коммутируемых портов, что позволяет питать подключаемые устройства. Модуль имеет встроенный сенсор температуры, показания которого доступны по протоколу настроечного порта.

2. Состав

2.1.Плата модуля преобразователя последовательного интерфейса

рисунок 1 - Модуль UART-SP

На рисунке 1 обозначены:

- 1. Порт 2 (конфигурационный)
- 2. Порт 6 (общего назначения)
- 3. Порт 7 (общего назначения)
- 4. Порт 8 (общего назначения)
- 5. Переключатель режимов
- 6. Порт 5 (общего назначения)
- 7. Технологический разъем
- 8. Порт 3 (общего назначения)
- 9. Порт 4 (общего назначения)
- 10. питание (контакт 1 +5B; контакт 2 GND)
- 11. Порт 1 (транспортный)

3. Параметры системы

3.1. Технические характеристики

Параметр	МИН	номинал	макс	Единица измерения
Напряжение питания	4,5	5	5,5	В
Потребляемая мощность**			2	Вт
Габариты ДхШхВ	-		-	MM
Интерфейс сопряжения				
Входные напряжения (входы А, В)	0		3,3	В
Рабочий диапазон температур	-20		60	°C
Число портов UART общего		2*		Шт
назначения				
Число портов RS-485		2		Шт
Число конфигурируемых портов RS-422/RS-485		2		Шт
Скорость передачи данных для коммутируемых портов			9600	Бит/с
Скорость транспортного порта			115200	Бит/с

^{*} Модуль снабжен конфигурационным портом UART, который по дополнительному запросу может быть задействован в качестве порта общего назначения

3.2. Требования по подключению

Питание устройства осуществляется напряжением от 4.5В до 5.5В.

4. Настройка и режимы работы

4.1. Управление режимами работы при помощи переключателя

Двухпозиционный счетверенный переключатель, располагающийся на плате модуля позволяет производить настройку режимов работы портов.

Переключатель №1 "Источник настроек":

^{**} Указано значение для потребления самой схемы модуля, без учета дополнительных потребителей.

Underwater Communication and Navigation Laboratory http://unavlab.com support@unavlab.com

В выключенном состоянии сигнализирует модулю о том, что настройки портов должны использоваться по умолчанию:

- 9600 бит/с, 8 бит данных, 1 стоповый, без контроля четности для портов общего назначения;
- 115200 бит/с, 8 бит данных, 1 стоповый, без контроля четности для транспортного порта (Порт 1);

Во включенном состоянии сигнализирует модулю о том, что настройки портов должны быть загружены из внутренней энергонезависимой памяти модуля.

Переключатель №2 "Режим транспортного порта"

- в выключенном состоянии сигнализирует модулю о том, что транспортный порт должен работать в режиме RS-485 (half-duplex);
- во включенном состоянии сигнализирует модулю о том, что транспортный порт должен работать в режиме RS-422 (full-duplex);

Переключатель №3 "Режим порта №7"

- в выключенном состоянии сигнализирует модулю о том, что порт №4 должен работать в режиме RS-485;
- во включенном состоянии сигнализирует модулю о том, что порт №4 должен работать в режиме RS-422;

Переключатель №4 "Режим порта №8"

- в выключенном состоянии сигнализирует модулю о том, что порт №5 должен работать в режиме RS-485;
- во включенном состоянии сигнализирует модулю о том, что порт №5 должен работать в режиме RS-422;

4.2.Протокол конфигурационного порта

4.2.1. Протокол физического уровня

Информационное сопряжение устройства в целях настройки осуществляется при помощи стандарта физического уровня RS-232 для асинхронного интерфейса (UART) с напряжением линии данных 3.3B.

Подключение производится при помощи четырехпроводного кабеля, с жилами Тх (трансмиттер), Rx (ресивер), Vcc (питание) и GND (земля).

Underwater Communication and Navigation Laboratory http://unavlab.com support@unavlab.com

Без применения дополнительных повторителей и преобразователей интерфейса максимальная длинна шины данных, для которой гарантируется корректная работа интерфейса, составляет не более 2 метров.

Настройки порта подключения по умолчанию*:

Скорость порта, бод: 9600

Биты данных: **8** Стоповые биты: **1** Четность: **нет**

Аппаратное слежение за потоком: **нет**

* По договоренности с изготовителем возможно изменение указанных параметров

важно!

Питание модемов осуществляется от источника постоянного тока 5 Вольт, при этом напряжение линии данных составляет 3.3 В.

4.2.2. Стандарт протокола диалогового уровня NMEA0183

Стандарт NMEA0183 описывает формат текстовых (ASCII) сообщений диалогового уровня.

Пример сообщения: \$PTNT0,1,0*hh<CR><LF>

Основные элементы посылки (сообщения, sentence) NMEA0183:

- '\$' начало посылки,
- 'P' Proprietary, проприетарный код
- 'TNT' трехбуквенный идентификатор производителя
- '0' идентификатор сообщения
- ',' запятая (разделитель параметров)
- '*' разделитель контрольной суммы
- 'hh' контрольная сумма в шестнадцатеричном формате (например FF, 01). Рассчитывается как побитовый XOR всех байт между '\$' и '*'.
- <CR><LF> конец посылки (перевод строки)

4.2.3. Система команд TNT для настройки устройства

важно!

Если не указано дополнительно, формат параметров стоит понимать буквально: 'xx' означает две десятичные цифры, если число меньше 10-ти, то левая позиция дополняется нулем: '02', '09' а не '2' и '9'.

4.2.3.1. IC_H2D_LOC_DATA_GET - прочитать локальные данные

Формат сообщения \$PTNT4,xx,00*hh <cr><lf></lf></cr>		
Поле/параметр	Описание	
\$	Начало сообщения '\$'	
PTNT	Система команд TNT	
4	Идентификатор сообщения	
Requested data ID	Идентификатор данных (см. Таблицу Б9)	
Reserved	Зарезервированно, всегда должно быть '00'	
*	разделитель контр. суммы NMEA	
hh	Контрольная сумма NMEA	
<cr><lf></lf></cr>	Конец сообщения	

4.2.3.2. IC_D2H_DEV_INFO - информация об устройстве

При помощи данного сообщения устройство сообщает свои данные: тип устройства, версию программы и серийный номер.

Формат сообщения			
\$PTNT!,cc,x,x,cc*hh <cr><lf></lf></cr>			
Поле/параметр	Описание		
\$	Начало сообщения '\$'		
PTNT	Система команд TNT		
!	Идентификатор сообщения		
System moniker	Строка наименование системы		
System version	Версия системы		
Device type	Тип устройства		
Core moniker	Строка наименования RT-ядра системы с		
	наименованием релиза в квадратных скобках '[]'		
Core version	Версия RT-ядра системы		

Underwater Communication and Navigation Laboratory http://unavlab.com support@unavlab.com

Serial number	96-битный серийный номер (строка в
	шестнадцатеричном формате)
*	разделитель контр. суммы NMEA
hh	Контрольная сумма NMEA
<cr><lf></lf></cr>	Конец сообщения

4.2.3.3. IC_H2D_ACT_INVOKE - выполнить операцию

Формат сообщения \$PTNT6,xx,00*hh <cr><lf></lf></cr>		
Поле/параметр		
\$	Начало сообщения '\$'	
PTNT	Система команд TNT	
6	Идентификатор сообщения	
Action ID	Идентификатор операции (см. Таблицу Б8)	
Reserved	Зарезервировано '00'	
*	Разделитель конт. суммы NMEA	
hh	Контрольная сумма NMEA	
<cr><lf></lf></cr>	Конец сообщения	

4.2.3.4. ІС_D2H_ACK - ответ/сообщение об ошибке

Данным сообщением устройство сигнализирует о принятии команды или о возникновении ошибки (в зависимости от значения параметра errorCode).

Формат сообщения \$PTNT0,x*hh <cr><lf></lf></cr>	
Поле/параметр	Описание
\$	Начало сообщения '\$'
PTNT	Система команд TNT
0	Идентификатор сообщения
errorCode	Код ошибки (см. Таблицу Б7)
*	Разделитель конт. суммы NMEA
hh	Контрольная сумма NMEA
<cr><lf></lf></cr>	Конец сообщения

4.2.3.5. IC_H2D_PORTCFG_GET - запрос текущих настроек порта

При помощи данной команды пользователь может запросить устройство на предмет текущих настроек одного из доступных портов.

Формат сообщения \$PTNTP,x,x*hh <cr><lf></lf></cr>		
Поле/параметр	Описание	
\$	Начало сообщения '\$'	
PTNT	Система команд TNT	

Underwater Communication and Navigation Laboratory http://unavlab.com support@unavlab.com

Р	Идентификатор сообщения
portID	Идентификатор порта (см. Таблицу Б1)
reserved	Зарезервировано
*	Разделитель конт. суммы NMEA
hh	Контрольная сумма NMEA
<cr><lf></lf></cr>	Конец сообщения

4.2.3.6. IC_H2D_PORTCFG_SET - установка настроек порта

При помощи данной команды пользователь может запросить устройство на предмет изменения текущих настроек одного из доступных портов.

Формат сообщения	
\$PTNTQ,x,x,x,x,x,x*hh <cr><lf></lf></cr>	
Поле/параметр	Описание
\$	Начало сообщения '\$'
PTNT	Система команд TNT
Q	Идентификатор сообщения
portID	Идентификатор порта (см. Таблицу Б1)
isUsed	'0' - порт не используется, '1' - используется
baudRate	Скорость порта (см. Таблицу Б2)
dataBits	Биты данных (см. Таблицу Б3)
stopBits	Стоповый бит (см. Таблицу Б4)
parity	Четность (см. Таблицу Б5)
portMode	Режим работы порта (см. Таблицу Б6)
*	Разделитель конт. суммы NMEA
hh	Контрольная сумма NMEA
<cr><lf></lf></cr>	Конец сообщения

4.2.3.7. IC_D2H_LOCAL_DATA_VAL - значение запрошенного параметра

При помощи данной команды передает пользователю значение, запрошенное им при помощи команды IC_H2D_LOCAL_DATA_GET.

Формат сообщения \$PTNT5,x,x, *hh <cr><lf></lf></cr>	
Поле/параметр	Описание
\$	Начало сообщения '\$'
PTNT	Система команд TNT
5	Идентификатор сообщения
dataID	Идентификатор параметра (см. Таблицу Б9)
dataValue	Значение параметра
*	Разделитель контрольной суммы NMEA
hh	Контрольная сумма NMEA
<cr><lf></lf></cr>	Конец сообщения

4.2.3.8. IC_H2D_PORTCFG_VAL - текущие настройки порта

При помощи данной команды сообщает пользователю текущие настройки указанного порта, данная команда является ответом на запрос IC D2H PORTCFG GET.

Формат сообщения	
\$PTNTR,x,x,x,x,x,x*hh <cr><lf></lf></cr>	
Поле/параметр	Описание
\$	Начало сообщения '\$'
PTNT	Система команд TNT
R	Идентификатор сообщения
portID	Идентификатор порта (см. Таблицу Б1)
isUsed	'0' - порт не используется, '1' - используется
baudRate	Скорость порта (см. Таблицу Б2)
dataBits	Биты данных (см. Таблицу Б3)
stopBits	Стоповый бит (см. Таблицу Б4)
parity	Четность (см. Таблицу Б5)
portMode	Режим работы порта (см. Таблицу Б6)
*	Разделитель конт. суммы NMEA
hh	Контрольная сумма NMEA
<cr><lf></lf></cr>	Конец сообщения

4.2.4. Внутренний транспортный протокол

Устройство используется бинарный, байт-ориентированный внутренний транспортный протокол, сообщения которого имеют следующий формат:

Смещение	Поле	Описание/Значение
0	Сигнатура заголовка	0xB8
1	Сигнатура заголовка	0xB8
2	Идентификатор порта	Принимает значения от 0 до 5 для
	источника	портов с 1 по 6 соответственно
3	Размер блока данных - 1	Принимает значения от 0 до 31,
		значение 0 говорит о том, что
		размер данных 1 байт и т.п.
4 (4 + dataSize + 1)	Данные	
4 + (dataSize + 1)	Контрольная сумма CRC8	

Underwater Communication and Navigation Laboratory http://unavlab.com support@unavlab.com

Приложение A - Модуль UART-SP. Габаритный чертеж

Приложение Б

Таблица Б1 - Идентификаторы портов

Наименование	Значение	Примечание
DC_ID_UART1	0	Порт 1, RS-422/485 - транспортный порт
DC_ID_UART2	1	Порт 2, 3.3V UART - настроечный порт
DC_ID_UART3	2	Порт 3, 3.3 V UART - порт общего назначения
DC_ID_UART4	3	Порт 4, 3.3 V UART - порт общего назначения
DC_ID_UART5	4	Порт 5, RS-485 - порт общего назначения
DC_ID_UART6	5	Порт 6, RS-485 - порт общего назначения
DC_ID_UART7	6	Порт 7, RS-422/RS-485 - порт общего назначения
DC_ID_UART8	7	Порт 8, RS-422/RS-485 - порт общего назначения

Таблица Б2 - Скорости порта

Наименование	Значение	Скорость, бод
DC_BAUDRATE_1200	0	1200
DC_BAUDRATE_2400	1	2400
DC_BAUDRATE_4800	2	4800
DC_BAUDRATE_9600	3	9600
DC_BAUDRATE_19200	4	19200
DC_BAUDRATE_38400	5	38400
DC_BAUDRATE_57600	6	57600
DC_BAUDRATE_115200	7	115200

Таблица Б3 - Биты данных

Наименование	Значение	Длина слова, бит
DC_WORD_LENGTH_8_BIT	0	8
DC_WORD_LENGTH_9_BIT*	1	9

^{* -} на данный момент не поддерживается

Таблица Б4 - Стоповые биты

Наименование	Значение	Стоповые биты
DC_STOPBITS_1	0	1
DC_STOPBITS_0_5	1	0.5
DC_STOPBITS_2	2	2
DC_STOPBITS_1_5	3	1.5

Таблица Б5 - Четность

·		
Наименование	Значение	Четность
DC_PARITY_NONE	0	Без контроля четности
DC_PARITY_EVEN	1	Четная
DC PARITY ODD	2	Нечетная

Таблица Б6 - Режимы порта

-		
Наименование	Значение	Примечание
DC_MODE_UART	0	Режим работы UART
DC_MODE_422	1	Режим порта - RS-422*
DC MODE 485	2	Режим порта - RS-485*

^{* -} для уточнения возможности установки режимов для конкретного порта см. Таблицу Б1

Таблица Б7 - Коды ошибок

значение	наименование	Описание
----------	--------------	----------

Underwater Communication and Navigation Laboratory http://unavlab.com

http://unavlab.com
support@unavlab.com

'0'	NO_ERROR	Запрос принят
'1'	INVALID_SYNTAX	Ошибка синтаксиса
'2'	UNSUPPORTED	Команда не поддерживается
'3'	TRANSMITTER_BUSY	Передатчик занят
'4'	ARGUMENT_OUT_OF_RANGE	Аргумент/параметр вне диапазона допустимых значений
'5'	INVALID_OPERATION	Невозможно выполнить операцию в данный момент
'6'	UNKNOWN_FIELD_ID	Неизвестное/неподдерживаемое поле
'7'	VALUE_UNAVAILIBLE	Запрошенное значение недоступно
'8'	RECEIVER_BUSY	Приемник занят

Таблица Б8 - Сервисные функции

Значение	Имя	Описание
'0'	LOC_INVOKE_FLASH_WRITE	Сохранение настроечных полей во внутренний флеш
'1'	LOC_INVOKE_STANDBY	Не поддерживается
'5'	LOC_INVOKE_RESTART	"Теплая" перезагрузка устройства

Таблица Б9 - Идентификаторы данных

Значение	Наименование	Описание
'0'	DEVICE_INFO	Информация об устройстве
'4'	TEMPERATURE	Показания встроенного сенсора температуры в
		градусах Цельсия