

Edges

Semester 2, 2022 Kris Ehinger

Review: Filters

Outline

- Basics of edge detection
- Canny algorithm
- Edges for image recognition

Learning outcomes

- Explain the causes of edges in images
- Explain the steps involved in Canny edge detection
- Evaluate computer vision features in terms of their invariance (or tolerance) to image variation

Edge detection

Causes of edges

Edges are caused by a variety of factors:

Characterising edges

Characterising edges

Gradient

Gradient

Gradient of a function over x,y:

- Gradient at a single point (x,y) is a vector:
 - Direction is the direction of maximum slope:

•
$$\theta = \tan^{-1}(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x})$$

Length is the magnitude (steepness) of the slope

•
$$\|\nabla f\| = \sqrt{(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2}$$

Partial derivatives in x, y

-1 1 or -

Week 3, Lecture 2

COMP90086 Computer Vision

Figure: D. Hoiem12

Issue: noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Figure: S. Seitz

Solution: smooth (blur) first

Figure: S. Seitz

More efficient solution

Associative property of convolution: $\frac{\partial}{\partial x}(f*g) = f*\frac{\partial}{\partial x}g$

Figure: S. Seitz

Edge filter: Sobel

Edge filter: Sobel

Edge filters

Sobel (x)

Derivative of Gaussian (x)

Sobel (y)

Derivative of Gaussian (y)

Summary

- Edges are points in the image with a high change in intensity = high change in gradient
- Accurate edge detection requires smoothing image noise
- Edge detector = derivative of Gaussian filter, combines smoothing and gradient response

Example: Canny edge detection

Canny edge detection

- Canny, TPAMI 1986: A Computational Approach to Edge Detection
- Foundational approach to edge detection
- Detect edges based on image gradient, then do additional processing to improve the edge map

Edge detection

- Filter with derivative-of-Gaussian filters
- Get magnitude, orientation of all the edges

You really only need two oriented filters (dx and dy)

$$\frac{\partial}{\partial \theta} = \cos(\theta) \frac{\partial}{\partial x} + \sin(\theta) \frac{\partial}{\partial y}$$

Problem: multiple edges

How many vertical edges?

 Non-maximum suppression: If nearby pixels claim to be part of the same edge, only keep the one with maximum gradient

Non-maximum suppression

- Bin edges by orientation
- For each edge pixel,
 - Check the two neighbour pixels orthogonal to this edge pixel
 - If either neighbour has same edge orientation AND higher magnitude, this pixel is not an edge

Thresholding with hysteresis

- Magnitude threshold?
- No single threshold will work: use hysteresis

Lowcontrast edge

Lowcontrast shadow

Thresholding with hysteresis

- Two thresholds T_1 , T_2 with $T_1 > T_2$
- Strong edges: magnitude > T₁
- Weak edges: T₁ > magnitude > T₂
- For each weak edge:
 - Check the 8-pixel neighbourhood around this pixel
 - If any neighbour is a strong edge, relabel the weak edge pixel as a strong edge
- Final edge map = strong edges

Summary

- Canny edge detector: commonly-used algorithm to detect edges in images
- Defines edges based on image gradient
- Post-processing of gradient to better localise edges (non-maximum suppression) and preserve faint/broken edges (thresholding with hysteresis)

Edges for image recognition

Edge features in neural networks

Convolutional layer 1

Convolutional layer 2 ---

Why edges?

Compression

- Edge = discontinuity
- Efficient way to represent images: only represent points where the signal changes (e.g., Elder & Zucker, 1996)

Invariance

 Edge-based features are invariant or tolerant to many irrelevant image changes

Definitions

- Invariant to X = response/representation does not vary with X, is insensitive to changes in X
- **Tolerant** to X = response is mostly insensitive to X

Invariant to light intensity?

- Image derivative is invariant to intensity shift (I_{new} = I + b)
- Tolerant to contrast change ($I_{new} = aI$), but depends on thresholds

Invariant to light direction?

Photo: Heshan Jayakody

Invariant to translation?

Invariant to rotation?

Invariant to scale?

Invariant to 3D rotation / pose?

Image recognition

- To recognize objects across variations in lighting, position, size, pose, etc.:
 - Learn invariant features and compare them to image
 - Learn a separate set of features for each variation (e.g., 8 different rotations) and compare each one to image
- Recognition algorithms often use a mixture of both strategies

Summary

- Edge detection is the first step for most visual processing systems
- Edge-based features have desirable properties for visual recognition
 - Compress information
 - Invariant or tolerant to irrelevant changes in the images