Machine Learning Lecture 1: intro to ML

Radoslav Neychev

Outline

- 1. Introduction to Machine Learning, motivation
- 2. ML thesaurus and notation
- 3. Machine Learning problems overview (selection):
 - a. Classification
 - b. Regression
 - c. Dimensionality reduction
- 4. Naïve Bayes classifier
- 5. k Nearest Neighbours (kNN)
- 6. Model validation and evaluation.

Motivation, historical overview and

current state of ML and Al

Machine Learning applications

- Object detection
- Action classification
- Image captioning
- ...

Machine Learning applications

Machine Learning applications

Data

Knowledge

Long before the ML

Isaac Newton

Johannes Kepler

Long before the ML

Eratosthenes

FALSE

Denote the dataset.

23

Some

student

Denote the dataset.										
		Statistics	Python		Native		Target			
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)			
John	22	2 5	4	Brown	English	5	TRUE			
Aahna	17	4	5	Brown	Hindi	4	TRUE			
Emily	25	5	5	Blue	Chinese	5	TRUE			
Michael	27	3	4	Green	French	5	TRUE			

3 NA

FALSE

Observation (or datum, or data point) is one piece of information.

		Statistics	Python		Native		larget
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE

3 NA

Esperanto

In many cases the observations are supposed to be

Some

student

23

4

5

5

TRUE

TRUE

TRUE

FALSE

reature	for br	redictor) i	represe	nts some	e speciai p	property.	
		Statistics	Python		Native		Target
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)
John	22	5	5	4 Brown	English	5	TRUE

5 Brown

4 Green

5 Blue

3 NA

Hindi

Chinese

French

Esperanto

4

5

3

3

Aahna

Emily

Some

Michael

student

17

25

27

23

FALSE

These all are features

23

student

		Statistics	Python		Native		Target
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE
Some							

3 NA

FALSE

These all are features

23

Some

student

These air are realures											
		Statistics	Python		Native		Target				
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)				
John	22	5	4	Brown	English	5	TRUE				
Aahna	17	4	5	Brown	Hindi	4	TRUE				
Emily	25	5	5	Blue	Chinese	5	TRUE				
Michael	27	3	4	Green	French	5	TRUE				

3 NA

3

FALSE

23

Some

student

I nese all are features										
		Statistics	Python		Native		Target			
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)			
John	22	5	4	Brown	English	5	TRUE			
Aahna	17	4	5	Brown	Hindi	4	TRUE			
Emily	25	5	5	Blue	Chinese	5	TRUE			
	-									

Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE

3 NA

FALSE

Those all are feetures

23

3

Some

student

nese all are features											
		Statistics	Python		Native		Target				
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)				
John	22	5	4	Brown	English	5	TRUE				
Aahna	17	4	5	Brown	Hindi	4	TRUE				
Emily	25	5	5	Blue	Chinese	5	TRUE				
Michael	27	3	4	Green	French	5	TRUE				

3 NA

And even the name is a *feature*

		Statistics	Python		Native		Target
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE
Some							
student	23	3	3	NA	Esperanto	2	FALSE

(despite it might be not informative)

FALSE

The *design matrix* contains all the features and observations. Statistics Dython Mativa Taract

		Statistics	r yulon		INALIVE		iaiyet
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE

Esperanto

3 NA

Some

student

23

3

Features can even be multidimensional, we will discuss it later in this course.

FALSE

Target represents the information we are interested in.

		Statistics	Python		inative		rarget
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE
Some							

3 NA

Esperanto

Target can be either a **number** (real, integer, etc.) – for **regression** problem

23

Target represents the information we are interested in.

		Statistics	Python		Native		Target
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE
Some							
student	23	3	3	NA	Esperanto	2	FALSE

Or a label – for classification problem

Target represents the information we are interested in.

	-						
		Statistics	Python		Native		T
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(
John	22	5	4	Brown	English	5	

5 Blue

3 NA

4 Green

Mark can be treated as a label too (due to finite number of labels:

17 Aahna 5 Brown

5

3

3

25

27

23

1 to 5). We will discuss it later.

Emily

Some

Michael

student

Esperanto

Hindi

Chinese

French

Target (passed)

5

5

TRUE

TRUE

TRUE

TRUE

FALSE

Further we will work with the numerical target (mark)

		Statistics	Python		Native	
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)
John	22	5	4	Brown	English	5
Aahna	17	4	5	Brown	Hindi	4
Emily	25	5	5	Blue	Chinese	5
Michael	27	3	4	Green	French	5
Some student	23	3	3	NA	Esperanto	2

The *prediction* contains values we predicted using some *model*.

Statistics Bython Native Predicted

		Statistics	Python		inative		riedicted
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(mark)
John	22	5	4	Brown	English	5	4.5
Aahna	17	4	5	Brown	Hindi	4	4.5

 Aahna
 17
 4
 5 Brown
 Hindi
 4
 4.5

 Emily
 25
 5
 5 Blue
 Chinese
 5
 5

 Michael
 27
 3
 4 Green
 French
 5
 3.5

Some student 23 3 NA Esperanto 2 3

One could notice that prediction just averages of Statistics and Python marks. So our **model** can be represented as follows:

The *prediction* contains values we predicted using some *model*. Predicted Statistics Python **Native**

Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(mark)
John	22	5	4	Brown	English	5	4.5

Aanna	17	4	5	Brown	Hindi	4	4.5
Emily	25	5	5	Blue	Chinese	5	5
Michael	27	3	4	Green	French	5	3.5

Emily	25	5	5	Blue	Chinese	5	5
Michael	27	3	4	Green	French	5	3.5
Some							
student	23	3	3	NA	Esperanto	2	3

 $\operatorname{mark}_{ML} = \frac{1}{2} \operatorname{mark}_{Statistics} + \frac{1}{2} \operatorname{mark}_{Python}$

Different models can provide different predictions:

5

5

3

The *prediction* contains values we predicted using some *model*. Pradictad Mativo Ctatiation Dython

		Statistics	Python		ivative		i icalcica
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(mark)
John	22		4	Brown	English	5	1
Aahna	17	4	5	Brown	Hindi	4	5

5 Blue

 $\operatorname{mark}_{ML} = \operatorname{random}(\operatorname{integer from} [1; 5])$

Michael 27 4 Green French Some 23 student 3 NA **Esperanto**

Different models can provide different predictions:

5

25

Emily

Chinese

5

4

3

The *prediction* contains values we predicted using some *model*.

		Statistics	Python		Native		Predicted
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(mark)
John	22	5	4	Brown	English	5	1
Aahna	17	4	5	Brown	Hindi	4	5
Emily	25	5	5	Blue	Chinese	5	2
							_

4 Green

French

23 3 NA **Esperanto** Different models can provide different predictions.

3

3

Michael

student

Some

27

Usually some hypothesis lies beneath the model choice.

Loss function measures the error rate of our model.

Square		Predicted
deviation	Target (mark)	(mark)
16	5	1
1	4	5
9	5	2
1	5	4
1	2	3

• **Mean Squared Error** (where **y** is vector of targets):

$$MSE(\mathbf{y}, \mathbf{\hat{y}}) = \frac{1}{N} ||\mathbf{y} - \mathbf{\hat{y}}||_2^2 = \frac{1}{N} \sum_i (y_i - \hat{y}_i)^2$$

Loss function measures the error rate of our model.

Absolute		Predicted
deviation	Target (mark)	(mark)
4	5	1
1	4	5
3	5	2
1	5	4
1	2	3

• *Mean Absolute Error* (where y is vector of targets):

$$MAE(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} ||\mathbf{y} - \hat{\mathbf{y}}||_1 = \frac{1}{N} \sum_{i} |y_i - \hat{y}_i|$$

To learn something, our *model* needs some degrees of freedom:

		Statistics	Python		Native		Predicted
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(mark)
lohn	22	22 5	4	Brown	English	5	4.5
ohn	22	22 5	4	Brown	English	5	

5 Brown

5 Blue

4 Green

Some 23 3 Esperanto student 3 NA

 $\operatorname{mark}_{ML} = w_1 \cdot \operatorname{mark}_{Statistics} + w_2 \cdot \operatorname{mark}_{Python}$

5

Aahna

Emily

Michael

17

25

27

Hindi

Chinese

French

4.5 4 5 3.5 5

5

3

5

5

2

5.101

3.714

3.060

To learn something, our *model* needs some degrees of freedom:

		Statistics	Python		Native		Predicted
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(mark)
John	22	5	4	Brown	English	5	4.447
Aahna	17	4	5	Brown	Hindi	4	4.734

5 Blue

4 Green

Chinese

French

Some 23 3 Esperanto student 3 NA

 $\operatorname{mark}_{ML} = w_1 \cdot \operatorname{mark}_{Statistics} + w_2 \cdot \operatorname{mark}_{Python}$

5

25

27

Emily

Michael

To learn something, our *model* needs some degrees of freedom:

		01-1:-1:	D. He are		NI a 4! a		Predicted
		Statistics	Python		Native		Fieulcleu
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(mark)
John	22	5	4	Brown	English	5	1

3 NA

27 Michael 4 Green French Some

 $\operatorname{mark}_{ML} = \operatorname{random}(\operatorname{integer} \operatorname{from} [1; 5])$

5

3

17

25

23

Aahna

Emily

student

5 Brown Hindi 5 5 Blue Chinese 5

Esperanto

5 4

4

3

Last term we should learn for now is hyperparameter.

Hyperparameter should be fixed before our model starts to work with the data.

We will discuss it later with kNN as an example.

ML thesaurus Recap: Dataset Observation (datum) Feature Design matrix Target Prediction Model Loss function Parameter Hyperparameter

Maximum Likelihood Estimation

Likelihood

Denote dataset generated by distribution with parameter θ

Likelihood function:

$$L(\theta|X,Y) = P(X,Y|\theta)$$

$$L(\theta|X,Y) \longrightarrow \max_{\theta} \quad \text{samples should be i.i.d.}$$

$$L(\theta|X,Y) = P(X,Y|\theta) = \prod_{i} P(x_i,y_i|\theta)$$

Maximum Likelihood Estimation

Likelihood

Denote dataset generated by distribution with parameter θ

Likelihood function:

$$L(\theta|X,Y) = P(X,Y|\theta)$$

$$L(\theta|X,Y) \longrightarrow \max_{\theta}$$

samples should be i.i.d.

$$L(\theta|X,Y) = P(X,Y|\theta) = \prod_{i} P(x_i,y_i|\theta)$$

equivalent to

$$\log L(\theta|X,Y) = \sum_{i} \log P(x_i, y_i|\theta) \longrightarrow \max_{\theta}$$

Machine Learning problems overview

Supervised learning problem statement

Let's denote:

- Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where
 - \circ $(x \in \mathbb{R}^p, y \in \mathbb{R})$ for regression
 - $x_i \in \mathbb{R}^p$, $y_i \in \{+1, -1\}$ for binary classification
- ullet Model $f(\mathbf{x})$ predicts some value for every object
- ullet Loss function $Q(\mathbf{x},y,f)$ that should be minimized

Regression problem

- Regression problem
- Classification problem

- Regression problem
- Classification problem
- Dimensionality reduction

Let's denote:

• Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where

```
\mathbf{x}_i \in \mathbb{R}^p , y_i \in \{C_1, \dots, C_k\} for k-class classification
```

Bayes' theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

or, in our case

$$P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)}$$

Let's denote:

• Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where

$$\circ \; \mathbf{x}_i \in \mathbb{R}^p$$
 , $y_i \in \{C_1, \dots, C_K\}$ for K-class classification

$$P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)}$$

Naïve assumption: features are independent

$$P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)}$$

Naïve assumption: features are independent:

$$P(\mathbf{x}_i|y_i = C_k) = \prod_{i=1}^{p} P(x_i^l|y_i = C_k)$$

$$P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)}$$

Optimal class label:

$$C^* = \arg\max_{k} P(y_i = C_k | \mathbf{x_i})$$

To find maximum we even do not need the denominator

But we need it to get probabilities

kNN – k Nearest Neighbors

kNN - k Nearest Neighbours

k Nearest Neighbors Method

Given a new observation:

- Calculate the distance to each of the samples in the dataset.
- 2. Select samples from the dataset with the minimal distance to them.
 - 3. The label of the *new observation* will be the most frequent label among those nearest neighbors.

How to make it better?

• The number of neighbors k (it is a *hyperparameter*)

kNN classification

$$k = 1$$

$$k = 5$$

How to make it better?

- The number of neighbors k (it is a hyperparameter)
- The distance measure between samples
- a. Hamming
 - b. Euclidean
 - c. cosine
 - d. Minkowski distances
 - e. etc.
- Weighted neighbours

 Weights can be adjusted according to the neighbors order,

$$w(\mathbf{x}_{(i)}) = w_i$$

• Weights can be adjusted according to the neighbors order, $w(\mathbf{x}_{(i)}) = w_i$

or on the distance itself $w(\mathbf{x}_{(i)}) = w(d(\mathbf{x}, \mathbf{x}_{(i)}))$

• Weights can be adjusted according to the neighbors order, $w(\mathbf{x}_{(i)}) = w_i$

or on the distance itself

$$w(\mathbf{x}_{(i)}) = w(d(\mathbf{x}, \mathbf{x}_{(i)}))$$

• Weights can be adjusted according to the neighbors order, $w(\mathbf{x}_{(i)}) = w_i$

or on the distance itself

$$w(\mathbf{x}_{(i)}) = w(d(\mathbf{x}, \mathbf{x}_{(i)}))$$

if
$$Z_{\bullet} > Z_{\bullet}$$
:

if
$$Z_{\bullet} < Z_{\bullet}$$

Model validation and evaluation

Supervised learning problem statement

Let's denote:

- Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where
 - \circ $(x \in \mathbb{R}^p, y \in \mathbb{R})$ for regression
 - $x_i \in \mathbb{R}^p$, $y_i \in \{+1, -1\}$ for binary classification
- ullet Model $f(\mathbf{x})$ predicts some value for every object
- ullet Loss function $Q(\mathbf{x},y,f)$ that should be minimized

Overfitting vs. underfitting

Overfitting vs. underfitting

Overfitting vs. underfitting

- We can control overfitting / underfitting by altering model's capacity (ability to fit a wide variety of functions):
- select appropriate hypothesis space
- learning algorithm's effective capacity may be less than the representational capacity of the model family

Is it good enough?

Image credit: Joseph Nelson @josephofiowa

Cross-validation

