1. Multiclass Logistic Regression:

4 label: y & 81, 2, -.., c}

4 Hypothesis:

"One line is not enough to separate data

Let $\Omega = \{ \underline{U}(1), \underline{W}(2) - - \underline{W}(c) \}$ be the weight factors for c classes.

Hypothesize that

he size that
$$Pr\{y_n = i \mid \underline{x}_n\} = \frac{e^{\underline{U}(i)^T}\underline{x}_n}{c^{\underline{U}(i)^T}\underline{x}_n}, \text{ for } i = 1, 2, \dots c$$

$$\sum_{j=1}^{n} e^{\underline{U}(j)^T}\underline{x}_n$$

"soft max function"

$$\stackrel{\triangle}{=}$$
 $\stackrel{\wedge}{P}$ (i| \underline{x}_n) // notation

4 Error Criteria:

6 Bradient:

$$\nabla_{\Omega} \operatorname{en}(\Omega) = \begin{bmatrix} \nabla_{\underline{w}(1)} \operatorname{en}(\Omega) \\ \nabla_{\underline{w}(2)} \operatorname{en}(\Omega) \end{bmatrix}$$

4 SGD update:

For iteration k, $\Omega_k = \{ \underline{W}_k(i), \underline{W}_k(\lambda), \cdots, \underline{W}_k(c) \}$

Pick sample n ~ uniform [1, 2, ... N]

For $i = 1, 2, \dots, c$, compute $\nabla_{\underline{W}(i)} \operatorname{en}(\Sigma)$.

Then update according to $\underline{W}_{k+1} = \underline{W}_{k}(i) - \mathcal{E}_{k} \nabla_{W(i)} \operatorname{en}(\Omega_{k})$

13 Compute Viz (i) en(2):

1 Note. in here, nth example (xn, yn) is Chosen.

· Case 1: i= yn,

$$\nabla_{\underline{\omega}(i)} e_{n}(\underline{x}) = \nabla_{\underline{\omega}(i)} \left[-\log \frac{e^{\underline{\omega}(y_{n})^{T}} \underline{x}_{n}}{\sum_{j=1}^{c} e^{\underline{\omega}(j)^{T}} \underline{x}_{n}} \right]$$

$$= \nabla_{\underline{\omega}(i)} \left[-\underline{\omega}(y_{n})^{T} \underline{x}_{n} + \log \left(\sum_{j=1}^{c} e^{\underline{\omega}(j)^{T}} \underline{x}_{n} \right) \right]$$

$$= -\underline{x}_{n} + \frac{1}{\sum_{j=1}^{c} e^{\underline{\omega}(j)^{T}} \underline{x}_{n}} \cdot \nabla_{\underline{\omega}(i)} \left[\sum_{j=1}^{c} e^{\underline{\omega}(j)^{T}} \underline{x}_{n} \right]$$

$$= -\underline{x}_{n} + \frac{e^{\underline{\omega}(j)^{T}} \underline{x}_{n}}{\sum_{j=1}^{c} e^{\underline{\omega}(j)^{T}} \underline{x}_{n}} \cdot \underline{x}_{n}$$

$$= -\underline{x}_{n} + \frac{e^{\underline{\omega}(j)^{T}} \underline{x}_{n}}{\sum_{j=1}^{c} e^{\underline{\omega}(j)^{T}} \underline{x}_{n}} \cdot \underline{x}_{n}$$

· Case 2: i + yn

$$\nabla_{\underline{\omega}(i)} e_{n}(\underline{n}) = \nabla_{\underline{\omega}(i)} \left[-\log \frac{e^{\underline{\omega}(y_{n})^{T}} \underline{x}_{n}}{\sum_{j=1}^{c} e^{\underline{\omega}(j)^{T}} \underline{x}_{n}} \right]$$

$$= \nabla_{\underline{\omega}(i)} \left[-\underline{\omega}(y_{n})^{T} \underline{x}_{n} + \log \left(\sum_{j=1}^{c} e^{\underline{\omega}(j)^{T}} \underline{x}_{n} \right) \right]$$

$$= \frac{e^{\underline{\omega}(j)^{T}} \underline{x}_{n}}{\sum_{j=1}^{c} e^{\underline{\omega}(j)^{T}} \underline{x}_{n}} \cdot \underline{x}_{n}$$

2. Softmax Regress ion for
$$C = \Sigma$$
:

$$\hat{P}(1 | \underline{x}) = \underbrace{e^{\underline{\omega}(1)^T \underline{x}}}_{e^{\underline{\omega}(1)^T \underline{x}} + e^{\underline{\omega}(2)^T \underline{x}}} = \underbrace{e^{(\underline{\omega}(1) - \underline{\omega}(2)^T \underline{x}}}_{e^{\underline{\omega}(1) - \underline{\omega}(2)^T \underline{x}} + e^{\underline{\omega}(2)^T \underline{x}}} = \underbrace{e^{(\underline{\omega}(1) - \underline{\omega}(2)^T \underline{x}}}_{e^{\underline{\omega}(1)^T \underline{x}} + e^{\underline{\omega}(2)^T \underline{x}}} = \underbrace{e^{\underline{\omega}(2)^T \underline{x}}}_{e^{\underline{\omega}(1)^T \underline{x}} + e^{\underline{\omega}(2)^T \underline{x}}} = \underbrace{e^{\underline{\omega}(2)^T \underline{x}}}_{e^{\underline{\omega}(1)^T \underline{x}} + e^{\underline{\omega}(2)^T \underline{x}}}$$

This is the same as logistic Regression with
$$\underline{W} = \underline{W}(1) - \underline{W}(\Sigma)$$

Lec 11.2 GD/SGD for non-linear regression

1. Recall in the linear regression:

to The Ein we wan to minimize is:

Ein
$$(\underline{\omega}) = \frac{1}{N} \sum_{n=1}^{N} e_n(\underline{\omega})$$
 $e_n(\underline{\omega}) = (\underline{\omega}^T \underline{x}_n - y_n)^T$
 $\nabla e_n(\underline{\omega}) = \nabla_{\underline{\omega}} (\underline{\omega}^T \underline{x}_n - y_n)^T$
 $= 2 (\underline{\omega}^T \underline{x}_n - y_n) \cdot \nabla_{\underline{\omega}} (\underline{\omega}^T \underline{x}_n - y_n)$
 $= 2 (\underline{\omega}^T \underline{x}_n - y_n) \cdot \underline{x}_n$

Ly 6D/S6D: as
$$k \to \infty$$
, \underline{W}_k converges to the least square sol, which is $\underline{W}_{LS} = (\overline{X}^T \overline{X})^{-1} \overline{X}^T \underline{Y}$

4 why we perfer GD/SGD rater than use this closed form formala?
O Computation Complexity
GD: O(Nd) SGD: O(d) Minibatch: O(Md) per iteration
They're smaller comparing to Matrix multiplication
2) Exact solution may not be desirable.
We only care about Eone (test error), not Ein
=> In practice we can run fewer iterations
stop when error over the validation data is small
tor.
Eout
Ein