Homework 7

Due date: Jan. 2nd, 2024

Turn in your hard-copy hand-writing homework in class

Rules:

- Work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism.
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.

1. For the circuit below, $\dot{U}_s = 100 \angle 0^\circ \text{ V (rms)}$, $\dot{I}_s = 2 \angle 0^\circ \text{ A (rms)}$, $\omega L = 30 \Omega$, $1/\omega C = 90 \Omega$, find the complex power delivered by **voltage and current source**.

2. For the circuit below, find \dot{I}_{AB} , \dot{I}_{BC} , \dot{I}_{CA} , and \dot{V}_{CA} in the circuit.

- 3. Consider the following three-phase circuit. R=20 Ω , $jX_L = j5 \Omega$, Z= $(1+j0.5) \Omega$.
 - (1) Calculate the **line current** I_{θ} .
 - (2) Calculate the voltage U_{AB} .
 - (3) Calculate the total complex power absorbed by all the loads including \mathbb{Z} , \mathbb{R} and jX_L .

- 4. For the circuit below, $\dot{U}_s = 80 \angle 30^\circ \text{ V } (Phasor expressed by amplitude)$, find
 - (1) The current \dot{I}_s for switch S is off.
 - (2) The complex power delivered by voltage source when S is off.
 - (3) The current \dot{I}_s when the switch S is on.

- 5. For the circuit below, please find:
 - (a) The average power released by the source.
 - (b) The average power delivered to the 18Ω resistor.

6. For the following circuit, please find current I_{θ}

