

FILOGENIA

Dilvan Moreira (Baseado em material do prof. André Carvalho)

Leitura

- Introduction to Computational Genomics:
 A Case Studies Approach
 - Capítulo 7

Tópicos

- SARS
- Origem e Evolução da Epidemia
- Análise Filogenética
- Construção de Árvores Filogenéticas
- Algoritmo Neighbor-Joining
- Estudo de Casos

- Síndrome Respiratória Aguda Grave
 - Severe Acute Respiratory Syndrome
- Doença respiratória grave que atingiu o mundo em 2003
 - Causada pelo SARS coronavirus (SARS-COV)
 - Termo corona vem da coroa que aparece quando o vírus é observado em um microscópio eletrônico
 - Não é a gripe aviária

Coronavirus

- Patógenos que causam uma grande variedade de doenças em animais
 - Qualquer organismo capaz de causar doença infecciosa
- Podem apresentar mutações frequentes e, assim, infectar outras espécies
- Outros coronavirus foram identificados como causadores de hepatite em ratos e gastrenterite em suínos
- É o vírus mais comum em patologia veterinária

- Fevereiro de 2003
 - Hospital francês de Hanói, Vietnam, chamou a OMS com um relatório de uma infecção semelhante a gripe
 - Altamente contagioso
 - Especialista e doenças infecciosas da OMS, Dr Carlo Urbani, concluiu que era um novo e incomum patógeno

- Fevereiro de 2003
 - Durante sua estadia, Dr. Urbani coletou exames, examinou documentos do hospital e organizou quarentena de pacientes
 - Foi o primeiro a identificar e descrever a nova doença, SARS
 - Febre, tosse seca, falta de ar, piora progressiva do sistema respiratório, morte por falha do sistema respiratório
 - Em 3 semanas, Dr. Urbani mais cinco outros profissionais de saúde do hospital morreram de SARS

- Março de 2003
 - OMS emitiu um alerta global, chamando SARS de risco à saúde mundial

Hospital de Hanói Março de 2003

André de Carvalho - ICMC/USP 27/02/23

- Primeiros casos ocorreram em 11/2002 na província de Guangdond, China
 - 106 pessoas adoeceram em hospital da cidade de Guangzhou
 - Resto do mundo não sabia disso
 - Médico desse hospital visitou Hong Kong em 21 de fevereiro de 2003
 - Hospedou-se no 9o andar do hotel metrópole
 - Adoeceu e morreu, com diagnóstico de pneumonia
 - Várias pessoas que estiveram no 9o andar tornaram-se transmissores da doença

André de Carvalho - ICMC/USP 27/02/23

- Um dos visitantes do 9o andar foi um executivo americano
 - Primeiro paciente tratado no hospital francês de Hanói
 - Infectou 80 pessoas antes de morrer
 - Outros visitantes do 9o andar levaram a doença para Canadá, Cingapura e EUA
 - Em abril de 2003, foram relatados 4300 casos com 250 mortes em 25 países

- Março de 2003
 - Início do mês, OMS coordenou pesquisa internacional
 - Final do mês, novo vírus que causa SARS foi identificado de forma independente em:
 - Alemanha, Canadá, EUA e Hong Kong
 - SARS-CoV é um RNA viral (como HIV)
 - Comum em humanos e animais, coronavírus causam ~25% de todas as infecções respiratórias superiores
 - Ex.: gripe comum

SARS Número de Casos Reportados

SARS Estatísticas

Coronavirus SARS

Fonte: BBC

André de Carvalho - ICMC/USP 27/02/23

Coronavirus SARS

www.cell-research.com

27/02/23

- Abril de 2003
 - Laboratório canadense seqüência a seqüência de RNA do vírus SARS CoV
 - Análise filogenética do vírus mostrou que o coronavirus mais próximo é o da civeta
 - Alimento popular em Guangdong

- Maio de 2003
 - Dois artigos da Science apresentaram o genoma completo do SARS CoV
 - Genoma contém 29.751 bp
 - É substancialmente diferente de todos os CoVs humanos
 - Diferentes também dos CoVs dos pássaros nenhuma relação com gripe aviária
- Final de 2003
 - SARS se espalhou por todo o mundo

Análise Filogenética do SARS

- Análise filogenética pode responder questões como:
 - Que tipo de vírus causou a infecção original?
 - Qual a fonte da infecção?
 - Quando e onde o vírus cruzou fronteiras entre espécies?
 - Quais são as mutações chave que possibilitaram esse cruzamento?
 - Qual a trajetória seguida para o espalhamento do vírus?

Análise Filogenética do SARS

- Para responder às perguntas anteriores, vamos:
 - Examinar alguns algoritmos chave de análise filogenética
 - Aplicar esses algoritmos a dados de SARS
 - Disponíveis no GenBank e no site do livro

Árvores e Evolução

- Trajetória de avanço do SARS pode ser representada por uma árvore
 - Todos os vírus de SARS que apareceram no mundo se originaram do vírus achado na China
 - Novos ramos aparecem quando o vírus se espalha
- Tradicionalmente, história evolutiva ligando grupos de espécies tem sido representada por uma árvore
 - Única figura no livro "On the origin of species" de Darwin

Árvores Filogenéticas

André de Carvalho - ICMC/USP

Árvores Filogenéticas

Espécies atuais

Filogenia

- Estudo da relação evolutiva entre vários grupos de organismos
 - Espécies
 - Populações
 - Etc.
- Representada por diagrama em forma de árvore (árvore filogenética)
 - Análise cladística
 - Geralmente baseada em dados morfológicos

Cladísticas

Árvores Filogenéticas

- Mostram os relacionamento evolutivos entre várias espécies ou indivíduos
 - Que se acredita terem um ancestral em comum
- Forma de cardiograma
 - Cada nó com descendentes representa o ancestral comum mais recente deles
 - Tamanho das arestas corresponde a estimativas de tempo

Árvores Filogenéticas

- Cada nó é denominado uma unidade taxonômica (taxon, plural taxa)
- Nós internos são unidades taxonômicas hipotéticas
 - Não podem ser diretamente observados
- Relacionamentos mais complexos podem assumir a forma de redes

Estruturas de Árvores Filogenéticas

- Árvores apresentam duas ou mais taxa
 - Espécie ou indivíduo
- Nós externos representam taxa existentes
 - Nós internos apresentam seus ancestrais (em geral extintos)
- Árvores podem ser de:
 - Bifurcação
 Cada nó interno tem no máximo 2 filhos
 - Multifurcação
 - Cada nó interno pode ter mais que 2 filhos
- Árvores podem ter ou não raiz

Árvores Filogenéticas com Raiz

- Define-se um nó interno especial, chamado raiz
 - Ancestral comum a todos os outros nós
 - Todos os caminhos evolutivos levam à raiz
 - Ramos são orientados da raiz aos nós externos

Árvores Filogenéticas com Raiz

Árvores Filogenéticas com Raiz

Phylogenetic Tree of Life

Árvores Filogenéticas sem Raiz

- Ramos não possuem orientação
 - Mostram relacionamento topológico entre taxa, sem identificar um ancestral comum
- Existem métodos para definir uma raiz para uma árvore sem raiz
 - Escolhem uma aresta para colocar nó raiz
 - Requer informação biológica externa ou pelo menos suposição de onde por a raiz

Árvores Filogenéticas sem Raiz

Árvores Filogenéticas sem Raiz

- Raiz é geralmente definida incluindo uma ou mais taxa no conjunto de dados
 - Que se sabe serem resultados de divisão mais antiga
 - Relação mais distante a cada uma das taxa
 - Essa taxon (ou taxa) externa é chamada de outgroup
 - Ramo da árvore onde o outgroup se junta as demais taxa é considerado conter o nó raiz

Árvores Filogenéticas sem Raiz

Estruturas de Árvores Filogenéticas

 Rotação dos ramos de um nó interno não altera relacionamento entre taxa

Invariante à rotação André de Carvalho - ICMC/USP 27/02/23

Número de Possíveis Árvores

- Reconstrução de árvores filogenéticas a partir de sequências de DNA
 - Complicado pelo grande número de possíveis árvores
 - Possíveis árvores sem raiz (n \geq 3) $\frac{(2n-5)!}{2^{n-3}(n-3)!}$
 - Possíveis árvores com raiz ($n \ge 2$)

$$\frac{(2n-3)!}{2^{n-2}(n-2)!}$$

n: número de taxa

Representação de Árvores

 Existem várias formas não gráficas de representar uma árvore

Formato padrão popular:

Newick: (((1,2),3),((4,5),(6,7)))

- Até pouco tempo, relacionamento entre taxa era inferidos por características morfológicas
- Atualmente são utilizadas sequências de DNA
 - Tecnologia de sequenciamento
 - Mutações deixam uma trilha
 - Árvores podem ser inferidas a partir da similaridade entre sequências homólogas

- Ramos da árvore podem ter tamanhos diferentes
 - Quanto maior

```
utações,
                                                          Agrobacterium
                                        99.0
                                               0.0163
                                                           Brucella
                                       0.0065
                                               100.0
                      0.0143
                                               0.0202
                                                              Bartonella
                               0.037
                                                           Zoogloea
                      86.0
                                                               Rhodopseudomonas
                      0.0459
                                                        100.0
        0.0034
                56.0

    Bradyrhizobium

                                               0.0241
                                                                   Rhodobacter
0.0040
                                                 100.0
         75.0
                                                0.0182
                                                              Paracoccus
                                                      Rhodospirillum
                                                            Brevundimonas
```

- Dadas seqüências homólogas de um grupo de taxa
 - Existem vários métodos de reconstruir seus relacionamentos filogenéticos
- Métodos podem ser divididos em dois grupos:
 - Os que ordenam todas as possíveis árvore por meio de algum critério para encontrar a melhor
 - Os que constroem a árvore diretamente a partir dos dados (sem definir uma função de avaliação)

- Ordenando as possíveis árvores
 - Critérios em geral procuram a árvore com o menor número de mutações
 - Por causa do enorme número de possíveis árvores:
 - Pode demorar muito para encontrar a melhor árvore
 - Quando usa aproximações para acelerar busca, pode não encontrar melhor árvore

- Métodos que constroem a partir dos dados
 - Árvore é construída por métodos filogenéticos que usam algoritmos e estatística
 - Frequentemente baseados na computação da distância entre pares de taxa
 - Muito populares por serem geralmente rápidos

- Métodos que constroem a partir dos dados
 - Método baseado em distância mais popular é o algoritmo neighbor-joining (NJ)
 - Apesar de não ser necessariamente tão bem comportado estatisticamente quanto outros métodos
 - Robusto e acurado
 - Garantido de inferir a árvore verdadeira se as distâncias usadas refletem a distância real entre seqüências
 - Resultado não garantido por outros métodos estatisticamente mais sofisticados

Métodos Baseados em Distância

- Dadas n taxa
- Construir matriz de distâncias entre taxa
 - Se os ramos da árvore têm um tamanho específico, distância entre dois nós quaisquer pode ser facilmente computada
 - Tamanho total do caminho único unindo eles
 - Permite especificar distância entre nós folha da árvore usando distância aditiva

Métodos Baseados em Distância

- Distância aditiva
 - Biologicamente, aditividade é uma propriedade importante para uma matriz de distâncias
 - Número de substituições separando duas taxa de seu último ancestral comum forma uma distância aditiva
 - Distância sobre o caminho do nó i ao nó j
 - Modelo de Jukes-Cantor é frequentemente usado como modelo de substituição

Métodos Baseados em Distância

Matriz de Distâncias

	L1	L2	L3	L4	L5
L1	0	2	4	6	6
L2	2	0	4	6	6
L3	4	4	0	6	6
L4	6	6	6	0	4
L5	6	6	6	4	0

- Desenvolvido em 1987 por por Naruya Saitou e Masatochi Nei
 - Mesmo Nei do método Nei-Gojobori
- Algoritmo guloso (*greedy*)
 - Começa com uma filogenia em forma de estrela
 - Todas as taxa estão conectadas diretamente a um único nó raiz
 - Iterativamente combina pares de nós

- Chave para sucesso do algoritmo:
 - Critério que define como são selecionados os nós a serem combinados a cada iteração
 - Identifica nós que são topologicamente vizinhos na árvore
- Taxa selecionadas são combinadas em um táxon
 - Uma nova matriz de distâncias é então calculada
- Processo repetido até que todas as taxa sejam combinadas
- Árvore gerada é sem raiz

- Cálculo do tamanho dos ramos
 - Supor 3 taxa em uma árvore sem raiz

Fórmula 3-pontos:

$$L_x + L_y = d_{AB}$$

$$L_x + L_z = d_{AC}$$

$$L_y + L_z = d_{BC}$$

$$L_{x} = (d_{AB} + d_{AC} - d_{BC})/2$$

$$L_{y} = (d_{AB} + d_{BC} - d_{AC})/2$$

$$L_{z} = (d_{AC} + d_{BC} - d_{AB})/2$$

- Usa condição de 4-pontos para selecionar nós vizinhos a serem combinados
 - Supor que 1 e 2 são vizinhos

$$d(1,2) + d(i,j) < d(i,1) + d(2,j)$$
 $R_i = \sum_j d(i,j)$
 $M(i,j) = (n-2)d(i,j) - R_i - R_j$
 $M(i,j) < M(i,k)$ para todo $k \neq j$

Grau de vizinhancidade

Entrada: matriz *n*x*n* de distancias D e um outgroup

Output: árvore filogenética *T* com raiz

- **1:** Atualizar tabela *M* usando *D* e escolher menor valor de M para selecionar duas taxa para combinar
- **2:** Combinar duas taxa t_i e t_j em um novo nó V e usar fórmula de 3-pontos para atualizar a matriz de distâncias D' onde t_i e t_j são substituídos por V.
- **3:** Calcular tamanho dos ramos de t_k a V usando a fórmula de 3-pontos, $T(V,1) = t_i$ e $T(V,2) = t_i$, $TD(t_i) = L(t_i,V)$ e $TD(t_i) = L(t_i,V)$
- **4:** Matriz de distâncias D' agora tem n-1 taxa. se existe mais 2 taxa ir para 1: se existem 2 taxa, combina-las por um ramo de tamanho $d(t_i, t_i)$.
- 5: Definir o nó raiz como o ramo ligando o outgroup ao resto da árvore

UPGMA

- Algoritmo NJ pode ser reduzido a um método mais simples, UPGMA, quando M = D
 - Unweighted Pair Group Method with Arithmetic Averages
 - Um dos primeiros métodos baseados em distância
 - Distância do nó externo para a raiz é a mesma para todos os nós externos
 - Ultrametricidade
 - Quase nunca é válida para sequencias de DNA
 - Pode levar a inferência da árvore incorreta

Estudo de Casos

- Análise filogenética da epidemia de SARS
 - Genoma do SARS-CoV tem 6 genes
 - Hospedeiro: civeta
 - Árvore epidemiológica
 - Data de origem
 - Área de origem

Identificação do Hospedeiro

Árvore Epidemiológica

Área de Origem

Data de Origem

Formato Newick

Formato de matriz:

```
1 2 3
```

2 A B

3 C D

Formato Newick: Convenção ((A, B), (C, D));

Tamanho dos ramos pode ser representado: ((A:1.0, B:1.0):2, (C:1, D:1):2);

Nomes podem ser atribuídos aos nós internos: ((A, B)2, (C, D)3);

Conclusão

- SARS
- Origem e Evolução da Epidemia
- Análise Filogenética
- Construção de Árvores Filogenéticas
- Algoritmo Neighbor-Joining
- Estudo de Casos

Perguntas?