Домашнее задание №5

140

V/V	e1	e2	e3	e4	e5	e6	e7	e8	е9	e10	e11	e12
e1	0				1	1		4	4			5
e2		0				3		5	1		4	5
e3			0					5		2	3	
e4				0	5	2				5	4	2
e5	1			5	0			1				
e6	1	3		2		0	1		2	1	4	
e7						1	0	1	2	3	1	3
e8	4	5	5		1		1	0	1	4		4
e9	4	1				2	2	1	0		4	4
e10			2	5		1	3	4		0		
e11		4	3	4		4	1		4		0	5
e12	5	5		2			3	4	4		5	0

Нахождение гамильтонова цикла

Включаем в S вершину $x_1 S = \{x_1\}$

Возможная вершина $x_5: S=\{x_1,x_5\}$

 $x_4: S = \{x_1, x_5, x_4\}$

 $x_6: S = \{x_1, x_5, x_4, x_6\}$

 $x_2: S = \{x_1, x_5, x_4, x_6, x_2\}$

 $x_8: S = \{x_1, x_5, x_4, x_6, x_2, x_8\}$

 $x_3: S = \{x_1, x_5, x_4, x_6, x_2, x_8, x_3\}$

 x_{10} : $S = \{x_{1}, x_{5}, x_{4}, x_{6}, x_{2}, x_{8}, x_{3}, x_{10}\}$

 $x_7: S = \{x_1, x_5, x_4, x_6, x_2, x_8, x_3, x_{10}, x_7\}$

 $x_9: S = \{x_1, x_5, x_4, x_6, x_2, x_8, x_3, x_{10}, x_7, x_9\}$

 $X_{11}: S = \{X_{1}, X_{5}, X_{4}, X_{6}, X_{2}, X_{8}, X_{3}, X_{10}, X_{7}, X_{9}, X_{11}\}$

 x_{12} : $S = \{x_{1}, x_{5}, x_{4}, x_{6}, x_{2}, x_{8}, x_{3}, x_{10}, x_{7}, x_{9}, x_{11}, x_{12}\}$

Гамильтонов цикл найден : $S = \{x_1, x_5, x_4, x_6, x_2, x_8, x_3, x_{10}, x_7, x_9, x_{11}, x_{12}\}$

Матрица смежности с перенумерованными вершинами

До: X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

После: X1 X5 X4 X6 X2 X8 X3 X10 X7 X9 X11 X12

0	1	0	1	0	1	0	0	0	1	0	1
-	_		_				0				_
0	1	0	1	0	0	0	1	0	0	1	1
1	0	1	0	1	0	0	1	1	1	1	0
0	0	0	1	0	1	0	0	0	1	1	1
1	1	0	0	1	0	1	1	1	1	0	1
0	0	0	0	0	1	0	1	0	0	1	0
0	0	1	1	0	1	1	0	1	0	0	0
0	0	0	1	0	1	0	1	0	1	1	1
1	0	0	1	1	1	0	0	1	0	1	1
0	0	1	1	1	0	1	0	1	1	0	1
1	0	1	0	1	1	0	0	1	1	1	0

Построение графа пересечений G

Выделим подматрицу R_{26} из R и определим p26: Ребро $x_{2}x_{6}$ пересекается с $x_{1}x_{4}$

Определим p312, выделим подматрицу p312. Ребро p33X12 пересекается с p31X4, p31X10, p31X10,

Определим p311, выделим подматрицу p311. Ребро p33X11 пересекается с p3X1X4, p3X1X10, p3X1X10,

Определим p38, выделим подматрицу p38. Ребро p38 пересекается с p31p4, p31p6, p38. Ребро p38, выделим p38, выделим подматрицу p38. Ребро p38. Ребро p38, выделим p38, выделим подматрицу p38.

Определим p411, выделим подматрицу p411. Ребро p411 пересекается с p411 х2p411. p411 пересекается с p411 х2p411 пересекается с p411 пе

Определим **р**410, выделим подматрицу **R**410. Ребро **X**4**X**10 пересекается с **X**1**X**6, **X**2**X**6, **X**3**X**8

Определим p49, выделим подматрицу p49. Ребро p40 пересекается с p11p40, p40, p

Определим p48, выделим подматрицу p48. Ребро p48 пересекается с p41p48.

Определим **р**512, для чего в матрице **R** выделим подматрицу **R**512. Ребро **X**5**X**12 пересекается с **X**1**X**6, **X**1**X**10, **X**2**X**6, **X**3**X**8, **X**3**X**11, **X**4**X**8, **X**4**X**9, **X**4**X**10, **X**4**X**11

Определим **р**511, выделим подматрицу **R**511. Ребро **X**5**X**11 пересекается **X**1**X**6, **X**1**X**10, **X**2**X**6, **X**3**X**8, **X**4**X**8, **X**4**X**9, **X**4**X**10

Определим р510, выделим подматрицу R510. Ребро X5X10 пересекается с X1X6, X2X6, X3X8, X4X8, X4X9

Определим **р**612, выделим подматрицу **R**612. Ребро **X**6**X**12 пересекается с **X**1**X**10, **X**3**X**8, **X**3**X**11, **X**4**X**8, **X**4**X**9, **X**4**X**10, **X**4**X**11, **X**5**X**10, **X**5**X**11

Всего найдено 15 пересечений

	p_{14}	p_{26}	p_{312}	p_{16}	p_{110}	p_{311}	p_{38}	p_{411}	p_{410}	p_{49}	p_{48}	p_{512}	p_{511}	p_{510}	p_{612}
p_{14}	1	1	1	0	0	1	1	0	0	0	0	o	0	0	0
p_{26}	1	1	1	0	0	1	1	1	1	1	1	1	1	1	0
p_{312}	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
p_{16}	0	0	1	1	0	1	1	1	1	1	1	1	1	1	0
p_{110}	0	0	1	0	1	1	0	1	0	0	0	1	1	0	1
p_{311}	1	1	0	1	1	1	0	0	0	0	0	1	0	0	1
p_{38}	1	1	0	1	0	0	1	1	1	1	0	1	1	1	1
p_{411}	0	1	0	1	1	0	1	1	0	0	0	1	0	0	1
p_{410}	0	1	0	1	0	0	1	0	1	0	0	1	1	0	1
p_{49}	0	1	0	1	0	0	1	0	0	1	0	1	1	1	1
p_{48}	0	1	0	1	0	0	0	0	0	0	1	1	1	1	1
p_{512}	0	1	0	1	1	1	1	1	1	1	1	1	0	0	0
p_{511}	0	1	0	1	1	0	1	0	1	1	1	0	1	0	1
p_{510}	0	1	0	1	0	0	1	0	0	1	1	0	0	1	1
p_{612}	0	0	0	0	1	1	1	1	1	1	1	0	1	1	1

Построение семейств ψ_G

```
В 1 строке ищем первый нулевой элемент - r_{1\,4}.
В строке M_{14} находим номера нулевых элементов, составляем список J'=\{5,15\}.
В строке M_{1\,4\,5} все 1. Построено \psi_1=\{u_{1\,4},u_{1\,6},u_{1\,10}\}
В строке M_{1\,4\,15} все 1. Построено \psi_2=\{u_{1\,4},u_{1\,6},u_{6\,12}\}
Записываем дизъюнкцию M_{1\,5}=r_1\lor r_5=111001100000000\lor 001011010001101=111011110001101
В строке M_{1\,5} находим номера нулевых элементов, составляем список J'=\{9,10,11,14\}.
В строке M_{1\,5\,9} находим номера нулевых элементов, составляем список J'=\{10,11,14\}.
В строке M_{1\,5\,9\,10} находим номера нулевых элементов, составляем список J'=\{11\}.
В строке M_{1\,5\,9\,10\,11} все 1. Построено \psi_3=\{u_{1\,4},u_{1\,10},u_{4\,10},u_{4\,9},u_{4\,8}\}
В строке M_{1\,5\,9\,11} остались незакрытые 0.
В строке M_{1\,5\,9\,14} все 1. Построено \psi_4=\{u_{1\,4},u_{1\,10},u_{4\,10},u_{5\,10}\}
Записываем дизъюнкцию M_{1\,5\,10}=M_{1\,5} \lor r_{10}=111011110001101 \lor 010100100101111=111111110101111
В строке M_{1\,5\,10} находим номера нулевых элементов, составляем список J'=\{11\}.
Строка 11 не закроет ноль на 9 позиции.
Записываем дизъюнкцию M_{1\,5\,11}=M_{1\,5} \lor r_{11}=111011110001101 \lor 010100000011111=111111110011111
В строке M_{1\,5\,11} остались незакрытые 0.
В строке M_{1\,5\,14} остались незакрытые о.
Записываем дизъюнкцию M_{1\,8}=r_1\lor r_8=111001100000000\lor 010110110001001=1111111110001001
В строке M_{1\,8} находим номера нулевых элементов, составляем список J'=\{9,10,11,13,14\}.
Записываем дизъюнкцию M_{1\,8\,9}=M_{1\,8}\lor r_9=1111111110001001\lor 0101001001101=111111111001101
В строке M_{1\,8\,9} находим номера нулевых элементов, составляем список J'=\{10,11,14\}.
В строке M_{1\,8\,9\,10} находим номера нулевых элементов, составляем список J'=\{11\}.
В строке M_{1\,8\,9\,10\,11} все 1. Построено \psi_5=\{u_{1\,4},u_{4\,11},u_{4\,10},u_{4\,9},u_{4\,8}\}
В строке M_{1\,8\,9\,11} остались незакрытые 0.
В строке M_{1\,8\,9\,14} все 1. Построено \psi_6=\{u_{1\,4},u_{4\,11},u_{4\,10},u_{5\,10}\}
Записываем дизъюнкцию M_{1\,8\,10}=M_{1\,8} \lor r_{10}=1111111110001001 \lor 010100100101111=11111111101011111
В строке M_{1\,8\,10} находим номера нулевых элементов, составляем список J'=\{11\}.
Строка 11 не закроет ноль на 9 позиции.
Записываем дизъюнкцию M_{1\,8\,11}=M_{1\,8}\lor r_{11}=111111110001001\lor 010100000011111=111111110011111
В строке M_{1\,8\,11} остались незакрытые 0.
В строке M_{1\,8\,13} находим номера нулевых элементов, составляем список J'=\{14\}.
В строке M_{1\,8\,13\,14} все 1. Построено \psi_7=\{u_{1\,4},u_{4\,11},u_{5\,11},u_{5\,10}\}
Записываем дизъюнкцию M_{1\,8\,14}=M_{1\,8}\lor r_{14}=111111110001001\lor 010100100110011=1111111110111011
В строке M_{1\,8\,14} остались незакрытые 0.
Записываем дизъюнкцию M_{1\,9}=r_1\lor r_9=111001100000000\lor 01010010101101=111101101001101
В строке M_{1\,9} находим номера нулевых элементов, составляем список J'=\{10,11,14\}.
Строки 10, 11, 14 не закроют нули на позициях 5, 8
Записываем дизъюнкцию M_{1\,10}=r_1\vee r_{10}=111001100000000\vee 010100100101111=1111011001011111
В строке M_{1\,10} находим номера нулевых элементов, составляем список J'=\{11\}.
```

Записываем дизъюнкцию $M_{1\,11}=r_1\lor r_{11}=111001100000000\lor 010100000011111=111101100011111$

Строка 11 не закроет нули на позициях 5, 8, 9

```
В строке M_{1\ 11} остались незакрытые 0.
В строке M_{1\,12} находим номера нулевых элементов, составляем список J'=\{13,14,15\}.
В строке M_{1\,12\,13} находим номера нулевых элементов, составляем список J'=\{14\}.
В строке M_{1\,12\,13\,14} все 1. Построено \psi_8=\{u_{1\,4},u_{5\,12},u_{5\,11},u_{5\,10}\}
В строке M_{1\ 12\ 14} остались незакрытые 0.
В строке M_{1\ 12\ 15} все 1. Построено \psi_9=\{u_{1\ 4},u_{5\ 12},u_{6\ 12}\}
Записываем дизъюнкцию M_{1\,13}=r_1\lor r_{13}=111001100000000\lor 010110101110101=111111101110101
В строке M_{1\,13} находим номера нулевых элементов, составляем список J'=\{14\}.
Строка 14 не закроет нули на позициях 8, 12
Записываем дизъюнкцию M_{1\,14}=r_1\lor r_{14}=111001100000000\lor 010100100110011=111101100110011
В строке M_{1\,14} остались незакрытые 0.
В строке M_{1 15} остались незакрытые 0.
В 2 строке ищем первый нулевой элемент - r_{2\,4}.
В строке M_{24} находим номера нулевых элементов, составляем список J'=\{5,15\}.
В строке M_{2\,4\,5} все 1. Построено \psi_{10}=\{u_{2\,6},u_{1\,6},u_{1\,10}\}
В строке M_{2\,4\,15} все 1. Построено \psi_{11}=\{u_{2\,6},u_{1\,6},u_{6\,12}\}
В строке M_{2\,5} остались незакрытые 0.
В строке M_{2.15} остались незакрытые о.
В 3 строке ищем первый нулевой элемент - r_{3\,6}.
Записываем дизъюнкцию M_{3\,6}=r_3\lor r_6=1111100000000000\lor110111000001001=111111000001001
В строке M_{3.6} находим номера нулевых элементов, составляем список J'=\{7,8,9,10,11,13,14\}.
В строке M_{3\,6\,7} находим номера нулевых элементов, составляем список J'=\{11\}.
В строке M_{3\ 6\ 7\ 11} все 1. Построено \psi_{12}=\{u_{3\ 12},u_{3\ 11},u_{3\ 8},u_{4\ 8}\}
Записываем дизъюнкцию M_{3\,6\,8}=M_{3\,6}\lor r_8=111111000001001\lor 010110110001001=1111111110001001
В строке M_{3\,6\,8} находим номера нулевых элементов, составляем список J'=\{9,10,11,13,14\}.
В строке M_{3\,6\,8\,9} находим номера нулевых элементов, составляем список J'=\{10,11,14\}.
В строке M_{3\,6\,8\,9\,10} находим номера нулевых элементов, составляем список J'=\{11\}.
В строке M_{3\,6\,8\,9\,10\,11} все 1. Построено \psi_{13}=\{u_{3\,12},u_{3\,11},u_{4\,11},u_{4\,10},u_{4\,9},u_{4\,8}\}
В строке M_{3\,6\,8\,9\,11} остались незакрытые о.
В строке M_{3\,6\,8\,9\,14} все 1. Построено \psi_{14}=\{u_{3\,12},u_{3\,11},u_{4\,11},u_{4\,10},u_{5\,10}\}
Записываем дизъюнкцию M_{3\,6\,8\,10}=M_{3\,6\,8}\lor r_{10}=1111111110001001\lor 010100100101111=1111111101011111
В строке M_{3\,6\,8\,10} находим номера нулевых элементов, составляем список J'=\{11\}.
Строка 11 не закроет ноль на 9 позиции.
Записываем дизъюнкцию M_{3\,6\,8\,11}=M_{3\,6\,8}\lor r_{11}=1111111110001001\lor 0101000000011111=1111111110011111
В строке M_{3\,6\,8\,11} остались незакрытые о.
В строке M_{3\,6\,8\,13} находим номера нулевых элементов, составляем список J'=\{14\}.
В строке M_{3\,6\,8\,13\,14} все 1. Построено \psi_{15}=\{u_{3\,12},u_{3\,11},u_{4\,11},u_{5\,11},u_{5\,10}\}
Записываем дизъюнкцию M_{3\,6\,8\,14}=M_{3\,6\,8}\lor r_{14}=111111110001001\lor 010100100110011=111111110111011
В строке M_{3\,6\,8\,14} остались незакрытые о.
Записываем дизъюнкцию M_{3\,6\,9}=M_{3\,6}\lor r_9=111111000001001\lor 010100101001101=111111101001101
В строке M_{3\,6\,9} находим номера нулевых элементов, составляем список J'=\{10,11,14\}.
```

Строки 10, 11, 14 не закроют ноль на 8 позиции.

```
Записываем дизъюнкцию M_{3~6~10}=M_{3~6} \lor r_{10}=111111000001001 \lor 010100100101111=1111111001011111
В строке M_{3\,6\,10} находим номера нулевых элементов, составляем список J'=\{11\}.
Строка 11 не закроет нули на позициях 8, 9
Записываем дизъюнкцию M_{3~6~11}=M_{3~6}\lor r_{11}=111111000001001\lor 010100000011111=111111000011111
В строке M_{3\,6\,11} остались незакрытые 0.
Записываем дизъюнкцию M_{3\,6\,13}=M_{3\,6} \lor r_{13}=111111000001001 \lor 010110101110101=111111101111101
В строке M_{3\,6\,13} находим номера нулевых элементов, составляем список J'=\{14\}.
Строка 14 не закроет ноль на 8 позиции.
Записываем дизъюнкцию M_{3\,6\,14}=M_{3\,6} \lor r_{14}=111111000001001 \lor 010100100110011=111111100111011
В строке M_{3\,6\,14} остались незакрытые о.
В строке M_{3\,7} находим номера нулевых элементов, составляем список J'=\{11\}.
Строка 11 не закроет ноль на 6 позиции.
Записываем дизъюнкцию M_{3\,8}=r_3\lor r_8=1111100000000000\lor 010110110001001=111110110001001
В строке M_{3\,8} находим номера нулевых элементов, составляем список J'=\{9,10,11,13,14\}.
Строки 9, 10, 11, 13, 14 не закроют ноль на 6 позиции.
Записываем дизъюнкцию M_{3\,9}=r_3ee r_9=1111100000000000ee ee 010100101001101=111110101001101
В строке M_{3\,9} находим номера нулевых элементов, составляем список J'=\{10,11,14\}.
Строки 10, 11, 14 не закроют нули на позициях 6, 8
Записываем дизъюнкцию M_{3\,10}=r_3\lor r_{10}=1111100000000000\lor 010100100101111=1111101001011111
В строке M_{3\,10} находим номера нулевых элементов, составляем список J'=\{11\}.
Строка 11 не закроет нули на позициях 6, 8, 9
Записываем дизъюнкцию M_{3\,11}=r_3\lor r_{11}=1111100000000000\lor 010100000011111=111110000011111
В строке M_{3\,11} остались незакрытые о.
В строке M_{3 12} находим номера нулевых элементов, составляем список J' = \{13, 14, 15\}.
В строке M_{3\,12\,13} находим номера нулевых элементов, составляем список J'=\{14\}.
В строке M_{3\,12\,13\,14} все 1. Построено \psi_{16}=\{u_{3\,12},u_{5\,12},u_{5\,11},u_{5\,10}\}
В строке M_{3\,12\,14} остались незакрытые о.
В строке M_{3\ 12\ 15} все 1. Построено \psi_{17}=\{u_{3\ 12},u_{5\ 12},u_{6\ 12}\}
Записываем дизъюнкцию M_{3\,13}=r_3\lor r_{13}=1111100000000000\lor 010110101110101=111110101110101
В строке M_{3\,13} находим номера нулевых элементов, составляем список J'=\{14\}.
Строка 14 не закроет нули на позициях 6, 8, 12
В строке M_{3\,14} остались незакрытые 0.
В строке M_{3 \ 15} остались незакрытые о.
В 4 строке ищем первый нулевой элемент - r_{4\,5}.
В строке M_{4\,5} остались незакрытые 0.
В строке M_{4\,15} остались незакрытые о.
В 5 строке ищем первый нулевой элемент - r_{5\,7}.
В строке M_{5.7} находим номера нулевых элементов, составляем список J'=\{11\}.
В строке M_{5\,7\,11} все 1. Построено \psi_{18}=\{u_{1\,10},u_{3\,8},u_{4\,8}\}
Записываем дизъюнкцию M_{5\,9}=r_5\lor r_9=001011010001101\lor 010100101001101=0111111111001101
В строке M_{5\,9} находим номера нулевых элементов, составляем список J'=\{10,11,14\}.
Строки 10, 11, 14 не закроют ноль на 1 позиции.
Записываем дизъюнкцию M_{5\,10}=r_5\lor r_{10}=001011010001101\lor 010100100101111=011111110101111
В строке M_{5\,10} находим номера нулевых элементов, составляем список J'=\{11\}.
Строка 11 не закроет нули на позициях 1, 9
Записываем дизъюнкцию M_{5\,11}=r_5 \lor r_{11}=001011010001101 \lor 010100000011111=011111010011111
В строке M_{5\,11} остались незакрытые 0.
В строке M_{5\,14} остались незакрытые 0.
```

Из матрицы R(G') видно, что строки с номерами j > 5 не смогут закрыть ноль в позиции 3.

Семейство внутренне устойчивых множеств:

```
\psi_1 = \{u_1 4, u_1 6, u_1 10\}
\psi_2 = \{u_1 4, u_1 6, u_6 12\}
\psi_3 = \{u_1 4, u_1 10, u_4 10, u_4 9, u_4 8\}
\psi_4=\{u_1 \, 4, \, u_1 \, 10, \, u_4 \, 10, \, u_5 \, 10\}
\psi_5 = \{u_1 \, 4, \, u_4 \, 11, \, u_4 \, 10, \, u_4 \, 9, \, u_4 \, 8\}
\psi_6=\{u_1 \, 4, \, u_4 \, 11, \, u_4 \, 10, \, u_5 \, 10\}
\psi_7 = \{u_1 \, 4, \, u_4 \, 11, \, u_5 \, 11, \, u_5 \, 10\}
\psi8={u1 4, u5 12, u5 11, u5 10}
\psi_9 = \{u_1 4, u_5 12, u_6 12\}
\psi_{10}=\{u_{26}, u_{16}, u_{10}\}
\psi_{11}=\{u_{26}, u_{16}, u_{612}\}
\psi_{12}=\{u_{3}\,1_{2},\,u_{3}\,1_{1},\,u_{3}\,8,\,u_{4}\,8\}
\psi_{13}=\{u_{3}\,1_{2},\,u_{3}\,1_{1},\,u_{4}\,1_{1},\,u_{4}\,1_{0},\,u_{4}\,9,\,u_{4}\,8\}
\psi_{14}=\{u_{3}\,1_{2},\,u_{3}\,1_{1},\,u_{4}\,1_{1},\,u_{4}\,1_{0},\,u_{5}\,1_{0}\}
\psi_{15}=\{u_{3} 12, u_{3} 11, u_{4} 11, u_{5} 11, u_{5} 10\}
\psi_{16}=\{u_{3}\,1_{2},\,u_{5}\,1_{2},\,u_{5}\,1_{1},\,u_{5}\,1_{0}\}
\psi_{17}=\{u_{3}\,1_{2},\,u_{5}\,1_{2},\,u_{6}\,1_{2}\}
\psi_{18}=\{u_{1}, u_{3}, u_{4}, u_{4}\}
```

Выделение из G максимального двудольного подграфа Н

Для каждой пары множеств вычислим значение критерия:

$$\alpha_{\gamma\delta} = |\psi_{\gamma}| + |\psi_{\delta}| - |\psi_{\gamma} \cap \psi_{\delta}|$$

Построим матрицу A = $|\alpha\gamma\delta|$:

Итоговая таблица

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0	4	6	5	7	6	6	6	5	4	5	7	9	8	8	7	6	5
2		0	7	6	7	6	6	6	4	5	4	7	9	8	8	7	5	6
3			0	6	6	7	8	8	7	7	8	8	8	9	10	9	8	6
4				0	7	5	6	6	6	6	7	8	9	7	8	7	7	6
5					0	6	7	8	7	8	8	8	7	8	9	9	8	7
6						0	5	6	6	7	7	8	8	6	7	7	7	7
7							0	5	6	7	7	8	9	7	6	6	7	7
8								0	5	7	7	8	10	8	7	5	6	7
9									0	6	5	7	9	8	8	6	4	6
10										0	4	7	9	8	8	7	6	5
11											0	7	9	8	8	7	5	6
12												0	7	7	7	7	6	5
13													0	7	8	9	8	8
14														0	6	7	7	8
15															0	6	7	8
16																0	5	7
17																	0	6
18																		0

 $max \ \alpha \gamma \delta = \alpha 3 \ 15 = \alpha 8 \ 13 = 10$

дают пары множеств : ψ 3, ψ 15 и ψ 8, ψ 13

- 1.Возьмем множества ψ3={u1 4,u1 10,u4 10,u4 9,u4 8} и ψ15={u3 12,u3 11,u4 11,u5 11,u5 10}
- 2.В сурграфе Н, содержащем максимальное число непересекающихся ребер, ребра, вошедшие в ψ 3, проводим внутри гамильтонова цикла, а в ψ 15 вне его.

4. Удалим из ΨG' ребра, вошедшие в ψ3 и ψ15:

```
\psi_1 = \{u_1 6\}

\psi_2 = \{u_1 6, u_6 12\}

\psi_8 = \psi_1 6 = \{u_5 12\}
```

 $\psi_9 = \psi_{17} = \{u_5 \ 12, u_6 \ 12\}$

 $\psi_{10}=\{u_{26,u_{16}}\}$

 $\psi_{11}=\{u_{2}6,u_{1}6,u_{6}1_{2}\}$

 $\psi_{12}=\{u_{3} 8\}$

5. Объединим одинаковые множества, остались нереализованные ребра

$$\psi_1 = \{u_1 6\}$$
 $\psi_2 = \{u_1 6, u_6 12\}$
 $\psi_8 = \{u_5 12\}$
 $\psi_9 = \{u_5 12, u_6 12\}$
 $\psi_{10} = \{u_2 6, u_1 6\}$

ψ11={u2 6,u1 6,u6 12}

 $\psi_{12}=\{u_{3} 8\}$

6. $max \ \alpha \gamma \delta = \alpha 8 \ 11 = \alpha 9 \ 10 = \alpha 9 \ 11 = \alpha 11 \ 12$ дают пары множеств : $\psi 8$, $\psi 11$, $\psi 9$, $\psi 10$, $\psi 12$, $\psi 9$, $\psi 11$, $\psi 11$, $\psi 12$

7. Возьмем множества Ψ 8={u5 12 } и Ψ 11={u2 6,u1 6,u6 12}

8. В сурграфе Н, содержащем максимальное число непересекающихся ребер, ребра, вошедшие в ψ8, проводим внутри гамильтонова цикла, а в ψ11 – вне его.

<u>1</u>

- Удалим из Ψg' ребра, вошедшие в ψ25 и ψ27
- 10. Оставшиеся нереализованные ребра: {u3 8}
- 11. Толщина графа m = 2. Все ребра реализованы.

