;	- -
Total No. of Questions : 8 J [Total No. of Princes Pages + 3	
	Roll No
MC	SE-101
M. E./M. Tec EXAMINATIO	h. (First Semester) N, Feb./March, 2009
(Computer	Science & Engale
(MC	TATIONAL MATHEMATICS
Time:	Three Hours
	Marks : 100
Note: Attempt any five que marks.	Pass Marks: 40 estions. All questions carry equal
A with a	variables technique to solve $(x, 0) = 4e^{-x}$
find the Fourier training $f(t) = e^{-a^2t^2}$	nsform of the Gaussian pulse
(c) Find the DFT of the sa 2, 3, 3) and compute the phase spectrum.	ample sequence $x(n) = \{1, 1, 2, 1 \}$ are corresponding amplitude and
2. 22a3 berrie	

- 2 (a) Explain the following with one example in each case where it is applied:
 - (i) Wavelet transform
 - (ii) Haar transform

(b) solve I aslace equation at mesh points?

with given conditions.

- (a) Derive stochastic matrix for one step transition probabilities.
 - (b) Define Markov chain. Distinguish between discrete parameter Markov chain and continuous parameter Markov chain.
- 1. (a) What do you understand by queue? Give some important applications of queueing theory.
 - (b) Establish the probability distribution formula for pure death process.
 - 5. (a) Fit a Poisson's distribution to the following data:

,	f_i
U	56
ļ t	156
2	132
3	.92
4	37
5	22
6 .	.4.
7	. 0
8	1

- (b) A man alternatively cases a combandity with the beginning with come What is the punhability that he will get a head before he gets of or 6 on the die?
- (a) What is fuzzy membership for silon? Haplain the triangular, trapezoidal and Gaussian aembership function with their mathematical form
- (b) Explain different defuzzification methods,
- (a) Write and explain at least five built in functions from MATLAB and its tool boxes.
 - (b) Explain Creating and Accessing M files with commands used.
 - (c) Explain with examples the two types of loops used in MATLAB.
 - (d) Define Heavisides unit function and error function and where they are used.
- 8. (a) Prove that the vectors $\alpha_1 = (1, 0, -1)$ $\alpha_2 = (1, 2, 1)$ and $\alpha_3 = (0, -3, 2)$ form a basis of $V_3(\mathbb{R})$.
 - (b) Show that the mapping T: R² → R³ defined by t(a, b) = (a - b, b - a, -a), ∀a, b ∈ R is a linear transformation from R₂ into R₃. Find the range, rank, null space and nulity of T.
 - (c) Write the differential equation and mathematical form of Hermite polynomial.