53 answer below each sequence. 52 51 n const (but decreasing N(s) incresing 2132)
But alteraling PZ2 P25 P24 increasing Lecressing alli+ve) alternating **S5** 54

O1 b: A signal flow graph is also used to represent a block diagram of a digital system. Here, signal flow direction is indicated by arrows; Adders are implied by nodes between signal flow lines; delays are indicated by Z⁻¹ and scalars by variables/numbers. Use this to answer the following.

(i) Derive the transfer function for the digital filter shown below.

[6 Marks]

(ii) Is this an FIR or IIR filter? Explain your answer.

[4 Marks]

ANS: H(Z) = 1-2(M+1) Q2. Consider the rational transfer function given below. $H(z) = \frac{z^{-(M+1)} - 1}{z^{-1} - 1}$ a: Identify the poles and zeros of H(z). [3 Marks] - (M+1) If M= odd ic. M= 1,3,5,7, ... i.e. M = 0, 2, 4,6... etc -Pole=> z=1, z=0. Pole: Niagram: Pole: Z=0, Z=1. · 200=> Z= ±1 IM(Z) Zero:ZE=1 1 Im(Z) (Relz) > Re(Z) pole-zono cancellation 301e-2018 cancellation b: What type of filter (LPF/HPF, etc) does the above represent? Explain. [3 Marks]

In general, when can a rational transfer function represent an FIR filter?

In general; a Routional Transfer function of the form:

$$H(z) = \sum_{n=0}^{N-1} \sum_{n=0}^{N-1} \sum_{n=0}^{N-1} \sum_{n=0}^{N-1} \frac{1}{n} = \sum_{n=0}^{N-1} \sum_{n=0}^{N-1} \frac{1}{n} = \sum_{n=0}^{N-1}$$

This represents an FIR filter wheren a 0=1 4 == a_k=0 + k=1,2,...M-1.

Thus, FIR fittor rational transfor function is of the type: H(Z) = \(\frac{N-1}{h=0} \) b_z \(\frac{1}{h=0} \)

H(z) =
$$\frac{1 + 4z^{-2}}{1 - \frac{1}{4}z^{-1} - \frac{3}{8}z^{-2}}$$

- (i) Factorise H(z) as a product of an allpass filter $H_{ap}(z)$ and a minimum phase filter $H_m(z)$. Hint: pole-zero pairs of H_{ap} occur with mirror symmetry with respect to the unit circle; all poles and zeros of H_m are inside the unit circle. [5 Marks]
- (ii) Plot the poles and zeros of your two systems and indicate their ROC. [4 Marks]

i)
$$H(z) = 1 + 4z^{-2}$$
 $1 - z^{-1} - 3z^{-2}$
 $2^{2} + 4$
 $2^{2} - z - 3$
 $2^$

Q3.b: Consider a IIR filter with impulse response
$$h[n] = \frac{1}{2}^{\ln -3}$$
.

(i) Find the poles and zeros of this IIR filter and show it has linear phase.

[6 Marks]

(i) Plot the amplitude spectrum of DTFT $H(e^{j\omega})$ of h[n], where h[n] is the discrete time signal obtained from h(t) using sampling frequency F_s ($\Omega_s = 2\pi F_s$). [2 Marks]

 $2\Omega_s/3$

- (ii) Let H[k] is the values obtained by sampling $H(e^{j\omega})$ at four equidistance locations of ω between $-\pi$ to π or Ω between $-\Omega_s/2$ to $\Omega_s/2$, then compute h[n]. [2 Marks]
- (iii) Let $H_1(z)$ and $H_2(z)$ are two z-transforms which results the same amplitude spectrum of $H(e^{j\omega})$ but with two different non-zero phase spectrums, then draw the pole-zero plots of $H_1(z)$ and $H_2(z)$?

 [3 Marks]

Q4.b: Let
$$H(s) = \frac{1000\pi}{s + 1000\pi}$$
 then

(i) Find continuous-time angular frequencies
$$\Omega_c$$
, Ω_p and Ω_s , where gains δ_c at Ω_c is -3dB, δ_p at Ω_p is -1dB and δ_s at Ω_s is -40dB. [3 Marks]

(ii) Considering Ω_p , δ_p , Ω_s and δ_s , deduce $H_1(s)$ using Butterworth filter design approach. [4 Marks]

(iii) Is there any mismatch between H(s) and $H_1(s)$ and justify the answer? [1 Mark]

results the same linear convolution with three different h[n] when the lengths of x[n] is 3, 4 and 5

then

If the length of the circular convolution of x[n] and h[n] the same? Justify your answer. [2 Marks]

Compute the circular convolution values under all three cases of length of x[n]?

Linear Con v = 7: $l_1 + l_2 - 1$. [3 Marks] 25.b: Let x[n] is even and complex then prove that its DFT X[k] is real without using any properties? [5 Marks]

Q5.c: There is an 8-point DIF FFT chip, which takes the arbitrary signal x[n] = $\{x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7]\}$ in normal sequence order and produce the DFT in bit reversal order $\{X[0], X[4], X[2], X[6], X[1], X[3], X[5], X[7]\}$. Unfortunately, in this chips 5^{th} , 6^{th} , 7^{th} and 8th input locations are grounded. Without knowing this, an input sequence of length 8 is given then what is the output from the FFT chip? Clearly justify the answer with necessary computations.

[5 Marks]

Q6.a: Considering DTFT analysis equation $X(e^{j\omega})=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}$, prove the synthesis equation $x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega?$ [3 Marks] $\left(\sum_{m=-\infty}^{\infty} r[m]\right) \left[e^{-j\pi(m-n)} - e^{+j\pi(m-n)}\right] \left[e^{-j(m-n)}\right]$ Q6.b: Compute the DTFT of unit step sign

Q6.c: Let the pole-zero plot of a systems is shown below then compute and precisely plot the phase spectrum of the system? [3 Marks]

Q6.d: Let the impulse response of a system is
$$h[n] = \{1, 1, 1, 1, 1\}$$
 then

(i) Compute and plot the DTFT of $h[n]$?

[3 Marks]

