

Hardware Software Platforms Project Presentation

Servomotor Control with DE1-SoC

Elora Amorison & Clelia Galvanin elora.amorison@student.umons.ac.be Clelia galvanin@student.umons.ac.be

- Context and Objectives
- Software and Hardware installation
 - Software to install
 - Board installation
- Tests with the board and LabView
 - Creating a new project
 - Servo-motor
 - Board Control
 - Simulations
 - Results
- Software operation

- Context and Objectives
- Software and Hardware installation
 - Software to install
 - Board installation
- Tests with the board and LabView
 - Creating a new project
 - Servo-motor
 - Board Control
 - Simulations
 - Results
- Software operation

Context and Objectives

☐ This project is part of the course Hardware/Software Platforms for students in first master in Electrical Engineering at the Faculty of Engineering of Mons

■ Objectives:

- To handle an entire electronical project
- To familiar us with processors De-SoC
- To control a Servomotor
- To understand the VHDL coding language
- To create a tutorial for other users

- Context and Objectives
- Software and Hardware installation
 - Software to install
 - Board installation
- Tests with the board and LabView
 - Creating a new project
 - Servo-motor
 - Board Control
 - Simulations
 - Results
- Software operation

Software to install

Quartus II

- http://fpgasoftware.intel.com/?edition=lite
- To install the software, you'll need both the Quartus software tarfile, and the CycloneV qdz file.
- Save these both to the same directory.

ModelSim

- Select also the "ModelSim-Altera Starter Edition".
- ModelSim is a HDL Simulator and will be used to simulate signals before using the board.

Hardware to install

□DE1-SoC

 https://www.terasic.com.tw/cgibin/page/archive.pl?Language=English& No=836

 In the package, you can find the cable to supply the FPGA and an other one to connect to the computer

- Context and Objectives
- Software and Hardware installation
 - Software to install
 - Board installation
- Tests with the board and LabView
 - Creating a new project
 - Servo-motor
 - Board Control
 - Simulations
 - Results
- Software operation

Create a new project on Quartus

- Open Quartus II
- Click on "Create a new project"
- A new window will open
 - Select the folder and the title of your project
 - Next
 - Click on "empty project"

H3,0bjgH

((52 Hatt)

Create a new project on Quartus

- A window "Family & Device Settings" will open
 - Select the right family of your component and then "next"

Here, it is a Cyclone V 5CSEMA5F31C6N

Create a new project on Quartus

- Create new file
 - Create a new file at your project and select the VHDL Type File

 You can also add an existing file at your project

- Context and Objectives
- Software and Hardware installation
 - Software to install
 - Board installation
- Tests with the board and LabView
 - Creating a new project
 - Servo-motor
 - Board Control
 - Simulations
 - Results
- Software operation

Servomotor

What is a servomotor ?

Electrical device, that rotate a part of its body with high efficiency and great precision to a particular angle between 0 and 180°)

How to connect a servomotor?

- Three cables
- •The yellow wire connected to the pin of the board: GPIO1(1)
- •The red wire connected to 5V on the board GPIO1(10)
- •The brown (or black) wire connected to the ground on the board GPIO1(11)

Servomotor

					1	
		GI	10 0 (JI	P1)	•	
PIN_V12	GPIO_0[0]	1	0 0	2	GPIO_0[1]	PIN_E8
PIN_W12	GPIO_0[2]	3	0 0	4	GPIO_0[3]	PIN_D11
PIN_D8	GPIO_0[4]	5	0 0	6	GPIO_0[5]	PIN_AH13
PIN_AF7	GPIO_0[6]	7	0 0	8	GPIO_0[7]	PIN_AH14
PIN_AF4	GPIO_0[8]	9	0 0	10	GPIO_0[9]	PIN_AH3
	5V	11		12	GND	
PIN_ADS	GPIO_0[10]	13	0 0	14	GPIO_0[11]	PIN_AG14
PIN_AE23	GPIO_0[12]	15	0 0	16	GPIO_0[13]	PIN_AE6
PIN_AD23	GPIO_0[14]	17		18	GPIO_0[15]	PIN_AE24
PIN_D12	GPIO_0[16]	19		20	GPIO_0[17]	PIN_AD20
PIN_C12	GPIO_0[18]	21	0 0	22	GPIO_0[19]	PIN_AD17
PIN_AC23	GPIO_0[20]	23		24	GPIO_0[21]	PIN_AC22
PIN_Y19	GPIO_0[22]	25	0 0	26	GPIO_0[23]	PIN_AB23
PIN_AA19	GPIO_0[24]	27		28	GPIO_0[25]	PIN_W11
	3.3V	29		30	GND	
PIN_AA18	GPIO_0[26]	31		32	GPIO_0[27]	PIN_W14
PIN_Y18	GPIO_0[28]	33		34	GPIO_0[29]	PIN_Y17
PIN_AB25	GPIO_0[30]	35		36	GPIO_0[31]	PIN_AB26
PIN_Y11	GPIO_0[32]	37		38	GPIO_0[33]	PIN_AA26
PIN_AA13	GPIO_0[34]	39		40	GPIO_0[35]	PIN_AA11

Bloc Diagram to Control a Servomotor

- The values of the position came from the Switch of the board
- ➤ The control signal goes to the GPIO1(1) pin and then directly to the servomotor

Connection between the board and the motor

Servomotor

- How it works?
- Coding a square wave of different pulse width
- Period of 20 ms
- Minimal value of 0,5ms and maximal value 2,5ms

- Context and Objectives
- Software and Hardware installation
 - Software to install
 - Board installation
- Tests with the board and LabView
 - Creating a new project
 - Servo-motor
 - Board Control
 - Simulations
 - Results
- Software operation

How to link the hardware and the software?

Connect the board to the computer

Create a file to connect the signals with the pins of the

board

 To have a look at all the pins of your board you can click on this icone

- How to put the code on the processor?
- Click on the Program Device

- How to put the code on the processor?
- A window will open
- Click on "Hardware Setup" and choose your

harware

- How to put the code on the processor?
- Click on "Auto Detect" and choose your correct device
- Then on "Add File" and select your own file

Finally, click on "Start" and wait for the loading of your code

- Context and Objectives
- Software and Hardware installation
 - Software to install
 - Board installation
- Tests with the board and LabView
 - Creating a new project
 - Servo-motor
 - Board Control
 - Simulations
 - Results
- Software operation

Simulations

Driver Simulation

For the simulation, we define some values for the variable « pos ».

We can see the control signal becoming bigger and bigger.

We can zoom to see the value of PWM and so, the PWM value for an 80° angle is 1749440 ns.

Simulations

Driver+Application Simulation

- We change the values of switchs and therefore pos after 3 PWM half period = 3*10ms
- We wait for 3 additional PWM half period before pressing the button.
- We wait for 1 additional PWM half period before releasing the button.
- When the button is released -> switchs values go to Ipos_after.
- PWM value is then modified from the next impulse.
- We notice that the PWM value increases according to the angle.

Simulations

Driver+Application Simulation

- We make a zoom to measure PWM values and check that the values are growing proportionnaly with the angle.
- Wa can see that the PWM value for an 40° angle is 1 124 640ns and for an 80° angle
- is 1 749 440ns (which is equal to our previous value.)

- Context and Objectives
- Software and Hardware installation
 - Software to install
 - Board installation
- Tests with the board and LabView
 - Creating a new project
 - Servo-motor
 - Board Control
 - Simulations
 - Results
- Software operation

Results

Results on an oscillator

- Results on the servomotor
 - >See the video

- Context and Objectives
- Software and Hardware installation
 - Software to install
 - Board installation
- Tests with the board and LabView
 - Creating a new project
 - Servo-motor
 - Board Control
 - Simulations
 - Results
- Software operation

Software Operation

Diagram block of the behaviour of our

program

Conclusion

Congrats!

You can now drive a servo-motor with a new processor!

Useful links

□Github:

https://github.com/cleliagal/Controlof-Servo-motor-with-DE1-SoC

☐Youtube Video:

https://www.youtube.com/watch?v=H
VyE35rkSaQ

