Job No.: 525toms Address: 821 MATARANGI DRIVE, Coromandel, New Zealand Date: 15/05/2024

Latitude: -36.727457 **Longitude:** 175.640995 **Elevation:** 8 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	D
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	3.9 m
Wind Region	NZ1	Terrain Category	1.54	Design Wind Speed	40.32 m/s
Wind Pressure	0.98 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = 0.6882

For roof CP,e from 0 m To 3.90 m Cpe = -0.9 pe = -0.76 KPa pnet = -1.46 KPa

For roof CP,e from 3.90 m To 7.80 m Cpe = -0.5 pe = -0.42 KPa pnet = -1.12 KPa

For wall Windward Cp, i = 0.6882 side Wall Cp, i = -0.628

For wall Windward and Leeward CP,e from 0 m To 9 m Cpe = 0.7 pe = 0.61 KPa pnet = 0.95 KPa

For side wall CP,e from 0 m To 3.90 m Cpe = pe = -0.57 KPa pnet = -0.23 KPa

Maximum Upward pressure used in roof member Design = 1.46 KPa

Maximum Downward pressure used in roof member Design = 0.50 KPa

Maximum Wall pressure used in Design = 1.27 KPa

Maximum Racking pressure used in Design = 0.90 KPa

Design Summary

Girt Design Front and Back

Girt's Spacing = 600 mm Girt's Span = 4200 mm Try Girt 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward =0.89 S1 Downward =12.23 S1 Upward =15.25

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.68 Kn-m	Capacity	2.70 Kn-m	Passing Percentage	160.71 %
V _{0.9D-WnUp}	1.60 Kn	Capacity	13.75 Kn	Passing Percentage	859.38 %

Deflections

Second page

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 17.92 mm

Limit by Woolcock et al, 1999 Span/100 = 42.00 mm

Sag during installation = 23.29 mm

Reactions

Maximum = 1.60 kn

Girt Design Sides

Girt's Spacing = 600 mm

Girt's Span = 4500 mm

Try Girt 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward =0.70 S1 Downward =12.23 S1 Upward =19.33

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

MWind+Snow	1.93 Kn-m	Capacity	2.13 Kn-m	Passing Percentage	110.36 %
$V_{0.9D\text{-W}nUp}$	1.71 Kn	Capacity	13.75 Kn	Passing Percentage	804.09 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 23.61 mm

Limit by Woolcock et al. 1999 Span/100 = 45.00 mm

Sag during installation =30.70 mm

Reactions

Maximum = 1.71 kn

Middle Pole Design

Geometry

175 SED H5 (Minimum 200 dia. at Floor Level)	Dry Use	Height	3900 mm
Area	27598 mm2	As	20698.2421875 mm2
Ix	60639381 mm4	Zx	646820 mm3
Iy	60639381 mm4	Zx	646820 mm3
Lateral Restraint	1300 mm c/c		

Loads

Total Area over Pole = 18.9 m^2

Dead	4.72 Kn	Live	4.72 Kn
Wind Down	9.45 Kn	Snow	0.00 Kn
Moment wind	10.75 Kn-m		
Phi	0.8	K8	1.00
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_{\mathbf{S}} =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	397.41 Kn	PhiMnx Wind	18.78 Kn-m	PhiVnx Wind	49.01 Kn
PhiNcx Dead	238.44 Kn	PhiMnx Dead	11.27 Kn-m	PhiVnx Dead	29.41 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.62 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 0.38 < 1 \text{ OK}$

Deflection at top under service lateral loads = 40.94 mm < 39.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
***	(4 1 (20)) ((4 1 1 (20))				

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds =	0.6 mm	Pile Diameter
$D_S =$	0.6 mm	Pile Diameter

L= 1600 mm Pile embedment length

f1 = 2925 mm Distance at which the shear force is applied f2 = 0 mm Distance of top soil at rest pressure

Loads

Pile Properties

Safety Factory 0.55

Hu = 8.07 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 14.19 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.76 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m³

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of

internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1600) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1600)

Skin Friction = 20.68 Kn

Weight of Pile + Pile Skin Friction = 25.36 Kn

Uplift on one Pile = 23.34 Kn

Uplift is ok