

Serial No.: 10/810,912

IN THE CLAIMS

Please amend claims 1~5 and 7-13 as follows.

1. (Currently amended) A method of seasoning a process chamber having interior surfaces, comprising the steps of:

cleaning said process chamber; and

providing a seasoning film having a thickness of from about 2 μm to about 10 μm on said interior surfaces of said process chamber by introducing precursor gases selected from the group consisting of silane and an oxygen-containing gas, dichlorosilane and a nitrogen-containing gas and trimethylsilane and a carbon-containing gas into said process chamber at a chamber pressure of from about 10 Torr to about 760 Torr.

2. (Currently amended) The method of claim 1 wherein said seasoning film comprises oxide-based material silicon dioxide and said precursor gases comprise said silane and said oxygen-containing gas.

3. (Currently amended) The method of claim 1 wherein said seasoning film comprises silicon nitride and said precursor gases comprise said dichlorosilane and said nitrogen-containing gas.

Serial No.: 10/810,912

4. (Currently amended) The method of claim 1 wherein said seasoning film comprises silicon carbide and said precursor gases comprise said trimethyl silane and said carbon-containing gas.

5. (Currently amended) A method of seasoning a chemical vapor deposition chamber having interior surfaces and a gas distribution plate, comprising the steps of:

cleaning said chamber; and
providing a seasoning film having a thickness of from about 2 μm to about 10 μm on said interior surfaces and said gas distribution plate of said chamber by introducing precursor gases selected from the group consisting of silane and an oxygen-containing gas, dichlorosilane and a nitrogen-containing gas, and trimethyl silane and a carbon-containing gas into said process chamber at a chamber pressure of from about 10 Torr to about 760 Torr at a temperature of from about 500 degrees C to about 700 degrees C.

6. (Previously presented) The method of claim 5 wherein said seasoning film comprises oxide-based material.

7. (Currently amended) The method of claim 5 wherein said seasoning film comprises silicon dioxide and said precursor gases comprise said silane and said oxygen-containing gas.

Serial No.: 10/810,912

8. (Currently amended) The method of claim 5 wherein said seasoning film comprises silicon nitride and said precursor gases comprise said dichlorosilane and said nitrogen-containing gas.

9. (Currently amended) The method of claim 5 wherein said seasoning film comprises silicon carbide and said precursor gases comprise said trimethyl silane and said carbon-containing gas.

10. (Currently amended) A method of seasoning a chemical vapor deposition chamber having interior surfaces and a gas distribution plate, comprising the steps of:

cleaning said chamber; and

providing a seasoning film having a thickness of from about 2 μm to about 10 μm on said interior surfaces and said gas distribution plate of said chamber by introducing seasoning film precursor gases selected from the group consisting of silane and an oxygen-containing gas, dichlorosilane and a nitrogen-containing gas and trimethyl silane and a carbon-containing gas into said chamber at a chamber pressure of from about 10 Torr to about 760 Torr at a temperature of from about 500 degrees C to about 700 degrees C and a process time of from about 0.5 minutes to about 10 minutes.

Serial No.: 10/810,912

11. (Currently amended) The method of claim 10 wherein said seasoning film comprises silicon dioxide and said precursor gases comprise said silane and said oxygen-containing gas.

12. (Currently amended) The method of claim 10 wherein said seasoning film comprises silicon nitride and said precursor gases comprise said dichlorosilane and said nitrogen-containing gas.

13. (Currently amended) The method of claim 10 wherein said seasoning film comprises silicon carbide and said precursor gases comprise said trimethyl silane and said carbon-containing gas.