Mathematics

Robin Adams

October 9, 2023

Contents

1	Prin	nitive Terms and Axioms	7
	1.1	Primitive Terms	7
	1.2	Injections, Surjections and Bijections	7
	1.3	Axioms	8
2	Sets	and Functions	1
	2.1	Composition	1
		2.1.1 Injections	1
	2.2	Identity Function	5
		2.2.1 The Empty Set	5
		2.2.2 The Singleton	6
		2.2.3 Subsets	6
		2.2.4 Union	3
		2.2.5 Intersection	3
		2.2.6 Direct Image	3
		2.2.7 Inverse Image	3
	2.3	Relations	9
		2.3.1 Equivalence Relations	9
	2.4	Power Set	9
		2.4.1 Partitions	9
	2.5	Cartesian Product	0
	2.6	Quotient Sets	0
	2.7	Partitions	
	2.8	Disjoint Union	0
	2.9	Natural Numbers	0
	2.10	Finite and Infinite Sets	1
	2.11	Countable Sets	3
3	Ord	er Theory 27	7
	3.1	Relations	7
		3.1.1 Strict Partial Orders	3
		3.1.2 Linear Orders	9
		3.1.3 Sets of Finite Type	0
	3 2	Woll Orders 30	ก

4 CONTENTS

4	\mathbf{Cat}	egory Theory	33
	4.1	Categories	33
		4.1.1 Monomorphisms	36
		4.1.2 Epimorphisms	36
		4.1.3 Sections and Retractions	37
		4.1.4 Isomorphisms	37
		4.1.5 Initial Objects	38
		4.1.6 Terminal Objects	38
			39
			39
		4.1.9 Cotriads	39
			39
			42
			45
			45
			46
			46
			46
			46
			46
	4.2		49
	4.3		52
	4.4		53
	4.5		54
5	The	Real Numbers	57
		5.0.1 Subtraction	59
6			65
	6.1		65
		1	66
	6.2		67
	6.3		69
	6.4	Algebraic Numbers	70
7	Mo	noid Theory	71
8	\mathbf{Gro}	up Theory	7 3
9	Rin	g Theory	7 5
10	Fiel	d Theory	77
11	Line	ear Algebra	7 9

CONTENTS 5

12	Topology	81
	12.1 Topological Spaces	81
	12.1.1 Subspaces	84
		85
		87
		89
		89
		89
		90
		91
		92
	1	92
	S S S S S S S S S S S S S S S S S S S	92
	±	93
	8	93
	• 1	95
	1	96
	±	96
	1 1	96
		96
	±	97
	v	98
		99
		.00
	12.15Complete Metric Spaces	
	12.16 Manifolds	
	12.10Mamiolds	02
13	Homotopy Theory 1	03
	13.1 Homotopies	03
	13.2 Homotopy Equivalence	
14	Simplicial Complexes 1	05
	14.1 Cell Decompositions	05
	14.2 CW-complexes	05
15		07
	15.1 Continuous Actions	07
10	T 1 1 1 1 7 4 C	00
16	1	09
	J J	09
		10
		10
	Y Y	10
	*	12
	T	13
	16.7 Hilbert Spaces	13

6					CONTENTS			
	16.8 Locally Convex Spaces						113	

Chapter 1

Primitive Terms and Axioms

1.1 Primitive Terms

Let there be sets.

For any set A, let there be *elements* of A. We write $a \in A$ for: a is an element of A.

For any sets A and B, let there be a set B^A , whose elements are called functions from A to B. We write $f: A \to B$ for $f \in B^A$.

For any function $f:A\to B$ and element $a\in A$, let there be an element $f(a)\in B$, the value of the function f at the argument a.

1.2 Injections, Surjections and Bijections

Definition 1.2.1 (Injective). A function $f: A \to B$ is injective or an injection iff, for all $x, y \in A$, if f(x) = f(y) then x = y.

Definition 1.2.2 (Surjective). A function $f: A \to B$ is surjective or a surjection iff, for all $y \in B$, there exists $x \in A$ such that f(x) = y.

Definition 1.2.3 (Bijective). A function $f: A \to B$ is bijective or a bijection iff it is injective and surjective.

Sets A and B are equinumerous, $A \approx B$, iff there exists a bijection between them.

If we prove there exists a set X such that P(X), and that any two sets that satisfy P are bijective, then we may introduce a constant C and define "Let C be the set such that P(C)".

1.3 Axioms

Axiom Schema 1.3.1 (Choice). Let P[X,Y,x,y] be a formula where X and Y are set variables, $x \in X$ and $y \in Y$. Then the following is an axiom.

Let A and B be sets. Assume that, for all $a \in A$, there exists $b \in B$ such that P[A, B, a, b]. Then there exists a function $f : A \to B$ such that $\forall a \in A.P[A, B, a, f(a)]$.

Axiom 1.3.2 (Extensionality). Let $f, g : A \to B$. If, for all $x \in A$, we have f(x) = g(x), then f = g.

Definition 1.3.3 (Composition). Let $f: A \to B$ and $g: B \to C$. The *composite* $g \circ f: A \to C$ is the function such that, for all $a \in A$, we have

$$(g \circ f)(a) = g(f(a)) .$$

Axiom 1.3.4 (Pairing). For any sets A and B, there exists a set $A \times B$, the Cartesian product of A and B, and functions $\pi_1 : A \times B \to A$ and $\pi_2 : A \times B \to B$ such that, for all $a \in A$ and $b \in B$, there exists a unique $(a,b) \in A \times B$ such that $\pi_1(a,b) = a$ and $\pi_2(a,b) = b$.

Axiom Schema 1.3.5 (Separation). For every property P[X, x] where X is a set variable and $x \in X$, the following is an axiom:

For every set A, there exists a set $S = \{x \in A : P[A, x]\}$ and an injection $i: S \to A$ such that, for all $x \in A$, we have

$$(\exists y \in S.i(y) = x) \Leftrightarrow P[A, x]$$
.

Axiom 1.3.6 (Infinity). There exists a set \mathbb{N} , an element $0 \in \mathbb{N}$, and a function $s : \mathbb{N} \to \mathbb{N}$ such that:

- $\forall n \in \mathbb{N}. s(n) \neq 0$
- $\forall m, n \in \mathbb{N}. s(m) = s(n) \Rightarrow m = n.$

Axiom Schema 1.3.7 (Collection). Let P[X, Y, x] be a formula with set variables X and Y and an element variable $x \in X$. Then the following is an axiom.

For any set A, there exist sets B and Y and functions $p: B \to A$, and $m: B \times Y \Rightarrow \mathbb{N}$ such that:

- m is injective.
- $\forall b \in B.P[A, \{y \in Y : m(b, y) = 0\}, p(b)]$
- For all $a \in A$, if $\exists Y.P[A,Y,a]$, then there exists $b \in B$ such that a = p(b).

Axiom 1.3.8 (Universe). There exists a set E, a set U and a function $el: E \to U$ such that the following holds.

Let us say that a set A is small iff there exists $u \in U$ such that $A \approx \{e \in E : el(e) = u\}$.

1.3. AXIOMS 9

- \mathbb{N} is small.
- For any U-small sets A and B, the set B^A is small.
- For any U-small sets A and B, the set $A \times B$ is small.
- Let $f: A \to B$ be a function. If B is small and $\{a \in A : f(a) = b\}$ is small for all $b \in B$, then A is small.
- If $p: B \twoheadrightarrow A$ is a surjective function such that A is small, then there exists a U-small set C, a surjection $q: C \twoheadrightarrow A$, and a function $f: C \rightarrow B$ such that $q = p \circ f$.

Chapter 2

Sets and Functions

2.1 Composition

Proposition 2.1.1. Given functions $f: A \to B$, $g: B \to C$ and $h: C \to D$, we have

$$h \circ (g \circ f) = (h \circ g) \circ f$$
.

PROOF: Each is the function that maps $a \in A$ to h(g(f(a))). \square

2.1.1 Injections

Proposition 2.1.2. The composite of injective functions is injective.

Proof:

```
\langle 1 \rangle 1. Let: f: A \rightarrow B and g: B \rightarrow C be injective. \langle 1 \rangle 2. Let: x, y \in A satisfy (g \circ f)(x) = (g \circ f)(y) \langle 1 \rangle 3. g(f(x)) = g(f(y)) \langle 1 \rangle 4. f(x) = f(y) \langle 1 \rangle 5. x = y
```

Proposition 2.1.3. For functions $f:A\to B$ and $g:B\to C$, if $g\circ f$ is injective then f is injective.

Proof:

```
\langle 1 \rangle 1. Assume: g \circ f is injective. \langle 1 \rangle 2. Let: x, y \in A \langle 1 \rangle 3. Assume: f(x) = f(y) \langle 1 \rangle 4. g(f(x)) = g(f(y)) \langle 1 \rangle 5. x = y
```

Proposition 2.1.4. Let $f: A \to B$. Then f is injective if and only if, for every set X and functions $x, y: X \to A$, if $f \circ x = f \circ y$ then x = y.

```
Proof:
```

```
\langle 1 \rangle 1. If f is injective then, for every set X and functions x, y : X \to A, if f \circ x = f \circ y then x = y.
```

- $\langle 2 \rangle 1$. Assume: f is injective.
- $\langle 2 \rangle 2$. Let: X be a set.
- $\langle 2 \rangle 3$. Let: $x, y: X \to A$
- $\langle 2 \rangle 4$. Assume: $f \circ x = f \circ y$
- $\langle 2 \rangle 5. \ \forall t \in X. x(t) = y(t)$
 - $\langle 3 \rangle 1$. Let: $t \in X$
 - $\langle 3 \rangle 2$. f(x(t)) = f(y(t))

Proof: $\langle 2 \rangle 4$

 $\langle 3 \rangle 3. \ x(t) = y(t)$

Proof: $\langle 2 \rangle 1$

 $\langle 2 \rangle 6. \ x = y$

PROOF: Axiom of Extensionality.

 $\langle 1 \rangle 2$. If, for every set X and functions $x,y:X\to A$, if $f\circ x=f\circ y$ then x=y. PROOF: Take X=1.

Proposition 2.1.5. The composite of surjective functions is surjective.

PROOF:

- $\langle 1 \rangle 1$. Let: $f: A \rightarrow B$ and $g: B \rightarrow C$ be injective.
- $\langle 1 \rangle 2$. Let: $c \in C$
- $\langle 1 \rangle 3$. Pick $b \in B$ such that g(b) = c.
- $\langle 1 \rangle 4$. PICK $a \in A$ such that f(a) = b.
- $\langle 1 \rangle 5. \ (g \circ f)(a) = c$

Proposition 2.1.6. Let $f: A \to B$. Then the following are equivalent.

- 1. f is surjective.
- 2. For any set X and functions $g, h : B \to X$, if $g \circ f = h \circ f$ then g = h.
- 3. There exists $g: B \to A$ such that $f \circ g = id_B$

Proof:

- $\langle 1 \rangle 1$. $1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: f is surjective.
 - $\langle 2 \rangle 2$. Let: X be a set.
 - $\langle 2 \rangle 3$. Let: $g, h : B \to X$
 - $\langle 2 \rangle 4$. Assume: $g \circ f = h \circ f$
 - $\langle 2 \rangle$ 5. Let: $b \in B$

PROVE: g(b) = h(b)

 $\langle 2 \rangle 6$. Pick $a \in A$ such that f(a) = b

 $\langle 2 \rangle 7.$ g(b) = h(b)

Proof: g(b) = g(f(a)) = h(f(a)) = h(b)

```
\langle 1 \rangle 2. 1 \Rightarrow 3
   \langle 2 \rangle 1. Assume: f is surjective.
   \langle 2 \rangle 2. PICK g: B \to A such that, for all b \in B, we have f(g(b)) = b.
       PROOF: Axiom of Choice.
   \langle 2 \rangle 3. f \circ g = \mathrm{id}_B.
\langle 1 \rangle 3. \ 3 \Rightarrow 2
   \langle 2 \rangle 1. Let: g: B \to A such that f \circ g = \mathrm{id}_B
   \langle 2 \rangle 2. Let: X be a set.
   \langle 2 \rangle 3. Let: h, k : B \to X
   \langle 2 \rangle 4. Assume: h \circ f = k \circ f
   \langle 2 \rangle 5. h = k
       Proof: h = h \circ f \circ g = k \circ f \circ g = k
\langle 1 \rangle 4. \ 2 \Rightarrow 1
   \langle 2 \rangle 1. Assume: 2
   \langle 2 \rangle 2. Let: b \in B
   \langle 2 \rangle 3. Let: h: B \to 2 be the function that maps everything to 1.
   \langle 2 \rangle 4. Let: k: B \to 2 be the function that maps b to 0 and everything else
                     to 1.
   \langle 2 \rangle 5. \ h \neq k
   \langle 2 \rangle 6. h \circ f \neq k \circ f
   \langle 2 \rangle7. PICK a \in A such that h(f(a)) \neq k(f(a))
   \langle 2 \rangle 8. \ f(a) = b
Proposition 2.1.7. Let f: A \to B and g: B \to C. If g \circ f is surjective then
q is surjective.
Proof:
\langle 1 \rangle 1. Let: c \in C
\langle 1 \rangle 2. There exists a \in A such that q(f(a)) = c.
\langle 1 \rangle 3. There exists b \in B such that g(b) = c.
```

Proposition 2.1.8. The composite of bijections is a bijection.

Proof: Propositions 2.1.2 and 2.1.5. \Box

Proposition 2.1.9. Let $f: A \to B$. Then f is bijective if and only if there exists a function $f^{-1}: B \to A$, the inverse of f, such that $f \circ f^{-1} = \mathrm{id}_B$ and $f^{-1} \circ f = \mathrm{id}_A$, in which case the inverse is unique.

Proof:

- $\langle 1 \rangle 1$. If f is bijective then there exists $f^{-1}: B \to A$ such that $f \circ f^{-1} = \mathrm{id}_B$ and $f^{-1} \circ f = \mathrm{id}_A$.
 - $\langle 2 \rangle 1$. Assume: f is bijective.
 - $\langle 2 \rangle 2$. Pick $g: B \to A$ such that $f \circ g = \mathrm{id}_B$

Proof: Proposition 2.1.6.

 $\langle 2 \rangle 3$. $f \circ g \circ f = f$

 $\langle 2 \rangle 4$. $g \circ f = \mathrm{id}_A$

Proof: Proposition 2.1.4.

- $\langle 1 \rangle 2$. If there exists $f^{-1}: B \to A$ such that $f \circ f^{-1} = \mathrm{id}_B$ and $f^{-1} \circ f = \mathrm{id}_A$, then f is bijective.
 - $\langle 2 \rangle 1$. Let: $f^{-1}: B \to A$ satisfy $f \circ f^{-1} = \mathrm{id}_B$ and $f^{-1} \circ f = \mathrm{id}_A$
 - $\langle 2 \rangle 2$. f is injective.

PROOF: If f(x) = f(y) then $x = f^{-1}(f(x)) = f^{-1}(f(y)) = y$.

 $\langle 2 \rangle 3$. f is surjective.

Proof: Proposition 2.1.6.

 $\langle 1 \rangle 3$. If $g, h : B \to A$ satisfy $f \circ g = \mathrm{id}_B$ and $g \circ f = \mathrm{id}_A$ and $f \circ h = \mathrm{id}_B$ and $h \circ f = \mathrm{id}_A$ then g = h.

PROOF: We have $g = g \circ f \circ h = h$.

Proposition 2.1.10. Let $f: A \to B$. Then $id_B \circ f = f = f \circ id_A$.

PROOF: Each is the function that maps a to f(a). \square

Proposition 2.1.11.

$$(A \times B)^C \approx A^C \times B^C$$

PROOF: The function that maps f to $(\pi_1 \circ f, \pi_2 \circ f)$ is a bijection. \square

Proposition 2.1.12.

$$A^{B \times C} \approx (A^B)^C$$

PROOF: The function Φ such that $\Phi(f)(c)(b) = f(b,c)$ is a bijection. \square

Proposition 2.1.13. Let A and B be sets. If there exists an injective function $f: A \to B$, and A is nonempty, then there exists a surjective function $B \to A$.

PROOF: Pick $a_0 \in A$. Define $g: B \to A$ by: g(b) is the unique element in A such that f(a) = b if there is such an a, otherwise $g(b) = a_0$. \square

Theorem 2.1.14 (Schroeder-Bernstein). Let A and B be sets. If there exist injections $A \to B$ and $B \to A$, then $A \approx B$.

Proof:

- $\langle 1 \rangle 1$. Let: $f: A \rightarrow B$ and $g: B \rightarrow A$ be injections.
- $\langle 1 \rangle 2$. Define the subsets A_n of A by

$$A_0 := A - q(B)$$

$$A_{n+1} := g(f(A_n))$$

 $\langle 1 \rangle 3$. Define $h: A \to B$ by

$$h(x) = \begin{cases} f(x) & \text{if } \exists n. x \in A_n \\ g^{-1}(x) & \text{otherwise} \end{cases}$$

- $\langle 1 \rangle 4$. h is injective.
 - $\langle 2 \rangle 1$. Let: $x, y \in A$
 - $\langle 2 \rangle 2$. Assume: h(x) = h(y)
 - $\langle 2 \rangle 3$. Case: $x \in A_m$ and $y \in A_n$.

```
PROOF: Then f(x) = f(y) so x = y since f is injective.
   \langle 2 \rangle 4. Case: x \in A_m and there is no y such that y \in A_n.
      \langle 3 \rangle 1. \ f(x) = g^{-1}(y)
      \langle 3 \rangle 2. \ y = g(f(x))
      \langle 3 \rangle 3. \ y \in A_{m+1}
      \langle 3 \rangle 4. Q.E.D.
         PROOF: This is a contradiction.
   \langle 2 \rangle5. Case: y \in A_n and there is no m such that x \in A_m.
      Proof: Similar.
   \langle 2 \rangle 6. Case: There is no m such that x \in A_m and there is no n such that
      PROOF: Then g^{-1}(x) = g^{-1}(y) and so x = y.
\langle 1 \rangle 5. h is surjective.
   \langle 2 \rangle 1. Let: y \in B
   \langle 2 \rangle 2. Case: g(y) \in A_n
      \langle 3 \rangle 1. \ n \neq 0
      \langle 3 \rangle 2. PICK x \in A_{n-1} such that g(y) = g(f(x))
      \langle 3 \rangle 3. \ y = f(x)
      \langle 3 \rangle 4. \ y = h(x)
   \langle 2 \rangle 3. Case: There is no n such that g(y) \in A_n.
      PROOF: Then h(g(y)) = y.
```

2.2 Identity Function

Definition 2.2.1 (Identity). For any set A, the *identity* function $id_A : A \to A$ is the function defined by $id_A(a) = a$.

2.2.1 The Empty Set

Theorem 2.2.2. There exists a set which has no elements.

```
PROOF: \langle 1 \rangle 1. PICK a set A PROOF: By the Axiom of Infinity, a set exists. \langle 1 \rangle 2. Let: S = \{x \in A : \bot\} with injection i : S \to A PROOF: Axiom of Separation. \langle 1 \rangle 3. S has no elements.
```

Theorem 2.2.3. If E and E' have no elements then $E \approx E'$.

```
Proof:
```

```
\langle 1 \rangle 1. Let: E and E' have no elements.
```

 $\langle 1 \rangle 2$. PICK a function $F: E \to E'$.

PROOF: Axiom of Choice since vacuously $\forall x \in E. \exists y \in E'. \top$.

 $\langle 1 \rangle 3$. F is injective.

PROOF: Vacuously, for all $x, y \in E$, if F(x) = F(y) then x = y.

 $\langle 1 \rangle 4$. F is surjective.

PROOF: Vacuously, for all $y \in E$, there exists $x \in E$ such that F(x) = y.

Definition 2.2.4 (Empty Set). The *empty set* \emptyset is the set with no elements.

2.2.2 The Singleton

Theorem 2.2.5. There exists a set that has exactly one element.

PROOF

 $\langle 1 \rangle 1$. PICK a set A that has an element.

PROOF: By the Axiom of Infinity, there exists a set that has an element.

- $\langle 1 \rangle 2$. Pick $a \in A$
- $\langle 1 \rangle 3$. PICK a set S and injection $i: S \rightarrow A$ such that, for all $x \in A$, there exists $s \in S$ such that s = x if and only if x = a
- $\langle 1 \rangle 4$. S has exactly one element.

Theorem 2.2.6. If A and B both have exactly one element then $A \approx B$.

Proof:

- $\langle 1 \rangle 1$. Let: A and B both have exactly one element a and b respectively.
- $\langle 1 \rangle 2$. Let: $F: A \to B$ be the function such that, for all $x \in A$, we have $(x = a \land F(x) = b)$

 $\langle 1 \rangle 3$. F is a bijection.

Definition 2.2.7 (Singleton). Let 1 be the set that has exactly one element. Let * be its element.

2.2.3 Subsets

Definition 2.2.8 (Subset). A *subset* of a set A consists of a set S and an injection $i: S \rightarrow A$. We write $(S, i) \subseteq A$.

We say two subsets (S, i) and (T, j) are equal, (S, i) = (T, j), iff there exists a bijection $\phi : S \approx T$ such that $j \circ \phi = i$.

Proposition 2.2.9. For any subset (S,i) of A we have (S,i)=(S,i).

PROOF: We have $id_S : S \approx S$ and $i \circ id_S = i$.

Proposition 2.2.10. *If* (S, i) = (T, j) *then* (T, j) = (S, i).

PROOF: If $\phi: S \approx T$ and $j \circ \phi = i$ then $\phi^{-1}: T \approx S$ and $i \circ \phi^{-1} = j$. \square

Proposition 2.2.11. If (R, i) = (S, j) and (S, j) = (T, k) then (R, i) = (T, k).

17

PROOF: If $\phi: R \approx S$ and $j \circ \phi = i$, and $\psi: S \approx T$ and $k \circ \psi = j$, then $\psi \circ \phi: R \approx T$ and $k \circ \psi \circ \phi = i$. \square

Definition 2.2.12 (Membership). Given $(S, i) \subseteq A$ and $a \in A$, we write $a \in (S, i)$ for $\exists s \in S.i(s) = a$.

Proposition 2.2.13. *If* $a \in (S, i)$ *and* (S, i) = (T, j) *then* $a \in (T, j)$.

PROOF: If i(s) = a then $j(\phi(s)) = a$. \square

Definition 2.2.14 (Union). Given subsets S and T of A, the *union* is the subset $\{x \in A : x \in S \lor x \in T\}$.

Definition 2.2.15 (Intersection). Given subsets S and T of A, the *intersection* is the subset $\{x \in A : x \in S \land x \in T\}$.

Proposition 2.2.16 (Distributive Law).

$$R \cap (S \cup T) = (R \cap S) \cup (R \cap T)$$

Proposition 2.2.17 (Distributive Law).

$$R \cup (S \cap T) = (R \cup S) \cap (R \cup T)$$

Definition 2.2.18. Given a set A, we write \emptyset for the subset $(\emptyset,!)$ where ! is the unique function $\emptyset \to A$.

Proposition 2.2.19.

$$S \cup \emptyset = S$$

Proposition 2.2.20.

$$S \cap \emptyset = S$$

Definition 2.2.21 (Inclusion). Given subsets (S, i) and (T, j) of a set A, we write $(S, i) \subseteq (T, j)$ iff there exists $f: S \to T$ such that $j \circ f = i$.

Proposition 2.2.22.

$$\emptyset \subseteq S$$

Definition 2.2.23 (Disjoint). Subsets S and T of A are disjoint iff $S \cap T = \emptyset$.

Definition 2.2.24 (Difference). Given subsets S and T of A, the difference of S and T is $S - T = \{x \in A : x \in S \land x \notin T\}$.

Proposition 2.2.25 (De Morgan's Law).

$$R - (S \cup T) = (R - S) \cap (R - T)$$

Proposition 2.2.26 (De Morgan's Law).

$$R - (S \cap T) = (R - S) \cup (R - T)$$

2.2.4 Union

Definition 2.2.27 (Union). Given $A \in \mathcal{PP}X$, its union is

$$\bigcup \mathcal{A} := \{ x \in X : \exists S \in \mathcal{A}. x \in S \} \in \mathcal{P}X .$$

2.2.5 Intersection

Definition 2.2.28 (Intersection). Given $A \in \mathcal{PP}X$, its intersection is

$$\bigcap \mathcal{A} := \{ x \in X : \forall S \in \mathcal{A}. x \in S \} \in \mathcal{P}X .$$

2.2.6 Direct Image

Definition 2.2.29 (Direct Image). Let $f: A \to B$. Let S be a subset of A. The *(direct) image* of S under f is the subset of B given by

$$f(S) := \{ f(a) : a \in S \}$$
.

Proposition 2.2.30.

- 1. If $S \subseteq T$ then $f(S) \subseteq f(T)$
- 2. $f(\bigcup S) = \bigcup_{S \in S} f(S)$

Example 2.2.31. It is not true in general that $f(\bigcap S) = \bigcap_{S \in S} f(S)$. Take f to be the only function $\{0,1\} \to \{0\}$, and $S = \{\{0\},\{1\}\}$. Then $f(\bigcap S) = \emptyset$ but $\bigcap_{S \in S} f(S) = \{0\}$.

Example 2.2.32. It is not true in general that f(S-T)=f(S)-f(T). Take f to be the only function $\{0,1\} \to \{0\}$, $S=\{0\}$ and $T=\{1\}$. Then $f(S-T)=\{0\}$ but $f(S)-f(T)=\emptyset$.

2.2.7 Inverse Image

Definition 2.2.33 (Inverse Image). Let $f: A \to B$. Let S be a subset of B. The *inverse image* or *preimage* of S under f is the subset of A given by

$$f^{-1}(S) := \{ x \in A : f(x) \in S \} .$$

Proposition 2.2.34. 1. If $S \subseteq T$ then $f^{-1}(S) \subseteq f^{-1}(T)$

- 2. $f^{-1}(\bigcup S) = \bigcup_{S \in S} f^{-1}(S)$
- 3. $f^{-1}(\bigcap S) = \bigcap_{S \in S} f^{-1}(S)$
- 4. $f^{-1}(S-T) = f^{-1}(S) f^{-1}(T)$
- 5. $S \subseteq f^{-1}(f(S))$. Equality holds if f is injective.
- 6. $f(f^{-1}(T)) \subseteq T$. Equality holds if f is surjective.
- 7. $(q \circ f)^{-1}(S) = f^{-1}(q^{-1}(S))$

2.3. RELATIONS 19

2.3 Relations

Definition 2.3.1 (Relation). Let A and B be sets. A relation R between A and B, $R: A \hookrightarrow B$, is a subset of $A \times B$.

Given $a \in A$ and $b \in B$, we write aRb for $(a, b) \in R$.

A relation on a set A is a relation between A and A.

Definition 2.3.2 (Reflexive). A relation R on a set A is reflexive iff $\forall a \in A.aRa$.

Definition 2.3.3 (Symmetric). A relation R on a set A is *symmetric* iff, whenever xRy, then yRx.

Definition 2.3.4 (Transitive). A relation R on a set A is *transitive* iff, whenever xRy and yRz, then xRz.

2.3.1 Equivalence Relations

Definition 2.3.5 (Equivalence Relation). A relation R on a set A is an *equivalence relation* iff it is reflexive, symmetric and transitive.

Definition 2.3.6 (Equivalence Class). Let R be an equivalence relation on a set A and $a \in A$. The *equivalence class* of a with respect to R is

$$\{x \in A : xRa\}$$
.

Proposition 2.3.7. Two equivalence classes are either disjoint or equal.

2.4 Power Set

Definition 2.4.1 (Power Set). The *power set* of a set A is $\mathcal{P}A := 2^A$. Given $S \in \mathcal{P}A$ and $a \in A$, we write $a \in A$ for S(a) = 1.

Definition 2.4.2 (Pairwise Disjoint). Let $P \subseteq \mathcal{P}A$. We say the members of P are pairwise disjoint iff, for all $S, T \in P$, if $S \neq T$ then $S \cap T = \emptyset$.

2.4.1 Partitions

Definition 2.4.3 (Partition). Let A be a set. A partition of A is a set $P \in \mathcal{PP}A$ such that:

- $\bullet \ | \ |P = A$
- \bullet Every member of P is nonempty.
- The members of P are pairwise disjoint.

2.5 Cartesian Product

Definition 2.5.1 (Cartesian Product). Let A and B be sets. The Cartesian product of A and B, $A \times B$, is the tabulation of the relation $A \hookrightarrow B$ that holds for all $a \in A$ and $b \in B$. The associated functions $\pi_1 : A \times B \to A$ and $\pi_2 : A \times B \to B$ are called the projections.

Given $a \in A$ and $b \in B$, we write (a, b) for the unique element of $A \times B$ such that $\pi_1(a, b) = a$ and $\pi_2(a, b) = b$.

2.6 Quotient Sets

Proposition 2.6.1. Let \sim be an equivalence relation on X. Then there exists a set X/\sim , the quotient set of X with respect to \sim , and a surjective function $\pi: X \twoheadrightarrow X/\sim$, the canonical projection, such that, for all $x,y \in X$, we have $x \sim y$ if and only if $\pi(x) = \pi(y)$.

Further, if $p: X \to Q$ is another quotient with respect to \sim , then there exists a unique bijection $\phi: X/\sim \approx Q$ such that $\phi \circ \pi = p$.

2.7 Partitions

Definition 2.7.1 (Partition). A partition of a set X is a set of pairwise disjoint subsets of X whose union is X.

2.8 Disjoint Union

Theorem 2.8.1. For any sets A and B, there exists a set A+B, the disjoint union of A and B, and functions $\kappa_1: A \to A+B$ and $\kappa_2: B \to A+B$, the injections, such that, for every set X and functions $f: A \to X$ and $g: B \to X$, there exists a unique function $[f,g]: A+B\to X$ such that $[f,g]\circ\kappa_1=f$ and $[f,g]\circ\kappa_2=g$.

Proof:

```
\langle 1 \rangle 1. \text{ Let: } A+B := \{ p \in \mathcal{P}A \times \mathcal{P}B : \exists a \in A.p = (\{a\}, \varnothing) \vee \exists b \in B.p = (\varnothing, \{b\}) \}
```

Definition 2.8.2 (Restriction). Let $f: A \to B$ and let (S, i) be a subset of A. The restriction of f to S is the function $f \upharpoonright S: S \to B$ defined by $f \upharpoonright S = f \circ i$.

2.9 Natural Numbers

Theorem 2.9.1 (Principle of Recursive Definition). Let A be a set. Let F be the set of all functions $\{m \in \mathbb{N} : m < n\} \to A$ for some n. Let $\rho : F \to A$. Then there exists a unique $g : \mathbb{N} \to A$ such that, for all $n \in \mathbb{N}$, we have

$$g(n) = \rho(g \upharpoonright \{m \in \mathbb{N} : m < n\})$$
.

Proof:

 $\langle 1 \rangle 1$. Given a subset $B \subseteq \mathbb{N}$, let us say that a function $g: B \to A$ is acceptable iff, for all $n \in B$, we have

$$\forall m < n.m \in B$$

and

$$g(n) = \rho(g \upharpoonright \{m \in \mathbb{N} : m < n\}) .$$

- $\langle 1 \rangle 2$. For all $n \in \mathbb{N}$, there exists an acceptable function $\{m \in \mathbb{N} : m < n\} \to A$.
 - $\langle 2 \rangle$ 1. Let: P[n] be the property: There exists an acceptable function $\{m \in \mathbb{N} : m < n\} \to A$.
 - $\langle 2 \rangle 2$. P[0]

PROOF: The unique function $\emptyset \to A$ is acceptable.

- $\langle 2 \rangle 3$. For any natural number n, if P[n] then P[n+1].
 - $\langle 3 \rangle 1$. Assume: P[n]
 - $\langle 3 \rangle 2$. PICK an acceptable $f: \{m \in \mathbb{N} : m < n\} \to A$.
 - $\langle 3 \rangle 3$. Let: $g: \{m \in \mathbb{N} : m < n+1\} \to A$ be the function

$$g(m) = \begin{cases} f(m) & \text{if } m < n \\ \rho(f) & \text{if } m = n \end{cases}$$

- $\langle 3 \rangle 4$. g is acceptable.
- $\langle 1 \rangle 3$. If $g: B \to A$ and $h: C \to A$ are acceptable, then g and h agree on $B \cap C$.
- $\langle 1 \rangle$ 4. Define $g : \mathbb{N} \to A$ by: g(n) = a iff there exists an acceptable $h : \{m \in \mathbb{N} : m < n+1\}$ such that h(n) = a.
- $\langle 1 \rangle 5$. q is acceptable.
- $\langle 1 \rangle$ 6. If $g' : \mathbb{N} \to A$ is acceptable then g' = g.

2.10 Finite and Infinite Sets

Definition 2.10.1 (Finite). A set A is *finite* iff there exists $n \in \mathbb{N}$ such that $A \approx \{m \in \mathbb{N} : m < n\}$. In this case, we say A has cardinality n.

Proposition 2.10.2. Let $n \in \mathbb{N}$. Let A be a set. Let $a_0 \in A$. Then $A \approx \{m \in \mathbb{N} : m < n + 1\}$ if and only if $A - \{a_0\} \approx \{m \in \mathbb{N} : m < n\}$.

Theorem 2.10.3. Let A be a set. Suppose that $A \approx \{m \in \mathbb{N} : m < n\}$. Let B be a proper subset of A. Then $B \not\approx \{m \in \mathbb{N} : m < n\}$ but there exists m < n such that $B \approx \{k \in \mathbb{N} : k < m\}$.

Proof:

- $\langle 1 \rangle 1$. Let: P[n] be the property: for every set A, if $Aapprox\{m \in \mathbb{N} : m < n\}$, then for every proper subset B of A, we have $B \not\approx \{m \in \mathbb{N} : m < n\}$ but there exists m < n such that $B \approx \{k \in \mathbb{N} : k < m\}$.
- $\langle 1 \rangle 2. \ P[0]$

PROOF: If $A \approx \{m \in \mathbb{N} : m < 0\}$ then A is empty and so has no proper subset.

- $\langle 1 \rangle 3$. For every natural number n, if P[n] then P[n+1].
 - $\langle 2 \rangle 1$. Let: n be a natural number.
 - $\langle 2 \rangle 2$. Assume: P[n]

Corollary 2.10.3.1. If A is finite then there is no bijection between A and a proper subset of A.

Corollary 2.10.3.2. \mathbb{N} is infinite.

Corollary 2.10.3.3. The cardinality of a finite set is unique.

Corollary 2.10.3.4. A subset of a finite set is finite.

Corollary 2.10.3.5. If A is finite and B is a proper subset of A then |B| < |A|.

Corollary 2.10.3.6. Let A be a set. Then the following are equivalent:

- 1. A is finite.
- 2. There exists a surjection from an initial segment of \mathbb{N} onto A.
- 3. There exists an injection from A to an initial segment of \mathbb{N} .

Corollary 2.10.3.7. A finite union of finite sets is finite.

Corollary 2.10.3.8. A finite Cartesian product of finite sets is finite.

Theorem 2.10.4. Let A be a set. The following are equivalent:

- 1. There exists an injective function $\mathbb{N} \rightarrow A$.
- 2. There exists a bijection between A and a proper subset of A.
- 3. A is infinite.

Proof:

```
\begin{array}{l} \langle 1 \rangle 1. \ 1 \Rightarrow 2 \\ \langle 2 \rangle 1. \ \text{Let:} \ f: \mathbb{N} \rightarrowtail A \ \text{be injective.} \\ \langle 2 \rangle 2. \ \text{Let:} \ s: \mathbb{N} \approx \mathbb{N} - \{0\} \ \text{be the function} \ s(n) = n+1. \\ \langle 2 \rangle 3. \ f \circ s \circ f^{-1}: A \approx A - \{f(0)\} \end{array}
```

```
\langle 1 \rangle 2. \ 2 \Rightarrow 3
PROOF: Corollary 2.10.3.1.
\langle 1 \rangle 3. \ 3 \Rightarrow 1
PROOF: Choose a function f: \mathbb{N} \to A such that f(n) \in A - \{f(m): m < n\} for all n.
```

2.11 Countable Sets

Definition 2.11.1 (Countable). A set A is countably infinite iff $A \approx \mathbb{N}$.

Proposition 2.11.2. $\mathbb{N} \times \mathbb{N}$ is countably infinite.

```
PROOF: Define f: \mathbb{N} \times \mathbb{N} \approx \{(x,y) \in \mathbb{N} \times \mathbb{N} : y \leq x\} by f(x,y) = (x+y,y) Define g: \{(x,y) \in \mathbb{N} \times \mathbb{N} : y \leq x\} \approx \mathbb{N} by g(x,y) = x(x-1)/2 + y . \square
```

Proposition 2.11.3. Every infinite subset of \mathbb{N} is countably infinite.

Proof:

```
\langle 1 \rangle 1. Let: C be an infinite subset of N
```

 $\langle 1 \rangle$ 2. Define $h : \mathbb{Z} \to C$ by recursion thus: h(n) is the smallest element of $C - \{h(m) : m < n\}$.

 $\langle 1 \rangle 3$. h is injective.

PROOF: If m < n then $h(m) \neq h(n)$ because $h(n) \in C - \{h(m) : m < n\}$.

 $\langle 1 \rangle 4$. h is surjective.

 $\langle 2 \rangle 1$. For all $n \in \mathbb{N}$ we have $n \leq h(n)$.

 $\langle 2 \rangle 2$. Let: $c \in C$

 $\langle 2 \rangle 3.$ $c \leq h(c)$

 $\langle 2 \rangle 4$. Let: n be least such that $c \leq h(n)$

 $\langle 2 \rangle 5. \ c \in C - \{h(m) : m < n\}$

 $\langle 2 \rangle 6. \ h(n) \leqslant c$

 $\langle 2 \rangle 7$. h(n) = c

Definition 2.11.4 (Countable). A set is *countable* iff it is either finite or countably infinite; otherwise it is *uncountable*.

Proposition 2.11.5. Let B be a nonempty set. Then the following are equivalent.

- 1. B is countable.
- 2. There exists a surjection $\mathbb{N} \to B$.
- 3. There exists an injection $B \rightarrow \mathbb{N}$.

Proof:

```
\langle 1 \rangle 1. 1 \Rightarrow 2
   \langle 2 \rangle 1. Assume: B is countable.
   \langle 2 \rangle 2. Case: B is finite.
       \langle 3 \rangle 1. Pick a natural number n and bijection f : \{ m \in \mathbb{N} : m < n \} \approx B
      \langle 3 \rangle 2. Pick b \in B
      \langle 3 \rangle 3. Extend f to a surjection g: \mathbb{N} \to B by setting g(m) = b for m \geq n.
   \langle 2 \rangle 3. Case: B is countably infinite.
      PROOF: Then there exists a bijection \mathbb{N} \approx B.
\langle 1 \rangle 2. 2 \Rightarrow 3
   PROOF: Given a surjection f: \mathbb{N} \to B, define g: B \to \mathbb{N} by g(b) is the
   smallest number such that f(q(b)) = b.
\langle 1 \rangle 3. \ 3 \Rightarrow 1
   \langle 2 \rangle 1. Let: f: B \rightarrow \mathbb{N} be injective.
   \langle 2 \rangle 2. f(B) is countable.
   \langle 2 \rangle 3. \ B \approx f(B)
   \langle 2 \rangle 4. B is countable.
Corollary 2.11.5.1. A subset of a countable set is countable.
Corollary 2.11.5.2. \mathbb{N} \times \mathbb{N} is countably infinite.
PROOF: The function that maps (m,n) to 2^m3^n is injective. \square
Corollary 2.11.5.3. The Cartesian product of two countable sets is countable.
Theorem 2.11.6. A countable union of countable sets is countable.
Proof:
\langle 1 \rangle 1. Let: A be a set.
\langle 1 \rangle 2. Let: \mathcal{B} \subseteq \mathcal{P}A be a countable set of countable sets such that \bigcup \mathcal{B} = A
\langle 1 \rangle 3. Pick a surjection B : \mathbb{N} \to \mathcal{B}
\langle 1 \rangle 4. Assume: w.l.o.g. each B(n) is nonempty.
\langle 1 \rangle 5. For n \in \mathbb{N}, PICK a surjective function g_n : \mathbb{N} \to B(n)
\langle 1 \rangle 6. Let: h: \mathbb{N} \times \mathbb{N} \to A be the function h(m,n) = g_m(n)
\langle 1 \rangle 7. h is surjective.
Theorem 2.11.7. 2^{\mathbb{N}} is uncountable.
Proof:
\langle 1 \rangle 1. Let: f: \mathbb{N} \to 2^{\mathbb{N}}
        PROVE: f is not surjective.
\langle 1 \rangle 2. Define g : \mathbb{N} \to 2 by g(n) = 1 - f(n)(n).
\langle 1 \rangle 3. For all n \in \mathbb{N} we have g(n) \neq f(n)(n).
\langle 1 \rangle 4. For all n \in \mathbb{N} we have g \neq f(n).
```

Theorem 2.11.8. For any set A, there is no surjective function $A \to \mathcal{P}A$.

Corollary 2.11.8.1. For any set A, there is no injective function $\mathcal{P}A \to A$.

Chapter 3

Order Theory

3.1 Relations

Definition 3.1.1 (Reflexive). A relation $R \subseteq A \times A$ is *reflexive* iff, for all $a \in A$, we have $(a, a) \in R$.

Definition 3.1.2 (Antisymmetric). A relation $R \subseteq A \times A$ is antisymmetric iff, for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$ then a = b.

Definition 3.1.3 (Transitive). A relation $R \subseteq A \times A$ is *transitive* iff, for all $a, b, c \in A$, if $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$.

Definition 3.1.4 (Partial Order). A partial order on a set A is a relation on A that is reflexive, antisymmetric and transitive.

We say (A, \leq) is a partially ordered set or poset iff \leq is a partial order on A.

Definition 3.1.5 (Greatest). Let A be a poset and $a \in A$. Then a is the *greatest* element iff $\forall x \in A.x \leq a$.

Definition 3.1.6 (Least). Let A be a poset and $a \in A$. Then a is the *least* element iff $\forall x \in A.a \leq x$.

Definition 3.1.7 (Upper Bound). Let A be a poset, $S \subseteq A$, and $u \in A$. Then u is an *upper bound* for S iff $\forall x \in S.x \leq u$. We say S is *bounded above* iff it has an upper bound.

Definition 3.1.8 (Lower Bound). Let A be a poset, $S \subseteq A$, and $l \in A$. Then l is a lower bound for S iff $\forall x \in S.l \leq x$. We say S is bounded below iff it has a lower bound.

Definition 3.1.9 (Supremum). Let A be a poset, $S \subseteq A$ and $s \in A$. Then s is the *supremum* or *least upper bound* for S iff s is the least element in the sub-poset of upper bounds for A.

Definition 3.1.10 (Supremum). Let A be a poset, $S \subseteq A$ and $i \in A$. Then i is the *infimum* or *greatest lower bound* for S iff i is the greatest element in the sub-poset of lower bounds for A.

Definition 3.1.11 (Least Upper Bound Property). A poset A has the *least upper bound property* iff every nonempty subset of A that is bounded above has a least upper bound.

Proposition 3.1.12. Let A be a poset. Then A has the least upper bound property if and only if every nonempty subset of A that is bounded below has a greatest lower bound.

Proof:

- $\langle 1 \rangle 1$. If A has the least upper bound property then every subset of A that is bounded below has a greatest lower bound.
 - $\langle 2 \rangle 1$. Assume: A has the least upper bound property.
 - $\langle 2 \rangle 2$. Let: $S \subseteq A$ be nonempty and bounded below.
 - $\langle 2 \rangle 3$. Let: L be the set of lower bounds of S.
 - $\langle 2 \rangle 4$. L is nonempty.

Proof: Because S is bounded below.

 $\langle 2 \rangle$ 5. L is bounded above.

PROOF: Pick an element $s \in S$. Then s is an upper bound for L.

- $\langle 2 \rangle$ 6. Let: s be the supremum of L.
- $\langle 2 \rangle 7$. s is the greatest lower bound of S.
 - $\langle 3 \rangle 1$. s is a lower bound of S.
 - $\langle 4 \rangle 1$. Let: $x \in S$
 - $\langle 4 \rangle 2$. x is an upper bound for L.
 - $\langle 4 \rangle 3. \ s \leqslant x$
 - $\langle 3 \rangle 2$. For any lower bound l of S we have $l \leq s$.

PROOF: Immediate from $\langle 2 \rangle 6$.

 $\langle 1 \rangle 2$. If every subset of A that is bounded below has a greatest lower bound, then A has the least upper bound property.

PROOF: Dual.

3.1.1 Strict Partial Orders

Definition 3.1.13 (Strict Partial Order). A *strict partial order* on a set A is a relation on A that is irreflexive and transitive.

Proposition 3.1.14. 1. If \leq is a partial order on A then < is a strict partial order on A, where x < y iff $x \leq y \land x \neq y$.

- 2. If < is a strict partial order on A then \le is a partial order on A, where $x \le y$ iff $x < y \lor x = y$.
- 3. These two relations are inverses of one another.

3.1. RELATIONS 29

3.1.2 Linear Orders

Definition 3.1.15 (Linear Order). A *linear order* on a set A is a partial order \leq on A such that, for all $x, y \in A$, we have $x \leq y$ or $y \leq x$.

A linearly ordered set is a pair (X, \leq) such that X is a set and \leq is a linear order on X.

Definition 3.1.16 (Open Interval). Let X be a linearly ordered set and $a, b \in X$. The *open interval* (a, b) is the set

$$\{x \in X : a < x < b\}$$
.

Definition 3.1.17 (Immediate Predecessor, Immediate Successor). Let X be a linearly ordered set and $a, b \in X$. Then b is the *(immediate) successor* of a, and a is the *(immediate) predecessor* of b, iff a < B and there is no x such that a < x < b.

Definition 3.1.18 (Dictionary Order). Let A and B be linearly ordered sets. The *dictionary order* on $A \times B$ is the order defined by

$$(a,b) < (a',b') \Leftrightarrow a < a' \lor (a = a' \land b < b')$$
.

Theorem 3.1.19 (Maximal Principle). Every poset has a maximal linearly ordered subset.

Theorem 3.1.20 (Zorn's Lemma). Let A be a poset. If every linearly ordered subset of A is bounded above, then A has a maximal element.

Proof:

 $\langle 1 \rangle 1$. PICK a maximal linearly ordered subset B of A.

PROOF: Maximal Principle

 $\langle 1 \rangle 2$. Pick an upper bound c for B.

Prove: c is maximal.

 $\langle 1 \rangle 3$. Let: $x \in A$

 $\langle 1 \rangle 4$. Assume: $c \leq x$

Prove: x = c

 $\langle 1 \rangle 5$. x is an upper bound for B.

 $\langle 1 \rangle 6. \ x \in B$

PROOF: By the maximality of B, since $B \cup \{x\}$ is linearly ordered.

 $\langle 1 \rangle 7. \ x \leq c$

Proof: $\langle 1 \rangle 2$

 $\langle 1 \rangle 8. \ x = c$

Corollary 3.1.20.1 (Kuratowski's Lemma). Let $A \subseteq \mathcal{P}X$. Suppose that, for every subset $\mathcal{B} \subseteq A$ that is linearly ordered by inclusion, we have $\bigcup \mathcal{B} \in A$. Then A has a maximal element.

3.1.3 Sets of Finite Type

Definition 3.1.21 (Finite Type). Let X be a set. Let $A \subseteq \mathcal{P}X$. Then A is of *finite type* if and only if, for any $B \subseteq X$, we have $B \in A$ if and only if every finite subset of B is in A.

Proposition 3.1.22 (Tukey's Lemma). Let X be a set. Let $A \subseteq \mathcal{P}X$. If A is of finite type, then A has a maximal element.

Proof:

```
\langle 1 \rangle1. For every subset \mathcal{B} \subseteq \mathcal{A} that is linearly ordered by inclusion, we have \bigcup \mathcal{B} \in \mathcal{A}. \langle 2 \rangle1. Let: \mathcal{B} \subseteq \mathcal{A} \langle 2 \rangle2. Assume: \mathcal{B} is linearly ordered by inclusion. \langle 2 \rangle3. Every finite subset of \bigcup \mathcal{B} is in \mathcal{A}
```

 $\langle 2 \rangle 4. \bigcup \mathcal{B} \in \mathcal{A}$

 $\langle 1 \rangle 2$. Q.E.D.

Proof: Kuratowski's Lemma.

3.2 Well Orders

Definition 3.2.1 (Well Ordered Set). A well ordered set is a linearly ordered set such that every nonempty subset has a least element.

Proposition 3.2.2. Any subset of a well ordered set is well ordered.

Proposition 3.2.3. The product of two well ordered sets is well ordered under the dictionary order.

Theorem 3.2.4 (Well Ordering Theorem). Every set has a well ordering.

Proposition 3.2.5. There exists a well-ordered set with a largest element Ω such that $(-\infty, \Omega)$ is uncountable but, for all $\alpha < \Omega$, we have $(-\infty, \alpha)$ is countable.

Proof:

- $\langle 1 \rangle 1$. PICK an uncountable well ordered set B.
- $\langle 1 \rangle 2$. Let: $C = 2 \times B$ under the dictionary order.
- $\langle 1 \rangle 3$. Let: Ω be the least element of C such that $(-\infty, \Omega)$ is uncountable.
- $\langle 1 \rangle 4$. Let: $A = (-\infty, \Omega]$
- $\langle 1 \rangle$ 5. A is a well ordered set with largest element Ω such that $(-\infty, \Omega)$ is uncountable but, for all $\alpha < \Omega$, we have $(-\infty, \alpha)$ is countable.

Proposition 3.2.6. Every well ordered set has the least upper bound property.

PROOF: For any subset that is bounded above, the set of upper bounds is nonempty, hence has a least element. \Box

Proposition 3.2.7. In a well ordered set, every element that is not greatest has a successor.

PROOF: If a is not greatest, then $\{x: x>a\}$ is nonempty, hence has a least element. \square

Theorem 3.2.8 (Transfinite Induction). Let J be a well ordered set. Let $S \subseteq J$. Assume that, for every $\alpha \in J$, if $\forall x < \alpha.x \in S$ then $\alpha in S$. Then S = J.

PROOF: Otherwise J-S would be a nonempty subset of J with no least element. \sqcap

Proposition 3.2.9. Let I be a well ordered set. Let $\{A_i\}_{i\in I}$ be a family of well ordered sets. Define < on $\coprod_{i\in I} A_i$ by: $\kappa_i(a) < \kappa_j(b)$ iff either i < j, or i = j and a < b in A_i . Then < well orders $\coprod_{i\in I} A_i$.

Proof: Easy.

Theorem 3.2.10. Let J and C be well ordered sets. Assume there is no surjective function mapping a section of J onto C. Then there exists a unique function $h: J \to C$ such that, for all $x \in J$, we have h(x) is the least element of $C - h((-\infty, x))$.

Proof:

- $\langle 1 \rangle 1$. For a function h mapping either a section of J or all of J into C, let us say h is acceptable iff, for all $x \in \text{dom } h$, we have $(-\infty, x) \subseteq \text{dom } h$ and h(x) is the least element of $C h((-\infty, x))$.
- $\langle 1 \rangle 2$. If h and k are acceptable functions then h(x) = k(x) for all x in both domains.
 - $\langle 2 \rangle 1$. Let: $x \in J$
 - $\langle 2 \rangle 2$. Assume: as transfinite induction hypothesis that, for all y < x and any acceptable functions h and k with $y \in \text{dom } h \cap \text{dom } k$, we have h(y) = k(y)
 - $\langle 2 \rangle 3$. Let: h and k be acceptable functions with $x \in \text{dom } h \cap \text{dom } k$
 - $\langle 2 \rangle 4$. $C h((\infty, x)) = C k((-\infty, x))$

PROOF: By $\langle 2 \rangle 2$.

 $\langle 2 \rangle 5.$ h(x) = k(x)

PROOF: By $\langle 2 \rangle 3$, each is the least element of the set in $\langle 2 \rangle 4$.

- $\langle 1 \rangle 3$. For $\alpha \in J$, if there exists an acceptable function $(-\infty, \alpha) \to C$, then there exists an acceptable function $(-\infty, \alpha] \to C$.
 - $\langle 2 \rangle 1$. Let: $\alpha \in J$
 - $\langle 2 \rangle 2$. Let: $f: (-\infty, \alpha) \to C$ be acceptable.
 - $\langle 2 \rangle 3$. Let: $g: (-\infty, \alpha] \to C$ be the function given by

$$g(x) = \begin{cases} f(x) & \text{if } x < \alpha \\ \text{the least element of } C - f((-\infty, \alpha)) & \text{if } x = \alpha \end{cases}$$

- $\langle 2 \rangle 4$. g is acceptable.
- $\langle 1 \rangle$ 4. Let $K \subseteq J$. Assume that, for all $\alpha \in K$, there exists an acceptable function $(-\infty, \alpha) \to C$. Then there exists an acceptable function $\bigcup_{\alpha \in K} (-\infty, \alpha) \to C$.

```
\langle 2 \rangle 1. Define f: \bigcup_{\alpha \in K} (-\infty, \alpha) \to C by: f(x) = y iff there exists \alpha \in K and g: (-\infty, \alpha) \to C acceptable such that g(x) = y.
```

 $\langle 1 \rangle 5$. For every $\beta \in J$, there exists an acceptable function $(-\infty, \beta) \to C$

 $\langle 2 \rangle 1$. Let: $\beta \in J$

 $\langle 2 \rangle 2$. Assume: as transfinite induction hypothesis that, for all $\alpha < \beta$, there exists an acceptable function $(-\infty, \alpha) \to C$

 $\langle 2 \rangle 3$. Case: β has a predecessor

 $\langle 3 \rangle 1$. Let: α be the predecessor of β .

 $\langle 3 \rangle 2$. There exists an acceptable function $(-\infty, \alpha) \to C$.

 $\langle 3 \rangle 3$. There exists an acceptable function $(-\infty, \beta) \to C$.

PROOF: By $\langle 1 \rangle 3$ since $(-\infty, \beta) = (-\infty, \alpha]$.

 $\langle 2 \rangle 4$. Case: β has no predecessor.

PROOF: The result follows by $\langle 1 \rangle 4$ since $(-\infty, \beta) = \bigcup_{\alpha < \beta} (-\infty, \alpha)$.

 $\langle 1 \rangle$ 6. There exists an acceptable function $J \to C$.

 $\langle 2 \rangle 1$. Case: J has a greatest element.

 $\langle 3 \rangle 1$. Let: g be greatest.

 $\langle 3 \rangle 2$. There exists an acceptable function $(-\infty, g) \to C$.

Proof: $\langle 1 \rangle 5$

 $\langle 3 \rangle 3$. There exists an acceptable function $J \to C$.

PROOF: By $\langle 1 \rangle 3$ since $J = (-\infty, g]$.

 $\langle 2 \rangle 2$. Case: J has no greatest element.

PROOF: By $\langle 1 \rangle 4$ since $J = \bigcup_{\alpha \in J} (-\infty, \alpha)$.

Corollary 3.2.10.1 (Cardinal Comparability). Let A and B be sets. Then either $A \leq B$ or $B \leq A$.

PROOF: Choose well orderings of A and B. Then either there exists a surjection $A \twoheadrightarrow B$, or there exists an injective function $A \rightarrowtail B$. \square

Chapter 4

Category Theory

4.1 Categories

Definition 4.1.1. A category C consists of:

- a set Ob(C) of *objects*. We write $A \in C$ for $A \in Ob(C)$.
- for any objects X and Y, a set $\mathcal{C}[X,Y]$ of morphisms from X to Y. We write $f:X\to Y$ for $f\in\mathcal{C}[X,Y]$.
- for any objects X, Y and Z, a function $\circ : \mathcal{C}[Y, Z] \times \mathcal{C}[X, Y] \to \mathcal{C}[X, Z]$, called *composition*.

such that:

- Given $f: X \to Y$, $g: Y \to Z$ and $h: Z \to W$, we have $h \circ (g \circ f) = (h \circ g) \circ f$
- For any object X, there exists a morphism $id_X : X \to X$, the *identity morphism* on X, such that:
 - for any object Y and morphism $f: Y \to X$ we have $\mathrm{id}_X \circ f = f$
 - for any object Y and morphism $f: X \to Y$ we have $f \circ id_X = f$

We write the composite of morphism f_1, \ldots, f_n as $f_n \circ \cdots \circ f_1$. This is unambiguous thanks to Associativity.

Definition 4.1.2. Let **Set** be the category of small sets and functions.

Definition 4.1.3. Let **LPos** be the category of linearly ordered sets and monotone functions.

Proposition 4.1.4. Any finite linearly ordered set is isomorphic to $\{m \in \mathbb{N} : m < n\}$ for some n.

Proof:

 $\langle 1 \rangle 1$. Every finite nonempty linearly ordered set has a greatest element.

- $\langle 2 \rangle$ 1. Let: P[n] be the property: for any linearly ordered set A, if there exists a bijection $A \approx \{m \in \mathbb{N} : m < n\}$ and A is nonempty then A has a greatest element.
- $\langle 2 \rangle 2$. P[0]

Proof: Vacuous.

- $\langle 2 \rangle 3. \ \forall n \in \mathbb{N}. P[n] \Rightarrow P[n+1]$
 - $\langle 3 \rangle 1$. Let: $n \in \mathbb{N}$
 - $\langle 3 \rangle 2$. Assume: P[n]
 - $\langle 3 \rangle 3$. Let: A be a nonempty linearly ordered set.
 - $\langle 3 \rangle 4$. Let: $f: A \approx \{m \in \mathbb{N} : m < n+1\}$
 - $\langle 3 \rangle 5$. Let: $a = f^{-1}(n)$
 - $\langle 3 \rangle 6. \ f \upharpoonright (A \{a\}) : A \{a\} \approx \{m \in \mathbb{N} : m < n\}$
 - $\langle 3 \rangle$ 7. Assume: w.l.o.g. a is not greatest in A.
 - $\langle 3 \rangle 8$. Let: b be greatest in $A \{a\}$ Proof: $\langle 3 \rangle 2$
 - $\langle 3 \rangle 9$. b is greatest in A.
- $\langle 1 \rangle 2$. Let: P[n] be the property: for any linearly ordered set A, if there exists a bijection $A \approx \{m \in \mathbb{N} : m < n\}$ then there exists an isomorphism in **LPos** $A \cong \{m \in \mathbb{N} : m < n\}$.
- $\langle 1 \rangle 3. P[0]$

PROOF: If there exists a bijection $A \approx \emptyset$ then A is empty and so the unique function $A \to \emptyset$ is an order isomorphism.

- $\langle 1 \rangle 4$. For every natural number n, if P[n] then P[n+1].
 - $\langle 2 \rangle 1$. Let: *n* be a natural number.
 - $\langle 2 \rangle 2$. Assume: P[n]
 - $\langle 2 \rangle 3$. Let: A be a linearly ordered set.
 - $\langle 2 \rangle 4$. Assume: A has n+1 elements.
 - $\langle 2 \rangle$ 5. Let: a be the greatest element in A.
 - ⟨2⟩6. Let: $f: A \{a\} \cong \{m \in \mathbb{N} : m < n\}$ be an order isomorphism. Proof: ⟨2⟩2
 - $\langle 2 \rangle 7$. Define $g: A \to \{m \in \mathbb{N} : m < n+1\}$ by

$$g(x) = \begin{cases} f(x) & \text{if } x \neq a \\ n & \text{if } x = a \end{cases}$$

- $\langle 2 \rangle 8$. g is an order isomorphism.
- $\langle 1 \rangle 5. \ \forall n \in \mathbb{N}.P[n]$

Corollary 4.1.4.1. Any finite linearly ordered set is well ordered.

Theorem 4.1.5. There exists a well ordered set, unique up to order isomorphism, that is uncountable but such that every section is countable.

Proof:

- $\langle 1 \rangle 1$. There exists a well ordered set that is uncountable but such that every section is countable.
 - $\langle 2 \rangle 1$. PICK a well ordered set A with an element $\Omega \in A$ such that $(-\infty, \Omega)$ is uncountable but $\forall \alpha < \Omega. (-\infty, \alpha)$ is countable.

4.1. CATEGORIES 35

 $\langle 2 \rangle 2$. Let: $(-\infty, Omega)$ is uncountable but every section is countable.

 $\langle 1 \rangle 2$. If A and B are uncountable well ordered sets such that every section is countable, then $A \cong B$.

PROOF: Since it cannot be that one of A and B is isomorphic to a section of the other. \square

Definition 4.1.6 (Minimal Uncountable Well Ordered Set). The *minimal uncountable well ordered set* Ω is the well ordered set that is uncountable but such that every section is countable.

We write $\overline{\Omega}$ for the well ordered set $\Omega \cup \{\Omega\}$ where Ω is greatest.

Proposition 4.1.7. Every countable subset of Ω is bounded above.

Proof:

- $\langle 1 \rangle 1$. Let: A be a countable subset of Ω .
- $\langle 1 \rangle 2$. For all $a \in A$ we have $(-\infty, a)$ is countable.
- $\langle 1 \rangle 3$. $\bigcup_{a \in A} (-\infty, a)$ is countable.
- $\langle 1 \rangle 4. \bigcup_{a \in A} (-\infty, a) \neq \Omega$
- $\langle 1 \rangle 5$. Pick $x \in \Omega \bigcup_{a \in A} (-\infty, a)$
- $\langle 1 \rangle 6$. x is an upper bound for A.

Proposition 4.1.8. Ω has no greatest element.

PROOF: For any $\alpha \in \Omega$ we have $(-\infty, \alpha]$ is countable and hence not the whole of Ω . \square

Proposition 4.1.9. There are uncountably many elements of Ω that have no predecessor.

Proof:

- $\langle 1 \rangle 1$. Let: A be the set of all elements of Ω that have no predecessor.
- $\langle 1 \rangle$ 2. Let: $f: A \times \mathbb{N} \to \Omega$ be the function that maps (a, n) to the nth successor of a.
- $\langle 1 \rangle 3$. f is surjective.
 - $\langle 2 \rangle$ 1. Assume: for a contradiction $x \in \Omega$ and there is no element $a \in A$ and $n \in \mathbb{N}$ such that x is the nth successor of a.
 - $\langle 2 \rangle 2$. Let: x_n be the *n*th predecessor of x for $n \in \mathbb{N}$.
 - $\langle 2 \rangle 3$. $\{x_n : n \in \mathbb{N}\}$ is a nonempty subset of Ω with no least element.
- $\langle 1 \rangle 4$. $A \times \mathbb{N}$ is uncountable.
- $\langle 1 \rangle 5$. A is uncountable.

Definition 4.1.10. We identify a poset (A, \leq) with the category with:

- \bullet set of objects A
- for $a, b \in A$, the set of homomorphisms is $\{x \in 1 : a \leq b\}$

Proposition 4.1.11. A category is a poset iff, for any two objects, there exists at most one morphism between them.

Proposition 4.1.12. The identity morphism on an object is unique.

Proof:

```
\langle 1 \rangle 1. Let: \mathcal{C} be a category.
```

 $\langle 1 \rangle 2$. Let: $A \in \mathcal{C}$

 $\langle 1 \rangle 3$. Let: $i, j: A \to A$ be identity morphisms on A.

 $\langle 1 \rangle 4. \ i = j$

Proof:

$$i = i \circ j$$
 (j is an identity on A)
= j (i is an identity on A)

Proposition 4.1.13. Let A be a linearly ordered set. Then A is well ordered if and only if it does not contain a subset of order type \mathbb{N}^{op} .

Proof:

 $\langle 1 \rangle 1$. If A is well ordered then it does not contain a subset of order type \mathbb{N}^{op} . PROOF: A subset of order type \mathbb{N}^{op} would be a subset with no least element.

- $\langle 1 \rangle 2$. If A is not well ordered then it contains a subset of order type \mathbb{N}^{op} .
 - $\langle 2 \rangle 1$. Assume: A is not well ordered.
 - $\langle 2 \rangle 2$. Pick a nonempty subset S with no least element.
 - $\langle 2 \rangle 3$. Pick $a_0 \in S$
 - $\langle 2 \rangle 4$. Extend to a sequence (a_n) in S such that $a_{n+1} < a_n$ for all n.
 - $\langle 2 \rangle 5$. $\{a_n : n \in \mathbb{N}\}$ has order type \mathbb{N}^{op} .

П

Corollary 4.1.13.1. Let A be a linearly ordered set. If every countable subset of A is well ordered, then A is well ordered.

Definition 4.1.14. Given $f: A \to B$ and an object C, define the function $f^*: \mathcal{C}[B,C] \to \mathcal{C}[A,C]$ by $f^*(g) = g \circ f$.

Definition 4.1.15. Given $f: A \to B$ and an object C, define the function $f_*: \mathcal{C}[C,A] \to \mathcal{C}[C,B]$ by $f_*(g) = f \circ g$.

4.1.1 Monomorphisms

Definition 4.1.16 (Monomorphism). Let $f: A \to B$. Then f is *monic* or a *monomorphism*, $f: A \rightarrowtail B$, iff, for any object X and functions $x, y: X \to A$, if $f \circ x = f \circ y$ then x = y.

4.1.2 Epimorphisms

Definition 4.1.17 (Epimorphism). Let $f:A\to B$. Then f is *epic* or an *epimorphism*, $f:A\twoheadrightarrow B$, iff, for any object X and functions $x,y:B\to X$, if $x\circ f=y\circ f$ then x=y.

4.1.3 Sections and Retractions

Definition 4.1.18 (Section, Retraction). Let $r: A \to B$ and $s: B \to A$. Then r is a retraction of s, and s is a section of r, iff $rs = \mathrm{id}_B$.

Proposition 4.1.19. Let $f: A \to B$ and $r, s: B \to A$. If r is a retraction of f and s is a section of f then r = s.

Proof:

$$r = rid_B$$
 (Unit Law)
 $= rfs$ (s is a section of f)
 $= id_A s$ (r is a retraction of f)
 $= s$ (Unit Law)

Proposition 4.1.20. Every section is monic.

Proof:

```
\langle 1 \rangle 1. Let: s: B \to A be a section of r: A \to B. \langle 1 \rangle 2. Let: X be an object and x,y: X \to B \langle 1 \rangle 3. Assume: s \circ x = s \circ y \langle 1 \rangle 4. x = y Proof: x = r \circ s \circ x = r \circ s \circ y = y.
```

Proposition 4.1.21. Every retraction is epic.

Proof: Dual. \square

4.1.4 Isomorphisms

Definition 4.1.22 (Isomorphism). A morphism $f: A \to B$ is an *isomorphism*, $f: A \cong B$, iff there exists a morphism $f^{-1}: B \to A$ that is both a retraction and section of f.

Objects A and B are isomorphic, $A\cong B,$ iff there exists an isomorphism between them.

Proposition 4.1.23. The inverse of an isomorphism is unique.

Proof: From Proposition 4.1.19. \Box

Proposition 4.1.24. *If* $f : A \cong B$ *then* $f^{-1} : B \cong A$ *and* $(f^{-1})^{-1} = f$.

PROOF: Since $ff^{-1} = id_B$ and $f^{-1}f = id_A$. \square

Isomorphism.

Define the opposite category.

Slice categories

Definition 4.1.25. Let C be a category and $B \in C$. The category C_B^B of objects over and under B is the category with:

- objects all triples (X, u, p) such that $u: B \to X$ and $p: X \to B$
- morphisms $f:(X,u,p)\to (Y,u',p')$ all morphisms $f:X\to Y$ such that fu=u' and p'f=p.

Proposition 4.1.26.

$$\mathcal{C}_B^B \cong (\mathcal{C}/B) \backslash \mathrm{id}_B \cong (\mathcal{C}\backslash B) / \mathrm{id}_B$$

 $(B, \mathrm{id}_B, \mathrm{id}_B)$ is the zero object in \mathcal{C}_B^B .

4.1.5 Initial Objects

Definition 4.1.27 (Initial Object). An object I is *initial* iff, for any object X, there exists exactly one morphism $I \to X$.

Proposition 4.1.28. The empty set is initial in Set.

PROOF: For any set A, the nowhere-defined function is the unique function $\emptyset \to A$. \square

Proposition 4.1.29. If I and I' are initial objects, then there exists a unique isomorphism $I \cong I'$.

Proof:

- $\langle 1 \rangle 1$. Let: $i: I \to I'$ be the unique morphism $I \to I'$.
- $\langle 1 \rangle 2$. Let: $i^{-1}: I' \to I$ be the unique morphism $I' \to I$.
- $\langle 1 \rangle 3. \ ii^{-1} = id_{I'}$

PROOF: There is only one morphism $I' \to I'$.

 $\langle 1 \rangle 4. \ i^{-1}i = id_I$

Proof: There is only one morphism $I \to I$.

4.1.6 Terminal Objects

Definition 4.1.30 (Terminal Object). An object T is terminal iff, for any object X, there exists exactly one morphism $X \to T$.

Proposition 4.1.31. 1 is terminal in Set.

PROOF: For any set A, the constant function to * is the only function $A \to 1$.

Proposition 4.1.32. If T and T' are terminal objects, then there exists a unique isomorphism $T \cong T'$.

Proof: Dual to Proposition 4.1.29. \square

Zero Objects 4.1.7

Definition 4.1.33 (Zero Object). An object Z is a zero object iff it is an initial object and a terminal object.

Definition 4.1.34 (Zero Morphism). Let \mathcal{C} be a category with a zero object Z. Let $A, B \in \mathcal{C}$. The zero morphism $A \to B$ is the unique morphism $A \to Z \to B$.

Proposition 4.1.35. There is no zero object in Set.

Proof: Since $\emptyset \not\approx 1$. \square

4.1.8 Triads

Definition 4.1.36 (Triad). Let \mathcal{C} be a category. A triad consists of objects X, Y, M and morphisms $\alpha: X \to M$, $\beta: Y \to M$. We call M the codomain of the triad.

4.1.9 Cotriads

Definition 4.1.37 (Cotriad). Let \mathcal{C} be a category. A *cotriad* consists of objects X, Y, W and morphisms $\xi: W \to X, \eta: W \to Y$. We call W the domain of the triad.

4.1.10 Pullbacks

Definition 4.1.38 (Pullback). A diagram

$$\begin{array}{c|c} W & \xrightarrow{\xi} & X \\ \eta & & \downarrow^{\alpha} \\ Y & \xrightarrow{\beta} & M \end{array}$$

is a pullback iff $\alpha \xi = \beta \eta$ and, for every object Z and morphism $f: Z \to X$ and $g: Z \to Y$ such that $\alpha f = \beta g$, there exists a unique $h: Z \to W$ such that $\xi h = f$ and $\eta h = g$.

In this case we also say that η is the *pullback* of β along α .

Proposition 4.1.39. If $\xi: W \to X$ and $\eta: W \to Y$ form a pullback of $\alpha: X \to M$ and $\beta: Y \to M$, and $\xi': W' \to X$ and $\eta': W' \to Y$ also form the pullback of α and β , then there exists a unique isomorphism $\phi: W \cong W'$ such that $\eta' \phi = \eta$ and $\xi' \phi = \xi$.

PROOF:

 $\langle 1 \rangle 1$. Let: $\phi: W \to W'$ be the unique morphism such that $\eta' \phi = \eta$ and $\xi' \phi = \xi$. $\langle 1 \rangle 2$. Let: $\phi^{-1}: W' \to W$ be the unique morphism such that $\eta \phi^{-1} = \eta'$ and

PROOF: Each is the unique $x: W' \to W'$ such that $\eta' x = \eta'$ and $\xi' x = \xi'$. $\langle 1 \rangle 4$. $\phi^{-1} \phi = \mathrm{id}_W$

PROOF: Each is the unique $x: W \to W$ such that $\eta x = \eta$ and $\xi x = \xi$.

Proposition 4.1.40. For any morphism $h: A \to B$, the following diagram is a pullback diagram.

$$A \xrightarrow{h} B$$

$$\parallel \qquad \parallel$$

$$A \xrightarrow{h} B$$

Proof:

 $\langle 1 \rangle 1$. Let: Z be an object.

 $\langle 1 \rangle 2$. Let: $f: Z \to B$ and $g: Z \to A$ satisfy $\mathrm{id}_B f = hg$

 $\langle 1 \rangle 3.$ $g: Z \to B$ is the unique morphism such that $\mathrm{id}_A g = g$ and hg = f.

Proposition 4.1.41. The pullback of an isomorphism is an isomorphism.

Proof:

 $\langle 1 \rangle 1$. Let:

$$W \xrightarrow{\xi} X$$

$$\eta \downarrow \alpha$$

$$Y \xrightarrow{\beta} M$$

be a pullback diagram.

 $\langle 1 \rangle 2$. Assume: β is an isomorphism.

 $\langle 1 \rangle$ 3. Let: ξ^{-1} be the unique morphism $X \to W$ such that $\xi \xi^{-1} = \mathrm{id}_X$ and $\eta \xi^{-1} = \beta^{-1} \alpha$.

PROOF: This exists since $\alpha id_X = \beta \beta^{-1} \alpha = \alpha$.

 $\langle 1 \rangle 4. \ \xi^{-1} \xi = \mathrm{id}_W$

PROOF: Each is the unique $x: W \to W$ such that $\xi x = \xi$ and $\eta x = \eta$.

Proposition 4.1.42. Let $\beta:(Y,y)\to (M,m)$ and $\alpha:(X,x)\to (M,m)$ in $\mathcal{C}\backslash A$. Let

$$W \xrightarrow{\xi} X$$

$$\downarrow^{\eta} \qquad \downarrow^{\alpha}$$

$$Y \xrightarrow{\beta} M$$

be a pullback in C. Let $w: A \to W$ be the unique morphism such that $\xi w = x$ and $\eta w = y$. Then $\xi: (W, w) \to (X, x)$ and $\eta: (W, w) \to (Y, y)$ is the pullback of β and α in $C \setminus A$.

Proof:

$$\langle 1 \rangle 1$$
. Let: $(Z, z) \in \mathcal{C} \backslash A$

$$\langle 1 \rangle 2$$
. Let: $f:(Z,z) \to (X,x)$ and $g:(Z,z) \to (Y,y)$ satisfy $\alpha f = \beta g$.

$$\langle 1 \rangle 3$$
. Let: $h: Z \to W$ be the unique morphism such that $\xi h = f$ and $\eta h = g$. $\langle 1 \rangle 4$. $hz = w$

$$\langle 2 \rangle 1. \ \xi hz = \xi w$$

Proof:

$$\xi hz = fz \qquad (\langle 1 \rangle 3)$$

$$= x \qquad (\langle 1 \rangle 2)$$

$$= \xi w$$

 $\langle 2 \rangle 2$. $\eta hz = \eta w$

PROOF: Similar.

$$\langle 1 \rangle 5. \ h: (Z, z) \to (W, w)$$

Proposition 4.1.43. Let $\beta:(Y,y)\to (M,m)$ and $\alpha:(X,x)\to (M,m)$ in \mathcal{C}/A . Let

$$W \xrightarrow{\xi} X$$

$$\downarrow^{\eta} \qquad \downarrow^{\alpha}$$

$$Y \xrightarrow{\beta} M$$

be a pullback in C. Let $w = x\xi : W \to A$. Then $\xi : (W, w) \to (X, x)$ and $\eta : (W, w) \to (Y, y)$ form a pullback of α and β in C/A.

Proof:

$$\langle 1 \rangle 1. \ \eta : (W, w) \to (Y, y)$$

Proof:

$$y\eta = m\beta\eta$$
$$= m\alpha\xi$$
$$= x\xi$$
$$= w$$

 $\langle 1 \rangle 2$. Let: $(Z, z) \in \mathcal{C}/A$

 $\langle 1 \rangle 3$. Let: $f:(Z,z) \to (X,x)$ and $g:(Z,z) \to (Y,y)$ satisfy $\alpha f = \beta g$.

 $\langle 1 \rangle 4$. Let: $h: Z \to W$ be the unique morphism such that $\xi h = f$ and $\eta h = g$.

 $\langle 1 \rangle 5. \ h: (Z,z) \to (W,w)$

Proof:

$$wh = x\xi h$$

$$= xf \qquad (\langle 1 \rangle 4)$$

$$= z \qquad (\langle 1 \rangle 3)$$

Proposition 4.1.44. In **Set**, let $\alpha: X \to M$ and $\beta: Y \to M$. Let $W = \{(x,y) \in X \times Y : \alpha(x) = \beta(y)\}$ with inclusion $i: W \to X \times Y$. Let $\xi = \pi_1 i: W \to X$ and $\eta: \pi_2 i: W \to Y$. Then ξ and η form the pullback of α and β .

Proof:

 $\langle 1 \rangle 1$. $\alpha \xi = \beta \eta$

PROOF: For $w \in W$, if i(w) = (x, y) then then $\alpha(\xi(w)) = \alpha(x) = \beta(y) = \beta(\eta(w))$.

 $\langle 1 \rangle 2$. For every set Z and functions $f: Z \to X, \ g: Z \to Y$ such that $\alpha f = \beta g$, there exists a unique $h: Z \to W$ such that $\xi h = f$ and $\eta h = g$

PROOF: For $z \in Z$, let h(z) be the unique element of W such that i(h(z)) = (f(z), g(z)).

Pullback lemma

4.1.11 Pushouts

Definition 4.1.45 (Pushout). A diagram

$$\begin{array}{ccc}
W & \xrightarrow{\xi} X & (4.1) \\
\eta & & \downarrow \alpha & \\
Y & \xrightarrow{\beta} M &
\end{array}$$

is a pushout iff $\alpha \xi = \beta \eta$ and, for every object Z and morphism $f: X \to Z$ and $g: Y \to Z$ such that $f\xi = g\eta$, there exists a unique $h: M \to Z$ such that $h\alpha = f$ and $h\beta = g$.

We also say that β is the *pushout* of ξ along η .

Proposition 4.1.46. If $\alpha: X \to M$ and $\beta: Y \to M$ form a pushout of $\xi: W \to X$ and $\eta: W \to Y$, and $\alpha': X \to M'$ and $\beta': Y \to M'$ also form a pushout of ξ and η , then there exists a unique isomorphism $\phi: M \cong M'$ such that $\phi\alpha = \alpha'$ and $\phi\beta = \beta'$.

PROOF: Dual to Proposition 4.1.39. \square

Proposition 4.1.47. For any morphism $h: A \to B$, the following diagram is a pushout diagram.

$$A \xrightarrow{h} B$$

$$\parallel \qquad \parallel$$

$$A \xrightarrow{h} B$$

Proof: Dual to Proposition 4.1.40.

Proposition 4.1.48. The diagram (4.1) is a pushout in C iff it is a pullback in C^{op} .

Proof: Immediate from definitions. \Box

Proposition 4.1.49. The pushout of an isomorphism is an isomorphism.

4.1. CATEGORIES

43

Proof: Dual to Proposition 4.1.41.

Proposition 4.1.50. Let $\xi:(W,w)\to (X,x)$ and $\eta:(W,w)\to (Y,y)$ in $\mathcal{C}\backslash A$. Let

$$W \xrightarrow{\xi} X$$

$$\downarrow \alpha$$

$$Y \xrightarrow{\beta} M$$

be a pushout in C. Let $m := \alpha x : A \to M$. Then $\alpha : (X,x) \to (M,m)$ and $\beta: (Y,y) \to (M,m)$ is the pushout of ξ and η in $\mathcal{C}\backslash A$.

PROOF: Dual to Proposition 4.1.43.

Proposition 4.1.51. Let $\xi:(W,w)\to (X,x)$ and $\eta:(W,w)\to (Y,y)$ in \mathcal{C}/A . Let

$$W \xrightarrow{\xi} X$$

$$\downarrow^{\eta} \qquad \downarrow^{\alpha}$$

$$Y \xrightarrow{\beta} M$$

be a pushout in C. Let $m: M \to A$ be the unique morphism such that $m\alpha = x$ and $m\beta = y$. Then $\alpha: (X, x) \to (M, m)$ and $\beta: (Y, y) \to (M, m)$ is the pushout of ξ and η in $C \setminus A$.

Proof: Dual to Proposition 4.1.42. \square

Proposition 4.1.52. Set has pushouts.

Proof:

- $\langle 1 \rangle 1$. Let: $\xi : W \to X$ and $\eta : W \to Y$.
- $\langle 1 \rangle 2$. Let: \sim be the equivalence relation on X + Y generated by $\xi(w) \sim \eta(w)$ for all $w \in W$
- $\langle 1 \rangle 3$. Let: $M = (X + Y) / \sim$ with canonical projection $\pi : X + Y \twoheadrightarrow M$.
- $\langle 1 \rangle 4$. Let: $\alpha = \pi \circ \kappa_1 : X \to M$
- $\langle 1 \rangle 5$. Let: $\beta = \pi \circ \kappa_2 : Y \to M$
- $\langle 1 \rangle 6$. Let: Z be any set, $f: X \to Z$ and $g: Y \to Z$.
- $\langle 1 \rangle 7$. Assume: $f \xi = g \eta$
- $\langle 1 \rangle 8$. Let: $h: X + Y \to Z$ be the function defined by h(x) = f(x) and h(y) = f(x)g(y) for $x \in X$ and $y \in Y$
- $\langle 1 \rangle 9$. h respects \sim

PROOF: For $w \in W$ we have

$$h(\xi(w)) = f(\xi(w)) \tag{18}$$

$$=g(\eta(w)) \qquad \qquad (\langle 1 \rangle 7)$$

$$= h(\eta(w)) \tag{\langle 1 \rangle 8}$$

- $\langle 1 \rangle 10$. Let: $\overline{h}: M \to Z$ be the induced function.
- $\langle 1 \rangle 11$. $\overline{h}\alpha = f$

Proof:

$$\overline{h}(\alpha(x)) = \overline{h}(\pi(\kappa_1(x)))$$

$$= h(\kappa_1(x))$$

$$= f(x)$$

 $\langle 1 \rangle 12$. $\overline{h}\beta = g$

PROOF: Similar.

 $\langle 1 \rangle 13$. For all $k: M \to Z$, if $k\alpha = f$ and $k\beta = g$ then $k = \overline{h}$. PROOF:

$$k(\pi(\kappa_1(x))) = k(\alpha(x))$$

$$= f(x)$$

$$k(\pi(\kappa_2(y))) = k(\beta(y))$$

$$= g(y)$$

$$\therefore k \circ \pi = h$$

$$\therefore k = \overline{h}$$

Definition 4.1.53. Let $u: A \rightarrow X$ be an injection. The *pointed set obtained* from X by collapsing (A, u), denoted X/(A, u), is the pushout

$$\begin{array}{ccc} A & \longrightarrow & 1 \\ \downarrow u & & * \downarrow \\ X & \longrightarrow & X/(A,u) \end{array}$$

Proposition 4.1.54. In **Set***, any two morphisms $1 \to X$ and $1 \to Y$ have a pushout.

PROOF: The pushout of $a:(1,*)\to (X,x)$ and $b:(1,*)\to (Y,y)$ is $(X+Y/\sim,x)$ where \sim is the equivalence relation generated by $x\sim y$. \square

Definition 4.1.55 (Wedge). The *wedge* of pointed sets X and Y, $X \vee Y$, is the pushout of the unique morphism $1 \to X$ and $1 \to Y$.

Definition 4.1.56 (Smash). Let X and Y be pointed sets. Let $\xi: X \vee Y \to X$ be the unique morphism such that the following diagram commutes.

Let $\eta: X \vee Y \to Y$ be the unique morphism such that the following diagram

commutes.

Let $\zeta = \langle \xi, \eta \rangle : X \vee Y \to X \times Y$. The *smash* of X and Y, X \(Y \), is the result of collapsing $X \times Y$ with respect to ζ .

Pushout lemma

4.1.12 Subcategories

Definition 4.1.57 (Subcategory). A subcategory C' of a category C consists of:

- a subset Ob(C') of C
- for all $A, B \in \text{Ob}(\mathcal{C}')$, a subset $\mathcal{C}'[A, B] \subseteq \mathcal{C}[A, B]$

such that:

- for all $A \in \mathrm{Ob}(\mathcal{C}')$, we have $\mathrm{id}_A \in \mathcal{C}'[A,A]$
- for all $f \in \mathcal{C}'[A, B]$ and $g \in \mathcal{C}'[B, C]$, we have $g \circ f \in \mathcal{C}'[A, C]$.

It is a full subcategory iff, for all $A, B \in \text{Ob}(\mathcal{C}')$, we have $\mathcal{C}'[A, B] = \mathcal{C}[A, B]$.

4.1.13 Opposite Category

Definition 4.1.58 (Opposite Category). For any category C, the *opposite* category C^{op} is the category with

- $Ob(\mathcal{C}^{op}) = Ob(\mathcal{C})$
- $\mathcal{C}^{\text{op}}[A,B] = \mathcal{C}[B,A]$
- Given $f \in \mathcal{C}^{\text{op}}[A, B]$ and $g \in \mathcal{C}^{\text{op}}[B, C]$, their composite in \mathcal{C}^{op} is $f \circ g$, where \circ is composition in \mathcal{C} .

Proposition 4.1.59. An object is initial in C iff it is terminal in C^{op} .

PROOF: Immediate from definitions.

Proposition 4.1.60. An object is terminal in C iff it is initial in C^{op} .

Proof: Immediate from definitions.

Corollary 4.1.60.1. If T and T' are terminal objects in C then there exists a unique isomorphism $T \cong T'$.

4.1.14 Groupoids

Definition 4.1.61 (Groupoid). A *groupoid* is a category in which every morphism is an isomorphism.

4.1.15 Concrete Categories

Definition 4.1.62 (Concrete Category). A concrete category C consists of:

- a set Ob(C) of *objects*
- for any object $A \in Ob(\mathcal{C})$, a set |A|
- for any objects $A, B \in Ob(\mathcal{C})$, a set of functions $\mathcal{C}[A, B] \subseteq |B|^{|A|}$

such that:

- for any $f \in \mathcal{C}[A, B]$ and $g \in \mathcal{C}[B, C]$, we have $g \circ f \in \mathcal{C}[A, C]$
- for any object A we have $id_{|A|} \in C[A, A]$.

4.1.16 Power of Categories

Definition 4.1.63. Let \mathcal{C} be a category and J a set. The category \mathcal{C}^J is the category with:

- objects all J-indexed families of objects of $\mathcal C$
- \bullet morphisms $\{X_j\}_{j\in J}\to \{Y_j\}_{j\in J}$ all families $\{f_j\}_{j\in J}$ where $f_j:X_j\to Y_j$

4.1.17 Arrow Category

Definition 4.1.64 (Arrow Category). Let \mathcal{C} be a category. The arrow category $\mathcal{C}^{\rightarrow}$ is the category with:

- objects all triples (A, B, f) where $f: A \to B$ in \mathcal{C}
- morphisms $(A,B,f) \to (C,D,g)$ all pairs $(u:A \to C,v:B \to D)$ such that vf=gu.

4.1.18 Slice Category

Definition 4.1.65 (Slice Category). Let C be a category and $A \in C$. The *slice category under* A, $C \setminus A$, is the category with:

- objects all pairs (B, f) where $B \in \mathcal{C}$ and $f: A \to B$
- morphisms $(B, f) \to (C, g)$ are morphisms $u: B \to C$ such that uf = g.

We identify this with the subcategory of $\mathcal{C}^{\rightarrow}$ formed by mapping (B, f) to (A, B, f) and u to (id_A, u) .

Proposition 4.1.66. If $s:(B,f) \to (C,g)$ in $C \setminus A$, then any retraction of s in C is a retraction of s in $C \setminus A$.

Proof:

```
\begin{array}{l} \langle 1 \rangle 1. \  \, \text{Let:} \  \, r: C \to B \  \, \text{be a retraction of} \, s \  \, \text{in} \, \, \mathcal{C}. \\ \langle 1 \rangle 2. \  \, rg = f \\ \quad \text{Proof:} \, rg = rsf = f. \\ \langle 1 \rangle 3. \  \, r: (C,g) \to (B,f) \  \, \text{in} \, \, \mathcal{C} \backslash A \\ \langle 1 \rangle 4. \  \, rs = \mathrm{id}_{(B,f)} \\ \quad \text{Proof:} \, \, \text{Because composition is inherited from} \, \, \mathcal{C}. \\ \square \end{array}
```

Proposition 4.1.67. id_A is the initial object in $C \setminus A$.

PROOF: For any $(B, f) \in \mathcal{C}\backslash A$, we have f is the only morphism $A \to B$ such that $f \operatorname{id}_A = f$. \square

Proposition 4.1.68. If A is terminal in C then id_A is the zero object in $C \setminus A$.

PROOF: For any $(B, f) \in \mathcal{C} \backslash A$, the unique morphism $!: B \to A$ is the unique morphism such that $!f = \mathrm{id}_A$. \square

Definition 4.1.69 (Pointed Sets). The category of pointed sets is $Set \setminus 1$.

Definition 4.1.70. Let C be a category and $A \in C$. The *slice category over* A, C/A, is the category with:

- objects all pairs (B, f) with $f: B \to A$
- morphisms $u:(B,f)\to (C,g)$ all morphisms $u:B\to C$ such that gu=f.

Proposition 4.1.71. Let $u:(B,f) \to (C,g): \mathcal{C}/A$. Any section of u in \mathcal{C} is a section of u in \mathcal{C}/A .

PROOF: Dual to Proposition 4.1.66.

Proposition 4.1.72. id_A is terminal in C/A.

PROOF: Dual to Proposition 4.1.67.

Proposition 4.1.73. If A is initial in C then id_A is the zero object in C/A.

Proof: Dual to Proposition 4.1.68. \square

Definition 4.1.74. Let $A \in \mathcal{C}$. The category of objects *over and under* A, written \mathcal{C}_A^A , is the category with:

- objects all triples (X, u, p) where $u: A \to X, p: X \to A$ and $pu = \mathrm{id}_A$
- morphism $f:(X,u,p)\to (Y,v,q)$ all morphisms $f:X\to Y$ such that fu=v and qf=p

Proposition 4.1.75. (A, id_A, id_A) is the zero object in \mathcal{C}_A^A .

PROOF: For any object (X, u, p), we have p is the unique morphism $(X, u, p) \rightarrow (A, \mathrm{id}_A, \mathrm{id}_A)$, and u is the unique morphism $(A, \mathrm{id}_A, \mathrm{id}_A) \rightarrow (X, u, p)$. \square

Definition 4.1.76 (Fibre Collapsing). Let B be a set. Let $u:(A,a)\to (X,x)$ in \mathbf{Set}/B . Form the pushout

$$\begin{array}{ccc}
A & \xrightarrow{a} & B \\
\downarrow u & \downarrow & \downarrow \\
X & \xrightarrow{i} & C
\end{array}$$

Let $c: C \to B$ be the unique morphism such that $cj = \mathrm{id}_B$ and ci = x. Then $(C, j, c) \in \mathbf{Set}_B^B$ is called the set over and under B obtained from X by fibre collapsing with respect to u. If (A, u) is a subset of X, we denote this set over and under B by $X/_B(A, u)$.

Definition 4.1.77 (Fibre Wedge). Let B be a small set. Let $(X, u_X, p_X), (Y, u_Y, p_Y) \in \mathbf{Set}_B^B$. The *fibre wedge* of X and Y is the pushout of u_X and u_Y :

$$B \xrightarrow{u_X} X$$

$$\downarrow u_Y \qquad \qquad \downarrow$$

$$Y \longrightarrow X \vee_B Y$$

Definition 4.1.78 (Fibre Smash). Let $X, Y \in \mathbf{Set}_B^B$. Let $\xi : X \vee_B Y \to X$ be the unique morphism such that the following diagram commutes.

Let $\eta: X \vee_B Y \to Y$ be the unique morphism such that the following diagram commutes.

Let $\zeta = \langle \xi, \eta \rangle : X \vee_B Y \to X \times Y$. The fibre smash of X and Y, $X \wedge_B Y$, is the result of collapsing $X \times Y$ with respect to ζ .

4.2. FUNCTORS 49

Proposition 4.1.79. Set has products and coproducts.

Proposition 4.1.80. Let C be a category. Let $\{X_{\alpha}\}_{{\alpha}\in I}$ be a family of objects in C and $Z \in C$. Let $\coprod_{{\alpha}\in I} X_{\alpha}$ be the coproduct of $\{X_{\alpha}\}_{{\alpha}\in I}$. Then

$$\mathcal{C}[\coprod_{\alpha \in I} X_{\alpha}, Z] \approx \prod_{\alpha \in I} \mathcal{C}[X_{\alpha}, Z] \ .$$

Proposition 4.1.81. Let C be a category. Let $\{X_{\alpha}\}_{{\alpha}\in I}$ be a family of objects in C and $Z \in C$. Let $\prod_{{\alpha}\in I} X_{\alpha}$ be the product of $\{X_{\alpha}\}_{{\alpha}\in I}$. Then

$$\mathcal{C}[Z, \prod_{\alpha \in I} X_\alpha] \approx \prod_{\alpha \in I} \mathcal{C}[Z, X_\alpha] \ .$$

Proposition 4.1.82. A product in C constitutes a product in $C \setminus A$.

Proposition 4.1.83. A coproduct in C constitutes a product in C/A.

4.2 Functors

Definition 4.2.1 (Functor). Let \mathcal{C} and \mathcal{D} be categories. A functor $F:\mathcal{C}\to\mathcal{D}$ consists of:

- a function $F: \mathrm{Ob}(\mathcal{C}) \to \mathrm{Ob}(\mathcal{D})$
- for every morphism $f:A\to B$ in \mathcal{C} , a morphism $Ff:FA\to FB$ in \mathcal{D}

such that:

- for all $A \in Ob(C)$ we have $Fid_A = id_{FA}$
- for any morphism $f:A\to B$ and $g:B\to C$ in $\mathcal C,$ we have $F(g\circ f)=Fg\circ Ff$

Proposition 4.2.2. Functors preserve isomorphisms.

Proof:

 $\langle 1 \rangle 1$. Let: $F : \mathcal{C} \to \mathcal{D}$ be a functor.

 $\langle 1 \rangle 2$. Let: $f: A \cong B$ in \mathcal{C}

 $\langle 1 \rangle 3$. $Ff^{-1} \circ Ff = \mathrm{id}_{FA}$

Proof:

$$Ff^{-1} \circ Ff = F(f^{-1} \circ f)$$
$$= Fid_A$$
$$= id_{FA}$$

 $\langle 1 \rangle 4$. $Ff \circ Ff^{-1} = id_{FB}$ PROOF:

$$Ff \circ Ff^{-1} = F(f \circ f^{-1})$$
$$= Fid_B$$
$$= id_{FB}$$

П

Definition 4.2.3 (Identity Functor). For any category \mathcal{C} , the *identity* functor on \mathcal{C} is the functor $I_{\mathcal{C}}:\mathcal{C}\to\mathcal{C}$ defined by

$$I_{\mathcal{C}}A := A$$
 $(A \in \mathcal{C})$
 $I_{\mathcal{C}}f := f$ $(f : A \to B \text{ in } \mathcal{C})$

Proposition 4.2.4. Let $F: \mathcal{C} \to \mathcal{D}$. If $r: A \to B$ is a retraction of $s: B \to A$ in C then Fr is a retraction of Fs.

Proof:

$$Fr \circ Fs = F(r \circ s)$$

= Fid_B
= id_{FB}

Corollary 4.2.4.1. Let $F: \mathcal{C} \to \mathcal{D}$. If $\phi: A \cong B$ is an isomorphism in \mathcal{C} then $F\phi: FA \cong FB$ is an isomorphism in \mathcal{D} with $(F\phi)^{-1} = F\phi^{-1}$.

Definition 4.2.5 (Composition of Functors). Given functors $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{E}$, the *composite* functor $GF: \mathcal{C} \to \mathcal{E}$ is defined by

$$(GF)A = G(FA)$$
 $(A \in \mathcal{C})$
 $(GF)f = G(Ff)$ $(f: A \to B: \mathcal{C})$

Definition 4.2.6 (Category of Categories). Let Cat be the category of small categories and functors.

Definition 4.2.7 (Isomorphism of Categories). Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. Then F is an isomorphism of categories iff there exists a functor $F^{-1}: \mathcal{D} \to \mathcal{C}$, the *inverse* of F, such that $FF^{-1} = I_{\mathcal{D}}$ and $F^{-1}F = I_{\mathcal{C}}$.

Categories \mathcal{C} and \mathcal{D} are isomorphic, $\mathcal{C} \cong \mathcal{D}$, iff there exists an isomorphism between them.

Proposition 4.2.8. *If* A *is initial in* C *then* $C \setminus A \cong C$.

Proof:

 $\langle 1 \rangle 1$. Define $F : \mathcal{C} \backslash A \to \mathcal{C}$ by

$$F(B, f) = B$$

$$F(u : (B, f) \to (C, a) = u$$

$$F(B, f) = B$$

$$F(u: (B, f) \to (C, g)) = u$$
 $\langle 1 \rangle 2$. Define $G: \mathcal{C} \to \mathcal{C} \backslash A$ by
$$GB = (B, !_B) \qquad \text{where } !_B \text{ is}$$

$$GB = (B, !_B)$$
 where $!_B$ is the unique morphism $A \to B$

$$G(u:B\to C)=u:(B,!_B)\to (C,!_C)$$

 $\langle 1 \rangle 3$. $FG = id_{\mathcal{C}}$

$$\langle 1 \rangle 4$$
. $GF = id_{\mathcal{C} \setminus A}$

PROOF: Since $GF(B, f) = (B, !_B) = (B, f)$ because the morphism $A \to B$ is unique.

4.2. FUNCTORS 51

Proposition 4.2.9. If A is terminal in C then $C/A \cong C$.

Proof: Dual.

Proposition 4.2.10.

$$\mathcal{C}_A^A \cong (\mathcal{C}/A) \backslash (A, \mathrm{id}_A) \cong (\mathcal{C} \backslash A) / (A, \mathrm{id}_A)$$

Proof:

 $\langle 1 \rangle 1$. Define a functor $F : \mathcal{C}_A^A \to (\mathcal{C}/A) \backslash (A, \mathrm{id}_A)$.

 $\langle 2 \rangle 1$. Given $A \stackrel{u}{\to} X \stackrel{p}{\to} A$ in \mathcal{C}_A^A , let F(X,u,p) = ((X,p),u)

 $\langle 2 \rangle 2$. Given $f: (A \xrightarrow{u} X \xrightarrow{p} A) \to (A \xrightarrow{v} Y \xrightarrow{q} A)$, let Ff = f.

 $\langle 1 \rangle 2$. Define a functor $G: (\mathcal{C}/A) \setminus (A, \mathrm{id}_A) \to \mathcal{C}_A^A$.

 $\langle 1 \rangle 3$. Define a functor $H: \mathcal{C}_A^A \to (\mathcal{C} \backslash A)/(A, \mathrm{id}_A)$.

 $\langle 1 \rangle 4$. Define a functor $K : (\mathcal{C} \backslash A)/(A, \mathrm{id}_A) \to \mathcal{C}_A^A$.

Definition 4.2.11 (Forgetful Functor). For any concrete category C, define the forgetful functor $U: C \to \mathbf{Set}$ by:

$$UA = |A|$$
$$Uf = f$$

Definition 4.2.12 (Switching Functor). For any category C, define the *switching functor* $T: C \times C \to C \times C$ by

$$T(A,B) = (B,A)$$
$$T(f,g) = (g,f)$$

Definition 4.2.13 (Reduction). Let $\Phi : \mathbf{Set} \to \mathbf{Set}$ be a functor. The *reduction* of Φ is the functor $\Phi^* : \mathbf{Set}_* \to \mathbf{Set}_*$ defined by: $\Phi^*(X, a)$ is the collapse of $\Phi(X)$ with respect to $\Phi(a) : \Phi(1) \rightarrowtail \Phi(X)$.

Definition 4.2.14. Extend the wedge \vee to a functor $\mathbf{Set}_* \times \mathbf{Set}_* \to \mathbf{Set}_*$ by defining, given $f: X \to X'$ and $g: Y \to Y'$, thene $f \vee g$ is the unique morphism that makes the following diagram commute.

Definition 4.2.15. Extend smash to a functor $\wedge : \mathbf{Set}_* \times \mathbf{Set}_* \to \mathbf{Set}_*$ as follows. Given $f: X \to X'$ and $g: Y \to Y'$, let $f \wedge g: X \wedge Y \to X' \wedge Y'$ be the

unique morphism such that the following diagram commutes.

Definition 4.2.16 (Reduction). Let B be a small set. Let $\Phi_B: \mathbf{Set}/B \to \mathbf{Set}/B$ be a functor. The *reduction* of Φ_B is the functor $\Phi_B^B: \mathbf{Set}_B^B \to \mathbf{Set}_B^B$ defined as follows.

For $(X, u : B \to X, p : X \to B) \in \mathbf{Set}_B^B$, let $\Phi_B^B(X)$ be the set over and under B obtained from $\Phi_B(X)$ by collapsing with respect to $\Phi_B(u) : \Phi_B(B) \to \Phi_B(X)$.

Definition 4.2.17. Extend \vee_B to a functor $\mathbf{Set}_B^B \times \mathbf{Set}_B^B \to \mathbf{Set}_B^B$.

Definition 4.2.18. Extend \wedge_B to a functor $\mathbf{Set}_B^B \times \mathbf{Set}_B^B \to \mathbf{Set}_B^B$.

Definition 4.2.19 (Faithful). A functor $F: \mathcal{C} \to \mathcal{D}$ is *faithful* iff, for any objects $A, B \in \mathcal{C}$ and morphisms $f, g: A \to B: \mathcal{C}$, if Ff = Fg then f = g.

Definition 4.2.20 (Full). A functor $F: \mathcal{C} \to \mathcal{D}$ is *full* iff, for any objects $A, B \in \mathcal{C}$ and morphism $g: FA \to FB: \mathcal{D}$, there exists $f: A \to B: \mathcal{C}$ such that Ff = g.

Definition 4.2.21 (Fully Faithful). A functor $F: \mathcal{C} \to \mathcal{D}$ is *fully faithful* iff it is full and faithful.

Definition 4.2.22 (Full Embedding). A functor $F: \mathcal{C} \to \mathcal{D}$ is a full embedding iff it is fully faithful and injective on objects.

4.3 Natural Transformations

Definition 4.3.1 (Natural Transformation). Let $F,G:\mathcal{C}\to\mathcal{D}$. A natural transformation $\tau:F\Rightarrow G$ is a family of morphisms $\{\tau_X:FX\to GX\}_{X\in\mathcal{C}}$ such that, for every morphism $f:X\to Y:\mathcal{C}$, we have $Gf\circ\tau_X=\tau_Y\circ Ff$.

$$FX \xrightarrow{Ff} FY$$

$$\tau_X \downarrow \qquad \qquad \downarrow \tau_Y$$

$$GX \xrightarrow{Gf} GY$$

Definition 4.3.2 (Natural Isomorphism). A natural transformation $\tau: F \Rightarrow G: \mathcal{C} \to \mathcal{D}$ is a natural isomorphism, $\tau: F \cong G$, iff for all $X \in \mathcal{C}$, τ_X is an isomorphism $FX \cong GX$.

Functors F and G are naturally isomorphic, $F \cong G$, iff there exists a natural isomorphism between them.

Definition 4.3.3 (Inverse). Let $\tau: F \cong G$. The *inverse* natural isomorphism $\tau^{-1}: G \cong F$ is defined by $(\tau^{-1})_X = \tau_X^{-1}$.

4.4 Bifunctors

Definition 4.4.1 (Commutative). A bifunctor $\square : \mathcal{C}^2 \to \mathcal{C}$ is *commutative* iff $\square \cong \square \circ T$, where $T : \mathcal{C}^2 \to \mathcal{C}^2$ is the swap functor.

Proposition 4.4.2. $\vee : \mathbf{Set}_* \times \mathbf{Set}_* \to \mathbf{Set}_*$ is commutative.

PROOF: Since the pushout of f and g is the pushout of g and f. \square

Proposition 4.4.3. $\wedge : \mathbf{Set}_* \times \mathbf{Set}_* \to \mathbf{Set}_*$ is commutative.

PROOF: In the diagram defining $X \wedge Y$, construct the isomorphism between the version with X and Y and the version with X for every object. \square

Proposition 4.4.4. $\vee_B : \mathbf{Set}_B^B \times \mathbf{Set}_B^B \to \mathbf{Set}_B^B$ is commutative.

Proposition 4.4.5. $\wedge_B : \mathbf{Set}_B^B \times \mathbf{Set}_B^B \to \mathbf{Set}_B^B$ is commutative.

Definition 4.4.6 (Associative). A bifunctor \square is associative iff $\square \circ (\square \times id) \cong \square \circ (id \times \square)$.

Proposition 4.4.7. $\vee : \mathbf{Set}_* \times \mathbf{Set}_* \to \mathbf{Set}_*$ is associative.

PROOF: Since $X \vee (Y \vee Z)$ and $(X \vee Y) \vee Z$ are both the pushout of the unique morphisms $1 \to X$, $1 \to Y$ and $1 \to Z$. \square

Proposition 4.4.8. $\wedge : \mathbf{Set}_* \times \mathbf{Set}_* \to \mathbf{Set}_*$ is associative.

PROOF: Draw isomorphisms between the diagrams for $X \wedge (Y \wedge Z)$ and $(X \wedge Y) \wedge Z$. \square

Product and coproduct are commutative and associative.

Proposition 4.4.9. $\vee_B : \mathbf{Set}_B^B \times \mathbf{Set}_B^B \to \mathbf{Set}_B^B$ is associative.

Proposition 4.4.10. $\wedge_B : \mathbf{Set}_B^B \times \mathbf{Set}_B^B \to \mathbf{Set}_B^B$ is associative.

Proposition 4.4.11. Let C be a category with binary coproducts. Let \square : $C \times C \to C$ be a bifunctor. Then \square distributes over + iff the canonical morphism

$$(X \square Z) + (Y \square Z) \rightarrow (X + Y) \square Z$$

is an isomorphism for all X, Y, Z.

Proposition 4.4.12. In a category with binary products and binary coproducts, then \times distributes over +.

Proposition 4.4.13. In Set/*, we have \times does not distribute over \vee .

Proposition 4.4.14. In Set/*, we have \land distributes over \lor .

Proposition 4.4.15. In Set/B, we have \times_B distributes over $+_B$.

Proposition 4.4.16. In Set/ B^B , we have \wedge_B distributes over \vee_B .

4.5 Functor Categories

Definition 4.5.1 (Functor Category). Given categories \mathcal{C} and \mathcal{D} , define the functor category $\mathcal{C}^{\mathcal{D}}$ to be the category with objects the functors from \mathcal{D} to \mathcal{C} and morphisms the natural transformations.

Definition 4.5.2 (Yoneda Embedding). Let \mathcal{C} be a category. The *Yoneda* embedding $Y: \mathcal{C} \to \mathbf{Set}^{\mathcal{C}^{\mathrm{op}}}$ is the functor that maps an object A to $\mathcal{C}[-,A]$ and morphisms similarly.

Theorem 4.5.3 (Yoneda Lemma). Let \mathcal{C} be a category. There exists a natural isomorphism

$$\phi_{XF}: \mathbf{Set}^{\mathcal{C}^{\mathrm{op}}}[\mathcal{C}[-,X],F] \cong FX$$

that maps $\tau : \mathcal{C}[-,X] \Rightarrow F$ to $\tau_X(\mathrm{id}_X)$.

Proof:

 $\langle 1 \rangle 1$. ϕ is natural in X.

```
Proof:
```

- $\langle 2 \rangle 1$. Let: $f: X \to Y: \mathcal{C}$
- $\langle 2 \rangle 2$. Let: $\tau : \mathcal{C}[-, X] \Rightarrow F$
- $\langle 2 \rangle 3$. $Ff(\phi(\tau)) = \phi(\tau \circ \mathcal{C}[-, f])$

Proof:

$$\phi(\tau \circ \mathcal{C}[-, f]) = \tau_Y(\mathrm{id}_Y \circ f)$$

$$= \tau_Y(f)$$

$$= \tau_Y(f \circ \mathrm{id}_X)$$

$$= Ff(\tau_X(\mathrm{id}_X)) \qquad (\tau \text{ natural})$$

$$= Ff(\phi(\tau))$$

- $\langle 1 \rangle 2$. ϕ is natural in F.
 - $\langle 2 \rangle 1$. Let: $\alpha : F \Rightarrow G : \mathcal{C}^{op} \to \mathbf{Set}$
 - $\langle 2 \rangle 2$. Let: $\tau : \mathcal{C}[-, X] \Rightarrow F$
 - $\langle 2 \rangle 3. \ \alpha_X(\phi(\tau)) = \phi(\alpha \bullet \tau)$

PROOF: $\phi(\alpha \bullet \tau) = \alpha_X(\tau_X(\mathrm{id}_X)) = \alpha_X(\phi(\tau))$

- $\langle 1 \rangle 3$. Each ϕ_{XF} is injective.
 - $\langle 2 \rangle 1$. Let: $\sigma, \tau : \mathcal{C}[-, X] \Rightarrow F$
 - $\langle 2 \rangle 2$. Assume: $\phi(\sigma) = \phi(\tau)$

4.5. FUNCTOR CATEGORIES

55

$$\begin{array}{l} \langle 2 \rangle 3. \text{ Let: } f: Y \rightarrow X \\ \langle 2 \rangle 4. \ \sigma_Y(f) = \tau_Y(f) \\ \text{Proof:} \\ \sigma_Y(f) = \sigma_Y(\operatorname{id}_X \circ f) \\ = Ff(\sigma_X(\operatorname{id}_X)) \qquad (\sigma \text{ is natural}) \\ = Ff(\tau_X(\operatorname{id}_X)) \qquad (\langle 2 \rangle 2) \\ = \tau_Y(\operatorname{id}_X \circ f) \qquad (\tau \text{ is natural}) \\ = \tau_Y(f) \\ \langle 1 \rangle 4. \text{ Each } \phi_{XF} \text{ is surjective.} \\ \langle 2 \rangle 1. \text{ Let: } X \in \mathcal{C} \text{ and } F: \mathcal{C} \rightarrow \mathcal{D} \\ \langle 2 \rangle 2. \text{ Let: } a \in FX \\ \langle 2 \rangle 3. \text{ Let: } \tau: \mathcal{C}[-,X] \Rightarrow F \text{ be given by } \tau_Y(g) = Fg(a) \text{ for } g: Y \rightarrow X \\ \langle 2 \rangle 4. \ \tau \text{ is natural.} \\ \langle 3 \rangle 1. \text{ Let: } h: Y \rightarrow Z: \mathcal{C} \\ \text{PROVE: } Fh \circ \tau_Z = \tau_Y \circ \mathcal{C}[h, \operatorname{id}_X] \\ \langle 3 \rangle 2. \text{ Let: } g: Z \rightarrow X \\ \langle 3 \rangle 3. \ Fh(\tau_Z(g)) = \tau_Y(g \circ h) \\ \text{PROOF:} \\ \tau_Y(g \circ h) = F(g \circ h)(a) \\ = Fh(Fg(a)) \\ = Fh(\tau_Z(g)) \\ \langle 2 \rangle 5. \ \phi(\tau) = a \\ \text{PROOF:} \\ \phi_X(\tau) = \tau_X(\operatorname{id}_X) \\ = F \operatorname{id}_X(a) \\ = a \\ \square \\ \end{array}$$

Corollary 4.5.3.1. The Yoneda embedding is fully faithful.

Corollary 4.5.3.2. Given objects A and B in C, we have $A \cong B$ if and only if $C[-, A] \cong C[-, B]$.

Chapter 5

The Real Numbers

Theorem 5.0.1. The following hold in the real numbers:

1.
$$x + (y + z) = (x + y) + z$$

2.
$$x(yz) = (xy)z$$

$$3. \ x + y = y + x$$

4.
$$xy = yx$$

5.
$$x + 0 = x$$

6.
$$x1 = x$$

7.
$$x + (-x) = 0$$

8. If
$$x \neq 0$$
 then $x \cdot (1/x) = 1$

$$9. \ x(y+z) = xy + xz$$

10. If
$$x > y$$
 then $x + z > y + z$.

11. If
$$x > y$$
 and $z > 0$ then $xz > yz$.

12. \mathbb{R} has the least upper bound property.

13. If x < y then there exists z such that x < z < y.

Definition 5.0.2 (Subtraction). We write x - y for x + (-y).

Definition 5.0.3. Given real numbers x and y with $y \neq 0$, we write x/y for xy^{-1} .

Theorem 5.0.4. For any real numbers x and y, if x + y = x then y = 0.

Proof:

$$\langle 1 \rangle 1$$
. Let: $x, y \in \mathbb{R}$

$$\begin{array}{l} \langle 1 \rangle 2. \text{ Assume: } x+y=x \\ \langle 1 \rangle 3. \ y=0 \\ \text{Proof:} \\ y=y+0 & \text{(Definition of zero)} \\ =y+(x+(-x)) & \text{(Definition of } -x) \\ =(y+x)+(-x) & \text{(Associativity of Addition)} \\ =(x+y)+(-x) & \text{(Commutativity of Addition)} \\ =x+(-x) & \text{($\langle 1 \rangle 2$)} \\ =0 & \text{(Definition of } -x) \\ \end{array}$$

Theorem 5.0.5.

$$\forall x \in \mathbb{R}.0x = 0$$

Proof:

 $\langle 1 \rangle 1$. Let: $x \in \mathbb{R}$ $\langle 1 \rangle 2$. xx + 0x = xxProof:

$$xx + 0x = (x + 0)x$$
 (Distributive Law)
= xx (Definition of 0)

 $\langle 1 \rangle 3$. 0x = 0

PROOF: Theorem 5.0.4, $\langle 1 \rangle 2$.

П

Theorem 5.0.6.

$$-0 = 0$$

PROOF: Since 0 + 0 = 0. \square

Theorem 5.0.7.

$$\forall x \in \mathbb{R}. - (-x) = x$$

PROOF: Since -x + x = 0. \square

Theorem 5.0.8.

$$\forall x, y \in \mathbb{R}.x(-y) = -(xy)$$

Proof:

$$x(-y) + xy = x((-y) + y)$$
 (Distributive Law)
= $x0$ (Definition of $-y$)
= 0 (Theorem 5.0.5)

Theorem 5.0.9.

$$\forall x \in \mathbb{R}.(-1)x = -x$$

Proof:

$$(-1)x = -(1 \cdot x)$$
 (Theorem 5.0.8)
= $-x$ (Definition of 1)

5.0.1 Subtraction

Theorem 5.0.10.

$$\forall x, y, z \in \mathbb{R}.x(y-z) = xy - xz$$

Proof:

$$x(y-z) = x(y+(-z))$$
 (Definition of subtraction)
 $= xy + x(-z)$ (Distributive Law)
 $= xy + (-(xz))$ (Theorem 5.0.8)
 $= xy - xz$ (Definition of subtraction)

Theorem 5.0.11.

$$\forall x, y \in \mathbb{R}. - (x+y) = -x - y$$

Proof:

$$-(x+y) = (-1)(x+y)$$
 (Theorem 5.0.9)

$$= (-1)x + (-1)y$$
 (Distributive Law)

$$= -x + (-y)$$
 (Theorem 5.0.9)

$$= -x - y$$
 (Definition of subtraction) \square

Theorem 5.0.12.

$$\forall x, y \in \mathbb{R}. - (x - y) = -x + y$$

PROOF:

$$-(x-y) = -(x+(-y))$$
 (Definition of subtraction)

$$= -x - (-y)$$
 (Theorem 5.0.11)

$$= -x + (-(-y))$$
 (Definition of subtraction)

$$= -x + y$$
 (Theorem 5.0.7) \square

Definition 5.0.13 (Reciprocal). Given $x \in \mathbb{R}$ with $x \neq 0$, the *reciprocal* of x, 1/x, is the unique real number such that $x \cdot 1/x = 1$.

Theorem 5.0.14. For any real numbers x and y, if $x \neq 0$ and xy = x then y = 1.

Proof:

 $\langle 1 \rangle 1$. Let: $x, y \in \mathbb{R}$

= 1

$$\begin{array}{lll} \langle 1 \rangle 2. & \text{Assume: } x \neq 0 \\ \langle 1 \rangle 3. & \text{Assume: } xy = x \\ \langle 1 \rangle 4. & y = 1 \\ & \text{Proof:} \\ & y = y1 & \text{(Definition of 1)} \\ & = y(x \cdot 1/x) & \text{(Definition of } 1/x, \langle 1 \rangle 2) \\ & = (yx)1/x & \text{(Associativity of Multiplication)} \\ & = (xy)1/x & \text{(Commutativity of Multiplication)} \\ & = x \cdot 1/x & \text{($\langle 1 \rangle 3$)} \end{array}$$

(Definition of $1/x, \langle 1 \rangle 2$)

П

Definition 5.0.15 (Quotient). Given real numbers x and y with $y \neq 0$, the quotient x/y is defined by

$$x/y = x \cdot 1/y$$
.

Theorem 5.0.16. For any real number x, if $x \neq 0$ then x/x = 1.

PROOF: Immediate from definitions. \Box

Theorem 5.0.17.

$$\forall x \in \mathbb{R}.x/1 = x$$

Proof:

 $\langle 1 \rangle 1$. Let: $x \in \mathbb{R}$

 $\langle 1 \rangle 2$. 1/1 = 1

PROOF: Since $1 \cdot 1 = 1$.

 $\langle 1 \rangle 3. \ x/1 = x$

PROOF: Since $x/1 = x \cdot 1/1 = x \cdot 1 = x$.

Theorem 5.0.18. For any real numbers x and y, if $x \neq 0$ and $y \neq 0$ then $xy \neq 0$.

Proof:

 $\langle 1 \rangle 1$. Let: $x, y \in \mathbb{R}$

 $\langle 1 \rangle 2$. Assume: xy = 0 and $x \neq 0$

Prove: y = 0

 $\langle 1 \rangle 3. \ y = 0$ PROOF:

y = 1y (Definition of 1) = (1/x)xy (Definition of 1/x, $\langle 1 \rangle 2$) = (1/x)0 ($\langle 1 \rangle 2$) = 0 (Theorem 5.0.5)

Theorem 5.0.19. For any real numbers y and z, if $y \neq 0$ and $z \neq 0$ then (1/y)(1/z) = 1/(yz).

PROOF: Since $yz(1/y)(1/z) = 1 \cdot 1 = 1$.

Corollary 5.0.19.1. For any real numbers x, y, z, w with $y \neq 0 \neq w$, we have (x/y)(z/w) = (xz)/(yw).

Theorem 5.0.20. For any real numbers x, y, z, w with $y \neq 0 \neq w$, we have

$$\frac{x}{y} + \frac{z}{w} = \frac{xw + yz}{yw}$$

Proof:

$$yw\left(\frac{x}{y} + \frac{z}{w}\right) = yw\frac{x}{y} + yw\frac{z}{w}$$
$$= wx + yz$$

Theorem 5.0.21. For any real number x, if $x \neq 0$ then $1/x \neq 0$.

PROOF: Since $x \cdot 1/x = 1 \neq 0$. \square

Theorem 5.0.22. For any real numbers w, z, if $w \neq 0 \neq z$ then 1/(w/z) = z/w.

PROOF: Since (z/w)(w/z) = (wz)/(wz) = 1.

Theorem 5.0.23. For any real numbers a, x and y, if $y \neq 0$ then (ax)/y = a(x/y)

PROOF: Since ya(x/y) = ax. \square

Theorem 5.0.24. For any real numbers x and y, if $y \neq 0$ then (-x)/y = x/(-y) = -(x/y).

Proof:

 $\langle 1 \rangle 1. \ (-x)/y = -(x/y)$

PROOF: Take a = -1 in Theorem 5.0.23.

 $\langle 1 \rangle 2$. x/(-y) = -(x/y)

PROOF: Since (-y)(-(x/y)) = y(x/y) = x.

Theorem 5.0.25. For any real numbers x, y, z and w, if x > y and w > z then x + w > y + z.

PROOF: We have y + z < x + z < x + w by Monotonicity of Addition twice. \square

Corollary 5.0.25.1. For any real numbers x and y, if x > 0 and y > 0 then x + y > 0.

Theorem 5.0.26. For any real numbers x and y, if x > 0 and y > 0 then xy > 0.

Proof:

$$xy > 0y$$
 (Monotonicity of Multiplication)
= 0 (Theorem 5.0.5)

Theorem 5.0.27. For any real number x, we have x > 0 iff -x < 0.

Proof:

 $\langle 1 \rangle 1$. If 0 < x then -x < 0

PROOF: By Monotonicity of Addition adding -x to both sides.

 $\langle 1 \rangle 2$. If -x < 0 then 0 < x

PROOF: By Monotonicity of Addition adding x to both sides.

Theorem 5.0.28. For any real numbers x and y , we have $x > y$ iff $-x < -y$
PROOF: $ \langle 1 \rangle 1. \text{ If } y < x \text{ then } -x < -y. \\ \text{PROOF: By Monotonicity of Addition adding } -x -y \text{ to both sides.} \\ \langle 1 \rangle 2. \text{ If } -x < -y \text{ then } y < x. \\ \text{PROOF: By Monotonicity of Addition adding } x + y \text{ to both sides.} \\ \square $
Theorem 5.0.29. For any real numbers x , y and z , if $x > y$ and $z < 0$ then $xz < yz$.
PROOF: $\langle 1 \rangle 1$. Let: x, y and z be real numbers. $\langle 1 \rangle 2$. Assume: $x > y$ $\langle 1 \rangle 3$. Assume: $z < 0$ $\langle 1 \rangle 4$. $-z > 0$ Proof: Theorem 5.0.27, $\langle 1 \rangle 3$. $\langle 1 \rangle 5$. $x(-z) > y(-z)$ Proof: $\langle 1 \rangle 2$, $\langle 1 \rangle 4$, Monotonicity of Multiplication. $\langle 1 \rangle 6$. $-(xz) > -(yz)$ Proof: Theorem 5.0.8, $\langle 1 \rangle 5$. $\langle 1 \rangle 7$. $xz < yz$ Proof: Theorem 5.0.27, $\langle 1 \rangle 6$.
Theorem 5.0.30. For any real number x , if $x \neq 0$ then $xx > 0$.
PROOF: $\langle 1 \rangle 1$. If $x > 0$ then $xx > 0$ PROOF: By Monotonicity of Multiplication. $\langle 1 \rangle 2$. If $x < 0$ then $xx > 0$ PROOF: Theorem 5.0.29.
Theorem 5.0.31.
$0 < 1$ Proof: By Theorem 5.0.30 since $1 = 1 \cdot 1$. \square
Definition 5.0.32 (Positive). A real number x is <i>positive</i> iff $x > 0$. We write \mathbb{R}_+ for the set of positive reals.
Theorem 5.0.33. For any real numbers x and y , we have xy is positive if and only if x and y are both positive or both negative.
Proof: By the Monotonicity of Multiplication and Theorem 5.0.29. \Box
Corollary 5.0.33.1. For any real number x , if $x > 0$ then $1/x > 0$.
Proof: Since $x \cdot 1/x = 1$ is positive. \square

Theorem 5.0.34. For any real numbers x and y, if x > y > 0 then 1/x < 1/y.

PROOF: If $1/y \le 1/x$ then 1 < 1 by Monotonicity of Multiplication. \square

Theorem 5.0.35. For any real numbers x and y, if x < y then x < (x+y)/2 < y.

PROOF: We have 2x < x + y and x + y < 2y by Monotonicity of Addition, hence x < (x + y)/2 < y by Monotonicity of Multiplication since 1/2 > 0. \square

Corollary 5.0.35.1. \mathbb{R} is a linear continuum.

Definition 5.0.36 (Negative). A real number x is negative iff x < 0. We write $\overline{\mathbb{R}_+}$ for the set of nonnegative reals.

Theorem 5.0.37. For every positive real number a, there exists a unique positive real \sqrt{a} such that $\sqrt{a}^2 = a$.

Proof:

- $\langle 1 \rangle 1$. Let: a be a positive real.
- $\langle 1 \rangle 2$. For any real numbers x and h, if $0 \leq h < 1$, then

$$(x+h)^2 < x^2 + h(2x+1)$$
.

- $\langle 2 \rangle 1$. Let: x and h be real numbers.
- $\langle 2 \rangle 2$. Assume: $0 \le h < 1$
- $\langle 2 \rangle 3$. $(x+h)^2 < x^2 + h(2x+1)$

Proof:

$$(x+h)^{2} = x^{2} + 2hx + h^{2}$$

$$< x^{2} + 2hx + h$$

$$= x^{2} + h(2x+1)$$
(\langle 2\rangle 2)

 $\langle 1 \rangle 3$. For any real numbers x and h, if h > 0 then

$$(x-h)^2 > x^2 - 2hx .$$

- $\langle 2 \rangle 1$. Let: x and h be real numbers.
- $\langle 2 \rangle 2$. Assume: h > 0
- $\langle 2 \rangle 3$. $(x-h)^2 > x^2 2hx$

Proof:

$$(x-h)^2 = x^2 - 2hx + h^2$$

> $x^2 - 2hx$ (\langle 2\rangle 2)

- $\langle 1 \rangle 4$. For any positive real x, if $x^2 < a$ then there exists h > 0 such that $(x+h)^2 < a$.
 - $\langle 2 \rangle 1$. Let: x be a positive real.
 - $\langle 2 \rangle 2$. Assume: $x^2 < a$
 - $\langle 2 \rangle 3$. Let: $h = \min((a x^2)/(2x + 1), 1/2)$
 - $\langle 2 \rangle 4. \ 0 < h < 1$
 - $\langle 2 \rangle 5$. $(x+h)^2 < a$

Proof:

$$(x+h)^2 < x^2 + h(2x+1)$$

$$\leq a$$

$$(\langle 1 \rangle 2)$$

```
\langle 1 \rangle 5. For any positive real x, if x^2 > a then there exists h > 0 such that
         (x-h)^2 > a.
   \langle 2 \rangle 1. Let: x be a positive real.
   \langle 2 \rangle 2. Assume: x^2 > a
   \langle 2 \rangle 3. Let: h = (x^2 - a)/2x
   \langle 2 \rangle 4. \ h > 0
   \langle 2 \rangle 5. (x-h)^2 > a
      Proof:
                              (x-h)^2 > x^2 - 2hx
                                                                                     (\langle 2 \rangle 3)
\langle 1 \rangle 6. Let: B = \{ x \in \mathbb{R} : x^2 < a \}
\langle 1 \rangle 7. B is bounded above.
   PROOF: If a \ge 1 then a is an upper bound. If a < 1 then 1 is an upper bound.
\langle 1 \rangle 8. B contains at least one positive real.
   PROOF: If a \ge 1 then 1 \in B. If a < 1 then a \in B.
\langle 1 \rangle 9. Let: b = \sup B
\langle 1 \rangle 10. b^2 = a
   \langle 2 \rangle 1. b^2 \geqslant a
      \langle 3 \rangle 1. Assume: for a contradiction b^2 < a
      \langle 3 \rangle 2. Pick h > 0 such that (b+h)^2 < a
          Proof: \langle 1 \rangle 4
      \langle 3 \rangle 3. \ b+h \in B
      \langle 3 \rangle 4. Q.E.D.
          PROOF: This contradicts \langle 1 \rangle 9.
   \langle 2 \rangle 2. \ b^2 \leqslant a
      \langle 3 \rangle 1. Assume: for a contradiction b^2 > a
      \langle 3 \rangle 2. Pick h > 0 such that (b-h)^2 > a
          Proof: \langle 1 \rangle 5
      \langle 3 \rangle 3. Pick x \in B such that b - h < x
          Proof: \langle 1 \rangle 9
      \langle 3 \rangle 4. \ (b-h)^2 < x^2 < a
      \langle 3 \rangle 5. Q.E.D.
          Proof: This contradicts \langle 3 \rangle 2
\langle 1 \rangle 11. For any positive reals b and c, if b^2 = c^2 then b = c.
   \langle 2 \rangle 1. Let: b and c be positive reals.
   \langle 2 \rangle 2. Assume: b^2 = c^2
   \langle 2 \rangle 3. \ b^2 - c^2 = 0
   \langle 2 \rangle 4. (b-c)(b+c)=0
   \langle 2 \rangle 5. b - c = 0 or b + c = 0
   \langle 2 \rangle 6. b+c \neq 0
      PROOF: Since b + c > 0
   \langle 2 \rangle 7. \ b-c=0
```

Theorem 5.0.38. The set of real numbers is uncountable.

 $\langle 2 \rangle 8. \ b = c$

Chapter 6

Integers and Rationals

Positive Integers 6.1

Definition 6.1.1 (Inductive). A set of real numbers A is inductive iff $1 \in A$ and $\forall x \in A.x + 1 \in A$.

Definition 6.1.2 (Positive Integer). The set \mathbb{Z}_+ of positive integers is the

intersection of the set of inductive sets. **Proposition 6.1.3.** Every positive integer is positive. PROOF: The set of positive reals is inductive. \square **Proposition 6.1.4.** 1 is the least element of \mathbb{Z}_+ . PROOF: Since $\{x \in \mathbb{R} : x \ge 1\}$ is inductive. \square **Proposition 6.1.5.** \mathbb{Z}_+ is inductive. PROOF: 1 is an element of every inductive set, and for all $x \in \mathbb{R}$, if x is an element of every inductive set then so is x + 1. **Theorem 6.1.6** (Principle of Induction). If A is an inductive set of positive integers then $A = \mathbb{Z}_+$. Proof: Immediate from definitions.

Theorem 6.1.7 (Well-Ordering Property). \mathbb{Z}_+ is well ordered.

PROOF: Construct the obvious order isomorphism $\omega \cong \mathbb{Z}_+$. \square

Theorem 6.1.8 (Archimedean Ordering Property). The set \mathbb{Z}_+ is unbounded above.

 $\langle 1 \rangle 1$. Assume: for a contradiction \mathbb{Z}_+ is bounded above.

$$\begin{split} &\langle 1 \rangle 2. \ \text{Let:} \\ &s = \sup \mathbb{Z}_+ \\ &\langle 1 \rangle 3. \ \text{Pick } n \in \mathbb{Z}_+ \text{ such that } s-1 < n \\ &\langle 1 \rangle 4. \ s < n+1 \\ &\langle 1 \rangle 5. \ \text{Q.E.D.} \\ &\text{Proof:} &\langle 1 \rangle 2 \text{ and } \langle 1 \rangle 4 \text{ form a contradiction.} \\ &\sqcap \end{split}$$

6.1.1 Exponentiation

Definition 6.1.9. For a a real number and n a positive integer, define the real number a^n recursively as follows:

$$a^1 = a$$
$$a^{n+1} = a^n a$$

Theorem 6.1.10. For all $a \in \mathbb{R}$ and $m, n \in mathbb{Z_+}$, we have

$$a^n a^m = a^{n+m}$$

Proof:

 $\langle 1 \rangle 1$. Let: P(m) be the property $\forall a \in \mathbb{R}. \forall n \in \mathbb{Z}_+.a^na^m = a^{n+m}$

 $\langle 1 \rangle 2$. P(1)

PROOF: $a^n a^1 = a^n a = a^{n+1}$.

 $\langle 1 \rangle 3. \ \forall m \in \mathbb{Z}_+.P(m) \Rightarrow P(m+1)$

 $\langle 2 \rangle 1$. Let: m be a positive integer.

 $\langle 2 \rangle 2$. Assume: P(m)

 $\langle 2 \rangle 3$. Let: $a \in \mathbb{R}$

 $\langle 2 \rangle 4$. Let: $n \in \mathbb{Z}_+$

 $\langle 2 \rangle 5$. $a^n a^{m+1} = a^{n+m+1}$

Proof:

$$a^{n}a^{m+1} = a^{n}a^{m}a$$

$$= a^{n+m}a \qquad (\langle 2 \rangle 2)$$

$$= a^{n+m+1}$$

 $\langle 1 \rangle 4$. Q.E.D.

Proof: By induction.

П

Theorem 6.1.11. For all $a \in \mathbb{R}$ and $m, n \in \mathbb{Z}_+$,

$$(a^n)^m = a^{nm} .$$

Proof:

 $\langle 1 \rangle 1$. Let: P(m) be the property $\forall a \in \mathbb{R}. \forall n \in \mathbb{Z}_+. (a^n)^m = a^{nm}$.

 $\langle 1 \rangle 2$. P(1)

PROOF: $(a^n)^1 = a^n = a^{n \cdot 1}$

6.2. INTEGERS 67

$$\langle 1 \rangle 3. \ \forall m \in \mathbb{Z}_+.P(m) \Rightarrow P(m+1)$$

PROOF:

$$(a^n)^{m+1} = (a^n)^m a^n$$

$$= a^{nm} a^n$$

$$= a^{nm+n}$$
 (Theorem 6.1.10)
$$= a^{n(m+1)}$$

Theorem 6.1.12. For any real numbers a and b and positive integer m,

$$a^m b^m = (ab)^m .$$

PROOF: Induction on m. \square

6.2 Integers

Definition 6.2.1 (Integer). The set \mathbb{Z} of *integers* is

$$\mathbb{Z} = \mathbb{Z}_+ \cup \{0\} \cup \{-x : x \in \mathbb{Z}_+\} .$$

Proposition 6.2.2. The sum, difference and product of two integers is an integer.

Proof: Easy.

Example 6.2.3. 1/2 is not an integer.

Proposition 6.2.4. For any integer n, there is no integer a such that n < a < n + 1.

Proof:

- $\langle 1 \rangle 1$. For any positive integer n, there is no integer a such that n < a < n + 1.
 - $\langle 2 \rangle 1$. There is no integer a such that 1 < a < 2.
 - $\langle 3 \rangle 1$. There is no positive integer a such that 1 < a < 2.
 - $\langle 4 \rangle 1$. We do not have 1 < 1 < 2.
 - $\langle 4 \rangle 2$. For any positive integer n, we do not have 1 < n + 1 < 2.

PROOF: Since $n \ge 1$ so $n + 1 \ge 2$.

- $\langle 3 \rangle 2$. We do not have 1 < 0 < 2.
- $\langle 3 \rangle 3$. For any positive integer a, we do not have 1 < -a < 2.

PROOF: Since -a < 0 < 1.

 $\langle 2 \rangle 2$. For any positive integer n, if there is no integer a such that n < a < n + 1, then there is no integer a such that n + 1 < a < n + 2.

PROOF: If n + 1 < a < n + 2 then n < a - 1 < n + 1.

 $\langle 1 \rangle 2$. There is no integer a such that 0 < a < 1.

PROOF: If 0 < a < 1 then 1 < a + 1 < 2.

 $\langle 1 \rangle 3$. For any positive integer n, there is no integer a such that -n < a < -n+1. PROOF: If -n < a < -n+1 then n-1 < -a < n.

Theorem 6.2.5. Every nonempty subset of \mathbb{Z} bounded above has a largest element.

Proof:

- $\langle 1 \rangle 1$. Let: S be a nonempty subset of $\mathbb Z$ bounded above.
- $\langle 1 \rangle 2$. Let: u be an upper bound for S.
- $\langle 1 \rangle 3$. Pick an integer n > u

Proof: Archimedean property.

- $\langle 1 \rangle 4$. Let: k be the least positive integer such that $n k \in S$.
 - $\langle 2 \rangle 1$. Pick $m \in S$
 - $\langle 2 \rangle 2$. n-m is a positive integer.
 - $\langle 2 \rangle 3$. There exists a positive integer k such that $n k \in S$.
- $\langle 1 \rangle 5$. n-k is the greatest element in S.
 - $\langle 2 \rangle 1$. Let: $m \in S$
 - $\langle 2 \rangle 2$. $n m \geqslant k$
- $\langle 2 \rangle 3. \ m \leqslant n k$

Theorem 6.2.6. For any real number x, if x is not an integer then there exists a unique integer n such that n < x < n + 1.

Proof:

- $\langle 1 \rangle 1$. $\{ n \in \mathbb{Z} : n < x \}$ is a nonempty set of integers bounded above.
 - $\langle 2 \rangle 1$. Pick m > -x

PROOF: Archimedean property.

- $\langle 2 \rangle 2$. -m < x
- $\langle 2 \rangle 3$. $\{ n \in \mathbb{Z} : n < x \}$ is nonempty.
- $\langle 1 \rangle 2$. Let: n be the greatest integer such that n < x
- $\langle 1 \rangle 3. \ x < n+1$
- $\langle 1 \rangle 4$. If n' is an integer with n' < x < n' + 1 then n' = n.

PROOF: We have n' < n + 1 so $n' \le n$, and n < n' + 1 so $n \le n'$.

Definition 6.2.7 (Even). An integer n is *even* iff n/2 is an integer; otherwise, n is odd.

Theorem 6.2.8. If the integer m is odd then there exists an integer n such that m = 2n + 1.

Proof:

- $\langle 1 \rangle 1$. Let: n be the integer such that n < m/2 < n+1 Proof: Theorem 6.2.6.
- $\langle 1 \rangle 2$. 2n < m < 2n + 2
- $\langle 1 \rangle 3. \ m = 2n+1$

Theorem 6.2.9. The product of two odd integers is odd.

PROOF: (2m+1)(2n+1) = 2(2mn+m+n) + 1.

Corollary 6.2.9.1. If p is an odd integer and n is a positive integer then p^n is an odd integer.

Definition 6.2.10 (Exponentiation). Extend the definition of exponentiation so a^n is defined for:

- ullet all real numbers a and non-negative integers n
- \bullet all non-zero real numbers a and integers n

as follows:

$$a^0 = 1$$

 $a^{-n} = 1/a^n$ (n a positive integer)

Theorem 6.2.11 (Laws of Exponents). For all non-zero reals a and b and integers m and n,

$$a^{n}a^{m} = a^{n+m}$$
$$(a^{n})^{m} = a^{nm}$$
$$a^{m}b^{m} = (ab)^{m}$$

Proof: Easy.

Theorem 6.2.12. \mathbb{Z} is countable.

PROOF: The function that maps an integer n to 2n if $n \ge 0$ and -1-2n if n < 0 is a bijection $\mathbb{Z} \approx \mathbb{N}$. \square

6.3 Rational Numbers

Definition 6.3.1 (Rational Number). The set \mathbb{Q} of rational numbers is the set of all real numbers that are the quotient of two integers. A real that is not rational is *irrational*.

Theorem 6.3.2. $\sqrt{2}$ is irrational.

Proof:

- $\langle 1 \rangle 1$. For any positive rational a, there exist positive integers m and n not both even such that a=m/n.
 - $\langle 2 \rangle 1$. Let: a be a positive rational.
 - $\langle 2 \rangle 2$. Let: n be the least positive integer such that na is a positive integer.
 - $\langle 2 \rangle 3$. Let: m = na
 - $\langle 2 \rangle 4$. Assume: for a contradiction m and n are both even.
 - $\langle 2 \rangle 5$. m/2 = (n/2)a
 - $\langle 2 \rangle 6$. Q.E.D.

PROOF: This contradicts the leastness of n ($\langle 2 \rangle 2$). $\langle 1 \rangle 2$. Assume: for a contradiction $\sqrt{2}$ is rational. $\langle 1 \rangle 3$. PICK positive integers m and n not both even such that $\sqrt{2} = m/n$. $\langle 1 \rangle 4$. $m^2 = 2n^2$ $\langle 1 \rangle 5$. m^2 is even. $\langle 1 \rangle 6$. m is even. PROOF: Theorem 6.2.9. $\langle 1 \rangle 7$. Let: k = m/2 $\langle 1 \rangle 8$. $4k^2 = 2n^2$ $\langle 1 \rangle 9$. $n^2 = 2k^2$ $\langle 1 \rangle 10$. n^2 is even. $\langle 1 \rangle 11$. n is even.

PROOF: Theorem 6.2.9.

 $\langle 1 \rangle 12$. Q.E.D.

PROOF: $\langle 1 \rangle 3$, $\langle 1 \rangle 6$ and $\langle 1 \rangle 11$ form a contradiction.

Theorem 6.3.3. \mathbb{Q} is countably infinite.

PROOF: The function $\mathbb{Z} \times \mathbb{N} \to \mathbb{Q}$ that maps (m,n) to m/(n+1) is a surjection.

6.4 Algebraic Numbers

Definition 6.4.1 (Algebraic Number). A real number r is algebraic iff there exists a natural number n and rational numbers $a_0, a_1, \ldots, a_{n-1}$ such that

$$r^{n} + a_{n-1}r^{n-1} + \dots + a_{1}r + a_{0} = 0$$

Otherwise, r is transcendental.

Proposition 6.4.2. The set of algebraic numbers is countably infinite.

PROOF: There are countably many finite sequences of rational numbers, and each corresponding polynomial has only finitely many roots. \Box

Corollary 6.4.2.1. The set of transcendental numbers is uncountable.

Chapter 7

Monoid Theory

Definition 7.0.1 (Monoid). A monoid is a category with one object.

Definition 7.0.2. Let \mathcal{C} be a category and $X \in \mathcal{C}$. The monoid $\operatorname{End}_{\mathcal{C}}(X)$ is the set of all morphisms $X \to X$ under composition.

Proposition 7.0.3. For any functor $F: \mathcal{C} \to \mathcal{D}$ and $X \in \mathcal{C}$, we have that $F: \operatorname{End}_{\mathcal{C}}(X) \to \operatorname{End}_{\mathcal{D}}(FX)$ is a monoid homomorphism.

PROOF: Since $Fid_X = id_{FX}$ and $F(g \circ f) = Fg \circ Ff$. \square

Group Theory

Definition 8.0.1. Let **Grp** be the category of small groups and group homomorphisms.

Definition 8.0.2. We identify any group G with the category with one object whose morphisms are the elements of G with composition given by the multiplication in G.

Proposition 8.0.3. The trivial group is a zero object in Grp.

Proof: Easy.

The zero morphism $G \to H$ maps every element in G to e.

Definition 8.0.4. Let \mathcal{C} be a category and $X \in \mathcal{C}$. We write $\operatorname{Aut}_{\mathcal{C}}(X)$ for the set of all isomorphisms $X \cong X$ under composition.

Proposition 8.0.5. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor and $X \in \mathcal{C}$. Then $F: \operatorname{Aut}_{\mathcal{C}}(X) \to \operatorname{Aut}_{\mathcal{D}}(FX)$ is a group homomorphism.

PROOF: Since $Fid_X = id_{FX}$, $F(g \circ f) = Fg \circ Ff$, and $Ff^{-1} = (Ff)^{-1}$. \square

Proposition 8.0.6. Grp has products.

Definition 8.0.7 (Free Product). The product of a family of groups in **Grp** is called the *free product*.

Proposition 8.0.8. Ab has products given by direct sums.

Ring Theory

Definition 9.0.1. Let **Ring** be the concrete category of rings and ring homomorphisms.

Definition 9.0.2 (Spectrum). Let R be a commutative ring. The *spectrum* of R, spec R, is the set of all prime ideals of R.

Definition 9.0.3 (Zariski Topology). Let R be a commutative ring. The Zariski topology on spec R is the topology where the closed sets are the sets of the form

$$VE := \{ p \in \operatorname{spec} R : E \subseteq p \}$$

for any $E \in \mathcal{P}R$.

We prove this is a topology.

Proof:

```
\langle 1 \rangle 1. Let: \mathcal{C} = \{VE : E \in \mathcal{P}R\}
\langle 1 \rangle 2. For all \mathcal{A} \subseteq \mathcal{C} we have \bigcap \mathcal{A} \in \mathcal{C}
     \langle 2 \rangle 1. Let: \mathcal{A} \subseteq \mathcal{C}
    \langle 2 \rangle 2. Let: E = \bigcup \{E' \in \mathcal{P}R : VE' \in \mathcal{A}\}
                 PROVE: VE = \bigcap A
     \langle 2 \rangle 3. For all p \in \operatorname{spec} R, if E \subseteq p then p \in \bigcap \mathcal{A}
         \langle 3 \rangle 1. Let: p \in \operatorname{spec} R
         \langle 3 \rangle 2. Assume: E \subseteq p
         \langle 3 \rangle 3. Let: E' \in \mathcal{P}R with VE' \in \mathcal{A}
         \langle 3 \rangle 4. E' \subseteq E
         \langle 3 \rangle 5. E' \subseteq p
         \langle 3 \rangle 6. \ p \in VE'
     \langle 2 \rangle 4. For all p \in \operatorname{spec} R, if p \in \bigcap A then E \subseteq p
         \langle 3 \rangle 1. Let: p \in \bigcap \mathcal{A}
         \langle 3 \rangle 2. For all E' \in \mathcal{P}R with VE' \in \mathcal{A} we have E' \subseteq p
         \langle 3 \rangle 3. E \subseteq p
\langle 1 \rangle 3. For all C, D \in \mathcal{C} we have C \cup D \in \mathcal{C}.
     PROOF: Since VE \cup VE' = V(E \cap E')
```

 $\begin{array}{l} \langle 1 \rangle 4. \ \varnothing \in \mathcal{C} \\ \langle 2 \rangle 1. \ VR = \varnothing \\ \text{Proof: If } p \in VR \text{ then } R \subseteq p \text{ contradicting the fact that } p \text{ is a prime ideal.} \\ \end{array}$

Definition 9.0.4. For any ring R, let $R - \mathbf{Mod}$ be the category of small R-modules and R-module homomorphisms.

Proposition 9.0.5. $R-\mathbf{Mod}$ has products and coproducts.

Field Theory

Proposition 10.0.1. Field does not have binary products.

PROOF: There cannot be a field K with field homomorphisms $K \to \mathbb{Z}_2$ and $K \to \mathbb{Z}_3$, because its characteristic would be both 2 and 3. \square

Linear Algebra

Definition 11.0.1 (Span). Let V be a vector space and $A \subseteq V$. The *span* of A is the set of all linear combinations of elements of A.

Definition 11.0.2. For any field K, we write \mathbf{Vect}_K for $K-\mathbf{Mod}$.

Dual space functor $\mathbf{Vect}_K^{\mathrm{op}} \to \mathbf{Vect}_K$.

Topology

12.1 Topological Spaces

Definition 12.1.1 (Topological Space). Let X be a set and $\mathcal{O} \subseteq \mathcal{P}X$. Then we say (X, \mathcal{O}) is a *topological space* iff:

- For any $\mathcal{U} \subseteq \mathcal{O}$ we have $\bigcup \mathcal{U} \in \mathcal{O}$.
- For any $U, V \in \mathcal{O}$ we have $U \cap V \in \mathcal{O}$.
- $X \in \mathcal{O}$

We call \mathcal{O} the topology of the topological space, and call its elements open sets. We shall often write X for the topological space (X, \mathcal{O}) .

Definition 12.1.2 (Discrete Topology). For any set X, the power set $\mathcal{P}X$ is called the *discrete* topology on X.

Proposition 12.1.3. For any set X, the discrete topology on X is a topology on X.

Definition 12.1.4 (Indiscrete Topology). For any set X, the *indiscrete* or *trivial* topology on X is $\{\emptyset, X\}$.

Proposition 12.1.5. For any set X, the indiscrete topology on X is a topology on X.

Definition 12.1.6 (Cofinite Topology). For any set X, the *cofinite* topology is $\{X - U : U \subseteq X \text{ is finite}\}.$

Definition 12.1.7 (Cocountable Topology). For any set X, the *cocountable* topology is $\{X - U : U \subseteq X \text{ is countable}\}.$

Definition 12.1.8 (Sierpiński Two-Point Space). The *Sierpiński two-point space* is $\{0,1\}$ under the topology $\{\emptyset,\{1\},\{0,1\}\}$.

Definition 12.1.9 (Closed Set). Let X be a topological space and $A \subseteq X$. Then A is *closed* iff X - A is open.

Proposition 12.1.10. A set B is open if and only if X - B is closed.

Proposition 12.1.11. Let X be a set and $C \subseteq \mathcal{P}X$. Then there exists a topology \mathcal{O} on X such that C is the set of closed sets if and only if:

- For any $\mathcal{D} \subseteq \mathcal{C}$ we have $\bigcap \mathcal{D} \in \mathcal{C}$
- For any $C, D \in \mathcal{C}$ we have $C \cup D \in \mathcal{C}$.
- $\varnothing \in \mathcal{C}$

In this case, \mathcal{O} is unique and is given by $\mathcal{O} = \{X - C : C \in \mathcal{C}\}.$

Theorem 12.1.12. There are infinitely many primes.

Furstenberg's proof:

```
Proof:
```

 $\langle 1 \rangle 1$. For $a \in \mathbb{Z} - \{0\}$ and $b \in \mathbb{Z}$,

Let: $S(a,b) := \{an + b : n \in \mathbb{N}\}\$

- $\langle 1 \rangle 2$. Let: \mathcal{T} be the topology generated by the basis $\{S(a,b) : a \in \mathbb{Z} \{0\}, b \in \mathbb{Z}\}$
 - $\langle 2 \rangle 1$. For every $n \in \mathbb{Z}$, there exist a, b such that $n \in S(a, b)$.

PROOF: $n \in S(n,0)$

- $\langle 2 \rangle 2$. If $n \in S(a_1,b_1) \cap S(a_2,b_2)$ then there exist a_3,b_3 such that $n \in S(a_3,b_3) \subseteq S(a_1,b_1) \cap S(a_2,b_2)$
 - $\langle 3 \rangle 1$. Let: $d = \operatorname{lcm}(a_1, a_2)$

PROVE: $S(d, n) \subseteq S(a_1, b_1) \cap S(a_2, b_2)$

- $\langle 3 \rangle 2$. Let: $d = a_1 k = a_2 l$
- $\langle 3 \rangle 3$. Let: $n = a_1c + b_1 = a_2d + b_2$
- $\langle 3 \rangle 4$. Let: $z \in \mathbb{Z}$

PROVE: $dz + n \in S(a_1, b_1) \cap S(a_2, b_2)$

 $\langle 3 \rangle 5.$ $dz + n \in S(a_1, b_1)$

Proof:

$$dz + n = a_1kz + a_1c + b_1$$
$$= a_1(kz + c) + b_1$$

 $\langle 3 \rangle 6.$ $dz + n \in S(a_2, b_2)$

PROOF: Similar.

- $\langle 1 \rangle 3$. For all $a \in \mathbb{Z} \{0\}$ and $b \in \mathbb{Z}$ we have S(a, b) is closed.
 - $\langle 2 \rangle 1$. Let: $a \in \mathbb{Z} \{0\}$ and $b \in \mathbb{Z}$
 - $\langle 2 \rangle 2$. Let: $n \in \mathbb{Z} S(a,b)$
 - $\langle 2 \rangle 3. \ n \in S(a,n) \subseteq \mathbb{Z} S(a,b)$
 - $\langle 3 \rangle 1$. Let: $x \in S(a, n)$
 - $\langle 3 \rangle 2$. Assume: for a contradiction $x \in S(a,b)$
 - $\langle 3 \rangle 3$. Pick m such that x = am + b
 - $\langle 3 \rangle 4$. Pick l such that x = al + n
 - $\langle 3 \rangle 5$. n = a(m-l) + b

$$\langle 3 \rangle 6. \ n \in S(a, b)$$

 $\langle 3 \rangle 7. \ Q.E.D.$

PROOF: This contradicts $\langle 2 \rangle 2$.

 $\langle 1 \rangle 4.$

$$\mathbb{Z} - \{1, -1\} = \bigcup_{\substack{p \text{ prime} \\ 1 \text{ i. i. i.}}} S(p, 0)$$

PROOF: Since every integer except 1 and -1 is divisible by a prime.

- $\langle 1 \rangle$ 5. No nonempty finite set is open.
 - $\langle 2 \rangle$ 1. Let: U be a nonempty open set
 - $\langle 2 \rangle 2$. Pick $n \in U$
 - $\langle 2 \rangle 3$. There exist a, b such that $n \in S(a,b) \subseteq U$
 - $\langle 2 \rangle 4$. *U* is infinite.
- $\langle 1 \rangle 6$. $\mathbb{Z} \{1, -1\}$ is not closed.
- $\langle 1 \rangle 7$. $\bigcup_{p \text{ prime}} S(p,0)$ is not closed.
- $\langle 1 \rangle 8$. The union of finitely many closed sets is closed.
- $\langle 1 \rangle 9$. There are infinitely many primes.

Definition 12.1.13 (Neighbourhood). Let X be a topological space, $Sx \in X$ and $U \subseteq X$. Then U is a *neighbourhood* of x, and x is an *interior* point of U, iff there exists an open set V such that $x \in V \subseteq U$.

Proposition 12.1.14. A set B is open if and only if it is a neighbourhood of each of its points.

Proposition 12.1.15. Let X be a set and $\mathcal{N}: X \to \mathcal{P}X$. Then there exists a topology \mathcal{O} on X such that, for all $x \in X$, we have \mathcal{N}_x is the set of neighbourhoods of x, if and only if:

- For all $x \in X$ and $N \in \mathcal{N}_x$ we have $x \in N$
- For all $x \in X$ we have $X \in \mathcal{N}_x$
- For all $x \in X$, $N \in \mathcal{N}_x$ and $V \subseteq \mathcal{P}X$, if $N \subseteq V$ then $V \in \mathcal{N}_x$
- For all $x \in X$ and $M, N \in \mathcal{N}_x$ we have $M \cap N \in \mathcal{N}_x$
- For all $x \in X$ and $N \in \mathcal{N}_x$, there exists $M \in \mathcal{N}_x$ such that $M \subseteq N$ and $\forall y \in M.M \in \mathcal{N}_y$.

In this case, \mathcal{O} is unique and is given by $\mathcal{O} = \{U : \forall x \in U.U \in \mathcal{N}_x\}.$

Definition 12.1.16 (Exterior Point). Let X be a topological space, $x \in X$ and $B \subseteq X$. Then x is an *exterior point* of B iff B - X is a neighbourhood of x.

Definition 12.1.17 (Boundary Point). Let X be a topological space, $x \in X$ and $B \subseteq X$. Then x is a boundary point of B iff it is neither an interior point nor an exterior point of B.

Definition 12.1.18 (Interior). Let X be a topological space and $B \subseteq X$. The *interior* of B, B° , is the set of all interior points of B.

Proposition 12.1.19. The interior of B is the union of all the open sets included in B.

Definition 12.1.20 (Closure). Let X be a topological space and $B \subseteq X$. The *closure* of B, \overline{B} , is the set of all points that are not exterior points of B.

Proposition 12.1.21. The closure of B is the intersection of all the closed sets that include B.

Proposition 12.1.22. A set B is open iff $X - B = \overline{X - B}$.

Proposition 12.1.23 (Kuratowski Closure Axioms). Let X be a set and -: $\mathcal{P}X \to \mathcal{P}X$. Then there exists a topology \mathcal{O} such that, for all $B \subseteq X$, \overline{B} is the closure of B, if and only if:

- $\overline{\varnothing} = \varnothing$
- For all $A \subseteq X$ we have $A \subseteq \overline{A}$
- For all $A \subseteq X$ we have $\overline{\overline{A}} = \overline{A}$
- For all $A, B \subseteq X$ we have $\overline{A \cup B} = \overline{A} \cup \overline{B}$

In this case, \mathcal{O} is unique and is defined by $\mathcal{O} = \{U : X - U = \overline{X - U}\}.$

Definition 12.1.24 (Finer, Coarser). Let \mathcal{T} and \mathcal{T}' be topologies on the set X. Then \mathcal{T} is coarser, smaller or weaker than \mathcal{T}' , or \mathcal{T}' is finer, larger or weaker than \mathcal{T} , iff $\mathcal{T} \subseteq \mathcal{T}'$.

12.1.1 Subspaces

Definition 12.1.25 (Subspace). Let X be a topological space and $X_0 \subseteq X$. The *subspace topology* on X_0 is $\{U \cap X_0 : U \text{ is open in } X\}$.

Example 12.1.26. The unit sphere S^2 is $\{x \in \mathbb{R}^3 : ||x|| = 1\}$ as a subspace of \mathbb{R}^3 .

Theorem 12.1.27. Let X be a topological space and (Y,i) a subset of X. Then the subspace topology on Y is the unique topology such that, for every topological space Z and function $f:Z \to Y$, we have f is continuous if and only if $i \circ f:Z \to X$ is continuous.

Proof:

- $\langle 1 \rangle 1$. If we give Y the subspace topology then, for every topological space Z and function $f: Z \to Y$, we have f is continuous if and only if $i \circ f$ is continuous.
 - $\langle 2 \rangle$ 1. Given Y the subspace topology.
 - $\langle 2 \rangle 2$. Let: Z be a topological space.
 - $\langle 2 \rangle 3$. Let: $f: Z \to Y$
 - $\langle 2 \rangle 4$. If f is continuous then $i \circ f$ is continuous.

Proof: Since i is continuous.

- $\langle 2 \rangle 5$. If $i \circ f$ is continuous then f is continuous.
 - $\langle 3 \rangle 1$. Assume: $i \circ f$ is continuous.
 - $\langle 3 \rangle 2$. Let: *U* be open in *Y*.
 - $\langle 3 \rangle 3. \ f^{-1}(i^{-1}(i(U))) \text{ is open in } Z.$
 - $\langle 3 \rangle 4$. $f^{-1}(U)$ is open in Z.
- $\langle 1 \rangle 2$. If, for every topological space Z and function $f: Z \to Y$, we have f is continuous if and only if $i \circ f$ is continuous.
 - $\langle 2 \rangle 1$. Assume: For every topological space Z and function $f: Z \to Y$, we have f is continuous if and only if $i \circ f$ is continuous.
 - $\langle 2 \rangle 2$. *i* is continuous.
 - $\langle 2 \rangle 3$. For every open set U in X, we have $i^{-1}(X)$ is open in Y
 - $\langle 2 \rangle 4$. Let: Z be the set Y under the subspace topology and $f: Z \to Y$ the identity function.
 - $\langle 2 \rangle 5$. $i \circ f$ is continuous.
 - $\langle 2 \rangle 6$. f is continuous.
 - $\langle 2 \rangle 7$. Every set open in Y is open in Z.

Topological Disjoint Union 12.1.2

Definition 12.1.28 (Coproduct Topology). Let $\{X_{\alpha}\}_{{\alpha}\in A}$ be a family of topological spaces. The coproduct topology on $\coprod_{\alpha \in A} X_{\alpha}$ is

$$\mathcal{T} = \left\{ \coprod_{\alpha \in A} U_{\alpha} : \{U_{\alpha}\}_{\alpha \in A} \text{ is a family with } U_{\alpha} \text{ open in } X_{\alpha} \text{ for all } \alpha \right\} .$$

We prove this is a topology.

Proof:

 $\langle 1 \rangle 1$. For all $\mathcal{U} \subseteq \mathcal{T}$ we have $\bigcup \mathcal{U} \in \mathcal{T}$

Proof:

PROOF:
$$\bigcup_{i \in I} \coprod_{\alpha \in A} U_{i\alpha} = \coprod_{\alpha \in A} \bigcup_{i \in I} U_{i\alpha}$$
 $\langle 1 \rangle 2$. For all $U, V \in \mathcal{T}$ we have $U \cap V \in \mathcal{T}$

Proof:

$$\coprod_{\alpha \in A} U_{\alpha} \cap \coprod_{\alpha \in A} V_{\alpha} = \coprod_{\alpha \in A} (U_{\alpha} \cap V_{\alpha})$$

 $\langle 1 \rangle 3. \coprod_{\alpha \in A} X_{\alpha} \in \mathcal{T}$

PROOF: Since every X_{α} is open in X_{α} .

Proposition 12.1.29. The coproduct topology is the finest topology on $\coprod_{\alpha \in A} X_{\alpha}$ such that every injection $\kappa_{\alpha}: X_{\alpha} \to \coprod_{\alpha \in A} X_{\alpha}$ is continuous.

Proof:

 $\langle 1 \rangle 1$. Let: $P = \coprod_{\alpha \in A} X_{\alpha}$

 $\langle 1 \rangle 2$. Let: \mathcal{T}_c be the coproduct topology.

- $\langle 1 \rangle 3$. Let: \mathcal{T} be any topology on P
- $\langle 1 \rangle 4$. For all $\alpha \in A$, the injection $\kappa_{\alpha} : X_{\alpha} \to (P, \mathcal{T}_c)$ is continuous.
 - $\langle 2 \rangle 1$. Let: $\alpha \in A$
 - $\langle 2 \rangle 2$. Let: $\{U_{\alpha}\}_{{\alpha} \in A}$ be a family with each U_{α} open in X_{α} .
 - $\langle 2 \rangle 3$. For all $\alpha \in A$, we have $\kappa_{\alpha}^{-1}(\coprod_{\alpha \in A} U_{\alpha})$ is open in X_{α} .

PROOF: Since $\kappa_{\alpha}^{-1}(\coprod_{\alpha \in A} U_{\alpha}) = U_{\alpha}$.

- $\langle 1 \rangle 5$. If, for all $\alpha \in A$, the injection $\kappa_{\alpha} : X_{\alpha} \to (P, \mathcal{T})$ is continuous, then $\mathcal{T} \subseteq \mathcal{T}_c$.
 - $\langle 2 \rangle 1$. Assume: For all $\alpha \in A$, the injection $\kappa_{\alpha} : X_{\alpha} \to (P, \mathcal{T})$ is continuous.
 - $\langle 2 \rangle 2$. Let: $U \in \mathcal{T}$
 - $\langle 2 \rangle 3$. For all $\alpha \in a$, we have $\kappa_{\alpha}^{-1}(U)$ is open in X_{α} .
 - $\langle 2 \rangle 4$. $U = \coprod_{\alpha \in A} \kappa_{\alpha}^{-1}(U) \in \mathcal{T}_c$

Theorem 12.1.30. Let $\{X_{\alpha}\}_{{\alpha}\in A}$ be a family of topological spaces. The coproduct topology is the unique topology on $\coprod_{\alpha \in A} X_{\alpha}$ such that, for every topological space Z and function $f: \coprod_{\alpha \in A} X_{\alpha} \to Z$, we have f is continuous if and only if $\forall \alpha \in A.f \circ \kappa_{\alpha} \text{ is continuous.}$

Proof:

- $\langle 1 \rangle 1$. Let: $X = \coprod_{\alpha \in A} X_{\alpha}$
- $\langle 1 \rangle 2$. Let: \mathcal{T}_c be the coproduct topology.
- $\langle 1 \rangle 3$. For every topological space Z and function $f: (X, \mathcal{T}_c) \to Z$, we have f is continuous if and only if $\forall \alpha \in A. f \circ \kappa_{\alpha}$ is continuous.
 - $\langle 2 \rangle 1$. Let: Z be a topological space.
 - $\langle 2 \rangle 2$. Let: $f: X \to Z$
 - $\langle 2 \rangle 3$. If f is continuous then $\forall \alpha \in A.f \circ \kappa_{\alpha}$ is continuous.

Proof: Because the composite of two continuous functions is continuous.

- $\langle 2 \rangle 4$. If $\forall \alpha \in A. f \circ \kappa_{\alpha}$ is continuous then f is continuous.
 - $\langle 3 \rangle 1$. Assume: $\forall \alpha \in A.f \circ \kappa_{\alpha}$ is continuous.
 - $\langle 3 \rangle 2$. Let: *U* be open in *Z*
 - $\langle 3 \rangle 3$. For all $\alpha \in A$ we have $\kappa_{\alpha}^{-1}(f^{-1}(U))$ is open in X_{α}
 - $\langle 3 \rangle 4.$ $f^{-1}(U) = \coprod_{\alpha \in A} \kappa_{\alpha}^{-1}(f^{-1}(U))$ $\langle 3 \rangle 5.$ $f^{-1}(U)$ is open in X
- $\langle 1 \rangle 4$. For any topology \mathcal{T} on X, if for every topological space Z and function $f:(X,\mathcal{T})\to Z$, we have f is continuous if and only if $\forall \alpha\in A.f\circ\kappa_{\alpha}$ is continuous, then $\mathcal{T} = \mathcal{T}_c$.
 - $\langle 2 \rangle 1$. Let: \mathcal{T} be a topology on X.
 - $\langle 2 \rangle 2$. Assume: For every topological space Z and function $f:(X,\mathcal{T}) \to \mathcal{T}$ Z, we have f is continuous if and only if $\forall \alpha \in A.f \circ \kappa_{\alpha}$ is continuous.
 - $\langle 2 \rangle 3$. $\mathcal{T} \subseteq \mathcal{T}_c$
 - $\langle 3 \rangle 1$. For all $\alpha \in A$ we have $\kappa_{\alpha} : X_{\alpha} \to (X, \mathcal{T})$ is continuous.

PROOF: From $\langle 2 \rangle 1$ since id_X is continuous.

 $\langle 3 \rangle 2$. $\mathcal{T} \subseteq \mathcal{T}_c$

Proof: Proposition 12.1.29.

 $\langle 2 \rangle 4$. $\mathcal{T}_c \subseteq \mathcal{T}$

```
\langle 3 \rangle 1. Let: f: (X, \mathcal{T}) \to (X, \mathcal{T}_c) be the identity function.
         \langle 3 \rangle 2. f \circ \kappa_{\alpha} is continuous for all \alpha.
         \langle 3 \rangle 3. f is continuous.
              Proof: \langle 2 \rangle 1
         \langle 3 \rangle 4. \mathcal{T}_c \subseteq \mathcal{T}
П
```

12.1.3Product Topology

Definition 12.1.31 (Product Topology). Let $\{X_{\lambda}\}_{{\lambda} \in \Lambda}$ be a family of topological spaces. The product topology on $\prod_{\lambda \in \Lambda} X_{\lambda}$ is the coarsest topology such that every projection onto X_{λ} is continuous.

Proposition 12.1.32. Let $\{X_{\alpha}\}_{{\alpha}\in A}$ be a family of topological spaces. The product topology on $\prod_{\alpha \in A} X_{\alpha}$ is the topology generated by the basis $\mathcal{B} = \{\prod_{\alpha \in A} U_{\alpha} : \}$ for all $\alpha \in A$, U_{α} is open in X_{α} and $U_{\alpha} = X_{\alpha}$ for all but finitely many $\alpha \in A$.

```
Proof:
```

```
\langle 1 \rangle 1. \mathcal{B} is a basis for a topology.
\langle 1 \rangle 2. Let: \mathcal{T} be the topology generated by \mathcal{B}.
\langle 1 \rangle 3. Let: \mathcal{T}_p be the product topology.
\langle 1 \rangle 4. \mathcal{T} \subseteq \mathcal{T}_p
     \langle 2 \rangle 1. Let: B \in \mathcal{B}
    \langle 2 \rangle 2. Let: B = \prod_{\alpha \in A} U_{\alpha} with each U_{\alpha} open in X_{\alpha} and U_{\alpha} = X_{\alpha} except for
    \langle 2 \rangle 3. \ B = \pi_{\alpha_1}^{-1}(U_{\alpha_1}) \cap \cdots \cap \pi_{\alpha_n}^{-1}(U_{\alpha_n})
     \langle 2 \rangle 4. B \in \mathcal{T}_p
\langle 1 \rangle 5. \mathcal{T}_p \subseteq \mathcal{T}
    \langle 2 \rangle 1. For every \alpha \in A we have \pi_{\alpha} is continuous.
         PROOF: Since \pi^{-1}(U) is open for every U open in X_{\alpha}.
```

Theorem 12.1.33. Let $\{X_{\alpha}\}_{{\alpha}\in A}$ be a family of topological spaces. Then the product topology on $\prod_{\alpha \in A} X_{\alpha}$ is the unique topology such that, for every topological space Z and function $f: Z \to \prod_{\alpha \in A} X_{\alpha}$, we have f is continuous if and only if, for all $\alpha \in A$, we have $\pi_{\alpha} \circ f : Z \to X_{\alpha}$ is continuous.

Proof:

- $\langle 1 \rangle 1$. If we give $\prod_{\alpha \in A} X_{\alpha}$ the product topology, then for every topological space Z and function $f: Z \to \prod_{\alpha \in A} X_{\alpha}$, we have f is continuous if and only if, for all $\alpha \in A$, we have $\pi_{\alpha} \circ f$ is continuous.
 - $\langle 2 \rangle$ 1. Give $\prod_{\alpha \in A} X_{\alpha}$ the product topology. $\langle 2 \rangle$ 2. Let: Z be a topological space.

 - $\langle 2 \rangle 3$. Let: $f: Z \to \prod_{\alpha \in A} X_{\alpha}$
 - $\langle 2 \rangle 4$. If f is continuous then, for all $\alpha \in A$, we have $\pi_{\alpha} \circ f$ is continuous. PROOF: Since the composite of two continuous functions is continuous.
 - $\langle 2 \rangle 5$. If, for all $\alpha \in A$, we have $\pi_{\alpha} \circ f$ is continuous, then f is continuous.

- $\langle 3 \rangle 1$. Assume: For all $\alpha \in A$ we have $\pi_{\alpha} \circ f$ is continuous.
- $\langle 3 \rangle 2$. Let: $\{U_{\alpha}\}_{{\alpha} \in A}$ be a family with U_{α} open in X_{α} such that $U_{\alpha} = X_{\alpha}$ for all α except $\alpha = \alpha_1, \ldots, \alpha_n$.
- $\langle 3 \rangle 3$. For all α we have $f^{-1}(\pi_{\alpha}^{-1}(U_{\alpha}))$ is open in Z.
- $\langle 3 \rangle 4$. $f^{-1}(\prod_{\alpha} U_{\alpha})$ is open in Z

PROOF: Since $f^{-1}(\prod_{\alpha} U_{\alpha}) = f^{-1}(\pi_{\alpha_1}^{-1}(U_{\alpha_1})) \cap \cdots \cap f^{-1}(\pi_{\alpha_n}^{-1}(U_{\alpha_n})).$

- $\langle 1 \rangle 2$. If \mathcal{T} is a topology on $\prod_{\alpha \in A} X_{\alpha}$ such that, for every topological pace Z and function $f: Z \to \prod_{\alpha \in A} X_{\alpha}$, we have f is continuous if and only if, for all $\alpha \in A$, we have $\pi_{\alpha} \circ f$ is continuous, then \mathcal{T} is the product topology.
 - $\langle 2 \rangle$ 1. Assume: \mathcal{T} is a topology on $\prod_{\alpha \in A} X_{\alpha}$ such that, for every topological pace Z and function $f: Z \to \prod_{\alpha \in A} X_{\alpha}$, we have f is continuous if and only if, for all $\alpha \in A$, we have $\pi_{\alpha} \circ f$ is continuous.
 - $\langle 2 \rangle 2$. Let: \mathcal{T}_p be the product topology.
 - $\langle 2 \rangle 3$. $\mathcal{T} \subseteq \mathcal{T}_p$
 - $\langle 3 \rangle 1$. Let: $Z = (\prod_{\alpha} X_{\alpha}, \mathcal{T}_p)$
 - $\langle 3 \rangle 2$. Let: $f: Z \to \prod_{\alpha} X_{\alpha}$ be the identity function
 - $\langle 3 \rangle 3$. For all α we have $\pi_{\alpha} \circ f$ is continuous.
 - $\langle 3 \rangle 4$. f is continuous.

Proof: $\langle 2 \rangle 1$

- $\langle 3 \rangle 5$. Every set open in \mathcal{T} is open in \mathcal{T}_p
- $\langle 2 \rangle 4$. $\mathcal{T}_p \subseteq \mathcal{T}$
 - $\langle 3 \rangle 1$. id_{$\prod_{\alpha} X_{\alpha}$} is continuous.
 - $\langle 3 \rangle 2$. For all α we have π_{α} is continuous.

Proof: $\langle 2 \rangle 1$

 $\langle 3 \rangle 3$. $\mathcal{T}_p \subseteq \mathcal{T}$

PROOF: Since \mathcal{T}_p is the coarsest topology such that every π_α is continuous.

Example 12.1.34. It is not true that, for any function $f: \prod_{\alpha \in A} X_{\alpha} \to Y$, if f is continuous in every variable separately then f is continuous.

Define $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } x = y = 0 \end{cases}$$

Then f is continuous in x and in y, but is not continuous.

Proposition 12.1.35. Let $\{X_i\}_{i\in I}$ be a family of topological spaces. Let Y_i be a subspace of X_i for all $i\in I$. Then the product topology on $\prod_{i\in I}Y_i$ is the same as the subspace topology on $\prod_{i\in I}Y_i$ as a subspace of $\prod_{i\in I}X_i$.

Proof:

- $\langle 1 \rangle 1$. Given $\prod_{i \in I} Y_i$ the subspace topology.
- $\langle 1 \rangle 2$. Let: $\iota : \prod_{i \in I} Y_i$ be the inclusion.
- $\langle 1 \rangle 3$. Let: Z be any topological space.
- $\langle 1 \rangle 4$. Let: $f: Z \to \prod_{i \in I} Y_i$

 $\langle 1 \rangle$ 5. f is continuous if and only if, for all $i \in I$, we have $\pi_i \circ f$ is continuous. PROOF:

$$f \text{ is continuous} \Leftrightarrow \iota \circ f : Z \to \prod_{i \in I} X_i \text{ is continuous}$$
 (Theorem 12.1.27)
$$\Leftrightarrow \forall i \in I. \pi_i \circ \iota \circ f : Z \to X_i \text{ is continuous} \text{(Theorem 12.1.33)}$$

$$\Leftrightarrow \forall i \in I. \iota_i \circ \pi_i \circ f : Z \to X_i \text{ is continuous}$$

$$\Leftrightarrow \forall i \in I. \pi_i \circ f : Z \to Y_i \text{ is continuous}$$
 where ι_i is the inclusion $Y_i \to X_i$.

12.1.4 Bases

Definition 12.1.36 (Basis). Let X be a topological space. A *basis* for the topology on X is a set of open sets \mathcal{B} such that every open set is the union of a subset of \mathcal{B} . The elements of \mathcal{B} are called *basic open neighbourhoods* of their elements.

Definition 12.1.37 (Order Topology). Let X be a linearly ordered set. The *order topology* on X is the topology generated by the open interval (a, b) as well as the open rays $(a, +\infty)$ and $(-\infty, b)$ for $a, b \in X$.

Definition 12.1.38 (Lower Limit Topology). The *lower limit topology*, *Sorgen-frey topology*, *uphill topology* or *half-open topology* is the topology generated by the basis consisting of all half-open intervals [a, b).

Proposition 12.1.39. Let X be a topological space and $\mathcal{B} \subseteq \mathcal{P}X$. Then \mathcal{B} is a basis for a topology on X if and only if:

1.
$$\bigcup \mathcal{B} = X$$

2. For all $A, B \in \mathcal{B}$ and $x \in A \cap B$, there exists $C \in \mathcal{B}$ such that $x \in C \subseteq A \cap B$.

In this case, the topology is unique and is the set of all unions of subsets of \mathcal{B} . We call it the topology generated by \mathcal{B} .

12.1.5 Subbases

Definition 12.1.40 (Subbasis). Let X be a topological space. A *subbasis* for the topology on X is a subset $S \subseteq \mathcal{P}X$ such that every open set is a union of finite intersections of S.

Definition 12.1.41 (Space with Basepoint). A space with basepoint is a pair (X, x) where X is a topological space and $x \in X$.

12.1.6 Countability Axioms

Definition 12.1.42 (Neighbourhood Basis). Let X be a topological space and $x_0 \in X$. A neighbourhood basis of x_0 is a set \mathcal{U} of neighbourhoods of x_0 such that every neighbourhood of x_0 includes an element of \mathcal{U} .

Definition 12.1.43 (First Countable). A topological space is *first countable* iff every point has a countable neighbourhood basis.

Definition 12.1.44 (Second Countable). A topological space is *second countable* iff it has a countable basis.

Every second countable space is first countable.

A subspace of a first countable space is first countable.

A subspace of a second countable space is second countable.

 \mathbb{R}^n is second countable.

An uncountable discrete space is first countable but not second countable.

Proposition 12.1.45. Let $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ be a family of topological spaces such that no X_{λ} is indiscrete. If Λ is uncountable, then $\prod_{{\lambda}\in\Lambda} X_{\lambda}$ is not first countable.

Proof:

- $\langle 1 \rangle 1$. For all $\lambda \in \Lambda$, PICK U_{λ} open in X_{λ} such that $\emptyset \neq U_{\lambda} \neq X_{\lambda}$.
- $\langle 1 \rangle 2$. For all $\lambda \in \Lambda$, PICK $x_{\lambda} \in U_{\lambda}$.
- $\langle 1 \rangle 3$. Assume: for a contradiction B is a countable neighbourhood basis for $(x_{\lambda})_{{\lambda} \in \Lambda}$.
- $\langle 1 \rangle 4$. PICK $\lambda \in \Lambda$ such that, for all $U \in B$, we have $\pi_{\lambda}(U) = X_{\lambda}$
- $\langle 1 \rangle 5$. There is no $U \in \lambda$ such that $U \subseteq \pi_{\lambda}^{-1}(U_{\lambda})$
- $\langle 1 \rangle 6$. Q.E.D.

PROOF: This is a contradiction.

12.2 Continuous Functions

Definition 12.2.1 (Continuous). Let X and Y be topological spaces. A function $f: X \to Y$ is *continuous* iff, for every open set V in Y, the inverse image $f^{-1}(V)$ is open in X.

Proposition 12.2.2. 1. id_X is continuous

- 2. The composite of two continuous functions is continuous.
- 3. If $f: X \to Y$ is continuous and $X_0 \subseteq X$ then $f \upharpoonright X_0 : X_0 \to Y$ is continuous.
- 4. If $f: X + Y \to Z$, then f is continuous iff $f \circ \kappa_1 : X \to Z$ and $f \circ \kappa_2 : Y \to Z$ are continuous.
- 5. If $f: Z \to X \times Y$, then f is continuous iff $\pi_1 \circ f$ and $\pi_2 \circ f$ are continuous.

Proposition 12.2.3. Let X and Y be topological spaces. Let $f: X \to Y$. Let \mathcal{B} be a basis for Y. Then f is continuous if and only if, for all $B \in \mathcal{B}$, we have $f^{-1}(B)$ is open in X.

Proof:

```
\langle 1 \rangle 1. If f is continuous then, for all B \in \mathcal{B}, we have f^{-1}(B) is open in X. Proof: Since every element of \mathcal{B} is open in Y. \langle 1 \rangle 2. If, for all B \in \mathcal{B}, we have f^{-1}(B) is open in X, then f is continuous. \langle 2 \rangle 1. Assume: For all B \in \mathcal{B}, we have f^{-1}(B) is open in X. \langle 2 \rangle 2. Let: U be open in Y. \langle 2 \rangle 3. Let: x \in f^{-1}(U) \langle 2 \rangle 4. Pick B \in \mathcal{B} such that f(x) \in B \subseteq U. \langle 2 \rangle 5. x \in f^{-1}(B) \subseteq f^{-1}(U)
```

Definition 12.2.4 (Homeomorphism). Let X and Y be topological spaces. A homeomorphism between X and Y is a bijection $f: X \approx Y$ such that f and f^{-1} are continuous.

Definition 12.2.5 (Retraction). Let X be a topological space and A a subspace of X. A continuous function $\rho: X \to A$ is a *retraction* iff $\rho \upharpoonright A = \mathrm{id}_A$. We say A is a *retract* of X iff there exists a retraction.

Definition 12.2.6. Let **Top** be the category of small topological spaces and continuous functions.

Proposition 12.2.7. \emptyset is initial in Top.

Proposition 12.2.8. 1 is terminal in Top.

Forgetful functor $\mathbf{Top} \to \mathbf{Set}$.

Basepoint preserving continuous functor.

Proposition 12.2.9. Let (X, \mathcal{T}) be a topological space. Let S be the Sierpiński two-point space. Define $\Phi : \mathcal{T} \to \mathbf{Top}[X, S]$ by $\Phi(U)(x) = 1$ iff $x \in U$. Then Φ is a bijection.

Proof:

```
⟨1⟩1. For all U \in \mathcal{T} we have \Phi(U) is continuous.

⟨2⟩1. Let: U \in \mathcal{T}

⟨2⟩2. \Phi(U)(\{1\}) is open.

PROOF: Since \Phi(U)(\{1\}) = U.

⟨1⟩2. \Phi is injective.

PROOF: If \Phi(U) = \Phi(V) then we have \forall x(x \in U \Leftrightarrow \Phi(U)(x) = 1 \Leftrightarrow \Phi(V)(x) = 1 \Leftrightarrow x \in V.

⟨1⟩3. \Phi is surjective.

PROOF: Given f: X \to S continuous we have \Phi(f^{-1}(1)) = f.
```

12.2.1 Paths

Definition 12.2.10 (Path). A path in a topological space X is a continuous function $[0,1] \to X$.

12.2.2 Loops

Definition 12.2.11 (Loop). A *loop* in a topological space X is a path α : $[0,1] \to X$ such that $\alpha(0) = \alpha(1)$.

12.3 Convergence

Definition 12.3.1 (Convergence). Let X be a topological space. Let (x_n) be a sequence in X. A point $a \in X$ is a *limit* of the sequence iff, for every neighbourhood U of a, there exists n_0 such that $\forall n \geq n_0.x_n \in U$.

Convergence in a product space is pointwise convergence.

If $f: X \to Y$ is continuous and $x_n \to l$ in X then $f(x_n) \to f(l)$ in Y.

Example 12.3.2. The converse does not hold.

Let X be the set of all continuous functions $[0,1] \to [-1,1]$ under the product topology. Let $i: X \to L^2([0,1])$ be the inclusion.

If $f_n \to f$ then $i(f_n) \to i(f)$ — Lebesgue convergence theorem.

We prove that i is not continuous.

Assume for a contradiction i is continuous. Choose a neighbourhood K of 0 in X such that $\forall \phi \in K_{\epsilon}$. $\int \phi^2 < 1/2$. Let $K = \prod_{\lambda \in [0,1]} U_{\lambda}$ where $U_{\lambda} = [-1,1]$ except for $\lambda = \lambda_1, \ldots, \lambda_n$. Let ϕ be the function that is 0 at $\lambda_1, \ldots, \lambda_n$ and 1 everywhere else. Then $\phi \in K$ but $\int \phi^2 = 1$.

Proposition 12.3.3. The converse does hold for first countable spaces. If $f: X \to Y$ where X is first countable, and Y is a topological space, and whenever $x_n \to x$ then $f(x_n) \to f(x)$, then f is continuous.

12.4 Subspaces

Definition 12.4.1 (Subspace). Let X be a topological space, Y a set, and $f: Y \to X$. The *subspace topology* on Y induced by f is $\mathcal{T} = \{i^{-1}(U) : U \text{ is open in } X\}.$

We prove this is a topology.

Proof:

```
 \begin{array}{l} \langle 1 \rangle 1. \text{ For all } \mathcal{U} \subseteq \mathcal{T} \text{ we have } \bigcup \mathcal{U} \in \mathcal{T} \\ \text{ PROOF: Since } \bigcup \mathcal{U} = f^{-1}(\bigcup \{V: f^{-1}(V) \in \mathcal{U}\}). \\ \langle 1 \rangle 2. \text{ For all } U, V \in \mathcal{T} \text{ we have } U \cap V \in \mathcal{T} \\ \text{ PROOF: Since } f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V). \\ \langle 1 \rangle 3. \ Y \in \mathcal{T} \\ \text{ PROOF: Since } Y = f^{-1}(X). \\ \end{array}
```

Proposition 12.4.2. Let X be a topological space, Y a set and $f: Y \to X$ a function. Then the subspace topology on Y is the coarsest topology such that f is continuous.

Proof: Immediate from definition. \square

12.5 Embedding

Definition 12.5.1 (Embedding). Let X and Y be topological spaces and $f: X \to Y$. Then f is an *embedding* iff f is injective and the topology on X is the subspace induced by f.

12.6 Quotient Spaces

Definition 12.6.1 (Quotient Topology). Let X be a topological space, S a set, and $\pi: X \to S$ be a surjection. The *quotient topology* on S induced by π is $\mathcal{T} = \{U \in \mathcal{P}S : \pi^{-1}(U) \text{ is open in } X\}.$

We prove this is a topology.

Proof:

```
 \begin{array}{l} \langle 1 \rangle 1. \text{ For all } \mathcal{U} \subseteq \mathcal{T} \text{ we have } \bigcup \mathcal{U} \in \mathcal{T}. \\ \text{PROOF: Since } \pi^{-1}(\bigcup \mathcal{U}) = \bigcup \{\pi^{-1}(U) : U \in \mathcal{U}\}. \\ \langle 1 \rangle 2. \text{ For all } U, V \in \mathcal{T} \text{ we have } U \cap V \in \mathcal{T}. \\ \text{PROOF: Since } \pi^{-1}(U \cap V) = \pi^{-1}(U) \cap \pi^{-1}(V). \\ \langle 1 \rangle 3. \ X \in \mathcal{T} \\ \text{PROOF: Since } X = \pi^{-1}(Y). \\ \end{array}
```

Proposition 12.6.2. Let X be a topological space, S a set and $\pi: X \to S$ a surjection. Then the quotient topology on S is the finest topology such that π is continuous.

PROOF: Immediate from definitions.

Definition 12.6.3 (Quotient Map). Let X and S be topological spaces and $\pi: X \to S$. Then π is a *quotient map* iff π is surjective and the topology on S is the quotient topology induced by π .

Theorem 12.6.4. Let X be a topological space, let S be a set, and let $\pi: X \to S$ be surjective. Then the quotient topology on S is the unique topology such that, for every topological space Z and function $f: S \to Z$, we have f is continuous if and only if $f \circ \pi$ is continuous.

Proof:

- $\langle 1 \rangle 1$. If S is given the quotient topology, then for every topological space Z and function $f: S \to Z$, we have f is continuous if and only if $f \circ \pi$ is continuous.
 - $\langle 2 \rangle 1$. Give S the quotient topology.
 - $\langle 2 \rangle 2$. Let: Z be a topological space.
 - $\langle 2 \rangle 3$. Let: $f: S \to Z$
 - $\langle 2 \rangle 4$. If f is continuous then $f \circ \pi$ is continuous.

PROOF: The composite of two continuous functions is continuous.

 $\langle 2 \rangle$ 5. If $f \circ \pi$ is continuous then f is continuous.

- $\langle 3 \rangle 1$. Assume: $f \circ \pi$ is continuous.
- $\langle 3 \rangle 2$. Let: *U* be open in *Z*.
- $\langle 3 \rangle 3$. $\pi^{-1}(f^{-1}(U))$ is open in X.
- $\langle 3 \rangle 4$. $f^{-1}(U)$ is open in S.
- $\langle 1 \rangle 2$. If S is given a topology such that, for every topological space Z and function $f: S \to Z$, we have f is continuous if and only if $f \circ \pi$ is continuous, then that topology is the quotient topology.
 - $\langle 2 \rangle 1$. Give S a topology such that, for every topological space Z and function $f: S \to Z$, we have f is continuous if and only if $f \circ \pi$ is continuous.
 - $\langle 2 \rangle 2$. Let: $U \subseteq S$
 - $\langle 2 \rangle 3$. If $\pi^{-1}(U)$ is open in X then U is open in S.
 - $\langle 3 \rangle 1$. Let: Z be S under the quotient topology induced by π .
 - $\langle 3 \rangle 2$. Let: $f: S \to Z$ be the identity function.
 - $\langle 3 \rangle 3$. $f \circ \pi$ is continuous.
 - $\langle 3 \rangle 4$. f is continuous.

Proof: $\langle 2 \rangle 1$

- $\langle 3 \rangle 5$. *U* is open in *Z*.
- $\langle 3 \rangle 6$. *U* is open in *X*.
- $\langle 2 \rangle 4$. If U is open in S then $\pi^{-1}(U)$ is open in X.

PROOF: Since π is continuous (taking Z = S and $f = \mathrm{id}_S$ in $\langle 2 \rangle 1$).

Corollary 12.6.4.1. Let $\pi: X \to S$ be a quotient map. Let Z be a topological space. Let $f: X \to Z$ be continuous. Then there exists a continuous map $g: S \to Z$ such that $f = g \circ \pi$ if and only if, for all $s \in S$, we have f is constant on $\pi^{-1}(s)$.

Proposition 12.6.5. Let Z be a topological space. Define $\pi:[0,1] \to S^1$ by $\pi(t) = (\cos 2\pi t, \sin 2\pi t)$. Given any continuous function $f: S^1 \to Z$, we have $f \circ \pi$ is a loop in Z. This defines a bijection between $\mathbf{Top}[S^1, Z]$ and the set of loops in Z.

PROOF: Since π is a quotient map. \sqcup

Definition 12.6.6 (Projective Space). The *projective space* \mathbb{RP}^n is the quotient of $\mathbb{R}^{n+1} - \{0\}$ by \sim where $x \sim \lambda x$ for all $x \in \mathbb{R}^{n+1} - \{0\}$ and $\lambda \in \mathbb{R}$.

Definition 12.6.7 (Torus). The torus T is the quotient of $[0,1]^2$ by \sim where $(x,0)\sim(x,1)$ and $(0,y)\sim(1,y)$.

Definition 12.6.8 (Möbius Band). The *Möbius band* is the quotient of $[0,1]^2$ by \sim where $(0,y) \sim (1,1-y)$.

Definition 12.6.9 (Klein Bottle). The *Klein bottle* is the quotient of $[0,1]^2$ by \sim where $(x,0)\sim(x,1)$ and $(0,y)\sim(1,1-y)$.

Proposition 12.6.10. \mathbb{RP}^2 is the quotient of $[0,1]^2$ by \sim where $(x,0) \sim (1-x,1)$ and $(0,y) \sim (1,1-y)$.

PROOF: TODO

Example 12.6.11. Let $\{X_i\}_{i\in I}$ be a family of topological spaces and $\{Y_i\}_{i\in I}$ a family of sets. Let $q_i: X_i \twoheadrightarrow Y_i$ be a surjective function for all $i \in I$. Give each Y_i the quotient topology. It is not true in general that the product topology on $\prod_{i\in I} Y_i$ is the same as the quotient topology induced by $\prod_{i\in I} q_i: \prod_{i\in I} X_i \twoheadrightarrow \prod_{i\in I} Y_i$.

Proof:

- $\langle 1 \rangle 1$. LET: $X^* = \mathbb{R} \mathbb{Z}_+ + \{b\}$ be the quotient space obtained from \mathbb{R} by identifying the subset \mathbb{Z}_+ to the point b.
- $\langle 1 \rangle 2$. Let: $p : \mathbb{R} \to X^*$ be the quotient map. Prove: $p \times \mathrm{id}_{\mathbb{Q}} : \mathbb{R} \times \mathbb{Q} \to X^* \times \mathbb{Q}$ is not a quotient map.
- $\langle 1 \rangle 3$. For $n \in \mathbb{Z}_+$, LET: $c_n = \sqrt{2}/n$
- ⟨1⟩4. For $n \in \mathbb{Z}_+$, LET: $U_n = \{(x,y) \in \mathbb{Q} \times \mathbb{R} : n - 1/4 < x < n + 1/4 \text{ and } ((y > x + c_n - n \text{ and } y > -x + c_n + n)) \text{ or } (y < x + c_n - n \text{ and } y < -x + c_n + n))\}$
- $\langle 1 \rangle 5$. For all $n \in \mathbb{Z}_+$, U_n is open in $\mathbb{R} \times \mathbb{Q}$
- $\langle 1 \rangle 6$. For all $n \in \mathbb{Z}_+$ we have $\{n\} \times \mathbb{Q} \subseteq U_n$
- $\langle 1 \rangle 7$. Let: $U = \bigcup_{n \in \mathbb{Z}_+} U_n$
- $\langle 1 \rangle 8$. U is open in $\mathbb{R} \times \mathbb{Q}$.
- $\langle 1 \rangle 9$. U is saturated with respect to $p \times id_{\mathbb{Q}}$.
- $\langle 1 \rangle 10$. Let: $U' = (p \times id_{\mathbb{O}})(U)$
- $\langle 1 \rangle 11$. Assume: for a contradiction U' is open in $X^* \times \mathbb{Q}$.

12.7 Connected Spaces

Definition 12.7.1 (Connected). A topological space is *connected* iff it is not the union of two nonempty open disjoint subsets.

Proposition 12.7.2. The continuous image of a connected space is connected.

Proposition 12.7.3. Let X be a topological space and $A, B \subseteq X$. If $X = A \cup B$, $A \cap B \neq \emptyset$, and A and B are connected, then X is connected.

Proposition 12.7.4. If X and Y are nonempty topological spaces, then $X \times Y$ is connected if and only if X and Y are connected.

Definition 12.7.5 (Path-connected). A topological space X is path-connected iff, for any points $a, b \in X$, there exists a continuous function $\alpha : [0,1] \to X$, called a path, such that $\alpha(0) = a$ and $\alpha(1) = b$.

Proposition 12.7.6. The continuous image of a path connected space is path connected.

Proposition 12.7.7. *Let* X *be a topological space and* $A, B \subseteq X$. *If* $X = A \cup B$, $A \cap B \neq \emptyset$, and A and B are path connected, then X is path connected.

Proposition 12.7.8. If X and Y are nonempty topological spaces, then $X \times Y$ is path connected if and only if X and Y are path connected.

Hausdorff Spaces 12.8

Definition 12.8.1 (Hausdorff). A topological space is a *Hausdorff* space or a T_2 space iff any two distinct points have disjoint neighbourhoods.

Proposition 12.8.2. In a Hausdorff space, a sequence has at most one limit.

1. Every subspace of a Hausdorff space is Hausdorff. Proposition 12.8.3.

- 2. The disjoint union of two Hausdorff spaces is Hausdorff.
- 3. The product of two Hausdorff spaces is Hausdorff.

Proposition 12.8.4. Let A be a topological space and B a Hausdorff space. Let $f,g:A\to B$ be continuous. Let $X\subseteq A$ be dense. If f and g agree on X, then f = g.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction $a \in A$ and $f(a) \neq g(a)$.
- $\langle 1 \rangle 2$. PICK disjoint neighbourhoods U and V of f(a) and g(a) respectively.
- $\langle 1 \rangle 3$. Pick $x \in f^{-1}(U) \cap g^{-1}(V)$
- $\langle 1 \rangle 4. \ f(x) = g(x) \in U \cap V$
- $\langle 1 \rangle 5$. Q.E.D.

PROOF: This is a contradiction.

Proposition 12.8.5. Let X and Y be metric spaces. Let $f: X \to Y$ be uniformly continuous. Let \hat{X} and \hat{Y} be the completions of X and Y. Then f extends uniquely to a continuous map $\hat{X} \to \hat{Y}$.

PROOF: The extension maps $\lim_{n\to\infty} x_n$ to $\lim_{n\to\infty} f(x_n)$.

12.9Separable Spaces

Definition 12.9.1 (Separable). A topological space is *separable* iff it has a countable dense subset.

Every second countable space is separable.

12.10 Sequential Compactness

Definition 12.10.1 (Sequentially Compact). A topological space is *sequentially* compact iff every sequence has a convergent subsequence.

12.11Compactness

Definition 12.11.1 (Compact). A topological space is *compact* iff every open cover has a finite subcover.

Proposition 12.11.2. Let X be a compact topological space. Let P be a set of open sets such that, for all $U, V \in P$, we have $U \cup V \in P$. Assume that every point has an open neighbourhood in P. Then $X \in P$.

Proof:

- $\langle 1 \rangle 1$. P is an open cover of X
- $\langle 1 \rangle 2$. Pick a finite subcover $U_1, \ldots, U_n \in P$
- $\langle 1 \rangle 3. \ X = U_1 \cup \cdots \cup U_n \in P$

Corollary 12.11.2.1. Let f be a compact space and $f: X \to \mathbb{R}$ be locally bounded. Then f is bounded.

PROOF: Take $P = \{U \text{ open in } X : f \text{ is bounded on } U\}$. \square

Proposition 12.11.3. The continuous image of a compact space is compact.

Proposition 12.11.4. A closed subspace of a compact space is compact.

Proposition 12.11.5. Let X and Y be nonempty spaces. Then the following are equivalent.

- 1. X and Y are compact.
- 2. X + Y is compact.
- 3. $X \times Y$ is compact.

Proposition 12.11.6. A compact subspace of a Hausdorff space is closed.

Proposition 12.11.7. A continuous bijection from a compact space to a Hausdorff space is a homeomorphism.

Proposition 12.11.8. A first countable compact space is sequentially compact.

12.12 Quotient Spaces

Definition 12.12.1 (Quotient Space). Let X be a topological space and \sim an equivalence relation on X. The *quotient topology* on X/\sim is defined by: $U \in \mathcal{P}X$ is open in X/\sim if and only if $\pi^{-1}(U)$ is open in X.

Proposition 12.12.2. Let X and Y be topological spaces. Let \sim be an equivalence relation on X. Let $f: X/\sim \to Y$. Then f is continuous if and only if $f\circ \pi$ is continuous.

Proposition 12.12.3. Let X and Y be topological spaces. Let \sim be an equivalence relation on X. Let $\phi: Y \to X/\sim$.

Assume that, for all $y \in Y$, there exists a neighbourhood U of y and a continuous function $\Phi: U \to X$ such that $\pi \circ \Phi = \phi \upharpoonright U$. Then ϕ is continuous.

Proposition 12.12.4. A quotient of a connected space is connected.

Proposition 12.12.5. A quotient of a path connected space is path connected.

Proposition 12.12.6. Let X be a topological space and \sim an equivalence relation on X. If X/\sim is Hausdorff then every equivalence class of \sim is closed in X.

Definition 12.12.7. Let X be a topological space and $A_1, \ldots, A_r \subseteq X$. Then $X/A_1, \ldots, A_r$ is the quotient space of X with respect to \sim where $x \sim y$ iff x = y or $\exists i (x \in A_i \land y \in A_i)$.

Definition 12.12.8 (Cone). Let X be a topological space. The *cone over* X is the space $(X \times [0,1])/(X \times \{1\})$.

Definition 12.12.9 (Suspension). Let X be a topological space. The *suspension* of X is the space

$$\Sigma X := (X \times [-1,1])/(X \times \{-1\}), (X \times \{1\})$$

Definition 12.12.10 (Wedge Product). Let $x_0 \in X$ and $y_0 \in Y$. The wedge product $X \vee Y$ is $(X \times \{y_0\}) \cup (\{x_0\} \times Y)$ as a subspace of $X \times Y$.

Definition 12.12.11 (Smash Product). Let $x_0 \in X$ and $y_0 \in Y$. The *smash* product $X \wedge Y$ is $(X \times Y)/(X \vee Y)$.

Example 12.12.12. $D^n/S^{n-1} \cong S^n$

Proof:

 $\langle 1 \rangle 1$. Let: $\phi: D^n/S^{n-1} \to S^n$ be the function induced by the map $D^n \to S^n$ that maps the radii of D^n onto the meridians of S^n from the north to the south pole.

 $\langle 1 \rangle 2$. ϕ is a bijection.

 $\langle 1 \rangle 3$. ϕ is a homeomorphism.

PROOF: Since D^n/S^{n-1} is compact and S^n is Hausdorff.

12.13 Gluing

Definition 12.13.1 (Gluing). Let X and Y be topological spaces, $X_0 \subseteq X$ and $\phi: X_0 \to Y$ a continuous map. Then $Y \cup_{\phi} X$ is the quotient space $(X+Y)/\sim$, where \sim is the equivalence relation generated by $x \sim \phi(x)$ for all $x \in X$.

Proposition 12.13.2. *Y* is a subspace of $Y \cup_{\phi} X$.

Definition 12.13.3. Let X be a topological space and $\alpha: X \cong X$ a homeomorphism. Then $(X \times [0,1])/\alpha$ is the quotient space of $X \times [0,1]$ by the equivalence relation generated by $(x,0) \sim (\alpha(x),1)$ for all $x \in X$.

Definition 12.13.4 (Möbius Strip). The *Möbius strip* is $([-1,1] \times [0,1])/\alpha$ where $\alpha(x) = -x$.

Definition 12.13.5 (Klein Bottle). The *Klein bottle* is $(S^1 \times [0,1])/\alpha$ where $\alpha(z) = \overline{z}$.

Proposition 12.13.6. Let M be the Möbius strip and K the Klein bottle. Then $M \cup_{\mathrm{id}_{\partial M}} M \cong K$.

Proof:

- $\langle 1 \rangle 1$. LET: $f: ([-1,1] \times [0,1]) + ([-1,1] \times [0,1]) \to S^1 \times [0,1]$ be the function that maps $\kappa_1(\theta,t)$ to $(e^{\pi i \theta/2},t)$ and $\kappa_2(\theta,t)$ to $(-e^{-\pi i \theta/2},t)$.
- $\langle 1 \rangle 2$. f induces a bijection $M \cup_{\mathrm{id}_{\partial M}} M \approx K$
- $\langle 1 \rangle 3$. f is a homeomorphism.

12.14 Metric Spaces

Definition 12.14.1 (Metric Space). Let X be a set and $d: X^2 \to \mathbb{R}$. We say (X, d) is a *metric space* iff:

- For all $x, y \in X$ we have $d(x, y) \ge 0$
- For all $x, y \in X$ we have d(x, y) = 0 iff x = y
- For all $x, y \in X$ we have d(x, y) = d(y, x)
- (Triangle Inequality) For all $x, y, z \in X$ we have $d(x, z) \leq d(x, y) + d(y, z)$

We call d the *metric* of the metric space (X, d). We often write X for the metric space (X, d).

Definition 12.14.2 (Ball). Let X be a metric space. Let $x \in X$ and r > 0. The *ball* with *centre* x and *radius* r is

$$B(x,r) = \{ y \in X \mid d(x,y) < r \} .$$

Definition 12.14.3 (Metric Topology). Let (X, d) be a metric space. The *metric topology* on X is the topology generated by the basis consisting of the balls.

Definition 12.14.4 (Metrizable). A topological space is *metrizable* iff there exists a metric that induces its topology.

Proposition 12.14.5. Every metrizable space is Hausdorff.

Every metrizable space is first countable.

A metric space is compact if and only if it is sequentially compact.

A metric space is separable if and only if it is second countable.

12.14.1 **Products**

Definition 12.14.6 (Euclidean Metric). Let X and Y be metric spaces. The *Euclidean metric* on $X \times Y$ is

$$d((x_1, y_1), (x_2, y_2)) = \sqrt{d(x_1, x_2)^2 + d(y_1, y_2)^2}$$
.

We write $X \times Y$ for the set $X \times Y$ under this metric.

We prove this is a metric.

Proof:

 $\langle 1 \rangle 1. \ d((x_1, y_1), (x_2, y_2)) \ge 0$

PROOF: Immediate from definition.

$$\langle 1 \rangle 2$$
. $d((x_1, y_1), (x_2, y_2)) = 0$ iff $(x_1, y_1) = (x_2, y_2)$
PROOF: $\sqrt{d(x_1, x_2)^2 + d(y_1, y_2)^2} = 0$ iff $d(x_1, x_2) = d(y_1, y_2) = 0$ iff $x_1 = x_2$ and $y_1 = y_2$.

$$\langle 1 \rangle 3.$$
 $d((x_1, y_1), (x_2, y_2)) = d((x_2, y_2), (x_1, y_1))$
PROOF: Since $\sqrt{d(x_1, x_2)^2 + d(y_1, y_2)^2} = \sqrt{d(x_2, x_1)^2 + d(y_2, y_1)^2}$.

 $\langle 1 \rangle 4$. The triangle inequality holds.

Proof:

$$\begin{aligned} &(d((x_1,y_1),(x_2,y_2)) + d((x_2,y_2),(x_3,y_3)))^2 \\ &= d((x_1,y_1),(x_2,y_2))^2 + 2d((x_1,y_1),(x_2,y_2))d((x_2,y_2),(x_3,y_3)) + d((x_2,y_2),(x_3,y_3))^2 \\ &= d(x_1,x_2)^2 + d(y_1,y_2)^2 + 2\sqrt{(d(x_1,x_2)^2 + d(y_1,y_2)^2)(d(x_2,x_3)^2 + d(y_2,y_3)^2)} + d(x_2,x_3)^2 + d(y_2,y_3)^2 \\ &\geqslant d(x_1,x_2)^2 + d(x_2,x_3)^2 + d(y_1,y_2)^2 + d(y_2,y_3)^2 + 2(d(x_1,x_2)d(x_2,x_3) + d(y_1,y_2)d(y_2,y_3)) \\ &\quad \text{(Cauchy-Schwarz)} \\ &= (d(x_1,x_2) + d(x_2,x_3))^2 + (d(y_1,y_2) + d(y_2,y_3))^2 \\ &\geqslant d(x_1,x_3)^2 + d(y_1,y_3)^2 \\ &= d((x_1,y_1),(x_3,y_3))^2 \end{aligned}$$

Proposition 12.14.7. Let X and Y be metric spaces. The Euclidean metric on $X \times Y$ induces the product topology on $X \times Y$.

PROOF:

 $\langle 1 \rangle 1$. Every open ball is open in the product topology.

```
\langle 2 \rangle 4. \ d((x', y'), (a, b)) < \epsilon
       Proof:
       d((x',y'),(a,b)) \leq d((x',y'),(x,y)) + d((x,y),(a,b)) (Triangle Inequality)
\langle 1 \rangle 2. If U is open in X and V is open in Y then U \times V is open under the
         Euclidean metric.
    \langle 2 \rangle 1. Let: (x,y) \in U \times V
   \langle 2 \rangle 2. PICK \delta, \epsilon > 0 such that B(x, \delta) \subseteq U and B(y, \epsilon) \subseteq V
             PROVE: (B((x,y), \min(\delta, \epsilon)) \subseteq U \times V
   \langle 2 \rangle 3. Let: (x', y') \in B((x, y), \min(\delta, \epsilon))
   \langle 2 \rangle 4. \ d(x',x) < \delta
       \langle 3 \rangle 1. d((x', y'), (x, y)) < \min(\delta, \epsilon)
       \langle 3 \rangle 2. d(x',x)^2 + d(y',y)^2 < \delta^2
       \langle 3 \rangle 3. d(x',x)^2 < \delta^2
    \langle 2 \rangle 5. d(y',y) < \epsilon
       PROOF: Similar.
    \langle 2 \rangle 6. \ (x', y') \in U \times V
```

12.15 Complete Metric Spaces

Definition 12.15.1 (Complete). A metric space is *complete* iff every Cauchy sequence converges.

Example 12.15.2. \mathbb{R} is complete.

Proposition 12.15.3. The product of two complete metric spaces is complete.

Proposition 12.15.4. Every compact metric space is complete.

Proposition 12.15.5. Let X be a complete metric space and $A \subseteq X$. Then A is complete if and only if A is closed.

Definition 12.15.6 (Completion). Let X be a metric space. A *completion* of X is a complete metric space \hat{X} and injection $i: X \rightarrowtail \hat{X}$ such that:

- The metric on X is the restriction of the metric on \hat{X}
- X is dense in \hat{X} .

Proposition 12.15.7. Let $i_1: X \to Y_1$ and $i_2: X \to Y_2$ be completions of X. Then there exists a unique isometry $\phi: Y_1 \cong Y_2$ such that $\phi \circ i_1 = i_2$.

PROOF: Define $\phi(\lim_{n\to\infty} i_1(x_n)) = \lim_{n\to\infty} i_2(x_n)$. \square

Theorem 12.15.8. Every metric space has a completion.

PROOF: Let \hat{X} be the set of Cauchy sequences in X quotiented by \sim where $(x_n) \sim (y_n)$ if and only if $d(x_n, y_n) \to 0$. \square

12.16 Manifolds

Definition 12.16.1 (Manifold). An *n-dimensional manifold* is a second countable Hausdorff space locally homeomorphic to \mathbb{R}^n .

Homotopy Theory

13.1 Homotopies

Definition 13.1.1 (Homotopy). Let X and Y be topological spaces. Let $f, g: X \to Y$ be continuous. A *homotopy* between f and g is a continuous function $h: X \times [0,1] \to Y$ such that

- $\forall x \in X.h(x,0) = f(x)$
- $\forall x \in X.h(x,1) = g(x)$

We say f and g are *homotopic*, $f \simeq g$, iff there exists a homotopy between them. Let [X,Y] be the set of all homotopy classes of functions $X \to Y$.

Proposition 13.1.2. Let $f, f': X \to Y$ and $g, g': Y \to Z$ be continuous. If $f \simeq f'$ and $g \simeq g'$ then $g \circ f \simeq g' \circ f'$.

Definition 13.1.3. Let **HTop** be the category whose objects are the small topological spaces and whose morphisms are the homotopy classes of continuous functions.

A homotopy functor is a functor $\mathbf{Top} \to \mathcal{C}$ that factors through the canonical functor $\mathbf{Top} \to \mathbf{HTop}$.

Definition 13.1.4. A functor $F: \mathbf{Top} \to \mathcal{C}$ is homotopy invariant iff, for any topological spaces X, Y and continuous functions $f, g: X \to Y$, if $f \simeq g$ then Hf = Hg.

Basepoint-preserving homotopy.

13.2 Homotopy Equivalence

Definition 13.2.1 (Homotopy Equivalence). Let X and Y be topological spaces. A homotopy equivalence between X and Y, $f: X \simeq Y$, is a continuous function $f: X \to Y$ such that there exists a continuous function $g: Y \to X$, the homotopy inverse to f, such that $g \circ f \simeq \operatorname{id}_X$ and $f \circ g \simeq \operatorname{id}_Y$.

Definition 13.2.2 (Contractible). A topological space X is *contractible* iff $X \simeq 1$.

Example 13.2.3. \mathbb{R}^n is contractible.

Example 13.2.4. D^n is contractible.

Definition 13.2.5 (Deformation Retract). Let X be a topological space and A a subspace of X. A retraction $\rho: X \to A$ is a deformation retraction iff $i \circ \rho \simeq \mathrm{id}_X$, where i is the inclusion $A \mapsto X$. We say A is a deformation retract of X iff there exists a deformation retraction.

Definition 13.2.6 (Strong Deformation Retract). Let X be a topological space and A a subspace of X. A strong deformation retraction $\rho: X \to A$ is a continuous function such that there exists a homotopy $h: X \times [0,1] \to X$ between $i \circ \rho$ and id_X such that, for all $a \in X$ and $t \in [0,1]$, we have h(a,t) = a.

We say A is a strong deformation retract of X iff a strong deformation retraction exists.

Example 13.2.7. $\{0\}$ is a strong deformation retract of \mathbb{R}^n and of D^n .

Example 13.2.8. S^1 is a strong deformation retract of the torus $S^1 \times D^2$.

Example 13.2.9. S^{n-1} is a strong deformation retract of $D^n - \{0\}$.

Example 13.2.10. For any topological space X, the singleton consisting of the vertex is a strong deformation retract of the cone over X.

Simplicial Complexes

Definition 14.0.1 (Simplex). A k-dimensional simplex or k-simplex in \mathbb{R}^n is the convex hull $s(x_0, \ldots, x_k)$ of k+1 points in general position.

Definition 14.0.2 (Face). A *sub-simplex* or *face* of $s(x_0, ..., x_k)$ is the convex hull of a subset of $\{x_0, ..., x_k\}$.

Definition 14.0.3 (Simplicial Complex). A *simplicial complex* in \mathbb{R}^n is a set K of simplices such that:

- for every simplex s in K, every face of s is in K.
- The intersection of two simplices $s_1, s_2 \in K$ is either empty or is a face of both s_1 and s_2 .
- K is locally finite, i.e. every point of \mathbb{R}^n has a neighbourhood that only intersects finitely many elements of K.

The topological space underlying K is $|K| = \bigcup K$ as a subspace of \mathbb{R}^n .

14.1 Cell Decompositions

Definition 14.1.1 (*n*-cell). An *n*-cell is a topological space homeomorphic to \mathbb{R}^n .

Definition 14.1.2 (Cell Decomposition). Let X be a topological space. A *cell decomposition* of X is a partition of X into subspaces that are n-cells.

Definition 14.1.3 (*n*-skeleton). Given a cell decomposition of X, the *n*-skeleton X^n is the union of all the cells of dimension $\leq n$.

14.2 CW-complexes

Definition 14.2.1 (CW-Complex). A CW-complex consists of a topological space X and a cell decomposition \mathcal{E} of X such that:

- 1. Characteristic Maps For every n-cell $e \in \mathcal{E}$, there exists a continuous map $\Phi_e: D^n \to X$ such that $\Phi((D^n)^\circ) = e$, the corestriction $\Phi_e: (D^n)^\circ \approx e$ is a homeomorphism, and $\Phi_e(S^n)$ is the union of all the cells in \mathcal{E} of dimension < n.
- 2. Closure Finiteness For all $e \in \mathcal{E}$, we have \overline{e} intersects only finitely many other cells in \mathcal{E} .
- 3. Weak Topology Given $A \subseteq X$, we have A is closed iff for all $e \in \mathcal{E}$, $A \cap \overline{e}$ is closed.

Proposition 14.2.2. If a cell decomposition \mathcal{E} satisfies the Characteristic Maps axiom, then for every n-cell $e \in \mathcal{E}$ we have $\overline{e} = \Phi_e(D^n)$. Therefore \overline{e} is compact and $\overline{e} - e = \Phi_e(S^{n-1}) \subseteq X^{n-1}$.

Proof:

 $\langle 1 \rangle 1. \ e \subseteq \Phi_e(D^n) \subseteq \overline{e}$

Proof:

$$e = \Phi_e((D^n)^\circ)$$

$$\subseteq \Phi_e(D^n)$$

$$= \Phi_e(\overline{(D^n)^\circ})$$

$$\subseteq \overline{\Phi_e((D^n)^\circ)}$$

$$= \overline{e}$$

 $\langle 1 \rangle 2$. $\Phi_e(D^n)$ is compact.

PROOF: Because D^n is compact.

 $\langle 1 \rangle 3$. $\Phi_e(D^n)$ is closed.

$$\langle 1 \rangle 4. \ \Phi_e(D^n) = \overline{e}$$

Topological Groups

Definition 15.0.1 (Topological Group). A topological group is a group G with a topology such that the function $G^2 \to G$ that maps (x, y) to xy^{-1} is continuous.

Example 15.0.2. $GL(n,\mathbb{R})$ and $GL(n,\mathbb{C})$ are topological groups.

Proposition 15.0.3. Any subgroup of a topological group is a topological group under the subspace topology.

Definition 15.0.4 (Homogeneous Space). A homogeneous space is a topological space of the form G/H, where G is a topological group and H is a normal subgroup of G, under the quotient topology.

Proposition 15.0.5. Let G be a topological group and H a normal subgroup of G. Then G/H is Hausdorff if and only if H is closed.

Proof: See Bourbaki, N., General Topology. III.12

15.1 Continuous Actions

Definition 15.1.1 (Continuous Action). Let G be a topological group and X a topological space. A *continuous action* of G on X is a continuous function $\cdot : G \times X \to X$ such that:

- $\forall x \in X.ex = x$
- $\forall q, h \in G. \forall x \in X. q(hx) = (qh)x$

A G-space consists of a topological space X and a continuous action of G on X.

Definition 15.1.2 (Orbit). Let X be a G-space and $x \in X$. The *orbit* of x is $\{gx : g \in G\}$.

The *orbit space* X/G is the set of all orbits under the quotient topology.

Proposition 15.1.3. Define an action of SO(2) on S^2 by

$$g(x_1, x_2, x_3) = (g(x_1, x_2), x_3)$$
.

Then $S^2/SO(2) \cong [-1, 1]$.

Proof:

- $\langle 1 \rangle 1$. Let: $f_3: S^2/SO(2) \to [-1,1]$ be the function induced by $\pi_3: S^2 \to [-1,1]$
- $\langle 1 \rangle 2$. f_3 is bijective. $\langle 1 \rangle 3$. $S^2/SO(2)$ is compact.

PROOF: It is the continuous image of S^2 which is compact.

- $\langle 1 \rangle 4$. [-1,1] is Hausdorff.
- $\langle 1 \rangle 5$. f_3 is a homeomorphism.

Definition 15.1.4 (Stabilizer). Let X be a G-space and $x \in X$. The stabilizer of x is $G_x := \{ g \in G : gx = x \}.$

Proposition 15.1.5. The function that maps gG_x to gx is a continuous bijection from G/G_x to Gx.

Proof:

- $\langle 1 \rangle 1$. If $gG_x = hG_x$ then gx = hx.
 - $\langle 2 \rangle 1$. Assume: $gG_x = hG_x$

 - $\langle 2 \rangle 2. \ g^{-1}h \in G_x$ $\langle 2 \rangle 3. \ g^{-1}hx = x$
 - $\langle 2 \rangle 4$. gx = hx
- $\langle 1 \rangle 2$. If gx = hx then $gG_x = hG_x$.

Proof: Similar.

 $\langle 1 \rangle 3$. The function is continuous.

Proof: Proposition 12.12.2.

Topological Vector Spaces

Definition 16.0.1 (Topological Vector Space). Let K be either \mathbb{R} or \mathbb{C} . A topological vector space over K consists of a vector space E over K and a topology on E such that:

- Substraction is a continuous function $E^2 \to E$
- Multiplication is a continuous function $K \times E \to E$

Proposition 16.0.2. Every topological vector space is a topological group under addition.

PROOF: Immediate from the definition. \Box

Theorem 16.0.3. The usual topology on a finite dimensional vector space over K is the only one that makes it into a Hausdorff topological vector space.

PROOF: See Bourbaki. Elements de Mathematique, Livre V: Espaces Vectoriels Topologiques, Th. 2, p. 18 \square

Proposition 16.0.4. Let E be a topological vector space and E_0 a subspace of E. Then $\overline{E_0}$ is a subspace of E.

Definition 16.0.5. Let E be a topological vector space. The topological space associated with E is $E/\{0\}$.

16.1 Cauchy Sequences

Definition 16.1.1 (Cauchy Sequence). Let E be a topological vector space. A sequence (x_n) in E is a *Cauchy sequence* iff, for every neighbourhood U of 0, there exists n_0 such that $\forall m, n \ge n_0.x_n - x_m \in U$.

Definition 16.1.2 (Complete Topological Vector Space). A topological vector space is *complete* iff every Cauchy sequence converges.

16.2 Seminorms

Definition 16.2.1 (Seminorm). Let E be a vector space over K. A *seminorm* on E is a function $\| \cdot \| : E \to \mathbb{R}$ such that:

- 1. $\forall x \in E. ||x|| \ge 0$
- 2. $\forall \alpha \in K. \forall x \in E. \|\alpha x\| = |\alpha| \|x\|$
- 3. Triangle Inequality $\forall x, y \in E. ||x + y|| \le ||x|| + ||y||$

Example 16.2.2. The function that maps (x_1, \ldots, x_n) to $|x_i|$ is a seminorm on \mathbb{R}^n .

Definition 16.2.3. Let E be a vector space over K. Let Λ be a set of seminorms on E. The topology generated by Λ is the topology generated by the subbasis consisting of all sets of the form $B_{\epsilon}^{\lambda}(x) = \{y \in E : \lambda(y-x) < \epsilon\}$ for $\epsilon > 0, \lambda \in \Lambda$ and $x \in E$.

Proposition 16.2.4. *E* is a topological vector space under this topology. It is Hausdorff iff, for all $x \in E$, if $\forall \lambda \in \Lambda.\lambda(x) = 0$ then x = 0.

16.3 Fréchet Spaces

Definition 16.3.1 (Pre-Fréchet Space). A *pre-Fréchet space* is a Hausdorff topological vector space whose topology is generated by a countable set of seminorms.

Proposition 16.3.2. Let E be a pre-Fréchet space whose topology is generated by the family of seminorms $\{\| \|_n : n \in \mathbb{Z}^+ \}$. Then

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\|x - y\|_n}{1 + \|x - y\|_n}$$

is a metric that induces the same topology. The two definitions of Cauchy sequence agree.

Definition 16.3.3 (Fréchet Space). A *Fréchet space* is a complete pre-Fréchet space.

16.4 Normed Spaces

Definition 16.4.1 (Normed Space). Let E be a vector space over K. A norm on E is a function $\| \ \| : E \to \mathbb{R}$ is a seminorm such that, $\forall x \in E. \|x\| = 0 \Leftrightarrow x = 0$. A normed space consists of a vector space with a norm.

Proposition 16.4.2. If E is a normed space then d(x,y) = ||x-y|| is a metric on E that makes E into a topological vector space. The two definitions of Cauchy sequence agree on E.

Definition 16.4.3 (*p*-norm). For any $p \ge 1$, the *p*-norm on \mathbb{R}^n is defined by

$$\|\vec{x}\|_p := \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$
.

We prove this is a norm.

Proof:

 $\langle 1 \rangle 1$. For all $\vec{x} \in \mathbb{R}^n$ we have $\|\vec{x}\|_p \geqslant 0$

PROOF: Immediate from definition.

 $\langle 1 \rangle 2$. For all $\alpha \in \mathbb{R}$ and $\vec{x} \in \mathbb{R}^n$ we have $\|\alpha \vec{x}\|_p = |\alpha| \|\vec{x}\|_p$ Proof:

$$\|\alpha(x_1, \dots, x_n)\| = \|(\alpha x_1, \dots, \alpha x_n)\|$$

$$= \left(\sum_{i=1}^n (\alpha x_i)^p\right)^{\frac{1}{p}}$$

$$= \left(|\alpha|^p \sum_{i=1}^n x_i^p\right)^{\frac{1}{p}}$$

$$= |\alpha| \left(\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}}$$

$$= |\alpha| \|\vec{x}\|_p$$

 $\langle 1 \rangle 3$. The triangle inequality holds.

Proof:

$$\begin{split} \|\vec{x} + \vec{y}\|_{p}^{p} &= \sum_{i=1}^{n} |x_{i} + y_{i}|^{p} \\ &= \sum_{i=1}^{n} |x_{i} + y_{i}| |x_{i} + y_{i}|^{p-1} \\ &\leq \sum_{i=1}^{n} (|x_{i}| + |y_{i}|) |x_{i} + y_{i}|^{p-1} \\ &= \sum_{i=1}^{n} |x_{i}| |x_{i} + y_{i}|^{p-1} + \sum_{i=1}^{n} |y_{i}| |x_{i} + y_{i}|^{p-1} \\ &\leq \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |x_{i} + y_{i}|^{p}\right)^{\frac{p-1}{p}} + \left(\sum_{i=1}^{n} |y_{i}|^{p}\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |x_{i} + y_{i}|^{p}\right)^{\frac{p-1}{p}} \end{split}$$
 (Hölder's Inequality)
$$&= (\|\vec{x}\|_{p} + \|\vec{y}\|_{p}) \|\vec{x} + \vec{y}\|^{p-1}$$

Assuming w.l.o.g. $\|\vec{x} + \vec{y}\|^{p-1} \neq 0$ (using ??) we have $\|\vec{x} + \vec{y}\|_p \leq \|\vec{x}\|_p + \|\vec{y}\|_p$.

 $\langle 1 \rangle 4$. For any $\vec{x} \in \mathbb{R}^n$, we have $\|\vec{x}\| = 0$ iff $\vec{x} = \vec{0}$. PROOF: $\sum_{i=1}^n x_i^p = 0$ iff $x_1 = \cdots = x_n = 0$.

Definition 16.4.4 (Sup-norm). The *sup-norm* on \mathbb{R}^n is defined by

$$||(x_1,\ldots,x_n)||_{\infty} := \max(|x_1|,\ldots,|x_n|)$$
.

Proposition 16.4.5. The 2-norm on \mathbb{R}^n induces the standard metric.

PROOF: Immediate from definitions. \Box

Definition 16.4.6. For $p \ge 1$, the normed space l_p is the set of all sequences (x_n) in \mathbb{R} such that $\sum_{n=1}^{\infty} x_n^p$ converges, under

$$\|(x_n)\|_p := \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}}$$
.

Proposition 16.4.7. The spaces l_p for $p \ge 1$ are all homeomorphic.

PROOF: See Kadets, Mikhail Iosifovich. 1967. Proof of the topological equivalence of all separable infinite-dimensional banach spaces. Functional Analysis and Its Applications 1 (1): 53–62. http://dx.doi.org/10.1007/BF01075865.

Definition 16.4.8. Let l_{∞} be the set of all bounded sequences in \mathbb{R} under

$$\|(x_n)\| := \sup_n |x_n|$$

Proposition 16.4.9. For all $p \ge 1$ we have l_p is not homeomorphic to l_{∞} .

Proposition 16.4.10. Let $\| \|$ be a seminorm on the vector space E. Then $\| \|$ defines a norm on $E/\{0\}$.

Proposition 16.4.11. Let E and F be normed spaces. Any continuous linear map $E \to F$ is uniformly continuous.

Definition 16.4.12. For $p \ge 1$. let $\mathcal{L}^p(\mathbb{R}^n)$ be the vector space of all Lebesgue-measurable functions $f: \mathbb{R}^n \to \mathbb{R}$ such that $|f|^p$ is Lebesgue-integrable. Then

$$||f||_p := \sqrt{p} \int_{\mathbb{R}^n} |f(x)|^p dx$$

defines a seminorm on $\mathcal{L}^p(\mathbb{R}^n)$. Let

$$L^p(\mathbb{R}^n) := \mathcal{L}^p(\mathbb{R}^n)/\overline{\{0\}}$$
.

16.5 Inner Product Spaces

Proposition 16.5.1. If E is an inner product space then $||x|| = \sqrt{\langle x, x \rangle}$ is a norm on E.

16.6 Banach Spaces

Definition 16.6.1 (Banach Space). A *Banach space* is a complete normed space.

Example 16.6.2. For any topological space X, the set C(X) of bounded continuous functions $X \to \mathbb{R}$ is a Banach space under $||f|| = \sup_{x \in X} |f(x)|$.

Proposition 16.6.3. The completion of a normed space is a Banach space.

Proposition 16.6.4. Let E and F be normed spaces. Let $f: E \to F$ be a continuous linear map. Then the extension to the completions $\hat{E} \to \hat{F}$ is linear.

Proposition 16.6.5. $L^p(\mathbb{R}^n)$ is a Banach space.

Proposition 16.6.6. $C(\mathbb{R})$ is first countable but not second countable.

PROOF: For every sequence of 0s and 1s $s = (s_n)$, let f_s be a continuous bounded function whose value at n is s_n . Then the set of all f_s is an uncountable discrete set in $C(\mathbb{R})$. Hence $C(\mathbb{R})$ is not second countable. It is first countable because it is metrizable. \square

16.7 Hilbert Spaces

Definition 16.7.1 (Hilbert Space). A *Hilbert space* is a complete inner product space.

Example 16.7.2. The set of square-integrable functions is the set of Lebesgue integrable functions $[-\pi,\pi] \to \mathbb{R}$ quotiented by: $f \sim g$ iff $\{x \in [-\pi,\pi] : f(x) \neq g(x)\}$ has measure 0. This is a Hilbert space under

$$\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi} \pi f(x) g(x) dx$$
.

Proposition 16.7.3. The completion of an inner product space is a Hilbert space.

An infinite dimensional Hilbert space with the weak topology is not first countable.

16.8 Locally Convex Spaces

Definition 16.8.1 (Locally Convex Space). A topological vector space is *locally convex* iff every neighbourhood of 0 includes a convex neighbourhood of 0.

Proposition 16.8.2. A topological vector space is locally convex if and only if its topology is generated by a set of seminorms.

PROOF: See Köthe, G. Topological Vector Spaces 1. Section 18.

Proposition 16.8.3. A locally convex topological vector space is a pre-Fréchet space if and only if it is metrizable.

PROOF: See Köthe, G. Topological Vector Spaces 1. Section 18.

Example 16.8.4. Let E be an infinite dimensional Hilbert space. Let E' be the same vector space under the *weak topology*, the coarsest topology such that every continuous linear map $E \to \mathbb{R}$ is continuous as a map $E' \to \mathbb{R}$. Then E is locally convex Hausdorff but not metrizable.

Proof: See Dieudonne, J. A., Treatise on Analysis, Vol. II, New York and London: Academic Press, 1970, p. 76.

Definition 16.8.5 (Thom Space). Let E be a vector bundle with a Riemannian metric, $DE = \{x \in E : \|x\| \le 1\}$ its disc bundle and $SE := \{v \in E : \|v\| = 1\}$ its sphere bundle. The *Thom space* of E is the quotient space DE/SE.