Beeld analyse en simulatie met numpy

Kay Warrie

Analyse afbeeldingen met python

- Luchtfoto van sportcentrum Wilrijkse plein
- Multispectraal: 4 banden:
 - Rood (700 nm tot 580 nm),
 - o Groen (580 nm tot 500 nm),
 - Blauw (500 nm tot 400 nm)
 - Nabij Infrarood (2500 nm tot 700 nm).
- Grootte is 640px op 640px, met een grondresolutie van 1 meter per pixel.

Normalized Difference Vegetation Index (NDVI)

- Planten (chlorophyll) absorberen rood licht maar weerkaatsen infrarood
- Dit vrij uniek en indicator van vegetatie

$$NDVI = \frac{NIR-Rood}{NIR+Rood}$$

De waarde varieert tussen de -1 en de 1, waarbij positieve waardes groter dan 0.02 duiden op aanwezigheid van levende vegetatie. waarden groter dan 0.3 is dense vegetatie, meestal struiken of bomen

Beerschot speelt op echt gras

Convolutie filter, rand detectie, valse schaduw

- 3x3 matrix laten laten over afbeelding, som opslaan in nieuwe matrix
- Herkennen van randen in afbeelding of valse schaduw te creëren.
- Scherper, Zichtbaar te maken,

Bedford's Law

- Benford's law, (de wet van Benford) beschrijft frequentieverdeling van het begincijfer van getallen in datasets.
- In een natuurlijk reeks cijfers is de kans groter dat het begincijfer een lager cijfer is.
- Dus 1 komt meer voor dan 2, 2 komt meer voor dan 3 etc.

$$P(d) = log_{10}(1 + \frac{1}{d})$$

Testen met een random waarde

Gewone uniforme verdeling voldoet niet aan Bedford's Law

 $random(1, max) \Rightarrow$: Voldoen **niet** aan bedford, ieder cijfer komt evenveel voor

 $max^{random(0,1)} \Rightarrow$: Voldoen aan bedford, lagere cijfers komen meer voor

