

# PROPOSTA DE TESTE N.º 5

## MATEMÁTICA A - 11.º ANO - MAIO DE 2015

"Conhece a Matemática e dominarás o Mundo." Galileu Galilei

#### GRUPO I – ITENS DE ESCOLHA MÚLTIPLA

1. Na figura está representado, num referencial o.n. xOy, parte do gráfico de uma função g, polinomial de grau 3, com um único zero. Seja h a função definida por  $h(x) = \sqrt{x^2 + x + 14} + 2x$ .



Qual é o valor de  $(h\circ g^{-1})(0)$  ? (  $g^{-1}$  designa a função inversa de g)

**2.** Considere as funções f e g definidas respectivamente por  $f(x) = \frac{1}{x^3 - 9x}$  e  $g(x) = \sqrt{6 - 3x} - 3$ .

Qual é o domínio da função  $\frac{f}{g}$ ?

**A** 
$$\mathbb{R} \setminus \{-3, -1, 0, 3\}$$

**B** 
$$]-\infty,2]\setminus\{-3,0\}$$

$$\begin{bmatrix} 2, +\infty \end{bmatrix} \setminus \{3\}$$

$$\mathbb{R} \setminus \{-3, -1, 0, 3\}$$
 **B**  $]-\infty, 2] \setminus \{-3, 0\}$  **C**  $[2, +\infty[\setminus \{3\}]$  **D**  $]-\infty, 2] \setminus \{-3, -1, 0\}$ 

3. Seja g uma função injectiva tal que as rectas de equação x=3 e y=-2 são as únicas assimptotas do seu gráfico.

Considere a função h, definida por h(x) = g(x-1) + 2. Quais são as equações das assimptotas do gráfico da função  $h^{-1}$ , função inversa de h?

**A** 
$$x = 0$$
 e  $y = 2$  **B**  $x = 0$  e  $y = 4$  **C**  $x = 4$  e  $y = 0$  **D**  $x = -2$  e  $y = 3$ 

**B** 
$$x = 0$$
 e  $y = 4$ 

**C** 
$$x = 4 \text{ e } y = 0$$

**D** 
$$x = -2 \text{ e } y = 3$$

Facebook: https://www.facebook.com/recursos.para.matematica

**4.** Considere uma função f, de domínio  $\mathbb{R}$ , tal que a sua derivada, também de domínio  $\mathbb{R}$ , é definida por:

$$f'(x) = -x^3 - 3x^2 + 4$$

Sabe-se que f'(-2) = 0. Qual das seguintes afirmações é verdadeira?

- lacksquare f(-2) é um extremo relativo de f.
- lacksquare No intervalo  $\begin{bmatrix} -2,1 \end{bmatrix}$  f é decrescente.
- **C** No intervalo  $]-\infty,-2]$  f é crescente.
- D f(1) é um mínimo relativo de f.

**5.** Na figura está representado, num referencial o.n. xOy, parte do gráfico de uma função g de domínio  $\mathbb R$  .



Seja h a função definida por h(x) = -g(x) + 4. Em qual das seguintes opções pode estar representado parte do gráfico da função h', função derivada de h?

Α



В



С



D



### GRUPO II - ITENS DE RESPOSTA ABERTA

**1.** Considere a função f de domínio  $\mathbb{R}\setminus\{3\}$  e a função g de domínio  $\mathbb{R}\setminus\{-1,2\}$  , definidas respectivamente por:

$$f\left(x\right) = \frac{2x - 4}{3 - x}$$

$$f(x) = \frac{2x-4}{3-x}$$
 e  $g(x) = \frac{3x^2-27}{x^2-x-2}$ 

Seja h, a função de domínio  $]-\infty,3[$ , cujo gráfico está parcialmente representado na figura:



- **1.1.** Seja  $f^{-1}$  a função inversa de f . Sem determinar a expressão analítica de  $f^{-1}$  , determine:
  - **a)** x, de modo que  $f^{-1}(x) = 5$ .
- **1.2.** Caracterize a função  $f^{-1}$ .
- **1.3.** Determine o domínio da função  $h \circ g$ .
- **1.4.** Determine o conjunto solução da equação  $(f \circ h)(x) = 0$ .
- **1.5.** Caracterize a função  $f \times g$  , simplificando o mais possível a sua expressão analítica.

- **2.** Considere a função g, de domínio  $\mathbb{R} \setminus \{a\}$ , definida por  $g(x) = \frac{ax+5}{x-a}$ , com a > 1.
  - **2.1.** Sabendo que g'(1) = -9, mostre que a = 2.

**Sugestão:** comece por mostrar que  $g(x) = a + \frac{a^2 + 5}{x - a}$ .

- **2.2.** Usando a definição de derivada num ponto, mostre que  $g'(-7) = -\frac{1}{9}$
- **2.3.** Na figura estão representados, num referencial o.n. xOy, parte do gráfico da função g, uma recta t, paralela à bissectriz dos quadrantes pares e tangente ao gráfico de g no ponto P de abcissa positiva e o trapézio isósceles  $\lceil ABCD \rceil$ .

Sabe-se que:

- a recta t intersecta o eixo Oy no ponto A e o eixo Ox no ponto D



• o ponto C pertence ao eixo Ox e tem a mesma abcissa que o ponto P



Qual é a área do trapézio [ABCD]?

**2.4.** Considere a função h, de domínio  $\mathbb{R} \setminus \{2\}$  definida por h(x) = 4x + g(x).

Estude a função *h* quanto à monotonia e quanto à existência de extremos relativos.

**3.** Seja f uma função de domínio  $\mathbb{R}$  e a um número real positivo tal que:

$$t.v.m._{[a,2a]}(f) = a$$

$$t.v.m._{[2a,4a]}(f) = 2a$$

• 
$$t.v.m_{[a,4a]}(f) = 4$$

Qual é o valor de a?

**4.** Na figura estão representadas, num referencial o.n. Oxyz, a recta AB e a pirâmide triangular  $\lceil PQRS \rceil$ .



Sabe-se que:

• as coordenadas do ponto A são  $\left(0,0,4\right)$  e as do ponto B são  $\left(6,8,0\right)$ 

■ a face [QRS] está contida no plano xOy

• o ponto P pertence à recta AB

• o ponto S pertence ao eixo Ox e a aresta  $\left[QS\right]$  é paralela ao eixo Oy

• o ponto R pertence ao eixo Oy e a aresta  $\left[QR\right]$  é paralela ao eixo Ox

ullet a aresta [PQ] é paralela ao eixo Oz

**4.1.** Mostre que uma condição que define a recta  $AB 
define <math>\frac{x}{6} = \frac{y}{8} = \frac{4-z}{4}$ 

**4.2.** Seja a a abcissa do ponto P.

Mostre que o volume da pirâmide  $\left[PQRS\right]$  é dada em função de a por  $V\left(a\right) = \frac{8}{9}a^2 - \frac{4}{27}a^3$ , com  $a \in \left]0,6\right[$ .

**Sugestão:** tenha em atenção que  $\frac{x}{6} = \frac{y}{8} = \frac{4-z}{4} \Leftrightarrow \frac{x}{6} = \frac{y}{8} \wedge \frac{x}{6} = \frac{4-z}{4}$ 

**4.3.** Determine o volume máximo da pirâmide [PQRS].

5. Na figura estão representados, num referencial o.n. xOy, o trapézio rectângulo ABCD e a recta r de equação 2y-x=4.

Sabe-se que:



- os pontos C e D têm ordenada -1 e B tem ordenada 1
- os pontos B e C têm a mesma abcissa que P



O ponto A desloca-se sobre a recta r no primeiro e segundo quadrantes, nunca coincidindo com o ponto P. O ponto Dacompanha o seu movimento de modo que o segmento de recta [AD] é sempre paralelo ao eixo Oy.

Seja h a função que faz corresponder à abcissa x do ponto A, o perímetro do trapézio [ABCD].

**5.1.** Justifique o domínio da função 
$$h \in ]-4,+\infty[$$
 e mostre que  $h(x) = \frac{1}{2}(3x+18+\sqrt{5x^2+36x+68})$ .

**5.2.** Determine as coordenadas do ponto A de modo que o perímetro do trapézio  $\begin{bmatrix} ABCD \end{bmatrix}$  seja 34.

#### Solucionário

ITENS DE ESCOLHA MÚLTIPLA

С

1.1. a) 
$$x = -3$$

1.1. b) 
$$\frac{8}{3}$$

**1.2.** 
$$D_{f^{-1}} = \mathbb{R} \setminus \{-2\}$$
;  $f^{-1}(x) = \frac{3x+4}{x+2}$ 

**1.3.** 
$$D_{h \circ g} = ]-\infty, -1[\cup]2, 7[$$

**1.5.** 
$$D_{f \times g} = \mathbb{R} \setminus \{-1, 2, 3\}; (f \times g)(x) = -\frac{6x + 18}{x + 1}$$

**2.3.** 
$$A_{[ABCD]} = \frac{75}{2}$$

$$A_{\left[ABCD\right]} = \frac{75}{2}$$
 2.4. A função  $f$  é decrescente em  $\left[\frac{1}{2}, 2\right[$  e em  $\left[\frac{7}{2}, \frac{7}{2}\right]$ , é crescente em  $\left[-\infty, \frac{1}{2}\right]$  e em  $\left[\frac{7}{2}, +\infty\right[$ .

A função f tem máximo relativo em  $x = \frac{1}{2}$  e tem mínimo relativo em  $x = \frac{7}{2}$ .

3. 
$$x = \frac{12}{5}$$

**4.3.** O volume da pirâmide é máximo se 
$$a = 4$$
. O volume máximo é  $V(4) = \frac{128}{27}$ .

A(8,6)5.2.