Notas de Topologia Geral

Jorge Mujica

Disciplina ministrada no IMECC-UNICAMP durante o primeiro semestre de 2005

Sumário

1. Teoria de conjuntos	1
2. Espaços métricos	4
3. Espaços topológicos	7
4. Aderência e interior de um conjunto	9
5. Sistemas de vizinhanças	12
6. Bases para os abertos	16
7. Subespaços	18
8. Funções contínuas	.20
9. Produtos infinitos e o axioma da escolha	.23
10. O espaço produto	.25
11. O espaço quociente	.29
12. Convergência de seqüências	.32
13. Convergência de redes	.34
14. O lema de Zorn e o teorema de Zermelo	.38
15. Convergência de filtros	.42
16. Espaços de Hausdorff	.47
17. Espaços regulares	.50
18. Espaços normais	.52
19. Espaços completamente regulares	.58
20. Primeiro e segundo axioma de enumerabilidade	.63
21. Espaços compactos	.69
22. Espaços localmente compactos	.76
23. A compactificação de Alexandroff	.79
24. A compactificação de Stone-Cech	.81
25. Espaços metrizáveis	.84
26. Espaços conexos	
28. Espaços conexos por caminhos	93
29. Homotopia	96
30. O grupo fundamental	99
31. O grupo fundamental do círculo unitário	103
Bibliografia	108

1. Teoria de conjuntos

Dados dois conjuntos A e B, diremos que A é subconjunto de B, e escreveremos $A \subset B$, se cada elemento de A pertence a B, ou seja se $x \in A$ implica $x \in B$.

Diremos que A é igual a B, e escreveremos A=B, se A e B tem os mesmos elementos, ou seja se $A\subset B$ e $B\subset A$.

A união, a interseção, e a diferença de dois conjuntos A e B é definida por

$$A \cup B = \{x : x \in A \text{ ou } x \in B\},$$

$$A \cap B = \{x : x \in A \text{ e } x \in B\},$$

$$A \setminus B = \{x : x \in A \text{ e } x \notin B\}.$$

Se estamos considerando subconjuntos de um conjunto fixo X, então o conjunto $X \setminus A$ é chamado de *complementar* de A em X, e é denotado por A^c .

A união e a interseção de uma família de conjuntos $A_i \ (i \in I)$ é definida por

$$\bigcup_{i \in I} A_i = \{x : x \in A_i \ \text{ para algum } \ i \in I\},$$

$$\bigcap_{i \in I} A_i = \{x : x \in A_i \text{ para todo } i \in I\}.$$

Dado um conjunto X, $\mathcal{P}(X)$ denota o conjunto formado pelos subconjuntos de X, ou seja

$$\mathcal{P}(X) = \{A : A \subset X\}.$$

 \emptyset denota o conjunto vazio. N denota o conjunto dos números naturais, ou seja o conjunto dos inteiros positivos. Z denota o conjunto dos números racionais. R denota o conjunto dos números reais. C denota o conjunto dos números complexos.

O produto cartesiano $X \times Y$ de dois conjuntos X e Y é o conjunto dos pares ordenados (x,y) tais que $x \in X$ e $y \in Y$. O produto cartesiano $X_1 \times ... \times X_n$ de n conjuntos $X_1,...,X_n$ é o conjunto das n-tuplas $(x_1,...,x_n)$ tais que $x_i \in X_i$ para i=1,...,n. Escreveremos X^n em lugar de $X \times ... \times X$ (n vezes).

Uma função ou aplicação f de X em Y, denotada por $f: X \to Y$, é uma regra que associa a cada elemento $x \in X$ um único elemento $f(x) \in Y$. O conjunto X é chamado de domínio de f. O conjunto Y é chamado de contradomínio de f.

f é dita *injetiva* se $f(x_1) = f(x_2)$ implica $x_1 = x_2$. f é dita *sobrejetiva* se para cada $y \in Y$ existe $x \in X$ tal que f(x) = y. f é dita *bijetiva* se é injetiva e sobrejetiva. Se $f: X \to Y$ é bijetiva, a *função inversa* $f^{-1}: Y \to X$ é definida por $f^{-1}(y) = x$ se f(x) = y.

O gráfico de f é o conjunto

$$G_f = \{(x,y) \in X \times Y : y = f(x)\}.$$

Dados $A \subset X$ e $B \subset Y$, a **imagem** de A e a **imagem inversa** de B são os conjuntos

$$f(A) = \{ y \in Y : y = f(x) \text{ para algum } x \in A \},$$

 $f^{-1}(B) = \{ x \in X : f(x) \in B \}.$

Dadas duas aplicações $f: X \to Y$ e $g: Y \to Z$, a aplicação composta $g \circ f: X \to Z$ é definida por $g \circ f(x) = g(f(x))$ para todo $x \in X$.

Uma relação R num conjunto X é um subconjunto R de $X \times X$. Com freqüência escreveremos xRy se $(x,y) \in R$.

Uma relação R em X é dita reflexiva se xRx para todo $x \in X$. R é dita simétrica se xRy implica yRx. R é dita transitiva se xRy e yRz implicam xRz. Diremos que R é uma relação de equivalência se R é reflexiva, simétrica e transitiva.

Exercícios

1.A. Se $A_i \subset X$ para cada $i \in I$, prove las *leis de De Morgan*:

(a)
$$X \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} (X \setminus A_i).$$

$$(b) X \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} (X \setminus A_i).$$

1.B. Seja $f:X\to Y$ uma aplicação. Dados $B\subset Y$ e $B_i\subset Y$ para cada $i\in I,$ prove que:

(a)
$$f^{-1}(\bigcup_{i \in I} B_i) = \bigcup_{i \in I} f^{-1}(B_i).$$

(b)
$$f^{-1}(\bigcap_{i \in I} B_i) = \bigcap_{i \in I} f^{-1}(B_i).$$

(c)
$$f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$$
.

1.C. Seja $f:X\to Y$ uma aplicação. Dados $A\subset X$ e $A_i\subset X$ para cada $i\in I$, prove que:

(a)
$$f(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f(A_i).$$

(b)
$$f(\bigcap_{i \in I} A_i) \subset \bigcap_{i \in I} f(A_i)$$
, com igualdade se f for injetiva.

$$(c) \qquad f(X \setminus A) \subset Y \setminus f(A) \ \ \text{se} \ \ f \ \ \text{for injetiva}.$$

$$(c')$$
 $f(X \setminus A) \supset Y \setminus f(A)$ se f for sobrejetiva.

- **1.D.** (a) Dê exemplo de uma aplicação $f:X\to Y$ e conjuntos $A_1,A_2\subset X$ tais que $f(A_1\cap A_2)\neq f(A_1)\cap f(A_2)$.
- (b) Dê exemplo de uma aplicação $f:X\to Y$ e um conjunto $A\subset X$ tal que $f(X\setminus A)\neq Y\setminus f(A).$
 - **1.E.** Seja $f:X \to Y$ uma aplicação. Dados $A \subset X$ e $B \subset Y$, prove que:
 - (a) $A \subset f^{-1}(f(A))$, com igualdade se f for injetiva.
 - (b) $f(f^{-1}(B)) \subset B$, com igualdade se f for sobrejetiva.
- **1.F.** (a) Dê exemplo de uma aplicação $f:X\to Y$ e um conjunto $A\subset X$ tal que $A\neq f^{-1}(f(A)).$
- (b) Dê exemplo de uma aplicação $f:X\to Y$ e um conjunto $B\subset Y$ tal que $f(f^{-1}(B))\neq B.$
- **1.G.** Sejam $f:X\to Y$ e $g:Y\to X$ aplicações tais que $g\circ f(x)=x$ para todo $x\in X$. Prove que f é injetiva e g é sobrejetiva.

2. Espaços métricos

- **2.1.** Definição. Seja X um conjunto. Uma função $d: X \times X \to \mathbf{R}$ é chamada de *métrica* se verifica as seguintes propriedades para $x, y, z \in X$:
 - (a) $d(x,y) \ge 0$;
 - (b) d(x, y) = 0 se e só se x = y;
 - (c) d(x, y) = d(y, x);
 - (d) $d(x, z) \le d(x, y) + d(y, z)$;

A desigualdade (d) é chamada de desigualdade triangular. O par (X, d) é chamado de espaço métrico. Com freqüência falaremos do espaço métrico X em lugar do espaço métrico (X, d).

2.2. Exemplos.

- (a) $X = \mathbf{R}, d(x, y) = |x y|.$
- (b) $X = \mathbf{R}^n$, $d(x,y) = \sqrt{\sum_{j=1}^n (x_j y_j)^2}$. Esta é a métrica euclideana.
- (c) $X = \mathbf{R}^n$, $d(x, y) = \sum_{j=1}^n |x_j y_j|$.
- (d) $X = \mathbf{R}^n$, $d(x, y) = \max\{|x_1 y_1|, ..., |x_n y_n|\}$.

Em (b),(c) e (d),
$$x = (x_1, ..., x_n), y = (y_1, ..., y_n).$$

- (e) Se X é um conjunto qualquer, então a métrica $d: X \times X \to \mathbf{R}$ definida por d(x,y)=1 se $x\neq y$ e d(x,y)=0 se x=y, é chamada de *métrica discreta*.
- (f) Seja (X, d) um espaço métrico, e seja $S \subset X$. Então S é um espaço métrico com a métrica induzida d_S , ou seja $d_S(x, y) = d(x, y)$ para todo $x, y \in S$.
- **2.3.** Definição. Seja X um espaço métrico. Dados $a \in X$ e r > 0, consideremos os conjuntos

$$B(a; r) = \{ x \in X : d(x, a) < r \},\$$

$$B[a; r] = \{x \in X : d(x, a \le r)\}.$$

O conjunto B(a;r) é chamado de **bola aberta** de centro a e raio r. O conjunto B[a;r] é chamado de **bola fechada** de centro a e raio r.

- **2.4.** Definição. Seja X um espaço métrico. Um conjunto $U \subset X$ é dito aberto em X se para cada $a \in U$ existe r > 0 tal que $B(a; r) \subset U$. Um conjunto $F \subset X$ é dito fechado em X se $X \setminus F$ é aberto.
 - 2.5. Exemplos. (a) Cada bola aberta é um subconjunto aberto.
 - (b) Cada bola fechada é um subconjunto fechado.

Demonstração. (a) Seja $x \in B(a;r)$. Usando a desigualdade triangular é fácil verificar que

$$B(x; r - d(x, a)) \subset B(a; r),$$

e portanto B(a;r) é aberto.

(b) Para provar que B[a;r] é fechado, basta provar que $X\setminus B[a;r]$ é aberto. Seja $x\in X\setminus B[a;r]$. Usando a desigualdade triangular não é difícil provar, por absurdo, que

$$B(x; d(x, a) - r) \subset X \setminus B[a; r],$$

e portanto $X \setminus B[a;r]$ é aberto.

- **2.6.** Proposição. Seja X um espaço métrico. Então:
- (a) \emptyset e X são abertos.
- (b) A união de uma família arbitrária de abertos é um aberto.
- (c) A interseção de uma família finita de abertos é um aberto.

Demonstração. (a) é claro.

- (b) Seja U_i aberto em X para cada $i \in I$, e seja $a \in \bigcup_{i \in I} U_i$. Então $a \in U_{i_0}$ para algum $i_0 \in I$. Como U_{i_0} é aberto, existe r > 0 tal que $B(a; r) \subset U_{i_0}$. Logo $B(a; r) \subset \bigcup_{i \in I} U_i$ é aberto.
- (c) Seja U_i aberto em X para cada $i \in I$, sendo I finito. Seja $a \in \bigcap_{i \in I} U_i$, ou seja $a \in U_i$ para cada $i \in I$. Para cada $i \in I$ existe $r_i > 0$ tal que $B(a; r_i) \subset U_i$. Seja $r = \min_{i \in I} r_i$. Segue que $B(a; r) \subset \bigcap_{i \in I} U_i$ e $\bigcap_{i \in I} U_i$ é aberto.
 - 2.7. Corolário. Seja X um espaço métrico. Então:
 - (a) $X \in \emptyset$ são fechados.
 - (b) A interseção de uma família arbitrária de fechados é um fechado.
 - (c) A união de uma família finita de fechados é um fechado.

Demonstração. Basta aplicar a Proposição 2.6 e as leis de De Morgan.

2.8. Definição. Seja $f: X \to Y$, sendo X e Y espaços métrico. Diremos que f é contínua num ponto $a \in X$ se dado $\epsilon > 0$, podemos achar $\delta > 0$ tal que

$$d_X(x, a) < \delta$$
 implica $d_Y(f(x), f(a)) < \epsilon$,

ou seja

$$f(B_X(a;\delta)) \subset B_Y(f(a);\epsilon).$$

Diremos que f é **contínua** se for contínua em cada ponto de X. Denotaremos por C(X;Y) o conjunto de todas as funções contínuas $f:X\to Y$. Se $Y=\mathbf{R}$, escreveremos C(X) em lugar de $C(X;\mathbf{R})$.

2.9. Proposição. Seja $f: X \to Y$, sendo X e Y espaços métricos. Então f é contínua num ponto $a \in X$ se e só se, para cada aberto V de Y contendo f(a), existe um aberto U de X contendo a tal que $f(U) \subset V$.

Demonstração. (\Rightarrow): Seja V um aberto de Y contendo f(a). Seja $\epsilon > 0$ tal que $B_Y(f(a); \epsilon) \subset V$. Por hipótese existe $\delta > 0$ tal que $f(B_X(a; \delta)) \subset B_Y(f(a); \epsilon)$. Logo basta tomar $U = B_X(a; \delta)$.

 (\Leftarrow) : Dado $\epsilon > 0$, seja $V = B_Y(f(a); \epsilon)$. Por hipótese existe um aberto U de X contendo a tal que $f(U) \subset V$. Seja $\delta > 0$ tal que $B_X(a; \delta) \subset U$. Segue que $f(B_X(a; \delta)) \subset B_Y(f(a); \epsilon)$.

- **2.10.** Proposição. Seja $f: X \to Y$, sendo X e Y espaços métricos. Então as seguintes condições são equivalentes:
 - (a) f é contínua.
 - (b) $f^{-1}(V)$ é aberto em X para cada aberto V de Y.
 - (c) $f^{-1}(B)$ é fechado em X para cada fechado B de Y.

Demonstração. $(a) \Rightarrow (b)$: Seja V um aberto de Y. Pela Proposição 2.9, para cada $a \in f^{-1}(V)$, existe um aberto U_a de X contendo a tal que $f(U_a) \subset V$, ou seja $U_a \subset f^{-1}(V)$. Segue que

$$f^{-1}(V) = \bigcup \{U_a : a \in f^{-1}(V)\}\$$

 $\acute{\text{e}}$ aberto em X.

 $(b)\Rightarrow (a)$: Basta provar que f é contínua em cada $a\in X$. Seja $a\in X$, e seja V um aberto de Y contendo f(a). Por hipótese $f^{-1}(V)$ é um aberto de X contendo a, e $f(f^{-1}(V))\subset V$ pelo Exercício 1.G. Pela Proposição 2.9 f é contínua em a.

A equivalência $(b) \Leftrightarrow (c)$ é consequência direta do Exercício 1.B(c).

Exercícios

- **2.A.** Prove que as seguintes funções são métricas em C[a, b]:
- (a) $d(f,g) = \sup\{|f(x) g(x)| : a \le x \le b\}.$
- (b) $d(f,g) = \int_a^b |f(x) g(x)| dx$.
- **2.B.** Seja X um espaço métrico.
- (a) Prove a desigualdade

$$|d(x, a) - d(y, a)| \le d(x, y)$$
 para todo $x, y, a \in X$.

- (b) Prove que, para cada $a \in X$ a função $x \in X \to d(x, a) \in \mathbf{R}$ é contínua.
- (c) Prove que a esfera

$$S(a;r)=\{x\in X:d(x,a)=r\}$$

é um subconjunto fechado.

- **2.C.** Seja X um espaço métrico, e seja $S \subset X$, com a métrica induzida.
- (a) Dados $a \in S$ e r > 0, prove que $B_S(a; r) = S \cap B_X(a; r)$.
- (b) Prove que um conjunto $U \subset S$ é aberto em S se e só se existe um aberto V de X tal que $U = S \cap V$.
- **2.D.** Seja $X = \mathbf{R}$, e seja $S = \mathbf{Z}$, com a métrica induzida. Prove que cada subconjunto de S é aberto em S.
- ${\bf 2.E.}$ (a) Dê exemplo de uma seqüência de abertos de ${\bf R}$ cuja interseção não seja um aberto.
- (b) Dê exemplo de uma seqüência de fechados de ${\bf R}$ cuja união não seja um fechado.

3. Espaços topológicos

- **3.1.** Definição. Seja X um conjunto. Chamaremos de topologia em X uma família τ de subconjuntos de X com as seguintes propriedades:
 - (a) \emptyset e X pertencem a τ .
 - (b) A união de uma família arbitrária de membros de τ pertence a τ .
 - (c) A interseção de uma família finita de membros de τ pertence a τ .

Os membros de τ são chamados de *abertos*. O par (X,τ) é chamado de *espaço topológico*. Com freqüência diremos que X é um espaço topológico.

3.2. Exemplos.

- (a) Se (X,d) é um espaço métrico, então segue da Proposição 2.6 que os abertos de (X,d) formam uma topologia τ_d em X.
 - (b) Se $X = \mathbf{R}^n$, então a topologia τ_d dada pela métrica euclideana

$$d(x,y) = \sqrt{\sum_{j=1}^{n} (x_j - y_j)^2}$$

é chamada de topologia usual.

- (c) Seja X um conjunto qualquer, e seja τ a família de todos os subconjuntos de X. Claramente τ é uma topologia em X, chamada de topologia discreta.
- (d) Seja X um conjunto qualquer, e seja $\tau=\{\emptyset,X\}$. Claramente τ é uma topologia em X, chamada de topologia trivial.
- **3.3. Definição.** Diremos que um espaço topológico (X, τ) é *metrizável* se existir uma métrica d em X tal que $\tau = \tau_d$.

Notemos que a topologia discreta é sempre metrizável, e vem dada pela métrica discreta.

3.4. Definição. Dadas duas topologias τ_1 e τ_2 num conjunto X, diremos que τ_1 é mais fraca que τ_2 , ou que τ_2 é mais forte que τ_1 , ou que τ_2 é mais fina que τ_1 se $\tau_1 \subset \tau_2$.

A topologia trivial em X é mais fraca que qualquer outra topologia em X. A topologia discreta em X é mais fina que qualquer outra topologia em X.

- **3.5.** Definição. Seja X um espaço topológico. Diremos que um conjunto $F\subset X$ é fechado se $X\setminus F$ é aberto.
 - **3.6.** Proposição. Seja X um espaço topológico. Então:
 - (a) $X \in \emptyset$ são fechados.
 - (b) A interseção de uma família arbitrária de fechados é um fechado.
 - (c) A união de uma família finita de fechados é um fechado.

Demonstração. Basta aplicar as leis de de Morgan.

Reciprocamente temos:

- **3.7.** Proposição. Seja X um conjunto, e seja \mathcal{F} uma família de subconjuntos de X com as seguintes propriedades:
 - (a) $X \in \emptyset$ pertencem a \mathcal{F} .
 - (b) A interseção de uma família arbitrária de membros de $\mathcal F$ pertence a $\mathcal F$.
 - (c) A união de uma família finita de membros de \mathcal{F} pertence a \mathcal{F} .

Seja $\tau = \{X \setminus F : F \in \mathcal{F}\}$. Então τ é uma topologia em X, e \mathcal{F} coincide com a família dos fechados de (X, τ) .

Demonstração. Basta aplicar as leis de De Morgan.

Exercícios

- **3.A.** Prove que as métricas dos Exemplos 2.2(b), 2.2(c) e 2.2(d) definem a mesma topologia em \mathbb{R}^n .
 - **3.B.** Seja $X = \{a, b\}$, com $a \neq b$, e seja

$$\tau = \{\emptyset, \{a\}, X\}.$$

Prove que τ é uma topologia em X. O espaço (X,τ) é chamado de $espaço\ de\ Sierpinski$.

3.C. Seja X um conjunto, e seja

$$\mathcal{F} = \{X\} \cup \{F \subset X : F \text{ \'e finito}\}.$$

Prove que \mathcal{F} é a família de fechados de uma topologia em X, conhecida como topologia cofinita. Vocé reconhece esta topologia quando X é finito?

3.D. Seja X um conjunto, e seja

$$\mathcal{F} = \{X\} \cup \{F \subset X : F \text{ \'e enumerável}\}.$$

Prove que \mathcal{F} é a família de fechados de uma topologia em X, conhecida como topologia coenumerável. Você reconhece esta topologia quando X é enumerável?

3.E. Seja X um conjunto, seja $A\subset X$, e seja

$$\tau_A = \{\emptyset\} \cup \{U : A \subset U \subset X\}.$$

- (a) Prove que τ_A é uma topologia em X.
- (b) Descreva os fechados de (X, τ_A) .
- (c) Você reconhece τ_A quando $A = \emptyset$ e quando A = X?

4. Aderência e interior de um conjunto

4.1. Definição. Seja X um espaço topológico, e seja $A\subset X$. Chamaremos de aderência de A o conjunto

$$\overline{A} = \bigcap \{ F \subset X : F \text{ \'e fechado e } F \supset A \}.$$

Claramente \overline{A} é o menor subconjunto fechado de X que contém A.

- **4.2. Proposição.** Seja X um espaço topológico. Então a aplicação $A \to \overline{A}$ tem as seguintes propriedades:
 - (a) $A \subset \overline{A}$.
 - (b) $\overline{\overline{A}} = \overline{A}$.
 - $(c) \overline{\emptyset} = \emptyset.$
 - (d) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - (e) A é fechado se e só se $A = \overline{A}$.

Demonstração. (a) é óbvio.

- (b) Por (a) $\overline{A}\subset\overline{\overline{A}}$. E como \overline{A} é um fechado contendo \overline{A} , segue que $\overline{\overline{A}}\subset\overline{A}$.
- (c) Como \emptyset é um fechado contendo \emptyset , segue que $\overline{\emptyset} \subset \emptyset$.
- (d) Antes de provar (d) notemos que

$$A \subset B$$
 implies $\overline{A} \subset \overline{B}$.

Como $A \subset A \cup B$ e $B \subset A \cup B$, segue que $\overline{A} \subset \overline{A \cup B}$ e $\overline{B} \subset \overline{A \cup B}$. Logo $\overline{A \cup B} \subset \overline{A \cup B}$. Por outro lado $\overline{A} \cup \overline{B}$ é um fechado contendo $A \cup B$. Logo $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$.

(e) é óbvio.

Reciprocamente temos:

- **4.3.** Proposição. Seja X um conjunto, e seja $A \in \mathcal{P}(X) \to \overline{A} \in \mathcal{P}(X)$ uma aplicação com as sequintes propriedades:
 - (a) $A \subset A$.
 - $(b)\ \overline{\overline{\overline{A}}} = \overline{A}.$
 - $(c) \ \overline{\emptyset} = \emptyset.$
 - $(d) \ \overline{A \cup B} = \overline{A} \cup \overline{B}.$

Seja $\mathcal{F} = \{A \subset X : A = \overline{A}\}$. Então \mathcal{F} é a família de fechados de uma topologia τ em X. \overline{A} é a aderência de A para cada $A \subset X$.

Demonstração. Utilizaremos a Proposição 3.7. É claro que $X \in \mathcal{F}$. E segue de (c) que $\emptyset \in \mathcal{F}$.

Segue de (d) que a união de dois membros de \mathcal{F} pertence a \mathcal{F} .

Antes de provar que qualquer interseção de membros de $\mathcal F$ pertence a $\mathcal F,$ provemos que

(*)
$$A \subset B$$
 implica $\overline{A} \subset \overline{B}$.

De fato usando (d) vemos que:

$$A \subset B \Rightarrow B = A \cup (B \setminus A) \Rightarrow \overline{B} = \overline{A} \cup \overline{(B \setminus A)} \Rightarrow \overline{B} \supset \overline{A}.$$

Seja $A_i \in \mathcal{F}$ para cada $i \in I$. Então $\bigcap_{i \in I} A_i \subset A_i$, e portanto $\overline{\bigcap_{i \in I} A_i} \subset \overline{A_i} = A_i$ para cada $i \in I$. Logo $\overline{\bigcap_{i \in I} A_i} \subset \bigcap_{i \in I} A_i$, e segue que $\bigcap_{i \in I} A_i \in \mathcal{F}$.

Assim \mathcal{F} é a família de fechados para uma topologia τ em X. Para provar que \overline{A} é a aderência de A com relação a τ , fixemos $A \subset X$. Segue de (*) que

$$\overline{A} \subset \overline{F} = F$$
 para cada $F \in \mathcal{F}$ tal que $F \supset A$,

e portanto

$$\overline{A} \subset \bigcap \{F \in \mathcal{F} : F \supset A\}.$$

Por outro lado segue de (a) e (b) que $\overline{A} \in \mathcal{F}$ e $\overline{A} \supset A$. Logo

$$\bigcap \{F \in \mathcal{F} : F \supset A\} \subset \overline{A}.$$

Isto prova que \overline{A} é a aderência de A.

4.4. Definição. Seja X um espaço topológico, e seja $A \subset X$. Chamaremos de *interior* de A o conjunto

$$A^\circ = \bigcup \{U \subset X : U \ \text{ \'e aberto e } \ U \subset A\}.$$

Claramente A° é o maior subconjunto aberto de X que está contido em A. As vezes escreveremos $\overset{\circ}{A}$ em lugar de A° .

4.5. Proposição. Seja X um espaço topológico, e seja $A \subset X$. Então:

$$X \setminus \overline{A} = (X \setminus A)^{\circ}$$
 e $X \setminus A^{\circ} = \overline{(X \setminus A)}$.

Demonstração. Basta aplicar as leis de De Morgan.

Deixamos como exercício as demonstrações das duas proposições seguintes. Elas podem ser demonstradas diretamente, ou podem ser deduzidas das Proposiçõe 4.2 e 4.3 utilizando a Proposição 4.5 e as leis de De Morgan.

- **4.6.** Proposição. Seja X um espaço topológico. Então a aplicação $A \to A^{\circ}$ tem as seguintes propriedades:
 - (a) $A^{\circ} \subset A$.
 - (b) $A^{\circ\circ} = A^{\circ}$.
 - (c) $X^{\circ} = X$.
 - $(d) (A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}.$

- (e) $A \in aberto se e so se A = A^{\circ}$.
- **4.7. Proposição.** Seja X um conjunto, e seja $A \in \mathcal{P}(X) \to A^{\circ} \in \mathcal{P}(X)$ uma aplicação com as seguintes propriedades:
 - (a) $A^{\circ} \subset A$.
 - (b) $A^{\circ\circ} = A^{\circ}$.
 - (c) $X^{\circ} = X$.
 - $(d) (A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}.$

Seja $\tau = \{A \subset X : A = A^{\circ}\}$. Então τ é uma topologia em X. A° é o interior de A para cada $A \subset X$.

Exercícios

- **4.A.** Seja X um espaço topológico, com a topologia cofinita do Exercício 3.C.
 - (a) Descreva \overline{A} para cada $A \subset X$.
 - (b) Descreva A° para cada $A \subset X$.
- **4.B.** Seja X um conjunto, seja $A\subset X$, e seja τ_A a topologia do Exercício 3.E.
 - (a) Descreva \overline{B} para cada $B \subset X$.
 - (b) Descreva B° para cada $B \subset X$.
 - **4.C.** Seja X um espaço topológico.
 - (a) Prove que $\overline{(A \cap B)} \subset \overline{\overline{A}} \cap \overline{B}$ para todo $A, B \subset X$.
 - (b) Dê exemplo de conjuntos $A, B \subset \mathbf{R}$ tais que $\overline{(A \cap B)} \neq \overline{A} \cap \overline{B}$.
 - **4.D.** Seja X um espaço topológico.
 - (a) Prove que $(A \cup B)^{\circ} \supset A^{\circ} \cup B^{\circ}$ para todo $A, B \subset X$.
 - (b) Dê exemplo de conjuntos $A,B\subset \mathbf{R}$ tais que $(A\cup B)^{\circ}\neq A^{\circ}\cup B^{\circ}$.
 - **4.E.** Dado $A \subset X$, chamaremos de fronteira de A o conjunto

$$\partial A = \overline{A} \cap \overline{(X \setminus A)}.$$

- (a) Prove que $\overline{A} = A \cup \partial A$.
- (b) Prove que $A^{\circ} = A \setminus \partial A$.
- **4.F.** Para cada $A \subset \mathbf{N}$ seja

$$\overline{A} = \{kn : n \in A, k \in \mathbf{N}\}.$$

- (a) Prove que a aplicação $A \to \overline{A}$ tem as propriedades da Proposição 4.3, e define portanto uma topologia τ em \mathbf{N} .
 - (b) Descreva os fechados de (\mathbf{N}, τ) .
 - (c) Descreva os abertos de (\mathbf{N}, τ) .

5. Sistemas de vizinhanças

- **5.1.** Definição. Seja X um espaço topológico não vazio, e seja $x \in X$. Diremos que um conjunto $U \subset X$ é uma vizinhança de x se $x \in U^{\circ}$. \mathcal{U}_x denota o conjunto de todas as vizinhanças de x.
- **5.2.** Proposição. Seja X um espaço topológico não vazio. Então os conjuntos \mathcal{U}_x tem as seguintes propriedades:
 - (a) $x \in U$ para cada $U \in \mathcal{U}_x$.
 - (b) Se $U, V \in \mathcal{U}_x$, então $U \cap V \in \mathcal{U}_x$.
 - (c) Dado $U \in \mathcal{U}_x$, existe $V \in \mathcal{U}_x$, $V \subset U$, tal que $U \in \mathcal{U}_y$ para cada $y \in V$.
 - (d) Se $U \in \mathcal{U}_x$ e $U \subset V \subset X$, então $V \in \mathcal{U}_x$.
 - (e) Um conjunto $U \subset X$ é aberto se e só se $U \in \mathcal{U}_x$ para cada $x \in U$.

Demonstração. (a) Se $U \in \mathcal{U}_x$, então $x \in U^{\circ} \subset U$.

- (b) Se $U, V \in \mathcal{U}_x$, então $x \in U^{\circ} \cap V^{\circ} = (U \cap V)^{\circ}$. Logo $U \cap V \in \mathcal{U}_x$.
- (c) Dado $U \in \mathcal{U}_x$, seja $V = U^{\circ}$. Se $y \in V = U^{\circ}$, então $U \in \mathcal{U}_y$.
- (d) Se $U \in \mathcal{U}_x$ e $U \subset V \subset X$, então $x \in U^{\circ} \subset V^{\circ}$. Logo $V \in \mathcal{U}_x$.
- (e) Se U é aberto, então $U=U^\circ$. Segue que $U\in\mathcal{U}_x$ para cada $x\in U$. Reciprocamente suponhamos que $U\in\mathcal{U}_x$ para cada $x\in U$. Segue que $U=U^\circ$. Logo U é aberto.

Reciprocamente temos:

- **5.3.** Proposição. Seja X um conjunto não vazio. Para cada $x \in X$ seja \mathcal{U}_x uma família não vazia de subconjuntos de X com as seguintes propriedades:
 - (a) $x \in U$ para cada $U \in \mathcal{U}_x$.
 - (b) Se $U, V \in \mathcal{U}_x$, então $U \cap V \in \mathcal{U}_x$.
 - (c) Dado $U \in \mathcal{U}_x$, existe $V \in \mathcal{U}_x$, $V \subset U$, tal que $U \in \mathcal{U}_y$ para cada $y \in V$.
 - (d) Se $U \in \mathcal{U}_x$ e $U \subset V \subset X$, então $V \in \mathcal{U}_x$. Seja

$$\tau = \{ U \subset X : U \in \mathcal{U}_x \text{ para cada } x \in U \}.$$

Então τ é uma topologia em X, e \mathcal{U}_x é o sistema de vizinhanças de x em (X, τ) para cada $x \in X$.

Demonstração. Primeiro provaremos que τ é uma topologia em X.

É claro que $\emptyset \in \tau$. Para provar que $X \in \tau$, seja $x \in X$, e seja $U \in \mathcal{U}_x$. Como $U \subset X$, segue de (d) que $X \in \mathcal{U}_x$. Logo $X \in \tau$.

Seja $U_i \in \tau$ para cada $i \in I$, e seja $x \in \bigcup_{i \in I} U_i$. Então $x \in U_i$ para algum $i \in I$. Como $U_i \in \tau$, temos que $U_i \in \mathcal{U}_x$. Como $U_i \subset \bigcup_{i \in I} U_i$, segue de (d) que $\bigcup_{i \in I} U_i \in \mathcal{U}_x$. Logo $\bigcup_{i \in I} U_i \in \tau$.

Sejam $U,V\in\tau$, e seja $x\in U\cap V$. Então $U,V\in\mathcal{U}_x$, e segue de (b) que $U\cap V\in\mathcal{U}_x$. Logo $U\cap V\in\tau$.

A seguir provaremos que cada vizinhança de x pertence a \mathcal{U}_x . Seja U uma vizinhança de x. Então $x \in U^{\circ}$. Como $U^{\circ} \in \tau$, segue que $U^{\circ} \in \mathcal{U}_x$. Como $U^{\circ} \subset U$, segue de (d) que $U \in \mathcal{U}_x$.

Finalmente provaremos que cada $U \in \mathcal{U}_x$ é uma vizinhança de x. Seja $U \in \mathcal{U}_x$, e seja $V = \{y \in U : U \in \mathcal{U}_y\}$. Segue de (a) que $x \in U$, e como $U \in \mathcal{U}_x$, vemos que $x \in V$.

A seguir veremos que $V \in \tau$. Dado $y \in V$, temos que $U \in \mathcal{U}_y$. Por (c) existe $W \in \mathcal{U}_y$, $W \subset U$, tal que $U \in \mathcal{U}_z$ para todo $z \in W$. Segue então de (a) que $W \subset V$. Segue de (d) que $V \in \mathcal{U}_y$. Logo $V \in \tau$.

Como $x \in V$ e $V \in \tau$, segue que $x \in U^{\circ}$. Logo U é uma vizinhança de x.

5.4. Definição. Seja X um espaço topológico não vazio, e seja $x \in X$. Diremos que uma família $\mathcal{B}_x \subset \mathcal{U}_x$ é uma base de vizinhanças de x se cada $U \in \mathcal{U}_x$ contém algum $V \in \mathcal{B}_x$.

5.5. Exemplos.

(a) Seja X um espaço topológico, seja $x \in X$, e seja

$$\mathcal{B}_x = \{ U \in \mathcal{U}_x : U \text{ \'e aberto} \}.$$

Então \mathcal{B}_x é uma base de vizinhanças de x.

(b) Seja X um espaço métrico, seja $x \in X$, e seja

$$\mathcal{B}_x = \{B(x;r) : r > 0\}.$$

Ent ao \mathcal{B}_x é uma base de vizinhanças de x.

(c) Seja X um espaço métrico, seja $x \in X$, e seja

$$\mathcal{B}_x = \{B[x;r] : r > 0\}.$$

Então \mathcal{B}_x é uma base de vizinhanças de x.

- **5.6.** Proposição. Seja X um espaço topológico não vazio, e seja \mathcal{B}_x uma base de vizinhanças de x, para cada $x \in X$. Então:
 - (a) $x \in U$ para cada $U \in \mathcal{B}_x$.
 - (b) Dados $U, V \in \mathcal{B}_x$, existe $W \in \mathcal{B}_x$ tal que $W \subset U \cap V$.
- (c) Dado $U \in \mathcal{B}_x$, existe $V \in \mathcal{B}_x$, $V \subset U$, tal que para cada $y \in V$ existe $W \in \mathcal{B}_y$ tal que $W \subset U$.
- (d) Um conjunto $U \subset X$ é aberto se e só se para cada $x \in U$ existe $V \in \mathcal{B}_x$ tal que $V \subset U$.

Demonstração. As afirmaç oes (a), (b), (c) e (d) seguem diretamente das afirmações (a), (b), (c) e (e) na Proposição 5.2.

Reciprocamente temos:

5.7. Proposição. Seja X um conjunto não vazio. Para cada $x \in X$ seja \mathcal{B}_x uma família não vazia de subconjuntos de X com as seguintes propriedades:

- (a) $x \in U$ para cada $U \in \mathcal{B}_x$.
- (b) Dados $U, V \in \mathcal{B}_x$, existe $W \in \mathcal{B}_x$ tal que $W \subset U \cap V$.
- (c) Dado $U \in \mathcal{B}_x$, existe $V \in \mathcal{B}_x$, $V \subset U$, tal que para cada $y \in V$ existe $W \in \mathcal{B}_y$ tal que $W \subset U$.

Seja

$$\tau = \{U \subset X : \text{para cada } x \in U \text{ existe } V \in \mathcal{B}_x \text{ tal que } V \subset U\}.$$

Então τ é uma topologia em X e \mathcal{B}_x é uma base de vizinhanças de x em (X,τ) para cada $x\in X$.

Demonstração. Para cada $x \in X$ seja

$$\mathcal{U}_x = \{ U \subset X : U \supset V \text{ para algum } V \in \mathcal{B}_x \}.$$

É claro que as famílias \mathcal{U}_x verificam as propriedades (a), (b), (c) e (d) da Proposição 5.3, e que

$$\tau = \{ U \subset X : U \in \mathcal{U}_x \text{ para cada } x \in U \}.$$

Pela Proposição 5.3 τ é uma topologia em X e \mathcal{U}_x é o sistema de vizinhanças de x em (X,τ) para cada $X \in X$. Segue que \mathcal{B}_x é uma base de vizinhanças de x em (X,τ) para cada $x \in X$.

A proposição seguinte é muito útil. Ela caracteriza abertos, fechados, aderência de um conjunto e interior de um conjunto em termos de bases de vizinhanças.

- **5.8. Proposição.** Seja X um espaço topológico não vazio, seja $A \subset X$, e seja \mathcal{B}_x uma base de vizinhanças de x, para cada $x \in X$.Então:
 - (a) A é aberto se e só se para cada $x \in A$ existe $V \in \mathcal{B}_x$ tal que $V \subset A$.
 - (b) A é fechado se e só se para cada $x \notin A$, existe $V \in \mathcal{B}_x$ tal que $V \cap A = \emptyset$.
 - (c) $\overline{A} = \{x \in X : V \cap A \neq \emptyset \text{ para cada } V \in \mathcal{B}_x\}.$
 - (d) $A^{\circ} = \{x \in X : V \subset A \text{ para algum } V \in \mathcal{B}_x\}.$

Demonstraçção. Já vimos (a) na Proposição 5.6(d). (b) é conseqüência imediata de (a).

(c) Lembremos que

$$\overline{A} = \bigcap \{ F \subset X : F \text{ fechado}, F \supset A \}.$$

Se $x \notin \overline{A}$, então por (b) existe $V \in \mathcal{B}_x$ tal que $V \cap A = \emptyset$. Reciprocamente suponhamos que exista $V \in \mathcal{B}_x$ tal que $V \cap A = \emptyset$. Então $x \in V^{\circ}$ e $A \subset X \setminus V \subset X \setminus V^{\circ}$. Como $X \setminus V^{\circ}$ é fechado, segue que $\overline{A} \subset X \setminus V^{\circ}$. Logo $x \notin \overline{A}$.

(d) Pela Proposição 4.5, $X\setminus A^\circ=\overline{(X\setminus A)}$. Se B denota o conjunto da direita em (d), então usando (c) segue que

$$x \notin A^{\circ} \Leftrightarrow x \in \overline{(X \setminus A)} \Leftrightarrow V \cap (X \setminus A) \neq \emptyset$$
 para cada $V \in \mathcal{B}_x$

- **5.9. Definição.** Seja X um espaço topológico. Diremos que X satisfaz o primeiro axioma de enumerabilidade se cada $x \in X$ admite uma base de vizinhanças \mathcal{B}_x que é enumerável.
- **5.10.** Exemplo. Cada espaço métrico satisfaz o primeiro axioma de enumerabilidade.

Exercícios

5.A. Seja X um espaço topológico, seja $A\subset X$, e seja \mathcal{B}_x uma base de vizinhanças de x para cada $x\in X$. Prove que

$$\partial A = \{ x \in X : V \cap A \neq \emptyset \ \text{e} \ V \cap (X \setminus A) \neq \emptyset \ \text{para cada} \ V \in \mathcal{B}_x \}.$$

5.B. Dados $f \in C[a,b]$ e r > 0, seja

$$U(f,r) = \{ g \in C[a,b] : |g(x) - f(x) < r \text{ para todo } x \in [a,b] \}.$$

Prove que os conjuntos U(f,r), com r>0 formam uma base de vizinhanças de f no espaço métrico C[a,b] do Exercício 2.A(a).

5.C. Dados $f \in C[a, b]$, $A \subset [a, b]$, A finito, e r > 0, seja

$$V(f,A,r) = \{g \in C[a,b]: |g(x)-f(x)| < r \quad \text{para todo} \quad x \in A\}.$$

Prove que os conjuntos V(f, A, r), com $A \subset [a, b]$, A finito, e r > 0, formam uma base de vizinhanças de f para uma certa topologia em C[a, b]. Esta topologia é mais fraca que a topologia do exercício anterior.

- **5.D.** Seja X um espaço topológico e seja $A \subset X$. Diremos que um ponto $x \in X$ é um ponto de acumulação de A se dado $U \in \mathcal{U}_x$ existe $a \in U \cap A$, com $a \neq x$. A' denota o conjunto dos pontos de acumulação de A. Prove que $\overline{A} = A \cup A'$.
- **5.E.** Dê exemplo de um conjunto $A\subset {\bf R}$ tal que os seguintes conjuntos sejam todos diferentes entre si:

$$A, \overline{A}, \overset{\circ}{A}, \overset{\circ}{A}, \overset{\circ}{A}, \overset{\overline{\circ}}{A}, \overset{\overline{\circ}}{A}$$

6. Bases para os abertos

6.1. Definição. Seja (X, τ) um espaço topológico. Diremos que uma família $\mathcal{B} \subset \tau$ é uma base para τ se dado $U \in \tau$ existe $\mathcal{C} \subset \mathcal{B}$ tal que

$$U=\bigcup\{V:V\in\mathcal{C}\}.$$

6.2. Exemplos.

- (a) Os intervalos (a, b), com a < b em \mathbf{R} , formam uma base para a topologia usual em \mathbf{R} .
- (b) Se (X,d) é um espaço métrico, então as bolas B(a;r), com $a\in X$ e r>0, formam uma base para a topologia τ_d .
- (c) Se (X, τ) é um espaço topológico discreto, então $\mathcal{B} = \{\{x\} : x \in X\}$ é uma base para τ .
- **6.3.** Proposição. Seja (X, τ) um espaço topológico. Uma família $\mathcal{B} \subset \tau$ é uma base para τ se e só se, dados $U \in \tau$ e $x \in U$, existe $V \in \mathcal{B}$ tal que $x \in V \subset U$.

Esta proposição é conseqüência imediata da definição.

6.4. Proposição. Seja (X, τ) um espaço topológico. Uma família $\mathcal{B} \subset \tau$ é uma base para τ se e só se, para cada $x \in X$, a família

$$\mathcal{B}_x = \{ V \in \mathcal{B} : x \in V \}$$

é uma base de vizinhanças de x.

Esta proposição é consequência fácil da proposição anterior.

- **6.5.** Proposição. Seja (X, τ) um espaço topológico, e seja $\mathcal B$ uma base para τ . Então:
 - (a) $X = \bigcup \{V : V \in \mathcal{B}\}.$
- (b) Dados $x \in X$ e $U, V \in \mathcal{B}$ tais que $x \in U \cap V$, existe $W \in \mathcal{B}$ tal que $x \in W \subset U \cap V$.

Demonstração. (a) é conseqüência imediata da definição de base. (b) é conseqüência da Proposição 6.4, junto com a Proposição 5.6.

Reciprocamente temos:

- **6.6.** Proposição. Seja X um conjunto, e seja B uma família de subconjuntos de X com as seguintes propriedades:
 - (a) $X = \bigcup \{V : V \in \mathcal{B}\}.$
- (b) Dados $x \in X$ e $U, V \in \mathcal{B}$ tais que $x \in U \cap V$, existe $W \in \mathcal{B}$ tal que $x \in W \subset U \cap V$.

Seja τ a família de todos os conjuntos da forma

$$U = \bigcup \{V : V \in \mathcal{C}\}, \quad com \quad \mathcal{C} \subset \mathcal{B}.$$

Então τ é uma topologia em X, e $\mathcal B$ é uma base para τ .

Demonstração. É claro que $\emptyset = \bigcup \{V : V \in \emptyset\} \in \tau$. E $X \in \tau$ por (a). Seja $U_i \in \tau$ para cada $i \in I$, ou seja

$$U_i = \bigcup \{V : V \in \mathcal{C}_i\}, \text{ com } \mathcal{C}_i \subset \mathcal{B}$$

para cada $i \in I$. Então

$$\bigcup_{i \in I} U_i = \bigcup \{V : V \in \bigcup_{i \in I} C_i\} \in \tau.$$

Finalmente sejam $U_1, U_2 \in \tau$, ou seja

$$U_i = \bigcup \{V_1 : V_1 \in \mathcal{C}_1\}, \quad U_2 = \bigcup \{V_2 : V_2 \in \mathcal{C}_2\},$$

com $C_1, C_2 \subset \mathcal{B}$. Então

$$U_1 \cap U_2 = \bigcup \{V_1 \cap V_2 : V_1 \in \mathcal{C}_1, V_2 \in \mathcal{C}_2\}.$$

Segue de (b) que cada interseção $V_1 \cap V_2$ é união de membros de \mathcal{B} . Segue que $U_1 \cap U_2 \in \tau$.

Temos provado qu
r τ é uma topologia em X. É claro que $\mathcal B$ é uma base para
 $\tau.$

- **6.7. Definição.** Seja (X, τ) um espaço topológico. Diremos que (X, τ) satisfaz o *segundo axioma de enumerabilidade* se existe uma base \mathcal{B} para τ que é enumerável.
- **6.8. Exemplo.** R satisfaz o segundo axioma de enumerabilidade: os intervalos (a,b) com a < b racionais, formam uma base para os abertos.

Exercícios

- **6.A.** Prove que o segundo axioma de enumerabilidade implica o primeiro.
- **6.B.** Prove que os intervalos (a, ∞) , com $a \in \mathbf{R}$, formam uma base para uma topologia τ_1 em \mathbf{R} , mais fraca que a topologia usual. Prove que (\mathbf{R}, τ_1) satisfaz o segundo axioma de enumerabilidade.
- **6.C.** Prove que os intervalos [a, b), com a < b em \mathbf{R} , formam uma base para uma topologia τ_2 em \mathbf{R} , mais fina que a topologia usual. (\mathbf{R}, τ_2) é conhecido como a reta de Sorgenfrey.
- **6.D.** Seja (X, τ) um espaço topológico. Diremos que uma família $\mathcal{C} \subset \tau$ é uma subbase para τ se as interseções finitas de membros de \mathcal{C} formam uma base para τ . Prove que os intervalos (a, ∞) , com $a \in \mathbf{R}$, junto com os intervalos $(-\infty, b)$, com $b \in \mathbf{R}$, formam uma subbase para a topologia usual em \mathbf{R} .

7. Subespaços

7.1. Definição. Seja (X,τ) um espaço topológico, e seja $S\subset X$. É claro que a família

$$\tau_S = \{ S \cap U : U \in \tau \}$$

é uma topologia em S, que chamaremos de topologia induzida. Diremos que (S, τ_S) é um subespaço de (X, τ) , ou simplesmente que S é um subespaço de X.

7.2. Exemplos.

- (a) \mathbf{Z} , com a topologia induzida por \mathbf{R} , é um espaço topológico discreto.
- (b) \mathbf{R} é um subespaço de \mathbf{R}^2 .
- **7.3.** Proposição. Seja S um subespaço de um espaço topológico X. Então:
- (a) U é aberto em S se e só se $U = S \cap U_1$, sendo U_1 aberto em X.
- (b) F é fechado em S se e só se $F = S \cap F_1$, sendo F_1 fechado em X.
- (c) Se $A \subset S$, então $\overline{A}^S = S \cap \overline{A}^X$.
- (d) Se $x \in S$, então U é vizinhança de x em S se e só se $U = S \cap U_1$, sendo U_1 uma vizinhança de x em X.

Demonstração. (a) é a própria definição.

- (b) Usando (a) vemos que: F é fechado em $S \Leftrightarrow S \setminus F$ é aberto em $S \Leftrightarrow S \setminus F = S \cap U_1$, com U_1 aberto em $X \Leftrightarrow F = S \cap (X \setminus U_1)$, com U_1 aberto em $X \Leftrightarrow F = S \cap F_1$, com F_1 fechado em X.
 - (c) Usando (b) vemos que:

$$\overline{A}^S = \bigcap \{F: F \ \text{ fechado em } S, \ F \supset A\}$$

$$=\bigcap\{S\cap F_1:F_1 \text{ fechado em } X, F_1\supset A\}=S\cap\overline{A}^X.$$

(d) Seja U_1 uma vizinhança de x em X. Então existe um aberto V_1 em X tal que $x \in V_1 \subset U_1$. Logo $x \in S \cap V_1 \subset S \cap U_1$. Como $S \cap V_1$ é aberto em S, segue que $S \cap U_1$ é uma vizinhança de x em S.

Reciprocamente seja U uma vizinhança de x em S. Então existe um aberto V de S tal que $x \in V \subset U$. Então $V = S \cap V_1$, com V_1 aberto em X. Seja

$$U_1 = V_1 \cup (U \setminus V).$$

Então

$$S \cap U_1 = V \cup (U \setminus V) = U.$$

Como $x \in V_1 \subset U_1$, segue que U_1 é uma vizinhança de x em X.

Exercícios

- **7.A.** Seja X um espaço topológico, e seja S um subespaço de X.
- (a) Se X tem a topologia discreta, prove que S também tem a topologia discreta.
 - (b) Se X tem a topologia trivial, prove que S também tem a topologia trivial.
- **7.B.** Seja X um espaço topológico, e seja S um subespaço de X. Se X é metrizável, prove que S é metrizável também.

Sugestão: Use o Exercício 2.C.

- **7.C.** Seja X um espaço topológico, seja S um subespaço de X, e seja $x \in S$.
- (a) Se \mathcal{B}_x é uma base de vizinhanças de x em X, prove que a família $\{S \cap U : U \in \mathcal{B}_x\}$ é uma base de vizinhanças de x em S.
- (b) Se X satisfaz o primeiro axioma de enumerabilidade, prove que S satisfaz o mesmo axioma.
 - **7.D.** Seja X um espaço topológico, e seja S um subespaço de X.
- (a) Se \mathcal{B} é uma base para a topologia de X, prove que a família $\{S \cap U : U \in \mathcal{B}\}$ é uma base para a topologia de S.
- (b) Se X satisfaz o segundo axioma de enumerabilidade, prove que S satisfaz o mesmo axioma.

8. Funções contínuas

- **8.1.** Definição. Seja $f: X \to Y$, sendo X e Y espaços topológicos. Diremos que f é contínua num ponto $a \in X$ se para cada aberto V de Y contendo f(a), existe um aberto U de X contendo a tal que $f(U) \subset V$. Diremos que f é contínua se for contínua em cada pontos de X. Denotaremos por C(X;Y) o conjunto de todas as funções contínuas $f: X \to Y$. Se $Y = \mathbf{R}$, escreveremos C(X) em lugar de $C(X;\mathbf{R})$.
- **8.2.** Proposição. Seja $f: X \to Y$, sendo X e Y espaços topológicos. Seja \mathcal{B}_a uma base de vizinhanças de um ponto $a \in X$, e seja $\mathcal{B}_{f(a)}$ uma base de vizinhanças de f(a). Então as seguintes condições são equivalentes:
 - (a) f é contínua em a.
 - (b) Para cada $V \in \mathcal{U}_{f(a)}$, existe $U \in \mathcal{U}_a$ tal que $f(U) \subset V$.
 - (c) Para cada $V \in \mathcal{B}_{f(a)}$, existe $U \in \mathcal{B}_a$ tal que $f(U) \subset V$.

Demonstração. $(a) \Rightarrow (b)$: Seja $V \in \mathcal{U}_{f(a)}$. Seja V_1 um aberto de Y contendo f(a) tal que $V_1 \subset V$. Por (a) existe um aberto U_1 de X contendo a tal que $f(U_1) \subset V_1 \subset V$. É claro que $U_1 \in \mathcal{U}_a$.

- $(b) \Rightarrow (c)$: Seja $V \in \mathcal{B}_{f(a)}$. Por (b) existe $U \in \mathcal{U}_a$ tal que $f(U) \subset V$. Seja $U_1 \in \mathcal{B}_a$ tal que $U_1 \subset U$. Então $f(U_1) \subset f(U) \subset V$.
- $(c) \Rightarrow (a)$: Seja V um aberto de Y contendo f(a). Seja $V_1 \in \mathcal{B}_{f(a)}$ tal que $V_1 \subset V$. Por (c) existe $U_1 \in \mathcal{B}_a$ tal que $f(U_1) \subset V_1$. Seja U um aberto de X contendo a tal que $U \subset U_1$. Então $f(U) \subset f(U_1) \subset V_1 \subset V$.
- **8.3.** Proposição. Seja $f: X \to Y$, sendo X e Y espaços topológicos. Então as seguintes condições são equivalentes:
 - (a) f é contínua.
 - (b) $f^{-1}(V)$ é aberto em X para cada aberto V de Y.
 - (c) $f^{-1}(B)$ é fechado em X para cada fechado B de Y.

Demonstração. Basta repetir a demonstração da Proposição 2.10.

8.4. Proposição. Sejam $f: X \to Y$ e $g: Y \to Z$, sendo X, Y e Z espaços topológicos. Se f é contínua num ponto $a \in X$ e g é contínua em f(a), então $g \circ f$ é contínua em a.

Demonstração. Utilizaremos a Proposição 8.2. Seja $W \in \mathcal{U}_{g \circ f(a)}$. Como g é contínua em f(a), existe $V \in \mathcal{U}_{f(a)}$ tal que $g(V) \subset W$. Como f é contínua em a, existe $U \in \mathcal{U}_a$ tal que $f(U) \subset V$. Segue que $g(f(U)) \subset g(V) \subset W$.

- **8.5.** Corolário. Sejam $f: X \to Y$ e $g: Y \to Z$, sendo X, Y e Z espaços topológicos. Se f e g são contínuas, então $g \circ f$ é contínua também.
- **8.6.** Proposição. Sejam X e Y espaços topológicos, e seja S um subespaço de X. Se $f: X \to Y$ é contínua, então a restrição $f|S: S \to Y$ é contínua também.

Demonstração. Seja V um aberto de Y. Como f é contínua, $f^{-1}(V)$ é aberto em X. Segue que $(f|S)^{-1}(V) = S \cap f^{-1}(V)$ é aberto em S.

8.7. Proposição. Sejam X e Y espaços topológicos. Suponhamos que $X = S_1 \cup S_2$, onde S_1 e S_2 são ambos abertos ou ambos fechados. Seja $f: X \to Y$ uma função tal que $f|S_1:S_1 \to Y$ e $f|S_2:S_2 \to Y$ são contínuas. Então f é contínua.

Demonstração. Suponhamos S_1 e S_2 abertos. Seja V um aberto de Y. Como $f|S_1$ é contínua, $(f|S_1)^{-1}(V) = S_1 \cap f^{-1}(V)$ é aberto em S_1 . Como $f|S_2$ é contínua, $(f|S_2)^{-1}(V) = S_2 \cap f^{-1}(V)$ é aberto em S_2 . Segue que

$$S_1 \cap f^{-1}(V) = S_1 \cap U_1$$
 e $S_2 \cap f^{-1}(V) = S_2(V) \cap U_2$,

sendo U_1 e U_2 abertos em X. Como $X = S_1 \cup S_2$, segue que

$$f^{-1}(V) = (S_1 \cap f^{-1}(V)) \cup (S_2 \cap f^{-1}(V)) = (S_1 \cap U_1) \cup (S_2 \cap U_2)$$

é aberto em X.

Deixamos como exercício a demonstração do caso em que S_1 e S_2 são fechados.

- **8.8.** Definição. Sejam X e Y espaços topológicos.
- (a) Diremos que $f:X\to Y$ é um homeomorfismo se f é bijetiva e f e f^{-1} são contínuas.
- (b) Diremos que $f:X\to Y$ é um mergulho se f é um homeomorfismo entre X e o subespaço f(X) de Y.
- (c) Diremos que $f:X\to Y$ é aberta se f(U) é aberto em Y para cada aberto U de X.
- (d) Diremos que $f:X\to Y$ é fechada se f(A) é fechado em Y para cada fechado A de X.

O resultado seguinte é conseqüência fácil das definições e resultados anteriores.

- **8.9.** Proposição. Sejam X e Y espaços topológicos, e seja $f: X \to Y$ uma função bijetiva. Então as seguintes condições são equivalentes:
 - (a) f é um homeomorfismo.
 - (b) f é contínua e aberta.
 - (c) f é contínua e fechada.

Exercícios

X e Y denotam espaços topológicos.

- **8.A.** Seja \mathcal{B} uma base para a topologia de Y. Prove que uma função $f: X \to Y$ é contínua se e só se $f^{-1}(V)$ é aberto em X para cada $V \in \mathcal{B}$.
- **8.B.** Prove que uma função $f:X\to Y$ é contínua se e só se $f(\overline{A})\subset \overline{f(A)}$ para cada $A\subset X$.

- **8.C.** Prove que cada função constante $f: X \to Y$ é contínua.
- **8.D.** Prove que se $f: X \to \mathbf{R}$ e $g: X \to \mathbf{R}$ são contínuas num ponto $a \in X$, então as funções f+g e fg são também contínuas em a.
- **8.E.** Dado $A \subset X$, a função característica $\chi_A : X \to \mathbf{R}$ é definida por $\chi_A(x) = 1$ se $x \in A$ e $\chi_A(x) = 0$ se $x \notin A$. Prove que a função χ_A é contínua se e só se A é aberto e fechado.
- **8.F.** Seja $X = \mathbb{N}$, com a topologia do Exercício 4.F. Prove que uma função $f: X \to X$ é contínua se e só se, cada vez que m divide n, tem-se que f(m) divide f(n).
- **8.G.** Diremos que um conjunto $D \subset X$ é denso em X se $\overline{D} = X$. Seja $f: X \to \mathbf{R}$ uma função contínua tal que f(x) = 0 para todo x num subconjunto denso $D \subset X$. Prove que f(x) = 0 para todo $x \in X$.
 - 8.H. Prove que os seguintes pares de intervalos são homeomorfos entre si:
 - (a) (a, b) e (0, 1).
 - (b) $(1, \infty)$ e (0, 1).
 - (c) $(-\pi/2, \pi/2)$ e $(-\infty, \infty)$.

Use (a), (b) e (c) para provar que todos os intervalos abertos de ${\bf R}$ são homeomorfos entre si.

- **8.I.** Seja $f: X \to \mathbf{R}$. Diremos que f é semicontínua inferiormente se $f^{-1}(a,\infty)$ é aberto em X para cada $a \in \mathbf{R}$. Diremos que f é semicontínua superiormente se $f^{-1}(-\infty,b)$ é aberto em X para cada $b \in \mathbf{R}$. Prove que f é contínua se e só se f é semicontínua inferiormente e semicontínua superiormente.
 - **8.J.** Seja $A \subset X$.
- (a) Prove que $\chi_A:X\to \mathbf{R}$ é semicontínua inferiormente se e só se A é aberto.
- (b) Prove que $\chi_A:X\to \mathbf{R}$ é semicontínua superiormente se e só se A é fechado.

9. Produtos infinitos e o axioma da escolha

9.1. Definição. Seja $\{X_i : i \in I\}$ uma família não vazia de conjuntos. Chamaremos de *produto cartesiano* da família $\{X_i : i \in I\}$ o conjunto

$$\prod_{i \in I} X_i = \{x: I \to \bigcup_{i \in I} X_i: x(i) \in X_i \ \text{ para cada } i \in I\}.$$

Escreveremos x_i em lugar de x(i) para cada $x \in \prod_{i \in I}$ e $i \in I$. Para cada $j \in I$ a $projeção \pi_j$ é definida por

$$\pi_j : x \in \prod_{i \in I} X_i \to x_j \in X_j.$$

Cada $x \in \prod_{i \in I} X_i$ é usualmente denotado por $(x_i)_{i \in I}$.

Mesmo que cada X_i seja não vazio, não é claro que o produto $\prod_{i \in I} X_i$ seja não vazio. Isto é consequência do axioma seguinte.

- **9.2.** Axioma da escolha. Seja $\{X_i: i \in I\}$ uma família não vazia de conjuntos disjuntos não vazios. Então existe uma função $f: I \to \bigcup_{i \in I} X_i$ tal que $f(i) \in X_i$ para cada $i \in I$. A função f é chamada de função escolha.
- **9.3.** Proposição. Seja $\{X_i : i \in I\}$ uma família não vazia de conjuntos não vazios. Então o produto cartesiano $\prod_{i \in I} X_i$ é não vazio.

Demonstração. Se os conjuntos X_i fossem disjuntos, a conclusão seria conseqüência imediata do axioma da escolha. No caso geral definamos $Y_i = X_i \times \{i\}$ para cada $i \in I$. É claro que $\{Y_i : i \in I\}$ é uma família não vazia de conjuntos disjuntos não vazios. Pelo axioma da escolha existe uma função $f: I \to \bigcup_{i \in I} Y_i$ tal que $f(i) \in Y_i$ para cada $i \in I$. Podemos escrever $f(i) = (x_i, i)$, com $x_i \in X_i$ para cada $i \in I$. Se definimos $x(i) = x_i$ para cada $i \in I$, então $x \in \prod_{i \in I} X_i$.

Temos provado que o axioma da escolha implica a Proposição 9.3. Mas é claro que a Proposição 9.3 implica o axioma da escolha. Assim o axioma da escolha e a Proposição 9.3 são equivalentes.

Vamos ilustrar o uso do axioma da escolha com um exemplo do dia a dia. Seja I um conjunto infinito, e seja X_i um par de sapatos para cada $i \in I$. Neste caso não precisamos do axioma da escolha para garantir que o produto $\prod_{i \in I} X_i$ é não vazio. Se definimos x(i) como sendo aquele sapato em X_i que corresponde ao pé direito para cada $i \in I$, então é claro que a função $x:I \to \bigcup_{i \in I} X_i$ assim definida pertence a $\prod_{i \in I} X_i$. Por outro lado seja Y_i um par de meias para cada $i \in I$. Como em geral não há como distinguir entre as duas meias de um mesmo par, não temos como definir uma função $y:I \to \bigcup_{i \in I} Y_i$ que pertença ao produto $\prod_{i \in I} Y_i$ sem usar o axioma da escolha.

Exercícios

9.A. Prove que o axioma da escolha é equivalente à afirmação seguinte: Seja $\{X_i:i\in I\}$ uma família não vazia de conjuntos disjuntos não vazios. Então existe um conjunto $Y\subset\bigcup_{i\in I}X_i$ tal que $Y\cap X_i$ contém um único elemento para cada $i\in I$.

O exercício seguinte mostra como conciliar a definição usual de produtos cartesianos finitos, que vimos na Seção 1, com a definição de produtos cartesianos infinitos.

9.B. Sabemos que, dados n conjuntos $X_1,...,X_n,$ o produto cartesiano $X_1\times ...\times X_n$ é dado por

$$X_1 \times ... \times X_n = \{(x_1, ..., x_n) : x_i \in X_i \text{ para } i = 1, ..., n\}.$$

Seja

$$(X_1 \times ... \times X_n)^* = \{x : \{1, ..., n\} \to X_1 \cup ... \cup X_n : x(i) \in X_i \text{ para } i = 1, ..., n\}.$$

Ache uma aplicação bijetiva entre $X_1 \times ... \times X_n$ e $(X_1 \times ... \times X_n)^*$.

10. O espaço produto

10.1. Proposição. Seja $\{X_i : i \in I\}$ uma família não vazia de espaços topológicos não vazios, e seja $X = \prod_{i \in I} X_i$. Seja

$$\mathcal{B} = \{ \prod_{i \in I} U_i : U_i \quad \text{\'e aberto em } X_i \quad para \ cada \quad i \in I \}.$$

Então \mathcal{B} é base para uma topologia em X, que chamaremos de topologia das caixas.

Demonstração. É claro que \mathcal{B} verifica as condições (a) e (b) da Proposição 6.6.

Se $I = \{1, ..., n\}$ e $X_i = \mathbf{R}$ para cada $i \in I$, então é claro que a topologia das caixas coincide com a topologia usual em \mathbf{R}^n . Mas se I é um conjunto infinito, então a topologia das caixas, mesmo sendo bastante natural, é pouco conveniente. Mais adiante veremos várias propriedades P tais que, embora cada X_i tenha a propriedade P, o produto $\prod_{i \in I} X_i$, com a topologia das caixas, não tem a propriedade P. Por essa razão a topologia usual no produto $\prod_{i \in I} X_i$ vem dada pela proposição seguinte.

- **10.2.** Proposição. Seja $\{X_i : i \in I\}$ uma família não vazia de espaços topológicos não vazios, e seja $X = \prod_{i \in I} X_i$. Seja \mathcal{B} a família de todos os produtos $\prod_{i \in I} U_i$ tais que:
 - (a) U_i é aberto em X_i para cada $i \in I$;
 - (b) $U_i = X_i$ para cada $i \in I \setminus J$, com $J \subset I$, J finito.

Então $\mathcal B$ é base para uma topologia em X, que chamaremos de topologia produto.

Demonstração. É fácil verificar que \mathcal{B} verifica as condições (a) e (b) da Proposição 6.6. É conveniente notar que cada $U \in \mathcal{B}$ pode ser escrito na forma

$$U = (\prod_{j \in J} U_j) \times (\prod_{i \in I \setminus J} X_i) = \bigcap_{j \in J} \pi_j^{-1}(U_j).$$

10.3. Proposição. Seja $\{X_i: i\in I\}$ uma família não vazia de espaços topológicos não vazios, e seja $X=\prod_{i\in I}X_i$. A topologia produto é a topologia mais fraca em X tal que todas as projeções $\pi_j: X\to X_j$ são contínuas.

Demonstração. Seja τ_p a topologia produto. Se U_j é aberto em X_j , então $\pi_j^{-1}(U_j)$ pertence a \mathcal{B} , e é portanto aberto em (X, τ_p) . Logo $\pi_j : X \to X_j$ é contínua para cada $j \in I$.

Seja τ uma topologia em X tal que $\pi_j:(X,\tau)\to X_j$ é contínua para cada $j\in I$. Provaremos que $\tau_p\subset \tau$. Para isso basta provar que cada $U\in \mathcal{B}$ pertence a τ . Se $U\in \mathcal{B}$, então

$$U = \bigcap_{j \in J} \pi_j^{-1}(U_j),$$

com J finito e U_j aberto em X_j para cada $j \in J$. Segue que $\pi_j^{-1}(U_j)$ é aberto em (X, τ) para cada $j \in J$, e dai U é aberto em (X, τ) .

A menos que digamos o contrário, sempre consideraremos o produto cartesiano $\prod_{i\in I} X_i$ com a topologia produto.

10.4. Proposição. Seja $\{X_i: i \in I\}$ uma família não vazia de espaços topológicos, e seja $X = \prod_{i \in I} X_i$. Seja Y um espaço topológico, e seja $g: Y \to X$. Então a função g é contínua se e só se a função composta $\pi_j \circ g: Y \to X_j$ é contínua para cada $j \in I$.

Demonstração. A implicação \Rightarrow é imediata.

(⇐) Suponhamos que $\pi_j \circ g: Y \to X_j$ seja contínua para cada $j \in I$. Para provar que $g: Y \to X$ é contínua, basta provar que $g^{-1}(U)$ é aberto em Y para cada $U \in \mathcal{B}$. Se $U \in \mathcal{B}$, então

$$U = \bigcap_{j \in J} \pi_j^{-1}(U_j),$$

com J finito e U_j aberto em X_j para cada $j \in J$. Logo

$$g^{-1}(U) = \bigcap_{j \in J} g^{-1}(\pi_j^{-1}(U_j)) = \bigcap_{i \in I} (\pi_j \circ g)^{-1}(U_j).$$

Como $\pi_j \circ g : Y \to X_j$ é contínua para cada j, segue que $g^{-1}(U)$ é aberto em Y.

Os resultados anteriores motivam o conceito seguinte:

10.5. Proposição. Seja X um conjunto, seja $\{X_i : i \in I\}$ uma família de espaços topológicos, e seja $f_i : X \to X_i$ para cada $i \in I$. Seja

$$\mathcal{B} = \{ \bigcap_{j \in J} f_j^{-1}(U_j) : J \quad \textit{finito}, \quad U_j \quad \textit{aberto em} \quad X_j \}.$$

Então:

- (a) \mathcal{B} é base para uma topologia τ_w em X.
- (b) τ_w é a topologia mais fraca em X tal que $f_i: X \to X_i$ é contínua para cada $i \in I$.
- (c) Se Y é um espaço topológico, então uma função $g: Y \to X$ é contínua se e só se $f_i \circ g: Y \to X_i$ é contínua para cada $i \in I$.

Diremos que τ_w é a topologia fraca em X definida pela família de funções $\{f_i : i \in I\}$.

Demonstração. Não é difícil adaptar as demonstrações dos resultados anteriores.

10.6. Proposição. Seja X um espaço topológico, que tem a topologia fraca definida por uma família de funções $f_i: X \to X_i$ $(i \in I)$. Seja S um

subespaço topológico de X. Então S tem a topologia fraca definida pela família de restrições $f_i|S:S\to X_i$ $(i\in I)$.

Demonstração. Nós sabemos que

$$\mathcal{B}_X = \{ \bigcap_{j \in J} f_j^{-1}(U_j) : J \text{ finito, } U_j \text{ aberto em } X_j \}$$

é base para a topologia de X, e que

$$\mathcal{B}_S = \{ S \cap \bigcap_{j \in J} f_j^{-1}(U_j) : J \text{ finito, } U_j \text{ aberto em } X_j \}$$

é base para a topologia de S. Como

$$S \cap \bigcap_{j \in J} f_j^{-1}(U_j) = \bigcap_{j \in J} S \cap f_j^{-1}(U_j) = \bigcap_{j \in J} (f_j|S)^{-1}(U_j),$$

vemos que S tem a topologia fraca definida pela família de restrições $f_i|S:S\to X_i$ $(i\in I).$

10.7. Definição. Seja $f_i: X \to X_i$ para cada $i \in I$. Diremos que a família $\{f_i: i \in I\}$ separa os pontos de X se dados $x \neq y$ em X, existe $i \in I$ tal que $f_i(x) \neq f_i(y)$.

A proposição seguinte da condições necessárias e suficientes para que um espaço topológico seja homeomorfo a um subespaço de um espaço produto.

10.8. Proposição. Seja $f_i: X \to X_i$ para cada $i \in I$, sendo X e cada X_i espaços topológicos. Seja

$$\epsilon: x \in X \to (f_i(x))_{i \in I} \in \prod_{i \in I} X_i.$$

Então ϵ é um mergulho se e só se se verificam as seguintes condições:

- (a) A família $\{f_i : i \in I\}$ separa os pontos de X.
- (b) X tem a topologia fraca definida pela família $\{f_i : i \in I\}$.

A aplicação ϵ é chamada de avaliação.

Demonstração. Notemos que $\pi_i \circ \epsilon = f_i$, para cada i.

 (\Rightarrow) Por hipótese ϵ é um homeomorfismo entre Xe o subespaço $\epsilon(X)$ de $\prod_{i\in I} X_i.$

Como ϵ é injetivo, é claro que $\{f_i : i \in I\}$ separa os pontos de X.

Pela Proposição 10.6 $\epsilon(X)$ tem a topologia fraca definida pela família de restrições

$$\pi_i|\epsilon(X):\epsilon(X)\to X_i.$$

Como $\epsilon: X \to \epsilon(X)$ é um homeomorfismo, segue que X tem a topologia fraca definida pela família de funções

$$(\pi_i|\epsilon(X))\circ\epsilon=f_i:X\to X_i.$$

 (\Leftarrow) Como $\{f_i : i \in I\}$ separa os pontos de X, é claro que ϵ é injetivo.

Segue de (b) que $\pi_i \circ \epsilon = f_i : X \to X_i$ é contínua para cada $i \in I$. Logo $\epsilon : X \to \prod_{i \in I} X_i$ é contínua. Para provar que ϵ é um mergulho provaremos que $\epsilon : X \to \epsilon(X)$ é aberta. Por (b) a família

$$\mathcal{B} = \{ \bigcap_{j \in J} f_j^{-1}(U_j) : J \text{ finito, } U_j \text{ aberto em } X_j \}$$

é uma base para X. Seja $U = \bigcap_{j \in J} f_j^{-1}(U_j) \in \mathcal{B}$. Então

$$U = \bigcap_{j \in J} (\pi_j \circ \epsilon)^{-1}(U_j) = \bigcap_{j \in J} \epsilon^{-1}(\pi_j^{-1}(U_j)).$$

Como ϵ é injetiva,

$$\epsilon(U) = \bigcap_{j \in J} \epsilon(\epsilon^{-1}(\pi_j^{-1}(U_j))) = \bigcap_{j \in J} \epsilon(X) \cap \pi_j^{-1}(U_j) = \epsilon(X) \cap \bigcap_{j \in J} \pi_j^{-1}(U_j).$$

Logo $\epsilon(U)$ é aberto em $\epsilon(X)$, como queriamos.

Exercícios

- **10.A.** Seja $\{X_i:i\in I\}$ uma família de espaços topológicos, e seja $X=\prod_{i\in I}X_i$. Prove que cada projeção $\pi_i:X\to X_i$ é uma função aberta.
 - **10.B.** Prove que as projeções canônicas em ${f R}^2$ não são funções fechadas.
- **10.C.** Seja $\{X_i:i\in I\}$ uma família não vazia de espaços topológicos não vazios, e seja $X=\prod_{i\in I}X_i$. Prove que cada X_i é homeomorfo a um subespaço de X.
- **10.D.** Um espaço topológico X é dito $n\~ao$ trivial se tiver pelo menos dois pontos, e trivial em caso contrário. Seja $\{X_i:i\in I\}$ uma família não vazia de espaços topológicos não vazios. Suponhamos que exista $J,\ \emptyset \neq J \subset I$ tal que X_i é trivial para todo $i\in I\setminus J$. Prove que $\prod_{i\in I}X_i$ é homeomorfo a $\prod_{i\in J}X_i$.
- **10.E.** Se $\alpha_i < \beta_i$ para cada $i \in I$, prove que o produto $\prod_{i \in I} [\alpha_i, \beta_i]$ é homeomorfo ao produto $[0, 1]^I$.
- **10.F.** Seja S um subespaço de um espaço topológico X. Prove que a topologia de X coincide com a topologia fraca definida pela inclusão $S \hookrightarrow X$.

11. O espaço quociente

11.1. Proposição. Seja X um espaço topológico, seja Y um conjunto, e seja $\pi: X \to Y$ uma aplicação sobrejetiva. Então a coleção

$$\tau_{\pi} = \{V \subset Y : \pi^{-1}(V) \ \text{\'e aberto em } X\}$$

é uma topologia em Y, que chamaremos de topologia quociente definida por π .

A demonstração é simples e é deixada como exercício.

- **11.2.** Definição. Diremos que $\pi: X \to Y$ é uma aplicação quociente se X é um espaço topológico, $\pi: X \to Y$ é uma aplicação sobrejetiva e Y tem a topologia quociente definida por π .
- 11.3. Proposição. Seja $\pi:X\to Y$ uma aplicação quociente. Então a topologia quociente é a topologia mais fina em Y tal que a aplicação π é contínua.

A proposição é consequência imediata da definição de τ_{π} .

11.4. Proposição. Seja $\pi: X \to Y$ uma aplicação quociente e seja Z um espaço topológico. Então uma função $g: Y \to Z$ é contínua se e só se a função composta $g \circ \pi: X \to Z$ é contínua.

Demonstração. A implicação \Rightarrow é imediata. Para provar a implicação oposta, seja W um aberto de Z. Como $g \circ \pi$ é contínua, temos que $(g \circ \pi)^{-1}(W) = \pi^{-1}(g^{-1}(W))$ é aberto em X. Segue que $g^{-1}(W)$ é aberto em Y.

11.5. Proposição. Sejam X e Y espaços topológicos, e seja $\pi: X \to Y$ uma aplicação sobrejetiva e contínua. Se π é aberta ou fechada, então a topologia τ de Y coincide com a topologia quociente τ_{π} .

Demonstração. Suponhamos que π seja aberta. Como π é contínua, é claro que $\tau \subset \tau_{\pi}$. Para provar que $\tau_{\pi} \subset \tau$, seja $V \in \tau_{\pi}$. Então $\pi^{-1}(V)$ é aberto em X. Como π é aberta e sobrejetiva, segue que $V = \pi(\pi^{-1}(V)) \in \tau$.

Quando π é fechada, a demonstração é parecida.

11.6. Exemplo. Seja

$$S^1 = \{(x, y) \in \mathbf{R}^2 : x^2 + y^2 = 1\}$$

e seja

$$\pi: t \in [0, 2\pi] \to (\cos t, \operatorname{sen} t) \in S^1.$$

Claramente π é sobrejetiva e contínua. Usando resultados de compacidade em \mathbf{R}^n não é difícil provar que π é fechada. Logo S^1 tem a topologia quociente definida por π .

11.7. Proposição. Seja X um espaço topológico. Seja \mathcal{D} uma família de subconjuntos disjuntos de X cuja união é X. Seja

$$\tau_{\mathcal{D}} = \{ \mathcal{A} \subset \mathcal{D} : \bigcup \{ A : A \in \mathcal{A} \} \text{ \'e aberto em } X \}.$$

Então $\tau_{\mathcal{D}}$ é uma topologia em \mathcal{D} . Diremos que \mathcal{D} é uma decomposição de X. Dado $x \in X$ seja P(x) o único elemento de \mathcal{D} que contém x. A aplicação $P: X \to \mathcal{D}$ assim definida é chamada de aplicação decomposição.

Demonstração. É claro que \emptyset , $\mathcal{D} \in \tau_{\mathcal{D}}$.

Se $A_i \in \tau_{\mathcal{D}}$ para cada $i \in I$, então $\bigcup_{i \in I} A_i \in \tau_{\mathcal{D}}$, pois

$$\bigcup \{A : A \in \bigcup_{i \in I} \mathcal{A}_i\} = \bigcup_{i \in I} \bigcup \{A : A \in \mathcal{A}_i\}$$

 $\acute{\text{e}}$ aberto em X.

Se $\mathcal{A}, \mathcal{B} \in \tau_{\mathcal{D}}$, então $\mathcal{A} \cap \mathcal{B} \in \tau_{\mathcal{D}}$, pois

$$\bigcup \{C: C \in \mathcal{A} \cap \mathcal{B}\} = (\bigcup \{A: A \in \mathcal{A}\}) \cap (\bigcup \{B: B \in \mathcal{B}\}$$

é aberto em X. Para provar a igualdade anterior é necessário observar que se $A, B \in \mathcal{D}$ e $A \cap B \neq \emptyset$, então A = B.

11.8. Proposição. Toda aplicação decomposição $P:X\to \mathcal{D}$ é uma aplicação quociente.

Demonstração. Se $A \subset D$, é claro que

$$P^{-1}(\mathcal{A}) = \{ x \in X : P(x) \in \mathcal{A} \} = \bigcup \{ A : A \in \mathcal{A} \}.$$

Segue que

$$\tau_{\mathcal{D}} = \{ \mathcal{A} \subset \mathcal{D} : P^{-1}(\mathcal{A}) \text{ \'e aberto em } X \}.$$

Logo $\tau_{\mathcal{D}}$ é a topologia quociente definida por P.

Reciprocamente temos o resultado seguinte.

11.9. Proposição. Seja $\pi: X \to Y$ uma aplicação quociente. Então existe uma aplicaão decomposição $P: X \to \mathcal{D}$ e existe um homeomorfismo $f: Y \to \mathcal{D}$ tal que $f \circ \pi = P$.

Demonstração. Seja

$$\mathcal{D} = \{ \pi^{-1}(y) : y \in Y \}.$$

Como π é sobrejetiva, é claro que \mathcal{D} é uma decomposição de X. Seja $P: X \to \mathcal{D}$ a aplicação canônica. Seja $f: Y \to \mathcal{D}$ definida por $f(y) = \pi^{-1}(y)$ para cada $y \in Y$. É claro que f é bijetiva. Como $f(\pi(x)) = \pi^{-1}(\pi(x))$ contém x, segue que $f(\pi(x)) = P(x)$ para cada $x \in X$.

Como $f \circ \pi = P$ é contínua, segue que f é contínua. E como $f^{-1} \circ P = \pi$ é contínua, segue que f^{-1} é contínua.

11.10. Definição. Seja X um espaço topológico, e seja \sim uma relação de equivalência em X. A decomposição $\mathcal D$ formada pelas classes de equivalência definidas pela relação \sim é denotada por X/\sim e é chamada de *espaço de identificação* de X módulo \sim .

11.11. Exemplos.

(a) Já vimos que o círculo unitário S^1 é um quociente do intervalo $[0,2\pi].$ Aqui

$$\mathcal{D} = \{ \{x\} : 0 < x < 2\pi \} \cup \{ \{0, 2\pi \} \}.$$

Para $x, y \in [0, 2\pi]$, tem-se que $x \sim y$ se x - y é um múltiplo inteiro de 2π .

(b) Seja $X=[0,2\pi]\times[0,2\pi]$. Dados $(x_1,y_1),(x_2,y_2)\in X$, definamos $(x_1,y_1)\sim(x_2,y_2)$ se x_1-x_2 é um múltiplo inteiro de 2π e $y_1=y_2$. Então \sim é uma relação de equivalência em X e o espaço de identificação X/\sim é homeomorfo ao cilindro $S^1\times[0,2\pi]$. A aplicação quociente vem dada por

$$\pi: (x,y) \in [0,2\pi] \times [0,2\pi] \to ((\cos x, \sin x), y) \in S^1 \times [0,2\pi].$$

(c) Seja $X=[0,2\pi]\times[0,2\pi]$. Dados $(x_1,y_1),(x_2,y_2)\in X$ definamos $(x_1,y_1)\sim(x_2,y_2)$ se x_1-x_2 é um múltiplo inteiro de 2π e $y_1=y_2$ ou se $x_1=x_2$ e y_1-y_2 é um múltiplo inteiro de 2π . Neste caso X/\sim é homeomorfo ao toro $S^1\times S^1$. A aplicação quociente vem dada por

$$\pi: (x,y) \in [0,2\pi] \times [0,2\pi] \to ((\cos x, \sin x), (\cos y, \sin y)) \in S^1 \times S^1.$$

(d) Seja $X=[0,2\pi]\times[0,2\pi]$. Dados $(x_1,y_1),(x_2,y_2)\in X$ definamos $(x_1,y_1)\sim(x_2,y_2)$ se x_1-x_2 é um múltiplo inteiro de 2π e $y_1+y_2=2\pi$. Neste caso X/\sim é homeomorfo à fita de Möbius.

Exercícios

- **11.A.** Sejam X e Y espaços topológicos, e seja $\pi: X \to Y$ uma aplicação sobrejetiva. Prove que é condição necessária e suficiente para que π seja uma aplicação quociente que B seja fechado em Y se e só se $\pi^{-1}(B)$ é fechado em X.
- **11.B.** Sejam X e Y espaços topológicos, e seja $\pi: X \to Y$ uma aplicação contínua. Se existir uma aplicação contínua $\sigma: Y \to X$ tal que $\pi \circ \sigma(y) = y$ para todo $y \in Y$, prove que π é uma aplicação quociente.
- **11.C.** Sejam X e Y espaços topológicos, e seja $\pi:X\to Y$ uma aplicação quociente.
- (a) Prove que π é aberta se e só se $\pi^{-1}(\pi(U))$ é aberto em X para cada aberto U de X.
- (b) Prove que π é fechada se e só se $\pi^{-1}(\pi(A))$ é fechado em X para cada fechado A de X.
- **11.D.** Seja X = [0, 1], com a topologia induzida por **R**. Seja $Y = \{0, 1\}$, e seja $\pi : X \to Y$ a função característica do intervalo [1/2, 1].
- (a) Prove que a topologia quociente τ_{π} em Y vem dada por $\tau_{\pi} = \{\emptyset, Y, \{0\}\}$. Y é o espaço de Sierpinski, que encontramos no Exercício 3.B.
 - (b) Prove que π não é aberta nem fechada.

12. Convergência de seqüências

- **12.1.** Definição. Seja X um espaço métrico. Diremos que uma seqüência $(x_n)_{n=1}^{\infty} \subset X$ converge a um ponto $x \in X$ se dado $\epsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $d(x_n, x) < \epsilon$ para todo $n \ge n_0$. Neste caso escreveremos $x_n \to x$.
- **12.2.** Proposição. Seja X um espaço métrico, e sejam $A \subset X$ e $x \in X$. Tem-se que $x \in \overline{A}$ se e só se existe uma seqüência $(x_n)_{n=1}^{\infty} \subset A$ que converge a x.

Demonstração. Pela Proposição 5.8 $x \in \overline{A}$ se e só se $A \cap B(x; \epsilon) \neq \emptyset$ para cada $\epsilon > 0$.

- (\Rightarrow) Se $x\in\overline{A},$ então existe $x_n\in A\cap B(x;1/n)$ para cada $n\in {\bf N}.$ Segue que $x_n\to x.$
- (\Leftarrow) Suponhamos que exista $(x_n)_{n=1}^{\infty} \subset A$ tal que $x_n \to x$. Então, dado $\epsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $d(x_n, x) < \epsilon$ para todo $n \ge n_0$. Segue que $A \cap B(x; \epsilon) \ne \emptyset$ para todo $\epsilon > 0$. Logo $x \in \overline{A}$.
- **12.3.** Corolário. Seja X um espaço métrico, e seja $A \subset X$. Então A é fechado se e só se, cada vez que $(x_n)_{n=1}^{\infty} \subset A$ e $x_n \to x$, então $x \in A$.
- **12.4.** Proposição. Seja $f: X \to Y$, sendo X e Y espaços métricos. Então f é contínua num ponto $a \in X$ se e só se, cada vez que $x_n \to a$ em X, então $f(x_n) \to f(a)$ em Y.

Demonstração. (\Rightarrow) Se f é contínua em a, então, dado $\epsilon > 0$, existe $\delta > 0$ tal que $f(B(a;\delta)) \subset B(f(a);\epsilon)$. Se $x_n \to a$, existe $n_0 \in \mathbf{N}$ tal que $d(x_n,a) < \delta$ para todo $n \geq n_0$. Segue que $d(f(x_n), f(a)) < \epsilon$ para todo $n \geq n_0$. Logo $f(x_n) \to f(a)$.

- (\Leftarrow) Se f não é contínua em a, então existe $\epsilon>0$ tal que para cada $\delta>0$ tem-se que $f(B(a;\delta))\not\subset B(f(a);\epsilon)$. Em particular para cada $n\in \mathbf{N}$ existe $x_n\in B(a;1/n)$ tal que $f(x_n)\notin B(f(a);\epsilon)$. Segue que $x_n\to a$ em X, mas $f(x_n)\not\to f(a)$ em Y.
- **12.5.** Definição. Seja X um espaço topológico. Diremos que uma seqüência $(x_n)_{n=1}^{\infty} \subset X$ converge a um ponto $x \in X$ se dado $U \in \mathcal{U}_x$ existe $n_0 \in \mathbb{N}$ tal que $x_n \in U$ para todo $n \geq n_0$. Neste caso escreveremos $x_n \to x$.

Na definição anterior podemos trocar o sistema de vizinhanças \mathcal{U}_x por qualquer base de vizinhanças \mathcal{B}_x .

12.6. Definição. Seja $(x_n)_{n=1}^{\infty}$ uma seqüência em X. Chamaremos de subseqüência de $(x_n)_{n=1}^{\infty}$ qualquer seqüência da forma $(x_{n_k})_{k=1}^{\infty}$, sendo $(n_k)_{k=1}^{\infty}$ uma seqüência estritamente crescente em \mathbf{N} .

Exercícios

X e Y denotam espaços topológicos.

12.A. Se $(x_n)_{n=1}^{\infty}$ converge a x, prove que qualquer subseqüência $(x_{n_k})_{k=1}^{\infty}$

também converge a x.

12.B. Seja $A \subset X$.

- (a) Prove que, se existir uma seqüência $(x_n)_{n=1}^{\infty} \subset A$ tal que $x_n \to x$, então $x \in \overline{A}$.
- (b) Suponhamos que X verifique o primeiro axioma de enumerabilidade. Prove que, se $x \in \overline{A}$, então existe uma seqüência $(x_n)_{n=1}^{\infty} \subset A$ tal que $x_n \to x$.
 - **12.C.** Seja $f: X \to Y$, e seja $a \in X$.
- (a) Prove que, se f é contínua em a, então, cada vez que $x_n \to a$ em X, tem-se que $f(x_n) \to f(a)$ em Y.
- (b) Suponhamos que X verifique o primeiro axioma de enumerabilidade. Prove que, se cada vez que $x_n \to a$ em X tem-se que $f(x_n) \to f(a)$ em Y, então f é contínua em a.
- **12.D.** Seja $X=\prod_{i\in I}X_i$ o produto cartesiano de uma família de espaços topológicos. Prove que $x_n\to x$ em X se e só se $\pi_i(x_n)\to\pi_i(x)$ em X_i para cada $i\in I$.
- **12.E.** Seja $X = \mathbf{R}^{\mathbf{R}}$. Prove que $f_n \to f$ em X se e só se $f_n(t) \to f(t)$ em \mathbf{R} para cada $t \in \mathbf{R}$.
 - 12.F. Seja $X = \mathbf{R}^{\mathbf{R}}$ e seja $M = \{\chi_A : A \subset \mathbf{R}, A \text{ finito}\} \subset X$.
 - (a) Prove que $\chi_{\mathbf{R}} \in \overline{M}$.
- (b) Prove que não existe nenhuma seqüência $(\chi_{A_n})_{n=1}^{\infty} \subset M$ tal que $\chi_{A_n} \to \chi_{\mathbf{R}}$.
 - (c) Prove que X não satisfaz o primeiro axioma de enumerabilidade.
- **12.G.** Seja $(x_n)_{n=1}^{\infty}$ uma seqüência em X e seja $x \in X$. Se cada subseqüência de $(x_n)_{n=1}^{\infty}$ admite uma subseqüência que converge a x, prove que $(x_n)_{n=1}^{\infty}$ converge a x.

13. Convergência de redes

- 13.1. Definição. Um conjunto Λ , junto com uma relação \leq , é chamado de *conjunto dirigido* se verifica as seguintes propriedades:
 - (a) $\lambda \leq \lambda$ para todo $\lambda \in \Lambda$.
 - (b) Se $\lambda \leq \mu$ e $\mu \leq \nu$, então $\lambda \leq \nu$.
 - (c) Dados $\lambda, \mu \in \Lambda$, existe $\nu \in \Lambda$ tal que $\nu \geq \lambda$ e $\nu \geq \mu$.

13.2. Exemplos.

- (a) N, com a relação de ordem usual, é um conjunto dirigido.
- (b) Seja X um espaço topológico, e seja $x \in X$. Se definimos $U \leq V$ quando $U \supset V$, então o sistema de vizinhanças \mathcal{U}_x é um conjunto dirigido. De maneira análoga, qualquer base de vizinhanças \mathcal{B}_x é um conjunto dirigido.

13.3. Definição. Seja X um espaço topológico.

- (a) Chamaremos de <u>rede</u> em X qualquer função da forma $x : \Lambda \to X$, sendo Λ um conjunto dirigido. Escreveremos x_{λ} em lugar de $x(\lambda)$, e falaremos da rede $(x_{\lambda})_{\lambda \in \Lambda}$.
- (b) Diremos que a rede $(x_{\lambda})_{{\lambda} \in {\Lambda}}$ converge a um ponto $x \in X$ se dada $U \in \mathcal{U}_x$, existe $\lambda_0 \in I$ tal que $x_{\lambda} \in U$ para todo $\lambda \geq \lambda_0$. Neste caso escreveremos $x_{\lambda} \to x$.

É claro que a definição em (b) não muda se trocamos o sistema de vizinhanças \mathcal{U}_x por qualquer base de vizinhanças \mathcal{B}_x .

13.4. Exemplos. Seja X um espaço topológico.

- (a) Qualquer seqüência em X é uma rede, e a convergência de redes generaliza a convergência de seqüências.
- (b) Seja $x \in X$. Se escolhemos $x_U \in U$ para cada $U \in \mathcal{U}_x$, então $(x_U)_{U \in \mathcal{U}_x}$ é uma rede em X que converge a x.
- (c) Seja $x \in X$, e seja \mathcal{B}_x uma base de vizinhanças de x. Se escolhemos $x_U \in U$ para cada $U \in \mathcal{B}_x$, então $(x_U)_{U \in \mathcal{B}_x}$ é uma rede em X que converge a x.

Notemos que, nos Exemplos 13.4(b) e 13.4(c) estamos usando a Proposição 9.3, ou seja o axioma da escolha.

O resultado seguinte generaliza a Proposição 12.2.

13.5. Proposição. Seja X um espaço topológico, e sejam $A \subset X$ e $x \in X$. Tem-se que $x \in \overline{A}$ se e só se existe uma rede $(x_{\lambda})_{\lambda \in \Lambda} \subset A$ que converge a x.

Demonstração. Pela Proposição 5.8, $x\in\overline{A}$ se e só se $U\cap A\neq\emptyset$ para cada $U\in\mathcal{U}_x.$

 (\Rightarrow) Se $x \in \overline{A}$, podemos escolher $x_U \in U \cap A$ para cada $U \in \mathcal{U}_x$. Então a rede $(x_U)_{U \in \mathcal{U}_x}$ está contida em A e converge a x.

 (\Leftarrow) Seja $(x_{\lambda})_{\lambda \in \Lambda}$ uma rede em A que converge a x. Dado $U \in \mathcal{U}_x$, existe $\lambda_0 \in \Lambda$ tal que $x_{\lambda} \in U$ para todo $\lambda \geq \lambda_0$. Em particular $x_{\lambda_0} \in U \cap A$. Segue que $x \in \overline{A}$.

O resultado seguinte generaliza a Proposição 12.4.

13.6. Proposição. Seja $f: X \to Y$, sendo X e Y espaços topológicos. Então f é contínua num ponto $x \in X$ se e só se, para cada rede $(x_{\lambda})_{\lambda \in \Lambda}$ que converge a x em X, a rede $(f(x_{\lambda}))_{\lambda \in \Lambda}$ converge a f(x) em Y.

Demonstração. Pela Proposição 8.2, f é contínua em x se e só se, dado $V \in \mathcal{U}_{f(x)}$, existe $U \in \mathcal{U}_x$ tal que $f(U) \subset V$.

- (\Rightarrow) Suponhamos que f seja contínua em x. Seja $(x_{\lambda})_{{\lambda} \in {\Lambda}}$ uma rede em X que converge a x. Então, dada $V \in \mathcal{U}_{f(x)}$, existe $U \in \mathcal{U}_x$ tal que $f(U) \subset V$. Seja $\lambda_0 \in {\Lambda}$ tal que $x_{\lambda} \in U$ para todo $\lambda \geq \lambda_0$. Então $f(x_{\lambda}) \in f(U) \subset V$ para todo $\lambda \geq \lambda_0$. Logo $f(x_{\lambda}) \to f(x)$.
- (\Leftarrow) Suponhamos que f não seja contínua em x. Então existe $V \in \mathcal{U}_{f(x)}$ tal que $f(U) \not\subset V$ para todo $U \in \mathcal{U}_x$. Se escolhemos $x_U \in U$ tal que $f(x_U) \notin V$ para cada $U \in \mathcal{U}_x$, então $x_U \to x$, mas $f(x_U) \not\to f(x)$.
- 13.7. Proposição. Seja $\{X_i : i \in I\}$ uma família não vazia de espaços topológicos não vazios, e seja $X = \prod_{i \in I} X_i$. Então uma rede $(x_\lambda)_{\lambda \in \Lambda}$ converge a x em X se e só se a rede $(\pi_i(x_\lambda))_{\lambda \in \Lambda}$ converge a $\pi_i(x)$ em X_i para cada $i \in I$.

Demonstração. (\Rightarrow) Se $x_{\lambda} \to x$ em X, então $\pi_i(x_{\lambda}) \to \pi_i(x)$ em X_i , para cada $i \in I$, pois cada π_i é contínua.

 (\Leftarrow) Suponhamos que $\pi_i(x_\lambda) \to \pi_i(x)$ para cada $i \in I$. Seja U uma vizinhança aberta básica de x em X, ou seja

$$x \in U = \bigcap_{j \in J} \pi_j^{-1}(U_j)$$
, com J finito, U_j aberto em X_j .

Para cada $j \in J$ $\pi_j(x) \in U_j$. Logo existe $\lambda_j \in \Lambda$ tal que

$$\pi_j(x_\lambda) \in U_j$$
 para todo $\lambda \ge \lambda_j$.

Como Λ é um conjunto dirigido existe $\lambda_0 \in \Lambda$ tal que $\lambda_0 \geq \lambda_j$ para cada $j \in J$. Segue que

$$x_{\lambda} \in \bigcap_{j \in J} \pi_j^{-1}(U_j)$$
 para todo $\lambda \ge \lambda_0$.

Logo $x_{\lambda} \to x$.

13.8. Definição. Seja X um espaço topológico, e seja $(x_{\lambda})_{{\lambda} \in {\Lambda}}$ uma rede em X. Diremos que $x \in X$ é um ponto de acumulação de $(x_{\lambda})_{{\lambda} \in {\Lambda}}$ se dados $U \in \mathcal{U}_x$ e ${\lambda}_0 \in {\Lambda}$, existe ${\lambda} \in {\Lambda}$, ${\lambda} \ge {\lambda}_0$, tal que $x_{\lambda} \in U$.

Se $(x_{\lambda})_{{\lambda} \in {\Lambda}}$ converge a x, é claro que x é ponto de acumulação de $(x_{\lambda})_{{\lambda} \in {\Lambda}}$.

- **13.9.** Definição. Seja X um espaço topológico, e seja $x:\Lambda\to X$ uma rede em X. Chamaremos de $\begin{subrede} subrede \end{subrede}$ de $x:\Lambda\to X$ qualquer rede da forma $x\circ\phi:M\to X$, sendo M um conjunto dirigido, e sendo $\phi:M\to\Lambda$ uma função com as seguintes propriedades:
 - (a) $\mu_1 \leq \mu_2$ implies $\phi(\mu_1) \leq \phi(\mu_2)$ ($\phi \in crescente$);
 - (b) dado $\lambda \in \Lambda$, existe $\mu \in M$ tal que $\phi(\mu) \geq \lambda$ (ϕ é cofinal).

A subrede $x \circ \phi : M \to X$ será denotada por $(x_{\phi(\mu)})_{\mu \in M}$.

13.10. Proposição. Seja X um espaço topológico, e seja $(x_{\lambda})_{\lambda \in \Lambda}$ uma rede em X. Então $x \in X$ é um ponto de acumulação de $(x_{\lambda})_{\lambda \in \Lambda}$ se e só se existe uma subrede de $(x_{\lambda})_{\lambda \in \Lambda}$ que converge a x.

Demonstração. (\Leftarrow) Seja $(x_{\phi(\mu)})_{\mu\in M}$ uma subrede de $(x_{\lambda})_{\lambda\in\Lambda}$ que converge a x. Sejam $U\in\mathcal{U}_x$ e $\lambda_0\in\Lambda$ dados. Por um lado existe $\mu_1\in M$ tal que $\phi(\mu_1)\geq\lambda_0$. Por outro lado existe $\mu_2\in M$ tal que $x_{\phi(\mu)}\in U$ para todo $\mu\geq\mu_2$. Seja $\mu\in M$ tal que $\mu\geq\mu_1$ e $\mu\geq\mu_2$. Segue que $\phi(\mu)\geq\phi(\mu_1)\geq\lambda_0$ e $x_{\phi(\mu)}\in U$. Logo x é ponto de acumulação de $(x_{\lambda})_{\lambda\in\Lambda}$.

 (\Rightarrow) Seja x um ponto de acumulação de $(x_{\lambda})_{{\lambda}\in\Lambda}$. Seja

$$M = \{(\lambda, U) \in \Lambda \times \mathcal{U}_x : x_\lambda \in U\}.$$

Definamos $(\lambda_1, U_1) \leq (\lambda_2, U_2)$ se $\lambda_1 \leq \lambda_2$ e $U_1 \supset U_2$. Claramente M é um conjunto dirigido. Definamos $\phi: M \to \Lambda$ por $\phi(\lambda, U) = \lambda$. Claramente $(x_{\phi(\mu)})_{\mu \in M}$ é uma subrede de $(x_{\lambda})_{\lambda \in \Lambda}$. Provaremos que $x_{\phi(\mu)} \to x$. Seja $U_0 \in \mathcal{U}_x$. Como x é ponto de acumulação de $(x_{\lambda})_{\lambda \in \Lambda}$, existe $\lambda_0 \in \Lambda$ tal que $x_{\lambda_0} \in U$. Então $(\lambda_0, U_0) \in M$ e é claro que $x_{\lambda} \in U_0$ para todo $(\lambda, U) \in M$ tal que $(\lambda, U) \geq (\lambda_0, U_0)$. Ou seja $x_{\phi(\mu)} \to x$.

13.11. Definição. Diremos que uma rede $(x_{\lambda})_{{\lambda} \in {\Lambda}}$ em X é uma rede universal ou ultrarede se dado $A \subset X$ existe ${\lambda}_0 \in {\Lambda}$ tal que

$$\{x_{\lambda}: \lambda \geq \lambda_0\} \subset A$$
 ou $\{x_{\lambda}: \lambda \geq \lambda_0\} \subset X \setminus A$.

 $\acute{\rm E}$ claro que toda rede constante é uma rede universal, chamada de $\it rede$ $\it universal\ trivial.$

13.12. Proposição. Seja X um espaço topológico, e seja $(x_{\lambda})_{\lambda \in \Lambda}$ uma rede universal em X. Se x é um ponto de acumulação de $(x_{\lambda})_{\lambda \in \Lambda}$, então $(x_{\lambda})_{\lambda \in \Lambda}$ converge a x.

Demonstração. Seja $U \in \mathcal{U}_x$. Como $(x_\lambda)_{\lambda \in \Lambda}$ é rede universal, existe $\lambda_0 \in \Lambda$ tal que

$$\{x_{\lambda}: \lambda \geq \lambda_0\} \subset U$$
 ou $\{x_{\lambda}: \lambda \geq \lambda_0\} \subset X \setminus U$.

Como x é ponto de acumulação de $(x_{\lambda})_{\lambda \in \Lambda}$, existe $\lambda \geq \lambda_0$ tal que $x_{\lambda} \in U$. Segue que

$$\{x_{\lambda}: \lambda \geq \lambda_0\} \subset U.$$

Logo $x_{\lambda} \to x$.

Exercícios

- **13.A.** Se uma rede $(x_{\lambda})_{{\lambda}\in\Lambda}$ converge a x, prove que qualquer subrede de $(x_{\lambda})_{{\lambda}\in\Lambda}$ também converge a x.
- **13.B.** Se x é ponto de acumulação de uma subrede de $(x_{\lambda})_{\lambda \in \Lambda}$, prove que x é ponto de acumulação de $(x_{\lambda})_{\lambda \in \Lambda}$.
- 13.C. Seja x um ponto de acumulação de uma rede $(x_{\lambda})_{\lambda \in \Lambda}$ no produto $X = \prod_{i \in I} X_i$. Prove que $\pi_i(x)$ é ponto de acumulação da rede $(\pi_i(x_{\lambda}))_{\lambda \in \Lambda}$ em X_i para cada $i \in I$.
- **13.D.** Seja $(x_{\lambda})_{\lambda \in \Lambda}$ uma rede em X, e seja $x \in X$. Se cada subrede de $(x_{\lambda})_{\lambda \in \Lambda}$ admite uma subrede que converge a x, prove que $(x_{\lambda})_{\lambda \in \Lambda}$ converge a x.
 - 13.E. Prove que cada subrede de uma rede universal é uma rede universal.
- **13.F.** Seja $f: X \to Y$. Se $(x_{\lambda})_{{\lambda} \in \Lambda}$ é uma rede universal em X, prove que $(f(x_{\lambda}))_{{\lambda} \in \Lambda}$ é uma rede universal em Y.

14. O lema de Zorn e o teorema de Zermelo

- 14.1. Definição. Chamaremos de relação de ordem parcial num conjunto X uma relação \leq em X com as seguintes propriedades:
 - (a) $x \le x$ para todo $x \in X$ (\le é reflexiva);
 - (b) se $x \le y$ e $y \le x$, então x = y (\le é antisimétrica);
 - (c) se $x \le y$ e $y \le z$, então $x \le z$ (\le é transitiva).

Neste caso diremos que X é um conjunto parcialmente ordenado.

Diremos que \leq é uma relação de ordem total se além de verificar (a), (b) e (c), também verifica

(d) dados $x, y \in X$, tem-se que $x \leq y$ ou $y \leq x$.

Neste caso diremos que X é um conjunto totalmente ordenado.

14.2. Exemplos.

- (a) Se X é um conjunto, então a relação de inclusão é uma relação de ordem parcial em $\mathcal{P}(X)$.
 - (b) A relação de ordem usual em \mathbf{R} é uma relação de ordem total.
- **14.3. Definição.** Seja X um conjunto parcialmente ordenado, e seja $A\subset X$.
- (a) Se existir $a_0 \in A$ tal que $a_0 \le a$ para todo $a \in A$, diremos que a_0 é o elemento mínimo de A. De maneira análoga definimos elemento máximo.
- (b) Se existir $a_0 \in A$ tal que $a = a_0$ sempre que $a \in A$ e $a \le a_0$, diremos que a_0 é um elemento minimal de A. De maneira análoga definimos elemento minimal.
- (c) Se existir $c \in X$ tal que $c \le a$ para todo $a \in A$, diremos que A é limitado inferiormente e que c é uma cota inferior de A. De maneira análoga definimos conjunto limitado superiormente e cota superior.
- (d) Diremos que A é uma cad'eia em X se A é totalmente ordenado sob a relação de ordem parcial induzida por X.
- (e) Diremos que A é bem ordenado se cada subconjunto não vazio de A possui um elemento mínimo.

14.4. Exemplos.

- (a) \mathbf{N} , com a ordem usual, é um conjunto bem ordenado.
- (b) \mathbf{R} , com a ordem usual, é um conjunto totalmente ordenado, que não é bem ordenado: o intervalo aberto (a,b) não possui elemento mínimo.
- 14.5. Lema de Zorn. Seja X um conjunto parcialmente ordenado não vazio tal que cada cadéia em X é limitada superiormente. Então X possui pelo menos um elemento maximal.
- 14.6. Teorema de Zermelo. Cada conjunto não vazio pode ser bem ordenado.

14.7. Teorema. As seguintes afirmações são equivalentes:

- (a) O axioma da escolha.
- (b) O lema de Zorn.
- (c) O teorema de Zermelo.

Demonstração. $(b) \Rightarrow (c)$: Seja X um conjunto não vazio. Seja \mathcal{F} a família de todos os pares (A, \leq_A) tais que $\emptyset \neq A \subset X$ e (A, \leq_A) é um conjunto bem ordenado. É fácil verificar que \mathcal{F} é um conjunto parcialmente ordenado não vazio se definimos $(A, \leq_A) \leq (B, \leq_B)$ quando:

- (i) $A \subset B$;
- (ii) se $x, y \in A$, então $x \leq_A y$ se e só se $x \leq_B y$;
- (iii) se $x \in A$ e $y \in B \setminus A$, então $x \leq_B y$.

Provaremos que cada cadéia em \mathcal{F} é limitada superiormente. De fato, seja $\{(A_i, \leq_{A_i}) : i \in I\}$ uma cadéia em \mathcal{F} , e seja $A = \bigcup_{i \in I} A_i$. Dados $x, y \in A$ definamos $x \leq_A y$ se $x, y \in A_i$ e $x \leq_{A_i} y$. É fácil verificar que a relação \leq_A está bem definida, e é uma relação de ordem parcial em A. Afirmamos que (A, \leq_A) é um conjunto bem ordenado. Seja $\emptyset \neq B \subset A$, e seja

$$J = \{ j \in I : B \cap A_j \neq \emptyset \}.$$

Notemos que \leq_A coincide com \leq_{A_i} em A_i para cada $i \in I$. Como (A_i, \leq_{A_i}) é bem ordenado para cada $i \in I$, segue que todos os conjuntos $B \cap A_j$, com $j \in J$, tem o mesmo elemento mínimo, que denotaremos por b_0 . Segue que b_0 é o elemento mínimo de B. Logo (A, \leq_A) é bem ordenado, ou seja pertence a \mathcal{F} . Agora é claro que (A, \leq_A) é uma cota superior da cadéia $\{(A_i, \leq_{A_i}) : i \in I\}$.

Pelo lema de Zorn, \mathcal{F} possui pelo menos um elemento maximal (A, \leq_A) . Segue da maximalidade de (A, \leq_A) que A = X. Logo (X, \leq_X) é um conjunto bem ordenado.

- $(c)\Rightarrow(a)$: Seja $\{X_i:i\in I\}$ uma família não vazia de conjuntos não vazios. Pelo teorema de Zermelo, existe uma boa ordenação para $\bigcup_{i\in I}X_i$. Para cada $i\in I$ seja f(i) o elemento mínimo de X_i . Então $f\in \prod_{i\in I}X_i$.
- $(a) \Rightarrow (b)$: Esta é a implicação mais difícil de provar. Seja X um conjunto parcialmente ordenado não vazio no qual cada cadéia é limitada superiormente.

Seja \mathcal{X} a família de todas as cadéias de X. Então \mathcal{X} é um conjunto parcialmente ordenado não vazio, por inclusão de conjuntos.

A estratégia da demonstração é trabalhar com a família de conjuntos \mathcal{X} , que é parcialmente ordenada por inclusão, em lugar de trabalhar com o conjunto parcialmente ordenado abstrato X. Depois de provar que \mathcal{X} possui um elemento maximal, será fácil provar que X possui um elemento maximal.

O primeiro passo é caracterizar os elementos maximais de \mathcal{X} . Para cada $C \in \mathcal{X}$ seja

 $\hat{C} = \{ x \in X : C \cup \{x\} \in \mathcal{X} \}.$

É claro que $C \subset \hat{C}$. Além disso, C é maximal em \mathcal{X} se e só se $C = \hat{C}$.

Pelo axioma da escolha, existe uma função $f: \mathcal{P}(X) \setminus \{\emptyset\} \to X$ tal que $f(A) \in A$ para cada $A \in \mathcal{P}(X) \setminus \{\emptyset\}$.

Seja $g: \mathcal{X} \to \mathcal{X}$ definida por:

$$g(C) = C$$
 se $C = \hat{C}$, $g(C) = C \cup \{f(\hat{C} \setminus C)\}$ se $C \neq \hat{C}$.

A função g está bem definida, pois se $C \neq \hat{C}$, então $f(\hat{C} \setminus C) \in \hat{C} \setminus C$, e portanto $C \cup \{f(\hat{C} \setminus C)\} \in \mathcal{X}$. Além disso, C é maximal em \mathcal{X} se e só se g(C) = C.

Diremos que uma família $\mathcal{T} \subset \mathcal{X}$ é uma torre se:

(i) $\emptyset \in \mathcal{T}$;

(ii) se $C \in \mathcal{T}$, então $g(C) \in \mathcal{T}$;

(iii) se \mathcal{C} é uma cadéia em \mathcal{T} , então $\bigcup \mathcal{C} \in \mathcal{T}$.

É claro que \mathcal{X} é uma torre. É claro que a interseção de uma família de torres é uma torre. Seja \mathcal{T}_0 a interseção de todas as torres de \mathcal{X} . Então \mathcal{T}_0 é a menor torre de \mathcal{X} . Nosso próximo objetivo é provar que \mathcal{T}_0 é uma cadéia em \mathcal{X} . Isto vai nos dar muito trabalho.

Diremos que $C \in \mathcal{T}_0$ é comparável se dado $D \in \mathcal{T}_0$, tem-se que $C \subset D$ ou $D \subset C$.

Para provar que \mathcal{T}_0 é cadéia, basta provar que cada $C \in \mathcal{T}_0$ é comparável.

Para provar que cada $C \in \mathcal{T}_0$ é comparável, basta provar que os conjuntos comparáveis em \mathcal{T}_0 formam uma torre.

É claro que \emptyset é comparável. É claro também que se \mathcal{C} é uma cadéia de conjuntos comparáveis, então $\bigcup \mathcal{C}$ é comparável. O mais difícil vai ser provar que se C é comparável, então g(C) é comparável também.

Fixemos $C \in \mathcal{T}_0$, C comparável.

Afirmamos que se $D \in \mathcal{T}_0$ e $D \subset C$, $D \neq C$, então $g(D) \subset C$. Como \mathcal{T}_0 é torre, $g(D) \in \mathcal{T}_0$. Como C é comparável, tem-se que $g(D) \subset C$ ou $C \subset g(D)$, $C \neq g(D)$. Mas $C \subset g(D)$, $C \neq g(D)$ é impossível, pois $D \subset C$, $D \neq C$ e g(D) = D ou $g(D) = D \cup \{x\}$.

Seja

$$\mathcal{U} = \{D \in \mathcal{T}_0 : D \subset C \text{ ou } g(C) \subset D\}.$$

Afirmamos que \mathcal{U} é uma torre. É claro que $\emptyset \in \mathcal{U}$. É claro também que se \mathcal{D} é uma cadéia em \mathcal{U} , então $\bigcup \mathcal{D} \in \mathcal{U}$. Falta provar que se $D \in \mathcal{U}$, então $g(D) \in \mathcal{U}$. Há tres possibilidades:

(i) $D \subset C$, $D \neq C$. Neste caso já sabemos que $g(D) \subset C$, e portanto $g(D) \in \mathcal{U}$.

(ii) D = C. Neste caso g(D) = g(C), e portanto $g(D) \in \mathcal{U}$.

(iii) $g(C) \subset D$. Neste caso $g(D) \supset D \supset g(C)$, e portanto $g(D) \in \mathcal{U}$.

Como \mathcal{U} é torre e $\mathcal{U} \subset \mathcal{T}_0$, segue que $\mathcal{U} = \mathcal{T}_0$. Logo, dado $D \in \mathcal{T}_0 = \mathcal{U}$, tem-se que $D \subset C \subset g(C)$ ou $g(C) \subset D$. Logo g(C) é comparável.

Temos provado assim que os conjuntos comparáveis de \mathcal{T}_0 formam uma torre. Segue que cada $C \in \mathcal{T}_0$ é comparável, e dai \mathcal{T}_0 é uma cadéia em \mathcal{X} .

Como \mathcal{T}_0 é torre, temos que $C_0 := \bigcup \mathcal{T}_0 \in \mathcal{T}_0$. Como \mathcal{T}_0 é torre, temos que $g(C_0) \in \mathcal{T}_0$, e portanto $g(C_0) = C_0$. Logo C_0 é maximal em \mathcal{X} .

Por hipótese existe $m \in X$ tal que $c \le m$ para todo $c \in C_0$. Como C_0 é uma cadéia maximal, é claro que $m \in C_0$.

Afirmamos que m é um elemento maximal em X. De fato seja $n \in X$, com $m \le n$. Como C_0 é uma cadéia maximal, segue que $n \in C_0$. Logo $n \le m$, e portanto n = m. Isto completa a demonstração.

Exercícios.

- **14.A.** Seja $X=\{n\in \mathbf{N}:n\geq 2\}.$ Dados $m,n\in X,$ definamos $m\leq n$ se m divide n.
 - (a) Prove que \leq é uma relação de ordem parcial em X.
- (b) Prove que, dada uma cadéia $C \subset X$ e um elemento $n \in C$, existe apenas um número finito de elementos $n_1, ..., n_k \in C$ que dividem n.
 - (c) Prove que cada cadéia $C \subset X$ é limitada inferiormente.
 - (d) Identifique os elementos minimais de X.
- **14.B.** Seja (X, \leq) um conjunto totalmente ordenado com pelo menos dois elementos. Dados $x, y \in X$, escreveremos x < y se $x \leq y$ e $x \neq y$.
- (a) Prove que os conjuntos $\{x \in X : a < x\}$, com $a \in X$, junto com os conjuntos $\{x \in X : x < b\}$, com $b \in X$, formam uma sub-base para uma topologia em X, chamada de topologia da ordem.
- (b) Prove que a topologia usual em ${\bf R}$ coincide com a topologia da ordem usual em ${\bf R}$.
- **14.C.** Seja E um espaço vetorial, $E \neq \{0\}$. Usando o lema de Zorn prove que cada subconjunto linearmente independente de E está contido em alguma base de E.
- **14.D.** Sejam E e F espaços vetoriais sobre o mesmo corpo, seja E_0 um subespaço vetorial de E, e seja $T_0: E_0 \to F$ uma aplicação linear. Use o lema de Zorn para provar a existência de uma aplicação linear $T: E \to F$ tal que $Tx = T_0 x$ para todo $x \in E_0$.
- **14.E.** Seja A um anel comutativo com elemento unidade. Um conjunto $I \subset A$ é chamado de *ideal* se verifica as seguintes condições:
 - (a) $x y \in I$ para todo $x, y \in I$;
 - (b) $xy \in I$ para todo $x \in I$, $y \in A$.

Um ideal $I \neq A$ é chamado de *ideal próprio*. Um ideal próprio que não está contido em nenhum outro ideal próprio é chamado de *ideal maximal*. Use o lema de Zorn para provar que cada ideal próprio de A está contido em algum ideal maximal.

15. Convergência de filtros

- **15.1.** Definição. Seja X um conjunto não vazio. Diremos que uma família não vazia $\mathcal{F} \subset \mathcal{P}(X)$ é um *filtro* em X se verifica as seguintes condições:
 - (a) $A \neq \emptyset$ para todo $A \in \mathcal{F}$;
 - (b) se $A, B \in \mathcal{F}$, então $A \cap B \in \mathcal{F}$;
 - (c) se $A \in \mathcal{F}$ e $A \subset B \subset X$, então $B \in \mathcal{F}$.
- **15.2.** Definição. Seja X um conjunto não vazio. Diremos que uma família não vazia $\mathcal{B} \subset \mathcal{P}(X)$ é uma base de filtro em X se a família

$$\mathcal{F} = \{ A \subset X : A \supset B \text{ para algum } B \in \mathcal{B} \}$$

é um filtro em X. Neste caso diremos que \mathcal{F} é o filtro gerado por \mathcal{B} .

É claro que todo filtro em X é uma base de filtro em X.

- **15.3.** Proposição. Seja X um conjunto não vazio. Uma família não vazia $\mathcal{B} \subset \mathcal{P}(X)$ é uma base de filtro em X se e só se se verificam as seguintes condições:
 - (a) $A \neq \emptyset$ para todo $A \in \mathcal{B}$;
 - (b) dados $A, B \in \mathcal{B}$, existe $C \in \mathcal{B}$ tal que $C \subset A \cap B$.

Demonstração. (⇒) Suponhamos que a família

$$\mathcal{F} = \{A \subset X : A \supset B \ \text{ para algum } \ B \in \mathcal{B}\}$$

seja um filtro em X. É claro que $\mathcal{B} \subset \mathcal{F}$, e portanto (a) vale. Para provar (b) sejam $A, B \in \mathcal{B} \subset \mathcal{F}$. Então $A \cap B \in \mathcal{F}$, e dai $A \cap B \supset C$ para algum $C \in \mathcal{B}$.

(⇐) Supondo (a) e (b) queremos provar que a família

$$\mathcal{F} = \{A \subset X : A \supset B \ \text{ para algum } \ B \in \mathcal{B}\}$$

 $\acute{\text{e}}$ um filtro em X.

Seja $A \in \mathcal{F}$. Então $A \supset B$ para algum $B \in \mathcal{B}$. Como $B \neq \emptyset$, segue que $A \neq \emptyset$.

Sejam $A_1, A_2 \in \mathcal{F}$. Então $A_1 \supset B_1$ e $A_2 \supset B_2$, com $B_1, B_2 \in \mathcal{B}$. Existe $B_3 \in \mathcal{B}$ tal que $B_3 \subset B_1 \cap B_2$. Segue que $A_1 \cap A_2 \supset B_1 \cap B_2 \supset B_3$, e portanto $A_1 \cap A_2 \in \mathcal{F}$.

Finalmente sejam $A_1 \in \mathcal{F}$ e $A_1 \subset A_2 \subset X$. $A_1 \supset B_1$ para algum $B_1 \in \mathcal{B}$. Segue que $A_2 \supset A_1 \supset B_1$, e portanto $A_2 \in \mathcal{F}$.

15.4. Exemplos.

- (a) Seja X um conjunto, seja $\emptyset \neq B \subset X$, e seja $\mathcal{B} = \{B\}$. É claro que \mathcal{B} é uma base de filtro em X. O filtro gerado por \mathcal{B} é a família $\mathcal{F} = \{A : B \subset A \subset X\}$.
- (b) Seja X um espaço topológico, e seja $x \in X$. Então o sistema de vizinhanças \mathcal{U}_x é um filtro em X. Qualquer base de vizinhanças \mathcal{B}_x é uma base de filtro em X que gera o filtro \mathcal{U}_x .

- (c) A família $\mathcal{B} = \{(a, \infty) : a \in \mathbf{R}\}$ é uma base de filtro em \mathbf{R} .
- 15.5. Definição. Uma base de filtro \mathcal{B} em X é dita fixa se $\bigcap \mathcal{B} \neq \emptyset$, e livre se $\bigcap \mathcal{B} = \emptyset$.

Seja \mathcal{F} o filtro gerado por \mathcal{B} . É claro que \mathcal{F} é fixo se e só se \mathcal{B} é fixa.

Os filtros ou bases de filtro dos Exemplos 15.4 (a) e 15.4 (b) são fixos. A base de filtro do Exemplo 15.4 (c) é livre.

15.6. Definição. Seja X um espaço topológico, e seja \mathcal{B} uma base de filtro em X. Diremos que \mathcal{B} converge a um ponto $x \in X$, e escreveremos $\mathcal{B} \to x$, se dado $U \in \mathcal{U}_x$, existe $B \in \mathcal{B}$ tal que $B \subset U$.

É claro que um filtro \mathcal{F} converge a x se e só se $\mathcal{U}_x \subset \mathcal{F}$. É claro também que uma base de filtro \mathcal{B} converge a x se e só se o filtro gerado por \mathcal{B} converge a x.

Trabalhar com filtros ou com bases de filtro é equivalente. Em geral, escolheremos um ou outro, de maneira que os enunciados fiquem mais simples.

- **15.7.** Exemplos. Seja X um espaço topológico, e seja $x \in X$. Então o sistema de vizinhanças \mathcal{U}_x converge a x. Qualquer base de vizinhanças \mathcal{B}_x converge a x.
- **15.8.** Proposição. Seja X um espaço topológico, e sejam $E \subset X$ e $x \in X$. Tem-se que $x \in \overline{E}$ se e só se existe um filtro \mathcal{F} em X tal que $E \in \mathcal{F}$ e $\mathcal{F} \to x$.

Demonstraç ão. Sabemos que $x \in \overline{E}$ se e só se $U \cap E \neq \emptyset$ para todo $U \in \mathcal{U}_x$.

- (\Leftarrow) Seja $\mathcal F$ um filtro em X tal que $E \in \mathcal F$ e $\mathcal F \to x$. Como $\mathcal F \to x$, tem-se que $\mathcal U_x \subset \mathcal F$. Segue que $U \cap E \in \mathcal F$, e portanto $U \cap E \neq \emptyset$ para todo $U \in \mathcal U_x$. Logo $x \in \overline{E}$.
 - (\Rightarrow) Suponhamos que $x \in \overline{E}$. Seja

$$\mathcal{B} = \{ U \cap E : U \in \mathcal{U}_x \}.$$

É claro que \mathcal{B} é uma base de filtro em X, e que $\mathcal{B} \to x$. Seja \mathcal{F} o filtro gerado por \mathcal{B} . É claro que $E \in \mathcal{F}$ e $\mathcal{F} \to x$.

15.9. Proposição. Seja $\mathcal B$ uma base de filtro em X, e seja $f:X\to Y$ uma função qualquer. Então a família

$$f(\mathcal{B}) = \{ f(B) : B \in \mathcal{B} \}$$

é uma base de filtro em Y.

Demonstração: exercício.

15.10. Proposição. Sejam X e Y espaços topológicos, e seja $f: X \to Y$. Então f é contínua num ponto $x \in X$ se e só se $f(\mathcal{B}) \to f(x)$ para cada base de filtro \mathcal{B} em X que converge a x.

Demonstração. Sabemos que f é contínua em x se e só se, dado $V \in \mathcal{U}_{f(x)}$, existe $U \in \mathcal{U}_x$ tal que $f(U) \subset V$.

- (\Rightarrow) Suponhamos que f seja contínua em x, e seja \mathcal{B} uma base de filtro em X que converge a x. Dada $V \in \mathcal{U}_{f(x)}$, existe $U \in \mathcal{U}_x$ tal que $f(U) \subset V$. Como $\mathcal{B} \to x$, existe $B \in \mathcal{B}$ tal que $B \subset U$. Segue que $f(B) \subset f(U) \subset V$, e portanto $f(\mathcal{B}) \to f(x)$.
- (\Leftarrow) Suponhamos que $f(\mathcal{B}) \to f(x)$ para cada base de filtro \mathcal{B} que converge a x. Como em particular $\mathcal{U}_x \to x$, tem-se que $f(\mathcal{U}_x) \to f(x)$. Logo, dada $V \in \mathcal{U}_{f(x)}$, existe $U \in \mathcal{U}_x$ tal que $f(U) \subset V$. Logo f é contínua em x.
- **15.11.** Proposição. Seja $\{X_i : i \in I\}$ uma família não vazia de espaços topológicos não vazios, seja $X = \prod_{i \in I} X_i$, e seja \mathcal{B} uma base de filtro em X. Então \mathcal{B} converge a x em X se e só se $\pi_i(\mathcal{B})$ converge a $\pi_i(x)$ em X_i para cada $i \in I$.

Demonstração. (\Rightarrow) Se $\mathcal{B} \to x$ em X, então $\pi_i(\mathcal{B}) \to \pi_i(x)$ em X_i , para cada $i \in I$, pois cada π_i é contínua.

 (\Leftarrow) Suponhamos que $\pi_i(\mathcal{B}) \to \pi_i(x)$ em X_i para cada $i \in I$. Seja U uma vizinhança aberta básica de x em X, ou seja

$$x \in U = \bigcap_{j \in J} \pi_j^{-1}(U_j)$$
, com J finito, U_j aberto em X_j .

Como $\pi_j(\mathcal{B}) \to \pi_j(x)$, existe $B_j \in \mathcal{B}$ tal que $\pi_j(B_j) \subset U_j$, para cada $j \in J$. Seja $B \in \mathcal{B}$ tal que $B \subset \bigcap_{j \in J} B_j$. Então

$$B \subset \bigcap_{j \in J} B_j \subset \bigcap_{j \in J} \pi_j^{-1}(U_j) = U.$$

Logo $\mathcal{B} \to x$.

15.12. Definição. Seja X um espaço topológico, e seja \mathcal{B} uma base de filtro em X. Diremos que $x \in X$ é um ponto de acumulação de \mathcal{B} se $U \cap B \neq \emptyset$ para todo $U \in \mathcal{U}_x$ e $B \in \mathcal{B}$, ou seja se $x \in \bigcap \{\overline{B} : B \in \mathcal{B}\}$.

Se \mathcal{B} converge a x, é claro que x é ponto de acumulação de \mathcal{B} . É claro que x é ponto de acumulação de \mathcal{B} se e só se x é ponto de acumulação do filtro gerado por \mathcal{B} .

15.13. Proposição. Seja X um espaço topológico, e seja \mathcal{F} um filtro em X. Então x é um ponto de acumulação de \mathcal{F} se e só se existe um filtro $\mathcal{G} \supset \mathcal{F}$ que converge a x.

Demonstração. (\Leftarrow) Seja \mathcal{G} um filtro em X tal que $\mathcal{G} \supset \mathcal{F}$ e $\mathcal{G} \to x$. Então $\mathcal{U}_x \subset \mathcal{G}$, e dai segue que $U \cap A \neq \emptyset$ para todo $U \in \mathcal{U}_x$ e $A \in \mathcal{F}$. Logo x é ponto de acumulação de \mathcal{F} .

 (\Rightarrow) Suponhamos que x seja ponto de acumulação de \mathcal{F} . Seja

$$\mathcal{B} = \{ U \cap A : U \in \mathcal{U}_x, A \in \mathcal{F} \}.$$

É claro que \mathcal{B} é uma base de filtro em X que converge a x. Seja \mathcal{G} o filtro gerado por \mathcal{B} . É claro que $\mathcal{G} \supset \mathcal{F}$ e $\mathcal{G} \to x$.

- **15.14. Definição.** Diremos que \mathcal{F} é um *ultrafiltro* em X se \mathcal{F} é um filtro maximal em X, ou seja, cada vez que existir um filtro \mathcal{G} em X tal que $\mathcal{F} \subset \mathcal{G}$, tem-se que $\mathcal{F} = \mathcal{G}$.
- **15.15.** Proposição. Um filtro \mathcal{F} em X é um ultrafiltro se e só se, dado $E \subset X$, tem-se que $E \in \mathcal{F}$ ou $X \setminus E \in \mathcal{F}$.

Demonstração. (\Leftarrow) Suponhamos que, dado $E \subset X$, tem-se que $E \in \mathcal{F}$ ou $X \setminus E \in \mathcal{F}$. Suponhamos que exista um filtro \mathcal{G} em X tal que $\mathcal{F} \subset \mathcal{G}$ e $\mathcal{F} \neq \mathcal{G}$. Seja $E \in \mathcal{G} \setminus \mathcal{F}$. Segue que $X \setminus E \in \mathcal{F} \subset \mathcal{G}$. Logo $\emptyset = E \cap (X \setminus E) \in \mathcal{G}$, absurdo.

(⇒) Seja \mathcal{F} um ultrafiltro em X, e seja $E \subset X$. Dado $A \in \mathcal{F}$, é claro que $A \cap E \neq \emptyset$ ou $A \cap (X \setminus E) \neq \emptyset$. Consideremos dois casos.

Primeiro suponhamos que $A \cap E \neq \emptyset$ para todo $A \in \mathcal{F}$. Seja

$$\mathcal{B} = \{ A \cap E : A \in \mathcal{F} \}.$$

É claro que \mathcal{B} é uma base de filtro em X. Seja \mathcal{G} o filtro gerado por \mathcal{B} . É claro que $\mathcal{F} \subset \mathcal{G}$ e $E \in \mathcal{G}$. Como \mathcal{F} é ultrafiltro, tem-se que $\mathcal{F} = \mathcal{G}$. Segue que $E \in \mathcal{F}$.

A seguir suponhamos que $A_0 \cap E = \emptyset$ para algum $A_0 \in \mathcal{F}$. Então $A_0 \subset X \setminus E$, e segue que $X \setminus E \in \mathcal{F}$.

15.16. Proposição. Seja X um espaço topológico, e seja \mathcal{F} um ultrafiltro em X. Se x é um ponto de acumulação de \mathcal{F} , então \mathcal{F} converge a x.

Demonstração. Suponhamos que x seja ponto de acumulação de \mathcal{F} , ou seja $U \cap A \neq \emptyset$ para todo $U \in \mathcal{U}_x$ e $A \in \mathcal{F}$.

Afirmamos que $\mathcal{U}_x \subset \mathcal{F}$. De fato, suponhamos que exista $U \in \mathcal{U}_x$, com $U \notin \mathcal{F}$. Teriamos que $X \setminus U \in \mathcal{F}$, e portanto $U \cap (X \setminus U) \neq \emptyset$, absurdo. Logo $\mathcal{U}_x \subset \mathcal{F}$, e portanto $\mathcal{F} \to x$.

15.17. Proposição. Cada filtro em X está contido em algum ultrafiltro.

Demonstração. Seja \mathcal{P} a família de todos os filtros \mathcal{G} em X tais que $\mathcal{G} \supset \mathcal{F}$. \mathcal{P} é um conjunto parcialmente ordenado por inclusão de conjuntos. Seja $\{\mathcal{G}_i: i \in I\}$ uma cadéia em \mathcal{P} . É claro que $\bigcup_{i \in I} \mathcal{G}_i$ é um filtro em X, e é portanto uma cota superior para a cadéia $\{\mathcal{G}_i: i \in I\}$. Pelo lema de Zorn \mathcal{P} possui pelo menos um elemento maximal \mathcal{G} . Segue que \mathcal{G} é um ultrafiltro em X que contém \mathcal{F} .

Exercícios

15.A. Seja $\mathcal B$ uma base de filtro em Xe seja $f:X\to Y$ uma função qualquer. Prove que a família

$$f(\mathcal{B}) = \{ f(B) : B \in \mathcal{B} \}$$

 $\acute{\text{e}}$ uma base de filtro em Y.

15.B. Seja \mathcal{A} uma base de filtro em X e seja \mathcal{B} uma base de filtro em Y.

(a) Prove que a família

$$\mathcal{C} = \{ A \times B : A \in \mathcal{A}, B \in \mathcal{B} \}$$

é uma base de filtro em $X \times Y$.

(b) Prove que $\mathcal{C} \to (x, y)$ se e só se $\mathcal{A} \to x$ e $\mathcal{B} \to y$.

15.C. Seja

$$\mathcal{B} = \{(a, \infty) : a \in \mathbf{R}\}.$$

Pelo Exercício 6.D \mathcal{B} é base para uma topologia τ em \mathbf{R} . Pelo Exemplo 15.4 \mathcal{B} é uma base de filtro em \mathbf{R} . Prove que $\mathcal{B} \to x$ para cada $x \in \mathbf{R}$.

15.D. Seja X um conjunto infinito, com a topologia cofinita do Exercício 3.C. Seja

$$\mathcal{G} = \{A \subset X : X \setminus A \text{ \'e finito}\}.$$

- (a) Prove que \mathcal{G} é um filtro em X.
- (b) Prove que $\mathcal{G} \to x$ para cada $x \in X$.
- **15.E.** Seja $(x_{\lambda})_{{\lambda} \in \Lambda}$ uma rede em X, e seja $\mathcal{B} = \{B_{\lambda} : {\lambda} \in {\Lambda}\}$, onde $B_{\lambda} = \{x_{\mu} : {\mu} \geq {\lambda}\}$ para cada ${\lambda} \in {\Lambda}$.
- (a) Prove que \mathcal{B} é uma base de filtro em X, que chamaremos de base de filtro gerada por $(x_{\lambda})_{{\lambda} \in \Lambda}$.
 - (b) Prove que $x_{\lambda} \to x$ se e só se $\mathcal{B} \to x$.
- (c) Prove que x é ponto de acumulação de $(x_{\lambda})_{{\lambda} \in \Lambda}$ se e só se x é ponto de acumulação de \mathcal{B} .
- (d) Prove que $(x_{\lambda})_{{\lambda} \in \Lambda}$ é uma rede universal se e só se o filtro gerado por \mathcal{B} é um ultrafiltro.
 - 15.F. Seja ${\mathcal B}$ uma base de filtro em X,e seja

$$\Lambda = \{(a, A) : a \in A \in \mathcal{B}\}.$$

- (a) Prove que Λ é um conjunto dirigido se definimos $(a, A) \leq (b, B)$ quando $A \supset B$. A rede $x : \Lambda \to X$ definida por x(a, A) = a é chamada de rede gerada por \mathcal{B} , e é denotada por $(x_{\lambda})_{\lambda \in \Lambda}$.
 - (b) Prove que $\mathcal{B} \to x$ se e só se $x_{\lambda} \to x$.
- (c) Prove que x é ponto de acumulação de \mathcal{B} se e só se x é ponto de acumulação de $(x_{\lambda})_{\lambda \in \Lambda}$.
- (d) Prove que o filtro gerado por \mathcal{B} é um ultrafiltro se e só se $(x_{\lambda})_{\lambda \in \Lambda}$ é uma rede universal.

16. Espaços de Hausdorff

16.1. Definição. Diremos que um espaço topológico X é um espaço T_0 se dados dois pontos distintos em X, existe uma vizinhança de um deles que não contém o outro.

16.2. Exemplos.

- (a) Cada espaço topológico discreto é um espaço T_0 .
- (b) Seja X um espaço topológico trivial, com pelo menos dois pontos. Então X não é um espaço T_0 .
- **16.3.** Proposição. Um espaço topológico X é um espaço T_0 se e só se, dados $a, b \in X$, com $a \neq b$, tem-se que $\overline{\{a\}} \neq \overline{\{b\}}$.

Demonstração. (\Rightarrow) Seja X um espaço T_0 , e sejam $a, b \in X$, $a \neq b$. Se existir $U \in \mathcal{U}_a$ tal que $b \notin U$, então $a \in \overline{\{a\}}$, mas $a \notin \overline{\{b\}}$. Se existir $V \in \mathcal{U}_b$ tal que $a \notin V$, então $b \in \overline{\{b\}}$, mas $b \notin \overline{\{a\}}$. Em ambos casos $\overline{\{a\}} \neq \overline{\{b\}}$.

- (\Leftarrow) Suponhamos que X não seja um espaço T_0 . Então existem $a, b \in X$, com $a \neq b$, tais que $b \in U$ para cada $U \in \mathcal{U}_a$, e $a \in V$ para cada $V \in \mathcal{U}_b$. Logo $a \in \{b\}$ e $b \in \{a\}$. Segue que $\{a\} = \{b\}$.
- **16.4.** Definição. Diremos que um espaço topológico X é um espaço T_1 se dados dois pontos distintos em X, existe uma vizinhança de cada um deles que não contém o outro.

É claro que cada espaço T_1 é um espaço T_0 .

16.5. Exemplos.

- (a) Cada espaço topológico discreto é um espaço T_1 .
- (b) O espaço de Sierpinski é um espaço T_0 , mas não é um espaço T_1 .
- **16.6.** Proposição. Um espaço topológico X é um espaço T_1 se e só se cada subconjunto unitário de X é fechado.

Demonstração. (\Rightarrow) Seja X um espaço T_1 , e seja $a \in X$. Para cada $b \in X$, com $b \neq a$, existe $V \in \mathcal{U}_b$ tal que $a \notin V$. Segue que $X \setminus \{a\}$ é aberto, ou seja $\{a\}$ é fechado.

- (\Leftarrow) Suponhamos que $\{a\}$ seja fechado para cada $a\in X.$ Dados $a,b\in X,$ com $a\neq b,$ sejam $U=X\setminus\{b\}$ e $V=X\setminus\{a\}.$ Então U e Vsão abertos, $a\in U,$ $b\notin U,$ $b\in V,$ $a\notin V.$
- **16.7. Definição.** Diremos que um espaço topológico X é um *espaço de Hausdorff* ou um *espaço* T_2 se dados $a, b \in X$, com $a \neq b$, existem $U \in \mathcal{U}_a$ e $V \in \mathcal{U}_b$, com $U \cap V = \emptyset$.

É claro que cada espaço T_2 é um espaço T_1 .

16.8. Exemplos.

- (a) Cada espaço topológico discreto é um espaço de Hausdorff.
- (b) Cada espaço métrico é um espaço de Hausdorff.

- (c) Seja X um conjunto infinito, com a topologia cofinita. Então X é um espaço T_1 , mas não é um espaço T_2 . Deixamos a demonstração como exercício.
- **16.9.** Proposição. Para um espaço topológico X as seguintes condições são equivalentes:
 - (a) X é Hausdorff.
 - (b) Cada rede convergente em X tem um limite único.
 - (c) Cada filtro convergente em X tem um limite único.

Demonstração. (a) \Rightarrow (b): Suponhamos que X seja Hausdorff, e seja $(x_{\lambda})_{\lambda \in \Lambda}$ uma rede em X que converge a x e a y, com $x \neq y$. Sejam $U \in \mathcal{U}_x$ e $V \in \mathcal{U}_y$, com $U \cap V = \emptyset$. Como $x_{\lambda} \to x$, existe $\lambda_1 \in \Lambda$ tal que $x_{\lambda} \in U$ para todo $\lambda \geq \lambda_1$. Como $x_{\lambda} \to y$, existe $\lambda_2 \in \Lambda$ tal que $x_{\lambda} \in V$ para todo $\lambda \geq \lambda_2$. Seja $\lambda \in \Lambda$ tal que $\lambda \geq \lambda_1$ e $\lambda \geq \lambda_2$. Então $x_{\lambda} \in U \cap V$, contradição.

- $(b) \Rightarrow (a)$: Suponhamos que X não seja Hausdorff. Então existem $x, y \in X$, com $x \neq y$, tais que $U \cap V \neq \emptyset$ para todo $U \in \mathcal{U}_x$ e $V \in \mathcal{U}_y$. Seja $x_{UV} \in U \cap V$ para cada $U \in \mathcal{U}_x$ e $V \in \mathcal{U}_y$. Segue que $(x_{UV})_{(U,V) \in \mathcal{U}_x \times \mathcal{U}_y}$ é uma rede em X que converge a x e a y, com $x \neq y$.
- $(a)\Rightarrow (c)$: Suponhamos que X seja Hausdorff, e seja \mathcal{F} um filtro em X que converge a x e a y, com $x\neq y$. Sejam $U\in\mathcal{U}_x$ e $V\in\mathcal{U}_y$, com $U\cap V=\emptyset$. Como $\mathcal{F}\to x$, tem-se que $U\in\mathcal{U}_x\subset\mathcal{F}$. Como $\mathcal{F}\to y$, tem-se que $V\in\mathcal{U}_y\subset\mathcal{F}$. Logo $U\cap V\in\mathcal{F}$, absurdo, pois $U\cap V=\emptyset$.
- $(c)\Rightarrow(a)$: Suponhamos que X não seja Hausdorff. Então existem $x,y\in X$, com $x\neq y$, tais que $U\cap V\neq\emptyset$ para todo $U\in\mathcal{U}_x$ e $V\in\mathcal{U}_y$. Seja

$$\mathcal{B} = \{ U \cap V : U \in \mathcal{U}_x, \quad V \in \mathcal{U}_y \}.$$

É claro que \mathcal{B} é uma base de filtro em X. Seja \mathcal{F} o filtro gerado por \mathcal{B} . É claro que $\mathcal{U}_x \subset \mathcal{F}$ e $\mathcal{U}_y \subset \mathcal{F}$. Logo \mathcal{F} converge a x e a y, com $x \neq y$.

16.10. Proposição. Cada subespaço de um espaço de Hausdorff é um espaço de Hausdorff.

Demonstração. Seja X um espaço de Hausdorff, e seja S um subespaço de X. Sejam $a,b \in S$, com $a \neq b$. Como X é Hausdorff, existem abertos U_1 e V_1 em X tais que $a \in U_1, b \in V_1$ e $U_1 \cap V_1 = \emptyset$. Sejam $U = S \cap U_1$ e $V = S \cap V_1$. Então U e V são abertos em S, $a \in U$, $b \in V$ e $U \cap V = \emptyset$.

16.11. Proposição. Seja $\{X_i : i \in I\}$ uma família não vazia de espaços topológicos não vazios. Então o produto $X = \prod_{i \in I} X_i$ é Hausdorff se e só se cada X_i é Hausdorff.

Demonstração. (\Rightarrow) Esta implicação segue da Proposição 16.10 e do Exercício 10.C.

(\Leftarrow) Suponhamos que cada X_i seja Hausdorff, e sejam $a, b \in X$, com $a \neq b$. Escrevamos $a = (a_i)_{i \in I}$, $b = (b_i)_{i \in I}$. Como $a \neq b$, existe $i \in I$ tal que $a_i \neq b_i$. Como X_i é Hausdorff, existem abertos U_i e V_i em X_i tais que $a_i \in U_i$, $b_i \in V_i$ e

- $U_i \cap V_i = \emptyset$. Sejam $U = \pi_i^{-1}(U_i)$ e $V = \pi_i^{-1}(V_i)$. Então U e V são abertos em $X, a \in U, b \in V$ e $U \cap V = \emptyset$.
- **16.12.** Proposição. Sejam X e Y espaços topológicos, com Y Hausdorff. Sejam f e g duas funções contínuas de X em Y tais que f(x) = g(x) para todo x num subconjunto denso $D \subset X$. Então f(x) = g(x) para todo $x \in X$.

Demonstração. Como $X = \overline{D}$, para cada $x \in X$, existe uma rede $(x_i)_{i \in I} \subset D$ tal que $x_i \to x$. Como f e g são contínuas, segue que $f(x_i) \to f(x)$ e $g(x_i) \to g(x)$. Como $f(x_i) = g(x_i)$ para todo $i \in I$, e Y é Hausdorff, a Proposição 16.9 garante que f(x) = g(x).

Exercícios

- **16.A.** Seja $X = \mathbb{N}$, com a topologia do Exercício 4.F. Prove que X é um espaço T_0 , mas não é um espaço T_1 .
- **16.B.** Prove que cada subespaço de um espaço T_0 (resp. T_1) é um espaço T_0 (resp. T_1).
- **16.C.** Seja $\{X_i: i \in I\}$ uma família não vazia de espaços topológicos não vazios. Prove que o produto $X = \prod_{i \in I} X_i$ é um espaço T_0 (resp. T_1) se e só se cada X_i é um espaço T_0 (resp. T_1).
- **16.D.** Sejam X e Y espaços topológicos, e seja $f: X \to Y$ uma aplicação sobrejetiva e fechada. Prove que se X é um espaço T_1 , então Y também é um espaço T_1 .
- **16.E.** Seja X um conjunto infinito, com a topologia cofinita. Prove que X é um espaço T_1 , mas não é um espaço T_2 .
- **16.F.** Seja X um espaço de Hausdorff. Dados n pontos distintos $x_1, ..., x_n \in X$, prove que existem n abertos disjuntos $U_1, ..., U_n \subset X$ tais que $x_j \in U_j$ para j = 1, ..., n.
 - ${\bf 16.G.}$ Seja Xum espaço topológico.
- (a) Prove que X é um espaço T_1 se e só se, para cada $a \in X$ tem-se que $\bigcap \{U : U \in \mathcal{U}_a\} = \{a\}.$
- (b) Prove que X é um espaço T_2 se e só se, para cada $a \in X$ tem-se que $\bigcap \{\overline{U} : U \in \mathcal{U}_a\} = \{a\}.$
- **16.H.** Prove que um espaço topológico X é Hausdorff se e só se o conjunto $D = \{(x, x) : x \in X\}$ é fechado em $X \times X$.
- **16.I.** Sejam X e Y espaços topológicos, com Y Hausdorff. Sejam f e g duas funções contínuas de X em Y.
 - (a) Prove que o conjunto $\{x \in X : f(x) = g(x)\}$ é fechado em X.
 - (b) Use (a) para dar outra demonstração da Proposição 16.12.

17. Espaços regulares

17.1. Definição. Diremos que um espaço topológico X é $\frac{regular}{regular}$ se dados um fechado A em X e um ponto $b \notin A$, existem abertos disjuntos U, V em X tais que $A \subset U$ e $b \in V$. Diremos que X é um $\frac{espaço}{T_3}$ se X é um espaço T_1 que é regular.

É claro que cada espaço T_3 é um espaço T_2 .

17.2. Exemplos.

- (a) Cada espaço discreto é um espaço T_3 .
- (b) Cada espaço métrico é um espaço T_3 . A demonstração é deixada como exercício.
- (c) Seja X um espaço topológico trivial, com pelo menos dois pontos. Então X é regular, mas não é um espaço T_3 .
- (d) O espaço de Sierspinski não é regular. A demonstração é deixada como exercício.
- 17.3. Proposição. Para um espaço topológico X as seguintes condições são equivalentes:
 - (a) X é regular.
- (b) Dados um aberto $U \subset X$ e um ponto $a \in U$, existe um aberto $V \subset X$ tal que $a \in V \subset \overline{V} \subset U$.
 - (c) Cada ponto de X admite uma base de vizinhanças fechadas.

Demonstração. $(a)\Rightarrow (b)$: Seja $a\in U$, sendo U aberto em X. Então $a\notin X\setminus U$, e $X\setminus U$ é fechado. Como X é regular, existem abertos disjuntos V, W em X tais que $a\in V$ e $X\setminus U\subset W$. Logo $a\in V\subset X\setminus W\subset U$. Como $X\setminus W$ é fechado, segue que

$$a\in V\subset \overline{V}\subset X\setminus W\subset U.$$

- $(b) \Rightarrow (c)$: imediato.
- $(c) \Rightarrow (a)$: Seja $b \notin A$, sendo A fechado em X. Então $b \in X \setminus A$, e $X \setminus A$ é aberto. Por (c) existe $V \in \mathcal{U}_b$, V fechado, tal que $b \in V \subset X \setminus A$. Segue que

$$A\subset X\setminus V, \qquad b\in V^\circ, \qquad (X\setminus V)\cap V^\circ=\emptyset.$$

17.4. Proposição. Cada subespaço de um espaço regular é um espaço regular.

Demonstração. Seja X um espaço regular e seja S um subespaço de X. Seja A um subconjunto fechado de S, e seja $b \in S \setminus A$. Sabemos que $A = S \cap A_1$, sendo A_1 um subconjunto fechado de X. Como $b \notin A_1$ e X é regular, existem abertos disjuntos U_1 , V_1 em X tais que $A_1 \subset U_1$ e $b \in V_1$. Sejam $U = S \cap U_1$ e $V = S \cap V_1$. Então U e V são dois abertos disjuntos de S, $A \subset U$ e S

17.5. Corolário. Cada subespaço de um espaço T_3 é um espaço T_3 .

17.6. Proposição. Seja $\{X_i: i \in I\}$ uma família não vazia de espaços topológicos não vazios. Então o produto $X = \prod_{i \in I} X_i$ é regular se e só se cada X_i é regular.

Demonstração. (\Rightarrow) Esta implicação segue da Proposição 17.4 e do Exercício 10.C.

 (\Leftarrow) Suponhamos que cada X_i seja regular, e sejam $a \in X$ e $U \in \mathcal{U}_a$. Então

$$U \supset \bigcap_{j \in J} \pi_j^{-1}(U_j),$$

sendo $J \subset I$, J finito, e U_j aberto em X_j para cada $j \in J$. Como X_j é regular cada U_j contém uma vizinhança fechada V_j de $\pi_j(a)$. Segue que

$$a \in \bigcap_{j \in J} \pi_j^{-1}(V_j) \subset \bigcap_{j \in J} \pi_j^{-1}(U_j) \subset U.$$

Logo X é regular.

17.7. Corolário. Seja $\{X_i : i \in I\}$ uma família não vazia de espaços topológicos não vazios. Então o produto $X = \prod_{i \in I} X_i$ é um espaço T_3 se e só se cada X_i é um espaço T_3 .

Exercícios

- 17.A. Prove que cada espaço métrico é um espaço T_3 .
- 17.B. Prove que o espaço de Sierpinski não é regular.
- ${\bf 17.C.}$ Seja Xum conjunto infinito, com a topologia cofinita. Prove que Xnão é regular.
 - 17.D. Prove que a reta de Sorgenfrey do Exercício 6.C é um espaço T_3 .
 - 17.E. (a) Prove que a família

$$\mathcal{B} = \{(a,b) : a, b \in \mathbf{R}, a < b\} \cup \{(a,b) \cap \mathbf{Q} : a, b \in \mathbf{R}, a < b\}$$

é uma base para uma topologia τ em \mathbf{R} .

- (b) Prove que (\mathbf{R}, τ) é Hausdorff.
- (c) Prove que (\mathbf{R},τ) não é regular.
- **17.F.** Seja X um espaço regular. Prove que, dados um fechado A em X e um ponto $b \notin A$, existem abertos U e V em X tais que $A \subset U$, $b \in V$ e $\overline{U} \cap \overline{V} = \emptyset$.

18. Espaços normais

18.1. Definição. Diremos que um espaço topológico X é normal se dados dois fechados disjuntos A e B em X, existem dois abertos disjuntos U e V em X tais que $A \subset U$ e $B \subset V$. Diremos que X é um espaço T_4 se X é um espaço T_1 que é normal.

É claro que cada espaço T_4 é um espaço T_3 .

18.2. Exemplos.

- (a) Cada espaço discreto é um espaço T_4 .
- (b) Cada espaço métrico é um espaço T_4 . A demonstração é deixada como exercício.
- (c) O espaço de Sierpinski é normal, mas não é regular nem Hausdorff. A demonstração é deixada como exercício.
- **18.3.** Proposição. Um espaço topológico X é normal se e só se, dados um fechado A e um aberto U, com $A \subset U$, existe um aberto V tal que $A \subset V \subset \overline{V} \subset U$.

Demonstração. (\Rightarrow) Suponhamos que $A \subset U$, sendo A fechado e U aberto. Então A e $X \setminus U$ são dois fechados disjuntos de X. Como X é normal, existem abertos disjuntos V e W tais que $A \subset V$ e $X \setminus U \subset W$. Logo $V \subset X \setminus W$. Como $X \setminus W$ é fechado, segue que

$$A \subset V \subset \overline{V} \subset X \setminus W \subset U$$
.

 (\Leftarrow) SejamAe Bdois fechados disjuntos de X. Então $A\subset X\setminus B,$ e $X\setminus B$ é aberto. Por hipótese existe um aberto U tal que

$$A \subset U \subset \overline{U} \subset X \setminus B$$
.

Segue que

$$A\subset U, \quad \ \, B\subset X\setminus \overline{U}, \quad \ \, U\cap (X\setminus \overline{U})=\emptyset.$$

18.4. Proposição. Cada subespaço fechado de um espaço normal é normal.

Demonstração. Seja X um espaço normal, e seja S um subespaço fechado de X. Sejam A e B dois subconjuntos fechados disjuntos de S. Então $A = S \cap A_1$ e $B = S \cap B_1$, sendo A_1 e B_1 dois subconjuntos fechados de X. Como S é fechado em X, vemos que A e B são fechados em X. Como X é normal, existem abertos U_1 e V_1 em X tais que

$$A \subset U_1, \quad B \subset V_1, \quad U_1 \cap V_1 = \emptyset.$$

Seja $U = S \cap U_1$ e $V = S \cap V_1$. Então U e V são abertos em X e

$$A \subset U$$
, $B \subset V$, $U \cap V = \emptyset$.

- **18.5.** Corolário. Cada subespaço fechado de um espaço T_4 é um espaço T_4 .
- 18.6. Proposição. A imagem contínua e fechada de um espaço normal é normal.

Demonstração. Seja X um espaço normal, seja Y um espaço topológico, e seja $f: X \to Y$ uma aplicação sobrejetiva, contínua e fechada. Provaremos que Y é normal. Sejam B_1 e B_2 dois fechados disjuntos de Y. Como f é contínua, $f^{-1}(B_1)$ e $f^{-1}(B_2)$ são dois fechados disjuntos de X. Como X é normal, existem dois abertos disjuntos U_1 e U_2 de X tais que $f^{-1}(B_1) \subset U_1$ e $f^{-1}(B_2) \subset U_2$.

Sejam V_1 e V_2 definidos por

$$V_i = Y \setminus f(X \setminus U_i)$$
 para $i = 1, 2$.

Como f é fechada, vemos que cada V_i é aberto em Y.

Notemos que

$$f^{-1}(V_i) = X \setminus f^{-1}(f(X \setminus U_i)) \subset X \setminus (X \setminus U_i) = U_i$$
 para $i = 1, 2$.

Como U_1 e U_2 são disjuntos, vemos que $f^{-1}(V_1)$ e $f^{-1}(V_2)$ são disjuntos também. Dai segue que V_1 e V_2 são disjuntos.

Finalmente provaremos que $B_1 \subset V_1$ e $B_2 \subset V_2$. Suponhamos que exista $y \in B_i$ tal que $y \notin V_i$. $y \notin V_i$ implica que $y \in f(X \setminus U_i)$, ou seja y = f(x), com $x \notin U_i$. Por outro lado $f(x) = y \in B_i$ implica que $x \in f^{-1}(B_i) \subset U_i$, absurdo. Isto completa a demonstração.

18.7. Corolário. A imagem contínua e fechada de um espaço T_4 é um espaço T_4 .

Demonstração. Basta aplicar a Proposição 18.6 e o Exercício 16.E.

Em um espaço normal, dois fechados disjuntos podem ser separados por meio de abertos. A seguir veremos que dois fechados disjuntos podem ser separados por meio de funções contínuas.

18.8. Lema de separação de Urysohn. Um espaço topológico X é normal se e só se, dados dois fechados disjuntos A e B de X, existe uma função contínua $f: X \to [0,1]$ tal que $f(A) \subset \{0\}$ e $f(B) \subset \{1\}$.

Demonstração. (\Leftarrow) Sejam A e B dois fechados disjuntos de X, e seja $f:X\to [0,1]$ uma função contínua tal que $f(A)\subset \{0\}$ e $f(B)\subset \{1\}$. Sejam

$$U = f^{-1}([0, 1/2)), \quad V = f^{-1}((1/2, 1]).$$

Então U e V são abertos, $A \subset U$, $B \subset V$ e $U \cap V = \emptyset$. Logo X é normal.

 (\Rightarrow) Seja Xum espaço normal, e sejam Ae Bdois fechados disjuntos de X. Como $A\subset X\setminus B,$ existe um aberto $U_{1/2}$ tal que

$$A \subset U_{1/2} \subset \overline{U_{1/2}} \subset X \setminus B$$
.

Logo existem abertos $U_{1/4}$ e $U_{3/4}$ tais que

$$A \subset U_{1/4} \subset \overline{U_{1/4}} \subset U_{1/2} \subset \overline{U_{1/2}} \subset U_{3/4} \subset \overline{U_{3/4}} \subset X \setminus B.$$

Seja

$$D = \{k/2^n : n \in \mathbf{N}, k = 1, 2, ..., 2^n - 1\}.$$

Notemos que D é denso em [0,1]. Procedendo por indução podemos achar, para cada $r \in D$ um aberto U_r tal que

$$A\subset U_{1/2^n}\subset \overline{U_{1/2^n}}\subset U_{2/2^n}\subset \overline{U_{2/2^n}}\subset \ldots \subset U_{(2^n-1)/2^n}\subset \overline{U_{(2^n-1)/2^n}}\subset X\setminus B.$$

Notemos que:

$$A \subset U_r \quad \text{para todo} \quad r \in D,$$

$$B \subset X \setminus \overline{U_s} \quad \text{para todo} \quad s \in D,$$

$$\overline{U_s} \subset U_r \quad \text{para todo} \quad s, r \in D \quad \text{com} \quad s < r.$$

Seja $f: X \to [0,1]$ definida por

$$f(x) = \inf\{r \in D : x \in U_r\}$$
 se $x \in \bigcup\{U_r : r \in D\}$,
 $f(x) = 1$ se $x \notin \bigcup\{U_r : r \in D\}$.

Notemos que:

$$f(x) \le r \quad \text{ se } x \in U_r,$$

$$f(x) \ge s \quad \text{ se } x \notin \overline{U_s},$$

$$s \le f(x) \le r \quad \text{ se } x \in U_r \setminus \overline{U_s}.$$

É claro que

$$0 \le f(x) \le 1 \quad \text{ para todo } x \in X,$$

$$f(x) = 0 \quad \text{ para todo } x \in A,$$

$$f(x) = 1 \quad \text{ para todo } x \in B.$$

Para completar a demonstração provaremos que f é contínua em cada ponto $a \in X$. Seja $\epsilon > 0$ dado.

Se f(a) = 0, então $a \in U_r$ para todo $r \in D$. Seja $r \in D$ tal que $r < \epsilon$. Então para cada $x \in U_r$ tem-se que $f(x) \le r < \epsilon$.

Se f(a)=1, então $a\notin \overline{U_s}$ para todo $s\in D$. Seja $s\in D$ tal que $s>1-\epsilon$. Então para cada $x\notin \overline{U_s}$ tem-se que $f(x)\geq s>1-\epsilon$.

Se 0 < f(x) < 1, sejam $r, s \in D$ tais que

$$f(a) - \epsilon < s < f(a) < r < f(a) + \epsilon$$
.

É fácil ver que $a \in U_r \setminus \overline{U_s}$. Além disso, para cada $x \in U_r \setminus \overline{U_s}$ tem-se que

$$f(a) - \epsilon < s \le f(x) \le r < f(a) + \epsilon.$$

Logo f é contínua em cada ponto de X.

18.9. Teorema de extensão de Tietze. Para um espaço topológico X as seguintes condições são equivalentes:

(a) X é normal.

- (b) Dados um conjunto fechado $A \subset X$ e uma função contínua $f: A \to [c, d]$, com c < d, existe uma função contínua $F: X \to [c, d]$ tal que F|A = f.
- (c) Dados um conjunto fechado $A \subset X$ e uma função contínua $f : A \to \mathbf{R}$, existe uma função contínua $F : X \to \mathbf{R}$ tal que F|A = f.

Demonstração. $(a) \Rightarrow (b)$: Como [c,d] é homeomorfo a [-1,1], podemos supor que $f: A \rightarrow [-1,1]$. Sejam

$$A_1 = \{x \in A : f(x) \le -1/3\}, \quad B_1 = \{x \in A : f(a) \ge 1/3\}.$$

Pelo Lema de Urysohn existe uma função contínua

$$f_1: X \to [-1/3, 1/3]$$

tal que

$$f_1(A_1) \subset \{-1/3\}, \quad f_1(B_1) \subset \{1/3\}.$$

Então

$$|f(x) - f_1(x)| \le 2/3$$
 para todo $x \in A$.

Seja

$$g_1 = f - f_1 : X \to [-2/3, 2/3],$$

e sejam

$$A_2 = \{x \in A : g_1(x) \le -2/3^2\}, \quad B_2 = \{x \in A : g_1(x) \ge 2/3^2\}.$$

Pelo Lema de Urysohn existe uma função contínua

$$f_2: X \to [-2/3^2, 2/3^2]$$

tal que

$$f_2(A_2) \subset \{-2/3^2\}, \quad f_2(B_2) \subset \{2/3^2\}.$$

Então

$$|f(x) - f_1(x) - f_2(x)| \le (2/3)^2$$
 para todo $x \in A$.

Seja

$$g_2 = f - f_1 - f_2 : X \to [-(2/3)^2, (2/3)^2]$$

e sejam

$$A_3 = \{x \in A : g_2(x) \le -2^2/3^3\}, \quad B_3 = \{x \in A : g_2(x) \ge 2^2/3^3\}.$$

Pelo Lema de Urysohn existe uma função contínua

$$f_3: X \to [-2^2/3^3, 2^2/3^3]$$

tal que

$$f_3(A_3) \subset \{-2^2/3^3\}, \quad f_3(B_3) \subset \{2^2/3^3\}.$$

Então

$$|f(x) - f_1(x) - f_2(x) - f_3(x)| \le (2/3)^3$$
 para todo $x \in A$.

Procedendo por indução vamos achar uma seqüência de funções contínuas

$$f_k: X \to [-2^{k-1}/3^k, 2^{k-1}/3^k]$$

tais que

(*)
$$|f(x) - \sum_{k=1}^{n} f_k(x)| \le (2/3)^n$$
 para todo $x \in A, n \in \mathbf{N}$

Seja

$$F(x) = \sum_{k=1}^{\infty} f_k(x)$$
 para todo $x \in X$.

Notemos que

$$\sum_{k=1}^{\infty} |f_k(x)| \le \frac{1}{2} \sum_{k=1}^{\infty} (\frac{2}{3})^k = 1 \quad \text{para todo } x \in X.$$

Segue do Exercício 18.D que $F: X \to [-1,1]$ está bem definida e é contínua. E segue de (*) que f(x) = F(x) para todo $x \in A$.

 $(b) \Rightarrow (c)$: Como **R** é homeomorfo a (-1,1), podemos supor que $f: A \to (-1,1)$. Por (b) existe uma função contínua $G: X \to [-1,1]$ tal que G|A=f. Seja

$$B = \{ x \in X : |G(x)| = 1 \}.$$

Então A e B são dois fechados disjuntos de X. Seja $h:A\cup B\to [0,1]$ definido por

$$h(x) = 1$$
 para todo $x \in A$,

$$h(x) = 0$$
 para todo $x \in B$.

Pela Proposição 8.7 hé contínua. Por (b) existe uma função contínua $H:X\to [0,1]$ tal que $H|A\cup B=h.$ Seja

$$F(x) = G(x)H(x)$$
 para todo $x \in X$.

Então F é uma função contínua de X em (-1,1) e F|A=f.

 $(c)\Rightarrow (a)\colon \text{Sejam }A \in B$ dois fechados disjuntos de X. Seja $f:A\cup B \to [0,1]$ definida por

$$f(x) = 0$$
 para todo $x \in A$,

$$f(x) = 1$$
 para todo $x \in B$.

Pela Proposição 8.7 f é contínua. Por (c) existe uma função contínua $F: X \to \mathbf{R}$ tal que $F|A \cup B = f$. Seja $G: X \to [0,1]$ definida por $G = (F \vee 0) \wedge 1$. Pelo Exercício 18.E G é contínua, e claramente $G|A \cup B = f$. Logo G(x) = 0 para todo $x \in A$ e G(x) = 1 para todo $x \in B$.

Exercícios

- **18.A.** Prove que cada espaço métrico é um espaço T_4 .
- ${\bf 18.B.}$ Prove que o espaço de Sierpinski é normal, mas não é regular nem Hausdorff.
- **18.C.** Seja X um espaço normal. Prove que, dados dois fechados disjuntos A e B em X, existem dois abertos U e V em X tais que $A \subset U$, $B \subset V$ e $\overline{U} \cap \overline{V} = \emptyset$.
- **18.D.** Seja X um espaço topológico, e seja $(f_n)_{n=1}^{\infty}$ uma seqüência em C(X) que converge uniformemente a uma função f. Prove que f é contínua.
- **18.E.** Seja X um espaço topológico. Dadas $f:X\to \mathbf{R}$ e $g:X\to \mathbf{R}$, sejam $f\vee g:X\to \mathbf{R}$ e $f\wedge g:X\to \mathbf{R}$ definidas por

$$(f \lor g)(x) = \max\{f(x), g(x)\}$$
 para todo $x \in X$,

$$(f\wedge g)(x)=\min\{f(x),g(x)\}\quad \text{ para todo } x\in X.$$

Prove que, se f e g são contínuas, então $f \vee g$ e $f \wedge g$ são contínuas também.

- **18.F.** Prove que um espaço topológico X é normal se e só se, dados dois fechados disjuntos A e B em X, existe uma função contínua $f: X \to \mathbf{R}$ tal que $f(A) \subset \{\alpha\}$ e $f(B) \subset \{\beta\}$, com $\alpha \neq \beta$.
- **18.G.** Seja X um espaço métrico, e seja A um subconjunto não vazio de X. Para cada $x \in X$, seja

$$d(x,A) = \inf_{a \in A} d(x,a).$$

- (a) Prove que d(x, A) = 0 se e só se $x \in \overline{A}$.
- (b) Prove que

$$|d(x,A) - d(y,A)| \le d(x,y)$$
 para todo $x, y \in X$.

- (c) Prove que a a função $x \in X \to d(x, A) \in \mathbf{R}$ é contínua.
- **18.H.** Seja X um espaço métrico, e sejam A e B dois subconjuntos fechados disjuntos de X. Usando o Exercício 18.G ache uma função contínua $f:X\to [0,1]$ tal que f(x)=0 para todo $x\in A$ e f(x)=1 para todo $x\in B$. Isto da outra demonstração de que cada espaço métrico é normal.

19. Espaços completamente regulares

O Lema de Urysohn motiva a seguinte definição.

- **19.1.** Definição. Diremos que um espaço topológico X é completamente regular se dados um fechado A em X e um ponto $b \notin A$ existe uma função contínua $f: X \to [0,1]$ tal que $f(A) \subset \{0\}$ e f(b) = 1. Diremos que X é um espaço de Tychonoff se X é um espaço T_1 que é completamente regular.
 - **19.2.** Proposição. Cada espaço T_4 é um espaço de Tychonoff.

Demonstração. Basta aplicar o lema de Urysohn.

19.3. Proposição. Cada espaço completamente regular é regular.

Demonstração. Seja X um espaço completamente regular. Dados um fechado A em X e um ponto $b \notin A$, seja $f: X \to [0,1]$ uma função contínua tal que $f(A) \subset \{0\}$ e f(b) = 1. Sejam

$$U = f^{-1}([0, 1/2)), \quad V = f^{-1}(1/2, 1]).$$

Então U e V são dois abertos disjuntos de $X,\,A\subset U$ e $b\in V$. Logo X é regular.

19.4. Corolário. Cada espaço de Tychonoff é um espaço T_3 .

19.5. Exemplos.

- (a) Cada espaço discreto é um espaço de Tychonoff.
- (b) Cada espaço métrico é um espaço de Tychonoff.
- (c) O espaço de Sierpinski não é completamente regular.
- 19.6. Proposição. Cada subespaço de um espaço completamente regular é completamente regular.

Demonstração. Seja X um espaço completamente regular, e seja S um subespaço de X. Seja A um fechado de S, e seja $b \in S \setminus A$. Sabemos que $A = S \cap A_1$, sendo A_1 un fechado de X. Como $b \notin A_1$, e X é completamente regular, existe uma função contínua $g: X \to [0,1]$ tal que $g(A_1) \subset \{0\}$ e g(b) = 1. Seja $f = g|S: S \to [0,1]$. Então f é contínua, $f(A) \subset \{0\}$ e f(b) = 1.

- 19.7. Corolário. Cada subespaço de um espaço de Tychonoff é um espaço de Tychonoff.
- 19.8. Proposição. Seja $\{X_i: i \in I\}$ uma família não vazia de espaços topológicos não vazios. Então o produto $X = \prod_{i \in I} X_i$ é completamente regular se e só se cada X_i é completamente regular.

Demonstração. (\Rightarrow) Esta implicação segue da Proposição 19.7 e do Exercício 10.C.

 (\Leftarrow) Suponhamos que cada X_i seja completamente regular, e sejam Aum fechado de X, e $b \in X \setminus A.$ Então

$$b \in \bigcap_{j \in J} \pi_j^{-1}(U_j) \subset X \setminus A,$$

sendo $J \subset I$, J finito, e U_j aberto em X_j para cada $j \in J$. Notemos que

$$\pi_j(b) \in U_j$$
 para cada $j \in J$,

е

$$A \subset X \setminus \bigcap_{j \in J} \pi_j^{-1}(U_j) = \bigcup_{j \in J} (X \setminus \pi_j^{-1}(U_j)) = \bigcup_{j \in J} \pi_j^{-1}(X_j \setminus U_j).$$

Como X_j é completamente regular, para cada $j \in J$ existe uma função contínua $g_j: X_j \to [0,1]$ tal que

$$g_j(X_j \setminus U_j) \subset \{0\}, \quad g_j(\pi_j(b)) = 1.$$

Seja

$$f = \min_{j \in J} g_j \circ \pi_j : X \to [0, 1].$$

Então f é contínua, $f(A) \subset \{0\}$ e f(b) = 1.

19.9. Corolário. Seja $\{X_i : i \in I\}$ uma família não vazia de espaços topológicos não vazios. Então o produto $X = \prod_{i \in I} X_i$ é um espaço de Tychonoff se e só se cada X_i é um espaço de Tychonoff.

Lembremos que, se X é um espaço topológico, então C(X) denota o conjunto de todas as funções contínuas $f: X \to \mathbf{R}$. Denotaremos por $C_b(X)$ o subconjunto de todas as $f \in C(X)$ que são limitadas, ou seja $\sup_{x \in X} |f(x)| < \infty$.

19.10. Teorema. Um espaço topológico X é completamente regular se e só se X tem a topologia fraca definida por $C_b(X)$.

Demonstração. Denotemos por τ a topologia de X e por τ_w a topologia fraca em X definida por $C_b(X)$. A inclusão $\tau_w \subset \tau$ vale sempre. Devemos provar que X é completamente regular se e só se $\tau \subset \tau_w$.

(\Rightarrow) Sejam $U \in \tau$ e $a \in U$. Como X é completamente regular, existe uma função contínua $f_a: X \to [0,1]$ tal que $f_a(a)=0$ e $f_a(x)=1$ para todo $x \in X \setminus U$. Seja

$$V_a = \{ x \in X : f_a(x) < 1 \}.$$

Então $V_a \in \tau_w$ e $a \in V_a \subset U$. Segue que

$$U = \bigcup \{V_a : a \in U\} \in \tau_w.$$

 (\Leftarrow) Seja A um fechado de X, e seja $b \in X \setminus A$. Como $\tau \subset \tau_w$, temos que

$$b \in V \subset X \setminus A$$
,

onde

$$V = \bigcap_{j=1}^{n} f_j^{-1}(W_j),$$

com $f_j \in C_b(X)$ e W_j aberto em **R** para j = 1, ..., n. Como cada aberto de **R** é uma união de intervalos abertos, podemos supor que $W_j = (\alpha_j, \beta_j)$ para j = 1, ..., n. Notemos que

$$f_j^{-1}(W_j) = \{ x \in X : \alpha_j < f_j(x) < \beta_j \}$$

= $\{ x \in X : f_j(x) > \alpha_j \} \cap \{ x \in X : -f_j(x) > -\beta_j \}.$

Logo podemos supor que $W_j = (\alpha_j, \infty)$ para j = 1, ..., n. Seja

$$g_j = (f_j - \alpha_j) \vee 0$$
 para $j = 1, ...n$.

Então $g_j \in C_b(X), g_j \geq 0$ e

$$f_j^{-1}(W_j) = f_j^{-1}((\alpha_j, \infty)) = g_j^{-1}((0, \infty)).$$

Logo

$$b \in V = \bigcap_{j=1}^{n} f_j^{-1}(W_j) = \bigcap_{j=1}^{n} g_j^{-1}((0, \infty)) \subset X \setminus A.$$

Seja $g = g_1 g_2 ... g_n$. Então $g \in C_b(X)$ e $g \ge 0$. Além disso,

$$g(b) = g_1(b)g_2(b)...g_n(b) > 0,$$

$$g(x) = g_1(x)g_2(x)...g_n(x) = 0$$
 para todo $x \in A$.

Logo X é completamente regular.

- **19.11. Teorema.** Para um espaço topológico X as seguintes condições são equivalentes:
 - (a) X é um espaço de Tychonoff.
 - (b) X é homeomorfo a um subespaço do produto $[0,1]^{C_b(X)}$.
 - (c) X é homeomorfo a um subespaço do produto $[0,1]^I$, para algum I.

Demonstração.

 $(a) \Rightarrow (b)$: Seja X um espaço de Tychonoff. Para cada $f \in C_b(X)$ seja I_f um intervalo fechado e limitado que contém f(X). Consideremos a aplicação avaliação

$$\epsilon_X : x \in X \to (f(x))_{f \in C_b(X)} \in \prod_{f \in C_b(X)} I_f.$$

É claro que $C_b(X)$ separa os pontos de X. Pelo Teorema 19.10 X tem a topologia fraca definida por $C_b(X)$. Pela Proposição 10.8 a aplicação ϵ_X é um mergulho. Pelo Exercício 10.E o produto $\prod_{f \in C_b(X)} I_f$ é homeomorfo ao produto $[0,1]^{C_b(X)}$. Segue que X é homeomorfo a um subespaço do produto $[0,1]^{C_b(X)}$.

- $(b) \Rightarrow (c)$: óbvio.
- $(c) \Rightarrow (a)$: O produto $[0,1]^I$ é um espaço de Tychonoff, e qualquer subespaço de $[0,1]^I$ é um espaço de Tychonoff.

Mais adiante vamos precisar de uma versão mais refinada do teorema anterior. Com esse propósito introduzimos a seguinte definição.

- **19.12.** Definição. Sejam X e X_i $(i \in I)$ espaços topológicos, e seja $f_i: X \to X_i$ para cada $i \in I$. Diremos que a família $\{f_i: i \in I\}$ separa pontos de fechados se dados um fechado $A \subset X$ e um ponto $b \in X \setminus A$, existe $i \in I$ tal que $f_i(b) \notin \overline{f_i(A)}$.
- **19.13.** Proposição. Sejam X e X_i ($i \in I$) espaços topológicos, e seja $f_i: X \to X_i$ contínua para cada $i \in I$. Então a família $\{f_i: i \in I\}$ separa pontos de fechados se e só se os conjuntos $f_i^{-1}(V_i)$, com $i \in I$ e V_i aberto em X_i , formam uma base para a topologia de X.

Demonstração. (\Rightarrow) Seja U aberto em X, e seja $a \in U$. Como $a \notin X \setminus U$, existe $i \in I$ tal que $f_i(a) \notin \overline{f_i(X \setminus U)}$. Se definimos

$$V_i = X_i \setminus \overline{f_i(X \setminus U)},$$

então é fácil ver que

$$a \in f_i^{-1}(V_i) \subset U$$
.

 (\Leftarrow) Seja A fechado em X, e seja $b \in X \setminus A$. Por hipótese temos que

$$b \in f_i^{-1}(V_i) \subset X \setminus A$$
,

sendo $i \in I$ e V_i aberto em X_i . Segue que $f_i(b) \in V_i$ e $V_i \cap f_i(A) = \emptyset$. Logo $f_i(b) \notin \overline{f_i(A)}$.

19.14. Corolário. Sejam X e X_i ($i \in I$) espaços topológicos, e seja $f_i: X \to X_i$ contínua para cada $i \in I$. Se a família $\{f_i: i \in I\}$ separa pontos de fechados, então X tem a topologia fraca definida pela família $\{f_i: i \in I\}$.

Demonstração. Basta aplicar as Proposições 19.13 e 10.5.

19.15. Corolário. Sejam X e X_i $(i \in I)$ espaços topológicos, e seja $f_i: X \to X_i$ contínua para cada $i \in I$. Suponhamos que X seja um espaço T_1 e que a família $\{f_i: i \in I\}$ separe pontos de fechados. Então a avaliação

$$\epsilon: x \in X \to (f_i(x))_{i \in I} \in \prod_{i \in I} X_i$$

é um mergulho.

Demonstração. Basta aplicar o Corolário 19.14 e a Proposição 10.8.

Exercícios

- **19.A.** Se X é um espaço topológico, prove que as seguintes condições são equivalentes:
 - (a) X é completamente regular.
- (b) Dados um fechado $A \subset X$ e um ponto $b \notin A$, existe uma função contínua $f: X \to \mathbf{R}$ tal que $f(A) \subset \{\alpha\}$ e $f(b) = \{\beta\}$, sendo $\alpha < \beta$.
- (c) Dados um fechado A em X e um ponto $b \notin A$, existe uma função contínua $f: X \to \mathbf{R}$ tal que $f(x) \le \alpha$ para todo $x \in A$ e $f(b) \ge \beta$, sendo $\alpha < \beta$.
- **19.B.** Seja X um espaço métrico, e seja $A \subset X$. Use a função distancia $x \in X \to d(x,A) \in \mathbf{R}$ para provar diretamente que cada espaço métrico é completamente regular.
- **19.C.** Sejam X e Y dois espaços de Tychonoff. Para cada $f \in C_b(X)$ seja I_f um intervalo fechado e limitado que contém f(X). Dada uma função contínua $h: X \to Y$, prove que existe uma função contínua

$$H: \prod_{f \in C_b(X)} I_f \longrightarrow \prod_{g \in C_b(Y)} I_g$$

tal que o seguinte diagrama é comutativo:

$$\begin{array}{ccc} X & \stackrel{h}{\longrightarrow} & Y \\ \\ \epsilon_X \downarrow & & \downarrow \epsilon_Y \\ \prod_{f \in C_b(X)} I_f & \stackrel{H}{\longrightarrow} & \prod_{g \in C_b(Y)} I_g \end{array}$$

20. Primeiro e segundo axioma de enumerabilidade

Lembremos que um espaço topológico X satisfaz o primeiro axioma de enumerabilidade se existe uma base enumerável de vizinhanças de x para cada $x \in X$. Lembremos que X satisfaz o segundo axioma de enumerabilidade se existe uma base enumerável para os abertos de X. Nesta seção estudaremos os espaços que satisfazem estes axiomas. Estudaremos também os espaços separáveis e os espaços de Lindelöf, que definiremos a seguir.

- **20.1.** Definição. Um espaço topológico X é dito separável se existir em X um subconjunto denso enumerável.
- **20.2.** Definição. Seja X um espaço topológico. Diremos que $\{U_i: i \in I\}$ é uma cobertura aberta de X se $\{U_i: i \in I\}$ é uma família de abertos de X tal que $\bigcup \{U_i: i \in I\} = X$. Diremos que X é um espaço de Lindelöf se cada cobertura aberta de X admite uma subcobertura enumerável, ou seja, para cada cobertura aberta $\{U_i: i \in I\}$ de X, existe $J \subset I$, J enumerável, tal que $\bigcup \{U_i: i \in J\} = X$.
- **20.3.** Proposição. Seja X um espaço topológico que satisfaz o segundo axioma de enumerabilidade. Então:
 - (a) X satisfaz o primeiro axioma de enumerabilidade.
 - (b) X é separável.
 - (c) X é um espaço de Lindelöf.

Demonstração. Seja \mathcal{B} uma base enumerável para os abertos de X.

(a) Para cada $x \in X$ seja

$$\mathcal{B}_x = \{ V \in \mathcal{B} : x \in V \}.$$

É claro que \mathcal{B}_x é uma base enumerável de vizinhanças de x.

(b) Seja $x_V \in V$ para cada $V \in \mathcal{B}$, e seja

$$D = \{x_V : V \in \mathcal{B}\}.$$

É claro que D é um conjunto enumerável que é denso em X.

(c) Seja \mathcal{U} uma cobertura aberta de X. Para cada $x \in X$ seja $U_x \in \mathcal{U}$ tal que $x \in U_x$, e seja $V_x \in \mathcal{B}$ tal que $x \in V_x \subset U_x$. Seja

$$\mathcal{B}' = \{V_x : x \in X\}.$$

Como $\mathcal{B}' \subset \mathcal{B}$, \mathcal{B}' é enumerável. Escrevamos

$$\mathcal{B}' = \{V_n : n \in \mathbf{N}\}.$$

Para cada $n \in \mathbb{N}$, seja $U_n \in \mathcal{U}$ tal que $V_n \subset U_n$. Seja

$$\mathcal{U}' = \{U_n : n \in \mathbf{N}\}.$$

Então \mathcal{U}' é um subconjunto enumerável de \mathcal{U} , e

$$\bigcup_{n=1}^{\infty} U_n \supset \bigcup_{n=1}^{\infty} V_n = X.$$

Logo \mathcal{U}' é uma subcobertura enumerável de \mathcal{U} .

- **20.4.** Proposição. Para um espaço métrico X, as seguintes condições são equivalentes:
 - (a) X satisfaz o segundo axioma de enumerabilidade.
 - (b) X é separável.
 - (c) X é Lindelöf.

Demonstração. Já sabemos que $(a) \Rightarrow (b)$ e $(a) \Rightarrow (c)$.

 $(b) \Rightarrow (a)$: Seja

$$D = \{x_m : m \in \mathbf{N}\}$$

um subconjunto enumerável denso de X, e seja

$$\mathcal{B} = \{ B(x_m; 1/n) : m, n \in \mathbf{N} \}.$$

 \mathcal{B} é enumerável. Provaremos que \mathcal{B} é uma base para os abertos de X. Seja U um aberto não vazio de X, e seja $x \in U$. Como U é aberto, existe $n \in \mathbb{N}$ tal que $B(x;1/n) \subset U$. Como D é denso em X, existe $m \in \mathbb{N}$ tal que $x_m \in B(x;1/2n)$. Segue que

$$x \in B(x_m; 1/2n) \subset B(x; 1/n) \subset U$$
.

Logo \mathcal{B} é uma base para os abertos de X.

 $(c) \Rightarrow (a)$: Para cada $n \in \mathbb{N}$ seja

$$\mathcal{U}_n = \{B(x; 1/n) : x \in X\}.$$

Então \mathcal{U}_n é uma cobertura aberta de X. Como X é Lindelöf, \mathcal{U}_n admite uma subcobertura enumerável \mathcal{V}_n . Seja

$$\mathcal{B} = \bigcup \{ \mathcal{V}_n : n \in \mathbf{N} \}.$$

 \mathcal{B} é enumerável. Provaremos que \mathcal{B} é uma base para os abertos de X. Seja U um aberto não vazio de X, e seja $x \in U$. Como U é aberto, existe $n \in \mathbb{N}$ tal que $B(x; 1/n) \subset U$. Como \mathcal{V}_{2n} é uma cobertura de X, existe $B(a; 1/2n) \in \mathcal{V}_{2n} \subset \mathcal{B}$ tal que $x \in B(a; 1/2n)$. Segue que

$$x \in B(a; 1/2n) \subset B(x; 1/n) \subset U$$
.

Logo \mathcal{B} é uma base para os abertos de X.

Vimos nos Exercícios 7.A e 7.B que se um espaço topológico X satisfaz o primeiro ou o segundo axioma de enumerabilidade, então cada subespaço de X satisfaz o mesmo axioma.

Veremos nos Exercícios 20.A e 20.B que a imagem contínua e aberta de um espaço topológico que satisfaz o primeiro ou o segundo axioma de enumerabilidade, também satisfaz o mesmo axioma.

20.5. Proposição. Seja $\{X_i : i \in I\}$ uma família não vazia de espaços T_1 não triviais. Então o produto $X = \prod_{i \in I} X_i$ satisfaz o primeiro axioma de enumerabilidade se e só se cada X_i satisfaz o mesmo axioma e I é enumerável.

Demonstração. (\Rightarrow) Suponhamos que X satisfaz o primeiro axioma de enumerabilidade. Como cada X_i é homeomorfo a um subespaço de X, segue que cada X_i também satisfaz o mesmo axioma.

Suponhamos que I não seja enumerável. Seja $a=(a_i)_{i\in I}\in X$, e seja $\{U_n:n\in {\bf N}\}$ uma base enumerável de vizinhanças de a em X. Para cada $n\in {\bf N}$ temos que

$$a \in V_n = \bigcap_{j \in I_n} \pi_j^{-1}(V_{nj}) \subset U_n,$$

sendo $J_n \subset I$, J_n finito, e sendo V_{nj} uma vizinhança aberta de a_j em X_j para cada $j \in J_n$. É claro que $\{V_n : n \in \mathbf{N}\}$ também é uma base de vizinhanças de a em X. Seja $J = \bigcup \{J_n : n \in \mathbf{N}\}$, e seja $k \in I \setminus J$. Seja $b_k \neq a_k$, seja $b_i = a_i$ para cada $i \neq k$, e seja $b = (b_i)_{i \in I}$. Como X_k é um espaço T_1 , existe um aberto W_k em X_k tal que $a_k \in W_k$, mas $b_k \notin W_k$. Seja $W = \pi_k^{-1}(W_k)$. Notemos que $b \in V_n$ para cada $n \in \mathbf{N}$, mas $b \notin W$. Logo $V_n \not\subset W$ para cada $n \in \mathbf{N}$, contradição. Logo I é enumerável.

 (\Leftarrow) Suponhamos que X_i satisfaz o primeiro axioma de enumerabilidade para cada $i \in I$, e que I seja enumerável. Sem perda de generalidade podemos supor que $I = \mathbf{N}$. Seja $a = (a_n)_{n \in \mathbf{N}} \in X$, e seja $\{V_{nk} : k \in \mathbf{N}\}$ uma base enumerável decrescente de vizinhanças de a_n em X_n para cada $n \in \mathbf{N}$. Segue que os conjuntos da forma

$$\bigcap_{n=1}^{N} \pi_n^{-1}(V_{n,k_n}) \quad (N \in \mathbf{N}, k_n \in \mathbf{N})$$

formam uma base enumerável de vizinhanças de a em X.

De maneira análoga podemos provar o resultado seguinte. Deixamos a demonstração detalhada como exercício.

20.6. Proposição. Seja $\{X_i : i \in I\}$ uma família não vazia de espaços T_1 não triviais. Então o produto $X = \prod_{i \in I} X_i$ satisfaz o segundo axioma de enumerabilidade se e só se cada X_i satisfaz o mesmo axioma e I é enumerável.

Veremos no Exercício 20.C que cada subespaço aberto de um espaço topológico separável é separável. Veremos no Exercício 20.E que a imagem contínua de cada espaço topológico separável é separável.

20.7. Proposição. Seja $\{X_i : i \in I\}$ uma família não vazia de espaços de Hausdorff não triviais. Então o produto $X = \prod_{i \in I} X_i$ é separável se e só se cada X_i é separável $e |I| \leq |R|$.

Demonstração. (\Rightarrow) Suponhamos que X seja separável. Como $X_i = \pi_i(X)$ para cada $i \in I$, segue que cada X_i é separável.

Para provar que $|I| \leq |\mathbf{R}|$, seja D um subconjunto denso enumerável de X. Para cada $i \in I$ sejam U_i e V_i dois abertos disjuntos não vazios em X_i , e seja $D_i = D \cap \pi_i^{-1}(U_i)$. Como D é denso em X, segue que cada D_i é não vazio.

Afirmamos que $D_i \neq D_j$ sempre que $i \neq j$. De fato, se $i \neq j$, é claro que

$$\pi_i^{-1}(U_i) \cap \pi_j^{-1}(V_j) \neq \emptyset,$$

e portanto

$$D \cap \pi_i^{-1}(U_i) \cap \pi_i^{-1}(V_j) \neq \emptyset.$$

Seja

$$a \in D \cap \pi_i^{-1}(U_i) \cap \pi_j^{-1}(V_j) \subset D_i.$$

Como $U_j \cap V_j = \emptyset$, segue que

$$a \notin D \cap \pi_i^{-1}(U_j) = D_j,$$

provando a afirmação.

Logo a aplicação

$$f: i \in I \to D_i \in \mathcal{P}(D)$$

é injetiva, e portanto

$$|I| \le |\mathcal{P}(D)| \le 2^{|\mathbf{N}|} = |\mathbf{R}|.$$

(\Leftarrow) Suponhamos que cada X_i seja separável, e que $|I| \leq |\mathbf{R}|$. Seja $D_i = \{x_{in} : n \in \mathbf{N}\}$ um subconjunto denso enumerável de X_i para cada $i \in I$. Como $|I| \leq |\mathbf{R}|$, podemos supor que $I \subset \mathbf{R}$.

Para cada conjunto $\{T_1,...,T_p\}$ de intervalos fechados disjuntos com extremos racionais, e cada conjunto $\{n_1,...,n_p\}\subset \mathbf{N}$, definamos um ponto $y=y(T_1,...,T_p,n_1,...,n_p)\in X$ da maneira seguinte:

$$y_i = x_{in_k}$$
 se $i \in T_k$,
 $y_i = x_{i1}$ se $i \notin T_1 \cup ... \cup T_p$.

Seja D o conjunto formado pelos pontos $y=y(T_1,...,T_p,n_1,...,n_p)$. É claro que D é enumerável. Provaremos que D é denso em X. Seja U um aberto básico em X, ou seja

$$U = \bigcap_{j \in J} \pi_j^{-1}(U_j),$$

com $J \subset I$, J finito, e U_j aberto não vazio em X_j para cada $j \in J$. Para cada $j \in J$ seja $x_{jn_j} \in D_j \cap U_j$, e seja T_i um intervalo fechado, com extremos racionais, contendo j. Se escrevemos $J = \{i_1, ..., i_p\}$, então

$$y = y(T_{i_1}, ...T_{i_p}, n_{i_1}, ..., n_{i_p}) \in U,$$

pois $\pi_{i_k}(y) = y_{i_k} = x_{i_k, n_{i_k}} \in U_{i_k}$ para k = 1, ..., p. Logo $D \cap U \neq \emptyset$, completando a demonstração.

Veremos no Exercício 20.F que cada subespaço fechado de um espaço de Lindelöf é um espaço de Lindelöf. Veremos no Exercício 20.G que a imagem contínua de cada espaço de Lindelöf é um espaço de Lindelöf.

20.8. Teorema. Cada espaço de Lindelöf regular é normal.

Demonstração. Seja X um espaço de Lindelöf regular, e sejam A e B dois fechados disjuntos não vazios de X. Como X é regular, para cada $a \in A$ existe um aberto U_a tal que $a \in U_a$ e $\overline{U_a} \cap B = \emptyset$. De maneira análoga, para cada $b \in B$ existe um aberto V_b tal que $b \in V_b$ e $\overline{V_b} \cap A = \emptyset$. Como A é Lindelöf, a cobertura aberta $\{U_a: a \in A\}$ de A admite uma subcobertura enumerável $\{U_{a_j}: j \in \mathbf{N}\}$. De maneira análoga, a cobertura aberta $\{V_b: b \in B\}$ de B admite uma subcobertura enumerável $\{V_{b_k}: k \in \mathbf{N}\}$.

Sejam $(C_j)_{j=1}^{\infty}$ e $(D_j)_{k=1}^{\infty}$ duas seqüências de abertos definidos da maneira seguinte:

$$C_1 = U_{a_1}, D_1 = V_{b_1} \setminus \overline{C_1},$$

$$C_2 = U_{a_2} \setminus \overline{D_1}, D_2 = V_{b_2} \setminus (\overline{C_1} \cup \overline{C_2}),$$

$$C_3 = U_{a_3} \setminus (\overline{D_1} \cup \overline{D_2}), D_3 = V_{b_3} \setminus (\overline{C_1} \cup \overline{C_2} \cup \overline{C_3}),$$

.....

Sejam $C = \bigcup_{j=1}^{\infty} C_j$ e $D = \bigcup_{k=1}^{\infty} D_k$. Para completar a demonstração provaremos que $A \subset C$, $B \subset D$ e $C \cap D = \emptyset$.

Para provar que $A \subset C$, seja $a \in A$. Então $a \notin \overline{V_{b_k}}$, e portanto $a \notin \overline{D_k}$ para cada k. Seja j tal que $a \in U_{a_j}$. Então $a \in C_j \subset C$, e portanto $A \subset C$. De maneira análoga podemos provar que $B \subset D$.

Para provar que $C \cap D = \emptyset$, suponhamos que exista $x \in C_j \cap D_k$. Se j > k, então $x \in C_j$ implica que $x \notin D_k$, contradição. E se $j \leq k$, então $x \in D_k$ implica que $x \notin C_j$, contradição também. Logo $C \cap D = \emptyset$.

Exercícios

- **20.A.** Prove que a imagem contínua e aberta de um espaço topológico que satisfaz o primeiro axioma de enumerabilidade, também satisfaz o mesmo axioma.
- **20.B.** Prove que a imagem contínua e aberta de um espaço topológico que satisfaz o segundo axioma de enumerabilidade, também satisfaz o mesmo axioma.

- ${\bf 20.C.}$ Prove que cada subespaço aberto de um espaço topológico separável é separável.
 - 20.D. Prove que cada subespaço de um espaço métrico separável é separável.
- ${\bf 20.E.}$ Prove que a imagem contínua de cada espaço topológico separável é separável.
- ${\bf 20.F.}$ Prove que cada subespaço fechado de um espaço de Lindelöf é um espaço de Lindelöf.
- ${\bf 20.G.}$ Prove que a imagem contínua de cada espaço de Lindelöf é um espaço de Lindelöf.

21. Espaços compactos

21.1. Definição. Seja X um espaço topológico, e seja $K \subset X$. Diremos que X é um espaço topológico compacto se cada cobertura aberta de X admite uma subcobertura finita. Diremos que K é um subconjunto compacto de X se K, com a topologia induzida por X, é um espaço topológico compacto. Diremos que K é um subconjunto relativamente compacto de X se \overline{K} é um subconjunto compacto de X.

21.2. Exemplos.

- (a) R não é compacto. Deixamos a demonstração como exercício.
- (b) Se X é um espaço topológico qualquer, então cada subconjunto finito de X é compacto. Deixamos a demonstração como exercício.
 - 21.3. Proposição. Cada intervalo fechado e limitado em R é compacto.

Demonstração. Seja \mathcal{U} uma cobertura aberta de [a,b], com a < b. Seja C o conjunto dos pontos $c \in [a,b]$ tais que $[a,c] \subset \bigcup \mathcal{V}$ para alguma família finita $\mathcal{V} \subset \mathcal{U}$. Para completar a demonstração basta provar que $b \in C$.

Seja $U_a \in \mathcal{U}$ tal que $a \in U_a$, e seja $\delta > 0$ tal que $a + 2\delta < b$ e

$$[a,b] \cap (a-2\delta,a+2\delta) \subset U_a.$$

Isto implica que $[a, a + \delta] \subset U_a$, e portanto $a + \delta \in C$.

Seja $s=\sup C$. Então $s\geq a+\delta>a$. Seja $U_s\in \mathcal{U}$ tal que $s\in U_s$, e seja $\epsilon>0$ tal que $s-2\epsilon>a$ e

$$[a,b] \cap (s-2\epsilon,s+2\epsilon) \subset U_s.$$

Seja $c \in C \cap (s-2\epsilon, s]$, e seja $\mathcal{V} \subset \mathcal{U}$, \mathcal{V} finita, tal que

$$[a,c]\subset\bigcup\mathcal{V}.$$

Segue que

$$[a,s] \subset [a,c] \cup (s-2\epsilon,s] \subset (\bigcup \mathcal{V}) \cup U_s.$$

Isto prova que $s \in C$. Se fosse s < b, poderiamos supor que $s + 2\epsilon < b$ e teriamos que

$$[0,s+\epsilon] \subset [a,c] \cup (s-2\epsilon,s+2\epsilon) \subset (\bigcup \mathcal{V}) \cup U_s.$$

Mas isto implicaria que $s + \epsilon \in C$, e s não seria o supremo de C. Logo s = b, e portanto $b \in C$.

- **21.4.** Definição. Seja X um conjunto não vazio, e seja \mathcal{A} uma família não vazia de subconjuntos de X. Diremos que \mathcal{A} tem a propriedade da interseção finita se $\bigcap \mathcal{F} \neq \emptyset$ para cada família finita $\mathcal{F} \subset \mathcal{A}$.
 - 21.5. Exemplos. Seja X um conjunto não vazio.
 - (a) Cada filtro em X tem a propriedade da interseção finita.
 - (b) Cada base de filtro em X tem a propriedade da interseção finita.

- O teorema seguinte da várias caracterizações de espaços compactos.
- **21.6.** Teorema. Seja X um espaço topológico não vazio. Então as seguintes condições são equivalentes:
 - (a) X é compacto.
- (b) Cada família de fechados de X com a propriedade da interseção finita tem interseção não vazia.
 - (c) Cada filtro em X tem pelo menos um ponto de acumulação.
 - (d) Cada filtro em X está contido em algum filtro convergente.
 - (e) Cada ultrafiltro em X é convergente.
 - (f) Cada rede em X tem pelo menos um ponto de acumulação.
 - (g) Cada rede em X admite uma subrede convergente.
 - (h) Cada rede universal em X é convergente.

Demonstração. $(a) \Rightarrow (b)$: Seja X compacto, e seja $\{A_i : i \in I\}$ uma família de fechados de X com a propriedade da interseção finita. Suponhamos que $\bigcap_{i \in I} A_i = \emptyset$. Então $X = \bigcup_{i \in I} (X \setminus A_i)$, e $X \setminus A_i$ é aberto para cada $i \in I$. Como X é compacto, existe um conjunto finito $J \subset I$ tal que $X = \bigcup_{i \in J} A_i$. Segue que $\bigcap_{i \in I} A_i = \emptyset$, contradição. Isto prova que $\bigcap_{i \in I} A_i \neq \emptyset$.

- $(b)\Rightarrow (a)$: Seja $\{U_i:i\in I\}$ uma cobertura aberta de X, e suponhamos que $\bigcup_{i\in J}U_i\neq X$ para cada conjunto finito $J\subset I$. Segue que $\{X\setminus U_i:i\in I\}$ é uma família de fechados de X tal que $\bigcap_{i\in J}(X\setminus U_i)\neq\emptyset$ para cada conjunto finito $J\subset I$. Segue de (b) que $\bigcap_{i\in I}(X\setminus U_i)\neq\emptyset$. Isto implica que $\bigcup_{i\in I}U_i\neq X$, contradição. Logo existe um conjunto finito $J\subset I$ tal que $\bigcup_{i\in J}U_i=X$.
- $(b)\Rightarrow (c)$: Seja \mathcal{F} um filtro em X. Então $\{\overline{A}:A\in\mathcal{F}\}$ é uma família de fechados de X com a propriedade da interseção finita. Segue de (b) que $\bigcap \{\overline{A}:A\in\mathcal{F}\}\neq\emptyset$. Então cada $x\in\bigcap \{\overline{A}:A\in\mathcal{F}\}$ é um ponto de acumulação de \mathcal{F} .
- $(c)\Rightarrow (b)$: Seja $\mathcal A$ uma família de fechados de X com a propriedade da interseção finita. Seja $\mathcal B$ a família de todas as interseções finitas de membros de $\mathcal A$. É claro que $\mathcal B$ é uma base de filtro em X. Seja $\mathcal F$ o filtro gerado por $\mathcal B$. Segue de (c) que $\mathcal F$ tem pelo menos um ponto de acumulação, ou seja $\bigcap \{\overline{A}: A \in \mathcal F\} \neq \emptyset$. Como $\mathcal A \subset \mathcal B \subset \mathcal F$, e cada $A \in \mathcal A$ é fechado, segue que $\bigcap \mathcal A = \bigcap \{\overline{A}: A \in \mathcal A\} \neq \emptyset$.
 - $(c) \Leftrightarrow (d)$: Basta aplicar a Proposição 15.13.
- $(d)\Leftrightarrow (e)$: A implicação $(d)\Rightarrow (e)$ é imediata, e a implicação $(e)\Rightarrow (d)$ segue da Proposição 15.17.
- $(b) \Rightarrow (f)$: Seja $(x_{\lambda})_{\lambda \in \Lambda}$ uma rede em X. Seja $A_{\lambda} = \{x_{\mu} : \mu \geq \lambda\}$ para cada $\lambda \in \Lambda$, e seja $\mathcal{A} = \{\overline{A_{\lambda}} : \lambda \in \Lambda\}$. Então \mathcal{A} é uma família de fechados de X com a propriedade da interseção finita. Segue de (b) que $\bigcap \mathcal{A} \neq \emptyset$. Se $x \in \bigcap \mathcal{A} = \bigcap \{\overline{A_{\lambda}} : \lambda \in \Lambda\}$, então, para cada $U \in \mathcal{U}_x$ tem-se que $U \cap A_{\lambda} \neq \emptyset$ para cada $\lambda \in \Lambda$. Logo x é um ponto de acumulação da rede $(x_{\lambda})_{\lambda \in \Lambda}$.

 $(f)\Rightarrow (b)$: Seja \mathcal{A} uma família de fechados de X com a propriedade da interseção finita. Seja \mathcal{B} a família de toas as interseções finitas de membros de \mathcal{A} . É claro que \mathcal{B} é um conjunto dirigido se definimos $A\leq B$ quando $A\supset B$. Seja $x_B\in B$ para cada $B\in \mathcal{B}$. Segue de (f) que a rede $(x_B)_{B\in \mathcal{B}}$ tem pelo menos um ponto de acumulação x. Logo, dados $U\in \mathcal{U}_x$ e $A\in \mathcal{B}$, existe $B\in \mathcal{B}$, $B\subset A$, tal que $x_B\in U$, e portanto $x_B\in U\cap B\subset U\cap A$. Como $\mathcal{A}\subset \mathcal{B}$, segue que

$$x \in \bigcap {\overline{A} : A \in \mathcal{B}} = \bigcap \mathcal{B} \subset \bigcap \mathcal{A}.$$

- $(f) \Leftrightarrow (g)$: Basta aplicar a Proposição 13.10.
- $(f) \Rightarrow (h)$: Basta aplicar a Proposição 13.12.
- $(h) \Rightarrow (e)$: Seja \mathcal{F} um ultrafiltro em X, e seja

$$\Lambda = \{(a, A) : a \in A \in \mathcal{F}\}.$$

É claro que Λ é um conjunto dirigido se definimos $(a,A) \leq (b,B)$ quando $A \supset B$. Denotaremos por $(x_{\lambda})_{{\lambda} \in \Lambda}$ a rede $x:\Lambda \to X$ definida por x(a,A)=a para cada $(a,A) \in \Lambda$. Afirmamos que $(x_{\lambda})_{{\lambda} \in \Lambda}$ é uma rede universal. De fato, como $\mathcal F$ é um ultrafiltro, dado $E \subset X$, tem-se que $E \in \mathcal F$ ou $X \setminus E \in \mathcal F$. Se $E \in \mathcal F$, seja $e \in E$. Então

$$\{x(a,A):(a,A)\geq (e,E)\}\subset E.$$

De maneira análoga, se $X \setminus E \in \mathcal{F}$, seja $d \in X \setminus E$. Então

$$\{x(a,A):(a,A)\geq (d,X\setminus E)\}\subset X\setminus E.$$

Logo $(x_{\lambda})_{{\lambda} \in \Lambda}$ é uma rede universal. Segue de (h) que $(x_{\lambda})_{{\lambda} \in \Lambda}$ converge a um ponto x. Logo dado $U \in \mathcal{U}_x$, existe $(a, A) \in \Lambda$ tal que $b = x(b, B) \in U$ para todo $(b, B) \geq (a, A)$. Segue que $U \supset A$, e portanto \mathcal{F} converge a x.

- **21.7.** Proposition. (a) Cada subespaço fechado de um espaço compacto é compacto.
 - (b) Cada subespaço compacto de um espaço de Hausdorff é fechado.

Demonstração. (a) Seja X um espaço compacto e seja S um subespaço fechado de X. Seja $\{U_i: i \in I\}$ uma cobertura aberta de S. Para cada $i \in I$ existe um aberto V_i de X tal que $U_i = S \cap V_i$. Segue que $\{V_i: i \in I\} \cup \{X \setminus S\}$ é uma cobertura aberta de X. Como X é compacto, existe um conjunto finito $J \subset I$ tal que $X = \{X \setminus S\} \cup \bigcup_{i \in J} V_i$. Segue que $S = \bigcup_{i \in J} U_i$, e portanto S é compacto.

(b) Seja X um espaço de Hausdorff e seja S um subespaço compacto de X. Para provar que S é fechado em X, seja $x \in \overline{S}$. Então existe uma rede $(x_{\lambda})_{\lambda \in \Lambda} \subset S$ que converge a x. Como S é compacto, a rede $(x_{\lambda})_{\lambda \in \Lambda}$ admite uma subrede $(x_{\phi(\mu)})_{\mu \in M}$ que converge a um ponto $y \in S$. Como $(x_{\phi(\mu)})_{\mu \in M}$ converge a x também, e X é Hausdorff, segue que $x = y \in S$. Logo S é fechado em X.

Demonstração. Sejam X e Y espaços topológicos, com X compacto, e seja $f: X \to Y$ uma aplicação sobrejetiva e contínua. Para provar que Y é compacto, seja $\{V_i: i \in I\}$ uma cobertura aberta de Y. Então $\{f^{-1}(V_i): i \in I\}$ é uma cobertura aberta de X. Como X é compacto, existe um conjunto finito $J \subset I$ tal que $X = \bigcup_{i \in J} f^{-1}(V_i)$. Como f é sobrejetivo, segue que $Y = \bigcup_{i \in J} V_i$. Logo Y é compacto.

- **21.9.** Corolário. Seja X um espaço compacto, seja Y um espaço de Hausdorff, e seja f uma aplicação contínua. Então:
 - (a) f é fechada.
 - (b) Se f é sobrejetiva, então f é uma aplicação quociente.
 - (c) Se f é bijetiva, então f é um homeomorfismo.

Demonstração. (a) Seja A fechado em X. Pela Proposição 21.8 f(A) é compacto em Y. Pela Proposição 21.7 f(A) é fechado em Y.

- (b) segue de (a) pela Proposição 11.5.
- (c) segue de (a) pela Proposição 8.9.
- **21.10. Teorema de Tychonoff.** Seja $\{X_i : i \in I\}$ uma família não vazia de espaços topológicos não vazios. Então o produto $X = \prod_{i \in I} X_i$ é compacto se e só se cada X_i é compacto.

Demonstração. (\Rightarrow) Se X é compacto, então $X_i = \pi_i(X)$ é compacto para cada $i \in I$, pela Proposição 21.8.

- (\Leftarrow) Suponhamos que cada X_i seja compacto, e seja $(x_\lambda)_{\lambda\in\Lambda}$ uma rede universal em X. Pelo Exercício 13.F $(\pi_i(x_\lambda))_{\lambda\in\Lambda}$ é uma rede universal em X_i , para cada $i\in I$. Pelo Teorema 21.6, a rede $(\pi_i(x_{\lambda\in\Lambda})_{\lambda\in\Lambda}$ converge a um ponto $x_i\in X_i$ para cada $i\in I$. Seja $x=(x_i)_{i\in I}\in X$. Então $(x_\lambda)_{\lambda\in\Lambda}$ converge a x. Pelo Teorema 21.6 X é compacto.
- **21.11.** Corolário. O produto $[0,1]^I$ é compacto para cada conjunto não vazio I.
- **21.12.** Corolário. Um conjunto $K \subset \mathbb{R}^n$ é compacto se e só se K é fechado e limitado.

Demonstração. (\Rightarrow) Suponhamos K compacto. Como \mathbb{R}^n é Hausdorff, K é fechado em \mathbb{R}^n , pela Proposição 21.7. Por outro lado

$$K \subset \mathbf{R}^n = \bigcup_{j=1}^{\infty} B(0;j).$$

Como K é compacto, existe $k \in \mathbb{N}$ tal que

$$K \subset \bigcup_{j=1}^k B(0;j) = B(0;k).$$

Logo K é limitado.

 (\Leftarrow) Suponhamos Kfechado e limitado. Sendo K limitado, existe $k \in \mathbf{N}$ tal que

$$K \subset B(0;k) \subset [-k,k]^n$$
.

Sendo K fechado em \mathbb{R}^n , segue que K é fechado em $[-k,k]^n$. Pelo Corolário 21.11 $[-k,k]^n$ é compacto. Pela Proposição 21.7 K é compacto.

21.13. Teorema. Cada espaço de Hausdorff compacto é um espaço T_4 .

Demonstração. Sabemos que cada espaço de Lindelöf regular é normal. Como cada espaço compacto é claramente Lindelöf, basta provar que cada espaço de Hausdorff compacto é regular.

Seja X um espaço de Hausdorff compacto. Seja A um fechado de X, e seja $b \notin A$. Para cada $a \in A$ sejam U_a e V_a dois abertos disjuntos de X tais que $a \in U_a$ e $b \in V_a$. Como $A \subset \bigcup_{a \in A} U_a$ e A é compacto, existem $a_1, ..., a_n \in A$ tais que

$$A \subset \bigcup_{j=1}^{n} U_{a_j}.$$

Sejam

$$U = \bigcup_{j=1}^{n} U_{a_j}, \quad V = \bigcap_{j=1}^{n} V_{a_j}.$$

Então U e V são abertos disjuntos em $X, A \subset U$ e $b \in V$.

21.14. Corolário. O produto $[0,1]^I$ é um espaço T_4 para cada conjunto não vazio I.

Agora podemos complementar o Teorema 19.11 da maneira seguinte.

- **21.15. Teorema.** Para um espaço topológico X as seguintes condições são equivalentes:
 - (a) X é um espaço de Tychonoff.
 - (b) X é homeomorfo a um subespaço do produto $[0,1]^I$, para algum I.
 - (c) X é homeomorfo a um subespaço de um espaço de Hausdorff compacto.
 - (d) X é homeomorfo a um subespaço de um espaço T_4 .

Demonstração. A implicação $(a) \Rightarrow (b)$ segue do Teorema 19.11. A implicação $(b) \Rightarrow (c)$ segue do Corolário 21.11. A implicação $(c) \Rightarrow (d)$ segue do Teorema 21.13. E a implicação $(d) \Rightarrow (a)$ segue do Corolário 19.7.

Exercícios

21.A. Seja X um espaço topológico, e seja $K \subset X$. Prove que K é compacto se e só se, dada uma família $\{U_i : i \in I\}$ de abertos de X tal que $K \subset \bigcup \{U_i : i \in I\}$, existe uma família finita $J \subset I$ tal que $K \subset \bigcup \{U_i : i \in J\}$.

- **21.B.** Prove que ${\bf R}$ não é compacto.
- **21.C.** Prove que cada subconjunto finito de um espaço topológico qualquer é compacto.
- **21.D.** Prove que um espaço topológico discreto X é compacto se e só se X é finito.
 - 21.E. Usando a Proposição 21.8 prove que o círculo unitário

$$S^1 = \{(x, y) \in \mathbf{R}^2 : x^2 + y^2 = 1\}$$

é compacto.

- **21.F.** Seja X um espaço compacto, e seja $f: X \to \mathbf{R}$ uma função contínua. Prove que existem $a, b \in X$ tais que $f(a) \le f(x) \le f(b)$ para todo $x \in X$.
 - **21.G.** Sejam X e Y espaços topológicos, e seja $f: X \to Y$.
- (a) Se Y é Hausdorff, e f é contínua, prove que o gráfico de f é fechado em $X \times Y$.
- (b) Se Y é compacto, e o gráfico de f é fechado em $X\times Y,$ prove que f é contínua.
 - **21.H.** Seja X um espaço de Hausdorff.
- (a) Seja K um subconjunto compacto de X, e seja $b \notin K$. Prove que existem abertos disjuntos U e V de X tais que $K \subset U$ e $b \in V$.
- (b) Sejam K e L dois subconjuntos compactos disjuntos de X. Prove que existem abertos disjuntos U e V de X tais que $K \subset U$ e $L \subset V$.
- **21.I.** Seja X um espaço de Hausdorff, seja K um subconjunto compacto de X, e sejam U_1 e U_2 dois abertos de X tais que $K \subset U_1 \cup U_2$. Prove que existem dois subconjuntos compactos K_1 e K_2 de X tais que $K = K_1 \cup K_2$, $K_1 \subset U_1$ e $K_2 \subset U_2$.

Sugestão: Primeiro prove que existem abertos disjuntos V_1 e V_2 de X tais que $K \setminus U_1 \subset V_1$ e $K \setminus U_2 \subset V_2$. A seguir defina $K_1 = K \setminus V_1$ e $K_2 = K \setminus V_2$.

- **21.J.** Sejam X e Y espaços topológicos, sejam K e L subconjuntos compactos de X e Y, respectivamente, e seja W um aberto de $X \times Y$ tal que $K \times L \subset W$. Prove que existem abertos $U \subset X$ e $V \subset Y$ tais que $K \subset U$, $L \subset V$ e $U \times V \subset W$.
- **21.K.** Sejam X, Y e Z espaços topológicos, e seja $f: X \times Y \to Z$ uma aplicação contínua. Sejam K e L subconjuntos compactos de X e Y, respectivamente, e seja W um aberto de Z tal que $f(K \times L) \subset W$. Prove que existem abertos $U \subset X$ e $V \subset Y$ tais que $K \subset U, L \subset V$ e $f(U \times V) \subset W$.
 - **21.L.** Seja X um espaço compacto.
 - (a) Prove que a função

$$d(f,g) = \sup\{|f(x) - g(x)| : x \in X\}$$

- é uma métrica em C(X).
- (b) Prove que uma sequência (f_n) converge a f no espaço métrico (C(X), d) se e só se (f_n) converge a f uniformemente sobre X. Por essa razão a topologia τ_d definida pela métrica d é chamada de topologia da convergência uniforme.
- **21.M.** Seja X um espaço topológico qualquer. Dados $f \in C(X), A \subset X$ finito e $\epsilon > 0$, seja

$$V(f, A, \epsilon) = \{ g \in C(X) : |g(x) - f(x)| < \epsilon \text{ para todo } x \in A \}.$$

- (a) Prove que os conjuntos $V(f, A, \epsilon)$, com $A \subset X$ finito e $\epsilon > 0$, formam uma base de vizinhanças de f para uma topologia em C(X), que denotaremos por τ_p .
- (b) Prove que uma seqüência (f_n) converge a f em $(C(X), \tau_p)$ se e só se $f_n(x) \to f(x)$ para cada $x \in X$. Por essa razão a topologia τ_p é chamada de topologia da convergência pontual.
 - (c) Prove que a inclusão $(C(X), \tau_p) \hookrightarrow \mathbf{R}^X$ é um mergulho.
- **21.N.** Seja X um espaço topológico qualquer, e seja $\mathcal{F} \subset C(X)$. Diremos que \mathcal{F} é equicontínua num ponto $a \in X$ se dado $\epsilon > 0$, existe $U \in \mathcal{U}_a$ tal que $|f(x) f(a)| < \epsilon$ para todo $f \in \mathcal{F}$ e $x \in U$. Diremos que \mathcal{F} é equicontínua se for equicontínua em cada ponto de X.
 - (a) Se ${\mathcal F}$ é equicontínua, prove que $\overline{{\mathcal F}}^{\tau_p}$ é equicontínua também.
- (b) Se \mathcal{F} é equicontínua e X é compacto, prove que as topologias τ_p e τ_d coincidem em \mathcal{F} .
- **21.0.** Seja X um espaço topológico qualquer, e seja $\mathcal{F} \subset C(X)$. Diremos que \mathcal{F} é pontualmente limitada se $\sup\{|f(a)|: f \in \mathcal{F}\} < \infty$ para cada $a \in X$. Diremos que \mathcal{F} é localmente limitada se para cada $a \in X$ existe $U \in \mathcal{U}_a$ tal que $\sup\{|f(x)|: f \in \mathcal{F}, x \in U\} < \infty$.
- (a) Se \mathcal{F} é pontualmente limitada, prove que $\overline{\mathcal{F}}^{\tau_p}$ é pontualmente limitada também.
- (b) Se $\mathcal F$ é equicontínua e pontualmente limitada, prove que $\mathcal F$ é localmente limitada.
- **21.P.** Seja X um espaço compacto, e seja $\mathcal{F} \subset C(X)$ equicontínua e pontualmente limitada. Prove que \mathcal{F} é um subconjunto relativamente compacto de $(C(X), \tau_d)$. Este é o teorema de Arzela-Ascoli.

22. Espaços localmente compactos

- **22.1.** Definição. Diremos que um espaço topológico X é *localmente compacto* se cada $x \in X$ admite uma base de vizinhanças compactas.
- **22.2.** Proposição. Um espaço de Hausdorff X é localmente compacto se e só se cada $x \in X$ tem pelo menos uma vizinhança compacta.

Demonstração. Para provar a implicação não trivial, seja $x \in X$, e seja U_0 uma vizinhança compacta de x. Seja $U \in \mathcal{U}_x$, e seja $V = (U_0 \cap U)^\circ$. Então V é uma vizinhança aberta de x em X e $V \subset U_0$. Logo V é uma vizinhança aberta de x em U_0 . Notemos que U_0 é um espaço de Hausdorff compacto, e portanto regular. Logo existe um subconjunto aberto W de U_0 tal que

$$x \in W \subset \overline{W}^{U_0} \subset V \subset U$$
.

Temos que $W=U_0\cap W_1$, sendo W_1 aberto em X. Segue que

$$W = V \cap W = V \cap U_0 \cap W_1 = V \cap W_1.$$

Logo W é aberto em X. Segue que \overline{W}^{U_0} é uma vizinhança compacta de x em X e $\overline{W}^{U_0} \subset U$.

22.3. Exemplos.

- (a) Cada espaço de Hausdorff compacto é localmente compacto.
- (b) \mathbf{R}^n é um espaço de Hausdorff localmente compacto que no é compacto.
- (c) Seja X um conjunto infinito, com a topologia discreta. X é um espaço de Hausdorff localmente compacto que não é compacto.

Segue da definição que cada espaço de Hausdorff localmente compacto é regular. Mas podemos provar mais.

22.4. Teorema. Cada espaço de Hausdorff localmente compacto é um espaço de Tychonoff.

Demonstração. Seja X um espaço de Hausdorff localmente compacto. Provaremos que X é completamente regular. Seja A um fechado de X, e seja $b \in X \setminus A$. Por hipótese $X \setminus A$ contém uma vizinhança compacta U de b. Seja $V = U^{\circ}$. Temos que U é um espaço de Hausdorff compacto, e portanto completamente regular. Como V é aberto em U, e $b \in V$, existe uma função contínua $\phi: U \to [0,1]$ tal que $\phi(U \setminus V) \subset \{0\}$ e $\phi(b) = 1$. Notemos que $X = U \cup (X \setminus V)$. Seja $f: X \to [0,1]$ definida por $f = \phi$ em U e f = 0 em $X \setminus V$. A função f está bem definida, pois $\phi = 0$ em $U \cap (X \setminus V) = U \setminus V$. A função f é contínua, pois U e $X \setminus V$ são fechados. E como $A \subset X \setminus V$, segue que $f(A) \subset \{0\}$ e f(b) = 1.

Nos exercícios veremos que a interseção de um subespaço aberto e um subespaço fechado de um espaço de Hausdorff localmente compacto é um subespaço localmente compacto. Reciprocamente temos o resultado seguinte.

22.5. Proposição. Seja C um subespaço localmente compacto de um espaço de Hausdorff X. Então existem subespaços A e B de X, com A aberto e B fechado, tais que $C = A \cap B$.

A demonstração está baseada no lema seguinte.

22.6. Lema. Seja C um subespaço localmente compacto de um espaço de Hausdorff X. Então C é aberto em \overline{C}^X .

Demonstração. Seja $c \in C$, e seja U uma vizinhança aberta de c em C tal que \overline{U}^C é compacto. Seja V um aberto de X tal que $U = C \cap V$. Então

$$C \cap \overline{C \cap V}^X = C \cap \overline{U}^X = \overline{U}^C.$$

Esse conjunto é compacto, e portanto fechado em X. Esse conjunto contém $U=C\cap V$, e portanto $\overline{C\cap V}^X$. Logo

$$\overline{C \cap V}^X \subset C \cap \overline{C \cap V}^X \subset C.$$

Afirmamos que

$$\overline{C}^X \cap V \subset C.$$

De fato seja $x \in \overline{C}^X \cap V$. Logo existe uma rede $(x_\lambda)_{\lambda \in \Lambda} \subset C$ que converge a x. Como $x \in V$, existe $\lambda_0 \in \Lambda$ tal que $x_\lambda \in V$ para todo $\lambda \geq \lambda_0$. Logo $x_\lambda \in C \cap V$ para todo $\lambda \geq \lambda_0$, e dai $x \in \overline{C \cap V}^X \subset C$.

Como $\overline{C}^X \cap V$ é aberto em \overline{C}^X , segue que C é uma vizinhança de c em \overline{C}^X . Logo C é aberto em \overline{C}^X .

Demonstração da Proposição 22.5. Pelo Lema 22.6 C é aberto em \overline{C}^X . Logo existe um aberto A de X tal que $C = A \cap \overline{C}^X$. Assim basta tomar $B = \overline{C}^X$ para completar a demonstração.

No Exercício 22.F veremos que a imagem contínua e aberta de um espaço localmente compacto é um espaço localmente compacto.

- **22.7.** Proposição. Seja $\{X_i : i \in I\}$ uma família não vazia de espaços topológicos não vazios. Então o produto $X = \prod_{i \in I} X_i$ é localmente compacto se e só se se verificam as seguintes condições:
 - (a) Cada X_i é localmente compacto.
 - (b) Existe um conjunto finito $J \subset I$ tal que X_i é compacto para cada $i \in I \setminus J$.

Demonstração. (\Rightarrow) Suponhamos que X seja localmente compacto. Então $X_i = \pi_i(X)$ é localmente compacto para cada $i \in I$, pelo Exercício 22.F. Isto prova (a).

Para provar (b) seja $x \in X$ e seja U uma vizinhança compacta de x em X. Então U contém uma vizinhança básica V, ou seja

$$U \supset V = \prod_{j \in J} V_j \times \prod_{i \in I \setminus J} X_j,$$

sendo $J \subset I$, J finito, e sendo V_j uma vizinhança aberta de $\pi_j(x)$ em X_j , para cada $j \in J$. Segue que $\pi_i(U) = X_i$ para todo $i \in I \setminus J$, e (b) segue.

 (\Leftarrow) Suponhamos que cada X_i seja localmente compacto, e que X_i seja compacto para cada $i \in I \setminus J$, com J finito. Seja $x \in X$, e seja U uma vizinhança básica de x em X. Sem perda de generalidade podemos supor que

$$U = \prod_{j \in J_1} U_j \times \prod_{i \in I \setminus J_1} X_i,$$

sendo $J \subset J_1 \subset I$, J_1 finito, e sendo U_j uma vizinhança aberta de $\pi_j(x)$ em X_j para cada $j \in J_1$. Para cada $j \in J_1$ seja V_j uma vizinhança compacta de $\pi_j(x)$ em X_j , com $V_j \subset U_j$, e seja

$$V = \prod_{j \in J_1} V_j \times \prod_{i \in I \setminus J_1} X_i.$$

Então V é uma vizinhança compacta de x em X, contida em U.

22.8. Corolário. R^I é localmente compacto se e só se I é finito.

Exercícios

- **22.A.** Prove que o conjunto \mathbf{Q} dos números racionais, com a topologia induzida por \mathbf{R} , não é localmente compacto.
- **22.B.** Prove que o conjunto $\mathbf{R} \setminus \mathbf{Q}$ dos números irracionais, com a topologia induzida por \mathbf{R} , não é localmente compacto.
- ${\bf 22.C.}$ Seja Xum espaço localmente compacto. Prove que cada subespaço aberto de X é localmente compacto.
- **22.D.** Seja X um espaço localmente compacto. Prove que cada subespaço fechado de X é localmente compacto.
- **22.E.** Seja X um espaço de Hausdorff. Prove que a interseção de dois subespaços localmente compactos de X é localmente compacto.
- **22.F.** Prove que a imagem contínua e aberta de um espaço localmente compacto é um espaço localmente compacto.
- **22.G.** Seja X um espaço localmente compacto, seja Y um espaço de Hausdorff, e seja $f:X\to Y$ uma função sobrejetiva, contínua e aberta. Prove que, dado um compacto $L\subset Y$, existe um compacto $K\subset X$ tal que f(K)=L.
- **22.H.** Seja X um espaço localmente compacto. Prove que um conjunto $A\subset X$ é aberto em X se e só se $A\cap K$ é aberto em K para cada compacto $K\subset X$.

23. A compactificação de Alexandroff

- **23.1.** Definição. Seja X um espaço de Hausdorff. Chamaremos de compactificação de X um par (Y, ϕ) tal que:
 - (a) Y é um espaço de Hausdorff compacto;
 - (b) ϕ é um homeomorfismo entre X e um subespaço denso de Y.
- **23.2. Teorema.** Seja X um espaço de Hausdorff localmente compacto, que não é compacto. Seja $p \notin X$, e seja $X^* = X \cup \{p\}$. Para cada $x \in X$ seja $\mathcal{B}_x(X)$ uma base de vizinhanças abertas de x em X, e seja $\mathcal{B}_x(X^*) = \mathcal{B}_x(X)$. Seja

$$\mathcal{B}_p(X^*) = \{ \{ p \} \cup (X \setminus K) : K \ \text{\'e compacto em} \ X \}.$$

Então:

- (a) As famílias $\mathcal{B}_x(X^*)$ $(x \in X)$ e $\mathcal{B}_p(X^*)$ definem uma topologia em X^* que induz em X a sua topologia original.
 - (b) X* é um espaço de Hausdorff compacto.
 - (c) X é um subespaço aberto denso de X*.

Demonstração. (a) Para provar (a) devemos verificar as condições da Proposição 5.7:

- (i) $x \in U$ para cada $U \in \mathcal{B}_x(X^*)$.
- (ii) Dados $U, V \in \mathcal{B}_x(X^*)$, existe $W \in \mathcal{B}_x(X^*)$ tal que $W \subset U \cap V$.
- (iii) Dado $U \in \mathcal{B}_x(X^*)$, existe $V \in \mathcal{B}_x(X^*)$, $V \subset U$, tal que para cada $y \in V$ existe $W \in \mathcal{B}_y(X^*)$ tal que $W \subset U$.

Se $x \in X$, então $\mathcal{B}_x(X)$ satisfaz (i), (ii) e (iii), pela Proposição 5.6. Logo $\mathcal{B}_x(X^*)$ satisfaz (i), (ii) e (iii).

Verifiquemos que $\mathcal{B}_p(X^*)$ satisfaz (i), (ii) e (iii).

- (i) Se $U = \{p\} \cup (X \setminus K)$, então $p \in U$.
- (ii) Se $U=\{p\}\cup (X\backslash K),$ e $V=\{p\}\cup (X\backslash L),$ então $U\cap V=\{p\}\cup (X\backslash (K\cup L)).$
- (iii) Seja $U = \{p\} \cup (X \setminus K)$, e seja V = U. Se y = p, seja W = U. Então $W \in \mathcal{B}_p(X^*)$ e $W \subset U$. Se $y \in V$, com $y \neq p$, então $y \in X \setminus K$. Como $X \setminus K$ é aberto em X, existe $W \in \mathcal{B}_y(X) = \mathcal{B}_y(X^*)$ tal que $y \in W \subset X \setminus K \subset U$.

Se U é aberto em X, é claro que U é aberto em X^* . Em particular X é aberto em X^* . E se V é aberto em X^* , é claro que $X \cap V$ é aberto em X.

(b) Provemos que X^* é Hausdorff. Dados $x, y \in X$, com $x \neq y$, existem U e V abertos em X, e portanto em X^* , tais que $x \in U$, $y \in V$ e $U \cap V = \emptyset$.

Dado $x \in X$, seja U uma vizinhança compacta de x em X, e seja $V = \{p\} \cup (X \setminus U)$. Então $U \in \mathcal{U}_x(X^*), \ V \in \mathcal{U}_p(X^*)$ e $U \cap V = \emptyset$. Logo X^* é Hausdorff.

Para provar que X^* é compacto, seja \mathcal{U} uma cobertura aberta de X^* . Seja $U_0 \in \mathcal{U}$ tal que $p \in U_0$. Então existe um compacto $K \subset X$ tal que

$$\{p\} \cup (X \setminus K) \subset U_0.$$

K é compacto em X, e portanto em X^* . Logo existem $U_1,...,U_n \in \mathcal{U}$ tais que

$$K \subset U_1 \cup ... \cup U_n$$
.

Segue que

$$X^* = U_0 \cup U_1 \cup \dots \cup U_n.$$

Logo X^* é compacto.

(c) Já sabemos que X é aberto em X^* . Para provar que X é denso em X^* , seja $U = \{p\} \cup (X \setminus K) \in \mathcal{B}_p(X^*)$. Como X não é compacto, $X \setminus K \neq \emptyset$. Logo

$$U \cap X \supset X \setminus K \neq \emptyset$$
.

Logo X^* é compacto.

23.3. Definição. Seja X é um espaço de Hausdorff localmente compacto que não é compacto. Então o espaço X^* construido no teorema anterior é chamado de compactificação de Alexandroff de X.

Exercícios

- **23.A.** Seja X um espaço de Hausdorff. Suponhamos que exista uma compactificação (Y, ϕ) de X tal que $Y \setminus \phi(X)$ contém um único ponto. Prove que X é localmente compacto, mas não é compacto.
- **23.B.** (a) Prove que o intervalo (0,1] é um espaço de Hausdorff localmente compacto, que não é compacto.
- (b) Prove que o intervalo [0,1] é a compactificação de Alexandorff do intervalo (0,1].
- ${\bf 23.C.}$ (a) Prove que N, com a topologia discreta, é um espaço de Hausdorff localmente compacto, que não é compacto.
- (b) Prove que a compactificação de Alexandroff de ${\bf N}$ é homeomorfa ao subespaço $S=\{1/n:n\in{\bf N}\}\cup\{0\}$ de ${\bf R}.$
 - **23.D.** Seja

$$S^n = \{(x_1, ..., x_{n+1}) \in \mathbf{R}^{n+1} : \sum_{j=1}^{n+1} x_j^2 = 1\},$$

e sejam C = (0, ..., 0, 1/2) e N = (0, ..., 0, 1).

(a) Prove que a projeção estereográfica

$$(x_1,...,x_{n+1}) \in (C + \frac{1}{2}S^n) \setminus \{N\} \to \left(\frac{x_1}{1 - x_{n+1}},...,\frac{x_n}{1 - x_{n+1}}\right) \in \mathbf{R}^n$$

é um homeomorfismo.

(b) Conclua que a compactificação de Alexandroff de \mathbf{R}^n é homeomorfa a $S^n.$

24. A compactificação de Stone-Cech

Se um espaço topológico X admite uma compactificação, segue do Teorema 21.15 que X é um espaço de Tychonoff. A seguir veremos que vale a recíproca.

Seja X um espaço de Tychonoff. Para cada $f \in C_b(X)$ seja I_f um intervalo fechado e limitado que contém f(X). Segue da demonstração do Teorema 19.11 que a aplicação

$$\epsilon_X : x \in X \to (f(x))_{f \in C_b(X)} \in \prod_{f \in C_b(X)} I_f$$

é um mergulho.

24.1. Definição. Dado um espaço de Tychonoff X, denotaremos por βX a aderência do conjunto $\epsilon_X(X)$ no produto $\prod_{f \in C_b(X)} I_f$. É claro que o par $(\beta X, \epsilon_X)$ é uma compactificação de X. Diremos que βX é a compactificação de Stone-Cech de X.

A compactificação de Stone-Cech tem a seguinte propriedade:

24.2. Teorema. Seja X um espaço de Tychonoff, e seja Y um espaço de Hausdorff compacto. Então, para cada função contínua $h: X \to Y$, existe uma função contínua $\tilde{h}: \beta X \to Y$ tal que $h = \tilde{h} \circ \epsilon_X$, ou seja o seguinte diagrama é comutativo:

$$\begin{array}{ccc} X & \xrightarrow{h} & Y \\ \epsilon_X \searrow & \nearrow \tilde{h} \\ & \beta X \end{array}$$

Demonstração. Como Y é um espaço de Tychonoff, a aplicação

$$\epsilon_Y: y \in Y \to (g(y))_{g \in C_b(Y)} \in \prod_{g \in C_b(Y)} I_g$$

é um mergulho. Consideremos a aplicação

$$H: (\xi_f)_{f \in C_b(X)} \in \prod_{f \in C_b(X)} I_f \to (\xi_{g \circ h})_{g \in C_b(Y)} \in \prod_{g \in C_b(Y)} I_g.$$

É fácil ver que

$$\pi_g \circ H = \pi_{g \circ h}$$
 para todo $g \in C_b(Y)$,

e portanto H é contínua. É fácil ver que

$$H(\epsilon_X(x)) = \epsilon_Y(h(x))$$
 para todo $x \in X$,

ou seja o seguinte diagrama é comutativo:

$$\begin{array}{ccc} X & \stackrel{h}{\longrightarrow} & Y \\ \\ \epsilon_X \downarrow & & \downarrow \epsilon_Y \\ \prod_{f \in C_b(X)} I_f & \stackrel{H}{\longrightarrow} & \prod_{g \in C_b(Y)} I_g \end{array}$$

Em particular

$$H(\epsilon_X(X)) = \epsilon_Y(h(X)) \subset \epsilon_Y(Y).$$

Como $\beta X = \overline{\epsilon_X(X)}$ e Y é compacto, segue que

$$H(\beta X) = H(\overline{\epsilon_X(X)}) \subset \overline{H(\epsilon_X(X))} \subset \overline{\epsilon_Y(Y)} = \beta Y = \epsilon_Y(Y).$$

Assim temos o seguinte diagrama comutativo:

$$X \xrightarrow{h} Y$$

$$\epsilon_X \downarrow \qquad \qquad \downarrow \epsilon_Y$$

$$\beta X \xrightarrow{H|\beta X} \qquad \beta Y = \epsilon_Y(Y)$$

Se definimos

$$\tilde{h} = \epsilon_Y^{-1} \circ (H|\beta X) : \beta X \to Y,$$

então é claro que $\tilde{h} \circ \epsilon_X = h$.

Exercícios

- **24.A.** Seja X um espaço de Tychonoff. Prove que, para cada $f \in C_b(X)$, existe $\tilde{f} \in C_b(\beta X)$ tal que $f = \tilde{f} \circ \epsilon_X$.
- **24.B.** Considerando a função f(t) = sen(1/t) (0 < $t \le 1$), prove que o intervalo [0, 1] não é a compactificação de Stone-Cech do intervalo (0, 1].
- **24.C.** Seja ℓ^{∞} o conjunto de todas as seqüências (x_n) em \mathbf{R} que são limitadas. Dadas $x=(x_n)$ e $y=(y_n)$ em ℓ^{∞} , seja $d(x,y)=\sup_n |x_n-y_n|$.
- (a) Prove que ℓ^∞ é um espaço vetorial sobre ${\bf R},$ e que d é uma métrica em ℓ^∞
- (b) Prove que existe um isomorfismo entre os espaços vetoriais ℓ^{∞} e $C(\beta \mathbf{N})$, que é também uma *isometria*, ou seja d(T(x), T(y)) = d(x, y) para todo $x, y \in \ell^{\infty}$.
- **24.D.** Seja X um espaço de Tychonoff, e seja (Y,ϕ) uma compactificação de X.
 - (a) Se $\phi(X)$ é aberto em Y, prove que X é localmente compacto.
- (b) Se $x \in X$, e se U é uma vizinhança compacta de x em X, prove que $\phi(U)$ é uma vizinhança de $\phi(x)$ em Y.
 - (c) Prove que $\phi(X)$ é aberto em Y se e só se X é localmente compacto.

- **24.E.** Identifiquemos N com sua imagem canônica em β N.
- (a) Prove que ${\bf N}$ é aberto em $\beta {\bf N}$.
- (b) Prove que cada $n \in \mathbf{N}$ é um ponto isolado de $\beta \mathbf{N}$, ou seja $\{n\}$ é aberto em $\beta \mathbf{N}$.
 - (c) Prove que os únicos pontos isolados de βN são os pontos de N.
- **24.F.** Seja X um espaço de Tychonoff, e seja (Y,ϕ) uma compactificação de X tal que, dados um espaço de Hausdorff compacto Z, e uma função contínua $h:X\to Z$, existe uma função contínua $\tilde{h}:Y\to Z$ tal que $\tilde{h}\circ\phi=h$. Prove que existe um homeomorfismo $\tilde{\phi}:\beta X\to Y$ tal que $\tilde{\phi}\circ\epsilon_X=\phi$. Isto nos diz que a compactificação de Stone-Cech está caracterizada pela propriedade de extensão dada pelo Teorema 24.2.

25. Espaços metrizáveis

Lembremos que um espaço topológico X é metrizável se existe uma métrica em X que define a topologia de X. É claro que cada subespaço de um espaço metrizável é metrizável.

25.1. Proposição. Seja $\{X_i : i \in I\}$ uma família não vazia de espaços topológicos não triviais. Então o produto $X = \prod_{i \in I} X_i$ é metrizável se e só se cada X_i é metrizável e I é enumerável.

Demonstração. (\Rightarrow) Suponhamos que X seja metrizável. Como cada X_i é homeomorfo a um subespaço de X, segue que cada X_i é metrizável. Como X satisfaz o primeiro axioma de enumerabilidade, I é enumerável, pela Proposição 20.5.

 (\Leftarrow) Suponhamos que cada X_i seja metrizável, e que I seja enumerável. Sem perda de generalidade podemos supor que $I = \mathbf{N}$. Para cada $n \in \mathbf{N}$ seja d_n uma métrica em X_n que define a topologia de X_n . Pelo Exercício 25.B podemos supor que cada d_n é limitada por 1. Dados $x = (x_n)_{n=1}^{\infty}$ e $y = (y_n)_{n=1}^{\infty}$ em $X = \prod_{n=1}^{\infty} X_n$, definamos

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} d_n(x_n, y_n).$$

É claro que d é uma métrica em X. Provemos que d define a topologia de X. Por um lado, dado $\epsilon>0$, seja $N\in {\bf N}$ tal que

$$\sum_{n=N+1}^{\infty} 2^{-n} < \frac{\epsilon}{2},$$

e seja

$$V = \prod_{n=1}^{N} B_{d_n}(x_n; \frac{\epsilon}{2N}) \times \prod_{n=N+1}^{\infty} X_n.$$

Então V é uma vizinhança de x em X e é fácil ver que $V \subset B_d(x;\epsilon)$.

Por outro lado, seja U uma vizinhança aberta básica de x em X, ou seja

$$U = \prod_{n=1}^{N} B_{d_n}(x_n; \delta_n) \times \prod_{n=N+1}^{\infty} X_n.$$

Se definimos

$$\delta = \min\{2^{-n}\delta_n : n = 1, ..., N\},\$$

então é fácil verificar que $B_d(x;\epsilon) \subset U$.

- **25.2.** Teorema de metrizabilidade de Urysohn. Para um espaço T_1 as seguintes condições são equivalentes:
 - (a) X é metrizável e separável.
 - (b) X é regular e satisfaz o segundo axioma de enumerabilidade.
 - (c) X é homeomorfo a um subespaço do produto $[0,1]^{\mathbf{N}}$.

Demonstração. As implicações $(a) \Rightarrow (b)$ e $(c) \Rightarrow (a)$ são imediatas. A primeira segue da Proposição 20.4, e a segunda segue das Proposições 25.1 e 20.7.

Para provar que $(b)\Rightarrow(c),$ seja $\mathcal B$ uma base enumerável para a topologia de X, e seja

$$\mathcal{C} = \{(U, V) \in \mathcal{B} \times \mathcal{B} : \overline{U} \subset V\}.$$

Pela Proposição 20.3 X é um espaço de Lindelöf. Pelo Teorema 20.8 X é um espaço normal. Dai para cada $(U,V) \in \mathcal{C}$ existe uma função contínua $f_{UV}: X \to [0,1]$ tal que

$$f_{UV}(\overline{U}) \subset \{0\} \text{ e } f_{UV}(X \setminus V) \subset \{1\}.$$

Seja

$$\mathcal{F} = \{ f_{UV} : (U, V) \in \mathcal{C} \}.$$

Afirmamos que \mathcal{F} separa pontos de fechados. De fato seja A um fechado em X, e seja $b \in X \setminus A$. Seja $V \in \mathcal{B}$ tal que $b \in V \subset X \setminus A$. Como X é regular, existe um aberto U_1 em X tal que

$$b \in U_1 \subset \overline{U_1} \subset V \subset X \setminus A$$
.

Seja $U \in \mathcal{B}$ tal que $b \in U \subset U_1$. Segue que

$$b\in U\subset \overline{U}\subset V\subset X\setminus A$$

e portanto $(U, V) \in \mathcal{C}$. Segue que

$$f_{UV}(b) \in f_{UV}(\overline{U}) \subset \{0\} \text{ e } f_{UV}(A) \subset f_{UV}(X \setminus V) \subset \{1\}.$$

Pelo Corolário 19.15 a avaliação

$$\epsilon: x \in X \to (f(x))_{f \in \mathcal{F}} \in [0, 1]^{\mathcal{F}}$$

é um mergulho. Como \mathcal{F} é enumerável, temos provado (c).

25.3. Corolário. A imagem contínua de um espaço métrico compacto em um espaço de Hausdorff é metrizável.

Demonstração. Seja X um espaço métrico compacto, seja Y um espaço de Hausdorff, e seja $f:X\to Y$ contínua e sobrejetiva. Então Y é compacto e portanto regular. Pelo Teorema 25.2, para provar que Y é metrizável, basta provar que Y satisfaz o segundo axioma de enumerabilidade.

Seja $\mathcal B$ uma base enumerável para a topologia de X. Seja $\mathcal C$ a família das uniões finitas de membros de $\mathcal B$, e seja

$$\mathcal{D} = \{ Y \setminus f(X \setminus U) \}.$$

 \mathcal{D} é uma família enumerável de abertos de Y. Provaremos que \mathcal{D} é uma base para a topologia de Y. Seja V aberto em Y, e seja $y \in V$. Então $f^{-1}(y) \subset f^{-1}(V)$, $f^{-1}(y)$ é compacto, e $f^{-1}(V)$ é aberto em X. Usando a compacidade de $f^{-1}(y)$ podemos achar $U_1, ..., U_n \in \mathcal{B}$ tais que

$$f^{-1}(y) \subset U_1 \cup ... \cup U_n \subset f^{-1}(V).$$

Seja $U = U_1 \cup ... \cup U_n$. Então $U \in \mathcal{C}$ e é fácil verificar que

$$y \in Y \setminus f(X \setminus U) \subset V$$
.

Logo \mathcal{D} é uma base enumerável para a topologia de Y.

O teorema de Urysohn caracteriza os espaços topológicos que são metrizáveis e separáveis. Há outro teorema, mais geral, que caracteriza os espaços topológicos que são apenas metrizáveis. Não veremos esse teorema aqui.

Exercícios

25.A. Prove que as seguintes funções são crescentes:

- (a) f(t) = t/(1+t) $(t \ge 0)$.
- (b) g(t) = t/(1-t) $(0 \le t < 1)$.
- **25.B.** Seja d uma métrica em um conjunto X, e seja $d_1: X \times X \to \mathbf{R}$ definida por

$$d_1(x,y) = \frac{d(x,y)}{1 + d(x,y)}.$$

- (a) Prove que d_1 é uma métrica em X.
- (b) Prove que as métricas $d \in d_1$ definem os mesmos abertos em X.

Sugestão: Use o exercício anterior.

- **25.C.** Seja X um espaço métrico localmente compacto, e seja X^* a compactificação de Alexandroff de X. Prove que as seguintes condições são equivalentes:
 - (a) X é separável.
 - (b) $X = \bigcup_{n=1}^{\infty} K_n$, com K_n compacto e $K_n \subset (K_{n+1})^{\circ}$ para cada n.
 - (c) X* é metrizável.

26. Espaços conexos

26.1. Definição. Um espaço topológico X é dito desconexo se existem dois abertos disjuntos não vazios A e B em X tais que $X = A \cup B$. Caso contrário X é dito conexo. Um conjunto $S \subset X$ é dito desconexo se S, com a topologia induzida por X, é um espaço desconexo. Caso contrário S é dito conexo

26.2. Exemplos.

- (a) Cada espaço topológico discreto, com pelo menos dois pontos, é desconexo.
 - (b) O espaço de Sierpinski é conexo.
 - **26.3.** Proposição. Cada intervalo fechado e limitado em R é conexo.

Demonstração. Suponhamos que [a,b] seja desconexo, sendo a < b. Então $[a,b] = A \cup B$, sendo A e B dois abertos disjuntos não vazios de [a,b]. Sem perda de generalidade podemos supor que $b \in B$. Como B é aberto, segue que $(b-\epsilon,b] \subset B$ para algum $\epsilon > 0$. Seja $c = \sup A$. Então c < b e $(c,b] \subset B$. Se $c \in A$, então, como A é aberto, existiria $\epsilon > 0$ tal que $[c,c+\epsilon) \subset A$, absurdo, pois $c = \sup A$. Logo $c \in B$. Se c > a, então, como B é aberto, existiria $\epsilon > 0$ tal que $(c-\epsilon,c] \subset B$, absurdo, pois $c = \sup A$. Logo c = a, e portanto $[a,b] = [c,b] \subset B$, absurdo de novo. Logo [a,b] é conexo.

Deixamos como exercício as demonstrações dos dois resultados seguintes.

- **26.4.** Proposição. Um espaço topológico X é conexo se e só se X e \emptyset são os únicos subconjuntos de X que são abertos e fechados.
 - 26.5. Proposição. A imagem contínua de um espaço conexo é conexo.
- **26.6.** Proposição. Seja X um espaço topológico, e seja S um subconjunto conexo de X. Então \overline{S} também é conexo.

Demonstração. Suponhamos que

$$\overline{S} = A \cup B$$
.

sendo A e B dois subconjuntos abertos não vazios de \overline{S} . Segue que

$$S = (S \cap A) \cup (S \cap B),$$

sendo $S\cap A$ e $S\cap B$ dois subconjuntos abertos não vazios de S. Isto é absurdo, pois S é conexo.

26.7. Corolário. Seja X um espaço topológico, seja S um subconjunto conexo de X, e seja $S \subset T \subset \overline{S}$. Então T é conexo.

Demonstração. Basta aplicar a proposição anterior com X = T.

26.8. Definição. Seja X um espaço topológico. Diremos que dois conjuntos $A, B \subset X$ são mutuamente separados se $\overline{A} \cap B = A \cap \overline{B} = \emptyset$.

26.9. Proposição. Um espaço topológico X é desconexo se e só se existem dois conjuntos mutuamente separados não vazios A e B tais que $X = A \cup B$.

Demonstração. (\Rightarrow) Se X é desconexo, então existem dois abertos disjuntos não vazios A e B tais que $X = A \cup B$. Como A e B são abertos e fechados, é claro que A e B são mutuamente separados.

 (\Leftarrow) Suponhamos que $X=A\cup B,$ sendo Ae Bdois conjuntos mutuamente separados não vazios. Como

$$X = \overline{A} \cup B$$
 e $\overline{A} \cap B = \emptyset$,

vemos que $B=X\setminus\overline{A}$ é aberto. De maneira análoga segue que A é aberto. Logo X é desconexo.

26.10. Corolário. Seja X um espaço topológico. Um subconjunto $S \subset X$ é desconexo se e só se existem dois conjuntos não vazios A e B, mutuamente separados em X, tais que $S = A \cup B$.

Demonstração. (\Leftarrow) Suponhamos que $S=A\cup B$, sendo A e B dois conjuntos não vazios, mutuamente separados em X. Então é claro que A e B são mutuamente separados em S.

 (\Rightarrow) Suponhamos que $S=A\cup B,$ sendo Ae Bdois conjuntos não vazios, mutuamente separados em S. Então

$$\overline{A}^X \cap B = \overline{A}^X \cap S \cap B = \overline{A}^S \cap B = \emptyset.$$

De maneira similar podemos provar que $A\cap \overline{B}^X=\emptyset$. Logo A e B são mutuamente separados em X.

26.11. Corolário. Seja X um espaço topológico, sejam A e B dois conjuntos mutuamente separados, e seja S um subconjunto conexo de $A \cup B$. Então $S \subset A$ ou $S \subset B$.

Demonstração. É claro que

$$S = (S \cap A) \cup (S \cap B),$$

e os conjuntos $S\cap A$ e $S\cap B$ são mutuamente separados em X. Como S é conexo, segue da proposição anterior que $S\cap A=\emptyset$ ou $S\cap B=\emptyset$. Logo $S\subset B$ ou $S\subset A$.

26.12. Proposição. Seja X um espaço topológico. Suponhamos que $X = \bigcup_{i \in I} S_i$, onde cada S_i é conexo e $\bigcap_{i \in I} S_i \neq \emptyset$. Então X é conexo.

Demonstração. Suponhamos que $X = A \cup B$, sendo A e B dois conjuntos mutuamente separados. Segue do corolário anterior que $S_i \subset A$ ou $S_i \subset B$ para cada $i \in I$. Seja $s \in \bigcap_{i \in I} S_i$. Se $s \in A$, então $S_i \subset A$ para cada $i \in I$, e portanto $B = \emptyset$. De maneira análoga, se $s \in B$, então $A = \emptyset$. Logo X é conexo.

26.13. Proposição. Seja X um espaço topológico. Suponhamos que cada par de pontos $x,y \in X$ pertence a um conjunto conexo $S_{xy} \subset X$. Então X é conexo.

Demonstração. Fixemos $a \in X$. Segue da hipótese que

$$X = \bigcup_{x \in X} S_{ax} \quad \text{e} \quad a \in \bigcap_{x \in X} S_{ax}.$$

Pela proposição anterior X é conexo.

26.14. Proposição. Seja X um espaço topológico. Suponhamos que $X = \bigcup_{n=1}^{\infty} S_n$, onde cada S_n é conexo e $S_n \cap S_{n+1} \neq \emptyset$ para cada $n \in \mathbb{N}$. Então X é conexo.

Demonstração. Seja $T_n=\bigcup_{k=1}^n S_k$ para cada $n\in \mathbb{N}$. Usando a Proposição 26.12 e indução segue que cada T_n é conexo. Como

$$X = \bigcup_{n=1}^{\infty} T_n \ e \ \bigcap_{n=1}^{\infty} T_n \neq \emptyset,$$

outra aplicação da Proposição 26.12 implica que X é conexo.

26.15. Exemplos.

(a) R é conexo pela Proposição 26.12, pois

$$\mathbf{R} = \bigcup_{n=1}^{\infty} [-n,n] \quad \mathrm{e} \quad \bigcap_{n=1}^{\infty} [-n,n] = [-1,1].$$

- (b) \mathbf{R}^n é conexo pela Proposição 26.12, pois \mathbf{R}^n é a união de todas as retas que passam pela origem.
- **26.16.** Proposição. Seja $\{X_i : i \in I\}$ uma família não vazia de espaços topológicos não vazios. Então o produto $X = \prod_{i \in I} X_i$ é conexo se e só se cada X_i é conexo.

Demonstração. (\Rightarrow) Se X é conexo, então $X_i = \pi_i(X)$ é conexo para cada $i \in I$.

 (\Leftarrow) Fixemos $a \in X$ e denotemos por S o conjunto de todos os $x \in X$ tais que existe um conjunto conexo $S_{ax} \subset X$ contendo a e x. Como

$$S = \bigcup_{x \in S} S_{ax} \quad e \quad a \in \bigcap_{x \in S} S_{ax},$$

vemos que S é conexo., pela Proposição 26.12. Pela Proposição 26.5, para provar que X é conexo basta provar que $X = \overline{S}$. Seja $b \in X$ e seja U um aberto básico contendo b, ou seja

$$U = \bigcap_{k=1}^{n} \pi_{i_k}^{-1}(U_{i_k}),$$

com U_{i_k} aberto em X_{i_k} para k=1,...,n. Seja $T_1,...,T_n$ definidos da maneira seguinte. T_k é o conjunto dos $x=(x_i)_{i\in I}\in X$ tais que:

 $x_{i_k} \in X_{i_k}$ é arbitrário; $x_{i_j} = b_{i_j}$ se j < k; $x_{i_j} = a_{i_j}$ se j > k; $x_i = a_i$ se $i \neq i_1, ... i_n$.

É claro que T_k é homeomorfo a X_{i_k} , que é conexo, e $T_k \cap T_{k+1} \neq \emptyset$ para k=1,...,n-1. Pela Proposição 26.14 $T=\bigcup_{k=1}^n T_k$ é conexo. Como $a\in T_1\subset T$, segue que $T\subset S$. Por outro lado

$$S \cap U \supset T \cap U \supset T_n \cap U \neq \emptyset$$
.

Isto prova que $b \in \overline{S}$, e portanto $X = \overline{S}$.

Exercícios

- **26.A.** Prove que um espaço topológico X é conexo se e só se X e \emptyset são os únicos subconjuntos de X que são abertos e fechados.
 - 26.B. Prove que a imagem contínua de um espaço conexo é conexo.
- **26.C.** Seja S um subconjunto conexo de ${\bf R}$. Prove que, dados a < b em S, tem-se que $[a,b] \subset S$.
- ${f 26.D.}$ Prove que cada subconjunto enumerável de ${f R},$ com pelo menos dois pontos, é desconexo.
- **26.E.** Seja X um conjunto infinito, com a topologia cofinita. Prove que X é conexo.
- **26.F.** Seja $f:[0,1] \to [0,1]$ uma função contínua. Prove que existe $x \in [0,1]$ tal que f(x) = x.
 - **26.G.** Prove que o círculo unitário S^1 é conexo.
 - **26.H.** Prove que a esfera

$$S^n = \{(x_1, ..., x_{n+1}) \in \mathbf{R}^{n+1} : \sum_{j=1}^{n+1} x_j^2 = 1\}$$

é conexa para cada $n \in \mathbf{N}$.

27. Componentes conexas

- **27.1.** Definição. Seja X um espaço topológico. Dado $x \in X$, denotaremos por C_x a união dos subconjuntos conexos de X que contém x. Então C_x é o maior subconjunto conexo de X que contém x. Diremos que C_x é a componente conexa de X que contém x.
- **27.2.** Proposição. Seja X um espaço topológico. Dados $x, y \in X$, tem-se que $C_x = C_y$ ou $C_x \cap C_y = \emptyset$.

Demonstração. Se $C_x \cap C_y \neq \emptyset$, então $C_x \cup C_y$ é conexo, e portanto

$$C_x = C_x \cup C_y = C_y.$$

27.3. Proposição. As componentes conexas de um espaço topológico são sempre fechadas.

Demonstração. Como C_x é conexo, segue que $\overline{C_x}$ é conexo também. Logo $C_x=\overline{C_x}$.

- **27.4.** Definição. Um espaço topológico X é dito *localmente conexo* se cada $x \in X$ admite uma base de vizinhanças abertas e conexas.
- **27.5.** Exemplo. O espaço $[0,1) \cup (1,2]$ é localmente conexo, mas não é conexo.
- **27.6.** Proposição. Um espaço topológico X é localmente conexo se e só se as componentes conexas de cada aberto de X são abertas em X.

Demonstração. (\Rightarrow) Suponhamos que X seja localmente conexo. Seja U um aberto de X, e seja C uma componente conexa de U. Por hipótese para cada $x \in C$ existe um aberto conexo V tal que $x \in V \subset U$. Segue que $x \in V \subset C$, e portanto C é aberto em X.

- (\Leftarrow) Suponhamos que as componentes conexas de cada aberto de X sejam abertas em X. Seja $x \in X$, e seja U uma vizinhança aberta de x em X. Seja C a componente conexa de U que contém x. Como por hipótese C é aberto em X, concluimos que X é localmente conexo.
- **27.7.** Corolário. As componentes conexas de um espaço localmente conexo são abertas e fechadas.
- **27.8.** Proposição. Cada quociente de um espaço localmente conexo é localmente conexo.

Demonstração. Seja X um espaço localmente conexo e seja $\pi: X \to Y$ uma aplicação quociente. Provaremos que as componentes conexas de cada aberto de Y são abertas em Y.

Seja V um aberto não vazio em Y, e seja D uma componente conexa de V. Para provar que D é aberta em Y basta provar que $\pi^{-1}(D)$ é aberto em X. Seja $x \in \pi^{-1}(D)$, e seja C_x a componente conexa de $\pi^{-1}(V)$ que contém x.

 $\pi(C_x)$ é conexo e $\pi(x) \subset \pi(C_x) \subset V$. Como $\pi(x) \in D$, segue que $\pi(C_x) \subset D$, e portanto $C_x \subset \pi^{-1}(D)$. Como C_x é aberto em X, segue que $\pi^{-1}(D)$ é aberto em X, como queriamos.

Exercícios

- **27.A.** Se $X = \mathbf{Q}$, prove que $C_x = \{x\}$ para cada $x \in \mathbf{Q}$.
- **27.B.** Seja X um espaço topológico discreto, com pelo menos dois pontos.
- (a) Prove que X é localmente conexo, mas não é conexo.
- (b) Prove que $C_x = \{x\}$ para cada $x \in X$.
- **27.C.** Prove que um espaço topológico X é localmente conexo se e só se a topologia de X admite uma base formada por conjuntos abertos e conexos.
- **27.D.** Se um espaço topológico X é compacto e localmente conexo, prove que X tem apenas um número finito de componentes conexas.
- **27.E.** Sejam X e Y espaços topológicos, e seja $f: X \to Y$ uma aplicação contínua. Prove que a imagem de cada componente conexa de X está contida numa componente conexa de Y.
- **27.F.** Se X e Y são homeomorfos, prove que cada componente conexa de X é homeomorfa a uma componente conexa de Y.

28. Espaços conexos por caminhos

- **28.1.** Definição. Um espaço topológico X é dito conexo por caminhos se dados $a, b \in X$, existe uma função contínua $f : [0,1] \to X$ tal que f(0) = a e f(1) = b. Diremos que f é um caminho em X entre a e b.
 - 28.2. Proposição. Cada espaço conexo por caminhos é conexo.

Demonstração. Seja X um espaço conexo por caminhos. Suponhamos que existam dois abertos disjuntos não vazios A e B tais que $X = A \cup B$. Sejam $a \in A$ e $b \in B$, e seja $f : [0,1] \to X$ um caminho em X entre a e b. Segue que

$$[0,1] = f^{-1}(A) \cup f^{-1}B,$$

e [0, 1] não seria conexo.

28.3. Exemplos.

- (a) \mathbf{R}^n é conexo por caminhos. De fato, dados $a,b \in \mathbf{R}^n$, seja $f:[0,1] \to \mathbf{R}^n$ definida por f(t) = (1-t)a + tb.
- (b) $\mathbf{R}^2 \setminus E$ é conexo por caminhos para cada conjunto enumerável $E \subset \mathbf{R}^2$. De fato, para cada $a \in \mathbf{R}^2 \setminus E$, existe uma família não enumerável de retas em $\mathbf{R}^2 \setminus E$ que passam por a. Dai, dados $a, b \in \mathbf{R}^2 \setminus E$, existem duas retas L_1 e L_2 em $\mathbf{R}^2 \setminus E$ que passam por a e b, respectivamente, e que tem interseção não vazia. Essa retas fornecem um caminho em $\mathbf{R}^2 \setminus E$ entre a e b.
- (c) Se $n \geq 2$, então $\mathbf{R}^n \setminus E$ é conexo por caminhos para cada conjunto enumerável $E \subset \mathbf{R}^n$. De fato, dados $a,b \in \mathbf{R}^n \setminus E$, seja S um subespaço vetorial de \mathbf{R}^n de dimensão 2 que contém a e b. Segue de (b) que existe um caminho em $S \cap (\mathbf{R}^n \setminus E) = S \setminus (S \cap E)$ entre a e b.
- **28.4. Definição.** Seja X um espaço topológico, seja $f:[0,1] \to X$ um caminho entre a e b, e seja $g:[0,1] \to X$ um caminho entre b e c. Seja $f*g:[0,1] \to X$ o caminho entre a e c definido por

$$(f * g)(t) = f(2t)$$
 $(0 \le t \le \frac{1}{2}),$

$$(f * g)(t) = g(2t - 1)$$
 $(\frac{1}{2} \le t \le 1).$

- **28.5.** Definição. Um espaço topológico X é dito localmente conexo por caminhos se cada $x \in X$ admite uma base de vizinhanças abertas e conexas por caminhos.
- **28.6.** Proposição. Se X é conexo e localmente conexo por caminhos, então X é conexo por caminhos.

Demonstração. Seja $a \in X$, e seja S o conjunto dos $x \in X$ tais que existe um caminho em X entre a e x. Claramente $a \in S$. Para provar que S = X, basta provar que S é aberto e fechado.

Para provar que S é aberto, seja $b \in S$, e seja U uma vizinhança aberta de b que é conexa por caminhos. Seja f um caminho em X entre a e b, e seja g um caminho em X entre b e $c \in U$. Então f * g é um caminho em X entre a e c, e portanto $U \subset S$. Logo S é aberto.

Para provar que S é fechada, seja $c \in \overline{S}$, e seja U uma vizinhança aberta de c que é conexa por caminhos. Seja $b \in U \cap S$, seja f um caminho em X entre a e b, e seja g um caminho em X entre b e c. Então f * g é um caminho em X entre a e c, e portanto $c \in S$. Logo S é fechado.

Exercícios

- **28.A.** Um conjunto $S \subset \mathbf{R}^n$ é dito *convexo* se $(1-t)a+tb \in S$ para todo $a,b \in S$ e $t \in [0,1]$. Prove que cada conjunto convexo em \mathbf{R}^n é conexo por caminhos.
- **28.B.** Prove que a imagem contínua de um espaço conexo por caminhos é conexo por caminhos.
- **28.C.** Seja $\{X_i: i \in I\}$ uma família não vazia de espaços topológicos não vazios. Prove que o produto $X = \prod_{i \in I} X_i$ é conexo por caminhos se e só se cada X_i é conexo por caminhos.
 - **28.D.** (a) Prove que S^1 é conexo por caminhos.
 - (b) Prove que S^n é conexo por caminhos para cada $n \in \mathbb{N}$.
 - **28.E.** Prove que os espaços \mathbf{R} e \mathbf{R}^n não são homeomorfos se $n \geq 2$.
 - **28.F.** Prove que os espaços [0,1] e S^1 não são homeomorfos.
 - **28.G.** Prove que os espaços S^1 e S^n não são homeomorfos se $n \geq 2$.
- **28.H.** Prove que cada subconjunto aberto e conexo de \mathbf{R}^n é conexo por caminhos.
 - 28.I. Consideremos os conjuntos

$$S = \{(x, y) \in \mathbf{R}^2 : 0 < x \le 1, \quad y = \text{sen}(1/x)\},$$
$$T = S \cup \{(0, y) : -1 \le y \le 1\}.$$

- (a) Prove que S é conexo.
- (b) Prove que T é conexo.
- (c) Prove que S é conexo por caminhos.
- (d) Prove que T não é conexo por caminhos.

Sugestão: Para provar (d) suponha que $f = (f_1, f_2) : [0, 1] \to T$ seja um caminho em T entre (0,0) e $(1/\pi,0)$. Prove que f_1 toma todos os valores $1/n\pi$, com $n \in \mathbb{N}$. A seguir prove que, em cada vizinhança de 0 em [0,1] f_2 toma os valores 1 e -1. Conclua que f_2 não é contínua em 0.

28.J. Seja X um espaço topológico, e sejam f, g e h caminhos em X entre a e b, entre b e c, e entre c e d, respectivamente.

(a) Prove que

$$[(f * g) * h](t) = f(4t) \qquad (0 \le t \le \frac{1}{4}),$$
$$[(f * g) * h](t) = g(4t - 1) \qquad (\frac{1}{4} \le t \le \frac{1}{2}),$$
$$[(f * g) * h](t) = h(2t - 1) \qquad (\frac{1}{2} \le t \le 1).$$

(b) Prove que

$$[f * (g * h)](t) = f(2t) \qquad (0 \le t \le \frac{1}{2}),$$
$$[f * (g * h)](t) = g(4t - 2) \qquad (\frac{1}{2} \le t \le \frac{3}{4}),$$
$$[f * (g * h)](t) = h(4t - 3) \qquad (\frac{3}{4} \le t \le 1).$$

29. Homotopia

29.1. Definição. Sejam X e Y espaços topológicos, e sejam $f,g\in C(X;Y)$. Diremos que f e g são homotópicas, e escreveremos $f\simeq g$, se existir uma função contínua

$$H: X \times [0,1] \to Y$$

tal que

$$H(x,0) = f(x) \qquad (x \in X),$$

$$H(x,1) = g(x) \quad (x \in X).$$

Diremos que H é uma homotopia entre f e g, e escreveremos $H: f \simeq g$.

Se definimos

$$f_t(x) = H(x,t) \quad (x \in X, 0 \le t \le 1).$$

vemos que H representa uma família de funções contínuas $f_t: X \to Y \ (0 \le t \le 1)$ tais que $f_0 = f$ e $f_1 = g$.

29.2. Exemplo. Seja X um espaço topológico qualquer, e seja Y um subconjunto convexo de \mathbf{R}^n . Então qualquer par de funções $f,g\in C(X;Y)$ são homotópicas entre si. Basta definir

$$H(x,t) = (1-t)f(x) + tg(x)$$
 $(x \in X, 0 \le t \le 1).$

29.3. Proposição. A relação $f \simeq g$ é uma relação de equivalência em C(X;Y).

Demonstração. Se $f \in C(X;Y)$, então $H: f \simeq f$, onde

$$H(x,t) = f(x) \quad (x \in X, 0 \le t \le 1).$$

Se $H_1: f \simeq g$, então $H_2: g \simeq f$, onde

$$H_2(x,t) = H_1(x,1-t) \quad (x \in X, 0 \le t \le 1).$$

Se $H_1: f \simeq g$ e $H_2: g \simeq h$, então $H_3: f \simeq h$, onde

$$H_3(t) = H_1(x, 2t)$$
 $(x \in X, 0 \le t \le \frac{1}{2}),$

$$H_3(t) = H_2(x, 2t - 1)$$
 $(x \in X, \frac{1}{2} \le t \le 1).$

29.4. Proposição. Sejam X, Y, Z espaços topológicos, e sejam $f_1, g_1 \in C(X;Y)$ e $f_2, g_2 \in C(Y;Z)$. Se $f_1 \simeq g_1$ e $f_2 \simeq g_2$, então $f_2 \circ f_1 \simeq g_2 \circ g_1$.

Demonstração. Sejam

$$H_1: f_1 \simeq g_1, \quad H_2: f_2 \simeq g_2,$$

e seja $H_3: X \times [0,1] \to Z$ definida por

$$H_3(x,t) = H_2(H_1(x,t),t) \quad (x \in X, 0 \le t \le 1).$$

Então

$$H_3(x,0) = H_2(H_1(x,0),0) = H_2(f_1(x),0) = f_2 \circ f_1(x) \quad (x \in X),$$

$$H_3(x,1) = H_2(H_1(x,1),1) = H_2(g_1(x),1) = g_2 \circ g_1(x) \quad (x \in X),$$

e portanto

$$H_3: f_2 \circ f_1 \simeq g_2 \circ g_1.$$

- **29.5.** Definição. Um espaço topológico X é dito contrátil se a função identidade $i_X(x) = x$ é homotópica a uma função constante $c(x) = x_0$.
- **29.6.** Proposição. Um espaço topológico X é contrátil se e só se, para cada espaço topológico Y, qualquer par de funções $f,g \in C(Y;X)$ são homotópicas entre si.

Demonstração. Para provar a implicação não trivial, suponhamos que X seja contrátil, ou seja $i_X \simeq c$, e sejam $f,g \in C(Y;X)$. Então, usando a proposição anterior, segue que

$$f = i_X \circ f \simeq c \circ f = c \circ g \simeq i \circ g = g.$$

29.7. Exemplo. Segue do Exemplo 29.2 que cada subconjunto convexo de \mathbf{R}^n é contrátil.

Sabemos que dois espaços topológicos X e Y são homeomorfos se e só se existem $f \in C(X;Y)$ e $g \in C(Y;X)$ tais que $g \circ f = i_X$ e $f \circ g = i_Y$.

29.8. Definição. Diremos que dois espaços topológicos X e Y são homotopicamente equivalentes se existem $f \in C(X;Y)$ e $g \in C(Y;X)$ tais que $g \circ f \simeq i_X$ e $f \circ g \simeq i_Y$.

Se X e Y são homeomorfos, é claro que X e Y são homotopicamente equivalentes, mas a recíproca é falsa em geral.

29.9. Proposição. Um espaço topológico X é contrátil se e só se X é homotopicamente equivalente a um espaço unitário.

Demonstração. (\Rightarrow) Suponhamos que a identidade em X seja homotópica a uma função constante $c(x) = x_0$. Seja $Y = \{x_0\}$, e seja $j: Y \hookrightarrow X$ a aplicação inclusão. Então $j \circ c = c \simeq i_X$ e $c \circ j = i_Y$.

(\Leftarrow) Suponhamos que X seja homotopicamente equivalente a $Y=\{y_0\}$. Sejam $f\in C(X;Y)$ e $g\in C(Y;X)$ tais que $g\circ f\simeq i_X$ e $f\circ g\simeq i_Y$. Como $g\circ f$ é uma função constante, vemos que X é contrátil.

Na próxima seção precisaremos de uma variante da noção de homotopia, conhecida como homotopia relativa.

29.10. Definição. (a) Diremos que (X,A) é um par topológico se X é um espaço topológico, e $A \subset X$.

- (b) Diremos que $f:(X,A)\to (Y,B)$ é uma função contínua se $f:X\to Y$ é uma função contínua tal que $f(A)\subset B$.
- (c) Diremos que (X,A) e (Y,B) são homeomorfos se existem funções contínuas $f:(X,A)\to (Y,B)$ e $g:(Y,B)\to (X,A)$ tais que $g\circ f=i_X$ e $f\circ g=i_Y$. Notemos que neste caso $f:X\to Y$ é um homeomorfismo e f(A)=B.
- (d) Diremos que duas funções contínuas $f,g:(X,A)\to (Y,B)$ são homotópicas se existir uma função contínua

$$H: X \times [0,1] \to Y$$

tal que

$$H(x,0) = f(x)$$
 $(x \in X),$
 $H(x,1) = g(x)$ $(x \in X),$
 $H(x,t) = f(x) = g(x)$ $(x \in A, 0 < t < 1).$

Neste caso diremos que H é uma homotopia entre f e g relativa a A, e escreveremos $H: f \simeq g[A]$.

(e) Diremos que (X,A) e (Y,B) são homotopicamente equivalentes se existem funções contínuas $f:(X,A)\to (Y,B)$ e $g:(Y,B)\to (X,A)$ tais que $g\circ f\simeq i_X[A]$ e $f\circ g\simeq i_Y[B]$.

Exercícios

- 29.A. Prove que cada espaço contrátil é conexo por caminhos.
- **29.B.** Prove que a relação $f \simeq g[A]$ é uma relação de equivalencia no conjunto de todas as funções contínuas $f: (X, A) \to (Y, B)$.
- **29.C.** Prove que, se (X,A) e (Y,B) são homotopicamente equivalentes, então X e Y são homotopicamente equivalentes.
- **29.D.** Prove que, se (X, A) e (Y, B) são homotopicamente equivalentes, então A e B são homeomorfos.
- **29.E.** Seja X um espaço topológico, e sejam $a,b,c\in X$. Sejam f_1 e g_1 dois caminhos em X entre a e b, e sejam f_2 e g_2 dois caminhos em X entre b e c. Se

$$f_1 \simeq g_1[\{0,1\}]$$
 e $f_2 \simeq g_2[\{0,1\}],$

prove que

$$f_1 * f_2 \simeq g_1 * g_2[\{0,1\}].$$

30. O grupo fundamental

30.1. Definição. Seja X um espaço topológico, e seja $x_0 \in X$.

- (a) Diremos que $f:[0,1] \to X$ é um laço com base em x_0 se f é contínua e $f(0) = f(1) = x_0$. Denotaremos por $\Omega(X, x_0)$ o conjunto de todos os laços em X com base em x_0 .
- (b) Diremos que $f,g \in \Omega(X,x_0)$ são homotópicos se $f \simeq g[\{0,1\}]$. Neste caso escreveremos $f \simeq_{x_0} g$. Denotaremos por $\Pi_1(X,x_0)$ o conjunto das classes de equivalência em $\Omega(X,x_0)$ sob a relação \simeq_{x_0} .
 - **30.2.** Teorema. O conjunto $\Pi_1(X, x_0)$, com a operação

$$[f] * [g] = [f * g],$$

é um grupo, chamado de grupo fundamental de X, com base em x_0 .

Demonstração. Se $f_1 \simeq_{x_0} f_2$ e $g_1 \simeq_{x_0} g_2$, segue do Exercício 29.E que

$$f_1 * g_1 \simeq_{x_0} f_2 * g_2.$$

Logo a operação está bem definida.

Para provar que a operação é associativa basta provar que

(1)
$$(f * g) * h \simeq_{x_0} f * (g * h)$$

para todo $f, g, h \in \Omega(X, x_0)$. Pelo Exercício 28.G, por um lado temos que

$$[(f * g) * h](s) = f(4s) \qquad (0 \le 4s \le 1),$$
$$[(f * g) * h](s) = g(4s - 1) \qquad (1 \le 4s \le 2),$$
$$[(f * q) * h](s) = h(2s - 1) \qquad (2 \le 4s \le 4).$$

E por outro lado

$$[f * (g * h)](s) = f(2s) (0 \le 4s \le 2),$$

$$[f * (g * h)](s) = g(4s - 2) (2 \le 4s \le 3),$$

$$[f * (g * h)](s) = h(4s - 3) (3 \le 4s \le 4).$$

Definamos

$$H(s,t) = f(\frac{4s}{1+t}) \qquad (0 \le 4s \le 1+t),$$

$$H(s,t) = g(4s-1-t) \qquad (1+t \le 4s \le 2+t),$$

$$H(s,t) = h(\frac{4s-2-t}{2-t}) \qquad (2+t \le 4s \le 4).$$

Não é difícil verificar que H é contínua e que

$$H(s,0) = [(f * g) * h](s) \qquad (0 \le s \le 1),$$

$$H(s,1) = [f * (g * h)](s) \qquad (0 \le s \le 1),$$

$$H(0,t) = [(f * g) * h](0) = [f * (g * h)](0) \qquad (0 \le t \le 1),$$

$$H(1,t) = [(f * g) * h](1) = [f * (g * h)](1) \qquad (0 \le t \le 1).$$

Isto prova (1).

Seja $e(s)=x_0$ para todo $s\in[0,1]$. Para provar que [e] é o elemento identidade de $\Pi_1(X,x_0)$, basta provar que

$$(2) f * e \simeq_{x_0} f$$

е

$$(3) e * f \simeq_{x_0} f$$

para todo $f \in \Omega(X, x_0)$. Notemos que

$$(f * e)(s) = f(2s)$$
 $(0 \le 2s \le 1),$
 $(f * e)(s) = x_0$ $(1 \le 2s \le 2).$

Definamos

$$H(s,t) = f(\frac{2s}{1+t})$$
 $(0 \le 2s \le 1+t),$
 $H(s,t) = x_0$ $(1+t \le 2s \le 2).$

Não é difícil verificar que H é contínua e que

$$H(s,0) = (f * e)(s) \qquad (0 \le s \le 1),$$

$$H(s,1) = f(s) \qquad (0 \le s \le 1),$$

$$H(0,t) = (f * e)(0) = f(0) \qquad (0 \le t \le 1),$$

$$H(1,t) = (f * e)(1) = f(1) \qquad (0 \le t \le 1).$$

Isto prova (2). A demonstração de (3) é análoga.

Dado $f \in \Omega(X, x_0)$, seja $f^{-1} \in \Omega(X, x_0)$ definido por $f^{-1}(s) = f(1-s)$ para todo $s \in [0, 1]$. Para provar que $[f^{-1}]$ é o inverso de [f] basta provar que

$$(4) f * f^{-1} \simeq_{x_0} e$$

е

(5)
$$f^{-1} * f \simeq_{x_0} e$$

Notemos que

$$(f * f^{-1})(s) = f(2s)$$
 $(0 \le 2s \le 1),$
 $(f * f^{-1})(s) = f(2-2s)$ $(1 \le 2s \le 2).$

Definamos

$$H(s,t) = f(t) \qquad (0 \le 2s \le 2t),$$

$$H(s,t) = f(2s-t)$$
 $(2t \le 2s \le 1+t),$
 $H(s,t) = f(2-2s+t)$ $(1+t \le 2s \le 2).$

Não é difícil verificar que H é contínua e que

$$H(s,0) = (f * f^{-1})(s) \qquad (0 \le s \le 1),$$

$$H(s,1) = e(s) \qquad (0 \le s \le 1),$$

$$H(0,t) = (f * f^{-1})(0) = e(0) \qquad (0 \le t \le 1),$$

$$H(1,t) = (f * f^{-1})(1) = e(1) \qquad (0 \le t \le 1).$$

Isto prova (4) A demonstração de (5) é análoga.

30.3. Proposição. Seja $\phi:[0,1]\to X$ um caminho em X entre x_0 e x_1 . Então a função

$$\phi^* : [f] \in \Pi_1(X, x_0) \to [\phi^{-1} * f * \phi] \in \Pi_1(X, x_1)$$

é um isomorfismo de grupos.

Demonstração. Usando o Exercício 29. E segue que, se
 $f_1 \simeq_{x_0} f_2,$ então

$$\phi^{-1} * f_1 * \phi \simeq_{x_0} \phi^{-1} * f_2 * \phi.$$

Isto prova que ϕ^* está bem definida. É fácil ver que ϕ^* é um homomorfismo de grupos, e que $(\phi^{-1})^*$ é seu inverso. Deixamos a demonstração detalhada como exercício.

- **30.4.** Corolário. Se X é conexo por caminhos, então todos os grupos $\Pi_1(X, x_0)$, com $x_0 \in X$, são isomorfos entre si.
- **30.5.** Definição. Um espaço topológico X é dito simplesmente conexo se X é conexo por caminhos e o grupo $\Pi_1(X, x_0)$ é trivial para algum, e portanto, para todo $x_0 \in X$.
 - 30.6. Exemplo. Cada subconjunto convexo de \mathbb{R}^n é simplesmente conexo.

Com efeito basta provar que $f\simeq_{x_0} g$ para todo $f,g\in\Omega(X,x_0)$. Seja $H:[0,1]\times[0,1]\to X$ definida por

$$H(s,t) = (1-t)f(s) + tg(s).$$

Então

$$H(s,0) = f(s) \qquad (0 \le s \le 1),$$

$$H(s,1) = g(s) \qquad (0 \le s \le 1),$$

$$H(0,t) = x_0 \qquad (0 \le t \le 1),$$

$$H(1,t) = x_0 \qquad (0 \le t \le 1).$$

Isto prova que $f \simeq_{x_0} g$.

Exercícios

30.A. Sejam X e Y espaços topológicos, e seja $\phi:(X,x_0)\to (Y,y_0)$ uma função contínua. Prove que a função

$$\phi_* : [f] \in \Pi_1(X, x_0) \to [\phi \circ f] \in \Pi_1(Y, y_0)$$

é um homomorfismo de grupos.

30.B. Se ϕ é a identidade em X, prove que ϕ_* é a identidade em $\Pi_1(X, x_0)$.

30.C. Sejam X, Y e Z espaços topológicos, e sejam $\phi:(X,x_0)\to (Y,y_0)$ e $\psi:(Y,y_0)\to (Z,z_0)$ funções contínuas. Prove que

$$(\psi \circ \phi)_* = \psi_* \circ \phi_*.$$

30.D. Se $\phi:(X,x_0)\to (Y,y_0)$ é um homeomorfismo, prove que a função

$$\phi_*: \Pi_1(X, x_0) \to \Pi_1(Y, y_0)$$

é um isomorfismo de grupos.

- **30.E.** Sejam X e Y espaços topológicos, e sejam $\phi, \psi : (X, x_0) \to (Y, y_0)$ funções contínuas tais que $\phi \simeq \psi[\{x_0\}]$. Prove que $\phi \circ f \simeq_{y_0} \psi \circ f$ para todo $f \in \Omega(X, x_0)$, ou seja $\phi_* = \psi_*$.
- **30.F.** Se (X, x_0) e (Y, y_0) são homotopicamente equivalentes, prove que os grupos $\Pi_1(X, x_0)$ e $\Pi_1(Y, y_0)$ são isomorfos.
- **30.G.** Sejam X e Y espaços topológicos, e sejam $x_0 \in X$ e $y_0 \in Y$. Prove que o grupo $\Pi_1(X \times Y, (x_0, y_0))$ é isomorfo ao grupo $\Pi(X, x_0) \times \Pi(Y, y_0)$.

31. O grupo fundamental do círculo unitário

Consideremos o círculo unitário

$$S^1 = \{(x, y) \in \mathbf{R}^2 : x^2 + y^2 = 1\} = \{z \in \mathbf{C} : |z| = 1\}.$$

Nesta seção provaremos o teorema seguinte.

31.1. Teorema. O grupo $\Pi_1(S^1,1)$ é isomorfo a \mathbb{Z} .

Para provar este teorema vamos precisar de dois lemas auxiliares. Antes de enunciar esses lemas, consideremos a função

$$p: t \in \mathbf{R} \to e^{2\pi t i} \in S^1.$$

É claro que:

- (a) p é sobrejetiva, contínua e aberta, com p(0) = 1.
- (b) A restrição $p|(-\frac{1}{2},\frac{1}{2}):(-\frac{1}{2},\frac{1}{2})\to S^1\setminus\{-1\}$ é um homeomorfismo, com inversa q.
 - (c) p(s+t) = p(s)p(t) para todo $s, t \in \mathbf{R}$.
 - (d) p(t) = 1 se e só se $t \in \mathbf{Z}$.

É claro que \mathbf{R} é um grupo abeliano sob adição de números reais, S^1 é um grupo abeliano sob multiplicação de números complexos, e $p: \mathbf{R} \to S^1$ é um homomorfismo de grupos cujo núcleo é \mathbf{Z} .

31.2. Lema. Seja g um caminho em S^1 , com g(0) = 1. Então existe um único caminho f em R tal que f(0) = 0 e $p \circ f = q$.

$$\begin{array}{ccc} & & \mathbf{R} & & \\ & f \nearrow & & \downarrow p & \\ & & & & \\ [0,1] & \longrightarrow & & S^1 & \\ & & & & g & & \end{array}$$

Demonstração. Como [0,1] é compacto, a função $g:[0,1] \to S^1$ é uniformemente contínua. Logo existe $\delta>0$ tal que se $|s-t|<\delta$, então |g(s)-g(t)|<2. Então $g(s)/g(t)\neq -1$ e q(g(s)/g(t)) está bem definida. Seja $n\in \mathbf{N}$ tal que $1/n<\delta$, e seja $f:[0,1]\to \mathbf{R}$ definida por

$$f(t) = \sum_{k=1}^{n} q\left(\frac{g(\frac{k}{n}t)}{g(\frac{k-1}{n}t)}\right).$$

Então f é contínua, f(0) = 0 e

$$p\circ f(t)=\prod_{k=1}^n\frac{g(\frac{k}{n}t)}{g(\frac{k-1}{n}t)}=g(t),$$

provando existência. Para provar unicidade, suponhamos que exista uma função contínua $f_1:[0,1]\to \mathbf{R}$ tal que $f_1(0)=0$ e $p\circ f_1=g$. Então

$$p \circ (f_1 - f)(t) = 1 \quad (0 \le t \le 1),$$

e portanto

$$(f_1 - f)(t) \in \mathbf{Z}$$
 $(0 \le t \le 1).$

Como [0,1] é conexo, segue que

$$(f_1 - f)(t) = 0$$
 $(0 \le t \le 1).$

- **31.3. Lema.** Sejam g_1 e g_2 caminhos em S^1 tais que $g_1(0) = g_2(0) = 1$, e sejam f_1 e f_2 os únicos caminhos em \mathbf{R} tais que $f_1(0) = f_2(0) = 0$, $p \circ f_1 = g_1$ e $p \circ f_2 = g_2$.
- (a) Dada uma função contínua $G:[0,1]\times[0,1]\to S^1$ tal que G(0)=1, existe uma única função contínua $F:[0,1]\times[0,1]\to \mathbf{R}$ tal que F(0)=0 e $p\circ F=G$.
 - (b) Se $G: g_1 \simeq g_2[\{0,1\}]$, então $F: f_1 \simeq f_2[\{0,1\}]$.

$$\begin{array}{ccc} & & \mathbf{R} & & \\ & & & \downarrow p & \\ [0,1] \times [0,1] & & \longrightarrow & S^1 \\ & & G & & \end{array}$$

Demonstração. (a) A demonstração de (a) é similar à demonstração do lema anterior. Como G é uniformemente contínua, existe $\delta>0$ tal que se $|z-w|<\delta$, então |G(z)-G(w)|<2, e portanto q(G(z)/G(w)) está bem definida. Seja $n\in \mathbf{N}$ tal que $1/n<\delta$, e seja $F:[0,1]\times[0,1]\to\mathbf{R}$ definida por

$$F(z) = \sum_{k=1}^n q\left(\frac{G(\frac{k}{n}z)}{G(\frac{k-1}{n}z)}\right).$$

Então F é contínua, F(0) = 0 e $p \circ F = G$. Se existir uma função contínua $F_1 : [0,1] \times [0,1] \to \mathbf{R}$ tal que $F_1(0) = 0$ e $p \circ F_1 = G$, então podemos provar como antes que $F_1 = F$.

(b) Suponhamos que $G: g_1 \simeq g_2[\{0,1\}]$. Então

$$p \circ F(s,0) = G(s,0) = g_1(s) = p \circ f_1(s) \quad (0 \le s \le 1).$$

Pela unicidade no lema anterior, segue que

$$F(s,0) = f_1(s) \quad (0 \le s \le 1).$$

De maneira análoga podemos provar que

$$F(s,1) = f_2(s) \quad (0 \le s \le 1).$$

Por outro lado temos que

$$p \circ F(0,t) = G(0,t) = g_1(0) = g_2(0) = p \circ f_1(0) = p \circ f_2(0) \quad (0 \le t \le 1).$$

Pela unicidade do lema anterior segue que

$$F(0,t) = f_1(0) = f_2(0) \quad (0 \le t \le 1).$$

De maneira análoga podemos provar que

$$F(1,t) = f_1(1) = f_2(1) \quad (0 \le t \le 1).$$

Logo $F: f_1 \simeq f_2[\{0,1\}].$

Demonstração do Teorema 31.1. Se $g \in \Omega(S^1, 1)$, então segue do Lema 31.2 que existe um único caminho $f:[0,1] \to \mathbf{R}$ tal que f(0)=0 e $p \circ f(1)=g(1)=1$. Então $f(1) \in \mathbf{Z}$. Definamos

$$\sigma : [g] \in \Pi_1(S^1, 1) \to f(1) \in \mathbf{Z}.$$

Dados $g_1, g_2 \in \Omega(S^1, 1)$, sejam f_1 e f_2 os únicos caminhos em \mathbf{R} tais que $f_1(0) = f_2(0) = 0$, $p \circ f_1 = g_1$ e $p \circ f_2 = g_2$. Se $G : g_1 \simeq g_2[\{0, 1\}]$, então segue do Lema 31.3 que $F : f_1 \simeq f_2[\{0, 1\}]$. Em particular $F(1, t) = f_1(1) = f_2(1)$. Isto prova que a função σ está bem definida.

Para provar que σ é um homomorfismo de grupos, sejam $g_1, g_2 \in \Omega(S^1, 1)$, e sejam f_1 e f_2 os únicos caminhos em \mathbf{R} tais que $f_1(0) = f_2(0) = 0$, $p \circ f_1 = g_1$ e $p \circ f_2 = g_2$. Sejam

$$n_1 = f_1(1), \quad n_2 = f_2(1).$$

Seja $f:[0,1]\to\mathbf{R}$ definido por

$$f(s) = n_1 + f_2(s)$$
 $(0 \le s \le 1).$

Então

$$f(0) = n_1 + f_2(0) = n_1 = f_1(1),$$
 $f(1) = n_1 + f_2(1) = n_1 + n_2,$ $p(f(s)) = p(n_1)p(f_2(s)) = g_2(s)$ $(0 \le s \le 1).$

Segue que

$$p \circ (f_1 * f) = (p \circ f_1) * (p \circ f) = g_1 * g_2,$$

$$(f_1 * f)(0) = f_1(0) = 0, \quad (f_1 * f)(1) = f(1) = n_1 + n_2.$$

Assim $f_1 * f$ é o único caminho em **R** tal que $(f_1 * f)(0) = 0$ e $\phi \circ (f_1 * f) = g_1 * g_2$. Segue que

$$\sigma([g_1] * [g_2]) = \sigma([g_1 * g_2]) = (f_1 * f)(1)$$
$$= n_1 + n_2 = f_1(1) + f_2(1) = \sigma([g_1]) + \sigma([g_2]).$$

Isto prova que σ é um homomorfismo de grupos.

Para provar que σ é sobrejetiva, seja $n \in \mathbf{Z}$, e sejam $f:[0,1] \to \mathbf{R}$ e $g:[0,1] \to S^1$ definidos por

$$f(s) = ns \quad (0 \le s \le 1), \qquad g = p \circ f.$$

Então f(0) = 0 e g(0) = g(1) = 1, e dai segue que

$$\sigma([g]) = f(1) = n.$$

Para provar que σ é injetiva, seja $g \in \Omega(S^1, 1)$ tal que $\sigma([g]) = 0$. Seja f o único caminho em \mathbf{R} tal que f(0) = 0 e $\phi \circ f = g$. Então $f(1) = \sigma([g]) = 0$, e portanto $f \in \Omega(\mathbf{R}, 0)$. Como \mathbf{R} é simplesmente conexo, temos que $f \simeq_0 0$, e dai segue que

$$g = p \circ f \simeq_1 p(0) = 1.$$

Isto completa a demonstração.

Exercícios

31.A. Usando o Exercício 30.G prove que o grupo $\Pi_1(S^1 \times S^1, (1,1))$ é isomorfo a $\mathbf{Z} \times \mathbf{Z}$.

31.B. Seja

$$B^2 = \{(x, y) \in \mathbf{R}^2 : x^2 + y^2 \le 1\},\,$$

e seja $j:S^1\hookrightarrow B^2$ a inclusão. Usando o Exercício 30.C prove que não existe uma aplicação contínua $r:B^2\to S^1$ tal que $r\circ j$ seja a identidade.

31.C. Seja $f: B^2 \to B^2$ uma função contínua. Usando o exercício anterior prove que existe $x \in B^2$ tal que f(x) = x.

Sugestão: Se $f(x) \neq x$ para cada $x \in B^2$, seja r(x) o ponto onde a reta de f(x) a x intercepta S^1 .

- **31.D.** Prove que o homomorfismo de grupos $p: \mathbf{R} \to S^1$ induz um isomorfismo de grupos $\tilde{p}: \mathbf{R}/\mathbf{Z} \to S^1$ que é também um homeomorfismo.
- **31.E.** Seja G um $grupo\ topológico$, ou seja G é um grupo, G é também um espaço topológico, e a aplicação $(x,y) \in G \times G \to xy^{-1} \in G$ é contínua.

- (a) Prove que a aplicação $(x,y) \in G \times G \to xy \in G$ é contínua.
- (b) Prove que a aplicação $x \in G \to x^{-1} \in G$ é um homeomorfismo.
- (c) Prove que a aplicação $y \in G \to xy \in G$ é um homeomorfismo para cada $x \in G$.
- (d) Prove que U é uma vizinhança aberta de 1 em G se e só se xU é uma vizinhança aberta de x em G.
- **31.F.** Seja G um grupo topológico abeliano, e seja H um subgrupo de G. Prove que a aplicação quociente $\pi:G\to G/H$ é aberta.
- **31.G.** Seja G um grupo topológico abeliano, e seja H um subgrupo discreto de G. Seja $\pi:G\to G/H$ a aplicação quociente, e seja $g:[0,1]\to G/H$ um caminho com g(0)=1.
- (a) Prove que existe uma vizinhança aberta U de 1 em G tal que $\pi(U)$ é uma vizinhança aberta de 1 em G/H e a restrição $\pi|U:U\to\pi(U)$ é um homeomorfismo.
- (b) Adaptando a demonstração do Lema 31.2 prove que existe um único caminho $f:[0,1]\to G$ tal que f(0)=1 e $\pi\circ f=g$.

De maneira análoga podemos adaptar as demonstrações do Lema 31.3 e do Teorema 31.1 para provar o teorema seguinte:

Teorema. Seja G um grupo topológico abeliano simplesmente conexo, e seja H um subgrupo discreto de G. Então o grupo $\Pi_1(G/H, 1)$ é isomorfo a H.

- **31.H.** Sejam E e X espaços topológicos, e seja $p: E \to X$ uma função contínua. Diremos que $p: E \to X$ é um espaço de recobrimento se cada $x \in X$ admite uma vizinhança aberta V tal que $p^{-1}(V)$ e uma união disjunta de abertos U_i tais que a restrição $p|U_i:U_i\to V$ é um homeomorfismo para cada i.
- Se $p(t)=e^{2\pi t i}$ para cada $t\in \mathbf{R},$ prove que $p:\mathbf{R}\to S^1$ é um espaço de recobrimento.
- **31.I.** Seja $p:E\to X$ um espaço de recobrimento. Seja G o conjunto de todos os homeomorfismos $\phi:E\to E$ tais que $p\circ\phi=p$.
- (a) Prove que p é sobrejetiva e aberta, em particular p é uma aplicação quociente.
 - (b) Prove que $p^{-1}(x)$ é um subconjunto discreto de E para cada $x \in X$.
- (c) Prove que G é um grupo sob composição, que chamaremos de grupo de $\mathit{transformações}$ do recobrimento.
- **31.J.** Prove que o grupo de transformações do recobrimento $p: \mathbf{R} \to S^1$ é isomorfo a \mathbf{Z} .

Adaptando as demonstrações dos Lemas 31.2 e 31.3 e do Teorema 31.1, podemos provar o teorema seguinte:

Teorema. Seja $p: E \to X$ um espaço de recobrimento, e seja G o grupo de transformações do recobrimento. Se E é simplesmente conexo e localmente conexo por caminhos, então o grupo $\Pi_1(X, x_0)$ é isomorfo a G para cada $x_0 \in X$.

Bibliografia

- [1] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
- [2] M. Greenberg, Lectures on Algebraic Topology, Benjamin, New York, 1967.
- [3] **J. Kelley**, General Topology, Van Nostrand, New York, 1955. Tradução ao espanhol: Topología General, Editorial Universitaria de Buenos Aires, 1962.
- [4] **S. Willard**, General Topology, Addison-Wesley, Reading, Massachusetts, 1970. Reimpresso por Dover, Mineola, New York, 2004.