Analysis

Sammlung gegliedert nach Modul

Fabian Suter, 9. Januar 2024

https://github.com/FabianSuter/Analysis.git

1 Analysis 1a

1.1 Reelle Zahlen

\mathbb{N}	$\{1, 2, 3, 4,\}$	ganze Zahlen
\mathbb{N}_0	$\{0, 1, 2, 3,\} = \mathbb{N} \cup \{0\}$	ganze Zahlen inkl. 0
$\mathbb Z$	$\{\pm 1, \pm 2, \pm 3\} \cup \{0\}$	natürliche Zahlen
\mathbb{Q}	$\{\frac{p}{q} p\in\mathbb{Z}\wedge q\in\mathbb{Z}\setminus\{0\}\}$	rationale Zahlen
\mathbb{R}	Y	ergänzt $\mathbb Q$ durch irr. Zahlen
		wie $\sqrt{2}$, reelle Zahlen
$\mathbb{R}\setminus\mathbb{Q}$		Irrationale Zahlen

1.1.1 Supremum und Infimum

- kleinste obere Schranke $\sup(X)$ Maximum ist immer auch Supremum
- inf(X)grösste untere Schranke Minimum ist immer auch Infimum

1.1.2 Binomischer Satz / Binomialkoeffizient S.12

Pascal-Dreieck berechnen: $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} \cdot b^k$ $\binom{n}{k} = \binom{n}{n-k}$ $\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$

$$\binom{n}{k} = \binom{n}{n-k} \qquad \qquad \binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 $\binom{n}{k} = 0$ wenn k
 < 0 oder k > n

$$\binom{n}{0} = 1 \qquad \qquad \binom{n}{n} = 1$$

1.1.3 Umgebung

Jedes offene Intervall, dass die Zahl a enthält, U(a) heisst eine Umgebung von a

Es sei $\epsilon > 0$. Unter der ϵ -Umgebung von a versteht man das offene Intervall $(a - \epsilon, a + \epsilon)$ $U_{\epsilon}(a)$

Eine ϵ -Umgebung von a ohne die Zahl a selbst wird punktierte ϵ -Umgebung von a genannt

$$\dot{U}_{\epsilon}(a) = U_{\epsilon}(a) \setminus a \mid y = f(x) \text{ mit } x \in D_f$$

1.1.4 Spezielle endliche Reihen S.20

arithmetisch: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

geometrisch: $\sum_{i=0}^{n} q^i = \frac{q^{n+1}-1}{q-1}$

1.1.5 Mittelwerte S.20, 21

Harmonisches Mittel (HM): $\frac{1}{\frac{1}{n}(\frac{1}{n}+\frac{1}{n}+...+\frac{1}{n})}$

Geometrisches Mittel (GM): $\sqrt[n]{a_1 a_2 \dots a_n}$

Arithmetisches Mittel (AM): $\frac{1}{n} \cdot \sum_{i=1}^{n} a_i = \frac{a_1 + a_2 + \dots + a_n}{n}$

1.1.6 Spezielle Ungleichungen S.31

Bernoulli-Ungleichung: $(1+a)^n > 1 + n \cdot a$

für $n \in N, n > 2, a \in R, a > -1, a \neq 0$

Binomische Ungleichung: $|a \cdot b| \leq \frac{1}{2}(a^2 + b^2)$

 $HM \le GM \le AM$ Mittelungleichung:

Gleichheit: HM = GM = AM

für $a_1 = a_2 = ... = a_n$

Dreiecksungleichungen:

 $\begin{aligned} |a+b| &\leq |a|+|b| \\ |a-b| &\leq |a|+|b| \\ |a-b| &\geq ||a|-|b|| \end{aligned}$

1.1.7 Vollständige Induktion

Beweise Formel für a_0 Verankerung VA:

Vererbung VE: (1) Annahme: Formel gilt für a_n

> Formel gilt auch für a_{n+1} (2) Schritt:

Mittels Berechnung soll bewiesen werden, dass (2) ebenso gilt wie (1)

Beispiel:

(VE) (2) $\sum_{n=1}^{n+1} i = \frac{(n+1)(n+1+1)}{2} = \frac{(n+1)(n+2)}{2}$

1.2 Funktionen S.49

Schreibweisen:

 $f: D_f \to W_f \text{ mit } x \mapsto f(x)$ $f: x \mapsto f(x)$ mit $x \in D_f$

Monoton wachsend: $x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$ $x_1 > x_2 \Rightarrow f(x_1) \geq f(x_2)$ Monoton sinkend:

Monoton streng ...: Siehe oben, jedoch immer $f(x_1) < f(x_2)$

bzw. $f(x_1) > f(x_2)$ Funktion besitzt obere oder untere Grenze.

Beschränktheit: meist inf oder sup

Umkehrbarkeit: Streng monotone Funktionen sind umkehrbar,

pro x ein y und umgekehrt

Restriktion: Nur einen Teil von D_f betrachten

⇒ Umkehrbarkeit

1.2.1 Transformationen

- $y = f(a \cdot x)$ Streckung um 1/a in x-Richtung Spiegelung an y-Achse bei -a
- Verschiebung nach links (+b) oder rechts (-b) $y = f(x \pm b)$
- Streckung um **c** in v-Richtung $y = c \cdot f(x)$ Spiegelung an x-Achse bei -c
- Verschiebung nach oben $(+\mathbf{d})$ oder unten $(-\mathbf{d})$ $y = f(x) \pm d$

1.2.2 Spezielle Funktionen

Identität:

f(x) = xy-Wert ist gleich dem x-Wert

Signum-Funktion:

Vorzeichenfunktion f(x) = sqn(x)

$$y = \begin{cases} 1, \text{ falls } x > 0\\ 0, \text{ falls } x = 0\\ -1, \text{ falls } x < 0 \end{cases}$$

Floor-Funktion:

Abrunden auf nächste ganze Zahl

Schreibweise: [x]

Schreibweise: x - [x]

1.2.3 Schwingungen S.84

Sinus-Schwingung: $y = A \cdot \sin(\omega t + \phi)$

A Amplitude ω Frequenz $\frac{2\pi}{800}$ Phase

Superposition von Schwingungen

$$y = A \cdot \sin(\omega t + \varphi) = A_1 + A_2 \cdot \sin(\omega t + \varphi_1 + \varphi_2)$$

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1 \cdot A_2 \cdot \cos(\varphi_1 - \varphi_2)}$$

1.2.4 Verkettung oder mittelbare Funktion

$$h(x) = g \circ f \Rightarrow h(x) = g(f(x))$$
 $W_h = W_g \to D_h = D_f$

$$h(x) = f \circ g \Rightarrow h(x) = f(g(x))$$
 $W_h = W_f \to D_h = D_g$

1.2.5 Gerade / ungerade Funktionen S. 52

gerade:
$$f(-x) = f(x)$$
 symmetrisch zu y-Achse ungerade: $f(-x) = -f(x)$ punktsymmetrisch

periodisch:
$$f(x) = f(x \pm p)$$
 wiederholend mit Periode p

1.2.6 Ganzrationale Funktionen (Polynome) S.62/64

Aussehen:
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Nullstellen bestimmen:

Quadratische Funktion:
$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Faktorisierung mit Binomen / Hornerschema

Eine Funktion vom Grad n hat höchstens n verschiedene Nullstellen!

1.2.7 Gebrochenrationale Funktionen S.63/67

Aussehen:
$$f(x) = \frac{p_m(x)}{q_n(x)} = \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0}{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}$$

Zählergrad

Nennergrad \mathbf{n}

m < n echt gebrochen

gleichgradig

m > n unecht gebrochen

Jede unecht gebrochene Funktion lässt sich als Summe einer ganzrationalen Funktion und einer echt gebrochenen Funktion schreiben. ⇒ Polynomdivision

1.2.8 Hornerschema S.966

Zerlegt eine ganzrationale Funktion vom Grad n in einen Linearfaktor (Nullstelle) und ein Polynom vom Grad n-1

- 1. Nullstelle x_0 raten
- Von oben nach unten summieren
- Diagonal nach rechts mit x_0 multiplizieren

Beispiel:

$$f(x) = x^3 - 67x - 126$$

$$\Rightarrow f(x) = (x - x_1)(b_2x^2 + b_1x + b_0) = (x + 2)(x^2 - 2x - 63)$$

1.2.9 Polynomdivision S.15

Liefert Summe aus ganzrationaler Funktion und echt gebrochener Funktion

Beispiel:

$$(-2x^{2} - x - 1) \div (x - 1) = -2x - 3 + \frac{-4}{x - 1}$$

$$-3x - 1$$

$$-3x - 3$$

$$-4$$

1.2.10 Partialbruchzerlegung S.15

echt gebrochen (Zähler; Nenner) (1) $Ja: \rightarrow (2)$

Nein: \rightarrow Polynomdivision

- Nenner faktorisieren (2)
- pro Faktor ein Teilbruch
- Berechnung Zählerkonstanten
- (3.1)Gleichnamig machen (kgV)
- (3.2)Zählergleichung
- (3.3)Einsetzen von "guten" x-Werten

Beispiel PBZ

(1)
$$f(x) = \frac{1}{a^2 - x^2}$$

(2)
$$a^2 - x^2 = (a+x)(a-x)$$

(3)
$$\frac{A}{a+x} + \frac{B}{a-x} = \frac{1}{a^2-x^2}$$

(3.1)
$$\frac{A(a-x)+B(a+x)}{a^2-x^2} = \frac{1}{a^2-x^2}$$

(3.2)
$$A(a-x) + B(a+x) = 1$$

(3.3)
$$x = a \Rightarrow B(2a) = 1 \Rightarrow B = \frac{1}{2a}$$

 $x = -a \Rightarrow A(2a) = 1 \Rightarrow A = \frac{1}{2a}$

Spezielle Ansätze PBZ

$$f(x) = \frac{5x^2 - 37x + 54}{x^3 - 6x^2 + 9x} = \frac{A}{x} + \frac{B}{x - 3} + \frac{C}{(x - 3)^2}$$
$$= \frac{A(x - 3)^2 + Bx(x - 3) + Cx}{x(x - 3)^2}$$

$$f(x) = \frac{1.5x}{x^3 - 6x^2 + 12x - 8} = \frac{A}{x - 2} + \frac{B}{(x - 2)^2} + \frac{C}{(x - 2)^3}$$
$$= \frac{A(x - 2)^2 + B(x - 2) + C}{(x - 2)^3}$$

$$f(x) = \frac{x^2 - 1}{x^3 + 2x^2 - 2x - 12} = \frac{A}{x - 2} + \frac{Bx + C}{x^2 + 4x + 6}$$
$$= \frac{A(x^2 + 4x + 6) + (Bx + C)(x - 2)}{(x - 2)(x^2 + 4x + 6)}$$

1.2.11 Trigonometrie S.77ff, Arcus S.86

 $\sin(x)$:

 $\begin{array}{lll} D_f = [-\frac{\pi}{2}, \frac{\pi}{2}] & \to & W_f = [-1, 1] \\ D_f = [0, \pi] & \to & W_f = [-1, 1] \\ D_f = (-\frac{\pi}{2}, \frac{\pi}{2}) & \to & W_f = \mathbb{R} \\ D_f = (0, \pi) & \to & W_f = \mathbb{R} \end{array}$ $\cos(x)$: $\tan(x)$:

 $\cot(x)$:

 $\begin{array}{llll} \arcsin(x) \colon & D_f = [-1,1] & \to & W_f = [-\frac{\pi}{2},\frac{\pi}{2}] \\ \arccos(x) \colon & D_f = [-1,1] & \to & W_f = [0,\pi] \\ \arctan(x) \colon & D_f = \mathbb{R} & \to & W_f = (-\frac{\pi}{2},\frac{\pi}{2}) \\ \arccos(x) \colon & D_f = [-1,1] & \to & W_f = (0,\pi) \\ \end{array}$

Umwandlung $\sin(x+\frac{\pi}{2})=\cos(x)$ $\cos(x-\frac{\pi}{2})=\sin(x)$

Pythagoras $\sin^2(x) + \cos^2(x) = 1$

 $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ 2 Winkel $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \sin \beta \cos \alpha$

Summenformel $\sin \alpha + \sin \beta = 2 \cdot \cos(\frac{\alpha - \beta}{2}) \cdot \sin(\frac{\alpha + \beta}{2})$

Sinus Punkt $(0|0) \rightarrow \sin(-x) = -\sin(x)$

Scheitelsymm. $\rightarrow \sin(\frac{\pi}{2} + x) = \sin(\frac{\pi}{2} - x)$

Punkt $\rightarrow \sin(\pi - x) = \sin(x)$ Symmetrien

Cosinus y-Achse $\rightarrow \cos(-x) = \cos(x)$

Scheitel $\rightarrow \cos(\pi - x) = \cos(\pi + x)$

1.2.12 Winkel zwischen beliebigen Geraden

Zwischenwinkel: $\tan(\alpha) = \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \rightarrow \text{Winkel geg. Uhrzeiger}$

Senkr. Geraden: $m_1 \cdot m_2 = -1$

1.3 Folgen und Reihen S.19/470

1.3.1 Spezielle Folgen und Reihen S.20

Arithmetische Folge: $a_{n+1} = a_n + d$ $d = a_{n+1} - a_n$

Geometrische Folge: $a_{n+1} = q \cdot a_n$ $q = \frac{a_{n+1}}{q}$

Konstante Folge: $a_{n+1} = a_n$

1.3.2 Beschränktheit S.51/470 / Monotonie

Beschränktheit $W_f \subset [a; b]$ und $a, b \in \mathbb{R}$ Monotonie:

$f(x_1) \le f(x_2)$	$x_1 < x_2$	monoton wachsend	↑
$f(x_1) < f(x_2)$	$x_1 < x_2$	streng monoton wachsend	1
$f(x_1) \ge f(x_2)$	$x_1 > x_2$	monoton fallend	
$f(x_1) > f(x_0)$	$r_1 > r_0$	streng monoton fallend	Ш

1.3.3 Konvergenz, Divergenz

Konvergenz

Es existiert ein Grenzwert $g \in \mathbb{R}$

Toleranzungleichung: $|a_n - q| < \epsilon \text{ mit } \epsilon > 0$

Gesucht ist ein n_0 , ab welchem alle Werte von $n > n_0$ in $U_{\epsilon}(q)$ liegen

Bestimmt divergent gegen $+\infty$

Ungleichung: $f_n > K$ wenn $n \ge n_0$ für K > 0

Bestimmt divergent gegen $-\infty$

Ungleichung: $f_n < k$ wenn $n \ge n_0$ für k < 0

Unbestimmt divergent

Alles, was nicht konvergent oder bestimmt divergent ist

1.3.4 Grenzwerte gegen Unendlich

Vorgehen beim lösen von Grenzwerten

- 1. Naiven Ansatz ausprobieren \rightarrow limit direkt bilden
- Falls unbestimmte Form entsteht: Umformen gemäss folgenden Ansätzen

Arithmetik: $+, -, *, :, \sqrt{...}, |...|$

Erweiterung: erweitern mit $\frac{1}{x^n}$ n = höchste (Nenner-)Potenz Erweiterung: erweitern mit Gegentherm (3. Binom bilden) Bei Brüchen Tabelle aus Abschnitt 4.8 anschauen!

Beispiel Grenzwert n gegen Unendlich

$$f(n) = \frac{-2n^2 + 4n - 5}{8n^2 - 3n + 7} \ (n \to \infty)$$

"Naiv":
$$\frac{-\infty + \infty + 5}{\infty - \infty + 7} \to \frac{-\infty + \infty}{\infty - \infty} \to \frac{?}{?}$$

Algebra, Erweitern mit $\frac{1}{n^2}$: $f(n) = \frac{-2 + \frac{4}{n} - \frac{5}{n^2}}{8 - \frac{3}{n} + \frac{7}{n^2}} (n \to \infty) = \frac{-2}{8} = -\frac{1}{4}$

1.3.5 Rechnen mit Unendlich

Bestimmte Formen

 $\infty + \infty = \infty$ $-\infty - \infty = -\infty$ $0 \cdot [a, b] = 0 \cdot \text{beschränkt} = 0$

$$g + \infty = \infty$$
 $g - \infty = -\infty$ $(g \in \mathbb{R})$

$$\infty \cdot \infty = \infty$$
 $-\infty \cdot (\infty) = -\infty$ $g \cdot \infty = \begin{cases} \infty & g > 0 \\ -\infty & g < 0 \end{cases}$

$$\frac{1}{\infty} = 0$$
 $\frac{g}{\infty} = 0$ $g \in$

$$\frac{\infty}{0+} = \infty \qquad \qquad \frac{\infty}{0-} = -\infty \qquad \qquad \frac{\infty}{g} = \begin{cases} \infty & g > 0 \\ -\infty & g < 0 \end{cases}$$

$$\frac{1}{0+} = \infty \qquad \qquad \frac{1}{0-} = -\infty \qquad \qquad g \in \mathbb{R} - 0$$

$$\frac{g}{0+} = \begin{cases} \infty & g > 0 \\ -\infty & g < 0 \end{cases} \quad \frac{g}{0-} = \begin{cases} -\infty & g > 0 \\ \infty & g < 0 \end{cases}$$

$$\begin{array}{ccc} \textbf{Unbestimmte Formen} \\ \frac{0}{0} = ? & \frac{\infty}{\infty} = ? & \infty \cdot 0 = ? \end{array}$$

$$0 \cdot \infty = ?$$
 $\infty - \infty = ?$ $0^0 = ?$

$$\infty^0 = ?$$
 $1^\infty = ?$

Ausser 1 ist eine Konstante, dann gilt $1^{\infty} = 1$

1.3.6 Wachstumsvergleich

$$(1) \quad \frac{n^k}{q^n}(n\to\infty)=0 \ (\mathbf{k}\in\mathbb{N};q>1) \quad \frac{\text{Potenz}}{\text{Exponentiell}}\to 0$$

(2)
$$\frac{q^n}{n!}(n \to \infty) = 0 \ (k \in \mathbb{N}; q > 1)$$
 $\frac{\text{Exponentiell}}{\text{Fakultät}} \to 0$

(2)
$$\frac{ln(n)}{n^k}(n \to \infty) = 0 \ (k \in \mathbb{N})$$
 $\frac{\text{Logarithmisch}}{\text{Potenz}} \to 0$

1.3.7 Bolzano-Prinzip

Jede beschränkte, monotone Zahlenfolge ist konvergent!

- Monotonie beweisen
- Beschränktheit vermuten und möglichen Grenzwert g mittels Grenzwertgleichung finden
- Beschränktheit beweisen
- a₁ ist obere/untere Schranke 3.1
- Vermutete untere/obere Schranke mit voll. Induktion beweiser z.B. $a_{n+1} \leq a_n$ wobei a_{n+1} und a_n mit vermutetem Grenzwert ersetzt werden

1.3.8 Exponentialfunktion S.73

$$e^x = \lim_{n \to \infty} (1 + \frac{x}{n})^n$$

Definitions- / Wertebereich: $D_f = \mathbb{R} \to W_f = \mathbb{R}^+$

Einschliessung:

$$e^x \ge 1 + x$$
 für $x \in \mathbb{R}$

$$e^x \le \frac{1}{1-x}$$
 für $x < 1$

1.3.9 log-Rechenregeln

$ln(a \cdot b)$	= ln(a) + ln(b)	$ln(\frac{a}{b})$	= ln(a) - ln(b)
$e^{ln(a \cdot b)}$	$=e^{ln(a)+ln(b)}$	$ln(x^r)$	$= r \cdot ln(x)$
$a \cdot b$	$=e^{ln(a)}\cdot e^{ln(b)}$		

1.3.10 Hyperbolische Funktionen S.89ff

$$e^x = \frac{1}{2}(e^x - e^{-x}) + \frac{1}{2}(e^x + e^{-x}) = \sinh(x) + \cosh(x)$$

$$sinh(x) = \frac{1}{2}(e^x - e^{-x}) & \mathbb{R} \to \mathbb{R} \\
cosh(x) = \frac{1}{2}(e^x + e^{-x}) & \mathbb{R} \to [1; \infty) \\
tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{\frac{1}{2}(e^x - e^{-x})}{\frac{1}{2}(e^x + e^{-x})} & \mathbb{R} \to (-1; 1) \\
|\sinh(x)| < \cosh(x)$$

Area-Funktionen (Umkehrung Hyperbolische. F.)

 $\operatorname{arsinh}(x): ln(x+\sqrt{x^2+1}) \mathbb{R} \to \mathbb{R}$ $\operatorname{arcosh}(x): \quad \ln(x+\sqrt{x^2-1}) \quad [1;\infty) \to \mathbb{R}_0^+$ $\operatorname{artanh}(x): \quad \frac{1}{2}\ln\frac{1+x}{1-x} \qquad |x| < 1 \to \mathbb{R}$

1.3.11 Logarithmusfunktion S.73

Definitions- / Wertebereich: $D_f = \mathbb{R}^+ \to W_f = \mathbb{R}$

Einschliessung:

$$1 - \frac{1}{x} \le \ln(x) \le x - 1$$

1.4 Grenzwerte von Funktionen

1.4.1 Techniken zur Berechnung von Grenzwerten

Arithmetik: $+, -, *, :, \sqrt{...}, |...|$

erweitern mit $\frac{1}{x^n}$ n = höchste (Nenner-)Potenz Erweiterung: erweitern mit Gegentherm (3. Binom bilden) Erweiterung: Faktorisierung: Zähler und Nenner faktorisieren und kürzen

1.4.2 Links- / Rechtsseitiger Grenzwert S.55

Eine kritische Stelle x_0 kann von links und rechts angenähert werden.

linksseitiger Grenzwert:
$$\lim_{x \to x^{-}} f(x) = g^{-}$$

rechtsseitiger Grenzwert:
$$\lim_{x\to x_0^+} f(x) = g^+$$

$$\Rightarrow$$
 Wenn $g^- = g^+ = g \rightarrow$ Konvergenz

$$\Rightarrow$$
 Wenn $g^- \neq g^+ \rightarrow$ unbestimmte Divergenz

1.4.3 Konvergenz, Divergenz S.472

Konvergenz von f(x)

$$x \to \infty$$
 Toleranzungleichung: $|f(x) - g| < \epsilon$ wenn $x > M(\epsilon)$
 $x \to -\infty$ Toleranzungleichung: $|f(x) - g| < \epsilon$ wenn $x < m(\epsilon)$

$$x \to x_0$$
 Toleranzungleichung: $|f(x) - g| < \epsilon$ $x \in \dot{U}_{\delta}(x_0)$

Bestimmte Divergenz von y = f(x)

Quadrant	<u>Kriterium</u>	Folgerung
I	$y \to \infty \ (x \to \infty)$	$\overline{y > K \text{ wenn } x > M(K)}$
II	$y \to \infty \ (x \to -\infty)$	y > K wenn $x < m(K)$
III	$y \to -\infty \ (x \to -\infty)$	y < k wenn $x < m(k)$
IV	$y \to -\infty \ (x \to \infty)$	y < k wenn x > M(k)
	$f(x) \to \infty$	$y > K > 0$ wenn $x \in \dot{U}_{\delta}(x_0)$
	$f(x) \to -\infty$	$y < k < 0$ wenn $x \in \dot{U}_{\delta}(x_0)$

1.4.4 Stetigkeit S.59-63/127

Definition Stetigkeit: $\lim_{x \to x_0} f(x) = f(x_0)$

Eine Funktion ist stetig, wenn der Funktionsgraph kann gezeichnet werden, ohne dass der Stift abgesetzt werden muss.

,		0	
Art der Unstetigkeitsstelle	Bedingungen	Beispiel $f: x \mapsto f(x) =$	Graph von f
hebbare Unstetigkeits-	$\lim_{x \to x_0} f(x) = g$ $\text{und } g \neq f(x_0)$	$\begin{cases} \frac{1}{4}(x-1)^2 + 1\\ \text{für } x \neq 1\\ 2 \text{ für } x = 1 \end{cases}$	
stelle	$\lim_{\substack{x \to x_0 \\ \text{und } x_0 \notin D_f}} f(x) = g$	$\frac{x^2-1}{x-1}$	1
Unstetigkeits- stelle 1. Art (Sprungstelle)	g^+ und g^- existieren in x_0 , aber $g^+ \neq g^-$	$\begin{cases} x - 1 & \text{für } x \ge 1 \\ -1 & \text{für } x < 1 \end{cases}$	
	mindestens g^+ oder g^- exi- stieren in x_0 nicht	$\begin{cases} \frac{1}{x-1} & \text{für } x > 1\\ 1 & \text{für } x \le 1 \end{cases}$	
Unstetigkeits- stelle 2. Art	f ist für $x \uparrow x_0$ und $x \downarrow x_0$ unbestimmt divergent (Oszillationsstelle)	$\sin \frac{1}{x}$	

1.4.5 Übertragungsprinzip (Folgenprinzip)

f besitzt an der Stelle x_0 Grenzwert q, wenn für jede gegen x_0 konvergente Folge $\langle x_n \rangle$ gilt: $\lim_{x \to \infty} f(x_n) = g$

Beispiel

$$f(x) = \frac{|x+2|}{2x+4}$$
 und $x_0 = -2$

linksseitig:
$$x_n = x_0 - \frac{1}{n}$$
 für jedes x in f(x) einsetzen;

Grenzwert
$$g^-$$
 gegen ∞ bestimmen

rechtsseitig:
$$x_n = x_0 + \frac{1}{n}$$
 für jedes x in f(x) einsetzen;
Grenzwert g^+ gegen ∞ bestimmen

1.4.6 Nullstellen bestimmen gemäss Bolzano (Bisektion) S.12

f(x) auf Intervall [a; b] stetig, f(a) und f(b) haben versch. Vorzeichen \rightarrow Es existiert (mindestens) eine Nullstelle \mathcal{E} NS mittels Bisektion (Intervallschachtelung) näherungsweise berechnen:

- $I_0 = [a; b] = [a_0; b_0]$ gesamtes Intervall
- I_0 halbieren $\rightarrow m = \frac{a_0 + b_0}{2}$
- Teil-Intervall mit Vorzeichenwechsel bestimmen: links: $f(a) \cdot f(m) < 0$; rechts: $f(b) \cdot f(m) > 0$
- Teil-Intervall mit Vorzeichenwechsel: $I_1 = [a_1; b_1]$
- Schritt (2) (4) n mal wiederholen: $I_{n+1} \in I_n$
- ... $\xi \in (a; b)$ mit $f(\xi) = 0$ (Nullstelle) $|\text{Error}| \leq \frac{b-a}{2^{nSchritte+1}}$

1.4.7 Spezielle Grenzwerte

$$\lim_{x\to\infty}\frac{\sin(x)}{x}=1 \qquad \lim_{x\to\infty}(1+\frac{a}{x})^x=\mathrm{e}^a \qquad \lim_{x\to0}\frac{\log_a(x+1)}{x}=\frac{1}{\ln(a)}$$

$$\lim_{x\to 1} \frac{x}{1-\mathrm{e}^{-x}} = 1 \qquad \lim_{x\to \infty} \sqrt[x]{x} = 1 \qquad \qquad \lim_{x\to 0} (1+x)^{\frac{1}{x}} = 1$$

$$\lim_{x\to\infty}\frac{(\ln(x))^\alpha}{x^\beta}=0\qquad \lim_{x\to0^+}x\cdot\ln(x)=0\qquad \quad \lim_{x\to0}\frac{a^x-1}{x}=\ln(a)$$

$$\lim_{x\to 0}\frac{\mathrm{e}^x-1}{x}=1 \qquad \lim_{x\to 0}\frac{(a+x)^\alpha-1}{x}=\alpha \qquad \lim_{x\to 0+}z^z=1$$

$$\lim_{x \to 0+} x^{\sin(x)} = 1 \qquad \lim_{x \to 0+} y^{\beta} (\ln(y))^{\alpha} = 0$$

$$\lim_{x \to 0+} x^{\sin(x)} = 1 \qquad \lim_{x \to 0+} y^{\beta} (\ln(y))^{\alpha} = 0$$

$$\lim_{x \to \infty} \frac{x^{\alpha}}{a^{\beta x}} = 0 \ (a > 1; \alpha, \beta > 0) \qquad \lim_{x \to \infty} \sum_{k=0}^{n} q^{k} = \begin{cases} \infty & q \ge 1\\ \frac{1}{1-q} & |q| < 1 \end{cases}$$

1.4.8 Asymptotenbestimmung

Asymptote einer gebrochen rationalen Funktion f(x) $a_n x^n + ... + a_1 x + a_0$ $b_m x^m + ... + b_1 x + b_0$ bestimmen gemäss:

	m > n	m = n	m < n		
$\lim_{x \to \pm \infty} r(x)$	0	$\frac{a_n}{b_m}$	∞ oder $-\infty$		
Asymptote	x-Achse	$\parallel x, g(x) = \frac{a_m}{b_n}$	ganzrat. Teil		
		,,	der Polynomdiv.		
Kony./Div.	Konvergenz	Konvergenz	Divergenz		

1.4.9 Grenzwerte von rekursiven Folgen

Anwendung des Bolzano-Prinzips! Beispiel: $a_1 = \frac{1}{4}$; $a_{n+1} = a_n^2 + \frac{1}{4}$

- 1. Monotonie beweisen mit Ansatz $a_{n+1} \geq a_n$ bzw. $a_{n+1} \leq a_n$
- Beschränktheit erste Schranke = erster Wert der Reihe Zweite Schranke: Annahme, es gibt Grenzwert g und er ist sup / inf

Grenzwertgleichung: $a_{n+1} = a_n^2 + \frac{1}{4} \ (n \to \infty) \Rightarrow g = g^2 + \frac{1}{4}$ Gleichung nach g auflösen

- \Rightarrow Wenn es ein sup / inf gibt, dann ist es das berechnete $g \in \mathbb{R}$
- Beweisen (oder widerlegen), dass g sup / inf ist Ansatz: $a_n \leq g$ bzw. $a_n \geq g$ mit vollst. Induktion beweisen

Differential rechnung S. 444 ff

Kurvenuntersuchungen S. 261 Taylor-reihe S. 455

2.1 Begriff der Ableitung / Differenzialquotient S. 444

Die Ableitung f'(x) der Funktion f(x) im Punkt x_0 entspricht der Steigung der Tangente an f(x) im Punkt x_0

 $\frac{f(x+h)-f(x)}{h} = \frac{f(x+\Delta x)-f(x)}{\Delta x}$ Differenzenquotient:

Differenzial quotient: $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$ $(\Delta x = h)$

2.2 Tangente / Normale / Zwischenwinkel

Tangente: $y = f'(x_0) \cdot (x - x_0) + y_0$

 $y = -\frac{1}{f'(x_0)} \cdot (x - x_0) + y_0$ Normale:

Zwischenwinkel: $tan(\alpha) = \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \rightarrow \text{Winkel gegen Uhrz.}$

 $tan(\alpha) = \frac{m_2 - m_1}{1 + m_1 \cdot m_2} \rightarrow Winkel im Uhrzeigersinn$

2.3 Einseitige Ableitungen S. 445

rechtsseitig: $f_r'(x_0) = \lim_{x \to x_0^+} f'(x)$ linksseitig: $f_l'(x_0) = \lim_{x \to x_0^-} f'(x)$

 $f_r'(x_0) = f_1'(x_0)$ \rightarrow Konvergenz

Alle anderen Fälle \rightarrow unbestimmte Divergenz \rightarrow keine Ableitung!

	Beispiel	Graph
$f'(x_0)$ existiert	$f: x \mapsto x^2$ $f'(0) = 0$	1,1
$f'_r(x_0)$ existiert $f'_1(x_0)$ existiert $f'_r(x_0) \neq f'_i(x_0)$	$f: x \mapsto x $ $f'_i(0) = -1$ $f'_r(0) = 1$	111 .
An der Stelle x_0 existiert die uneigentliche Ableitung	$f: x \mapsto \sqrt[3]{x}$ $f'_1(0) = \infty$ $f'_{\gamma}(0) = \infty$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
f besitzt die einseitigen uneigentlichen Ableitungen an der Stelle x_0 .	$f: x \mapsto \sqrt{ x }$ $f'_{1}(0) = -\infty$ $f'_{r}(0) = \infty$	y
Die einseitigen und die ein- seitigen uneigentlichen Ab- leitungen existieren nicht	$f(x) = \begin{cases} x \cdot \sin \frac{1}{x} & \text{für } x \neq 0 \\ 0 & \text{für } x = 0 \end{cases}$ $f'_i(0) \text{und } f'_r(0)$ existieren nicht) 04 1

2.4 Generische Muster

Allg. Potenz $(f(x)^{\alpha})' = f'(x) \cdot \alpha \cdot f(x)^{\alpha - 1}$

Allg. log-Regel $\ln (f(x))' = \frac{f'(x)}{f(x)}$

Allg. exp-Regel $(e^{f(x)})' = f'(x) \cdot e^{f(x)}$

2.5 Ableitungsregeln S. 445-448

2.5.1 Elementare Regeln

 $f(x) = x^3$
 $f(x) = x^{\alpha}$ $f'(x) = 3 x^2$ $f'(x) = \alpha \cdot x^{\alpha - 1}$ Potenzen:

 $f(x) = c \cdot x^2 \qquad \qquad f'(x) = c \cdot 2x$ Linearität:

(u(x) + v(x) - w(x))' = u'(x) + v'(x) - w'(x)Summe:

Konstanten: $c = konst \rightarrow c' = 0$

2.5.2 Produktregel

 $(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$

2.5.3 Quotientenregel

 $\left(\frac{u(x)}{v(x)}\right)' = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v(x)^2} \longrightarrow \text{als Produkt schreiben}$

 $u(x) \cdot \left(\frac{1}{v(x)}\right)' = u'(x) \cdot \frac{1}{v(x)} + u(x) \cdot \frac{-v'(x)}{v(x)^2}$

2.5.4 Kettenregel

 $g(f(x))' = f'(x) \cdot g'(x)$

2.5.5 Umkehrfunktion

 $(f^{-1}(y_0))' = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$

2.6 Allgemeine Logarithmus-Ableitung

 $(\log_b(x))' = \left(\frac{\ln(x)}{\ln(b)}\right)' = \frac{1}{\ln(b)} \cdot (\ln(x))' = \frac{1}{\ln(b)} \cdot \frac{1}{x}$

2.7 Lineare Approximation / Differenzial dy S. 459

Differenzial = dy = df = "Höhenunterschied der Tangente" = "Linearzuwachs"

Differenzial = $f'(x_0) \cdot dx = f'(x_0) \cdot h = f'(x_0) \cdot \Delta x = f'(x_0) \cdot (x - x_0)$ | \rightarrow Tabelle ist bidirektional (Umkehrfunktionen)

 $\Delta y \approx dy \rightarrow \text{Approximation} / \text{Fehler}$ Fehler: $\Delta y - dy \to 0$ $h \to 0$

Die Tangente ist die beste lineare Approximation!

2.8 Approximationsfehler

Die Fehler beziehen sich auf den Arbeitspunkt (z.B. x_0)

Absoluter Fehler: $\Delta y - dy = f(x) - \hat{f}(x)$ Einheit y

Relativer Fehler: $\frac{\Delta y - dy}{y_0} = \frac{f(x) - \hat{f}(x)}{x_0}$ Einheitenlos

2.9 Fehlerfortpflanzung

Absolut: $\Delta x \to \Delta y$ $\Delta y \approx dy = f'(x_0) \cdot dx$

Relativ: $\Delta x \to \frac{\Delta y}{y_0}$ $\frac{\Delta y}{y_0} \approx \frac{dy}{y_0} = \frac{f'(x_0) \cdot dx}{y_0}$

	$\Delta x = dx \text{ (abs)}$	$\frac{\Delta x}{x} = \frac{dx}{x}$ (rel)
$\Delta y \approx dy \text{ (abs)}$	A	В
$\frac{\Delta y}{y} \approx \frac{dy}{y}$ (rel)	C	D

2.10 Wichtige Ableitungen S.446

f	D_f	f"	$D_{f'}$	f	D_f	f'	$D_{f'}$
$x^n, n \in \mathbb{N}$	R	nx^{n-1}	R	arcsin x	[-1,1]	$\frac{1}{\sqrt{1-x^2}}$	(-1,1)
$\frac{1}{x^n}, n \in \mathbb{N}$	$\mathbb{R} \setminus \{0\}$	$-\frac{n}{x^{n+1}}$	$\mathbb{R} \setminus \{0\}$	arccosx	[-1,1]	$-\frac{1}{\sqrt{1-x^2}}$	(-1,1)
$x^{\alpha}, \alpha \in \mathbb{R}$	R+	$\alpha \cdot x^{\alpha-1}$	R+	arctan x	R	$\frac{1}{1+x^2}$	R
x	R	$\frac{x}{ x } = \frac{ x }{x}$	$\mathbb{R} \setminus \{0\}$	arccot x	R	$-\frac{1}{1+x^2}$	R
sin x	R	cos x	R	sinh x	R	cosh x	R
cos x	R	- sin x	R	cosh x	R	sinh x	R
tanx	A1)	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$	A^1)	tanhx	R	$\frac{1}{\cosh^2 x} = 1 - \tanh^2 x$	R
cotx	B ²)	$-\frac{1}{\sin^2 x} =$ $-(1 + \cot^2 x)$	B ²)	cothx	ℝ∖{0}	$-\frac{1}{\sinh^2 x} = 1 - \coth^2 x$	ℝ\{0}
e*	R	e ^x	R	arsinh x	R	$\frac{1}{\sqrt{x^2 + 1}}$	R
$a^{\mathbf{x}},$ $a \in \mathbb{R}^+ \setminus \{1\}$	R	$a^x \cdot \ln a$	R	arcosh x	[1,∞)	$\frac{1}{\sqrt{x^2 - 1}}$	$(1,\infty)$
$\ln x $	$\mathbb{R} \setminus \{0\}$	$\frac{1}{x}$	$\mathbb{R} \setminus \{0\}$	artanh x	(-1,1)	$\frac{1}{1-x^2}$	(-1,1)
$\log_a x$ $a \in \mathbb{R}^+ \setminus \{1\}$	R+	$\frac{1}{x \cdot \ln a}$	R+	arcoth x	$(-\infty, -1)$ $\cup (1, \infty)$	$\frac{1}{1-x^2}$	$(-\infty, -1)$ $\cup (1, \infty)$

2.11 Taylor-Reihe (Approximation höherer Ordnung)

n = Ordnung der Approximationsfunktion $p_n(x)$ $h = x - x_0$

$$p_n(x) = f(x_0) + f'(x_0) \cdot h + \frac{f''(x_0)}{2!} \cdot h^2 + \dots + \frac{f^{(n)}(x_0)}{n!} \cdot h^n$$

$$p_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \cdot h^k \mid h = x - x_0$$

Der Approximationsfehler $R_n(x_0,h)$ entspricht $f(x)-p_n(x)$ und wird im nächsten Abschnitt beschrieben.

2.12 Fehler R_n der Taylor-Reihe

Der Fehler ist nicht klar berechenbar, sondern nur auf einem Intervall "bestimmbar" \rightarrow Worst Case!

Voraussetzung: f auf Intervall [a;b] mind. (n+1) mal ableitbar

Lagrange:
$$|R_n| = |\frac{f^{(n+1)}(\xi)}{(n+1)!} \cdot h^{n+1}|$$

Cauchy:
$$|R_n| = |\frac{f^{(n+1)}(\xi)}{n!} \cdot h^{n+1} \cdot (1-\theta)^n|$$

 $0 < \theta < 1 \ \xi = x_0 + \theta \cdot h$ θ steuert Lage von ξ auf Intervall

2.12.1 Verhalten von R_n

- 1) $n \to \infty$ "Normal" $R_n \to 0$ |h| fix
- 2) $n \to 0^+$ "Normal" $R_n \to 0$ n fix $|f^{n+1}(\tilde{x})| < K^{n+1} \qquad (K < 0, n \in \mathbb{N}_0), \tilde{x} \in (a; b)$

2.13 Satz von Rolle S. 454

Voraussetzungen: f auf Intervall [a;b] mind. (n+1) mal ableitbar f(a) = f(b)

Auf dem Intervall (a;b) existiert mindestens einmal eine horizontale Tangente : $f'(\xi) = 0$

2.14 Mittelwertsatz S. 454

Voraussetzungen: f auf Intervall [a;b] mind. (n+1) mal ableitbar

Sekantensteigung: $m_s = \frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a}$

Tangentensteigung / Durchschnittssteigung: $f'(\xi) = \frac{f(b) - f(a)}{b - a}$

2.15 Extremalstellen S. 455-457

f: [a;b] $\to \mathbb{R}$, stetig $\Rightarrow W_f$ = abgeschlossenes Intervall

2.15.1 Absolut Extremalstelle (Randanalyse durchführen)

Absolutes Maximum: $\max(W_f)$ Absolutes Minimum $\min(W_f)$

2.15.2 Relative Extremalstelle

Lokales Maximum: "Berg" (nicht am Rand der Funktion)

 $f(x) \le f(x_0)$ $x \in U_{\delta}(x_0)$

Wechsel von ↑ zu ↓

Lokales Minimum: "Tal" (nicht am Rand der Funktion)

 $f(x) \ge f(x_0)$ $x \in U_{\delta}(x_0)$

Wechsel von ↓ zu ↑

Terrasse: $f'(x_0) = 0$ aber kein "Berg/" Tal"

2.15.3 Prinzip von Fermat S. 453

Wenn x_0 ein relatives Minimum / Maximum ist muss zwingend die Ableitung $f'(x_0) = 0$ sein \to **Umkehrung gilt nicht!** $x_0 = \text{kritische Stelle} \to \text{zu prüfen auf Berg, Tal oder Terrasse}$

$f'(x_0)$	$f''(x_0)$	$f^{(n)}(x_0)$	
0	< 0		"Berg" (Achtung auf Randstellen)
0	> 0		"Tal" (Achtung auf Randstellen)
0	0	< 0	wenn n gerade: "Berg"
0	0	> 0	wenn n gerade: "Tal"
0	0	$\neq 0$	wenn n ungerade ; Terrasse

y-Koordinate des Punktes: x_0 in f(x) einsetzen

2.16 Monotonie S. 453

$f'(x_0)$	
≥ 0	monoton wachsend
≤ 0	monoton fallend
> 0	streng monoton wachsend
< 0	streng monoton fallend

2.17 Wendepunkte (Terrassenpunkte)

Wendepunkt = Krümmungswechsel = Vorzeichenwechsel für f''(x) bei x_0

$f'(x_0)$	$f''(x_0)$	$f^{(n)}(x_0)$	
	0	< 0	n ungerade: links-rechts Wendestelle
	0	> 0	n ungerade: rechts-links Wendestelle
	0	≠ 0	n gerade: Flachpunkt

Ausserdem liegt eine WP vor wenn f'' beim Durchgang durch x_0 das Vorzeichen wechselt, also $f''(x_0) < 0$ für $x < x_0$ und für $f''(x_0) > 0$ für $x > x_0$ bzw. umgekehrt.

y-Koordinate des Punktes: x_0 in f(x) einsetzen

2.18 Krümmungsverhalten

Das beschriebene Verhalten gilt global für die ganze Funktion f(x) bzw. auf einem ganzen Intervall, nicht nur an einer Stelle x_0 !

2.18.1 Linkskrümmung (konvex)

- $f(x) \ge f(x_0) + f'(x_0)(x x_0)$ f(x) überall grösser als Tangentensteigung an jedem Punkt
- $f' \uparrow$ Tangentialsteigung steigt kontinuierlich
- $f'' \geq 0$

Strenge Krümmung: Logik verstärkt (ausser bei Berührpunkt x_0)

2.18.2 Rechtskrümmung (konkav)

- $f(x) \le f(x_0) + f'(x_0)(x x_0)$ f(x) überall kleiner als Tangentensteigung an jedem Punkt
- $f' \downarrow$ Tangentialsteigung sinkt kontinuierlich
- $f'' \leq 0$

Strenge Krümmung: Logik verstärkt (ausser bei Berührpunkt x_0)

2.19 Bernoulli-Hôpital S. 57-58

2.19.1 B.H. I

$$\frac{f_1(x)}{f_2(x)} \quad (x \to x_0) \quad \frac{0}{0}$$

Wenn $\frac{f_1'(x)}{f_2'(x)}$ eine bestimmte Form ist, dann ist dies das Resultat von $\lim_{x\to x_0} \frac{f_1(x)}{f_2(x)}$

2.19.2 B.H. I

$$\frac{f_1(x)}{f_2(x)}$$
 $(x \to x_0)$ $\frac{\infty}{\infty}$

Wenn $\frac{f_1'(x)}{f_2'(x)}$ eine bestimmte Form ist, dann ist dies das Resultat von $\lim_{x\to x_0} \frac{f_1(x)}{f_2(x)}$

Bernoulli-Hôpital darf auch mehrfach nacheinander verwendet werden \rightarrow immer erst algebraisch verienfachen!

2.20 Unbestimmte Formen zu Bernoulli-Formen

$$f \cdot g$$
 vom Typ $(0^+) \cdot \infty$ $\frac{f}{1/g}$ von Typ $\frac{0}{0}$ $\frac{1/f}{g}$ von Typ $\frac{\infty}{\infty}$

$$f-g$$
von Typ $\infty-\infty - \frac{1/g-1/f}{1/fg}$ von Typ $\frac{0}{0}$

$$f^g$$
als $(0+)^0;\,\infty^0;\,1^\infty \qquad f^g=e^{g\cdot\ln(f)}$ wobe
i $g\cdot\ln(f)$ von Typ
$$(0+)\cdot\infty \text{ bzw. }\infty\cdot 0$$

Vorzeichen auskl.:
$$\begin{array}{c} (0-)\cdot\infty=-(0+)\cdot\infty\\ (0+)^{0-}=\frac{1}{(0+)^{0+}} \text{ oder } 1^{-\infty}=\frac{1}{1^{\infty}} \end{array}$$

2.21 Optimierungsprobleme

- 1. Problem durch eine Funktion f mit ultimativer Varibalen x ausdrücken $\rightarrow f(x)$
- 2. Fermat anwenden: f'(x) = 0
- 3. gefundene kritische Stellen auf Maximum / Minumum prüfen
- 3.1 Logik Randanalyse: x links und rechts über Rand des Intervalls hinaus gehen lassen (z.B. nach $\pm \infty$) und Berg / Tal durch Logik entscheiden
- 3.2 Monotoniewechsel bei x_0 ausnützen: Wert $> x_0$ und $< x_0$ einsetzen
- 3.3 Taylor-Theorie: Vorzeichen der zweiten Ableitung gemäss Abschnitt 1.15.3

2.22 Asymptote bestimmen

Asymptotengerade: y = mx + q m und q sind gesucht

Steigung:
$$m = \lim_{x \to \infty} \frac{f(x)}{x}$$

 $\begin{array}{ll} \text{Achsenabschnitt:} & q = \lim\limits_{x \to \infty} (f(x) - mx) \\ & \to \text{berechnetes } m \text{ einsetzen!} \end{array}$

3 Integralrechnung S.493

3.1 Obersumme / Untersumme

Die Fläche unter einer Funktion f(x) wird in Intervalle zerlegt. Voraussetzung: $f:[a;b] \to \mathbb{R}$ und \mathbb{W}_f beschränkt

Zerlegung:
$$Z = \{x_0; x_1; ...; x_n\} = \{x_i \mid i = 0; ...; n\} \quad (n \in \mathbb{N}; n \ge 2)$$

Breite(n) der Intervalle: $\Delta x_i = x_{i+1} - x_i$ Δx kann variieren!

Machsenweite: $\max(\Delta x_i) = d(Z)$

Äquidistante Zerlegung: $Z = \{a + \frac{b-a}{n} \cdot i \mid i = 0; ...; n\}$

Untersumme US

$$US = \sum_{i=0}^{n-1} \underline{m_i} \cdot \Delta x_i$$

$$\underline{m_i} = \inf\{f(x) \mid x_i \le x \le x_{i+1}\}\$$

Obersumme \overline{OS}

$$OS = \sum_{i=0}^{n-1} \overline{M_i} \cdot \Delta x_i$$

$$\overline{M_i} = \sup\{f(x) \mid x_i \le x \le x_{i+1}\}\$$

Unter-Integral

$$\underline{I} = \lim_{d(Z) \to 0} \underline{US} \quad \infty \cdot 0$$

$$\underline{I} = \int_{\underline{a}}^{b} f(x) dx$$

Ober-Integral

$$\overline{I} = \lim_{\substack{d(Z) \to 0}} \overline{OS} \quad \infty \cdot 0$$

$$\overline{I} = \int_{a}^{\overline{b}} f(x) \, dx$$

3.2 Riemann-Summe S.506-507

$$RS = \sum_{i=0}^{n-1} f(\xi) \Delta x_i \quad d(Z) \to 0 \quad \int_a^b f(x) dx$$
$$\xi \in [x_i; x_{i+1}]$$

3.3 Riemann-Integral S.507

 $\mathbf{I}=\underline{I}=\overline{I}$ wenn $\underline{I}=\overline{I}$

Notation: $\int_{a}^{b} f(x) dx$

a, b Integrationsgrenzen f(x) Integrand

3.4 Integrierbare Funktionen

Hinreichendes Kriterium: $f:[a;b] \to \mathbb{R}$ und \mathbb{W}_f beschränkt

3.5 Integrationsregeln S. 494-496

Linearität:
$$\int_{a}^{b} \alpha f(x) dx = \alpha \int_{a}^{b} f(x) dx$$

3.5.1 Rechenregeln mit Integralen S. 508-510

Zerlegung:
$$\int_a^b f_1(x) dx + f_2(x) dx = \int_a^b f_1(x) dx + \int_a^b f_2(x) dx$$

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

Grenzen tauschen:
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

Gleiche Grenzen:
$$\int_{a}^{a} f(x) dx = 0$$

3.6 Wichtige Integrale S. 495

$$\int_{a}^{b} x^{2} dx = \frac{b^{3}}{3} - \frac{a^{3}}{3} \qquad \int_{a}^{b} x dx = \frac{b^{2}}{2} - \frac{a^{2}}{2}$$

$$\int_{a}^{b} x \, dx = \frac{b^2}{2} - \frac{a^2}{2}$$

$$\int_{a}^{b} 1 \, dx = b - a \text{ (Rechteck)}$$

3.7 Flächen unter Integralen

Voraussetzung: $f:[a;b] \to \mathbb{R}$ und \mathbb{W}_f beschränkt

Fläche
$$A = \int_{a}^{b} |f(x)| dx$$

Der Inhalt des Betrags muss auf Vorzeichen untersucht werden! Negative Vorzeichen müssen über die x-Achse geklappt werden: $|x^2 - x| = -(x^2 - x)$ falls $x > x^2$

3.8 Mittelwert einer Funktion S. 510

Funktion aufgeteilt in n äquidistante Intervalle $\rightarrow \Delta x = \frac{b-a}{r}$

Mittelwert: $\frac{1}{b-a} \int_{a}^{b} f(x) dx$

3.9 Mittelwertsatz S. 510

Voraussetzung: $f:[a;b] \to \mathbb{R}$ und \mathbb{W}_f beschränkt und stetig Die Fläche unter der Funktion f(x) kann an mind, einem Punkt ξ als Rechteck dargestellt werden.

 $\xi \in (a;b)$

Fläche = Mittelwert · Intervall-Länge

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx = f(\xi)$$

$$\int_{a}^{b} f(x) dx = (b - a) \cdot f(\xi)$$

3.10 Integral funktion I(x)

Voraussetzung: $f:[a;b] \to \mathbb{R}$ und integrierbar

I(x) besitzt eine feste untere Grenze c = const (Anker) und eine variable obere Grenze x (Hauptvariable) $x \in [a;b]$

Notation: $I(\tilde{x}) = \int_{0}^{\infty} f(\tilde{x}) d\tilde{x}$ \tilde{x} ist die Integrationsvariable

3.10.1 Eigenschaften der Integralfunktion

Die Integralfunktion hat beim Anker c eine Nullstelle:

$$I(c) = \int_{c}^{c} f(\tilde{x}) d\tilde{x} = 0$$

I(x) berührt/schneidet die x-Achse in [a;b] beim Anker $\rightarrow I(c) = 0$

Das Verschieben des Ankers bewirkt eine Parallelverschiebung von I(x)

- I(x) ist immer stetig! (Integration behebt Sprungstellen)
- I(x) ist ableitbar, wenn die Originalfunktion f(x) stetig ist

Ableitung
$$I'(x) = \frac{d}{dx} \left(\int\limits_{c}^{x} f(\tilde{x}) \, d\tilde{x} \right) = f(x)$$
 "Kreislauf"

Integral I(x)differenzieren f(x)

Integral I(x)integrieren f(x)

3.10.2 Beispiel Integralfunktion bestimmen

$$f(x) = \begin{cases} 1, & 0 \le x < 0.75 \\ -0.5, & 0.75 \le x \le 2 \end{cases}$$

$$I(x) = \begin{cases} \int_{c=0}^{x} 1 \, d\tilde{x} = x \\ 0.75 & \int_{c=0}^{x} 1 \, d\tilde{x} + \int_{0.75}^{x} (-0.5) \, d\tilde{x} = 0.75 + (-0.5)(x - 0.75) \end{cases}$$

Wichtig: Bei Funktionen mit Sprungstellen immer beim Anker beginnnen, wenn nichts spezielles verlangt ist

3.11 Stammfunktion F

Eine Funktion F(x) heisst Stammfunktion von f(x) wenn gilt: F'(x) = f(x)

F(x) + C sind ebenfalls Stammfunktionen von f(x) $C \in \mathbb{R}$ C ist eine freie Verschiebungszahl

Stammfunktionen F sind Teilmenge der unbestimmten Integrale

⇒ Ableitungstabelle rückwärts lesen für Stammfunktion!

3.12 Unbestimmtes Integral

$$I(x) + C = \int f(\tilde{x}) d\tilde{x}$$
 $C \in \mathbb{R}$

Wenn f(x) stetig ist, dann entspricht das unbestimmte Integral der Stammfunktion

3.13 Hauptsatz der Integration S. 507

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = [F(x)]_{a}^{b} = F(x)|_{a}^{b}$$

3.14 Wachstumsvergleiche

$$(1) \quad \frac{n^k}{q^n}(n \to \infty) = 0 \qquad (k \in \mathbb{N}; q > 1) \quad \frac{\text{Potenz}}{\text{Exponential}} \to 0$$

$$(2) \qquad \frac{q^n}{n!}(n\to\infty) = 0 \qquad \qquad (q>1) \qquad \qquad \frac{\text{Exponentiell}}{\text{Fakult\"{a}t}} \to 0$$

3)
$$\frac{\ln(n)}{n^k}(n \to \infty) = 0$$
 $(k \in \mathbb{N})$ $\frac{\text{Logarithmisch}}{\text{Potenz}} \to 0$

$$\frac{\ln(n)}{n}(n \to \infty) = 0 \qquad \frac{\text{Logarithmisch}}{\text{Linear}} \to 0$$