Equations différentielles ordinaires

Luca Nenna

7 octobre 2022

Table des matières

Ta	able des matières	1
1	Les notions de base et le théorème de Cauchy-Peano-Arzela 1.1 Équations du premier ordre	2
2	Équations d'ordre n et systèmes linéaires 2.1 Une équation d'ordre 2	11
3	Le théorème de Cauchy-Lipschitz 3.1 Notions de calcul différentiel	$\frac{26}{27}$

Chapitre 1

Les notions de base et le théorème de Cauchy-Peano-Arzela

Contents

1.1 Équations du premier ordre

Nous allons aborder dans ce premier chapitre les équations différentielles ordinaires (EDO) linéaires du premier ordre.

Définition 1 (équation différentielle ordinaire). Une équation différentielle ordinaire (EDO) est une équation qui a pour inconnue une fonction, elle s'écrit de la forme suivante :

$$y'(t) = f(t, y(t)), \in I,$$
 (1.1)

où I est une intervalle ouvert de \mathbb{R} et la fonction f continue sur $I \times U$, avec U intervalle ouvert de \mathbb{R} , à valeurs dans \mathbb{R} .

Définition 2 (Solution locale et globale). On dit que le couple (J, y), constitué d'un intervalle $J \subset I$ et d'une fonction $y: I \to \mathbb{R}$ de classe \mathcal{C}^1 , est une solution de (1.1) lorsque

- pour tout $t \in J$, on a $y(t) \in U$;
- pour tout $t \in J$, on a y'(t) = f(t, y(t)).

On dit que (J, y) est une **solution globale** de (1.1) lorsque J = I.

En pratique, on est souvent intéressé par une équation différentielle avec condition initiale, qu'on appelle alors **problème de Cauchy**, qui s'écrit :

$$\begin{cases} y'(t) = f(t, y(t)), \\ y(t_0) = y_0, \end{cases}$$
 (1.2)

où $t_0 \in I$ et $y_0 \in \mathbb{R}$. Résoudre le problème de Cauchy en t_0 (1.2) c'est trouver toutes les solutions (J, y) de l'équation différentielle y'(t) = f(t, y(t)) telles que $t_0 \in J$ et $y(t_0) = y_0$. Se posent alors les questions naturelles suivantes :

- 1. Existence des solutions : locale, globale?
- 2. Unicité de la solution?
- 3. Stabilité de la solution?

1.1.1 Équations linéaires

On s'intéresse ici au cas **linéaire** : on choisit f(t,y(t)) = a(t)y(t) + b(t) où les fonctions a et b sont des fonctions continues sur un intervalle $I \subset \mathbb{R}$; à t donné, la fonction $y \mapsto f(t,y(t))$ est donc linéaire. L'équation devient alors :

$$y'(t) = a(t)y(t) + b(t), \quad t \in I.$$
 (1.3)

Dans un premier temps nous allons résoudre l'equation homogène associée à (1.3), c.à.d. l'équation (1.3) avec b(t) = 0 pour tout t. Soit l'équation homogène associée à (1.3)

$$y'(t) = a(t)y(t). (1.4)$$

On considère d'abord le cas où a(t) est une fonction constante sur l'intervalle I: on doit trouver toutes les fonctions $y \in \mathcal{C}^1(I)$ telles que

$$\forall t \in I, \ y'(t) - a(t)y(t) = 0.$$

Remarque 1 (Équation autonome). Si la fonction f ne dépend pas de t, on dit que l'équation (1.1) est autonome.

Il se trouve que lorsque $y \in C^1(I)$,

$$(e^{-at}y(t))' = e^{-at}(-ay(t) + y'(t)).$$

Donc (1.4) équivaut à

$$\forall t \in I, \quad (e^{-at}y(t))' = 0.$$

D'où

$$(1.4) \iff \exists C \in \mathbb{R}, \ e^{-at}y(t) = C \iff \exists C \in \mathbb{R}, \ y(t) = Ce^{at}.$$

Autrement dit on a prouvé que l'ensemble S des solutions de l'équation y'(t) = ay, où $a \in \mathbb{R}$, sur l'intervalle ouvert I est

$$\mathcal{S} := \{ t \mapsto Ce^{at}, \ C \in \mathbb{R} \}.$$

Passons au cas général où a(t) n'est pas forcément constante sur I. On procède de la même manière, c.à.d. trouver une fonction A(t) telle que

$$\forall t \in I, \ y'(t) - a(t)y(t) = 0 \iff \forall t \in I, \ (e^{-A(t)}y(t))' = 0.$$

On voit qu'il suffit de prendre pour A n'importe quelle primitive de la fonction a (puisque a est continue sur I elle admet des primitives sur cet intervalle).

4

On a alors que l'ensemble S des solutions de l'équation y'(t) = a(t)y(t), où $a: I \to \mathbb{R}$ est une fonction continue, sur l'intervalle ouvert I est

$$\mathcal{S} := \{ t \mapsto Ce^{A(t)}, \ C \in \mathbb{R} \},\$$

où $A: I \to \mathbb{R}$ est une primitive de a sur I. On revient maintenant à l'équation (1.3)

$$y'(t) = a(t)y(t) + b(t),$$

où a et b sont deux fonctions continues sur l'intervalle $I = (\alpha, \beta)$. On a la proposition suivante

Proposition 1. L'ensemble des solutions de l'équation (1.3) sur I est

$$\mathcal{S} := \Big\{ t \mapsto e^{A(t)} \Big(C + \int_{\alpha}^{t} e^{-A(s)} b(s) ds \Big), \ C \in \mathbb{R} \Big\},$$

Démonstration. Soit A une primitive de a sur I et supposons que $y: I \to \mathbb{R}$ soit une solution de (1.3). On pose, pour tout $t \in I$, $w(t) = e^{-A(t)}y(t)$ on a

$$w'(t) = -a(t)e^{-A(t)}y(t) + e^{-A(t)}y'(t)$$

= $-a(t)e^{-A(t)}y(t) + e^{-A(t)}(a(t)y(t) + b(t))$
= $e^{-A(t)}b(t)$.

Donc il existe une constante $C \in \mathbb{R}$ telle que

$$w(t) = \int_{\alpha}^{t} e^{-A(s)}b(s)ds + C,$$

Et

$$y(t) = e^{A(t)}w(t) = e^{A(t)} \Big(\int_{C}^{t} e^{-A(s)}b(s)ds + C \Big).$$

Réciproquement, on vérifie que toutes les fonctions $y: t \mapsto e^{A(t)} \left(\int_{\alpha}^{t} e^{-A(s)} b(s) ds + C \right)$ sont des solutions de (1.3) sur I.

1.1.1.1 Résolution par la méthode de variation de la constante

On donne ici un autre preuve de la proposition 1 en utilisant un procédé bien connu pour les équations linéaires d'ordre 1 : la méthode de variation de la constante. On verra plus tard que cette méthode marche aussi pour les équations d'ordre 2 et les systèmes linéaires.

On considère l'équation

$$y'(t) = a(t)y(t) + b(t),$$

où $a, b: I \to \mathbb{R}$ sont continues.

Remarque 2. On peut noter que une équation linéaire d'ordre 1 peut s'écrire aussi sous la forme

$$p(t)y'(t) + q(t)y(t) = g(t),$$

où $p,q,g:I\to\mathbb{R}$ sont continues et on assume que $p(t)\neq 0$ sur un intervalle $J\subset I$ telle qu'on peut réécrire l'edo sous la forme (1.3). On cherchera alors une solution sur l'intervalle J.

On sait que les solutions de l'équation homogène associée

$$y'(t) = a(t)y(t)$$

Sont les fonctions de la forme $y_h(t) = Ce^{A(t)}$, où A(t) est une primitive de a(t) sur I. L'idée est la suivante : on cherche une solution **particulière** y_p de l'équation sous la forme

$$y_p(t) = c(t)e^{A(t)},$$

où c(t) est une fonction C^1 à déterminer. On dit que l'on fait varier la constante c qui apparait dans l'expression de la solution de l'équation homogène. Pour que y_p soit une solution, il faut et il suffit que

$$c'(t)e^{A(t)} + a(t)c(t)e^{A(t)} = y'_p(t) = a(t)y_p(t) + b(t) = a(t)c(t)e^{A(t)} + b(t),$$

c'est-à-dire

$$c'(t) = b(t)e^{-A(t)}$$

et il suffit donc de prendre pour c(t) une primitive de $b(t)e^{-A(t)}$

$$c(t) = \int_{t_0}^t b(s)e^{-A(s)}ds,$$

où $t_0 \in I$ est un point quelconque. La solution de l'équation est enfin donnée par

$$y(t) = y_h(t) + y_p(t)$$

et on retrouve bien l'ensemble des solutions introduite dans la proposition 1

1.1.2 Stabilité

On considère maintenant le problème de Cauchy où l'EDO est linéaire, homogène et $a \in \mathbb{R}$. On peut par exemple se poser la question de la stabilité par rapport à la condition initiale : on ajoute un petit terme ε , qu'on appelle **perturbation**, à celle-ci et on se demande quel est le comportement de la solution lorsque ε tend vers 0. La solution sera dite stable par rapport à la donnée initiale, si elle tends (en un sens à définir) vers la solution du problème sans perturbation. Soit $t_0 \in I = \mathbb{R}$, le problème de Cauchy s'écrit

$$\begin{cases} y'(t) = ay(t), \\ y(t_0) = y_0. \end{cases}$$
 (1.5)

6

Le problème de Cauchy avec donnée initiale perturbée s'écrit, pour $\varepsilon > 0$,

$$\begin{cases} y'(t) = ay(t), \\ y(t_0) = y_0 + \varepsilon. \end{cases}$$
 (1.6)

Les solution respectives de (1.5) et (1.6) sont

$$y(t) = y_0 e^{a(t-t_0)}$$
 et $y_{\varepsilon}(t) = (y_0 + \varepsilon) e^{a(t-t_0)}$.

On a donc

$$y_{\varepsilon}(t) - y(t) = \varepsilon e^{a(t-t_0)}$$
.

La solution est donc stable par rapport à la donnée initiale car

$$\forall t \in I, \lim_{\varepsilon \to 0} y_{\varepsilon}(t) - y(t) = 0.$$

Par contre, si a > 0 la solution n'est pas **uniformément stable** car

$$\forall \varepsilon > 0 \sup_{t \in I} |y_{\varepsilon}(t) - y(t)| = +\infty.$$

Si $a \le 0$, la solution est **uniformément stable**, c'est-à-dire que

$$\lim_{\varepsilon \to 0} \sup_{t \in I} |y_{\varepsilon}(t) - y(t)| = 0.$$

1.1.3 Équations non linéaires

On considère le cas où $f \in \mathcal{C}(I \times U, \mathbb{R})$ est non linéaire et on essaye de comprendre mieux la notion de solution.

Remarque 3 (Méthode des variables séparables). Dans certains cas on peut résoudre les équations différentielles en utilisant la méthode des variables séparables. Cette méthodes consiste à mettre l'équation (1.1) sous la forme

$$h(y)y'(t) = g(t),$$

où h et g sont deux fonctions continues. En prenant une primitive de h, notée H, cette équation est équivalente à

$$(H(y))'(t) = q(t).$$

En notant G une primitive de g, ceci donne l'existence de $C \in \mathbb{R}$ tel que H(y(t)) = G(t) + C pour tout $t \in I$.

Exemple 1 (Existence locale et globale). On considère l'edo avec $f(t,x) = -x^2$ et $I = \mathbb{R}$. On cherche d'abord des solutions constantes de l'edo, c.à.d. des solutions telles que f(t,y) = 0. Dans ce cas on trouve que la seule solution constante est $y(t) = 0 \ \forall t \in I$ d'où on a que la fonction

nulle est une solution globale de l'edo. Si on applique la méthode des variables séparables en supposant que $y(t) \neq 0 \ \forall t$ on obtient

$$\begin{cases} y_{+}: (C, +\infty) \to \mathbb{R} \\ t \mapsto \frac{1}{t - C} \end{cases} \text{ et } \begin{cases} y_{-}: (-\infty, C) \to \mathbb{R} \\ t \mapsto \frac{1}{t - C} \end{cases}.$$

On voit que y_+ est une solution sur $(C, +\infty)$ et y_- est une solution sur $(-\infty, C)$ alors que l'équation a un sens pour tout t dans \mathbb{R} ! On dit que y_+ et y_- sont **solutions locales** de l'edo.

Lemme 2 (Retour sur la définition de solution (forme intégrale)). Une fonction $y: J \to \mathbb{R}$ est une solution du problème de Cauchy de données initiales (t_0, y_0) si est seulement si

- 1. y est continue et $\forall t \in J, y(t) \in U$;
- 2. $\forall t \in J \text{ on } a \ y(t) = y_0 + \int_{t_0}^t f(s, y(s)) ds$.

On a alors ce premier résultat d'existence d'une solution locale du problème de Cauchy

Théorème 3 (Cauchy-Peano-Arzela). Soient $f: I \times U \to \mathbb{R}$ une fonction continue, où $I = [t_0 - a, t_0 + a]$ et $U = [y_0 - r, y_0 + r]$, M un majorant de la norme de f sur $I \times U$ et $c \leq \min(a, \frac{r}{M})$. Alors le problème de Cauchy (1.2) admet au moins une solution $y: [t_0 - c, t_0 + c] \to [y_0 - r, y_0 + r]$.

Pour montrer ce théorème on aura besoin du résultat suivant que l'on admettra sans preuve

Théorème 4 (Ascoli). On suppose E, F deux sous-espaces compacts de \mathbb{R}^d . Soit $\phi_n : E \to F$ une suite d'applications L-lipschitziennes, où $L \geq 0$ est une constante donnée. Alors on peut extraire une sous-suite ϕ_{n_k} uniformément convergente et la limite est une application L-lipschitzienne.

Le preuve de 3 sera constructive et on utilisera la méthode (numérique!!) d'Euler ci-dessous

Remarque 4 (Schéma d'Euler explicite). On cherche à construire une solution approchée de (1.2) sur un intervalle $[t_0, t_0 + c]$. On se donne pour cela une subdivision

$$t_0 < t_1 < \dots < t_N = t_0 + c$$
.

La largeur de l'intervalle $[t_i, t_{i+1}]$ est appelé pas de temps h est dans ce cas tous les intervalle on la même largeur. Le schéma d'Euler explicite consiste à construire une solution approchée y_h affine par morceaux comme suit

$$y_h(t) = y_i + (t - t_i) f(t_i, y_i), t \in t_i, t_{i+1},$$

où, en partant de la donnée initiale y_0 , on calcule le y_i par récurrence en posant

$$y_{i+1} = y_i + h f(t_i, y_i).$$

Démonstration. On rappelle d'abord que le module de continuité ω de f sur $C = [t_0 - c, t_0 + c] \times U$ est défini par

$$\omega(u) = \max\{\|f(t_1, y_1) - f(t_2, y_2)\| \mid |t_1 - t_2| + |y_1 - y_2| \le u\},\$$

où $u \in [0, +\infty)$. Comme C est un compact, la fonction f est uniformément continue sur C, par conséquent

$$\lim_{u \to 0+} \omega(u) = 0.$$

On commence par montrer que une solution approchée $y_h: [t_0 - c, t_0 + c] \to U$ construite par le schéma d'Euler est telle que $|y_h'(t) - f(t, y_h(t))| \le \varepsilon$ et en particulier l'erreur d'approximation ε tend vers 0 quand $h \to 0$. Remarquons que $y_h'(t) = f(t_i, y_i)$ et

$$|y_h(t) - y_i| = h|f(t_i, y_i)| \le hM.$$

Par définition de ω il vient

$$|y_h'(t) - f(t, y_h(t))| = |f(t_i, y_i) - f(t, y_h(t))| \le \omega(h(M+1)) = \varepsilon.$$

On peut aussi remarquer que la solution approchée est M-lipschitzienne et en utilisant le théorème de Ascoli on peut extraire de y_h une sous-suite uniformément convergente vers y. Il nous reste a montrer que cette limite est une solution exacte de (1.2). Comme $|y'_h(t) - f(t, y_h(t))| \le \varepsilon$, il vient après intégration

$$|y_h(t) - y_0 - \int_{t_0}^t f(s, y_h(s)) ds| \le \varepsilon |t - t_0|$$

et grâce à la convergence uniforme on a

$$y(t) - y_0 - \int_{t_0}^t f(s, y(s))ds = 0.$$

On en déduit que y est une solution exacte de (1.2), c'est-à-dire,

- $y(t_0) = y_0;$
- y est continue et $y \in U$;
- --y'(t) = f(s, y(t)).

Supposons que l'on ait déterminé une solution (J, y) de (1.1) et que ce ne soit pas une solution globale $J \neq I$. On peut se poser la question de trouver un intervalle $J' \supset J$ sur lequel la fonction, ou plus exactement son prolongement, est encore solution de (1.1).

Définition 3 (Prolongement). Soient (J_1, y_1) et (J_2, y_2) deux solutions de (1.1). On dit que (J_2, y_2) est un prolongement de (J_1, y_1) lorsque $J_2 \supset J_1$ et y_2 coïncide avec y_1 sur J_1 :

$$\forall t \in J_1, \ y_2(t) = y_1(t).$$

Définition 4 (Solution maximale). On dit que (J, y) est une solution maximale de (1.1) lorsqu'elle n'admet pas d'autre prolongement qu'elle-même.

Soit (J, y) une solution maximale de (1.1), on appelle J l'intervalle de vie de la solution.

Théorème 5. Soit O un ouvert de $\mathbb{R} \times \mathbb{R}$ et $y : J = [t_0, b) \to \mathbb{R}$ une solution de l'équation y' = f(y, y), où f est une fonction continue sur O. Alors y(t) peut se prolonger au delà de b si et seulement si il existe un compact $K \subset U$ tel que la courbe $t \mapsto (t, y(t)), t \in [t_0, b)$ reste contenue dans K

La conséquence suivante est immédiate

Remarque 5 (Critère de maximalité). Une solution $y:(a,b)\to\mathbb{R}$ de y'=f(t,y) est maximale si et seulement $t\mapsto (t,y(t))$ s'échappe de tout compact K de O quand $t\to a^+$ ou quand $t\to b^-$. Puisque les compact sont les parties fermées bornées, ceci signifie encore que $t\mapsto (t,y(t))$ s'approche du bord de O ou tend vers ∞ , c'est-à-dire

$$|t| + |y(t)| + \frac{1}{d((t, y(t)), \partial O)} \to +\infty.$$

quand $t \to a^+$ ou $t \to b^-$.

Démonstration. La condition de prolongement est évidemment nécessaire, puisque si y(t) se prolonge à $[t_0, b]$, alors l'image du compact $[t_0, b]$ par l'application continue $t \mapsto (t, y(t))$ est un compact $K \subset O$. Inversement, supposons qu'il existe un compact K de O tel que $(t, y(t)) \in K$ pour tout $t \in [t_0, b)$. Posons $M = \sup_{(t,y)\in K} ||f(t,y)|| < +\infty$ qui est fini par continuité de f et compacité de K. Ceci entraı̂ne que $t \mapsto y(t)$ est uniformément continue et le critère de Cauchy montre que la limite $l \lim_{t\to b^-} y(t)$ existe. nous pouvons prolonger y par continuité en b en posant y(b) = l et nous avons $(b, y(b)) \in K \subset O$ puisque K est fermé. De plus, on sait que y est de classe \mathcal{C}^1 sur $[t_0, b]$. Maintenant, le théorème d'existence locale des solutions implique qu'il existe une solution locale du problème de Cauchy de donné initia ;e z(b) = l = y(b) sur un intervalle $[b - \varepsilon, b + \varepsilon]$. On obtient alors un prolongement \tilde{y} de y sur $[t_0, b + \varepsilon]$ en posant $\tilde{y}(t) = z(t)$ pour $t \in [b, b + \varepsilon]$.

On termine cette section en donnant une première version élémentaire du théorème de Cauchy-Lipschitz sur l'existence et l'unicité d'une solution maximale pour le problème (1.2).

Théorème 6 (Théorème de Cauchy-Lipschitz, version élémentaire). Soit $f: I \times U \to \mathbb{R}$ une fonction continue, où I et U sont des intervalles ouverts de \mathbb{R} . Soit aussi $t_0 \in I$ et $y_0 \in U$. Si f est de classe C^1 sur $I \times U$, alors le problème de Cauchy (1.2) admet une unique solution maximale (J, y).

Chapitre 2

Équations d'ordre n et systèmes linéaires

Contents

2.1	Une équation d'ordre 2	10
2.2	Équations différentielle d'ordre n et systèmes de n équations	11
2.3	Systèmes linéaires	14

2.1 Une équation d'ordre 2

On considère maintenant les équations linéaires d'ordre 2

Définition 5 (Équation différentielle linéaire du second ordre). Une équation différentielle linéaire du second ordre s'écrit de la forme suivante :

$$y''(t) + a(t)y'(t) + b(t)y(t) = g(t), \ t \in I$$
(2.1)

où I est un intervalle ouvert et a, b et g sont des fonctions continues sur I. On cherche alors les fonctions g de classe \mathcal{C}^2 qui vérifient (2.1).

Le problème de Cauchy associé fait intervenir une condition initiale qui porte sue le couple $(y(t_0), y'(t_0))$ en un point $t_0 \in I$:

$$\begin{cases} y''(t) + a(t)y'(t) + b(t)y(t) = g(t), \ t \in I \\ y(t_0) = y_0, \\ y'(t_0) = z_0, \end{cases}$$
 (2.2)

où t_0, y_0 et z_0 sont donnés,

On verra plus tard que l'équation (2.1) peut s'écrire sous la forme d'un système différentiel d'ordre 1 et en appliquant une version plus générale du théorème de Cauchy-Lipschitz on aura existence et unicité d'une solution maximale pour (2.2). On s'intéresse à partir de maintenant à comment calculer explicitement les solution de (2.1) comme on pour l'équation (1.3).

On commence d'abord a considérer le cas de l'équation homogène à coefficient constants

$$y''(t) + ay'(t) + by(t) = 0, (2.3)$$

où $a, b \in \mathbb{R}$. On cherche une solution de la forme $y(t) = e^{rt}$ et en réinjectant y dans (2.3) on a

$$(r^2 + ar + b)e^{rt} = 0,$$

d'où r doit être une solution de l'**équation caractéristique** de (2.3). On alors le résultat suivant

Proposition 7. Soit $a, b \in \mathbb{R}$ et $P(r) = r^2 + ar + b$. On note $\Delta = a^2 - 4b$ le discriminant du polynôme P. Soit S l'ensemble des solutions sur \mathbb{R} à valeurs réelles de l'équation (2.3). Alors

i. Si $\Delta = 0$, notant $r_0 \in \mathbb{R}$ la racine de P

$$S := \{t \mapsto y_{c_1,c_2}(t), \ y_{c_1,c_2}(t) = (c_2 + c_1 t)e^{r_0 t}, \ c_1, c_2 \in \mathbb{R}\}.$$

ii. Si $\Delta > 0$, notant $r_1, r_2 \in \mathbb{R}$ les racines de P

$$\mathcal{S} := \{ t \mapsto y_{c_1, c_2}(t), \ y_{c_1, c_2}(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}, \ c_1, c_2 \in \mathbb{R} \}.$$

iii. Si $\Delta < 0$, notant $\delta \in \mathbb{R}_+$ tel que $\delta^2 = -\Delta$

$$\mathcal{S} := \{ t \mapsto y_{c_1, c_2}(t), \ y_{c_1, c_2}(t) = (c_1 \cos(\delta t/2) + c_2 \sin(\delta t/2))e^{-at/2}. \ c_1, c_2 \in \mathbb{R} \}.$$

2.2 Équations différentielle d'ordre n et systèmes de n équations

Jusqu'à présent on s'est préoccupé d'équations différentielles scalaires d'ordre 1. De manière générale on peut définir une équation différentielle scalaire d'ordre n:

Définition 6 (Équation d'ordre n). Une équation différentielle d'ordre n s'écrit

$$y^{(n)}(t) = f(t, y(t), y'(t), \dots, y^{(n-1)}(t)), \tag{2.4}$$

où $f: I \times U \to \mathbb{R}$ continue, I étant un intervalle ouvert de \mathbb{R} et U un ouvert de \mathbb{R}^n . On dit que le couple (J, y), avec $J \subset I$ et $y: J \to \mathbb{R}$ de classe \mathcal{C}^n , est une solution de (2.4) lorsque

- $\forall t \in J$, on a $(y(t), y'(t), \dots, y^{(n-1)}(t)) \in U$,
- $\forall t \in J$, on a $y^{(n)}(t) = f(t, y(t), y'(t), \dots, y^{(n-1)}(t)).$

Pour énoncer des résultats théoriques, mais aussi parfois pour résoudre les équations d'ordre n, on préfère ramener une Edo d'ordre n à un système de n équations différentielles d'ordre n.

On considère l'équation d'ordre 2 (2.1) : y''(t) + a(t)y'(t) + b(t)y(t) = g(t). Supposons que (J, y) en soit une solution et posons

$$Y(t): J \to \mathbb{R}^2, \ Y(t) = \begin{bmatrix} y(t) \\ y'(t) \end{bmatrix}.$$

Puisque $y \in \mathcal{C}^2(I)$, la fonction Y est de classe \mathcal{C}^1 sur I et

$$Y'(t) = \begin{bmatrix} y'(t) \\ y''(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -b(t) & -a(t) \end{bmatrix} Y(t) + \begin{bmatrix} 0 \\ g(t) \end{bmatrix}.$$

C'est-à-dire, (J, Y) est solution du système différentiel

$$Y'(t) = F(t, Y(t)),$$

où $F:I\times\mathbb{R}^2\to\mathbb{R}^2$ est la fonction définie par

$$F(t,X) = \begin{bmatrix} 0 & 1 \\ -b(t) & -a(t) \end{bmatrix} X + \begin{bmatrix} 0 \\ g(t) \end{bmatrix} = \begin{bmatrix} x_2 \\ -b(t)x_1 - a(t)x_2 + g(t) \end{bmatrix},$$

avec $X = (x_1, x_2) \in \mathbb{R}^2$. On a la définition suivante

Définition 7 (Système différentiel d'ordre 1). Un système différentiel d'ordre 1 s'écrit

$$Y'(t) = F(t, Y(t)).$$
 (2.5)

où $F: I \times U \to \mathbb{R}^n$ continue, I étant un intervalle ouvert de \mathbb{R} et U un ouvert de \mathbb{R}^n On dit que le couple (J, Y), avec $J \subset I$ et $Y: J \to \mathbb{R}^n$ de classe \mathcal{C}^1 , est une solution de (2.10) lorsque

- $\forall t \in J$, on a $Y(t) \in U$,
- $\forall t \in J$, on a Y'(t) = F(t, Y(t)).

La proposition suivante permet de lier la solution d'une équation d'ordre n à celle du système associé.

Proposition 8. Soit $f: I \times U \to \mathbb{R}$ une fonction continue, où I est un intervalle ouvert de R et U un ouvert de \mathbb{R}^n . On note $F: I \times U \to \mathbb{R}^n$ la fonction définie par

$$F(t, x_1, \cdots, x_n) = \begin{bmatrix} x_2 \\ x_3 \\ \vdots \\ x_n \\ f(t, x_1, \cdots, x_n) \end{bmatrix}.$$

i. Si(J,y) est une solution de l'équation différentielles d'ordre n

$$y^{(n)}(t) = f(t, y(t), y'(t), \cdots, y^{(n-1)}(t)), \tag{2.6}$$

alors
$$(J,Y)$$
, avec $Y(t) = \begin{bmatrix} y(t) \\ y'(t) \\ \vdots \\ y^{(n-1)}(t) \end{bmatrix}$, est une solution du système différentiel d'ordre 1 (2.10) .

ii. Réciproquement, si
$$(J,Y)$$
 est une solution de (2.10) , avec $Y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_n(t) \end{bmatrix}$, alors $(J,y_1(t))$ est une solution de (2.1) .

Exercice 1. Montrer 8.

En particulier, pour le système on démontrera le même théorème de Cauchy-Lipschitz que pour les equations scalaires

Théorème 9 (Théorème de Cauchy-Lipschitz, version élémentaire, cas des systèmes). Soit $F: I \times U \to \mathbb{R}^n$ une fonction continue, où I est un intervalle ouvert de R et U un ouvert de \mathbb{R}^n . Soit aussi $t_0 \in I$ et $Y_0 \in U$. Si F est de classe C^1 sur $I \times U$, alors le problème de Cauchy

$$\begin{cases} Y'(t) = F(t, Y(t)), \\ Y(t_0) = Y_0, \end{cases}$$

Admet une unique solution maximale (J, Y)

Remarque 6. Si la fonction f en (2.1) est de classe C^1 alors en utilisant 8 et le théorème de CL pour le système on peut prouver l'existence et l'unicité d'une solution maximale pour un problème de Cauchy avec une équation différentielle d'ordre n!

2.3 Systèmes linéaires

On étend maintenant la definition de equation linéaire au cas des systèmes différentiels

Définition 8 (Système linéaire). Soit $F: I \times \mathbb{R}^n \to \mathbb{R}^n$ une fonction continue, où I est un intervalle ouvert de \mathbb{R} . On dit que le system différentiel

$$Y'(t) = F(t, Y(t)),$$

est linéaire lorsqu'il existe deux fonctions $A: I \to \mathcal{M}_n(\mathbb{R})$ et $B: I \to \mathbb{R}^n$ continues telle que

$$F(t,X) = A(t)X + B(t).$$

Le problème de Cauchy s'écrit

$$\begin{cases} Y'(t) = A(t)Y + B(t), \\ Y(t_0) = Y_0, \end{cases}$$
 (2.7)

où $t_0 \in I$ et $Y_0 \in U$.

Good to know: exponentielle de matrices

Définition 9 (Exponentielle de matrice). Soit $A \in \mathcal{M}_n(\mathbb{R})$ de coefficients $(a_{ij})_{i=1,\dots,n,j=1,\dots,n}$. On pose

$$e^A = \sum_{k=0}^{+\infty} \frac{A^k}{k!}.$$

Si $t \in \mathbb{R}$ on définit le produit tA par

$$\forall i, j \in [1, n], (tA)_{ij} = (At)_{ij} = ta_{ij},$$

de sorte que

$$\forall t \in \mathbb{R}, \ e^{tA} = e^{At} = \sum_{k=0}^{+\infty} \frac{(tA)^k}{k!} = \sum_{k=0}^{+\infty} \frac{t^k A^k}{k!}.$$

La définition a un sens grâce au résultat de convergence suivant

Lemme 10. Soit
$$A \in \mathcal{M}_n(\mathbb{R})$$
. Alors $\sum_{k=0}^{+\infty} \frac{A^k}{k!} < +\infty$.

La proposition suivante nous permet de bien définir la dérivée de l'exponentielle.

Proposition 11. Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $t \in \mathbb{R}$ et $t \in \mathbb{R}$, alors

$$(e^{tA})' = Ae^{tA}.$$

On rappelle enfin certaines propriétés :

- 1. e^A est inversible, d'inverse e^{-A} ;
- 2. si $A = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ alors $e^A = \operatorname{diag}(e^{\lambda_1}, \dots, e^{\lambda_n})$ et $\operatorname{det}(e^A) = e^{\operatorname{Tr}(A)}$;
- 3. si A est diagonalisable : il existe une matrice S telle que $D = S^{-1}AS = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ alors on calcule d'abord $e^D = \operatorname{diag}(e^{\lambda_1}, \dots, e^{\lambda_n})$ et puis on revient $e^A = Se^DS^{-1}$.

2.3.1 Système linéaire à coefficients constants : le cas homogène

On considère d'abord le système différentielle homogène associé et pour simplicité on se restreint au cas de **coefficients constants**

$$Y'(t) = AY(t). (2.8)$$

De façon similaire au cas scalaire on définit le problème de Cauchy

$$\begin{cases}
Y'(t) = AY(t), \\
Y(t_0) = Y_0,
\end{cases} (2.9)$$

où $t_0 \in I$ et $Y_0 \in U$. La proposition suivante étend le même résultat obtenu pour les equations scalaires

Proposition 12. Soit $A \in \mathcal{M}_n(\mathbb{R})$ alors

- Il existe une unique solution maximale pour problème de Cauchy (2.9);
- Les solutions maximales de (2.8) sont globales;
- La solution maximale de condition initiale (t_0, Y_0) est

$$Y(t) = e^{(t-t_0)A}Y_0.$$

Remarque 7. La proposition 12 vaut bien sûr aussi pour les equations linéaires.

 $D\acute{e}monstration.$ On procède comme dans le cas en dimension 1. Soit Y une solution du système homogène on a

$$\left(e^{-tA}Y(t)\right)' = e^{-tA}\left(Y'(t) - AY(t)\right) = 0.$$

Comme les matrices e^{-tA} sont inversibles, il suit que Y est solution si et seulement si l'application $e^{-tA}Y(t)$ est constante d'où le résultat annoncé.

Corollaire 13 (Dimension de l'ensemble des solutions). Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $U = \mathbb{R}^n$. L'ensemble des solutions $\mathcal{S} = \{t \to e^{tA}C, C \in \mathbb{R}^n\}$ du système linéaire homogène Y'(t) = AY(t) est un sous-espace vectoriel de $\mathcal{C}^1(I,\mathbb{R}^n)$ de dimension n.

Démonstration. Pour montrer que S est un sous-espace vectoriel de $C^1(I, \mathbb{R}^n)$, il suffit de prendre deux solutions Y_1 et Y_2 du système et remarquer que $\alpha_1 Y_1 + \alpha_2 Y_2$ est aussi une solution. On montre maintenant qu'il est de dimension n. Soit $t_0 \in I$, d'après 12, pour chaque $X_0 \in U$ le problème de Cauchy (2.9) admet une unique solution globale qu'on note (I, Y_{X_0}) . L'application $\varphi : X_0 \to Y_{X_0}$ de U dans S est bijective :

- 1. elle est injective : si $Y_{X_1} = Y_{X_2}$ on a nécessairement $X_1 = X_2$;
- 2. elle est surjective : si $Y \in \mathcal{S}$, on a $Y = \varphi(Y(t_0))$.

On montre que φ est linéaire. Pour $X_1, X_2 \in U$ et $\alpha_1, \alpha_2 \in \mathbb{R}$,

$$Y_{\alpha_1 X_1 + \alpha_2 X_2} = \alpha_1 Y_{X_1} + \alpha_2 Y_{X_2}.$$

Puisque $Y_{\alpha_1X_1+\alpha_2X_2}$ est l'unique solution Y qui vérifie $Y(t_0)=\alpha_1X_1+\alpha_2X_2$, il suffit de montrer que $\alpha_1Y_{X_1}+\alpha_2Y_{X_2}$ est aussi une solution du même problème. Comme S est un espace vectoriel on sait déjà que $\alpha_1Y_{X_1}+\alpha_2Y_{X_2}$ est une solution. Enfin

$$(\alpha_1 Y_{X_1} + \alpha_2 Y_{X_2})(t_0) = \alpha_1 Y_{X_1}(t_0) + \alpha_2 Y_{X_2}(t_0) = \alpha_1 X_1 + \alpha_2 X_2.$$

L'application φ est donc un isomorphisme d'où

$$\dim(\mathcal{S}) = \dim(\varphi(U)) = n.$$

Définition 10. On appelle système fondamentale de solutions sur I de l'equation (2.8) toute base (Y_1, \dots, Y_n) de l'espace des solutions S sur I de cette équation.

Proposition 14. Soit $A \in \mathcal{M}_n(\mathbb{R})$ et (Y_1, \dots, Y_n) une famille de n solutions de l'equation (2.8) alors (Y_1, \dots, Y_n) est un système fondamentale de solutions si et seulement si $w(t) = \det([Y_1(t)|\dots|Y_n(t)]) \neq 0 \ \forall t \in I$.

La fonction $w(t) = \det([Y_1(t)|\cdots|Y_n(t)]) \neq 0 \ \forall t \in I$ est appelée **wronskien** des fonctions (Y_1,\cdots,Y_n) .

Si on considère le cas d'une matrice A diagonalisable (il existe une matrice S telle que chaque colonne de S est un vecteur propre de A et $D = S^{-1}AS = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$) on voit bien que

$$\begin{split} Y(t)' &= AY(t) \iff Y(t)' = SDS^{-1}Y(t) \iff S^{-1}Y(t)' = DS^{-1}Y(t) \\ &\iff (S^{-1}Y(t))' = D(S^{-1}Y(t)) \text{ car la matrice } S^{-1} \text{ est constante} \\ &\iff \tilde{Y}'(t) = D\tilde{Y}(t) \text{ où } \tilde{Y} = S^{-1}Y. \end{split}$$

Ainsi, Y est solution de l'equation homogène si est seulement si \tilde{Y} est solution de l'equation $\tilde{Y}' = D\tilde{Y}$. D'après la proposition 12 on sait que toute solution de $\tilde{Y}' = D\tilde{Y}$ est de la forme

$$\tilde{Y}(t) = e^{tD}C = \operatorname{diag}(e^{t\lambda_1}, \cdots, e^{t\lambda_n})C, \ C \in \mathbb{R}^n.$$

On alors que

$$Y(t) = S\tilde{Y} = \sum_{i=1}^{n} c_i e^{t\lambda_i} V_i,$$

où c_i sont les composantes du vecteur C, λ_i sont les valeurs propres de A et V_i les vecteurs propres associés. En utilisant la proposition 14 on peut vérifier que $(e^{t\lambda_1}V_1, \cdots, e^{t\lambda_n}V_n)$ est bien un système fondamentale de solutions de Y'(t) = AY(t).

2.3.2 Système linéaire à coefficients constants : le cas non homogène

On veut maintenant résoudre un système différentiel à coefficients constants mais avec un second membre

$$Y'(t) = AY(t) + B(t),$$
 (2.10)

où $A \in \mathcal{M}_n(\mathbb{R})$ et $B : I \to \mathbb{R}^n$ continue. On sait de nouveau résoudre explicitement ces équations et l'on a encore des informations sur la structure de l'ensemble des solutions

Proposition 15. Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $B: I \to \mathbb{R}^n$ continue alors

- Il existe une unique solution maximale pour le problème de Cauchy associé à(2.10);
- Les solutions maximales de (2.10) sont globales;
- La solution maximale de condition initiale $(t_0, Y_0) \in I \times U$ est

$$Y(t) = e^{(t-t_0)A}Y_0 + \int_{t_0}^t e^{(t-s)A}B(s)ds.$$

Démonstration. Soit $t \mapsto Y(t) \in U$ une application de classe \mathcal{C}^1 . On a

$$\left(e^{-tA}Y(t)\right)' = e^{-tA}\left(Y'(t) - AY(t)\right).$$

Puisque chaque matrice e^{-tA} est inversible, il suit que Y(t) est solution de (2.10) si et seulement si

$$\left(e^{-tA}Y(t)\right)' = e^{-tA}B(t)$$

soit, intégrant entre t_0 et $t \in I$,

$$e^{-tA}Y(t) - e^{-t_0A}Y(t_0) = \int_{t_0}^t e^{-sA}B(s)ds$$

ou encore

$$Y(t) = \underbrace{e^{(t-t_0)A}Y_0}_{\text{sol. eq. homogène}} + \underbrace{\int_{t_0}^t e^{(t-s)A}B(s)ds}_{\text{sol. particulière}}.$$

2.3.2.1 Variation de la constante

On cherche une solution du système (2.10) en utilisant, comme dans le cas scalaire, la méthode de variation de la constante. Soit (Y_1, \dots, Y_n) une système fondamental de solutions pour le système homogène Y' = AY, alors l'idée de la méthode de la variation de la constante est de chercher une solution de Y' = AY + B(t) sous la forme

$$Y(t) = \sum_{i=1}^{n} c_i(t) Y_i(t),$$

où les fonctions c_i sont scalaires de classe \mathcal{C}^1 , à déterminer. On a

$$Y'(t) = \sum_{i=1}^{n} c'_{i}(t)Y_{i}(t) + \sum_{i=1}^{n} c_{i}(t)Y'_{i}(t) = \sum_{i=1}^{n} c'_{i}(t)Y_{i}(t) + \sum_{i=1}^{n} c_{i}(t)AY_{i}(t)$$
$$= \sum_{i=1}^{n} c'_{i}(t)Y_{i}(t) + A\left(\sum_{i=1}^{n} c_{i}(t)Y_{i}(t)\right) = \sum_{i=1}^{n} c'_{i}(t)Y_{i}(t) + AY(t).$$

D'où Y est solution si et seulement si

$$\sum_{i=1}^{n} c'_{i}(t)Y_{i}(t) = B(t).$$

D'autre part si on note $W(t) = [Y_1(y)|, \cdots | Y_n(t)]$ la matrice **Wronskienne**, l'équation précédente s'écrit aussi

$$W(t)C'(t) = B(t),$$

où $C(t) = (c_1(t), \dots, c_n(t))$. Comme on a chois un système fondamental de solutions on sait que le wronskien $w(t) = \det(W(t))$ s'annule jamais pour tout $t \in I$ et on a $C'(t) = W(t)^{-1}B(t)$ et on obtient $C(t) = \tilde{C} + \int_{t_0}^t W(s)B(s)ds$ avec $\tilde{C} \in \mathbb{R}^n$ et $t_0 \in I$. Au final

$$Y(t) = W(t)\tilde{C} + W(t)\int_{t_0}^t W(s)^{-1}B(s)ds.$$

Remarque 8. Si la matrice A est diagonalisable, on choisit comme système fondamentale de solution la famille $Y_i(t) = e^{t\lambda_i}V_i$ où V_i est le vecteur propre associé au valeur propre λ_i .

Application au cas d'une équation d'ordre 2 On cherche à résoudre une équation différentielle d'ordre 2 à coefficients constants

$$y''(t) + ay'(t) + by(t) = g(t),$$

où $a, b \in \mathbb{R}$ et $g: I \to \mathbb{R}$ est une application continue. En introduisant, comme en 2.2, la nouvelle fonction inconnue $Y(t) = \begin{bmatrix} y(t) \\ y'(t) \end{bmatrix}$ on se ramène au système différentiel Y'(t) = AY(t) + B(t) où

$$A = \begin{bmatrix} 0 & 1 \\ -b & -a \end{bmatrix}$$
 et $B(t) = \begin{bmatrix} 0 \\ g(t) \end{bmatrix}$.

Supposons connue une base (y_1, y_2) de l'espace des solutions de l'équation homogène y''(t) + ay'(t) + by(t) = 0 (on peut meme les calculer en utilisant 7!), et donc une base $Y_i = \begin{bmatrix} y_i \\ y_i' \end{bmatrix}$ (i = 1, 2) de l'espace des solutions du système homogène. Comme on vient de le voir, la méthode de la variation de la constante consiste à cherche les solutions Y du système différentiel sous la forme

$$Y(t) = c_1(t)Y_1(t) + c_2(t)Y_2(t). (2.11)$$

On revient maintenant à la fonction inconnue y. L'identité (2.11) se traduit par

$$\begin{cases} y(t) = c_1(t)y_1(t) + c_2(t)y_2(t) \\ y'(t) = c_1(t)y'_1(t) + c_2(t)y'_2(t). \end{cases}$$
 (2.12)

En chaque instant t, y(t) et y'(t) sont donc respectivement combinaisons linaires de $(y_1(t), y_2(t))$ et $(y'_1(t), y'_2(t))$ Avec les mêmes coefficients $(c_1(t), c_2(t))$. Dérivons la première ligne de (2.12). Il vient

$$y'(t) = (c_1(t)y_1'(t) + c_2(t)y_2'(t)) + (c_1'(t)y_1(t) + c_2'(t)y_2(t)).$$

Demander que la seconde ligne de (2.12) soit satisfaite équivaut donc à la condition

$$c_1'(t)y_1(t) + c_2'(t)y_2(t) = 0. (2.13)$$

Dérivons maintenant la seconde ligne de (2.12). Il vient

$$y''(t) = (c_1(t)y_1''(t) + c_2(t)y_2''(t)) + (c_1'(t)y_1'(t) + c_2'(t)y_2'(t)).$$
(2.14)

Puisque y_1 et y_2 sont deux solutions de l'équation homogène, il suit de (2.14) et de (2.12) que

$$y''(t) + ay'(t) + by(t) = c_1(t)y_1''(t) + c_2(t)y_2''(t) + c_1'(t)y_1'(t) + c_2'(t)y_2'(t) + a(c_1(t)y_1'(t) + c_2(t)y_2'(t)) + b(c_1(t)y_1(t) + c_2(t)y_2(t)) = c_1'(t)y_1'(t) + c_2'(t)y_2'(t).$$

Il suit alors que y(t) est solution de l'edo d'ordre 2 si et seulement si

$$c_1'(t)y_1'(t) + c_2'(t)y_2'(t) = g(t). (2.15)$$

On résume ce qu'on vient de voir en (2.13) et (2.15): la fonction y est solution si est seulement si les fonction inconnues c'_1 et c'_2 satisfont, pour tout instant $t \in I$, le système

$$\begin{cases}
c'_1(t)y_1(t) + c'_2(t)y_2(t) = 0 \\
c'_1(t)y'_1(t) + c'_2(t)y'_2(t) = g(t),
\end{cases}$$
(2.16)

qui, en utilisant les notations de la section précédente, peut s'écrire sous la forme

$$W(t)C'(t) = \begin{bmatrix} 0 \\ g(t) \end{bmatrix}.$$

Puisque la matrice W est inversible en chaque instant t (Y_1 et Y_2 est un système fondamentale de solutions), on obtient donc c'_1 et c'_2 en résolvant ce système, puis les fonctions c_1 et c_2 par quadrature.

2.3.3 Système linéaire à coefficients variables : le cas homogène

On a vu que les solutions du système linéaire à coefficients constants Y'(t) = AY(t) sont les fonctions de la forme $t \mapsto e^{tA}C$ où $C \in \mathbb{R}^n$ et, dans le cas d'une matrice diagonalisable, on a calculé explicitement e^{tA} . On considère maintenant le cas générale d'un système linéaire homogène à coefficients variable, c'est-à-dire

$$Y'(t) = A(t)Y(t), \tag{2.17}$$

où $A: I \to \mathcal{M}_n(\mathbb{R})$ est fonction continue. On admet (mais on le démontrera plus tard!) que, pour tout $(t_0, Y_0) \in I \times U$, le problème de Cauchy

$$\begin{cases} Y'(t) = A(t)Y(t), \\ Y(t_0) = Y_0, \end{cases}$$
 (2.18)

admet une unique solution maximale, qui est globale. En particulier on peut démontrer que l'ensemble des solutions S de (2.17) est un espace vectoriel de dimension n.

Définition 11 (Résolvante). On appelle résolvante de (2.17), l'application linéaire $R(t, t_0)$: $I \times I \to \mathcal{M}_n(\mathbb{R})$ qui où $t \mapsto R(t, t_0)$ est l'unique solution du problème de Cauchy dans $\mathcal{M}_n(\mathbb{R})$

$$\begin{cases}
M'(t) = A(t)M(t), \\
M(t_0) = \mathrm{Id}_n.
\end{cases}$$
(2.19)

Remarque 9. $R(t, t_0)$ est l'application linéaire qui a un vecteur $X \in \mathbb{R}^n$ associe la valeur en t de la solution de (2.17) qui vaut X à l'instant t_0 . En particulier la solution du problème de Cauchy (2.18) est donnée par $Y(t) = R(t, t_0)Y_0$.

Remarque 10 (Système à coefficients constants). Dans le cas d'un système à coefficients constants on a $(\varphi_t)^{-1} = e^{-tA}$ et le résolvante est de la forme $R(t, t_0) = e^{(t-t_0)A}$.

Proposition 16 (Propriétés du résolvante). Soit $R: I \times I \to \mathcal{M}_n(\mathbb{R})$ le résolvante de (2.17). On a

- 1. $\forall t \in I, \ R(t,t) = \mathrm{Id}_n$;
- 2. $\forall t_0, t_1, t_2 \in I$, $R(t_2, t_1)R(t_1, t_0) = R(t_2, t_0)$;
- 3. $\forall t_0, t_1, t_2 \in I, \ \partial_t R(t, t_0) = A(t)R(t, t_0).$

Exercice 2. Montrer la proposition 16.

Remarque 11 (Le résolvante est une matrice inversible). 16[1-2] donnent

$$R(t, t_0)R(t_0, t) = R(t, t) = \mathrm{Id}_n = R(t_0, t)R(t, t_0),$$

donc $R(t, t_0)^{-1} = R(t_0, t)$.

C'est evident que si on connait le résolvante $R(t, t_0)$ alors on a à disposition un système de n solutions de l'équation Y'(t) = A(t)Y(t). Puisque l'espace des solutions est de dimension n, on peut se demander si les colonnes Y_1, \dots, Y_n de R forment un système fondamentale de solutions.

Théorème 17 (de Liouville). Soit $w(t) = \det([Y_1(t)|\cdots|Y_n(t)])$ le wroskien du système de n solutions Y_1, \cdots, Y_n de l'équation Y'(t) = A(t)Y(t). Alors w(t) satisfait l'équation différentielle

$$w'(t) = a(t)w(t),$$

où a(t) = tr A(t) est la trace de la matrice A(t).

Démonstration. Soit $W(t) = [Y_1 | \cdots | Y_n]$ la matrice wroskienne associée au système de solutions Y_1, \dots, Y_n alors on sait qu'elle satisfait (comme dans le cas de la remarque précédente) l'équation

$$W'(t) = A(t)W(t).$$

Or la formule de Taylor-Young à l'ordre 1 donne

$$W(t + \tau) = W(t) + \tau W'(t) + o(\tau) = (\text{Id} + \tau A(t))W(t) + o(\tau).$$

On obtient alors

$$w(t+\tau) = \det((\operatorname{Id} + \tau A(t))W(t)) + o(\tau) = w(t)\det(\operatorname{Id} + \tau A(t)) + o(\tau).$$

Comme on la relation suivante entre le determinant et la trace de la matrice A

$$\det(\operatorname{Id} + \tau A(t)) = 1 + \tau \operatorname{tr} A(t) + O(\tau^{2}),$$

on en déduit que

$$w(t+\tau) = w(t)(1+\tau \operatorname{tr} A(t)) + o(\tau),$$

d'où

$$\frac{w(t+\tau) - w(t)}{\tau} = a(t)w(t) + o(1),$$

et pour $\tau \to 0$ on obtient le résultat annoncé.

On remarque que si le wroskien $w(t_0) \neq 0$ alors il s'annule jamais. Par consequence la proposition (14) peut être reformule de manière équivalente

Proposition 18. Soit (Y_1, \dots, Y_n) une famille de n solutions de l'equation (2.8) (ou de (2.17)) alors (Y_1, \dots, Y_n) est un système fondamentale de solutions si et seulement si $\exists t_0 \in I$ tel $w(t_0) = \det([Y_1(t)|\dots|Y_n(t)]) \neq 0$.

Corollaire 19. Soit $R(t,t_0)$ le résolvante de l'équation Y'(t) = A(t)Y(t), alors les colonnes de R forment un système fondamentale de solutions.

Démonstration. Si on pose $w(t) = \det(R(t, t_0))$ le wroskien associé à les colonnes de R on a, grâce au théorème de Liouville, qu'il satisfait le problème de Cauchy suivant

$$\begin{cases} w'(t) = a(t)w(t), \\ w(t_0) = 1, \end{cases}$$

où a(t) = tr A(t) est la trace de la matrice A(t). On connait que la solution de ce problème est donné par

$$w(t) = w(t_0)e^{\int_{t_0}^t a(s)ds},$$

comme $w(t) \neq 0 \ \forall t \in I$ on a, en utilisant la proposition 14, que les colonnes de R forment un système fondamentale de solutions.

2.3.3.1 Méthode de variation de la constante

On veut trouver une solution de l'équation

$$Y'(t) = A(t)Y(t) + B(t). (2.20)$$

On sait que les solutions de l'équation homogène associée s'écrivent $R(t,t_0)C$, et l'on cherche une solution sous la forme

$$Y_p(t) = R(t,t_0)C(t),$$

où C(t) est une fonction de classe \mathcal{C}^1 . En sachant que Y_p doit satisfaire (2.20), on obtient que

$$R(t, t_0)C'(t) = B(t),$$

comme $R(t, t_0)$ est inversible on obtient

$$C'(t) = R(t_0, t)B(t).$$

On peut donc choisir $C(t) = \int_{t_0}^t R(t_0, s) B(s) ds$ et on a comme solution

$$Y_p(t) = R(t, t_0) \int_{t_0}^t R(t_0, s) B(s) ds.$$

Si on considère le cas de $A \in \mathcal{M}_n(\mathbb{R})$ on retrouve bien q

$$Y_p(t) = e^{(t-t_0)A} \int_{t_0}^t e^{-(s-t_0)A} B(s) ds.$$

Pour resumer : la méthode de variation de la constante pour les systèmes linéaires à coefficients variables et constants

— Si on connait le résolvante de Y'(t) = A(t)Y(t) alors une solution de Y'(t) = A(t)Y(t) + B(t) est donnée par

$$Y(t) = R(t, t_0)C + R(t, t_0) \int_{t_0}^{t} R(t_0, s)B(s)ds,$$

où $C \in \mathbb{R}^2$ et $t_0 \in I$.

— Si on connait un système fondamentale de solutions de Y'(t) = A(t)Y(t) alors on calcule la matrice wronskienne $W(t) = [Y_1|\cdots|Y_n]$ et une solution de Y'(t) = A(t)Y(t) + B(t) est donnée par

$$Y(t) = W(t)C + W(t) \int_{t_0}^{t} W(s)^{-1}B(s)ds,$$

où $C \in \mathbb{R}^2$ et $t_0 \in I$.

Chapitre 3

Le théorème de Cauchy-Lipschitz

Contents

2.1	Une équation d'ordre 2	10
2.2	Équations différentielle d'ordre n et systèmes de n équations	11
2.3	Systèmes linéaires	14

3.1 Notions de calcul différentiel

Définition 12 (Différentiabilité). Soit $f: \Omega \subset V \to W$ avec Ω ouvert. On dit que f est différentiable en $x_0 \in \Omega$ si et seulement si il existe une application linéaire continue $L \in \mathcal{L}(V, W)$ telle que

$$f(x_0 + h) = f(x_0) + L(h) + o(||h||).$$

L'application linéaire L est notée $d_{x_0}f\in\mathcal{L}(V,W)$ et elle est dite différentielle de f en x_0

L'application f est alors $\mathcal{C}^1(\Omega)$ si elle est différentiable dans tout point x dans Ω et l'application

$$df: \Omega \to ((V, W), \|\cdot\|_{op})$$
$$x_0 \mapsto d_{x_0} f$$

est continue.

Définition 13 (Dérivée directionnelle). Soit $f: \Omega \subset V \to W$ avec Ω ouvert, $x_0 \in \Omega$ et $h \in V$. Quand elle existe, la limite

$$\lim_{t \to 0} \frac{f(x_0 + th) - f(x_0)}{t}$$

est appelée dérivée directionnelle de f dans la direction

Remarque 12. Si f est différentiable en x_0 alors elle admet une dérivée directionnelle dans toute direction $h \in V$ et

$$d_{x_0}f(h) = \lim_{t \to 0} \frac{f(x_0 + th) - f(x_0)}{t}.$$

La réciproque n'est pas vraie en général! Par exemple

$$f(x,y) = \begin{cases} \frac{y^2}{x} & \text{if } x \neq 0 \\ y & \text{if } x = 0. \end{cases}$$

Définition 14 (Gradient). Soit $f \in \mathcal{C}^1(\mathbb{R}^n; \mathbb{R})$. Par le théorème de Riesz il existe un unique vecteur de V, noté $\nabla f(x_0)$ et appelé gradient de f en x_0 , tel que

$$d_{x_0}f(h) = \langle \nabla f(x_0), h \rangle \ \forall h \in V.$$

Soit $\langle \cdot, \cdot \rangle$ le produit scalaire usuel et $(e_i)_{1 \leq i \leq d}$ la base canonique de \mathbb{R}^n , on a

$$\nabla f(x) = \left(\frac{\partial f}{\partial e_i}(x)\right)_{1 \le i \le d} \text{ où } \frac{\partial f}{\partial e_i}(x) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} (f(x + \varepsilon e_i) - f(x)).$$

Définition 15 (Hessienne). Soit $f \in \mathcal{C}^2(\Omega; \mathbb{R})$, où $\Omega \subseteq \mathbb{R}^n$ est un ouvert. On appelle hessienne de f en $x_0 \in \Omega$ la matrice associée a la forme bilinéaire $d_{x_0}^2$ dans la base canonique. En particulier

$$D^2 f(x) = \left(\frac{\partial^2 f}{\partial e_i \partial e_j}(x)\right)_{1 \le i, j \le n},$$

où l'on a noté $(e_i)_{1 \le i \le n}$ la base canonique de \mathbb{R}^n . et où

Définition 16 (Jacobienne). Soit $F \in \mathcal{C}^1(\mathbb{R}^n; \mathbb{R}^n)$ (on notera F_i la composante i de F) alors pour $h \in \mathbb{R}^n$ on a

$$d_{x_0}F(h) = \begin{bmatrix} d_{x_0}F_1(h) \\ \vdots \\ d_{x_0}F_n(h) \end{bmatrix}.$$

En utilisant la définition précédente et la base canonique de \mathbb{R}^n on obtient

$$d_{x_0}F(h) = JF(x_0)h,$$

où la matrice

$$JF(x_0) = \begin{bmatrix} \frac{\partial F_1}{\partial e_1}(x_0) & \cdots & \frac{\partial F_1}{\partial e_n}(x_0) \\ \vdots & \ddots & \vdots \\ \frac{\partial F_n}{\partial e_1}(x_0) & \cdots & \frac{\partial F_n}{\partial e_n}(x_0) \end{bmatrix}$$

est appelée Jacobienne de F.

3.2 Retour sur les fonctions Lipschitziennes

Rapellons d'abord les notions de fonction lipschitzienne et localement lipschitzienne.

Définition 17 (fonction lipschitzienne). On dit qu'une fonction $F: U \to \mathbb{R}^n$, où U est un ouvert de \mathbb{R}^n , est **lipschitzienne** sur U s'il existe $C \in \mathbb{R}$ tel que

$$\forall x, y \in U, \|F(x) - F(y)\| \le C \|x - y\|.$$

Dans cette définition $\|\cdot\|$ désigne une norme sur \mathbb{R}^n . La définition ne dépend pas de la norme choisie car toutes les normes sur \mathbb{R}^n sont équivalentes.

Exemple 2. La fonction $F(x) = \sin(x)$ est lipschitzienne avec C = 1

$$\|\sin(x) - \sin(y)\| = \left\| (x - y) \int_0^1 \cos(ty + (1 - t)x) dt \right\| \le \|x - y\|.$$

On peut introduire une notion un peu moins exigeante

Définition 18 (fonction localement lipschitzienne). On dit qu'une fonction $F: U \to \mathbb{R}^n$, où U est un ouvert de \mathbb{R}^n , est **localement lipschitzienne** sur U lorsque, pour tout $X_0 \in U$, il existe $r_0 > 0$ et C_{X_0} tels que

$$\forall X, Y \in \bar{B}_{r_0}(X_0), \ \|F(X) - F(Y)\| \le C_{X_0} \|X - Y\|.$$

Définition 19 (fonction localement lipschitzienne par rapport à sa seconde variable). On dit qu'une fonction $F: I \times U \to \mathbb{R}^n$ est **localement lipschitzienne** par rapport à sa seconde variable lorsque, pour tout $(t_0, X_0) \in I \times U$, il existe $D = [t_0 - \delta, t_0 + \delta] \times \bar{B}_{r_0}(X_0)$, avec $\delta, r_0 > 0$, et C_{t_0, X_0} tel que

$$\forall (t, X), (t, Y) \in D, \|F(t, X) - F(t, Y)\| \le C_{t_0, X_0} \|X - Y\|.$$

Proposition 20. Si $F: I \times U \to \mathbb{R}^n$ est continue et admet des dérivées partielles continues par rapport à sa seconde variable $X \in U$, alors F est localement lipschitzienne par rapport à sa seconde variable.

3.3 Les théorèmes de Cauchy-Lipschitz et d'explosion en temps fini

On rappelle qu'on cherche à démontrer l'existence et l'unicité d'une solution (au moins maximale) du problème de Cauchy suivant

$$\begin{cases} Y'(t) = F(t, Y(t)), \\ Y(t_0) = Y_0, \end{cases}$$
 (3.1)

Avec $t_0 \in I$ et $Y_0 \in U$. Avant énoncer les deux résultats fondamentaux de ce cours on va écrire le problème (3.1) sous une forme équivalente, dite **forme intégrale**, qui s'avère souvent être plus maniable.

Proposition 21. Soit $F: I \times U \to \mathbb{R}^n$, avec I intervalle ouvert de \mathbb{R} et U un ouvert de \mathbb{R}^n , une fonction continue. Alors la fonction $Y: J \to \mathbb{R}^n$ est une solution de (3.1) sur l'intervalle ouvert $J \subset I$ si et seulement si pour tout $t \in J$, on

$$Y(t) = Y_0 + \int_{t_0}^{t} F(s, Y(s)) ds.$$

Exercice 3. Démontrer la proposition 21.

Dans ce chapitre on va démontrer les deux résultats suivants

Théorème 22 (Théorème de Cauchy-Lipschitz). Soit $F: I \times U \to \mathbb{R}^n$ avec I intervalle ouvert de \mathbb{R} et U un ouvert de \mathbb{R}^n . On suppose que F est continue et qu'elle est localement lipschitzienne par rapport à sa seconde variable. Alors pour tout condition initiale $(t_0, Y_0) \in I \times U$ il existe une unique solution maximale du problème de Cauchy. (3.1).

Pour le résultat suivant on va supposer $U = \mathbb{R}^n$.

Théorème 23 (Théorème d'explosion en temps fini). Soit $F \in C^0(I \times \mathbb{R}^n; \mathbb{R}^n)$, avec I = (a,b) et a < b, localement lipschitzienne par rapport à sa seconde variable. Soit $(t_0, Y_0) \in I \times \mathbb{R}^n$ et (J,Y), avec $J = (t_-, t_+)$, l'unique solution maximale du problème de Cauchy (3.1). Alors

$$t_+ < b \implies \lim_{t \to t_+} ||Y(t)|| = +\infty.$$

De même,

$$t_- > a \implies \lim_{t \to t_-} ||Y(t)|| = +\infty.$$

Remarque 13. Le théorème d'explosion en temps fini sert souvent sous la forme suivante. Soit (J,Y) la solution maximale de (3.1). S'il existe M>0 tel que $||Y(t)|| \leq M$ pour tout $t \in J$, c-à-d la solution est bornée, alors (J,Y) est une solution globale.

Proposition 24. Soit $F \in C^0(I \times \mathbb{R}^n; \mathbb{R}^n)$, avec I = (a, b) et a < b, localement lipschitzienne par rapport à sa seconde variable. Si F est bornée, alors toute solution maximale de Y'(t) = F(t, Y(t)) est globale.

Démonstration. Soit (J,Y) une solution maximale. Comme F est bornée on a pour $t \in J$

$$||Y(t)|| \le ||Y_0|| + \left| \left| \int_{t_0}^t F(s, Y(s)) ds \right| \right| \le M|t - t_0| + ||Y_0||.$$

Si J est borné on alors que la solution Y est bornée sur tout J et d'après le théorème d'explosion en temps fini on a que J=I.

Proposition 25. Soit $F \in C^0(I \times \mathbb{R}^n; \mathbb{R}^n)$, avec I = (a, b) et a < b, localement lipschitzienne par rapport à sa seconde variable. S'il existe A, B tels que $||F(t, X)|| \le At + B \ \forall (t, X)$, alors les solutions maximales de Y'(t) = F(t, Y(t)) sont globales.

Démonstration. Soit (J, Y) une solution maximale alors comme dans la proposition précédente on obtient

$$||Y(t)|| \le ||Y_0|| + \left| \left| \int_{t_0}^t F(s, Y(s)) ds \right| \right| \le \frac{A}{2} (t - t_0)^2 + B|t - t_0| + ||Y_0||.$$

Si J est borné on alors que la solution Y est bornée sur tout J et d'après le théorème d'explosion en temps fini on a que J = I.

Corollaire 26 (Unicité sur tout l'intervalle). Sous les hypothèses de Cauchy-Lipschitz. Soit J un intervalle ouvert de \mathbb{R} et $\bar{t} \in J$. Soit $Y_1, Y_2 \in C^1(J; U)$ deux solutions de Y'(t) = F(t, Y(t)). Si $Y_1(\bar{t}) = Y_2(\bar{t})$ alors $Y_1(t) = Y_2(t) \ \forall t \in J$.

Autrement dit, sous les hypothèses de Cauchy-Lipschitz, les trajectoires des solutions ne se rencontrent jamais.

Étude qualitative des solutions d'une EDO On considère le cas scalaire F(t, Y) = f(t, y) = y(1 - y) avec condition initiale $y_0 \in (0, 1)$. Il y a deux solutions d'équilibre $y_1 = 1$ et $y_2 = 0$ au sens de la definition suivante

Définition 20 (Solution d'équilibre). On dit que $Y_{eq} \in U$ est une solution d'équilibre pour Y'(t) = F(t, Y(t)) si pour tout $t \in I$ elle vérifie $Y'_{eq}(t) = F(t, Y_{eq}(t))$ et si elle est indépendante de temps, c-à-d $F(t, Y_{eq}) = 0 \ \forall t \in I$.

La fonction constante y_1 (respectivement y_2) est donc une solution du problème de Cauchy avec comme donnée initiale $y_0 = 1$ (respectivement $y_0 = 0$). Par le théorème de Cauchy-Lipschitz, on en déduit que la solution du problème de Cauchy avec condition initiale $y_0 \in (0,1)$ prend toujours ses valeurs strictement entre 0 et 1, puisque les trajectoires des solutions ne peuvent pas se croiser. Comme la solution est toujours bornée on a qu'elle ne peut pas tendre vers l'infini et donc la solution maximale est globale! On peut même essayer de calculer la limite en $+\infty$ de cette solution y. En effet, y est croissante et prendre ses valeurs entre 0 et 1, il existe donc $l \in (0,1]$ tel que $\lim_{t\to +\infty} y(t) = l$. Comme y'(t) = y(t)(1-y(t)) pour tout t, on a donc $\lim_{t\to +\infty} y(t) = l(l-1)$. Par le théorème des accroissements finis il existe $\theta_t \in (t, t+1)$ pour tout t > 0 tel que

$$\underbrace{y(t+1)}_{\rightarrow l} - \underbrace{y(t)}_{\rightarrow l} = \underbrace{y'(\theta_t)}_{\rightarrow l},$$

pour $t \to +\infty$. On a donc l(1-l), or $l \neq 0$ donc l = 1.

Le trajectoires des systèmes autonomes ne se rencontrent pas

Définition 21 (Orbite, trajectoire). Soit (J, Y) une solution de (3.1). On appelle $\gamma(Y)$ l'orbite de Y (ou la trajectoire de Y dans l'espace \mathbb{R}^n) la courbe paramétrée $t \mapsto Y(t)$:

$$\gamma(Y) = \{ Y(t), \ t \in J \}.$$

On considère le cas d'un système autonome Y'(t) = F(Y(t)).

Corollaire 27. Soit (J_1, Y_1) et (J_2, Y_2) deux solutions distinctes de (3.1) avec F indépendante de t. Alors les deux orbites $\gamma(Y_1)$ et $\gamma(Y_2)$ ne se coupent jamais.

3.4 Démonstration du théorème de Cauchy-Lipschitz

Définition 22 (Suite de Cauchy). Soit $(X, \|\cdot\|)$ espace vectoriel normé (evn) et $\{x_n\}$ suite de X. On dit que $\{x_n\}$ est de Cauchy si pour tout $\varepsilon > 0$ il existe N_{ε} t.q. $\|x_m - x_n\| < \varepsilon$ pour tous $m, n \geq N_{\varepsilon}$.

Définition 23 (Espace vectoriel normé complet). Un espace vectoriel normé $(X, \|\cdot\|)$ est complet si toute suite de Cauchy dans X est convergente.

Définition 24 (Espace vectoriel normé compact). Un espace métrique $(X, \|\cdot\|)$ est compact si et seulement si toute suite de points de X admet une valeur d'adhérence (c'est-à-dire contient une sous-suite convergente).

Définition 25 (Espace de Banach). Un espace de Banach est un espace vectoriel normé complet.

Exemple 3. Voici quelques exemples d'espaces de Banach:

— Soit X un espace de Banach muni de la norme $\|\cdot\|$. L'espace $\mathcal{C}_b(U;X)$ des applications continues bornée de U à valeurs dans X est un espace de Banach muni de la norme sup

$$||f||_{\infty} = \sup_{x \in U} ||f(x)||.$$

— L'espace C(U;X) des applications continues de U, evn compact, à valeurs dans X est un espace de Banach muni de la norme sup.

Le Lemme de Gronwall est un outil incontournable dans l'étude qualitative des équations différentielles : il sert notamment à estimer des solutions ou bien à comparer entre elles deux solutions.

Lemme 28 (de Gronwall). Soient k et b deux constantes, avec k > 0. Soient $I \subset \mathbb{R}$ un intervalle et une fonction $\psi: I \to \mathbb{R}^n$ de classe C^1 telle que, pour tout $t \in I$, on ait

$$\|\psi'(t)\| \le k \|\psi(t)\| + b.$$

Alors, pour tout t et t_0 dans I, on a l'estimation

$$\|\psi(t)\| \le \|\psi(t_0)\| e^{k|t-t_0|} + b \frac{e^{k|t-t_0|} - 1}{k}.$$

Démonstration. Quitte à effectuer une translation, on pourra supposer que $t_0 = 0$. L'estimation de $\|\psi(t)\|$ dans le passé, c-a-d pour tout t < 0 se déduira de celle dans le futur en reversant le sens du temps : poser $z(t) = \psi(-t)$ qui vérifie encore $\|z'(t)\| \le k \|z(t)\| + b$.

Soit donc $t \in I$, avec $t \ge 0$. On commence d'abord par écrire ψ sous la forme $\psi(t) = \psi(0) + \int_0^t \psi'(s) ds$ et en utilisant l'inégalité triangulaire et puis l'hypothèse, on en déduite que

$$\|\psi(t)\| \le \|\psi(0)\| + \int_0^t \|\psi'(s)\| \, ds \le \|\psi(0)\| + k \int_0^t \|\psi(s)\| \, ds + bt.$$

On observe alors que, si l'on pose $y(t) = \int_0^t \|\psi(s)\|$ on a $y'(t) = \|\psi(t)\|$ et l'inégalité ci-dessus se réécrit

$$y'(t) \le \|\psi(0)\| + ky(t) + bt \iff y'(t) - ky(t) \le \|\psi(0)\| + bt.$$
(3.2)

On multiplie cette inégalité par e^{-kt} et on obtient

$$(y(t)e^{-kt}) \le (\|\psi(0)\| + bt)e^{-kt}.$$

On intègre cette inégalité et puisque y(0) = 0, il vient

$$y(t)e^{-kt} \le \|\psi(0)\| \frac{1 - e^{-kt}}{k} + b \frac{1 - (1 + kt)e^{-kt}}{k^2}.$$

Le résultat suit en utilisant cette majoration dans (3.2).

On a aussi la version suivante

Lemme 29 (de Gronwall, version intégrale). Soit ϕ , g deux fonctions continues sur [a, b] à valeurs réelles, avec $g \geq 0$ et $k \in \mathbb{R}$. Si

$$\forall t \in [a, b], \phi(t) \le k + \int_a^t g(s)\phi(s)ds,$$

alors

$$\forall t \in [a, b], \phi(t) \le k \exp\left(\int_a^t g(s)ds\right).$$

Pour prouver le théorème de Cauchy-Lipschitz on aura besoin de la notion de cylindre de sécurité. On remarque d'abord que puisque I et U sont ouverts et contiennent t_0 et Y_0 , il existe un cylindre fermé $C_0 = [t_0 - \varepsilon_0, t_0 + \varepsilon_0] \times \bar{B}_{r_0}(Y_0)$ contenu dans $I \times U$.

Définition 26 (Cylindre de sécurité). On dit qu'un cylindre fermé $C_{\varepsilon} = [t_0 - \varepsilon, t_0 + \varepsilon] \times \bar{B}_{r_0}(Y_0) \subset C_0$, centré en (t_0, Y_0) , est un cylindre de sécurité pour (??) lorsque toute solution éventuelle Y de (??) sur $J = [t_0 - \varepsilon, t_0 + \varepsilon]$ vérifie

$$\forall t \in J, \ Y(t) \in \bar{B}_{r_0}(Y_0).$$

Noter que, par compacité de C_0 , l'application continue F est bornée sur ce cylindre. Dans le lemme suivant, on constat qu'il est facile de construire des cylindres de sécurité.

Lemme 30. Soient $C_0 \in I \times U$ un cylindre fermé centré en (t_0, Y_0) et $M = \sup_{C_0} ||F||$. Si $\varepsilon \leq \min(\varepsilon_0, \frac{r_0}{M})$, alors C_{ε} est un cylindre de sécurité pour $(\ref{eq:condition})$.

 $D\acute{e}monstration$. On vérifie par récurrence sur n que

$$\begin{cases} Y([t_0, t_n]) \subset \bar{B}_{r_0}(Y_0) \\ ||Y(t) - Y_0|| \leq M|t - t_0|, \ \forall t \in [t_0, t_n]. \end{cases}$$

C'est trivial pour n=0. Si c'est vrai pour n alors $(t_n,Y_n)\in C_\varepsilon$, avec $Y_n=Y(t_n)$, donc $\|F(t_n,Y_n)\|\leq M$ et par conséquent

$$||Y(t) - Y(t_n)|| \le (t - t_n) ||F(t_n, Y_n)|| \le M(t - t_n), \ \forall t \in [t_n, t_{n+1}].$$

On alors pour tout $t \in [t_n, t_{n+1}]$

$$||Y(t) - Y(t_0)|| \le ||Y(t) - Y(t_n)|| + ||Y(t_n) - Y(t_0)|| \le M(t - t_n) + M(t_n - t_0) \le M(t - t_0).$$

En particulier
$$||Y(t) - Y(t_0)|| \le M\varepsilon \le r_0$$
, d'où $Y(t) \in \bar{B}_{r_0}(Y_0)$.

Démonstration de 22. Existence

On commence par montrer l'existence et l'unicité de la solution sur un intervalle $[t_0 - \varepsilon, t_0 + \varepsilon]$. Soit $r_0 > 0$ tel que $\bar{B}_{r_0}(Y_0) \subset U$. Soit aussi $\varepsilon \leq \frac{r_0}{M}$ tel que $C_\varepsilon = [t_0 - \varepsilon, t_0 + \varepsilon] \times \bar{B}_{r_0}(Y_0)$ soit un cylindre de sécurité pour (??). On note $E = \mathcal{C}([t_0 - \varepsilon, t_0 + \varepsilon]; \bar{B}_{r_0}(Y_0))$ l'espace de fonctions continues de $[t_0 - \varepsilon, t_0 + \varepsilon]$ à valeurs dans la boule fermée $\bar{B}_{r_0}(Y_0)$. En particulier E muni de la norme $\|Y\|_{\infty} := \sup_{[t_0 - \varepsilon, t_0 + \varepsilon]} \|Y(t)\|$ est un espace de Banach.

Soit Y_h une suite quelconque de solutions δ_h approchées avec $\delta_h \to 0$, par exemple celles fournies par la méthode d'Euler. Alors on a, avec k > h

$$||Y_h'(t) - Y_k'(t)|| \le ||F(t, Y_h(t)) - F(t, Y_k(t))|| + ||Y_h'(t) - F(t, Y_h(t))|| + ||Y_k'(t) - F(t, Y_k(t))||$$

$$\le k ||Y_h(t) - Y_k(t)|| + \delta_h + \delta_k,$$

où k est la constante de Lipschitz de F sur le cylindre C_{ε} . Le lemme de Gronwall montre que

$$||Y_h(t) - Y_k(t)|| \le (\delta_h + \delta_k) \frac{e^{k\varepsilon} - 1}{k} \operatorname{sur} [t_0 - \varepsilon, t_0 + \varepsilon],$$

par conséquent Y_h est une suite de Cauchy uniforme. Comme les fonctions Y_h sont toutes à valeurs dans $\bar{B}_{r_0}(Y_0)$ qui est une space complet, Y_h converge vers une limite Y qui est une solution exacte du problème de Cauchy.

Unicité

Si Y_1, Y_2 sont deux solutions exactes, le lemme de Gronwall avec montre que $Y_1 = Y_2$. On verra dans la suite comment on peut montrer que l'unique solution locale est maximale.