### CS F364 Design & Analysis of Algorithms

### PROBLEM DOMAIN - NUMBER THEORY

#### **Modular Arithmetic:**

Groups  $Z_{n_i} Z_{n_i}^*$ 

Size of Z\*n

Computing the size of Z<sub>n</sub>\*



### CONGRUENCE ARITHMETIC

- "congruence modulo n":
  - if a mod n = b mod nothen a and b are congruent modulo n
  - This is an equivalence relation.
    - oWhy?
  - This is often denoted as
    - o a  $\equiv$  b (mod n)

# CONGRUENCE ARITHMETIC - Z<sub>N</sub>

- o  $(Z_n = \{ 0, 1, ... n-1 \}, +_n )$  is a group owhere  $+_n$  refers to addition modulo n.
  - **Exercise:** *Verify the following properties:* 
    - o Closure:
    - Associativity:
    - Existence of Identity :
      - 00
    - Existence of Inverse:
      - o (a<sup>-1</sup> is n-a)

# CONGRUENCE ARITHMETIC: Z\*<sub>N</sub>

o  $(Z_n^* = \{ x \mid 1 \le x \le n \text{ and } gcd(x,n) = 1 \}, *_n) is a group.$ 

#### • Exercise:

Verify Closure and Associativity

• Identity Element exists:

$$o(a * 1 = a)$$

• Inverse?

- o  $(Z_n^* = \{ x \mid 1 \le x \le n \text{ and } gcd(x,n) = 1\}, *_n) is a group.$ 
  - Existence of Inverse:
    - ols there an x such that  $a*x = 1 \pmod{n}$ , for a in  $Z*_n$ ?
      - i.e. Is there an x such that a\*x = 1 + b\*n for some+ve integer b?
    - <u>The answer is yes</u>, by extended Euclid's Theorem since gcd(a,n)=1
      - Furthermore, by <u>Aryabhatia's algorithm</u>:
        - the inverse of any element in  $(Z^*_n, *n)$  can be computed in polynomial time i.e.
          - time that is polynomial in log(n)

# CONGRUENCE ARITHMETIC – SIZE OF Z\*<sub>N</sub>

- What is the size of **Z**\*<sub>n</sub>?
  - Let  $\phi(n)$ , known as *Euler's phi function*, denote the size of  $\mathbf{Z}_{n}^{*}$
- $\circ$  Properties of  $\phi(n)$ 
  - $\phi(p) = p-1$  for prime p
    - o Proof: for any m < p, gcd(m,p) = 1 for prime p.
  - $\phi(p^m) = p^m p^{m-1}$  for prime p
    - Proof:
      - Only multiples of p have common factors with p<sup>m</sup>
      - Multiples of p (less than p<sup>m</sup>) are:
        - $p,2*p,3*p,...,(p^{m-1}-1)*p$
      - So,  $\phi(p^m) = (p^m 1) (p^{m-1} 1)$  for prime **p**.

# CONGRUENCE ARITHMETIC - PROPERTIES OF $\phi(N)$ [CONTD]

- Only multiples of p or q or both have common factors with p\*q
  i.e. p, 2\*p, ..., q\*p, and q, 2\*q, ...,p\*q
- And they are all distinct except for p\*q
- So  $\phi(p*q) = (p*q) p q + 1$
- φ is multiplicative i.e.
  - $\phi(m*n) = \phi(m)*\phi(n)$  if gcd(m,n) = 1
    - o Proof: Left as an exercise.
    - o Note: We only need  $\phi(p^{k1} * q^{k2}) = \phi(p^{k1}) * \phi(q^{k2})$  for primes p and q. End of Note.

## Congruence Arithmetic – Computing $\phi(n)$

- Value of φ(n)
  - If  $\mathbf{n} = \mathbf{p_1}^{k1} * \mathbf{p_2}^{k2} * ... * \mathbf{p_m}^{km}$  for primes  $\mathbf{p_i}$  and +ve integers  $\mathbf{ki}$  then  $\phi(\mathbf{n}) = \Pi_i (\mathbf{p_i}^{ki} \mathbf{p_i}^{ki-1})$
- Computing φ(n)
  - If the prime factors of n are known then  $\phi(n)$  can be computed in polynomial time
    - But *computing factors* is known to be "*difficult*".
    - In particular, there is no known polynomial time algorithm to compute factors of a given integer.
  - Is there an alternative?
    - oi.e can we compute  $\phi(n)$  efficiently without computing factors of n?

### Congruence Arithmetic — Computing $\phi(n)$ — Special Case

- Can we compute  $\phi(\mathbf{n})$  efficiently without computing factors of  $\mathbf{n}$ ?
- Consider n = p \* q
  - Given n and φ(n), one can compute p and q in polynomial time!
    - o How?
  - i.e. Computing  $\phi(n)$  is at least as "difficult" as factoring n.

### ASIDE: REDUCTION AND LOWER BOUNDING

- We argued that one problem (say, computing  $\phi(n)$ ) is **at least as** difficult to solve as another problem (say, factoring n):
  - but we argued this without solving i.e. without providing an algorithm for – either of these problems independently!!

- In the abstract, we argued that:
- This construction is referred to as **reduction** i.e. we reduce  $\pi_2$  to  $\pi_1$ • given an algorithm **f** for problem  $\pi_1$ 
  - if we can construct an algorithm g f for problem π₂
  - such that g costs no more than f othen we can conclude that  $\pi_1$  is **at least as difficult as**  $\pi_2$

This is referred to as *lower-bounding* (the cost / complexity of a problem)