§1 Lecture 01-24

Recommend Colmez. Drawback is that it is in french.

Let V be a finite dimensional vector space. Let B be a basis for V. $B = (v_1, \ldots, v_n) \in V^n$. $v \in V$ has coordinates

$$x = \begin{pmatrix} x_1 \\ \vdots \\ \vdots \\ x_n \end{pmatrix} \in F^n$$

if v = Bx

If T is a linear transformation,

$$T: V \to V$$

$$V \simeq_B F_1^n$$

$$V \simeq_{B'} F_2^n$$

$$F_1^n \to_{M_{T,B}} F_2^n$$

Fact 1.1. If B and B' are different bases for V, then the matrices $T_{T,B}$ and $T_{T,B'}$ are conjugate. i.e. $\exists P \in GL_n(F)$ such that $M_{T,B'} = PM_{T,B}P^{-1}$

§1.1 Determinant

Proposition 1.2

There is a unique function $\det: M_n(F) \to F$ satisfying:

- 1. det is <u>multilinear</u>. i.e. it is a linear function in each row with all other rows being fixed.
- 2. det is $\underline{\text{alternating}}$, namely, the determinant changes sign after interchanging two rows.

$$\det(M^{\sigma}) = \operatorname{sign}(\sigma) \det(M), \sigma \in S_n$$

§1.2 Proof of existence and uniqueness

$$\det(AB) = \det(A) \det(B)$$
$$\det(A+B) = ???$$
$$\det(PAP^{-1}) = \det(P) \det(A) \det(P)^{-1} = \det(A)$$

Definition 1.3. The determinant of $T:V\to V$ is the determinant of <u>any</u> matrix representing T.

Definition 1.4 (Trace). Trace $(A) = a_{11} + a_{22} + a_{33} + \cdots + a_{nn}$ where $A = (a_{ij})$.

$$\operatorname{Tr}(A+B) = \operatorname{Tr}(A) + \operatorname{Tr}(B)$$

 $\operatorname{Tr}(AB) = ??$

Lemma 1.5

$$A \cdot B = \sum_{i,j} a_{ij} b_{ij}$$
$$\operatorname{Tr}(AB) = A \cdot B^T = \sum_{i,j} a_{ij} b_{ji}$$
$$\operatorname{Tr}(BA) = B \cdot A^T = \sum_{i,j} b_{ij} a_{ji}$$
$$\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$$
$$\operatorname{Tr}(PAP^{-1}) = \operatorname{Tr}(AP^{-1}P) = \operatorname{Tr}(A)$$

So trace is also invariant over conjugation.

Definition 1.6. The trace of $T: V \to V$ is the trace of any matrix representing T.

Exercise 1.7. Show that $\operatorname{End}_F(V) = \operatorname{End}_F(V)$

- 1. First show that $M_n(F) \simeq M_n(F)^*$ where $A \mapsto (x \mapsto \operatorname{Tr}(AX))$.
- 2. Then show that $\operatorname{End}_F(V) \simeq \operatorname{End}_F(V)^*$. Solution the mapping $T \mapsto (U \mapsto \operatorname{Tr}(TU))$.

If $T:V\to V$ is a linear transformation, study the structure of T acting on V (nullspace, eigenspaces, eigenvalues, characteristic polynomial, minimal polynomial.)

$$F[T] = \{a_0 + a_1T + a_nT^n + \cdot\} \in \operatorname{End}_F(V) \subseteq \operatorname{End}_F(V)$$

F[T] is a sub F-algebra of $\operatorname{End}_F(V)$.

Remark 1.8. If $\dim(V) > 1$, then $F[T] \neq \operatorname{End}_F(V)$.

F[T] is a quotient ring of F[x], the ring of polynomials. Ther eis a natural ring homomorphism

$$\varphi_T : F[x] \to F[T] \subseteq \operatorname{End}(V)$$

$$p(x) \mapsto P(T)$$

But F[X] is infinite dimensional. So this means that there is a nontrivial kernal because F[T] is not infinite dimensional.

Definition 1.9 (Defining Ideal). The kernel of φ_T is called the defining ideal of T.

$$I_T = \ker(\varphi_T).$$

 I_T is generated by a unique polynomial in F[x] which is monic. $I_T = (P_T(X))$.

$$P_T(X) = X^+ a_{m-1} x^{m-1} + \dots + a_0, \quad a_j \in F$$

What is $P_T(x)$?

$$\varphi_T(p_t) = 0$$
$$\varphi_T(T) = 0$$

 P_T is called the minimal polynomial. $f \in F[x]$. f(T) = 0. $p_T(x)|f(x)$.