```
In [1]:
         import seaborn as sns
         from sklearn.decomposition import PCA
         from sklearn.cluster import KMeans
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
In [2]: #data collection and reading
         #decimal : set character used for decimal numbers
         data = pd.read_csv("Project_Data_1.csv", index_col=0, decimal=',')
         data.head()
Out[2]:
                      1990
                            1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
             Sales of
             Wheat in
                tons
                      436.0 429.0 422.0 415.0 407.0
                                                     397.0
                                                                             373
          Afghanistan
                                                            397
                                                                  387
                                                                       374
                                                                                   346
                                                                                        326
                                                                                              304
              Albania
                       42.0
                             40.0
                                   41.0
                                         42.0
                                                42.0
                                                      43.0
                                                             42
                                                                   44
                                                                        43
                                                                              42
                                                                                    40
                                                                                         34
                                                                                               32
              Algeria
                       45.0
                             44.0
                                   44.0
                                         43.0
                                                43.0
                                                      42.0
                                                             43
                                                                   44
                                                                        45
                                                                              46
                                                                                    48
                                                                                         49
                                                                                               50
            American
                       42.0
                                                                                                Ę
                             14.0
                                    4.0
                                         18.0
                                                17.0
                                                      22.0
                                                              0
                                                                   25
                                                                        12
                                                                               8
                                                                                     8
                                                                                          6
              Samoa
             Andorra
                       39.0
                             37.0
                                   35.0
                                         33.0
                                                32.0
                                                      30.0
                                                             28
                                                                   23
                                                                        24
                                                                              22
                                                                                    20
                                                                                         20
                                                                                               21
```

In [3]: #check null, nan values
data.isna()

Out[3]:

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 20 Sales of Wheat in tons **Afghanistan** False Fε Albania False Fa **Algeria** False Fε **American** False Samoa **Andorra** False False False False False False False False False Fε False False False Wallis et False False False False False False False False Fa False False False False **Futuna West Bank** False False False False Fε False False False False False False False False and Gaza Yemen False Fε False Fε Zambia False Zimbabwe False False

207 rows × 18 columns

4

In [4]:	#drop nan values if exist data.dropna()														
Out[4]:		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	
	Sales of Wheat in tons														
	Afghanistan	436.0	429.0	422.0	415.0	407.0	397.0	397	387	374	373	346	326	304	
	Albania	42.0	40.0	41.0	42.0	42.0	43.0	42	44	43	42	40	34	32	
	Algeria	45.0	44.0	44.0	43.0	43.0	42.0	43	44	45	46	48	49	50	
	American Samoa	42.0	14.0	4.0	18.0	17.0	22.0	0	25	12	8	8	6	ξ	
	Andorra	39.0	37.0	35.0	33.0	32.0	30.0	28	23	24	22	20	20	21	
	Wallis et Futuna	126.0	352.0	64.0	174.0	172.0	93.0	123	213	107	105	103	13	275	
	West Bank and Gaza	55.0	54.0	54.0	52.0	52.0	50.0	49	46	44	42	40	39	37	
	Yemen	265.0	261.0	263.0	253.0	250.0	244.0	233	207	194	175	164	154	149	
	Zambia	436.0	456.0	494.0	526.0	556.0	585.0	602	626	634	657	658	680	517	
	Zimbabwe	409.0	417.0	415.0	419.0	426.0	439.0	453	481	392	430	479	523	571	
	207 rows × 18 columns														
	4													•	
In [5]:	<pre>#data splitting for clustering data_for_decomposition = data.iloc[:, 0:] data_for_decomposition.head()</pre>														
Out[5]:		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	
	Sales of Wheat in tons														
	Afghanistan	436.0	429.0	422.0	415.0	407.0	397.0	397	387	374	373	346	326	304	
	Albania	42.0	40.0	41.0	42.0	42.0	43.0	42	44	43	42	40	34	32	
	Algeria	45.0	44.0	44.0	43.0	43.0	42.0	43	44	45	46	48	49	50	
	American Samoa	42.0	14.0	4.0	18.0	17.0	22.0	0	25	12	8	8	6	5	
	Andorra	39.0	37.0	35.0	33.0	32.0	30.0	28	23	24	22	20	20	21	
	4													•	

```
In [7]: #PCA for dimension reduction
    model_pca = PCA(n_components=2)
    pca_data = model_pca.fit(data_for_decomposition).transform(data_for_decomposition)

    new_data = pd.DataFrame(pca_data, columns=["pca_1", "pca_2"])
    new_data.index = data.index
    new_data.head()
```

pca 2

8.865202

Out[7]:

 Afghanistan
 744.815213
 -235.636419

 Albania
 -595.865592
 6.105249

 Algeria
 -551.303760
 45.952015

American Samoa -700.700584

Andorra -645.423819 1.536970

pca_1

```
In [11]: #elbow method to find number of clusters
wcss = [] #within cluster squared sum of inertia

for i in range(1,11):
    kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, r
andom_state=10)
    kmeans.fit(new_data)
    wcss.append(kmeans.inertia_)

plt.plot(range(1,11), wcss)
plt.title("Elbow Method")
plt.xlabel("Number of Clusters")
plt.ylabel("wcss")
plt.show()
#it indicates the number of clusters will be 3
```



```
In [12]:
         # Kmeans Algorithm
         kmeans = KMeans(n_clusters=3)
         # fir the model
         kmeans.fit(new_data)
         # clusters centers
         print(kmeans.cluster_centers_)
         # adding cluster column
         new_data["cluster"] = kmeans.labels_
         new_data.head()
         # plotting the cluster data
         sns.lmplot('pca_1', 'pca_2', data=new_data, hue='cluster',
                    palette='coolwarm', height=6, aspect=1, fit_reg=False)
         [[ 811.10727247
                           34.75475384]
          [-499.05863515
                          -5.74958477]
          [1801.3536003
                          -52.48773448]]
```

Out[12]: <seaborn.axisgrid.FacetGrid at 0x1cfb2ed7e88>


```
In [ ]:
```