

Hidrocarbonetos: ciclanos, ciclenos e aromáticos

Resumo

Os hidrocarbonetos de cadeia fechada ou cíclica são compostos constituídos por carbono e hidrogênio, que têm no mínimo 3 carbonos na cadeia principal. Eles se dividem em aromáticos e não aromáticos (alicíclicos).

Alicíclicos

São compostos que não possuem anel benzênico e variam muito quanto ao número de carbonos de sua cadeia. Os principais são os ciclanos ou cicloalcanos e os ciclenos ou cicloalcenos.

Sua nomenclatura segue o mesmo padrão dos hidrocarbonetos acíclicos:

Posição dos radicais (caso existam) + **Prefixo** ("ciclo" + indicativo do número de carbonos da cadeia principal) + **Infixo ou indicativo de ligação** (ligação simples, dupla, tripla...) + **O** (terminação de hidrocarbonetos)

Prefixos:

3c → cicloprop

4c → ciclobut

5c → cicloent

6c → ciclohex

7c → ciclohept

8c → ciclooct

9c → ciclonon

10c → ciclodec

Infixo ou indicativo de ligações:

Apenas ligações simples → an

1 ligação dupla → en

Ciclanos

Os ciclanos são hidrocarbonetos de cadeia fechada, saturada, e de fórmula geral:

C_nH_{2n}

Exemplo:

a)
$$CH_2$$
 ou $\rightarrow C_3H_{(2.3)} \rightarrow C_3H_6$
 $H_2C \longrightarrow CH_2$

b)
$$H_2C \longrightarrow CH_2$$
 ou $H_2C \longrightarrow CH_2$ OU $H_2C \longrightarrow CH_2$

c)
$$CH_2$$
 CH_2 ou CH_2 C

Nomenclatura

A nomenclatura dos ciclanos é feita com o uso do prefixo (iniciado por "ciclo" seguido do radical correspondente ao número de átomos de carbono), mais o sufixo **ano**, que representa as ligações simples entre os átomos de carbono.

Exemplo:

- a) C₃H₆ → Cicloprop (3 carbonos) + an (somente ligações simples) + o (hidrocarboneto) = Ciclopropano
- b) C₄H₈ → Ciclobut (4 carbonos) + an (somente ligações simples) + o (hidrocarboneto) = Etano
- c) $C_5H_{10} \rightarrow Ciclopent$ (5 carbonos) + an (somente ligações simples) + o (hidrocarboneto) = Propano

Obs: Ciclanos ramificados não possuem fórmula molecular C_nH_{2n} , eles variam quanto a isso. Eles vão ser nomeados conforme o seguinte padrão de nomenclatura:

a) 1 ramificação → coloca-se o radical antes do nome da cadeia principal alicíclica.
 Exemplo:

metilciclopropano

b) mais de 1 ramificação → a numeração do carbono se inicia por aquele que possuir a ramificação mais simples, e o sentido que se segue a partir de então deve buscar os menores números para as demais ramificações (pela regra dos menores números).

Exemplo:

1,2,5-trimetil-ciclohexeno

Ciclenos

Ciclenos são hidrocarbonetos de cadeia fechada e insaturada, que apresentam uma dupla-ligação (entre átomos de carbono) na cadeia, de f**órmula geral**:

C_nH_{2n-2}

Exemplo:

a)
$$HC$$
 CH_2 ou A $C_3H_{(2.3)-2} \rightarrow C_3H_4$ CH_3 C

b)
$$H_2C$$
 CH
 CH_2
 CH_2

Nomenclatura

Assim como a dos ciclanos, a nomenclatura dos ciclenos é feita com o uso do prefixo (iniciado por "ciclo" seguido do radical correspondente ao número de átomos de carbono), mais o sufixo **eno**, que representa uma dupla-ligação entre os átomos de carbono.

Exemplo:

a) $C_3H_4 \rightarrow Cicloprop$ (3 carbonos) + en (uma ligação dupla) + o (hidrocarboneto) = Ciclopropeno b) $C_5H_8 \rightarrow Ciclopent$ (5 carbonos) + en (uma ligação dupla) + o (hidrocarboneto) = Ciclopenteno

Obs: Nos ciclenos, a insaturação vai determinar o carbono 1. Assim, a posição dos radicais ou ramificações nos ciclenos ramificados vai derivar da posição da insaturação. O sentido que se segue a partir de então também deve buscar os menores números para as demais ramificações (pela regra dos menores números). Exemplos:

Aromáticos

São compostos que possuem sempre cadeias cíclicas de 6 carbonos e anel benzênico. O anel ou núcleo benzênico se deve ao fenômeno da **ressonância** que esses compostos sofrem.

Vamos entender o que é a ressonância a partir do **hidrocarboneto aromático mais simples** que existe: o **benzeno**, de fórmula C_6H_6 (por isso o nome "núcleo ou anel benzênico").

Esse composto se constitui de 6 carbonos, entre os quais se intercalam 3 ligações simples com 3 ligações duplas. Com isso, os elétrons que compõem as ligações pi (π) mudam de posição na cadeia constantemente, sem que a posição dos átomos e o composto se alterem. Falando de outra forma, as ligações pi da substância se deslocalizam, ou seja, seus elétrons vagam pelo composto na forma de nuvens eletrônicas. Olhe: Os demais consideram-se derivados do benzeno, e sofrem o mesmo processo, da mesma maneira. Além deste, os mais principais compostos aromáticos são:

Naftaleno: tem fórmula molecular C₁₀H₈ e é composto de 2 anéis aromáticos condensados. Seu nome vulgar ou comercial é naftalina.

Antraceno: tem fórmula molecular C₁₄H₁₀ e é composto de 3 anéis aromáticos condensados.

Fenantreno: tem fórmula molecular C₁₄H₁₀ (é isômero do naftaleno, já que possui mesma fórmula molecular e estrutura diferente, mas isso será estudado futuramente) e é composto de 3 anéis aromáticos condensados.

Tolueno: tem fórmula molecular C7H8, é composto de apenas um anel aromático e um radical metil. Por isso, chamamo-lo, também, de metilbenzeno, conforme a nomenclatura da IUPAC.

PSIU!!

Mononuclear: Possui apenas um núcleo ou anel aromático.

Exemplos:

Polinuclear: Possui mais de um núcleo ou anel aromático.

Exemplos:

Quanto à proximidade dos núcleos benzênicos:

Composto de núcleos condensados: Os núcleos ficam adjacentes, lado a lado.

Obs: Repare que, em compostos polinucleados de núcleos condensados, apenas um dos núcleos devem ter as 3 ligações duplas representadas, já que cada carbono da cadeia só pode fazer 4 ligações (dizendo melhor, nesse caso em que a hibridação do carbono é sp², farão 1 ligação dupla e 2 simples).

Obs2: Cada um dos exemplos ilustrados poderia ter sido representado com anéis benzênicos, em vez das ligações duplas, tanto faz.

Compostos de núcleos isolados: Os núcleos não são adjacentes, mas separados por cadeia não aromática, ou apenas um trecho.

Exemplos:

Nomenclatura

Esses compostos fogem um pouco ao padrão dos demais hidrocarbonetos, nesse aspecto, já que **não possuem "prefixo", "infixo" e "sufixo" variáveis**.

Sendo assim, devemos gravar os nomes dos aromáticos principais já citados e usá-los como radicais.

Já as ramificações dessas substâncias, que obviamente variam, seguem o seguinte padrão de nomenclatura:

 a) mais de 1 ramificação → a numeração do carbono se inicia por aquele que possuir a ramificação mais simples, e o sentido que se segue a partir de então deve buscar os menores números para as demais ramificações (pela regra dos menores números).

Obs: Como sempre, as ramificações devem ser posicionadas no nome do composto conforme a ordem alfabética (exemplo: butil precede etil, que precede metil, que precede pentil, que precede propil, etc). Exemplos:

2-etil-1-metil-4-propilbenzeno

2-etil-1,4-dimetil-5-propil**benzeno** ou

b) 2 ramificações → se as ramificações – sejam elas iguais ou diferentes – estiverem ocupando os carbonos 1 e 2, usa-se o início "orto" ou apenas "o"; se estiverem ocupando a posição 1,3, usa-se "meta" ou apenas "m"; e se estiverem ocupando a posição 1,4, usa-se "para" ou apenas "p". Exemplos:

1,2-dimetilbenzeno

ou

orto-dimetilbenzeno

ou

o-dimetilbenzeno

1,3-dimetilbenzeno

ou

meta-dimetilbenzeno

ou

m-dimetilbenzeno

1,4-dimetilbenzeno

ou

para-dimetilbenzeno

ou

p-dimetilbenzeno

Obs: Qualquer composto "dimetilbenzeno" pode levar o nome de **xileno**. Sendo assim, os exemplos anteriores podem ter os respectivos nomes: o-xileno, m-xileno e p-xileno.

Obs₂: As ramificações não necessariamente devem ser metil, nem mesmo apenas iguais, para podermos utilizar as expressões "orto", "meta" e "para".

Exercícios

1. Os compostos representados pelas estruturas abaixo são corantes bastante conhecidos. De acordo com as estruturas, analise as afirmações a seguir.

- a) O índigo apresenta quatro anéis aromáticos.
- **b)** Na molécula do índigo, os anéis aromáticos estão conjugados entre si. O mesmo não ocorre no caso da brasilina.
- c) Os carbonos presentes na molécula do índigo possuem hibridização sp.
- d) existem ao todo 4 ligações π (pi).
- e) Todos os carbonos presentes na molécula da brasilina possuem hibridização sp³.
- 2. De acordo com as estruturas abaixo, podemos afirmar que:

- a) o benzeno, o ciclo-hexano e o antraceno são hidrocarbonetos aromáticos.
- **b)** as moléculas de benzeno e antraceno são planas devido ao fato de possuírem todos os carbonos com hibridização sp³ e do ciclo hexano são sp²
- c) a molécula do ciclo-hexano também é plana, apesar de apresentar carbonos sp³
- d) ciclo-hexano, benzeno e antraceno apresentam, respectivamente, as seguintes fórmulas moleculares: C_6H_{12} , C_6H_6 e $C_{14}H_{14}$.
- e) O antraceno possui 6 ligações do tipo pi

3. Segundo as estruturas dos compostos descritos abaixo, quais deles não são aromáticos?

- a) Cicloexeno e ciclobuteno
- **b)** Naftaleno e fenantreno
- c) Benzeno e fenantreno
- d) Ciclobuteno e fenol
- e) Cicloexeno e benzeno
- **4.** Na indústria alimentícia, para impedir a rancificação de alimentos gordurosos, são empregados aditivos antioxidantes, como o composto orgânico de fórmula:

Esse composto apresenta os radicais alquila:

- a) hidroxila e metila.
- b) isobutila e metila.
- c) etila e terc-butila.
- d) metila e terc-butila.
- e) propila e hidroxila.

5. A nomenclatura oficial (IUPAC) do composto é:

- a) 3-etil-1-metilciclobutano
- b) 3-etil-1,1-dimetilciclobutano
- c) 3,3-dimetil-1-etilbutano
- d) 3-etil-1,1-metilbutano
- e) 3-etil-1,1-dimetilbutano
- **6.** Os nomes corretos para os compostos são:

- a) 1-metilcicloexeno-2; isopropilciclopropano; 1-metil-ciclohexa-2,5-dieno.
- b) 3-metilcicloexeno-1; isopropilciclopropano; 3-metil-ciclohexa-1,4-dieno.
- c) 1-metilcicloexeno-2; n-propilciclopropano; 1-etilciclohexa-2,5-dieno
- **d)** 3-metilcicloexeno-1; isopropilciclopropano; 3-etil-ciclohexa-2,5-dieno.
- e) 3-metil-1-cicloexeno; isopropilciclopropano; 1-metil-2,5-ciclohexadieno.

7. Antidetonantes são substâncias que elevam sensivelmente a octanagem da gasolina. Nas refinarias modernas, esses antidetonantes são obtidos no próprio craqueamento catalítico. Três exemplos desse processo são:

Os nomes oficiais dos compostos I, II e III são, respectivamente:

- a) 2-metilpentano; benzeno; benzeno.
- **b)** 2,3-dimetilbutano; tolueno; 1,1-dimetilciclopentano.
- c) 2,2-dimetilciclobutano; tolueno; benzeno.
- d) 2,2-dimetilbutano; benzeno; 1,2-dimetilciclopentano.
- e) 2,3-dimetilbutano; benzeno; 1,2-dimetilciclopentano.
- **8.** "O Ministério da Saúde adverte: fumar pode causar câncer de pulmão" Um dos responsáveis por esse mal causado pelo cigarro é o alcatrão, que corresponde a uma mistura de substâncias aromáticas, entre elas o benzeno, naftaleno e antraceno. As fórmulas moleculares dos três hidrocarbonetos citados são, respectivamente:

- a) C_6H_{12} , $C_{12}H_{12}$, $C_{18}H_{20}$
- **b)** C_6H_{12} , $C_{12}H_{10}$, $C_{18}H_{18}$
- **c)** C_6H_6 , $C_{10}H_{10}$, $C_{14}H_{14}$
- **d)** C_6H_6 , $C_{10}H_8$, $C_{14}H_{10}$
- **e)** C₆H₁₂, C₁₀H₈, C₁₄H₁₀

- **9.** As designações orto, meta e para são utilizadas para diferenciar compostos orgânicos:
 - a) ácidos, básicos e neutros.
 - b) com anel aromático di-substituído.
 - c) de baixa, média e alta massa molecular.
 - d) saturados, com duplas e triplasligações.
 - e) de origem vegetal, animal e mineral.
- **10.** Assinalar de acordo com a IUPAC a estrutura correspondente ao 1,4-difenil-penta-1,4-dieno.

a)
$$CH = CH - CH = C - C_6H_5$$

$$CH_3$$

 $C_6H_5 - CH = CH - CH_2 - C - C_6H_5$ CH_2

b)
$$C_6H_5 - CH_2 - CH = CH - C - CH_2$$
 C_6H_5

Gabarito

1. B

A dupla entre os carbonos vizinhos ao nitrogênio mantém a característica aromática do índigo, fazendo com que tenham ligações alternadas.

2. C

Por conta da não existência de ligações pi, o ciclo hexano tem uma estrutura planar.

3. A

Por não seguirem a regra de huckel e não terem suas ligações pi intercaladas.

4. D

nos radicais da posição orto existem três carbonos terciários caracterizando terc-butilas e na posição para uma metila.

5. B

6. B

Quando se tem uma ligação dupla num hidrocarboneto, o carbono 1 sempre sera o carbono da dupla, seguindo pelo sentido de menores sequencias de números pra próxima dupla ou pra um possível radical.

7. E

8. D

9. B

As posições orto, meta e para são nomenclaturas para diferentes posições de radicais(1,2 ; 1,3 e 1,4) respectivamente, considerando o "1" de cada posição o carbono 1 do anel.

10. C

