Άσκηση 2: Συντόμευση Διαδρομής

Σχετικό πρόβλημα:

Θέλουμε ελάχιστη απόσταση s,t αν μπορώ να μηδενίσω k ακμές.

Λύση σχετικού προβήματος:

Θα χρησιμοποιήσουμε πίνακα για dp, τον ονομάζουμε D, με διαστάσεις NxM και το στοιχείο D[a,b] είναι η βέλτιστη απόσταση της δεδομένης αφετηρίας s από την κορυφή a αν μπορώ να μηδενίσω b ακμές.

Η λύση στο πρόβλημα μας είναι το στοιχείο D[t,k] του πίνακα.

	K=0	K=1	K=2
1	11	4	0
2	7	0	0
3 (s)	0	0	0
4	15	8	4
5	16	9	4
6 (t)	26	16	9

Έστω ότι διασχίζοντας το γράφημα, εξετάζω την ακμή e=(x,a) και γνωρίζω την λύση για την κορυφή x. Τότε ενημερώνω την εκτίμησή μου για την λύση της κορυφής a ως εξής:

$$D[a,b] = min\{D[x,b-1],D[x,b]+I(x,a),D[a,b]\}$$

Εξερευνώ το γράφημα κανονικά όπως στον Dijkstra και εξετάζω κατ' αυτόν τον τρόπο τις ακμές. Η πρώτη στήλη του πίνακα (k=0) ισοδυναμεί με Dijkstra και η γραμμή που αφορά την κορυφή-αφετηρία προφανώς σταθερά 0. Όλα τα υπόλοιπα στοιχεία του πίνακα αρχικοποιούνται ως ∞ . Κάθε ακμή είτε συμμετέχει στην τελική λύση είτε όχι, δηλαδή είτε την μηδενίζουμε είτε όχι.

Στην αναδρομική σχέση ο πρώτος όρος αντιπροσωπεύει την περίπτωση που η ακμή μηδενίζεται, ο δεύτερος την περίπτωση που η ακμή δεν μηδενίζεται και ο τρίτος την περίπτωση που έχουμε ήδη υπολογίσει καλύτερη εκτίμηση από άλλη διαδρομή.

Για την λύση του αρχικού προβήματος, επιλέγουμε από την γραμμή με την κορυφή t, την ελάχιστη στήλη k που έχει τιμή ≤Β. Επειδή κάθε γραμμή του πίνακα είναι ταξινομημένη σε φθίνουσα σειρά, βρίσκουμε την τιμή αυτή με δυαδική αναζήτηση.