Package 'concordance'

November 14, 2024	
Title Concordance Analysis and Active Subspaces for High-Dimensional Computer Models	
Version 1.0.0	
Description	
Tools for estimating the Constantine Matrix for a computer model `f` (or alternatively, the co-Constantine Matrix for two functions `f` and `g`, as in a ``Concordance Analysis"). Works efficiently in high-dimensions by leveraging analytic results based on the Bayesian MARS emulator (with the `BASS` package).	
Imports lhs, BASS, zipfR	
Depends R (>= $3.5.0$)	
Suggests knitr, rmarkdown, mvtnorm, testthat (>= 2.1.0)	
License BSD_3_clause + file LICENSE	
VignetteBuilder knitr	
Encoding UTF-8	
NeedsCompilation no	
Author Kellin Rumsey [aut, cre]	
Maintainer Kellin Rumsey knrumsey@lanl.gov>	
Roxygen list(markdown = TRUE)	
RoxygenNote 7.3.2	
Contents	
act_scores bassfunc2bass borehole_grad build_prior Cfg_bass Cfg_bassPCA Cfg_bassPCA Cfg_bassPCA coactive_bass coact_scores conc analysis mc	

2 act_dims

Index		23
	Z_bass	22
	tr	
	summary.ConcordanceAnalysis	21
	print.ConcordanceAnalysis	20
	plot_sensitivities	20
	plot_contributions	19
	plot_active_grad_k	19
	plot.ConcordanceAnalysis	18
	modified_borehole	18
	lcbass2bass	17
	K_bassPCA	16
	f_piston	16
	$f_borehole \dots \dots$	15
	fd_grad	15
	C_mc	14
	C_bassPCA_v2	13
	C_bassPCA	13
	C_bass	12
	conc_mc	11

act_dims

Active Dimension (Not validated. Might be buggy)

Description

This function estimates the dimensions of the active subspace using a sequential testing approach

Usage

```
act_dims(C, X, y, k = ncol(C), alpha = 0.05, all_sets = TRUE, verbose = TRUE)
```

Arguments

С	Constantines C matrix (e.g. from C_bass, C_mc, or C_gp)
X	the original input variables
у	the original response variable (mod y when using C_bass(mod))
k	The maximum number of columns of W to consider
alpha	significance threshold for testing procedure
all_sets	should all dimension sets be returned? Or just the smallest set.
verbose	should progress be printed

Value

a list of active subspace dimensions

act_scores 3

act_scores

Activity Scores

Description

This function computes the activity scores for main effects of the variables

Usage

```
act_scores(C, k = 1, plt = FALSE, norm = FALSE)
```

Arguments

C Constantines C matrix (e.g. from C_bass, C_mc, or C_gp)

k The number of columns of W to consider

plt Logical, should a plot be made?

norm Logical, should activity scores be normalized to have length one?

Value

the activity scores

bassfunc2bass

Convert functional BASS model to BASS model

Description

The argument to this function is the output of a bass() call when a single functional variable is specified using the xx.func argument. Note that the resulting model may not be a valid bass object for some applications, but the resulting model can be passed to concordance::C_bass() and related functions.

Usage

```
bassfunc2bass(bfm)
```

Arguments

bfm

an object of class bass, where a functional variable has been specified.

Examples

```
#The following are equivalent
n <- 100 #Number of observations
p <- 4  #Number of variables (beyond p = 2, variables are inert)
X <- matrix(runif(n*p), nrow=n)
y <- apply(X, 1, ff1)
gm <- gbass(X, Y, nmcmc=1000, nburn=901)
bm <- gm2bm(gm)
sob <- sobol(bm)
plot(sob)</pre>
```

4 build_prior

borehole_grad

The Gradient of Borehole Function

Description

This function returns the gradient of the borehole function.

Usage

```
borehole_grad(xx, design = 0.5, adjust = TRUE)
```

Arguments

xx	the 7 inputs, restricted to the unit interval
design	the radius of the borehole (typically rw)
adjust	logical. adjustment for scaling needed?

Details

PARAMETER RANGES rw in [0.05, 0.15] radius of borehole (m) r in [100, 50000] radius of influence (m) Tu in [63070, 115600] transmissivity of upper aquifer (m2/yr) Hu in [990, 1110] potentiometric head of upper aquifer (m) Tl in [63.1, 116] transmissivity of lower aquifer (m2/yr) Hl in [700, 820] potentiometric head of lower aquifer (m) L in [1120, 1680] length of borehole (m) Kw in [9855, 12045] hydraulic conductivity of borehole (m/yr)

Value

The output of the borehole function

build_prior

Build Prior Method for C_bass and Cfg_bass

Description

A quick way to build priors for use in C_bass and Cfg_bass. For more complicated priors, such as mixture distributions, see details in ?C_bass.

Usage

```
build_prior(
  dist,
  trunc = NULL,
  mean = NULL,
  sd = NULL,
  shape1 = NULL,
  shape2 = NULL,
  shape = NULL,
  scale = NULL
```

Cfg_bass 5

Arguments

dist	A vector of length p. Valid entries include "uniform", "normal", "beta", "gamma".
trunc	A matrix of dimension px2 (rows are recycled if nrow < p). Inf is a valid entry.
mean	A p-vector of means (used for normal only)
sd	A p-vector of sds (used for normal only)
shape1	A p-vector of shape1 parameters for beta prior
shape2	A p-vector of shape2 parameters for beta prior
shape	A p-vector of shape parameters for gamma prior
scale	A p-vector of scale parameters for gamma prior

Details

All vectors and matrix rows are recycled for parameters. The vector dist cannot be recyled as it defines p.

Value

a list which can be passed into C_bass or Cfg_bass as a prior.

Cfg_bass	Estimate Cfg with BASS	
0-	30	

Description

Closed form estimator of the Cfg matrix using a BASS model

Usage

```
Cfg_bass(mod1, mod2, prior = NULL, mcmc.use = NULL, scale01 = FALSE)
```

Arguments

mod1	a fitted BASS model for first function
mod2	a fitted BASS model for second function
prior	NULL (default) $[0, 1]$ prior for each variable. See details for required structure of prior
mcmc.use	vector of mcmc indices to be used for both models. Otherwise, a 2-column matrix with a pair of indices in each row.
scale01	logical (default FALSE). When TRUE, the the C matrix corresponds to the $(0, 1)$ -scaled inputs rather than the original inputs.

Details

prior should be a list of length p (one object for each variable). Each element of prior should be a named list with fields

```
dist - ("uniform", "normal").
trunc - truncation bounds (a, b)
mean - vector of means (mixture of normals only)
sigma - vector of sds (mixture of normals only)
weights - vector of mixture weights (mixture of normals only)
```

6 Cfg_bassPCA_v2

Value

A list representing the posterior distribution of the Co-Constantine matrix (Cfg).

Cfg_bassPCA Estimate Cfg matrix with bassPCA as a function of t

Description

Closed form estimator of the Cfg(t) matrix using a BASS model

Usage

```
Cfg_bassPCA(modPCA1, modPCA2, prior = NULL, mcmc.use = NULL, func.use = NULL)
```

Arguments

modPCA1	a fitted model of class bassBasis from bassPCA function
modPCA2	a fitted model of class bassBasis from bassPCA function
prior	NULL (default) $[0, 1]$ prior for each variable. See details for required structure of prior
mcmc.use	vector of mcmc indices to be used for both models. Otherwise, a matrix
func.use	a vector of points of the functional variable to use

Details

This function works by converting the linear combination of bass models to a single bass model. See Cfg_bass for more details

Value

A list returning the (posterior samples?) of the Cfg matrix for each point specified in func.use

Cfg_bassPCA_v2 Estimate Cfg matrix with bassPCA as a function of t

Description

Closed form estimator of the Cfg(t) matrix using a BASS model. An alternative approach, see details.

Usage

```
Cfg_bassPCA_v2(
  modPCA1,
  modPCA2,
  prior = NULL,
  mcmc.use = NULL,
  func.use = NULL
)
```

Cfg_mc 7

Arguments

modPCA1	a fitted model of class bassBasis from bassPCA function
modPCA2	a fitted model of class bassBasis from bassPCA function
prior	NULL (default) $[0, 1]$ prior for each variable. See details for required structure of prior
mcmc.use	vector of mcmc indices to be used for both models. Otherwise, a matrix
func.use	a vector of points of the functional variable to use

Details

This function works by decomposing the Cfg of a linear combination into the pairwise Cfigj matrices of the components. See Cfg_bass for more details

Value

A list returning the (posterior samples?) of the Cfg matrix for each point specified in func.use

Cfg_mc C_fg matrix with Monte Carlo

Description

Approximates generalized C matrix with Monte Carlo for functions f and g

Usage

```
Cfg_mc(
   f,
   g,
   measure,
   grad = FALSE,
   nmc = 10000,
   names = NULL,
   seed = NULL,
   return_C = FALSE,
   ...
)
```

Arguments

f	the function f (or gradient of f, if grad=TRUE)
g	the function g (or gradient of f, if grad=TRUE)
measure	the number of inputs in f. See details for more sophisticated use (for non-uniform measure)
grad	if TRUE f is assumed to return the gradient of f. When FALSE, forward diff is used for gradient approximation.
nmc	the number of Monte Carlo replications
names	(optional) names for the functions f and g

8 coactive_bass

seed optional. seed for MC draws

return_C (default FALSE). When TRUE, the object returned is a list with components Cf

Cg Cfg

... additional arguments passed to f()

Details

measure should be an argument-free function which simulates a draw $x \sim p(x)$ where p is the prior measure. Alternatively, measure can be a numeric scalar, in which case the Monte Carlo draws are simulated from the standard uniform distribution as runif(measure[1]).

Value

the approximated C matrix

Description

Computes the concordance between mod1 and mod2 (BASS models representing f1 and f2)

Usage

```
coactive_bass(mod1, mod2, prior = NULL, mcmc.use = NULL, q = 1, ...)
```

Arguments

mod1	BASS model representing function 1
mod2	BASS model representing function 2
prior	NULL (default) Uniform(0,1) prior for each variable. See details fr required prior structure.
mcmc.use	a vector of mcmc replications to use. Can also be a 2-column matrix with indices for f1 and f2.
q	order for the activity score measures
	additional arguments passed fd_grad()

Details

measure should be an argument-free function which simulates a draw $x \sim p(x)$ where p is the prior measure. If measure is numeric, then Monte Carlo draws are simulated from the standard uniform distribution as runif(measure[1]).

Value

Estimates of C1, C2, C12, V12, conc(f1, f2), contributions and coactivity scores

coact_scores 9

cnact	scores

Co-Activity Scores

Description

This function computes the activity scores for main effects of the variables

Usage

```
coact_scores(V, q = 1, signed = TRUE, plt = FALSE, norm = FALSE)
```

Arguments

V	The symmetrized co-Constantine matrix from Cfg_bass()
q	The number of columns of W to consider
signed	Use signed or unsigned version?
plt	Logical, should a plot be made?
norm	Logical, should activity scores be normalized to have a length of 1?

Value

the coactivityactivity scores

conc_analysis_mc

Concordance Analysis

Description

Performs a full concordance analysis between f and g

Usage

```
conc_analysis_mc(
   f,
   g,
   measure,
   grad = FALSE,
   nmc = 10000,
   names = c("f", "g"),
   seed = NULL,
   ...
)
```

10 conc_bass

Arguments

f	the function f (or gradient of f, if grad=TRUE)
g	the function g (or gradient of g, if grad=TRUE)
measure	the number of inputs in f and g. See details for more sophisticated use (for non-uniform measure)
grad	if TRUE f and g are assumed to return gradients. When FALSE, forward diff is used for approximation.
nmc	the number of monte carlo replications
names	names of the functions
seed	optional. seed for monte carlo draws

Details

. . .

measure should be an argument-free function which simulates a draw $x \sim p(x)$ where p is the prior measure. If measure is numeric, then Monte Carlo draws are simulated from the standard uniform distribution as runif(measure[1]).

additional arguments passed fd_grad()

Value

a list with components: C (constantine matrices), principle_grads, contributions, totals, conc, dist

conc_bass Co

Concordance analysis using bass models

Description

Closed form estimator of the Cfg matrix using a BASS model

Usage

```
conc_bass(
  mod1,
  mod2,
  prior = NULL,
  mcmc.use = NULL,
  type = 1,
  prior_func = NULL,
  func.use = NULL
)
```

Arguments

mod1 a fitted BASS model for first function

mod2 a fitted BASS model for second function

prior NULL (default) [0, 1] prior for each variable. See details for required structure of prior

mcmc.use vector of mcmc indices to be used for both models. Otherwise, a matrix

conc_mc 11

type Only used if class(mod1) == class(mod2) == "bassBasis". The default type=1

calls C_bassPCA_v2 and any other value calls C_bassPCA.

prior_func Only used if class(mod1) == class(mod2) == "bassBasis". Optional weights for

the prior on the functional variable.

func.use Only used if class(mod1) == class(mod2) == "bassBasis".

Details

When models are class bass, each field of the returned object is a list for each mcmc iteration (or a vector for concordance). If mcmc.use = NULL or length(mcmc.use) = 1, then each field is just a matrix (or a scalar for concordance).

When models are class bassBasis (from bassPCA function), each field will be a list for each time point in func.use (func.use = NULL uses all time points in the training data by default). Each component of the list has the same structure as described above for the class == "bass" case.

Value

A list with matrices Cf, Cg, Cfg, Vfg and the concordance.

conc_mc Concordance

Description

Computes the concordance between f and g

Usage

```
conc_mc(f, g, measure, grad = FALSE, nmc = 10000, ...)
```

Arguments

f the function f (or gradient of f, if grad=TRUE)
g the function g (or gradient of g, if grad=TRUE)

measure the number of inputs in f and g. See details for more sophisticated use (for

non-uniform measure)

grad if TRUE f and g are assumed to return gradients. When FALSE, forward diff is

used for approximation.

nmc the number of monte carlo replications
... additional arguments passed fd_grad()

Details

measure should be an argument-free function which simulates a draw $x \sim p(x)$ where p is the prior measure. If measure is numeric, then Monte Carlo draws are simulated from the standard uniform distribution as runif(measure[1]).

Value

the concordance between functions f and g

12 *C_bass*

C_bass Estimate the Constantine Matrix with BASS	
--	--

Description

Closed form estimator of the C matrix using a BASS model

Usage

```
C_bass(mod, prior = NULL, mcmc.use = NULL, scale01 = FALSE)
```

Arguments

mod	a fitted BASS model
prior	NULL (default) $(0,1]$)prior for each variable. See details for required structure of prior
mcmc.use	set of indices telling which mcmc draws to use
scale01	logical (default FALSE). When TRUE, the C matix corresponds to the (0, 1)-scaled inputs rather than the original inputs.

Details

prior should be a list of length p (one object for each variable). Each element of prior should be a named list with fields. See also the concordance::build_prior() function.

- dist ("uniform", "normal", "beta", "gamma").
- trunc truncation bounds (a, b). These should be c(0, 1) for "beta" and c(0, Inf) for "gamma".
- mean vector of means (mixture of normals only)
- sd vector of sds (mixture of normals only)
- shape1, shape2 shape parameters for beta distribution
- shape, scale parameters for gamma distribution
- weights vector of mixture weights (currently only compatible with dist="normal")

Value

A list representing the posterior distribution of the Constantine matrix.

C_bassPCA

	C_bassPCA	Estimate C matrix with bassPCA as a function of t
--	-----------	---

Description

Closed form estimator of the C(t) matrix using a BASS model

Usage

```
C_bassPCA(modPCA, prior = NULL, mcmc.use = NULL, func.use = NULL)
```

Arguments

modPCA	a fitted model of class bassBasis from bassPCA function
prior	NULL (default) $[0, 1]$ prior for each variable. See details for required structure of prior
mcmc.use	vector of mcmc indices to be used for both models. Otherwise, a matrix
func.use	a vector of points of the functional variable to use

Details

This function works by converting the linear combination of bass models to a single bass model. See C_{bass} for more details

Value

A list returning the (posterior samples?) of the C matrix for each point specified in func.use

C_bassPCA_v2	Estimate C matrix with bassPCA as a function of t	

Description

Closed form estimator of the C(t) matrix using a BASS model. An alternative approach see details. This approach is usually faster than the alternative.

Usage

```
C_bassPCA_v2(modPCA, prior = NULL, mcmc.use = NULL, func.use = NULL)
```

Arguments

modPCA	a fitted model of class bassBasis from bassPCA function
prior	NULL (default) $[0, 1]$ prior for each variable. See details for required structure of prior
mcmc.use	vector of mcmc indices to be used for both models. Otherwise, a matrix
func.use	a vector of points of the functional variable to use

14 *C_mc*

Details

This function works by decomposing the C of a linear combination into the pairwise Cfg matrices of the components. See C_bass for more details

Value

A list returning the (posterior samples?) of the C matrix for each point specified in func.use

C_mc	C matrix with Monte Carlo
C_IIIC	C mains with monie Carto

Description

Approximates Constantine's C with Monte Carlo for a function f

Usage

```
C_mc(f, measure, grad = FALSE, nmc = 10000, seed = NULL, ...)
```

Arguments

f	the function f (or gradient of f, if grad=TRUE)
measure	the number of inputs in f. See details for more sophisticated use (for non-uniform measure)
grad	if TRUE f is assumed to return the gradient of f. When FALSE, forward diff is used for gradient approximation.
nmc	the number of Monte Carlo replications
seed	optional. seed for MC draws
	additional arguments passed to f()

Details

measure should be an argument-free function which simulates a draw $x \sim p(x)$ where p is the prior measure. If measure is numeric, then Monte Carlo draws are simulated from the standard uniform distribution as runif(measure[1]).

Value

the approximated C matrix

fd_grad 15

fd_grad

Forward diff function

Description

Function for approximating the gradient of a function

Usage

```
fd_grad(f, x, h = 1e-12, ...)
```

Arguments

f the function to find the gradient of

x the input valuesh the tolerance

additional inputs to be passed to f

Value

The approximate gradient of f at x

f_borehole

The Borehole Function

Description

This function models the flow of water through a borehole.

Usage

```
f_{borehole}(xx, design = 0.5)
```

Arguments

xx the 7 inputs, restricted to the unit interval design the radius of the borehole (typically rw)

Details

PARAMETER RANGES rw in [0.05, 0.15] radius of borehole (m) r in [100, 50000] radius of influence (m) Tu in [63070, 115600] transmissivity of upper aquifer (m2/yr) Hu in [990, 1110] potentiometric head of upper aquifer (m) Tl in [63.1, 116] transmissivity of lower aquifer (m2/yr) Hl in [700, 820] potentiometric head of lower aquifer (m) L in [1120, 1680] length of borehole (m) Kw in [9855, 12045] hydraulic conductivity of borehole (m/yr)

Value

The output of the borehole function

16 K_bassPCA

f_piston

Piston Function

Description

Piston function studied by Constantine in global sensitivity metrics paper

Usage

```
f_piston(x)
```

Arguments

Х

7 inputs. See Constantine paper for details

Details

```
PARAMETER RANGES: measure <- function() res <- c( runif(1, 30, 60), runif(1, .005, .02), runif(1, .002, .01), runif(1, 1000, 5000), runif(1, 90000, 110000), runif(1, 290, 296), runif(1, 340, 360)) return(res)
```

Value

Time to fire for piston

K_bassPCA

Estimate K matrix with bassPCA

Description

Closed form estimator of the K matrix using a BASS model

Usage

```
K_bassPCA(
  modPCA,
  type = 1,
  prior = NULL,
  prior_func = NULL,
  mcmc.use = NULL,
  func.use = NULL
```

lcbass2bass 17

Arguments

modPCA	a fitted model of class bassBasis from bassPCA function
type	1 or 2. Use C_bassPCA or C_bassPCA_v2?
prior	NULL (default) $[0, 1]$ prior for each variable. See details for required structure of prior
prior_func	a vector of weights to use when summing over functional variable. Should be same length as func.use.
mcmc.use	vector of mcmc indices to be used for both models. Otherwise, a matrix

func.use a vector of points of the functional variable to use

Details

This function works by converting the linear combination of bass models to a single bass model. See C_bass for more details

Value

A list returning the (posterior samples?) of the C matrix for each point specified in func.use

1cbass2bass Convert a linear combination of BASS models to a single BASS model

Description

A linear combination of BASS models is also a BASS model. This function takes a list of BASS models (all with the same data matrix xx.des) and returns the resulting linear combination as a new BASS model. One useful application of this function is to convert bassPCA to bass for a fixed time point. Does not currently work for bass models with functional or categorical inputs.

Usage

```
lcbass2bass(
  mod_list,
  weights = rep(1, length(mod_list)),
  yy = NULL,
  mcmc.use = NULL
)
```

Arguments

A list of bass models. mod_list weights An optional vector of weights. The data vector. Optional, but useful for some bass object methods. уу set of indices telling which mcmc draws to use. mcmc.use

Examples

```
a <- 1
```

modified_borehole

A Modified Borehole Function

Description

This function is for testing, it is a modified borehole function designed to have a more interesting active subspace

Usage

```
modified_borehole(xx, design = 0.5)
```

Arguments

xx 5 inputs, restricted to the unit interval. More inputs can be used but they are

completely inert.

design the radius of the borehole (typically rw)

Details

PARAMETER RANGES rw in [0.05, 0.15] radius of borehole (m) r in [100, 50000] radius of influence (m) Tu in [63070, 115600] transmissivity of upper aquifer (m2/yr) Hu in [990, 1110] potentiometric head of upper aquifer (m) Tl in [63.1, 116] transmissivity of lower aquifer (m2/yr) Hl in [700, 820] potentiometric head of lower aquifer (m) L in [1120, 1680] length of borehole (m) Kw in [9855, 12045] hydraulic conductivity of borehole (m/yr)

Value

The output of the borehole function

```
plot.ConcordanceAnalysis
```

Plotting Function for object of class ConcordanceAnalysis

Description

Plotting Function for object of class ConcordanceAnalysis

Usage

```
## S3 method for class 'ConcordanceAnalysis' plot(x, ...)
```

Arguments

x object of class "ConcordanceAnalysis"

... arguments to be passed to individual plot functions

plot_active_grad_k 19

plot_active_grad_k

Plot components of the kth Principle Gradient

Description

Plot components of the kth Principle Gradient

Usage

```
plot_active_grad_k(obj, k = 1, vnames = NULL, ...)
```

Arguments

obj object of class "ConcordanceAnalysis"
k which principle gradient is desired?
vnames optional vector of variable names
... additional arguments passed to barplot

plot_contributions

Plot contributions

Description

Plots the contributions pi_f, pi_g, and pi_fg

Usage

```
plot_contributions(obj, ...)
```

Arguments

obj object of class "ConcordanceAnalysis"
... additional arguments passed to barplot

Description

The sensitivity of variable j (wrt to f) is defined as sum_i=1^n pi_f(i) * delta_f(j,i) The definition is similar for g or for fg

Usage

```
plot_sensitivities(obj, vnames = NULL, ...)
```

Arguments

obj object of class "ConcordanceAnalysis"
vnames optional vector of variable names
... additional arguments passed to barplot

```
print.ConcordanceAnalysis
```

Summary and Print functions

Description

Prints a summary for an object of class "ConcordanceAnalysis"

Usage

```
## S3 method for class 'ConcordanceAnalysis' print(x, ...)
```

Arguments

x object of class "ConcordanceAnalysis"

... Additional arguments (ignored)

```
{\it Summary .} \ {\it Concordance Analysis} \\ {\it Summary and Print functions}
```

Description

Prints a summary for an object of class "ConcordanceAnalysis"

Usage

```
## S3 method for class 'ConcordanceAnalysis'
summary(object, ...)
```

Arguments

```
object of class "ConcordanceAnalysis"
... Ignored
```

tr

Trace of a matrix

Description

Shortcut for sum(diag(A))

Usage

tr(A)

Arguments

Α

a matrix

Value

The trace of a matrix

22 Z_bass

_	
	nacc

Estimate the Expected Gradient with BASS

Description

Closed form estimator of Z = E(gradient f)

Usage

```
Z_bass(mod, prior = NULL, mcmc.use = NULL, scale01 = FALSE)
```

Arguments

a fitted BASS model mod NULL (default) (0,1])prior for each variable. See details for required structure prior mcmc.use set of indices telling which mcmc draws to use

logical (ignored in current version) scale01

Details

prior should be a list of length p (one object for each variable). Each element of prior should be a named list with fields. See also the concordance::build_prior() function.

- dist ("uniform", "normal", "beta", "gamma").
- trunc truncation bounds (a, b). These should be c(0, 1) for "beta" and c(0, Inf) for "gamma".
- mean vector of means (mixture of normals only)
- sd vector of sds (mixture of normals only)
- shape1, shape2 shape parameters for beta distribution
- shape, scale parameters for gamma distribution
- weights vector of mixture weights (currently only compatible with dist="normal")

Value

A list representing the posterior distribution of the Constantine matrix.

Index

```
act_dims, 2
act_scores, 3
bassfunc2bass, 3
borehole_grad, 4
build_prior, 4
C_bass, 12
C_bassPCA, 13
C_bassPCA_v2, 13
C_mc, 14
Cfg\_bass, 5
Cfg_bassPCA, 6
Cfg_bassPCA_v2, 6
\texttt{Cfg\_mc}, \textcolor{red}{7}
coact_scores, 9
coactive_bass, 8
\verb|conc_analysis_mc|, 9
conc_bass, 10
conc_mc, 11
f_borehole, 15
f_piston, 16
fd_grad, 15
K_bassPCA, 16
1cbass2bass, 17
modified\_borehole, 18
plot.ConcordanceAnalysis, 18
plot_active_grad_k, 19
plot_contributions, 19
plot_sensitivities, 20
\verb|print.ConcordanceAnalysis|, 20
\verb|summary.ConcordanceAnalysis|, 21|\\
tr, 21
Z_bass, 22
```