

Analysis of Mexico City's Venues

By: Marco Xoca

Introduction

- Mexico City is the capital, largest city, and most populous city in North America. This city is also one of the most important and cultural centers in the world.
- By 2015 the estimated population was about 9,000,000, also Mexico City, or CDMX has 16 municipalities
- In this project I'll find the information about landmarks, restaurants, shops, and more venues of each municipalities, in order to help people to find the best municipality to visit according at their interest

Data

In order to get all the information needed, we can list the data as below:

- List of each municipality in CDMX
- Coordinates (latitude and longitude) of each municipality in CDMX
- List of every venue by municipalities (obtained through Foursquare API)

After the preprocessing and cleaning, the dataframe was the one in the right.

	borough	population	area	density	postal code	Latitude	Longitude	
0	Azcapotzalco	414711	33.66	12.635	02000 - 02999	19.485329	-99.182107	
1	Benito Juárez	385439	26.63	13.331	03000 - 03999	19.380642	-99.161135	
2	Coyoacán	620416	54.4	11.545	04000 - 04999	19.326667	-99.150376	
3	Cuajimalpa de Morelos	186391	74.58	2.328	05000 - 05999	19.324634	-99.310729	
4	Cuauhtémoc	531831	32.4	16.071	06000 - 06999	19.431373	-99.149056	
5	Gustavo A. Madero	1185772	94.07	12.683	07000 - 07999	19.504065	-99.115864	
6	Iztacalco	384326	23.3	16.953	08000 - 08999	19.396912	-99.094330	
7	Iztapalapa	1815786	117	15.563	09000 - 09999	19.349166	-99.056799	
8	Magdalena Contreras	239086	74.58	3.069	10000 - 10999	19.268977	-99.268413	
9	Miguel Hidalgo	372889	46.99	7.523	11000 - 11999	19.428062	-99.204567	
10	Milpa Alta	130582	228.41	507	12000 - 12999	19.139457	-99.051095	
11	Tlalpan	650567	312	2.085	14000 - 14999	19.198340	-99.206221	
12	Tláhuac	360265	85.34[9]	4.032	13000 - 13999	19.276998	-99.002822	
13	Venustiano Carranza	430978	33.4	13.396	15000 - 15999	19.430495	-99.093106	
14	Xochimilco	415007	122	3.427	16000 - 16999	19.245145	-99.090364	
15	Álvaro Obregón	727034	96.17	7.347	01000 - 01999	19.336176	-99.246820	

Methodology

I got the geographical coordinates of Mexico City, which were: longitude = 19.4326296 and latitude = -99.1331785

With these coordinates, and using Folium's package, I made a map of the CDMX, with labels at each municipality.

Methodology

Once having the CDMX's map, with the help of Foursquare API I got all the venues available by municipality (neighborhood), and the top 10 venue category by municipality

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
0	Azcapotzalco	Mexican Restaurant	Ice Cream Shop	Taco Place	Seafood Restaurant	Breakfast Spot	Burrito Place	Bakery	Food Court	Japanese Restaurant	Garden
1	Benito Juárez	Pizza Place	Mexican Restaurant	Coffee Shop	Pet Store	Southern / Soul Food Restaurant	Greek Restaurant	IT Services	Ice Cream Shop	Dog Run	Deli / Bodega
2	Coyoacán	Taco Place	Seafood Restaurant	Ice Cream Shop	Gym / Fitness Center	Fast Food Restaurant	Park	Coffee Shop	Mexican Restaurant	Pizza Place	Pool
3	Cuajimalpa de Morelos	Park	Women's Store	Comfort Food Restaurant	Convenience Store	Cupcake Shop	Cycle Studio	Deli / Bodega	Design Studio	Dessert Shop	Diner
4	Cuauhtémoc	Mexican Restaurant	Taco Place	Deli / Bodega	Hotel	Coffee Shop	Art Gallery	Bar	Restaurant	Café	Bakery

Methodology

Using the one-hot encoding, and with the frequency dataframe, I made the follow dataframe with the top 10 most common venue in all the city

Clustering: Elbow's method

One step just before to start clustering, is to know how many clusters (or the k value) are the optimal for this problem.

I made a plot of the sum of squared distances with different k-values

Clustering: with k=3

Using the KMeans library, I divided all the venues data in 3 clusters.

Results

Seeing all the tables and maps, we can notice that almost all the venues are just in one cluster, which has a big relation in the urbanized area

Also, we can explore venues by cluster, like the venues in cluster 1 order by common

	population	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue
0	414711	-99.182107	0	Mexican Restaurant	Ice Cream Shop	Taco Place	Seafood Restaurant	Breakfast Spot	Burrito Place	Bakery	Food Court
1	385439	-99.161135	0	Pizza Place	Mexican Restaurant	Coffee Shop	Pet Store	Southern / Soul Food Restaurant	Greek Restaurant	IT Services	Ice Cream Shop
2	620416	-99.150376	0	Taco Place	Seafood Restaurant	Ice Cream Shop	Gym / Fitness Center	Fast Food Restaurant	Park	Coffee Shop	Mexican Restaurant
4	531831	-99.149056	0	Mexican Restaurant	Taco Place	Deli / Bodega	Hotel	Coffee Shop	Art Gallery	Bar	Restaurant
5	1185772	-99.115864	0	Performing Arts Venue	Hot Dog Joint	Fast Food Restaurant	Scenic Lookout	Athletics & Sports	Movie Theater	Park	Shopping Mall

Results

Cluster 2 and 3 are respectively:

	population	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
3	186391	-99.310729	1	Park	Women's Store	Comfort Food Restaurant	Convenience Store	Cupcake Shop	Cycle Studio	Deli / Bodega	Design Studio	Dessert Shop	Diner
	population	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	Most	Most Common	Most Common	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
8	239086	-99.268413	2	Forest	Women's Store	Fast Food Restaurant	Convenience Store		•		Design Studio	Dessert Shop	Diner

Discussions

As we can see in the last three figures, if we like to eat Mexican food, pizza or go to arts venue, we should go in the cluster 1 areas. Otherwise, if we like to visit parks, we should go to cluster 2 areas. Finally, if we like to go to the forest, we should go to cluster's 3 areas.

We can notice that in all CDMX, the most common venues are, obviously, Mexican restaurants, followed by Taco places, parks and forest, being such a good place to free activities and good food places.

Being Mexico City one of the bigger cities in the world, probably it is better to analyze venues by municipality. Also, foursquare has not a lot of data of CDMX's venues, so it would be a great idea using another venues API, like the Google's one, or a local government API to get all the necessary data to a better analysis

Conclusion

With all this analysis we can conclude that, according to our likes, we can visit different municipalities of CDMX.

If we like all kind of restaurants, we should go to any area in cluster 1, if we like to go to a park or shopping, we should go to any area in cluster 2, showed by the violet label.

Finally, if we like to go to a forest, shopping, or food restaurant, we should go to any area in cluster 3.

This kind of analysis is very useful if we like to visit a new city, but we have no idea what to expect, and with this we can cluster our favorite places and planning in a better way our travel.

Also, this analysis is very straightforward, and you don't need to be the grater programmer of all time in order to do a very well-made analysis and

clustering of venues

