Codifica a blocchi

Un vettore b di k bit di informazione viene codificato in un vettore c lungo n bit che costituisce una parola di codice, con n > k. Si ha che c_m è sempre una parola di codice, mentre $\tilde{c_m}$ non è detto che lo sia. Dato $b \to c$, C l'insieme delle parole di codice, si ha che:

$$\begin{split} P[C] &= P[\hat{b} = b] = \sum_{c_i \in \mathcal{C}} P[\hat{b} = b | c = c_i] P[c = c_i] \\ \hat{c} &= \operatorname*{argmax}_{\alpha \in \mathcal{C}} P[\tilde{c} = \beta | c = \alpha] P[c = \alpha] = \\ &\underbrace{\text{Criterio MAP (sempre)}}_{\text{se } P[c = \alpha] = 1/|\mathcal{C}|} \\ &= \underbrace{\text{argmax } P[\tilde{c} = \beta | c = \alpha]}_{\alpha \in \mathcal{C}} \end{split}$$

Per non avere accumuli o ritardi deve valere $kT_b = nT_c$, quindi $T_c < T_b$.

Canale BSC

Senza memoria: la probabilità di errore non dipende dai bit inviati precedentemente, quindi la probabilità di ricevere la sequenza 010 è data $p_x(0)p_x(1)p_x(0)$. Simmetrico: la probabilità di sbagliare un 1 con uno 0 è uguale alla probabilità di sbagliare uno 0 con un 1, cioè: P(y=0|x=1) = P(y=1|x=0).

Distanza di Hamming

Si definisce $d_H(a,b) = \#$ di posizioni che hanno valori differenti nelle due sequenze.

$$P[\tilde{c} = \beta | c = \alpha] = P_e^{d_H(\alpha, \beta)} (1 - P_e)^{n - d_H(\alpha, \beta)}$$

$$\hat{c} = \underset{\alpha \in \mathcal{C}}{\operatorname{argmax}} \left(\frac{P_{bit}}{1 - P_{bit}} \right)^{d_H(\alpha, \beta)} \stackrel{P_{bit} < 0.5}{=} \underset{\alpha \in \mathcal{C}}{\operatorname{argmin}} d_H(\alpha, \beta)$$

Abbiamo definito il Criterio MD, valido se il canale è BSC senza memoria e parole di codice equiprobabili.

Numero di errori rilevabili e correggibili

In un codice a blocco si ha che:

- # max errori sempre rilevabili = $d_{min} 1$;
- # max errori sempre correggibili = $\lfloor \frac{d_{min}-1}{2} \rfloor$

Bound di Hamming

Sia t il numero di errori che voglio correggere.

$$\underbrace{k/n}_{\text{ate del codice}} \le 1 - \frac{1}{n} \log_2 \sum_{r=0}^t \binom{n}{r}$$

Codice lineare a blocco

Permettono di costruire parole di codice in maniera algebrica. Se \mathcal{C} è un codice lineare a blocco, allora deve valere che $\forall c_i, c_j \in \mathcal{C}$:

$$(c_i + c_j) \in \mathcal{C}, \quad (\beta_i c_i + \beta_j c_j) \in \mathcal{C}, \quad \beta \in \{0, 1\}$$

Norma / Peso di Hamming: $||x||_H = \#$ di 1 presenti nella sequenza. In un codice lineare a blocco, il peso di Hamming del codice coincide con la distanza minima di Hamming del codice, ovvero $d_{min} = W_H(\mathcal{C})$.

Bound di Singleton

In un codice lineare a blocco si ha che $d_{min} \le n-k+1$.

Rappresentazione matriciale dei codici lineari

La matrice generatrice G mappa blocchi di bit b in ingresso in parole di codice c secondo la regola c = Gb. Deve valere: Rango(G) = k.

Per rappresentare tutte le parole di codice non lineare serve una tabella di $n \cdot 2^k$ bit; se il codice è lineare basta una matrice di $n \cdot k$ bit.

Una matrice è in forma sistematica se $G = \begin{bmatrix} \mathbb{I}_k \\ A \end{bmatrix}$. In questo caso si ha che $W_H(\mathcal{C})$ = peso di Hamming minimo delle colonne.

Matrice controllo di parità: $\boldsymbol{H} = [\boldsymbol{A} \ \mathbb{I}_{n-k}]$. Deve valere: Rango $(\boldsymbol{H}) = n - k$ e $\boldsymbol{H}\boldsymbol{G} = \underline{0}$.

Decodifica tramite sindrome

Sia $\sigma = H\gamma$ la sindrome, dove γ è un vettore di n bit; dipende solo dalla sequenza di errore ε , ci sono 2^n possibili sequenze di errore. $\sigma = 0 \Leftrightarrow \gamma \in \mathcal{C}$, altrimenti si cerca il coset relativo (sequenze ε che portano alla stessa sindrome) e si sceglie un elemento con peso di Hamming minimo $\varepsilon_{min}(\sigma)$ detto coset leader. $\hat{c} = \gamma + \varepsilon_{min}(\sigma)$. Il numero di coset coincide con il numero di sindromi diverse, ovvero #coset $= 2^{\#$ bit \sin drome $= 2^{n-k}$.

Codice di Hamming

Matrice generatrice del codice di Hamming (7,4):

$$m{G} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 \end{bmatrix} \quad m{H} = egin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \ 1 & 1 & 0 & 1 & 0 & 1 & 0 \ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Nella matrice \boldsymbol{H} si trovano tutte le sequenze non nulle di n-k bit. Il numero di colonne è $n=2^{n-k}-1$. I codici di Hamming soddisfano il bound di Hamming all'uguaglianza e hanno $d_{min}=3$.

Teoria dell'informazione (pt 1)

Entropia. Data X v.a. discreta l'entropia è

$$H(X) = E_x[i_X(X)] = \sum_{a \in A_x} p_X(a)i_X(a)$$

$$0 \stackrel{X \text{ deterministica}}{\leq} H(X) \stackrel{X \text{ uniforme}}{\leq} \log_2 M \quad M = |A_x|$$

Entropia congiunta. $H(X,Y) = E[i_{X,Y}(X,Y)].$

$$0 \stackrel{X,Y \text{ determ.}}{\leq} \max \left\{ \underbrace{\frac{X \text{ func determ. di } Y}{H(X)}}_{Y \text{ func determ. di } X}, \stackrel{X \text{ func determ. di } Y}{H(Y)} \right\}$$

$$\leq H(X,Y) \stackrel{X,Y \text{ indip}}{\leq} H(X) + H(Y)$$

Entropia condizionata.

$$H(X|Y = b) = \sum_{a} -p_{x|y}(a|b) \log_2 p_{x|y}(a|b)$$

$$\begin{split} H(X|Y) &= E_y[H(X|Y=y)] = \sum_b p_Y(b)H(X|Y=b) \\ &= H(X,Y) - H(Y) \\ 0 &\stackrel{X,Y \text{ determ.}}{\leq} H(X|Y) &\stackrel{X,Y \text{ indip.}}{\leq} H(X) \end{split}$$

Informazione tra due var aleatorie.
$$I(X;Y) = H(X) + H(Y) - H(X,Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = I(Y;X)$$
.

$$0 \overset{X,Y \text{ indip.}}{\leq} I(X;Y) \leq \min \left\{ \underbrace{H(X)}_{X|Y \text{ determ.}}, \overset{Y|X \text{ determ.}}{H(Y)} \right.$$

Teoria dell'informazione (pt 2)

Vettore aleatorio. $\underline{x} = [X_1, ..., X_N]$ dove X_n sono var aleatorie discrete, spesso hanno tutte stesso alfabeto. Densità di probabilità: $p_{\underline{x}}(\underline{a}) = P(X_1 = a_1, ..., X_N = a_n)$. Funzione informazione: $i_{\underline{x}}(\underline{a}) = -\log_2 p_{\underline{x}}(\underline{a})$. Entropia per simbolo: $H_s(\underline{x}) = \frac{H(\underline{x})}{N}$ con N lunghezza vettore.

$$0 \le H_s(\underline{x}) \stackrel{X_n \text{ i.i.d.}}{\le} H(X_n) \le \log_2 M$$

Entropia per simbolo di una sorgente sempre attiva: $H_s(\underline{x}) = \lim_{N \to \infty} \frac{H(\underline{x})}{2N+1}$, se v.a. i.i.d $H_s = H(X_n)$. Informazione mutua: $I(\underline{x};\underline{y}) = H(\underline{x}) + H(\underline{y}) - H(\underline{x},\underline{y})$. Informazione mutua per simbolo: $I_s(\underline{x};\underline{y}) = H_s(\underline{x}) + H_s(\underline{y}) - H_s(\underline{x},\underline{y})$.

Tasso info messaggio o information rate. Informazione utile che esce da una sorgente, $R(\underline{x}) = \frac{1}{T}H_s(\underline{x})$ dove T periodo di simbolo. Tasso nominale di informazione: è tasso massimo di informazione, è dato da $R_N(\underline{x}) = \frac{1}{T}\log_2 M$.

Tasso di info di un canale M-ario \mathcal{G} . $R_{\mathcal{G}} = \frac{1}{T}I_s(\underline{x};\underline{y})$, dipende dalla densità di probabilità dell'ingresso. Se il canale è senza memoria allora $R_{\mathcal{G}} = \frac{1}{T}I(X_n;Y_n)$,

Capacità di canale

Capacità di un canale M-ario. Definita come il massimo tasso di informazione del canale, scegliendo opportunamente la densità di prob dell'ingresso.

$$C = \max_{\{p_x\}} R(\mathcal{G}) = \max_{\{p_x\}} \frac{I_s(\underline{x}; \underline{y})}{T} \stackrel{\text{no memoria}}{=} \max_{\{p_x\}} \frac{I(X; Y)}{T}$$

Capacità canale binario simmetrico senza memoria. Ottenuta con l'ingresso X uniforme.

$$C = \frac{1}{T_b} \left[1 - \left(P_{bit} \log_2 \frac{1}{P_{bit}} + (1 - P_{bit}) \log_2 \frac{1}{1 - P_{bit}} \right) \right]$$

Capacità canale con ingresso binario e con erasure. Ottenuta con l'ingresso X uniforme. $C = \frac{1-\alpha}{T}$. Dove α è la probabilità di cancellazione. Per piccoli valori di α , la capacità è maggiore rispetto a quella del canale binario simmetrico senza memoria. Capacità canale AWGN. $C = \frac{1}{2T}\log_2(1+\sigma_{S_{Tx}}^2/\sigma_w^2)$, dove $S_{Tx}(t)$ deve avere una distribuzione gaussiana.

Teorema di Shannon per la codifica di canale

Consideriamo un canale M-ario senza memoria con periodo di simbolo T e capacità C. Sia $\{b_l\}$ una sorgente di simboli con tasso di informazione nominale del messaggio R_N . Se $R_N < C$ allora $\forall \delta > 0$ e $\forall n$ suff grande \exists un codice con $\lceil 2^{nRT} \rceil$ parole lunghe n e lettere dell'alfabeto M-ario e con probabilità di errore sulla parola che è $P(\hat{c} \neq c) < \delta$. In un codice binario si ha che $2^k = 2^{nRT} \Rightarrow \frac{k}{n} = RT < CT = \max_{\{p_x\}} I_s(\underline{x}; \underline{y})$.

Codifica di sorgente (pt 1)

L'obiettivo è quello di rendere più compatto il messaggio in uscita dalla sorgente. Il codificatore fa corrispondere a ciascuna parola in $\mathcal{D}_{\boldsymbol{x}}$ una parola in $\mathcal{D}_{\boldsymbol{y}}$, dove \mathcal{D} sono detti dizionari. Chiamiamo $M_{\boldsymbol{y}}$ l'alfabeto delle parole \underline{y} . Sia $L(\underline{y})$ la lunghezza della parola \underline{y} ; definiamo $L_{\boldsymbol{y}} = \sum_{\underline{a} \in \mathcal{D}_{\boldsymbol{x}}} p_{\underline{x}}(\underline{a}) L(\underline{y}(\underline{a}))$ la lunghezza media delle parole di codice in uscita dal codificatore. Codice a prefisso. Un codice a prefisso è un codice di sorgente che non ha nessuna parola di codice che è prefisso di altre parole di codice.

Teorema di Shannon per la codifica di sorgente. Ogni codice di sorgente soddisfa: $L_y \geq \frac{H(x)}{\log_2 M_y}$. Esiste un codice a prefisso che soddisfa: $L_y < \frac{H(x)}{\log_2 M_y} + 1$. Codifica di sorgente ottima. Una codifica di sorgente è ottima se ha L_y più piccola possibile (rispettando sempre il teorema di Shannon). Teorema: per un codice a prefisso ottimo, parole di codice a più bassa probabilità hanno lunghezza maggiore. Teorema: nel dizionario di un codice a prefisso ottimo, ci sono almeno due parole di codice che hanno lunghezza massima e differiscono per un bit.

Codifica di sorgente (pt 2)

Codice di Shannon-Fano. $l_i = \lceil \log_{1/M_y} p_{\underline{x}}(\underline{a}_i) \rceil$ $\underline{a}_i \in \mathcal{D}_x$. Se le probabilità sono tutte potenze intere di $1/M_y$ allora è ottimo e L_y raggiunge il lower bound del teorema di Shannon.

Procedura di Huffman. Permette di costruire un codice di sorgente binario ottimo a partire dalla $p_{\underline{x}}(\underline{a}_i)$ dell'ingresso. Non garantisce L_y uguale lower bound di Shannon.

Codifica aritmetica - Elias. Il calcolo delle parole di codice è computazionalmente molto meno costoso rispetto ad Huffman. $l_i = \lceil i(\underline{a}_i) \rceil + 1$. La L_y coincide alla lunghezza media del codice di S-F più 1. Procedura: divido l'intervallo [0,1] in $|\mathcal{D}_x|$ sotto-intervalli ognuno di lunghezza pari alla probabilità del simbolo associato; trovo il punto medio m_i dell'intervallo; codifico in binario m_i (es: $m_i = 0.11001$); $\underline{y}_i = \text{primi } l_i$ bit di m_i (es: $l_i = 4 \Rightarrow \underline{y}_i = 1100$).

Efficienza di un codice di sorgente. $\eta = H(X)/(L_y \log_2 M_y), \ \eta \in [0, 1].$

Probabilità

Var aleatorie congiunte discrete. Siano(X,Y) v.a. congiunta discreta. Prob congiunta: $p_{X,Y}(a,b) = p_X(a)p_{Y|X}(b,a) = p_Y(a)p_{X|Y}(a,b)$. Se X,Y sono indipendenti $p_{X,Y}(a,b) = p_X(a)p_Y(b)$. Prob marginali: $p_X(a) = \sum_{b \in A_y} p_{X,Y}(a,b) = \sum_{b \in A_y} p_Y(b)p_{X|Y}(a|b)$, $p_Y(b) = \sum_{a \in A_x} p_{X,Y}(a,b) = \sum_{a \in A_x} p_X(a)p_{Y|X}(b|a)$. Probabilità di errore media (matrice transizione). $P_{X \neq Y} = \sum_{a \neq b} p_{X,Y}(a,b) = \sum_{a \neq b} p_{X}(a)p_{Y|X}(b|a)$.

$\overline{\mathbf{Q}\mathbf{A}\mathbf{M}}$

Dati $\alpha_{n,I}, \alpha_{n,Q} \in \{2l-L-1, l=1,...,L\}$ con $L=\sqrt{M}$ e data la base ortonormale, si ha che il segnale generico nello spazio euclideo è $\underline{s}_n = [\alpha_{n,I}\sqrt{E_h/2}, \alpha_{n,Q}\sqrt{E_h/2}]$. La distanza minima tra due segnali è $\sqrt{2E_h}$. Sia E_h l'energia della base, $E_n = |\underline{\alpha}_n|^2 E_h/2$ l'energia del segnale n-esimo, si ha che l'energia media è $E_s = (M-1)E_h/3$. La probabilità di errore è data da $P[E] \leq 4(1-1/\sqrt{M})Q(\sqrt{E_h/(2\sigma_I^2)}) = 4(1-1/\sqrt{M})Q(\sqrt{(3E_s)/[(M-1)2\sigma_I^2]})$. Probabilità di errore sul Bit: $P_{bit} \approx P[E]/\log_2 M$ usando la mappatura di Gray per righe e colonne. Una base ortonormale è data da $\phi_1 = \sqrt{2/E_h}h_{T_x}(t)\cos(2\pi f_0 t + \phi_0)$, $\phi_2 = -\sqrt{2/E_h}h_{T_x}(t)\sin(2\pi f_0 t + \phi_0)$ (cos \bot sin).