EXERCICE 1 (Cours)

Donner (et prouver) le résultat concernant les variations d'une suite récurrente d'ordre 1.

EXERCICE 2 (Cours)

Donner (et prouver) le résultat de croissance comparée de suites de limites infinies.

EXERCICE 3 (Cours)

Donner (et prouver) le premier résultat sur les développements asymptotiques, obtenu par la dérivabilité.

Exercice 4

Soit (u_n) une suite à valeurs dans \mathbb{Z} et convergente. Montrer, en utilisant la définition, que la suite u est stationnaire.

Exercice 5

Soit (u_n) une suite convergente. La suite $(\lfloor u_n \rfloor)$ est-elle convergente?

Exercice 6

Soit (u_n) une suite de nombres réels.

- 1. On suppose que (u_n) est croissante et qu'elle admet une suite extraite convergente. Que dire de (u_n) ?
- 2. On suppose que (u_n) est croissante et qu'elle admet une suite extraite majorée. Que dire de (u_n) ?
- 3. On suppose que (u_n) n'est pas majorée. Montrer qu'elle admet une suite extraite qui diverge ves $+\infty$.

Exercice 7

Étudier la convergence des suites définies par le terme général suivant :

a)
$$u_n = \sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1}$$

$$b) v_n = \frac{n\sin(n)}{n^2 + 1}$$

c)
$$w_n = (-1)^n \frac{n+1}{n}$$

$$d) x_n = \frac{\ln(n + e^n)}{n}$$

$$e) y_n = \frac{\ln(n+3)}{\sqrt{\ln(\ln(n+3))}}$$

$$f) z_n = \frac{\ln(n!)}{n^2}$$

EXERCICE 8

On considère la suite (a_n) définie par

$$a_n = \sum_{k=1}^n \frac{n}{n^2 + k}.$$

1. Montrer que pour tout n > 0, on a

$$\frac{n^2}{n^2+n} \le a_n \le \frac{n^2}{n^2+1}.$$

2. En déduire la limite de (a_n) .

Exercice 9

Donner la nature de la suite (u_n) définie par

$$u_n = \left(2\sin\left(\frac{1}{n}\right) + \frac{3}{4}\cos(n)\right)^n.$$

Exercice 10

Soit (u_n) la suite définie par

$$u_n = \sqrt{n + \sqrt{(n-1) + \sqrt{\dots + \sqrt{1}}}}.$$

- 1. Écrire une formule de récurrence liant u_{n-1} et u_n .
- 2. Montrer que la suite $\left(\frac{u_n}{\sqrt{n}}\right)$ est bornée.
- 3. Déterminer la limite de (u_n) .

Exercice 11

Donner l'expression du terme général des suites récurrentes (u_n) suivantes.

$$u_{n+2} = 3u_{n+1} - 2u_n$$
, $u_0 = 3$, $u_1 = 5$ $u_{n+2} = 4u_{n+1} - 4u_n$, $u_0 = 1$, $u_1 = 0$
 $u_{n+2} = u_{n+1} - u_n$, $u_0 = 1$, $u_1 = 2$

Exercice 12

Montrer que

$$\sum_{k=1}^{n} k! \underset{+\infty}{\sim} n!.$$

Exercice 13

Donner un équivalent le plus simple possible des suites suivantes

1)
$$u_n = \frac{1}{n-1} - \frac{1}{n+1}$$

2)
$$v_n = \sqrt{n+1} - \sqrt{n-1}$$

3)
$$w_n = \frac{n^3 - \sqrt{1 + n^3}}{\ln(n) - 2n^2}$$

$$4) z_n = \sin\left(\frac{1}{\sqrt{n+1}}\right)$$