第六章 立体化学(1)

主要内容

- ◆ 基本概念介绍
- ◆ 立体结构的表示方法
- ◆ 对映异构体和非对映异构体

- 立体化学(Stereochemistry)
 - —— 以三维空间研究分子结构和性质的科学
- 立体异构

由原子或基团空间排列或取向不同所产生的异构现象。

(一) 旋光异构的基本概念

一. 平面偏振光

一束普通光通过尼科尔(Nicol)棱镜或其他偏振片,只有在与棱镜晶轴平行的平面上振动的光能透过,透过的光叫平面偏振光,简称偏光。

二. 旋光性和旋光性物质

能使偏光振动平面转动一定角度的物质,有旋光性,称为旋光性物质,如乳酸,丙氨酸等;

另一类无旋光性,称为无旋光性物质,如乙醇,丙酮等。

三. 旋光仪的工作原理

四、手性分子旋光能力的表示方式 —— 比旋光度 $[\alpha]_{\lambda}$

$$[\alpha]^{t_{\lambda}} = \frac{\alpha^{t_{\lambda}}}{l \times c}$$
specific rotation

(R, R)-(+)-酒石酸

COOH

 α^t_{λ} : 实验观察到的旋光度

1:样品管长度 (dm,分米)

c:样品浓度 (g/cm³ or g/mL)

★:测试时温度

λ: 波长

左旋和右旋

- ▶右旋(dextrorotatory): 使偏振光向顺时针方向偏转,表示为(+)
- ▶左旋(levorotatory): 使偏振光向逆时针方向偏转,表示为(-)

一对对映体对偏振光的作用不同,一个使偏振光向顺时针方向偏转,另一个使偏振光向逆时针方向偏转,两者偏转数值相同。

五. 手性分子和非手性分子

• 手性和手性分子

手性分子 (chiral molecules): 具有手性现象的分子。

手性(chirality): 实物和其 镜像不能重叠的现象。 Chiral is derived from the Greek word *cheiros*, meaning "hand".

• 手性碳 —— 手性分子的特征

连有四个不同原子或基团的碳原子

- ▶ 手性碳(chiral carbon)
- ▶手性中心 (Chiral center)

例: CH₃CHCHCH₃

CH₃CHCHCH₂CH₃

• 非手性分子

非手性分子 Br Br 转 180° ÇI CI Br 两者完 Br 全重合 Br

非手性分子:与镜像相重合(非手性分子不含有手性碳)

(二) 化合物的立体结构式

1. 常用的立体结构表达式

错误的表示方法

例1:2-丁醇

例2: 2, 3-丁二醇

2, 3-丁二醇三种立体异构体的Fischer投影式

(三) 对映异构体与非对映异构体

例: 2,3-丁二醇(有三个立体异构体,各含有两个手性碳)

对映关系

- ▶ | 与 || 互为镜像,且不重合,均为手性分子
- ▶ | 与 || 互为对映异构体

对映异构体 (enantiomers): 一对互为 镜像且不互相重合的分子 (一类特殊 的立体异构体)

Ⅲ为非手性分子(与其镜像 **Ⅲ**'可完全重合)

▶I与Ⅲ,或Ⅱ与Ⅲ不成镜像,互为非对映异构体

非对映异构体 (diastereoisomers): 相互不为镜像的立体异构体

本次课要求

- 1. 掌握旋光异构的基本概念
- 2. 掌握立体结构的表示方法 (重点: Fischer投影式)
- 3. 对映异构体和非对映异构体