Листок 3

Семинарские задачи

Задача 3.1. Рассмотрим последовательности $a_n = \left(1 + \frac{1}{n}\right)^{n+1}$; $b_n = \left(1 + \frac{1}{n}\right)^n$.

- а) Докажите, что $a_n \geqslant b_n, a_n$ не возрастает, b_n не убывает.
- **б)** Из пункта **a)** получите, что $a_k \geqslant b_m$ для произвольных индексов $k,m \in \mathbb{N}$ и обе последовательности ограничены.
 - в) Докажите, что $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = e$, причем $b_n \leqslant e \leqslant a_n$.

Задача 3.2. Рассмотрим последовательности

$$a_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} - \ln n;$$
 $b_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} - \ln(n+1).$

- а) Докажите, что $a_n \geqslant b_n, a_n$ не возрастает, b_n не убывает.
- **б)** Из пункта **a)** получите, что $a_k \geqslant b_m$ для произвольных индексов $k, m \in \mathbb{N}$ и обе последовательности ограничены.
- в) Докажите, что $1+\frac{1}{2}+\ldots+\frac{1}{n}=\ln n+\gamma+\alpha_n$, где γ положительное число (постоянная Эйлера), $\lim_{n\to\infty}\alpha_n=0$.

Задача 3.3. (Среднее по Чезаро). Чезаровское среднее — среднее арифметическое частичных сумм первых n членов заданной последовательности $\{a_n\}$: $c_n = \frac{1}{n} \sum_{i=1}^n s_i$, где s_n —

частичные суммы ряда $s_n = \sum_{i=1}^n a_i$. Докажите, что операция взятия чезаровского среднего обладает свойством регулярности: если существует предел последовательности частичных сумм s_n , то также существует предел последовательности c_n , и они равны.

Задача 3.4. (Теорема Штольца). Пусть $y_n>0$ — возрастающая последовательность, $\lim_{n\to\infty}y_n=+\infty$, и предположим, что для последовательности x_n существует предел $\lim_{n\to\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=A$. Докажите, что $\lim_{n\to\infty}\frac{x_n}{y_n}=A$.

Домашние задачи

Задача 3.5 (ДЗ). Докажите, что $\left(\frac{n}{e}\right)^n \leqslant n! \leqslant e\left(\frac{n}{2}\right)^n$.

Задача 3.6 (ДЗ). Рассмотрим последовательности

$$a_n = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} - 2\sqrt{n}; \quad b_n = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} - 2\sqrt{n+1}.$$

- а) Докажите, что $a_n \geqslant b_n, a_n$ не возрастает, b_n не убывает.
- **б)** Из пункта a) получите, что $a_k \geqslant b_m$ для произвольных индексов $k, m \in \mathbb{N}$ и обе последовательности ограничены.
- в) Докажите, что $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} = 2\sqrt{n} c + \alpha_n$, где c- положительное число, $\lim_{n \to \infty} \alpha_n = 0$.

Задача 3.7 (ДЗ). Применяя теорему Штольца, вычислите предел

$$\lim_{n \to \infty} \frac{1 + \frac{1}{\sqrt[k]{2}} + \ldots + \frac{1}{\sqrt[k]{n}}}{\sqrt[k]{n^{k-1}}}, \quad k \in \mathbb{N}.$$

Дополнительные задачи

Задача 3.8 (Доп.). Пусть $a_1 = 1, a_{n+1} = \sqrt[4]{1+a_n}$. Докажите, что последовательность $\{a_n\}$ сходится к положительному корню уравнения $x^4 - x - 1 = 0$.

Задача 3.9 (Доп.).

- а) Докажите, что $e=1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}+\frac{\theta_n}{n\cdot n!}, \theta_n\in(0,1).$
- **б)** Докажите, что число e иррационально.