Overview

- Overview
 - Part I Sampling
 - 1-1 Sampling of Analog Signal
 - Normalized Frequency
 - 1-2 Sampling Theorem
 - Part II Discrete-Time Signals and Systems
 - 2-1 Classification of Discrete-Time Signal and System
 - Energy and Power Signals
 - Periodic Signals
 - Even and Odd Signals
 - Systems
 - 2-2 Properties of Discrete-Time Signals
 - Linear Property
 - Displacement Invariant Property
 - Causality
 - Stability
 - 2-3 Convolution of Discrete-Time Systems
 - 2-4 Correlation Sequences
 - Properties
 - Normalized Correlation Sequences
 - Correlation of Periodic Sequences
 - Detection of Hidden Periodicity
 - Part III The z-Transform
 - 3-1 The Direct z-Transform
 - 3-2 The Inverse z-Transform
 - Power-series Expansion
 - 3-3 Properties of the z-Transform
 - Linearity
 - Time Shifting
 - Scaling in the z-Domain
 - Time Reversal
 - Differentiation in the z-Domain
 - Convolution Property
 - Initial-Value and Final-Value Theorems
 - 3-4 Analysis of LTI System Using z-Transform
 - Causality
 - Stability
 - 3-5 The Inverse z-Transform Methods
 - Part IV The Discrete Fourier Transform
 - 4-1 N-Point DFT
 - 4-2 Circular or Linear Convolution Using DFT
 - Part V The Design of Filter
 - 5-1 FIR Filter Design
 - Window Method Steps

- Kaiser Window Steps
- Band Filter Design
- 5-2 IIR Filter Design
 - Butterworth Approximation Steps
 - Bilinear Transform Steps

Part I Sampling

1-1 Sampling of Analog Signal

Consider a continuous-time signal $x_a(t)$ and a discrete-time signal x[n] is obtained by periodic sampling.

Let T be the **sampling period**, then we define $x[n]=x_a(nT)$

If $x_a(t) = A\cos(2\pi F t + \phi)$ and the signal is sampled at a rate of $F_s = \frac{1}{T}$

then
$$x[n] = A\cos(2\pi FTn + \phi) = A\cos(2\pi nf + \phi)$$

Normalized Frequency

the signal with an analog frequency of F is sampled at a rate of F_{s}

then the relationship between the $\operatorname{\mathbf{normalized}}$ frequency f and the $\operatorname{\mathbf{analog}}$ frequency F is

$$f = \frac{F}{F_s}$$

1-2 Sampling Theorem

- If maximum frequency of the signal is known to be F_{max} , the ${f minimum}$ sampling rate would be

Nyquist Rate =
$$2 \times F_{max}$$

- If the sampling rate is know to be F_s , the ${f maximum}$ frequency in the ${f signal}$ must not exceed

$$\text{Nyquist Rate} = \frac{1}{2} F_S$$

Part II Discrete-Time Signals and Systems

2-1 Classification of Discrete-Time Signal and System

Energy and Power Signals

$$egin{aligned} E &= \sum_{-\infty}^\infty \|x[n]\|^2 \ P &= \lim_{N o \infty} rac{1}{2N+1} \sum_{x=-N}^N \|x[n]\|^2 \end{aligned}$$

Periodic Signals

$$x(n+N) = x(n)$$

Even and Odd Signals

Even:
$$x[-n] = x[n]$$

$$\mathrm{Odd}: \quad x[-n] = -x[n]$$

Systems

- FIR: finite impulse response system
- IIR: infinite impulse response system

$$x[n] \rightarrow \delta[n] \qquad y[n] \rightarrow h[n]$$

2-2 Properties of Discrete-Time Signals

Linear Property

$$x_1[n]
ightarrow y_1[n] \qquad x_2[n]
ightarrow y_2[n]$$

$$ax_1[n] + bx_2[n] \longrightarrow ay_1[n] + by_2[n]$$

Displacement Invariant Property

$$x[n-n_0] o y[n-n_0]$$

Causality

The output of the system at some time instant only depends on the time before.

In other words,

$$h(n) = 0$$
 $n < 0$

Stability

The input is bounded as well as the output is bounded

$$\|x[n]\| \leq M_x < \infty$$

$$\|y[n]\| \le M_y < \infty$$

2-3 Convolution of Discrete-Time Systems

$$y[n] = x[n] \ast h[n]$$

$$= \sum_{k=-\infty}^\infty x[n] h[n-k]$$

2-4 Correlation Sequences

the ${f cross}$ ${f correlation}$ of two energy x(n) and y(n) is defined as

$$r_{xy}(l) = \sum_{n=-\infty}^{\infty} x(n)y(n-l)$$

Properties

$$\quad r_{yx}(l) = r_{xy}(-l)$$

$$egin{aligned} oldsymbol{\cdot} & r_{yx}(l) = r_{xy}(-l) \ oldsymbol{\cdot} & r_{xx}(l) = \sum_{n=-\infty}^{\infty} x(n)x(n-l) \ oldsymbol{\cdot} & r_{xx}(l) = r_{xx}(-l) \end{aligned}$$

$$\quad r_{xx}(l) = r_{xx}(-l)$$

•
$$r_{xy}(l) = x(l) * y(-l)$$

Normalized Correlation Sequences

the correlation sequences are often normalized to the range [-1,1]

$$ho_{xy}(l)=rac{r_{xy}(l)}{\sqrt{r_{xx}(0)r_{yy}(0)}}$$

Correlation of Periodic Sequences

$$r_{xy}(l) = rac{1}{N} \sum_{n=0}^{N-1} x(n) y(n-l)$$

$$r_{xx}(l) = rac{1}{N} \sum_{n=0}^{N-1} x(n) x(n-l)$$

Detection of Hidden Periodicity

For a periodic signal s(n), suppose that the signal is buried in noise. Let $\omega(n)$ be the zero-mean white noise. What can we observe is the noisy signal x(n)

$$x(n) = s(n) + \omega(n)$$

Calculate the autocorrelation sequence of x(n)

$$r_{xx}(l) = r_{ss}(l) + r_{s\omega} + r_{\omega s} + r_{\omega \omega}(l)$$

Since $\omega(n)$ is a zero-mean white noise signal

$$r_{s\omega}(l)=0 \qquad r_{\omega s}(l)=0 \qquad r_{s\omega}(l)=0 \qquad r_{\omega\omega}(l)=\sigma^2\delta(l)$$

Then we get

$$r_{xx}(l) = r_{ss}(l) + \sigma^2 \delta(l)$$

Part III The z-Transform

3-1 The Direct z-Transform

the z-transform of a general discrete-time signal x[n] is defined as

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

3-2 The Inverse z-Transform

$$X(z) = \sum_{i=1}^{m} rac{A_i}{1 - a_i z^{-1}}$$

• ROC outside the pole: $\frac{A_i}{1-a_iz^{-1}}\leftrightarrow A_ia_i^nu[n]$ • ROC outside the pole: $\frac{A_i}{1-a_iz^{-1}}\leftrightarrow -A_ia_i^nu[-n-1]$

Power-series Expansion

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

The coefficients in this power series are the sequence values x[n] since $\delta[n+n_0]\leftrightarrow z^{n_0}$

3-3 Properties of the z-Transform

Linearity

$$ax_1[n] + bx_2[n] \longleftrightarrow aX_1(z) + bX_2(z)$$

with the ROC containing $R_1 \cap R_2$

Time Shifting

$$x[n-k] \longleftrightarrow z^{-k}X(z)$$

with ROC = R, except for the possible addition or deletion of the origin or infinity

For $n_0 > 0$, poles will be introduced at z = 0

For $n_0 < 0$, zeros will be introduced at z = 0

Scaling in the z-Domain

$$a^n x[n] \longleftrightarrow X(a^{-1}z)$$

with ROC = |a|R

Time Reversal

$$x[-n] \longleftrightarrow X(z^{-1})$$

with ROC = $\frac{1}{R}$

Differentiation in the z-Domain

$$nx[n] \longleftrightarrow -z rac{\mathrm{d}X(z)}{\mathrm{d}z}$$

with ROC = R

Convolution Property

$$x_1[n] * x_2[n] \longleftrightarrow X_1(z)X_2(z)$$

Initial-Value and Final-Value Theorems

$$x[0] = \lim_{z o\infty} X(z)$$

Time-Domain	z-Domain	ROC
$\delta[n]$	1	all z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
$a^nu[n]$	$\frac{1}{1-az^{-1}}$	$\ z\ >\ a\ $
$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$	$\ z\ <\ a\ $
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	$\ z\ >\ a\ $
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	$\ z\ <\ a\ $
$\cos(\omega_0 n) u[n]$	$\frac{1{-}z^{-1}\cos(\omega_0)}{1{-}2z^{-1}\cos\omega_0{+}z^{-2}}$	$\ z\ >1$
$\sin(\omega_0 n) u[n]$	$\frac{z^{-1}\sin(\omega_0)}{1-2z^{-1}\cos\omega_0+z^{-2}}$	$\ z\ >1$
$a^n\cos(\omega_0 n)u[n]$	$\frac{1{-}az^{-1}\cos(\omega_0)}{1{-}2az^{-1}\cos\omega_0{+}a^2z^{-2}}$	$\ z\ > 1$
$\sin(\omega_0 n) u[n]$	$\frac{az^{-1}\sin(\omega_0)}{1-2az^{-1}\cos\omega_0+a^2z^{-2}}$	$\ z\ > 1$

3-4 Analysis of LTI System Using z-Transform

$$Y(z) = X(z)H(z)$$

where H(z) is the system function/transfer function

Causality

Definition: if the ROC of its system function is the exterior of a circle, including infinity

A system with rational system with rational system function H(z) is casual if and only if:

- the ROC is the exterior of a circle outside the outermost pole
- for H(z), the order of numerator cannot be greater than the order of the denominator

Stability

Definition: the ROC of its system function H(z) includes the unit circle, $\lvert z \rvert = 1$

A system with rational system function H(z) is stable if and only if all of the poles of H(z) lie inside the i=unit circle

3-5 The Inverse z-Transform Methods

- · Inspection Method
 - using the properties and transform paris to get the inverse transform directly
- · Power Series Method
 - has only few terms
 - o can be found easily using Taylor series expansion/long division
- Partial Fraction Expansion Method
 - Simple poles

Part IV The Discrete Fourier Transform

4-1 N-Point DFT

The formula for the DFT is given by

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk} \quad W_N = e^{-rac{2j\pi}{N}}$$

and also could be expressed as the matrix form

$$\mathbf{x}_N = egin{bmatrix} x[0] \\ x[1] \\ \dots \\ x[N-1] \end{bmatrix} \quad \mathbf{W}_N = egin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & W_N^1 & W_N^2 & \cdots & W_N^{N-1} \\ 1 & W_N^2 & W_N^4 & \cdots & W_N^{2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W_N^{N-1} & W_N^{2(N-1)} & \cdots & W_N^{(N-1)(N-1)} \end{bmatrix}$$

where the N-point DFT could be expressed in the matrix form as

$$\mathbf{X}_N = \mathbf{W}_N \mathbf{x}_N$$

4-2 Circular or Linear Convolution Using DFT

For example, do the circular convolution of the following teo sequences

$$x_1[n] = \{2,1,2,1\} \qquad x_2[n] = \{1,2,3,4\}$$

Then we can get x_3 by

$$x_3[n] = egin{bmatrix} 1 & 4 & 3 & 2 \ 2 & 1 & 4 & 3 \ 3 & 2 & 1 & 4 \ 4 & 3 & 2 & 1 \ \end{bmatrix} egin{bmatrix} 2 \ 1 \ 2 \ 1 \ \end{bmatrix} = \{14, 16, 14, 16\}$$

in other way

$$X_1(k) = 2 + W_4^k + 2W_4^{2k} + W_4^{3k} \qquad X_2(k) = 1 + 2W_4^k + 3W_4^{2k} + 4W_4^{3k}$$

then according to $Y(k) = X_1(k)X_2(k)$

$$Y(k) = 2 + 5W_4^k + 10W_4^{2k} + 16W_4^{3k}$$

$$12W_4^{4k} + 11W_4^{5k} + 4W_4^{6k} = 14 + 16W_4^k + 14W_4^{2k} + 16W_4^{3k}$$

Part V The Design of Filter

5-1 FIR Filter Design

Filter Type	Impulse Response
Lowpass	$rac{\sin(\omega_c n)}{\pi n}$
Highpass	$\delta(n) - rac{\sin(\omega_c n)}{\pi n}$
Bandpass	$rac{\sin(\omega_2 n) - \sin(\omega_1 n)}{\pi n}$
Bandstop	$rac{\sin(\omega_1 n) - \sin(\omega_2 n)}{\pi n}$

Given

• Passband ripple: $A_p = 20 \log(1 + \delta_p)$

ullet Passband edge: $f_p=\omega_p/2\pi$

- Stopband attenuation: $A_s = -20\log\delta_s$

- Stopband edge: $f_s = \omega_s/2\pi$

• Sample rate: f

Window Method Steps

1. Get δ_p and δ_s using A_p and A_s

2. Calculate $A = -20 \log(\min(\delta_s, \delta_p))$

3. Find the appropriate window type which $A_w \geq A$

4. The transition bandwidth $\Delta\omega=2\pi(f_s-f_p)/f\geq lpha\pi/N$ to get integer N

5. Get cut-off frequency $\omega_c=2\pi(f_s+f_p)/f$ then the ideal lowpass filter $h_s(n)=\sin(\omega_c n)/(\pi n)$

6. For window function $N_1=N/2$ or (N-1)/2

7. The windowed filter equals the multiply of the window and the filter

8. Delay the impulse response by N_1 to obtain the final filter

Kaiser Window Steps

1. Get δ_p and δ_s using A_p and A_s

2. Calculate $A = -20\log(\min(\delta_s, \delta_p))$

3. Determine β for the Kaiser window using \boldsymbol{A}

4. Compute the filter length $N+1 \geq (A-7.95)/(2.285\Delta\omega)$

5. Get cut-off frequency $\omega_c=2\pi(f_s+f_p)/f$ then the ideal lowpass filter $h_s(n)=\sin(\omega_c n)/(\pi n)$

6. For window function $N_1=N/2$ or (N-1)/2

7. The windowed filter equals the multiply of the window and the filter

8. Delay the impulse response by N_1 to obtain the final filter

Band Filter Design

1. Get δ_p and δ_s using A_p and A_s

2. Calculate $A = -20\log(\min(\delta_s, \delta_p))$

3. Find the appropriate window type which $A_w \geq A$

4. Calculate $\Delta f = \min(f_{p_1}' - f_s, f_s' - f_{p_2})$

5. The transition bandwidth $\Delta\omega=2\pi\Delta f/f\geq lpha\pi/N$ to get integer N

6. Get cut-off frequency $\omega_{c_1}=2\pi(f_{p_1}'-\Delta f/2)/f$ and $\omega_{c_2}=2\pi(f_{p_2}+\Delta f/2)/f$

7. Then the ideal bandpass filter has the impulse response $h_d(n)$

8. For window function $N_1=N/2$ or (N-1)/2

- 9. The windowed filter equals the multiply of the window and the filter
- 10. Delay the impulse response by N_1 to obtain the final filter

5-2 IIR Filter Design

N	Normalized Butterworth LPF $H(s)=1/D(s)$ $\Omega_C=1$	
1	D(s)=s+1	
2	$D(s)=s^2+\sqrt{2}s+1$	
3	$D(s) = s^3 + 2s^2 + 2s + 1$	
4	$D(s) = (s^2 + 0.7653s + 1)(s^2 + 1.6180s + 1)$	
5	$D(s) = (s+1)(s^2+0.618s+1)(s^2+1.618s+1)$	

Given

- Passband ripple: $A_p = 20 \log(1 + \delta_p)$
- Passband edge: $f_p = \omega_p/2\pi$
- Stopband attenuation: $A_s = -20\log\delta_s$
- Stopband edge: $f_s = \omega_s/2\pi$
- Sample rate: f

Butterworth Approximation Steps

1. Specify the filter requirements and get Ω_p and Ω_s by equation ω/T

using T=1 for impulse invariant method

- 2. From $\|H(j\omega)\|^2 = (1+(\Omega/\Omega_c)^{2N})^{-1} = (1+arepsilon^2(\Omega/\Omega_p)^{2N})^{-1}$
- 3. we get $\|H(j\Omega_p)\|=(1-\delta_p)^2=10^{-rac{A_p}{10}}$
- 4. and $\|H(j\Omega_s)\|=\delta_s^2=10^{-rac{A_s}{10}}$ to solve for N and Ω_c
- 5. Find the transfer function of the analog filter from the table and get roots by partial fraction expression
- 6. Find the impulse response h(t) and transfer function H(z)

Bilinear Transform Steps

1. Get $\omega_{p,s}=2\pi(f_{p,s}/f)$ then use bilinear transform to get $\Omega_{p,s}=rac{2}{T}\tan(\omega_{p,s}/2)$

using T=1 for impulse invariant method

- 2. Using $\|H(j\omega)\|^2=(1+(\Omega/\Omega_c)^{2N})^{-1}=(1+arepsilon^2(\Omega/\Omega_p)^{2N})^{-1}$
- 3. We get $arepsilon^2 \leq 10^{-\frac{A_p}{10}}-1$
- 4. and $(\Omega_s/\Omega_p)^{2N} \geq rac{10^{rac{A_s}{10}}-1}{arepsilon^2}$ solve for $arepsilon^2$ and N
- 5. The analog filter is mapped into the desired digital filter $H(z)=H_a(s)|_{s=\frac{2}{T}\frac{1-z-1}{1+z-1}}$, where $H_a(s)=\frac{1}{s+1}$

Type of Transform	Transformation	Parameters (Prototype low pass filter has band edge frequency ω_p
Lowpass	$z^{-1} \to \frac{z^{-1} - a}{1 - az^{-1}}$	$\omega_p' = \text{band edge frequency of newfilter}$ $a = \frac{\sin((\omega_p - \omega_p')/2)}{\sin((\omega_p + \omega_p')/2)}$
Highpass	$z^{-1} \to \frac{z^{-1} + a}{1 + az^{-1}}$	$\omega_p' = \text{band edge frequency of newfilter}$ $a = \frac{\cos((\omega_p + \omega_p')/2)}{\cos((\omega_p - \omega_p')/2)}$
Bandpass	$z^{-1} \to -\frac{z^{-2} - a_1 z^{-1} + a_2}{a_2 z^{-2} - a_1 z^{-1} + 1}$	ω_l = lower band edge frequency ω_u = upper band edge frequency $a_1 = 2\alpha K/(K+1)$ $a_2 = (K-1)/(K+1)$ $\alpha = \frac{\cos((\omega_u + \omega_l)/2)}{\cos((\omega_u - \omega_l)/2)}$ $K = \cot[(\omega_u - \omega_l)/2]\tan(\omega_p/2)$
Bandstop	$z^{-1} \to -\frac{z^{-2} - a_1 z^{-1} + a_2}{a_2 z^{-2} - a_1 z^{-1} + 1}$	ω_l = lower band edge frequency ω_u = upper band edge frequency $a_1 = 2\alpha/(K+1)$ $a_2 = (1-K)/(1+K)$ $\alpha = \frac{\cos((\omega_u + \omega_l)/2)}{\cos((\omega_u - \omega_l)/2)}$ $K = \tan[(\omega_u - \omega_l)/2]\tan(\omega_p/2)$