图 图 图	
Mo Tu We Th Fr Sa Su	Memo No
session 7: Cross Pn	
couss-product of 2 ve	ctors in 3-space
BXB = 3 3 k a1 a2 a3 b1 b2 b3	- 102 93/3- 101 93/3 - 1 b2 b3/3- 121 b3/3
definition	+ a, a2 B 6
	15 a vector
N BXB	
19/10/	3×31 is the area of
^	(BXB) = tt to plane
97.	the parallelogram with right
hand	rule
Ex:	$(-0)^{7} + \vec{k} = \vec{k}$
·Vx	

\times	Z	5	R			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No.			_
Date	/	1	

An other	lash	at	nluma
piloujer.	100K	uL	Volume

$$v = base \cdot height$$

$$= |\vec{B} \times \vec{c}| \cdot (\vec{A} \cdot \vec{R})$$

$$= |\vec{B} \times \vec{c}| \cdot (\vec{B} \times \vec{c})$$

$$= |\vec{B} \times \vec{c}| \cdot (\vec{B} \times \vec{c})$$

$$= |\vec{B} \times \vec{c}| \cdot (\vec{B} \times \vec{c})$$

Direction 1 to Band B

$$\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$$

$$\vec{A} \times \vec{A} = 0$$

Example:
$$\begin{vmatrix} \vec{i} \cdot \vec{j} \cdot \vec{k} \\ \vec{i} \cdot \vec{j} \cdot \vec{k} \end{vmatrix} = 0.\vec{i} - 0.\vec{j} + (-4-9).\vec{k}$$

图图图							
	Мо	Tu	We	Th	Fr	Sa	Su

Memo No. ______

Algebraie facts:

1.
$$\vec{A} \times \vec{B} = 0$$

2. $\vec{A} \times \vec{B} = -\vec{B} \times \vec{B}$
3. $\vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C}$
4. $(\vec{A} \times \vec{B}) \times \vec{C} + \vec{A} \times (\vec{B} \times \vec{C})$
5. $\vec{I} \times \vec{I} = \vec{K}$, $\vec{J} \times \vec{K} = \vec{I}$, $\vec{K} \times \vec{I} = \vec{J}$

Example:

$$\frac{(2\vec{1}+\vec{3}\vec{7})\times(3\vec{1}-2\vec{1})=}{(2\vec{7}+3\vec{7})\times(3\vec{1}-2\vec{1})=(2\vec{7}\times3\vec{1})-(2\vec{1}\times2\vec{1})}$$

$$+(3\vec{7}\times3\vec{1})-(3\vec{7}\times2\vec{1})$$

$$=5\cdot0-4\cdot\vec{R}+69(-\vec{R})-6\cdot0$$

$$=-3\vec{R}$$

Geometric description:

the magnitude of
$$\vec{A} \times \vec{B}$$
 is
$$|\vec{A} \times \vec{B}| = |\vec{A}| \cdot |\vec{B}| \cdot \sin \theta$$

$$= \text{area of the sparallelogroum}$$

$$\leq \text{spanned by } \vec{A} \text{ and } \vec{B}$$

图图								
	Мо	Tu	We	Th	Fr	Sa	Su	

Memo No. ______

The direction:

 $\vec{R} \times \vec{B}$ is perpendicular to the plane of \vec{R} and \vec{B} , the direction is decided by right-hand rule $\vec{A} \times \vec{B} = \vec{A} \times \vec{B} = \vec{A} \times \vec{B} = \vec{A} \times \vec{B} \cdot \vec{$

we will not go through the prof, it make use of lagrange scientity

[AXB]= [A]21B12-(A:B)2

Example: find the area of triangle

$$|S| = |S| + |S| + |S| = |S| + |S| + |S| = |S| + |S|$$