Dominik Wawszczak

Student ID Number: 440014

Group Number: 2

Problem 1

For every $k \in \mathbb{N}$, define G_k as a full ternary tree of depth k-1 with an additional vertex s, which is connected to all the vertices of the tree. The treewidth of this graph is 2 because we can take the classic decomposition of a ternary tree and insert s into every bag. It remains to show that the spaghetti treewidth of G_k is at least k.

Suppose, for the sake of contradiction, that there exists a spaghetti tree decomposition $(T, \{B_x : x \in V(T)\})$ of width at most k-1. Without loss of generality, assume that this decomposition is minimal in terms of |V(T)|.

We claim that s belongs to every bag in the decomposition. Suppose instead that there exists a vertex whose bag does not contain s. Then, there is also a leaf $l \in V(T)$ with the same property. Let p be the only neighbor of l in T. Since |V(T)| is minimal, there must be a vertex $u \in B_l$ such that $u \notin B_p$, as otherwise, B_l would be redundant. Consequently, there is no bag that contains both s and u because the nodes whose bags contain u must induce a path in T. This proves the claim.

Since s is included in every bag, T is a path. Thus, removing s from each bag yields a path decomposition of a ternary tree of depth k-1. The width of this path decomposition is one less than that of the original decomposition, which is at most k-2. However, we showed in the tutorials that the pathwidth of a full ternary tree of depth k-1 is k-1. This contradiction completes the proof.

Problem 2

Consider a bipartite graph G = (X, C, E), where $X = \{x_1, x_2, \dots, x_n\}$, $C = \{C_1, C_2, \dots, C_m\}$, and $E = \{(x_i, C_j) : C_j \text{ contains either } x_i \text{ or } \neg x_i\}$. This graph is 3-regular, as each variable appears in exactly three clauses, and every clause contains exactly three literals corresponding to pairwise distinct variables. A direct consequence of this observation is that n = m, since 3n = |E| = 3m.

We now prove that Hall's condition holds in G. Let S be any subset of X. Define $E_S = \{(x_i, C_j) : (x_i, C_j) \in E \land x_i \in S\}$ as the set of edges between S and $N_G(S)$. Since $|E_S| = 3|S|$, we obtain $3|S| \leq 3|N_G(S)|$, confirming that G satisfies Hall's condition. Therefore, G has a perfect matching.

We can satisfy each clause C_j by assigning the appropriate truth value to its matched variable. This ensures that the entire formula is satisfied, completing the proof.

Problem 3

Suppose, for the sake of contradiction, that G does not have a perfect matching. This implies that Tutte's condition does not hold in G. Therefore, there exists a set $U \subseteq V(G)$ such that $|\mathcal{C}| > |U|$, where \mathcal{C} is the set of odd connected components in $G \setminus U$. The size of U must, of course, be at least t.

We say that a vertex $u \in U$ and a component $C \in \mathcal{C}$ are *adjacent* if and only if there exists a vertex $v \in C$ such that $\{u, v\} \in E(G)$. Define:

$$X = \{(u, C) : u \in U \land C \in \mathcal{C} \land u \text{ and } C \text{ are adjacent}\}.$$

For any $u \in U$, there can be at most t components in C adjacent to it, as otherwise $K_{1,t+1}$ would be an induced subgraph of G. This gives us the following upper bound for the size of X: $|X| \leq t|U|$.

We now prove that for any $C \in \mathcal{C}$, there are at least t vertices in U adjacent to it. Suppose, for the sake of contradiction, that the size of the set

$$S = \{u : u \in U \land u \text{ and } C \text{ are adjacent}\}\$$

is smaller than t. Since $S \subsetneq U$, there exists a vertex in $U \setminus S$ that is not adjacent to C. This leads to a contradiction, as $G \setminus S$ is not connected and |S| < t. Thus, we obtain a lower bound for the size of X: $t|C| \leq |X|$.

From the above, we have $t|\mathcal{C}| \leq |X| \leq t|U|$, and therefore $|\mathcal{C}| \leq |U|$. This contradiction completes the proof.