IPDA1005 Introduction to Probability and Data Analysis

Worksheet 9 Solution

- 1. A student attempts 48 true-false questions in a test. For each question, independently, he has $\frac{3}{4}$ probability of answering correctly. Using an appropriate approximation, find the probability that he answers
 - (a) at least 40 questions correctly
 - (b) between 35 and 40 questions, inclusive
 - (c) exactly 36 questions.

Solution: Here the condition that np and n(1-p) are both at least 10 is satisfied, so the appropriate approximation is normal distribution with mean $\mu = np = 36$ and variance np(1-p) = 9.

(a)

$$P(X \ge 40) = P(X \ge 39.5) \approx P\left(Z \ge \frac{39.5 - 36}{3}\right)$$

= $P(Z \ge 1.17) = 1 - .8790 = .1210$

(b)

$$P(35 \le X \le 40) = P(34.5 \le X \le 40.5) \approx P\left(\frac{34.5 - 36}{3} \le Z \le \frac{40.5 - 36}{3}\right)$$
$$= P(-0.5 \le Z \le 1.5) = 0.6247$$

(c)

$$P(X = 36) = P(35.5 \le X \le 36.5) \approx P\left(\frac{35.5 - 36}{3} \le Z \le \frac{36.5 - 36}{3}\right)$$
$$= P(-0.1667 \le Z \le 0.1667) = 0.1324$$

- 2. Let $X \sim \text{Gamma}(\alpha, \lambda)$.
 - (a) Show that $\mu'_r = \frac{\Gamma(\alpha+r)}{\Gamma(\alpha)\lambda^r}$ (Hint: Make use of the fact that the gamma density function integrates to 1.)
 - (b) Using (a), show that $E(X) = \frac{\alpha}{\lambda}$ and $Var(X) = \frac{\alpha}{\lambda^2}$.

(a) As the gamma density function integrates to 1, we have

$$\int_0^\infty x^{\alpha - 1} e^{-\lambda x} = \frac{\Gamma(\alpha)}{\lambda^{\alpha}}$$

Consequently,

$$\begin{split} \mu_r' &= E(X^r) \\ &= \frac{\lambda^\alpha}{\Gamma(\alpha)} \int_0^\infty x^r x^{\alpha-1} e^{-\lambda x} \\ &= \frac{\lambda^\alpha}{\Gamma(\alpha)} \int_0^\infty x^{\alpha+r-1} e^{-\lambda x} \\ &= \frac{\lambda^\alpha}{\Gamma(\alpha)} \frac{\Gamma(\alpha+r)}{\lambda^{\alpha+r}} \\ &= \frac{\Gamma(\alpha+r)}{\Gamma(\alpha)\lambda^r} \end{split}$$

(b) Substituting r=1 in (a), we get $E(X)=\frac{\Gamma(\alpha+1)}{\Gamma(\alpha)\lambda}$. From Property 2 of gamma function given in the lecture, $\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$, so $E(X)=\frac{\alpha}{\lambda}$. Substituting r=2 in (a), we get $E(X^2)=\frac{\Gamma(\alpha+2)}{\Gamma(\alpha)\lambda^2}$. Applying the gamma function property twice, we get $\Gamma(\alpha+2)=\alpha(\alpha+1)\Gamma(\alpha)$, so $E(X^2)=\frac{\alpha(\alpha+1)}{\lambda^2}$.

$$Var(X) = E(X^2) - (E(X))^2 = \frac{\alpha(\alpha+1)}{\lambda^2} - \frac{\alpha^2}{\lambda^2} = \frac{\alpha}{\lambda^2}$$

3. Let $X \sim N(\mu, \sigma^2)$ and let $Y = e^X$. The by definition, $Y \sim \text{Lognormal}(\mu, \sigma^2)$. Derive the density function of Y and hence show that

$$f(y) = \frac{1}{\sqrt{2\pi\sigma y}} e^{-\frac{(\ln y - \mu)^2}{2\sigma^2}}$$

Solution: Y = h(X) where $h(x) = e^x$. $g(y) = h^{-1}(y) = \ln y$, so $g'(y) = \frac{1}{y}$. Thus for y > 0, $f_Y(y) = f_X(g(y))|g'(y)| = \frac{1}{y}\phi(\ln y) = \frac{1}{\sqrt{2\pi}\sigma y}e^{-\frac{(\ln y - \mu)^2}{2\sigma^2}}$

4. The number of accidents on a highway is modelled by $\{N(t): t \geq 0\}$, a Poisson process with rate $\lambda = 2$, where t represents time in days.

- (a) Find the probability that N(4) N(2) is zero. Interpret this quantity.
- (b) Express the number of accidents in 3 days in terms of N. Find the probability that there are no more than two accidents in 3 days.
- (c) Find the expected time between accidents.

- (a) N(4) N(2) has Poisson(4) distribution, $P(N(4) N(2) = 0) = e^{-4} = 0.0183$. This is the probability that no accidents occur during the period after Day 2 and before Day 4.
- (b) The number of accidents in 3 days is N(3) (or N(t+3) N(t) for any t.) As $N(3) \sim Pois(6)$

$$P(N(3) \le 2) = e^{-6} \left(1 + 6 + \frac{6^2}{2!} \right) = 0.0620$$

- (c) The inter-accident period has Exp(2) distribution whose expected value is $\frac{1}{2}$.
- 5. Suppose we have three random numbers 0.588, 0.222 and 0.906 from U(0,1) distribution. Use these to generate three random numbers from
 - (a) exponential distribution with rate parameter 0.1
 - (b) geometric distribution with p = 0.2
 - (c) binomial(4, .6) distribution.

Solution:

(a) As $F(x) = 1 - e^{-.1x}$, we get that $F^{-1}(u) = -10 \ln(1-u)$. Applying this function to the given values, we get

$$x_1 = F^{-1}(.588) = 8.867, \quad x_2 = F^{-1}(.222) = 2.510, \quad x_3 = F^{-1}(.906) = 23.645$$

(b) From the formula $F(k) = P(X \le k) = 1 - q^{k+1} = 1 - .8^{k+1}$, we get

$$F(0) = 0.2, F(1) = 0.36, F(2) = 0.488,$$

$$F(3) = 0.5904, F(9) = 0.8926, F(10) = 0.9141.$$

Since $F(2) < .588 \le F(3)$, the first simulated value is 3. Since $F(0) < .222 \le F(1)$, the second simulated value is 1. Since $F(9) < .906 \le F(10)$, the third simulated value is 10. (c) From the cumulative tables of binomial or from R, we get

$$F(0) = 0.0256, F(1) = 0.1792, F(2) = 0.5248, F(3) = 0.8704, F(4) = 1.$$

Since $F(2) < .588 \le F(3)$, the first simulated value is 3. Since $F(1) < .222 \le F(2)$, the second simulated value is 2. Since F(3) < .906 < F(4), the third simulated value is 4.

- 6. When an automobile is stopped by a roving safety patrol, each tyre is checked for tyre wear, and each headlight is checked to see whether it is properly aimed. Let X denote the number of headlights that need adjustment, and let Y denote the number of defective tyres.
 - (a) If X and Y are independent with $p_X(0) = 0.5$, $p_X(1) = 0.3$, $p_X(2) = 0.2$, and $p_Y(0) = 0.6$, $p_Y(1) = 0.1$, $p_Y(2) = p_Y(3) = 0.05$, $p_Y(4) = 0.2$, display the joint PMF p(x, y) in a joint probability table.
 - (b) Calculate $P(X \leq 1, Y \leq 1)$ from the joint PMF, and verify that it equals the product $P(X \leq 1) \cdot P(Y \leq 1)$.
 - (c) How would you express the probability of no violations? What is its value?
 - (d) Calculate P(X + Y < 1).
 - (e) Display the joint CDF. There are two ways that you might go about doing this: (a) by adding up the appropriate probabilities from the joint PMF, or (b) using the marginal CDFs and the fact that X and Y are independent. Can you prove this latter result?

Solution:

(a) Because X and Y are independent, the joint PMF can be easily calculate as the outer product of their marginal PMFs, as follows:

				Y			
		0	1	2	3	4	$p_X(x)$
	0				0.025		
X	1	0.18	0.03	0.015	0.015	0.06	0.3
	2	0.12	0.02	0.01	0.01	0.04	0.2
	$p_Y(y)$	0.6	0.1	0.05	0.05	0.2	

(b)
$$P(X \le 1, Y \le 1) = p(0, 0) + p(0, 1) + p(1, 0) + p(1, 1) = 0.56$$
. Furthermore,
 $P(X \le 1) \cdot P(Y \le 1) = (0.5 + 0.3) \cdot (0.6 + 0.1) = 0.56$.

(c) The probability of no violations can be expressed as

$$P(X + Y = 0) = P(X = 0, Y = 0) = 0.30.$$

(d)
$$P(X + Y < 1) = p(0,0) + p(0,1) + p(1,0) = 0.53$$

(e) Because X and Y are independent, it's far easier to calculate the joint CDF by calculating the outer product of the marginal CDFs.

				Y			
		0	1	2	3	4	$F_X(x)$
				0.375			
X	1	0.48	0.56	0.6	0.64	0.8	0.8
	2	0.6	0.7	0.75	0.8	1	1
	$F_Y(y)$	0.6	0.7	0.75	0.8	1	

From the definition of the joint CDF,

$$F(x,y) = P(X \le x, Y \le y) = \sum_{u \le x} \sum_{v \le y} p(u,v)$$
, but because of independence, we can write $F(x,y) = \sum_{u \le x} \sum_{v \le y} p_X(u) \cdot p_Y(v)$, and hence $F(x,y) = \sum_{u \le x} p_X(u) \sum_{v \le y} p_Y(v) = F_X(x) \cdot F_Y(y)$.

7. The joint probability distribution of the number X of cars and the number Y of buses per signal cycle at a proposed right-turn lane is displayed in the accompanying joint probability table.

			у	
	p(x, y)	0	1	2
	0	.025	.015	.010
	1	.050	.030	.020
	2	.125	.075	.050
X	3	.150	.090	.060
	4	.100	.060	.040
	5	.050	.030	.020

- (a) What is the probability that there is exactly one car and exactly one bus during a cycle?
- (b) What is the probability that there is at most one car and at most one bus during a cycle?
- (c) What is the probability that there is exactly one car during a cycle? Exactly one bus?
- (d) Suppose the right-turn lane is to have a capacity of five cars, and one bus is equivalent to three cars. What is the probability of an overflow during a cycle? Calculate this quantity by adding up the appropriate probabilities in the joint PMF. If you were to express the probability of overflow as P(aX + bY > 5), what would the constants a and b be?
- (e) Are X and Y independent random variables? Explain.

- (a) p(1,1) = 0.030.
- (b) $P(X \le 1, Y \le 1) = p(0, 0) + p(0, 1) + p(1, 0) + p(1, 1) = .120$
- (c) P(X = 1) = p(1,0) + p(1,1) + p(1,2) = .100; P(Y = 1) = p(0,1) + ... + p(5,1) = .300.
- (d) P(overflow) = P(X + 3Y > 5) = 0.380, which is obtained by adding the probabilities in the red rectangles from the joint PMF below:

			y	
	p(x, y)	0	1	2
	0	.025	.015	.010
	1	.050	.030	.020
	2	.125	.075	.050
X	3	.150	.090	.060
	4	.100	.060	.040
	5	.050	.030	.020

- (e) The marginal probabilities for X (row sums) are $p_X(0) = 0.05$, $p_X(1) = 0.10$, $p_X(2) = 0.25$, $p_X(3) = 0.30$, $p_X(4) = 0.20$, $p_X(5) = 0.10$. For Y, the marginal probabilities (column sums) are $p_Y(0) = 0.5$, $p_Y(1) = 0.3$, $p_Y(2) = 0.2$. It is easy to verify that for every (x, y), $p(x, y) = p_X(x) \cdot p_Y(y)$, and hence that X and Y are independent.
- 8. An instructor has given a short quiz consisting of two parts. For a randomly selected student, let X be the number of marked earned on the first part and Y be the number of points earned on the second part. Suppose that the joint PMF of X and Y is given in the accompanying table.

			У	,	
p(x,	y)	0	5	10	15
	0	.02	.06	.02	.10
$\boldsymbol{\mathcal{X}}$	5	.04	.15	.20	.10
	10	.01	.15	.14	.01

- (a) If the score recorded for each student is the total number of marks earned on the two parts, what is the expected recorded score E(X + Y)?
- (b) Calculate the covariance between X and Y.
- (c) Calculate the correlation coefficient ρ between X and Y.

- (a) $E(X+Y) = \sum_{x} \sum_{y} (x+y)p(x,y) = (0+0)(0.02) + (0+5)(0.06) + \dots + (10+15)(0.01) = 14.1$
- (b) The expected values of X and Y can be calculated from their respected marginals, i.e., E(X) = (0)(0.20) + (5)(0.49) + (10)(0.31) = 5.55, and similarly, E(Y) = 8.55. We calculate E(XY) as $\sum_{x} \sum_{y} xy \cdot p(x,y) = (0)(0)(0.02) + (0)(5)(0.06) + \dots + (15)(10)(0.01) = 44.25$, and hence Cov(X,Y) = E(XY) E(X)E(Y) = 44.25 (5.55)(8.55) = -3.20.

Note: It is always true that E(X+Y) = E(X) + E(Y), so the answer to (a) can be obtained more easily from the fact that E(X) + E(Y) = 5.55 + 8.55 = 14.1

(c) It is straightforward to show, after calculating the marginal distributions of X and Y, that $\sigma_X^2 = 12.45$ and $\sigma_Y^2 = 19.15$, and hence that

$$\rho_{XY} = \frac{-3.20}{\sqrt{(12.45)(19.15)}} = -0.207$$

- 9. (a) Use the rules of expected value to show that Cov(aX + b, cY + d) = acCov(X, Y).
 - (b) Use part (a) along with the rules of variance and standard deviation to show that Corr(aX + b, cY + d) = Corr(X, Y) when a and c have the same sign.
 - (c) What happens if a and c have opposite signs?

Solution:

(a)

$$\begin{aligned} \operatorname{Cov}(aX + b, cY + d) &= E[(aX + b)(cY + d)] - E(aX + b) \cdot E(cY + d) \\ &= E[acXY + adX + bcY + bd] - (aE(X) + b)(cE(Y) + d) \\ &= acE(XY) - acE(X)E(Y) \\ &= ac\operatorname{Cov}(X, Y) \end{aligned}$$

(b)

$$\operatorname{Corr}(aX + b, cY + d) = \frac{\operatorname{Cov}(aX + b, cY + d)}{\sqrt{\operatorname{Var}(aX + b)}\sqrt{\operatorname{Var}(cY + d)}}$$
$$= \frac{ac\operatorname{Cov}(X, Y)}{|a| \cdot |c|\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}}$$
$$= \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}}$$

because when a and c have the same sign, $|a| \cdot |c| = ac$.

- (c) When a and c have different signs, Corr(aX + b, cY + d) = -Corr(X, Y).
- 10. (a) Show that if X and Y are random variables with finite variances, and a and b are constants, then $Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) + 2ab Cov(X, Y)$.
 - (b) What is Var(X Y)?
 - (c) What is the expression for Var(aX + bY) when X and Y are independent?
 - (d) What is Var(X Y) when X and Y are independent?

Solution:

(a) For convenience, we denote E(X) by μ_X and E(Y) by μ_Y . Then, we can write $E(aX + bY) = a\mu_X + b\mu_Y$, and

$$Var(aX + bY) = E[(aX + bY)^{2}] - (a\mu_{X} + b\mu_{Y})^{2}$$

$$= E(a^{2}X^{2} + b^{2}Y^{2} + 2abXY) - (a^{2}\mu_{X}^{2} + b^{2}\mu_{Y}^{2} + 2ab\mu_{X}\mu_{Y})$$

$$= [E(a^{2}X^{2}) - a^{2}\mu_{X}^{2}] + [E(b^{2}Y^{2}) - b^{2}\mu_{Y}^{2}]$$

$$+ [2abE(XY) - 2ab\mu_{X}\mu_{Y}]$$

$$= a^{2}[E(X^{2}) - \mu_{X}^{2}] + b^{2}[E(Y^{2}) - \mu_{Y}^{2}] + 2ab[E(XY) - \mu_{X}\mu_{Y}]$$

$$= a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y)$$

- (b) From (a), by taking a = 1 and b = -1, we get Var(X Y) = Var(X) + Var(Y) 2Cov(X, Y).
- (c) When X and Y are independent, Cov(X, Y) = 0 and hence $Var(aX + bY) = a^2 Var(X) + b^2 Var(Y)$.
- (d) From (c), by taking a = 1 and b = -1, we get Var(X Y) = Var(X) + Var(Y) when X and Y are independent.

(Sources: All questions adapted from Devore and Berk (2012) and Carlton and Devore (2017).)

Bibliography

- 1. Carlton, M.A. and Devore, J.L. (2017) Probability with Applications in Engineering, Science, and Technology, 2nd ed. Springer: New York.
- 2. Devore, J.L. and Berk, K.N. (2012) *Modern Mathematical Statistics with Applications*. Springer: New York.