Devoir à la maison n°15

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Solution 1

Partie I - Préliminaires

1. Soit x > 0.

 $t \mapsto f(x,t)$ est continue (par morceaux) sur \mathbb{R}_+^* par opérations sur les fonctions usuelles.

Pour tout t > 0, $|\sin(t)| \le |t|$, donc $|f(x,t)| = \left|\frac{\sin(t)}{t}e^{-xt}\right| \le e^{-xt}$. Or $t \mapsto e^{-xt}$ est intégrable sur \mathbb{R}_+^* (car x > 0), donc, par comparaison, $t \mapsto f(x,t)$ est intégrable sur \mathbb{R}_+^* .

2. Les fonctions $t \mapsto 1 - \cos t$ et $t \mapsto \frac{1}{t}$ sont de classe \mathcal{C}^1 sur \mathbb{R}_+^* de dérivées respectives $t \mapsto \sin t$ et $t \mapsto -\frac{1}{t^2}$. De plus,

$$\frac{1-\cos t}{t} \underset{t\to 0}{\sim} \frac{t}{2}$$

et $1 - \cos t$ est bornée donc

$$\lim_{t \to 0} \frac{1 - \cos(t)}{t} = \lim_{t \to +\infty} \frac{1 - \cos(t)}{t} = 0$$

D'où, par intégration par parties, $I = \int_0^{+\infty} \frac{\sin t}{t} dt$ et $-\int_0^{+\infty} \frac{1 - \cos(t)}{t^2} dt$ sont de même nature, donc I converge si

et seulement si $\int_{-t^2}^{+\infty} \frac{1 - \cos(t)}{t^2} dt$ converge.

De plus, $t \mapsto \frac{1-\cos(t)}{t^2}$ est continue (par morceaux) sur \mathbb{R}_+^* , $\lim_{t\to 0} \frac{1-\cos t}{t^2} = \frac{1}{2}$ et $\frac{1-\cos t}{t^2} = \frac{1}{2}$ onc $t \mapsto \frac{1-\cos t}{t^2}$

$$\frac{1-\cos(t)}{t^2}$$
 est intégrable sur \mathbb{R}_+^* . En particulier, $\int_0^{+\infty} \frac{1-\cos(t)}{t^2} dt$ converge.

Finalement, I converge

3. Soit x > 0.

 $t \mapsto u(x,t)$ est dérivable sur \mathbb{R}_+^* et, pour tout t > 0,

$$\frac{\partial u}{\partial t}(x,t) = \frac{1}{1+x^2} \left(-(x\cos t - \sin t) + x(x\sin t + \cos t) \right) e^{-xt} = \sin(t)e^{-xt}$$

Ainsi $t \mapsto u(x,t)$ est bien une primitive de la fonction $t \mapsto \sin(t)e^{-xt}$ sur \mathbb{R}_+^* .

Partie II - Calcul de F sur $]0, +\infty[$

4. Soit x > 0.

Pour tout t > 0, $|f(x,t)| = \left|\frac{\sin(t)}{t}e^{-xt}\right| \le e^{-xt}$.

D'où, par inégalité triangulair

$$|F(x)| = \left| \int_0^{+\infty} f(x,t) \, dt \right| \le \int_0^{+\infty} |f(x,t)| \, dt \le \int_0^{+\infty} e^{-xt} \, dt = \frac{1}{x}$$

Or $\lim_{x \to +\infty} \frac{1}{x} = 0$, donc, d'après le théorème des gendarmes,

$$\lim_{x \to +\infty} F(x) = 0$$

© Laurent Garcin MP Dumont d'Urville

- **5.** Soit a > 0.
 - Pour tout $x \in [a, +\infty[$, $t \mapsto f(x, t)$ est intégrable sur \mathbb{R}_+^* (d'après la question 1 car $x \ge a > 0$).
 - Pour tout t > 0, $x \mapsto f(x,t)$ est de classe \mathcal{C}^1 sur $[a, +\infty[$ et, pour tout $x \ge a$,

$$t \mapsto \frac{\partial f}{\partial x}(x,t) = -\sin(t)e^{-xt}$$

est continue (par morceaux) sur \mathbb{R}_+^* .

• Pour tout $x \ge a$, pour tout t > 0,

$$\left| \frac{\partial f}{\partial x}(x,t) \right| = \left| -\sin(t)e^{-xt} \right| \le e^{-xt} \le e^{-at} = \varphi(t)$$

où φ est intégrable sur \mathbb{R}_+^* (car a > 0).

D'après le théorème de dérivation des intégrales à paramètres, $F: x \mapsto \int_0^{+\infty} f(x,t) dt$ est de classe \mathcal{C}^1 sur $[a, +\infty[$ et, pour tout $x \ge a$,

$$F'(x) = \int_0^{+\infty} \frac{\partial f}{\partial x}(x, t) dt = -\int_0^{+\infty} \sin(t)e^{-xt} dt$$

6. F est dérivable sur $[a, +\infty[$ pour tout a > 0, donc F est dérivable sur $\bigcup_{a>0} [a, +\infty[=]0, +\infty[$ et, pour tout x > 0,

$$F'(x) = -\int_0^{+\infty} \sin(t)e^{-xt} dt = -\left[u(x,t)\right]_0^{+\infty} = -\frac{1}{1+x^2}$$

Il existe donc $K \in \mathbb{R}$ tel que, pour tout x > 0,

$$F(x) = -\arctan(x) + K$$

Enfin, $\lim_{x \to +\infty} F(x) = 0$, donc $K = \frac{\pi}{2}$, et, par suite, pour tout x > 0,

$$F(x) = \frac{\pi}{2} - \arctan(x)$$

Partie III - Conclusion

- 7. Pour tout $t \in]0,1]$, $x \mapsto f(x,t)$ est continue sur [0,1].
 - Pour tout $x \in [0,1]$, $t \mapsto f(x,t)$ est continue (par morceaux) sur]0,1].
 - Pour tout $t \in]0,1]$, pour tout $x \in [0,1]$,

$$|f(x,t)| = \left| \frac{\sin(t)}{t} e^{-xt} \right| \le e^{-xt} \le 1 = \varphi(t)$$

où φ est intégrable sur [0,1] (constante sur un intervalle borné).

D'après le théorème de continuité des intégrales à paramètre, $F_1: x \mapsto \int_0^1 f(x,t) dt$ est continue sur [0,1].

8. Soit $x \in [0, 1]$.

On sait déjà que $t \mapsto f(x,t)$ est intégrable sur $]0,+\infty[$ et donc $\int_1^{+\infty} f(x,t) dt$ converge.

De plus, les fonctions $t\mapsto u(x,t)$ et $t\mapsto \frac{1}{t}$ sont de classe \mathcal{C}^1 sur $[1,+\infty[$ de dérivées respectives $t\mapsto \sin(t)e^{-xt}$ et $t\mapsto -\frac{1}{t^2}$. Enfin

$$\lim_{t \to +\infty} \frac{u(x,t)}{t} = 0$$

D'où, par intégration par parties, $\int_{1}^{+\infty} \frac{u(x,t)}{t^2} dt$ converge et

$$F_2(x) = \left[\frac{u(x,t)}{t}\right]_1^{+\infty} + \int_1^{+\infty} \frac{u(x,t)}{t^2} dt = \frac{x\sin(1) + \cos(1)}{1 + x^2} e^{-x} + \int_1^{+\infty} \frac{u(x,t)}{t^2} dt$$

© Laurent Garcin MP Dumont d'Urville

Attention, dire que $\int_1^{+\infty} \frac{u(x,t)}{t^2} dt$ converge ne signifie pas forcément que $t \mapsto \frac{u(x,t)}{t^2}$ est intégrable sur $[1,+\infty[$. Cette intégrabilité est inutile pour effectuer l'intégration par parties mais si on veut à tout prix la justifier, on constate que $u(x,t) \xrightarrow[t \to +\infty]{} 0$ de sorte que $u(x,t) = o\left(\frac{1}{t^2}\right)$.

- 9. Pour tout $x \in [0,1]$, $t \mapsto \frac{u(x,t)}{t^2}$ est continue (par morceaux) sur $[1,+\infty[$.
 - Pour tout $t \ge 1$, $x \mapsto \frac{u(x,t)}{t^2}$ est continue sur [0,1].
 - Pour tout $x \in [0,1]$, pour tout $t \ge 1$,

$$\left| \frac{u(x,t)}{t^2} \right| \le \frac{1}{t^2} \frac{x|\sin(t)| + |\cos(t)|}{1 + x^2} e^{-xt} \le \frac{2}{t^2} = \varphi(t)$$

où φ est intégrable sur [1, +∞[.

D'après le théorème de continuité des intégrales à paramètre, $x \mapsto \int_1^{+\infty} \frac{u(x,t)}{t^2} dt$ est continue sur [0,1].

De plus, $x \mapsto \frac{x \sin(1) + \cos(1)}{1 + x^2} e^{-x}$ est continue sur [0, 1] (par opérations sur les fonctions usuelles), donc F_2 est continue sur [0, 1] comme somme de fonctions continues.

10. $F = F_1 + F_2$ est continue sur [0, 1] comme somme de fonctions continues. Notamment, par continuité de F en 0,

$$I = F(0) = \lim_{x \to 0^+} F(x) = \lim_{x \to 0^+} \frac{\pi}{2} - \arctan(x) = \frac{\pi}{2}$$