MATH 569 Statistical Learning

Part III: Linear Methods of Classification

Maggie Cheng

Fig 4.1 Linear boundary vs quadratic boundary (found by LDA)

Linear boundary Using only X_1 and X_2

Quadratic boundary Using $X_1, X_2, X_1X_2, X_1^2, X_2^2$

Fig 4.2 Masking effect for linear regression Three classes in a 2-dimensional space (K=3, p=2)

Linear Regression

X_1

Linear Discriminant Analysis

Fig 4.3 Use higher degree polynomials to fix the masking effect of linear regression

Using linear regression on linear terms, the middle class never dominates.
Class 2 is masked by class 1 and class 3.

Degree = 1; Error = 0.33

Using quadratic terms, class 2 is no longer masked.

Degree
$$= 2$$
; Error $= 0.04$

Bayes Decision Boundary

$$\pi_1 = 0.5, \ \pi_2 = 0.5$$

$$\pi_1 = 0.3, \ \pi_2 = 0.7$$

Fig 4.6 LDA and QDA both can find quadratic boundaries

Using LDA on 5 dimensional space

 $X_1, X_2, X_1X_2, X_1^2, X_2^2$

Using QDA

Fig 4.9 Discriminant Direction

The direction connecting two centroids may not minimize overlap

The discriminant direction minimizes this overlap for Gaussian data

Fig 4.11 Classification in the two-dimensional subspace spanned by the first two canonical variates (Vowel training data: K=11, p=10)

