Introduction to Bioinformatics - the partial digest problem

The task:

Implement an algorithm solving the partial digest problem.

X — a set of n points lying on the axis.

 ΔX – a multiset of all pairwise distances between points from X.

PDP: Having a multiset L of pairwise distances reconstruct X such that $\Delta X = L$.

Format of input and output data

An input file contains elements of *L* separated by a single space:

1 1 3 4 4 4 5 5 8 9

An output file contains elements of *X* separated by a single space:

0 4 5 8 9

Additional assumptions

- Use branch and bound approach.
- Finding any of possible solutions is sufficient.
- Elements of X are integers from the range <0,100>.

Algorithm steps

- 1. Make $X = \{0, M\}$, remove number M from L ($M = \max\{L\}$).
- 2. Find the next biggest number α in L. We know that restriction site can be either at position $y = \alpha$ (leftmost) or $y = M \alpha$ (rightmost). Assume that restriction site is at the leftmost position $y = \alpha$.
- 3. Calculate distances between y and all elements of X. This will be noted as $\Delta(y, X)$.
- 4. If $\Delta(y,X) \subset L$ then $L = L \Delta(y,X)$ and go to the step 2 (or output a solution if L is empty). Otherwise there are two possibilities:
 - If only leftmost position has been already checked assume $y=M-\alpha$ and go to the step 3.
 - If both leftmost and rightmost positions have been already checked, backtrack the last iteration and try again.

