Entity Relationship Model

Entity-Relationship (ER) Model

• **ER Modeling** is a *top-down* approach to database design.

- Notation uses three main constructs
 - Entities
 - Relationships
 - Attributes

Chen Model & Crow's Foot Model

Chen Notation

Represents a set or collection of objects in the real world that share the same properties

Crow's Foot Notation

Entities

Entity is a thing or object in the real world that is distinguishable from other objects.

Example: specific person, company, event

Entity set is a set of entities of the same type that share the same properties or attributes.

Example: set of all persons, companies, trees, holidays

- Guidelines for naming and defining entity types:
 - An entity type name is a singular noun
 - An entity type should be descriptive and specific
 - Event entity types should be named for the result of the event, not the activity or process of the event.

Entity Set

Strong Entity Set-

A strong entity set possess its own primary key.

It is represented using a single rectangle.

E

Strong Entity Set

Weak Entity Set-

A weak entity set do not possess its own primary key.

It is represented using a double rectangle.

Weak Entity Set

Attributes

Attribute is the particular properties or characteristics that describe entity.

An entity is represented by a set of attributes, that is descriptive properties possessed by entities of an entity set.

Example of entity types and associated attributes:

STUDENT: Student ID, Student Name, City, Phone Number

Attribute & Attribute Value

Student_ID, Student_Name, City, Phone_Number

> Ajay Patil Pune

9800000000

Ram Patil Delhi 990000000

Attribute

Composite Attribute

Key Attribute

Partial Attribute

Derived Attribut

Simple Attribute & Composite Attribute

1) **Simple Attribute** are those attribute that can not be subdivided into subparts.

Roll_no
Roll_no
Student
Atomic Simple
Atomic Simple

2) **Composite Attributes** are those attribute that can be subdivided into subparts.

Single-Valued & Multi Valued Attributes

- 3) Single Valued Attribute are those attribute, which can take only one value. which means a single valued attribute can have only a single value.
- **4) Multi Valued Attribut**e are those attribute, which can take more than one value.

which means a multi valued attribute can have multiple values.

Key Attributes and Derived Attribute

5) **Key attributes** are those attributes which can identify an entity uniquely in an

entity set.

6) **Derived Attribute** The value for this type of attribute can be derived from the values of other related attributes or entities.

Relationships

A relationship is an association among several entities.

- → Given a name that describes its function.
 - relationship name is an <u>active</u> or a <u>passive</u> verb.

An author writes one or more books

A book can be written by one or more authors.

Relationships

Strong Relationship Set-

A strong relationship exists between two strong entity sets.

It is represented using a diamond symbol.

Strong Relationship Set

2. Weak Relationship Set-

A weak or identifying relationship exists between the strong and weak entity set.

It is represented using a double diamond symbol.

Degree of Relationships

Degree of relationship set: number of entity sets that participate in a relationship set.

1) Unary relationship set: Unary relationship set is a relationship set where only one entity set participates in a relationship set.

Unary Relationship Set

2) Binary relationship set: Binary relationship set is a relationship set where two entity sets participate in a relationship set.

Binary Relationship Set

Degree of Relationships

3) Ternary Relationship Set:Ternary relationship set is a relationship set where three entity sets participate in a relationship set.

Ternary Relationship Set

4) N-ary Relationship Set: N-ary relationship set is a relationship set where 'n' entity sets participate in a relationship set.

Mapping Cardinality

Mapping Cardinality: express the number of entities to which another entity can be associated via a relationship set.

- Most useful in describing binary relationship sets.
- For a binary relationship set the mapping cardinality must be one of the following types:
 - 1) One to one
 - 2) One to many
 - 3) Many to one
 - 4) Many to many

One-to-One mapping Cardinality

An entity in entity set A is associated with at most one entity in entity set B, and an entity in entity set B is associated with at most one entity in entity set A via relationship set R

One-to-Many mapping Cardinality

An entity in entity set A is associated with any number (zero or more) of entities in entity set B. An entity in entity set B can be associated with at most one entity in entity set A.via relationship set R A B

Many-to-One mapping Cardinality

An entity in entity set A is associated with at most one entity in entity set B.An entity in entity set B can be associated with any number (zero or more) of entities in entity set A.via relationship set R

Many -to-Many mapping Cardinality

An entity in entity set A is associated with any number (zero or more) of entities in entity set B, and an entity in entity set B is associated with any number (zero or more) of entities in entity set A via relationship set R

Participation of an Entity Set in a Relationship Set

Total participation : every entity in the entity set participates in at least one relationship in the relationship set

E.g. participation of *loan* in *borrower* is total

Partial participation: some entities may not participate in any relationship in the relationship set

E.g. participation of *customer* in *borrower* is partial

Sub Class and Super Class

1. Super Class

Super class is an entity type that has a relationship with one or more subtypes.

For example: Shape super class is having sub groups as Square, Circle, Triangle.

2. Sub Class

Sub class is a group of entities with unique attributes.

Sub class inherits properties and attributes from its super class.

For example: Square, Circle, Triangle are the sub class of Shape super class.

Fig. Super class/Sub class Relationship

Specialization

- Specialization is a process that defines a group entities which is divided into sub groups based on their characteristic.
- ▶It is a top down approach, in which one higher entity can be broken down into two lower level entity.
- It maximizes the difference between the members of an entity by identifying the unique characteristic or attributes of each member.

For example

Fig. Specialization

Generalization

- >Generalization is the reverse process of Specialization.
- ➤ It is a bottom approach, in which two or more lower level entities combine to form a higher level entity.
- ▶ It defines a general entity type from a set of specialized entity type.
- ▶It minimizes the difference between the entities by identifying the common features.

Fig. Generalization

Aggregation

Aggregation

Relationship sets works-on and manages represent overlapping information

- _ Every *manages* relationship corresponds to a *works-on* relationship
- However, some works-on relationships may not correspond to any manages relationships
- So we can't discard the works-on relationship

Eliminate this redundancy via aggregation

- Treat relationship as an abstract entity
- Allows relationships between relationships
- Abstraction of relationship into new entity

Without introducing redundancy, the following diagram represents:

- An employee works on a particular job at a particular branch
- _ An employee, branch, job combination may have an associated manager

Aggregation

Aggregation is an abstraction that treats relationships as entities. Sometimes we have to model relationship between a collection of entities and relationships.

Keys

A super key of an entity set is a set of one or more attributes whose values uniquely determine each entity.

A candidate key of an entity set is a minimal super key.

A primary key is a candidate key that the database designer selects while designing the database.

Summary of Symbols Used in E-R Notation

E E entity set **A**1 attributes: A2 simple (A1), A2.1 composite (A2) and multivalued (A3) R A2.2 relationship set derived (A4) {A3} **A4**() identifying R relationship set E for weak entity set primary key A1 discriminating total participation E R E of entity set in attribute of A1 relationship weak entity set

Summary of Symbols Used in E-R Notation

Alternative ER Notations

entity set E with simple attribute A1, composite attribute A2, multivalued attribute A3, derived attribute A4, and primary key A1

weak entity set

generalization

total generalization

Alternative ER Notations

Chen

IDE1FX (Crows feet notation)

