Roteiro 1

Ana Beatriz Barbosa Yoshida - RA: 245609 Julio Nunes Avelar - RA: 241163

Agosto de 2025

Sumário

1 Experiência 1						
	1.1	1.1 Identificação das GPIOs do LED RGB				
	1.2	1.2 Níveis lógicos do RP2040				
	1.3	1.3 Circuito básico e cálculo dos resistores				
	1.4	Tarefa 1.1 – Comparação entre linguagens				
	1.5	Tarefa 1.2 – Comparativo Imperativo vs OO				
2	Experiência 2					
	2.1	2.1 GPIOs conectados aos botões				
	2.2	2.2 Limites de tensão para nível lógico				
	2.3	2.3 Esquema dos botões				
	2.4	Debounce, Polling e IRQ				
	2.5	Tabela Comparativa – Polling \times IRQ				
3	Exp	periência 3				
	3.1	Demonstração				
	3.2	Comparação de código				
	3.3	Reflexão: IRQ + OO				
	3.4	Expansão para 10 botões				
4	Con	ıclusão				

1 Experiência 1

1.1 1.1 Identificação das GPIOs do LED RGB

 \bullet Vermelho: GPIO 13 com resistor de 220 Ω

 \bullet Verde: GPIO 11 com resistor de 220 Ω

 \bullet Azul: GPIO 12 com resistor de 150 Ω

1.2 Níveis lógicos do RP2040

 $\bullet\,$ Nível lógico 0: 0 V

• Nível lógico 1: 3.3 V

1.3 Circuito básico e cálculo dos resistores

Inserir desenho esquemático do circuito do LED RGB.

Figura 1: Circuito do LED RGB com resistores.

Cálculo do resistor (Lei de Ohm):

$$R = \frac{V_{CC} - V_{LED}}{I_{LED}}$$

1.4 Tarefa 1.1 – Comparação entre linguagens

Sugestão de método: medir tempo de execução de funções idênticas em C e MicroPython utilizando cronômetro interno.

Linguagem	Tempo de Resposta (ms)	Observações	
С	•••	•••	
MicroPython	•••	•••	

Tabela 1: Benchmark básico entre C e MicroPython.

1.5 Tarefa 1.2 – Comparativo Imperativo vs OO

Paradigma	Linguagem	Tamanho Código (bytes)	Tempo de Resposta (ms)	Observações
Imperativo	C	•••	•••	
OO	$^{\mathrm{C}}$			
Imperativo	Python			
OO	Python	•••		

Tabela 2: Benchmark entre Imperativo e OO em C e Python.

2 Experiência 2

2.1 CPIOs conectados aos botões

Listar aqui cada botão e a respectiva GPIO.

2.2 2.2 Limites de tensão para nível lógico

• Nível baixo: $V < V_{IL(max)}$

• Nível alto: $V > V_{IH(min)}$

2.3 Esquema dos botões

Figura 2: Conexão dos botões ao RP2040.

2.4 Debounce, Polling e IRQ

Funcionalidade: Confirmar alternância do LED nos dois modos.

Latência: Descrever efeito do aumento da carga em Polling e comparação com IRQ.

Consumo de energia: Justificar eficiência do IRQ.

Aplicações: Exemplos reais para Polling e IRQ.

2.5 Tabela Comparativa – Polling \times IRQ

Critério	Polling	IRQ
Latência percebida		
Perdas de eventos		•••
Consumo de CPU	•••	•••
Complexidade		•••
Situações suficientes		•••
Situações obrigatórias	•••	•••

Tabela 3: Comparativo Polling vs IRQ.

3 Experiência 3

3.1 Demonstração

Vídeo no YouTube: https://youtube.com/xxxxxx #EA701

3.2 Comparação de código

Comparar simplicidade entre Python OO e C modular.

3.3 Reflexão: IRQ + OO

Discutir casos vantajosos em sistemas embarcados reais.

3.4 Expansão para 10 botões

Discutir viabilidade de Polling vs IRQ.

4 Conclusão

Resumo dos resultados, aprendizados e recomendações para projetos futuros.