	Name:	
	Entry number:	
	There are 4 questions for a total of 15 points.	
1	Use ideas developed in the class to calculate the following:	
Ι.	. Use ideas developed in the class to calculate the following:	
	(a) $(\frac{1}{2} \text{ point})$ Give the value of $5^{547} \pmod{15}$. (Note that your answer should be an integer between 0 and 14.)	
	(a)	
	(b) ($\frac{1}{2}$ point) Give the value of 9^{313} (mod 55).	
	(Note that your answer should be an integer between 0 and 54.)	
	(b)	
	(c) (1 point) Find an integer x that simultaneously satisfies the following three lix $x \equiv 2 \pmod{5}$, $x \equiv 2 \pmod{7}$, and $x \equiv 5 \pmod{9}$. (Your answer should be an integer between 0 and 314.)	near congruences
	(c)	

2. (3 points) In how many ways can you distribute n indistinguishable apples and one orange to k children such that each child gets at least one fruit? Give reasons.

3. Answer the following questions:

(a)	(1 point)	State true or f	<u>alse</u> : Any b	ipartite graph	(L, R, E	E) with $ L =$	R in which	all vertices	have
	degree ex	actly equal to	5 has a perf	ect matching.					

(a) _____

(b) (3 points) Give reason for your answer to part (a).

4. (6 points) Show that any graph with 2n vertices and at least $n^2 + 1$ edges for $n \ge 2$ has a triangle (i.e., three vertices v_1, v_2, v_3 such that there is an edge between any pair of vertices among these three).

SL202: Discrete Mathematical Structures (Semester-II-2017-18)	Minor-
Extra space	