${\rm CS113/DISCRETE~MATHEMATICS\text{-}SPRING~2024}$

Worksheet 31

Topic: Cryptography

Continuing our exploration of Crytography, we will learn RSA technique today which is a widely used public-key encryption technique in modern cryptography. Happy Learning!

Student's Name and ID:	
Instructor's name:	

1. Encrypt the message ATTACK using the RSA system with $n=43\cdot 59$ and e=13, translating each letter into integers and grouping together pairs of integers.

into integers and grouping together pairs of integers.	

3. What is the original message encrypted using the RSA system with $n=53\cdot 61$ and e=17, if the encrypted message is 3185 2038 2460 2550? (To decrypt, first find the decryption exponent d, which is the inverse of e=17 modulo $52\cdot 60$.)

4. What is the original message encrypted using the RSA system with $n=43\cdot 59$ and e=13, if the encrypted message is 0667 1947 0671? (To decrypt, first find the decryption exponent d, which is the inverse of e=13 modulo $42\cdot 58$.)