PROGRAMMA DI ALGEBRA 2

Corso di Laurea in Matematica A.A. 2023-2024, primo semestre, 10 crediti (6 CFU Prof. Andrea Loi e 4 CFU Prof. Stefano Bonzio)

Docente: Andrea Loi

Semigruppi, monoidi e gruppi. Semigruppi; esempi di semigruppi; legge di cancellazione in un semigruppo; elementi idempotenti in un semigruppo; esempi di semigruppi dove tutti gli elementi sono idempotenti e esempi dove nessun elemento lo è; in un semigruppo finito esiste almeno un elemento idempotente; monoidi (semigruppi con elemento neutro); esempi di monoidi; un elemento di un semigruppo dove vale la legge di cancellazione è idempotente se e solo se è l'elemento neutro; elementi invertibili in un monoide; unicità dell'inverso; un elemento idempotente in un monoide dove vale la legge di cancellazione a sinistra (o a destra è l'elementto neutro; un elemento idempotente in un semigruppo dove vale la legge di cancellazione è l'elemento neutro; definizione di gruppo; un semigruppo con elemento neutro a destra (risp. sinistra) e inverso a destra (risp. sinistra) è un gruppo; esempi che mostrano che esistono semigruppi con elemento neutro a sinistra e inverso a destra che non sono gruppi; legge di cancellazione in un gruppo; un semigruppo finito dove vale la legge di cancellazione è un gruppo; esempi che mostrano che esistono semigruppi infiniti dove vale la legge di concellazione che non sono gruppi; esempi che mostrano l'esistenza di semigruppi finiti dove vale la legge di cancellazione a destra ma che non sono gruppi; esempi di gruppi; gli elementi invertibili di un monoide formano un gruppo; proprietà elementari dei gruppi: inverso del prodotto; proprietà delle potenze in un gruppo; confronto tra la notazione addittiva e moltiplicativa; ordine di un elemento; alcune proprietà dell'ordine: se x ha ordine finito o(x) = m, (a) allora $x^k = 1$ se e solo se m divide k, (b) $x^n = x^k$ per $n, k \in \mathbb{Z}$ se e solo se n è congruo a k modulo m, (c) $o(x^k) = m/(m,k)$, (d) $o(x^{-1}) = m$.

Permutazioni. Le permutazioni come gruppo; prodotto di permutazioni finite; supporto di una permutazione; permutazioni disgiunte; due permutazioni disgiunte commutano; cicli; ordine, supporto e inverso di un ciclo; ogni permutazione f non identica con supporto finito può scriversi in modo unico (a meno dell'ordine) come prodotto di cicli disgiunti $f = \sigma_1 \cdots \sigma_t$ e l'ordine di f è uguale al minimo comune multiplo della lunghezza dei cicli σ_j ; una permutazione ha ordine un primo p se e solo se si può scrivere come prodotto di cicli tutti di lunghezza p; definizione di N(f); segno di una permutazione $sgn(f) = (-1)^{N(f)}$; permutazioni di classe pari e dispari; ogni permutazione f si può scrivere come prodotto di N(f) trasposizioni; il sgn è una funzione moltiplicativa $sgn(f \circ g) = sgn(f)sgn(g)$; una permutazione è di classe pari se e solo se si può scrivere come prodotto di un numero pari di trasposizioni.

Sottogruppi. Sottogruppi: stabilità e inverso; esempi di sottogruppi; se un insieme finito A di un gruppo G è stabile allora A è un sottogruppo di G; il gruppo alterno A_n ; criterio per riconoscere un sottogruppo (un sottoinsieme non vuoto H di un gruppo G è un sottogruppo se e solo se $x^{-1}y \in H$ per ogni $x, y \in H$); l'intersezione di una famiglia qualsiasi di sottogruppi è un sottogruppo; sottogruppo < X > di un gruppo G generato da un sottoinsieme $X \subseteq G$; sottogruppo < x > generato da un elemento; gruppi ciclici; i sottogruppi di $\mathbb Z$ sono tutti ciclici e della forma $m\mathbb Z$, $m \in \mathbb N$; se G è un gruppo G allora suo elemento allora |< x >| = o(x); siano H e K sottogruppi di un gruppo G non può essere unione di due suoi sottogruppi propri; l'unione di una catena di sottogruppi è ancora un sottogruppo; sottogruppo $\langle H, K \rangle = < H \cup K >$ generato da due sottogruppi

 $H, K \subseteq G$; prodotto HK di due sottogruppi H e K di un gruppo G; siano H e K sottogruppi di un gruppo G allora HK = KH (ossia H e K sono permutabili) se e solo se $\langle H, K \rangle = HK$; $|HK| = \frac{|H||K|}{|H \cap K|}$; se $H = m\mathbb{Z}$ e $K = n\mathbb{Z}$ sono sottogruppi $(\mathbb{Z}, +)$ allora $H + K = (m, n)\mathbb{Z}$ e $H \cap K = [m, n]\mathbb{Z}$.

Classi laterali. Classi laterali di un sottrogruppo; sia G un gruppo e H un suo sottogruppo allora ogni classe laterale (sinistra o destra) di H in G ha la stessa cardinalità di H; sia G un gruppo e H un suo sottogruppo allora la cardinalità delle classi laterali sinistre di H in G coincide con la cardinalità delle classi laterali destre di H in G; [G:H] indice di H in G; teorema di Lagrange (sia G un gruppo finito e H un suo sottogruppo allora |G| = [G:H]|H|); sia G un gruppo finito e x un elemento di G allora O(x) divide |G| e $x^{|G|} = 1$; in un gruppo finito G di ordine p primo gli unici sottogruppi sono quelli banali, G è ciclico e tutti gli elementi non nulli di G hanno ordine p e generano G; ordine del prodotto di due elementi: se due elementi di un gruppo commutano e hanno ordini coprimi allora l'ordine del loro prodotto é uguale al prodotto dei loro ordini.

Sottogruppi normali. Definizione di sottogruppo normale di un gruppo G: N è un sottoguppo normale di G ($N \subseteq G$) se le classi laterali sinistre e destre coincidono xN e Nx coincidono per ogni $x \in G$; criteri per la normalità di un sottogruppo: Nsottogruppo di G è normale se e solo se il coniugato di ogni elemento di N appartiene a N; il coniugato di un sottogruppo $H^x = x^{-1}Hx$; condizione di normalità ($H \leq G$ se e solo se $H^x \leq H$ se e solo se $H^x = H$ per ogni $x \in G$; il gruppo alterno A_n è un sottogruppo normale di S_n ; sia H un sottogruppo di G e K un sottogruppo normale di G allora HK = KH (e quindi HK è un sottogruppo di G) se anche H è normale allora HK è un sottogruppo normale di G; l'intersezione di una famiglia di sottogruppi normali è un sottogruppo normale; l'unione di una catena di sottogruppi normali è normale: il sottogruppo generato da una famiglia qualsiasi di sottogruppi normali è un sottogruppo normale; gruppi semplici (gruppi che non hanno sottogruppi normali non banali); il centro Z(G) di un gruppo G (gli elementi di G che commutano con tutti gli elementi di G); il centro di un gruppo G è un sottogruppo abeliano normale del gruppo G e ogni sottogruppo contenuto in Z(G) è normale in G; G è abeliano se e solo se Z(G) = G; se G è un gruppo semplice non abeliano allora $Z(G) = \{1\}$; un sottogruppo N di indice due in un gruppo G è normale.

Esempi di gruppi il gruppo lineare speciale $SL_n(\mathbb{K})$ (sottogruppo normale di $GL_n(\mathbb{K})$); il sottogruppo $T_n^+(\mathbb{K})$ delle matrici triangolari superiori invertibili (non è normale in $GL_n(\mathbb{K})$, per ogni $n \geq 2$ e per ogni campo \mathbb{K}); il gruppo $D_n(\mathbb{K})$ delle matrici diagonali (non è un sottogruppo normale di $GL_n(\mathbb{K})$ se $|\mathbb{K}| \geq 3$ e $n \geq 2$); le matrici scalari Z sono il centro di $GL_n(\mathbb{K})$; il gruppo ortogonale $O_n(\mathbb{K})$ è un sottogruppo (non normale) di $GL_n(\mathbb{K})$ per $n \geq 2$; le matrici simmetriche invertibili non sono un sottogruppo di $GL_n(\mathbb{K})$; il gruppo Q_8 dei quaternioni unitari e le sue proprietà; il gruppo di Heisenberg e il suo centro; il gruppo diedrale D_n .

Quozienti e omomorfismi di gruppi. Quoziente di un gruppo G tramite un sottogruppo normale N; \mathbb{Z}_m come quoziente di $\mathbb{Z}/m\mathbb{Z}$; se N è un sottogruppo normale di un gruppo finito G allora |G/N| divide |G|; omomorfismi di gruppi; principali proprietà degli omomorfismi (l'identità va nell'identità, l'inverso va nell'inverso e le potenze si preservano); la composizione di omomorfismi è un omomorfismo; isomorfismi di gruppi (omomorfismi invertibili); ogni gruppo ciclico finito di ordine n è isomorfo a \mathbb{Z}_n ; l'immagine di un gruppo ciclico tramite un omomorfismo è ancora ciclico; nucleo di un omomorfismo (sottogruppo normale del dominio); immagine di un omomorfismo (sottogruppo del codominio); un omomorfismo di gruppi è iniettivo se solo se il suo nucleo è banale; omomorfismo canonico $\pi: G \to G/N$ (ogni sottogruppo normale è il nucleo di un omomorfismo); il primo teorema di isomorfismo (sia $\varphi: G \to H$ un omomorfismo di gruppi e $\pi:G\to G/\ker\varphi$ l'omomorfismo canonico allora esiste un unico omomorfismo iniettivo $\tilde{\varphi}: G/\ker \varphi \to H$ tale che $\tilde{\varphi} \circ \pi = \varphi$ che risulta essere un isomorfismo se e solo se φ è suriettivo); sia $\varphi: G \to H$ un omomorfismo di gruppi allora $G/\ker \varphi \cong Im(\varphi)$; sia $\varphi:G\to H$ un omomorfismo suriettivo di gruppi allora $H\cong G/\ker\varphi$; sia $\varphi:G\to H$ un omomorfismo suriettivo di gruppi se G è finito allora $|\ker \varphi|$ e |H| dividono |G|; $\mathrm{GL}_n(\mathbb{K})/SL_n(\mathbb{K})\cong \mathbb{K}^*$, per ogni $n\geq 1$, e $S_n/A_n\cong \mathbb{Z}_2$, per ogni $n\geq 2$; sia $\varphi:G\to H$ un omomorfismo di gruppi allora (a) per ogni $K \leq G$ risulta $\varphi(K) \leq H$ e se $K \subseteq G$ allora $\varphi(K) \leq \varphi(G)$, (b) per ogni $L \leq H$ risulta $\ker \varphi \leq \varphi^{-1}(L) \leq G$ e inoltre $L \leq H$ allora $\varphi^{-1}(L) \leq G$, (c) per ogni $K \leq G$ si ha $\varphi^{-1}(\varphi(K)) = K \ker \varphi$, (d) $\varphi(\varphi^{-1}(L)) = L \cap \varphi(G)$ per ogni $L \le H$; esiste una corrispondenza biunivoca tra l'insieme dei sottogruppi (normali) di G contenenti $\ker \varphi$ e l'insieme dei sottogruppi (normali) di H contenuti in $\varphi(G)$; sottogruppi di \mathbb{Z}_m ($L \leq \mathbb{Z}_m$ se e solo se $L = \frac{\hat{n}\mathbb{Z}}{m\mathbb{Z}}$ tale che n|m); il gruppo degli automorfismi Aut(G) di un gruppo G; il gruppo Inn(G) degli automorfismi interni; $Inn(G) \triangleleft Aut(G) \in G/Z(G) \cong Inn(G)$; il teorema di Cayley (ogni gruppo è isomorfo ad un sottogruppo di un gruppo di permutazioni); ogni gruppo finito di cardinalità n è isomorfo ad un sottogruppo del gruppo lineare $GL_n(\mathbb{K})$ per un qualsiasi campo \mathbb{K} .

Prodotto diretto di gruppi. Prodotto diretto di un numero finito di gruppi; proprietà commutativa e associativa del prodotto diretto; l'ordine di un elemento z=(x,y) del prodotto diretto $H \times K$ è finito se solo se sono finiti gli ordini di $x \in H$ e $y \in K$ e in tal caso l'ordine di z è il minimo comune multiplo degli ordini di x e y; sia $G = H \times K$ allora esistono due sottogruppi normali H e K isomorfi a H e K tali che $H \cap K = \{1\}$ e G = HK; sia G un gruppo e H e K due sottogruppi normali di G tali che $H \cap K = \{1\}$ e G = HK allora $G \cong H \times K$; sia G un gruppo abeliano e H e K due sottogruppi di G tali che $H \cap K = \{1\}$ e G = H + K allora $G \cong H \times K$; sia G un gruppo finito e H e K due sottogruppi normali di G tali che |H|=m e |K|=n, (m,n)=1 e |G|=mn allora $G \cong H \times K$; se G è un gruppo abeliano cardinalità 6 con due elementi di ordine 2 e 3 allora $G \cong \mathbb{Z}_6$. se in un gruppo G tutti gli elementi hanno ordine 2 allora G è abeliano; se G ha ordine 4 allora è isomorfo a \mathbb{Z}_4 oppure a $\mathbb{Z}_2 \times \mathbb{Z}_2$; a meno di isomorfismi un gruppo con 6 elementi è isomorfo a \mathbb{Z}_6 oppure a \mathbb{S}_3 ; non esiste un sottogruppo \mathbb{H} di \mathbb{A}_4 di ordine 6; un gruppo con 8 elementi è isomorfo a \mathbb{Z}_8 , $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times \mathbb{Z}_4$, D_4 oppure Q_8 ; un gruppo con p^2 elementi con p primo è isomorfo a \mathbb{Z}_{p^2} oppure a $\mathbb{Z}_p \times \mathbb{Z}_p$; se $H \in K$ sono gruppi finiti con cardinalità prime fra loro allora $Aut(H \times K) \cong Aut(H) \times Aut(K)$; sottogruppi del prodotto diretto di gruppi; se H e K sono gruppi finiti di ordini coprimi e $A \leq H \times K$ allora $A = A_1 \times A_2$ con $A_1 \leq H$ e $A_2 \leq K$.

Gruppi abeliani finiti. classificazione dei gruppi ciclici: un gruppo ciclico finito è isomorfo a \mathbb{Z}_m mentre un gruppo ciclico infinito è isomorfo a \mathbb{Z} ; generatori di un gruppo ciclico: un gruppo ciclico finito ha $\Phi(m)$ generatori dove $\Phi(m)$ è la funzione di Eulero mentre un gruppo ciclico infinito ha due generatori; Un sottogruppo di un gruppo ciclico è ciclico; il quoziente di un gruppo ciclico è ciclico; se C è un gruppo ciclico finito allora per ogni divisore d di |C| esiste un unico sottogruppo di C di ordine d; esiste una corrispondenza biunivoca tra i divisori positivi della cardinalità di un gruppo ciclico finito e i suoi sottogruppi; il prodotto diretto $C_1 \times C_2$ di due gruppi ciclici (non banali) è ciclico se e solo C_1 e C_2 hanno cardinalità finite prime fra loro (quindi $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$

se e solo se ((m,n)=1); il gruppo degli automorfismi di un gruppo ciclico: $\operatorname{Aut}(C)\cong\mathbb{Z}_2$ se C ha infiniti elementi e $\operatorname{Aut}(C) \cong U(\mathbb{Z}_m)$ se |C| = m; se il gruppo degli automorfismi di un gruppo è ciclico allora il gruppo è abeliano; il Lemma di Gauss: se p è un primo dispari allora \mathbb{Z}_{p^m} è ciclico per ogni $m \geq 1$; il Teorema di Gauss: il gruppo degli automorfismi di un gruppo ciclico finito C è ciclico se e solo se $|C|=1,2,4,p^m,2p^m$ con p primo dispari; sia G un gruppo abeliano, H un sottogruppo di G e $a \in G$ siano m e n interi primi tra loro tali che $ma \in H$ e $na \in K$ allora $a \in H$; lemma di Cauchy nel caso abeliano): sia p un numero primo e G un gruppo abeliano finito tale che p divide |G| allora G ha elementi di ordine p; sia G un gruppo abeliano finito e m un intero positivo tale che mx = 0 per ogni $x \in G$ allora |G| divide qualche potenza di m; siano m e n due interi positivi primi tra loro e G un gruppo abeliano di ordine mn allora: (a) $H = \{x \in G \mid mx = 0\}$ è un sottogruppo di G di ordine m; (b) $K = \{x \in G \mid nx = 0\}$ è un sottogruppo di G di ordine n, (c) $G \cong H \times K$; lemma di decomposizione primaria; sia p un numero primo e G un gruppo abeliano di ordine p^n allora G è isomorfo ad un prodotto diretto di gruppi ciclici; teorema di Frobenius-Stickelberger (ogni gruppo abeliano finito è isomorfo al prodotto di gruppi ciclici).

Esercizi: 4.9, 4.11, 4.14, 5.5, 5.6, 5.9, 5.14, 5.16, 5.19, 5.20, 5.22, 5.24, 5.25, 5.26, 5.27, 5.28, 5.33, 5.35, 5.36, 5.37, 5.38, 5.39, 5.41, 5.47, 5.48, 5.51, 5.52, 5.53, 5.54, 5.58, 6.1, 6.2, 6.3, 6.5, 6.6, 6.7, 6.8, 6.10, 6.16, 6.17, 6.18, 6.19, 6.20, 6.21, 6.22, 6.23, 6.24, 6.25, 6.27, 6.28, 6.29, 6.33, 6.34, 6.35, 6.40, 7.2, 7.3, 7.4, 7.5, 7.14, 7.16, 7.17, 7.26, 7.29, 7.32.

Testo di riferimento

D. Dikranjan, M. L. Lucido, Aritmetica e Algebra, Liguori Editore 2007.

Altri testi consigliati

I.N. Herstein, Algebra, Editori Riuniti.

M. Artin, Algebra, Bollati Boringhieri.