TP2

Intégration numérique

27 septembre 2017

Dans ce TP, on va apprendre quelques méthodes numériques pour calculer, approximativement, l'intégrale d'une fonction sur un intervalle compact (borné, fermé).

- 1. Création d'une fonction simple et représentation graphique.
 - (a) Excrite la fonction $f(x) = 1 x^2$ sous forme d'une fonction python.
 - (b) Représentation graphique sur l'intervalle [0, 1].
 - (c) Calculer, à la main, l'intégrale I de cette fonction sur l'intervalle donné.
- 2. Calcul approché de I au moyen de la **méthode du point milieu**.
 - (a) Représenter graphiquement f sur papier, repère orthonormé, unité = 8 cm.
 - (b) On définit une subdivision régulière x_0, \dots, x_4 de l'intervalle d'intégration [0, 1] en n = 4 parts égales (on a donc $x_0 = 0, x_1 = 0.25, \dots, x_4 = 1$. On note c_1, \dots, c_4 les milieux de ces sous-intervalles. Pour chaque $k = 1, \dots, 4$, dessiner le rectangle de base $[x_{k-1}, x_k]$ et de hauteur $f(c_k)$, et calculer sa surface s_k .
 - (c) La méthode du point milieu consiste à prendre la somme $S_4 = \sum_{i=1}^4 s_k$ comme approximation de I. Calculer l'erreur commise $|S_4 I|$.
 - (d) Importer le module time. Utiliser la fonction clock() du module time pour mesurer le temps de calcul de votre intégrale.
 - (e) Recommencer les calculs précédents pour $n=10^k$, k variant de 1 à 6 et remplir, manuellement, le tableau ci-dessous :

n	erreur	temps (sec.)
10		
100		
1000		
10000		
100000		
1000000		

(f) En python, recréer automatiquement le tableau obtenu au moyen d'une boucle for. Utiliser les fonction print pour voir le tableau à l'écran et write pour écrire le tableau dans un fichier texte. Voir documentation à l'adresse https://docs.python.org/3/tutorial/inputoutput.html. Exemple de tableau produit automatiquement et envoyé à l'écran :

n	١	erreur	1	temps (sec.)
10	1	8.33333e-04		1.00000e-05
100	1	8.33333e-06	1	4.10000e-05
1000	1	8.33333e-08	-	3.99000e-04
10000	1	8.33337e-10	-	3.96900e-03
100000	1	8.33034e-12	-	4.01730e-02
1000000	Τ	8.37108e-14	Τ	4.00492e-01