Numerik Cheat Sheeto

- 1 Basics
- 1.1 Sortieren
- 1.2 FFT
- 2 Lineare Gleichungssysteme
- 2.1 Allgemeine Aufgabenstellung

Geg.:
$$\mathbf{A} \in \mathbb{R}^{n \times n}$$
, $\mathbf{b} \in \mathbb{R}^n$
Ges.: $\mathbf{x} \in \mathbb{R}^n$

Ax = b

2.2 Dreiecksmatrizen

Untere Dreiecksmatrix $\mathbf{L} \in \mathbb{R}^{n \times n}$ und obere Dreiecksmatrix $\mathbf{R} \in \mathbb{R}^{n \times n}$.

REGULÄRE/INVERTIERBARE/NICHT-SINGULÄRE MATRIX

Matrix **A** ist regulär, wenn det $\mathbf{A} \neq 0$. Determinante einer Δ Matrix ist das Produkt ihrer Diagonalelemente. **L** und **R** sind regulär, wenn alle Diagonalelemente $\neq 0$.

Vorwärtseinsetzen

$$Ly = b$$

Rechenaufwand: n^2 AO

Um Speicher zu sparen $b_i \leftarrow y_i$.

forward_subst

for
$$j = 1: n$$

 $x_j \leftarrow b_j/l_{jj}$
for $i = j + 1: n$
 $b_i \leftarrow b_i - l_{ij}x_j$

RÜCKWÄRTSEINSETZEN

$$\mathbf{R}\mathbf{x} = \mathbf{y}$$

Rechenaufwand: n^2 AO

Um Speicher zu sparen $b_i \leftarrow x_i$.

backward_subst

for
$$j = n : 1$$

 $x_j \leftarrow b_j/r_{jj}$
for $i = 1 : j - 1$
 $b_i \leftarrow b_i - r_{ij}x_j$

2.3 LR-Zerlegung

Sei $\mathbf{A} \in \mathbb{R}^{n \times n}$ und $\mathbf{L}, \mathbf{R} \in \mathbb{R}^{n \times n}$

$$A = LR$$

Ansatz:

Matrizen \mathbf{A} , \mathbf{L} , \mathbf{R} in Teilmatrizen \mathbf{A}_{**} , \mathbf{A}_{*1} , \mathbf{A}_{1*} , \mathbf{L}_{**} , \mathbf{L}_{**} , \mathbf{R}_{1*} zerlegen. Es folgen 4 Gleichungen aus $\mathbf{A} = \mathbf{L}\mathbf{R}$:

$$a_{11} = l_{11}r_{11}$$
 $\mathbf{A}_{*1} = \mathbf{L}_{*1}r_{11}$
 $\Leftrightarrow \mathbf{L}_{*1} = \mathbf{A}_{*1}/r_{11}$
 $\mathbf{A}_{1*} = l_{11}\mathbf{R}_{1*}$
 $\Leftrightarrow \mathbf{R}_{1*} = \mathbf{A}_{1*}$

Per Def. $l_{11} = 1$ und damit $r_{11} = a_{11}$, sodass

$$\mathbf{A}_{**} - \mathbf{L}_{*1} \mathbf{R}_{1*} = \mathbf{L}_{**} \mathbf{R}_{**} \tag{1}$$

PRAKTISCHE UMSETZUNG

Elemente von A überschreiben, sodass:

$$\begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ l_{21} & r_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & r_{n-1,n} \\ l_{n1} & \cdots & l_{n,n-1} & r_{nn} \end{pmatrix}$$
(2)

Kriterium

Sei A regulär, A besitzt eine LR-Zerlegung ⇔ Alle Hauptuntermatrizen regulär.

Modellproblem: Bandmatrix

Irgendwas bzgl Effizienz.

LR-Decomp

Aufwand: kubisch

 \downarrow Aufwand: Nur 1x für jede Matrix betreiben. Sobald LR-Decomp vorliegt nur noch quadratischer Aufwand

 \Downarrow Aufwand: Tridiagonalmatrix. Erster Schritt mit 3 AOPs. Restmatrix bleibt tridiagonal. Aufwand 3n+6n für R-und F-Einsetzen.

lr_decomp

for
$$k = 1: n$$

for $i = k + 1: n$
 $a_{ik} \leftarrow a_{ik}/a_{kk}$
for $j = k + 1: n$
 $a_{ij} \leftarrow a_{ij} - a_{ik}a_{kj}$

PROBLEM DER EXISTENZ EINER LR-Z

Falls \mathbf{A} oder \mathbf{A}_{**} eine 0 auf der Diagonalen hat, existiert keine LR-Zerlegung. Lösung: Permutiere die Zeilen von \mathbf{A} so, dass das Ergebnis eine LR-Z besitzt.

PERMUTATIONSMATRIX

Sei $\mathbf{P} \in \mathbb{R}^{n \times n}$. Falls in jeder Zeile und Spalte von \mathbf{P} genau ein Eintrag 1 und alle anderen 0, dann ist \mathbf{P} eine Permutationsmatrix. \mathbf{P} ist orthogonal. Ein Produkt zweier Permutationsmatrizen \mathbf{PQ} ist auch eine Permutationsmatrix.

PERMUTATION

Bijektive Abbildung $\pi: \{1, \dots, n\} \to \{1, \dots, n\}$.

LR-Z MIT PIVOTSUCHE

A regulär. Es existiert $\mathbf{P} \in \mathbb{R}^{n \times n}$ sodass $\mathbf{PA} = \mathbf{LR}$ gilt.

Pivotisierung: Finde betragsmaximalstes Element in der aktuellen Spalte, welches unter dem aktuellen Diagonalelement von **A** liegt und tausche die aktuelle Zeile mit der Zeile in der das betragsmaximalste Element ist, mit Hilfe von **P**. $a_{11} \neq 0$, da betragsgrößtes Element.

LÖSEN EINES GLEICHUNGSSYSTEMS MIT PIVOTSUCHE

$$\mathbf{A}\mathbf{x} = \mathbf{b} \Leftrightarrow \mathbf{P}\mathbf{A}\mathbf{x} = \mathbf{P}\mathbf{b} \Leftrightarrow \mathbf{L}\mathbf{R}\mathbf{x} = \mathbf{P}\mathbf{b}.$$

1.) $\mathbf{L}\mathbf{y} = \tilde{\mathbf{b}}$ 2.) $\mathbf{R}\mathbf{x} = \mathbf{y}$
 lr_pivot

```
for k=1:n
i_* \leftarrow k \qquad // \text{ Finde max. Element}
for i=k+1:n
\text{if } |a_{ik}| > |a_{i_*k}| \colon i_* \leftarrow i
p_k \leftarrow i_*
for j=1:n \qquad // \text{ Tausche Zeilen}
\gamma \leftarrow a_{kj}, \, a_{kj} \leftarrow a_{i_*j}, \, a_{i_*j} \leftarrow \gamma
for i=k+1:n
a_{ik} \leftarrow a_{ik}/a_{kk}
for j=k+1:n
a_{ij} \leftarrow a_{ij} - a_{ik}a_{kj}
```

 ${f p}$ protokolliert, welche Vertauschungen durchgeführt wurden, um sie später auf ${f b}$ anwenden zu können.

Aufwand: $\frac{2}{3}n^3$.

SONDERFALL: **A** POSITIV DEFINIT TODO.

2.4 Fehlerverstärkung

NORM DES MATRIX-VEKTOR-PRODUKTS

Wie stark ändert sich die Länge eines Vektors wenn er mit **A** multipliziert wird. Mapping von Einheitskreis auf Ellipse.. Für $\mathbf{A} \in \mathbb{R}^{n \times n}$ gilt:

$$\alpha_2(\mathbf{A}) = \min\{\|\mathbf{A}\mathbf{y}\|_2 : \mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_2 = 1\}$$

$$\beta_2(\mathbf{A}) = \max\{\|\mathbf{A}\mathbf{y}\|_2 : \mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_2 = 1\}$$

und

$$\alpha_2(\mathbf{A}) \|\mathbf{z}\|_2 \le \|\mathbf{A}\mathbf{z}\|_2 \le \beta_2(\mathbf{A}) \|\mathbf{z}\|_2$$

Eigenschaften der Norm:

$$\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = 0$$
$$\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$$
$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$$

TODO

2.5 QR-Zerlegung

Für jede Matrix gibt es eine QR-Z.

LR-Z: Schlecht konditioniertes Problem

$$\kappa_2(\mathbf{A}) \gg 1, \, \kappa_2(\mathbf{A}) \le \kappa_2(\mathbf{L})\kappa_2(\mathbf{R})$$

Kritisch falls $\kappa_2(\mathbf{L})\kappa_2(\mathbf{R}) \gg \kappa_2(\mathbf{A})$.

Ziel: Suche Transformationen $\mathbf{Q} \in \mathbb{R}^{n \times n}$, die die Norm unverändert lassen:

$$\|\mathbf{Q}\mathbf{y}\|_2 = \|y\|_2$$

Mit Hinzunahme des Skalarprodukts:

$$\langle \mathbf{y}, \mathbf{y} \rangle_2 = \|\mathbf{y}\|_2^2 = \|\mathbf{Q}\mathbf{y}\|_2^2 = \langle \mathbf{Q}\mathbf{y}, \mathbf{Q}\mathbf{y} \rangle_2 = \langle \mathbf{y}, \mathbf{Q}^*\mathbf{Q}\mathbf{y} \rangle_2$$

muss $\mathbf{Q}^*\mathbf{Q} = \mathbf{I}$ gelten.

Gesucht: $\mathbf{A} = \mathbf{Q}\mathbf{R}$.

Konditionszahl bzw. Fehlerverstärkung wird nicht verschlechtert: $\alpha_2(\mathbf{A}) = \alpha_2(\mathbf{R}), \ \beta_2(\mathbf{A}) = \beta_2(\mathbf{R})$ $\kappa_2(\mathbf{A}) = \kappa_2(\mathbf{R}).$

GIVENS-ROTATION

Mit Hilfe von Givens-Rotationen können wir beliebige $\mathbf{A} \in \mathbb{R}^{m \times n}$ auf obere Δ gestalt bringen.

$$\mathbf{Q} = \begin{pmatrix} c & s \\ -s & c \end{pmatrix} \text{ und } \mathbf{Q}\mathbf{y} = \begin{pmatrix} cy_1 + sy_2 \\ 0 \end{pmatrix}$$

Konsekutiv Givens-Rotationen \mathbf{Q}_{ij} i-te und j-te Zeile anwenden um Eintrag a_{ij} zu beseitigen. Bsp. $\mathbf{A} \in \mathbb{R}^{4\times 3}$:

$$\begin{split} \mathbf{R} &= \mathbf{Q}_{43} \mathbf{Q}_{32} \mathbf{Q}_{42} \mathbf{Q}_{21} \mathbf{Q}_{31} \mathbf{Q}_{41} \mathbf{A} \\ \mathbf{Q}_{41}^* \mathbf{Q}_{31}^* \mathbf{Q}_{21}^* \mathbf{Q}_{42}^* \mathbf{Q}_{32}^* \mathbf{Q}_{43}^* \mathbf{R} &= \mathbf{A} \\ \mathbf{Q} \end{split}$$

Kompakte Darstellung

Verwende Nulleinträge von \mathbf{A} bzw. \mathbf{R} um \mathbf{Q}_{ij} zu beschreiben.

Finde Givens-Rotation:

$$\rho = \begin{cases} s = \rho, c = \sqrt{1 - s^2} & \text{falls } |\rho| < 1 \\ c = 1/\rho, s = \sqrt{1 - c^2} & \text{falls } |\rho| > 1 \\ c = 1, s = 0 & \text{falls } \rho = 1 \end{cases}$$

Speichern der QR-Z in A:

$$\begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ \rho_{21} & r_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & r_{n-1,n} \\ \rho_{n1} & \cdots & \rho_{n,n-1} & r_{nn} \end{pmatrix}$$

$$(3)$$

Qr Decomp von $\mathbf{A} \in \mathbb{R}^{m imes n}$

```
for k=1:\min(m,n) // Loop über Diagonale for i=k+1:m // Loop über Elemente unter Diagonalen if a_{ik}=0 \rho\leftarrow 1,\, c\leftarrow 1,\, s\leftarrow 0 else if |a_{kk}|\geq |a_{ik}| // Vgl. mit Diag.element \tau\leftarrow a_{ik}/a_{kk},\, \rho\leftarrow \tau/\sqrt{\tau^2+1},\, s\leftarrow \rho,\, c\leftarrow \sqrt{1-s^2} else // Vgl. mit Diag.element \tau\leftarrow a_{kk}/a_{ik},\, \rho\leftarrow \sqrt{\tau^2+1}/\tau,\, c\leftarrow 1/\rho,\, s\leftarrow \sqrt{1-c^2} // Diag.element aktual., Giv.-Rot. in aktueller It. speichern a_{kk}\leftarrow ca_{kk}+sa_{ik},\, a_{ik}\leftarrow \rho for j=k+1:n // Loop über Elemente in der k-ten Zeile // Giv-Rot auf Zeile anwenden \alpha\leftarrow a_{kj},\, a_{kj}\leftarrow c\alpha+sa_{ij},\, a_{ij}\leftarrow -s\alpha+ca_{ij}
```

Aufwand: $6n^2 + 2n^3$ (quadratische Matrix) 3x mehr als LR-Z.

LÖSEN GLEICHUNGSSYSTEM $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$\mathbf{b} = \mathbf{A}\mathbf{x} = \mathbf{Q}\mathbf{R}\mathbf{x} = \mathbf{Q}\mathbf{y} \quad \Leftrightarrow \quad 1.) \ \mathbf{y} = \mathbf{Q}^*\mathbf{b} \quad 2.) \ \mathbf{y} = \mathbf{R}\mathbf{x}.$$

- 1.) Qr_transform: Über einzelne G_{ij} (oben links angefangen) iterieren und auf b multiplizieren.
- 2.) Rückwärtseinsetzen.

Effizientere QR-Z

Householder-Spiegelungen: Aufwand 2x mehr als LR-Z.

Mit Optimierungen bei Speicherzugriffen bei QR-Z ähnlich schnell wie LR-Z.

2.6 Ausgleichsprobleme

Wir suchen x so, dass alle Gleichungen möglichst gleich gut erfüllt werden.

3 Nichtlineare Gleichungssysteme

Wir untersuchen nichtlineare Gleichungssysteme der Form

Gegeben eine stetige Funktion
$$f: \mathbb{R}^n \to \mathbb{R}^n$$
, finde $\mathbf{x}^* \in \mathbb{R}^n$ mit $f(\mathbf{x}^*) = \mathbf{0}$

Transformieren in ein Nullstellenproblem.

3.1 Bisektionsverfahren

Einfache Technik, das in jedem Schritt den Fehler mindestens halbiert. Basierend auf dem Zwischenwertsatz für stetige Funktionen.

Funkioniert nur für 1D.

ZWISCHENWERTSATZ

Eine reele Funktion f, die in [a,b] stetig ist, nimmt jeden Wert zwischen f(a) und f(b) an. Haben f(a) und f(b) verschiedene Vorzeichen, so ist eine Existenz mindestens einer Nullstelle in [a,b] garantiert.

VERFAHREN IN MATHEMATISCHER NOTATION

$$(a^{(0)}, b^{(0)}) = (a, b)$$

$$x^{(m)} = \frac{a^{(m)} + b^{(m)}}{2}$$

$$(a^{(m+1)}, b^{(m+1)}) = \begin{cases} (a^{(m)}, x^{(m)}) & \text{if } f(a^{(m)}) f(x^{(m)}) < 0 \\ (x^{(m)}, b^{(m)}) & \text{sonst.} \end{cases}$$

Bisection

$$\begin{split} f_a &\leftarrow f(a), \, f_b \leftarrow f(b) \\ \text{while } b-a &> \epsilon \\ x &\leftarrow (a+b)/2 \\ f_x &\leftarrow f(x) \\ \text{if } f_a f_x &< 0 \\ b &\leftarrow x, \, f_b \leftarrow f_x \\ \text{else} \\ a &\leftarrow x, \, f_a \leftarrow f_x \end{split}$$

Aufwand: m+2 Auswertungen von f und 2m Rechenoperationen, mit $m=\lceil \log_2((b-a)/\epsilon) \rceil$ Schritten. Hohe Stabilität und jedes konstruierte Intervall muss eine Nullstelle enthalten. Nur auf reelwertige Funktionen auf geeigneten Intervallen anwendbar.

3.2 Allgemeine Fixpunktiterationen

ITERATION

 $U \subseteq \mathbb{R}^n$ eine abgeschlossene Teilmenge und $\Phi: U \to U$ eine (Selbst-)Abbildung. Dann ist Φ eine Iteration auf U. Folge der Iterierten $\mathbf{x}^{(m+1)} = \Phi(\mathbf{x}^{(m)})$. Kontruiere Iteration so, dass Φ gegen gesuchte Lösung \mathbf{x}^* konvergiert. Es soll $\phi(\mathbf{x}^*) = \mathbf{x}^*$ gelten. Die Lösung muss ein Fixpunkt von Φ sein.

MITTELWERTSATZ DER DIFFERENTIALRECHNUNG

Zwischen a und b von f gibt es mindestens einen Kurvenpunkt, für den die Tangente an η parallel zur Sekante durch a und b ist: $(b-a)f'(\eta) = f(b) - f(a)$.

TODO: Wählen der richtigen Iteration Fixpunktsatz von Banach Sei Φ eine Iteration auf einer **abgeschlossenen** Menge $U \subseteq \mathbb{R}^n$ (**Selbstabbildung**). Sei $L \in [0,1)$ so gegeben, dass: $\|\Phi(\mathbf{x}) - \Phi(\mathbf{y})\| \le L \|\mathbf{x} - \mathbf{y}\|$ für alle $\mathbf{x}, \mathbf{y} \in U$. **Kontraktion**. Φ besitzt **genau** einen Fixpunkt und die Folge der Iterierten konvergiert für jeden Startwert $\mathbf{x}^{(0)} \in U$ gegen diesen Fixpunkt.

Fehlerabschätzung a-priori (Vorhersagen wieviele Schritte) und a-posteriori (Prüfen ob Näherung schon genau genug):

$$\|\mathbf{x}^{(m)} - \mathbf{x}^*\| \le \frac{L^m}{1 - L} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|$$
$$\|\mathbf{x}^{(m)} - \mathbf{x}^*\| \le \frac{1}{1 - L} \|\mathbf{x}^{(m)} - \mathbf{x}^{(m+1)}\| \quad \forall m \in \mathbb{N}_0$$

3.3 1D-Newton-Verfahren

 $U \subseteq \mathbb{R}^n$ offene Menge und $f: U \to \mathbb{R}^n$ zweimal stetig differenzierbar mit Nullstelle $vx^* \in U$, so dass $f(\mathbf{x}^*) = \mathbf{0}$. Ziel: Konstruiere Iteration Φ , die \mathbf{x}^* als Nullstelle besitzt.

TAYLOR

TODO

$$0 = f(x^*) = f(x) + f'(x)(x^* - x) + \underbrace{f''(\eta)}_{2} (x^* - x)^{2}$$

EINDIMENSIONALES NEWTON-VERFAHREN

$$\Phi: U \to \mathbb{R}$$
 $x \to x - \frac{f(x)}{f'(x)}$

Indem der dritte Term der Taylorreihe wegfätt, approximieren wir die Funktion f durch ihre Tangente im Punkt x. Die Nullstelle der Tangente ist die nächste Iterierte $\Phi(x)$.

Konvergenz

Sei $r \in \mathbb{R}_{>0}$ und $U = (x^* - r, x^* + r)$ und gelte $f \in C^2(U)$, $|1/f'(x)| \le C_1 \forall x \in U$, $|f''(x)| \le C_2 \forall x \in U$ und $r \le \frac{2}{C_1 C_2}$, dann ist die Abbildung Φ für das Newton Verfahren eine Selbstabbildung auf U, sodass gilt:

$$|\Phi(x) - x^*| \le \frac{C_1 C_2}{2} |x - x^*|^2 \quad \forall x \in U$$

Newton-Verfahren konvergiert, falls $x^{(0)}$ in U liegt. Konvergenz ist umso schneller, je näher die Iterierten an der Lösung liegen. **Quadratische Konvergenz**.

3.4 ND-Newton-Verfahren

HAUPTSATZ DER INTEGRAL- UND DIFFERENTIALRECHNUNG

$$f(b) - f(a) = \int_{a}^{b} f'(t)dt$$

NEWTON-VERFAHREN

Sei $U \subseteq \mathbb{R}^n$ und $Df(\mathbf{x})$ für alle $\mathbf{x} \in U$ regulär (also invertierbar). Es gilt:

$$\Phi: U \to \mathbb{R}^d, \quad \mathbf{x} \mapsto \mathbf{x} - Df(\mathbf{x})^{-1}f(\mathbf{x})$$

Konvergenz

Sei $r \in \mathbb{R}_{>0}$ und $U = K(\mathbf{x}^*, r)$ und gelte $f \in C^1(U, \mathbb{R}^b)$, $\|Df(\mathbf{x})^{-1}\|_2 \leq C_1 \forall \mathbf{x} \in U$, $\|Df(\mathbf{x}) - Df(\mathbf{y})\|_2 \leq C_2 |\mathbf{x} - \mathbf{y}\|_2 \forall \mathbf{x}, \mathbf{y} \in U$ und $r \leq \frac{2}{C_1 C_2}$.

Dann ist Φ eine Selbstabbildung auf der Kugel U und es gilt

$$\|\Phi(\mathbf{x}) - \mathbf{x}^*\|_2 \le \frac{C_1 C_2}{2} \|\mathbf{x} - \mathbf{x}^*\|_2^2 \quad \forall \mathbf{x} \in U$$

Quadratische Konvergenz unter schwächeren Voraussetzungen, denn f' muss Lipschitz-stetig sein.

Umsetzung

Anstatt Inverse Jacobimatrix zu berechnen, lineares Gleichungssystem nach \mathbf{d} lösen (erhöhte numerische Stabilität):

$$\mathbf{x}^{(m+1)} = \mathbf{x}^{(m)} + \mathbf{d}^{(m)} \qquad \mathbf{d}^{(m)} = -Df(\mathbf{x}^{(m)})^{-1}f(\mathbf{x}^{(m)})$$
$$Df(\mathbf{x}^{(m)})\mathbf{d}^{(m)} = -f(\mathbf{x}^{(m)})$$

Gedämpftes Newton-Verfahren

Um Divergenz zu vermeiden Newton-Richtung mit Dämpfungsparameter $\sigma^{(m)}$ multiplizieren. Sorgt dafür, dass der Fehler nicht größer als im vorangehenenden Schritt werden kann.

$$\mathbf{x}^{(m+1)} = \mathbf{x}^{(m)} + \sigma^{(m)}\mathbf{d}^{(m)}$$

4 Eigenwertprobleme

Beispiel: Schwingende Saite

- 4.1 Vektoriteration
- 4.2 Inverse Iteration
- 4.3 Orthogonale Iteration
- 4.4 QR-Iteration
- 4.5 Praktische QR-Iteration
- 5 Approximation von Funktionen
- 5.1 Polynominterpolation
- 5.2 Neville-Aitken-Verfahren
- 5.3 Newtons dividierte Differenzen
- 5.4 Approximation von Funktionen
- 6 Numerische Integration
- 6.1 Quadraturformeln
- 6.2 Fehleranalyse