000

លីម ជល្អន និច សែន ពិសិជ្ជ

លំមារដ និទ ជំណោះស្រាយ

រត្រៀមប្រឡូខសញ្ញាមត្រែធុតិយតូមិ

ឆ្និខ អាហារួមករណ៍

Problems and Solutions

ស្លានៃនោះពុម្ពន្ធអូម

ស្បូវភោគណិតវិទ្យា ៖

- ១_ដំណោះស្រាយលំហាត់គណិតវិទ្យា បោះពុម្ព ឆ្នាំ២០០០
 - (សម្រាប់ត្រ្យេមប្រឡងចូលសាកលវិទ្យាល័យ និង អាហារូបករណ៍)
- ២_ពិភពស្វ៊ីតចំនួនពិត (សម្រាប់ថ្នាក់ទី១១ និង សិស្សពូកែគណិតវិទ្យា)
- **៣_ អនុគមន៍ត្រីកោណមាត្រ** (សម្រាប់ថ្នាក់ទី១១ និង សិស្សពូកែគណិតវិទ្យា)
- ៤_ ដំណោះស្រាយគំរូ ចំនួនកុំផ្ចិច លីមីត ដើរវេ (សម្រាប់ថ្នាក់ទី១២)
- ៥. សង្ខេបរួបមន្តគណិតវិទ្យា (សម្រាប់ថ្នាក់ទី១១.១២)
- ៦_ គំរូសិក្សាអនុធមន៍ (សម្រាប់ថ្នាក់ទី១១_១២)
- ៧_ កំនែលំហាត់គណិតវិទ្យាថ្នាក់ទី១០កម្មវិធីសិក្សាថ្មី (ភាគ១ ឆ្នាំ២០០៨)
- ៨. 151 គណនាលីមីត (សម្រាប់ថ្នាក់ទី១១.១២)
- ៩. 202 លំហាត់មានដំណោះស្រាយ (សម្រាប់ថ្នាក់ទី១២)

អ្នកចូលរួមត្រួតពិតិត្យមច្ចេកនេស

លោក លឹម ឆុន

លោក សែន ពិសិជ្ជ

លោកស្រី នុយ ណែ

លោក និង្ស ម៉េខ

លោក ព្រឹម សុនិត្យ

លោក និល ម៉ូននាយ

អ្នកត្រួតពិសិត្យអគ្គរាទិទ្ធ

លោក លឹម មិត្តសិរ

តារីអុំព្យូន៖

កញ្ញា លី គុណ្ណាគា

រួមកសិពស្ល សិខ ផ្ងេមផ្ងេខ

លោក លឹម ផល្គុល ជិច លោក សែល ពិសិជ្ជ

ধার্ভগ্র

ស្យេវភៅ **សំខាន់មានដំណោះស្រាយ** ដែលអ្នកសិក្សាកំពុងកាន់ នៅក្នុងដៃនេះ ខ្ញុំបាទបានរ្យេបរ្សេងឡើងក្នុងគោលបំនងទុកជាឯកសារ សម្រាប់ ជាជំនួយដល់អ្នកសិក្សាយកទៅសិក្សាស្រាវជ្រាវដោយខ្លួនឯង និង ម្យ៉ាងទ្យេត ក្នុងគោលបំនងចូលរួមលើកស្ទួយវិស័យគណិតវិទ្យានៅប្រទេសកម្ពុជាយើង ឲ្យកាន់តែរីកចម្រើនថែមទ្យេតដើម្បីបង្កើនធនធានមនុស្សឲ្យមានកាន់តែច្រើន ដើម្បីជួយអភិវឌ្ឍន៍ប្រទេសជាតិរបស់យើង ។

នៅក្នុងស្យេវនេះយើងខ្ញុំបានខិតខំស្រាវជ្រាវជ្រើសជីសយកលំហាត់យ៉ាង សម្រាំងបំផុតយកមកធ្វើដំណោះស្រាយយ៉ាងក្បោះក្បាយដែលអាចឲ្យលោកអ្នក ងាយយល់គាប់ចងចាំអំពីសិល្បៈនៃការដោះស្រាយទាំងអស់នេះ ។ ប៉ុន្តែទោះជា យ៉ាងណាក់ដោយ កង្វៈខាត និង កំហុសឆ្គងដោយអចេតនាប្រាកដជាមានទាំង បច្ចេកទេស និង អក្ខរាវិរុទ្ឋ ។ អាស្រ័យហេតុនេះ យើងខ្ញុំជាអ្នករ្យូបរ្យុងរង់ចាំ ដោយរីករាយជានិច្ចនូវមតិរិៈគន់បែបស្ថាបនាពីសំណាក់អ្នកសិក្សាក្នុងគ្រប់មជ្ឈដ្ឋាន ដើម្បីជួយកែលំអ ស្បេវភៅនេះឲ្យបានកាន់តែសុក្រិត្រភាពថែមទៀត ។

ជាទីបញ្ចប់នេះយើងខ្ញុំអ្នករ្យបប្បងសូមគោរពជូនពរដល់អ្នកសិក្សាទាំងអស់ ឲ្យមានសុខភាពមាំមួន និង ទទួលជ័យជនៈគ្រប់ភារកិច្ច ។

ឆំមាត់ ឆិខ ជំណោៈស្រ្គាយ

9_គេឲ្យលំមីការ $(E): z^2 + iaz + a + ib = 0$ ដែល $a, b \in IR$ ក_កំនត់ a និង b ដើម្បីថ្ង $\mathbf{z}_1 = -1 + \mathrm{i}\sqrt{3}$ ជាឬលមួយរបស់ សមីការ (E) រួចគណនាឬសមួយឡេត z₂ ។ ១-ចូរសរសេរ \mathbf{z}_1 , \mathbf{z}_2 និង $\frac{\mathbf{z}_1}{\mathbf{z}_2}$ ជាទម្រង់ត្រីកោណមាត្រ ។ គ_ទាញបញ្ជាក់តម្លៃប្រាកដទៃ $\cos \frac{5\pi}{12}$ និង $\sin \frac{5\pi}{12}$ ។ ២_គេថ្យអនុគមន៍ f(x) កំនត់លើ IRដោយ ៖ $f(x) = \ln(x^2 - x\sqrt{2} + 1) - \ln(x^2 + x\sqrt{2} + 1)$ ក_ចូរគណនាតម្លៃ $\mathbf{f}(-\sqrt{2})$, $\mathbf{f}(\mathbf{0})$ និង $\mathbf{f}(\sqrt{2})$ ។ បង្ហាញថា f(x)ជាអនុគមន៍លេស ។ ខ_គណនាដេរីវេ f'(x) និង f''(x) ។ ៣.គេឲ្យចំនួនកុំផ្លិច z = x + i.y ដែល x និង y ជាពីរចំនួនពិត y

៣_គេឲ្យចំនួនកុំផ្លិច z = x + i.y ដែល x និង y ជាពីរចំនួនពិត ។ ចូរកំនត់តម្លៃ x និង y បើគេដឹងថា៖

$$(3+2i)z + (1+3i)\overline{z} = \frac{10}{2-i}$$

(z ជាចំនួនកុំផ្លិចឆ្លាស់នៃ z) ។

ឆំមាន់ ឆិខ ជំណោ:ត្រវាយ

៤ គេអោយចំនួនពុំផ្លិច
$$z = cos \frac{4\pi}{7} + i.sin \frac{4\pi}{7}$$
 ។

ចូរសរសេរ $(1+z)^4$ ជារាងត្រីកោណមាត្រ ។

៥_តេអោយចំនួនកុំផ្លិច :
$$\mathbf{z}_1 = \frac{\sqrt{6} - \mathbf{i}.\sqrt{2}}{2}$$
 និង $\mathbf{z}_2 = 1 - \mathbf{i}$

ក.ចូរសរសេរ z_1 , z_2 និង $Z = \frac{z_1}{z_2}$ ជារាងត្រីកោណមាត្រ។

ខ.ចូរសរសេរ $\mathbf{Z} = \frac{\mathbf{z}_1}{\mathbf{z}_2}$ ជារាងពិជគណិត ។

គ.ទាញអោយបានថា
$$\cos\frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}$$
 និង $\sin\frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}$ ។

៦_គណនាលីមីតខាងក្រោម ៖

$$\text{fi. } \lim_{x\to 0}\frac{e^x+2\sin x-1}{x}$$

$$3. \lim_{n\to+\infty} \left(\frac{2n}{2n-1}\right)^{n+1}$$

៧_ចូរគណនាលីមីត ៖

$$\lim_{x\to 0} \frac{e^{-x^2} - \cos x}{x^2}$$

$$3. \lim_{x\to 0} \frac{e^x - e^{-x}}{\sin x}$$

៨-ចូរគណនាលីមីតខាងក្រោម ៖

$$\mathbf{\tilde{n}.} \quad \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^{n+5}$$

$$3. \lim_{n\to+\infty} \left(\frac{n-1}{n+1}\right)^{n+2}$$

ស្ន-កំនត់ចំនួនពិត
$$x$$
 និង y ដើម្បីអោយ $(x+1)+(3+2y).i=\frac{7+9i}{3+2i}$

ឆំមាន់ ឆិខ ជំណោ:ត្រវាយ

$$90$$
-ពេអោយ $f(z)=z^3-2(\sqrt{3}+i).z^2+4(1+i\sqrt{3}).z-8i$ ក.ចូរបង្ហាញថា $\forall z\in \not c$ $f(z)=(z-2i)(z^2-2\sqrt{3}z+4)$ ខ.ដោះស្រាយសមីការ $f(z)=0$ ក្នុងសំណុំកុំផ្លិច ។

99_ចូរគណនាលីមីត:

$$\text{fi. } \lim_{x \to 0} \frac{1 - \cos 2x + x \sin 2009x}{x^2}$$

2.
$$\lim_{x \to 3} \frac{x^3 - 3x^2 + (a - 1)x + 3 - 3a}{x^2 - 4x + 3}$$

9២_តេអោយអនុគមន៍ $f(x) = x^3 - 6x^2 + 9x - 3$

ក.បង្ហាញថាមានតំលៃ \mathbf{x}_0 ដែល $1 < \mathbf{x}_0 < 2$ ហើយ $\mathbf{f}(\mathbf{x}_0) = \mathbf{0}$ ។

ខ.គណនាដើរវេ f'(x) ហើយសិក្សាសញ្ញានៃ f'(x) ។ សង់តារាងអថេរភាពនៃ f(x) ។

$$9$$
M_ គេមានអនុគមន៍ $f(x) = \sqrt{3x+1}$ កំនត់លើ $\left[-\frac{1}{3},+\infty\right]$

ក. ចំពោះគ្រប់
$$\mathbf{x} \in [1,5]$$
 ចូរបង្ហាញថា $\frac{3}{8} \le \mathbf{f'}(\mathbf{x}) \le \frac{3}{4}$ ។

ខ. ដោយប្រើវិសមភាពកំណើនមានកំនត់ទៅនឹងអនុគមន៍ f ចំពោះគ្រប់

$$x \in [1,5]$$
 ចូរបង្ហាញថា $\frac{3}{8}x + \frac{13}{8} \le \sqrt{3x+1} \le \frac{3}{4}x + \frac{5}{4}$

ឆ្នាំង ខ្លួន ខ្លួននោះទីខាតា

 \mathfrak{G}_{-} ពេឱ្យអនុគមន៍ $\mathbf{f}(\mathbf{x}) = \mathbf{a}\mathbf{x} + 2 + \mathbf{b}.\ln\mathbf{x}$ កំនត់លើចន្លោះ $]0,+\infty[$ ចូរកំនត់ចំនួនពិត \mathbf{a} និង \mathbf{b} ដើម្បីឱ្យខ្សែកោង (\mathbf{c}) តាងអនុគមន៍ $\mathbf{y} = \mathbf{f}(\mathbf{x})$ ប៉ះនឹងបន្ទាត់ $(\mathbf{T}): \mathbf{y} = 2\mathbf{x} - 3$ ត្រង់ចំនុច $\mathbf{A}(1,-2)$ ។

១៥_ កេឱ្យអនុតមន័
$$\mathbf{f}(\mathbf{x}) = \begin{cases} \frac{\sin \mathbf{x} + \cos \mathbf{x} - \sqrt{2}}{\left(\frac{\pi}{4} - \mathbf{x}\right)^2} & \ \ \, & \$$

ក-បង្ហាញចាចពោះគ្របចនួនពត a នង b ដេល a $\neq 0$ ខ្សេកោង (C)
តាងអនុគមន៍ f(x) មានអាស៊ីមតូតទ្រេតមួយដែលគេនឹងបញ្ជាក់សមីការ ។
ខ-កំនត់ចំនួនពិត a និង b ដើម្បីឱ្យខ្សែកោង (C) តាងអនុគមន៍ f(x)
ចំរទៅនឹងបន្ទាត់ f(x)
១៧_គេឱ្យអនុគមន៍ $f(x) = \frac{\sin(\pi x)}{1-x^3}$ កំនត់គ្រប់ $x \neq 1$ ។

 $1-x^3$ តើគេអាចបន្លាយអនុគមន៍ f ឱ្យជាប់ត្រង់ចំនុច $x_0=1$ បានឬទេ ? បើអាចកំនត់រកអនុគមន៍បន្លាយតាមភាពជាប់នៃអនុគមន៍ f(x) ត្រង់ $x_0=1$

១៨_គេឱ្យអនុគមន៍ពីរ

$$F(x) = (ax^3 + bx^2 + cx + d)e^x$$
 និង $f(x) = x^3.e^x$ កំនត់លើ IR ។ កំនត់ចំនួនពិត a,b,c និង d ដើម្បីឱ្យ $F(x)$ ជាព្រឹមីទីវនៃអនុគមន៍ $f(x)$ ១៩_ គេឱ្យអនុគមន៍ $f(x) = ax + b - e^x$ មានក្រាបតំនាង (c) ។ កំនត់ចំនួនពិត a និង b ដើម្បីឱ្យខ្សែកោង (c) ប៉ះនឹងបន្ទាត់ $(d): y = x + 3$ ត្រង់ចំនុច $A(0,3)$ ។

$$(d)$$
: $y = x + 1$ ត្រង់ចំនុច $A(1,2)$ ។

២១_កេឱ្យអនុកមន័
$$f(x) = \frac{x^2 + mx + 4}{x^2 + 1}$$

ដែល x ជាចំនួនពិត និង m ជាប៉ារ៉ាម៉ែត្រ ។

ក. ចូរកំនត់តម្លៃ ${\bf m}$ ដើម្បីឱ្យអនុគមន៍ ${\bf f}({\bf x})$ មានតម្លៃបរមាត្រង់ចំនុច ${\bf x}={\bf 2}$ ។

ខ. ចូរកំនត់តម្លៃ ${f m}$ ដើម្បីឱ្យអនុគមន៍ ${f f}({f x})$ មានតម្លៃបរមាតែមួយគត់ ។

២២_ គេមានអនុគមន៍
$$f(x) = \frac{3x^2 - 7x + 6}{(x-3)^2(x+1)}$$
 ក-សរសេរ $f(x)$ ជាទំរង់ $\frac{A}{x+1} + \frac{B}{x-3} + \frac{C}{(x-3)^2}$

រួចគណនាត់លៃ A,B និង C ។

ឆំមាន់ ឆិខ ជំណោ:ត្រវាយ

ខ-គណនា $\int\limits_1^2 f(x).dx$ ដោយសរសេរចំលើយជាទំរង់ $a+\ln b$ ដែល a និងb ជាចំនួនសនិទាន ។

២៣_គេឲ្យអនុគមន៍ $\mathbf{g}(\mathbf{x}) = \frac{2\mathbf{x}^2 - 5\mathbf{x} - 1}{\mathbf{x}^3 - \mathbf{x}}$ ដែល $\mathbf{x} \neq \mathbf{0}$, $\mathbf{x} \neq \mp \mathbf{1}$ ។ \mathbf{n} .កំនត់ចំនួនពិត \mathbf{A} , \mathbf{B} និង \mathbf{C} ដើម្បីឲ្យ $\mathbf{g}(\mathbf{x}) = \frac{\mathbf{A}}{\mathbf{x}} + \frac{\mathbf{B}}{\mathbf{x} - \mathbf{1}} + \frac{\mathbf{C}}{\mathbf{x} + \mathbf{1}}$

១.ចូរគណនា $I = \int g(x).dx$ ។

ក-កំនត់ចំនួនពិត A , B , C ដើម្បីឲ្យ $f(x) = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1}$ ។

ខ_គណនាអាំងតេក្រាល $I = \int f(x).dx$ ។

២៥_គេមានអនុគមន៍ $f(x) = \frac{3x^2 - 7x + 6}{(x-3)^2(x+1)}$

ដែល $x \neq -1$ និង $x \neq 3$ ។

ក-កំនត់បីចំនួនពិត a,b,c ដើម្បីឲ្យ $f(x) = \frac{a}{x+1} + \frac{b}{x-3} + \frac{c}{(x-3)^2}$

ខ-គណនាអាំងតេក្រាល $I = \int_0^1 f(x).dx$ ។

២៦_គេឱ្យអនុគមន៍ $\mathbf{f}(\mathbf{x})$ កំនត់ និង មានដេីវេវត្រង់ចំនុច $\mathbf{x} = \mathbf{c}$ ។

ចូរស្រាយបញ្ជាក់ថា $\lim_{h\to 0} \frac{f^2(c+h)-f^2(c-h)}{h} = 4f'(c).f(c)$ ។

ឆំមាន់ ឆិខ ជំណោ:ត្រវាយ

២៧_គេឱ្យអនុគមន៍ $\mathbf{f}(\mathbf{x}) = \frac{\mathbf{e}^{\mathbf{x}}}{\mathbf{a}\mathbf{x} + \mathbf{b}}$ ដែល $\mathbf{a} \neq \mathbf{0}, \mathbf{a}, \mathbf{b} \in \mathrm{IR}$ ក-ចូរគណនាដើរវ $\mathbf{f}'(\mathbf{x})$ និង $\mathbf{f}''(\mathbf{x})$

ខ-កំនត់ចំនួនពិត a និង b ដើម្បីឱ្យអនុគមន៍ f(x) មានតម្លៃអប្បបរមាស្មើ e ចំពោះ x=1 ។

 UG_{L} គេឱ្យអនុគមន៍ f កំនត់លើ IR ដោយ $f(x) = \sin x$

ចូរបង្ហាញថាដើរវេទី n នៃអនុគមន៍ f កំនត់ដោយ $f^{(n)}(x) = \sin(x + \frac{n\pi}{2})$

២៩_ គេមានអនុគមន៍ $f(x) = \frac{4x^2 - x + 1}{x^3 + 1}$ ដែល $x \neq -1$ ។

ក-កំនត់បីចំនួនពិត a, b, c ដើម្បីឱ្យ $f(x) = \frac{a}{x+1} + \frac{bx+c}{x^2-x+1}$ ។

ខ-គណនាអាំងតេក្រាល $I = \int f(x).dx$ ។

 MO_{-} ពេមានអនុគមន៍ $f(x) = \frac{5x^2 - 14x + 13}{(x+1)(x-3)^2}$ ដែល $x \neq -1$ និង $x \neq 3$ ។

ក-កំនត់ប៊ីចំនួនពិត a, b, c ដើម្បីឱ្យ $f(x) = \frac{a}{x+1} + \frac{b}{x-3} + \frac{c}{(x-3)^2}$

ខ-គណនាអាំងតេក្រាល $I = \int f(x).dx$ ។

៣១_គេឱ្យអនុគមន៍ $f(x) = \frac{1}{x(1+x^4)}$ ដែល x ជាចំនួនពិតខុសពីសូន្យ ។

ក-ចូរកំនត់បីចំនួនពិត A ,B និង C ដើម្បីឱ្យ $f(x) = \frac{A}{x} + \frac{Bx^3 + C}{1 + x^4}$

លំមាន់ និ១ ជំណោៈស្រ្វាយ

ខ-គណនាអាំងតេក្រាល $I = \int f(x).dx$ ។

គ-ទាញរកអាំងតេក្រាល $J = \int \frac{4x^3 \ln x. dx}{(1+x^4)^2}$

 \mathbf{n} ២_គេឱ្យអនុគមន៍ $\mathbf{f}(\mathbf{x}) = \frac{1}{e^{2\mathbf{x}} + 1}$ ដែល \mathbf{x} ជាចំនួនពិត ។

ក-ចូរកំនត់បីចំនួនពិត A និង B ដើម្បីឱ្យ $f(x) = A + \frac{B.e^{2x}}{e^{2x} + 1}$

ខ-គណនាអាំងតេក្រាល $I = \int f(x).dx$ ។

គ-ទាញរកអាំងពេក្រាល $J = \int \frac{2xe^{2x}.dx}{(e^{2x}+1)^2}$

 $\Pi\Pi_{\epsilon}$ ពេទ្ធិទ្រាំងតេក្រាល $I=\int e^x \cos^2 x.dx$ និង $J=\int e^x \sin^2 x.dx$

ក-ចូរគណនា I+J និង I-J

ខ-ទាញរក I និង J

៣៤_គេឱ្យអាំងតេក្រាល:

$$I = \int \frac{1 + \cos x}{2 + \sin x + \cos x} dx$$
 និង $J = \int \frac{1 + \sin x}{2 + \sin x + \cos x} dx$

ក-គណនា I+J និង I-J

ខ-ទាញរក I និង J

ឆ្នាំង ខ្លួន ខ្លួននោះទីខាតា

៣៥_ គេឲ្យអាំងតេក្រាល
$$I_0 = \int_0^1 \frac{dt}{1+t+t^2}$$

និង
$$I_n = \int_0^1 \frac{t^n}{1+t+t^2} .dt$$
 , $(n \in IN)$

ក-ចូរគណនាតម្លៃនៃ \mathbf{I}_0 រួច ស្រាយថា (\mathbf{I}_n) ជាស្វីតចុះ។

ខ-ស្រាយបញ្ហាក់ថា
$$I_n + I_{n+1} + I_{n+2} = \frac{1}{n+1}$$
 ។

គ_ទាញឲ្យបានថា
$$\frac{1}{3(n+1)} \le I_n \le \frac{1}{3(n-1)}$$
 , $\forall n \ge 2$ ។

ទាញរកលីមីត $\lim_{n \to +\infty} (n I_n)$ ។

M៦_គេឱ្យអាំងតេក្រាល $I = \int x \cos^2 x . dx$ និង $J = \int x \sin^2 x . dx$

ក-ចូរគណនា I+J និង I-J

ខ-ទាញុរក រ និង រ

$$\mathbf{MM}$$
្រពេមនេះ $\mathbf{f}(\mathbf{x}) = \frac{6\mathbf{x}^2 - 22\mathbf{x} + 18}{(\mathbf{x} - \mathbf{1})(\mathbf{x} - 2)(\mathbf{x} - 3)}$ ដែល $\mathbf{x} \neq \{1, 2, 3\}$ ។

ក-កំនត់ប៊ីចំនួនពិត a, b, c ដើម្បីឱ្យ
$$f(x) = \frac{a}{x-1} + \frac{b}{x-2} + \frac{c}{x-3}$$
 ។

ខ-គណនាអាំងតេក្រាល $I = \int f(x).dx$ ។

សំមាត់ សិខ ជិសោ:ស្រាយ

ក-កំនត់បីចំនួនពិត A,B និង C ដើម្បីឱ្យអនុគមន៍ f(x) អាចសរសេរជារាង

$$f(x) = \frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$$
 4

ខ-គណនាអាំងពេក្រាល $I = \int_0^1 f(x) dx$ ។

 CM_{n} កេឱ្យអនុគមន៍ $f(x) = \frac{e^{x}-1}{e^{x}+1}$ កំនត់លើ IR ។

ក-ចូរសរសេរ f(x) ជារាង $f(x) = A + \frac{B.e^{-x}}{1 + e^{-x}}$

ខ-គណនាអាំងតេក្រាល $I = \int_0^1 f(x) dx$

ដោយសរសេរលទ្ធផលជារាង a + ln b ដែល a និង b ជាពីរចំនួនពិតត្រូវរក

៤៤_ ពេទ្យិអនុគមន៍ $f(x) = (x^2 + x - 7)e^x$ កំនត់លើ IR ។

ក-កំនត់ចំនួនពិត a,b និង c ដើម្បីឱ្យអនុគមន៍ $F(x) = (ax^2 + bx + c)e^x$

ជាព្រីមីទីវនៃអនុគមន៍ $\mathbf{f}(\mathbf{x})$ ។

ខ-គណនាអាំងតេក្រាល $I = \int_0^3 f(x) dx$

លំចាត់ និទ ជិះណា:ស្រាយ

៤៥_កេឱ្យអនុកមន៍ $f(x) = \frac{1}{x^2 - 1}$ ក-កំនត់ចំនួនពិត A និង B ដើម្បីឱ្យ $f(x) = \frac{A}{x-1} + \frac{B}{x+1}$ ខ-គណនាអាំងតេក្រាល $I = \int_{0}^{5} f(x) dx$ ។ $\int_{0}^{x^{2}} f(2t-1).dt = 4x^{6}$ ។ចូររកអនុគមន៍ f(x) ។ ៤៧១.ដោះស្រាយសមីការ g''(x) - 5g'(x) + 6g(x) = 0 (E) ២. កំនត់ចំលើយ $\mathbf{g}(\mathbf{x})$ មួយនៃសមីការ (\mathbf{E}) ដែល $\mathbf{g}(\mathbf{0}) = \mathbf{0}$ និង $\mathbf{g}'(\mathbf{0}) = \mathbf{1}$ ៤៨_ដោះស្រាយសមីការឌីផេរ៉ង់ស្យែល (E): y''-3y'+2y=0ដោយដឹងថា y(0) = 1 , y'(0) = 0 ។ ៤៩_គេឱ្យសមីការឌីវេរ៉ង់ស្យែល (E): $y''-4y'+4y = 4x^2 - 24x + 34$ ក-កំនត់ចំនួនពិត a,b និង c ដើម្បីឱ្យអនុគមន៍ $y_P(x) = ax^2 + bx + c$ ជាចំលើយដោយឡែកមួយរបស់សមីការ (E) ។ ខ-បង្ហាញថាអនុគមន៍ $y = y_P(x) + y_h(x)$ ជាចំលើយទូទៅរបស់ (E)

លុះត្រាតែអនុគមន៍ $\mathbf{y_h}(\mathbf{x})$ ជាចំលើយរបស់សមីការអូម៉ូសែន

$$(E'): y''-4y'+4y=0$$

គ–ដោះស្រាយសមីការ (E')រួចទាញរកចំលើយទូទៅរបស់សមីការ (E) ។

៥០_ក-ដោះស្រាយសមីការឌីផេរីង់ស្យែល (E): f''(x) - f'(x) - 6f(x) = 0

ខ-កំនត់អនុគមន៍ $\mathbf{y} = \mathbf{f}(\mathbf{x})$ ជាចំលើយមួយរបស់សមីការ (E)

បើគេដឹងថាខ្សែកោង (C) តាង f(x) ប៉ះទៅនឹងបន្ទាត់ (T): y = -x + 3

ត្រង់ចំនុច M(0,3) ។

៥១_ ពេឱ្យសមីការឌីផេរ៉ង់ស្យែល (E): y''+9y=0

ក-ដោះស្រាយសមីការ (E) ។

ខ-កំនត់អនុគមន៍ $\mathbf{f}(\mathbf{x})$ ជាចំលើយមួយរបស់សមីការ (\mathbf{E}) បើគេដឹងថា :

$$f(0) = \sqrt{3}$$
, $f'(0) = 3$

៥២_គេឱ្យសមីការឌីផេរ៉ង់ស្យែល : y''-4y = 8x - 12 (E)

ក-កំនត់អនុគមន៍ $\phi(\mathbf{x}) = a\mathbf{x} + \mathbf{b}$ ជាចំលើយដោយឡែកមួយរបស់ (\mathbf{E}) ។

ខ-រកចំលើយទូទៅរបស់សមីការ (E) ។

ឆំមាត់ ឆិ១ ជំណោ:ស្រាយ

៥៣_គេឱ្យប្រវែងប្រែប្រួលមួយ MN ដែល MN = f(x) ។

អនុគមន៍ $\mathbf{f}(\mathbf{x})$ ជាចំលើយសមីការឌីផេរ៉ង់ស្យែល :

(E):
$$f''(x) - 2f'(x) + f(x) = 0$$
 4

ក-គណនាប្រវែង MN បើគេដឹងថា f(0)=2 និង f'(0)=1 ។

ខ-កំនត់ប្រវែងអតិបរមានៃ MN ។

៥៤_គេឱ្យសមីការឌីផេរ៉ង់ស្យែល (E): y''+4y=0 ។

ក-ដោះស្រាយសមីការ (E) ។

ខ-កំនត់អនុគមន៍ $\mathbf{f}(\mathbf{x})$ ជាចំលើយមួយនៃសមីការ (\mathbf{E}) បើគេដឹងថា

$$f(0) = 1$$
 និង $f'(0) = 2\sqrt{3}$ ។

គ-ចូរសរសេរអនុគមន៍ f(x) ជារាង f(x) = k.cos(ωx + φ)

ដែល k ,ω និង φ ជាបីចំនួនពិត។

ឃ-គណនាអាំងតេក្រាល
$$I = \int_0^{\frac{\pi}{3}} \frac{dx}{f^2(x)}$$
 ។

៥៥_គេឱ្យអាំងតេក្រាល
$$I_n = \int\limits_0^1 \frac{e^{nx}}{e^x+1}.dx$$
 , $n \in IN$ ។

ក-គណនា $I_0 + I_1$, I_1 រួទាញរក I_0 ។

ខ-គណនា $I_n + I_{n+1}$ ជាអនុគមន៍នៃ n ។

៥៦_គេឱ្យអនុគមន៍ f កំនត់លើ $IR-\{-1\}$ ហើយផ្ទៀងផ្ទាត់ទំនាក់ទំនង:

$$x^{2}f(x^{3}) + \frac{1}{(1+x)^{2}}f(\frac{1-x}{1+x}) = 4x^{3}(1+x^{4})^{5}$$

ចូរគណនាអាំងតេក្រាលះ $I = \int\limits_0^1 f(x) dx$ ។

៥៧_គេសន្មត់ថា f ជាអនុគមន៍មួយកំនត់លើ IR ហើយផ្ទៀងផ្ទាត់ទំនាក់ទំនង:

$$f(x)+f(-x)=\sqrt{2-2\cos 2x}$$

ចូរគណនា
$$I = \int_{-\pi}^{\pi \over 3} f(x) dx$$
 ។

៥៨_ចូរបង្ហាញថា $\int_a^b f(x).dx = \int_a^b f(a+b-x).dx$

អនុវត្តន៍ : ចូរគណនា $I = \int_{0}^{\frac{\pi}{3}} \log_{2}(1 + \sqrt{3} \tan x).dx$

៥៨_គេឱ្យ f ជាអនុគមន៍ជាប់លើ [0,1] ។

ចូរបង្ហាញថា
$$\int_0^{\pi} x.f(\sin x).dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x).dx$$
?

អនុវត្តន៍: ចូរគណនា
$$I = \int_{0}^{\pi} \frac{x \sin x . dx}{1 + \cos^{2} x}$$
 ។

៦០_កេឱ្យ f ជាអនុគមន៍តូលើ [-a,a] ។

ក. ចូរបង្ហាញថា
$$\int_{-a}^{a} \frac{f(x).dx}{1+q^x} = \int_{0}^{a} f(x).dx$$
 , $q > 0$, $q \ne 1$ ។

2. អនុវត្តន៍ : គណនា
$$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1+3^x} dx$$

៦១_ក-គណនាអាំងតេក្រាលកំនត់ $I_n = \int\limits_0^1 (1+x)^n.dx , n \in IN$ ។

ខ-ទាញបង្ហាញថា
$$C_n^0 + \frac{1}{2}C_n^1 + \frac{1}{3}C_n^2 + \dots + \frac{1}{n+1}C_n^n = \frac{2^{n+1}-1}{n+1}$$

b២_គេមានស្ទឹត $(\mathbf{I_n})$ កំនត់ចំពោះគ្រប់ $\mathbf{n} \geq \mathbf{1}$ ដោយ

$$I_n = \frac{1}{n!} \cdot \int_0^1 (1-x)^n \cdot e^x \cdot dx$$

ក-ចូរគណនាតូ ${f I}_1$ ។

ខ-ចូរបញ្ជាក់ I_{n+1} ជាអនុគមន៍នៃ I_n រួចទាញឱ្យបានថា $I_n = e - \sum\limits_{p=0}^n \left(\frac{1}{P!} \right)$

គ-ចូររកលីមីត $\lim_{n \to +\infty} I_n$ ។

BBBBB

ध्यमद्भाष्ट्रा । क्रियाः क्रियः क्रियः क्रियः क्रियः क्रियः क्

លំមាង់និ១

គេឲ្យសមីការ $(E): z^2+iaz+a+ib=0$ ដែល $a,b\in IR$ π_- កំនត់ a និង b ដើម្បីឲ្យ $z_1=-1+i\sqrt{3}$ ជាឬសមួយរបស់ សមីការ (E) រួចគណនាឬសមួយទៀត z_2 ។ 2-ចូរសរសេរ z_1 , z_2 និង $\frac{z_1}{z_2}$ ជាទម្រង់ត្រីកោណមាត្រ ។ α -ទាញបញ្ជាក់តម្លៃប្រាកដនៃ $\cos\frac{5\pi}{12}$ និង $\sin\frac{5\pi}{12}$ ។

<u> ខ្លួមបាន</u>

ក_កំនត់ a និង b ៖

ដើម្បីថ្យ $z_1=-1+i\sqrt{3}$ ជាឬសមួយរបស់ (E)លុះណាតែ វាផ្ទៀងផ្ទាត់នឹងសមីការ គេបាន $(-1+i\sqrt{3})^2+ia(-1+i\sqrt{3})+a+ib=0$ $1-2\sqrt{3}\ i-3-ia-a\sqrt{3}+a+ib=0$ $(-2+a-a\sqrt{3})+i(-2\sqrt{3}-a+b)=0$ គេទាញ $\begin{cases} -2+a-a\sqrt{3}=0 \\ -2\sqrt{3}-a+b=0 \end{cases}$ ដោះស្រាយប្រព័ន្ឋគេបាន ៖ ដូចនេះ $a=\frac{2}{1-\sqrt{3}}=-1-\sqrt{3}$ និង $b=-1+\sqrt{3}$

ជណនាឬសមួយទៅ្ត z₂ ៖

ដោយ \mathbf{z}_1 និង \mathbf{z}_2 ជាឬសរបស់សមីការ (\mathbf{E})

នោះពាមទ្រឹស្តីបទវ្យែពយើងបាន $\mathbf{z}_1 + \mathbf{z}_2 = -\mathbf{i}\,\mathbf{a}$ នាំឲ្យ

$$z_2 = -ia - z_1 = -i(-1 - \sqrt{3}) - (-1 + i\sqrt{3}) = 1 + i$$

ដូចនេះ $\mathbf{z}_2 = 1 + \mathbf{i}$ ។

១_សរសេរ \mathbf{z}_1 , \mathbf{z}_2 និង $\frac{\mathbf{z}_2}{\mathbf{z}_1}$ ជាទម្រង់ត្រីកោណមាត្រ ៖

ឃើងបាន
$$z_1 = -1 + i\sqrt{3} = 2(-\frac{1}{2} + i.\frac{\sqrt{3}}{2}) = 2(\cos\frac{2\pi}{3} + i.\sin\frac{2\pi}{3})$$

$$z_2 = 1 + i = \sqrt{2}(\frac{\sqrt{2}}{2} + i.\frac{\sqrt{2}}{2}) = \sqrt{2}(\cos\frac{\pi}{4} + i.\sin\frac{\pi}{4})$$

និង
$$\frac{z_1}{z_2} = \frac{2}{\sqrt{2}} \left[\cos(\frac{2\pi}{3} - \frac{\pi}{4}) + i \cdot \sin(\frac{2\pi}{3} - \frac{\pi}{4}) \right] = \sqrt{2} \left(\cos\frac{5\pi}{12} + i \cdot \sin\frac{5\pi}{12} \right)$$
 ។

គ_ទាញបញ្ជាក់តម្លៃប្រាកដទៃ $\cos \frac{5\pi}{12}$ និង $\sin \frac{5\pi}{12}$

ជាមលម្រាយខាងលើយើងមាន $\frac{\mathbf{z}_1}{\mathbf{z}_2} = \sqrt{2}(\cos\frac{5\pi}{12} + \mathbf{i}.\sin\frac{5\pi}{12})$ (1)

$$\text{Hinner} \ \frac{\mathbf{z}_1}{\mathbf{z}_2} = \frac{-1 + \mathbf{i}\sqrt{3}}{1 + \mathbf{i}} = \frac{(-1 + \mathbf{i}\sqrt{3})(1 - \mathbf{i})}{2} = \frac{\sqrt{3} - 1}{2} + \mathbf{i}\frac{\sqrt{3} + 1}{2} \ (2)$$

តាម (1) និង (2) គេទាញបាន ៖

$$\cos \frac{5\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}} = \frac{\sqrt{6} - \sqrt{2}}{4}$$
 $\sin \frac{5\pi}{12} = \frac{\sqrt{3} + 1}{2\sqrt{2}} = \frac{\sqrt{6} + \sqrt{2}}{4}$

លំខាង់ខ្ពស

គេឲ្យអនុគមន៍ f(x) កំនត់លើ IRដោយ ៖

$$f(x) = \ln(x^2 - x\sqrt{2} + 1) - \ln(x^2 + x\sqrt{2} + 1)$$
 ក_ចូរគណទាតម្លៃ $f(-\sqrt{2})$, $f(0)$ និង $f(\sqrt{2})$ ។ បង្ហាញថា $f(x)$ ជាអនុគមន៍សេស ។ ខ-គណទាដេរីវេ $f'(x)$ និង $f''(x)$ ។

ក.គណនាតម្លៃ
$$\mathbf{f}(-\sqrt{2})$$
 , $\mathbf{f}(\mathbf{0})$ និង $\mathbf{f}(\sqrt{2})$

មាន
$$f(x) = \ln(x^2 - x\sqrt{2} + 1) - \ln(x^2 + x\sqrt{2} + 1)$$

ឃើងបាន
$$f(-\sqrt{2}) = \ln(2+2+1) - \ln(2-2+1) = \ln 5$$
 $f(0) = \ln(0-0+1) - \ln(0+0+1) = 0$

$$f(\sqrt{2}) = \ln(2-2+1) - \ln(2+2+1) = -\ln 5$$

ដូចនេះ
$$f(-\sqrt{2}) = \ln 5$$
 , $f(0) = 0$, $f(\sqrt{2}) = \ln 5$

បង្ហាញថា f(x) ជាអនុគមន៍លេល ៖

ឃើងបាន
$$f(-x) = \ln(x^2 + x\sqrt{2} + 1) - \ln(x^2 - x\sqrt{2} + 1) = -f(x)$$

សំមាត់ សិខ ជំណោ:ស្រាយ

ដូចនេះ f(x) ជាអនុគមន៍លេស ។ ១_គណទាដេរីវេ f'(x)និង f''(x) បើឯបាន $f'(x) = \frac{(x^2 - x\sqrt{2} + 1)'}{(x^2 - x\sqrt{2} + 1)} - \frac{(x^2 + x\sqrt{2} + 1)'}{(x^2 + x\sqrt{2} + 1)}$ $= \frac{2x - \sqrt{2}}{x^2 - x\sqrt{2} + 1} - \frac{2x + \sqrt{2}}{x^2 + x\sqrt{2} + 1}$ $=\frac{(2x-\sqrt{2})(x^2+x\sqrt{2}+1)-(2x+\sqrt{2})(x^2-x\sqrt{2}+1)}{(x^2-x\sqrt{2}+1)(x^2+x\sqrt{2}+1)}$ $=\frac{2\sqrt{2}\ x^2-2\sqrt{2}}{x^4+1}=\frac{2\sqrt{2}\ (x^2-1)}{x^4+1}$ ដូចនេះ $\mathbf{f'}(x)=2\sqrt{2}\ \frac{x^2-1}{x^4+1} \quad \text{ } \mathbf{Y}$ ម្យ៉ាងទ្យេត $\mathbf{f''}(x)=2\sqrt{2}\ \frac{(x^2-1)'(x^4+1)-(x^4+1)'(x^2-1)}{(x^4+1)^2}$ $=2\sqrt{2}\,\frac{2x(x^4+1)-4x^3(x^2-1)}{(x^4+1)^2}$ $=2\sqrt{2} \frac{2x^5+2x-4x^5+4x^3}{(x^4+1)^2}$ $=-4\sqrt{2}\;\frac{x\;(x^4-2x^2-1)}{(x^4+1)^2}$ ដូចនេះ $\boxed{f''(x)=-4\sqrt{2}\;\frac{x\;(x^4-2x^2-1)}{(x^4+1)^2}} \label{eq:fig:fit}$ ។

លំខាត់ន៍៣

គេឲ្យចំនួនកុំផ្លិច z = x + i.y ដែល x និង y ជាពីរចំនួនពិត ។ ចូរកំនត់តម្លៃ x និង y បើគេដឹងថា៖

$$(3+2i)z + (1+3i)\overline{z} = \frac{10}{2-i}$$

(\overline{z} ជាចំនួនកុំផ្លិចឆ្លាស់នៃ z) ។

<u> ជំណោះស្រាយ</u>

កំនត់តម្លៃ x និង y

គេមាន
$$(3+2i)z + (1+3i)\overline{z} = \frac{10}{2-i}$$

ដោយ
$$z = x + i.y$$
 ទាំថ្យ $\overline{z} = x - i.y$

គេបាន
$$(3+2i)(x+iy) + (1+3i)(x-iy) = \frac{10}{2-i}$$

$$3x + 3iy + 2ix - 2y + x - iy + 3ix + 3y = \frac{10(2+i)}{5}$$

$$(4x + y) + i.(5x + 2y) = 4 + 2i$$

គេទាញបាន
$$\begin{cases} 4x + y = 4 \\ 5x + 2y = 2 \end{cases}$$

គេមាន
$$\mathbf{D} = \begin{vmatrix} 4 & 1 \\ 5 & 2 \end{vmatrix} = 8 - 5 = 3$$
 , $\mathbf{D}_{\mathbf{x}} = \begin{vmatrix} 4 & 1 \\ 2 & 2 \end{vmatrix} = 8 - 2 = 6$

ឆំមាន់ ឆិខ ជំណោ:ត្រវាយ

<u> छंछा संबंद</u>

គេអោយចំនួនកុំផ្ចិច $z=\cos\frac{4\pi}{7}+i.\sin\frac{4\pi}{7}$ ។ ចូរសរសេរ $(1+z)^4$ ជារាងត្រីកោណមាត្រ ។

<u> ಜನ್ಯುಚಿಕಾಣ</u>

សរសេរ $(1+z)^4$ ជារាងត្រីកោណមាត្រ៖

គេទាញ

ឆំមាន់ ឆិខ ជំណោ:ត្រវាយ

$$(1+z)^4 = \left[2\cos\frac{2\pi}{7}(\cos\frac{2\pi}{7} + i.\sin\frac{2\pi}{7})\right]^4$$
 $= 16\cos^4\frac{2\pi}{7}\left(\cos\frac{8\pi}{7} + i.\sin\frac{8\pi}{7}\right)$
ដូចនេះ $\left[(1+z)^4 = 16\cos^4\frac{2\pi}{7}\left(\cos\frac{8\pi}{7} + i.\sin\frac{8\pi}{7}\right)\right]^4$

លំមាត់នី៥

គេអោយចំនួនកុំផ្លិច :
$$\mathbf{z}_1 = \frac{\sqrt{6} - \mathbf{i}.\sqrt{2}}{2}$$
 និង $\mathbf{z}_2 = 1 - \mathbf{i}$

ក.ចូរសរសេរ z_1 , z_2 និង $Z = \frac{z_1}{z_2}$ ជារាងត្រីកោណមាត្រ។

ខ.ចូរសរសេរ $\mathbf{Z} = \frac{\mathbf{z_1}}{\mathbf{z_2}}$ ជារាងពិជគណិត ។

គ.ទាញអោយបានថា
$$\cos \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}$$
 និង $\sin \frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}$ ។

<u> ಕ್ಷೀರ್ಚಾಚಿಸಿ ದಾ</u>

ក.សរសេរ z_1 , z_2 និង $Z = \frac{z_1}{z_2}$ ជារាងត្រីកោណមាត្រ:

$$\text{Thus} \ \mathbf{z}_1 = \frac{\sqrt{6} - \mathbf{i}\sqrt{2}}{2} = \sqrt{2} \left(\frac{\sqrt{3}}{2} - \mathbf{i} \cdot \frac{1}{2} \right) = \sqrt{2} \left(\cos \frac{\pi}{6} - \mathbf{i} \cdot \sin \frac{\pi}{6} \right)$$

ដូចនេះ
$$\mathbf{z}_1 = \sqrt{2} \left[\cos(-\frac{\pi}{6}) + i.\sin(-\frac{\pi}{6}) \right]$$
 ។

ឆ្នាំង ខ្លួន ខ្លួននោះទីខាតា

ពេមាន
$$\mathbf{z}_2=1-\mathbf{i}=\sqrt{2}\bigg(\frac{\sqrt{2}}{2}-\mathbf{i}.\frac{\sqrt{2}}{2}\bigg)=\sqrt{2}\bigg(\cos\frac{\pi}{4}-\mathbf{i}.\sin\frac{\pi}{4}\bigg)$$
 ដូចនេះ
$$\mathbf{z}_2=\sqrt{2}\bigg[\cos(-\frac{\pi}{4})+\mathbf{i}.\sin(-\frac{\pi}{4})\bigg]$$
 ។
$$\mathbf{THIS}\ \mathbf{Z}=\frac{\mathbf{z}_1}{\mathbf{z}_2}=\frac{\sqrt{2}}{\sqrt{2}}\bigg[\cos(-\frac{\pi}{6}+\frac{\pi}{4})+\mathbf{i}.\sin(-\frac{\pi}{6}+\frac{\pi}{4})\bigg]$$
 ដូចនេះ
$$\mathbf{Z}=\cos\frac{\pi}{12}+\mathbf{i}.\sin\frac{\pi}{12}$$
 ។

ខ. សរសេរ $z = \frac{z_1}{z_2}$ ជារាងពិជគណិត

ពេហន
$$Z=rac{\sqrt{6}-i\sqrt{2}}{2(1-i)}=rac{(\sqrt{6}-i\sqrt{2})(1+i)}{2(1-i)(1+i)}=rac{\sqrt{6}+i\sqrt{6}-i\sqrt{2}+\sqrt{2}}{4}$$
 ដូចនេះ $Z=rac{\sqrt{6}+\sqrt{2}}{4}+i.rac{\sqrt{6}-\sqrt{2}}{4}$ ។

គ. ទាញអោយបានថា $\cos \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}$ និង $\sin \frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}$

តាមសម្រាយខាងលើគេមាន:

$$Z = \cos\frac{\pi}{12} + i.\sin\frac{\pi}{12}$$
 (1) St $Z = \frac{\sqrt{6} + \sqrt{2}}{4} + i.\frac{\sqrt{6} - \sqrt{2}}{4}$ (2)

ផ្ទឹមទំនាក់ទំនង (1) និង (2) គេបាន:

$$\cos\frac{\pi}{12} + i.\sin\frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4} + i.\frac{\sqrt{6} - \sqrt{2}}{4}$$
 ដូចនេះ
$$\cos\frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}$$
 និង
$$\sin\frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}$$
 ។

ឆំមាន់ ឆិខ ជំណោ:ស្រាយ

គណនាលីមីតខាងក្រោម ៖

$$\text{fi. } \lim_{x\to 0}\frac{e^x+2\sin x-1}{x}$$

$$3. \lim_{n\to+\infty} \left(\frac{2n}{2n-1}\right)^{n+1}$$

<u> ខ្លួម ខ្លួ</u>

គណនាលីមីតខាងក្រោម ៖

 $\text{fi. } \lim_{x\to 0}\frac{e^x+2\sin x-1}{x}$

<u> សំមាត់នី៧</u>

ចូរគណនាលីមីត ៖

$$\text{fi.} \lim_{x \to 0} \frac{e^{-x^2} - \cos x}{x^2}$$

$$9. \lim_{x\to 0}\frac{e^x-e^{-x}}{\sin x}$$

<u> ಜಿಣು:ಸ್ಟ್ರಾಕ್ಟ್ರಾಕ್ಟ್</u>

គណទាលីមីត

$$\begin{array}{ll} & \lim_{x\to 0} \frac{e^{-x^2}-\cos x}{x^2} \\ & = \lim_{x\to 0} \frac{(e^{-x^2}-1)+(1-\cos x)}{x^2} = \lim_{x\to 0} \frac{e^{-x^2}-1+2\sin^2\frac{x}{2}}{x^2} \\ & = \lim_{x\to 0} \frac{e^{-x^2}-1}{x^2} + \lim_{x\to 0} \frac{2\sin^2\frac{x}{2}}{x^2} = -1 + \frac{1}{2} = -\frac{1}{2} \\ & \text{Hild S: } \left[\frac{e^{-x^2}-\cos x}{x^2} + \frac{1}{2} \right] \\ & = \lim_{x\to 0} \frac{e^{-x^2}-\cos x}{x^2} = -\frac{1}{2} \\ & = \lim_{x\to 0} \frac{e^x-e^{-x}}{\sin x} \\ & = \lim_{x\to 0} \frac{(e^x-1)-(e^{-x}-1)}{\sin x} = \lim_{x\to 0} \frac{e^x-1}{\sin x} - \lim_{x\to 0} \frac{e^{-x}-1}{\sin x} \\ & = \lim_{x\to 0} \frac{e^x-1}{x} \cdot \frac{x}{\sin x} + \lim_{x\to 0} \frac{e^{-x}-1}{-x} \cdot \frac{x}{\sin x} = 1 + 1 = 2 \\ & \text{Hild Sign S: } \left[\frac{e^x-e^{-x}}{\sin x} + \frac{1}{\sin x} + \frac{1}{2} \right] \\ & = \lim_{x\to 0} \frac{e^x-e^{-x}}{\sin x} = 2 \\ & = \lim_{x\to 0} \frac{e^x-e^{-x}}{\sin x} =$$

លំមាត់ និ១ ជំណោៈស្រាយ

លំខាត់ន៍៤

ចូរគណនាលីមីតខាងក្រោម ៖

$$\mathbf{\tilde{n}.} \quad \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^{n+5}$$

$$3. \lim_{n\to+\infty} \left(\frac{n-1}{n+1}\right)^{n+2}$$

គណទាលីមីត ៖

$$\text{fi.} \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^{n+5}$$

ពាង
$$x = \frac{1}{n}$$
 ពាលណា $n \to +\infty$ នោះ $x \to 0$

ដែល
$$\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^{n+5} = \lim_{x \to 0} (1 + x)_x^{\frac{1}{n} + 5} = \lim_{x \to 0} (1 + x)_x^{\frac{1}{n}} \cdot (1 + x)^5 = e$$

ដូចនេះ
$$\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^{n+5} = e$$

។

ដូចនេះ
$$\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^{n+5} = e \quad \forall$$

$$3. \lim_{n\to+\infty} \left(\frac{n-1}{n+1}\right)^{n+2}$$

តាង
$$1+x=rac{n-1}{n+1}$$
 ទាំឲ្យ $x=-rac{2}{n+1}$ និង $n=-rac{2+x}{x}$

mum
$$n \rightarrow +\infty$$
 is: $x \rightarrow 0$

$$\lim_{n \to +\infty} \left(\frac{n-1}{n+1} \right)^{n+2} = \lim_{x \to 0} (1+x)^{-\frac{2+x}{x}+2} = \lim_{x \to 0} (1+x)^{-\frac{2}{x}+1}$$

លំចាត់ និទ ជិះណា:ស្រាយ

$$= \lim_{x \to 0} \left[(1+x)^{\frac{1}{x}} \right]^{-2} . (1+x) = e^{-2} = \frac{1}{e^2}$$
Here:
$$\lim_{n \to +\infty} \left(\frac{n-1}{n+1} \right)^{n+2} = \frac{1}{e^2}$$

<u> លំមាង់នី៩</u>

កំនត់ចំនួនពិត x និង y ដើម្បីអោយ $(x+1)+(3+2y).i = \frac{7+9i}{3+2i}$

<u> ಜೋಸಿಕಾಕಾ</u>

កំនត់ចំនួនពិត x និង y

ពេមាន
$$(x+1)+(3+2y).i = \frac{7+9i}{3+2i}$$

$$= \frac{(7+9i)(3+2i)}{(3+2i)(3-2i)}$$

$$= \frac{21-14i+27i-18i^2}{9-4i^2}$$

$$= \frac{39+13i}{13} = 3+i$$
ពេបាន $\begin{cases} x+1=3\\ 3+2y=1 \end{cases}$ នាំអោយ $\begin{cases} x=2\\ y=-1 \end{cases}$

<u> លំមាងនី១០</u>

គេអោយ $f(z)=z^3-2(\sqrt{3}+i).z^2+4(1+i\sqrt{3}).z-8i$ ក.ចូរបង្ហាញថា $\forall z\in \not\in f(z)=(z-2i)(z^2-2\sqrt{3}z+4)$ ខ.ដោះស្រាយសមីការ f(z)=0 ក្នុងសំណុំកុំផ្ហិច ។

<u> ជំណោះស្រាយ</u>

ក. បង្ហាញថា $\forall z \in \emptyset$: $f(z) = (z-2i)(z^2-2\sqrt{3}z+4)$ យើងមាន $f(z) = (z-2i)(z^2-2\sqrt{3}z+4)$ ដោយពន្លាតអនុគមន៍នេះយើងបាន :

$$\begin{split} f(z) &= z^3 - 2\sqrt{3}z + 4z - 2i(z^2 - 2\sqrt{3}z + 4) \\ &= z^3 - 2\sqrt{3}.z^2 + 4z - 2iz^2 + 4\sqrt{3}iz - 8i \\ &= z^3 - 2\Big(\sqrt{3} + i\Big).z^2 + 4\Big(1 + i\sqrt{3}\Big).z - 8i \quad \widehat{\mathfrak{N}} \widehat{\mathfrak{n}} \\ & \mbox{ } \forall z \in \mathscr{C} \ f(z) = \big(z - 2i\big) \Big(z^2 - 2\sqrt{3}z + 4\Big) \end{split}$$

ខ. ដោះស្រាយសមីការ

លំមាត់និ១១

ចូរគណនាលីមីត:

$$\text{ fi. } \lim_{x \to 0} \frac{1 - \cos 2x + x \sin 2009x}{x^2}$$

2.
$$\lim_{x \to 3} \frac{x^3 - 3x^2 + (a - 1)x + 3 - 3a}{x^2 - 4x + 3}$$

<u> ಜೋಸಿಕು ಹಾ</u>

$$\begin{array}{l} \text{fi. } \lim_{x\to 0} \frac{1-\cos 2x + x \sin 2009x}{x^2} \quad \text{thu } 1-\cos 2x = 2\sin^2 x \\ = \lim_{x\to 0} \frac{2\sin^2 x + x \sin 2009x}{x^2} \\ = \lim_{x\to 0} \left(2.\frac{\sin^2 x}{x^2} + \frac{\sin 2009x}{2009x}.2009\right) \\ = 2 + 2009 = 2011. \\ \text{2. } \lim_{x\to 3} \frac{x^3 - 3x^2 + (a-1)x + 3 - 3a}{x^2 - 4x + 3} \\ = \lim_{x\to 3} \frac{\left(x^3 - 3x^2\right) + \left(a - 1\right)x - 3(a - 1)}{\left(x^2 - x\right) - \left(3x - 3\right)} \\ = \lim_{x\to 3} \frac{x^2(x-3) + (a-1)(x-3)}{x(x-1) - 3(x-1)} = \lim_{x\to 3} \frac{(x-3)\left(x^2 + a - 1\right)}{(x-1)(x-3)} \\ = \lim_{x\to 3} \frac{x^2 + a - 1}{x-1} = \frac{9 + a - 1}{3-1} = \frac{a+8}{2}. \end{array}$$

លំចាត់ និទ ជិះនោះស្រាយ

លំខាងខ្លួ១២

គេអោយអនុគមន៍ $f(x) = x^3 - 6x^2 + 9x - 3$ ក.បង្ហាញថាមានតំលៃ x_0 ដែល $1 < x_0 < 2$ ហើយ $f(x_0) = 0$ ។ ខ.គណនាដើរវេ f'(x) ហើយសិក្សាសញ្ញានៃ f'(x) ។ សង់ពារាងអថេរភាពនៃ f(x) ។

<u> ខ្លួនឃោះស្រាតា</u>

ក-បង្ហាញថាមានតំលៃ \mathbf{x}_0 ដែល $\mathbf{1} < \mathbf{x}_0 < \mathbf{2}$ ហើយ $\mathbf{f}(\mathbf{x}_0) = \mathbf{0}$ $\mathbf{f}(\mathbf{x})$ ជាអនុគមន៍កំនត់ជាប់លើ IR

គេមាន $f(1)=1^3-6.1^2+9.1-3=1$ និង $f(2)=2^3-6.2^2+9.2-3=-1$ ដោយ f(1).f(2)=-1<0 តាមទ្រឹស្តីបទតំលៃកណ្តាលមានតំលៃ \mathbf{x}_0

ដែល $1 < x_0 < 2$ ហើយ $f(x_0) = 0$ ។

ខ-គណនាដេរីវេ $\mathbf{f}'(\mathbf{x})$ ហើយសិក្សាសញ្ញានៃ $\mathbf{f}'(\mathbf{x})$

យើងបាន $f'(x) = 3x^2 - 12x + 9$

សមីការ $f'(x) = 3x^2 - 12x + 9 = 0$ មានឬស $x_1 = 1$, $x_2 = 3$ ។

X	$-\infty$	1	3	
	+ ∞			
f'(x)				

សំមាត់ និ១ ជំណោ:ស្រាយ

តាមតារាងខាងលើគេបាន

$$f'(x)>0$$
 ចំពោះ $x\in]-\infty$, 1 $[U]_3$, $+\infty[$ $f'(x)<0$ ចំពោះ $x\in]_1$, 3 $[$ ។ សង់តារាងអឋេរភាពនៃ $f(x)$

គេមាន f(1) = 1 និង f(3) = -3

x	- 8	1	3	+∞
f'(x)				
f(x)	*			*
		•		

ឆំមាន់ ឆិខ ជំណោ:ស្រាយ

<u> ខំមាងនិ១៣</u>

តេមានអនុគមន៍ $\mathbf{f}(\mathbf{x}) = \sqrt{3\mathbf{x}+1}$ កំនត់លើ $\left[-\frac{1}{3},+\infty\right]$

ក. ចំពោះគ្រប់
$$\mathbf{x} \in [1,5]$$
 ចូរបង្ហាញថា $\frac{3}{8} \le \mathbf{f'}(\mathbf{x}) \le \frac{3}{4}$ ។

ខ. ដោយប្រើវិសមភាពកំណើនមានកំនត់ទៅនឹងអនុគមន៍ f ចំពោះគ្រប់

$$x \in [1,5]$$
 ចូរបង្ហាញថា $\frac{3}{8}x + \frac{13}{8} \le \sqrt{3x+1} \le \frac{3}{4}x + \frac{5}{4}$

<u> ខ្លួម ខ</u>

ក. ចំពោះគ្រប់ $\mathbf{x} \in [1,5]$ បង្ហាញថា $\frac{3}{8} \le \mathbf{f'}(\mathbf{x}) \le \frac{3}{4}$

ពេមាន
$$f(x) = \sqrt{3x+1}$$
 ទាំឱ្យ $f'(x) = \frac{3}{2\sqrt{3x+1}}$

ចំពោះគ្រប់ $x \in [1,5]$ គេមាន $1 \le x \le 5$ ឬ $4 \le 3x + 1 \le 16$

$$\frac{1}{4} \le \frac{1}{\sqrt{3x+1}} \le \frac{1}{2}$$
$$\frac{3}{8} \le \frac{3}{2\sqrt{3x+1}} \le \frac{3}{4}$$

ដូចនេះ

$$\frac{3}{8} \le f'(x) \le \frac{3}{4}$$
 ចំពោះគ្រប់ $x \in [1,5]$ ។

លំខាត់ និខ ជិះនោះស្រាយ

2. បង្ហាញថា
$$\frac{3}{8}x + \frac{13}{8} \le \sqrt{3x+1} \le \frac{3}{4}x + \frac{5}{4}$$
 ចំពោះគ្រប់ $x \in [1,5]$ គេមាន $\frac{3}{8} \le f'(x) \le \frac{3}{4}$ ។ គាមទ្រឹស្តីបទវិសមភាពកំណើនមានកំនត់ ចំពោះ $x \ge 1$ គេមាន $\frac{3}{8}(x-1) \le f(x) - f(1) \le \frac{3}{4}(x-1)$ ដោយ $f(x) = \sqrt{3x+1}$ គេមាន $\frac{3}{8}x - \frac{3}{8} \le \sqrt{3x+1} - 2 \le \frac{3}{4}x - \frac{3}{4}$ ទាំឱ្យ $\frac{3}{8}x + \frac{13}{8} \le \sqrt{3x+1} \le \frac{3}{4}x + \frac{5}{4}$ ។ ដូចនេះ $\boxed{\frac{3}{8}x + \frac{13}{8}} \le \sqrt{3x+1} \le \frac{3}{4}x + \frac{5}{4}$ ។

លំមាត់និ១៤

គេឱ្យអនុគមន៍ $\mathbf{f}(\mathbf{x}) = \mathbf{a}\mathbf{x} + 2 + \mathbf{b}.\ln\mathbf{x}$ កំនត់លើចន្លោះ $]0,+\infty[$ ចូរកំនត់ចំនួនពិត \mathbf{a} និង \mathbf{b} ដើម្បីឱ្យខ្សែកោង (\mathbf{c}) តាងអនុគមន៍ $\mathbf{y} = \mathbf{f}(\mathbf{x})$ ចំនឹងបន្ទាត់ $(\mathbf{T}): \mathbf{y} = 2\mathbf{x} - 3$ ត្រង់ចំនុច $\mathbf{A}(1,-2)$ ។

<u> ಕ್ಷೀರ್ಚಾಣಾಣ</u>

កំនត់ចំនួនពិត a និង b

ដើម្បីឱ្យខ្សែកោង (c) តាងអនុគមន៍ អនុគមន៍ y=f(x) ប៉ះនឹងបន្ទាត់

ឆ្នុំសាង ខ្លួច ខ្លួមឃាៈវិសាតា

$$(T): y = 2x - 3 \quad \text{phisiss A}(1,-2) \quad \text{operation } \begin{cases} f'(1) = 2 \\ f(1) = -2 \end{cases}$$
 ជាមាន $f(x) = ax + 2 + b \ln x \quad \text{stime fais } x \in]0,+\infty[$ ជាមាន $f'(x) = (ax + 2 + b \cdot \ln x)' = a + \frac{b}{x}$ ជាមាន
$$\begin{cases} f'(1) = a + b = 2 \\ f(1) = a + 2 + b \cdot \ln 1 = -2 \end{cases} \quad \text{sign} \begin{cases} b = 2 - a = 6 \\ a = -4 \end{cases}$$
 ដូចនេះ
$$a = -4 \quad , b = 6 \qquad \text{T}$$

លំមាត់និ១៥

គេឱ្យអនុតមន័
$$\mathbf{f}(\mathbf{x}) = \begin{cases} \frac{\sin \mathbf{x} + \cos \mathbf{x} - \sqrt{2}}{\left(\frac{\pi}{4} - \mathbf{x}\right)^2} & \text{iff} \quad \mathbf{x} \neq \frac{\pi}{4} \\ -\frac{\sqrt{2}}{2} & \text{iff} \quad \mathbf{x} = \frac{\pi}{4} \end{cases}$$

ចូរសិក្សាភាពជាប់នៃអនុគមន៍ \mathbf{f} ត្រង់ចំនុច $\mathbf{x}_0 = \frac{\pi}{4}$ ។

<u> ಜ್ಯೋಚಾರ್</u>

សិក្សាភាពជាប់នៃអនុគមន៍
$$f$$
 ត្រង់ចំនុច $x_0=\frac{\pi}{4}$ គេមាន $\lim_{x\to \frac{\pi}{4}} f(x) = \lim_{x\to \frac{\pi}{4}} \frac{\sin x + \cos x - \sqrt{2}}{(\frac{\pi}{4} - x)^2}$

លំចាត់ និទ ជិះណា:ស្រាយ

គាង
$$t=\frac{\pi}{4}-x$$
 ទាំង្យ $x=\frac{\pi}{4}-t$

កាលណា $x\to\frac{\pi}{4}$ នោះ $t\to 0$

នោហាន $\lim_{x\to\frac{\pi}{4}}f(x)=\lim_{t\to 0}\frac{\sin(\frac{\pi}{4}-t)+\cos(\frac{\pi}{4}-t)-\sqrt{2}}{t^2}$

$$=\lim_{t\to 0}\frac{\sin\frac{\pi}{4}\cos t-\sin t\cos\frac{\pi}{4}+\cos\frac{\pi}{4}\cos t+\sin\frac{\pi}{4}\sin t-\sqrt{2}}{t^2}$$

$$=\lim_{t\to 0}\frac{\frac{\sqrt{2}}{2}\cos t-\frac{\sqrt{2}}{2}\sin t+\frac{\sqrt{2}}{2}\cos t+\frac{\sqrt{2}}{2}\sin t-\sqrt{2}}{t^2}$$

$$=\lim_{t\to 0}\frac{\sqrt{2}\cos t-\sqrt{2}}{t^2}=\lim_{t\to 0}\frac{\sqrt{2}(\cos t-1)}{t^2}=\frac{-2\sqrt{2}\sin^2\frac{t}{2}}{t^2}$$

$$=-\frac{\sqrt{2}}{2}.\lim_{t\to 0}\frac{\sin^2\frac{t}{2}}{(\frac{t}{2})^2}=-\frac{\sqrt{2}}{2}=f(\frac{\pi}{4})$$

ដោយ $\lim_{x\to\frac{\pi}{4}}f(x)=f(\frac{\pi}{4})=-\frac{\sqrt{2}}{2}$

សំមាន់ និទ ជំណោ:ស្រាយ

គេឱ្យអនុគមន៍ $f(x) = ax + b - \frac{\ln x}{x}$ ដែល x > 0 ហើយ a និង b ជាចំនួនពិត ។ $f(x) = ax + b - \frac{\ln x}{x}$ ក-បង្ហាញថាចំពោះគ្រប់ចំនួនពិត a និង b ដែល $a \neq 0$ ខ្សែកោង f(x) តាងអនុគមន៍ f(x) មានអាស៊ីមតូតទ្រេតមួយដែលគេនឹងបញ្ជាក់សមីការ ។ f(x) ចំនួនពិត f(x) ចិះទៅនឹងបន្ទាត់ f(x) ប៉ះទៅនឹងបន្ទាត់ f(x)

<u> ខ្លួម ខ្លួ</u>

ក.បង្ហាញថាខ្សែកោង (C) តាងអនុគមន៍ f(x) មានអាស៊ីមតូតទ្រេតមួយ គេមាន $f(x)=ax+b-rac{\ln x}{x}$ ដែល x>0

ដោយ $\lim_{x\to +\infty} \frac{\ln x}{x} = 0$ នាំឱ្យបន្ទាត់ y = ax + b ជាអាស៊ីមតូតច្រេតនៃ(C) ។ ដូចនេះ ខ្សែកោង (C) តាងអនុគមន៍ f(x) មានអាស៊ីមតូតច្រេត y = ax + b ។ ខ.កំនត់ចំនួនពិត a និង b

ពេមាន
$$f(x) = ax + b - \frac{\ln x}{x}$$

ពេហន
$$f'(x) = (ax + b)' - \frac{(\ln x)' \cdot x - (x)' \cdot \ln x}{x^2} = a - \frac{1 - \ln x}{x^2}$$
 ។

ដើម្បីឱ្យខ្សែកោង (C) តាងអនុគមន៍ f(x) ប៉ះទៅនឹងបន្ទាត់ (T): y=x+4 ។

ឆំមាត់ ឆិខ ជំណោ:ស្រាយ

ត្រង់ចំនុច
$$A(1,5)$$
 លុះត្រាតៃ $\begin{cases} f'(x_A) = a_T \\ f(x_A) = y_A \end{cases}$ ទាំឱ្យ $\begin{cases} a-1=1 \\ a+b=5 \end{cases}$ ឬ $\begin{cases} a=2 \\ b=3 \end{cases}$ ដូចនេះ $\begin{cases} a=2 \\ b=3 \end{cases}$

គេឱ្យអនុគមន៍ $f(x)=\frac{\sin(\pi x)}{1-x^3}$ កំនត់គ្រប់ $x\neq 1$ ។ តើគេអាចបន្លាយអនុគមន៍ f ឱ្យជាប់ត្រង់ចំនុច $x_0=1$ បានឬទេ ? បើអាច ចូរកំនត់រកអនុគមន៍បន្លាយតាមភាពជាប់នៃអនុគមន៍ f(x) ត្រង់ចំនុច $x_0=1$ ។

<u> ಕ್ಷೀರ್ಣಾಭಾಕಾ</u>

កំនត់រកអនុគមន៍បន្លាយតាមភាពជាប់

ពេមាន
$$\lim_{x\to 1} f(x) = \lim_{x\to 1} \frac{\sin(\pi x)}{1-x^3}$$

តាង
$$t=1-x$$
 នាំឱ្យ $x=1-t$ ។

$$mom x \rightarrow 1$$
 is $t \rightarrow 0$

thus
$$\lim_{x\to 1} f(x) = \lim_{t\to 0} \frac{\sin(\pi-\pi t)}{1-(1-t)^3}$$

ឆ្នាំង ខ្លួន ខ្លួននោះទីខាតា

$$= \lim_{t \to 0} \frac{\sin(\pi t)}{1 - 1 + 3t - 3t^2 + t^3}$$

$$= \lim_{t \to 0} \frac{\sin(\pi t)}{t(3 - 3t + t^2)}$$

$$= \lim_{t \to 0} \frac{\sin(\pi t)}{\pi t} \cdot \frac{\pi}{3 - 3t + t^2} = \frac{\pi}{3}$$

ដោយ $\displaystyle \lim_{x \to 1} f(x) = \frac{\pi}{3}$ កំនត់ នោះគេអាចបន្លាយអនុគមន៍ f(x) ឱ្យជាប់

ត្រង់ចំនុច $\mathbf{x}_0 = \mathbf{1}$ ។

បើយើងតាង $\mathbf{g}(\mathbf{x})$ ជាអនុគមន៍បន្លាយតាមភាពជាប់នៃអនុគមន៍ $\mathbf{f}(\mathbf{x})$

ត្រង់ចំនុច $\mathbf{x}_0 = \mathbf{1}$

ដូចនេះ
$$\mathbf{g}(\mathbf{x}) = \begin{cases} \mathbf{f}(\mathbf{x}) = \frac{\sin(\pi \mathbf{x})}{1 - \mathbf{x}^3} & \text{ for } \mathbf{x} \neq 1 \\ \mathbf{f}(1) = \frac{\pi}{3} & \text{ for } \mathbf{x} = 1 \end{cases}$$

លំមាត់និ១៤

កេឱ្យអនុកមន៍ពីរ

 $F(x) = (ax^3 + bx^2 + cx + d)e^x$ និង $f(x) = x^3.e^x$ កំនត់លើ IR ។ កំនត់ចំនួនពិត a,b,c និង d ដើម្បីឱ្យF(x)ជាព្រីមីទីវនៃអនុគមន៍ f(x)

<u> ಜೋಚಾಚಿಕಾಕಾ</u>

កំនត់ចំនួនពិត a,b,c និង d

គេមាន
$$F(x) = (ax^3 + bx^2 + cx + d)e^x$$
 និង $f(x) = x^3.e^x$

ដើម្បីឱ្យ F(x) ជាព្រីមីទីវនៃអនុគមន៍ f(x) លើ IR លុះត្រាតែ

$$\forall x \in IR : F'(x) = f(x)$$

$$F'(x) = (ax^{3} + bx^{2} + cx + d)' \cdot e^{x} + (e^{x})' \cdot (ax^{3} + bx^{2} + cx + d)$$

$$= (3ax^{2} + 2bx + c)e^{x} + e^{x} \cdot (ax^{3} + bx^{2} + cx + d)$$

$$= [ax^{3} + (3a + b)x^{2} + (2b + c)x + (c + d)]e^{x}$$

ពេហ្ន
$$[ax^3 + (3a + b)x^2 + (2b + c)x + (c + d)]e^x = x^3.e^x$$

$$\label{eq:continuity} \begin{cases} a=1\\ 3a+b=0\\ 2b+c=0 \end{cases} \text{ siaj } \begin{cases} a=1\\ b=-3\\ c=6\\ d=-6 \end{cases}$$

ដូចនេះ
$$a=1$$
 , $b=-3$, $c=6$, $d=-6$ ។

លំចាង់និ១៩

គេឱ្យអនុគមន៍ $f(x) = ax + b - e^x$ មានក្រាបតំនាង (c) ។ កំនត់ចំនួនពិត a និង b ដើម្បីឱ្យខ្សែកោង (c) ប៉ះនឹងបន្ទាត់(d): y = x + 3 ត្រង់ចំនុច A(0,3) ។

<u> ជំណោះស្រាយ</u>

កំនត់ចំនួនពិត a និង b

គេមាន $f(x) = ax + b - e^x$ នាំអោយ $f'(x) = a - e^x$

ដើម្បីឱ្យខ្សែកោង (c) ប៉ះនឹងបន្ទាត់ (d): y = x + 3 ត្រង់ចំនុច A(0,3)

លុះត្រាតែ:

$$\begin{cases} f'(0)=1\\ f(0)=3 \end{cases}$$
 ទាំអោយ
$$\begin{cases} a-1=1\\ b-1=3 \end{cases}$$
 សមមូល
$$\begin{cases} a=2\\ b=4 \end{cases}$$
 ដូចនេះ
$$a=2,b=4$$
 ។

សំខាងខ្លែ២០

គេឱ្យអនុគមន៍ $f(x) = ax + b - x . \ln x$ មានក្រាបតំនាង (c) ។ កំនត់ចំនួនពិត a និង b ដើម្បីឱ្យខ្សែកោង (c) ប៉ះនឹងបន្ទាត់ (d): y = x + 1 ត្រង់ចំនុច A(1,2) ។

<u> ខ្លួម ខេត្ត</u>

កំនត់ចំនួនពិត a និង b

គេមាន
$$f(x) = ax + b - x \cdot \ln x$$

ពេយន
$$f'(x) = (ax + b - x \ln x)'$$

$$= a - \ln x - 1$$

ដើម្បីឱ្យខ្សែកោង (c) ប៉ះនឹងបន្ទាត់ (d): y = x+1 ត្រង់ចំនុច A(1,2)

លុះត្រាតែ :

$$\begin{cases} f'(1)=1 \\ f(1)=2 \end{cases}$$
 ទាំអោយ $\begin{cases} a-1=1 \\ a+b=2 \end{cases}$ សមមូល $\begin{cases} a=2 \\ b=0 \end{cases}$ មូបនេះ $a=2$, $b=0$ ។

ពេទ្យិអនុគមន៍
$$f(x) = \frac{x^2 + mx + 4}{x^2 + 1}$$

ដែល x ជាចំនួនពិត និង m ជាប៉ារ៉ាម៉ែត្រ ។

- ក. ចូរកំនត់តម្លៃ ${\bf m}$ ដើម្បីឱ្យអនុគមន័ ${\bf f}({\bf x})$ មានតម្លៃបរមាត្រង់ចំនុច ${\bf x}={\bf 2}$ ។
- ខ. ចូរកំនត់តម្លៃ ${f m}$ ដើម្បីឱ្យអនុគមន៍ ${f f}({f x})$ មានតម្លៃបរមាតែមួយគត់ ។

សំមាត់ សិ១ ជំណោៈស្រាយ

<u> ជំណោះស្រាយ</u>

ក. កំនត់តម្លៃ m

ដើម្បីឱ្យអនុគមន៍ f(x) មានតម្លៃបរមាត្រង់ចំនុច x=2 លុះត្រាតែ f'(2)=0ពេមាន $f(x) = \frac{x^2 + mx + 4}{x^2 + 1}$ តាមរូបមន្ត $\left(\frac{\mathbf{u}}{\mathbf{v}}\right)' = \frac{\mathbf{u}' \mathbf{v} - \mathbf{v}' \mathbf{u}}{\mathbf{v}^2}$ ពេញន $f'(x) = \frac{(x^2 + mx + 4)'(x^2 + 1) - (x^2 + 1)'(x^2 + mx + 4)}{(x^2 + 1)^2}$ $=\frac{(2x+m)(x^2+1)-2x(x^2+mx+4)}{(x^2+1)^2}$

$$f'(x) = \frac{-mx^2 - 6x + m}{(x^2 + 1)^2}$$

ចំពោ៖
$$\mathbf{x} = \mathbf{2}$$
 ពេហ្មន $\mathbf{f}'(2) = \frac{-4m + 12 + m}{(4+1)^2} = \frac{12 - 3m}{25} = 0$

 $=\frac{2x^3 + 2x + mx^2 + m - 2x^3 - 2mx^2 - 8x}{(x^2 + 1)^2}$

លំខាត់ និខ ជំណោ:ស្រាយ

ខ. កំនត់តម្លៃ m

ដើម្បីឱ្យអនុគមន៍ f(x) មានតម្លៃបរមាតែមួយគត់លុះត្រាតែសមីការ $f'(x) = 0 \mbox{ សមមូល} - mx^2 + 6x + m = 0 \mbox{ មានឬសតែមួយគត់}$ ពោលគឺត្រូវឱ្យ m=0 ។

លំខាងខ្លួកគ

រួចគណនាត់លៃ A,B និង C ។

ខ-គណនា $\int\limits_{1}^{2}f(x).dx$ ដោយសរសេរចំលើយជាទំរង់ $a+\ln b$ ដែល a និងb ជាចំនួនសនិទាន ។

<u> ಜೋಸಿಕಾರ್</u>

ក-សរសេរ
$$f(x)$$
ជាទំរង់ $\frac{A}{x+1} + \frac{B}{x-3} + \frac{C}{(x-3)^2}$ ដោយគេមានអនុគមន៍ $f(x) = \frac{3x^2-7x+6}{(x-3)^2(x+1)}$ នោះគេបាន :

លំចាត់ និទ ជិះណា:ស្រាយ

$$\frac{A}{x+1} + \frac{B}{x-3} + \frac{C}{(x-3)^2} = \frac{3x^2 - 7x + 6}{(x-3)^2(x+1)}$$

$$\frac{A(x-3)^2 + B(x+1)(x-3) + C(x+1)}{(x+1)(x-3)^2} = \frac{3x^2 - 7x + 6}{(x-3)^2(x+1)}$$

$$A(x-3)^2 + B(x+1)(x-3) + C(x+1) = 3x^2 - 7x + 6 \quad (1)$$

ចំពោះ x = -1 តាម (1) គេបាន:

$$16A = 3 + 7 + 6 = 16$$
 sig $A = 1$ 4

ចំពោះ x = 3 តាម (1) គេបាន:

$$A.(3-3)^2 + B(3+1)(3-3) + C(3+1) = 3(3)^2 - 7(3) + 6$$
 $4C = 27 - 21 + 6 = 12$ รา๊อ์ $C = 3$ ฯ

ចំពោះ x = 0 តាម (1) គេបាន:

$$9A - 3B + C = 6$$
 នាំឱ្យ $B = 2$ ។

ដូចនេះ
$$f(x) = \frac{1}{x+1} + \frac{2}{x-3} + \frac{3}{(x-3)^2}$$

ហើយ
$$A = 1, B = 2$$
 និង $C = 3$

ខ-គណនា $\int\limits_{1}^{2} f(x).dx$ ដោយសរសេរចំលើយជាទំរង់ $a+\ln b$

$$\text{thus } \int_{1}^{2} f(x) . dx = \int_{1}^{2} \left(\frac{1}{x+1} + \frac{2}{x-3} + \frac{3}{(x-3)^{2}} \right) . dx$$

$$= \int_{1}^{2} \left[\frac{(x+1)!}{(x+1)!} + 2 \cdot \frac{(x-3)!}{(x-3)!} + 3 \cdot \frac{(x-3)!}{(x-3)^{2}} \right] \cdot dx$$

$$= \left[\ln|x+1| + 2\ln|x-3| - \frac{3}{x-3} \right]_{1}^{2}$$

$$= \left[\ln 3 + 2\ln 1 + 3 \right] - \left[\ln 2 + 2\ln 2 + \frac{3}{2} \right]$$

$$= \ln 3 + 0 + 3 - 3\ln 2 - \frac{3}{2}$$

$$= \ln 3 - \ln 2^{3} + \frac{6-3}{2} = \frac{3}{2} + \ln \frac{3}{8}$$

$$\begin{cases} \int_{1}^{2} f(x) \cdot dx = \frac{3}{2} + \ln \frac{3}{8} \end{cases}$$

លំខាងខ្លួក

គេថ្យអនុគមន៍ $\mathbf{g}(\mathbf{x})=\frac{2\mathbf{x}^2-5\mathbf{x}-1}{\mathbf{x}^3-\mathbf{x}}$ ដែល $\mathbf{x}\neq\mathbf{0}$, $\mathbf{x}\neq\mp\mathbf{1}$ ។ n.កំនត់ចំនួនពិតA, B និង C ដើម្បីថ្ង $\mathbf{g}(\mathbf{x})=\frac{A}{\mathbf{x}}+\frac{B}{\mathbf{x}-\mathbf{1}}+\frac{C}{\mathbf{x}+\mathbf{1}}$ ១.ចូរគណនា $\mathbf{I}=\int \mathbf{g}(\mathbf{x}).\mathbf{d}\mathbf{x}$ ។

<u> ಕ್ಷೀರ್ಚಾಭಿವಿಧಾ</u>

ក. កំនត់ចំនួនពិត A,B និង C ដើម្បីឲ្យ

$$g(x) = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1}$$

លំមាត់ និទ ជិសោះស្រាយ

បើងបាន
$$\frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1} = \frac{2x^2 - 5x - 1}{x^3 - x}$$
 \mathfrak{V} $A(x-1)(x+1) + Bx(x+1) + Cx(x-1) = 2x^2 - 5x - 1$
 \mathfrak{V} $x = 0$ នោះ $-A = -1$ \mathfrak{V} $A = 1$
 \mathfrak{V} $x = -1$ នោះ $2C = 6$ \mathfrak{V} $C = 3$
 \mathfrak{V} $x = 1$ នោះ $2B = -4$ \mathfrak{V} $B = -2$
 \mathfrak{V} \mathfrak

$$I = \int g(x) \cdot dx = \ln |x| - 2 \ln |x - 1| + 3 \ln |x + 1| + C$$

छिष्ठा संबंधि छ

គេមានអនុគមន៍ $f(x)=\frac{2x^2+2x+1}{x^3+x^2}$ ដែល $x\neq 0$ និង $x\neq -1$ ក_កំនត់ចំនួនពិត A , B , C ដើម្បីថ្ង $f(x)=\frac{A}{x}+\frac{B}{x^2}+\frac{C}{x+1}$ ។ ១_គណនាអាំងតេក្រាល $I=\int f(x).dx$ ។

ក.កំនត់ចំនួនពិត A,B,C

ពេញន
$$\frac{2x^2+2x+1}{x^3+x^2} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1}$$

$$\frac{2x^2+2x+1}{x^2(x+1)} = \frac{Ax(x+1)+B(x+1)+Cx^2}{x^2(x+1)}$$

$$2x^2+2x+1 = (A+C)x^2+(A+B)x+B$$

$$\begin{cases} A+C=2\\ A+B=2 \end{cases} \text{ sign } A=1\ , B=1\ , C=1 \end{cases}$$

$$\begin{cases} A=1\ , B=1\ , C=1 \end{cases}$$

ខ-គណនាអាំងពេក្រាល $I = \int f(x).dx$

តាមសម្រាយខាងលើចំពោះ A=1, B=1, C=1

សំមាន់ និទ ជំណោ:ស្រាយ

គេបាន ៖

$$f(x) = \frac{2x^2 + 2x + 1}{x^3 + x^2} = \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x+1}$$
 បើជាទ $I = \int \left(\frac{1}{x} + \frac{1}{x^2} + \frac{1}{x+1}\right) dx = \int \frac{dx}{x} + \int \frac{dx}{x^2} + \int \frac{dx}{x+1}$ ដូចនេះ
$$I = \ln|x| - \frac{1}{x} + \ln|x+1| + C$$

ឆ្ខំខាងខ្មែ

គេមានអនុគមន៍
$$f(x) = \frac{3x^2 - 7x + 6}{(x-3)^2(x+1)}$$

ដែល $x \neq -1$ និង $x \neq 3$ ។

ក-កំនត់បីចំនួនពិត
$$a,b,c$$
 ដើម្បីឲ្យ $f(x) = \frac{a}{x+1} + \frac{b}{x-3} + \frac{c}{(x-3)^2}$

ខ-គណនាអាំងតេក្រាល
$$I = \int_0^1 f(x).dx$$
 ។

<u> ខ្លួម ខ្លួ</u>

កំនត់បីចំនួនពិត a,b,c

លំមាន់ និ១ ជំណោៈស្រ្វាយ

ចំពោះ
$$x=3$$
 ដោបាន $12=4c$ នាំឲ្យ $c=3$
ចំពោះ $x=0$ ដោបាន $6=9a-3b+c$ នាំឲ្យ $b=\frac{9a+c-6}{3}=2$
មួចនេះ $a=4$, $b=2$, $c=3$ ។

 9 គណនាអាំងដោប្រាល $I=\int\limits_0^1 f(x).dx$
 $f(x)=\frac{3x^2-7x+6}{(x-3)^2(x+1)}=\frac{4}{x+1}+\frac{2}{x-3}+\frac{3}{(x-3)^2}$
ដោបាន $I=\int\limits_0^1 \left[\frac{4}{x+1}+\frac{2}{x-3}+\frac{3}{(x-3)^2}\right].dx$
 $=\left[4\ln|x+1|+2\ln|x-3|-\frac{3}{x-3}\right]_0^1$
 $=\left[4\ln 2+2\ln 2+\frac{3}{2}\right]-\left[4\ln 1+2\ln 3+1\right]$
 $=6\ln 2+\frac{3}{2}-2\ln 3-1=\frac{1}{2}+2\ln\frac{8}{3}$
ដូចនេះ $I=\int\limits_0^1 f(x).dx=\frac{1}{2}+2\ln\frac{8}{3}$ ។

ឆំមាន់ និទ ជំណោ:ស្រាយ

លំខាងខ្លួង៦

ពេខ្យិអនុគមន៍ f(x) កំនត់ និង មានដើរវេត្រង់ចំនុច x=c ។ ចូរស្រាយបញ្ជាក់ថា $\lim_{h\to 0} \frac{f^2(c+h)-f^2(c-h)}{h} = 4f'(c).f(c)$

<u> ಜೋಸಿಕಾಣ</u>

លំមាន់និ២៧

ពេទ្ធិ្យអនុគមន៍
$$\mathbf{f}(\mathbf{x}) = \frac{\mathbf{e}^{\mathbf{x}}}{\mathbf{a}\mathbf{x} + \mathbf{b}}$$
 ដែល $\mathbf{a} \neq 0, \mathbf{a}, \mathbf{b} \in \mathrm{IR}$

ក-ចូរគណនាដេរីវេ f'(x) និង f''(x)

ខ-កំនត់ចំនួនពិត a និង b ដើម្បីឱ្យអនុគមន៍ f(x) មានតម្លៃអប្បបរមាស្មើ e ចំពោះ x=1 ។

ន្ត្រខេត្តរាជា ខេត្ត

ក-គណនាដេរីវេ f'(x) និង f''(x)

ពេហន
$$f'(x) = \frac{(e^x)'(ax+b) - (ax+b)'e^x}{(ax+b)^2}$$

$$= \frac{e^x(ax+b) - ae^x}{(ax+b)^2} = \frac{(ax+b-a).e^x}{(ax+b)^2}$$
ជួបនេះ
$$f'(x) = \frac{(ax+b-a).e^x}{(ax+b)^2}$$

$$f''(x) = \frac{[(ax+b-a)e^x]'(ax+b)^2 - [(ax+b)^2]'(ax+b-a)e^x}{(ax+b)^4}$$

$$= \frac{[ae^x + e^x(ax+b-a)](ax+b)^2 - 2a(ax+b)(ax+b-a)e^x}{(ax+b)^4}$$

$$= \frac{(ax+b)^2.e^x - 2a(ax+b-a)e^x}{(ax+b)^3} = \frac{[(ax+b)^2 - 2a(ax+b-a)]e^x}{(ax+b)^3}$$
ជួបនេះ
$$f''(x) = \frac{[(ax+b)^2 - 2a(ax+b-a)]e^x}{(ax+b)^3}$$

សំមាត់ សិ១ ជំណោៈស្រាយ

ខ-កំនត់ចំនួនពិត a និង b

ដើម្បីឱ្យអនុគមន៍ f(x) មានតម្លៃអប្បបរមាស្ទើ e ចំពោះ x=1លុះត្រាតែ

$$\begin{cases} f'(1) = 0 \\ f(1) = e \\ f''(1) > 0 \end{cases}$$

បន្ទាប់ពីដោះស្រាយគេបាន a=1 , b=0

$$a = 1, b = 0$$

លំខាងខ្ពស់

គេឱ្យអនុគមន៍ f កំនត់លើ IR ដោយ $f(x) = \sin x$

ចូរបង្ហាញថាដើរវេទី n នៃអនុគមន៍ f កំនត់ដោយ $f^{(n)}(x) = \sin(x + \frac{n\pi}{2})$

<u> ಭೀರ್ಚಾಚಿಸಾಧಾ</u>

បង្ហាញថាដើរវេទី n នៃអនុគមន៍ f កំនត់ដោយ $f^{(n)}(x) = \sin(x + \frac{n\pi}{2})$

ពេមាន $f(x) = \sin x$

ពេហន
$$f'(x) = \cos x = \sin(x + \frac{\pi}{2})$$
 (ព្រោះ $\sin(\frac{\pi}{2} + \theta) = \sin \theta$)
$$f''(x) = (x + \frac{\pi}{2})'\cos(x + \frac{\pi}{2}) = \sin(x + \pi)$$

$$f'''(x) = (x + \pi)'\cos(x + \pi) = \sin(x + \frac{3\pi}{2})$$

សំមាត់ និ១ ជំណោៈស្រាយ

ឧបមាថាវាពិតដល់ដើរវេលំដាប់ទី n $\mathbf{\tilde{f}}$ $\mathbf{f}^{(n)}(\mathbf{x}) = \sin(\mathbf{x} + \frac{\mathbf{n}^n}{2})$ ពិត យើងនឹងស្រាយថាវាពិតដល់ដើរវេលំដាប់ទី (n+1) គឺ

$$f^{(n+1)}(x) = sin \left(x + \frac{(n+1)\pi}{2}\right) \widehat{\mathfrak{N}} \widehat{\mathfrak{n}}$$

យើងមាន $f^{(n+1)}(x) = (f^{(n)}(x))'$

ដោយ
$$f^{(n)}(x) = \sin(x + \frac{n\pi}{2})$$

$$f^{(n+1)}'(x) = (x + \frac{n\pi}{2})'\cos(x + \frac{n\pi}{2})$$

$$= \sin(x + \frac{n\pi}{2} + \frac{\pi}{2}) = \sin\left(x + \frac{(n+1)\pi}{2}\right)$$

ដូចនេះ
$$f^{(n)}(x) = \sin(x + \frac{n\pi}{2})$$
 ។

សំសាដ់ខ្លី២៩

គេមានអនុគមន៍ $f(x) = \frac{4x^2 - x + 1}{x^3 + 1}$ ដែល $x \neq -1$ ។

ក-កំនត់បីចំនួនពិត a, b, c ដើម្បីឱ្យ $f(x) = \frac{a}{x+1} + \frac{bx+c}{x^2 - x+1}$ ។

ខ-គណនាអាំងតេក្រាល $I = \int f(x).dx$ ។

<u> ಬಿಣಾ:್ರಟ್ರಾಕ್ರಾಕ್ರಾಕ್ರ</u>

ក-កំនត់ចំនួនពិត a , b , c

ឆំមាត់ ឆិខ ជំណោ:ស្រាយ

ខ-គណនាអាំងតេក្រាល $I = \int f(x).dx$

តាមសម្រាយខាងលើចំពោះ a=2 , b=2 , c=-1 គេមាន :

$$f(x) = \frac{4x^2 - x + 1}{x^3 + 1} = \frac{2}{x + 1} + \frac{2x - 1}{x^2 - x + 1}$$

Thus $I = \int \left(\frac{2}{x + 1} + \frac{2x - 1}{x^2 - x + 1}\right) . dx$

$$= \int \frac{2dx}{x + 1} + \int \frac{(2x - 1) . dx}{x^2 - x + 1}$$

$$= 2\int \frac{(x + 1)'}{(x + 1)} . dx + \int \frac{(x^2 - x + 1)'}{x^2 - x + 1} . dx$$

$$= 2\ln|x + 1| + \ln|x^2 - x + 1| + C$$

សំមាត់ និ១ ជំណោៈស្រាយ

លំមាត់នី៣o

គេមានអនុគមន៍
$$f(x) = \frac{5x^2 - 14x + 13}{(x+1)(x-3)^2}$$
 ដែល $x \neq -1$ និង $x \neq 3$ ។

ក-កំនត់ប៊ីចំនួនពិត a, b, c ដើម្បីឱ្យ
$$f(x) = \frac{a}{x+1} + \frac{b}{x-3} + \frac{c}{(x-3)^2}$$

ខ-គណនាអាំងតេក្រាល $I = \int f(x).dx$ ។

<u> ಬಿಣ್ಯು, ಭಾರತ</u>

ក-កំនត់ចំនួនពិត a , b , c

$$\label{eq:continuous_series} \begin{split} &\text{IMMS} \, \frac{5x^2 - 14x + 13}{(x+1)(x-3)^2} = \frac{a}{x+1} + \frac{b}{x-3} + \frac{c}{(x-3)^2} \\ &\frac{5x^2 - 14x + 13}{(x+1)(x-3)^2} = \frac{a(x-3)^2 + b(x+1)(x-3) + c(x+1)}{(x+1)(x-3)^2} \\ &5x^2 - 14x + 13 = ax^2 - 6ax + 9a + bx^2 - 2bx - 3b + cx + c \\ &5x^2 - 14x + 13 = (a+b)x^2 + (-6a-2b+c)x + (9a-3b+c) \\ & \text{Signiting} \, \begin{cases} a+b=5 \\ -6a-2b+c=14 \\ 9a-3b+c=13 \end{cases} \end{split}$$

នាំឱ្យ
$$a = 2, b = 3, c = 4$$
 ។

ដូចនេះ
$$a = 2$$
 , $b = 3$, $c = 4$

ខ-គណនាអាំងតេក្រាល $I = \int f(x).dx$

តាមសម្រាយខាងលើចំពោះ a=2 , b=3 , c=4 គេមាន :

$$f(x) = \frac{5x^2 - 14x + 13}{(x+1)(x-3)^2} = \frac{2}{x+1} + \frac{3}{x-3} + \frac{4}{(x-3)^2}$$

Thus $I = \int \left(\frac{2}{x+1} + \frac{3}{x-3} + \frac{4}{(x-3)^2}\right) dx$

$$= 2\int \frac{dx}{x+1} + 3\int \frac{dx}{x-3} + 4\int \frac{dx}{(x-3)^2}$$

$$= 2\ln|x+1| + 3\ln|x-3| - \frac{4}{x-3} + c$$

លំមាង់ន័៣១

គេឱ្យអនុគមន៍ $f(x) = \frac{1}{x(1+x^4)}$ ដែល x ជាចំនួនពិតខុសពីសូន្យ ។

ក-ចូរកំនត់បីចំនួនពិត A ,B និង C ដើម្បីឱ្យ $f(x) = \frac{A}{x} + \frac{Bx^3 + C}{1 + x^4}$

ខ-គណនាអាំងតេក្រាល $I = \int f(x).dx$ ។

គ-ទាញរកអាំងតេក្រាល $J = \int \frac{4x^3 \ln x. dx}{(1+x^4)^2}$

<u> ಜೋಸ್ಟ್ರಾಕ್ಟ್ರಾಕ್ಟ್</u>

ក-កំនត់ប៊ីចំនួនពិត A , B , C

ក្ដេង
$$\frac{1}{x(1+x^4)} = \frac{A}{x} + \frac{Bx^3 + C}{1+x^4}$$

ឆំមាត់ ឆិខ ជំណោ:ស្រាយ

$$\frac{1}{x(1+x^4)} = \frac{A(1+x^4) + x(Bx^3 + C)}{x(1+x^4)}$$

$$1 = A + Ax^4 + Bx^4 + Cx$$

$$1 = (A+B) x^4 + Cx + A$$

$$\begin{cases} A+B=0 \\ C=0 \end{cases} \quad \text{sign} \quad A=1 \; , \; B=-1 \; , \; C=0 \; \text{ Theorem is } \\ A=1 \end{cases}$$

$$\frac{1}{x(1+x^4)} = \frac{1}{x(1+x^4)} = \frac{$$

ឆ្នាំង ខ្លួន ខ្លួននោះទីខាតា

ពេលន
$$J=-rac{\ln x}{1+x^4}-\int (-rac{1}{1+x^4}).rac{1}{x}.dx$$

$$=-rac{\ln x}{1+x^4}+\int rac{dx}{x(1+x^4)}=-rac{\ln x}{1+x^4}+I$$
 ដោយ $I=\ln |x|-rac{1}{4}\ln (1+x^4)+C$ ដូចនេះ $J=-rac{\ln x}{1+x^4}+\ln |x|-rac{1}{4}\ln (1+x^4)+C$ ។

លំទាាត់និ៣២

គេឱ្យអនុគមន៍ $f(x) = \frac{1}{e^{2x} + 1}$ ដែល x ជាចំនួនពិត។

ក-ចូរកំនត់បីចំនួនពិត A និង B ដើម្បីឱ្យ $f(x) = A + \frac{B.e^{2x}}{e^{2x} + 1}$

ខ-គណនាអាំងតេក្រាល $I = \int f(x).dx$ ។

គ-ទាញរកអាំងពេក្រាល $J = \int \frac{2xe^{2x}.dx}{(e^{2x}+1)^2}$

<u> ಜೀವಾ: ಕ್ಷಕಾರ್</u>

ក-កំនត់ប៊ីចំនួនពិត A , B

ពេហន
$$\frac{1}{e^{2x} + 1} = A + \frac{B \cdot e^{2x}}{e^{2x} + 1}$$
$$\frac{1}{e^{2x} + 1} = \frac{A(e^{2x} + 1) + B \cdot e^{2x}}{e^{2x} + 1} = \frac{(A + B)e^{2x} + A}{e^{2x} + 1}$$

សំខាត់ និ១ ជំណោៈស្រាយ

គេទាញ
$$egin{cases} A+B=0 \ A=1 \end{cases}$$
 នាំឱ្យ $A=1$, $B=-1$ ។ ដូចនេះ $A=1$, $B=-1$ ។

ខ-គណនាអាំងតេក្រាល $I = \int f(x).dx$

តាមសម្រាយខាងលើចំពោះ A=1 , B=-1

គេមាន
$$f(x) = 1 - \frac{e^{2x}}{e^{2x} + 1}$$

$$\text{FFTS } I = \int (1 - \frac{e^{2x}}{e^{2x} + 1}) . dx = \int dx - \frac{1}{2} \int \frac{2e^{2x} . dx}{e^{2x} + 1} = x - \frac{1}{2} ln(e^{2x} + 1) + C$$

$$\text{House} \qquad I = x - \frac{1}{2} ln(e^{2x} + 1) + C \qquad \text{H}$$

គ-ទាញរកអាំងតេក្រាល
$$J = \int \frac{2xe^{2x} dx}{(e^{2x} + 1)^2}$$

តាង
$$\begin{cases} u = x \\ dv = \frac{2e^{2x}.dx}{(e^{2x}+1)^2} \end{cases} \quad \text{sign} \quad \begin{cases} du = dx \\ v = \int \frac{2e^{2x}.dx}{(e^{2x}+1)^2} = -\frac{1}{e^{2x}+1} \end{cases}$$

ពេលន
$$J = -\frac{x}{e^{2x} + 1} + \int \frac{dx}{e^{2x} + 1} = -\frac{x}{e^{2x} + 1} + I$$

ដោយ
$$I = x - \frac{1}{2} \ln(e^{2x} + 1) + C$$

ដោយ
$$I = x - \frac{1}{2} ln(e^{2x} + 1) + C$$
 ដូចនេះ
$$J = -\frac{x}{e^{2x} + 1} + x - \frac{1}{2} ln(e^{2x} + 1) + C$$
 ។

<u> ខំមាត់និ៣៣</u>

ពេទ្យិអាំងពេក្រាល $I = \int e^x \cos^2 x. dx$ និង $J = \int e^x \sin^2 x. dx$ π -ចូរគណនា I + J និង I - J e-ទាញរក I និង J

<u> ಜೀಮಾ:ಚಿಸಾಕಾ</u>

ក-ពណនា I+J និង I-J

ពេលន
$$I - J = \int e^x \cos^2 x . dx - \int e^x \sin^2 x . dx$$

= $\int (e^x \cos^2 x - e^x \sin^2 x) . dx = \int e^x (\cos^2 x - \sin^2 x) . dx$
= $\int e^x \cos 2x . dx$

តាង
$$\begin{cases} u = e^x \\ dv = \cos 2x. dx \end{cases}$$
 នាំឱ្យ $\begin{cases} du = e^x dx \\ v = \frac{1}{2} \sin 2x \end{cases}$

ពេលន
$$I - J = \frac{1}{2}e^{x} \sin 2x - \int \frac{1}{2}e^{x} \sin 2x.dx$$

សំខាត់ និទ ជិះណៈស្រ្រាយ

គាង
$$\begin{cases} u = \frac{1}{2}e^{x} & \text{sidj} \\ dv = \sin 2x. dx \end{cases} \qquad \begin{cases} du = \frac{1}{2}e^{x}. dx \\ v = -\frac{1}{2}\cos 2x \end{cases}$$

$$\text{Invis} \ I - J = \frac{1}{2}e^{x}\sin 2x - \left[-\frac{1}{4}e^{x}\cos 2x + \frac{1}{4} \int e^{x}\cos 2x. dx \right]$$

$$I - J = \frac{1}{2}e^{x}\sin 2x + \frac{1}{4}e^{x}\cos 2x - \frac{1}{4} \int e^{x}\cos 2x. dx$$

$$I - J = \frac{1}{2}(\sin 2x + \frac{1}{2}\cos 2x)e^{x} - \frac{1}{4}(I - J)$$

$$\frac{5}{4}(I - J) = \frac{1}{2}(\sin 2x + \frac{1}{2}\cos 2x)e^{x}$$

$$\text{House} I - J = \frac{2}{5}(\sin 2x + \frac{1}{2}\cos 2x)e^{x} + C_{2}$$

ខ-ទាញរក I និង J

បន្ទាប់ពីដោះស្រាយប្រព័ន្ឋសមីការខាងលើនេះគេបាន :

$$I = \frac{1}{2}(1 + \frac{2}{5}\sin 2x + \frac{1}{5}\cos 2x)e^{x} + K_{1}$$
និង
$$J = \frac{1}{2}(1 - \frac{2}{5}\sin 2x - \frac{1}{5}\cos 2x)e^{x} + K_{2}$$
 ។

छंछा संबंध ता ६

គេឱ្យអាំងតេក្រាល:

$$I = \int \frac{1 + \cos x}{2 + \sin x + \cos x} dx$$
 និង $J = \int \frac{1 + \sin x}{2 + \sin x + \cos x} dx$

ក-គណនា I+J និង I-J

ខ-ទាញរក I និង J

<u> ជំណោះស្រាយ</u>

ក-គណនា I+J និង I-J

$$\text{IFMS I} + J = \int \frac{1 + \cos x}{2 + \sin x + \cos x} . dx + \int \frac{1 + \sin x}{2 + \sin x + \cos x} . dx$$

$$= \int \left(\frac{1 + \cos x}{2 + \sin x + \cos x} + \frac{1 + \sin x}{2 + \sin x + \cos x} \right) . dx$$

$$= \int \frac{2 + \cos x + \sin x}{2 + \sin x + \cos x} . dx = \int dx = x + C_1$$

ដូចនេះ
$$I+J=x+C_1$$
 ។

ពេលន
$$I - J = \int \frac{1 + \cos x}{2 + \sin x + \cos x} . dx - \int \frac{1 + \sin x}{2 + \sin x + \cos x} . dx$$

$$= \int (\frac{1 + \cos x}{2 + \sin x + \cos x} - \frac{1 + \sin x}{2 + \sin x + \cos x}) . dx$$

$$= \int \frac{\cos x - \sin x}{2 + \sin x + \cos x} . dx = \int \frac{(2 + \sin x + \cos x)'}{2 + \sin x + \cos x} dx$$

$$= \ln|2 + \sin x + \cos x| + C_2$$

សំមាន់ និ១ ជំណោៈស្រាយ

ដូចនេះ
$$I-J=\ln|2+\sin x+\cos x|+C_2$$
 ។

ខ-គណនាអាំងតេក្រាល I និង J

គេមាន
$$\begin{cases} \mathbf{I} + \mathbf{J} = \mathbf{x} + \mathbf{C}_1 \\ \mathbf{I} - \mathbf{J} = \ln |2 + \sin \mathbf{x} + \cos \mathbf{x}| + \mathbf{C}_2 \end{cases}$$
 (1)

បូកសមីការ (1) និង (2) គេបាន :

$$2I = x + \ln|2 + \sin x + \cos x| + C_1 + C_2$$

$$I = \frac{x}{2} + \frac{1}{2}\ln|2 + \sin x + \cos x| + K_1$$

$$I = \frac{x}{2} + \frac{1}{2}\ln|2 + \sin x + \cos x| + K_1$$

ដកសមីការ (1) និង (2) គេបាន :

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \sin x + \cos x| + C_1 - C_2$$

$$2J = x - \ln|2 + \cos x| + C_1 - C_2 + C_2 +$$

<u> សំមាត់និ៣៥</u>

គេឲ្យអាំងតេក្រាល
$$I_0 = \int_0^1 \frac{dt}{1+t+t^2}$$

និង
$$I_n = \int_0^1 \frac{t^n}{1+t+t^2} dt$$
 , $(n \in IN)$

ក_ចូរគណនាតម្លៃនៃ \mathbf{I}_0 រួច ស្រាយថា (\mathbf{I}_n) ជាស្ទឹតចុះ។

ខ-ស្រាយបញ្ហាក់ថា
$$I_n + I_{n+1} + I_{n+2} = \frac{1}{n+1}$$
 ។

គ_ទាញឲ្យបានថា
$$\frac{1}{3(n+1)} \le I_n \le \frac{1}{3(n-1)}$$
 , $\forall n \ge 2$ ។ ទាញរកលីមីត $\lim_{n \to +\infty} (n\,I_n)$ ។

<u> ជំណោះស្រាយ</u>

ក. គណនាតម្លៃនៃ \mathbf{I}_0 រួច ស្រាយថា (\mathbf{I}_n) ជាស្ទឹតចុះ

យើងបាន
$$I_0 = \int_0^1 \frac{dt}{1+t+t^2} = \int_0^1 \frac{dt}{\frac{3}{4}+(\frac{1}{2}+t)^2}$$

តាង
$$U = \frac{1}{2} + t$$
 នាំឱ្យ $dU = dt$

ហើយចំពោះ
$$\forall t \in \left[0,1\right]$$
 នោះ $U \in \left[\frac{1}{2},\frac{3}{2}\right]$

ពេលន
$$I_0 = \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{dU}{(\frac{\sqrt{3}}{2})^2 + U^2} = \left[\frac{2}{\sqrt{3}} \arctan\left(\frac{2U}{\sqrt{3}}\right)\right]_{\frac{1}{2}}^{\frac{3}{2}}$$

$$= \frac{2}{\sqrt{3}} \arctan\sqrt{3} - \frac{2}{\sqrt{3}} \arctan\frac{1}{\sqrt{3}}$$

$$= \frac{2}{\sqrt{3}} \left(\frac{\pi}{3} - \frac{\pi}{6}\right) = \frac{\pi}{3\sqrt{3}}$$
ដូចនេះ $I_0 = \int_0^1 \frac{dt}{1 + t + t^2} = \frac{\pi}{3\sqrt{3}}$ ។

ឆំមាន់ ឆិខ ជំណោ:ស្រាយ

$$I_n+I_{n+1}+I_{n+2}\leq 3I_n\leq I_{n-2}+I_{n-1}+I_n$$
 ដោយ $I_n+I_{n+1}+I_{n+2}=rac{1}{n+1}$ ទាំឡ $I_{n-2}+I_{n-1}+I_n=rac{1}{n-1}$

ឆ្នាំង ខ្លួន ខ្លួននោះទីខាតា

ពេទាញ
$$\frac{1}{n+1} \le 3I_n \le \frac{1}{n-1}$$
 នាំឱ្យ $\frac{1}{3(n+1)} \le I_n \le \frac{1}{3(n-1)}$, $\forall n \ge 2$ ។ ទាញរកលីមីត $\lim_{n \to +\infty} (nI_n)$ មាន $\frac{1}{3(n+1)} \le I_n \le \frac{1}{3(n-1)}$, $\forall n \ge 2$ នាំឱ្យ $\frac{n}{3(n+1)} \le nI_n \le \frac{n}{3(n-1)}$ ដូចនេះ $\lim_{n \to +\infty} (nI_n) = \frac{1}{3}$ ។

BBBBB

លំមាន់ សិខ ជំណោៈស្រាយ

<u> ខំមាត់និ៣៦</u>

គេឱ្យអាំងតេក្រាល $\mathbf{I} = \int \mathbf{x} \cos^2 \mathbf{x}.\mathbf{dx}$ និង $\mathbf{J} = \int \mathbf{x} \sin^2 \mathbf{x}.\mathbf{dx}$ ក-ចូរគណនា $\mathbf{I} + \mathbf{J}$ និង $\mathbf{I} - \mathbf{J}$ ខ-ទាញរក \mathbf{I} និង \mathbf{J}

<u> ಜೀಮಾ:ಚಿಸಾಕಾ</u>

ក-គណនា I+J **និង** I-J

ពេយន $I + J = \int x \cos^2 x . dx + \int x \sin^2 x . dx$

$$= \int (x \cos^2 x + x \sin^2 x).dx = \int x(\cos^2 x + \sin^2 x).dx = \int x.dx$$

ដូចនេះ
$$I+J=rac{1}{2}x^2+C_1$$
 ។

តាង
$$egin{cases} u = x \\ dv = \cos 2x. dx \end{cases}$$
 នាំឱ្យ $egin{cases} du = dx \\ v = rac{1}{2} \sin 2x \end{cases}$

ពេលន
$$I - J = \frac{1}{2}x\sin 2x - \int \frac{1}{2}\sin 2x.dx$$

លំមាត់ និទ ជិះនោះស្រាយ

ដូចនេះ
$$I-J=\frac{1}{2}x\sin 2x+\frac{1}{4}\cos 2x+C$$
 ។ ខ-ទាញរក $_{I}$ និង $_{J}$

បន្ទាប់ពីដោះស្រាយប្រព័ន្ធសមីការខាងលើនេះគេបាន :

$$\begin{split} \mathbf{I} = &\frac{1}{2}(\frac{1}{2}\mathbf{x}^2 + \frac{1}{2}x\sin 2\mathbf{x} + \frac{1}{4}\cos 2\mathbf{x}) + \mathbf{K}_1 \\ \mathbf{\hat{S}}\mathbf{h} \ \mathbf{J} = &\frac{1}{2}(\frac{1}{2}\mathbf{x}^2 - \frac{1}{2}x\sin 2\mathbf{x} - \frac{1}{4}\cos 2\mathbf{x}) + \mathbf{K}_2 \end{split}$$

លំមាន់និ៣៧

គេមានអនុគមន៍
$$\mathbf{f}(\mathbf{x}) = \frac{6\mathbf{x}^2 - 22\mathbf{x} + 18}{(\mathbf{x} - 1)(\mathbf{x} - 2)(\mathbf{x} - 3)}$$
 ដែល $\mathbf{x} \neq \{1, 2, 3\}$ ។ \mathbf{n} -កំនត់បីចំនួនពិត \mathbf{a} , \mathbf{b} , \mathbf{c} ដើម្បីឱ្យ $\mathbf{f}(\mathbf{x}) = \frac{\mathbf{a}}{\mathbf{x} - 1} + \frac{\mathbf{b}}{\mathbf{x} - 2} + \frac{\mathbf{c}}{\mathbf{x} - 3}$ ។ \mathbf{e} -គណនាអាំងតេក្រាល $\mathbf{I} = \int \mathbf{f}(\mathbf{x}) . \mathbf{d}\mathbf{x}$ ។

<u> ដំណោះស្រាយ</u>

ក- កំនត់ប៊ីចំនួនពិត a, b, c

$$\text{frms} \ \frac{6x^2 - 22x + 18}{(x-1)(x-2)(x-3)} = \frac{a}{x-1} + \frac{b}{x-2} + \frac{c}{x-3}$$

ឆ្នាំង ខ្លួច ខ្លួមនោះទីសាតា

$$\frac{6x^2-22x+18}{(x-1)(x-2)(x-3)} = \frac{a(x-2)(x-3)+b(x-1)(x-3)+c(x-1)(x-2)}{(x-1)(x-2)(x-3)}$$

$$6x^2-22x+18 = a(x-2)(x-3)+b(x-1)(x-3)+c(x-1)(x-2)$$
 -ចំពោ៖ $x=1$ ពេលន $2=2a$ នាំឱ្យ $a=1$ -ចំពោ៖ $x=2$ ពេលន $2=2a$ នាំឱ្យ $a=1$ -ចំពោ៖ $2=2a$ នាំឱ្យ $a=1$ -ចំពោ៖ $2=2a$ នាំឱ្យ $a=1$ -ចំពោ៖ $2=2a$ នាំឱ្យ $a=1$ $a=$

ឆំមាត់ ឆិ១ ជំណោ:ស្រាយ

លំមាត់ន័៣៤

គេមានអាំងតេក្រាល $I=\int\limits_0^{\pi\over 4}\cos^2x.dx$ និង $J=\int\limits_0^{\pi\over 4}\sin^2x.dx$ ក-ចូរគណនា I+J និង I-J ។ ខ-ទាញរកតម្លៃនៃ I និង J ។

<u> ជំណោះស្រាយ</u>

ក-គណនា I+J និង I-J

មើងមាន
$$I + J = \int_{0}^{\frac{\pi}{4}} \cos^2 x. dx + \int_{0}^{\frac{\pi}{4}} \sin^2 x. dx$$

$$= \int_{0}^{\frac{\pi}{4}} (\cos^2 x + \sin^2 x). dx = \int_{0}^{\frac{\pi}{4}} dx = \frac{\pi}{4}$$
ដូចនេះ $I + J = \frac{\pi}{4}$ ។

ហើងមាន $I - J = \int_{0}^{\frac{\pi}{4}} \cos^2 x. dx - \int_{0}^{\frac{\pi}{4}} \sin^2 x. dx$

$$= \int_{0}^{\frac{\pi}{4}} (\cos^2 x - \sin^2 x). dx = \int_{0}^{\frac{\pi}{4}} \cos 2x dx$$

$$= \left[\frac{1}{2} \sin 2x \right]_{0}^{\frac{\pi}{4}} = \frac{1}{2} \sin \frac{\pi}{2} - \frac{1}{2} \sin 0 = \frac{1}{2}$$

លំមាន់ និ១ ជំណោៈស្រ្វាយ

ដូចនេះ
$$I-J=rac{1}{2}$$
 ។

ខ-ទាញរកតម្លៃនៃ I និង J

គេមាន
$$\left\{egin{aligned} \mathbf{I}+\mathbf{J}&=rac{\pi}{4}\\ \mathbf{I}-\mathbf{J}&=rac{1}{2} \end{aligned}
ight.$$
 នាំឱ្យ $\mathbf{I}=rac{\pi}{8}+rac{1}{4}$ និង $\mathbf{J}=rac{\pi}{8}-rac{1}{4}$ ។

छंछा संबंध वर्ष

គេមានអនុគមន៍
$$f(x) = \frac{2x+1}{x(x+1)}$$
 ដែល $x \neq -1$ និង $x \neq 0$ ។

ក-កំនត់បីចំនួនពិត A និង B ដើម្បីឱ្យ
$$\mathbf{f}(\mathbf{x}) = \frac{\mathbf{A}}{\mathbf{x}} + \frac{\mathbf{B}}{\mathbf{x}+\mathbf{1}}$$
 ។

ខ-គណនាអាំងតេក្រាល
$$I = \int_{1}^{3} f(x).dx$$
 ។

<u> ಜೋಸಿಕಾಕಾ</u>

ក- កំនត់បីចំនួនពិត A និង B

កេឃុន
$$\frac{2x+1}{x(x+1)} = \frac{A}{x} + \frac{B}{x+1}$$
 ទាំឡ $2x+1 = A(x+1) + Bx$

-ចំពោះ
$$\mathbf{x} = \mathbf{0}$$
 នាំឱ្យ $\mathbf{1} = \mathbf{A}$ ឬ $\mathbf{A} = \mathbf{1}$

-ចំពោះ
$$\underline{\mathbf{x}=-1}$$
 នាំឱ្យ $-1=-\mathbf{B}$ ឬ $\mathbf{B}=1$

ដូចនេះ
$$\mathbf{A}=\mathbf{1}\;,\;\mathbf{B}=\mathbf{1}$$
 ។

ឆ្នាំង ខ្លួច ខ្លួមនោះទីសាតា

ខ-គណនាអាំងពេក្រាល
$$I = \int_{1}^{3} f(x).dx$$

ចំពោះ
$$A = 1$$
, $B = 1$ គេមាន $f(x) = \frac{1}{x} + \frac{1}{x+1}$

រក្សាន
$$I = \int_{1}^{3} (\frac{1}{x} + \frac{1}{x+1}) . dx = [\ln|x| + \ln|x+1)]_{1}^{3} = (\ln 3 + \ln 4) - (\ln 1 + \ln 2)$$

លំចាង់នី៤០

គេមានអាំងតេក្រាល
$$I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{\sin x}$$
 និង $J = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{\sin^3 x}$

ក-កំនត់ពីរចំនួនពិត
$$a,b$$
 ដើម្បីឱ្យ $\frac{1}{\sin x} = \frac{a \sin x}{1 + \cos x} + \frac{b \sin x}{1 - \cos x}$ ។

ខ-គណនាអាំងតេក្រាល I រួចទាញរកតម្លៃ រ ។

<u> ಜೋಸ್ಟ್ರಾಕ್ಟ್ರಾಕ್ಟ್</u>

ក- កំនត់ប៊ីចំនួនពិត a, b

យើងបាន
$$\frac{1}{\sin x} = \frac{a \sin x}{1 + \cos x} + \frac{b \sin x}{1 - \cos x}$$

លំមាន់ ឆិ១ ជំណោ:ស្រាយ

$$\frac{1}{\sin x} = \frac{a \sin x (1 - \cos x) + b \sin x (1 + \cos x)}{1 - \cos^2 x}$$

$$\frac{1}{\sin x} = \frac{\sin x (a - a \cos x + b + b \cos x)}{\sin^2 x}$$

$$\frac{1}{\sin x} = \frac{(a + b) - (a - b) \cos x}{\sin x}$$

$$\tan x = \frac{(a + b) - (a - b) \cos x}{\sin x}$$

$$\tan x = \frac{1}{a - b = 0} \quad \text{sin } x$$

$$a = \frac{1}{2}, b = \frac{1}{2}$$

$$x = \frac{1}{2}, cos x + \frac{1}{2}, cos x$$

$$x = \frac{1}{2}, cos x + \frac{1}{2}, cos x$$

$$x = \frac{1}{2}, cos x + \frac{1}{2}, cos x + \frac{1}{2}, cos x$$

$$x = \frac{1}{2}, cos x + \frac{$$

លំសាត់ និទ ជិះណោៈស្រ្វាយ

$$\begin{split} I &= \frac{1}{2} \int\limits_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{(1-\cos x)'}{(1-\cos x)} . dx - \frac{1}{2} \int\limits_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{(1+\cos x)'}{(1+\cos x)} . dx \\ &= \frac{1}{2} \Big[\ln |1-\cos x| \Big]_{\frac{\pi}{4}}^{\frac{\pi}{2}} - \frac{1}{2} \Big[\ln |1+\cos x| \Big]_{\frac{\pi}{4}}^{\frac{\pi}{2}} \\ &= \frac{1}{2} \Bigg[\ln 1 - \ln (1-\frac{1}{\sqrt{2}}) \Bigg] - \frac{1}{2} \Bigg[\ln 1 - \ln (1+\frac{1}{\sqrt{2}}) \Bigg] \\ &= \frac{1}{2} \Bigg[- \ln (\frac{\sqrt{2}-1}{\sqrt{2}}) + \ln (\frac{\sqrt{2}+1}{\sqrt{2}}) \Bigg] \\ &= \frac{1}{2} \ln (\frac{\sqrt{2}+1}{\sqrt{2}-1}) = \ln (\sqrt{2}+1) \\ \\ &\exists \lim_{x \to \infty} \mathbf{I} = \ln (1+\sqrt{2}) \qquad \mathbf{I} \\ &\exists \lim_{x \to \infty} \mathbf{I} = \frac{1}{\sin x} \\ &dv = \frac{1}{\sin x} \\ &dv = \frac{1}{\sin^2 x} \end{aligned} \quad \text{and} \quad \begin{cases} du = -\frac{\cos x}{\sin^2 x} \\ v = \int \frac{dx}{\sin^2 y} = -\cot x = -\frac{\cos x}{\sin x} \end{cases} \end{split}$$

លំមាត់ និទ ជិះនោះស្រាយ

$$\text{IFTS} \ J = \left[-\frac{\cos x}{\sin^2 x} \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} - \frac{\frac{\pi}{2}}{\sin^3 x} \cdot dx$$

$$J = \sqrt{2} - \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1 - \sin^2 x}{\sin^3 x} \cdot dx = \sqrt{2} - \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{\sin^3 x} + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{\sin x}$$

$$J = \sqrt{2} - J + I \text{ sign } J = \frac{\sqrt{2}}{2} + \frac{I}{2} \text{ thus } I = \ln(1 + \sqrt{2})$$

$$\text{Heiss} \ J = \frac{\sqrt{2}}{2} + \frac{1}{2} \ln(1 + \sqrt{2})$$

លំមាត់នី៤១

គេមានអនុគមន៍ $f(x) = \frac{e^{4x} + 1}{(e^{2x} + 1)^2}$ ដែល x ជាចំនួនពិត ។

ក-កំនត់បីចំនួនពិត
$$A$$
 , B ដើម្បីឱ្យ $f(x) = A + \frac{B.e^{2x}}{(e^{2x} + 1)^2}$ ។

ខ-គណនាអាំងតេក្រាល
$$I = \int_{0}^{\frac{1}{2}} f(x).dx$$
 ។

<u> ಜ್ಯೋಭಾಕಾ</u>

ក- កំនត់បីចំនួនពិត A, B

Thus
$$f(x) = \frac{e^{4x} + 1}{(e^{2x} + 1)^2} = \frac{(e^{4x} + 2e^{2x} + 1) - 2e^{2x}}{(e^{2x} + 1)^2} = \frac{(e^{2x} + 1)^2 - 2e^{2x}}{(e^{2x} + 1)^2}$$

សំមាន់ និទ ជំណោ:ស្រាយ

$$\begin{split} f(x) &= 1 - \frac{2e^{2x}}{(e^{2x}+1)^2} = A + \frac{Be^{2x}}{(e^{2x}+1)^2} \\ &\text{Highs} \quad A = 1 \ , \ B = -2 \quad \text{y} \\ &\text{2-pairing for } I = \int\limits_0^{\frac{1}{2}} f(x). \mathrm{d}x \\ &\text{she } f(x) = 1 - \frac{2e^{2x}}{(e^{2x}+1)^2} \\ &\text{she } I = \int\limits_0^{\frac{1}{2}} [1 - \frac{2e^{2x}}{(e^{2x}+1)^2}]. \mathrm{d}x \\ &= \int\limits_0^{\frac{1}{2}} \mathrm{d}x - \int\limits_0^{\frac{1}{2}} \frac{(e^{2x}+1)'}{(e^{2x}+1)^2}. \mathrm{d}x \\ &= \frac{1}{2} - \left[-\frac{1}{e^{2x}+1} \right]_0^{\frac{1}{2}} = \frac{1}{2} + \left[\frac{1}{e+1} - \frac{1}{2} \right] = \frac{1}{e+1} \\ &\text{Highs} \quad I = \frac{1}{e+1} \quad \text{h} \end{split}$$

លំមាន់ សិខ ជំណោៈស្រាយ

ឆ្ំខាងខ្មែក

តេឱ្យអនុតមន៍
$$f(x) = \frac{2x^2 + 4x + 3}{(x+1)(x+2)^2}$$
 ។

ក-កំនត់បីចំនួនពិត A,B និង C ដើម្បីឱ្យអនុគមន៍ f(x) អាចសរសេរជារាង

$$f(x) = \frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$$
 4

ខ-គណនាអាំងពេក្រាល $I = \int\limits_0^1 f(x) dx$ ។

<u> ಜೋಚಾಚಾ</u>

ក-កំនត់បីចំនួនពិត A,B និង C

គេមាន
$$f(x) = \frac{2x^2 + 4x + 3}{(x+1)(x+2)^2}$$
 និង $f(x) = \frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$

ពេលន
$$\frac{2x^2+4x+3}{(x+1)(x+2)^2} = \frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$$

$$\frac{2x^2 + 4x + 3}{(x+1)(x+2)^2} = \frac{A.(x+2)^2 + B.(x+1)(x+2) + C.(x+1)}{(x+1)(x+2)^2}$$

$$2x^2 + 4x + 3 = A.(x+2)^2 + B.(x+1)(x+2) + C.(x+1)$$
 (1)

ចំពោះ
$$x = -1$$
 ពាម(1) គេបាន $2 - 4 + 3 = A$ នាំឱ្យ $A = 1$

ចំពោះ
$$x = -2$$
 តាម(1) គេបាន $8 - 8 + 3 = -C$ នាំឱ្យ $C = -3$

ចំពោះ
$$\mathbf{x} = \mathbf{0}$$
 តាម (1) គេបាន $\mathbf{3} = \mathbf{4A} + \mathbf{2B} + \mathbf{C}$

ឆ្នាំង ខ្លួន ខ្លួននោះទីខាតា

ឆំមាន់ ឆិខ ជំណោៈស្រ្វាយ

ពេទ្យិអនុគមន៍
$$f(x) = \frac{e^x - 1}{e^x + 1}$$
 កំនត់លើ IR ។

ក-ចូរសរសេរ
$$f(x)$$
 ជារាង $f(x) = A + \frac{B.e^{-x}}{1 + e^{-x}}$

ខ-គណនាអាំងតេក្រាល
$$I = \int_0^1 f(x) dx$$

ដោយសរសេរលទ្ធផលជារាង $\mathbf{a} + \ln \mathbf{b}$ ដែល \mathbf{a} និង \mathbf{b} ជាពីរចំនួនពិតត្រូវរក

ន្ត ខេលៈ ខែមាន

ក- សរសេរ
$$f(x)$$
 ជារាង $f(x) = A + \frac{B.e^{-x}}{1 + e^{-x}}$
 $e^x - 1 \quad (e^x + 1) - 2 \quad 2$

$$f(x) = \frac{e^x - 1}{e^x + 1} = \frac{(e^x + 1) - 2}{e^x + 1} = 1 - \frac{2}{e^x + 1}$$

$$=1-\frac{2e^{-x}}{e^{-x}(e^{x}+1)}=1-\frac{2e^{-x}}{1+e^{-x}}$$

ដូចនេះ
$$f(x) = 1 + \frac{-2e^{-x}}{1 + e^{-x}}$$
 ហើយ $A = 1$ និង $B = -2$ ។

ខ-គណនាអាំងតេក្រាល
$$I = \int_{0}^{1} f(x) dx$$

ពេហន
$$I = \int_0^1 \left(1 + \frac{-2e^{-x}}{1 + e^{-x}}\right) dx$$
 ព្រោះ $f(x) = 1 + \frac{-2e^{-x}}{1 + e^{-x}}$

លំសាត់ សិខ ជិះណា:ស្រាយ

$$\begin{split} &= \int\limits_0^1 \left[1 + 2.\frac{(1 + e^{-x})^{'}}{\left(1 + e^{-x}\right)^{'}}\right].dx = \left[x + 2\ln\left(1 + e^{-x}\right)\right] \frac{1}{0} \\ &= \left[1 + 2\ln\left(1 + e^{-1}\right)\right] - \left[0 + 2\ln\left(1 + 1\right)\right] = 1 + 2\ln\left(\frac{e + 1}{e}\right) - 2\ln 2 \\ &= 1 + 2\ln\left(e + 1\right) - 2\ln e - 2\ln 2 \\ &= 1 + 2\left[\ln\left(e + 1\right) - \ln 2\right] - 2 = -1 + 2\ln\left(\frac{e + 1}{2}\right) \end{split}$$
 ប្រីដែ $I = \int\limits_0^1 f(x).dx = -1 + 2\ln\left(\frac{e + 1}{2}\right)$

ពេទ្យិអនុគមន៍ $f(x) = (x^2 + x - 7)e^x$ កំនត់លើ IR ។ π -កំនត់ចំនួនពិត a,b និង c ដើម្បីឱ្យអនុគមន៍ $F(x) = (ax^2 + bx + c)e^x$ ជាព្រីមីទីវ នៃអនុគមន៍ f(x) ។ e^x ខ-គណនាអាំងតេក្រាល e^x e^x

<u> ಜೀರ್ಚಾಚಾಕಾ</u>

ក-កំនត់ចំនួនពិត a,b និង c ដើម្បីឱ្យអនុគមន៍ f(x) លុះត្រាតែ :

លំចាត់ និទ ជិះនោះស្រាយ

$$\forall x \in IR : F'(x) = f(x)$$
 ពេលន $F'(x) = (ax^2 + bx + c).e^x + (e^x).(ax^2 + bx + c) = (2ax + b).e^x + e^x (ax^2 + bx + c) = [ax^2 + (2a + b)x + (b + c)]e^x$ ដោយ $F'(x) = f(x)$ នាំឱ្យ $ax^2 + (2a + b)x + (b + c)]e^x = (x^2 + x - 7).e^x$ នាំឱ្យ $ax^2 + (2a + b)x + (b + c)]e^x = (x^2 + x - 7).e^x$ $a = 1$ $a = 1$

ឆំមាន់ ឆិខ ជំណោៈស្រ្វាយ

<u> छैछा संबंदि ४</u>

គេឱ្យអនុគមន៍
$$f(x) = \frac{1}{x^2 - 1}$$
 π -កំនត់ចំនួនពិត A និង B ដើម្បីឱ្យ $f(x) = \frac{A}{x - 1} + \frac{B}{x + 1}$ g -គណនាអាំងតេក្រាល $I = \int\limits_2^5 f(x) . dx$ ។

<u> ಜನಾಃಕ್ಷಾಕಾ</u>

ក-កំនត់ចំនួនពិត a និង b

ពេលន
$$\frac{1}{x^2-1} = \frac{A}{x-1} + \frac{B}{x+1}$$

$$\frac{1}{(x-1)(x+1)} = \frac{A.(x+1) + B.(x-1)}{(x-1)(x+1)}$$

$$1 = A.(x+1) + B.(x-1)$$

$$1 = Ax + A + Bx - B$$

$$1 = (A+B)x + (A-B)$$
ពេលលេខ $\begin{cases} A+B=0 \\ A-B=1 \end{cases}$ នាំឱ្យ $\begin{cases} A = \frac{1}{2} \\ B = -\frac{1}{2} \end{cases}$
ដូចនេះ $A = \frac{1}{2}$, $B = -\frac{1}{2}$

ឆំមាន់ ឆិខ ជំណោ:ស្រាយ

ខ- គណនាអាំងតេក្រាល
$$\mathbf{I} = \int\limits_2^5 \mathbf{f}(\mathbf{x}).d\mathbf{x}$$
 ចំពោន $\mathbf{A} = \frac{1}{2}$, $\mathbf{B} = -\frac{1}{2}$ គេមាន $\mathbf{f}(\mathbf{x}) = \frac{1}{2(\mathbf{x}-1)} - \frac{1}{2(\mathbf{x}+1)}$ គេមាន $\mathbf{I} = \int\limits_2^5 \mathbf{f}(\mathbf{x}).d\mathbf{x}$
$$= \int\limits_2^5 \left[\frac{1}{2(\mathbf{x}-1)} - \frac{1}{2(\mathbf{x}+1)} \right].d\mathbf{x}$$

$$= \frac{1}{2} \int\limits_2^5 \frac{1}{\mathbf{x}-1}.d\mathbf{x} - \frac{1}{2} \cdot \int\limits_2^5 \frac{1}{\mathbf{x}+1}.d\mathbf{x}$$

$$= \frac{1}{2} \cdot \int\limits_2^5 \frac{(\mathbf{x}-1)'}{(\mathbf{x}-1)}.d\mathbf{x} - \frac{1}{2} \cdot \int\limits_2^5 \frac{(\mathbf{x}+1)'}{(\mathbf{x}+1)}.d\mathbf{x}$$

$$= \frac{1}{2} \left[\ln |\mathbf{x}-1| \right]_2^5 - \frac{1}{2} \left[\ln |\mathbf{x}+1| \right]_2^5$$

$$= \frac{1}{2} \left[\ln 4 - \ln 1 \right] - \frac{1}{2} \left[\ln 6 - \ln 3 \right]$$

$$= \frac{1}{2} \ln 2^2 - 0 - \frac{1}{2} \ln \left(\frac{6}{3} \right) = \ln 2 - \frac{1}{2} \ln 2 = \ln \sqrt{2}$$
 Results $\mathbf{I} = \int\limits_2^5 \mathbf{f}(\mathbf{x}).d\mathbf{x} = \ln \sqrt{2}$ H

សំមាត់ និទ ជំណោៈស្រាយ

គេដឹងថា
$$\int_{0}^{x^{2}} f(2t-1).dt = 4x^{6}$$
 ។

ចូររកអនុគមន៍ f(x) ។

<u> ខ្លួម ខ្លួម ខ្លួម</u>

រកអនុគមន៍ f(x)

កេមាន
$$\int_{0}^{x^{2}} f(2t-1).dt = 4x^{6}$$

តាង g(t) = f(2t-1) និង G(t) ជាព្រឹមីទីវិនៃ g(t) ។

ក្ដេង
$$\int_{0}^{x^{2}} g(t).dt = 4x^{6}$$

$$[G(t)]_{0}^{x^{2}} = 4x^{6}$$

$$G(x^{2}) - G(0) = 4x^{6}$$

ធ្វើដើរវេលីអង្គទាំងពីរនៃទំនាក់ទំនងនេះគេបាន:

$$2x.G'(x^2) = 24x^5$$
 ទាំឱ្យ $G'(x^2) = 12x^4$ ដោយ $G'(t) = g(t)$

ពេទាញ
$$g(x^2) = 12x^4$$
 ពេ $g(t) = f(2t-1)$

ពេយន
$$f(2x^2-1)=12x^4$$
 ពាង $2x^2-1=y$ នាំឱ្យ $x^2=\frac{y+1}{2}$

ឆំមាន់ ឆិខ ជំណោ:ស្រាយ

នាំឱ្យ
$$f(y) = 12 \left(\frac{y+1}{2}\right)^2 = 3(y+1)^2$$
 ។ ដូចនេះ $f(x) = 3(x+1)^2$ ។

លំមាត់ន៍៤៧

- 9.ដោះស្រាយសមីការ g''(x) 5g'(x) + 6g(x) = 0 (E)
- ២. កំនត់ចំលើយ ${f g}({f x})$ មួយនៃសមីការ ${f (E)}$ ដែល ${f g}({f 0})={f 0}$ និង ${f g}'({f 0})={f 1}$ ដែលនេះស្រា<u>យ</u>
- 9. ដោះស្រាយសមីការ g''(x) 5g'(x) + 6g(x) = 0 (E)

មានសមីការសំគាល់ $r^2 - 5r + 6 = 0$

ដោយ
$$\Delta=25-24=1$$
 នំាំឱ្យមានឬស ${\bf r}_1=\frac{5-1}{2}=2$, ${\bf r}_2=\frac{5+1}{2}=3$

តាមរូបមន្ត
$$g(x) = A.e^{r_1x} + B.e^{r_2x}$$
 , $A, B \in IR$

ដូចនេះចំលើយសមីការជាអនុគមន៍ $\mathbf{g}(\mathbf{x}) = \mathbf{A}.\mathbf{e}^{2\mathbf{x}} + \mathbf{B}.\mathbf{e}^{3\mathbf{x}}$ $\mathbf{A},\mathbf{B} \in \mathbf{IR}$ ។

២. កំនត់ចំលើយ $\mathbf{g}(\mathbf{x})$ មួយនៃសមីការ (\mathbf{E}) ដែល $\mathbf{g}(\mathbf{0}) = \mathbf{0}$ និង $\mathbf{g}'(\mathbf{0}) = \mathbf{1}$

ឆំមាត់ ឆិខ ជំណោៈស្រ្គាយ

ពេមាន
$$g(x) = A.e^{2x} + B.e^{3x}$$
 នាំឱ្យ $g'(x) = 2A.e^{2x} + 3B.e^{3x}$

តាមបំរាប់គេមាន
$$egin{cases} \mathbf{g}(\mathbf{0}) = \mathbf{0} \\ \mathbf{g}'(\mathbf{0}) = \mathbf{1} \end{cases}$$

សមមូល
$$\left\{egin{align*} A+B=0 \\ 2A+3B=1 \end{array}
ight.$$
 នាំឱ្យ $\left\{egin{align*} A=-1 \\ B=1 \end{array}
ight.$ ដូចនេះ $\left[g(x)=-e^{2x}+e^{3x}
ight]$ ។

<u> छंधा संबंद द</u>

ដោះស្រាយសមីការឌីផេរ៉ង់ស្យែល (E): y''-3y'+2y=0

ដោយដឹងថា
$$y(0) = 1$$
 , $y'(0) = 0$ ។

<u> ಜೋಕ್ಷಕಾರ್</u>

ដោះស្រាយសមីការឌីផេរ៉ង់ស្យែល:

$$(E): y''-3y'+2y=0$$
 មានសមីការសំគាល់ $r^2-3r+2=0$

ដោយ
$$a+b+c=0$$
 នាំឱ្យ $r_1=1$ $,r_2=\frac{c}{a}=2$

តាមរូបមន្ត
$$y = Ae^{r_1x} + Be^{r_2x}$$

លំមាត់ និទ ជិសោះស្រាយ

ពេយន
$$y = A.e^x + B.e^{2x}$$
 និង $y' = A.e^x + 2B.e^{2x}$, $A, B \in IR$

ដោយតាមបំរាប់គេមាន
$$egin{cases} y(0)=1 \ y'(0)=0 \end{cases}$$
 ឬ $egin{cases} A+B=1 \ A+2B=0 \end{cases}$ នាំឱ្យ $egin{cases} A=2 \ B=-1 \end{cases}$

ដូចនេះ $y = 2e^x - e^{2x}$ ជាចំលើយសមីការ ។

លំចាង់នី៤៩

គេឱ្យសមីការឌីផេរ៉ង់ស្យែល (E): $y''-4y'+4y = 4x^2 - 24x + 34$

ក-កំនត់ចំនួនពិត a,b និង c ដើម្បីឱ្យអនុគមន៍ $y_P(x) = ax^2 + bx + c$

ជាចំលើយដោយឡែកមួយរបស់សមីការ (E) ។

ខ-បង្ហាញថាអនុគមន៍ $\mathbf{y} = \mathbf{y_P}(\mathbf{x}) + \mathbf{y_h}(\mathbf{x})$ ជាចំលើយទូទៅរបស់ (E)

លុះត្រាតែអនុគមន៍ $y_h(x)$ ជាចំលើយរបស់សមីការអូម៉ូសែន

$$(E'): y''-4y'+4y=0$$

គ-ដោះស្រាយសមីការ (E')រួចទាញរកចំលើយទូទៅរបស់សមីការ (E) ។

លំសាត់ សិខ ជំណោៈស្រាយ

<u> ಜೋಸಿಕಾಕಾ</u>

ក. កំនត់ចំនួនពិត a,b និង c

(E):
$$y''-4y'+4y = 4x^2 - 24x + 34$$

ដើម្បីឱ្យអនុគមន៍ $\mathbf{y}_{\mathbf{P}}(\mathbf{x}) = a\mathbf{x}^2 + b\mathbf{x} + c$ ជាចំលើយដោយឡែកមួយ

របស់សមីការ (E)លុះត្រពែអនុគមន៍ $y_p(x), y'_p(x)$ និង $y''_p(x)$

ផ្ទៀងផ្ទាត់នឹងសមីការ (E) ។

ពេលន(E):
$$y''_p(x) - 4y'_p(x) + 4y_p(x) = 4x^2 - 24x + 34$$

ដោយ
$$\begin{cases} y_{P}(x) = ax^{2} + bx + c \\ y'_{p}(x) = 2ax + b \\ y''_{p}(x) = 2a \end{cases}$$

ក្ខេង
$$(2a) - 4(2ax + b) + 4(ax^2 + bx + c) = 4x^2 - 24x + 34$$

ទាំឱ្យ
$$4ax^2 + (4b - 8a)x + (2a - 4b + 4c) = 4x^2 - 24x + 34$$

លំមាន់ សិខ ជំណោៈស្រាយ

ដូចនេះ a=1 , b=-4 , c=-4 និង $y_P(x)=x^2-4x+4=(x-2)^2$ ។

ខ-ការបង្ហាញ

អនុគមន៍ $y = y_P(x) + y_h(x)$ ជាចំលើយរបស់ (E) លុះត្រាអនុគមន៍

y,y',y''ផ្ទៀងផ្ទាត់សមីការ។

ដោយគេមាន $y' = y'_p(x) + y'_h(x)$ និង $y'' = y''_p(x) + y''_h(x)$

នោះគេបាន:

$$y''_p(x) - 4y'_p(x) + 4y_p(x) = 4x^2 - 24x + 34$$
 (2)

(ព្រោះ $y_p(x)$ ជាចំលើយរបស់សមីការ (E)) ។

លំមាន់ និទ ជំណោៈស្រាយ

តាមទំនាក់ទំនង (1) និង (2) គេទាញបាន:

$$4x^{2} - 24x + 34 + [y''_{h}(x) - 4y'_{h}(x) + 4y_{h}(x)] = 4x^{2} - 24x + 34$$

 $\mathbf{y''}_{\mathbf{h}}(\mathbf{x}) - 4\mathbf{y'}_{\mathbf{h}}(\mathbf{x}) + 4\mathbf{y}_{\mathbf{h}}(\mathbf{x}) = \mathbf{0}$ ទំនាក់ទំនងនេះបញ្ជាក់ថាអនុគមន៍ $\mathbf{y}_{\mathbf{h}}(\mathbf{x})$

ជាចំលើយរបស់សមីការ (E'): y''-4y'+4y=0 ។

គ-ដោះស្រាយសមីការ (E'):y''-4y'+4y=0

សមីការសំគាល់ $r^2 - 4r + 4 = 0$, $\Delta' = 4 - 4 = 0$

នាំឱ្យសមីការមានឬសឌុប ${f r}_1={f r}_2={f r}_0=2$ ។

ដូចនេះចំលើយសមីការ (E') ជាអនុគមន៍

$$y_h(x) = (Ax + B)e^{2x}$$
, $A, B \in IR$

ទាញរកចំលើយទូទៅរបស់សមីការ (E) ។

តាមសំរាយខាងលើចំលើយសមីការ (E) គឺជាអនុគមន៍ទំរង់

$$y = y_{p}(x) + y_{h}(x)$$

លំមាត់ និទ ជំណោះស្រាយ

ដោយគេមាន $y_p(x) = (x-2)^2$ និង $y_h(x) = (Ax+B).e^{2x}$ ដូចនេះ $y = (x-2)^2 + (Ax+B).e^{2x}$, $A,B \in IR$ ជាចំលើយរបស់សមីការ ។

<u> លំមាងនី៥០</u>

ក-ដោះស្រាយសមីការឌីផេរ៉ង់ស្យែល (E): f''(x) - f'(x) - 6f(x) = 0 ខ-កំនត់អនុគមន៍ y = f(x) ជាចំលើយមួយរបស់សមីការ (E) បើគេដឹងថាខ្សែកោង (C) តាង f(x)ប៉ះ ទៅនឹងបន្ទាត់ (T): y = -x + 3 ត្រង់ចំនុច M(0,3) ។

<u> ಜನಾಃಕ್ಷಾಕಾ</u>

ក-ដោះស្រាយសមីការឌីផេរ៉ង់ស្យែលៈ

(E):
$$f''(x) - f'(x) - 6f(x) = 0$$

មានសមីការសំគាល់ $r^2 - r - 6 = 0$

សមីការមានចំលើយជាអនុគមន៍ $f(x) = A.e^{-2x} + B.e^{3x}$, $A,B \in IR$ ។

លំមាន់ សិខ ជំណោៈស្រាយ

 $\mathbf{2}$ -កំនត់អនុគមន៍ $\mathbf{y} = \mathbf{f}(\mathbf{x})$

បើ y = f(x) ជាចំលើយរបស់សមីការ (E)នោះគេបាន :

(C):
$$y = f(x) = A.e^{-2x} + B.e^{3x}$$

និង
$$y'=f'(x)=-2A.e^{-2x}+3B.e^{3x}$$
 ។

ដើម្បីឱ្យខ្សែកោង (C) តាង f(x) ចំរទៅនឹងបន្ទាត់ (T): y = -x + 3

ត្រង់ចំនុច
$$M(0,3)$$
 លុះត្រាតែ $egin{cases} f'(0)=-1 \\ f(0)=3 \end{bmatrix}$ ឬ $egin{cases} -2A+3B=-1 \\ A+B=3 \end{cases}$

នាំឱ្យ
$$A=2$$
 , $B=1$ ។

ដូចនេះ
$$y = f(x) = 2e^{-2x} + e^{3x}$$
 ។

លំមាដ់នី៥១

គេឱ្យសមីការឌីផេរ៉ង់ស្យែល (E): y''+9y=0

ក-ដោះស្រាយសមីការ (E) ។

ខ-កំនត់អនុគមន៍ $\mathbf{f}(\mathbf{x})$ ជាចំលើយមួយរបស់សមីការ (\mathbf{E}) បើគេដឹងថា :

$$f(0) = \sqrt{3}$$
, $f'(0) = 3$

ឆំមាត់ ឆិ១ ជំណោ:ស្រាយ

<u> ಜೋಚಾಚಾ</u>

ក-ដោះស្រាយសមីការ (E)

$$(E)$$
: y''+9y = 0 មានសមីការសំគាល់ $r^2 + 9 = 0$

$$\mathbf{r}^2 = -9$$
 ទាំឱ្យ $\mathbf{r}_1 = -3\mathbf{i}$ ឬ $\mathbf{r}_2 = 3\mathbf{i}$

គេទាញជាន $\alpha=0$ និង $\beta=3$ ។

ចំលើយសមីការជាអនុគមន៍ទំរង់ $y = (A\cos\beta x + B\sin\beta x).e^{\alpha x}$

ដូចនេះ
$$y = A \cos 3x + B \sin 3x$$
 ។

ខ-កំនត់អនុគមន៍ $\mathbf{f}(\mathbf{x})$

ពេមាន
$$f(x) = A \cos 3x + B \sin 3x$$

នាំឱ្យ
$$f'(x) = -3A \sin 3x + 3B \cos 3x$$

ដោយ
$$f(0) = A.\cos 0 + B.\sin 0 = \sqrt{3}$$
 នាំឱ្យ $A = \sqrt{3}$

និង
$$f'(0) = -3A \sin 0 + 3B \cos 0 = 3$$
 ទាំឱ្យ $B = 1$ ។

ដូចនេះ
$$f(x) = \sqrt{3}\cos 3x + \sin 3x$$

ឆំមាន់ ឆិខ ជំណោ:ស្រាយ

លំខាង់នី៥២

គេឱ្យសមីការឌីផេរ៉ង់ស្យែល : y''-4y=8x-12 (E) π -កំនត់អនុគមន៍ $\phi(x)=ax+b$ ជាចំលើយដោយឡែកមួយរបស់(E) ។ e-រកចំលើយទូទៅរបស់សមីការ (E) ។

<u> ជំណោះស្រាយ</u>

η-កំនត់អនុគមន៍ φ(x) = ax + b

ពេមាន:
$$y''-4y = 8x-12$$
 (E)

បើ $\phi(x)$ ជាចំលើយសមីការ (E) នោះវាត្រូវផ្ទៀងផ្ទាត់នឹងសមីការ (E) ។

ពេហន
$$\phi''(x) - 4\phi(x) = 8x - 12$$
 (E₁)

ដោយ
$$\varphi(x) = ax + b$$
 នាំឱ្យ $\varphi'(x) = a$ និង $\varphi''(x) = 0$

សមីការ (E_1) អាចសរសេរ: 0-4(ax+b)=8x-12

$$-4ax-4b=8x-12$$
 ទាំឱ្យ $\begin{cases} -4a=8 \\ -4b=-12 \end{cases}$ ឬ $\begin{cases} a=-2 \\ b=3 \end{cases}$ ដូចនេះ $\phi(x)=-2x+3$ ។

លំមាន់ សិខ ជំណោៈស្រាយ

ខ-រកចំលើយទូទៅរបស់សមីការ (E)

ដកសមីការ (E) និង (E₁) គេបាន $(y''-\phi''(x))-4(y-\phi(x))=0$

តាង
$$\mathbf{z} = \mathbf{y} - \phi(\mathbf{x})$$
 នាំឱ្យ $\mathbf{z}' = \mathbf{y}' - \phi'(\mathbf{x})$ និង $\mathbf{z}'' = \mathbf{y}'' - \phi''(\mathbf{x})$

គេបាន z''-4z=0 មានសមីការសំគាល់ $r^2-4=0$

មានប្តូស
$$\mathbf{r}_1 = -2, \mathbf{r}_2 = 2$$
 ។

សមីការមានចំលើយ $z = A.e^{-2x} + B.e^{2x}$ ដែល $A, B \in IR$

ដោយ
$$\mathbf{z} = \mathbf{y} - \phi(\mathbf{x})$$
 នាំឱ្យ $\mathbf{y} = \phi(\mathbf{x}) + \mathbf{z}$

ដូចនេះ $y = -2x + 3 + A.e^{-2x} + B.e^{2x}$, $A, B \in IR$ ។

លំមាត់និ៥៣

គេឱ្យប្រវែងប្រែប្រួលមួយ MN ដែល MN = f(x) ។

អនុគមន៍ $\mathbf{f}(\mathbf{x})$ ជាចំលើយសមីការឌីផេរ៉ង់ស្យែល :

(E):
$$f''(x) - 2f'(x) + f(x) = 0$$
 4

ក-គណនាប្រវែង MN បើគេដឹងថា f(0)=2 និង f'(0)=1 ។

ខ-កំនត់ប្រវែងអតិបរមានៃ MN ។

លំមាន់ សិខ ជំណោៈស្រាយ

<u> ಜೋಚಾಚಾ</u>

ក-គណនាប្រវែង

$$(E): f''(x) - 2f'(x) + f(x) = 0$$
 មានសមីការសំគាល់ $r^2 - 2r + 1 = 0$

$$\Delta' = 1 - 1 = 0$$
 សមីកាសំគាល់មានឬសឌុប $r_1 = r_2 = r_0 = -\frac{b'}{a} = 1$

ចំលើយសមីការ (E) ជាអនុគមន៍ $f(x) = (Ax + B).e^x$

ដោយ
$$f(0) = (A.0 + B).e^0 = 2$$
 នាំឱ្យ $B = 2$

ហើយ
$$f'(x) = (Ax + B)'.e^x + (e^x)'.(Ax + B)$$

$$= A.e^{x} + e^{x}.(Ax + B)$$

ដោយ
$$f'(0) = A.e^0 + e^0(A.0 + B) = 1$$
 នាំឱ្យ $A = -1$

នាំអោយចំលើយដោយឡែកនៃសមីការ $({f E})$ គឺជាអនុគមន៍

$$f(x) = (-x+2)e^x$$

ដូចនេះប្រវែង
$$MN = f(x) = (-x+2).e^x$$
 ដែល $x < 2$ ។

ខ-កំនត់ប្រវែងអតិបរមានៃ MN

គេមាន
$$MN = f(x) = (-x+2).e^x$$
 ដែល $x < 2$

ពេធន
$$f'(x) = (-x+2)'.e^x + (e^x)'.(-x+2)$$

$$= -e^{x} + e^{x}(-x+2) = (-x+1).e^{x}$$

លំចាត់ និទ ជិះណា:ស្រាយ

បើ
$$f'(0)=(-x+1).e^x=0$$
 នាំឱ្យ $x=1$ ។ ចំពោះ $x=1$ នាំឱ្យ $f(1)=(-1+2).e^1=e=2,71828$ ។ គណនាដើរវេទីពីរ $f''(x)=-e^x+(-x+1)e^x=-xe^{-x}$ ដោយ $f''(1)=-e^{-1}<0$ នាំឱ្យអនុគមន៍មានអតិបរមាត្រង់ $x=1$ ។ ដូចនេះប្រវែងអតិបរមានៃ MN គឺ $MN_{max}=e=2,71828$ (ឯកតាប្រវែង) ។

<u> छंधा संबंध ६</u>

គេឱ្យសមីការឌីផេរ៉ង់ស្យែល (E): y''+4y=0 ។

ក-ដោះស្រាយសមីការ (E) ។

ខ-កំនត់អនុគមន៍ $\mathbf{f}(\mathbf{x})$ ជាចំលើយមួយ នៃសមីការ (\mathbf{E}) បើគេដឹងថា

$$f(0) = 1$$
 និង $f'(0) = 2\sqrt{3}$ ។

គ-ចូរសរសេរអនុគមន៍ f(x) ជារាង $f(x) = k.\cos(\omega x + \phi)$

ដែល k ,ω និង φ ជាបីចំនួនពិត។

ឃ-គណនាអាំងតេក្រាល
$$I=\int\limits_0^{\pi} \frac{dx}{f^2(x)}$$
 ។

ឆំមាន់ ឆិខ ជំណោៈស្រ្វាយ

<u> ಜೀಮಾ:ಚಿಸಾಕಾ</u>

ក-ដោះស្រាយសមីការ (E)

$$(E): y''+4y=0$$
 មានសមីការសំគាល់ $r^2+4=0$

នាំឱ្យ
$${\bf r}_1=-2{\bf i}$$
 , ${\bf r}_2=2{\bf i}$ គេទាញជាន $\alpha=0$, $\beta=2$ ។

ចំលើយសមីការ (E) ជាអនុគមន៍ទំរង់ $y = (A\cos\beta x + B\sin\beta x).e^{\alpha x}$

ដូចនេះ $y = A\cos 2x + B\sin 2x$ ដែល $A, B \in IR$ ។

ខ-កំនត់អនុគមន៍ f(x)

ពេមាន $f(x) = A \cos 2x + B \sin 2x$

នាំឱ្យ
$$f'(x) = -2A \sin 2x + 2B \cos 2x$$

ដោយ
$$f(0) = A.\cos 0 + B.\sin 0 = 1$$
 នាំឱ្យ $A = 1$

និង
$$f'(0) = -2A \sin 0 + 2B \cos 0 = 2\sqrt{3}$$
 នាំឱ្យ $B = \sqrt{3}$

ដូចនេះ
$$f(x) = \cos 2x + \sqrt{3} \cdot \sin 2x$$
 ។

ព-សរសេរអនុគមន៍ f(x) ជារាង f(x) = k.cos(ωx + φ)

គេមាន
$$f(x) = \cos 2x + \sqrt{3} \cdot \sin 2x$$
 ដោយ $\tan \frac{\pi}{3} = \sqrt{3}$

ពេលន
$$f(x) = \cos 2x + \tan \frac{\pi}{3} \cdot \sin 2x$$

លំខាត់ និខ ជំណោៈស្រាយ

សំមាន់ សិខ ជំណោៈស្រាយ

छंछा संबंद १ ६

គេឱ្យអាំងតេក្រាល
$$I_n = \int\limits_0^1 \frac{e^{nx}}{e^x+1}.dx \;, n \in IN$$
 ។

ក-គណនា $I_0 + I_1$, I_1 រួទាញរក I_0 ។

ខ-គណនា $\mathbf{I_n} + \mathbf{I_{n+1}}$ ជាអនុគមន៍នៃ \mathbf{n} ។

និសោះស្រាយ

ក-គណនា $\mathbf{I}_0 + \mathbf{I}_1$, \mathbf{I}_1 រួទាញរក \mathbf{I}_0

យើងមាន
$$I_0 = \int_0^1 \frac{1}{e^x + 1} . dx$$
 , $I_1 = \int_0^1 \frac{e^x}{e^x + 1}$

យើងបាន

$$\begin{split} I_0 + I_1 &= \int_0^1 \frac{1}{e^x + 1} . dx + \int_0^1 \frac{e^x}{e^x + 1} . dx = \int_0^1 \frac{1 + e^x}{e^x + 1} . dx = \int_0^1 dx = 1 \\ I_1 &= \int_0^1 \frac{e^x}{e^x + 1} . dx = \int_0^1 \frac{(e^x + 1)'}{(e^x + 1)} . dx = \left[\ln(e^x + 1) \right]_0^1 = \ln(e + 1) - \ln 2 = \ln \frac{e + 1}{2} \end{split}$$

ដោយ
$$I_0 + I_1 = 1$$
 នាំឱ្យ $I_0 = 1 - I_1 = 1 - \ln(\frac{e+1}{2})$ ។

ដូចនេះ
$$I_0+I_1=1$$
 , $I_1=ln\!\left(rac{e+1}{2}
ight)$, $I_0=1-ln\!\left(rac{e+1}{2}
ight)$ ។

ខ-គណនា $I_n + I_{n+1}$ ជាអនុគមន៍នៃ n

លើងបាន
$$I_n + I_{n+1} = \int_0^1 \frac{e^{nx}}{e^x + 1} . dx + \int_0^1 \frac{e^{(n+1)x}}{e^x + 1} . dx$$

លំចាត់ និទ ជិះណា:ស្រាយ

$$\begin{split} &=\int\limits_0^1 \frac{e^{nx}+e^{(n+1)x}}{e^x+1}.dx = \int\limits_0^1 \frac{e^{nx}(1+e^x)}{e^x+1}.dx \\ &=\int\limits_0^1 e^{nx}.dx = \left[\frac{1}{n}e^{nx}\right]_0^1 = \frac{e^n-1}{n} \end{split}$$
 Here, $I_{n+1} = \frac{e^n-1}{n}$

លំខាត់និង៦

គេឱ្យអនុគមន៍ f កំនត់លើ IR – {-1} ហើយផ្ទៀងផ្ទាត់ទំនាក់ទំនង:

$$x^{2}f(x^{3}) + \frac{1}{(1+x)^{2}}f(\frac{1-x}{1+x}) = 4x^{3}(1+x^{4})^{5}$$

ចូរគណនាអាំងតេក្រាលះ $I = \int_0^1 f(x) dx$ ។

<u> ಜೀವಾ: ಚಿನಾಆ</u>

គណនាអាំងតេក្រាលះ
$$I = \int_0^1 f(x) dx$$

តាង
$$x = t^3$$
 នាំឱ្យ $dx = 3t^2.dt$

ចំពោះ
$$x \in [0,1]$$
នាំឱ្យ $t \in [0,1]$

ពេហន
$$I = \int_{0}^{1} f(x).dx = \int_{0}^{1} f(t^{3}).3t^{2}dt$$

នាំឱ្យ
$$\frac{1}{3}I = \int_{0}^{1} t^{2}f(t^{3}).dt$$
 (1)

លំសាត់ សិខ ជំណោៈស្រាយ

ម្យ៉ាងទៅពលីពេតាង
$$\mathbf{x}=\frac{1-t}{1+t}$$
 ទាំឱ្យ $\mathbf{d}\mathbf{x}=-\frac{2\mathbf{d}t}{(1+t)^2}$ ចំពោះ $\mathbf{x}\in [0,1]$ ទាំឱ្យ $\mathbf{t}\in [1,0]$ ពេលន $\mathbf{I}=\int_0^1 f(\mathbf{x}).\mathbf{d}\mathbf{x}=\int_1^0 f\left(\frac{1-t}{1+t}\right).(-\frac{2\mathbf{d}t}{(1+t)^2})=2\int_0^1 \frac{1}{(1+t)^2}f(\frac{1-t}{1+t}).\mathbf{d}\mathbf{t}$ ពេទាញូបាន $\frac{1}{2}\mathbf{I}=\int_0^1 \frac{1}{(1+t)^2}f(\frac{1-t}{1+t}).\mathbf{d}\mathbf{t}$ (2) បុរាទំនាក់ទំនង (1) និង (2) ពេលន :
$$\frac{1}{3}\mathbf{I}+\frac{1}{2}\mathbf{I}=\int_0^1 \mathbf{t}^2f(\mathbf{t}^3)+\frac{1}{(1+t)^2}f(\frac{1-t}{1+t})\right].\mathbf{d}\mathbf{t}$$
 ពេមសម្មពិកម្មពេមាន $\mathbf{x}^2f(\mathbf{x}^3)+\frac{1}{(1+\mathbf{x})^2}f(\frac{1-\mathbf{x}}{1+\mathbf{x}})=4\mathbf{x}^3(1+\mathbf{x}^4)^5$ ពេលន $\frac{5}{6}\mathbf{I}=\int_0^1 4\mathbf{t}^3(1+\mathbf{t}^4)^5.\mathbf{d}\mathbf{t}=\left[\frac{1}{6}(1+\mathbf{t}^4)^6\right]_0^1=\frac{64}{6}-\frac{1}{6}=\frac{63}{6}$ ដូចនេះ $\mathbf{I}=\int_0^1 f(\mathbf{x}).\mathbf{d}\mathbf{x}=\frac{63}{5}$

លំមាន់ សិខ ជំណោៈស្រាយ

លំមាត់នី៥៧

គេសន្មត់ថា f ជាអនុគមន៍មួយកំនត់លើ IR ហើយផ្ទៅងផ្ទាត់ទំនាក់ទំនង:

$$f(x)+f(-x)=\sqrt{2-2\cos 2x}$$

ចូរគណនា
$$I = \int_{-\pi}^{\frac{\pi}{3}} f(x) dx$$
 ។

<u> ជំណោះស្រាយ</u>

គណនា
$$I = \int_{-\pi}^{\frac{\pi}{3}} f(x).dx$$

ឃើងមាន
$$I = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} f(x).dx = \int_{-\frac{\pi}{3}}^{0} f(x).dx + \int_{0}^{\frac{\pi}{3}} f(x).dx$$

តាង
$$x=-t$$
 នាំឱ្យ $dx=-dt$ និង ចំពោះ $x\in\left[-\frac{\pi}{3}\;,\;0\;\right]$

នាំឱ្យ
$$t \in \left[\frac{\pi}{3}, 0\right]$$
 ។

រក្សាន
$$\int\limits_{-\frac{\pi}{3}}^{0} f(x).dx = \int\limits_{\frac{\pi}{3}}^{0} f(-t).(-dt) = \int\limits_{0}^{\frac{\pi}{3}} f(-t).dt = \int\limits_{0}^{\frac{\pi}{3}} f(-x).dx$$

លំមាន់ សិខ ជំណោៈស្រ្វាយ

ពេទាញ
$$I = \int\limits_0^{\frac{\pi}{3}} f(-x).dx + \int\limits_0^{\frac{\pi}{3}} f(x).dx = \int\limits_0^{\frac{\pi}{3}} [f(-x) + f(x)].dx$$
 ដោយ $f(x) + f(-x) = \sqrt{2 - 2\cos 2x} = \sqrt{4\sin^2 x} = 2 |\sin x|$ ពេហាន $I = \int\limits_0^{\frac{\pi}{3}} 2 |\sin x| .dx = 2 \int\limits_0^{\frac{\pi}{3}} \sin x.dx = 2 [-\cos x]_0^{\frac{\pi}{3}} = 2 \left(-\frac{1}{2} + 1\right) = 1$ ដូចនេះ $I = \int\limits_0^{\frac{\pi}{3}} f(x).dx = 1$

<u> លំមាត់និ៥៤</u>

ចូរបង្ហាញថា
$$\int_a^b f(x).dx = \int_a^b f(a+b-x).dx$$

អនុវត្តន៍ : ចូរគណនា
$$I = \int_{0}^{\frac{\pi}{3}} \log_2(1 + \sqrt{3} \tan x).dx$$

ជំណោះស្រាយ

បង្ហាញថា
$$\int\limits_a^b f(x).dx = \int\limits_a^b f(a+b-x).dx$$

 តាង $x=a+b-t$ នាំឱ្យ $dx=-dt$ ចំពោះ $x\in [a,b]$ នាំឱ្យ $t\in [b,a]$
 គេបាន $\int\limits_a^b f(x).dx = \int\limits_b^a f(a+b-t)(-dt) = \int\limits_a^b f(a+b-t).dt$
 ដូចនេះ $\int\limits_a^b f(x).dx = \int\limits_a^b f(a+b-x).dx$ ។

ឆ្នាំង ខ្លួន ខ្លួននោះទីខាតា

ឆំមាន់ ឆិខ ជំណោៈស្រាយ

លំខាង់នី៥៩

គេឱ្យ f ជាអនុគមន៍ជាប់លើ [0,1] ។ ចូរបង្ហាញថា $\int\limits_0^\pi x.f(\sin x).dx=\frac{\pi}{2}\int\limits_0^\pi f(\sin x).dx$? អនុវត្តន៍: ចូរគណនា $I=\int\limits_0^\pi \frac{x\sin x.dx}{1+\cos^2 x}$ ។

<u> ខ្លួំឈោះស្រា</u>តា

លំមាន់ សិខ ជំណោៈស្រ្វាយ

គេមាន
$$I = \int_{0}^{\pi} \frac{x \cdot \sin x \cdot dx}{1 + \cos^{2} x} = \int_{0}^{\pi} x \cdot \frac{\sin x \cdot dx}{2 - \sin^{2} x} = \frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x \cdot dx}{2 - \sin^{2} x}$$

តាង $z = \cos x$ នាំឱ្យ $dz = -\sin x.dx$

ហើយចំពោះ $x \in [0,\pi]$ នោះ $z \in [1,-1]$

ពេហន
$$I = \frac{\pi}{2} \int_{1}^{-1} \frac{-dz}{1+z^2} = \frac{\pi}{2} \left[\arctan z\right]_{-1}^{1} = \frac{\pi}{2} \left(\frac{\pi}{4} + \frac{\pi}{4}\right) = \frac{\pi^2}{4}$$
 ។

ដូចនេះ
$$I = \int_0^\pi \frac{x \sin x . dx}{1 + \cos^2 x} = \frac{\pi^2}{4}$$
 ។

លំមាត់និ៦០

ពេទ្យិ f ជាអនុគមន៍តូលើ [-a,a] ។

ក. ចូរបង្ហាញថា
$$\int_{-a}^{a} \frac{f(x).dx}{1+q^{x}} = \int_{0}^{a} f(x).dx$$
 , $q > 0$, $q \ne 1$ ។

2. អនុវត្តន៍ : គណនា
$$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1+3^x}.dx$$

<u> ជំណោះស្រាយ</u>

ក.បង្ហាញថា
$$\int_{-a}^{a} \frac{f(x).dx}{1+q^{x}} = \int_{0}^{a} f(x).dx$$
, $q > 0$, $q \ne 1$ ។

គេមាន
$$\int_{-a}^{a} \frac{f(x).dx}{1+q^x} = \int_{-a}^{0} \frac{f(x).dx}{1+q^x} + \int_{0}^{a} \frac{f(x).dx}{1+q^x}$$
 (1)

តាង
$$x=-t$$
 នាំឱ្យ $dx=-dt$ និងចំពោះ $x\in [-a\,,0]$ នាំឱ្យ $t\in [a\,,0]$

សំមាត់ សិខ ជំណោ:ស្រាយ

$$\text{thus} \ \int\limits_{-a}^{0} \frac{f(x).dx}{1+q^{x}} = -\int\limits_{a}^{0} \frac{f(-t).dt}{1+q^{-t}} = \int\limits_{0}^{a} \frac{q^{t}.f(-t)dt}{1+q^{t}} = \int\limits_{0}^{a} \frac{q^{x}f(-x).dx}{1+q^{x}}$$

ដោយ f(x) ជាអនុគមន៍គូនោះ f(-x) = f(x) , $\forall x \in [-a,a]$

គេទាញជាន
$$\int_{-a}^{0} \frac{f(x).dx}{1+q^{x}} = \int_{0}^{a} \frac{q^{x}.f(x)}{1+q^{x}}.dx$$
 (2)

យក (2) ទៅជួសក្នុង (1) គេបាន:

$$\begin{split} &\int_{-a}^{a} \frac{f(x).dx}{1+q^{x}} = \int_{0}^{a} \frac{q^{x}.f(x).dx}{1+q^{x}} + \int_{0}^{a} \frac{f(x).dx}{1+q^{x}} = \int_{0}^{a} \frac{(q^{x}+1)f(x).dx}{1+q^{x}} = \int_{0}^{a} f(x).dx \\ &\text{Highs} \int_{-a}^{a} \frac{f(x).dx}{1+q^{x}} = \int_{0}^{a} f(x).dx \ , \ q>0 \ , q\neq 1 \end{split}$$

2. អនុវត្តន៍ : គណនា
$$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1+3^x} dx$$

ដោយ cos x ជាអនុគមន៍គូនោះគេបាន:

$$I = \int_{0}^{\frac{\pi}{2}} \cos x . dx = \left[\sin x\right]_{0}^{\frac{\pi}{2}} = 1 - 0 = 1$$
 ។ ដូចនេះ $I = 1$ ។

លំមាន់ និ១ ជំណោ:ស្រាយ

លំមាត់នី៦១

ក-គណនាអាំងតេក្រាលកំនត់ $I_n = \int\limits_0^1 (1+x)^n.dx$ $,n\in IN$ ។

ខ-ទាញបង្ហាញថា
$$C_n^0 + \frac{1}{2}C_n^1 + \frac{1}{3}C_n^2 + \dots + \frac{1}{n+1}C_n^n = \frac{2^{n+1}-1}{n+1}$$

<u> ಜೀವಾ: ಚಿನಾಆ</u>

ក-គណនាអាំងតេក្រាលកំនត់

$$\begin{split} I_n &= \int_0^1 (1+x)^n . dx , n \in IN \\ &= \left[\frac{1}{n+1} (1+x)^{n+1} \right]_0^1 = \frac{1}{n+1} . 2^{n+1} - \frac{1}{n+1} \\ &= \frac{2^{n+1} - 1}{n+1} \end{split}$$

ខ-ទាញបង្ហាញថា
$$C_n^0 + \frac{1}{2}C_n^1 + \frac{1}{3}C_n^2 + \dots + \frac{1}{n+1}C_n^n = \frac{2^{n+1}-1}{n+1}$$

តាមរូបមន្តទ្វេធាញូតុនគេមាន :

$$(1+x)^n = C_n^0 + C_n^1 x + C_n^2 x^2 + \dots + C_n^n x^n$$

ធ្វើអាំងតេក្រាលកំនត់ក្នុងចន្លោះ $\left[0,1\right]$ នៃសមភាពនេះគេបាន :

លំសាត់ និទ ជិះណា:ស្រ្គាយ

$$\begin{split} &\int\limits_0^1 \left(1+x\right)^n.dx = \int\limits_0^1 \left(C_n^0 + C_n^1 x + C_n^2 x^2 + + C_n^n x^n\right) dx \\ &\frac{2^{n+1}-1}{n+1} = \left[C_n^0 x + \frac{1}{2}C_n^1 x^2 + \frac{1}{3}C_n^2 x^3 + + \frac{1}{n+1}C_n^n x^{n+1}\right]_0^1 \\ &\frac{2^{n+1}-1}{n+1} = C_n^0 + \frac{1}{2}C_n^1 + \frac{1}{3}C_n^2 + + \frac{1}{n+1}C_n^n \\ & \text{Hisse} & C_n^0 + \frac{1}{2}C_n^1 + \frac{1}{3}C_n^2 + + \frac{1}{n+1}C_n^n = \frac{2^{n+1}-1}{n+1} \\ & \text{Hisse} & C_n^0 + \frac{1}{2}C_n^1 + \frac{1}{3}C_n^2 + + \frac{1}{n+1}C_n^n = \frac{2^{n+1}-1}{n+1} \\ \end{split}$$

លំខាង់ខ្មែរគ

គេមានស្វ៊ីត (I_n) កំនត់ចំពោះគ្រប់ $n \ge 1$ ដោយ

$$I_n = \frac{1}{n!} \cdot \int_0^1 (1-x)^n \cdot e^x \cdot dx$$

ក-ចូរគណនាតូ \mathbf{I}_1 ។

ខ-ចូរបញ្ជាក់
$$\mathbf{I}_{n+1}$$
 ជាអនុគមន៍នៃ \mathbf{I}_n រួចទាញឱ្យបានថា $\mathbf{I}_n = \mathbf{e} - \sum\limits_{p=0}^n \left(\frac{1}{P!} \right)$

គ-ចូររកលីមីត $\lim_{n \to +\infty} I_n$ ។

ទាញថា
$$\lim_{n \to +\infty} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \right) = e = 2.71828$$

<u> ಜೋಸ್ಟ್ರೀಕ್ರಾ</u>ಆ

ក-ចូរគណនាតូ ${f I}_1$

ឆំមាន់ និទ ជំណោៈស្រ្គាយ

ឆ្នាំង ខ្លួន ខ្លួននោះទីខាតា

ទាញឱ្យបានថា
$$I_n=e-\sum_{p=0}^n \left(\frac{1}{P!}\right)$$
 គេមាន $I_{n+1}=I_n-\frac{1}{(n+1)!}$ ចំពោះ $n=1:I_2=I_1-\frac{1}{2!}$ ចំពោះ $n=2:I_3=I_2-\frac{1}{3!}$

•••••

ចំពោះ
$$n = n - 1$$
: $I_n = I_{n-1} - \frac{1}{n!}$

ដោយធ្វើផលបូកទំនាក់ទំនងនេះអង្គ និង អង្គ គេបាន :

$$\begin{split} \mathbf{I_n} &= \mathbf{I_1} - \frac{1}{2!} - \frac{1}{3!} - \dots - \frac{1}{n!} & \text{thu } \mathbf{I_1} = \mathbf{e} - 2 = \mathbf{e} - \frac{1}{0!} - \frac{1}{1!} \\ \text{Huss} & \mathbf{I_n} = \mathbf{e} - \frac{1}{0!} - \frac{1}{1!} - \frac{1}{2!} - \dots - \frac{1}{n!} = \mathbf{e} - \sum_{\mathbf{p}=0}^{\mathbf{n}} \left(\frac{1}{\mathbf{p}!} \right) \end{split}$$

គ-ចូររកលីមីត $\lim_{n \to +\infty} I_n$

ចំពោះ $x \in [0, 1]$ គេមាន $1 \le e^x \le e$ និង $(1-x)^n \ge 0$

ក្ដេង
$$(1-x)^n \le e^x (1-x)^n \le e(1-x)^n$$

ទាំឱ្យ
$$\frac{1}{n!} \int_{0}^{1} (1-x)^{n} . dx \le \frac{1}{n!} \int_{0}^{1} (1-x)^{n} e^{x} . dx \le \frac{e}{n!} \int_{0}^{1} (1-x)^{n} . dx$$

ដោយ
$$\int_{0}^{1} (1-x)^{n} . dx = \left[-\frac{1}{n+1} (1-x)^{n+1} \right]_{0}^{1} = \frac{1}{n+1}$$

លំមាន់ និ១ ជំណោៈស្រ្វាយ

MMMMMM

ឆំមាត់ ឆិខ ជំណោ:ស្រាយ

លំខាងអនុទង្គន៍

1.គេឲ្យចំនួនកុំផ្លិច z = x + iy ដែល x និង y ជាចំនួនពិត ។ ចូរកំនត់តម្លៃ x និង y បើគេដឹងថា ៖

$$\frac{5(1+i)}{2-i}$$
. $z + \frac{1+12i}{1+2i}$. $\overline{z} = \frac{7-11i}{1-i}$

$$\mathbf{z}$$
.ក_គេឲ្យ $\mathbf{z}=rac{\mathbf{1}+\mathbf{i}\sqrt{3}}{2}$ ។

ចូរសរសេរ z⁹ និង z²⁰⁰⁹ ជាទម្រង់ពីជគណិត ។

ខ.កំនត់ពីរចំនួនពិត $\, p\,$ និង $\, q\,$ ដើម្បីឲ្យ $\, z=\frac{1+i\sqrt{3}}{2}$ ជាឬស របស់សមីការ $\, z^{\scriptscriptstyle 2009}+pz^{\scriptscriptstyle 9}+q=0\,$ ។

 ${f 3}$. គេឲ្យចំនួនកុំផ្លិច ${f z}=\sqrt{2-\sqrt{2}}+i.\sqrt{2+\sqrt{2}}$

ចូរសរសេរ z² និង z ជាទម្រង់ត្រីកោណមាត្ររួចទាញរកតម្លៃ

ប្រាកដនៃ
$$\cos \frac{\pi}{8}$$
 និង $\sin \frac{\pi}{8}$ ។

$$4.$$
 ពេទ្យចំនួនកុំផ្ចិច $z=-rac{1}{2}+i.rac{\sqrt{3}}{2}$ និង $W=rac{1+z^{2009}}{1-z}$

ចូរសរសេរ z និង W ជាទម្រង់ត្រីកោណមាត្រ ។

លំមាន់ សិខ ជំណោៈស្រ្វាយ

5.ដោះស្រាយសមីការ
$$z^2 - 2(1 + i\sqrt{3})z - 1 + 2i\sqrt{3} = 0$$

- 6.គេតាង ${\bf z}_{_1}$ និង ${\bf z}_{_2}$ ជាឬសរបស់សមីការ ${\bf z}^{_2}-\sqrt{3}\,{\bf z}+{\bf 1}={\bf 0}$ ចូរគណនា ${\bf S}={\bf z}_{_1}^{^{2009}}+{\bf z}_{_2}^{^{2009}}$ ។
- 7.ដោះស្រាយលមីពារ |1+z|+2z=9+8i
- 8. គេឲ្យចំនួនកុំផ្លិច $\alpha=3+i\sqrt{3}$ និង $\beta=1+i\sqrt{3}$ គេតាង $\mathbf{Z}_{_{n}}=(\alpha+\beta)(\alpha^{^{2}}+\beta^{^{2}})....(\alpha^{^{2^{n}}}+\beta^{^{2^{n}}})$ ។ ចូរកំនត់រកផ្នែកពិត និង ផ្នែកនិម្មិតនៃ $\mathbf{Z}_{_{n}}$ ។
- $\mathbf{0}.$ ពេទ្យចំនួនកុំផ្លិច $\mathbf{z}_{\mathrm{n}}=rac{1}{\mathbf{n}^{2}+\mathbf{n}-1+\mathbf{i}.(2\mathbf{n}+1)}$ ដែល $\mathbf{n}\in\mathbf{IN}$ ។

ក.កំនត់ពីរចំនួនពិត ${f A}$ និង ${f B}$ បើគេដឹងថា st

$$\mathbf{Z}_{n}=rac{\mathbf{A}}{\mathbf{n}+\mathbf{i}}+rac{\mathbf{B}}{\mathbf{n}+\mathbf{1}+\mathbf{i}}$$
 ខ.គណនាផលបូក $\mathbf{S}_{n}=\sum\limits_{k=0}^{n}(\mathbf{Z}_{k})=\mathbf{Z}_{0}+\mathbf{Z}_{1}+....+\mathbf{Z}_{n}$ ដោយសរសេរលទ្ធផលជារាងពីជគណិត ។

10. គេឲ្យចំនួនកុំផ្លិច $z=-1+i\sqrt{2}$ ។ គេតាង $S_n=z^2+\overline{z}^n$ ចំពោះគ្រប់ចំនួនគត់វិឡាទីហ្វ n ។

ឆំមាន់ ឆិខ ជំណោ:ត្រវាយ

ចូរបង្ហាញថា
$$S_{_{n+2}} + 2S_{_{n+1}} + 3S_{_{n}} = 0$$
 ។

11. គេឲ្យចំនួនកុំផ្ចិច
$$w=rac{\sqrt{6}-i\sqrt{2}}{1-i}$$

ចូរសរសេរ w ជាទម្រង់ពីជគណិត និង ជាទម្រង់ត្រីកោណមាត្រ

រួចទាញរកតម្លៃប្រាកដនៃ
$$\cos \frac{\pi}{12}$$
 និង $\sin \frac{\pi}{12}$ ។

12.គេឲ្យចំនួនកុំផ្លិច ៖

$$z = (\cos^2 x + \frac{1}{\cos^2 x}) + i.(\sin^2 x + \frac{1}{\sin^2 x})$$

ដែល
$$0 < x < \frac{\pi}{2}$$
 ។

ចូរគណនាតម្លៃតូចបំផុតនៃម៉ូឌុលរបស់ z ។

13. គេឲ្យចំនួនកុំផ្លិច ៖

$$z = 2(a+1)(2a-3) + i(a-4)(3a-2)$$

ដែល a ជាចំនួនពិត ។

$$\mathbf{r}$$
. ចូរស្រាយថា $|\mathbf{z}| = 5(\mathbf{a}^2 - 2\mathbf{a} + 2)$

ខ.ក្នុងប្លង់កុំផ្លិច $(\mathbf{o}, \dot{\mathbf{i}}, \dot{\mathbf{j}})$ គេសន្មតថា \mathbf{M} ជារូបភាពនៃ \mathbf{z} ។ កំនត់ទីតាំង \mathbf{M} ដើម្បីឲ្យចម្ងាយ \mathbf{OM} ខ្លីបំផុត ។

លំមាន់ សិខ ជំណោៈស្រ្វាយ

14.ក្នុងប្លង់កុំផ្លិច (o,i,j) គេឲ្យបួនចំនុច A , B , C និង D មានអាហ្វិករ្យងគ្នា -2+4i , 4-2i , 5-iនិង 6+2i ។ ក.ចូរដៅចំនុច A , B , C និង D ។

ខ.ចូរស្រាយថាចតុកោណ ABCD ចារិកក្នុងរង្វង់មួយ ។

15. គេមានសមីការ (\mathbf{E}) : $2\mathbf{z}^4+3\mathbf{z}^2+3\sqrt{3}\mathbf{z}+9=0$ ក.បង្ហាញថាបើ \mathbf{z}_0 ជាឬសរបស់សមីការ (\mathbf{E}) នោះ $\overline{\mathbf{z}}_0$ ក៏ជា ឬសរបស់សមីការ (\mathbf{E}) ដែរ ។

ខ.ដោះស្រាយក្នុងសំណុំចំនួនកុំផ្លិចនូវសមីការ (E) ដោយដឹងថា ឬសមួយរបស់វាមានទម្រង់ a(1+i) ដែល $a\in IR$ ។

ខ.ចូរសរសេរ z ជាទម្រង់ត្រីកោណមាត្រ ។

17.គេឲ្យលមីការ ៖

សំមាន់ សិខ ជំណោៈស្រាយ

- ខ.ដោៈស្រាយក្នុងសំណុំចំនួនកុំផ្ចិចនូវសមីការ (E) ។
- 18.ក្នុងប្លង់កុំផ្លិច (o,i,j) គេឲ្យចំនុច M មានអាហ្វិក z ផ្ល្វេងផ្លាត់ទំនាក់ទំនង $\left| \frac{z-2+2i}{z+1+i} \right| = \frac{\sqrt{2}}{2}$ ។ ចូររក និងសង់សំណុំចំនុច M ។
- 19. គេឲ្យសមីការដីក្រេទីពីរ ៖

 $(E): z^2 - (\sqrt{3} - 1 + 2i)z - \sqrt{3} - 1 + i\sqrt{3} - i = 0$ $\pi.$ ដោះស្រាយក្នុងសំណុំចំនួនកុំផ្លិចនូវសមីការ (E) ។ 9. សរសេរឬសទាំងពីរនៃសមីការ (E)ជារាងត្រីកោណមាត្រ ។

21. គេឲ្យសមីការ (\mathbf{E}) : $\mathbf{z}^2 + (4+4\mathbf{i})\mathbf{z} + (7+32\mathbf{i}) = \mathbf{0}$ \mathbf{r} . កំនត់ឬស \mathbf{z}_1 និង \mathbf{z}_2 នៃសមីការ (\mathbf{E}) ដែល $|\mathbf{z}_1| < |\mathbf{z}_2|$ ។ \mathbf{z} . ក្នុងប្លង់កុំផ្លិច $(\mathbf{o}, \overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}})$ គេតាង $\mathbf{A}, \mathbf{B}, \mathbf{C}$ ជារូបភាពរ្យង់គ្នា នៃចំនួនកុំផ្លិច $\mathbf{i}, \mathbf{z}_1, \mathbf{z}_2$ ។ ចូរដៅចំនុចទាំងនេះ ។

ឆំមាន់ ឆិខ ជំណោ:ត្រវាយ

- គ. Gជាបារីសង់នៃប្រព័ន្ឋ (A;2), (B;-2)និង (C;-1) ។ ចូររកអាហ្វិកនៃចំនុច G ។
- ${f 22}$. គេឲ្យស្ងឹតនៃចំនួនពិត $({f u}_n)$ កំនត់គ្រប់ ${f n}\in {f IN}$ ដោយ ៖ ${f u}_0={f 0}$; ${f u}_1={f 1}$ និងទំនាក់ទំនង ${f u}_{n+2}=\sqrt{3}\,{f u}_{n+1}-4{f u}_n$ ក. គេតាង ${f z}_n={f u}_{n+1}-rac{\sqrt{3}-i}{2}.{f u}_n$ គ្រប់ ${f n}\in {f IN}$ ។ ចូរស្រាយថា ${f z}_{n+1}=rac{\sqrt{3}+i}{2}.{f z}_n$ រួចគណនា ${f u}_n$ ជាអនុគមន៍ នៃ ${f n}$ ។
 - ខ.ទាញរកតួទូទៅនៃស្វ៊ីត (u៉ា) ។
- ${f 23}$.គេឲ្យស្ទីតចំនួនពិត ${f (a}_{_{
 m n}})$ និង ${f (b}_{_{
 m n}})$ កំនត់ដោយ ៖

$$egin{aligned} &a_{_{n+1}}=1, &b_{_{0}}=1 \ &a_{_{n+1}}=a_{_{n}}-b_{_{n}} \ &b_{_{n+1}}=a_{_{n}}+b_{_{n}} \ , &\forall n\in IN \ &r.$$
 $\pi.$ π $a_{_{n}}=a_{_{n}}+i.b_{_{n}}$ ។ ចូរស្រាយថា $a_{_{n+1}}=(1+i)a_{_{n}}$ $a_{_{n}}=a_{_{n}}+i.b_{_{n}}$ ។ ចូរស្រាយថា $a_{_{n+1}}=a_{_{n}}=a_{_{n}}+i.a_{_{n}}$ $a_{_{n}}=a_{_{n}}+i.a_{_{n}}$ $a_{_{n}}=a_{_{$

លំមាន់ សិខ ជំណោៈស្រ្វាយ

 ${f 24}$.គេឲ្យស្វីពនៃចំនួនកុំផ្លិច $({f z}_{_{
m n}})$ កំនត់ដោយ ៖

$$z_{_{0}}=2 \ \text{Rh} \ z_{_{n+1}}=\frac{1+i}{\sqrt{2}}z_{_{n}}+\frac{\sqrt{2}-1-i}{\sqrt{2}}$$

ដែល $n \in IN$ ។

ក.គេតាង $\mathbf{w}_{_{\mathrm{n}}}=\mathbf{z}_{_{\mathrm{n}}}-\mathbf{1}$ ។ ចូរស្រាយថា $\mathbf{w}_{_{\mathrm{n+1}}}=\frac{\mathbf{1}+\mathbf{i}}{\sqrt{2}}\mathbf{w}_{_{\mathrm{n}}}$

ខ.ចូរសរសេរ $\mathbf{w}_{_{0}}$ និង $\mathbf{w}_{_{n}}$ ជាទម្រង់ត្រីកោណមាត្រ ។

គ.ចូរសរសេរ \mathbf{z}_n ជាទម្រង់ $\mathbf{z}_n = \mathbf{r}_n (\cos \theta_n + i \sin \theta_n)$ ។

25. គេឲ្យលមីការដីក្រេទីពីរ (\mathbf{E}) : $a\mathbf{z}^2 + b\mathbf{z} + \mathbf{c} = \mathbf{0}$

ដែល $\mathbf{a} \neq \mathbf{0}$, \mathbf{a} , \mathbf{b} , $\mathbf{c} \in \mathbf{IR}$ ។សំន្មិតថា $\Delta = \mathbf{b}^2 - 4\mathbf{a}\mathbf{c} < \mathbf{0}$

នោៈសមីការ (E)មានឬសពីរជាចំនួនកុំផ្លិចឆ្លាស់គ្នាដែលពាងដោយ

 ${f z}$ និង ${f \overline z}$ ។ចំពោះគ្រប់ ${f n}\in {f Z}$ គេយក ${f S}_{_n}={f z}^{_n}+{f \overline z}^{_n}$ ។

ចូរស្រាយថា $aS_{n+2} + bS_{n+1} + cS_n = 0$ ។

អនុវត្តន៍ ៖ ដោយមិនបាច់ពន្លាតចូរគណនាតម្លៃ

$$\mathbf{M} = (1 - i\sqrt{3})^7 + (1 + i\sqrt{3})^7$$

$$N = \frac{1}{(1 - i\sqrt{2})^5} + \frac{1}{(1 + i\sqrt{2})^5}$$

លំមាន់ និ១ ជំណោៈស្រ្វាយ

26 . គេមានចំនួនកុំផ្លិច
$$z_1=1-2i$$
 និង $z_2=-1+3i$ ខាង α និង β រ្យេងគ្នាជាអាគុយម៉ង់នៃ z_1 និង z_2 ។ ចូរបង្ហាញថា $\alpha+\beta=\frac{\pi}{4}$ ។ 27 . គេឲ្យ $C_n=\sum\limits_{k=1}^n(\cos k\theta)$ និង $S_n=\sum\limits_{k=1}^n(\sin k\theta)$

$${f C}_{
m n}=\sum\limits_{
m k=1}^{\infty}(\cos{
m k} heta)$$
 និង ${f S}_{
m n}=\sum\limits_{
m k=1}^{\infty}(\sin{
m k} heta)$ ${f r}$. ចូរបង្ហាញថា ${f C}_{
m n}+{
m i}{f S}_{
m n}=rac{1-{f z}^{
m n}}{1-{f z}}$

ដែល $z = \cos \theta + i.\sin \theta$ ។

ខ.ចូរស្រាយថា
$$\frac{1-z^n}{1-z} = \frac{\sin\frac{n\theta}{2}}{\sin\frac{\theta}{2}} \cdot \left(\cos\frac{n\theta}{2} + i \cdot \sin\frac{n\theta}{2}\right)$$

គ.ទាញរកតម្លៃនៃ $\mathbf{C}_{\scriptscriptstyle n}$ និង $\mathbf{S}_{\scriptscriptstyle n}$ ។

28. គេថ្វ
$$C_n = \sum_{k=0}^n \left(\frac{\cos^k x}{\cos kx} \right)$$
 និង $S_n = \sum_{k=0}^n \left(\frac{\sin^k x}{\cos kx} \right)$

ក.បង្ហាញថា $\mathbf{C}_{\mathrm{n}}+\mathbf{i.S}_{\mathrm{n}}$ ជាផលបូកស្វ៊ីតធរណីមាត្រនៃចំនួន កុំផ្លិចមួយ ។

ខ.ទាញរកតម្លៃនៃ $\mathbf{C}_{_{\! 1}}$ និង $\mathbf{S}_{_{\! 2}}$ ។

ឆំមាន់ ឆិខ ជំណោៈស្រាយ

29.គណនាផលបូក ៖

$$\mathbf{C}_{n} = \sum_{p=0}^{n} \left(\mathbf{C}_{n}^{p} \cos px \right)$$
 និង $\mathbf{S}_{n} = \sum_{p=0}^{n} \left(\mathbf{C}_{n}^{p} \sin px \right)$ ដែល $\mathbf{C}_{n}^{p} = \frac{\mathbf{n}!}{\mathbf{p}!(\mathbf{n} - \mathbf{p})!}$ ។

 $oldsymbol{30}$.គេឲ្យស្វីតនៃចំនួនកុំផ្លិច $(oldsymbol{z}_{\scriptscriptstyle n})$ កំនត់ដោយ ៖

$$\begin{cases} z_{0} = 0, z_{1} = 1 \\ z_{n+2} = \frac{3+i}{2} z_{n+1} - \frac{1+i}{2} z_{n}, \forall n \in IN \end{cases}$$

 \mathbf{n} . គេតាង $\mathbf{w}_{_{\mathbf{n}}} = \mathbf{z}_{_{\mathbf{n}+1}} - \mathbf{z}_{_{\mathbf{n}}}$ ។

ស្រាយថា
$$\mathbf{w}_{_{\mathrm{n+1}}} = \frac{1+i}{2}.\mathbf{w}_{_{\mathrm{n}}}$$
 រួចទាញថា $|\mathbf{w}_{_{\mathrm{n}}}| = \left(\frac{\sqrt{2}}{2}\right)^{_{\mathrm{n}}}$

ខ.ក្នុងប្លង់កុំផ្លិច $(\mathbf{o}, \dot{\mathbf{i}}, \dot{\mathbf{j}})$ គេហៅ $\mathbf{M}_{_0}, \mathbf{M}_{_1},, \mathbf{M}_{_n}$ ជាចំនុចមានអាហ្វិករ្យេងគ្នា $\mathbf{z}_{_0}, \mathbf{z}_{_1},, \mathbf{z}_{_n}$ ។

31 .គេឲ្យចំនួនកុំផ្លិចពីរ lpha និង eta ដែល |lpha| = |eta| = 1

និង
$$1+lphaeta
eq 0$$
 ។ បង្ហាញថា $\dfrac{lpha+eta}{1+lphaeta}$ ជាចំនួនពិត ។

ឆំមាត់ ឆិខ ជំណោៈស្រាយ

 ${f 32}$. គេឲ្យចំនួនកុំផ្លិច ${f z}=rac{{f 1}+{f i}\sqrt{f 3}}{{f 1}-{f i}}$ ក.រកចំនួនគត់វិជ្ជមាន \mathbf{n} ដែលធ្វើឲ្យ $\mathbf{z}^{^{\mathrm{n}}}$ ជាចំនួនពិត ។ គណនា zⁿ ចំពោះតម្លៃតូចជាងគេនៃ nដែលបានរកឃើញ ។ ខ.គណនា n ដើម្បីឲ្យ z" ជាចំនួននិម្មិតសុទ្ធ ។ ${f 33}$.គេឲ្យ ${f z}$ ជាចំនួនកុំផ្លិចមានម៉ូឌលស្មើ ${f 1}$ និងអាគុយម៉ង់ ${f lpha}$ ។ ចូរសរសេរ $\mathbf{Z} = \mathbf{1} + \mathbf{z} + \mathbf{z}^2$ ជារាងត្រីកោណមាត្រ ។ ${f 34}$.ក្នុងប្លង់កុំផ្លិច $({f o}, \overset{
ightarrow}{f i}, \overset{
ightarrow}{f j})$ ចំនុច ${f M}$ ជារូបភាពនៃចំនួនកុំផ្លិច * $z = \cos \theta + i.\sin \theta$ ដោយ $\theta \in]0;\pi[$ ។ ក.ចូររកសំណុំនៃចំនុច **M** ។ ខ.ចំនុច ${f N}$ មានអាហ្វិក ${f z}_{_{
m N}}={f 1}+{f z}$ ។ រកសំណុំចំនុច ${f N}$ កាលណា $\, heta$ ផ្ទេ្យងផ្ទាត់លក្ខ័ខណ្ឌ័ $\, heta \in \,] \, {f 0} \, ; \pi$ [។ 35. គេឲ្យចំនួនកុំផ្ចិច z=x+iy និង $Z=rac{z+4i}{z+4i}$ ដែល x និង y ជាចំនួនពិត ។ តើ x និង y ត្រូវផ្ទៀងផ្ទាត់លក្ខ័ខណ្ឌ័យ៉ាងណាដើម្បីឲ្យ Z ៖ ក.ទៅជាចំនួនពិត ខ.ទៅជាចំនួននិម្មិតសុទ្ឋ ។

លំមាន់ សិខ ជំណោៈស្រាយ

- ${f 36}$.គេឲ្យចំនួនកុំផ្លិច ${f z}$ ផ្លៀងផ្លាត់ $|2{f z}-\sqrt{3}+5{f i}|=6$ ហើយ ${f M}$ ជារូបភាពនៃ ${f z}$ ក្នុងប្លង់កុំផ្លិច $({f o},{f i},{f j})$ ។ ${f n}$.ចូររក និង សង់សំណុំនៃចំនុច ${f M}$ ។ ${f e}$.ចូរកំនត់ទីតាំងនៃចំនុច ${f M}$ ដើម្បីឲ្យចំនួនកុំផ្លិច ${f z}$ មានអាគុយ ម៉ង់អប្បបរមា រួចកំនត់រកអាគុយម៉ង់អប្បរមានោះ ។
- 37. គេឲ្យចំនួនកុំផ្លិច z ផ្ទៀងផ្ទាត់ |z-8+6i|=5 ហើយ M ជារូបភាពនៃ z ក្នុងប្លង់កុំផ្លិច (o,i,j) ។ 9. ចូររក និង សង់សំណុំនៃចំនុច M ។
 - ២.ចូរកំនត់ទីតាំងនៃចំនុច M ដើម្បីឲ្យចំនួនកុំផ្លិច z មានម៉ូឌុល ៖ ក_ អប្បបរមា ? ខ_អតិបរមា ?
- 38.ក្នុងប្លង់កុំផ្ចិចគេឲ្យបីចំនុច A , M និង M' មានអាហ្វិក រ្យេងគ្នា 2+2i , z និង i.z ។ ចូរកំនត់សំណុំចំនុច M ដោយដឹងថា A,M,M'រត់ត្រង់គ្នា ។
- ${f 39}.$ គេឲ្យចំនួនកុំផ្ចិច ${f z}={f x}+{f i}.{f y}$ និង ${f Z}=rac{{f z}-3}{{f z}-1}$ ដែល ${f z}
 eq 1$; ${f x},{f y}\in {f IR}$ ។

ឆ្នាំង ខ្លួន ខ្លួននោះទីខាតា

គេហៅ ${f M}$ ជាចំនុចមានអាហ្វិក ${f z}$ និង ${f M}'$ ជាចំនុចមានអាហ្វិក \mathbf{Z} ស្ថិតនៅក្នុងប្លង់កុំផ្លិច $(\mathbf{o}, \vec{\mathbf{i}}, \vec{\mathbf{j}})$ ។ ក.កំនត់សំណុំចំនុច M កាលណា M'ប្រែប្រួលលើអក្ស័ (ox) ខ.កំនត់សំណុំចំនុច M កាលណា M'ប្រែប្រួលលើអក្ស័ (oy) 40. គេឲ្យចំនួនកុំផ្លិច $z = \frac{1-t^2}{1+t^2} + i \cdot \frac{2t}{1+t^2}$ ដែល $t \in IR$ ។ ក.ចូរបង្ហាញថាចំនួនកុំផ្លិច z មានម៉ូឌុលថេរគ្រប់តម្លៃ t ។ $\mathbf{2.M}$ ជារួបភាពនៃ \mathbf{z} ក្នុងប្លង់កុំផ្លិច $(\mathbf{o}, \overset{
ightarrow}{\mathbf{i}}, \overset{
ightarrow}{\mathbf{j}})$ ។ ចូរកំនត់សំណុំចំនុច M កាលណា t ប្រែប្រួលតម្លៃ ។ 41. កេត្តអនុតមន៍ $f(x) = x^3 + 2x^2 + 3x + 4$ ចូរគណនាលីមីត $\lim_{x\to 1} \frac{f(x)-f(1)}{x-1}$ ។ 42. ពេមានអនុគមន៍ $f(x) = \frac{\overline{2x^4 - 3x^3 + 3x^2 + 3x - 5}}{x^2 - 1}$ ចូរគណនាលីមីត $\lim_{x\to -1} f(x)$ និង $\lim_{x\to 1} f(x)$ ។ 43. ពេទ្យអនុគមន៍ $f(x) = \frac{x + \sqrt[15]{x} - 2}{\sqrt[5]{y} + \sqrt[3]{y} - 2}$ ។ ចូរគណនា $\lim_{x\to 1} f(x)$ ។

ឆ្នាំង ខ្លួច ខ្លួមនោះទីសាតា

$$\mathbf{45}$$
. គេឲ្យអនុគមន៍ $\mathbf{f}(\mathbf{x}) = \left\{egin{array}{c} \cos(rac{\pi\cos2\mathbf{x}}{2}) \ \hline 2\mathbf{x}^2 \end{array}
ight.$ \mathbf{i} ប៊ែ $\mathbf{x}
eq 0$ $\frac{\pi}{2}$ \mathbf{i} ប៊ែ $\mathbf{x} = 0$

ចូរសិក្សាភាពជាប់នៃអនុគមន៍ $\mathbf{f}(\mathbf{x})$ ត្រង់ចំនុច $\mathbf{x}=\mathbf{0}$ ។

46. គេឲ្យអនុគមន៍
$$f(x) = \frac{x^3 + ax + b}{x - 1}$$
 ដែល $x \neq 1$ កំនត់ពីរចំនួនពិត a និង b ដើម្បីឲ្យ $\lim_{x \to 1} f(x) = 5$ ។

47. គណនាលីមីត
$$\lim_{x\to 2} \frac{\sqrt{x^2-1}-\sqrt{2x-1}}{\sqrt{x+2}-\sqrt{x^2+2x-4}}$$

48. គេឲ្យអនុគមន៍
$$f(x)=rac{mx^{^{m+1}}-(m+1)x^{^m}+1}{x^{^{n+1}}-x^{^n}-x+1}$$
 ដែល $m\in IN*$ និង $n\in IN*$ ។

ចូរគណនាលីមីត $\lim_{x \to 1} f(x)$ ។

$${f 49}$$
. គេឲ្យអនុគមន៍ ${f f}(x)=x+2x^2+3x^3+...+nx^n$ ក.គណនាតម្លៃ ${f f}(1)$ ។

ឆ្នាំ ស្ងួន ខ្លួននោះទីស្វាតា

$$g.$$
គណនាលីមីត $\lim_{x \to 1} \frac{f(x) - \frac{n(n+1)}{2}}{x-1}$ ។

50.គណនាលីមីត
$$\lim_{x \to \frac{\pi}{2}} \left(x \tan x - \frac{\pi}{2 \cos x} \right)$$

51. គេមានអនុគមន៍
$$f(x) = \frac{\cos(x\sin x)}{\pi - 2x}$$
 ដែល $x \neq \frac{\pi}{2}$

ចូររកលីមីតនៃអនុគមន៍ f កាលណា $x
ightarrow rac{\pi}{2}$ ។

52. គេមានអនុគមន៍
$$f(x) = \frac{\cos(\frac{\pi \cos x}{2})}{x^2}$$
 , $x \neq 0$

 $\mathbf{53}$.ចូររកលីមីតនៃអនុគមន៍ \mathbf{f} កាលណា $\mathbf{x} o \mathbf{0}$ ។

54.គណនាលីមីតខាងក្រោម ៖

$$\text{fi.} \lim_{x \to 1} \frac{\ln(2x^2 + 3x - 4)}{x^2 - 1}$$

$$9. \lim_{x \to 0} \frac{e^{\tan^2 x} - \cos 2x}{x^2}$$

គ.
$$\lim_{x \to \frac{\pi}{4}} \frac{1 - \sqrt{2} \sin x}{\ln(\tan x)}$$

លំមាន់ សិខ ជំណោៈស្រាយ

55.គណនាលីមីត ៖

$$\text{n.lim}_{x\to +\infty}(\sqrt{x^2+2x+4}-\sqrt[4]{x^4+4x^3})$$

2.
$$\lim_{x\to\infty} (\sqrt[3]{x^3 + 6x^2} - x)$$

56.ចូរគណនាលីមីត ៖

$$\text{n.} \lim_{n \to +\infty} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} - \frac{n}{3} \right)$$

$$2.\lim_{n\to+\infty}(1+a)(1+a^2)(1+a^4)....(1+a^{2^n}), 0< a< 1$$

57.គណនាលីមីត ៖

$$\text{71.} \lim_{\substack{x \to +\infty}} \left(\sqrt{x} + \sqrt{x} + \sqrt{x} - \sqrt{x} \right)$$

$$\text{21.} \lim_{\substack{x \to +\infty}} \left(\sqrt{x^2 + x} + \sqrt{x^2 + 2x} + \dots + \sqrt{x^2 + nx} - nx \right)$$

58. គេឲ្យអនុគមន៍ ៖

$$f_n(x) = \frac{\sqrt{6 + \sqrt{6 + \dots + \sqrt{6 + \sqrt{6 + x}}}} - 3}{x - 3}$$

មាន \mathbf{n} ឬសការេ ។ ចូរគណនា $\displaystyle \lim_{\mathbf{x} o 3} \mathbf{f}_{\mathbf{n}}(\mathbf{x})$ ។

59. ចូរគណនាលីមីតខាងក្រោម ៖ (nរ៉ាំឱីកាល់)

$$\lim_{x \to 3} \frac{\sqrt{2x + \sqrt{2x + \dots + \sqrt{2x + \sqrt{2x + 3}}}}}{x - 3}$$

ឆ្នាំង ខ្លួន ខ្លួននោះទីខាតា

$$\mathbf{S}_{_{n}}=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+....+\frac{1}{n(n+2)}$$
 រួចគណនាលីមីត $\lim_{_{n\to+\infty}}\mathbf{S}_{_{n}}$ ។

 $\mathbf{61}$.គេឲ្យ \mathbf{f} ជាអនុគមន៍កំនត់ $\forall \mathbf{x} \geq \mathbf{0}$ ដោយ ៖

$$x - \frac{x^2}{2} \le f(x) \le x$$
 ។ គេតាង $S_n = \sum_{k=1}^n \left[f(\frac{k}{n^2}) \right]$

ចូរគណនាលីមីត $\lim_{n o +\infty} \mathbf{S}_n$ ។

62. គេឲ្យ
$$P_n = \frac{2^3-1}{2^3+1} \times \frac{3^3-1}{3^3+1} \times \times \frac{n^3-1}{n^3+1}$$
 ចូរគណនា $\lim_{n \to +\infty} P_n$ ។

 ${f 63}$.គេឲ្យស្ទឹតនៃចំនួនពិត ${f (u_n)}$ កំនត់ដោយ ៖

$$u_{_1}=1$$
 និង $u_{_{n+1}}=rac{u_{_n}}{\sqrt{1+4u_{_n}^2}}$ ចំពោះគ្រប់ $n\in IN*$ ចូរគណនា $\lim_{_{n\to +\infty}}(\sqrt{n}.u_{_n})$

64. គេឲ្យស្វ៊ីតចំនួនពិត (a_n) កំនត់ដោយ ៖

$$\begin{cases} a_{0} = 2 \\ a_{n+1} = \frac{2}{3}a_{n} + 4, \forall n \in IN \end{cases}$$

ឆំមាន់ ឆិខ ជំណោ:ត្រវាយ

ក.គេតាង $\mathbf{v}_{n}=\mathbf{u}_{n}-12$ ។ ស្រាយថា (\mathbf{v}_{n}) ជាស្វ៊ីតធរណីមាត្ររួចគណនា \mathbf{v}_{n} ជាអនុគមន៍ \mathbf{n} ។ ខ.គណនាលីមីត $\lim_{n\to +\infty}\mathbf{u}_{n}$ និង $\lim_{n\to +\infty}\mathbf{S}_{n}$ ដែល $\mathbf{S}_{n}=\sum_{k=0}^{n}(\mathbf{v}_{k})$

65. គេឲ្យអនុគមន៍
$$\mathbf{f}(\mathbf{x}) = \begin{cases} a\mathbf{x}^2 + b\mathbf{x} + 1 & \text{iff} & \mathbf{x} < 1 \\ 3\mathbf{x} + 2 & \text{iff} & \mathbf{x} \ge 1 \end{cases}$$

ចូរកំនត់ចំនួនពិត a និង b ដើម្បីឲ្យ f មានដើរវេលើ IR

66.f ជាអនុគមន៍កំនត់លើចន្លោះ] $0;+\infty$ [ដែល

$$f(x) = \begin{cases} ax + b + \frac{\ln x}{x} & \text{if } x \ge 1; \ a, b \in IR \\ 3x + 2 & \text{if } 0 < x < 1 \end{cases}$$

ចូរកំនត់ចំនួនពិត ${\bf a}$ និង ${\bf b}$ ដើម្បីឲ្យ ${\bf f}$ មានដើរវេត្រង់ ${\bf x}={\bf 1}$

67. ចូរគណនាដើរវ៉េនអនុគមន៍ $\mathbf{f}(\mathbf{x}) = \ln(\mathbf{e}^{\mathbf{x}} + \sqrt{\mathbf{e}^{2\mathbf{x}} + \mathbf{1}})$

- ${f 68}$. គេឲ្យអនុគមន៍ ${f f}(x)=e^{-2x}+(x+1)e^x$ ចូរស្រាយទំនាក់ទំនង ${f f}^{(3)}(x)-3{f f}'(x)+2{f f}(x)=0$

លំមាន់ និខ ជំណោះស្រាយ

70. គេឲ្យអនុគមន៍
$$y = \frac{1 - \ln x}{1 + \ln x}$$

ក.ចូររកដែនកំនត់នៃអនុគមន៍នេះ ។

ខ.ចំពោះគ្រប់ ${f x}$ ក្នុងដែនកំនត់ចូរស្រាយថា ${f 2xy'} + ({f 1+y})^2 = {f 0}$

71. គេឲ្យអនុគមន៍ $f(x) = \cos x$

ក.ចូរគណនាដើរវេ f'(x); f''(x) និង $f^{(3)}(x)$ ។

ខ.ដោយធ្វើវិចារតាមកំនើនចូរស្រាយថាដើរវេទី nនៃអនុគមន៍នេះ

កំនត់ដោយ
$$\mathbf{f}^{\scriptscriptstyle (n)}(\mathbf{x}) = \cos(\mathbf{x} + \frac{\mathbf{n}\pi}{2})$$
 ។

72. គេឲ្យអនុគមន៍ $f(x) = e^x \sin x$

ក.គណនា f'(x) រួចបង្ហាញថា $f'(x) = \sqrt{2} \, e^x \sin(x + \frac{\pi}{4})$

ខ.ដោយធ្វើវិចារពាមកំនើនចូរស្រាយថា ដើរវេទី nនៃអនុគមន៍នេះ

កំនត់ដោយ
$$\mathbf{f}^{(n)}(\mathbf{x}) = (\sqrt{2})^n e^x \sin(\mathbf{x} + \frac{n\pi}{4})$$

73. គេឲ្យអនុគមន៍ $f(x) = (x+1)e^{2x}$

ក.ចូរគណនាដើវេ f'(x) ; f''(x) និង $f^{\scriptscriptstyle (3)}(x)$ ។

ខ.ដោយធ្វើវិចារតាមកំនើនចូរស្រាយថាដើរវេទី nនៃអនុគមន៍នេះ

ឆំមាន់ ឆិខ ជំណោ:ត្រវាយ

កំនត់ដោយ $f^{(n)}(x) = 2^n(x+1+\frac{n}{2})e^{2x}$ ។ 74. គេឲ្យអនុគមន៍ $f(x) = \ln x$; x > 0ដោយធ្វើវិចារតាមកំនើនចូរស្រាយថាដើរវេទី nនៃអនុគមន៍នេះ កំនត់ដោយ $\mathbf{f}^{\scriptscriptstyle(n)}(\mathbf{x}) = (-1)^{\scriptscriptstyle n+1}.rac{\mathbf{n!}}{\scriptscriptstyle -\!\!-\!\!\!-\!\!\!-}$ ។ 75. គេឲ្យអនុគមន៍ $f(x) = (\cos x + \sqrt{3}\sin x)e^x$ ក.ចូរគណនាដើរវេ f'(x); f''(x) និង $f^{(3)}(x)$ ។ ខ.ដោយធ្វើវិចារតាមកំនើនចូរស្រាយថាដើរវេទី nនៃអនុគមន៍ f មានរាង $\mathbf{f}^{(n)}(\mathbf{x}) = (\mathbf{a}_n \cos \mathbf{x} + \mathbf{b}_n \sin \mathbf{x}) \mathbf{e}^{\mathbf{x}}$ ដែល $(a_{_{n}})$ និង $(b_{_{n}})$ ជាស្វីតចំនួនពិតកំនត់លើ $IN\,^*$ ដោយ $\mathbf{a}_{_{n+1}} = \mathbf{a}_{_{n}} + \mathbf{b}_{_{n}}$ និង $\mathbf{b}_{_{n+1}} = \mathbf{b}_{_{n}} - \mathbf{a}_{_{n}}$ ។ គ.គេតាង $\mathbf{z}_{n} = \mathbf{a}_{n} + \mathbf{i}.\mathbf{b}_{n}$ ។ បង្ហាញថា $\mathbf{z}_{n+1} = (1-\mathbf{i})\mathbf{z}_{n}$ រួចគណនា z្ព ជាអនុគមន៍នៃ n ។ ឃ.ទាញរក a និង b ជាអនុគមន៍នៃ n ។ ង.ទាញរកអនុគមន៍ $\mathbf{f}^{\scriptscriptstyle (n)}(\mathbf{x})$

ឆ្នាំង ខ្លួន ខ្លួននោះទីខាតា

- 77 . ចូរកំនត់សមីការបន្ទាត់ប៉ៈនឹងខ្សែកោង $(c): y = f(x) = \frac{2e^x}{x+1}$ ត្រង់ចំនុចដែលមានអាប់ស៊ីសស្មើ 0 ។
- 78. គេមានអនុគមន៍ $f(x) = \frac{2x^2 9x + 12}{x^2 3x + 3}$ ដោយមិនប្រើដើរវេចូររកតម្លៃបរមានៃអនុគមន៍នេះ ។
- 79. គេឲ្យអនុគមន៍ $f(x)=\dfrac{e^x}{ax+b}$ ដែល a និង b ជាចំនួនពិត ក.គណនា f'(x) និង f''(x) ។ e. កំនត់ពីរចំនួនពិត e និង e ដើម្បីឲ្យអនុគមន៍ e មានអប្បបរមា ស្មើ e ត្រង់ e ត្រង់ e 1 ។
- 80 . គេឲ្យអនុគមន៍ $f(x) = \frac{x + \ln x}{x}$ ដែល x > 0 គណនាដើរេ f'(x)។បង្ហាញថា f មានតម្លៃអតិបរិមាមួយត្រូវកំនត់។

សំមាន់ និទ ជំណោៈស្រាយ

- 81. គេឲ្យអនុគមន៍ $\mathbf{g}(\mathbf{x}) = \mathbf{a}\mathbf{x} + \mathbf{1} + \mathbf{b}\ln\mathbf{x}$ មានក្រាប (\mathbf{H}) ។ បន្ទាត់ (\mathbf{D}) មានសមីការ $\mathbf{y} = \mathbf{x} \mathbf{1}$ ។ កំនត់ចំនួនពិត a និង b ដើម្បីឲ្យបន្ទាត់ (\mathbf{D}) ប៉ៈនឹងក្រាប (\mathbf{H}) ត្រង់ចំនុច \mathbf{A} $(\mathbf{1};\mathbf{0})$ ។
- 82. គេឲ្យអនុគមន៍ $\mathbf{f}(\mathbf{x}) = \ln(\mathbf{x} + \sqrt{1+\mathbf{x}^2})$ ក.គណនា $\mathbf{f}'(\mathbf{x})$ ។
 - ខ.ចំពោះគ្រប់ $\mathbf{x} \in [\ \frac{3}{4}; \frac{4}{3}\]$ បង្ហាញថា $0.6 \le \mathbf{f'}(\mathbf{x}) \le 0.8$
 - គ.ដោយប្រើវិសមភាពកំនើនមានកំនត់ចំពោះគ្រប់ $\mathbf{x} \in [\frac{3}{4}; \frac{4}{3}]$

ចូរស្រាយបញ្ជាក់ថា ៖

$$\frac{3x}{5} - \frac{9}{20} + \ln 2 \le \ln(x + \sqrt{1 + x^2}) \le \frac{4x}{5} - \frac{3}{5} + \ln 2$$

83 .ជេមានអនុគមន៍ $g: x \mapsto \sqrt{x+2}$ កំនត់លើ $[-2,+\infty[$ ដោយប្រើវិសមភាពកំនើនមានកំនត់បង្ហាញថាចំពោះគ្រប់ $x \in [-1;2]$

ពេញន
$$\frac{1}{4}x+\frac{5}{4}\leq\sqrt{x+2}\leq\frac{1}{2}x+\frac{3}{2}$$
 ។

លំមាន់ សិខ ជំណោៈស្រ្វាយ

84. ${f f}$ ជាអនុគមន៍កំនត់លើ $[{f 0}\;;+\infty\,[$ ដោយ ៖

$$\mathbf{f}(\mathbf{x}) = \begin{cases} \frac{\mathbf{x}^2 + \mathbf{x} + \mathbf{1}}{\mathbf{x}^2} \cdot \mathbf{e}^{-\frac{1}{\mathbf{x}}} & \text{iff } \mathbf{x} > \mathbf{0} \\ \mathbf{0} & \text{iff } \mathbf{x} = \mathbf{0} \end{cases}$$

ក.គណនា $\lim_{x\to 0^+} \frac{f(x)-f(0)}{x}$ ។

តើគេអាចថាយ៉ាងណាចំពោះអនុគមន៍ f ? ចំពោះក្រាបតាង f ?

ខ.ចំពោះគ្រប់ $x \in]0,+\infty[$ បង្ហាញថា $f'(x) = \frac{1-x}{x^4}.e^{-\frac{1}{x}}$

គ.គូសតារាងអថេរភាពនៃអនុគមន៍ f ។

85 .ចំពោះគ្រប់ចំនួនពិត $0 < a \le b$ ចូរស្រាយបញ្ជាក់ថា ៖

$$\frac{b-a}{b} \le \ln b - \ln a \le \frac{b-a}{a}$$

 ${f 86}$. ចំពោះគ្រប់ចំនួនពិត ${f 0} < a \le b < rac{\pi}{2}$ ចូរស្រាយបញ្ជាក់ថា ៖

$$\frac{\mathbf{b} - \mathbf{a}}{\cos^2 \mathbf{a}} \le \tan \mathbf{b} - \tan \mathbf{a} \le \frac{\mathbf{b} - \mathbf{a}}{\cos^2 \mathbf{b}}$$

87.ចំពោះគ្រប់ $\mathbf{x} \in [-1;3]$ ចូរស្រាយបញ្ជាក់ថា ៖

$$\frac{1}{3}x + \frac{4}{3} \le \sqrt{2x+3} \le x+2$$

ឆំមាន់ និ១ ជំណោៈស្រាយ

- 88.ក្នុងតម្រុយអរតូនរម៉ាល់ (o, \vec{i}, \vec{j}) គេឲ្យបន្ទាត់មានសមីការ ៖ (d): y = 12 3x ។ M ជាចំនុចស្ថិតនៅលើបន្ទាត់ (d) មានអាប់ស៊ីស r ដែល 0 < r < 4 ។ Pនិង Q ជាចំណោលកែងនៃ M រ្យេងគ្នាលើអក្ស័ (ox) និង (oy) ។ កំនត់តម្លៃរបស់ r ដើម្បីឲ្យចតុកោណ OPMQ មានផ្ទៃក្រឡាអតិបរមា។
- 89. ក្នុងតម្រុយអរតូនរម៉ាល់ (o, i, j) គេឲ្យខ្សែកោងមានសមីការ $(c): y = \frac{8}{x^2} + 2$ ។ M ជាចំនុចស្ថិតនៅលើ (c) មានអាប់ស៊ីស r ដែល r > 0 ។ Pនិង Q ជាចំណោលកែងនៃ M រឿងគ្នាលើអក្ស័ (ox) និង (oy) ។ កំនត់តម្លៃរបស់ r ដើម្បីឲ្យចតុកោណ OPMQមានផ្ទៃក្រឡា អប្បបរមា ។

សំមាត់ សិខ ជំណោៈស្រាយ

- 91. គេឲ្យប៉ារ៉ាបួល $(P): y = x^2$ ហើយ A, B, C ជាបីចំនុច ស្ថិតនៅលើ (\mathbf{P}) ។ គេដឹងថា \mathbf{A} និង \mathbf{B} ជាពីរចំនុចមាន អាប់ស៊ីសរ្យេងគ្នា -1 និង 2 ហើយ \mathbf{C} ជាចំនុចមានអាប់ស៊ីស \mathbf{r} ដែល -1 < r < 2 ។
 - កំនត់ r ដើម្បីឲ្យត្រីកោណ ABC មានផ្ទៃក្រឡាអតិបរមា ។
- 92. គ្រីកោណកែងមួយមានបរិមាត្រ 6m ។ កំនត់ជ្រុងរបស់ត្រីកោណនេះដើម្បីឲ្យផ្ទៃក្រឡាវាអតិបរមា ?
- 93. ត្រីកោណ ABC មួយមានបរិមាត្រ 6m និងមុំ $A=60^\circ$ ។ កំនត់ជ្រុងរបស់ត្រីកោណនេះដើម្បីឲ្យផ្ទៃក្រឡាវាអតិបរមា ?
- 94. គេឲ្យប៉ារ៉ាបូល $(P): y = \frac{x^2}{2}$ និងចំនុច A(6;0) ។ M ជាចំនុចស្ថិតនៅលើ (P) មានអាប់ស៊ីស r ។ កំនត់តម្លៃ r ដើម្បីឲ្យ AM មានតម្លៃអប្បបរមា ?
- 95. ពេច្យ (P): $y = 4x x^2$ និង (d): 2x + y = 12 ។ M ជាចំនុចស្ថិតនៅលើ (P)មានអាប់ស៊ីល r ។ កំនត់តម្លៃ \mathbf{r} ដើម្បីឲ្យ $\mathbf{d}(\mathbf{M};(\mathbf{d}))$ មានតម្លៃអប្បបរមា ?

លំចាត់ និទ ជិះនោះស្រាយ

96. គេឲ្យត្រីកោណ ABC មួយដែលមានរង្វាស់ជ្រង ៖ AB = 10cm; BC = 8cm; CA = 6cm \mathbf{M} ជាចំនុចមួយនៃ $[\mathbf{BC}]$ ដែល $\mathbf{CM} = \mathbf{x}$ cm ។ គេតាង T = 5MA + 4MB ។ ចូរកំនត់ x ដើម្បីឲ្យ T មានតម្លៃតូចបំផុតរួចរកតម្លៃតូចបំផុតនៃ T ? 97. កោនបរិវត្តន៍មួយចារិកក្រៅស្វែកាំ ${f R}=8\,{f cm}$ ។តាង ${f r}$ និង ${f h}$ រ្យេងគ្នាជាកាំថាលបាតនិងកំពស់របស់កោណនេះ ។ កំនត់ r និង h ដើម្បីឲ្យកោននេះមានមាឌុអប្បបរមា ? 98.ចូរកំនត់កំពស់របស់ស៊ីឡាំងត្រង់មួយដែលមានមាឌអតិបរមាហើយ អាចចារិកក្រៅស្វ៊ែមួយដែលមានកាំ $R=4\sqrt{3}~\mathrm{cm}$ ។ ${f 99}$.កំនត់ចម្ងាយអប្បបរមាពីចំនុច ${f M}(4\,;2\,)$ ទៅប៉ារ៉ាបូល ${f y}^{\scriptscriptstyle 2}=8{f x}$ ។ 100 .ចតុកោណកែងមួយចារិកក្នុងអេលីប $\frac{{f x}^2}{400} + \frac{{f y}^2}{225} = 1$ ហើយជ្រុងរបស់ចតុកោណនេះស្របជាមួយនឹងអក្ស័របស់អេលីប ។ ក.កំនត់វិមាត្ររបស់ចតុកោណនេះដើម្បីឲ្យវាមានផ្ទៃក្រឡាអតិបរមា ? ខ.កំនត់វិមាត្ររបស់ចតុកោណនេះដើម្បីឲ្យវាមានបរិមាត្រអតិបរមា ?

ឆ្នាំង ខ្លួន ខ្លួននោះទីខាតា

101.គេឲ្យអនុគមន៍ $f(x) = \ln x - \frac{2(x-1)}{x+1}$ កំនត់ចំពោះ x>0 ក.ចូរគណនាដើរវេ f'(x) និងបញ្ជាក់សញ្ញានៃ f'(x) ។ ខ.គណនាលីមីត $\displaystyle \lim_{x\to 0^+} f(x)$ និង $\displaystyle \lim_{x\to +\infty} f(x)$ រួចគូសតារាងអថេរ ភាពនៃអនុគមន៍ f

គ.ចូរទាញថាគ្រប់ $x \ge 1$ គេបាន $\ln x \ge \frac{2(x-1)}{x+1}$ ។

102 . គេឲ្យអនុគមន៍ $f(x) = e^{\frac{1}{2}x} - \frac{x}{2} - 1$ កំនត់គ្រប់ $x \in IR$ ក. គណនាដើរវេ f'(x) រួចសិក្សាសញ្ញារបស់វា ។ ខ. គណនាលីមីត $\lim_{x \to -\infty} f(x)$ និង $\lim_{x \to +\infty} f(x)$ រួចគូសតារាងអថេរ ភាពនៃអនុគមន៍ f ។

គ.ចំពោះគ្រប់ $\mathbf{x} \in \mathbf{IR}$ ចូរបង្ហាញថា $\mathbf{e}^{\frac{\mathbf{x}}{2}} \geq \frac{\mathbf{x}}{2} + 1$ ។

103 . គេមានអនុគមន៍ $f(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \cos x$

ក.ចូរគណនាដើរវ f'(x); f''(x), $f^{(3)}(x)$ និង $f^{(4)}(x)$ ។ ខ.ចំពោះគ្រប់ $x \ge 0$ ចូរបញ្ជាក់សញ្ញា $f^{(4)}(x)$ រួចទាញរក សញ្ញារបស់ $f^{(3)}(x)$, f''(x) និង f'(x) ។

ឆំមាន់ និទ ជំណោៈស្រ្គាយ

គ.ទាញថាគ្រប់
$$\mathbf{x} \geq \mathbf{0}$$
 គេបាន $\cos \mathbf{x} \leq \mathbf{1} - \frac{\mathbf{x}^2}{2} + \frac{\mathbf{x}^4}{24}$ 104. គេឲ្យអនុគមន៍ $\mathbf{f}(\mathbf{x}) = \mathbf{1} + \mathbf{x} + \frac{\mathbf{x}^2}{2} + \frac{\mathbf{x}^3}{6} + \frac{\mathbf{x}^4}{24} - \mathbf{e}^{\mathbf{x}}$ \mathbf{n} . ចូរគណនាដើរដ $\mathbf{f}'(\mathbf{x})$; $\mathbf{f}''(\mathbf{x})$, $\mathbf{f}^{(3)}(\mathbf{x})$ និង $\mathbf{f}^{(4)}(\mathbf{x})$ ។ ខ. ចូរសិក្សាសញ្ញារបស់ $\mathbf{f}^{(3)}(\mathbf{x})$, $\mathbf{f}''(\mathbf{x})$ និង $\mathbf{f}'(\mathbf{x})$ ។ ទាញរកសញ្ញារបស់ $\mathbf{f}^{(3)}(\mathbf{x})$, $\mathbf{f}''(\mathbf{x})$ និង $\mathbf{f}'(\mathbf{x})$ ។ គ. ទាញថាគ្រប់ $\mathbf{x} \in \mathbf{IR}$ គេបាន ៖ $\mathbf{e}^{\mathbf{x}} \geq \mathbf{1} + \mathbf{x} + \frac{\mathbf{x}^2}{2} + \frac{\mathbf{x}^3}{6} + \frac{\mathbf{x}^4}{24}$ 105. \mathbf{n} _ចំពោះគ្រប់ $\mathbf{x} \geq \mathbf{0}$ ចូរស្រាយបញ្ហាកិសមភាពខាងក្រោម ៖ $\mathbf{x} - \frac{\mathbf{x}^2}{2} \leq \ln(\mathbf{1} + \mathbf{x}) \leq \mathbf{x}$ ខ. គេពិនិត្យស្ថិត $\mathbf{P}_{\mathbf{n}} = (\mathbf{1} + \frac{\mathbf{1}}{\mathbf{n}^3})(\mathbf{1} + \frac{\mathbf{4}}{\mathbf{n}^3})....(\mathbf{1} + \frac{\mathbf{n}^2}{\mathbf{n}^3})$ ។ ដោយប្រើវិសមភាពខាងលើ ចូររកតម្លៃអមានៃ $\ln \mathbf{P}_{\mathbf{n}}$ ។

គ-ទាញរកលីមីតនៃ ${f P}_n$ កាលណា ${f n}
ightarrow +\infty$ ។

106. គេពិនិព្យស្ទីត ៖

$$U_{n} = \sin(\frac{1}{n^{2}}) + \sin(\frac{2}{n^{2}}) + \sin(\frac{3}{n^{2}}) + \dots + \sin(\frac{n}{n^{2}})$$

កំនត់ចំពោះគ្រប់ចំនួនគត់ធម្មជាតិ n ។

ក.ចំពោះគ្រប់ $x \ge 0$ ចូរស្រាយថា $x - \frac{x^3}{6} \le \sin x \le x$ ។

ខ.ដោយប្រើវិសមភាពខាងលើនេះចូរសរសេរកន្សោមអមនៃ $\mathbf{U}_{\mathtt{n}}$ ។

គ.ទាញរកលីមីត $\lim_{n \to +\infty} U_n$ ។

107. គេមានស្ទឹត ៖

$$S_n = \sum_{k=0}^{n} (\frac{1}{n+k}) = \frac{1}{n} + \frac{1}{n+1} + ... + \frac{1}{n+n}$$

ក.ចំពោះគ្រប់ $\mathbf{p} \in \mathbf{IN}^*$ ចូរស្រាយបញ្ជាក់ថា ៖

$$\frac{1}{p+1} \le \ln\left(\frac{p+1}{p}\right) \le \frac{1}{p}$$

ខ.ចូរសរសេរកន្សោមអមរបស់ $\mathbf{S}_{_{n}}$ រួចទាញរកលីមីត $\displaystyle \lim_{_{n o + \infty}} \! \mathbf{S}_{_{n}}$ ។

108. គេឲ្យស្ទឹតចំនួនពិតកំនត់គ្រប់ $\, n \in IN \, ^* \,$ ដោយ ៖

$$S_n = \frac{1}{\sqrt[3]{n}} \left(1 + \frac{1}{\sqrt[3]{4}} + \frac{1}{\sqrt[3]{9}} + \dots + \frac{1}{\sqrt[3]{n^2}}\right)$$

ក.ចំពោះគ្រប់ចំនួនពិត \mathbf{a} និង \mathbf{b} ដែល $\mathbf{0} < \mathbf{a} \leq \mathbf{b}$

ចូរស្រាយថា
$$\frac{1}{3} \cdot \frac{b-a}{\sqrt[3]{b^2}} \le \sqrt[3]{b} - \sqrt[3]{a} \le \frac{1}{3} \cdot \frac{b-a}{\sqrt[3]{a^2}}$$

ខ.គណនាលីមីត $\displaystyle \lim_{n o +\infty} \mathbf{S}_n$ ។

109.ចូរគណនាលីមីត
$$\lim_{n \to +\infty} \frac{\sqrt{1} + \sqrt{2} + \sqrt{3} + ... + \sqrt{n}}{n\sqrt{n}}$$

110. គេឲ្យ f ជាអនុគមន៍កំនត់ដោយ $f(x) = \frac{x^2 + 6x}{2(x^2 - 2x + 2)}$ ។

(c) ជាក្រាបតំនាងនៃ f នៅក្នុងតំរុយអរតូនរម៉ាល់ $(o,\vec{i}\,,\vec{j}\,)$ ។ r.បញ្ជាក់ថា f កំនត់ចំពោះគ្រប់ $x\in IR$ ។

ខ.គណនាលីមីតនៃ f កាលណា x ខិតទៅជិត $+\infty, -\infty$ រួចទាញថា (c)មានអាស៊ីមតួតមួយ។

គ.គណនា f'(x)រួចសិក្សាសញ្ញារបស់វា ។

ទាញថា f មានធតិបរមាមួយ និង អប្បបរមាមួយរួចគណនាតម្លៃ

បរមាទាំងនោះ ។

ឃ.គូលពារាងអថេរភាពនៃ f ។

ង.គណនាកូអរដោនេនៃចំនុចប្រសព្វរវាងខ្សែកោង (c) និងអក្ស័

ឆំមាត់ ឆិខ ជំណោ:ស្រាយ

ទាំងពីរនៃតំរុយនិងចំនុចប្រសព្វរវាងខ្សែកោងជាមួយនឹងអាស៊ីមតួតដេក ច.គណនា $\mathbf{f}(\mathbf{2})$ និង $\mathbf{f}(\mathbf{3})$ ។ ចូរសង់ខ្សែកោង (\mathbf{c}) ។ 111. គេឲ្យ $g(x) = \frac{4x-4}{x^2}$, $x \neq 0$ ។ (c) ជាក្រាបនៃ g ។ ក.គណនាលីមីត $\lim_{x\to -\infty} g(x)$, $\lim_{x\to +\infty} g(x)$ និង $\lim_{x\to 0} g(x)$ រួចទាញរកអាស៊ីមតួតនៃ (c)។ ខ.គូសពារាងអថេរភាពនៃ g ។ គ.បង្ហាញថា(c) មានចំនុចរបត់មួយដែលគេនឹងរកកូអរដោនេវា ។ w.គណនា g(-4) , g(-2) , g(1) និង g(4) ។ ង.សង់ខ្សែកោង (c) នៅក្នុងពំរុយអរពូនរម៉ាល់ ។ 112. គេឲ្យអនុគមន៍ $\mathbf{f}(\mathbf{x}) = \frac{\mathbf{x}^3 - 6\mathbf{x}^2 + 9\mathbf{x}}{\mathbf{x}^3 - 6\mathbf{x}^2 + 9\mathbf{x} - 4}$ មានក្រាប (\mathbf{c}) ។ ក.ចូរកដែនកំនត់នៃអនុគមន៍ f ។ ខ.គណនាលីមីត $\lim_{x\to 1} f(x)$, $\lim_{x\to 1} f(x)$ និង $\lim_{x\to 1} f(x)$ ។ ទាញបញ្ជាក់សមីការអាស៊ីមតួតឈរ និង អាស៊ីមតួតដេកនៃ (c) ។ គ.គណនាដើរវេ f'(x) រួចសិក្សាសញ្ញានៃ f'(x) ។ ឃ.គូលតារាងអថេរភាពនៃ f រួចគូលក្រាប (c) ។

113 .១.អនុគមន៍ \mathbf{h} កំនត់ចំពោះគ្រប់ចំនួនពិត \mathbf{x} ដោយ $\mathbf{h}(\mathbf{x}) = \mathbf{e}^{2\mathbf{x}} - 2\mathbf{x} - 1$ ហើយមានតារាងអថេរភាពដូចខាងក្រោម ៖

ដោយប្រើតារាងអថេរភាពនៃអនុគមន៍hចូរបញ្ជាក់ថា $e^{2x} \geq 2x+1$ ចំពោះគ្រប់ចំនួនពិត x ។

២. \mathbf{f} ជាអនុគមន៍កំនត់ដោយ $\mathbf{f}(\mathbf{x}) = (\mathbf{x}+\mathbf{1})(\mathbf{e}^{-2\mathbf{x}}+\mathbf{1})$ ចំពោះ គ្រប់ចំនួនពិត \mathbf{x} និងមានក្រាប (\mathbf{c}) ។

ក_គណនា f'(x) និង f'(0) ។ បញ្ជាក់ថាដើរវ f'(x) និង អនុគមន៍ h(x)មានសញ្ញាដូចគ្នាចំពោះគ្រប់ $x \neq 0$ ។

ខ_គណនា f(0); $\lim_{x\to -\infty} f(x)$ និង $\lim_{x\to +\infty} f(x)$ ។ លង់ពារាងអថេរភាពនៃអនុគមន៍ f ។

គ_បង្ហាញថា
$$f(x) = x + 1 + (\frac{x}{e^x})(\frac{1}{e^x}) + (\frac{1}{e^x})^2$$
 ។

សំមាត់ និទ ជិសោ:ស្រាយ

បង្ហាញថាបន្ទាត់ (\mathbf{D}) មានសមីការ $\mathbf{y}=\mathbf{x}+\mathbf{1}$ ជាអាស៊ីមតួត ទ្រេតនៃ (c) នៅខាង $+\infty$ ។ ឃ.សិក្សាទីពាំងរវាងក្រាប (c) និងបន្ទាត់ (D) ។ ង.បន្ទាត់ (Δ) មួយស្របនឹងបន្ទាត់ (\mathbf{D}) ហើយប៉ៈនឹងក្រាប (\mathbf{c}) ត្រង់ ${f M}$ ។ កំនត់ក្អអរដោនេ ${f M}$ និងសរសេរសមីការនៃ (Δ) ។ ច_សង់បន្ទាត់ $(\mathbf{D});(\Delta)$ និងក្រាប (\mathbf{c}) នៅក្នុងតម្រុយអរតូនរមាំល់ $(\mathbf{o}, \overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}})$ តែមួយ ។ គេឲ្យ $\mathbf{e} = 2.7$ ។ 114.9.f ជាអនុគមន៍កំនត់លើ IR ដោយ $f(x) = (1-x)e^x - 1$ គណនា f'(x) ។ សង់ពារាងអថេរភាពនៃ f ។ (មិនបាច់គណនាលីមីត្រុង $-\infty$ និង $+\infty$)។រកសញ្ញា $\mathbf{f}(\mathbf{x})$ ២. gជាអនុគមន៍កំនត់លើ IR ដោយ $g(x) = (2-x)e^x + 2-x$ ក.គណនា $\lim_{x \to \infty} g(x)$ និង $\lim_{x \to +\infty} g(x)$ ។ គណនា g'(x)។ ដោយប្រើលទ្ឋផលដែលបាននៅសំនួរទី១.ចូរសិក្សាសញ្ញានៃ $\mathbf{g'}(\mathbf{x})$ រួចសង់តារាងអថេរភាពនៃអនុគមន៍ g ។ ខ.បង្ហាញថាខ្សែកោង(c) ពាងអនុគមន៍ g មាន(D): y = 2 - xជាអាស៊ីមតួតទ្រេតកាលណា ${f x}
ightarrow -\infty$ ។

ឆំមាត់ ឆិខ ជំណោ:ស្រាយ

បញ្ជាក់ទីពាំងនៃខ្សែកោង (c) ធ្យេបនឹង (D) ។ គ.កំនត់សមីការបន្ទាត់ប៉ៈនឹងខ្សែកោង (\mathbf{c}) ដែលស្របនឹង (\mathbf{D}) ។ ${f w}.$ រកកូអរដោនេចំនុចរបត់របស់ខ្សែកោង ${f (c)}$ ។ ង.សង់ខ្សែកោង (\mathbf{c}) ក្នុងតម្រុយអរតូនរម៉ាល់ $(\mathbf{o}, \overset{
ightarrow}{\mathbf{i}}, \overset{
ightarrow}{\mathbf{j}}$)។ 115.f ជាអនុគមន៍កំនត់ចំពោះ x > 0ដោយ $f(x) = 1 + 2\left(\frac{\ln x}{x}\right)$ ហើយមានក្រាប (c) ។ ១.គណនា $\lim_{x \to +\infty} f(x)$ និង $\lim_{x \to +\infty} f(x)$ ។ កំនត់សមីការអាស៊ីមតួតឈរ និង ដេកនៃក្រាប (c) ។ ២.គណនាដើរវេf'(x)និងសិក្សាសញ្ញានៃf'(x) ។ សង់តារាងអថេរភាពនៃ f ។ ៣.កំនត់ក្លួអរដោនេចំនុចប្រសព្វ ${f A}$ រវាងក្រាប ${f (c)}$ និង ${f (D):y=1}$ កំនត់សមីការបន្ទាត់ (\mathbf{L}) ដែលប៉ៈក្រាប (\mathbf{c}) ត្រង់ \mathbf{A} ។ ៤.គណនា $f(\frac{1}{2})$ ។ សង់បន្ទាត់(L)អាស៊ីមតូតនិងក្រាប(c)នៅក្នុងតម្រុយតែមួយ ។ គេឃក $e=2.7, \frac{2}{0}=0.7, \ln 2=0.7$

116. គេឲ្យ $\mathbf{y} = \mathbf{x} \ln \mathbf{x} - \mathbf{x} + \mathbf{1}$; \mathbf{x} ជាចំនួនពិតវិជ្ជមាន ។

9.រកលីមីត $\displaystyle \lim_{x \to 0^+} f(x)$ និង $\displaystyle \lim_{x \to +\infty} f(x)$ ។

២.គណនាដើរវេ f'(x) រួចសិក្សាសញ្ញានៃf'(x)។

គណនាតម្លៃបរមានៃ f ។

៣.គូសតារាងអថេរភាពនៃf ។

៤.គណនា f(2) ។ រក x បើ f(x) = 1។គេឲ្យ $\ln 2 = 0.69$ ។

៥.សង់ក្រាបនៃf ក្នុងតម្រុយអត្តនរម៉ាល់ ។

117. គេមានអនុគមន៍ f កំនត់ដោយ $f(x) = \frac{5x^2 + 20x + 6}{x^3 + 2x^2 + x}$

9.សរសេរ f ជារាង
$$\frac{A}{x} + \frac{B}{x+1} + \frac{C}{(x+1)^2}$$
 ដែល $A;B$

និង C ជាចំនួនថេរត្រូវកំនត់ ។

២.គណនាអាំងតេក្រាល $\int \frac{5x^2 + 20x + 6}{x^3 + 2x^2 + x} dx$

118. រោទ្យ
$$g(x) = \frac{x^2 + x - 6}{x^2 - 2x - 3}$$

9.កំនត់ចំនួនពិត m,n និង p ដើម្បីឲ្យគេបាន ៖

$$\mathbf{g}(\mathbf{x}) = \mathbf{m} + \frac{\mathbf{n}}{\mathbf{x}+1} + \frac{\mathbf{p}}{\mathbf{x}-3}$$
ចំពោះគ្រប់ $\mathbf{x} \in]-1,3[$ ២.គណនា $\mathbf{I} = \int\limits_0^2 \mathbf{g}(\mathbf{x}).d\mathbf{x}$ ។

119.អនុគមន៍ f កំនត់ដោយ
$$f(x) = \frac{e^{2x} + e^{x} + 1}{(1 + e^{x})^{2}}$$

ចំពោះគ្រប់ចំនួនពិត x ។

9.កំនត់ចំនួនពិត
$${f A}$$
និង ${f B}$ ដើម្បីឲ្យ ${f f}({f x})={f A}+rac{{f B.e}^x}{(1+{f e}^x)^2}$

២.គណនាអាំងពេក្រាលក់នត់ $\mathbf{J} = \int\limits_0^1 \mathbf{f}(\mathbf{x}) \cdot \mathbf{d}\mathbf{x}$ ។

120 . គេឲ្យអនុគមន៍
$$f(x) = ln(x + \sqrt{1 + x^2})$$

ក.ចូរគណនាដើរវេ f'(x) ។

ខ.គណនា
$$I = \int_{0}^{\frac{3}{4}} \frac{1}{\sqrt{1+x^2}} .dx$$

121 . គេឲ្យអនុគមន៍
$$f(x) = \frac{x}{\sqrt{1+x^2}}$$

ក.បង្ហាញថា
$$f'(x) = \frac{1}{(1+x^2)\sqrt{1+x^2}}$$

ខ.គណនា
$$I = \int_{0}^{\frac{4}{3}} \frac{dx}{(1+x^2)\sqrt{1+x^2}}$$

122 .ក.គណនាដើរវេនៃអនុគមន៍ $\mathbf{f}(\mathbf{x}) = \mathbf{tan}\,\mathbf{x} - \mathbf{x}$ ។

ខ.ទាញរកតម្លៃនៃ
$$\mathbf{I} = \int_{0}^{\frac{\pi}{4}} \tan^2 \mathbf{x} \cdot \mathbf{dx}$$

123 .ក.គណនាដេរីវេនៃអនុគមន៍ $\mathbf{f}(\mathbf{x}) = \mathbf{x}^2 \ln \mathbf{x} - \mathbf{x}$ ។

ខ.ទាញរកតម្លៃនៃ
$$\mathbf{I} = \int_{1}^{6} \mathbf{x} \ln \mathbf{x} . d\mathbf{x}$$
 ។

124. គេឲ្យអនុគមន៍
$$f(x) = \frac{\cos x}{\cos x + \sin x}$$

ក.កំនត់ពីរចំនួនពិត ${f A}$ និង ${f B}$ ដើម្បីឲ្យអនុគមន៍ ${f f}$ អាចសរសេរជារាង

$$f(x) = A + \frac{B(\cos x - \sin x)}{\cos x + \sin x}$$

ខ.គណនា
$$I = \int f(x) dx$$
 ។

125. គេឲ្យ
$$I=\int\limits_0^{\frac{\pi}{4}}\cos^2x.dx$$
 និង $J=\int\limits_0^{\frac{\pi}{4}}\sin^2x.dx$ ក. ចូរគណនា $I+J$ និង $I-J$ ។ ខ. ទាញរកតម្លៃនៃ I និង J ។

ឆំមាន់ ឆិខ ជំណោ:ត្រវាយ

126 . គេឲ្យអនុគមន៍
$$f(x) = (\cos x + \sin x)e^x$$
 ក. ចួរគណនាដើរវេ $f'(x)$ ។

ខ.ចូរគណនា
$$I = \int_{0}^{\pi} e^{x} \cos x dx$$
 ។

127. គេឲ្យអនុគមន៍
$$f(x) = \frac{4x^2 - x + 1}{x^3 + 1}$$

ក.កំនត់បីចំនួនពិត a,b,c ដើម្បីឲ្យបាន ៖

$$f(x) = {a \over x+1} + {bx+c \over x^2 - x+1}$$

ខ.គណនាអាំងពេក្រាល
$$I = \int\limits_0^2 \frac{4x^2 - x + 1}{x^3 + 1}.dx$$

128. ចូរគណនាអាំងពេក្រាល
$$I=\int rac{\cos 8x - \cos 7x}{1 + 2\cos 5x}.dx$$

129. គេឲ្យ $\mathbf{f}(\mathbf{x})$ ជាអនុគមន៍កំនត់ក្នុងចន្លោះ $[\mathbf{0};\pi]$ ។

ក.ចូរបង្ហាញថា
$$\int\limits_0^\pi x f(\sin x).dx = \frac{\pi}{2}\int\limits_0^\pi f(\sin x).dx$$

ខ.គណនាអាំងពេក្រាល
$$I = \int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$$

130 . គេឲ្យអនុគមន៍ $\mathbf{f}(\mathbf{x})$ កំនត់លើ $[\mathbf{a};\mathbf{b}]$ ដែល $\mathbf{f}(\mathbf{a}+\mathbf{b}-\mathbf{x})=\mathbf{f}(\mathbf{x})$

ចូរស្រាយថា
$$\int_a^b x f(x).dx = \frac{a+b}{2} \int_a^b f(x).dx$$
 ។

ឆ្នាំ សូច ត្រូវនោះ ទីសាភា

អនុវត្តន៍ ៖ គណនា $\mathbf{I} = \int_{0}^{\pi} \mathbf{x} \sin \mathbf{x} \cos^{4} \mathbf{x}.\mathbf{d}\mathbf{x}$ ។ 131 .ក.ចូរស្រាយថា $\int\limits_0^a f(x).dx = \int\limits_0^a f(a-x).dx$ ខ.*អនុវត្តន៍* ៖ គណនា $I = \int\limits_{0}^{\frac{\pi}{3}} \ln(1+\sqrt{3}\tan x).dx$ 132. គេឲ្យស្វ៊ីត $I_n = \int\limits_{0}^{1} \; rac{x^n}{1+x^2} . dx$ ដែល $n \in IN$ ក.ចូរគណនា $\mathbf{I}_{_0}$ និង $\mathbf{I}_{_1}$ ។ ស្រាយថា $(\mathbf{I}_{_n})$ ជាស្ទឹតចុះ ។ ខ.ចូរបង្ហាញថា $\mathbf{I}_{\mathbf{n}} + \mathbf{I}_{\mathbf{n}+2} = \frac{1}{\mathbf{n}+1}$ ចំពោះគ្រប់ $\mathbf{n} \in \mathbf{IN}$ ។ គ.ចូរបង្ហាញថា $\frac{1}{2(n+1)} \le I_n \le \frac{1}{2(n-1)}; \forall n \ge 2$ ។ w.ចូរគណនា $\lim_{n \to +\infty} I_n$ និង $\lim_{n \to +\infty} (nI_n)$ ។ 133. គេឲ្យស្វ៊ីត $I_n = \int\limits_{a}^{2} \sin^n x. dx$ ដែល $n \in IN$ ក.ចូរគណនា $\mathbf{I}_{_0}$ និង $\mathbf{I}_{_1}$ ។ ស្រាយថា $(\mathbf{I}_{_{\mathbf{n}}})$ ជាស្វីតចុះ ។ ខ.ចូរសរសេរទំនាក់ទំនងរវាង $\mathbf{I}_{_{\mathrm{n}}}$ និង $\mathbf{I}_{_{\mathrm{n+2}}}$ ។ គ.ចូរគណនាផលគុណ $\mathbf{P}_{_{\!\! n}} = \mathbf{I}_{_{\!\! n}}.\mathbf{I}_{_{\!\! n+1}}$ ជាអនុគមន៍នៃ \mathbf{n} ។

$$w$$
.គណនាលីមីត $\lim_{n \to +\infty} \frac{I_n}{I_{n+1}}$ និង $\lim_{n \to +\infty} \frac{I_n}{I_{n+2}}$ ។

ង.ចូរស្រាយថា
$$\lim_{n \to +\infty} \left(\sqrt{n} \cdot \mathbf{I}_n \right) = \sqrt{\frac{\pi}{2}}$$
 ។

ច.រករូបមន្តសម្រាប់គណនា I ្ន ។

134 . គេឱ្យអាំងតេក្រាល :

$$I = \int e^{-2x} \cos^2 x. dx$$
 St $J = \int e^{-2x} \sin^2 x. dx$

ក-គណនា I+J និង I-J

ខ-ទាញរក I និង J ។

135 . គេឱ្យអាំងតេក្រាល :

$$I = \int x \cos^2 x. dx$$
 និង $J = \int x \sin^2 x. dx$

ខ-ទាញរក I និង J ។

136 . គេឱ្យអាំងតេក្រាល :

$$I = \int \frac{x+1}{e^{-x} + x} .dx$$
 និង $J = \int \frac{e^{-x} - 1}{e^{-x} + x} .dx$

គណនា I + J , J រួចទាញរក I ។

ឆំមាន់ ឆិខ ជំណោ:ត្រវាយ

137. គេឱ្យអាំងតេក្រាល
$$I_n = \int \sin^n x. dx \;\;, n \in IN \;\;$$
 ។

- ក. គណនាត្ល I_0 និង I_1 ។
- ខ. រកទំនាក់ទំនងរវាង ${\bf I}_{\bf n}$ និង ${\bf I}_{{\bf n}-2}$ ។
- គ. គណនា $K = \int \sin^7 x.dx$ ។
- 138. គេអោយអាំងតេក្រាល : $I_n = \int\limits_0^{\frac{\pi}{2}} \sin^3 x \cos^{n-1} x \;\;, n \in IN^*$

ក-គណនា I_n ជាអនុគមន៍នៃ n ។

ខ-ពេតាង
$$S_n = I_1 + I_2 + I_3 + \dots + I_n = \sum_{k=1}^n (I_k)$$
 ។

ចូរបង្ហាញថា
$$S_n = \frac{3}{2} - \frac{2n+3}{(n+1)(n+2)}$$
 , $n \in IN^*$?

គ-គណនាលីមីត $\lim_{n \to +\infty} S_n$ ។

139 . គេអោយអាំងតេក្រាល
$$I_n = \int\limits_0^{\pi\over 2} \sin^2 x \cos^n x. dx$$
 , $n \in IN$

ក-ស្រាយបញ្ជាក់ថា $(I_n)_{n\in IN}$ ជាស្វ៊ីតចុះ រួចគណនា I_0 និង I_1 ។

$$\mathbf{2}$$
-ផ្ទៀងផ្ទាត់ថាចំពោះគ្រប់ $\mathbf{n} \geq 2$ គេមាន $\mathbf{I}_{\mathbf{n}} = \frac{\mathbf{n}-1}{\mathbf{n}+2}.\mathbf{I}_{\mathbf{n}-2}$ ។

គ-គេតាង
$$P_n = I_n.I_{n-1}$$
 ដែល $n \ge 1$ ។

គណនា P_n ជាអនុគមន៍នៃ n រួចគណនាលីមីត $\lim_{n \to +\infty} (n^2.P_n)$ ។

$$\mathbf{W}$$
-គេតាង $\mathbf{S}_{\mathbf{n}} = \mathbf{P}_1 + \mathbf{P}_2 + \mathbf{P}_3 + \dots + \mathbf{P}_{\mathbf{n}} = \sum_{k=1}^{\mathbf{n}} (\mathbf{P}_k)$ ។
$$\mathbf{V}_{\mathbf{n}}^{\mathbf{n}} \mathbf{N}_{\mathbf{n}}^{\mathbf{n}} \mathbf{S}_{\mathbf{n}} = \frac{\pi}{8} \cdot \frac{\mathbf{n}(\mathbf{n}+3)}{(\mathbf{n}+1)(\mathbf{n}+2)}$$
 រួចទាញរកលីទីត $\lim_{n \to +\infty} \mathbf{S}_{\mathbf{n}}$ ។

ង-គណនាផលគុណ $\Pi_n = S_1 \times S_2 \times S_3 \times \times S_n$ ជាអនុគមន៍នៃ n

ច-គណនា I_{2n} និង I_{2n+1} ជាអនុគមន៍នៃ n ។

140 . កេឡិស្តីត
$$I_n = \int\limits_{na}^{(n+1)a} \frac{dx}{\cos^2 x}$$
 និង $J_n = \int\limits_{a}^{(n+1)a} \frac{dx}{\cos^2 x}$, $n \in IN^*$, $a > 0$ ។

ក-បង្ហាញថា
$$I_1 + I_2 + I_3 + + I_n = J_n$$
 ។

ខ-គណនា In និង Jn ជាអនុគមន៍នៃ n ។

ក-ប្រើលទ្ធផលខាងលើចូរបង្រួមផលបូក :

$$S_n = \frac{1}{\cos a \cos 2a} + \frac{1}{\cos 2a \cos 3a} + \dots + \frac{1}{\cos(na)\cos(n+1)a}$$

141. គេដោយស្វីត
$$I_n = \int_{e^{-(n+1)\pi}}^{e^{-n\pi}} cos(\ln x).dx$$
 , $n \in IN$

ក-ស្រាយបញ្ជាក់ $(I_n)_{n\in IN}$ ជាស្វ៊ីតធរណីមាត្រ ។

ខ-សរសេរកន្សោមI ្ហជាអនុគមន៍នៃn ។

គ-គណនាផលប្តូក $\mathbf{S}_{\mathbf{n}} = \mathbf{I}_0 + \mathbf{I}_1 + \mathbf{I}_2 + ... + \mathbf{I}_{\mathbf{n}}$ រួចទាញរក $\lim_{\mathbf{n} \to +\infty} \mathbf{S}_{\mathbf{n}}$ ។

142 . គេអោយអាំងតេក្រាលៈ

$$I_{n}(t) = \int_{0}^{t} \left(\frac{2x+1}{\sqrt{x^{2}+x}} + \frac{2x+2}{\sqrt{x^{2}+2x}} + \frac{2x+3}{\sqrt{x^{2}+3x}} + \dots + \frac{2x+n}{\sqrt{x^{2}+nx}} - \frac{2nx}{\sqrt{x^{2}+1}} \right) dx$$

ក-គណនាក់នេះ្សាម $I_{\scriptscriptstyle n}(t)$ ។

ខ-គណនាលីមីតនៃកន្សោម $\mathbf{I}_{_{\mathrm{n}}}(t)$ កាលណ $t o +\infty$ ។

143 . គេឱ្យ ${f f}$ ជាអនុគមន៍ មានខួប ${f p}$ និងកំនត់លើ ${f [np,(n+1)p]}$

ចំពោះគ្រប់ $n \in IN$ និង a>0, a
eq 1 ។

គេតាង
$$I_n = \int_{np}^{(n+1)p} a^x .f(x).dx$$
 ។

ក-ស្រាយថា $(I_{_{n}}), n \in IN$ ជាស្វ៊ីតធរណីមាត្រ ។

ខ-សរសេរ \mathbf{I}_n ជាអនុគមន៍នៃ \mathbf{n} និង \mathbf{I}_0 ។

គ-អនុវត្តន៍ ចូរគណនា
$$I_n = \int\limits_{n\pi}^{(n+1)\pi} e^x .\cos 2x.dx$$
 ។

144. គេអោយអាំងតេក្រាល

$$I_n = \int_{1}^{e} \frac{x^{-(2n+1)}}{1+x^2} dx$$
, $n \in IN, e = 2,718...$

ក-ចូរគណនាតូ $\mathbf{I}_{_0}$ ។

ខ-ចូរបង្ហាញថា:
$$\mathbf{I}_{n+1} + \mathbf{I}_{n} = \frac{\mathbf{e}^{2n+2} - 1}{2(n+1) \cdot \mathbf{e}^{2n+2}}$$
 ។

គ-ចូរស្រាយបញ្ជាក់វិសមភាព :

លំចាត់ និទ ជិះនោះស្រាយ

$$rac{1}{2} x^{-2(n+1)} \leq rac{x^{-2n}}{1+x^2} \leq rac{1}{2} x^{-2n} \ , orall x \geq 1$$
 ។ ឃ-គណនាលីមីត $\lim_{n o +\infty} I_n$ និង $\lim_{n o +\infty} (nI_n)$ ។

145 . គណនាអាំងតេក្រាល :

$$\mathbf{I}_{n} = \int_{0}^{\frac{\pi}{2}} \frac{d\mathbf{x}}{1 + \tan^{n} \mathbf{x}}$$
 និង $\mathbf{J}_{n} = \int_{0}^{\frac{\pi}{2}} \frac{d\mathbf{x}}{1 + \cot^{n} \mathbf{x}}$

146 . គេឱ្យអាំងតេក្រាលៈ

$$I_n = \int_{e^n}^{e^{n+1}} \frac{\ln x}{x^2} . dx \quad \forall n \in IN, e = 2,71828....$$

ក-ចូរបង្ហាយថា
$$I_n = \left(\frac{n}{e^n} - \frac{n+1}{e^{n+1}}\right) + \left(1 - \frac{1}{e}\right) \left(\frac{1}{e}\right)^n$$

ខ-គណនា $\lim_{n \to +\infty} \mathbf{I}_n$ ។

គ-គណនាផលបូក
$$S_n = \sum\limits_{k=0}^n \left(I_k\right) = I_0 + I_1 + I_2 + + I_n$$
 ។ ទាញបញ្ជាក់លីមីត $\lim_{n \to +\infty} S_n$ ។

147 . គេឱ្យស្វ៊ីតចំនួនពិត $(I_{_{n}}), n \in IN$ ដោយ :

$$I_{n} = \int_{0}^{\frac{\pi}{2}} \cos^{n} x \cos nx.dx$$

ក-គណនាតួ $\mathbf{I}_{_{0}}$ និង $\mathbf{I}_{_{1}}$ ។

ខ-ស្រាយថា $(I_{_{n}})$ ជាស្តីតធរណីមាត្រ រួចគណនាតូទូទៅ $I_{_{n}}$ ជាអនុគមន៍នៃ n ។

គ-រកផលបូក $\mathbf{S}_{_{\mathrm{n}}} = \mathbf{I}_{_{0}} + \mathbf{I}_{_{1}} + \mathbf{I}_{_{3}} + ... + \mathbf{I}_{_{\mathrm{n}}}$ រូចគណនា $\lim_{_{_{\mathrm{n} o +\infty}}} \mathbf{S}_{_{\mathrm{n}}}$ ។

148. គេឱ្យស្វីត $I_n = \int_0^{\frac{\pi}{4}} tan^n . \sqrt{tan x. dx} , n \in IN$

ក-គណនាតួ $\mathbf{I}_{_0}$ រួចបង្ហាញថា $\mathbf{I}_{_n}$ គ្រប់ $\mathbf{n} \in \mathbf{IN}$ ជាស្វឹតចុះ ។

ខ-គណនា $\mathbf{I}_{\mathrm{n}} + \mathbf{I}_{\mathrm{n+2}}$ ជាអនុគមន៍នៃ n ។

គ-ស្រាយថាចំពោះគ្រប់ $n \in IN^*$: $\frac{1}{2n+3} \le I_{_n} \le \frac{1}{2n-1}$

រួចគណនាលីមីត $\lim_{n \to +\infty} I_n$ និង $\lim_{n \to +\infty} n I_n$ ។

149 . គេអោយអនុគមន៍:

$$y = f_n(x) = \int_{nx}^{(n+1)x} e^{-t^2} dx$$
; $(n \in IN \ e = 2.71828...)$

ក-គណនាដេរីវេះ $\mathbf{y'} = \mathbf{f'}_{n}(\mathbf{x})$

ខ-ចំពោះគ្រប់ $\mathbf{n}\in\mathbf{IN}^{*}$ គេសន្មត $\Omega_{_{\mathrm{n}}}=\mathbf{f'}_{_{\mathrm{n}}}\left(\mathbf{1}\right)$ ។

គណនា $S_n = \Omega_1 + \Omega_2 + \Omega_3 + ... + \Omega_n$ រូចទាញរក $\lim_{n \to +\infty} S_n$ ។

ឆ្នាំង ខ្លួន ខ្លួននោះទីខាតា

150 . គេអោយអនុគមន៍ពីរf(x) និងg(x) កំណត់ក្នុង[a,b]។ ក-ចូរស្រាយបញ្ជាក់អោយឃើញថា:

$$\left|\int_{a}^{b} f(x)g(x).dx\right| \leq \sqrt{\int_{a}^{b} f^{2}(x).dx} \times \int_{a}^{b} g^{2}(x).dx$$
 1

ខ-អនុវត្តន៍: ចូរស្រាយបញ្ជាក់វិសមភាព

$$\left| \int_{0}^{1} \sqrt{\frac{a \cos x + b \sin x}{1 + x^{2}}} . dx \right| \le \frac{\sqrt{\pi}}{2} (a^{2} + b^{2})^{\frac{1}{4}} \quad a, b \in IR$$

151 . គេអោយស្វ៊ីត: $I_n = \int\limits_0^1 \frac{x^n}{\sqrt{x^2-x+1}} . dx$

ក-គណនាតូ $\mathbf{I}_{_0}$ និង $\mathbf{I}_{_1}$ ។

ខ-រកទំនាក់ទំនងរវាង $\mathbf{I}_{_{\mathrm{n}}}$, $\mathbf{I}_{_{\mathrm{n+1}}}$ និង $\mathbf{I}_{_{\mathrm{n+2}}}$ ។

គ-អនុវត្តន៍: ចូរគណនា
$$\mathbf{k} = \int\limits_0^1 \frac{\mathbf{x}^4}{\sqrt{\mathbf{x}^2 - \mathbf{x} + \mathbf{1}}} . \mathbf{dx}$$
 ។

152 . គេឱ្យអាំងតេក្រាល
$$\mathbf{I}_{_{n}}=\lim_{^{\lambda\to+\infty}}\!\!\left[\int\limits_{^{1}}^{^{\lambda}}\!\frac{1}{\left(1+x\right)^{^{2}}}._{^{n}}^{n}\!\sqrt{\frac{x-1}{x+1}}.dx\right]$$
 ។

ក-ចូរបង្ហាញថា
$$\mathbf{I}_{_{\mathrm{n}}}=rac{1}{2}.rac{\mathbf{n}}{\mathbf{n}+1}$$
 រួចទាញរក $\lim_{_{\mathrm{n} o +\infty}}\mathbf{I}_{_{\mathrm{n}}}$ ។

ខ-គណនាផលគុណ
$$\mathbf{P}_{n}=\prod_{k=1}^{n}\left(\mathbf{I}_{k}\right)=\mathbf{I}_{1}.\mathbf{I}_{2}.\mathbf{I}_{3}......\mathbf{I}_{n}$$

ជាអនុគមន៍នៃ n ។

ឆ្នាំ ស្ងួន ខ្លួននោះទីស្វាត

153 .គណនាអាំងតេក្រាល
$${f I}=\int\limits_0^1 {{{
m d}x}\over {x^4+1}}$$
 ។ 154 .គណនាអាំងតេក្រាល ${f I}=12\int\limits_0^4 |x^3-6x^2+11x-6|.{
m d}x$ 155 .គេឲ្យអាំងតេក្រាល ៖

$$I_{n} = \int_{0}^{\frac{\pi}{2}} \frac{1 + 2\sin^{n} x}{1 + \sin^{n} x + \cos^{n} x} . dx$$

$$J_{n} = \int_{0}^{\frac{\pi}{2}} \frac{1 + 2\cos^{n} x}{1 + \sin^{n} x + \cos^{n} x} dx$$

ក.ចូរស្រាយថា $\mathbf{I}_{\scriptscriptstyle \mathrm{n}} = \mathbf{J}_{\scriptscriptstyle \mathrm{n}}$ ។

ខ.ទាញរកតម្លៃ $\mathbf{I}_{\scriptscriptstyle\parallel}$ និង $\mathbf{J}_{\scriptscriptstyle\parallel}$ ។

156 .គេឲ្យអាំងគេក្រាល
$$\mathbf{I} = \int\limits_0^1 \mathbf{x}^3 \mathbf{e}^x . \mathbf{d}\mathbf{x}$$

ក.កំនត់ចំនួនពិត a , b , c , d ដើម្បីឲ្យអនុគមន៍កំនត់ដោយ $F(x) = (ax^3 + bx^2 + cx + d)e^x$ ជាព្រឹមីទីវរបស់អនុគមន៍

$$f(x) = x^3 e^x$$
 លើ IR ។

157. គេឲ្យសមីការឌីផេរ៉ង់ស្យែល (E):y''-4y'+4y=0 ក.ដោៈស្រាយសមីការ (E) ។

សំមាន់ និ១ ជំណោៈស្រាយ

g(x) ជាចម្លើយមួយរបស់ (E) បើគេដឹងថា g(x) បាចម្លើយមួយរបស់ g(x) បើគេដឹងថា g(x) បាចម្លើយមួយរបស់ g(x) បើគេដឹងថា

158 .ដោះស្រាយសមីការឌីផេរ៉ង់ស្យែល (E):y''-2y'+2y=0 បើគេដឹងថា f(0)=1 និង f'(0)=3 ។

159.១.ដោៈស្រាយលមី៣រ ៖

g''(x) - 5g'(x) + 6g(x) = 0 (E)

២.រកចម្លើយ $\mathbf{g}(\mathbf{x})$ មួយនៃសមីការ (\mathbf{E}) ដែល $\mathbf{g}(\mathbf{0}) = \mathbf{0}$, $\mathbf{g}'(\mathbf{0}) = \mathbf{1}$

160 .ដោះស្រាយសមីការឌីផេរ៉ង់ស្បែល y''+4y=0 បើគេដឹងថា $y(0)=1\; ;\; y'(0)=-1$ ។

161 . ១. ដោះស្រាយសមីការ (E): y'' + 4y = 0

 $(y_1$ ជាចម្លើយរបស់ (E)) ។

២.រកចម្លើយនៃសមីការ (E) ដោយដឹងថា y(0) = 1 , y'(0) = 4 ៣.កំនត់ a និង b ដើម្បីឲ្យអនុគមន៍ f(x) = ax + b ជាចម្លើយនៃសមីការ (F): y'' + 4y = x - 1 ។ ៤.បង្ហាញថាបើ f(x) ជាចម្លើយនៃ (F) នោះ $y_1 + f(x)$ ជាចម្លើយរបស់សមីការ (F) ។

ឆំមាន់ ឆិខ ជំណោ:ត្រវាយ

$$(E):y''-3y'+2y=0$$

ចូរកំនត់រកពហុធា P(x) ។

$$(F):y''-3y'+2y=2x^3-15x^2+30x-17$$
 ក.ដោះស្រាយសមីការ (E) (ពាង $h(x)$ ជាចម្លើយសមីការ)។ ខ. $P(x)$ ជាពហុធាដីក្រេទីបីជាចម្លើយមួយរបស់សមីការ (F) ។

គ.ចូរស្រាយថាអនុគមន៍ $\mathbf{y} = \mathbf{h}(\mathbf{x}) + \mathbf{P}(\mathbf{x})$ ជាចម្លើយទូទៅ របស់សមីការ (\mathbf{F}) លុះត្រាតែអនុគមន៍ $\mathbf{h}(\mathbf{x})$ ជាចម្លើយ (\mathbf{E}) ។ ឃ.ទាញរកចម្លើយរបស់ (\mathbf{F}) ។

164 .គេឲ្យលមីការឌីផេរ៉ង់ល្បែ ៖

របស់សមីការ (E) លុះត្រាតែអនុគមន៍ h(x) ជាចម្លើយទូទៅ របស់សមីការ (F):y''-4y'+4y=0 ។

គ.ដោៈស្រាយសមីការ (F) រួចទាញរកចម្លើយទូទៅរបស់ (E)។

165.គេឲ្យសមីការឌីផេរ៉ង់ស្យែល ៖

 $(E):y''-4y=2\ (3\cos x-\sin x)e^x$ n.nis ពីល្ប់នួនពិត a និង b ដើម្បីឲ្យអនុគមន៍ f nis ព់ដោយ៖ $f(x)=(a\cos x+b\sin x)e^x$ ជាចម្លើយមួយរបស់ (E) ។ 2.c ចូរស្រាយថាអនុគមន៍ y=f(x)+h(x) ជាចម្លើយទូទៅ របស់សមីការ (E) លុះគ្រាតែអនុគមន៍ h(x) ជាចម្លើយទូទៅ របស់សមីការ (F):y''-4y=0 ។

គ.ដោៈស្រាយសមីការ (F) រួចទាញរកចម្លើយទូទៅរបស់ (E)។

166.គេឲ្យសមីការឌីផេរ៉ង់ស្យែល ៖

របស់សមីការ (E) លុះត្រាតែអនុគមន៍ h(x) ជាចម្លើយទូទៅ របស់សមីការ (F):y''-2y'+5y=0 ។

គ.ដោះស្រាយសមីការ (F) រួចទាញរកចម្លើយទូទៅរបស់ (E)។

167 .ជេចស្រមីការ $(E):y'-2y=(-x^2+4x+6)e^x$ ក.កំនត់ពីរចំនួនពិត a , b និង c ជើម្បីឲ្យអនុគមន៍កំនត់ដោយ៖ $f(x)=(ax^2+bx+c)e^x$ ជាចម្លើយមួយរបស់ (E) ។ e .ចូរស្រាយថាអនុគមន៍ y=f(x)+h(x) ជាចម្លើយទូទៅ របស់សមីការ (E) លុះគ្រាតែអនុគមន៍ h(x) ជាចម្លើយទូទៅ របស់សមីការ (F):y'-2y=0 ។

គ.ដោៈស្រាយសមីការ (F) រួចទាញរកចម្លើយទូទៅរបស់ (E)។

168. គេឲ្យអនុគមន៍ ${f f}$ កំនត់និងមានដើរវេលី ${f J-1;+1}[$ ដោយ៖

$$f'(0) = 1$$
 និង $f(x) + f(x) = f\left(\frac{x+y}{1+xy}\right)$

ចំពោះគ្រប់ $\mathbf{x} \in]-1;1[$ និង $\mathbf{y} \in]-1;1[$ ។ ចូរកំនត់រកអនុគមន៍ $\mathbf{f}(\mathbf{x})$ ។

សំមាន់ និ១ ជំណោៈស្រាយ

169. គេឲ្យ f ជាអនុគមន៍កំនត់និងមានដើវេលើ $]0;+\infty[$ ដោយ f'(1)=1 និង $\forall x>0,y>0:f(xy)=f(x)+f(y)$ ក. គ្រប់ $n\in IN*$ បង្ហាញថា $f(x^n)=nf(x)$ ។ ខ. ចូរកំនត់រកអនុគមន៍ f(x) ។

170. គេឲ្យអនុគមន៍ f កំនត់និងមានដើរវេលើ IR ដោយ ៖

$$f'(0)=f(0) \ \text{ at } \begin{cases} f(x)>0 \\ f(x+y)=f(x)f(y) \ , \forall x,y \in IR \end{cases}$$
 ហ. គ្រប់ $n\in IN$ $*$ បង្ហាញថា $f(x^n)=[f(x)]^n$ ។ ខ. ចូរកំនត់រកអនុគមន៍ $f(x)$ ។

171. គេឲ្យសមីការឌីផេរ៉ង់ល្យែល ៖

គ.ដោះស្រាយសមីការ (\mathbf{F}) រួចទាញរកចម្លើយរបស់សមីការ (\mathbf{E}) ។ 172 .កំនត់រកអនុគមន៍ $\mathbf{y} = \mathbf{f}(\mathbf{x})$ បើគេដឹងថា ៖

 $(x^2+1)f'(x)+2x\,f(x)=4x^3+2x+1\ ,\ f(0)=1$ 173 . ចូរកំនត់រកអនុគមន៍ y=f(x) បើគេដឹងថា ៖

$$\begin{cases} \frac{1}{2x+1}f''(x) - \frac{2}{(2x+1)^2}f'(x) = 4x-1\\ f'(0) = f(0) = 0 \end{cases}$$

174. គេឲ្យលមីការឌីផេរ៉ង់ល្បែល (E):y''-2y'+y=0

ក.កំនត់រកអនុគមន៍ $\mathbf{y} = \mathbf{f}(\mathbf{x})$ ជាចម្លើយរបស់(\mathbf{E}) បើគេដឹងថា

$$f(0) = 2$$
 និង $f(-2) = 0$ ។

ខ.គណនា $\lim_{x\to -\infty} f(x)$ និង $\lim_{x\to +\infty} f(x)$ រួចទាញរកសមីការ អាស៊ីមតូតដេកនៃក្រាប (c) ពាងអនុគមន៍ f ។

គ.គណនា f'(x) និងសិក្សាសញ្ញា f'(x) ។

គូលពារាងអថេរភាពពាងអនុគមន៍ f ។

ឃ. I ជាចំនុចរបត់នៃក្រាប (c) ។ កំនត់កូអរដោនេនៃចំនុច I រួចសរសេរសមីការបន្ទាត់ (T) ប៉ៈខ្សែក្រាង (c)ត្រង់ I ។

ង.ចូរសង់បន្ទាត់ (T) និង ក្រាប (c) ក្នុងតំរុយតែមួយ ។ ច.គណនាផ្ទៃក្រឡា $S(\lambda)$ នៃមណ្ឌលប្លង់ខ័ណ្ឌដោយខ្សែកោង(c) ជាមួយនឹងអក្ស័អាប់ស៊ីសក្នុងចន្លោះ $[0;\lambda]$ ។គណនា $\lim_{\lambda \to +\infty} S(\lambda)$ ។

175.ក្នុងតម្រុយអរតូនរម៉ាល់គេឲ្យប៉ារ៉ាបូល $(P): y = \frac{x^2}{2}$ ហើយ A និង B ជាពីរចំនុចនៃ (P) ដែល AB = 2 ។ កំនត់កូអរដោនេនៃចំនុច A និង B ដើម្បីឲ្យផ្ទៃក្រឡាខ័ណ្ឌដោយ (P) និង បន្ទាត់ (AB) មានតម្លៃអតិបរមា ។

176.ក្នុងតម្រុយអរតូនរម៉ាល់គេឲ្យប៉ារ៉ាបូល $(P): y = 4 - x^2$ (D) ជាបន្ទាត់មានមេគុណប្រាប់ទិស m វិលជុំវិញ A(1;2)។ កំនត់តម្លៃ m ដើម្បីឲ្យផ្ទៃក្រឡាខ័ណ្ឌដោយ(P)និងបន្ទាត់ (D) មានតម្លៃអប្បបរមា ។

177 .គណនាផ្ទៃក្រឡាខ័ណ្ឌដោយ៖

$$(C): y = x^2 \hat{s} h(d): y = x + 2$$

178 .គណនាផ្ទៃក្រឡាខ័ណ្ឌដោយខ្សែកោងពីរប្រសព្វគ្នា ៖

$$(C_1): y = 4x - x^2$$
 និង $(C_2): y = x^2 - 2x$ ។

179 .គណនាផ្ទៃក្រឡាខណ្ឌដោយខ្សែកោង ៖

$$(C): y = f(x) = \frac{x^2}{2} - 2x + \frac{3}{2}$$
 ជាមួយអក្ស័អាប់ស៊ីស (ox) គ្នុងចន្លោះ $[1;3]$ ។

180. គេឲ្យខ្សែកោង (c):
$$y = \frac{2}{1 + e^x}$$

ក.គណនាផ្ទៃក្រឡា $S(\alpha)$ ខ័ណ្ឌដោយខ្សែកោង (c)ជាមួយអក្ស័ អាប់ស៊ីសក្នុងចន្លោះ $[0;\alpha]$ ។

ខ.គណនា $\lim_{\alpha \to +\infty} \mathbf{S}(\alpha)$ ។

181 .ខាងក្រោមនេះគឺជាក្រាប (c) ពាងអនុគមន៍ $f(x) = 2xe^{-x^2}$

ក.គណនាផ្ទៃក្រឡា $S(\alpha)$ ខ័ណ្ឌដោយខ្សែកោង (c)ជាមួយអក្ស័ អាប់ស៊ីសក្នុងចន្លោះ $[0;\alpha]$ ។ ខ.គណនា $\lim_{\alpha \to +\infty} S(\alpha)$

182.ខាងក្រោមនេះគឺជាក្រាប (c) ពាងអនុគមន៍ ៖

$$f(x) = \frac{3}{2x^2 + 3x + 1}$$

ក.គណនាផ្ទៃក្រឡា $S(\alpha)$ ខ័ណ្ឌដោយខ្សែកោង (c)ជាមួយអក្ស័ អាប់ស៊ីសក្នុងចន្លោះ $[0;\alpha]$ ។ ខ.គណនា $\lim_{\alpha \to +\infty} S(\alpha)$ ។

- 183 .គណនាផ្ទៃក្រឡាខ័ណ្ឌដោយខ្សែកោង $(c): y = \frac{4x^3}{x^4+1}$ ជាមួយអក្ស័ (x'ox) ក្នុងចន្លោះ $[0\,,1\,]$ ។
- 185 .ចូរស្រាយថាស្វ៊ែដែលមានកាំស្មើ $\, {f R}$ ត្រូវមានមាឌ $\, {f V} = {4\over 3} \pi {f R}^3$ ។
- 186 .គណនាមាឌុសូលីដបរិវត្តន៍កំនត់បានពីរង្វិលផ្ទៃខណ្ឌ័ដោយក្រាបតាង អនុគមន៍ $\mathbf{f}(\mathbf{x}) = \frac{\mathbf{x}}{2} + \mathbf{1}$ ជាមួយអក្ស័អាប់ស៊ីសក្នុងចន្លោះ[0;2] ជុំវិញអក្ស័អាប់ស៊ីស ។
- 187. គេឲ្យស្វ៊ីព $u_{_{n}}=1+\frac{1}{\sqrt[3]{2}}+\frac{1}{\sqrt[3]{3}}+....+\frac{1}{\sqrt[3]{n}}$

ក.ចំពោះគ្រប់ $\mathbf{n} \in \mathbf{IN}$ * ចូរស្រាយបញ្ហាក់ថា *

$$\int\limits_{1}^{n} \frac{dx}{\sqrt[3]{x}} \leq u_{n} \leq 1 + \int\limits_{1}^{n} \frac{dx}{\sqrt[3]{x}}$$

ខ.គណនាអាំងតេក្រាល $I_n = \int_1^n \frac{dx}{\sqrt[3]{x}}$

ឆ្នាំង ខ្លួន ខ្លួននោះទីខាតា

គ.គណនាលីមីត
$$\lim_{n\to +\infty} \left(\frac{u_n}{\sqrt[3]{n^2}} \right)$$
 ។

188 .គណនាអាំងតេក្រាល $\mathbf{I} = \int\limits_{\frac{\pi}{6}}^{\frac{\pi}{3}} (\tan x + \cot x)^2 . dx$ ។

189. គេឲ្យអាំងតេក្រាល ៖

$$I=\int\limits_0^{\pi\over 2} \frac{\sin 2x}{1+2\sin x}.dx$$
 និង $J=\int\limits_0^{\pi\over 2} \frac{\cos x}{1+2\sin x}.dx$ ក.ចូរគណនា $I+J$ ។

ខ.ចូរគណនា J រួចទាញរកតម្លៃ I ។

190 .គេឲ្យ f ជាអនុគមន៍កំនត់លើ IR ដោយ $f(x)=(1-x)e^x$ ក.ចូរផ្ល្យេងផ្ទាត់ថា f(x)+f''(x)=2f'(x)គ្រប់ $x\in IR$ ។ ខ.ទាញរកតម្លៃ $I=\int\limits_0^1 (1-x)e^x.dx$ ។

191 .ចំពោះគ្រប់
$$n \in IN$$
 គេឲ្យ $I_n = \int\limits_0^{\frac{\pi}{3}} \frac{(\sin x)^n}{\cos x} . dx$

ក.ចូរគណនា $\int\limits_0^{\frac{\pi}{3}} (\sin x)^n \cos x. dx$ រួចទាញរក $I_{_{n+2}} - I_{_n}$ ជាអនុគមន៍នៃ n ។

ឆំមាន់ ឆិខ ជំណោ:ត្រវាយ

$$2.$$
ផ្ទៅងផ្ទាត់ថាអនុគមន៍ $\mathbf{F}(\mathbf{x}) = \ln\left(\tan(\frac{\mathbf{x}}{2} + \frac{\pi}{4})\right)$ ជាព្រីមីទីវនៃអនុគមន៍ $\mathbf{f}(\mathbf{x}) = \frac{1}{\cos\mathbf{x}}$ លើ $[0;\frac{\pi}{3}]$ ។ គ.ទាញរកតម្លៃនៃ \mathbf{I}_0 , \mathbf{I}_1 , \mathbf{I}_2 ។

192. ដោយប្រើអាំងពេក្រាលពាមផ្នែកចូរគណនា ៖

$$I_n(x) = \int_1^x t^n \ln t . dt$$
 ដែល $n \ge 1$ ។

193 . គេឲ្យ
$$\mathbf{I}_n=\int\limits_0^n\mathbf{x}(\pi-\mathbf{x})\cos(n\mathbf{x}).d\mathbf{x}$$
 , $\mathbf{n}\in\mathbf{IN}$ ដោយប្រើអាំងគេក្រាលតាមផ្នែកចូរគណនា \mathbf{I}_n រួចបញ្ជាក់ \mathbf{I}_{2p} និង \mathbf{I}_{2p+1} ។

194. គេថ្ង
$$I_n = \int_0^{\frac{\pi}{4}} \frac{dx}{\cos^{2n+1} x}$$
 ; $n \in IN$

ក.ចំពោះគ្រប់ $n \geq 1$ ចូរបង្ហាញថា ៖

$$2n I_{n} = (2n-1)I_{n-1} + \frac{2^{n}}{\sqrt{2}}$$

ខ.ទាញរកតម្លៃ
$$\mathbf{K} = \int_{0}^{\frac{\pi}{4}} \frac{d\mathbf{x}}{\cos^5 \mathbf{x}}$$
 ។

195 .ចូរបង្ហាញថា
$$\int_{0}^{\frac{\pi}{4}} \int_{0}^{x} \sin^{5} t \cos t . dt dt dt = \frac{15\pi - 44}{1152}$$
 ។

196.ចំពោះគ្រប់ $\mathbf{n} \in \mathbf{IN}$ គេឲ្យអាំងតេក្រាល ៖

$$\mathbf{I}_{n} = \int_{0}^{\frac{\pi}{2}} e^{-nx} \sin x \cdot dx$$
 \quad \text{8}\tau \quad \mathbf{J}_{n} = \int_{0}^{\frac{\pi}{2}} e^{-nx} \cos x \cdot dx

១.ចូរគណនា $\mathbf{I}_{_{0}}$ និង $\mathbf{J}_{_{0}}$

២.គេលន្មតថា n≥1 ។

ក_ដោយប្រើអាំងតេក្រាលតាមផ្នែកចូរបង្ហាញថា ៖

$$\begin{cases} \mathbf{I}_{n} + n\mathbf{J}_{n} = 1 \\ -n\mathbf{I}_{n} + \mathbf{J}_{n} = e^{-\frac{n\pi}{2}} \end{cases}$$

ខ-ចូរទាញរកកន្សោម $\mathbf{I}_{_{n}}$ និង $\mathbf{J}_{_{n}}$ ជាអនុគមន៍នៃ \mathbf{n} ។

គ_គណនាលីមីត $\lim_{n \to +\infty} I_n$ និង $\lim_{n \to +\infty} J_n$ ។

197. គេឲ្យស្វីត $(\mathbf{I}_{_{n}})$ កំនត់គ្រប់ $n \geq 1$ ដោយ៖

$$I_n = \frac{1}{n!} \int_0^1 (1-x)^n e^x dx$$

ក.ចូរគណនា $\mathbf{I}_{_{1}}$ ។

ខ.ចូរបញ្ជាក់ $\mathbf{I}_{_{\mathrm{n+1}}}$ ជាអនុគមន៍នៃ $\mathbf{I}_{_{\mathrm{n}}}$ រួចទាញបង្ហាញថាគ្រប់ $\mathbf{n} \geq \mathbf{1}$

ឆ្នាំ ស្ងួន ខ្លួននោះទីស្វាតា

គេបាន
$$I_n = e - \sum_{p=0}^n (\frac{1}{p!})$$
 ។

គ.ដោយប្រើវិធីអមចំពោះអនុគមន៍ $(1-x)^n e^x$ ក្នុងចន្លោះ[0;1]

ចូររកលីមីត $\lim_{n \to +\infty} \mathbf{I}_n$ រួចទាញបង្ហាញថា ៖

$$e = \lim_{n \to +\infty} (1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!})$$
 \forall

198.ចូរគណនាអាំងតេក្រាល $\mathbf{I} = \int\limits_0^{\frac{\pi}{6}} \ln(\sqrt{3} + \tan x)$ ។

199.ចូរគណនាអាំងតេក្រាល ៖

$$I = \int_{0}^{1} \frac{\ln(1+x)}{1+x^{2}} dx$$
 និង $J = \int_{0}^{1} \frac{\arctan x}{1+x} dx$

200 . គេឲ្យ f(x) ជាអនុគមន៍គូកំនត់លើ [-a;a] ។

ក.ចូរស្រាយថា
$$\int\limits_{-a}^{a} \frac{f(x)}{1+q^{x}}.dx = \int\limits_{0}^{a} f(x).dx$$

ដែល
$$q>0$$
 ; $q\neq 1$ ។

ខ.*អនុវត្តន៍* ៖

ចូរគណនា
$$I = \int_{-1}^{1} \frac{3x^2 - 4|x| + 1}{1 + 2^x} dx$$

សំមាត់ ឆិ១ ជំណោ:ស្រាយ

$${f 201}.$$
 គេឲ្យ ${f f}$ ជាអនុគមន៍ជាប់ក្នុងចន្លោះ ${f [a;b]}$ ។ ${f n.}$ ចូរស្រាយថា ${f \int \limits_a^b f(x).dx}={f \int \limits_a^b f(a+b-x).dx}$ ${f 2.}$ ខ.គណនា ${f I}={f \int \limits_{-1979}^{1979}}{f 1-2009^x\over 1+2009^x}=0$ ។

~~~\*\*

បាត់ដំបងថ្ងៃទី១៦ ខែកុម្ភះ ឆ្នាំ២០០៩

អ្នករ្យបរ្យេង **នឹម ផន្តន** 

TeL: (017) 768 246