Lógicas Modales Dinámicas

Clase #3

Carlos Areces & Raul Fervari

Febrero 2024, Río Cuarto, Argentina

Hasta ahora

- Lógica Modal Básica (LMB).
- Expresividad y Axiomatizaciones.
- Lógica de Anuncios Públicos (LAP).
- Expresividad: Igual a LMB.
- Axiomatización: Mediante axiomas de reducción.

Plan para hoy

- Cerramos axiomatización de LMB y LAP.
- Vamos a considerar otra alternativa de lógica dinámica.
- Introduciremos una lógica que elimina ejes en la relación de accesibilidad: *sabotage logic*.
 - Nos ayudará a comprender los efectos de tener operadores (realmente) dinámicos en el lenguaje.
 - Como venimos haciendo, discutimos: expresividad?, complejidad?, axiomatización?
- Vamos a mencionar otras alternativas de operadores dinámicos.

Axiomatización y Completitud de K

- El sistema axiomático K es el menor conjunto de fórmulas modales Δ que contiene:
 - I. Todas las tautologías proposicionales.
 - II. El axioma (K): $\Box(p \to q) \to (\Box p \to \Box q)$.

y está cerrado por:

- I. modus ponens: Si $\varphi \in \Delta$ y $\varphi \to \psi \in \Delta$ entonces $\psi \in \Delta$.
- II. sustitución uniforme: Si $\varphi \in \Delta$ entonces $\varphi[p/\psi] \in \Delta$ para cualquier $p \in \mathsf{PROP}$, y cualquier ψ .
- III. necesitación (Nec): $\varphi \in \Delta$ entonces $\Box \varphi \in \Delta$.

Axiomatización y Completitud de K

- El sistema axiomático K es el menor conjunto de fórmulas modales Δ que contiene:
 - I. Todas las tautologías proposicionales.
 - II. El axioma (K): $\Box(p \to q) \to (\Box p \to \Box q)$.

y está cerrado por:

- I. modus ponens: Si $\varphi \in \Delta$ y $\varphi \to \psi \in \Delta$ entonces $\psi \in \Delta$.
- II. sustitución uniforme: Si $\varphi \in \Delta$ entonces $\varphi[p/\psi] \in \Delta$ para cualquier $p \in \mathsf{PROP}$, y cualquier ψ .
- III. necesitación (Nec): $\varphi \in \Delta$ entonces $\Box \varphi \in \Delta$.
- ▶ Si $\varphi \in \Delta$ decimos que φ es un *teorema* de **K** ($\vdash_{\mathbf{K}} \varphi$).

Axiomatización y Completitud de K

- El sistema axiomático K es el menor conjunto de fórmulas modales Δ que contiene:
 - Todas las tautologías proposicionales.
 - II. El axioma (K): $\Box(p \to q) \to (\Box p \to \Box q)$.

y está cerrado por:

- I. modus ponens: Si $\varphi \in \Delta$ y $\varphi \to \psi \in \Delta$ entonces $\psi \in \Delta$.
- II. sustitución uniforme: Si $\varphi \in \Delta$ entonces $\varphi[p/\psi] \in \Delta$ para cualquier $p \in \mathsf{PROP}$, y cualquier ψ .
- III. necesitación (Nec): $\varphi \in \Delta$ entonces $\Box \varphi \in \Delta$.
- ▶ Si $\varphi \in \Delta$ decimos que φ es un *teorema* de **K** ($\vdash_{\mathbf{K}} \varphi$).
- Charlamos la demo de completitud por construcción del Modelo Canónico M^K que satisface todas las fórmulas K-consistentes.

Ejemplo de demostración

▶ Probemos que $\vdash_{\mathbf{K}} \Box A \rightarrow \Box (B \rightarrow A)$

1. $A \rightarrow (B \rightarrow A)$	Taut
$2. \Box (A \rightarrow (B \rightarrow A))$	Nec, 1
3. $\Box(A \to (B \to A)) \to (\Box A \to \Box(B \to A))$	K
$A. \Box A \rightarrow \Box (B \rightarrow A)$	MP. 2. 3

Completitud para K

- 1. **K** es completa sii toda fórmula φ **K**-consistente (i.e., no pasa $\varphi \vdash_{\mathbf{K}} \bot$) es satisfacible.
- 2. Lema de Lindenbaum: Todo conjunto consistente puede extenderse a uno maximal consistente (MCS).
- 3. $M^{\mathbf{k}}$ tiene por estados a todos MCS.
- 4. Lema de la Verdad y la Pertenencia (Truth Lemma): Si Δ es un estado de $M^{\mathbf{K}}$ y $\varphi \in \Delta$ entonces $M^{\mathbf{K}}, \Delta \models \varphi$.

1. Sea $\mathcal L$ un lenguaje, y sea Δ una lógica modal construida sobre el lenguaje $\mathcal L$.

- 1. Sea $\mathcal L$ un lenguaje, y sea Δ una lógica modal construida sobre el lenguaje $\mathcal L$.
- 2. Sea \mathcal{L}' una extensión de \mathcal{L} con un nuevo operador (Ejemplo: **PAL** extiende LMB con el operador $[!\psi]$).

- 1. Sea \mathcal{L} un lenguaje, y sea Δ una lógica modal construida sobre el lenguaje \mathcal{L} .
- 2. Sea \mathcal{L}' una extensión de \mathcal{L} con un nuevo operador (Ejemplo: **PAL** extiende LMB con el operador $[!\psi]$).
- 3. Supongamos que tenemos un conjunto de equivalencias en \mathcal{L}' (es decir, fórmulas de la forma $\psi \leftrightarrow \psi'$) tal que dichas equivalencias permiten transformar cualquier fórmula de \mathcal{L}' en una fórmula de \mathcal{L} , que sea equivalente. Llamamos a estas fórmulas axiomas de reducción.

- 1. Sea \mathcal{L} un lenguaje, y sea Δ una lógica modal construida sobre el lenguaje \mathcal{L} .
- 2. Sea \mathcal{L}' una extensión de \mathcal{L} con un nuevo operador (Ejemplo: **PAL** extiende LMB con el operador $[!\psi]$).
- 3. Supongamos que tenemos un conjunto de equivalencias en \mathcal{L}' (es decir, fórmulas de la forma $\psi \leftrightarrow \psi'$) tal que dichas equivalencias permiten transformar cualquier fórmula de \mathcal{L}' en una fórmula de \mathcal{L} , que sea equivalente. Llamamos a estas fórmulas axiomas de reducción.
- 4. En particular, me permite transformar aquellas que son tautologías.

- 1. Sea \mathcal{L} un lenguaje, y sea Δ una lógica modal construida sobre el lenguaje \mathcal{L} .
- 2. Sea \mathcal{L}' una extensión de \mathcal{L} con un nuevo operador (Ejemplo: **PAL** extiende LMB con el operador $[!\psi]$).
- 3. Supongamos que tenemos un conjunto de equivalencias en \mathcal{L}' (es decir, fórmulas de la forma $\psi \leftrightarrow \psi'$) tal que dichas equivalencias permiten transformar cualquier fórmula de \mathcal{L}' en una fórmula de \mathcal{L} , que sea equivalente. Llamamos a estas fórmulas axiomas de reducción.
- 4. En particular, me permite transformar aquellas que son tautologías.
- 5. Entonces, una tautología de \mathcal{L}' es tautología de \mathcal{L} ; por completitud de Δ , también es un teorema de Δ .

- 1. Sea \mathcal{L} un lenguaje, y sea Δ una lógica modal construida sobre el lenguaje \mathcal{L} .
- 2. Sea \mathcal{L}' una extensión de \mathcal{L} con un nuevo operador (Ejemplo: **PAL** extiende LMB con el operador $[!\psi]$).
- 3. Supongamos que tenemos un conjunto de equivalencias en \mathcal{L}' (es decir, fórmulas de la forma $\psi \leftrightarrow \psi'$) tal que dichas equivalencias permiten transformar cualquier fórmula de \mathcal{L}' en una fórmula de \mathcal{L} , que sea equivalente. Llamamos a estas fórmulas axiomas de reducción.
- 4. En particular, me permite transformar aquellas que son tautologías.
- 5. Entonces, una tautología de \mathcal{L}' es tautología de \mathcal{L} ; por completitud de Δ , también es un teorema de Δ .
- 6. Por lo tanto, Δ + los axiomas de reducción forman un sistema completo para \mathcal{L}' .

Nota sobre sustitución

- ► Presentamos a **K** como LP +:
 - Axioma K: $\Box(p \to q) \to \Box p \to \Box q$
 - ▶ Reglas: MP, (Nec) (si $\vdash \varphi$ entonces $\vdash \Box \varphi$), y sustitución (si $\vdash \varphi(p)$ entonces $\vdash \varphi[p/\psi]$).
- Pero dijimos que sustitución no vale en LAP, entonces no podemos usar esta construcción para LAP!
- Presentación alternativa con axiomas esquema:
 - Axioma K: $\Box(\varphi \to \psi) \to \Box\varphi \to \Box\psi$.
 - ▶ Reglas: MP y (Nec) (si $\vdash \varphi$ entonces $\vdash \Box \varphi$).
- ▶ Para **K** es equivalente, pero para LAP no lo es.
- A partir de ahora trabajaremos con axiomas esquema.

Completitud para PAL

Teorema.

K + los axiomas de reducción forman un sistema correcto y fuertemente completo para **PAL** con respecto a la clase de todos los modelos.

Demostración.

Sea φ un teorema de **PAL**, obtengo φ' en LMB usando los axiomas de reducción. Como **K** es completa para LMB sobre la clase de todos los modelos, φ' es demostrable en esta clase.

Nos movimos a trabajar con operadores dinámicos, pero usando herramientas clásicas de la lógica modal.

- Nos movimos a trabajar con operadores dinámicos, pero usando herramientas clásicas de la lógica modal.
- ▶ Pero dijimos que una lógica dinámica (PAL), es igualmente expresiva que la lógica estática LMB.

- Nos movimos a trabajar con operadores dinámicos, pero usando herramientas clásicas de la lógica modal.
- ▶ Pero dijimos que una lógica dinámica (PAL), es igualmente expresiva que la lógica estática LMB. (Bisimulaciones? (Ejercicio).)

- Nos movimos a trabajar con operadores dinámicos, pero usando herramientas clásicas de la lógica modal.
- Pero dijimos que una lógica dinámica (PAL), es igualmente expresiva que la lógica estática LMB. (Bisimulaciones? (Ejercicio).)
- ➤ ¿Decepcionados? No, porque a veces podemos representar estáticamente el operador dinámico, pero con algunas consecuencias.

- Nos movimos a trabajar con operadores dinámicos, pero usando herramientas clásicas de la lógica modal.
- Pero dijimos que una lógica dinámica (PAL), es igualmente expresiva que la lógica estática LMB. (Bisimulaciones? (Ejercicio).)
- ▶ ¿Decepcionados? No, porque a veces podemos representar estáticamente el operador dinámico, pero con algunas consecuencias.
- Mencionamos por ejemplo, que potencialmente tenemos una explosión exponencial en el tamaño de las fórmulas. A veces puede ser peor.

Podemos extender la lógica modal básica, con un operador que modela sabotaje:

$$\mathcal{M}, w \models \langle \mathsf{sb} \rangle \varphi$$
 sii existe $(v, v') \in R$ tq. $\mathcal{M}_{vv'}^-, w \models \varphi$,

Podemos extender la lógica modal básica, con un operador que modela sabotaje:

$$\mathcal{M}, w \models \langle \mathsf{sb} \rangle \varphi \text{ sii existe } (v, v') \in R \text{ tq. } \mathcal{M}_{vv'}^-, w \models \varphi,$$

donde

$$\mathcal{M} = \langle W, R, V \rangle \qquad \mathcal{M}_{wv}^{-} = \langle W, R_{vv'}^{-}, V \rangle$$

$$R_{vv'}^{-} = R \setminus \{(v, v')\}$$

Podemos extender la lógica modal básica, con un operador que modela sabotaje:

$$\mathcal{M}, w \models \langle \mathsf{sb} \rangle \varphi$$
 sii existe $(v, v') \in R$ tq. $\mathcal{M}_{vv'}^-, w \models \varphi$,

donde

$$\mathcal{M} = \langle W, R, V \rangle \qquad \mathcal{M}_{wv}^{-} = \langle W, R_{vv'}^{-}, V \rangle$$

$$R_{vv'}^{-} = R \setminus \{(v, v')\}$$

Definimos LMB($\langle sb \rangle$) a la lógica LMB extendida con $\langle sb \rangle$.

Podemos extender la lógica modal básica, con un operador que modela sabotaje:

$$\mathcal{M}, w \models \langle \mathsf{sb} \rangle \varphi$$
 sii existe $(v, v') \in R$ tq. $\mathcal{M}_{vv'}^-, w \models \varphi$,

donde

$$\mathcal{M} = \langle W, R, V \rangle \qquad \mathcal{M}_{wv}^{-} = \langle W, R_{vv'}^{-}, V \rangle$$

$$R_{vv'}^{-} = R \setminus \{(v, v')\}$$

Definimos LMB($\langle sb \rangle$) a la lógica LMB extendida con $\langle sb \rangle$.

Definimos $[sb]\varphi := \neg \langle sb \rangle \neg \varphi$.

Ejemplo

Ejemplo

Ejemplo

Poder Expresivo: Modelos de Árbol

Consideremos los siguientes modelos:

Poder Expresivo: Modelos de Árbol

Consideremos los siguientes modelos:

Los modelos son bisimilares para la LMB.

Observación: el modelo de la derecha es un árbol.

Tree Model Property para LMB

Teorema:

La LMB tiene la tree model property: para toda fórmula φ de LMB, si φ es satisfacible entonces φ es también satisfacible en la raíz de un árbol.

Tree Model Property para LMB

Teorema:

La LMB tiene la tree model property: para toda fórmula φ de LMB, si φ es satisfacible entonces φ es también satisfacible en la raíz de un árbol.

Idea de la prueba:

Sea $\mathcal{M} = \langle W, R, V \rangle$ y $w \in W$, tal que $\mathcal{M}, w \models \varphi$. Construimos un árbol $\mathcal{T} = \langle W', R', V' \rangle$:

- 1. Tomar todas las secuencias de puntos que empiezan en w y que son alcanzables via R.
- 2. A cada secuencia $w \dots v$, le damos la misma valuación que v.
- 3. Si $(v, u) \in R$, ponemos $(w, \ldots v, w \ldots vu)$ en R'.
- 4. \mathcal{T} es un árbol y \mathcal{T} , $w \models \varphi$.

Tree Model Property para LMB($\langle sb \rangle$)

Teorema:

 $LMB(\langle sb \rangle)$ no tiene la tree model property.

Tree Model Property para LMB($\langle sb \rangle$)

Teorema:

LMB($\langle sb \rangle$) no tiene la tree model property.

Demo.

La fórmula $\diamondsuit \diamondsuit \top \land [sb] \Box \bot$ es satisfacible (pensar en un único nodo con un loop) pero no se satisface en la raíz de un árbol.

Tree Model Property para LMB($\langle sb \rangle$)

Teorema:

LMB($\langle sb \rangle$) no tiene la tree model property.

Demo.

La fórmula $\Diamond \Diamond \top \land [sb] \Box \bot$ es satisfacible (pensar en un único nodo con un loop) pero no se satisface en la raíz de un árbol.

Corolario.

LMB \langle LMB(\langle sb \rangle); es decir, LMB(\langle sb \rangle) es estrictamente más expresiva que LMB.

- ► LMB(⟨sb⟩) más expresiva que LMB significa LMB(⟨sb⟩) captura ciertas propiedades que LMB no puede capturar.
- Las bisimulaciones relacionan estados o mundos con propiedades parecidas.
- ▶ Para LMB, estas son: información proposicional (atom), e información sobre los sucesores (zig y zag).

- ► LMB(⟨sb⟩) más expresiva que LMB significa LMB(⟨sb⟩) captura ciertas propiedades que LMB no puede capturar.
- Las bisimulaciones relacionan estados o mundos con propiedades parecidas.
- ▶ Para LMB, estas son: información proposicional (atom), e información sobre los sucesores (zig y zag).
- ▶ Para sabotage, estas condiciones no son suficientes.

- ► LMB(⟨sb⟩) más expresiva que LMB significa LMB(⟨sb⟩) captura ciertas propiedades que LMB no puede capturar.
- Las bisimulaciones relacionan estados o mundos con propiedades parecidas.
- ▶ Para LMB, estas son: información proposicional (atom), e información sobre los sucesores (zig y zag).
- ▶ Para sabotage, estas condiciones no son suficientes.
- ¿Qué propiedades necesitamos para sabotage?

- ► LMB(⟨sb⟩) más expresiva que LMB significa LMB(⟨sb⟩) captura ciertas propiedades que LMB no puede capturar.
- Las bisimulaciones relacionan estados o mundos con propiedades parecidas.
- ▶ Para LMB, estas son: información proposicional (atom), e información sobre los sucesores (zig y zag).
- ▶ Para sabotage, estas condiciones no son suficientes.
- ¿Qué propiedades necesitamos para sabotage?
- Claramente, información sobre la eliminación de ejes.

En este caso, las bisimulaciones relaciona pares (estado,ejes).

En este caso, las bisimulaciones relaciona pares (estado, ejes).

Sean
$$\mathcal{M} = \langle W, R, V \rangle$$
 y $\mathcal{M}' = \langle W', R', V' \rangle$ dos modelos. $Z \subseteq (W \times 2^{W^2}) \times (W' \times 2^{W'^2})$ es una bisimulación si $(w, S)Z(w', S')$ implica:

(Atomic Harmony) $w \in V(p)$ sii $w' \in V'(p)$, para todo $p \in \mathsf{PROP}$; (Zig) si $(w, v) \in S$ entonces existe v' tq. $(w', v') \in S'$ y (v, S)Z(v', S'); (Zag) si $(w', v') \in S'$ entonces existe v tq. $(w, v) \in S$ y (v, S)Z(v', S');

En este caso, las bisimulaciones relaciona pares (estado,ejes).

Sean
$$\mathcal{M} = \langle W, R, V \rangle$$
 y $\mathcal{M}' = \langle W', R', V' \rangle$ dos modelos. $Z \subseteq (W \times 2^{W^2}) \times (W' \times 2^{W'^2})$ es una bisimulación si $(w, S)Z(w', S')$ implica:

```
(Atomic Harmony) w \in V(p) sii w' \in V'(p), para todo p \in \mathsf{PROP};

(Zig) si (w,v) \in S entonces existe v' tq. (w',v') \in S' y (v,S)Z(v',S');

(Zag) si (w',v') \in S' entonces existe v tq. (w,v) \in S y (v,S)Z(v',S');

(\langle \mathsf{sb} \rangle-Zig) si (x,y) \in S entonces existe (x',y') \in S' tq. (w,S_{xy}^-)Z(w',S_{x'y'}^-);
```

En este caso, las bisimulaciones relaciona pares (estado,ejes).

Sean
$$\mathcal{M} = \langle W, R, V \rangle$$
 y $\mathcal{M}' = \langle W', R', V' \rangle$ dos modelos. $Z \subseteq (W \times 2^{W^2}) \times (W' \times 2^{W'^2})$ es una bisimulación si $(w, S)Z(w', S')$ implica:

```
(Atomic Harmony) w \in V(p) sii w' \in V'(p), para todo p \in \mathsf{PROP}; (Zig) si (w, v) \in S entonces existe v' tq. (w', v') \in S' y (v, S)Z(v', S'); (Zag) si (w', v') \in S' entonces existe v tq. (w, v) \in S y (v, S)Z(v', S'); (\langle \mathsf{sb} \rangle \text{-} \mathbf{Zig} \rangle si (x, y) \in S entonces existe (x', y') \in S' tq. (w, S_{xy}^-)Z(w', S_{x'y'}^-); (\langle \mathsf{sb} \rangle \text{-} \mathbf{Zag} \rangle si (x', y') \in S' entonces existe (x, y) \in S tq. (w, S_{xy}^-)Z(w', S_{x'y'}^{'-});
```

En este caso, las bisimulaciones relaciona pares (estado, ejes).

Sean
$$\mathcal{M} = \langle W, R, V \rangle$$
 y $\mathcal{M}' = \langle W', R', V' \rangle$ dos modelos. $Z \subseteq (W \times 2^{W^2}) \times (W' \times 2^{W'^2})$ es una bisimulación si $(w, S)Z(w', S')$ implica:

(Atomic Harmony)
$$w \in V(p)$$
 sii $w' \in V'(p)$, para todo $p \in PROP$;
(Zig) si $(w, v) \in S$ entonces existe v' tq. $(w', v') \in S'$ y $(v, S)Z(v', S')$;
(Zag) si $(w', v') \in S'$ entonces existe v tq. $(w, v) \in S$ y $(v, S)Z(v', S')$;
($\langle sb \rangle$ -Zig) si $(x, y) \in S$ entonces existe $(x', y') \in S'$ tq. $(w, S_{xy}^-)Z(w', S_{x'y'}^-)$;
($\langle sb \rangle$ -Zag) si $(x', y') \in S'$ entonces existe $(x, y) \in S$ tq. $(w, S_{xy}^-)Z(w', S_{x'y'}^-)$.

 $\mathcal{M}, w \cong_{LMB(\langle sb \rangle)} \mathcal{M}', w'$ si \exists una bisimulación Z tq. (w, R)Z(w', R').

Teorema

 $Si~\mathcal{M}, w \leftrightarrows_{LMB(\langle \mathsf{sb} \rangle)} \mathcal{M}', w' \text{ entonces } \mathcal{M}, w \equiv_{LMB(\langle \mathsf{sb} \rangle)} \mathcal{M}', w'.$

Teorema

 $Si \ \mathcal{M}, w \leftrightharpoons_{LMB(\langle \mathsf{sb} \rangle)} \mathcal{M}', w' \ entonces \ \mathcal{M}, w \equiv_{LMB(\langle \mathsf{sb} \rangle)} \mathcal{M}', w'.$

Vamos a generalizar este enunciado:

Hipótesis inductiva

Para todo $S \subseteq W^2, S' \subseteq W'^2, (w, S)Z(w', S')$ implica $\langle W, S, V \rangle, w \equiv_{\text{LMB}(\langle \text{sb} \rangle)} \langle W', S', V' \rangle, w'.$

Teorema

Si $\mathcal{M}, w \hookrightarrow_{LMB(\langle sb \rangle)} \mathcal{M}', w'$ entonces $\mathcal{M}, w \equiv_{LMB(\langle sb \rangle)} \mathcal{M}', w'$.

Vamos a generalizar este enunciado:

Hipótesis inductiva

Para todo $S \subseteq W^2, S' \subseteq W'^2, (w, S)Z(w', S')$ implica $\langle W, S, V \rangle, w \equiv_{\mathsf{LMB}(\langle \mathsf{sb} \rangle)} \langle W', S', V' \rangle, w'.$

Demo.

Consideremos el caso para $\langle \mathsf{sb} \rangle \varphi$. Supongamos $\langle W, S, V \rangle, w \models \langle \mathsf{sb} \rangle \psi$.

Teorema

Si $\mathcal{M}, w \hookrightarrow_{LMB(\langle sb \rangle)} \mathcal{M}', w'$ entonces $\mathcal{M}, w \equiv_{LMB(\langle sb \rangle)} \mathcal{M}', w'$.

Vamos a generalizar este enunciado:

Hipótesis inductiva

Para todo $S \subseteq W^2, S' \subseteq W'^2, (w, S)Z(w', S')$ implica $\langle W, S, V \rangle, w \equiv_{\mathsf{LMB}(\langle \mathsf{sb} \rangle)} \langle W', S', V' \rangle, w'.$

Demo.

Consideremos el caso para $\langle \mathsf{sb} \rangle \varphi$. Supongamos $\langle W, S, V \rangle$, $w \models \langle \mathsf{sb} \rangle \psi$. Entonces existe $(x, y) \in S$ tq. $\langle W, S_{x,y}^-, V \rangle$, $w \models \psi$.

Teorema

Si $\mathcal{M}, w \hookrightarrow_{LMB(\langle sb \rangle)} \mathcal{M}', w'$ entonces $\mathcal{M}, w \equiv_{LMB(\langle sb \rangle)} \mathcal{M}', w'$.

Vamos a generalizar este enunciado:

Hipótesis inductiva

Para todo $S \subseteq W^2, S' \subseteq W'^2, (w, S)Z(w', S')$ implica $\langle W, S, V \rangle, w \equiv_{\mathsf{LMB}(\langle \mathsf{sb} \rangle)} \langle W', S', V' \rangle, w'.$

Demo.

Consideremos el caso para $\langle \mathsf{sb} \rangle \varphi$. Supongamos $\langle W, S, V \rangle, w \models \langle \mathsf{sb} \rangle \psi$.

Entonces existe $(x, y) \in S$ tq. $\langle W, S_{x,y}^-, V \rangle, w \models \psi$.

Por $(\langle \mathsf{sb} \rangle - \mathsf{Zig})$, existe $(x', y') \in S'$ tq. $(w, S_{xy}^-) Z(w', S_{x'y'}')$.

Teorema

Si $\mathcal{M}, w \cong_{LMB(\langle sb \rangle)} \mathcal{M}', w'$ entonces $\mathcal{M}, w \equiv_{LMB(\langle sb \rangle)} \mathcal{M}', w'$.

Vamos a generalizar este enunciado:

Hipótesis inductiva

Para todo $S \subseteq W^2, S' \subseteq W'^2, (w, S)Z(w', S')$ implica $\langle W, S, V \rangle, w \equiv_{\mathsf{LMB}(\langle \mathsf{sb} \rangle)} \langle W', S', V' \rangle, w'.$

Demo.

Consideremos el caso para $\langle \mathsf{sb} \rangle \varphi$. Supongamos $\langle W, S, V \rangle, w \models \langle \mathsf{sb} \rangle \psi$.

Entonces existe $(x, y) \in S$ tq. $\langle W, S_{x,y}^-, V \rangle, w \models \psi$.

Por ($\langle \mathsf{sb} \rangle$ -Zig), existe $(x', y') \in S'$ tq. $(w, S_{xy}^-)Z(w', S_{x'y'}^{\prime-})$.

Por HI, $\langle W', S'_{x'y'}, V' \rangle, w' \models \psi$ y por $(\models) \langle W', S', V' \rangle, w' \models \langle \mathsf{sb} \rangle \psi$.

Teorema de Invarianza

Teorema

Si $\mathcal{M}, w \cong_{LMB(\langle sb \rangle)} \mathcal{M}', w'$ entonces $\mathcal{M}, w \equiv_{LMB(\langle sb \rangle)} \mathcal{M}', w'$.

Vamos a generalizar este enunciado:

Hipótesis inductiva

Para todo $S \subseteq W^2, S' \subseteq W'^2, (w, S)Z(w', S')$ implica $\langle W, S, V \rangle, w \equiv_{\mathsf{LMB}(\langle \mathsf{sb} \rangle)} \langle W', S', V' \rangle, w'.$

Demo.

Consideremos el caso para $\langle \mathsf{sb} \rangle \varphi$. Supongamos $\langle W, S, V \rangle, w \models \langle \mathsf{sb} \rangle \psi$.

Entonces existe $(x, y) \in S$ tq. $\langle W, S_{x,y}^-, V \rangle, w \models \psi$.

Por ($\langle \mathsf{sb} \rangle$ -Zig), existe $(x', y') \in S'$ tq. $(w, S_{xv}^-)Z(w', S_{x'v'}^{\prime-})$.

Por HI, $\langle W', S'_{x'y'}, V' \rangle, w' \models \psi$ y por $(\models) \langle W', S', V' \rangle, w' \models \langle \mathsf{sb} \rangle \psi$.

Para la otra dirección usamos (sb)-Zag.

```
\begin{array}{lll} \mathsf{ST}_x(p) & = & P(x) \\ \mathsf{ST}_x(\neg\varphi) & = & \neg\mathsf{ST}_x(\varphi) \\ \mathsf{ST}_x(\varphi \wedge \psi) & = & \mathsf{ST}_x(\varphi) \wedge \mathsf{ST}_x(\psi) \\ \mathsf{ST}_x(\diamondsuit\varphi) & = & \exists y.(R(x,y) \wedge \mathsf{ST}_y(\varphi)) \end{array}
```

$$\begin{array}{lll} \mathsf{ST}_x(p) & = & P(x) \\ \mathsf{ST}_x(\neg\varphi) & = & \neg\mathsf{ST}_x(\varphi) \\ \mathsf{ST}_x(\varphi \wedge \psi) & = & \mathsf{ST}_x(\varphi) \wedge \mathsf{ST}_x(\psi) \\ \mathsf{ST}_x(\Diamond\varphi) & = & \exists y. (R(x,y) \wedge \mathsf{ST}_y(\varphi)) \end{array}$$

donde y es una variable no utilizadas aún en la traducción.

▶ $ST_x(\varphi)$ le hace corresponder, a cada fórmula φ , una fórmula de primer orden con exactamente una variable libre x.

```
\begin{array}{lll} \mathsf{ST}_x(p) & = & P(x) \\ \mathsf{ST}_x(\neg\varphi) & = & \neg\mathsf{ST}_x(\varphi) \\ \mathsf{ST}_x(\varphi \wedge \psi) & = & \mathsf{ST}_x(\varphi) \wedge \mathsf{ST}_x(\psi) \\ \mathsf{ST}_x(\Diamond\varphi) & = & \exists y. (R(x,y) \wedge \mathsf{ST}_y(\varphi)) \end{array}
```

- ▶ $ST_x(\varphi)$ le hace corresponder, a cada fórmula φ , una fórmula de primer orden con exactamente una variable libre x.
- Esta variable libre da cuenta del punto de evaluación en la semántica modal (recordar la "perspectiva interna").

```
\begin{array}{lll} \mathsf{ST}_x(p) & = & P(x) \\ \mathsf{ST}_x(\neg\varphi) & = & \neg\mathsf{ST}_x(\varphi) \\ \mathsf{ST}_x(\varphi \wedge \psi) & = & \mathsf{ST}_x(\varphi) \wedge \mathsf{ST}_x(\psi) \\ \mathsf{ST}_x(\diamondsuit\varphi) & = & \exists y. (R(x,y) \wedge \mathsf{ST}_y(\varphi)) \end{array}
```

donde y es una variable no utilizadas aún en la traducción.

- ▶ $ST_x(\varphi)$ le hace corresponder, a cada fórmula φ , una fórmula de primer orden con exactamente una variable libre x.
- Esta variable libre da cuenta del punto de evaluación en la semántica modal (recordar la "perspectiva interna").

Teorema

Para toda fórmula φ de la lógica modal básica, todo modelo \mathcal{M} , todo w en el dominio de \mathcal{M} y toda asignación g,

$$\mathcal{M}, w \models \varphi \ sii \ \mathcal{M}, g[x \mapsto w] \models \mathcal{ST}_x(\varphi)$$

Traducimos LMB($\langle sb \rangle$) a LPO

Escribimos xy en vez de (x, y), y definimos:

$$nm = xy$$
 se define como $n = x \land m = y$
 $nm \neq xy$ se define como $n \neq x \lor m \neq y$
 $nm \in S$ se define como $\bigvee_{\substack{xy \in S}} nm = xy$, and $nm \notin S$ se define como $\bigwedge_{\substack{xy \in S}} nm \neq xy$,

donde S es un conjunto finito de pares de variables. En particular, $nm \in \emptyset$ es equivalente a \bot y $nm \notin \emptyset$ es equivalente a \top . Tambíen defininimos: $S^{-1} = \{mn \mid nm \in S\}$.

Los casos no triviales de la traducción ST son:

$$\begin{array}{lcl} \mathsf{ST}_{x,S}(\diamondsuit\varphi) & = & \exists y.(R(x,y) \land xy \notin S \land \mathsf{ST}_{y,S}(\varphi)) \\ \mathsf{ST}_{x,S}(\langle \mathsf{sb} \rangle \varphi) & = & \exists yy'.(R(y,y') \land yy' \notin S \land \mathsf{ST}_{x,S \cup yy'}(\varphi)) \end{array}$$

Los casos no triviales de la traducción ST son:

$$\begin{array}{lcl} \mathsf{ST}_{x,S}(\diamondsuit\varphi) & = & \exists y.(R(x,y) \land xy \notin S \land \mathsf{ST}_{y,S}(\varphi)) \\ \mathsf{ST}_{x,S}(\langle \mathsf{sb} \rangle \varphi) & = & \exists yy'.(R(y,y') \land yy' \notin S \land \mathsf{ST}_{x,S \cup yy'}(\varphi)) \end{array}$$

donde y y y' son variables no utilizadas aún en la traducción.

► S guarda los pares que fueron borrados.

Los casos no triviales de la traducción ST son:

$$\begin{array}{lll} \mathsf{ST}_{x,\mathbf{S}}(\diamondsuit\varphi) & = & \exists y.(R(x,y) \land xy \notin S \land \mathsf{ST}_{y,S}(\varphi)) \\ \mathsf{ST}_{x,\mathbf{S}}(\langle \mathsf{sb} \rangle \varphi) & = & \exists yy'.(R(y,y') \land yy' \notin S \land \mathsf{ST}_{x,S \cup yy'}(\varphi)) \end{array}$$

- **S** guarda los pares que fueron borrados.
- Para $\langle r \rangle$ necesitamos agregar la condición $xy \notin S$.

Los casos no triviales de la traducción ST son:

$$\begin{array}{lll} \mathsf{ST}_{x,S}(\diamondsuit\varphi) & = & \exists y. (R(x,y) \land xy \notin S \land \mathsf{ST}_{y,S}(\varphi)) \\ \mathsf{ST}_{x,S}(\langle \mathsf{sb} \rangle \varphi) & = & \exists yy'. (R(y,y') \land yy' \notin S \land \mathsf{ST}_{x,S \cup yy'}(\varphi)) \end{array}$$

- ► S guarda los pares que fueron borrados.
- Para $\langle r \rangle$ necesitamos agregar la condición $xy \notin S$.
- ► Recordar: $nm \notin S = \bigwedge_{xy \in S} nm \neq xy$

Los casos no triviales de la traducción ST son:

$$\begin{array}{lll} \mathsf{ST}_{x,S}(\diamondsuit\varphi) & = & \exists y.(R(x,y) \land xy \notin S \land \mathsf{ST}_{y,S}(\varphi)) \\ \mathsf{ST}_{x,S}(\langle \mathsf{sb} \rangle \varphi) & = & \exists yy'.(R(y,y') \land yy' \notin S \land \mathsf{ST}_{x,S \cup yy'}(\varphi)) \end{array}$$

- **S** guarda los pares que fueron borrados.
- Para $\langle r \rangle$ necesitamos agregar la condición $xy \notin S$.
- Recordar: $nm \notin S = \bigwedge_{xy \in S} nm \neq xy$
- ► Similar para ⟨sb⟩, pero agregando el nuevo par eliminado a S.

Los casos no triviales de la traducción ST son:

$$\begin{array}{lll} \mathsf{ST}_{x,S}(\diamondsuit\varphi) & = & \exists y. (R(x,y) \land xy \notin S \land \mathsf{ST}_{y,S}(\varphi)) \\ \mathsf{ST}_{x,S}(\langle \mathsf{sb} \rangle \varphi) & = & \exists yy'. (R(y,y') \land yy' \notin S \land \mathsf{ST}_{x,S \cup yy'}(\varphi)) \end{array}$$

donde y y y' son variables no utilizadas aún en la traducción.

- ► S guarda los pares que fueron borrados.
- Para $\langle r \rangle$ necesitamos agregar la condición $xy \notin S$.
- Recordar: $nm \notin S = \bigwedge_{xy \in S} nm \neq xy$
- Similar para $\langle sb \rangle$, pero agregando el nuevo par eliminado a *S*.

Teorema

Para toda fórmula φ de LMB($\langle sb \rangle$), todo modelo \mathcal{M} , todo w en el dominio de \mathcal{M} y toda asignación g,

$$\mathcal{M}, w \models \varphi \ sii \ \mathcal{M}, g[x \mapsto w] \models ST_{x,\emptyset}(\varphi)$$

- Sabemos que LMB($\langle sb \rangle$)-SAT es más expresiva que LMB (e.g., puede forzar un loop en un nodo.)
- ► Cuanto más?

- ➤ Sabemos que LMB(⟨sb⟩)-SAT es más expresiva que LMB (e.g., puede forzar un loop en un nodo.)
- Cuanto más?
- Expresividad y Complejidad van de la mano. Usualmente, a mayor expresividad de un lenguaje, más difícil es razonar con él.
- ► Ejemplo: SAT para LPO es indecidible.

- Sabemos que LMB($\langle sb \rangle$)-SAT es más expresiva que LMB (e.g., puede forzar un loop en un nodo.)
- Cuanto más?
- Expresividad y Complejidad van de la mano. Usualmente, a mayor expresividad de un lenguaje, más difícil es razonar con él.
- ► Ejemplo: SAT para LPO es indecidible.
- ► Cuál será la complejidad de LMB(⟨sb⟩)-SAT?

- Sabemos que LMB($\langle sb \rangle$)-SAT es más expresiva que LMB (e.g., puede forzar un loop en un nodo.)
- Cuanto más?
- Expresividad y Complejidad van de la mano. Usualmente, a mayor expresividad de un lenguaje, más difícil es razonar con él.
- ► Ejemplo: SAT para LPO es indecidible.
- ► Cuál será la complejidad de LMB(⟨sb⟩)-SAT? Indecidible!

- Sabemos que LMB($\langle sb \rangle$)-SAT es más expresiva que LMB (e.g., puede forzar un loop en un nodo.)
- Cuanto más?
- Expresividad y Complejidad van de la mano. Usualmente, a mayor expresividad de un lenguaje, más difícil es razonar con él.
- ► Ejemplo: SAT para LPO es indecidible.
- ► Cuál será la complejidad de LMB(⟨sb⟩)-SAT? Indecidible!
- C. Areces, R. Fervari, G. Hoffmann, and M. Martel. Satisfiability for relation-changing logics. *Journal of Logic and Computation*, 28(7):1443–1470, 2018.

► Consideremos la fórmula $\varphi = p \land \Diamond \top \rightarrow \langle \mathsf{sb} \rangle p$.

► Consideremos la fórmula $\varphi = p \land \Diamond \top \rightarrow \langle \mathsf{sb} \rangle p$. Es una fórmula válida.

- ► Consideremos la fórmula $\varphi = p \land \Diamond \top \rightarrow \langle \mathsf{sb} \rangle p$. Es una fórmula válida.
- ▶ Si reemplazo p por $\langle \mathsf{sb} \rangle p$ en φ , obtenemos $\langle \mathsf{sb} \rangle p \land \Diamond \top \to \langle \mathsf{sb} \rangle \langle \mathsf{sb} \rangle p$.

- Consideremos la fórmula $\varphi = p \land \Diamond \top \rightarrow \langle \mathsf{sb} \rangle p$. Es una fórmula válida.
- ▶ Si reemplazo p por $\langle \mathsf{sb} \rangle p$ en φ , obtenemos $\langle \mathsf{sb} \rangle p \land \Diamond \top \to \langle \mathsf{sb} \rangle \langle \mathsf{sb} \rangle p$.

$$\langle \mathsf{sb} \rangle p \land \Diamond \top \to \langle \mathsf{sb} \rangle \langle \mathsf{sb} \rangle p$$

- Consideremos la fórmula $\varphi = p \land \Diamond \top \rightarrow \langle \mathsf{sb} \rangle p$. Es una fórmula válida.
- ▶ Si reemplazo p por $\langle \mathsf{sb} \rangle p$ en φ , obtenemos $\langle \mathsf{sb} \rangle p \land \Diamond \top \to \langle \mathsf{sb} \rangle \langle \mathsf{sb} \rangle p$.

$$\langle \mathsf{sb} \rangle p \land \Diamond \top \to \langle \mathsf{sb} \rangle \langle \mathsf{sb} \rangle p$$

- ► Consideremos la fórmula $\varphi = p \land \Diamond \top \rightarrow \langle \mathsf{sb} \rangle p$. Es una fórmula válida.
- ► Si reemplazo *p* por $\langle \mathsf{sb} \rangle p$ en φ , obtenemos $\langle \mathsf{sb} \rangle p \land \Diamond \top \rightarrow \langle \mathsf{sb} \rangle \langle \mathsf{sb} \rangle p$.

- Consideremos la fórmula $\varphi = p \land \Diamond \top \rightarrow \langle \mathsf{sb} \rangle p$. Es una fórmula válida.
- ▶ Si reemplazo p por $\langle \mathsf{sb} \rangle p$ en φ , obtenemos $\langle \mathsf{sb} \rangle p \land \Diamond \top \to \langle \mathsf{sb} \rangle \langle \mathsf{sb} \rangle p$.

$$\langle \mathsf{sb} \rangle p \land \Diamond \mathsf{T} \to \langle \mathsf{sb} \rangle \langle \mathsf{sb} \rangle p$$

- ► Consideremos la fórmula $\varphi = p \land \Diamond \top \rightarrow \langle \mathsf{sb} \rangle p$. Es una fórmula válida.
- ▶ Si reemplazo p por $\langle \mathsf{sb} \rangle p$ en φ , obtenemos $\langle \mathsf{sb} \rangle p \land \Diamond \top \to \langle \mathsf{sb} \rangle \langle \mathsf{sb} \rangle p$.

$$\langle \mathsf{sb} \rangle p \land \Diamond \top \to \langle \mathsf{sb} \rangle \langle \mathsf{sb} \rangle p$$

- ► Consideremos la fórmula $\varphi = p \land \Diamond \top \rightarrow \langle \mathsf{sb} \rangle p$. Es una fórmula válida.
- ► Si reemplazo *p* por $\langle \mathsf{sb} \rangle p$ en φ , obtenemos $\langle \mathsf{sb} \rangle p \land \Diamond \top \rightarrow \langle \mathsf{sb} \rangle \langle \mathsf{sb} \rangle p$.

- ► Consideremos la fórmula $\varphi = p \land \Diamond \top \rightarrow \langle \mathsf{sb} \rangle p$. Es una fórmula válida.
- ▶ Si reemplazo p por $\langle \mathsf{sb} \rangle p$ en φ , obtenemos $\langle \mathsf{sb} \rangle p \land \Diamond \top \rightarrow \langle \mathsf{sb} \rangle \langle \mathsf{sb} \rangle p$.

$$\langle \mathsf{sb} \rangle p \land \Diamond \top \rightarrow \langle \mathsf{sb} \rangle$$

- ► Consideremos la fórmula $\varphi = p \land \Diamond \top \rightarrow \langle \mathsf{sb} \rangle p$. Es una fórmula válida.
- ▶ Si reemplazo p por $\langle \mathsf{sb} \rangle p$ en φ , obtenemos $\langle \mathsf{sb} \rangle p \land \Diamond \top \rightarrow \langle \mathsf{sb} \rangle \langle \mathsf{sb} \rangle p$.

► Corolario: Sustitución uniforme falla en LMB(⟨sb⟩).

- ► Consideremos la fórmula $\varphi = p \land \Diamond \top \rightarrow \langle \mathsf{sb} \rangle p$. Es una fórmula válida.
- ▶ Si reemplazo p por $\langle \mathsf{sb} \rangle p$ en φ , obtenemos $\langle \mathsf{sb} \rangle p \land \Diamond \top \rightarrow \langle \mathsf{sb} \rangle \langle \mathsf{sb} \rangle p$.

► Corolario: Sustitución uniforme falla en LMB(⟨sb⟩).

CONTINUARÁ!

Otras transformaciones

Consideremos los siguientes operadores sobre relaciones:

$$\mathcal{M}^+_{wv} = \langle W, R^+_{wv}, V \rangle \quad R^+_{wv} = R \cup \{(w, v)\}$$

$$\mathcal{M}^*_{wv} = \langle W, R^*_{wv}, V \rangle \quad R^*_{wv} = (R \setminus \{(v, w)\}) \cup \{(w, v)\}.$$

Otras transformaciones

Consideremos los siguientes operadores sobre relaciones:

$$\mathcal{M}_{wv}^{+} = \langle W, R_{wv}^{+}, V \rangle \quad R_{wv}^{+} = R \cup \{(w, v)\}$$

$$\mathcal{M}_{wv}^{*} = \langle W, R_{wv}^{*}, V \rangle \quad R_{wv}^{*} = (R \setminus \{(v, w)\}) \cup \{(w, v)\}.$$

Definimos dos nuevas modalidades (bridge y swap):

$$\mathcal{M}, w \models \langle \mathsf{br} \rangle \varphi$$
 sii existe v,v' tq. $(v, v') \notin R$ y $\mathcal{M}^+_{vv'}, w \models \varphi$

Otras transformaciones

Consideremos los siguientes operadores sobre relaciones:

$$\mathcal{M}_{wv}^{+} = \langle W, R_{wv}^{+}, V \rangle \quad R_{wv}^{+} = R \cup \{(w, v)\}$$

$$\mathcal{M}_{wv}^{*} = \langle W, R_{wv}^{*}, V \rangle \quad R_{wv}^{*} = (R \setminus \{(v, w)\}) \cup \{(w, v)\}.$$

Definimos dos nuevas modalidades (bridge y swap):

$$\mathcal{M}, w \models \langle \mathsf{br} \rangle \varphi$$
 sii existe v,v' tq. $(v, v') \notin R$ y $\mathcal{M}^+_{vv'}, w \models \varphi$
 $\mathcal{M}, w \models \langle \mathsf{sw} \rangle \varphi$ sii existe v,v' tq. $(v, v') \in R$ y $\mathcal{M}^*_{vv'}, w \models \varphi$

Bridge Logic - Ejemplo

Bridge Logic - Ejemplo

Swap Logic - Ejemplo

Swap Logic - Ejemplo

Lo que vimos hoy

- Nuestra primera lógica dinámica mas expresiva LMB: lógica de sabotaje.
 - Falla de la Tree Model Property.
 - Bisimulación.
 - Traducción a FOL.
 - Falla de Sustitución Uniforme.
- Otros operadores dinámicos.

Lo que viene

► Cómo axiomatizamos LMB(⟨sb⟩)?