Linear Regression Task 6 Hansel Aditia Hartono – 2602067874 Ignatius Kennard - 260206719

			. •			
1).						
Linear Re	gression					
x	y	хy	χ^2	f(x)	y - f(x)	[y - f(x)]^2
1	2.7	2.7	1	2.7321	-0.0321	0.0010
2	3.5	7	4	3.4929	0.0071	0.0001
3	4.3	12.9	9	4.2536	0.0464	0.0022
4	5	20	16	5.0143	-0.0143	0.0002
5	5.8	29	25	5.7750	0.0250	0.0006
6	6.5	39	36	6.535714286	-0.036	0.00127551
7	7.3	51.1	49	7.296428571	0.0036	1.27551E-05
28	35.1	161.7	140	35.1000	0.0000	0.0054
x bar=	4		Slope	0.760714286		
y bar=	5.014286		Y-intercept	1.971428571		
b=	0.760714		y=a+bx	1.9714 + 0.7607x		
a=	1.9714					
SD=	0.032733					


```
import numpy as np
  from scipy.interpolate import CubicSpline
 x = np.array([1, 2, 3, 4, 5])
 y = np.array([1, 3, 5, 8, 10])
 cs = CubicSpline(x, y)
  a = cs.c
  b = (cs(x[1:]) - cs(x[:-1])) / (x[1:] - x[:-1])
  c = y[:-1]
  c = c.reshape(-1, 1)
 for i in range(len(c)):
          print("f(x) = {}(x - {})^3 + {}(x - {})^2 + {}(x - {}) + {}".format(
                  a[i], x[i], b[i], x[i], c[i], x[i], c[i]))
  f_3_5 = cs(3.5)
 print ("Cubic spline function value at x = 3.5:", f_3_5)
f(x) = \begin{bmatrix} 0.29166667 & 0.29166667 & -0.45833333 & -0.45833333 \end{bmatrix} (x - 1)^3 + 2.0(x - 1)^2 + \begin{bmatrix} 1 \end{bmatrix} (x - 1) + \begin{bmatrix} 1 \end{bmatrix} 
f(x) = \begin{bmatrix} -8.75000000e - 01 & -2.22044605e - 16 & 8.75000000e - 01 & -5.0000000e - 01 \end{bmatrix} (x - 2)^3 + 2.0(x - 2)^2 + \begin{bmatrix} 3 \end{bmatrix} (x - 2) + \begin{bmatrix} 3 \end{bmatrix} 
f(x) = \begin{bmatrix} 2.58333333 & 1.70833333 & 2.58333333 & 2.95833333 \end{bmatrix} (x - 3)^3 + 3.0(x - 3)^2 + \begin{bmatrix} 5 \end{bmatrix} (x - 3) + \begin{bmatrix} 5 \end{bmatrix} (x - 2) + \begin{bmatrix} 5 \end{bmatrix} (x - 3) 
f(x) = [1. \ 3. \ 5. \ 8.](x - 4)^3 + 2.0(x - 4)^2 + [8](x - 4) + [8]
Cubic spline function value at x = 3.5: 6.453125
```