Diseño de los sistemas de admisión y escape del Motor Rotativo de Combustión a Volumen Constante

NICOLÁS DANIEL BARRIOS

PROYECTO INTEGRADOR PROFESIONAL

Presentado a la Facultad de Ingeniería de la Universidad Nacional del Comahue como requisito para la obtención del grado de

INGENIERO MECÁNICO

Neuquén - Argentina AÑO 2024

Diseño de los sistemas de admisión y escape del Motor Rotativo de Combustión a Volumen Constante

NICOLÁS DANIEL BARRIOS

Director: Dr. Ing. EZEQUIEL JOSÉ LÓPEZ

Presentado a la Facultad de Ingeniería de la Universidad Nacional del Comahue como requisito para la obtención del grado de INGENIERO MECÁNICO

Neuquén - Argentina AÑO 2024

Diseño de los sistemas de admisión y escape del Motor Rotativo de Combustión a Volumen Constante

NICOLÁS DANIEL BARRIOS

Aprobado en fecha X de XXXXX de 2024

Tribunal evaluador:

- Dr. Ing. PRADO, Ricardo.
- Ing. ÁLVAREZ, Pablo.
- Ing. ZAPPA, Andrés.
- Mg. Ing. BOCCANERA, Daniel (Suplente).

Diseño de los sistemas de admisión y escape del Motor

Rotativo de Combustión a Volumen Constante

Autor: Nicolás Daniel Barrios

Director: Dr. Ing. Ezequiel José López

Resumen

En este trabajo se optimizaron los sistemas de admisión y escape del Motor Ro-

tativo de Combustión a Volumen Constante (MRCVC) utilizando herramientas de

simulación computacional tales como ICESym (simulador 0D/1D de motores de

combustión interna), OpenFOAM (herramienta CFD de código abierto) y un opti-

mizador basado en un algoritmo genético (AG) desarrollado con la librería DEAP

(Python), entre otros.

Primero, se desarrolló una librería de funciones para acoplar el AG con ICESym,

permitiendo configurar, ejecutar y procesar datos del simulador. También se modificó

ICESym, agregando un modelo de coeficientes de descarga (C_D) dependiente de

<mark>presión y apertura del puerto</mark>, permitiendo un mejor modelado del flujo de gas a

través de los puertos.

Se realizó una optimización inicial de la geometría de los puertos del MRCVC

con valores de C_D constantes, buscando maximizar el rendimiento volumétrico. La

geometría resultante se modeló con un programa de diseño asistido por computadora

(CAD por sus siglas en inglés) de código abierto, FreeCAD. Este resultado, junto

con el estado termodinámico del gas obtenido de los datos de salida de ICESym, se

utilizó para realizar flujometrías virtuales de los puertos en diferentes configuraciones

empleando OpenFOAM, y así obtener el correspondiente mapa de C_D . Este mapa se

utilizó como retroalimentación del AG para una nueva optimización, logrando una

geometría de puertos satisfactoria para el estado actual del motor.

Palabras clave: MRCVC, Rendimiento volumétrico, Sistemas de intercambio de

gases, CFD, Optimización, Algoritmo Genético.

iv

Design of the Intake and Exhaust Systems of the Constant

Volume Combustion Rotary Engine

Author: Nicolás Daniel Barrios

Advisor: Dr. Ing. Ezequiel José López

Abstract

In this work, the intake and exhaust systems of the Constant Volume Combus-

tion Rotary Engine were optimized using computational simulation tools such as

ICESym (0D/1D internal combustion engine simulator), OpenFOAM (open-source

CFD tool), and a genetic algorithm (GA) based optimizer developed with the DEAP

(Python) library, among others.

First, a library of functions was developed to couple the GA with ICESym, allo-

wing configuration, execution, and data processing from the simulator. ICESym was

also modified to include a discharge coefficient (C_D) model dependent on pressure

and port opening, enabling better modeling of gas flow through the ports.

An initial optimization of the engine port geometry was performed with constant

 C_D values, aiming to maximize volumetric efficiency. The resulting geometry was

modeled with an open-source computer-aided design (CAD) program, FreeCAD.

This result, along with the gas thermodynamic state obtained from ICESym output

data, was used to conduct virtual flow measurements of the ports in different con-

figurations using OpenFOAM, thereby obtaining the corresponding C_D map. This

map was used as feedback for the GA in a new optimization, achieving a satisfactory

port geometry for the current engine state.

Keywords: MRCVC, Volumetric Efficiency, Gas Exchange Systems, CFD, Opti-

mization, Genetic Algorithm.

V

Índice general

1	IINI	RODU	JCCION	1
2	MA	RCO '	ΓΕÓRICO	5
	2.1	Motor	es de Combustión Interna	5
	2.2	Motor	es Rotativos	7
	2.3	Parán	netros Operativos e Indicadores de Rendimiento	8
		2.3.1	Volumen Desplazado	8
		2.3.2	Relación de Compresión	9
		2.3.3	Trabajo Indicado por Ciclo	9
		2.3.4	Consumo Específico de Combustible y Rendimiento de Con-	
			versión del Combustible	10
		2.3.5	Presión Media Efectiva	10
		2.3.6	Rendimiento Volumétrico	11
		2.3.7	Fracción de Gases Residuales	14
	2.4	Sinton	ización del Sistema de Admisión	15
	2.5	Sinton	ización del Sistema de Escape	16
	2.6	Comb	ustión	17
		2.6.1	Propiedades Termodinámicas de Mezclas aire-combustible	20
	2.7	Coefic	iente de Descarga C_D	21
3	HE	RRAN	HENTAS COMPUTACIONALES	26
	3.1	Intern	al Combustion Engine Simulator	26
	3.2	Modifi	icaciones a ICESym	26
		3.2.1	Flujo a Través de los Puertos	26
		3.2.2	Área de Referencia	30
		3.2.3	Interfaz con Optimizador	32
	3.3	Optim	nizador y Algoritmo Genético	34
		3.3.1	Población	37

ÍNDICE GENERAL vii

		3.3.2	Selección)
		3.3.3	Cruza)
		3.3.4	Mutación)
		3.3.5	Función Objetivo	
	3.4	OpenF	OAM	
	3.5	Esquer	mas de Discretización	;
		3.5.1	Derivadas temporales, $\delta/\delta t$;
		3.5.2	Gradientes	,
		3.5.3	Gradiente normal a una superficie	,
		3.5.4	Divergencia)
		3.5.5	Laplacianos)
4	DES	SARRO	OLLO 50)
	4.1	Geome	etría y Ciclo Operativo del MRCVC)
		4.1.1	Sistemas de Intercambio de Gases)
		4.1.2	Área de Referencia)
		4.1.3	Pérdidas por fricción	;
	4.2	Flujon	netrías Virtuales)
		4.2.1	Modelos de Turbulencia)
		4.2.2	Condiciones Iniciales	
		4.2.3	Malla)
		4.2.4	Esquemas de Discretización Seleccionados 67	,
	4.3	Uso de	e OpenFOAM	,
		4.3.1	Configuración	,
		4.3.2	Malla)
		4.3.3	Pre-procesado)
5	RES	SULTA	DOS 77	,
	5.1	Primer	ra Iteración	,
	5.2	Model	o de CAD)
	5.3	Flujon	netrías	-
		5 3 1	Puerto de Admisión	ł

ÍNDICE GENERAL viii

		5.3.2 Puerto de Escape	85
	5.4	Segunda Iteración y Resultado Final	86
6	COI	NCLUSIONES	91
7	REI	FERENCIAS	92
8	ANI	EXO I	95

Índice de figuras

1.1	Motor Rotativo de Combustión a Volumen Constante	J
2.1	Motor 1909 5HP Otto Special Electric Lighting de Wayne Grenning .	Ę
2.2	Ciclo de cuatro tiempos	7
2.3	bmep y rendimiento volumétrico vs velocidad de operación	11
2.4	Diagrama de presión vs ángulo de cigüeñal (Heywood, 2018)	16
2.5	Diagramas P-V para ciclos ideales(Heywood, 2018)	18
2.6	Rendimiento de conversión del combustible en función de r_c para	
	ciclos de gas ideal de combustión a volumen constante, a presión	
	constante y a presión limitada (Heywood, 2018)	19
2.7	Banco de flujometrías Super-Flow SF-750	22
2.8	Comparación entre flujometrías de dos tapas de cilindro de un BMW	
	S14	23
2.9	Área de cortina	25
3.1	Interpolación bilineal ¹	27
3.2	Interpolación bilineal de $\sin(\sqrt{x^2+y^2})$	28
3.3	Suavizado por promedio con celdas vecinas, S=1	29
3.4	Comparación de métodos de interpolación	32
3.5	Representación del individuo	38
3.6	Cruza de dos puntos (Wirsansky, 2020)	40
3.7	Curvas de rendimiento volumétrico aserradas	42
4.1	Parámetros goemétricos del MRCVC (Álvarez Roldán, 2020)	51
4.2	Variación del volumen del MRCVC	52
4.3	Ciclo operativo del MRCVC	52
4.4	Ciclo operativo del MRCVC	53
4.5	Esquema del sistema de intercambio de gases	53
4.6	Puerto de admisión y escape	54

4.7	Refinamiento de malla para puerto de admisión	55
4.8	Refinamiento de malla para puerto de escape	56
4.9	Convergencia de malla de puerto de admisión	57
4.10	Convergencia de malla de puerto de escape	57
4.11	Área de referencia MRCVC	58
4.12	Solape de cámaras	62
4.13	Refinamiento de malla para puerto de admisión	65
4.14	Refinamiento de malla para puerto de escape	66
4.15	Convergencia de malla de puerto de admisión	66
4.16	Convergencia de malla de puerto de escape	67
4.17	Esquema de directorios OpenFOAM	70
4.18	Malla de blockMesh y stl de Salome	71
4.19	Pasos de SnappyHexMesh(Montorfano, 2015)	71
4.20	Presión en función de la apertura el puerto, $\Delta P = f(l_v)$	73
4.21	Puerto de admisión para $\theta=50^\circ$ modelado con FreeCAD	74
4.22	Malla hermética	74
4.23	Nombres de Parches	75
4.24	Diferentes mallas para flujometrías	76
5.1	Evolución de la población	78
5.2	Rendimiento volumétrico y fracción de gases residuales del motor	
	seleccionado	79
5.3	Torque y Potencia de Primera Iteración	79
5.4	CAD Primera iteración	80
5.5	CAD Primera iteración (vistas fuera de escala)	81
5.6	Flujometrías puerto de admisión	82
5.7	Flujometrías puerto de escape	82
5.8	Puerto de admisión 10° 7000 RPM	83
5.9	Puerto de admisión	84
5.10	C_D del puerto de admisión	84
5 11	Admisión Máximo Co	25

5.12	Puerto de escape	86
5.13	C_D del puerto de escape	86
5.14	Escape - Valor máximo de C_D	87
5.15	Escape - Valor máximo de \dot{m}	88
5.16	Comparativa candidatos	89
5.17	Comparativa de Torque y potencia al freno	90

Índice de tablas

3.1	Parámetros que representan al motor	37
4.1	Datos de la geometría del MRCVC considerados en el trabajo	51
4.2	Pérdidas por fricción en sellos de paletas y sellos estatóricos	59
4.3	Valores iniciales	63
4.4	Valores calculados	63
4.5	Figura 4.15 tabulada	64
4.6	Figura 4.16 tabulada	65
4.7	Esquemas de discretización para flujo incompresible	68
4.8	Esquemas de discretización para flujo compresible	69
4.9	Configuración de mallas mostradas en la Figura 4.24	76
5.1	Configuración utilizada	78
5.2	Datos geométricos del mejor candidato	80
5.3	Valores máximos C_D y \dot{m} para puertos	83
5.4	Geometrías de segunda iteración	87
8.1	Mapa de C_d del puerto de Admisión	96
8.2	Mapa de C_D del puerto de escape	97

Nomenclatura

G	Cantidad	de	generaciones

N Cantidad de individuos

Flujometrías

- ΔP Diferencia de presión a través de un puerto
- ϵ Tasa de disipación de energía cinética turbulenta
- γ Cociente de calores específicos
- κ Energía cinética turbulenta
- μ Viscosidad dinámica
- ν Viscosidad cinemática
- ν_t Viscosidad cinemática turbulenta
- θ Ángulo de ciclo
- $C_{D,int}$ Coeficiente de descarga interpolado
- C_D Coeficiente de descarga
- C_P Capacidad calórica a presión constante
- C_V Capacidad calórica a volumen constante
- CFD Computational Fluid Dynamics.
- D_{κ} Difusividad efectiva para κ
- I Intensidad de turbulencia
- l_m Longitud de mezcla o escala de viscosidad

NOMENCLATURA xiv

- M_M Masa molar
- P_{κ} Tasa de producción de energía cinética turbulenta
- P_R Número de Prandtl

Geométricas

- A_C Área de cortina
- A_R Área de pasaje de flujo o de referencia
- D_v Diámetro de válvula
- EFA Ángulo de cierre del puerto de escape, ver Figura 4.6
- EIA Ángulo de apertura del puerto de escape, ver Figura 4.6
- F_v Área efectiva de válvula
- h_c Altura de cámara
- h_p Altura de puerto
- IFA Ángulo de cierre del puerto de admisión, ver Figura 4.6
- IIA Ángulo de apertura del puerto de admisión, ver Figura 4.6
- l_v Alzada de válvula
- n Número de paletas del MRCVC
- R Radio de referencia del MRCVC, ver Figura 4.2
- r Radio de trayectoria de paletas, ver Figura 4.2
- R_e Radio de cara externa del rotor del MRCVC, ver Figura 4.2
- R_i Radio de cara interna del rotor del MRCVC, ver Figura 4.2
- V_d Volumen desplazado
- V_{max} Volumen máximo en la cámara de combustión

NOMENCLATURA xv

 V_{min} Volumen mínimo de la cámara

 $\dot{m_f}$ Caudal másico de combustible

m Caudal másico

 \dot{m}_a Caudal másico de aire

 η_f Rendimiento de conversión de combustible

 η_v Rendimiento volumétrico

 ϕ Relación de equivalencia combustible/aire

 ρ Densidad

 ρ_a Densidad del aire

 $\rho_{a,i}$ Densidad del aire de admisión

 a_i Coeficiente de polinómicas utilizadas para cálculo de $\widetilde{c_p}$, \widetilde{h} , \widetilde{s} .

bmep Presión media efectiva bruta

 h_i Entalpía estándar

imep Presión media efectiva indicada

m Masa total en la cámara de combustión

 $m_{a,i}$ Masa de aire inductada

 m_f Masa de combustible en la cámara de combustión

 m_r Masa residual en la cámara de combustión

mep Presión media efectiva (mean effective pressure)

N Velocidad de giro del motor

 n_R Revoluciones de cigüeñal por ciclo

NOMENCLATURA xvi

p, P	Presión
p_0	Presión de estancamiento antes de la restricción
p_T	Presión estática justo después de la restricción
Q_{HV}	Poder <mark>calórico</mark>
Q_{LHV}	Poder <mark>calórico</mark> inferior
r_c	Relación de compresión
s_i	Entropía estándar
sfc	Consumo específico de combustible
T	Temperatura
T_0	Temperatura de estancamiento antes de la restricción
U	Velocidad del fluido
V	Volumen
$W_{c,ig}$	Trabajo indicado bruto por ciclo
$W_{c,in}$	Trabajo indicado neto por ciclo
$W_{c,i}$	Trabajo indicado por ciclo
x_i	Fracción molar de una especie química "i"

0 Valor inicial

 x_r

Fracción de gases residuales

1. INTRODUCCIÓN

Este trabajo tiene la finalidad de obtener un diseño preliminar de la geometría de los sistemas de intercambio de gases del Motor Rotativo de Combustión a Volumen Constante (Toth et al., 2000), con el objetivo general de maximizar la eficiencia del sistema en un rango de velocidades del motor.

El MRCVC es un proyecto que surgió en la Universidad Nacional del Comahue, presentado por Ingeniero Jorge A. Toth en el año 1996 al Instituto Nacional de la Propiedad Industrial y patentado en el año 1999.

En trabajos anteriores (López, Wild Cañón y Nigro, 2013; López, Wild Cañón y Sarraf, 2016; Toth et al., 2000) se han mencionado las características que hacen al MRCVC un motor atractivo: la geometría de la cámara de combustión y del conjunto rotante permiten que gran parte del proceso de combustión se realice a volumen constante, además de tener un balanceo mecánico de fuerzas que le permite alcanzar altas velocidades de rotación. Esto promete un funcionamiento más suave del motor, además de una reducción del ruido y desgaste en comparación a motores rotativos tradicionales (Wankel) y reciprocantes. Por otro lado, hay que mencionar que los motores rotativos traen consigo una serie de problemas como la necesidad de introducir aceite a la cámara de combustión para lubricar elementos móviles, el solape de cámaras durante la apertura de los puertos y, en particular al MRCVC,

Figura 1.1. Motor Rotativo de Combustión a Volumen Constante

un complejo sistema de sellos (Álvarez Roldán, 2020).

La motivación de este trabajo surge del deseo de continuar con el desarrollo del MRCVC y mejorar el pre-diseño de los sistemas de intercambio de gases, sentando la base para una futura optimización de los mismos en un motor con requisitos de diseño concretos.

Se buscó obtener un pre-diseño satisfactorio del sistema poniendo énfasis en la geometría de los puertos de admisión y escape, definiendo las métricas a utilizar para medir la eficiencia del sistema y poder realizar comparaciones cuantitativas de los diseños propuestos. Debido al costo computacional de las simulaciones necesarias para realizar esta optimización se restringe el modelado de la geometría a definir posiciones de los puertos en el estator, largos y diámetros de los conductos. No se repara en detalles como la forma de la transición entre las paredes del puerto hacia la cámara, el ángulo al estator o detalles similares.

Se utilizó una serie de herramientas de simulación para la optimización, algunas de las cuales fueron:

- 1. ICESym (Nigro et al., 2010), simulador de motores de combustión interna basado en modelos cero-/uni-dimensionales (0D/1D).
- 2. OpenFOAM (The OpenFOAM Foundation, 2011–2024), una herramienta libre de CFD (Computational Fluid Dynamics).
- 3. Salome (Open-Cascade et al., 2001), plataforma libre para simulación numérica.

Se desarrolló un optimizador capaz de generar y evaluar diferentes geometrías con el fin de buscar una combinación de parámetros que maximicen indicadores de eficiencia del sistema, como por ejemplo, el rendimiento volumétrico del motor para un rango de velocidades determinado.

El proceso de optimización consta de una primera aproximación utilizando como punto de partida los resultados de trabajos anteriores (López, Wild Cañón y Nigro, 2013), en los cuales se evaluó el funcionamiento de los parámetros que definen la geometría de los sistemas de intercambio de gases, analizándose en particular: diámetros y longitudes de conductos y reglaje o posición angular de los puertos.

La optimización se realiza con un algoritmo evolutivo (o genético) funcionando en conjunto con ICESym, el cual provee el puntaje a cada configuración del motor necesario para estos procesos de optimización. El puntaje se introduce en la función objetivo, la cual evalúa a cada uno de los candidatos generados por el algoritmo.

El diseño preliminar de la primera ronda de optimización se volcó en un modelo tridimensional (3D) de los puertos, parametrizado de modo tal que se puede alterar rápidamente la geometría, modificando variables como el diámetro de los conductos y la posición relativa en la periferia del motor. Este modelo 3D se utilizó para extraer la geometría a simular con OpenFOAM y realizar flujometrías de las que se obtiene un valor del flujo másico (\dot{m}) en estado estacionario para un punto operativo del motor, es decir, para una combinación de diferencia de presión entre puerto y cámara de combustión (ΔP) y el grado de apertura del puerto (l_v) . El flujo másico se utilizó para medir la eficiencia con la cual escurre el gas a través del puerto, con el objetivo de crear un mapa del coeficiente de descarga (C_D) que sea función de las variables mencionadas. Este mapa se utiliza como retroalimentación del simulador de motores ICESym, para tener un mejor modelado del flujo de gas a través de los puertos en un rango operativo del motor y con esto realizar una nueva corrida de optimización a fin de refinar el diseño obtenido en la primera iteración.

A continuación se describe la organización del presente trabajo. En el segundo capítulo se presenta una breve descripción del funcionamiento de los motores de combustión interna, seguido de los indicadores utilizados para medir el rendimiento de motores en general e indicadores particulares de la eficiencia de los sistemas de intercambio de gases, como el rendimiento volumétrico y la fracción de gases residuales. Luego, se describe el funcionamiento del MRCVC, indicando los aspectos sobresalientes de este motor, además de desventajas del mismo y las posibles aplicaciones. También se describe el proceso de intercambio de gases y se define el coeficiente de descarga C_D , junto con las ecuaciones asociadas. En el tercer capítulo se describen las herramientas computacionales utilizadas en este trabajo. Se presenta el simulador de motores ICESym, el optimizador desarrollado y la integración entre ambos programas. Se incluye de una descripción del funcionamiento del optimizador, los motivos de seleccionar un algoritmo de tipo evolutivo o genético, las

ventajas y desventajas, los componentes básicos y finalmente la implementación del mismo. En este capítulo también se presenta el software utilizado para realizar las flujometrías, *OpenFOAM*, la implementación de las condiciones iniciales y de contorno, extracción de datos de ICESym y otras herramientas necesarias para generar el modelo de CAD del puerto, malla y otros detalles relativos al proceso de utilizar el programa.

En el cuarto capítulo se presentan detalles particulares de las simulaciones realizadas, incluyendo la geometría del motor utilizado y su implementación en ICESym. Además, se detallan la configuración de las flujometrías virtuales realizadas con OpenFOAM, condiciones iniciales, configuración de la herramienta, esquemas de discretización y otros parámetros importantes relacionados a las flujometrías. En el quinto capítulo se presentan los resultados del trabajo para cada una de las etapas correspondientes. Por último, se exponen las conclusiones del trabajo, opiniones finales y una perspectiva a futuro de posibles trabajos a seguir.