Sample Quiz 0

Q1 Linear Algebra Which of the followings sets of vectors are bases for \mathbb{R}^2 ? A, D

- (A) $\{(1,0),(1,-1)\}$
- (B) $\{(1,\sqrt{2}),(\sqrt{2},2)\}$
- (C) $\{(1,0),(1,1),(1,-1)\}$
- (D) $\{(1,1),(1,1.1)\}$

Q2 Probability and Statistics Suppose X and Y are two jointly Gaussian random variables. Which of the followings are true? A, B, D

- (A) X + 1 and X + Y are also jointly Gaussian
- (B) $Z = X + \frac{1}{2}Y$ is also Gaussian
- (C) $Z = \sqrt{XY}$ is also Gaussian
- (D) If X and Y are uncorrelated, then X and Y are independent

Q3 Functional Analysis and Calculus Suppose **x** and **a** are two arbitrary vectors in \mathbb{R}^n with $n \geq 3$. Which of the following functions are convex? A, B

- (A) $f(\mathbf{x}) = \max_i a_i x_i$
- (B) $f(\mathbf{x}) = \sum_{i} \exp(a_i x_i)$
- (C) $f(\mathbf{x}) = (\sum_{i} (a_i x_i)^3)^{1/3}$
- (D) $f(\mathbf{x}) = x_1 + \min\{x_2, x_3\}$

Q4 Let $f(x) = \ln(1+x) - \frac{x}{1+x}$. Prove that $f(x) \ge 0$ for x > -1. Note that $f'(x) = \frac{1}{1+x} - \frac{1}{(1+x)^2} = \frac{x}{(1+x)^2}$. Since f'(x) < 0 when $x \in (-1,0)$ and $f'(x) \ge 0$ when $x \ge 0$, we have f(x) is non-increasing when $x \in (-1,0)$ and non-decreasing when $x \ge 0$. Combining with f(0) = 0 completes the proof.