

Learning Spectral Graph Transformations for Link Prediction

Jérôme Kunegis & Andreas Lommatzsch DAI-Labor, Technische Universität Berlin, Germany 26th Int. Conf. on Machine Learning, Montréal 2009

Outline

■ The Problem

- Link prediction
- Known solutions

Learning

- Spectral transformations
- Finding the best spectral transformation

Variants

- Weighted and signed graphs
- Bipartite graphs and the SVD
- Graph Laplacian and normalization
- Some Applications

The Problem: Link Prediction

- Motivation: Recommend connections in a social network
- Predict links in an undirected, unweighted network
- Using the adjacency matrices A and B,
- Find a function *F*(**A**) giving prediction values corresponding to **B**

$$F(A) = B$$

Path Counting

- Follow paths
- Number of paths of length *k* given by **A**^{*k*}
- Nodes connected by many paths
- Nodes connected by short paths
- Weight powers of **A**: $\alpha \mathbf{A}^2 + \beta \mathbf{A}^3 + \gamma \mathbf{A}^4 \dots$ with $\alpha > \beta > \gamma \dots [> 0]$

with
$$\alpha > \beta > \gamma \dots [> 0]$$

Examples:

Exponential graph kernel:

 $= \sum_{i} \alpha^{i}/i! A^{i}$

Von Neumann kernel:

 $(I - \alpha A)^{-1}$

 $= \sum_{i} \alpha^{i} \mathbf{A}^{i}$

(with $0 < \alpha < 1$)

Laplacian Link Prediction Functions

■ Graph Laplacian L = D - A

"Resistance Distance"

(a.k.a. commute time)

Regularized Laplacian

Heat diffusion kernel

L⁺

$$(I + \alpha L)^{-1}$$

 $e^{-\alpha L}$

Computation of Link Prediction Functions

Adjacency matrix

eigenvalue decomposition: $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}}$

Matrix polynomial	$\sum_i \alpha_i \mathbf{A}^i$	$= \mathbf{U} \left(\sum_{i} \alpha_{i} \mathbf{\Lambda}^{i} \right) \mathbf{U}^{T}$
Matrix exponential	e ^{aA}	$= \mathbf{U} \mathbf{e}^{\alpha \mathbf{\Lambda}} \mathbf{U}^{T}$
Von Neumann kernel	$(I - \alpha A)^{-1}$	= $\mathbf{U} (\mathbf{I} - \alpha \mathbf{\Lambda})^{-1} \mathbf{U}^{T}$
Rank reduction	$\mathbf{A}_{(k)}$	$= \mathbf{U} \mathbf{\Lambda}_{(k)} \mathbf{U}^{T}$

Graph Laplacian

eigenvalue decomposition $\mathbf{L} = \mathbf{D} - \mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}}$

Resistance distance	L+	$= U \Lambda^+ U^T$
Regularized Laplacian	$(\mathbf{I} + \alpha \mathbf{L})^{-1}$	= $\mathbf{U} (\mathbf{I} + \alpha \mathbf{\Lambda})^{-1} \mathbf{U}^{T}$
Heat diffusion kernel	$e^{-\alpha L}$	$= U e^{-\alpha \Lambda} U^{T}$

Spectral transformation

Learning Spectral Transformations

■ Link prediction functions are **spectral transformations** of **A** or **L**

$$F(\mathbf{A}) = \mathbf{U}F(\mathbf{\Lambda})\mathbf{U}^{\mathsf{T}}$$

 $F(\mathbf{\Lambda})_{\mathsf{i}\mathsf{i}} = f(\mathbf{\Lambda}_{\mathsf{i}\mathsf{i}})$

■ A spectral transformation *F* corresponds to a function of reals *f*

Matrix polynomial	$F(\mathbf{A}) = \sum_{i} \alpha_{i} \mathbf{A}^{i}$	$f(x) = \sum_{i} \alpha_{i} x^{i}$	Real polynomial
Matrix exponential	$F(\mathbf{A}) = e^{\alpha \mathbf{A}}$	$f(x) = e^{\alpha x}$	Real exponential
Matrix inverse	$F(\mathbf{A}) = (\mathbf{I} \pm \alpha \mathbf{A})^{-1}$	$f(x) = 1 / (1 \pm \alpha x)$	Rational function
Pseudoinverse	$F(\mathbf{A}) = \mathbf{A}^+$	f(x) = 1/x when $x > 0$, 0 otherwise	
Rank-k approximation	$F(\mathbf{A}) = \mathbf{A}_{(k)}$	$f(x) = x \text{ when } x \ge$	x_0 , 0 otherwise

Finding the Best Spectral Transformation

Find the best spectral transformation on test set B

$$\min_{F} \|F(A) - B\|_{F}$$

Reduce minimization problem

=
$$\min_{F} \|UF(\Lambda) U^{T} - B\|_{F}$$

= $\min_{F} \|F(\Lambda) - U^{T}BU\|_{F}$ norm is preserved by U

■ Reduce to diagonal, because off-diagonal in $F(\Lambda)$ is constant zero

$$\min_{f} \sum_{i} (f(\Lambda_{ii}) - (U^TBU)_{ii})^2$$

 The best spectral transformation is given by a one-dimensional least-squares problem

Example: DBLP Citation Network (undirected)

- DBLP citation network
- Symmetric adjacency matrices A = UΛU^T, B

 $\alpha x^3 + \beta x^2 + \gamma x + \delta$

βe^{αx}

 \mathbf{x} x when $\mathbf{x} < \mathbf{x}_0$, else 0

Variants: Weighted and Signed Graphs

■ Weighted undirected graphs: use A and L = D - A as is

Signed graphs: use D_{ii} = Σ_j |A_{ij}| (signed graph Laplacian)

Example: Slashdot Zoo
(social network with negative edges)

Bipartite Graphs

- Bipartite graphs: paths have odd length
- Compute sum of odd powers of A
- The resulting polynomial is **odd** $\alpha A^3 + \beta A^5 + ...$

■ For other link prediction functions, use the odd component

$$e^{\alpha \mathbf{A}}$$
 $\sinh(\alpha \mathbf{A})$ $(\mathbf{I} - \alpha \mathbf{A})^{-1}$ $\alpha \mathbf{A} (\mathbf{I} - \alpha^2 \mathbf{A}^2)^{-1}$

Singular Value Decomposition

Odd power of a bipartite graph's adjacency matrix

$$A^{2n+1} = [0 R; R^T 0]^{2n+1} = [0 (RR^T)^n R; R^T (RR^T)^n 0]$$

Using the singular value decomposition R = UΣV^T

$$(RR^T)^nR = (U\Sigma V^T V\Sigma U^T)^n U\Sigma V^T = (U\Sigma^2 U^T)^n U\Sigma V^T = U\Sigma^{2n+1}V^T$$

Odd powers of A are given by odd spectral transformations of R

SVD Example: Bipartite Rating Graph

MovieLens rating graph

Rating values $\{-2, -1, 0, +1, +2\}$

12

Base Matrices

Base matrices A and L

■ Normalized variants: $D^{-1/2}AD^{-1/2}$, $D^{-1/2}LD^{-1/2} = I - D^{-1/2}AD^{-1/2}$

■ Example: **D**^{-1/2}**AD**^{-1/2}

Trust network Advogato

Note: ignore eigenvalue 1 (constant eigenvector)

Learning Laplacian Kernels

■ Epinions (signed user-user network), using L

Note: $\Lambda_{ii} > 0$ because the graph is signed and unbalanced

Almost Bipartite Networks

■ Dating site LíbímSeTi.cz: (users rate users)

- Some networks are "almost" bipartite
- Plot has near central symmetry

■ Bipartition: men/women

Learning the Reduced Rank k

■ Some plots suggest a reduced rank *k*

■ Example: MovieLens/SVD

• Learned: k = 14

Conclusion & Ongoing Research

Conclusions

- Many link prediction functions are spectral transformations
- Spectral transformations can be learned

Ongoing Research

- New link prediction function: sinh(A), odd von Neumann (pseudo-)kernel
- Signed graph Laplacian
- Other matrix decompositions
- Other norms
- More datasets

Thank You

