

دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران)

درس پردازش زبان طبیعی استاد ممتازی

تمرین دوم

علیرضا مازوچی ۴۰۰۱۳۱۰۷۵

بخش اول: آشنایی با روشهای بازنمایی کلمات

گام سوم: یافتن اسناد مشابه

Doc2	مدل Vec	W و TF-IDF	مدل ord2Vec	
امتياز كسينوسي	شبيەترين سند	امتیاز کسینوسی	شبيەترىن سند	سند
79.60%	Doc13	98.76%	Doc13	Doc1
83.68%	Doc20	99.61%	Doc19	Doc3
81.29%	Doc26	98.96%	Doc26	Doc5
95.02%	Doc679	100%	Doc679	Doc25
84.04%	Doc550	98.73%	Doc7	Doc36

گام چهارم: برسی کلمات مشابه

امتياز	کلمه سوم	امتياز	کلمه دوم	امتياز	کلمه اول	
کلمه سوم		کلمه دوم		کلمه اول		
۵۹/۹۵٪	مشهد	۶۰/۱۲٪	شهرستانها	۶۱/۲۵%	تبريز	تهران
۷٣/۶۲%	مراقبتهای	۷۴/۱۳%	بهداشتی	۷۸/۱۶%	باروری	بهداشت
१५/५५%	پشتیبانی	۶۶/۲ ۴ %	ضدموشكي	۶۹/۹۳%	مقدس	دفاع
۸۰/۸۱٪	ارتفاعات	۸۲/۰۹%	کارون	۸٣/٨٨%	دریاچه	رودخانه
۷۷/۳۳%	فصول	۷۷/۷۳٪	مرطوب	٧٨/۶٥%	زمستان	سرد
۶۷/۳۷٪	سمعى	<i>۶</i> ٩/ <i>۸۶%</i>	تمدن	VV/19%	ارشاد	فرهنگ
88/8°%	صنام	۶ ۷/۸۳%	ارضی	۶V/٩Λ%	پاس	استقلال

در دو صفحه بعد نمودار دو بعدی و سه بعدی درخواستشده ارائه شده است:

- قبل از بیان هر نکته باید گفت که موارد مطرحشده به طور کلی برقرار است و ممکن است برای برخی از دادهها فاصله در نمودار به طرز غیرمنتظرهای زیاد شود؛ این امر به دلیل آن است که فضا کاهش بعد شدیدی را تجربه کرده است و طبیعتا اگر تمام ابعاد قابل حفظ و نمایش بود، موارد استثنا دیده نمیشد. باتوجه به کاهش ابعاد حتی برخی از نقاط در نمودار دوبعدی با نمودار سه بعدی فاصله کاملا متفاوتی دارند؛ مانند «بهداشت» و «تمدن» که در نمودار دوبعدی در کنار هم و در نمودار سه بعدی با فاصله زیاد قرار گرفتهاند.
- به طور کلی میتوان دید که هر کلمه با سه کلمه نزدیک به خود در فضای هندسی نزدیک افتاده است. مثلا «رودخانه»، «دریاچه»، «کارون» و «ارتفاعات» به خوبی در کنار هم قرار گرفتهاند. این کنار هم بودن تا حد زیادی تابع امتیازهای موجود هم هست. مثلا برای «رودخانه» و کلمات مشابه آن امتیازها همگی بالای ه۸٪ است و نزدیکی بیشتر در مورد آنها دیده میشود.
- به طور کلی میتوان دید که از سه کلمه نزدیک به هر کلمه آن کلمه که در رتبه بهتری قرار داشته است، در اینجا هم به آن نزدیکتر است. مثلا برای «بهداشت» به ترتیب کلمات «باروری»، «بهداشتی» و «مراقبتها» به آن نزدیک است. به عنوان مثالی دیگر برای کلمه «فرهنگ»، کلمه «ارشاد» با اختلاف مشابهترین کلمه است و در نمودار هم از دو کلمه مشابه دیگر نزدیکتر به «فرهنگ» قرار دارد.
- در نمایشهای مختلف برخی از کلمات به دستهای دیگر از کلمات نزدیک شده است. مثلا در نمودار دو بعدی «استقلال» به «تهران» نزدیک است. این مورد میتواند به دلیل شهر تیم فوتبال استقلال باشد.
- در دو نمودار یک شکاف و فاصله میان دسته کلمات «رودخانه» و «سرد» و کلمات مشابهشان با بقیه کلمات دیده میشود. این نشان میدهد که احتمالا در فضای اصلی هم این دسته از کلمات فاصله زیادی با بقیه دارند که به نظر میرسد از نظر مفهومی کاملا طبیعی باشد.به طور مشابه مفاهیم انتزاعی «فرهنگ» و «ارشاد» و «تمدن» به دور از بقیه کلمات افتادهاند.

بخش دوم: تشخیص اجزای سخن (POS)

گام اول: ایجاد شبکهی عصبی حافظه کوتاه-مدت بلند دوطرفه

ورودی شبکه BiLSTM باید دنبالههایی با اندازههای یکسان باشد؛ لذا باید طول کوتاهترین دنبالها را با حاشیهگذاری (Padding) به طول بلندترین آن برسانیم. بررسیهای من نشان میدهد در سه مجموعهداده، دادههایی با ۷۳۴ توکن وجود دارند. اما به طور کلی جملات با تعداد توکن بالا بسیار کم هستند. به بیان دقیقتر در هر سه مجموعه میانگین تعداد توکنها به ازای هر جمله کمتر از ۳۰ توکن است! در نمودار زیر که فراوانی دادهها با اندازههای مختلف توکن را نشان میدهد به خوبی مشخص است که بیشتر دادهها تعداد نسبتا کمی توکن دارند.

طبیعی است که در این شرایط حاشیهگذاری باعث پیچیدهشدن شدید مدل و مشکلات حافظه و زمان اجرا میشود؛ بنابراین من تصمیم گرفتم که دادههای بلند را به تعداد کوچکتری داده بشکنم. در نمودار زیر مجددا نمودار فراوانی دادهها با اندازههای مختلف ترسیم شده است با این تفاوت که این بار تنها در محدوده ۱۲۸ توکن است:

با نگاه به این نمودار من ۶۴ توکن را به عنوان حد بالای تعداد توکن یک داده در نظر گرفتم. بررسیهای من نشان میدهد تنها ۴/۳٪ از دادهها بیشتر از ۶۴ توکن دارند بنابراین دقت کلی کاهش چندانی نخواهد داشت ولی آموزش بسیار آسان تر خواهد شد.

نهایتا توجه کنید که برای محاسبه Accuracy خروجی مدل به ازای توکنها حاشیهگذاری حذف شده است و تنها دقت به ازای توکنها اصلی محاسبه شده است.

شبکهای که من برای آموزش استفاده کردم متشکل از یک BiLSTM با ۶۴ واحد و یک لایه Dense برای تولید تگ خروجی است. از تابع فعالسازی Softmax برای دریافت نتایج بهتر در لایه Dense خروجی کمک گرفته شده است.

برای آموزش هم از پانزده گام استفاده شده است و برای جلوگیری از بیشبرازش احتمالی از یک EarlyStopping Callback بهره گرفتم.

گام دوم: ارزیابی شبکهی عصبی حافظه کوتاه-مدت بلند دوطرفه

طبیعتا نمیتوان معیار Accuracy را به ازای هر برچسب جداگانه حساب کرد. اگر بخواهیم به ازای کل تگها حساب کنیم، نتایج جدول زیر بدست میآید:

(Accuracy) صحت	مجموعهداده
94/97%	آموزش (Train)
<u></u> ዓዮ/ለነ٪	اعتبارسنجی (Valid)
ዓ ۴/ ለ ₀٪	آزمون (Test)

اگر هم بخواهیم برای هر تگ POS دقتی ارائه دهیم، میتوانیم از معیارهایی نظیر Precision و Recall استفاده بکنیم که نتایج آن در جدول زیر به طور کامل ارائه شده است:

Recall	Precision	تگ
91	93	N_PL
53	77	N_VOC
42	76	ADJ_INO
95	95	N_SING
75	89	ADV_COMP
92	92	V_SUB
95	96	DET
99	99	CLITIC
91	98	V_AUX
99	98	Р
86	90	ADV_I
96	96	PRO
91	92	ADV_TIME
95	96	V_PRS
95	88	DELM
70	80	FW

93	96	V_PP
35	68	V_IMP
89	90	ADJ
89	91	NUM
92	92	ADV_LOC
67	81	ADV
95	96	V_PA
35	89	SYM
98	98	CON
92	96	ADJ_SUP
86	92	ADV_NEG
62	78	INT
70	86	PREV
82	90	ADJ_CMPR

در دو نمودار زیر تغییرات خطا و صحت برای مجموعه آموزش و اعتبارسنجی آورده شده است. نکتهی عجیب آن است که عملکرد مدل در ابتدا بر روی مجموعه اعتبارسنجی از مجموعه آموزشی بهتر بوده است! نکته دیگری هم که میتوان در آن دید این است که روند آموزش مدل تقریبا متوقف شده است و ادامه دادن آموزش دیگر موثر نبوده است.

نمودار درهمریختگی برای دادههای آزمون در ادامه آورده شده است:

چهار جفت تگ هستند که بالای هزار مرتبه باهم دیگر اشتباه گرفته شدهاند که اسامی آنها در جدول زیر آورده شده است:

تعداد اشتباه	تگ درست	تگ پیشبینیشده
1180	N_PL	N_SING
1877	N_SING	DELM
1911	N_SING	ADJ
የዶለ _°	ADJ	N_SING

طبیعتا مدل برای داشتن Accuracy بهتر باید بتواند تفاوت میان این جفتها را بهتر تشخیص دهد. البته عاملی که شاید از آن غفلت شده باشد آن است که برخی از این تگها بسیار پرتکرار هستند و یک درصد خطای کوچک روی آن هم تواند تعداد خطای بالایی را ایجاد کند. به عنوان واضحترین مثال، N_SING در هر چهار سطر جدول فوق آمده است ولی دارای Precision و Recall ای معادل ۹۵٪ است که کاملا منطبق بر عملکرد مدل است اما تعداد تگهای آن به طور عمومی زیاد است به گونهای که حدود ۱۳۰ هزار پیشبینی درست برای آن ثبت شده است.

باتوجه به آنچه گفته شد میتوانیم ماتریس درهمریختگی را سطری یا ستونی نرمال کنیم و بر مبنای درصد خطا نظر بدهیم. در جدول زیر چهار جفت از بزرگترین درصدهای خطا آوررده شده است:

درصد اشتباه	تعداد	تگ درست	تگ	نوع
	اشتباه		پیشبینیشده	نرمالسازی
۵۶/۲۵%	۲۷	SYM	N_SING	درست
۲ ۴/۸۶٪	129	ADJ_INO	ADJ	درست
۲۳/۴°٪	kk	V_IMP	N_SING	درست
۲۲/۲۲ %	۲	DELM	N_VOC	پیشبینیشده

در این جدول به عنوان مثال ۲۷ تا از تگهای SYM به اشتباه N_SING تشخیص داده شدهاند. این مقدار اگرچه زیاد نیست ولی برای تگ بسیار کم تکرار SYM زیاد است

ا بوجوع را حییت	۰۰۰۰ کا	,, a O	 تشخیص داده شو میکند.