Problem Set 5

Warren Kim

May 14, 2023

Question 3

Let $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ be convergent series. Show that:

- (a) $\sum_{n=1}^{\infty} (ax_n)$ converges and $\sum_{n=1}^{\infty} (ax_n) = a \sum_{n=1}^{\infty} x_n$ for any $a \in \mathbb{R}$.
- (b) Show that $\sum_{n=1}^{\infty} (x_n + y_n)$ converges and $\sum_{n=1}^{\infty} (x_n + y_n) = \sum_{n=1}^{\infty} x_n + \sum_{n=1}^{\infty} y_n$.
- (c) Show that the assumption that both series converge is necessary for part (b).
- (d) Is it true that if $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ converge then $\sum_{n=1}^{\infty} x_n y_n$ converges?

Response

(a) Proof. Given that $\sum_{n=1}^{\infty} x_n$ converges, let $s_n = \sum_{k=1}^n x_k$ be the sequence of partial sums of (x_n) . Then, since (x_n) converges, we have that $\lim_{n\to\infty} s_n = x$. Let $t_n = \sum_{k=1}^n ax_k$. Then, we have:

$$t_n = \sum_{k=1}^n ax_k$$

$$= (ax_1 + ax_2 + \dots + ax_k)$$
 definition of summation
$$= a(x_1 + x_2 + \dots + x_k)$$
 distributivity of \mathbb{R}

$$= a\sum_{k=1}^n x_k$$
 definition of summation
$$t_n = as_n$$

$$s_n = \sum_{k=1}^n x_k$$

So $t_n = \sum_{k=1}^n ax_k = a \sum_{k=1}^n x_k$. From above, we have that $\lim_{n\to\infty} s_n = x$ and $\lim_{n\to\infty} a = a$ (since a is constant), so both sequences converge. Then by the Algebraic Limit Theorem, we have

$$\lim_{n \to \infty} a \cdot \lim_{n \to \infty} s_n = \lim_{n \to \infty} a \cdot s_n = ax = \lim_{n \to \infty} s_n$$

Since the sequence of partial sums $t_n = \sum_{k=1}^n ax_k = a \sum_{k=1}^n x_k$ converges, $\sum_{n=1}^\infty ax_n = a \sum_{n=1}^\infty x_n$ converges.

(b) Proof. Let $s_n = \sum_{k=1}^n x_k$, $t_n = \sum_{k=1}^n y_k$ be the sequence of partial sums of (x_n) , (y_n) respectively. Then, since (x_n) , (y_n) converge, we have that $\lim_{n\to\infty} s_n = x$, $\lim_{n\to\infty} t_n = y$. Let $r_n = \sum_{k=1}^n (x_k + y_k)$. Then we have:

$$r_n = \sum_{k=1}^n (x_k + y_k)$$

$$= (x_1 + y_1) + (x_2 + y_2) + \dots + (x_n + y_n)$$

$$= (x_1 + x_2 + \dots + x_n) + (y_1 + y_2 + \dots + y_n)$$

$$= \sum_{k=1}^n x_k + \sum_{k=1}^n y_k$$
definition of summation
$$r_n = s_n + t_n$$

$$s_n = \sum_{k=1}^n x_k, \ t_n = \sum_{k=1}^n y_k$$

So $r_n = \sum_{k=1}^n (x_k + y_k) = \sum_{k=1}^n x_k + \sum_{k=1}^n y_k$. From above, we have that $\lim_{n\to\infty} s_n = x$ and $\lim_{n\to\infty} t_n = y$, so both sequences converge. Then, by the Algebraic Limit Theorem, we have

$$\lim_{n \to \infty} s_n + \lim_{n \to \infty} t_n + \lim_{n \to \infty} s_n + t_n = x + y = \lim_{n \to \infty} r_n$$

Since the sequence of partial sums $r_n = \sum_{k=1}^n (x_k + y_k) = \sum_{k=1}^n x_k + \sum_{k=1}^n y_k$ converges, $\sum_{n=1}^{\infty} (x_n + y_n) = \sum_{n=1}^{\infty} x_n + \sum_{n=1}^{\infty} y_n$ converges.

- (c) Assume by contradiction that the requirement that both series converge is not required for (b). Consider $x_n = n$, $y_n = \frac{1}{n^2}$. From lecture, x_n diverges and y_n converges. Then, $\sum_{n=1}^{\infty} x_n + y_n = \sum_{n=1}^{\infty} n + \frac{1}{n^2}$ converges by assumption. However, $\lim_{n \to \infty} \sum_{n=1}^{\infty} n + \frac{1}{n^2}$ does not converge, which is a contradiction. Therefore, both series must converge so that part (b) holds.
- (d) No. Consider $x_n = y_n = \frac{(-1)^n}{\sqrt{n}}$. By the Alternating Series Test from lecture, both $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ converge. However, $\sum_{n=1}^{\infty} x_n y_n$ does not converge since $x_n y_n = \frac{1}{n}$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ does not converge from lecture.

Question 7

Study the convergence of the following series:

(a)
$$\sum_{n=1}^{\infty} \frac{2^n}{n^2}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

(c)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2+2}{n^2+1}$$

(d)
$$\sum_{n=1}^{\infty} \frac{n^{\log n}}{(\log n)^n}$$

(e)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{n}$$

(f)
$$\sum_{n=1}^{\infty} (x_{n+1} - x_n)$$
 for any sequence (x_n)

Response

(a) Apply the ratio test:

$$\lim_{n \to \infty} \left| \frac{2^{n+1}}{(n+1)^2} \right| \left| \frac{n^2}{2^n} \right| = \lim_{n \to \infty} \left| \frac{2^{n+1}}{2^n} \frac{n^2}{(n+1)^2} \right|$$
$$= \lim_{n \to \infty} \left| \frac{2n^2}{(n+1)^2} \right|$$
$$\lim_{n \to \infty} \left| \frac{2^{n+1}}{(n+1)^2} \right| \left| \frac{n^2}{2^n} \right| = 2$$

Since 2 > 1, by the ratio test, $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$ diverges.

(b)

$$\lim_{n \to \infty} \left| \frac{(n+1)^2}{2^{n+1}} \right| \left| \frac{2^n}{n^2} \right| = \lim_{n \to \infty} \left| \frac{2^n}{2^{n+1}} \frac{(n+1)^2}{n^2} \right|$$
$$= \lim_{n \to \infty} \left| \frac{(n+1)^2}{2n^2} \right|$$
$$= \frac{1}{2}$$

Since $\frac{1}{2} < 1$, by the ratio test, $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ converges.

(c) Apply the Alternating Series Test: We need to check that

(i)
$$\left| \frac{n^2+2}{n^2+1} \right|$$
 is monotonically decreasing: $\frac{\left| \frac{(n+1)^2+2}{(n+1)^2+1} \right|}{\left| \frac{n^2+2}{n^2+1} \right|} = \frac{n^4+4n^3+5n^2+4n+3}{n^4+4n^3+5n^2+5n+2} \le 1$ so the sequence is monotonically decreasing.

(ii)
$$\lim_{n\to\infty} \left| \frac{n^2+2}{n^2+1} \right| = 0$$
:

Note that $n^2 + 1$ is never 0 for any n. Therefore, by ALT, we have $\lim_{n \to \infty} \left| \frac{n^2 + 2}{n^2 + 1} \right| = 1 \neq 0$.

4

Since (ii) does not hold, $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2+2}{n^2+1}$ diverges.

(d) Apply the root test:

$$\lim_{n \to \infty} \sqrt[n]{\frac{n^{\log n}}{(\log n)^n}} = \lim_{n \to \infty} \frac{n^{\frac{\log n}{n}}}{\log n}$$

$$= \lim_{n \to \infty} \frac{e^{\frac{(\log n)^2}{n}}}{\log n}$$

$$= \lim_{n \to \infty} e^{\frac{(\log n)^2}{n}} \cdot \lim_{n \to \infty} (\log n)^{-1}$$

$$= 1 \cdot 0$$

$$\lim_{n \to \infty} \sqrt[n]{\frac{n^{\log n}}{(\log n)^n}} = 0$$

Therefore, by the root test, $\sum_{n=1}^{\infty} \frac{n^{\log n}}{(\log n)^n}$ converges.

- (e) Apply the comparison test: Let $x_n = \frac{\sqrt{n+1}-\sqrt{n}}{n}$ and $y_n = \frac{1}{n^{\frac{3}{2}}}$. Then, we have that $0 \le x_n \le y_n$. Now apply the p-series test to n. Since $p = \frac{3}{2} > 1$, by the p-series test, the series converges. Therefore, x_n also converges. So, $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{n}$ converges.
- (f) Inconclusive: If the sequence $(x_{n+1}-x_n)$ converges, then so does the series. Otherwise, the series also diverges. Therefore, the convergence of the series is dependent on (x_n) .