LETS GROW MORE

Data Analytics Tasks

NAME: M.NIVETHITHAA

TASK 1 - Iris Flower Classification

DATA AUDIT

Importing Libraries

```
In [1]: import numpy as np
   import matplotlib.pyplot as plt
   import pandas as pd
   from sklearn import datasets
   import seaborn as sns
   from sklearn.svm import SVC
   from pandas.plotting import scatter_matrix as sm
   from sklearn.cluster import KMeans
```

Displaying Raw Dataset

```
In [2]: iris = datasets.load_iris()
    iris_df = pd.DataFrame(iris.data, columns = iris.feature_names)
    iris_df
```

Out[2]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

First five rows of the dataset

In [3]: iris_df.head(5)

Out[3]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

Last five rows of the dataset

In [4]: iris_df.tail(5)

Out[4]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

Shape of the dataset

In [5]: iris_df.shape

Out[5]: (150, 4)

Columns present in the dataset

```
In [6]: iris_df.columns
Out[6]: Index(['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)',
               'petal width (cm)'],
              dtype='object')
        <h4>Summary of the dataset</h4>
In [7]: iris_df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 150 entries, 0 to 149
        Data columns (total 4 columns):
                                Non-Null Count Dtype
         #
             Column
             sepal length (cm) 150 non-null
                                                float64
            sepal width (cm)
                                150 non-null
                                                float64
         1
         2 petal length (cm) 150 non-null
                                               float64
             petal width (cm)
                                150 non-null
                                               float64
        dtypes: float64(4)
        memory usage: 4.8 KB
In [8]: iris_df.describe()
```

Out[8]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Checking Datatypes

```
In [9]: iris_df.dtypes

Out[9]: sepal length (cm) float64
    sepal width (cm) float64
    petal length (cm) float64
    petal width (cm) float64
    dtype: object
```

Checking missing values

No Missing values

CORRELATION

Out[11]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
sepal length (cm)	1.000000	-0.117570	0.871754	0.817941
sepal width (cm)	-0.117570	1.000000	-0.428440	-0.366126
petal length (cm)	0.871754	-0.428440	1.000000	0.962865
petal width (cm)	0.817941	-0.366126	0.962865	1.000000

VISUALIZATION

<h3>Plotting</h3>

In [12]: sns.pairplot(iris_df)

Out[12]: <seaborn.axisgrid.PairGrid at 0x228b981cdf0>

Pie Chart

```
In [13]: fig = plt.figure()
    ax = fig.add_axes([0,0,1,1])
    ax.axis('equal')
    l = ['Versicolor', 'Setosa', 'Virginica']
    s = [50,50,50]
    ax.pie(s, labels = l,autopct='%1.2f%%')
    plt.show()
```


Heat Map

```
In [14]: plt.figure(figsize= [10,9])
sns.heatmap(corr_df, cmap='Spectral', annot=True)
```

Out[14]: <AxesSubplot:>

K-Means Clustering Algorithm

Predict the optimum number of clusters

Preparing the Data

Create X

```
In [15]: x = iris_df.iloc[:, [0, 1, 2, 3,]].values
Out[15]: array([[5.1, 3.5, 1.4, 0.2],
                [4.9, 3., 1.4, 0.2],
                [4.7, 3.2, 1.3, 0.2],
                [4.6, 3.1, 1.5, 0.2],
                [5., 3.6, 1.4, 0.2],
                [5.4, 3.9, 1.7, 0.4],
                [4.6, 3.4, 1.4, 0.3],
                [5., 3.4, 1.5, 0.2],
                [4.4, 2.9, 1.4, 0.2],
                [4.9, 3.1, 1.5, 0.1],
                [5.4, 3.7, 1.5, 0.2],
                [4.8, 3.4, 1.6, 0.2],
                [4.8, 3., 1.4, 0.1],
                [4.3, 3., 1.1, 0.1],
                [5.8, 4., 1.2, 0.2],
                [5.7, 4.4, 1.5, 0.4],
                [5.4, 3.9, 1.3, 0.4],
                [5.1, 3.5, 1.4, 0.3],
                [5.7, 3.8, 1.7, 0.3],
```

Create Y

Elbow Method

In [16]: #For creating y we need no of clusters. And we can find the optimum number of clusters using elbow method

- -> In the Elbow method, we are actually varying the number of clusters (K) from 1 10.
- -> For each value of K, we are calculating WCSS (Within-Cluster Sum of Square).
- -> WCSS is the sum of squared distance between each point and the centroid in a cluster.
- -> When we plot the WCSS with the K value, the plot looks like an Elbow.
- -> When we analyze the graph we can see that the graph will rapidly change at a point and thus creating an elbow shape. The K value corresponding to this point is the optimal K value or an optimal number of clusters

```
In [18]: plt.plot(Range_of_cluster, within_cluster_sum_of_squares,color="green")
    plt.title('The elbow method')
    plt.xlabel('Number of clusters')
    plt.ylabel('Within cluster sum of squares')
    plt.show()
```


The point at which the elbow shape is created is 3. Therefore optimal number of clusters is 3

K-Means Clustering

```
In [19]: y = KMeans(n_clusters=3)
```

Fit K means cluster model

Visualization of Results

Compare our original data vs clustered results

```
In [21]: new_labels = y.labels_
    fig, axes = plt.subplots(1, 2, figsize=(16,8))
    axes[0].scatter(x[:, 0], x[:, 1], c=y_kmean, cmap='gist_rainbow',
    edgecolor='k', s=150)
    axes[1].scatter(x[:, 0], x[:, 1], c=new_labels, cmap='jet',
    edgecolor='k', s=150)
    axes[0].set_xlabel('Sepal length', fontsize=18)
    axes[0].set_ylabel('Sepal width', fontsize=18)
    axes[1].set_xlabel('Sepal length', fontsize=18)
    axes[1].set_ylabel('Sepal width', fontsize=18)
    axes[0].tick_params(direction='in', length=10, width=5, colors='k', labelsize=20)
    axes[0].set_title('Actual', fontsize=18)
    axes[0].set_title('Actual', fontsize=18)
```

Out[21]: Text(0.5, 1.0, 'Predicted')

localhost:8888/notebooks/LGMVIP Task 1 .ipynb#

