Knowledge Tracing

Machine Learning for Behavioral Data March 27, 2023

Today's Topic

Week	Lecture/Lab
1	Introduction
2	Data Exploration
3	Regression
4	Classification
5	Model Evaluation
6	Time Series Prediction
7	Time Series Prediction
8	Time Series Prediction

Supervised learning on time series:

- Probabilistic graphical models
- GLMMs
- Neural networks: LSTM, GRU, etc.

Getting ready for today's lecture...

• If not done yet: clone the repository containing the Jupyter notebook and data for today's lecture into your Noto workspace

• SpeakUp room for today's lecture:

https://go.epfl.ch/speakup-mlbd2025

Short quiz about the past...

Given the data set $D = \{1,2,3,4\}$, one possible bootstrap data set of D is $\{1,1,1,1\}$:

- a) True
- b) False

Short quiz about the past...

Which of the following statements about k-fold cross validation are wrong? N denotes the number of samples in the data set, k the number of folds:

- a) k must always be smaller than N.
- b) The smaller k is, the more expensive it is to compute the error.
- c) Cross validation can be used to tune model hyperparameters.
- d) Cross validation is not a valid method for computing the generalization error of a model.

Time Series – Prediction Task

• Prediction of a target variable after t < T time steps, where T is the total number of time steps

Time Series – Tracing Task

- Prediction of a target variable after t < T time steps, where T is the total number of time steps
- Prediction of a variable in time step t+1, based on time steps $0, \dots, t$

Today: Tracing Student Knowledge

- Is the student learning?
 - Measure what the student knows at a specific time t
 - More specifically: knowledge of the student about relevant knowledge components (skills)

Task:

$$50 - 23 = ?$$

$$50 - 23 = ?$$
 $75 - 12 = ?$

$$38 - 14 = ?$$

Answer:

27

61

24

Tracing Knowledge – why is it useful?

- Is the student learning?
 - Measure what the student knows at a specific time t
 - More specifically: knowledge of the student about relevant knowledge components (skills)

- Choose the next appropriate activity
- Know which activities support learning

Today's Use Case

- ASSISTments is a free tool for assigning and assessing math problems and homework
- All math problems (tasks/items) are associated to a specific skill/knowledge component
- 4,217 middle-school students
- 525,534 observations

Today: Tracing Student Knowledge

- Bayesian Knowledge Tracing (BKT)
 - Latent variables
 - BKT Inference
 - Practical Example

What is a latent variable?

What is a latent variable?

- A latent variable L is a variable which is not directly observable/cannot be measured
- It is assumed to affect the outcome of other variables o, which can be observed (directly measured)

Why should we use latent variables?

- In many scientific fields, we are interested in concepts/factors that cannot directly be measured/observed:
 - Political sciences: leadership, political competence, etc.
 - Psychology: stress, self-worth, personality characteristics, talent, etc.
 - Education: memory, spatial ability, cognitive abilities, etc.
- We represent underlying concepts/factors by latent variables and infer them from the observed variables

Example 1: Recommender Systems

• Given: ratings of users u for items i (e.g., books)

Example 2: Education

 Observations: binary answers (correct/wrong) of students to items (tasks)

O_{s,i}

Answer of student *s* to item *i*

Example 2: Education

 Observations: binary answers (correct/wrong) of students to items (tasks)

Is the student learning?

Task:

50-23=? 75-12=? 38-14=?

Answer:

27

61

24

What are we measuring?

Task:

$$50 - 23 = ?$$

$$75 - 12 = ?$$

$$50 - 23 = ?$$
 $75 - 12 = ?$ $38 - 14 = ?$

Answer:

Binary observations of student answers

Subtraction 0-100

1 2 ••• r

0 0 1 0 1

Predicting future performance

Subtraction 0-100

1 2 ··· n n+1
0 0 1 0 1 ?

Latent variable Observed variable

$$t = 0$$
:

$$t = 0$$
:

Observations for student s:

t = 0: 0

Observations for student s:

t = 0:0

$$t = 0:0$$

$$t = 1$$
:

Observations for student s:

t = 0: 0

t = 1:0

$$t = 0: 0$$

$$t = 1:0$$

$$t = 2$$
:

$$t = 0: 0$$

$$t = 1:0$$

$$t = 2:1$$

$$t = 0: 0$$

$$t = 1:0$$

$$t = 2:1$$

$$t = 3$$
:

$$t = 0: 0$$

$$t = 1:0$$

$$t = 2:1$$

$$t = 3:0$$

$$t = 0: 0$$

$$t = 1:0$$

$$t = 2:1$$

$$t = 3:0$$

$$t = 4$$
:

$$t = 0:0$$

$$t = 1:0$$

$$t = 2:1$$

$$t = 3:0$$

$$t = 4:1$$

$$t = 0: 0$$

$$t = 1:0$$

$$t = 2:1$$

$$t = 3:0$$

$$t = 4:1$$

$$t = 5$$
:

$$t = 0: 0$$

$$t = 1:0$$

$$t = 2:1$$

$$t = 3:0$$

$$t = 4:1$$

$$t = 5$$
:

$$t = 0: 0$$

$$t = 1:0$$

$$t = 2:1$$

$$t = 3:0$$

$$t = 4:1$$

$$t = 5:1$$

$$t = 0: 0$$

$$t = 1:0$$

$$t = 2:1$$

$$t = 3:0$$

$$t = 4:1$$

$$t = 5:1$$

$$t = 0: 0$$

$$t = 1:0$$

$$t = 2:1$$

$$t = 3:0$$

$$t = 4:1$$

$$t = 5:1$$

$$t = 6$$
:

$$t = 0: 0$$

$$t = 1:0$$

$$t = 2:1$$

$$t = 3:0$$

$$t = 4:1$$

$$t = 5:1$$

$$t = 6:1$$

BKT - Terminology

Observations (also binary)

Five parameters: probabilities
$$\theta = \{p_0, p_L, p_F, p_S, p_G\}$$
 Transition probabilities

BKT parameters are interpretable

BKT parameters are interpretable

BKT parameters are interpretable

BKT – unrolled over time

Two tasks need to be solved in practice

• Given a model with parameters $\theta = \{p_0, p_L, p_F, p_S, p_G\}$ and a sequence of observations $\mathbf{o} = [o_0, \dots, o_t]$ from a student s, predict o_{t+1}

Inference Example


```
p_0 = 0.5

p_S = 0.2

p_G = 0.3

p_L = 0.4

p_F = 0.0
```


Inference Example - Your Turn

• $p(s_0 = 1)$? • $p(o_0 = 1)$? • $p(s_1 = 1|o_0 = 0)$? • $p(o_1 = 1|o_0 = 0)$? • $p(s_2 = 1|o_0 = 0, o_1 = 1)$?

Inference Example – Your Turn

p_0	=	0.5
$p_{\mathcal{S}}$	=	0.2
p_G	=	0.3
p_L	=	0.4
p_F	=	0.0

S ₀	p(S ₀)
1	p_0
0	1- p_0

S _t	S_{t+1}	$p(S_{t+1} S_t)$
0	0	$1-p_L$
0	1	p_L
1	0	p_F
1	1	$1-p_F$

S _t	O _t	$p(O_t S_t)$
0	0	$1-p_G$
0	1	p_G
1	0	p_S
1	1	$1-p_S$

- $p(s_0 = 1)$? • $p(o_0 = 1)$? • $p(s_1 = 1 | o_0 = 0)$?
- $p(o_1 = 1 | o_0 = 0)$?
- $p(s_2 = 1 | o_0 = 0, o_1 = 1)$?

Inference Example - Your Turn

p_0	=	0.5
p_{S}	=	0.2
p_G	=	0.3
p_L	=	0.4
p_F	=	0.0

p(S ₀)
p_0
1- <i>p</i> ₀

S _t	S _{t+1}	$p(S_{t+1} S_t)$
0	0	$1-p_L$
0	1	p_L
1	0	p_F
1	1	$1-p_F$

S _t	O _t	$p(O_t S_t)$
0	0	$1-p_G$
0	1	p_G
1	0	p_S
1	1	$1-p_S$

Some useful rules:

$$p(A,B) = p(A|B) \cdot p(B)$$

$$p(A|B) = \frac{p(B|A) \cdot p(A)}{p(B)}$$

$$p(A = 1) = p(A = 1, B = 1) + p(A = 1, B = 0)$$

•
$$p(s_0 = 1)$$
?

•
$$p(o_0 = 1)$$
?

•
$$p(s_1 = 1 | o_0 = 0)$$
?

•
$$p(o_1 = 1 | o_0 = 0)$$
?

•
$$p(s_2 = 1 | o_0 = 0, o_1 = 1)$$
?

Equations for time step 0:

$$p(s_0 = 1) = p_0$$

 $p(s_0 = 0) = 1 - p_0$

Equations for time step 0:

$$p(s_0 = 1) = p_0$$

 $p(s_0 = 0) = 1 - p_0$

$$p(o_0 = 1) = p(o_0 = 1, s_0 = 1) + p(o_0 = 1, s_0 = 0)$$

= $(1 - p_s) \cdot p_0 + p_G \cdot (1 - p_0)$

$$p(o_0 = 0) = p_S \cdot p_0 + (1 - p_G) \cdot (1 - p_0)$$

$$p(s_0 = 1 | o_0 = 0) = \frac{p(o_0 = 0 | s_0 = 1) \cdot p(s_0 = 1)}{p(o_0 = 0)}$$

$$= \frac{p_S \cdot p_0}{p_S \cdot p_0 + (1 - p_G) \cdot (1 - p_0)}$$

$$p(s_0 = 0 | o_0 = 0) = 1 - p_{s_0|0}$$

$$p(s_0 = 1 | o_0 = 1) = \frac{p(o_0 = 1 | s_0 = 1) \cdot p(s_0 = 1)}{p(o_0 = 1)}$$

$$= \frac{(1 - p_S) \cdot p_0}{(1 - p_S) \cdot p_0 + p_G \cdot (1 - p_0)}$$

$$p(s_0 = 0 | o_0 = 1) = 1 - p_{s_0|1}$$

Equations for time step 1:

$$p(s_1 = 1 | o_0 = 0) = \frac{p(s_1 = 1, o_0 = 0)}{p(o_0 = 0)}$$

$$= \frac{p(s_1 = 1, s_0 = 1, o_0 = 0)}{p(o_0 = 0)} + \frac{p(s_1 = 1, s_0 = 0, o_0 = 0)}{p(o_0 = 0)}$$

$$= \frac{p(s_1 = 1 | s_0 = 1) \cdot p(o_0 = 0 | s_0 = 1) \cdot p(s_0 = 1)}{p(o_0 = 0)}$$

$$+ \frac{p(s_1 = 1 | s_0 = 0) \cdot p(o_0 = 0 | s_0 = 0) \cdot p(s_0 = 0)}{p(o_0 = 0)}$$

$$p(s_1 = 1 | o_0 = 0) = (1 - p_F) \cdot p_{s_0 | 0} + p_L \cdot (1 - p_{s_0 | 0})$$

$$p(s_1 = 1 | o_0 = 1) = (1 - p_F) \cdot p_{s_0|1} + p_L \cdot (1 - p_{s_0|1})$$

$$p(s_1 = 1 | o_0 = 0) = (1 - p_F) \cdot p_{s_0|0} + p_L \cdot (1 - p_{s_0|0})$$

 $p_{s_1|o_0} = (1 - p_F) \cdot p_{s_0|o_0} + p_L \cdot (1 - p_{s_0|o_0})$

$$\begin{split} p(o_1 = 1 | o_0 = 0) &= \frac{p(o_1 = 1, o_0 = 0)}{p(o_0 = 0)} \\ &= \frac{p(o_1 = 1, s_1 = 1, s_0 = 1, o_0 = 0)}{p(o_0 = 0)} \\ &+ \frac{p(o_1 = 1, s_1 = 1, s_0 = 0, o_0 = 0)}{p(o_0 = 0)} \\ &+ \frac{p(o_1 = 1, s_1 = 0, s_0 = 1, o_0 = 0)}{p(o_0 = 0)} + \frac{p(o_1 = 1, s_1 = 0, s_0 = 0, o_0 = 0)}{p(o_0 = 0)} \\ &= p(o_1 = 1 | s_1 = 1) \cdot (p(s_1 = 1 | s_0 = 1) \cdot p(o_0 = 0 | s_0 = 1) \cdot p(s_0 = 1)/p(o_0 = 0)) \\ &+ p(o_1 = 1 | s_1 = 1) \cdot (p(s_1 = 1 | s_0 = 0) \cdot p(o_0 = 0 | s_0 = 0) \cdot p(s_0 = 0)/p(o_0 = 0)) \\ &+ p(o_1 = 1 | s_1 = 0) \cdot (p(s_1 = 0 | s_0 = 1) \cdot p(o_0 = 0 | s_0 = 1) \cdot p(s_0 = 1)/p(o_0 = 0)) \\ &+ p(o_1 = 1 | s_1 = 0) \cdot (p(s_1 = 0 | s_0 = 0) \cdot p(o_0 = 0 | s_0 = 0) \cdot p(s_0 = 0)/p(o_0 = 0)) \end{split}$$

 $p(o_1 = 1 | o_0 = 0) = (1 - p_S) \cdot p_{S_1 | o_0 = 0} + p_G \cdot (1 - p_{S_1 | o_0 = 0})$

$$p(o_1 = 1 | o_0 = 1) = (1 - p_S) \cdot p_{s_1 | o_0 = 1} + p_G \cdot (1 - p_{s_1 | o_0 = 1})$$

$$p(o_1 = 0 | o_0 = 1) = p_S \cdot p_{s_1 | o_0 = 1} + (1 - p_G) \cdot (1 - p_{s_1 | o_0 = 1})$$

$$p(o_1 = 1|o_0) = (1 - p_S) \cdot p_{s_1|o_0} + p_G \cdot (1 - p_{s_1|o_0})$$

$$p(o_1 = 0|o_0) = p_S \cdot p_{s_1|o_0} + (1 - p_G) \cdot (1 - p_{s_1|o_0})$$

$$p(s_1 = 1 | o_1 = 1, o_0) = \frac{p(s_1 = 1, o_1 = 1, o_0)}{p(o_1 = 1, o_0)}$$

$$p(o_1 = 1, o_0) = p(o_1 = 1|o_0) \cdot p(o_0)$$

= $((1 - p_S) \cdot p_{s_1|o_0} + p_G \cdot (1 - p_{s_1|o_0})) \cdot p(o_0)$

$$p(s_1 = 1, o_1 = 1, o_0) = p(o_1 = 1 | s_1 = 1) \cdot p(s_1 = 1 | s_0 = 1) \cdot p(o_0 | s_0 = 1) \cdot p(s_0 = 1)$$

$$+ p(o_1 = 1 | s_1 = 1) \cdot p(s_1 = 1 | s_0 = 0) \cdot p(o_0 | s_0 = 0) \cdot p(s_0 = 0)$$

$$= (1 - p_s) \cdot p_{s_1 | o_0} \cdot p(o_0)$$

$$p(s_1 = 1 | o_1 = 1, o_0) = \frac{(1 - p_s) \cdot p_{s_1 | o_0}}{((1 - p_s) \cdot p_{s_1 | o_0} + p_G \cdot (1 - p_{s_1 | o_0}))}$$

Inference in BKT models $o_{t-1} = [o_0, ..., o_{t-1}]$

$$o_{t-1} = [o_0, \dots, o_{t-1}]$$

Equations for time t=0:

Equations for time steps t = 1, ..., T:

Belief about latent state before observation

$$p(s_0 = 1) = p_0$$

$$p_{s_t|o_{t-1}} = (1 - p_F) \cdot p_{s_{t-1}|o_{t-1}} + p_L \cdot (1 - p_{s_{t-1}|o_{t-1}})$$

Predicted observation at time t

$$p(o_0 = 1) = (1 - p_s) \cdot p_0 + p_G \cdot (1 - p_0)$$

$$p(o_0 = 0) = p_S \cdot p_0 + (1 - p_G) \cdot (1 - p_0)$$

$$p(o_t = 1 | o_{t-1}) = (1 - p_S) \cdot p_{s_t | o_{t-1}} + p_G \cdot (1 - p_{s_t | o_{t-1}})$$

$$p(o_t = 0 | o_{t-1}) = p_S \cdot p_{s_t | o_{t-1}} + (1 - p_G) \cdot (1 - p_{s_t | o_{t-1}})$$

Posterior: belief about latent state after observation

$$p_{s_0|1} = \frac{(1 - p_S) \cdot p_0}{(1 - p_S) \cdot p_0 + p_G \cdot (1 - p_0)}$$

$$p_{s_0|0} = \frac{p_S \cdot p_0}{p_S \cdot p_0 + (1 - p_G) \cdot (1 - p_0)}$$

$$p_{s_0|1} = \frac{(1 - p_S) \cdot p_0}{(1 - p_S) \cdot p_0 + p_G \cdot (1 - p_0)}$$

$$p_{s_0|0} = \frac{p_S \cdot p_0}{p_S \cdot p_0 + (1 - p_G) \cdot (1 - p_0)}$$

$$p_{s_0|0} = \frac{p_S \cdot p_0}{p_S \cdot p_0 + (1 - p_G) \cdot (1 - p_0)}$$

$$p_{s_0|0} = \frac{p_S \cdot p_{s_t|0_{t-1}}}{p_S \cdot p_0 + (1 - p_G) \cdot (1 - p_0)}$$

$$p_{s_t|0_0} = \frac{p_S \cdot p_{s_t|0_{t-1}}}{p_S \cdot p_{s_t|0_{t-1}} + (1 - p_G) \cdot (1 - p_{s_t|0_{t-1}})}$$

$$p_{s_t|0,o_{t-1}} = \frac{p_s \cdot p_{s_t|o_{t-1}}}{p_s \cdot p_{s_t|o_{t-1}} + (1 - p_G) \cdot (1 - p_{s_t|o_{t-1}})}$$

 $p_0 = 0.5$

 $p_{S} = 0.2$

 $p_G = 0.3$

 $p_L = 0.4$

 $p_F = 0.0$

0.5
$$p(s_0 = 1) = p_0$$

$$p(o_0 = 1) = (1 - p_s) \cdot p_0 + p_G \cdot (1 - p_0)$$

$$p(o_1 = 1 | \mathbf{o_0}) = (1 - p_S) \cdot p_{s_1 | \mathbf{o_0}} + p_G \cdot (1 - p_{s_1 | \mathbf{o_0}})$$
$$= 0.8 \cdot 0.53 + 0.3 \cdot 0.47$$

Two tasks need to be solved in practice

• Given a model with parameters $\theta = \{p_0, p_L, p_F, p_S, p_G\}$ and a sequence of observations $\mathbf{o} = [o_0, \dots, o_t]$ from a student s, predict o_{t+1}

• Given sequences of observations $\mathbf{o}=[o_0,\dots,o_T]$ of N students, learn the parameters $\theta=\{p_0,p_L,p_F,p_S,p_G\}$ that maximize the likelihood of the observed data

Parameter Learning

$$\theta = \{p_0, p_L, p_F, p_S, p_G\}$$

Student l_0 :

$$\mathbf{o}_{l_0} = [0,1,1]$$

•

Student
$$l_{N-1}$$
: $\mathbf{o}_{l_{N-1}} = [1,0,1,1,1,0,0,1,1,1]$

Student
$$l_N$$
: $\mathbf{o}_{l_N} = [0,1,0,1]$

 $\max_{\theta} p(o_{l_0}, \dots, o_{l_{N-1}}, o_{l_N})$

$$\theta = \{p_0, p_L, p_F, p_S, p_G\}$$

Student l_0 :

$$\mathbf{o}_{l_0} = [0,1,1]$$

Student l_{N-1} : $\mathbf{o}_{l_{N-1}} = [1,0,1,1,1,0,0,1,1,1]$

Student
$$l_N$$
: $\mathbf{o}_{l_N} = [0,1,0,1]$

 $\max_{\theta} \ \prod_{i=1}^{N} p(\boldsymbol{o_{l_i}})$

$$\theta = \{p_0, p_L, p_F, p_S, p_G\}$$

Student
$$l_0$$
: $p(\mathbf{o}_{l_0}) = \sum_{s} p(\mathbf{o}_{l_0}, s)$

Student
$$l_{N-1}$$
: $p(\mathbf{o}_{l_0}) = \sum_{s} p(\mathbf{o}_{l_0}, s)$

Student
$$l_N$$
: $p(\mathbf{o}_{l_0}) = \sum_s p(\mathbf{o}_{l_0}, s)$

$$\max_{\theta} \prod_{i=1}^{N} \sum_{s_{l_i}} p(\mathbf{o}_{l_i}, s_{l_i})$$

$$\theta = \{p_0, p_L, p_F, p_S, p_G\}$$

$$\max_{\theta} \prod_{i=1}^{N} \sum_{s_{l_i}} p(\mathbf{o}_{l_i}, s_{l_i}) \quad \Longrightarrow \quad \min_{\theta} -\sum_{i=1}^{N} \log \left(\sum_{s_{l_i}} p(\mathbf{o}_{l_i}, s_{l_i}) \right)$$

- Brute-Force Grid Search
- Expectation Maximization
- Gradient Descent
- Nelder-Mead Optimization

Your Turn – Evaluating a BKT model

- In the student notebook, you have:
 - A trained BKT model for six selected skills
 - A data frame containing the predictions of the BKT model for each observation in the test set
- Your task:
 - Compute the RMSE or AUC separately for each skill
 - Provide a visualization of the mean RMSE (or AUC) + standard deviation over all skills as well as the per skill RMSE (or AUC)

Summary – Why tracing knowledge?

- Is the student learning?
 - Measure what the student knows at a specific time t
 - More specifically: knowledge of the student about relevant knowledge components (skills)

- Choose the next appropriate activity
- Know which activities support learning

Summary - BKT

- Predict $p(o_{i_{s1},t}|o_0,...,o_{t-1})$, the probability that the student will solve task i_{s1} correctly at time step t
- Predict $p(s_{1,t}|o_0,...,o_{t-1})$, the probability that the student has mastered skill s_1 at time step t

Summary - Assumptions behind BKT

- Knowledge can be divided into different skills
- Definition of skills is accurate/detailed enough
- Each task corresponds to a single skill (original)
- There is **no** connection between the skills
- Mastery can be achieved through practice
- There is no forgetting: $p_F = 0$ (original)