1. Sheet 0

Exercise 1.1 (1). (1) Find rings R and S and a nonzero map $\varphi \colon R \to S$ such that

$$\varphi(a+b) = \varphi(a) + \varphi(b)$$
 and $\varphi(ab) = \varphi(a)\varphi(b)$

for all $a, b \in R$, but for which $\varphi(1_R) \neq 1_S$.

- (2) Describe the set $\operatorname{Hom}_{\mathrm{URing}}(\mathbb{Z}/m,\mathbb{Z}/n)$ for all possible choices of $n,m\in\mathbb{Z}_{\geq 0}$.
- (3) Let R be a ring. Prove that there is a bijective correspondence

$$\operatorname{Hom}_{\operatorname{URing}}\left(\mathbb{Z}\left[x\right],R\right)\cong R.$$

- (4) Prove that the abelian group $(\mathbb{Q}/\mathbb{Z}, +)$ does not admit a ring structure. Precisely, this means that for any operation $\circ: \mathbb{Q}/\mathbb{Z} \times \mathbb{Q}/\mathbb{Z} \to \mathbb{Q}/\mathbb{Z}$, the triplet $(\mathbb{Q}/\mathbb{Z}, +, \circ)$ does not satisfy the ring axioms.
- (5) Show that the set $\operatorname{Hom}_{\operatorname{URing}}(\mathbb{Z}/m,\mathbb{Z}/n)$ does in general not admit a ring structure.

Proof. (1) Choose $\varphi \colon \mathbb{Z}/2 \to \mathbb{Z}/4$ by $1 \mapsto 2$.

(2) Any map $\varphi \colon \mathbb{Z}/m \to \mathbb{Z}/n$ in URing must take $1 \mapsto 1$, and is uniquely determined thereby since $\varphi(k) = \varphi(1 + \ldots + 1) = \varphi(1) + \ldots + \varphi(1) = k$. Therefore, $0 = \varphi(m) = m$ in \mathbb{Z}/n , so $n \mid m$. And it is clear that if $n \mid m$, then $1 \mapsto 1$ is a well-defined ring homomorphism. Thus

$$\operatorname{Hom}_{\operatorname{URing}}\left(\mathbb{Z}/m,\mathbb{Z}/n\right) = \begin{cases} \left\{1 \mapsto 1\right\}, & n \mid m \\ \varnothing, & \text{otherwise} \end{cases}.$$

(3) We claim that the correspondence

$$\operatorname{Hom}_{\operatorname{URing}}\left(\mathbb{Z}[x],R\right)\to R$$
 $\varphi\mapsto\varphi(x)$

is bijective. Indeed, $\varphi(1)=1$ necessarily, so $\varphi(k)=k$ for all $k\in\mathbb{Z}$, so we simply have $\varphi\left(\sum\alpha_ix^i\right)=\sum\varphi\left(\alpha_i\right)\varphi(x)^i=\sum\alpha_i\varphi(x)^i$, so φ is uniquely determined by where it sends x. Furthermore, for any $r\in R$, define $\varphi_r\colon\mathbb{Z}\left[x\right]\to R$ by $x\mapsto r$. This extends uniquely to a ring homomorphism $\mathbb{Z}\left[x\right]\to R$.

- (4) Suppose $(\mathbb{Q}/\mathbb{Z}, +)$ admits a ring structure with multiplication \cdot . Let $\frac{a}{b} \in \mathbb{Q}/\mathbb{Z}$ be the unit. Then, in particular, $\frac{a}{b} \cdot \frac{1}{x} = \frac{1}{x}$ for all x, so $\left(\frac{a}{b} 1\right) \frac{1}{x} \in \mathbb{Z}$ for all x, meaning that any x divides $\frac{a}{b} 1$. Thus is only possible if $\frac{a}{b} = 1$. But $1 \in \mathbb{Z}$, so the unit is the zero element, so for any $\frac{x}{y} \in \mathbb{Q}/\mathbb{Z}$, we have $\frac{x}{y} = \frac{x}{y} \cdot 1 = 0$. Hence \mathbb{Q}/\mathbb{Z} becomes the zero ring, but then 1 does not act by the identity on any rational element in \mathbb{Q}/\mathbb{Z} .
- (5) By (2), $\operatorname{Hom}_{\operatorname{URing}}(\mathbb{Z}/m,\mathbb{Z}/n)$ is either a single map or empty, and as the empty set is not a ring, this Hom set in general does not admit a ring structure when it does, it must be the trivial one.

Exercise 1.2 (2). (1) Let A be a ring. How many \mathbb{Z} -algebra structures does A admit?

(2) Find rings R and A, such that A admits more than one R-algebra structure.

- (1) A admits a unique \mathbb{Z} -algebra structure since any ring homomorphism $\mathbb{Z} \to \mathbb{Z}$ A is uniquely determined by $1 \mapsto 1$.
- (2) Take $A = \mathbb{Z}[x]$ and R to be any ring with more than one element. By exercise 1.(c), $\operatorname{Hom}_{\operatorname{Ring}}(\mathbb{Z}[x], R) \cong R$, so R admits more than one R-algebra structure.

However, these structures could be isomorphic in the sense that there exists maps $\varphi, \psi \colon R \to R$ with $\varphi \psi = \mathrm{id} = \psi \varphi$ and composing one algebra structure $\mathbb{Z}[x] \to R$ with φ gives ψ and vice versa.

So we must find explicit examples which are non-isomorphic. Define $f,g:\mathbb{Z}[x]\to\mathbb{Z}/6$ by f(x)=2 and g(x)=3. Now, there is no ring homomorphism $\varphi \mathbb{Z}/6 \to \mathbb{Z}/6$ such that $\varphi \circ f = g$ since $0 = \varphi(0) = g$ $\varphi \circ f(3x) = g(3x) = 3$ gives a contradiction.

Exercise 1.3 (3). This is just the 4th isomorphism theorem for ideals of rings. Define a map $\pi: A \to B$ by sending $A \to \overline{A} = A + I$.

Suppose $\pi(A) = \pi(B)$. Then for any $a \in A$, there exists $b \in B$ such that $a - b \in A$ $I \subset A \cap B$, hence $a, b \in A \cap B$. Thus $A \subset B \subset A$, so A = B.

Now, suppose $V \in \mathcal{B}$. Let $A = \pi^{-1}(V)$. This is an ideal containing I. If $a, b \in A$ then $\pi(a), \pi(b) \in V$ so $\pi(ab) = \pi(a)\pi(b) \in V$, hence $ab \in \pi^{-1}(V)$. Similar closure for the rest. And if $r \in R$ then $\pi(ar) = \pi(a)\pi(r) \in V$ as $\pi(a) \in V$ and V is an ideal, so $ar \in A$, hence A is an ideal. This gives surjectivity.

Exercise 1.4 (4). $(2,x) \subset \mathbb{Z}[x]$ is not principle as an ideal generated over \mathbb{Z} . If (2,x)=(p(x)), then $p(x) \mid 2$ implies that that the degree of p is 0. Now let q(x) be such that p(x)q(x) = x and h(x) such that p(x)h(x) = 2. Then the degree of h is 0 and that of q is 1. Furthermore, as $p \in (2, x)$, we must have either p(x) = 2k(x)or p(x) = xl(x). But this implies that either 2k(x)q(x) = x, so $2 \mid x$ in $\mathbb{Z}[x]$, which is impossible, or xl(x)h(x)=2, so $x\mid 2$ in $\mathbb{Z}[x]$ which is impossible by degree as \mathbb{Z} is an integral domain. Hence we obtain a contradiction.

Exercise 1.5 (5). (1) Let I, J be ideals in a ring R. Show that we always have the inclusion of ideals

$$(I+J)(I\cap J)\subset IJ\subset I\cap J\subset I+J.$$

- (2) For each of the inclusions above, find an example where it is a proper inclusion.
- (3) Show that if I + J = R, then all the inclusions above are in fact equalities.
- (4) Prove the following generalization of the Chinese Remainder Theorem. Given a ring R and finitely many ideals $\{I_1, \ldots, I_n\}$ in R, such that for each pair $1 \le i \ne j \le n$, one has $I_i + I_j = R$. Let

$$I = \bigcap_{i} I_i$$

 $I = \bigcap_i I_i.$ Construct an isomorphism of rings

$$\prod R/I_i \cong R/I.$$

Proof. (1) Recall that $(I + J) = (I \cup J)$ and that for ideals $N, M, NM = (nm \mid n \in N, m \in M)$. If $x \in (I+J)$ $(I \cap J)$, then $x = \sum \alpha_i \beta_i$ where $\alpha_i \in (I+J)$ and $\beta_i \in (I \cap J)$. So let $\alpha_i = \sum c_{ij}$ where c_{ij} is in I or in J. Writing $\beta_i = \sum e_i$ where $e_i \in I \cap J$, we have $x = \sum c_{ij}e_k$. If c_{ij} is in I, then $c_{ij}e_k \in IJ$ since $e_k \in J$, and similarly if $c_{ij} \in J$.

Next assume $x \in IJ$, so $x = \sum c_i d_i, c_i \in I, d_i \in J$. Since I and J are ideals, each $c_i d_i \in I \cap J$, hence $IJ \subset I \cap J$.

Lastly, $x \in I \cap J$ then $x \in I, J$ so also in $I \cup J$, hence $x \in I + J$.

- (2) Let $R=\mathbb{Z}[x]$. Then Let $I=(2x), J=(3x^2)$. Then $I+J=(2x,3x^2)$ while $I\cap J=(6x^2)$. Then $(I+J)(I\cap J)=(12x^3,18x^4)$ while $IJ=(6x^3)$, so the containment is clearly proper as $6x^3$ is not in $(I+J)(I\cap J)$. Next, if I=(x)=J, then $IJ=(x^2)$ is properly contained in $(x)=I\cap J$. Lastly, if I=(2x) and J=(3x), then $I\cap J=(6x)$ while I+J=(x) since $3x-2x=x\in I+J$.
- (3) Suppose I+J=R. Since $1 \in I+J$ then, it suffices to show that $I+J \subset I \cap J$. Let M be the set of elements of I+J which are not in $I \cap J$. Suppose $x \in M$
- **Exercise 1.6** (7). (1) Surjectivity amounts to finding an $f \in K[x_1, \ldots, x_n]$ such that f(y) = k for some arbitrary $k \in K$. Consider the map $f(x_1, \ldots, x_n) = k + (x_1 y_1) \ldots (x_n y_n)$. Or the constant polynomial at k works also. Now, $\varphi_y(f+g) = (f+g)(y) = f(y) + g(y) = \varphi_y(f) + \varphi_y(g)$, and $\varphi_y(fg) = \varphi_y(f)\varphi_y(g)$ is seen likewise.

That it is a homomorphism of K-algebras (with the standard K-algebra structure) amounts to showing that $\varphi_y(k) = k$ which is clear.

(2) Let $\varphi \colon K[x_1, \dots, x_n] \to K$ be a ring homomorphism. Let $y_i = \varphi(x_i)$. Then $\varphi(\sum a_I x_I) = \sum \varphi(a_I) y_I = \varphi_{y_I}(\sum a_I x_I)$ (for this we need φ to be a K-algebra homomorphism of with $K[x_1, \dots, x_n]$ in the standard structure. Is there a different way of arguing?)

2. Sheet 1

Exercise 2.1 (1). Proof. (i) We claim that $(x^2 + 1)$ is a radical, prime and maximal ideal in $\mathbb{R}[x]$. This can be seen by noting that $\mathbb{R}[x]/(x^2 + 1) \cong \mathbb{C}$ which is a field. Hence $(x^2 + 1)$ is maximal. Suppose $f^n \in (x^2 + 1)$. Since $x^2 + 1$ is irreducible and $x^2 + 1 \mid f^n$, we must have $x^2 + 1 \mid f$, hence $f \in (x^2 + 1)$, so $\sqrt{(x^2 + 1)} = (x^2 + 1)$. Over $\mathbb{C}[x]$, we claim that $(x^2 + 1)$ is neither prime nor maximal, but still radical. It is not prime as $x^2 + 1 = (x + i)(x - i)$ and hence also not maximal since $(x^2 + 1) \subset (x + i) \neq \mathbb{C}[x]$, where inequality follows from (x + i) only having polynomials of degree ≥ 1 . Now suppose $f^n \in (x^2 + 1)$. Then $x + i, x - i \mid f^n$, hence both must divide f as

Now suppose $f^n \in (x^2 + 1)$. Then $x + i, x - i \mid f^n$, hence both must divide f as they are irreducible, so $x^2 + 1 \mid f$. Thus $f \in (x^2 + 1)$, so $\sqrt{(x^2 + 1)} = (x^2 + 1)$ over $\mathbb{C}[x]$ as well.

- (ii) Since $(x^2 + 1)$ is a prime ideal in $\mathbb{R}[x]$ by the previous exercise, we find by Eisenstein's criterion that $y^2 + x^2 + 1$ is irreducible in $\mathbb{R}[x][y] =: \mathbb{R}[x, y]$.
- (iii) Let $C = \{ f \in C(\mathbb{R}^2, \mathbb{R}) \mid \forall x \in \mathbb{R} \colon f(x, 0) = 0 \} \subset C(\mathbb{R}^2, \mathbb{R})$. We claim that C is radical, but neither prime nor maximal.

To see that it is radical, suppose $g^n \in C$, so $g(x,0) \cdot \ldots \cdot g(x,0) = g^n(x,0) = 0$. Since $\mathbb R$ is an integral domain, this forces g(x,0) = 0, so $g \in C$. Thus $\sqrt{C} = C$. Now let $h(x) = \mathbb{1}_{\geq 0}(x)x$ and $k(x) = \mathbb{1}_{\leq 0}(x)x$. Then $h, k \notin C$, but $hk \in C$. Therefore, C is not prime. Since $C(\mathbb R^2, \mathbb R)$ is a commutative ring and maximal ideals are prime over a commutative ring, we thus also conclude that C is not maximal.

(iv) The ideal (5) in $\mathbb{Z}[i]$ is not prime, hence not maximal as $\mathbb{Z}[i]$ is commutative. It is not prime because 5 = (2+i)(2-i).

For the radical part, if $a + bi \in \sqrt{(5)}$, then $(2+i)(2-i) \mid (a+bi)^n$, so $2+i \mid a+bi$ and $2-i \mid a+bi$ since each is irreducible, hence $5 \mid a+bi$, so $\sqrt{(5)} = (5)$.

(v) We claim that $(n) \subset \mathbb{Z}$ is prime and maximal whenever n is a prime and not otherwise. If n is not prime, then writing n = ab for a, b > 1, we have (n) = (a)(b), so (n) is not prime, hence not maximal as \mathbb{Z} is commutative so all maximal ideals are prime ideals. If instead n is a prime, n = p, then (p) is both maximal and prime since \mathbb{Z}/p is a field.

Suppose now $m \in \sqrt{(n)}$. Then $m^k \in (n)$, so $m^k = nq$ for some $q \in \mathbb{Z}$. Suppose n is squarefree. Let $p \mid n$. Then $p \mid m^k$ and thus $p \mid m$, so $n \mid m$, hence $m \in (n)$. Conversely, if n is not squarefree, then letting $n = p^k q$ for some k > 1, we have $p^{k-1}q \in \sqrt{(n)}$ while $p^{k-1}q \notin (n)$, so (n) is not radical.

Exercise 2.2 (2). Let $n \in \mathbb{N}$. We denote the set of orthogonal matrices on \mathbb{R}^n by

$$O\left(\mathbb{R}^{n}\right) = \left\{ A \in \mathbb{R}^{n \times n} \mid A^{T} A = I_{n} \right\}$$

Write $R = \mathbb{R}[x_{ij} \mid i, j = 1, ..., n]$ for the polynomial ring in variables $X = (x_{ij})_{i,j=1,...,n}$.

(1) Show that $O(\mathbb{R}^n)$ is the zero set $\mathbb{V}(I)$ of the ideal $I = (\{f_{ij} \mid i, j = 1, \dots, n\})$ of R where

$$f_{i,j} = \sum_{k=1}^{n} x_{ki} x_{kj}$$
 for $i \neq j$ and $f_{ii} = \sum_{k=1}^{n} x_{ki}^{2} - 1$.

(2) Show that $O(\mathbb{R}^n)$ is also the real zero set of the ideal J=(g,h) generated by the polynomials $g=\det(X)^2-1$ and $h=\sum_{i,j=1}^n x_{ij}^2-n$.

Proof. (a) We know that $A = (\alpha_{ij}) \in O(\mathbb{R}^n)$ if and only if $A^T A = I$. Taking entries of either side of this equality, we get that A is orthogonal if and only if both of the following conditions hold:

$$0 = (A^{T}A)_{ij} = \sum_{k=1}^{n} (A^{T})_{ik} A_{kj} = \sum_{k=1}^{n} \alpha_{ki} \alpha_{kj}$$
$$1 = (A^{T}A)_{ii} = \sum_{k=1}^{n} \alpha_{ki}^{2}.$$

That is, $A \in O(\mathbb{R}^n)$ if and only if $A \in \mathbb{V}(I)$ where we identify $R \cong M_n(\mathbb{R})$ by $\sum \alpha_{ij} x_{ij} \mapsto (\alpha_{ij})$.

(b) Firstly, suppose $A \in O(\mathbb{R}^n)$. Then $A^T A = I$. Therefore, $\det(A)^2 - 1 = I$

 $\det(A^T)\det(A) - 1 = \det(A^TA) - 1 = \det(I) - 1 = 0$, so g(A) = 0. And now

$$n = \text{tr}(I) = \text{tr}(A^T A) = \sum_{k=1}^{n} (A^T A)_{kk} = \sum_{k,r=1}^{n} \alpha_{rk}^2$$

hence also h(A) = 0. Therefore $O(\mathbb{R}^n) \subset \mathbb{V}(J)$.

Conversely, suppose $A = (\alpha_{ij}) \in \mathbb{V}(J)$. Firstly, note that since

$$x^{T}A^{T}Ax = (Ax)^{T}Ax = ||Ax||^{2} > 0,$$

the matrix A^TA is positive semi-definite, hence all its eigenvalues are non-negative real numbers. In particular, $\sqrt[n]{\Pi_{i=1}^n \lambda_i}$ is well-defined where $\lambda_1, \ldots, \lambda_m$ are the eigenvalues of A^TA listed with repetition, and we can apply the AMGM inequality. Recall that the AMGM inequality tells us that

$$\frac{\sum_{i} \lambda_{i}}{n} \geq \sqrt[n]{\prod_{i} \lambda_{i}}$$

with equality if and only if all the λ_i are equal. But by Jordan normal form, $\operatorname{tr}(A^TA) = \sum_i \lambda_i$, and $\operatorname{det}(A^TA) = \prod_i \lambda_i$, so we obtain

$$\operatorname{tr}(A^T A) \ge n \det (A^T A)$$

with equality if and only if all eigenvalues are equal. But since $A \in \mathbb{V}(J)$, we have g(A) = 0, so $\det(A^T A) = \det(A)^2 = 1$. Likewise,

$$\operatorname{tr}(A^{T}A) = \sum_{k=1}^{n} (A^{T}A)_{kk} = \sum_{k,r=1}^{n} \alpha_{rk}^{2} = h(A) + n = n$$

Thus we get

$$n = \operatorname{tr}(A^T A) \ge n \det(A^T A) = n$$

so we conclude that, since we have equality between the two sides, all eigenvalues of A^TA must be equal. Now since A^TA is self-adjoint, it is in particular diagonable, hence it has precisely n eigenvalues counted with multiplicity. Therefore, it has one eigenvalue with multiplicity n. Letting wlog λ denote this eigenvalue, we get

$$n\lambda = \operatorname{tr}(A^T A) = n$$

so $\lambda = 1$ since \mathbb{R} is an integral domain. To see that this forces A^TA to be I, we note that since A^TA is diagonable, we can find some invertible linear map $P \in \operatorname{GL}_n(\mathbb{R})$ such that $PA^TAP^{-1} = I$, implying $A^TA = I$. Thus A is orthogonal, so $A \in O(\mathbb{R}^n)$. This gives the inclusion $\mathbb{V}(J) \subset O(\mathbb{R}^n)$.

Exercise 3.1 (2). Let R be a Noetherian ring. Show that every ideal of R is a finite intersection of irreducible ideals.

Proof. Let \mathcal{A} be the set of ideals of R which are not a finite intersection of irreducible ideals. Suppose $\{X_i\} = \mathcal{X} \subset \mathcal{A}$ is a chain with respect to inclusion. Then since R is Noetherian, this chain stabilizes, hence it has an upper bound. Thus \mathcal{A} has a maximal element, call it M. Now, M is not a finite intersection of irreducible ideals, so in particular, M is not irreducible, so write $M = I \cap J$ where I and J contain M properly. But then $I, J \notin \mathcal{A}$, so they are finite intersections of irreducible ideals. However, then their intersection is also a finite intersection of irreducible ideals. \square

Exercise 3.2 (3). Let R be a ring. Show that an ideal \mathfrak{B} of R is a prime ideal if and only if for all ideals I and J of R, $IJ \subset \mathfrak{B}$ implies $I \subset \mathfrak{B}$ or $J \subset \mathfrak{B}$.

Proof. If \mathcal{B} is a prime ideal, then suppose $IJ \subset \mathcal{B}$, and suppose $I \not\subset \mathcal{B}$. Then there exists some $i \in I$ such that $i \notin \mathcal{B}$ but $iJ \subset \mathcal{B}$. Since \mathcal{B} is prime, we must have that $J \subset \mathcal{B}$.

Conversely, suppose that for all $I, J, IJ \subset \mathcal{B}$ implies $I \subset \mathcal{B}$ or $J \subset \mathcal{B}$. Let $a, b \in R$ such that $ab \in \mathcal{B}$. Then

 $(a)\,(b)\subset\mathcal{B}$, so either $(a)\subset\mathcal{B}$ or $(b)\subset\mathcal{B}$, so either $a\in\mathcal{B}$ or $b\in\mathcal{B}$. So \mathcal{B} is prime.

Exercise 3.3 (4). Let R_S be the localization of the integral domain R by a multiplicative subset S which does not contain 0. Let \mathfrak{U} be a primary ideal of R. Show that the extension $\mathfrak{U}R_S$ is a primary ideal of R_S and that $R \cap \mathfrak{U}R_S = \mathfrak{U}$.

Proof. Let $\tau\colon R\to R_S=(R-S)^{-1}R$. Recall that $\mathfrak{U}R_S=(\tau(\mathfrak{U}))$. Suppose $ab\in\mathfrak{U}R_S$. Then there exists $\sum\alpha_iu_i\in\mathfrak{U}$ such that $ab=\sum\alpha_i\tau(u_i)=\sum\alpha_i\frac{u_i}{1}$. We can write $a=\frac{x}{y}$ and $b=\frac{v}{w}$. Then $xv\in\mathfrak{U}$, so either $x\in\mathfrak{U}$, in which case $\frac{x}{y}\in\mathfrak{U}R_S$, or $v^n\in\mathfrak{U}$, in which case $\left(\frac{v}{w}\right)^n\in\mathfrak{U}R_S$ since S is multiplicative, so $w^n\in S$. Thus $a\in\mathfrak{U}R_S$ or $b^n\in\mathfrak{U}R_S$. Hence $\mathfrak{U}R_S$ is primary in R_S .

Now recall that $R \cap \mathfrak{U}R_S$ denote the contraction of $\mathfrak{U}R_S$ along τ , i.e., $R \cap \mathfrak{U}R_S = \tau^{-1}(\mathfrak{U}R_S)$. Clearly, $\mathfrak{U} \subset R \cap \mathfrak{U}R_S$. Conversely, suppose $a \in \tau^{-1}(\mathfrak{U}R_S)$. Then $\frac{a}{1} \in \mathfrak{U}R_S$, so $\frac{a}{1} = \sum \alpha_i \frac{u_i}{1}$. So there exists some $r \in R - S$ such that $ra = r \sum \alpha_i u_i$. So since $r \neq 0$ as $0 \notin S$, we have $a = \sum \alpha_i u_i$ since R is an integral domain. Thus $a \in \mathfrak{U}$.

Exercise 3.4 (5). Let R be a ring and \mathfrak{U} a \mathfrak{B} -primary ideal. Show the following.

- (1) For all $x \in \mathfrak{U}$, we have $(\mathfrak{U}: x) = R$.
- (2) For all $x \in R \mathfrak{U}$, we have that $(\mathfrak{U}: x)$ is \mathfrak{B} -primary.
- (3) For all $x \in R \mathfrak{B}$, we have that $(\mathfrak{U}: x) = \mathfrak{U}$.
- (4) If R is Noetherian, then there is some $x \in R \mathfrak{U}$ such that $(\mathfrak{U}: x) = \mathfrak{B}$.

Proof. So $\sqrt{\mathfrak{U}} = \mathfrak{B}$ by assumption.

- (1) Since \mathfrak{U} is an ideal, $x\mathfrak{U} \subset \mathfrak{U}$ for all $x \in R$, so for all $x \in \mathfrak{U}$, $(\mathfrak{U}: x) = R$.
- (2) Suppose $a \in \sqrt{(\mathfrak{U}: x)}$, so $a^n x \in \mathfrak{U}$. Since \mathfrak{U} is primary, either $x \in \mathfrak{U}$, which we have assumed it is not, or $a^{nm} \in \mathfrak{U}$ for some m. Hence the latter must be true. So $a \in \sqrt{\mathfrak{U}} = \mathfrak{B}$.

Hence $\sqrt{(\mathfrak{U}:x)} \subset \mathfrak{B}$. Conversely, suppose $a \in \mathfrak{B}$, so $a^n \in \mathfrak{U}$. So for any $x \in R - \mathfrak{U}$, we have $a^n x \in \mathfrak{U}$, so $a \in \sqrt{(\mathfrak{U}:x)}$.

- (3) Suppose $x \in R \mathfrak{B}$. Now if $y \in \mathfrak{U}$ then $xy \in \mathfrak{U}$, so $y \in (\mathfrak{U} : x)$. Conversely, suppose $y \in (\mathfrak{U} : x)$. So $xy \in \mathfrak{U}$, so since $x \notin \mathfrak{B} = \sqrt{\mathfrak{U}}$, we must have that $y \in \mathfrak{U}$.
- (4) Let n be minimal such that $\mathfrak{B}^n \subset \mathfrak{U}$. Let $x \in \mathfrak{B}^{n-1} \mathfrak{U}$. We claim $(\mathfrak{U} : x) = \mathfrak{B}$. For $b \in \mathfrak{B}$, we have $bx \in \mathfrak{B}^n \subset \mathfrak{U}$, so $b \in (\mathfrak{U} : x)$. Conversely, if $bx \in \mathfrak{U}$, then since $x \notin U$, we have $b^m \in \mathfrak{U}$, so $b \in \sqrt{U} = \mathfrak{B}$.

4. Assignment 2

Exercise 4.1. Given two local rings (R, \mathfrak{m}) and (S, \mathfrak{n}) be local rings. A ring homomorphism $f \colon R \to S$ is called a local homomorphism if the image of \mathfrak{m} under f is contained in \mathfrak{n} .

- (1) Let $g: A \to B$ be a ring homomorphism between two arbitrary rings and let $\mathfrak{p} \subset B$ and $\mathfrak{q} = g^{-1}(\mathfrak{p}) \subset A$ be prime ideals. Show that g localizes to a ring homomorphism $A_{\mathfrak{q}} \to B_{\mathfrak{p}}$ to be more precise, let $\pi_A \colon A \to A_{\mathfrak{q}}$ and $\pi_B \colon B \to B_{\mathfrak{p}}$ be the natural ring homomorphisms from the rings to their localizations. You need to construct a ring homomorphism $g' \colon A_{\mathfrak{q}} \to B_{\mathfrak{p}}$ such that $\pi_B \circ g = g' \circ \pi_A$. Show that the map g' you construct is a local homomorphism.
- (2) Find a ring homomorphims between local rings which is not a local homomorphism.

Proof. (1) Consider the diagram

$$\begin{array}{ccc}
A & \xrightarrow{g} & B \\
 & & \downarrow^{\pi_B} \\
A_{\mathfrak{q}} & \xrightarrow{---} & B_{\mathfrak{p}}
\end{array}$$

Note that by the universal property of localizations, the map g' exists if and only if $\pi_B \circ g((A - \mathfrak{q})) \subset B_{\mathfrak{p}}^{\times} = (R - \mathfrak{p})_{\mathfrak{p}}$. Let $a \in A - \mathfrak{q}$. By assumption, $g(a) \notin \mathfrak{p}$, so $\pi_B(g(a)) = \frac{g(a)}{1} \in (R - \mathfrak{p})_{\mathfrak{p}}$. This gives the existence of g'.

Next we show that g' is a local homomorphism. Note that $A_{\mathfrak{q}}$ and $B_{\mathfrak{p}}$ are local rings with unique maximal ideals $\mathfrak{q}_{\mathfrak{q}}$ and $\mathfrak{p}_{\mathfrak{p}}$, respectively. Thus, to show that g' is a local homomorphism, we must show that $g'(\mathfrak{q}_{\mathfrak{q}}) \subset \mathfrak{p}_{\mathfrak{p}}$. Explicitly,

$$\begin{split} \mathfrak{q}_{\mathfrak{q}} &= \left\{ \frac{a}{b} \in A_{\mathfrak{q}} \colon a \in \mathfrak{q} \right\} \\ \mathfrak{p}_{\mathfrak{p}} &= \left\{ \frac{a}{b} \in B_{\mathfrak{p}} \colon a \in \mathfrak{q} \right\}. \end{split}$$

Let $x \in \mathfrak{q}_{\mathfrak{q}}$, so there exist $a \in \mathfrak{q}$ and $b \in A - \mathfrak{q}$ such that $x = \frac{a}{b}$. Then $\frac{a}{b} = \pi_A(a)\pi_A(b)^{-1}$, so $g'\left(\frac{a}{b}\right) = g' \circ \pi_A(a)\left(g' \circ \pi_A(b)\right)^{-1} = \pi_B \circ g(a)\left(\pi_B \circ g(b)\right)^{-1} = \frac{g(a)}{g(b)}$ where we can invert by g(b) since $g(b) \in B - \mathfrak{p}$ as $b \in A - \mathfrak{q}$ and $\mathfrak{q} = g^{-1}(\mathfrak{p})$. Since $g(b) \in B - \mathfrak{p}$ and $g(\mathfrak{q}) \subset \mathfrak{p}$, so $g(a) \in \mathfrak{p}$, we have $\frac{g(a)}{g(b)} \in \mathfrak{p}_{\mathfrak{p}}$, so $g'(x) \in \mathfrak{p}_{\mathfrak{p}}$, hence $g(\mathfrak{q}_{\mathfrak{q}}) \subset \mathfrak{p}_{\mathfrak{p}}$.

(2) The ring $\mathbb{Z}_{(p)}$ is local and \mathbb{Q} being a field is also local. However, the inclusion $\mathbb{Z}_{(p)} \hookrightarrow \mathbb{Q}$ is not a local homomorphism since $\frac{p}{1}$ is not mapped to 0, for example. \square

5. Assignment 3

Exercise 5.1. Let R be a Noetherian ring. Show the following

- (1) For every ideal $I \subset R$, there exists $n \in \mathbb{N}$ such that $(\sqrt{I})^n \subset I$.
- (2) Every radical ideal of R is a finite intersection of prime ideals.
- (3) If a radical ideal of R is irreducible, then it is a prime ideal.

Proof. (1) Since $I \subset \sqrt{I}$ are sub-R-modules of R considered as a module over itself, we find that \sqrt{I} must be finitely generated, so let $\sqrt{I} = \langle x_1, \ldots, x_n \rangle$, and by assumption, there exist $\alpha_1, \ldots, \alpha_n$ such that $x_i^{\alpha_i} \in I$. Let $\alpha = \alpha_1 + \ldots + \alpha_n$. Now let $x \in \sqrt{I}$ and write $x = \sum_i c_i x_i$. Then any term in x^{α} will contain some x_i to the power of at least α_i by the pigeonhole principle. Since I is an ideal, the whole term is in I, so again, ideals are closed under sums, so $x^{\alpha} \in I$. Since x was arbitrary, we

find that $\left(\sqrt{I}\right)^{\alpha} \subset I$.

(2) Let I be a radical ideal of R, so $\sqrt{I} = I$. By theorem 7.19 (Primary decomposition), I is the finite intersection of primary ideals, so

$$I = \mathfrak{p}_1 \cap \ldots \cap \mathfrak{p}_{\mathfrak{n}}$$

where each \mathfrak{p}_i is primary.

Lemma 5.2. For an ideal $J = J_1 \cap ... \cap J_n$, we have

$$\sqrt{J} = \sqrt{J_1} \cap \ldots \cap \sqrt{J_n}$$

Proof. Suppose $x \in \sqrt{J}$ so $x^i \in J = J_1 \cap \ldots \cap J_n$, then $x^i \in J_j$ for all j so $x \in \sqrt{J_j}$ for all J, so $x \in \sqrt{J_1} \cap \ldots \cap \sqrt{J_n}$. Conversely, if $x \in \sqrt{J_1} \cap \ldots \cap \sqrt{J_n}$ then there exist $\alpha_1, \ldots, \alpha_n$ such that $x^{\alpha_i} \in J_i$. Let $\alpha = \max_i \{\alpha_i\}$. Then $x^{\alpha} \in J_1 \cap \ldots \cap J_n = J$, so $x \in \sqrt{J}$.

Hence we obtain

$$I = \sqrt{I} = \sqrt{\mathfrak{p}_1} \cap \ldots \cap \sqrt{\mathfrak{p}_n}.$$

To finish it off, we note that by Lemma 7.11, each $\sqrt{p_i}$ is prime.

(3) Suppose $I \subset R$ is a radical ideal which is irreducible. By Lemma 7.16, I is primary, and now by Lemma 7.11, $I = \sqrt{I}$ is prime.

Exercise 5.3. Let $V \subset K^n$ be an affine algebraic set. Show the following.

- (1) V is irreducible if and only if $\mathbb{I}(V)$ is a prime ideal.
- (2) V can be written as a finite union of irreducible affine algebraic sets.
- (3) There is a minimal decomposition $V = V_1 \cup \ldots \cup V_m$ of V into irreducible affine algebraic sets V_i , where $m \in \mathbb{N}_0$. This is meant in the sense that no V_i is contained in $\bigcup_{j \neq i} V_j$.
- (4) The minimal decomposition $V = V_1 \cup ... \cup V_m$ is unique, up to reordering of $V_1, ..., V_m$. We call $V_1, ..., V_m$ the irreducible components of V.

Proof. (1) Since $V \subset K^n$ is an affine algebraic set, there exists some ideal $I \subset k [x_1, \ldots, x_n]$ such that $V = \mathbb{V}(I)$. Suppose $V = V_1 \cap V_2$ with both V_1 and V_2 being affine algebraic sets properly containing V. Then $\mathbb{I}(V) \subset \mathbb{I}(V_1) \cap \mathbb{I}(V_2)$ since any polynomial vanishing on V must vanish on both V_1 and on V_2 . But now any prime ideal is irreducible, so $\mathbb{I}(V_1) = \mathbb{I}(V)$ or $\mathbb{I}(V_2) = \mathbb{I}(V)$. Suppose without loss of generality that $\mathbb{I}(V_2) = \mathbb{I}(V)$. Then $V_2 = \mathbb{V}(\mathbb{I}(V_2)) = \mathbb{V}(\mathbb{I}(V)) = V$. For this, we need to show that $\mathbb{V}(\mathbb{I}(W)) = W$ when W is an affine algebraic set. But $\mathbb{I}(\mathbb{V}(U)) \subset U$ always, so since \mathbb{V} is containment-reversing, we get $W = \mathbb{V}(U) \subset \mathbb{V}(\mathbb{I}(W))$. For the opposite direction, we simply have that if $x \in \mathbb{V}(\mathbb{I}(W))$, then any $f \in \mathbb{I}(W) = \mathbb{I}(\mathbb{V}(U)) \subset U$ vanishes on x. Suppose $x \notin W = \mathbb{V}(U)$. Then there exists some $g \in U$ such that $g(x) \neq 0$. But $g \in \mathbb{I}(\mathbb{V}(U)) = \mathbb{I}(W)$ by definition which gives a contradiction. Hence $\mathbb{V}(\mathbb{I}(W)) \subset W$. Having concluded that $V = V_1$ or $V = V_2$, this shows that V is irreducible.

A faster way to see this, I suppose would be the following: If $V = V_1 \cup V_2$, then $\mathbb{I}(V_1) \cap \mathbb{I}(V_2) \subset \mathbb{I}(V)$, showing that $\mathbb{I}(V)$ is not irreducible, contradicting lemma 7.3.

Conversely, if $\mathbb{I}(V)$ is not prime, let $fg \in \mathbb{I}(V)$ such that $f,g \notin \mathbb{I}(V)$. Then $V = \mathbb{V}(\mathbb{I}(V)) \subset \mathbb{V}((f)(g)) \subset \mathbb{V}(f) \cap \mathbb{V}(g)$ using that \mathbb{V} is inclusion-reversing. Now by assumption, if $V = \mathbb{V}(f)$, then f would vanish on all of V, contradicting $f \notin \mathbb{I}(V)$. Similarly for g. Hence V is shown to not be irreducible.

(2) Since V is an affine algebraic set, there exists an ideal I such that $V = \mathbb{V}(I)$. Now, $I \subset k[x_1, \ldots, x_n]$ which is Noetherian by applying Hilbert's basis theorem iteratively since a field is Noetherian (having only (0) and itself as ideals) considered as k-modules. This in particular gives us a decomposition

$$I = \mathfrak{p}_1 \cap \ldots \cap \mathfrak{p}_n$$

where each \mathfrak{p}_i is primary. Hence

$$\mathbb{V}(I) = \mathbb{V}(\mathfrak{p}_1) \cup \ldots \cup \mathbb{V}(\mathfrak{p}_n)$$
.

To show that $\mathbb{V}(\mathfrak{p}_i)$ is irreducible, we can show that $\mathbb{I}(\mathbb{V}(\mathfrak{p}_i))$ is a prime ideal. This can be easily achieved if we may use Nullstellensatz since then $\mathbb{I}(\mathbb{V}(\mathfrak{p}_i)) = \sqrt{\mathfrak{p}_i}$ which is prime by Lemma 7.11.

(3) By part (2), V can be decomposed as $V = V_1 \cup ... \cup V_n$ where each V_i is an irreducible affine algebraic set. Suppose now that $V_1 \subset \bigcup_{i=2}^n V_i$. But then

$$V_1 = \bigcup_{i=2}^n \left(V_1 \cap V_i \right).$$

Now, the intersection of affine algebraic sets is still an affine algebraic set since $\mathbb{V}(I_1) \cap \mathbb{V}(I_2) = \mathbb{V}(I_1 \cup I_2)$. Similarly, a union of finitely many affine algebraic sets is also an affine algebraic set since $\mathbb{V}(I_1 \cdots I_n) = \mathbb{V}(I_1) \cap \ldots \cap \mathbb{V}(I_n)$. So by irreducibility of V_1 , either $V_1 = V_1 \cap V_2$ or $V_1 = \bigcup_{i=3}^n V_i \cap V_i$. Inductively, we obtain that for some $i \geq 2$, $V_1 = V_1 \cap V_2$, i.e., $V_1 \subset V_2$. Hence we may discard V_1 from the collection, so $V = V_2 \cup \ldots \cup V_n$. Thus if we have a collection $V = V_1 \cup \ldots \cup V_n$ such that $V_i \subset \bigcup_{j \neq i} V_j$, then we can simply discard V_i . We can continue to do so and after at most n-1 steps, we will obtain a minimal decomposition.

(4) Suppose

$$V = V_1 \cup \ldots \cup V_m = W_1 \cup \ldots \cup W_n$$

are two minimal decompositions. Then $W_i \subset V_1 \cup \ldots \cup V_m$, so

$$W_i = \bigcup_{j=1}^m V_j \cap W_i$$

By part (3), this is a union of affine algebraic sets, so we completely equivalently obtain that $W_i = V_j \cap W_i$ for some j. Hence $W_i \subset V_j$. For each i, let j_i be such that $W_i \subset V_{j_i}$. Repeating this the other way around, we obtain i_k such that $V_k \subset W_{i_k}$. Now $V_k \subset W_{i_k} \subset V_{j_{i_k}}$. So since the decomposition is minimal, we must have $k = j_{i_k}$, so $V_k = W_{i_k}$ for all k. This in particular gives an injective map $\{1, \ldots, m\} \to \{1, \ldots, n\}$, so $m \leq n$. And similarly, $W_i = V_{j_i}$ for all i, so we similarly get $n \leq n$. This implies that m = n and that indeed the decompositions are the same up to reordering, namely by the reordering $\sigma \colon k \mapsto i_k$ giving $V_k = W_{\sigma(k)}$. \square

6. Assignment 4

Exercise 6.1 (2). Which of the following modules are flat over the corresponding rings? Justify your answer

- (1) $R = \mathbb{C}[x, y]$ and the module is $I = (x, y) \subset R$.
- (2) $R = \mathbb{C}[x]/(x^2)$ and the module is $I = (x) \subset R$.
- (3) $R = \mathbb{C}[x]$ and the module is the ring $\mathbb{C}[y]$ considered as an R-module by ring homomorphism $\mathbb{C}[x] \to \mathbb{C}[y] : x \mapsto y^2$.
- (4) $R = \mathbb{C}[x]$ and the module is the ring $\mathbb{C}[x,y]/(xy)$ considered as an R-module by ring homomorphism $\mathbb{C}[x] \to \mathbb{C}[x,y]/(xy) \colon x \mapsto x$.

Solution. (1) We claim that I=(x,y) is not a flat $R=\mathbb{C}\left[x,y\right]$ module. Firstly, $\mathbb{C}\left[x,y\right]$ is Noetherian by Hilbert's basis theorem since \mathbb{C} is, and it is also local: we claim that (x,y)=I is precisely the maximal ideal. Firstly, it is maximal because $\mathbb{C}\left[x,y\right]/(x,y)\cong\mathbb{C}$ is a field. Now if $M\subset\mathbb{C}\left[x,y\right]$ is a maximal ideal, then $1\not\in M$, so for any $f\in M$, we have that $f(x,y)=\sum_{i+j\geq 1}\alpha_{ij}x^iy^j\in(x,y)$. Thus $M\subset(x,y)$, so M is not maximal unless M=(x,y). Therefore (x,y) is the only maximal ideal. Now, I is finitely generated as a $\mathbb{C}\left[x,y\right]$ -module with generators x and y, hence proposition 9.15 applies. Since (x,y) is not free since it in particular is a proper submodule of R, we have that it is not flat.

- (2) We claim that $I=(x)\subset \mathbb{C}\left[x\right]/(x^2)$ is indeed flat. This can be seen since $\mathbb{C}\left[x\right]/(x^2)=\mathbb{C}\oplus(x)\cong\mathbb{C}\oplus\mathbb{C}$, so since (x) is a direct summand of $R=\mathbb{C}\left[x\right]/(x^2)$, it is flat by proposition 9.13 and the fact that R is itself flat by example 9.2.
- (3) I will give two solutions since I'm not sure whether I may use that over a PID, a module is flat iff it is torsion-free Suppose there is a relation $\sum a_i y^i = 0$ in $\mathbb{C}[y]$ where $a_i \in \mathbb{C}[x]$. However, then taking the maximal degree of x^j in a_j for y^j the maximal degree of y in the relation, we find that $a_j = 0$. But this contradicts y^j being the maximal degree. Hence $a_i = 0$ for all i. But this shows that the relation is trivial. Now remark 9.21 tells us that $\mathbb{C}[y]$ is flat cosidered as a $\mathbb{C}[x]$ module by the homomorphism $\mathbb{C}[x] \to \mathbb{C}[y]$ by $x \mapsto y^2$.

The other solution is the following: Since $R = \mathbb{C}[x]$ is a PID, we immediately find that $\mathbb{C}[y]$ is flat if and only if it is torsion-free considered as a $\mathbb{C}[x]$ -module by restriction of scalars along $x \mapsto y^2$. Suppose $f(y) \in \mathbb{C}[y]$ is such that for $g(x) \in R$, g(x)f(y) = 0, i.e., $g(y^2)f(y) = 0$ in $\mathbb{C}[y]$. However, this forces f or g to be 0, so we find that $\mathbb{C}[y]$ is torsion-free as a $\mathbb{C}[x]$ module under the ring-homomorphism $x \mapsto y^2$. Thus $\mathbb{C}[y]$ is a flat $\mathbb{C}[x]$ -module by the ring homomorphism $\mathbb{C}[x] \to \mathbb{C}[y]$ sending $x \mapsto y^2$.

(4) We note that if a module has torsion, this gives an non-trivial relation since am=0 with $a\neq 0$ and $m\neq 0$ admitting a genuinely trivial reparametrization implies a=0, contradiction. Hence proposition 9.20 gives that if a module has torsion, then it cannot be flat. $\mathbb{C}[x,y]/(xy)$ is clearly not a flat $\mathbb{C}[x]$ -module under the homomorphism $\mathbb{C}[x]\to \mathbb{C}[x,y]/(xy)$ sending $x\mapsto x$ since y is nonzero in $\mathbb{C}[x,y]/(xy)$ however, $x\cdot y:=xy=0$, hence $\mathbb{C}[x,y]/(xy)$ is not torsion-free over $\mathbb{C}[x]$.

7. Assignment 5

Exercise 7.1 (1). (2)

We claim that $\mathbb{Z}[x_1, x_2, x_3]$ is a finite extension. Now, clearly, we can express $1, x_1, x_1^2, x_1^3$ as linear combinations over $1, x_1, x_1^2, x_1^3$. Suppose we can express x_1^n as a linear combination of $1, x_1, x_1^2, x_1^3$ for $n = 1, \ldots, N-1$ for some $N \geq 4$. Since

$$x^{n} = x_{1}^{n-1} (x_{1} + x_{2} + x_{3}) - x_{1}^{n-1} x_{2} - x_{1}^{n-1} x_{3}$$

$$= x_{1}^{n-1} \sigma_{1} - x_{1}^{n-2} \sigma_{2} + x_{1}^{n-2} x_{2} x_{3}$$

$$= x_{1}^{n-1} \sigma_{1} - x_{1}^{n-2} \sigma_{2} + x_{1}^{n-3} \sigma_{3}$$

we find that for $N \geq 4$, x_1^N can be written as a linear combination over x_1^{N-1}, x_1^{N-2} and x_1^{N-3} which by the inductive assumption can be written as linear combinations of $1, x_1, x_1^2, x_1^3$. Hence $\mathbb{Z}[x_1, x_2, x_3]$ is a finite extension over $\mathbb{Z}[\sigma_1, \sigma_2, \sigma_3]$ with

$$\{1, x_1, x_1^2, x_1^3, x_2, x_2^2, x_2^3, x_3, x_3^2, x_3^3\}$$

as a finite generating set. By proposition 10.11, this also implies that the extension is integral.

(3) We claim that $\mathbb{Z}[x,y]$ is not a finite extension of $\mathbb{Z}[x,xy]$. Suppose $\{g_1,\ldots,g_n\}\in\mathbb{Z}[x,y]$ is a generating set as a module. Let N be the maximal degree of y over g_1,\ldots,g_n . Then $y^{N+1}\in\mathrm{span}(g_1,\ldots,g_n)$, so let $y^{N+1}=f_1(x,xy)g_1(x,y)+\ldots+f_n(x,xy)g_n(x,y)$.

Writing each $f_i(x, xy) = \sum \alpha_{i,k,l} x^k (xy)^l$, we see that

$$y^{N+1} = \sum \alpha_{1,k,l} x^k (xy)^l g_1(x,y) + \dots + \sum \alpha_{n,k,l} x^k (xy)^l g_n(x,y)$$
$$= \sum (\alpha_{1,k,l} g_1(x,y) + \dots + \alpha_{n,k,l} g_n(x,y)) x^k (xy)^l.$$

So in particular, we must have that for $(k, l) \neq (0, 0)$,

$$\alpha_{1,k,l}g_1(x,y) + \ldots + \alpha_{n,k,l}g_n(x,y) = 0.$$

But then we get

$$y^{N+1} = \alpha_{1,0,0}g_1(x,y) + \ldots + \alpha_{n,0,0}g_n(x,y)$$

which has maximal y degree N, giving a contradiction. Thus the extension is not finite. However, clearly, it is a finite-type extension, since y together with $\mathbb{Z}[x,xy]$ precisely generate all of $\mathbb{Z}[x,y]$. By proposition 10.11, we then find that $\mathbb{Z}[x,y]$ is not an integral extension.

- (7) If the map $\mathbb{C}[x] \hookrightarrow \mathbb{C}[x,y,z] / (z^2 xy)$ were integral, proposition 10.6 gives that $\mathbb{C}[x,y] \subset \mathbb{C}[x,y,z] / (z^2 xy)$ would be finitely generated as a $\mathbb{C}[x]$ -module. Suppose f_1, \ldots, f_n generated $\mathbb{C}[x,y]$ as a $\mathbb{C}[x]$ module in $\mathbb{C}[x,y,z] / (z^2 xy)$. If y^N is the maximal degree of y among f_1, \ldots, f_n , then $y^{N+1} = \sum g_i f_i$ for $g_i \in \mathbb{C}[x]$. However, there is clearly no way to obtain y^{N+1} in such a way. So the extension is not integral. Since it is clearly finite type, it is also not finite by proposition 10.11.
- (9) If $\mathbb{C}[x] \hookrightarrow \mathbb{C}[x,y,z]/(z^2-xy,x^3-yz)$ were integral, z would be integral over $\mathbb{C}[x]$, so there would be some linear combination

$$f_n(x)z^n + \ldots + f_0(x) = 0$$

However, there is not relation converting xz to something different, so if x^{k_n} is the highest term of x in $f_n(x)$, then $x^{k_n}z^n$ is a term that cannot cancel in the above linear combination. So the extension cannot be integral. Hence it can also not be finite.

(10) The extension $\mathbb{C} \hookrightarrow \mathbb{C}[x_1, x_2, x_3, \ldots] / (x_1^2, x_2^2, x_3^2, \ldots)$ is not finite: suppose it were generated by $f_1, \ldots, f_n \in \mathbb{C}[x_1, x_2, \ldots] / (x_1^2, x_2^2, \ldots)$, and let m be maximal such that one of the f_i has a term with x_m . Then $x_{m+1} = c_1 f_1 + \ldots + c_n f_n$ with $c_i \in \mathbb{C}$. However, then multiplying both sides by x_{m+1} , we see that each non-zero term in $c_1 f_1 + \ldots + c_n f_n$ must have a x_{m+1} , contradicting maximality of m.

The extension is integral, however, since for any $b \in \mathbb{C}[x_1, x_2, \ldots] / (x_1^2, x_2^2, \ldots)$, let x_{i_1}, \ldots, x_{i_k} be the x_i which appear in b. Then $b(x_{i_1} \cdots x_{i_k}) = 0 \subset (x_{i_1} \cdots x_{i_k})$, and $(x_{i_1} \cdots x_{i_k})$ is clearly finitely generated, so by proposition 10.6, b is integral over \mathbb{C} .

8. Assignment 6

Exercise 8.1 (1). Let R be a Noetherian ring and A be a finitely generated R-algebra. Show that if $B \subset A$ is a subalgebra such that A is a finitely generated B-module, then B is also a finitely generated R-algebra.

Proof. We want to show that B is finitely generated as an R-algebra.

Suppose $\{y_1, \ldots, y_n\} \subset A$ generate A as an R-algebra, so $A = R[y_1, \ldots, y_n]$. Since A is also finitely generated as a R-module, there exist $a_1, \ldots, a_m \in A$ such that $A = Ba_1 + \ldots + Ba_m$. Now using the module expression for A, write

$$y_i = \sum_j b_{ij} a_j$$

and similarly, since $a_i a_j \in A$,

$$a_i a_j = \sum_k b_{ijk} a_k.$$

Then given arbitrary $u, v \in A$, we can write

$$u = \sum_{i,j} \alpha_i b_{ij} a_j$$

and

$$v = \sum_{i,j} \beta_i b_{ij} a_j$$

We have then seen that

$$uv = \sum_{i,j,k,l} \alpha_i b_{ij} a_j \beta_k b_{kl} a_l = \sum_{i,j,k,l} \left(\alpha_i \beta_k\right) \left(b_{ij} b_{kl}\right) \sum_r b_{jlr} a_r = \sum_{i,,k,l,r} \left(\alpha_i b_k\right) \left(b_{ij} b_{kl} b_{jlr}\right) a_r.$$

Exercise 8.2 (2). Let K be a field and let A be a finitely generated K-algebra. Show that if A is a field, then A is finite-dimensional as a K-vector space. In particular, note that for every maximal ideal $\mathfrak{R} \subset A$, A/\mathfrak{R} is a finite dimensional K-vector space.

Proof. If A is a field extension of K such that A is finite type over K, then by Zariski's lemma, we directly find that A is finite over K - i.e. that it is finitely generated as a K-module, and since K is a field, this is saying that A is finitely generated as a K-vector space. The latter part is corollary 11.7.