

CPU外部结构和总线时序

主讲: 乔瑞萍

西安交通大学信通学院

email: rpqiao@xjtu.edu.cn

学习要求:

- ●微处理器总线与系统总线 (见5.1.1)
- ●总线周期与时钟周期
- CPU的复位
- ●总线的三态性与分时复用特性 (见5.2)
- ●总线操作时序 (读、写)
- ●8086CPU中特殊的存储体结构 (见5.3)

重点难点→

章节内容

- ◆5.1 CPU的引脚功能
- ◆5.2 总线操作时序
- ◆5.3 <u>8086/8088</u>的存储器结构 (补充)

5.1 CPU的引脚功能

- ◆ 总线
- ◆ 8086/8088CPU引脚功能
- ◆ 8086CPU的工作模式
- ◆ 80386CPU引脚功能简介

5.1.1 总线

- ◆ CPU的外部是数量有限的输入输出引 脚,这些引脚就是微处理器的外部总线, 称为**微处理器级总线**。
- ◆ CPU通过外部总线沟通与外部部件和设备之间的联系。_____

总线及其功能

- ▶ **总线**(BUS): 是一簇由并行导线组成的传递信息的公共通路,各部件之间的信息可以分时地在此通路上传递。
- ➤ 在计算机系统中,总线及其信号必须完成以下功能:

总线及其功能

- ✓1)和存储器之间交换信息;
- \checkmark 2)和I/0设备之间交换信息;
- ✓3)为了系统工作而接受和输出必要的信号,如输入时钟脉冲、复位信号、电源和接地等。

总线按功能分类

按功能分,这些总线可以分为三种:

总线	功能
数据总线DB	传送信息(指令或数据)
地址总线AB	指示欲传送信息的来源或目的地址
控制总线CB	管理总线上的活动

外部数据总线

- ◆ 外部数据总线:用于CPU和存储器或I/O 接口之间传送数据;
- ◆ DB的条数决定了CPU和存储器或I/O设 备一次能交换数据的位数;
- ◆ 位数是区分微处理器为多少位的依据。

地址总线和控制总线

◆ CPU通过外部AB:

- ■输出地址码用来选择某一存储器单元
- 某一称为I/O端口的寄存器。
- » 地址总线的**条数**即为二进制地址码的位数, 它决定了可寻址地址空间的大小。

◆ 外部CB:

■ 用来传送自CPU发出的或送到CPU的控制信息与状态信息。

5.1.2 8086/8088CPU引脚功能

GND—1	40 VCC (+5V)	GND—1	40 VCC (+5V)
$AD14 \longleftrightarrow 2$	$39 \longleftrightarrow AD15$	$A_{14} \leftarrow 2$	$39 \longrightarrow A15$
$AD13 \longleftrightarrow 3$	$38 \longrightarrow A16/S3$	A13 ← 3	$38 \longrightarrow A16/S3$
$AD12 \longleftrightarrow 4$	$37 \longrightarrow A17/S4$	A12 ← 4	$37 \longrightarrow A17/S4$
$AD11 \longleftrightarrow 5$	$36 \longrightarrow A18/S5$	A11 ← 5	$36 \longrightarrow A18/S5$
$\begin{array}{c} AD10 \longleftrightarrow 6 \\ AD2 & \checkmark \end{array}$	$\begin{array}{c} 35 \longrightarrow A19/S6 \\ \hline 24 \longrightarrow BWE/S7 \end{array}$	$A_{10} \leftarrow 6$	$35 \longrightarrow A19/S6$
$\begin{array}{c} AD9 \longleftrightarrow 7 \\ AD8 \longleftrightarrow 8 & 9086 \end{array}$	$34 \longrightarrow \overline{BHE}/S7$	$\begin{array}{c} A9 & \longleftarrow 7 \\ A8 & \longleftarrow 8 & 8088 \end{array}$	$34 \longrightarrow SS0$
$AD8 \longleftrightarrow 8 \times $	$\begin{array}{c} 33 \longleftarrow MN/\overline{MX} \\ 32 \longrightarrow \overline{RD} \end{array}$	$\begin{array}{c} A8 \longleftrightarrow 8 \\ AD7 \longleftrightarrow 9 \end{array} 8088$	$\begin{array}{c} 33 \longleftarrow MN/\overline{MX} \\ 32 \longmapsto \overline{RD} \end{array}$
$AD6 \longleftrightarrow 10 CPU$	32 → RD 31 ← HOLD	$AD_6 \longleftrightarrow 10$ CPU	$32 \longrightarrow \overline{RD}$ $31 \longleftarrow HOLD$
$AD5 \longleftrightarrow 11$	$30 \longrightarrow \text{HLDA}$	$AD5 \longleftrightarrow 11$	$30 \longrightarrow \text{HLDA}$
$AD4 \longleftrightarrow 12$	$29 \longrightarrow \overline{WR}$	$AD4 \longleftrightarrow 12$	$29 \longrightarrow \overline{\mathbb{W}R}$
AD3 ←→ 13	$28 \longrightarrow M/\overline{10}$	AD3 ←→ 13	$28 \longrightarrow \overline{M}/I0$
AD2 ←→ 14	$27 \longrightarrow \underline{DT}/\overline{R}$	AD2 ←→ 14	$27 \longrightarrow \underline{\mathrm{DT}}/\overline{\mathrm{R}}$
$AD1 \longleftrightarrow 15$	$26 \longrightarrow DEN$	$AD1 \longleftrightarrow 15$	$26 \longrightarrow \overline{DEN}$
$AD0 \longleftrightarrow 16$	$25 \longrightarrow \underline{ALE}$	$AD0 \longleftrightarrow 16$	$25 \longrightarrow \underline{ALE}$
$NMI \longrightarrow 17$	$24 \longrightarrow INTA$	$NMI \longrightarrow 17$	$24 \longrightarrow INTA$
$ \begin{array}{c} \text{INTR} \longrightarrow 18 \\ \text{CLK} \longrightarrow 10 \end{array} $	23 TEST	INTR————————————————————————————————————	23 TEST
CLK ————————————————————————————————————	22 ← READY 21 ← RESET	CLK ————————————————————————————————————	22 — READY 21 — RESET
0110 ——20	ZI NESEI	0110 ——20	

8086CPU的引脚信号定义与功能

信号定义	输入/输出	功能说明	
${ m AD}_{15}^{\sim} \ { m AD}_0$	双向	地址总线的低16位与数据总线复用。总 线周期的T1状态输出访问地址的低16位, 其它状态输入/输出数据或高阻。	
$A_{19}/S_6 \sim A_{16}/S_3$	输出	地址总线的高4位与状态线复用。总线周期的T1状态输出访问地址的高4位,其它T状态输出状态信息。 <u>P198表5.1</u>	
\overline{BHE} / S_7	输出	高8位数据总线允许/状态复用引脚。在总线周期的 $T1$ 状态,输出 BHE ,总线周期的其它状态输出	

续表

\overline{RD}	输出	读 信号,指出将要执行一个对内存或I/O端口的读操作。
\overline{WR}	输出	写信号,指出将要执行一个对内存或I/O端口的写操作。
M / \overline{IO}	输出	存储器/输入输出 控制信号,区分进行存储器还是I/O访问。
ALE	输出	地址锁存 允许信号,在总线周期的T1状态 输出高有效电平。
\overline{TEST}	输入	测试信号,低电平有效,与WAIT指令结合使用,用来使处理器与外部硬件同步。

续表2

ĪNTA	输出	中 断响应信号 输出,用来对外设的中断请求做出响应,通常与中断控制器8259A的相连。
READY	输入	准备就绪信号,在总线周期的 T_3 状态若READY为低,插入 T_w 状态,直至READY变为高,才进入 T_4 ,从而结束当前总线周期。
\overline{DEN}	输出	数据允许信号 ,常用作总线收发器的输出允许信号;在DMA方式时,被置为高阻状态。
DT/\overline{R}	输出	数据收发方向 控制信号,用于数据总线收发器的 数据传送方向。为高电平时,数据发送; 低电平 时,数据接收。
HOLD	输入	保持请求 信号,请求使用总线信号,高电平有效
HLDA	输出	总线保持响应 信号,这是对HOLD的应答信号

续表3

NMI	输入	非屏蔽中断信号 输入端,上升沿有效
INTR	输入	可屏蔽中断信号输入端,高电平有效
CLK	输入	为CPU和总线控制逻辑电路提供定时信号, 要求时钟信号占空比为30%。
RESET	输入	复位信号,高电平有效,要求高电平至少 持续4个时钟周期。P200表5.2
GND	输入	电源地 信号,8086/8088CPU有2个接地端
V _{CC}	输入	+5V电压供电
MN / \overline{MX}	输入	最小/最大模式选择控制信号

段寄存器状态线

表 5.1 S₄、S₃ 的代码组合与当前段寄存器的关系

		The state of the s	
当前使用的段寄	存器	- AULU 100 - 100 - 100	-
ES 段寄存器		(i) (st_ = - +st_ = -)	J JI
SS 段寄存器			
存储器寻址时, 存器	使用 CS 段寄存器。	对 I/O 端口或中断矢量寻址时,	不需要段寄
DS 段寄存器	remark A Fit	No differences (A)	
	ES 段寄存器 SS 段寄存器 存储器寻址时,	SS 段寄存器 存储器寻址时,使用 CS 段寄存器。 存器	ES 段寄存器 SS 段寄存器 存储器寻址时,使用 CS 段寄存器。对 I/O 端口或中断矢量寻址时, 存器

5.1.3 8086CPU的工作模式

- ◆ 8086/8088CPU工作模式:
- ◆ 最小模式:
 - ■一个微处理器
 - CB都直接由8086/8088 产生(见P203~P204)
- ◆ 最大模式:
 - 两个及以上微处理器
 - 一个主处理器,其他协处理器
 - 大多数CB由8288对8086/8088CPU输出的 状态信号组合产生(见P207)

5.1.4 80386CPU引脚功能简介

80386采用132引脚的栅状阵列封装 (PGA)

引脚	条数
地址线	$(A_{31} \sim A_2, \overline{BE3} \sim \overline{BE0})$
数据线	$(D_{31} \sim D_0)$
中断线	3
时钟线	1
控制线	13
电源线	20 (VCC)
地线	21 (VSS)
空	8

与8086/8088比较

- ◆ 80386CPU中具有独立的数据总线和地址总线。
- 地址线由 A_{31} $\sim A_2$ 和 $\overline{BE3}$ $\sim \overline{BE0}$ 组成三态、单向输出。
 - ▶ A₃₁~A₂是地址总线的高30位;
 - $\overline{BE3} \sim \overline{BE0}$ 地址总线的低位,即 A_1 、 A_0 的译码输出。选择连续4个字节。

与8086/8088比较

80386CPU倍频:

- ◆ 要求CLK2输入的是双倍频率的时钟信号, 16MHz的386CPU使用一个32MHz的 CLK2时钟信号,
- ◆ 也就是说80386CPU所使用的时钟CLK是 CLK2时钟频率的2分频信号。

5.2 总线操作时序

- > 总线周期与时钟周期
- > 总线的三态性和分时复用性

见5.2.1

- ≥ 复位操作
- ▶ <u>总线读操作时序</u>
- > 总线写操作时序

见5.2.2

5.2.1 系统的复位时序及 典型的总线周期时序

- 1. 总线周期与时钟周期
- ◆ **时钟周期**: CPU的基本时间计量单位,它 由计算机的**主频**决定。主频的倒数
- ◆ **总线周期**: CPU通过系统总线对**外部存储** 器或I/0接口进行一次访问所需的时间。

总线周期的四个状态

- ◆一个基本的总线周期:由4个时钟周期组成。
 - 其分别称为4个状态: T_1 、 T_2 、 T_3 和 T_4 状态。
 - Tw: 在T3状态之后插入1个或几个等待状态。

总线空闲状态TI

- ◆ CPU的时钟周期一直存在;
- ◆ 总线周期并非一直存在:
 - 只有当BIU需要补充指令流队列的空缺
 - 或当EU执行指令过程中需经外部总线访问存储器或I/O接口时,才需要申请一个总线周期, BIU也才会进入执行总线周期的工作时序。
- ◆ T_I: 两个总线周期之间可能会出现一些没有BIU活动的时钟周期,这时的总线状态称为**空闲**状态。

典型的8086总线周期序列

2. 总线的三态性与分时复用特性

◆ 总线的三态性是现有微处理器的共性,任何微处理器的AB、DB及部分CB均采用三态缓冲器式总线电路。

三态

逻辑 0

逻辑 1

浮空

处于浮空状态时, 总线电路呈现极高的输 出阻抗,如同与外界 "隔绝"一样。

三态性的作用

总线电路的这种三态性:

- ◆一方面保证了在任何时刻,只能允许相互交 换信息的设备占用总线,其他设备和总线脱 离,对总线几乎没有影响。
- ◆ 另一方面为数据的快速传送方式(即直接存储器存取方式DMA)提供了必要的条件,因为当进行DMA传送时,CPU将与外部总线"断开",外部设备将直接利用总线和存储器交换数据。

地址/数据线的分时复用特性

- 总线分时复用: 因处理器外部引脚数量的限制。
 - 产在8086CPU中,数据总线与地址总线的低16位就是分时复用的。
 - 》即在某一时刻 AD_{15} $\sim AD_0$ 上出现的是<mark>地址</mark>信息;
 - ▶ 另一时刻,AD15~AD0出现的<mark>数据</mark>信息。
 - \rightarrow 而且, $A_{19}/S_6 \sim A_{16}/S_3$ 也是地址线的高4位与状态线的复用。

地址/数据线的分时复用特性

➤正是这种引脚的分时使用才能使 8086/8088用40条引脚实现20位地址、16 位数据及众多控制信号和状态信号的传输。

复位操作

- ➤复位: 计算机系统各部件从一个**确知**的状态开始工作。
- ➤复位线:大多数计算机系统中都有**一根**对系统进行启动的复位线。
 - > 复位线和系统中所有的部件相连

8086/8088CPU的复位状态

- ◆ RESET: 为"1", CPU就会结束现行操作。 见P208表5.7
- ◆ 在复位状态,除CS为FFFFH外,其余片内 寄存器均被清零,指令队列也被清除。

表 5.7 复位时, CPU 的初始化状态

状态标志寄存器	清除	状态标志寄存器	清除
指令寄存器(IP)	0000Н	ES扩展段寄存器	0000Н
CS 代码段寄存器	FFFFH	指令队列	空
DS 数据段寄存器	0000Н	其他寄存器	0000H
SS 堆栈段寄存器	0000Н		

8086/8088CPU的复位状态

- ◆ 三态功能的引脚进入高阻态,不具有三态功能的引脚则输出无效电平。
- ◆ 在复位时,FLAGS被清零,所有从INTR引脚进入的可屏蔽中断禁止。系统程序要通过指令来设置IF标志。

对复位信号的要求

- ■RESET:维持4个时钟周期的高电平。
 - 否则复位不可靠,将有可能导致系统不能正常启动,或工作不稳定。

80386CPU的复位状态

- ◆80386CPU在复位时:实地址方式,采用 类似于8086的体系结构。
 - **主要特征 是**寻址机构、存储器管理、中断 处理机构均与8086一样;
 - 初始化程序区也是从FFFF0H开始的内存单元;
 - 中断矢量区也位于00000~003FFH。

5.2.2 1. 总线读操作时序

- ◆ *M*/*IO*: CPU读**内存**还是**I**/**O**端口;
- 信号在 T_1 状态成为有效, M/\overline{IO} 有效电平一直保持到 T_4 状态。
- ◆ ALE高, BHE / S₇低, 地址输出

T_2

- 地址信号消失; AD₁₅~AD₀高阻;
- \bullet $A_{19}/S_6 \sim A_{16}/S_3$ 和 \overline{BHE}/S_7 : 输出状态信息S7 ~ S3。
- ◆ *RD***低**: 读数据

T_3 状态

- ◆ 在T₃状态开始,CPU对READY进行采样:
 - 如果READY为高,则CPU在T₃状态之后通过 AD₁₅~AD₀获取数据;
 - ■如果READY为低,将插入T_W,直到READY 变为高。

T_W 状态

◆ 同步作用:

- 当系统中所用的存储器或外设的工作速度较慢,从 而不能用最基本的总线周期执行读操作时,系统中 就要用一个电路来产生READY信号。
- CPU将会在T₃状态和T₄状态之间插入若干个T_W,直到READY信号变高。

T_4 状态

 \bullet 在执行最后一个等待状态 T_W 的后沿处, $CPU通过AD_{15}\sim AD_0$ 获取数据。

T4状态:

◆ 总线操作结束, 相关系统总线变为无效 电平。

2. 总线写操作时序

2. 总线写操作时序

说明: 总线写操作时序与总线读操作时序 基本相同,不同的是:

- ► 对存储器或I/O端口操作选通信号的不同。
 - \rightarrow 读 \overline{RD}
 - » 写 WR

2. 总线写操作时序

- ightharpoonup 在 T_2 状态中, AD_{15} \sim AD_0 上地址信号消失后, AD_{15} \sim AD_0 的状态不同。
- \triangleright 总线**读**操作中,此时 AD_{15} $\sim AD_0$ 进入高阻状态,并在随后的状态中为输入方向;
- 》 总线**写**操作中,此时CPU立即通过 AD_{15} ~ AD_0 输出数据,并一直保持到 T_4 状态中间。

自学

- ◆ 3.中断响应周期(第8章)
- ◆ 4.总线请求和总线授予时序(第9章)
- 5.2.3 最大模式系统中的总线周期时序 (自学) (P215~218)
- 5.3.2 80486引脚信号及其系统总线时序 (自学) (P221~232)

补充 8086/8088的存储器结构

- ◆ 1. 数据存储格式
- ◆ 2.8086微机系统的特殊存储器结构
- ◆ 3.8088微机系统的存储器结构
- ◆ 4.80386微机系统的存储器结构

1、数据存储格式

- ◆ 在8086/8088微机系统中,存储器是按**字节** 为单位组织的,20位地址线可寻址1M字 节的存储单元。
- ◆ 每个字节对应一个惟一的地址码,常称为 **物理地址**。
- ◆ 尽管存储器是按字节编址的,但在实际操作时,一个变量可以是**字节、字或双字**。

(1) 字节数据

- ◆字节数据
- ◆8位二进制信息,对应的字节地址
 - 可以是偶地址(地址最低任 A_0 =0),
 - 也可以是奇地址(A₀=1)。

(2) 字数据

- ◆字数据
- ◆ 连续存放的两个字节数据构成一个字数据, 规定:
 - ■字的高8位字节存放在高地址,
 - ■字的低8位字节存放在低地址,
- ◆ 同时规定**低位字节的地址**作为这个字的 地址。

(2) 字数据

- ◆ 字的地址可以是偶数,也可以是奇数。
- ✔规则字(对准字): 若字的地址为偶数。
 - · 字的低位字节存放在偶地址,
 - 字的高位字节存放在紧接着的后一个奇地址。
- ✓非规则字(非对准字):字的地址为奇数。

(3) 双字数据

双字数据: 连续存放的两个字数据。

◆ 地址: 以最低位字节地址作为其地址。

* 通常此类数据用于间接寻址地址指针:

■ 高位字: 存放该数据所在段的基地址;

■低位字:存放该数据所在段为的偏移量。

2、8086微机系统的特殊存储器结构

8086微机系统的存储器1MB构成:

■ 偶地址: 512KB, A₀选通

■ 奇地址: 512KB, BHE 选通

◆ A₁₉~A₁,作为两个库内的存储单元的寻址 信号

■ 偶地址:存储体DB只和低8位数据线相连;

■ 奇地址:存储体DB只和 **58位**数据线相连。

2、8086微机系统的特殊存储器结构

*A₁₉~A₁共19根地址线用来作为两个库 为的存储单元的寻址信号,且偶地址存 储体数据线只和低8位数据线相连,奇 地址存储体数据线只和高8位数据线相 连。

8086/8088存储器结构

(P246)

◆ (a) 8086存储器结构;

(b) 8088存储器结构

8086存储器结构

- ◆ 8086CPU的指令系统中,既有字节也有字操作。
- ◆ 8086CPU对存储器每进行一次字节数据的存取:
 - 无论其地址是偶地址或奇地址,只需要一个总线周期,
- ◆ 而当8086CPU对存储器进行一次字数据的存取:
 - 其所需的总线周期则与字的地址是偶地址还是奇地址 密切相关(P246表6.1)

规则字存取

- ◆ 进行一次规则字存取,需要**一个**总线周期:
 - $A_0=0$, $\overline{BHE}=0$, 就可以一次实现在两个库中完成一个字(高低字节)的存取操作,
 - 所需的BHE 及A。信号是由字操作指令给出的。

非规则字的存取

◆ 进行一次非规则字存取,需要**两个**总线周期才能完成。

表 6.1 存储体选择

BHE	A_0	操作
0	0	奇偶两个字节同时传送
0	1	从奇地址库传送一个字节
1	0	从偶地址库传送一个字节
1	1 200	无操作

8086CPU字的读操作情况

◆ (a) 存取规则字 (b) 存取非规则字

对于8088CPU:

- ◆数据总线:8位;
- ◆存储器结构:由单一的存储体组成;
- *A19~A0:20俭地址钱都参加存储体为寻址操作。

- ◆ 每个总线周期: 8088CPU只能完成一个字节 的数据存取。
 - 所以无论是字,还是字节数据的存取操作;
 - ■也不管是规则字还是非规则字的操作。
- ◆ 存取字数据:由两个连续的总线周期组成,由CPU自动完成。

- ◆ 80386CPU的DB: **32**位
- ◆ 其存储器也是按字节为单位组织的,
- ◆ 存储器结构:类似于8086, 只是存储体是4个库:
 - 分别与DB的D₇~D₀、D₁₅~D₈、D₂₃~D₁₆和D₃₁~D₂₄相连, 选通信号分别为 $\overline{BE0}$ ~ $\overline{BE3}$,
 - A₃₁~A₂共**30**根AB用来作为库内存储单元的寻址信号。

注意,规定与 $D_7 \sim D_0$ 相连的库中存储单元的地址是能被4整除的,该库的运通信号是 $\overline{BE0}$ 。

* 注意,规定与 $D_7 \sim D_0$ 相连的库中存储单元的地址是能被4整除的,该库的选通信号是 $\overline{BE0}$ 。

作业

P233 第1~5题

第5章重点难点

通过对微处理器级总线的学习,结合总线操作的选择,结合线线的结构,这是组成总统和进行系统和,系统和,发生组成的基础。

8086最小方式系统总线结构

- ◆ 8086CPU组成最小模式系统时,其基本配置除CPU芯片外,还应包括
 - 时钟发生器8284A;
 - 地址锁存器8282;
 - 总线收发器8286/8287 (可选)
 - 以及存储器、I/0接口和外部设备,图中略去了与存储器、I/0接口和外部设备的连接。 P203~206

几点说明一

- ▶时钟发生器8284A为系统提供频率恒 定的时钟信号,
- ◆ 同时对外部设备发出的(READY) 和(RESET)信号进行同步。

几点说明二

- ◆ 由于8086CPU采用了AB与DB复用,AB与状态线 复用等技术,而在执行对存储器读写或对I/0 设备输入输出的总线周期中,存储器或I/0设 备要求地址信息一直保持有效
- ◆ 地址锁存器:以形成独立的外部AB和DB。
- ◆ 常用的地址锁存器有8D锁存器8282和74LS373。

几点说明 三

- ◆DB的驱动,当系统中所连的存储器和外设较多,才要用
- * 8286/8287作为总线收发器, 迪可采用 7415245。

概念测试

◆ 1. 若8086的引脚接+5V,则当CPU执行指 ◆IN AL,DX时,其引脚信号 RD, WR 和 M/IO的状态相应为 ____。

答案: 0,1,0

◆ 2.8086CPU在执行字数据读写操作时,当字地址是偶数时,需要_1_个总线周期完成,而当字地址是奇数时,需要_2_个总线周期完成。

答案: 1,2