# Machine learning methods applied to sea level predictions in Taiwan

109302001 廖苡恩

#### Content

1 INTRODUCTION

02 DATA ANALYSIS

03 METHODS & RESULTS

()4 CONCLUSION



#### Introduction

#### Location\_Keelung Port



圖 2-2 基隆港域環境及港區配置 (資料來源:港研中心)

- important port
- geographical location
- near Taipei metropolitan area
- time:2015~2022



2015~2022 Highest High water level in Keelung station



#### Heat map of variables

- Wind velocity
- Sea level pressure
- River flow



relationship between HHWL and wind velocity



relationship between HHWL and sea level pressure



relationship between HHWL and flow





### Methods & results

#### Linear Regression

split Model the dataset training read data Build a linear regression model

Evaluate the model

#### Linear Regression



- TRAINING:80%
- TESTING:20%

MSE: 0.006027525448399902

RMSE: 0.07763713962015796

MAE: 0.06575717881144356

R2: 0.7321192401467647

### Linear Regression\_improve the accuracy of model

cross validation

MSE: 0.01441553332202219

RMSE: 0.08063839833506872

MAE: 0.0652426467677794

R2: 0.6445858349952172

#### Random Forest Simplified



MAPE: 1.2861786983940537

#### Neural Network



R2=0.7928832039528243

#### Fill in missing values



#### Conclusion



#### Conclusion

- Problem:

   a. ability
   b. variables
   c. little data
- Outlook for the future:

   a. keep trying
   b. different latitude



#### Reference

- 台灣四周海域海流數值模擬研究(三) 基隆港海域 潮汐與潮流之數值模擬研究
- Analysis on the symmetry of tides at Keelung and Kaohsiung port
- Predicting regional coastal sea level changes with machine learning
- https://haichaobiao.com/tw/taiwan/ting-tou-oshan#\_tidal\_coefficient

ef

## Thank you for attention.