Facultatea de Automatica si Calculatoare, Universitatea Politehnica din Bucuresti

Examen Final MN

/10

Student:		Grupa:	
Descriere curs:	MN, An I, Semestrul II	Rezultate Examen	
Titlu curs:	Metode Numerice	Subject	Punctaj
Profesor:	Florin POP	1	/3
Durata examenului:	120 minute	2	/3
Tip Examen: Materiale Aditionale:	Closed Book Nu! Fara telefoane mobile!!!	3	/2
materiale Hamboliate.	iva. Tara telefoane mobile	1 4	/9

Subjecte [1]

Numar pagini:

3 puncte

- 1. Fie functia data prin: x=[-1 -0.5 0.5 1], f(x) = [1 0 2 1].
 - a) Calculati polinomul de aproximare in sensul celor mai mici patrate de grad 2, cu functia pondere w(x)=1.
 - b) Calculati polinomul minimax de grad 2, folosind primul algoritm al lui Remes.

3 puncte

2. Construiti o formula de integrare de tip Gauss, cu grad de valabilitate minim 3, pentru integralele: a) $I_1 = \int_a^b \frac{f(t)dt}{\sqrt{(t-a)(b-t)}}$, si b) $I_2 = \int_a^b f(t)\sqrt{(t-a)(b-t)}dt$. Scrieti o functie MATLAB care implementeaza formula de integrare $\int_{-1}^{1} \frac{f(t)dt}{\sqrt{1-t^2}} \approx \sum_{i=1}^{n} A_{in}f(x_{in})$. Functia primeste ca parametru functia f si n.

2 puncte

3. Pentru rezolvarea problemei diferentiale $y' = f(x,y), y(x_0) = y_0$ se foloseste metoda tangentei ameliorate (Runge-Kutta de ordin 2, $\alpha = 1$ sau $u_1 = 1/2$). Scrieti o functie MATLAB pentru integrarea unui sistem de ecuatii diferentiale cu doua necunoscute y_1 si y_2 , dupa ce, in prealabil, ati rescris forma generala a sistemului si relatiile RK pentru sistem.

4. Calculati rangul matricei uv^T , unde $u,v\in R^n$. Determinati valorile proprii si vectorii 2 puncte proprii pentru matricea $A = I_n + uv^T$. Dati un exemplu numeric pentru n = 2 si $v^T u = 1$. **SUPLIMENTAR** [1p] Se considera o matrice oarecare $A \in \mathbb{R}^{n \times n}$ si o matrice $U \in$ $R^{n\times k}$ cu coloanele ortogonale. Aratati ca functia $f:R^{k\times k}\to R_+$ definita de f(X)= $\|AU-UX\|_F$ admite un minim care se afinge pentru $X=U^TAU.$