m⁴ Adapter: Multilingual Multi-Domain Adaptation for Machine Translation with a Meta-Adapter

Wen Lai, Alexandra Chronopoulou, Alexander Fraser

Center for Information and Language Processing, LMU Munich, Germany

7th December, 2022

- 1 Introduction
- 2 Method
- 3 Experiments
- 4 Results
- 6 Analysis
- 6 Conclusion

Background

- We consider two problems of Multilingual Multi-Domain Neural Machine Translation (MNMT) adaptation:
 - **Domain Adaptation**: adapt the MNMT model to a new domain.
 - Language Adaptation: adapt the MNMT model to a new language pair.

3 / 25

Background

- We consider two problems of Multilingual Multi-Domain Neural Machine Translation (MNMT) adaptation:
 - **Domain Adaptation**: adapt the MNMT model to a new domain.
 - Language Adaptation: adapt the MNMT model to a new language pair.
- Common Practice
 - fine-tuning the model on new domain / language pair data for NMT (Freitag and Al-Onaizan, 2016; Dakwale and Monz, 2017).
 - use lightweight, learnable units inserted between transformer layers, which are called adapters (Bapna and Firat, 2019).

Challenges

Introduction

• Fine-tuning methods require updating the parameters of the whole model for each new domain, which is costly;

Challenges

- Fine-tuning methods require updating the parameters of the whole model for each new domain, which is costly;
- When fine-tuning on a new domain, catastrophic forgetting reduces the performance on all other domains, and proves to be a significant issue when data resources are limited;

Challenges

- Fine-tuning methods require updating the parameters of the whole model for each new domain, which is costly;
- When fine-tuning on a new domain, catastrophic forgetting reduces the performance on all other domains, and proves to be a significant issue when data resources are limited;
- Adapter-based approaches require training domain adapters for each domain and language adapters for all languages, which also becomes parameter-inefficient when adapting to a new domain and a new language because the parameters scale linearly with the number of domains and languages;

- Fine-tuning methods require updating the parameters of the whole model for each new domain, which is costly;
- When fine-tuning on a new domain, catastrophic forgetting reduces the performance on all other domains, and proves to be a significant issue when data resources are limited;
- Adapter-based approaches require training domain adapters for each domain and language adapters for all languages, which also becomes parameter-inefficient when adapting to a new domain and a new language because the parameters scale linearly with the number of domains and languages;
- Current methods consider the two problems separately.

Research Question

• Can we improve both two adaptation problems at the same time?

Introduction
000●Method
0000000Experiments
000Results
000Analysis
000Conclusion
000

Research Question

- Can we improve both two adaptation problems at the same time?
- Can we transfer the language knowledge across domains and domain knowledge across languages?

- 2 Method
- 3 Experiment:
- 4 Results
- 6 Analysi
- 6 Conclusion

ntroduction Method Experiments Results Analysis Conclusion

Overview

• We consider a very challenging scenario: adapting the MNMT model both to a new domain and to a new language pair at the same time.

Overview

- We consider a very challenging scenario: adapting the MNMT model both to a new domain and to a new language pair at the same time.
- we propose a 2-step approach:
 - Meta-Training: we perform meta-learning with adapters to efficiently learn
 parameters in a shared representation space across multiple tasks using a small
 amount of training data (5000 samples);
 - Meta-Adaptation: we fine-tune the trained model to a new domain and language pair simultaneously using an even smaller dataset (500 samples).

troduction Method Experiments Results Analysis Conclusion
000 0000 000 000 000 000

Task Definition

 We address multilingual multi-domain translation as a multi-task learning problem. Specifically, a translation task in a specific textual domain corresponds to a Domain-Language-Pair (DLP). For example, an English-Serbian translation task in the 'Ubuntu' domain is denoted as a DLP 'Ubuntu-en-sr'.

Task Sampling

- Given d domains and l languages, we sample some DLPs per batch among all $d \cdot l \cdot (l-1)$ tasks.
- We consider a standard m-way-n-shot meta-learning scenario: assuming access to $d \cdot l \cdot (l-1)$ DLPs, a m-way-n-shot task is created by first sampling m DLPs $(m \ll l \cdot (l-1))$; then, for each of the m sampled DLPs, (n+q) examples of each DLP are selected; the n examples for each DLP serve as the support set to update the parameter of pre-trained model, while q examples constitute the query set to evaluate the model.
- We follow a temperature-based heuristic sampling strategy Aharoni et al., 2019¹, which defines the probability of any dataset as a function of its size.

¹Massively Multilingual Neural Machine Translation (Aharoni et al., NAACL 2019) → ⟨₹⟩ ⟨₹⟩ ⟨₹⟩ ⟨₹⟩

Meta-Learning Algorithm

• We follow *Reptile* (Nichol et al., 2018²), an alternative first-order meta-learning algorithm that uses a simple update rule:

$$\psi \leftarrow \psi + \beta \frac{1}{|\{\mathcal{T}_i\}|} \sum_{\mathcal{T}_i \sim \mathcal{M}} (\psi_i^{(k)} - \psi)$$

• Where $\psi_i^{(k)}$ is $U_i^k(\theta, \psi)$ and β is a hyper-parameter.

²On first-order meta-learning algorithms (Nichol et al., arXiv preprint arXiv:1803.02999 (2018))

■ ∽ < ○

Meta-Adapter

- We propose training a Meta-Adapter, which inserts adapter layers into the meta-learning training process.
- Different from the traditional adapter training process, we only need to train a single meta-adapter to adapt to all new language pairs and domains.

Meta-Adaptation

 After the meta-training phase, the parameters of the adapter are fine-tuned to adapt to new tasks (as both the domain and language pair of interest are not seen during the meta-training stage) using a small amount of data to simulate a low-resource scenario.

 Method 000000●
 Experiments 0000
 Results 0000
 Analysis 0000
 Conclusion 000

Meta-Adaptation

- After the meta-training phase, the parameters of the adapter are fine-tuned to adapt to new tasks (as both the domain and language pair of interest are not seen during the meta-training stage) using a small amount of data to simulate a low-resource scenario.
- We find that this step is essential to our approach, as it permits adapting the
 parameters of the meta-learned model to the domain and language pair of
 interest. This step uses a very small amount of data (500 samples), which we
 believe could realistically be available for each DLP.

12 / 25

- 1 Introduction
- 2 Metho
- 3 Experiments
- 4 Result
- 6 Analysi
- 6 Conclusion

ntroduction Method Experiments Results Analysis Conclusion
0000 000000 000 000 000

Datasets

- We split the datasets in two groups: meta-training and meta-adapting.
- We list the datasets used, each treated as a different domain: EUbookshop, KDE, OpenSubtitles, QED, TED, Ubuntu, Bible, UN, Tanzil, Infopankki. The datasets cover the following languages (ISO 639-1 language code³): en, de, fr, mk, sr, et, hr, hu, fi, uk, is, It, ar, es, ru, zh and are publicly available on OPUS⁴ (Tiedemann et al., 2012).

³https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

⁴https://opus.nlpl.eu

 Method
 Experiments
 Results
 Analysis
 Conclusion

 0000000
 000
 000
 000

Baselines

- **m2m**: Using the original m2m model (Fan et al., 2021) to generate the translations;
- m2m + FT: Fine-tuning m2m on all DLPs;
- m2m + tag: Fine-tuning m2m with domain tags (Kobus et al., 2017) on all DLPs;
- agnostic-adapter: Mixing the data from all DLPs to train the adapters (Cooper Stickland et al., 2021b), to obtain language and domain-agnostic adapters;
- stack-adapter: Training two adapters for each language pair and domain, then stacking both adapters (Cooper Stickland et al., 2021a);
- meta-learning: Traditional meta-learning methods using the MAML algorithm (Sharaf et al., 2020) on all DLPs.

- 1 Introduction
- Method
- 3 Experiments
- 4 Results
- 6 Analysi
- 6 Conclusion

m⁴ Adapter: Multilingual Multi-Domain Adaptation for Machine Translation with a Meta-Adapter (Findings of EMNLP 2022)

Main Results

- Motivated by Lai et al., 2022^a, we compare our approach to multiple baselines in terms of domain robustness.
- m⁴Adapter obtains a performance that is on par or better than agnostic-adapter, which is a robust model.

	BLEU	spe	cific dom	ain
	BLEU	TED	Ubuntu	KDE
m2m	18.18	16.20	20.61	22.04
m2m + FT	20.84	17.53	28.81	29.19
m2m + tag	22.70	18.70	31.86	31.53
agnostic-adapter	23.70	19.82	31.07	32.74
stack-adapter	21.06	18.34	29.17	30.26
meta-learning	20.01	17.57	28.11	28.59
m ⁴ Adapter	23.89	19.77	31.46	32.91

^aImproving Both Domain Robustness and Domain Adaptability in Machine Translation (Lai et al., COLING 2022)

MethodExperimentsResultsAnalysisConclusion000000000000000000

Main Results

	DLP (meta-ada	ptation domain)			specific	c DLP		
	UN	Tanzil	Infopankki	UN-ar-en	Tanzil-ar-en	Infopankki-ar-en	UN-ar-ru	Tanzil-ar-ru	Infopankki-ar-ru
m2m	32.28	8.72	17.40	38.94	6.44	22.57	22.96	3.64	15.05
m2m + FT	29.93	8.26	15.88	35.11	6.85	21.33	19.10	3.05	14.19
m2m + tag	29.88	8.06	15.93	34.39	6.63	20.12	19.37	2.65	13.68
agnostic-adapter	30.56	8.42	17.36	36.13	6.12	23.08	20.64	3.63	14.96
stack-adapter	29.64	8.14	17.19	35.31	5.83	22.14	19.17	2.34	13.85
meta-learning	32.21	7.02	16.73	37.13	5.50	18.91	22.68	1.70	15.23
m ⁴ Adapter	33.53	9.87	18.43	39.05	8.56	23.21	25.22	4.33	17.48
Δ	+1.25	+1.15	+1.03	+0.11	+2.12	+0.64	+2.26	+0.69	+2.43

- $m^4Adapter$ performs well when adapting to the *meta-adaptation* domains and language pairs at the same time.
- We observe that no baseline system outperforms the original m2m model. This
 implies that these models are unable to transfer language or domain knowledge
 from the MNMT model.

- 1 Introduction
- 2 Metho
- 3 Experiments
- 4 Result
- 6 Analysis
- 6 Conclusion

Efficiency

 We compare the efficiency of baselines to traditional fine-tuning and list their number of trainable parameters and training/adapting time in the table.

Method	#Param.	$Time_{\mathcal{T}}$	$Time_A$
m2m	418M (100%)	-	
m2m + FT	418M (100%)	100%	100%
m2m + tag	418M (100%)	100%	100%
agnostic-adapter	3.17M (0.75%)	42%	150%
stack-adapter	k· 3.17M (k· 0.75%)	k· 42%	200%
meta-learning	418M (100%)	75%	500%
m ⁴ Adapter	3.17M (0.75%)	34%	300%

 Method
 Experiments
 Results
 Analysis
 Conclusion

 ○○○○○○
 ○○○
 ○○○
 ○○○
 ○○○

Efficiency

- We compare the efficiency of baselines to traditional fine-tuning and list their number of trainable parameters and training/adapting time in the table.
- m⁴Adapter only updates the adapter parameters while freezing the MNMT model's parameters. therefore, it has fewer trainable parameters compared to fine-tuning.

Method	#Param.	$Time_{\mathcal{T}}$	Time,₄
m2m	418M (100%)	-	
m2m + FT	418M (100%)	100%	100%
m2m + tag	418M (100%)	100%	100%
agnostic-adapter	3.17M (0.75%)	42%	150%
stack-adapter	k· 3.17M (k· 0.75%)	k· 42%	200%
meta-learning	418M (100%)	75%	500%
m ⁴ Adapter	3.17M (0.75%)	34%	300%

ethod Experiments Results **Analysis C**onclusio 00000 000 0**00** 000

Efficiency

- We compare the efficiency of baselines to traditional fine-tuning and list their number of trainable parameters and training/adapting time in the table.
- m⁴Adapter only updates the adapter parameters while freezing the MNMT model's parameters, therefore, it has fewer trainable parameters compared to fine-tuning.
- Our approach requires more time than traditional adapter methods but is faster compared with updating the entire model using traditional meta-learning.

Method	#Param.	$Time_{\mathcal{T}}$	$Time_{A}$
m2m	418M (100%)	-	
m2m + FT	418M (100%)	100%	100%
m2m + tag	418M (100%)	100%	100%
agnostic-adapter	3.17M (0.75%)	42%	150%
stack-adapter	k· 3.17M (k· 0.75%)	k· 42%	200%
meta-learning	418M (100%)	75%	500%
m ⁴ Adapter	3.17M (0.75%)	34%	300%

Domain Transfer via Languages

• We define domain transfer via languages, i.e., the ability to transfer domains while keeping the languages unchanged.

			meta-adaptati	on dom	ain					specific DLF	hr-sr)			
	EUbookshop	KDE	OpenSubtitles	QED	TED	Ubuntu	Bible	EUbookshop	KDE	OpenSubtitles	QED	TED	Ubuntu	Bible
m2m	17.77	22.05	14.13	18.34	16.20	20.62	9.80	11.43	25.37	19.01	12.25	8.14	22.33	2.01
m2m + FT	12.73	24.56	16.22	20.46	18.74	31.32	11.30	9.79	21.05	53.34	23.87	20.81	34.08	12.57
m2m + tag	13.03	25.34	16.12	17.75	17.04	26.29	11.49	10.13	29.64	49.54	19.78	20.43	34.15	13.25
agnostic-adapter	16.24	25.85	17.90	21.71	20.08	31.53	11.75	9.05	30.64	54.04	22.79	21.19	28.83	10.59
stack-adapter	13.25	24.19	17.21	19.56	18.37	28.27	10.38	10.55	24.50	42.94	22.02	20.95	25.41	10.14
meta-learning	13.61	24.91	16.22	17.70	16.40	24.93	11.84	7.90	27.85	52.50	20.41	19.00	31.24	10.42
m ⁴ Adapter	18.99	25.22	17.94	21.71	19.86	31.37	12.12	12.05	30.49	54.30	23.92	21.32	33.71	13.69
Δ	+2.75	-0.63	+0.04	+0.00	-0.22	-0.16	+0.37	+3.00	-0.15	+0.26	+1.13	+0.13	+4.88	+3.1

Domain Transfer via Languages

• We define domain transfer via languages, i.e., the ability to transfer domains while keeping the languages unchanged.

			meta-adaptati	ion dom	ain			specific DLP (hr-sr)						
	EUbookshop	KDE	OpenSubtitles	QED	TED	Ubuntu	Bible	EUbookshop	KDE	OpenSubtitles	QED	TED	Ubuntu	Bible
m2m	17.77	22.05	14.13	18.34	16.20	20.62	9.80	11.43	25.37	19.01	12.25	8.14	22.33	2.01
m2m + FT	12.73	24.56	16.22	20.46	18.74	31.32	11.30	9.79	21.05	53.34	23.87	20.81	34.08	12.57
m2m + tag	13.03	25.34	16.12	17.75	17.04	26.29	11.49	10.13	29.64	49.54	19.78	20.43	34.15	13.25
agnostic-adapter	16.24	25.85	17.90	21.71	20.08	31.53	11.75	9.05	30.64	54.04	22.79	21.19	28.83	10.59
stack-adapter	13.25	24.19	17.21	19.56	18.37	28.27	10.38	10.55	24.50	42.94	22.02	20.95	25.41	10.14
meta-learning	13.61	24.91	16.22	17.70	16.40	24.93	11.84	7.90	27.85	52.50	20.41	19.00	31.24	10.42
m ⁴ Adapter	18.99	25.22	17.94	21.71	19.86	31.37	12.12	12.05	30.49	54.30	23.92	21.32	33.71	13.69
Δ	+2.75	-0.63	+0.04	+0.00	-0.22	-0.16	+0.37	+3.00	-0.15	+0.26	+1.13	+0.13	+4.88	+3.1

• We observe that almost all baseline systems and $m^4Adapter$ outperform the original m2m model, indicating that the model encodes language knowledge and can transfer this knowledge to new *meta-adaptation* domains.

21 / 25

Domain Transfer via Languages

• We define domain transfer via languages, i.e., the ability to transfer domains while keeping the languages unchanged.

			meta-adaptati	on dom	ain			specific DLP (hr-sr)						
	EUbookshop	KDE	OpenSubtitles	QED	TED	Ubuntu	Bible	EUbookshop	KDE	OpenSubtitles	QED	TED	Ubuntu	Bible
m2m	17.77	22.05	14.13	18.34	16.20	20.62	9.80	11.43	25.37	19.01	12.25	8.14	22.33	2.01
m2m + FT	12.73	24.56	16.22	20.46	18.74	31.32	11.30	9.79	21.05	53.34	23.87	20.81	34.08	12.57
m2m + tag	13.03	25.34	16.12	17.75	17.04	26.29	11.49	10.13	29.64	49.54	19.78	20.43	34.15	13.25
agnostic-adapter	16.24	25.85	17.90	21.71	20.08	31.53	11.75	9.05	30.64	54.04	22.79	21.19	28.83	10.59
stack-adapter	13.25	24.19	17.21	19.56	18.37	28.27	10.38	10.55	24.50	42.94	22.02	20.95	25.41	10.14
meta-learning	13.61	24.91	16.22	17.70	16.40	24.93	11.84	7.90	27.85	52.50	20.41	19.00	31.24	10.42
m ⁴ Adapter	18.99	25.22	17.94	21.71	19.86	31.37	12.12	12.05	30.49	54.30	23.92	21.32	33.71	13.69
Δ	+2.75	-0.63	+0.04	+0.00	-0.22	-0.16	+0.37	+3.00	-0.15	+0.26	+1.13	+0.13	+4.88	+3.1

- We observe that almost all baseline systems and $m^4Adapter$ outperform the original m2m model, indicating that the model encodes language knowledge and can transfer this knowledge to new *meta-adaptation* domains.
- Our approach is comparable to the performance of *agnostic-adapter*, which performs the best among all baseline systems.

MethodExperimentsResultsAnalysisConclusion0000000000000000000

Domain Transfer via Languages

• We define domain transfer via languages, i.e., the ability to transfer domains while keeping the languages unchanged.

			meta-adaptati	on dom	ain			specific DLP (hr-sr)						
	EUbookshop	KDE	OpenSubtitles	QED	TED	Ubuntu	Bible	EUbookshop	KDE	OpenSubtitles	QED	TED	Ubuntu	Bible
m2m	17.77	22.05	14.13	18.34	16.20	20.62	9.80	11.43	25.37	19.01	12.25	8.14	22.33	2.01
m2m + FT	12.73	24.56	16.22	20.46	18.74	31.32	11.30	9.79	21.05	53.34	23.87	20.81	34.08	12.57
m2m + tag	13.03	25.34	16.12	17.75	17.04	26.29	11.49	10.13	29.64	49.54	19.78	20.43	34.15	13.25
agnostic-adapter	16.24	25.85	17.90	21.71	20.08	31.53	11.75	9.05	30.64	54.04	22.79	21.19	28.83	10.59
stack-adapter	13.25	24.19	17.21	19.56	18.37	28.27	10.38	10.55	24.50	42.94	22.02	20.95	25.41	10.14
meta-learning	13.61	24.91	16.22	17.70	16.40	24.93	11.84	7.90	27.85	52.50	20.41	19.00	31.24	10.42
m ⁴ Adapter	18.99	25.22	17.94	21.71	19.86	31.37	12.12	12.05	30.49	54.30	23.92	21.32	33.71	13.69
Δ	+2.75	-0.63	+0.04	+0.00	-0.22	-0.16	+0.37	+3.00	-0.15	+0.26	+1.13	+0.13	+4.88	+3.1

- We observe that almost all baseline systems and $m^4Adapter$ outperform the original m2m model, indicating that the model encodes language knowledge and can transfer this knowledge to new *meta-adaptation* domains.
- Our approach is comparable to the performance of *agnostic-adapter*, which performs the best among all baseline systems.
- We also discover that domain transfer through languages is desirable in some distant domains.

Language Transfer via Domains

• We define language transfer via domains, i.e., the ability to transfer languages while keeping the domains unchanged.

	meta-a	daptati	on langu	age pair		s	pecific DLP (de	e-en)		
	de-en	en-fr	fi-uk	is-It	EUbookshop	KDE	OpenSubtitles	QED	TED	Ubuntu
m2m	24.52	29.20	12.34	12.55	19.59	26.48	15.89	26.34	28.14	30.65
m2m + FT	23.29	24.44	11.29	9.59	16.04	23.17	13.34	21.39	26.20	39.59
m2m + tag	22.52	24.97	11.71	11.22	15.86	23.67	11.72	20.64	25.97	37.25
agnostic-adapter	28.33	30.93	15.42	14.38	20.16	28.72	17.97	27.66	33.63	41.89
stack-adapter	23.37	24.96	11.51	11.09	16.14	22.51	13.84	22.29	27.67	36.73
meta-learning	25.08	28.26	13.40	12.83	17.88	21.20	16.32	24.96	30.32	39.81
m ⁴ Adapter	28.37	30.80	15.24	14.05	20.20	28.19	18.06	27.18	33.32	43.24
Δ	+0.04	-0.13	-0.18	-0.33	+0.04	-0.53	+0.09	-0.48	-0.31	+1.35

22 / 25

Language Transfer via Domains

 We define language transfer via domains, i.e., the ability to transfer languages while keeping the domains unchanged.

	meta-a	daptati	on langu	age pair		s	pecific DLP (de	e-en)		
	de-en	en-fr	fi-uk	is-It	EUbookshop	KDE	OpenSubtitles	QED	TED	Ubuntu
m2m	24.52	29.20	12.34	12.55	19.59	26.48	15.89	26.34	28.14	30.65
m2m + FT	23.29	24.44	11.29	9.59	16.04	23.17	13.34	21.39	26.20	39.59
m2m + tag	22.52	24.97	11.71	11.22	15.86	23.67	11.72	20.64	25.97	37.25
agnostic-adapter	28.33	30.93	15.42	14.38	20.16	28.72	17.97	27.66	33.63	41.89
stack-adapter	23.37	24.96	11.51	11.09	16.14	22.51	13.84	22.29	27.67	36.73
meta-learning	25.08	28.26	13.40	12.83	17.88	21.20	16.32	24.96	30.32	39.81
m ⁴ Adapter	28.37	30.80	15.24	14.05	20.20	28.19	18.06	27.18	33.32	43.24
Δ	+0.04	-0.13	-0.18	-0.33	+0.04	-0.53	+0.09	-0.48	-0.31	+1.35

 The performance of traditional fine-tuning approaches are poorer than the original m2m model, which means that these methods do not transfer the learned domain knowledge to the new *meta-adaptation* language pair.

 Method
 Experiments
 Results
 Analysis
 Conclusion

 0000000
 000
 000
 000
 000

Language Transfer via Domains

 We define language transfer via domains, i.e., the ability to transfer languages while keeping the domains unchanged.

	meta-a	daptati	on langu	age pair		s	pecific DLP (de	e-en)		
	de-en	en-fr	fi-uk	is-lt	EUbookshop	KDE	OpenSubtitles	QED	TED	Ubuntu
m2m	24.52	29.20	12.34	12.55	19.59	26.48	15.89	26.34	28.14	30.65
m2m + FT	23.29	24.44	11.29	9.59	16.04	23.17	13.34	21.39	26.20	39.59
m2m + tag	22.52	24.97	11.71	11.22	15.86	23.67	11.72	20.64	25.97	37.25
agnostic-adapter	28.33	30.93	15.42	14.38	20.16	28.72	17.97	27.66	33.63	41.89
stack-adapter	23.37	24.96	11.51	11.09	16.14	22.51	13.84	22.29	27.67	36.73
meta-learning	25.08	28.26	13.40	12.83	17.88	21.20	16.32	24.96	30.32	39.81
m ⁴ Adapter	28.37	30.80	15.24	14.05	20.20	28.19	18.06	27.18	33.32	43.24
Δ	+0.04	-0.13	-0.18	-0.33	+0.04	-0.53	+0.09	-0.48	-0.31	+1.35

- The performance of traditional fine-tuning approaches are poorer than the original m2m model, which means that these methods do not transfer the learned domain knowledge to the new *meta-adaptation* language pair.
- In contrast, $m^4Adapter$ shows a performance that is on par or better than the agnostic-adapter, the most competitive model in all baseline systems.

- 1 Introduction
- 2 Method
- 3 Experiments
- 4 Results
- 6 Analysis
- **6** Conclusion

Conclusion

ntroduction Method Experiments Results Analysis **Conclusion**0000 000 000 000 000 000 000

Conclusion

- We present $m^4Adapter$, a novel multilingual multi-domain NMT adaptation framework which combines meta-learning and parameter-efficient fine-tuning with adapters.
- $m^4Adapter$ is effective on adapting to new languages and domains simultaneously in low-resource settings.
- We show that $m^4Adapter$ transfers domain knowledge across different languages and language information across different domains.
- In addition, $m^4Adapter$ is efficient in training and adaptation, which is practical for online adaptation Etchegoyhen et al., 2021^5 to complex scenarios (new languages and new domains) in the real world.

⁵Online Learning over Time in Adaptive Neural Machine Translation(Etchegoyhen et al., RANLP 2021)

 Introduction
 Method
 Experiments
 Results
 Ana

 0000
 0000000
 000
 000
 000

Thank You!

Email: lavine@cis.lmu.de

Homepage: https://lavine-lmu.github.io
Address: Oettingenstraße 67, 80538 Munich, Germany

Paper

Code

Blog

Conclusion