GRAFOS E DIGRAFOS

Vanessa Braganholo Estruturas de Dados e Seus Algoritmos

GRAFOS

Definições

Representação

Algoritmos

- Busca
- Inserção (arestas e vértices)
- Exclusão (arestas e vértices)

GRAFOS

Grafos são estruturas de dados formadas por um conjunto de vértices e um conjunto de arestas.

APLICAÇÕES DE GRAFOS

Associando-se significados aos vértices e às arestas, o grafo passa a constituir um modelo de uma situação ou informação real

GRADE CURRICULAR

ROTAS DE VOOS

MAPA DE ESTRADAS

MAPA DE METRÔ

REDES SOCIAIS

PROCESSOS/TAREFAS

E DIVERSAS OUTRAS!

GRAFOS — DEFINIÇÕES

DEFINIÇÃO FORMAL

Um grafo **G** é representado por um conjunto (não vazio) **V** de vértices e um conjunto (possivelmente vazio) **E** de arestas (edges)

$$G = (V, E)$$

|V| é a quantidade de vértices de G

|E| é a quantidade de arestas de G

GRAFOS ORIENTADOS X NÃO ORIENTADOS

As arestas podem ter uma direção ou podem ser bi-direcionais

Grafos orientados: as arestas possuem uma direção

Também são chamados de grafos dirigidos ou digrafos

Grafos não orientados: as arestas são bi-direcionais (se existe uma conexão a \rightarrow b então também existe uma conexão b \rightarrow a)

GRAFO ORIENTADO (DIRIGIDO OU DIGRAFO)

Arestas possuem uma direção

Alguns autores usam o termo arco para as arestas de um grafo dirigido

Exemplo:

$$G = (V, E)$$

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{(1, 5), (2, 3), (2, 4), (3, 2), (4, 3), (5, 2), (5, 4)\}$$

GRAFO ORIENTADO (DIRIGIDO OU DIGRAFO)

Arestas possuem uma direção

Alguns autores usam o termo arco para as arestas de um grafo dirigido

Exemplo:

$$G = (V, E)$$

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{(1, 5), (2, 3), (2, 4), (3, 2), (4, 3), (5, 2), (5, 4)\}$$

GRAFO ORIENTADO (DIRIGIDO OU DIGRAFO)

Exemplos:

Malha de transporte urbano (ruas possuem um sentido)

 Pessoa A segue pessoa B no Instagram (mas o contrário nem sempre é verdadeiro)

GRAFO NÃO ORIENTADO

Arestas são bi-direcionais

$$G = (V, E)$$

$$V = \{1, 2, 3, 4, 5, 6\}$$

$$E = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{2, 6\}, \{3, 5\}, \{4, 5\}, \{4, 6\}\}\}$$

GRAFO NÃO ORIENTADO

Arestas são bi-direcionais

G = (V, E)
V =
$$\{1, 2, 3, 4, 5, 6\}$$

E = $\{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{2, 6\}, \{3, 5\}, \{4, 5\}, \{4, 6\}\}$

GRAFO NÃO ORIENTADO

Exemplo:

- Amigos no Facebook (se A é amigo de B, B também é amigo de A)
- Mapa de cabeamento de uma rede (se é possível enviar dados do ponto A ao ponto B, então também é possível enviar do ponto B ao ponto A)

GRAFOS ORIENTADOS X NÃO ORIENTADOS

Um grafo expressa uma relação binária R

Grafo não orientado

- $\{v1, v2\} \in G(E) \Leftrightarrow v1 R v2 \wedge v2 R v1$
- Exemplo: R = amigo no Facebook

Grafo orientado

- $(v1, v2) \in G(E) \Leftrightarrow v1 R v2$
- Exemplo: R = seguir alguém no Instagram

Um grafo é valorado se possuir valores (pesos) associados às arestas e/ou aos vértices

Exemplo: num grafo de rotas de voo, uma aresta pode ser valorada com a distância entre os dois aeroportos que ela conecta

Um vértice v1 é adjacente a um vértice v2 em G, se existe uma aresta conectando v1 a v2 em G.

Em grafo não orientado: v1 é adjacente a v2 se existe aresta {v1,v2} (nesse caso v2 também é adjacente a v1)

Em grafo orientado, v1 é adjacente a v2 se existe aresta (v1, v2)

Dados dois vértices adjacentes v1 e v2

Em um grafo orientado, uma aresta (v1, v2) é incidente de (sai de) v1 e é incidente a (entra em) v2

Em um grafo não orientado, uma aresta {v1, v2} é incidente em v1 e v2

O grau de um vértice é o número de arestas que nele/dele incidem

O grau de um vértice é o número de arestas que nele/dele incidem

A ordem de um grafo é o número de vértices que ele possui

$$G = (V, E)$$

ordem(G) = |V|

O caminho de tamanho k entre dois vértices v1 e v2 é a sequencia $\langle v_0, v_1, ..., v_k \rangle$, onde $v_0 = v1$, $v_k = v2$, e $(v_{i-1}, v_i) \in G(E)$ (ou $\{v_{i-1}, v_i\} \in G(E)$ para grafos não orientados) para i=1..k

O caminho contém os **vértices** $v_0, v_1, ..., v_k$, e as **arestas** $(v_0, v_1), (v_1, v_2), ... (v_{k-1}, v_k)$ (ou $\{v_0, v_1\}, \{v_1, v_2\}, ... \{v_{k-1}, v_k\}$ para grafos não orientados)

Exemplo:

- Caminho de tamanho 1 entre os vértices 1 e 3:
 - Vértices: {1, 3}
 - Arestas: {{1, 3}}
- Caminho de tamanho 2 entre os vértices 1 e 3:
 - Vértices: {1, 2, 3}
 - Arestas: {{1, 2}, {2, 3}}

Se existe um caminho entre v1 e v2, diz-se que v2 é alcançável a partir de v1

O caminho é simples se todos os vértices no caminho são distintos

Exemplo:

- 3 é alcançável a partir de 4
- 2 não é alcançável a partir de 1

Um grafo é dito conectado se existe um caminho ligando cada par de vértices

Um grafo é dito completo se todos os seus pares de vértices forem adjacentes

Uma aresta que tem ambas as extremidades em um mesmo vértice é chamada laço

Um caminho $\langle v_0, v_1, ..., v_k \rangle$ forma um ciclo se $v_0 = v_k$ e o caminho contém pelo menos uma aresta

Exemplo: caminho de v1 a v1

Um grafo sem ciclos é dito acíclico

Um grafo é dito simétrico se para cada aresta (v, w) existe uma aresta (w, v)

GRAFOS — REPRESENTAÇÕES

REPRESENTAÇÃO FÍSICA DE GRAFOS

Matriz de adjacência Matriz de incidência Lista de adjacência Lista de incidência

REPRESENTAÇÃO FÍSICA DE GRAFOS

Matriz de adjacência

Matriz de incidência Lista de adjacência Lista de incidência

MATRIZ DE ADJACÊNCIA

Matriz de adjacência $A(n \times n)$ de um grafo G de ordem n, é uma matriz onde cada elemento $a_{i,i}$ é:

- Grafos orientados:
 - $a_{i,j} = 1$ se $(v_i, v_j) \in G(E)$
 - $a_{i,j} = 0$ se $(v_i, v_i) \notin G(E)$
- Grafos não orientados: $a_{i,j} = a_{j,i}$
 - $a_{i,j} = 1$ se $\{v_i, v_j\} \in G(E)$
 - $a_{i,j} = 0$ se $\{v_i, v_i\} \notin G(E)$

MATRIZ DE ADJACÊNCIA

A matriz de adjacência é uma forma de representação de grafos simples, econômica e adequada para muitos problemas que envolvem apenas a estrutura do grafo

vértices

	1	2	3	4	5	6
1	0	1	0	1	0	1
2	0	0	1	1	0	0
3	0	0	0	0	0	0
4	0	0	1	0	1	0
5	0	0	0	1	0	1
6	0	1	0	1	0	0

MATRIZ DE ADJACÊNCIA PARA GRAFO NÃO ORIENTADO

	1	2	3	4
1	0	1	1	0
2	1	0	1	1
3	1	1	0	1
4	0	1	1	0

MATRIZ DE ADJACÊNCIA PARA GRAFO NÃO ORIENTADO

	1	2	3	4
1	0	1	1	0
2		0	1	1
3			0	1
4				0

Matriz é simétrica

MATRIZ DE ADJACÊNCIA PARA GRAFOS VALORADOS

Valores associados às linhas podem ser representados por uma extensão simples da

Matriz de Adjacência

•
$$a_{ij} = k$$
 se $(v_i, v_j) \in G(E)$

• $a_{ij} = *$ se $(v_i, v_j) \notin G(E)$

	1	2	3	4	5	6
1	*	9	*	7	*	19
2	9	*	23	15	*	*
3	*	23	*	27	*	*
4	7	15	27	*	30	17
5	*	*	*	30	*	8
6	19	*	*	17	8	*

MATRIZ DE ADJACÊNCIA

Matriz binária: ocupa pouco espaço, especialmente para grafos grandes

Manipulação simples: recursos para manipular matrizes existem em qualquer linguagem de programação

Fácil determinar se $(v_i, v_i) \in G(E)$

Fácil determinar vértices adjacentes a um determinado vértice v

Quando o grafo é não orientado, a MA é simétrica (mais econômica)

Inserção de novas arestas é fácil

Inserção de novos vértices é muito difícil

REPRESENTAÇÃO FÍSICA DE GRAFOS

Matriz de adjacência

Matriz de incidência

Lista de adjacência

Lista de incidência

MATRIZ DE INCIDÊNCIA

É uma matriz $B(n \times m)$, sendo n o número de vértices, m o número de arestas e:

- b_{ij}= -1 se o vértice i é a origem da aresta j
- b_{ij}= 1 se o vértice i é o término da aresta j
- bij = 0 se aresta (i,j) \notin G(E)

Para grafos não orientados, $b_{ii}=1$ se a aresta j é incidente ao vértice i.

arestas

	a1	a2	a3	a4	a5
1	-1	-1	0	0	0
2	1	0	-1	-1	0
3	0	1	1	0	-1
4	0	0	0	1	1

REPRESENTAÇÃO FÍSICA DE GRAFOS

Matriz de adjacência

Matriz de incidência

Lista de adjacência

Listas de incidência

LISTA DE ADJACÊNCIA

Para cada vértice v é representada a lista de vértices u tais que $(v,u) \in G(E)$

Possíveis formas de armazenamento: vetores, vetores + listas encadeadas, listas encadeadas

Melhor forma de representação: listas encadeadas

- Uso racional do espaço
- Flexibilidade

LISTAS DE ADJACÊNCIA

Nós podem ser estendidos para representar outras informações

REPRESENTAÇÃO FÍSICA DE GRAFOS

Matriz de adjacência Matriz de incidência Lista de adjacência Lista de incidência

LISTAS DE INCIDÊNCIA

IMPLEMENTAÇÃO

Veremos a implementação de grafos usando lista de adjacência

- São flexíveis para acomodar inserções e remoções, ao contrário das matrizes de adjacência e incidência
- Facilitam a identificação dos vértices do grafo, ao contrário das listas de incidência

ESTRUTURA EM C

```
typedef struct vizinho {
    int id vizinho;
    struct vizinho *prox;
}TVizinho;
typedef struct grafo{
    int id vertice;
    TVizinho *prim vizinho;
    struct grafo *prox;
} TGrafo;
```


INICIALIZAÇÃO DA ESTRUTURA

```
TGrafo *inicializa() {
   return NULL;
```

IMPRESSÃO DO GRAFO

```
void imprime(TGrafo *q) {
   while (g != NULL) {
        printf("Vértice %d\n", g->id vertice);
        printf("Vizinhos: ");
        TVizinho *v = g->prim vizinho;
        while ( \lor != NULL )  {
            printf("%d ", v->id vizinho);
            v = v - > prox;
        printf("\n\n");
        q = q - prox;
```

LIBERAÇÃO DA ESTRUTURA

```
void libera(TGrafo *g) {
    while (q != NULL) {
        libera vizinhos (g->prim vizinho);
        TGrafo^{-}*temp = q;
        q = q - prox;
        free (temp);
void libera vizinhos(TVizinho *v) {
    while (v = NULL) {
        TVizinho *temp = v;
        v = v - > prox;
        free(temp);
```

GRAFOS — ALGORITMOS BÁSICOS

BUSCA

Busca por um vértice v1

Basta percorrer a lista de vértices até encontrar v1

Busca por uma aresta (v1, v2)

- Percorrer a lista de vértices até encontrar v1
- Depois percorrer a lista de vizinhos de v1 até encontrar v2

BUSCA POR VÉRTICE X

```
TGrafo* busca vertice(TGrafo* g, int x) {
   while ((g != NULL) && (g->id vertice != x)) {
       q = q - prox;
   return g;
```

BUSCA POR ARESTA (V1, V2) OU {V1, V2}

```
TVizinho* busca aresta(TGrafo *q, int v1, int v2) {
   TGrafo *pv1 = busca vertice(q, v1);
   TGrafo *pv2 = busca vertice(q, v2);
   TVizinho *resp = NU\overline{L}L;
   //checa se ambos os vértices existem
   if ( (pv1 != NULL) && (pv2 != NULL) )
        //percorre a lista de vizinhos de v1 procurando por v2
        resp = pv1->prim vizinho;
        while ((resp != \overline{N}ULL) && (resp->id vizinho != v2)) {
            resp = resp->prox;
   return resp;
```

INSERÇÃO DE VÉRTICE

Insere o vértice na lista encadeada de vértices, como primeiro vértice da lista

Exemplo: inserir vértice 4

INSERÇÃO DE VÉRTICE

Insere o vértice na lista encadeada de vértices, como primeiro vértice da lista

Exemplo: inserir vértice 4

INSERÇÃO DE VÉRTICE

```
TGrafo *insere vertice(TGrafo *g, int x) {
   TGrafo *p = busca vertice(g, x);
   if (p == NULL) {
       p = (TGrafo*) malloc(sizeof(TGrafo));
       p->id vertice = x;
       p->prox = q;
       p->prim vizinho = NULL;
       q = p;
   return g;
```

INSERÇÃO DE ARESTA

Grafo não orientado

• Inserção de aresta {v1, v2}: inserir v2 na lista de vizinhos de v1, e v1 na lista de vizinhos de v2 (ou seja, inserir as arestas (v1, v2) e (v2, v1))

Grafo orientado (dígrafo)

Inserção de aresta (v1, v2): inserir v2 na lista de vizinhos de v1

Em ambos os casos, verificar se a aresta já existe antes de realizar a inserção

INSERÇÃO DE ARESTA EM GRAFO NÃO ORIENTADO

Exemplo: Inserir aresta $\{2, 4\}$

INSERÇÃO DE ARESTA EM GRAFO NÃO ORIENTADO

Exemplo: Inserir aresta $\{2, 4\}$

INSERÇÃO DE ARESTA EM GRAFO NÃO ORIENTADO

```
void insere um sentido(TGrafo *g, int v1, int v2) {
   TGrafo *p = busca vertice(g, v1);
   TVizinho *nova = (TVizinho *) malloc(sizeof(TVizinho));
   nova->id vizinho = v2;
   nova->prox = p->prim vizinho;
   p->prim vizinho = nova;
void insere aresta(TGrafo *g, int v1, int v2) {
   TVizinho *v = busca aresta(q, v1, v2);
   if (v == NULL)
        insere um sentido(q, v1, v2);
                                                   Se grafo é não orientado,
        insere um sentido(q, v2, v1);
                                                   usar essa função
```

INSERÇÃO DE ARESTA EM DIGRAFO

Exemplo: Inserir aresta (2, 4)

INSERÇÃO DE ARESTA EM DIGRAFO

Exemplo: Inserir aresta (2, 4)

INSERÇÃO DE ARESTA EM DIGRAFO

```
void insere aresta digrafo(TGrafo *g, int v1, int v2){
   TVizinho *v = busca aresta(q, v1, v2);
   if(v == NULL) {
       insere um sentido(g, v1, v2);
```

EXCLUSÃO DE ARESTA

Grafo não orientado

Exclusão de aresta {v1, v2}: excluir v2 da lista de vizinhos de v1, e v1 da lista de vizinhos de v2 (ou seja, excluir as arestas (v1, v2) e (v2, v1))

Grafo orientado (dígrafo)

Exclusão de aresta (v1, v2): excluir v2 da lista de vizinhos de v1

Em ambos os casos, liberar a memória

EXCLUSÃO DE ARESTA EM GRAFO NÃO ORIENTADO

Exemplo: exclusão da aresta {2, 3}

EXCLUSÃO DE ARESTA EM GRAFO NÃO ORIENTADO

Exemplo: exclusão da aresta {2, 3}

EXCLUSÃO DE ARESTA EM GRAFO NÃO ORIENTADO

Exemplo: exclusão da aresta {2, 3}

EXCLUSÃO DE ARESTA EM GRAFO NÃO ORIENTADO

```
void retira um sentido(TGrafo *g, int v1, int v2) {
   TGrafo *p = busca vertice(q, v1);
    if (p != NULL) {
        TVizinho *ant = NULL;
        TVizinho *atual = p->prim vizinho;
        while ((atual) && (atual-\overline{>}id vizinho != v2)) {
            ant = atual;
            atual = atual->prox;
        if (ant == NULL) //v2 era o primeiro nó da lista
            p->prim vizinho = atual->prox;
        else
            ant->prox = atual->prox;
        free (atual);
```

EXCLUSÃO DE ARESTA EM GRAFO NÃO ORIENTADO (CONT.)

```
void retira aresta(TGrafo *g ,int v1, int v2) {
   TVizinho* v = busca aresta(g, v1, v2);
   if (v != NULL) {
        retira um sentido(g, v1, v2);
        retira um sentido (q, v2, v1);
```

Exemplo: Exclusão de aresta (2, 3)

Exemplo: Exclusão de aresta (2, 3)

Exemplo: Exclusão de aresta (2, 3)


```
void retira aresta digrafo(TGrafo *g ,int v1, int v2) {
   TVizinho* v = busca aresta(g, v1, v2);
   if (v != NULL) {
        retira um sentido(g, v1, v2);
```

EXCLUSÃO DE VÉRTICE

Exclui

- vértice
- sua lista de vizinhos
- todos os vizinhos que tinham esse vértice como extremidade

Libera memória

Exemplo: exclusão do vértice 2

Retira todos os vizinhos de 2

Retira vértice 2

Retira vértice 2

Exercício: escreva uma função em C para exclusão de vértice em grafo orientado

```
• TGrafo *retira_vértice(TGrafo *g, int v);
```

Exemplo: exclusão do vértice 2

Retira todos os vizinhos de 2

Retira 2 da lista de vizinhos dos outros nós

Retira vértice 2

Retira vértice 2

Exercício: escreva uma função em C para exclusão de vértice em grafo orientado

```
• TGrafo *retira_vértice_digrafo(TGrafo *g, int v);
```

ALGORITMOS EM GRAFOS

Existem diversos algoritmos eficientes para encontrar caminhos em grafos

Eles serão aprendidos na disciplina de Algoritmos em Grafos (6°. Semestre)

Aqui na disciplina faremos exercícios procurando por caminhos e resolvendo pequenos problemas em estruturas de grafos, para motivar o uso de grafos e o aprendizado dos algoritmos na disciplina de Algoritmos em Grafos

REFERÊNCIA

Celes, W.; Cerqueira, R.; Rangel, J.L. Introdução a Estruturas de Dados com Técnicas de Programação em C, 2a. ed. Elsevier. Cap. 22

AGRADECIMENTOS

Material baseado nos slides de Renata Galante, UFRGS Implementação em C baseada no material de Isabel Rosseti, UFF

IMPRESSÃO DO GRAFO (IMPLEMENTAÇÃO RECURSIVA)

```
void imprime recursivo(TGrafo *q) {
   if (q != NULL) {
        printf("Vértice: %d:\n", g->id vertice);
       printf("Vizinhos: ");
        TVizinho *v = g->prim vizinho;
        while(v) {
            printf("%d ", v->id vizinho);
            v = v - > prox;
        printf("\n\n");
        imprime recursivo(g->prox);
```

LIBERAÇÃO DA ESTRUTURA (IMPLEMENTAÇÃO RECURSIVA)

```
void libera recursivo(TGrafo *q) {
   if (q != NULL) {
        libera vizinho recursivo (q->prim vizinho);
        libera recursivo(q ->prox);
        free (g);
void libera vizinho recursivo(TVizinho *v) {
   if (v != NULL) {
        libera vizinho recursivo(v->prox);
        free (v);
```