Algorithms:
Efficiency, Analysis, and Order
Chapter 1

Objectives

- Analyze techniques for solving problems
- Define an algorithm
- Define growth rate of an algorithm as a function of input size
- Define Worst case, average case, and best case complexity analysis of algorithms
- Classify functions based on growth rate
- Define growth rates: Big O, Theta, and Omega

Methodology

- Approach to solving a problem
- Independent of Programming Language
- Independent of Style
- Sequential Search versus Binary Search
- Which technique results in the most efficient solution?

Problem?

- A question to which an answer is sought
- Parameters
 - Input to the problem
 - Instance: a specific assignment of values to the input parameters
- Algorithm:
 - Step-by-step procedure
 - Solves the Problem

Sequential Search vs Binary Search – Worst Case

- Input Array S size n
- •X ∉ S
- Sequential Search: n operations
- Binary Search: Ig n + 1 operations

Fibonacci: Iterative vs Recursive

- $-Fib_0 = 0$
- •Fib₁ = 1
- \blacksquare Fib_{n-1+} Fib_{n-2}
- Calculate the nth Fibonacci Term:
 - Recursive calculates 2^{n/2} terms
 - Iterative calculates n+1 terms

Recursion Tree for the 5th Fibonacci Term

Comparison of Recursive and Iterative Solutions

n	n+1	2 ^{n/2}	Execution Time Using Algorithm 1.7	Lower Bound on Execution Time Using Algorithm 1.6
40	41	1,048,576	41 ns*	1048 μs [†]
60	61	1.1×10^{9}	61 ns	1 s
80	81	1.1×10^{12}	81 ns	18 min
100	101	1.1×10^{15}	101 ns	13 days
120	121	1.2×10^{18}	121 ns	36 years
160	161	1.2×10^{24}	161 ns	3.8×10^7 years
200	201	1.3×10^{30}	201 ns	4 × 10 ¹³ years

^{*1} ns = 10^{-9} second.

^{†1} $\mu s = 10^{-6}$ second.

Complexity Analysis

- Define Basic Operation
- Count the number of times the basic operation executes for each value of the input size
- Maybe dependent on input size (sequential search)
- Every-case time complexity analysis

Complexity Analysis – Large n

- Worst Case
- Every Case
- Average Case
- Best Case

Order – Classes of Functions – Growth Rate

- Θ(f) At the rate of f
- O(f) At most as fast as f
- •Ω(f) At least as fast as f
- •n grows more slowly than $n^3 => n \epsilon O(n^3)$
- •n³ grows faster than n => n³ ε Ω (n)
- By definition n and 2n grow at the same rate => $2n \epsilon \Theta(n)$

Growth Rates of Common Complexity Functions

Big O

- For a given complexity function f (n), O(f(n)) is the set of complexity functions g(n) for which there exists some positive real constant c and some nonnegative integer N such that for all n ≥ N,
- $g(n) \le c \times f(n)$
- $g(n) \in O(f(n))$

Omega

- For a given complexity function f(n), Ω(f (n)) is the set of complexity functions g (n) for which there exists some positive real constant c and some nonnegative integer N such that, for all n ≥ N,
- $g(n) \ge c \times f(n)$.
- $g(n) \in \Omega(f(n))$

Theta

- For a given complexity function f(n),
- \bullet $\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$
- This means that θ(f(n)) is the set of complexity functions g (n) for which there exists some positive real constants c and d and some nonnegative integer N such that, for all n ≥ N,
- $-c \times f(n) \le g(n) \le d \times f(n)$.
- $g(n) \in \theta(f(n))$

Big O, Omega, Theta

Limit Definitions for Big O, Theta, and Omega

- •Lim_{n-> ∞} g(n)/f(n) = c => g(n) ϵ θ (f(n)) for c > 0 and c!= ∞
- $\lim_{n\to\infty} g(n)/f(n) = c => g(n) \varepsilon O(f(n))$ where $c \varepsilon Set of all positive real numbers union 0$
- •Lim_{n-> ∞} g(n)/f(n) = ∞ OR Lim_{n-> ∞} g(n)/f(n) = c >0 => g(n) ε Ω (f(n))