第九章 实时处理与噪声滤除*

杨勐 副教授

■问题背景

数字滤波器由乘法器、加法器和延迟单元构成,其中乘法器占据了大多数运算时间,影响到了滤波的实时性。

观察上图可发现:滤波器中大多数乘法运算是信号与某个固定系数的相乘。

9.1 ROM查表式乘法

基本思路: 以空间换时间。

方法: 假设信号x是整数,字长8位,则用其所有的取值可能-128~127 与滤波器系数a(假设为0.5)分别计算乘积并存储,每个乘积的存储地址就使用x值本身。

地址(信号x)	数据 (乘积)	地址(信号x)	数据 (乘积)
0000 0000	0.000 000.0	1000 0000	1000 000.0
0000 0001	0000 000.1	1000 0001	1000 000.1
0000 0000	0.000 000.0	1000 0010	1000 001.0
0111 1111	0111 111.1	1111 1111	1111 111.1

□ 滤波器乘法运算时,只需将信号x作为地址去读取存储器,读出的数据即为乘积结果。如当x=127时,地址127处读出的值为63.5,即实现了下述运算:

$$a \cdot x = 0.5 \times 127 = 63.5$$

□ 查表的速度远远快于乘法运算的速度。采用该方法时,表的数目取决于滤波器中系数的个数,因此这是一种空间换时间的思想。

9.2 IIR滤波器的查表法实现

9.2.1 一阶IIR滤波器查表实现

设一阶IIR滤波器的系统函数为:

$$H(z) = \frac{a_0 + a_1 z^{-1}}{1 + \beta_1 z^{-1}}$$

<u>则输入序列x(n)时的系统输出为:</u>

$$y(n) = a_0 x(n) + a_1 x(n-1) - \beta_1 y(n-1), n \ge 0$$

假定字长为B比特,采用二进制定点补码运算,则:

$$\begin{cases} y(n) = -y^{0}(n) + \sum_{j=1}^{B-1} y^{j}(n) 2^{-j} \\ y(n-1) = -y^{0}(n-1) + \sum_{j=1}^{B-1} y^{j}(n-1) 2^{-j} \\ x(n) = -x^{0}(n) + \sum_{j=1}^{B-1} x^{j}(n) 2^{-j} \\ x(n-1) = -x^{0}(n-1) + \sum_{j=1}^{B-1} x^{j}(n-1) 2^{-j} \end{cases}$$

代入上式,可得:

$$y(n) = \sum_{j=1}^{B-1} \left[a_0 x^j(n) + a_1 x^j(n-1) - \beta_1 y^j(n-1) \right] \cdot 2^{-j} - \left[a_0 x^0(n) + a_1 x^0(n-1) - \beta_1 y^0(n-1) \right]$$

据此可构造出ROM表:

	地址	数据
	$x^{j}(n), x^{j}(n-1), y^{j}(n-1)$	$a_0 x^j(n) + a_1 x^j(n-1) - \beta_1 y^j(n-1)$
0	000	0
1	001	$-eta_1$
2	010	a_1
3	011	$a_1 - \beta_1$
4	100	a_0
5	101	$-eta_1$
6	110	$a_0 - \beta_1$
7	111	a_0 a_1 $-\beta_1$

基于上表,一阶IIR滤波器的查表法完整实现框图如下:

9.2.2 二阶IIR滤波器查表实现

设二阶IIR滤波器的系统函数为:

$$H(z) = \frac{a_0 + a_1 z^{-1} + a_2 z^{-2}}{1 + \beta_1 z^{-1} + \beta_2 z^{-2}}$$

则输入序列x(n)时的系统输出为:

$$y(n) = a_0 x(n) + a_1 x(n-1) + a_2 x(n-2) - \beta_1 y(n-1) - \beta_2 y(n-2), n \ge 0$$

假定字长为B比特,采用二进制定点补码运算,则:

$$\begin{cases} y(n) = -y^{0}(n) + \sum_{j=1}^{B-1} y^{j}(n) 2^{-j} \\ y(n-1) = -y^{0}(n-1) + \sum_{j=1}^{B-1} y^{j}(n-1) 2^{-j} \\ y(n-2) = -y^{0}(n-2) + \sum_{j=1}^{B-1} y^{j}(n-2) 2^{-j} \\ x(n-1) = -x^{0}(n-1) + \sum_{j=1}^{B-1} x^{j}(n-1) 2^{-j} \\ x(n-2) = -x^{0}(n-2) + \sum_{j=1}^{B-1} x^{j}(n-2) 2^{-j} \end{cases}$$

代入上式,可得:

其中,

二阶IIR滤波器的查表法的完整实现框图如下:

9.3 噪声滤除

9.3.1 加性噪声滤除

加性噪声的测量信号模型:

$$x(n) = s(n) + v(n)$$

滑动平均滤波器:

$$y(n) = \frac{1}{M} \sum_{m=0}^{M-1} x(n+m)$$

该滤波器能够滤除白噪声并保持陡峭的方波信号,但其频域过渡带衰减慢且阻带波纹多,其幅频响应为:

$$H(\omega) = \left| \frac{\sin(\omega M/2)}{M\sin(\omega/2)} \right|$$

9.3.2 乘性噪声滤除与同态系统

乘性噪声的测量信号模型:

- (1) 图像信号: $f(u,v) = \rho(u,v) \cdot \mathbf{n}(u,v)^T \mathbf{s}$
- (2) 语音信号: s(n) = g(n) * h(n)
- (3) 多径信号: $x(n) = s(n) + \beta s(n n_d) = s(n) * [\delta(n) + \beta \delta(n n_d)]$
- (4) 衰落信道信号: x(n) = s(n)g(n)

满足广义叠加原理的同态系统

例: 已知
$$y(n) = \ln[x(n)]$$
 , 若 $x(n) = x_1(n)x_2(n)$

$$y(n) = \ln \left[x_1(n) x_2(n) \right] = \ln \left[x_1(n) \right] + \ln \left[x_2(n) \right] = y_1(n) + y_2(n)$$

一般地, 同态系统可表述为:

$$y(n) = T[x(n)] = T[x_1(n) \square x_2(n)] = y_1(n) \circ y_2(n)$$

$$x(n) \xrightarrow{\Box} T[\cdot] \xrightarrow{\bigcirc} y(n)$$

例: 衰落信道信号的同态滤波过程

接收机收到的信号x(n) 实际上为高频信号s(n)对低频信号g(n)的调制结果:

$$x(n) = s(n)g(n)$$

本章小结

- ROM查表式乘法
- 一阶/二阶IIR滤波器的查表法实现
- 加性噪声滤除
- 乘性噪声的同态滤波