

#### **Objektorientierte Programmierung mit C++:**

#### Wiederholung

A. Freymann

Fakultät Informationstechnik, Hochschule Esslingen



Zum eine Trennung zwischen der Schnittstelle (Fachliche Seite) und Implementierung (Technische Seite) zu trennen. Dies fördert auch die Wiederverwendbarkeit!



# Was ist der Unterschied zwsichen structs und classes?

- Klassen können als class oder struct definiert werden.
- class und struct sind in C++ bis auf den Defaultwert des Schutzattributes identisch.
  - Defaultwert des Schutzattributes:

class: private / struct: public

Was soll man nutzen (ist natürlich Geschmackssache):

class für Objektorientierung,

struct für PODs (Plain Old Data), d.h. wie in C.

© Hochschule Esslingen



- Kein Bruch zwischen Modellierung und Implementierung
- Nachvollziehbarkeit der Implementierung
- Programmstabilität durch Kapselung
- Wiederverwertbarkeit



Objekte kapseln die Eigenschaften gegenüber der Umwelt und bieten **Schnittstellen (Klassenmethoden)** dazu an.



Es gibt immer nur ein "das selbst" Objekt Gleiche Objekte sind reale Objekte mit gleichen Eigenschaften, aber unterschiedlichen Ausprägungen

-> das Gleiche != das Selbe



Ähnliche Objekte können zu Gruppen zusammengefasst werden und ein Muster (Klasse) steht für die gemeinsamen Eigenschaften dieser Objekte.



Objekt-Muster (Klassen) können ihre Eigenschaften an spezifischere Objekt-Muster vererben. Es entsteht eine Hierarchie von Objekt-Mustern, die eine verschieden tiefe Abstraktion widerspiegeln.



Eine **Klasse** ist eine **Vorlage** (**Template**) das logisch zusammengehörende Eigenschaften und Verhalten beschreibt.

Ein **Objekt** ist eine reale **Ausprägung** (**Instanz**) einer Klasse.



- Elementfunktionen
  - Instanzmethoden
- Mitgliedfunktionen
- Memberfunktionen



- Attribute
- Instanzvariablen
- Mitgliedsvariablen
  - Member



# Welche Schutzmechanismen gibt es um Zugriffe auf Eigenschaften einer Klasse zu beeinflussen?

- public (öffentliches Element):
  - Elemente sind für alle innerhalb und außerhalb der Klasse zugänglich.
- pri vate (private Elemente)
  - Elemente sind für alle innerhalb der Klasse direkt zugänglich. Elemente sind außerhalb der Klasse (einschließlich deren Nachkommen) nur über Methoden zugänglich.
- protected (geschützte Elemente)
  - In der Klasse und deren Nachkommen ist direkter Zugriff möglich.
     Elemente sind außerhalb der Klasse nur über Methoden zugänglich.

#### Was ist das Schlüsselwort this?

- Die Methoden einer Klasse werden nur einmal im Speicher abgelegt. Die einzelnen Instanzen liegen ebenfalls im Speicher, enthalten aber nur die Daten, also die Attribute.
- Wird eine Methode zu einer speziellen Instanz aufgerufen, dann braucht diese Methode die Information, wo die Instanzattribute sich befinden.
- Diese Information stellt der Compiler im Zeiger this zur Verfügung, der innerhalb einer Methode auch explizit verwendet werden kann.
- Jeder Methode wird bei ihrem Aufruf der this-Zeiger übergeben. Er zeigt auf das aufrufende Objekt der Klasse, zu der die Methode gehört.



# Wie kann ein mehrfaches Einbinden einer Header-Datei verhindert werden?

Abhilfe mit Präprozessoranweisungen:

```
#ifndef classname_h
#define classname_h
class classname {
   ...
}
#endif
```

#pragma once

© Hochschule Esslingen