```
Code:
# Multilinear Regression
import pandas as pd
import numpy as np
# loading the data
cars = pd.read_csv("C:\\Users\CSE-14\Downloads\Cars.csv")
cars
# Exploratory data analysis:--
# 1. Measures of central tendency
# 2. Measures of dispersion
# 3. Third moment business decision
# 4. Fourth moment business decision
# 5. Probability distributions of variables
# 6. Graphical representations (Histogram, Box plot, Dot plot, Stem & Leaf plot, Bar plot, etc.)
cars.describe()
#Graphical Representation
import matplotlib.pyplot as plt # mostly used for visualization purposes
# HP
plt.bar(height = cars.HP, x = np.arange(1, 82, 1))
plt.hist(cars.HP) #histogram
plt.boxplot(cars.HP) #boxplot
# Jointplot
import seaborn as sns
sns.jointplot(x=cars['HP'], y=cars['MPG'])
# Countplot
plt.figure(1, figsize=(16, 10))
```

```
sns.countplot(cars['HP'])
# Q-Q Plot
from scipy import stats
import pylab
stats.probplot(cars.MPG, dist = "norm", plot = pylab)
plt.show()
# Scatter plot between the variables along with histograms
import seaborn as sns
sns.pairplot(cars.iloc[:, :])
# Correlation matrix
cars.corr()
# we see there exists High collinearity between input variables especially between
# [HP & SP], [VOL & WT] so there exists collinearity problem
# preparing model considering all the variables
import statsmodels.formula.api as smf # for regression model
ml1 = smf.ols('MPG~ WT + VOL + SP + HP', data = cars).fit() # regression model
# Summary
ml1.summary()
# p-values for WT, VOL are more than 0.05
# Checking whether data has any influential values
# Influence Index Plots
import statsmodels.api as sm
sm.graphics.influence_plot(ml1)
# Studentized Residuals = Residual/standard deviation of residuals
# index 76 is showing high influence so we can exclude that entire row
cars_new = cars.drop(cars.index[[76,78,79,70,80]])
cars_new
```

```
# Preparing model
ml_new = smf.ols('MPG \sim WT + VOL + HP + SP', data = cars_new).fit()
# Summary
ml_new.summary()
# Check for Colinearity to decide to remove a variable using VIF
# Assumption: VIF > 10 = colinearity
# calculating VIF's values of independent variables
rsq_hp = smf.ols(HP \sim WT + VOL + SP', data = cars).fit().rsquared
vif_hp = 1/(1 - rsq_hp)
rsq_wt = smf.ols('WT \sim HP + VOL + SP', data = cars).fit().rsquared
vif_wt = 1/(1 - rsq_wt)
rsq_vol = smf.ols('VOL \sim WT + SP + HP', data = cars).fit().rsquared
vif_vol = 1/(1 - rsq_vol)
rsq_sp = smf.ols('SP \sim WT + VOL + HP', data = cars).fit().rsquared
vif_sp = 1/(1 - rsq_sp)
# Storing vif values in a data frame
d1 = {'Variables':['HP', 'WT', 'VOL', 'SP'], 'VIF':[vif_hp, vif_wt, vif_vol, vif_sp]}
Vif_frame = pd.DataFrame(d1)
Vif_frame
# As WT is having highest VIF value, we are going to drop this from the prediction model
# Final model
final_ml = smf.ols('MPG \sim VOL + SP + HP', data = cars).fit()
final_ml.summary()
# Prediction
pred = final_ml.predict(cars)
```

```
# Q-Q plot
res = final_ml.resid
sm.qqplot(res)
plt.show()
# Q-Q plot
stats.probplot(res, dist = "norm", plot = pylab)
plt.show()
# Residuals vs Fitted plot
sns.residplot(x = pred, y = cars.MPG, lowess = True)
plt.xlabel('Fitted')
plt.ylabel('Residual')
plt.title('Fitted vs Residual')
plt.show()
sm.graphics.influence_plot(final_ml)
### Splitting the data into train and test data
from sklearn.model_selection import train_test_split
cars_train, cars_test = train_test_split(cars, test_size = 0.2) # 20% test data
# preparing the model on train data
model_train = smf.ols("MPG ~ HP + SP + VOL", data = cars_train).fit()
# prediction on test data set
test_pred = model_train.predict(cars_test)
# test residual values
test_resid = test_pred - cars_test.MPG
# RMSE value for test data
```

```
test_rmse = np.sqrt(np.mean(test_resid * test_resid))
test_rmse
# train_data prediction
train_pred = model_train.predict(cars_train)

# train residual values
train_resid = train_pred - cars_train.MPG
# RMSE value for train data
train_rmse = np.sqrt(np.mean(train_resid * train_resid))
```

Outputs:

train_rmse

Joint plot of Horsepower and Mileage

Count plot of Horsepower

QQ plot of Horsepower and Mileage

Pair plot of Cars Dataset

Influence plot of Cars Dataset

QQ plot of Final Data Model

Scatter plot of Fitted Vs Residuals

QQ plot of Final Data Model