Automatic Image Orientation Detection

Mike Ghesquiere

CS9840 – Machine Learning for Computer Vision

Problem

Which orientation is correct?

Solution

Automatic Image Orientation (A. Vailaya et al)

Pipeline

Feature Extraction

Feature Selection

Learning

Split the image into $N \times N$ blocks.

(the center can be discarded)

Extract features from each block.

Extract features from each block.

Color Moments (CM) in L* u* v*

Edge Detection Histogram (EDH)

$$N_{CM} \times N_{CM} \times \{mean, variance\} \times \{L, U, V\}$$

$$N_{EDH} \times N_{EDH} \times (histogram\ buckets)$$

$$10 \times 10 \times 2 \times 3$$

$$0 \times 0$$

600 features

	N_{CM}	N_{EDH}	EDH bins	Length of feature vector
Vailaya et al. [1]	10	0	-	600
Luo et al. [2]	7	5	16+1	719
Takahashi et al. [3]	7	5	16+1	719
Cingovska et al. [4]	(8)1	(8)1	(8+1) ²	720
Le Borgne et al. [5]	4	4	(4+1) ²	176
Liu et al. [6]	5	5	12+1	475

Pipeline

Feature Extraction

Feature Selection

Learning

Feature Selection

PCA or LDA?

Principal Component Analysis (PCA)

Linear Discriminant Analysis (LDA)

$$d = 3$$

(that's it)

Error rate with k-NN

Pipeline

Feature Extraction

Feature Selection

Learning

Learning Vector Quantization (LVQ)

k-NN

SVM

Mixture of Gaussians

Hierarchical Discriminating Regression (HDR) tree

Learning Vector Quantization (LVQ)

k-NN

SVM

Mixture of Gaussians

Hierarchical Discriminating Regression (HDR) tree

AdaBoost

Learning Vector Quantization (LVQ)

k-NN

SVM

Mixture of Gaussians

AdaBoost

Learning Vector Quantization

Learning Vector Quantization

Learning Vector Quantization (LVQ)

k-NN

SVM

Mixture of Gaussians

AdaBoost

k Nearest Neighbors (k-NN) Classifier

k Nearest Neighbors (k-NN) Classifier

	without LDA		with LDA	
	Training	Testing	Training	Testing
k-NN ($k = 1$)	100%	33.6%	100%	45.0%
k-NN ($k = 5$)	57.4%	35.7%	67.7%	49.2%
k-NN ($k = 10$)	51.7%	37.9%	63.7%	52.8%
k-NN ($k = 50$)	44.5%	40.0%	61.5%	55.8%
k-NN ($k = 100$)	43.3%	39.8%	62.1%	55.0%
k-NN ($k = 500$)	41.4%	38.8%	61.1%	55.2%

Learning Vector Quantization (LVQ)

k-NN

SVM

Mixture of Gaussians

AdaBoost

Support Vector Machine (SVM)

	VOC2007	IndoorScenes	VOC2012	"Easy"
lin	40.5%	55.5%	45.4%	65.6%
poly(d=2)	36.3%	40.5%	37.2%	44.0%
poly(d=3)	39.8%	53.9%	43.8%	61.6%
poly $(d=4)$	33.4%	37.0%	34.4%	38.4%
poly $(d = 5)$	38.9%	47.3%	38.5%	58.4%
poly $(d=6)$	31.4%	36.9%	31.1%	43.2%
$rbf(\gamma=2^0)$	40.5%	55.6%	46.1%	24.0%
$rbf(\gamma=2^{-1})$	40.4%	55.7%	45.9%	24.8%
$rbf(\gamma=2^{-2})$	40.9%	55.6%	46.0%	25.6%
$rbf(\gamma=2^{-3})$	40.5%	55.4%	45.8%	32.0%
$rbf\left(oldsymbol{\gamma}=0 ight)$	41.1%	55.7%	46.0%	25.6%
sigm $(\gamma = 2^0)$	30.2%	36.3%	29.2%	36.8%
sigm $(\gamma = 2^{-1})$	30.9%	36.5%	32.0%	41.6%
sigm ($\gamma=2^{-2}$)	33.4%	39.2%	34.5%	41.6%
sigm $(\gamma = 2^{-3})$	35.1%	43.4%	37.9%	41.6%
sigm $(\gamma = 0)$	25.8%	25.8%	25.3%	24.0%

Learning Vector Quantization (LVQ)

k-NN

SVM

Mixture of Gaussians

AdaBoost

AdaBoost

	withou	ut LDA	with LDA		
	Training	Testing	Training	Testing	
AdaBoost (5)	40.9%	40.0%	58.1%	50.8%	
AdaBoost (10)	48.0%	46.6%	59.1%	51.6%	
AdaBoost (25)	52.3%	49.9%	60.7%	51.4%	
AdaBoost (50)	54.3%	51.9%	60.8%	51.4%	
AdaBoost (100)	56.7%	52.1%	61.3%	51.6%	
AdaBoost (250)	59.9%	52.1%	61.6%	51.8%	

Pipeline

Feature Extraction

Feature Selection

Learning

	without LDA		with LDA	
	Training	Testing	Training	Testing
k-NN ($k = 50$)	44.5%	40.0%	61.5%	55.8%
SVM (linear kernel)	100%	41.5%	61.3%	55.4%
LVQ $(q = 100)$	-	_	50.6%	50.2%
AdaBoost (50)	54.3%	51.9%	60.8%	51.4%
Mixture of Gaussian	-	-	49.6%	44.0%

Some images are difficult...

...even for humans.

Improving Feature Selection

EDH

Optimizing N_{CM} and N_{EDH}

Removing center blocks does work!

Improving Classifiers

Semantic cues.

Specialized classifiers.

Thank you.