ASR Assignment

Problem Statement:

Performing phoneme classification on the TIMIT dataset by training and testing gmm models for each phoneme.

Procedure:

- i) Preprocessing
- a) Downloaded and extracted the timit dataset
- b) Converted the wav files from NIST "SPHERE" file format to WAVE PCM format using "sphn_to_wav.py" file

ii) *Training*

- a) Used "import_timit.py" file to generate mfcc (13 dim), mfcc + delta (26 dim), mfcc + delta + delta (39 dim) features. They are saved in "features/" as train1.hdf, train2.hdf and train3.hdf respectively.
- b) train.ipynb reads the mfcc features, extracts the feature and label array, and fits a gmm for each phoneme.
- c) The gmms are then saved onto the system using the pickle library

iii) *Testinq*

- a) Similar to the training process, mfcc features are generated, for the test directory of TIMIT
- b) Feature and label array are extracted. This label array acts as the ground truth for the test dataset.
- c) The trained gmms are loaded from disk.
- d) MAP rule is applied, to classify each feature vector in the sequence, for a given test file (40-way classification), and the predicted labels are stored in an array
- e) Frame-level accuracy and Phoneme error rate are calculated using ground truth array and predicted labels array

Results:

Results:			
MFCC feature dim	Mixture number	Frame-level accuracy	Phoneme error rate
<u>With Energy co-efficients</u>			
13	2	11.61936	89.15897
	4	13.65873	88.92773
	8	14.60678	88.56927
	16	15.02723	88.22339
	32	14.85941	88.05866
	64	14.34398	87.76315
	128	13.84426	88.08959
	256	13.51503	88.15495
26	64	18.93172	87.58913
<u>39</u>	<u>64</u>	<u>19.13807</u>	<u>82.85112</u>
<u>Without Energy co-efficients</u>			
12 (13-1)	64	13.23828	88.89605
24 (26-2)	64	17.12372	84.91502
36 (39-3)	64	17.14276	84.90527

Observations:

From the results tabulated, we can conclude that the gmm model with 64 components and running on mfcc + delta + delta features (39 dim), is the best, with the maximum training accuracy and the least phoneme error rate among all the 13 different models.

Best model: 64 component gmm on 39 dim mfcc+delta+delta features

<u>Testing accuracy</u>: 19.138068458575034 % <u>Phoneme error rate</u>: 82.85112155638635

Team Members:

Pranav S – IMT2014039 Tummala Armitha – IMT2014060 Vutla Keerthi Chandra – IMT2014064