EXAMENUL DE BACALAUREAT - 2009 Proba scrisă la Fizică

Proba E: Specializarea: matematică-informatică, ştiințe ale naturii Proba F: Filiera tehnologică - toate profilele, filiera vocațională - toate profilele şi specializările, mai puțin specializarea matematică-informatică

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.

B. ELEMENTE DE TERMODINAMICA

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \frac{\text{J}}{\text{mol} \cdot \text{K}}$. Între parametri

de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$. Exponentul adiabatic este definit prin relația: $\gamma = \frac{C_P}{C_{tot}}$

SUBIECTUL I - Varianta 081

1. Ținând cont că simbolurile unităților de măsură sunt cele utilizate în manualele de fizică, unitatea de măsură a mărimii fizice egală cu raportul dintre căldura molară și căldura specifică, în S.I. este:

c. $\frac{\text{kg}}{\text{mol}}$

- (2p)
- 2. Considerând că notațiile sunt cele utilizate în manualele de fizică, expresia căldurii schimbate cu mediul exterior de o cantitate constantă de gaz ideal într-o destindere izobară din starea 1 în starea 2 este:

b. $C_V \frac{p_1 V_1 - p_2 V_2}{1 - \gamma}$ **c.** $C_V \frac{p_1 V_1 - p_2 V_2}{\gamma - 1}$ **d.** $(\gamma - 1) \frac{p_1 V_1 - p_2 V_2}{\gamma}$

3. Într-un vas se amestecă 5 moli de gaz monoatomic, cu 2 moli de gaz biatomic (O2) și cu 3 moli de gaz triatomic (CO₂). Cantitatea de substanță din vas este:

a. 10

(3p)

4. O cantitate dată de gaz ideal este răcită astfel încât presiunea sa rămâne constantă, iar volumul scade cu 20%. Temperatura gazului:

a. scade cu 20%

b. scade cu 25%

c. creste cu 20%

d. crește cu 25%

(2p)

5. Trei mase diferite din acelaşi tip de gaz ideal sunt supuse unor transformări la aceeași valoare constantă a presiunii. Studiind dependența ilustrată în figura alăturată relația dintre masele celor trei gaze este:

a. $m_1 = m_2 = m_3$

b. $m_1 > m_2 > m_3$

c. $m_2 > m_3 > m_4$

d. $m_3 > m_2 > m_1$.

(3p)