Serial No.: 10/634,935

Docket No. 2002-1073

RECEIVED CENTRAL FAX CENTER

CLAIMS

JUL 27 2007

1	1. (Currently Amended) A method for use in a network that includes mist and
2	second network nodes interconnected by multiple links, each of said links having
3	multiple channels, said method reserving channels of particular ones of said links for
4	requested connections between said first and second nodes, ones of said channels in
5	ones of said links having been previously reserved for other connections between said
6	nodes using a first link selection algorithm, the method comprising responding to
7	requests for connections between said first and second nodes by utilizing a second
8	link selection algorithm different from said first link selection algorithm to select a
9	particular link for each requested connection,
10	wherein said first algorithm is a best-fit algorithm and said second algorithm
11	is an interleave algorithm,
12	wherein there are K of said links having indices 1, 2,,K,
13	wherein said interleave algorithm is such that said first node responds to a
14	connection request by selecting, as said particular link,
15	a) a link from among the links having the indices {1,3,5,,M} that has
16	the smallest amount of unassigned bandwidth that can still
17	accommodate the connection request, or, if there is no such link,
18	b) the first link having an index in the sequence {N,6,4,2} that has
19	enough unassigned bandwidth to accommodate the connection request.
20	wherein said interleave algorithm is such that said second node responds to a
21	connection request by selecting, as said particular link.
22	a) a link from among the links having the indices {2,4,6,,N} that has
23	the smallest amount of unassigned bandwidth that can still
24	accommodate the connection request, or, if there is no such link.
25	b) the first link having an index in the sequence {M,5,3,1} that has
26	enough unassigned bandwidth to accommodate the connection request.
27	wherein M is the largest odd number < K, and
28	wherein N is the largest even number $\leq K$.
	·

2

3

Serial No.: 10/634,935 Docket No. 2002-1073 2. Canceled. 3. (Currently Amended) The invention of claim 2 claim 1 wherein 1 2 said nodes operate in a communication network in which initially provisioned 3 connections are made between pairs of endpoints, 4 restoration connections are made between at least particular pairs of said 5 endpoints upon failure of the initially provisioned connections between those 6 endpoints, 7 said first algorithm is used to initially provision said other connections. 8 and said requested connections are ones of said restoration connections. 4. (Currently Amended) The invention of claim 3 wherein one of two 1 2 versions of said second-interleave algorithm is used when said first node receives a 3 connection request and wherein the other of said two versions of said interleave second algorithm is used when said second node receives a connection request. 5-6. Canceled. 1 7. (Currently Amended) The invention of claim 6 claim 1 wherein 2 there are K of said links having indices 1, 2,...,K, and 3 said best-fit algorithm is such as to select as a link for a requested connection the lowest-indexed link from among those of said links that have the smallest amount 4 of unassigned bandwidth that can still accommodate the connection request. 5 8-9. Canceled. 10. (Currently Amended) The invention of claim 6 claim 1 wherein each of 2 said nodes is a cross-connect. 11. (Currently Amended) A communication network node for use in a 1

communication network in which initially provisioned connections are made between

pairs of endpoints, and wherein restoration connections are made between at least

Docket No. 2002-1073

Serial No.: 10/634,935

4	particular pairs of said endpoints upon failure of the initially provisioned connections				
5	between those endpoints,				
6	said network node being adapted to be connected to a second communications				
7	network node by multiple links, each of said links having multiple channels,				
8	said network node being further adapted to reserve at least one channel of a				
9 .	particular one of said links for a requested connection between said network node and				
0	said second network node using a selected one of two different link selection				
1	algorithms,				
2	a first one of said algorithms being used when the requested connection is an				
13	initially provisioned connection and a second one of said algorithms being used when				
4	the requested connection is a restoration connection,				
5	wherein said first algorithm is a best-fit algorithm and said second algorithm				
6	is an interleave algorithm,				
7	wherein there are K of said links having indices 1, 2,,K,				
8	wherein said interleave algorithm selects said particular one of said links				
9	utilizing a particular one of two versions of said interleave algorithm,				
20	a first one of said versions selecting as said particular link,				
21	a) a link from among the links having the indices {1,3,5,,M}				
22	that has the smallest amount of unassigned bandwidth that can				
23	still accommodate the connection request, or, if there is no such				
24	link,				
25	b) the first link having an index in the sequence {N,6,4,2}				
26	that has enough unassigned bandwidth to accommodate the				
27	connection request,				
8	and a second one of said versions selecting as said particular link,				
!9	a) a link from among the links having the indices {2,4,6,,N}				
0	that has the smallest amount of unassigned bandwidth that can				
1	still accommodate the connection request, or, if there is no such				
2	<u>link,</u>				
3	b) the first link having an index in the sequence {M,5,3,1}				
4	that has enough unassigned bandwidth to accommodate the				
5	connection request,				
6	wherein M is the largest odd number $\leq K$ and				

3

the method comprising

Serial No.: 10/634,935 Docket No. 2002-1073 37 wherein N is the largest even number $\leq K$. 1 12-15. Canceled. 16. (Currently Amended) The invention of elaim 15 claim 11 wherein 1 2 there are K of said links having indices 1, 2,...,K, and 3 said best-fit algorithm is such as to select as a link for a requested connection the lowest-indexed link from among those of said links that have the smallest amount 4 of unassigned bandwidth that can still accommodate the connection request. 5 17-18. Canceled. 19. (Currently Amended) The invention of elaim 18 claim 11 wherein said 2 network node is adapted to be programmed to use a particular one of said versions for 3 selecting links for connections between itself and said second network node, 20. (Currently Amended) The invention of claim 19 wherein said network 1 node is adapted to be programmed to use the other of said versions for selecting links 2 3 for connections between itself and a third node. 1 21. (Currently Amended) The invention of claim 19 wherein said 2 programming includes at least one of a) configuration by an operator and b) execution of a protocol wherein said network node receives information from said second 3 network node that determines which of said versions said network node is to use. 4 ì 22. (Currently Amended) The invention of claim 11 claim 18 wherein said 2 network node is a cross-connect. 23. (Currently Amended) A method for use in a communication network of a 1 2 type comprising a plurality of cross-connects, individual pairs of said cross-connects

being interconnected by multiple links, each of said links having multiple channels,

Serial No.: 10/634,935 Docket No. 2002-1073

5	provisioning an initial path through said network between endpoints served by				
6	said network by provisioning connections between pairs of said cross-connects along				
7	said initial path, each of said connections comprising particular channels of particular				
8	links interconnecting said pairs of cross-connects, said initial connections being				
9	established using a best-fit algorithm to select the links for the connections along said				
10	initial path, and				
11	responsive to a failure of at least one of said paths, establishing a restoration				
12	path through said network between the failed path's endpoints by establishing				
13	restoration connections between pairs of said cross-connects along said restoration				
14	path, each of said restoration connections comprising particular channels of particular				
15	links interconnecting the pairs of cross-connects along said restoration path, said				
16	restoration connections being established using an interleave algorithm to select the				
17	links for the connections along the restoration path,				
18	wherein there are K of said links having indices 1, 2,,K,				
19	wherein said interleave algorithm is such that a first cross-connect of said				
20	particular pair of cross-connects responds to each request to establish a restoration				
21	connection between itself and the other cross-connect of said particular pair of cross-				
22	connects by selecting for that restoration connection				
23	a) a link from among the links having the indices {1,3,5,,M} that has				
24	the smallest amount of unassigned bandwidth that can still				
25	accommodate the connection request, or, if there is no such link,				
26	b) the first link having an index in the sequence {N,6,4,2} that has				
27	enough unassigned bandwidth to accommodate the connection request				
28	wherein said interleave algorithm is such that a second cross-connect of said				
29	particular pair of cross-connects responds to each request to establish a restoration				
30	connection between itself and the other cross-connect of said particular pair of cross-				
31	connects by selecting for that restoration connection				
32	a) a link from among the links having the indices {2,4,6,,N} that has				
33	the smallest amount of unassigned bandwidth that can still				
34	accommodate the connection request, or, if there is no such link,				
35	b) the first link having an index in the sequence {M5,3,1} that has				
36	enough unassigned bandwidth to accommodate the connection request				
37	wherein M is the largest odd number $\leq K$, and				

Serial No.: 10/634,935 Docket No. 2002-1073

38	<u>where</u> in N is tl	he largest even	number $\leq K$

- 24. (Currently Amended) The invention of claim 23 wherein
- there are K of said links having indices 1, 2,...,K, and
- said best-fit algorithm is such as to select as a link for a connection between a
- 4 pair of said cross-connects the lowest-indexed link from among those of the links
- 5 interconnecting that pair of cross-connects that have the smallest amount of
- 6 unassigned bandwidth that can still accommodate the connection request.
- 1 25-26. Canceled.