

The Testcenter facility 'Dosimetric Test Lab' within IMST GmbH is accredited by the German National 'Deutsche Akkreditierungsstelle GmbH (DAkkS)' for testing according to the scope as listed in the accreditation certificate: D-PL-12139-01-00.

SAR Evaluation Report				
EUT Information				
Manufacturer	INGENICO			
Model Name	Desk/5000			
FCC ID	XKB-D5000CLWIBT			
IC number	mber 2586D-D5000CLWIBT			
EUT Type	Payment terminal / Hand-held device			
	Prepared by			
	IMST GmbH, Test Center			
Tastina I abanatan	Carl-Friedrich-Gauß-Str. 2 – 4			
Testing Laboratory	47475 Kamp-Lintfort			
	Germany			
	Prepared for			
	INGENICO			
	Avenue de la Gare Rovaltain TGV - BP 25156			
Applicant	26958 Valence Cedex 9			
	France			
	Test Specification			
Standard Applied	FCC CFR 47 § 2.1093; IEEE 1528-2013 and the published KDB procedures			
Exposure Category	General Public / Uncontrolled Exposure			
Usage Configuration	Extremity Exposure Configuration			
	Report Information			
Data Stored	60320_6170078_XKB-D5000			
Issue Date	February 24, 2017			
Revision Date	February 28, 2017			
Revision Number	1			
Remarks	This report relates only to the item(s) evaluated. This report shall not be reproduced, except in its entirety, without the prior written approval of IMST GmbH. The results and statements contained in this report reflect the evaluation for the certain model described above. The manufacturer is responsible for ensuring that all production devices meet the intent of the requirements described in this report.			

Table of Contents

1	Su	ubject of Investigation and Test Results	3
	1.1	Technical Data of EUT	3
	1.2	Antenna Configuration	3
	1.3	Test Specification / Normative References	4
	1.4	Attestation of Test Results	4
2	Ex	κροsure Criteria and Limits	5
	2.1	Distinction between Exposed Population, Duration of Exposure and Frequencies	5
	2.2	Distinction between Maximum Permissible Exposure and SAR Limits	5
3	Me	easurement Procedure	6
	3.1	General Requirement	6
	3.2	Phantom Requirements	6
	3.3	Information for IEEE 802.11 (Wi-Fi) Transmitters	6
	3.4	Measurement Variability	7
4	Th	ne Measurement System	8
	4.1	Phantoms	9
	4.2	E-Field-Probes	10
	4.3	Measurement Procedure	11
5	Sy	stem Verification and Test Conditions	12
	5.1	Date of Testing	12
	5.2	Environment Conditions	12
	5.3	Tissue Simulating Liquid Recipes	12
	5.4	Tissue Parameters	13
	5.5	Simplified Performance Checking	13
6	SA	AR Measurement Conditions and Results	13
	6.1	Test Conditions	13
	6.2	Tune-Up Information	14
	6.3	Measured Output Power for WLAN 2.4 GHz	14
	6.4	Measured Output Power for WLAN 5 GHz	15
	6.5	Standalone SAR Test Exclusion	17
	6.6	SAR Test Consideration	18
	6.7	SAR Results	19
7	Sii	multaneous Transmission Consideration	20
8	Ac	dministrative Measurement Data	21
	8.1	Calibration of Test Equipment	21
	8.2	Uncertainty Assessment	22
9	Re	eport History	24
A	ppend	dixes	25
	Appei	ndix A - Pictures	26
	Apper	ndix B - SAR Distribution Plots	30
	Appei	ndix C - System Verification Plots	32
		ndix D – Certificates of Conformity	
	Appei	ndix E – Calibration Certificates for DAEs	37
	Appei	ndix F – Calibration Certificates for E-Field Probes	42
	Apper	ndix G – Calibration Certificates for Dipoles	53

1 Subject of Investigation and Test Results

1.1 Technical Data of EUT

Product Specifications				
IMEI / SN	160587313331013301015984			
Operation Mode IEEE 802.11 (2,4 GHz and 5 GHz), BT Classic 4.1				
Frequency Band 2.4 GHz, 5.3GHz and 5.6GHz				
Usage Configuration Extremity Exposure Configuration				
Antenna Type	integrated (1xWLan, 1xBT)			
Max. Output Power	see chapter 6.2			
Power Supply	DC 8V (4A)			
Used Accessory	-			
Notes:				

1.2 Antenna Configuration

Fig. 1: Antenna location of the EUT.

1.3 Test Specification / Normative References

The tests documented in this report were performed according to the standards and rules described below.

Revision Date: February 28, 2017

	Test Specifications						
	Test Standard / Rule	Description	Issue Date				
	IEEE 1528-2013	IEEE Recommended Practice for Determining the Peak Spatial- Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.	June 14, 2013				
	FCC CFR 47 § 2.1091	October 01, 2010					
\boxtimes	FCC CFR 47 § 2.1093	Code of Federal Regulations; Title 47. Radiofrequency radiation exposure evaluation: Portable Devices.	October 01, 2010				
\boxtimes	RSS-102, Issue 5	Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)	March, 2015				
		Measurement Methodology KDB					
\boxtimes	KDB 865664 D01 v01r04	SAR measurement 100 MHz to 6 GHz	August 07, 2015				
\boxtimes	KDB 865664 D02 v01r01	Exposure Reporting	October 23, 2015				
		Product KDB					
\boxtimes	KDB 447498 D01 v06	General RF Exposure Guidance	October 23, 2015				
	Technology KDB						
	KDB 248227 D01 v02r02	802.11 Wi-Fi SAR	October 23, 2015				

1.4 Attestation of Test Results

Highest MeasuredSAR _{10g} [W/kg]								
Band	Frequency [MHz]	СН	Exposure Edge of EUT	Gap [mm]	Pic. No.	Highest Reported SAR10g [W/kg]	•	Exposure imit W/kg]
U-NII-2C IEEE 802.11 a	5500	100	Left	0	4	0.569	4.0	PASS

Notes: To establish a connection at a specific channel and with maximum output power, engineering test software has been used.

All measured SAR results and configurations are shown in chapter 6.7 on page 19.

Simultaneous Transmission Scenario [W/kg]							
Exposure Edge	Highest Reported SAR _{10g} Values				Highest Reported SAR _{10g} Valu		. D
of EUT	Bluetooth	WLAN 2.4 GHz	WLAN 5 GHz	Σ SAR _{10g}			
Left	0.00	0.045	-	0.045	PASS		
Left	0.00	-	0.569	0.569	PASS		

Prepared by:

Dessislava Patrishkova

Test Engineer

Reviewed by:

Alexander Rahn
Quality Assurance

2 Exposure Criteria and Limits

In the USA the FCC exposure criteria [KDB 865664] are based on the withdrawn IEEE Standard C95.1-1999 [IEEE C95.1-1999].

General population / uncontrolled environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The exposures may occur in living quarters or workplaces.

Occupational / controlled environments are locations where there is exposure that may be incurred by persons who are aware of the potential for exposure as a concomitant of employment or by other cognizant persons. For exposure in controlled environments higher field strengths are admissible.

Human Exposure Limits						
Condition	Uncontrolled (General P		Controlled Environment (Occupational)			
	SAR Limit [W/kg]	Mass Avg.	SAR Limit [W/kg]	Mass Avg.		
SAR averaged over the whole body mass	0.08	whole body	0.4	whole body		
Peak spatially-averaged SAR for the head, neck and trunk	1.6	1 g of tissue*	8.0	1 g of tissue*		
Peak spatially-averaged SAR in the limbs	4.0	10 g of tissue*	20.0	10 g of tissue*		
Note: *Defined as a tissue volume in the shape of a cube						

Table 1: SAR limits.

In this report the comparison between the FCC exposure limits and the measured data is made using the spatial peak SAR; the power level of the device under test guarantees that the whole body averaged SAR is not exceeded.

2.1 Distinction between Exposed Population, Duration of Exposure and Frequencies

The American Standard [IEEE C95.1-1999] distinguishes between controlled and uncontrolled environment. Controlled environments are locations where there is exposure that may be incurred by persons who are aware of the potential for exposure as a concomitant of employment or by other cognizant persons. Uncontrolled environments are locations where there is the exposure of individuals who have no knowledge or control of their exposure. The exposures may occur in living quarters or workplaces. For exposure in controlled environments higher field strengths are admissible. In addition the duration of exposure is considered.

Due to the influence of frequency on important parameters, as the penetration depth of the electromagnetic fields into the human body and the absorption capability of different tissues, the limits in general vary with frequency.

2.2 Distinction between Maximum Permissible Exposure and SAR Limits

The biological relevant parameter describing the effects of electromagnetic fields in the frequency range of interest is the specific absorption rate SAR (dimension: power/mass). It is a measure of the power absorbed per unit mass. The SAR may be spatially averaged over the total mass of an exposed body or its parts. The SAR is calculated from the r.m.s. electric field strength E inside the human body, the conductivity σ and the mass density ρ of the biological tissue:

$$SAR = \sigma \frac{E^2}{\rho} = c \frac{\partial T}{\partial t} \bigg|_{t \to 0+} \tag{1}$$

The specific absorption rate describes the initial rate of temperature rise $\partial T/\partial t$ as a function of the specific heat capacity c of the tissue. A limitation of the specific absorption rate prevents an excessive heating of the human body by electromagnetic energy.

Revision Date: February 28, 2017

As it is sometimes difficult to determine the SAR directly by measurement (e.g. whole body averaged SAR), the standard specifies more readily measurable maximum permissible exposures in terms of external electric E and magnetic field strength H and power density S, derived from the SAR limits. The limits for E, H and S have been fixed so that even under worst case conditions, the limits for the specific absorption rate SAR are not exceeded.

For the relevant frequency range the maximum permissible exposure may be exceeded if the exposure can be shown by appropriate techniques to produce SAR values below the corresponding limits.

3 Measurement Procedure

3.1 General Requirement

The test shall be performed in a laboratory with an environment which avoids influence on SAR measurements by ambient EM sources and any reflection from the environment itself. The ambient temperature shall be in the range of 20°C to 26°C and 30-70% humidity. All tests have been conducted according the latest version of all relevant KDBs.

3.1.1 Extremity exposure conditions

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e. hands, wrist, feet and ankles, may require extremity SAR evaluation according to chapter 4.2.3 of KDB 447498 D01.

3.2 Phantom Requirements

For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.

3.3 Information for IEEE 802.11 (Wi-Fi) Transmitters

For both DSSS and OFDM wireless modes an initial test position must be established for each applicable exposure configuration using either:

- Design implementation defined by the manufacturer, or
- Investigative results by the test lab based on:
 - o Exclusions based on the distance from the antenna to the surface, or
 - o Highest measured SAR from the area-scan-only measurements on all applicable test positions at the Initial Test Configuration, if found to require SAR tests.

Then, the initial test position procedure defines the required complete SAR scan measurements on each exposure configuration as following:

- When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurements is not required for the remaining test positions in that configuration as well as 802.11 transmission mode combinations within the frequency or aggregated band.
- When the reported SAR of the initial test position is > 0.4 W/kg, further SAR measurements is required in the initial test position or next closest/smallest test separation distance based on manufacturer justification, on the following highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions are tested.
- When the reported SAR for all initial and subsequent test positions is > 0.8 W/kg, further SAR measurements is required on these positions on the subsequent next highest measured output power channels, until the reported SAR is ≤ 1.2 W/kg or all required channels have been tested.

For OFDM transmission configurations in 2.4 GHz and 5 GHz bands, it is important to determine SAR Initial Test Configuration for each stand alone and aggregated frequency band according to the maximum output power and tune-up tolerance specified for production units. The procedure is as following:

- Highest output power channel is chosen; if there are channels with same maximum output power
 then the closest to the mid-band frequency is preferred. If there are more than one channel with
 same maximum output power and same distance to the mid-band frequency, then the channel with
 the higher frequency is preferred.
- When SAR measurement is required for a subsequent test configuration and the channel bandwidth
 is smaller than that in the initial test configuration, all channels in the subsequent test configuration
 that overlap with the larger bandwidth channel tested in the initial test configuration should be used
 to determine the highest maximum output power channel in the subsequent test configuration.

Along with the initial test position reduction guidelines, the following procedures are also applied to SAR measurement requirements when multiple OFDM configurations are supported:

- When the reported SAR of the initial test configuration with the highest output power channel is > 0.8
 W/kg, further SAR measurements is required for next highest output power channel in the initial test configuration, until the reported SAR is ≤ 1.2 W/kg or all required channels have been tested.
- When the reported SAR of the subsequent test configuration with the highest output power channel is > 1.2 W/kg, further SAR measurements is required for next highest output power channel in this test configuration, until the reported SAR is ≤ 1.2 W/kg or all required channels have been tested.
- When the reported SAR of the subsequent test configuration is > 1.2 W/kg, further SAR measurements for the following subsequent test configurations are required.

3.4 Measurement Variability

According KDB 865664 repeated measurements are required only when the measured SAR is ≥ 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with ≤ 20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥
 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated
 measurements is > 1.20.

4 The Measurement System

DASY is an abbreviation of "Dosimetric Assessment System" and describes a system that is able to determine the SAR distribution inside a phantom of a human being according to different standards. The DASY4 system consists of the following items as shown in Fig: 2. Additionally, Fig: 3 shows the equipment, similar to the installations in other laboratories.

- Fully compliant with all current measurement standards as stated in Fig. 4
- High precision robot with controller
- Measurement server (for surveillance of the robot operation and signal filtering)
- Data acquisition electronics DAE (for signal amplification and filtering)
- Field probes calibrated for use in liquids
- Electro-optical converter EOC (conversion from the optical into a digital signal)
- Light beam (improving of the absolute probe positioning accuracy)
- · Two SAM phantoms filled with tissue simulating liquid
- DASY4 software
- SEMCAD

Fig. 2: The DASY4 measurement system.

Fig. 3: The measurement set-up with two SAM phantoms containing tissue simulating liquid.

The EUT operating at the maximum power level is placed by a non-metallic device holder (delivered from Schmid & Partner) in the above described positions at a shell phantom of a human being. The distribution of the electric field strength E is measured in the tissue simulating liquid within the shell phantom. For this miniaturised field probes with high sensitivity and low field disturbance are used. Afterwards the corresponding SAR values are calculated with the known electrical conductivity σ and the mass density ρ of the tissue in the SEMCAD FDTD software. The software is able to determine the averaged SAR values (averaging region 1 g or 10 g) for compliance testing.

The measurements are done by two scans: first a coarse scan determines the region of the maximum SAR, afterwards the averaged SAR is measured in a second scan within the shape of a cube.

4.1 Phantoms

TWIN SAM PHANTOM V4.0				
Specific Anthropomorphic Mannequin defined in IEEE 1528 and IEC 62209-1 and delive Schmid & Partner Engineering AG. It enables the dosimetric evaluation of left and right high phone usage as well as body mounted usage at the flat phantom region. The details and the Certificate of conformity can be found in Fig. 5.				
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)			
Dimensions	Length: 1000 mm; Width: 500 mm Height: adjustable feet			
Filling Volume	approx. 25 liters			

4.2 E-Field-Probes

For the measurements the Dosimetric E-Field Probes ET3DV6R or EX3DV4 with following specifications are used. They are manufactured and calibrated in accordance with FCC and IEEE 1528-2013 recommendations annually by Schmid & Partner Engineering AG.

Revision Date: February 28, 2017

	ET3DV6R				
Construction Symmetrical design with triangular core Built-in optical fiber for surface detection system (ET3DV6 only) Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)					
Dimensions	Overall length: 337 mm (Tip: 16 mm) Tip diameter: 6.8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.7 mm				
Frequency 10 MHz to 2.3 GHz Linearity: ± 0.2 dB (30 MHz to 2.3 GHz)					
Directivity Axial isotropy: ± 0.2 dB in TSL (rotation around probe axis) Spherical isotropy: ± 0.4 dB in TSL (rotation normal to probe axis)					
Dynamic Range 5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB					
Calibration Range	450 MHz / 750 MHz / 900 MHz / 1750 MHz / 1900 MHz / 1950 MHz for head and body simulating liquid				

	EX3DV4				
Construction Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)					
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm				
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)				
Directivity	Axial isotropy: ± 0.3 dB in TSL (rotation around probe axis) Spherical isotropy: ± 0.5 dB in TSL (rotation normal to probe axis)				
Dynamic Range	10 μW/g to > 100 mW/g Linearity: \pm 0.2 dB (noise: typically < 1 μW/g)				
Calibration Range	1950 MHz / 2450 MHz / 2600 MHz / 3500 MHz / 5200 MHz / 5300 MHz / 5600 MHz / 5800 MHz for head and body simulating liquid				

4.3 Measurement Procedure

The following steps are used for each test position:

• Establish a call with the maximum output power with a base station simulator. The connection between the mobile phone and the base station simulator is established via air interface.

Revision Date: February 28, 2017

- Measurement of the local E-field value at a fixed location (P1). This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with resolution settings for area scan and zoom scan according KDB 865664 D01 as shown in Table 2.
- The used extrapolation and interpolation routines are all based on the modified Quadratic Shepard's method [DASY4].
- Repetition of the E-field measurement at the fixed location (P1) and repetition of the whole procedure if the two results differ by more than \pm 0.21dB.

			≤ 3 GHz	≥ 3 GHz
	ance fro	m closest measurement point ensors) to phantom surface	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location			30° ± 1°	20° ± 1°
			≤ 2 GHz: ≤ 15 mm 2 - 3 GHz: ≤ 12 mm	3 - 4 GHz: ≤ 12 mm 4 - 6 GHz: ≤ 10 mm
Maximum area so	an spatial r	resolution: Δx _{Area} , Δy _{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
Maximum zoom s	can spatial	resolution: ΔX _{Zoom} , ΔY _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm*	3 - 4 GHz: ≤ 5 mm* 4 - 6 GHz: ≤ 4 mm*
Maximum zoom scan spatial	Uniform grid: ΔZ _{Zoom} (n)		≤ 5 mm	3 - 4 GHz: ≤ 4 mm 4 - 5 GHz: ≤ 3 mm 5 - 6 GHz: ≤ 2 mm
resolution, normal to phantom surface	$\begin{array}{cccc} & & & & & \\ & \text{to} & & & \\ & \text{to} & & \\ & \text{m} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	ΔZ _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 - 4 GHz: ≤ 3 mm 4 - 5 GHz: ≤ 2.5 mm 5 - 6 GHz: ≤ 2 mm
34.1400	grid $\Delta Z_{Zoom}(n>1)$: between subsequent points		≤ 1.5· ΔZ _{Zoom} (n-1)	
Minimum zoom scan volume			≥ 30 mm	3 - 4 GHz: ≥ 28 mm 4 - 5 GHz: ≥ 25 mm 5 - 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium: see draft standard IEEE P1528-2011 for details.

Table 2: Parameters for SAR scan procedures.

^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz

5 System Verification and Test Conditions

5.1 Date of Testing

Date of Testing						
Band		Frequency [MHz]	Date of System Check	Date of SAR Measurement		
IEEE 802.11 / WLAN 2,4 GHz	Body	2450	February 10, 2017	February 10, 2017		
IEEE 802.11 / WLAN 5 GHz	Body	5250 / 5600	February 22, 2017	February 22-23, 2017		

Revision Date: February 28, 2017

Table 3: Date of testing.

5.2 Environment Conditions

Ambient Temperature[°C]	Liquid Temperature [°C]	Humidity [%]
22.0 ± 2	22.0 ± 2	40.0 ± 5

Table 4: Environment Conditions.

5.3 Tissue Simulating Liquid Recipes

				Tis	sue Sin	nulating Lic	quid			
	Frequency Range	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Triton X/100	TWEEN 80	GERMABEN
	[MHz]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
					Hea	d Tissue				
	300	37.1	56.1	0.9	5.8	0.2	-	i	-	-
	450	38.9	56.9	0.3	3.8	0.1	ı	i	-	-
	835	40.3	57.9	0.2	1.4	0.2	ı	i	-	-
	900	40.3	57.9	0.2	1.4	0.2	-	i	-	-
	1800	55.2	-	ı	0.3	-	44.5	i	-	-
	1900	55.4	-	=	0.1	-	44.5	-	-	-
	2450	55.0	-	-	-	-	45.0	-	-	-
	2600	54.8	-	-	0.1	-	45.1	-	-	-
	5000 - 6000	65.5	-	-	-	-	17.2	17.25	-	-
					Bod	ly Tissue				
	450	46.2	51.2	0.2	2.3	0.1	-	-	-	-
	835	52.4	45.0	1.0	1.5	0.1	-	-	-	-
	900	50.8	48.2	-	0.9	0.1	-	-	-	-
	1800	70.2	-	-	0.4	-	29.4	-	-	-
	1900	69.8	-	-	0.2	-	30.0	-	-	-
	2450	68.6	-	-	-	-	31.4	-	-	-
	2600	68.1	-	-	0.1	-	31.8	-	-	-
\boxtimes	5000 - 6000	79.7	-	-	-	-	-	-	20.0	0.3

Table 5: Recipes of the tissue simulating liquid.

5.4 Tissue Parameters

For the measurement of the following parameters the Speag DAK-3.5 dielectric probe kit is used, representing the open-ended coaxial probe measurement procedure.

Revision Date: February 28, 2017

			Tissue Sim	nulating Li	quids			
	F			Permittivity			Conductivity	
Band	Frequency	Channel	Measured	Target	Delta	Measured	Target	Delta
	[MHz]		٤'	٤'	+/- 5 [%]	σ [S/m]	σ [S/m]	+/- 5 [%]
	2450	System Check	51.7	52.7	-1.9	1.96	1.95	0.7
WLAN	2412	1	51.9	52.8	-1.7	1.91	1.91	0.1
2.4 GHz	2437	6	51.7	52.7	-1.9	1.95	1.94	0.8
	2462	11	51.7	52.7	-1.9	1.98	1.96	0.7
WLAN 5 GHz	5250.0	System Check	50.4	48.9	2.9	5.41	5.36	1.0
U-NII-2A	5300.0	60	50.2	48.9	2.8	5.50	5.42	1.5
	5600.0	System Check	49.5	48.5	2.2	5.96	5.77	3.3
WLAN 5 GHz	5500.0	100	49.8	48.6	2.4	5.80	5.65	2.6
U-NII-2C	5660.0	132	49.4	48.4	2.1	6.06	5.84	3.9
	5700.0	140	49.3	48.3	2.1	6.12	5.88	4.0
Notes: -	•	•						

Table 6: Parameters of the tissue simulating liquid.

5.5 Simplified Performance Checking

The simplified performance check was realized using the dipole validation kit. The input power of the dipole antenna was 250 mW (CW signal) and it was placed under the flat part of the SAM phantom. The target and measured results are listed in the table 7 and shown in Appendix C - System Verification Plots. The target values were adopted from the calibration certificates found also in the appendix.

	System Check Results												
Frequency				9	SAR _{1g} [W/kg]		SAR _{10g} [W/kg]						
[MHz]	Tissue	Dipole	Dipole SN	Measured	Target	Delta [%]	Measured	Target	Delta [%]				
2450	Body	D2450V2	709	13.4	13.08	-2.9	6.10	6.18	-1.3				
5250	Body	D5GHzV2	1028	18.5	19.43	-4.8	5.22	5.45	-4.2				
5600	Body	D5GHzV2	1028	19.8	20.6	-3.9	5.56	5.70	-2.5				

Table 7: Dipole target and measured results.

6 SAR Measurement Conditions and Results

6.1 Test Conditions

Test Conditions											
Band	TX Range [MHz]	RX Range [MHz]	Used Channels	Crest Factor	Phantom						
WLAN 2.4 GHz	2412.0 – 2462.0	2412.0 – 2462.0	1, 6, 11	1							
WLAN 5 GHz U-NII-2A	5260.0 – 5320.0	5260.0 – 5320.0	60	1	SAM Twin Phantom V4.0						
WLAN 5 GHz U-NII-2C	5500.0 – 5700.0	5500.0 – 5700.0	100, 132, 140	1	1 Will Fliamon V4.0						

Table 8: Used channels and crest factors during the test.

6.2 Tune-Up Information

			Tune-Up Informat	ion																					
Band	Mode	Frequency [MHz]	Nominal Target Power [dBm]	Power Tolerance [dB]	Max. Tune-Up Tolerance Limit [dBm]																				
Bluetooth	4.1	2402 - 2480	0	+/-3	3																				
	b		13	+/-2	15																				
WLAN	g	2412 – 2462	13	+/-2	15																				
2.4 GHz	n HT20		13	+/-2	15																				
	n HT40		13	+/-2	15																				
WLAN 5 GHz	а		11	+/-2	13																				
	n HT20	5180 – 5320	5180 – 5320	5180 – 5320	5180 – 5320	5180 – 5320	5180 – 5320	11	+/-2	13															
U-NII-1 U-NII-2A	n HT40		11	+/-2	13																				
WLAN	а																						14	+/-2	16
5 GHz	n HT20	5500 - 5700	14	+/-2	16																				
U-NII-2C	n HT40		14	+/-2	16																				

Revision Date: February 28, 2017

Table 9: Maximum transmit output power values declared by the manufacturer.

6.3 Measured Output Power for WLAN 2.4 GHz

Measurements for IEEE 802.11 b/g/n has been performed with test software settings for power level 13 (PWL) supported by the device and provided by the manufacturer.

	Max	c. Ave	eraged (Output P	ower (R	MS) [dB	m]			
Mode	Frequency	СН				Data Rat	e [Mbit/s]			
Wiode	[MHz]	Сп		1	:	2	5	.5	1	1
2.4 GHz Range)					PWL 1	3			
	2412	1	13.2							
b	2437	6	13.0							
	2462	11	13.6		13	3.6	1;	3.5	1;	3.8
Mada	Frequency	СН	Data Rate [Mbit/s]							
Mode	[MHz]	СП	6.0	9	12	18	24	36	48	54
	2412	1	12.0							
g	2437	6	12.7							
	2462	11	13.0							
Mada	Frequency	CII				MCS In	dex No.			
Mode	[MHz]	СН	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
	2412	1	11.9				1888		111111	
n HT20	2437	6	12.7				1111	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	11. 11. 11.	
5	2462	11	12.7						THE STATE OF THE S	
n HT40	2437	6	12.1							

Table 10: Conducted output power values for IEEE 802.11 b/g/n.

6.4 Measured Output Power for WLAN 5 GHz

Measurements for IEEE 802.11 a/n has been performed with test software settings for power level 11 (PWL) supported by the device and provided by the manufacturer.

	Max. A	verage	d Outp	ut Powe	er (RMS) [dBm]				
Mode	Frequency				Data	a Rate [M	bit/s]			
Wiode	[MHz]	СН	6.0	9	12	18	24	36	48	54
5.2 - 5.3 GHz Ran	ge					PWL 11				
	5180	36	11.9							
a	5200	40	11.9							
U-NII-1	5220	44	11.2							
	5240	48	11.2							
	5260	52	11.6	STORY.	133	111		THE STATE OF THE S	11.11	
a	5280	56	11.6							
U-NII-2A	5300	60	12.3	12.0	12.0	12.2	12.1	12.1	12.2	12.2
	5320	64	12.3					1111	1111	
5.5 - 5.7 GHz Ran	ge					PWL 11				
	5500	100	15.9	15.7	15.8	15.8	15.6	15.5	15.7	15.6
	5560	112	14.7							
	5580	116	14.5							
a U-NII-2C	5640	128	14.6							
U-INII-2C	5660	132	14.7	14.3	14.3	14.2	14.1	14.0	14.0	14.1
	5680	136	14.5							
	5700	140	14.5						1111	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

Table 11: Conducted output power values for IEEE 802.11 a - 5 GHz.

	Ma	ax. Av	veraged	Output	Power	r (RMS)	[dBm]			
Mode	Frequency	СН				Data	Rate [M	bit/s]		
Mode	[MHz]	СН	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
5.2 - 5.3 GHz Ra	nge					PV	VL 11			
	5180	36	11.7		1111					
n - HT20	5200	40	11.8							
U-NII-1	5220	44	11.2							
	5240	48	11.1							
	5260	52	11.5						11111	
n - HT20	5280	56	11.5							
U-NII-2A	5300	60	12.2	12.0	12.1	12.2	12.2	12.3	12.3	12.3
	5320	64	12.2							
5.5 - 5.7 GHz Ra	nge					PV	VL 11			
	5500	100	15.8			N. F. W.				
	5560	112	14.7							
	5580	116	14.5							
a U-NII-2C	5640	128	14.4				1111			
- · · · · - ·	5660	132	13.4					11111	11.11	
	5680	136	13.1	11111				1111		
	5700	140	13.0					1111		
5.2 - 5.3 GHz Ra	nge					PV	VL 11			
n - HT40	5190	38	11.5							
U-NII-1	5230	46	10.8							1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
n - HT40	5270	54	11.1	11.11						
U-NII-2A	5310	62	11.9			11111				
5.5 - 5.7 GHz Ra	nge					PV	VL 11			
	5510	102	15.5						W. Carlot	
	5550	110	14.4							
n - HT40	5590	118	14.3	1111				1111		
U-NII-2C	5630	126	14.0	THE STATE OF THE S	1888	1777	11.11	11.11		
	5670	134	12.9			NEW YORK				
	5690	138	12.7	1111	1111	NVN			1111	

Table 12: Conducted output power values for IEEE 802.11 n - 5 GHz.

6.5 Standalone SAR Test Exclusion

SAR test exclusion is determined for the EUT according to KDB 447498 D01v05 with 1g SAR exclusion thresholds for 100 MHz to 6GHz at test separation distances ≤ 50 mm determined by:

Revision Date: February 28, 2017

[(max power of channel. incl. tune-up tolerance. mW) / (min test separation distance. mm)] * [√f(GHz)] \leq 3.0 for 1g SAR and \leq 7.5 for 10g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

			St	andalone	SAR Test E	xclusion		
Mode	Frequency [MHz]	Distance [mm]	Pavg [dBm]	Pavg [mW]	Calculated Values	Exclusion Threshold SAR 10g	Testing Exclusion	Testing Required
	[<u>-</u>]	į <u>j</u>	[45]	[]	1 4.14.00	Extremity	Extremity	Extremity
ВТ	2480	5	3	2.00	0.6	≤ 7.5	YES	NO
	2450	5	15	31.62	9.9	≤ 7.5	NO	YES
WLAN	5250	5	13	19.95	9.1	≤ 7.5	NO	YES
	5600	5	16	39.81	18.8	≤ 7.5	NO	YES

Standalone SAR test exclusion for the applicable transmitter. Table 13:

When the standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas the standalone SAR must be estimated according to KDB 447498 in order to determine simultaneous transmission SAR test exclusion:

(max. power of channel. including tune-up tolerance. mW)/(min. test separation distance. mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances ≤ 50 mm;

where
$$x = 7.5$$
 for 1-g SAR and $x = 18.75$ for 10-g SAR

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

0.4 W/kg for 1g SAR and 1.0 W/kg for 10g SAR. when the test separation distance is > 50 mm

6.6 SAR Test Consideration

Desk/5000 from INGENICO is a device intended to be used in the hands. The table below shows the SAR test exclusion consideration for the applicable modes against the different device edges with the relevant distances.

Revision Date: February 28, 2017

The 1g and 10g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50mm are determined by:

[(max power of channel. incl. tune-up tolerance. mW) / (min test separation distance. mm)] * [$\sqrt{f(GHz)}$] ≤ 3.0 for 1g SAR and ≤ 7.5 for 10g extremity SAR

When the minimum test separation distance is < 5mm a distance of 5mm is applied to determine SAR test exclusion.

At 100 MHz to 6GHz and a test separation distance of > 50 mm, the SAR test exclusion threshold is determined according to the following and illustrated in Appendix B of KDB 447498 D01:

- [(Power allowed at numeric threshold for 50 mm) + (test separation distance 50mm) * (f(MHz)/150] mW at 100 MHz to 1500 MHz
- [(Power allowed at numeric threshold for 50 mm) + (test separation distance 50mm)* 10] mW
 at 1500 MHz to 6 GHz

	Transmission Sce	nario for Test	Exclusion Cons	iderations	
	A m4 m m m		Extremity	/ Exposure	
	Antenna	Bluetooth	WLAN 2.4 GHz	WLAN 5 GHz	WLAN 5 GHz
Exposure Edge	Mode	BDR / GFSK	IEEE 802.11 b/g/n	IEEE 802.11 a/n	IEEE 802.11 a/n
of the EUT	Frequency [GHz]	2.402	2.402 2.412		5.500
	Frame Avg. Power [dBm]	3.0	15.0	13.0	16.0
	Frame Avg. Power [mW]	2.0	31.6	20.0	39.8
	Antenna to user [mm]	10.0	10.0	10.0	10.0
Back	SAR exclusion threshold	0.3	4.9	4.5	9.3
Баск	SAR testing required?	no	no	no	yes
	Estimated SAR [W/kg]	0.02	0.26	0.24	measured
	Antenna to user [mm]	5.0	5.0	5.0	5.0
Front	SAR exclusion threshold	0.6	9.8	9.1	18.7
FIOIIL	SAR testing required?	no	yes	yes	yes
	Estimated SAR [W/kg]	0.03	measured	measured	measured
	Antenna to user [mm]	40.0	2.0	2.0	2.0
Left	SAR exclusion threshold	0.1	24.6	22.7	46.7
Leit	SAR testing required?	no	yes	yes	yes
	Estimated SAR [W/kg]	0.00	measured	measured	measured
	Antenna to user [mm]	2.0	50.0	50.0	50.0
Right	SAR exclusion threshold	1.5	1.0	0.9	1.9
	SAR testing required?	no	no	no	no
	Antenna to user [mm]	130.0	125.0	125.0	125.0
Тор	SAR exclusion threshold	1042.0 mW	991.5 mW	914.8 mW	909.9 mW
	SAR testing required?	no	no	no	no
	Antenna to user [mm]	15.0	15.0	15.0	15.0
Bottom	SAR exclusion threshold	0.2	3.3	3.0	6.2
	SAR testing required?	No	no	no	no

Table 14: SAR test exclusion consideration for the applicable modes against different device edges.

6.7 SAR Results

The tables below contain the measured SAR values averaged over a mass of 10g. SAR assessment was conducted in the worst case configuration with output power values according to Table 9 - 12.

Revision Date: February 28, 2017

According KDB 447498 D01 V05, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

- Scaling Factor = tune-up limit power (mW) / RF power (mW)
- Reported SAR = measured SAR * scaling factor

Furthermore, testing of other required channels within the operating mode of frequency band is not required when the reported SAR for the mid-band or highest output power channel is \leq 0.4 W/kg for transmission band \geq 200 MHz.

			SAR	Measu	remei	nt Results	in Extren	nity Config	urations	5		
Donal	Freq.	СН	Edge	Gap	Pic.	Measured	Power	Output Pow	er [dBm]	Tune-Up	Reported	Plot
Band	[MHz]	СН	of EUT	[mm]	No.	SAR10g [W/kg]	Drift [dB]	Measured	Limit	Scaling Factor	SAR10g [W/kg]	No.
	2462	11	Front	0	3	0.014	0.101	13.6	15.0	1.380	0.014	-
IEEE 802.11 b	2402	11	Left	0	4	0.023	0.192	13.6	15.0	1.380	0.032	-
2.4 GHz	2412	1	Left	0	4	0.030	0.075	13.2	15.0	1.514	0.045	1
	2437	6	Left	0	4	0.024	0.196	13.0	15.0	1.585	0.038	-
IEEE 802.11 a	5300	60	Front	0	3	0.139	-0.047	12.3	13.0	1.175	0.163	-
U-NII-2A	5300	60	Left	0	4	0.203	-0.177	12.3	13.0	1.175	0.239	-
	5500	100	Front	0	3	0.171	0.082	15.9	16.0	1.023	0.175	-
IEEE	5500	100	Left	0	4	0.556	-0.155	15.9	16.0	1.023	0.569	2
802.11 a	5500	100	Back	0	5	0.259	-0.185	15.9 <i>4</i>	16.0 <i>4</i>	1.023 <i>4</i>	0.265 <i>4</i>	-
U-NII-2C	5660	132	Left	0	4	0.246	-0.162	14.7 <i>4</i>	16.0 <i>4</i>	1.349 <i>4</i>	0.3324	-
	5700	140	Left	0	4	0.188	-0.068	14.5	16.0	1.413	0.266	-
Notes: Sin	ce the m	easure	d max SA	R is < 2.0	W/kg ı	measurement	variability as	ssessment acc	ording to I	KDB 865664	is not applica	able.

Table 15: SAR measurement results.

To control the output power stability during the SAR test the used DASY4 system calculates the power drift by measuring the e-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in the above tables labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

7 Simultaneous Transmission Consideration

According to KDB 447498, the following table gives an overview about the Σ SAR for simultaneous transmitting modes. When Σ SAR > 1.6 W/kg. a SAR test exclusion is determined by the SAR to peak location separation ratio.

The ratio is determined by $(SAR1 + SAR2)^{1.5}/Ri$ rounded to two decimal digits and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion. Where Ri is the separation distance between the peak SAR locations for the antenna pair in mm. When SAR is measured for both antennas in a pair the peak location separation distance is computed by the square root of $[(x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2]$ where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the area scans or extrapolated peak SAR locations in the zoom scans as appropriate.

Simultaneous Transmission Scenario [W/kg]									
Exposure Edge	H	lighest Reported SAR _{10g}	ΣSAR	SPLSR					
of EUT	Bluetooth	WLAN 2.4 GHz	WLAN 5 GHz	ZSAK	Analysis				
Left	0.00	0.045	-	0.045	NO				
Left	0.00	-	0.569	0.569	NO				
Note:	Estimated SAR values	marked in blue							

Table 16: Simultaneous transmission consideration for the applicable modes against different device edges for BT and WLAN transmissions.

8 Administrative Measurement Data

8.1 Calibration of Test Equipment

Test Equipment Overview Test Equipment Mental Serial Last Next								
	Test Equipment	Manufacturer	Model	Number	Calibration	Calibration		
DA:	SY System Components		1			ı		
X	Software Versions DASY4	SPEAG	V4.7	N/A	N/A	N/A		
\boxtimes	Software Versions SEMCAD	SPEAG	V1.8	N/A	N/A	N/A		
	Dosimetric E-Field Probe	SPEAG	ET3DV6R	1579	02/2016	02/2018		
	Dosimetric E-Field Probe	SPEAG	ET3DV6R	1669	02/2017	02/2018		
X	Dosimetric E-Field Probe	SPEAG	EX3DV4	3536	09/2016	09/2017		
	Dosimetric E-Field Probe	SPEAG	EX3DV4	3860	09/2015	09/2017		
	Data Acquisition Electronics	SPEAG	DAE 3	335	02/2017	02/2018		
X	Data Acquisition Electronics	SPEAG	DAE 4	631	09/2016	09/2017		
\boxtimes	Phantom	SPEAG	SAM	1059	N/A	N/A		
\boxtimes	Phantom	SPEAG	SAM	1176	N/A	N/A		
	Phantom	SPEAG	SAM	1340	N/A	N/A		
	Phantom	SPEAG	SAM	1341	N/A	N/A		
	Phantom	SPEAG	ELI4	1004	N/A	N/A		
Dip	oles							
	System Validation Dipole	SPEAG	D450V2	1014	03/2015	03/2018		
	System Validation Dipole	SPEAG	D835V2	470	03/2015	03/2018		
	System Validation Dipole	SPEAG	D900V2	006	11/2015	11/2018		
	System Validation Dipole	SPEAG	D1640V2	311	09/2015	09/2018		
	System Validation Dipole	SPEAG	D1750V2	1005	03/2015	03/2018		
	System Validation Dipole	SPEAG	D1900V2	535	03/2015	03/2018		
\boxtimes	System Validation Dipole	SPEAG	D2450V2	709	11/2015	11/2018		
ī	System Validation Dipole	SPEAG	D2600V2	1019	11/2015	11/2018		
\boxtimes	System Validation Dipole	SPEAG	D5GHzV2	1028	06/2014	06/2017		
Vlat	erial Measurement							
\boxtimes	Network Analyzer	Agilent	E5071C	MY46103220	07/2015	07/2017		
	Dielectric Probe Kit	SPEAG	DAK-3.5	1234	01/2016	01/2018		
\equiv	Thermometer	LKMelectronic	DTM3000	3511	01/2016	01/2018		
	ver Meters and Sensors					<u> </u>		
$\overline{}$	Power Meter	Agilent	E4416A	GB41050414	02/2015	02/2017		
_	Power Sensor	Agilent	E9301H	US40010212	03/2015	03/2017		
	Power Meter	Agilent	E4417A	GB41050441	02/2015	02/2017		
	Power Sensor	Agilent	E9301A	MY41495584	03/2015	03/2017		
	Power Meter	Anritsu	ML2488A	6K00002319	06/2016	06/2018		
	Power Sensor	Anritsu	MA2490A	6K00002078	06/2016	06/2018		
	Power Sensor	Anritsu	ML2472A	002122	06/2016	06/2018		
	Power Meter	Anritsu	MA2472A	990365	06/2016	06/2018		
	Sources	7 1111100	IVII VETI EI V	000000	33,2010	1 55/2010		
X	Network Analyzer	Agilent	E5071C	MY46103220	07/2015	07/2017		
A X	RF Generator	Rohde & Schwarz	SM300	100142	N/A	N/A		
	plifiers	TOTAL & OCTIWAL	_ GIVISOO	100142	13/7	111/71		
		Mini Cinavita	7UL 40 40W	D090504.4	NI/A	NI/A		
	Amplifier 10 MHz – 4200 MHz	Mini Circuits	ZHL-42-42W	D080504-1	N/A	N/A		
<u>X</u>	Amplifier 2 GHz – 6 GHz	Ciao Wireless	CA26-451	37452	N/A	N/A		
\ac	lio Tester	1						
<u> </u>	Radio Communication Tester	Anritsu	MT8815B	6200576536	04/2016	04/2018		
. 7	Radio Communication Tester	Anritsu	MT8820C	6200918336	04/2016	04/2018		

Table 17: Calibration of test equipment.

8.2 Uncertainty Assessment

Uncertainty Budget for SAR Measurements according to IEEE 1528-2013 (300 MHz - 6 GHz)								
Error Sources	Uncertainty Value [± %]	Probability Distribution	Divisor	ci	ci	Unce	idard rtainty %]	vi² or veff
Measurement System		<u> </u>		1g	10g	1g	10g	
Probe calibration	6.7	Normal	1	1	1	6.7	6.7	× ×
Axial isotropy	0.3	Rectangular	√3	√0.5	√0.5	0.1	0.1	×
Hemispherical isotropy	1.3	Rectangular	√3	√0.5	√0.5	0.5	0.5	∞
Boundary effects	1.0	Rectangular	√3	1	1	0.6	0.6	∞
Linearity	0.3	Rectangular	√3	1	1	0.2	0.2	×
System detection limit	1.0	Rectangular	√3	1	1	0.6	0.6	∞
Modulation response	4.0	Rectangular	√3	1	1	2.3	2.3	∞
Readout electronics	0.3	Normal	1	1	1	0.3	0.3	∞
Response time	0.8	Rectangular	√3	1	1	0.5	0.5	∞
Integration time	1.4	Rectangular	√3	1	1	0.8	0.8	∞
RF ambient conditions - noise	3.0	Rectangular	√3	1	1	1.7	1.7	∞
RF ambient conditions - refl.	3.0	Rectangular	√3	1	1	1.7	1.7	∞
Probe positioner mech. tol.	0.4	Rectangular	√3	1	1	0.2	0.2	∞
Probe positioning	2.9	Rectangular	√3	1	1	1.7	1.7	× ×
Algorithms for max SAR eval.	4.0	Rectangular	√3	1	1	2.3	2.3	× ×
Test Sample Related				•	•		•	•
Test sample positioning	2.9	Normal	1	1	1	2.9	2.9	145
Device holder uncertainty	3.6	Normal	1	1	1	3.6	3.6	5
SAR drift measurement (< 0.2 dB)	4.7	Rectangular	√3	1	1	2.7	2.7	× ×
SAR scaling	2.0	Rectangular	√3	1	1	1.2	1.2	× ×
Phantom and Set-up			•	· L		I.		
Phantom uncertainty	4.0	Rectangular	√3	1	1	2.3	2.3	∞
SAR correction for perm./cond.	1.9	Normal	1	1	0.84	1.9	1.6	∞
Liquid conductivity (meas.)	1.5	Normal	1	0.78	0.71	1.2	1.1	× ×
Liquid permittivity (meas.)	1.2	Normal	1	0.23	0.26	0.3	0.3	∞
Liquid conductivity temp. unc.	2.9	Rectangular	√3	0.78	0.71	1.3	1.2	∞
Liquid permittivity temp. unc.	1.8	Rectangular	√3	0.23	0.26	0.2	0.3	∞
Combined Standard Uncertainty							10.3	
Coverage Factor for 95%						kp	=2	
Expanded Standard Uncertainty						20.8	20.7	
Notes: Worst case probe calibration und	pertainty has been ann	lied for all available	nrohes and	d freque	ncies			L

Revision Date: February 28, 2017

Table 18: Uncertainty budget for SAR measurements.

Uncertainty Budget for SAR System Validation according to IEEE 1528-2013 (300 MHz - 6 GHz)								
Error Sources	Uncertainty Value [± %]	Probability Distribution	Divisor	ci	ci	Standard Uncertainty [± %]		vi² or veff
Measurement System	urement System 1g 10g 1g					10g		
Probe calibration	6.7	Normal	1	1	1	6.7	6.7	× ×
Axial isotropy	0.3	Rectangular	√3	1	1	0.1	0.1	8
Hemispherical isotropy	1.3	Rectangular	√3	0	0	0.0	0.0	8
Boundary effects	1.0	Rectangular	√3	1	1	0.6	0.6	8
Linearity	0.3	Rectangular	√3	1	1	0.2	0.2	8
System detection limit	1.0	Rectangular	√3	1	1	0.6	0.6	8
Modulation response	0.0	Rectangular	√3	0	0	0.0	0.0	8
Readout electronics	0.3	Normal	1	1	1	0.3	0.3	8
Response time	0.0	Rectangular	√3	0	0	0.0	0.0	8
Integration time	0.0	Rectangular	√3	0	0	0.0	0.0	∞
RF ambient conditions - noise	1.0	Rectangular	√3	1	1	0.6	0.6	×
RF ambient conditions - refl.	1.0	Rectangular	√3	1	1	0.6	0.6	× ×
Probe positioner mech. tol.	0.4	Rectangular	√3	1	1	0.2	0.2	×
Probe positioning	2.9	Rectangular	√3	1	1	1.7	1.7	8
Algorithms for max SAR eval.	4.0	Rectangular	√3	1	1	2.3	2.3	8
Validation Dipole					•			
Dev. of exp. dipole from num.	5.0	Normal	1	1	1	5.0	5.0	∞
Input power and SAR drift (< 0.2 dB)	4.7	Rectangular	√3	1	1	2.7	2.7	~
Dipole axis to liquid distance (< 2deg)	2.0	Rectangular	√3	1	1	1.2	1.2	∞
Phantom and Set-up				•	•		•	•
Phantom uncertainty	4.0	Rectangular	√3	1	1	2.3	2.3	∞
SAR correction for perm./cond.	1.9	Normal	1	1	0.84	1.9	1.6	oc o
Liquid conductivity (meas.)	1.5	Normal	1	0.78	0.71	1.2	1.1	∞
Liquid permittivity (meas.)	1.2	Normal	1	0.23	0.26	0.3	0.3	× ×
Liquid conductivity temp. unc.	2.9	Rectangular	√3	0.78	0.71	1.3	1.2	× ×
Liquid permittivity temp. unc.	1.8	Rectangular	√3	0.23	0.26	0.2	0.3	× ×
Combined Standard Uncertainty							10.0	
Coverage Factor for 95% kp=2								
Expanded Standard Uncertainty						20.0	19.9	
Notes: Worst case probe calibration uncer	tainty has been appl	ied for all available	e probes and	d freque	ncies.		1	

Table 19: Uncertainty budget for SAR system validation.

9 Report History

Revision History								
Revision	Description of Revision	Date	Revised Page	Revised By				
/	Initial Release	February 24, 2017	-	-				
1	IC number corrected	February 28, 2017	1, 25	AR				

END OF THE SAR REPORT

Please refer to separated appendix file for the following data:

- Appendix A Pictures
- Appendix B SAR Distribution Plots
- Appendix C System Verification Plots
- Appendix D Certificates of Conformity
- Appendix E Calibration Certificates for DAEs
- Appendix F Calibration Certificates for E-Field Probes
- Appendix G Calibration Certificates for Dipoles