Unit-V COMPLEX INTEGRATION

Cauchy's Integral Theorem

If f(z) is analytic inside and on a simple closed curve C then $\int f(z) dz = 0$

1. Cauchy's Integral Formula

If f(z) is analytic inside and on a simple closed curve C and 'a' is any point inside C then

$$\int_{C} \frac{f(z)}{z - a} dz = 2\pi i \ f(a)$$

2. Cauchy's Integral Formula for derivatives

(i)
$$\int \frac{f(z)}{(z-a)^2} dz = \frac{2\pi i}{1!} f'(a)$$

(i)
$$\int_{C} \frac{f(z)}{(z-a)^2} dz = \frac{2\pi i}{1!} f'(a)$$
 (ii) $\int_{C} \frac{f(z)}{(z-a)^3} dz = \frac{2\pi i}{2!} f''(a)$

(iii)
$$\int_{C} \frac{f(z)}{(z-a)^4} dz = \frac{2\pi i}{3!} f'''(a)$$

(iii)
$$\int_{C} \frac{f(z)}{(z-a)^4} dz = \frac{2\pi i}{3!} f'''(a)$$
 (iv)
$$\int_{C} \frac{f(z)}{(z-a)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(a)$$

3. Taylor's expansion:

$$f(z)=f(a)+\frac{(z-a)}{1!}f'(a)+\frac{(z-a)^2}{2!}f''(a)+\dots$$

4. Some important expansions:

i)
$$(1-z)^{-1}=1+z+z^2+z^3+....$$
, $|z|<1$

ii)
$$(1+z)^{-1}=1-z+z^2-z^3+\dots$$
, $|z|<1$

iii)
$$(1+z)^{-2} = 1 - 2z + 3z^2 - 4z^3 + \dots, |z| < 1$$

iv)
$$(1-z)^{-2} = 1 + 2z + 3z^2 + 4z^3 + \dots, |z| < 1$$

v)
$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots$$
 vi) $\cos z = 1 - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots$

vii)
$$e^z = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots$$
 viii) $e^{-z} = 1 - \frac{z}{1!} + \frac{z^2}{2!} - \frac{z^3}{3!} + \dots$

- 5. A point at which f(z) = 0 is called zero of f(z)
- 6. A point at which f(z) is not analytic is called singular point.
- 7. Residue of f(z) at z = a is the coefficient of $\frac{1}{z-a}$ in the Laurent's series expansion of f(z) about z = a.

8. Residue of f(z) at a simple pole z = a:

$$\left[\operatorname{Re} s \text{ of } f(z)\right]_{z=a} = \lim_{z \to a} (z-a) f(z)$$

9. Residue of f(z) at a pole z = a of order m : a

$$\left[\text{Re } s \text{ of } f(z) \right]_{z=a} = \frac{1}{(m-1)!} \lim_{z \to a} \left[\frac{d^{m-1}}{dz^{m-1}} \left\{ (z-a)^m f(z) \right\} \right]$$

- 10. If $f(z) = \frac{\phi(z)}{\psi(z)}$ then Residue of f(z) at a simple pole z = a is $\frac{\phi(a)}{\psi'(a)}$ with $\phi(a) \neq 0$ and $\psi'(a) = 0$
- 11. Cauchy Residue Theorem: If f(z) is analytic within and on a simple closed curve C except at a finite number of poles then $\int_C f(z) dz = 2\pi i \{R_1 + R_2 + ... + R_n\} \text{ where } R_1, R_2, ..., R_n \text{ are the residues of } f(z) \text{ at its poles lying inside C.}$

Contour Integration:

Type I : Integration around Unit circle |z|=1

Integration of the Form $\int\limits_0^{2\pi} f(\cos\theta,\sin\theta)d\theta$ where f is a rational function

Put
$$z = e^{i\theta}$$
, $d\theta = \frac{dz}{iz}$

$$\cos\theta = \frac{z^2 + 1}{2z}$$
 and $\sin\theta = \frac{z^2 - 1}{2iz}$

Type II: Integration around the upper semi circle of |z| = R

Integration of the Form $\int_{-\infty}^{\infty} f(x) \ dx \text{ where } f(x) = \frac{P(x)}{Q(x)}$

Use
$$\int_{\Gamma} f(z)dz + \int_{-R}^{R} f(x)dx = \int_{C} f(z)dz$$

By Jordan's lemma
$$\int_{\Gamma} f(z) dz \to 0 \text{ as } R \to \infty \qquad \therefore \int_{-\infty}^{\infty} f(x) dx = \int_{C} f(z) dz$$

Note:
$$\int_{0}^{\infty} f(x) dx = \frac{1}{2} \int_{-\infty}^{\infty} f(x) dx$$
, if $f(x)$ is even.

Type III : Integration around the upper semi circle of |z| = R

Integration of the Form
$$\int_{-\infty}^{\infty} f(x) \ dx \text{ where } f(x) = \frac{P(x)}{Q(x)} \cos mx \text{ or } \frac{P(x)}{Q(x)} \sin mx$$

Use $\cos mx = R.P$ of e^{imx} and $\sin mx = I.P$ of e^{imx}