SUCCESSIVE DIFFERENTIATION PRACTICE PROBLEMS

Type - I

Find the n^{th} derivatives of

$$1. \qquad \frac{x}{x^2 - a^2}$$

$$2. \qquad \frac{1}{x^4 - a^4}$$

3.
$$\frac{x^4}{(x-1)(x-2)}$$

4.
$$\frac{x^2}{1-x^4}$$

5.
$$\frac{1}{6x^2-5x+1}$$

6.
$$\frac{x+1}{x^2-4}$$

7.
$$\frac{x}{x^3 - 6x^2 + 11x - 6}$$

8.
$$\frac{x}{x^2+9}$$

9.
$$\frac{x}{(x+1)^5}$$

10.
$$\frac{1}{(3x-2)(x-3)^2}$$

11. If
$$y = x \log \frac{(x-1)}{(x+1)}$$
, prove that $y_n = (-1)^n (n-2)! \left[\frac{x-n}{(x-1)^n} - \frac{x+n}{(x+1)^n} \right]$.

ANSWERS

1.
$$\frac{(-1)^n n!}{2} \left[\frac{1}{(x+a)^{n+1}} + \frac{1}{(x-a)^{n+1}} \right]$$

2.
$$\frac{(-1)^n n!}{4a^3} \left[\frac{1}{(x-a)^{n+1}} - \frac{1}{(x+a)^{n+1}} \right] - \frac{(-1)^n n!}{4a^3 i} \left[\frac{1}{(x-a i)^{n+1}} - \frac{1}{(x+a i)^{n+1}} \right]$$

3.
$$y = x^2 + 3x + 7 + \frac{16}{(x-2)} - \frac{1}{(x-1)}; \quad y_n = (-1)^n n! \left[\frac{16}{(x-2)^{n+1}} - \frac{1}{(x-1)^{n+1}} \right] for \ n \ge 3.$$

4.
$$\frac{(-1)^n n!}{4} \left[\frac{1}{(1+x)^{n+1}} + \frac{1}{(1-x)^{n+1}} \right] - \frac{(-1)^n n!}{4i} \left[\frac{1}{(x-i)^{n+1}} - \frac{1}{(x+i)^{n+1}} \right]$$

5.
$$(-1)^n n! \left[\frac{2^{n+1}}{(2x-1)^{n+1}} - \frac{3^{n+1}}{(3x-1)^{n+1}} \right]$$

6.
$$(-1)^n n! \left[\frac{3}{4} \cdot \frac{1}{(x-2)^{n+1}} + \frac{1}{4} \cdot \frac{1}{(x+2)^{n+1}} \right]$$

5.
$$(-1)^n n! \left[\frac{2^{n+1}}{(2x-1)^{n+1}} - \frac{3^{n+1}}{(3x-1)^{n+1}} \right]$$
 6. $(-1)^n n! \left[\frac{3}{4} \cdot \frac{1}{(x-2)^{n+1}} + \frac{1}{4} \cdot \frac{1}{(x+2)^{n+1}} \right]$ 7. $(-1)n^n! \left[\frac{1}{2(x-1)^{n+1}} - \frac{2}{(x-2)^{n+1}} + \frac{3}{2(x-3)^{n+1}} \right]$ 8. $\frac{(-1)^n n!}{2} \left[\frac{1}{(x+3i)^{n+1}} + \frac{1}{(x-3i)^{n+1}} \right]$

8.
$$\frac{(-1)^n n!}{2} \left[\frac{1}{(x+3i)^{n+1}} + \frac{1}{(x-3i)^{n+1}} \right]$$

9.
$$\frac{(-1)^n(n+3)!}{4!(x+1)^{n+5}}(4x-n)$$

10.
$$y = \frac{9}{49} \cdot \frac{1}{3x-2} - \frac{3}{49} \cdot \frac{1}{x-3} + \frac{1}{7} \cdot \frac{1}{(x-3)^2}$$
, $y_n = \frac{9}{49} \frac{(-1)^n \cdot n! \cdot 3^n}{(3x-2)^{n+1}} - \frac{3}{49} \cdot \frac{(-1)^n \cdot n!}{(x-3)^{n+1}} + \frac{1}{7} \frac{(-1)^n \cdot (n+1)!}{(x-3)^{n+2}}$

Type – II

Find n^{th} derivatives of the following

- If $y = \sin r x + \cos r x$, prove that $y_n = r^n [1 + (-1)^n \sin 2r x]^{1/2}$ Find $y_8(\pi)$ where r = 1/4.
- 2. $\sin x \cos 3x$.

- 3. $\sin 2x \sin 3x \cos 4x$.
- 4. $\sin 2x \sin 3x \sin 4x$

 $sin^3 3x$ 5.

 sin^4x 6.

7. sin⁵x

 $\cos^2 x \sin^3 x$ 8.

9. $\sin^4 x \cos^3 x$

10. $e^x \cos 2x \cos x$

 $e^x \sin^2 x \cos x$ 11.

- 12. $2^x \sin^2 x \cos x$
- If $y = \cosh 2x$ prove that $y_n = 2^n \sinh 2x$ if n is odd and $y_n = 2^n \cosh 2x$ if n is even 13.

KJSCE-SVU

ANSWERS

1.
$$\left(\frac{1}{2}\right)^{31/2}$$

$$2. \qquad \frac{1}{2} \left[4^n \sin\left(4x + \frac{n\pi}{2}\right) - 2^n \sin\left(2x + \frac{n\pi}{2}\right) \right]$$

3.
$$\frac{1}{4} [5^n \cos(5x + n\pi/2) + 3^n \cos(2x + n\pi/2) - 9^n \cos(9x + n\pi/2) - \cos(x + n\pi/2)]$$

4.
$$\frac{1}{4} \left[5^n sin\left(5x + \frac{n\pi}{2}\right) + 3^n sin\left(3x + \frac{n\pi}{2}\right) + sin\left(x + \frac{n\pi}{2}\right) - 9^n sin\left(9x + \frac{n\pi}{2}\right) \right]$$

5.
$$\frac{3}{4} \cdot 3^n \sin(3x + n \pi/2) - \frac{1}{4} \cdot 9^n \sin(9x + n \pi/2)$$

6.
$$y = \frac{3}{8} - \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x$$
 $y_n = -\frac{1}{2} \cdot 2^n \cos\left(2x + \frac{n\pi}{2}\right) + \frac{1}{8}4^n \cos\left(4x + \frac{n\pi}{2}\right)$

7.
$$y_n = \frac{1}{16} \left[5^n \sin \left(5x + \frac{n \pi}{2} \right) - 5.3^n \sin \left(3x + \frac{n \pi}{2} \right) + 10 \sin \left(x + \frac{n \pi}{2} \right) \right]$$

8.
$$\frac{1}{16} \left[2 \sin \left(x + \frac{n \pi}{2} \right) + 3^n \sin \left(3x + \frac{n \pi}{2} \right) - 5^n \sin \left(5x + \frac{n \pi}{2} \right) \right]$$

9.
$$y_n = \frac{1}{64} \left[7^n \cos\left(7x + \frac{n\pi}{2}\right) - \cos\left(5x + \frac{n\pi}{2}\right) - 3.3^n \cos\left(3x + \frac{n\pi}{2}\right) + 3\cos\left(x + \frac{n\pi}{2}\right) \right]$$

10.
$$\frac{1}{2}e^{x}[10^{n/2}\cos(3x+n\tan^{-1}3)+2^{n/2}\cos(x+n\pi/4)]$$

11.
$$-\frac{1}{4}(10)^{3/2}e^x\cos(3x+n\tan^{-1}3)+\frac{1}{4}2^{n/2}e^x\cos(x+n\tan^{-1}1)$$

12.
$$-\frac{1}{4}r_1^n 2^x \cos(3x + n \, \emptyset_1) + \frac{1}{4}r_2^n 2^x \cos(x + n \, \emptyset_2)$$

$$r_1 = \sqrt{(\log 2)^2 + 3^2}, \emptyset_1 = \tan^{-1}(3/\log 2), \quad r_2 = \sqrt{(\log 2)^2 + 1^2}, \emptyset_2 = \tan^{-1}(1/\log 2)$$

1. If
$$y = \frac{1}{x^2 + 1}$$
, prove that $y_n = (-1)^n \cdot n! \sin^{n+1}\theta \sin(n+1)\theta$ where $\theta = \tan^{-1}(1/x)$.

2. If
$$y = \frac{x}{x^2 + 1}$$
, prove that $y_n = (-1)^n \cdot n! \sin^{n+1}\theta \cos(n+1)\theta$ where $\theta = \tan^{-1}(1/x)$

3. If
$$y=tan^{-1}(x/a)$$
, prove that $y_n=(-1)^{n-1}(n-1)!\,a^{-n}sin^n\theta\,sin\,n\,\theta$, $\theta=tan^{-1}(a/x)$

4. If
$$y = tan^{-1} \left(\frac{2x}{1-x^2} \right)$$
, prove that $y_n = 2 \cdot (-1)^{n-1} (n-1)! \sin^n \theta \sin n\theta$, $\theta = tan^{-1} (1/x)$

Find the n^{th} derivative of y if

1.
$$y = x^3 e^x$$

2.
$$y = x^2 a^x$$

3.
$$y = x^3 \sin 2x$$

4.
$$y = (2x + 3)^2 e^x$$

5.
$$y = (x+3)^3 \sin 3x$$

6. If
$$y = \frac{\log x}{x}$$
, prove that $y_5 = \frac{5!}{x^6} \left[1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \log x \right]$

7. If
$$y = x^2 e^{2x}$$
, prove that at $x = 0$, $y_n = 2^{n-2}n(n-1)$

NANDINI RAI

KJSCE-SVU AM-II

ANSWERS

1.
$$y_n = e^x x^3 + 3ne^x \cdot x^2 + 3n(n-1)e^x x + n(n-1)(n-2)e^x$$

2.
$$y_n = a^x (\log a)^n x^2 + n \cdot a^x \cdot (\log a)^{n-1} \cdot 2x + n(n-1) \cdot a^x (\log a)^{n-2}$$

3.
$$y_n = 2^n sin\left(2x + \frac{n\pi}{2}\right) \cdot x^3 + n \cdot 3x^2 2^{n-1} sin\left(2x + (n-1)\frac{\pi}{2}\right) + n(n-1) \cdot 3x \cdot 2^{n-2} sin\left(2x + (n-2)\frac{\pi}{2}\right) + n(n-1)(n-2) \cdot 2^{n-3} sin\left(2x + (n-3)\cdot\frac{\pi}{2}\right)$$

4.
$$y_n = e^x (2x+3)^2 + ne^x \cdot 4(2x+3) + n(n-1)4e^x$$

5.
$$y_n = 3^n sin\left(3x + \frac{n\pi}{2}\right)(x+3)^3 + n \cdot 3^n sin\left(3x + (n-1)\frac{\pi}{2}\right)(x+3)^2 + n(n-1)3^{n-1}sin\left(3x + (n-2)\frac{\pi}{2}\right)(x+3) + n(n-1)(n-2)3^{n-3}sin\left(3x + (n-3)\cdot\frac{\pi}{2}\right)$$

Type - V

- **1.** If $y = \sin^{-1}x$, prove that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} n^2y_n = 0$. Also find $y_9(0)$ and $y_{10}(0)$.
- 2. If $y = tan^{-1}x$, prove that, $(1 + x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$. Hence deduce that $y_n(0) = 0$ if n is even and $y_n(0) = (n-1)!$ if n is odd.
- **3.** If $y = (x + \sqrt{a^2 + x^2})^2$, prove that $(a^2 + x^2)y_{n+2} + (2n+1)xy_{n+1} + (n^2 4)y_n = 0$.
- **4.** If $y = a \cos \log x + b \sin \log x$, prove that, $x^2 y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$.
- 5. If $y = \cos(m\sin^{-1}x)$, prove that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} + (m^2-n^2)y_n = 0$. Hence, obtain $y_n(0)$.
- **6.** If $y = e^{m \sin^{-1} x} \left(\mathbf{or} \ x = \sin \left(\frac{1}{m} \log y \right) \right)$, prove that $(1 x^2) y_{n+2} (2n+1) x \, y_{n+1} (n^2 + m^2) y_n = 0$.
- 7. If $x = \tan \log y$ or $y = e^{\tan^{-1}x}$, prove that $(1 + x^2)y_{n+1} + (2nx 1)y_n + n(n-1)y_{n-1} = 0$.
- **8.** If $\cos^{-1}\left(\frac{y}{b}\right) = \log\left(\frac{x}{n}\right)^n$, prove that $x^2y_{n+2} + (2n+1)xy_{n+1} + 2n^2y_n = 0$.
- 9. If $y^{1/m} + y^{-1/m} = 2x$, prove that, $(x^2 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 m^2)y_n = 0$.
- **10.** If $x = \cosh\left(\frac{1}{m}\log y\right)$, prove that, $(x^2 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 m^2)y_n = 0$.
- **11.** If $y = log(x + \sqrt{x^2 + a^2})^2$, prove that $(x^2 + a^2)y_{n+2} + (2n+1)xy_{n+1} + n^2y_n = 0$.
- **12.** If $y = \left[log(x + \sqrt{1 + x^2})\right]^2$, prove that $(1 + x^2)y_{n+2} + (2n+1)xy_{n+1} + n^2y_n = 0$. Hence, deduce that $y_{n+2}(0) = -n^2y_n(0)$.
- **13.** If $x = \sin \theta$ and $y = \cos m \theta$, prove that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} + (m^2 n^2)y_n = 0$

ANSWERS

1.
$$y_9(0) = 1^2 . 3^2 . 5^2 . 7^2 .$$
 and $y_{10}(0) = 0$

5. $y_n(0) = 0$ if n is odd , $y_n(0) = ((n-2)^2 - m^2) \dots (4^2 - m^2)(2^2 - m^2)(-m^2)$ if n is even

3

NANDINI RAI