1. Topología: Funcionamiento de una topología y comprension de todas las curvas

a)

Se diseñó una fuente con las siguientes características:

Grupo	V_i	V_o	$\frac{\Delta V_{o_{max}}}{V_o}$	f_{sw}
3	3.3V	5V	5 %	60kHz

Como se pide una tensión de salida continua mayor que a la entrada, se utilizó un convertidor boost.

Figura 1: Convertidor Boost

Sabemos que el duty cycle en este convertidor esta dado por:

$$D_{ideal} = 1 - \frac{V_i}{V_o} = 0.34$$

Con el valor del duty obtenemos el periodo de encendido de la llave $T_{on}=DT_s=D\frac{1}{f_{sw}}$ Para asegurarnos que estemos trabajando en modo continuo, elegimos una I_o tal que: $I_o>I_{OB}$.

$L[\mu H]$	$I_{OB}[mA]$	
220	14	
330	9,35	

Tabla 1: Calculo de ${\cal I}_{OB}$ según el valor de ${\cal L}$

Por lo tanto, suponiendo $I_o = 50mA$, obtenemos una carga de $R = 100\Omega$ El valor del capacitor se obtuvo con la siguiente formula:

$$C = \frac{T_{on}}{R \frac{\Delta V_{o_{max}}}{V_o}} = 1.13 \mu F$$

Para realizar las simulación se eligió $L=220\mu H$ y se obtuvo que:

$$D_{real} = 0.43$$

b)

Se realizó el gráfico de la señal de disparo (SW), tensión en el inductor (VL),corriente en el inductor (IL) y corriente en el diodo (ID) considerando el diodo real.

Figura 2: Gráfico las curvas de la topología de convertidor boost

c)

A continuacion se mustra la simulón en LTspice las curvas del inciso anterior.

Figura 3: Simulación SW(azul) y IL(roja)

Figura 4: Simulación SW(azul) y VL(roja)

Figura 5: Simulación IL(verde) y ID(azul)

d)