习题 1.2(P39)

1. 已知
$$\lim_{x\to 3} \frac{x-3}{x} = 0$$
, x 满足什么条件时, 才能使 $\left| \frac{x-3}{x} \right| < 0.001$?

解:
$$\left| \frac{x-3}{x} \right| < 0.001$$
,即 $-\frac{1}{1000} < 1 - \frac{3}{x} < \frac{1}{1000}$,故 $\frac{3000}{1001} < x < \frac{1000}{333}$

2. 用函数极限的定义证明下列各式成立.

(1)
$$\lim_{x \to 1} 3x - 2 = 1$$

(2)
$$\lim_{x\to 9} \frac{x-9}{\sqrt{x}-3} = 6$$

(1)
$$\lim_{x \to 1} 3x - 2 = 1$$
 (2) $\lim_{x \to 9} \frac{x - 9}{\sqrt{x - 3}} = 6$ (3) $\lim_{x \to \infty} \frac{2 - x}{x} = -1$

(4)
$$\lim_{x \to +\infty} \frac{\sin x}{\sqrt{x}} = 0$$
 (5) $\lim_{x \to 4} \sqrt{x} = 2$ (6) $\lim_{x \to 0} e^x = 1$

$$(5) \lim_{x \to 4} \sqrt{x} = 2$$

$$(6) \lim_{x\to 0} e^x = 1$$

证明: (1) $\forall \varepsilon > 0$, 欲找 $\delta > 0$, 当 $0 < |x-1| < \delta$ 时, 使

$$|(3x-2)-1|=3|x-1|<3\delta=\varepsilon$$
, $\forall x \in S$

(2) $\forall \varepsilon > 0$, 欲找 $\delta > 0$, 当 $0 < |x - 9| < \delta$ 时, 使

$$\left|\frac{x-9}{\sqrt{x}-3}-6\right| = \left|\sqrt{x}+3-6\right| = \left|\sqrt{x}-3\right| = \left|\frac{x-9}{\sqrt{x}+3}\right| \le \frac{\left|x-9\right|}{3} < \frac{\delta}{3} = \varepsilon$$

又保证x > 0,即|x-9| < 9,故取 $\delta = \min\{9, 3\varepsilon\}$

(3) $\forall \varepsilon > 0$, 欲找 X > 0, 当|x| > X 时, 使

$$\left|\frac{2-x}{x}-(-1)\right|=\frac{2}{|x|}<\varepsilon, \quad \mathbb{P}\left|x\right|>\frac{2}{\varepsilon}, \quad \text{in } X=\frac{2}{\varepsilon}$$

(4) $\forall \varepsilon > 0$, 欲找 X > 0, 当 x > X 时, 使

$$\left|\frac{\sin x}{\sqrt{x}} - 0\right| \le \left|\frac{1}{\sqrt{x}}\right| = \frac{1}{\sqrt{x}} < \varepsilon, \implies x > \frac{1}{\varepsilon^2}, \text{ in } X = \frac{1}{\varepsilon^2}$$

(5) $\forall \varepsilon > 0$, 欲找 $\delta > 0$, 当 $0 < |x-4| < \delta$ 时, 使

$$\left|\sqrt{x}-2\right| = \frac{\left|x-4\right|}{\sqrt{x}+2} \le \frac{\left|x-4\right|}{2} < \frac{\delta}{2} = \varepsilon$$

又保证 x>0,即 $\left|x-4\right|<4$,故取 $\delta=\min\left\{4,2\varepsilon\right\}$

(6) 法 1:
$$\forall \varepsilon > 0$$
, 欲找 $\delta > 0$, 当 $0 < |x| < \delta$ 时,使 $|e^x - 1| < \varepsilon$ 即 $1 - \varepsilon < e^x < 1 + \varepsilon$, 亦即 $\ln(1 - \varepsilon) < x < \ln(1 + \varepsilon)$ 取 $\delta = \min\{\ln(1 - \varepsilon), \ln(1 + \varepsilon)\}$.

法 2: 由指数函数的性质知, $\forall x$, 均有 $e^x \ge 1 + x$, 或 $e^{-x} \ge 1 - x$

故当
$$x < 0$$
时,有 $0 > e^x - 1 \ge x$,即 $|e^x - 1| \le |x| \le 2|x|$

故当限定
$$0 < x < \frac{1}{2}$$
时,有 $e^x - 1 \le 2x$,即 $\left| e^x - 1 \right| \le 2 \left| x \right|$

综上所述可得:
$$\forall x \in \stackrel{0}{N} (0, \frac{1}{2})$$
, 即 $0 < |x| < \frac{1}{2}$, 均有 $|e^x - 1| \le |x| \le 2|x|$

因而 $\forall \varepsilon > 0$,欲找 $\delta > 0$,当 $0 < |x| < \delta$ 时,使

$$|e^x - 1| \le 2|x| < 2\delta = \varepsilon$$

又保证
$$0 < |x| < \frac{1}{2}$$
,故取 $\delta = \min\left\{\frac{1}{2}, \frac{\varepsilon}{2}\right\}$

3. 证明: $\lim_{x\to\infty} f(x)$ 存在的充要条件是 $\lim_{x\to-\infty} f(x)$ 、 $\lim_{x\to+\infty} f(x)$ 都存在且相等.

证明: 必要性: 设
$$\lim_{x\to\infty} f(x) = A$$
,则 $\forall \varepsilon > 0$, $\exists X > 0$, 当 $|x| > X$ 时,必有 $|f(x) - A| < \varepsilon$,

由
$$|x| > X$$
,得 $x > X$ 或 $x < -X$,由定义知 $\lim_{x \to -\infty} f(x) = A$, $\lim_{x \to +\infty} f(x) = A$

充分性: 设
$$\lim_{x\to -\infty} f(x) = A$$
, $\lim_{x\to +\infty} f(x) = A$, 则 $\forall \varepsilon > 0$, $\exists X_1 > 0$, 当 $x < -X_1$

时,必有
$$\left|f(x)-A\right|; $\exists X_2>0$, 当 $x>X_2$ 时,必有 $\left|f(x)-A\right|,$$$

取
$$X = \max\{X_1 \ X_2\}$$
 ,则,当 $x < -X$ 且 $x > X$ 时,亦即 $|x| > X$ 时,必有
$$\left|f(x) - A\right| < \varepsilon$$
,由定义知 $\lim_{x \to \infty} f(x) = A$

4. 给出下列极限的定义.

 $\lim_{x \to a^{-}} f(x) = A$

$$(1)\lim_{x\to a^+} f(x) = A$$

定义(1)设函数 y=f(x) 在点a 的去心右邻域内有定义,A 是常数,若对任意给定的 $\varepsilon>0$,存在正数 δ ,当 $0< x-a<\delta$ 时,恒有 $\left|f(x)-A\right|<\varepsilon$ 成立,则称常数A 为函数 y=f(x) 当 x 趋于 a 时的右极限,记作 $\lim_{x\to a^+}f(x)=A$,简记为 $f(x)\to A$ $(x\to a^+)$ 或 f(a+0)=A

定义(2) 设函数 y=f(x) 在点a 的去心左邻域内有定义,A 是常数,若对任意给定的 $\varepsilon>0$,存在正数 δ ,当 $-\delta< x-a<0$ 时,恒有 $|f(x)-A|< \varepsilon$ 成立,则称常数A 为函数 y=f(x) 当x 趋于a 时的左极限,记作 $\lim_{x\to a^-} f(x)=A$,简记为 $f(x)\to A$ $(x\to a^-)$ 或 f(a-0)=A

5. 设
$$f(x) = \begin{cases} -x+1 & 0 \le x < 1 \\ 1 & x=1 \\ -x+3 & 1 < x \le 2 \end{cases}$$
, 画出 $y = f(x)$ 的图形; 求 $x \to 1$ 时函数的左、右极

限,并讨论极限的存在性。

解:

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (-x+1) = 0, \qquad \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (-x+3) = 2$$

左、右极限不相等,故 $\lim_{x\to 1} f(x)$ 不存在。

6. 设
$$f(x) = \begin{cases} \frac{1}{x-1} & x < 0 \\ 0 & x = 0 \\ x & 0 < x < 1 \\ 1 & 1 \le x \le 2 \end{cases}$$
, 求 $x \to 0$, $x \to 1$ 时函数的左、右极限,讨论极限的

存在性。

$$\underset{x\to 0^{-}}{\text{HI:}} \quad \lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} \frac{1}{x-1} = -1, \quad \lim_{x\to 0^{+}} f(x) = \lim_{x\to 0^{+}} x = 0$$

左、右极限不相等,故 $\lim_{x\to 0} f(x)$ 不存在;

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x = 1, \qquad \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} 1 = 1$$

左、右极限存在且相等,故 $\lim_{x\to 1} f(x) = 1$ 。

7. 证明函数极限的惟一性、局部有界性.

证明: (1) 证惟一性: 如果 $\lim_{x \to a} f(x) = A$, $\lim_{x \to a} f(x) = B$, 则 A = B

(反证法): 假设 $A \neq B$, 不妨设A < B

由于 $\lim f(x) = A$, $\lim f(x) = B$, 对于给定的 $\varepsilon = \frac{B-A}{2}$, 必存在某个时刻($\exists \delta$ 或

$$\exists X$$
),使得在这个时刻之后($0<|x-a|<\delta$,或 $|x|>X$),有 $|f(x)-A| 与$

$$\left|f(x)-B\right| 同时成立,即 $f(x)>rac{B+A}{2}$ 与 $f(x)<rac{B+A}{2}$ 同时成立,这是不可能的,故必有 $A=B$.$$

(2)证局部有界性:如果 $\lim f(x) = A$,则必存在 M>0,使得在某个时刻($\exists \delta$ 或 $\exists X$)之后($0<|x-a|<\delta$,或 |x|>X),有 $|f(x)|\leq M$

证:由于 $\lim f(x) = A$,对于给定的 $\varepsilon = 1$,必存在某个时刻($\exists \delta$ 或 $\exists X$),使得在这个时刻之后($0 < |x-a| < \delta$,或|x| > X),有 $|f(x)-A| < \varepsilon = 1$,即A-1 < f(x) < A+1,取 $M = \max\{A-1|, |A+1|\}$,则 $|f(x)| \leq M$

8. 若 $\lim_{x\to a} f(x) = A$,用定义证明: $\lim_{x\to a} |f(x)| = |A|$.并举例说明反之未必成立.

证明: 由于 $\lim_{x\to a} f(x) = A$,所以 $\forall \varepsilon > 0$, $\exists \delta > 0$, 当 $0 < |x-a| < \delta$ 时, 恒有

$$|f(x)-A|<\varepsilon,$$

$$\overline{m} \| f(x) | - |A| \le |f(x) - A| < \varepsilon, \quad \mathbb{P} \lim_{x \to a} |f(x)| = |A|$$

反之未必成立,例如:

$$f(x) = \begin{cases} -x+1 & x \le 0 \\ -x-1 & x > 0 \end{cases}, \quad \text{if } \lim_{x \to 0} |f(x)| = 1, \quad \text{iff } \lim_{x \to 0^{-}} f(x) = 1, \quad \lim_{x \to 0^{+}} f(x) = -1$$

即 $\lim_{x\to 0} f(x)$ 不存在.

*9. 证明: 当 $x \to +\infty$ 时, $\sin \sqrt{x}$ 没有极限.

取
$$y_n = (2n\pi + \frac{\pi}{2})^2$$
,则当 $n \to \infty$ 时, $\lim_{n \to \infty} \sin \sqrt{y_n} = 1$

 x_n , y_n 均是 $x \to +\infty$ 时的子列,故 $\sin \sqrt{x}$ 没有极限.