SISTEM ANALISIS DATA KONDISI MESIN ICT PROPOSAL TUGAS AKHIR

Oleh:

Febriana Manalu

3311801054

Disusun untuk pengajuan proposal Tugas Akhir Program Diploma III

PROGRAM STUDI TEKNIK INFORMATIKA JURUSAN TEKNIK INFORMATIKA POLITEKNIK NEGERI BATAM

BATAM

2020

HALAMAN PENGESAHAN PROPOSAL SISTEM ANALISIS DATA KONDISI MESIN ICT

Oleh:

Febriana Manalu

3311801054

Proposal ini telah dikonsultasikan dengan dosen pembimbing sebagai persyaratan untuk melaksanakan Sidang Proposal pada

PROGRAM DIPLOMA III

PROGRAM STUDI TEKNIK INFORMATIKA

JURUSAN TEKNIK INFORMATIKA

POLITEKNIK NEGERI BATAM

Batam, 12 November 2020

Disetujui oleh:

Pembimbing

Yeni Rokhayati, S.Si., M.Sc.

NIK. 112093

PENDAHULUAN

A. Latar Belakang

Kota Batam yang dikenal sebagai kota industri dengan wilayah strategis dan memiliki persaingan ketat antar perusahaan. Sebagian besar perusahaan yang berdiri di kota Batam adalah perusahaan manufaktur. Perusahaan manufaktur adalah perusahaan yang membeli bahan baku, kemudian mengolah bahan baku tersebut menjadi barang jadi yang siap pakai sebagai pelengkap atau komponen suatu barang. Salah satu perusahaan manufaktur yang berdiri di kota Batam yaitu PT Flextronics Technology Indonesia bergerak di bidang service assembly pembuatan component dan board PCBA (Printed Circuit Board) yang kegiatan produksinya dilakukan berdasarkan permintaan dari customer.

Hal terpenting pada operasional perusahaan manufaktur adalah kualitas dari produk yang diproduksi. Hasil produk yang berkualitas menunjukan perusahaan telah menjalankan manajemen mutu dengan baik. Salah satu cara untuk meningkatkan kualitas produk adalah dengan melakukan *testing* produk sebelum dikemas. PT Flextronics Technology Indonesia menggunakan mesin *In Circuit Testing* (ICT) untuk melakukan proses *testing* pada produk. Setiap mesin pasti memiliki kondisi yang berbeda – beda setiap hari dan setiap hari pula mesin mengalami kerusakan. Dimana ketika mesin rusak, proses *testing* menjadi terhambat yang mengakibatkan kerugian dari segi material dan waktu.

Data kondisi mesin ICT yang digunakan dalam penelitian ini adalah jenis kerusakan mesin dan tindakan yang dilakukan oleh teknisi. Melihat adanya kerusakan mesin setiap hari mengakibatkan data kondisi mesin akan semakin bertambah banyak. Data kondisi mesin dicatat dalam sebuah file excel dan data tersebut hanya digunakan untuk mendokumentasikan kondisi mesin dan tindakan yang dilakukan oleh teknisi. Padahal jika diolah dengan baik, teknisi dapat menggunakan data tersebut untuk mengevaluasi proses *testing* sehingga dapat mencegah kerusakan mesin dan tentunya mempercepat proses *testing* setiap harinya.

Data mining adalah suatu proses otomatis untuk pengolahan informasi dari suatu kumpulan data. Melakukan analisa data dalam jumlah yang besar tanpa

menggunakan data mining adalah hal yang sulit. Oleh karena itu teknisi membutuhkan suatu sistem pengolahan data secara otomatis. Berdasarkan permasalahan di atas muncul ide untuk membangun sebuah sistem analisis data kondisi mesin ICT berbasis web dengan metode klasifikasi menggunakan algoritma C4.5. Dengan menganalisa data kondisi mesin diharapkan teknisi dapat membuat evaluasi dan tindakan perencanaan untuk mencegah terjadinya kerusakan mesin kembali.

B. Rumusan Masalah

Berdasarkan latar belakang di atas, maka penulis merumuskan beberapa masalah sebagai berikut:

- 1. Bagaimana cara menerapkan aturan algoritma C4.5 dalam analisis data dengan kondisi mesin ICT yang mengalami kerusakan?
- 2. Bagaimana cara membangun sistem analisis data kondisi mesin ICT berbasis *web* menggunakan alagoritma C4.5?

C. Tujuan Penelitian

Berdasarkan rumusan masalah di atas, maka tujuan penulis dalam melakukan penelitian ini yaitu sebagai berikut :

- 1. Menghasilkan pola kerusakan mesin ICT dengan menggunakan aturan algoritma C4.5.
- 2. Menghasilkan sistem analisis data kondisi mesin ICT berbasis *web* menggunakan algoritma C4.5.

TINJAUAN PUSTAKA

Harry (2018) melakukan analisis data untuk mengetahui pola kecendrungan *reject* berdasarkan data produksi peba menggunakan metode asosiasi dengan algoritma apriori. Proses pengolahan data kecendrungan reject diawali dengan memasukkan data tersebut berformat excel, kemudian aplikasi tersebut akan mengolah data yang sudah dimasukkan menggunakan algoritma apriori. Setelah proses mining dilakukan, aplikasi akan menampilkan hasil proses mining berupa aturan asosiasi tentang keterkaitan pola reject tertinggi. Aplikasi ini menghasilkan pola reject peba dalam bentuk grafik berbasis website dengan menggunakan bahasa pemograman PHP. Maka setelah mendapatkan pola kecendrungan *reject* produksi peba diharapkan perusahaan manufaktur dapat membuat evaluasi terhadap proses produksi yang berjalan.

Agam (2018) melakukan analisis data untuk menentukan klasifikasi penyakit diabetes mellitus menggunakan metode klasifikasi dengan algoritma C4.5. Proses pengolahan data penyakit diabetes diawali dengan pengumpulan data dari hasil rekam medik dan laboratorium rumah sakit BP Batam. Setelah data dikumpulkan dilajutkan dengan prepocessing data untuk memastikkan data tersebut konsisten dan tidak noise. Kemudian setelah data siap untuk diolah di aplikasi, pengolahan data tersebut dimulai dengan tahap klasifikasi menggunakan algoritma C4,5 yang menghasilkan pohon keputusan. Aplikasi prediksi penyakit diabetes ini dibangun menggunakan matlab berbasis desktop. Maka setelah dapat menentukan klasifikasi penyakit diabetes mellitus diharapkan masyarakat dapat mendiagnosa awal penyakit diabetes mellitus.

Fandy dan Seng (2017) melakukan analisis data untuk memprediksi penerimaan calon pegawai baru berdasarkan kompetensi yang dimiliki. Proses pengolahan data diawali dengan *prepocessing* data dengan membagi data *testing* terhadap pegawai yang memiliki jabatan pekerjaan yang sama kemudia data *training* untuk memprediksi penerimaan pegawai. Penelitian ini menggunakan algoritma C4.5 dengan metode pengukuruan akurasi *ten-fols cross validation* yang telah mendapatkan hasil pengukuran tingkat keberhasilan prediksi calon pegawai baru sebesar 71%. Maka setelah mendapatkan prediksi calon pegawai baru perusahaan dapat mengidentifikasi calon pegawai berdasarkan kriteria dan kebutuhan perusahaan.

Untuk penjelasan lebih lanjut mengenai perbandingan antara penelitian sebelumnya dengan penelitian yang akan dilakukan sekarang dapat dilihat pada Tabel 1 di bawah ini :

Table 1. Perbandingan dengan Penelitian Sebelumnya

Perbandingan	Penelitian 1	Penelitian 2	Penelitian 3	Penelitian Sekarang	
Objek yang diteliti	Data Produksi (mengenai data reject)	Data Hasil Laboratorium dan Rekam Medik Pasien Diabetes	Data Calon Pegawai Baru	Data Kondisi Mesin ICT	
Studi Kasus	Perusahaan Manufaktur	Rumah Sakit BP Batam	PT Wise	PT Flextonics Technology Indonesia	
Algoritma	Apriori	C4.5	C4.5	C4.5	
Software Pengembang	PHP, HTML, Javascript	Matlab	-	PHP, Javascript	

METODOLOGI PENELITIAN

Penelitian ini diawali dengan identifikasi masalah yang ditemukan di PT Flextronics Technology Indonesia khususnya departement *Testing*. Setelah melakukan identifikasi dilanjutkan dengan mengumpulkan data kondisi mesin ICT yang akan diolah. Sebelum data diolah, data akan diperiksa terlebih dahulu agar tidak terdapat data *noise* dan tidak konsisten untuk mempermudah proses pengolahan data. Penelitian ini akan mengolah data kondisi mesin ICT yang mengalami kerusakan setiap harinya. Proses pengolahan data menggunakan algoritma C4.5 yaitu berupa pohon keputusan (*decision tree*), dengan menggunakan pohon keputusan akan didapatkan pola berupa aturan – aturan klasifikasi. Setelah mendapatkan pola kerusakan mesin ICT dilanjutkan dengan mengimplementasikan pola tersebut menjadi sebuah grafik yang digunakan untuk mempermudah dan mempercepat membaca hasil pola yang dihasilkan. Kemudian hasil analisis dari algoritma C4.5 dibuktikan dengan cara melakukan pengujian dan evaluasi terhadap pola yang didapatkan berdasarkan data yang ada.

Untuk penjelasan lebih lanjut mengenai metode penelitian yang digunakan dapat dilihat pada Gambar 1 di bawah ini :

Gambar 1. Metode Penelitian

Penelitian ini menggunakan algoritma C4.5 yang diawali dengan memasukkan data kondisi mesin ICT untuk diolah. Setelah data yang diolah sudah didapatkan, dilanjutkan dengan penentuan atribut yang akan menjadi akar dalam pohon keputusan. Setelah *gain* tertinggi didapatkan dilanjutkan dengan penentuan *node* dan cabang pohon. Kemudian akar dan

cabang pohon keputusan ditentukan maka pohon keputusan dapat digambarkan berdasarkan dari data – data yang telah diolah. Setelah pohon keputusan selesai, selajutnya dapat melakukan aturan – aturan klasifikasi yang terbentuk.

Untuk penjelasan lebih lanjut mengenai metode penelitian yang digunakan dapat dilihat pada Gambar 2 di bawah ini :

Gambar 2. Penerapan Algoritma C4.5

• Deskripsi Umum Sistem

Sistem analisis data kondisi mesin In Circuit Test menggunakan algoritma C4.5 merupakan sebuah website yang digunakan departemen *testing* untuk melakukan analisis data kondisi mesin sehingga mendapatkan pola kerusakan mesin ICT agar dapat mempermudah teknisi untuk melakukan evaluasi dan tindakan perencanaan untuk mencegah terjadinya kerusakan mesin kembali.

Penelitian ini diawali dengan memasukkan data kondisi mesin dalam bentuk file excel berformat xlsx yang berisikan data kondisi mesin yang belum diproses. Kemudian website melakukan proses pengolahan data menggunakan metode klasifikasi yang nantinya akan mendapatkan pola kerusakan mesin ICT berdasarkan perhitungan algoritma C4.5. Website ini juga dapat menampilkan pola kerusakan mesin ICT setelah diolah dan menampilkan data tersebut dalam bentuk grafik. Dapat dilihat pada Gambar 3 dibawah ini untuk deskripsi umum sistem.

Gambar 3. Deskripsi Umum Sistem

• Sumber Data

Pada penelitian ini sumber data yang digunakan adalah data kondisi mesin mengenai kerusakan mesin ICT dan tindakan yang dilakukan oleh teknisi pada periode Agustus 2020 – Oktober 2020. Berikut ini merupakan sumber data awal yang digunakan sebelum melakukan proses *prepocessing* data sebagai berikut:

Tabel 2. Data Kondisi Mesin ICT

ReqID Malfunction Symptom		Create_at	CloseDate	Defect	Issue Actiontype		RelatedPart
Req001498 Tester short	Winner M Sitorus	Oct 31 2020 9:18AM	Oct 31 2020 10:51AM			Change relay ground pin card 1	PIN CARD
Req001497 Short	SLAMETO PEBRI SULISTYO					Repair pincard slot 1(K1-K16)	PIN CARD
Req001496 Problem digital	SLAMETO PEBRI SULISTYO	Oct 31 2020 8:20AM	Oct 31 2020 8:42AM	Overvoltage	Machine False Call		MPU/System Power Supply PS
Req001495 Fail digital	SLAMETO PEBRI SULISTYO	Oct 31 2020 7:52AM	Oct 31 2020 8:27AM		Machine False Call		MPU/System Power Supply PS
Req001494 Ground	Maijum Havis	Oct 30 2020 11:16PM	Oct 31 2020 1:09AM	Short to Ground	Machine Repair	Reset XT card module 0 and rebooting tester	OTHER
Req001493 BT basic error	Abdul Rahman	Oct 30 2020 11:13PM	Oct 31 2020 1:00AM	Canot booting	Machine Reboot	Module 3 no boot, XT card mod 3 intermittent, reset XT card and roboot tester	MODULE CARD
Req001492 Problem red Pio			Oct 30 2020 1:29PM		Machine Repair	Change relay PIO card	I/O CARD
Req001491 Tester short	Winner M Sitorus	Oct 30 2020 11:02AM	Oct 30 2020 1:48PM	Short to Ground	Machine Repair	Change ground relay pin card 3	PIN CARD
Req001490 Alarm	SLAMETO PEBRI SULISTYO	Oct 30 2020 9:46AM	Oct 30 2020 5:13PM	Canot booting	Machine Reboot	Check MPU power supply OK, change XT card mod 0, suap ASRU card mod 0 to mod 3	MPU/System Power Supply PS
Req001489 Can't boot	SLAMETO PEBRI SULISTYO				Machine Reboot	Reboot tester, restart PC, reset BNC hub, Reset system card	BNC HUB
Req001486 short pincard	SLAMETO PEBRI SULISTYO	Oct 28 2020 9:12AM	Oct 28 2020 11:34AM	Short to Ground	Machine Repair	Repair PIO(nyala merah) dan repair pincard slot 8 short to ground	PIN CARD
Req001488 Over voltage	Abdul Rahman	Oct 28 2020 8:36PM	Oct 29 2020 1:06AM		Machine Replace	Diagnostik tester, cek and repair ASRU module 2, and change FAN blower mod 2	BLOWER
Req001487 Pin card short	SLAMETO PEBRI SULISTYO	Oct 28 2020 1:16PM	Oct 28 2020 2:03PM	Short to Ground	Machine Repair		PIN CARD
Req001483 Power supply	SLAMETO PEBRI SULISTYO				Machine Restore	Restart PC, reboot tester, power off tester, cek power supply OK, cek pin card program hang, restore point, hiren PC,	MPU/System Power Supply PS
Req001485 Power Supply	Iye Mardianto	Oct 27 2020 9:44PM	Oct 27 2020 10:16PM	Power Supply Problem	Machine Replace	Power supply 3 60V fail	OTHER
Req001482 Short	SLAMETO PEBRI SULISTYO	Oct 27 2020 9:34AM	Oct 27 2020 11:03AM	Short ground relay	Machine Repair	Repair pin card relay slot 8(K1-K16) 2x short di lokasi relay yang sama	PIN CARD
Req001484 Power Supply		Oct 27 2020 8:49PM	Oct 27 2020 10:12PM	Overvoltage	Machine False Call		MPU/System Power Supply PS
Req001481 Problem capacitor ,ICA	Iye Mardianto	Oct 26 2020 5:04PM	Oct 26 2020 8:56PM		Machine Replace	Change ICA (Fail Diag)	ICA
			Oct 25 2020 1:03AM		Machine False Call		MPU/System Power Supply PS
Req001480 Tester Short	Iye Mardianto	Oct 25 2020 2:35AM	Oct 25 2020 5:47AM	Overvoltage	Machine Replace	Change pin probe 1,2 ASRU mod 2	ASRU

Sumber data yang digunakan dalam penelitian ini memiliki beberapa atribut seperti ReqID, Malfunction Symptom, PIC, Creaate_at, CloseDate, Defect, Issue, Actiontype, Action dan RelatedPart. Oleh karena itu akan data akan dibagi menjadi data *training* dan data *testing*. Data *testing* terdiri dari Defect, Actiontype dan RelatedPart kemudian data *training* untuk pencarian pola kerusakan mesin. Dapat dilihat data yang dipilih seperti Table 3 dibawah ini:

Tabel 3. Pemilihan Atribut yang Digunakan

Defect	Actiontype	RelatedPart	
Short	Repair	DIAGNOSTIC	
BT Basic Error/Corrupted	Restore	PC CONTROLLER	
Short Pin card	Repair	DIAGNOSTIC	
Canot lock unlock	Replace	OTHER	
BT Basic Error/Corrupted	Restore	PC CONTROLLER	
Canot booting	Reboot	BNC HUB	
BT Basic Error/Corrupted	Reboot	PC CONTROLLER	
Short ground relay	Repair	PIN CARD	
PC Hang	Restore	PC CONTROLLER	
Fixture lock broken	Repair	SYSTEM CARD	
Analog Intermitent	False Call	ASRU	
Overvoltage	Repair	ASRU	
Overvoltage	False Call	MPU/System Power Supply PS	
Short ground relay	False Call	PIN CARD	
Short ground relay	Repair	PIN CARD	
Power Nodes	Repair	PIN CARD	
Canot booting	Restore	PC CONTROLLER	
Canot booting	Reboot	OTHER	
Vaccum Slow Release	Repair	MPU/System Power Supply PS	
Analog Intermitent	Repair	OTHER	
Air valve issue	False Call	OTHER	
BT Basic Error/Corrupted	Restore	PC CONTROLLER	
Short	Repair	PIN CARD	
Short Pin card	Repair	PIN CARD	

DAFTAR PUSTAKA

- Akhir, T., & Putra, H. C. Den. (2018). Aplikasi Penentuan Pola Reject Dengan.
- Akhir, T., Studi, P., Informatika, T., & Batam, P. N. (2015). *POLITEKNIK NEGERI BATAM MENGGUNAKAN ALGORITMA DECISION TREE C4* . 5.
- Dwi Meliani Achmad, Budanis, Slamat, F. (2012). Klasifikasi Data Karyawan Untuk Menentukan Jadwal Kerja Menggunakan Metode Decision Tree. *Jurnal IPTEK*, *16*(1), 18–23. http://jurnal.itats.ac.id/wp-content/uploads/2013/06/3.-BUDANIS-FINAL-hal-17-23.pdf
- Fatmawati, K., & Windarto, A. P. (2018). Data Mining: Penerapan Rapidminer Dengan K-Means Cluster Pada Daerah Terjangkit Demam Berdarah Dengue (Dbd) Berdasarkan Provinsi. *Computer Engineering, Science and System Journal*, *3*(2), 173. https://doi.org/10.24114/cess.v3i2.9661
- Harryanto, F. F., & Hansun, S. (2017). Penerapan Algoritma C4.5 untuk Memprediksi Penerimaan Calon Pegawai Baru di PT WISE. *Jurnal Teknik Informatika Dan Sistem Informasi*, *3*(2), 95–103. http://jurnal.mdp.ac.id/index.php/jatisi/article/view/71
- Studi, P., Informatika, T., Informatika, J. T., & Batam, P. N. (2018). *KLASIFIKASI PENYAKIT DIABETES MELLITUS*.

LAMPIRAN

ABSTRAK

APLIKASI PENENTUAN POLA REJECT DENGAN ALGORITMA APRIORI PADA DATA PRODUKSI PCBA

Perusahaan Elektronik Manufaktur PCBA merupakan perusahaan yang bergerak di bidang usaha perakitan PCBA. Untuk memenuhi kebutuhan customer, perusahaan harus selalu menjaga kualitas produk. Kualitas produk merupakan salah satu hal terpenting bagi perusahaan. Hasil produk yang berkualitas, menandakan perusahaan tersebut telah melaksanakan manajemen mutu yang baik. Dengan menghasilkan produk yang berkualitas, akan tercapai sebuah kegiatan produksi yang efektif dan efisien karena produk yang dihasilkan sesuai dengan kebutuhan dan harapan pelanggan. Oleh karena itu perusahaan dituntut untuk meningkatkan kualitas. Hal ini dapat dilakukan dari pemanfaatan data produksi. Dengan metode asosiasi dati data mining dan menggunakan algoritma apriori akan mendapatkan aturan asosiasi keterkaitan yang kuat antar itemset faktor penyebab terjadinya reject sehingga dapat membantu perusahaan untuk menentukan prioritas dilakukannya preventive action terhadap reject yang terjadi tersebut.

Kata kunci: Data mining, Asosiasi, PCBA, Algoritma A-priori, Kualitas

KLASIFIKASI PENYAKIT DIABETES MELLITUS MENGGUNAKAN ALGORITMA DECISION TREE C4.5

Berdasarkan Data Riset Kesehatan Dasar (Riskesdas) Kementerian Kesehatan Republik Indonesia, tahun 2013 Indonesia memiliki jumlah penderita penyakit diabetes mellitus mencapai angka 9,1 juta jiwa yang merupakan jumlah ke-empat terbanyak di Asia dan ke-tujuh di dunia, jumlah tersebut diprediksi akan semakin terus bertambah. Banyaknya masyarakat tidak mengetahui bahwa mereka menderita penyakit diabetes mellitus, penderita diabetes mellitus baru mengetahui diri mereka mengidap diabetes mellitus setelah mengalami komplikasi di berbagai organ tubuh. Oleh karena itu, diperlukan suatu sistem yang dapat menentukan seseorang apakah menderita diabetes atau tidak. Pada penelitian ini, dibuat suatu sistem untuk mendiagnosa penyakit diabetes militus dengan cara mengumpulkan data dari hasil rekam medik dan laboratorium rumah sakit BP Batam. Data tersebut akan diklasifikasikan menggunakan algoritma C4.5. Kemudian dari data tersebut akan dibuat pohon keputusan untuk menentukan diagnosa penyakit diabetes mellitus. Penelitian ini menghasilkan suatu sistem yang dapat memberikan informasi kepada masyarakat tentang diagnosa awal penyakit diabetes sehingga dapat membantu masyarakat melakukan tindakan awal atau pencegahan terhadap penyakit diabetes militus.

Kata Kunci: Algoritma C4.5, Diabetes Melitus, Pohon Keputusan

Penerapan Algoritma C4.5 untuk Memprediksi Penerimaan Calon Pegawai Baru di PT WISE

Fandy Ferdian Harryanto*1, Seng Hansun2

1.2 Universitas Multimedia Nusantara; Jl. Scientia Boulevard, Gading Serpong, Tangerang,
Banten-15811 Indonesia
e-mail: *1vhanz54@yahoo.com, hansun@umn.ac.id

Abstrak

Perusahaan pada umumnya memerlukan pegawai yang memiliki kemampuan yang baik, perilaku yang baik serta dapat menyelesaikan pekerjaan yang diberikan kepadanya.Namun terdapat beberapa kesulitan untuk mengetahui kualitas orang-orang yang memiliki potensi baik sebagai pegawai pada suatu perusahaan. Oleh karena itu diperlukan cara atau metode untuk mengidentifikasi calon pegawai suatu perusahaan. Algoritma C4.5 dapat digunakan untuk melakukan prediksi dan klasifikasi terhadap calon pegawai yang berpotensi untuk masuk ke dalam perusahaan dengan cara membuat pohon keputusan berdasarkan datadata yang sudah ada dan melakukan prediksi terhadap calon pegawai baru yang ingin masuk ke perusahaan. Berdasarkan metode pengukuran akurasi ten-fold cross validation telah didapatkan hasil pengukuran tingkat keberhasilan prediksi calon pegawai baru sebesar 71% dengan menggunakan aplikasi prediksi calon pegawai yang menerapkan algoritma C4.5.

Kata kunci: Algoritma C4.5, Calon Pegawai, Prediksi, Pohon Keputusan.