- (1) (10 marks) Let $K = \mathbb{Q}(\sqrt{-5})$ and O_K be its ring of integers.
 - Show that the norm of the ideal $I = \langle 7, 1 + \sqrt{-5} \rangle$ is 1. Then find a basis for I as \mathbb{Z} -module.
 - Find a \mathbb{Z} -module basis for J where $J = \langle 3, 1 + \sqrt{-5} \rangle$.
 - Compute the norm of the ideal $(7, 1 2\sqrt{-5})$ by factoring (7).
 - Justify why there exists an integral ideal A such that

$$\langle 1 + 2\sqrt{-5} \rangle = A \cdot \langle 3, 1 + 2\sqrt{-5} \rangle$$

and then determine A.

- Justify that the fractional ideal $\langle 3, 1 + 2\sqrt{-5} \rangle^{-1}$ is $\langle 1, \frac{1}{3} + \frac{1}{3}\sqrt{-5} \rangle$. Use this to find the inverse for ideal $\langle 3, 1 2\sqrt{-5} \rangle$.
- Let T be the integral ideal generated by $1 + \sqrt{-5}$, $3 + \sqrt{-5}$, $19 + 9\sqrt{-5}$. Determine α, β such that $T = \langle \alpha, \beta \rangle$.
- \bullet Compute the class number of K using Minkowski's bound.
- Let P,Q be two non-principal ideals in K. Justify that PQ^{-1} is a principal ideal.