PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/10, 15/62, 15/56, 9/24, 9/42,

(11) International Publication Number: A2

WO 97/43409

C12Q 1/68

(43) International Publication Date: 20 November 1997 (20.11.97)

(21) International Application Number:

PCT/DK97/00216

(22) International Filing Date:

12 May 1997 (12.05.97)

(30) Priority Data:

0562/96

10 May 1996 (10.05.96)

DK

(71) Applicant (for all designated States except US): NOVO NORDISK A/S [DK/DK]; Novo Allé, DK-2880 Bagsværd (DK).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): DALBØGE, Henrik [DK/DK]; Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd (DK). DIDERICHSEN, Børge [DK/DK]; Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd (DK). SAN-DAL, Thomas [DK/DK]; Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd (DK), KAUPPINEN, Sakari [FI/DK]; Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd (DK).
- (74) Common Representative: NOVO NORDISK A/S; Novo Allé, DK-2880 Bagsværd (DK).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD,

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: METHOD OF PROVIDING NOVEL DNA SEQUENCES

(57) Abstract

The present invention relates to a method of providing novel DNA sequences encoding a polypeptide with an activity of interest, comprising the following steps: i) PCR amplification of said DNA with PCR primers with homology to (a) known gene(s) encoding a polypeptide with an activity of interest, ii) linking the obtained PCR product to a 5' structural gene sequence and a 3' structural gene sequence, iii) expressing said resulting hybrid DNA sequence, iv) screening for hybrid DNA sequences encoding a polypeptide with said activity of interest or related activity, v) isolating the hybrid DNA sequence identified in step iv). Further, the invention also relates novel DNA sequences provided according to the method of the invention and polypeptides with an activity of interest encoded by said novel DNA sequences of the invention.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	I.S	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	1.V	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	1E	Ueland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	[srae]	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	ìТ	Italy	MX	Mexico	UZ.	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PI.	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
C7.	Czech Republic	LC	Saint Lucia	RÜ	Russian Federation		
DE	Germany	Ll	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	1.iberia	SG	Singapore		

1

Title: Method of providing novel DNA sequences

FIELD OF THE INVENTION

The present invention relates to a method of providing novel DNA sequences encoding a polypeptide with an activity of interest, novel DNA sequences provided according to the method of the invention, polypeptides with an activity of interest encoded by novel DNA sequences of the invention.

BACKGROUND OF THE INVENTION

The advent of recombinant DNA techniques has made it possible to select single protein components with interesting properties and produce them on a large scale. This represents an improvement over the previously employed production process using microorganisms isolated from nature and producing a mixture of proteins which would either be used as such or separated after the production step.

Since the traditional methods were rather time-consuming, more rapid and less cumbersome methods were developed.

A such technique is described in WO 93/11249 (Novo Nordisk 20 A/S).

The method described in WO 93/11249 comprises the steps of:

- a) cloning, in suitable vectors, a DNA library from an organism suspected of producing one or more proteins of interest;
- b) transforming suitable yeast host cells with said vectors;
- 25 c) culturing the host cells under suitable conditions to express any protein of interest encoding by a clone in the DNA library; and
 - d) screening for positive clones by determining any activity of a protein expressed in step c).
- According to this method it is necessary to prepare a DNA library, comprising complete genes encoding polypeptides with activities of interest. Such a library has traditionally been made on mRNA isolated from micro-organisms which has been cultivated and isolated.
- As it is only possible with known methods to cultivate about 2% of the microorganisms known today (i.e. cultivable microorganisms), genes encoding polypeptides from a huge number of

microorganisms (i.e. un-cultivable microorganisms) are generally difficult to identify and clone on the basis of screening technologies used today, such as the above mentioned.

5 SUMMARY OF THE INVENTION

It is the object of the present invention to provide a method for providing a novel DNA sequence encoding a polypeptide with an activity of interest from micro-organisms without having to cultivate and isolate said micro-organisms.

- In the first aspect the invention relates to a method of providing novel DNA sequences encoding a polypeptide with an activity of interest, comprising the following steps:
- i) PCR amplification of said DNA with PCR primers with homology to (a) known gene(s) encoding a polypeptide with an activity of 15 interest,
 - ii) linking the obtained PCR product to a 5' structural gene sequence and a 3' structural gene sequence,
 - iii) expressing said resulting hybrid DNA sequence,
 - iv) screening for hybrid DNA sequences encoding a polypeptide
- 20 with said activity of interest or related activity,
 - v) isolating the hybrid DNA sequence identified in step iv)

Further, the invention also relates novel DNA sequences provided according to the method of the invention and polypeptides with an activity of interest encoded by said novel 25 DNA sequences of the invention.

BRIEF DESCRIPTION OF THE DRAWING

Figure 1 shows the cloning strategy of novel hybrid enzyme sequences.

- 30 a is an exact N-terminal consensus primer
 - arc is the reverse and complement primer to a
 - b is a degenerated homologous N-terminal primer
 - c is a degenerated homologous C-terminal primer
 - d is an exact C-terminal consensus primer
- 35 d_{rc} is a reverse and complement of d
 - f is an exact reverse and complement C-terminal primer extended with a sequence which includes a SalI restriction recognition site.

e is an exact N-terminal primer extended with a sequence which includes an EcoRI restriction recognition site.

1. (in figure 1)

PCR with primers ab and cd to amplify unknown core genes with 5 an activity of interest.

PCR with primers $\,$ e and $\,$ arc $\,$ to obtain the N-terminal part of the known gene.

PCR with primers d_{rc} and f to obtain the C-terminal part of the known gene.

10 2. (in figure 1)

SOE-PCR with primers e and f to link the unknown core gene sequence with the known N- and C-terminal gene sequences and introduction of EcoRI and SalI restriction recognition sites.

3. Restriction enzyme digestion followed by ligation of the 15 novel sequence into an expression vector and transformation into a host cell. Screening of clones expressing the produced gene product with the activity of interest.

Figure 2 shows a part of an alignment of prokaryote xylanases belonging to glycosyl hydrolases family 11.

Figure 3 shows an alignment of the translated DNA sequences of Pulpzyme® (SEQ ID NO 2) and the novel gene sequence found in soil, respectively.

Figure 4 shows a schematically a novel hybrid gene provided according to the invention. Part A and Part C are the known 25 sequences linked to the unknown Part B.

Using Pulpzyme® (SEQ ID NO 1) as the starting sequence:

"1" indicated the first nucleotide of the novel hybrid gene provided according to the invention, "433" and "631" the start and end of the part constituted by the unknown gene sequence and "741" the last nucleotide of the part below?

30 and "741" the last nucleotide of the novel hybrid gene sequence.

4

DEFINITIONS

Prior to discussing this invention in further detail, the following terms will first be defined.

"Homology of DNA sequences or polynucleotides" In the present context the degree of DNA sequence homology is determined as the degree of identity between two sequences indicating a derivation of the first sequence from the second. The homology may suitably be determined by means of computer programs known in the art, such as GAP provided in the GCG program package (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) (Needleman, S.B. and Wunsch, C.D., (1970), Journal of Molecular Biology, 48, 443-453).

"Homologous": The term "homologous" means that one singlestranded nucleic acid sequence may hybridize to a complementary single-stranded nucleic acid sequence. The degree of hybridization may depend on a number of factors including the amount of identity between the sequences and the hybridization conditions such as temperature and salt concentration as discussed later (vide infra).

Using the computer program GAP (vide supra) with the following settings for DNA sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3, it is in the present context believed that two DNA sequences will be able to 125 hybridize (using low stringency hybridization conditions as defined below) if they mutually exhibit a degree of identity preferably of at least 70%, more preferably at least 80%, and even more preferably at least 85%.

"heterologous": If two or more DNA sequences mutually 30 exhibit a degree of identity which is less than above specified, they are in the present context said to be "heterologous".

"Hybridization:" Suitable experimental conditions for determining if two or more DNA sequences of interest do hybridize or not is herein defined as hybridization at low stringency as described in detail below.

A suitable experimental low stringency hybridization protocol between two DNA sequences of interest involves presoaking of a filter containing the DNA fragments to hybridize

Pater SUBSTITUTE SHEET (PULE v26) sughrue.com

in 5 x SSC (Sodium chloride/Sodium citrate, Sambrook et al. 1989) for 10 min, and prehybridization of the filter in a solution of 5 x SSC, 5 x Denhardt's solution (Sambrook et al. 1989), 0.5 % SDS and 100 μg/ml of denatured sonicated salmon 5 sperm DNA (Sambrook et al. 1989), followed by hybridization in the same solution containing a concentration of 10ng/ml of a random-primed (Feinberg, A. P. and Vogelstein, B. (1983) Anal. Biochem. 132:6-13), ³²P-dCTP-labeled (specific activity > 1 x 10⁹ cpm/μg) probe (DNA sequence) for 12 hours at ca. 45°C. The filter is then washed twice for 30 minutes in 2 x SSC, 0.5 % SDS at least 50°C, more preferably at least 55°C, and even more preferably at least 60°C (high stringency).

Molecules to which the oligonucleotide probe hybridizes under these conditions are detected using a x-ray film.

"Alignment": The term "alignment" used herein in connection 15 with a alignment of a number of DNA and/or amino acid sequences means that the sequences of interest is aligned in order to identify mutual/common sequences of homology/identity between the sequences of interest. This procedure is used to identify common 20 "conserved regions" (vide infra), between sequences of interest. An alignment may suitably be determined by means of computer programs known in the art, such as ClusterW or PILEUP provided in the GCG program package (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer 25 Group, 575 Science Drive, Madison, Wisconsin, 53711) (Needleman, S.B. and Wunsch, C.D., (1970), Journal of Molecular Biology, 48, 443-453).

"Conserved regions:" The term "conserved region" used herein in connection with a "conserved region" between DNA and/or amino acid sequences of interest means a mutual common sequence region of the sequences of interest, wherein there is a relatively high degree of sequence identity between the sequences of interest. In the present context a conserved region is preferably at least 10 base pairs (bp)/ 3 amino acids(a.a), more preferably at least 20 bp/ 7 a.a., and even more preferably at least 30 bp/ 10 a.a..

Using the computer program GAP (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer

Group, 575 Science Drive, Madison, Wisconsin, USA 53711) (Needleman, S.B. and Wunsch, C.D., (1970), Journal of Molecular Biology, 48, 443-453) (vide supra) with the following settings for DNA sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3, the degree of DNA sequence identity within the conserved region is preferably of at least 80%, more preferably at least 85%, more preferably at least 95%.

"Sequence overlap extension PCR reaction (SOE-PCR)": The term
10 "SOE-PCR" is a standard PCR reaction protocol known in the art,
and is in the present context defined and performed according to
standard protocols defined in the art ("PCR A practical approach"
IRL Press, (1991)).

"primer": The term "primer" used herein especially in 15 connection with a PCR reaction is an oligonucleotide (especially a "PCR-primer") defined and constructed according to general standard specification known in the art ("PCR A practical approach" IRL Press, (1991)).

"A primer directed to a sequence:" The term "a primer directed to a sequence" means that the primer (preferably to be used in a PCR reaction) is constructed so it exhibits at least 80% degree of sequence identity to the sequence part of interest, more preferably at least 90% degree of sequence identity to the sequence part of interest, which said primer consequently is "directed to". The primer is designed in order to specifically anneal at the region at a given temperature it is directed towards. Especially identity at the 3' end of the primer is essential for the function of the polymerase, i.e. the ability of a polymerase to extend the annealed primer.

"Polypeptide" Polymers of amino acids sometimes referred to as protein. The sequence of amino acids determines the folded conformation that the polypeptide assumes, and this in turn determines biological properties such as activity. Some polypeptides consist of a single polypeptide chain (monomeric), whilst other comprise several associated polypeptides (multime-

ric). All enzymes and antibodies are polypeptides.

"Enzyme" A protein capable of catalysing chemical reactions. Specific types of enzymes are a) hydrolases

including amylases, cellulases and other carbohydrases,
proteases, and lipases, b) oxidoreductases, c) Ligases, d)
Lyases, e) Isomerases, f) Transferases, etc. Of specific
interest in relation to the present invention are enzymes used
in detergents, such as proteases, lipases, cellulases,
amylases, etc.

"known sequence" is the term used for the DNA sequences of which the full length sequence has been sequenced or at least the sequence of one conserved regions is known.

"unknown sequence" is the term used for the DNA sequences amplified directly from uncultivated micro-organisms comprised in e.g. a soil sample used as the starting materia. "Full length DNA sequence" means a structural gene sequence encoding a complete polypeptide with an activity of interest.

"un-cultivated" means that the micro-organism comprising the unknown DNA sequence need not be isolated (i.e. to provide a population comprising only identical micro-organisms) before amplification (e.g. by PCR).

The term "an activity of interest" means any activity for 20 which screening methods is known.

The term "un-cultivable micro-organisms" defined micro-organisms which can not be cultivated according to methods know in the art.

The term "DNA" should be interpreted as also covering other 25 polynucleotide sequences including RNA.

The term "linking" sequences means effecting a covalent binding of DNA sequences.

The term "hybrid sequences" means sequences of different origin merged together into one sequence.

30 The term "structural gene sequence" means a DNA sequence coding for a polypeptide with an activity.

The term "natural occurring DNA" means DNA, which has not been subjected to biological or biochemical mutagenesis. By biological mutagenesis is meant "in vivo" mutagenesis, i.e.

35 propagation under controlled conditions in a living organism, such as a "mutator" strain, in order to create genetic diversity. By biochemical mutagenesis is meant "in vitro" mutagenesis, such as error-prone PCR, oligonucleotide directed

WO 97/43409 PCT/DK97/00216

8

site-specific or random mutagenesis etc.

DETAILED DESCRIPTION OF THE INVENTION

It is the object of the present invention to provide a method 5 for providing novel DNA sequences encoding polypeptides with an activity of interest from micro-organisms without having to cultivate said micro-organisms.

The inventors of the present invention have found that PCR-screening using primers designed on the basis of known 10 homologous region, such as conserved regions, can be used for providing novel DNA sequences. Despite the fact that known homologous regions, such as conserved regions, are used for primer designing a vast number of unknown DNA sequences have been provided. This will be described in the following and illustrated in the Examples.

The DNA sequences provided are full length hybrid structural gene sequences encoding complete polypeptides with an activity of interest made up of one unknown sequence and one or two known sequences.

20 According to the invention it is essential to identify at least two homologous regions, such as conserved regions, in known gene sequences with the activity of interest. One or two selected known structural gene sequence(s) is(are) used as templates (i.e. as starting sequence(s)) for finding and constructing novel DNA structural gene sequences with an activity of interest.

Said homologous regions, such as conserved regions, can be identified by alignment of polypeptides with the activity of interest and may e.g. be made by the computer program ClustalW or other similar programs available on the market.

30

One known structural gene as the starting sequence

In the case of using one known structural gene sequence as the starting sequence it will typically be comprised in a plasmid or vector or the like. A part of the sequence between the two identified homologous regions, such as conserved regions, are deleted to avoid contamination by the wild-type structural gene.

The known DNA sequence, with the homologous regions, such as conserved regions, placed at the ends, are linked to an unknown

Patent SUBSTITUTE SHEETC (PANELW26) ughrue.com

DNA sequence amplified directly or indirectly from a sample comprising micro-organisms.

The identified homologous regions, such as conserved regions, must have a suitable distance from each other, such as 10 or more base pairs in between. It is preferred to use homologous regions, such as conserved regions, placed in each end of the known structural full length gene.

However, if knowledge about a specific function (e.g. active site) of a domain (i.e. part of the structural gene sequence) is available it may be advantageous to used conserved regions placed in proximity of and on each side said domain as basis for the PCR amplification to provide novel DNA sequences according to the invention which will be described below in details.

15 Two known genes as starting sequences

In the case of using two known structural genes as the stating sequences at least one homologous region, such as conserved region, should be identified in each of the two sequences within the polypeptide coding region.

In both case (i.e. one or two known genes as starting sequences) the homologous regions, such as conserve regions, should preferably be situated at each end of the structural gene(s) (i.e. the sequences encoding the N-terminal end (i.e. named Part A on figure 4) and the C-terminal end, respectively (i.e. named Part C on figure 4) of the known part of the hybrid polypeptide

In the first aspect the invention relates to a method for providing novel DNA sequences encoding polypeptides with an activity of interest comprises the following steps:

- 30 i) PCR amplification of said DNA with PCR primers with homology to (a) known gene(s) encoding a polypeptide with an activity of interest,
 - ii) linking the obtained PCR product to a 5' structural gene sequence and a 3' structural gene sequence,
- 35 iii) expressing said resulting hybrid DNA sequence,
 - iv) screening for hybrid DNA sequences encoding a polypeptide with said activity of interest or related activity,

35

v) isolating the hybrid DNA sequence identified in step iv)

In step i) the part between the corresponding homologous regions, such as conserved regions, of the unknown structural gene are amplified.

In an embodiment the PCR amplification in step i) is performed using naturally occurring DNA or RNA as template.

In anither embodiment the micro-organism has not been subjected to "in vitro" selection.

The PCR amplification may be performed on a sample containing 10 DNA or RNA from un-isolated micro-organisms. According to the invention no prior knowledge about the unknown sequence is required.

In an embodiment of the invention said 5' and 3' structural gene sequences originate from two different known structural gene 15 sequences encoding polypeptides having the same activity or related activity.

The 5' structural gene sequence and the 3' structural gene sequence may also originate from the same known structural gene encoding a polypeptide with the activity of interest or from two different known structural gene sequences encoding polypeptides having different activities. In the latter case it is preferred that at least one of the starting sequences originates from a known structural gene sequence encoding a polypeptide with the activity of interest.

In a preferred embodiment of the method of the invention the known structural gene is situated in a plasmid or a vector. In said case the method comprises the following steps:

- i) PCR amplification of DNA from micro-organisms with PCR primers being homologous to conserved regions of
 a known gene encoding a polypeptide with an activity
 - a known gene encoding a polypeptide with an activity of interest,
 - cloning the obtained PCR product into a gene encoding a polypeptide having said activity of interest, where said gene is not identical to the gene from which the PCR product is obtained, which gene is situated in an expression vector,
 - iii) transforming said expression vector into a suitable
 host cell,

PaterSUBSTITUTE_SMEET_(PAULE-26)_ughrue.com

- iiia) culturing said host cell under suitable conditions,
- iv) screening for clones comprising a DNA sequence originated from the PCR amplification in step i) encoding a polypeptide with said activity of interest or a related activity,
- v) isolating the DNA sequence identified in step iv).

According to this embodiment one known structural gene sequence is used as the starting sequence. It is to be understood that the PCR product obtained in step i) is cloned into a known 10 gene where a part of the DNA sequence, between the conserved regions, is deleted (i.e. cut out) or in an other way substituted with the PCR product. The deleted part of the known gene comprised in the vector may have any suitable size, typically between 10 and 5000 bp, such as from between 10 to 3000 bp.

A general problem is that, when amplifying DNA sequences encoding polypeptides with an activity by PCR, the obtained PCR product (i.e. being a part of an unknown gene) does not normally encode a polypeptide with the desired activity of interest.

Therefore, according to the invention the complete full length 20 structural gene, encoding a functional polypeptide, is provided by cloning (i.e. by substituting) the PCR product of the unknown structural gene into the known gene situated on the expression vector.

It should be emphasised that the DNA mentioned in step i), to 25 be PCR amplified, need not to comprise a complete gene encoding a functional polypeptide. This is advantageous as only a smaller region of the DNA of the micro-organism(s) in question need to be amplified.

The novel DNA sequences obtained according to the invention 30 consist of the PCR product merged or linked into the known gene, having a number of nucleotides between the conserved regions deleted. The PCR product is inserted into the known gene between the two ends of the cut open vector by overlapping homologous regions of about 10 to 200 bp at each end of the vector.

The resulting novel hybrid DNA sequences constitute complete full length genes comprising the PCR product and encodes a polypeptide with the activity of interest.

It is to be understood that it is not absolutely necessary to delete a part of the known gene sequence. However, if a part of the known gene sequence is not deleted re-ligation results in that the wild-type activity of the known gene is regained and thus give a high number of wild-type background clones, which would make the screening procedure more time consuming and cumbersome.

The PCR amplification in step i) can be performed on both cultivable and uncultivable micro-organisms by directly or 10 indirectly amplification of DNA from the genomic material of the micro-organisms in the environment (i.e. directly or indirectly from the sample taken).

The micro-organisms

- The micro-organisms from which the unknown DNA sequences are derived may be micro-organisms which cannot today be cultivated. This is possible as the DNA sequences can be amplified by PCR without the need first to cultivate and isolate the micro-organisms comprising the unknown DNA sequence(s).
- 20 It is however to be understood that the method of the invention can also be used for providing novel DNA sequences derived from micro-organisms which can be cultivated.

Therefore the method of the invention can be performed on both cultivable and un-cultivable organisms as the micro-organisms in question do not, according to the method of the invention, need to be cultivated and isolated from, e.g. the soil sample, comprising micro-organisms.

Starting material

The starting material, i.e. the sample comprising microorganisms with the target unknown DNA sequences, may for instance
be an environmental samples of plant or soil material, animal or
insect dung, insect gut, animal stomach, a marine sample of sea
or lake water, sewage, waste water, etc., comprising one or, as
in most case, a vast number of different cultivable and/or uncultivable micro-organisms.

If the genomic material of the micro-organisms are readily accessible the PCR amplification may be performed directly on the

SUBSTITUTE SHEET (RULE 26) Patent provided by Sughrue Mon. PLLC - http://www.sughrue.com

sample. In other cases a pre-purification and isolation procedure of the genomic material is needed.

Smalla et al. (1993), J. Appl. Bacteriol 74, p. 78-85; Smalla et al. (1993), FEMS Microbiol Ecol 13, p. 47-58, describes how to 5 extract DNA directly from micro-organisms in the environment (i.e. the sample).

Borneman et al. (1996), Applied and Environmental Microbiology, 1935-1943, describes a method for extracting DNA from soils.

10 A commercially available kit for isolating DNA from environmental samples, such as e.g. soils, can be purchased from BIO 101 under the tradename FastDNA® SPIN Kit.

SeamlessTM Cloning kit (cataloge no. Stratagene 214400) is a commercial kit suitable for cloning of any DNA fragment into any 15 desired location e.g. a vector, without the limitation of naturally occurring restriction sites.

PCR amplification of DNA and/or RNA of micro-organisms in the environment is described by Erlich, (1989), PCR Technology. Principles and Applications for DNA Amplification, New 20 York/London, Stockton Press; Pillai, et al., (1991), Appl. Environ. Microbiol, 58, p. 2712-2722)

Other methods for PCR amplifying microbial DNA directly from a sample is described in Molecular Microbial Ecology Manual, (1995), Edited by Akkermans et al.. A suitable method for microbial DNA from soil samples is described by Jan Dirk van Elsas et al., (1995), Molecular Microbial Ecology Manual 2.7.2, p. 1-10.

Stein et al., (1996), J. Bacteriol., Vol. 178, No. 2, p. 591-599, describes a method for isolating DNA from un-cultivated prokaryotic micro-organisms and cloning DNA fragments therefrom.

The PCR primers being homologous to conserved regions of the known gene encoding a polypeptide with an activity of interest are synthesized according to standard methods known in the art (see for instance EP 684 313 from Hoffmann-La Roche AG) on the basis of knowledge to conserved regions in the polypeptide with the activity of interest.

Said PCR primers may be identical to at least a part of the conserved regions of the known gene. However, said primers may advantageously be synthisized to differ in one or more positions.

Further, a number of different PCR primers homologous to the 5 conserved regions may be used at the same time in step i) of the method of the invention.

The cultivable or uncultivable micro-organisms may be both prokaryotic organisms such as bacteria, or eukaryotic organisms including algae, fungi and protozoa.

10 Examples of un-cultivable organisms include, without being limited thereto, extremophiles and plantonic marine organisms etc.

The group of cultivable organisms include bacteria, fungal organisms, such as filamentous fungi or yeasts.

In the case of using DNA from cultivable organisms the PCR amplification in step i) may be performed on one or more polynucleotides comprised in a vector, plasmid or the like, such as on a cDNA library.

Specific examples of "an activity of interest" include enzyma-20 tic activity and anti-microbial activity.

In a preferred embodiment of the invention the activity of interest is an enzymatic activity, such as an activity selected from the group comprising of phosphatases oxidoreductases (E.C. 1), transferases (E.C. 2); hydrolases (E.C. 3), such as esterases (E.C. 3.1), in particular lipases and phytase; such as glucosidases (E.C. 3.2), in particular xylanase, cellulases, hemicellulases, and amylase, such as peptidases (E.C. 3.4), in particular proteases; lyases (E.C. 4); isomerases (E.C. 5); ligases (E.C. 6).

The host cell used in step iii) may be any suitable cell which can express the gene encoding the polypeptide with the activity of interest. The host cells may for instance be a yeast, such as a strain of Saccharomyces, in particular Saccharomyces cerevisiae, or a bacteria, such as a strain of Bacillus, in particular of Bacillus subtilis, or a strain Escherichia coli.

Clones found to comprise a DNA sequence originated from the PCR amplification in step i) may be screened for any activity of interest. Examples of such activities include enzymatic activity,

Patent provided by Sughrue Midn, FLL (PML) Fw26) ughrue.com

anti-microbial activity or biological activities.

The polypeptide with the activity of interest may then be tested for a desired performance under specific conditions and/or in combination with e.g. chemical compounds or agent. In the case 5 where the polypeptide is an enzyme e.g. the wash performance, textile dyeing, hair dyeing or bleaching properties, effect in feed or food may be assayed to identify polypeptides with a desired property.

10 Identification of conserved regions of prokaryote xylanases

Figure 2 shows an alignment of prokaryote xylanases from the family 11 of glycosyl hydrolases (B. Henrissat, Biochem J, 280:309-316 (1991)). There are several region where the amino acids are identical or almost identical, i.e. conserved 15 regions.

Examples of homologous regions or conserved regions in prokaryotic xylanases from family 11 of glycosyl hydrolases (B. Henrissat, (1991), Biochem J 280:309-316) are the sequence "DGGTYDIY" (SEQ ID NO 3) position 145-152, "EGYQSSG" (SEQ ID NO. 4) position 200-206 in the upper polypeptide shown in figure 2.

Based on e.g. said regions degenerated PCR primers can be designed. These degenerated PCR primers can amplify unknown DNA sequences coding for polypeptides (i.e. referred to as PCR products below) which are homologous to the known polypeptide(s) in question (i.e. SEQ ID NO 2) flanked by the conserved regions.

The PCR products obtained can be cloned into a plasmid and sequenced to check if they contain conserved regions and are 30 homologous to the known structural gene sequence(s).

A homologous PCR product is however not a guarantee that the sequence code for a part of a polypeptide having the desired activity of interest.

Therefore, according to the method of the invention one or 35 more steps selecting DNA sequences encoding polypeptides having the activity of interest follow the construction of the novel hybrid DNA sequences.

The unknown DNA sequences

When method of the invention is performed on DNA from samples of uncultivated organisms it is advantageous to screen 5 for gene products with the activity of interest.

A suitable method for doing this is to link the PCR products with a 5' sequence upstream the first conserved region DNA sequence and the 3' sequence downstream the second consensus, respectively, from the known gene sequence.

The product of the unknown gene sequence linked to an N-terminal and C-terminal part of a known gene product is then screened for the activity of interest.

The N-terminal and C-terminal parts can originate from the same gene product but it is not a prerequisite for activity.

15 The N-terminal and C-terminal parts may also originate from different gene products as long as they originate from the same polypeptide family e.g. the same glycosyl hydrolases.

A method to link the unknown gene sequence with the known sequences is to clone the PCR product into a known gene, 20 encoding a polypeptide having the activity of interest, which have had the sequences between the conserved regions removed.

Another method is merging the PCR product, the N-terminal part and the C-terminal part by SOE-PCR (splicing by overlap extension PCR) e.g. as shown in figure 1 and described in 25 detail in Example 1. Other methods known in the art may also be used.

In a second aspect the invention relates to a novel DNA sequence provided by the method of the invention and the polypeptide encoded by said novel DNA sequence.

30

MATERIALS AND METHODS

Pulpzyme® is a xylanase derived from Bacillus sp. AC13, NCIMB No. 40482. and is described in WO 94/01532 from Novo Nordisk A/S AZCL Birch xylan (MegaZyme, Australia).

35

Plasmids:

The Aspergillus expression vector pHD414 is a derivative of the plasmid p775 (described in EP 238 023). The construction of

SUBSTITUTE SHEET (RULE 26)
Patent provided by Sughrue Mon. PLLE: http://www.sughrue.com

pHD414 is further described in WO 93/11249.

The 43 kD EG V endoglucanase cDNA from H. insolens (disclosed in WO 91/17243) is cloned into pHD414 in such a way that the endoglucanase gene is transcribed from the TAKA-promoter. The resulting plasmid is named pCaHj418.

<u>Kits</u>

QIAquick PCR Purification Kit Protocol

Taq deoxy terminal cycle sequencing kit (Perkin Elmer, USA)

10 AmpliTaq Gold polymerase (Perkin-Elmer, USA)

Micro-organisms

Bacteria

electromax DH10B E. coli cells (GIBCO BRL)

15

Fungal micro-organisms:

Cylindrocarpon sp.: Isolated from marine sample, the Bahamas

Classification: Ascomycota, Pyrenomycetes, Hypocreales

20 unclassified

Fusarium anguioides Sherbakoff IFO 4467

Classification: Ascomycota, Pyrenomycetes, Hypocreales, Hypocreaceae

Gliocladium catenulatum Gillman & Abbott CBS 227.48

25 Classification: Ascomycota, Pyrenomycetes, Hypocreales, Hypocreaceae

Humicola nigrescens Omvik CBS 819.73

Classification: Ascomycota, Pyrenomycetes, Sordariales, (fam. unclassified)

30 Trichothecium roseum IFO 5372

Plates

LB-ampicillin plates: 10 g Bacto-tryptone, 5 g Bacto yeast extract, 10 g NaCl, in 1 litre water, 2% agar 0.1% AZCL Birch 35 xylan, 50 microg/ml ampicillin.

Equipment

Applied Biosystems 373A automated sequencer

PCR Amplification

All Polymerase Chain Reactions is carried out under stan-5 dard conditions as recommended by Perkin-Elmer using AmpliTaq Gold polymerase.

Isolation of Environmental DNA

DNA is isolated from an environmental sample using FastDNA® 10 SPIN Kit for Soil according to the manufacture's instructions.

Methods used in Example 3

Strains and growth conditions

The fungal strains listed above, were streaked on PDA plates containing 0.5 % Avicel, and examined under a microscope to avoid obvious mistakes and contaminations. The strains were cultivated in shake flasks (125 rpm and 26 °C) containing 30ml PD medium (to initiate the growth) and 150ml of BA growth medium for cellulase induction.

The production of cellulases in culture supernatants (typically after 3, 5, 7 and 9 days of growth) was assayed using 0.1 % AZCl-HE-cellulose in a plate assay at pH 3, pH 7 and pH 10. The mycelia were harvested and stored at - 80°C.

25 Preparation of RNase-free glassware, tips and solutions

All glassware used in RNA isolations were baked at + 250°C for at least 12 hours. Eppendorf tubes, pipet tips and plastic columns were treated in 0.1 % diethylpyrocarbonate (DEPC) in EtOH for 12 hours, and autoclaved. All buffers and water 30 (except Tris-containing buffers) were treated with 0.1 % DEPC for 12 hours at 37°C, and autoclaved.

Extraction of total RNA

The total RNA was prepared by extraction with guanidinium 35 thiocyanate followed by ultracentrifugation through a 5.7 M CsCl cushion [Chirgwin, (1979) Biochemistry 18, 5294-5299] using the following modifications. The frozen mycelia was ground in liquid N2 to fine powder with a mortar and a pestle,

Paten SUBSTITUTE SHEET (RILLE, 26) ughrue.com

followed by grinding in a precooled coffee mill, and immediately suspended in 5 vols of RNA extraction buffer (4 M GuSCN, 0.5 % Na-laurylsarcosine, 25 mM Na-citrate, pH 7.0, 0.1 M Bmercaptoethanol). The mixture was stirred for 30 min. at RT° 5 and centrifuged (20 min., 10 000 rpm, Beckman) to pellet the cell debris. The supernatant was collected, carefully layered onto a 5.7 M CsCl cushion (5.7 M CsCl, 0.1 M EDTA, pH 7.5, 0.1 % DEPC; autoclaved prior to use) using 26.5 ml supernatant per 12.0 ml CsCl cushion, and centrifuged to obtain the total RNA 10 (Beckman, SW 28 rotor, 25 000 rpm, RT°, 24h). After centrifugation the supernatant was carefully removed and the bottom of the tube containing the RNA pellet was cut off and rinsed with 70 % EtOH. The total RNA pellet was transferred into an Eppendorf tube, suspended in 500 μ l TE, pH 7.6 (if difficult, heat 15 occasionally for 5 min at 65 °C), phenol extracted and precipitated with ethanol for 12 h at -20°C (2.5 vols EtOH, 0.1 vol 3M NaAc, pH 5.2). The RNA was collected by centrifugation, washed in 70 % EtOH, and resuspended in a minimum volume of DEPC-DIW. The RNA concentration was determined by measuring OD 260/280.

20

Isolation of poly(A)+RNA

The poly(A) + RNAs were isolated by oligo(dT)-cellulose affinity chromatography [Aviv, (1972), Proc. Natl. Acad. Sci. U.S.A. 69, 1408-1412]. Typically, 0.2 g of oligo(dT) cellulose 25 (Boehringer Mannheim, Germany) was preswollen in 10 ml of 1 x column loading buffer (20 mM Tris-Cl, pH 7.6, 0.5 M NaCl, 1 mM EDTA, 0.1 % SDS), loaded onto a DEPC-treated, plugged plastic column (Poly Prep Chromatography Column, Bio Rad), and equilibrated with 20 ml 1 x loading buffer. The total RNA (1-2 mg) 30 was heated at 65 °C for 8 min., quenched on ice for 5 min, and after addition of 1 vol 2 x column loading buffer to the RNA sample loaded onto the column. The eluate was collected and reloaded 2-3 times by heating the sample as above and quenching on ice prior to each loading. The oligo(dT) column was washed 35 with 10 vols of 1 x loading buffer, then with 3 vols of medium salt buffer (20 mM Tris-Cl, pH 7.6, 0.1 M NaCl, 1 mM EDTA, 0.1 % SDS), followed by elution of the poly(A)+ RNA with 3 vols of elution buffer (10 mM Tris-Cl, pH 7.6, 1 mM EDTA, 0.05% SDS)

preheated to + 65 °C, by collecting 500 μ l fractions. The OD260 was read for each collected fraction, and the mRNA containing fractions were pooled and ethanol precipitated at -20°C for 12 h. The poly(A)+ RNA was collected by centrifugation, resuspended in DEPC-DIW and stored in 5-10 μ g aliquots at -80 °C.

cDNA synthesis

First strand synthesis

Double-stranded cDNA was synthesized from 5 μ g of poly(A)+ 10 RNA by the RNase H method (Gubler et al. (1983) Gene 25, 263-269; Sambrook et al.(1989), Molecular Cloning: A Laboratory Manual, 2 Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York) using the hair-pin modification. The poly(A)+RNA (5 μ g in 5 μ l of DEPC-treated water) was heated at 70°C for 8 15 min. in a pre-siliconized, RNase-free Eppendorph tube, quenched . on ice, and combined in a final volume of 50 μl with reverse transcriptase buffer (50 mM Tris-Cl, pH 8.3, 75 mM KCl, 3 mM MgCl2, 10 mM DTT, Bethesda Research Laboratories) containing 1 mM of dATP, dGTP and dTTP, and 0.5 mM of 5-methyl-dCTP 20 (Pharmacia), 40 units of human placental ribonuclease inhibitor (RNasin, Promega), 1.45 μ g of oligo(dT)18- Not I primer (Pharmacia) and 1000 units of SuperScript II RNase H- reverse transcriptase (Bethesda Research Laboratories). First-strand cDNA was synthesized by incubating the reaction mixture at 45 25 °C for 1 h. After synthesis, the mRNA:cDNA hybrid mixture was gel filtrated through a MicroSpin S-400 HR (Pharmacia) spin column according to the manufacturer's instructions.

Second strand synthesis

After the gel filtration, the hybrids were diluted in 250 μl of second strand buffer (20 mM Tris-Cl, pH 7.4, 90 mM KCl, 4.6 mM MgCl2, 10 mM (NH4)2SO4, 0.16 mM βNAD+) containing 200 μM of each dNTP, 60 units of E. coli DNA polymerase I (Pharmacia), 5.25 units of RNase H (Promega) and 15 units of E. coli DNA li-35 gase (Boehringer Mannheim). Second strand cDNA synthesis was performed by incubating the reaction tube at 16°C for 2 h, and an additional 15 min at 25°C. The reaction was stopped by addition of EDTA to 20 mM final concentration followed by phenol

Patent SUBSTITUTE SHEET (PRILE v26) ghrue.com

and chloroform extractions.

Mung bean nuclease treatment

The double-stranded (ds) cDNA was ethanol precipitated at -20°C for 12 hours by addition of 2 vols of 96% EtOH, 0.2 vol 10 5 M NH4Ac, recovered by centrifugation, washed in 70% EtOH, dried (SpeedVac), and resuspended in 30 µl of Mung bean nuclease buffer (30 mM NaAc, pH 4.6, 300 mM NaCl, 1 mM ZnSO4, 0.35 mM DTT, 2 % glycerol) containing 25 units of Mung bean nuclease (Pharmacia). The single-stranded hair-pin DNA was clipped by incubating the reaction at 30°C for 30 min, followed by addition of 70 µl 10 mM Tris-Cl, pH 7.5, 1 mM EDTA, phenol extraction, and ethanol precipitation with 2 vols of 96% EtOH and 0.1 vol 3M NaAc, pH 5.2 on ice for 30 min.

15 Blunt-ending with T4 DNA polymerase

The ds cDNAs were recovered by centrifugation (20 000 rpm, 30 min.), and blunt-ended with T4 DNA polymerase in 30 µl of T4 DNA polymerase buffer (20 mM Tris-acetate, pH 7.9, 10 mM MgAc, 50 mM KAc, 1 mM DTT) containing 0.5 mM each dNTP and 5 units of 20 T4 DNA polymerase (New England Biolabs) by incubating the reaction mixture at +16°C for 1 hour. The reaction was stopped by addition of EDTA to 20 mM final concentration, followed by phenol and chloroform extractions and ethanol precipitation for 12 h at -20°C by adding 2 vols of 96% EtOH and 0.1 vol of 3M 25 NaAc, pH 5.2.

Adaptor ligation, Not I digestion and size selection

After the fill-in reaction the cDNAs were recovered by centrifugation as above, washed in 70% EtoH, and the DNA pellet 30 was dried in SpeedVac. The cDNA pellet was resuspended in 25 μ l of ligation buffer (30 mM Tris-Cl, pH 7.8, 10 mM MgCl2, 10 mM DTT, 0.5 mM ATP) containing 2.5 μ g non-palindromic BstXI adaptors (1 μ g/ μ l, Invitrogen) and 30 units of T4 ligase (Promega) by incubating the reaction mix at +16°C for 12 h. The reaction 35 was stopped by heating at + 65°C for 20 min, and then on ice for 5 min. The adapted cDNA was digested with Not I restriction enzyme by addition of 20 μ l autoclaved water, 5 μ l of 10 x Not I restriction enzyme buffer (New England Biolabs) and 50 units

SUBSTITUTE SHEET (RULE 26)
Patent provided by Sughrue Mion, PLCT- http://www.sughrue.com

of Not I (New England Biolabs), followed by incubation for 2.5 hours at +37°C. The reaction was stopped by heating the sample at +65°C for 10 min. The cDNAs were size-fractionated by agarose gel electrophoresis on a 0.8% SeaPlaque GTG low melting 5 temperature agarose gel (FMC) in 1 x TBE (in autoclaved water) to separate unligated adaptors and small cDNAs. The gel was run for 12 hours at 15 V, the cDNA was size-selected with a cut-off at 0.7 kb by cutting out the lower part of the agarose gel, and the cDNA was concentrated by running the gel backwards until it 10 appeared as a compressed band on the gel. The cDNA (in agarose) was cut out from the gel, and the agarose was melted at 65°C in a 2 ml Biopure Eppendorph tube (Eppendorph). The sample was treated with agarase by adding 0.1 vol of 10 x agarase buffer (New England Biolabs) and 2 units per 100 μ l molten agarose to 15 the sample, followed by incubation at 45°C for 1.5 h. The cDNA sample was phenol and chloroform extracted, and precipitated by addition of 2 vols of 96 % EtOH and 0.1 vol of 3M NaAc, pH 5.2 at - 20°C for 12 h.

20 EXAMPLES

Example 1

<u>Providing novel DNA sequences encoding polypeptide with xylanase activity</u>

Novel sequences with xylanase activity were provided ac-25 cording to the method of the invention using the glycosyl hydrolase family 11 xylanase derived from Bacillus sp. (SEQ ID No 1) as the known structural gene sequence.

Identification of conserved regions by alignment

An amino acid sequence alignment of ten family 11 xylanases revealed at least 3 conserved sequences. Two of these conserved sequences are used to design appropriate PCR primers for amplification of unknown DNA sequences.

The first conserved sequence shown in SEQ ID No. 3 i.e. 35 "DGGTYDIY" corresponding to position 433-456 in SEQ ID NO 1.

The second conserved sequence shown in SEQ 4, i.e. "EGYQSSG" corresponding to position 631-651 in SEQ ID NO 1.

PCR amplification of the known and unknown partial structural gene sequences

Initially the N-terminal end (i.e. Part A) and the C-terminal (i.e. Part C) of the known xylanase gene, in which the 5 unknown sequence (i.e. Part B) is to be inserted, were amplified by PCR (see figure 4)

Part A was PCR amplified using the two primers (i.e. primer e and primer a_{rc}) and as DNA template a plasmid carrying the known xylanase gene (i.e. SEQ ID NO 1).

10 Primer e (shown in SEQ ID NO 5 and figure 1) is an exact N-terminal primer extended with a sequence which included an EcoRI restriction recognition site.

Primer a_{rc} (shown in SEQ ID NO 6 and figure 1) is a reverse and complement sequence primer of position 411-432 in SEQ ID NO 15 1.

Part C was PCR amplified using the two primers (i.e. primer f and primer d_{rc}) mentioned below and as DNA template a plasmid carrying the known xylanase gene.

Primer f is an exact reverse and complement C-terminal pri-20 mer extended with a sequence which having a SalI restriction recognition site is shown in SEQ ID No. 7.

Primer $d_{\rm rc}$ (SEQ ID NO 8) was designed on the basis of position 651-672 in SEQ ID No. 1.

Part B was PCR amplified using two primers (i.e. primer ab 25 and primer cd) and as DNA template DNA purified from a soil sample using the FastDNA® SPIN Kit.

Primer ab (SEQ ID NO 9) has the exact sequence of position 411-432 in SEQ ID 1 extended with degenerated xylanase consensus sequence covering position 433-452 in SEQ ID NO 1

30 Primer cd (SEQ ID NO: 10) has the exact reverse and complement sequence of position 672-651 in SEQ ID NO 1 extended with degenerated xylanase consensus sequence covering position 650-631 in SEQ ID NO 1.

The N-terminal part of the known xylanase gene (Part A) was 35 PCR amplified for 9 min. at 94°C followed by 30 cycles (45 second at 94°C, 45 seconds at 50°C and 1 min. at 72°C) and finally for 7 min. at 72°C. This gave a PCR product of approx. 450 bp.

The C-terminal part (Part C) of the known xylanase gene was PCR amplified for 9 min. at 94°C followed by 30 cycles (45 seconds at 94°C, 45 seconds at 50°C and 1 min. at 72°C) and finally for 7 min. at 72°C. This gave a PCR product of approx. 5 100 bp.

The unknown sequences (Part B) was PCR amplified for 9 min. at 94°C followed by 40 cycles(45 seconds at 94°C, 45 seconds at 50°C and 1 min. at 72°C) and finally for 7 min. at 72°C. This gave a PCR product of approx. 260 bp.

The PCR products mentioned above were carefully purify to avoid remains of template DNA which can produce false positive bands in the following SOE-PCR where the products are joined together to form hybrid sequences.

15 Construction of hybrid sequences

Hybrid sequences containing the N- and C-terminal parts of the known xylanase gene with core part of unknown genes was constructed by splicing by overlap extension PCR (SOE-PCR).

Equal molar amounts of Part A, Part B and Part C PCR pro-20 ducts were mixed and PCR amplified under standard conditions except that the reaction was started without any primers.

The reaction started with 9 min. at 94°C followed by 4 cycles (45 seconds at 94°C, 45 seconds at 50°C, 1 min. at 72°C), then primers e and f (SEQ ID No. 5 and 7, respectively) 25 were added, followed by 25 cycles (45 seconds at 94°C, 45 seconds at 50°C, 1 min. at 72°C) and finally 7 min. at 72°C. This gave a SOE-PCR product of the expected size of approx. 770 bp.

30 Cloning of the hybrids

The SOE-PCR product was purified using the QIAquick PCR Purification Kit Protocol and digested overnight with EcoRI and SalI according to the manufacturers recommendation. The digested product was then ligated into an E. coli expression vector overnight at 16°C (in this case a vector where the hybrid gene is under control of a temperature sensitive lamda repressor promoter).

Patent provided by Sughrue Mon. F.L.C. http://www.sughrue.com

The ligation mixture was transformed into electromax DH10B E. coli cells (GIBCO BRL) and plated on LB-ampicillin plates containing 0.1% AZCL Birch xylan. After induction of the promoter (by increasing the temperature to 42°C) xylanase positive colonies were identified as colonies surrounded by a blue halo.

Plasmid DNA was isolated from positive *E. coli* colonies using standard procedures and sequenced with the Taq deoxy terminal cycle sequencing kit (Perkin Elmer, USA) using an Applied Biosystems 373A automated sequencer according to the manufacturers instructions.

The sequence of a positive clone is shown in SEQ ID NO 11 and the corresponding protein sequence is shown in SEQ ID NO 12.

An alignment of the known xylanase sequence (SEQ ID NO 2) and the novel DNA sequence provided according to the method of the invention can be seen in Figure 3. As can be seen the two protein sequences differs between the two identified conserved regions (i.e. SEQ ID NO 3 and SEQ ID NO 4, respectively).

20 Example 2

Efficiency of the method of the invention

Degenerated primers were designed on the basis of conserved regions identified by alignment of a number of family 5 cellulases and family 10 and 11 xylanases found on the Internet in ExPASy under Prosite (Dictionary of protein sites and patterns).

PCR amplification of a number of unknown structural gene sequences from soil and cow rumen samples were performed with various degenerated primers covering identified conserved re30 gion sequences to show how effective the method of the invention is.

The PCR products were cloned into the vector pCRtmII, provided with the original TA cloning kit from Invitrogen. Said vector provides the possibility to make blue-white screening, the white colonies were selected and the inserts were sequenced.

When editing the Sequence Listing below all sequences outside the two EcoRI sites in the polylinker were removed.

SUBSTITUTE SHEET (RULE 26)
Patent provided by Sughrue Mion, PLLC - http://www.sughrue.com

WO 97/43409 PCT/DK97/00216

26

Therefore all sequences have a small additional part of the polylinker (i.e. from the EcoRI site to the TT overhang) in both ends of the sequences. These extensions are "GAATTCGGCT" and "AAGCCG".

- 1. PCR primers were designed on the basis of identified conserved regions #1 GWNLGN and #2 (E/D)HLIFE of cellulases from the glycosyl hydrolase family 5 aiming to provide novel sequences with cellulase activity.
- SEQ ID NO 13 and 14 show the sequences obtained from a soil 10 sample. SEQ ID NO 15 and 16 show the sequences obtained from a cow rumen sample.
- 2. PCR primers were designed on the basis of identified conserved regions #1 GWNLGN and #3 RA(S/T)GGNN of cellulases from the glycosyl hydrolase family 5 aiming to provide novel 15 sequences with cellulase activity.
 - SEQ ID NO 17 to 19 show the sequences obtained from a cow rumen sample.
- PCR primers were designed on the basis of identified conserved regions #2 (E/D) HLIFE and #3 RA(S/T) GGNN of cellula-20 ses from the glycosyl hydrolase family 5 aiming to provide novel sequences with cellulase activity.
 - SEQ ID NO 20 to 22 show the sequences obtained from a cow rumen sample.
- 4. PCR primers were designed on the basis of identified 25 conserved regions #4 HTLVWH and #5 WDVVNE of xylanases from the glycosyl hydrolase family 10 aiming to provide novel sequences with xylanase activity.
 - SEQ ID NO 23 to 28 show the sequences obtained from a cow rumen sample.
- 30 5. PCR primers were designed on the basis of the identified conserved regions #4 HTLVWH and #6 (F/Y)(I/Y)NDYN of xylanases from the glycosyl hydrolase family 10 aiming to provide novel sequences with xylanase activity.
- SEQ ID NO 29 to 33 show the sequences obtained from a cow rumen 35 sample.
 - 6. PCR primers were designed on the basis of the identified conserved regions #5 WDVVNE and #6 (F/Y)(I/Y)NDYN of xylanases from the glycosyl hydrolase family 10 aiming to provide novel

sequences with xylanase activity.

SEQ ID NO 34 to 36 show the sequences obtained from a soil sample. SEQ ID NO 37 to 45 show the sequences obtained from a cow rumen sample

7. PCR primers were designed on the basis of the identified conserved regions #8 DGGTYDIY and #9 EGYQSSG of xylanases from the glycosyl hydrolase family 11 aiming to provide novel sequences with xylanase activity.

SEQ ID NO 46 to 49 show the sequences obtained from a soil 10 sample. SEQ ID NO 50 to 54 show the sequences obtained from a cow rumen sample.

60 clones with inserts were sequenced and resulted in 43 different sequences all encoding either a part of a cellulase or a part of a xylanase. Only 2 of the 43 sequences were 15 similar to sequence found in the sequence databases Genbank.

SEQ ID NO 49 was found to be similar to Xylanase A from Bacillus pumilus. SEQ ID NO 42 was found to be similar to a xylanase from Prevotella ruminicola.

20 Example 3

Construction of novel hybrid DNA sequences encoding polypeptides with endoglucanase activity

Novel hybrid DNA sequences with endoglucanase activity were provided by first identifying two conserved regions common for the following family 45 cellulases (see WO 96/29397): Humicola insolens EGV (disclosed in WO 91/17243), Fusarium oxysporum EGV (Sheppard et al., Gene (1994), Vol. 15, pp.163-167), Thielavia terrestris, Myceliophthora thermophila, and Acremonium sp (disclosed in WO 96/29397).

The amino acid sequence alignment revealed two conserved region.

The first conserved region "Thr Arg Tyr Trp Asp Cys Cys Lys Pro/Thr" shown in SEQ ID NO 57 corresponds to position 6 to 14 of SEQ ID NO 55 showing the Humicola insolens EG V 43 KDa 35 endoglucanase.

The second conserved region "Trp Arg Phe/Tyr Asp Trp Phe" shown in SEQ ID NO 58 corresponding to positions 169 to 198 of SEQ ID NO 55 showing the Humicola insolens EGV 43 KDa

SUBSTITUTE SHEET (RULE 26) Patent provided by Suphrue Mion, PLCC - http://www.sughrue.com

WO 97/43409

28

endoglucanase.

Two degenerate, deoxyinosine-containing oligonucleotide primers (sense; primer s and antisense; primer as) were constructed) for PCR amplification of unknown gene sequences. The deoxyinosines are depicted by an I in the primer sequences.

Primers s and primer as are shown in SEQ ID No. 59 and 60 respectively.

The Humicola insolens EG V structural gene sequence (SEQ ID NO 55) was used as the known DNA sequence. A number of fungal 10 DNA sequences mentioned below were used as the unknown sequences.

PCR cloning of the family 45 cellulase core region and the linker/CBD of Humicola insolens EG V.

Approximately 10 to 20 ng of double-stranded, cellulase-in-duced cDNA from Humicola nigrescens, Cylindrocarpon sp., Fusa-rium anguioides, Gliocladium catenulatum, and Trichothecium roseum prepared, as described above in the Material and Methods section were, PCR amplified in Expand buffer (Boehringer Mann-20 heim, Germany) containing 200 μM each dNTP and 200 pmol of each degenerate Primer s (SEQ ID NO 59) and Primer as (SEQ ID NO 60) a DNA thermal cycler (Perkin-Elmer, Cetus, USA) and 2.6 units of Expand High Fidelity polymerase (Boehringer Mannheim, Germany). 30 cycles of PCR were performed using a cycle profile of denaturation at 94°C for 1 min, annealing at 55°C for 2 min, and extension at 72°C for 3 min, followed by extension at 72°C for 5 min.

The PCR fragment coding for the linker/CBD of H. insolens EGV was generated in Expand buffer (Boehringer Mannheim, Ger-30 many) containing 200 μ M each dNTP using 100 ng of the pCaHj418 template, 200 pmol forward primer 1 (SEQ ID NO 61), 200 pmol reverse primer 1 (SEQ ID NO 62). 30 cycles of PCR were performed as above.

35 Construction of hybrid genes using splicing by overlap extension (SOE)

The PCR products were electrophoresed in 0.7 % agarose gels (SeaKem, FMC), the fragments of interest were excised from the

gel and recovered by Qiagen gel extraction kit (Qiagen, USA) according to the manufacturer's instructions. The recombinant hybrid genes were generated by combining the overlapping PCR fragments from above (ca. 50 ng of each template) in Expand 5 buffer (Boehringer Mannheim, Germany) containing 200 µM each dNTP in the SOE reaction. Two cycles of PCR were performed using a cycle profile of denaturation at 94°C for 1 min, annealing at 50 C for 2 min, and extension at 72°C for 3 min, the reaction was stopped, 250 pmol of each end-primer: forward 10 primer 2 (SEQ ID NO 63) encoding the TAKA-amylase signal sequence from A. oryzae, reverse primer 2 (SEQ ID NO 64) was added to the reaction mixture, and an additional 30 cycles of PCR were performed using a cycle profile of denaturation at 94°C for 1 min, annealing at 55 °C for 2 min, and extension at 72°C for 3 min.

<u>Construction of the expression cassettes and heterologous</u> <u>expression in Aspergillus oryzae</u>

The PCR-generated, recombinant fragments were electropho-20 resed in 0.7 % agarose gels (SeaKem, FMC), the fragments were excised from the gel and recovered by Qiagen gel extraction kit (Qiagen, USA) according to the manufacturer's instructions. The DNA fragments were digested to completion with BamHI and XbaI, and ligated into BamHI/XbaI-cleaved pHD414 vector. Co-transfor-25 mation of A. oryzae was carried out as described in Christensen et al. (1988), Bio/Technology 6, 1419-1422. The AmdS+ transformants were screened for cellulase activity using 0.1 % AZC1-HEcellulose in a plate assay as described above. The cellulaseproducing transformants were purified twice through conidial 30 spores, cultivated in 250 ml shake flasks, and the amount of secreted cellulase was estimated by SDS-PAGE, Western blot analysis and the activity assay as described earlier (Kauppinen et al. (1995), J. Biol. Chem. 270, 27172-27178;; Kofod et al. (1994), J. Biol. Chem. 269, 29182-29189; Christgau et. 35 al,(1994), Biochem. Mol. Biol. Int. 33, 917 - 925).

Nucleotide sequence analysis

The nucleotide sequences of the novel hybrid gene fusions were determined from both strands by the dideoxy chain-termination method (Sanger et al., (1977), Proc. Natl. Acad. Sci. U.S.A. 74, 5463-5467), using 500 ng template, the Tag deoxy-terminal cycle sequencing kit (Perkin-Elmer, USA), fluorescent labeled terminators and 5 pmol of synthetic oligonucleotide primers. Analysis of the sequence data was performed according to Devereux et al., 1984 (Devereux et al., (1984), Nucleic Acids Res. 12, 387-395).

The provided novel hybrid DNS sequences an the deduced protein sequences are shown in SEQ ID NO 65 to 74.

SEQ ID NO 65 shows the hybrid gene construct comprising the family 45 cellulase core region from Humicola nigrescens and the linker/CBD of Humicola insolens EG V. SEQ. ID No 66 shows 15 the deduced amino acid sequence of the hybrid gene construct.

SEQ ID NO 67 shows the hybrid gene construct comprising the family 45 cellulase core region from *Cylindrocarpon* sp. and the linker/CBD of *Humicola insolens* EG V. SEQ ID NO 68 shown the deduced amino acid sequence of the hybrid gene construct.

SEQ ID NO shows the hybrid gene construct comprising the family 45 cellulase core region from Fusarium anguicides and the linker/CBD of Humicola insolens EG V. SEQ ID NO 70 shows the deduced amino acid sequence of the hybrid gene construct.

SEQ ID NO 71 shows the hybrid gene construct comprising the 25 family 45 cellulase core region from Gliocladium catenulatum and the linker/CBD of Humicola insolens EG V. SEQ ID NO 72 shows the deduced amino acid sequence of the hybrid gene construct.

SEQ ID NO 73 shows the novel gene construct comprising the 30 family 45 cellulase core region from *Trichothecium roseum* and the linker/CBD of *Humicola insolens* EG V. SEQ ID NO 74 shows the deduced amino acid sequence of the hybrid gene construct.

31

SEQUENCE LISTING

_	(1)			INFO		CION	:							8 4 * 4*			
5			()	3) S:	TREET ITY:	C: No Bagı	o Noi ovo 1 svae: Denma	Alle rd	k A/8	5							
10		/ 5 5 1	() () ()	F) P(3) TI 4) TI	ostai Elepi Elef <i>i</i>	XX:	DE (2 : +45 +45	ZIP) 5 444 4449	44 88 3256	8 88 6							
15	1	[TTT]) NUI () (1 ()	MBER MPUTI A) MI B) C(C) OI	OF S ER RI EDIUM OMPU' PERA!	SEQUI SADAI 1 TYI TER: PING	ENCES BLE I PE: I IBM SYS	FORM: FORM: Flop PC (FEM:	4 : py d: compa PC-1	isk atib: DOS/1	le MS-Do	os				sequ	
20	(2)	INFO														•	•
*) SE(() (1	QUENC A) LI B) T	CE CI Engti Ype:	iARAC i: 74	CTERI 17 ba Leic	ISTIC ase p acid	CS: pair: i	3							
25			I) MOI ORI	D) TO LECUI	OPOLO LE TY AL SO	OGY: (PE: OURCI		ger (ger	nomi								
30) FE] (] (1	ATURI A) NI B) L(E: AME/I DCATI	CEY:	174	1 7					No. 4	1048;	2		
							IPTIC		_								
35	ATG Met 1	AGA Arg	CAA Gln	AAG Lys	AAA Lys 5	TTG Leu	ACG Thr	TTC Phe	ATT Ile	TTA Leu 10	GCC Ala	TTT Phe	TTA Leu	GTT Val	TGT Cys 15	TTT Phe	48
40	GCA Ala	CTA Leu	ACC Thr	TTA Leu 20	CCT Pro	GCA Ala	GAA Glu	ATA Ile	ATT Ile 25	CAG Gln	GCA Ala	CAA Gln	ATC Ile	GTC Val 30	ACC Thr	GAC Asp	96
45	AAT Aen	TCC Ser	ATT Ile 35	GGC Gly	AAC Asn	CAC His	GAT Asp	GGC Gly 40	TAT Tyr	GAT Asp	TAT Tyr	GAA Glu	TTT Phe 45	TGG Trp	AAA Lys	GAT Asp	144
4.5	AGC Ser	GGT Gly 50	GGC GLY	TCT Ser	GGG Gly	ACA Thr	ATG Met 55	ATT Ile	CTC Leu	AAT Asn	CAT His	GGC Gly 60	GGT Gly	ACG Thr	TTC Phe	AGT Ser	192
50	GCC Ala 65	CAA Gln	TGG Trp	AAC Asn	AAT Asn	GTT Val 70	AAC Asn	AAC Asn	ATA Ile	TTA Leu	TTC Phe 75	CGT Arg	AAA Lys	GGT Gly	AAA Lys	AAA Lys 80	240
55	TTC Phe	AAT Asn	GAA Glu	ACA Thr	CAA Gln 85	ACA Thr	CAC His	CAA Gln	CAA Gln	GTT Val 90	GGT Gly	AAC Asn	ATG Met	TCC Ser	ATA Ile 95	AAC Asn	288
60	TAT Tyr	GGC Gly	GCA Ala	AAC Asn 100	TTC Phe	CAG Gln	CCA Pro	AAC Asn	GGA Gly 105	AAT Asn	GCG Ala	TAT Tyr	TTA Leu	TGC Cys 110	GTC Val	TAT Tyr	336
65	GGT Gly	TGG Trp	ACT Thr 115	GTT Val	GAC Asp	CCT Pro	CTT Leu	GTC Val 120	GAA Glu	TAT Tyr	TAT Tyr	ATT Ile	GTC Val 125	GAT Asp	AGT Ser	TGG Trp	384
99	GGC Gly	AAC Asn 130	TGG Trp	CGT Arg	CCA Pro	CCA Pro	GGG Gly 135	GCA Ala	ACG Thr	CCT Pro	AAG Lys	GGA Gly 140	ACC Thr	ATC Ile	ACT Thr	GTT Val	432

				ACA Thr													480
5				GGG Gly													528
10				ACG Thr 180													576
15				TTA Leu													624
20				GGC Gly													672
				ATT Ile													720
25	AGC Ser			CTA Leu					TAA *								747
30	(2)		(i) (i) (i)	TION SEQUIA) LI B) T	ence Engti Ype :	CHĀ H: 2 ami	RACT 49 a no a	ERIS' mino cid	rics								
35) MÒ	D) TO LECU: QUEN	LE T	YPE:	pro	tein	SEQ	ID N	0: 2	:					
40	Met 1	Arg	Gln	Lys	Lys 5	Leu	Thr	Phe	Ile	Leu 10	Ala	Phe	Leu	Val	Сув 15	Phe	
	Ala	Leu	Thr	Leu 20		Ala	Glu	Ile	Ile 25	Gln	Ala	Gln	Ile	Val 30		Asp	
45	Asn	Ser	Ile 35	-	Asn	His	Asp	Gly 40	Tyr	Asp	Tyr	Glu	Phe 45	-	Lys	Авр	
	Ser	Gly 50		Ser	Gly	Thr	Met 55		Leu	naA	His	Gly 60	-	Thr	Phe	ser	
50	Ala 65		Trp	Asn	Asn	Val 70		Asn	Ile	Leu	Phe 75		Lys	Gly	Lys	80	
= =		Asr	Glu	Thr	Gln 85		His	Gln	Gln	Val 90		Asr	Met	Ser	: Ile 95	a Asn	
55		Gly	/ Ala	100		Glr	Pro) Asr	Gly 105		Ala	Туг	Leu	Cys 110		Tyr	
60		Tr	Thr 115		. Asg	Pro	Leu	Va)		Туг	туг	Ile	2 Val		Ser	Trp	
	Gly	Asr 130		Arg	Pro	Pro	Gl ₃		Thi	Pro	Lys	Gly 140		: Ile	e Thi	r Val	
65	Asp 145		y Gly	Thi	туг	: As ₁		з Туз	Glu	Th:	Le. 155		y Va	l As:	n Gli	n Pro 160	
	Sei	· Ile	e Lys	G G L	7 Ile 16		a Thi	r Phe	e Ly	5 Gl:		Tr	p Se	r Va	1 Are	g Arg 5	

SUBSTITUTE SHEET (RULE 26)
Patent provided by Sughrue Mion, PLLC - http://www.sughrue.com

22

```
Ser Lys Arg Thr Ser Gly Thr Ile Ser Val Ser Asn His Phe Arg Ala
                     180
  5 Trp Glu Asn Leu Gly Met Asn Met Gly Lys Met Tyr Glu Val Ala Leu
                                           200
     Thr Val Glu Gly Tyr Gln Ser Ser Gly Ser Ala Asn Val Tyr Ser Asn
          210
10
     Thr Leu Arg Ile Asn Gly Asn Pro Leu Ser Thr Ile Ser Asn Asp Lys
     Ser Ile Thr Leu Asp Lys Asn Asn *
                           245
     (2) INFORMATION FOR SEQ ID NO: 3:
            (i) SEQUENCE CHARACTERISTICS:
20
                  (A) LENGTH: 8 amino acids
                   (B) TYPE: amino acid
          (C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "Conserved region"
25
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
            Asp Gly Gly Thr Tyr Asp Ile Tyr
30
     (2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS:
35
                  (A) LENGTH: 7 amino acids (B) TYPE: amino acid
                  (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(A) DESCRIPTION: /desc = "Conserved region"
40
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
         Glu Gly Tyr Gln Ser Ser Gly
     (2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 29 base pairs
                  (B) TYPE: nucleic acid (C) STRANDEDNESS: single
50
                   (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "Primer e"
                (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:
     GCGAATTCAT GAGACAAAAG AAATTGACG
                                                                                              29
     (2) INFORMATION FOR SEQ ID NO: 6:
            (i) SEQUENCE CHARACTERISTICS:
60
                  (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid
          (C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "Primer arc"
65
                (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:
     AACAGTGATG GTTCCCTTAG GC
```

	(2) INFORMATION FOR SEQ ID NO: 7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs	
5	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid	
10	(A) DESCRIPTION: /desc = "Primer f " (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
	CTAGAGTCGA CTTAATTGTT TTTATCTAGA G	31
15	(2) INFORMATION FOR SEQ ID NO: 8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
20	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Primer d _{rc} " (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	,
25	AACAGTGATG GTTCCCTTAG GC	22
30	(2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
35	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Primer ab " (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
	GCCTAAGGGA ACCATCACTG TTGAYGGXGG XACXTAYGAY AT	42
40	(Y=C or T, X= 25% A and 75% Inosin)	
45	(2) INFORMATION FOR SEQ ID NO: 10: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
50	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Primer cd " (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
	AATGCTATAT ACATTAGCAC TTCCXSWXSW YTGGTAXCCY TC	42
55	(S=G or C, W=A or T, Y=C or T, $X=25$ % A and 75% Inosin)	
60	(2) INFORMATION FOR SEQ ID NO: 11: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 747 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
65	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: hybrid DNA (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION:1747	41
	(xi) SEQUENCE DESCRIPTION: SEO ID NO: 11:	

	ATG Met 1	AGA Arg	CAA Gln	AAG Lys	AAA Lys 5	TTG Leu	ACG Thr	TTC Phe	ATT Ile	TTA Leu 10	GCC Ala	TTT Phe	TTA Leu	GTT Val	TGT Cys 15	TTT Phe	48
5	GCA Ala	CTA Leu	ACC Thr	TTA Leu 20	CCT Pro	GCA Ala	GAA Glu	ATA Ile	ATT Ile 25	CAG Gln	GCA Ala	CAA Gln	ATC Ile	GTC Val 30	ACC Thr	GAC Asp	96
10	AAT Asn	TCC Ser	ATT Ile 35	GCC	AAC Asn	CAC His	GAT Asp	GGC Gly 40	TAT Tyr	GAT Asp	TAT Tyr	GAA Glu	TTT Phe 45	TGG Trp	AAA Lys	GAT Asp	144
15	AGC Ser	GGT Gly 50	GGC Gly	TCT Ser	GGG Gly	ACA Thr	ATG Met 55	ATT	CTC Leu	AAT Asn	CAT His	GGC Gly 60	GGT Gly	ACG Thr	TTC Phe	AGT Ser	192
20	GCC Ala 65	CAA Gln	TGG Trp	AAC Asn	AAT Asn	GTT Val 70	AAC Asn	AAC Asn	ATA Ile	TTA Leu	TTC Phe 75	CGT Arg	AAA Lys	GGT Gly	AAA Lys	AAA Lys 80	240
	TTC Phe	TAA Asn	GAA Glu	ACA Thr	CAA Gln 85	ACA Thr	CAC His	CAA Gln	CAA Gln	GTT Val 90	GGT Gly	AAC Asn	ATG Met	TCC Ser	ATA Ile 95	AAC Asn	288
25	TAT Tyr	GGC Gly	GCA Ala	AAC Asn 100	TTC Phe	CAG Gln	CCA Pro	AAC Asn	GGA Gly 105	AAT Asn	GCG Ala	TAT Tyr	TTA Leu	TGC Cys 110	GTC Val	TAT Tyr	336
30	G GT Gly	TGG Trp	ACT Thr 115	GTT Val	GAC Asp	CCT Pro	CTT Leu	GTC Val 120	GAA Glu	TAT Tyr	TAT Tyr	ATT Ile	GTC Val 125	GAT Asp	AGT Ser	TGG Trp	384
35	GGC Gly	AAC Asn 130	TGG Trp	CGT Arg	CCA Pro	CCA Pro	GGG Gly 135	GCA Ala	ACG Thr	CCT Pro	AAG Lys	GGA Gly 140	ACC Thr	ATC Ile	ACT Thr	GTT Val	432
40	GAC Asp 145	GGG Gly	GGG	ACG Thr	TAT Tyr	GAT Asp 150	ATC Ile	TAC Tyr	AAG Lys	CAC His	CAA Gln 155	CAG Gln	GTC Val	TAA Aan	CAG Gln	CCA Pro 160	480
	TCT Ser	ATT Ile	CAG Gln	GGC Gly	ACC Thr 165	GCC Ala	ACC Thr	TTC Phe	AAT Asn	CAG Gln 170	TAC Tyr	TGG Trp	TCG Ser	ATT Ile	CGA Arg 175	CAG Gln	528
45	AGC Ser	AAG Lys	CGG Arg	ACC Thr 180	AGC Ser	GGC Gly	ACT Thr	GTC Val	ACT Thr 185	ACG Thr	GCA Ala	AAC Asn	CAC His	TTT Phe 190	AAT Asn	GCC Ala	576
50	TGG Trp	GCT Ala	GCT Ala 195	CTT Leu	GGC Gly	ATG Met	AAT Asn	ATG Met 200	GGT Gly	GCA Ala	TTC Phe	AAT Asn	TAC Tyr 205	CAG Gln	ATC Ile	CTC Leu	624
55	GTT Val	ACT Thr 210	GAG Glu	GGC Gly	TAC Tyr	CAA Gln	TCT Ser 215	ACC Thr	GGA Gly	AGT Ser	GCT Ala	AAT Asn 220	GTA Val	TAT Tyr	AGC Ser	AAT Asn	672
60	ACA Thr 225	CTA Leu	AGA Arg	ATT Ile	AAC Asn	GGT Gly 230	AAC Asn	CCT Pro	CTC	TCA Ser	ACT Thr 235	ATT Ile	AGT Ser	AAT Asn	GAC Asp	AAG Lys 240	720
-	AGC Ser	ATA Ile	ACT Thr	CTA Leu	GAT Asp 245	AAA Lys	AAC Asn	AAT Asn	TAA *								747

(2) INFORMATION FOR SEQ ID NO: 12:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 249 amino acids
 (B) TYPE: amino acid

36 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12: 5 Met Arg Gln Lys Lys Leu Thr Phe Ile Leu Ala Phe Leu Val Cys Phe Ala Leu Thr Leu Pro Ala Glu Ile Ile Gln Ala Gln Ile Val Thr Asp 20 25 30 Asn Ser Ile Gly Asn His Asp Gly Tyr Asp Tyr Glu Phe Trp Lys Asp 35 40 Ser Gly Gly Ser Gly Thr Met Ile Leu Asn His Gly Gly Thr Phe Ser 50 60 Ala Gln Trp Asn Asn Val Asn Asn Ile Leu Phe Arg Lys Gly Lys 65 70 75 80 20 Phe Asn Glu Thr Gln Thr His Gln Gln Val Gly Asn Met Ser Ile Asn 85 90 95 Tyr Gly Ala Asn Phe Gln Pro Asn Gly Asn Ala Tyr Leu Cys Val Tyr 100 105 110 Gly Trp Thr Val Asp Pro Leu Val Glu Tyr Tyr Ile Val Asp Ser Trp 115 120 125 Gly Asn Trp Arg Pro Pro Gly Ala Thr Pro Lys Gly Thr Ile Thr Val 130 140 Asp Gly Gly Thr Tyr Asp Ile Tyr Lys His Gln Gln Val Asn Gln Pro 145 150 155 160 35 Ser Ile Gln Gly Thr Ala Thr Phe Asn Gln Tyr Trp Ser Ile Arg Gln 165 170 175 Ser Lys Arg Thr Ser Gly Thr Val Thr Thr Ala Asn His Phe Asn Ala Trp Ala Ala Leu Gly Met Asn Met Gly Ala Phe Asn Tyr Gln Ile Leu Val Thr Glu Gly Tyr Gln Ser Thr Gly Ser Ala Asn Val Tyr Ser Asn Thr Leu Arg Ile Asn Gly Asn Pro Leu Ser Thr Ile Ser Asn Asp Lys 50 Ser Ile Thr Leu Asp Lys Asn Asn * (2) INFORMATION FOR SEQ ID NO: 13: 55

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 409 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Hybrid DNA 60 (vi) SCIENTIFIC NAME: NS1/9
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:
- GAATTCGCCT TGGGTGGAAT CTGGGGAACA CGTTGGATGC TACCGGAGAC TGGATCAAAG 60 65 GGCCGTCCGT GAGCGCCTAC GAGACCGCCT GGGGCAATCC CGTCACCACC AAGGCTATGT 120 TCGACGGCAT CAAAGCGTCC GGCTTCAACT TTGTTCGCAT TCCCGTGGCG TGGTCCAACA TGATGGGCCC GGACTATACC ATTAACCCGG CGTTGATGGC GAGAGTCGAG AAGTGGTGAA TTACGGTCTG GCCGACAACA TGTATGTCAT GATCAACATC CACTGGGACG CGGCTGGATC ACTAAATTCC CACCAACTAC GACGAAAGCA TGAAGAAGTA TAAGGCGGTC TGGAGCCAGA

```
TCGCCGACCA TTTCAAAGCT ACTCCGACCA CCTCATCTTC GAAAAGCCG
                                                                                              409
     (2) INFORMATION FOR SEQ ID NO: 14:
           (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 408 base pairs
                  (B) TYPE: nucleic acid
                  (C) STRANDEDNESS: single (D) TOPOLOGY: linear
          (ii) MOLÉCULE TYPE: Hybrid DNA
10
          (vi) SCIENTIFIC NAME: NS1/12
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:
     AATTCGGCTT GGGTGGAATC TGGGGAACAC TCTGGAAGCC TGCGGCGGGA TCAAATGCAG
15 TTCCGTGCGC GATTTCGAGA CGGCTTGGGG CAACCCCGTC ACGACCAAGG CCATGATCGA 120 CGGCGTCAAG GCGCCGGCT TCAAGTCCAT ACGCATCCC GTCGCCTGGT CGAACCTGAT 180 GGGACCTAAG CCCGACTACA CTATCAATAA GAAGCTGATG GCACGAGTCG AGCAGGTCGC 240 CCGGTACGGC CTCGACAACG ACATGTACGT CATCATCAAC ATTCACTGGG ACGCGGCTGG 300
     ATCCACCGCT TCTCCACCGA CTACAACGAA ATGCATGARG AATTACAAGG CGGTGTGGGG
                                                                                              360
20 CCAGGTAGCC GACCATTTCA AGGGCTACTC CGACCACCTC ATCTTCGA
                                                                                               408
     (2) INFORMATION FOR SEQ ID NO: 15:
            (i) SEQUENCE CHARACTERISTICS:
25
                  (A) LENGTH: 416 base pairs
                  (B) TYPE: nucleic acid
(C) STRANDEDNESS: single
                  (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KN1/9
30
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:
AATTCGGCTT CTCGAAGATG AGGTGGTCGG AGTAGCCTTT GAAATGGTCG GCGATCTGGC 60
TCCAGACCGC CTTATACTTC TTCATGCTTT CGTCGTAGTT GGTGGGGAAT TTAGTGATCC 120
AGCCGCCGTC CCAGTGGATG TTGATCATGA CATACATGTT GTCGGCCAGA CCGTAATTCA 180
     CCACTTCCTC GACTCTCGCC ATCAACGCC GGTTAATGCT ATAGTCCGGG CCCATCATGT
TGGACCACGC CACGGGAATG CGAACAAAGT TGAAGCCGGA CGCTTTGATG CCGTCGAACA
TAGCCTTGGT GGTGACGGGA TTGCCCCAGG CGGTCTCGTA GGCGCTCACG GACGGCCCTT
                                                                                               240
                                                                                               300
                                                                                               360
     GATCCAGTC TCCGGTAGCA TCCAACGTGT TCCCCARATT CCACCCAAGC CGAATT
     (2) INFORMATION FOR SEQ ID NO: 16:
            (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 490 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
45
                   (D) TOPOLOGY: linear
           (ii) MOLECULE TYPE: Hybrid DNA
           (vi) SCIENTIFIC NAME: KM1/2
50
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:
GCAATCCACG AACGATCCTC CAACTCTTAC AACAGTAGGA CAAAGGTGAA ACGTATTTAA 360
     TTATGCTTCC TGAATTNTCA TTAACACNAT GCCTGTGTGG CACCCATCCG CGTNTTCAAT 420
     GGTGTTCACC AGGGCATCCT TTACTCATCC CACAGGTTAA GCAANTGGCC AAANAACACC 480
60 GTCCGGCTTC
     (2) INFORMATION FOR SEQ ID NO: 17: (i) SEQUENCE CHARACTERISTICS:
                   (A) LENGTH: 492 base pairs
65
                   (B) TYPE: nucleic acid
                   (C) STRANDEDNESS: single
                   (D) TOPOLOGY: linear
           (ii) MOLECULE TYPE: Hybrid DNA
           (vi) SCIENTIFIC NAME: KN2/2
```

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:
 AATTCGGCTT GTTGTTGCCG CCGGTGGTGC GGACCACGTC AATAAAAGTC TGGTTGTAAG 60
AATTCTGCAC AGCCAGATTC TCAGGCTCGG GCTTGCCCCA GTTATCGCGC AGGTGAACCT 120
5 CGTTAGTACC AGCAAAGGCT ACGCGGTAGT CGTAGTTGGC AAACTCGCTG GCGATATTCA 180
     GCCACAGCAG GGCGAGTTTC TGGTTGTTCT CGTCCTTGTA CTGATAGGTA GGACRACCCT 240
CCAGCCACTT GTCGTGATGC GTATTGATGA TGACTTTTAG GTCATTCTCG AAGCACCARC 300
     CCACAACCTC TTTGATACGT GCCAGCCAAG CCTTGTCAAT GCTCATGGCA ACGGGATTGG 360
TGATGTTGCA CTGCCACCGG AMSGGAATGC GGATGGCGTT RAAAC:TGCA TCCTTGACTG 420
10 CCTTGATAAC TTTTTTGTTA CAACGGGATT GCCCCATGCC GTCTCACCCT TAATACTGTT 480
      CTCATACATC CG
      (2) INFORMATION FOR SEQ ID NO: 18:
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 574 base pairs
                     (B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
            (ii) MOLECULE TYPE: Hybrid DNA
20
            (vi) SCIENTIFIC NAME: KM2/5
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:
      AATTCGGCTT GTTGTTGCCG CCGGTGGTAC GGATGGTGTT CACCACCAAC TGGTTCCACT 60
25 CGTTGAGGGT TTTATACTGC TTACCGCCAT CGGTACGGTT TGCGCCCCAT CCCCAGCCGC CGTCCTGAAT CTCGTTGAAC GACTCGAATA TGAGGAATTC GCCCTTGTCC TTGAAGGCTT CGGCAATCTG TTTCCAAGACT TTCTCAATAC GGTTCTTGAT GTTGCTGTTG GTCGTTGAAT
                                                                               TGCGCCCAT CCCCAGCCGC 120
                                                                                                                     180
      TGTTGGCAGC GCCCTTAATG TCAACCAGTA CTCATCGTGA TGCATGTTCA GGATNACNTT 300
      CAGTCCGGCA CTTCGGCCCA CTCCACATTC TGCCTGACTT CTGCTATGTA TTTAGCATCT
ATCCCCATTC CAAATGTTTC TGGTANTTGC CCATGTTACC CGANACTTAN GTGCTGGCAC
30 ATCCCCATTC
                                                                                                  GTGCTGGCAC
                                                                                                                     420
                      NGTTTGTTAA AAACCGCAAA GGCTTGGCAT
NCACCCNGCC GGTACAAATG GTNCCCCNTT
      AACGTTTTTA
                                                                                TTCCAATATC
                                                                                                  CCANTGGGGA
                                                                                                                     480
      ACCNAACNTC
                                                                                TCCCCCAACC
                                                                                                  CAAATCCNCC
                                                                                                                     540
      NCNGGGGGCC GTTACNATTG NATCNAACCG GTAC
      (2) INFORMATION FOR SEQ ID NO: 19:
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 520 base pairs (B) TYPE: nucleic acid
40
                     (C) STRANDEDNESS: Bingle
                     (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE: Hybrid DNA
            (vi) SCIENTIFIC NAME: KM2/6
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:
45
      AATTCGGCTT GTTGTTGCCG CCGGTGGTTC TCACGGTGGT GACGAAGCTC TGAGCATANC
TGTTGATGGC GTTGTAGGCC GATGTGGCTA TGGCTTCGTT GTACCTGCCG GTAGCGCCAA
                                                                                                                     120
      AGGATGCGAA ACACCAGGAG CTCAAGGGAT CCAGCATCTC GTTGAAGCTC
AGCGCTGTCC GCAGTCCCGG AATTCCTGTG CTATCTGCTG CCACAGACGT
                                                                                                   TCGAAGAGCA
                                                                                                                     180
                                                                                                   TCATANCGGG
AGCGCTGTCC GCAGTCCGG AATTCCTGTG CTATCTGTG CCACAGACGT TCATACCGG

50 AGCGGTTCAN CGCGTATTTG TCCTCGGANG CCTTGATCA CNACTTGAAA CNANTTGCTG 300

TCTGCGCCCG TGTCGTGGTG AACGTTGAAT NATGCAGTAC AAGCCCTGGT CTAGGANACT

ATCACCACTT CATGCACGC GGCCATCCAC GCCNCATCCA CNTTGCCGGC GCTGTCCATN
                                                                                                                     240
                       CATGCACGCG GGCCATCCAC GCCNCATCCA CNTTGCCGGC
ACTTCATGGC CCACGGATGG CACCAAACCC GGATCTTTNT
                                                                                                                      420
      TTGTTATACC
                                                                                                   CNTCCTGAAN
                                                                                                                      480
      AACAANGGGT GGTGGGATAT TAACCCAACA GGTCCGAAGA
55
      (2) INFORMATION FOR SEQ ID NO: 20:
              (i) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 194 base pairs (B) TYPE: nucleic acid
60
                      (C) STRANDEDNESS: single
                      (D) TOPOLOGY: linear
             (ii) MOLECULE TYPE: Hybrid DNA
             (vi) SCIENTIFIC NAME: KM3/2
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:
      AATTCGGCTT GAGCACCTGA TTTTTGAGGG CTACAACGAG ATGCTCGACA AGTATGACTC 60
CTATAAAAGCC ATCAACAACT ATGCCCAGAG CTTCGTCAAC GCCGTACGCA CCACCGGCGG 180
```

CAACAACAAG CCG

	CAACAACAAG CCG		194	
5	(2) INFORMATION FOR SEQ ID NO: 21: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 160 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single			
10	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM3/8 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:			
15	AATTCGGCTT GAGCACTTGA TTTTCGAGGC CTACAACGAG GTGGAACTTT GCCCAGACCA GCACAGCCTA TGATGCTATC CGTCAACATT GTTCGTACCA GCGGCGGCAA CAACAAGCCG	ATGCTCGATG AACAACTATG	CCCAGAGCTC CCCAAAGCTT 160	60 120
20	(2) INFORMATION FOR SEQ ID NO: 22: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 193 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM3/9 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:			
30	AATTOCCOUT CACCAMETTA BOTTOCACACACACACACACACACACACACACACACACACA	ATGCTCGATA GCCACCATCG ACCGTACGTA	CGGAAGATTC CGCGTTCGGC CCACCGGCGG 193	60 120 180
35 40	(2) INFORMATION FOR SEQ ID NO: 23: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 166 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM4/1 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:		-	
45	AATTCGGCTT CAYACGCTGG TGTGGCACTC TCAGATCGGT CTACAACCAAG GAGCAGTTCT ATGCTCGTAT GAAGAACCAT TTACAAGGAT GTGGTGTACT GCTGGGACGT CGTCAACGAG AAGC	CGTTGGATGA ATCCAGGCTA CG	CTGCCGAGGG TCGTTACTCG 166	60 120
50	(2) INFORMATION FOR SEQ ID NO: 24: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 178 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single			
55	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM4/2 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:			
60		ACCGCAGAAA GTGGCTCTTG AGCGTA TGAA	CCACMCCCCM	60 120
65	(2) INFORMATION FOR SEQ ID NO: 25: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 181 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear			

	(ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM4/4 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
5	AATTCGGCTT CAYACGCTGG TGTGGCACTC GCAGGCACCC GACTGGTGGT TTACCAACGG CTATGCTGCC AGCCCTGTCT CAAAGGAAGT GCTGAAAGAG CGGCTCATCA AGCATATTAA GACCGTTGTT GGCCATTTCA AGGGCCAAGT CTTTGGCTGG GACGTCGTCA ACGARAAGCC 180 G 181	60 120
10		
15	(2) INFORMATION FOR SEQ ID NO: 26: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 199 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM4/7	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
25	AATTCGGCTT CATACGTTGG TGTGGCACAA TCAGACGCCG GCCTGGTTCT TCCGCAGGGG CTACAACGAG AACCTGCCTC TGGCGGACCG CGAGACCATG CTGGCGAGGC TGGAGAGCTA ATGTGCAGGA GAATTATCCC GGGATCGTCT ACGCCTGGGA CGTCGTCAAC GAGAAGCCG TGTGCAGGA GAATTATCCC TGGCAGGCC TGGAGAGCTA ACGCCTGGGA 199	60 120 180
30	(2) INFORMATION FOR SEQ ID NO: 27: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 185 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
35	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM4/8 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
40	AATTCGGCTT GGCACGGACA GACGCCGCAG TGGTTCTTCT ACGAGAACTA TAATACTTCA GGAAAACTTG CAAGCAGGGA AACGATGCTG GCAAGAATGG GAAACTATAT TAANGGCGTG CTTGGCTTCG TGCAGGACAA TTATCCCGGC GTCATCTATG CGTGGGACGT TGTCAACGAG 180 AACCG	60 120
45	(2) INFORMATION FOR SEQ ID NO: 28: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 208 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
50	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM4/9 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
55	ATCTGCAGAA ATTCGGCTTC TCGTTAACGA CGTCCCATGC ATAGATGACA CCCGGATATT CACTCTGGAT AAAACCAAGC ACACCCTTTA TATAATTTTC AAGTCTGGCA AGCATGGTCT CTCTGTCGGT - ATAGGGAAAT GACTCGTTAT AGTGCTCACA GAAAAACCAC TTCGGTGTCT GATTGTGCCA CACCAGCGTA TGAAGCCG 208	60 120 180
60	(2) INFORMATION FOR SEQ ID NO: 29: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 310 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
65	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM5/l (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	

```
AATTCGGCTT GTTGTAGTCG TTGTAGTACA GCTTGCAGTT TGAAGGAGCG TACTTTCTTG CATATATGGAA GCGCCGTTGC CGCCGTTGCTC AAAATGCGT TGCTGCCGTA ACCTTGCAG ACCTCTTAAAGGTT AATCCGGGAT ACTGTGACTG
                                                                                                                              120
                                                                                                                              180
                                                                                                                              240
  5 ATAGGCCGAA CATATCTTGA AGTTACCTTC CAGTCCNGGT CCATACGGAA TGCTACCAGC 300
       TTCGCCGTCC
      (2) INFORMATION FOR SEQ ID NO: 30:
10
             (i) SEQUENCE CHARACTERISTICS:
                       (A) LENGTH: 384 base pairs (B) TYPE: nucleic acid
                      (C) STRANDEDNESS: single (D) TOPOLOGY: linear
             (ii) MOLECULE TYPE: Hybrid DNA
15
             (vi) SCIENTIFIC NAME: KM5/2
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:
AATTCGGCTT GTTGTANTNG TTGWWGAAGA NGTGGCAGNT TGCCGGTGCC GCATCATGGG 6

20 CATATTCAAA TGCCTTTGCA ATGAAGCTGT TGTCACCGTA AACCTGCACC CACGGGGACT 12

TGCCGTCATT GTAACCCGGC CGCCTGCACC ACGCGTACGC GCATCGCTGT 18

CGGAGATACA CTCGTTGCAG ACGCTCGTARG CGTANARGTT CAGCGTCCACA TAGTTGTTCT 240
                                                                                                                             120
                                                                                                                             180
      TGTACATTGC AAMCATATTG TCAATGTANC YCTTGANGCG CTGGTTCATG ACAGTGGANT 300
TCACCCACTG ACCGCCGTCC TGGAAAGTTA TCCTTGAAAN AACCAGANCG GARTCTGGRA 360
25 GTGCCACNCC ANCGTRTGAA GCCG
                                                                                                                   384
      (2) INFORMATION FOR SEQ ID NO: 31:
              (i) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 354 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
30
                       (D) TOPOLOGY: linear
             (ii) MOLECULE TYPE: Hybrid DNA
             (vi) SCIENTIFIC NAME: KM5/4
35
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:
AATTCGGCTT CATACGTTGG TGTGGCACAA TCAGACGCCC GTATGGTTTT TTAAGGAAAA CCGCGGAAAAT GACTAGAAC CGCCTGCCG CCCCAAAGAA ATCCTGCTCG CCCGCCTGGA AAACCTATATC CGGGATGTCA TGCGGCATGT GAATACCTGT TTCCCCGGTG TGGTCTACAC CCATCGAACC GGGGCAGGCC GGTCCCGGCC TGTTCCGGAA
                                                                                                                             120
                                                                                                                              180
      CCGCAATCCC TGGTTTGCTT TCACAGGCCA NGATTTCCTG CCGGCTGCCT TCCGGGCCCC 300
CGCGAAAACN AAGTCCCGGG ACAGAACCTG TGCTACAACG ACTACAACAA GCCG 354
45 (2) INFORMATION FOR SEQ ID NO: 32:
              (1) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 374 base pairs
                      (B) TYPE: nucleic acid
(C) STRANDEDNESS: single
50
                       (D) TOPOLOGY: linear
             (ii) MOLECULE TYPE: Hybrid DNA
(vi) SCIENTIFIC NAME: KM5/5
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:
55 AATTCGGCTT CATACGCTGG TGTGGCACAG CCAGACTCCT GACTGGTTCT TCAAGGAGAA 60
CTTCAGCTCA AACGGTCAGC TCGTATCAAA GGATATAATG AATCAGCGTA TCGAAAACTA 120
CGATGTAGCT AACGAGTGTA TGCTCAAATGC AAGATTCCT ACAGTTCAGT TCTATGCTTA 180
CGATGTAGCT AACGAGTGTA TGCTCAAA TCCTCAAACGC GGTCTCCAAA 300
      GAATCAGCAG AACGGCGAAT CCCCATGGAA TCTTATCTAC GGCGACAACA GCTACCTCGA 300
60 TGTANCATTC AAGGCTGCTA AGAAATTATG CTCCTGCTGG CTGCNAACTT TTCTTCAACG 360
      ACTACAACAA GCCG
      (2) INFORMATION FOR SEQ ID NO: 33:
              (i) SEQUENCE CHARACTERISTICS:
                      (A) LENGTH: 376 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single
```

(D) TOPOLOGY: linear

```
(ii) MOLECULE TYPE: Hybrid DNA
           (vi) SCIENTIFIC NAME: KM5/6
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:
  5 AATTCGGCTT CATACGCTGG TGTGGCACAG CCAGACTCCC GAGTGGTTCT TCAAGGAGGA 60 CTTCGACGAG AAGAAGGATT ACGTTTCTCC CGAAAAGATG AAGAAGCGTA TGGAGAACTA 120
     CATCAAGAGC TTCTTCACAA CACTTACAGA GCTCTATCCC GACGTTGACT TCTATGCCTG 180
CGACGTTGTA AACGANGCAT GGACAGACGA CGGAAAGCCC CGTGAGGCAG GTCACTGTTC 240
      ACAGTCCAAC AACTACGGCG CTTCCGACTG GGTTGCTGTA TTCGGCGACA ACTCATTCAT 300
 10 CGACTACGCT TTCGAGTATG CAAGAAAGTA TGCTCCCGAN GGCTGCAAGC TCTACTACAA
                                                                                                   360
      CGACTACAAC AAGCCG
      (2) INFORMATION FOR SEQ ID NO: 34:
            (i) SEQUENCE CHARACTERISTICS:
 15
                  (A) LENGTH: 166 base pairs
                   (B) TYPE: nucleic acid
(C) STRANDEDNESS: single
                   (D) TOPOLOGY: linear
           (11) MOLECULE TYPE: Hybrid DNA
20
           (vi) SCIENTIFIC NAME: NS6/3
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:
     AATTCGGCTT TGGGATGTGG TGAACGAGGC CTTCAACGAA GACGGTTCAC GGCGCAGCGA
CGTTTTCCAG AATGTGCTCG GCAACGGCTA TATCGAGCAG GCATTCAGGA CCGCGCGTGC
25 GGCTGACCCC AATGCCAAAC TGTGCTACAA CGACTACAAC AAGCCG
      (2) INFORMATION FOR SEQ ID NO: 35:
            (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 151 base pairs
30
                   (B) TYPE: nucleic acid
                  (C) STRANDEDNESS: single
                  (D) TOPOLOGY: linear
           (ii) MOLECULE TYPE: Hybrid DNA
           (vi) SCIENTIFIC NAME: NS6/5
35
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:
     AATTCGGCTT GTTGTAGTCG TTGTTGAACA GGCGGGTGGT TGGGTCTACC TCATGAGCAA GTTGATACCA GTGCACAACA GCATCGAGGC CGCCGAGGGC ATCATAAACC TCGTGGTTAT
                                                                                                    60
     CTACCGGCTC GTTCACCACA TCCCAAAGCC G
                                                                                                   120
4 N
     (2) INFORMATION FOR SEQ ID NO: 36:
            (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 166 base pairs
                  (B) TYPE: nucleic acid
(C) STRANDEDNESS: single
45
                  (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: Hybrid DNA
           (vi) SCIENTIFIC NAME: NS6/13
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:
50
     AATTCGGCTT GTTGTAGTCG TTGTAGCACA GTTTGGCATT GGGATCTGTA ACCCGTGCAG
CTTTGAATGC CTCTTCAATA TAGCTATTGC CAATCAGCCG TTGGAAGATT GAGGCACGCC
                                                                                                  60
                                                                                                   120
     GTGAGCCATT GTCTTCGAAG GCCTCATTCA CCACATCCCA AAGCCG
55 (2) INFORMATION FOR SEQ ID NO: 37: (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 250 base pairs
                  (B) TYPE: nucleic acid
(C) STRANDEDNESS: single
60
                  (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: Hybrid DNA
          (vi) SCIENTIFIC NAME: NS6A/1
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:
65 AATTCGGCTT GTTGTAGTCG TTGWTGMAGA GTTTTACATC TTTTGGACCA TATTTGCGAG CCAGACGACA GGCCTGACGG ACGTAGTCGA TATCACCAG ATAGTCCTGC CAGTAGAAAT TATCGCCGCC CACATCCCAT GTGGCATCTG GATTACCATT AGGATTATAC TTAGCAGAGT
                                                                                                    60
                                                                                                   120
                                                                                                   180
                                    TGTCCGTCAT CACCACCACC AGAGATCGCC TCRTTCACCA
                    GTAGTTGCCT
                                                                                                   240
     CATCCCAAAG
```

```
(2) INFORMATION FOR SEQ ID NO: 38:
              (i) SEQUENCE CHARACTERISTICS:
  5
                     (A) LENGTH: 247 base pairs (B) TYPE: nucleic acid
                     (C) STRANDEDNESS: single
                     (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE: Hybrid DNA
10
            (vi) SCIENTIFIC NAME: KM6A/4
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:
AATTCGGCTT TGGGAYGTGG TGAAYGAGGC GATAGAGCTT AACGACAAGA CCGAAACCGG 60
ACTTCGTAAT TCATACTGGT ACGACAAGA CCGAAACCGG 120
CGTTAAATAT GCGGCCGAGT ACGCATTGA 180
      CCCTTCGGAC AAAGAAGCGC TTAAAGCCAT CCGCCCCGCT TTCTGCAACA ACGACTACAA 240
      CAAGCCG
      (2) INFORMATION FOR SEQ ID NO: 39:
20
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 238 base pairs
                     (B) TYPE: nucleic acid
                     (C) STRANDEDNESS: single (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE: Hybrid DNA
(vi) SCIENTIFIC NAME: KM6A/5
25
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:
AATTCGGCTT TGGGATGTGG TGAACGAGGC TATCTCGGGT GGCGACAGTG ACGGCGACGG 60
30 TTACTACGAC CTCCAGCATT CCGAGGGCTA TAAGAACGGC ACTTGGGATG TAGGCGGCGA 120
TGCCTTCTAC TGGCAGGACT ACATGGGCGA CCTGGATTAC GTRCGTCAGG CTTGCCGACT 180
      GGCCCGCAAA TACGGCCCTG AGGATGTGAA GCTYTKCATC AACGACTACA ACAAGCCG
      (2) INFORMATION FOR SEQ ID NO: 40: (i) SEQUENCE CHARACTERISTICS:
35
                     (A) LENGTH: 226 base pairs (B) TYPE: nucleic acid
                     (C) STRANDEDNESS: single (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE: Hybrid DNA
40
            (vi) SCIENTIFIC NAME: KM6A/7
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:
AATTCGGCTT GTTGTAGTCG TTGATGCACA ACAGGGCATT GGGGTCGGCC TCACGGGCAA
45 ACTCGAAAGC TTTGGCAATG AACTCGTCGC CGCAGAGTTT GTAATGACGA CTCTCACGAT
AGGGGCTGGG AGCCTGACCT GGACGGCGTC CGAAACCGCC AAAGCCACCAA
                                                                                                                   60
                                                                                                                 120
     AGCCGCCACC GTCGGAAATG GCCTCGTTCA CTACATCCCA AAGCCG
                                                                                                                 180
                                                                                                       226
50 (2) INFORMATION FOR SEQ ID NO: 41:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 205 base pairs (B) TYPE: nucleic acid
                    (C) STRANDEDNESS: single
55
                     (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE: Hybrid DNA
            (vi) SCIENTIFIC NAME: KM6B/1
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:
60 ATCTGCAGAA ATTCGGCTTT GGGACGTGGT GAACGAGGCT ATGGCCGACG ACGTTCGCCG
CTCGCCCTGG AACCCGAATC CGTCGCCTTA CCGCAACTCG AAACTCTATC AGTTGTGCGG
TGATGAGTTC ATCGCTAAAG CATTCCAATT CGCCGTGAG GCCGACCCGA ACGCACAATT
                                                                                                                   60
                                                                                                                 120
                                                                                                                 180
     GTGCATCAAC GACTACAACA AGCCG
                                                                                                       205
     (2) INFORMATION FOR SEQ ID NO: 42:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 235 base pairs
(B) TYPE: nucleic acid
```

5	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM6B/2 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:
10	AATTCGGCTT GTTGTAGTCG TTGATGAAGA GCTTCATATC CTGTGGACCA TACTTGCGAG 60 CCAGCTTAAC GGCAGTACGA ACATAGTCGA TATCGCCCAG ATAATCCTGC CAGAAGAAGC 120 CCTCAGCATC GGCATGTCCG CTTGAGAGTG CCTCGTTCAC CACATCCCAA AGCCG 235
L5 20	(2) INFORMATION FOR SEQ ID NO: 43: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 244 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM6B/3 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:
25	AATTCGGCTT GTTGTAGTCG TTGATGAANA GTTTCAAGTC TTCCGGGTTG CCCTTGAAGT 60 GCTTGCGCGC ACTCTTAACC GCGGTACGCA CGTATTCGAN GTCGCCCATA TCGTCCTGCC 120 AAAAGAANAG CCATTCTGCA CTGAAGTCGG GTCGGTGTTG CGGCTACTGT TGTGCTGAAN 180 GGGATAATTG CCCTGCCCAT CGTTGCCGCC GCCAGANATA CCTCGTTCAC ACGTCCCAAA 240 GCCG 244
30	(2) INFORMATION FOR SEQ ID NO: 44: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 212 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single
35	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM6B/4 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:
40	AAATTCGGCT TGTTGTAGTC GTTGATGTAC AGGACCGGGG CTTTGCCGTA CTTGGCGCAA 60 GCCTCTGTTG CATAGGCGAA TGCAGCATCA ACCCAGTCTT TGGTGCTCGG GTAATAATTG 120 GCCAGACAA AGTCGTTGGC AGATGCTCCC TGGGTGCGGA ATGCCCCGCC GGCACCGTCT 180 GCAAAGGTCT CGTTCACCAC GTCCCAAAGC CG
45	(2) INFORMATION FOR SEQ ID NO: 45: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 190 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single
50	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM6B/5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:
55	AATTCGGCTT GTTGTAGTCG TTGTAGACA ACTCGTCAC CGCAGAGCTG ATAAGCGGTT GACTGACGAA GACTCGCAAAGCCG CCCAAAGCCG CCCAAAGCCC CCCAAAAGCCC CCCAAAAGCCC CCCAAAAAAAA
60 65	(2) INFORMATION FOR SEQ ID NO: 46: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 234 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: NS8/1
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:
	ARTTCGGCTT GACGGGGGA CGTAYGAYAT CTACGAGACC ACCCGCTACA ACGAACCCTC 60 CATCATCGGC ACCGCCACCT TCAACCAGTA CTGGAGCGTG CGCCAGTCCA GGCGCACCGG 120

```
CGGCACCATC ACCACCGGCA ACCACTTCGA CGCCTGGGCC AGCCACGGCA TGAACCTGGG 180
     CACCTTCAAC TACCAGATCC TGGCCACCGA RGGCTACCAA TSCTSCGGAA GCCG
  5 (2) INFORMATION FOR SEQ ID NO: 47:
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 234 base pairs
                     (B) TYPE: nucleic acid
            (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: NS8/6
10
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:
15 AATTCGGCTT GACGGGGRA CGTACGACAT CTACGAGCAC CAGCAAGTCA ACCAGCCCTC CATCCAAGGC ACTGCGACCT TCAACCAGTA CTGGTCCATC CGCCAGAGCA AGCGTTCCAG CGGCACTGTG ACCACTGCA ACCACTTCAA TGCTTGGGCC AAGTTGGGAA TGAACCTGGG
                                                                                                                      60
                                                                                                                    120
                                                                                                                    180
     CAACTTCAAC TACCAGATTG TTTCCACTGA RGGCTACCAG WCCTSCGGAA GCCG
                                                                                                          234
20 (2) INFORMATION FOR SEQ ID NO: 48:
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 234 base pairs
                     (B) TYPE: nucleic acid
(C) STRANDEDNESS: single
            (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA
25
            (vi) SCIENTIFIC NAME: NS8/11
            (xi) SEQUENCE DESCRIPTION: SEO ID NO: 48:
30 AATTCGGCTT GACGGGGGA CGTATGATAT CTACAAGCAC CAACAGGTCA ATCAGCCATC TATTCAGGGC ACCACCCT TCAATCAGTA CTGCTCGATT CGACAGACCA AGCGGACCAG CGGCACTGTC ACTACGGCAA ACCACTTTAA TGCCTGGGCT GCTCTTGGCA TGAATATGGG TGCATTCAAT TACCAGATCC TCGTTACTGA GGGCTACCAA TCTACCGGAA GCCG 234
                                                                                                                    120
                                                                                                                    180
35 (2) INFORMATION FOR SEQ ID NO: 49:
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 213 base pairs (B) TYPE: nucleic acid
                     (C) STRANDEDNESS: single (D) TOPOLOGY: linear
40
            (ii) MOLECULE TYPE: Hybrid DNA
            (vi) SCIENTIFIC NAME: NS8/12
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:
45 AATTCGGCTT GACGGGGGA CGTACGACAT TTATGAAACA ACCCGTGTCA ATCAGCCTTC CATTATCGGG ATCGCAACCT TCAAGCAATA TTGGAGTGTA CGTCAAACGA AACGTACAAG CGGAACGGTC TCCGTCAGTG CGCATTTTAG AAAATGGGAA AGCTTAGGGA TGCCAATGGG
                                                                                                                      60
                                                                                                                    120
                                                                                                                    180
     GAAAATGTAT GAAACGGCAT TTACTGTAAG CCG
                                                                                                          213
50
      (2) INFORMATION FOR SEQ ID NO: 50:
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 196 base pairs
(B) TYPE: nucleic acid
                     (C) STRANDEDNESS: single (D) TOPOLOGY: linear
55
            (ii) MOLECULE TYPE: Hybrid DNA
            (vi) SCIENTIFIC NAME: KM8A/1
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:
60
     AATTCGGCTT TGGGACGTGG TGAATGAGGC AATGGCAGAC AATGTTCGTC CTAACCCGTG
GAATCCCAAC CCCTCGCCT ACCGTGACTC CCGCCACTAC AAATTGTGCG GCGACGAGTT
CATCGCCAAG GCATTCCAAT TCGCAAGGGA AGCCCGACCCG AAGGCACAAT TGTTCAACAA
                                                                                                                      60
                                                                                                                    120
                                                                                                                    180
     CGACTACAAC AAGCCG
                                                                                                          196
      (2) INFORMATION FOR SEQ ID NO: 51:
```

SUBSTITUTE SHEET (RULE 26)
Patent provided by Sughrue Mion, PLCC - http://www.sughrue.com

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 211 base pairs

```
(B) TYPE: nucleic acid
                    (C) STRANDEDNESS: single (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE: Hybrid DNA
 5
            (vi) SCIENTIFIC NAME: KM8A/3
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:
AATTCGGCTT GTTGTAGTCG TTGATGCACA GGACCGGGGC TTTGCCGTAC TTGGCGCAAG CCTCTGTTGC ATAGGCGAAT GCAGCATCAA CCCAGTCTTT GGTGCTCGGG TAATAATTGC GATGCTCCCT GGGTGCGGAA TGCCCCGCCG GCACCGTCTG
                                                                                                                 120
                                                                                                                 180
     CAAAGGTCTC GTTCACCACG TCCCAAAGCC G
                                                                                                       211
      (2) INFORMATION FOR SEQ ID NO: 52:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 240 base pairs
15
                     (B) TYPE: nucleic acid
(C) STRANDEDNESS: single
                     (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE: Hybrid DNA
(vi) SCIENTIFIC NAME: KM8B/7
20
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:
AATTCGGCTT GACGGGGGA CGTACGACAT CTACAAGACC ACCAGATACG AACAGCCCTC 60
TATCGACGGC ACCAGACCT TCGACCAGTA CTGGAGCGTA AGACAGTCCA AGCCACAGGG 120
25 CGAGGGCAAG AAGATAGAAG GTACTATCTC AGTGTCCAAG CACTTCGATG CGTGGAAAAA 180
      GTGCGGCCTT GAGCTCGGAA ATATGTATGA AGTANCTCTT ACTATCGAAG GGCTAAGCCG 240
      (2) INFORMATION FOR SEQ ID NO: 53:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 229 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
30
                     (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE: Hybrid DNA
(vi) SCIENTIFIC NAME: KM8A/9
35
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:
AATTCCCGGA GGTTTGGCAG CCTTCAATAG TAAGAGCAGC TTCATACATT AATCCTAATT
TCATTCCTTT GCTTGTCCAA GCTTTGAAGT GGTCACTTAC AGAAATAGTT CCACTAGTTT
40 TTTTTTCAGT TCTGACACTC CAGAATTGTT TAAATGTAGC AGTACCATCA ATTGAAGGTT
                                                                                                                  60
                                                                                                                 120
                                                                                                                 180
      GATTAATTCT GTCAGTGGTA TANATATCAT ACGTCCCCCC ATCAAGCCG
                                                                                                       229
      (2) INFORMATION FOR SEQ ID NO: 54:
             (1) SEQUENCE CHARACTERISTICS:
45
                     (A) LENGTH: 234 base pairs
                     (B) TYPE: nucleic acid
                     (C) STRANDEDNESS: single
            (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: Hybrid DNA
(vi) SCIENTIFIC NAME: KM8B/10
50
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:
AATTCGGCTT GACGGGGGA CGTACGACAT ATACGAGACT ACTCGTTACA ACCAGCCTTC
AATCGAAGGC AACACTACTT TCCAGCAGTA CTGGAGCGTT CGTACATCCA AGCGCACCAG
55 CGGTACCATT TCCGTATCCG AGCACTTTAA GGCTTGGGAA CGCATGGGTA TGAGATGCGG
                                                                                                                  60
                                                                                                                 120
                                                                                                                 180
      AAACCTTTAT GAGACTGCTT TAACTGTTGA GGGCTACCAN ACCACCGGAA GCCG
      (2) INFORMATION FOR SEQ ID NO:55:
              (i) SEQUENCE CHARACTERISTICS:
60
                     (A) LENGTH: 1060 base pairs
                     (B) TYPE: nucleic acid
                     (C) STRANDEDNESS: single
            (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA
(iii) HYPOTHETICAL: NO
65
              (vi) ORIGINAL SOURCE:
                     (A) ORGANISM: Humicola insolens
                     (B) STRAIN: DSM 1800
              (ix) FEATURE:
```

		(i)	(1	A) NI B) Lo Eatui	CAT	ŒY: [ON:	mat 73.	_pept .927	ide								
5			() (1 c) Fl	A) NI B) LO EATUI A) NI	AME/I DCATI RE: AME/I	CEY:	10.	.72	ide					•			
10	GGA:		L) SI AG A' Mo	B) LC EQUE FG CC et A: 21 -2	NCE I ST T(rg Se	DESCI	RIPT:	CC C	rc c:	rc co	CG TO	CC G	CC G'	al Va	al Al	CC La	48
15	GCC Ala	CTG Leu	CCG		TTG	GCC Ala	CTT Leu	GCC Ala	GCT	GAT	GGC Gly	AGG Arg	TCC Ser 5	ארר	CGC Arg	TAC Tyr	96
20	TGG Trp	GAC Asp 10	TGC Cys	TGC Cys	AAG Lys	CCT Pro	TCG Ser 15	TGC Cys	G1y GGC	TGG Trp	GCC Ala	AAG Lys 20	AAG Lys	GCT Ala	ccc Pro	GTG Val	144
25	AAC Asn 25	CAG Gln	CCT Pro	GTC Val	TTT Phe	TCC Ser 30	TGC Cys	AAC Asn	GCC Ala	AAC Asn	TTC Phe 35	CAG Gln	CGT Arg	ATC Ile	ACG Thr	GAC Asp 40	192
30	TTC Phe	GAC Asp	GCC Ala	AAG Lys	TCC Ser 45	GGC Gly	Cys Cys	GAG Glu	CCG Pro	GGC Gly 50	GGT Gly	GTC Val	GCC Ala	TAC Tyr	TCG Ser 55	TGC Cys	240
	GCC Ala	GAC Asp	CAG Gln	ACC Thr 60	CCA Pro	TGG Trp	GCT Ala	GTG Val	AAC Asn 65	GAC Asp	GAC Asp	TTC Phe	GCG Ala	CTC Leu 70	GGT Gly	TTT Phe	288
35	GCT Ala	GCC Ala	ACC Thr 75	TCT	ATT Ile	GCC Ala	GGC Gly	AGC Ser 80	AAT Asn	GAG Glu	GCG Ala	GGC Gly	TGG Trp 85	TGC Cys	TGC Cys	GCC Ala	336
40	TGC Cys	TAC Tyr 90	GAG Glu	CTC Leu	ACC Thr	TTC Phe	ACA Thr 95	TCC Ser	GGT Gly	CCT Pro	GTT Val	GCT Ala 100	GGC Gly	AAG Lys	AAG Lys	ATG Met	384
45	105	Val	GIn	TCC Ser	Thr	Ser 110	Thr	Gly	Gly	Asp	Leu 115	Gly	Ser	Asn	His	Phe 120	432
`50	Авр	Leu	Asn	ATC Ile	Pro 125	Gly	Gly	Gly	Val	Gly 130	Ile	Phe	Авр	Gly	Сув 135	Thr	480
	PIO	GIN	Pne	GGC Gly 140	Gly	Leu	Pro	Gly	Gln 145	Arg	Tyr	Gly	Gly	Ile 150	Ser	Ser	528
55		ASII	155	Сув	Asp	Arg	Phe	Pro 160	yab	Ala	Leu	Lys	Pro 165	Gly	Сув	Tyr	576
60	Trp	170	Pne	GAC Asp	Trp	Phe	Lys 175	Asn	Ala	Asp	Asn	Pro 180	Ser	Phe	Ser	Phe	624
65	185	GIN	val	CAG Gln	Сув	Pro 190	Ala	Glu	Leu	Val	Ala 195	Arg	Thr	Gly	Сув	Arg 200	672
	CGC Arg	AAC Asn	GAC Asp	GAC Asp	GGC Gly 205	AAC Asn	TTC Phe	CCT Pro	GCC Ala	GTC Val 210	CAG Gln	ATC Ile	CCC Pro	TCC Ser	AGC Ser 215	AGC Ser	720

5	ACC Thr	AGC Ser	TCT Ser	CCG Pro 220	GTC Val	AAC Asn	CAG Gln	CCT Pro	ACC Thr 225	AGC Ser	ACC Thr	AGC Ser	ACC Thr	ACG Thr 230	TCC Ser	ACC Thr	768
_	TCC Ser	ACC Thr	ACC Thr 235	TCG Ser	AGC Ser	CCG Pro	CCA Pro	GTC Val 240	CAG Gln	CCT Pro	ACG Thr	ACT Thr	CCC Pro 245	AGC Ser	GGC Gly	TGC Cys	816
10	ACT Thr	GCT Ala 250	GAG Glu	AGG Arg	TGG Trp	GCT Ala	CAG Gln 255	TGC Cys	GGC Gly	GGC Gly	AAT Asn	GGC Gly 260	TGG Trp	AGC Ser	GGC Gly	TGC Cyb	864
15	ACC Thr 265	ACC Thr	TGC Cys	GTC Val	GCT Ala	GGC Gly 270	AGC Ser	ACT Thr	TGC Cys	ACG Thr	AAG Lys 275	ATT Ile	AAT Asn	GAC Asp	TGG Trp	TAC Tyr 280	912
20	CAT His	CAG Gln	TGC Cys	CTG Leu	TAG <i>A</i> 285	\CGC}	AGG (CAGO	CTTG?	AG GC	CCTI	PACTO	G GT	GCC	GCAA		964
	CGA	ATG	ACA (CTCCC	CAATO	CA CI	'GTA'	TAG	r TCI	rtgt <i>i</i>	CAT	AATT	rrcg:	CA :	rccc:	TCCAGG	1024
25	GATT	rgtc <i>i</i>	ACA 1	CAAAT	GCA	AT G	\GGA#	CAAT	r gac	STAC							1060
30	(2)	ı	(ii)	SEQUAL (A) (B) (D) MOLE	IENCE LEN TYP TOP CULE	CHI STH: PE: 6 POLOGE TYI	RACT 305 mino Y: 1 PE: p	TERIS S ami D aci Lines Drote	STICS ino a id ar ein	S: Acida		:56:					
35	Met -21	Arg											Ala	Ala	Leu	Pro	
40	Val -5	Leu	Ala	Leu	Ala	Ala 1	qaA	Gly	Arg	Ser 5	Thr	Arg	Tyr	Trp	Asp 10	Сув	
	Сув	Lув	Pro	Ser 15	Сув	Gly	Trp	Ala	Lys 20	Lys	Ala	Pro	Val	Asn 25	Gln	Pro	
45			30					35		Arg			40		_		
		45					50			Ala		55					
50	Thr 60					65					70					75	
55	Ser	Ile	Ala	Gly	Ser 80	Asn	Glu	Ala	Gly	Trp 85	Сув	Сув	Ala	Cys	Tyr 90		
				95					100	Gly	_	-		105			
60			110					115		Ser			120				
		125					130					135				Phe	
65	140					145				Gly	150					155	
	Сув	Asp	Arg	Phe	Pro 160	Asp	Ala	Leu	Lys	Pro 165	Gly	Сув	Tyr	Trp	Arg 170	Phe	

```
Asp Trp Phe Lys Asn Ala Asp Asn Pro Ser Phe Ser Phe Arg Gln Val
                                               180
 5 Gln Cys Pro Ala Glu Leu Val Ala Arg Thr Gly Cys Arg Arg Asn Asp
                                         195
     Asp Gly Asn Phe Pro Ala Val Gln Ile Pro Ser Ser Ser Thr Ser Ser
10
     Pro Val Asn Gln Pro Thr Ser Thr Ser Thr Thr Ser Thr Ser Thr Thr
     Ser Ser Pro Pro Val Gln Pro Thr Thr Pro Ser Gly Cys Thr Ala Glu
    Arg Trp Ala Gln Cys Gly Gly Asn Gly Trp Ser Gly Cys Thr Thr Cys 255 260 265
20 Val Ala Gly Ser Thr Cys Thr Lys Ile Asn Asp Trp Tyr His Gln Cys 270 275 280
     Leu
25
     (2) INFORMATION FOR SEQ ID NO: 57:
           (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 9 amino acids
(B) TYPE: amino acid
30
                  (C) STRANDEDNESS: single (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "Conserved region"
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:
    Thr Arg Tyr Trp Asp Cys Cys Lys Pro/Thr
40 (2) INFORMATION FOR SEQ ID NO: 58:
            (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 6 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
45
          (ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "Conserved region"
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:
50 Trp Arg Phe/Tyr Asp Trp Phe
     (2) INFORMATION FOR SEQ ID NO: 59:
            (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 41 base pairs (B) TYPE: nucleic acid
55
                  (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(A) DESCRIPTION: /desc = "Primer s"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:
60
     GCTGATGGCA GGTCCACIA/CG ITAC/TTGGGAC/T TGC/TTGC/TAAA/GA/C C
     (2) INFORMATION FOR SEQ ID NO: 60:
            (1) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 29 base pairs
                  (B) TYPE: nucleic acid
```

	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid	
5	(A) DESCRIPTION: /desc = "Primer as" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:	
	GTCGGCGTTC TTA/GAACCAA/GT CA/GA/TAICG/TCC	29
10	(2) INFORMATION FOR SEQ ID NO: 61: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
15	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "forward primer 1" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:	
20	TGGTTC/TAAGA ACGCCGACAA TCCG	24
25	(2) INFORMATION FOR SEQ ID NO: 62: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "reverse primer 1" (**i) SEQUENCE DESCRIPTION: SEQ ID NO: 62:	
30	GCTCTAGAGC CTGCGTCTAC AGGCACTGAT	30
35	(2) INFORMATION FOR SEQ ID NO: 63: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 93 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
40	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "forward primer 2" (*i) SEQUENCE DESCRIPTION: SEQ ID NO: 63:	
	CGGGATCCCA TTTATGATGG TCGCGTGGTG GTCTCTATTT CTGTACGGCC	
45	TTCAGGTCGC GGCACCTGCT TTCGCTGCTG ATGGCAGGTC CAC	93
50	(2) INFORMATION FOR SEQ ID NO: 64: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
55	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "reverse primer 2" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:</pre>	
	GCTCTAGAGC CTGCGTCTAC AGGCACTGAT	30
60	(2) INFORMATION FOR SEQ ID NO: 65: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 922 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
65	(D) TOPOLOGY: linear	

			(1	ATURI A) Ni B) Lo	AME/I	ON:	192											
5		(xi)	SEC	QUENC	CE DE	ESCR	[PTIC	ON: S	SEQ :	ID NO): 69	5:						
	CCA Pro 1	TTT Phe	ATG Met	ATG Met	GTC Val 5	GCG Ala	TGG Trp	TGG Trp	TCT Ser	CTA Leu 10	TTT Phe	CTG Leu	TAC Tyr	GGC Gly	CTT Leu 15	CAG Gln	4	48
10	GTC Val	GCG Ala	GCA Ala	CCT Pro 20	GCT Ala	TTC Phe	GCT Ala	GCT Ala	GAT Asp 25	GGC Gly	AGG Arg	TCC Ser	ACG Thr	CGG Arg 30	TAC Tyr	TGG Trp	ģ	96
15	GAT Asp	TGC Cys	TGT Cys 35	AAG Lув	CCG Pro	TCG Ser	TGC Cys	TCG Ser 40	TGG Trp	CCC Pro	GGC Gly	AAG Lys	GCG Ala 45	CTC Leu	GTG Val	AAC Asn	14	14
20	CAG Gln	Pro-	GTC Val	TAC Tyr	GCC Ala	CGC Arg	AAC Asn 55	GCA Ala	AAC Asn	TTC Phe	CAG Gln	CGC Arg 60	ATC Ile	ACC Thr	GAC Asp	CCC Pro	19	}2
25	AAC Asn 65	GCC Ala	AAG Lys	TCC Ser	GGC Gly	TGC Cys 70	GAT Asp	GGC Gly	GGC Gly	TCC Ser	GCC Ala 75	TTC Phe	TCC Ser	ТС С Сув	GCC Ala	GAC Asp 80	24	10
	CAG Gln	ACC Thr	CCG Pro	TGG Trp	GCC Ala 85	GTG Val	AGC Ser	GAC Asp	GAC Asp	TTT Phe 90	GCC Ala	TAC Tyr	GGT Gly	TTC Phe	GCG Ala 95	GCT Ala	28	38
30	ACG Thr	GCG Ala	CTC Leu	GCC Ala 100	GGC Gly	CAG Gln	TCC Ser	GAG Glu	TCT Ser 105	TCG Ser	TGG Trp	TGC Cys	TGT Cys	GCC Ala 110	TGC Cys	TAC Tyr	33	36
35	GAA Glu	CTC Leu	ACC Thr 115	TTC Phe	ACT Thr	TCG Ser	GGC Gly	CCC Pro 120	GTT Val	GCT Ala	GGC Gly	AAG Lys	AAG Lys 125	ATG Met	GCT Ala	GTC Val	38	34
40	CAG Gln	TCC Ser 130	ACC Thr	AGC Ser	ACT Thr	GGC Gly	GGT Gly 135	GAC Asp	CTC Leu	GGT Gly	AGC Ser	AAC Asn 140	CAC His	TTT Phe	GAC Asp	CTC Leu	43	32
45	AAC Asn 145	ATG Met	CCA Pro	GGT Gly	GGC Gly	GGT Gly 150	GTC Val	GGC Gly	ATC Ile	TTC Phe	GAC Asp 155	GGC Gly	TGC Сув	TCG Ser	CCT Pro	CAG Gln 160	48	30
	GTT Val	GGC Gly	G GT Gly	CTC Leu	GCC Ala 165	GGC Gly	CAG Gln	CGC Arg	TAT Tyr	GGC Gly 170	GGC GGC	GTC Val	TCG Ser	TCC Ser	CGC Arg 175	AGC Ser	52	28
50	GAA Glu	TGC Cys	GAC Asp	TCC Ser 180	TTC Phe	CCC Pro	GCG Ala	GCA Ala	CTC Leu 185	AAG Lys	CCC Pro	GGC Gly	TGC Cys	TAC Tyr 190	TGG Trp	CGC Arg	57	16
55	TAC Tyr	GAC Asp	TGG Trp 195	TTT Phe	AAG Lys	AAC Asn	GCC Ala	GAC Asp 200	AAT Asn	CCG Pro	AGC Ser	TTC Phe	AGC Ser 205	TTC Phe	CGT Arg	CAG Gln	62	24
60	GTC Val	CAG Gln 210	TGC Cys	CCA Pro	GCC Ala	GAG Glu	CTC Leu 215	GTC Val	GCT Ala	CGC Arg	ACC Thr	GGA Gly 220	TGC Cys	CGC Arg	CGC Arg	AAC Asn	67	72
65	GAC Asp 225	GAC Asp	GGC Gly	AAC Asn	TTC Phe	CCT Pro 230	GCC Ala	GTC Val	CAG Gln	ATC Ile	CCC Pro 235	TCC Ser	AGC Ser	AGC Ser	ACC Thr	AGC Ser 240	72	30
5 5	TCT Ser	CCG Pro	GTC Val	AAC Asn	CAG Gln 245	CCT Pro	ACC Thr	AGC Ser	ACC Thr	AGC Ser 250	ACC Thr	ACG Thr	TCC Ser	ACC Thr	TCC Ser 255	ACC Thr	76	58

5	ACC Thr	TCG Ser	AGC Ser	CCG Pro 260	CCA Pro	GTC Val	CAG Gln	CCT Pro	ACG Thr 265	ACT Thr	CCC Pro	AGC Ser	GGC Gly	TGC Cys 270	ACT Thr	GCT Ala	816
	GAG Glu	AGG Arg	TGG Trp 275	GCT Ala	CAG Gln	TGC Cyb	GGC Gly	GGC Gly 280	AAT Asn	GGC Gly	TGG Trp	AGC Ser	GGG Gly 285	TGC Cys	ACC Thr	ACC Thr	864
10	TGC Cys	GTC Val 290	GCT Ala	GGC Gly	AGC Ser	ACT	TGC Cys 295	ACG Thr	AAG Lys	ATT Ile	AAT Asn	GAC Asp 300	TGG Trp	TAC Tyr	CAT His	CAG Gln	912
15	TGC Cys 305	CTG Leu	TAG *	A .													922
20	(2)	(ii)	(i) i) i) i) i OM (TION SEQUE TO TO LECUI QUENC	ENCE ENGTI (PE: OPOLO LE T'	CHAI H: 30 Amii DGY: YPE:	RACTE 07 and 10 ac line prot	ERIST mino cid ear eein	TICS: acid	ds	O: 2:						
	Pro			Met						Leu			Tyr	Gly		Gln	
30	Val	Ala	Ala	Pro 20	Ala	Phe	Ala	Ala	Asp 25	Gly 10	Arg	Ser	Thr	Arg 30	15 Tyr	Trp	
	Авр	Сув	Сув 35	Lys	Pro	Ser	Сув	Ser 40	Trp	Pro	Gly	Lys	Ala 45	Leu	Val	Asn	
35	Gln	Pro 50	Val	Tyr	Ala	Arg	Asn 55	Ala	Asn	Phe	Gln	Arg 60		Thr	Авр	Pro	
40	Asn 65	Ala	Lys	Ser	Gly	Сув 70	Asp	Gly	Gly	Ser	Ala 75	Phe	Ser	Сув	Ala	Asp 80	
	Gln	Thr	Pro	Trp	Ala 85	Val	Ser	Asp	Asp	Phe 90	Ala	Tyr	Gly	Phe	Ala 95	Ala	
45	Thr	Ala	Leu	Ala 100	Gly	Gln	Ser	Glu	Ser 105	Ser	Trp	Сув	Сув	Ala 110	Сув	Tyr	
50	Glu	Leu	Thr 115	Phe	Thr	Ser	Gly	Pro 120	Val	Ala	Gly	Lys	Lys 125	Met	Ala	Val	
	Gln	Ser 130	Thr	Ser	Thr	Gly	Gly 135	Asp	Leu	Gly	Ser	Asn 140	His	Phe	Asp	Leu	
55	Asn 145	Met	Pro	Gly	Gly	Gly 150	Val	Gly	Ile	Phe	Авр 155	Gly	Сув	Ser	Pro	Gln 160	
	Val	Gly	Gly	Leu	Ala 165	Gly	Gln	Arg	Tyr	Gly 170	Gly	Val	Ser	Ser	Arg 175	Ser	
60	Glu	Сув	Asp	Ser 180	Phe	Pro	Ala	Ala	Leu 185	Lys	Pro	Gly	Сув	Tyr 190	Trp	Arg	
65	Tyr	Asp	Trp 195	Phe	Lys	Asn	Ala	Asp 200	Asn	Pro	Ser	Phe	Ser 205	Phe	Arg	Gln	
55	Val	Gln 210	Cys	Pro	Ala	Glu	Leu 215	Val	Ala	Arg	Thr	Gly 220		Arg	Arg	Asn	
	Asp	Asp	Gly	Asn	Phe	Pro	Ala	Val	Gln	Ile	Pro	Ser	Ser	Ser	Thr	Ser	

	225					230					235					240	
5	Ser	Pro	Val	Asn	Gln 245	Pro	Thr	Ser	Thr	Ser 250	Thr	Thr	Ser	Thr	Ser 255	Thr	t
•	Thr	Ser	Ser	Pro 260	Pro	Val	Gln	Pro	Thr 265	Thr	Pro	Ser	Gly	Сув 270	Thr	Ala	
10			2/5					280			Trp		285				
		290	Ala	Gly	Ser	Thr	Сув 295	Thr	Lys	Ile	Asn	Asp 300	Trp	Tyr	His	Gln	
1.5	Сув 305		*										٠				
20	(2)	(i) SE(() () () ()	TION QUENCA) LI B) TO C) SO TO	CE CI ENGTI YPE: TRANI OPOLO	HARAG H: 92 nuc DEDNI DGY:	CTER: 22 ba leic ESS: line	ISTICABE acic acic acic acic acic	CS: pair:	3							
25		(ix) FE () ()	LECUI ATURI A) NI B) LO QUENO	e: ame/i ocat:	KEY:	CDS	22	SEQ :	ID NO): 6 [.]	7:					
30		1	ne Me	et Me	et Va	5 5	la Ti	cp T	rp Se	er Le	eu Pl 10	ne Lo	au Ty	yr G	ly L	eu 15	46
35	CAG Gln	GTC Val	GCG Ala	GCA Ala	CCT Pro 20	GCT Ala	TTC Phe	GCT Ala	GCT Ala	GAT Asp 25	Gly	AGG Arg	TCC Ser	ACG Thr	AGG Arg 30	TAC Tyr	94
40	Trp	АВЪ	cys	35	rys	Pro	Ser	Сув	Ser 40	Trp	GGC Gly	Asp	Lys	Ala 45	Ser	Val	142
45	AGC Ser	GCC Ala	CCC Pro 50	GTC Val	CTG Leu	ACC Thr	TGC Cys	GAC Asp 55	AAG Lys	AAC Asn	GAC Asp	AAC Aan	CCC Pro 60	ATC Ile	TCC Ser	GAC Asp	190
73	GCC Ala	AAC ABN 65	GCC Ala	GTG Val	AGC Ser	GGT Gly	TGC Cys 70	AAC Asn	GGC Gly	GGC Gly	ACT Thr	TCC Ser 75	TAC Tyr	ACC Thr	TGC Cys	AGC Ser	238
50	AAC Asn 80	AAC Asn	TCC Ser	CCG Pro	TGG Trp	GCT Ala 85	GTC Val	AAC Asn	GAC Asp	AAC Asn	CTC Leu 90	GCC Ala	TAT Tyr	GGC Gly	TTT Phe	GCC Ala 95	286
55	WIG	Inr	гуя	Leu	100	GIY	GIY	Ser	Glu	Ser 105		Trp	Сув	Сув	Ala 110	Cys	334
60	ıyr	AIA	Leu	115	Pne	Tnr	Thr	Gly	Pro 120	Val	AAG Lys	Gly	Lys	Thr 125	Met	Val	382
65	GTA Val	CAG Gln	TCC Ser 130	ACC Thr	AAC Asn	ACC Thr	GGA Gly	GGC Gly 135	GAT Asp	CTC Leu	e1A ecc	GAG Glu	AAC Asn 140	CAC His	TTC Phe	GAT Asp	430
	CTC Leu	CAG Gln 145	ATG Met	CCC Pro	GGC Gly	GGC Gly	GGT Gly 150	GTC Val	GGC Gly	ATC Ile	TTT Phe	GAC Asp 155	GGC Gly	TGC Cys	AGC Ser	TCC Ser	478

5	CAG Gln 160	TGG Trp	GGT Gly	GGC Gly	CTC Leu	GGC Gly 165	GGT Gly	GCT Ala	CAG Gln	TAC Tyr	GGC Gly 170	GGC Gly	ATC Ile	TCG Ser	TCG Ser	CGA Arg 175	526
10	AGC Ser	GAC Asp	TGC Cys	ABP	AGC Ser 180	TTC Phe	CCC Pro	GAG Glu	CTG Leu	CTC Leu 185	AAG Lys	GAC Asp	GGC Gly	TGC Cys	TAC Tyr 190	TGG Trp	574
10	CGC Arg	TAC Tyr	GAC Asp	TGG Trp 195	TTC Phe	AAG Lys	AAC Asn	GCC Ala	GAC Asp 200	AAT Asn	CCG Pro	AGC Ser	TTC Phe	AGC Ser 205	TTC Phe	CGT Arg	622
15	CAG Gln	GTC Val	CAG Gln 210	TGC Cys	CCA Pro	GCC Ala	GAG Glu	CTC Leu 215	GTC Val	GCT Ala	CGC Arg	ACC Thr	GGA Gly 220	TGC Cys	CGC Arg	CGC Arg	670
20	AAC Asn	GAC Asp 225	GAC Asp	GGC Gly	AAC Asn	TTC Phe	CCT Pro 230	GCC Ala	GTC Val	CAG Gln	ATC Ile	CCC Pro 235	TCC Ser	AGC Ser	AGC Ser	ACC Thr	718
25	AGC Ser 240	TCT Ser	CCG Pro	GTC Val	AAC Asn	CAG Gln 245	CCT Pro	ACC Thr	AGC Ser	ACC Thr	AGC Ser 250	ACC Thr	ACG Thr	TCC Ser	ACC Thr	TCC Ser 255	766
30	ACC Thr	ACC Thr	TCG Ser	AGC Ser	CCG Pro 260	CCA Pro	GTC Val	CAG Gln	CCT Pro	ACG Thr 265	ACT Thr	CCC Pro	AGC Ser	GGC Gly	TGC Cys 270	ACT Thr	814
30	GCT Ala	GAG Glu	AGG Arg	TGG Trp 275	GCT Ala	CAG Gln	TGC Cys	GGC Gly	GGC Gly 280	AAT Asn	GGC Gly	TGG Trp	AGC Ser	GGC Gly 285	TGC Cys	ACC Thr	862
35	ACC Thr	TGC Cys	GTC Val 290	GCT Ala	GGC Gly	AGC Ser	ACT Thr	TGC Cys 295	ACG Thr	AAG Lys	ATT Ile	AAT Asn	GAC Asp 300	TGG Trp	TAC Tyr	CAT His	910
40	CAG Gln		CTG Leu														922
45	(2)		(1) (1) (1)	TION SEQUIA) LI B) TI	ence Engti Ype: Opol	CHA H: 3 ami OGY:	RACT 07 au no a lin	ERIS mino cid ear	TICS aci								
50				QUEN						ID N	0: 6	8:					
50	1			Met	5					10					15		
55	Val	Ala	Ala	Pro 20		Phe	Ala	Ala	Авр 25		Arg	Ser	Thr	Arg 30	-	Trp	
	Asp	Сув	Сув 35	Lys	Pro	Ser	Сув	Ser 40		Gly	Авр	Lys	Ala 45		Val	Ser	
60	Ala	Pro 50		Leu	Thr	Сув	Авр 55		Asn	Asp	ABn	Pro 60		Ser	yab	Ala	
65	Asn 65	Ala	Val	Ser	Gly	Сув 70		Gly	Gly	Thr	Ser 75		Thr	Сув	Ser	Asn 08	
7,7	Asn	Ser	Pro	Trp	Ala 85		Asn	yab	Asn	Leu 90		Tyr	Gly	Phe	Ala 95	Ala	
	Thr	Lys	Leu	Ser	Gly	Gly	Ser	Glu	Ser	Ser	Trp	Cys	Сув	Ala	Cys	Tyr	

			•	100					105					110				
5	Ala	Leu	Thr 115	Phe	Thr	Thr	Gly	Pro 120	Val	Lys	Gly	Lys	Thr 125		Val	Val		
	Gln	Ser 130	Thr	Asn	Thr	Gly	Gly 135	Asp	Leu	Gly	Glu	Asn 140	His	Phe	yab	Leu		
10	Gln 145	Met	Pro	Gly	Gly	Gly 150	Val	Gly	Ile	Phe	Asp 155	Gly	Cys	Ser	Ser	Gln 160		
	Trp	Gly	Gly	Leu	Gly 165	Gly	Ala	Gln	Tyr	Gly 170	Gly	Ile	Ser	Ser	Arg 175	Ser		
15	Asp	Сув	Asp	Ser 180	Phe	Pro	Glu	Leu	Leu 185	Lys	Asp	Gly	Сув	Tyr 190	Trp	Arg		
20	Tyr	Asp	Trp 195	Phe	Lys	Asn	Ala	Asp 200	Asn	Pro	Ser	Phe	Ser 205	Phe	Arg	Gln		
		210		Pro		•	215					220						
25	225			Asn		230					235					240		
				Asn	245					250					255			
30	Thr			260					265					270				
35			275	Ala				280					285					
		290	Ala	Gly	Ser	Thr	Сув 295	Thr	ГÀв	Ile	Asn	300	Trp	Tyr	His	Gln		
40	305	Leu	.													,		
45	(2)	(i)) SE(() () () ()	TION QUENCA) LI B) T C) S C) T CLECUI	ce ci engti (pe: [rani opolo	iARAC i: 9: nuc: DEDNI DGY:	CTERI 28 ba leic ESS: line	ISTIC ase p acid sinc sar	CS: pair: i		W *							
50			(2 (1	ATURI A) Ni B) Lo QUENO	AME/I	CON:	192		SEQ :	ID N	D: 69	9:						
55	CCA Pro 1	TTT	ATG	ATG	GTC	GCG	TGG	TGG	TCT	CTA	TTT	CTG	TAC Tyr	GGC Gly	CTT Leu 15	CAG Gln		48
60	GTC Val	GCG Ala	GCA Ala	CCT Pro 20	GCT Ala	TTC Phe	GCT Ala	GCT Ala	GAT Asp 25	GGC GGC	AGG Arg	TCC Ser	ACG Thr	AGG Arg 30	TAC Tyr	TGG Trp		96
65	GAT Asp	TGC Cys	TGC Cys 35	AAG Lys	CCC Pro	TCT Ser	TGC	TCT Ser 40	TGG Trp	GGC Gly	GGA Gly	AAG Lys	GCT Ala 45	GCT Ala	GTC Val	AGC Ser	1	44
-	GCC Ala	CCT Pro	Ala	TTG Leu	ACC Thr	TGT Cys	GAC Asp	AAG Lys	AAG Lys	GAC Asp	AAC Asn	CCC	ATC Ile	TCA Ser	AAC Asn	CTG Leu	1	92

	AAC Asn 65	GCT Ala	GTC Val	AAC Asn	GGT Gly	TGT Cys 70	GAG Glu	GGT Gly	GGT Gly	GGT Gly	TCT Ser 75	GCC Ala	TTC Phe	GCC Ala	TGC Cys	ACC Thr 80		240
5	AAC Asn	TAC Tyr	TCT Ser	CCT Pro	TGG Trp 85	GCG Ala	GTC Val	TAA naA	GAC Asp	AAC Asn 90	CTT Leu	GCC Ala	TAC Tyr	GGC Gly	TTC Phe 95	GCT Ala		288
10	Ala	Thr	ГЛ́а	CTT Leu 100	Ala	Gly	Gly	Ser	Glu 105	Gly	Ser	Trp	Сув	Сув 110	Ala	Сув		336
15	Tyr	Ala	Leu 115	ACC Thr	Phe	Thr	Thr	Gly 120	Pro	Val	Lys	Gly	Lys 125	Thr	Met	Val	٠	384
20	Val	G1n 130	Ser	ACC Thr	Asn	Thr	Gly 135	Gly	Asp	Leu	Gly	Asp 140	Asn	His	Phe	Asp		432
	Leu 145	Met	Met	CCT Pro	Gly	Gly 150	Gly	Val	Gly	Ile	Phe 155	Asp	Gly	Сув	Thr	Ser 160		480
25	Gln	Phe	Gly	AAG Lys	Ala 165	Leu	Gly	Gly	Ala	Gln 170	Tyr	Gly	Gly	Ile	Ser 175	Ser		528
30	Arg	Ser	Glu	TGC Cys 180	Asp	Ser	Phe	Pro	Glu 185	Thr	Leu	Lys	увь	Gly 190	Сув	His		576
35	Trp	Arg	Phe 195	GAC Asp	Trp	Phe	Lys	Asn 200	Ala	Asp	Asn	Pro	Ser 205	Phe	Ser	Phe		624
40	Arg	Gln 210	Val	CAG Gln	Сув	Pro	Ala 215	Glu	Leu	Val	Ala	Arg 220	Thr	Gly	Cys	Arg		672
	Arg 225	Asn	Asp	Asp	Gly	230	Phe	Pro	Ala	Val	Gln 235	Ile	Pro	Ser	Ser	ser 240		720
45	Thr	Ser	Ser	CCG Pro	Val 245	Aen	Gln	Pro	Thr	Ser 250	Thr	Ser	Thr	Thr	Ser 255	Thr		768
50	TCC Ser	ACC Thr	ACC Thr	TCG Ser 260	AGC Ser	CCG Pro	CCA Pro	GTC Val	CAG Gln 265	CCT Pro	ACG Thr	ACT Thr	CCC Pro	AGC Ser 270	GGC Gly	TGC Cys	en	816
55	ACT Thr	GCT Ala	GAG Glu 275	AGG Arg	TGG Trp	GCT Ala	CAG Gln	TGC Cys 280	GGC Gly	GGC Gly	AAT Asn	GGC Gly	TGG Trp 285	AGC Ser	GGC Gly	ТGC		864
60	ACC Thr	ACC Thr 290	TGC Cys	GTC Val	GCT Ala	Gly	AGC Ser 295	ACT Thr	TGC Cys	ACG Thr	AAG Lys	ATT Ile 300	AAT Asn	GAC Asp	TGG Trp	TAC Tyr		912
				CTG Leu		A												928

(2) INFORMATION FOR SEQ ID NO: 70:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 309 amino acids
 (B) TYPE: amino acid

		(ii) (xi) MO	D) TO LECUI	LE T	YPE:	prof	tein	. va:	TD N	. 7	٥.				
5	Pro 1	Phe	Met	Met	Val 5	Ala	Trp	Trp	Ser	Leu 10	Phe	Leu	Tyr	Gly	Leu 15	Gln
ı.	Val	Ala	Ala	Pro 20	Ala	Phe	Ala	Ala	Asp 25	Gly	Arg	Ser	Thr	Arg 30	Tyr	Trp
10	Asp	Сув	Сув 35	Lys	Pro	Ser	Сув	Ser 40	Trp	Gly	Gly	Lys	Ala 45	Ala	Val	Ser
15		30		Leu			55					60				
	Asn 65	Ala	Val	Asn	Gly	Сув 70	Glu	Gly	Gly	Gly	Ser 75	Ala	Phe	Ala	Сув	Thr 80
20	Asn	Tyr	Ser	Pro	Trp 85	Ala	Val	Asn	yab	Asn 90	Leu	Ala	Tyr	Gly	Phe 95	Ala
	Ala	Thr	Lys	Leu 100	Ala	Gly	Gly	Ser	Glu 105	Gly	Ser	Trp	Сув	Cys 110	Ala	Cys
25			113	Thr				120					125			
30		130		Thr			135					140				
	Leu 145	Met	Met	Pro	Gly	Gly 150	Gly	Val	Gly	Ile	Phe 155	Asp	Gly	Сув	Thr	Ser 160
35				Lys	102					170			•		175	
	Arg	Ser	Glu	Cys 180	Asp	Ser	Phe	Pro	Glu 185	Thr	Leu	Lys	Asp	Gly 190	Сув	His
40	Trp	Arg	Phe 195	Asp	Trp	Phe	Lys	Asn 200	Ala	Asp	Asn	Pro	Ser 205	Phe	Ser	Phe
45	Arg	Gln 210	Val	Gln	Сув	Pro	Ala 215	Glu	Leu	Val	Ala	Arg 220	Thr	Gly	Сув	Arg
	Arg 225	Asn	Asp	Asp	Gly	Asn 230	Phe	Pro	Ala	Val	Gln 235	Ile	Pro	Ser	Ser	Ser 240
50	Thr	Ser	Ser	Pro	Val 245	Asn	Gln	Pro	Thr	Ser 250	Thr	Ser	Thr	Thr	Ser 255	Thr
	Ser	Thr	Thr	Ser 260	Ser	Pro	Pro	Val	Gln 265	Pro	Thr	Thr	Pro	Ser 270	Gly	Сув
55			2/3	Arg				280					285			
60	Thr	Thr 290	Сла	Val	Ala	Gly	Ser 295	Thr	Сув	Thr	Lys	Ile 300	Asn	Asp	Trp	Tyr

(2) INFORMATION FOR SEQ ID NO: 71:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 915 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

His Gln Cys Leu *

	(ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION:1915 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:																	
5	(xi)	•					_	Q II	NO:	71:	;						
10	ATG Met 1	ATG Met	GTC Val	GCG Ala	TGG Trp 5	TGG Trp	TCT Ser	CTA Leu	TTT Phe	CTG Leu 10	TAC Tyr	GGC Gly	CTT Leu	CAG Gln	GTC Val 15	GCG Ala		48
10	GCA Ala	CCT Pro	GCT Ala	TTC Phe 20	GCT Ala	GCT Ala	GAT Asp	GGC Gly	AGG Arg 25	TCC Ser	ACG Thr	AGG Arg	TAT Tyr	TGG Trp 30	GAT Asp	TGT Cyb		96
15	TGC Cys	AAG Lys	CCG Pro 35	TCA Ser	TGT Cys	GCT Ala	TGG Trp	TCC Ser 40	GGC	AAG Lys	GCC Ala	TCA Ser	GTG Val 45	TCA Ser	TCT Ser	CCC Pro		144
20	GTG Val	CGA Arg 50	ACC Thr	TGT Cys	GAC Asp	GCA Ala	AAC Asn 55	AAC Asn	TCG Ser	CCG Pro	CTG Leu	TCC Ser 60	GAC Asp	GTC Val	GAC Asp	GCA Ala		192
25	AAG Lys 65	AGT Ser	GCG Ala	TGC Cys	GAT Asp	GGA Gly 70	GGC Gly	GTT Val	GCT Ala	TAC Tyr	ACT Thr 75	TGT Cys	TCA Ser	AAC Asn	AAC Asn	GCG Ala 80		240
30	CCT Pro	TGG Trp	GCT Ala	GTT Val	AAC Asn 85	GAT Asp	AAC Asn	CTC Leu	TCT Ser	TAT Tyr 90	GCT Gly	TTC Phe	GCG Ala	GCC Ala	ACA Thr 95	GCT Ala		288
30	ATC Ile	AAT Asn	GGC Gly	GGC Gly 100	AGC Ser	GAG Glu	TCT Ser	AGC Ser	TGG Trp 105	TGC Cys	TGT Cys	GCA Ala	TGC Cys	TAC Tyr 110	AAG Lys	TTG Leu		336
35	ACT Thr	TTC Phe	ACG Thr 115	AGC Ser	GGA Gly	CCT Pro	GCT Ala	TCT Ser 120	GGA Gly	AAG Lys	GTC Val	ATG Met	GTC Val 125	GTT Val	CAA Gln	TCA Ser		384
40	ACC Thr	AAC Asn 130	ACC Thr	GGG Gly	TAC Tyr	GAT Asp	CTC Leu 135	TCT Ser	AAC Asn	AAC Asn	CAC His	TTT Phe 140	GAC Asp	ATT Ile	CTT Leu	ATG Met		432
45	CCA Pro 145	GGT Gly	GGC Gly	GGT Gly	GTT Val	GGA Gly 150	GCG Ala	TTC Phe	GAC Asp	GGC Gly	TGC Cys 155	TCT Ser	AGG Arg	CAG Gln	TAC Tyr	GGC Gly 160		480
50				GGG Gly														528
				CCA Pro 180	Ser													576
55	TGG Trp	TTC Phe	AAG Lys 195	AAC Asn	GCC Ala	GAC	TAA Asn	CCG Pro 200	Ser	TTC Phe	AGC Ser	TTC Phe	CGT Arg 205	Gln	GTC Val	CAG Gln		624
60	TGC Cys	CCA Pro 210	Ala	GAG Glu	CTC Leu	GTC Val	GCT Ala 215	Arg	ACC	GGA Gly	TGC	CGC Arg 220	Arg	AAC Asn	GAC Asp	GAC Asp		672
65		Asn					Gln					Ser				CCG Pro 240		720
						Ser					Ser					TCG Ser		768

5	261	Pro	Pro	Val 260	GIN	Pro	ACG Thr	ACT	Pro 265	AGC Ser	Gly	TGC	ACT	GCT Ala 270	Glu	AGG Arg	816
	TGG	GCT Ala	CAG Gln 275	Сув	GCC	GGC	AAT Asn	GGC Gly 280	TGG Trp	AGC Ser	GGC Gly	TGC Cys	ACC Thr 285	ACC Thr	TGC Cys	GTC Val	864
10	GCT Ala	GGC Gly 290	Ser	ACT Thr	TGC Cys	ACG Thr	AAG Lys 295	116	AAT Asn	GAC Asp	TGG Trp	TAC Tyr 300	His	CAG Gln	TGC Cys	CTG Leu	912
15	TAG * 305										_						915
20	(2)	INF	- (TION SEQU A) L B) T D) T	ENCE ENGT YPE:	CHA H: 3 ami	RACT 05 a no a	ERIS' mino cid	TICS	: ds	·						
25		(ii (xi) MO	LECU	LE T	YPE:	pro	tein	seq :	ID N	0: 7:	2:					
	Met 1	Met	Val	Ala	Trp 5	Trp	Ser	Leu	Phe	Leu 10	Tyr	Gly	Leu	Gln	Val	Ala	
30	Ala	Pro	Ala	Phe 20	Ala	Ala	Asp	Gly	Arg 25	Ser	Thr	Arg	Tyr	Trp 30	Asp	Сув	
35	Cys	Lys	Pro 35	Ser	Сув	Ala	Trp	Ser 40	Gly	Lys	Ala	Ser	Val 45	Ser	Ser	Pro	
33	Val	Arg 50	Thr	Cys	Asp	Ala	Asn 55	Asn	Ser	Pro	Leu	Ser 60	Asp	Val	Asp	Ala	
40	Lys 65	Ser	Ala	Сув	Asp	Gly 70	Gly	Val	Ala	Tyr	Thr 75	Сув	Ser	Asn	Asn	Ala 80	
	Pro	Trp	Ala	Val	Asn 85	Asp	Asn	Leu	Ser	Tyr 90	Gly	Phe	Ala	Ala	Thr 95	Ala	
45	Ile	Asn	Gly	Gly 100	Ser	Glu	Ser	Ser	Trp 105	Сув	Сув	Ala	Cys	Tyr 110	Lys	Leu	
50	Thr	Phe	Thr 115	Ser	Gly	Pro	Ala	Ser 120	Gly	Lys	Val	Met	Val 125	Val	Gln	Ser	
		130	Thr				135					140					
55	Pro 145	Gly	Gly	Gly	Val	Gly 150	Ala	Phe	Asp	Gly	Сув 155	Ser	Arg	Gln	Tyr	Gly 160	
	Ser	Ile	Pro	Gly	Glu 165	Arg	Tyr	Gly	Gly	Val 170	Thr	Ser	Arg	Авр	Gln 175	Cys	
60	Asp	Gln	Met	Pro 180	Ser	Ala	Leu	Lys	Gln 185	Gly	Cys	Tyr	Trp	Arg 190	Phe	Asp	
65	Trp	Phe	Lys 195	Asn	Ala	Авр	Asn	Pro 200	Ser	Phe	Ser	Phe	Arg 205	Gln	Val	Gln	
	Сув	Pro 210	Ala	Glu	Leu	Val	Ala 215	Arg	Thr	Gly	Cys	Arg 220	Arg	neA	Asp	Asp	
	Gly	Asn	Phe	Pro	Ala	Val	Gln	Ile	Pro	Ser	Ser	Ser	Thr	Ser	Ser	Pro	

	225					230					235					240		
_	Val	Asn	Gln	Pro	Thr 245	Ser	Thr	Ser	Thr	Thr 250	Ser	Thr	Ser	Thr.	Thr 255	Ser		
5	Ser	Pro	Pro	Val 260	Gln	Pro	Thr	Thr	Pro 265	Ser	Gly	Сув	Thr	Ala 270	Glu	Arg		
10	Trp	Ala	Gln 275	Сув	Gly	Gly	Asn	Gly 280	Trp	Ser	Gly	Сув	Thr 285	Thr	Сув	Val		
	Ala	Gly 290	Ser	Thr	Сув	Thr	Lys 295	Ile	Asn	Asp	Trp	Tyr 300	His	Gln	Cys	Leu		
15	* 305																	
20			SEQ () ()	TION QUENC A) LE B) TY	E CH INGTH PE: RAND	IARAC I: 92 nucl DEDNE	CTERI 25 ba Leic ESS:	STIC ase p acid sing	CS: pairs i	1								
25		(ix)	MOI FEA (1 (1	D) TO LECUI ATURI A) NI B) LO	E TY :: ME/K CATI	(PE: (EY: (ON:2	CDN CDS	A 25										٠
30	C CC	A TI	T A	QUENC TG A1 et Me	rg G1	rc Go	G TO	G TO	G TO	CT CT	TA TI	rr cr	G TI	AC GO	Ly Le	rŤ eu 15	4	6
35	CAG Gln	GTC Val	GCG Ala	GCA Ala	CCT Pro 20	GCT Ala	TTC Phe	GCT Ala	GCT Ala	GAT Asp 25	GGC Gly	AGG Arg	TCC Ser	ACG Thr	CGG Arg 30	TAT Tyr	9	4
40	TGG Trp	GAT Asp	TGC Cys	TGT Cys 35	AAG Lys	CCC Pro	AGC Ser	TGC Cys	TCC Ser 40	TGG Trp	CCC Pro	GAC Asp	AAG Lys	GCC Ala 45	CCC Pro	GTA Val	14	.2
45	GGT Gly	TCC Ser	CCC Pro 50	GTA Val	GGC Gly	ACC Thr	ТСС Сув	GAC Asp 55	GCC Ala	GGC Gly	AAC	AGC Ser	CCC Pro 60	CTC Leu	GGC Gly	GAC Asp	19	0
50	CCC Pro	CTG Leu 65	GCC Ala	AAG Lys	TCT Ser	GGC Gly	TGC Cys 70	GAG Glu	Gly	GGC Gly	CCG Pro	TCG Ser 75	TAC Tyr	ACG Thr	TGC Cys	GCC Ala	23	8
30	AAC Asn 80	TAC Tyr	CAG Gln	CCG Pro	TGG Trp	GCG Ala 85	GTC Val	AAC Asn	GAC Asp	CAG Gln	CTG Leu 90	GCC Ala	TAC Tyr	GGC Gly	TTC Phe	GCG Ala 95	28	16
55	GCC Ala	ACG Thr	GCC Ala	ATC Ile	AAC Asn 100	GGC Gly	GGC Gly	ACC Thr	GAG Glu	GAC Asp 105	Ser	TGG Trp	TGC Cys	TGC Сув	GCC Ala 110	TGC Cys	33	14
60	TAC Tyr	AAG Lys	CTC Leu	ACC Thr 115	TTC Phe	ACC Thr	GAC Asp	GGC Gly	CCG Pro 120	GCC Ala	TCG Ser	GGC	AAG Lys	ACC Thr 125	Met	ATC Ile	38	32
65	GTC Val	CAG Gln	TCC Ser 130	Thr	AAC Aan	ACG Thr	Gly	GGC Gly 135	GAC Asp	CTG Leu	TCC Ser	GAC Asp	AAC Asn 140	CAC His	TTC Phe	GAC Asp	43	30
	CTG Leu	CTC Leu 145	Ile	CCC Pro	GGC Gly	GGC Gly	GGC Gly	Val	GGC Gly	ATC Ile	TTC Phe	GAC Asp	Gly	TGC Cys	ACC	TCC Ser	47	78

5	Gln 160	Tyr	GC	Gln	GCC Ala	Leu 165	Pro	GGC	GCC Ala	CAG Gln	TAC Tyr 170	Gly	GCC	GTC Val	AGC Ser	TCC Ser 175	!	526
J	CGC Arg	GCC Ala	GAG Glu	TGC Cys	GAC Asp 180	CAG Gln	ATG Met	CCC Pro	GAG Glu	GCC Ala 185	ATC Ile	AAG Lys	GCC Ala	GGC Gly	TGC Cys 190	CAG Gln		574
10		Arg	Tyr	195	Trp	Phe	Lys	Asn	Ala 200	Asp	Asn	Pro	Ser	Phe 205	Ser	Phe	•	622
15	Arg	GIN	210	CAG Gln	Сув	Pro	Ala	G1u 215	Leu	Val	Ala	Arg	Thr 220	Gly	Сув	Arg	(570
20	Arg	225	ASD	GAC Asp	GIY	Asn	230	Pro	Ala	Val	Gln	11e 235	Pro	Ser	Ser	Ser	•	718
25	240	ser	ser	CCG Pro	val	245	Gin	Pro	Thr	Ser	Thr 250	Ser	Thr	Thr	Ser	Thr 255	7	766
	ser	THE	ine	TCG Ser	260	Pro	Pro	Val	Gln	Pro 265	Thr	Thr	Pro	Ser	Gly 270	Сув	8	314
30	ACT Thr	GCT Ala	GAG Glu	AGG Arg 275	TGG Trp	GCT Ala	CAG Gln	TGC Cys	GGC Gly 280	GGC Gly	AAT Asn	GJY GGC	TGG Trp	AGC Ser 285	GGC Gly	TGC Cys	8	362
35	ACC Thr	ACC Thr	TGC Cys 290	GTC Val	GCT Ala	GGC Gly	AGC Ser	ACT Thr 295	TGC Cys	ACG Thr	AAG Lys	ATT Ile	AAT Asn 300	GAC Asp	TGG Trp	TAC Tyr	, i	910
40			TGC Cys	CTG Leu	TAG *												ġ	925
45	(2)	((i) S (i) (i) (i)	TION SEQUE A) LE B) TY D) TO LECUI	ence Engti Pe: Opolo	CHAI i: 30 ami: CGY:	RACTE 08 and 10 ac 11ne	RIST mino cid mar	CICS:	: ls								
50		(xi	SEÇ	QUENC	CE DI	SCR	PTIC)N: S	SEQ 1	D NO): 74	. :			•	•		
	_			Met -	5					10					15			
55	Val	Ala	Ala	Pro 20	Ala	Phe	Ala	Ala	Авр 25	Gly	Arg	Ser	Thr	Arg 30	Tyr	Trp		
			33	Lys				40					45					
60	Ser	Pro 50	Val	Gly	Thr	Cys	Asp 55	Ala	Gly	Asn	Ser	Pro 60	Leu	Gly	Asp	Pro		
65	Leu 65	Ala	Lys	Ser	Gly	Суя 70	Glu	Gly	Gly	Pro	Ser 75	Tyr	Thr	Сув	Ala	Asn 80		
	Tyr	Gln	Pro	Trp	Ala 85	Val	Asn	Asp	Gln	Leu 90	Ala	Tyr	Gly	Phe	Ala 95	Ala		
	Thr	Ala	Ile	Asn	Gly	Gly	Thr	Glu	Авр	Ser	Trp	Cys	Сув	Ala	аүЭ	Tyr		

SUBSTITUTE SHEET (RULE 26)
Patent provided by Sughrue Mion, PLLC - http://www.Sughrue.com

				100					105					110		
5	Lys	Leu	Thr 115	Phe	Thr	Asp	Gly	Pro 120	Ala	Ser	CJĀ	ГÀв	Thr 125	Met	Ile	Val
J	Gln	Ser 130	Thr	nsA	Thr	Gly	Gly 135	Asp	Leu	Ser	Asp	Asn 140	His	Phe	дая	Leu
10	Leu 145	Ile	Pro	Gly	Gly	Gly 150	Val	Gly	Ile	Phe	Asp 155	G1Å	Сув	Thr	Ser	Gln 160
	Tyr	Gly	Gln	Ala	Leu 165	Pro	Gly	Ala	Gln	Tyr 170	Gly	Gly	Val	Ser	Ser 175	Arg
15	Ala	Glu	Сув	Asp 180	Gln	Met	Pro	Glu	Ala 185	Ile	Lys	Ala	Gly	Cys 190	Glń	Trp
20	Arg	Tyr	Asp 195	Trp	Phe	Lув	Asn	Ala 200	Asp	Asn	Pro	Ser	Phe 205	Ser	Phe	Arç
20	Gln	Val 210	Gln	Сув	Pro	Ala	Glu 215	Leu	Val	Ala	Arg	Thr 220	Gly	Сув	Arg	Arg
25	Aen 225	Asp	Asp	Gly	Asn	Phe 230	Pro	Ala	Val	Gln	Ile 235	Pro	Ser	Ser	Ser	Thr 240
	Ser	Ser	Pro	Val	Авп 245	Gln	Pro	Thr	Ser	Thr 250	Ser	Thr	Thr	Ser	Thr 255	Ser
30	Thr	Thr	Ser	Ser 260	Pro	Pro	Val	Gln	Pro 265	Thr	Thr	Pro	Ser	Gly 270	Сув	Thr
35	Ala	Glu	Arg 275	Trp	Ala	Gln	Сув	Gly 280	Gly	Asn	Gly	Trp	Ser 285	Gly	Сув	Thr
-	Thr	Сув 290	Val	Ala	Gly	Ser	Thr 295	Сув	Thr	Lys	Ile	Asn 300	Авр	Trp	Tyr	His
40	Gln 305	Сув	Leu	*												

PATENT CLAIMS

- A method for providing a novel DNA sequence encoding a polypeptide from a micro-organism with an activity of interest 5 comprises the following steps:
 - i) PCR amplification of said DNA with PCR primers with homology to (a) known gene(s) encoding a polypeptide with an activity of i nterest,
- ii) linking the obtained PCR product to a 5' structural gene 10 sequence and a 3' structural gene sequence,
 - iii) expressing said resulting hybrid DNA sequence,
- iv) screening for hybrid DNA sequences encoding a polypeptide with said activity of interest or related activity,
 - v) isolating the hybrid DNA sequence identified in step iv)

15

- 2. The method according to claim 1 wherein the PCR primers in step i) have homology to conserved regions in (a) known structural gene(s) or the polypeptide(s) thereof.
- 20 3. The method according to claim 1 wherein the PCR primers in step i) are degenerated on the basis of conserved regions in (a) known gene(s).
- 4. The method according to any of claims 1 to 3 wherein the PCR 25 amplification in step i) is performed using naturally occurring DNA as template.
 - 5. The method according to any of claims 1 to 3 wherein the microorganism has not been subjected to "in vitro" selection.

- 6. The method according to any of claims 1 to 5 wherein the PCR amplification in step i) is performed on a sample containing DNA from an un-isolated microorganism.
- 35 7. The method according to any of claims 1 to 6 wherein the 5' and 3' structural gene sequences originate from two different structural genes encoding polypeptides having the same activity.

8. The method according to any of claims 1 to 7 wherein the 5' structural gene sequence and the 3' structural gene sequence originate from the same structural gene sequence.

5

9. The method according to any of claims 1 to 8 wherein the 5' structural gene sequence and the 3' structural gene sequence originate from two different structural gene sequences encoding polypeptides having different activities.

10

- 10. The method according to any of claims 1 to 9 comprising the following steps:
- i) PCR amplification of DNA from micro-organisms with PCR primers being homologous to conserved regions of
- a known gene encoding a polypeptide with an activity of interest,
- ii) cloning the obtained PCR product into a gene encoding
 a polypeptide having the activity of interest, where
 said gene is not identical to the gene from which the PCR
 20 product is obtained, which gene is situated in an
 expression vector,
 - iii) transforming said expression vector into a suitable
 host cell,
 - iiia) culturing said host cell under suitable conditions,
- 25 iv) screening for clones comprising a DNA sequence originated from the PCR amplification in step i) encoding a polypeptide with said activity of interest or related activity,
 - v) isolating the DNA sequence identified in step iv).

- 11. The method according to claims 1 to 10, wherein the microorganism from which DNA is to be PCR amplified in step i) is a
 prokaryote or an eukaryote.
- 35 12. The method according to any of claims 1 to 11, wherein the PCR amplification in step i) is performed on DNA from an uncultivable organism.

- 13. The method according to claim 12, wherein the un-cultivable organism is an algae, a fungi or a protozoa.
- 5 14. The method according to claims 12 and 13, wherein said uncultivable organism is from the group of extremophiles and plantonic marine organisms.
- 15. The method according to any of claims 1 to 11, wherein the 10 PCR amplification in step i) is performed on DNA from a cultivable organism.
- 16. The method according to claim 15, wherein said cultivable organism is selected from the group of bacteria, fungal 15 organisms, such as filamentous fungi or yeasts.
- 17. The method according to claim 16, wherein said PCR amplification in step i) is performed on one or more polynucleotides comprised in a vector, plasmid or the like, such as on a cDNA 20 library from cultivable organisms.
 - 18. The method according any of claims 1 to 17, wherein said activity of interest is an enzymatic activity.
- 25 19. The method according to claim 18, wherein said enzyme activity is selected from the group comprising phosphatases oxidoreductases, transferases, hydrolases, such as esterases, in particular lipases and phytases, such as glucosidases, in particular xylanases, cellulases, hemicellulases, and amylases,
- 30 such as peptidases, in particular proteases, lyases, isomerases and ligases.
- 20. The method according to any of claims 10 to 19, wherein said host cell mentioned under iii) of claim 10 is a micro-organism, 35 preferably a yeast or a bacteria.
 - 21. The method according to claim 20, wherein said host cell is a yeast such as a strain of Saccharomyces, in particular

Saccharomyces cerevisiae.

- 22. The method according to claim 20, wherein said host cell is a bacteria such as a strain of Bacillus, in particular of 5 Bacillus subtilis, or a strain Escherichia coli.
 - 23. The method according to any of claims 1 to 22, wherein the clones/hybrid DNA sequences mentioned in step iv), are screened for enzymatic activity.

- 24. The method according to claim 23, wherein the screened clones/hybrid DNA sequences are tested for wash performance.
- 25. A novel DNA sequence provided according to any of the method 15 claims 1 to 24.
 - 26. A polypeptide with an activity of interest encoded by a DNA sequence of claim 25.

Patent provided by Sughrue Mion, HEET (RULE 26)

Figure 2

Patent provided by Sughrue Mion, PLCC http://www.stghrue.com

```
PULPNS8-11
                  MRQKKLTFILAFEVCEALTLPAELLQAGIVEDN 33
               1
                  MROKKLTFILAFLVCFALTUPAECEGAGIVION 33
PULPZYME L
              1
PULPNS8-11 34
                  SEGNEDGYDYEFWKDSGGSGTMLENHGGTFSAD 86
SIGNEDGYDYEFWKDSGGSGFMIENHGGTFSAD 86
PULPZYME_L 34
                  WNN YNN LEFRKGKKENETQEBQQYGNMS LNYGA 99
WNN YNN LEFRKGKKENETQEBQQYGNMS LNYGA 99
PULPNS8-11 67
PULPZYME_L 67
                  NEOPNGNAYECVYGWEVDPEVEYY EVDSWGNWR 132
PULPNS8-11 100
PULPZYME_L 100
PULPNS8-11 133 PEGATERIGELEVDIGGENT KHOOVNORS LOGT 165
PULPZYME_L 133 PEGATERIGELEVDIGGENT EYET LRVNORS IKG | 165
                  ATERNOYWS I ROS KRISGIVIT ANHENAWA ALGM 198
ATEROYWS VRISKRESGI I S V SHHERAWE NEGM 198
PULPNS8-11 166
PULPZYME_L 166
PULPNS8-11 199 NMG A F N Y Q I E V T E G Y Q S T G S A N V Y S N T L R L NGN 231 PULPZYME_L 199 NMG K M Y E V A L T V E G Y Q S G S A N V Y S N T E R E N G N 231
PULPNS8-11 232 PLSTISNDKSITLDKNN
                                                                                 248
PULPZYME_L 232 PLSTISNDKS LTLDKNN
                                                                                 248
```

Figure 3

part A part B part C

1 433 631 748

Figure 4