

Stochastic Processes

Class Properties, Irreducibility, Aperiodicity, Invariant Distribution

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

01 April 2025

Period is a Class Property

Proposition (Period is a Class Property)

If $x \longleftrightarrow y$, then d(x) = d(y).

Thus, all states within a communicating class possess the same period.

Transience and Recurrence are Class Properties

Proposition (Transience and Recurrence are Class Properties)

Transience and recurrence are class properties, i.e., the states within a communicating class are either all transient or all recurrent.

Positive/Null Recurrence are Class Properties

Proposition (Positive/Null Recurrence are Class Properties)

Positive recurrence and null recurrence are class properties, i.e., the states within a communicating class are either all positive recurrent or all null recurrent.

An Important Result About Open and Closed Communicating Classes

Proposition (Result about Open/Closed Communicating Classes)

- 1. If C is an open communicating class, then every state within C is transient.
- 2. If C is a closed communicating class, and $|C| < +\infty$, then every state within C is positive recurrent.

As a corollary, an irreducible DTMC with a finite state space is positive recurrent.

An Important Property of Aperiodic State (Without Proof)

Proposition (Important Property about Aperiodic State)

If state x is aperiodic, then there exists $N_x \in \mathbb{N}$ (possibly large) such that

$$P_{x,x}^n > 0 \qquad \forall n \geq N_x.$$

An Important Property of Irreducible and Aperiodic Markov Chains (Without Proof)

Proposition

Consider a time-homogeneous DTMC with finite state space \mathcal{X} and TPM P. If P is irreducible and aperiodic, then there exists $r_0 \in \mathbb{N}$ such that

$$P_{x,y}^r > 0 \qquad \forall r \geq r_0, \ \forall x, y \in \mathcal{X}.$$

Invariant (Stationary) Distributions

Invariant (Stationary) Distribution

Definition (Invariant Distribution)

Consider a DTMC with a discrete state space \mathcal{X} and TPM P.

A PMF π on $\mathcal X$ is called the invariant distribution for P if

$$\pi = \pi P$$

(global balance equation).

That is, for all $y \in \mathcal{X}$,

$$\pi(\mathbf{y}) = \sum_{\mathbf{x} \in \mathcal{X}} \pi(\mathbf{x}) P_{\mathbf{x},\mathbf{y}}.$$

Invariant Distribution

$$\pi = \pi P$$
, $\pi(y) = \sum_{x \in \mathcal{X}} \pi(x) P_{x,y} \quad \forall y \in \mathcal{X}$.

• Global balance equation is a collection of $|\mathcal{X}|$ linear equations

Invariant Distribution

$$\pi = \pi P$$
, $\pi(y) = \sum_{\mathbf{x} \in \mathcal{X}} \pi(\mathbf{x}) P_{\mathbf{x}, \mathbf{y}} \quad \forall \mathbf{y} \in \mathcal{X}$.

- Global balance equation is a collection of $|\mathcal{X}|$ linear equations
- π is a left eigenvector of P with eigenvalue 1

Invariant Distribution

$$\pi = \pi P$$
, $\pi(y) = \sum_{\mathbf{x} \in \mathcal{X}} \pi(\mathbf{x}) P_{\mathbf{x}, \mathbf{y}} \quad \forall \mathbf{y} \in \mathcal{X}$.

- Global balance equation is a collection of $|\mathcal{X}|$ linear equations
- π is a left eigenvector of P with eigenvalue 1
- From Chapman-Kolmogorov's equations,

$$\pi=\pi\,P^n\qquad \text{ for any }n\in\mathbb{N}.$$

Invariant Distribution

$$\pi = \pi P$$
, $\pi(y) = \sum_{\mathbf{x} \in \mathcal{X}} \pi(\mathbf{x}) P_{\mathbf{x}, \mathbf{y}} \quad \forall \mathbf{y} \in \mathcal{X}$.

- Global balance equation is a collection of $|\mathcal{X}|$ linear equations
- π is a left eigenvector of P with eigenvalue 1
- From Chapman-Kolmogorov's equations,

$$\pi=\pi\,P^n\qquad ext{ for any }n\in\mathbb{N}.$$

• If $X_0 \sim \pi$, then $X_n \sim \pi$ for all $n \in \mathbb{N}$. This, together with time-homogeneity, implies that the Markov chain is stationary

Invariant Distribution

$$\pi = \pi P$$
, $\pi(y) = \sum_{\mathbf{x} \in \mathcal{X}} \pi(\mathbf{x}) P_{\mathbf{x}, \mathbf{y}} \quad \forall \mathbf{y} \in \mathcal{X}$.

- Global balance equation is a collection of $|\mathcal{X}|$ linear equations
- π is a left eigenvector of P with eigenvalue 1
- From Chapman-Kolmogorov's equations,

$$\pi=\pi\,P^n\qquad ext{ for any }n\in\mathbb{N}.$$

- If $X_0 \sim \pi$, then $X_n \sim \pi$ for all $n \in \mathbb{N}$. This, together with time-homogeneity, implies that the Markov chain is stationary
- If a Markov chain is irreducible, and $\pi_x > 0$ for some x, then $\pi_y > 0$ for all $y \neq x$

• The invariant distribution may not be unique

- The invariant distribution may not be unique
 - Consider P = I

- The invariant distribution may not be unique
 - Consider P = I
 - Then, $\pi = \pi P$ for all π

- The invariant distribution may not be unique
 - Consider P = I
 - Then, $\pi = \pi P$ for all π
- Let $\pi_n = \mathsf{PMF} \ \mathsf{of} \ X_n$

- The invariant distribution may not be unique
 - Consider P = I
 - Then, $\pi=\pi P$ for all π
- Let $\pi_n = \mathsf{PMF} \ \mathsf{of} \ X_n$
 - From Chapman-Kolmogorov, we have

$$\pi_{n+1} = \pi_n P$$

- The invariant distribution may not be unique
 - Consider P = I
 - Then, $\pi = \pi P$ for all π
- Let $\pi_n = \mathsf{PMF} \mathsf{of} X_n$
 - From Chapman-Kolmogorov, we have

$$\pi_{n+1} = \pi_n P$$

— We can ask: does $\lim_{n\to\infty} \pi_n$ exist? If so, under what conditions?

On Existence and Uniqueness of Invariant Distribution

Proposition (On Existence and Uniqueness of Invariant Distribution)

Let $\{X_n\}_{n=0}^{\infty}$ be an irreducible, time-homogeneous DTMC on a discrete state space $\mathcal X$ with TPM P.

Then, a unique stationary distribution π exists if and only if P is positive recurrent. In this case, $\pi_x = \frac{1}{\mu_{xx}} > 0$ for all $x \in \mathcal{X}$.

Example

• Consider a DTMC with following transition graph.

- 1. Is the Markov chain irreducible?
- 2. Is the Markov chain aperiodic?
- 3. Classify the states as transient, positive recurrent, or null recurrent.
- 4. Does a stationary distribution exist for this Markov chain? If so, is it unique?

Example

• Consider a DTMC with the following transition graph.

- 1. Is this Markov chain irreducible?
- 2. Does there exist a unique stationary distribution?