

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

SEPTEMBER 2021

MATHEMATICS P1/WISKUNDE V1 MARKING GUIDELINE/NASIENRIGLYN

MARKS/*PUNTE***:** 150

This marking guideline consists of 22 pages./ *Hierdie nasienriglyn bestaan uit 22 bladsye*.

NOTE/LET WEL:

- If a candidate answers a question TWICE, mark the FIRST attempt ONLY.

 Indien 'n kandidaat 'n vraag TWEE keer beantwoord, merk SLEGS die EERSTE poging.
- Consistent accuracy applies in ALL aspects of the marking guideline. *Volgehoue akkuraatheid geld deurgaans in ALLE aspekte van die nasienriglyn.*
- If a candidate crossed out an attempt of a question and did not redo the question, mark the crossed-out attempt.

 Indien 'n kandidaat 'n poging vir 'n vraag deurgetrek het en nie die vraag weer

beantwoord het nie, merk die poging wat deurgetrek is.

- The mark for substitution is awarded for substitution into the correct formula.
- Die punt vir substitusie word toegeken vir substitusie in die korrekte formule.

QUESTION 1/VRAAG 1

1.1.1	$x^2 + 2x - 15 = 0$	
	(x-3)(x+5) = 0	✓ factors / faktore
	$\therefore x = 3 \qquad \text{or } / of \qquad x = -5$	$\checkmark x = 3 \checkmark x = -5$
	OR/OF	OR/ <i>OF</i> (3)
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $= \frac{-2 \pm \sqrt{2^2 - 4(1)(-15)}}{2(1)}$	
		✓ substitution / vervanging
	$= \frac{-2 \pm \sqrt{64}}{2}$ $= 3 \text{ or } / \text{ of } -5$	$\checkmark x = 3 \checkmark x = -5 \tag{3}$
1.1.2	$3x^2 + x - 1 = 0$	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$=\frac{-1\pm\sqrt{1^2-4(3)(-1)}}{2(3)}$	✓ substitution / vervanging
	$= \frac{-1 \pm \sqrt{13}}{6}$ Penalise 1 mark for incorrect rounding	
	= 0,43 or / of -0,77 Penaliseer 1 punt vir verkeerde afronding	$\checkmark x = 0.43 \checkmark x = -0.77$ (3)
1.1.3	$x(x-3) \ge -2$	(5)
	$x^2 - 3x + 2 \ge 0$	✓ standard form
	$(x-1)(x-2) \ge 0$	standaardvorm
	$\therefore x \le 1 \text{or } / \text{ of } x \ge 2$	✓ factorisation
		faktorisering
		$\checkmark x \le 1 \text{or/of} \ \checkmark x \ge 2 \tag{4}$

1.1.4
$$\sqrt{43-x} - x + 1 = 0$$

$$\sqrt{43-x} = x - 1$$

$$(\sqrt{43-x})^2 = (x-1)^2$$

$$43-x = x^2 - 2x + 1$$

$$x^2 - x - 42 = 0$$

$$(x-7)(x+6) = 0$$

$$\therefore x = 7 \quad \text{or } / \text{ of } \quad x \neq -6$$

- ✓ isolating the surd isolering van die wortelvorm
- ✓ squaring both sides kwadreer beide kante
- ✓ standard form / *standaardvorm*
- \checkmark factorisation / faktorisering
- ✓ selection / korrekte keuse

(5)

1.2

$$2y - x = 3$$

$$y^2 + 3x = 2xy \tag{2}$$

$$x = 2y - 3$$

Substitute(3)into(2)/Vervang (3) in (2)

$$y^2 + 3(2y - 3) = 2y(2y - 3)$$

$$y^2 + 6y - 9 - 4y^2 + 6y = 0$$

$$-3y^2 + 12y - 9 = 0$$

$$y^2 - 4y + 3 = 0$$

$$(y-3)(y-1)=0$$

$$\therefore y = 3 \text{ or } / of y = 1$$

$$x = 2(3) - 3$$
 or $/ of$ $x = 2(1) - 3$
= 3 = -1

$$=-1$$

OR/OF

$$2y - x = 3$$

$$y^2 + 3x = 2xy \tag{2}$$

$$y = \frac{x}{2} + \frac{3}{2}$$

Substitute (3) into (2)/Vervang (3) in (2)

$$\left(\frac{x}{2} + \frac{3}{2}\right)^2 + 3x = 2x\left(\frac{x}{2} + \frac{3}{2}\right)$$

$$\frac{x^2}{4} + \frac{6x}{4} + \frac{9}{4} + 3x = x^2 + 3x$$

$$-\frac{3x^2}{4} + \frac{6x}{4} + \frac{9}{4} = 0$$

$$-3x^2 + 6x + 9 = 0$$

$$x^2 - 2x - 3 = 0$$

$$(x-3)(x+1) = 0$$

$$\therefore x = 3$$
 or $/ of x = -1$

$$y = \left(\frac{3}{2} + \frac{3}{2}\right) \qquad \text{or } / \text{ of} \qquad y = \left(-\frac{1}{2} + \frac{3}{2}\right)$$

$$y = \left(-\frac{1}{2} + \frac{3}{2}\right)$$

$$\checkmark x = 2y - 3$$

✓ substitution / *vervanging*

✓ standard form / standaardvorm

✓ factorisation / faktorisering

✓ y-values / y-waardes

OR/OF

$$\checkmark y = \frac{x}{2} + \frac{3}{2}$$

✓ substitution / *vervanging*

		✓ standard form / standaardvorm
		✓ factorisation / faktorisering ✓ x-values / x-waardes
		✓ y-values / y-waardes (5)
1.3	$x = \frac{5 \pm \sqrt{p(6-p)-9}}{2}$	
	For non-real roots: / Vir nie – reële wortels:	✓ Δ<0
	$ \Delta < 0 p(6-p)-9 < 0 -p^2 + 6p - 9 < 0 $	✓ standard form / standaardvorm
	$-p^{2} + 6p - 9 < 0$ $p^{2} - 6p + 9 > 0$ $(p-3)^{2} > 0$	✓ factorisation / faktorisering
	$(p-3) > 0$ $\therefore p \in \Box \text{but/maar} p \neq 3$	✓ answer / antwoord
	OR/OF	OR/OF
	$x = \frac{5 \pm \sqrt{p(6-p)-9}}{2}$	
	For non-real roots:/ Vir nie - reële wortels: $\Delta < 0$	✓ Δ<0
	p(6-p)-9<0	✓ standard form / standaardvorm
	$-p^{2} + 6p - 9 < 0$ $(3-p)(p-3) < 0$	✓ factorisation / faktorisering
	$\therefore p \in \Box \text{but} / \text{maar} p \neq 3$	✓ answer / antwoord (4)

QUESTION 2/VRAAG 2

(1)
(4)
nging (4)
(2)

2.1.4	General term for first differences: Algemene term vir eerste verskille $T_n = 4n - 4$ 400 = 4n - 4	$\checkmark T_n = 4n - 4$ $\checkmark T_n = 400$
	$\therefore n = 101$	
	$T_{n\left(\mathrm{linear}/linie\hat{e}r ight)} = \left(T_{n+1} - T_{n} ight)_{\left(\mathrm{quadratic}/kwadraties ight)}$	
	$\therefore n = 101 \text{ and } / en n+1=102$ The terms are / Die terme is: 101 and / en 102	✓ answer / antwoord
	OR/OF	
		OR/OF
	$2(n+1)^{2} - 6(n+1) - 12 - (2n^{2} - 6n - 12) = 400$	
	$2n^2 + 4n + 2 - 6n - 6 - 12 - 2n^2 + 6n + 12 = 400$	
	4n-4 = 400	$\checkmark 4n-4=400\checkmark$
	4n = 404	
	∴ $n = 101$ ∴ Between/Tussen T_{101} and $/ en T_{102}$	✓ answer / antwoord
	OR/OF Trial and error / <i>Proefneming</i>	OR/OF
	$T_{102} = 2(102)^2 - 6(102) - 12 = 20184$	✓ subst. for T_{101} and T_{102}
	$T_{101} = 2(101)^2 - 6(101) - 12 = 19784$	verv. vir T_{101} en T_{102}
	Difference/Verskil: 400	√ 400
	\therefore Between/ $TussenT_{101}$ and $/enT_{102}$	\checkmark answer / antwoord (3)
2.2.1	$T_n = a + (n-1)d$	(-)
	89 = 2 + (n-1)(3)	✓ substitution / vervanging
	3n-1=89	
	3n = 90	
	n = 30	✓ answer / antwoord (2)

2.2.2	k is the sum to 30 terms / is die som tot 30 terme. $S_n = \frac{n}{2} [a+l]$	✓ Sum formula / Som formule ✓ substitution / vervanging
	$S_n = \frac{n}{2} [a+l]$ $= \frac{30}{2} [2+89]$ $= 1365$	✓ answer / antwoord
	=1365	
	OR / OF	OR / OF
	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	✓ Sum formula / Som formule
	$S_n = \frac{n}{2} [2a + (n-1)d]$ $= \frac{30}{2} [2(2) + (30-1)(3)]$	✓ substitution / vervanging
	=1365	✓ answer / antwoord
		(3)

QUESTION 3/VRAAG 3

3.1	T av8 769	
3.1	$T_9 = ar^8 = 768$ $T_{13} = ar^{12} = 12288$	
		ar^{12} 12.288
	$\frac{ar^{12}}{ar^8} = \frac{12288}{768}$	$\checkmark \frac{ar^{12}}{ar^8} = \frac{12288}{768}$
	$\therefore r^4 = 16$	100
	$r = \pm 2$	
	, =2	$\checkmark r = \pm 2$
	768	
	$a = \frac{768}{\left(\pm 2\right)^8}$	
	= 3	✓ value of a / waarde van a
		(3)
3.2.1	$S_2 = \frac{54}{19} - \frac{24}{19}$	
	$=\frac{30}{19}$	✓ answer / antwoord
		(1)
3.2.2	$T_1 + T_2 = \frac{30}{19}$ $a + ar = \frac{30}{19}$	
	30	
	$a + ar = \frac{30}{19}$	$\checkmark a + ar = \frac{30}{19}$
	$a(1+r) = \frac{30}{19}$	19
	$a = \frac{30}{19(1+r)}$	
3.2.3		(1)
3.2.3	$S_{\infty} = \frac{a}{1-r} = \frac{54}{19}$	
		54(1-r)
	$\therefore a = \frac{54(1-r)}{19}$	$\checkmark a = \frac{54(1-r)}{19}$
	20	
	$a = \frac{30}{19(1+r)}$ from / vanaf (3.2.2)	
	` '	
	$\therefore \frac{30}{19(1+r)} = \frac{54(1-r)}{19}$	✓ equating / gelykstel
	30	
	$(1-r)(1+r) = \frac{30}{54}$	
	$1-r^2=\frac{5}{9}$	
	$r^2 = \frac{4}{9}$	$\checkmark r^2 = \frac{4}{9}$
	$\therefore r = \frac{2}{3}$	$\frac{1}{9}$
	$\dots r = \frac{1}{3}$	✓ answer / antwoord
		(4)
		[9]

QUESTION 4/VRAAG 4

4.6	$x = \left(\frac{1}{2}\right)^{y}$ $\therefore y = \log_{\frac{1}{2}} x$			$\checkmark x = \left(\frac{1}{2}\right)^{y}$ $\checkmark y = \log_{\frac{1}{2}} x$	
	$v = 2^{-x}$	OR/OF		OR/OF	(2)
	$y = 2^{-x}$ $\therefore x = 2^{-y}$ $y = -\log_2 x$			$\checkmark x = 2^{-y}$ $\checkmark y = -\log_2 x$	
	$y = -\log_2 x$			$\checkmark y = -\log_2 x$	(2)
4.7					
4.7.1	-5 < x < -2	OR/OF	$x \in (-5; -2)$	✓✓ answer / antwoord (A)	(2)
4.7.2	$0 < x \le \frac{1}{8}$	OR/OF	$x \in (0; \frac{1}{8}]$	✓✓ answer / antwoord (A)	(2)
					[16]

QUESTION 5/VRAAG 5

5.2	_1 + 2		
3.4	$x = \frac{-4+2}{2}$	/ mothed /t - 1	
	=-1	✓ method / metode	
	$y = -(-1)^2 - 2(-1) + 8$	$\checkmark x = -1$	
	=9	$\checkmark y = 9$	
	$\therefore T(-1;9)$	\ \ y = \forall \	
	OR/OF	OR/OF	
	$f(x) = -x^2 - 2x + 8$	7	
	$x = -\frac{b}{2a}$	$\sqrt{-\frac{b}{2a}}$	
		24	
	$=-\left(\frac{-2}{2(-1)}\right)$		
		$\checkmark x = -1$	
	=-1		
	$y = -(-1)^2 - 2(-1) + 8$ = 9		
	T(-1;9)	$\checkmark y = 9$	
	(1,2)		
	OR/OF	OD/OF	
	ORIOF	OR/OF	
	f'(x) = -2x - 2 = 0	$\checkmark -2x-2=0$	
	-2x=2		
	x = -1		
	$y = -(-1)^2 - 2(-1) + 8$		
	= 9	$\checkmark x = -1 \checkmark y = 9$	
	∴ T(-1;9)	·	(3)
5.3.1	$f(x) = -x^2 - 2x + 8$	$\int f'(y)$	
	f'(x) = -2x - 2	$\checkmark f'(x)$ $\checkmark f'(x) = 2$ $\checkmark x = -2$	
	$\therefore -2x - 2 = 2$ $\therefore x = -2$	$\int_{-\infty}^{\infty} (\lambda) - \lambda$	
	$\therefore x = -2$ $\therefore y = -(-2)^2 - 2(-2) + 8$	$\checkmark x = -2$	
	y = -(-2) - 2(-2) + 8 $= 8$		
	$\therefore W(-2;8)$	$\checkmark y = 8$	
			(4)
5.3.2	g(x) = mx + c		(1)
	$m = -\frac{1}{2}$ (\perp lines / lyne)	✓ gradient / gradiënt	
		gradient / gradient	
	c=8	(
	$\therefore y = -\frac{1}{2}x + 8$	✓ equation / vergelyking	(2)
			. /

5.4
$$f(x) = -x^2 - 2x + 8$$

$$h(x) = -f(x-1)$$

$$= -\left[-(x-1)^2 - 2(x-1) + 8\right]$$

$$= -\left[-(x^2 - 2x + 1) - 2x + 2 + 8\right]$$

$$= -\left[-x^2 + 2x - 1 - 2x + 2 + 8\right]$$

$$= x^2 - 9$$

$$OR/OF$$

$$h(x) = (x+3)(x-3)$$

$$= x^2 - 9$$

$$OR/OF$$

$$New turning point / Nuwe draaipunt = (0; -9)$$

$$y = x^2 - 9$$

$$y = x^2 - 9$$

$$(4)$$

$$(4)$$

QUESTION 6/VRAAG 6

6.1	$A = P(1-i)^n$	
	$5510 = 9670(1-i)^4$	✓ subst. into correct formula
	$i = 1 - 4 \sqrt{\frac{5510}{9670}}$	vervanging in korrekte formule
	₩ 1 √9670	✓ simplification
	= 0,131177	vereenvoudiging
	$\therefore r = 13,12\%$	✓ answer / antwoord
		(3)

6.2 End of December / Einde van Desember

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$\therefore F = \frac{600\left[\left(1 + \frac{0.087}{12}\right)^{144} - 1\right]}{\frac{0.087}{12}}$$

$$= R151438, 20$$

End of January / Einde van Januarie

$$A = P(1+i)^{n}$$

$$= 151438, 20 \left(1 + \frac{0,087}{12}\right)$$

$$= R152536, 13$$

OR/OF

$$F = \frac{x \left[(1+i)^n - 1 \right] (1+i)}{i}$$

$$\therefore F = \frac{600 \left[\left(1 + \frac{0.087}{12} \right)^{144} - 1 \right] \left(1 + \frac{0.087}{12} \right)}{\frac{0.087}{12}}$$

$$= R152536,13$$

 $\sqrt{n} = 144$

- ✓ subst. into correct formula *vervanging in korrekte formule*
- ✓ adding final month's interest voeg finale maand se rente by
- ✓ answer / antwoord

OR/OF

- $\sqrt{n} = 144$
- ✓ subst. into correct formula *vervanging in korrekte formule*
- ✓ adding final month's interest voeg finale maand se rente by
- ✓ answer / antwoord

(4)

6.3.1
$$P = \frac{x \left[1 - (1 + i)^{-n}\right]}{i}$$

$$350\,000 = \frac{x \left[1 - \left(1 + \frac{0,093}{12}\right)^{-72}\right]}{\frac{0,093}{12}}$$

$$\therefore x = \frac{350\,000 \times \frac{0,093}{12}}{\left[1 - \left(1 + \frac{0,093}{12}\right)^{-72}\right]}$$

$$\therefore x \approx \text{R6361.18}$$

- $\sqrt{i} = \frac{0{,}093}{12}$ and n = 72
- ✓ substitution into correct formula vervanging in korrekte formule
- ✓ answer / antwoord

(3)

$$P = \frac{x \left[1 - (1+i)^{-n} \right]}{i}$$

$$\therefore P = \frac{6361,18 \left[1 - \left(1 + \frac{0,093}{12} \right)^{-32} \right]}{\frac{0,093}{12}}$$

$$= R179667,32$$

OR/OF

Outstanding balance / Uitstaande balans

$$=A-F$$

$$= 350000 \left(1 + \frac{0,093}{100}\right)^{40} - \frac{6361,18 \left[\left(1 + \frac{0,093}{12}\right)^{40} - 1\right]}{\frac{0,093}{12}}$$
 $\forall i = \frac{0,093}{12} \text{ and/en } n = 40$ $\forall \text{ subst. Into correct form } vervanging in korrekte}$

- = R476628,84 R296961,79
- = R179667,05

$$\sqrt{i} = \frac{0.093}{12}$$
 and/en $n = 32$

✓ subst. into correct formula vervanging in korrekte formule

$$\checkmark P = 179 667, 32$$

OR/OF

$$\sqrt{i} = \frac{0.093}{12}$$
 and/en $n = 40$

✓ subst. Into correct formula vervanging in korrekte formule

$$\checkmark P = 179 667, 32$$

(3)

6.3.3

$$\therefore 179667,32 = \frac{7000 \left[1 - \left(1 + \frac{0,093}{12} \right)^{-n} \right]}{\frac{0,093}{12}}$$

$$\frac{179667,32 \times \frac{0,093}{12}}{7000} - 1 = -\left(1 + \frac{0,093}{12}\right)^{-n}$$
$$-0,80108... = -\left(\frac{4031}{4000}\right)^{-n}$$

$$\therefore 0,80108... = \frac{4031^{-n}}{4000}$$

$$\therefore -n = \frac{\log 0,80108...}{\log \frac{4031}{4000}}$$

$$-n \approx -28,73$$
∴ $n \approx 28,73$

∴ The number of months is 29. Die aantal maande is 29.

OR/OF

$$179\,667,32 = \frac{7\,000 \left[1 - \left(1 + \frac{0,093}{12} \right)^{-n} \right]}{\frac{0,093}{12}}$$

$$\frac{179667,32 \times \frac{0,093}{12}}{7000} - 1 = -\left(1 + \frac{0,093}{12}\right)^{-n}$$
$$-0,80108... = -\left(\frac{4031}{4000}\right)^{-n}$$

$$\therefore 0,80108... = \frac{4031^{-n}}{4000}$$

$$\therefore -n = \frac{\log 0,80108...}{\log \frac{4031}{4000}}$$

$$-n \approx -28,73$$
∴ $n \approx 28,73$

∴The number of months is 29. Die aantal maande is 29 ✓ subst. into correct formula vervanging in korrekte formule

✓ correct use of logs korrekte gebruik van logs

$$\checkmark = 28,73$$

 $\checkmark n = 29 \text{ months } / \text{ maande}$

OR/OF

✓ subst. into correct formula *vervanging in korrekte formule*

✓ correct use of logs korrekte gebruik van logs

$$\checkmark = 28,73$$

 $\checkmark n = 29 \text{ months} / maande$

(4) [17]

[1/]

QUESTION 7/VRAAG 7

7 1		
7.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
	$= \lim_{h \to 0} \frac{5 - 2(x + h)^2 - (5 - 2x^2)}{h}$	✓ substitution / vervanging
	$= \lim_{h \to 0} \frac{5 - 2x^2 - 4xh - 2h^2 - 5 + 2x^2}{h}$	✓ expansion / uitbreiding
	$=\lim_{h\to 0}\frac{-4xh-2h^2}{h}$	✓ simplification / vereenvoudiging
	$=\lim_{h\to 0}\frac{h(-4x-2h)}{h}$	
	$=\lim_{h\to 0} \left(-4x-2h\right)$	\checkmark notation and $\lim_{h\to 0} (-4x-2h)$
	=-4x	✓ answer / antwoord (5)
7.2.1	$y = 7x^4 + \frac{2x^2}{\sqrt{x}}$ $= 7x^4 + 2x^{\frac{3}{2}}$	
	$=7x^4 + 2x^{\frac{3}{2}}$	$\checkmark 2x^{\frac{3}{2}}$
	$\therefore \frac{dy}{dx} = 28x^3 + 3x^{\frac{1}{2}}$	$\checkmark 2x^{\frac{3}{2}}$ $\checkmark 28x^{3} \checkmark 3x^{\frac{1}{2}}$ (3)
7.2.2	$=D_x \left\lceil \frac{3x^2 - 7x - 6}{x} \right\rceil$	
	$=D_x\left[3x-7-6x^{-1}\right]$	$\checkmark 3x-7 \qquad \checkmark -6x^{-1}$
	$=3+6x^{-2}$	✓ 3 and differentiating constant 3 en afgeleide van konstante
		$\checkmark +6x^{-2}$
		(4)
		[12]

QUESTION 8/VRAAG 8

_		
8.1.1	$f(x) = 2(x - x_1)(x - x_2)(x - x_3)$	
	$=2(x+1)(x-\frac{1}{2})(x-3)$	$\checkmark \checkmark f(x) = 2(x+1)(x-\frac{1}{2})(x-3)$
	=(x+1)(2x-1)(x-3)	OR/OF
	$=(x+1)(2x^2-7x+3)$	$\checkmark \checkmark f(x) = (x+1)(2x-1)(x-3)$
	$= 2x^{3} - 7x^{2} + 3x + 2x^{2} - 7x + 3$ $= 2x^{3} - 5x^{2} - 4x + 3$	✓ exapnsion / uitbreiding ✓ simplifying / vereenvoudiging
	$f(x) = 2x^3 + bx^2 + cx + d$	
	b = -5, c = -4, d = 3	(4)
8.1.2	$f'(x) = 6x^2 - 10x - 4$	
	$0 = 6x^2 - 10x - 4$	$\checkmark f'(x) = 6x^2 - 10x - 4 = 0$
	$\therefore 3x^2 - 5x - 2 = 0$	
	(3x+1)(x-2)=0	✓ factorisation / faktorisering
	$\therefore x = -\frac{1}{3} \text{ or } / \text{ of } x = 2$	
	\therefore N is at $f(2)$	
	$f(2) = 2(2)^3 - 5(2)^2 - 4(2) + 3$	✓ chosing/kies: $x = 2$
	=-9	=======================================
	$\therefore N(2;-9)$	$\checkmark y = -9 \tag{4}$
8.1.3 (a)	$-\frac{1}{3} < x < 2$	$\checkmark \checkmark$ answer / antwoord (2)
8.1.3 (b)		$\checkmark f''(x) = 12x - 10$
	$ 12x - 10 < 0 \\ 12x < 10 $	$\checkmark f''(x) < 0$
	$\therefore x < \frac{5}{6}$	✓ answer / antwoord
	OR/OF	OR/OF
	$x = \frac{-\frac{1}{3} + 2}{2} = \frac{5}{6}$	$\sqrt{x} = \frac{5}{6}$
	$\therefore x < \frac{5}{6}$	$\sqrt{x} = \frac{5}{6}$ $\sqrt{x} < \frac{5}{6} \text{OR/OF} x \in \left(-\infty; \frac{5}{6}\right)$
8.2	★ ↑ <i>y</i>	(3)
		$\checkmark f(0) = 0$
		$\checkmark (m;0)$
	(m;0)	✓ shape / vorm
	, in the second	
		(3)
		[16]

QUESTION 9/VRAAG 9

9.1	$A = \left(\frac{1}{2} \times 15x \times 8x \times 2\right) + \left(15xy\right) + \left(8xy\right) + \left(17xy\right)$ $5760 = 120x^{2} + 40xy$ $\therefore y = \frac{5760 - 120x^{2}}{40x}$	✓ total surface area / totale buite-oppervlakte ✓ $5760 = 120x^2 + 40xy$ (2)
9.2	$V = (\frac{1}{2}b.h) \times H$ $V = \frac{1}{2} \times 15x \times 8x \times y$ $= \frac{1}{2} \times 15x \times 8x \times \frac{5760 - 120x^{2}}{40x}$ $= 60x (144 - 3x^{2})$ $= 8640x - 180x^{3}$	✓ substitution into V vervanging in V ✓ substituing for y vervanging van y (2)
9.3	$V'(x) = 8640 - 540x^{2}$ $V'(x) = 0$ $\therefore 8640 - 540x^{2} = 0$ $8640 = 540x^{2}$ $x^{2} = 16$ $\therefore x = 4$	$ ✓ V'(x) = 8640 - 540x^{2} $ $ ✓ V'(x) = 0 $ $ ✓ simplification / $ $ vereenvoudiging $ $ ✓ answer / antwoord $ $ (4) $
		[8]

QUESTION 10/VRAAG 10

10.1.1	P(B) = 1 - P(not/nie B)	
	=1-0,45	
	= 0,55	√ 0,55 (1)
10.1.2	$P(A \text{ and/} en B) = P(A) \times P(B)$ $= 0, 2 \times 0, 55$ $= 0, 11$	$\checkmark P(A) \times P(B)$
	P(A or/ of B) = P(A) + P(B) - P(A and/ en B) = 0,2+0,55-0,11	✓ substitution / vervanging
	$= 0,64 \text{or } / of \frac{16}{25}$	✓ answer / antwoord (3)
10.2	$ \begin{array}{c c} & \frac{1}{2} & L \\ \hline & \frac{1}{2} & L \\ \hline & \frac{2}{5} & L \end{array} $	
	P(late/laat) = $\frac{1}{2}x + \frac{3}{5}(1-x)$	$\checkmark \frac{1}{2}x + \frac{3}{5}(1-x)$ $\checkmark \text{ equating } / \text{ gelyk stel}$
	$\frac{1}{2}x + \frac{3}{5}(1-x) = \frac{8}{15}$ $15x + 18(1-x) = 16$ $15x + 18 - 18x = 16$ $-3x = -2$	✓ substitution / vervanging
	$-3x = -2$ $x = \frac{2}{3}$	✓ answer / antwoord (4)
		[8]

QUESTION 11/VRAAG 11

	### \times \bigsize \bigsize 10 \times \bigsize 10 \times \bigsize 10 \times \bigsize 00	$ \begin{array}{c c} \checkmark & 20 \times 22 \times 21 \\ \checkmark & 10 \times 10 \times 10 \\ \checkmark & answer / antwoord \end{array} $ (3)
$=\frac{1140\ 000}{9240\ 000}$		✓ 20×19×3×10×10×5 ✓ 20×3×19×10×10×5 ✓ adding / optel ✓ 9 240 000 ✓ answer / antwoord (5)

TOTAL/TOTAAL: 150