CMPE 16 Homework #5

John Allard

November 4th, 2014

1. Prove the following theorum

For $x \in \mathbb{Z}$, if $x^3 - 1$ is even, then x is odd

Answer:

- This will be a proof by contrapositive.
- Let \mathbb{E} and \mathbb{O} represent the even and odd integers for this proof.
- $x^2 1 \in \mathbb{E} \implies x \in \mathbb{O}$ is logically equivilent to $x \in \mathbb{E} \implies x^3 1 \in \mathbb{O}$.
- I will prove the later to will prove the former.

Given some general
$$x \in \mathbb{E}$$
 $\exists a \in \mathbb{Z} : x = 2a$ $x^3 = (2a)^3 = 8a^3$ Cubing and substituting $8a^3 - 1 = 2(4a^3) - 1$ Factor out a two Shows this will always be odd

Thus if x is even, $x^3 - 1$ will always be odd, which is logically equivalent to the fact that if $x^3 - 1$ is even, then x must be odd.

2. Prove the following theorum

If x^2 is a prime number, then x is not an integer

Answer:

- (a) This will be proof by contrapositive.
- (b) $x^2 \in \mathbb{P} \implies x \notin \mathbb{Z}$ is the same as $x \in \mathbb{Z} \implies x^2 \notin \mathbb{P}$
- (c) I will directly prove the later which will prove the former.
- (d) If $x \in \mathbb{Z}$, then $x^2 \in \mathbb{Z}$
- (e) $x^2 = x * x$ which is the product of two integers that are not 1 and x^2 .
- (f) This means that $x^2 \notin \mathbb{P}$

3. EXTRA CREDIT - Prove the following theorum

If a, b, and c are integers that satisfy $a^2 + b^2 + c^2$, then either a or b is even.

Two cases, first if c is odd, second if c is even.

(a) c is odd. If c is odd, then
$$c^2 = (2d+1)^2 = 4d^2 + 4d + 1$$

(b) Thus
$$a^2 + b^2 = 4d^2 + 4d + 1$$