# Decision Trees

Abdessalam Bouchekif

abdessalam.bouchekif@epita.fr

## Decision Tree representation

- ☐ Decision Trees are supervised learning method used for classification and regression.
- Learning simple decision rules inferred from the data features.



**leaf node** has a class label

### Decision Tree as Set of Rules

| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
|-----|----------|-------------|----------|--------|------------|
| D1  | Sunny    | Hot         | High     | Weak   | No         |
| D2  | Sunny    | Hot         | High     | Strong | No         |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |
| D4  | Rain     | Mild        | High     | Weak   | Yes        |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool        | Normal   | Strong | No         |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild        | High     | Weak   | No         |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes        |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes        |
| D12 | Overcast | Mild        | High     | Strong | Yes        |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes        |
| D14 | Rain     | Mild        | High     | Strong | No         |



This decision is equivalent to:

if (Outlook == "Sunny") \( (Humidity == "Normal") \)
then Yes

if (Outlook == "Overcast") then Yes

if (Outlook=="Rain") ∧ (Wind == Weak)
then Yes

...

### Decision boundaries







## Why interesting?

- ☐ What we can do:
  - Given a set training examples
  - Find the general classification rules
- ☐ The rules can used to classify future examples
- ☐ Which is useful in many situations:
  - Medical diagnosis
  - Oredit application scoring: grant a loan or not?
  - o Fraud detection: is the transaction suspicious or not?
  - Identify groups of similar credit card users
  - Modeling calendar scheduling preferences

0 ...

#### Decision trees

- ☐ Algorithms used
  - o ID3
  - o C4.5
  - o CART
- Basic idea of *ID*3 algorithm: A decision tree can be constructed by considering attributes of instances one by one
  - The height of decision tree depends on the order attributes that are considered
  - O Which attribute should be considered first?

## How to build decison trees (ID3 algorithm)?

☐ Suppose first attribute (root) chosen is "Outlook"



#### Outlook = Sunny

| Day | Outlook | Temperature | Humidity | Wind   | PlayTennis |
|-----|---------|-------------|----------|--------|------------|
| D1  | Sunny   | Hot         | High     | Weak   | No         |
| D2  | Sunny   | Hot         | High     | Strong | No         |
| D8  | Sunny   | Mild        | High     | Weak   | No         |
| D9  | Sunny   | Cool        | Normal   | Weak   | Yes        |
| D11 | Sunny   | Mild        | Normal   | Strong | Yes        |

| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
|-----|----------|-------------|----------|--------|------------|
| D1  | Sunny    | Hot         | High     | Weak   | No         |
| D2  | Sunny    | Hot         | High     | Strong | No         |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |
| D4  | Rain     | Mild        | High     | Weak   | Yes        |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool        | Normal   | Strong | No         |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild        | High     | Weak   | No         |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes        |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes        |
| D12 | Overcast | Mild        | High     | Strong | Yes        |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes        |
| D14 | Rain     | Mild        | High     | Strong | No         |

#### Outlook = Overcast

| Ī | D3  | Overcast | Hot  | High   | Weak   | Yes |
|---|-----|----------|------|--------|--------|-----|
|   | D7  | Overcast | Cool | Normal | Strong | Yes |
|   | D12 | Overcast | Mild | High   | Strong | Yes |
|   | D13 | Overcast | Hot  | Normal | Weak   | Yes |

#### Outlook = Rain

| D4  | Rain | Mild | High   | Weak   | Yes |
|-----|------|------|--------|--------|-----|
| D5  | Rain | Cool | Normal | Weak   | Yes |
| D6  | Rain | Cool | Normal | Strong | No  |
| D10 | Rain | Mild | Normal | Weak   | Yes |
| D14 | Rain | Mild | High   | Strong | No  |

### How to build decison trees?

- $\square$  For the node "outlook = Overcast", all example are labeled "yes"
- $\Rightarrow$  hence it becomes a leaf node with classification "PlayTennis = yes"
- $\Box$  For the node "Outlook = sunny" need to select another attribute
  - Suppose "*Humidity*" is chosen.
  - o Get left-lower part of tree.
  - o Split data

"Humidity = High"

| Day | Outlook | Т    | Humidity | W      | Р  |
|-----|---------|------|----------|--------|----|
| D1  | Sunny   | Hot  | High     | Weak   | No |
| D2  | Sunny   | Hot  | High     | Strong | No |
| D8  | Sunny   | Mild | High     | Weak   | No |

All are labeled "*No*" becomes leaf.



Sunny

Outlook

Overcast

Yes

Rain

"Humidity = Normal"

| D9  | Sunny | Cool | Normal  | Weak   | Yes |
|-----|-------|------|---------|--------|-----|
|     | Junny | COOI | rvorman | VVCuit | 103 |
| D11 | Sunny | Mild | Normal  | Strong | Yes |

All are labeled "Yes", becomes leaf

#### How to build decison trees?

- $\Box$  For the node "Outlook = rain" need to select another attribute.
  - Suppose "*Wind*" is chosen. Get right-lower part of tree. Split data:

"Wind = Strong"

| Day | Outlook | Т    | Н      | Wind   | Р  |
|-----|---------|------|--------|--------|----|
| D6  | Rain    | Cool | Normal | Strong | No |
| D14 | Rain    | Mild | High   | Strong | No |

All are labeled "No" becomes leaf.

"wind = Weak"

| D4  | Rain | Mild | High   | Weak | Yes |
|-----|------|------|--------|------|-----|
| D5  | Rain | Cool | Normal | Weak | Yes |
| D10 | Rain | Mild | Normal | Weak | Yes |



End of tree construction

All are labeled "Yes", becomes leaf

#### Which attribute is best?



- ☐ Intuitively, we want a test attribute that **separates** the training set as well as possible
- ☐ Need a measure of node impurity

☐ *ID*3 uses the entropy and information gain

## Entropy

 $\square$  Given probabilities  $p_1, p_2, ..., p_c$  whose *sum* is 1, Entropy is defined as:

$$E(p_1, p_2, ..., p_c) = \sum_{i=1}^{c} -p_i \log_2 p_i$$



PlayTennis



- All samples belong to the same class  $\Rightarrow E = 0$
- o Samples are equally mixed for binary classification  $\Rightarrow E = 1$
- o Samples are equally mixed for multiclass classification  $\Rightarrow E = log_2 c$

$$E(play\ tennis) = -\left(\frac{9}{14}\right)\ log_2\left(\frac{9}{14}\right) - \left(\frac{5}{14}\right)log_2\left(\frac{5}{14}\right) = 0.96$$

## Information gain

- ☐ We want to determine which attribute is most useful for discriminating between the classes to be learned
  - ⇒ Select the attribute with the highest information gain

 $\square$  *ID*3 chooses to split on an attribute that gives the highest information gain:

$$Gain(S, A) = Entropie(S) - \sum_{v \in Valeurs(A)}^{S} \frac{|S_v|}{|S|} Entropie(S_v)$$

## Attribute Selection: An Example

S: 
$$[8+,8-]$$
 $A_1$  splits  $S$  into  $S_{11}$ :  $[8+,0-]$  and  $S_{12}$ :  $[0+,8-]$ 
 $A_2$  splits  $S$  into  $S_{21}$ :  $[4+,4-]$  and  $S_{12}$ :  $[4+,4-]$ 
 $Entropy(S) = -0.5log_2(0.5) - 0.5log_2(0.5) = 1$ 
 $Gain(S,A_1) = -Entropy(S) - 0.5 Entropy([8+,0-]) - 0.5 Entropy([0+,8-])$ 
 $= 1-0-0=0$ 
 $Gain(S,A_2) = -Entropy(S) - 0.5 Entropy([4+,4-]) - 0.5 Entropy([4+,4-])$ 
 $= 1-0.5-0.5=1$ 

## ID3 algorithm

*Input*: Example set *S* 

*Output*: Decesion Tree *DT* 

o *if* all examples in *S* belong to the same class *c* 

return a new leaf and label it label it with *c* 

o *else* Select the best atribute *A* 

Generate a new note *DT* with *A* as test

*for* each value  $v_i$  of A

- Let  $S_i$ = all examples in S with  $A = v_i$
- Use ID3 to construct a decision tree  $DT_i$  for example set  $S_i$

 $\circ$  Entropy of *S* 

$$S = \{D_1, \dots, D_{14}\} = [9+, 5-]$$

$$E(S) = \frac{9}{14} log_2 \left(\frac{9}{14}\right) - \frac{5}{14} log_2 \left(\frac{5}{14}\right) = 0.94$$

Information gain (*Outlook*)

$$S_{sunny} = [2+, 3-]; E(S_{sunny}) = 0.971$$
  
 $S_{overcast} = [4+, 0-]; E(S_{overcast}) = 0.0$   
 $S_{rainy} = [3+, 2-]; E(S_{rainy}) = 0.971$ 

| Gain(S, Outlook) = 0.94 - | $\frac{5}{14}$ 0.971 - | $\frac{4}{14}$ 0.0 - | $\frac{5}{14}$ 0.971 = <b>0</b> . <b>246</b> |
|---------------------------|------------------------|----------------------|----------------------------------------------|
|                           | 14                     | 14                   | 14                                           |

| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
|-----|----------|-------------|----------|--------|------------|
| D1  | Sunny    | Hot         | High     | Weak   | No         |
| D2  | Sunny    | Hot         | High     | Strong | No         |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |
| D4  | Rainy    | Mild        | High     | Weak   | Yes        |
| D5  | Rainy    | Cool        | Normal   | Weak   | Yes        |
| D6  | Rainy    | Cool        | Normal   | Strong | No         |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild        | High     | Weak   | No         |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |
| D10 | Rainy    | Mild        | Normal   | Weak   | Yes        |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes        |
| D12 | Overcast | Mild        | High     | Strong | Yes        |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes        |
| D14 | Rainy    | Mild        | High     | Strong | No         |

Information gain (Humidity)

$$S_{high} = [3+, 4-]; E(S_{high}) = 0.985$$
  
 $S_{normal} = [6+, 1-]; E(S_{normal}) = 0.592$   
 $Gain(S, Humidity) = 0.693 - \frac{7}{14}0.985$   
 $-\frac{7}{14}0.592 = \mathbf{0.151}$ 

○ Information gain (*Wind*)

$$S_{weak} = [6+, 2-]; E(S_{weak}) = 0.811$$
  
 $S_{strong} = [3+, 3-]; E(S_{strong}) = 1.0$ 

$$Gain (S, Strong) = 0.940 - \frac{8}{14}0.811 + \frac{6}{14}1.0 = 0.048$$

| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
|-----|----------|-------------|----------|--------|------------|
| D1  | Sunny    | Hot         | High     | Weak   | No         |
| D2  | Sunny    | Hot         | High     | Strong | No         |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |
| D4  | Rainy    | Mild        | High     | Weak   | Yes        |
| D5  | Rainy    | Cool        | Normal   | Weak   | Yes        |
| D6  | Rainy    | Cool        | Normal   | Strong | No         |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild        | High     | Weak   | No         |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |
| D10 | Rainy    | Mild        | Normal   | Weak   | Yes        |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes        |
| D12 | Overcast | Mild        | High     | Strong | Yes        |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes        |
| D14 | Rainy    | Mild        | High     | Strong | No         |

☐ Information gain (*Temperature*)

Gain (S, temperature) = 
$$0.940 - \left(\frac{4}{14}\right)1 - \left(\frac{6}{14}\right)0.918 - \left(\frac{4}{14}\right)0.811 = 0.029$$

E([2+,2-])

E([3+,1-])

☐ So start tree construction with *Outlook* 



A branch with entropy of 0 is a leaf node.

A branch with entropy more than 0 needs further splitting.



Which attribute should be tested here?

$$S_{sunny} = [2+, 3-]$$

$$Gain(S_{sunny}, Humidity) = 0.97 - \left(\frac{3}{5}\right)0.0 - \left(\frac{2}{5}\right)0.0 = 0.97$$

$$Gain(S_{sunny}, Temperature) = 0.970 - \left(\frac{2}{5}\right)0.0 - \left(\frac{2}{5}\right)1.0 - \left(\frac{1}{5}\right)0.0 = 0.57$$

$$Gain(S_{sunny}, Humidity) = 0.970 - \left(\frac{2}{5}\right)1.0 - \left(\frac{3}{5}\right)0.918 = 0.019$$

|     | Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
|-----|-----|----------|-------------|----------|--------|------------|
|     | D1  | Sunny    | Hot         | High     | Weak   | No         |
|     | D2  | Sunny    | Hot         | High     | Strong | No         |
|     | D3  | Overcast | Hot         | High     | Weak   | Yes        |
|     | D4  | Rainy    | Mild        | High     | Weak   | Yes        |
|     | D5  | Rainy    | Cool        | Normal   | Weak   | Yes        |
|     | D6  | Rainy    | Cool        | Normal   | Strong | No         |
|     | D7  | Overcast | Cool        | Normal   | Strong | Yes        |
|     | D8  | Sunny    | Mild        | High     | Weak   | No         |
|     | D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |
|     | D10 | Rainy    | Mild        | Normal   | Weak   | Yes        |
|     | D11 | Sunny    | Mild        | Normal   | Strong | Yes        |
|     | D12 | Overcast | Mild        | High     | Strong | Yes        |
|     | D13 | Overcast | Hot         | Normal   | Weak   | Yes        |
|     | D14 | Rainy    | Mild        | High     | Strong | No         |
| / 1 | 1\  |          |             |          |        |            |



$$Gain(S_{Rainy}, humidity) = 0.970 - \left(\frac{2}{5}\right)1 - \left(\frac{3}{5}\right)0.918 = 0.019$$

$$Gain(S_{Rainy}, temperature) = 0.970 - \left(\frac{2}{5}\right)1 - \left(\frac{3}{5}\right)0.918 = 0.019$$

$$Gain(S_{Rainy}, wind) = 0.970 - \left(\frac{2}{5}\right)0 - \left(\frac{3}{5}\right)0 = 0.970$$

yes