1 Consolidation assignment

- 1. Complete the survey about the project phase on StudOn.
- 2. "Seven scientists". Assume that you are trying to infer the numerical value of some natural constant, μ , which is unknown to you. You ask seven (or N) scientists to use their measurement devices in order to give you an estimate of μ . We assume that the ith scientist's device returns the value $y_i = \mu + \epsilon_i$, where each ϵ_i is a measurement error distributed according to a Gaussian random variable $N(0, \sigma_i)$.

Consider measurements y = [4.96334778, 5.43644897, 7.38067265, 4.69244271, 6.91227063, 4.48530689, 4.19409183]. (see figure below)

Write down explicitly the expression for the *likelihood* $\mathbb{P}(y|\mu, \{\sigma_i\})$, i.e. the probability density of a measurement y given a fixed set of parameters μ and $\{\sigma_i\}$.

- a) First assume that all devices have the same measurement uncertainty $\sigma_i = 1$. What is the maximum likelihood estimator for μ (i.e. the value $\hat{\mu}_{ML} = \operatorname{argmax}_{\mu} \mathbb{P}(y|\mu, \{\sigma_i\}))$?
- b) Now we assume that we don't know each scientist's measuring uncertainty σ_i . What is the joint maximum likelihood estimator for μ and all σ_i , i.e. which values of μ and σ_i , i = 1, ..., N minimize the likelihood $\mathbb{P}(y|\mu, \{\sigma_i\})$? What goes wrong?
- c) Elaborate on a possible solution for the problem in b).
- 3. Let $X \sim N(\mu, \sigma^2)$, $\varepsilon \sim N(0, \gamma^2)$ and $Y = a \cdot X + \varepsilon$. In class we derived the following:

$$Y|X \sim N(a \cdot X, \gamma^2)$$

For simplicity we assume that $\mu = 0$. This means that

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \exp(-\frac{x^2}{2\sigma^2})$$

$$f_{Y|X}(y|x) = \frac{1}{\sqrt{2\pi\gamma^2}} \cdot \exp(-\frac{(y-ax)^2}{2\gamma^2}).$$

Calculate $f_{X,Y}(x,y) = f_{Y|X}(y|x) \cdot f_X(x)$ and thus derive the distribution of (X,Y). Hint: The density for a 2-d multivariate Gaussian distribution $(W,Z) \sim N(\vec{m},C)$ is

$$f_{W,Z}(w,z) = \frac{1}{\sqrt{2\pi \det C}} \exp\left(-\frac{\left(\binom{w}{z} - \vec{m}\right)^T \cdot C^{-1} \cdot \left(\binom{w}{z} - \vec{m}\right)}{2}\right)$$

4. (optional) If you're interested in Simpson's paradox, you can read more about it on https://pwacker.com/simpson.html

2 Preparation assignment

We consider the setting of linear regression with a polynomial regression function: Given data $z \in \mathbb{R}^{2 \times N}$ (i.e. each of the N data points z_i has two coordinates which we abbreviate by $z_i = (x_i, y_i)$).

We assume that the data was generated by noisy evaluation of a polynomial with n unknown coefficients, i.e.

$$y_i = a_0 + a_1 \cdot x_i + a_2 \cdot x_i^2 + \dots + a_{n-1} \cdot x_i^{n-1} + \varepsilon_i$$

where $\varepsilon_i \sim N(0, \sigma^2)$ are independent noise terms (with known variance σ^2 .

- a) Write Matlab/Octave code that can do the following: Given parameters $\vec{a} = (a_0, \dots, a_{n-1})$, measurements positions x_i and noise parameter σ , generate data y as above.
- b) Write the measurement process in vectorial form

$$\vec{y} = M \cdot \vec{a} + \vec{\varepsilon}.$$

3 Notes / Insights from class