

FACULTÉ DES SCIENCES ET DE GÉNIE
DÉPARTEMENT DE GÉNIE ÉLECTRIQUE ET DE GÉNIE INFORMATIQUE

GEL-2001 Analyse de signaux Jérôme Genest

Examen partiel

Date: Mardi le 23 octobre 2012

Durée: de 13h30 à 15h20

SALLE: PLT-2501, PLT-2700

Cet examen vaut 40% de la note finale.

Remarques:

- i) L'utilisation d'une calculatrice est permise.
- ii) Aucun document n'est permis durant l'examen.
- iii) Seule la liste des formules fournie à la fin du questionnaire est permise.
- iv) Votre carte d'identité doit être placée sur votre bureau en conformité avec le règlement de la Faculté.

Problème 1 (12 points)

Soit la fonction périodique $f_p(t)$ illustrée ci-haut.

La fonction peut être exprimée, sur l'intervalle $[-T_o/2, T_o/2]$ par: $f_p(t) = \cos(\omega_o t/2)$. On utilise ensuite la périodicité $f(t+T_o) = f(t)$ pour définir la fonction sur ses autres périodes.

- a) Calculez la transformation de Fourier du signal restreint à sa période centrale (i.e zéro à l'extérieur de $[-T_o/2, T_o/2]$).
- b) Est-ce que ce signal restreint est un signal de puissance ou d'énergie?
- c) Le spectre calculé en a) est constitué de deux termes. Tracez ces deux termes sur un graphique (inutile de calculer et de tracer leur somme).
- d) Calculez et tracez la transformation de Fourier du signal périodique $f_p(t)$.
- e) Quelle est l'énergie et/ou la puissance DC, quelle est l'énergie et/ou la puissance à la fréquence fondamentale (la 1ère harmonique)?

Problème 2 (8 points)

La transformation d'un train d'impulsions $\delta_{T_o}(t)$ est un train d'impulsions.

- a) Calculez et tracez (en module et en phase) la transformation de Fourier de $\delta_{T_o}(t-\tau)$.
- b) Calculez et tracez la transformation de Fourier de $\delta_{T_o}(at)$.
- c) Calculez et tracez la transformation inverse de:

$$F(\omega) = \delta_{\omega_s}(\omega - \omega_o) \times Sa(\omega - \omega_o) + \delta_{\omega_s}(\omega + \omega_o) \times Sa(\omega + \omega_o).$$

Problème 3 (12 points)

Soit la fonction f(t), telle que:

$$f(t) = \begin{cases} 0 & -\infty < t < 0 \\ at^2 & 0 \le t \le \frac{1}{\sqrt{a}} \\ a & \frac{1}{\sqrt{a}} < t < \infty \end{cases}$$

- a) Tracez la fonction f(t).
- b) Calculez sa transformation de Fourier $F(\omega)$.
- c) Quel est le taux de convergence des lobes de $F(\omega)$?
- d) Quelle est la puissance et/ou l'énergie de ce signal?

Problème 4 (8 points)

Les fonctions d'Hermite sont le produit des polynômes d'Hermite avec une gaussienne. On peut donc définir les fonctions d'Hermite $g_n(t)$ comme:

$$g_n(t) = H_n(t)e^{-t^2/2} = (-1)^n e^{t^2/2} \frac{d^n}{dt^n} e^{-t^2},$$

où n est un entier définissant l'ordre de la fonction. En un sens, il s'agit d'une généralisation de la gaussienne¹. Pour n=0, on obtient simplement la gaussienne. Pour n=1, on obtient:

$$g_1(t) = 2te^{-t^2/2}.$$

Calculez la transformation de Fourier de $g_1(t)$. Est-ce que $g_1(t)$ est une fonction paire ou impaire?

Aide des assistants du cours (TF de la gaussiene):

$$e^{-kt^2} \Longleftrightarrow \sqrt{\frac{\pi}{k}} e^{-\omega^2/4k}$$

¹Pour ceux que ça intéresse, les fonctions d'Hermite sont des fonctions propres de la transformation de Fourier. Elles constituent une famille infinie de fonctions auto-transformantes (Ca doit être quelque chose d'important...).

Examen Partiel

Fonction	Transformée de Fourier
f(t)	$F(\omega)$
F(t)	$2\pi f(-\omega)$
f(t+a)	$e^{ja\omega}F(\omega)$
f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$
$e^{jbt}f(t)$	$F(\omega - b)$
$t^n f(t)$	$(j)^n \frac{d^n}{d\omega^n} F(\omega)$
$\frac{d^n}{dt^n}f(t)$	$(j\omega)^n F(\omega)$
$\operatorname{Rect}(t/\tau)$ (1)	$ au\operatorname{Sa}ig(\omega au/2ig)$
$\operatorname{Tri}\left(t/\tau\right)$ (2)	$ au \operatorname{Sa}^2(\omega au/2)$
δ(<i>t</i>)	1
1	$2\pi\delta(\omega)$
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
U(<i>t</i>)	$1/j\omega + \pi\delta(\omega)$
Sgn(t)	2/ jω
$\delta_{T_0}(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_0)$	$\omega_0 \sum_{n=-\infty}^{+\infty} \delta(\omega - n\omega_0)$
$e^{-eta t}\mathrm{U}(t)$	$\frac{1}{\beta + j\omega}$
$e^{-eta t }$	$\frac{2\beta}{\beta^2 + \omega^2}$

rectangle de hauteur un, centré $_2$ Tri $\left(\frac{t-t_0}{\tau}\right)$ sur $t=t_0$, et de $longueur \ \tau.$

$$2 \operatorname{Tri}\left(\frac{t-t_0}{\tau}\right)$$

triangle de hauteur un, centré sur $t=t_0$, avec un base de longueur 2τ .