

Московский Физико-Технический Институт (национальный исследовательский университет)

Отчет по эксперименту

Эффект Поккельса

Работа №4.7.2; дата: 11.03.23 Семестр: 4

1. Введение

Цель работы:

Исследовать интерференцию рассеянного света, прошедшего кристалл; наблюдать изменение характера поляризации света при наложении на кристалл электрического поля.

В работе используются:

Гелий-неоновый лазер, поляризатор, кристалл ниобата лития, матовая пластинка, экран, источник высоковольтного переменного и постоянного напряжения, фотодиод, осциллограф, линейка.

Схема установки:

Рис. 1: Схема установки

2. Теоретические сведения

Рассмотрим кристалл ниобата лития: его оптические свойства обладают симметрией вращения относительно выделенного направления – оптической оси оZ. Для волны, распространяющейся вдоль оZ, показатель преломления равен n_o , а для волны, перпендикулярной оптической оси, n_e , причем для ниобата лития $n_o > n_e$.

Волну длины $\lambda = 2\pi/k$, проходящую под углом θ к оси оZ в кристалле, раскладывают на обыкновенную и необыкновенную. Для вектора напряженности обыкновенной волны верно: $\vec{E_o} \parallel \vec{k} \times \vec{e_z}$, и показатель преломления $n_1 = n_o$. Для вектора напряженности необыкновенной: $\vec{E_e} \perp \vec{k} \times \vec{e_z}$, и показатель преломления n_2 зависит от θ по закону:

$$\frac{1}{n_2^2} = \frac{\cos^2 \theta}{n_o^2} + \frac{\sin^2 \theta}{n_e^2}$$

Сдвиг фаз обыкновенной и необыкновенной волн при прохождении кристалла длиной l составляет:

$$\Delta = kl(n_1 - n_2) = \frac{2\pi}{\lambda} \cdot l(n_1 - n_2)$$

С учетом зависимости $n_2(\theta)$ для малых углов θ в приближении $n_o \approx n_e$:

$$\Delta = \frac{2\pi}{\lambda} \cdot l(n_o - n_e)\theta^2$$

Направления постоянной разности фаз задают конусы $\theta = \text{const}$, следовательно, интерференционная картина представляет собой концентрические окружности.

Рис. 2: Главные направления при наложении электрического поля

Поместим кристалл ниобата лития в постоянное электрическое поле \vec{E}_{ext} , направленное по оси оX, перпендикулярной оптической оси оZ. В плоскости оXY возникают быстрая и медленная оси под углами 45° к оX, оY, соответствующие показателям преломления $(n_o - \Delta n)$ и $(n_o + \Delta n)$, здесь $\Delta n = A \cdot E_{ext}$, A - константа, зависящая от свойств материала. В этом и заключается эффект Поккельса.

Появление главных направлений ξ и η иллюстрирует Рис. 2.

3. Ход работы

3.1. Исследование интерференции рассеянного света

Схема наблюдения интерференционной картины приведена на Рис. 3. Свет лазера, поляризованный в вертикальной плоскости, рассеивается на матовой пластинке и проходит через двоякопреломляющий кристалл. На выходе из кристалла стоит поляроид. Параметры установки: размеры кристалла $3 \times 3 \times 26$ mm, длина волны гелий-неонового лазера $\lambda = 630$ nm, показатель преломления $n_o = 2.29$, расстояние до экрана от центра кристалла $L = (78 \pm 1)$ sm.

Рис. 3: Схема наблюдения интерференционной картины

Интерференционная картина, создаваемая обыкновенной и необыкновенной волнами, наблюдается в скрещенной поляризации. Для луча, идущего вдоль оптической оси Z, верно: $n_o = n_e$; его поляризация не изменяется в кристалле, луч не проходит через анализатор, и в центре интерференционной картины находится темное пятно. Следующий минимум интенсивности соответствует сдвигу фаз между волнами на 2π , поэтому условие на m-ое темное кольцо запишется с использованием формулы в виде:

$$\Delta = 2\pi m \Longleftrightarrow \theta_m^2 = \frac{m\lambda}{l(n_o - n_e)}$$

3десь l=26 мм – длина кристалла вдоль оптической оси.

По закону Снеллиуса, угол преломления на внешней границе кристалла: $\theta_{ex} = n_o \theta$. Тогда для радиуса m-ого темного кольца r_m верно:

$$r_m^2 = \frac{\lambda}{l} \frac{(n_o L)^2}{(n_o - n_e)} \cdot m$$

Рис. 4: Интерференционная картина

Снимем зависимость радиусов темных концентрических колец от номера максимума $r_m(m)$. Погрешность величины r_m примем равной 0.5 см из-за расплывчатости картинки и неточности прямых измерений. Результаты измерений занесены в таблицу Табл. 1.

m	1	2	3	4	5
r_m , cm	2.8	4.0	5.0	5.7	6.5

Табл. 1: Зависимость $r_m(m)$

Построим график линеаризованной зависимости:

Рис. 5: График зависимости $r_m^2(m)$

Из графика получаем коэффициент наклона γ и двулучепреломление ниобата лития:

$$\gamma = (8.53 \pm 0.18) \,\mathrm{cm}^2 \implies n_o - n_e = (0.086 \pm 0.002)$$

3.2. Изменение характера поляризации света при наличии внешнего поля

При наложении электрического поля в кристалле возникают быстрая ось ξ и медленная ось η , изображенные на рисунке Рис. 2; разложим вектор напряженности волны по ним. После прохождения кристалла разность фаз между E_{η} и E_{ξ} составит $\Delta = \frac{2\pi}{\lambda} \cdot 2l\Delta n = \frac{4\pi}{\lambda} \frac{l}{d}AU$, где $U = E_{ext}d$ – напряжение на кристалле, d=3 мм – его поперечный размер, l=26 мм – длина пути луча. Поляроид пропускает горизонтальную составляющую волны. Значит, выходная напряженность складывается из проекций E_{η} и E_{ξ} на ось оX:

$$E = \frac{E_0}{2} \cdot e^{i(\omega t - kl)} \left(e^{i\Delta/2} - e^{i\Delta/2} \right) = \frac{E_0}{2} \cdot e^{i(\omega t - kl + \pi/2)} \sin\frac{\Delta}{2}$$

Здесь E_0 - амплитуда входной волны.

Отсюда интенсивность выходной волны:

$$I = I_0 \sin^2 \frac{\Delta}{2} = I_0 \sin^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right)$$

Здесь введено **полуволновое напряжение** $U_{\lambda/2} = \frac{\lambda}{4A} \frac{d}{l}$, соответствующее максимальной интенсивности на выходе.

При параллельных поляризациях лазера и анализатора получаем следующую зависимость I(U):

$$I = I_0 \cos^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right)$$

Схема установки, включающая блок питания, фотодиод и осциллограф, используемые в этой части работы, показана на Рис. 1.

Для скрещенных поляризаций при напряжениях $U = (2k-1)U_{\lambda/2}$ наблюдается максимум интенсивности, при $U = 2kU_{\lambda/2}$ – минимум. Для параллельных поляризаций ситуация противоположная.

Напряжения, соответствующие последовательным экстремумам интенсивности для разных поляризаций, содержатся в Табл. 2. В 100 делениях шкалы блока питания 1.5 kV.

	Скрещенные поляризации	Параллельные поляризации	
$U_{\lambda/2}$, ед	$27 \pm 1 \; (\text{max})$	$26 \pm 1 \text{ (min)}$	
$2U_{\lambda/2}$, ед	$52 \pm 1 \text{ (min)}$	$52 \pm 1 \text{ (max)}$	
$3U_{\lambda/2}$, ед	$79 \pm 1 \; (\text{max})$	$78 \pm 1 \text{ (min)}$	

Табл. 2: Последовательные экстремумы интенсивности

Рис. 6: Минимум интенсивности

Рис. 7: Максимум интенсивности

По таблице Табл. 2 найдем среднее значение полуволнового напряжения:

$$U_{\lambda/2} = (390 \pm 15) \,\mathrm{B}$$

При напряжении $U_{\lambda/4}$ интенсивности при скрещенной и параллельной поляризациях совпадают. Выставим экспериментальное значение напряжения $U_{\lambda/4} = U_{\lambda/2}/2 \approx 230$ В. При вращении анализатора интенсивность наблюдаемого пятна практически не меняется, что свидетельствует о круговой поляризации и подтверждает правильность расчетов.

Подключим фотодиод к Y-входу осциллографа. На X-вход подадим переменное напряжение с блока питания. В режиме DUAL на экране осциллографа получаются фигуры Лиссажу, отвечающие зависимости I(U). Она задается формулами в начале раздела; для скрещенных поляризаций имеет вид синусоиды, взятой на симметричном отрезке, а для параллельных поляризаций представляет собой косинусоиду. Таким образом, фигуры Лиссажу для разных поляризаций при одинаковом значении амплитуды напряжения U отличаются по фазе на $\pi/2$.

Полуволновое напряжение, определенное по фигурам Лиссажу в точности совпадает с рассчетным.

4. Выводы

- Исследована интерференция лазерного излучения после матовой пластинки на одноосном кристалле.
- Определено двулучепреломление кристалла ниобата лития на длине волны $\lambda = 630$ нм

$$n_o - n_e = (0.086 \pm 0.002)$$

Значение в пределах погрешности совпадает с табличным $(n_o - n_e)_{ref} = 0.084$

• Для данного кристалла определено полуволновое напряжение

$$U_{\lambda/2} = (390 \pm 15) \,\mathrm{B}$$

Это значение подтверждено наблюдением соответствующих фигур Лиссажу.