

Вычислительные мощности Балансировщики нагрузки в Cloud Provider

Денис Альмухаметов

System Architect
Netcracker

План занятия

- 1. Вычислительные мощности
- 2. Хранение
- 3. Балансировщики нагрузки
- 4. Итоги
- 5. Домашнее задание

Вычислительные мощности (виртуальные машины)

AWS EC2 — Elastic Compute Cloud (ECC)

AWS EC2 бывают:

- On Demand объем вычислительных ресурсов оплачивается на почасовой или посекундной основе, в зависимости от используемых инстансов.
- Saving Plans объем, предусматривающий снижение оплаты при условии, что клиент обязуется использовать этот постоянный объем в течение 1 или 3 лет.
- **Spot** объем свободных вычислительных ресурсов Amazon EC2, со скидкой до 90 % по сравнению с ценой по требованию
- Dedicated выделенный объем физических серверов,
 предоставляемый только одному клиенту

Типы ЕС2 — инстансов

Типы инстансов включают различные комбинации таких компонентов, как: **ЦПУ**, **память**, **хранилище** и **сетевые возможности**, что позволяет выбрать соответствующий набор ресурсов для приложений.

Каждый тип инстанса включает **один** или **несколько размеров** инстансов, что позволяет масштабировать ресурсы в соответствии с требованиями целевой рабочей нагрузки.

Типы ЕС2 — инстансов

- General Purpose
- Compute Optimised
- Memory Optimised
- Accelerated Computing
- Storage Optimised

Источник

Сетевые адаптеры для ЕС2

- **ENI** (Elastic network interfaces) виртуальная сетевая карта инстанса.
- **Enhanced network** высокоскоростная сетевая карта 10Гбит/с, 100Гбит/с.
- Elastic Fabric Adapter используется для HPC и ML, где высокие требования к задержкам.

YC Compute Cloud

- **Виртуальная машина** объем вычислительных ресурсов оплачивается посекундно. Цены указаны за 1 час использования.
- Прерываемая виртуальная машина виртуальные машины, которые могут быть принудительно остановлены в любой момент. Это может произойти в двух случаях:
 - о с момента запуска виртуальной машины прошло 24 часа,
 - нехватка ресурсов для запуска обычной виртуальной машины в той же зоне доступности. Вероятность такого события низкая, но может меняться изо дня в день.

YC - Платформы Compute Cloud

Платформа	Процессор	Макс. кол-во ядер (vCPU) на ВМ	Макс. кол-во GPU (vGPU*)
Intel Broadwell	Intel® Xeon® Processor E5-2660 v4	32	-
Intel Cascade Lake	Intel Xeon Gold 6230	80	-
Intel Ice Lake	Intel Xeon Gold 6338	96	-
Intel Broadwell with NVIDIA® Tesla® V100	Intel Xeon Processor E5-2660 v4 NVIDIA® Tesla® V100	32	4 (1:8)
Intel Cascade Lake with NVIDIA® Tesla® V100	Intel Xeon Gold 6230 NVIDIA® Tesla® V100	64	8 (1:8)
AMD EPYC™ with NVIDIA® Ampere® A100	AMD EPYC™ 7702 NVIDIA® Ampere® A100	224	8 (1:28)
Intel Broadwell with NVIDIA® vGPU Tesla® V100 8G	Intel Xeon Processor E5-2660 v4 NVIDIA® Tesla® V100	32	8 (1:4) *

ҮС пример цен

	Вычислительные ресурсы ВМ	Вычислительные ресурсы прерываемых ВМ
Intel Broadwell, 5%vCPU	0,1932 ₽	0,1198 ₽
Intel Broadwell, 20%vCPU	0,5500 ₽	0,1706 ₽
Intel Broadwell, 100%vCPU	0,7017 ₽	0,2160 ₽
Intel Cascade Lake, 5%vCPU	0,1020 ₽	0,0636 ₽
Intel Cascade Lake, 20%vCPU	0,3060 ₽	0,1000 ₽
Intel Cascade Lake, 50%vCPU	0,4488 ₽	0,1400 ₽
Intel Cascade Lake, 100%vCPU	0,7476 ₽	0,2040 ₽

YC уровни производительности vCPU

Этот уровень определяет долю вычислительного времени физических ядер, которую гарантирует vCPU.

 При уровне производительности 5% ВМ будет иметь доступ к физическим ядрам как минимум 5% времени — 50 миллисекунд в течение каждой секунды. Тактовая частота процессора в это время не ограничивается и соответствует выбранной платформе, например, 2 ГГц для платформы Intel Ice Lake (standard-v3).

ВМ с уровнем производительности меньше 100% предназначены для запуска приложений, не требующих высокой производительности и не чувствительных к задержкам. Такие машины обойдутся дешевле.

YC уровни производительности vCPU

 Виртуальные машины с уровнем производительности 100% имеют непрерывный доступ (100% времени) к вычислительной мощности физических ядер.

Такие ВМ предназначены для запуска приложений, требующих высокой производительности на протяжении всего времени работы.

Хранение

AWS - Типы Storage

- **EBS** (Elastic Block Storage) сервис <u>блочного</u> хранилища, созданный для использования с EC2.
- **EFS** (Elastic File Storage) сервис файлового хранилища, который позволяет **совместно** использовать файловые данные без необходимости его обслуживания.
- **\$3 —** (Simple Storage Service) сервис <u>хранения объектов</u> (имеют ключ, значение, версия, метаданные, ACL). С помощью API обеспечивает доступ к данным через Интернет

Типы EBS

	SSD		HDD	
Наименование	General Purpose	Provisioned IOPS	Throughput Optimized	Cold
API Name	(gp2, gp3)	(io1, io2)	(st1)	(sc1)
Примеры использования	Часто используемые	База данных	Big Data, DWH	Файловые серверы
Емкость	1 GB — 16 TB	4 GB — 16 TB	125 GB – 16 TB	125 GB – 16 TB
Max IOPS*/Volume	16 000	64 000	500	250
Цена в месяц	\$0.08-0.1 /GB	\$0.125 /GB	\$0.045 /GB	\$0.015/GB

 $^{^*-}io1/io2/gp2/gp3$ based on 16K I/O size, st1/sc1 based on 1 MB I/O size

EBS Snapshots

Моментальный снимок EBS, содержащий копии файлов и каталогов файловой системы на определенный момент времени:

- Snapshot хранить в S3,
- Snapshot инкрементальный,
- Поддержка шифрования,
- Для создания рекомендуется остановить EC2 (консистентность),
- Используется для переноса ЕС2 из одного АZ / региона в другой с помощью АМІ.

EFS

EFS предоставляет четыре класса хранилищ:

- EFS Standard данные хранятся с избыточностью в разных AZ;
- EFS Standard-IA (Infrequent Access) нечастый доступ EFS Standard;
- **EFS One Zone** данные хранятся с избыточностью в одной AZ;
- EFS One Zone-IA нечастый доступ EFS One Zone.

EFS поддерживает протокол NFSv4.

Не требуется расширять пространство. Оплата по факту использования.

Поддерживает множество одновременных подключений.

EFS не поддерживает Windows instances.

S3

Данные хранятся как **объекты** в ресурсах, которые называют корзинами (bucket), при этом размер одного объекта может составлять до 5 ТБ.

Доступ к объектам можно получить через точки доступа S3 или непосредственно через имя узла контейнера.

S3

Хранилище S3 позволяет:

- добавлять **теги** метаданных в объекты,
- перемещать и сохранять данные в классах хранилища S3,
- настраивать и применять элементы управления доступом к данным
- применять аналитику больших данных
- отслеживать данные на уровне объекта и корзины
- просматривать статистику использования хранилищ и тенденции активности в своей организации.

S3 типы доступа

Virtual-hosted-style access

```
https://bucket-name.s3.Region.amazonaws.com/file_name
например:
https://netology-devops15.s3.us-west-2.amazonaws.com/cat.png
```

Path-style access

```
https://s3.Region.amazonaws.com/bucket-name/file_name
например:
https://s3.us-west-2.amazonaws.com/netology-devops15/cat.png
```

Классы хранилищ S3

S3 предоставляет несколько классов хранилищ:

- **S3 Standard** данные хранятся с избыточностью в разных AZ,
- S3 Standard-IA нечастый доступ S3 Standard,
- S3 One Zone-IA нечастый доступ S3 Standart в одной AZ,
- S3 Intelligent-Tiering автоматическая оптимизация затрат путем переноса на разные классы хранилищ S3
- **S3 Glacier** экономичный класс для архивации данных
- **S3 Glacier Deep Archive** класс долгосрочного хранения и цифровой архивации данных, доступ запрашивается один-два раза в год

Классы хранилищ S3

	S3 Standard	S3 Intelligent- Tiering	S3 Standard - IA	S3 One Zone-IA	S3 Glacier	S3 Glacier Deep Archive
Спроектировано для доступности	99,99 %	99,9 %	99,9 %	99,5 %	99,99 %	99,99 %
Доступность согласно SLA	99,9 %	99 %	99 %	99 %	99,9 %	99,9 %
Зоны доступности	≥3	≥ 3	≥ 3	1	≥ 3	≥3
Минимальный оплачиваемый объем объекта	н/д	н/д	128 КБ	128 КБ	40 КБ	40 КБ
Минимальный оплачиваемый срок хранения	н/д	30 дней	30 дней	30 дней	90 дней	180 дней
Плата за извлечение данных	н/д	н/д	за гигабайт извл. данных	за гигабайт извл. данных	за гигабайт извл. данных	за гигабайт извл. данных
Задержка первого байта	мсек	мсек	мсек	мсек	мин или часы (по выбору)	выбрать часы

YC - Типы Storage

- **Диск** сервис <u>блочного</u> хранилища, созданный для использования с Compute Cloud.
- **Файловое хранилище** сервис файлового хранилища, который позволяет **совместно** использовать файловые данные без необходимости его обслуживания. <u>Находится на стадии preview.</u>
- **Object Storage** сервис <u>хранения объектов</u>, с помощью API обеспечивает доступ к данным через Интернет, т. е. из любой точки. Совместим с API S3 и поэтому можно использовать инструменты, созданные для работы с объектными хранилищами.

Типы Дисков ҮС

- **Сетевой SSD-диск** быстрый сетевой диск, сетевое блочное хранилище на SSD-накопителе
- **Сетевой HDD-диск** стандартный сетевой диск, сетевое блочное хранилище на HDD-накопителе
- **Нереплицируемый SSD-диск** сетевой диск с повышенной производительностью, реализованной за счет некоторых ограничений:
 - размер нереплицируемого диска должен быть кратен 93 ГБ,
 - во всех расчетах 1 ГБ = 2³⁰ байт,
 - нереплицируемые диски не могут быть загрузочными.
 - хранимая информация может быть временно недоступна или утеряна в случае сбоя, поскольку в нереплицируемых дисках отсутствует избыточность,
 - из нереплицируемого диска нельзя создать снимки и образы.

Репликация Дисков и Снимки

- Каждый диск доступен и реплицируется внутри определенной зоны доступности.
- Можно создавать резервные копии дисков в виде **снимков**. Снимки реплицируются во всех зонах доступности. Можно использовать, чтобы переносить диски между зонами доступности.
- Несколько **нереплицируемых** дисков могут быть собраны в <u>группу размещения</u> группу нереплицируемых дисков, в которой диски располагаются в разных стойках в пределах одной зоны доступности.
- Группы размещения используются для организации избыточности хранения данных на уровне приложения

YC Object Storage

- Имена бакетов уникальны для всего Object Storage
- Длина имени должна быть от 3 до 63 символов
- Имя может содержать строчные буквы латинского алфавита, цифры, дефисы и точки

Object Storage типы доступа

Virtual-hosted-style access

```
https://bucket.storage.yandexcloud.net
например:
https://netology-test.storage.yandexcloud.net/cat.jpg
```

Path-style access

```
https://storage.yandexcloud.net/bucket/file_name
например:
https://storage.yandexcloud.net/netology-test/cat.jpg
```

Классы хранилищ Object Storage

Object Storage предоставляет 2 класса хранилищ:

- стандартное мало данных, частые запросы,
- холодное много данных, редкие запросы.

S3 совместимость Object Storage

API Yandex Object Storage совместим с S3 API AWS.

S3-совместимость позволяет использовать в Yandex.Cloud популярные инструменты для работы с S3-протоколом: консольные клиенты S3cmd и AWS CLI, файловые браузеры Cyberduck и WinSCP, библиотеки (SDK) для Python и Java.

Балансировщики нагрузки

AWS ELB — балансировщик нагрузки

Elastic Load Balancer автоматически распределяет входящий трафик приложений по нескольким целевым объектам таким, как EC2 инстансы, контейнеры, IP-адреса, функции Lambda и виртуальные устройства.

Он может распределять трафик приложения с меняющейся нагрузкой в **одной** зоне доступности или между **несколькими** зонами доступности.

Типы балансировщиков ELB

	Application Load Balancer	Network Load Balancer	Gateway Load Balancer	Classic Load Balancer
Уровень	Layer 7	Layer 4	Layer 3, 4	Layer 4/7
Тип цели	IP, инстанс, Lambda	IP, инстанс	IР, инстанс	
Проверки работоспособно сти	HTTP, HTTPS, gRPC	TCP, HTTP, HTTPS	TCP, HTTP, HTTPS	TCP, SSL / TLS, HTTP, HTTPS

Auto Scaling Groups

Автоматический запуск новых инстансов Amazon EC2 при повышении спроса и автоматическое отключение ненужных инстансов Amazon EC2 для экономии средств, когда спрос снижается.

Состоит из 3 компонентов:

- **Groups** логическая группа EC2-инстансов одной функциональности;
- Configuration templates шаблон конфигурации, применяемый на членов группы (instance type, keypair, SG, AMI ID и т.д.);
- Scaling options политики расширения и сжатия.

Scaling Options of Auto Scaling Groups

- Maintain current instances определение кол-ва EC2-инстансов для текущей работы в обычном режиме. Определение health-check.
- **Ручное масштабирование** определение кол-ва min и max EC2-инстансов.
- Масштабирование по расписанию.
- **Масштабирование по требованию** определение параметров, при которых будет произведено расширение ресурсов.

Типы балансировщиков ҮС

	Application Load Balancer	Network Load Balancer
Уровень	Layer 7	Layer 4
Тип цели	IP, instance	instance
Проверки работоспособности	HTTP, HTTPS	TCP, HTTP

Типы масштабирования ҮС

- **Ручное масштабирование** определение фиксированного колва ВМ.
- **Автоматическое масштабирование** среднее значение метрики не сильно отклонялось от целевого
 - Региональная
 - Зональная

Итоги

Итоги

Сегодня мы изучили:

- 1. Что такое ЕС2-инстансы и их типы.
- 2. Как организовано хранение, какие виды storage бывают, чем отличаются.
- 3. Что такое Route53, какие виды маршрутизации поддерживаются.
- 4. Балансировщики нагрузки. Какие бывают, что умеют. Как настраивать группы масштабирования.

Домашнее задание

Домашнее задание

Давайте посмотрим ваше домашнее задание.

- Вопросы по домашней работе задавайте в чате мессенджера
 Slack.
- Задачи можно сдавать по частям.
- Зачёт по домашней работе проставляется после того, как приняты все задачи.

Задавайте вопросы и пишите отзыв о лекции!

Денис Альмухаметов

