Equivelar toroids with few flag-orbits

Antonio Montero 1 José Collins 2

¹Centro de Ciencias Matemáticas UNAM

²Instituto de Matemáticas UNAM

Symmetries and Covers of Discrete Objects Queenstown, New Zealand February 2016

An Euclidean Tessellation $\mathcal U$ of $\mathbb E^n$ is a family of convex n-polytopes such that

- * \mathcal{U} is a cover of \mathbb{E}^n and the cells tile \mathbb{E}^n in a face-to-face manner.
- * U is locally finite.

* A flag of a tessellation is an incident tuple $(F_0, F_1, \dots F_n)$ where $dim(F_i) = i$.

* A flag of a tessellation is an incident tuple $(F_0, F_1, \dots F_n)$ where $dim(F_i) = i$.

- * A flag of a tessellation is an incident tuple $(F_0, F_1, \dots F_n)$ where $dim(F_i) = i$.
- * A symmetry of a tessellation \mathcal{U} is an isometry of \mathbb{E}^n that preserves \mathcal{U} . We denote the group of symmetries of \mathcal{U} by $G(\mathcal{U})$.

- * A flag of a tessellation is an incident tuple $(F_0, F_1, \dots F_n)$ where $dim(F_i) = i$.
- * A symmetry of a tessellation \mathcal{U} is an isometry of \mathbb{E}^n that preserves \mathcal{U} . We denote the group of symmetries of \mathcal{U} by $G(\mathcal{U})$.
- * $G(\mathcal{U})$ acts on the set of flags of \mathcal{U} . We say that \mathcal{U} is regular if this action is transitive.

Regular Tessellations

Regular tessellations are well-known:

- * If n = 2:
 - Cubic tessellation {4,4}.
 - Triangular tessellation {3,6}.
 - Hexagonal tessellation {6, 3}.

Regular Tessellations

Regular tessellations are well-known:

- * If n = 2:
 - Cubic tessellation {4,4}.
 - Triangular tessellation $\{3, 6\}$.
 - Hexagonal tessellation {6,3}.
- * If n = 4:
 - Cubic tessellation {4, 3, 3, 4}.
 - Tessellation with cross-polytopes {3, 3, 4, 3}.
 - Tessellation with 24-cells {3, 4, 3, 3}.

Regular Tessellations

Regular tessellations are well-known:

- * If n = 2:
 - Cubic tessellation {4,4}.
 - Triangular tessellation $\{3, 6\}$.
 - Hexagonal tessellation {6, 3}.
- * If n = 4:
 - Cubic tessellation {4, 3, 3, 4}.
 - Tessellation with cross-polytopes {3, 3, 4, 3}.
 - Tessellation with 24-cells {3, 4, 3, 3}.
- * If $n \in \{3, 5, 6...\}$:
 - Cubic tessellation $\{4, 3^{n-2}, 4\}$

* Toroids are generalizations of maps in the torus (3-toroids).

- * Toroids are generalizations of maps in the torus (3-toroids).
- * Provide examples of abstract polytopes.

* A flag in a toroid \mathcal{U}/Λ is the orbit of a flag of \mathcal{U} under Λ .

- * A flag in a toroid \mathcal{U}/Λ is the orbit of a flag of \mathcal{U} under Λ .
- * What is a symmetry of a toroid?

- * A flag in a toroid \mathcal{U}/Λ is the orbit of a flag of \mathcal{U} under Λ .
- * What is a symmetry of a toroid?

* Such $\bar{\gamma}$ exists if and only if γ normalizes Λ .

- * Such $\bar{\gamma}$ exists if and only if γ normalizes Λ .
- * Every symmetry of U/Λ is given this way.

- * Such $\bar{\gamma}$ exists if and only if γ normalizes Λ .
- * Every symmetry of \mathcal{U}/Λ is given this way.
- * Every element of Λ acts trivially in \mathcal{U}/Λ .

- * Such $\bar{\gamma}$ exists if and only if γ normalizes Λ .
- * Every symmetry of \mathcal{U}/Λ is given this way.
- * Every element of Λ acts trivially in \mathcal{U}/Λ .
- * Define $Aut(\mathcal{U}/\Lambda) = Norm_{G(\mathcal{U})}(\Lambda)/\Lambda$.

- * Such $\bar{\gamma}$ exists if and only if γ normalizes Λ .
- * Every symmetry of \mathcal{U}/Λ is given this way.
- * Every element of Λ acts trivially in \mathcal{U}/Λ .
- * Define $Aut(\mathcal{U}/\Lambda) = Norm_{\mathcal{G}(\mathcal{U})}(\Lambda)/\Lambda$.
- * Translations of \mathcal{U} and $\chi: x \mapsto -x$ always normalize Λ .

- * Such $\bar{\gamma}$ exists if and only if γ normalizes Λ .
- * Every symmetry of \mathcal{U}/Λ is given this way.
- * Every element of Λ acts trivially in \mathcal{U}/Λ .
- * Define $Aut(\mathcal{U}/\Lambda) = Norm_{G(\mathcal{U})}(\Lambda)/\Lambda$.
- * Translations of $\mathcal U$ and $\chi: x \mapsto -x$ always normalize Λ .
- * $\mathcal{U}/\Lambda \cong \mathcal{U}/\Lambda'$ if and only if Λ and Λ' are conjugate.

* A toroid $\mathcal{T} := \mathcal{U}/\Lambda$ is regular if $\overline{\operatorname{Aut}(\mathcal{T})}$ acts transitively on the flags of \mathcal{T} .

- * A toroid $\mathcal{T} := \mathcal{U}/\Lambda$ is regular if $\operatorname{Aut}(\mathcal{T})$ acts transitively on the flags of \mathcal{T} .
- * \mathcal{T} is said to be k-orbits if $Aut(\mathcal{T})$ has k orbits on flags.

- * A toroid $\mathcal{T} := \mathcal{U}/\Lambda$ is regular if $\operatorname{Aut}(\mathcal{T})$ acts transitively on the flags of \mathcal{T} .
- * \mathcal{T} is said to be k-orbits if $Aut(\mathcal{T})$ has k orbits on flags.
- * A toroid \mathcal{T} is chiral if it is 2-orbits and adjacent flags belong to different orbits.

- * A toroid $\mathcal{T} := \mathcal{U}/\Lambda$ is regular if $\overline{\operatorname{Aut}(\mathcal{T})}$ acts transitively on the flags of \mathcal{T} .
- * \mathcal{T} is said to be k-orbits if $Aut(\mathcal{T})$ has k orbits on flags.
- * A toroid \mathcal{T} is chiral if it is 2-orbits and adjacent flags belong to different orbits.
- * A toroid \mathcal{T} is equivelar if it is induced by a regular tessellation.

Toroids What do we know?

- * Regular toroids are classified:
 - If n = 2 there are two families. (Coxeter, 1948)
 - If $n \ge 3$ there are three families. (McMullen and Schulte, 1996)

Toroids What do we know?

- * Regular toroids are classified:
 - If n = 2 there are two families. (Coxeter, 1948)
 - If $n \ge 3$ there are three families. (McMullen and Schulte, 1996)
- * Chiral toroids are classified, they only exist in dimension 2 (chiral maps). (Hartley, McMullen and Schulte, 1999)

Toroids What about higher dimensions?

* Toroids of dimension two are classified (Brehm and Kühnel, 2008)

Toroids What about higher dimensions?

- * Toroids of dimension two are classified (Brehm and Kühnel, 2008)
- * Toroids of dimension three are classified (Hubard, Orbanić, Pellicer and Weiss, 2012)

$$\{\mathsf{Toroids}\} \longrightarrow \left\{ egin{array}{l} \mathcal{K}/\Lambda \ \mathcal{K} \leqslant \mathcal{G}(\mathcal{U}) = \mathcal{T}
times \mathcal{S} \ \langle \mathcal{T}, \chi \rangle \leqslant \mathcal{K} \end{array}
ight\}$$

$$\{\mathsf{Toroids}\} \longrightarrow \left\{ \begin{array}{c} \mathsf{K}/\mathsf{\Lambda} \\ \mathsf{K} \leqslant \mathsf{G}(\mathcal{U}) = \mathsf{T} \rtimes \mathsf{S} \\ \langle \mathsf{T}, \chi \rangle \leqslant \mathsf{K} \end{array} \right\}$$

$$\{\mathsf{Toroids}\} \longrightarrow \left\{ \begin{array}{c} \mathsf{K} \leqslant \mathsf{G}(\mathcal{U}) = \mathsf{T} \rtimes \mathsf{S} \\ \langle \mathsf{T}, \chi \rangle \leqslant \mathsf{K} \end{array} \right\}$$

$$\{\mathsf{Toroids}\} \longrightarrow \left\{ \begin{array}{c} \mathsf{K}/\mathsf{\Lambda} \\ \mathsf{K} \leqslant \mathsf{G}(\mathcal{U}) = \mathsf{T} \rtimes \mathsf{S} \\ \langle \mathsf{T}, \chi \rangle \leqslant \mathsf{K} \end{array} \right\}$$

$$\{\mathsf{Toroids}\} \longrightarrow \left\{ \begin{array}{c} \mathsf{K} \leqslant \mathsf{G}(\mathcal{U}) = \mathsf{T} \rtimes \mathsf{S} \\ \langle \mathsf{T}, \chi \rangle \leqslant \mathsf{K} \end{array} \right\}$$

 $\big\{\mathsf{Symetry\ type\ of\ toroids}\big\} \longrightarrow \big\{\ \langle \chi \rangle \leqslant \mathit{K}' \leqslant \mathit{S}\ \big\}$

$$\{\mathsf{Toroids}\} \longrightarrow \left\{ egin{array}{l} {\mathcal K}/{\Lambda} \ {\mathcal K} \leqslant {\mathcal G}({\mathcal U}) = {\mathcal T}
times {\mathcal S} \ \langle {\mathcal T}, \chi
angle \leqslant {\mathcal K} \end{array}
ight\}$$

$$\{\mathsf{Toroids}\} \longrightarrow \left\{ \begin{array}{c} \mathsf{K} \leqslant \mathsf{G}(\mathcal{U}) = \mathsf{T} \rtimes \mathsf{S} \\ \langle \mathsf{T}, \chi \rangle \leqslant \mathsf{K} \end{array} \right\}$$

$$\left\{\mathsf{Symetry\ type\ of\ toroids}\right\} \longrightarrow \left\{\ \langle \chi \rangle \leqslant K' \leqslant S\ \right\}$$

$$\{\mathsf{Symetry\ type\ of\ toroids}\} \longrightarrow \left\{ \begin{array}{c} \mathsf{Congujacy\ classes\ of} \\ \langle \chi \rangle \leqslant K' \leqslant S \end{array} \right\}$$

A. Montero, J. Collins (CCM, IM - UNAM) Equivelar few-orbits toroids

$$\left\{ \begin{array}{c} \mathsf{Congujacy\ classes\ of} \\ \langle \chi \rangle \leqslant K' \leqslant \mathcal{S} \end{array} \right\} \longrightarrow \left\{ \begin{array}{c} \mathsf{Candidates\ for} \\ \mathsf{automorphism\ group} \end{array} \right\}$$

$$\left\{ \begin{array}{c} \mathsf{Congujacy\ classes\ of} \\ \langle \chi \rangle \leqslant \mathsf{K}' \leqslant \mathsf{S} \end{array} \right\} \longrightarrow \left\{ \begin{array}{c} \mathsf{Candidates\ for} \\ \mathsf{automorphism\ group} \end{array} \right\}$$

$$\left\{ \begin{array}{c} \mathsf{Congujacy} \ \mathsf{classes} \ \mathsf{of} \\ \langle \chi \rangle \leqslant \mathcal{K}' \leqslant \mathcal{S} \end{array} \right\} \Longrightarrow \begin{array}{c} \mathsf{Classification} \\ \mathsf{of} \ \mathsf{toroids} \end{array}$$

$$\left\{ \begin{array}{c} \mathsf{Congujacy\ classes\ of} \\ \langle \chi \rangle \leqslant \mathsf{K}' \leqslant \mathsf{S} \end{array} \right\} \longrightarrow \left\{ \begin{array}{c} \mathsf{Candidates\ for} \\ \mathsf{automorphism\ group} \end{array} \right\}$$

$$\left\{ \begin{array}{c} \mathsf{Congujacy} \ \mathsf{classes} \ \mathsf{of} \\ \langle \chi \rangle \leqslant \mathcal{K}' \leqslant \mathcal{S} \end{array} \right\} \Longrightarrow \begin{array}{c} \mathsf{Classification} \\ \mathsf{of} \ \mathsf{toroids} \end{array}$$

Tow problems:

* It only solves half of the problem.

$$\left\{ \begin{array}{c} \mathsf{Congujacy\ classes\ of} \\ \langle \chi \rangle \leqslant K' \leqslant \mathcal{S} \end{array} \right\} \longrightarrow \left\{ \begin{array}{c} \mathsf{Candidates\ for} \\ \mathsf{automorphism\ group} \end{array} \right\}$$

$$\left\{egin{array}{l} {\sf Congujacy \ classes \ of} \\ \langle \chi
angle \leqslant {\cal K}' \leqslant {\cal S} \end{array}
ight\} \Longrightarrow egin{array}{l} {\sf Classification} \\ {\sf of \ toroids} \end{array}$$

Tow problems:

- * It only solves half of the problem.
- * Not practical

$$\left\{ \begin{array}{c} \mathsf{Congujacy\ classes\ of} \\ \langle \chi \rangle \leqslant K' \leqslant \mathcal{S} \end{array} \right\} \longrightarrow \left\{ \begin{array}{c} \mathsf{Candidates\ for} \\ \mathsf{automorphism\ group} \end{array} \right\}$$

$$\left\{egin{array}{l} {\sf Congujacy\ classes\ of} \\ \langle\chi
angle\leqslant {\cal K}'\leqslant {\cal S} \end{array}
ight\}\Longrightarrow egin{array}{l} {\sf Classification} \\ {\sf of\ toroids} \end{array}$$

Tow problems:

- * It only solves half of the problem.
- * Not practical, the group S is HUGE: $2^n n!$.

$$\left\{ \begin{array}{c} \mathsf{Congujacy\ classes\ of} \\ \langle \chi \rangle \leqslant K' \leqslant \mathcal{S} \end{array} \right\} \longrightarrow \left\{ \begin{array}{c} \mathsf{Candidates\ for} \\ \mathsf{automorphism\ group} \end{array} \right\}$$

$$\left\{egin{array}{l} {\sf Congujacy\ classes\ of} \\ \langle\chi
angle\leqslant {\cal K}'\leqslant {\cal S} \end{array}
ight\}\Longrightarrow egin{array}{l} {\sf Classification} \\ {\sf of\ toroids} \end{array}$$

Tow problems:

- * It only solves half of the problem.
- * Not practical, the group S is HUGE: $2^n n!$.
- * Still useful...

* Corollary (HPOW): There are no 2-orbits equivelar (3+1)-toroids.

- * Corollary (HPOW): There are no 2-orbits equivelar (3+1)-toroids.
- * Q: Can we classify (equivelar) 2-orbits (n+1)-toroids?

- * Corollary (HPOW): There are no 2-orbits equivelar (3+1)-toroids.
- * Q: Can we classify (equivelar) 2-orbits (n+1)-toroids?
- * Q: Do they even exist if n > 3?

An (n+1)-toroid $\mathcal T$ is a few-orbit toroid if the number of flag-orbits of $\operatorname{Aut}(\mathcal T)$ is less than n.

An (n+1)-toroid \mathcal{T} is a few-orbit toroid if the number of flag-orbits of $\operatorname{Aut}(\mathcal{T})$ is less than n.

* Regular toroids are few-orbit toroids.

An (n+1)-toroid $\mathcal T$ is a few-orbit toroid if the number of flag-orbits of $\operatorname{Aut}(\mathcal T)$ is less than n.

- * Regular toroids are few-orbit toroids.
- * If $n \ge 3$, all 2-orbits (n+1)-toroids are few-orbits toroids.

* Regular toroids.

- * Regular toroids.
- * Two orbit toroids:
 - If *n* is odd, there are no 2-orbit toroids.

- * Regular toroids.
- * Two orbit toroids:
 - If *n* is odd, there are no 2-orbit toroids.
 - If n is even, there exists one family in class $2_{\{1,2,\dots,n-1\}}$.

- * Regular toroids.
- * Two orbit toroids:
 - If *n* is odd, there are no 2-orbit toroids.
 - If *n* is even, there exists one family in class $2_{\{1,2,\dots,n-1\}}$.
- * If $n \ge 5$, there are no cubic toroids with k orbits if 2 < k < n.

- * Regular toroids: three families.
- * 2-orbits toroids: one family in class $2_{\{1,2,3\}}$

- * Regular toroids: three families.
- * 2-orbits toroids: one family in class $2_{\{1,2,3\}}$
- * 3-orbits toroids: one family.

- * Regular toroids: three families.
- * 2-orbits toroids: one family in class $2_{\{1,2,3\}}$.
- * 3-orbits toroids: one family.
- Toroids of type $\{3, 3, 4, 3\}$ (or $\{3, 4, 3, 3\}$):

(4+1)-toroids

- * Regular toroids: three families.
- * 2-orbits toroids: one family in class $2_{\{1,2,3\}}$.
- * 3-orbits toroids: one family.
- Toroids of type $\{3, 3, 4, 3\}$ (or $\{3, 4, 3, 3\}$):
 - * Regular toroids: two families.

(4+1)-toroids

- * Regular toroids: three families.
- * 2-orbits toroids: one family in class $2_{\{1,2,3\}}$.
- * 3-orbits toroids: one family.
- Toroids of type $\{3, 3, 4, 3\}$ (or $\{3, 4, 3, 3\}$):
 - * Regular toroids: two families.
 - * 2-orbits toroids: one family in class $2_{\{3,4\}}$.

(4+1)-toroids

- * Regular toroids: three families.
- * 2-orbits toroids: one family in class $2_{\{1,2,3\}}$.
- * 3-orbits toroids: one family.
- Toroids of type $\{3, 3, 4, 3\}$ (or $\{3, 4, 3, 3\}$):
 - * Regular toroids: two families.
 - * 2-orbits toroids: one family in class $2_{\{3,4\}}$.
 - * 3-orbits toroids: two families with different symmetry type.

Open problems/Future work

* Classify few-orbits non-equivelar toroids.

Open problems/Future work

- * Classify few-orbits non-equivelar toroids.
- * Study few-orbits structures in other Euclidean space forms.

Open problems/Future work

- * Classify few-orbits non-equivelar toroids.
- * Study few-orbits structures in other Euclidean space forms.
- * Achieve a complete classification of toroids.

Thank you! And happy Birthday conference to Marston, Gareth and Steve.