Métodos Numéricos. Ejercicios

Alejandro G. Marchetti, Juan Manuel Rabasedas, Brian Luporini

November 8, 2023

Interpolación y Aproximación de Funciones

1) Los datos en la tabla aproximan una función desconocida y = g(x) para la cual se conoce que g(0) = 0, y g'(0) = 0.

X	У
-2.0	1.50
-1.6	0.99
-1.2	0.61
-0.8	0.27
-0.4	0.02
0	-0.0096
0.4	0.065
0.8	0.38
1.2	0.63
1.6	0.98
2.0	1.50

- a) Hallar por mínimos cuadrados un polinomio de cuarto grado $p_4(x)$ que aproxime los datos, tal que $p_4(0) = 0$ y $p'_4(0) = 0$.
- b) Graficar en un mismo gráfico los puntos de la tabla y el polinomio de aproximación de mínimos cuadrados obtenido, $p_4(x)$.
- 2) Dada la función $f(x) = e^x$, se pide:
 - a) Hallar el polinomio de interpolación p(x) con los 4 nodos uniformemente espaciados $\{-1, -\frac{1}{3}, -\frac{1}{3}, 1\}$.
 - b) Calcular p(-0.9) y p(0.01) y comparar con los valores dados por Scilab de $e^{-0.9}$ y $e^{0.01}$.
 - c) Determinar cotas del error de p(-0.9) y de p(0.01).
 - d) Determinar una cota del error de p(x) en el intervalo [-1,1].
 - e) Hallar el polinomio q(x) que se obtiene si se emplean como nodos de interpolación las raíces del polinomio de Chebyshev $T_4(x)$.
 - f) Determinar una cota del error de q(x) en el intervalo [-1,1].
 - g) Graficar en una misma figura los errores de interpolación de p(x) y q(x) en el itervalo [-1,1]. Comparar los errores obtenidos con las cotas y comentar los resultados.

3) En la siguiente tabla se muestra la evolución del precio promedio del pan en pesos de enero a diciembre para los años 2021 y 2022:

	año	enero	febrero	marzo	abril	mayo	junio	julio	agosto	septiembre	octubre	noviembre	diciembre
	2021	145.61	151.12	157.27	164.72	172.29	182.91	185.12	188.62	190.09	197.99	204.32	207.97
Г	2022	209.92	225.82	265.71	295.24	301.62	311.80	327.39	343.10	366.54	385.20	407.77	428.42

Se pide:

- a) Calcular el polinomio de mínimos cuadrados lineal, cuadrático y cúbico para cada año.
- b) Graficar en Scilab los polinomios del ítem anterior junto con lo datos de la tabla para cada año.
- c) ¿Qué aproximación se ajusta más a los datos en cada año? Justifique su respuesta.
- d) ¿Qué conclusión se podría inferir a partir de lo calculado sobre la evolución del precio del pan?
- 4) Consideremos la siguiente tabla que muestra el promedio mensual de la temperatura (°C) mínima y máxima en la ciudad de Rosario durante el año 2022¹.

Mes	Ene22	Feb22	Mar22	Abr22	May 22	Jun22	Jul22	Ago22	Sep22	Oct22
Max.	32.9	30.8	26.4	24.2	19.2	16.5	19.3	21	23	26.2
Mín.	19.5	15.5	13.1	9.8	5.7	2.2	5.3	4.7	6	10.5

Sea $p_n(x)$ el polinomio de aproximación de mínimos cuadrados de grado menor o igual a n que se obtiene de tomar para $x_1 = 1$ el valor promedio de temperatura máxima en Ene22, para $x_2 = 2$ el valor de la máxima en Feb22, etc. Dicho polinomio se puede obtener como solución del problema de mínimos cuadrados

$$A^{\mathsf{T}}A\mathbf{x} = A^{\mathsf{T}}\mathbf{b}$$

donde

$$A = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{10} & x_{10}^2 & \dots & x_{10}^n \end{bmatrix}$$
(1)

- a) Obtenga los polinomios de aproximación de mínimos cuadrados $p_3(x)$, $p_5(x)$, $p_7(x)$ y $p_9(x)$ invirtiendo la matriz A^TA utilizando la función inv de Scilab. Grafique en el mismo gráfico los 4 polinomios obtenidos usando un espaciado de 0.1. En el mismo gráfico grafique los puntos de la tabla.
- b) Obtenga los polinomios de aproximación de mínimos cuadrados $p_3(x)$, $p_5(x)$, $p_7(x)$ y $p_9(x)$ aplicando la factorización QR al problema de mínimos cuadrados. Obtenga la solución invirtiendo la matriz R usando la función inv de Scilab. Grafique en un nuevo gráfico los 4 polinomios obtenidos usando un espaciado de 0.1 junto con los puntos de la tabla.
- c) Explique cualquier discrepancia observada en los polinomios obtenidos en los items a) y b). ¿Tuvo alguna dificultad en obtener las soluciones de mínimos cuadrados por alguno de los métodos?

¹https://datos.rosario.gob.ar/ambiente/clima-e-hidrologia

- d) ¿Cuál de los cuatro polinomios emplearía para aproximar los datos? Justificar.
- 5) La siguiente tabla presenta el número de casos diarios de gripe en una determinada localidad. En el estudio de epidemias, el siguiente modelo básico describe el crecimiento

Día	Casos
0	35
1	23
2	47
3	59
4	82
5	113
6	143
7	179
8	233
9	269
10	303
11	335
12	371
13	404
14	434
15	446
16	457
17	470
18	481
19	482
20	476
21	465
22	454
23	436
24	424
25	397
26	385
27	359
28	340
29	322
30	303

del número total de infectados hasta un instante de tiempo dado t (expresado en días):

$$g(t) = \theta_1 e^{-\theta_2 e^{-\theta_3 t}}$$

Fijando $\theta_1 = 13129.3$, se desea ajustar por mínimos cuadrados los parámetros θ_2 y θ_3 a partir de los datos dados en la tabla. En la misma figura, graficar los casos totales en función del tiempo y la función g(t) obtenida por mínimos cuadrados.

6) La regresión lineal de mínimos cuadrados se puede extender a datos que dependen de dos o más variables (regresión lineal multivariable). Si la variable dependiente es y y las variables independientes son x y v, los datos se pueden aproximar mediante una función

3

de la forma

$$f(x,v) = a + bx + cv$$

- a) Para este caso, exprese en forma vectorial el sistema de ecuaciones a resolver para hallar la solución de mínimos cuadrados.
- b) Obtenga la aproximación lineal de mínimos cuadrados que ajusta el siguiente conjunto de datos:

X	V	У
0	0	1.42
0	1	1.85
1	0	0.78
2	0	0.18
2	1	0.60
2	2	1.05

c) Grafique los datos en 3D utilizando la función scatter3 de Scilab.

Utilizando el comando

grafique en el mismo gráfico el plano f(x,v)=a+bx+cv, obtenido por mínimos cuadrados, utilizando la función plot3d de Scilab.