

ENGR 213

Applied Ordinary Differential Equations Second Mid Term Exam March 12th 2017

Student Name:	 	
Student ID Number:		
ENGR 213 Section:		
Course Given BY:		

- Exam is closed book close notes.
- No use of any electronic devices.
- Use only the approved calculator.
- Write your answers in the provided space.

Q1	
Q2	
Q3	
Q4	
Q5	
Total	

Write the number $(3+6i) + (4-i)(3+5i) + \frac{1}{2-i}$ in the form a+bi.

Solution:

Verify that $y_1 = e^{5x}$ and $y_2 = e^{-7x}$ are form a fundamental set of solutions of the differential equation y'' + 2y' - 35y = 0 on the interval $(-\infty, \infty)$. Write the form of the general solution.

Solution:

(a) Write the characteristic equation and the general solution of the differential equation:

$$y^{(6)} - 13y^{(5)} + 70y^{(4)} - 198y^{(3)} + 308y^{(4)} - 248y^{(4)} + 80y = 0.$$

- $y^{(k)}$ is the k-th derivative of y. For Your convenience, the roots of the characteristic equation are: 1, 2, 2, 3 + i, 3 i. You do not have to check this.
- (b) Find the general solution of the differential equation: x^2 y "-7xy"+ 16y = 0, given one solution $y_1 = x^4$.

Using the method of undetermined coefficients, solve the initial value problem

$$y''+y'-2y=(6x+2) e^{x}$$
; $y(0)=0$; $y'(0)=0$.

Solve the following differential Equation $y'' + (3/x) y' + (5/x^2) y = 0$