# Probing new physics at the LHC: searches for heavy top-like quarks with the ATLAS experiment

Antonella Succurro

PhD candidate in Physics







Bellaterra, 28th of February, 2014

 $\blacktriangleright \ Why? \ {\it bother with "new physics"}$ 

- lacksquare Why? bother with "new physics"
- ► Where? is all happening

- ▶ Why? bother with "new physics"
- ▶ Where? is all happening
- ▶ What? are we looking at

- ▶ Why? bother with "new physics"
- ▶ Where? is all happening
- ▶ What? are we looking at
- ► How?

#### Outline

#### Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for  $T\bar{T}$  in single lepton channel

Search for  $T\bar{T}$  decaying to Wb + X

Search for TT decaying to Ht + X

Final results

Conclusions and outlook

# Standard Model as an effective theory

#### Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for  $T\bar{T}$  in single lepton channel

Search for  $T\bar{T}$  decaying to Wb + X

Search for TT decaying to Ht + X

Final results

Conclusions and outlook

6/61

#### The LHC complex



#### The LHC complex



| Parameter                                                                                                       | designed                         | 2010                           | 2011                              | 2012                              |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------|-----------------------------------|-----------------------------------|
| Beam energy (TeV/c) Beta function $\beta*$ (m) Max. No. bunches/beam                                            | 7<br>0.55<br>2808                | 3.5<br>2.0/3.5<br>368          | 3.5<br>1.5/1.0<br>1380            | 4<br>0.6<br>1380                  |
| Max. No. protons/bunch<br>Bunch spacing (ns)                                                                    | $1.15 \times 10^{11}$ 25         | $1.2 \times 10^{11}$ 150       | $1.45 \times 10^{11}$ 75/50       | $1.7 \times 10^{11}$ 50           |
| Peak luminosity (cm <sup>-2</sup> s <sup>-1</sup> )<br>Emittance $\varepsilon_n$ ( $\mu$ rad)<br>Max. $< \mu >$ | $1 \times 10^{34}$<br>3.75<br>19 | $2.1 \times 10^{32}$ $2.0$ $4$ | $3.7 \times 10^{33}$<br>2.4<br>17 | 7.7×10 <sup>33</sup><br>2.5<br>37 |



AD Antiproton Decelerator CTF-3 Clic Test Facility CNCS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice

LEIR Low Energy Ion Ring LINAC LiNear ACcelerator n-10F Neutrons Time Of Flight

#### The ATLAS Detector



#### The ATLAS Detector



#### Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for  $T\bar{T}$  in single lepton channel

Search for  $T\bar{T}$  decaying to Wb + X

Search for TT decaying to Ht + X

Final results

Conclusions and outlook

#### Modelling of hadron collisions

want to do physics at hadron colliders? need a good understanding of incoming hadrons



#### Modelling of hadron collisions

Drawings from [1]

$$E(p_1) = 4 \text{ TeV}$$

$$E(p_2) = 4 \text{ TeV}$$





Quarks are distributed according to PDFs inside the proton



intial energy unknown

## Hard scattering of two partons



## Parton showering



## Parton showering



#### Hadronization



## Final particle decays



## Underlying event simulation



#### Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for  $T\bar{T}$  in single lepton channel

Search for  $T\bar{T}$  decaying to Wb + X

Search for TT decaying to Ht + X

Final results

Conclusions and outlook

# Physics objects puzzle



# One lepton

# Many jets

# Missing transverse energy

#### Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

#### Searches for $T\bar{T}$ in single lepton channel

Search for  $T\bar{T}$  decaying to Wb + X

Search for TT decaying to Ht + X

Final results

Conclusions and outlook

#### Allowed decay modes

| Singlet                                            | Decay modes                                  |  |
|----------------------------------------------------|----------------------------------------------|--|
| T(+2/3)                                            | $W^+b$ , $Ht$ , $Zt$                         |  |
| B(-1/3)                                            | $W^-t$ , $Hb$ , $Zb$                         |  |
| X(+5/3)                                            | $W^+t$                                       |  |
| Y(-4/3)                                            | $W^-b$                                       |  |
| Doublet                                            | Decay modes                                  |  |
| $\left(\begin{array}{c} T \\ B \end{array}\right)$ | $W^+b$ , $Ht$ , $Zt$<br>$W^-t$ , $Hb$ , $Zb$ |  |
| $\left(\begin{array}{c} T \\ X \end{array}\right)$ | $Ht, Zt \ W^+ t$                             |  |
| $\begin{pmatrix} B \\ Y \end{pmatrix}$             | $Hb, Zb$ $W^-b$                              |  |



 Build a 2-dim plane to scan model mixing





 Build a 2-dim plane to scan model mixing



- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1<sup>(a)</sup>



- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1<sup>(a)</sup>
- Different analyses are sensitive to different areas



- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1<sup>(a)</sup>
- Different analyses are sensitive to different areas



- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1<sup>(a)</sup>
- Different analyses are sensitive to different areas



- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1<sup>(a)</sup>
- Different analyses are sensitive to different areas
- Set exclusion using *CL*<sub>s</sub> technique [2, 3]



- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1<sup>(a)</sup>
- Different analyses are sensitive to different areas
- Set exclusion using *CL*<sub>s</sub> technique [2, 3]
- First published results at 7 TeV Phys.Lett. B718 (2012) [4]

### Preselection

Two searches using common analysis framework:

 $ightharpoonup T\bar{T} o Wb + X$ 

 $ightharpoonup T\bar{T} \rightarrow Ht + X$ 

ATLAS-CONF-2013-060 [5] ATLAS-CONF-2013-018 [6]

| Preselection stage | Requirements                                                                                                                    |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Single lepton      | One electron or muon matching trigger                                                                                           |
| QCD rejection      | $E_{\mathrm{T}}^{\mathrm{miss}} > 20 \; \mathrm{GeV}$<br>$E_{\mathrm{T}}^{\mathrm{miss}} + m_{\mathrm{T}} > 60 \; \mathrm{GeV}$ |
| Jet multiplicity   | ≥ 4 jets<br>≥ 1 <i>b</i> -tagged jets                                                                                           |

#### orthogonality requirements:

- ▶  $T\bar{T} \rightarrow Wb + X$ : reject events with >6 jets and  $\geq 3 b$ -jets
- ▶  $T\bar{T} \rightarrow Ht + X$ : reject events in the low *b*-tags channel with  $H_T < 700$  GeV



Yields in the preselection region "blinded" as:  $H_{\scriptscriptstyle T}^{4j} < 800~{\rm GeV}~(*) \label{eq:hamiltonian}$ 

|                               | $\geq$ 4 jets, $\geq$ 1 $b$ -tags |
|-------------------------------|-----------------------------------|
| Multi-jet                     | $6264 \pm 74$                     |
| Single top                    | $14375 \pm 107$                   |
| Diboson                       | $548\pm12$                        |
| Z+jets                        | $5804 \pm 146$                    |
| W+jets                        | $35921 \pm 525$                   |
| $t\bar{t}V$                   | $680\pm2$                         |
| $t\bar{t}$ H (125)            | $220\pm1$                         |
| $t\bar{t}$ MC@NLO             | $202042\pm285$                    |
| Tot Bkg w/ MC@NLO             | $265854\pm629$                    |
| $Tar{T}$ (600) chiral<br>Data | $36 \pm 2$ $256993 \pm 507$       |

(\*) 
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- QCD multi-jet events have high cross-section
- Data-drive estimation
- Matrix-method



$$N_{\rm fake}^{\rm tight} = \frac{\epsilon_{\rm fake}}{\epsilon_{\rm real} - \epsilon_{\rm fake}} (N^{\rm loose} \epsilon_{\rm real} - N^{\rm tight})$$

|                               | $\geq$ 4 jets, $\geq$ 1 $b$ -tags |
|-------------------------------|-----------------------------------|
| Multi-jet                     | $6264 \pm 74$                     |
| Single top                    | $14375 \pm 107$                   |
| Diboson                       | $548\pm12$                        |
| Z+jets                        | $5804 \pm 146$                    |
| W+jets                        | $35921 \pm 525$                   |
| $t\overline{t}V$              | $680 \pm 2$                       |
| $t\bar{t}$ H (125)            | $220\pm1$                         |
| $t\bar{t}$ MC@NLO             | $202042\pm285$                    |
| Tot Bkg w/ MC@NLO             | $265854\pm629$                    |
| $Tar{T}$ (600) chiral<br>Data | $36 \pm 2$<br>256993 $\pm$ 507    |
|                               |                                   |

(\*) 
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- s-channel and Wt production generated with MC@NLO+HERWIG
- ► *t*-channel generated with ACERMC+PYTHIA
- $m_t = 172.5 \text{ GeV}$
- ▶ NNLO theoretical cross sections

|                                         | $\geq$ 4 jets, $\geq$ 1 $b$ -tags |
|-----------------------------------------|-----------------------------------|
| Multi-jet<br>Single top                 | $6264 \pm 74$ $14375 \pm 107$     |
| Diboson                                 | $548 \pm 12$                      |
| Z+jets<br>W+jets                        | $5804 \pm 146$<br>$35921 \pm 525$ |
| $t\bar{t}V$                             | $680\pm2$                         |
| $t\bar{t}$ H (125)<br>$t\bar{t}$ MC@NLO | $220 \pm 1 \ 202042 \pm 285$      |
| Tot Bkg w/ MC@NLO                       | $265854 \pm 629$                  |
| $Tar{T}$ (600) chiral<br>Data           | $36 \pm 2$<br>256993 $\pm$ 507    |
|                                         |                                   |

(\*) 
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- ► Diboson production generated with HERWIG
- NLO theoretical cross section

|                               | $\geq$ 4 jets, $\geq$ 1 $b$ -tags |
|-------------------------------|-----------------------------------|
| Multi-jet<br>Single top       | $6264 \pm 74$ $14375 \pm 107$     |
| Diboson                       | $548 \pm 12$                      |
| Z+jets                        | $5804 \pm 146$                    |
| W+jets<br>tīV                 | $35921 \pm 525$                   |
| tīV<br>tīH (125)              | $680 \pm 2$ $220 \pm 1$           |
| tt MC@NLO                     | $202042\pm285$                    |
| Tot Bkg w/ MC@NLO             | $265854\pm629$                    |
| $Tar{T}$ (600) chiral<br>Data | $36 \pm 2$<br>256993 $\pm$ 507    |

(\*) 
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- Z boson production in association with jets generated with up to five additional partons with ALPGEN+HERWIG
- Samples generated separately for Z+light jets, Zbb+jets, and Zcc+jets
- ► Inclusive NNLO theoretical cross section

Yields in the preselection region "blinded" as:  $H_{\scriptscriptstyle T}^{4j} < 800~{\rm GeV}~(*) \label{eq:hamiltonian}$ 

|                               | $\geq$ 4 jets, $\geq$ 1 $b$ -tags |
|-------------------------------|-----------------------------------|
| Multi-jet                     | $6264 \pm 74$                     |
| Single top                    | $14375 \pm 107$                   |
| Diboson                       | $548\pm12$                        |
| Z+jets                        | $5804 \pm 146$                    |
| W+jets                        | $35921 \pm 525$                   |
| t <del>t</del> V              | $680 \pm 2$                       |
| $t\bar{t}$ H (125)            | $220\pm1$                         |
| $t\bar{t}$ MC@NLO             | $202042 \pm 285$                  |
| Tot Bkg w/ MC@NLO             | $265854 \pm 629$                  |
| $Tar{T}$ (600) chiral<br>Data | $36 \pm 2$<br>256993 $\pm$ 507    |

(\*) 
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- W boson production in association with jets generated with up to five additional partons with ALPGEN+HERWIG
- ightharpoonup Samples generated separately for W+light jets,  $Wb\bar{b}+$ jets,  $Wc\bar{c}+$ jets, and Wc+jets
- Normalized to data-driven prediction

Yields in the preselection region "blinded" as:  $H_{\scriptscriptstyle T}^{4j} < 800~{\rm GeV}~(*) \label{eq:hamiltonian}$ 

| $\geq$ 4 jets, $\geq$ 1 $\emph{b}\text{-tags}$ |
|------------------------------------------------|
| $6264 \pm 74$                                  |
| $14375 \pm 107$                                |
| $548\pm12$                                     |
| $5804 \pm 146$                                 |
| $35921 \pm 525$                                |
| $680 \pm 2$                                    |
| $220\pm1$                                      |
| $202042\pm285$                                 |
| $265854 \pm 629$                               |
| $36 \pm 2$ $256993 \pm 507$                    |
|                                                |

(\*) 
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- ▶ t̄t produced in association with a W or Z boson generated with MADGRAPH+PYTHIA
- $m_t = 172.5 \text{ GeV}$
- NLO theoretical cross section

|                               | $\geq$ 4 jets, $\geq$ 1 <i>b</i> -tags |
|-------------------------------|----------------------------------------|
| Multi-jet                     | $6264 \pm 74$                          |
| Single top                    | $14375 \pm 107$                        |
| Diboson                       | $548\pm12$                             |
| Z+jets                        | $5804 \pm 146$                         |
| W+jets                        | $35921 \pm 525$                        |
| $t\overline{t}V$              | $680 \pm 2$                            |
| $t\bar{t}$ H (125)            | $220\pm1$                              |
| tt MC@NLO                     | $202042\pm285$                         |
| Tot Bkg w/ MC@NLO             | $265854\pm629$                         |
| $Tar{T}$ (600) chiral<br>Data | $36 \pm 2$ $256993 \pm 507$            |

(\*) 
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- tt̄ produced in association with a Higgs boson generated with PYTHIA
- $m_t = 172.5 \text{ GeV}, m_H = 125 \text{ GeV}$
- ► Higgs decay modes considered:  $H \rightarrow b\bar{b}, c\bar{c}, gg, W^+W^-$
- NLO theoretical cross section

Yields in the preselection region "blinded" as:  $H_{\scriptscriptstyle T}^{4j} < 800~{\rm GeV}~(*) \label{eq:hamiltonian}$ 

|                               | $\geq$ 4 jets, $\geq$ 1 <i>b</i> -tags |
|-------------------------------|----------------------------------------|
| Multi-jet                     | $6264 \pm 74$                          |
| Single top                    | $14375 \pm 107$                        |
| Diboson                       | $548\pm12$                             |
| Z+jets                        | $5804 \pm 146$                         |
| W+jets                        | $35921 \pm 525$                        |
| $t\bar{t} 	ext{V}$            | $680 \pm 2$                            |
| $t\bar{t}$ H (125)            | $220\pm1$                              |
| tt MC@NLO                     | $202042 \pm 285$                       |
| Tot Bkg w/ MC@NLO             | $265854 \pm 629$                       |
| $Tar{T}$ (600) chiral<br>Data | $36 \pm 2$<br>256993 $\pm$ 507         |

(\*) 
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- $t\bar{t}$  pair production in association with jets generated with MC@NLO+HERWIG
- $m_t = 172.5 \text{ GeV}$
- NNLO theoretical cross section

#### but

MC@NLO does not model well high-jet multiplicity regions!

- ► Additional samples generated with ALPGEN+HERWIG
- Separate samples are generated for \$\tau\tau\ta\text{t}\$+light jets with up to three additional light partons, and for \$t\tar{t}\$+heavy-flavour jets including \$t\tar{t}b\tar{b}\$ and \$t\tar{t}c\tar{c}\$
- $m_t = 172.5 \text{ GeV}$
- NNLO theoretical cross section

Yields in the preselection region "blinded" as:  $H_{\scriptscriptstyle T}^{4j} < 800~{
m GeV}$  (\*)

| $\geq$ 4 jets, $\geq$ 1 $b$ -tags |
|-----------------------------------|
| $6264 \pm 74$                     |
| $14375 \pm 107$                   |
| $548\pm12$                        |
| $5804 \pm 146$                    |
| $35921 \pm 525$                   |
| $680 \pm 2$                       |
| $220\pm1$                         |
| $202042 \pm 285$                  |
| $265854 \pm 629$                  |
| $36 \pm 2$ $256993 \pm 507$       |
|                                   |

(\*) 
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{i=1}^4 p_T(j)$$

Yields for  $t\bar{t}$  predicted with ALPGEN are  $\sim 3-8\%$  higher than MC@NLO



|                         | $\geq$ 4 jets, $\geq$ 1 <i>b</i> -tags |
|-------------------------|----------------------------------------|
| Multi-jet               | $6264 \pm 74$                          |
| Single top              | $14375 \pm 107$                        |
| Diboson                 | $548 \pm 12$                           |
| Z+jets                  | $5804 \pm 146$                         |
| W+jets                  | $35921 \pm 525$                        |
| $t\bar{t}V$             | $680 \pm 2$                            |
| $t\bar{t}$ H (125)      | $220\pm1$                              |
| tt MC@NLO               | $202042 \pm 285$                       |
| Tot Bkg w/ MC@NLO       | $265854\pm629$                         |
| $T\bar{T}$ (600) chiral | $36\pm2$                               |

| $T\bar{T}$ (600) chiral | $36\pm2$         |
|-------------------------|------------------|
| Data                    | $256993 \pm 507$ |

(\*) 
$$H_T^{4j} = p_T(l) + E_T^{miss} + \sum_{j=1}^4 p_T(j)$$

- $ightharpoonup T\bar{T}$  singlet production generated with PROTOS+PYTHIA
- Branching ratio to each decay mode (Wb, Zt and Ht) is set to 1/3
- ► Events are reweighted at the analysis level in order to reproduce any desired branching ratio configuration
- $\blacktriangleright$  m<sub>T</sub> values generated from 350 GeV to 850 GeV in steps of 50 GeV
- $ightharpoonup m_H = 125$  GeV, all Higgs boson decay modes are considered
- NNLO theoretical cross section.

| $m_T$ ( GeV) | $BR(T \rightarrow Wb)$ | $BR(T \rightarrow Zt)$<br>Singlet | $BR(T \rightarrow Ht)$ |
|--------------|------------------------|-----------------------------------|------------------------|
| 600          | 0.494                  | 0.194                             | 0.312                  |
| 600          | 0.000                  | Doublet<br>0.383                  | 0.617                  |

# Systematic uncertainties - Shape and Norm

| Systematic uncertainty              | $T\bar{T} 	o Wb + X$ |            | $T\bar{T} 	o Ht + X$ |            |
|-------------------------------------|----------------------|------------|----------------------|------------|
|                                     | Status               | Components | Status               | Components |
| Luminosity                          | N                    | 1          | N                    | 1          |
| Lepton ID+reco+trigger              | N                    | 1          | N                    | 1          |
| Jet vertex fraction efficiency      | SN                   | 1          | SN                   | 1          |
| Jet energy scale                    | SN                   | 1          | SN                   | 8          |
| Jet energy resolution               | SN                   | 1          | SN                   | 1          |
| b-tagging efficiency                | SN                   | 9          | SN                   | 9          |
| c-tagging efficiency                | SN                   | 5          | SN                   | 5          |
| Light jet-tagging efficiency        | SN                   | 1          | SN                   | 1          |
| $t\bar{t}$ cross section            | N                    | 1          | N                    | 1          |
| $t\bar{t}V$ cross section           | N                    | 1          | N                    | 1          |
| $t\bar{t}H$ cross section           | -                    | -          | N                    | 1          |
| Single top cross section            | N                    | 1          | N                    | 1          |
| Dibosons cross section              | N                    | 1          | N                    | 1          |
| W+jets normalization                | N                    | 5          | -                    | -          |
| Z+jets normalization                | N                    | 1          | -                    | -          |
| V+jets normalization                | -                    | -          | N                    | 1          |
| Multijet normalization              | -                    | -          | N                    | 1          |
| $tar{t}$ modelling                  | SN                   | 3          | SN                   | 3          |
| V+jets modelling                    | SN                   | 1          | -                    | -          |
| $t\bar{t}$ +heavy-flavour fractions | -                    | -          | N                    | 1          |

### Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for *TT* in single lepton channel

Search for  $T\bar{T}$  decaying to Wb + X

Search for TT decaying to Ht + X

Final results

Conclusions and outlook

# Strategy





### W boson reconstruction



 $W_{\text{lep}}$  reconstructed using lepton and "neutrino":  $p_X, p_Y$  from  $E_T^{\text{miss}}, p_Z$  from  $M_W^2 = (P_l + P_\nu)^2$ 

|     | I   | OOSE selection                  |
|-----|-----|---------------------------------|
| SR0 | Pre | selection                       |
| SR1 | +   | $\geq 1 W_{\rm had}$ candidates |
| SR2 | +   | $H_T^{4j} > 800 \text{ GeV}$    |
| SR3 | +   | $p_{\rm T}(b_1) > 160~{ m GeV}$ |
| SR4 | +   | $p_{\rm T}(b_2) > 80~{ m GeV}$  |
| SR5 | +   | $\Delta R(\ell, \nu) < 1.2$     |

TIGHT selection SR5 LOOSE selection SR6 +  $\min \Delta R(\ell,b) > 1.4$  SR7 +  $\min \Delta R(W_{\rm had},b) > 1.4$ 



| LOOSE selection |     |                                 |  |  |
|-----------------|-----|---------------------------------|--|--|
| SR0             | Pre | selection                       |  |  |
| SR1             | +   | $\geq 1 W_{\rm had}$ candidates |  |  |
| SR2             | +   | $H_T^{4j} > 800 \text{ GeV}$    |  |  |
| SR3             | +   | $p_{\rm T}(b_1) > 160~{ m GeV}$ |  |  |
| SR4             | +   | $p_{\rm T}(b_2) > 80~{ m GeV}$  |  |  |
| SR5             | +   | $\Delta R(\ell, \nu) < 1.2$     |  |  |



|     | ]   | LOOSE selection                 |
|-----|-----|---------------------------------|
| SR0 | Pre | eselection                      |
| SR1 | +   | $\geq 1 W_{\rm had}$ candidates |
| SR2 | +   | $H_T^{4j} > 800 \text{ GeV}$    |
| SR3 | +   | $p_{\rm T}(b_1) > 160~{ m GeV}$ |
| SR4 | +   | $p_{\rm T}(b_2) > 80~{ m GeV}$  |
| SR5 | +   | $\Delta R(\ell, \nu) < 1.2$     |
|     |     |                                 |



|     | L    | OOSE selection                  |
|-----|------|---------------------------------|
| SR0 | Pres | selection                       |
| SR1 | +    | $\geq 1 W_{\rm had}$ candidates |
| SR2 | +    | $H_T^{4j} > 800 \text{ GeV}$    |
| SR3 | +    | $p_{\rm T}(b_1) > 160~{ m GeV}$ |
| SR4 | +    | $p_{\rm T}(b_2) > 80~{ m GeV}$  |
| SR5 | +    | $\Delta R(\ell, \nu) < 1.2$     |



| LOOSE selection |     |                                 |  |  |
|-----------------|-----|---------------------------------|--|--|
| SR0             | Pre | eselection                      |  |  |
| SR1             | +   | $\geq 1 W_{\rm had}$ candidates |  |  |
| SR2             | +   | $H_T^{4j} > 800 \text{ GeV}$    |  |  |
| SR3             | +   | $p_{\rm T}(b_1) > 160~{ m GeV}$ |  |  |
| SR4             | +   | $p_{\rm T}(b_2) > 80~{ m GeV}$  |  |  |
| SR5             | +   | $\Delta R(\ell, \nu) < 1.2$     |  |  |
|                 |     |                                 |  |  |

SR5 Loose selection SR6 +  $\min \Delta R(\ell,b) > 1.4$  SR7 +  $\min \Delta R(W_{\rm had},b) > 1.4$ 

TIGHT selection



|     | L    | OOSE selection                  |
|-----|------|---------------------------------|
| SR0 | Pres | selection                       |
| SR1 | +    | $\geq 1 W_{\rm had}$ candidates |
| SR2 | +    | $H_T^{4j} > 800 \text{ GeV}$    |
| SR3 | +    | $p_{\rm T}(b_1) > 160~{ m GeV}$ |
| SR4 | +    | $p_{\rm T}(b_2) > 80~{ m GeV}$  |
| SR5 | +    | $\Delta R(\ell, \nu) < 1.2$     |
|     |      |                                 |

| TIGHT selection |     |                                          |  |  |  |
|-----------------|-----|------------------------------------------|--|--|--|
| SR5             | Loc | OSE selection                            |  |  |  |
| SR6             | +   | $\min \Delta R(\ell, b) > 1.4$           |  |  |  |
| SR7             | +   | $\min \Delta R(W_{\text{had}}, b) > 1.4$ |  |  |  |



|     | Ι   | LOOSE selection                         |
|-----|-----|-----------------------------------------|
| SR0 | Pre | selection                               |
| SR1 | +   | $\geq 1 W_{\rm had}$ candidates         |
| SR2 | +   | $H_T^{4j} > 800 \text{ GeV}$            |
| SR3 | +   | $p_{\rm T}(b_1) > 160~{ m GeV}$         |
| SR4 | +   | $p_{\mathrm{T}}(b_2) > 80~\mathrm{GeV}$ |
| SR5 | +   | $\Delta R(\ell, \nu) < 1.2$             |

TIGHT selection SR5 LOOSE selection SR6 +  $\min \Delta R(\ell, b) > 1.4$  SR7 +  $\min \Delta R(W_{\rm had}, b) > 1.4$ 



### Comparison data vs prediction

Check agreement between data and background prediction

Define regions depleted in signal

|                             | Loose but $\Delta R(\ell, \nu) > 1.2$    |  |  |
|-----------------------------|------------------------------------------|--|--|
| $t\bar{t'}(600~\text{GeV})$ | $18.47 \pm 1.48  {}^{+1.09}_{-1.64}$     |  |  |
| $t\overline{t}$             | $173.13 \pm 8.82 ^{+46.92}_{-48.59}$     |  |  |
| W+jets                      | $30.64 \pm 9.78  {}^{+13.74}_{-12.43}$   |  |  |
| Z+jets                      | $11.68 \pm 5.93^{+5.89}_{-6.96}$         |  |  |
| Diboson                     | $0.29 \pm 0.19^{+0.17}_{-0.17}$          |  |  |
| Single top                  | $21.46 \pm 2.54  {}^{+2.60}_{-2.54}$     |  |  |
| $t\bar{t}V$                 | $4.21 \pm 0.16^{+1.33}_{-1.33}$          |  |  |
| Multijet                    | $0.49 \pm 0.91 \pm 0.25$                 |  |  |
| Total bkg.                  | $241.90 \pm 14.70  {}^{+53.57}_{-55.95}$ |  |  |
| Data                        | 250                                      |  |  |



# Yields in signal region

|                                                          | Loose                                                                           | Tight                                                                                                      |
|----------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| $t\bar{t}$ $t\bar{t}V$ W+jets Z+jets Single top Dibosons | $264 \pm 80$ $5.1 \pm 1.8$ $16 \pm 11$ $1.1 \pm 1.4$ $30 \pm 7$ $0.21 \pm 0.15$ | $\begin{array}{c} 10\pm 6 \\ 0.5\pm 0.2 \\ 6\pm 5 \\ 0.2\pm 0.5 \\ 4.4\pm 1.6 \\ 0.06\pm 0.05 \end{array}$ |
| Tot.Bkg.<br>Data                                         | $\begin{array}{c} 317 \pm 90 \\ 348 \end{array}$                                | $\begin{array}{c} 21\pm 9 \\ 37 \end{array}$                                                               |
| $T\bar{T}(600 \text{ GeV})$<br>Chiral $t'$<br>T  Singlet | $88 \pm 10 \\ 41 \pm 4$                                                         | $54 \pm 7$ $20.3 \pm 2.2$                                                                                  |

Discriminating variable  $\Rightarrow T$  reconstructed mass  $\downarrow \downarrow$ 

Pair b-jets and W boson candidates in order to get  $\min \Delta(M_{\mathrm{leo}}, M_{\mathrm{had}})$ 





| Loose selection |     |                                         |  |
|-----------------|-----|-----------------------------------------|--|
| SR0             | Pre | selection                               |  |
| SR1             | +   | $\geq 1 W_{\rm had}$ candidates         |  |
| SR2             | +   | $H_T^{4j} > 800 \text{ GeV}$            |  |
| SR3             | +   | $p_{\rm T}(b_1) > 160~{ m GeV}$         |  |
| SR4             | +   | $p_{\mathrm{T}}(b_2) > 80~\mathrm{GeV}$ |  |
| SR5             | +   | $\Delta R(\ell, \nu) < 1.2$             |  |
|                 |     |                                         |  |



|     | L    | OOSE selection                       |  |  |  |
|-----|------|--------------------------------------|--|--|--|
| SR0 | Pres | selection                            |  |  |  |
| SR1 | +    | $\geq 1 W_{\rm had}$ candidates      |  |  |  |
| SR2 | +    | $H_T^{4J} > 800 \text{ GeV}$         |  |  |  |
| SR3 | +    | + $p_{\rm T}(b_1) > 160 \text{ GeV}$ |  |  |  |
| SR4 | +    | + $p_{\rm T}(b_2) > 80~{\rm GeV}$    |  |  |  |
| SR5 | +    | $\Delta R(\ell, \nu) < 1.2$          |  |  |  |
|     |      |                                      |  |  |  |
|     | 1    | FIGHT selection                      |  |  |  |
| SR5 | Loc  | OSE selection                        |  |  |  |
| SR6 | +    | $\min \Delta R(\ell,b) > 1.4$        |  |  |  |

 $\min \Delta R(W_{\text{had}}, b) > 1.4$ 



SR7

| LOOSE selection |                 |                                 |  |
|-----------------|-----------------|---------------------------------|--|
| SR0             | Pre             | selection                       |  |
| SR1             | +               | $\geq 1 W_{\rm had}$ candidates |  |
| SR2             | +               | $H_T^{4j} > 800 \text{ GeV}$    |  |
| SR3             | +               | $p_{\rm T}(b_1) > 160~{ m GeV}$ |  |
| SR4             | +               | $p_{\rm T}(b_2) > 80~{ m GeV}$  |  |
| SR5             | +               | $\Delta R(\ell,  u) < 1.2$      |  |
|                 |                 | 7 1 1                           |  |
|                 | TIGHT selection |                                 |  |
| SR5             | Loc             | OSE selection                   |  |

 $\min \Delta R(\ell, b) > 1.4$ 

 $\min \Delta R(W_{\text{had}}, b) > 1.4$ 



SR6

SR7

| Loose selection |     |                                 |  |
|-----------------|-----|---------------------------------|--|
| SR0             | Pre | selection                       |  |
| SR1             | +   | $\geq 1 W_{\rm had}$ candidates |  |
| SR2             | +   | $H_T^{4j} > 800 \text{ GeV}$    |  |
| SR3             | +   | $p_{\rm T}(b_1) > 160~{ m GeV}$ |  |
| SR4             | +   | $p_{\rm T}(b_2) > 80~{ m GeV}$  |  |
| SR5             | +   | $\Delta R(\ell, \nu) < 1.2$     |  |



| LOOSE selection |     |                                 |  |
|-----------------|-----|---------------------------------|--|
| SR0             | Pre | eselection                      |  |
| SR1             | +   | $\geq 1 W_{\rm had}$ candidates |  |
| SR2             | +   | $H_T^{4j} > 800 \text{ GeV}$    |  |
| SR3             | +   | $p_{\rm T}(b_1) > 160~{ m GeV}$ |  |
| SR4             | +   | $p_{\rm T}(b_2) > 80 { m ~GeV}$ |  |
| SR5             | +   | $\Delta R(\ell, \nu) < 1.2$     |  |
|                 |     |                                 |  |



| Loose selection |                                 |  |  |
|-----------------|---------------------------------|--|--|
| Pres            | election                        |  |  |
| +               | $\geq 1 W_{\rm had}$ candidates |  |  |
| +               | $H_T^{4j} > 800 \text{ GeV}$    |  |  |
| +               | $p_{\rm T}(b_1) > 160~{ m GeV}$ |  |  |
| +               | $p_{\rm T}(b_2) > 80~{ m GeV}$  |  |  |
| +               | $\Delta R(\ell, \nu) < 1.2$     |  |  |
|                 | Preset                          |  |  |



|                 | L    | OOSE selection                          |  |
|-----------------|------|-----------------------------------------|--|
| SR0             | Pres | selection                               |  |
| SR1             | +    | $\geq 1 W_{\rm had}$ candidates         |  |
| SR2             | +    | $H_T^{4j} > 800 \text{ GeV}$            |  |
| SR3             | +    | $p_{\rm T}(b_1) > 160~{ m GeV}$         |  |
| SR4             | +    | $p_{\mathrm{T}}(b_2) > 80~\mathrm{GeV}$ |  |
| SR5             | +    | $\Delta R(\ell, \nu) < 1.2$             |  |
|                 |      |                                         |  |
| TIGHT selection |      |                                         |  |

SR5 LOOSE selection SR6 +  $\min \Delta R(\ell, b) > 1.4$ SR7 +  $\min \Delta R(W_{\rm had}, b) > 1.4$ 



### Most relevant systematic uncertainties

|                                                                  | $T\bar{T}$ (600 GeV) | t ar t               | Non- $t\bar{t}$ |
|------------------------------------------------------------------|----------------------|----------------------|-----------------|
| Total [%]                                                        | +14/-15              | +59/-59              | +42/-35         |
| Main contributions [%] Jet energy scale                          | +6.6/-8.4            | +15/-15              | +33/-22         |
| $t\bar{t}$ modelling: NLO MC generator                           | -                    | +48/-48              | -               |
| $t\bar{t}$ modelling: PS and fragm $t\bar{t}$ modelling: ISR/FSR | _                    | +25/-25<br>+8.8/-8.8 | _               |







### Results





### Results



### Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for TT in single lepton channel

Search for  $T\bar{T}$  decaying to Wb + X

Search for  $T\bar{T}$  decaying to Ht + X

Final results

Conclusions and outlook

# Strategy

$$T\bar{T} \rightarrow Ht + X$$



$$T \rightarrow Ht \stackrel{\nearrow}{\searrow} bbWb \rightarrow bbbl\nu \\ \searrow WWWb \rightarrow qqqqbl\nu \\ \phantom{T} + \bar{T} \rightarrow Wb/Zt/Ht$$

as a minimum 6 total jets in the event  $(T\bar{T} \to HtWb)$ 

$$H_{\mathrm{T}} = p_{\mathrm{T}}(l) + E_{\mathrm{T}}^{\mathrm{miss}} + \sum_{j=1}^{\mathrm{Njets}} p_{\mathrm{T}}(j)$$



> 6 jets, > 4 *b*-jets

H<sub>+</sub> [GeV]

#### Event selection

#### maximize signal acceptance

| "2 $b$ -tagged jets"     | $\geq$ 6 jets<br>=2 <i>b</i> -tagged jets<br>orthogonality cut:<br>$H_{\rm T} <$ 700 GeV |
|--------------------------|------------------------------------------------------------------------------------------|
| "3 b-tagged jets"        | ≥ 6 jets<br>=3 <i>b</i> -tagged jets                                                     |
| " $≥4$ $b$ -tagged jets" | $\geq$ 6 jets $\geq$ 4 <i>b</i> -tagged jets                                             |



bad modeling  $\Rightarrow$  Simultaneous fit to data of  $H_{\rm T}$  variable

# Scale of $t\bar{t}$ components

 $t\bar{t}$ +light: 0.87  $\pm$  0.02 (stat.)  $t\bar{t}$ +HF: 1.35  $\pm$  0.11 (stat.)



Maximum yields discrepancy below 5%

# Scale of $t\bar{t}$ components

 $t\bar{t}$ +light: 0.87  $\pm$  0.02 (stat.)  $t\bar{t}$ +HF: 1.35  $\pm$  0.11 (stat.)



Maximum yields discrepancy below 5%

# Scale of $t\bar{t}$ components

 $t\bar{t}$ +light: 0.87  $\pm$  0.02 (stat.)  $t\bar{t}$ +HF: 1.35  $\pm$  0.11 (stat.)



Maximum yields discrepancy below 5%

## Comparison data vs prediction

Blinding cut:  $H_{\rm T} < 700 \text{ GeV}$ 

Define special blinded regions to check  $H_T$  modeling:

at most two jets with  $p_{\rm T} >$  60 GeV,  $H_{\rm T} < 1.2$  TeV 2 b-tagged jets 3 b-tagged jets





# Yields in signal regions

|                    | 2 b-tags        | 3 b-tags       | $\geq$ 4 <i>b</i> -tags |
|--------------------|-----------------|----------------|-------------------------|
| t <del>t</del> +HF | $1500 \pm 900$  | $900 \pm 400$  | $170 \pm 70$            |
| $t\bar{t}$ +LF     | $9600 \pm 1000$ | $1900 \pm 350$ | $75 \pm 22$             |
| W+jets             | $250 \pm 130$   | $50 \pm 30$    | $5\pm3$                 |
| Z+jets             | $50 \pm 40$     | $9\pm6$        | $0.5 \pm 0.9$           |
| Single top         | $300 \pm 70$    | $75 \pm 18$    | $7 \pm 3$               |
| Diboson            | $1.7 \pm 0.6$   | $0.3 \pm 0.1$  | $0.03 \pm 0.03$         |
| $t\overline{t}V$   | $70 \pm 20$     | $36 \pm 12$    | $7 \pm 3$               |
| $t\bar{t}H$        | $28\pm4$        | $31 \pm 6$     | $12 \pm 3$              |
| Multijet           | $49 \pm 23$     | $1.7\pm0.8$    | $0.15 \pm 0.06$         |
| Tot.Bkg.           | $11860 \pm 260$ | $2990 \pm 210$ | $270 \pm 60$            |
| Data               | 11885           | 2922           | 318                     |
| TT (600)           |                 |                |                         |
| doublet            | $4.3 \pm 1.2$   | $94 \pm 7$     | $79 \pm 18$             |
| singlet            | $2.3\pm0.4$     | $61 \pm 7$     | $36 \pm 9$              |



Introduce the scaling factors as nuisance parameters

# Most relevant systematic uncertainties

#### ... before fitting the nuisance parameters

|                        |             |                    |                | 0                 |             |             |             |             |             |             |
|------------------------|-------------|--------------------|----------------|-------------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                        | $T\bar{T}$  | $t\bar{t}$ H (125) | $t\bar{t}$ -HF | $t\bar{t}$ -Light | W+jets      | Z+jets      | Single top  | Diboson     | $t\bar{t}V$ | Multijet    |
| Total [%]              | +21.9/-24.0 | +25.2/-30.0        | +57.3/-58.4    | +42.0/-44.1       | +60.0/-61.0 | +65.2/-66.2 | +31.7/-32.9 | +68.2/-70.2 | +37.6/-38.8 | +50.0/-50.0 |
| Main contributions [%] |             |                    |                |                   |             |             |             |             |             |             |
| BTAGBREAK8             | +20.4/-22.7 | +18.7/-21.6        | +15.8/-17.8    | +12.2/-13.1       | +13.5/-15.0 | +13.0/-13.9 | +15.9/-17.8 | +22.0/-27.4 | +16.4/-18.6 | -           |
| JES "baseline"         | +3.1/-3.1   | +7.3/-7.3          | +10.5/-10.5    | +13.7/-13.7       | +18.1/-18.1 | +18.2/-18.2 | +19.9/-19.9 | +5.2/-5.2   | +8.4/-8.4   | -           |
| ttbar iqopt2           | -           | -                  | +6.9/-6.9      | +20.1/-20.1       | -           | -           | -           | -           | -           | -           |
| ttbar ktfac            | -           | -                  | +7.5/-9.2      | +13.8/-17.0       | -           | -           | -           | -           | -           | -           |
| ttbar qfac             | -           | -                  | +0.7/-0.7      | +1.6/-1.6         | -           | -           | -           | -           | -           | -           |
| ttbarHF                | -           | -                  | +50.0/-50.0    | +13.0/-13.0       | -           | -           | -           | -           | -           | -           |











### Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for TT in single lepton channel

Search for  $T\bar{T}$  decaying to Wb + X

Search for TT decaying to Ht + X

#### Final results

Conclusions and outlook

# Combination of $T\bar{T} \rightarrow Wb + X$ and $T\bar{T} \rightarrow Ht + X$



The searches are orthogonal

can be combined in the statistical analysis (consistent syst unc treatment)











# ATLAS BR coverage



# ATLAS BR coverage



# Comparison to CMS results

Inclusive  $T\bar{T}$  searches CMS-PAS-B2G-12-015 [?]



### Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for TT in single lepton channel

Search for  $T\bar{T}$  decaying to Wb + X

Search for TT decaying to Ht + X

Final results

Conclusions and outlook

### References I

[1] S. Gieseke.

Parton shower monte carlos.

[2] Thomas Junk.

Confidence level computation for combining searches with small statistics.

Nucl.Instrum.Meth., A434:435-443, 1999.

[3] Alexander L. Read.

Presentation of search results: The CL(s) technique.

J.Phys., G28:2693-2704, 2002.

[4] ATLAS Collaboration.

Search for pair production of heavy top-like quarks decaying to a high- $p_T$  W boson and a b quark in the lepton plus jets final state at  $\sqrt{s}=7$  TeV with the ATLAS detector.

Phys.Lett., B718:1284-1302, 2012.

### References II

#### [5] ATLAS Collaboration.

Search for pair production of heavy top-like quarks decaying to a high- $p_T$  W boson and a b quark in the lepton plus jets final state in pp collisions at  $\sqrt{s}=8$  TeV with the ATLAS detector.

ATLAS-CONF-2013-060, Jun 2013.

#### [6] ATLAS collaboration.

Search for heavy top-like quarks decaying to a higgs boson and a top quark in the lepton plus jets final state in pp collisions at  $\sqrt{s} = 8$  tev with the atlas detector. *ATLAS-CONF-2013-018.* Mar 2013.

#### [7] M. Lamont.

The First Years of LHC Operation for Luminosity Production.

in Proceedings of 4th International Particle Accelerator Conference (IPAC 2013), 2013.

#### Backup

#### **BACKUP SLIDES**

# LHC parameters

| Parameter                                                                                                                                                                                                                | designed                                                                    | 2010                                                                            | 2011                                                                                          | 2012                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Beam energy (TeV/c) Beta function $\beta*$ (m) Max. No. bunches/beam Max. No. protons/bunch Bunch spacing (ns) Peak luminosity (cm <sup>-2</sup> s <sup>-1</sup> ) Emittance $\varepsilon_n$ ( $\mu$ rad) Max. $< \mu >$ | $7$ $0.55$ $2808$ $1.15 \times 10^{11}$ $25$ $1 \times 10^{34}$ $3.75$ $19$ | $3.5$ $2.0/3.5$ $368$ $1.2 \times 10^{11}$ $150$ $2.1 \times 10^{32}$ $2.0$ $4$ | 3.5<br>1.5/1.0<br>1380<br>1.45×10 <sup>11</sup><br>75/50<br>3.7×10 <sup>33</sup><br>2.4<br>17 | $\begin{array}{c} 4 \\ 0.6 \\ 1380 \\ 1.7 \times 10^{11} \\ 50 \\ 7.7 \times 10^{33} \\ 2.5 \\ 37 \end{array}$ |

Table: Overview of some parameters for the LHC performance comparing the design values with their time evolution during the first long run operation in 2010-2013 [7].

# $T\bar{T} \rightarrow Wb + X$ 7 TeV vs 8 TeV

| Selection    | 7 TeV 8 TeV                                                                              |                                                                                 |  |  |
|--------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|
| Preselection | One electron or muon <sup>(+)</sup>                                                      |                                                                                 |  |  |
|              | $E_{ m T}^{ m miss} > 35(20)$ GeV for electron (muon) channel                            | $E_{\mathrm{T}}^{\mathrm{miss}} > 20 \; \mathrm{GeV}$                           |  |  |
|              | $E_{ m T}^{ m miss} + m_{ m T} > 60~{ m GeV}$                                            |                                                                                 |  |  |
|              | $\geq 3$ jets for $W_{ m had}^{ m type\ I} \ \geq 4$ jets for $W_{ m had}^{ m type\ II}$ | $\geq$ 4 jets <sup>(*)</sup>                                                    |  |  |
|              | $\geq 1$ <i>b</i> -tagged jets <sup>(**)</sup>                                           |                                                                                 |  |  |
|              |                                                                                          | orthogonality cut reject events with $\geq 6$ and $\geq 3$ <i>b</i> -tagged jet |  |  |

 $\begin{aligned} & & & Preselection \\ & \geq 1 \ \textit{W}_{had} \ candidates^{(x)} \end{aligned}$