厚

b) Use o método que você selecionou no item (a) para determinar a potência.

Figura P4.56

A fonte variável de corrente cc no circuito da Figura P4.57 é ajustada de modo que a potência gerada pela fonte de corrente de 15 A seja 3.750 W. Determine o valor de i_{cc} .

Figura P4.57

- **4.58** A fonte variável de tensão cc no circuito da Figura P4.58 é ajustada de modo que i_o seja zero.
 - a) Determine o valor de V_{cc} .
 - b) Verifique sua solução mostrando que a potência gerada é igual à potência dissipada.

Figura P4.58

Seção 4.9

- 4.59* a) Use uma série de transformações de fonte para determinar a corrente i_o no circuito da Figura P4.59.
 - b) Verifique sua solução usando o método das tensões de nó para determinar i_o .

Figura P4.59

a) Determine a corrente no resistor de 10 kΩ no circuito da Figura P4.60 fazendo uma sucessão

de transformações de fonte adequadas.

b) Usando o resultado obtido no item (a), faça os cálculos no sentido inverso para determinar a potência desenvolvida pela fonte de 100 V.

Figura P4.60

- 4.61 a) Use transformações de fonte para determinar v_o no circuito da Figura P4.61.
 - b) Determine a potência gerada pela fonte de 340 V.
 - c) Determine a potência gerada pela fonte de corrente de 5 A.
 - d) Verifique se a potência total gerada é igual à potência total dissipada.

Figura P4.61

4.62* a) Use uma série de transformações de fonte para determinar i_o no circuito da Figura P4.62.

b) Verifique sua solução usando o método das correntes de malha para determinar i_o .

Figura P4.62

