evolução Conteúdo ပ္ပ Inteligência Computacional Ano lectivo 2023-24 Luís A. Alexandre Alexandre (UBI)

3/31 Ano lectivo 2023-24 Estratégias evolucionárias Inteligência Computacional Luís A. Alexandre (UBI)

Ш algoritmo das 0

- Inicializar o contador de gerações g=0;
- Inicializar a população $C_{\!g}$ com N indivíduos: 2
- Avaliar a função de aptidão $F(C_{g,j})$ para cada indivíduo da população 3.
- $C_g = \{C_{g,i}|i=1,\ldots,N\}$
- Enquanto não tivermos convergência fazer: 4
- 4.1 Para $L=1\ldots,\lambda$, onde λ é o n. de filhos
- $4.1.1\,$ Selecionar $R\geq 2$ progenitores $4.1.2\,$ Efetuar o cross-over nos cromossomas e nos parâmetros das estratégias $4.1.3\,$ Efetuar mutação nos cromossomas e nos parâmetros das estratégias dos descendentes
 - 4.1.4 Avaliar a aptidão dos descendentes
- $4.2\,$ Selecionar os μ melhores de entre os descendentes ou de entre os descendentes e os progenitores, para formarem a geração seguinte. $4.3\,$ Fazer g=g+1 e voltar a 4

Estratégias evolucionárias

Representação dos cromossomas Operadores de cross-over Operadores de mutação Operadores de selecção População inicial

Algoritmo de co-evolução Aptidão cooperativa Aptidão relativa Aptidão relativa Hall of fame Introdução

Leitura recomendada

Luís A. Alexandre (UBI)

Estratégias evolucionárias

Introdução

- A ideia subjacente às estratégias evolucionárias (EE) é a de que a evolução em si mesma pode ser alvo de evolução.
- cromossomas, com a adição de um conjunto de parâmetros estratégicos que guiam o comportamento do indivíduo no seu meio Nas EE continuamos a ter os indivíduos representados por ambiente (evolução fenotípica)
 - São então 3 as novidades fundamentais das EE:
- A evolução agora passa pela evolução do indivíduo e das estratégias,
 - sendo que a evolução do indivíduo é controlada pelas estratégias. As mudanças efetuadas por mutação de indivíduos só são aceites se forem bem sucedidas (o indivíduo mutado tiver melhor aptidão que antes da mutação).
 - Os descendentes podem ser produzidos por mais de 2 progenitores.

Ano lectivo 2023-24 Luís A. Alexandre (UBI)

Representação dos cromossomas

- genotípica (características genéticas) e fenotípica (comportamento). A informação presente nos cromossomas é agora de 2 tipos:
- Assim, cada indivíduo é representado por um par (aqui sem indicar o índice da geração):

$$C_i = (G_i, S_i)$$

onde G_i representa o material genético e S_i representa os parâmetros das estratégias evolucionárias.

- Os parâmetros das estratégias evolucionárias contêm informação que irá ser usada na mutação: a ideia é que a mutação possa afetar os diferentes indivíduos de forma distinta.
- A forma como a mutação age encontra-se em evolução.

Representação dos cromossomas

- Os parâmetros estratégicos podem incluir, por exemplo, o desvio padrão do tamanho das mutações a efetuar. Ā
- Um indivíduo é então representado da seguinte forma:

$$G_i = (G_i, \sigma_i) \in \mathbb{R}^m \times \mathbb{R}_+$$

onde m representa o número de variáveis genéticas do indivíduo e σ_i é um escalar positivo (o desvio padrão). Ou seja, $S_i = \sigma_i$.

Alexandre (UBI)

7/31

cross-over Operadores de

- O cross-over aplica-se tanto à informação genética como aos parâmetros estratégicos. \blacktriangle
- As duas abordagens principais são: lack
- cross-over local: um descendente é gerado a partir de dois progenitores
 - indivíduos também selecionado aleatoriamente, para gerar um único usando componentes selecionados aleatoriamente dos progenitores cross-over global: toda a população é usada para gerar um descendente. São selecionados aleatoriamente componentes de descendente.
- Em ambos os casos, a recombinação do material genético e dos parâmetros estratégicos pode ser feita de duas formas: \blacktriangle
- recombinação discreta: onde os alelos dos progenitores são usados diretamente para construir o descendente, escolhendo de forma aleatória um progenitor para copiar um dos alelos, e repetindo o processo para os restantes;
- recombinação média: onde os alelos dos descendentes são os valores médios dos alelos dos progenitores

Luís A. Alexandre (UBI)

Operadores de mutação

▶ Os indivíduos mutados só são aceites se a sua aptidão for melhor que a do indivíduo original (antes da mutação).

População inicial

- A população inicial é obtida aleatoriamente. lack
- É usada inicialização aleatória tanto para o material genético como para os parâmetros das estratégias.

Alexandre (UBI)

Operadores de mutação

- Tanto o material genético G_i como os parâmetros estratégicos S_i sofrem mutações.
- Dependendo do tipo de informação em S_i, poderemos efetuar a mutação de diferentes formas.
- Para a representação vista atrás em que se inclui o desvio padrão, $C_i = (G_i, \sigma_i)$, a mutação é efetuada em 2 passos: \blacktriangle
- Existem várias possibilidades, mas vamos considerar apenas a seguinte: Efetuar a mutação do desvio padrão σ_i para todos os indivíduos.

$$\sigma_{g+1,i} = \sigma_{g,i} \exp(\xi/\sqrt{m})$$

onde $\xi \sim N(0,1)$ e m representa o número de variáveis genéticas. Efetuar a mutação do material genético do indivíduo i na geração g+1, $G_{g+1,i}$, ajustando o respetivo alelo j usando 6

$$G_{g+1,i}(j) = G_{g,i}(j) + \xi \sigma_{g+1,i}$$

onde $\xi \sim N(0,1)$.

Luís A. Alexandre (UBI)

9/31

Ano lectivo 2023-24

10/31

lectivo 2023-24

Operadores de seleção

- Para escolher os progenitores, quaisquer dos operadores de seleção já estudados podem ser usados.
- Em cada geração, são criados e sofrem mutação λ descendentes de μ progenitores.
 - Após o cross-over e a mutação, selecionamos os indivíduos para a geração seguinte. Para tal, foram desenvolvidas duas abordagens específicas às EE: \blacktriangle
- $\mathsf{EE}(\mu+\lambda)$: neste caso a EE gera λ descendentes dos μ progenitores com $1 \le \mu \le \lambda < \infty$. A geração seguinte consiste nos melhores μ indivíduos selecionados dos μ progenitores e dos λ descendentes. E abordagem inclui a ideia do elitismo pois permite aos melhores progenitores sobreviverem para a geração seguinte.
 - $\mathsf{EE}(\mu,\lambda)$: neste caso a geração seguinte consiste nos melhores μ indivíduos selecionados dos λ descendentes. Isto implica que $1 \le \mu < \lambda < \infty$. Neste caso é excluída a ideia do elitismo.

12/31

Operadores de seleção

- A EE (μ,λ) tem mais diversidade genética pois não usa o elitismo.
- Deste modo, esta abordagem é mais adequada quando os espaços de pesquisa são muito irregulares. \blacksquare
- $\mathsf{EE}(\mu,\kappa,\lambda)$ em que κ representa a idade máxima dos indivíduos (em número de gerações): todos os que tenham idade maior que κ não Existe também uma variante da abordagem $\mathsf{EE}(\mu+\lambda)$, chamada passam à geração seguinte.
- De notar que $\mathsf{EE}(\mu,1,\lambda) = \mathsf{EE}(\mu,\lambda)$

lectivo 2023-24 Inteligência Computaciona Alexandre (UBI)

Introdução

- espécies que interagem entre si. evolução paralela de diferentes A co-evolução é inspirada na
- Esta interação pode ser de dois tipos: predador-presa ou simbiose.

 \blacktriangle

se adaptar ao meio em que estava inserida. Aqui, além de imposições do meio, e mais importante que estas, temos a adaptação a outras populações.

Luís A. Alexandre (UBI)

Inteligência Computacional

15/31

lectivo 2023-24

Algoritmo de co-evolução

- Na co-evolução não se introduz qualquer informação a priori sobre os problemas a resolver.
- Não vamos especificar o objetivo através de uma função de aptidão.
 - Consideremos o caso em que temos duas populações.
- A primeira população tenta adaptar-se ao ambiente criado pela segunda população, e vice-versa.
- relativamente aos indivíduos da segunda população: é uma aptidão A aptidão de um indivíduo da primeira população é determinada relativa.
- O mesmo é feito para os indivíduos da segunda população.
- A reprodução é efetuada tendo por base as aptidões relativas assim

Luís A. Alexandre (UBI)

Co-evolução

Alexandre (UBI)

13/31

lectivo 2023-24

Introdução

- Outro aspeto que faz a co-evolução diferir dos restantes AEs é que não existe uma função de aptidão absoluta: a aptidão dum indivíduo depende da aptidão dos indivíduos da(s) outra(s) espécie(s)
- 0 A co-evolução normalmente é usada apenas com duas espécies: objetivo é que uma população consiga derrotar a outra. \blacktriangle
 - Este tipo de abordagens tem diversas aplicações: definir estratégias para jogos (incluindo simulações militares), no controlo de robôs, na gestão de carteiras de investimento, etc.

Ano lectivo 2023-24 Inteligência Computacional Luís A. Alexandre (UBI)

16/31

Algoritmo de co-evolução competitiva

- 1. Inicializar as duas populações C_A e C_B 2. Enquanto as condicões de para $^\circ$ em n $^\circ$ r
- Enquanto as condições de paragem não forem verificadas fazer:
 - 2.1 Para cada elemento $x_i \in C_A$ fazer: 2.1.1 Escolher um conjunto de oponentes de C_B 2.1.2 Avaliar a aptidão de x_i em relação a esse conjunto.
 - 2.2 Para cada elemento $x_i \in C_B$ fazer:
- 2.2.1 Escolher um conjunto de טיטייייי ב- 2.2.2 Avaliar a aptidão de x, em relação a esse conjunto.
- $2.3\,$ Fazer a evolução da população C_A por uma geração. $2.4\,$ Fazer a evolução da população C_B por uma geração.
- Selecionar o melhor indivíduo a partir da população de soluções $C_{\mathcal{A}}$

18/31

Algoritmo de co-evolução competitiva

- Para fazer a evolução da população por uma geração podemos usar qualquer algoritmo evolucionário.
- população de teste, que apenas serve para "ajudar" a evolução de $\mathcal{C}_{\mathcal{A}}$ O algoritmo considera que C_A é a população de soluções e C_B a
- Exemplo: se procuramos um algoritmo que permita fazer a ordenação codifica exemplos de vetores que irão servir para testar os algoritmos. de vetores, a primeira população codifica esse algoritmo e a segunda \blacksquare
- Neste exemplo dizemos que um elemento da C_A derrota um de C_B se for capaz de o ordenar corretamente; de forma análoga diremos que o elemento de $C_{\cal B}$ derrota o de $C_{\cal A}$ se este não for capaz de o ordenar.

Inteligência Computaciona Alexandre (UBI)

18/81

lectivo 2023-24

Aptidão simples

Aptidão simples: é obtida uma amostra de indivíduos da população B e a aptidão de $C_{A,i}$ é igual ao número de indivíduos desta amostra que são derrotados pelo $C_{A,i}$. \blacktriangle

Luís A. Alexandre (UBI)

Inteligência Computacional

21/31

Ano lectivo 2023-24

Aptidão competitiva partilhada

Aptidão competitiva partilhada: a aptidão de $C_{A,i}$ é dada por

$$F(C_{A,i}) = \sum_{m=1}^{M} \frac{\mathbb{I}_{\{x \text{ derrota } C_{B,m}\}}(C_{A,i})}{N_m}$$

onde:

- ► M é o número de elementos da amostra de B
- N_m é o número de elementos de A que derrota um dado elemento $C_{B,m}$
 - da amostra de B $\mathbb{I}_{Z}(x)$ é a função indicatriz (ou característica) que dá 1 se x pertencer ao conjunto Z, caso contrário dá zero:

$$\mathbb{I}_{Z}(x) = \begin{cases} 1 & \text{se } x \in Z \\ 0 & \text{caso contrario} \end{cases}$$

Aptidão relativa

- Vamos estudar 3 formas de determinar a aptidão relativa de um indivíduo $C_{A,i}$ da população A que está a coevoluir com a população lack
- \blacktriangle \blacktriangle
- Aptidão simples Aptidão partilhada Aptidão competitiva partilhada

lectivo 2023-24 Luís A. Alexandre (UBI)

20/31

Aptidão partilhada

Aptidão partilhada: é definida uma função que leva em consideração

- A aptidão partilhada de $C_{A,i}$ é obtida dividindo a aptidão simples de $C_{A,i}$ pelo resultado da função de semelhança de $C_{A,i}$. a semelhança entre os indivíduos de A.
- Uma forma de definir esta função de semelhança pode ser o número de indivíduos de A (incluindo o próprio) que conseguem vencer todos (podendo vencer mais) os indivíduos da amostra de B que $C_{A,i}$ \blacktriangle

Ano lectivo 2023-24 Inteligência Computacional Luís A. Alexandre (UBI)

22/31

Exemplo

Exemplo: M=4

Aptidão de $C_{{\mathcal A},i}$	part.					
	part. comp. part.					
	part.					
	simpl.					
Amostra da pop. B	C _{B,3} C _{B,4}	0	0	0	1	
	$C_{B,3}$	1	0	0	1	
	$C_{B,1} \mid C_{B,2} \mid$	1	1	0	0	
	$C_{B,1}$	1	1	1	0	
	Pop. A	$C_{A,1}$	C _{A,2}	C _{A,3}	$C_{A,4}$	N _m

► Um 1 nesta tabela significa que um indivíduo de A consegue derrotar outro de B.

Exemplo

= 4 Exemplo: M

	art.	1/2				
Aptidão de $C_{A,i}$	comp. part.	1/3+1/2+1/2	1/3+1/2	1/3	1/2 + 1	1
Aptidãc	part.	3/1	2/2	1/3	2/1	-
Amostra da pop. B	simpl.	3	2	1	2	-
	$C_{B,4}$	0	0	0	П	1
	$C_{B,3}$	1	0	0	1	2
	$C_{B,2}$	1	1	0	0	2
An	$C_{B,1}$	1	1	1	0	3
	Рор. А	$C_{A,1}$	C _{A,2}	C _{A,3}	C _{A,4}	N_m

A aptidão competitiva partilhada beneficia aqueles indivíduos de ${\cal A}$ que conseguem derrotar indivíduos de ${\cal B}$ que poucos conseguem lack

Alexandre (UBI)

Inteligência Computaciona

Co-evolução

25/31

lectivo 2023-24

Aptidão cooperativa

- diferentes espécies estão a cooperar em vez de competir é diferente A medida de aptidão que se utiliza quando as populações de das que vimos até agora. \blacktriangle
- Usa-se informação das diferentes populações para construir a solução do problema em questão.
- As diferentes espécies trabalham em partes distintas da solução: apenas um ou poucos genes são usados de cada população.

Inteligência Computacional Luís A. Alexandre (UBI)

Ano lectivo 2023-24

27/31

Aptidão cooperativa: exemplo

- Minimização de 4 funções: comparação entre o uso de Algoritmos Genéticos e de Co-evolução com aptidão cooperativa.
 - Rastrigin: $f(\mathbf{x})=60+\sum_{j=1}^{20}x_j^2-3\cos(2\pi x_j)$. Tem muitos mínimos locais cujo tamanho vai aumentando com a distância ao mínimo global.
- Schwefel: $f(\mathbf{x})=4189.829+\sum_{i=1}^{10}x_i\sin(\sqrt{|\mathbf{x}_i|})$. Tem um segundo minímo global distante do primeiro para levar a que os algoritmos fiquem presos nele e não atinjam o mínimo global. \blacktriangle
 - Tem grande Griewangk: $f(\mathbf{x}) = 1 + \sum_{i=1}^{10} \frac{\mathbf{x}_i^2}{4000} - \prod_{i=1}^{10} \cos(\mathbf{x}_i/\sqrt{i})$. interdependência entre as variáveis devido ao produto.
- Ackley:
- $-\exp{\left(1/30\sum_{i=1}^{30}\cos(2\pi x_i)\right)}$. $-0.2\sqrt{1/30\sum_{i=1}^{30}x_i^2}$ $f(\mathbf{x}) = 20 + e - 20 \exp \left(\frac{e}{2} \right)$

Aparenta ser unimodal, mas tem muitos pequenos picos e vales.

Hall of fame Co-evolução

Hall of fame

- Nos AGs, usava-se o elitismo para permitir que os progenitores mais aptos passassem para a geração seguinte.
- Neste caso, para que um indivíduo permaneça na população por várias gerações tem de ter elevada aptidão em todas essas gerações.
- chamada 'Hall of fame' em que se guarda o melhor indivíduo de cada No caso da co-evolução, foi proposta uma variação ao elitismo geração, desde o início da evolução. \blacktriangle
 - A população oponente tem mais dificuldade em se adaptar a estes indivíduos. \blacktriangle

lectivo 2023-24 Alexandre (UBI)

Aptidão cooperativa

- Para obter a solução, o melhor indivíduo de cada população é usado na sua construção.
- Como saber qual o melhor indivíduo de cada população dado que não representam soluções do problema completas? \blacktriangle
- completo, mas fazer a evolução apenas em subconjuntos disjuntos do cromossoma O que se faz é usar para as diferentes populações um

28/31 Ano lectivo 2023-24 Inteligência Computacional Luís A. Alexandre (UBI)

Os valores são médias de 50 repetições. Foram usadas populações com 100 cromossomas.

exemplo

Aptidão cooperativa:

Leitura recomendada

- (1) Potter, Mitchell A. and De Jong, Kenneth A., A cooperative coevolutionary approach to function optimization, International Conference on Parallel Problem Solving from Nature, LNCS 866, 2005. ► Engelbrecht, cap. 12, cap. 15. ► (1) Potter, Mitchell A. and De