Лабораторная работа 3 "Wireshark: DNS"

Изучение дополнительных материалов.

Локальные DNS-сервера

DNS (Domain Name System, система доменных имён) - иерархическая, распределенная в сети система баз данных, предоставляющая пользователям сети Интернет дополнительный сервис по автоматическому преобразованию запросов, оформленных в удобном для человека текстовом формате (например, www.test.ru) в цифровой IP-адрес компьютера (например, 192.1.1.1), где находится искомый ресурс.

Локальный DNS-сервер - это сервер имен Вашей локальной сети или DNS-сервер Вашего интернетпровайдера.

Рисунок 1, Локальные DNS-сервера

DNS-кэширование

Кэширование DNS включает в себя хранение данных ближе к запрашивающему клиенту, так что разрешение DNS запроса и дополнительных запросов можно избежать, тем самым ускоряя время загрузки и снижения пропускную способность/потребление процессора. Данные DNS могут кэшироваться в различных расположениях, каждое из которых будет хранить записи DNS в течение определенного периода времени.

Рисунок 2, DNS-кэширование

Ресурсные записи DNS

Ресурсные записи DNS — это записи о соответствии имени и служебной информации в системе доменных имен, например, соответствие имени домена и IP-адреса. Редактирование ресурсных записей для доменного имени производится на стороне держателя NS-серверов (например, хостинг-провайдера, на NS-серверы которого делегировано доменное имя).

Рисунок 3, Ресурсные записи DNS

Поля ресурсных записей DNS

- Name / Hostname (Имя, хост, домен имеет несколько названий). Определяет домен, к которому относится (привязана) данная ресурсная запись.
- **Type** (Тип). Указывает на тип (назначение) данной ресурсной записи. Наиболее распространенные типы DNS-записей A, AAAA, MX, CNAME и TXT.
- Class (Класс). Здесь указывается тип рабочей сети. Теоретически, система может работать во всех ее типах. Но, TCP/IP сети самые распространенные. Поэтому, поле редко используется.
- **TTL** (Time To Live) время жизни (хранения) DNS-записи.
- RDATA (Resource Data) значение данного поля ресурсной записи зависит от ее конкретного типа.
- **Priority** (Приоритет) задает приоритет (очередность) обработки конкретной DNS-записи.
- **Protocol** (Протокол) указывает на протокол, используемый TCP, UDP, TLS.
- **Service Name** (Имя сервиса) его можно посмотреть в файле /etc/services. Например: pop3, telnet.
- Weight (Bec) задает вес хоста. Обработка запросов распределяется по весу хоста.
- Address (Адрес) IP-адрес, который автоматически конвертируется в in-addr.arpa формат.

Материалы:

- Paбoтa c DNS // HOSTLINE URL: https://hostline.ru/support/36264281-rabota-s-dns#:~:text=Локальный%20DNS-сервер%20-%20это%20сервер,сети%20или%20DNS-сервер%20Вашего%20интернет-провайдера (дата обращения: 17.03.2023).
- Кэширование DNS // RECONN URL: https://reconn.ru/kb/network/keshirovanie-dns#:~:text=Кэширование%20DNS%20включает%20в%20себя,в%20течение%20определенн ого%20периода%20времени (дата обращения: 17.03.2023).
- Типы DNS-записей // timeweb URL: https://timeweb.com/ru/docs/domeny/resursnye-zapisi-domena-dns-zapisi/tipy-dns-zapisej/ (дата обращения: 17.03.2023).
- Что такое DNS-записи и какие типы бывают // eternalhost URL: https://eternalhost.net/base/domeny/tipy-dns-zapisey (дата обращения: 17.03.2023).

Часть 1: nslookup

1. Выполните nslookup, чтобы получить IP-адрес веб-сервера petrsu.ru. Какой адрес вы получили?

В выводе утилиты мы можем видеть ір адрес 192.232.254.218, это не адрес сервера, а наш, системный DNS сервер. В следующей строке выводится тот же ір адрес и порт, это адрес DNS сервера вместе с портом. По умолчанию порт - 53. И только после этого находится информация про запрашиваемый сайт. Наш ір адрес 194.85.173.228, это означает, что все пакеты, которые вы будете отправлять на petrsu.ru будут приходить на этот адрес.

nikita@nikitagordeev10:~\$ nslookup petrsu.ru
Server: 192.168.117.108
Address: 192.168.117.108#53
Non-authoritative answer:
Name: petrsu.ru
Address: 194.85.173.228

Иллюстрация 1, IP-адрес веб-сервера petrsu.ru

2. Выполните nslookup, чтобы определить авторитетные DNS-сервера для petrsu.ru. Какие у них адреса?

```
nikita@nikitagordeev10:~$ nslookup -type=NS petrsu.ru
Server: 192.168.117.108
Address: 192.168.117.108#53

Non-authoritative answer:
petrsu.ru nameserver = ns.petrsu.ru.
petrsu.ru nameserver = ns.karelia.ru.

Authoritative answers can be found from:
ns.petrsu.ru internet address = 193.232.254.218
```

Иллюстрация 2, авторитетные DNS-сервера

3. Выполните nslookup таким образом, чтобы задействовать конкретный DNS-сервер (не сервер по умолчанию) для получения IP-адрес веб-сервера petrsu.ru. В качестве адреса DNS-сервера можно использовать результат из п.2.

```
nikita@nikitagordeev10:~$ nslookup petrsu.ru ns.petrsu.ru
Server: ns.petrsu.ru
Address: 193.232.254.218#53

Name: petrsu.ru
Address: 194.85.173.228

nikita@nikitagordeev10:~$ nslookup petrsu.ru ns.karelia.ru
Server: ns.karelia.ru
Address: 194.85.172.133#53

Name: petrsu.ru
Address: 194.85.173.228
```

Иллюстрация 3, запрос конкретному DNS-серверу

Часть 2: Ipconfig

4. Выполните приведенные выше вариации команды ipconfig, изучите их вывод.

```
| College | Coll
```

Иллюстрация 4, ipconfig /all

Иллюстрация 5, ipconfig /displaydns

```
C:\Users\nikit>ipconfig /flushdns
Настройка протокола IP для Windows
Кэш сопоставителя DNS успешно очищен.
```

Иллюстрация 6, ipconfig /flushdns

Часть 3: DNS-трассировка с использованием Wiresharl

```
Адаптер беспроводной локальной сети Беспроводная сеть:

DNS-суффикс подключения . . . :

Локальный IPv6-адрес канала . . : fe80::696d:aab9:47ca:2ff3%19

IPv4-адрес . . . . . : 192.168.117.87

Маска подсети . . . : 255.255.255.0

Основной шлюз . . . : 192.168.117.108
```

Иллюстрация 7, ipconfig

Часть 3.1: www.ietf.org

5. Найдите DNS-запрос и ответ на него. С использованием UDP или TCP они отправлены?

Иллюстрация 8, захват пакетов

```
UDP payload (239 bytes)
> Domain Name System (response)
```

Иллюстрация 9, тип запроса

- DNS использует UDP port 53, но TCP port 53 также зарезервирован под использование для DNS.
- Большинство DNS-запросов будет обрабатываться с использованием протокола UDP, исключение составляют трансфер зоны (Query type AXFR) и ответы сервера, превышающие 512 байт на одно сообщение.
- Чтобы не использовались для DDoS.

Maтериалы: DNS использует UDP или TCP? Что говорит RFC // SecurityLab.ru URL: https://www.securitylab.ru/news/536997.php (дата обращения: 17.03.2023).

6. Какой порт назначения у запроса DNS? Каков исходящий порт у DNS-ответа?

destination port – порт назначения; source port – исходящий порт

```
✓ User Datagram Protocol, Src Port: 62851, Dst Port: 53
Source Port: 62851
Destination Port: 53
Length: 38
```

Иллюстрация 10, \rightarrow www.ietf.org

```
✓ User Datagram Protocol, Src Port: 53, Dst Port: 62851
Source Port: 53
Destination Port: 62851
Length: 115
```

Иллюстрация 11, ← www.ietf.org

7. На какой IP-адрес отправлен DNS-запрос? Используйте ipconfig для определения IPадреса вашего локального DNS-сервера. Одинаковы ли эти два адреса?

```
Адаптер беспроводной локальной сети Беспроводная сеть:

DNS-суффикс подключения . . . :

Локальный IPv6-адрес канала . . : fe80::696d:aab9:47ca:2ff3%19

IPv4-адрес . . . : 192.168.117.87

Маска подсети . . . : 255.255.0

Основной шлюз . . . : 192.168.117.188
```

Иллюстрация 12, ipconfig

No.	Time	Source	Destination	Protocol	Length Info
110	14 2.170109	192.168.117.87	192.168.117.108	DNS	72 Standard query 0x9b9d A www.ietf.org
4	15 2.174704	192.168.117.108	192.168.117.87	DNS	149 Standard query response 0x9b9d A www.ietf.org CNAME www.ietf.org.cdn.cloudflare.net A 104.16.45.99 A 104.16.44.99

Иллюстрация 13, DNS-запрос

8. Проанализируйте сообщение-запрос DNS. Запись какого типа запрашивается? Содержатся ли в запросе какие-нибудь «ответы»?

```
V Queries
> www.ietf.org: type A, class IN
[Response In: 30]
```

Иллюстрация 14, тип запроса

Типы dns записей, используемые чаще всего:

- A (IPv4 Address Record адресная запись) связывает доменное имя с IPv4-адресом хоста
- AAAA (IPv6 Address Record) связывает доменное имя с IPv6-адресом хоста (аналогично Азаписи)
- CNAME (Canonical Name Record каноническая запись имени) используется для перенаправления на другое доменное имя
- MX (Mail Exchange почтовый обменник) ссылается на почтовый сервер, обслуживающий домен
- NS (Name Server сервер имен) ссылается на DNS-сервер, ответственный за домен
- **ТХТ** текстовое описание домена. Зачастую требуется для выполнения специфических задач (например, подтверждения права собственности на домен при привязке его к почтовому сервису)
- PTR (Point to Reverse запись указателя) связывает ір-адрес машины с доменом, используется преимущественно для проверки сторонними почтовыми сервисами отправляемых через эту машину электронных писем на отношение к домену, указанному в параметрах почтового сервера. При несоответствии этих параметров письмо проверяется более тщательно по другим критериям.

Материалы:

• Основы работы со службой DNS // 1cloud URL: https://1cloud.ru/help/dns/dns_basics (дата обращения: 17.03.2023).

Проанализируйте ответное сообщение DNS. Сколько в нем «ответов»? Что содержится в каждом?

```
V Domain Name System (response)
Transaction ID: 0x9b9d

> Flags: 0x8180 Standard query response, No error
Questions: 1
Answer RRs: 3
Authority RRs: 0
Additional RRs: 0

V Queries

> woww.ietf.org; type A, class IN

✓ Answers

✓ www.ietf.org; type CMAME, class IN, cname www.ietf.org.cdn.cloudflare.net
Name: woww.ietf.org

Type: CNAME (Canonical NAME for an alias) (5)
Class: IN (0x0001)

Time to live: 1407 (23 minutes, 27 seconds)
Data length: 33
CNAME: www.ietf.org.cdn.cloudflare.net

✓ www.ietf.org.cdn.cloudflare.net: type A, class IN, addr 104.16.45.99
Name: www.ietf.org.cdn.cloudflare.net

Type: A (Host Address) (1)
Class: IN (0x0001)

Time to live: 208 (3 minutes, 28 seconds)
Data length: 4
Address: 104.16.45.99

✓ www.ietf.org.cdn.cloudflare.net: type A, class IN, addr 104.16.44.99
Name: www.ietf.org.cdn.cloudflare.net

Type: A (Host Address) (1)
Class: IN (0x0001)

Time to live: 208 (3 minutes, 28 seconds)
Data length: 4
Address: 104.16.45.99

[Request In: 14]
[Time: 0.004595000 seconds]
```

Иллюстрация 15, ответное сообщение DNS с ресурсными записями DNS

10. Посмотрите на последующий ТСР-пакет с флагом SYN, отправленный вашим компьютером. Соответствует ли IP-адрес назначения пакета с SYN одному из адресов, приведенных в ответном сообщении DNS?

Да, содержит

33 6.391251 192.168.117.87 104.16.44.99 TCP 66 61127 → 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM

Иллюстрация 16, TCP-пакет с флагом SYN

11. Веб-страница содержит изображения. Выполняет ли хост новые запросы DNS перед загрузкой этих изображений?

В вашем случае с несколькими изображениями на одной странице Chrome кэширует запись dns и использует ее для всех. Похоже, что chrome будет кэшироваться в течение ~ 30 секунд, а по истечении этого срока он попадет в ваш локальный системный распознаватель, который может кэшировать его дольше в зависимости от вашей конфигурации. Только если это не удастся, он выйдет по сети и сделает дальнейшие DNS-запросы.

12. Сколько пар DNS запрос-ответ появилось в списке?

No.	Time	Source	Destination	Protocol	Length Info
	1 0.000000	192.168.117.87	213.180.193.234	TCP	55 60747 → 443 [ACK] Seq=1 Ack=1 Win=258 Len=1 [TCP segment of a reassembled PDU]
	2 0.100256	213.180.193.234	192.168.117.87	TCP	66 443 → 60747 [ACK] Seq=1 Ack=2 Win=2278 Len=0 SLE=1 SRE=2
	3 0.896425	192.168.117.87	149.154.167.41	SSL	399 Continuation Data
	4 0.979065	149.154.167.41	192.168.117.87	SSL	1294 Continuation Data
	5 0.981876	192.168.117.87	149.154.167.41	SSL	383 Continuation Data
	6 0.985738	149.154.167.41	192.168.117.87	SSL	1294 Continuation Data
	7 0.985820	192.168.117.87	149.154.167.41	TCP	54 59960 + 443 [ACK] Seq=675 Ack=2481 Win=256 Len=0
	8 0.985921	149.154.167.41	192.168.117.87	SSL	548 Continuation Data
	9 0.986009	192.168.117.87	149.154.167.41	TCP	54 59960 → 443 [ACK] Seq=675 Ack=2975 Win=254 Len=0
	10 1.087862	213.180.204.179	192.168.117.87	TLSV1	136 Application Data
	11 1.100129	149.154.167.41	192.168.117.87	TCP	54 443 → 59960 [ACK] Seq=2975 Ack=675 Win=21177 Len=0
	12 1.139475	192.168.117.87	213.180.204.179	TCP	54 60125 → 443 [ACK] Seq=1 Ack=83 Win=260 Len=0
	13 1.469595	192.168.117.87	91.105.192.100	SSL	319 Continuation Data
	14 1.563074	91.105.192.100	192.168.117.87	TCP	54 443 → 61270 [ACK] Seq=1 Ack=266 Win=2115 Len=0
	15 2.912809	192.168.117.87	192.168.117.108	DNS	88 Standard query 0x0001 PTR 108.117.168.192.in-addr.arpa
	16 2.916752	192.168.117.108	192.168.117.87	DNS	88 Standard query response 0x0001 No such name PTR 108.117.168.192.in-addr.arpa
	17 2.918862	192.168.117.87	192.168.117.108	DNS	69 Standard query 0x0002 A petrsu.ru
	18 3.036211	192.168.117.108	192.168.117.87	DNS	85 Standard query response Θχθθθ2 A petrsu.ru A 194.85.173.228
	19 3.043423	192.168.117.87	192.168.117.108	DNS	69 Standard query 0x0003 AAAA petrsu.ru
	20 3.047547	192.168.117.108	192.168.117.87	DNS	69 Standard query response 0x0003 AAAA petrsu.ru
	21 4.834266	192.168.117.87	51.140.202.63	TLSv1	112 Application Data

Иллюстрация 17, 3 пары DNS запрос-ответ

13. Рассмотрите пару с type A. Каков порт назначения в запросе DNS? Какой порт источника в DNSответе?

destination port – порт назначения; source port – исходящий порт

```
Vuser Datagram Protocol, Src Port: 63048, Dst Port: 53
Source Port: 63048
Destination Port: 53
```

Иллюстрация 18, запрос DNS

```
✓ User Datagram Protocol, Src Port: 53, Dst Port: 63048
Source Port: 53
Destination Port: 63048
```

Иллюстрация 19, omвет DNS

14. На какой IP-адрес отправлен DNS-запрос? Совпадает ли он с адресом локального DNS-сервера, установленного по умолчанию?

```
Адаптер беспроводной локальной сети Беспроводная сеть:

DNS-суффикс подключения . . :
Локальный IPv6-адрес канала . . : fe80::696d:aab9:47ca:2ff3%19
IPv4-aдрес . . . : 192.168.117.87
Маска подсети . . . : 255.255.0
Основной шлюз . . . : 192.168.117.108
```

Иллюстрация 20, ipconfig

```
C:\Users\nikit>nslookup petrsu.ru
Server: UnKnown
Address: 192.168.117.108
Non-authoritative answer:
Name: petrsu.ru
Address: 194.85.173.228
```

Иллюстрация 21, nslookup

15 2.912809	192.168.117.87	192.168.117.108	DNS	88 Standard query 0x0001 PTR 108.117.168.192.in-addr.arpa
16 2.916752	192.168.117.108	192.168.117.87	DNS	88 Standard query response 0x0001 No such name PTR 108.117.168.192.in-addr.arpa
17 2.918862	192.168.117.87	192.168.117.108	DNS	69 Standard query 0x0002 A petrsu.ru
18 3.036211	192.168.117.108	192.168.117.87	DNS	85 Standard query response 0x0002 A petrsu.ru A 194.85.173.228
19 3.043423	192.168.117.87	192.168.117.108	DNS	69 Standard query 0x0003 AAAA petrsu.ru
20 3.047547	192.168.117.108	192.168.117.87	DNS	69 Standard query response 0x0003 AAAA petrsu.ru

Иллюстрация 22, Wireshark

15. Проанализируйте сообщение-запрос DNS. Запись какого типа запрашивается? Содержатся ли в запросе какие-нибудь «ответы»?

```
Answer RRs: 0
Authority RRs: 0
Additional RRs: 0
Queries
V197.206.168.192.in-addr.arpa: type PTR, class IN
Name: 197.206.168.192.in-addr.arpa
[Name Length: 28]
[Label Count: 6]
Type: PTR (domain name PoinTeR) (12)
Class: IN (0x0001)
[Response In: 22]

Text Item (text), 34 byte(s)
```

Иллюстрация 23, запрос PTR

```
Questions: 1
Answer RRs: 0
Authority RRs: 0
Additional RRs: 0

V Queries

v petrsu.ru: type A, class IN

Name: petrsu.ru

[Name Length: 9]

[Label Count: 2]

Type: A (Host Address) (1)

Class: IN (0x0001)

[Response In: 24]
```

Иллюстрация 24, запрос А

```
Questions: 1
Answer RRs: 0
Authority RRs: 0
Additional RRs: 0

V Queries

V petrsu.ru: type AAAA, class IN

Name: petrsu.ru

[Name Length: 9]

[Label Count: 2]

Type: AAAA (IPv6 Address) (28)

Class: IN (0x0001)

[Response In: 26]
```

Иллюстрация 25, запрос АААА

A (IPv4 Address Record - адресная запись) - связывает доменное имя с IPv4-адресом хоста

AAAA (IPv6 Address Record) - связывает доменное имя с IPv6-адресом хоста (аналогично А-записи)

PTR (Point to Reverse - запись указателя) - связывает <mark>ip-адрес</mark> машины с доменом, используется преимущественно для проверки сторонними почтовыми сервисами отправляемых через эту машину электронных писем на отношение к домену, указанному в параметрах почтового сервера. При несоответствии этих параметров письмо проверяется более тщательно по другим критериям.

16. Проанализируйте ответное сообщение DNS. Сколько в нем «ответов»? Что содержится в каждом?

```
    Domain Name System (response)
    Transaction ID: 0x0001
    Flags: 0x8183 Standard query response, No such name
    Questions: 1
    Answer RRs: 0
    Authority RRs: 0
    Additional RRs: 0
    Queries
    ✓ 108.117.168.192.in-addr.arpa: type PTR, class IN
        Name: 108.117.168.192.in-addr.arpa
        [Name Length: 28]
        [Label Count: 6]
        Type: PTR (domain name PoinTeR) (12)
        class: IN (0x0001)
        [Request In: 15]
        [Time: 0.003943000 seconds]
```

Иллюстрация 26, запрос PTR

Иллюстрация 27, запрос А

```
> Domain Name System (response)
    Transaction ID: 0x0003
> Flags: 0x8180 Standard query response, No error
    Questions: 1
    Answer RRs: 0
    Authority RRs: 0
    Additional RRs: 0
> Queries
    > petrsu.ru: type AAAA, class IN
        Name: petrsu.ru
        [Name Length: 9]
        [Label Count: 2]
        Type: AAAA (IPv6 Address) (28)
        Class: IN (0x0001)
        [Request In: 19]
        [Time: 0.004124000 seconds]
```

Иллюстрация 28, запрос АААА

Часть 3.3: nslookup –type=NS petrsu.ru

17. На какой IP-адрес отправлен DNS-запрос? Совпадает ли он с адресом локального DNS-сервера, установленного по умолчанию?

```
Адаптер беспроводной локальной сети Беспроводная сеть:

DNS-суффикс подключения . . . :

Локальный IPv6-адрес канала . . : fe80::696d:aab9:47ca:2ff3%19

IPv4-адрес . . . . : 192.168.117.87

Маска подсети . . . : 255.255.0

Основной шлюз . . . : 192.168.117.108
```

Иллюстрация 29, ipconfig

```
C:\Users\nikit>nslookup -type=NS petrsu.ru
Server: UnKnown
Address: 192.168.117.108

Non-authoritative answer:
petrsu.ru nameserver = ns.petrsu.ru
petrsu.ru nameserver = ns.karelia.ru

ns.petrsu.ru internet address = 193.232.254.218
ns.karelia.ru internet address = 194.85.172.133
```

Иллюстрация 30, nslookup

```
7 2.765564 192.168.117.87 192.168.117.108 0NS 88 Standard query response 0x0001 No such name PTR 108.117.168.192.in-addr.arpa 82.809704 192.168.117.18 192.168.117.108 0NS 88 Standard query response 0x0001 No such name PTR 108.117.168.192.in-addr.arpa 92.804346 192.168.117.87 192.168.117.108 0NS 69 Standard query response 0x0001 No such name PTR 108.117.168.192.in-addr.arpa 92.804346 192.168.117.87 192.168.117.108 0NS 69 Standard query response 0x0001 No such name PTR 108.117.168.192.in-addr.arpa 92.804346 192.168.117.108 192.168.117.108 0NS 69 Standard query response 0x0002 NS petrsu.ru NS ns.karelia.ru NS ns.petrsu.ru A 193.232.254.218 A 194.85.172.133 13.747656 192.168.117.87 213.188.193.234 TCP 55 61544 + A48 [ACK] Seq=1 Ack=1 kin=258 Len=1 [TCP segment of a reassembled PDU]
```

Иллюстрация 31, Wireshark

18. Проанализируйте сообщение-запрос DNS. Запись какого типа запрашивается? Содержатся ли в запросе какие-нибудь «ответы»?

```
V Domain Name System (query)
Transaction ID: 0x0001
} Flags: 0x0100 Standard query
Questions: 1
Answer RRS: 0
Authority RRS: 0
Additional RRS: 0
V Queries

V 108.117.168.192.in-addr.arpa: type PTR, class IN
Name: 108.117.168.192.in-addr.arpa
[Name Length: 28]
[Label Count: 6]
Type: PTR (domain name PoinTeR) (12)
Class: IN (0x0001)
[Response In: 8]
```

Иллюстрация 32, запрос PTR

```
V Domain Name System (query)
Transaction ID: 0x0002

> Flags: 0x0100 Standard query
Questions: 1
Answer RRs: 0
Authority RRs: 0
Additional RRs: 0

✓ Queries

✓ petrsu.ru: type NS, class IN
Name: petrsu.ru
[Name Length: 9]
[Label Count: 2]

Type: NS (authoritative Name Server) (2)
Class: IN (0x0001)
[Response In: 10]
```

Иллюстрация 33, запрос NS

19. Проанализируйте ответное сообщение DNS. Имена каких DNS-серверов сервера ПетрГУ в нем содержатся? А есть ли их адреса в этом ответе?

```
Domain Name System (response)
Transaction ID: 0x0001
> Flags: 0x8183 Standard query response, No such name Questions: 1
Answer RRs: 0
Authority RRs: 0
Additional RRs: 0
> Queries
> 108.117.168.192.in-addr.arpa: type PTR, class IN
Name: 108.117.168.192.in-addr.arpa
[Name Length: 28]
[Label Count: 6]
Type: PTR (domain name PoinTeR) (12)
Class: IN (0x0001)
[Request_In: 7]
[Time: 0.034140000 seconds]
```

Иллюстрация 34, ответ PTR

```
Flags: 0x8180 Standard query response, No error Questions: 1
Answer RRs: 2
Authority RRs: 0
Additional RRs: 2

> Queries
> petrsu.ru: type NS, class IN
> nanswers
> petrsu.ru: type NS, class IN, ns ns.karelia.ru
Name: petrsu.ru:
Type: NS (authoritative Name Server) (2)
Class: IN (0x8001)
Time to live: 3480 (58 minutes)
Data length: 15
Name Server: ns.karelia.ru
> petrsu.ru: type NS, class IN, ns ns.petrsu.ru
Type: NS (authoritative Name Server) (2)
Class: IN (0x8001)
Time to live: 3480 (58 minutes)
Data length: 5
Name Server: ns.petrsu.ru
Type: NS (authoritative Name Server) (2)
Class: IN (0x8001)
Time to live: 3480 (58 minutes)
Data length: 5
Name Server: ns.petrsu.ru

Additional records
> ns.petrsu.ru: type A, class IN, addr 193.232.254.218
Name: ns.petrsu.ru
Type: A (Host Address) (1)
Class: IN (0x8001)
Time to live: 19503 (5 hours, 25 minutes, 3 seconds)
Data length: 4
Address: 193.232.254.218
> ns.karelia.ru: type A, class IN, addr 194.85.172.133
Name: ns.karella.ru
Type: A (Host Address) (1)
Class: IN (0x8001)
Time to live: 5018 (1 hour, 23 minutes, 38 seconds)
Data length: 4
Address: 194.85.172.133
[Request In: 9]
Time: 0.667868000 seconds]
```

Иллюстрация 35, ответ NS

Часть 3.4: nslookup petrsu.ru 193.232.254.218

20. На какой IP-адрес отправлен DNS-запрос? Совпадает ли он с адресом локального DNS-сервера, установленного по умолчанию? Если нет, то какому хосту он принадлежит?

```
Адаптер беспроводной локальной сети Беспроводная сеть:

DNS-суффикс подключения . . :
Локальный IPv6-адрес канала . . : fe80::696d:aab9:47ca:2ff3%19
IPv4-адрес . . . : 192.168.117.87
Маска подсети . . . : 255.255.0
Основной шлюз . . . : 192.168.117.108
```

Иллюстрация 36, ipconfig

```
C:\Users\nikit>nslookup -type=NS petrsu.ru
Server: UnKnown
Address: 192.168.117.108

Non-authoritative answer:
petrsu.ru nameserver = ns.petrsu.ru
petrsu.ru nameserver = ns.karelia.ru

ns.petrsu.ru internet address = 193.232.254.218
ns.karelia.ru internet address = 194.85.172.133
```

Иллюстрация 37, nslookup

Иллюстрация 38, Wireshark

21. Проанализируйте сообщение-запрос DNS. Запись какого типа запрашивается? Содержатся ли в запросе какие-нибудь «ответы»?

```
▼ Domain Name System (query)
Transaction ID: 0x0001
> Flags: 0x0100 Standard query
Questions: 1
Answer RRs: 0
Authority RRs: 0
Additional RRs: 0
▼ Queries
> 218.254.232.193.in-addr.arpa: type PTR, class IN
[Response In: 2]
```

Иллюстрация 39, запрос PTR

```
▼ Domain Name System (query)
Transaction ID: 0x0002
Flags: 0x0100 Standard query
Questions: 1
Answer RRs: 0
Authority RRs: 0
Additional RRs: 0
▼ Queries
■ petrsu.ru: type A, class IN
[Response In: 4]
```

Иллюстрация 40, запрос А

```
V Domain Name System (query)
Transaction ID: 0x0003
> Flags: 0x0100 Standard query
Questions: 1
Answer RRs: 0
Authority RRs: 0
Additional RRs: 0
> Queries
> petrsu.ru: type AAAA, class IN
[Response In: 6]
```

Иллюстрация 41, запрос АААА

22. Проанализируйте ответное сообщение DNS. Сколько в нем «ответов»? Что содержится в каждом?

Иллюстрация 42, omвет PTR

```
Questions: 1
Answer RRs: 1
Authority RRs: 2
Additional RRs: 1
Queries
> petrsu.ru: type A, class IN

Answers

    petrsu.ru: type A, class IN, addr 194.85.173.228
Name: petrsu.ru
    Type: A (Host Address) (1)
    class: IN (0x0001)
    Time to live: 3600 (1 hour)
    Data length: 4
    Address: 194.85.173.228

Authoritative nameservers

    vetrsu.ru: type NS, class IN, ns ns.karelia.ru
    Name: petrsu.ru
    Type: NS (authoritative Name Server) (2)
    class: IN (0x0001)
    Time to live: 3600 (1 hour)
    Data length: 13
    Name Server: ns.karelia.ru
    vetrsu.ru: type NS, class IN, ns ns.petrsu.ru
    Name: petrsu.ru
    Type: NS (authoritative Name Server) (2)
    class: IN (0x0001)
    Time to live: 3600 (1 hour)
    Data length: 15
    Name: petrsu.ru
    Type: NS (authoritative Name Server) (2)
    class: IN (0x0001)
    Time to live: 3600 (1 hour)
    Data length: 5
    Name Server: ns.petrsu.ru
    Additional records
    v ns.karelia.ru: type A, class IN, addr 194.85.172.133
    Name: ns.karelia.ru
    Type: A (Host Address) (1)
    class: IN (0x0001)
    Time to live: 18080 (3 hours)
    Data length: 4
    Address: 194.85.172.133
    [Request In: 3]
    [Time: 0.075432000 seconds]
```

Иллюстрация 43, ответ А

```
➤ Domain Name System (response)

Transaction ID: 0x00003

> Flags: 0x8500 Standard query response, No error Questions: 1

Answer RRS: 0

Authority RRS: 1

Additional RRS: 0

> Queries

> petrsu.ru: type AAAA, class IN

➤ Authoritative nameservers

➤ petrsu.ru: type SOA, class IN, mname ns.petrsu.ru

Name: petrsu.ru

Type: SOA (Start Of a zone of Authority) (6)

Class: IN (0x0001)

Time to live: 900 (15 minutes)

Data length: 31

Primary name server: ns.petrsu.ru

Responsible authority's malibox: noc.petrsu.ru

Serial Number: 2023040701

Refresh Interval: 10800 (30 minutes)

Expire limit: 3600000 (41 days, 16 hours)

Minimum TTL: 900 (15 minutes)

[Request In: 5]

[Time: 0.069173000 seconds]
```

Иллюстрация 44, ответ АААА