## Work sheet N 5 Sequences and series of functions



**Exercise 1.** Let  $(f_n)$  be the sequence of functions defined on  $\mathbb{R}$  by  $f_n(x) = \frac{nx}{1 + n^2x^2}$  for all  $x \in \mathbb{R}$  and  $n \in \mathbb{N}$ .

- 1. Study the pointwise convergence.
- 2. Show that the sequence converges uniformly on  $[a, \infty)$  if a > 0.
- 3. Show that the sequence does not converge uniformly on  $[0, \infty)$ .

**Exercise 2.** Consider the sequence of functions  $(f_n)_{n\in\mathbb{N}}$  where  $f_n:[-1;1]\to\mathbb{R}$  is defined by:

$$f_n(x) = \sin(nx) \cdot e^{-n \cdot x^2} + \sqrt{1 - x^2}; \quad n \in \mathbb{N}$$

- 1. Show that the sequence of functions  $(f_n)$  converges on [-1;1] to a function f, which we will determine.
- 2. Show that the sequence  $(f_n)$  converges uniformly to f on any  $[\alpha; 1]$ , where  $0 < \alpha < 1$ .
- 3. Show that the sequence  $(f_n)$  does not converge uniformly to f on [0;1].

**Exercise 3.** Study the pointwise and uniform convergence of the sequence of functions  $(f_n)_{n\geq 1}$  in each of the following cases (provide the domains where there is uniform convergence):

1) 
$$f_n(x) = \frac{ne^{-x} + x^2}{n+x}$$
 on  $[0; 1]$ . 2)  $f_n(x) = \frac{\ln(1+nx)}{1+nx}$  on  $[0; +1[$ .

**Exercise 4.** Study the pointwise, uniform, and normal convergence of the series of functions  $\sum f_n(x)$  in the following cases:

1) 
$$f_n(x) = \frac{x}{n(1+nx^2)}$$
 on  $\mathbb{R}^+$  for  $n \ge 1$ . 2)  $f_n(x) = \frac{e^{-nx}}{1+n^2}$  for  $n \ge 0$ 

**Exercise 5.** Consider the series of functions  $\sum_{n=1}^{\infty} \frac{1}{n^{(1+e^x)}}$ .

- 1. Find the domain D of convergence of the series.
- 2. Let  $F(x) = \sum_{n=1}^{\infty} \frac{1}{n^{(1+e^x)}}$  for  $x \in D$ . Study the continuity and then the differentiability of F on D.