MA 214: Numerical Analysis Notes

Aryaman Maithani

February 20, 2020

DISCLAIMER

This is just a collection of formulae/algorithms compiled together.

In the case of algorithms, I explain the procedure concisely. However, do not take this as a substitute for lecture slides as I don't go into the theory at all.

Also, I've modified some things compared to the lecture slides wherever I felt it was an error. So, be warned.

1 Interpolation

1. Lagrange Polynomials

Let x_0, x_1, \ldots, x_n be n+1 distinct points in [a, b]. Let $f : [a, b] \to \mathbb{R}$ be a function whose value is known at those aforementioned points.

We want to construct a polynomial p(x) of degree $\leq n$ such that $p(x_i) = f(x_i)$ for all $i \in \{0, ..., n\}$. Towards this end, we define the polynomials $I_k(x)$ for $k \in \{0, ..., n\}$ in the following manner:

$$I_k(x) := \prod_{i=0, i \neq k}^n \frac{x - x_i}{x_k - x_i}.$$

(Intuitive understanding: I_k is a degree n polynomial such that $I_k(x_j) = 0$ if $k \neq j$ and $I_k(x_k) = 1$.) Now, define p(x) as follows:

$$p(x) := \sum_{i=0}^{n} f(x_i) I_i(x)$$

2. Newton's form

Let x_0, x_1, \ldots, x_n be n+1 distinct points in [a, b]. Let $f : [a, b] \to \mathbb{R}$ be a function whose value is known at those aforementioned points.

We want to construct a polynomial $P_n(x)$ of degree $\leq n$ such that $p(x_i) = f(x_i)$ for all $i \in \{0, \dots, n\}$.

We define the divided differences (recursively) as follows:

$$f[x_0] := f(x_0)$$

$$f[x_0, x_1, \dots, x_k] := \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}$$
 for all $1 < k \le n$

With this in place, the desired polynomial $P_n(x)$ is (not so) simply:

$$P_n(x) := f[x_0] + f[x_0, x_1](x - x_0)$$

$$+ f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

$$+ \dots$$

$$\vdots$$

$$+ f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

Remarks. Note that $x - x_n$ does not appear in the last term.

Note that given $P_n(x)$, it is simple to construct $P_{n+1}(x)$.

3. Osculatory Interpolation

This is essentially the same as the previous case.

I'll state the problem in the form I think is the simplest. (Any other form can be reduced to this.) Suppose we are given k+1 distinct points x_0, \ldots, x_k in [a,b] and a function $f:[a,b] \to \mathbb{R}$ which is sufficiently differentiable.

Suppose we are given the following values:

$$f^{(0)}(x_0), f^{(1)}(x_0), \dots, f^{(m_1-1)}(x_0)$$

$$f^{(0)}(x_1), f^{(1)}(x_1), \dots, f^{(m_2-1)}(x_1)$$

$$\vdots$$

$$f^{(0)}(x_k), f^{(1)}(x_k), \dots, f^{(m_k-1)}(x_k)$$

(Notation: $f^{(0)}(x) = f(x)$ and $f^{(n)}(x)$ is the n^{th} derivative.)

Thus, we are given $m_1 + m_2 + \cdots + m_k =: n + 1$ data. As usual, we now want to compute a polynomial $P_n(x)$ that agrees with f at all the data. (That is, all the given derivatives must also be same.) As it goes without saying, $P_n(x)$ must have degree $\leq n$.

To do this, we list the above points as follows:

$$\underbrace{x_0, x_0, \dots x_0}_{m_1}, \underbrace{x_1, x_1, \dots, x_1}_{m_2}, \dots, \underbrace{x_k, x_k, \dots, x_k}_{m_k}.$$

Now, we just apply the above (Newton's) formula with the following modification in the definition of the divided difference:

$$f[\underbrace{x_i, x_i, \dots, x_i}_{p+1 \text{ times}}] := \frac{f^{(p)}(x_i)}{p!}.$$

4. Richardson Extrapolation

Suppose that for sufficiently small $h \neq 0$, we have the formula:

$$M = N_1(h) + k_1h + k_2h^2 + k_3h^3 + \cdots$$

for some constants k_1, k_2, k_3, \ldots

Define the following:

$$N_j(h) := N_{j-1}(h/2) + \frac{N_{j-1}(h/2) - N_{j-1}(h)}{2^{j-1} - 1}$$
 for $j \ge 2$.

Choose some h sufficiently small (whatever that means). Then, $N_j(h)$ keeps becoming a better approximation of M as j increases.

We create a table of h and $N_i(h)$ as follows:

 $N_4(h)$ will be a good approximation, then.

(Look at slide 15 of Lecture 7 for an example.)

Special case

Sometimes, we may have the following scenario:

$$M = N_1(h) + k_2h^2 + k_4h^4 + \cdots$$

In this case, we define:

$$N_j(h) := N_{j-1}(h/2) + \frac{N_{j-1}(h/2) - N_{j-1}(h)}{4^{j-1} - 1} \quad \text{ for } j \ge 2.$$

Then, we do the remaining stuff as before.

2 Numerical Integration

$$I = \int_{a}^{b} f(x) \mathrm{d}x$$

1. Rectangle Rule

$$I \approx (b-a)f(a)$$

$$E^R = f'(\eta)\frac{(b-a)^2}{2}, \text{ for some } \eta \in [a,b]$$

2. Midpoint Rule

$$I\approx (b-a)f\left(\frac{a+b}{2}\right)$$

$$E^M=\frac{f''(\eta)}{24}(b-a)^3, \text{ for some } \eta\in[a,b]$$

3. Trapezoidal Rule

$$I \approx \frac{1}{2}(b-a)[f(a)+f(b)]$$

$$E^T = -f''(\eta)\frac{(b-a)^3}{12}, \text{ for some } \eta \in [a,b]$$

4. Corrected Trapezoidal

$$I \approx \frac{1}{2}(b-a)[f(a)+f(b)] + \frac{(b-a)^2}{12}(f'(a)-f'(b))$$

$$E^{CT} = f^{(4)}(\eta)\frac{(b-a)^5}{720}, \text{ for some } \eta \in [a,b]$$

5. Composite Trapezoidal

$$I \approx \frac{h}{2} \left[f(x_0) + 2 \sum_{i=1}^{N-1} f(x_i) + f(x_N) \right]$$
$$E_C^T = -f''(\xi) \frac{h^2(b-a)}{12}, \text{ for some } \xi \in [a,b]$$

Here, Nh = b - a and $x_i = a + ih$.

6. Simpson's Rule

$$\begin{split} I &\approx \frac{b-a}{6} \left\{ f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right\} \\ E^S &= -\frac{1}{90} f^{(4)}(\eta) \left(\frac{b-a}{2}\right)^5, \text{ for some } \eta \in [a,b] \end{split}$$

7. Composite Simpson's

$$I \approx \frac{h}{6} [f(x_0) + 2 \sum_{i=1}^{N-1} f(x_i) + 4 \sum_{i=1}^{N} f\left(x_{i-1} + \frac{h}{2}\right) + f(x_N)]$$
$$E_C^S = -f^{(4)}(\xi) \frac{(h/2)^4 (b-a)}{180}, \text{ for some } \xi \in [a,b]$$

Here, Nh = b - a and $x_i = a + \overline{ih}$.

8. Gaussian Quadrature

Let $Q_{n+1}(x)$ denote the $(n+1)^{\text{th}}$ Legendre polynomial.

Let r_0, \ldots, r_{n+1} be its roots. (These will be distinct, symmetric about the origin and will lie in the interval [-1,1].

For each $i \in \{0, \ldots, n\}$, we define c_i as follows:

$$c_i := \int_{-1}^1 \left(\prod_{k=0, k \neq i}^n \frac{x - x_k}{x_i - x_k} \right) \mathrm{d}x.$$

Then, we have

$$\int_{-1}^{1} f(x) dx \approx \sum_{i=0}^{n} f(r_i) c_i.$$

Moreover, if f is a polynomial of degree $\leq 2n+1$, then the above is "approximation" is exact.

Standard values:

$$n=0: Q_1(x)=x \text{ and } x_0=0.$$
 $c_0=2.$ $n=1: Q_2(x)=x^2-\frac{1}{3} \text{ and } x_0=-\frac{1}{\sqrt{3}}, \ x_1=\frac{1}{\sqrt{3}}.$ $c_0=c_1=1.$ $n=2: Q_3(x)=x^3-\frac{3}{5}x \text{ and } x_0=-\sqrt{\frac{3}{5}}, \ x_1=0, \ x_2=\sqrt{\frac{3}{5}}.$ $c_0=c_2=5/9, \ c_1=8/9.$

9. Improper integrals using Taylor series method

Suppose we have $f(x) = \frac{g(x)}{(x-a)^p}$ for some $0 and are asked to calculate <math>I = \int_0^b f(x) dx$.

For the sake of simplicity, I assume a = 0 and b = 1.

Let $P_4(x)$ denote the fourth Taylor polynomial of g around a. (In this case 0.)

Now, compute
$$I_1 = \int_0^1 \frac{P_4(x)}{x^p} dx$$
. This can be integrated exactly. (Why?)
Now, we approximate $I - I_1$.

Define

$$G(x) := \begin{cases} \frac{g(x) - P_4(x)}{x^p} & \text{if } 0 < x \le 1\\ 0 & \text{if } x = 0 \end{cases}$$

Then, approximate $I_2 = \int_0^1 G(x) dx$ using the composite Simpson's rule.

For the case of a = 0, b = 1 and N = 2 for the composite Simpson's part, we get that $I_2 \approx \frac{1}{12} [2G(0.5) + 4G(0.25) + 4G(0.75) + G(1)].$

That is, finally:

$$I \approx \int_0^1 \frac{P_4(x)}{x^p} dx + \frac{1}{12} [2G(0.5) + 4G(0.25) + 4G(0.75) + G(1)].$$

10. Adaptive Quadrature

Let $I = \int_{-\infty}^{0} f(x) dx$ be the integral that we want to approximate.

Suppose that ϵ is the accuracy to which we want I. That is, we want a number P such that $|P-I| < \epsilon$. Here is what you do:

Subdivide [a, b] into N intervals: $[x_0, x_1], [x_1, x_2], \ldots, [x_{n-1}, x_n]$. (Naturally, $a = x_0 \le x_1 \le \ldots \le x_n = x_n \le x_$

Now, for each subinterval, compute the following values:

$$S_{i} = \frac{h}{6} \left(f(x_{i}) + 4f\left(x_{i} + \frac{h}{2}\right) + f\left(x_{i+1}\right) \right), \text{ and}$$

$$\overline{S_{i}} = \frac{h}{12} \left(f(x_{i}) + 4f\left(x_{i} + \frac{h}{2}\right) + 2f\left(x_{i} + \frac{h}{2}\right) + 4f\left(x_{i} + \frac{3h}{4}\right) + f(x_{i+1}) \right).$$

Now, calculate $E_i = \frac{1}{15} |\overline{S_i} - S_i|$.

Now, if $E_i \leq \frac{x_i - x_{i-1}}{b-a} \epsilon$, then move on to the next interval.

Otherwise, subdivide again to better approximate $\int_{-\infty}^{x_i} f(x) dx$.

Finally, sum up all the $\overline{S_i}$ s and that's the answer. That is,

$$I \approx P = \sum_{i=1}^{n} \overline{S_i}.$$

11. Romberg Integration

Essentially the baby of composite Trapezoidal rule and Romberg integration.

Suppose we want to calculate $\int_a^b f(x) dx$. Let N be a power of 2.

$$T_N := \frac{h}{2} \left[f(x_0) + 2 \sum_{i=1}^{N-1} f(a+ih) + f(x_N) \right], \text{ where } Nh = b - a.$$

Note that T_N can be computed using $T_{N/2}$ (assuming $N \neq 2^0$) as:

$$T_N = \frac{T_{N/2}}{2} + h \sum_{i=1}^{N/2} f(a + (2i - 1)h).$$

Now for $m \geq 1$, we define:

$$T_N^m = T_N^{m-1} + \frac{T_N^{m-1} - T_{N/2}^{m-1}}{4^m - 1}.$$

(Where T_N^0 is just T_N .) (Also, for some reason, T_N' has been used instead of T_N^1 .) Note that $\frac{N}{2^m}$ must be an integer for T_N^m to be defined. We create a table as follows:

 T_8^3 will be a good approximation, then.

(Look at slide 25 of Lecture 7 for an example.)

Remark. It can be shown that $I=T_N+c_2h^2+c_4h^4+\cdots$. This is why we used the special case formula of 1. 4.

Numerical Differentiation 3

1.

$$f'(a) \approx \frac{f(a+h) - f(a)}{h}$$

$$E(f) = -\frac{1}{2} h f''(\eta) \quad \text{ for some } \eta \in [a,a+h].$$

2. Central Difference Formula

$$f'(a) \approx \frac{f(a+h)-f(a-h)}{2h}$$

$$E(f) = -\frac{1}{6}h^3f^{(3)}(\eta) \quad \text{for some } \eta \in [a-h,a+h].$$

Note that this is an $O(h^2)$ approximation. Thus, we can use the special case of §1. 4. for better accuracy.

3. $f'(a) \approx \frac{-3f(a) + 4f(a+h) - f(a+2h)}{2h}$ $E(f) = \frac{1}{2}h^3f^{(3)}(\eta)$ for some $\eta \in [a, a + 2h]$. Formula 2 is always the better one whenever applicable. At end points, formula 3 is better than formula 1.

4. Central difference for second derivative

$$f''(x_0) = \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2} - \frac{h^2}{12}f^{(4)}(\xi),$$

for some $\xi \in (x_0 - h, x_0 + h)$.

5. Solving boundary-value problems in ODE

Suppose that we want to solve the following (linear) ODE:

$$y''(x) + f(x)y'(x) + g(x)y = q(x)$$

in the interval [a, b] such that we know $y(a) = \alpha$, and $y(b) = \beta$.

Set $h := \frac{b-a}{N}$ for some $N \in \mathbb{N}$ and $x_0 = a + ih$ for $h \in \{0, 1, \dots, N\}$. Using central difference approximation, we set up N-1 linear equations as follows:

$$\frac{y_{i-1} - 2y_0 + y_i}{h^2} + f(x_i) \frac{y_{i+1} - y_{i-1}}{2h} + g(x_i)(y_i) = q(x_i)$$
$$i = 1, 2, \dots, N - 1$$

The above equations can be rearranged as:

$$\left(1 - \frac{hf_i}{2}\right)y_{i-1} + (-2 + h^2g_i)y_i + \left(1 + \frac{hf_i}{2}\right)y_{i+1} = h^2q_i,$$

for i = 1, ..., N - 1; where $f_i = f(x_i)$ and so on.

Solution of non-linear equations 4

Let f be a continuous function on $[a_0, b_0]$ such that $f(a_0)f(b_0) < 0$ in all these cases. We want to find a root of f in $[a_0, b_0]$. (Existence in implied.)

1. Bisection Method

Set n = 0 to start with.

Loop over the following:

Set $m = \frac{a_n + b_n}{2}$.

If $f(a_n)f(m) < 0$, then set $a_{n+1} = a_n$ and $b_{n+1} = m$.

Else, set $a_{n+1} = m$ and $b_{n+1} = b_n$.

Increase n by one.

We still have a root in $[a_n, b_n]$.

2. Regula-falsi or false-position method

Set n = 0 to start with.

Loop over the following:

Set $w = \frac{f(b_n)a_n - f(a_n)b_n}{f(b_n) - f(a_n)}$. If $f(a_n)f(w) < 0$, then set $a_{n+1} = a_n$ and $b_{n+1} = w$.

Else, set $a_{n+1} = w$ and $b_{n+1} = b_n$.

Increase n by one.

We still have a root in $[a_n, b_n]$.

3. Modified regula-falsi

Set n = 0 and $w_0 = a_0$ to start with.

Loop over the following:

Set
$$F = f(a_n)$$
 and $G = f(b_n)$

Set
$$F = f(a_n)$$
 and $G = f(b_n)$.
Set $w_{n+1} = \frac{Ga_n - Fb_n}{G - F}$.

If $f(a_n)f(w_{n+1}) \leq 0$, then set $a_{n+1} = a_n$ and $b_{n+1} = w_{n+1}$ and $G = f(w_{n+1})$.

Furthermore, if we also have $f(w_n)f(w_{n+1}) > 0$, set $F = \frac{F}{2}$.

Else, set $a_{n+1} = w_{n+1}$ and $b_{n+1} = b_n$ and $F = f(w_{n+1})$.

Furthermore, if we also have $f(w_n)f(w_{n+1}) > 0$, set $G = \frac{G}{2}$.

Increase n by one.

We still have a root in $[a_n, b_n]$.

4. Secant method

Set $x_0 = a$, $x_1 = b$ and until satisfied, keep computing x_n given by

$$x_{n+1} = \frac{f(x_n)x_{n-1} - f(x_{n-1})x_n}{f(x_n) - f(x_{n-1})} \quad \text{for } n \ge 1.$$

Remark. This process will be forced to stop if we arrive at $f(x_n) = f(x_{n-1})$ at some point.

5 Iterative methods

1. Newton's Method

You are given a function f which is continuously differentiable and you want to find its root. You are also given some x_0 .

Compute the following sequence recursively until satisfied:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \quad \text{for } n \ge 0.$$

2. Fixed point iteration

Let I be a closed interval in \mathbb{R} . Let $f: I \to I$ be a differentiable function such that there exists some $K \in [0,1)$ such that $|f'(x)| \leq K$ for all $x \in I$.

Then, there is a unique $\xi \in I$ such that $f(\xi) = \xi$. To find this fixed point, choose any $x_0 \in I$ and define the sequence

$$x_n := f(x_{n-1}) \quad n \ge 1.$$

Then, $x_n \to \xi$.

3. Aitken's Δ^2 Process

Definition. Given a sequence (x_n) , let $\Delta x_n := x_{n+1} - x_n$.

Then,
$$\Delta^2 x_n = x_{n+2} - 2x_{n+1} + x_n$$
.

Given a sequence x_0, x_1, \ldots converging to $\overline{\xi}$, calculate $\widehat{x_1}, \widehat{x_2}, \ldots$ by

$$\widehat{x_n} := x_{n+1} - \frac{(\Delta x_n)^2}{\Delta^2 x_{n-1}}.$$

Then, $\widehat{x_n} \to \xi$.

If the sequence x_0, x_1, \ldots converges linearly to ξ , that is, if

$$\xi - x_{n+1} = K(\xi - x_n) + \theta(\xi - x_n),$$
 for some $K \neq 0$

then
$$\widehat{x_n} = \xi + O(\xi - x_n)$$
, that is, $\frac{\widehat{x_n} - \xi}{x_n - \xi} \to 0$.

4. Steffensen iteration

Let g(x) be the function whose fixed point is desired. Let y_0 be some given point.

Set n = 0 to start with.

Loop over the following:

Set $x_0 = y_n$.

Set $x_1 = g(x_0), \ x_2 = g(x_1).$

Set Δx_1 and $\Delta^2 x_0$.

Set
$$y_{n+1} = x_2 - \frac{(\Delta x_1)^2}{\Delta^2 x_0}$$
.

Increase n by 1.

Note that we get a sequence y_0, y_1, y_2, \ldots However, we only ever have x_0, x_1 and x_2 .

Definition 1. Let $x_0, x_1, x_2, ...$ be a sequence that converges to ξ and set $e_n = \xi - x_n$. If there exists a number P and a constant $C \neq 0$ such that

$$\lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^P} = C,$$

then P is called the **order of convergence** and C is called **asymptotic error constant**.

Examples.

1. Fixed point iteration

 ξ fixed point of $g: I \to I$ and $g'(\xi) \neq 0$. $P = 1 \text{ and } C = |g'(\xi)|.$

2. Newton's method
$$\lim_{n\to\infty} \frac{|e_{n+1}|}{|e_n|} = \frac{1}{2} \left| \frac{f''(\xi)}{f'(\xi)} \right|.$$
 (If ξ is a double root, then $P=1$.)

3. Secant method

$$|e_{n+1}| = C|e_n||e_{n-1}|$$

$$P = \frac{1+\sqrt{5}}{2} = 1.618\dots$$

$$\lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^P} = \left| \frac{1}{2} \frac{f''(\xi)}{f'(\xi)} \right|^{1/P}, \text{ provided } f'(\xi) \neq 0.$$

Theorem 1. Let $f:[a,b] \to \mathbb{R}$ be in $C^2[a,b]$ and let the following conditions be satisfied:

- $1. \ f(a)f(b) < 0,$
- 2. $f'(x) \neq 0$, for all $x \in [a, b]$,
- 3. f''(x) doesn't change sign in [a,b] (might be zero at some points),

$$\frac{|f(a)|}{|f'(a)|} \le b - a \text{ and } \frac{|f(b)|}{|f'(b)|} \le b - a.$$

Then, the Newton's method converges to the unique solution ξ of f(x) = 0 in [a, b] for any choice $x_0 \in [a, b]$.

6 Solving systems of linear equations

1. LU Factorisation

We want solve Ax = b where A is some known $n \times n$ matrix, b a known $n \times 1$ matrix and x is unknown. Assumption: Ax = b can be solved without any row interchange.

We define (finite) sequences of matrices $A^{(n)} = [a_{ij}^{(n)}]$ and $b^{(n)}$.

Define
$$A^{(1)} := A$$
. Let $m_{ji} := \frac{a_{ji}^{(1)}}{a_{ii}^{(i)}}$.

Define $M^{(1)}$ as

$$M^{(1)} := \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ -m_{21} & 1 & 0 & \cdots & 0 \\ -m_{31} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -m_{n-1,1} & 0 & 0 & \cdots & 0 \\ -m_{n1} & 0 & 0 & \cdots & 1 \end{bmatrix}$$

Thus, we can write $M^{(1)}A^{(1)}x = M^{(1)}b$.

Let $A^{(2)} := M^{(1)}A^{(1)}$ and $b^{(2)} = M^{(1)}b^{(1)}$.

Note that $A^{(2)}$ will be a matrix identical to the first one with respect to the last n-1 columns. However,

it's first column will just have the top element non-zero and everything below will be zero.

We can similarly construct the later matrices that perform the row operations. In general, we have:

$$M^{(k)} := \begin{bmatrix} 1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & \cdots & 0 \\ 0 & 0 & \cdots & -m_{k+1,k} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -m_{n,k} & \cdots & 1 \end{bmatrix},$$

along with

$$A^{(k+1)} = M^{(k)}A^{(k)} = M^{(k)} \cdots M^{(1)}A$$
, and $b^{(k+1)} = M^{(k)}b^{(k)} = M^{(k)} \cdots M^{(1)}b$.

Finally, set $U = A^{(n)}$ and $L = [M^{(1)}]^{-1} \cdots [M^{(n-1)}]^{-1}$. Then, we have

$$L = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ m_{21} & 1 & 0 & \cdots & 0 \\ m_{31} & m_{32} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ m_{n-1,1} & m_{n-1,2} & m_{n-1,3} & \cdots & 0 \\ m_{n1} & m_{n2} & m_{n3} & \cdots 1 \end{bmatrix}.$$

Thus, we have A = LU. Now, set y = Ux. We solve Ly = b for y. This is easy because L is lower triangular. Then, we solve Ux = y for x.

Check slide 27 of Lecture 11 for example.