PARTITIONING AND HIERARCHICAL CLUSTERING

**ANWESH PRAHARAJ** 

## Table of Contents

| 1.              | Partit                     | itioning Clustering2                    |    |  |  |  |  |  |  |
|-----------------|----------------------------|-----------------------------------------|----|--|--|--|--|--|--|
| 1.1.            |                            | Jsing Kmean clustering2                 |    |  |  |  |  |  |  |
| 1.              | 1.1.                       | Find out optimal Clustering             | 2  |  |  |  |  |  |  |
| 1.              | 1.2.                       | Kmean with 2 cluster                    |    |  |  |  |  |  |  |
| 1.2.            | Usi                        | ng Clara clustering                     | ⊿  |  |  |  |  |  |  |
| 1.              | 2.1.                       | Find out optimal Clustering             | 4  |  |  |  |  |  |  |
| 1.2.2           |                            | Clara with 2 cluster                    |    |  |  |  |  |  |  |
| 1.3.            | Usi                        | g Fanny clustering                      |    |  |  |  |  |  |  |
| 1.              | 3.1.                       | Find out optimal Clustering             | 7  |  |  |  |  |  |  |
| 1.              | 3.2.                       | Fanny with 2 cluster                    | 7  |  |  |  |  |  |  |
| 1.4.            | Usi                        | ng Pam clustering                       | 9  |  |  |  |  |  |  |
| 1.              | 4.1.                       | Find out optimal Clustering             | 9  |  |  |  |  |  |  |
| 1.              | 4.2.                       | Pam with 2 cluster                      | 10 |  |  |  |  |  |  |
| 1.5. Conclusion |                            |                                         |    |  |  |  |  |  |  |
| 2.              | 2. Hierarchical Clustering |                                         |    |  |  |  |  |  |  |
| 2.1.            | Usi                        | ng hclust()                             | 13 |  |  |  |  |  |  |
| 2.              | 1.1.                       | Finding out best dist matrix and method | 13 |  |  |  |  |  |  |
| 2.              | 1.2                        | Group Equal Proportion : Tree cut 4     | 15 |  |  |  |  |  |  |
| 2.1.2           |                            | Group Equal Proportion: Tree cut 2      | 17 |  |  |  |  |  |  |
| 2.1.2.          |                            | Finding Outlier: Tree cut 2             | 19 |  |  |  |  |  |  |
| 2.2.            | Usi                        | ng cluster::agnes()                     | 21 |  |  |  |  |  |  |
| 2.              | 2.1.                       | Finding out best method                 | 21 |  |  |  |  |  |  |
| 2.2.2.          |                            | Group Equal Proportion                  | 21 |  |  |  |  |  |  |
| 2.2.3.          |                            | Group Equal Proportion – cut tree 2     | 23 |  |  |  |  |  |  |
| 2.2.4.          |                            | Finding out Outlier                     | 25 |  |  |  |  |  |  |
| 2.3.            | Usi                        | ng cluster::diana()                     | 26 |  |  |  |  |  |  |
| 2.              | 3.1.                       | Cut tree                                | 28 |  |  |  |  |  |  |
| 2.4.            | Using cluster::mona()      |                                         |    |  |  |  |  |  |  |
| 2 5             | Cor                        | refusions                               | 21 |  |  |  |  |  |  |

## 1. Partitioning Clustering

## 1.1. Using Kmean clustering

## 1.1.1. Find out optimal Clustering

used Elbow, silhouette method to find out the optimal cluster in dataset.



Left side graph is Elbow graph and right one is silhouette graph

In Elbow graph there is steep change of slope in k = 2. So, considering 2 as cluster. Also silhouette graph illustrate the same cluster as 2.

#### 1.1.2. Kmean with 2 cluster

```
kmeans_Car_2 <- kmeans(
   x = scale_M,
   centers = 2
)
kmeans_Car_2</pre>
```

Use PC1 and PC2 to plot scatter plot.

```
```{r}
prcomp_M_2 <- data.frame(</pre>
  prcomp(
    x = scale_M
    center = FALSE,
    scale. = FALSE
  )$x[,1:2],
  Name = rownames(Dataset),
  cluster = as.character(kmeans_Car_2$cluster),
  stringsAsFactors = FALSE
```{r}
require(ggplot2)
require(ggforce)
ggplot(prcomp_M_2) +
  aes(x = PC1, y = PC2, color = Cluster, fill = Cluster, label = Name, group = Cluster) +
  geom_point()
  ggrepel::geom_text_repel(color = "black",size = 3) +
  ggtitle("scatter plot of decathlon principal components","Color corresponds to k-means cluster") +
  theme_bw()
  theme(legend.position = "none")
```

#### Scatter plot of decathlon principal components





Here we have two groups in red and teal.

To know whether there are any overlap or not we will use below graphs (clustplot and fviz\_cluster)



Fviz\_cluster plot shows very less overlap between two cluster group.

Calculate max\_diameter and min\_separation

```
Kmean_stat_2 <- fpc::cluster.stats(
    d = dist(scale_M),
    clustering = kmeans_Car_2$cluster,
    G2 = TRUE,
    G3 = TRUE)

Kmean_stat_2$max.diameter
Kmean_stat_2$min.separation

[1] 9.561109
[1] 0.285369</pre>
```

## 1.2. Using Clara clustering

## 1.2.1. Find out optimal Clustering

Here also used Elbow , silhouette method to find the cluster strength.



Both the method plot show cluster 2 is good for Clara clustering.

#### 1.2.2 Clara with 2 cluster

```
```{r}
prcomp_M_Clara_2 <- data.frame(</pre>
  prcomp(
    x = scale_M,
    center = FALSE,
scale. = FALSE
  )$x[,1:2],
  Name = rownames(Dataset),
Cluster = as.character(clara_Car_2$cluster),
  stringsAsFactors = FALSE
```{r}
require(ggplot2)
require(ggforce)
ggplot(prcomp_M_Clara_2) +
  aes(x = PC1,y = PC2,color = Cluster,fill = Cluster,label = Name,group = Cluster) +
  geom_point() +
  ggrepel::geom_text_repel(color = "black",size = 3) +
  ggtitle("scatter plot of decathlon principal components", "Color corresponds to k-means cluster") +
  theme_bw()
theme(legend.position = "none")
```

A ggrepel: 143 unlabeled data points (too many overlaps). Consider increasing max.overlaps

#### Scatter plot of decathlon principal components

Color corresponds to k-means cluster





In above graph there are overlap of observation between two groups. Which means some of the observation in group 1 may be related to group 2 and vice versa.

Below is the max diameter and min separation for clara statistics for number of cluster = 2

```
clara_stat_2 <- fpc::cluster.stats(
    d = dist(scale_M),
    clustering = clara_Car_2$cluster,
    G2 = TRUE,
    G3 = TRUE)

clara_stat_2$max.diameter
clara_stat_2$min.separation

[1] 10.53744
[1] 0.9923048</pre>
```

## 1.3. Using Fanny clustering

## 1.3.1. Find out optimal Clustering



Also used Elbow and Silhouette plot to identify the cluster. As per graph it is 2.

## 1.3.2. Fanny with 2 cluster

```
fanny_Car_2 <- cluster::fanny(
    x = scale_M,
    k = 2
)
fanny_Car_2</pre>
```

```
```{r}
prcomp_M_fanny_2 <- data.frame(</pre>
  prcomp(
   x = scale_M
    center = FALSE,
    scale. = FALSE
  )$x[,1:2],
  Name = rownames(Dataset),
  cluster = as.character(fanny_Car_2$cluster),
  stringsAsFactors = FALSE
```{r}
require(ggplot2)
require(ggforce)
ggplot(prcomp_M_fanny_2) +
  aes(x = PC1, y = PC2, color = Cluster, fill = Cluster, label = Name, group = Cluster) +
  geom_point() +
  ggrepel::geom_text_repel(color = "black",size = 3) +
  ggtitle("Scatter plot of decathlon principal components", "Color corresponds to k-means cluster") +
  theme_bw()
  theme(legend.position = "none")
```

Scatter plot shows us the distributions of observations in different group.

#### Scatter plot of decathlon principal components

Color corresponds to k-means cluster





Here also there are overlaps of observation between the groups.

```
fanny_stat_2 <- fpc::cluster.stats()
  d = dist(scale_M),
  clustering = fanny_Car_2$cluster,
  G2 = TRUE,
  G3 = TRUE)|
fanny_stat_2$max.diameter
fanny_stat_2$min.separation</pre>
[1] 10.53744
[1] 0.1268614
```

## 1.4. Using Pam clustering

#### 1.4.1. Find out optimal Clustering

Both Elbow and silhouette plot show the optimal cluster as 2.



#### 1.4.2. Pam with 2 cluster



```
```{r}
prcomp_M_pam_2 <- data.frame(</pre>
  prcomp(
    x = scale_M,
    center = FALSE,
scale. = FALSE
  )$x[,1:2],
  Name = rownames(Dataset),
  cluster = as.character(pam_Car_2$cluster),
  stringsAsFactors = FALSE
```{r}
require(ggplot2)
require(ggforce)
ggplot(prcomp_M_pam_2) +
  aes(x = PC1, y = PC2, color = Cluster, fill = Cluster, label = Name, group = Cluster) +
  geom_point() +
  ggrepel::geom_text_repel(color = "black",size = 3) +
ggtitle("scatter plot of decathlon principal components","Color corresponds to k-means cluster") +
  theme_bw() +
theme(legend.position = "none")
```

## Scatter plot of decathlon principal components

Color corresponds to k-means cluster





There is a overlap of observations in the groups.

```
pam_stat_2 <- fpc::cluster.stats(
    d = dist(scale_M),
    clustering = pam_Car_2$cluster,
    G2 = TRUE,
    G3 = TRUE)

pam_stat_2$max.diameter
pam_stat_2$min.separation

[1] 10.53744
[1] 0.9923048</pre>
```

#### 1.5. Conclusion

I have used Kmean, Clara, Fanny and Pam algorithm for Partitioning clustering of the dataset. Scatter plots describe the distribution of each observation separated by groups. In our case the scatter plot does not show much difference between the algorithms. That is why I choose fviz\_cluster graph which display the clear separation and overlap between two groups. Out of all 4 algorithm, Kmean clustering is the best model for this dataset because the overlap between the groups is very minimal ( may be this is because of multi dimension ) followed by Clara. While comparing the Maximum diameter and minimum separation, I found that the value is min 9.561109 for Max diameter for Kmean with 2 clustering.

To find out optimal clustering for each algorithm, I have used Elbow and Silhouette plot. For this dataset all the algorithm Elbow plot has a steep bend at K = 2 and similarly Silhouette plot give cluster as 2 by drawing a vertical line.

#### 2. Hierarchical Clustering

#### 2.1. Using hclust()

#### 2.1.1. Finding out best dist matrix and method

Used "canberra", "manhattan", "euclidean", "maximum", "minkowski" as distance matrix and "ward.D", "single" as cluster method, trying to find out best coefficient . I used ward.D method for partitioning data into equal sized group and "single" for outlier detector.



```
```{r}
M_coef <- matrix(</pre>
  data = NA,
  nrow = length(v_dist),
  ncol = length(v_hclust)
rownames(M_coef) <- v_dist
colnames(M_coef) <- v_hclust
for(j in v_dist) for(k in v_hclust) try({
   M_coef[j,k] <- cluster::coef.hclust(
   object = list_hclust[[j]][[k]]</pre>
})
M_coef
                 ward, D
                              single
 canberra 0.9964903 0.8320666
 manhattan 0.9974664 0.8787228
 euclidean 0.9952938 0.8365360
 maximum
            0.9909364 0.8399699
 minkowski 0.9952938 0.8365360
```

#### In this case

- Manhattan & Ward.D gave highest score so considered to find equal size grouping
- Canberra & Single gave lowest score so considered to find outlier detection

This heat map show the distance matrix and distance between each observations. Dark teal color shows a relation between the observations. In this case we can identify 4 squares which illustrate the groups.





2.1.2 Group Equal Proportion: Tree cut 4

As there are more observations we are not able to see the levels clearly. But this Dendrogram give us an idea how each observations are grouped. If we cut our tree in two or four groups then might be able to get equal distributions.

## Scatter plot of decathlon principal components

Color corresponds to k-means cluster





Silhouette plot will show whether the groups are good or not. If there are more bars in left side that means those observations are wrongly grouped.

## 2.1.2 Group Equal Proportion: Tree cut 2

```
```{r}
cutree_M_2_equal <- cutree(
  tree = hclust_M_equal,
  k = 2
```{r}
prcomp_hir_M_equal_2 <- data.frame(</pre>
  prcomp(
   x = scale_M,
    center = FALSE,
    scale. = FALSE
  )$x[,1:2],
  Name = rownames(Dataset),
  Cluster = as.character(cutree_M_2_equal),
  stringsAsFactors = FALSE
```{r}
require(ggplot2)
ggplot(prcomp_hir_M_equal_2) +
  aes(x = PC1,y = PC2,color = Cluster,fill = Cluster,label = Name,group = Cluster) +
  qeom_point() +
  ggrepel::geom_text_repel(color = "black",size = 3) +
ggtitle("Scatter plot of decathlon principal components","Color corresponds to k-means cluster") +
  theme(legend.position = "none")
```

## Scatter plot of decathlon principal components

Color corresponds to k-means cluster





In case of cut tree in 2 groups there are less number of observations in the left side while comparing the tree cut in 4 groups.

## 2.1.2. Finding Outlier: Tree cut 2

```
dist_M_outlier <- dist(
    x = scale_M,
    method = "canberra"
)

'``{r}
hclust_M_outlier <- hclust(
    d = dist_M_outlier,
    method = "single"
)
plot(|
    x = hclust_M_outlier
)</pre>
```



From above tree we can identify Audi-1, Mazda-9, Volkswagan-12 and alfa-romero-1/2 are the outliers.

## 2.2. Using cluster::agnes()

#### 2.2.1. Finding out best method

```
""{r}
v_pc <- prcomp(scale_M)$x[,1]
scale_M <- scale_M[order(v_pc),]

""{r}
v_methods <- c( "average", "single", "complete", "ward")
v_metric <- c( "canberra", "manhattan", "euclidean", "maximum", "minkowski" )
names(v_methods) <- c( "average", "single", "complete", "ward")
names(v_metric) <- c( "canberra", "manhattan", "euclidean", "maximum", "minkowski" )

ac <- function(x) {
   cluster::agnes(scale_M, method = x)$ac|
}
purrr::map_dbl(v_methods, ac)

...

average single complete ward
0.8958852 0.8365360 0.9485575 0.9815502</pre>
```

Ward has highest score so used this method for Equal proportion group and single has least score so used to find outlier detector.

#### 2.2.2. Group Equal Proportion

```
```{r}
agnes_M_ward <- cluster::agnes(scale_M,metric = "manhattan", method = "ward")
plot(agnes_M_ward)
```|</pre>
```





# Banner of cluster::agnes(x = scale\_M, metric = "manhattan", metho "ward")



Agalomerative Coefficient = 0.99





```
```{r}
print(agnes_M_ward)
Call: cluster::agnes(x = scale_M, metric = "manhattan", method = "ward")
Agglomerative coefficient: 0.9888474
order of objects:
[1] chevrolet-1 honda-2 honda-1 chevrolet-2 chevro [11] plymouth-3 dodge-6 dodge-7 mitsubishi-5 mitsubishi-5 [21] honda-11 honda-13 toyota-9 toyota-11 toyota-13 inissan-9 nissan-10 nissan-11 nissan-14 toyota-15 [31] olikswagen-1 volkswagen-7 volkswagen-15 toyota-14 toyota-15 [31] volkswagen-2 volkswagen-7 volkswagen-10 mitsubishi-9 mitsubishi-9 mitsubishi-12 mitsubishi-9 volkswagen-10 volkswagen-10 volkswagen-9 volkswagen-9 volkswagen-101] isuzu-1 dodge-8 plymouth-7 mazda-6 mitsubishi-12 mitsubishi-12 lill toyota-5 toyota-20 toyota-3 toyota-11 subaru-11 subaru-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         chevrolet-3
mitsubishi-6
toyota-10
nissan-14
toyota-15
toyota-24
subaru-8
alfa-romero-1
mitsubishi-13
nissan-6
mazda-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         plymouth-2
plymouth-6
mazda-5
nissan-5
toyota-30
toyota-19
subaru-12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         mitsubishi-4
honda-4
mazda-10
nissan-17
toyota-31
mazda-9
subaru-7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           dodge-2
plymouth-5
mazda-4
nissan-1
toyota-27
volkswagen-4
subaru-9
alfa-romero-2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         dodge-4
honda-3
mazda-11
nissan-18
toyota-32
subaru-1
subaru-4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       dodge-3
honda-5
mazda-3
toyota-23
nissan-12
subaru-2
subaru-10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             mitsubishi-7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            dodge-5
honda-12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            plymouth-4
honda-8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        volkswagen-2
honda-10
mitsubishi-11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           honda-7
isuzu-2
mazda-7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              honda-6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              nonua-o
nissan-15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            mitsubishi-10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              mitsubishi-8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             mazda-12
toyota-2
audi-5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           mazda-2
toyota-1
saab-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          toyota-26
audi-1
saab-4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                mazda-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          toyota-17
volkswagen-12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           mazda-1
toyota-18
audi-6
bmw-5
volvo-4
volvo-6
mitsubishi-2
peugot-5
bmw-8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       mazda-7
toyota-6
saab-2
nissan-7
volvo-1
peugot-10
nissan-2
peugot-9
mercedes-benz-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       voikswagen-12
saab-5
toyota-7
volvo-10
peugot-8
porsche-4
mercedes-benz-2
jaguar-2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       audi-5
nissan-8
volvo-11
peugot-3
misubishi-3
peugot-6
bmw-7

        saab-1
        saab-4

        nissan-16
        toyota-8

        volvo-2
        volvo-9

        peugot-1
        peugot-4

        nissan-3
        nissan-4

        peugot-11
        volvo-7

        mercedes-benz-6
        jaguar-1

       Available components:
[1] "order" "height"
                                                                                                                                                                                                                                                                                            "merge" "diss" "call"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                "method" "order.lab" "data"
```

#### 2.2.3. Group Equal Proportion – cut tree 2

```
```{r}
cutree_Agnes_2_equal <- cutree(
  tree = agnes_M_ward,
  k = 2
```{r}
prcomp_Agnes_equal_2 <- data.frame(</pre>
  prcomp(
   x = scale_M,
    center = FALSE,
    scale. = FALSE
  )$x[,1:2],
  Name = rownames(Dataset),
  cluster = as.character(cutree_Agnes_2_equal),
  stringsAsFactors = FALSE
```{r}
require(ggplot2)
ggplot(prcomp_Agnes_equal_2) +
  aes(x = PC1, y = PC2, color = Cluster, fill = Cluster, label = Name, group = Cluster) +
  geom_point() +
  ggrepel::geom_text_repel(color = "black",size = 3) +
  ggtitle("Scatter plot of decathlon principal components", "Color corresponds to k-means cluster") +
  theme_bw()
  theme(legend.position = "none")
```

## Scatter plot of decathlon principal components

Color corresponds to k-means cluster





This has more number of observations on Left side.

## 2.2.4. Finding out Outlier

```{r}
agnes\_M\_single <- cluster::agnes(scale\_M,metric = "manhattan", method = "single")
plot(agnes\_M\_single)|





# Banner of cluster::agnes(x = scale\_M, metric = "manhattan", metho "single")



Agglomerative Coefficient = 0.88



This tree graph shows the outlier clearly as Jaguar-3, Honda-2 and Chevrolet-1.

## 2.3. Using cluster::diana()

Diana does not support any method so we will use this algo with default value.



#### Dendrogram of cluster::diana(x = scale\_M)



scale\_M Divisive Coefficient = 0.94

#### 2.3.1. Cut tree

```
```{r}
prcomp_diana_equal_2 <- data.frame(</pre>
  prcomp(
   x = scale_M,
    center = FALSE,
    scale. = FALSE
  )$x[,1:2],
  Name = rownames(Dataset),
  Cluster = as.character(cutree_diana_2_equal),
  stringsAsFactors = FALSE
```{r}
require(ggplot2)
ggplot(prcomp_diana_equal_2) +
  aes(x = PC1,y = PC2,color = Cluster,fill = Cluster,label = Name,group = Cluster) +
  geom_point() +
  ggrepel::geom_text_repel(color = "black",size = 3) +
  ggtitle("Scatter plot of decathlon principal components", "Color corresponds to k-means cluster") +
  theme_bw()
  theme(legend.position = "none")
```

#### Scatter plot of decathlon principal components

Color corresponds to k-means cluster





Diana also has more number of observations on left side.

## 2.4. Using cluster::mona()

For mona I have converted the data observations into binary.

```
'``{r}
binary_M <- scale_M
for(j in 1:ncol(binary_M)) binary_M[,j] <- as.numeric(
   binary_M[,j] >median(binary_M[,j])
)
mona_M <- cluster::mona(binary_M)
print(mona_M)
'``|</pre>
```

|      | of objects:<br>chevrolet-1 | honda-1           | chevrolet-2         | dodae  | -2         | plymouth  | 1-2     | chevrolet  | -3     | mitsubishi-4  | d     | odae-4        | dodae-3      |      |
|------|----------------------------|-------------------|---------------------|--------|------------|-----------|---------|------------|--------|---------------|-------|---------------|--------------|------|
| 01   | plymouth-3                 | dodae-6           | dodae-7             | mitsul | oishi-5    | mitsubis  | hi-6    | plymouth-  | 5      | plymouth-6    | n     | issan-1       | nissan-5     |      |
| 9]   | nissan-17                  | nissan-18         | nissan-9            | nissa  | 1-10       | nissan-1  | 1       | nissan-13  |        | nissan-14     | t     | oyota-28      | toyota-16    |      |
| 8]   | honda-2                    | toyota-13         | toyota-24           | honda  | -4         | honda-3   |         | honda-5    |        | nissan-12     | h     | onda-11       | honda-13     |      |
| 7] - | toyota-9                   | toyota-11         | toyota-10           | toyot  | a-30       | toyota-   | 1       | subaru-3   |        | toyota-23     | m     | azda-4        | mazda-5      |      |
|      |                            | mazda-11          | mazda-3             | toyot  |            | toyota-1  | .2      | toyota-25  |        | toyota-14     |       | oyota-15      | toyota-27    |      |
|      |                            | subaru-2          | subaru-11           | honda  |            | honda-7   |         | honda-8    |        | honda-12      |       | itsubishi-7   | dodge-5      |      |
|      |                            | mitsubishi-9      | mitsubishi-12       |        | oishi-13   | volkswag  |         | volkswager |        | honda-9       |       | suzu-2        | subaru-7     |      |
|      |                            | mitsubishi-10     | mitsubishi-11       |        | vagen-5    | volkswag  | en-7    | volkswager | 1-10   | volkswagen-6  |       | olkswagen-8   | volkswagen-9 |      |
|      |                            | subaru-6          | subaru-8            | mazda- |            | mazda-1   |         | toyota-17  |        | toyota-26     |       | oyota-20      | mazda-12     |      |
|      |                            | volkswagen-11     | audi-1              | nissa  |            | nissan-1  |         | bmw-1      |        | bmw-2         |       | oyota-32      | subaru-9     |      |
|      |                            | honda-10          | isuzu-1             | subar  |            | subaru-1  |         | alfa-rome  |        | alfa-romero-  |       | issan-2       | nissan-4     |      |
|      |                            | porsche-4         | porsche-2           | porsci |            | porsche-  |         | alfa-rome  | ro-3   | mitsubishi-1  |       | lymouth-1     | dodge-1      |      |
|      |                            | mitsubishi-3      | volkswagen-4        | toyot  |            | volkswag  |         | toyota-5   |        | mazda-2       |       | azda-9        | peugot-2     |      |
|      |                            | peugot-6          | dodge-8             | plymo  |            | peugot-9  |         | peugot-11  |        | toyota-3      |       | oyota-4       | toyota-18    |      |
|      |                            | toyota-6          | toyota-1            | jaguai |            | jaguar-2  |         | volvo-7    |        |               |       | ercedes-benz- |              | -8   |
|      | mercedes-benz-5            |                   | mercedes-benz-7     |        |            | bmw-8     |         | volkswage  | 1-3    | audi-3        |       | udi-4         | audi-6       |      |
|      |                            | bmw-6             | bmw-7               | toyot  |            | toyota-   |         | toyota-29  |        | toyota-21     |       | aab-2         | saab-1       |      |
|      |                            | saab-5            | volvo-1             | vojvo  |            | volvo-9   |         | volvo-10   |        | volvo-3       |       | olvo-8        | saab-3       |      |
|      |                            | nissan-8<br>hmw-5 | nissan-7<br>mazda-8 | nissa  |            | peugot-   |         | volvo-5    |        | volvo-6       |       | issan-3       | bmw-3        |      |
|      |                            |                   |                     | mercu  |            | volvo-4   |         | volvo-11   |        | mercedes-ben  | z-6 j | aguar-3       | peugot-3     |      |
|      | peugot-10<br>le used:      | peugot-1          | peugot-4            | peugo. | -8         |           |         |            |        |               |       |               |              |      |
|      | re used:<br>peak_rpm       | NULL              | NULL                |        | NULL       |           | NULL    |            | NULL   |               | NULL  |               | NULL         |      |
|      | peak_rpm<br>NULL           | NULL              | NULL                |        | NULL       |           | NULL    |            | NULL   |               | NULL  |               | NULL         |      |
|      | NULL                       | NULL              | NULL                |        | height     |           | NULL    |            | NULL   |               | NULL  |               | NULL         |      |
|      | horsepower                 | NULL              | stroke              |        | NULL       |           | NULL    |            | peak_r |               | NULL  |               | NULL         |      |
|      | height                     | peak_rpm          | NULL                |        | compressi  | on ratio  |         |            | NULL   |               | NULL  |               | NULL         |      |
|      | bore                       | height            | NULL                |        | NULL       | on_r acro | NULL    |            | NULL   |               | NULL  |               | NULL         |      |
|      | NULL                       | NULL              | NULL                |        | NULL       |           | NULL    |            | hore   |               | NULL  |               | lenath       |      |
|      | stroke                     | NULL              | length              |        | price      |           | city_mp | ia         | NULL   |               | NULL  |               | NULL         |      |
|      | NULL                       | NULL              | horsepower          |        | price      |           | width   | 9          | peak_r |               | heigh |               | engine_size  |      |
|      | NULL                       | NULL              | wheel base          |        | NULL       |           | NULL    |            |        | ssion ratio I |       |               | NULL         |      |
| i.   | width                      | NULL              | compression         | ratio  | length     |           | price   |            | bore   |               | heiah | t             | price        |      |
| ň    | bore                       | NULL              | horsepower          |        | length     |           | width   |            | NULL   |               | strok | e             | NULL         |      |
| ń    | curb_weight                | length            | height              |        | price      |           | bore    |            | height |               | lengt | h             | engine_size  |      |
| i.   | NULL                       | width             | NULL                |        | length     |           | compres | sion_ratio | width  |               | NULL  |               | NULL         |      |
| i.   | stroke                     | bore              | NULL                |        | NULL       |           | NULL    |            | NULL   |               | whee1 | _base         | NULL         |      |
| 1    | compression_rati           | o height          | bore                |        | compressi  | on_ratio  | NULL    |            | NULL   |               | NULL  |               | highway_mpg  |      |
| 1    | NULL                       | width             | NULL                |        | horsepower | r         | NULL    |            | NULL   |               | price |               | NULL         |      |
|      | NULL                       | compression_ra    |                     |        | height     |           | bore    |            | NULL   |               | NULL  |               | NULL         |      |
|      | compression_rati           |                   | peak_rpm            |        | bore       |           | height  |            | NULL   |               | NULL  |               | NULL         |      |
|      | NULL                       | bore              | NULL                |        | compressi  | on_ratio  |         |            | NULL   |               | NULL  |               | stroke       |      |
|      | bore                       | NULL              | NULL                |        | NULL       |           | NULL    |            | NULL   |               | NULL  |               | NULL         |      |
|      | NULL                       | compression_ra    |                     |        | NULL       |           | NULL    |            | NULL   |               | NULL  |               | NULL         |      |
|      | NULL                       | height            | peak_rpm            |        | NULL       |           | width   |            | bore   |               | NULL  |               | NULL         |      |
|      | NULL                       | NULL              | height              |        | engine_si: | ze        | NULL    |            | horsep | ower          | NULL  |               | NULL         |      |
|      | tion step:                 |                   |                     |        |            |           |         |            |        |               |       |               |              |      |
|      |                            |                   |                     |        |            |           |         |            |        |               |       |               | 00065646     |      |
|      | 06005064                   | 7 6 5 7 6 0 3 6   | 5 0 4 0 1 5 6 4     |        |            | 5 6 0 0   |         |            | 8 6 7  | 0005060       | 0 4 0 | 080070        | 67000805     | 8700 |
| d i  | 08060003                   | 60000000          | 0 5 0 0 0 0 0 0     | 0 6 4  | 0 7 6 0 0  | 0 0 7 5   | 0 6 0 0 |            |        |               |       |               |              |      |
|      |                            |                   |                     |        |            |           |         |            |        |               |       |               |              |      |



## Banner of cluster::mona(x = binary\_M)



#### 2.5. Conclusions

For hierarchical clustering, I used hclust(), cluster::agnes(), cluster::diana(), cluster::mona() to find outlier and partition the data into two equal proportion.

For hclust created a matrix of different combination of distance matrices and methods to find out optimal combination for outlier detection and partition in equal proportion. As Manhattan and Ward.D has highest score, used in partition equal group whereas Canberra & Single has lowest score, used in outlier detection. silhouette plots help us to identify the optimal tree cut to find equal proportions groups. In this case we used tree cut 2 as a smaller number of observations are in left side of the plot, that means less number of observations are wrongly predicted in a group. I am considering this model as best model for partition the equal proportion group. The dendrogram plot by using single method used for displaying the outlier. In our case we identified couple of outlier but the graph was not that clear. So rejecting this model to detect the outlier.

For agnes I have used ward method to identify equal number of observations in groups. Again, used silhouette plot to identify optimal tree cut but in this case there are lot of observations in left side of plot. That is why rejected this model for equal group partition. The dendrogram plot created by using single method gave us a clear tree diagram and able to identify the outlier. So accepting this model for outlier detection.

Diana does not support any specific method, that is why used default Diana algo. In this scenario found lot of observations in left side of the silhouette plot. That is why not considering this model for equal group partition.

Mona use only binary observation in calculation that is why have to convert the dataset into binary format. There are nothing much information out of Mona statistics, that is why rejecting this model for both equal group partition and outlier detection.

Below are the final models:

- Equal proportion partition :
  - o Hclust(): Manhattan and Ward.D, 2 cluster tree cut
- Outlier Detection :
  - Agnes(): Manhattan and Single