- Set 30 Let X_1,\ldots,X_n be independent and identically distributed random variables with the same mean μ and variance σ^2 , and let \overline{X} denote the sample mean. Tchebychev's inequality says that the probability $\mathbb{P}(|\overline{X}-\mu|>\delta)$ does not exceed $\mathrm{Var}(\overline{X})/\delta^2$ for every constant $\delta>0$, where $\mathrm{Var}(\overline{X})$ denotes the variance of \overline{X} .
 - (a) Prove that the statement

$$|\bar{X} - \mu| > \sqrt{20} \; \frac{\sigma}{\sqrt{n}}$$

holds with a probability that does not exceed 0.05.

Then,

$$\mathbb{P}(|\bar{X} - \mu| > \delta) \le \frac{\operatorname{Var}(\bar{X})}{\delta^2}$$

$$\mathbb{P}\left(|\bar{X} - \mu| > \sqrt{20} \ \frac{\sigma}{\sqrt{n}}\right) \le \frac{\operatorname{Var}(\bar{X})}{\left(\sqrt{20} \ \frac{\sigma}{\sqrt{n}}\right)^2}$$

$$\operatorname{Var}(\overline{X}) = \frac{\sigma^2}{n}$$

Finally,

$$\mathbb{P}\left(|\bar{X} - \mu| > \sqrt{20} \, \frac{\sigma}{\sqrt{n}}\right) \le \frac{\frac{\sigma^2}{n}}{20 \, \frac{\sigma^2}{n}}$$

$$\mathbb{P}\left(|\bar{X} - \mu| > \sqrt{20} \, \frac{\sigma}{\sqrt{n}}\right) \le \frac{1}{20}$$

(b) Prove that the statement

$$\bar{X} - \sqrt{20} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + \sqrt{20} \frac{\sigma}{\sqrt{n}}$$

holds with a probability that is not smaller than 0.95. NOTE: the previous statement gives the following confidence interval

$$\left[\overline{X} - \sqrt{20} \, \frac{\sigma}{\sqrt{n}}, \overline{X} + \sqrt{20} \, \frac{\sigma}{\sqrt{n}} \right]$$

for the (unknown) population mean μ , with a confidence level of at least 95% and for every sample size n.

Then,

$$\bar{X} - \sqrt{20} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + \sqrt{20} \frac{\sigma}{\sqrt{n}}$$

$$-\bar{X} + \sqrt{20} \frac{\sigma}{\sqrt{n}} \ge -\mu \ge -\bar{X} - \sqrt{20} \frac{\sigma}{\sqrt{n}}$$

$$\sqrt{20} \frac{\sigma}{\sqrt{n}} \ge \bar{X} - \mu \ge -\sqrt{20} \frac{\sigma}{\sqrt{n}}$$

$$\sqrt{20} \frac{\sigma}{\sqrt{n}} \ge |\bar{X} - \mu|$$

$$|\bar{X} - \mu| \le \sqrt{20} \frac{\sigma}{\sqrt{n}}$$

However,

$$\mathbb{P}(|\bar{X} - \mu| > \delta) \le \frac{\operatorname{Var}(\bar{X})}{\delta^2}$$

But,

$$\mathbb{P}(|\bar{X} - \mu| \le \delta) \le 1 - \frac{\operatorname{Var}(\bar{X})}{\delta^2}$$

Therefore,

$$\mathbb{P}\left(|\bar{X} - \mu| \le \sqrt{20} \frac{\sigma}{\sqrt{n}}\right) \le 1 - \frac{\frac{\sigma^2}{n}}{\left(\sqrt{20} \frac{\sigma}{\sqrt{n}}\right)^2}$$

$$\mathbb{P}\left(|\bar{X} - \mu| \le \sqrt{20} \frac{\sigma}{\sqrt{n}}\right) \le 1 - \frac{\frac{\sigma^2}{n}}{20 \frac{\sigma^2}{n}}$$

$$20 \frac{\delta}{r}$$

$$\mathbb{P}\left(|\bar{X} - \mu| \le \sqrt{20} \frac{\sigma}{\sqrt{n}}\right) \le 1 - \frac{1}{20}$$

$$\mathbb{P}\left(|\bar{X} - \mu| \le \sqrt{20} \, \frac{\sigma}{\sqrt{n}}\right) \le \frac{19}{20}$$

(c) Prove that the statement

$$\mu - \sqrt{20} \frac{\sigma}{\sqrt{n}} \le \bar{X} \le \mu + \sqrt{20} \frac{\sigma}{\sqrt{n}}$$

holds with a probability that is not smaller than 0.95. Then,

$$\mu - \sqrt{20} \frac{\sigma}{\sqrt{n}} \le \bar{X} \le \mu + \sqrt{20} \frac{\sigma}{\sqrt{n}}$$
$$-\sqrt{20} \frac{\sigma}{\sqrt{n}} \le \bar{X} - \mu \le \sqrt{20} \frac{\sigma}{\sqrt{n}}$$
$$|\bar{X} - \mu| \le \sqrt{20} \frac{\sigma}{\sqrt{n}}$$

And,

$$\mathbb{P}(|\bar{X} - \mu| \le \delta) \le 1 - \frac{\operatorname{Var}(\bar{X})}{\delta^2}$$

Therefore,

$$\mathbb{P}\left(|\bar{X} - \mu| \le \sqrt{20} \, \frac{\sigma}{\sqrt{n}}\right) \le 1 - \frac{\frac{\sigma^2}{n}}{\left(\sqrt{20} \, \frac{\sigma}{\sqrt{n}}\right)^2}$$

$$\mathbb{P}\left(|\overline{X} - \mu| \le \sqrt{20} \, \frac{\sigma}{\sqrt{n}}\right) \le 1 - \frac{\frac{\sigma^2}{n}}{20 \, \frac{\sigma^2}{n}}$$

$$\mathbb{P}\left(|\overline{X} - \mu| \le \sqrt{20} \, \frac{\sigma}{\sqrt{n}}\right) \le 1 - \frac{1}{20}$$

$$\mathbb{P}\left(|\bar{X} - \mu| \le \sqrt{20} \, \frac{\sigma}{\sqrt{n}}\right) \le \frac{19}{20}$$

(d) Let $\omega_1{}^{act}$, ..., $\omega_n{}^{act}$ be a sample from a population Ω , and let $X:\Omega\to \mathbb{R}$ be a filter (that is, a random variable in Statistics, or a measurable function in Mathematics) that produces n outputs (called observations in Statistics) $x_1{}^{obs}$, ..., $x_n{}^{obs}$ by the formula $x_i{}^{obs} = X(\omega_i{}^{act})$. Let \bar{x} denote the average of $x_1{}^{obs}$, ..., $x_n{}^{obs}$. Does the confidence interval

$$\left[\bar{x} - \sqrt{20} \, \frac{\sigma}{\sqrt{n}}, \bar{x} + \sqrt{20} \, \frac{\sigma}{\sqrt{n}}\right]$$

cover the (unknown) population mean μ or not?

The confidence interval covers the population mean with a confidence percentage of 95%.