Instructors: Erik Demaine, Jason Ku, and Justin Solomon

Problem Set 2

Problem Set 2

Name: Your Name

Collaborators: Name1, Name2

Problem 2-1.

(a) An example of embedding images, in case you want to include a drawing of a tree.

$$a = 2$$

$$b = 2$$

$$f(n) = O(n) = n^{k} (\log n)^{p}$$

$$k = 1$$

$$p = 0$$

$$\log a_{b} = 1 = k \longrightarrow \mathbf{case 2}$$

solution:

 $O(n \log n)$

(b)

$$a = 3$$

$$b = \sqrt{2}$$

$$f(n) = O(n^4) = n^k (\log n)^p$$

$$k = 4$$

$$p = 0$$

$$\log a_b < k \longrightarrow \mathbf{case 3}$$

solution:

Problem Set 2

(c)

$$a = 2$$

$$b = 2$$

$$f(n) = 5n \log n = n^k (\log n)^p$$

$$k = 1$$

$$p = 1$$

$$\log a_b = 1 = k \longrightarrow \mathbf{case 2}$$

solution:

$$n(\log n)^2$$

(d) substitute $T(n) = n^2$

$$n^2 = (n-2)^2 + \theta(n)$$
$$4n - 4 = \theta(n)$$

Problem Set 2 3

Problem 2-2.

(a) Selection sort will be the best, since it is in-place and we can do get_at (i) in $\theta(1)$ and set_at (i, x) in $\theta(n\log n)$ and Selection sort does get_at (i) $\theta(n^2)$ times and set_at (i, x) $\theta(n)$ time. The overall complexity is $\theta(n^2\log n)$. Insertion sort is in-place algorithm but it does get_at (i) $\theta(n^2)$ times and set_at (i, x) $\theta(n^2)$ time. The overall complexity is $\theta(n^3\log n)$. merge sort is not an in-place algorithm.

(b) Merge sort will be the best, since it does the minimum number of comparasions between Selection sort and Insertion sort as follows:

Merge sort
$$\rightarrow (n-1)$$
 comparasions $\rightarrow \theta(n \log^2 n)$
Selection sort $\rightarrow n!$ comparasions $\rightarrow \theta(n^2)$
Insertion sort $\rightarrow \frac{n^2-3n}{2}$ comparasions $\rightarrow \theta(n^2)$

(c) Insertion sort will be the best, Selection sort and Merge sort time complexity is independent on the input $(\theta(n^2), \theta(n \log n))$ but Insertion sort is not so if we do $\log \log n$ swaps this means that Insertion sort will perform only $\log \log n$ swaps to undo all inversions which is O(n), then the overall running time is O(n).

Problem Set 2

Problem 2-3. He can apply the binary search concept as follows:

- 1.Go to the midle of the island (n/2)th kilometer.
- 2.Use the tracking device to determine whether he is north or south of his currunt place.
- 3.Use the telepotation and go to the middle of the distance between currunt place and water in this direction.
- 4.Repeat step 2 and 3 till you find Datum.

since Datum is definitely exists in the island this algorithm will find him and terminate in $O(\log k)$ locations got checked.

Problem Set 2 5

Problem 2-4. we need

1.a sorted array A(id, m_v , b) uses the ID as a key. has m_v as a pointer to a linked list containing all viewer v messages and a boolean b tells if he is banned or not.

2.a linked list L containing all sent messages to return last k.

To support build (V) initialize an empty array with size n = |V|, set all linked lists m_v to Null, all p to flase, and sort the array in $O(n \log n)$ time.

To support send (v, m) do a binary search in A to check if viewer v is banned using b in $O(\log n)$, Append the message in both m_v and L in O(1), so this takes $\log n$.

To support recent (k) if L contains c < k element return it in o(c), else we should keep a pointer at the beginning of the last k elements and start returning from this pointer till the end of L which takes $O\log n$.

to support ban (v) do a binary search in A (takes $O\log n$) and set b to true then start deleting his messages linked list which takes $o(n_v)$, so this algorithm takes $O(n_v + \log n)$.

6 Problem Set 2

Problem 2-5.

- (a)
- **(b)**
- (c) Submit your implementation to $\mbox{alg.mit.edu.}$