

Model-independent Probes of Dark Sector Physics

HAVERFORD

COLLEGE

Tianji Zhou¹, Daniel Grin¹ and Tristan L. Smith²

¹Department of Physics and Astronomy, Haverford College, 370 Lancaster Ave, Haverford, Pennsylvania 19041, USA ²Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania

Introduction

Hubble Tension:

- The difference for **Hubble constant** measurement;
- \triangleright Remained at a level ranging from $4 6\sigma$ [2];
- > The standard dark matter model: **Λ-CDM model**
- > Cosmologists are exploring new models;

Model-independent Approach:

- > Studied Wess-Zumino Dark Radiation (WZDR) Model and Chameleon Early Dark Energy (CEDE) Model as a benchmark;
- > Tested the models using the generalized dark matter (GDM) methods [3] and principal component analysis (PCA);
- > Studied the equation of state (w) and the effective sound speed (c_{deff}^2) to describe GDM fluids;
- > The dark matter fluid includes elements only interact with photons and baryons through gravitational interactions;
- > PCA reduces the dimensionality of high-dimensional data to a small number of dominant templates, known as principal components (PCs);
- > New models represented by linear combinations of PCs.

Methods

- > Described the system with 3 equations of motion.
- Found the equation of state by definition: $w_d = \frac{P_d}{\hat{}}$.
- > Obtained the expression of effective sound speed based on the definition of the sound speed: $c_d^2(k, a) = \frac{\delta P_d}{\delta \rho_d}$.
- > Programmed these equations and other basic parameters of the universe in **CLASS** code [6];
- > Projected the effective sound speed onto the **PCs**;
- > Applied cosmic microwave background (CMB) data to this method to obtain **constraints** of these models.

WZDR Model Description

- \triangleright In Λ -CDM, the cold dark matter (CDM) and neutrinos form the dark fluid;
- > WZDR model assumes the existence of two additional dark species: one is **massless** (ϕ) and the other is **massive** (ξ) [7];
- > 3 major phases:
 - 1. Thermal and chemical equilibrium;
 - 2. The universe expands and the temperature drops. ξ decays to ϕ becomes dominant. This happens at the **transition** redshift (z_t) .
 - 3. ξ becomes negligible, and ϕ becomes **dominant**.
- \triangleright Reduces Hubble tension to around 2.7 σ [1].

Outputs

Figure 1: The fractional difference of the equation of state between various z_t .

Figure 3: The equation of state for different m_{ϕ} for the CEDE model and the Λ -CDM model.

Figure 2: The heatmap of the effective sound speed of the WZDR model.

Figure 4: The heatmap of the effective sound speed of the CEDE model.

Take Away!

- > Analyzed the dark matter models to ease Hubble tension;
- > Used the generalized dark matter methods and principal component analysis.

Analysis of Output

WZDR Model:

- \triangleright For w, the transition happens around z_t ;
- > Relativistic to non-relativistic to relativistic;
- $\succ c_{d.\text{eff}}^2$ is similar to the Λ -CDM model;
- \triangleright Has subtle difference at high k and low a.

CEDE Model:

- For w, there are oscillatory structures differed from the Λ -CDM model;
- $> c_{d,eff}^2$ shows similar oscillatory structures like w.

CEDE Model Description

- \triangleright Added a scalar field (ϕ) with a mass (m_{ϕ}) to the early universe around matter-radiation equality [8];
- > Conformally **coupled** with dark matter;

Acknowledgements

We appreciate KINSC Research Travel

Funding and KINSC Summer Scholars

acknowledge support in part by NASA

ATP grant 17-ATP17-0162 earlier in this

project. Maxwell Aifer from UMBC also

to fund the research and travel. We

contributes to the project.

> **Diluted** in the later universe;

Current Work and Next Step

- > Generated PCs from the **Fisher Matrix** and **CMB perturbation theory**;
- \triangleright Project $c_{d.eff}^2$ onto the PCs;
- > Plot the coefficients versus the PCs;
- > Consider the effects of uncertainties to coefficients;
- > Project real CMB data to obtain constraints to these models.

Figure 5: An example of generated PCs.

References

- Aloni D., Berlin A., Joseph M., Schmaltz M., Weiner N., Phys. Rev. D, 105, 123516 (2022).
- Hu W., The Astrophysical Journal, 506, 485 (1998).
- 4. J. Samsing, E. V. Linder, and T. L. Smith, Phys. Rev. D 86, 123504 (2012).
- Kopp M., Skordis C., Thomas D. B., Physical Review D, 94, 023510 (2016).
- 6. Lesgourgues J., https://arxiv.org/abs/1104.2932 (2011). Schöneberg N., Franco Abellan G., J. Cosmology Astropart. Phys., 2022, 001 (2022).
- 8. T. Karwal, M. Raveri, B. Jain, J. Khoury, and M. Trodden, Phys. Rev. D 105, 063535 (2022).