華

捯

第四届全国大学生数学竞赛决赛试卷 (非数学类,2013)

考试形式: 闭卷 考试时间: 150 分钟 满分: 100 分.

题	号		1]	111	四	五	六	总分
满	分	25	15	15	15	15	15	100
得	分							

注意: 1、所有答题都须写在此试卷纸密封线右边,写在其它纸上一律无效.

2、密封线左边请勿答题,密封线外不得有姓名及相关标记.

3、如当题空白不够,可写在当页背面,并标明题号.

得 分	
评阅人	

一、(本趣 25 分) 解答下列各题
$$1、计算 \lim_{x\to 0+} \left[\ln(x \ln a) \cdot \ln \left(\frac{\ln ax}{\ln \frac{x}{a}} \right) \right], (a>1).$$

- 2. 设 f(u,v) 具有连续偏导数,且满足 $f_u(u,v) + f_v(u,v) = uv$,求 $y(x) = e^{-2x} f(x,x)$ 所满足的一阶微分方程. 并求其通解.
- 3. 求在 $[0,+\infty)$ 上的可微函数 f(x),使 $f(x) = e^{-u(x)}$,其中 $u = \int_0^x f(t) dt$.
- 4. 计算不定积分 $\int x \arctan x \ln(1+x^2) dx$.
- 5. 过直线 $\begin{cases} 10x + 2y 2z = 27 \\ x + y z = 0 \end{cases}$ 作曲面 $3x^2 + y^2 z^2 = 27$ 的切平面,求此切平面的方程.

得 分	
评阅人	

二、(本题 15 分)设曲面 $\Sigma: z^2 = x^2 + y^2, 1 \le z \le 2$, 其面密度为常数 ρ . 求在原点处的质量为 1 的质点和 Σ 之间的引力(记引力常数为G).

鉄

華

椡

得 分	
评阅人	

三、(本题 15 分)设f(x)在[1,+ ∞)连续可导,

$$f'(x) = \frac{1}{1+f^2(x)} \left[\sqrt{\frac{1}{x}} - \sqrt{\ln\left(1+\frac{1}{x}\right)} \right],$$

证明: $\lim_{x\to +\infty} f(x)$ 存在.

-	
考生编号:	柒
所在院校:	海
准考证号:	
姓名:	

得 分	四、(本题 15 分)设函数 $f(x)$ 在[-2,2]上二阶可导,
评阅人	且 $ f(x) <1$,又 $f^2(0)+[f'(0)]^2=4$. 试证: 在
	$(-2,2)$ 内至少存在一点 ξ , 使得 $f(\xi) + f''(\xi) = 0$.

得 分	
评阅人	

五、(本题 15 分) 求二重积分

$$I = \iint_{x^2 + y^2 \le 1} |x^2 + y^2 - x - y| dxdy$$

- 本本:	
考生编号:	柒
	粉本
姓名:	

·	
得分	六、(本题 15 分)若对于任何收敛于零的序列 $\left\{x_{n}\right\}$,
评阅人	级数 $\sum_{n=1}^{\infty} a_n x_n$ 都是收敛的,试证明级数 $\sum_{n=1}^{\infty} a_n $ 收敛.
	n-1