4.1 — Multivariate OLS Estimators ECON 480 • Econometrics • Fall 2022

Dr. Ryan Safner Associate Professor of Economics

✓ safner@hood.edu

ryansafner/metricsF22

metricsF22.classes.ryansafner.com

Contents

The Multivariate OLS Estimators

The Expected Value of $\hat{\beta}_i$: Bias

Precision of $\hat{\beta}_j$

A Summary of Multivariate OLS Estimator Properties (Updated) Measures of Fit

The Multivariate OLS Estimators

The Multivariate OLS Estimators

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + u_i$$

• The ordinary least squares (OLS) estimators of the unknown population parameters $\beta_0, \beta_1, \beta_2, \cdots, \beta_k$ solves:

$$\min_{\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_k} \sum_{i=1}^n \left[Y_i - \underbrace{(\hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \hat{\beta}_2 X_{2i} + \dots + \hat{\beta}_k X_{ki})}_{\hat{y}_i} \right]^2$$

- Again, OLS estimators are chosen to minimize the sum of squared residuals (SSR)
 - ullet i.e. sum of squared "distances" between actual values of Y_i and predicted values \hat{Y}_i

The Multivariate OLS Estimators: FYI

Math FYI

in linear algebra terms, a regression model with n observations of k independent variables:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u}$$

$$\underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{Y}_{(n\times 1)}} = \underbrace{\begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,n} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{k,1} & x_{k,2} & \cdots & x_{k,n} \end{pmatrix}}_{\mathbf{Y}_{(n\times 1)}} \underbrace{\begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix}}_{\boldsymbol{\beta}_{(k\times 1)}} + \underbrace{\begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}}_{\mathbf{u}_{(n\times 1)}}$$

- The OLS estimator for β is $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$
- Appreciate that I am saving you from such sorrow

The Sampling Distribution of $\hat{\beta}_j$

• For *any* individual β_j , it has a sampling distribution:

$$\hat{\beta}_j \sim N\left(E[\hat{\beta}_j], se(\hat{\beta}_j)\right)$$

- We want to know its sampling distribution's:
 - Center: $E[\hat{\beta}_j]$; what is the expected value of our estimator?
 - **Spread**: $se(\hat{\beta}_j)$; how precise or uncertain is our estimator?

The Sampling Distribution of \hat{eta}_{j}

• For any individual β_j , it has a sampling distribution:

$$\hat{\beta}_j \sim N\left(E[\hat{\beta}_j], se(\hat{\beta}_j)\right)$$

- We want to know its sampling distribution's:
 - Center: $E[\hat{\beta}_j]$; what is the expected value of our estimator?
 - **Spread**: $se(\hat{\beta}_j)$; how precise or uncertain is our estimator?

The Expected Value of $\hat{\beta}_{j}$: Bias

Exogeneity and Unbiasedness

- As before, $\mathbb{E}[\hat{\beta}_j] = \beta_j$ when X_j is **exogenous** (i.e. $cor(X_j, u) = 0$)
- We know the true $\mathbb{E}[\hat{\beta}_j] = \beta_j + cor(X_j, u) \frac{\sigma_u}{\sigma_{X_j}}$ O.V. Bias
- If X_j is endogenous (i.e. $cor(X_j, u) \neq 0$), contains omitted variable bias
- Let's "see" an example of omitted variable bias and quantify it with our example

• Suppose the *true* population model of a relationship is:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

- What happens when we run a regression and **omit** X_{2i} ?
- Suppose we estimate the following **omitted regression** of just Y_i on X_{1i} (omitting X_{2i}):¹

$$Y_i = \alpha_0 + \alpha_1 X_{1i} + \nu_i$$

- Key Question: are X_{1i} and X_{2i} correlated?
- Run an auxiliary regression of X_{2i} on X_{1i} to see:¹

$$X_{2i} = \delta_0 + \delta_1 X_{1i} + \tau_i$$

- If $\delta_1 = 0$, then X_{1i} and X_{2i} are not linearly related
- If $|\delta_1|$ is very big, then X_{1i} and X_{2i} are strongly linearly related

- Now substitute our **auxiliary regression** between X_{2i} and X_{1i} into the **true model**:
 - We know $X_{2i} = \delta_0 + \delta_1 X_{1i} + \tau_i$

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

- Now substitute our **auxiliary regression** between X_{2i} and X_{1i} into the **true model**:
 - We know $X_{2i} = \delta_0 + \delta_1 X_{1i} + \tau_i$

$$Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{2i} + u_{i}$$

$$Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} \left(\delta_{0} + \delta_{1} X_{1i} + \tau_{i} \right) + u_{i}$$

- Now substitute our auxiliary regression between X_{2i} and X_{1i} into the **true model**:
 - We know $X_{2i} = \delta_0 + \delta_1 X_{1i} + \tau_i$

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + u_{i}$$

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}(\delta_{0} + \delta_{1}X_{1i} + \tau_{i}) + u_{i}$$

$$Y_{i} = (\beta_{0} + \beta_{2}\delta_{0}) + (\beta_{1} + \beta_{2}\delta_{1})X_{1i} + (\beta_{2}\tau_{i} + u_{i})$$

- Now substitute our **auxiliary regression** between X_{2i} and X_{1i} into the **true model**:
 - We know $X_{2i} = \delta_0 + \delta_1 X_{1i} + \tau_i$

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + u_{i}$$

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}\left(\delta_{0} + \delta_{1}X_{1i} + \tau_{i}\right) + u_{i}$$

$$Y_{i} = (\beta_{0} + \beta_{2}\delta_{0}) + (\beta_{1} + \beta_{2}\delta_{1})X_{1i} + (\beta_{2}\tau_{i} + u_{i})$$

• Now relabel each of the three terms as the OLS estimates (α 's) and error (ν_i) from the **omitted regression**, so we again have:

$$Y_i = \alpha_0 + \alpha_1 X_{1i} + \nu_i$$

• Crucially, this means that our OLS estimate for X_{1i} in the **omitted regression** is:

$$\alpha_1 = \beta_1 + \beta_2 \delta_1$$

$$\alpha_1 = \beta_1 + \beta_2 \delta_1$$

- The **Omitted Regression** OLS estimate for X_1 , (α_1) picks up *both*:
- 1. The true effect of X_1 on $Y: \beta_1$
- 2. The true effect of X_2 on $Y: \beta_2$... as pulled through the relationship between X_1 and $X_2: \delta_1$
- Recall our conditions for omitted variable bias from some variable $\mathbf{Z_i}$:
- 1. \mathbb{Z}_i must be a determinant of $Y_i \implies \beta_2 \neq 0$
- 2. $\mathbb{Z}_{\mathbf{i}}$ must be correlated with $X_i \implies \delta_1 \neq 0$
- Otherwise, if Z_i does not fit these conditions, $\alpha_1 = \beta_1$ and the **omitted regression** is unbiased!

• The "True" Regression $(Y_i \text{ on } X_{1i} \text{ and } X_{2i})$

$$\widehat{\text{Test Score}}_i = 686.03 - 1.10 \, \text{STR}_i - 0.65 \, \% \text{EL}_i$$

term	estimate
<chr></chr>	<dbl></dbl>
(Intercept)	686.0322487
str	-1.1012959
el_pct	-0.6497768
3 rows 1-2 of 5 columns	

• The "Omitted" Regression $(Y_i \text{ on just } X_{1i})$

$$\widehat{\text{Test Score}}_i = 698.93 - 2.28 \, \text{STR}_i$$

term	estimate
<chr></chr>	<dbl></dbl>
(Intercept)	698.932952
str	-2.279808
2 rows 1-2 of 5 columns	

• The "Auxiliary" Regression $(X_{2i} \text{ on } X_{1i})$

$$\widehat{\%EL_i} = -19.85 + 1.81 \text{ STR}_i$$

term	estimate
<chr></chr>	<dbl></dbl>
(Intercept)	-19.854055
str	1.813719
2 rows 1-2 of 5 columns	

"True" Regression

• Omitted Regression α_1 on STR is -2.28

$$Test Score_i = 686.03 - 1.10 STR_i - 0.65 \%EL$$

"Omitted" Regression

$$\hat{\text{Test Score}}_{i} = 698.93 - 2.28 \, \text{STR}_{i}$$

"Auxiliary" Regression

$$\widehat{\%EL_i} = -19.85 + 1.81 \text{ STR}_i$$

"True" Regression

• Omitted Regression α_1 on STR is -2.28

$$Test Score_i = 686.03 - 1.10 STR_i - 0.65 \%EL$$

"Omitted" Regression

$$\widehat{\text{Test Score}}_i = 698.93 - 2.28 \, \text{STR}_i$$

"Auxiliary" Regression

$$\widehat{\%EL_i} = -19.85 + 1.81 \text{ STR}_i$$

$$\alpha_1 = \beta_1 + \beta_2 \delta_1$$

• The true effect of STR on Test Score: -1.10

"True" Regression

$$\widehat{\text{Test Score}}_i = 686.03 - 1.10 \, \text{STR}_i - 0.65 \, \% \text{EL}$$

"Omitted" Regression

$$\hat{\text{Test Score}}_{i} = 698.93 - 2.28 \, \text{STR}_{i}$$

"Auxiliary" Regression

$$\widehat{\%}EL_i = -19.85 + 1.81 \text{ STR}_i$$

$$\alpha_1 = \beta_1 + \beta_2 \delta_1$$

- The true effect of STR on Test Score: -1.10
- The true effect of %EL on Test Score: -0.65

"True" Regression

$$\widehat{\text{Test Score}}_i = 686.03 - 1.10 \, \text{STR}_i - 0.65 \, \% \text{EL}$$

"Omitted" Regression

$$\hat{\text{Test Score}}_{i} = 698.93 - 2.28 \, \text{STR}_{i}$$

"Auxiliary" Regression

$$\widehat{\%}EL_i = -19.85 + 1.81 \text{ STR}_i$$

$$\alpha_1 = \beta_1 + \beta_2 \delta_1$$

- The true effect of STR on Test Score: -1.10
- The true effect of %EL on Test Score: -0.65
- The relationship between STR and %EL: 1.81

"True" Regression

$$\widehat{\text{Test Score}}_i = 686.03 - 1.10 \, \text{STR}_i - 0.65 \, \% \text{EL}$$

"Omitted" Regression

$$\hat{\text{Test Score}}_i = 698.93 - 2.28 \, \text{STR}_i$$

"Auxiliary" Regression

$$\widehat{\%EL_i} = -19.85 + 1.81 \text{ STR}_i$$

$$\alpha_1 = \beta_1 + \beta_2 \delta_1$$

- The true effect of STR on Test Score: -1.10
- The true effect of %EL on Test Score: -0.65
- The relationship between STR and %EL: 1.81
- So, for the **omitted regression**:

$$-2.28 = -1.10 + (-0.65)(1.81)$$

"True" Regression

$$\widehat{\text{Test Score}}_i = 686.03 - 1.10 \, \text{STR}_i - 0.65 \, \% \text{EL}$$

"Omitted" Regression

$$\hat{\text{Test Score}}_{i} = 698.93 - 2.28 \, \text{STR}_{i}$$

"Auxiliary" Regression

$$\widehat{\%EL_i} = -19.85 + 1.81 \text{ STR}_i$$

$$\alpha_1 = \beta_1 + \beta_2 \delta_1$$

- The true effect of STR on Test Score: -1.10
- The true effect of %EL on Test Score: -0.65
- The relationship between STR and %EL: 1.81
- So, for the **omitted regression**:

$$-2.28 = -1.10 + (-0.65)(1.81)$$

$$0.V.Bias = -1.18$$

Precision of β_j

Precision of $\hat{\beta}_{j}$ I

- $\sigma_{\hat{\beta}_j}$; how **precise** or **uncertain** are our estimates?
- Variance $\sigma_{\hat{\beta}_j}^2$ or standard error $\sigma_{\hat{\beta}_j}$

Precision of $\hat{\beta_j}$ II

$$var(\hat{\beta}_j) = \underbrace{\frac{1}{1 - R_j^2}}_{VIF} \times \frac{(SER)^2}{n \times var(X)}$$

$$se(\hat{\beta}_j) = \sqrt{var(\hat{\beta}_j)}$$

- Variation in $\hat{\beta}_j$ is affected by **four** things now¹:
- 1. Goodness of fit of the model (SER)
 - Larger $SER \to \text{larger } var(\hat{\beta}_j)$
- 2. Sample size, n
 - Larger $n \to \text{smaller } var(\hat{\beta}_j)$
- 3. Variance of X
 - Larger $var(X) \to \text{smaller } var(\hat{\beta}_j)$
- 4. Variance Inflation Factor $\frac{1}{(1-R_i^2)}$
 - Larger VIF, larger $var(\hat{eta}_j)$
 - This is the only new effect

VIF and Multicollinearity I

• Two independent (X) variables are multicollinear:

$$cor(X_i, X_l) \neq 0 \quad \forall j \neq l$$

- Multicollinearity between X variables does not bias OLS estimates
 - ullet Remember, we pulled another variable out of u into the regression
 - If it were omitted, then it would cause omitted variable bias!
- Multicollinearity does increase the variance of each OLS estimator by

$$VIF = \frac{1}{(1 - R_j^2)}$$

VIF and Multicollinearity II

$$VIF = \frac{1}{(1 - R_i^2)}$$

- R_i^2 is the R^2 from an auxiliary regression of X_j on all other regressors (X's)
 - i.e. proportion of $var(X_i)$ explained by other X's

VIF and Multicollinearity III

\bigcirc

Example

Suppose we have a regression with three regressors (k = 3):

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$$

• There will be three different R_j^2 's, one for each regressor:

$$R_1^2$$
 for $X_{1i} = \gamma + \gamma X_{2i} + \gamma X_{3i}$
 R_2^2 for $X_{2i} = \zeta_0 + \zeta_1 X_{1i} + \zeta_2 X_{3i}$
 R_3^2 for $X_{3i} = \eta_0 + \eta_1 X_{1i} + \eta_2 X_{2i}$

VIF and Multicollinearity IV

$$VIF = \frac{1}{(1 - R_j^2)}$$

- R_j^2 is the R^2 from an auxiliary regression of X_j on all other regressors (X's)
 - i.e. proportion of $var(X_j)$ explained by other X's
- The R_j^2 tells us how much other regressors explain regressor X_j
- Key Takeaway: If other X variables explain X_j well (high R_J^2), it will be harder to tell how $cleanly X_j \to Y_i$, and so $var(\hat{\beta}_j)$ will be higher

VIF and Multicollinearity V

• Common to calculate the **Variance Inflation Factor (VIF)** for each regressor:

$$VIF = \frac{1}{(1 - R_i^2)}$$

- VIF quantifies the factor (scalar) by which $var(\hat{eta}_j)$ increases because of multicollinearity
 - e.g. VIF of 2, 3, etc. \Longrightarrow variance increases by 2x, 3x, etc.
- Baseline: $R_i^2 = 0 \implies no$ multicollinearity $\implies VIF = 1$ (no inflation)
- Larger $R_j^2 \Longrightarrow \text{larger VIF}$
 - Rule of thumb: VIF > 10 is problematic

VIF and Multicollinearity in Our Example I

Multicollinearity Between Our Independent Variables

- Higher %EL predicts higher STR
- Hard to get a precise marginal effect of STR holding %EL constant
 - Don't have much data on districts with low STR and high %EL (and vice versa)!

VIF and Multicollinearity in Our Example II

Again, consider the correlation between the variables

```
1 ca_school %>%
2  # Select only the three variables we want (there are many)
3  select(str, testscr, el_pct) %>%
4  # make a correlation table (all variables must be numeric)
5  cor()
```

```
str testscr el_pct
str 1.0000000 -0.2263628 0.1876424
testscr -0.2263628 1.0000000 -0.6441237
el pct 0.1876424 -0.6441237 1.0000000
```

• cor(STR, %EL) = -0.644

VIF and Multicollinearity in R I

str el_pct 1.036495

- $var(\hat{\beta}_1)$ on str increases by **1.036** times (3.6%) due to multicollinearity with el_pct
- $var(\hat{\beta}_2)$ on el_pct increases by **1.036** times (3.6%) due to multicollinearity with str

VIF and Multicollinearity in R II

• Let's calculate VIF manually to see where it comes from:

```
1 # run auxiliary regression of x2 on x1
 2 auxreg <- lm(el pct ~ str,</pre>
                data = ca school)
   library(broom)
 6 auxreg %>% tidy() # look at reg output
                                                                                              estimate
 term
 <chr>
                                                                                                  <dbl>
 (Intercept)
                                                                                             -19.854055
 str
                                                                                               1.813719
2 rows | 1-2 of 5 columns
```


VIF and Multicollinearity in R III

```
# extract our R-squared from aux regression (R_j^2)

aux_r_sq <- glance(auxreg) %>%

pull(r.squared)

aux_r_sq # look at it
```

[1] 0.03520966

VIF and Multicollinearity in R IV

```
1 # calculate VIF manually
2
3 our_vif <- 1 / (1 - aux_r_sq) # VIF formula
4
5 our_vif</pre>
```

[1] 1.036495

ullet Again, multicollinearity between the two X variables inflates the variance on each by 1.036 times

Another Example: Expenditures/Student I

\bigcirc

str

Example

What about district expenditures per student?

-0.2263628 1.0000000 0.18764237 -0.61998215

el pct -0.6441237 0.1876424 1.00000000 -0.07139604

expn_stu 0.1912728 -0.6199821 -0.07139604 1.00000000

Another Example: Expenditures/Student II

Multicollinearity Between Our Independent Variables

- Higher spend predicts lower STR
- Hard to get a precise marginal effect of STR holding spend constant
 - Don't have much data on districts with high STR and high spend (and vice versa)!

Another Example: Expenditures/Student II

Would omitting Expenditures per student cause omitted variable bias?

- $1. cor(Test, spend) \neq 0$
- $2. cor(STR, spend) \neq 0$

Another Example: Expenditures/Student III

term <chr></chr>	estimate <dbl></dbl>
(Intercept)	649.577947257
str	-0.286399240
el_pct	-0.656022660
expn_stu	0.003867902
4 rows 1-2 of 5 columns	

```
1 vif(reg3)

str. el not even stu
```

```
str el_pct expn_stu
1.680787 1.040031 1.629915
```

- Including expn_stu reduces bias but increases variance of β_1 by 1.68x (68%)
 - and variance of β_2 by 1.04x (4%)

Multicollinearity Increases Variance

	Test Scores	Test Scores	Test Scores		
Constant	698.93***	686.03***	649.58***		
	(9.47)	(7.41)	(15.21)		
Student Teacher Ratio	-2.28***	-1.10***	-0.29		
	(0.48)	(0.38)	(0.48)		
Percent ESL Students		-0.65***	-0.66***		
		(0.04)	(0.04)		
Spending per Student			0.00***		
			(0.00)		
n	420	420	420		
R^2	0.05	0.43	0.44		
SER	18.54	14.41	14.28		
* p < 0.1, ** p < 0.05, *** p < 0.01					

Perfect Multicollinearity

• **Perfect multicollinearity** is when a regressor is an exact linear function of (an)other regressor(s)

$$\widehat{Sales} = \hat{\beta_0} + \hat{\beta_1}$$
 Temperature (C) + $\hat{\beta_2}$ Temperature (F)

Temperature (F) = 32 + 1.8 * Temperature (C)

- cor(temperature (F), temperature (C)) = 1
- $R_j^2 = 1 \to VIF = \frac{1}{1-1} \to var(\hat{\beta}_j) = 0!$
- This is fatal for a regression
 - A logical impossiblity, always caused by human error

Perfect Multicollinearity: Example

Example

$$\widehat{TestScore}_i = \hat{\beta}_0 + \hat{\beta}_1 STR_i + \hat{\beta}_2 \%EL + \hat{\beta}_3 \%EF$$

- %EL: the percentage of students learning English
- %EF: the percentage of students fluent in English
- %EF = 100 %EL
- |cor(%EF, %EL)| = 1

Perfect Multicollinearity: Example II

```
1 # generate %EF variable from %EL
2 ca_school_ex <- ca_school %>%
3    mutate(ef_pct = 100 - el_pct)
4
5 # get correlation between %EL and %EF
6 ca_school_ex %>%
7    summarize(cor = cor(ef_pct, el_pct))

COr
<dbl>
-1
1 row
```


Perfect Multicollinearity: Example III

Perfect Multicollinearity Example IV

```
data = ca school ex)
 3 summary(mcreq)
Call:
lm(formula = testscr ~ str + el_pct + ef_pct, data = ca_school_ex)
Residuals:
   Min
            10 Median
                            3Q
                                   Max
-48.845 -10.240 -0.308 9.815 43.461
Coefficients: (1 not defined because of singularities)
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 686.03225
                        7.41131 92.566 < 2e-16 ***
                        0.38028 -2.896 0.00398 **
str
            -1.10130
            -0.64978
                        0.03934 - 16.516 < 2e - 16 ***
el pct
                  NA
ef_pct
                                     NA
                                              NA
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 14.46 on 417 degrees of freedom
Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
```

mcreg <- lm(testscr ~ str + el_pct + ef_pct,</pre>

F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16

```
term
<chr>
    (Intercept)

str
el_pct
ef_pct
4 rows | 1-1 of 5 columns
```

Note R drops one of the multicollinear regressors (ef_pct) if you include both

A Summary of Multivariate OLS Estimator Properties

A Summary of Multivariate OLS Estimator Properties

- $\hat{\beta}_j$ on X_j is biased only if there is an omitted variable (Z) such that:
 - 1. $cor(Y, Z) \neq 0$
 - $2. cor(X_i, Z) \neq 0$
 - If Z is included and X_i is collinear with Z, this does not cause a bias
- $var[\hat{\beta}_j]$ and $se[\hat{\beta}_j]$ measure precision (or uncertainty) of estimate:

$$var[\hat{\beta}_j] = \frac{1}{(1 - R_j^2)} * \frac{SER^2}{n \times var[X_j]}$$

- VIF from multicollinearity: $\frac{1}{(1-R_i^2)}$
 - R_j^2 for auxiliary regression of X_j on all other X's
 - mutlicollinearity does not bias $\hat{\beta}_j$ but raises its variance
 - perfect multicollinearity if X's are linear function of others

(Updated) Measures of Fit

(Updated) Measures of Fit

- Again, how well does a linear model fit the data?
- How much variation in Y_i is "explained" by variation in the model (\hat{Y}_i) ?

$$Y_i = \hat{Y}_i + \hat{u}_i$$

$$\hat{u}_i = Y_i - \hat{Y}_i$$

(Updated) Measures of Fit: SER

ullet Again, the **Standard errror of the regression (SER)** estimates the standard error of u

$$SER = \frac{SSR}{n - \mathbf{k} - 1}$$

- ullet A measure of the spread of the observations around the regression line (in units of Y), the average "size" of the residual
- Only new change: divided by n-k-1 due to use of k+1 degrees of freedom to first estimate β_0 and then all of the other β 's for the k number of regressors¹

(Updated) Measures of Fit: R^2

$$R^{2} = \frac{SSM}{SST}$$

$$= 1 - \frac{SSR}{SST}$$

$$= (r_{X,Y})^{2}$$

• Again, R^2 is fraction of total variation in Y_i ("total sum of squares") that is explained by variation in predicted values (\hat{Y}_i) , i.e. our model ("model sum of squares")

$$R^2 = \frac{var(\hat{Y})}{var(Y)}$$

Visualizing R^2

• Total Variation in Y: Areas A + D + E + G

$$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

• Variation in Y explained by X1 and X2: Areas D + E + G

$$SSM = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$$

• Unexplained variation in Y: Area A

$$SSR = \sum_{i=1}^{n} (\hat{u}_i)^2$$

Compare with one X variable

$$R^2 = \frac{SSM}{SST} = \frac{D + E + G}{A + D + E + G}$$

Visualizing R^2

```
1 # make a function to calc. sum of sq. devs
2 sum_sq <- function(x) {sum((x - mean(x))^2)}
4 # find total sum of squares
5 SST <- elreg %>%
     augment() %>%
     summarize(SST = sum sq(testscr))
9 # find explained sum of squares
10 SSM <- elreg %>%
     augment() %>%
12
     summarize(SSM = sum sq(.fitted))
13
14 # look at them and divide to get R^2
15 tribble(
     ~SSM, ~SST, ~R_sq,
     SSM, SST, SSM/SST
18
     ) %>%
     knitr::kable()
19
```

SSM	SST	R_sq	
64864.3	152109.6	0.4264314	

$$R^{2} = \frac{SSM}{SST} = \frac{D + E + G}{A + D + E + G}$$

(Updated) Measures of Fit: Adjusted $ar{R}^2$

- Problem: R^2 mechanically increases every time a new variable is added (it reduces SSR!)
 - Think in the diagram: more area of *Y* covered by more *X* variables!
- ullet This does **not** mean adding a variable *improves the fit of the model* per se, R^2 gets **inflated**
- We correct for this effect with the **adjusted** \bar{R}^2 which penalizes adding new variables:

$$\bar{R}^2 = 1 - \underbrace{\frac{n-1}{n-k-1}}_{penalty} \times \frac{SSR}{SST}$$

- In the end, recall \mathbb{R}^2 was never that useful¹, so don't worry about the formula
 - Large sample sizes (n) make R^2 and \bar{R}^2 very close

${ar R}^2$ In R

```
1 summary(elreg)
Call:
lm(formula = testscr ~ str + el_pct, data = ca_school)
Residuals:
   Min
            1Q Median
                            3Q
                                  Max
-48.845 -10.240 -0.308 9.815 43.461
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                        7.41131 92.566 < 2e-16 ***
(Intercept) 686.03225
                        0.38028 -2.896 0.00398 **
str
            -1.10130
            -0.64978
                        0.03934 -16.516 < 2e-16 ***
el_pct
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 14.46 on 417 degrees of freedom
Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
```

- Base R^2 (R calls it "Multiple R-squared") went up
- Adjusted R-squared (\bar{R}^2) went down

Coefficient Plots (with modelsummary)

Plot

Code

Regression Table (with modelsummary)

Output

Code

	Simple Model	MV Model 1	MV Model 2
Constant	698.93***	686.03***	649.58***
	(9.47)	(7.41)	(15.21)
STR	-2.28***	-1.10***	-0.29
	(0.48)	(0.38)	(0.48)
% ESL Students		-0.65***	-0.66***
		(0.04)	(0.04)
Spending per Student			0.00***
			(0.00)
N	420	420	420
Adj. R ²	0.05	0.42	0.43
SER	18.54	14.41	14.28
* p < 0.1, ** p < 0.05, *** p	0 < 0.01		

