České vysoké učení technické v Praze Fakulta elektrotechnická

Sbírka teorie a příkladů

Teorie grafů

Jakub Adamec Praha, 2025

Obsah

		${f s}$		
1	Nec	oriento	ované grafy	2
	1.1	Základ	dní pojmy a definice	. 2
		1.1.1	Základní typy grafů	. 2
		1.1.2	Sled, tah, cesta	. 2
		1.1.3	Kružnice a cyklus	. 2
		1.1.4	Stupně vrcholů	. 3
	1.2	Skóre		. 3
	1.3	Hledá	ní grafu ke skóre	. 3
	1.4	Příkla	ad hledání grafu pro skóre	. 4
	1.5	Další	pojmy založené na stupních vrcholů	. 5

Úvod

Tento text není psán jako učebnice, nýbrž jako soubor řešených příkladů, u kterých je vždy uveden celý korektní postup a případné poznámky řešitelů, které často nebývají formální, a tedy by neměly být používány při oficálním řešení problémů, například při zkoušce. Jedná se pouze o pokus předat probíranou látku z různých úhlů pohledu, pokud by korektní matematický nebyl dostatečně výřečný.

Autor velmi ocení, pokud čtenáři zašlou své podněty, úpravy anebo připomínky k textu. Budu rád za všechnu konstruktivní kritiku a nápady na změny. Dejte mi také prosím vědět, pokud v textu objevíte překlepy, chyby a jiné.

Errata a aktuální verse textu bude na stránce https://github.com/knedl1k/XP01TGR.

Poděkování. Rád bych poděkoval profesorce Marii Demlové nejen za zadání, okolo kterých je postavena celá sbírka, ale také za celý předmět Teorie grafů.

Text je vysázen makrem LATEX Leslieho Lamporta s využitím balíků hypperref Sebastiana Rahtze a Heiko Oberdiek. Grafy byly nakresleny pomocí maker TikZ Tilla Tantaua.

Stručné informace o textu

Všechny růžové texty jsou zároveň hypertextové odkazy.

U každého příkladu je pro ušetření místa a zpřehlednění sbírky řešení jednotlivých příkladů ihned pod zadáním.

1 Neorientované grafy

1.1 Základní pojmy a definice

Graf je soubor vrcholů, hran a vztahů incidence. Zapíšeme jako $G = (V, E, \varepsilon)$, kde V je neprázdná množina vrcholů, E množina hran a ε říká "co hrany představují", respektive

$$\varepsilon: E \to \{\{u, v\} \mid u, v \in V\}. \tag{1}$$

Jestliže pro dvě hrany $e_1, e_2 \in E$ platí, že $\varepsilon(e_1) = \varepsilon(e_2)$, pak se hrany e_1, e_2 nazývají **paralelní**. Pokud graf nemá paralelní hrany, nazýváme jej **prostý**. V takovém případě také stačí chápat graf jako dvojici G = (V, E), kde hrany jsou neprázdné maximálně dvouprvkové podmnožiny V.

Smyčkou nazveme takovou hranu, která je $e \in E$ a pro $\varepsilon(e) = \{u, v\}$ platí u = v.

 \mathcal{S} ... je množina všech neorientovaných prostých grafů bez smyček.

1.1.1 Základní typy grafů

Rozlišujeme 2 základní typy grafů, orientované a neorientované.

- (a) Orientovaný graf: $\varepsilon: E \to \{(u,v) \mid u,v \in V\}; u \in P_V(\varepsilon), v \in K_V(\varepsilon)$
- (b) Neorientovaný graf: $\varepsilon: E \to \{(u,v) \mid u,v \in V\}; u,v$ jsou krajní vrcholy ε

1.1.2 Sled, tah, cesta

- (a) Sled je taková posloupnost, která začíná a končí vrcholem a kde po každém vrcholu následuje hrana, tedy $v_1, e_1, v_2, e_2, \ldots, v_k$. V orientovaném případě vždy platí $P_V(e_1) = v_i$, $K_V(e_i) = v_{i+1}$. Neorientovaný pouze říká, že v_i a v_{i+1} jsou krajní vrcholy.
- (b) Tah je sled, ve kterém se nesmí opakovat hrany.
- (c) Cesta je sled, ve kterém se nesmí opakovat vrcholy, s výjimkou počátečeního, ve kterém cesta může končit.

1.1.3 Kružnice a cyklus

Kružnice je uzavřená neorientovaná cesta v grafu, cyklus uzavřená orientovaná cesta.

Příklad kružnice:

1.1.4 Stupně vrcholů

Pokud $G = (V, E, \varepsilon)$, pak

- vstupní stupeň v $d^-(v) = \|\{e \mid K_V(e) = v\}\|$
- výstupní stupeň v $d^+(v) = \|\{e \mid P_V(e) = V\}\|$
- stupeň v $d(v) = d^{-}(v) + d^{+}(v)$

Příklad

Pro G = (V, E) je pouze $d(v) = \|\{e \mid v \text{ je krajní vrchol } e, \text{ smyčku počítáme } 2\times\}\|.$

Z toho máme důsledek

$$\sum_{v \in V} d(v) = 2\|E\| \tag{2}$$

Tedy každý graf má sudý počet vrcholů lichého stupně.

1.2 Skóre

Skóre grafu $(G\in\mathcal{S})$ je $D=(d_1,d_2,\ldots,d_n),$ kde d_i je stupeň vrcholu $v_i.$ G=(V,E) $\|V\|=d$

Mějme příklad skóre (1,1,1,2,2,3). Jak by mohl vypadat graf s takovým skóre?

Jak vidíme, skóre jednoznačně neurčuje graf. Můžeme ze skóre ale říct, jestli je takové skóre validním skóre nějakého grafu?

1.3 Hledání grafu ke skóre

Tvrzení. Máme $D=(d_1,d_2,\ldots,d_n),\ d_1\leq d_2\leq \cdots \leq d_n.$ Pak D je skóre některého grafu G=(V,E) právě tehdy, když $D'=(d'_1,\ldots,d'_{n-1})$ definovaná tak, že

$$d_i = \begin{cases} d_i & \text{pokud } i < n - d_n, \\ d_i - 1 & \text{pokud } i \ge n - d_n. \end{cases}$$

je skóre nějakého $G' \subseteq \mathcal{S}$.

Důkaz.

"⇐": Existuje G' pro D'. G vytvoříme tak, že k G' přidáme vrchol v_n a spojíme se všemi vrcholy $v_{n-d_n}, v_{n-d_1+1}, \ldots, v_{n-1}$. Pak G má skóre D. \blacksquare

" \Rightarrow ": Máme G s $D=(d_1,d_2,\ldots,d_n)$, kde d_1 je stupeň v_1,d_2 je stupeň v_2 a tak dále.

Mějme $\mathcal{G} = \{G \mid G \text{ má } D\} \neq \emptyset.$

Cíl: Chceme dokázat, že mezi všemi grafy \mathcal{G} existuje jeden, který má vlastnost, že poslední vrchol je spojen hranami s $d_n - 1$ předcházejícími vrcholy.

 $\forall G \in \mathcal{G}$ mějme j_G , což bude největší index vrcholu, tak že $\{v_{j_G}, v_n\} \notin E$, tedy není mezi nimi hrana. To znamená, že pro ideální G chceme docílit $j_G = n - d_n - 1$.

Jako G_1 označíme ten $G_1 \in \mathcal{G}$, že j_{G_1} je nejmenší. (Může být j_{G_1} menší jak $n - d_n - 1$? Ne. v_n má stupeň d_n , a kdyby bylo j_{G_1} menší, tak by bylo vrcholů více, tzn. ne všechny by měly hranu s v_n .)

Označme $j_1 = j_{G_1}$.

Víme $j_1 \ge n - d_n - 1$. Teď nás ale zajímá, jestli $j_1 = n - d_n - 1$. Dokažme sporem. Kdyby $j_1 > n - d_n - 1$, tak

Protože mezi d_n předcházejícími vrcholy je nějaký, který není spojen hranou s v_n , v našem případě v_{j_1} , nutně to znamená, že v_n musí mít hranu s nějakým vrcholem, řekněme v_k , který má ještě nižší index.

$$d(v_k) \leq d(v_{i_1})$$

 v_k je v pořadí dříve, než v_{j_1} , tudíž musí mít nutně menší roven stupeň. To ale nutně znamená, že v_{j_1} musí být spojen s alespoň jedním vrcholem, označme si ho v_ℓ , se kterým není spojen v_k , protože v_k je spojen s v_n , zatímco v_{j_1} není.

Vytvořme

$$G_0 = (V_0, E_0)$$

$$V_0 = V_1 = V$$

$$E_0 = (E_1 \setminus \{\{v_n, v_k\}, \{v_\ell, v_{j_1}\}\}) \cup \{\{v_k, v_\ell\}, \{v_n, v_{j_1}\}\}$$

 G_0 má skóre D a zároveň $j_{G_0} < j_1$. To ale znamená, že G_1 nebyl graf s nejmenším j_G , což je spor. A proto nejmenší j_G je $j_{G_0} = n - d_n - 1$.

Ověřili jsme, že takový graf určitě existuje, takže G' dostaneme z G_0 odstraněním v_n . G' pak má skóre D'.

1.4 Příklad hledání grafu pro skóre

Mějme
$$D = (1, 1, 2, 3, 3); n = 5, d_n = 3; n - d_n = 2.$$

$$D_1 = (1, 0, 1, 2) \stackrel{\text{uspo.}}{\rightarrow} (0, 1, 1, 2); n_1 = 4, d_{n_1} = 2; n_1 - d_{n_1} = 2.$$

 $D_2 = (0,0,0) \dots$ tento graf je určitě existuje, jedná se o diskrétní graf.

Kresleme postupně, začněme u D_2 .

x y z

Pak přidejme vrchol a hrany tak, aby skóre odpovídalo D_1 .

A nakonec tak, aby odpovídalo D.

1.5 Další pojmy založené na stupních vrcholů

Definice. Je dán neorientovaný prostý graf bez smyček. Pak definujme

- $\delta(G) = \min \left\{ d(v) \mid v \in V \right\}$ je minimální stupeň grafu G.
- $\Delta(G) = \max \left\{ d(v) \mid v \in V \right\}$ je maximální stupeň grafu G.
- $d(G) = \frac{\sum_{v \in V} d(v)}{|V|}$ je průměrný stupeň grafu G.
- $\varepsilon(G) = \frac{|E|}{|V|} = \frac{1}{2}d(G)$ je poměr počtu hran ku počtu vrcholů.

Označme n=|V| a m=|E|. Pak $d(G)=\frac{2m}{n}$ a $\varepsilon(G)=\frac{m}{n}.$

Zřejme platí $\delta(G) \leq d(G) \leq \Delta(G).$