COVID-19 DAILY DEATH TOLL **PREDICTION IN USA**

Fall 2020 CSCI-SHU 360 Machine Learning

Veronica Hu - Yuan Huang - Yumeng Zhang

OI. INTRODUCTION

Problem situation and significance

03. MACHINE LEARNING

How we select and train
ML models

02. DESCRIPTIVE ANALYSIS

Datasets and interesting insights

Final results and future works

OI. INTRODUCTION

1,594,204

Deaths caused by COVID-19 worldwide

285,643

Deaths caused by COVID-19 in the United States

WHAT IS TIME SERIES DATA?

02. OUR DATASET

DATASET I: GENERAL INFO

E.g. deaths, tests, positive cases

DATASET 2: HOSPITAL CAPACITY

• · · · · •

DATASET 3: MOBILITY

Number of population inflows and outflows

MOBILITY DATASET VISUALIZATION

O3. METHODS A. FEATURE SHIFTING

Autoregressive Model (AR)

Predicted daily death cases on
$$9/30$$
 = $C + b1 \cdot$ Daily death cases on $9/30$ + $b2 \cdot$ Daily death cases on $9/29$ + + $bk \cdot$ Daily death cases on k days before

Shift other time-series features from previous ${f k}$ days

Elbow point: k = 10

O3. METHODS B. MODELING

Baseline Model: Rolling Mean 02

SGDRegressor (Ridge)

03

Support Vector Regressor

04

Decision Tree Regressor

- Single tree
- Random Forest
- XGBoost

05

RNN-LSTM

(Long short-term memory)

LSTM

04. FINAL RESULTS

Baseline: 0.22

Colsample_bytree = 0.5, Gamma = 0.58, Learning_rate = 0.59, Max_depth = 4 N_estimators = 4 Subsample = 0.95

	SGD	SVR	Decision Tree	Random Forest	XGBoost	LSTM
test_MSE	0.21	3.50	0.15	0.14	0.08	0.23
train_MSE	0.89	0.12	0.34	0.29	0.13	0.07

04. FUTURE WORKS

- Models
 - Better hyperparameter
 - Ensemble modeling -- stacking
 - Make Improvements for LSTM
- Dataset
 - December and future daily death data

THANK YOU!

Welcome to reach us out if you have any questions regarding our project

Our Github link:

https://github.com/Yuan-032/Machine_learning_final_project

Yumeng Zhang (yz5160@nyu.edu)

Veronica Hu (jh6181@nyu.edu)

Yuan Huang (yh2741@nyu.edu)

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik