Selected Exercises From Dummit And Foote

Shannon Heylmun

November 25, 2015

Contents

0	Preliminaries		
	0.1 The Basics	2	
	Introduction to Groups 1.1 Basic Axioms and Examples	7	

iv CONTENTS

Chapter 0

Preliminaries

0.1 The Basics

In 1 through 4, let \mathcal{A} be the set of 2×2 matrices with real number entries. Let

$$M = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

and let $\mathcal{B} = \{X \in \mathcal{A} | MX = XM\}$

1. Determine which of the following elements of A lie in B:

$$\left(\begin{array}{cc}1&1\\0&1\end{array}\right),\left(\begin{array}{cc}1&1\\1&1\end{array}\right)\left(\begin{array}{cc}0&0\\0&0\end{array}\right),\left(\begin{array}{cc}1&1\\1&0\end{array}\right)\left(\begin{array}{cc}1&0\\0&1\end{array}\right),\left(\begin{array}{cc}0&1\\1&0\end{array}\right)$$

- 2. Prove that if $P, Q \in \mathcal{B}$, then $P + Q \in \mathcal{B}$.
- 3. Prove that if $P, Q \in \mathcal{B}$, then $P \cdot Q \in \mathcal{B}$.
- 4. Find conditions on p, q, r, s which determine precisely when

$$\left(\begin{array}{cc} p & q \\ r & s \end{array}\right) \in \mathcal{B}$$

- 5. Determine whether the following functions f are well defined:
 - (a) $f: \mathbb{Q} \to \mathbb{Z}$ defined by f(a/b) = a.
 - (b) $f: \mathbb{Q} \to \mathbb{Q}$ defined by $f(a/b) = a^2/b^2$.
- 6. Determine whether the function $f: \mathbb{R}^+ \to \mathbb{Z}$ defined by mapping a real number r to the first digit to the right of the decimal point in a decimal expansion of r is well defined.
- 7. Let $f:A\to B$ be a surjective map of sets. Prove the relation $a\sim b$ if and only if f(a)=f(b) is an equivalence relation whose equivalence classes are the fibers of f.

1

0.2 Properties of the Integers

1. For each of the following pairs of integers a and b, determine the GCD, LCM, and write the GCD in the form ax + by for some integers x and y.

(a)
$$a = 792, b = 275$$

$$792 = (3)275 + 11$$
$$275 = (25)11 + 0$$
$$\Rightarrow GCD(792, 275) = 11$$

Since dl = ab where d is the GCD of a and b and l is the LCM, we see that $11l = 275 \cdot 792$. Solving for l, we find that the LCM of 275 and 792 is 19800.

We can see that 11 = 792(1) - 275(3).

(b)
$$a = 1761, b = 1567$$

$$1761 = (1)1567 + 194$$

$$1567 = (8)194 + 15$$

$$194 = (12)15 + 14$$

$$15 = 14 + 1$$

$$\Rightarrow GCD(1761, 1567) = 1$$

Since a and b are relatively prime, their LCM is the product $1567 \cdot 1761 = 2,759,487$. The GCD can be written as the linear combination 1 = 118(1567) - 105(1761).

2. Prove that if the integer k divides the integers a and b, then k divides as + bt for every pair of integers s and t.

Proof. Let $k, a, b \in \mathbb{Z}$ such that k|a and k|b. This means that a = km and b = kn for some integers m and n. Let $s, t \in \mathbb{Z}$. Then we see that

$$as + bt = kms + knt$$

= $k(ms + nt)$

Since k|k(ms+nt), the claim is proven.

3. Prove that if n is composite, then there are integers a and b such that n divides ab but n does not divide a nor b.

Proof. Let n be composite. Then n may be written as $a \cdot b$ where 1 < a, b < n. Since n divides itself, $n|a \cdot b$; however, since a, b < n, it is impossible for n to divide a or b.

4. Let a, b and N be fixed integers with $a, b \neq 0$ and let d = (a, b). Suppose x_0 and y_0 are particular solutions to ax + by = N. Prove that for any integer t, the integers

$$x = x_0 + \frac{b}{d}t$$
 and $y = y_0 - \frac{a}{d}t$

are also solutions to ax + by = N.

Proof. Let $a, b, N \in \mathbb{Z}$ with $a, b \neq 0$, and let $d = \gcd(a, b)$. Let x_0 and y_0 be solutions to ax + by = N, and let t be an arbitrary real number.

$$a(x_0 + \frac{b}{d}t) + b(y_0 - \frac{a}{d}t)$$

$$= ax_0 + \frac{ab}{d}t + by_0 - \frac{ba}{d}t$$

$$= ax_0 + by_0 = N$$

This proves the claim.

- 5. Determine the value of $\psi(n)$ for each integer $n \leq 30$ where ψ denotes the Euler ψ -function.
- 6. Prove the Well Ordering Property of \mathbb{Z} by induction and prove the minimal element is unique.
- 7. If p is prime, prove that there do not exist nonzero integers a and b such that $a^2 = pb^2$ (i.e., $\sqrt{p} \notin \mathbb{Q}$).

Proof. Let p be prime. Suppose toward a contradiction that $a, b \in \mathbb{Z}$ with $a \neq b$, $a, b \neq 1$ such that $a^2 = pb^2$. This implies that

$$p = \frac{a^2}{b^2}$$

Note that $a = p_1^{\alpha_1} p_2^{\alpha_2} ... p_n^{\alpha_n}$ (by the fundamental theorem of arithmetic). We can then see that $a^2 = p_1^{2\alpha_1} p_2^{2\alpha_2} ... p_n^{2\alpha_n}$ has an even number of prime factors. The same can be said of b. Since the qotient a^2/b^2 is prime, every prime factor of b^2 must be a factor of a^2 .

There are an even number of such factors, and since $a \neq b$ and $a^2/b^2 > 1$ there must be a greater (even) number of prime factors of a^2 . This implies that the prime factorization of a^2 contains at least two factors, so p cannot be prime. This contradiction proves the claim.

- 8. Let p be prime, $n \in \mathbb{Z}^+$. Find a formula for the largest power of p which divides n!.
- 9. Write a computer program to determine (a, b) and to express (a, b) in the form ax + by for some integers x and y.
- 10. Prove that for any given positive integer N, there exist only finitely many integers n with $\psi(n) = N$. Conclude in particular that $\psi(n)$ tends to infinity as n tends to infinity.
- 11. Prove that if d divides n then $\psi(d)$ divides $\psi(n)$.

Proof. Let $n, d \in \mathbb{Z}$ such that d|n. We then see that every prime factor d_i of d also divides n, and is therefore a prime factor of n. Suppose that $n = p_1^{\alpha_1} p_2^{\alpha_2} ... p_m^{\alpha_m}$. We then know that

$$\phi(n) = p_1^{\alpha_1 - 1}(p_1 - 1)p_2^{\alpha_2 - 1}(p_2 - 1)...p_m^{\alpha_m - 1}(p_m - 1)$$

Since $d|n, d = d_1^{\delta_1} d_2^{\delta_2} ... d_n^{\delta_n}$ where $d_i \in \{p_i\}$. We also know that

$$\phi(d) = d_1^{\delta_1 - 1} (d_1 - 1) d_2^{\delta_2 - 1} (d_2 - 1) \dots d_m^{\delta_m - 1} (d_m - 1)$$

Since every d_i is an element of $\{p_j|1 \leq j \leq m\}$, and we may then infer that each $d_i - 1$ is an element of $\{p_j - 1|1 \leq j \leq m\}$, we see that every factor of $\phi(d)$ is a factor of $\phi(n)$, and the claim is shown.

0.3 $\mathbb{Z}/n\mathbb{Z}$: The Integers Mod n

1. Write all the elements of the residue classes of $\mathbb{Z}/18\mathbb{Z}$.

Solution 1.

- 2. Prove that the distinct equivalence classes in $\mathbb{Z}/n\mathbb{Z}$ are precisely $\overline{0}, \overline{1}, \overline{2}, ..., \overline{n-1}$ (use the Division Algorithm).
- 3. Prove that if $a = a_n 10^n + a_{n-1} 10^{n-1} + ... + a_1 10 + a_0$ is any positive integer, then $a \equiv a_n + a_{n-1} + ... + a_1 + a_0 \pmod{9}$.

Proof. Let
$$a=a_n10^n+a_{n-1}10^{n-1}+\ldots+a_110^1+a_0$$
. We will begin by showing that
$$10^n\equiv 1\pmod 9$$

for any $n \in \mathbb{Z}^+$ by induction.

Base case: $10^1 \equiv 1 \pmod{9}$ is clear.

Induction step: Assume that $10^n \equiv 1 \pmod{9}$. Then

$$10^{n+1} = 10 \cdot 10^n \equiv 1 \cdot 1 \pmod{9} \equiv 1 \pmod{9}$$

We can therefore use the fact that to conclude that $a \equiv a_n + a_{n-1} + ... + a_1 + a_0 \pmod{9}$. \square

4. Compute the remainder when 37^{100} is divided by 29.

Solution 2.

5. Compute the last two digits of 9^{1500} .

Solution 3.

$9^{1500} =$		$(9^3)^{500}$
=		729^{500}
≡	29^{500}	$\pmod{100}$
≡	41^{250}	$\pmod{100}$
≡	81^{500}	$\pmod{100}$
≡	$9^{125} \cdot 9^{125}$	$\pmod{100}$
≡	$49^{25} \cdot 49^{25}$	$\pmod{100}$
≡	1^{25}	$\pmod{100}$
≡	1	$\pmod{100}$

6. Prove that the squares of the elements in $\mathbb{Z}/4\mathbb{Z}$ are just $\overline{0}$ and $\overline{1}$.

Proof. Let $\overline{a} \in \mathbb{Z}/4\mathbb{Z}$.

- (a) If $\overline{a} = \overline{0}$
- (b) If $\overline{a} = \overline{2}$
- (c) If $\overline{a} = \overline{0}$
- (d) If $\overline{a} = \overline{0}$

7. Prove for any integers a and b that $a^2 + b^2$ never leaves a remainder of 3 when divided by 4.

Proof. Let $a, b \in \mathbb{Z}$. Consider $a^2 + b^2$. Since $a^2 \equiv \overline{0}$ or $\overline{1} \pmod{4}$ always, and the same holds for b^2 , we have $a^2 + b^2 \equiv \overline{0}, \overline{1}$, or $\overline{2} \pmod{4}$ always.

8. Prove that the equation $a^2 + b^2 = 3c^2$ has no solutions in nonzero integers a, b, and c.

Proof. By the previous exercise, $a^2 + b^2 \equiv \overline{0}, \overline{1}$, or $\overline{2} \pmod{4}$ for any integers a and b. By the penultimate exercise, $c^2 \equiv \overline{0}$ or $\overline{1} \pmod{4}$.

9. Prove that the square of any odd integer always leaves a rremainder of 1 when divided by 8.

Proof. Let $n \in \mathbb{Z}$ be odd. Then $n = 2 \cdot m + 1$ for some $m \in \mathbb{Z}$. We can then consider n^2

$$n^{2} = (2m + 1)^{2}$$
$$= 4m^{2} + 4m + 1$$
$$= 4m(m + 1) + 1$$

If m is even, then 8|4m; otherwise, 8(m+1). This proves that $4m(m+1) \equiv 0 \pmod{8}$, so $n = 4m(m+1) + 1 \equiv 1 \pmod{8}$.

- 10. Prove that the number of elements of $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is $\psi(n)$.
- 11. Prove that if $\overline{a}, \overline{b} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, then $\overline{a} \cdot \overline{b} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$.
- 12. Let $n \in \mathbb{Z}$, n > 1, and let $a \in \mathbb{Z}$ with $1 \le a \le n$. Prove if a and n are not relatively prime, there exists an integer b with $1 \le b < n$ such that $ab \equiv 0 \pmod{n}$ and there cannot be an integer c such that $ac \equiv 1 \pmod{n}$.

Proof. Let $n \in \mathbb{Z}, n > 1$ and $a \in \mathbb{Z}, 1 \le a \le n$. Suppose that $\gcd(a, n) \ne 1$. Then there exists some $m \in \mathbb{Z}^+$ such that m|a, m|n and $1 \le m \le a$. Let b be such a number. Then consider $b \cdot a$. Since $b|n, b \cdot a \equiv \overline{0} \pmod{n}$.

- 13. Let $n \in \mathbb{Z}$, n > 1, and let $a \in \mathbb{Z}$ with $1 \le a \le n$. Prove that if a and n are relatively prime then there is an integer c such that $ac \equiv 1 \pmod{n}$.
- 14. Prove that $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is the set of elements \overline{a} of $\mathbb{Z}/n\mathbb{Z}$ with (a, n) = 1.
- 15. For each of the following pairs of integers a and n, show that a is relatively prime to n and determine the multiplicative inverse of \overline{a} in $\mathbb{Z}/n\mathbb{Z}$.
 - (a) a = 13, n = 20
 - (b) a = 69, n = 89
 - (c) a = 1891, n = 3797
 - (d) a = 6003722857, n = 77695236973

16. Write a computer program to add and multiply \pmod{n} for any given n. Outputs should be the least residues of the operations. Include the feature that if (a, n) = 1, an integer c between 1 and n-1 such that $\overline{ac} = \overline{1}$ may be printed on request.

Chapter 1

Introduction to Groups

1.1 Basic Axioms and Examples

Let G be a group.

- 1. Determine which of the following binary operations are associative:
 - (a) the operation \star on \mathbb{Z} defined by $a \star b = a b$
 - (b) the operation \star on \mathbb{R} defined by $a \star b = a + b + ab$
 - (c) the operation \star on \mathbb{Q} defined by $a \star b = \frac{a+b}{5}$
 - (d) the operation \star on $\mathbb{Z} \times \mathbb{Z}$ defined by $(a, b) \star (c, d) = (ad + bc, bd)$
 - (e) the operation \star on $\mathbb{Q} \{0\}$ defined by $a \star b = \frac{a}{b}$
- 2. Decide which of the binary operations in the preceding exercise are commutative.
- 3. Prove that addition of the residue classes in $\mathbb{Z}/n\mathbb{Z}$ is associative. Assume it is well defined.
- 4. Prove that multiplication of residue classes in $\mathbb{Z}/n\mathbb{Z}$ is associative. Assume it is well defined.
- 5. Prove for all n > 1 that $\mathbb{Z}/n\mathbb{Z}$ is not a group under multiplication of residue classes.
- 6. Determine which of the following sets are groups under addition:
 - (a) Rational numbers in lowest terms whose denominators are odd.
 - (b) Rational numbers in lowest terms whose denominators are even.
 - (c) Rational numbers of absolute value less than 1.
 - (d) Rational numbers of absolute value greater than or equal to 1 and including 0.
 - (e) Rational numbers with denominators equal to 1 or 2.
 - (f) Rational numbers with denominators equal to 1, 2, or 3.
- 7. Let $G = \{x \in \mathbb{R} | 0 \le x < 1\}$ and for $x, y \in G$, let $x \star y$ be the fractional part of x + y. Prove that \star is a well defined binary operation on G and G is an abelian group under \star (called the **real numbers** (mod 1)).
- 8. Let $G = \{z = in\mathbb{C} | z^n = 1 \text{ for some } n \in \mathbb{Z}^+ \}.$
 - (a) Prove that G is a group under multiplication (called the **group of roots of unity** in \mathbb{C}).

- (b) Prove that G is not a group under addition.
- 9. Let $G = \{a + b\sqrt{2} \in \mathbb{R} | a, b \in \mathbb{Q}\}.$
 - (a) Prove that G is a group under addition.
 - (b) Prove that the nonzero elements of G are a group under multiplication.
- 10. Prove that a finite group is abelian if and only if its group table is a syymmetric matrix.
- 11. Find the orders of each element of the additive group $\mathbb{Z}/12\mathbb{Z}$.
- 12. Find the orders of the following elements of the multiplicative group $(\mathbb{Z}/12\mathbb{Z})^{\times}$: $\overline{1}, \overline{-1}, \overline{5}, \overline{7}, \overline{-7}, \overline{13}$.
- 13. Find the orders of the following elements of the additive group $\mathbb{Z}/36\mathbb{Z}$: $\overline{1}, \overline{2}, \overline{6}, \overline{9}, \overline{10}, \overline{12}, \overline{-1}, \overline{-10}, \overline{-18}$.
- 14. Find the orders of the following elements of the additive group $(\mathbb{Z}/36\mathbb{Z})^{\times}$: $\overline{1}, \overline{-1}, \overline{5}, \overline{13}, \overline{-13}, \overline{17}$.
- 15. Prove that $(a_1a_2...a_n)^{-1} = a_n^{-1}a_{n-1}^{-1}...a_1^{-1}$ for all $a_i \in G$.
- 16. Let $x \in G$. Prove that $x^2 = 1$ if and only if |x| is either 1 or 2.
- 17. Let $x \in G$. Prove that if |x| = n for some positive integer n, then $x^{-1} = x^{n-1}$.
- 18. Let $x, y \in G$. Prove that xy = yx if and only if $y^{-1}xy = x$ if and only if $x^{-1}y^{-1}xy = 1$.
- 19. Let $x \in G$ and let $a, b \in \mathbb{Z}^+$.
 - (a) Prove that $x^{a+b} = x^a x^b$ and $(x^a)^b = x^{ab}$.
 - (b) Prove that $(x^a)^{-1} = x^{-a}$.
 - (c) Establish part (a) for arbitrary integers a and b.
- 20. For $x \in G$, show that x and x^{-1} have the same order.
- 21. Let G be a finite group and let $x \in G$ be of order n. Prove that if n is odd, then $x = (x^2)^k$ for some k.
- 22. If x and g are elements of G, prove that $|x|=|g^{-1}xg|$. Deduce that |ab|=|ba| for all $a,b\in G$.
- 23. Suppose $x \in G$ and $|x| = n < \infty$. If n = st for some positive integers s and t, prove that $|x^s| = t$.
- 24. If a and b are commuting elements of G, prove that $(ab)^n = a^n b^n$ for all $n \in \mathbb{Z}$.
- 25. Prove that if $x^2 = 1$ for all $x \in G$, then G is abelian.
- 26. Assume H is a nonempty subset of (G, \star) which is closed under \star and under inverses. Prove that H is a group under \star restricted to H (H is a **subgroup of** G).
- 27. Prove that if x is an element of the group G, then $\{x^n|n\in\mathbb{Z}\}$ is a subgroup of G (called the **cyclic subgroup of** G **generated by** x).
- 28. Let (A, \star) and (B, \diamond) be groups and let $A \times B$ be their direct product. Verify all the group axioms for $A \times B$.

- (a) Prove that the associative law holds: for all $(a_i, b_i) \in A \times B, i = 1, 2, 3, (a_1, b_1)[(a_2, b_2)(a_3, b_3)] = [(a_1, b_1)(a_2, b_2)](a_3, b_3),$
- (b) Prove that (1,1) is the identity of $A \times B$, and
- (c) Prove that the inverse (a, b) is (a^{-1}, b^{-1}) .
- 29. Prove that $A \times B$ is an abelian group if and only if A and B are.
- 30. Prove that the elements (a, 1) and (1, b) of $A \times B$ commuted and the order of (a, b) is the least common multiple of |a| and |b|.
- 31. Prove that any finite group G of even order contains an element of order 2.
- 32. If x is an element of finite order n in G, prove that the elements 1, x, x^2 , ..., x^{n-1} are all distinct. Deduce that |x| < G.
- 33. Let x be an element of finite order n in G.
 - (a) Prove that if n is odd then $x^i \neq x^{-i}$ for all i = 1, 2, ..., n 1.
 - (b) Prove that if n = 2k and $1 \le i < n$ then $x^i = x^{-i}$ if and only if i = k.
- 34. If x is an element of infinite order in G, prove that the elements x^n , $n \in \mathbb{Z}$ are all distinct.
- 35. If x is an element of finite order in G, use the Division Algorithm to show that any integral power of x equals one of the elements in the set of $\{1, x, x^2, ..., x^{n-1}\}$.
- 36. Assume $G = \{1, a, b, c\}$ is a group of order 4. Assume also that G has no element of order 4. Use the cancellation laws to show that there is a unique group table for G. Deduce that G is abelian.