REPRESENTAÇÃO BINÁRIA E UNIDADES DE MEDIDA

Introdução à Ciência da Computação - ICC0001

Cronograma

- Representação de números negativos
- Representação de cores e imagens
- Operações aritméticas de números binários
- Bit X Byte
- Unidades de Medida (bits, bytes, KB, MB, GB, TB, Hz)

- Existem formas diferentes de se representar um número negativo em binário
 - Em binário porque já estamos falando em como os computadores guardam a informação.
- Tudo depende do formalismo que é adotado
 - Magnitude com sinal
 - Complemento a um
 - Complemento a dois
 - Excesso 2^{m-1}
- IMPORTANTE: Saiba quantos bits compõem o número representado.

Magnitude com sinal

- O bit mais significativo é o sinal do número
 - O bit 0 (zero) indica número positivo
 - O bit 1 (um) indica número negativo
- Os demais representam a magnitude absoluta
- Exemplo:
 - **1**0001 = -1
 - **1**1001 = **-**9
 - **0**1001 = **+**9
- Duplicidade do zero: $+0_{10} = 0000 \ 0000_2$ e $-0_{10} = 1000 \ 0000_2$

Complemento a um

- Também tem um bit de sinal
 - 0 para +
 - 1 para –
- Para tornar um número negativo deve-se substituir todos os zeros por uns e todos os uns por zero
- Exemplo (binário de 8 bits):
 - +9₁₀ é igual a 0000 1001₂
 - o 9₁₀ é igual a 1111 0110₂
- Duplicidade do zero: $+0_{10} = 0000 \ 0000_2$ e $-0_{10} = 1111 \ 1111_2$
- ESTA REPRESENTAÇÃO É OBSOLETA

Complemento a dois

- Também tem um bit de sinal
 - 0 para +
 - 1 para –

Adição em binário:

```
0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0 e vai 1 (10)

1 + 1 + 1 = 1 e vai 1 (11)
```

- Para tornar um número negativo deve-se substituir todos os zeros por uns e todos os uns por zero e adicionar 1 ao bit menos significativo
- Exemplo (binário de 8 bits):
 - 9₁₀ é igual a 0000 1001
 - -9₁₀ é igual a 1111 0111
- Caso zero: $0_{10} = 0000 \ 0000_2 => 1111 \ 1111_2 + 1_2 => 0000 \ 0000_2$

Excesso 2^{m-1}

- Cada número é armazenado como a soma dele com 2^{m-1}, onde m é o número de bits utilizados. Assim um número de 8 bits, por exemplo, é denominado como excesso 128 (=2⁷).
- Exemplo:
 - 9_{10} é igual a 9 + 128 = 137 = 1000 1001
 - -9_{10} é igual a -9 + 128 = 119 = 0111 0111
- Interessante: é idêntico ao complemento de dois, o que muda é o sinal de magnitude

Representação de cores

- Modelo preto e branco
 - Utiliza-se apenas duas cores (com cor, sem cor)

- Representação fácil por apenas um bit
- Modelo monocromático
 - Utiliza-se várias tonalidades de uma mesma cor

- Modelo colorido
 - Todas as cores podem ser representadas pela misturas das três cores primárias (VERMELHO, VERDE E AZUL) em um fundo branco.

Representação de cores

Paleta de cores do Microsoft Paint

Exemplos:

Amarelo => Vermelho + Verde

Rosa => Vermelho + Azul

 $Marrom => Vermelho_{(++)} + Verde_{(+)} + Azul_{(+)}$

Usamos um valor para indicar a quantidade de cada cor primária :

Marrom Vermelho: 105 / 255 (41%)

Verde: 92 – 255 (36%)

Azul: 54 – 255 (21%)

* costuma-se utilizar 256 tonalidades para cada cor primária

- Semelhante ao bordado em toalhas:
 - Existe um tecido com vários quadradinhos onde pode-se ou não passar um fio de alguma cor
 - Desenhos/palavras são feitas da combinação de fios de várias cores
 - Monitores e outros aparelhos de display utilizam o mesmo princípio (mapa de bits ou bitmap)

Preto e branco

Modelo monocromático

Modelo colorido

(diversas profundidades de cores)

4 bits

8 bits

Representação de Letras / Símbolos

 Cada número em binário representa uma letra

Tabela ASCII ===>

Unicode
 (http://unicode-table.com/en/)

0	32 ?	64 @	96 '	128 C 129 û	160 á	192 L	224 δ
1 ⊜	33 !	65 A	97 a	129 ű	161 í	193 ⊥	225 B
2 ⊕	34 "	66 B	98 Ь	130 é	162 ó	401	226 8
3 ♥	35 #	67 C	99 c	131 â	163 ú	194 T	227 8
4 +	36 \$	68 D	100 d	132 ä	164 ñ	196 -	228 õ
5 🎍	37 %	69 E	101 e	133 à	165 ñ	197 +	229 ŏ
1	38 &	70 F	102 f	134 å	166 ₫	197 + 198 ã	230 μ
ž -	39 ,	71 6	103 g		167 º	199 ã	231 Þ
8	40 (72 H	104 h	135 ç 136 ê	168 6	200 ⊑	232 Þ
ŏ	41)	73 Ï	105 i	137 ë	169 ®		233 ú
10	42 *	74 Ĵ	106 j	138 è	170 -	201 <u>[</u> 202 <u>[</u>	234 ô
11 ð	43 +	75 K	107 k	139 ï	171 %		235 ù
12 ¥	4.4	76 Ë	108 1	140 î	172 ¼	203 ∓ 204 ∓	236 ý
13	45 -	77 M	109 m	141 ì	173 i	205 =	236 ý 237 Ý
14 ß	46 .	78 N	110 n	142 Ä	174 «	206 #	
15 %	47 /	79 0	111 0	143 Å	175 »	207 m	238 - 239 -
16	48 D	80 P	112 p	144 É	176 🖁	208 δ	240 -
10 11 3 12 9 13 14 5 15 * 16 * 17 4 18 ‡	49 1	81 0	113 a	145 æ	176 () 177 ()	209 Đ	241 ±
18 🕏	50 2	82 R	114 r	146 Æ	178	210 Ê	242 =
19 !!	51 3	83 S	115 s	147 8	179 🔭	211 E	243 %
19 !! 20 ¶	52 4	84 T	116 t	148 ö		212 È	244 9
21 5	53 5	85 Ü	117 u	149 ò	180 - 181 A	213	245 5
^^	54 6	86 V	118 v	150 û	182 Å	214 f	246 ÷
22 .	55 7	87 W	119 w	160 á	183 Å	215 î	247
24 T	56 8	88 X	220	161 î	184 @	216 ï	248 0
24 ↑ 25 ↓	57 9	89 Ŷ	221	162 ó		217]	249
	58 :	90 Z	222 h	163 ú	185 186	040	250 .
			223	164 ñ			251
~~	59 ; 60 <	91 [92 \	223 - 224 ô	165 ñ	187 188]	219 1 220 1	252 3
	61 =	92 1	224 U 225 β	166 ₫		22U P	252 2
29 ↔ 30 ▲		83 J			189 ¢ 190 ¥	221 T	253 ² 254 •
3U ▲ 34 ₩	62 >	74	226 8 227 8	167 º 168 ¿	404	222 Î	254 •
31 ▼	63 ?	95 _	227 đ	168 č	191 7	223	255

Operações aritméticas

- Soma
- Subtração
- Multiplicação
- Divisão

Soma binária

 A operação de soma entre números binários é bastante simples e análoga à operação com números decimais.

Usa-se o transporte... (vai 1)

Adição em decimal:

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$0 + 2 = 2$$

...

$$0 + 9 = 9$$

$$1 + 0 = 1$$

...

$$1 + 9 = 0$$
 e vai 1

$$2 + 0 = 2$$

• • •

$$2 + 9 = 1 e vai 1$$

. . .

Adição em binário:

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 0$$
 e vai 1

Exemplo:

$$0101 +$$

$$11111$$
 1111

$$0101 +$$

Também análogo ao decimal. Usamos a ideia de empréstimo.

Sub em binário:

$$0 - 0 = 0$$

$$1 - 0 = 1$$

$$1 - 1 = 0$$

0 - 1 = 1 e empresta 1

Exemplo:

- Outra forma de realizarmos a subtração é utilizar a conversão com a representação de complemento de dois.
- Exemplo Decimal:

•
$$25 - 25 = 25 - (+25) = 25 + (-25) = 00$$

Em binário (Complemento a dois):

- Outra forma de realizarmos a subtração é utilizar a conversão com a representação de complemento de dois.
- Exemplo Decimal:

•
$$25 - 25 = 25 - (+25) = 25 + (-25) = 00$$

• Em binário (Complemento a dois):

Nós desprezamos o *carry*, mas ele é importante. O número **1** indica que o resultado é **positivo** e o número **0** indica que é **negativo**.

Desprezar

- Outra forma de realizarmos a subtração é utilizar a conversão com a representação de complemento de dois.
- Exemplo Decimal:

•
$$25 - 25 = 25 - (+25) = 25 + (-25) = 00$$

Em binário (Complemento a dois):

Quando o número de bits resultantes é maior do que o número de bits utilizados é dito que ocorreu *overflow*

Desprezar

Multiplicação Binária

Análogo ao sistema decimal

Mult. em binário:

$$0 \times 0 = 0$$

$$1 \times 0 = 0$$

$$1 \times 1 = 1$$

$$0 \times 1 = 0$$

Exemplo:

1010

x 10

0000

1010+

10100

Divisão Binária

Adivinhem... Análogo ao decimal

```
101100 <u>L 100</u>
- 100 1011
 0011
- 000
    110
    100
     0100
```

- Bits são utilizados para representar o tamanho das palavras do computador, utilizadas pelas instruções do processador
 - 8 bits = 1 byte
 - 16 bits = 2 bytes = word
 - o 32 bits = 4 bytes = Dword
 - o 64 bits = 8 bytes = Qword
- Bits são normalmente utilizado para calcular velocidades
 - 56 bits por segundo = 56 bps
 - 10 megabits por segundo = 10 Mbps

 Bytes são frequentemente utilizados para representar espaços de armazenamento em mídias:

```
1 B = 1 byte
1 KB (kilobyte) = 10<sup>3</sup> Bytes = 1000 bytes
1 MB (megabyte) = 10<sup>6</sup> Bytes = 1000 Kbytes
1 GB (gigabyte) = 10<sup>9</sup> Bytes = 1000 Mbytes
1 TB (terabyte) = 10<sup>12</sup> Bytes = 1000 Gbytes
```

 Discussão entre usar potências de 2 (notação computacional) ou potências de 10 (notação de fácil assimilação para leigos)

- Bytes são frequentemente utilizados para representar espaços de armazenamento em mídias:
 - 1 B = 1 byte

```
• 1 KiB = 2^{10} Bytes \approx 1024 bytes
```

• 1 MiB = 2^{20} Bytes ≈ 1024 KiB

• 1 GiB = 2^{30} Bytes ≈ 1024 MiB

• 1 TiB = 2^{40} Bytes ≈ 1024 GiB

- Kilo Binary Byte (KiB) kibibyte
- Mega Binary Byte (MiB) mebibyte
- Giga Binary Byte (GiB) gibibyte

- Fabricantes de discos magnéticos e ópticos perceberam que era mais fácil utilizar ordens de grandeza decimais para medir seus produtos e torná-los mais atraentes:
 - Um disco rígido de 320 GB, na verdade tem 298 GiB
 - Um DVD de 4,7 GB possui 4,37GiB
- As pessoas gostam de pluralizar as ordens de grandeza:
 - "Pendrive de 4 Gigas!"
 - o "HD de 2 Teras"

- Para determinar medida de capacidade de armazenamento utiliza-se Bytes!
- Na transmissão de dados entre dispositivos normalmente utiliza-se a medição em bits! (bps, Kbps, Mbps)
 - OBS: uma exceção comum é para transferência de arquivos que costuma ser medida em Bytes / s.

"Minha internet é de 10M**b**ps!"

"Meu arquivo está sendo copiado a 2,5 MB/s"

- Quando falamos em transferência de dados existe ainda a questão do uso da codificação 8b/10b:
 - 8 bits de dados + 2 bits de paridade (controle / segurança)

Logo, uma conexão de internet de **10Mbps** seria equivalente a **1MB/s** de dados efetivos e não **1.25MB/s**

curiosidade: provedores de internet não são obrigados por lei a fornecer a velocidade máxima contratada, mas apenas uma porcentagem do que foi negociado.

(2014 => 40%)

• Exemplo de transmissão:

Tamanho do arquivo: 3 GB

Velocidade de transmissão: 2Mbps

 $(cod. 8b/10b) \rightarrow 2 Mbps = 0.2 MB/s$

Hertz (Hz)

- É uma unidade de medida para expressar frequência (s⁻¹)
 - n operações por segundo
 - n 'alguma coisa' por segundo
 - Em computação geralmente usado para ilustrar a frequência de operação dos processadores e barramento das placas

MHz ou GHz

PU-Z CPU Cache	Mainboard	Memory A	About				
Processor							
Name	Intel Pentium 4						
Code Name	North	wood	Brand I	D 9	6	nte de	
Package		mPGA-43	78			INDIA	
Technology	0.13 μ Vol		age 1.648 v		per	ntium 4	
Specification Intel(R) Pentium(R) 4 CPU 3.40GHz (ES)							
Family	F	Model	2	Step		9	
Ext. Family	0	Ext. Model	0	Revi	sion	D1	
Instructions	MMX, SSE, SSE2						
Clocks			Cache				
Core Speed	4009.8 MHz		L1 Data		8 KBytes		
Multiplier	x16.0 (2-17)		L1 Trace		12 Кµорз		
FSB	250.6 MHz		Level 2		512 KBytes		
Bus Speed	1002.4 MHz		Level 3				
Processor Selection CPU #1 ▼ APIC ID 0							
					٧	ersion 1.20a	
CPU-Z Refresh OK							