论文分享

Node Feature Extraction by Self-Supervised Multi-scale Neighborhood Prediction

王云帆

2022年4月22日

- 1 Introduction
- 2 Method
- 3 理论分析
- 4 实验

- 1 Introduction
- 2 Method
- 3 理论分析
- 4 实验

Introduction

Introduction

- 自监督学习 SSL 被应该在了计算机视觉, NLP 等诸多方面
- 图自监督学习的 common idea 是 explore the correlated information provided by the numerical node features and graph topology
- 问题:如何从 raw data (文本,图片,音频)中获得向量化 的数字特征
 - 目前可以通过 bag of the words, word2vec, BERT。但这些方 法都是 graph-agnostic (图不可知的),没有在最开始就使用 graph 信息。"none of these works leverage graph information for actual self-supervision"
 - 只能达到次优解

Introduction

- 作者提出 GIANT, 一个自监督学习框架, 将 raw node attribute 作为输入, 生成 numerical node feature
- 为了将图的拓扑信息整合进入语言模型,如 BERT等,提出了一个全新的自监督学习任务——邻居预测。对同构图和异构图均适用
- 将邻居预测任务建模成为一个多标签学习任务(XMC),每个节点的邻居相当于一个二进制的多标签。
- 通过这种多标签预测,对 BERT 模型进行微调
- 这种模型,不仅借用了 XMC 问题的先进方法,解决了 graph-agnostic 的特征提取;还对 XMC 问题进行了理论分 析,研究其对于图自监督学习的作用

Contributions

Introduction

0000

- 明确了 graph-agnostic 特征提取问题,提出了 GIANT 自监督框架里解决这个问题
- 提出邻居预测任务,可以用它来 fine-tune BERT model。不同于链接预测,邻居预测可以解决异构图问题。
- 将邻居预测建模为 XMC 问题, 使用 XR-transformer 解决。
- 实验表明 GIANT 提升了基于 GNN 下游任务。(相当于自监督的 GIANT 为下游 GNN 初始化了特征)
- 理论分析了 XR-transformer 的对邻居预测问题的优势

- 1 Introduction
- 2 Method
- 3 理论分析
- 4 实验

problem formulation

- Graph G = (V, E), V for nodes, E for edges. Adjacency matrix $A \in \{0, 1\}^{n \times n}$
- For each node i, T_i is the raw text
- 语言模型训练一个 encoder Φ, map T_i to numerical node feature X_i ∈ R^d
- 邻接矩阵的每一行 Ai 就是节点 i 的邻居们,可以被视为目标多标签。那么我们就有 L=n 个标签

XR-transformer

- XR-transformer is the advanced approach for XMC problem.
- For basic one-versus-all (OVA) model $f(T, I) = w_I^T \Phi(T_i)$, where $I \in [L]$
- 对于这种 OVA 模型,其中 Φ 的选择可以是词袋模型, TFIDF,BERT 模型。对图形数据,可以是 CNN。格局不同数据进行调整
- 对于邻居预测问题,一个图可能有百万个节点。
 XR-transformer 的层次化标签聚类思路很合适。
 - 标签特征学习: Positive Instance Feature Aggregation(PIFA):
 Z_I = ^{v_I}/_{||v_I||}, v_I 代表属于 I 标签的节点特征
 这也恰恰是一次图卷积操作。
 - 标签聚类

XR-Transformer can train the model on multi-resolution objectives.

- 2 Method
- 3 理论分析
- 4 实验

理论分析

链接预测 vs 邻居预测

- 图自监督学习的一个标准任务是链接预测,其基于图同构假设。可以认为是相似的节点,应该有边相连。 $P(A_{ij}=1)=Similarity(\Phi(T_i),\Phi(T_j)$
- 但是现实的很多情况不符合图同构假设。

Figure 3: A counter-example for standard link prediction methodology.

- 作者提出假设:有相似特征的节点扮演相似的"structural roles",在本研究中,将这种结构建构为其1阶邻居。
- 这也和 XMC 问题中的假设相符,有轻微差别的节点应该有相似的多标签。

- 1 Introduction
- 2 Method
- 3 理论分析
- 4 实验

dataset

Table 1: Basic statistics of the OGB benchmark datasets (Hu et al., 2020a).

	#Nodes	#Edges	Avg. Node Degree	Split ratio (%)	Metric
ogbn-arxiv	169,343	1,166,243	13.7	54/18/28	Accuracy
ogbn-products	2,449,029	61,859,140	50.5	8/2/90	Accuracy
ogbn-papers100M	111,059,956	1,615,685,872	29.1	78/8/14	Accuracy

Result

	Dataset	ogbn-arxiv				ogbn-products		
		MLP	GraphSAGE	RevGAT	RevGAT+SelfKD	MLP	GraphSAINT	SAGN+SLE
$\mathbf{X}_{ ext{plain}}$	OGB-feat [†] BERT*	55.50 ± 0.23 62.91 ± 0.60	$\frac{71.49 \pm 0.27}{70.97 \pm 0.33}$	$\frac{74.02 \pm 0.18}{73.59 \pm 0.10}$	$\frac{74.26 \pm 0.17}{73.55 \pm 0.41}$	$\frac{61.06 \pm 0.08}{60.90 \pm 1.09}$	79.08 ± 0.24 79.55 ± 0.85	$\frac{84.28 \pm 0.14}{83.11 \pm 0.18}$
X _{SSLGNN}	OGB-feat+GZ BERT*+GZ OGB-feat+DGI BERT*+DGI OGB-feat+GAE BERT*+GAE OGB-feat+VGAE BERT*+VGAE	$\begin{array}{c} 70.95 \pm 0.38 \\ \hline 70.46 \pm 0.21 \\ 56.02 \pm 0.16 \\ 59.42 \pm 0.38 \\ 56.47 \pm 0.08 \\ 62.11 \pm 0.32 \\ 56.70 \pm 0.20 \\ 62.48 \pm 0.14 \end{array}$	71.41 ± 0.09 71.24 ± 0.19 71.72 ± 0.26 72.15 ± 0.06 72.00 ± 0.27 72.72 ± 0.17 72.04 ± 0.29 72.92 ± 0.02	72.42 ± 0.16 72.33 ± 0.06 73.48 ± 0.14 73.24 ± 0.25 73.70 ± 0.28 74.26 ± 0.20 73.59 ± 0.17 74.21 ± 0.01	72.50 ± 0.08 72.30 ± 0.20 73.90 ± 0.26 73.60 ± 0.21 74.06 ± 0.15 73.95 ± 0.09 74.44 ± 0.09	$74.19 \pm 0.55 \\ OOM \\ 70.54 \pm 0.13 \\ 73.62 \pm 0.23 \\ 74.81 \pm 0.22 \\ 78.42 \pm 0.14 \\ 74.66 \pm 0.10 \\ 78.81 \pm 0.25$	78.38 ± 0.21 OOM 79.26 ± 0.16 81.29 ± 0.41 78.23 ± 0.10 82.74 ± 0.16 78.65 ± 0.20 82.80 ± 0.11	79.78 ± 0.11 OOM 81.59 ± 0.14 82.90 ± 0.21 82.85 ± 0.11 84.42 ± 0.04 83.06 ± 0.06 84.40 ± 0.09
\mathbf{X}_{GIANT}	BERT+LP NO TFIDF+ NO PIFA NO TFIDF+PIFA TFIDF+NO PIFA GIANT-XRT	67.33 ± 0.54 69.33 ± 0.19 72.74 ± 0.17 71.74 ± 0.15 73.08 ± 0.06	66.61 ± 2.86 73.41 ± 0.34 74.43 ± 0.20 74.09 ± 0.33 74.59 ± 0.28	75.50 ± 0.11 74.95 ± 0.07 75.88 ± 0.05 75.56 ± 0.09 75.96 ± 0.09	75.75 ± 0.04 75.16 ± 0.06 76.06 ± 0.02 75.85 ± 0.05 76.12 ± 0.16	73.83 ± 0.06 74.16 ± 0.22 78.91 ± 0.28 79.37 ± 0.15 79.82 ± 0.07	81.66 ± 0.08 80.70 ± 0.51 81.54 ± 0.14 83.83 ± 0.14 84.40 ± 0.17	82.33 ± 0.16 81.63 ± 0.28 82.22 ± 0.15 85.01 ± 0.10 85.47 ± 0.29

Thanks!