Theoretische Informatik I

Wintersemester 23/24

Prof. Dr. Thomas Thierauf Fak. Elektronik und Informatik

Lösungshinweise zur Klausur vom 6. Februar 2024

1.

a)

b) \equiv_A hat genau 5 Äquivalenzklassen: Der DFA in Teil a) hat 5 Zustände. Damit hat \equiv_A höchstens 5 Äquivalenzklassen.

Anderseits hat \equiv_A mindestens 5 Äquivalenzklassen, da die Wörter $\varepsilon, 1, 11, 110, 1100$ paarweise nicht äquivalent sind. Dazu geben wir für je 2 dieser Wörter x, y ein w an, so dass entweder $xw \in A$ oder $yw \in A$.

1	100			
11	00	00		
110	0	0	0	
1100	ε	ε	ε	ε
		1	11	110

2.

3. Der Markierungsalgorithmus liefert $z_1 \sim z_4$ und $z_2 \sim z_3$.

4. $R = m^* (\ell (m \cup \ell)^* s \cup s (m \cup s)^* \ell) (\ell \cup m \cup s)^*$

5.

a)

- b) $S \rightarrow 0S11 \mid 0S111 \mid \varepsilon$
- c) Sei p>0 beliebig und $w=0^p\,1^{2p}\in B$. Sei w=xyz eine Zerlegung mit $|xy|\leq p$. Dann ist $y=0^\ell$, für ein $1\leq \ell\leq p$. Dann ist $xy^2z=0^{p+\ell}\,1^{2p}\not\in B$, da $2(p+\ell)>2p$.
- d) Sei $x_n = 0^n$, für $n = 1, 2, \dots$ Sei $\ell > n$ und $w = 1^{2n}$. Dann gilt
 - $x_n w = 0^n 1^{2n} \in B$
 - $x_{\ell}w = 0^{\ell} 1^{2n} \notin B$, da $2\ell > 2n$.
- **6.** Betrachte $w = a^p b^p c^{p^2} \in C$, für ein $p \ge 2$. Sei w = uvxyz eine Zerlegung mit $|vxy| \le p$ und |vy| > 0. Wir betrachten alle Möglichkeiten für die Zerlegung
 - (i) $vy = a^m$, für ein $1 \le m \le p$. Dann ist $uv^2xy^2z = a^{p+m}\,b^p\,c^{p^2} \not\in C$, da $(p+m)p > p^2$.
 - (ii) $vy = b^m$, für ein $1 \le m \le p$. Analog zu Fall (i).
- (iii) $v=a^m,\,y=b^\ell,$ für $1\leq m,\ell\leq p.$ Analog zu Fall (i).
- (iv) $vy=c^m$, für ein $1\leq m\leq p$. Dann ist $uv^0xy^0z=a^p\,b^p\,c^{p^2-m}\not\in C$, da $p^2>p^2-m$.
- (v) $v=b^m$ und $y=c^\ell$ für $1<\ell,m$ und $m+\ell\le p$. Es gilt also insbesondere $\ell\le p-1$. Dann ist $uv^2xy^2z=a^p\,b^{p+m}\,c^{p^2+\ell}\not\in C,$ da

$$p(p+m) \ge p(p+1) = p^2 + p > p^2 + \ell.$$

- (vi) v oder y enthalten verschiedene Zeichen: dann ist offensichtlich $uv^2xy^2z\not\in C.$
- **7.** Für $a \in \{0, 1\}$

