Predikátová logika Úvod do výpočtovej logiky

Jozef Šiška

2013/2014

Syntax

Definícia (Jazyk)

Jazyk $\mathcal L$ prvorádovej logiky bude pozostávať z nasledovných symbol:

- V spočitateľná množina symbolov pre indivíduové premenné:
 x, y, ...;
- ightharpoonup C množina symbolov pre konštanty: a, b, c, \ldots ;
- $ightharpoonup \mathcal{F}$ množina funkčných symbolov s priradenou aritou: f^2 , g^1 , ...;
- ▶ \mathcal{P} množina predikátových symbolov s priradenou aritou: P^1 , Q^3 , ...;
- Symboly pre logické spojky: ¬, ∧, ∨, →;
- symboly pre kvatifikátory: ∀, ∃;
- ▶ pomocné symboly: (,) a ,.

Term

Definícia (Term)

Term jazyka \mathcal{L} je postupnosť symbolov vytvorená nasledovnými rekurzívnymi pravidlami:

- Symbol pre premennú je term;
- symbol pre konštanu je term;
- ▶ ak f^n je n-árny funkčný symbol a t_1, \ldots, t_n sú termy, tak $f(t_1, \ldots, t_n)$ je term.

Formula

Definícia (Formula)

Formula jazyka $\mathcal L$ je postupnosť symbolov vytvorená nasledovnými rekurzívnymi pravidlami:

- Ak P^n je predikátový symbol s aritou n a t_1, \ldots, t_n sú termy, tak $P(t_1, \ldots, t_n)$ je (atomická) formula jazyka \mathcal{L} ;
- ▶ ak ϕ , ψ sú formuly jazyka \mathcal{L} , potom $(\phi \wedge \psi)$, $(\phi \vee \psi)$, $(\phi \to \psi)$, $\neg \phi$ sú formuly jazyka \mathcal{L} ;
- ▶ ak ϕ je formula jazyka \mathcal{L} a x je premenná, potom $\forall x \phi$ a $\exists x \phi$ sú formuly jazyka \mathcal{L} .

Príklad: termy, formuly

Príklad

Nech jazyk \mathcal{L} obsahjuje konštantu a, funkčné symboly f^2 a g^1 a predikátové symboly P^1 , Q^2 (a samozrejme spočitateľnú množinu premenných x, y, \ldots). Možné termy potom sú:

$$a, x, y, \dots, f(a), f(x), \dots, f(f(a)), f(f(x)), \dots$$

$$g(a, a), g(x, x), g(x, a), g(a, x), \dots, g(f(g(f(f(a)), x)), f()), \dots$$

Možné atomické formule:

$$P(a)$$
, $P(x)$, $P(f(a))$, $P(f(f(x)))$, $P(f(g(a, f(x))))$,...

$$Q(a,a), \quad Q(a,x), \quad Q(x,a), \quad Q(g(a,f(x)), \quad f(g(x,a))), \ldots$$

Možné formule:

$$P(a), P(x), (P(a) \rightarrow P(x)), (Q(f(a), y) \land P(g(a, f(a))))$$

$$\forall x P(a), \exists y Q(f(y), g(x, a)), \forall x (P(x) \lor \forall y Q(g(x, y), a)) = \emptyset$$

Definícia (Voľné a viazané premenné)

- Každý výskyt premennej x v atomickej formuly je voľný.
- ▶ Každý voľný (viazaný) výskyt premennej x vo formulách ϕ , ψ je zároveň voľný (viazaný) výskyt premennej x vo formulách $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ a $\neg \phi$.
- ▶ Každý výskyt premennej x vo formulách $\forall x\phi$ a $\exists x\phi$ je viazaný. Každý voľný (viazaný) výskyt premennej y inej ako x vo formule ϕ je zároveň voľný (viazaný) výskyt premennej y vo formulách $\forall x\phi$ a $\exists x\phi$.

Príklad

Uvažujme formulu $\phi=\exists y\ rovnaSa(x,krat(2,y))$. Ak chceme určiť jej pravdivostnú hodnotu, potrebujeme vedieť iba hodnotu premennej x. Pravdivostná hodnota ϕ nezávisí od y, pretože priradenie hodnoty jej sa deje "vo vnútri" ϕ pomocou kvantifikátora. Celú formulu ϕ by sme mohli preformulovať aj bez použitia premennej y: "x je deliteľné dvomaälebo "x je párne".

Definícia (Uzavretá, otvorená formula)

Formula ϕ je uzavretá ak neobsahuje žiadne voľné výskyty premenných. Formula ϕ je otvorená, ak neobsahuje žiadne kvantifikátory.

Definícia (Substitúcia)

Nech t je term, ϕ formula, nech $x1,\ldots,x_n$ sú premenné a t_1,\ldots,t_n sú termy. Potom $t_{x_1,\ldots,x_n}(t_1,\ldots,t_n)$ je term, ktorý vznikne súčasným dosadením t_i za každý výskyt premennej x_i v t. Rovnako $\phi_{x_1,\ldots,x_n}(t_1,\ldots,t_n)$ je formula, ktorá vznikne súčasným dosadením t_i za každý voľný výskyt premennej x_i v t.

Štruktúra

Definícia (Štruktúra)

Štruktúra pre jazyk $\mathcal L$ je dvojica $\mathcal M=(D,i)$, kde D je neprázdna množina (doména) a i je interpretačná funkcia, ktorá priraďuje "zmysel" konštantám, funkčným a predikátovým symbolom:

- $i(c) \in D$
- $i(f^n) \in D^n \mapsto D$
- $ightharpoonup i(P^n) \subseteq D^n$

Interpretačná funkcia priraďuje konštantám nejaký prvok domény, funkčným symbolom nejakú skutočnú funkciu nad doménou (správnej arity) a predikátom určuje, pre ktoré kombinácie argumentov (prvkov z domény) sú vlastne pravdivé.

Ohodnotenie premenných, termov

Definícia (Ohodnotenie premenných)

Nech $\mathcal{M}=(D,i)$ je štruktúra pre jazyk \mathcal{L} , ohodnotenie premenných e je ľubovoľná funkcia $\mathcal{V}\mapsto D$ (teda priraďuje premenným indivíduá z domény). Zápis e(x/a) bude označovať ohodnotenie premenných, ktoré priraďuje premennej x hodnotu a, a všetky ostatné premenné priraďuje rovnako ako e.

Definícia (Ohodnotenie termov)

Nech M=(D,i) je štruktúra, e je ohodnotenie premenných, hodnota $t^{\mathcal{M}}[e]$ termu t v štruktúre \mathcal{M} pri ohodnotení premenných e je prvok D určený nasledovne:

$$x^{\mathcal{M}}[e] = e(x)$$

$$(f(t_1, \dots, t_n))^{\mathcal{M}}[e] = i(f)(t_1^{\mathcal{M}}[e], \dots, t_n^{\mathcal{M}}[e])$$

Pravdivosť formuly v štruktúre

Definícia (Pravdivosť formuly)

Nech $\mathcal{M}=(D,i)$ je štruktúra, nech e je ohodnotenie premenných. Platnosť (pravdivosť) formuly v štruktúre \mathcal{M} pri ohodnotení e značíme $\mathcal{M}\models\phi[e]$ a je definovaná nasledovne:

$$\mathcal{M} \models P(t_1, \dots, t_n) \text{ vtt } (t_1^{\mathcal{M}}[e], \dots, t_n^{\mathcal{M}}[e]) \in i(P)$$

$$\mathcal{M} \models (\phi \land \psi) \text{ vtt } \mathcal{M} \models \phi \text{ a zárveň} \mathcal{M} \models \psi$$

$$\mathcal{M} \models (\phi \land \psi) \text{ vtt } \mathcal{M} \models \phi \text{ alebo} \mathcal{M} \models \psi$$

$$\mathcal{M} \models (\phi \rightarrow \psi) \text{ vtt } \mathcal{M} \not\models \phi \text{ alebo} \mathcal{M} \models \psi$$

$$\mathcal{M} \models \exists x \phi[e] \text{ vtt existuje } a \in D \text{ také, že } \mathcal{M} \models \phi[e(x/a)]$$

$$\mathcal{M} \models \forall x \phi[e] \text{ vtt pre všetky } a \in D \text{ platí } \mathcal{M} \models \phi[e(x/a)]$$

Pravdivosť formuly

Definícia

Nech $\mathcal{M}=(D,i)$ je štruktúra. Formula ϕ je pravdivá v štruktúre \mathcal{M} ($\mathcal{M}\models\phi$), ak je pravdivá pri v štruktúre \mathcal{M} pri všetkých ohodnoteniach e.

Definícia

Formula ϕ je *platná*, ak je pravdivá v každej štruktúre \mathcal{M} .

Formula ϕ je *splniteľná*, ak existuje aspoň jedna štruktúra \mathcal{M} v ktorej je pravdivá.

Formula ϕ vyplýva z množiny formúl $\{\psi_1, \psi_2, \dots\}$ ak je pravdivá v každej štruktúre \mathcal{M} , v ktorej sú pravdivé všetky formuly ψ_1, ψ_2, \dots

Príklad: štruktúra

Príklad

Nech jazyk $\mathcal L$ obsahjuje konštantu a, funkčný symbol f^2 a predikátový symboly E^2 . Uvažujme formuly

$$\phi = \forall x \ E(x, f(x, a)), \qquad \psi = \forall x \forall y \ E(f(x, y), f(y, x))$$

Nech D = Z (množina celých čísel). Nech i_1 je definovaná nasledovne:

$$i_1(a) = 0, \quad i_1(E) = \{(k, k) | k \in Z\}, \quad i_1(f) = x, y \mapsto x + y$$

Obidve formuly sú pravdivé v $\mathcal{M}_1=(D,i_1)$ (pri ľubovoľnom priradení premenných, kedže žiadna premenná nie je voľná). Keby sme ale zmenili interpretáciu konštanty a $(i_2(a)=1)$ alebo funkčného symbolu f $(i_3(f)=x,y\mapsto x-y)$, tak by prvá resp. druhá formula prestala platiť.

Tablová metóda pre prvorádovú logiku

Tablová metóda pre prvorádovú logiku je podobná tej z výrokovej logiky. Vytvára sa rovnaký strom, len k pôvodným ôsmim pravidlám z VL pribudnú ešte štyri nové pravidlá pre kvatifikátory (ktoré sú zatriedené do nových dvoch typov).

$$\alpha: \begin{array}{c|c} T\phi \wedge \psi & F\phi \vee \psi & F\phi \rightarrow \psi \\ T\psi & F\psi & T\phi & F\phi \\ \hline \beta: & F\phi \wedge \psi & T\phi & T\phi \\ \hline \gamma: & T\nabla \phi & T\phi & T\phi \\ \hline \gamma: & T\nabla \phi & T\phi & T\phi \\ \hline \gamma: & T\nabla \phi & T\phi & T\phi \\ \hline \gamma: & T\nabla \phi & T\phi \\ \hline \gamma: & T$$