径向切削循环 G94

指令功能

从起点开始,轴向进刀、径向或者轴向和径向同时切削,实现端面或锥面切削循环。

指令格式

```
G17/G18/G19 G94 IP__F_; (直线切削循环)
G17/G18/G19 G94 IP__R_F_; (锥度切削循环)
```

G94 为模态代码;

指令说明

指令字说明

G17/G18/G19	加工平面选择
IP	切削终点的坐标值(增量指令时为起点至切削终点的移动量),模态值
F_	切削进给速度,模态值
R_	锥度量(半径值,带方向),模态值

地址	增量系统	公制输入(mm)	英制输入(inch)	
R	ISB 系统	-999999.999 ~999999.999	-99999.9999 ~99999.9999	
	ISC 系统	-99999.9999 ~99999.9999	-9999.99999 ~9999.99999	

切削轴说明

有效轴	定位轴	切削轴
G17 (Xp, Yp)	Xp	Yp
G18 (Zp, Xp)	Zp	Хp
G19 (Yp, Zp)	Yp	Zp

执行过程(以 G18 平面为例)

- (1) Z 轴从起点 A 快速移动到切削起点 B;
- (2) 从切削起点 B 直线插补(切削进给)到切削终点 C;
- (3) Z 轴以切削进给速度退刀,返回到 Z 轴绝对坐标与起点相同处 D;
- (4) X 轴快速移动返回到起点 A,循环结束。

运行轨迹

U、W、R 反应切削终点与起点的相对位置,U、W、R 在符号不同时组合的刀具轨迹,如图所示。

(2) U<0 W<0 R<0

(3) $U>0 W<0 R>0 (|R| \le |W|)$

(4) U<0 W<0 R>0 (| R | \leq | W |)

编程示例(以G18平面为例)

如图,毛坯 Φ125×112

注意事项

注 1: 如果在固定循环代码的程序段中指令了当前平面外其他轴的运动,系统产生报警;

注 2: 在固定循环代码中,终点位置 IP_{-} 、R 一经执行,在没有执行新的固定循环代码重新给 IP_{-} 、R 时, IP_{-} 、R 的代码值保持有效。如果执行了除 G04 以外的非模态(00 组)G 代码或 01 组其它 G 代码时, IP_{-} 、R 保持的代码值被清除。

注 3: 在固定循环 G94 代码中,执行单段的操作,运行完当前段的整个循环后单段停止。