Aménagement d'infrastructures pour la livraison à domicile

BIOULAC Jules

13335

Mise en situation

- ► Les **transports** sont la plus grosse source d'émissions de **GES** en France
- La livraison à domicile est un processus qui coûte **de plus en plus cher** à mesure qu'on se rappoche de la fin

Mise en situation

- Livraison à domicile : Le client reçoit son colis à son domicile
 - Simplicité : le client n'a pas à se déplacer pour récupérer son colis
- Livraison en point relais : Le client va <u>chercher</u> son colis dans un point relais
 - ► Coût : le coût de la livraison est plus faible
 - Flexibilité : le client peut choisir quand aller récupérer son colis

Problématique

 \longrightarrow Comment répartir les points de retrait de colis au sein d'une ville ?

Sommaire

Formalisation du problème

Premiers tests

Que sont les attracteurs?

Ajout des attracteurs

Calcul des coefficients

Résultats avec les attracteurs

Pistes d'amélioration

Formalisation du problème

- ▶ On se place dans le carré [0,1]x[0,1]
- ► Chaque **point** du carré représente un potentiel **client**
- ► Il s'agit de placer les **points de retrait** pour minimiser :
 - Distance moyenne à un point
 - Nombre de points de retrait

Formalisation du problème

► La **distance** d'un client aux points de retrait est celle au point de retrait le plus proche

$$dist(x_0, y_0, points) := \min_{(x,y) \in points} \sqrt{(x_0 - x)^2 + (y_0 - y)^2}$$

La distance moyenne est alors la fonction *objectif* :

objectif (points) :=
$$\int_0^1 \int_0^1 dist(x, y, points) dx dy$$

Premiers tests

- ► Algorithme d'optimisation :
 - ► Descente de gradient
 - Algorithmes mimétiques

Premiers tests

Que sont les attracteurs?

- ► Représentent les différents besoins
- ► Choix : Revenu moyen
 - ► INSEE : Corrélation
- On choisit alors les attracteurs :
 - ▶ 1 attracteur = 1 arrondissement de Paris
 - ► Coefficient ∝ revenu moyen

Objectif des attracteurs :

► Représenter les différents besoins

```
struct attracteur_s {
    double x;
    double y;
    double coeff;
};
typedef struct attracteur_s attracteur;
```

- ▶ Il faut alors les prendre en compte dans le calcul de la distance
- ► On va alors **multiplier** chaque distance par un **coefficient** prédéfini qui dépend des coefficients des attracteurs
- ▶ Pour un point (x_0, y_0) , on note $coeff(x_0, y_0, attracteurs)$ le coefficient associé

► La distance devient alors

$$\begin{aligned} \textit{dist}(x_0, y_0, \textit{points}, \textit{attracteurs}) := \\ \textit{coeff}(x_0, y_0, \textit{attracteurs}) \times \min_{(x, y) \in \textit{points}} \sqrt{(x_0 - x)^2 + (y_0 - y)^2} \end{aligned}$$

► La distance moyenne change également

objectif (points, attracteurs) :=

$$\int_{0}^{1} \int_{0}^{1} dist(x, y, points, attracteurs) dxdy$$

- ▶ Dans notre cas, pour (x_0, y_0)
 - Attracteur le plus proche : (x_a, y_a, c_a)
 - $d := \sqrt{(x_0 x_a)^2 + (y_0 y_a)^2}$
 - ► On utilise alors

$$coeff(x_0, y_0, attracteurs) := c_a * e^{\frac{-1}{(\sqrt{2}-d)^5}}$$

Calcul des coefficients

Résultats avec les attracteurs

Résultats avec les attracteurs

Pistes d'amélioration

- ► Manque de puissance de calcul
 - ► Comparaison résultats avec réalité
- ► Prise en compte densité de population
- ► Descente de gradient optimale?