למידה עמוקה 046211 גליון יבש 2

315681593 גל גרנות 208731422 ביר טבת

:ואת הסיכון של Bayes Risk-הגדרנו את ה

$$ar{R}(w) = E_{\epsilon, w_{true}}(R), \qquad R(w_{\mu}) = \left\| w_{\mu} - w_{true} \right\|^2 = \left\| \left(H_{\mu}^{-1} H - I \right) w_{true} + H_{\mu}^{-1} X^T \epsilon \right\|^2$$
נוכיח כי:

$$\bar{R}(w_{\mu}) = \sum_{i=1}^{d} \frac{(\sigma_w^2/d)\mu^2 + \sigma_e^2 \lambda_i}{(\lambda_i + \mu)^2}$$

:עבור

$$\epsilon \sim N(0, \sigma_{\epsilon}^2 I)$$
 .1

$$w_{true} \sim N\left(0, \frac{\sigma_w^2}{d}I\right) . 2$$

$$H_{\mu} = \mu I + X^T X . 3$$

$$H_{\mu} = \mu I + X^T X$$
 .3

$$H = X^T X$$
 .4

$$H$$
 הע"ע של המטריצה λ_i .5

$$H$$
 הע"ע של המטריצה λ_i .5 $w_\mu = H_\mu^{-1} X^T y = (\mu I + X^T X)^{-1} X^T y$.6

$$\begin{split} & \left\| \left(H_{\mu}^{-1}H - I \right) w_{true} + H_{\mu}^{-1}X^{T}\epsilon \right\|^{2} \\ & = \left(\left(H_{\mu}^{-1}H - I \right) w_{true} + H_{\mu}^{-1}X^{T}\epsilon \right)^{T} \left(\left(H_{\mu}^{-1}H - I \right) w_{true} + H_{\mu}^{-1}X^{T}\epsilon \right) \\ & = \left(\left(\left(H_{\mu}^{-1}H - I \right) w_{true} \right)^{T} + \left(H_{\mu}^{-1}X^{T}\epsilon \right)^{T} \right) \left(\left(H_{\mu}^{-1}H - I \right) w_{true} + H_{\mu}^{-1}X^{T}\epsilon \right) \\ & = \left\| \left(H_{\mu}^{-1}H - I \right) w_{true} \right\|^{2} + \left\| H_{\mu}^{-1}X^{T}\epsilon \right\|^{2} + \text{cross terms} = * \end{split}$$

מכיוון ש- ϵ ו-תאפסו תחת התוחלת ולכן נתעלם מהם. נחשב ($E(\epsilon w_{true})=0)$ איברי ה- w_{true} ו ש- ϵ חסרי קורלציה (שני האיברים:

$$= \|(H_{\mu}^{-1}H - I)w_{true}\|^{2} = ((H_{\mu}^{-1}H - I)w_{true})^{T} (H_{\mu}^{-1}H - I)w_{true}$$

$$= w_{true}^{T} (H_{\mu}^{-1}H - I)^{T} (H_{\mu}^{-1}H - I)w_{true}$$

הביטוי המתקבל הוא סקלר, או מטריצה מסדר 1 imes 1 ולכן שווה לעקבה של עצמו. נוכיח זהות קצרה בשימוש בזהות הציקלית של העקבה:

$$a^Tb = Tr(ba^T) \Longrightarrow a^TMa = Tr(Maa^T)$$

$$:M = \left(H_{\mu}^{-1}H - I\right)^T \left(H_{\mu}^{-1}H - I\right)$$
נשתמש בזהות עם $a = w_{true}$ נשתמש

$$w_{true}^{T}\big(H_{\mu}^{-1}H - I\big)^{T}\big(H_{\mu}^{-1}H - I\big)w_{true} = Tr\left(\big(H_{\mu}^{-1}H - I\big)^{T}\big(H_{\mu}^{-1}H - I\big)w_{true}w_{true}^{T}\right)$$

נפעיל את התוחלת ונשתמש בלינאריות העקבה והתוחלת, כאשר $E(w_{true}w_{true}^T)$ היא מטריצת הקוואריאנס של : $rac{\sigma_w}{d}I$ שלפי הנתון היא w_{true} שלפי

$$\begin{split} E\left(Tr\left(\left(H_{\mu}^{-1}H-I\right)^{T}\left(H_{\mu}^{-1}H-I\right)w_{true}w_{true}^{T}\right)\right) &= Tr\left(E\left(\left(H_{\mu}^{-1}H-I\right)^{T}\left(H_{\mu}^{-1}H-I\right)w_{true}w_{true}^{T}\right)\right) \\ Tr\left(\left(H_{\mu}^{-1}H-I\right)^{T}\left(H_{\mu}^{-1}H-I\right)E(w_{true}w_{true}^{T}\right)\right) &= Tr\left(\left(H_{\mu}^{-1}H-I\right)^{T}\left(H_{\mu}^{-1}H-I\right)\frac{\sigma_{w}^{2}}{d}I\right) \\ \frac{\sigma_{w}^{2}}{d}Tr\left(\left(H_{\mu}^{-1}H-I\right)^{T}\left(H_{\mu}^{-1}H-I\right)\right) \end{split}$$

נחזור לאיבר השני ב- * , ונשתמש בעובדה ש- H_{μ}^{-1} סימטרית ולכן שווה לשחלוף שלה:

$$\begin{split} & \left\| H_{\mu}^{-1} X^{T} \epsilon \right\|^{2} = \left(H_{\mu}^{-1} X^{T} \epsilon \right)^{T} H_{\mu}^{-1} X^{T} \epsilon = \epsilon^{T} X H_{\mu}^{-1} H_{\mu}^{-1} X^{T} \epsilon \\ & E \left(\left\| H_{\mu}^{-1} X^{T} \epsilon \right\|^{2} \right) = E \left(\epsilon^{T} X H_{\mu}^{-1} H_{\mu}^{-1} X^{T} \epsilon \right) = \sum_{i=1}^{N} \sum_{j=1}^{N} E \left(\epsilon_{i} \epsilon_{j} \right) \left(X H_{\mu}^{-1} \right)_{i} \left(H_{\mu}^{-1} X^{T} \right)_{j} \\ & = \sum_{i=1}^{N} \sum_{j=1}^{N} \delta_{ij} \sigma_{\epsilon}^{2} \left(X H_{\mu}^{-1} \right)_{i} \left(H_{\mu}^{-1} X^{T} \right)_{j} = \sigma_{\epsilon}^{2} \sum_{i=1}^{N} \left(X H_{\mu}^{-1} \right)_{i} \left(H_{\mu}^{-1} X^{T} \right)_{i} = \sigma_{\epsilon}^{2} Tr \left(X H_{\mu}^{-2} X^{T} \right) \end{split}$$

$$\bar{R}(w_{\mu}) = \frac{\sigma_{w}^{2}}{d} Tr\left((H_{\mu}^{-1}H - I)^{T} (H_{\mu}^{-1}H - I) \right) + \sigma_{\epsilon}^{2} Tr(XH_{\mu}^{-2}X^{T})$$

(נקבל: U אורתוגונלית ו-U אלכסונית. נקבל: אלכסונית. נקבל: U אורתוגונלית ו-U אלכסונית. נקבל:

$$\begin{split} &= \frac{\sigma_w^2}{d} Tr \left(\left(H_\mu^{-1} H - I \right)^2 \right) + \sigma_\epsilon^2 Tr \left(X X^T H_\mu^{-2} \right) \\ &= \frac{\sigma_w^2}{d} Tr \left(\left((H + \mu I)^{-1} H - I \right)^2 \right) + \sigma_\epsilon^2 Tr \left(H (H + \mu I)^{-2} \right) \\ &= \frac{\sigma_w^2}{d} Tr \left((U \Lambda U^T + \mu I)^{-1} U \Lambda U^T - I \right)^2 \right) + \sigma_\epsilon^2 Tr \left(U \Lambda U^T (U \Lambda U^T + \mu I)^{-2} \right) \end{split}$$

:נשתמש בעובדה כי $UU^T=I$ ובחילוף לכפל של מטריצת היחידה על וימין ובחילוף וימין בהתאמה:

$$\begin{split} &= \frac{\sigma_w^2}{d} Tr((U\Lambda U^T + U\mu I U^T)^{-1} U\Lambda U^T - I)^2) + \sigma_\epsilon^2 Tr(U\Lambda U^T (U\Lambda U^T + U\mu I U^T)^{-2}) \\ &= \frac{\sigma_w^2}{d} Tr((U(\Lambda + \mu I) U^T)^{-1} U\Lambda U^T - I)^2) + \sigma_\epsilon^2 Tr(U\Lambda U^T (U\Lambda U^T + U\mu I U^T)^{-2}) \\ &= \frac{\sigma_w^2}{d} Tr(U((\Lambda + \mu I))^{-1} U^T U\Lambda U^T - I)^2) + \sigma_\epsilon^2 Tr(U\Lambda U^T U(\Lambda + \mu I)^{-2} U^T) \\ &= \frac{\sigma_w^2}{d} Tr(U(\Lambda + \mu I)^{-1} U^T - I)^2) + \sigma_\epsilon^2 Tr(U\Lambda (\Lambda + \mu I)^{-2} U^T) \\ &= \frac{\sigma_w^2}{d} Tr(U(\Lambda + \mu I)^{-1} \Lambda U^T - I)^2 + \sigma_\epsilon^2 Tr(U\Lambda (\Lambda + \mu I)^{-2} U^T) \end{split}$$

המטריצה $\Lambda + \mu I$ אלכסונית ולכן ההופכית שלה היא אלכסונית עם כל האלמנטים ההפוכים:

$$\begin{split} \Lambda + \mu I &= \operatorname{diag}(\lambda_i) + \operatorname{diag}(\mu) = \operatorname{diag}(\lambda_i + \mu) \\ &= \frac{\sigma_w^2}{d} \operatorname{Tr} \left(U \cdot \operatorname{diag} \left(\frac{1}{\lambda_i + \mu} \right) \cdot \operatorname{diag}(\lambda_i) U^T - I \right)^2 + \sigma_\epsilon^2 \operatorname{Tr} \left(U \cdot \operatorname{diag} \left(\frac{\lambda_i}{(\lambda_i + \mu)^2} U^T \right) \right) \\ &= \frac{\sigma_w^2}{d} \operatorname{Tr} \left(\operatorname{diag} \left(\frac{\lambda_i}{\lambda_i + \mu} - 1 \right) \right)^2 + \sigma_\epsilon^2 \operatorname{Tr} \left(\operatorname{diag} \left(\frac{\lambda_i}{(\lambda_i + \mu)^2} \right) \right) \\ &= \frac{\sigma_w^2}{d} \sum_{i=1}^d \left(\frac{\lambda_i - \lambda_i - \mu}{\lambda_i + \mu} \right)^2 + \sigma_\epsilon^2 \sum_{i=1}^d \frac{\lambda_i}{(\lambda_i + \mu)^2} = \sum_{i=1}^d \left(\frac{\sigma_w^2}{(\lambda_i + \mu)^2} + \frac{\sigma_\epsilon^2}{(\lambda_i + \mu)^2} \right) \\ &\qquad \qquad \sum_{i=1}^d \frac{\sigma_w^2}{(\lambda_i + \mu)^2} \\ &\qquad \qquad \sum_{i=1}^d \frac{\sigma_w^2}{(\lambda_i + \mu)^2} \end{split}$$

כנדרש.

i.i.d אשר מכיל q אשר מכיל Q אשר מכיל w נתון שכל רכיב בוקטור w נדגם באופן w נדגם באופן w נדגם באופן b.i.d לשאר הרכיריח.

$$P_{w\sim P_w}(w=w_\star)=rac{1}{q}$$
 אם w היה וקטור באורך 1, קל היה לראות שמתקבל: w אם w

לכן כיוון ש-w באורך k ומכיל k איברים w-לכן כיוון ש

$$P_{w \sim P_w}(w = w_\star) = \left(\frac{1}{a}\right)^k$$

 d_0*d_1 , W_1 במטריצה במטריצה נשים לב שיש במטריצה בקוחת משקולות יתאימו בין הרשתות. נשים לב שיש במטריצה ב $\frac{1}{q}$ יש במטריצה d_1 של הסתברות של d_1 משקולות, וכן במטריצה בשכבה d_1 של החלים בין שתי הרשתות. כמו כן אנחנו יודעים שיש רק $d_{1\star} < d_1$ משקולות שאינן אפס בשכבה d_1 . סך הכל נקבל:

$$p_{\star} \ge \left(\frac{1}{q}\right)^{d_0 d_{\star 1} + d_1} = q^{-d_1 - d_0 d_{1\star}}$$

 p_{\star} כעל רצף של ניסויי ברנולי עם פרמטר הצלחה ניתן להסתכל על T כעל רצף של ניסויי ברנולי עם פרמטר הצלחה T .3 שהוגדר בסעיף 2. כלומר T מתפלג גאומטרית.

לכן ניתן לומר:

$$P(t > T) = (1 - p_{\star})^T$$

נפעיל לוג על שני האגפים:

$$T = \frac{\log(P(t > T)) = T \cdot \log(1 - p_{\star})}{\log(1 - p_{\star})} \to [T] \le \frac{\log(P(t > T))}{\log(1 - p_{\star})}$$

4. משילוב של שני הקירובים שנתונים ברמז והצבה שלהם בתוצאה של סעיף 3 נקבל:

$$T = \frac{\log(P(t > T))}{-p_{\star}}$$

נציב את התוצאה מסעיף 1 ונקבל:

$$T \le -\left(\log\left(P(t > T)\right)q^{d_1 + d_0 d_{1\star}}\right)$$

 $\eta = \log(P(t > T))$ נגדיר

מו כן במקרה שלנו:

$$\log(|\mathcal{F}|) = \log T \leq \log\left(\frac{\log \eta}{-p_\star}\right) = \log\log \eta + \log p_\star \leq \log\log\left(\frac{1}{\eta}\right) + (d_0d_{1\star} + d_1)\log q$$
כעת נציב הכל במשפט 2 ונקבל:

$$\epsilon < \frac{\log\log\left(\frac{1}{\eta}\right) + (d_0d_{1\star} + d_1)\log q + \log\left(\frac{1}{\delta}\right)}{N}$$

כנדרש.

נקבל: ערכים שונים נקבל: q ערכים שונים נקבל: .5

$$\log |\mathcal{F}| = k \log q = (d_0d_1+d_1)\log q$$
. החביטוי שגדול יותר מהביטוי בסעיף 3 ולכן ההכללה של ביטוי 4 תהיה פחות טובה. נקבל ביטוי 4 תהיה פחות טובה

1. בכל הגרפים הנקודה הקריטית היא הנקודה שבה ה- test lossמפסיק לעלות ומתחיל לרדת שוב.

.2

- הגרף הכחול והירוק הם שני מודלים שונים, הכחול הוא מודל שמתרגם מגרמנית לאנגלית והירוק הוא מודל שמתרגם מאנגלית לצרפתית. אנו יכולים לראות כי ה-test loss לאחר הגדלת גודל המודל מתחיל לעלות בשלב מסוים ולאחר גודל מסוים מתחיל לרדת, בנוסף ניתן לראות כי ה train loss מונוטוני יורד עם הגדלת גודל המודל ולכן זהו train loss מכיוון שהאזור הקריטי מופיע ב-test loss.
- אנו יכולים לראות כי זהmodel-wise double decent ככל שכמות הפרמטרים במודל גדלה כך השגיאה קטנה, עבור מודלים גדולים, בניגוד לשגיאה הקלאסית. הנקודה הקריטית מתקבלת בנק' מקסימום בה הגרף מתחיל לרדת לאחר העלייה (בערך ברוחב 10 פרמטרים)
- c. אנו יכולים לראות כי epoch-wise double decent יוון שעבור המודל הגדול (האדום) אנחנו רואים שעלייה בכמות ה EPOCHS גורמת לירידה בשגיאה.

1. ההתפלגות של W סימטרית -> ההתפלגות של U סימטרית:

$$E[\varphi^{2}(u_{l-1})] = E[\max(0, u_{l-1})^{2}] = \frac{1}{2}E[u_{l-1}^{2}] = \frac{1}{2}\sigma_{u_{l-1}}^{2}$$

ניתן לראות כי הביטוי המחושב זהה לחישוב השונות של u אך החלק השלילי מאופס. מכיוון שההתפלגות של u סימטרית, החלק השלילי תרומה שווה לתרומה של החלק החיובי ונקבל חצי מהשונות של u.

$$\sigma_l = \frac{1}{\sqrt{\sum_j E[\varphi^2(u_{l-1}[j])]}} = \frac{1}{\sqrt{\sum_j \frac{1}{2} \sigma_{u_{l-1}[j]}^2}} = \sqrt{\frac{2}{d_{l-1}}}$$

 u_{l-1} תחת ההנחה שהשונות של

2. לפי תאוריית הגבול המרכזי:

1 נדיר משתנה \mathcal{Z} שמתפלג נורמלי עם תוחלת \mathcal{D} ושונות

$$\begin{split} \varphi(u_{l-1}) &= \max(0, u_{l-1}) = \sigma_{u_{l-1}} \max(0, z) \\ E[\varphi^2(u_{l-1})] &= E\left[\left(\sigma_{u_{l-1}} \max(0, z)\right)^2\right] = \sigma_{u_{l-1}}^2 E[\max(0, z)^2] = \frac{1}{2}\sigma_{u_{l-1}}^2 \sigma_z = \frac{1}{2}\sigma_{u_{l-1}}^2 \end{split}$$

וההמשך זהה לסעיף 1.

:equivariantאז f_W אז $\forall au \in H, W[i,j] = W[au(i), au(j)]$ או אם מתקיים

$$f_W(\tau x) = \phi(W(\tau x)) = \phi(\tau(Wx))$$

. כאשר השוויון האחרון נובע מהנתון ומכך ש ϕ פועלת על כל אלמנט בנפרד

(נקבל: au t-של ל-au נקבל נקבל:

$$\phi(\tau(Wx)) = \tau\phi(Wx) = \tau \cdot f_W(x)$$

ובסך הכול קיבלנו *equivariance* של *f*

 $\forall au \in H, W[i,j] = W[au(i), au(j)]$ אז מתקיים equivariant צד שני: אם f_W היא

$$f_W(\tau x) = \tau f_W(x) \to \phi(W\tau x) = \tau \cdot \phi(Wx)$$

מחד-חד ערכיות של ϕ ניתן לומר שחייב להתקיים שוויון בארגומנטים:

$$W\tau x=\tau(Wx)\to\tau W=W\tau$$

ומכאן ניתן להסיק שלכל איבר ב \emph{W} מתקיים:

$$W[i,j] = W[\tau(i),\tau(j)]$$

Layer	Output_dim	Number of parametes
INPUT	224X224X3	0
CONV3-64	224X224X64	(3X3X3+1)X64=1792
ReLU	224X224X64	0
POOL2	112X112X64	0
CONV3-128	112X112X128	(3X3X64+1)X128=73856
ReLU	112X112X128	0
POOL2	56X56X128	0
CONV3-256	56X56X256	(3X3X128+1)X256=295168
ReLU	56X56X256	0
CONV3-256	56X56X256	(3X3X256+1)X256=590080
ReLU	56X56X256	0
POOL2	28X28X256	0
CONV3-512	28X28X512	(3X3X256+1)X512 = 2359808
ReLU	28X28X512	0
CONV3-512	28X28X512	(3X3X512+1)X512 = 4718592
ReLU	28X28X512	0
POOL2	14X14X512	0
CONV3-512	14X14X512	(3X3X512+1)X512 = 4718592
ReLU	14X14X512	0
CONV3-512	14X14X512	(3X3X512+1)X512 = 4718592
ReLU	14X14X512	0
POOL2	7X7X512	0
FC-4096	4096X1	(7X7X512+1)X4096 =
		102764544
FC-4096	4096X1	(4096+1)X4096 = 16781312
FC-1000	1000X1	(4096+1)X1000 = 4097000
SOFTMAX	1000X1	0

11. מספר הפרמטרים הכולל: 114,119,336

:FC-החלק היחסי של הפרמטרים של שכבות ה-2

 $\frac{123,642,856}{141,119,336} \cdot 100\% = 87.62\%$