Chapter 5: CPU Scheduling

Chapter 5: CPU Scheduling

- Basic Concepts
- Scheduling Criteria
- Scheduling Algorithms
- Thread Scheduling
- Multiple-Processor Scheduling
- Operating Systems Examples
- Algorithm Evaluation

Objectives

- To introduce CPU scheduling, which is the basis for multiprogrammed operating systems
- To describe various CPU-scheduling algorithms
- To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular system

Basic Concepts

- Maximum CPU utilization obtained with multiprogramming
- CPU–I/O Burst Cycle Process execution consists of a *cycle* of CPU execution and I/O wait
- **CPU burst** distribution

Alternating Sequence of CPU and I/O Bursts

Histogram of CPU-burst Times

CPU Scheduler

- Selects from among the processes in ready queue, and allocates the CPU to one of them
 - Queue may be ordered in various ways
- CPU scheduling decisions may take place when a process:
 - 1. Switches from running to waiting state
 - 2. Switches from running to ready state
 - 3. Switches from waiting to ready
 - 4. Terminates
- Scheduling under 1 and 4 is **nonpreemptive**
- All other scheduling is **preemptive**
 - Consider access to shared data
 - Consider preemption while in kernel mode
 - Consider interrupts occurring during crucial OS activities

Dispatcher

- Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves:
 - switching context
 - switching to user mode
 - jumping to the proper location in the user program to restart that program
- **Dispatch latency** time it takes for the dispatcher to stop one process and start another running

Scheduling Criteria

- **CPU utilization** keep the CPU as busy as possible
- **Throughput** # of processes that complete their execution per time unit
- **Turnaround time** amount of time to execute a particular process
- Waiting time amount of time a process has been waiting in the ready queue
- **Response time** amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)

Scheduling Algorithm Optimization Criteria

- Max CPU utilization
- Max throughput
- Min turnaround time
- Min waiting time
- Min response time

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

- P_1 24
- P, 3
- P_3 3
- Suppose that the processes arrive in the order: P_1 , P_2 , P_3 The Gantt Chart for the schedule is:

- Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Average waiting time: (0 + 24 + 27)/3 = 17

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

$$P_2, P_3, P_1$$

• The Gantt chart for the schedule is:

- Waiting time for $P_1 = 6$; $P_2 = 0$, $P_3 = 3$
- Average waiting time: (6+0+3)/3 = 3
- Much better than previous case
- Convoy effect short process behind long process
 - Consider one CPU-bound and many I/O-bound processes

Shortest-Job-First (SJF) Scheduling

- Associate with each process the length of its next CPU burst
 - Use these lengths to schedule the process with the shortest time
- SJF is optimal gives minimum average waiting time for a given set of processes
 - The difficulty is knowing the length of the next CPU request
 - Could ask the user

Example of SJF

	<u>Process</u>	Burst Time
P_{I}	6	
P_{2}	8	
P_3	7	
$P_{_{4}}$	3	

• SJF scheduling chart

• Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

Determining Length of Next CPU Burst

- Can only estimate the length should be similar to the previous one
 - Then pick process with shortest predicted next CPU burst
- Can be done by using the length of previous CPU bursts, using exponential averaging
 - 1. $t_n = \text{actual length of } n^{th} \text{ CPU burst}$
 - 2. τ_{n+1} = predicted value for the next CPU burst
 - 3. α , $0 \le \alpha \le 1$
 - 4. Define:
- Commonly, α set to $\frac{1}{2}$
- Preemptive version called **shortest-remaining-time-first**

$$\tau_{n=1} = \alpha t_n + (1-\alpha)\tau_n.$$

Prediction of the Length of the Next CPU Burst

Examples of Exponential Averaging

- \bullet $\alpha = 0$
 - $\bullet \qquad \tau_{n+1} = \tau_n$
 - Recent history does not count
- $\alpha = 1$
 - $\bullet \qquad \tau_{n+1} = \alpha \ t_n$
 - Only the actual last CPU burst counts
- If we expand the formula, we get:

$$\tau_{n+1} = \alpha t_n + (1 - \alpha)\alpha t_n - 1 + \dots + (1 - \alpha)^j \alpha t_{n-j} + \dots + (1 - \alpha)^{n+1} \tau_0$$

• Since both α and $(1 - \alpha)$ are less than or equal to 1, each successive term has less weight than its predecessor

Example of Shortest-remaining-time-first

• Now we add the concepts of varying arrival times and preemption to the analysis

	<u>Pro</u>	cess	Arrival Time	Burst Time
P_{I}	0	8		
P_{2}	1	4		
P_3	2	9		
$P_{_{4}}$	3	5		

• *Preemptive* SJF Gantt Chart

0 1 5 10 17 26

• Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

Priority Scheduling

- A priority number (integer) is associated with each process
- The CPU is allocated to the process with the highest priority (smallest integer \equiv highest priority)
 - Preemptive
 - Nonpreemptive
- SJF is priority scheduling where priority is the inverse of predicted next CPU burst time
- Problem \equiv **Starvation** low priority processes may never execute
- Solution \equiv **Aging** as time progresses increase the priority of the process

Example of Priority Scheduling

	<u>Pro</u>	cess	Burst Time	Priority
P_{I}	10	3		
P_{2}	1	1		
P_3	2	4		
$P_{_{4}}$	1	5		
P_{5}	5	2		

• Priority scheduling Gantt Chart

	P_2	P ₅		P_1	P ₃	P ₄	
0	1		6		16	18	19

• Average waiting time = 8.2 msec

Round Robin (RR)

- Each process gets a small unit of CPU time (**time quantum** q), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue.
- If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units.
- Timer interrupts every quantum to schedule next process
- Performance
 - $q \text{ large} \Rightarrow \text{FIFO}$
 - $q \text{ small} \Rightarrow q \text{ must be large with respect to context switch, otherwise overhead is too high$

Example of RR with Time Quantum = 4

Process Burst Time

 P_1 24 P_2 3 P_3 3

• The Gantt chart is:

	P ₁	P_2	P ₃	P ₁	P ₁	P ₁	\mathbf{P}_{1}	P ₁
0	4	,	7 1	0	14 1	8 22	26	30

- Typically, higher average turnaround than SJF, but better *response*
- q should be large compared to context switch time
- q usually 10ms to 100ms, context switch < 10 usec

Time Quantum and Context Switch Time

			pr	oces	s tim	e = -	10			_	quantum	context switches
											12	0
0						1				10		
											6	1
0						6				10		
											1	9
0	1	2	3	4	5	6	7	8	9	10		

Turnaround Time Varies With The Time Quantum

process	time
P_1	6
P_2	3
P_3	1
P_4	7

80% of CPU bursts should be shorter than q

Multilevel Queue

- Ready queue is partitioned into separate queues, eg:
 - foreground (interactive)
 - background (batch)
- Process permanently in a given queue
- Each queue has its own scheduling algorithm:
 - foreground RR
 - background FCFS
- Scheduling must be done between the queues:
 - Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation.
 - Time slice each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR
 - 20% to background in FCFS

Multilevel Queue Scheduling

highest priority

lowest priority

Multilevel Feedback Queue

- A process can move between the various queues; aging can be implemented this way
- Multilevel-feedback-queue scheduler defined by the following parameters:
 - number of queues
 - scheduling algorithms for each queue
 - method used to determine when to upgrade a process
 - method used to determine when to demote a process
 - method used to determine which queue a process will enter when that process needs service

Example of Multilevel Feedback Queue

- Three queues:
 - Q_0 RR with time quantum 8 milliseconds
 - Q_1 RR time quantum 16 milliseconds
 - $Q_2 FCFS$
- Scheduling
 - A new job enters queue Q_0 which is served FCFS
 - 4 When it gains CPU, job receives 8 milliseconds
 - 4 If it does not finish in 8 milliseconds, job is moved to queue Q_1
 - At Q_1 job is again served FCFS and receives 16 additional milliseconds
 - 4 If it still does not complete, it is preempted and moved to queue Q_2

Multilevel Feedback Queues

Thread Scheduling

- Distinction between user-level and kernel-level threads
- When threads supported, threads scheduled, not processes
- Many-to-one and many-to-many models, thread library schedules user-level threads to run on LWP
 - Known as **process-contention scope (PCS)** since scheduling competition is within the process
 - Typically done via priority set by programmer
- Kernel thread scheduled onto available CPU is **system-contention scope (SCS)** competition among all threads in system

Pthread Scheduling

- API allows specifying either PCS or SCS during thread creation
 - PTHREAD_SCOPE_PROCESS schedules threads using PCS scheduling
 - PTHREAD_SCOPE_SYSTEM schedules threads using SCS scheduling
- Can be limited by OS Linux and Mac OS X only allow PTHREAD_SCOPE_SYSTEM

Pthread Scheduling API

```
#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
int main(int argc, char *argv[])
    int i:
    pthread t tid[NUM THREADS];
    pthread attr t attr;
    /* get the default attributes */
    pthread attr init(&attr);
    /* set the scheduling algorithm to PROCESS or SYSTEM */
    pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);
    /* set the scheduling policy - FIFO, RT, or OTHER */
    pthread attr setschedpolicy(&attr, SCHED OTHER);
    /* create the threads */
    for (i = 0; i < NUM THREADS; i++)
        pthread create(&tid[i],&attr,runner,NULL);
```


Pthread Scheduling API

```
/* now join on each thread */
    for (i = 0; i < NUM THREADS; i++)
        pthread join(tid[i], NULL);
}
/* Each thread will begin control in this function */
void *runner(void *param)
{
    printf("I am a thread\n");
    pthread exit(0);
}</pre>
```


Multiple-Processor Scheduling

- CPU scheduling more complex when multiple CPUs are available
- Homogeneous processors within a multiprocessor
- **Asymmetric multiprocessing** only one processor accesses the system data structures, alleviating the need for data sharing
- **Symmetric multiprocessing (SMP)** each processor is self-scheduling, all processes in common ready queue, or each has its own private queue of ready processes
 - Currently, most common
- **Processor affinity** process has affinity for processor on which it is currently running
 - soft affinity
 - hard affinity
 - Variations including processor sets

NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider affinity

Multicore Processors

- Recent trend to place multiple processor cores on same physical chip
- Faster and consumes less power
- Multiple threads per core also growing
 - Takes advantage of memory stall to make progress on another thread while memory retrieve happens

Multithreaded Multicore System

Virtualization and Scheduling

- Virtualization software schedules multiple guests onto CPU(s)
- Each guest doing its own scheduling
 - Not knowing it doesn't own the CPUs
 - Can result in poor response time
 - Can effect time-of-day clocks in guests
- Can undo good scheduling algorithm efforts of guests

Operating System Examples

- Solaris scheduling
- Windows XP scheduling
- Linux scheduling

Solaris

- Priority-based scheduling
- Six classes available
 - Time sharing (default)
 - Interactive
 - Real time
 - System
 - Fair Share
 - Fixed priority
- Given thread can be in one class at a time
- Each class has its own scheduling algorithm
- Time sharing is multi-level feedback queue
 - Loadable table configurable by sysadmin

Solaris Dispatch Table

priority	time quantum	time quantum expired	return from sleep
0	200	0	50
5	200	0	50
10	160	0	51
15	160	5	51
20	120	10	52
25	120	15	52
30	80	20	53
35	80	25	54
40	40	30	55
45	40	35	56
50	40	40	58
55	40	45	58
59	20	49	59

Solaris Scheduling

Solaris Scheduling (Cont.)

- Scheduler converts class-specific priorities into a per-thread global priority
 - Thread with highest priority runs next
 - Runs until (1) blocks, (2) uses time slice, (3) preempted by higher-priority thread
 - Multiple threads at same priority selected via RR

Windows Scheduling

- Windows uses priority-based preemptive scheduling
- Highest-priority thread runs next
- *Dispatcher* is scheduler
- Thread runs until (1) blocks, (2) uses time slice, (3) preempted by higher-priority thread
- Real-time threads can preempt non-real-time
- 32-level priority scheme
- Variable class is 1-15, real-time class is 16-31
- Priority 0 is memory-management thread
- Queue for each priority
- If no run-able thread, runs idle thread

Windows Priority Classes

- Win32 API identifies several priority classes to which a process can belong
 - REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS, ABOVE_NORMAL_PRIORITY_CLASS, NORMAL_PRIORITY_CLASS, BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS
 - All are variable except REALTIME
- A thread within a given priority class has a relative priority
 - TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, BELOW_NORMAL, LOWEST, IDLE
- Priority class and relative priority combine to give numeric priority
- Base priority is NORMAL within the class
- If quantum expires, priority lowered, but never below base
- If wait occurs, priority boosted depending on what was waited for
- Foreground window given 3x priority boost

Windows XP Priorities

	real- time	high	above normal	normal	below normal	idle priority
time-critical	31	15	15	15	15	15
highest	26	15	12	10	8	6
above normal	25	14	11	9	7	5
normal	24	13	10	8	6	4
below normal	23	12	9	7	5	3
lowest	22	11	8	6	4	2
idle	16	1	1	1	1	1

Linux Scheduling

- Constant order O(1) scheduling time
- Preemptive, priority based
- Two priority ranges: time-sharing and real-time
- **Real-time** range from 0 to 99 and **nice** value from 100 to 140
- Map into global priority with numerically lower values indicating higher priority
- Higher priority gets larger q
- Task run-able as long as time left in time slice (active)
- If no time left (expired), not run-able until all other tasks use their slices
- All run-able tasks tracked in per-CPU runqueue data structure
 - Two priority arrays (active, expired)
 - Tasks indexed by priority
 - When no more active, arrays are exchanged

Linux Scheduling (Cont.)

- Real-time scheduling according to POSIX.1b
 - Real-time tasks have static priorities
- All other tasks dynamic based on *nice* value plus or minus 5
 - Interactivity of task determines plus or minus
 - 4 More interactive -> more minus
 - Priority recalculated when task expired
 - This exchanging arrays implements adjusted priorities

Priorities and Time-slice length

numeric priority	relative priority		time quantum
0	highest		200 ms
•		real-time	
•		tasks	
99			
100			
•		other	
•		tasks	
140	lowest		10 ms

List of Tasks Indexed According to Priorities

Algorithm Evaluation

- How to select CPU-scheduling algorithm for an OS?
- Determine criteria, then evaluate algorithms
- Deterministic modeling
 - Type of analytic evaluation
 - Takes a particular predetermined workload and defines the performance of each algorithm for that workload

Queueing Models

- Describes the arrival of processes, and CPU and I/O bursts probabilistically
 - Commonly exponential, and described by mean
 - Computes average throughput, utilization, waiting time, etc
- Computer system described as network of servers, each with queue of waiting processes
 - Knowing arrival rates and service rates
 - Computes utilization, average queue length, average wait time, etc

Little's Formula

- n = average queue length
- W = average waiting time in queue
- λ = average arrival rate into queue
- Little's law in steady state, processes leaving queue must equal processes arriving, thus $n = \lambda \times W$
 - Valid for any scheduling algorithm and arrival distribution
- For example, if on average 7 processes arrive per second, and normally 14 processes in queue, then average wait time per process = 2 seconds

Simulations

- Queueing models limited
- Simulations more accurate
 - Programmed model of computer system
 - Clock is a variable
 - Gather statistics indicating algorithm performance
 - Data to drive simulation gathered via
 - 4 Random number generator according to probabilities
 - 4 Distributions defined mathematically or empirically
 - 4 Trace tapes record sequences of real events in real systems

Evaluation of CPU Schedulers by Simulation

Implementation

- Even simulations have limited accuracy
- Just implement new scheduler and test in real systems
 - High cost, high risk
 - Environments vary
- Most flexible schedulers can be modified per-site or per-system
- Or APIs to modify priorities
- But again environments vary

End of Chapter 5

5.08

In-5.7

In-5.8

In-5.9

Dispatch Latency

Java Thread Scheduling

- JVM Uses a Preemptive, Priority-Based Scheduling Algorithm
- FIFO Queue is Used if There Are Multiple Threads With the Same Priority

Java Thread Scheduling (Cont.)

JVM Schedules a Thread to Run When:

- 1. The Currently Running Thread Exits the Runnable State
- 2. A Higher Priority Thread Enters the Runnable State

* Note – the JVM Does Not Specify Whether Threads are Time-Sliced or Not

Time-Slicing

Since the JVM Doesn't Ensure Time-Slicing, the yield() Method May Be Used:

```
while (true) {
    // perform CPU-intensive task
    ...
    Thread.yield();
}
```

This Yields Control to Another Thread of Equal Priority

Thread Priorities

Priority Comment

Thread.MIN_PRIORITY Minimum Thread Priority

Thread.MAX_PRIORITY Maximum Thread Priority

Thread.NORM_PRIORITY Default Thread Priority

Priorities May Be Set Using setPriority() method:

setPriority(Thread.NORM_PRIORITY + 2);

Solaris 2 Scheduling

