ELEC 221 Final Formula Sheet

Continuous Time

Time domain convolution
$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

Fourier series
$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega t}$$

Fourier coefficients
$$c_k = \frac{1}{T} \int_T x(t)e^{-jk\omega t} dt$$

Fourier transform
$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

Inverse Fourier transform
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

Laplace transform
$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

Parseval's Identity
$$\frac{1}{T} \int_{T} |x(t)|^{2} dt = \sum_{k=-\infty}^{\infty} |c_{k}|^{2}$$

Group delay
$$\tau(\omega) = -\frac{d}{d\omega} \left(\langle H(j\omega) \rangle \right)$$

Differential equations
$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt}$$

Derivative identity for
$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega), \quad \frac{dx(t)}{dt} \stackrel{\mathcal{F}}{\longleftrightarrow} j\omega X(j\omega)$$

for
$$x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s)$$
, $\frac{dx(t)}{dt} \stackrel{\mathcal{F}}{\longleftrightarrow} sX(s)$

Step response
$$s(t) = h(t) * u(t) = \int_{-\infty}^{t} h(\tau) d\tau$$

$$\text{General form of 2nd order ODE} \quad \frac{d^2y(t)}{dt^2} + 2\zeta\omega_n\frac{dy(t)}{dt} + \omega_n^2y(t) = \omega_n^2x(t)$$

Discrete Time

Time domain convolution
$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Discrete Fourier series
$$x[n] = \sum_{k=0}^{N-1} c_k e^{jk\frac{2\pi}{N}n}$$

Fourier coefficients
$$c_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\frac{2\pi}{N}n}$$

Discrete Fourier transform
$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

Inverse discrete Fourier transform
$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Z-transform
$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

Parseval's Identity
$$\frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2 = \sum_{k=0}^{N-1} |c_k|^2$$

Group delay
$$\tau(\omega) = -\frac{d}{d\omega} \left(\langle H(e^{j\omega}) \rangle \right)$$

Difference equation
$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

Time shift identity for where
$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j\omega})$$

$$x[n-k] \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-jk\omega} X(e^{j\omega})$$

Frequency shift identity
$$e^{j\omega_0 n} x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j(\omega - \omega_0)})$$

General Identities

Euler's Identity
$$e^{j\theta} = \cos\theta + j\sin\theta$$
 Quadratic formula $ax^2 + bx + c = 0$ $x = \frac{1}{2a}\left(-b \pm \sqrt{b^2 - 4ac}\right)$

Geometric series
$$\sum_{k=0}^{N} z^k = \frac{1 - z^{N+1}}{1 - z}$$
 Integration by parts
$$\int_a^b u dv = uv|_a^b - \int_a^b v du$$

$$\sum_{k=0}^{N-1} e^{\frac{2\pi jk}{N}} = 0$$

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a_k
ejwot	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
cos ω ₀ t	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0, \text{ otherwise}$
$\sin \omega_0 t$	$rac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0$, otherwise
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1, a_k = 0, \ k \neq 0$ (this is the Fourier series representation for any choice of $T > 0$
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and $x(t+T) = x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0) \frac{\omega_0 T_1}{\pi} \operatorname{sinc} \left(\frac{k\omega_0 T_1}{\pi} \right) = \frac{\sin k\omega_0 T_1}{k\pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t) \left\{ \begin{array}{ll} 1, & t < T_1 \\ 0, & t > T_1 \end{array} \right.$	$\frac{2\sin \omega T_1}{\omega}$	
$\frac{\sin W_t}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	
$\delta(t)$		
u(t)	$\frac{1}{j\omega} + \pi \delta(\omega)$	
$\delta(t-t_0)$	$e^{-j\omega t_0}$	
$e^{-at}u(t), \Re e\{a\} > 0$	$\frac{1}{a+j\omega}$	
$te^{-at}u(t), \Re e\{a\}>0$	$\frac{1}{(a+j\omega)^2}$	
$\frac{r^{n-1}}{(n-1)!}e^{-at}u(t),$ $\Re e\{a\}>0$	$\frac{1}{(a+j\omega)^n}$	

TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=(N)} a_k e^{jk(2n/N)n}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	a_k
ejwon	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, & k = m, m \pm N, m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
υ ⁰ ο SOO	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}\$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
$\sin \omega_0 n$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \left\{ \delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l) \right\}$	(a) $\omega_0 = \frac{2\pi r}{N}$ $a_k = \begin{cases} \frac{1}{2j}, & k = r, r \pm N, r \pm 2N, \dots \\ \frac{1}{2j}, & k = -r, -r \pm N, -r \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
x[n] = 1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N \sin[2\pi k/2N]}, \ k \neq 0, \pm N, \pm 2N,.$ $a_k = \frac{2N_1 + 1}{N}, \ k = 0, \pm N, \pm 2N,$
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N}$ for all k
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\omega}}$	
$x[n] \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ $X(\omega) \text{ periodic with period } 2\pi$	
$\delta[n]$	1	
[u]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{+\infty} \pi \delta(\omega - 2\pi k)$	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	1
$(n+1)a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^2}$	1
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^r}$	

TABLE 9.2	LAPLACE TRANSFORMS OF ELEMENTARY FUNCTIONS	OF ELEMENTAR	Y FUNCTIONS
Transform pair	Signal	Transform	ROC
	$\delta(t)$		All s
	u(t)	I S	$\Re e\{s\} > 0$
	-u(-t)	s	$\Re e\{s\} < 0$
	$\frac{t^{n-1}}{(n-1)!}u(t)$	1 S"	Re{s} > 0
	$-\frac{t^{n-1}}{(n-1)!}u(-t)$	$\frac{1}{S^n}$	$\Re e\{s\} < 0$
	$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	$\Re e\{s\} > -\alpha$
	$-e^{-\alpha t}u(-t)$	$\frac{1}{s+\alpha}$	$\Re e\{s\} < -\alpha$
	$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)$	$\frac{1}{(s+\alpha)^n}$	$\Re e\{s\} > -\alpha$
	$-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)$	$\frac{1}{(s+\alpha)^n}$	$\Re e\{s\} < -\alpha$
	$\delta(t-T)$	e^{-sT}	All s
	$[\cos \omega_0 t] u(t)$	$\frac{s}{s^2+\omega_0^2}$	$\Re e\{s\}>0$
	$[\sin \omega_0 t] u(t)$	$\frac{\omega_0}{s^2+\omega_0^2}$	$\Re e\{s\} > 0$
	$[e^{-\alpha t}\cos\omega_0 t]u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega_0^2}$	$\Re e\{s\} > -\alpha$
	$[e^{-\alpha t}\sin\omega_0 t]u(t)$	$\frac{\omega_0}{(s+\alpha)^2+\omega_0^2}$	$\Re e\{s\} > -\alpha$
	$u_n(t) = \frac{d^n \delta(t)}{dt^n}$	Sn	All s
	$u_{-n}(t) = \underbrace{u(t) * \cdots * u(t)}_{u \text{ times}}$	2"	$\Re e\{s\} > 0$
_	n tillies		

SOME COMMON z-TRANSFORM PAIRS TABLE 10.2

Cional	Transform	BOC
Signal	Hansion	MOC
1. $\delta[n]$	1	Allz
2. $u[n]$	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	1-2-1	z < 1
4. $\delta[n-m]$	w_2	All z, except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
6. $-\alpha''u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \alpha $
7. $n\alpha^n u[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z > \alpha $
8. $-n\alpha^nu[-n-1]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ \pmb{v} > z $
9. $[\cos \omega_0 n] u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2\cos \omega_0] z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n] u[n]$	$\frac{[\sin \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n] u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	<i>x</i> < <i>z</i>
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	<i>x</i> < 2