1 Nastavenia

1.1 Transformácia merania

Uživateľské prostredie očakáva dáta v normalizovanom formáte. Tento fromát je prednastavený na 4095 úrovní. Kde 0 znamená zakreslenie na najnižšiu úroveň v grafickom prostredí a 4095 na najvyššiu. Pri posielaní dát to uživateľského rozhrania musí mikropočítač brať do úvahy nastavenia, ktoré si uživateľ zvolil a podľa toho transformovať body merania. Táto transformácia prebieha na základe rovn. (1).

$$v_n = \lceil \lfloor \frac{1}{s} v_\alpha + o \rfloor^{4095} \rceil_0 \tag{1}$$

kde v_n je hodnota posielaná do uživateľského prostredia, s je prepočítaná citlivosť daná rovnicou rovn. (2), o je prepočítaný posun daný rovnicou rovn. (3) a \bigsqcup^{4095} , \bigcap_0 sú funkcie definované podľa rovn. (4). Hodnota v_alpha je daná rovn. (5), kde α slúži na kalibráciu hodnoty v_{adc} preveden AD prevodníkom.

$$s = \frac{s_g d_g}{r_m} \tag{2}$$

$$o = o_g \frac{1}{s_g d_g} 4095 \tag{3}$$

$$\lfloor x \rfloor^{4095} = \begin{cases} x & \text{ak } x < 4095 \\ 4095 & \text{inak} \end{cases}$$

$$\lceil x \rceil_0 = \begin{cases} x & \text{ak } x > 0 \\ 0 & \text{inak} \end{cases}$$

$$(4)$$

kde hodnoty s_g , d_g sú hodnoty citlivosti a posunu poslané z uživateľského pro-

 $v_{\alpha} = v_{adc}\alpha$

stredia v jednotkách $\left[\frac{V}{dielik}\right]$ a $\left[V\right]$. Parameter r_m je rozsah na ktorom boli dáta merané teda $r_m \in \{5, 10, 20\}$.

1.2 Nastavenie časovačov merania

Okrem tejto transformácie je potrebné ešte prepočítať prahové napätie z voltov na úrovne príslušných watchdogov. Tento prepočet realizujeme vzorcom rovn. (6).

$$t = \lfloor \frac{t_g}{r_m} \frac{t_{max}}{\alpha} \rfloor \tag{6}$$

kde t je hodnota, ktorá sa zapisuje do threshold registrov watchdogov, t_g je prahová hodnota napätia zaslaná z uživateľského prostredia, daná vo [V], t_{max} ja maximálna hodnota threshold registra pre daný watchdog ($2^{12} - 1$ pre AWD1 a $2^8 - 1$ pre AWD2).

Tiež musíme vypočítať parametre časovačov pomocou rovn. (7).

$$psc = \lfloor \frac{c}{c_{max}} \rfloor$$

$$arr = \lfloor \frac{c}{psc + 1} \rfloor$$
(7)

kde c je celkový počet taktov časovača obsiahnutých v nastavovanom časovom intervale v [sec]. Hodnotu c vypočítame pre časovače s taktom fHZ na základe rovn. (8).

$$c = \frac{ft_{pd}d}{n} \tag{8}$$

kde t_{pd} je časová základňa v jednotkách $\frac{sec}{dielik}$, d je počet dielikov, n je počet pretečení, ktoré majú za čas $t_{pd}d$ nastať.

1.3 Nastavenie Hold-off časovačov

V používateľskom rozhraní je možné nastaviť jednorazové (Single mode) alebo priebežné (Continuous mode) meranie každého kanála zvlášť. Pri jednorazovom meraní sa uskutoční práve jedno meranie po doručení požiadavky. Pošlú sa údaje z merania a zariadenie sa prepne do stavu čakania. Pri priebežnom meraní sa spustí časovač (Hold Off timer), ktorý periodicky žiada o vykonanie merania. Periódu tohto časovača je možné nastaviť pomocou GUI. Rozlíšenie tohto časovača je 1ms, preto použijeme pevnú hodnotu preddeličky (PSC = 31999, pri 32MHZ impulz každú milisekundu) a počítadlo nastavíme podľa údajov z GUI (ARR = (hodnota z GUID) - 1).