R_Code_SIEPR, Pryce Davies

Part 1

1_{.a}

```
### Generate 1000 values of Y
set.seed(1)
x_values <- rnorm(1000,0,2)
latent_samples <- .5 * x_values + 1 +revd(1000) ### revd draws random samples from a Ty
pe 1 extreme value distribution (in this case fat right-hand tails) with location 0 and
scale 1
samples <- ifelse(latent_samples >= 0, 1,0)
### from reading, a latent variable model represents a intermediary step, one gets the
binary outcome variable by assigning values over 0 to 1 and values under 0 to 0
```

1.b

$$\sum_{n=1}^{1000} y_i * \log \frac{e^{\alpha + \beta * x_i}}{1 + e^{\alpha + \beta * x_i}} + (1 - y_i) * \log 1 - \frac{e^{\alpha + \beta * x_i}}{1 + e^{\alpha + \beta * x_i}}$$

1.c

```
### this function returns the log-likelihood value given a set of parameters theta
logli <- function(theta){
y <- samples
x <- x_values
alpha <- theta[1]
beta <- theta[2]
yhat = exp(alpha+beta*x)/(1+exp((alpha+beta*x)))
loglik <- sum(y*log(yhat)+ (1-y)*log(1-yhat))
return(-loglik)
}

parl <- c(1,.5) ### original parameters
logli(parl)</pre>
```

```
## [1] 385.0191
```

```
### Optim does optimization for given function, choose start value of (-5,-5) arbitrarily (though it is very unlikely parameter estimates would be lower), robust to different specifications such as (-1,-1), (0,0) start <-c(-5,-5) optim(start, logli)
```

```
## $par
## [1] 2.548044 1.029788
##
## $value
## [1] 302.2713
##
## $counts
## function gradient
##
         71
                  NΑ
##
## $convergence
## [1] 0
##
## $message
## NULL
```

1.e

```
### Compute Standard Errors via Bootstrapping (i.e. estimate parameter values many time
s, standard deviation of this large sample represents computed standard errors)
alpha_value = c()
beta value = c()
for ( i in 1:5000){
x values <- rnorm(1000,0,2)</pre>
latent_samples <- .5 * x_values + 1 + revd(1000)
samples <- ifelse(latent_samples >= 0, 1,0)
start \leftarrow c(0,0)
alpha <- optim(start, logli)[[1]][1]</pre>
beta <- optim(start, logli)[[1]][2]</pre>
alpha value = append(alpha value,alpha)
beta value = append(beta value,beta)
}
bootstrap_values = data.frame(matrix(nrow=5000, ncol=2))
col names <- c("alpha", "beta")</pre>
colnames(bootstrap values) <- col names</pre>
bootstrap values$alpha <- alpha value
bootstrap values$beta <- beta value</pre>
mean(bootstrap values$alpha) ### Will use these as best estimates of parameter values
```

```
## [1] 2.634811
```

```
mean(bootstrap_values$beta)
```

```
## [1] 0.9739044
```

sd(bootstrap_values\$alpha) ### These are our standard error estimates of parameter val ues

```
## [1] 0.1456744
```

```
sd(bootstrap_values$beta)
```

```
## [1] 0.07471862
```

1.f

```
### Function returns estimated values of P[y=1] given parameters and x values
yhat_f <- function(alpha,beta,x) {
yhat = exp(alpha+beta*x)/(1+exp((alpha+beta*x)))
return(yhat)
}

original_p <-yhat_f(1,.5,x_values)
optim_p <- yhat_f(mean(bootstrap_values$alpha),mean(bootstrap_values$beta),x_values)
Results<- data.frame(samples,latent_samples, x_values, original_p, optim_p) ### Datafra
me with x values, latent variable values, binary outcome variables, and P[y=1] for both
our original and optimal parameters</pre>
```

```
## `stat bin()` using `bins = 30`. Pick better value with `binwidth`.
```

Histogram of Optimal Prob

 $mean(Results \circ ptim_p)$ ### Mean is high and histogram clustered around 1, this makes sen se as our error distribution is more likely to add high positive values to the latent v ariable due to its fat right tail, and thus increase the probability of Y=1

```
## [1] 0.8423652
```

```
ggsave("plot1.f.jpeg")
```

```
## Saving 7 x 5 in image
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

##1.g

```
## Warning: Removed 312 rows containing missing values (geom_point).
## Warning: Removed 312 rows containing missing values (geom_point).
```



```
ggsave("Plot 1.g.jpeg")
```

```
## Saving 7 x 5 in image
```

```
## Warning: Removed 312 rows containing missing values (geom_point).
## Warning: Removed 312 rows containing missing values (geom_point).
```

Part 2

2.1

```
setwd("~/Desktop/assignment_jicuesta_2021")
file paths <- dir ls("~/Desktop/assignment jicuesta 2021/monthly data")
file contents<-list()</pre>
monthly_data <- data.frame()</pre>
### This function does three things: it first reads in a csv in the "monthly data" fold
er. Then it goes through the dates in that file and for dates that are in the format YY
YY-DD-MM format instead of YYYY-MM-DD, it replaces the second part (DD) with the month
 specified in the file name and moves the DD to the third position so that it is in YYY
Y-MM-DD format. It then binds together all of these month, year files into one
for (i in seq along(file paths)) {
  file_contents <- read_csv(file_paths[i], col_types = list(col_character(),col_charact</pre>
er(), col_number(), col_number(), col_number(),
 month = str_split(str_sub(file_paths[i],-7,-5),"_")[[1]][-1]
 month = sprintf("%02s", month)
for (i in 1:100) {
    if (str split(file contents$date[i],"-")[[1]][2] != month) {
      split_date = str_split(file_contents$date[i],"-")
      split 2 <- sprintf("%02s",split date[[1]][2])</pre>
      new_date = paste(split_date[[1]][1],month,split_2, sep="-")
    file contents$date[i] = new date
  }
}
 monthly data <- rbind(monthly data, file contents)</pre>
}
firm_sales <- read_csv("aggregate_firm_sales.csv", col_types = list(col_character(),col</pre>
_character(),col_number()))
firm info <- read csv("firm information.csv")</pre>
```

```
## Rows: 100 Columns: 4
```

```
## — Column specification
## Delimiter: ","
## chr (3): firm_id, firm_name, firm_sector
## dbl (1): treatment_group
```

```
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

```
### Dataset_1 is used for tables and graphs
firm sales <- firm sales %>%
 mutate(firm_id = strtrim(firm_id,7), ID_new = paste(firm id, date)) ### ID uniquely
 combines firm ID and date- analysis shows it is indeed unique(no missing values when u
sed to merge monthly data and firm sales data)
monthly_data <- monthly_data %>%
 mutate(firm_id = strtrim(firm_id,7),ID_new = paste(firm_id,date), date = as.Date(dat
e))
Dataset 1 <- left join(firm sales, monthly data, by = "ID new", keep = TRUE )
Dataset_1 <- Dataset_1 %>%
  select(-c(ID_new.y,date.y,firm_id.y,)) %>%
 rename(date = date.x, ID_new = ID_new.x,firm_id = firm_id.x)
Dataset 1 <- merge(Dataset 1, firm info, by = "firm id")
Dataset_1 <- Dataset_1 %>%
 mutate(Eligible = as.factor(ifelse(employment t > 100, 0, 1))) ### Identifies firms w
ith under 100 employees and therefore theoretically eligible for the program
### Dataset Regression has lagged employment, year and month columns, so that it can be
used in the regression analysis
### choose to include specific columns for year and month for the time-fixed effects sp
ecification. This is because for the time -effects on the outcome, it is more intuitive
for the outcomes to be related to the year and/or month of the outcome, rather than the
specific year-month-day.
### overall Quarter (quarter relative to starting quarter) included for Binning analysi
s conducted below
Dataset Regression <- data.frame()</pre>
firm path = unique(Dataset 1$firm id)
for (i in firm path) {
 temp <- Dataset 1 %>%
    filter(firm id == i) %>%
   mutate(employment_t_lag = lag(employment_t),
           date = as.Date(date),
           adopt_t = as.numeric(adopt_t),
           n eligible post = as.factor(ifelse(employment t > 100 & date >= as.Date("201
3-01-01"),1,0)),
           year = as.character(format(date, format = "%Y")),
           month = as.character(format(date, format = "%m")),
           quarter = 4 *(as.numeric(year) - 2010) + as.numeric(quarter(date)))
 Dataset Regression = rbind(Dataset Regression, temp)
}
```

2.2

```
### Each table summarizes avg sales, revenue wrt wages (to somewhat control for firm si
ze), and sector grouped by the relative indicator (Eligiqle, Adopt, etc. ) in month pro
gram began for firms of roughly similar size
eligible <- Dataset 1 %>%
  filter(grep1("2013-01", date) == TRUE) %>%
  filter(employment t \geq 60 & employment t \leq 140 ) %>%
 group_by(Eligible)
adopt <- Dataset 1 %>%
  filter(grepl("2013-01", date) == TRUE ) %>%
  filter(employment_t >= 60 & employment t <= 140 ) %>%
  group by(adopt t)
eligible_adopt <- Dataset_1 %>%
  filter(grepl("2013-01", date) == TRUE ) %>%
  filter(employment_t >= 60 & employment_t <= 140, Eligible == 1 ) %>%
 group by (adopt t)
eligible table <- eligible %>%
  summarise(
Number of Firms = length(unique(firm id)),
Revenue vs Wages = as.integer(mean(revenue t/wage bill t)),
Num Employees = as.integer(mean(employment t)),
Month Sales = as.integer(mean(sales t)),
Hospitality = sum(as.numeric(firm sector == "Hospitality"))/Number of Firms,
Retail = sum(as.numeric(firm sector == "Retail"))/Number of Firms,
Fast_Food = sum(as.numeric(firm_sector == "Fast Food"))/Number_of_Firms)
 adopt table <- adopt %>%
  summarise(
Number of Firms = length(unique(firm id)),
Revenue vs Wages = as.integer(mean(revenue t/wage bill t)),
Num_Employees = as.integer(mean(employment_t)),
Month Sales = as.integer(mean(sales t)),
Hospitality = sum(as.numeric(firm_sector == "Hospitality"))/Number_of_Firms,
Retail = sum(as.numeric(firm sector == "Retail"))/Number of Firms,
Fast_Food = sum(as.numeric(firm_sector == "Fast Food"))/Number_of_Firms)
eligible_adopt_table <- eligible_adopt %>% ### compares ELigible firms (100 or less Emp
loyees) by adoption status
  summarise(
Number of Firms = length(unique(firm id)),
Revenue vs Wages = as.integer(mean(revenue t/wage bill t)),
Num Employees = as.integer(mean(employment t)),
Month Sales = as.integer(mean(sales t)),
Hospitality = sum(as.numeric(firm sector == "Hospitality"))/Number of Firms,
Retail = sum(as.numeric(firm_sector == "Retail"))/Number_of_Firms,
Fast_Food = sum(as.numeric(firm_sector == "Fast Food"))/Number_of_Firms)
```

Display
formattable(eligible_table)

Eligible	Number_of_Firms	Revenue_vs_Wages	Num_Employees	Month_Sales	Hospitality	Retail	F
0	22	585	119	733433	0.09090909	0.2272727	-(
1	28	306	81	235667	0.14285714	0.5357143	_(
format	table(adopt_table	•)					

F	Retail	Hospitality	Month_Sales	Num_Employees	Revenue_vs_Wages	Number_of_Firms	adopt_t
(0.3125000	0.1250000	511014	105	510	32	0
(0.555556	0.1111111	354542	85	285	18	1

formattable(eligible_adopt_table)

opt_t N	Number_of_Firms	Revenue_vs_Wages	Num_Employees	Month_Sales	Hospitality	Retail I	F
0	11	324	77	268369	0.1818182	0.5454545	(
1	17	295	83	214507	0.1176471	0.5294118	(

Treatment vs Control

Bin_sales_adopt <- binsreg(Dataset_Regression\$sales_t, Dataset_Regression\$quarter, by =
Dataset_Regression\$treatment_group, binspos = "es", samebinsby = TRUE)</pre>

Bin_sales_adopt\$bins_plot + geom_vline(xintercept = 9) + labs(title = "Sales over Tim
e, Treatment vs Control", x= "Quarter (1=Jan-March 2010)", y= "Sales")

Dataset_Regression\$treatment_group =

• (

1

ggsave("Plot 2.2 Sales_Adopt.jpeg")

Saving 7 x 5 in image

Bin_rev_adopt <- binsreg(Dataset_Regression\$revenue_t, Dataset_Regression\$quarter, by =
Dataset_Regression\$treatment_group, binspos = "es", samebinsby = TRUE)</pre>

Bin_rev_adopt\$bins_plot + geom_vline(xintercept = 9) + labs(title = "Revenue over Tim
e, Treatment vs Control", x= "Quarter (1=Jan-March 2010)", y= "Revenue")

Revenue over Time, Treatment vs Control

ggsave("Plot 2.2 Rev_Adopt.jpeg")

Saving 7×5 in image

ggplot(data=Dataset_Regression, aes(x=quarter,y=wage_bill_t, colour=factor(treatment_gr
oup))) + geom_point() + geom_vline(xintercept = 9) + labs(title = "Wage Bill over Time,
Adopt vs N_Adopt", x="Quarter (1=Jan-March 2010)", y= "Wage Bill")

ggsave("Plot 2.2 Wage_Adopt.jpeg")

Saving 7 x 5 in image

Eligible vs Not Eligible
Bin_sales_eligible <- binsreg(Dataset_Regression\$sales_t, Dataset_Regression\$quarter, b
y = Dataset_Regression\$Eligible, binspos = "es", samebinsby = TRUE)</pre>

Bin_sales_eligible\$bins_plot + geom_vline(xintercept = 9) + labs(title = "Sales over T
ime, Eligible vs Not Eligible", x= "Quarter (1=Jan-March 2010)", y= "Sales")

Sales over Time, Eligible vs Not Eligible

ggsave("Plot 2.2 Sales_Eligible.jpeg")

Saving 7 x 5 in image

Bin_rev_eligible <- binsreg(Dataset_Regression\$revenue_t, Dataset_Regression\$quarter, b
y = Dataset_Regression\$Eligible, binspos = "es", samebinsby = TRUE)</pre>

Bin_rev_eligible\$bins_plot + geom_vline(xintercept = 9) + labs(title = "Revenue over T
ime, Eligible vs Not Eligible", x= "Quarter (1=Jan-March 2010)", y= "Revenue")

Revenue over Time, Eligible vs Not Eligible


```
ggsave("Plot 2.2 Rev_Eligible.jpeg")
```

```
## Saving 7 x 5 in image
```

ggplot(data=Dataset_Regression, aes(x=quarter,y=wage_bill_t, colour=factor(Eligible)))
+ geom_point() + geom_vline(xintercept = 9) + labs(title = "Wage Bill over Time, Eligib
le vs N_Eligible", x="Quarter (1=Jan-March 2010)", y= "Wage Bill")

Wage Bill over Time, Eligible vs N_Eligible

ggsave("Plot 2.2 Wage Eligible.jpeg")

Saving 7 x 5 in image

Eligible Adopt vs Not Adopt

Tried to include plot of sales like above, but for some reason the table would not
plot correctly, would get contrast error despite running the same code as above
Dataset_R_Eligible <- Dataset_Regression %>%
 filter(Eligible == 1)

ggplot(data=Dataset_R_Eligible, aes(x=quarter,y=sales_t, colour=factor(treatment_grou
p))) + geom_point() + geom_vline(xintercept = 9) + labs(title = "Sales over Time, Eligi
ble, Adopt vs N_Adopt", x="Quarter (1=Jan-March 2010)", y= "Sales")

Sales over Time, Eligible, Adopt vs N_Adopt

ggsave("Plot 2.2 Sales_Adopt_Eligible.jpeg")

Saving 7 x 5 in image

Bin_Rev_eligible_adopt <- binsreg(Dataset_R_Eligible\$revenue_t, Dataset_R_Eligible\$quar
ter, by= Dataset_R_Eligible\$treatment_group, binspos = "es", samebinsby = TRUE)</pre>

Bin_Rev_eligible_adopt\$bins_plot + geom_vline(xintercept = 9) + labs(title = "Revenue
over Time, Eligible, Adopt vs N_Adopt", x= "Quarter (1=Jan-March 2010)", y= "Revenue")

Revenue over Time, Eligible, Adopt vs N_Adopt

ggsave("Plot 2.2 Rev_Adopt_Eligible.jpeg")

Saving 7 x 5 in image

ggplot(data=Dataset_R_Eligible, aes(x=quarter,y=wage_bill_t, colour=factor(treatment_gr
oup))) + geom_point() + geom_vline(xintercept = 9) + labs(title = "Wage Bill over Time,
Eligible, Adopt vs N_Adopt", x="Quarter (1=Jan-March 2010)", y= "Wage Bill")

Saving 7 x 5 in image

2.3b

```
### post_comparison is dataset of firms of a somewhat comparable size (60 to 140 employ
ees) with observations from after program beggining. This grouping is chosen as firms 1
arger or smaller tend have outcome variables largely influenced by their amount of empl
oyees, rather than by being treated or not
### Adopt and treatment group are the same as we are looking at data only from after pr
ogram implementation
post comparison <- Dataset 1 %>%
  filter(date \geq as.Date("2013-01-01"), employment t \geq 60 & employment t \leq 140 ) %>%
 mutate(employment_100 = as.factor(ifelse(employment_t >100, 1,0))) %>%
  select(c(employment t, sales t, wage bill t, revenue t, adopt t, treatment group))
## This function creates a graph of the regression discontinuity for each outcome varia
ble nd saves graph into folder
## Bins chosen such that firms with more than 100 employees and less than 100 employees
are not in same bin
for (i in 1:ncol(post comparison)) {
 bin_scatter <- binsreg(post_comparison[, i], post_comparison$employment_t, binspos =</pre>
 seg(61,131,10))$data.plot[[1]]$data.dots
 bin scatter <- as.data.frame(bin scatter)</pre>
 bin scatter$over 100 employees <- as.factor(ifelse(bin scatter$x > 100,1,0))
 fig <- ggplot(data=bin scatter, aes(x= x, y=fit, colour = over 100 employees)) + labs
(title = paste(colnames(post_comparison)[i], "by Employee Size"), y = colnames(post_com
parison)[i], x = "# of Employees") + geom point() + geom smooth(method = "lm") + geom v
line(xintercept = 100) + scale x continuous(breaks = seq(60,150,10))
  print(fig)
 name <- paste0(paste(colnames(post comparison)[i], "by Employee Size"),".jpeg")</pre>
  ggsave(name)
}
```


`geom_smooth()` using formula 'y ~ x'

Saving 7 x 5 in image

`geom_smooth()` using formula 'y ~ x'


```
## `geom_smooth()` using formula 'y ~ x'
```

```
## Saving 7 x 5 in image
```

```
## `geom_smooth()` using formula 'y ~ x'
```



```
## `geom_smooth()` using formula 'y ~ x'
```

```
## Saving 7 x 5 in image
```



```
## `geom_smooth()` using formula 'y ~ x'
```

```
## Saving 7 x 5 in image
```

```
## `geom_smooth()` using formula 'y ~ x'
```



```
## `geom_smooth()` using formula 'y ~ x'
```

```
## Saving 7 x 5 in image
```

```
## `geom_smooth()` using formula 'y ~ x'
```



```
## `geom_smooth()` using formula 'y ~ x'
```

```
## Saving 7 x 5 in image
```

```
## `geom_smooth()` using formula 'y ~ x'
```

treatment_group by Employee Size

2.3c and d

```
### Time-Fixed Effects: Controlling for year allows for the control of year-by-year gro
wth or recession, and controlling for month allows for the control of seasonal cycles o
f sales, revenue, etc.
### Regression robust to other time fixed-effect specifications, such as by quarter
### N-eligible post is indicator, 1 if over 100 employees after program begins
### Created Dataset of only observations post program start for Models1-4
Dataset Regression Post <- Dataset Regression %>%
  filter(date >= as.Date("2013-01-01"))
model 1 <- (lm(sales t ~ n eligible post + employment t lag + firm id + year + month, d
ata = Dataset Regression Post ))
model_2 <- (lm(revenue_t ~ n_eligible_post + employment_t_lag + firm_id + year + month,</pre>
data = Dataset Regression ))
model 3 <- (lm(wage bill t ~ n eligible post + employment t lag + firm id + year + mont
h, data = Dataset Regression Post ))
model_4 <- (lm(employment_t ~ n_eligible_post + employment_t_lag + firm_id + year + mon</pre>
th, data = Dataset Regression Post ))
model 5 <- lm(adopt t ~ n eligible post + employment t lag + firm id + year + month, da
ta = Dataset Regression ) ### initially used probit model, but got very high standard e
rrors. Linear model is not technically best tool to use since we are focused on a binar
y outcome, but the coefficient on the variable of interest makes some sense.
model_6 <- lm(treatment_group ~ n_eligible_post + employment_t_lag + firm_id + year + m</pre>
onth, data = Dataset_Regression ) ### initially used probit model, but got very high st
andard errors. Linear model is not technically best tool to use since we are focused on
a binary outcome, but the coefficient on the variable of interest makes some sense.
stargazer(model_1, model_2, model_3, model_4, model_5, model_6, keep = c("n_eligible_po
st", "employment_t_lag", "constant"),
          title ="Change after Program Implementation in Business Outcomes of Non-Eligi
ble Firms ",
          covariate.labels= c("Not Elibile x Post Implementation Dummy", "Employment in
t-1", "Constant"),
          dep.var.labels = c("Monthly Sales", "Monthly Revenue", "Monthly Wage Bill", "M
onthly Employees", "Adoption of Intervention", "Treatment Assignment"),
          omit.stat = c("f", "adj.rsq", "ser"))
```