AC PLACEMENT OPTIMIZATION WITH CFD AND

Thomas IDIER Goto Lab.

Introduction

Goal

The goal is to have access to the best **placement of Air Conditioner** in a **bedroom in University House Aobayama**

To know the best configuration, you need to do a **lot of CFD simulations**, so it takes a lot of time, the goal is to **train a NN model on a small database**, then use this model to **find the best placement**

To access the best configuration, I can **directly have access** to the **PMV** index though the CFD simulations

Hypothesis

- Man studying during the evening
- Man **sitting** on the bed or on the chair

- Steady state
- Heat transmission across glass window and wall connected to the outside only
- No transmitted solar heat (evening, no sun, drape during the day)
- No heat transmission through wall, floor and celling (not connected to outside)

01 CFD database establishment

Modelization in Flowdesigner of my bedroom

Window and Wall

Heat Transfer Coefficient

$$egin{aligned} h_{0summer} &= 22.7W/(m2\degree C) \ h_{0winter} &= 34W/(m2\degree C) \ h_i &= 8.29W/(m2\cdot \degree C) \end{aligned}$$

Areas

Wall

$$A_{wall} = 2.5 * 2 - 1.8 * 2.0 = 1.4m2$$

Different Area of the door glass

$$egin{aligned} A_{window} &= 1.8*2.0 = 3.6m2 \ A_{glazing} &= 2*1.72*0.94 = 3.23m2 \ A_{frame} &= 3.60 - 3.23 = 0.37m2 \end{aligned}$$

Edge of glass: 6.5 cm wide band around the perimeter of the glazing

$$egin{aligned} A_{center} &= 2*(1.72-0.13)*(0.94-0.13) = 2.58m2 \ A_{edge} &= A_{glazing} - A_{center} = 0.65m2 \end{aligned}$$

FIGURE 41
The three regions of a window
considered in heat transfer analysis.

Heat Flow

Wall

$$U_{wall_{summer}} = rac{1}{rac{1}{h_i} + rac{1}{hosummer} + rac{L}{\lambda_{concrete}}} = 4.25W/(m2 \cdot {}^{\circ}C) \hspace{1cm} \lambda = 1.4W/(m \cdot {}^{\circ}C) \ L = 0.2m$$

Double glazing

$$U_{center_{summer}} = rac{1}{rac{1}{h_i} + rac{1}{hosummer} + rac{1}{hspace} + rac{2*Lwindow}{\lambda_{window}}} = 3.51W/(m2 \cdot {^{\circ}C})$$

Heat Flow Edge: Metallic spacer

$$U_{edge_{summer}} = 4W/(m2\cdot {^{\circ}C})$$

Heat Flow Frame: Aluminium

$$U_{frame} = 10.1 W/(m2 \cdot {^{\circ}C})$$

$$egin{aligned} h_{space_{summer}} &= 8.8m2/\degree C \ L_{window} &= 0.003m \ \lambda_{window} &= 0.92W/(m \cdot \degree C) \end{aligned}$$

Window Heat flow

$$U_{window_{summer}} = rac{1}{A_{window}} * (U_{center_{summer}} * A_{center} + U_{edge_{summer}} * A_{edge} + U_{frame} * A_{frame}) = 4.28W/(m2 \cdot {^{\circ}C})$$

PMV

PMV stands for **Predicted Mean Vote**, which is a **measure** used in **thermal comfort** studies to assess how a group of people feel about their thermal environment.

It's a way to quantify and **predict human comfort** or discomfort based on factors like temperature, humidity, air movement, and clothing insulation.

PMV Calculation: Clothing insulation

To calculate the PMV, you need to know the clothing insulation

Summer: 0.39 clo

	23			
	Boxer shorts	88 g	0.45 mm	CO
	Socks	44 g	0.93 mm	CO
	T-shirt	158 g	0.64 mm	CO
	Chino pants	422 g	0.70 mm	CO, ELA
	Trainers/ sneakers	424 g	_	PES, RB
	T-shirt not	tucked in	ı (over) chin	o pants.

Winter: 0.84 clo

	16			
	Boxer shorts	88 g	0.45 mm	СО
	Socks	44 g	0.93 mm	CO
	T-shirt	158 g	0.64 mm	СО
	Jeans (straight fit)	608 g	0.91 mm	CO, ELA
	Thick hooded jacket ("Hoodie")	830 g	4.65 mm	CO, PES
2 5	Shoes	812 g	_	LTH, RB
	T-shirt tucked into jeans. Hood draped on back.			

2021 **Updated Database of Clothing Thermal Insulation and Vapor Permeability Values of Western Ensembles for Use in ASHRAE Standard 55, ISO 7730, and ISO 9920**, James W. Smallcombe, PhD, Simon Hodder, PhD, Kalev Kuklane, PhD

PMV Calculation: Metabolic rate

A - 41-14	Metabo	Metaboļic rates		
Activity	W/m²	met		
Reclining	46	0,8		
Seated, relaxed	58	1,0		
Sedentary activity (office, dwelling, school, laboratory)	70	1,2		
Standing, light activity (shopping, laboratory, light industry)	93	1,6		
Standing, medium activity (shop assistant, domestic work, machine work)	116	2,0		
Walking on the level: Teh STANDARD P	REVIEV	J		
2 km/h	110	1,9		
3 km/h (standards.itel	1.ai)140	2,4		
4 km/h	165	2,8		
5 km/h ISO 7730:1994	200	3,4		

1.2 met

PMV Calculation

Temperature

Velocity

ISO 7730 - 2005

 $PMV = [0,303 \cdot \exp(-0,036 \cdot M) + 0,028]$

$$\begin{cases} (M-W) - 3.05 \cdot 10^{-3} \cdot \left[5.733 - 6.99 \cdot (M-W) - p_{a} \right] - 0.42 \cdot \left[(M-W) - 58.15 \right] \\ -1.7 \cdot 10^{-5} \cdot M \cdot \left(5.867 - p_{a} \right) - 0.0014 \cdot M \cdot \left(34 - t_{a} \right) \\ -3.96 \cdot 10^{-8} \cdot f_{cl} \cdot \left[\left(t_{cl} + 273 \right)^{4} - \left(\overline{t_{r}} + 273 \right)^{4} \right] - f_{cl} \cdot h_{c} \cdot \left(t_{cl} - t_{a} \right) \end{cases}$$

SAT Calculation

The sol-air temperature (SAT) is the hypothetical outside air temperature that, in the absence of solar radiation, would produce the same temperature distribution and heat transfer rate through a wall (or roof) as observed under the combined influence of actual outdoor temperatures and incident solar radiation.

$$SAT = T_{out} - rac{\epsilon_{global}\phi_a R}{h_0}$$

 ϕ_a form factor of the sky as seen from glass window : 0.5

R -effective radiation to the sky from horizontal surface (Wm-2)

Power input in the AC

$$Q_{AC_{summer}} = (A_{wall} * U_{wall_{summer}} + A_{window} * U_{window_{summer}}) * (SAT - T_{in})$$

When to use AC in Winter and Summer

Summer:

Fig. 4. Relationship between outdoor air temperature and percentage of persons using AC-units for the case of cooling in summertime. The outdoor air temperature is the value for respective period as shown inside the graph. The thin dotted lines along with the bold lines in between show the limits of the 5% confidence interval of the respective line.

When 50% use AC in evening:

Summer: 27°C

2009 Comparison of theoretical and statistical models of airconditioning-unit usage behaviour in a residential setting under Japanese climatic conditions, Marcel Schweiker, Masanori Shukuya

Winter:

Fig. 5. Relationship between outdoor air temperature and percentage of persons using AC-units for the case of heating in wintertime. The thin dotted lines along with the bold lines in between show the limits of the 5% confidence interval of the respective line.

Winter: 8°C

02 Neural Network Training

Neural Network: Output PMV Field

Input Data:

- Yac
- SAT
- Qac

• PMV Field

Neural Network in Summer

Neural Network in Winter

Database splitting

4 * 4 * 4 - 4 = 60 simulations

Yac = 1m

SAT 🕶	Qmir ▼	Q2 💌	Q3 💌	Qma: 🔻
26,41		0	1	2
26,81	3	4	5	6
27,75	7	8	9	10
30,33	11	12	13	14

$$Yac = 3m$$

SAT 🕶	Qmir 🔻	Q2 💌	Q3 💌	Qma: ▼
26,41		30	31	32
26,81	33	34	35	36
27,75	37	38	39	40
30,33	41	42	43	44

SAT ▼	Qmir <mark>▼</mark>	Q2 💌	Q3 ×	Qma: ▼
26,41		15	16	17
26,81	18	19	20	21
27,75	22	23	24	25
30,33	26	27	28	29

Yac = 4m

SAT ▼	Qmir ▼	Q2 💌	Q3 🕶	Qma: ▼
26,41		45	46	47
26,81	48	49	50	51
27,75	52	53	54	55
30,33	56	57	58	59

NN training: 4 cases

• Basic case: 83 184 blocks

• Normalization:
$$SAT_{
m norm} = rac{SAT - \min(SAT)}{\max(SAT) - \min(SAT)}$$

• Standardization:
$$SAT = rac{SAT - \mu}{\sigma}$$

• Dimension Reduction: 83 184 / 8 = 10 398 blocks

Hyperparameters Optimization

Parameter	Values	
neurons	64	
optimizers	RMSprop	
nb_hidden	5	
epochs	5000	
learning_rate	0.001	
activation	relu	

Error Quantification

To quantify the **error** of a NN for each value of a block i, we calculate:

$$Err_{i} = |rac{y_{i}^{CFD} - y_{i}^{NN}}{max\left(y_{i}^{CFD}
ight) - min\left(y_{i}^{CFD}
ight)}|$$

Result on the training dataset

Result on the testing dataset

Result on the testing dataset

Data Number	NN Basic Case	NN with Reduction	NN with Normalization	NN with Standardization
1	8.139490	9.048442	0.973443	3.026753
9	45.553799	53.700125	11.691819	16.889560
14	13.791781	16.913189	13.625349	11.434768
17	17.692813	8.137317	9.674165	14.228789
20	3.439430	2.732203	0.713181	0.437385
26	12.865245	15.449526	10.615810	11.013295
33	1.204221	0.779731	1.366374	2.393399
40	6.222906	3.881780	3.817003	4.160705
42	6.863333	24.147201	2.914599	4.293493
45	7.227992	9.490665	6.152362	6.171570
51	32.309253	37.029692	2.829195	2.877835
52	1.660562	3.602954	1.347347	5.912622
Mean	13.080902	15.409402	5.476721	6.903348

03 AC placement optimization

Conditions

The goal of the study is to find the **best position** of the AC, while **increasing the thermal comfort** and **minimizing the annual power consumption**

Criteria to quantify thermal comfort: Sum of PMV deviations

$$\Delta PMV_i = |PMV_i| - PMV_{range}$$
 if $\Delta PMV_i < 0$ then $\Delta PMV_i = 0$

For each PMV field, I can calculate:

$$\sum_{i=1}^n \Delta PMV_i$$

Methodology

The minimal power that minimizes the sum of PMV deviation is saved

Summer Results

$$PMV_{range}=0.5$$

Best position : 1 m

Winter Results

$$PMV_{range} = 0.5$$

Best position: 3.8 m

Analysis: Summer Results

In Summer, when the AC is close to the window, the standard deviation is the lowest, but the cooling effect is worse than when the AC is far from the window

Analysis: Winter Results

In Winter, when the AC is close to the window, the standard deviation is the lowest, and the heating effect is about the same than when the AC is far from the window

Analysis: Physics explanation

When the AC is far from the window:

- Low differential of temperature at the window, so less heat gain, which needs less power to cool or heat the room
- More differential of temperature inside the room, so high standard deviation
- Good airflow distribution

When the AC is close to the window:

- High differential of temperature at the window, so more heat gain, which needs more power to cool or heat the room
- Less differential of temperature inside the room, so low standard deviation
- Bad airflow distribution

Difference between summer and winter:

- In term of Power consumption, summer is negligeable compared to winter
- In **summer**, having a **good airflow** distribution (AC far from the window) is **beneficial** since it cools the room and it decreases the PMV. But in **winter**, it has the **opposite effect**, it decreases the PMV but we want the AC to heat the room, so the position close to the window is the best one in terms of PMV deviation and Power consumption

Thank you!