```
Variational Autoencoders (VAEs)
· De coden: P(x|z, \Theta) (e.g. N(\mu(z); \Sigma(z)))
• Encoder: 9(3|x,\emptyset) (e.g. N(\mu(x); \Xi^{\circ}(x)))
· likelihood of X given O
 log P(X|\Theta) = log P(X|Z,\Theta) dP(Z|\Theta)
                    = \log \int \frac{P(x|z,\theta) P(z|\theta)}{Q(z|x,\emptyset)} dQ(z|x,\emptyset)
  Jensens
  inequality \int \log \left( \frac{P(X|Z,\Theta)P(Z|\Theta)}{D(Z|X,\phi)} \right) dQ(Z|X,\phi)
                     = E log P(X/Z,0)
                         reconstruction loss
                        -\mathbb{E}^{\mathsf{V}_{\mathsf{p}}}\left[\log\left(\frac{\mathbb{Q}(\mathsf{z}|\mathsf{x},\mathsf{p})}{\mathbb{P}(\mathsf{z}|\mathsf{p})}\right)\right]
 NB: The quantities of interest in the ELBO depend
heavily on the distributions IP, Q.
```

Optimization procedure
het Ø, O be artificial neural networks (ANNs) for respectively the encoder and decoder.
het Ø, O be artificial neural networks (ANNs) for respectively the encoder and decoder.
I. Process X through ANN &
I. Process X through ANN & Lo gives $\mu(x)$ and $\Xi(x)$.
2. Sample 2 from 9 (· 1x)
2. Sample 3 from 90 (· 1x) Lo gives j's drawn from the encoder.
A S S S S S S S S S S S S S S S S S S S
3. Process 2 through ANN O
3. Process 3 through ANN 0 L. gives $\mu(3)$ and $\Sigma^{\circ}(3)$.
· ·
4. Compute Monte-Carlo estimates of ELBO
$\log P(x z, \Theta(z)) - \log \left(\frac{Q(z x, \emptyset(x))}{P(z \Theta(z))}\right)$
$P(3 \Theta(3))$
5. Maximize the ELBO with respect to ∅, ♥. Lo updates both ANNs
Lo modates both ANNs
6. Repeat until convergence.