# Mathematics of Deep Learning Lecture 6: Over-parametrization, Convergence of GD to Global Minima, Concentration Inequalities, Matrix Perturbation

Prof. Predrag R. Jelenković Time: Tuesday 4:10-6:40pm

Dept. of Electrical Engineering
Columbia University , NY 10027, USA
Office: 812 Schapiro Research Bldg.
Phone: (212) 854-8174
Email: predrag@ee.columbia.edu
URL: http://www.ee.columbia.edu/~predrag

## High-Dimensional Geometry

#### Reflection on high-dimensional geometry

- Arguments about high dimensions are often involved, mostly as heuristic, in NNs/ML papers
- But, one has to be careful
  - ► Counterintuitive: low dimensional intuition does not work
    - Volume of n-cube and n-ball is not found where one would expect it to be
    - Many more vectors are orthogonal than you would think
- ▶ Better understanding of the high-dimensional geometry can lead to better statistical learning algorithms.
  - ► This is exploited in sparse grids, where certain volumes in high dimensions can be ignored.

#### *n*-Cube

Define n-cube,  $C^n(s)$ , with side s, which is centered at the origin

$$C^{n}(s) = \{(x_1, \dots, x_n) : -s/2 \le x_i \le s/2, 1 \le i \le n\}$$

Let  $C^n = C^n(1)$  be the unit cube.

- ▶ The cube  $C^n$  has diameter  $\sqrt{n}$ , but volume 1.
- ▶ For any t > 0,

$$\lim_{n \to \infty} \text{Vol}(C^n - C^n(1 - t/n)) = \lim_{n \to \infty} (1 - (1 - t/n)^n) = 1 - e^{-t},$$

 Algebraically these are trivial, but geometrically, these is counterintuitive(!)

**Example** For t = 3 and n = 300,

$$1 - (1 - 3/300)^{300} \approx 95\%$$

of the volume is in a shell of width 0.01



## n-Cube: Volume is concentrated in the middle

Consider a hyperplane that goes through the middle (origin)

$$x_1 + \dots + x_n = 0$$

Note that this hyperplane is perpendicular to the unit vector

$$\frac{1}{\sqrt{n}}(1,\ldots,1)$$

Let A be the set of points that are at distance c from this hyperplane

$$A = \{(x_1, \dots, x_n) : \frac{|x_1 + \dots + x_n|}{\sqrt{n}} \le c\}$$

**Lemma** For any c > 0,  $Vol(C^n \cap A) \ge 1 - e^{-\Omega(c^2)}$ 

How can this be?

▶ Most of the volume is both in the middle & thin shell?



## n-Ball: Volume is concentrated in the very thin shell

Define an  $n ext{-Ball}$  and  $n ext{-Sphere}$  of radius r

$$B^{n}(r) = \{(x_{1}, \dots, x_{n}) : x_{1}^{2} + \dots + x_{n}^{2} \le r^{2}\}$$
  
$$S^{n-1}(r) = \{(x_{1}, \dots, x_{n}) : x_{1}^{2} + \dots + x_{n}^{2} = r^{2}\}$$

Let  $B^n=B^n(1)$  and  $S^{n-1}=S^{n-1}(1)$  be the unit ball and unit sphere, respectively.

**Lemma** Most of the volume is in the thin shell of order t/n,

$$\lim_{n\to\infty}\frac{\operatorname{Vol}(B^n)-\operatorname{Vol}(B^n(1-t/n))}{\operatorname{Vol}(B^n)}=1-\lim_{n\to\infty}(1-t/n)^n=1-e^{-t}$$

**Proof** Follows from scaling

$$Vol(B^n(r)) = r^n Vol(B^n)$$

(Justify this)

# Uniform Random Variables on n-Sphere & n-Ball

Let  $X_i, i \geq 1$  be independent standard normal,  $\mathcal{N}(0,1)$ , random variables and let

$$\|\boldsymbol{X}\|_2 = \sqrt{X_1^2 + \cdots X_n^2}$$

Then,

$$\boldsymbol{Y} = \left(\frac{X_1}{\|\boldsymbol{X}\|_2}, \dots, \frac{X_n}{\|\boldsymbol{X}\|_2}\right)$$

is uniformly distributed on unit sphere  $S^{n-1}$ .

Furthermore, if U is a uniform random variable on [0,1], which is independent of  $\boldsymbol{X}$ , then

$$\boldsymbol{Z} = \left(\frac{U^{1/n}X_1}{\|\boldsymbol{X}\|_2}, \dots, \frac{U^{1/n}X_n}{\|\boldsymbol{X}\|_2}\right)$$

is uniformly distributed inside the unit ball  $B^n$ .

The preceding representations can be used to prove a variety of interesting results.

## n-Ball: Volume is in the middle - around the equator

**Lemma** For any c > 0,

$$\frac{\operatorname{Vol}(B^n \cap \{|x_1| \le c/\sqrt{n}\})}{\operatorname{Vol}(B^n)} \ge 1 - e^{-\Omega(c^2)}$$

**Proof** We will use the preceding construction of uniform random variables on a sphere. Note first that, with very high probability,  $1-O(e^{-\Omega(n)})$ , we can chose a constant  $\gamma$  such that

$$\|\boldsymbol{X}\|_2 \geq \gamma \sqrt{n}$$

Then, for large n,

$$\frac{\operatorname{Vol}(B^n \cap \{|x_1| \le c/\sqrt{n}\})}{\operatorname{Vol}(B^n)} \ge 1 - \mathbb{P}\left[\frac{|X_1|}{\|X\|_2} > c/\sqrt{n}\right]$$
$$\ge 1 - \mathbb{P}[|X_1| > \gamma c] - O(e^{-\Omega(n)}) = 1 - e^{-\Omega(c^2)}$$

Again, most of the volume is both in the middle (equator) & thin shell?

## Randomly selected unit vectors are likely orthogonal

**Lemma** Two randomly selected unit vectors are orthogonal with very hight probability.

Proof Pick two independent unit vectors from two slides ago

$$Y^{i} = \left(\frac{X_{1}^{i}}{\|X^{i}\|_{2}}, \dots, \frac{X_{n}^{i}}{\|X^{i}\|_{2}}\right), \quad i = 1, 2.$$

Then, for any  $\epsilon > 0$ , as  $n \to \infty$ 

$$\mathbb{P}[|\langle \boldsymbol{Y}^1, \boldsymbol{Y}^2 \rangle| > \epsilon] \approx \mathbb{P}[|\sum_j X_j^1 X_j^2| > \gamma \epsilon n] \to 0$$

What is the probability of this happening in low dimensions: 2 or 3?

Before we start looking into the NN generalization properties, let us consider the problem of interpolation: (see Section 5 in Pinkus (1999))

- ▶ Assume that  $\sigma$  is continuous  $(\sigma \in C(\mathbb{R}))$  and not a polynomial.
- ▶ Consider n data points  $\{(x_i, y_i)\}_{i=1}^n, x_i \in \mathbb{R}^d, y_i \in \mathbb{R}$ .
- ▶ Consider a shallow NN with one hidden layer and m neurons and weights  $\{(w_j,b_j,a_j)\}_{j=1}^m, w_j \in \mathbb{R}^d, a_j, b_j \in \mathbb{R}$

$$f_m(x) = \sum_{j=1}^{m} a_j \sigma(w_j \cdot x - b_j)$$

▶ Interpolation problem: How many neurons m do we need to perfectly reproduce n data points, i.e., to have

$$f_m(x_1) = y_1, f_m(x_2) = y_2, \cdots, f_m(x_n) = y_n.$$



It turns out that it is enough to pick m=n neurons.

**Theorem** Assume that  $\sigma$  is continuous  $(\sigma \in C(\mathbb{R}))$  and not a polynomial. For any set of distinct points  $x_i \in \mathbb{R}^d$  and the associated  $y_i, 1 \leq i \leq n$ , there exist  $\{(w_j, b_j, a_j)\}_{j=1}^m, w_j \in \mathbb{R}^d, a_j, b_j \in \mathbb{R}$ , such that

$$\sum_{j=1}^{m} a_j \sigma(w_j \cdot x_i - b_j) = y_i, \quad 1 \le i \le n.$$

#### Proof:

- Assume first that  $\sigma$  is infinitely differentiable.
- Since  $x_i \in \mathbb{R}^d$  are distinct, there exists  $w \in \mathbb{R}^d$  such that  $t_i = x_i \cdot w, 1 \le i \le n$  are all distinct. (This reduces the problem from d dimensions to 1.)
- Let  $w_i = v_i w, v_i \in \mathbb{R}$ . Now, the interpolation problem reduces to finding  $a_i, v_i, b_i \in \mathbb{R}, 1 \le i \le n$  such that

$$\sum_{j=1}^{n} a_j \sigma(v_j t_i - b_j) = y_i, \quad 1 \le i \le n.$$

$$\tag{1}$$

#### Proof:

▶ For Equation (1) to have a solution for any choice of  $\{y_i\}$ , it is enough that there exist  $v_i, b_i \in \mathbb{R}, 1 \leq i \leq n$  such that

$$\det([\sigma(v_j t_i - b_j)]_{i,j=1}^n) \neq 0.$$
 (2)

▶ On the other hand, if there are no  $v_i, b_i, 1 \leq i \leq n$ , then functions  $\sigma(vt_i-b), 1 \leq i \leq n$  are linearly dependent for all  $v, b \in \mathbb{R}$ , i.e., there exist  $\{c_i\}_{i=1}^n \not\equiv 0$  such that

$$\sum_{i=1}^{n} c_i \sigma(vt_i - b) = 0, \quad \text{for all } v, b \in \mathbb{R}.$$
 (3)

Next, since  $\sigma$  is infinitely differentiable and not a polynomial, there exist  $b_0$  such that

$$\frac{d^{j}}{dv^{j}}\sigma(vt_{i}-b_{0})\Big|_{v=0} = \sigma^{(j)}(-b_{0})t_{i}^{j}, \quad \sigma^{(j)}(-b_{0}) \neq 0, 0 \leq j \leq n-1.$$

Now, if we take the same derivatives as above in Equation (3) for  $0 \le j \le n-1$ , and then divide each of them by  $\sigma^{(j)}(-b_0) \ne 0$ 



#### Proof:

• we obtain that constants  $\{c_i\}_{i=1}^n$  must satisfy

$$\sum_{i=1}^{n} c_i t_i^j = 0, \quad 0 \le j \le n - 1.$$
 (4)

▶ The preceding system of equations has a unique solution since the following determinant, known as Vandermonde determinant, is non-zero (compute it explicitly for n=3)

$$\det([t_i^{j-1}]_{i,j=1}^n) = \prod_{1 \le i < k \le n} (t_i - t_k) \ne 0$$

- since  $t_i$  are distinct.
- Hence, the above implies that Equation (4) has a unique solution  $\{c_i\}_{i=1}^n\equiv 0$ , which contradicts our assumption in Equation (3), implying that the determinant in Equation (2) is not zero, i.e., Equation (1) has a solution. This proves the theorem for  $\sigma$  being infinitely differentiable.
- If  $\sigma$  is just continuous, we can always smooth it out by convolving it with infinitely differentiable function  $\phi_{\delta}$  (say Gaussian-like  $\phi_{\delta}(t) = e^{-t^2/(2\delta^2)}/\sqrt{2\pi\delta}$ , such that  $\sigma_{\delta}(t) = \sigma * \phi_{\delta}(t)$  is infinitely differentiable and  $|\sigma(t) \sigma_{\delta}(t)| < \epsilon$ ; details omitted.



## Interpolation and Overfitting

- ▶ Interpolation with ReLU,  $\sigma(x) = x^+$ , is even easier
  - Assume n data points  $\boldsymbol{x}_i \in \mathbb{R}^d, y_i \in \mathbb{R}, 1 \leq i \leq n$
  - We can find a direction v, such that the projections:  $t_i = v \cdot x_i$  are all distinct.
  - Now, we have a one-dimensional problem  $\{t_i, y_i\}_{i=1}^n$ , which we can interpolate with m=n neurons. We have seen this in the first lecture.
  - In fact, there are infinitely many interpolations with  $\ensuremath{m}=\ensuremath{n}$  neurons.
- ▶ Can we interpolate n data points with m < n neurons?
  - In general, the answer is no.
- ▶ Overfitting: The preceding interpolation problem show that any shallow NN with  $m \ge n$  neurons can perfectly reproduce data, i.e., it can overfit.
  - ▶ The fact that, in many cases, training over-parametrized NN with  $m\gg n$  does not lead to overfitting as often as one would expect is a mystery

#### Over-Parametrization

- ► Previous idea: Composition of functions
- ► New idea: Over-parametrization
  - Mathematically speaking: Passes the width  $m \to \infty$  (this is the opposite of the previous work on expressiveness, where the goal was to minimize the # of neurons)
  - Mathematical tools: Laws of large numbers
    - "Smooth out" the layer functions
  - This idea was used in a number of recent papers to:
    - ► Connect NNs to Kernels
    - ► Shaw that all local minima are global
    - ► Shaw convergence to global minima
    - ► Shaw generalization bounds (recent, starting 2019+)
  - Based on the interpolation results, it is a mystery why these models generalize well/do not overfit.

# Over-parametrized NNs and Kernels

Cho&Saul (2009) and Tsuchida et al. (2018), and others:

ightharpoonup Exploit large width, m, to explicitly compute the kernel corresponding to a hidden layer

#### Notation

- $m{v}_i$  independent random initial weights with density  $f(w), w \in \mathbb{R}^n$
- $m{h}(m{x}), m{x} \in \mathbb{R}^n$  hidden layer vector, m width of the hidden layer

$$\boldsymbol{h}(\boldsymbol{x}) := \frac{1}{\sqrt{m}}(\sigma(\langle \boldsymbol{w}_1, \boldsymbol{x} \rangle), \dots \sigma(\langle \boldsymbol{w}_m, \boldsymbol{x} \rangle))$$

Then, for  ${m x}, {m y} \in \mathbb{R}^n$  and large m

$$\langle \boldsymbol{h}(\boldsymbol{x}), \boldsymbol{h}(\boldsymbol{y}) \rangle = \frac{1}{m} \sum_{i=1}^{m} \sigma(\langle \boldsymbol{w}_i, \boldsymbol{x} \rangle) \sigma(\langle \boldsymbol{w}_i, \boldsymbol{y} \rangle)$$
 (5)

$$\approx \int_{\mathbb{R}^n} \sigma(\langle \boldsymbol{w}, \boldsymbol{x} \rangle) \sigma(\langle \boldsymbol{w}, \boldsymbol{y} \rangle) f(\boldsymbol{w}) d\boldsymbol{w} =: k(\boldsymbol{x}, \boldsymbol{y})$$
 (6)

The " $\approx$ " can be made precise in a probabilistic sense

#### Arc-Cosine Kernels

**Theorem** (Cho&Saul (2009)) Let  $\|\boldsymbol{x}\|_2 = \|\boldsymbol{y}\|_2 = 1$ ,  $\boldsymbol{w}$  be a vector of independent normal,  $\mathcal{N}(0,1)$ , random variables, and  $\theta = \cos^{-1}(\langle \boldsymbol{x}, \boldsymbol{y} \rangle)$ . Then,

$$\begin{split} k(\boldsymbol{x},\boldsymbol{y}) &= \frac{\pi - \theta}{2\pi}, & \text{for } \sigma(x) = 1_{\{x \geq 0\}} \\ k(\boldsymbol{x},\boldsymbol{y}) &= \frac{1}{2\pi}(\sin\theta + (\pi - \theta)\cos\theta), & \text{for } \sigma(x) = x_+ \end{split}$$

**Proof** Direct integration with respect to the Gaussian density: for step function  $\sigma(x)=1_{\{x\geq 0\}}$ ,

$$k(\boldsymbol{x}, \boldsymbol{y}) = \int_{\boldsymbol{w} \in \mathbb{R}^d} 1_{\{\boldsymbol{x} \cdot \boldsymbol{w} \ge 0\}} 1_{\{\boldsymbol{y} \cdot \boldsymbol{w} \ge 0\}} f(\boldsymbol{w}) d\boldsymbol{w}, \quad f(\boldsymbol{w}) = \frac{e^{-\|\boldsymbol{w}\|_2^2/2}}{(2\pi)^{n/2}}$$

Key observation: due to rotational symmetry of the Gaussian density, we can pick the coordinates to align with (x,y), i.e.,  $x=(1,0,0,\ldots)$ , and  $y=(y_1,y_2,0,\ldots)$ , and the preceding integral reduces to 2 dimensional:

$$k(\boldsymbol{x}, \boldsymbol{y}) = \int_{(w_1, w_2) \in \mathbb{R}^2} 1_{\{w_1 \ge 0\}} 1_{\{y_1 w_1 + y_2 w_2 \ge 0\}} \frac{e^{-(w_1^2 + w_2^2)/2}}{2\pi} dw_1 dw_2$$

#### Arc-Cosine Kernels

**Proof** Now, recall the norm  $\|\boldsymbol{y}\|_2 = 1$ , to obtain

$$k(\boldsymbol{x},\boldsymbol{y}) = \int_{(w_1,w_2) \in \mathbb{R}^2} 1_{\{w_1 \ge 0\}} 1_{\{w_1 \cos \theta + w_2 \sin \theta \ge 0\}} \frac{e^{-(w_1^2 + w_2^2)/2}}{2\pi} dw_1 dw_2$$

where  $\theta$  is the angle between  $\boldsymbol{x}$  and  $\boldsymbol{y}$ . Finally, write the preceding integral in polar coordinates:  $w_1 = r\cos\phi, w_2 = r\cos\phi$ , to obtain

$$k(\boldsymbol{x}, \boldsymbol{y}) = \int_0^{2\pi} d\phi \int_0^{\infty} 1_{\{\cos\phi \ge 0\}} 1_{\{\cos\phi\cos\theta + \sin\phi\sin\theta \ge 0\}} \frac{e^{-r^2/2}}{2\pi} r dr$$

$$= \frac{1}{2\pi} \int_0^{2\pi} 1_{\{\cos\phi \ge 0\}} 1_{\{\cos(\phi - \theta) \ge 0\}} d\phi$$

$$= \frac{\pi - \theta}{2\pi};$$

draw a picture for the last equality.

## Arc-Cosine Kernels: ReLU Case

**Proof** Again, recall the norm  $\|y\|_2 = 1$ , to obtain

$$k(\boldsymbol{x}, \boldsymbol{y}) = \int w_1(w_1 \cos \theta + w_2 \sin \theta) 1_{\{w_1 \ge 0\}} 1_{\{w_1 \cos \theta + w_2 \sin \theta \ge 0\}} \frac{e^{-(w_1^2 + w_2^2)/2}}{2\pi} dw_1 dw_2$$

where  $\theta$  is the angle between  ${\pmb x}$  and  ${\pmb y}$ . Finally, write the preceding integral in polar coordinates:  $w_1=r\cos\phi, w_2=r\cos\phi$ , to obtain

$$\begin{split} k(\boldsymbol{x}, \boldsymbol{y}) &= \int_{0}^{2\pi} d\phi \int_{0}^{\infty} r^{2} \cos\phi \cos(\phi - \theta) 1_{\{\cos\phi \geq 0\}} 1_{\{\cos\phi \cos\theta + \sin\phi \sin\theta \geq 0\}} \frac{e^{-r^{2}/2}}{2\pi} r dr \\ &= \frac{1}{\pi} \int_{0}^{2\pi} \frac{\cos\theta + \cos(2\phi - \theta)}{2} 1_{\{\cos\phi \geq 0\}} 1_{\{\cos(\phi - \theta) \geq 0\}} d\phi \\ &= \frac{1}{\pi} \int_{\theta}^{\pi} \frac{\cos\theta + \cos(2\phi - \theta)}{2} d\phi \\ &= \frac{\sin\theta + (\pi - \theta)\cos\theta}{2\pi}; \end{split}$$

draw a picture for the last equality.

## Generalization to Rotationally Invariant Densities

Tsuchida et al. (2018)

▶ Rotationally invariant density f(w): if for any w and orthogonal matrix R

$$f(\boldsymbol{w}) = f(R\boldsymbol{w}) = f(\|\boldsymbol{w}\|_2)$$

 ${\it R}$  is orthogonal if its raws and columns are orthogonal unit vectors

Rotationally invariant distribution include: Gaussian distribution, the multivariate t-distribution, the symmetric multivariate Laplace distribution, and symmetric multivariate stable distributions.

**Proposition 1** (Tsuchida et al. (2018)) The result of Cho&Saul (2009), which corresponds to ReLU, fully generalizes to rotationally invariant densities.

**Proposition 4** (Tsuchida et al. (2018)) Extension to Leaky-ReLU for rotationally invariant densities.

# Infinite Depth Networks: Degenerate Kernel

Corollary 8 (Tsuchida et al. (2018)) The normalized kernel converges to a degenerate fixed point at  $\theta^*=0$ 

**Proof** is based on contraction argument.

#### Additional comments

- ▶ This confirms the difficulty of trining very deep networks in view of the recent work on "Shattered Gradient Problem" by Balduzzi et al., 2017
- ▶ Check references in (Tsuchida et al. (2018)) for prior results of this type: Lee et al. (2017), Schoenholz et al. (2017), Poole et al. (2016) and Daniely (2016)

## Over-Parametrization: No Bad Local Minima

#### Soudry and Carmon (2016): Probabilistic setup:

- ightharpoonup Gaussian dropout noise  $\mathcal E$  and leaky-ReLU like activations
- $lackbox{ Data } m{X} = [m{x}_1 \cdots m{x}_n], m{x}_i \in \mathbb{R}^{m_0}$  is smoothed by small Gaussian noise
- ▶ Mild over-parametrization:  $m_0m_1 \ge n$ , where  $m_l$  is the width of the activation layer l (for interpolation results, we assume  $m_1 \ge n$ )

**Theorem** If  $n \le m_1 m_0$ , then all differentiable local minima are global minima with MSE=0,  $(X, \mathcal{E})$  almost everywhere.

- They prove a similar result for the general depth
- ► Since they assume local minima to be differentiable, one can expect the convergence of GD locally
- ▶ However, there is no global convergence

# Over-Parametrization: Convergence to Global Minimum

#### Today, we'll primarily focus on this recent paper:

- Gradient Descent Provably Optimizes Over-parameterized Neural Networks, by Du et al., ICLR, Feb 2019.
  - See the references therein and the follow up references for a comprehensive list on over-parametrization literature, e.g.:
    - No bad local minima: Data independent training error guarantees for multilayer neural networks, by Soudry and Carmon, 2016.
  - There are more recent papers that we'll cover later in the class. One of the attributes over-parametrization is good generalization error, e.g.
    - Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks, by Arora et al., 2019.

# Over-Parametrization: Convergence to Global Minimum Some notational conventions:

▶ Get rid of the bias, b: augment x with an auxiliary feature  $x_0 \equiv 1$  and call  $w_0 = b$ , then

$$b + \langle \boldsymbol{w}, \boldsymbol{x} \rangle = \langle \boldsymbol{w}', \boldsymbol{x}' \rangle,$$

where  $w' = (w_0, w_1, \dots, w_d), x' = (x_0, x_1, \dots, x_d)$ . Hence, we get rid of b by embedding the problem in d+1 dimensions.

- lacktriangle For simplicity, data is often normalized on a hyper-sphere:  $\|x\|=1$
- For a one hidden layer NN, weights in the second layer can be simplified:

$$f(\boldsymbol{W}, \boldsymbol{a}, \boldsymbol{x}) = \frac{1}{\sqrt{m}} \sum_{r=1}^{m} a_r \max(0, \langle \boldsymbol{w}_r, \boldsymbol{x} \rangle) = \frac{1}{\sqrt{m}} \sum_{r=1}^{m} \frac{a_r}{|a_r|} \max(0, \langle |a_r| w_r, \boldsymbol{x} \rangle)$$

- Hence,  $|a_r|$  can be incorporate into random weights
- ▶  $a_r$  can be assumed Bernoulli  $\{\pm 1\}$  since  $a_r/|a_r| \in \{\pm 1\}$
- ▶ Scaling  $1/\sqrt{m}$  allows for Law of Large Numbers when computing kernels as  $(1/\sqrt{m})^2 = 1/m$
- W is  $d \times m$  matrix

# Quadratic Loss and Gradient Descent (GD)

▶ **Training**: Given data set  $\{(\boldsymbol{x}_i,y_i)\}_{i=1}^n, \boldsymbol{x}_i \in \mathbb{R}^d, y_i \in \mathbb{R}$ . we minimize

$$\min_{\boldsymbol{W} \in \mathbb{R}^{d \times m}} L(\boldsymbol{W})$$

for quadratic loss

$$L(\mathbf{W}) := \frac{1}{2} \sum_{i=1}^{n} (f(\mathbf{x}_i) - y_i)^2$$

Gradient:

$$\frac{\partial L(\boldsymbol{W})}{\partial \boldsymbol{w}_r} = \frac{1}{\sqrt{m}} \sum_{i=1}^n (f(\boldsymbol{x}_i) - y_i) a_r \boldsymbol{x}_i 1_{\{\langle \boldsymbol{w}_r, \boldsymbol{x}_i \rangle \geq 0\}}$$

▶ **Gradient Descent (GD):** for step size  $\eta > 0$ 

$$\mathbf{W}(k+1) = \mathbf{W}(k) - \eta \frac{\partial L(\mathbf{W}(k))}{\partial \mathbf{W}(k)}$$

## Continuous Time Approximation

► **Gradient Flow:** Recall from the beginning of the class, gradient descent with infinitesimal step size

$$\frac{\boldsymbol{W}(k+1) - \boldsymbol{W}(k)}{\eta} \approx \frac{d\boldsymbol{W}(t)}{dt} = -\frac{\partial L(\boldsymbol{W}(t))}{\partial \boldsymbol{W}(t)},$$
 (7)

where  $W(t) \in \mathbb{R}^{d \times m}$  is the continuous flow of gradient descednt.

lacktriangle Denote the prediction on input  $oldsymbol{x}_i$  at time t as

$$u_i(t) = f(W(t), \boldsymbol{a}, \boldsymbol{x}_i), \quad i = 1, \dots, n$$

and

$$\boldsymbol{u}(t) = (u_1(t), \dots, u_n(t))$$

## **Dynamical System**

Time dynamics of each prediction

$$\frac{du_i(t)}{dt} = \sum_{r=1}^m \left\langle \frac{\partial f(\boldsymbol{W}(t), \boldsymbol{x}_i)}{\partial \boldsymbol{w}_r(t)}, \frac{d\boldsymbol{w}_r(t)}{dt} \right\rangle 
= \sum_{j=1}^n (y_j - u_j) \sum_{r=1}^m \left\langle \frac{\partial f(\boldsymbol{W}(t), \boldsymbol{x}_i)}{\partial \boldsymbol{w}_r(t)}, \frac{\partial f(\boldsymbol{W}(t), \boldsymbol{x}_j)}{\partial \boldsymbol{w}_r(t)} \right\rangle 
=: \sum_{j=1}^n (y_j - u_j) H_{ij}(t)$$

where in the second equality we used the gradient flow equation (7) and

$$H_{ij}(t) = \frac{1}{m} \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle \sum_{r=1}^m \mathbb{1}_{\{\langle \boldsymbol{x}_i, \boldsymbol{w}_r(t) \rangle \geq 0, \langle \boldsymbol{x}_i, \boldsymbol{w}_r(t) \rangle \geq 0\}}$$

Define  $n \times n$  matrix  $\boldsymbol{H}(t) = \{H_{ij}(t)\}$ 

# Dynamical System

The vector of predictors,  $\boldsymbol{u}(t)$ , evolves as

$$\frac{d}{dt}\boldsymbol{u}(t) = \boldsymbol{H}(t)(\boldsymbol{y} - \boldsymbol{u}(t)) \tag{8}$$

**Objective:** Prove that

$$\boldsymbol{u}(t) \rightarrow \boldsymbol{y}, \quad \text{ as } t \rightarrow \infty$$

for any

- initial random weights  $\boldsymbol{w}_r = \boldsymbol{w}_r(0)$
- finite set of data points  $\{({m x}_i, y_i)\}_{i=1}^n$

## Key Ideas

Over-parametrization - large width m, by the Laws of Large Numbers

$$H_{ij}(0) = \frac{1}{m} \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle \sum_{r=1}^m 1_{\{\langle \boldsymbol{x}_i, \boldsymbol{w}_r(0) \rangle \geq 0, \langle \boldsymbol{x}_j, \boldsymbol{w}_r(0) \geq 0 \rangle\}}$$

$$\approx \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle \mathbb{E} 1_{\{\langle \boldsymbol{x}_i, \boldsymbol{w}_r(0) \rangle \geq 0, \langle \boldsymbol{x}_j, \boldsymbol{w}_r(0) \geq 0 \rangle\}} =: H_{ij}^{\infty}$$

Assume m so large,  $m=\Omega(n^6)$ , so that the initial random state does not change much during training,  ${\bf W}(t)\approx {\bf W}$ , and therefore

$$\boldsymbol{H}(t) \approx \boldsymbol{H}(0) \approx \boldsymbol{H}^{\infty}$$

lacktriangle Hence, the vector of predictors,  $oldsymbol{u}(t)$ , evolves as

$$\frac{d}{dt}\boldsymbol{u}(t) = \boldsymbol{H}(t)(\boldsymbol{y} - \boldsymbol{u}(t)) \approx \boldsymbol{H}^{\infty}(\boldsymbol{y} - \boldsymbol{u}(t))$$

linear system with constant (time invariant) coefficients



# Key Ideas: Minimum Eigenvalue

For the convergence of the linear system

$$\frac{d}{dt}\boldsymbol{u}(t) \approx \boldsymbol{H}^{\infty}(\boldsymbol{y} - \boldsymbol{u}(t))$$

One needs the minimum eigenvalue

$$\lambda_0 := \lambda_{\min}(\boldsymbol{H}^{\infty}) > 0$$

which is assumed in the paper. By Cho&Saul (2009) result that we just proved

$$k(\boldsymbol{x}_i, \boldsymbol{x}_j) = \mathbb{E} 1_{\{\langle \boldsymbol{x}_i, \boldsymbol{w}_r \rangle\rangle \geq 0, \langle \boldsymbol{x}_j, \boldsymbol{w}_r \geq 0 \rangle\}} = \frac{1}{2} - \frac{1}{2\pi} \cos^{-1} \left( \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle \right)$$

Hence, one should have  $\lambda_0 := \lambda_{\min}(\boldsymbol{H}^{\infty}) > 0$  if there is no parallel pair  $\boldsymbol{x}_i, \boldsymbol{x}_j$ 

#### Formal Theorem

#### **Assumptions:**

- ▶ Positive minimum eigenvalue:  $\lambda_0 := \lambda_{\min}(\boldsymbol{H}^{\infty}) > 0$
- ▶ Scaled data:  $\|\boldsymbol{x}_i\|_2 = 1$  and  $|y_i| \leq C$
- Over-parametrization:

$$m = \Omega\left(\frac{n^6}{\lambda_0^4 \delta^3}\right)$$

▶ Random initialization:  $w_r \sim N(\mathbf{0}, \mathbf{I})$  and  $a_r \sim \mathsf{Uniform}(\{\pm 1\})$ 

**Theorem 3.2** Then, on a set of probability at least  $1-\delta$ 

$$\|\boldsymbol{u}(t) - \boldsymbol{y}\|_{2}^{2} \le \exp(-\lambda_{0}t)\|\boldsymbol{u}(0) - \boldsymbol{y}\|_{2}^{2}$$

 $m{H}(0)$  and  $m{H}^{\infty}$  are close as expected by the Law of Large Numbers Lemma 1 If  $m=\Omega\left(\frac{n^6}{\lambda_3^4\delta^3}\right)$ , then with probability at least  $1-\delta$ ,

$$\|\boldsymbol{H}(0)-\boldsymbol{H}^{\infty}\| \leq \frac{\lambda_0}{4} \quad \text{and} \quad \lambda_{\min} \geq \frac{3}{4}\lambda_0$$

**Proof:** For each (i,j), by Hoeffding inequality (proved later), with probability  $1-\delta'$ ,

$$|\boldsymbol{H}_{ij}(0) - \boldsymbol{H}_{ij}^{\infty}| \le \frac{2\sqrt{\log(1/\delta')}}{\sqrt{m}}$$

Setting  $\delta'=n^2\delta$  and using the union bound one obtains for all (i,j) with probability at least  $1-\delta$  that

$$|\boldsymbol{H}_{ij}(0) - \boldsymbol{H}_{ij}^{\infty}| \le \frac{4\sqrt{\log(n/\delta)}}{\sqrt{m}}$$

implying (recall  $m = \Omega\left(\frac{n^6}{\lambda_0^4 \delta^3}\right)$ )

$$\|\boldsymbol{H}(0) - \boldsymbol{H}^{\infty}\|_{2}^{2} \le \|\boldsymbol{H}(0) - \boldsymbol{H}^{\infty}\|_{F}^{2} \le \sum_{i,j} |\boldsymbol{H}_{ij}(0) - \boldsymbol{H}_{ij}^{\infty}|^{2} \le \frac{16n^{2} \log^{2}(n/\delta)}{m}$$

Gaussian

If weights  ${m w}_r(t)$  don't move much, then  ${m H}(t)$  is close to  ${m H}^{\infty}$ 

**Lemma 2** If  $\|\boldsymbol{w}_r(t) - \boldsymbol{w}_r(0)\| \le \frac{c\lambda_0}{n^2} =: R$ , then with probability at least  $1-\delta$ ,  $\lambda_{\min}(\boldsymbol{H}(t)) > \lambda_0/2$ 

**Proof:** Define event

$$A_{ir} = \{ \boldsymbol{w} : \| \boldsymbol{w} - \boldsymbol{w}_r(0) \| \le R, 1_{\{\langle \boldsymbol{x}_i, \boldsymbol{w}_r(0) \rangle \ge 0\}} \ne 1_{\{\langle \boldsymbol{x}_i, \boldsymbol{w} \rangle \ge 0\}} \}$$

Not that this event happens iff  $|\langle \boldsymbol{x}_i, \boldsymbol{w}_r(0) \rangle| < R$ Also, recall  $\boldsymbol{w}_r(0) \sim N(\mathbf{0}, \boldsymbol{I})$ . Hence, by anti-concentration inequality for

$$\mathbb{P}[A_{ir}] = \mathbb{P}_{Z \sim N(0,1)}[|Z| < R] \le \frac{2R}{\sqrt{2\pi}}$$

Hence, we can bound entry-wise deviation of  $\boldsymbol{H}(t)$ 

$$\mathbb{E}[|H_{ij}(t) - H_{ij}(0)|] = \mathbb{E}\left[\frac{1}{m} \left| \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle \sum_{r=1}^m 1_{\{\langle \boldsymbol{x}_i, \boldsymbol{w}_r(t) \rangle \geq 0, \langle \boldsymbol{x}_j, \boldsymbol{w}_r(t) \geq 0 \rangle\}} \right.\right.$$
$$\left. - \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle \sum_{r=1}^m 1_{\{\langle \boldsymbol{x}_i, \boldsymbol{w}_r(0) \rangle \geq 0, \langle \boldsymbol{x}_j, \boldsymbol{w}_r(0) \geq 0 \rangle\}} \right| \right]$$

**Proof:** Implying

$$\mathbb{E}[|H_{ij}(t) - H_{ij}(0)|] \le \frac{1}{m} \sum_{r} \mathbb{P}[A_{ir} \cup A_{jr}] \le \frac{4R}{\sqrt{2\pi}}$$

$$\|\boldsymbol{H}(0) - \boldsymbol{H}^{\infty}\|_{2} \le \|\boldsymbol{H}(0) - \boldsymbol{H}^{\infty}\|_{F} \le \sqrt{\sum_{i,j} |\boldsymbol{H}_{ij}(0) - \boldsymbol{H}_{ij}^{\infty}|^{2}} \le Cn^{2}R$$

Therefore, using  $R=\frac{c\lambda_0}{n^2}$ , the lower eigenvalue can be bounded

$$\lambda_{\min}(\boldsymbol{H}(t)) \ge \lambda_{\min}(\boldsymbol{H}(0)) - Cn^2R \ge \frac{\lambda_0}{2}$$

 ${m w}_r(t)$  don't move much from the initial value  ${m w}_r(0)$ 

**Lemma 3** Assume for  $0 \le s \le t$ ,  $\lambda_{\min}(\boldsymbol{H}(s)) \ge \lambda_0/2$ . Then,  $\|\boldsymbol{y} - \boldsymbol{u}(t)\|_2^2 \le \exp(-\lambda_0 t) \|\boldsymbol{y} - \boldsymbol{u}(0)\|_2^2$  and

$$\|\boldsymbol{w}_r(t) - \boldsymbol{w}_r(0)\|_2 \le \frac{\sqrt{n}\|\boldsymbol{y} - \boldsymbol{u}(0)\|_2}{\sqrt{m}\lambda_0} =: R'$$

**Proof:** We can write the dynamics for the norm

$$\frac{d}{dt} \| \boldsymbol{y} - \boldsymbol{u}(t) \|_2^2 = -2(\boldsymbol{y} - \boldsymbol{u}(t))^{\top} \boldsymbol{H}(t) (\boldsymbol{y} - \boldsymbol{u}(t)) \le -\lambda_0 \| \boldsymbol{y} - \boldsymbol{u}(t) \|_2^2$$

which implies  $\|\boldsymbol{y} - \boldsymbol{u}(t)\|_2^2 \le \exp(-\lambda_0 t) \|\boldsymbol{y} - \boldsymbol{u}(0)\|_2^2$ , meaning that  $\boldsymbol{u}(t) \to \boldsymbol{y}$  exponentially fast.

**Proof:** Next, for  $0 \le s \le t$ 

$$\left\| \frac{d}{ds} \boldsymbol{w}_r(s) \right\| = \left\| \sum_{i=1}^n (y_i - u_i(s)) \frac{1}{\sqrt{m}} a_r \boldsymbol{x}_i 1_{\{\langle \boldsymbol{w}_r(s), \boldsymbol{x}_i \rangle \geq 0\}} \right\|$$

$$\leq \frac{1}{\sqrt{m}} \sum_{i=1}^n |y_i - u_i(s)| \leq \frac{\sqrt{n}}{\sqrt{m}} \|\boldsymbol{y} - \boldsymbol{u}(s)\|_2$$

$$\leq \frac{\sqrt{n}}{\sqrt{m}} \exp(-\lambda_0 s) \|\boldsymbol{y} - \boldsymbol{u}(0)\|_2$$

Hence, integrating the preceding derivative

$$\|\boldsymbol{w}_r(t) - \boldsymbol{w}_r(0)\|_2 \le \int_0^t \left\| \frac{d}{ds} \boldsymbol{w}_r(s) \right\| ds \le \frac{\sqrt{n} \|\boldsymbol{y} - \boldsymbol{u}(0)\|_2}{\sqrt{m} \lambda_0}$$

Finally, we need to show that, if R' < R, the conditions in Lemma 2 and 3 hold for all  $t \ge 0$ .

**Lemma 4** If R' < R, we have for all  $t \ge 0, \lambda_{\min}(H(t)) \ge \lambda_0/2$ , for all r,  $\| \boldsymbol{w}_r(t) - w_r(0) \|_2 \le R'$  and  $\| y - u(t) \|_2^2 \le \exp(-\lambda_0 t) \| y - u(0) \|_2^2$ .

**Proof:** The proof is by contradiction: Suppose the conclusion does not hold at time t. Hence, there exists r, such that  $\|\boldsymbol{w}_r(t) - w_r(0)\|_2 > R'$  or  $\|y - u(t)\|_2^2 > \exp(-\lambda_0 t) \|y - u(0)\|_2^2$ .

Then, by Lemma 3, there exists  $s \le t$ , such that  $\lambda_{\min}(\boldsymbol{H}(s)) < \lambda_0/2$ .

Next, by Lemma 2, there exists

$$t_0 = \inf\{t \ge 0 : \max_r \|\boldsymbol{w}_r(t) - \boldsymbol{w}_r(0)\|_2^2 \ge R\}$$



**Proof:** Thus, at  $t_0$ , there exists r, such that

$$\|\boldsymbol{w}_r(t) - \boldsymbol{w}_r(0)\|_2^2 = R.$$

By Lemma 2, we know that  $\lambda_{\min}H(t) \geq \lambda_0/2$  for  $t \leq t_0$ . However, by Lemma 3, we know that  $\|\boldsymbol{w}_r(t) - \boldsymbol{w}_r(0)\|_2^2 < R' < R$ , which is a contradiction.

For the other case, at time t,  $\lambda_{\min}(\boldsymbol{H}(t)) < \lambda_0$ , we know there exists

$$t_0 = \inf\{t \ge 0 : \max_r \|\boldsymbol{w}_r(t) - \boldsymbol{w}_r(0)\|_2^2 \ge R\}$$

The rest of the proof is the same as in the previous case.

#### Proof of the Theorem

Hence, in view of Lemmas 1-4, it is enough to show that  $R^\prime < R$ , which is equivalent to

$$m = \Omega\left(\frac{n^5 \|y - u(0)\|_2^2}{\lambda_0^4 \delta^2}\right).$$

For  $||y-u(0)||_2^2$ , note that

$$\mathbb{E}[\|y - u(0)\|_{2}^{2}] = \sum_{i=1}^{n} (y_{i}^{2} - 2y_{i} \mathbb{E}[f(\boldsymbol{W}(0), \boldsymbol{a}, \boldsymbol{x}_{i})] + \mathbb{E}[f(\boldsymbol{W}(0), \boldsymbol{a}, \boldsymbol{x}_{i})^{2}]$$

$$= \sum_{i=1}^{n} (y_{i}^{2} + 1) = O(n).$$

Thus, by Markov's inequality, with probability at least  $1-\delta$ , we have  $\|y-u(0)\|_2^2=O(n/\delta)$ 

Therefore, the following choice of m satisfies all the consitions

$$m = \Omega\left(\frac{n^6}{\lambda_0^4 \delta^3}\right).$$

## Over-parametrization and Generalization

#### Followup work:

Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks, by Arora et al., 2019.

▶ Refine the analysis of Du et al. (2019), but assume even wither networks - see Theorem 4.1

$$m = \Omega\left(\frac{n^7}{\lambda_0^4 \kappa^2 \delta^4 \epsilon^2}\right).$$

Prove a generalization bound, in Theorem 5.1, that doesn't depend on m.

Is this surprising?

# Useful Tools in ML: Concentration Inequalities

Hoeffding's Bound: used in Du et al. proof.

**Lemma** Let  $Z_i$  be i.i.d. random variables with  $\mathbb{E}\,Z_i=\mu$  and bounded support  $\mathbb{P}[a\leq Z_i\leq b]=1$ . Then, for any  $\epsilon>0$ ,

$$\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}Z_{i}-\mu\right|>\epsilon\right]\leq 2\exp(-2m\epsilon^{2}/(b-a)^{2})$$

**Proof:** Let's center  $Z_i$ :  $X_i=Z_i-\mu$  and set  $\bar{X}=(1/m)\sum X_i$ . Then, for  $\epsilon>0$  and  $\lambda>0$ , by Markov's inequality and i.i.d.

$$\mathbb{P}[\bar{X} \ge \epsilon] = \mathbb{P}[e^{\lambda \bar{X}} \ge e^{\lambda \epsilon}] \le e^{-\lambda \epsilon} \, \mathbb{E}[e^{\lambda \bar{X}}] = e^{-\lambda \epsilon} \left( \mathbb{E}[e^{\lambda X_1/m}]) \right)^m \quad (9)$$

Next, we show that

$$\mathbb{E}[e^{\lambda X_1}] \le e^{\lambda^2 (b-a)^2/8} \tag{10}$$

Let  $a'=a-\mu$ ,  $b'=b-\mu$  and note that b'-a'=b-a. By convexity

$$\mathbb{E}[e^{\lambda X_1}] \leq \frac{b' - \mathbb{E}[X_1]}{b - a}e^{\lambda a'} + \frac{\mathbb{E}[X] - a'}{b - a}e^{\lambda b'} = \frac{b'}{b - a}e^{\lambda a'} - \frac{a'}{b - a}e^{\lambda b'} =: f(\lambda)$$

# Useful Tools in ML: Concentration Inequalities

**Proof:** Next, if  $h=\lambda(b-a)$  and p=-a'/(b-a), then, by Taylor's theorem

$$L(h) := \log(f(h/(b-a))) = -hp + \log(1-p+pe^h) \le \frac{h^2}{8}$$

since L(0) = L'(0) = 0 and  $L''(h) \le 1/4$  for all h; this proves (10). Now, using (10) in (9), we obtain

$$\mathbb{P}[\bar{X} \geq \epsilon] \leq e^{-\lambda \epsilon} \, \mathbb{E}[e^{\lambda \bar{X}}] = e^{-\lambda \epsilon} \left( \mathbb{E}[e^{\lambda X_1/m}]) \right)^m \leq e^{-\lambda \epsilon + \frac{\lambda^2 (b-a)^2}{8m}},$$

which is minimized for

$$\lambda^* = \frac{4me}{(b-a)^2}$$

This concludes the proof of Hoeffding's bound.

We'll cover more concentration inequalities in the future.

## Useful Tools: Eigendecomposition

Since Gram matrix, H, is positive definite, it can be decomposed as

$$H = U^{-1}\Lambda U,$$

where  $\Lambda$  is diagonal matrix with  $\Lambda_{ii}=\lambda_i$  (and U is unitary matrix, i.e.,  $U^{-1}=U^*$  - conjugate transpose of U)

This was used in the proof of Lemma 3 of Du et al.

$$\frac{d}{dt} \| \boldsymbol{y} - \boldsymbol{u}(t) \|_{2}^{2} = -2(\boldsymbol{y} - \boldsymbol{u}(t))^{\top} \boldsymbol{H}(t) (\boldsymbol{y} - \boldsymbol{u}(t))$$
$$= -2(\boldsymbol{y} - \boldsymbol{u}(t))^{\top} \boldsymbol{U}^{-1} \boldsymbol{\Lambda} \boldsymbol{U} (\boldsymbol{y} - \boldsymbol{u}(t))$$
$$\leq -2\lambda_{\min} \| \boldsymbol{y} - \boldsymbol{u}(t) \|_{2}^{2}$$

## Useful Tools: Matrix Norms

 $L_2$  norm

$$||A||_2 = \sup_{||x||_2=1} ||Ax||_2$$

For symmetric/hermitian matrices

$$||A||_2 = \rho(A) \ge |\lambda_{\min}|$$

where  $\rho(A) = \max\{|\lambda_i||\}$  is the spectral radius. Frobenius norm

$$\|A\|_F^2 = \sum_{ij} (a_{ij})^2 = \operatorname{trace}(A^\top A)$$

It bounds the  $L_2$  norm

$$||A||_2 \le ||A||_F$$

# Matrix Perturbation Theory: Hoffman-Wielandt Inequality

A matrix A is normal iff  $AA^*=A^*A$ , where  $A^*$  is conjugate transpose of A. See Theorem 6.3.5 in Chapter 6, Matrix Analysis, by Horn & Johnson, 2013.

**Theorem** Let A and its perturbation A+E be normal matrices with respective eigenvalues  $\lambda_i$  and  $\hat{\lambda}_i$ . Then there exists a permutation  $\sigma$  such that

$$\sum_{i} |\hat{\lambda}_{\sigma(i)} - \lambda_i|^2 \le ||E||_F^2$$

**Proof:** Normal matrices are diagonalizable by unitary matrices. Let  $A=U\Lambda U^*$  and  $A+E=V\hat{\Lambda}V^*$ . Then, using the unitary invariance of Frobenius norm,

$$||E||_F^2 = ||V\hat{\Lambda}V^* - U\Lambda U^*||_F^2$$

$$= ||U^*V\hat{\Lambda} - \Lambda U^*V||_F^2$$

$$= ||W\hat{\Lambda} - \Lambda W||_F^2 = \sum_i |\hat{\lambda}_i - \lambda_i|^2 |w_{ij}|^2$$

where  $|w_{ij}|^2$  doubly stochastic.

# Matrix Perturbation Theory: Hoffman-Wielandt Inequality

Proof: (continued) Then

$$||E||_F^2 = ||W\hat{\Lambda} - \Lambda W||_F^2 = \sum_{i} |\hat{\lambda}_i - \lambda_i|^2 |w_{ij}|^2$$
$$\geq \min_{s_{ij}} \sum_{i} |\hat{\lambda}_i - \lambda_i|^2 s_{ij}$$

where  $\{s_{ij}\}$  is any doubly stochastic matrix. Hence, by Birkhoff-von Neumann theorem, the preceding minim is achieved when  $\{s_{ij}\}$  is a permutation matrix, which concludes the proof.

**Corollary** If A and A+E are real symmetric (Hermitian) with their eigenvalues ordered  $\lambda_1 \leq \cdots \leq \lambda_n$  and  $\hat{\lambda}_1 \leq \cdots \leq \hat{\lambda}_n$ , then  $\sigma$  can be chosen to be an identity, i.e.,

$$\sum_{i} (\hat{\lambda}_i - \lambda_i)^2 \le ||E||_F^2$$

## Reading

- ► Local vs global minima and GD convergence
  - Gradient Descent Provably Optimizes Over-parameterized Neural Networks, by Du et al., ICLR, Feb 2019.
  - ► Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks, by Arora et al., 2019.
  - ▶ No bad local minima: Data independent training error guarantees for multilayer neural networks, by Soudry and Carmon, 2016.
  - See the references in the preceding papers and the follow up ones on Google Scholar
- ► Connection between NNs and Kernels
  - Invariance of Weight Distributions in Rectified MLPs, by Tsuchida et al., Jun 2018.
  - ► Kernel Methods for Deep Learning, by Cho & Saul, 2009.
  - Check the reference lists in these papers for additional readings
- New Developing Monograph
  - ▶ Deep learning theory lecture notes, by Telgarsky, Oct 2021.

#### Have Fun!