Dataset: Iris Flower dataset

Note: Only two species of flower are displayed

Dataset: Iris Flower dataset

Note: Only two species of flower are displayed

In favor of null: $log_e(BF_{01}) = -10.31$, sampling = independent multinomial, a = 1.00

Fuel efficiency by type of car transmission

 $\frac{1}{1} = \frac{1}{1} = \frac{1}$

In favor of null: $log_e(BF_{01}) = -4.46$, $r_{Cauchy}^{JZS} = 0.71$

Pairwise comparisons: Dwass-Steel-Crichtlow-Fligner test; Adjustment (p-value): Benjamini & Hochberg

In favor of null: $\log_e(BF_{01}) = -3.341$, $d_{\text{mean}}^{\text{posterior}} = 0.515$, $CI_{95\%}$ [0.225, 0.767] Heterogeneity: Q(4) = 109, p = < 0.001, $\tau_{\text{REML}}^2 = 0.056$, $I^2 = 96.81\%$

 ${\bf X}$ = correlation non–significant at p < 0.05 Adjustment (p–value): None

 $\mathbf{X} = \text{correlation non-significant at } p < 0.05$ Adjustment (p-value): None

 \mathbf{X} = correlation non–significant at p < 0.01Adjustment (p–value): None

Fuel economy data

t(14) = 1.47, p = 0.163, $\hat{g} = 0.36$, $\text{Cl}_{99\%}$ [-0.33, 1.10], $n_{\text{obs}} = 15$

Source: EPA dataset on http://fueleconomy.gov In favor of null: $log_e(BF_{01}) = 0.44$, $r_{Cauchy}^{JZS} = 0.71$

In favor of null: $log_e(BF_{01}) = -54.54$, $r_{Cauchy}^{JZS} = 0.71$

In favor of null: $log_e(BF_{01}) = -186.14$, $r_{Cauchy}^{JZS} = 0.80$

 $\chi^2_{\rm gof}(3) = 19.263, \, p = <0.001, \, \widehat{V}_{\rm Cramer} = 0.291, \, {\rm CI}_{95\%} \, [0.185, \, 0.366], \, n_{\rm obs} = 76$

In favor of null: $log_e(BF_{01}) = -4.34$, $r_{Cauchy}^{JZS} = 0.71$

Pairwise comparisons: $\textbf{Durbin-Conover test}; \ \textbf{Adjustment (p-value): Holm}$

Quality: Very Good

$$\chi^2_{\text{Pearson}}(18) = 17.95, \ p = 0.459, \ \widehat{V}_{\text{Cramer}} = 0.00, \ \text{Cl}_{95\%} \ [-0.18, -0.04], \ n_{\text{obs}} = 477$$

In favor of null: $log_e(BF_{01}) = 16.13$, sampling = independent multinomial, a = 1.00

color

J

Η

G

F

Е

D

Quality: Ideal

$$\chi^2_{\text{Pearson}}(18) = 17.85, \ p = 0.466, \ \widehat{V}_{\text{Cramer}} = 0.00, \ \text{Cl}_{95\%} \ [-0.14, -0.03], \ n_{\text{obs}} = 785$$

In favor of null: $log_e(BF_{01}) = 20.36$, sampling = independent multinomial, a = 1.00

cylinder count: 6

In favor of null: $log_e(BF_{01}) = -4.24$, $r_{Cauchy}^{JZS} = 0.71$

cylinder count: 4

am: 0

$$\chi_{\text{gof}}^{2}(2) = 7.68, p = 0.021, \widehat{V}_{\text{Cramer}} = 0.45, \text{Cl}_{95\%} [0.11, 0.^{\circ}] \chi_{\text{gof}}^{2}(2) = 4.77, p = 0.092, \widehat{V}_{\text{Cramer}} = 0.43, \text{Cl}_{95\%} [0.12, 0.02]$$

In favor of null: $log_e(BF_{01}) = -0.16$, a = 1.00

am: 1

In favor of null: $log_e(BF_{01}) = 0.85$, a = 1.00

Cylinder count: 4 Cylinder count: 6 $t(79) = -6.93, p = < 0.001, \widehat{\rho}_{pb} = -6.93$ $t(77) = -5.13, p = < 0.001, \widehat{\rho}_{pb} = -($ 45 45 40 40 volkswagen volkswagen ontiac toyota 25 25 -35 hevrolet ford 35 بر 30 ک hwy 30 W hwy volkswagen nissan ford ota chevrolet nissan 20 -20 25 -25 20 20 2.5 1.75 2.25 2.50 3.0 4.0 2.00 2.75 3.5

displ

Cylinder count: 8 $t(68) = 1.25, p = 0.216, \widehat{\rho}_{pb} = 0.15,$

displ

All movies have IMDB rating equal to 7.

