CS150: Database & Datamining Lecture 12: B+ Tree II & Relational Operators I

ShanghaiTech-SIST Spring 2019

Acknowledgement: Slides are adopted from the Berkeley course CS186 by Joey Gonzalez and Joe Hellerstein, Stanford CS145 by Peter Bailis.

Announcements

• Mid-term 16th April

• Up to 8th week: Lecture 16

Today's Lecture

1. B+ Trees - II

2. Relational Operators: Join algorithms

1. B+ Trees: Cost model

Inserting a Data Entry into a B+ Tree

- Find correct leaf L.
- Put data entry onto L.
 - If L has enough space, done!
 - Else, must <u>split</u> L (into L and a new node L2)
 - Redistribute entries evenly, <u>copy up</u> middle key.
 - Insert index entry pointing to L2 into parent of L.
- This can happen recursively
 - To split index node, redistribute entries evenly, but <u>push up</u> middle key. (Contrast with leaf splits.)
- Splits "grow" tree; root split increases height.
 - Tree growth: gets <u>wider</u> or <u>one level taller at top.</u>

- Notice that the root was split to increase the height
 - Grow from the root not the leaves
 - → All paths from root to leaves are equal lengths
- Does the occupancy invariant hold?
 - All nodes (except root) are at least half full

Splitting a Leaf

d = 2

- Start with full leaf (2d) entries:
 - Add a 2d +1 entry (8*)

- Split into leaves with (d, d+1) entries
 - Copy key up to parent

Why copy key and not push key up to parent?

Key has value attached (5*)

Occupancy invariant holds after split.

Splitting an interior node

d = 2

- Start with full interior node (2d) entries:
 - Add a 2d +1 entry

- Split into nodes with (d, d) entries
 - Push key up to parent

Splitting an interior node

d = 2

- Start with full interior node (2d) entries:
 - Add a 2d +1 entry

- Split into nodes with (d, d) entries
 - Push key up to parent

Did we have to split?

- What else could we do?
 - Redistribute keys?

Did we have to split?

Bulk Loading of B+ Tree

Suppose we want to build an index on a large table

- Would it be efficient to just call insert repeatedly?
 - No ... Why not?
 - Random Order: CLZARNDXEKFWIUB

Work through this animation https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

Bulk Loading of B+ Tree

Suppose we want to build an index on a large table

- Would it be efficient to just call insert repeatedly?
 - No ... Why not?
 - Sorterd Order? ABCDEFIKLNRUWXZ

- Sort the input records by key:
 - 1*, 2*, 3*, 4*, ...
- Fill leaf pages to fill factor (e.g., ¾)
 - Updating parent until full

- Sort the input records by key:
 - 1*, 2*, 3*, 4*, ...
- Fill leaf pages to fill factor (e.g., ¾)
 - Updating parent until full
 - Split parent and copy to sibling to achieve fill factor

- Sort the input records by key:
 - 1*, 2*, 3*, 4*, ...
- Fill leaf pages to fill factor (e.g., ¾)
 - Updating parent until full
 - Split parent

- Sort the input records by key:
 - 1*, 2*, 3*, 4*, ...
- Fill leaf pages to fill factor (e.g., ¾)
 - Updating parent until full
 - Split parent

- Sort the input records by key:
 - 1*, 2*, 3*, 4*, ...
- Fill leaf pages to fill factor (e.g., ¾)
 - Updating parent until full
 - Split parent

- Sort the input records by key:
 - 1*, 2*, 3*, 4*, ...
- Fill leaf pages to fill factor (e.g., ¾)
 - Updating parent until full

Summary of Bulk Loading

- Option 1: multiple inserts.
 - Slow.
 - Does not give sequential storage of leaves.
- Option 2: Bulk Loading
 - Fewer IOs during build. (Why?)
 - Leaves will be stored sequentially (and linked, of course).
 - Can control "fill factor" on pages.

Deleting a Data Entry from a B+ Tree

- Start at root, find leaf L where entry belongs.
- Remove the entry.
 - If L is at least half-full, done!
 - If L has only **d-1** entries,
 - Try to re-distribute, borrowing from <u>sibling</u> (adjacent node with same parent as L).
 - If re-distribution fails, <u>merge</u> L and sibling.
- If merge occurred, must delete entry (pointing to L or sibling) from parent of L.
- Merge could propagate to root, decreasing height.
 You won't be tested on delete.

	Heap File	Sorted File	Clustered Index
Scan all records	BD	BD	
Equality Search	0.5 BD	(log ₂ B) * D	
Range Search	BD	[(log ₂ B) + #match pg]*D	
Insert	2D	$((\log_2 B) + B)D$	
Delete	0.5BD + D	((log ₂ B)+B)D	

Simple Clustered Index Analysis

Assumptions:

- Store data by reference (Alternative 2)
- Clustered tree index with 2/3 full heap file pages
 - Clustered → Heap file is initially sorted
 - Fan-out (F): relatively large. Why?
 - Page of <key, pointer> pairs ~ O(R)
 - Assume static index

	Heap File	Sorted File	Clustered Index
Scan all records	BD	BD	?
Equality Search	0.5 BD	(log ₂ B) * D	
Range Search	BD	[(log ₂ B) + #match pg]*D	
Insert	2D	$((\log_2 B) + B)D$	
Delete	0.5BD + D	((log ₂ B)+B)D	

Scan all the Records?

B: The number of data pages (originally)
R: Number of records per page (originally)
D: (Average) time to read or write disk page

Assumptions:

- Store data by reference (Alternative 2)
- Clustered tree index with 2/3 full heap file pages
 - Clustered -> Heap file is initially sorted
 - Fan-out (F): relatively large. ~ O(R)
 - Assume static index

	Heap File	Sorted File	Clustered Index
Scan all records	BD	BD	1.5BD
Equality Search	0.5 BD	(log ₂ B) * D	
Range Search	BD	[(log ₂ B) + #match pg]*D	
Insert	2D	$((\log_2 B) + B)D$	
Delete	0.5BD + D	((log ₂ B)+B)D	

Cost of Operations B: The number of data pages Number of records per page (Average) time to read or write disk page

	Heap File	Sorted File	Clustered Index
Scan all records	BD	BD	1.5BD
Equality Search	0.5 BD	(log ₂ B) * D	?
Range Search	BD	[(log ₂ B) + #match pg]*D	
Insert	2D	$((\log_2 B) + B)D$	
Delete	0.5BD + D	((log ₂ B)+B)D	

Find the record with key 3

Search the index:

Each page load narrows search by factor of F

Cost? =
$$Log_F(1.5 B) D$$

Lookup record in heap file by record-id

Recall record-id = <page, slot #>

	Heap File	Sorted File	Clustered Index
Scan all records	BD	BD	(3/2) BD = 1.5BD
Equality Search	0.5 BD	(log ₂ B) * D	(log _F 1.5B+1) * D
Range Search	BD	[(log ₂ B) + #match pg]*D	
Insert	2D	$((\log_2 B) + B)D$	
Delete	0.5BD + D	((log ₂ B)+B)D	

	Heap File	Sorted File	Clustered Index
Scan all records	BD	BD	(3/2) BD = 1.5BD
Equality Search	0.5 BD	(log ₂ B) * D	(log _F 1.5B+1) * D
Range Search	BD	[(log ₂ B) + #match pg]*D	?
Insert	2D	$((\log_2 B) + B)D$	
Delete	0.5BD + D	((log ₂ B)+B)D	

Find keys between 3 and 7

Search the index for 3: = $Log_E(1.5 B) D$

Each page load narrows search by factor of F

Lookup record in heap file by record-id

Recall record-id = <page, slot #>

Scan the leaves of index until the end of range (assume good clustering)

= D

	Heap File	Sorted File	Clustered Index
Scan all records	BD	BD	(3/2) BD = 1.5BD
Equality Search	0.5 BD	(log ₂ B) * D	(log _F 1.5B+1) * D
Range Search	BD	[(log ₂ B) + #match pg]*D	[(log _F 1.5B) + #match pg]*D
Insert	2D	$((\log_2 B) + B)D$	
Delete	0.5BD + D	((log ₂ B)+B)D	

	Heap File	Sorted File	Clustered Index
Scan all records	BD	BD	(3/2) BD = 1.5BD
Equality Search	0.5 BD	(log ₂ B) * D	(log _F 1.5B+1) * D
Range Search	BD	[(log ₂ B) + #match pg]*D	[(log _F 1.5B) + #match pg]*D
Insert	2D	((log ₂ B)+B)D	?
Delete	0.5BD + D	((log ₂ B)+B)D	

	Heap File	Sorted File	Clustered Index
Scan all records	BD	BD	(3/2) BD = 1.5BD
Equality Search	0.5 BD	(log ₂ B) * D	(log _F 1.5B+1) * D
Range Search	BD	[(log ₂ B) + #match pg]*D	[(log _F 1.5B) + #match pg]*D
Insert	2D	$((\log_2 B) + B)D$	$((\log_{F} 1.5B)+2)*D$
Delete	0.5BD + D	((log ₂ B)+B)D	

	Heap File	Sorted File	Clustered Index
Scan all records	BD	BD	(3/2) BD = 1.5BD
Equality Search	0.5 BD	(log ₂ B) * D	(log _F 1.5B+1) * D
Range Search	BD	[(log ₂ B) + #match pg]*D	[(log _F 1.5B) + #match pg]*D
Insert	2D	$((\log_2 B) + B)D$	$((\log_{\rm F} 1.5{\rm B})+2)*{\rm D}$
Delete	0.5BD + D	((log ₂ B)+B)D	

	Heap File	Sorted File	Clustered Index
Scan all records	BD	BD	(3/2) BD = 1.5BD
Equality Search	0.5 BD	(log ₂ B) * D	(log _F 1.5B+1) * D
Range Search	BD	[(log ₂ B) + #match pg]*D	[(log _F 1.5B) + #match pg]*D
Insert	2D	$((\log_2 B) + B)D$	$((\log_{\rm F} 1.5{\rm B})+2)*{\rm D}$
Delete	0.5BD + D	((log ₂ B)+B)D	$((\log_{F} 1.5B)+2)*D$

Cost of Operations B: The number of data pages Number of records per page (Average) time to read or write disk page

	Heap File	Sorted File	Clustered Index
Scan all records	BD	BD	(3/2) BD = 1.5BD
Equality Search	0.5 BD	(log ₂ B) * D	(log _F 1.5B+1) * D
Range Search	BD	[(log ₂ B) + #match pg]*D	[(log _F 1.5B) + #match pg]*D
Insert	2D	$((\log_2 B) + B)D$	$((\log_{\rm F} 1.5{\rm B})+2)*{\rm D}$
Delete	0.5BD + D	((log ₂ B)+B)D	((log _F 1.5B)+2)*D

Summary

- We covered an algorithm + some optimizations for sorting largerthan-memory files efficiently
 - An IO aware algorithm!
- We create indexes over tables in order to support fast (exact and range) search and insertion over multiple search keys

- **B+ Trees** are one index data structure which support very fast exact and range search & insertion via *high fanout*
 - Clustered vs. unclustered makes a big difference for range queries too

2. Relational Operators

Architecture of a DBMS

Previously (2 Weeks)

How do we **store** and **access** data?

Today

How de we represent and execute computation?

SQL Client

Query Parsing & Optimization

Relational Operators

Files and **Tree-Index**Management

Buffer Management

Disk Space Management

Database

Big Picture Overview

Join Algorithms

A. Nested Loop Joins

B. Sort-Merge Join (next time)

C. Hash Joins (next time)

A. Nested Loop Joins

What you will learn about in this section

1. RECAP: Joins

2. Nested Loop Join (NLJ)

3. Block Nested Loop Join (BNLJ)

4. Index Nested Loop Join (INLJ)

RECAP: Joins

 $\mathbf{R}\bowtie \mathbf{S}$ | SELECT R.A,B,C,D FROM R, S WHERE R.A = S.A

 $\mathbf{R}\bowtie S$

SELECT R.A,B,C,D FROM R, S WHERE R.A = S.A

 $\mathbf{R}\bowtie\mathcal{S}$

SELECT R.A,B,C,D FROM R, S WHERE R.A = S.A

 $\mathbf{R}\bowtie\mathcal{S}$

SELECT R.A,B,C,D FROM R, S WHERE R.A = S.A

 $\mathbf{R}\bowtie S$

SELECT R.A,B,C,D FROM R, S WHERE R.A = S.A

Semantically: A Subset of the Cross Product

 $\mathbf{R}\bowtie \mathbf{S}$

SELECT R.A,B,C,D FROM R, S WHERE R.A = S.A

Example: Returns all pairs of tuples $r \in R$, $s \in S$ such that r.A = s.A

Α	В	С	D
2	3	4	2
2	3	4	3
2	5	2	2
2	5	2	3
3	1	1	7

Can we actually implement a join in this way?

Notes

• We write $R \bowtie S$ to mean join R and S by returning all tuple pairs where **all shared attributes** are equal

• We write $R \bowtie S$ on A to mean join R and S by returning all tuple pairs where attribute(s) A are equal

 For simplicity, we'll consider joins on two tables and with equality constraints ("equijoins")

However joins *can* merge > 2 tables, and some algorithms do support non-equality constraints!

Nested Loop Joins

Notes

We are again considering "IO aware" algorithms:
 care about disk IO

- Given a relation R, let:
 - T(R) = # of tuples in R
 - P(R) = # of pages in R

Recall that we read / write entire pages with disk IO

Note also that we omit ceilings in calculations...
 good exercise to put back in!

```
Compute R \bowtie S \text{ on } A:

for r in R:

for s in S:

if r[A] == s[A]:

yield (r,s)
```

Compute $R \bowtie S \ on \ A$:

for r in R:

for s in S: if r[A] == s[A]: yield (r,s)

Cost:

P(R)

1. Loop over the tuples in R

Note that our IO cost is based on the number of *pages* loaded, not the number of tuples!

```
Compute R \bowtie S on A:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)
```

Cost:

$$P(R) + T(R)*P(S)$$

- 1. Loop over the tuples in R
- 2. For every tuple in R, loop over all the tuples in S

Have to read *all of S* from disk for *every tuple in R!*

```
Compute R \bowtie S on A:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)
```

Cost:

$$P(R) + T(R)*P(S)$$

- 1. Loop over the tuples in R
- 2. For every tuple in R, loop over all the tuples in S
- 3. Check against join conditions

Note that NLJ can handle things other than equality constraints... just check in the *if* statement!

```
Compute R \bowtie S \text{ on } A: for r in R:
```

for s in S:

if
$$r[A] == s[A]$$
:
yield (r,s)

What would *OUT* be if our join condition is trivial (if TRUE)?

OUT could be bigger than P(R)*P(S)... but usually not that bad

Cost:

$$P(R) + T(R)*P(S) + OUT$$

- 1. Loop over the tuples in R
- 2. For every tuple in R, loop over all the tuples in S
- 3. Check against join conditions
- 4. Write out (to page, then when page full, to disk)

```
Compute R \bowtie S on A:
for r in R:
for s in S:
  if r[A] == s[A]:
  yield (r,s)
```

Cost:

$$P(R) + T(R)*P(S) + OUT$$

What if R ("outer") and S ("inner") switched?

$$P(S) + T(S)*P(R) + OUT$$

Outer vs. inner selection makes a huge difference-DBMS needs to know which relation is smaller!

IO-Aware Approach

Given **B+1** pages of memory

Compute $R \bowtie S \ on \ A$:

for each B-1 pages pr of R:

```
for page ps of S:
  for each tuple r in pr:
   for each tuple s in ps:
    if r[A] == s[A]:
      yield (r,s)
```

Cost:

P(R)

1. Load in B-1 pages of R at a time (leaving 1 page each free for S & output)

Note: There could be some speedup here due to the fact that we're reading in multiple pages sequentially however we'll ignore this here!

Given *B+1* pages of memory

```
Compute R \bowtie S on A:

for each B-1 pages pr of R:

for page ps of S:

for each tuple r in pr:

for each tuple s in ps:

if r[A] == s[A]:
```

yield (r,s)

Cost:

$$P(R) + \frac{P(R)}{B-1}P(S)$$

- Load in B-1 pages of R at a time (leaving 1 page each free for S & output)
- 2. For each (B-1)-page segment of R, load each page of S

Note: Faster to iterate over the *smaller* relation first!

Given *B+1* pages of memory

```
Compute R \bowtie S \ on \ A:
 for each B-1 pages pr of R:
  for page ps of S:
    for each tuple r in pr:
     for each tuple s in ps:
       if r[A] == s[A]:
        yield (r,s)
```

Cost:

$$P(R) + \frac{P(R)}{B-1}P(S)$$

- 1. Load in B-1 pages of R at a time (leaving 1 page each free for S & output)
- 2. For each (B-1)-page segment of R, load each page of S
- 3. Check against the join conditions

BNLJ can also handle non-equality constraints

Given *B+1* pages of memory

```
Compute R \bowtie S \ on \ A:
 for each B-1 pages pr of R:
  for page ps of S:
    for each tuple r in pr:
     for each tuple s in ps:
       if r[A] == s[A]:
        yield (r,s)
```

Again, *OUT* could be bigger than P(R)*P(S)... but usually not that bad

Cost:

$$P(R) + \frac{P(R)}{B-1}P(S) + OUT$$

- 1. Load in B-1 pages of R at a time (leaving 1 page each free for S & output)
- 2. For each (B-1)-page segment of R, load each page of S
- 3. Check against the join conditions

4. Write out

BNLJ vs. NLJ: Benefits of IO Aware

- In BNLJ, by loading larger chunks of R, we minimize the number of full disk reads of S
 - We only read all of S from disk for every (B-1)-page segment of R!
 - Still the full cross-product, but more done only in memory

NU BNU
$$P(R) + T(R)*P(S) + OUT$$

$$P(R) + \frac{P(R)}{B-1}P(S) + OUT$$

BNLJ is faster by roughly
$$\frac{(B-1)T(R)}{P(R)}$$
!

BNLJ vs. NLJ: Benefits of IO Aware

- Example:
 - R: 500 pages
 - S: 1000 pages
 - 100 tuples / page
 - We have 12 pages of memory (B = 11)

Ignoring OUT here...

- NLJ: Cost = 500 + 50,000*1000 = 50 Million IOs ~= 140 hours
- BNLJ: Cost = $500 + \frac{500*1000}{10} = 50$ Thousand IOs ~= 0.14 hours

A very real difference from a small change in the algorithm!

Smarter than Cross-Products

Smarter than Cross-Products: From Quadratic to Nearly Linear

- All joins that compute the full cross-product have some quadratic term
 - For example we saw: P(R) + T(R)P(S) + OUT

BNLJ
$$P(R) + \frac{P(R)}{B-1}P(S) + OUT$$

- Now we'll see some (nearly) linear joins:
 - ~ O(P(R) + P(S) + OUT), where again OUT could be quadratic but is usually better

We get this gain by *taking advantage of structure*- moving to equality constraints ("equijoin") only!

Index Nested Loop Join (INLJ)

```
Compute R ⋈ S on A:

Given index idx on S.A:

for r in R:

s in idx(r[A]):

yield r,s
```

Cost:

$$P(R) + T(R)*L + OUT$$

where L is the IO cost to access all the distinct values in the index; assuming these fit on one page, $L \sim 3$ is good est.

→ We can use an **index** (e.g. B+ Tree) to **avoid doing** the full cross-product!