

Single Image Super-Resolution using Transformed Self-Exemplars

Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja University of Illinois, Urbana-Champaign

Goal:

Recover high-res image from low-res observation

Basic idea: exploit internal statistics by transformed self-exemplars

Searching internal repetition with affine and perspective transformation

Fractal structure of natural images

Project page: http://bit.ly/selfexemplarsr

Method

Nearest neighbor field (NNF) estimation

Objective function

$$\min_{\{\theta_i\}} \sum_{i \in \Omega} \mathbf{E}_{app}(\mathbf{t}_i, \theta_i) + \mathbf{E}_{plane}(\mathbf{t}_i, \theta_i) + \mathbf{E}_{scale}(\mathbf{t}_i, \theta_i)$$

Patch transformation

$$\mathbf{T}_{i}(\boldsymbol{\theta}_{i}) = \mathbf{H}\left(\mathbf{t}_{i}, \mathbf{s}_{i}^{x}, \mathbf{s}_{i}^{y}, m_{i}\right) \mathbf{S}\left(\mathbf{s}_{i}^{s}, \mathbf{s}_{i}^{\theta}\right) \mathbf{A}\left(\mathbf{s}_{i}^{\alpha}, \mathbf{s}_{i}^{\beta}\right)$$

 $\mathbf{H}\left(\mathbf{t}_{i},\mathbf{s}_{i}^{x},\mathbf{s}_{i}^{y},m_{i}\right)$ Perspective transformation [Huang et al. SIGGRAPH 14]

$$\mathbf{S}\left(\mathbf{s}_{i}^{s}, \mathbf{s}_{i}^{\theta}\right) = \begin{bmatrix} \mathbf{s}_{i}^{s} \mathbf{R}(\mathbf{s}_{i}^{\theta}) & \mathbf{0} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \qquad \mathbf{A}\left(\mathbf{s}_{i}^{\alpha}, \mathbf{s}_{i}^{\beta}\right) = \begin{bmatrix} 1 & \mathbf{s}_{i}^{\alpha} & 0 \\ \mathbf{s}_{i}^{\beta} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Inference: PatchMatch algorithm [Barnes et al. SIGGRAPH 09, ECCV 10]

Coarse-to-fine reconstruction

- Each level, perform NNF
- Reconstruct current level via voting
- Run iterative back-projection algorithm to ensure consistency of HR-LR

Quantitative evaluation

Table 1. Quantitative evaluation on Urban 100 and BSD 100 datasets. Red indicates the best and blue indicates the second best performance.

Metric	Scale	Bicubic	ScSR [40]	Kim [22]	SRCNN [9]	A+ [33]	Sub-band [27]	Glasner [15]	Ours
PSNR (Urban)	2x	26.66	28.26	28.74	28.65	28.87	28.34	28.15	29.05
	4x	23.14	24.02	24.20	24.14	24.34	24.21	23.79	24.67
SSIM (Urban)	2x	0.8408	0.8828	0.8940	0.8909	0.8957	0.8820	0.8743	0.8980
	4x	0.6573	0.7024	0.7104	0.7047	0.7195	0.7115	0.6838	0.7314
PSNR (BSD)	2x	29.55	30.77	31.11	31.11	31.22	30.73	30.56	31.12
	3x	27.20	27.72	28.17	28.20	28.30	27.88	27.36	28.20
	4x	25.96	26.61	26.71	26.70	26.82	26.60	26.38	26.80
SSIM (BSD)	2x	0.8425	0.8744	0.8840	0.8835	0.8862	0.8774	0.8675	0.8835
	3x	0.7382	0.7647	0.7788	0.7794	0.7836	0.7714	0.7490	0.7778
	4x	0.6672	0.6983	0.7027	0.7018	0.7089	0.7021	0.6842	0.7064

Contributions:

- 1. Increase the size of internal dictionary using transformed patches
- 2. Decomposition of perspective and affine transformation.
- 3. New dataset of urban images

Results on Urban 100 (4x)

Results on Sun-Hays 80 (8x)

