今郷

BUNDESREPUBLIK DEUTSCHLAND

#2

156

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

PCT/DE 00 / 01349

DE00/01349

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

. 199 19 575.7

Anmeldetag:

29. April 1999

Anmelder/Inhaber:

Siemens Aktiengesellschaft,

München/DE

Bezeichnung:

Kammfilteranordnung zur Dezimation einer Folge von digitalen Eingangswerten in eine Folge von digitalen Ausgangswerten um einen

nicht ganzzahligen Faktor

IPC:

H 03 H 17/06

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Anmeldung.

München, den 29. Juni 2000

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Hoiß

AGE BLANK (USPTO)

GK 99 P 1733

Beschreibung

5

10

15

Kammfilteranordnung zur Dezimation einer Folge von digitalen Eingangswerten in eine Folge von digitalen Ausgangswerten um einen nicht ganzzahligen Faktor

Die Erfindung betrifft eine Kammfilteranordnung zur Dezimation einer Folge von digitalen Eingangswerten in eine Folge von digitalen Ausgangswerten um einen nicht ganzzahligen Faktor.

Zur Taktrückgewinnung für konventionelle Modem-Anwendungen oder sogenannte MDSL-Anwendungen ist oft eine Dezimation um einen nicht ganzzahligen Faktor nötig. Bei der Sigma-Delta-Analog-Digitalwandlung kommen meist Kammfilteranordnungen zur

Dezimation zum Einsatz, wobei es eine Vielzahl von Implementierungsmöglichkeiten für solche Kammfilteranordnungen gibt.

Eine bekannte Kammfilteranordnung ist in Fig. 1 dargestellt. Allerdings ist die dort gezeigte Kammfilteranordnung ledig20 lich zur Dezimation einer Folge von digitalen Eingangswerten xi in eine Folge von digitalen Ausgangswerten yj um einen ganzzahligen Faktor M geeignet. Hierfür verfügt die Schaltungsanordnung gemäß Fig. 1 über einen eingangsseitigen Integrator 10 n-ter Ordnung, einer nachfolgenden Dezimationsstufe 124 um den ganzzahligen Faktor M und einen ausgangsseitigen Differentiator 126, ebenfalls n-ter Ordnung.

Der Integrator 10 n-ter Ordnung weist n hintereinander geschaltete Stufen auf, wobei jede Stufe einen eingangsseitigen
30 Addierer 12 umfasst, dem zwei Eingangssignale zugeführt werden, nämlich ein über eine Leitung 16 zurückgekoppeltes Signal und ein vom Signalpfad stammendes Signal, das in der ersten Stufe der digitale Eingangswert xi ist. Der Ausgang des Addierers 12 ist mit einer Verzögerungsstufe 14 verbunden.
35 Der Ausgang dieser Verzögerungsstufe 14 bildet bei einer

Der Ausgang dieser Verzögerungsstufe 14 bildet bei einer nachfolgenden Stufe einmal das Eingangssignal für den Addierer 12 dieser nachfolgenden Stufe und zum anderen auch das

über die Leitung 16 auf den zugeordneten Addierer 12 rückgekoppelte Signal. Für einen Integrator dritter Ordnung sind beispielsweise drei solche erläuterte Stufen mit jeweils einem Addierer 12, einem Verzögerungsglied 14 und einer Rückkopplungsschleife 16 notwendig.

Das Ausgangssignal eines solchen Integrators 10 n-ter Ordnung wird der Dezimationsstufe 124 zugeführt, die beispielsweise nur jeden eingehenden zehnten Abtastwert herausfiltert. Der 10 Ausgang der Dezimationsstufe 124 ist mit dem bereits erwähnten Differentiator 126 verbunden, der ebenfalls entsprechend der Ordnung des Differentiators eine vorgegebene Anzahl von hintereinandergeschalteten Stufen aufweist. Diese Stufen we sen wiederum jeweils einen Addierer 128, eine Verzögerungs-15 stufe 130 und eine Leitung 132 auf, sind jedoch im Gegensatz zu den Stufen des Integrators 10 anders verschaltet. Dem Addierer 128 werden wiederum zwei Eingangssignale zugeführt, nämlich zum einen das Signal auf der Leitung 132 des Signalpfades und das hierzu in der Verzögerungsstufe 130 verzögerte und invertierte Signal. Der Ausgang des Addierers 128 wird 20 dann dem einen Eingang des Addierers 128 einer nachfolgenden Stufe zugeführt und ebenfalls der dortigen Verzögerungsstufe 130. Zur Realisierung eines Differentiators dritter Ordnung sind drei solche hintereinander geschaltete Stufen notwendig.

25

5

Eine derartige Kammfilteranordnung ist geeignet, die Folge von digitalen Eingangswerten x_i durch einen ganzzahligen Faktor M, zum Beispiel 10, zu dezimieren.

- Der Erfindung liegt die Aufgabe zugrunde, die in Fig. 1 beschriebene, bekannte Kammfilteranordnung so weiterzubilden, dass eine Dezimation der Folge von digitalen Eingangswerten x_i um einen nicht ganzzahligen Faktor möglich ist.
- Diese Aufgabe wird durch eine Kammfilteranordnung mit den Merkmalen des Anspruchs 1 gelöst.

Weiterbildungen der Kammfilteranordnung sind Gegenstand der Unteransprüche.

Erfindungsgemäß ist demnach ein eingangsseitiger Integrator

n-ter Ordnung vorgesehen, dessen Ausgang mindestens drei Signalpfaden zugeführt wird. Jeder Signalpfad verfügt über eine Verzögerungsstufe mit unterschiedlich einstellbarer Verzögerung, eine nachfolgende Dezimationsstufe um einen ganzzahligen Faktor M und eine ausgangsseitige Differentiatorstufe zur Erzeugung von Zwischenausgangswerten. An den Ausgang der drei Signalpfade ist eine Interpolationsanordnung geschaltet, an deren Ausgang die um den nicht ganzzahligen Faktor dezimierte Folge von digitalen Ausgangswerten yj abgreifbar ist.

Die Interpolationsanordnung ist so beschaffen, dass sie stets zwischen zwei Zwischenausgangswerten, die an den drei Signalpfaden ausgangsseitig anliegen und einen Abstand von k/f aufweisen (f = Abtastrate und k = Verzögerungsfaktor) interpoliert. Zweckmäßigerweise handelt es sich bei der Interpolation on um eine lineare Interpolation.

Erfindungsgemäß arbeiten die Differentiatorstufen der einzelnen Signalpfade mit einer um den Faktor M reduzierten Abtastrate, wodurch der Aufwand an Addierern und Verzögerungsgliedern vorteilhafterweise gering ist. Um die nicht ganzzahlige Abtastratenänderung zu erreichen, wird erfindungsgemäß die Interpolation zwischen zwei durch jeweils die Signalpfade verzögerten Zwischenausgangswerte durchgeführt.

In einer Ausführungsform der Erfindung verfügt die Interpolationsanordnung über zwei Umschalteinrichtungen, deren drei Eingänge jeweils mit einem Ausgang der drei Differentiatorstufen verbunden wird und deren Ausgänge mit jeweils einem Verstärker verbunden wird. Darüber hinaus ist eine Additionsstufe vorgesehen zur Addition der Ausgangssignale der beiden Verstärker.

Eine weitere Ausbildung der Erfindung sieht eine Steuereinrichtung zum Umschalten der Umschalteinrichtungen jeweils nach Maßgabe der beiden zu interpolierenden Zwischenausgangssignalwerten vor.

5

Eine andere Ausbildung der Erfindung sieht vor, dass die Interpolationsanordnung eine lineare Interpolierung gemäß

$$y_i = \alpha \cdot y_{i+1} + (1 - \alpha) \cdot y_i$$

10

bzw.

$$y_i = \alpha \cdot y_{i+k} + (1 - \alpha) \cdot y_{i+2k}$$

15

durchgeführt wird. Dazu werden nur zwei Multiplikationen und eine Addition innerhalb der Interpolationsanordnung auf der niedrigen Abtastrate benötigt. Nach einer vorgegebenen Anzahl solcher Interpolationsvorgänge wird, wie in den obigen Formeln angegeben, zwischen den beiden Wertepaaren (y_i, y_{i+k}) und dem Wertepaar (y_{i+k}, y_{i+2k}) zur Interpolation umgeschaltet. 20

Sehr wesentlich bei der Kammfilteranordnung vorliegender Erfindung ist die Tatsache, dass lediglich zwei Wertepaare benötigt werden, um zu interpolieren.

25

30

Da bei der erfindungsgemäßen Kammfilteranordnung nach der De zimationsstufe in den jeweiligen Signalpfaden n Differenziatoren vorgesehen sind, benötigt die Kammfilteranordnung n Schritte zum Einschwingen, so dass erst der n+1-te Ausgangswert nach der Umschaltung in den Umschalteinrichtungen von der Eingangsfolge verwendet werden kann. Daher muss jede Differentiatorkette in den Signalpfaden bereits n Schritte bevor sie an den Ausgang geschaltet wird, eingephast werden.

Von wesentlicher Bedeutung bei der erfindungsgemäßen Kammfilteranordnung ist die Tatsache, dass die Interpolation stets zwischen zwei Werten, die einen Abstand von $k \cdot T$ (T = 1/f, f = 1/f, f

Die Realisierung einer Kammfilteranordnung nach der Erfindung kann auf unterschiedlichste Art und Weise erfolgen. Der dritte Signalpfad kann beispielsweise durch eine separat aufgebaute Differentiatorkette entsprechender Logik zur Einphasung und Umschaltung realisiert werden. Es ist jedoch auch möglich, nur eine softwaremäßige Berechnung zu realisieren und die Register der Differentiatorkette entsprechend zu laden.

20

10

15

Die Kammfilteranordnung nach der Erfindung wird nachfolgend in Zusammenhang mit einem Ausführungsbeispiel anhand weiterer Figuren näher erläutert. Es zeigen:

- 5 Fig. 1 eine Kammfilteranordnung nach dem Stand der Technik,
 - Fig. 2 eine Kammfilteranordnung gemäß vorliegender Erfindung im Blockschaltbild und

30

Fig. 3 skizzenhaft Folgen von Eingangswerten, Zwischenausgangswerten und Ausgangswerten in der Schaltungsanordnung von Fig. 2 sowie die zugehörenden Interpolationswerte.

30

35

In den nachfolgenden Figuren bezeichnen, sofern nicht anders angegeben, gleiche Bezugszeichen gleiche Teile mit gleicher Bedeutung.

In Fig. 2 ist eine Kammfilteranordnung zur Dezimation einer 5 Folge von digitalen Eingangswerten x_i in eine Folge von digitalen Ausgangswerten y_j um einen nicht ganzzahligen Faktor M + α , wobei M eine positive ganze Zahl ist, also M = 1, 2, 3, ... usw., und 0 < α < 1. Die Anordnung weist einen eingangsseitigen Integrator 10 n-ter Ordnung auf, wie dieser bei-10 spielsweise in Zusammenhang mit Fig. 1 erläutert worden ist. Der Ausgang des Integrators 10 wird in drei Signalpfaden 20, 30, 40 aufgespalten. Der erste Signalpfad 20 weist eine Ver zögerungsstufe 22 mit nachgeschalteter Dezimationsstufe 24 und einem nachgeschalteten Differentiator 26 auf. Die Dezima-15 tionsstufe 24 dezimiert die in der Verzögerungsstufe 22 verzögerte Folgen von Daten. Der Differentiator 26 ist von n-ter Ordnung. Am Ausgang des Differenziators 26 ist eine Folge von Zwischenausgangswerten yi abgreifbar. Der Ausgang des Diffe-20 renziators 26 ist mit zwei Eingangsklemmen el jeweils einer Umschalteinrichtung 62, 64 in Verbindung.

Der zweite Signalpfad 30 und der dritte Signalpfad 40 sind sehr ähnlich zum ersten Signalpfad 20 aufgebaut und weisen jeweils eine Verzögerungsstufe 32, 42 mit nachgeschalteter Dezimationsstufe 34, 44 und weiter nachgeschalteten Differer tiatoren 36 bzw. 46 auf. Am Ausgang des zweiten Differenziators ist eine Folge von Zwischenausgangswerten yi+k und am Ausgang des dritten Differenziators eine Folge von Zwischenausgangswerten yi+zk abgreifbar. Der Ausgang des zweiten Differenziators 36 ist mit zweiten Eingangsklemmen e2 der ersten Umschalteinrichtung 62 und der zweiten Umschalteinrichtung 64 verbunden. Der Ausgang des dritten Differenziators 46, der wie der erste Differentiator 26 und der zweite Differentiator 36 von n-ter Ordnung ist, ist mit einer dritten Eingangsklemme e3 der ersten Umschalteinrichtung 62 und einer dritten Eingangsklemme e3 der zweiten Umschalteinrichtung 64 in Ver-

30

35

bindung. Die Verzögerungsstufen 22, 32 und 42 sind in ihrer Verzögerungszeit durch eine Steuereinrichtung 100 über ein Steuersignal S einstellbar.

- In der Kammfilteranordnung von Fig. 2 verzögert die Verzögerungsstufe 22 um $k \cdot T$, die Verzögerungsstufe 32 um $2k \cdot T$ und die Verzögerungsstufe 42 um $3k \cdot T$ (wobei T = 1/f, f = Abtastrate und <math>k = Grundverzögerungsfaktor).
- 10 Die beiden Umschalteinrichtungen 62, 64 sind so gestaltet, dass sie die an den Eingangsklemmen el, e2 oder e3 anstehenden Signale an eine Ausgangsklemme a der jeweiligen Umschalteinrichtung 62, 64 schalten. Die Ausgangsklemme a der Umschalteinrichtung 62 ist mit einem ersten Verstärker 70 in 15 Verbindung, welcher ausgangsseitig an eine Eingangsklemme eines Addierers 80 geschaltet ist. Die Ausgangsklemme a der Umschalteinrichtung 64 ist mit der Eingangsklemme eines zweiten Verstärkers 72 in Verbindung, dessen Ausgangsklemme mit einer zweiten Eingangklemme des Addierers 80 verbunden ist. Am Aus-20 gang des Addierers 80 ist eine Folge von Ausgangswerten yi abgreifbar, die um einen nicht ganzzahligen Faktor gegenüber der Folge von Eingangsdaten x, dezimiert ist. Die beiden Umschalteinrichtungen 62, 64, die beiden Verstärker 70, 72 und der Addierer 80 bilden eine Interpolationsanordnung 60.

Der nicht ganzzahlige Faktor ist beispielsweise M + α , wobei M eine positive ganze Zahl ist, also 1, 2, 3 usw. und α = Verstärkungsfaktor des ersten Verstärkers 70. Der Verstärkungsfaktor des zweiten Verstärkers 72 ist dann 1 - α gewählt.

Wie aus Fig. 2 weiter erkennbar ist durch die Steuereinrichtung 100 die Umschaltung der beiden Umschalteinrichtungen 62 und 64 sowie der Verstärkungsfaktor der beiden Verstärker 70 und 72 steuerbar.

Die Funktionsweise der in Fig. 2 dargestellten Schaltungsanordnung wird im Zusammenhang mit den in Fig. 3 dargestellten Folgen von Eingangs- und Ausgangswerten erläutert.

In Fig. 3 ist oben eine Folge von digitalen Eingangswerten x_i beispielhaft dargestellt. Die einzelnen Eingangswerte x_i haben einen Abstand von T zueinander.

Im darunter befindlichen Diagramm von Fig. 3 ist eine Folge von digitalen Werten dargestellt. Es ist angenommen, dass der ganzzahlige Faktor M=6 ist. Die zugehörenden, aus der Folge von Eingangswerten $\mathbf{x_i}$ dezimierten Werte sind durch den Abstand $M\cdot T$ bestimmt. Zwischen diesen Werten befinden sich weitere Signalwerte, die durch die Verzögerung $k\cdot T$ bzw.

15 2k·T vorgegeben sind.

Die sich hieraus ergebenden einzelnen Signalwerte werden vereinbarungsgemäß als Zwischenausgangswerte y_i , y_{i+k} und y_{i+2k} entsprechend ihrer Verzögerung bzw. Nichtverzögerung bezeichnet. Die zu interpolierenden Interpolationszeitpunkte sind in Fig. 3 durch Pfeile angegeben. Wie ersichtlich, befinden sich die Interpolationszeitpunkte stets zwischen zwei Zwischenausgangswerten, nämlich zwischen y_i und y_{i+k} einerseits bzw. zwischen y_{i+k} und y_{i+2k} andererseits.

25

30

Die in Fig. 2 dargestellte Interpolationsanordnung 60 umfass die beiden Umschalteinrichtungen 62 und 64, die beiden Verstärker 70 und 72 sowie den Addierer 80. Die Steuereinrichtung 100 schaltet die beiden Umschalteinrichtungen 62 und 64 so um und wählt die Verstärkungsfaktoren der Verstärker 70 und 72 so, dass eine lineare Interpolation realisiert ist.

Die Steuereinrichtung 100 sorgt dafür, dass prinzipiell zwischen den Werten y_i und y_{i+k} linear interpoliert wird gemäß der Formel

$$y_j = \alpha \cdot y_{i+1} + (1 - \alpha) \cdot y_i$$
.

Hierzu werden lediglich zwei Multiplikationen und eine Addition auf der niedrigen Abtastrate benötigt. Nach k solcher Interpolationsvorgänge wird jedoch statt dem Wertepaar y_i , y_{i+k} das Wertepaar y_{i+k} , y_{i+2k} zur Interpolation benötigt.

Da der zweite Teil der in Fig. 2 dargestellten Kammfilteranordnung bestehend aus den jeweils n hintereinandergeschalteten Differentiatorstufen 26, 36 bzw. 46 jedoch n

10 Schritte zum Einschwingen benötigt, muss die Steuereinrichtung 100 dafür Sorge tragen, dass erst der (n+1)-te Ausgangswert nach der Umschaltung der Eingangsfolge verwendet wird.

Daher muss jede Differentiatorkette 13 n Schritte bevor sie an den Ausgang geschaltet wird, eingephast werden.

Patentansprüche

1. Kammfilteranordnung zur Dezimation einer Folge von digitalen Eingangswerten (x_i) in eine Folge von digitalen Ausgangs-5 werten (y_j) um einen nicht ganzahligen Faktor $(M + \alpha)$, wobei M eine positive ganze Zahl (M = 1, 2, 3, ...) und 0 < α < 1 ist, mit einem eingangsseitigen Integrator (10) n-ter Ordnung, dessen Ausgang mindestens drei Signalpfaden (20, 30, 40) zugeführt wird, wobei jeder Signalpfad (20, 30, 40) eine 10 einstellbare Verzögerungsstufe (22, 32, 42) mit unterschiedlich einstellbarer Verzögerung m · k (mit m = 1, 2, 3 und k = Verzögerungsfaktor) eine nachfolgende Dezimationsstufe (24, 34, 44) um den Faktor M und eine ausgangsseitige Differentia 15 torstufe (26, 36, 46) zur Erzeugung von Zwischenausgangswerten (y_i, y_{i+k}, y_{i+2k}) aufweist, welche mit einem Eingang einer Interpolationsanordnung (60), an deren Ausgang die dezimierte Folge von digitalen Ausgangswerten (y_j) abgreifbar ist, verbunden sind.

20

25.

35

- 2. Kammfilteranordnung nach Anspruch 1, dad urch gekennzeich net, dass durch die Interpolationsanordnung (60) stets zwischen zwei Zwischenausgangssignalwerten $(y_i, y_{i+k}; y_{i+k}, y_{i+2k})$, die einen Abstand von k/f aufweisen (mit f = Abtastrate), interpoliert wird.
- 3. Kammfilteranordnung nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, dass durch die Interpolationsanordnung (60) eine lineare Interpolation 30 durchführbar ist.
 - 4. Kammfilteranordnung nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, dass die Interpolationsanordnung (60) zwei Umschalteinrichtungen (62, 64) aufweist, deren Eingänge (e1, e2, e3) jeweils mit einem Ausgang der Differentiatorstufen (26, 36, 46) verbunden sind und deren Ausgänge (a) mit jeweils einem Verstärker (70, 72) ver-

bunden sind, dass eine Additionsstufe (80) vorgesehen ist zur Addition der Ausgangssignale der beiden Verstärker (70, 72), und dass am Ausgang der Additionsstufe (80) die Folge der dezimierten digitalen Ausgangswerte (y_1) abgreifbar ist.

5

10

- 5. Kammfilteranordnung nach Anspruch 4, da durch gekennzeich tung (100) vorgesehen ist zum Umschalten der Umschalteinrichtungen (62, 64) nach Maßgabe der zu interpolierenden zwei Zwischenausgangswerte $(y_i, y_{i+k}; y_{i+k}, y_{i+2k})$.
- 6. Kammfilteranordnung nach Anspruch 4 oder 5,
 d a d u r c h g e k e n n z e i c h n e t, dass der erste
 Verstärker (70) einen Verstärkungsfaktor (α) und der zweite
 15 Verstärker (72) einen Verstärkungsfaktor (1-α) aufweist.
- 7. Kammfilteranordnung nach einem der Ansprüche 1 bis 6, dad urch gekennzeich net, dass eine Steuereinrichtung (100) vorgesehen ist, durch welche die Verzögerungen m·k der Verzögerungsstufen (22, 32, 42) einstellbar sind.
 - 8. Kammfilteranordnung nach einem der Ansprüche 1 bis 7, das durch gekennzeich net, dass die Verzögerungen $k \cdot m$ der einzelnen Verzögerungsstufen (22, 32, 42) zueinander um ein ganzzahliges Vielfaches unterschiedlich zueinander gewählt sind.
- 9. Kammfilteranordnung nach einem der Ansprüche 1 bis 8, 30 dadurch gekennzeichnet, dass m = n ist.
- 10. Kammfilteranordnung nach einem der Ansprüche 1 bis 9, dad urch gekennzeich net, dass die Kammfilteranordnung durch einen Mikroprozessor realisiert ist, welchem die digitalen Eingangswerte (x_i) als Eingangsdaten zuführbar sind und an dessen Ausgang die digitalen Ausgangswerte (y₁) abgreifbar sind.

Zusammenfassung

Kammfilteranordnung zur Dezimation einer Folge von digitalen Eingangswerten in eine Folge von digitalen Ausgangswerten um einen nicht ganzzahligen Faktor.

Die Kammfilteranordnung weist einen eingangsseitigen Integrator (10) n-ter Ordnung auf, dessen Ausgang mindestens drei Signalpfaden (20, 30, 40) zugeführt wird. Jeder Signalpfad (20, 30, 40) ist über eine Steuereinrichtung (100) mit einer einstellbaren Verzögerungsstufe (22, 32, 42), einer nachfolgenden Dezimationsstufe (24, 34, 44) und einer ausgangsseitigen Differentiatorstufe (26, 36, 46) versehen. Die Ausgänge der drei Signalpfade (20, 30, 40) werden einer Interpolationsanordnung (60) zugeführt, an deren Ausgang die dezimierte Folge von digitalen Ausgangswerten (y_j) abgreifbar ist. Die Interpolationsanordnung (60) interpoliert stets zwischen nur zwei Werten (y_i, y_{i+k}; y_{i+k}, y_{i+k}).

20

5

10

15

FIGUR 2

Bezugszeichenliste

10	Integrator
12	Addierer
14	Verzögerungsstufe
16	Leitung
20	Signalpfad
22	Verzögerungsstufe
24	Dezimationsstufe
26	Differenziator
30	Signalpfad
32	Verzögerungsstufe
34	Dezimationsstufe
36	Differenziator
40	Signalpfad
42	Verzögerungsstufe
44	Dezimationsstufe
46	Differenziator
60	Interpolationsanordnung
62	Umschalteinrichtung
64	Umschalteinrichtung
70	Verstärker
72	Verstärker
80	Additionsstufe
100	Steuereinrichtung
124	Dezimationsstufe
126	Differenziator
128	Addierer
130	Verzögerungsstufe
132	Leitung
x_i	Eingangsdaten
Уi	Zwischenausgangssignalwerte
Уј	Ausgangswerte
e1, e2, e3	Eingangsklemmen
a	Ausgangsklemme

Tig. 1

1 mile-polations sent pun Kte