## **Programming 5 Report**

## **Introduction**

I worked on exercise 2 and turning in two python codes named "GAN.py" and "ConvGAN.py". The dataset used is the Fashion-MNIST dataset. The "GAN.py" code outputs the summary for the generator, the discriminator, and the combined GAN model for step 1, trains the models by first training the discriminator with unfrozen weights for an epoch and then training the GAN model's generator with the discriminator's weights frozen for an epoch. Both are trained 100 epochs each. The code also saves the first 3 images from the GAN model's generator per 10 epochs and the last epoch 99. The "ConvGAN.py" code outputs the summary for the CNN generator, the CNN discriminator, and the combined CNN GAN model for step 3, trains the models by first training the discriminator with unfrozen weights for an epoch and then training the GAN model's generator with the discriminator's weights frozen for an epoch. Both are trained 100 epochs each. The code saves the first 3 images from the step 3 GAN model's generator per 10 epochs and the last epoch 99.

#### **Results**

## **Step 1: Design the GAN**

I experimented with my GAN model's layer orders, the number of dense layers, width of the dense layers, and settled on what's shown below, though my GAN model does not seem to produce a fake image that looks like it could be one of the real images, it does come close. I also experimented with batch size but didn't see too much improvement, so I stuck with 100. I think my generator is weaker than the discriminator, but I could not figure out how to balance them well. I used batch normalization between dense layers and leaky RELU as suggested.

#### The Generator

```
# Generator
gen_model = models.Sequential()
gen_model.add(ff.keras.Input(shape=(100,)))
gen_model.add(layers.Dense(256))
gen_model.add(layers.BeatchNormalization())
gen_model.add(layers.BatchNormalization())
gen_model.add(layers.LeakyReLU())
gen_model.add(layers.LeakyReLU())
gen_model.add(layers.Dense(512))
gen_model.add(layers.Dense(1024))
gen_model.add(layers.Dense(1024))
gen_model.add(layers.Dense(1024))
gen_model.add(layers.Dense(1024))
gen_model.add(layers.Dense(784)) # (None, 784)
gen_model.add(layers.LeakyReLU()) # (None, 28, 28, 1)
gen_model.add(layers.Reshape((28, 28, 1), input_shape=(2, )))
```

```
Model: "sequential"
Layer (type)
                          Output Shape
                                                  Param #
dense (Dense)
                          (None, 256)
                                                  25856
leaky_re_lu (LeakyReLU)
                          (None, 256)
batch_normalization (BatchN (None, 256)
                                                  1024
ormalization)
dense_1 (Dense)
                          (None, 512)
                                                  131584
leaky_re_lu_1 (LeakyReLU) (None, 512)
                                                  0
batch_normalization_1 (Batc (None, 512)
                                                  2048
hNormalization)
dense_2 (Dense)
                          (None, 1024)
                                                  525312
leaky_re_lu_2 (LeakyReLU) (None, 1024)
                                                  а
batch_normalization_2 (Batc (None, 1024)
                                                  4096
hNormalization)
dense_3 (Dense)
                          (None, 784)
                                                  803600
leaky_re_lu_3 (LeakyReLU) (None, 784)
                                                  0
reshape (Reshape)
                          (None, 28, 28, 1)
                                                  0
_____
Total params: 1,493,520
Trainable params: 1,489,936
Non-trainable params: 3,584
```

## The Discriminator

```
# Discriminator
disc_model = models.Sequential()
disc_model.add(tf.keras.Input(shape=(28, 28, 1)))
disc_model.add(layers.Flatten()) # (None, 784)
disc_model.add(layers.Dense(1024))
disc_model.add(layers.LeakyReLU())
disc_model.add(layers.BatchNormalization())
disc_model.add(layers.Dense(512))
disc_model.add(layers.LeakyReLU())
disc_model.add(layers.BatchNormalization())
disc_model.add(layers.Dense(256))
disc_model.add(layers.Dense(256))
disc_model.add(layers.BatchNormalization())
disc_model.add(layers.BatchNormalization())
disc_model.add(layers.Dense(1, activation='sigmoid')) # (None, 1)
```

```
Model: "sequential_1
Layer (type)
                             Output Shape
                                                       Param #
 flatten (Flatten)
                            (None, 784)
                                                      0
 dense_4 (Dense)
                             (None, 1024)
                                                      803840
 leaky_re_lu_4 (LeakyReLU) (None, 1024)
 batch_normalization_3 (Batc (None, 1024)
                                                       4096
 hNormalization)
 dense_5 (Dense)
                             (None, 512)
                                                      524800
 leaky_re_lu_5 (LeakyReLU) (None, 512)
                                                      0
 batch_normalization_4 (Batc (None, 512)
                                                       2048
 hNormalization)
 dense_6 (Dense)
                             (None, 256)
                                                      131328
 leaky_re_lu_6 (LeakyReLU) (None, 256)
 batch_normalization_5 (Batc (None, 256)
                                                       1024
 hNormalization)
 dense_7 (Dense)
                             (None, 1)
                                                       257
Total params: 1,467,393
Trainable params: 1,463,809
Non-trainable params: 3,584
```

## The GAN Model

Step 2: Training GAN model and Discriminator model

Data was preprocessed by multiplying the image values by 1/255. I trained my model for 100 epochs with 100 batch size. Optimizer was adam and the loss measured was binary cross-

entropy. I coded the training loop following the guide in https://keras.io/guides/writing\_a\_training\_loop\_from\_scratch/

# Training Loss per Epoch

| Epoch | Discriminator           | GAN Training           | Epoch | Discriminator              | <b>GAN Training Loss</b>  |
|-------|-------------------------|------------------------|-------|----------------------------|---------------------------|
| Lpoen | Training Loss           | Loss                   | Lpoen | Training Loss              | Grit Training Loss        |
| 0     | 3.107323565121          | 1.8828283487344        | 50    | 0.058429781347513          | 0.000973034824710         |
| Ů     | 334e-10                 | 882e-20                |       | 2                          | 3393                      |
| 1     | 6.628647042816          | 0.0                    | 51    | 0.002764615230262          | 0.002109412103891         |
|       | 738e-06                 |                        |       | 2795                       | 3727                      |
| 2     | 1.789082933450          | 0.0                    | 52    | 0.001116611529141          | 0.000546179537195         |
|       | 3422e-13                |                        |       | 6645                       | 7123                      |
| 3     | 1.256812577900          | 0.0                    | 53    | 0.002532252110540          | 9.268229769077152         |
|       | 5338e-25                |                        |       | 867                        | e-05                      |
| 4     | 1.181110646396          | 0.0                    | 54    | 0.002795698586851          | 0.000195258849998         |
|       | 125e-19                 |                        |       | 3584                       | 93606                     |
| 5     | 1.500768668951          | 0.0                    | 55    | 0.005803891923278          | 0.000256899715168         |
|       | 4291e-21                |                        |       | 57                         | 4016                      |
| 6     | 1.313190178819          | 0.0                    | 56    | 0.002059352351352          | 1.051875551638659         |
|       | 923e-08                 |                        |       | 5724                       | 1e-05                     |
| 7     | 6.885981774730          | 0.0                    | 57    | 0.000442083925008          | 0.000174236760358         |
|       | 923e-38                 |                        |       | 7738                       | 32614                     |
| 8     | 3.319027896964          | 0.0                    | 58    | 9.997850611398462          | 0.000387504318496         |
| Ü     | 144e-08                 | 0.0                    | 30    | e-06                       | 21236                     |
| 9     | 0.000146088554          | 0.0                    | 59    | 4.398263627081178          | 2.378181918061273         |
|       | 17463928                |                        |       | e-06                       | e-08                      |
| 10    | 1.762853457876          | 1.3902207612991        | 60    | 9.690074512036517          | 8.186914055841044         |
|       | 19e-06                  | 333                    |       | e-05                       | e-05                      |
| 11    | 2.613257129269          | 6.4450116354919        | 61    | 4.909489143756218          | 2.624346416268963         |
|       | 1864e-05                | 37e-09                 |       | e-05                       | 4e-05                     |
| 12    | 6.386033055605          | 0.0001176200748        | 62    | 0.000347134540788          | 0.000762202951591         |
|       | 367e-05                 | 886913                 |       | 8293                       | 4619                      |
| 13    | 0.000333920790          | 0.3596891164779        | 63    | 0.001281655626371          | 0.000492788094561         |
|       | 58103263                | 663                    |       | 5029                       | 547                       |
| 14    | 0.001327986363          | 0.2481156885623        | 64    | 0.003026893828064          | 0.000528644246514         |
|       | 3215427                 | 932                    |       | 2033                       | 8866                      |
| 15    | 0.019973058253          | 0.0400130599737        | 65    | 0.047363437712192          | 3.626726174843497         |
| 16    | 526688                  | 16736                  |       | 535                        | 6e-05                     |
| 16    |                         | 0.4276794195175        | 00    | 1.629531107028015          | 5.95403544139117e-        |
| 17    | 61101                   | 171                    | (7    | e-05                       | 05                        |
| 17    | 0.017477296292          | 0.1900664120912        | 67    | 1.404426029694150          | 3.817094210156746         |
| 18    | 78183<br>0.002021760446 | 552<br>0.0474119521677 | 68    | 2e-06<br>1.039617032461137 | e-12<br>4.421699117962419 |
| 10    | 9507933                 | 49405                  | 00    | 6e-07                      | e-11                      |
| 19    | 0.009358644485          | 0.1418492794036        | 69    | 2.861243956431280          | 2.594969373603817         |
| 1)    | 473633                  | 8652                   | 0)    | 8e-05                      | e-06                      |
| 20    | 0.020261855795          | 0.0028923461213        | 70    | 3.417609832467860          | 8.584412825030086         |
| 20    | 9795                    | 707924                 | 70    | 5e-06                      | e-08                      |
|       | 1 - 1 - 2               | , J, J = 1             |       | 1 2 2 0 0                  | - 00                      |

|    |                | 1               |           | 1                       | 8/17/2023                 |
|----|----------------|-----------------|-----------|-------------------------|---------------------------|
| 21 | 0.023538520559 | 0.0349653102457 | 71        | 0.000131845881696       | 3.396354486540076         |
|    | 66854          | 52335           |           | 79046                   | e-08                      |
| 22 | 0.025270387530 | 0.0219049230217 | 72        | 7.323890258703614       | 1.742265158100053         |
|    | 326843         | 93365           |           | e-06                    | 7e-05                     |
| 23 | 0.007923358120 | 0.1110096946358 | 73        | 0.003940358292311       | 0.001423598267138         |
|    | 024204         | 6807            |           | 43                      | 0043                      |
| 24 | 0.055959206074 | 0.2146822959184 | 74        | 0.000147764396388       | 0.001980350119993         |
|    | 47624          | 6466            |           | 0837                    | 0906                      |
| 25 | 0.025974364951 | 0.0041482583619 | 75        | 0.003828159766271       | 6.568321259692311         |
|    | 252937         | 65418           |           | 7104                    | e-05                      |
| 26 | 0.012430590577 | 0.0073649422265 | 76        | 0.039498951286077       | 0.010636317543685         |
|    | 423573         | 58924           |           | 5                       | 436                       |
| 27 | 0.019361548125 | 0.0092046102508 | 77        | 0.002626393921673       | 0.005469164811074         |
|    | 743866         | 90255           |           | 298                     | 734                       |
| 28 | 0.010745820589 | 0.1221443712711 | 78        | 0.015969334170222       | 0.001841038465499         |
|    | 363575         | 3342            | , 0       | 282                     | 878                       |
| 29 | 0.022217316552 | 0.0450667664408 | 79        | 0.045453798025846       | 0.006780379917472         |
|    | 996635         | 6838            | ,,        | 48                      | 601                       |
| 30 | 0.010732552967 | 0.0183046981692 | 80        | 0.004218677990138       | 0.016124464571475         |
| 30 | 965603         | 31415           | 00        | 531                     | 983                       |
| 31 | 0.037731196731 | 0.0285971108824 | 81        | 0.007464053574949       | 0.006814803462475         |
| 31 | 328964         | 0.02037/1100024 | 01        | 503                     | 538                       |
| 32 | 0.022078871726 | 0.0196036845445 | 82        | 0.016049819067120       | 0.007481928449124         |
| 32 | 989746         | 63293           | 02        | 552                     | 0.007481928449124         |
| 33 | 0.037839341908 | 0.0250635817646 | 83        | 0.006777258589863       | 0.004113648552447         |
| 33 | 693314         | 9803            | 03        | 777                     | 5574                      |
| 34 | 0.018960848450 | 0.0270377397537 | 84        | 0.005471150856465       | 0.000305945053696         |
| 34 | 660706         | 23145           | 04        | 101                     | 6324                      |
| 35 | 0.018887551501 | 0.0212625600397 | 85        | 0.004278677515685       | 0.004491932690143         |
| 33 | 393318         | 58682           | 0.5       | 558                     | 585                       |
| 36 | 0.013619081117 | 0.0092500541359 | 86        | 0.011253374628722       | 0.002120351186022         |
| 30 | 212772         | 18617           | 00        | 668                     | 1624                      |
| 37 | 0.013600916601 | 0.0172690153121 | 87        | 0.006726287771016       | 0.011302080005407         |
| 37 | 717472         | 94824           | 07        | 359                     | 333                       |
| 38 | 0.013729634694 | 0.0126755535602 | 88        | 0.003075928660109       | 0.006646629422903         |
| 30 | 755077         | 56958           | 00        | 639                     | 0.000040029422903         |
| 39 | 0.013807655312 | 0.0019850856624 | 89        |                         |                           |
| 39 | 120914         | 543667          | 07        | 0.030716111883521<br>08 | 0.001207215827889<br>7405 |
| 40 | 0.010182742960 | 0.0136740412563 | 90        | 0.003150765784084       | 0.006561307702213         |
| 40 | 751057         |                 | 90        | 797                     | 526                       |
| 41 | 0.007732328958 | 08556           | 91        | 0.017119912430644       | 0.009423914365470         |
| 41 |                |                 | 91        |                         |                           |
|    | 809376         | 40595           |           | 035                     | 41                        |
| 42 | 0.006054171826 | 0.0059003615751 | 92        | 0.003734018886461       | 0.002064297907054         |
| 72 | 690435         | 86253           | 12        | 854                     | 4243                      |
| 43 | 0.006444049999 | 0.0023717170115 | 93        | 0.006089173723012       | 0.001389518962241         |
| 43 | 117851         | 560293          | 73        | 209                     | 7092                      |
| 44 | 0.003491320880 | 0.0245840121060 | 94        | 0.019408116117119       | 0.007762295193970         |
| 44 | 1299334        | 60982           | <b>74</b> | 79                      | 203                       |
| 45 |                |                 | 05        |                         |                           |
| 45 | 0.005997875705 | 0.0091615654528 | 95        | 0.002697514835745       | 0.004071711096912         |
|    | 361366         | 14102           |           | 096                     | 6225                      |

| 46 | 0.003262854181 | 0.0026606740429 | 96 | 0.009124013595283 | 0.008223935961723 |
|----|----------------|-----------------|----|-------------------|-------------------|
|    | 230068         | 997444          |    | 031               | 328               |
| 47 | 0.002659046091 | 0.0012421151623 | 97 | 0.021852925419807 | 0.008333140984177 |
|    | 1393166        | 129845          |    | 434               | 59                |
|    |                |                 |    |                   |                   |
| 48 | 0.007605062332 | 0.0023565338924 | 98 | 0.035771340131759 | 0.011003077030181 |
|    | 004309         | 52717           |    | 644               | 885               |
| 49 | 0.005776549689 | 0.0004685789463 | 99 | 0.016789272427558 | 0.003909039776772 |
|    | 471722         | 110268          |    | 9                 | 261               |

# Synthetic Images

I grabbed the first 3 synthetic images every 10<sup>th</sup> epoch right before training:







## Step 3: Conv GAN

I experimented with layer depth and width as well for CNN GAN model's generator and discriminator. I used batch normalization and Leaky RELU. I tried RELU and it did not work well. I tried to do stride 2 and filter size 5 as suggested for all the layers but had a hard time making the generator produce a 28x28x1 output that way, so I changed to filter size 2 with stride 2. None of what I tried made my CNN GAN model as good as the GAN model from step 1 and the below is the best model I had from the experiments:

#### The CNN Generator

```
Model: "sequential"
Layer (type)
                         Output Shape
                                                 Param #
                         (None, 7, 7, 128)
reshape (Reshape)
conv2d_transpose (Conv2DTra (None, 14, 14, 56)
                                                 28728
nspose)
leaky_re_lu (LeakyReLU)
                       (None, 14, 14, 56)
batch_normalization (BatchN (None, 14, 14, 56)
ormalization)
conv2d_transpose_1 (Conv2DT (None, 28, 28, 112)
                                                 25200
ranspose)
leaky_re_lu_1 (LeakyReLU) (None, 28, 28, 112)
batch_normalization_1 (Batc (None, 28, 28, 112)
                                                 448
hNormalization)
conv2d (Conv2D)
                         (None, 28, 28, 1)
                                                 113
______
Total params: 54,713
Trainable params: 54,377
Non-trainable params: 336
```

#### The CNN Discriminator

```
cnn_disc_model = models.Sequential()
cnn_disc_model.add(tf.keras.Input(shape=(28, 28, 1)))
cnn_disc_model.add(layers.Conv2D(32, 5, strides=2))
cnn_disc_model.add(layers.LeakyReLU())
cnn_disc_model.add(layers.BatchNormalization())
cnn_disc_model.add(layers.Conv2D(64, 5, strides=2))
cnn_disc_model.add(layers.LeakyReLU())
cnn_disc_model.add(layers.BatchNormalization())
cnn_disc_model.add(layers.BatchNormalization())
cnn_disc_model.add(layers.Flatten())
cnn_disc_model.add(layers.Platten())
```

```
Model: "sequential_1"
Layer (type)
                            Output Shape
                                                      Param #
conv2d_1 (Conv2D)
                             (None, 12, 12, 32)
                                                      832
 leaky_re_lu_2 (LeakyReLU) (None, 12, 12, 32)
                                                      0
 batch_normalization_2 (Batc (None, 12, 12, 32)
                                                      128
 hNormalization)
 conv2d_2 (Conv2D)
                            (None, 4, 4, 64)
                                                      51264
leaky_re_lu_3 (LeakyReLU) (None, 4, 4, 64)
batch_normalization_3 (Batc (None, 4, 4, 64)
                                                      256
hNormalization)
 flatten (Flatten)
                            (None, 1024)
dense (Dense)
                            (None, 1)
                                                      1025
Total params: 53,505
Trainable params: 53,313
Non-trainable params: 192
```

## The CNN GAN Model

```
# Full GAN
cnn_disc_model.trainable = False
cnn_GAN_model = models.Sequential([tf.keras.layers.Input(
shape=(6272,)), cnn_gen_model, cnn_disc_model])
cnn_GAN_model.build(input_shape=(6272,))
```

```
Model: "sequential_2"

Layer (type) Output Shape Param #

sequential (Sequential) (None, 28, 28, 1) 54713

sequential_1 (Sequential) (None, 1) 53505

Total params: 108,218
Trainable params: 54,377
Non-trainable params: 53,841
```

I trained my model for 100 epochs with batch size 100. Optimizer chosen was adam and the loss measured was binary cross-entropy.

## **CNN Training Loss Per Epoch**

| Epoc | Training Loss     | Test Loss         | Epoc | Training Loss     | Test Loss         |
|------|-------------------|-------------------|------|-------------------|-------------------|
| h    |                   |                   | h    |                   |                   |
| 0    | 0.000179104710696 | 1.261164700534452 | 50   | 0.000551433069631 | 8.770377159118652 |
|      | 2651              | 4e-34             |      | 4573              |                   |
| 1    | 0.059571202844381 | 0.001585480873472 | 51   | 0.001434166100807 | 6.432137966156006 |
|      | 33                | 9886              |      | 488               |                   |
| 2    | 0.010034257546067 | 4.519480256703900 | 52   | 4.754784822580404 | 5.066755771636963 |
|      | 238               | 5e-08             |      | 6e-05             |                   |
| 3    | 0.030130553990602 | 0.287908166646957 | 53   | 0.000273331243079 | 6.130360126495361 |
|      | 493               | 4                 |      | 1557              |                   |

| 4  | 0.026109749451279<br>64    | 0.020778097212314<br>606  | 54 | 0.000125286358525<br>04522 | 0.65610671043396          |
|----|----------------------------|---------------------------|----|----------------------------|---------------------------|
| 5  | 0.033010635524988<br>174   | 0.312269061803817<br>75   | 55 | 1.721726675896206<br>9e-06 | 0.012183445505797<br>863  |
| 6  | 0.010449485853314          | 0.462995350360870         | 56 | 4.478170376387425<br>e-05  | 0.007874768227338<br>791  |
| 7  | 0.015244405716657          | 0.851172804832458         | 57 | 0.000884433102328<br>3303  | 0.000537188025191<br>4263 |
| 8  | 0.034755162894725          | 2.988057851791382         | 58 | 4.343221007729880<br>5e-05 | 0.431887894868850         |
| 9  | 0.067370235919952          | 3.638771057128906         | 59 | 6.217388727236539<br>e-05  | 2.226496696472168         |
| 10 | 0.045522958040237          | 4.034547328948975         | 60 | 0.121973477303981<br>78    | 6.655332088470459         |
| 11 | 0.010120378807187<br>08    | 3.177661657333374         | 61 | 0.000660916615743          | 6.745500564575195         |
| 12 | 0.005894658155739<br>307   | 3.714966535568237         | 62 | 0.000759729940909<br>8923  | 6.868861198425293         |
| 13 | 0.010042002424597<br>74    | 2.436047554016113         | 63 | 0.000443881261162<br>45985 | 7.193081855773926         |
| 14 | 0.012006807141005<br>993   | 3.505023241043091         | 64 | 0.000667018059175<br>4615  | 7.340569019317627         |
| 15 | 0.003472782904282<br>2123  | 4.801883697509766         | 65 | 0.000524028495419<br>770   | 7.480850696563721         |
| 16 | 0.003086052834987<br>6404  | 4.894974231719971         | 66 | 0.000492224993649<br>8702  | 7.533853530883789         |
| 17 | 0.007208674680441<br>618   | 3.50071382522583          | 67 | 0.000379555596737<br>1911  | 7.639799118041992         |
| 18 | 0.001297667738981<br>545   | 4.258400440216064<br>5    | 68 | 0.000316346355248<br>2426  | 8.026603698730469         |
| 19 | 0.023751609027385<br>71    | 4.973000049591064<br>5    | 69 | 0.000477556895930<br>32    | 8.075765609741211         |
| 20 | 0.002505040960386<br>3955  | 4.887083530426025         | 70 | 0.000378977885702<br>624   | 8.051383018493652         |
| 21 | 0.000618874037172<br>6453  | 0.692181110382080<br>1    | 71 | 0.000262234505498<br>7818  | 8.595427513122559         |
| 22 | 0.000235329585848<br>37615 | 0.000398622534703<br>4633 | 72 | 0.000386890169465<br>91437 | 8.42041015625             |
| 23 | 0.050775680691003<br>8     | 0.014116782695055<br>008  | 73 | 0.000263639754848<br>55473 | 8.243671417236328         |
| 24 | 7.433368591591716<br>e-05  | 2.227687597274780<br>3    | 74 | 0.000277414015727<br>11766 | 8.171669006347656         |
| 25 | 0.091950148344039<br>92    | 5.100812911987305         | 75 | 0.070282950997352<br>6     | 8.50546646118164          |
| 26 | 0.004182533826678<br>991   | 5.842406749725342         | 76 | 0.000184741627890<br>61666 | 8.433987617492676         |
| 27 | 0.016741693019866<br>943   | 7.258368968963623         | 77 | 0.000211107020732<br>01537 | 8.01400375366211          |
| 28 | 0.003255910240113<br>735   | 7.130593776702881         | 78 | 0.000230424178880<br>63937 | 8.346099853515625         |

|    |                            |                        |    |                            | 0/17/2023                 |
|----|----------------------------|------------------------|----|----------------------------|---------------------------|
| 29 | 0.020350737497210<br>503   | 6.613577365875244      | 79 | 0.000121253688121<br>21451 | 7.620498180389404         |
| 30 | 0.002646276960149<br>4074  | 6.50969123840332       | 80 | 0.000141889016958<br>8849  | 8.030329704284668         |
| 31 | 0.003432809608057<br>1413  | 6.755902290344238      | 81 | 0.000229381534154<br>5269  | 8.174145698547363         |
| 32 | 0.000790996535215<br>5268  | 5.331682205200195      | 82 | 0.000108328480564<br>52349 | 8.840995788574219         |
| 33 | 0.001001332071609<br>795   | 6.130487442016602      | 83 | 0.000180261034984<br>1416  | 6.990046501159668         |
| 34 | 0.002488364931195<br>9743  | 7.010079383850098      | 84 | 6.738227239111438<br>e-05  | 7.423491954803467         |
| 35 | 0.002204769756644<br>9642  | 6.464699268341064<br>5 | 85 | 9.671755105955526<br>e-05  | 7.959722995758057         |
| 36 | 0.000554582162294<br>5368  | 5.107856273651123      | 86 | 0.000201172413653<br>6941  | 8.179006576538086         |
| 37 | 0.006070754025131<br>464   | 7.191289901733398      | 87 | 0.000160366340423<br>93416 | 7.992383003234863         |
| 38 | 0.000496343942359<br>0899  | 4.945166110992432      | 88 | 0.000173440916114<br>48675 | 7.885098934173584         |
| 39 | 0.000711855362169<br>4446  | 6.25137186050415       | 89 | 0.000111052839201<br>87503 | 7.610461235046387         |
| 40 | 0.000559840176720<br>1722  | 6.020808696746826      | 90 | 0.002758792368695<br>14    | 8.571656227111816         |
| 41 | 0.013507477939128<br>876   | 6.355642318725586      | 91 | 7.348756480496377<br>e-05  | 7.771444320678711         |
| 42 | 0.000243955568294<br>04086 | 5.49357795715332       | 92 | 0.000448240258265<br>2867  | 8.002350807189941         |
| 43 | 0.001742971246130<br>7645  | 7.322947502136230<br>5 | 93 | 8.444989362033084<br>e-05  | 8.586740493774414         |
| 44 | 0.000155460395035<br>33393 | 4.242682933807373      | 94 | 0.000359398167347<br>5355  | 0.017591811716556<br>55   |
| 45 | 8.874354534782469<br>e-05  | 5.051324367523193      | 95 | 2.769125206913969<br>4e-11 | 7.074774657667149<br>e-06 |
| 46 | 0.000597742444369<br>942   | 6.180895328521728<br>5 | 96 | 2.105611883962410<br>5e-06 | 0.0                       |
| 47 | 0.000558296684175<br>7298  | 6.804682731628418      | 97 | 0.063610047101974<br>49    | 1.995489927811289<br>e-12 |
| 48 | 0.000435449997894<br>4659  | 7.979450702667236      | 98 | 0.009731325320899<br>487   | 8.20274042179122e<br>-20  |
| 49 | 0.001179277198389<br>1726  | 8.789504051208496      | 99 | 0.000804716895800<br>0839  | 2.173821449279785         |



I plotted the loss to see what was happening, and it seems that my generator was not learning properly. I would have spent more time figuring out how to fix the issue, but I was short on time. There does seem to be a jump in loss for the discriminator (blue) when the loss for the CNN GAN model (orange) deeps down to its level, so I think there may be still competition between the two, but the discriminator seems to be just way better than the generator. The changes in the images below suggest that the generator is learning something but not quite what we wanted it to learn.

# **CNN Synthetic Images**









## **Conclusion**

The generator of the GAN model has learned that fashion items are lighter color and in the center area of the 28x28 square, but it still produced outputs with a lot of noise. I suppose the last epoch synthetic images pulled can be though of as a shirt or sweater with a lot of noise. Generally, the generator seems to improve little by little with each epoch. The loss values fluctuate for the discriminator and GAN, which shows that the generator and the discriminator were in competition. I am not sure why I have GAN loss of 0 for epochs 1-9 for GAN in the beginning. It could be that the discriminator was really bad at spotting fake images and thought everything was real. The GAN model worked as expected. The CNN GAN model though, did not work as I expected and I think I etiher have architectural issues with the generator, or an overly good discriminator in comparison to the generator, or some kind of training issues with the generator. The generator was learning something, as it was producing different looking images per epoch, but it seems to be missing the point that the image is supposed to have a lighter colored object in the middle and the edges should be black.

#### **References:**

https://keras.io/guides/writing\_a\_training\_loop\_from\_scratch/ https://machinelearningmastery.com/practical-guide-to-gan-failure-modes/