2/2

2/2

2/2

2/2

2/2

2/2

-1/2

Q.7 Un langage quelconque

n'est pas nécessairement dénombrable

Baudoin Cédric Note: 17/20 (score total : 17/20)

+87/1/33+

QCM T	ΓHLR 2
Nom et prénom, lisibles :	Identifiant (de haut en bas) :
BAUDOIN Cédaic	
	■0 □1 □2 □3 □4 □5 □6 □7 □8 □9
rs réponses justes. Toutes les autres n'en ont qu'i restrictive (par exemple s'il est demandé si 0 es	
-	 ☑ est toujours inclus (⊆) dans un langage rationnel ☐ peut n'être inclus dans aucun langage dénoté
	tionnel peut n'être inclus dans aucun langage dénoté par une expression rationnelle
$\equiv f \cdot e$. \square vrai \blacksquare faux	tionnel peut n'être inclus dans aucun langage dénoté par une expression rationnelle peut avoir une intersection non vide avec son
$f \equiv f \cdot e$. $\ \ \ \ \ \ \ \ \ \ \ \ \ $	tionnel peut n'être inclus dans aucun langage dénoté par une expression rationnelle
$f \equiv f \cdot e$. $\hfill \qquad$ vrai $\hfill \qquad$ faux $\hfill \qquad$ Pour toute expression rationnelle e , on a $e+$	tionnel peut n'être inclus dans aucun langage dénoté par une expression rationnelle peut avoir une intersection non vide avec son complémentaire
$f \equiv f \cdot e$. vrai faux Pour toute expression rationnelle e , on a $e + e \equiv e$. faux vrai Pour toutes expressions rationnelles e , f , on a	tionnel peut n'être inclus dans aucun langage dénoté par une expression rationnelle peut avoir une intersection non vide avec son complémentaire Q.8 Soit Σ un alphabet. Pour tout $A, L_1, L_2 \subseteq \Sigma^*$,
$f \equiv f \cdot e$. vrai faux Pour toute expression rationnelle e , on a $e + e \equiv e$. faux vrai Pour toutes expressions rationnelles e , f , on a	tionnel peut n'être inclus dans aucun langage dénoté par une expression rationnelle peut avoir une intersection non vide avec son complémentaire Q.8 Soit Σ un alphabet. Pour tout $A, L_1, L_2 \subseteq \Sigma^*$, on a $A \cdot L_1 = A \cdot L_2 \Longrightarrow L_1 = L_2$.
$f \equiv f \cdot e$. \Box vrai \blacksquare faux B Pour toute expression rationnelle e , on a $e + e \equiv e$. \Box faux \blacksquare vrai Pour toutes expressions rationnelles e , f , on a $e + f$ $e \equiv e$. \Box vrai \Box faux A quoi est équivalent $e \neq e$?	tionnel □ peut n'être inclus dans aucun langage dénoté par une expression rationnelle □ peut avoir une intersection non vide avec son complémentaire Q.8 Soit Σ un alphabet. Pour tout A, L ₁ , L ₂ ⊆ Σ*, on a A·L ₁ = A·L ₂ ⇒ L ₁ = L ₂ . □ faux □ vrai Q.9 L'expression Perl '([-+]*[0-9A-F]+[-
$f \equiv f \cdot e$. \Box vrai \blacksquare faux B Pour toute expression rationnelle e , on a $e + e \equiv e$. \Box faux \blacksquare vrai Pour toutes expressions rationnelles e, f , on a $e + f$ $e \equiv e$. \Box vrai \Box faux	tionnel peut n'être inclus dans aucun langage dénoté par une expression rationnelle peut avoir une intersection non vide avec son complémentaire Q.8 Soit Σ un alphabet. Pour tout $A, L_1, L_2 \subseteq \Sigma^*$, on a $A \cdot L_1 = A \cdot L_2 \Longrightarrow L_1 = L_2$. faux vrai Q.9 L'expression Perl '([-+]*[0-9A-F]+[-+/*])*[-+]*[0-9A-F]+' n'engendre pas: \[\begin{align*} '-+-1+-+-2' 'DEADBEEF' \\ \\ \end{align*} '0+1+2+3+4+5+7+8+9' \end{align*}
Fig. $f = f \cdot e$. Vrai faux Pour toute expression rationnelle e , on a $e + e \neq e$. If faux vrai Pour toutes expressions rationnelles e , f , on a $e + f$ is $e \neq e$. Vrai faux A quoi est équivalent $e \neq f$?	tionnel peut n'être inclus dans aucun langage dénoté par une expression rationnelle peut avoir une intersection non vide avec son complémentaire Q.8 Soit Σ un alphabet. Pour tout $A, L_1, L_2 \subseteq \Sigma^*$, on a $A \cdot L_1 = A \cdot L_2 \Longrightarrow L_1 = L_2$. faux vrai Q.9 L'expression Perl '([-+]*[0-9A-F]+[-+/*])*[-+]*[0-9A-F]+' n'engendre pas: \[\begin{align*} '-+-1+-+-2' \text{DEADBEEF'} \end{align*}

Fin de l'épreuve.

☐ Aucune de ces réponses n'est correcte.