endomorphism

Isographism Isographism

- "nice" map φ (group homomorphism) between elliptic curves $E \to K E$
- given by rational functions: a point $(x,y) \in E$ is mapped to $(f_1(x,y)/f_2(x,y), g_1(x,y)/g_2(x,y))$
- size of $\ker \varphi$ is same as degree of φ !

toy example

$$E: y^2 = x^3 + x$$
 φ $E: y^2 = x^3 + x$

$$(x,y) \mapsto \left(\frac{x^4 - 2x^2 + 1}{4(x^3 + x)} : \frac{x^6y + 5x^4y - 5x^2y - y}{8(x^6 + 2x^4 + x^2)}\right)$$
 over \mathbb{F}_{11}

Can check

- this is a group homomorphism: $\varphi(\mathcal{O}) = \mathcal{O}$ and $\varphi(P+Q) = \varphi(P) + \varphi(Q)$
- looks difficult... but actually this just the map [2] : $P \mapsto P + P$
- so [2] has kernel \mathcal{O} , (0,0), (8+7i,0), (3+4i,0), degree [2] is $4=2^2$

endomorphism

Isographism Isographism

- "nice" map φ (group homomorphism) between elliptic curves $E \to K E$
- given by rational functions: a point $(x,y) \in E$ is mapped to $(f_1(x,y)/f_2(x,y), g_1(x,y)/g_2(x,y))$
- size of $\ker \varphi$ is same as degree of φ !

toy example

$$E: y^2 = x^3 + x$$
 φ $E: y^2 = x^3 + x$

$$(x,y) \mapsto \left(\frac{x^4 - 2x^2 + 1}{4(x^3 + x)} : \frac{x^6y + 5x^4y - 5x^2y - y}{8(x^6 + 2x^4 + x^2)}\right)$$
 over \mathbb{F}_{11}

Can check

- this is a group homomorphism: $\varphi(\mathcal{O}) = \mathcal{O}$ and $\varphi(P+Q) = \varphi(P) + \varphi(Q)$
- looks difficult... but actually this just the map [2] : $P \mapsto P + P$
- so [2] has kernel \mathcal{O} , (0,0), (8+7i,0), (3+4i,0), degree [2] is $4=2^2$

second toy example

Frobenius map. $\pi:(x,y)\mapsto (x^q,y^q)$ always an endomorphism for E over \mathbb{F}_q