Analysis of Algorithms

SY Computer

Even 2022-23

Introduction

Algorithm:

An Algorithm is a finite sequence of instructions, each of which has a clear meaning and can be performed with a finite amount of effort in a finite length of time.

^{**}We represent algorithm using a pseudo language that is a combination of the constructs of a programming language together with informal English statements.

Every algorithm must satisfy the following criteria:

- Input: there are zero or more quantities, which are externally supplied;
- Output: at least one quantity is produced
- Definiteness: each instruction must be clear and unambiguous;
- **Finiteness:** if we trace out the instructions of an algorithm, then for all cases the algorithm will terminate after a finite number of steps;
- **Effectiveness:** every instruction must be sufficiently basic that it can in principle be carried out by a person using only pencil and paper. It is not enough that each operation be definite, but it must also be feasible.

Performance Analysis

- The performance of a program is the amount of computer memory and time needed to run a program.
- 1. Time Complexity
- 2. Space Complexity
- How to compare Algorithms?
- 1. Execution time
- 2. Number of statements executed
- 3. Running time Analysis

Time Complexity

The time needed by an algorithm expressed as a function of the size of a problem is called the time complexity of the algorithm.

The time complexity of a program is the amount of computer time it needs to run to completion.

Time Complexity is mainly of 3 Types:

- 1. Best Case
- 2. Worst Case
- 3. Average Case

Space Complexity

- The space complexity of a program is the amount of memory it needs to run to completion. The space need by a program has the following components:
- <u>Instruction space</u>: Instruction space is the space needed to store the compiled version of the program instructions.
- <u>Data space</u>: Data space is the space needed to store all constant and variable values.
- <u>Environment stack space</u>: used to save information needed to resume execution of partially completed functions.
- The space requirement S(P) of any algorithm P may therefore be written as,
 S(P) = c+ S_p(Instance characteristics)

where "c" is a constant.

Complexity of Algorithms

• The complexity of an algorithm M is the function f(n) which gives the running time and/or storage space requirement of the algorithm in terms of the size "n" of the input data.

- Approaches to calculate Time/Space Complexity:
 - 1. Frequency count/Step count Method
 - 2. Asymptotic Notations (Order of)

Frequency count/Step count Method

Rules:

- 1. For comments, declaration count = 0
- return and assignment statement
 count = 1
- 3. Ignore lower order exponents when higher order exponents are present Ex. Complexity of following algo is as follows:

$$f(n) = 6n^3 + 10n^2 + 15n + 3 \implies 6n^3$$

4. Ignore constant multipliers

$$6n^3 \Longrightarrow n^3$$
$$f(n) = O(n^3)$$

Example 1:sum of n values of an array

```
Algorithm sum (int a[], int n

s = 0;
for(i=0; i<n; i++)
{
    s=s + a[i];
}
return s;</pre>
```


Space Complexity			
a[] = n words			
n= 1 word			
s= 1 word			
i= 1 word			
n+3			
Space complexity =			
<mark>O(n)</mark>			

Example 2: Addition of two square Matrices of dimension $n \times n$

Algorithm addMat (int a[][], int b[][]) { int c[][]; for(i=0; i<n; i++) { for(j=0; j<n; j++) { c[i][j] = a[i][j] + b[i][j] } } }</pre>

Example 3: Multiplication of two Matrices of dimension $n \times n$

```
Algorithm matMul (int a[][], int b[][])
{ int c[][];
  for(i=0; i<n; i++) {
     for(j=0; j<n; j++) {
      c[i][j] = 0;
      for(k=0; k<n; k++){
           c[i][j] = a[i][j] * b[i][j]
```

Time Complexity
→ n+1
\rightarrow n×(n+1)
→ n×n
\rightarrow n×n×(n+1)
n×n×n
→ $n+1+n^2+n+n^2$ + $n^3+1+n^3+n^2$
→ $2n^3 + 3n^2 + 2n + 1$
$f(n) = O(n^3)$

Space Complexity $a[][] = n^2$ words $b[][] = n^2 \text{ words}$ $c[[] = n^2 \text{ words}]$ i=1 word j=1 word k=1 word n=1 word \rightarrow 3n² +4 Space complexity = $O(n^2)$

Example: loops

1.

```
for(i=0; i<n; i++) {
    statements;
}</pre>
```

Time Complexity

$$\rightarrow$$
 n+1

 \rightarrow n

$$f(n) = 2n+1$$
$$f(n) = O(n)$$

2.

Time Complexity

$$\rightarrow$$
 n+1

 \rightarrow n

$$f(n) = 2n + 1$$

Example: loops

3.

```
for(i=1; i<n; i=i+2) {
    statements;
}</pre>
```

Time Complexity

$$\rightarrow$$
 n+1

$$\rightarrow$$
 n/2

$$f(n) = 3n/2 + 1$$
$$f(n) = O(n)$$

4.

```
for(i=0; i<n; i++) {
    for(j=0; j<n; j++) {
        statements;
    }
}</pre>
```

Time Complexity

$$\rightarrow$$
 n+1

$$\rightarrow$$
 n(n+1)

$$\rightarrow$$
n×n

$$f(n) = 2n^2 + 2n + 1$$

 $f(n) = O(n^2)$

$$1 + 2 + 3 + 4 + \dots + n = n(n+1)/2$$

$$T(n) = 1 + 2 + 3 + 4 + \dots + n - 1 = \frac{(n-1)(n)}{2} = O(n^2)$$

Time Complexity					
i	j	j statements			
0	0	0			
1	0	1			
	1	1			
2	0				
	1	2			
	2				
3	0				
	1	3			
	2	5			
	3				
		•••			
N	0 to n-1	n			

=1+2+3+4+...+k>n
=
$$k(k+1)/2 > n$$

= $k^2 + k/2 > n$
 $\approx k^2 > n$
 $k = \sqrt{n} = O(n)$

Time Complexity			
i	р	statements	
1	0+1	1	
2	1+2	1	
3	1+2+3	1	
4	1+2+3+4	1	
5	1+2+3+4+5	1	
6	1+2+3+4+5+6	1	
k	1+2+3+4++k	???	

```
6. for(i=1; i<n; i=i*2) {
      statements;
    }
}</pre>
```

```
i>=n
i=2^k
2^k>=n
2^k=n
k=\log_2 n=O(\log_2 n)
```

Time Complexity		
i	statements	
1*20	1	
1*2	1	
1*2*2	1	
1*2*2*2	1	
2 ^k	1	

```
7. for(i=n; i>=1; i=i/2) {
     statements;
    }
}
```

$$i<1$$

$$n/2^{k} = 1$$

$$n=2^{k}$$

$$k = log_{2}n = O(log_{2}n)$$

Time Complexity		
i		
n		
n/2		
n/2 ²		
n/2 ³		
n/2 ⁴		
n/2 ^k		

8.
 for(i=0; i*i<n; i++) {
 statements;
 }
}</pre>

$$k * k >= n$$

$$k^{2} = n$$

$$k = \sqrt{n}$$

$$k = \sqrt{n} = \mathbf{O}(\sqrt{n})$$

Time Complexity		
i	statements	
1	1	
2	2 ²	
3	3 ²	
4	4 ²	
5	5 ²	
k	k ²	

for(i=1; i<n; i=i*2) { p++; } $for(j=1;j<p;j=j*2) \{ \\ statements; \}$ $T(n) = log_2 p$ $T(n) = log_2 log_2 n$

Example: While loops (By tracing)

Example: While loops (By tracing)

```
11. a=1;
    while(a<b){
    Statements;
    a=a*2;
}</pre>
```

 $k = log_2b = O(log_2b)$

$$a>=b$$

$$a=2^k$$

$$2^k \ge b$$

$$2^k=b$$

Time Complexity		
а		
1*2 = 2		
$2*2 = 2^2$		
$2^{2*}2 = 2^3$		
$2^{3*}2 = 2^4$		
n/2 ⁴		
2 ^k		

Example: While loops (By tracing)

12.

```
i=1;
k=1;
while(k<n){
Statements;
k=k+1;
i++;
}</pre>
```

```
=1+2+3+4+...+m>n

= m(m+1)/2 > n

= m^2 + m/2 > n

\cong m^2 > n

m = \sqrt{n} = O(n)
```

Time Complexity			
i	k	statements	
1	1	1	
2	1+1	1	
3	2+2	1	
4	2+2+3	1	
5	1+2+3+4	1	
		1	
	2+2+3+4++m	1	

Rate of Growth

Numerical Comparison of Different Algorithms

n	log2 n	n*log2n	n ²	_n 3	2 ⁿ
1	0	0	1	1	2
2	1	2	4	8	4
4	2	8	16	64	16
8	3	24	64	512	256
16	4	64	256	4096	65,536
32	5	160	1024	32,768	4,294,967,296
64	6	384	4096	2,62,144	Note 1
128	7	896	16,384	2,097,152	Note 2
256	8	2048	65,536	1,677,216	???????

Asymptotic Notations:

- Asymptotic notations have been developed for analysis of algorithms.
- By the word asymptotic means "for large values of n"
- The following notations are commonly use notations in performance analysis and used to characterize the complexity of an algorithm:
 - 1. Big-OH(O)
 - 2. Big-OMEGA(Ω),
 - 3. Big-THETA (Θ)

Big O notation:

- This notation gives the tight upper bound of the given function
- Represented as:

$$f(n) = O(g(n))$$

that means, at larger values of n, upper bound of f(n) is g(n).

Definition:

Big O notation defined as $O(g(n)) = \{f(n): \text{ there exist positive constants c and no such that } \}$

$$0 \le f(n) \le c.g(n)$$
 for all $n > n_0$

Big Omega (Ω) notation:

- This notation gives the tight lower bound of the given function
- Represented as:

$$f(n) = \Omega(g(n))$$

that means, at larger values of n, lower bound of f(n) is g(n).

Definition:

Big Ω notation defined as $\Omega(g(n)) = \{f(n): \text{ there exist positive constants c and no such that } \}$

$$0 \le c. g(n) \le f(n) \text{ for all } n > n_0$$

Big Theta (θ) Notation:

- Average running time of an algorithm is always between lower bound and upper Bound
- Represented as:

$$f(n) = \theta(g(n))$$

that means, at larger values of n, lower bound of f(n) is g(n).

Definition:

Big θ notation defined as $\theta(g(n)) = \{f(n): \text{ there exist positive constants } c_1 \text{ and } c_2 \text{ and } n_0 \text{ such that } 0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \text{ for all } n > n_0 \}$

Properties of Asymptotic Notations:

1. Transitivity:

$$f(n) = O(g(n)) \& g(n) = O(h(n))$$

 $f(n) = O(h(n))$

Valid for θ and Ω as well.

2. Reflexivity:

$$f(n) = O(f(n))$$

Valid for θ and Ω as well.

3. Symmetry:

$$f(n) = \theta(g(n))$$
, then $g(n) = \theta(f(n))$

Valid for θ only.

4. Transpose Symmetry:

$$f(n) = O(g(n))$$
 then $g(n) = \Omega(f(n))$

Valid for O and Ω only.

Examples:

1.
$$f(n) = n \& g(n) = n^2 \& h(n) = n^3$$

 $n = O(n^2)$; $n2 = O(n^3)$,
then $n = O(n^3)$

2. $f(n) = n^3 = O(n^3) = \theta(n^3) = \Omega(n^3)$

3.
$$f(n) = n^2 \& g(n) = n^2$$

then, $f(n) = \theta(n^2)$

4. $f(n) = n \& g(n) = n^2$ then $n = O(n^2) \& n^2 = \Omega(n)$

Properties of Asymptotic Notations:

Observations:

- 1. If f(n) = O(g(n)) then a * f(n) is O(g(n))
- 2. If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$, then $f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))$
- 3. If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$, then $f_1(n) f_2(n) = O(g_1(n)) g_2(n)$
- 4. If f(n) = O(g(n)) and $f(n) = \Omega(g(n))$, then $f(n) = \theta(g(n))$

Recursion:

- Recursion is an ability of an algorithm to repeatedly call itself until a certain condition is met.
- Such condition is called the base condition.

- The algorithm which calls itself is called a recursive algorithm.
- The recursive algorithms must satisfy the following two conditions:
 - 1. It must have the base case: The value of which algorithm does not call itself and can be evaluated without recursion.
 - 2. Each recursive call must be to a case that eventually leads toward a base case.

Recursion:

Recurrence Relation:

- An algorithm is said to be recursive if it can be <u>defined</u> in terms of itself.
- The running time of recursive algorithm is expressed by means of <u>recurrence</u> relations.
- A recurrence relation is an equation of inequality that describes a function in terms of its value on smaller inputs.
- It is generally denoted by T(n) where n is the size of the input data of the problem.
- The recurrence relation satisfies both the conditions of recursion, that is, it has both the base case as well as the recursive case.
 - The portion of the recurrence relation that $\underline{\text{does not contain }T}$ is called the base case of the recurrence relation and
 - The portion of the recurrence relation that <u>contains T</u> is called the recursive case of the recurrence relation.

$$T(n) = \begin{cases} d & ; n = 1 \\ T(n-1) + c & ; n > 1 \end{cases}$$

Recursion:

Recurrence Relation:

There are various methods to solve recurrence:

- 1. Substitution Method
- 2. Recurrence Tree
- 3. Master Method/ Master's Theorem

Recurrence Relation for Decreasing Function: (Recursion Tree)

```
Void Test(int n) \longrightarrow T(n)
 If (n > 0)
  Test(n - 1); \longrightarrow T(n-1)
           T(n) = T(n-1) + 1
```

$$T(n) = \begin{cases} 1 & ; n = 0 \\ T(n-1) + 1 & ; n > 0 \end{cases}$$

Recurrence Relation for Decreasing Function: (substitution Method)

```
T(n) = T(n-1) + 1 \dots Eq 1
If T(n) = T(n-1) + 1, Then T(n-1) = T(n-2) + 1
And T(n-2) = T(n-3) + 1
Substituting T(n-1) in Eq 1
T(n) = [T(n-2) + 1] + 1
T(n) = T(n-2) + 2
Substituting T(n-2) in above eq
T(n) = [T(n-3) + 1] + 2
T(n) = T(n-3) + 3
T(n) = T(n-k) + k (continue for k times)
```

$$T(n) = \begin{cases} 1 & ; n = 0 \\ T(n-1) + 1 & ; n > 0 \end{cases}$$

$$T(n) = T(n-k) + k$$

Assume $n-k = 0$ (base condition)

Therefore $k = n$

Substituting k with n in above eq

 $T(n) = T(n-n) + n$
 $T(n) = T(0) + n$
 $T(n) = 1 + n = O(n)$

Recurrence Relation for Decreasing Function: (Recursion Tree)

```
T(n)
Void Test(int n) ——
  If (n > 0)
   for(i=0; i<n; i++) { \longrightarrow n+1
     printf ("%d",n); \longrightarrow n
  Test(n-1); \longrightarrow
                            T(n-1)
T(n) = T(n-1) + 2n + 2
T(n) = T(n-1) + n
```

$$T(n) = \begin{cases} 1 & ; n = 0 \\ T(n-1) + n & ; n > 0 \end{cases}$$

Recurrence Relation for Decreasing Function: (substitution Method)

$$T(n) = T(n-1) + n \dots Eq 1$$

$$If T(n) = T(n-1) + n, Then T(n-1) = T(n-2) + n-1$$

$$And T(n-2) = T(n-3) + n-2$$

$$Substituting T(n-1) in Eq 1$$

$$T(n) = [T (n-2) + n-1] + n$$

$$T(n) = T(n-2) + (n-1) + n$$

$$Substituting T(n-2) in above eq$$

$$T(n) = [T (n-3) + n-2] + (n-1) + n$$

$$T(n) = T(n-3) + (n-2) + (n-1) + n$$

$$T(n) = T(n-k) + (n-(k-1)) + (n-(k-2)) + \dots + (n-1) + n$$

$$(continue for k times)$$

$$T(n) = \begin{cases} 1 & ; n = 0 \\ T(n-1) + n & ; n > 0 \end{cases}$$

$$T(n) = T(n-k) + (n-(k-1)) + (n-(k-2)) +(n-1) + n$$

Assume $n-k = 0$ (base condition)

Therefore $k = n$

Substituting k with n in above eq

 $T(n) = T(n-n) + (n-(n-1)) + (n-(n-2)) +(n-1) + n$
 $T(n) = T(n-n) + (n-n+1) + (n-n+2) +(n-1) + n$
 $T(n) = T(0) + 1 + 2 + 3(n-1) + n$
 $T(n) = 0 + 1 + n(n+1)/2$

Recurrence Relation for Decreasing Function: (Recursion Tree)

```
T(n)
Void Test(int n) -----
  If(n > 0)
   for(i=0; i<n; i=i*2) {
     printf ("%d",i); ----
                                log n
  Test(n-1); \longrightarrow
                               T(n-1)
T(n) = T(n-1) + \log n
```

$$T(n) = \begin{cases} 1 & ; n = 0 \\ T(n-1) + \log n & ; n > 0 \end{cases}$$

Recurrence Relation for Decreasing Function: (substitution Method)

```
T(n) = T(n-1) + log n ..... Eq 1
If T(n) = T(n-1) + \log n, Then T(n-1) = T(n-2) + \log(n-1)
And T(n-2) = T(n-3) + log(n-2)
Substituting T(n-1) in Eq 1
T(n) = [T (n-2) + log(n-1)] + log n
T(n) = T(n-2) + log(n-1) + log n
Substituting T(n-2) in above eq
T(n) = [T(n-3) + log(n-2)] + log(n-1) + log n
T(n) = T(n-3) + log(n-2) + log(n-1) + log n
T(n) = T(n-k) + log(n-(k-1)) + log(n-(k-2))
+....log(n-1)+log n (continue for k times)
```

$$T(n) = \begin{cases} 1 & ; n = 0 \\ T(n-1) + logn & ; n > 0 \end{cases}$$

```
T(n) = T(n-k) + log(n-(k-1)) + log(n-(k-2))
+....log(n-1)+log n
Assume n-k = 0 (base condition)
Therefore k = n
Substituting k with n in above eq
T(n) = T(n-n) + log(n-(n-1)) + log(n-(n-2))
+....log (n-1)+log n
T(n) = T(n-n) + log(n-n+1) + log(n-n+2)
+....log(n-1)+log n
T(n) = T(0) + log[1*2*3...(n-1)*n]
T(n) = 1 + \log n! (order of n! = O(n^n))
T(n) = O(nlogn)
```

Recurrence Relation for Decreasing Function(Observations for no coefficients)

Recurrence Relation for Decreasing Function with coefficient:(Recursion Tree)

```
T(n)
Void Test(int n) ———
  If(n > 0)
      printf ("%d",n); \longrightarrow 1
      Test(n – 1); \longrightarrow T(n-1)
      Test(n – 1); \longrightarrow T(n-1)
T(n) = 2T(n-1) + 1
```

$$T(n) = \begin{cases} 1 & ; n = 0 \\ 2T(n-1) + 1 & ; n > 0 \end{cases}$$

$$=1+2+2^{2}+2^{3}+....+2^{k}$$

$$=2^{k+1}-1$$

$$= 0(2^{n})$$

Recurrence Relation for Decreasing Function with coefficient:(substitution method)

$$T(n) = 2T(n-1) + 1 \dots Eq 1$$

$$T(n) = 2[T(n-2) + 1] + 1 \quad (T(n-1) \text{ substitution})$$

$$T(n) = 2^2T(n-2) + 2 + 1$$

$$T(n) = 2^2[2T(n-3) + 1] + 2 + 1 \quad (T(n-1) \text{ substitution})$$

$$T(n) = 2^3T(n-3) + 2^2 + 2 + 1$$

$$T(n) = 2^kT(n-k) + 2^{k-1} + 2^{k-2} + \dots + 2^2 + 2 + 1$$

Assume n-k = 0 (base condition)

Therefore k = n

Substituting k with n in above eq

$$T(n) = 2^{n}T(0) + 1 + 2 + \dots 2^{k} - 1$$

 $T(n) = 2^{n} + 1 + 2^{k} - 1$

$$T(n) = 2^n + 2^n - 1 = 2^{n+1} - 1 = O(2^n)$$

$$T(n) = \begin{cases} 1 & ; n = 0 \\ 2T(n-1) + 1 & ; n > 0 \end{cases}$$

Recurrence Relation for Decreasing Function(Observations for with coefficients)

•
$$T(n)=T(n-1)+1....$$
 $O(n)$

•
$$T(n)=T(n-1)+n....$$
 $O(n^2)$

•
$$T(n)=T(n-1)+\log n....$$
 O(nlogn)

•
$$T(n)=2T(n-1)+1....$$
 $O(2^n)$

•
$$T(n)=3T(n-1)+1....$$
 $O(3^n).$

•
$$T(n)=2T(n-1)+n....$$
 $O(n2^n)$

•
$$T(n)=2T(n-2)+1....$$
 $O(2^{n/2})$

Master's Theorem (for Decreasing Function)

Let T(n) be a function defined on positive n

$$T(n) = \begin{cases} c & \text{if } n \leq 1 \\ aT(n-b) + f(n) & \text{if } n > 1 \end{cases}$$

for some constants c, a>0, b>0, and $f\left(n\right)=O\left(n^k\right)$,where k>=0

$$T(n) = O(n^k)$$
 if $a < 1$

$$= O(n^{k+1})$$
 if $a = 1$

$$= O\left(n^k \cdot a^{\frac{n}{b}}\right)$$
 if $a > 1$

Recurrence Relation for Dividing Function: (Recursion Tree)

$$T(n) = \begin{cases} 1 & ; n = 1 \\ T(n/2) + 1 & ; n > 1 \end{cases}$$

Recurrence Relation for Dividing Function: (substitution Method)

```
T(n) = 2T(n/2) + 1 \dots Eq 1
If T(n) = 2T(n/2) + 1, Then T(n/2) = T(n/2^2) + 1
And T(n/2^2) = T(n/2^3) + 1
Substituting T(n/2) in Eq 1
T(n) = [T(n/2^2) + 1] + 1
T(n) = T(n/2^2) + 2
Substituting T(n/2^2) in above eq
T(n) = T(n/2^3) + 3
T(n) = T(n/2^k) + k
```

$$T(n) = \begin{cases} 1 & ; n = 1 \\ T(n/2) + 1 & ; n > 1 \end{cases}$$

```
T(n) = T(n/2^k) + k
Assume n/2^k = 1(base condition)

Therefore n = 2^k, k = \log n

T(n) = T(1) + \log n
T(n) = T(1) + \log n
O(\log n)
```

Recurrence Relation for Dividing Function: (Recursion Tree)

$$T(n) = \begin{cases} 1 & ; n = 1 \\ T(n/2) + n & ; n > 1 \end{cases}$$

Recurrence Relation for Dividing Function: (Recursion Tree)

$$T(n) = \begin{cases} 1 & ; n = 1 \\ 2T(n/2) + n & ; n > 1 \end{cases}$$

Master's Theorem (for Dividing Function)

1. Dividing functions:

Master's method (for Dividing Functions) provides general method for solving recurrences of the

$$T(n) = \begin{cases} aT\left(\frac{n}{b}\right) + f(n) & n > 1 \\ \theta(1) & n = 1 \end{cases}$$

```
Where, f\left(n\right) = \Theta\left(n^k \log^p n\right) and a \geq 1 \quad ; \quad b > 1 \quad ; \quad k \geq 0 and p is a real number
```

1. Dividing functions:

Master's method (for Dividing Functions) provides general method for solving recurrences of the

$$T(n) = \begin{cases} aT\left(\frac{n}{b}\right) + f(n) & n > 1 \\ \theta(1) & n = 1 \end{cases}$$

Case 1: If
$$a>b^k$$
 or $\log_b a>k$ then, $T(n)=\Theta\left(n^{\log_b a}\right)$

1. Dividing functions:

Master's method (for Dividing Functions) provides general method for solving recurrences of the

Case 2: If
$$a=b^k$$
 or $\log_b a=k$ then,
$$A.] \ \ \text{If} \quad p>-1, \qquad \text{then}$$

$$T\left(n\right)=\Theta\left(n^{\log_b a}\log^{p+1}n\right) \quad \Rightarrow \theta\left(n^k\log^{p+1}n\right)$$

1. Dividing functions:

Master's method (for Dividing Functions) provides general method for solving recurrences of the

Case 2: If
$$a=b^k$$
 or $\log_b a=k$ then,
$$B.]. \quad \text{If} \quad p=-1, \qquad \qquad \text{then}$$

$$T\left(n\right)=\Theta\left(n^{\log_b a}\log\log n\right) \qquad \Rightarrow \theta\left(n^k\log\log n\right)$$

1. Dividing functions:

Master's method (for Dividing Functions) provides general method for solving recurrences of the

```
a=b^k or \log_b a=k
```

1. Dividing functions:

Master's method (for Dividing Functions) provides general method for solving recurrences of the form:

Case 3: If
$$a < b^k$$
 or $\log_b a < k$

A.] If $p \geq 0$ then $T\left(n\right) = \Theta\left(n^{\log_b a} \log^p n\right) \quad \Rightarrow \theta\left(n^k \log^p n\right)$ B.] If p < 0 then $T\left(n\right) = \Theta\left(n^{\log_b a}\right) \quad \Rightarrow \theta\left(n^k\right)$

Master's Theorem:

 $T(n) = 2T(\sqrt{n}) + \log n$

Exercise:

1.
$$T(n) = 2T\left(\frac{n}{2}\right) + n^3 \log n$$

2. $T(n) = 2T\left(\frac{n}{2}\right) + \frac{n^3}{log^2n}$

Recurrence Relation for Root Function: (Recursion Tree)

$$T(n) = \begin{cases} 1 & ; n = 2 \\ T\sqrt{n} + 1 & ; n > 2 \end{cases}$$

