

All-Pairs Shortest Paths (APSP)

Algorithms: Design and Analysis, Part II

The Floyd-Warshall Algorithm

Quiz

Setup: Let A = 3-D array (indexed by i, j, k).

Intent: A[i, j, k] = length of a shortest i-j path with all internalnodes in $\{1, 2, \dots, k\}$ (or $+\infty$ if no such paths)

Question: What is A[i, j, 0] if

(1)
$$i = j$$
 (2) $(i,j) \in E$ (3) $i \neq j$ and $(i,j) \notin E$

(3)
$$i \neq j$$
 and $(i,j) \notin E$

- A) 0, 0, and $+\infty$
- B) 0, c_{ii} , and c_{ii}
- C) 0, c_{ii} , and $+\infty$
- D) $+\infty$, c_{ii} , and $+\infty$

The Floyd-Warshall Algorithm

Let
$$A=3\text{-D}$$
 array (indexed by i,j,k)

Base cases: For all $i,j \in V$:
$$A[i,j,0] = \left\{ \begin{array}{l} 0 \text{ if } i=j \\ c_{ij} \text{ if } (i,j) \in E \\ +\infty \text{ if } i \neq j \text{ and } (i,j) \notin E \end{array} \right\}$$
For $k=1$ to n
For $j=1$ to n

$$A[i,j,k] = \min \left\{ \begin{array}{l} A[i,j,k-1] \\ A[i,k,k-1] + A[k,j,k-1] \end{array} \right. \quad \text{Case 1} \\ A[i,k,k-1] + A[k,j,k-1] \quad \text{Case 2} \right\}$$

Correctness: From optimal substructure + induction, as usual.

Running time: O(1) per subproblem, $O(n^3)$ overall.

Odds and Ends

Question #1: What if input graph G has a negative cycle?

Answer: Will have A[i, i, n] < 0 for at least one $i \in V$ at end of algorithm.

Question #2: How to reconstruct a shortest i-j path?

Answer: In addition to A, have Floyd-Warshall compute $B[i,j] = \max$ label of an internal node on a shortest i-j path for all $i,j \in V$.

[Reset B[i,j] = k if 2nd case of recurrence used to compute A[i,j,k]]

 \Rightarrow Can use the B[i,j]'s to recursively reconstruct shortest paths!