Theory Development

EES 4760/5760

Agent-Based and Individual-Based Computational Modeling

Jonathan Gilligan

Class #21: Monday, November 04 2024

Preliminaries:

Announcements

- Draft Model Code will be due Friday Nov. 15, not Friday Nov. 8
- No office hour today

Theory Development

Models as a Virtual Laboratory

- How to use models to run experiments?
- Strong inference (John Platt)
- Identify traits (individual behaviors) that give rise to multiple macroscopic patterns
 - 1. Identify alternative traits (hypotheses)
 - 2. Implement traits in ABM
 - 3. Test and compare alternatives:
 - How well did model reproduce observed patterns?
 - Falsify traits that did not reproduce patterns
 - 4. Repeat cycle as needed. Revise behavior traits, look for additional patterns, etc.

Pattern-Oriented Modeling Cycle

Example: Trader intelligence

Example: Trader intelligence Continuous Double Auction

- 1. Traders establish buying and selling prices
 - If someone offers a price \geq selling price, trader sells.
 - If someone offers to sell for \leq buying price, trader buys
- 2. Match traders:
 - If traders i and j have $P_{i,\text{buy}} \geq P_{j,\text{sell}}$, then transaction occurs.

Different Models of Agent Intelligence-models

Zero-intelligence agents:

- Agents set random buying and selling prices
- ullet If an agent has $P_{
 m buy}>P_{
 m sell}$, then they will lose money.

Minimal-intelligence agents

- Random buying and selling price with constraint:
 - lacktriangle Each agent sets its $P_{\mathrm{buy}} < P_{\mathrm{sell}}$.
 - Sales can still happen because agents i and j may have
 - $P_{i,\text{buy}} \geq P_{j,\text{sell}}$
 - Even though
 - $P_{i,\text{buy}} < P_{i,\text{sell}}$
 - $P_{j,\text{buy}} < P_{j,\text{sell}}$

Results

- Compare simulated market to transactions from real markets
- Minimal-intelligence agent was better than zero-intelligence
 - Zero-intelligence produced wild price fluctuations
 - Minimal-intelligence reproduced observed pattern of rapid price convergence
 - Minimal-intelligence also reproduced observed effects of price-ceiling.
- But simple models had limits:
 - Observed volatility of lower-end prices was not reproduced by models
 - As experimental markets got more complicated, human traders did worse, but models did *much* worse.

Lessons

Using zero-intelligence as a baseline, the researcher can ask: what is the minimal additional structure or restrictions on agent behavior that are necessary to achieve a certain goal.

Example: Harvesting Common Resource

Example: Harvesting Common Resource

- Experimental subjects move avatars on screen to harvest tokens (like simple video game)
- Players compete to get most tokens
- Tokens grow back at some rate
- Patterns:
 - 1. Number of tokens on screen over time
 - 2. Inequality between players
 - 3. # tokens collected in first four minutes
 - 4. Number of straight-line moves

Theory development

- 1. Näive model: (random) Moves randomly
- 2. Näive model: (greedy) Always goes to nearest token
- 3. Clever model:
 - Prefers nearby tokens
 - Prefers clusters of tokens
 - Prefers tokens straight ahead
 - Avoids tokens close to other players

Results:

- Näive models do not match any of the four patterns.
- Ran clever model 100 times for each of 65,536 different combinations of parameters that characterize preferences.
 - Only 37 combinations of parameters matched all four patterns in data.
 - Patterns 2 and 3 are seen for most parameter values
 - Patterns 1 and 4 seen less frequently
 - Therefore:
 - Patterns 2 and 3 are built into the structure of the game.
 - Patterns 1 and 4 may give insight into human behavior.

Example: Woodhoopoe

Example: Woodhoopoe

Observed Behaviors

- Groups occupy spatial territories
- One alpha of each sex in a territory
- Only alpha pair reproduces
- If alpha dies, oldest subordinate of that sex becomes alpha
- Scouting forays
 - Subordinate adult leaves territory
 - If it finds territory without alpha, it stays, becomes alpha
 - Otherwise, returns home
 - Risk of predation (death) is high on scouting forays
- Alpha pair breeds once a year, in December

Observed Patterns

1. Characteristic group size distribution (adults)

- 2. Average age of birds on scouting forays is younger than average age of all subordinates.
- 3. Scouting forays most common April–October

Modeling Woodhoopoe

- Start simple:
 - One-dimensional world
 - One tick = one month
 - Every tick, bird has 2% chance of dying (0.98 probability to survive)
 - Scouting forays have 20% chance of death (0.80 probability to survive)
 - Adult subordinates go scouting at random (10% probability each tick)
- Does model reproduce patterns?

Developing Alternative Strategies

Alternative Strategies:

- 1. Random: Subordinates go scouting randomly with probability p-scout.
- 2. Always: Subordinates always go scouting
- 3. Never: Subordinates never go scouting
- 4. **Direct:** Subordinates calculate the probability of reproducing within a certain time horizon if they go scouting or if they stay in the next and wait to become alpha. They choose the option that gives the greatest probability of reproducing.
- 5. **Indirect:** Approximate the direct method by scouting randomly, with a probability that depends on the number of subordinate adults older then them:

$$P_{\mathsf{scout}} = 1 - (0.5)^{\mathsf{elder \, subordinates}}$$

- For 0 elders, $P_{\text{scout}} = 0\%$
- For 1 elder, $P_{\text{scout}} = 50\%$
- For 2 elders, $P_{\text{scout}} = 75\%$
- For 3 elders, $P_{\text{scout}} = 87.5\%$
- •