Theoretical computer science

Lecture and tutorial - week 6

February 25, 2021

nnoboria

Agenda

- Pumping lemma: recap
- Pushdown Automaton (Deterministic PDA)
 - Notion
 - formal definition
 - configuration
 - transition
 - acceptance
- Examples

Administrative Information

When: Thursday, 4 March 2021 09:30-~11:30

Where: 108 (here) and possibly another room

+ online for abroad students only

What:

Formal Languages, FSA, Pumping Lemma, PDA (only in part)

Topics for the midterm

- ► Finite State Automata
- ► Finite State Transducers
- Operations on FSA
- Regular Languages
- Pumping Lemma
- Pushdown Automata

Pumping lemma for regular languages

How Pumping lemma is useful?

We can use it to prove that a language is not regular. How?

Proof by contrapositive

$$R \implies P$$

$$\neg P \implies \neg R$$

Pumping lemma: formally

```
\forall L \subseteq \Sigma^* \bullet regular(L) \Longrightarrow (\exists m \in \mathbb{N} \bullet m \ge 1 \land (\forall w \in L \bullet \mid w \mid \ge m \Longrightarrow (\exists x, y, z \in \Sigma^* \bullet w = xyz \land (\mid y \mid \ge 1 \land \mid xy \mid \le m \land (\forall i \ge 0 \bullet xy^i z \in L))))
```

Let's consider language L_1

$$L_1 = \{a^n b^m \mid n \le m\}$$

Is L_1 a regular language?

```
Let's consider language L_1
L_1 = \{a^nb^m \mid n \leq m\}
Is L_1 a regular language?

regular(L_1) \implies \\ (\exists m \in \mathbb{N} \bullet m \geq 1 \land \\ (\forall w \in L_1 \bullet \mid w \mid \geq m \implies \\ (\exists x, y, z \in \Sigma^* \bullet w = xyz \land \mid y \mid \geq 1 \land \mid xy \mid \leq m \land \\ (\forall i > 0 \bullet xy^iz \in L_1))))
```

Let's consider language L_1

$$L_1 = \{a^n b^m \mid n \le m\}$$

Is L_1 a regular language?

$$\neg(\exists m \in \mathbb{N} \bullet m \ge 1 \land \\ (\forall w \in L_1 \bullet \mid w \mid \ge m \implies \\ (\exists x, y, z \in \Sigma^* \bullet w = xyz \land \mid y \mid \ge 1 \land \mid xy \mid \le m \land \\ (\forall i \ge 0 \bullet xy^i z \in L_1)))) \implies \neg regular(L_1)$$

Negation

The negation of a universal quantifier:

 $\neg(\forall x \bullet P(x))$ is logically equivalent to $\exists x \bullet \neg P(x)$

Negation

The negation of a universal quantifier:

$$\neg(\forall x \bullet P(x))$$
 is logically equivalent to $\exists x \bullet \neg P(x)$

The negation of a existential quantifier:

$$\neg(\exists x \bullet P(x))$$
 is logically equivalent to $\forall x \bullet \neg P(x)$

Negation

The negation of a universal quantifier:

$$\neg(\forall x \bullet P(x))$$
 is logically equivalent to $\exists x \bullet \neg P(x)$

The negation of a existential quantifier:

$$\neg(\exists x \bullet P(x))$$
 is logically equivalent to $\forall x \bullet \neg P(x)$

De Morgan's law:

$$\neg (P \land Q)$$
 is logically equivalent to $\neg P \lor \neg Q$
 $\neg (P \lor Q)$ is logically equivalent to $\neg P \land \neg Q$

Let's consider language L_1

$$L_1 = \{a^n b^m \mid n \le m\}$$

Is L_1 a regular language?

$$(\forall m \in \mathbb{N} \bullet \neg (m \ge 1) \lor \\ \neg (\forall w \in L_1 \bullet \mid w \mid \ge m \implies \\ (\exists x, y, z \in \Sigma^* \bullet w = xyz \land \mid y \mid \ge 1 \land \mid xy \mid \le m \land \\ (\forall i \ge 0 \bullet xy^i z \notin L_1)))) \implies \neg regular(L_1)$$

Negation of an Implication

The negation of an implication is a conjunction:

$$\neg (P \implies Q)$$
 is logically equivalent to $P \land \neg Q$

Let's consider language L_1

$$L_1 = \{a^n b^m \mid n \le m\}$$

Is L_1 a regular language?

$$\begin{array}{l} (\forall m \in \mathbb{N} \bullet \neg (m \geq 1) \lor \\ (\exists w \in L_1 \bullet \mid w \mid \geq m \land \\ \neg (\exists x, y, z \in \Sigma^* \bullet w = xyz \land \mid y \mid \geq 1 \land \mid xy \mid \leq m \land \\ (\forall i \geq 0 \bullet xy^i z \in L_1)))) \implies \neg regular(L_1) \end{array}$$

Let's consider language L_1

$$L_1 = \{a^n b^m \mid n \le m\}$$

Is L_1 a regular language?

$$\begin{array}{l} (\forall m \in \mathbb{N} \bullet \neg (m \geq 1) \lor \\ (\exists w \in L_1 \bullet \mid w \mid \geq m \land \\ (\forall x, y, z \in \Sigma^* \bullet \neg (w = xyz) \lor \neg (\mid y \mid \geq 1) \lor \neg (\mid xy \mid \leq m) \lor \\ \neg (\forall i \geq 0 \bullet xy^iz \in L_1)))) \implies \neg regular(L_1) \end{array}$$

Let's consider language L_1

$$L_1 = \{a^n b^m \mid n \le m\}$$

Is L_1 a regular language?

$$\begin{array}{l} (\forall m \in \mathbb{N} \bullet \neg (m \geq 1) \lor \\ (\exists w \in L_1 \bullet \mid w \mid \geq m \land \\ (\forall x, y, z \in \Sigma^* \bullet \neg (w = xyz) \lor \neg (\mid y \mid \geq 1) \lor \neg (\mid xy \mid \leq m) \lor \\ (\exists i \geq 0 \bullet \neg (xy^i z \in L_1))))) \implies \neg regular(L_1) \end{array}$$

Let's consider language L_1

$$L_1 = \{a^n b^m \mid n \le m\}$$

Is L_1 a regular language?

Disjunction elimination

But before eliminating \neg , let us eliminate \lor 's

$$P \vee Q$$
 is logically equivalent to $\neg P \implies Q$

Or, more generally:

$$Q_1 \vee \cdots \vee Q_{n-1} \vee Q_n$$

is logically equivalent to

$$\neg Q_1 \implies (\cdots \implies (\neg Q_{n-1} \implies Q_n)\dots)$$

Let's consider language L_1

$$L_1 = \{a^n b^m \mid n \le m\}$$

Is L_1 a regular language?

$$\begin{array}{l} (\forall m \in \mathbb{N} \bullet \neg \neg (m \geq 1) \implies \\ (\exists w \in L_1 \bullet \mid w \mid \geq m \land \\ (\forall x, y, z \in \Sigma^* \bullet \neg \neg (w = xyz) \implies \\ (\neg \neg (\mid y \mid \geq 1) \implies (\neg \neg (\mid xy \mid \leq m) \implies \\ (\exists i \geq 0 \bullet \neg (xy^iz \in L_1))))))) \implies \neg \textit{regular}(L_1) \end{array}$$

Let's consider language L_1 $L_1 = \{a^nb^m \mid n \leq m\}$ Is L_1 a regular language?

```
Let's consider language L_1
       L_1 = \{a^n b^m \mid n < m\}
Is L_1 a regular language?
Which is equivalent to ...
(\forall m \in \mathbb{N} \bullet m > 1 \implies
   (\exists w \in L_1 \bullet \mid w \mid \geq m \land
       (\forall x, y, z \in \Sigma^* \bullet w = xyz \implies
          (|y| > 1 \implies (|xy| < m \implies
              (\exists i > 0 \bullet xy^i z \notin L_1)))))) \implies \neg regular(L_1)
```

$$L_1 = \{a^n b^k \mid n \le k\}$$

Is L_1 a regular language?

Proof

Let $m \in \mathbb{N}$.

$$L_1 = \{a^n b^k \mid n \le k\}$$

Is L_1 a regular language?

Proof

Let $m \in \mathbb{N}$. We set $w = a^m b^m$; notice that $w \in L_1$ and |w| = 2m which is |w| > m.

$$L_1 = \{a^n b^k \mid n \le k\}$$

Is L_1 a regular language?

Proof

Let $m \in \mathbb{N}$. We set $w = a^m b^m$; notice that $w \in L_1$ and |w| = 2m which is |w| > m. Let $x, y, z \in \{a, b\}^*$ such that $|y| \ge 1$, $|xy| \le m$ and w = xyz.

$$L_1 = \{a^n b^k \mid n \le k\}$$

Is L_1 a regular language?

Proof

Let $m \in \mathbb{N}$. We set $w = a^m b^m$; notice that $w \in L_1$ and |w| = 2m which is |w| > m. Let $x, y, z \in \{a, b\}^*$ such that $|y| \ge 1$, $|xy| \le m$ and w = xyz. We have $y = a^l$ for some $l \in \{1, \ldots, m\}$, $x = a^{l'}$ for some $l' \in \{0, \ldots, m-l\}$ and $z = a^{m-l-l'}b^m$.

$$L_1 = \{a^n b^k \mid n \le k\}$$

Is L_1 a regular language?

Proof

Let $m \in \mathbb{N}$. We set $w = a^m b^m$; notice that $w \in L_1$ and |w| = 2m which is |w| > m. Let $x, y, z \in \{a, b\}^*$ such that $|y| \ge 1$, $|xy| \le m$ and w = xyz. We have $y = a^l$ for some $l \in \{1, \ldots, m\}$, $x = a^l$ for some $l' \in \{0, \ldots, m-l\}$ and $z = a^{m-l-l'}b^m$. We set i = 2.

$$L_1 = \{a^n b^k \mid n \le k\}$$

Is L_1 a regular language?

Proof

Let $m \in \mathbb{N}$. We set $w = a^m b^m$; notice that $w \in L_1$ and |w| = 2m which is |w| > m. Let $x, y, z \in \{a, b\}^*$ such that $|y| \ge 1$, $|xy| \le m$ and w = xyz. We have $y = a^l$ for some $l \in \{1, \ldots, m\}$, $x = a^{l'}$ for some $l' \in \{0, \ldots, m-l\}$ and $z = a^{m-l-l'}b^m$. We set i = 2. We have $xy^2z = a^{m+l}b^m$ with $l \ge 1$, and thus xy^2z not in L_1 .

$$L_1 = \{a^n b^k \mid n \le k\}$$

Is L_1 a regular language?

Proof

Let $m \in \mathbb{N}$. We set $w = a^m b^m$; notice that $w \in L_1$ and |w| = 2m which is |w| > m. Let $x, y, z \in \{a, b\}^*$ such that $|y| \ge 1$, $|xy| \le m$ and w = xyz. We have $y = a^l$ for some $l \in \{1, \ldots, m\}$, $x = a^{l'}$ for some $l' \in \{0, \ldots, m-l\}$ and $z = a^{m-l-l'}b^m$. We set i = 2. We have $xy^2z = a^{m+l}b^m$ with $l \ge 1$, and thus xy^2z not in L_1 .

By applying the Pumping lemma for regular languages, we can conclude that that the language L_1 is not regular.

Deterministic Pushdown Automata

Administrative Information

PDA - Notion

▶ Build a complete FSA that recognises the following language:

$$AnBn = \{a^nb^n \mid n \ge 0\}$$

lt is not possible (you already know how to prove it!)

PDA - Notion

▶ Build a complete FSA that recognises the following language:

$$AnBn = \{a^nb^n \mid n \ge 0\}$$

- ▶ It is not possible (you already know how to prove it!)
- PDAs are similar to FSA with an auxiliary memory: a stack.

PDA - Notion

$$AnBn = \{a^nb^n \mid n \ge 0\}$$

- When a PDA reads an input symbol, it will be able to save it (or save other symbols) in its memory.
- ► For deciding if an input string is in the language *AnBn*, the PDA needs to remember the numbers of *a*'s.
- ▶ Whenever the PDA reads the input symbol *b*, two things should happen:
 - 1. it should change states: from now on the only legal input symbols are *b*'s.
 - 2. it should delete one a from its memory for every b it reads.

PDA (Graphical representation)

PDA – Notion (Moves)

A single move of a PDA will depend on:

- the current state,
- ightharpoonup the next input (it could be no symbol: ϵ symbol), and
- the symbol currently on top of the stack.

PDA will be assumed to begin operation with an initial start symbol Z_0 on its stack and will not be permitted to move unless the stack contains at least one symbol;

- Z₀ is never removed and no additional copies of it are pushed onto the stack
- $ightharpoonup Z_0$ is on top means that the stack is effectively empty.

PDA and compilers

- PDA are at the heart of compilers
- Stack memory has a LIFO policy
- LIFO is suitable to analyze nested syntactic structures
 - Arithmetical expressions
 - Begin/End
 - Activation records
 - Parenthesized strings

— ...

Balanced Parentheses

Intuitively, a string of parentheses is balanced if each left parenthesis has a matching right parenthesis and the matched pairs are well nested. The set PAREN of balanced strings of parentheses [] is the prototypical context-free language and plays a pivotal role in the theory of CFLs.

Historical Notes

The pivotal importance of balanced parentheses in the theory of contextfree languages was recognized quite early on.

Dexter Kozen, Automata and Computability, Springer-Verlag, 1997

Balanced parentheses

PDA to recognize well parenthesized strings

General Structure of a Compiler

Lexical Analysis

- Lexical analysis (lexing/scanning) breaks the source code text into small pieces
 - Tokens
 - Single atomic units of the language
 - Keywords, identifiers ...

From Greek *lexikos* 'of words' (from *lexis* 'word')

- The token syntax is typically a regular language
 - Finite State Automaton, Regular expressions
 - This compiler part is called *lexer*

Pascal identifiers

Syntax Analysis

PDA is the most important class of automata between FSA and TM

• FSA cannot even recognize a simple language such as anbn

- Nested structures are the key of programming languages
- Specific (nondeterministic) PDAs are used in Syntax Analysis/parsing

From Latin *pars* (*orationis*): part (of speech)

Context-free languages and PDA

Context-free grammars have played a central role in compiler technology since the 1960s There is an automaton-like notation, called the "pushdown automaton", that also describes all and only the context-free languages.

John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman

Very roughly...

Everything seems under control...

Are there languages that cannot be recognized by PDAs?

The short answer

- The short answer is yes:
 - there are languages that cannot be recognized by PDAs
- We will look into the details!

- We will also look into the details of PDA formalization
 - Configuration
 - Transitions
 - Transducers

Languages

What are the limits of PDAs?

Remarks

- The stack is a destructive memory
 - Once a symbol is read, it is destroyed
- The limitation of the stack can be proved formally through a generalization of the pumping lemma (lemma of Bar-Hillel)
- It is necessary to use <u>persistent memory</u>
 - → memory tapes and TM

PDA – Formal Definition

A Pushdown Automaton

A PDA is a tuple $\langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$ where

- Q is a finite set of states.
- ightharpoonup I and Γ are finite sets, the input and stack alphabets.
- ▶ δ, the transition function, is a partial function from $Q \times (I \cup \{\epsilon\}) \times \Gamma$ to the set of finite subsets of $Q \times \Gamma^*$.
- $ightharpoonup q_0 \in Q$, the initial state.
- $ightharpoonup Z_0 ∈ Γ$, the initial stack symbol.
- ▶ $F \subseteq Q$, the set of accepting states.

Conditions on Z_0

Let $M=\langle Q,I,\Gamma,\delta,q_0,Z_0,F\rangle$ be a PDA. For $q\in Q$ and $i\in I$ and $A\in \Gamma$

 $ightharpoonup Z_0$ is never removed:

if
$$(q', \alpha) \in \delta(q, i, Z_0)$$
, then $\alpha = \alpha' Z_0$ for some α'

 \blacktriangleright no additional copies of Z_0 are pushed onto the stack:

if
$$(q', \alpha) \in \delta(q, i, A)$$
 and $A \neq Z_0$, then Z_0 does not occur in α

A Deterministic PDA – Formal Definition (the one seen in the lecture)

A Deterministic Pushdown Automaton (DPDA)

A PDA $M=\langle Q,I,\Gamma,\delta,q_0,Z_0,F\rangle$ is deterministic if it satisfies both of the following conditions.

- 1. For every $q \in Q$, every $x \in I \cup \{\epsilon\}$, and every $\gamma \in \Gamma$, the set $\delta(q, x, \gamma)$ has at most one element.
- 2. For every $q \in Q$, every $x \in I$, and every $\gamma \in \Gamma$, the two sets $\delta(q, x, \gamma)$ and $\delta(q, \epsilon, \gamma)$ cannot both be non-empty.

Configuration

A configuration is a generalization of the notion of state. It shows:

- the current state,
- the portion of the input string that has not yet been read, and
- the stack.

It is a snapshot of the PDA.

Configuration – Formal Definition

Configuration

A Configuration of the PDA $\langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$ is a triple

$$(q, x, \gamma)$$

where

- $ightharpoonup q \in Q$, is the current state of the control device,
- $x \in I^*$, is the unread portion of the input string, and
- ▶ $\gamma \in \Gamma^*$, is the string of symbols in the stack.

Configuration (Graphical representation)

Transition

Transitions between configurations (\vdash) depend on the transition function. It is the way to commute from a PDA snapshot to another.

There are 2 cases:

- 1. The transition function is defined for an input symbol.
- 2. The transition function is defined for an ϵ move.

Transition – Case 1

If $(q', \alpha) \in \delta(q, i, A)$ then

$$(q, x, \gamma) \vdash (q', x', \gamma')$$

where (old snapshot)

- q is the current state
- $\rightarrow x = iy$
- ▶ $\gamma = A\beta$ (for some $\beta \in \Gamma^*$)

then (new snapshot)

- ightharpoonup q' is the new state
- $\rightarrow x' = y$
- $ightharpoonup \gamma' = \alpha \beta$

Transition – Case 1 (Graphical representation)

Transition – Case 2

If
$$(q', \alpha) \in \delta(q, \epsilon, A)$$
 then

$$(q, x, \gamma) \vdash (q', x', \gamma')$$

where (old snapshot)

- q is the current state
- $ightharpoonup \gamma = A\beta$ (for some $\beta \in \Gamma^*$)

then (new snapshot)

- ightharpoonup q' is the new state
- $\rightarrow x' = x$
- $ightharpoonup \gamma' = \alpha \beta$

Transition – Case 2 (Graphical representation)

Acceptance – Informally

- ▶ A string *x* is accepted by a PDA if there is a path coherent with *x* on the PDA that goes from the initial state to the final state.
- ▶ The input string has to be read completely.

Acceptance - Formal Definition

Reflexive transitive closure of \(\)

Let M be the PDA $\langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$, and $c_i = (q, x, \beta)$, $c_j = (q', x', \beta')$ be configurations of M:

$$c_i \vdash^* c_j$$

is the sequence of zero or more moves taking M from c_i to c_j

Acceptance by final state

Let M be the PDA $\langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$, and $x \in I^*$. The string x is accepted by M if

$$(q_0, x, Z_0) \vdash^* (q, \epsilon, \gamma)$$

for some $\gamma \in \Gamma^*$ and some $q \in F$.

Acceptance - Formal Definition

Reflexive transitive closure of \(\)

Let M be the PDA $\langle Q, I, \Gamma, \delta, q_0, Z_0 \rangle$, and $c_i = (q, x, \beta)$, $c_j = (q', x', \beta')$ be configurations of M:

$$c_i \vdash^* c_j$$

is the sequence of zero or more moves taking M from c_i to c_j

Acceptance by empty stack

Let M be the PDA $\langle Q, I, \Gamma, \delta, q_0, Z_0 \rangle$, and $x \in I^*$. The string x is accepted by M if

$$(q_0, x, Z_0) \vdash^* (q, \epsilon, \epsilon)$$

Examples

Lets consider the following languages:

- 1. $A_nB_n = \{a^nb^n \mid n \geq 0\}$
- 2. $A_n B_m C_{n+m} = \{a^n b^m c^{n+m} \mid n, m \ge 0\}$
- 3. The language of well-parenthesised strings the alphabet is $I = \{ (', ')' \}$
- 4. $Palindrom = \{xcx^R \mid x \in \{a, b\} \land |x| > 0\}^1$

¹where x^R is the reversed string x

Wrap up

► What have you learnt today?

Wrap up

- ► What have you learnt today?
- ▶ What for this could be useful?