Теория графов

 $Kohcnekt: \ https://drive.google.com/open?id=0B7NhKjbM4DhuVkNYenBQc2NzZEU$

Нам не надо доказательства знать

План: 0. Введение 1. Деревья 2. Связность 3. Независимость и покрытие 4. Планарность 5. Обходы в графах 6. Раскраски 7. Ориентированные графы 8. Степенные последовательности 9. Гиперграфы 10. Алгоритмические аспекты теории графов. Теория сложности

Введение

Утверждение.

Объединение двух несовпадающих (a,b)-цепей содержит простой цикл.

Утверждение.

Пусть C1и C2- два различных простых цикла, у которых имеется общее ребро e, тогда (C1C2)-е также содержит простой цикл.

Утверждение.

Для связности графа необходимо и достаточно, чтобы в нем для какой-либо фиксированной вершины и и каждой другой вершины v существовал (u,v)-маршрут.

Утверждение.

Каждый граф представляется в виде дизъюнктого объединения своих связных компонент (однозначным образом). **Утверждение**.

G-связный граф, е-ребро, если е принадлежит циклу, то граф G-е связен.

Утверждение.

G-связный граф, если е-ребро не принадлежит циклу, то G-е имеет 2 компоненты связности.

Определение: Мультиграф - допускаются кратные рёбра, псевдограф - допускаются петли

Деревья

Определение: Граф будем называть ацикличным, если в нём нет циклов. **Определение:** (n,m)-графом будем называть граф, содержащий n вершин и m рёбер.

Теорема 1. Если граф G - (n, m)-граф, тогда следующие утверждения эквивалентны:

- 1. G дерево
- $2. \ G$ связен $u \ m = n-1$
- 3. G ацикличен и m = n 1
- 4. G ацикличен и при соединении любой пары несмежных вершин ребром образуется ровно 1 цикл.

Определение: Матрица Кирхгофа B(G):

- $B_{ij} = 0$, i и j не смежны
- $B_{ij}=-1,\,i$ и j смежны
- $B_{ij} = \deg(i), i = j$

Теорема 2 (Киргхгофа). Число остовных деревьев в графе G, |G| = n >= 2, если G - связен, равно алгебраическому дополнению любого элемента матрицы Кирхгофа.

Следствие.

Число помеченных деревьев на n вершинах равно n^{n-2} .

Связность

Определение: Наименьшее число вершин удаление которых приводит к несвязности графа (или одной вершине) называется числом вершинной связности $\kappa(G)$. Определение: Реберной - аналогично. Обозначается $\lambda(G)$ Определение: Вершина v такая, что G-v имеет больше компонент связности, чем G, называется точкой сочленения. Определение: Ребро e, такое, что G-e имеет больше компонент связности, чем G, называется мостом.

Теорема 3. Для любого графа справедливо $\kappa(G) \leqslant \lambda(G) \leqslant \delta(G)$.

Определение: Граф называется k-связным, если $\kappa(G)$ k, k-реберно связным, если $\kappa(G)$ k.

Определение: k-связной компонентой называется максимальный k-связный подграф.

Замечание. Определение связности, 2-связности, 3-связности можно реализовать за линию. А дальше темный лес без полиномиальных алгоритмов. Такие дела.

Теорема 4. Две различные k-компоненты графа имеют не более чем (k-1) общих вершин.

Немного неопровержимых утверждений:

- 1. Степени вершин 2-связного графа ≥ 2.
- 2. Если G_1 и G_2 двусвязные и имеют не менее двух общих вершин, то их объединение тоже двусвязный граф.
- 3. Если граф 2-связный и Р-простая цепь, то $G \cup P$ -2-связный
- 4. Если вершина v не точка сочленения связного графа, то любые две его вершины можно соединить цепью, не проходящей через v.
- 5. Для любых трех несовпадающих вершин 2-связного графа существует простая цепь, которая соединяет две и не проходит через третью.

Теорема 5. G-связный, |G| > 2, тогда следующие утверждения эквивалентны.

- 1. G 2-связный.
- 2. Любые две вершины принадлежат общему простому циклу
- 3. Любая вершина и любое ребро принадлежат общей простой цепи.
- 4. Любые два ребра принадлежат общей простой цепи.
- 5. Для любых вершин a u b u ребра существует простая (a,b)-цепь, которая содержит это ребро.
- 6. Для любых вершин a, b, c существует простая (a, b)-цепь, которая проходит через.

Определение: Максимальный подграф графа G, который не имеет собственных точек сочленения называется блоком.

Свойства блоков:

- 1. Любые два блока графа имеют не более одной общей вершины.
- 2. Если блок содержит вершины х, у, то он содержит и всякую простую (х,у)-цепь этого графа
- 3. Если вершина входит в более, чем один блок, то она точка сочленения.

Определение: Множество блоковых множеств является покрытием множества вершин. **Определение:** Вершинный (a,b)-сепаратор - множество вершин графа, таких, что при их удалении a и b окажутся в различных компонентах.

Теорема 6 (Менгера). Наименьшее число вершин разделяющих 2 несмежные вершины a u b равно наибольшему числу попарно непересекающихся простых (a,b) - цепей графа.

Теорема 7 (Уитни). Γ раф k-связный тогда и только тогда, когда любая пара его несовпадающих вершин соединена не менее чем k попарно непересекающимися цепями.

Определение: Граф называется локально-связным если для каждой вершины v связен граф N(v).

Независимость и покрытие

Определение: Множество вершин называется независимым, если любые две вершины не смежны (индуцированный граф пуст). **Определение:** $\alpha_0(G)$ - мощность наибольшего независимого множества вершин.

Теорема 8. Для любого графа справедливо неравенство $\alpha_0(G) >= \sum_{v \in VG} 1/(1 + \deg v)$

Следствие.

Для любого графа порядка и справедливо $\alpha_0(G) >= n/(1+d) >= n/(1+\Delta)$, d - среднее арифметическое степеней вершин.

Теорема 9. Пусть G - связный граф порядка $n\geqslant 3$. G не содержит C_3 и не является цепью либо циклом нечётной длины, тогда справедливо $\alpha_0(G)>=n/(\Delta(\Delta+1))+\sum_{v\in VG}1/(1+\deg v)$

Теорема 10. Для любого графа G справедливо

$$\alpha_0(G) \leqslant p^0 + \min\left\{p^-, p^+\right\}$$

- \bullet p^0 число нулевых собственных значений матрицы смежности графа.
- p^- число отрицательных собственных значений.
- p^+ число положительных собственных значений.

Определение: Подмножество $V' \subset V(G)$ называется вершинным покрытием графа G, если его вершины покрывают все рёбра графа. Основная задача: поиск наименьшего покрытия (Vertex Cover).

Определение: $\beta_0(G)$ - мощность наименьшего покрытия - число вершинного покрытия.

Дополнение независимого множества в G = покрытие в G (и наоборот).

Теорема 11. Множество P является наименьшим покрытием тогда и только тогда, когда дополнение P - наибольшее независимое множество. Таким образом,

$$\alpha_0(G) + \beta_0(G) = n.$$

Определение: Подмножество $E' \subset E(G)$ называется независимым, если все его элементы попарно не смежные (паросочетание, matching).

Определение: Паросочетание называется совершенным, если покрывает все вершины графа.

Определение: Подмножество рёбер называется рёберным покрытием графа, если оно покрывает все вершины графа.

Определение: $\alpha_1(G)$ - число рёберной независимости, число паросочетаний.

Определение: $\beta_1(G)$ - мощность наименьшего рёберного покрытия - число рёберного покрытия.

Теорема 12 (Галлаи). Пусть G - граф без изолированнных вершин. Тогда верно равенство

$$\alpha_1(G) + \alpha_1(G) = n.$$

Определение: $\forall A\subset V(G), N_G(A)=\cup_{v\in A}N(v)$ A - окружение множества A.

Теорема 13 (Холла). Для существования в двудольном графе G(X,Y,E) паросочетания, покрывающего $X \Leftrightarrow (\forall A \subset X \Rightarrow |A| \leqslant |N_G(A)|)$

Следствие.

Любой непустой регулярный двудольный граф имеет совершенное паросочетание. Следствие.

Регулярный двудольный граф ненулевой степени является рёберно непересекающимся объединением 1-факторов (1-фактор = совершенное паросочетание).

Теорема 14. Для существования в двудольном графе G паросочетания мощности t необходимо и достаточно, чтобы выполнялось

$$\forall A \subset X, t \leq |X| \Rightarrow N(A) \geqslant |A| + t - |X|$$

Теорема 15. Пусть G(X,Y,E) - двудольный граф, $\subset X$. Величину $\delta_0 = \max \delta(A) = \max(|A| - |N(A)|), A \neq \emptyset, \delta(A) = 0, A = \emptyset$) называют дефицитом графа G.

Теорема 16. Для произвольного двудольного графа G(X,Y,E) с непустыми долями справедливо:

$$\alpha_1(G) = |X| - \delta_0$$

Теорема 17. Для произвольного двудольного графа G(X, Y, E) с непустыми долями справедливо:

$$\beta_0(G) = \alpha_1(G)$$

Теорема 18 (Татта). Для существования совершенного паросочетания в графе G необходимо и достаточно, чтобы для $\forall S \subset V(G)$ выполнялось $\rho(S) \leqslant |S|$, где $\rho(S)$ - число компонент нечетного порядка графа G-S.

Теорема 19 (двуцветная теорема Рамсея). Для любого натурального p существует n_0 , что npu $n \geqslant n_0$ любой n-вершинный граф содержит или независимое множество мощности p или клику размера p. Число n_0 в этом случае называют числом Рамсея для p.

Цепочка утверждений, показывающая полиномиальную разрешимость задачи о независимости в классе двудольных графов: Теорема Холла -> теорема 14 -> определение дефицита -> теоремы 15,16.

Планарность

Определение: Жорданова кривая - непрерывная спрямляемая линия, не имеющая самопересечений.

Определение: Множество D называется доминирующим, если любая vD смежна с D.

Теорема 20 (Жордана). Если есть замкнутая экорданова кривая, то она разбивает плоскость на две части. Незамкнутые кривые - не разбивают. Примечание: теорема неверна для тора.

Определение: Пусть имеется произвольный непустой граф G. L(G) - граф, в котором вершинами являются рёбра G, а рёбрами - наличие общей концевой вершины.

Определение: Граф H называется реберным если G, что H = L(G).

Определение: Множество $E' \subset E(G)$ называется разделяющим если G

E' содержит большее число компонент, чем G. Минимальное разделяющее множество называется разрезом.

Утверждение.

Всякий подграф планарного графа является планарным графом.

Утверждение.

Граф планарен тогда и только тогда, когда все его связные компоненты планарны.

Определение: Гранью плоского графа называется максимальное множество точек плоскости, каждая пара которых может быть соединена жордановой кривой без пересечения ребер графа. Каждая точка плоскости принадлежит хотя бы одной грани.

Утверждение.

Любую грань плоского графа можно сделать внешней в некоторой плоской укладке.

Утверждение.

Возможно склеивание двух компонент связности по ребру или вершине без потери свойства планарности.

Утверждение.

Для всякого плоского графа произвольная точка не лежащая на ребре принадлежит ровно 1 грани. Точка, принадлежащая ребру, но не являющаяся концевой вершиной этого ребра, принадлежит ровно 1 грани если ребро является мостом и 2 граням в противном случае.

Теорема 21 (Эйлера). Для каждого связного плоского графа верно равенство n-m+f=2.

Следствия:

- 1. Граф имеет единственную укладку т. и т.т., когда он является треугольником.
- 2. (Балинского). Остов п-мерного многогранника должен быть п-связен.
- 3. Если данный (n,m)-граф связен и планарен, то верно неравенство m <= 3n-6.
- 4. Пусть имеется (n,m)-граф, у которого граница каждой грани является простым циклом длины r, связна и планарна. Тогда верно m(r-2)=r(n-2)

Теорема 22. Плоский граф 2-связен т. и т. т., когда граница всякой его грани является простым циклом.

Теорема 23. Связный граф планарен т. и т. т. когда каждый его блок планарен.

Определение: Плоская триангуляция - граф, в котором каждая грань является (ограничена) треугольником.

Определение: Плоская триангуляция - 3 -связный граф.

Теорема 24. Граф является максимальным плоским графом т. и т. т. когда он является плоской триангуляцией.

Следствия:

- 1. Каждый плоский граф является подграфом некоторой триангуляции.
- 2. Для любого максимального планарного (n,m)-графа верно m=3n 6.

Определение: G называется внешнепланарным если есть грань, к которой принадлежат все его вершины. **Утверждение**.

Если G - плоская триангуляция, n>=4, то для |G| имеем (G)>=3.

Утверждение.

Всякий планарный граф с n >= 4 имеет по крайней мере 4 вершины с deg(v) <= 5;

Определение: Два графа называют гомеоморфными, ели они могут быть получены из некоторого графа путем применения операций подразбиения его рёбер.

Теорема 25 (Понтрягина-Куратовского). Граф планарен m. u m. m. когда он не содержит графов, гомеоморфных K5 u K3.3

Теорема 26 (Вагнера). Граф планарен т. и т. т. когда в нём нет графов, стягиваемых к К5 и К3,3

Определение: Геометрически двойственный граф (G*). В каждой грани выберем по одной точке - вершины будущего графа. Для каждого ребра исходного графа соединим ребром вершины граней по разные его стороны (если ребро было мостом - будет петля).

Свойства геометрически двойственного графа:

- 1. $n^* = f, m^* = m, f^* = n$.
- 2. Если G является связным плоским графом, то $G^{**}G$
- 3. Пусть G является произвольным плоским графом. Подмножество рёбер образует в G простой цикл тогда и только тогда, когда в G^* соответствующие рёбра образуют разрез.
- 4. Пусть G является произвольным связным графом. Если существует биекция, переводящая все простые циклы G в разрезы G^* и наоборот, то G^* абстрактно-двойственный.

Теорема 27 (Уитни). Граф планарен ⇔ когда он имеет абстрактно-двойственный.

Теорема 28 (Вагнера). Всякий планарный граф может быть уложен на плоскости так, что каждое его ребро будет прямолинейным отрезком.

Характеристики непланарности:

1. Род графа $\gamma(G)$ - минимальный род поверхности, на которую граф может быть уложен

$$\gamma(G) >=](m-3n)/6 + 1[$$

 $\gamma(Kn) =](n-3)(n-4)/12[$

2. Число скрещиваний cr(G) - наименьшее число пересечений рёбер для укладки графа на плоскости (NP-трудная задача)

$$cr(Kn) \le \frac{1}{4} [n/2][(n-1)/2][(n-2)/2][(n-3)/2]$$

 $cr(K_{p,q}) = [p/2][(p-1)/2][q/2][(q-1)/2]$

3. Толщина графа t(G) - наименьшее число его планарных подграфов, объединение которых даёт весь граф (NP-трудная задача)

$$t(G) >=]m/(3n-6)[$$

 $t(Kn) >= [(n+7)/6], = n! = 4mod6, n! = 9$

4. Искажённость графа sk(G) - наименьшее число рёбер, удаление которых сделает граф планарным (NP-трудная задача)

$$sk(K_n) = C_n^2 - 3n + 6, n \ge 3$$

Обходы в графах

Определение: Простой цикл в графе называется эйлеровым, если он содержит все рёбра графа. Цепь с аналогичными свойствами также называют йлеровой. **Определение:** Набор рёбер на непересекающихся цепях покрывает граф если все рёбра являются рёбрами графа.

Теорема 29 (Эйлера). Связный граф является эйлеровым тогда и только тогда, когда степени всех его вершин чётные.

Следствие.

Пусть связный граф G содержит ровно k вершин нечётной степени. Тогда число непересекающихся цепей, покрывающих граф, равно k/2.

Теорема 30 (Коцига). Пусть u' - два различных эйлерова цикла графа G. Тогда существует такая последовательность $C = c_1, c_2, ..., c_t = C'$ эйлеровых циклов в этом графе, что c_j получается из c_{j+1} изменением порядка обхода некоторого подцикла на обратный.

Определение: Простой цикл называется гамильтоновым, если он проходит через каждую вершину графа.

Теорема 31 (Дирака). Если $n \geqslant 3$ и $\forall v \in V(G), degv >= n/2,$ то граф гамильтонов.

Теорема 32 (Ope). Если $n \geqslant 3$ $u \forall v, u \in V(G), \deg v + \deg u \geqslant n$, то граф гамильтонов

Теорема 33 (ХвАтала). Пусть G имеет степенную последовательность $d_1 \leqslant d_2 \leqslant \ldots \leqslant d_n$. Граф G гамильтонов, если $\forall k \in [1, n/2[$ справедлива импликация $d_k \leqslant k \Rightarrow d_{n-k} \geqslant n-k$.

Определение: Граф называется панциклическим если он содержит все циклы от C_3 до C_n .

Теорема 34 (Уитни). Плоская триангуляция без разделяющих треугольников (треугольников, которые не являются границей грани) является гамильтоновым графом.

Теорема 35 (Татта). Всякий 4-связный планарный граф гамильтонов.

Теорема 36 (Кляйшнера). Если ?? и G - 2-связный, то G^2 гамильтонов.

Теорема 37. Если граф G связный, локально-связный, claw-free (, m. e. не содержит такого индуц. подграфа), то G - гамильтонов.

Определение: Обхватом графа называется длина минимального простого цикла в этом графе.

Теорема 38 (Гринберга). Пусть f_k - число k-граней плоского гамильтонового графа. Тогда для кажедого $k\geqslant 3$ существуют f_k', f_k'' - целые неотрицательные числа, m. ч. $f_k' + f_k'' = f_k$ и

$$\sum_{k \geqslant 3} f'_k * (k-2) = \sum_{k \geqslant 3} f''_k * (k-2)$$

Теорема 39 (Смита). Через всякое ребро кубического графа проходит чётное число гамильтоновых циклов.

Раскраски

Определение: Раскраска - произвольная функция, переводящая множество вершин в множество цветов.

Определение: Правильная раскраска - смежные вершины имеют различные цвета.

Определение: Граф наз. k-раскрашиваемым если для него существует правильная раскраска в k цветов.

Определение: Хроматическое число графа - минимальное k для которого граф к-раскрашиваем.

Определение: Карта - плоский граф без мостов.

Определение: Раскрака карты - отображение множества граней карты в множество цветов.

Определение: Хроматическое число поверхности - минимальное k для которого любая карта укладываемая на этой поверхности к-раскрашиваема.

Задача о 4 красках: Для любого плоского графа $\chi(G) \leqslant 4$.

Теорема 40 (Хилла). Всякий планарный граф является 5-раскрашиваемым.

Теорема 41 (Крола). G – плоский 3-раскрашиваемый \Leftrightarrow он является подграфом чётной триангуляции (все степени вершин чётные).

Следствие.

Граф G можно раскрасить в 3 цвета, если в нём не более 4 треугольников.

Теорема 42 (Рингеля-Янгса). Пусть S_p - сфера c ручками (поверхность рода). Тогда:

$$\chi(S_p) = \left\lceil \frac{7 + \sqrt{1 + 48p}}{2} \right\rceil, p > 0$$

Гипотеза Хадвигера: Любой связный n-хроматический граф стягивается к K_n . Доказано для $n=1,\,2,\,3,\,5$.

Теорема 43 (Брукса). Пусть G - связный, $G \neq K_n$, $\Delta(G) \geqslant 3$. Тогда $\chi(G) \leqslant \Delta(G)$.

Определение: Хроматическая функция (хроматический полином) - число попарно-различных правильных раскрасок в t цветов.

$$f_0(n,t) = t^n,$$

 $f(K_n,t) = t(t-1)(t-2)...(t-n+1), t>= n$ и 0 при $t< n$

Утверждение.

Если $G_1, G_2, ..., G_{k^-}$ связные компоненты G, тогда

$$f(G,t) = \prod_{i=1}^{k} f(G_i,t)$$

Утверждение

Пусть $G = G_1 \cup G_2$ и графы G_1, G_2 имеют в точности одну общую вершину, тогда:

$$f(G,t) = \frac{f(G_1,t) \cdot f(G_2,t)}{t}$$

Утверждение.

Пусть u и v - две несмежные вершины G, и пусть $G_1 = G + uv$, G_2 - граф, полученный стягиванием вершин u и v. Тогда:

$$f(G,t) = f(G_1,t) + f(G_2,t)$$

Теорема 44. Хроматический полином (n,m)-графа G, имеющего в точности k связных компонент:

$$f(G,t) = t^{n} - mt^{n-1} + a_{n-2}t^{n-2} - a_{n-3}t^{n-3} + \dots + (-1)^{n-k}t^{k},$$

 $\epsilon \partial e \ a_i$ – целые неотрицательные числа

Теорема 45. Граф $G, |G| = n, \ \partial epeso \Leftrightarrow f(G,t) = t(t-1)^{n-1}$

Определение: Совершенный граф - если $\chi(H) = \phi(H)$ для любого индуцированного подграфа H ($\phi(G)$ - размер максимальной клики (плотность графа)).

Теорема 46 (Поль Сеймур + Берт, гипотеза Бержа). $\Gamma pa\phi$ совершенный \Leftrightarrow ни G, ни его дополнение не содержат индуцированных циклов нечётной длины.

Следствия:

- 1. G совершенный \Leftrightarrow дополнение G совершенный.
- 2. Двудольные графы и их дополнения совершенны.
- 3. Триангулированные графы и их дополнения совершенны (граф триангулированный, если ни один его порожденный подграф не является простым циклом длины больше трёх).

Определение: Рёберная раскраска G = вершинная раскраска L(G)

Определение: Хроматический индекс $\chi'(G)$ - минимальное число, в которое правильно раскрашиваемы рёбра.

Теорема 47 (Визинга). $\Delta(G) \leqslant \chi'(G) \leqslant \Delta(G) + 1.$

Ориентированные графы

Определение: Простой цикл -> контур. Простая цепь -> путь.

Определение: Орграф называется сильносвязным когда любая вершина достижима из любой другой.

Определение: Орграф называется одностороннесвязанный когда для любой пары вершин одна из них достижима

из другой.

Утверждение.

Орграф является сильным тогда и только тогда, когда в нём есть остовный циклический маршрут.

Утверждение.

Орграф является односторонним тогда и только тогда, когда в нём есть остовный маршрут.

Определение: Сильной компонентой называется любой максимальный сильный подграф.

Определение: Конденсация графа - сливаем вершины каждой сильной компоненты в одну.

Утверждение.

Конденсация любого орграфа не имеет контуров.

Определение: Полустепени исхода и захода

Определение: Орграф называется турниром если его основание является графом n.

Теорема 48. Связный ориентированный граф эйлеров тогда и только тогда, когда

$$\forall v \in V(G) \Rightarrow d^+(v) = d^-(v).$$

Теорема 49 (Мейнела). Пусть G - сильный, n > 1. Если для любой его пары u! = v несмежных вершин выполняется неравенство $\deg u + \deg v >= 2n-1$ то орграф гамильтонов.

Теорема 50. Для любого орграфа G справедливы неравенство $l(G) <= \alpha_0(G)$, где l(G) - минимальное число путей, на которое можно разбить G, а $\alpha_0(G)$ - мощность наибольшего независимого множества вершин.

Определение: Орграф называется транзитивным если из того что (x,y) и (y,z) принадлежат графу автоматически следует, что (x,z) также принадлежит.

Следствия:

- 1. Если орграф транзитивный, то $l(G) = \alpha_0(G)$.
- 2. В каждом турнире существует гамильтонов путь.

Теорема 51 (Галлан). Пусть k - максимальная длина пути в орграфе. Тогда $\chi(G) \leqslant k+1$.

Степенные последовательности

Определение: Степенная последовательность - последовательность степеней вершин

$$d_1 \geqslant d_2 \geqslant \ldots \geqslant d_n$$

Определение: Последовательность чисел, для которой существует соответствующий граф называется графической. **Определение:** Переключение: Пусть $ab, cd \in E(G), ac, bd \notin E(G)$. Тогда говорят, что G допускает переключение (удаляется первая пара ребер и добавляется вторая).

$$((a,b),(c,d)) - > ((a,c),(b,d))$$

Лемма.

Пусть $VG = \{1, 2, \dots n\}$, $\deg i = d_i, d_i >= d_{i+1}$. Тогда для любого i существует такая последовательность переключений, что в новом графе окружение вершины i совпадает с d_i вершинами наибольших степеней.

Теорема 52. Любая реализация графической последовательности получается из любой другой её реализации путём применения подходящей цепочки переключений.

Определение: Униграф - граф, степенная последовательности которого допускает единственную реализацию. **Определение:** Операция получения производной последовательности:

- 1. Удаляем d_i .
- 2. Из первых d_i элементов вычитаем 1.

Теорема 53 (Критерий Гавела). d - правильная n-последовательность. Если для какого-то индекса i производная последовательность d^i - графическая, то исходная последовательность - тоже графическая. Если d - графическая, то любая последовательность d^i - графическая.

Теорема 54 (Эрдёш). Правильная n-последовательность является графической \Leftrightarrow для кажедого $1 \leqslant k \leqslant n-1$ выполняется неравенство

$$\sum_{i=1}^{n} d_{i} \leqslant k(k-1) + \sum_{i=k+1}^{n} \min(k, di)$$

Теорема 55. Правильная графическая n-последовательность d имеет связную реализацию $\Leftrightarrow d_n \geqslant 0$ и выполняется неравенство:

$$\sum_{i=1}^{n} d_i \geqslant 2(n-1).$$

Теорема 56. Последовательность реализуется деревом ⇔

$$\sum_{i=1}^{n} d_i = 2(n-1)$$

Теорема 57. Пара векторов $c = (c_1, ...)d = (d_1, ...)$ является графической для орграфа $(c - cmenenu\ ucxoda) \Leftrightarrow$ выполняется:

- 1. $(c_1+n-1,c_2+n-1,\dots c_n+n-1,d_1,\dots d_n)$ графическая для неориентированного графа.
- 2. $\sum_{i=1^n} c_i = \sum_{i=1}^n d_i$

Гиперграфы

Теория сложности