Xử lý ngôn ngữ tự nhiên cho Khoa học dữ liệu Bài tập thực hành 2 - DS310.M11.1

Nguyễn Lưu Thùy Ngân, Nguyễn Văn Kiệt, Huỳnh Văn Tín, Lưu Thanh Sơn, Nguyễn Đức Vũ, Nguyễn Thành Luân Sinh viên: Phạm Đức Thể - 19522253 Ngôn ngữ lập trình: Python

Thứ 5, ngày 16 tháng 10 năm 2021

Bài tập: PHÂN LỚP VĂN BẢN SỬ DỤNG PRE-TRAINED WORD EMBEDDING

- Đọc dữ liệu
 - Để đọc được dữ liệu từ folder nằm trong Google drive, đầu tiên ta phải đảm bảo rằng đã connect file Colab với tài khoản Google drive.
 - Đọc dữ liệu train: Sử dụng phương thức read_csv() của thư viện pandas để đọc dữ liệu train và lưu vào đối tượng X_train, y_train_topic.
 - Đọc dữ liệu dev: Sử dụng phương thức read_csv() của thư viện pandas để đọc dữ liệu dev và lưu vào đối tượng X_dev, y_dev, y_dev_topic.
 - Đọc dữ liệu test: Sử dụng phương thức read_csv() của thư viện pandas để đọc dữ liệu test và lưu vào đối tượng X_test, y_test_topic.

Bài 1: Tác vu sentiment-based

- 1. Thuật toán máy học cơ bản
 - (a) Naive Bayes
 - i. Tiền xử lý dữ liệu
 - Sử dụng phương thức CountVectorizer() với đối số analyzer='word' và ngram_range=(2,2), tức là sử dụng mô hình 2-gram.
 - Tiếp theo chúng ta sẽ sử dụng phương thức **transform()** để tiến hành mã hóa văn bản train set, dev set và test set.
 - ii. Huấn luyên mô hình
 - Sử dụng phương thức MultinomialNB() mặc định của sklearn.naive_bayes để khởi tạo model.
 - Tiếp theo chúng ta sẽ sử dụng phương thức fit() để tiến hành training model với đối số là X_train_encoded, y_train.
 - iii. Đánh giá mô hình
 - Trên tập dev:
 - Confusion matrix (Hình 1)
 - * Mô hình dự đoán tốt với label = $\{0,2\}$ và dự đoán không tốt với label = $\{1\}$.
 - * Nguyên nhân có thể là vì bộ dữ liệu bị mất cân bằng dữ liệu giữa các label.

Hình 1: Confusion matrix of dev set

- F1-score: Mô hình đạt được độ chính xác F1-score macro = 62.99% và F1-score micro = 87.43%.
- Trên tập test:
 - Confusion matrix (Hình 2)
 - * Mô hình dự đoán tốt với label = $\{0,2\}$ và dự đoán không tốt với label = $\{1\}$.
 - * Nguyên nhân có thể là vì bộ dữ liệu bị mất cân bằng dữ liệu giữa các label.

Hình 2: Confusion matrix of test set

– F1-score: Mô hình đạt được độ chính xác F1-score macro = 61.26% và F1-score micro = 86.26%.

(b) Logistic Regression

- i. Tiền xử lý dữ liệu (tương tự phần 1a)
- ii. Huấn luyện mô hình
 - Sử dụng phương thức **LogisticRegression()** mặc định của **sklearn.linear_model** để khởi tạo model.
 - Tiếp theo chúng ta sẽ sử dụng phương thức **fit()** để tiến hành training model với đối số là **X train encoded**, **y train**.
- iii. Đánh giá mô hình
 - Trên tập dev:
 - Confusion matrix (Hình 3)
 - * Mô hình dự đoán tốt với nhãn có label = $\{0,2\}$ và dự đoán không tốt với label = $\{1\}$.
 - $\ast\,$ Nguyên nhân có thể là vì bộ dữ liệu bị mất cân bằng dữ liệu giữa các label.

Hình 3: Confusion matrix of dev set

- F1-score: Mô hình đạt được độ chính xác F1-score macro = 68.65% và F1-score micro = 88.5%.
- Trên tập test:
 - Confusion matrix (Hình 4)
 - * Mô hình dự đoán tốt với nhãn có label = $\{0,2\}$ và dự đoán không tốt với label = $\{1\}$.
 - * Nguyên nhân có thể là vì bộ dữ liệu bị mất cân bằng dữ liệu giữa các label.

Hình 4: Confusion matrix of test set

- F1-score: Mô hình đạt được độ chính xác F1-score macro = 65.45% và F1-score micro = 87.08%.
- (c) Support Vector Machine
 - i. Tiền xử lý dữ liệu (tương tự phần 1a)
 - ii. Huấn luyện mô hình
 - Sử dụng phương thức SVC() mặc định của sklearn.svm để khởi tạo model.
 - Tiếp theo chúng ta sẽ sử dụng phương thức fit() để tiến hành training model với đối số là X_train_encoded, y_train.
 - iii. Đánh giá mô hình
 - Trên tập dev:
 - Confusion matrix (Hình 5)
 - * Mô hình dự đoán tốt với label = $\{0,2\}$ và dự đoán không tốt với label = $\{1\}$.
 - * Nguyên nhân có thể là vì bô dữ liêu bi mất cân bằng dữ liêu giữa các label.

Hình 5: Confusion matrix of dev set

– F1-score: Mô hình đạt được độ chính xác F1-score macro = 65.18% và F1-score micro = 87.24%.

• Trên tập test:

- Confusion matrix (Hình 6)
 - * Mô hình dự đoán tốt với label = $\{0,2\}$ và dự đoán không tốt với label = $\{1\}$.
 - * Nguyên nhân có thể là vì bộ dữ liệu bị mất cân bằng dữ liệu giữa các label.

Hình 6: Confusion matrix of test set

— F1-score: Mô hình đạt được độ chính xác F1-score macro = 60.44% và F1-score micro = 85.03%.

• Kết luận về 3 thuật toán máy học cơ bản (dựa trên test set):

- Mô hình sử dụng thuật toán Logistic Regression có độ chính xác F1-score macro và F1-score micro cao nhất trong 3 mô hình (F1-score macro = 65.45%, F1-score micro = 87.08%).
- Mô hình sử dụng thuật toán Support Vector Machine có độ chính xác F1-score macro và F1-score micro thấp nhất trong 3 mô hình (F1-score macro = 60.44%, F1-score micro = 85.03%).
- Nhìn chung ta có thể đánh giá được là mô hình sử dụng thuật toán Logistic Regression là tốt nhất trong 3 mô hình khi mà độ chính xác F1-score khá cao và dựa vào confusion matrix có thể thấy label = $\{1\}$ đã được dự đoán tốt hơn.

- 2. Mang neural, sử dụng word embedding
 - (a) Tiền xử lý dữ liệu
 - Cách 1: Tự xây dựng bộ từ vựng và từ điển tương ứng:
 - Xây dưng tập từ vưng ${f V}$
 - -Xây dựng word_to_index và index_to_word
 - Tiến hành encode dữ liệu văn bản
 - Cách 2: Dùng thư viện có sẵn trong keras. Sử dụng thư viện Tokenizer
 - (b) Huấn luyện mô hình
 - Sử dụng 1 lớp Embedding trong mạng neural kết hợp với 1 lớp đầu ra.
 - Accuracy và loss của mô hình (Hình 7)

Hình 7: Accuracy and Loss of task Sentiment-base using Word Embedding

- Nhận xét: Mô hình bị overfitting. Accuracy trên tập train được cải thiện qua các epoch, ngược lại accuracy trên tập dev lại đi ngang và có xu hướng giảm ở các epoch sau. Loss giảm ở vài epoch đầu nhưng sau đó lại có xu hướng tăng cao.
- (c) Đánh giá mô hình
 - Confusion matrix (Hình 8)
 - Mô hình dự đoán tốt với label = $\{0,2\}$ và dự đoán không tốt với label = $\{1\}$.
 - Nguyên nhân có thể là vì bộ dữ liệu bị mất cân bằng dữ liệu giữa các label.

Hình 8: Confusion matrix of test set

• F1-score: Mô hình đạt được độ chính xác F1-score macro = 69.84% và F1-score micro = 89.01%.

- 3. Mang neural, sử dụng pre-trained embedding
 - (a) Tiền xử lý dữ liệu
 - Đọc dữ liệu từ bộ word embedding (sử dụng bộ pre-trained embedding W2V_ner.vec)
 (Nguồn: https://github.com/vietnlp/etnlp)
 - Xây dung embedding matrix cho pre-trained embedding
 - Tiến hành encode dữ liệu
 - (b) Huấn luyện mô hình
 - Sử dụng 1 lớp Embedding trong mạng neural kết hợp với 1 lớp đầu ra.
 - Accuracy và loss của mô hình (Hình 9)

Hình 9: Accuracy and Loss of task Sentiment-base using Pre-trained Embedding

- Nhận xét: Mô hình đã giảm đi hiện tượng overfitting.
- (c) Đánh giá mô hình
 - Confusion matrix (Hình 10)
 - Mô hình dự đoán tốt với label = $\{0,2\}$ và dự đoán không tốt với label = $\{1\}$.
 - Nguyên nhân có thể là vì bộ dữ liệu bị mất cân bằng dữ liệu giữa các label.

Hình 10: Confusion matrix of test set

• F1-score: Mô hình đạt được độ chính xác F1-score macro = 70.72% và F1-score micro = 87.93%.

• Kết luận:

- Mô hình sử dụng thuật toán Pre-trained Embedding có độ chính xác F1-score macro cao nhất trong 3 mô hình (F1-score macro = 70.72%).

- Mô hình sử dụng thuật toán Word Embedding có độ chính xác F1-score micro cao nhất trong 3 mô hình (F1-score macro = 89.01%).
- Mô hình sử dụng thuật toán máy học cơ bản có độ chính xác F1-score macro và F1-score micro thấp nhất trong 3 mô hình (F1-score macro = 65.45%, F1-score micro = 87.08%).
- Nhìn chung ta có thể đánh giá được là mô hình sử dụng thuật toán Pre-trained Embedding là tốt nhất trong 3 mô hình khi mà độ chính xác F1-score khá cao và dựa vào confusion matrix có thể thấy label = {1} đã được dự đoán tốt hơn. Ngoài ra, còn khắc phục được hiện tượng overfitting của model khi sử dụng thuật toán Word Embedding.

Bài 2: Tác vu topic-based

- 1. Thuật toán máy học cơ bản
 - (a) Naive Bayes
 - i. Tiền xử lý dữ liệu
 - Sử dụng phương thức CountVectorizer() với đối số analyzer='word' và ngram range=(2,2), tức là sử dụng mô hình 2-gram.
 - Tiếp theo chúng ta sẽ sử dụng phương thức **transform()** để tiến hành mã hóa văn bản train set, dev set và test set.
 - ii. Huấn luyên mô hình
 - Sử dụng phương thức MultinomialNB() mặc định của sklearn.naive_bayes để khởi tao model.
 - Tiếp theo chúng ta sẽ sử dụng phương thức fit() để tiến hành training model với đối số là X train encoded, y train topic.
 - iii. Đánh giá mô hình
 - Trên tập dev:
 - Confusion matrix (Hình 11)
 - * Mô hình dự đoán tốt với label = $\{0,1,2\}$ và dự đoán không tốt với label = $\{3\}$. Các nhãn sai đa số là dự đoán nhần vào label = $\{0\}$, nguyên nhân là do label này chiếm đa số trong tập dữ liệu nên có hiện tượng bias với label = $\{0\}$.
 - * Nguyên nhân có thể là vì bô dữ liệu bi mất cân bằng dữ liệu giữa các label.

Hình 11: Confusion matrix of dev set

- F1-score: Mô hình đạt được độ chính xác F1-score macro = 60.89% và F1-score micro = 83.64%.
- Trên tập test:
 - Confusion matrix (Hình 12)
 - * Mô hình dự đoán tốt với label = $\{0,1,2\}$ và dự đoán không tốt với label = $\{3\}$. Các nhãn sai đa số là dự đoán nhần vào label = $\{0\}$, nguyên nhân là do label này chiếm đa số trong tập dữ liệu nên có hiện tượng bias với label = $\{0\}$.

Hình 12: Confusion matrix of test set

- * Nguyên nhân có thể là vì bộ dữ liệu bị mất cân bằng dữ liệu giữa các label.
- F1-score: Mô hình đạt được độ chính xác F1-score macro = 63.21% và F1-score micro = 83.83%.

(b) Logistic Regression

- i. Tiền xử lý dữ liệu (tương tự phần 2a)
- ii. Huấn luyện mô hình
 - Sử dụng phương thức **LogisticRegression()** mặc định của **sklearn.linear_model** để khởi tạo model.
 - Tiếp theo chúng ta sẽ sử dụng phương thức fit() để tiến hành training model với đối số là X_train_encoded, y_train_topic.

iii. Đánh giá mô hình

- Trên tập dev:
 - Confusion matrix (Hình 13)
 - * Mô hình dự đoán tốt với nhãn có label = $\{0,1,2\}$ và dự đoán không tốt với label = $\{3\}$. Các nhãn sai đa số là dự đoán nhần vào label = $\{0\}$, nguyên nhân là do label này chiếm đa số trong tập dữ liệu nên có hiện tượng bias với label = $\{0\}$.
 - * Nguyên nhân có thể là vì bộ dữ liệu bị mất cân bằng dữ liệu giữa các label.

Hình 13: Confusion matrix of dev set

- F1-score: Mô hình đạt được độ chính xác F1-score macro = 67.89% và F1-score micro = 85.41%.
- Trên tập test:

- Confusion matrix (Hình 14)
 - * Mô hình dự đoán tốt với nhãn có label = $\{0,1,2\}$ và dự đoán không tốt với label = $\{3\}$. Các nhãn sai đa số là dự đoán nhần vào label = $\{0\}$, nguyên nhân là do label này chiếm đa số trong tập dữ liệu nên có hiện tượng bias với label = $\{0\}$.
 - * Nguyên nhân có thể là vì bộ dữ liệu bị mất cân bằng dữ liệu giữa các label.

Hình 14: Confusion matrix of test set

– F1-score: Mô hình đạt được độ chính xác F1-score macro = 70.28% và F1-score micro = 84.78%.

(c) Support Vector Machine

- i. Tiền xử lý dữ liệu (tương tự phần a)
- ii. Huấn luyện mô hình
 - Sử dụng phương thức SVC() mặc định của sklearn.svm để khởi tạo model.
 - Tiếp theo chúng ta sẽ sử dụng phương thức fit() để tiến hành training model với đối số là **X_train_encoded**, **y_train_topic**.
- iii. Đánh giá mô hình
 - Trên tập dev:
 - Confusion matrix (Hình 15)

Hình 15: Confusion matrix of dev set

* Mô hình dự đoán tốt với label = $\{0,1,2\}$ và dự đoán không tốt với label = $\{3\}$. Các nhãn sai đa số là dự đoán nhần vào label = $\{0\}$, nguyên nhân là do label này chiếm đa số trong tập dữ liệu nên có hiện tượng bias với label = $\{0\}$.

- * Nguyên nhân có thể là vì bộ dữ liệu bị mất cân bằng dữ liệu giữa các label.
- F1-score: Mô hình đạt được độ chính xác F1-score macro = 62.77% và F1-score micro = 84.08%.

• Trên tập test:

- Confusion matrix (Hình 16)
 - * Mô hình dự đoán tốt với label = $\{0,1,2\}$ và dự đoán không tốt với label = $\{3\}$. Các nhãn sai đa số là dự đoán nhần vào label = $\{0\}$, nguyên nhân là do label này chiếm đa số trong tập dữ liệu nên có hiện tượng bias với label = $\{0\}$.
 - * Nguyên nhân có thể là vì bộ dữ liệu bị mất cân bằng dữ liệu giữa các label.

Hình 16: Confusion matrix of test set

– F1-score: Mô hình đạt được độ chính xác F1-score macro = 60.92% và F1-score micro = 82.38%.

• Kết luận về 3 thuật toán máy học cơ bản (dựa trên test set):

- Mô hình sử dụng thuật toán Logistic Regression có độ chính xác F1-score macro và F1-score micro cao nhất trong 3 mô hình (F1-score macro = 70.28%, F1-score micro = 84.78%).
- Mô hình sử dụng thuật toán Support Vector Machine có độ chính xác F1-score macro và F1-score micro thấp nhất trong 3 mô hình (F1-score macro = 60.92%, F1-score micro = 82.38%).
- Nhìn chung ta có thể đánh giá được là mô hình sử dụng thuật toán Logistic Regression là tốt nhất trong 3 mô hình khi mà độ chính xác F1-score khá cao.

2. Mang neural, sử dụng word embedding

- (a) Tiền xử lý dữ liệu
 - Cách 1: Tự xây dựng bộ từ vựng và từ điển tương ứng:
 - Xây dưng tập từ vưng V
 - Xây dụng word to index và index_to_word
 - Tiến hành encode dữ liệu văn bản
 - Cách 2: Dùng thư viện có sẵn trong keras. Sử dụng thư viện Tokenizer
- (b) Huấn luyện mô hình
 - Sử dụng 1 lớp Embedding trong mạng neural kết hợp với 1 lớp đầu ra.
 - Accuracy và loss của mô hình (Hình 17)

Hình 17: Accuracy and Loss of task Topic-base using Word Embedding

• Nhận xét: Mô hình bị overfitting. Accuracy trên tập train được cải thiện qua các epoch, ngược lại accuracy trên tập dev lại đi ngang và có xu hướng giảm ở các epoch sau. Loss giảm ở vài epoch đầu nhưng sau đó lai có xu hướng tăng cao.

(c) Đánh giá mô hình

- Confusion matrix (Hình 18)
 - Mô hình dự đoán tốt với label = $\{0,1,2\}$ và dự đoán không tốt với label = $\{3\}$. Các nhãn sai đa số là dự đoán nhần vào label = $\{0\}$, nguyên nhân là do label này chiếm đa số trong tập dữ liệu nên có hiện tượng bias với label = $\{0\}$.
 - Nguyên nhân có thể là vì bộ dữ liệu bị mất cân bằng dữ liệu giữa các label.

Hình 18: Confusion matrix of test set

• F1-score: Mô hình đạt được độ chính xác F1-score macro = 74.99% và F1-score micro = 86.61%.

3. Mạng neural, sử dụng pre-trained embedding

- (a) Tiền xử lý dữ liệu
 - Đọc dữ liệu từ bộ word embedding (sử dụng bộ pre-trained embedding **W2V_ner.vec**) (Nguồn: https://github.com/vietnlp/etnlp)
 - Xây dụng embedding matrix cho pre-trained embedding
 - Tiến hành encode dữ liệu
- (b) Huấn luyện mô hình
 - Sử dụng 1 lớp Embedding trong mạng neural kết hợp với 1 lớp đầu ra.
 - Accuracy và loss của mô hình (Hình 19)

Hình 19: Accuracy and Loss of task Topic-base using Pre-trained Embedding

• Nhận xét: Mô hình đã giảm đi hiện tượng overfitting.

(c) Đánh giá mô hình

- Confusion matrix (Hình 20)
 - Mô hình dự đoán tốt với label = $\{0,1,2\}$ và dự đoán không tốt với label = $\{3\}$. Các nhãn sai đa số là dự đoán nhần vào label = $\{0\}$, nguyên nhân là do label này chiếm đa số trong tập dữ liệu nên có hiện tượng bias với label = $\{0\}$.
 - Nguyên nhân có thể là vì bộ dữ liệu bị mất cân bằng dữ liệu giữa các label.

Hình 20: Confusion matrix of test set

• F1-score: Mô hình đạt được độ chính xác F1-score macro = 70.53% và F1-score micro = 85.06%.

• Kết luận:

- Mô hình sử dụng thuật toán Word Embedding có độ chính xác F1-score macro và F1-score micro cao nhất trong 3 mô hình (F1-score macro = 74.99% và F1-score micro = 86.61%).
- Mô hình sử dụng thuật toán máy học cơ bản có độ chính xác F1-score macro và F1-score micro thấp nhất trong 3 mô hình (F1-score macro = 70.28%, F1-score micro = 84.78%).
- Nhìn chung ta có thể đánh giá được là mô hình sử dụng thuật toán Word Embedding là tốt nhất trong 3 mô hình khi mà độ chính xác F1-score khá cao và dựa vào confusion matrix có thể thấy label = {3} đã được dự đoán tốt hơn. Nhưng có một vấn đề là model này bị overftting khá nghiệm trọng.