

Plano de Ensino para o Ano Letivo de 2020

IDENTIFICAÇÃO				
Disciplina:				Código da Disciplina:
Dinâmica e Sistemas Veiculare	s			EMC815
Course:				
Dynamics and Vehicle Systems	5			
Materia:				
Dinámica y Sistemas Vehiculares				
Periodicidade: Anual	Carga horária total:	160	Carga horária sema	anal: 02 - 00 - 02
Curso/Habilitação/Ênfase:	•		Série:	Período:
Engenharia Mecânica			6	Noturno
Engenharia Mecânica			5	Diurno
Professor Responsável:		Titulação - Graduaç	ção	Pós-Graduação
Fernando Malvezzi		Engenheiro Me	cânico	Doutor
Professores:		Titulação - Graduaç	ção	Pós-Graduação
Fernando Malvezzi		Engenheiro Me	cânico	Doutor
OBJETIVOS - Conhecimentos, Habilidades, e Atitudes				

CONHECIMENTOS

- C1 Dinâmica Veicular.
- C2 Sistema de suspensão.
- C3 Sistema de direção.
- C4 Sistema de Freio.

HABILIDADES

- H1 Analisar a dinâmica de sistemas veiculares.
- H2 Elaborar modelos matemáticos para sistemas veiculares.
- H3 Avaliar resultados obtidos a partir de modelos matemáticos e ensaios experimentais.

ATITUDES

- Al Desenvolver a consciência de que o aluno é o elemento central no processo de ensino-aprendizagem.
- A2 Manter uma atitude crítica e participativa durante as aulas.
- A3 Ter motivação para enfrentar problemas de engenharia automotiva.
- A4 Valorizar o rigor conceitual.
- A5 Trabalhar em equipes e em rede para solucionar problemas de engenharia.

2020-EMC815 página 1 de 11

EMENTA

Dinâmica veicular: dinâmica longitudinal, lateral e vertical. Sistemas veiculares: direção, suspensão, freio e transmissões.

SYLLABUS

Fundamentals of vehicle dynamics. Vehicle systems: steering, suspension, brakes and transmissions

TEMARIO

Fundamentos de la dinámica del vehículo. Sistemas del vehículo: dirección, suspensión, frenos y transmisión.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Teoria - Sim

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Sala de aula invertida
- Problem Based Learning

METODOLOGIA DIDÁTICA

Aulas expositivas onde são apresentados os conceitos básicos do conjunto de conhecimento da disciplina, eventualmente apresentados com o uso de projetor multimidia;

Atividades experimentais no laboratório de engenharia automobilística, onde o aluno, por meio de PBL (problem based learning), consolida o conhecimento adquirido participando de competições acadêmicas.

Durante as atividades de PBL os alunos interagem com profissionais da área automotiva, que atuam como mentores das equipes.

Há o emprego de Flipped Classroom (sala de aula invertida) em temas selecionados.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

MATEMÁTICA: cálculo diferencial e integral, algebra linear, análise vetorial. MECÂNICA ANALÍTICA E VIBRAÇ¿ES.

ELEMENTOS DE MÁQUINAS.

MECANISMOS E DINÂMICA DOS SISTEMAS.

LÍNGUA INGLESA: desejável para a leitura de textos técnicos.

2020-EMC815 página 2 de 11

CONTRIBUIÇÃO DA DISCIPLINA

- Fazer com que o aluno desenvolva fundamentos de sistemas veiculares, contribuindo para seu ingresso na área automotiva.
- Desenvolver a capacidade do aluno para elaborar modelos matemáticos aplicados a sistemas veiculares.
- Exercitar a análise de resultados do desempenho de sistemas veiculares, obtidos por meio de modelos matemáticos e ensaios experimentais.
- Interação com profissionais da área automotiva, que atuam como mentores das equipes.

BIBLIOGRAFIA

Bibliografia Básica:

GILLESPIE, Thomas D. Fundamentals of vehicle dynamics. Warrendale, PA: SAE, 1994. 495 p.

LIMPERT, Rudolf; Society of Automotive Engineers. Brake design and safety. 2. ed. Warrendale, PA: SAE International, c1999. 525 p. ISBN 1560919159.

REIMPELL, Jörnsen et al. The automative chassis: engineering principles: chassis and vehicle overall, wheel suspensions and tupes of drive, axle kinematics and elastrokinematics, steering, springing, tyres, construction and calculations advice; translated from the German by AGET Limited. 2. ed. Warrendale, PA: SAE International, 2008. 444 p. ISBN 0768006570.

Bibliografia Complementar:

BOSCH, Robert. Manual de tecnologia automotiva. Tradução de Euryale de Jesus Zerbini. São Paulo, SP: Edgard Blücher, 2005. 1232 p. ISBN 8521203780.

DIXON, John C. The shock absorber handbook. 2. ed. Warrendale, PA: SAE International, c2007. 415 p. ISBN 9780768018431.

DIXON, John C; Society of Automotive Engineers. Tires, suspension, and handling. 2. ed. Warrendale, PA: SAE International, c1996. 621 p. ISBN 1560918314.

LUQUE, Pablo; ÁLVAREZ, Daniel; VERA, Carlos. Ingeniería del automóvil: sistemas y comportamiento dinámico. Madrid: Paraninfo, 2012. 513 p. ISBN 139788497322829.

MILLIKEN, Douglas L; Society of Automotive Engineers. Race car vehicle dynamics: problems, answers and experiments. Warrendale, PA: SAE International, c2003. 480 p. ISBN 0768011272.

2020-EMC815 página 3 de 11

MILLIKEN, Douglas L; Society of Automotive Engineers. Race car vehicle dynamics: problems, answers and experiments. Warrendale, PA: SAE International, c2003. 480 p. CD-ROM. ISBN 0768011272.

MILLIKEN, William F; MILLIKEN, Douglas L; Society of Automotive Engineers. Chassis design: principles and analysis. Warrendale, PA: SAE International, c2002. 638 p. ISBN 0768008263.

PACEJKA, Hans B; Society of Automotive Engineers. Tire and vehicle dynamics. 2. ed. Warrendale, PA: SAE International, c2006. 642 p. ISBN 0768017025.

WONG, Jo Yung. Theory of ground vehicles. New York: John Wiley, 1978. 330 p.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina anual, com trabalhos e provas (quatro e duas substitutivas).

Pesos dos trabalhos:

 $k_1: 1,0 k_2: 1,0$

Peso de $MP(k_p)$: 0,7 Peso de $MT(k_m)$: 0,3

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

2020-EMC815 página 4 de 11

OUTRAS INFORMAÇÕES

2020-EMC815 página 5 de 11

	SOFTWARES NECESSÁRIOS PARA A DISCIPLINA
- CARSIM	
- LOTUS Suspension	n Analysis

2020-EMC815 página 6 de 11

2020-EMC815 página 7 de 11

	PROGRAMA DA DISCIPLINA	
N° da	Conteúdo	EAA
semana		
1 L	Aulas somente para a la série.	0
1 T	Aulas somente para a la série.	0
2 T	Introdução ao curso. O veículo e seus sub-sistemas.Pneus.	0
2 L	Apresentação do laboratório e das atividades. Formação de grupos.	41% a 60%
3 T	Modelos matemáticos para caracterização de pneus. Modelo de Pacejka.	1% a 10%
3 L	Atividade com o Modelo de Pacejka.	91% a
		100%
4 T	Dinâmica Longitudinal: forças de resistência ao movimento do veículo.	1% a 10%
4 L	Aplicações e exercícios - forças de resistência.	91% a
	151204,000 0 0001010100 101,440 40 10515000014	100%
5 T	Dinâmica Longitudinal: transmissão do torque do motor às rodas.	1% a 10%
5 L	Introdução ao programa CarSim.	91% a
3 1	incibadydo do programa carbini.	100%
6 Т	Dinâmica Longitudinal: frenagem. Curva ideal de frenagem.	11% a 40%
6 L	Aplicações de dinâmica Longitudinal com o programa CarSim.	91% a
0 1	ipirodyoeb de dinamiod hongreddinar com o programa carbim.	100%
7 Т	Freios: Objetivos do sistema. Freios aerodinâmicos e de atrito	11% a 40%
, ±	mecânico. Tipos de sistema de freio de roda: freio a disco e a	110 a 100
	tambor.	
7 L	Aplicações de dinâmica Longitudinal com o programa CarSim.	91% a
		100%
8 L	Período de provas - P1	91% a
	•	100%
8 T	Período de provas - P1	91% a
		100%
9 T	Período de provas - P1.	91% a
		100%
9 L	Período de provas - P1.	91% a
		100%
10 T	Tipos de acionamento: mecânico, hidráulico e pneumático.	1% a 10%
10 L	Determinação experimental do CG de um veículo.	91% a
		100%
11 T	Freios: Componentes e materiais. Noções do prejeto mecânico e	1% a 10%
	térmico.	
11 L	Instrumentação de veículo para avaliação da frenagem.	91% a
		100%
12 T	Análise de um sistema de freios. Exercícios.	11% a 40%
12 L	Instrumentação de veículo para avaliação da frenagem.	61% a 90%
13 L	Teste para avaliação da frenagem.	91% a
		100%
13 T	Teste para avaliação da frenagem.	91% a
		100%

2020-EMC815 página 8 de 11

14 T	Sistema ABS e ESP.	1% a 10%
14 L	Análise da frenagem: comparação entre resultados com modelo	1% a 10%
	analítico, CarSim e experimental.	
15 L	SMILE.Livre para modificações nos Mini Veículos para a la	0
	Competição.	
15 T	SMILE.Livre para modificações nos Mini Veículos para a la	0
	Competição.	
16 T	Suspensões: tipos, vantagens, desvantagens. Mecanismos de	1% a 10%
	suspensão.	
16 L	Livre para modificações nos Mini Veículos para a la Competição.	91% a
		100%
17 Т	Atividades sobre roll center e roll axis.	11% a 40%
17 L	Livre para modificações nos Mini Veículos para a la Competição.	91% a
		100%
18 T	la Competição com os Mini Veículos.	91% a
		100%
18 L	la Competição com os Mini Veículos.	91% a
		100%
19 L	Período de provas - P2.	91% a
	-	100%
19 T	Período de provas - P2.	91% a
		100%
20 T	Período de provas - P2.	91% a
		100%
20 L	Período de provas - P2.	91% a
		100%
21 T	Atividades de planejamento.	0
21 L	Atividades de planejamento.	0
22 L	Atividades de planejamento.	0
22 T	Atividades de planejamento.	0
23 T	Período de provas - PS1.	0
23 L	Período de provas - PS1.	0
24 T	Mecanismos de suspensão. Influência da suspensão no conforto e na	1% a 10%
	estabilidade.	
24 L	Simulação da cinemática da suspensão com o programa LOTUS	91% a
	Suspension Analysis.	100%
25 T	Geometria de suspensões: "anti-pitch", "anti-squat" e "anti-	1% a 10%
	dive".	
25 L	Simulação da cinemática da suspensão com o programa LOTUS	91% a
	Suspension Analysis.	100%
26 T	Dinâmica Lateral: Comportamento do veículo em curva. Modelos de	1% a 10%
	veículos e manobras p/ aval. da dirigibilidade.	_ 0 & 100
26 L	Simulação da cinemática da suspensão com o programa LOTUS	91% a
	Suspension Analysis.	100%
27 T	Dinâmica Lateral: Cálculo analítico do gradiente de rolagem e da	1% a 10%
2, 1	transferência lateral de carga em manobra de raio constante.	10 4 100
27 L	Início do trabalho de suspensão.	91% a
	inicio do ciabatno de baspensao.	91% a 100%
		1000

2020-EMC815 página 9 de 11

28 Т	Geometria dos sistemas de suspensão e direção.	1% a 10%
28 L	Preparação do veículo para o teste de análise subjetiva da	61% a 90%
	dirigibilidade.	
29 T	Direção: Objetivos, tipos de acionamento e assistência.	1% a 10%
29 L	Preparação do veículo para o teste de análise subjetiva/objetiva.	61% a 90%
30 L	Período de provas - P3.	91% a
		100%
30 T	Período de provas - P3.	91% a
		100%
31 T	Teste para análise subjetiva/objetiva de dinâmica lateral.	91% a
		100%
31 L	Teste para análise subjetiva/objetiva de dinâmica lateral.	91% a
		100%
32 T	Direção: Mecanismos. Integração entre os mecanismo de direção e	1% a 10%
	suspensão.	
32 L	Simulação da dinâmica lateral com o programa CarSim.	91% a
		100%
33 T	Componentes elásticos da suspensão: Molas, amortecedores, barra	1% a 10%
	estabilizadora e batentes.	
33 L	Livre para modificações nos Mini Veículos para a 2a Competição.	91% a
		100%
34 T	Dinâmica Vertical: modelos de 1 GL (1/4 do veículo) e 2GL	1% a 10%
	('bounce' e 'pitch\'). Modelo de 2GL ("roll").	
34 L	Livre para modificações nos Mini Veículos para a 2a Competição.	91% a
		100%
35 T	Dinâmica Vertical: manobras e métricas para avaliação de	1% a 10%
	conforto.	
35 L	Livre para modificações nos Mini Veículos para a 2a Competição.	91% a
		100%
36 L	Teste para avaliação da dinâmica vertical.	91% a
		100%
36 T	Teste para avaliação da dinâmica vertical.	91% a
		100%
37 L	2a Competição com os Mini Veículos.	91% a
		100%
37 T	2a Competição com os Mini Veículos.	91% a
		100%
38 L	Período de provas - P4.	91% a
		100%
38 T	Período de provas - P4.	91% a
		100%
39 L	Período de provas - P4.	91% a
		100%
39 T	Período de provas - P4.	91% a
		100%
40 L	Avaliação dos resultados da 2a competição.	41% a 60%
40 T	Avaliação dos resultados da 2a competição.	41% a 60%
41 T	Período de provas - PS2.	0

2020-EMC815 página 10 de 11

41 L Período de provas - PS2.	0
Legenda: T = Teoria, E = Exercício, L = Laboratório	

2020-EMC815 página 11 de 11