Kartkówka 4

gr.1, 12 stycznia 2009

- 1. Niech $S_n = \sum_{k=1}^n \frac{1}{k+2} X_k$, gdzie X_1, X_2, \ldots są niezależnymi zmiennymi o rozkładzie jednostajnym na (-1, 1).
 - a) Znajdź ciąg (a_n) taki, że $(S_n^2 a_n)_{n \ge 0}$ jest martyngałem względem filtracji generowanej przez ciąg (X_n) .
 - b) Czy ten martyngał jest zbieżny prawie na pewno? (Wsk.: $|a-b| \le (a-b) + 2b$ dla a,b>0.)
- 2. Dany jest ciąg zmiennych losowych X_n o wartościach całkowitych taki, że $X_0 = 1$, $|X_n X_{n-1}| \le 1$, $\limsup_{n \to \infty} |X_n| = \infty$ p.n. oraz $(X_n^2 \frac{1}{4}n)$ jest martyngałem względem pewnej filtracji. Niech $\tau = \inf\{n: |X_n| = 5\}$, oblicz $\mathbb{E}\tau$.

Kartkówka 4

gr.2, 12 stycznia 2010

- 1. Dany jest ciąg zmiennych losowych X_n o wartościach całkowitych taki, że $X_0=2, |X_n-X_{n-1}|\leqslant 1$, $\limsup_{n\to\infty}|X_n|=\infty$ p.n. oraz $(X_n^2-\frac{1}{5}n)_{n\geqslant 0}$ jest martyngałem względem pewnej filtracji. Niech $\tau=\inf\{n\colon |X_n|=6\}$, oblicz $\mathbb{E}\tau$.
- 2. Niech $S_n = \sum_{k=1}^n \frac{1}{2k+1} X_k$, gdzie X_1, X_2, \dots są niezależnymi zmiennymi o rozkładzie jednostajnym na (-1,1).
 - a) Znajdź ciąg (a_n) taki, że $(S_n^2 a_n)_{n \ge 0}$ jest martyngałem względem filtracji generowanej przez ciąg (X_n) .
 - b) Czy ten martyngał jest zbieżny prawie na pewno? (Wsk.: $|a-b| \le (a-b) + 2b$ dla a,b > 0.)