EPITA

Mathématiques

Examen S2-B3-APEF

Polynômes, équations différentielles, fonctions

durée : 2 heures

Mars 2025

Nom:
Prénom :
Classe:
NOTE:
Le barème est sur 40 points. La note sera ramenée à 20 par division par 2.
Consignes: — Lire le sujet en entier avant de commencer. Il y a en tout 5 exercices.
— La rigueur de votre rédaction sera prise en compte dans la note.

— Un malus d'un point sur la note sur 20 sera appliqué aux copies manquant de propreté.

— Documents et calculatrices interdits.

Aucune réponse au crayon de papier ne sera corrigée.

Exercice 1 : polynômes (10 points)

Les questions sont indépendantes.

	Soit $P_1(X) = 2X^2 - X^3 + 6X^4 + 3X^6$. Sans utiliser la notion de dérivée, montrer que 0 est une racine de F et trouver son ordre exact de multiplicité. Justifier.				
2. Sc	it $P_2(X) = X^5 + 2X^4 + 2X^3 - 8X^2 - 19X - 10$. On admet que 2 est une racine simple de P_2 .				
(a)	Montrer que -1 est une racine de P_2 et trouver son ordre exact de multiplicité, noté α .				
(b)	Expliquer pourquoi le reste de la division euclidienne de P_2 par $(X-2)(X+1)^{\alpha}$ est nul puis effectuer cette division.				

${\bf EPITA,\ Math\'ematiques}$

 $Examen\ S2\text{-}B3\text{-}APEF-Mars\ 2025$

(c)	En déduire l'écriture de P_2 comme produits de polynômes irréductibles dans $\mathbb{R}[X]$ et dans $\mathbb{C}[X]$. Justifier dans $\mathbb{R}[X]$.
Exercio	ce 2 : équations différentielles (10 points)
Les ques	tions sont indépendantes.
1. On	considère l'équation différentielle (E) $y'' - 6y' + 9y = 3$.
(a)	Trouver une solution particulière (évidente) de (E) .
(b)	Résoudre (E) dans \mathbb{R} .

${\bf EPITA,\ Math\'ematiques}$

 $Examen\ S2\text{-}B3\text{-}APEF-Mars\ 2025$

2.	Résoudre, dans $]0, \pi[, (E) : \sin(x)y' - \cos(x)y = x\sin^2(x)e^{-x^2}.$				

Exercice 3 : étude locale de fonctions (10 points)

Les	questions	sont	indé	pendantes
LCS	questions	SOII	muc	pendantes

1.	Soient $x_0 \in \mathbb{R} \cup \{+\infty, -\infty\}$ et f et g deux fonctions définies au voisinage de x_0 et ne s'y annulant pas Donner deux définitions mathématiques de chacune des notations suivantes : $f = o(g)$ et $f \sim g$ au voisinage de x_0 .		
2.	Donner un équivalent en 0 ET en $+\infty$ de $P(x) = -x^4 + x^2 - 3x$.		
	Soient f et g deux fonctions telles qu'au voisinage de 0 : $f(x) = 2x - x^2 + o(x^2)$ et $g(x) = 2 - 3x^2 + x^3 + o(x^3)$ (a) Donner un équivalent en 0 de f . Justifier brièvement en repartant de la définition.		
	(b) Donner un équivalent en 0 de g .		
	(c) Donner un équivalent en 0 de $h(x) = f(x) \times g(x)$.		
	(d) Donner un équivalent en 0 de $k(x) = f(x) - xg(x)$.		
	Soit f une fonction dérivable une infinité de fois sur \mathbb{R} , telle qu'au voisinage de 0 , $f(x) = 2x + 6x^3 + o(x^3)$. (a) Remplacer les pointillés :		
	$f(x) = \dots + o(x^2), xf(x) = \dots + o(x^3), xf(x) = \dots + o(x^4)$		
	(b) Donner $f(0)$ ainsi que toutes les dérivées successives de f en 0 que l'énoncé permet de connaître.		
	, , , , , , , , , , , , , , , , , , ,		

Exercice 4 : développements limités (6 points)

1. Soi	$f : x \longmapsto \frac{1}{1+x^2} \text{ et } g : x \longmapsto \frac{\sin(x)}{1+x^2}.$
(a)	Donner le développement limité en 0 à l'ordre 4 de f .
(b)	Donner le développement limité en 0 à l'ordre 4 de g .
2. Soi	it $h: x \longmapsto \ln(1 + \cos(x))$.
(a)	Quel sera le premier terme du développement limité de h en 0 ?
(b)	Trouver le développement limité de h en 0 à l'ordre 4 après avoir pris soin de rappeler les DL des fonctions usuelles utilisées.

[Suite des pointillés au dos et dernier exercice!]

${\bf EPITA,\ Math\'ematiques}$

 $Examen\ S2\text{-}B3\text{-}APEF-Mars\ 2025$

• • •	
• • •	
Exercice 8	5 : calcul de limites (4 points)
	$a^{2x} = 2\sin(x) = 1$
1. Calcule	$\lim_{x\to 0} \frac{e^{2x}-2\sin(x)-1}{1-\sqrt{1-x}}$. Vous prendrez soin de votre rédaction.
	$\sim \sim 1 - \sqrt{1 - x}$
9. Coloula	$\lim_{x \to +\infty} \left(\cos\left(\frac{1}{x}\right)\right)^{x^2}$. Vous prendrez soin de votre rédaction.
2. Carcure	$\lim_{x\to +\infty} \left(\cos\left(\frac{-}{x}\right)\right)$. Vous prendrez som de votre redaction.