Laboratorium Fizyki Ciała Stałego	3	Przewodnictwo cieplne	Zespół w składzie: 1. Paweł Rzońca	
Wydział: WFiIS	Kier	unek: Fizyka Techniczna	Rok: 3	2. Paweł Kozioł
Data wykonania: 03.12.	2015	Data oddania: 17.12.2015	Ocena:	3. Agata Sławska

Aparatura i metodyka

•

•

•

Opracowanie wyników

Wartości własne λ równania dyfuzji ciepła

Wartości λ^2 obliczono ze wzorów podanych w tabeli 1, a ich niepewności z prawa przenoszenia niepewności.

Zależność temperatury od czasu i współczynnik przewodnictwa cieplnego

Dla każdego z ciał wykonano wykres $\ln(T_{max}-T)$ w funkcji czasu. W programie Origin dopasowano do wykresów proste w odpowiednich przedziałach. W tym przypadku współczynnik nachylenia prostych wynosi

$$|a| = \frac{\lambda_T^2 K_T \lambda^2 K}{\lambda_T^2 K_T + \lambda^2 K} = \frac{0.08798[1/s] \cdot \lambda^2 K}{0.08798[1/s] + \lambda^2 K},$$
(1)

gdzie $\lambda_T^2 K_T = 0,08798[1/s]$ jest poprawką na przewodnictwo cieplne termometru. Z równości 1 wyznaczamy K dla każdej z próbek. Niepewności obliczamy z prawa propagacji niepewności. Wyniki przedstawiamy w tabeli 3.

$$K = \frac{|a| \cdot 0,08798[1/s]}{(0,08798[1/s] - |a|)\lambda^2}.$$
 (2)

Podsumowanie

Wyniki zestawiono w tabeli 3. Dla teflonu otrzymane przewodnictwo cieplne zgadza się z wartością tabelaryczną w granicach niepewności pomiarowych. Pozostałe wyniki zgadzają się z wartościami tabelarycznymi co do rzędu wielkości, gdzie dla próbek stali węglowej, brązu i aluminium otrzymano wyniki zaniżone, a dla pozostałych zawyżone. Błędy te mogą wynikać z niedoskonałości geometrii badanych próbek lub drobnych zanieczyszczeń materiałów. W przypadku drewnianej kuli dodatkowym czynnikiem był lakier którym była pokryta jej powierzchnia.

Tabela 1: Wzory użyte do obliczania kwadratów wartości własnych

kula o promieniu R	walec o długości a i promieniu R	prostopadłościan o bokach a, b i c
$\lambda^2 = (\pi/R)^2$	$\lambda^2 = (2, 4/R)^2 + (\pi/a)^2$	$\lambda^2 = (\pi/a)^2 + (\pi/b)^2 + (\pi/c)^2$

Tabela 2: Wyniki pomiarów wymiarów próbek, obliczone kwadraty wartości własnych oraz niepewności.

Próbka	a	Δa	b	Δb	c	Δc	R	ΔR	λ^2	$\Delta \lambda^2$
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	$[1/\mathrm{mm}^2]$	$[1/\mathrm{mm}^2]$
brąz	36,60	0,10	36,80	0,10	59,45	0,10	-	-	0,017448	$5,7\cdot10^{-5}$
teflon	109,95	0,10	-	-	-	-	15,03	0,10	0,02633	$3,4\cdot10^{-4}$
aluminium	60,10	0,10	-	-	-	-	15,13	0,10	0,02791	$3,3\cdot10^{-4}$
stal węglowa	35,50	0,10	55,85	0,10	54,95	0,10	-	-	0,014264	$4,7\cdot10^{-5}$
czarny krążek	25,40	0,10	-	-	-	-	38,00	0,10	0,01929	$1,2\cdot 10^{-4}$
buk	-	-	-	-	-	-	25,05	0,10	0,01573	$1,3\cdot 10^{-4}$

Tabela 3: Wyniki obliczeń oraz wartości tabelaryczne współczynników przewodnictwa K_{tab} .

Próbka	λ^2	$U(\lambda^2)$	a	U(a)	K	U(K)	K_{tab}
	$[1/\mathrm{mm}^2]$	$[1/\mathrm{mm}^2]$	[1/s]	[1/s]	$[\mathrm{mm}^2/\mathrm{s}]$	$[\mathrm{mm}^2/\mathrm{s}]$	$[\mathrm{mm}^2/\mathrm{s}]$
brąz	0,017448	$5,7\cdot10^{-5}$	0,048608	$3,6\cdot10^{-5}$	6,225	0,042	8,59
teflon	0,02633	$3,4\cdot10^{-4}$	0,0031843	$4.6 \cdot 10^{-6}$	0,1256	0,0032	0,124
aluminium	0,02791	$3,3\cdot10^{-4}$	0,08315	$4,7\cdot10^{-4}$	54,3	5,7	84,18
stal węglowa	0,014264	$4,7\cdot10^{-5}$	0,034766	$6.8 \cdot 10^{-5}$	4,030	0,030	11,72
czarny krążek (guma)	0,01929	$1,2\cdot 10^{-4}$	0,006443	$2,5\cdot10^{-5}$	0,3604	0,0047	0,089-0,13
buk	0,01573	$1,3\cdot10^{-4}$	0,0038668	$5,3\cdot10^{-6}$	0,2571	0,0043	0,12-0,24

Rysunek 1: Wykres $\ln(T_{max}-T)$ w funkcji czasu dla próbki brązu

Rysunek 2: Wykres $\ln(T_{max}-T)$ w funkcji czasu dla próbki teflonu

Rysunek 3: Wykres $\ln(T_{max}-T)$ w funkcji czasu dla próbki aluminium

Rysunek 4: Wykres $\ln(T_{max}-T)$ w funkcji czasu dla próbki stali węglowej

Rysunek 5: Wykres $\ln(T_{max}-T)$ w funkcji czasu dla czarnego krążka

Rysunek 6: Wykres $\ln(T_{max}-T)$ w funkcji czasu dla kuli bukowej