1 Risk Analysis

As with every project, there is a risk of failure associated with working. I list here some of the regular problems, and the move onto risks specifically related to my project.

1.1 Common Risks

Slow Pace (Probability: Possible, Impact: Severe)

This happens when the target time for a project is underestimated, or when the project hits an unexpected snag. Firstly, I have built some stretch time into each section of my workplan, as seen in the workplan section. If this slow pace becomes too drastic, I will use a simple version of my linear code to produce a simple parallel version.

Fast Pace (Unlikely, Negligible)

In the unlikely situation that I work faster than my work plan dictates, I have several options to continue work. Firstly, I can optimise my pre-existing programs, both linear and parallel. This will give me definitive results about how fast my program can recognise Wally in parallel. Secondly, I can create a system that can show members of the public how my program works. This will start to create a project suitable for HPC Outreach.

In Absentia (Possible, Moderate)

Often in projects, a supervisor or student will be unable to attend meetings. This should be negated by the fact that I normally have a netbook on my person, enabling work to be done remotely. This extends to meetings, they can be done online using emails or other virtual techniques.

Broken Equipment (Unlikley, Severe)

If my normal workstation, a netbook, happens to break, I should be able to move work to a desktop. This should be possible if I continuously use a remote versioning system, like github.

Sickness (Possible, Moderate/Severe)

Illness cannot be prevented, but in general I will be able to continue work when ill, and work in absentia. In the case of a major illness, I will have to rely on the methods explained for slow pace.

Ennui (Certain, Moderate)

Inevitably, I will become bored with the area of work I am assigned. I will solve this by working on my report, or on other sections of code, for instance, the visual interpretation of the solution. If I become entirely disillusioned with the project, I will have to simply exercise some willpower; my masters degree relies on this.

1.2 Risks Specific to a Where's Wally Solver

Unable to Find Wally (Possible, Catastrophic)

Not Allowed To Use Wally (Unlikely, Catastrophic)

It is conceivable that Walkers Books, publishers of Where's Wally would not allow me

to use their Wally figure. Although I am skeptical as to the legality of that, there are ways around such a problem. I could generate my own Where's Wally type puzzles, with some similarly easy to find figure obscured in a crowd. This could be done by randomly placing a large stock of images on a canvas.

Not Enough Wally Samples (Probable, Moderate)

In the case that I run out of Where's Wally images to test my project against, I will have to generate images. I will do this in the same manner as with the above risk.

Not Fast Enough (Probable, Negligible)

If my code is not fast enough to compare to the speed that humans can solve a puzzle, then I will have to optimise my code. If this can't be done in a sufficient time frame, then the completion of a parallel solution will have to be the final stage of my project.

Not Suitable For HPC Outreach (Probable, Negligible)

This is very likely, and in this case, my project will have to be the starting point for another HPC Outreach project.