Seminar 1

- **1.** Which ones of the usual symbols of addition, subtraction, multiplication and division define an operation (composition law) on the numerical sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} ?
 - **2.** Let $A = \{a_1, a_2, a_3\}$. Determine the number of:
 - (i) operations on A;
 - (ii) commutative operations on A;
 - (iii) operations on A with identity element.

Generalization for a set A with n elements $(n \in \mathbb{N}^*)$.

- **3.** Decide which ones of the numerical sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are groups together with the usual addition or multiplication.
 - **4.** Let "*" be the operation defined on \mathbb{R} by x * y = x + y + xy. Prove that:
 - (i) $(\mathbb{R}, *)$ is a commutative monoid.
 - (ii) The interval $[-1, \infty)$ is a stable subset of $(\mathbb{R}, *)$.
 - **5.** Let "*" be the operation defined on \mathbb{N} by x * y = g.c.d.(x, y).
 - (i) Prove that $(\mathbb{N}, *)$ is a commutative monoid.
- (ii) Show that $D_n = \{x \in \mathbb{N} \mid x/n\}$ $(n \in \mathbb{N}^*)$ is a stable subset of $(\mathbb{N}, *)$ and $(D_n, *)$ is a commutative monoid.
 - (iii) Fill in the table of the operation "*" on D_6 .
 - **6.** Determine the finite stable subsets of (\mathbb{Z}, \cdot) .
 - **7.** Let (G, \cdot) be a group. Show that:
 - (i) G is abelian $\iff \forall x, y \in G, (xy)^2 = x^2y^2.$
 - (ii) If $x^2 = 1$ for every $x \in G$, then G is abelian.
- **8.** Let "." be an operation on a set A and let $X,Y\subseteq A$. Define an operation "*" on the power set $\mathcal{P}(A)$ by

$$X * Y = \{x \cdot y \mid x \in X, y \in Y\}.$$

Prove that:

- (i) If (A, \cdot) is a monoid, then $(\mathcal{P}(A), *)$ is a monoid.
- (ii) If (A, \cdot) is a group, then in general $(\mathcal{P}(A), *)$ is not a group.

Seminar 2

1. Let r, s, t, v be the homogeneous relations defined on the set $M = \{2, 3, 4, 5, 6\}$ by

$$x r y \Longleftrightarrow x < y$$

$$x s y \Longleftrightarrow x | y$$

$$x t y \Longleftrightarrow g.c.d.(x, y) = 1$$

$$x v y \Longleftrightarrow x \equiv y \pmod{3}.$$

Write the graphs R, S, T, V of the given relations.

- **2.** Let A and B be sets with n and m elements respectively $(m, n \in \mathbb{N}^*)$. Determine the number of:
 - (i) relations having the domain A and the codomain B;
 - (ii) homogeneous relations on A.
- **3.** Give examples of relations having each one of the properties of reflexivity, transitivity and symmetry, but not the others.
- **4.** Which ones of the properties of reflexivity, transitivity and symmetry hold for the following homogeneous relations: the strict inequality relations on \mathbb{R} , the divisibility relation on \mathbb{N} and on \mathbb{Z} , the perpendicularity relation of lines in space, the parallelism relation of lines in space, the congruence of triangles in a plane, the similarity of triangles in a plane?
- **5.** Let $M = \{1, 2, 3, 4\}$, let r_1 , r_2 be homogeneous relations on M and let π_1 , π_2 , where $R_1 = \Delta_M \cup \{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)\}$, $R_2 = \Delta_M \cup \{(1, 2), (1, 3)\}$, $\pi_1 = \{\{1\}, \{2\}, \{3, 4\}\}$, $\pi_2 = \{\{1\}, \{1, 2\}, \{3, 4\}\}$.
 - (i) Are r_1, r_2 equivalences on M? If yes, write the corresponding partition.
 - (ii) Are π_1, π_2 partitions on M? If yes, write the corresponding equivalence relation.
 - **6.** Define on \mathbb{C} the relations r and s by:

$$z_1 r z_2 \Longleftrightarrow |z_1| = |z_2|;$$
 $z_1 s z_2 \Longleftrightarrow arg z_1 = arg z_2 \text{ or } z_1 = z_2 = 0.$

Prove that r and s are equivalence relations on \mathbb{C} and determine the quotient sets (partitions) \mathbb{C}/r and \mathbb{C}/s (geometric interpretation).

7. Let $n \in \mathbb{N}$. Consider the relation ρ_n on \mathbb{Z} , called the *congruence modulo* n, defined by:

$$x \rho_n y \iff n|(x-y)$$
.

Prove that ρ_n is an equivalence relation on \mathbb{Z} and determine the quotient set (partition) \mathbb{Z}/ρ_n . Discuss the cases n=0 and n=1.

- **8.** Determine all equivalence relations and all partitions on the set $M = \{1, 2, 3\}$.
- **9.** Let $M = \{0, 1, 2, 3\}$ and let $h = (\mathbb{Z}, M, H)$ be a relation, where

$$H = \{(x, y) \in \mathbb{Z} \times M \mid \exists z \in \mathbb{Z} : x = 4z + y\}.$$

Is h a function?

10. Consider the following homogeneous relations on \mathbb{N} , defined by:

$$m r n \Longleftrightarrow \exists a \in \mathbb{N} : m = 2^a n$$
,

$$m s n \iff (m = n \text{ or } m = n^2 \text{ or } n = m^2).$$

Are r and s equivalence relations?