#01. 기본 준비

패키지 참조

그래프 전역 설정

데이터 준비하기

타이타닉 탑승객 데이터

#02. 데이터 전처리

범주형 데이터 처리

각 요인별 데이터 타입 확 이

범주형 데이터 처리

#03. 빈도 막대 그래프

- 1. 기본 사용 방법
- 2. 범례 기준 추가

객실 등급별 탑승 지역 빈 도

객실 등급별 성별 빈도

객실 등급별 생존여부 빈도

3. 병렬 빈도 막대 그래프

객실 등급에 따른 생존 여 부를 두 개의 그래프로 분

seaborn - 빈도 그래프

막대 그래프 중에서 빈도 그래프 그리는 기능에 최적화 된 catplot() 메서드의 사용방법 확인

#01. 기본 준비

패키지 참조

```
from matplotlib import pyplot as plt
from pandas import read_excel
import seaborn as sb
```

그래프 전역 설정

```
plt.rcParams["font.family"] = 'Malgun Gothic'
#plt.rcParams["font.family"] = 'AppleGothic'
plt.rcParams["font.size"] = 10
plt.rcParams["figure.figsize"] = (5, 5)
plt.rcParams["axes.unicode_minus"] = False
```

데이터 준비하기

타이타닉 탑승객 데이터

출처: https://www.kaggle.com/competitions/titanic

#01. 기본 준비

패키지 참조

그래프 전역 설정

데이터 준비하기

타이타닉 탑승객 데이터

#02. 데이터 전처리

범주형 데이터 처리

각 요인별 데이터 타입 확 인

범주형 데이터 처리

#03. 빈도 막대 그래프

- 1. 기본 사용 방법
- 2. 범례 기준 추가

객실 등급별 탑승 지역 빈 도

객실 등급별 성별 빈도

객실 등급별 생존여부 빈도

3. 병렬 빈도 막대 그래프

객실 등급에 따른 생존 여 부를 두 개의 그래프로 분

변수명	설명
Passengerld	탑승객의 ID(인덱스와 같은 개념)
Survived	생존유무(0은 사망 1은 생존)
Pclass	객실의 등급
Name	이름
Sex	성별
SibSp	동승한 형제 혹은 배우자의 수
Parch	동승한 자녀 혹은 부모의 수
Ticket	티켓번호
Fare	요금
Cabin	선실
Embarked	탑승지 (C = Cherbourg, Q = Queenstown, S = Southampton)

titanic = read_excel("https://data.hossam.kr/D01/titanic.xlsx", index_cc
titanic.head()

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticl
PassengerId								
1	0	3	Braund, Mr. Owen	male	22.0	1	0	A/5 21171

#01. 기본 준비

패키지 참조

그래프 전역 설정

데이터 준비하기

타이타닉 탑승객 데이터

#02. 데이터 전처리

범주형 데이터 처리

각 요인별 데이터 타입 확 인

범주형 데이터 처리

#03. 빈도 막대 그래프

- 1. 기본 사용 방법
- 2. 범례 기준 추가

객실 등급별 탑승 지역 빈 도

객실 등급별 성별 빈도

객실 등급별 생존여부 빈도

3. 병렬 빈도 막대 그래프

객실 등급에 따른 생존 여 부를 두 개의 그래프로 분

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticl
Passengerld								
			Harris					
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 175
3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/0 310128
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803
5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450

#02. 데이터 전처리

#01. 기본 준비

패키지 참조

그래프 전역 설정

데이터 준비하기

타이타닉 탑승객 데이터

#02. 데이터 전처리

범주형 데이터 처리

각 요인별 데이터 타입 확 인

범주형 데이터 처리

#03. 빈도 막대 그래프

- 1. 기본 사용 방법
- 2. 범례 기준 추가

객실 등급별 탑승 지역 빈 도

객실 등급별 성별 빈도

객실 등급별 생존여부 빈도

3. 병렬 빈도 막대 그래프

객실 등급에 따른 생존 여 부를 두 개의 그래프로 분

범주형 데이터 처리

각 요인별 데이터 타입 확인

titanic.dtypes

```
Survived
              int64
Pclass
              int64
             object
Name
             object
Sex
            float64
Age
SibSp
              int64
             int64
Parch
Ticket
             object
            float64
Fare
Cabin
            object
Embarked
             object
dtype: object
```

범주형 데이터 처리

#01. 기본 준비

패키지 참조

그래프 전역 설정

데이터 준비하기

타이타닉 탑승객 데이터

#02. 데이터 전처리

범주형 데이터 처리

각 요인별 데이터 타입 확 인

범주형 데이터 처리

#03. 빈도 막대 그래프

- 1. 기본 사용 방법
- 2. 범례 기준 추가

객실 등급별 탑승 지역 빈 도

객실 등급별 성별 빈도

객실 등급별 생존여부 빈도

3. 병렬 빈도 막대 그래프

객실 등급에 따른 생존 여 부를 두 개의 그래프로 분 Survived category
Pclass category
Name object
Sex category
Age float64
SibSp int64
Parch int64

Ticket object
Fare float64

Embarked category

category

dtype: object

Cabin

#03. 빈도 막대 그래프

병렬 막대그래프는 두 변량에 대한 빈도 막대그래프 2개를 각각의 캔버스(canvas)에 병렬로 나열한 그래프

catplot() 메서드를 사용.

catplot() 은 기본적으로 범주형 변수에 대한 그래프를 그리는 데 사용되지만, 다양한 플롯 유형을 지원한다.

1. 기본 사용 방법

x 축으로 집단을 구분할 수 있는 범주형 변수를 설정하고 kind='count' 파라미터를 설정한다.

catplot() 함수의 결과물은 그래프의 크기가 rcParams 속성의 영향을 받지 않는다.

07 seaborn 빈도그래프.ipynb

```
seaborn - 빈도 그래프
```

#01. 기본 준비

패키지 참조

그래프 전역 설정

데이터 준비하기

타이타닉 탑승객 데이터

#02. 데이터 전처리

범주형 데이터 처리

각 요인별 데이터 타입 확 인

범주형 데이터 처리

#03. 빈도 막대 그래프

- 1. 기본 사용 방법
- 2. 범례 기준 추가

객실 등급별 탑승 지역 빈 도

객실 등급별 성별 빈도

객실 등급별 생존여부 빈도

3. 병렬 빈도 막대 그래프

객실 등급에 따른 생존 여 부를 두 개의 그래프로 분 크기 설정을 위해서는 catplot() 메서드로부터 객체를 리턴받아 사이즈 설정을 개별적으로 수행해야 한다.

```
g = sb.catplot(data=df,
x='Pclass', # 집단을 구분하는 기준
kind="count", # 그래프 종류
palette='pastel', # 색상표 지정
edgecolor='0.5' # 막대 테두리 색상 투명도 지정(0=불투명 ~ 1=투명)

g.fig.set_figwidth(5)
g.fig.set_figheight(3)

plt.show()
plt.close()
```

#01. 기본 준비

패키지 참조

그래프 전역 설정

데이터 준비하기

타이타닉 탑승객 데이터

#02. 데이터 전처리

범주형 데이터 처리

각 요인별 데이터 타입 확 인

범주형 데이터 처리

#03. 빈도 막대 그래프

- 1. 기본 사용 방법
- 2. 범례 기준 추가

객실 등급별 탑승 지역 빈 도

객실 등급별 성별 빈도

객실 등급별 생존여부 빈도

3. 병렬 빈도 막대 그래프

객실 등급에 따른 생존 여 부를 두 개의 그래프로 분

2. 범례 기준 추가

각 막대를 구분할 수 있는 범주형 변수를 hue 파라미터로 추가

kind : 그래프의 종류는 범주형 축 수준 플로팅 함수의 이름 (그래프 형태에 관여)

• "strip", "swarm", "box", "violin", "boxen", "point", "bar" 또는 "count"

객실 등급별 탑승 지역 빈도

```
sb.catplot(data=df,
	x='Pclass', # 집단을 구분하는 기준
	kind='count', # 빈도 막대그래프 그리기
	hue='Embarked'
)
```

#01. 기본 준비

패키지 참조

그래프 전역 설정

데이터 준비하기

타이타닉 탑승객 데이터

#02. 데이터 전처리

범주형 데이터 처리

각 요인별 데이터 타입 확 인

범주형 데이터 처리

#03. 빈도 막대 그래프

- 1. 기본 사용 방법
- 2. 범례 기준 추가

객실 등급별 탑승 지역 빈 도

객실 등급별 성별 빈도

객실 등급별 생존여부 빈도

3. 병렬 빈도 막대 그래프

객실 등급에 따른 생존 여 부를 두 개의 그래프로 분 plt.show()
plt.close()

객실 등급별 성별 빈도

```
sb.catplot(data=df,
 x='Pclass', # 집단을 구분하는 기준
 kind='count', # 빈도 막대그래프 그리기
```

#01. 기본 준비

패키지 참조

그래프 전역 설정

데이터 준비하기

타이타닉 탑승객 데이터

#02. 데이터 전처리

범주형 데이터 처리

각 요인별 데이터 타입 확

범주형 데이터 처리

#03. 빈도 막대 그래프

- 1. 기본 사용 방법
- 2. 범례 기준 추가

객실 등급별 탑승 지역 빈 두

객실 등급별 성별 빈도

객실 등급별 생존여부 빈도

3. 병렬 빈도 막대 그래프

객실 등급에 따른 생존 여 부를 두 개의 그래프로 분

객실 등급별 생존여부 빈도

```
seaborn - 빈도 그래프
#01. 기본 준비
패키지 참조
그래프 전역 설정
데이터 준비하기
```

#02. 데이터 전처리

범주형 데이터 처리

각 요인별 데이터 타입 확 인

타이타닉 탑승객 데이터

범주형 데이터 처리

#03. 빈도 막대 그래프

- 1. 기본 사용 방법
- 2. 범례 기준 추가

객실 등급별 탑승 지역 빈 도

객실 등급별 성별 빈도

객실 등급별 생존여부 빈도

3. 병렬 빈도 막대 그래프

객실 등급에 따른 생존 여 부를 두 개의 그래프로 분

#01. 기본 준비

패키지 참조

그래프 전역 설정

데이터 준비하기

타이타닉 탑승객 데이터

#02. 데이터 전처리

범주형 데이터 처리

각 요인별 데이터 타입 확

범주형 데이터 처리

#03. 빈도 막대 그래프

- 1. 기본 사용 방법
- 2. 범례 기준 추가

객실 등급별 탑승 지역 빈

객실 등급별 성별 빈도

객실 등급별 생존여부 빈도

3. 병렬 빈도 막대 그래프

객실 등급에 따른 생존 여 부를 두 개의 그래프로 분

3. 병렬 빈도 막대 그래프

이미 범주가 주어진 상황에서 추가적인 범주를 표현하고자 할 때 그래프를 두 개로 분리

병렬 막대그래프는 두 변량에 대한 빈도 막대그래프 2개를 각각의 캔버스(canvas)에 병렬로 나열한 그래프

Seaborn으로 병렬 빈도 막대그래프를 그리려면 sns.catplot 함수에 kind='count' 와 col 옵션을 추가 한다.

#01. 기본 준비

패키지 참조

그래프 전역 설정

데이터 준비하기

타이타닉 탑승객 데이터

#02. 데이터 전처리

범주형 데이터 처리

각 요인별 데이터 타입 확 인

범주형 데이터 처리

#03. 빈도 막대 그래프

- 1. 기본 사용 방법
- 2. 범례 기준 추가

객실 등급별 탑승 지역 빈 도

객실 등급별 성별 빈도

객실 등급별 생존여부 빈도

3. 병렬 빈도 막대 그래프

객실 등급에 따른 생존 여 부를 두 개의 그래프로 분

객실 등급에 따른 생존 여부를 두 개의 그래프로 분리

4. 가로 빈도 막대 그래프

 $\left[\mathbf{x}\right]$ 파라미터 대신 $\left[\mathbf{y}\right]$ 파라미터를 사용한다.

```
seaborn - 빈도 그래프
```

#01. 기본 준비

패키지 참조

그래프 전역 설정

데이터 준비하기

타이타닉 탑승객 데이터

#02. 데이터 전처리

범주형 데이터 처리

각 요인별 데이터 타입 확 인

범주형 데이터 처리

#03. 빈도 막대 그래프

- 1. 기본 사용 방법
- 2. 범례 기준 추가

객실 등급별 탑승 지역 빈 도

객실 등급별 성별 빈도

객실 등급별 생존여부 빈도

3. 병렬 빈도 막대 그래프

객실 등급에 따른 생존 여 부를 두 개의 그래프로 분 g = sb.catplot(data=df,
y='Pclass', # 집단을 구분하는 기준
kind='count',
hue='Survived'
)

g.fig.set_figwidth(7)
g.fig.set_figheight(3)

plt.show()
plt.close()

