

Título del proyecto

Nombre de xlx estudiante

Universidad Nacional de Colombia Facultad de , Departamento Ciudad, Colombia Año

Título del proyecto

Nombre de xlx estudiante

Trabajo presentado como requisito parcial para optar al título de: ${\bf T\'{i}tulo~esperado}$

Directorx: Nombre de quien dirige

Línea de Investigación: Línea de investigación

Universidad Nacional de Colombia Facultad de , Departamento de Ciudad, Colombia Año

Declaración de obra original

He leído el Acuerdo 035 de 2003 del Consejo Académico de la Universidad Nacional. «Reglamento sobre propiedad intelectual» y la Normatividad Nacional relacionada al respeto de los derechos de autor. Esta disertación representa mi trabajo original, excepto donde he reconocido las ideas, las palabras, o materiales de otros autores.

Cuando se han presentado ideas o palabras de otros autores en esta disertación, he realizado su respectivo reconocimiento aplicando correctamente los esquemas de citas y referencias bibliográficas en el estilo requerido.

He obtenido el permiso del autor o editor para incluir cualquier material con derechos de autor (por ejemplo, tablas, figuras, instrumentos de encuesta o grandes porciones de texto).

Por último, he sometido esta disertación a la herramienta de integridad académica, definida por la universidad.

Nombre completo

Fecha: November 4, 2023

Agradecimientos

Resumen

Abstract

Contents

\mathbf{R}	esumen & Abstract	iv
Li	ist of Figures	vii
Li	ist of Tables	viii
Li	ist of symbols and abbreviations	ix
1	Introduction	1
	1.1 Direct Detection	1
	1.2 Capacity under direct detection	2
	1.3 Trivial examples of phase retrieve from the magnitud	2
2	Tukey signaling	3
Bibliography		4

List of Figures

List of Tables

List of symbols and abbreviations

 $X \sim \mathcal{N}(\mu, \sigma^2) \ X$ has a Gaussian distribution with mean μ and variance σ_2 DD — Direct Detection

Chapter 1

Introduction

Square-law detection, also known as Direct detection (DD), is a detection scheme that measures the square magnitude of a complex wave form, clearly this scheme is a nonlinear waveform detection because of the square operation. Direct detection is widely used in different scientific fields, for example in crystallography, radio astronomy, biomedical spectroscopy, among others [1]. In particular this scheme is often used in optical communications, specially in short-haul systems with length up to $50\,\mathrm{km}$ [2] due to its simplicity, or even in shorter links up to $10\,\mathrm{km}$ for example in rack to rack communications in big data centers.

In the recent years the interest of studying systems with DD is getting bigger again, because of the simplicity of the receivers, which are a promising low-cost alternative compared to the coherent detection systems [3]. In this context two questions or problems arise. First, how good is a system with DD compared to a system with coherent detection in terms of the information capacity of the channels. And second, how to design a system that exploits the information capacity of the DD channel in the best possible way.

In this work we cover briefly two answers given to the first question, and then we review two systems proposed for a channel with DD. Then we propose a new decoder for the second system, with reduced complexity at the expenses of a slightly worse performance.

1.1 Direct Detection

In optical communication DD is performed with a single photodiode, that convert the optical signal to an electric signal trough the photoelectric effect according to the next equation [4]:

$$I_p = R_d \cdot P_{in} \tag{1.1}$$

where I_p is the photocurrent, P_{in} is the incident optical power (which is proportional to the square of the magnitud of the electric field, that is where the square-law term comes from), and R_d is the so called responsivity of the photodetector, with units of A/W.

The noise in the photodiode are generated primarily by two mechanisms, in the first place the shot noise, and in the second place thermal noise. Introduction 2

The shot noise is models the fact that the photocurrent consist of a stream of electrons generated at random times. Mathematically the current corresponding to the shot noise $i_s(t)$ is a stationary random process with Poisson distribution, but is usually approximated by a Gaussian distribution with variance given by [4]:

$$\sigma_s^2 = 2qI_pB \tag{1.2}$$

where q is the electron charge, I_p the photocurrent, and B the bandwidth of the system. σ_s can be interpreted as the RMS value of the shot noise current $i_s(t)$.

The termal noise is generated by the movement of electrons due to the ambient temperature, and the variance of the noise is given by [4]:

$$\sigma_{th}^2 = \frac{4k_B T}{R_L} F_n B \tag{1.3}$$

where k_B is the Boltzmann constant, T is the temperature given in kelvin, R_L is the load resistance, B the bandwidth, and F_n is the amplifier noise figure.

With this in mind the output current of the direct detection process is given by:

$$I(t) = I_p + i_s(t) + i_{th}(t) \tag{1.4}$$

with $i_s(t) \sim \mathcal{N}(0, \sigma_s^2)$ and $i_{th}(t) \sim \mathcal{N}(0, \sigma_{th}^2)$

1.2 Capacity under direct detection

A communications channel that uses DD can retrieve only the information about the magnitude of the signal, in contrast a system with coherent detection can retrieve the magnitud and phase of the signal. This means that DD scheme ignores one of the two degrees of freedom, and hence it is reasonable to think that the capacity of this systems should be approximately half that of the system with coherent detection [1], [3], [5].

However in [3] it is shown that the spectra efficiency of a band limited system under DD is at most 1 bit/s/Hz less than the same system under coherent detection. Also in [5] it is proven that for time limited signals the capacity is also at most one bit les than the coherent case. This means that contrary to intuition, the loss in the capacity of a system under DD is not a half of the coherent system, but just 1 bit/s/Hz.

The results of this papers show that the systems with DD have a big potential, because the detector are cheaper and easier to implement (basically just one photodiode) and the loss in the capacity may not be as big as thought. However the problem to find a system simple enough that uses the potential of the DD is still open.

1.3 Trivial examples of phase retrieve from the magnitud

Chapter 2

Tukey signaling

Bibliography

- [1] A. Tasbihi and F. R. Kschischang, "Direct detection under tukey signalling," *Journal of Lightwave Technology*, vol. 39, no. 21, pp. 6845–6857, 2021. DOI: 10.1109/JLT.2021. 3109852.
- [2] G. P. Agrawal, "Introduction," in Fiber-Optic Communication Systems. John Wiley & Sons, Ltd, 2010, ch. 1, pp. 1-23, ISBN: 9780470918524. DOI: https://doi.org/10.1002/9780470918524.ch1. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470918524.ch1. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470918524.ch1.
- [3] A. Mecozzi and M. Shtaif, "Information capacity of direct detection optical transmission systems," *Journal of Lightwave Technology*, vol. 36, no. 3, pp. 689–694, 2018. DOI: 10.1109/JLT.2017.2777188.
- [4] G. P. Agrawal, "Optical receivers," in Fiber-Optic Communication Systems. John Wiley & Sons, Ltd, 2010, ch. 4, pp. 128–181, ISBN: 9780470918524. DOI: https://doi.org/10.1002/9780470918524.ch4. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470918524.ch4. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470918524.ch4.
- [5] A. Tasbihi and F. R. Kschischang, "On the capacity of waveform channels under square-law detection of time-limited signals," *IEEE Transactions on Information Theory*, vol. 66, no. 11, pp. 6682–6687, 2020. DOI: 10.1109/TIT.2020.2999889.