Notes of "Existence of the Limit of a Sequence"

Jinxin Wang

1 Overview

- The Cauchy criterion
 - Def: A fundamental (Cauchy) sequence
 - Thm: Cauchy's convergence criterion
- A Criterion for the Existence of the Limit of a Monotonic Sequence
 - Def: An increasing/nondecreasing/nonincreasing/decreasing sequence and monotonic sequences
 - Def: A bounded-above sequence
 - Thm: Weierstrass's theorem
- Subsequences and the partial limits
 - Def: A subsequence of a sequence
 - Lma: (Bolzano-Weierstrass lemma) A bounded sequence contains a convergent subsequence
 - Def: A sequence tends to positive infinity, negative infinity, or infinity
 - Lma: (Generalized version of Bolzano-Weierstrass lemma) A sequence contains a subsequence that is either convergent or tends to infinity
 - Def: The inferior limit and superior limit of a sequence
 - Examples of the inferior limit and superior limit of sequences
 - Def: A partial limit of a sequence
 - Prop: The relationship between the inferior (superior) limits and the

2 The Cauchy Criterion

Definition 1 (A fundamental or Cauchy sequence). A sequence $\{x_n\}$ is called a fundamental or Cauchy sequence if for any $\epsilon > 0$ there exists an index $N \in \mathbb{N}$ such that $|x_m - x_n| < \epsilon$ whenever n > N and m > N.

Theorem 1 (Cauchy's convergence criterion). A numerical sequence converges if and only if it is a Cauchy sequence.

Example 1.

$$x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$

$$x_{2n} - x_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$

> $n \cdot \frac{1}{2n}$
= $\frac{1}{2}$

3 A Criterion for the Existence of the Limit of a Monotonic Sequence

Definition 2 (An increasing/nondecreasing/nonincreasing/decreasing sequence and monotonic sequences). A sequence $\{x_n\}$ is

- increasing if $x_n < x_{n+1}$ for all $n \in \mathbb{N}$
- nondecreasing if $x_n \leq x_{n+1}$ for all $n \in \mathbb{N}$
- nonincreasing if $x_n \ge x_{n+1}$ for all $n \in \mathbb{N}$
- decreasing if $x_n > x_{n+1}$ for all $n \in \mathbb{N}$

Sequences of these four types are called monotonic sequences.

Definition 3 (A bounded-above sequence).

Theorem 2. In order for a nondecreasing sequence to have a limit it is necessary and sufficient that it be bounded above.

证明.

Remark 1. An analogous theorem exists that it is sufficient and necessary for a nonincreasing sequence to have a limit that it be bounded below.

Example 2. $\lim_{n\to\infty} \frac{n}{q^n} = 0$ if q > 1.

Corollary 1.

$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

Corollary 2.

$$\lim_{n\to\infty} \sqrt[n]{a} = 1 \text{ for any } a > 0$$

Example 3. $\lim_{n\to\infty} \frac{q^n}{n!} = 0$ where $q \in \mathbb{R}$ and $n \in \mathbb{N}$.

4 THE NUMBER E

4 The Number e

Proposition 1. The sequences $a_n = (1 + \frac{1}{n})^n$ and $b_n = (1 + \frac{1}{n})^{n+1}$ are convergent, and they have the same limit values.

证明.

Definition 4.

$$e \coloneqq \lim_{n \to \infty} (1 + \frac{1}{n})^n$$

Proposition 2. $e = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \dots$

证明.

Proposition 3. $e = \lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}}$

证明.

5 Subsequences and the Partial Limits

Definition 5 (A subsequence of a sequence). If $x_1, x_2, \ldots, x_n, \ldots$ is a sequence and $n_1 < n_2 < \cdots < n_k < \cdots$ is an increasing sequence of natural numbers, then the sequence $x_{n_1}, x_{n_2}, \ldots, x_{n_k}, \ldots$ is called a subsequence of the sequence $\{x_n\}$.

Lemma 1 (Bolzano-Weierstrass theorem). Every bounded sequence of real numbers contains a convergent subsequence.

证明. Hint:

- Let E be the set of values of x_n . Hence E is bounded.
- If the number of elements of E is finite, then there exists $c \in E$ such that $x_{n_1} = x_{n_2} = \cdots = x_{n_k} = \cdots = c$. Hence the subsequence $\{x_{n_1}, x_{n_2}, \ldots, x_{n_k}, \ldots\}$ converges to c.
- If the number of elements of E is infinite, then by Bolzano-Weierstrass principle it has a limit point
 c.

Definition 6 (A sequence tends to positive infinity). We shall write $x_n \to +\infty$ and say that the sequence $\{x_n\}$ tends to positive infinity if for each number c there exists $N \in \mathbb{N}$ such that $x_n > c$ for all n > N.

Remark 2 (Definitions of a sequence tends to negative infinity and tends to infinity). There are two analogous definitions of a sequence tends to negative infinity and tends to infinity:

- The sequence $\{x_n\}$ tends to negative infinity if for each number c there exists $N \in \mathbb{N}$ such that $x_n < c$ for all n > N.
- The sequence $\{x_n\}$ tends to infinity if for each number c there exists $N \in \mathbb{N}$ such that $|x_n| > c$ for all n > N.

Remark 3 (Definitions of a sequence tends to positive infinity, negative infinity, and infinity in symbolic logic).

$$(x_n \to +\infty) := (\forall c \in \mathbb{R} \exists N \in \mathbb{N} \forall n > N(c < x_n))$$
$$(x_n \to -\infty) := (\forall c \in \mathbb{R} \exists N \in \mathbb{N} \forall n > N(x_n < c))$$
$$(x_n \to \infty) := (\forall c \in \mathbb{R} \exists N \in \mathbb{N} \forall n > N(c < |x_n|))$$

Lemma 2. From each sequence of real numbers one can extract either a convergent subsequence or a subsequence that tends to infinity.

证明. Hint:

- If the sequence is bounded, then by Bolzano-Weierstrass theorem we can extract a convergent subsequence.
- If the sequence is unbounded, then for any $c \in \mathbb{R}$, there exists at least one term $|x_k| > c$. So we can construct such a subsequence where the k-th term x_{n_k} holds that $|x_{n_k}| > k$ for all $k \in \mathbb{N}$. It is clear that such a subsequence exists and it tends to infinity.

Definition 7 (The inferior limit of a sequence). The number $l = \lim_{n \to \infty} \inf_{k \ge n} x_k$ is called the inferior limit of the sequence $\{x_k\}$ and denoted $\varliminf_{k \to \infty} x_k$ or $\liminf_{k \to \infty} x_k$. If $i_n \to +\infty$, it is said that the inferior limit of the sequence equals positive infinity, and we write $\varliminf_{k \to \infty} x_k = +\infty$ or $\liminf_{k \to \infty} x_k = +\infty$. If the original sequence $\{x_k\}$ is not bounded below, then we shall have $i_n = \inf_{k \ge n} x_k = -\infty$ for all n. In that case we say that the inferior limit of the sequence equals negative infinity and write $\varliminf_{k \to \infty} x_k = -\infty$ or $\liminf_{k \to \infty} x_k = -\infty$.

$$\underline{\lim}_{k \to \infty} x_k := \lim_{n \to \infty} \inf_{k \ge n} x_k$$

Definition 8 (The superior limit of a sequence).

$$\overline{\lim}_{k \to \infty} x_k := \lim_{n \to \infty} \sup_{k \ge n} x_k$$

Definition 9 (A partial limit of a sequence). A number (or the symbol $+\infty$ or $-\infty$) is called a partial limit of a sequence, if the sequence contains a subsequence converging to that number.

Proposition 4. The inferior and superior limit of a bounded sequence are respectively the smallest and largest partial limits of the sequence.

Remark 4. The Bolzano-Weierstrass Lemma in its restricted formulation follows from the above proposition.

Proposition 5. For any sequence, the inferior limit is the smallest of its partial limits and the superior limit is the largest of its partial limits.

Remark 5. The Bolzano-Weierstrass Lemma in its wider formulation follows from the above proposition.

Corollary 3. A sequence has a limit or tends to negative or positive infinity if and only if its inferior and superior limits are the same.

Corollary 4. A sequence converges if and only if every subsequence of it converges.

6 The Limit of a Transformed Sequence

6.1 Toeplitz's Theorem

Theorem 3. Suppose there exists a sequence $\{t_{nk}\}$ such that $\forall n, k \in \mathbb{N}^+$, $t_{nk} \geq 0$, $\sum_{k=1}^n t_{nk} = 1$, $\lim_{n\to\infty} t_{nk} = 0$. If $\lim_{n\to\infty} a_n = a$, then

$$\lim_{n \to \infty} \sum_{k=1}^{n} t_{nk} a_k = a$$

Remark 6. The condition in the Toeplitz' Theorem $\lim_{n\to\infty} t_{nk} = 0$ means that for any given k, in other words k is finite, t_{nk} tends to 0 when n tends to ∞ . This is supported by the proof, since in the proof we only need the first finite number of terms in the sequence $\{t_{nk}\}$ to converge to 0.

6.2 Stolz's Theorem

Theorem 4 $(\frac{0}{0} \text{ type})$. Suppose $\lim_{n\to\infty} a_n = 0$, $\lim_{n\to\infty} b_n = 0$, and $\{a_n\}$ is decreasing. If

$$\lim_{n \to \infty} \frac{b_{n+1} - b_n}{a_{n+1} - a_n} = l$$

then

$$\lim_{n \to \infty} \frac{b_n}{a_n} = l$$

Theorem 5 ($\frac{*}{\infty}$ type). Suppose $\{a_n\}$ is increasing and $\lim_{n\to\infty} a_n = \infty$. If

$$\lim_{n \to \infty} \frac{b_{n+1} - b_n}{a_{n+1} - a_n} = l$$

then

$$\lim_{n \to \infty} \frac{b_n}{a_n} = l$$

证明. Method: By Toeplitz's Theorem

$$t_n k = \left\{ \frac{a_1}{a_n}, \frac{a_2 - a_1}{a_n}, \frac{a_3 - a_2}{a_n}, \cdots, \frac{a_n - a_{n-1}}{a_n} \right\}$$
$$c_n = \left\{ \frac{b_1}{a_1}, \frac{b_2 - b_1}{a_2 - a_1}, \frac{b_3 - b_2}{a_3 - a_2}, \cdots, \frac{b_n - b_{n-1}}{a_n - a_{n-1}} \right\}$$

6.3 Cauchy's Proposition

Proposition 6 (算术平均值形式). *If* $\lim_{n\to\infty} a_n = a$, then

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a$$

Proposition 7 (算术平均值等价形式). If $\lim_{n\to\infty}(a_n-a_{n-1})=a$, then

$$\lim_{n \to \infty} \frac{a_n}{n} = a$$

Proposition 8 (几何平均值形式). *If* $\lim_{n\to\infty} a_n = a > 0$, then

$$\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$$