Prof. Dr. André Herzwurm

Exercise Sheet 6 Stochastics (AAI)

Exercise 6.1

Let X_1, X_2 be independent with $X_1 \sim \text{Exp}(\lambda_1), X_2 \sim \text{Exp}(\lambda_2), \text{ and } \lambda_1, \lambda_2 > 0.$

a) Compute $P(\{\min(X_1, X_2) \leq x\})$ for $x \in \mathbb{R}$, and determine the distribution of the random variable $\min(X_1, X_2)$. Hint: For $a, b \in \mathbb{R}$ we have

$$\min(a, b) > x \iff (a > x) \land (b > x).$$

b) Compute $E(\min(X_1, X_2))$.

Exercise 6.2

Let $X \sim N(2, 9)$.

a) Compute the following probabilities approximately using Table B.1:

$$P(\{X \le 2.5\}), P(\{2 \le X \le 3\}), P(\{\sqrt{|X|} \le 2\}).$$

b) Compute the p-quantile of X for p = 0.95, and determine $a \in \mathbb{R}$ such that

$$P(\{2 - a \le X \le 2 + a\}) = 0.95.$$

Exercise 6.3

Let F_X be the cumulative distribution function of a random variable $X: \Omega \to [1, \infty[$ attaining the following values:

- a) Prove or disprove:
 - i) $F_X(2.5) = 0.8$,
 - ii) $P({3 < X \le 4}) = 0.4$,
 - iii) $m(X) \in [2, 3],$
 - iv) E(X) = 0.
- b) Determine a probability mass function $p_X : \mathbb{N} \to \mathbb{R}$ such that the corresponding CDF satisfies the above table.
- c) Determine a probability density function $f_X : \mathbb{R} \to \mathbb{R}$ such that the corresponding CDF satisfies the above table.

Exercise 6.4

The charts A1-A4 show probability density or probability mass functions. Determine the corresponding cumulative distribution functions given by charts B1-B4.

Exercise 6.5* (P)

Implement a Monte Carlo algorithm to compute

$$\int_0^2 \frac{1}{\sqrt{2\pi}} \, \exp(-x^2/2) \, \mathrm{d}x$$

and compare the numerical results with Table B.1.

Hint: rand (Matlab/Octave)