# Log-linear models

(Poisson regression)

Dr. Maria Tackett

11.13.19



## **Click for PDF of slides**



#### **Announcements**

- HW 06 due Wed, Nov 20 at 11:59p
- Project Regression Analysis due Wed, Nov 20 at 11:59p
- Looking ahead:
  - Exam 02: Mon, Nov 25 in class
  - Exam review on Nov 20



## Poisson response variables

The following are examples of scenarios with Poisson response variables:

- Are the number of motorcycle deaths in a given year related to a state's helmet laws?
- Does the number of employers conducting on-campus interviews during a year differ for public and private colleges?
- Does the daily number of asthma-related visits to an Emergency Room differ depending on air pollution indices?
- Has the **number of deformed fish** in randomly selected Minnesota lakes been affected by changes in trace minerals in the water over the last decade?



#### **Poisson Distribution**

If Y follows a Poisson distribution, then

$$P(Y = y) = \frac{\exp\{-\lambda\}\lambda^y}{y!}$$
  $y = 0, 1, 2, ...$ 

- Features of the Poisson distribution:
  - Mean and variance are equal  $(\lambda)$
  - Distribution tends to be skewed right, especially when the mean is small
  - If the mean is larger, it can be approximated by a Normal distribution



#### Simulated Poisson distributions





#### Simulated Poisson distributions

|            | Mean      | Variance   |
|------------|-----------|------------|
| lambda=2   | 2.00740   | 2.015245   |
| lambda=5   | 4.99130   | 4.968734   |
| lambda=20  | 19.99546  | 19.836958  |
| lambda=100 | 100.02276 | 100.527647 |



#### **Poisson Regression**

• We want  $\lambda$  to be a function of predictor variables  $x_1, \ldots, x_p$ 

Why is a multiple linear regression model not appropriate?

- lacktriangleright  $\lambda$  must be greater than or equal to 0 for any combination of predictor variables
- Constant variance assumption will be violated!



### Multiple linear regression vs. Poisson





Image from: <u>Broadening Your Statistical Horizons</u>

#### **Poisson Regression**

• If the observed values  $Y_i$  are Poisson, then we can model using a Poisson regression model of the form

$$\log(\lambda_i) = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_p x_{pi}$$

■ Note that we don't have an error term, since  $\lambda$  determines the mean and variance of the Poisson random variable



### **Interpreting Model Coefficients**

- Slope,  $\beta_i$ :
  - Quantitative Predictor: When  $x_j$  increases by one unit, the expected count of y changes by a multiplicative factor of  $\exp{\{\beta_i\}}$ , holding all else constant
  - Categorical Predictor: The expected count for category k is  $\exp\{\beta_j\}$  times the expected count for the baseline category, holding all else constant
- Intercept,  $\beta_0$ : When x is 0, the expected count of y is  $\exp\{\beta_0\}$



#### Example: Age, Gender, Pulse Rate

- Goal: We want to use age and gender to understand variation in pulse rate
- We will use adults age 20 to 39 in the NHANES data set to answer this question
- Reponse
  - Pulse: Number of heartbeats in 60 seconds
- Explanatory
  - Age: Age in years. Subjects 80 years or older recorded as 80
    - We will use mean-centered Age in the model
  - **Gender**: male/female



#### Example: Age, Gender, Pulse Rate

| term        | estimate   | std.error | statistic  | p.value   | conf.low   | conf.high  |
|-------------|------------|-----------|------------|-----------|------------|------------|
| (Intercept) | 4.3416799  | 0.0031800 | 1365.30794 | 0.0000000 | 4.3354407  | 4.3479061  |
| ageCent     | -0.0007360 | 0.0003933 | -1.87118   | 0.0613201 | -0.0015069 | 0.0000349  |
| Gendermale  | -0.0595673 | 0.0045620 | -13.05723  | 0.0000000 | -0.0685091 | -0.0506263 |

- 1. Write the model equation.
- 2. Interpret the intercept in the context of the problem.
- 3. Interpret the coefficient of ageCent in the context of the problem.



### **Drop In Deviance Test**

- We would like to test if there is a significant interaction between Age and Gender
- Since we have a generalized linear model, we can use the Drop In Deviance Test (similar test to logistic regression)

| Resid. Df | Resid. Dev | Df | Deviance  | Pr(>Chi)  |
|-----------|------------|----|-----------|-----------|
| 2575      | 4536.813   | NA | NA        | NA        |
| 2574      | 4536.345   | 1  | 0.4686061 | 0.4936291 |



■ There is not sufficient evidence that the interaction is significant, so we won't include it in the model.

#### **Model Assumptions**

- 1. **Poisson Response**: Response variable is a count per unit of time or space
- 2. **Independence**: The observations are independent of one another
- 3. Mean = Variance
- 4. **Linearity**:  $\log(\lambda)$  is a linear function of the predictors



#### **Model Diagnostics**

- The raw residual for the  $i^{th}$  observation,  $y_i \hat{\lambda}_i$ , is difficult to interpret since the variance is equal to the mean in the Poisson distribution
- Instead, we can analyze a standardized residual called the Pearson residual

$$r_i = \frac{y_i - \hat{\lambda}_i}{\sqrt{\hat{\lambda}_i}}$$

- Examine a plot of the Pearson residuals versus the predicted values and versus each predictor variable
  - A distinguishable trend in any of the plots indicates that the model is not an appropriate fit for the data



#### Example: Age, Gender, Pulse Rate

■ Let's examine the Pearson residuals for the model that includes the main effects for Age and Gender





#### Poisson Regression in R

■ Use the **glm()** function

```
# poisson regression model
my.model <- glm(Y ~ X, data = my.data, family = poisson)</pre>
```



## **Physician Visits**

What factors influence the number of times someone visits a physician's office? We will use the variables chronic, health, and insurance to predict visits. We will use the NMES1988 dataset in the AER package.

```
library(AER)
data(NMES1988)
nmes1988 <- NMES1988 %>%
  select(visits, chronic, health, insurance)
glimpse(nmes1988)
```



## **Physicians Visits**

```
tidy(visits_model, conf.int = T) %>%
  kable(format = "markdown", digits = 3)
```

| term            | estimate | std.error | statistic | p.value | conf.low | conf.high |
|-----------------|----------|-----------|-----------|---------|----------|-----------|
| (Intercept)     | 1.217    | 0.017     | 71.069    | 0       | 1.184    | 1.251     |
| chronic         | 0.167    | 0.004     | 37.504    | 0       | 0.159    | 0.176     |
| healthpoor      | 0.290    | 0.017     | 16.749    | 0       | 0.256    | 0.324     |
| healthexcellent | -0.360   | 0.030     | -11.889   | 0       | -0.419   | -0.301    |
| insuranceyes    | 0.279    | 0.016     | 17.270    | 0       | 0.247    | 0.310     |



### **Physician Visits**

Let's compare the fitted values versus the actual values:



Does the model effectively predict the number of visits? What is the primary difference between the distributions of observed and predicted visits?



#### **Zero-inflated Poisson**

- In the original data, there are far more respondents who had zero visits to the physicians office than what's predicted by the Poisson regression model
  - This is called .vocab[zero-inflated data]
- To deal with this, we will fit a model that has 2 parts:
  - 1. Poisson regression for the number of doctor's visits of those who went to the physician at least one time (parameter =  $\lambda$ )
  - 2. Logistic regression to find the probability someone goes to the physican at least once (parameter =  $\alpha$ )
- We will fit this in R using the zeroinfl model in the **pscl** package.



#### Zero-inflated Poisson Regression

- We will use chronic, health, and insurance for both components of the model
  - Note: We could use different variables for each component of the model.

■ The first set of coefficients are for the Poisson portion of the model. The second set are for the logistic portion of the model.



#### Zero-inflated Poisson Regression

```
zi model$coefficients
## $count
##
       (Intercept)
                            chronic
                                          healthpoor healthexcellent
         1.5587860
                          0.1186671
                                           0.2947644
                                                           -0.3019049
##
##
      insuranceyes
         0.1446258
##
##
## $zero
                            chronic
##
       (Intercept)
                                          healthpoor healthexcellent
       -0.40531360
                                          0.02315772
##
                        -0.55227959
                                                           0.23169092
##
      insuranceyes
##
       -0.88637822
```

Let's write the two parts of the model.



### **Predictions**

```
nmes1988 <- nmes1988 %>%
  mutate(pred_count = predict(zi_model, type = "count"),
  pred_zero = predict(zi_model, type = "zero"))
```

```
nmes1988 %>% slice(1:10)
```

```
##
      visits chronic health insurance pred count pred zero
## 1
           5
                   2 average
                                   ves
                                         6.963943 0.08345902
## 2
                                   yes 6.963943 0.08345902
                   2 average
## 3
          13
                                    no 10.259650 0.06970211
                        poor
## 4
                                   yes 9.351253 0.08524762
          16
                        poor
## 5
           3
                                   yes 6.963943 0.08345902
                     average
## 6
          17
                   5
                                        11.552315 0.04134603
                        poor
                                    no
## 7
                                   yes 5.492655 0.21556659
           9
                     average
           3
## 8
                                         5.492655 0.21556659
                   0 average
                                   yes
## 9
           1
                     average
                                   yes
                                         5.492655 0.21556659
## 10
           0
                                         5.492655 0.21556659
                     average
                                   yes
```



## References

These slides draw material from <u>Broadening Your Statistical Horizons</u>

