From Prototyping to Deployment at Scale with R and sparklyr

Kevin Kuo

June 2018

Menu today

- The deployment problem
- ML pipelines
- Model deployment and demo

The deployment problem

Deployment

Or, putting ML models "into production".

Deployment

Or, putting ML models "into production".

Basically, make it so that someone else can use your model (i.e. make some predictions with it).

Deployment - latency dimension

Batch

- Event-based/time-based
- E.g. nightly portfolio risk calculations, and
- Email campaigns
- It's OK to take a while

"Real-time"

- On demand
- E.g. instant loan approvals, and
- Fraud detection on credit card swipes
- Gotta be (relatively) fast, seconds to less than a second

Challenge 1/n: Putting ML models into production involves different expertise

Challenge 1/n: Putting ML models into production involves different expertise

...so it involves more people

Challenge 1/n: Putting ML models into production involves different expertise

...so it involves more people

...mo ppl mo problems

Deployment - mo ppl mo problems

Credit: https://youtu.be/-K9SjrWpeys @josh_wills

Challenge 2/n: Rapidly changing landscape in deployment options

Challenge 2/n: Rapidly changing landscape in deployment options

What do?

- Spark ML persistence?
- dbml-local?
- PMML?
- PFA/Aardpfark?
- MLeap?
- ONNX?
- Roll our own thing?
- Re-implement the model in C++, because performance?
- Throw it into a container and do orchestration cuz it's cool?

Challenge 3/n: Too many ML frameworks and no standardization

Challenge 3/n: Too many ML frameworks and no standardization

We're focusing on Spark in this session, but we'll acknowledge other technologies we need to deal with

Deployment - diversity of ML frameworks

Spark ML, xgboost, random CRAN packages, scikit-learn, H2O, ...

Deployment - one of many scenarios

Data scientist: Hey this random forest loan decision model is ready to go!

Engineer: OK, we need to recode it in C#/Java, see you in 6 months!

Deployment - one of many scenarios

Data scientist: Hey this random forest loan decision model is ready to go!

Engineer: OK, we need to recode it in C#/Java, see you in 6 months!

Data scientist: Oh no that's too long, what about I give you this GLM with just a few parameters?

Engineer: 2 months.

Deployment - one of many scenarios

Data scientist: Hey this random forest loan decision model is ready to go!

Engineer: OK, we need to recode it in C#/Java, see you in 6 months!

Data scientist: Oh no that's too long, what about I give you this GLM with just a few parameters?

Engineer: 2 months.

Data scientist: 🤒

Deployment - challenges for the R user

On average, R users tend to...

- Be math/stats types
- Have little CS/software engineering training

So it's slightly tougher for them to collaborate with the folks doing model implementation.

Deployment - challenges for the R user

On average, R users tend to...

- Be math/stats types
- Have little CS/software engineering training

So it's slightly tougher for them to collaborate with the folks doing model implementation.

However,

- Data scientists (regardless of background) are becoming more comfortable moving up and down the stack
- There has been active development of technology to faciliate the data science-engineering handoff

Deployment - technology

Technology won't solve your people/process/culture issues, but it can *make collaboration easier*!

Deployment - technology

Technology won't solve your people/process/culture issues, but it can *make collaboration easier*!

Next up: we'll provide a quick review of Spark ML pipelines, and offer a couple ways of "deploying" them using the **sparklyr** ecosystem.

Spark ML pipelines

Pipelines are basically...

A structure in which you can throw in data transformers and ML models.

Pipelines are basically...

A structure in which you can throw in data transformers and ML models.

Keep in mind that when you deploy a model, you also need to deploy the feature engineering steps in order to feed the right inputs to the model! (E.g. converting a numeric age variable into an age range bucket that the model requires.)

Pipelines are basically...

A structure in which you can throw in data transformers and ML models.

Keep in mind that when you deploy a model, you also need to deploy the feature engineering steps in order to feed the right inputs to the model! (E.g. converting a numeric age variable into an age range bucket that the model requires.)

Now let's go through a (very quick) overview of pipeline concepts.

• A Transformer takes a data frame, via ml_transform(), and returns a transformed data frame.

- A Transformer takes a data frame, via ml_transform(), and returns a transformed data frame.
- An Estimator take a data frame, via ml_fit(), and returns a Transformer.

- A Transformer takes a data frame, via ml_transform(), and returns a transformed data frame.
- An Estimator take a data frame, via ml_fit(), and returns a Transformer.
- A Pipeline consists of a sequence of stages—PipelineStages—that act on some data in order.
 - A PipelineStage can be either a Transformer or an Estimator.

- A Pipeline consists of a sequence of stages—PipelineStages—that act on some data in order.
 - A PipelineStage can be either a Transformer or an Estimator.
- A Pipeline is always an Estimator, and its fitted form is called PipelineModel which is a Transformer.

Serving the model

Now, the trick is to persist this PipelineModel so we can use it to serve predictions later on.

Serving the model

Now, the trick is to persist this PipelineModel so we can use it to serve predictions later on.

We'll demo a couple ways today

- Native Spark ML persistence support
- MLeap (via the **mleap** R package)

Demo

Model deployment paths

Spark ML Persistence

- Appropriate for batch jobs, scoring lots of records at once
- Requires Spark session

MLeap

- Better for real-time prediction of a small number of records
- Doesn't require Spark session, portable to apps/devices that support JVM

Towards a better deployment story

Data scientist: Hey this random forest loan decision model is ready to go! Here is the .zip bundle, and here is the documentation you need to use it.

Engineer: Awesome! We won't need to write a bazillion if-else statements to recreate the model!

Towards a better deployment story

Data scientist: Hey this random forest loan decision model is ready to go! Here is the .zip bundle, and here is the documentation you need to use it.

Engineer: Awesome! We won't need to write a bazillion if-else statements to recreate the model!

When the model needs updating...

Towards a better deployment story

Data scientist: Hey this random forest loan decision model is ready to go! Here is the .zip bundle, and here is the documentation you need to use it.

Engineer: Awesome! We won't need to write a bazillion if-else statements to recreate the model!

When the model needs updating...

Data scientist: We decided to use a GBM instead for better accuracy, here's the updated bundle.

Engineer: Fantabulous! All we need to do is update the model directory!

Wrap up

Slides and code will be available at https://kevinykuo.com.

Inspirations/other talks to check out

- "Productionizing Spark ML pipelines with the portable format for analytics" https://youtu.be/h-B0VCkoRkE@MLnick
- "How to Productionize Your Machine Learning Models Using Apache Spark MLlib 2.x" https://youtu.be/r740xbIpb54 Richard Garris
- "MLeap and Combust ML" https://youtu.be/MGZDF6E41r4 Hollin Wilkins and Mikhail Semeniuk