Physics: Exam n°1

Monday 16th October 2017

Duration: 1 h 30

The subject comprises four independent exercises. The given marking scheme is only tentative. Documents permitted: one handwritten sheet, written on one side High-school type calculator authorized

Formulae: vector operators in cylindrical coordinates:

For
$$\vec{A} = A_r \vec{u_r} + A_\theta \vec{u_\theta} + A_z \vec{u_z}$$

$$div(\vec{A}) = \frac{1}{r} \left(\frac{\partial (rA_r)}{\partial r} + \frac{\partial A_\theta}{\partial \theta} + \frac{\partial (rA_z)}{\partial z} \right)$$

$$rot(\vec{A}) = \frac{1}{r} \left(\frac{\partial A_z}{\partial \theta} - \frac{\partial (rA_\theta)}{\partial z} \right) \vec{u_r} + \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r} \right) \vec{u_\theta} + \frac{1}{r} \left(\frac{\partial (rA_\theta)}{\partial r} - \frac{\partial A_r}{\partial \theta} \right) \vec{u_z}$$

Exercise 1: Electrocinetics (6 points)

In the electric circuit sketched below, the e.m.f. of the ideal voltage supply is $e = e_0 \cos(\omega t + \phi)$

- 1/ The switch is closed at t=0, the capacitor being initially discharged. Give and justify the values of U_C, U_{R1}, U_{R2}, i_C, i_{R1}, i_{R2} at t=0+.
 - 2/ In the forced sinusoidal regime, determine the complex impedance of the circuit between A and B.
 - 3/ Establish the expression of the transfer function $\underline{\underline{H(j\omega)}} = \frac{\underline{U_{R2}}}{\underline{e}}$. Calculate its modulus and its argument.
 - 4/ We will assume in this question that $R_1 = 100 R_2$. What is the expression of $H(j\omega)$ when ω tends
- 1 to zero and when ω tends to infinity? Deduce which type of filter this is. You may assume that the modulus is a monotonous function of ω .

Exercise 2: Differential operators and Maxwell equations (5 points)

We study this exercise using a system of cylindrical coordinates.

Consider the radial field: $\overrightarrow{D} = D_0 \left(1 - \frac{z}{a} \right) \overrightarrow{u_r}$ where D_0 and a are strictly positive constants.

- 1/ Calculate its rotational and its divergence.
- 2/ Could this field be an electric field? Could it be a magnetic field? Justify your answers.

Consider now the field: $\vec{F} = F_0 \left(1 - \frac{z}{a} \right) \vec{u_z} - F_0 \frac{1}{2a} \vec{u_r}$ where F_0 and a are strictly positive constants.

3/ Calculate its rotational and its divergence.

Exercise 3: Topography of a magnetic field (3 points)

A solenoid of finite length is formed from an electric wire wound around an insulating cylinder, of axis Oz, radius R and delimited by planes z = -L/2 and z = +L/2. A current of amplitude I is flowing through the coiled wire.

- 1) Sketch the arrangement
- 2) Determine the topography of the resultant magnetic field, without performing any calculations but in justifying clearly your answer, in terms of direction(s) and spatial variables upon which it may depend
 - a) at a point in space $M(r,\theta,z)$
 - b) at a point $P(r,\theta,0)$
 - c) at a point Q(0,0,z)

Exercise 4: Calculation of electric field (6 points)

Given a distribution of charges extending to infinity between the planes z = -a and z = +a with a volume charge density $\rho(z)$, and none anywhere else in space

- 1) Determine the topography of the electric field \vec{E} created throughout all space.
- 2) Given that $\rho(z) = \rho_1 \cos(\pi \frac{z}{2a})$:
 - a) what can be said concerning \vec{E} at two points M and M' which are symmetrical about the plane z = 0?
 - b) what is the magnitude of the \vec{E} field in the plane z = 0?
 - c) for each of the following surfaces, indicate if they are suitable to be used to calculate \overline{E} at point M(x,y,z) using Gauss' law. Cleary justify your answers (no need to calculate E here).

3) Calculate \vec{E} in the different regions of space <u>using local relations</u>. Clearly justify each step of your calculation.