6	
. 7	Time-Dependent Perturbation 2/11/10
	Consider a time-independent Hamiltonian Ĥ, and suppose
	the system was in its ground state $ \overline{\Psi}_0\rangle$, $\widehat{H} \overline{\Psi}_0\rangle = E_0 \overline{\Psi}_0\rangle. \tag{1}$
	Suppose that the system is perturbed by a small,
	time-dependent Hamiltonian, $\hat{V}(t)$, at $t > t_0$. The
	wave vector satisfies
	$i\hbar_{\partial t} \underline{\Psi}(t)\rangle = (\widehat{H} + \widehat{V}(t)) \underline{\Psi}(t)\rangle \tag{2}$
	We seek the solution of Eq.(2) in terms of the \$\hat{S}\$ matrix,
	$ \widehat{\Psi}(t)\rangle = e^{-i\widehat{H}t/\hbar} \widehat{S}(t,t_0) \widehat{\Psi}_0\rangle. \tag{3}$
0	型I(t)>: Interaction picture
	Substituting Eq.(3) in (2),
	$\widehat{H} e^{-iHt/\hbar} \widehat{S}(t,t_0) \underline{\Psi}_0 \rangle + e^{-i\widehat{H}t/\hbar} (i\hbar \frac{\partial}{\partial t}) \widehat{S}(t,t_0) \underline{\Psi}_0 \rangle$
	$= \left(\hat{\mathbf{H}} + \hat{\mathbf{V}}(t) \right) e^{-i\hat{\mathbf{H}}t/\hbar} \hat{\mathbf{S}}(t,t_o) \underline{\mathbf{V}}_o \rangle$
	eift/t × (above)
	$i\hbar \frac{\partial}{\partial t} \hat{S}(t,t_0) \Psi_0\rangle = e^{i\hat{H}t/\hbar} \hat{V}(t) e^{-i\hat{H}t/\hbar} \hat{S}(t,t_0) \Psi_0\rangle$

: The
$$\hat{S}$$
 matrix should satisfy the differential equation it $\frac{\partial}{\partial t} \hat{S}(t,t_0) = \hat{V}_H(t) \hat{S}(t,t_0)$ (4)

where

$$\hat{V}_{H}(t) = e^{iHt/\hbar} \hat{V}(t) e^{-i\hat{H}t/\hbar}$$
(5)

and the initial condition is

$$\hat{S}(t_0, t_0) = 1 \tag{6}$$

The formal solution to Eq.(4) is

$$\hat{S}(t,t_0) = T \exp\left(-\frac{i}{\hbar} \int_{t_0}^{t} dt' \hat{V}_{H}(t')\right) \tag{7}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{i}{h} \right)^n \int_{t_n}^t dt_n T \left[\hat{V}_H(t_n) - \hat{V}_H(t_n) \right]$$
 (8)

$$= \sum_{n=0}^{\infty} \left(-\frac{i}{h}\right)^n \int_{t_0}^{t} dt_1 dt_2 \cdots \int_{t_0}^{t_{n-1}} dt_n \hat{V}_H(t_1) \hat{V}_H(t_2) \cdots \hat{V}_H(t_n)$$
(9)

In the first order in \hat{V} ,

$$\hat{S}(t,t_0) = 1 - \frac{i}{h} \int_{t_0}^{t} dt' \hat{V}_H(t') + O(\hat{V}^2)$$
 (10)

9

$$|\Psi(t)\rangle = e^{-i\hat{H}t/\hbar} |\Psi_0\rangle - \frac{i}{\hbar} e^{-i\hat{H}t/\hbar} \int_{t_0}^{t} dt' e^{i\hat{H}t/\hbar} \hat{V}(t) e^{-i\hat{H}t/\hbar} |\Psi_0\rangle$$
(11)

The expectation value of arbitrary operator $\hat{O}(t)$ is $\langle \hat{Q}(t) \rangle = \langle \Psi(t) | \hat{Q}(t) | \Psi(t) \rangle$

$$= \left(\frac{\sqrt{201}e^{i\hat{H}t/\hbar} + \frac{i}{\hbar} \sqrt{201} \int_{t_0}^{t} dt' e^{i\hat{H}t/\hbar} \hat{V}(t') e^{-i\hat{H}t/\hbar} e^{i\hat{H}t/\hbar} \right)}{t_0} \times \hat{O}(t) \left(e^{-i\hat{H}t/\hbar} |\underline{Y}_0\rangle - \frac{i}{\hbar} e^{-i\hat{H}t/\hbar} \int_{t_0}^{t} dt' e^{i\hat{H}t/\hbar} \hat{V}(t') e^{-i\hat{H}t/\hbar} |\underline{Y}_0\rangle \right)$$

$$\times \hat{O}(t) \left(e^{-i\hat{H}t/\hbar} | \underline{\mathcal{I}}_{o} \right) - \frac{i}{\hbar} e^{-i\hat{H}t/\hbar} \int_{t_{o}}^{t} e^{i\hat{H}t/\hbar} \hat{\mathcal{V}}(t) e^{-i\hat{H}t/\hbar} | \underline{\mathcal{I}}_{o} \rangle$$

$$= \langle \Psi_0 | e^{i\hat{H}t/\hbar} \hat{O}(t) e^{-i\hat{H}t/\hbar} | \Psi_0 \rangle$$

$$+\frac{1}{\hbar}\langle \Psi_0|e^{i\hat{H}t/\hbar}\hat{O}(t)e^{-i\hat{H}t/\hbar}\int_{t_0}^{t}dt'\hat{V}_H(t')|\Psi_0\rangle$$

$$+\frac{1}{\hbar}\langle \mathcal{F}_{0}|\int_{t_{0}}^{t}\frac{dt'\hat{V}_{H}(t')}{dt'}\frac{e^{-i\hat{H}t/\hbar}\hat{O}(t)}{e^{-i\hat{H}t/\hbar}}\frac{e^{-i\hat{H}t/\hbar}}{|\mathcal{F}_{0}\rangle}+O(\hat{V})$$

$$= \langle \Psi_0 | \hat{\Theta}_H(t) | \Psi_0 \rangle - \frac{\tilde{\iota}}{\hbar} \langle \Psi_0 | [\hat{\Theta}_H(t), \int_{t_0}^{t} dt' \hat{V}_H(t')] | \Psi_0 \rangle$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad$$

The first term in Eq. (11) is the imperturbed expectation value, and thus the linear response value is $S(O(t)) = -\frac{i}{\hbar} \int_{t_{-}}^{t} dt' \langle \underline{F}_{0} | [\widehat{O}_{H}(t), \widehat{V}_{H}(t)] | \underline{F}_{0} \rangle \quad (t > t_{0})$ (12)

$$S(O(t)) = -\frac{i}{\hbar} \int_{t_0}^{t} dt' \langle \underline{\mathbf{F}}_0 | [\widehat{O}_H(t), \widehat{V}_H(t')] | \underline{\mathbf{F}}_0 \rangle \qquad (t > t_0)$$
(12)

$$= -\frac{i}{\hbar} \int_{-\infty}^{\infty} dt' \Theta(t-t') \langle \underline{\Psi}_0 | [\hat{\mathcal{O}}_H(t), \hat{V}_H(t')] | \underline{\Psi}_0 \rangle$$
 (13)

0 _	Density response function	
	Consider an external Hamiltonian coupling to dens	ity
	operator,	
	$\hat{\mathcal{H}}(\mathbf{ir}) = \sum_{i=1}^{N} \delta(\mathbf{ir} - \mathbf{ir}_i) = \hat{\mathcal{Y}}(\mathbf{ir}) \hat{\mathcal{Y}}(\mathbf{ir})$	(14)
	such that	
	$\widehat{V}(t) = \int dir \widehat{n}(ir) \mathcal{G}(ir,t).$	(15)
	The linear density response is	
	The linear density response is $S(\widehat{n}(\mathbf{r},t)) = \frac{i}{h} \int_{-\infty}^{\infty} d\mathbf{r}' O(t-t') \langle \Psi_0 [\widehat{n}_H(\mathbf{r},t), \widehat{n}_H(\mathbf{r},t')] \times \mathcal{G}(\mathbf{r}'t')$)]]\ <u>\</u> }
	× Sart,	(16)
0	$= \int dir \int dt' \chi(ir-ir',t-t') \mathcal{G}(ir',t')$	(17)
	or .	
	$\frac{S\langle \hat{n}(\mathbf{i}\mathbf{r},t)\rangle}{S\varphi(\mathbf{i}\mathbf{r},t')} = \chi(\mathbf{i}\mathbf{r}-\mathbf{i}\mathbf{r}',t-t')$	(18)
	where the density response function is	
	$\chi_{(1r-1r,t-t')} = -\frac{1}{t}O(t-t')\langle \mathfrak{F} [\hat{\eta}_{H}(1r,t),\hat{\eta}_{H}(1r,t')] \mathfrak{F}\rangle$	(19)