Théorie des Langages Série 2

LES AUTOMATES A ETATS FINIS & LANGAGES REGULIERS

Exercice 4:

L'objectif de cet exercice est de construire un automate d'états finis d'un langage en se basant sur les automates d'états finis des langages le composant.

Donner les automates d'états finis des langages suivants :

3)
$$L_3 = (L_1)^R$$
 et $L_4 = (L_2)^R$

a. Reprenons l'automate A_1 reconnaissant L_1 obtenu dans la question 1.

Les mots de L_3 sont obtenus en appliquant la fonction miroir sur tous les mots de L_1 . L'automate A reconnaissant $(L_1)^R$ sera donc construit à partir de A_1 .

Pour reconnaitre les mots miroirs des mots de L_1 , il faut que l'état final (q2) de A_1 devienne initial, l'état initial (q0) de A_1 devienne final et il faut inverser toutes les transitions de l'automate A_1 .

b. Reprenons l'automate de L₂, noté A₂, obtenu dans la question 2.

Les mots de L_4 sont obtenus en appliquant la fonction miroir sur tous les mots de L_2 . Ainsi, l'automate A reconnaissant $(L_2)^R$ est construit à partir de A_2 . Notons que l'automate A_2 de L_2 contient trois états finaux (q0, q1 et q3).

Théorie des Langages Série 2

LES AUTOMATES A ETATS FINIS & LANGAGES REGULIERS

En adoptant la même démarche que précédemment, les états finaux q0, q1 et q3 devraient être des états initiaux dans l'automate miroir. Pour éviter cette situation et rester conforme à la définition donnée en cours, il faut ajouter un nouvel état initial \mathbf{q} qui sera relié à tous les états finaux de A_1 par la transition spontanée. L'état initial de A_1 (q0) devient final (pour cet exemple, il l'était déjà). De plus, il faut inverser toutes les transitions de l'automate A_1 .

D'une manière générale, soit l'automate A_1 =(X_1 , Q_1 , $q0_1$, δ_1 , F_1) reconnaissant un langage L_1 . L'automate A=(X, Q, q0, δ , F) reconnaissant le langage miroir de L_1 est défini comme suit :

Remarque : L'algorithme de construction d'un automate reconnaissant le miroir d'un langage à partir de l'automate reconnaissant un langage, peut s'appliquer sur n'importe quel type d'automates (généralisé, simple déterministe, simple non déterministe).

4)
$$L_5 = L_1 \cup L_3$$

Soient A_1 l'automate reconnaissant L_1 , A_2 l'automate reconnaissant L_3 et A l'automate reconnaissant L_5 .

Le langage L_5 est composé des mots de L_1 et des mots de L_3 . Donc, l'automate A doit reconnaitre les mots reconnues par l'automate A_1 et les mots reconnues par l'automate A_2 .

Pour ce faire, il suffit d'ajouter un nouvel état initial (q) qui sera relié aux états initiaux de A_1 et A_2 (q0 et q3) par des transitions spontanées. Ainsi, q0 et q3 ne deviennent plus finaux. Il faut maintenir toutes les transitions de A_1 et de A_2 . Les états finaux de l'automate A sont ceux de A_1 et A_2 .

Théorie des Langages Série 2

LES AUTOMATES A ETATS FINIS & LANGAGES REGULIERS

D'une manière générale, Soit l'automate A_1 =(X_1 , Q_1 , $q0_1$, δ_1 , F_1) reconnaissant un langage L_1 et soit l'automate A_2 =(X_2 , Q_2 , $q0_2$, δ_2 , F_2) reconnaissant un langage L_2 . L'automate A=(X, Y, Y, Y) reconnaissant le langage Y0 est défini comme suit :

 $X=X_1\cup X_2$ /* L'alphabet de A est celui de A_1 plus celui de A_2 */

 $Q = Q_1 \cup Q_2 \cup \{q0\} \qquad \text{$/* Les \'etats de A sont ceux de A_1 plus ceux de A_2 plus un nouvel \'etat initial*/}$

q0 /* Le nouvel état initial*/

 $F=F_1 \cup F_2$ /* Les états finaux de l'automate A sont ceux de A_1 et ceux de A_2 */

 $\delta = \delta_1 \cup \delta_2 \cup \{\delta(q0,\epsilon) = q0_1\} \cup \{\delta(q0,\epsilon) = q0_2\} \\ \text{/*Maintenir toutes les transitions et en plus il faut relier le nouvel état initial aux états initiaux de A_1 et A_2*/}$

5) $L_6 = \{ w_1.w_2 / w_1 \in L_1 \text{ et } w_2 \in L_2 \}$

Soient A_1 l'automate reconnaissant L_1 , A_2 l'automate reconnaissant L_2 et A l'automate reconnaissant L_6 .

Les mots de L_6 sont obtenus par la concaténation des mots de L_1 et des mots de L_2 . Donc, il faut relier l'état final de A_1 (q2) à l'état initial de A_2 (q3) par une transition spontanée. L'état final de A_1 ne reste plus final et l'état initial de A_2 ne reste plus initial.

L'état initial de l'automate A devient q0 (l'état initial de A_1) et les états finaux de A sont q3, q4, q6 (les états finaux de A_2).

Théorie des Langages Série 2

LES AUTOMATES A ETATS FINIS & LANGAGES REGULIERS

 $X=X_1\cup X_2$ /* L'alphabet de A est celui de A_1 plus celui de A_2 */ $Q=Q_1\cup Q_2$ /* Les états de A sont ceux de A_1 plus ceux de A_2 */

q0=q0₁ /* L'état initial de l'automate A est celui de A₁ (le premier automate)*/

 $F=F_2$ /*Les états finaux de l'automate A sont ceux de A_2 (le deuxième automate)*/

 $\delta = \delta_1 \cup \delta_2 \cup \{\delta(q_i, \epsilon) = q0_2 \ \forall q_i \in F_1\} \quad \text{'*Maintenir toutes les transitions et en plus il faut relier les états finaux du premier automate à l'état initial du deuxième automate*/$

Exercice 5:

Donner les expressions régulières des langages suivants :

1) Tous les mots de {a, b}* qui commencent et se terminent par la même lettre.

Deux cas possibles : soit les mots commencent et se terminent par **a**, soit ils commencent et se terminent par **b**. Entre la première lettre et la dernière lettre, il y a une séquence aléatoire de **a** et de **b**.

Ainsi, l'expression régulière est la somme (l'union) de deux sous expressions correspondant aux deux cas. De plus, les mots **a** et **b** vérifient la condition, donc ils doivent être dénotés par l'expression.

La première sous expression, par exemple, est composée d'une lettre **a**, puis (a+b)* (qui dénote une séquence aléatoire de **a** et **b**) et en dernier une lettre **a**.

$$E_1 = a(a+b)*a + b(a+b)*b + a + b$$

2) Les mots de {a, b}* composés d'une suite de a suivie d'une suite de b tels que le nombre de a est >=4 et le nombre de b<=3.

Le nombre de a>=4 : la suite de a est composée de quatre occurrences de a suivie d'une suite aléatoire de a (éventuellement vide).

Le nombre de $b \le 3 : 4$ cas possibles (aucun **b**, un seul **b**, deux **b** ou trois **b**).

$E_2 = aaaaa*(\epsilon+b+bb+bb).$

3) Tous les mots de {a, b}* dont la longueur est paire.

Les mots correspondent à une séquence aléatoire de : aa, ab, ba et bb.

$E_3 = (aa+ab+ba+bb)^*$

Une expression équivalente est : ((a+b)(a+b))*

Théorie des Langages Série 2

LES AUTOMATES A ETATS FINIS & LANGAGES REGULIERS

4) Les mots de {a, b}* composés d'une suite de a suivie d'une suite de b et dont la longueur est paire.

La longueur d'un mot est paire si et seulement si le nombre de **a** et le nombre de **b** ont la même parité (les deux pairs ou les deux impairs).

L'expression E₄ est la somme de deux sous expressions régulières correspondant aux deux cas. La première sous expression correspond au cas où les deux sont pairs. Notons qu'une séquence impaire de **a** est composée d'une séquence paire de **a** suivie d'un **a**.

$$E_4 = (aa)*(bb)*+(aa)*ab(bb)*$$

5) Tous les mots de $\{a, b\}^*$ dont le nombre de a est un multiple de 2.

Le nombre de **a** est pair mais les **a** ne sont pas forcément consécutifs. Il est possible d'avoir une suite aléatoire de **b** entre deux **a**, **avant et après**. Notons que le nombre de **b** est quelconque. Il faut prévoir le cas où il n y a que des b (dénoté par b*). Ainsi, une expression régulière dénotant le langage est la suivante :

$$E_5 = (b*ab*ab*)*+b*.$$

Les mots peuvent être considérés comme une suite quelconque de **b** et **ab*a**. Ainsi, nous avons une autre expression équivalente :

$$E_{5}^{1} = (b+ab*a)*$$