Α31 ΚΡΥΠΤΟΓΡΑΦΙΑ

Φυλλάδιο ασκήσεων #1

Θεόδουλος Γαρεφαλάκης

13 Φεβρουαρίου 2022

1. (γενίκευση του one-time-pad)

• Έστω πεπεραμένη ομάδα (G,\cdot) (υπάρχει αποτελεσματικός αλγόριθμος για την πράξη της G) και $\mathcal{K}=\mathcal{M}=\mathcal{C}=G$. Ορίζουμε το κρυπτοσύστημα $\mathcal{E}=(E,D)$, ως εξής:

$$E(k,m) = k \cdot m$$
 kai $D(k,c) = k^{-1} \cdot c$.

Αποδείξτε ότι το κρυπτοσύστημα \mathcal{E} έχει τέλεια ασφάλεια.

• Όπως δείξατε στο προηγούμενο ερώτημα, το κρυπτοσύστημα $\mathcal{E}=(E,D)$ πάνω από την ομάδα (\mathbb{Z}_p^*,\cdot) όπου p είναι πρώτος έχει τέλεια ασφάλεια. Θεωρήστε τώρα το κρυπτοσύστημα $\mathcal{E}'=(E',D')$ με $\mathcal{K}=\{1,\ldots,p-1\},\mathcal{M}=\{0,1,\ldots,p-1\},\mathcal{C}=\{0,1,\ldots,p-1\}$ και

$$E'(k,m) = k \cdot m \mod p$$
, $D'(k,m) = k^{-1} \cdot c \mod p$.

Αποδείξτε ότι το \mathcal{E}' δεν είναι σημασιολογικά ασφαλές.

Υπόδειξη: κατασκευάστε ένα αποτελεσματικό αντίπαλο, ο οποίος έχει μη τετριμμένο πλεονέκτημα στο παιχνίδι του ορισμού.

- 2. (Boneh-Shoup, 2.3) Έστω $\mathcal{E}=(E,D)$ ένα κρυπτοσύστημα πάνω από τα $(\mathcal{K},\mathcal{M},\mathcal{C})$, με $\mathcal{K}=\mathcal{M}$, το οποίο έχει τέλεια ασφάλεια. Ορίζουμε το κρυπτοσύστημα \mathcal{E}' πάνω από τα $(\mathcal{K}^2,\mathcal{M},\mathcal{C}^2)$ ως εξής: $E'((k_1,k_2),m)=(E(k_1,k_2),E(k_2,m))$. Δείξτε ότι το \mathcal{E}' έχει τέλεια ασφάλεια.
- 3. (Boneh-Shoup, 2.10) Έστω $\mathcal{E}=(E,D)$ ένα σημασιολογικά ασφαλές κρυπτοσύστημα πάνω από τα $(\mathcal{K},\mathcal{M},\mathcal{C})$, με $\mathcal{M}=\mathcal{C}=\{0,1\}^L$. Εξετάστε ποιοί από τους παρακάτω αλγορίθμους κρυπτογράφησης είναι σημασιολογικά ασφαλείς:
 - (a') $E_1(k,m) = 0 || E(k,m)$
 - (β) $E_2(k,m) = E(k,m) || parity(m)$
 - (y') $E_3(k,m) = \text{reverse}(E(k,m))$
 - (δ') $E_4(k,m) = E(k, \text{reverse}(m))$
- 4. (Boneh-Shoup, 2.13) θεωρήστε τα παρακάτω πειράματα:
 - Πείραμα 0: Ο παίκτης με πιθανότητα 1/2 απαντά ΚΟΡΩΝΑ και με πιθανότητα 1/2 απαντά ΓΡΑΜΜΑΤΑ.
 - Πείραμα 1: Ο παίκτης απαντά ΓΡΑΜΜΑΤΑ.

Στόχος του αντιπάλου, \mathcal{A} , είναι να διακρίνει τα δύο πειράματα: απαντά 0 ή 1. Για b=0,1, ορίζουμε W_b το ενδεχόμενο ο αντίπαλος να απαντήσει 1 στο πείραμα b. Σκοπός του αντιπάλου είναι να μεγιστοποιήσει το πλεονέκτημα του $\mathrm{Adv}[\mathcal{A}] = |\Pr(W_0) - \Pr(W_1)|$.

- (α΄) Υπολογίστε το πλεονέκτημα για καθένα από τους παρακάτω αντιπάλους:
 - Α₁: απαντά πάντα 1.
 - ii. A_2 : αναντά 1 με πιθανότητα 1/2 και 0 με πιθανότητα 1/2.
 - iii. A₃: απαντά 1 αν λάβει ΚΟΡΩΝΑ και 0 διαφορετικά.
 - iv. A_4 : απαντά 0 αν λάβει ΚΟΡΩΝΑ και 1 διαφορετικά.
- (β΄) Βρείτε το μέγιστο δυνατό πλεονέκτημα που μπορεί να έχει ένας αντίπαλος στο παιχνίδι αυτό.