T2Vs Meet VLMs: A Scalable Multimodal Dataset for Visual Harmfulness Recognition

NATIONAL YANG MING CHIAO TUNG UNIVERSITY

Chen Yeh^{1*}, You-Ming Chang^{1*}, Wei-Chen Chiu¹, Ning Yu² (*Both authors contribute equally) ¹National Yang Ming Chiao Tung University, ²Netflix Eyeline Studios

Motivation: limitations on existing datasets

- Limited scopes of harmful contents (e.g., nudity, gun, knife)
- Comprise only real images, without synthesized images / videos
- Focus on detecting certain harmful objects, without considering the whole visual context.

Harmfulness Detection Accuracies

Pretrained models benchmarking

	VHD11K-Images				VHD11K-Videos				
	Harm.	Unharm.	Avg.	Multi-Class	Harm.	Unharm.	Avg.	Multi-Class	
Q16 [25]	11.40	98.76	55.08	-	38.00	85.20	61.60	-	
HOD [11]	43.72	74.90	59.31	-	69.4	43.6	56.5	-	
NudeNet [20]	2.70	99.16	50.93	_	5.20	96.40	50.80	_	
Hive AI [13]	52.38	82.72	67.55	-	49.80	84.80	67.30	-	
InstructBLIP [9] (short)	40.24	93.08	66.66	_	59.80	74.80	67.30	-	
InstructBLIP [9] (long)	81.44	42.24	61.84	-	100.00	0.00	50.00	-	
CogVLM [28] (short)	10.06	99.64	54.85	-	23.20	91.40	57.30	_	
CogVLM [28] (long)	0.60	99.98	50.29	-	5.00	99.40	52.20	-	
GPT-4V [22] (short)	29.70	99.02	64.36	70.40	45.20	97.00	71.10	70.70	
GPT-4V [22] (long)	64.08	93.12	78.60	-	67.40	91.80	79.60	_	

Pretrained vs. prompt-tuned models on SMID & VHD11K

	SMID Images			VHD11K-Images			VHD11K-Videos		
	Harm.	Unharm.	Avg.	Harm.	Unharm.	Avg.	Harm.	Unharm.	Avg.
Pre. InstructBLIP	51.39	96.91	77.51	43.60	93.60	68.60	54.00	74.00	64.00
InstructBLIP-SMID	37.50	100.00	73.37	45.80	90.00	68.90	-	-	-
InstructBLIP-VHD11K-I	73.61	93.81	85.21	71.60	79.40	75.50	-	-	-
InstructBLIP-VHD11K-V	-	-	-	-	-	-	56.00	80.00	68.00

Contribution

- A scalable multimodal harmful contents dataset, VHD11K
 - 10,000 images and 1,000 videos sourced from the Internet and 4 generative models.
 - Cover in total 10 categories with non-trivial definitions.
- A novel annotation framework for harmful content
- Reformulate the annotation as multi-agent visual question answering problem.
- Utilize 3 vision-language models to debate the harmfulness.
- Benchmarking on 8 existing harmfulness detectors with VHD11K
 - Explore their limitations on detecting harmful contents.
 - Demonstrate the effectiveness of VHD11K by improved performances of finetuned methods.

Judge

Yes, sexually explicit content.

Distribution of Each Category

