E0 225: Homework 10

Deadline: 9 pm on January 24, 2021 (Sunday)

Problem 1. Considering the problem of computing a maximum-cardinality matching (in general graphs), establish the best possible approximation ratio for the following algorithm.

Input: Graph G = (V, E)

Output: A subset of edges $M \subseteq E$.

- 1: Initialize $M = \emptyset$
- 2: while there exists an edge $\hat{e} \in E \setminus M$ such that $M \cup \{\hat{e}\}$ is a matching do
- 3: Update $M \leftarrow M \cup \{\hat{e}\}\$
- 4: end while
- 5: return M

Note that the algorithm considers the edges in an arbitrary order.

Problem 2. Let \mathcal{I} be any instance of the maximum-coverage problem specified over n elements and with subsets $S_1, S_2, \ldots, S_m \subseteq U$; here |U| = n and let $k \in \mathbb{Z}_+$ be the cardinality constraint in \mathcal{I} . Write OPT to denote the value of an optimal solution in \mathcal{I} (i.e., the size of the union of any k given subsets is at most OPT).

Develop a polynomial-time algorithm that—given \mathcal{I} as input—finds $2k \log n$ sets (among the given ones) whose union is of size at least OPT.