Paul Pata

1) Cross-Sections Zi 12). Time Suies 24 3) Panel parta 20it Advantages: 1) Bigger numbers n.T - Seelanced 1 N # obj # time phioces 2) Estimate dynamics 3) Fight endoceneity yit = Bxit + Mi + Git Mi - ondserver regional specifics

Pool ed legressia yit = B + \(\frac{\x}{j=1} \rightarrow j \(\frac{\x}{j} \); \(\ Fixed Effect = Bo + U; + \(\int \) Yith 3j Cov (\Mi, Xit) # 0 LSDV (Punny Variable) First Difference) 3) Within - transform

O LSOV

Di - dummy variable

test: FE us Pooled

t - + est

Ho: d2 = ... = d= b

2) First Piffer ence

Mit = Bo + Mi + = BjXjit + Git (*) (*) - Lag (*)

 $\gamma_{i+} - \gamma_{i+-} = \sum_{j \in \mathcal{X}_{j+}} \gamma_{j+-} \times \gamma_{i+-} + \varepsilon_{i+-} + \varepsilon_{i+-}$ $\delta \gamma_{i+}$

3 Within - transformation

7; = po + M; + Eg; xj; + e;

- (po + M; + Eg; x; + e;)

Jit - Ji = EBj(Kit - Kii) + Git - Ei Randon Effects Assume: E(y;)=0 Estimation uning GLS Test: RE vs Pooled Breusch - Payan (LM) test FE us RE

Typ	u Pooled	EE	(FE)
M; =	O BLUE	inesticient	irefficient
	(;,Xit)=0 ; hefficient	BLUE	inesficient!
V		leiased incors.	3 LUE
U	(;, X;t) \$0 biased in cons.	incors.	
	Hausman test:		
	Ho: RE consiste	nt	
	Ha: RE incom		=> FE
<u> </u>	1 / 1 / A	X	Λ Λ _\
(= BKE) (V(BFE)-	VIBE) ($Y_{ke} - G_{Re}) \sim \chi^{c}$