第11章 二值选择模型

11.1 二值选择模型

如果被解释变量y离散,称为"离散选择模型"(discrete choice model)或"定性反应模型"(qualitative response model)。

最常见的离散选择模型是二值选择行为(binary choices)。

比如:考研或不考研;就业或待业;买房或不买房;买保险或不买保险;贷款申请被批准或拒绝;出国或不出国;回国或不回

1

国;战争或和平;生或死。

假设个体只有两种选择,比如y=1(考研)或y=0(不考研)。

最简单的建模方法为"线性概率模型"(Linear Probability Model, LPM):

$$y_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_K x_{iK} + \varepsilon_i = \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i \quad (i = 1, \dots, n) \quad (11.1)$$

其中,解释变量 $\mathbf{x}_i \equiv (x_{i1} \ x_{i2} \cdots x_{iK})'$,而参数 $\boldsymbol{\beta} \equiv (\beta_1 \ \beta_2 \cdots \beta_K)'$ 。

LPM 的优点是, 计算方便, 容易得到边际效应(即回归系数)。

LPM 的缺点是,虽然y的取值非 0 即 1,但根据线性概率模型所作的预测值却可能出现 $\hat{y} > 1$ 或 $\hat{y} < 0$ 的不现实情形。

图 11.1 线性概率模型

为使y的预测值介于[0,1]之间,在给定x的情况下,考虑y的两点分布概率:

$$\begin{cases}
P(y=1 \mid \boldsymbol{x}) = F(\boldsymbol{x}, \boldsymbol{\beta}) \\
P(y=0 \mid \boldsymbol{x}) = 1 - F(\boldsymbol{x}, \boldsymbol{\beta})
\end{cases} (11.2)$$

函数 $F(x, \beta)$ 称为"连接函数"(link function),因为它将x与y连接起来。

y的取值要么为 0, 要么为 1, 故y肯定服从两点分布。

连接函数的选择具有一定灵活性。

通过选择合适的连接函数 $F(x, \beta)$ (比如,某随机变量的累积分布函数),可保证 $0 \le \hat{y} \le 1$,并将 \hat{y} 理解为"y = 1"发生的概率,因为

$$E(y \mid x) = 1 \cdot P(y = 1 \mid x) + 0 \cdot P(y = 0 \mid x) = P(y = 1 \mid x)$$
 (11.3)

如果 $F(x, \beta)$ 为标准正态的累积分布函数,则

$$P(y=1|\mathbf{x}) = F(\mathbf{x}, \boldsymbol{\beta}) = \Phi(\mathbf{x}'\boldsymbol{\beta}) \equiv \int_{-\infty}^{x'\boldsymbol{\beta}} \phi(t) dt \qquad (11.4)$$

 $\phi(\cdot)$ 与 $\Phi(\cdot)$ 分别为标准正态的密度与累积分布函数;此模型称为 "Probit"。

如果 $F(x, \beta)$ 为"逻辑分布"(logistic distribution)的累积分布函数,则

$$P(y=1 \mid \boldsymbol{x}) = F(\boldsymbol{x}, \boldsymbol{\beta}) = \Lambda(\boldsymbol{x}'\boldsymbol{\beta}) \equiv \frac{\exp(\boldsymbol{x}'\boldsymbol{\beta})}{1 + \exp(\boldsymbol{x}'\boldsymbol{\beta})}$$
(11.5)

其中,函数 $\Lambda(\cdot)$ 的定义为 $\Lambda(z) \equiv \frac{\exp(z)}{1 + \exp(z)}$; 此模型称为 "Logit"。

逻辑分布的密度函数关于原点对称,期望为 0,方差为 $\pi^2/3$ (大于标准正态的方差),具有厚尾(fat tails)。

Probit 与 Logit 都很常用,二者的估计结果(比如边际效应)通常很接近。

Logit 模型的优势在于,逻辑分布的累积分布函数有解析表达式 (标准正态没有),故计算 Logit 更为方便;而且 Logit 的回归系数 更易解释其经济意义。

图 11.2 标准正态分布与逻辑分布的累积分布函数

11.2 最大似然估计的原理

Probit 与 Logit 模型本质上都是非线性模型,无法通过变量转换 变为线性模型。

对于非线性模型,常使用最大似然估计法(Maximum Likelihood Estimation, MLE 或 ML)。

回顾概率统计中的最大似然估计法。

假设随机变量y的概率密度函数为 $f(y;\theta)$,其中 θ 为未知参数。

为估计 θ , 从 y 的总体中抽取样本容量为n 的随机样本 $\{y_1, \dots, y_n\}$ 。

假设 $\{y_1, ..., y_n\}$ 为 iid,样本数据的联合密度函数为

$$f(y_1; \theta) f(y_2; \theta) \cdots f(y_n; \theta) = \prod_{i=1}^n f(y_i; \theta) \quad (11.6)$$

其中, $\prod_{i=1}^n$ 表示连乘。

在抽样之前, $\{y_1, ..., y_n\}$ 为随机向量。

抽样之后, $\{y_1, \dots, y_n\}$ 有了特定的样本值。

可将样本的联合密度函数视为在给定 $\{y_1, ..., y_n\}$ 情况下,未知参数 θ 的函数。

定义似然函数(likelihood function)为

$$L(\theta; y_1, \dots, y_n) = \prod_{i=1}^n f(y_i; \theta)$$
 (11.7)

似然函数与联合密度函数完全相等,只是 θ 与 $\{y_1, ..., y_n\}$ 的角色互换,即把 θ 作为自变量,视 $\{y_1, ..., y_n\}$ 为给定。

为运算方便,把似然函数取对数:

$$ln L(\theta; y_1, \dots, y_n) = \sum_{i=1}^{n} \ln f(y_i; \theta)$$
(11.8)

MLE 的思想: 给定样本取值后,该样本最可能来自参数 θ 为何值的总体。

寻找 $\hat{\theta}_{ML}$,使得观测到样本数据的可能性最大,即最大化对数似然函数(loglikelihood function):

$$\max_{\theta} \ln L(\theta; y_1, \dots, y_n)$$
 (11.9)

假设存在唯一内点解,一阶条件为

$$\frac{\partial \ln L(\theta; y_1, \dots, y_n)}{\partial \theta} = 0 \tag{11.10}$$

求解一阶条件,可得最大似然估计量 $\hat{\theta}_{\mathrm{ML}}$ 。

例 假设 $y \sim N(\mu, \sigma^2)$,其中 σ^2 已知,得到样本容量为 1 的样本 $y_1 = 2$,求对 μ 的最大似然估计。根据正态分布的密度函数,此样本的似然函数为

$$L(\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{\frac{-(2-\mu)^2}{2\sigma^2}\right\}$$
 (11.11)

似然函数在 $\hat{\mu}=2$ 处取最大值,参见图 11.3。

图 11.3 选择参数使观测到样本的可能性最大

例(非正式) 某人操一口浓重的四川口音,则判断他最有可能来自四川。

在一定的正则条件(regularity conditions)下, MLE 估计量具有良好的大样本性质,可照常进行大样本统计推断。

- (1) $\hat{\theta}_{ML}$ 为一致估计,即 $\lim \hat{\theta}_{ML} = \theta$ 。
- (2) $\hat{\theta}_{\text{ML}}$ 服从渐近正态分布。
- (3) 在大样本下, $\hat{\theta}_{ML}$ 是最有效率的估计(渐近方差最小)。

由于模型存在非线性,MLE 通常没有解析解,只能寻找"数值解"(numerical solution)。

一般使用"迭代法"(iteration)进行数值求解。

常用的迭代法为"高斯-牛顿法"(Gauss-Newton method)。

MLE 的一阶条件可归结为求非线性方程 f(x) = 0 的解。

假设f(x)的导数f'(x)处处存在,参见图 11.4。记该方程的解为 x^* ,满足 $f(x^*)=0$ 。

图 11.4 高斯-牛顿法

首先,猜初始值 x_0 ,在点 $(x_0, f(x_0))$ 处作曲线f(x)的切线,记切线与横轴的交点为 x_1 。

然后,在点 $(x_1,f(x_1))$ 处再作切线,记切线与横轴的交点为 x_2 。

以此类推,不断迭代,可得序列 $\{x_0, x_1, x_2, x_3, \cdots\}$ 。

一般情况下,该序列将收敛至 x^* (给定一个精确度,收敛到精确度范围内即停止)。

高斯-牛顿法的收敛速度很快,是二次的。如本次迭代的误差为0.1,则下次迭代的误差约为 0.1^2 ,下下次迭代的误差约为 0.1^4 ,等等。

如果初始值 xo 选择不当,也可能出现迭代不收敛的情形。

使用牛顿法得到的可能只是"局部最大值"(local maximum),而非"整体最大值"(global maximum)。

MLE很容易应用于多参数的情形。

假设随机变量y的概率密度函数为 $f(y;\theta)$,其中 $\theta = (\theta_1 \ \theta_2)'$,则对数似然函数为

$$\ln L(\theta; y_1, \dots, y_n) = \sum_{i=1}^n \ln f(y_i; \theta)$$
 (11.12)

一阶条件为

$$\begin{cases}
\frac{\partial \ln L(\boldsymbol{\theta}; y_1, \dots, y_n)}{\partial \theta_1} = 0 \\
\frac{\partial \ln L(\boldsymbol{\theta}; y_1, \dots, y_n)}{\partial \theta_2} = 0
\end{cases}$$
(11.13)

求解此联立方程组,可得最大似然估计量 $\hat{\theta}_{1,ML}$ 与 $\hat{\theta}_{2,ML}$ 。

高斯-牛顿法也适用于多元函数f(x)=0的情形,只要在上述迭代过程中,将切线替换为(超)切平面即可。

11.3 二值选择模型的 MLE 估计

以Logit为例,将MLE应用于二值选择模型。

对于样本数据 $\{x_i, y_i\}_{i=1}^n$,根据方程(11.5),第 i 个观测数据的概率密度为

$$f(y_i \mid \boldsymbol{x}_i, \boldsymbol{\beta}) = \begin{cases} \Lambda(\boldsymbol{x}_i'\boldsymbol{\beta}), & \stackrel{\text{def}}{=} 1\\ 1 - \Lambda(\boldsymbol{x}_i'\boldsymbol{\beta}), & \stackrel{\text{def}}{=} y_i = 0 \end{cases}$$
(11.14)

其中, $\Lambda(z) = \frac{\exp(z)}{1 + \exp(z)}$ 为逻辑分布的累积分布函数。

上式可写为

$$f(y_i \mid \boldsymbol{x}_i, \boldsymbol{\beta}) = \left[\Lambda(\boldsymbol{x}_i'\boldsymbol{\beta})\right]^{y_i} \left[1 - \Lambda(\boldsymbol{x}_i'\boldsymbol{\beta})\right]^{1 - y_i} \quad (11.15)$$

取对数可得

$$\ln f(y_i \mid \boldsymbol{x}_i, \boldsymbol{\beta}) = y_i \ln \left[\Lambda(\boldsymbol{x}_i' \boldsymbol{\beta}) \right] + (1 - y_i) \ln \left[1 - \Lambda(\boldsymbol{x}_i' \boldsymbol{\beta}) \right]$$
(11.16)

假设样本中的个体相互独立,整个样本的对数似然函数为

$$\ln L(\beta | y, x) = \sum_{i=1}^{n} y_i \ln \left[\Lambda(x_i'\beta) \right] + \sum_{i=1}^{n} (1 - y_i) \ln \left[1 - \Lambda(x_i'\beta) \right]$$
(11.17)

把对数似然函数对 β 求偏导,可得一阶条件。

满足一阶条件的估计量即为 MLE 估计量,记为 $\hat{oldsymbol{eta}}_{\mathrm{ML}}$ 。

11.4 边际效应

对于线性模型,回归系数 β_k 的经济意义就是变量 x_k 对y的边际效应(marginal effects)。

在非线性模型中,估计量 $\hat{\boldsymbol{\beta}}_{\mathrm{ML}}$ 一般并非边际效应。

以 Probit 为例,计算变量 x_k 的边际效应:

$$\frac{\partial P(y=1|\mathbf{x})}{\partial x_k} = \frac{\partial \Phi(\mathbf{x}'\boldsymbol{\beta})}{\partial x_k} = \frac{\partial \Phi(\mathbf{x}'\boldsymbol{\beta})}{\partial (\mathbf{x}'\boldsymbol{\beta})} \cdot \frac{\partial (\mathbf{x}'\boldsymbol{\beta})}{\partial x_k} = \phi(\mathbf{x}'\boldsymbol{\beta}) \cdot \beta_k \quad (11.18)$$

由于 Probit 与 Logit 所用分布函数不同, 其参数估计值不直接可比。需分别计算二者的边际效应, 然后比较。

对于非线性模型,边际效应通常不是常数,随着向量x而变。

非线性模型常用的边际效应概念:

- (1) 平均边际效应 (average marginal effect): 分别计算在每个样本观测值上的边际效应,然后进行简单算术平均。
- (2) 样本均值处的边际效应 (marginal effect at mean): 计算在 $x = \bar{x}$ 处的边际效应。
- (3) 在某代表值处的边际效应 (marginal effect at a representative value): 给定 x^* , 计算在 $x = x^*$ 处的边际效应。

以上三种边际效应的计算结果可能有较大差异。

传统上,常计算样本均值处 $x = \overline{x}$ 的边际效应,因为计算方便。

但在非线性模型中,样本均值处的个体行为并不等于样本中个体的平均行为(average behavior of individuals differs from behavior of the average individual)。

对于政策分析而言,使用平均边际效应(Stata 的默认方法),或在某代表值处的边际效应通常更有意义。

11.5 回归系数的经济意义

 $\hat{\beta}_{ML}$ 并非边际效应,它究竟有什么含义?

对于 Logit 模型,记事件发生的概率为p = P(y=1|x),则事件不发生的概率为1-p = P(y=0|x)。

由于 $p = \frac{\exp(\mathbf{x}'\boldsymbol{\beta})}{1 + \exp(\mathbf{x}'\boldsymbol{\beta})}$, $1 - p = \frac{1}{1 + \exp(\mathbf{x}'\boldsymbol{\beta})}$,故事件发生与不发生的几率比为

$$\frac{p}{1-p} = \exp(\mathbf{x}'\boldsymbol{\beta}) \quad (11.19)$$

 $\frac{p}{1-p}$ 称为"几率比" (odds ratio)或"相对风险" (relative risk)。

例 在检验药物疗效的随机实验中,"y=1"表示"生","y=0"表示"死"。如几率比为 2,意味着存活的概率是死亡概率的两倍。

对方程(11.19)两边取对数:

$$\ln\left(\frac{p}{1-p}\right) = \mathbf{x}'\boldsymbol{\beta} = \beta_1 x_1 + \dots + \beta_K x_K \qquad (11.20)$$

$$\ln\left(\frac{p}{1-p}\right)$$
 称为"对数几率比" (log-odds ratio)。

回归系数 $\hat{\beta}_j$ 表示,变量 x_j 增加一个微小量引起对数几率比的边际变化。

取对数意味着百分比的变化,故可把 $\hat{\beta}_j$ 视为半弹性 (semi-elasticity),即 x_j 增加一单位引起几率比 $\left(\frac{p}{1-p}\right)$ 的变化百分比。

例 $\hat{\beta}_{j} = 0.12$,意味着 x_{j} 增加一单位引起几率比增加 12%。

如 x_j 为离散变量(比如,性别、子女数),可使用另一解释法。

假设 x_j 增加一单位,从 x_j 变为 x_j+1 ,记几率比p的新值为 p^* ,则新几率比与原几率比的比率可写为 (无法用微积分)

$$\frac{\frac{p^*}{1-p^*}}{\frac{p}{1-p}} = \frac{\exp[\beta_1 + \beta_2 x_2 + \dots + \beta_j (x_j + 1) + \dots + \beta_K x_K]}{\exp(\beta_1 + \beta_2 x_2 + \dots + \beta_j x_j + \dots + \beta_K x_K)} = \exp(\beta_j) \quad (11.21)$$

 $\exp(\hat{\beta}_i)$ 表示变量 x_i 增加一单位引起几率比的变化倍数。

Stata 也称 $\exp(\hat{\beta}_i)$ 为几率比(odds ratio)。

例 $\hat{\beta}_j = 0.12$,则 $\exp(\hat{\beta}_j) = e^{0.12} = 1.13$,故当 x_j 增加一单位时,新几率比是原几率比的 1.13 倍,或增加 13%,因为 $\exp(\hat{\beta}_i) - 1 = 1.13 - 1 = 0.13$ 。

如果 $\hat{\beta}_j$ 较小,则 $\exp(\hat{\beta}_j)$ -1 $\approx \hat{\beta}_j$ (将 $\exp(\hat{\beta}_j)$ 泰勒展开),以上两种方法基本等价。

对于 Probit 模型,无法对其系数 $\hat{oldsymbol{eta}}_{ML}$ 进行类似解释。

11.6 拟合优度

不存在平方和分解公式,无法计算 R^2 。

Stata 仍汇报"准 R^2 "或"伪 R^2 "(Pseudo R^2),由 McFadden (1974) 提出,定义为

$$/\!\!\!\!/ ER^2 \equiv \frac{\ln L_0 - \ln L_1}{\ln L_0} \tag{11.22}$$

 $\ln L_1$ 为原模型的对数似然函数之最大值, $\ln L_0$ 为以常数项为唯一解释变量的对数似然函数之最大值。

由于y为两点分布,似然函数的最大可能值为 1(取值概率为 1),故对数似然函数的最大可能值为 0,记为 $\ln L_{max}$ 。

由于 $\ln L_{\text{max}} = 0$,可将"准 R^2 "写为

$$淮R^2 = \frac{\ln L_1 - \ln L_0}{\ln L_{\text{max}} - \ln L_0}$$
(11.23)

显然, $0 \ge \ln L_1 \ge \ln L_0$,而 $0 \le R^2 \le 1$,参见图 11.5。

分子为对数似然函数的实际增加值 $(\ln L_1 - \ln L_0)$; 分母为对数似然函数的最大可能增加值 $(\ln L_{\max} - \ln L_0)$ 。

图 11.5 准 R^2 的计算

判断拟合优度的另一方法是计算"正确预测的百分比"(percent correctly predicted)。

如发生概率的预测值 $\hat{y} \ge 0.5$,则认为其预测y = 1;

反之,则认为其预测y=0。

将预测值与实际值(样本数据)进行比较,可计算正确预测的百分比。

11.7 准最大似然估计

使用MLE的前提是对总体的分布函数作具体的假定。

Probit 与 Logit 模型分别假设y的两点分布概率为标准正态或逻辑分布的累积分布函数。

此分布函数的设定可能不正确,即存在"设定误差"(specification error)。

定义 使用不正确的分布函数所得到的最大似然估计量, 称为"准最大似然估计"(Quasi MLE, 简记 QMLE)或"伪最大似然估计"(Pseudo MLE)。

准最大似然估计是否一定不一致?

不一定!

例 假设线性模型的扰动项服从正态分布,则 MLE 估计量与 OLS 估计量完全相同,而 OLS 估计量的一致性并不依赖于关于分布函数的具体假设。

关于 QMLE 估计量的标准误,可分两种情况考虑。

(1) 如果 QMLE 为一致估计量,由于可能存在对分布函数的设定误差,应使用稳健标准误(robust standard errors),即相对于模型设定稳健的标准误。

此稳健标准误与异方差稳健的标准误是一致的,因为扰动项方差是否相同也是一种模型设定。

(2) 如 QMLE 估计量不一致,即使采用稳健标准误也无济于事。

QMLE 估计量 $\hat{\beta}_{QML} \xrightarrow{p} \beta^* \neq \beta$,应首先担心估计量的一致性。

稳健标准误只是一致地估计了一个不一致估计量的方差(a consistent estimator of the variance of an inconsistent estimator)。

对于二值选择模型(Probit 或 Logit), 只要条件期望函数 $E(y|x) = F(x, \beta)$ 设定正确,则 MLE 估计就一致。

由于两点分布的特殊性,在 iid 的情况下,只要 $E(y|x) = F(x, \beta)$ 成立,稳健标准误就等于普通标准误。

如果认为模型设定正确,就不必使用稳健标准误(使用稳健标准误也没错)。

如果模型设定不正确(即 $E(y|x) \neq F(x, \beta)$),则 Probit 与 Logit 模型不能得到对系数 β 的一致估计,使用稳健标准误就没有太大意义;首先应解决参数估计的一致性问题。

对于二值选择模型,使用普通标准误或稳健标准误都可(文献中无定论)。

11.8 三类渐近等价的大样本检验

在计量中,常使用三类在大样本下渐近等价的统计检验。

考虑线性回归模型:

$$y_i = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_K x_K + \varepsilon_i = \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i \quad (i = 1, \dots, n) \quad (11.24)$$

其中,解释变量 $\mathbf{x} \equiv (x_1 \ x_2 \cdots x_K)'$,参数 $\boldsymbol{\beta} \equiv (\beta_1 \ \beta_2 \cdots \beta_K)'$ 。

检验以下原假设:

$$H_0: \boldsymbol{\beta} = \boldsymbol{\beta}_0 \tag{11.25}$$

其中, β_0 已知,共有K个约束。

(1) 沃尔德检验(Wald Test)

沃尔德检验考察 β 的无约束估计量 $\hat{\beta}$ 与 β_0 的距离。

基本思想:如果 H_0 正确,则 $(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)$ 不应该很大。

由于 $(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)$ 为多维向量,使用二次型:

$$W \equiv (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)' [\operatorname{Var}(\hat{\boldsymbol{\beta}})]^{-1} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) \xrightarrow{d} \chi^2(K) \quad (11.26)$$

其中 *K* 为约束条件的个数。

第 5-6 章介绍的单一系数t检验、联合线性假设的F检验都是 Wald 检验。

(2) 似然比检验(Likelihood Ratio Test,简记LR)

似然比检验比较无约束估计量 $\hat{\boldsymbol{\beta}}$ 与有约束估计量 $\hat{\boldsymbol{\beta}}$ *的差别。

无约束的似然函数最大值 $\ln L(\hat{\boldsymbol{\beta}})$ 比有约束的似然函数最大值 $\ln L(\hat{\boldsymbol{\beta}}^*)$ 更大,因为在无约束条件下的参数空间 $\boldsymbol{\Theta}$ 比有约束条件下(即 H_0 成立时)参数的取值范围更大,参见图 11.6。

图 11.6 无约束与有约束的参数空间

基本思想:如果 H_0 正确,则 $[\ln L(\hat{\boldsymbol{\beta}}) - \ln L(\hat{\boldsymbol{\beta}}^*)]$ 不应该很大。

在此例中,有约束的估计量 $\hat{\boldsymbol{\beta}}^* = \boldsymbol{\beta}_0$ 。

LR统计量为

$$LR = -2\ln\left[\frac{L(\hat{\boldsymbol{\beta}}^*)}{L(\hat{\boldsymbol{\beta}})}\right] = 2\left[\ln L(\hat{\boldsymbol{\beta}}) - \ln L(\hat{\boldsymbol{\beta}}^*)\right] \xrightarrow{d} \chi^2(K) \quad (11.27)$$

在大样本下,LR统计量也服从渐近 $\chi^2(K)$ 分布。

第 5 章介绍的F统计量的另一表达式 $F = \frac{(SSR^* - SSR)/(K-1)}{SSR/(n-K)}$,即依据似然比原理而设计。

在进行 Probit 或 Logit 回归时,Stata 会汇报一个似然比统计量, 检验除常数项外所有参数的联合显著性。 (3) 拉格朗日乘子检验(Lagrange Multiplier Test,简记LM) Wald 检验只考察无约束估计量 $\hat{\beta}$ 。

LR检验同时考察无约束估计量 $\hat{oldsymbol{eta}}$ 与有约束估计量 $\hat{oldsymbol{eta}}^*$ 。

LM 检验则只考察有约束估计量 $\hat{oldsymbol{eta}}^*$ 。

有约束条件的对数似然函数最大化问题:

$$\max_{\tilde{\boldsymbol{\beta}}} \ln L(\tilde{\boldsymbol{\beta}})$$

$$s.t. \ \tilde{\boldsymbol{\beta}} = \boldsymbol{\beta}_0$$
(11.28)

 $\tilde{\boldsymbol{\beta}}$ 为在最大化过程中假想的参数 $\boldsymbol{\beta}$ 取值(hypothetical value)。

对于约束极值问题,引入拉格朗日乘子函数:

$$\max_{\tilde{\boldsymbol{\beta}}, \lambda} \ln L(\tilde{\boldsymbol{\beta}}) - \lambda'(\tilde{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) \qquad (11.29)$$

λ为拉格朗日乘子向量(Lagrange Multiplier), 其经济含义为约束条件(比如资源约束)的影子价格(shadow price)。

如果 $\hat{\lambda} = 0$,约束条件完全不起作用(可无偿获取任意数量的资源)。

根据一阶条件(对 $\tilde{\beta}$ 求导)可知,

$$\hat{\boldsymbol{\lambda}} = \frac{\partial \ln L(\hat{\boldsymbol{\beta}}^*)}{\partial \tilde{\boldsymbol{\beta}}} \equiv \begin{pmatrix} \frac{\partial \ln L(\hat{\boldsymbol{\beta}}^*)}{\partial \tilde{\beta}_1} \\ \vdots \\ \frac{\partial \ln L(\hat{\boldsymbol{\beta}}^*)}{\partial \tilde{\beta}_K} \end{pmatrix} (11.30)$$

最优的拉格朗日乘子向量 $\hat{\lambda}$ 等于对数似然函数在约束估计量 $\hat{\beta}^*$ 处的一阶偏导数(切线的斜率)。

如 $\hat{\lambda} \approx \mathbf{0}$,说明约束条件不"紧"(tight)或不是"硬约束"(binding constraint),加上约束条件不会使似然函数的最大值下降很多,即原假设 H_0 很可能成立。

如果原假设 H_0 成立,则 $(\hat{\lambda} - \theta)$ 的绝对值不应很大。

以二次型来度量此距离,可得LM 统计量:

$$LM \equiv \hat{\lambda}' \left[\text{Var}(\hat{\lambda}) \right]^{-1} \hat{\lambda} \xrightarrow{d} \chi^{2}(K) \qquad (11.31)$$

其中, $Var(\hat{\lambda})$ 为 $\hat{\lambda}$ 的协方差矩阵。

由于 $\hat{\lambda} = \frac{\partial \ln L(\tilde{\beta})}{\partial \tilde{\beta}}$ 称为"得分函数"(score function)或"得分向量" (score vector),此检验也称"得分检验"(score test)。

另一直观理解是,由于在无约束估计量
$$\hat{\boldsymbol{\beta}}$$
处, $\frac{\partial \ln L(\hat{\boldsymbol{\beta}})}{\partial \hat{\boldsymbol{\beta}}} = \mathbf{0}$ (MLE

的一阶条件),故如原假设 H_0 成立,则在约束估计量 $\hat{\boldsymbol{\beta}}^*$ 处, $\frac{\partial \ln L(\hat{\boldsymbol{\beta}}^*)}{\partial \tilde{\boldsymbol{\beta}}} \approx \mathbf{0}, \quad \text{m} LM$ 统计量反映的就是此接近程度。

在第 7-8 章,对异方差与自相关所进行的 nR^2 形式的检验都来自 LM 检验的推导。

这三类检验在大样本下渐近等价,从不同侧面考察同一事物, 参见图 11.7。

图 11.7 三类渐近等价的统计检验

究竟采取哪种检验常取决于"无约束估计"与"有约束估计" 哪种更方便。

如果无约束估计更方便,常使用 Wald 检验(比如,对线性回归系数的显著性检验);

如果有约束估计更方便,常使用*LM* 检验(比如,对异方差、自相关的检验);

如果二者都方便,可使用*LR*检验(比如,对非线性回归方程的显著性检验)。

11.9 二值选择模型的 Stata 命令与实例

二值模型的 Stata 命令为

probit y x1 x2 x3,r (probit 模型)

logit y x1 x2 x3,r or (logit 模型)

选择项"r"表示使用稳健标准误(默认为普通标准误);

选择项"or"表示显示几率比(odds ratio),不显示回归系数。

完成 Probit 或 Logit 估计后,可进行预测,计算准确预测的百分比,或计算边际效应:

predict y1 (计算发生概率的预测值,记为y1)

estat clas (计算准确预测的百分比, clas 表示 classification)

margins,dydx(*) (计算所有解释变量的平均边际效应; "*"代表所有解释变量)

margins,dydx(*) atmeans (计算所有解释变量在样本均值处的边际效应)

margins, dydx(*) at(x1=0) (计算所有解释变量在 x1 = 0 处的平均边际效应)

margins, dydx(x1) (计算解释变量 x1 的平均边际效应)

margins, eyex(*) (计算平均弹性, 其中的两个 "e"均指 elasticity)

margins, eydx(*) (计算平均半弹性,x变化一单位引起y变化百分之几)

margins, dyex(*) (计算平均半弹性, x变化 1%引起y变化几个单位)

以数据集 titanic.dta 为例。

该数据集包括泰坦尼克号乘客的存活数据。

此数据集由 Dawson(1995)提供,原始数据来自英国贸易委员会 (British Board of Trade)在沉船之后的调查。

该数据集的被解释变量为 survive(存活=1, 死亡=0);

解释变量包括 child(儿童=1,成年=0), female(女性=1,男性=0), class1(头等舱=1,其他=0), class2(二等舱=1,其他=0), class3(三等舱=1,其他=0), class4(船员=1,其他=0)。

图 11.8 泰坦尼克号于 1914年 4月 10 日从英国南安普顿港出发

首先打开数据集,看原始数据。

- . use titanic.dta,clear
- . list

	class1	class2	class3	class4	child	female	survive	freq
1.	0	0	1	0	1	0	0	35
2.	0	0	1	0	1	1	0	17
3.	1	0	0	0	0	0	0	118
4.	0	1	0	0	0	0	0	154
5.	0	0	1	0	0	0	0	387
6.	0	0	0	1	0	0	0	670
7.	1	0	0	0	0	1	0	4
8.	0	1	0	0	0	1	0	13
9.	0	0	1	0	0	1	0	89
10.	0	0	0	1	0	1	0	3
11.	1	0	0	0	1	0	1	5
12.	0	1	0	0	1	0	1	11
13.	0	0	1	0	1	0	1	13
14.	1	0	0	0	1	1	1	1
15.	0	1	0	0	1	1	1	13
16.	0	0	1	0	1	1	1	14
17.	1	0	0	0	0	0	1	57
18.	0	1	0	0	0	0	1	14
19.	0	0	1	0	0	0	1	75
20.	0	0	0	1	0	0	1	192
21.	1	0	0	0	0	1	1	140
22.	0	1	0	0	0	1	1	80
23.	0	0	1	0	0	1	1	76
24.	0	0	0	1	0	1	1	20

原始数据只有 24 个观测值, 但每个观测值可能重复多次; 其重 复次数以最后一列变量 freq 表示。

第一行数据显示,乘坐三等舱的男孩死亡者有35人;第二行数据显示,乘坐三等舱的女孩死亡者有17人;以此类推。

对于观测值重复的数据,在估计时,须以重复次数(freq)作为权重才能得到正确结果。

其效果相当于在数据文件中,将第一行数据重复 35 次,第二行数据重复 17 次,以此类推 (不同于以方差倒数为权重的 WLS)。

假设观测值的重复次数记录于变量 freq, 在 Stata 中,可通过在命令的最后加上"[fweight=freq]"来实现加权计算或估计;其中"fweight"指"frequency weight"(频数权重)。

首先看各变量的统计特征。

. sum [fweight=freq]

Variable	Obs	Mean	Std. Dev.	Min	Max
survive	2201	.323035	.4677422	0	1
child	2201	.0495229	.2170065	0	1
female	2201	.2135393	.4098983	0	1
class1	2201	.1476602	.3548434	0	1
class2	2201	.1294866	.335814	0	1
class3	2201	.3207633	.466876	0	1

样本容量为 2201(旅客与船员总人数), 而非 24。从变量 survive 的平均值可知, 平均存活率为 0.32。

分别计算小孩、女士以及各等舱旅客的存活率。

. sum survive if child [fweight=freq]

Variable	0bs	Mean	Std. Dev.	Min	Max
survive	109	.5229358	.5017807	0	1

. sum survive if female [fweight=freq]

Variable	0bs	Mean	Std. Dev.	Min	Max
survive	470	.7319149	.4434342	0	1

. sum survive if class1 [fweight=freq]

Variable	0bs	Mean	Std. Dev.	Min	Max
survive	325	.6246154	.4849687	0	1

. sum survive if class2 [fweight=freq]

Variable	0bs	Mean	Std. Dev.	Min	Max
survive	285	.4140351	.493421	0	1

. sum survive if class3 [fweight=freq]

Variable	Obs	Mean	Std. Dev.	Min	Max
survive	706	.2521246	.4345403	0	1

. sum survive if class4 [fweight=freq]

Variable	0bs	Mean	Std. Dev.	Min	Max
survive	885	.239548	.427049	0	1

小孩、女士、一等舱、二等舱的存活率分别为 0.52、0.73、0.62、0.41,高于平均存活率;三等舱、船员的存活率分别为 0.25、0.24,低于平均存活率。

下面进行回归分析。首先使用 OLS 估计线性概率模型。

. reg survive child female class1 class2 class3
[fweight=freq],r

near regress	sion				Number of obs F(5, 2195) Prob > F R-squared Root MSE	
survive	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
child	.1812957	.0479499	3.78	0.000	.0872639	.2753275
female	.4906798	.0239292	20.51	0.000	.4437535	.5376061
class1	.1755538	.0291386	6.02	0.000	.1184117	.232696
class2	0105263	.0258402	-0.41	0.684	0612	.0401475
class3	1311806	.0212996	-6.16	0.000	17295	0894112
01000						

将虚拟变量 class4(船员)作为参照类别,不放入回归方程。

儿童(child)、妇女(female)与头等舱旅客(class1)的存活概率均显著更高,三等舱旅客(class3)的存活概率显著更低,二等舱旅客(class2)的存活概率与船员无显著差异。

其次, 进行 Logit 估计:

. logit survive child female class1 class2 class3
[fweight=freq],nolog

选择项"nolog"表示不显示 MLE 数值计算的迭代过程。

ogistic regre	ession			Numbe	r of obs	= 220
				LR ch	ii2(5)	= 559.4
				Prob	> chi2	= 0.000
og likelihood	d = -1105.0306	5		Pseud	lo R2	= 0.202
survive	Coef.	Std. Err.	z	P> z	[95% Cor	nf. Interval
child	1.061542	.2440257	4.35	0.000	.5832608	1.53982
female	2.42006	.1404101	17.24	0.000	2.144862	2.69525
class1	.8576762	.1573389	5.45	0.000	.5492976	1.16605
class2	1604188	.1737865	-0.92	0.356	5010342	.180196
class3	9200861	.1485865	-6.19	0.000	-1.21131	628861
_cons	-1.233899	.0804946	-15.33	0.000	-1.391666	-1.07613

Logit 估计结果在显著性方面与 OLS 完全一致。

准 R^2 为 0.20。检验整个方程显著性的LR统计量(LR chi2(5)) 为 559.40,p值为 0.000,整个方程高度显著。

使用稳健标准误进行 Logit 估计。

. logit survive child female class1 class2 class3 [fweight=freq], nolog r

ogistic regr	ession			Numbe	r of obs	=	2201
				Wald o	chi2(5)	=	467.05
				Prob :	> chi2	=	0.0000
og pseudolik	elihood = -11	05.0306		Pseudo	o R2	=	0.2020
	T						
		Robust					
survive	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
child	1.061542	.2767452	3.84	0.000	.5191	318	1.603953
female	2.42006	.1363096	17.75	0.000	2.152	898	2.687222
class1	.8576762	.1475218	5.81	0.000	.5685	387	1.146814
class2	1604188	.1502193	-1.07	0.286	4548	432	.1340056
CIGDED		1601005	-5.68	0.000	-1.237	803	602369
class3	9200861	.1621035	-3.00	0.000	1.25,	005	.002303

稳健标准误与普通标准误比较接近。

由于此回归中的解释变量均为虚拟变量,只能变化一个单位(从0变为1),让Stata 汇报几率比而非系数。

. logit survive child female class1 class2 class3 [fweight=freq], or nolog

ogistic regr	ession			Numbe	r of obs =	2201
				LR ch	i2(5) =	559.40
				Prob :	> chi2 =	0.0000
og likelihoo	d = -1105.030	6		Pseudo	o R2 =	0.2020
survive	Odds Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
child	2.890826	.7054359	4.35	0.000	1.791872	4.663769
female	11.24654	1.579128	17.24	0.000	8.540859	14.80936
class1	2.357675	.3709541	5.45	0.000	1.732036	3.209306
class2	.851787	.1480291	-0.92	0.356	.6059037	1.197453
class3	.3984847	.0592095	-6.19	0.000	.2978068	.5331983
	.2911551	.0234364	-15.33	0.000	.2486608	.3409114

儿童的生存几率比是成年人的近 3 倍(几率比 2.89), 妇女的存活几率比是男人的 11 倍多(几率比 11.25), 头等舱旅客的存活几率比是船员的 2.36 倍, 三等舱旅客的存活几率比只是船员的 39.8%; 二等舱旅客的存活几率比也略低于船员(几率比 0.85), 但此差别不显著。

计算 Logit 模型的平均边际效应:

. margins,dydx(*)

Average marginal effects Number of obs = 2201

Model VCE : OIM

Expression : Pr(survive), predict()

dy/dx w.r.t. : child female class1 class2 class3

	dy/dx	Delta-method Std. Err.	Z	P> z	[95% Conf.	Interval]
child	.1732315	.0393799	4.40	0.000	.0960484	.2504147
female	.394926	.0171966	22.97	0.000	.3612214	.4286307
class1	.1399629	.0250922	5.58	0.000	.0907831	.1891427
class2	0261785	.0283616	-0.92	0.356	0817663	.0294093
class3	1501475	.0238334	-6.30	0.000	1968602	1034348

Logit 模型的平均边际效应与 OLS 回归系数相差不大。

作为演示, 计算在样本均值处的边际效应。

. margins,dydx(*) atmeans

```
Conditional marginal effects
                                                                        2201
                                                 Number of obs
Model VCE
            : OIM
Expression
           : Pr(survive), predict()
dy/dx w.r.t. : child female class1 class2 class3
at
            : child
                              = .0495229 (mean)
              female
                              = .2135393 (mean)
              class1
                              = .1476602 (mean)
              class2
                              = .1294866 (mean)
              class3
                              = .3207633 (mean)
                         Delta-method
                                              P> | z |
                   dy/dx
                           Std. Err.
                                                        [95% Conf. Interval]
      child
                 .2223422
                          .0510772
                                        4.35
                                              0.000
                                                        .1222328
                                                                    .3224516
      female
                .5068865
                          .0303542
                                       16.70
                                              0.000
                                                      .4473934
                                                                    .5663797
      class1
                 .179642
                          .0332374
                                     5.40
                                              0.000
                                                      .1144979
                                                                    .2447861
      class2
                  -.0336
                           .0363774
                                       -0.92
                                              0.356
                                                        -.1048983
                                                                    .0376983
      class3
               -.1927139
                                       -6.25
                                                        -.2531173
                           .0308186
                                              0.000
                                                                  -.1323105
```

在样本均值处的边际效应与平均边际效应有所不同。

计算 Logit 模型准确预测的比率:

. estat clas

```
Logistic model for survive
                       True —
Classified
                     D
                                   ~D
                                              Total
                                  126
                                                 475
                    349
                    362
                                 1364
                                                1726
                   711
                                 1490
                                                2201
   Total
Classified + if predicted Pr(D) >= .5
True D defined as survive != 0
Sensitivity
                                 Pr( + | D)
                                              49.09%
Specificity
                                 Pr( - | ~D)
                                             91.54%
Positive predictive value
                                 Pr( D| +)
                                             73.47%
Negative predictive value
                                 Pr(~D| -)
                                             79.03%
False + rate for true ~D
                                 Pr(+|\sim D)
                                              8.46%
False - rate for true D
                                 Pr( - | D)
                                              50.91%
False + rate for classified +
                                 Pr(~D| +)
                                             26.53%
False - rate for classified -
                                 Pr( D| -)
                                             20.97%
Correctly classified
                                             77.83%
```

正确预测的比率为 (349 + 1364)/2201 = 77.83 %。

根据 Logit 回归结果,预测每位乘客的存活概率,记为变量 prob。

. predict prob
(option pr assumed; Pr(survive))

考察给定某种特征旅客的生存概率。

计算 Ms. Rose (头等舱、成年、女性)的存活概率:

. list prob survive freq if class1==1 & child==0
& female==1

	prob	survive	freq
7.	.8853235	0	4
21.	.8853235		140

Ms. Rose 的存活概率高达 88.5%。从频率上看,在所有头等舱的 144 位成年女性中,只有 4 位死亡。

计算 Mr. Jack (三等舱、成年、男性)的存活概率:

. list prob survive freq if class3==1 & child==0
& female==0

	prob	survive	freq
5. 19.	.1039594	0	387 75

Mr. Jack 的存活概率仅有 10.4%。从频率上看,在所有三等舱的 462 位成年男性中,只有 75 位生还。

类似地,可对此数据集进行 Probit 估计。

. probit survive child female class1 class2
class3 [fweight=freq],nolog

robit regress	sion				r of obs =	2201
				LR ch	i2(5) =	556.83
				Prob	> chi2 =	0.0000
og likelihood	d = -1106.3142	2		Pseud	o R2 =	0.2011
	,					
survive	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
child	.5803382	.1377535	4.21	0.000	.3103463	.85033
female	1.44973	.0808635	17.93	0.000	1.29124	1.608219
class1	.5399101	.0951552	5.67	0.000	.3534092	.7264109
class2	0898158	.1028857	-0.87	0.383	2914681	.1118364
class3	4875252	.0800342	-6.09	0.000	6443893	3306611
	7530486	.0468804	-16.06	0.000	8449325	6611648

Probit 与 Logit 的回归系数不可比。考察 Probit 模型的平均边际效应及预测准确度。

. margins,dydx(*)

Average marginal effects Number of obs = 2201

Model VCE : OIM

Expression : Pr(survive), predict()

dy/dx w.r.t. : child female class1 class2 class3

]	Delta-method				
	dy/dx	Std. Err.	Z	P> z	[95% Conf.	Interval]
child	.1640035	.0386284	4.25	0.000	.0882932	.2397137
female	.4096934	.0177738	23.05	0.000	.3748574	.4445294
class1	.1525785	.0262955	5.80	0.000	.1010403	.2041167
class2	0253819	.0290666	-0.87	0.383	0823515	.0315876
class3	1377745	.0223131	-6.17	0.000	1815075	0940416

. estat clas

```
Probit model for survive
                       True -
Classified
                      D
                                   ~D
                                               Total
                    349
                                  126
                                                 475
                    362
                                 1364
                                                1726
   Total
                    711
                                 1490
                                                2201
Classified + if predicted Pr(D) >= .5
True D defined as survive != 0
Sensitivity
                                 Pr( + | D)
                                              49.09%
Specificity
                                 Pr( - | ~D)
                                              91.54%
Positive predictive value
                                 Pr( D| +)
                                              73.47%
Negative predictive value
                                 Pr(~D| -)
                                              79.03%
                                              8.46%
False + rate for true ~D
                                 Pr(+|\sim D)
False - rate for true D
                                 Pr( - | D)
                                              50.91%
False + rate for classified +
                                 Pr(~D| +)
                                              26.53%
False - rate for classified -
                                 Pr(D|-)
                                              20.97%
Correctly classified
                                              77.83%
```

Probit 的平均边际效应、准 R^2 与正确预测比率与Logit 十分接近,基本等价。

使用 Probit 预测每位个体的存活概率,记为变量 prob1,并考察 prob1 与 prob(Logit 预测结果)的相关性。

```
. predict probl
(option pr assumed; Pr(survive))
```

. corr prob prob1 [fweight=freq]
(obs=2201)

	prob	prob1
prob	1.0000	· · · · · · · · · · · · · · · · · · ·
prob1	0.9997	1.0000

Probit 与 Logit 对个体存活概率的预测相关系数高达 0.9997, 基本无差异。

11.10 其他离散选择模型

- (1) 多值选择(multiple choices): 比如,对交通方式的选择(步行、骑车、自驾车、打的、地铁),对不同职业的选择,对手机品牌的选择。
- (2) 计数数据(count data): 有时被解释变量只能取非负整数。比如,企业在某段时间内获得的专利数;某人在一定时间内去医院看病的次数;某省在一年内发生煤矿事故的次数。
- (3) 排序数据(ordered data): 有些离散数据有着天然的排序。比如,公司债券的评级(AAA, AA, A, B, C级),对"春节联欢晚会"的满意度(很满意、满意、不满意、很不满意)。

对于以上离散数据,一般也不宜直接进行 OLS 回归,主要估计方法仍为 MLE。

由于离散选择模型主要用于微观经济学的实证研究中,故是"微观计量经济学"(Microeconometrics)的重要组成部分。

除了离散数据外,微观计量经济学还关注的另一类数据类型为"受限被解释变量"(limited dependent variable),即被解释变量的取值范围受到限制(包括断尾回归、归并回归与样本选择模型等)。