DESIGN SPEC DOCUMENT

ECE-593: Fundamentals of Pre-Silicon Validation Maseeh College of Engineering and Computer Science Winter, 2025

Project Name:

Design and Verification of an Asynchronous FIFO

Members:

Pavan Gaddam, Gene Hu, Surya Teja Purma, Kai Roy

Date:

4/20/2025

Project Name	Design and Verification of an Asynchronous FIFO
Location	Portland State University
Start Date	4/10/2025
Estimated Finish Date	5/25/2025
Completed Date	N/A

Prepared by: Team 5			
Prepared for: Prof. Venkatesh Patil			

Team Member Names	Emails
Pavan Gaddam	pavang@pdx.edu
Gene Hu	ghu@pdx.edu
Surya Teja Purma	purma@pdx.edu
Kai Roy	roykai@pdx.edu

Design Features			
Supports data widths up to 256 bits			
Supports memory depths of up to 65,535 locations			
Fully synchronous and independent clock domains for the read and write ports			
Supports FULL and EMPTY status flags			
Optional ALMOST_FULL and ALMOST_EMPTY status flags			
Invalid read or write requests are rejected without affecting the FIFO state			

Project Description

The team will implement an asynchronous FIFO using SystemVerilog, and perform thorough testing to confirm correct functionality in accordance with design features.

There will be a functional test plan drafted which will assign responsibilities to team members for their part in the verification process. These responsibilities include the DUT and its components, design documentation, testbench development, verification plan, writing tests, running simulations, generating reports, and debugging.

Important Signals/Flags			
Signal Name	Signal	Description	
	Direction		
DIN[N:0]	input	Data input	
WR_EN	input	Write enable (request)	
WR_CLK	input	Clock for write domain operations (rising edge)	
RD_EN	input	Read enable (request)	
RD_CLK	input	Clock for read domain operations (rising edge)	
AINIT	input	Asynchronous reset of all FIFO functions, flags, and	
		pointers. The four FIFO flags will reset to active high,	
		and deactivated on their next respective clock pulse	
FULL	output	Full: no additional writes can be performed,	
		synchronous to WR_CLK	
ALMOST_FULL	output	Almost Full: only one additional write can be performed	
		before FIFO is FULL, synchronous to WR_CLK	
DOUT[N:0]	output	Data Output: synchronous to RD_CLK	
EMPTY	output	Empty: no additional reads can be performed,	
		synchronous to RD_CLK	
ALMOST_EMPTY	output	Almost Empty: only one additional read can be	
		performed before FIFO is EMPTY, synchronous to	
		RD_CLK	

Design Signals		
Signal Name	Description	
wrptr	Pointer from the write pointer handler for	
	keeping track of where in memory the	
	FIFO should place its next write	
rdptr	Pointer from the read pointer handler for	
	keeping track of where in memory the	
	FIFO should retrieve its next read	

note: some signals in diagram were not implemented

References/Citations

[1] Xilinx Asynchronous FIFO V3.0 design specification