Optimising Snowmaking Operations

MGSC 662: Decision Analytics

Hazel Foo | Hana Kalinova | Jonah Lee | Clement Orcibal | Atharva Vyas

Blue Mountain: Ontario's Largest Ski Resort

Just a 2-hour drive from Toronto – attracts a mix of lakefront homeowners, cottagers, and city tourists

Accessible and family-friendly: modest terrain that is perfect for new to intermediate skiers

One of the few outdoor activities to embrace Canada's cold winters

Beyond the Resort: An Economic Pillar for the Region

Ontario's Only Four-Season Mountain Village Resort

Winter is the core

Skiing contributes the majority to the resort's revenue Stability during slower months for other industries

Beyond the Resort: An Economic Pillar for the Region

Critical for the Community

Helping Local Businesses: Breweries, Orchards, Farmer's Markets

Real Estate and Housing: Market prices due to popularity of the resort

Job Creation and Stability: Employees of the resort, jobs for industries

Long-Term Community Growth: Municipal development

The Problem

The success of Blue Mountain Resort heavily depends on the availability of snow

Less Resort Revenue

Pressures of Warmer Climate

Hurting Sustainability and Reputation

Optimising Manmade Snow Coverage

What are we Optimising?

The placement of snow guns across the resort to ensure adequate coverage

Why Optimise?

Reduce the cost of producing snow Lower environmental impact Meet visitor expectations

Mapping out the Mountain

Source:

 $^{1. \} https://www.bluemountain.ca/-/media/blue-mountain/mountain-report/maps/fy25/winter/maps/bmr-winter-25-mountain-web.pdf?rev=da3491df1096415e85db4d6755901829$

^{2.} https://www.theweathernetwork.com/ca/historical/ontario/blue-mountain-ski-area

Mapping out the Mountain

Elevation: 220m

Snow lances

Fan guns

Snow Factory

Demac Lenko

Snowmaking industry's innovative leader

Fan gun Ventus

Throwing range: 70m

Mini operating temperature (wet-bulb): -2.5°C

Mini distance between snow guns: 30m

Demac Lenko

Snowmaking industry's innovative leader

Simplifying the problem

Decision Variables

Objective Function:

Minimise the number of snow guns placed on the mountain

Minimise $\sum_{i=0}^{height-1} \sum_{j=0}^{width-1} x_{i,j}$

Where:

• $x_{i,j}$ { 1 if snow gun is placed at position (i,j) 0 otherwise

Every section of the slope will need to be covered in snow i.e. ≥ 1 snow gun is placed within its surrounding coverage area

Every section of the slope will need to be covered in snow i.e. ≥ 1 snow gun is placed within its surrounding coverage area

$$i + \left\lfloor \frac{coverage \ size}{2} \right\rfloor \qquad j + \left\lfloor \frac{coverage \ size}{2} \right\rfloor \\ \sum_{ni=i-\left\lfloor \frac{coverage \ size}{2} \right\rfloor} x_{ni,nj} \geq 1$$

 \forall (*i*, *j*) such that slope exists in matrix

Where:

- $x_{ni,nj}$: Binary variable indicating whether a snow gun is placed at position (ni, nj)
- coverage size: Range of snow gun

A snow gun can only be placed at each spot on the slope if the temperature is less than or equal to minimum operating temperature

$$x_{i,j} \cdot (T_{i,j} - T_{min}) \le 0 \quad \forall i,j$$

Where:

- $x_{i,j}$ Binary variable indicating whether snow gun is placed at position (i, j)
- $T_{i,j}$: Temperature at cell (i, j)
- T_{min} : Minimum operating temperature for Fan gun Ventus

No 2 snow guns can be placed within a given distance d of each other

$$x_{i,j} + x_{k,l} \le 1$$

 \forall (i, j), (k, l) such that $|i - k| + |j - 1| \le d$

Where:

- $x_{i,j} = 1$ if snowgun is placed at cell (i, j)
- $x_{k,l} = 1$ if snowgun is placed at cell (k, l)
- |i k| + |j 1|: Manhattan distance between the 2 points

Total number of snow guns: 186

The Solution

More *realistic* considerations

Beginner

Snow requirement: 400m³/h

Beginner Intermediate

Beginner Intermediate Difficult

Grid Showing Sections Below Threshold 20 25 125 175 50 100 150

3 Levels of Terrain:

Beginner Intermediate Difficult

5 Different Types of Snow guns:

Lances x 2 Snow guns x 3

Varying Electricity and Water Consumption

Snow gun Specifications

Lance EOS

Fan gun Ventus

Fan gun Evo

Fan gun Titus

Range (m) = 30, 30, 70, 60, 80

Power consumption (kW/h) = 2, 4.8, 20, 14.2, 23

Water consumption (I/h) = 24840, 28800, 32400, 28800, 43200

Min operating temperature (°C) = -4, -4, -2.5, -2.5, -2.5

Min distance (m) = 20, 20, 30, 30, 30

Snow production $(m^3/h) = 69, 80, 90, 80, 120$

ESG Pillars

Environmental

- Energy usage and efficiency
- Climate change strategy
- Waste reduction
- Biodiversity loss
- Greenhouse gas emissions
- Carbon footprint reduction

Social

- Fair pay and living wages
- Equal employment opportunity
- Employee benefits
- Workplace health and safety
- Community engagement
- Responsible supply chain partnerships
- Adhering to labor laws

Governance

- Corporate governance
- Risk management
- Compliance
- Ethical business practices
- Avoiding conflicts of interest
- Accounting integrity and transparency

ESG Pillars

Environmental

- Energy usage and efficiency
- Climate change strategy
- Waste reduction
- Biodiversity loss
- Greenhouse gas emissions
- Carbon footprint reduction

Social

- Fair pay and living wages
- Equal employment opportunity
- Employee benefits
- Workplace health and safety
- Community engagement
- Responsible supply chain partnerships
- Adhering to labor laws

Governance

- Corporate governance
- Risk management
- Compliance
- Ethical business practices
- Avoiding conflicts of interest
- Accounting integrity and transparency

Journal Current Issues in Tourism

Journal Current Issues in Tourism

478 GWh of electricity annually

to offset CO₂

Journal Current Issues in Tourism

478 GWh of electricity annually

Journal Current Issues in Tourism

478 GWh of electricity annually

130,095 tons of emissions

43.4 million m³ water

Journal Current Issues in Tourism

478 GWh of electricity annually

43.4 million m³ water

130,095 tons of emissions

7-35% water lost to evaporation

Grid Showing Sections Below Threshold 20 40 80 0 25 50 75 100 125 150 175

3 Levels of Terrain:

Beginner Intermediate Difficult

5 Different Types of Snow guns:

Lances x 2 Snow guns x 3

Varying Electricity and Water Consumption

		Probability					
		Extremely remote	Remote	Likely	Most likely		
	erity	1	2	3	4		
egligible	1	- 1	2	3	4		
linor	2	2	4	- 6	8		
erious	3	3	6	- 8	12		
Fatality	4	4	8	32	16		
	Hazard = a source, situation, or act with a potential for harm in terms of injury, ill health, or a combination of the two						
	Risk = a combination of two elements: the likelihood of a hazardous event or exposure occurring, and the severity of the						
	injury or ill health that could result from the event or exposure occurring, and the seventy of the						
	(See OHSAS 18001 definition)						
	(see onsa.	3 10001 delinition)					
	Risk Rankir	ne .					
	Severity = How serious the result of the incident might be in terms of injury or loss						
	Negligible – minor first aid treatment, with immediate return to full regular duties						
	Minor – first aid and medical aid, with possible return to work at light or modified duties						
	Serious – medical treatment and time lost						
	Fatality - d						
	Probability = How likely the hazard will result in an incident						
	Extremely remote - chance of happening is almost impossible (for example, 1 in 100 years)						
	Remote - chance of happening could be once every few years						
	Likely – chance of happening is likely in the near future						
	Most likely – it will almost definitely happen						
	Service Contraction		Service of the service of				
	Risk = Seve	rity x Probability					
	Risk Contro	ol Policy					
	Low risk = 1-3 (Level acceptable and to be monitored.)						
	Medium risk = 4-8 (Level acceptable and should be reduced if practicable.)						
	High risk = 9-16 (Level not acceptable. Task must be stopped and reduced to an acceptable level before continuing.)						
	Risk Assess	sment Steps					
	1. Identify jobs of each department.						
	2. Identify the critical tasks of each job that have a potential of injury or ill health.						
	3. Determine the hazards associated with the job task, including severity and probability if controls are not available. Assign a risk score						
	4. Determine the existing controls implemented and the resulting risk level associated with the identified hazards.						
	5. If the risk is High, the risk is not acceptable, and additional controls must be introduced to reduce the risk to Medium or Low.						
	6. If the risk is Medium, the risk is acceptable, and additional controls should be considered if practicable.						

Assessment conducted in medium sized ski area provided by go2HR, BC's tourism & hospitality, human resources and health & safety association

Grid Showing Sections Below Threshold 20 40 80 0 25 50 75 100 125 150 175

3 Levels of Terrain:

Beginner Intermediate Difficult

5 Different Types of Snow guns:

Lances x 2 Snow guns x 3

Varying Electricity and Water Consumption

Safety

Decision Variables

For each snow gun, k

Objective Function 1: Cost

Minimise total cost of snow gun placement

Minimise

$$\sum_{i=0}^{height-1} \sum_{j=0}^{width-1} \sum_{k=0}^{4} x_{i,j,k} \cdot cost_per_snowgun[k]$$

- $x_{i,j,k}$: $\begin{cases} 1 \text{ when snow gun of type } k \text{ is placed at position } (i,j) \\ 0 \text{ otherwise} \end{cases}$
- Cost per snow gun comprises of
 - Electrical cost = Power consumption · 0.125 (cents/kWh)¹
 - Water cost = Water consumption² · 3.16/ 1000

Objective Function 2: Safety

Maximise safety score of the ski resort

```
\sum_{i=0}^{height-1} \sum_{j=0}^{width-1} \sum_{j=0}^{len(snowguns)-1} x[i,j,k] \cdot (3 \cdot black\_cells[i,j] \\ + 2 \cdot (black\_cells[(\max(0,i-1),j] \\ + black\_cells[\min(height-1,i+1),j] \\ + black\_cells[i,\min(width-1,j+1)]) \\ + 1 \cdot (black\_cells[\max(0,i-2),j] \\ + (black\_cells[\min(height-1,i+2),j] \\ + (black\_cells[i,\max(0,j-2)] \\ + (black\_cells[i,\min(width-1,j+2)]))
```

- $x_{i,j,k}$: Binary variable indicating whether a snow gun of type k is placed at position (i, j)
- $black\ cells_{i,j}$: Matrix containing positions of all nonski-slop areas which are shaded black on the map

Every section of the slope will need to be covered in snow i.e. ≥ 1 snow gun is placed within its surrounding coverage area

$$\sum_{k=0}^{4} \sum_{ni=i-\left\lfloor\frac{coverage\ size[k]}{2}\right\rfloor}^{i+\left\lfloor\frac{coverage\ size[k]}{2}\right\rfloor} \sum_{j+\left\lfloor\frac{coverage\ size[k]}{2}\right\rfloor}^{j+\left\lfloor\frac{coverage\ size[k]}{2}\right\rfloor} x_{ni,nj,k} \geq 1\,,$$

 \forall (*i*, *j*) such that ski slope exists in matrix

- $x_{i,j,k}$: Binary variable indicating whether a snow gun of type k is placed at position (i, j)
- coverage size_k: Range of snow gun k

Every section of the slope can only hold at most 1 snow gun

$$\sum_{k=0}^{4} x_{i,j,k} \le 1$$

 $\forall i \in [0, height - 1], \forall j \in [0, width - 1]$ for each grid cell (i, j)

- $x_{ni,nj,k}$: Binary variable indicating whether a snow gun of type k is placed at position (ni, nj)
- Sum covers the region of cells within defined coverage area around each required cell (i, j)

Total snow production for each section of slope must meet or exceed the minimum snow production required for the slope type

$$cell \ snow \ production_{i,j} = \sum_{k=0}^{4} \frac{\min(height, i + \left \lfloor \frac{coverage \ size_k}{2} \right \rfloor)}{\sum_{n_i = \max(0, i - \left \lfloor \frac{coverage \ size_k}{2} \right \rfloor)} \sum_{n_j = \max(0, j - \left \lfloor \frac{coverage \ size_k}{2} \right \rfloor)} x_{ni, nj, k} \cdot snow \ production_k$$

*cell snow production*_{i,j} \geq *required snow*_{i,j}

- $x_{ni,nj,k}$: Binary variable indicating whether snow gun k is placed at position (ni, nj)
- $coverage\ size_k$: Range of snow gun k
- $cell\ snow\ production_{i,j}$: Snow production received by each position (i, j)
- $snow \ production_k$: Snow production by snow gun k
- $required\ snow_{i,j}$: Minimum snow requirement for each cell belonging to beginner/ intermediate/ hard slope

A snow gun can only be placed at each spot on the slope if the temperature is less than or equal to minimum operating temperature

```
 \begin{cases} \text{If beginner\_mask}[i,j] = 1: & x[i,j,k] \cdot (\text{temperature\_matrix}[i,j] - \min\_\text{temp}[k]) \leq 0, \\ \text{If intermediate\_mask}[i,j] = 1: & x[i,j,k] \cdot (\text{temperature\_matrix}[i,j] - \min\_\text{temp}[k]) \leq 0, \\ \text{If hard\_mask}[i,j] = 1: & x[i,j,k] \cdot (\text{temperature\_matrix}[i,j] - \min\_\text{temp}[k]) \leq 0. \end{cases}
```

- $x_{i,j,k}$: Binary variable indicating whether snow gun k is placed at position (i, j)
- $temperature\ matrix_{i,j}$: Temperature at cell (i, j)
- min_temp_k : Minimum operating temperature for snow gun k
- $beginner_mask_{i,i} = 1$ if the cell (i, j) belongs to beginner slope

No 2 snow guns can be placed within a given distance of each other

$$x_{i,j,k} + x_{ni,nj,nk} \le 1. \quad \forall \ k, nk \ \forall (i,j), (ni,nj),$$
 Subject to $|i - ni| + |j - nj| \le \max(\min_distance[k], \min_distance[nk])$ and $(i,j) \ne (ni,nj)$

Where:

- $x_{i,j,k}$: Binary variable indicating whether a snow gun of type k is placed at position (i, j)
- |i ni| + |j nj|: Manhattan distance between locations (i, j) and (ni, nj)
- $min_distance_k$: refers to the respective minimum distance requirements for snow gun k

Note: Distance between snow guns applies across all slopes

Total cost: \$57047.39 Security score: 3869

The Solution

Business Value & Future Extensions

Operational Efficiency

Optimised utilisation of snow guns

Slope-specific adjustments to fulfill demand

Operational Efficiency

Optimised utilisation of snow guns

Slope-specific adjustments to fulfill demand

Enhanced Safety

Reduced operational interferences

Reduced obstruction for skiers/ snowboarders

Financial savings

Strategic Planning

Informed decisions

Flexible & scalable

Environmental Sustainability

Water conservation Reduced carbon footprint

Environmental Sustainability

Improved Customer Experience

Water conservation Reduced carbon footprint

Better ski conditions

Slope availability

Competitive advantage

Limitations & Future Considerations

Noise in image processing

Infrastructure constraints not considered

Weather conditions not fully assessed

Computationally heavy

The End

Appendix

Iteration 2

Fan gun Titan: 39 Fan gun Evo: 23

Fan gun Ventus: 105

Lance EOS: o Lance DUO: o

Total cost: \$18592.92

Iteration 3

Fan gun Titan: 366 Fan gun Evo: 62 Fan gun Ventus: 0

Lance EOS: o Lance DUO: 1

Total cost: \$56860

Iteration 4

Fan gun Titan: 370 Fan gun Evo: 59 Fan gun Ventus: 0

Lance EOS: o Lance DUO: o

Total cost: \$57047.39 Security score: 3869