TECY - Projekt 1

Małgorzata Pszczółkowska - 311423 Anastasiya Ronskaya - 317058 Konrad Kotlicki - 310958 Sebastian Skrzek - 311442

2kwietnia $2021\,$

Spis treści

1	Wskaźnik	1
2	Tablica funkcji	2
3	Metoda tablic Karnaugha dla 1 3.1 Dla diody b	3
4	Metoda tablic Karnaugha dla 0	3
	4.1 Dla diody c	3
	4.2 Dla diody d	4
5	Ekspansja systematyczna	5
	5.1 Dla diody e	5
	5.2 Dla diody f	7
6	Ekspansja heurystyczna	9
	6.1 Dla diody g	9
		10
7	Logisim	12
	7.1 Układ bramkowy	12
	7.2 Testy	

1 Wskaźnik

Nasz wskaźnik do danych to: $3+8+8+2=2\underline{\mathbf{1}}$

2 Tablica funkcji

Х3	X2	X1	X0	а	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	-	-	-	-	-	-	-
1	0	1	1	-	-	-	-	-	-	-
1	1	0	0	-	-	-	-	-	-	-
1	1	0	1	-	-	-	-	-	-	-
1	1	1	0	-	-	-	-	-	-	-
1	1	1	1	-	-	-	-	-	-	-

3 Metoda tablic Karnaugha dla 1

3.1 Dla diody b

SOP: $b = \overline{x_1} + \overline{x_2x_3} + x_2x_3$

4 Metoda tablic Karnaugha dla 0

4.1 Dla diody c

(Oznaczenia: $A = x_3, B = x_2, C = x_1, D = x_0$.)

POS:
$$c = (\overline{C} + B + D) = (x_0 + \overline{x_1} + x_2)$$

4.2 Dla diody d

(Oznaczenia: $A=x_3, B=x_2, C=x_1, D=x_0.$)

POS:
$$d = (\overline{B} + C + D)(\overline{B} + \overline{C} + \overline{D})(A + B + C + \overline{D}) =$$

= $(x_0 + x_1 + \overline{x_2})(\overline{x_0} + \overline{x_1} + \overline{x_2})(\overline{x_0} + x_1 + x_2 + x_3)$

5 Ekspansja systematyczna

5.1 Dla diody e

 $F=\{0, 2, 6, 8\}(1) R=\{1, 3, 4, 5, 7, 9\}(0)$

k_0	0000
\mathbf{k}_1	0010
k_2	0110
k_3	1000

R	0001
	0011
	0100
	0101
	0111
	1001

 $k_0 = 0000$

Macierz blokująca

B_0	0001
	0011
	1 00
	0101
	0111
	1001

$$\{L2,L0\}: I0 = (*0*0)$$

 $k_1 = 0010$

Macierz blokująca

B_1	0011
	0001
	0110
	0111
	0101
	1011

$$\{L2,L0\}\ \{L1,L0\}$$
: $I1 = (*0*0),\ I2 = (**10)$

 $k_2 = 0110$

\mathbf{D}_2	0111
	0101
	0010
	0011
	0001
	1111

$$\{L4,L2\}: I3 = (**10)$$

$$k_3 = 1000$$

Macierz blokująca

B_3	1001
	1011
	1100
	1101
	1111
	0001

$$\{L3,L0\}\ \{L2,L0\}$$
: $I4 = (1**0),\ I5 = (*0*0)$

 $Wszystkie\ implikanty\ proste:$

$$I0 = (*0*0), I1 = (*0*0), I2 = (**10), I3 = (**10), I4 = (1**0), I5 = (*0*0)$$

		I0 = (*0*0)	I2 = (**10)	I4 = (1**0)
k_0	0000	1		
k_1	0010	1	1	
k_2	0110		1	
k_3	1000	1		1

$$f(x_3, x_2, x_1, x_0) = I0 + I2 = \overline{x_2} \overline{x_0} + x_1 \overline{x_0}$$

5.2 Dla diody f

 $F=\{0, 4, 5, 6, 8, 9\}(1) R=\{1, 2, 3, 7\}(0)$

k0	0000
k1	0100
k2	0101
k3	0110
k4	1000
k5	1001

R	0001
	0010
	0011
	0111

k0 = 0000

Macierz blokująca

В0	0001
	0010
	0011
	0111

$$\{L1,L0\}: I0 = (**00)$$

k1 = 0100

Macierz blokująca

В1	0101
	0110
	0111
	0011

$$\{L2, L1\} \{L1, L0\}: I1 = (*10*), I2 = (**00)$$

k2 = 0101

B2	0100
	0111
	0110
	0010

$$\{L2,L1\}: I3 = (*10*)$$

$$k3 = 0110$$

Macierz blokująca

B3	0111
	0100
	0101
	0001

$$\{L2,L0\}: I4 = (*1*0)$$

k4=1000

Macierz blokująca

B4	1 001
	1 010
	1 011
	1 1111

$$\{L3\}: I5 = (1^{***})$$

k5=1001

Macierz blokująca

В5	1 000
	1 011
	1 010
	1 110

$$\{L3\}$$
: $I6 = (1***)$

Wszystkie implikanty proste:

I0 = (**00), I1 = (*10*),
$$\overline{12}$$
 = (**00), $\overline{13}$ = (*10*), I4 = (*1*0), I5 = (1***), $\overline{16}$ = (1***)

		I0 = (**00)	I1 = (*10*)	I4 = (*1*0)	I5 = (1***)
k0	0000	1			
k1	0100	1	1	1	
k2	0101		1		
k3	0110			1	
k4	1000	1			1
k5	1001				1

$$f(x_3, x_2, x_1, x_0) = I0 + I1 + I4 + I5 = \overline{x_1 x_0} + x_2 \overline{x_1} + x_2 \overline{x_0} + x_3$$

6 Ekspansja heurystyczna

6.1 Dla diody g

 $F = \{2,3,4,5,6,8,9\}(1) R = \{0,1,7\}(0)$

k0	0010
k1	0011
k2	0100
k3	0101
k4	0110
k5	1000
k6	1001

R 0000 0001 0111

k0 = 0010

Macierz blokująca

В0	0010
	0011
	0101

k1 = 0011

Macierz blokująca

B1	0011
	0010
	0100

$$\{L2,L1\}: I2 = (*01*)$$

k2 = 0100

Macierz blokująca

B2	0100
	0101
	0011

$$\{L2,L1\},\{L2,L0\}:$$
 $I3 = (*10*), I4 = (*1*0)$

k3 = 0101

Macierz blokująca

$$\{L2,L1\}: I5 = (*10*)$$

k4=0110

Macierz blokująca

B4	0110	
	0111	
	0001	

$$\{L2,L0\},\{L1,L0\}: 16 = (*1*0), 17 = (**10)$$

k5 = 1000

Macierz blokująca

В5	1000
	1001
	1111

$$\{L3\}: I8 = (1^{***})$$

k6 = 1001

Macierz blokująca

B6	1001
	1 000
	1110

$$\{L3\}: I9 = (1^{***})$$

$$f(x_3, x_2, x_1, x_0) = I0 + I3 + I6 + I8 = \overline{x_2}x_1 + x_2\overline{x_1} + x_2\overline{x_0} + x_3$$

6.2 Dla diody a

 $F = \{0,2,3,5,6,7,8,9\}(1) R = \{1,4\}(0)$

0000
0010
0011
0101
0110
0111
1000
1001

R 0001 0100

k0 = 0000

Macierz blokująca

B0 0001 0100

 $\{L2,L0\}: 10 = (*0*0)$

k1 = 0010

$$\{L2,L1,L0\}: I1 = (*010)$$

k2 = 0011

Macierz blokująca

B2	0010
	0111

$$\{L2\}: I2 = (**1*)$$

k3 = 0101

Macierz blokująca

В3	0100
	0001

$$\{L2,L0\}$$
: $I3 = (*1*1)$

k4=0110

Macierz blokująca

B4	0111
	0010

$$\{L1\}: I4 = (**10)$$

k5 = 0111

Macierz blokująca

B5	0010
	0111

$$\{L1\}:I5 = (**1*)$$

k6 = 1000

Macierz blokująca

B6	1001
	1100

$$\{L3,L2,L0\}: I6 = (10*0)$$

k7=1001

B7	1000
	1101

$$\{L3\}: I7 = (1^{***})$$

$$f(x_3, x_2, x_1, x_0) = I0 + I2 + I3 + I7 = \overline{x_2 x_0} + x_1 + x_2 x_0 + x_3$$

7 Logisim

7.1 Układ bramkowy

7.2 Testy

Input:0000

Input:0001

Input:0010

Input:0011

Input:0100

Input:0101

Input:0110

Input:0111

Input:1000

Input:1001

