

Mini-GCN for Link Prediction

Peikun Guo, Computer Science (Bill.com Track)

Exploratory Data Analysis

- Nodes: webpages
 - (22470 linked, 1655 isolated)
- Edges: exist if two pages are linked(132039)
- Page's text description (vector of one-hot indices, not text)
- Page type (label {1,2,3,4})


```
bill_challenge_datasets > Training > III training_graph.csv ×

bill_challenge_datasets > Training > III training_gr

4615     6390,9829

4616     6390,14709

4617     6390,6390

4618     6390,7917

4619     6390,20267

4620     6390,10253
```

Exploratory Data Analysis

- Some nodes have 500+ links, making them hard to be fit on the plot
- 90%+ of the nodes have <50 links. → SPARSE GRAPH!

Pre-processing and Feature Engineering

- Node features
 - labels: provided, 4 types
 - Can be fed into graph package APIs like DGL and PyG
 - Embedding text one-hot vectors
 - Use Doc2Vec, decide the output feature dimension based on the raw sentence length

Graph

- Nodes: pages
- Edges: connectivity of pages
- Node feature: label + (embedded) text
- GCN is built for the job

Results

• 91.3% Classification Accuracy in test set edges

Future Directions

- Problem Abstraction: Link Prediction in Graph
- Small model room for increasing complexity
 - Deeper GraphSAGE
 - GAE, HeteroGraphConv to be tried......
 - Expand the current model, e.g. higher number of channels
 - More complex text embedding, e.g. BERT

References

- 1. SEAL: https://towardsdatascience.com/seal-link-prediction-explained-6237919fe575
- 2. Graph construction: https://github.com/raunakkmr/GraphSAGE-and-GAT-for-link-prediction
- 3. VGAE: https://github.com/jiangnanboy/gnn4lp/
- 4. Link prediction: https://www.youtube.com/watch?v=EA4sK5t3wf8
- 5. DGL tutorial: https://docs.dgl.ai/en/0.6.x/new-tutorial/4_link_predict.html
- 6. A review of graph learning: https://leovan.me/cn/2020/04/graph-embedding-and-gnn/
- 7. Picture credits in the slides:
 - 1. https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.mdpi.com%2703
 - 2. https://www.researchgate.net/figure/Illustration-of-sampling-and-aggregation-in-GraphSAGE-method-A-sample-of-neighboring_fig1_351575091
 - 3. https://www.semanticscholar.org/paper/Large-Scale-Learnable-Graph-Convolutional-Networks-Gao-Wang/d5aefe86b1ba8c773a6bd0e84812ace161b8c0db