Principali informazioni	A.A. 2018-2019
sull'insegnamento	
Titolo insegnamento	Architettura degli Elaboratori e Sistemi Operativi (B)
Corso di studio	Informatica
Crediti formativi	9 (7 + 2)
Denominazione inglese	Computers' Architecture and Operating Systems (B)
Obbligo di frequenza	
Lingua di erogazione	Italiano

Docente responsabile	Nome Cognome	Indirizzo Mail
	Donato	donato.impedovo@uniba.it
	Impedovo	
Luogo ed Orario di Ricevimento	Dip. Informatica	Stanza 610
	6° Piano	

Dettaglio credi formativi	Ambito	SSD	Crediti
	disciplinare		
	Formazione	ING-INF/05	9 (7 + 2)
	Scientifica		

Modalità di erogazione	
Periodo di erogazione	Primo Semestre
Anno di corso	Primo Anno
Modalità di erogazione	Lezioni frontali
	Esercitazioni in laboratorio

Organizzazione della didattica	
Ore totali	225
Ore di corso	56 + 30 (lezioni frontali + laboratorio)
Ore di studio individuale	119 + 20 (lezioni frontali + laboratorio)

Calendario	
Inizio attività didattiche	25 settembre 2017
Fine attività didattiche	12 gennaio 2018

Syllabus	
Prerequisiti	Nessuno
Risultati di apprendimento previsti	Comprensione delle fondamentali problematiche dei Sistemi di Elaborazione e dei Sistemi Operativi. Conoscenza dei principi, delle tecniche e dei metodi di funzionamento e di utilizzazione delle Architetture di Calcolo e dei Sistemi Operativi. Capacità di utilizzare e gestire i sistemi di calcolo, applicando le conoscenze acquisite nel corso.
Contenuti di insegnamento	 INTRODUZIONE Approccio strutturale Linguaggi: livelli e macchine virtuali. Attuali macchine

- multilivello. Evoluzione delle macchine multilivello
- Pietre miliari nell'architettura dei computer:
- Tipologie di computer: Forze tecnologiche ed economiche. Tipologie di computer. Computer usa e getta. Microcontrollori. Dispositivi mobili e da gioco. Personal computer. Server. Mainframe.
- Esempi di famiglie di computer
- Unità metriche

ORGANIZZAZIONE DEI SISTEMI DI CALCOLO

- Processori: Organizzazione della CPU. Esecuzione dell'istruzione. RISC contro CISC. Principi di progettazione dei calcolatori moderni. Parallelismo a livello di istruzione. Parallelismo a livello di processore
- Memoria principale: Bit. Indirizzi di memoria.
 Ordinamento di byte. Codici correttori. Memorie cache.
 Assemblaggio e tipi di memoria
- Memoria secondaria
- Input/Output: Bus. Terminali. Mouse. Controller per videogiochi. Stampanti. Apparecchiature per telecomunicazioni. Macchine fotografiche digitali. Codifica dei caratteri

LIVELLO LOGICO DIGITALE

- Teoria dell'Algebra di Boole
- Livello logico digitale
- Circuiti logici digitali elementari
- Memoria
- Chip della CPU e bus
- Esempi di chip della CPU
- Esempi di bus
- interfacce

LIVELLO DI MICROARCHITETTURA E DI ARCHITETTURA

- Esempi di microarchitettura
- Esempio di ISA: IJVM
- Implementazione di esempio
- Progettazione del livello di microarchitettura
- Miglioramento delle prestazioni
- Esempi del livello di microarchitettura
- Livello di architettura dell'insieme di istruzioni:
 Panoramica del livello ISA; Proprietà del livello ISA;
 Modelli di Memoria; Registri; Istruzioni; Tipi di dati; Tipi

di dati numerici; Tipi di dati non numerici

INTRODUZIONE AI SISTEMI OPERATIVI

- Obiettivi e funzioni dei sistemi operativi
- Il sistema operativo come interfaccia utente/computer
- Il sistema operativo come gestore delle risorse
- Facilità di evoluzione di un sistema operativo
- Evoluzione dei sistemi operativi
- Flaborazione seriale
- Semplici sistemi batch
- Sistemi batch multiprogrammati
- Sistemi time-sharing
- Caratteristiche dei sistemi operativi moderni

DESCRIZIONE E CONTROLLO DEL PROCESSI.

- Stati dei processi
- Un modello a due stati
- Creazione e terminazione dei processi
- Un modello a cinque stati
- Processi sospesi
- Descrizione dei processi
- Strutture di controllo dei processi
- Attributi dei processi
- EFLAGS del Pentium
- Il ruolo del PCB
- Controllo dei processi
- Modi di esecuzione
- Creazione dei processi
- Cambio dei processi: cambiamento di modo
- cambiamento dello stato di un processo
- Esecuzione del Sistema Operativo: Kernel non implementato con processi; Esecuzione
- **all'interno dei** processi utente; Sistemi operativi basati sui processi
- Gestioni dei processi
- Stati dei processi
- Descrizione dei processi

THREAD, SMP E MICROKERNEL

- Processi e thread: Multithreading; Funzionalità dei thread; Thread a livello utente e di Kernel
- Multiprocessing simmetrico: Architettura SMP
- Organizzazione SMP; Considerazioni per la progettazione di sistemi operativi multiprocessore
- Processi e thread concorrenti; Schedulazione;

Sincronizzazione

 Microkernel: Architettura del Microkernel; Benefici di un'organizzazione a mikrokernel; Prestazioni del Microkernel; Progettazione del Microkernel

CONCORRENZA: Mutua esclusione e Sincronizzazione.

- Principi della concorrenza: Un semplice esempio
- Problemi di concorrenza nei sistemi operativi
- Interazione tra processi: competizione per le risorse; cooperazione tramite condivisione; cooperazione tramite comunicazione
- Mutua esclusione: approcci software
- Algoritmo di Dekker: Insidie della programmazione concorrente
- tentativo di soluzione e la soluzione corretta
- Algoritmo di Peterson
- Mutua esclusione supporto hardware
- Abilitazione e disabilitazione degli interrupt
- Istruzioni di macchina speciali: Test and set e Scambio
- Uso di Test-set e Scambio per la mutua esclusione
- Semafori
- Definizione della primitiva Signal e wait
- Primitive Signal e wait per i semafori binari
- Mutua esclusione con semafori
- Il problema del produttore consumatore
- Soluzione non corretta del problema produttoreconsumatore con semafori binari nel caso di buffer infinito
- Soluzione generale corretta del problema del produttore-consumatore nel caso di buffer infinito
- Soluzione del problema del produttore-consumatore nel caso di buffer finito
- Implementazione dei semafori
- Il problema del barbiere ingiusto
- Il problema del barbiere equo
- Monitor
- Monitor di Hoare
- Risoluzione del problema Produttore/Consumatore con Monitor Hoare
- Monitor di Lampson-Redell
- Scambio di messaggi
- Sincronizzazione
- Indirizzamento
- Formato di messaggi
- Organizzazione delle code
- Mutua esclusione usando i messaggi

• Soluzione del problema produttore/consumatore con buffer limitato usando i messaggi

GESTIONE DELLA MEMORIA

- Introduzione
- allocazione contigua della memoria
- monoallocazione
- partizionamento statico
- partizionamento dinamico
- segmentazione
- allocazione non contigua della memoria
- paginazione
- memoria virtuale
- Principi di base della gestione della Memoria Centrale
- Parametri di confronto degli schemi di gestione

MEMORIA VIRTUALE

- Principi Operativi
- Memoria Virtuale con Paginazione
- Tabella delle pagine
- Tabella di descrizione dei file
- Interrompibilità dell'istruzione ed esempi esplicativi
- Gestione della memoria virtuale:
- strategia di allocazione
- strategia di ricerca
- strategia di sostituzione
- strategia di posizionamento
- Località dei programmi
- Algoritmi di sostituzione delle pagine
- Algoritmo FIFO
- Algoritmo LRU
- Algoritmo di Belady
- Algoritmo NRU
- Confronto operativo tra gli algoritmi
- Concetti di distanza futura e distanza passata
- Working-Set
- Supporti hardware per la memoria virtuale

FILE SYSTEM

- I file
- Denominazione di File
- Struttura dei File
- Tipi di File
- Accesso ai File
- Attributi

	Operazioni sui file
	• •
•	Sistemi Gerarchici di Directory
	I path name
	Operazioni sulle Directory
	Implementazione del File System
	Implementazione dei File
	Implementazioni delle Directory
	File condivisi
	Gestione dello spazio su disco
	Affidabilità del file system
	Prestazioni del file system
	Sicurezza
	L'ambiente di sicurezza
	Principi di progettazione per la sicurezza
	Autenticazione dell'utente
	Meccanismi di protezione
	I domini di protezione
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	AA LUU U
	Canali nascosti

Programma		
Testi di riferimento	 Architettura dei Calcolatori: un approccio strutturale: A. S. Tanenbaum, Pearson 2013 Sistemi Operativi Concetti ed esempi: Silberschatz. Pearson 2014 Sistemi Operativi; William Stallings: Jackson Libri, 2005 	
Note ai testi di riferimento	I libri di testo sono integrati con le slide e le dispense del docente	
Metodi didattici	Sono previste esercitazioni per la comprensione delle nozioni teoriche erogate durante il corso. Gli studenti saranno sollecitati a partecipare attivamente durante le esercitazioni (anche progettuali) per finalità di autovalutazione. Durante le lezioni saranno fornite dal docente indicazioni su risorse di studio ulteriori.	
Metodi di valutazione	Prova scritta e orale	
Criteri di valutazione		
Altro		