Enercoop

Prédire la demande en électricité.

Projet 9 - DA - Marc SELLAM - 01/2021

Sommaire:

Page 18

Conclusion.

Page 1	Mission.
Page 2	Les données fournies.
Page 4	Préparation des données.
Page 6	Correction des données de consommation mensuelles de l'effet température (dues au chauffage électrique).
Page 7	Désaisonnalisation de la consommation obtenue après correction, grâce aux moyennes mobiles.
Page 9	Prévision de la consommation (corrigée de l'effet température) sur un an, en utilisant la méthode de Holt Winters (lissage exponentiel).
Page 10	Prévision de la consommation (corrigée de l'effet température) sur un an, en utilisant la méthode SARIMA sur la série temporelle.
Page 17	Comparatif de tous les modèles.

Mission

- Enercoop est une société coopérative qui s'est développée grâce à la libéralisation du marché de l'électricité en France.
- La demande en électricité des utilisateurs varie au cours du temps et dépend de paramètres comme la météo (température, luminosité, etc.).
- Tout le challenge est de mettre en adéquation l'offre et la demande, en créant un model de prévision de la consommation électrique totale.

Les données fournies

- Téléchargement des données <u>mensuelles</u> de consommation totale d'électricité en <u>énergie</u> sur <u>https://www.rte-france.com/eco2mix/telecharger-les-indicateurs</u>.
 - Consommation totale ile de France en GWh, données mensuelles

(unité de mesure d'énergie qui correspond à la puissance d'un gigawatt actif pendant une heure)

- Données météo utilisées pour corriger les données de l'effet température téléchargées sur https://cegibat.grdf.fr/simulateur/calcul-dju.
 - Dju paris Montsouris, données mensuelles

(degré Jour Unifié est l'écart entre la température d'une journée donnée et un seuil de température établi à 18 °C)

Les données fournies

	Année	JAN	FÉV	MAR	AVR	MAI	JUN	JUI	AOÛ	SEP	ост	NOV	DÉC	Total
11	2020	339	249.6	268.6	81.4	65.7	20.6	0	0	0	0	0	0	1024.9
12	2019	404.9	268.3	233.1	168.5	117.9	24.4	0	1.7	26.7	133.7	282.6	327.3	1989
13	2018	303.4	432.6	314.3	119.7	55.9	8.1	0	3.3	34.3	122.4	282.5	325.9	2002.2
14	2017	467.9	278.4	206.1	182.6	75	9.4	1	6.8	62.6	99.4	282.6	369	2040.6
15	2016	364.4	321.6	321.1	212.1	88.1	27.5	5.7	3.2	11.7	176	285.6	390.8	2207.3
16	2015	392	365.7	275.5	141.1	91.5	15.8	6.9	6.1	71.9	176.9	195	248.1	1986.2
17	2014	324.4	281.9	223.9	135.5	100.2	19.1	8.3	19.3	16	92.3	222.6	368.2	1811.5
18	2013	429.2	402.2	376.6	209.5	158.4	43.6	0.6	5	41.5	105	303.9	349.5	2424.8
19	2012	336	435.9	201.9	230.3	83.3	35	12.4	2.4	58	154.6	296.2	345.9	2191.5
20	2011	392	304.8	243.1	77.6	43.4	31.4	15	11.9	23.2	127.6	226.6	312.7	1809
21	2010	499.2	371.4	294.5	165.3	140.9	22.6	0	11.1	52.3	172.2	310	512	2551.1
22	2009	486.8	365.7	293.2	135.1	82.2	39.8	3.1	0.9	26.9	149.6	224.7	411.8	2219.7
400 300 200 100 0		2014		2015		2016	Date	2017		2018		2019		DJU 2020

	Date	Conso_totale
19	2013-01	0
32	2013-02	0
45	2013-03	0
58	2013-04	0
71	2013-05	0
1176	2020-06	4397
1189	2020-07	4410
1202	2020-08	4301
1215	2020-09	4595
1228	2020-10	5605

Préparation des données

- Apres concaténation des données :
 - 6 années de données exploitables.
 - Similitude des 2 courbes.

Préparation des données

```
#data_tr = data_i de 2014 à 2017, annees 'd'entrainement'
data_tr = data_i.loc['2014':'2017'].copy()
#data_te = data_i de 2018, annee 'adjust'
data_te = data_i.loc['2018'].copy()
#data_te2 = data_i de 2019, annee 'test'
data_te2 = data_i.loc['2019'].copy()
```

• 6 années :

Les quatre premières pour l'entrainement

La cinquième pour ajuster le modèle automatisé SARIMA et vérifier la qualité des prédictions du modèle manuel.

La sixième année pour comparer la qualité des 2 prédictions un an après afin de vérifier leur efficacité à long terme.

	DJU	Conso_totale		DJU	Conso_totale		DJU	Conso_totale
Date			Date			Date		
2014-01-01	324.4	7612	2018-01-01	303.4	7062	2019-01-01	404.9	8093
2014-02-01	281.9	6749	2018-02-01	432.6	7694	2019-02-01	268.3	6637
2014-03-01	223.9	6509	2018-03-01	314.3	7442	2019-03-01	233.1	6471
2014-04-01	135.5	5396	2018-04-01	119.7	5297	2019-04-01	168.5	5487
2014-05-01	100.2	5279	2018-05-01	55.9	5008	2019-05-01	117.9	5266
2017-08-01	6.8	4342	2018-08-01	3.3	4387	2019-08-01	1.7	4193
2017-09-01	62.6	4902	2018-09-01	34.3	4694	2019-09-01	26.7	4535
2017-10-01	99.4	5452	2018-10-01	122.4	5535	2019-10-01	133.7	5549
2017-11-01	282.6	6740	2018-11-01	282.5	6758	2019-11-01	282.6	6726
2017-12-01	369.0	7672	2018-12-01	325.9	7248	2019-12-01	327.3	7197

Correction des données de consommation mensuelles de l'effet température (dues au chauffage électrique)

Désaisonnalisation de la consommation obtenue après correction, grâce aux moyennes mobiles.

Désaisonnalisation de la consommation obtenue après correction, grâce aux moyennes mobiles.

Prévision de la consommation (corrigée de l'effet température) sur un an, en utilisant la méthode de Holt Winters (lissage exponentiel).

Vérification de stationnarités et différenciations

Sur les données de test :

Consommation non stationnaire (1)

Apres différenciation:

Consommation avec 1 décalage(2) : stationnaire.

Consommation avec 12 décalage(saisonier)(3) : stationnaire.

```
adf_check(data_tr['cons_nodju']) (1)

Test de Dickey_fuller Augmenté (adf)

ADF Test Statistic:-1.9695593414436445
p-value:0.3000776501879813

#lags used:5

Number of observations used:42

Faible évidence contre l'hypothèse nulle

Echoue à rejetter l'hypothèse nulle

Les données ont une racine unitaire et sont donc non stationnaires
```

```
#data_tr['First_difference'] = data_tr['cons_nodju'] - data_tr['cons_nodju'].shift(1)
adf_check(data_tr['First_difference'].dropna())#perte 1ere valeur

(2)

Test de Dickey_fuller Augmenté (adf)
ADF Test Statistic:-3.075395467104454
p-value:0.028428432997530888
#lags used:10
Number of observations used:36
Forte preuve contre l'hypothèse nulle
Rejette l'hypothèse nulle
Les données n'ont pas de racine unitaire et sont donc stationnaires
```

```
#data_tr['Seasonal_difference'] = data_tr['cons_nodju'] - data_tr['cons_nodju'].shift(12)
adf_check(data_tr['Seasonal_difference'].dropna())

Test de Dickey_fuller Augmenté (adf)
ADF Test Statistic:-6.039356380390106
p-value:1.3576731873513718e-07
#lags used:0
Number of observations used:35
Forte preuve contre l'hypothèse nulle
Rejette l'hypothèse nulle
Les données n'ont pas de racine unitaire et sont donc stationnaires
```

Acf et Pacf pour paramétrage manuel SARIMA

1 décalage : paramétrage manuel (p,d,q) : (1,1,1)

Décalage saisonnier : paramétrage manuel (P,D,Q) : (1,1,1)

Création d'un model SARIMA manuel:

```
from statsmodels.tsa.statespace.sarimax import SARIMAX
model1 = SARIMAX(np.asarray(data_tr['cons_nodju']), order=(1,1,1),seasonal_order = (1,1,1,12))
result1 = model1.fit()
print(result1.summary())
#sarimax manuel
```

Test des résidus du modèle:

Test de blancheur:

```
from statsmodels.stats.diagnostic import acorr_ljungbox
print('Retard : p-value')
for elt in [6, 12, 18, 24, 30, 36]:
    print('{} : {}'.format(elt, acorr_ljungbox(result1.resid, lags=elt)[1].mean()))

Retard : p-value
6 : 0.8602530370258208
12 : 0.8833036761383047
18 : 0.853473764402951
24 : 0.8790753004384936
30 : 0.9021222217857379
36 : 0.91835274989351
```

Test Ljung-Box : les p valeurs ne sont pas inferieur au niveau test de 5%, nous ne rejetons pas I hypothèse nulle qui est que le résidu suit un bruit blanc.

Création d'un model SARIMA automatisé:

```
train,test = np.array(data tr['cons_nodju']),np.array(data_te['cons_nodju'])
for p in p values:
    for d in d values:
       for q in q values:
           der = (p,d,q)
           for P in P values:
               for D in D values:
                   for Q in Q values:
                       try:
                           model = SARIMAX(train, order = der , seasonal order=(P,D,Q,12))
                           model fit = model.fit()
                           pred y = model fit.forecast(12)
                           error = np.sqrt(mean squared error(test,pred y))
                           print('SARIMA%s RMSE = %.2f'% (der,error),P,D,Q)
                           if error < error min:</pre>
                               error min = error
                               ord = der
                               P \min = P
                               D \min = D
                               Q \min = Q
                       except:
                           print('erreur p d q :', der,P,D,Q, error)
print('valeurs trouvées :',ord,P min,D min,Q min,'RMSE:',error min)
valeurs trouvées: (6, 1, 4) -- 0 1 1 12
```

```
from statsmodels.tsa.statespace.sarimax import SARIMAX
model2 = SARIMAX(np.asarray(data_tr['cons_nodju']), order=ord,seasonal_order = (P_min,D_min,Q_min,12))
result2 = model2.fit()
print(result2.summary())
#sarimax auto
```

Test des résidus du modèle :

		0			
count	48	.000000			
mean	14	. 385965			
std	795	.716913			
min	-2087	.800514			
25%	-205	.273010			
50%	-43	.420842			
75%	98	.482538			
max	4808	.852608			
coeffi	icient	d'asym	etrie:	4.4271	957562

coefficient d'asymetrie: 4.427195756230769 coefficient d'aplatissement: 29.86317764491501

p-value : 5.392743109705611e-12 ,la p-value est inférieure à un niveau alpha choisi (0.05), alors l'hypothèse nulle est rejetée (i.e. il est improbable d'obtenir de telles données en supposant qu'ell es soient normalement distribuées).

Test de blancheur:

```
print('Retard : p-value')
for elt in [6, 12, 18, 24, 30, 36]:
    print('{} : {}'.format(elt, acorr_ljungbox(result2.resid, lags=elt)[1].mean()))
#valeurs pour les ordres

Retard : p-value
6 : 0.8345852398298366
12 : 0.8660079405258937
18 : 0.8286196759466289
24 : 0.8575619310117456
30 : 0.8845944406210319
36 : 0.9037139190140571
```

Test Ljung-Box : les p valeurs ne sont pas inferieur au niveau test de 5%, nous ne rejetons pas I hypothèse nulle qui est que le résidu suit un bruit blanc.

Prévisions des modèles SARIMA et consommation réelle

Comparatif de tous les modèles

Prévisions 2018:

cons_nodjusea rmse : 187.6638159029349
hw_pred rmse : 175.6146919573403
sarima_man rmse : 167.93075819287859
sarima_auto rmse : 154.5727576116403

Prévisions 2019:

cons_nodjusea rmse : 187.66381590293494 hw_pred rmse : 83.36540450639818 sarima_man rmse : 88.3982588404183 sarima_auto rmse : 111.32578011987924

La méthode SARIMA a fourni les prédictions les plus proches de la réalité en comparaison des autres modèles, .