Software-Defined 4 Networking and Advanced Mathematical Network Control Tools **Programming**

Kai Gao

kaigao@scu.edu.cn

School of Cyber Science and Engineering Sichuan University

Recap

Controller Representative Feature

Controller	Representative Feature	
NOX	First SDN controller, network-level programmatic	
	control	

Controller	Representative Feature
NOX	First SDN controller, network-level programmatic control
Beacon	Multi-threaded SDN controller optimized for parallel event handling

Representative Feature	
First SDN controller, network-level programmatic	
control	
Multi-threaded SDN controller optimized for par-	
allel event handling	
Distributed network information base with cus-	
tomizable consistency levels	

Controller	Representative Feature	
NOX	First SDN controller, network-level programmatic	
	control	
Beacon	Multi-threaded SDN controller optimized for par-	
	allel event handling	
Onix	Distributed network information base with cus-	
	tomizable consistency levels	
Kandoo	Hierarchical distributed controller	
Onix	allel event handling Distributed network information base with customizable consistency levels	

Controller	Representative Feature
NOX	First SDN controller, network-level programmatic control
Beacon	Multi-threaded SDN controller optimized for parallel event handling
Onix	Distributed network information base with customizable consistency levels
Kandoo ONOS	Hierarchical distributed controller Intent-based networking

Controller	Representative Feature	
NOX	First SDN controller, network-level programmatic	
	control	
Beacon	Multi-threaded SDN controller optimized for par-	
	allel event handling	
Onix	Distributed network information base with cus-	
	tomizable consistency levels	
Kandoo	Hierarchical distributed controller	
ONOS	Intent-based networking	
OpenDaylight	Model-driven networking, widely used in indus-	
	try and research	
	e ,	

Intent-based Networking

The idea of intents is borrowed from mobile systems (such as Android)

Users specify what they want to do instead of how to do it, and multiple service instances can co-exist to realize the intent.

Intents realize loosely coupled and dynamic service binding.

Erika Chin et al. "Analyzing Inter-Application Communication in Android". In: Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services - MobiSys '11. The 9th International Conference. Bethesda, Maryland, USA: ACM Press, 2011, p. 239. URL:

http://portal.acm.org/citation.cfm?doid=1999995.2000018 (visited on 09/17/2021)

Figure 3: The user is prompted when an implicit Intent resolves to multiple Activities.

Model-driven Networking

MD-SAL provide an automation tool to handle the complexities of extending existing API or data models

With the model specification (e.g., the YANG modeling language), a compiler automatically generates source code and configuration files

YANG Language

YANG is Yet Another Next Generation modeling language for Network Configuration Protocol. It is first designed for state synchronization between devices and state storage but is also used for service layer abstraction.

```
Internet Engineering Task Force (IETF) M. Bjorklund, Ed. Request for Comments: 6020 Tail-f Systems Category: Standards Track October 2010 ISSN: 2070-1721
```

YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)

Abstract

YANG is a data modeling language used to model configuration and state data manipulated by the Network Configuration Protocol (NETCONF), NETCONF remote procedure calls, and NETCONF notifications.

```
module example1 {
  namespace "urn:examples:example1";
  prefix "example1";
 revision "2021-09-15" {
    description "Initial revision.";
 typedef score {
    type uint8 {
      range "0..100":
```

Martin Björklund. YANG - a Data Modeling Language for the Network Configuration Protocol (NETCONF). RFC 6020. Oct. 2010. URL: https://rfc-editor.org/rfc/rfc6020.txt 本期学习目标

• 初步了解自动机理论: 如何描述一个确定性有限状态自动机

本期学习目标

- 初步了解自动机理论: 如何描述一个确定性有限状态自动机
- 通过示例了解状态机的使用

本期学习目标

- 初步了解自动机理论: 如何描述一个确定性有限状态自动机
- 通过示例了解状态机的使用
- 掌握确定性有限状态自动机的乘积

In the coming lectures, we cover the following topics:

- Automata theory
- Linear programming
- Mixed integer linear programming
- Satisfactory theory

In the coming lectures, we cover the following topics:

- Automata theory
- Linear programming
- Mixed integer linear programming
- Satisfactory theory

In this lecture, you should

see examples of automata theory

In the coming lectures, we cover the following topics:

- Automata theory
- Linear programming
- Mixed integer linear programming
- Satisfactory theory

In this lecture, you should

- see examples of automata theory
- get a basic sense of how to use automata to model the behaviors of a system/an algorithm

In the coming lectures, we cover the following topics:

- Automata theory
- Linear programming
- Mixed integer linear programming
- Satisfactory theory

In this lecture, you should

- see examples of automata theory
- get a basic sense of how to use automata to model the behaviors of a system/an algorithm
- understand deterministic finite automata

In the coming lectures, we cover the following topics:

- Automata theory
- Linear programming
- Mixed integer linear programming
- Satisfactory theory

In this lecture, you should

- see examples of automata theory
- get a basic sense of how to use automata to model the behaviors of a system/an algorithm
- understand deterministic finite automata
- understand how to compute the product automata

Automata Theory

Overview

Automata theory (自动机理论) is a foundation for many areas in computer science

• programming languages and compilers,

Overview

Automata theory (自动机理论) is a foundation for many areas in computer science

- programming languages and compilers,
- formal verification (形式化验证, e.g., protocol analysis),

Overview

Automata theory (自动机理论) is a foundation for many areas in computer science

- programming languages and compilers,
- formal verification (形式化验证, e.g., protocol analysis),
- other widely-used applications (e.g., regular expression/正则表达式)

Relation Between Automata and Languages

Different automatons (自动机) represents different languages

Relation Between Automata and Languages

Different automatons (自动机) represents different languages

Automaton	Language
finite state machine (NFA & DFA)	regular language
确定性/非确定性有限状态机	正则语言
pushdown automaton (PDA)	context-free language
下推自动机	上下文无关语言
linear-bounded automaton (LBA)	context-sensitive language
线性有界自动机	上下文有关语言
Turing machine	recursively enumerable language
图灵机	递归可枚举语言

Compilation of (Programming) Languages

An input (e.g., a program, an ASCII string) is valid in a language

The string can be accepted by the corresponding automaton

Example:

Compilation of (Programming) Languages

An input (e.g., a program, an ASCII string) is valid in a language

The string can be accepted by the corresponding automaton

Example:

If the syntax of a language is specified using context-free grammar (上下文无关文法), the parsing of any valid program can be realized using a Pushdown Automaton

Compilation of (Programming) Languages

An input (e.g., a program, an ASCII string) is valid in a language

The string can be accepted by the corresponding automaton

Example:

If the syntax of a language is specified using context-free grammar (上下文无关文法), the parsing of any valid program can be realized using a Pushdown Automaton

If one implements a pushdown automaton, it can potentially parse all valid programs for all languages that are defined in context-free grammar

Application: Compiler-Compiler

Name	Capability	Repo
ANTLR	context-free grammar	https://github.com/antlr/antlr4
Yacc	context-free grammar	https://www.tuhs.org/cgi-bin/utree.
		pl?file=V6/usr/source/yacc
GNU Bison	context-free grammar	https://git.savannah.gnu.org/cgit/
		bison.git
JavaCC	context-free grammar	https://github.com/javacc/javacc

Model Behaviors of Protocols

Example: Write Invalidate Protocol

- Used for cache coherence in multi-processor computer
- Write-invalidate: invalidating all caches before the write
- Write-through: write directly to memory
- No-write-allocate: write-miss does not load cache

- Valid (V): the cache block is up-to-date
- Invalid (I): the cache block is not valid

- **Valid** (V): the cache block is up-to-date
- **Invalid** (I): the cache block is not valid Events (transitions):
- Processor: read (PrRd), write (PrWr)
- Bus: read signal (BusRd), write signal (BusWr)

- **Valid** (V): the cache block is up-to-date
- **Invalid** (I): the cache block is not valid Events (transitions):
- Processor: read (PrRd), write (PrWr)
- Bus: read signal (BusRd), write signal (BusWr)

- **Valid** (V): the cache block is up-to-date
- **Invalid** (I): the cache block is not valid Events (transitions):
- Processor: read (PrRd), write (PrWr)
- Bus: read signal (BusRd), write signal (BusWr)

- **Valid** (V): the cache block is up-to-date
- **Invalid** (I): the cache block is not valid Events (transitions):
- Processor: read (PrRd), write (PrWr)
- Bus: read signal (BusRd), write signal (BusWr)

Write Invalidate Protocol

Each cache block is in one of two potential states:

- Valid (V): the cache block is up-to-date
- **Invalid** (I): the cache block is not valid Events (transitions):
- Processor: read (PrRd), write (PrWr)
- Bus: read signal (BusRd), write signal (BusWr)

String Matching

Example: Can a string aaababcabcdefg be matched by abcd?

String Matching

Example: Can a string aaababcabcdefg be matched by abcd?

Build an automata as the right:

- Five states:
 - 0: Match nothing
 - 1: Match a
 - 2: Match ab
 - 3: Match abc
 - 4: Match abcd: the accepting state
- If the accepting state is reached, a match of abcd is found

A deterministic finite automaton (DFA, 确定性有限状态自动机) consists of

• a finite set of states (状态), denoted as Q,

- a finite set of states (状态), denoted as Q,
- *alphabet* (字母表) which is a finite set of input symbols, denoted as Σ ,

- a finite set of states (状态), denoted as Q,
- *alphabet* (字母表) which is a finite set of input symbols, denoted as Σ ,
- a transition (状态转移) function $\delta: Q \times \Sigma \mapsto Q$,

- a finite set of states (状态), denoted as Q,
- alphabet (字母表) which is a finite set of input symbols, denoted as Σ,
- a transition (状态转移) function $\delta: Q \times \Sigma \mapsto Q$,
- a start state (初始状态), denoted as q_0

- a finite set of states (状态), denoted as Q,
- *alphabet* (字母表) which is a finite set of input symbols, denoted as Σ ,
- a transition (状态转移) function $\delta: Q \times \Sigma \mapsto Q$,
- a start state (初始状态), denoted as q_0
- a set of final or accepting states (%止/接受状态) $F \subseteq Q$

- a finite set of states (状态), denoted as Q,
- alphabet (字母表) which is a finite set of input symbols, denoted as Σ,
- a transition (状态转移) function $\delta: Q \times \Sigma \mapsto Q$,
- a start state (初始状态), denoted as q_0
- a set of final or accepting states (终止/接受状态) $F \subseteq Q$

A deterministic finite automaton (DFA, 确定性有限状态自动机) consists of

- a finite set of states (状态), denoted as Q,
- alphabet (字母表) which is a finite set of input symbols, denoted as Σ,
- a transition (状态转移) function $\delta: Q \times \Sigma \mapsto Q$,
- a start state (初始状态), denoted as q_0
- a set of final or accepting states (%止/接受状态) $F \subseteq Q$

Example: Pattern Matching Automaton for abcd

• $Q = \{0, 1, 2, 3, 4\}$

A deterministic finite automaton (DFA, 确定性有限状态自动机) consists of

- a finite set of states (状态), denoted as Q,
- *alphabet* (字母表) which is a finite set of input symbols, denoted as Σ ,
- a transition (状态转移) function $\delta: Q \times \Sigma \mapsto Q$,
- a start state (初始状态), denoted as q_0
- a set of final or accepting states (%止/接受状态) $F \subseteq Q$

- $Q = \{0, 1, 2, 3, 4\}$
- $\Sigma = \{a, b, c, d, x\}$, where x denotes a symbol that is not a, b, c or d

A deterministic finite automaton (DFA, 确定性有限状态自动机) consists of

- a finite set of states (状态), denoted as Q,
- *alphabet* (字母表) which is a finite set of input symbols, denoted as Σ ,
- a transition (状态转移) function $\delta: Q \times \Sigma \mapsto Q$,
- a start state (初始状态), denoted as q₀
- a set of final or accepting states (%止/接受状态) $F \subseteq Q$

- $Q = \{0, 1, 2, 3, 4\}$
- $\Sigma = \{a, b, c, d, x\}$, where x denotes a symbol that is not a, b, c or d
- transition function (see later)

A deterministic finite automaton (DFA, 确定性有限状态自动机) consists of

- a finite set of states (状态), denoted as Q,
- *alphabet* (字母表) which is a finite set of input symbols, denoted as Σ ,
- a transition (状态转移) function $\delta: Q \times \Sigma \mapsto Q$,
- a start state (初始状态), denoted as q₀
- a set of final or accepting states (%止/接受状态) $F \subseteq Q$

- $Q = \{0, 1, 2, 3, 4\}$
- $\Sigma = \{a, b, c, d, x\}$, where x denotes a symbol that is not a, b, c or d
- transition function (see later)
- start state $q_0 = 0$

A deterministic finite automaton (DFA, 确定性有限状态自动机) consists of

- a finite set of states (状态), denoted as Q,
- alphabet (字母表) which is a finite set of input symbols, denoted as Σ,
- a transition (状态转移) function $\delta: Q \times \Sigma \mapsto Q$,
- a start state (初始状态), denoted as q₀
- a set of final or accepting states (终止/接受状态) $F \subseteq Q$

- $Q = \{0, 1, 2, 3, 4\}$
- $\Sigma = \{a, b, c, d, x\}$, where x denotes a symbol that is not a, b, c or d
- transition function (see later)
- start state $q_0 = 0$
- accepting state $F = \{4\}$

Graph Representation (图表示法)

• Each node represents a state. *Q* is the set of all nodes.

Graph Representation (图表示法)

- Each node represents a state. *Q* is the set of all nodes.
- Each edge represents a transition, the annotation indicates the input symbol: an edge from p to q with symbol x represents $\delta(p,x)=q$. Σ is the set of all edge annotations

Graph Representation (图表示法)

- Each node represents a state. *Q* is the set of all nodes.
- Each edge represents a transition, the annotation indicates the input symbol: an edge from p to q with symbol x represents $\delta(p,x)=q$. Σ is the set of all edge annotations
- Start state q₀ is annotated with a "start" label

Graph Representation (图表示法)

- Each node represents a state. *Q* is the set of all nodes.
- Each edge represents a transition, the annotation indicates the input symbol: an edge from p to q with symbol x represents $\delta(p,x)=q$. Σ is the set of all edge annotations
- Start state q₀ is annotated with a "start" label
- Accepting states F are annotated by double circle.

The Table Representation (表表示法)

• Each index represents a state. *Q* is the set of all indices.

	a	b	С	d	x
$\rightarrow 0$	1	0	0	0	0
1	1	2	0	0	0
2	1	0	3	0	0
3	1	0	0	4	0
$ \begin{array}{c} $	4	4	4	4	4

The Table Representation (表表示法)

- Each index represents a state. *Q* is the set of all indices.
- Each cell represents a transition, the column index indicates the input symbol: if the value of cell with row index p and column index x is q, it represents $\delta(p,x)=q$. Σ is the set of all column indices.

	a	b	С	d	х
$\rightarrow 0$	1	0	0	0	0
1	1	2	0	0	0
2	1	0	3	0	0
3	1	0	0	4	0
$ \begin{array}{c} $	4	4	4	4	4

The Table Representation (表表示法)

- Each index represents a state. *Q* is the set of all indices.
- Each cell represents a transition, the column index indicates the input symbol: if the value of cell with row index p and column index x is q, it represents $\delta(p,x)=q$. Σ is the set of all column indices.
- Start state q_0 is annotated with an arrow

	a	b	С	d	х
$\rightarrow 0$	1	0	0	0	0
1	1	2	0	0	0
2	1	0	3	0	0
3	1	0	0	4	0
$ \begin{array}{c} $	4	4	4	4	4

The Table Representation (表表示法)

- Each index represents a state. *Q* is the set of all indices.
- Each cell represents a transition, the column index indicates the input symbol: if the value of cell with row index p and column index x is q, it represents $\delta(p,x)=q$. Σ is the set of all column indices.
- Start state q_0 is annotated with an arrow
- Accepting states F are annotated with a star.

	a	b	С	d	х
$\rightarrow 0$	1	0	0	0	0
1	1	2	0	0	0
2	1	0	3	0	0
3	1	0	0	4	0
→ 0 1 2 3 * 4	4	4	4	4	4

How to build an automaton that can match abcd or abd by combining the automaton for abcd and the one for abd?

How to build an automaton that can match abcd or abd by combining the automaton for abcd and the one for abd?

We need to compute the product (乘积) of automata.

How to build an automaton that can match abcd or abd by combining the automaton for abcd and the one for abd?

We need to compute the product (乘积) of automata.

Note: the examples are deterministic finite automata (DFA, 确定性有限状态自动机). However, the product computation also applies to non-deterministic finite automatons (NFA, 非确定性有限状态自动机).

Automaton for abcd

Automaton for abd

For two automaton $(Q, \Sigma, \delta, q_0, F)$ and $(Q', \Sigma', \delta', q'_0, F')$, the product automaton consists of

- Set of states: $Q \times Q'$
- Alphabet: $\Sigma \times \Sigma'$ (not all combination is valid)
- Transition function: if $q = \delta(p, x)$ and $q' = \delta'(p', x')$, $(q, q') = \delta_P((p, p'), (x, x'))$
- Start state: (q_0, q'_0)
- Accepting states: depending on the combination logic

For two automaton $(Q, \Sigma, \delta, q_0, F)$ and $(Q', \Sigma', \delta', q'_0, F')$, the product automaton consists of

- Set of states: $Q \times Q'$
- Alphabet: $\Sigma \times \Sigma'$ (not all combination is valid)
- Transition function: if $q = \delta(p, x)$ and $q' = \delta'(p', x')$, $(q, q') = \delta_P((p, p'), (x, x'))$
- Start state: (q_0, q'_0)
- Accepting states: depending on the combination logic

- Input symbol constraint: The input symbols to both automaton must be the same
- Accepting state: a state with at least one accepting state in the original automaton is an accepting state

			С	d	X
	ab				
0	1		0	0	0
1	1			0	0
2	1	0	3	0	0
3	1	0	0	4	0
4	1	0	0	0	0
	ab	d			
0	1	0	0	0	0
1	1	2	0	0	0
2	1	0	0	3	0
3	1	0	0	0	0

	a	b	c	d	X			
	ab	abcd						
0	1	0	0	0	0			
1	1	2	0	0	0			
2	1	0	3	0	0			
3	1	0	0	4	0			
4	1	0	0	0	0			
	ab	d						
0	1	0	0	0	0			
1	1	2	0	0	0			
2	1	0	0	3	0			
3	1	0	0	0	0			

	a	b	С	d	X
	ab	cd			
0	1	0	0	0	0
1	1	2	0	0	0
2	1	0	3	0	0
2	1	0	0	4	0
4	1	0	0	0	0
	ab	d			
0	1	0	0	0	0
1	1	2	0	0	0
2	1	0	0	3	0
3	1	0	0	0	0

	a	b	С	d	x
	ab	cd			
0	1	0	0	0	0
1	1	2	0	0	0
2	1	0	3	0	0
2	1	0	0	4	0
4	1	0	0	0	0
	ab	d			
0	1	0	0	0	0
1	1	2	0	0	0
2	1	0	0	3	0
3	1	0	0	0	0

Product of Automata

Both depth-first search and breadth-first search can work

Breadth-first search:

- 1. The initial queue contains only the start state (e.g., (0, 0))
- 2. In each iteration, if the queue is not empty, take one state from the queue. Otherwise terminate.
- 3. Mark the state as visited and enumerate all possible transitions from this state
- 4. If the new state is not visited, add it to the queue

visited state:

#iter	queue	transitions
0	$\{(0,0)\}$	-

visited state: (0, 0)

#iter	queue	transitions
0	$\{(0,0)\}$	-
1	$\{(0,0)\}$	$(0,0) \to (0,0), (1,1)$

visited state: (0, 0), (1, 1)

#iter	queue	transitions
0	$\{(0,0)\}$	-
1	$\{(0,0)\}$	$(0,0) \to (0,0), (1,1)$
2	$\{(1,1)\}$	$(1,1) \to (0,0), (1,1), (2,2)$

visited state: (0, 0), (1, 1), (2, 2)

#iter	queue	transitions
0	$\{(0,0)\}$	-
1	$\{(0,0)\}$	$(0,0) \to (0,0), (1,1)$
2	$\{(1,1)\}$	$(1,1) \to (0,0), (1,1), (2,2)$
3	$\{(2,2)\}$	$(2,2) \to (0,0), (1,1), (0,3), (3,0)$

 $visited\ state:\ (0,\,0)\ ,\ (1,\,1)\ ,\ (2,\,2)\ ,\ (0,\,3)$

#iter	queue	transitions
0	$\{(0,0)\}$	-
1	$\{(0,0)\}$	$(0,0) \to (0,0), (1,1)$
2	$\{(1,1)\}$	$(1,1) \to (0,0), (1,1), (2,2)$
3	$\{(2,2)\}$	$(2,2) \to (0,0), (1,1), (0,3), (3,0)$
4	$\{(0,3),(3,0)\}$	$(0,3) \to (0,0), (1,1)$

 $\textit{visited state} : \left(0,\,0\right), \left(1,\,1\right), \left(2,\,2\right), \left(0,\,3\right), \left(3,\,0\right)$

#iter	queue	transitions
0	$\{(0,0)\}$	-
1	$\{(0,0)\}$	$(0,0) \to (0,0), (1,1)$
2	$\{(1,1)\}$	$(1,1) \to (0,0), (1,1), (2,2)$
3	$\{(2,2)\}$	$(2,2) \to (0,0), (1,1), (0,3), (3,0)$
4	$\{(0,3),(3,0)\}$	$(0,3) \to (0,0), (1,1)$
5	$\{(3,0)\}$	$(3,0) \to (0,0), (1,1), (4,0)$

visited state: (0,0), (1,1), (2,2), (0,3), (3,0), (4,0)

#iter	queue	transitions
0	$\{(0,0)\}$	-
1	$\{(0,0)\}$	$(0,0) \to (0,0), (1,1)$
2	$\{(1,1)\}$	$(1,1) \to (0,0), (1,1), (2,2)$
3	$\{(2,2)\}$	$(2,2) \to (0,0), (1,1), (0,3), (3,0)$
4	$\{(0,3),(3,0)\}$	$(0,3) \to (0,0), (1,1)$
5	$\{(3,0)\}$	$(3,0) \to (0,0), (1,1), (4,0)$
6	$\{(4,0)\}$	$(4,0) \to (0,0), (1,1)$

Further Reading

John E Hopcroft, Rajeev Motwani, and JR Ullman. 自动机理论, 语言和计算导论. 原书第 3 版. 北京: 机械工业出版社, 2008

Alfred V Aho, Monica S Lam, and Jeffrey D Ravi Sethi. 编译原理. 原书第 2 版. 机械工业出版社, 2009

The End

Summary

In the coming lectures, we cover the following topics:

- Automata theory
- Linear programming
- Mixed integer linear programming
- Satisfactory theory

In this lecture, you should

- see examples of automata theory
- get a basic sense of how to use automata to model the behaviors of a system/an algorithm
- understand deterministic finite automata
- understand how to compute the product automata

Quiz

画出下列两个确定性有限状态自动机的乘积并给出计算过程

Thanks!

kaigao@scu.edu.cn

References I

- [1] Alfred V Aho, Monica S Lam, and Jeffrey D Ravi Sethi. 编译原理. 原书第 2 版. 机械工业出版社, 2009.
- [2] Martin Björklund. YANG a Data Modeling Language for the Network Configuration Protocol (NETCONF). RFC 6020. Oct. 2010. URL: https://rfc-editor.org/rfc/rfc6020.txt.
- [3] Erika Chin et al. "Analyzing Inter-Application Communication in Android". In: Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services MobiSys '11. The 9th International Conference. Bethesda, Maryland, USA: ACM Press, 2011, p. 239. URL: http://portal.acm.org/citation.cfm?doid=1999995.2000018 (visited on 09/17/2021).
- [4] John E Hopcroft, Rajeev Motwani, and JR Ullman. 自动机理论, 语言和计算导论. 原书第 3 版. 北京: 机械工业出版社, 2008.