Chip verification is a growing and challenging task!

Peter Jensen, SyoSil Martine Chegaray, Synopsys

DTU Chip Day April 19th 2022

Who are we?

Synopsys

Global leader in EDA software for ASIC development "Powering the New Era of Smart Everything—from Silicon to Software"

SyoSil

Leading Danish consulting company with international projects building chips for: 5G telecom, hearing aids, AI for sensors – and more!

Agenda

• Chip Verification :

Ensuring your chip design is free of bugs *before* you send it to the fab

- Why is it necessary?
- How do we do it?
- What DTU technical sciences and courses are background?

Why digital chip verification?

- What is the risk?
- What is the cost of failure?

ASIC Silicon Respin @sub 10nm: EUR 1mio or more (+ 3 months dev)

FPGA Field Failures Costly: Telecom, Security, Finance, Automotive/Aero...

Do it 1st time right or loose your money and your market window!

Why digital chip verification?

- Digital Verification Becomes Bottleneck
 - Silicon capacity is constantly increasing
 - Design gap: Designers cannot keep up
 - Verification gap: Verification engineers can't even keep up with designers.

Majority of chip re-spins is due to functional bugs!

Intel 2021 Al Chip "Ponte Vecchio" has 100*10^9 transistors!

Breakdown of total ASIC development efforts GLOBAL 2021

Project Effort Spent

3,434 respondents WW

Source: Synopsys Global User Survey 2021 – used with Synopsys' permission.

What are the bugs?

Type of CHIP flaws contributing to re-spin.

Chip Abstractions & Disciplines

- Verification has to be done on several models of the chip
 - System level
 - RTL
 - Gate Level
 - Analog

Simulation Based Verification

Does the block/chip behave as intended?

Assertions

Failure triggered?

Directed Stimuli vs. Constrained Random

Initial state

- How to reach all the states?
- How to reach unknown parts of the state space?

- Testcase templating
- Random stimuli + constraints
- Functional coverage

Formal Property Checking

Modern ASIC/FPGA Digital Verification Process using simulation and formal verification

How big are the (Scandinavian) projects?

- Video Chip
 - People:
 - 30 ASIC engineers
 - 60 Algorithm/Electronics engineers
 - 300 SW engineers (FW, Drivers etc.)
 - Costs: ~10 MEUR
 - Time: 2+ years

Verification efforts:

- 45 git repos
- 167 test benches
- DV Languages:

```
SystemC TLM
UVM
SystemVerilog
C/C++
Python .... and more ...
```

Required Technologies

- DV languages & methodologies
 - SystemVerilog/UVM, SystemC/TLM, Python,
- EDA tools
 - Simulators, FV tools, linters, ...
- Deep knowledge of
 - Electronics (digital, analog, ...)
 - Computer science
 - Algorithms; HW implementation
 - CPUs & Embedded software

Required Technologies

- To overcome the complexity of the 100 billion transistors...
 - REUSE
 - of verification components & environments
 - at different system levels and abstraction levels
 - EMPLOY
 - OOP SW frameworks & design patterns
 - Constraint solvers
 - Model Driven SW Development (Code Generation)
 - Formal techniques using temporal logic
 - Big data (coverage, regressions)
 - AI/ML is emerging in verification

What DTU courses are relevant?

Some examples:

- 01227 Graph Theory
- 02110 Algorithms and Data Structures 2
- 02132 Computer Systems
- 02139 Digital Electronics 2
- 02141 Computer Science Modelling
- 02155 Computer Architecture and Engineering
- 02158 Concurrent Programming
- 02203 Design of Digital Systems
- 02205 VLSI Design
- 02209 Test of Digital Systems
- 02211 Advanced Computer Architecture
- 02217 Design of Arithmetic Processors
- 02223 Model-Based Systems Engineering
- 02282 Algorithms for Massive Data Sets
- 34656 Design and layout of integrated CMOS circuits
- 34657 System level integrated circuit design
- And more ©

Thank You

