EEG PREPROCESSING

1. what is Preprocessing

Preprocessing refers to the set of transformations applied between raw EEG data collection and actual analysis. The goal is to maximize the **signal-to-noise ratio** while preserving meaningful brain signals.

2. Preprocessing Pipeline

Based on the textbook chapter, the recommended order of EEG preprocessing is:

1. Filtering (Continuous Data Only)

Removes noise such as slow drifts (high-pass filter ~0.1–0.5 Hz), muscle artifacts (low-pass filter), and electrical line noise (50/60 Hz notch filter).

- High-pass filter (~0.1–0.5 Hz) → removes slow drifts.
- Low-pass filter (40-80 Hz) → removes muscle and high-frequency noise.
- Notch filter (50/60 Hz) → removes electrical line noise.

Why First?

Filtering on continuous data avoids edge artifacts that occur if filtering is applied after epoching.

2. Re-referencing

- EEG is measured relative to a reference electrode.
- Common choices: linked mastoids, earlobes, or average reference.
- This reduces global artifacts and makes signals more spatially specific.
- Poor referencing can bias signals across the scalp.

Why Here?

 Referencing is done early so that subsequent steps (epoching, artifact rejection) are applied to clean, referenced data.

3. Epoching

- Continuous EEG is segmented into time-locked trials (stimulus onset or response).
- Epoch length must cover both pre- and post-event activity.
- Include a **baseline window** (e.g., -200 to 0 ms).
- Epoch length depends on analysis:
 - ERP → short epochs (-200 to 800 ms).
 - Time-frequency → longer epochs with buffer zones to avoid edge effects.

Why After Referencing?

 Trials are cleaner and more consistent when referenced before cutting into epochs.

4. Baseline Correction

• Subtract the mean activity in the pre-stimulus baseline window from the entire epoch.

• Purpose:

- Removes slow drifts.
- Normalizes trials for fair comparison.

Why After Epoching?

 Baseline correction requires a per-trial reference (pre-stimulus period).

5. Artifact Rejection / Correction

- Methods:
 - Trial rejection (automatic/manual removal of noisy trials).
 - ICA → removes eye blinks, muscle artifacts while preserving brain signals.

Why Here?

 Perform artifact rejection after epoching and baseline correction, so that trials/channels with strong artifacts do not contaminate averages.

6. Interpolating Bad Electrodes

- Replace noisy/dead channels with interpolated values from neighbors.
- · Better to fix during recording

Why Here?

Ensures no channel artificially biases averages.

7. Spatial Filtering(Optional)

- Examples: Surface Laplacian..
- Purpose: Improve localization and reduce volume conduction.

Why Hater?

 Applied only once data are relatively clean, often just before timefrequency or connectivity analysis.

8. Trial Count Matching (Optional, for experiments with conditions)

 Important for condition comparisons: ensures one condition doesn't appear stronger simply because it had more trials.

• Equalize number of trials across conditions (random selection, first-N, or based on behaviorioural metrics like reaction time etc).

Why Here?

• Prevents bias: conditions with more trials shouldn't appear stronger just due to averaging.