

2005 – 2014: LHCb experiment ECAL HCAL SPD/PS M3 5m 250mrad M2 Magnet RICH2 RICH1

2005-2007: Summer student, INTAS-CERN fellowship

- New Gaudi Job Options Service's string parsers (based on Boost.Spirit v1.x library)
 - String parsers in GaudiKernel
 - Job options file parser

2007-2010: Project Associator at the Online group

- LHCb User management interface. User migration to Active Directory
- Setup and configuration of Helpdesk System, Twiki, web services.
- Run database web interface
- CastorFS (FUSE file system). Poster at CHEP 2009, Prague (source code: https://github.com/mazurov/castorfs)

2011-2014: Doctoral student

- Gaudi Parsers v2.0 (based on Boost.Spirit v2.x library)
- Gaudi Profiler Auditor. Talk at CHEP 2012, New-York
- Thesis: Profiler & study of $\chi_{\rm h}$ production.

Trigger CPU profiling

Most experiments require a trigger in order to record interesting events at a suitable rate.

- LO Hardware Trigger 40 MHz -> 1 MHz. Search for high pt, mu, e, gamma, hadron candidates.
- High Level Software Trigger Farm
 - HLT1: Add Impact parameter cuts
 - HLT2: Global event reconstruction

- 100 man/years work that has only <u>20-30 ms</u> to process an average event.
- 29K CPUs or 1700 servers

CPU profiler tool is vital for trigger optimization

- Gaudi Intel Profiler Auditor (C++ library)
 - Deployed into the core software framework in LHCb Gaudi.
 - Based on Intel VTune Amplifier XE User API.

Reports grouping:

- Static code properties: name of method or class
- Dynamic code properties: property values (value of algorithm's "Name" property)

CPU consumption by source code lines

ine	Source	CPU Time	*
970	info() << format("x%7.3f y%7.3f R%7.3f dSin%7.3f, MC: %7.3f %7.3f R%7.3f		
971	x, y, sqrt(x*x + y*y), dSin,		
972	xMc, yMc, rMc, (*itH)->distance(xMc, yMc));		
973	printCoord(*itH, ":");		
974	}		
975	if (fabs(dSin) > maxDSin) continue;	0.050s	
976			
977	(*itH)->setZ(sensor->z(x, y));	0.100s	
978	(*itH)->setPhiWeight(rPred);		
979	<pre>if (0 > firstSensorWithHit) firstSensorWithHit = sensor->number();</pre>	0.020s[
980	goodPhiHits[module].push_back(*itH);	1.651s	
981	}		

Example of HLT hotspot

operatornew from libstdc++ library:

Function / Call Stack	CPU Time T	Module
PatForwardTool::fillXList	23.460s	libPatAlgorithms.so
FastVeloTracking::makeSpaceTracks	19.788s	libFastVelo.so
Poperatornew	18.696s	libstdc++.so.6
▶ Tf::HitCreatorGeom::OTModule::loadHits	10.870s	libTfTools.so
▶ Tf::TStationHitManager <patforwardhit>::createHit</patforwardhit>	7.981s	libTfTools.so

tc_new from tcmalloc library:

tc_new uses twice less time then operatornew

- Hotspot was detected
- Total CPU consumption decreased by 5%

CHEP2012: Talk and Paper

A. Mazurov and B. Couturier, "Advanced modular software performance monitoring", Journal of Physics: Conference Series 396 (2012), no. 5 052054.

Source code: https://github.com/mazurov/IntelProfiler

$\chi_{_{h}}$ production study

 $b\bar{b}$ system, which can be produced in different spin configurations, is ideal laboratory for QCD tests. It's like a hydrogen atom in QCD.

States with parallel quark spins (S=1):

- · S-wave Y state
- P-wave $\chi_{\rm b}$ states, composed by 3 spin states $\chi_{\rm b0,1,2}$. Can be readily produced in the radiactive decays of Υ
- $\chi_{\rm b}$ (3P) state recently observed by ATLAS, DO and LHCb.

In the Thesis:

- Measurement for $\Upsilon(NS)$ (N=1, 2, 3) cross sections in χ_h decays as a function of pT(Υ)
- Measurement of $\chi_{\rm h}$ (3P) mass.

Gaudi String Parsers

LHCb Week Slides (2011): http://cern.ch/go/7VTI

- Flexible with respect to a addition of new types
- Readable and robust source code
- Based on Boost.Spirit v2, that is modern version with guaranteed long-term support
- Besides configuration parsers are used in DecayFinder and some other places.

StatusCode parse(TYPE& type, const std::string& input)

Standart C++ types

- int, double, bool, string
- vector, map, pair, set, list

Gaudi types

- StringKey
- Histo1Def
- XYZPoint, XYZVector
- LorentzVector

... and many compositions of this types.

Standalone version: https://github.com/mazurov/parsim

Thank you!