Lesson 44: Repeated Roots - Why We Get $t^k Terms$

ODE 1 with Prof. Adi Ditkowski

Tel Aviv University

1 Introduction: The Problem of Repeated Roots

When the characteristic equation of a linear ODE with constant coefficients has repeated roots, the naive approach of using only exponential solutions fails to generate enough linearly independent solutions.

Definition 1 (Multiplicity of a Root). If the characteristic polynomial p(r) can be factored as $p(r) = (r - r_0)^m \ q(r)$ where $q(r_0) \neq 0$, then r_0 is a root of multiplicity m.

Theorem 1 (Dimension of Solution Space). An n-th order linear homogeneous ODE has an n-dimensional solution space. Therefore, we need exactly n linearly independent solutions.

2 Failure of Simple Exponentials

Example 1 (The Problem). Consider y'' - 4y' + 4y = 0 with characteristic equation $(r-2)^2 = 0$.

 $\label{eq:constraint} \mbox{\it If we only use $y=e^{2t}$, $we have just one solution. } \mbox{\it Butwe need two linearly independent solutions for this second erequation.}$

When a root r has multiplicity m > 1, the solution e^{rt} alone cannot span the m-dimensional subspace of solutions corresponding to that root.

3 Derivation via Reduction of Order

Method 1 (Reduction of Order for Repeated Roots). Given one solution $y_1 = e^{rt}$ where risar epeated root, we $v(t)y_1 = v(t)e^{rt}$

Theorem 2 (Second Solution for Double Root). If r is a double root of the characteristic equation for y''+py'+qy=0, and $y_1=e^{rt}isonesolution$, then $y_2=te^{rt}isasecond$, linearly independent solution

Proof. Let $y_2 = v(t)e^{rt}$. Then:

Substituting into the differential equation:

v''

$$e^{rt} + 2rv'e^{rt} + r^{2vert} + p(v'e^{rt} + rve^{rt}) + qve^{rt} = 0$$

Factoring out e^{rt} :

$$v'' + v'(2r + p) + v(r^2 + pr + q) = 0$$

Since r is a double root of $\lambda^2 + p\lambda + q = 0$:

- 1. $r^2 + pr + q = 0$ (r is a root)
- 2. 2r + p = 0 (derivative of characteristic polynomial at r equals 0)

Therefore: v'' = 0, giving $v = c_{1t} + c_2$. Taking $c_1 = 1$, $c_2 = 0$ yields $y_2 = te^{rt}$.

4 The Differential Operator Approach

The differential equation $(D-r)^m[y] = 0$ naturally produces solutions $t^k e^{rt}$ for $k=0, 1, \ldots, m-1$.

Theorem 3 (Operator Factorization). If the characteristic polynomial factors as $p(\lambda) = (\lambda - r)^m$, then the differential operator factors as $z = (D - r)^m$

where

$$D = d_{\overline{dt}}$$
.

Lemma 1 (Kernel of $(D-r)^m$). The kernel (null space) of the operator $(D-r)^m$ is $:ker((D-r)^m) = span\{e^{rt}, te^{rt}, t^{2ert}, \dots, t^{m-1}e^{rt}\}$

Proof by Induction. Base case (m = 1): $(D - r)[y] = 0 \Rightarrow y = ce^{rt}$.

Inductive step: Assume true for m = k. For m = k + 1: If $(D - r)^{k+1}[y] = 0$, let w = (D-r)[y]. Then $(D-r)^k[w] = 0$, sow = $p_k(t)e^{rt}wherep_kisapolynomial of degree <math>\leq k-1$.

Solving $(D-r)[y] = p_k(t)e^{rt}$: Using integrating factor e^{-rt} : $\frac{d}{dt}[e^{-rt}y] = p_k(t)$

Integrating: $e^{-rt}y = P_{k+1}(t) + C$ where P_{k+1} has degree $\leq k$.

Therefore: $y = [P_{k+1}(t) + C]e^{rt} = p_{k+1}(t)e^{rt}wheredeg(p_{k+1}) \le k.$

5 The Limit Perspective

Theorem 4 (Repeated Roots as Limits). The solution te^{rt} can be understood as the limit of solutions for near the Heuristic Derivation. Consider two roots $r_1 = r$ and $r_2 = r + \epsilon$ with solutions:

$$y = c_1$$

$$e^{rt} + c_2 e^{(r+\epsilon)t}$$

Rewriting:

$$y = c_1$$

$$e^{rt} + c_2 e^{rt} e^{\epsilon} t$$

For small ϵ : $e^{\epsilon t} \approx 1 + \epsilon t$ Thus:

$$y \approx (c_1 + c_2)$$

$$e^{rt} + c_2 \epsilon t e^{rt}$$

As $\epsilon \to 0$, setting $A = c_1 + c_2$ and $B = \lim_{\epsilon \to 0} c_2 \epsilon$:

$$y = A$$

$$e^{rt} + Bte^{rt}$$

6 Higher Multiplicities

Theorem 5 (General Multiplicity Case). If r is a root of multiplicity m, then the m linearly independent solutions are:

$$e^{rt}, t$$

$$e^{rt}$$
, t^{2ert} , ..., $t^{m-1}e^{rt}$

For a root r of multiplicity m:

Solutions =
$$\{t$$

$$e^{rt}$$
: k = 0, 1, 2, ..., m-1

7 Complex Repeated Roots

Theorem 6 (Complex Repeated Roots). If $\alpha \pm i\beta$ are complex conjugate roots each of multiplicity m, the 2m real-valued linearly independent solutions are:

t

$$^k e^{\alpha} t \cos(\beta t), t^k e^{\alpha} t \sin(\beta t)$$
 for $k = 0, 1, \dots, m-1$

For complex repeated roots, both the sine AND cosine terms need all powers of t up to t^{m-1}

8 The Wronskian for Repeated Roots

Theorem 7 (Linear Independence via Wronskian). The functions $\{t^k e^{rt} : k = 0, 1, \ldots, m-1\}$ are linearly independent.

Wronskian Calculation. For simplicity, consider m=2 with solutions e^{rt} and te^{rt} :

$$W(t) = \begin{vmatrix} e^{rt} & te^{rt} \\ re^{rt} & (1+rt)e^{rt} \end{vmatrix}$$

$$W(t) =$$

$$e^{rt} \cdot (1+rt)e^{rt} - te^{rt} \cdot re^{rt} = e^{2rt}(1+rt-rt) = e^{2rt} \neq 0$$

For general m, the Wronskian is:

$$W(t) =$$

$$e^{mrt} \cdot \prod_{0 \le i < j < m} (j - i) \ne 0$$
 \square

9 Connection to Jordan Normal Form

 $\label{thm:contraction} The appearance of \it t^k terms in solutions corresponds exactly to the \it Jordan block structure of \it t^k terms in solutions corresponds exactly to the \it Jordan block structure of \it t^k terms in solutions corresponds exactly to the \it Jordan block structure of \it t^k terms in solutions corresponds exactly to the \it Jordan block structure of \it t^k terms in solutions corresponds exactly to the \it Jordan block structure of \it t^k terms in solutions corresponds exactly to the \it Jordan block structure of \it t^k terms in solutions corresponds exactly to the \it Jordan block structure of \it t^k terms in solutions corresponds exactly to the \it Jordan block structure of \it t^k terms in \it solutions corresponds exactly to the \it Jordan block structure of \it t^k terms in \it solutions of \it solutions of \it t^k$

Theorem 8 (Jordan Form and Solutions). For a system $\mathbf{x}' = A\mathbf{x}$ where A has a Jordan block:

$$J = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & 0 & \lambda \end{pmatrix}$$

The matrix exponential is:

$$e^{Jt} =$$

$$e^{\lambda} t \begin{pmatrix} 1 & t & \frac{t^2}{2!} & \cdots & \frac{t^{m-1}}{(m-1)!} \\ 0 & 1 & t & \cdots & \frac{t^{m-2}}{(m-2)!} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 1 & t \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

10 Algorithm for Repeated Roots

Method 2 (Complete Solution Construction). 1. Factor the characteristic polynomial completely.

2. For each distinct root r_i with multiplicity m_i :

- 3. If $r_i is real : Include solutions t^k e r_i t for k = 0, 1, ..., m_i 1 If r_i = \alpha + i\beta$ is complex (with conjugate $\alpha i\beta$): Include solutions $t^k e^{\alpha} t \cos(\beta t)$ and $t^k e^{\alpha} t \sin(\beta t)$ for $k = 0, 1, ..., m_i 1$
- 4. Form the general solution as a linear combination of all these functions.

11 Worked Examples

Example 2 (Triple Root). Solve: y''' - 3y'' + 3y' - y = 0 **Solution:** Characteristic equation: $r^3 - 3r^2 + 3r - 1 = 0$ Recognize this as $(r-1)^3 = 0$ (expand to verify). Root: r = 1 with multiplicity 3. Solutions: e^t , te^t , t^{2et} General solution: $y(t) = (c_1 + c_2t + c_3t^2)e^t$

Example 3 (Complex Double Roots). Solve: $y^{(4)} + 8y'' + 16y = 0$ Solution: Characteristic equation: $r^4 + 8r^2 + 16 = 0$ This is $(r^2 + 4)^2 = 0$, giving $(r - 2i)^2(r + 2i)^2 = 0$ Roots: $\pm 2i$, each with multiplicity 2. Real solutions:

• From 2i (mult. 2): $\cos(2t)$, $t\cos(2t)$, $\sin(2t)$, $t\sin(2t)$ General solution: $y(t) = (c_1 + c_2t)\cos(2t) + (c_3 + c_4t)\sin(2t)$

Prof. Ditkowski often presents the characteristic polynomial already factored. Don't waste time trying to factor what's already factored - just identify multiplicities and write solutions systematically.