Задача № 1 Кодирование целых чисел

Ставится задача кодирования последовательности целых неотрицательных чисел двоичными разделимыми кодами. Максимальное значение целого числа не задается (хотя нам достаточно будет рассмотреть только числа, укладывающиеся в тип int).

Существует и можно еще придумать множество схем построения таких кодов. Заранее ни одной из них нельзя отдать предпочтение. В конкретной предметной области можно экспериментально (или с теоретическим обоснованием) выбрать наилучшую схему, дающую максимальное сжатие.

Рассмотрим следующий подход, порождающий цепочку кодов φ_0 , φ_1 , φ_2 и т.д. Обозначим через bin(x) двоичную запись числа x, а через bin(x) – усеченную двоичную запись без ведущей единицы.

$\boldsymbol{\mathcal{X}}$	bin(x)	bint(x)
0	0	
1	1	
2	10	0
3	11	1
4	100	00
5	101	01
6	110	10
7	111	11
8	1000	000

Очевидно, что ни bin(x), ни bint(x) не могут кодировать целые числа в последовательности, т.к. код получается неразделимым.

Определим код $\varphi_0(x)$ следующим образом: записываем x нулей, за которыми следует единица.

$\boldsymbol{\mathcal{X}}$	$\varphi_0(x)$
0	1
1	01
2	001
3	0001
4	00001

Данный код разделим (единица отделяет кодовые слова друг от друга). Длина кода для числа x равна x+1.

Определим теперь более экономичный код $\varphi_1(x)$. Идея состоит в том, чтобы использовать двоичную запись числа x, предварительно указав ее длину с помощью разделимого кода $\varphi_0(x)$. Так как двоичная запись (кроме записи для нуля) всегда начинается с единицы, то целесообразно использовать bint(x), а ведущую единицу декодер может добавить автоматически. Правило построения кода можно формально записать следующим образом: $\varphi_1(x) = \varphi_0(|bin(x)|) \circ bint(x)$, где значком \circ показана конкатенация (сцепление) кодовых слов. Для нуля делается исключение: он кодируется одной единицей.

```
x \quad \varphi_1(x)
0 1
1 01
2 001 0
3 001 1
4 0001 00
5 0001 01
6 0001 10
7 0001 11
8 00001 000
```

В примере для наглядности части кода отделены пробелом, на самом деле никаких пробелов вставлять не нужно. Правило декодирования простое: считаем количество нулей до первой единицы (обозначим его через k); если k=0, то получаем x=0; если k>0, то берем k бит, включая первую единицу, и они дают нам двоичную запись числа x.

Легко видеть, что для больших x длина кода $|\varphi_1(x)| \approx 2\log(x)$, т.е. код φ_1 значительно экономнее кода φ_0 .

Можно построить еще более экономный код для больших чисел, если кодировать длину двоичного представления не кодом φ_0 , а кодом φ_1 . Таким образом получаем код $\varphi_2(x) = \varphi_1(|\operatorname{bin}(x)|) \circ \operatorname{bint}(x)$, делая опять исключение для нуля.

```
\begin{array}{cccc} x & \varphi_2(x) \\ 0 & 1 \\ 1 & 01 \\ 2 & 001 & 0 & 0 \\ 3 & 001 & 0 & 1 \\ 4 & 001 & 1 & 00 \\ 5 & 001 & 1 & 01 \\ 6 & 001 & 1 & 10 \\ 7 & 001 & 1 & 11 \\ 8 & 0001 & 00 & 000 \end{array}
```

Для больших чисел x справедливо приближенное равенство $|\varphi_2(x)| \approx 2 \log\log(x) + \log(x)$.

Представленную схему можно продолжать до бесконечности, строя все более экономные коды для больших чисел.

Задание. Запрограммировать коды φ_0 , φ_1 , φ_2 с соответствующими декодерами. Проверить корректность их работы на тестовых последовательностях целых чисел.

Дополнительную информацию по кодам целых чисел легко найти в Интернете, см. гамма и дельта коды Элайеса (Elias gamma (delta) coding), код Левенштейна, коды Голомба (Golomb coding).