Examen d'analyse 1 session normale (MIP (Durée 1h30mn)

NB: Aucun document n'est autorisé. Les calculs faits doivent être justifiés, il sera tenu compte de la qualité de la rédaction.

Exercice 1:

Soit f une fonction croissante définie sur [0, 1] vers [0, 1]. On considère l'ensemble suivant :

$$\mathcal{A} = \{x \in [0,1]: f(x) \leq x\}$$

EE TO. 1

E ([] . Vérifier que A admet une borne supérieure et la calculer.

- Montrer que A admet une borne inférieure α et que f(α) = α.
- 3. Application: Pour tout $n \in \mathbb{N}^*$, on pose $A_n = \{x \in [0,1] : nx^{2n+1} \ge x\}$. En utilisant ce qui précède, calculer $\sup(A_n)$ et $\inf(A_n)$.

Exercice 2:

Soit f une fonction définie sur \mathbb{R} par $f(x) = \begin{cases} 2-x & \text{si } x \in \mathbb{Q} \\ x & \text{si } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$

- by by (b) = b1. (a) Montrer que pour tout $x \in \mathbb{R}$, |f(x) f(1)| = |x 1|.
 - X (b) En déduire que f est continue et dérivable en 1.
 - Soit x₀ ∈ R tel que x₀ ≠ 1.
 - (a) Justifier l'existence d'une suite (un), de nombres rationnels et d'une suite (vn), de nombres irrationnels qui convergent vers xo.
 - (b) Calculer lim f(un) et lim f(vn).
 (c) En déduire que f est discontinue en x₀.

Exercice 3:

Soit f une fonction définie sur [0;2[par $f(x) = \begin{cases} x(x-2) \ln\left(\frac{x}{2-x}\right) & \text{si } 0 < x < 2 \\ 0 & \text{si } x = 0 \text{ ou } x = 2 \end{cases}$

- Etudier la continuité de f.
- Etudier la dérivabilité de f et donner l'expression de la fonction dérivée.
- 3. Montrer qu'il existe $a \in]1:2[$ tel que f'(a) = 0.

Exercice 4:

Soient pour tout $n \in \mathbb{N}^*$, $u_n = \prod_{n=1}^n \left(1 + \frac{k}{n^2}\right)$ et $v_n = \ln(u_n)$.

- Écrire v_n sous forme d'une somme.
- En utilisant le théorème des accroissements finis, montrer que pour tout x ≥ 0,

$$x-\frac{x^2}{2}\leq \ln(1+x)\leq x.$$

- 3. Encadrer c_n , on rappelle $\sum_{n=0}^{\infty} k^2 = \frac{n(n+1)(2n+1)}{6}$.
- En déduire que les suites (u_n)_n et (u_n)_n sont convergentes et déterminer leurs limites.