Matematika

\doteq	\doteq	Přibližně
\neq	\neq	Nerovná se
≥ ≤ ∑	\ge	Větší nebo rovno
\leq	\le	Menší nebo rovno
\sum	\sum	Suma
$\stackrel{-}{\rightarrow}$	\to	Do
\pm	\pm	Plus mínus
$\sqrt{2}$	\sqrt{2}	Odmocnina
$\sqrt[3]{2}$	$\sqrt[3]{2}$	N-tá odmocnina
\lim	$\lim_{}$	Limita x jdoucí k n.

Množiny

\cup	\cup	$\operatorname{Sjednoceno}$
\cap	\cap	Průnik
\in	\in	Náleží
Ø	\emptyset	Prázdná množin

Logika

\wedge	\wedge	Konjunkce (a současně)
\vee	\vee	Disjunkce (nebo)
\Rightarrow	\Rightarrow	Implikace (jestliže, pak)
\Leftrightarrow	\Leftrightarrow	Ekvivalence (právě tehdy, když)
\neg	\neg	Negace
\forall	\forall	Pro každé
3	\exists	Existuje

Zkratky

\newcommand{\mbf}[1]{\mathbf{#1}}
\newcommand{\dlim}{\displaystyle\lim}
\newcommand{\hr}{\hrule}
\newcommand{\hl}{\hline}

Odkazy

- Matematický korespondenční seminář MUNI
- Wikipedia Matematický symbol
- Art of problem solving
- ČVUT Stručný popis
- VŠB Matematické prostředí
- CSTug symbols
- mff.lokiware
- $Detexify^2$

\mathbf{A}	\mathbf{B}	$\mathbf{A} \wedge \mathbf{B}$	$\mathbf{A} \lor \mathbf{B}$	$\mathbf{A}\Rightarrow\mathbf{B}$	$\mathbf{A} \Leftrightarrow \mathbf{B}$
1	1	0	1	1	1-xx
1	0	0	1	0	0
0	1	0	1	1	0
0	0	1	0	1	1

Diferenciální počet

•
$$(konst.)' = 0$$

$$\bullet (x^a)' = a \cdot x^{a-1}$$

$$\bullet \ (a^x)' = a^x \cdot \ln(a)$$

•
$$\log_a(x)' = \frac{1}{x \cdot \ln(a)}$$

$$\bullet (e^x)' = e^x$$

$$\bullet \ (\ln x)' = \frac{1}{x}$$

•
$$(u \pm v)' = u' \pm v'$$

•
$$[f(g(x))]' = f'(g(x)) \cdot g'(x)$$

•
$$\sin(x)' = \cos(x)$$

$$\bullet \ \cos(x)' = -\sin(x)$$

•
$$\tan(x)' = \frac{1}{\cos^2 x}$$

•
$$\cot(x)' = \frac{1}{\sin^2 x}$$

•
$$(x)' = 1$$

$$\bullet \ \left(\frac{1}{x}\right)' = -\frac{1}{x^2}$$

$$\bullet \ (u \cdot v)' = u' \cdot v + v \cdot u'$$

•
$$f(x)^{g(x)} = e^{g(x) \cdot \ln g(x)}$$

•
$$\arcsin(x)' = \frac{1}{\sqrt{1-x^2}}$$

•
$$\arccos(x)' = -\frac{1}{\sqrt{1-x^2}}$$

•
$$\arctan(x)' = \frac{1}{1+x^2}$$

•
$$arccot(x)' = -\frac{1}{1+x^2}$$

•
$$(\sqrt{x})' = \frac{1}{2 \cdot \sqrt{x}}$$

•
$$(\log x)' = \frac{1}{x \cdot \ln 10}$$

•
$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

•
$$(k \cdot f(x))' = k \cdot f'(x)$$

Goniometrické funkce

	U	$\frac{\pi}{6}$	$\frac{\kappa}{4}$	$\frac{\pi}{3}$	$\frac{\frac{\kappa}{2}}{2}$
$\sin \mathbf{x}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \mathbf{x}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan \mathbf{x}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	*
$\cot \mathbf{x}$	*	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

•
$$\cos(x \pm 2k\pi) = \cos x$$

•
$$\tan(x \pm k\pi) = \tan x$$

•
$$\cot(x \pm k\pi) = \cot x$$

•
$$\sin(-x) = -\sin x$$

$$\bullet \ \cos(-x) = \cos x$$

•
$$\tan(-x) = -\tan x$$

•
$$\cot(-x) = -\cot x$$
 • $\sin^2 x \cdot \cos^2 x = 1$

•
$$\tan x = \frac{\sin x}{\cos x}$$

•
$$\cot x = \frac{\cos x}{\sin x}$$

•
$$\cot x = \frac{\cos x}{\sin x}$$

$$\bullet \ \tan x \cdot \cot x = 1$$

$$\bullet \sin^2 x \cdot \cos^2 x = 1$$