Week 2: Basic Concepts and Similarity Measures

CS3448: Recommender Systems /

CSX4207/ITX4207: Decision Support

and Recommender Systems

Asst. Prof. Dr. Rachsuda Setthawong

Objectives

- To determine weak points of non-personalized recommendations
- To understand types of data used in generating recommendations in personalized RSs
- To understand basic concepts used in generating recommendations in personalized RSs
- To understand scoring and ranking of data
- To understand basic similarity measures

Outlines

- Weak Points of Non-Personalized RS
- Preferences and Ratings
- Predictions and Recommendations
- Scoring and Ranking
- Basic Similarity Measures

Revisiting Non-Personalized RS

- Generating Recommendations
 - Rating = $\{1, 2, 3, 4, 5\}$
 - Score = MEAN(ratings)

Food	Decor		Service		Cost	
1 2 3 4 5	1 2 3	4 5	1 2 3 4	5	\$ (Optional)	
Your review Describe your experience a	Uchi	Your em		C		
400 characters remaining.				Princy-		

Weak Points of Non-Personalized RS

- Side-effects of averaging
 - Moderate restaurants with good scores (many opinions are exaggerated.)
 - Great restaurants with moderate score (many typical people may not like niche recipe.)
 - Not aware of concept drift (Some restaurant was very good in the past, but it is worse now.)
- Recommendations not customized to individual needs
 - □ E.g.,
 - Suggest top 10 greatest hits albums all in Pop to A Cappella's fan
 - Suggest products in supermarkets based on best selling ones to every customer

Outlines

- Weak Points of Non-Personalized RS
- Preferences and Ratings
- Predictions and Recommendations
- Scoring and Ranking
- Basic Similarity Measures

Personalized RSs

- Make use of individuals' information to generate recommendations
 - Preferences
 - Ratings

Types of Preferences

Explicit

- Rating
- Vote
- Review

Implicit

- Click to view
- Buy
- Follow

How to classify user preferences? How do you classify

- 'post', 'like', 'comment' and 'share' in Facebook?
- 'tweet' and 'retweet' in Twitter?

Explicit Ratings

- Ask users straightforwardly for scoring a given item.
- Examples of ratings
 - Star ratings
 - Typical 5 stars (with or with out half star)
 - Likert scale
 - A typical five-level Likert item: 'Strongly disagree', 'Disagree', 'Neither agree nor disagree', 'Agree', 'Strongly agree'
 - Different level Likert scales¹: 3, 7, 10, etc.

Examples of Star Rating

Asst. Prof. Dr. Rachsuda Setthawong

Examples of Likert Scales

Likert Scales

Please fill in the number that represents how you feel about the computer software you have been using

I am satisfied with it

\cdot	
Stronaly	

(2)

(3)

(4)

Disagree

(5)

Agree

Agree

Neither

Strongly Disagree

It is simple to use

Agree

Strongly

 \bigcirc

(2)

Agree

(3)

Neither

(4)

Disagree

(5) Strongly

Disagree

It is fun to use

(2)

(3)

(4)

(5)

Strongly Agree

Agree

Neither

Disagree

Strongly Disagree

It does everything I would expect it to do

(1)

(2)

(3)

(4)

(5)

Strongly Agree

Agree

Neither

Disagree

Strongly Disagree

I don't notice any inconsistencies as I use it

(1)

Strongly

Agree

(2) Agree (3)

Neither

(4)

Disagree

(5)

Strongly Disagree

Likert Scales

Please circle the number that represents how you feel about the computer software you have been using

I am satisfied with it

Strongly Disagree ---1---2---3---4---5---6---7--- Strongly Agree

It is simple to use

Strongly Disagree ---1---2---3---4---5---6---7--- Strongly Agree

It is fun to use

Strongly Disagree ---1---2---3---4---5---6---7--- Strongly Agree

It does everything I would expect it to do

Strongly Disagree ---1---2---3---4---5---6---7--- Strongly Agree

I don't notice any inconsistencies as I use it

Strongly Disagree ---1---2---3---4---5---6---7--- Strongly Agree

It is very user friendly

Strongly Disagree ---1---2---3---4---5---6---7--- Strongly Agree

Sources: http://www.hkadesigns.co.uk/websites/msc/reme/likert.htm

Vote

- Likes
- Thumbs

Asst. Prof. Dr. Rachsuda Setthawong

Review

Excellent

4.2/5

- We are pleasantly surprised with the warm hospitality of the staffs at Movenpick Hotel;..."

 Jul 28, 2016
- *Overall nice place with clean environment and great staffs. The staffs are friendly..."

 Jul 18, 2016

See all 125 Hotels.com reviews

TripAdvisor Traveller Rating

Sources: https://www.amazon.com
https://www.hotels.com

Asst. Prof. Dr. Rachsuda Setthawong

Timing to Give Ratings

Before experiencing the item

consumption

During or immediately after experiencing the item

memory

Some time after experience

Issues of Rating Usages

- Reliability and accuracy
- User preferences drifting
- Rating's meaning

UNDERSTANDING ONUNE STAR RATINGS:

Source: https://xkcd.com/1098/

Implicit Preferences

- Observe from user behaviors
- Not easily interpreted as ratings
- Give more details beside ratings
 - □ E.g.,
 - Reading/watching time
 - Click on link/ad
 - Add to cart/buy
 - Search/share content

Heatmaps

Source: https://www.hotjar.com/behavior-analytics-software/

Advantages and Disadvantages

	Explicit Ratings	Implicit Preference	
Used to generate personalized recommendations	Yes	Yes	
Easy to interpretation	Yes	No	
Effort to collect data	require user efforts	great amount of data available	
Reliability and accuracy	more	less	
User preferences drifting	may be concerned	-	
Scale/represent actions	easy	more challenge	

Outlines

- Weak Points of Non-Personalized RS
- Preferences and Ratings
- Predictions and Recommendations
- Scoring and Ranking
- Basic Similarity Measures

How to Generate Prediction/Recommendation?

Prediction vs Recommendation

Prediction

• Estimate how much target users will like an item (a numerical value).

Recommendation

- Rank items based on how much target users will like an item. (e.g., top 10 greatest hits albums)
- Simplify as 'shown' items

Prediction vs Recommendation

Prediction vs Recommendation

Strong and Weak Points

Predictions	Recommendations
+ helps quantify item	+ provides good choices as a default
- provides something empirical	- Less explore if top-n are not attractive

How to Generate Prediction/Recommendation?

Outlines

- Weak Points of Non-Personalized RS
- Preferences and Ratings
- Predictions and Recommendations
- Scoring and Ranking
- Basic Similarity Measures

Displaying Aggregating Preferences

- Simple scoring
 - Number of upvotes (likes)
 - Average rating or upvote proportion
 - Percentage of >= 4 stars ('positive')
- Full distribution

Customer Reviews

39
4.6 out of 5 stars

5 star
20%
3 star
5 star
3 3%
1 star
0 %

Note:

Aggregating preference (Predict) Rank items (Recommend)

Ranking Approaches

Rank by predictions

Rank by frequency/quantity

Rank by timing

Rank by domain or business objectives

Etc.

Ranking Considerations

• Confident levels (confidence on goodness of an item)

High-risk, high-reward or conservative recommendation

- Domain and business considerations in terms of
 - Lifetime period

Business objectives

Pros and Cons of Mean

Pros

- Present an overall picture of community's opinion
- Widely used
- Calculate easily

Cons

- Few ratings affects low confidence.
- Not reflect opinion of a niche controversial group

Cons and Solutions of Mean

- Cons: few ratings affects low confidence.
 - Solutions:
 - Scoring of every item is originally average.
 - · Ratings will be adjusted to non-averageness wrt to user preferences.
 - *k* (*a damping term*) controls **strength** of evidence required.
 - μ is **global mean**.

$$damped_mean(i) = \frac{\sum_{u} r_{ui} + k\mu}{n + k}$$

- Cons: not reflect opinion of a niche controversial group
 - Solutions: Personalization

An Example

User	Movie	Rating		,		
Ann	Zootopia		2			
Pete	Zootopia		2			
Kate	Zootopia		3			
Ann	Mona	2				
Pete	Mona		3			
Ann	Big Hero	4		4		
Kate	Big Hero		3			

- Suppose that k = 5
 - $\mu = 19/7 = 2.714$
 - damped_mean ('Zootopia')

$$=[(2+2+3)+(5\times2.714)]/(3+5)$$

= 2.57

Notice: when there are a few ratings, it will damp some extreme positive ratings.

Note. If using a simple mean, the calculated rating is 2.33. $\Delta = 2.57 - 2.33 = +0.2$

An Example (Cont.)

User	Movie	I	Rating		
u1	Zootopia		4		
u2	Zootopia		3		
u3	Zootopia		2		
u4	Zootopia		3		
u5	Zootopia		3		
u6	Zootopia		2		
u7	Zootopia		4		
u8	Zootopia		2		
u9	Zootopia		3		
u10	Zootopia		3		
Ann	Zootopia	2			
Pete	Zootopia	2			
Kate	Zootopia		3		
Ann	Mona		2		
Pete	Mona	3			
Ann	Big Hero		4		
Kate	Big Hero	3			

• Suppose that k = 5

$$\mu = 48/17 = 2.824$$

damped_mean ('Zootopia') = (36 + (5*2.824))/(13+5) = 2.784

Notice: when the number of rating increases, the damping factor has less effect.

Note. If using a simple mean, the calculated rating is 2.769. $\Delta = 2.784 - 2.769 = +0.015$

Hacker News Ranking Algorithm

Score = $(P-1) / (T+2)^G$

How score is behaving over time

where,

P = points of an item (upvote - downvote)

T = time since submission (in hours)

G = Gravity (defaults is 1.8.)

Q: According to the graph given, when will the score of an item decrease to 1?

Asst. Prof. Dr. Rachsuda Setthawong

The Default Story Algorithm in Reddit (Hot Ranking)

$$f(t_s, y, z) = log_{10}z + (yt_s/45000)$$
Factor of #upvote Factor of time (aging)

 t_s = Time (in seconds) since Reddit epoch,

x = #upvotes - #downvotes

$$z = \begin{cases} x & \text{if } x \ge 1 \\ 1 & \text{if } x < 1 \end{cases}$$

$$y \in \{-1, 0, 1\},$$

y denotes a signed function

The graph of
$$y = \log_{10}(x)$$

Effect of #upvote

$$y = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$$

Effects of Submission Time

- Submission time is significant to ranking (the newer stories the higher rank is.)
- Newer stories has a higher score than older.

Asst. Prof. Dr. Rachsuda Setthawong

The Effect of Using Logarithm Scale on The Calculated Point (Votes)

Without using the logarithm scale

Using the logarithm scale

Source: https://medium.com/hacking-and-gonzo/how-reddit-ranking-algorithms-work-ef111e33dod9#.bj4fokhfm

More about Reddit

- How Reddit ranking algorithms work
 - https://medium.com/hacking-and-gonzo/how-reddit-rankingalgorithms-work-ef111e33dod9#.bj4fokhfm
- Reddit dataset:
 - https://www.reddit.com/r/datasets/comments/3mg812/full_red
 dit_submission_corpus_now_available_2006/

Outlines

- Weak Points of Non-Personalized RS
- Preferences and Ratings
- Predictions and Recommendations
- Scoring and Ranking
- Basic Similarity Measures

What is Similarity?

• Given 2 feature (attribute) vectors, similarity is a measure how two vectors are similar.

Name\Movie	Zootopia	Superman	Star Trek Beyond	The Angry Bird Movie	Ghost Busters
Ann	Yes		Yes		Yes
Pete	Yes	Yes	Yes	Yes	Yes
Kate		Yes	Yes		
Jason		Yes	Yes	Yes	

• sim(x, y) = ?

Basic Similarity Measures

- Confidence (Association Rule Mining)
 - Asymmetric measure
 - Measure how likely a user is to rate one given that they rated the other
 - $sim(x, y) = (items_x \cap items_y) / items_x$
 - Example:
 - sim(Ann, Pete) = 3/3 = 1
 - sim(Pete, Ann) = 3/5 = 0.6
 - sim(Kate, Jason) = 2/2 = 1
 - sim(Jason, Kate) = 2/3 = 0.67

Name\ Movie	Zoo- topia	Super man	Star Trek Be- yond	The Angry Bird Movie	Ghost Bust- ers
Ann	Yes		Yes		Yes
Pete	Yes	Yes	Yes	Yes	Yes
Kate		Yes	Yes		
Jason		Yes	Yes	Yes	

Jaccard Coefficient

- Measure the overlap that x and y share with their attributes.
- $J = M_{11} / (M_{01} + M_{10} + M_{11})$
- where,
 - M_{11} = the total number of attributes where x and y both have a value of 1.
 - M_{O1} = the total number of attributes where the attribute of x is 0 and the attribute of y is 1.
 - $M_{10} = 1$ the total number of attributes where the attribute of x is 1 and the attribute of y is 0.

Jaccard Coefficient's Example

- sim(Ann, Pete) = sim(Pete, Ann) = 3/5 = 0.6
- sim(Kate, Jason) = sim(Jason, Kate) = 2/3 = 0.67
- Equivalent to
 - $\sin(x, y) = (items_x \cap items_y) / (items_x \cup items_y)$

Name\ Movie	Zoo- topia	Super man	Star Trek Be- yond	The Angry Bird Movie	Ghost Bust- ers
Ann	Yes		Yes		Yes
Pete	Yes	Yes	Yes	Yes	Yes
Kate		Yes	Yes		
Jason		Yes	Yes	Yes	

Practice 2-1

- 1. Create a dataset D1 of all students in class with ratings of the 3 selected movies (scaling 1-5)
- 2. Calculate scores of the 3 movies in D1 using Damped Mean
- 3. Rank items based on the ranking method specified in Q2.
- 4. Link to edit the dataset D1 is provided in MS Teams' channel.

Practice 2-2

- 1. Create a dataset D2 of all students in class with upvote (U) or downvote (D)
- 2. Calculate scores of the 5 topics in D2 using

Hacker News Ranking Algorithm

- 3. Rank items based on the ranking method in Q1.
- 1. Link to edit the dataset D2 is provided in MS Teams' channel.