

ATIVIDADE PRÁTICA LINGUAGEM DE PROGRAMAÇÃO

ROBSON CRUZ DE MELO – 3773638 Professora Me. Mariane G. Bergamini

1 <u>EXEMPLO DE RESOLUÇÃO</u>

Exercício 01 exemplo: Realizar uma classe veículo que apresente o tipo do carro, modelo, fabricante e quantidade de passageiros. Além disso, utilizar os metódos GETTER e SETTER para incluir as classes Modelo retornando o modelo e o fabricante do carro e outra classe Quantidade de Passageiro no carro.

RESPOSTA DO ALUNO

COLE AQUI O SEU CÓDIGO FONTE (usar os comandos Ctrl + c / Ctrl + v) :

```
class Veiculo:
  def __init__(self, tipo, modelo, fabricante, qtd_passageiro):
    self.tipo = tipo
    self.modelo = modelo
    self.fabricante = fabricante
    self.qtd passageiro = qtd passageiro
    # getter: adicionando
  def getModelo(self):
    return f"{self.fabricante} {self.modelo}"
  def getQtdPassageiro(self):
    return f"{self.qtd passageiro}"
MyCar = Veiculo('carro', modelo = 'Argos', fabricante='Fiat', qtd passa-
geiro=5)
MyBus = Veiculo('Ônibus', modelo = 'Bus202', fabricante='Merce-
des', qtd passageiro=40)
print (MyCar.getModelo())
print(f"Cabem {MyCar.getQtdPassageiro()} pessoas no {MyCar.getMo-
delo() }")
```

COLE AQUI IMAGEM(NS)/PRINT(S) DO TERMINAL SENDO EXCECUTADO SEM ERRO:

```
print(MyCar.getModelo())
print(f"Cabem {MyCar.getQtdPassageiro()} pessoas no {MyCar.getModelo()}")

Fiat Argos
Cabem 5 pessoas no Fiat Argos
```


2 EXERCÍCIOS A SEREM SOLUCIONADOS PELO ALUNO:

Exercício 1 — Desenvolver uma classe calculadora que faça operções matemáticas utilizando dois números inteiros, sendo os dois últimos números de seu RU. Os dois números inteiros devem ser solicitados para o usuário digitar. Se o seu RU for zero, substituí-lo(s) pelo número 5. Sendo as possíveis operações matemáticas: soma(+), subtração(-), multiplicação(*), divisão(/), expoente (^), resto(%) e raíz quadrada da soma dos dois números (sqrt(Num1 + Num2)). Além destas funcionalidades, o algoritmo deverá ter um MENU que possíbilite ao usuário escolher qual o tipo de operação que se deseja realizar e que possibilite ao usuário a digitar os dois números. Apresentar todas as operações matemáticas da calculadora funcionando!

RESPOSTA DO ALUNO:

```
import math
class Calculadora:
   def init (self):
       self.n1 = 0
       self.n2 = 0
       self.res = 0
   def somar(self, n1, n2):
       self.n1 = n1
       self.n2 = n2
       self.res = self.n1 + self.n2
       return self.res
   def subtrair(self, n1, n2):
       self.n1 = n1
       self n2 = n2
       self.res = self.n1 - self.n2
       return self.res
   def multiplicar(self, n1, n2):
       self.n1 = n1
       self.n2 = n2
       self.res = self.n1 * self.n2
       return self.res
   def dividir(self, n1, n2):
```



```
self.n1 = n1
        self.n2 = n2
        self.res = self.n1 / self.n2
        return self.res
   def expoente (self, n1, n2):
        self.n1 = n1
       self.n2 = n2
       self.res = self.n1 ** self.n2
       return self res
   def resto(self, n1, n2):
       self.n1 = n1
       self.n2 = n2
       self.res = self.n1 % self.n2
       return self.res
   def raiz(self, n1, n2):
       self.n1 = n1
       self.n2 = n2
       self.res = math.sqrt(self.n1 + self.n2)
       return self res
from calculadora import Calculadora
class Principal:
        self.calculadora = Calculadora()
   def executar calculos(self):
       print("SEJA BEM VINDO A CALCULADORA!!!!!")
       print("1 - ADIÇÃO")
       print("2 - SUBTRAÇÃO")
       print("3 - MULTIPLICAÇÃO")
       print("4 - DIVISÃO")
       print("5 - POTENCIAÇÃO")
       print("6 - MÓDULO (RESTO)")
       print("7 - RAÍZ QUADRADA (SOMA DOS DOIS NÚMEROS)")
```



```
print("0 - SAIR")
        while True:
            op = input("ESCOLHA UMA DAS OPÇÕES PARA REALIZAR
UMA OPERAÇÃO: ")
            if op == '1':
                print("***OPERAÇÃO DE ADIÇÃO SELECIONADA ***")
                print("***DIGITE OS DOIS ÚLTIMOS NÚMEROS DO
SEU RU***")
                    num1 = input("DIGITE O PENÚLTIMO NÚMERO DO
SEU RU: ")
                    if num1.isdigit():
                        num1 = int(num1)
                        print ("Erro: DIGITE UM NÚMERO VÁ-
LIDO!")
                    num2 = input("DIGITE O ÚLTIMO NÚMERO DO
SEU RU: ")
                    if num2.isdigit():
                        num2 = int(num2)
                        print ("Erro: DIGITE UM NÚMERO VÁ-
LIDO!")
                resultado = self.calculadora.somar(n1=num1,
n2=\text{num}2
                print("RESULTADO DA SOMA:", resultado)
            if op == '2':
                print("***OPERAÇÃO DE SUBTRAÇÃO SELECIONADA
                print("***DIGITE OS DOIS ÚLTIMOS NÚMEROS DO
SEU RU***")
```



```
num1 = input("DIGITE O PENÚLTIMO NÚMERO DO
SEU RU: ")
                    if num1.isdigit():
                        num1 = int(num1)
                        print ("Erro: DIGITE UM NÚMERO VÁ-
LIDO!")
                while True:
                    num2 = input("DIGITE O ÚLTIMO NÚMERO DO
SEU RU: ")
                    if num2.isdigit():
                        num2 = int(num2)
                        print ("Erro: DIGITE UM NÚMERO VÁ-
LIDO!")
                resultado = self.calculadora.subtrair(n1=num1,
n2=\text{num}2
                print("RESULTADO DA SUBTRAÇÃO:", resultado)
            if op == '3':
                print("***OPERAÇÃO DE MULTIPLICAÇÃO SELECIO-
NADA ***")
                print("***DIGITE OS DOIS ÚLTIMOS NÚMEROS DO
SEU RU***")
                    num1 = input("DIGITE O PENÚLTIMO NÚMERO DO
SEU RU: ")
                    if num1.isdigit():
                        num1 = int(num1)
                        print ("Erro: DIGITE UM NÚMERO VÁ-
LIDO!")
                while True:
                    num2 = input("DIGITE O ÚLTIMO NÚMERO DO
SEU RU: ")
                    if num2.isdigit():
                        num2 = int(num2)
                        break
```



```
print ("Erro: DIGITE UM NÚMERO VÁ-
LIDO!")
                resultado = self.calculadora.multipli-
car(n1=num1, n2=num2)
                print("RESULTADO DA MULTIPLICAÇÃO:", resul-
tado)
            if op == '4':
                print("***OPERAÇÃO DE DIVISÃO SELECIONADA
                print("***DIGITE OS DOIS ÚLTIMOS NÚMEROS DO
SEU RU***")
                while True:
                    num1 = input("DIGITE O PENÚLTIMO NÚMERO DO
SEU RU: ")
                    if num1.isdigit():
                        num1 = int(num1)
                        print ("Erro: DIGITE UM NÚMERO VÁ-
LIDO!")
                while True:
                    num2 = input("DIGITE O ÚLTIMO NÚMERO DO
SEU RU: ")
                    if num2.isdigit():
                        num2 = int(num2)
                        break
                        print ("Erro: DIGITE UM NÚMERO VÁ-
LIDO!")
                resultado = self.calculadora.dividir(n1=num1,
n2 = \text{num}2
                print("RESULTADO DA DIVISÃO:", resultado)
            if op == '5':
                print ("***OPERAÇÃO DE EXPONENCIAÇÃO SELECIO-
NADA ***")
                print("***DIGITE OS DOIS ÚLTIMOS NÚMEROS DO
SEU RU***")
```



```
while True:
                    num1 = input("DIGITE O PENÚLTIMO NÚMERO DO
SEU RU: ")
                    if num1.isdigit():
                         num1 = int(num1)
                        print ("Erro: DIGITE UM NÚMERO VÁ-
LIDO!")
                    num2 = input("DIGITE O ÚLTIMO NÚMERO DO
SEU RU: ")
                    if num2.isdigit():
                         num2 = int(num2)
                        print ("Erro: DIGITE UM NÚMERO VÁ-
LIDO!")
                resultado = self.calculadora.expoente(n1=num1,
n2 = \text{num} 2
                print("RESULTADO DA POTENCIAÇÃO:", resultado)
            if op == '6':
                print("***OPERAÇÃO DE MÓDULO(RESTO) SELECIO-
NADA ***")
                print("***DIGITE OS DOIS ÚLTIMOS NÚMEROS DO
SEU RU***")
                    num1 = input("DIGITE O PENÚLTIMO NÚMERO DO
SEU RU: ")
                    if num1.isdigit():
                        num1 = int(num1)
                        print ("Erro: DIGITE UM NÚMERO VÁ-
LIDO!")
                    num2 = input("DIGITE O ÚLTIMO NÚMERO DO
SEU RU: ")
                    if num2.isdigit():
                        num2 = int(num2)
```



```
print ("Erro: DIGITE UM NÚMERO VÁ-
LIDO!")
                resultado = self.calculadora.resto(n1=num1,
n2=num2)
                print("RESULTADO DO MÓDULO(RESTO):", resul-
tado)
            if op == '7':
                print("***OPERAÇÃO DE RAIZ QUADRADA SELECIO-
NADA ***")
                print("***DIGITE OS DOIS ÚLTIMOS NÚMEROS DO
SEU RU***")
                while True:
                    num1 = input("DIGITE O PENÚLTIMO NÚMERO DO
SEU RU: ")
                    if num1.isdigit():
                        num1 = int(num1)
                        print ("Erro: DIGITE UM NÚMERO VÁ-
LIDO!")
                    num2 = input("DIGITE O ÚLTIMO NÚMERO DO
SEU RU: ")
                    if num2.isdigit():
                        num2 = int(num2)
                        print ("Erro: DIGITE UM NÚMERO VÁ-
LIDO!")
                resultado = self.calculadora.raiz(n1=num1,
n2=\text{num}2
                print("RESULTADO DA RAIZ(SOMA DOS DOIS NÚMEROS
DIGITADOS):", resultado)
            elif op == '0':
                print('Encerrando Programa...')
                return
```


CÓDIGO EXERCÍCIO - 01

```
🌳 principal (1) 🛛 🔻
"E:\Zurc Nosbor\Estudos\BACHAREL - ENGENHARIA DO SOFTWARE\20 - LINGUAGEM DE PROGRAMAÇÃO\ATIVIDADE PRATICA\
SEJA BEM VINDO A CALCULADORA!!!!!
1 - ADIÇÃO
2 - SUBTRAÇÃO
3 - MULTIPLICAÇÃO
4 - DIVISÃO
5 - POTENCIAÇÃO
6 - MÓDULO (RESTO)
7 - RAÍZ QUADRADA (SOMA DOS DOIS NÚMEROS)
0 - SAIR
ESCOLHA UMA DAS OPÇÕES PARA REALIZAR UMA OPERAÇÃO: 1
***OPERAÇÃO DE ADIÇÃO SELECIONADA ***
***DIGITE OS DOIS ÚLTIMOS NÚMEROS DO SEU RU***
DIGITE O PENÚLTIMO NÚMERO DO SEU RU: 3
DIGITE O ÚLTIMO NÚMERO DO SEU RU: 8
RESULTADO DA SOMA: 11
ESCOLHA UMA DAS OPÇÕES PARA REALIZAR UMA OPERAÇÃO: 3
***OPERAÇÃO DE MULTIPLICAÇÃO SELECIONADA ***
***DIGITE OS DOIS ÚLTIMOS NÚMEROS DO SEU RU***
DIGITE O PENÚLTIMO NÚMERO DO SEU RU: 3
DIGITE O ÚLTIMO NÚMERO DO SEU RU: 8
RESULTADO DA MULTIPLICAÇÃO: 24
ESCOLHA UMA DAS OPÇÕES PARA REALIZAR UMA OPERAÇÃO: 0
Encerrando Programa...
Process finished with exit code 0
```

TERMINAL EXERCÍCIO - 01

Exercício 2 – Dada uma determinada equação linear $\mathbf{y} = \mathbf{ax} + \mathbf{bx} - \mathbf{c}$, sendo que os valores para \mathbf{a} , \mathbf{b} e \mathbf{c} serão os três primeiros números de seu RU ($\mathbf{a} = \mathbf{NUM1}$, $\mathbf{b} = \mathbf{NUM2}$, $\mathbf{c} = \mathbf{NUM3}$). Caso, algum número do RU seja igual a zero, subistituí-lo(s) pelo número 5. Além disso, será preciso criar um vetor aleatório de tamanho 10, onde cada posição do vetor conterá os valores de \mathbf{x} para a equação linear. Feito isto, fazer um gráfico para mostrar os pontos obtidos pela equação linear dentro do plano cartesiano. Por fim, nomear os eixos Y e X do gráfico, colocar cores diferentes para os pontos e colocar legenda. Dica: você vai ter no total, 10 pontos no seu plano cartesiano, ou seja, 10 pontos serão ilustrados no gráfico.

RESPOSTA DO ALUNO:

```
# IMPORT PARA A GERAÇÃO DE GRAFICOS
import matplotlib pyplot as plt
import random
RU = 3773638
a = 3
b = 7
c = 7
vetorX = random.sample(range(1, 25), 10)
y = [a * vetorXi + b * vetorXi - c for vetorXi in vetorX]
pontos ordenados = sorted(zip(vetorX, y))
vetorX ordenado, y ordenado = zip(*pontos ordenados)
for i in range(len(vetorX ordenado)):
    plt.plot(vetorX ordenado[i], y ordenado[i], marker="o",
markersize=12)
plt.xlabel('EIXO X')
plt.ylabel('EIXO Y')
legend labels = [f'POSIÇÃO X={vetorX ordenado[i]} POSIÇÃO
Y={y ordenado[i]}' for i in range(len(vetorX ordenado))]
plt.legend(legend labels)
plt.grid()
```


plt.title('Exercício 02 - EQUAÇÃO LINEAR') # MOSTRAR GRÁFICO plt.show()

CÓDIGO EXERCÍCIO – 02

GRÁFICO EXERCÍCIO - 02

Exercício 3 – Realizar o upload do arquivo STORES.csv. Renomear todas as colunas do arquivo STORES.csv, onde os respectivos nomes sejam compactados (Exemplo: Daily Customer Count foi renomeado para Visitantes). Após isto, para se analisar o desempenho das lojas de supermercado/mercado do arquivo STORES.csv encontre os valores mínimo, máximo, médio e desvio padrão das seguinte colunas: "Items_Available"; "Daily_Customer_Count"; e "Store_Sales". Posto isto, realizar três gráficos com as seguintes informações: Items Available, Daily Customer Count e Store Sales. Não se esqueça de colocar: nomes para os eixos Y e X do gráfico, colocar cores diferentes para os pontos e colocar legenda.

Algumas informações extras sobre a tabela do arquivo STORES.csv:

- ID da loja: (Índice) ID da loja específica.
- Store da loja: Área Física da loja em pátio.
- Itens Avaliados: Número de itens diferentes disponíveis na loja correspondente.

- Contagem diária de clientes: Número de clientes que visitaram as lojas em média ao longo do mês.
 - Histórico de vendas: Vendas em (US\$) que as lojas realizaram.

RESPOSTA DO ALUNO:

```
import pandas as pd
import matplotlib pyplot as plt
df = pd.read csv("Stores.csv", sep=',', encoding='ISO 8859-1')
df = df.rename(columns={
    df.columns[0]: "ID Loja",
    df.columns[1]: "Produtos",
   df.columns[2]: "Produtos Disponíveis",
    df.columns[3]: "Visitantes",
    df.columns[4]: "Vendas (DOLAR)",
print(df)
col interesse = ["Produtos Disponíveis", "Visitantes", "Vendas
(DOLAR)"]
df col interesse = df[col interesse]
dados = df col interesse agg(["min", "max", "std", "mean"])
print(dados)
amostra = df["Produtos Disponíveis"].sample(frac=0.3)
plt.scatter(amostra.index, amostra, color='blue', label='Pro-
dutos Disponíveis')
```



```
plt.xlabel('Índice')
plt.ylabel('Produtos Disponíveis')
plt.title('Análise de Produtos Disponíveis')
plt.legend()
plt.grid()
plt.show()
amostra 2 = df["Visitantes"].sample(frac=0.3)
plt.scatter(amostra 2.index, amostra 2, color='green', la-
bel='Visitantes')
plt.xlabel('Índice')
plt.ylabel('Visitantes')
plt.title('Análise de Visitantes')
plt.legend()
plt.grid()
plt.show()
amostra 3 = df["Vendas (DOLAR)"].sample(frac=0.3)
plt.scatter(amostra_3.index, amostra_3, color='red', la-
bel='Vendas da Loja (DOLAR)')
plt.xlabel('Índice')
plt.ylabel('Vendas da Loja (DOLAR)')
plt.title('Análise de Vendas da Loja (DOLAR)')
plt.legend()
plt.grid()
plt.show()
```


"E:\	Zurc Nosb	or\Estudos	\BACHAREL	- ENGENHA	RIA DO	SOFTWARE	\20 -	LINGUAGEM	DE	PROGRAMAÇÃO\ATIVIDADE	PRATICA\
-	ID_Loja	Produtos	Produtos	Disponívei	s Vi	isitantes	Venda	s (DOLAR)			
0	1	1659		190	1	530		66490			
1	2	1461		179	2	210		39820			
2	3	1340		160	19	720		54010			
3	4	1451		174	8	620		53730			
4	5	1770		211	1	450		46620			
891	892	1582		191	.0	1080		66390			
892	893	1387		160	3	850		82080			
893	894	1200		143	6	1060		76440			
894	895	1299		150	0	770		96610			
895	896	1174		142	9	1110		54340			
[896 rows x 5 columns]											
	Produto	s Disponív	eis Visi	tantes Ve	ndas	(DOLAR)					
min		932.000	000 10.	000000	14926	0.000000					
max		2667.000	000 1560.	000000 1	16326	0.000000					
std		299.872	053 265.	389281	17196	741895					
mean		1782.035	714 786.	350446	59351	1.305804					

TERMINAL EXERCÍCIO - 03

GRÁFICO 01 EXERCÍCIO - 03

GRÁFICO 02 EXERCÍCIO – 03

GRÁFICO 03 EXERCÍCIO - 03