AP.Y	(c) (20 points) Consider the following regression model, where ε_t has mean zero and is uncorrelated with GDP_{t-1} , GDP_{t-2} , $rate_t$, and $rate_{t-1}$, where $GDP_t \in I(1)$, $rate_t \in I(1)$ and are conintegrated: $GDP_t = \alpha + \beta_1 GDP_{t-1} + \beta_2 GDP_{t-2} + \gamma_1 rate_t + \gamma_2 rate_{t-1} + \varepsilon_t $ (1)
,,	\Box Derive the Error Correction Model (ECM) representation of the equation, and discuss the long-run equilibrium relation for GDP_t and $rate_t$.
	If GPPx, 1x one wintegrated
	J
] stat. lin. word. $Z_{t} = d_{0} + d_{1} \cdot 60P_{t} +$
	d2 · 2t
	→ 6DP= fo+ f, 2+ 2+
	∫
	Coint, relanship = LR relationship Ex
	2 DODPt = To + O, Date + Vt
	Se dynamics
) in EM : SR
oppla.	SGDP+ = 0, + 0, D Late; +
Cusc	
) + N2 Et-1 + V+
	LK (6PP+-1 - Bo- BiV-1)

From (1):
$$SGDP_{t}$$
 $GPP_{t} = GDP_{t-1} =$
 $d + (p_{1} - 1)GDP_{t-1} +$
 $f_{2} GPP_{t-2} + f_{1} + f_{2} + f_{2} + f_{2} + f_{4} + f_{$

Xo - dixed / or with known dist. . RW [(1) Xt = Xt-1 + Et - PW · ZW Mh EXL = EXL-, + E Ex = dift RW With = EX+-2 + E(E++E+-1)= = Mo + E (\(\xi \) \(\xi \) Van(X+) = Van (K+-1+ E+) = Van (Xo) + Van (\(\frac{t}{\gamma}\) \(\xi_c\) = = Vm (Ko) + 62 t (ov(X+, Xs) = 62 (t-s) Rw with dzift: IW Xr = 2 + Xt-1 + Gt E(Xr) = d·t + EX. EW with hend: 1(2) Xt = X+B+ Kt-1+Ex F(X+) = x+ pt2 + EX0

 \Box Let $x_t = x_{t-1} + \varepsilon_t$, where ε_t is i.i.d. with mean zero and variance σ^2 for t = 1, ..., T. Is the time series x_t

stationary?