FOCO NO MERCADO DE TRABALHO

ETHERNET E IPV6

Renato Cividini Matthiesen

IDENTIFICAÇÃO DE DISPOSITIVOS DA REDE

Apresentação de informações detalhadas sobre os dispositivos que fazem parte da rede, a fim de identificar os equipamentos disponíveis em cada um dos setores, e também a descrição dos domínios de colisão e de broadcast da rede.

Fonte: Shutterstock.

Deseja ouvir este material?

Áudio disponível no material digital.

SEM MEDO DE ERRAR

RELATÓRIO DO PROJETO DE REDES: EQUIPAMENTOS DE REDE E ANÁLISE DE DOMÍNIOS DE COLISÃO E *BROADCAST*

Após a análise da topologia da rede e distribuição de *hosts* junto aos dispositivos comutadores, a equipe de consultoria pode apresentar informações de descrições dos equipamentos de rede que pertencem ao ambiente de coworking e se utilizam do padrão Ethernet para transferência de dados na rede, de acordo com a topologia a seguir:

Figura 2.35 \mid Topologia de rede para análise dos domínios de colisão e $\it broadcast$ mapeados

Fonte: elaborada pelo autor.

Lista de equipamentos da rede:

- Sistemas: um servidor, uma impressora, dois desktops e um switch.
- Gerência: um switch, duas impressoras e três desktops.
- Clientes1: um switch e quatro desktops.
- Reuniões: um roteador.
- Clientes2: um switch, um hub e quatro desktops.
- Visitantes: um roteador.

Domínio de colisão: há quatro domínios de colisão, considerando que cada *switch* na topologia forma um domínio de colisão. Importante apresentar que o *hub* não implementa um domínio de colisão e, caso a empresa tenha interesse em substituí-lo por um *switch*, poderá ter uma rede com menor colisão dentro de sua topologia.

Domínio de *broadcast*: há dois domínios de *broadcast*, considerando que cada roteador da topologia apresentada forma um domínio de *broadcast*.

Na atualidade, os *hubs* podem ser substituídos por *switches* devido à evolução dos equipamentos nos últimos anos e ao custo com o equipamento ter diminuído, possibilitando sua utilização em maior escala em projetos de rede. Neste estudo, o *hub* está sendo utilizado como elemento de comutação para exemplificar à empresa que seu uso atende parcialmente às necessidades da rede.

AVANÇANDO NA PRÁTICA

CONVERSÃO DE ENDEREÇAMENTO IPV4 PARA IPV6

Um escritório de contabilidade solicitou uma consultoria para análise e implantação de uma nova estrutura de rede local de computadores e precisa entender melhor como utilizar o endereçamento IPv6 como alternativa a configurações locais do IPv4. Esta empresa vem atuando no ramo de contabilidade e possui um escritório com 30 estações de trabalho (desktops e notebooks) para as atividades profissionais de seus colaboradores. Com o objetivo de prover conhecimento aos proprietários da empresa, sua equipe foi desafiada a fazer um cálculo de tradução do endereço de IPv4 para o formato de IPv6 como forma de conhecimento do novo sistema de endereços IPv6 em relação ao endereço antigo.

Adicionalmente, a empresa também solicitou que se apresentem três mecanismos

Ver anotações

de convivência de endereços IPv4 e IPv6 dentro da rede. Como referência, vamos considerar que o endereço do servidor de rede é 192.168.0.210, número este que será utilizado para exemplificação do novo endereço no padrão IPv6. A topologia da rede pode ser verificada na Figura 2.36.

Figura 2.36 | Topologia de rede do escritório de contabilidade

Fonte: elaborada pelo autor.

<u>RESOLUÇÃO</u>

A comunicação entre hosts que operam em um ambiente onde as duas versões do protocolo IP são utilizadas também pode contar com um protocolo de tradução de endereços, como o *Network Address Translation* (NAT). Este protocolo implementa um mecanismo de tradução de endereços IPv4 em endereços IPv6 com equivalência de valor.

Como exemplo de tradução de endereço IP, vamos considerar o endereço do servidor da empresa de contabilidade com IPv4 192.168.0.210.

Conversão do endereço IPv4 para notação binária:

192.168.0.210 = 11000000.10101000.00000000.11010010.

Ou:

1100 0000 . 1010 1000 . 0000 0000 . 1101 0010.

Conversão dos grupos binários de bases 8, 4, 2 e 1:

1100 = 12 e 0000 = 0

1010 = 10 e 1000 = 8

0000 = 0 e 0000 = 0

1101 = 13 e 0010 = 2

Conversão dos números grupos para a notação hexadecimal.

1100 = 12 = C e 0000 = 0 \rightarrow O primeiro duocteto fica **C0**.

1010 = 10 = A e 1000 = 8 → O segundo duocteto fica **A8**.

 $0000 = 0 = 0000 = 0 \rightarrow 0$ terceiro duocteto fica **00**.

 $1100 = 13 e 1001 = 2 \rightarrow O$ quarto duocteto fica **D2**.

O endereço parcial IPv6 respectivo ao IPv4 proposto é: **C0A8:00D2.**

Adicionando os grupos de 0 e FFFF para completar o endereço:

0:0:0:0:0:FFFF:COA8:00D2.

Ou ainda: ::FFFF:C0A8:00D2.

Para conhecimento dos mecanismos que podem ser implementados na empresa de contabilidade, o consultor procurou conhecer as técnicas 6to4, tunelamento, túnel broker e ISATAP (*Intra-suite Automatic Tunnel Addressing Protocol*) e descreveu sucintamente suas funcionalidade e possibilidades em um quadro resumo.

Quadro 2.8 | Mecanismos de tradução de endereços IPv4 e IPv6

Mecanismo	Funcionalidades	Possibilidades
6to4	Roteadores encaminham os dois endereços (IPv4 e IPv6) dos <i>hosts</i> para a rede.	Configuração dos dois endereços nos hosts e roteamento automático.
Tunelamento	Permite utilização de infraestrutura com IPv4 para encaminhamento de pacotes IPv6.	Roteador a roteador, Roteador a <i>Host</i> e <i>Host</i> a <i>Host</i> .
Túnel <i>Broker</i>	Permite que o pacote IPv6 seja encapsulado dentro do pacote IPv4.	Roteamento através de túnel.
ISATAP	Permite atribuição de endereço pelo serviço de DHCPV4.	ISATAP determina a entrada e saída do túnel IPv6.

Fonte: elaborado pelo autor.