

SRM Institute of Science and Technology Ramapuram Campus

Department of Mathematics

Year / Sem: I / II

Branch: Common to ALL Branches of B.Tech. except B.Tech. (Business Systems)

UNIT IV - ANALYTIC FUNCTIONS

Part – A

F:			
1.	The critical point of the transformation $w = z^2$ is (A) $z = 0$ (B) $z = -i$ (C) $z = 1$ (D) $z = -1$	ANS A	(CLO-4, Apply)
2.	If $w = f(z) = u + iv$ is analytic, then the family of curves $u = C_1$ and $v = C_2$ (A) cut orthogonally (B) intersect each other (C) are parallel (D) coincide	ANS A	(CLO-4, Remember)
3.	If a function $u(x, y)$ satisfies the equation $u_{xx} + u_{yy} = 0$, then u is called (A) analytic function (B) harmonic function (C) differential function (D) continuous function	ANS B	(CLO-4, Remember)
4.	Cauchy-Riemann equations in Polar co-ordinates are $ (A) \ u_r = \frac{1}{r} \ v_\theta, \ v_r = -\frac{1}{r} \ u_\theta \qquad (B) \ u_r = -\frac{1}{r} \ v_\theta, \ v_r = \frac{1}{r} \ u_\theta $ $ (C) \ u_r = -\frac{1}{r} \ v_\theta, \ v_r = -\frac{1}{r} \ u_\theta \qquad (D) \ u_r = \frac{1}{r} \ v_\theta, \ v_r = \frac{1}{r} \ u_\theta $	ANS A	(CLO-4, Remember)
5.	The critical point of the transformation $w = z^4$ is (A) $z = 2$ (B) $z = -2$ (C) $z = 0$ (D) $z = 1$	ANS C	(CLO-4, Apply)
6.	If $w = f(z) = u + i v$ is an analytic function of z , then (A) u and v are not harmonic (B) u is not harmonic (C) both u and v are harmonic (D) u and v are constants	ANS C	(CLO-4, Remember)

	An analytic function with constant	modulus is		
7.	(A) zero (C) harmonic	(B) analytic(D) constant	ANS D	(CLO-4, Remember)
8.	Cauchy – Riemann equation in Cart (A) $u_x = v_y$, $u_y = -v_x$ (C) $u_x = v_y$, $u_y = v_x$	(B) $u_x = -v_y$, $u_y = v_x$	ANS A	(CLO-4, Remember)
9.	The invariant point of the transform (A) $z = 0$ (C) $z = -1$	nation $w = \frac{1}{z - 2i}$ is (B) $z = 1$ (D) $z = i$	ANS D	(CLO-4, Apply)
10.	The transformation $w = a z$, where (A) magnification (C) reflection	(B) rotation (D) inversion	ANS A	(CLO-4, Apply)
11.	The fixed points of the transformation (A) $\pm i$ (C) ± 2	fon $w = \frac{z-1}{z+1}$ are $(B) \pm 1$ $(D) \pm 3$	ANS A	(CLO-4, Apply)
12.	An analytic function with constant (A) zero (C) harmonic	real part is (B) analytic (D) constant	ANS D	(CLO-4, Remember)
13.	An analytic function with constant (A) zero (C) harmonic	imaginary part is (B) analytic (D) constant	ANS D	(CLO-4, Remember)
14.	The transformation $w = a z$, where represents (A) magnification (C) magnification and rotation	(B) reflection (D) inversion	ANS C	(CLO-4, Remember)
15.	If $f(z) = e^z$, then $f(z)$ is (A) zero function (C) discontinuous function	(B) analytic function (D) constant function	ANS B	(CLO-4, Remember)

	$f(z) = \frac{1}{z^2 + 1}$ is analytic everywhere except at		
16.	$(A) z = \pm i$ $(C) z = \pm 2$ $(B) z = \pm 1$ $(D) z = \pm 3$	ANS A	(CLO-4, Apply)
17.	The invariant points of the transformation $w = \frac{2z+6}{z+7}$ are (A) 6, -1 (B) 3, 2 (C) -3, 2 (D) -6, 1	ANS D	(CLO-4, Apply)
18.	The fixed points of the transformation $w = \frac{z-1}{z+1}$ are (A) $\pm i$ (B) ± 1 (C) ± 2 (D) ± 3	ANS A	(CLO-4, Apply)
19.	The image of $ z - 2i = 2$ under the transformation $w = \frac{1}{z}$ is (A) $x^2 + y^2 = 0$ (B) $x^2 + y^2 + 4y = 0$ (C) $x^2 + y^2 - 4y = 0$ (D) $x^2 + y^2 + y = 0$	ANS C	(CLO-4, Apply)
20.	The image of $ z = 2$ under the transformation $w = 3z$ is (A) $x^2 + y^2 = 0$ (B) $x^2 + y^2 = 4$ (C) $x^2 - y^2 = 0$ (D) $x^2 - y^2 = 4$	ANS B	(CLO-4, Apply)
21.	The image of $ z + 1 = 1$ under the transformation $w = \frac{1}{z}$ is (A) $x^2 + y^2 + 2x = 0$ (B) $x^2 + y^2 + 2y = 0$ (C) $x^2 + y^2 - 2x = 0$ (D) $x^2 - y^2 - 2y = 0$	ANS A	(CLO-4, Apply)
22.	The transformation $w = \frac{1}{z}$ is known as (A) magnification (B) reflection (C) rotation (D) inversion	ANS D	(CLO-4, Remember)
23.	If the image of a point z under the transformation $w = f(z)$ is itself, then the point is called (A) fixed point (C) singular point (D) regular point	ANS A	(CLO-4, Remember)
24.	The function $f(z) = \bar{z}$ is (A) nowhere differentiable (B) analytic (C) constant (D) singular	ANS A	(CLO-4, Apply)

	The function $f(z) = \sin z$ is		
25.		nalytic onstant ANS B	(CLO-4, Apply)
26.	, , ,		(CLO-4, Remember)
27.	· / ·	• •	(CLO-4, Remember)
28.		$x \sin y$ $2x \sin 2y$ ANS C	(CLO-4, Apply)
29.		s to be analytic $= \pm 1$ $= \pm 3$ ANS \mathbf{B}	(CLO-4, Apply)
30.	, , ,	eflection nversion ANS	(CLO-4, Remember)
31.	The fixed points of the transformation $w = \frac{5z+4}{z+5}$ (A) $\pm i$ (B) $\pm i$ (C) ± 2 (D) $\pm i$	ANS C	(CLO-4, Apply)
32.		$2^{x} \sin y$ ANS $2^{x} \sin 2y$ ANS	(CLO-4, Apply)
33.	The invariant points of the transformation $w = \frac{1-z}{z}$ (A) $\pm i$ (B) $\pm i$ (C) ± 2 (D) $\pm i$	ANS B	(CLO-4, Apply)

34.	The real part of $f(z) = \log z$ is (A) $u = \log r$ (C) $u = \log y$	(B) $u = \log x$ (D) $u = \log \theta$	ANS A	(CLO-4, Apply)
35.	If $f(z) = x + y + i (cy - x)$ is analytic, the (A) $\pm i$ (C) 2	en the value of c is (B) 1 (D) -1	ANS B	(CLO-4, Apply)
36.	The critical points of the transformation $w = (A) \pm i$ (C) ± 2	$= z + \frac{1}{z} \text{ are}$ $(B) \pm 1$ $(D) \pm 3$	ANS B	(CLO-4, Apply)

* * * * *

SRM Institute of Science and Technology Ramapuram Campus

Department of Mathematics

Year / Sem: I / II

Branch: Common to ALL Branches of B.Tech. except B.Tech. (Business Systems)

Unit 5 – Complex Integration

Part – B (Each question carries 3 Marks)

	1
1. Evaluate	$\int e^{z} dz$ where C is $ z-2 =1$ by Cauchy's integral theorem.
(

- (A) πi
- (B) $4\pi i$
- (C) 0
- (D) $2\pi i$

Solution

 $e^{\frac{1}{z}}$ is analytic inside and on C.

Hence by Cauchy's Integral theorem, $\int_{C} e^{\frac{1}{z}} dz = 0$.

Answer: (C)

- 2. Evaluate $\int_C \frac{1}{2z-3} dz$ where C is |z| = 1 by Cauchy's integral formula.
 - (A) 1
- (B) $4\pi i$
- (C) 0
- (D) $2\pi i$

Solution

Here
$$a = \frac{3}{2}$$
 lies outside | z | = 2.

By Cauchy's Integral formula,

$$\int_{C} \frac{1}{2z - 3} dz = 0$$

Answer: (C)

SRM IST, Ramapuram.

3. Evaluate $\int_{C} \frac{1}{(z-3)^2} dz$ where C is |z| = 1 by Cauchy's integral formula.

- (A) 1
- (B) $4\pi i$
- (C) 0
- (D) $2\pi i$

Solution

Here a = 3 lies outside |z| = 1.

By Cauchy's Integral formula,

$$\int_{C} \frac{1}{\left(z-3\right)^2} dz = 0$$

Answer: (C)

- 4. Evaluate $\int_C \frac{2z}{z-1} dz$ where C is |z| = 2 by Cauchy's integral formula.
 - (A) 1
- (B) $4\pi i$
- (C) 0
- (D) $2\pi i$

Solution

Here f(z) = 2z and a = 1 lies inside |z| = 2.

By Cauchy's Integral formula,

$$\int_{C} \frac{2z}{z-1} dz = 2\pi i \ f(1) = 2\pi i (2) = 4\pi i$$

Answer: (B)

- 5. Evaluate $\int_{C} \frac{\cos \pi z}{z-1} dz$ where C is |z| = 3.
 - (A) $-2 \pi i$
- (B) $4\pi i$
- (C) 0
- (D) $2\pi i$

Solution

Here $f(z) = \cos \pi z$ and a = 1 lies inside |z| = 3.

By Cauchy's Integral formula,

$$\int_{C} \frac{\cos \pi z}{z - 1} dz = 2\pi i \ f(1) = 2\pi i (-1) = -2\pi i$$

Answer: (A)

SRM IST, Ramapuram.

6. Evaluate $\int_C \frac{e^{-z}}{z+1} dz$ where C is |z| = 1.5.

- $(A) -2 \pi i e$
- (B) $4\pi i$
- (C) 0
- (D) $2\pi i e$

Solution

Here $f(z) = e^{-z}$ and a = -1 lies inside |z| = 1.5.

By Cauchy's Integral formula,

 $\int_{0}^{\infty} \frac{e^{-z}}{z+1} dz = 2\pi i \ f(-1) = 2\pi i e$ Answer: (D)

7. Evaluate $\int_C \frac{1}{ze^z} dz$ where C is |z| = 1.

- (A) $-2 \pi i e$ (B) $2 \pi i$
- (C) 0
- (D) $2\pi i e$

Solution

Here $f(z) = \frac{1}{e^z}$ and a = 0 lies inside |z| = 1.

By Cauchy's Integral formula,

 $\int_{-\frac{z}{z}}^{\frac{1}{e^{z}}} dz = 2\pi i \ f(0) = 2\pi i 1 = 2\pi i$ Answer: (B)

8. Evaluate $\int_C \frac{z+1}{z(z-2)} dz$ where C is |z| = 1.

- (A) $-2\pi i e$ (B) $\frac{1}{2}$ (C) $-\frac{1}{2}$
- (D) $2\pi i e$

Solution

Here $f(z) = \frac{z+1}{z-2}$ and a = 0 lies inside |z| = 1.

By Cauchy's Integral formula,

$$\int_{C} \frac{z+1}{z-2} dz = 2\pi i \ f(0) = -\frac{1}{2}$$

Answer: (C)

- 9. Evaluate $\int_{C} \frac{\cos \pi z^2}{(z-1)(z-2)} dz$ where C is |z| = 1.5.
- (A) 1
- (B) $4\pi i$
- (C) 0
- (D) $2\pi i$

Solution

Here
$$f(z) = \frac{\cos \pi z^2}{z-2}$$
 and $a = 1$ lies inside $|z| = 1.5$.

By Cauchy's Integral formula,

$$\int_{C} \frac{\cos \pi z^{2}}{z-1} dz = 2\pi i \ f(1) = 2\pi i \ \frac{\cos \pi}{1-2} = 2\pi i$$

Answer: (D)

- 10. Evaluate $\int_{C} \frac{1}{(z+1)(z-2)^2} dz$ where C is |z| = 1.5.
- (A) 1 (B) $\frac{4\pi i}{9}$ (C) 0 (D) $\frac{2\pi i}{9}$

Solution

Here
$$f(z) = \frac{1}{(z-2)^2}$$
 and $a = -1$ lies inside $|z| = 1.5$.

By Cauchy's Integral formula,

$$\int_{C} \frac{\frac{1}{(z-2)^2}}{z+1} dz = 2\pi i \ f(-1) = 2\pi i \frac{1}{9} = \frac{2\pi i}{9}$$

Answer: (D)

11. Evaluate $\int_{C} \frac{z}{(z-1)^3} dz$ where C is |z| = 2 by Cauchy's integral formula for derivatives.

- (A) 1
- (B) $4\pi i$
- (C) 0
- (D) $2\pi i$

Solution

Here f(z) = z and a = 1 lies inside |z| = 2.

By Cauchy's Integral formula for derivatives,

$$\int_{C} \frac{z}{(z-1)^3} dz = \frac{2\pi i}{2!} f''(1) = \pi i(0) = 0$$

Answer: (C)

- 12. Calculate the residue at z = 0 for the function $f(z) = \frac{3 e^{2z}}{z}$.
 - (A) 1
- (B) 2
- (C) 3
- (D) 2

Solution

Re
$$s[f(z), a] = \lim_{z \to a} (z - a) f(z)$$

Re
$$s[f(z), 0] = \lim_{z \to 0} (z - 0) \frac{(3 - e^{2z})}{z} = 2$$

Answer: (B)

- 13. Calculate the residue at z = i for the function $f(z) = \frac{1}{z^2 + 1}$.
 - (A) 1
- (B) 2
- (C) $\frac{1}{2i}$
- (D) 2

Solution

Re
$$s[f(z), a] = \lim_{z \to a} (z - a) f(z)$$

Re
$$s[f(z),i] = \lim_{z \to i} (z-i) \frac{1}{(z+i)(z-i)} = \frac{1}{2i}$$

Answer: (C)

14. Calculate the residue at z = -i for the function $f(z) = \frac{z}{z^2 + 1}$.

- (A) 1
- (B) 2
- (C) 1/2
- (D) 2

Solution

Re
$$s[f(z), a] = \lim_{z \to a} (z - a) f(z)$$

Re
$$s[f(z), -i] = \lim_{z \to -i} (z+i) \frac{z}{(z+i)(z-i)} = \frac{1}{2}$$

Answer: (C)

- 15. Calculate the residue of the function $f(z) = \frac{e^{2z}}{(z+1)^2}$ at its pole.
- (A) 2e
- (B)3e
- (C) $2e^{-2}$
- (D) $2e^2$

Solution

z = -1 is a pole of order 2.

Re
$$s[f(z), a] = \frac{1}{(n-1)!} \lim_{z \to a} \frac{d^{n-1}}{dz^{n-1}} (z-a)^n f(z)$$

Re
$$s[f(z), -1] = \frac{1}{(2-1)!} \lim_{z \to -1} \frac{d^{2-1}}{dz^{2-1}} (z+1)^2 \frac{e^{2z}}{(z+1)^2} = \frac{1}{1!} \lim_{z \to -1} \frac{d}{dz} e^{2z} = 2e^{-2}$$

Answer: (C)

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MEATHEMATICS

18MAB102T ADVANCED CALCULUS & COMPLEX ANALYSIS

UNIT -IV ANALYTIC FUNCTIONS

	UNIT-IV ANALYTIC FUNCTIONS	
Sl.No.	Tutorial Sheet -1	Answers
	Part – A	
Test wheth	ner $f(z) = z^3$ is analytic.	Analytic everywhere
If $f(z)$ and constant.	d $f(\overline{z})$ are analytic function of z, then prove that $f(z)$ is	
		$f'(z) = e^z$
Show that	the function $u = 2\log(x^2 + y^2)$ is harmonic.	
	Part – B	
		$v = e^x \sin y$
	Test wheth If $f(z)$ and constant. Show that derivative. Prove that conjugate of the standard shows that $f(z) = u$ and $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$ If $f(z) = u$ and $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$ Show that	Tutorial Sheet -1 Part – A Test whether $f(z) = z^3$ is analytic. If $f(z)$ and $f(\overline{z})$ are analytic function of z , then prove that $f(z)$ is constant. Show that the function $e^x(\cos y + i \sin y)$ is analytic and find its derivative. Prove that if v is harmonic conjugate of u and u is harmonic conjugate of v , then $f(z)$ is constant. Show that the function $u = 2\log(x^2 + y^2)$ is harmonic.

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MEATHEMATICS

18MAB102T ADVANCED CALCULUS & COMPLEX ANALYSIS

UNIT -IV ANALYTIC FUNCTIONS

		Tutorial Sheet -2	Answers
		Part – A	
1	Find the in	mage of the circle $ z =3$ under the transformation $w=2z$	6
2	Find a fun	action w such that w=u+iv is analytic, if $u = e^x \sin y$	$f(z) = -ie^z + c$
3	Determin	e the analytic function u+iv whose real part $u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$	$f(z) = z^3 + 3z^2 + c$
		Part – B	
4	Find the an	Talytic function $f(z) = u + iv$ if $u - v = e^{x}(cosy - siny)$	$f(z) = e^z + c$
5	Find the a	analytic function $f(z) = u + iv$ if $u - v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$	$f(z) = \frac{\cot z}{1+i} + c$
6	tr <u>ian</u> gular	e the region D' of the w-plane into which the region D enclosed by the lines x=0, y=0, ransformed under the transformation w=2z	
7	Find an ar $2u + 3v =$	halytic function $f(z) = u + iv$, given that $= \frac{\sin 2x}{\cos h2y - \cos x}$	$f(z) = \frac{(2+3i)\cot z}{13} + c$

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MEATHEMATICS

18MAB102T ADVANCED CALCULUS & COMPLEX ANALYSIS

UNIT -IV Mapping and Bilinear

		Transformation	
	Sl.No.	Tutorial Sheet -3	Answers
		Part – A	
1	Find the ima	ges of the $ z+1 =1$ where the map $w = \frac{1}{z}$	$u = -\frac{1}{2}$
2	Find the ima	ges of the $ z - 2i = 2$ where the map $w = \frac{1}{z}$	$v = -\frac{1}{4}$
3	Describe abo	out $w = \frac{1}{z}$ transformation.	
4	Define Bili	near Transformation	
	L	Part – B	
5	Find the bit $w = i, 0, -i$	linear map which maps the points $z = 1, i, -1$ onto the points	$\frac{-z+i}{z+i}$
6	Find the bil $w = 0, -i, \infty$	inear map which maps the points $z = \infty, i, 0$ onto the points	$\frac{1}{z}$
7	Find the bil $w = i, 1, -i$	inear map which maps the points $z = 0,1,\infty$ onto the points	$\frac{z+i}{1+iz}$

		SRM Institute of Science and Technology Kattankulathur	
		DEPARTMENT OF MEATHEMATICS	
		18MAB102T ADVANCED CALCULUS & COMPLEX ANALYSIS	
		UNIT - V: Complex Integration Tutorial Sheet 13	
	Sl.No.	Questions	Answer
		Part – A	
1	C	$\frac{z}{1}dz \text{ where } C \text{ is a circle (i) } z = 2 \text{ (ii) } z = \frac{1}{4}.$	(i) $2\pi i e^{-1}$ (ii) 0
2	Evaluate $\oint_C \frac{a}{z^2}$	$\frac{dz}{-2z}$ where C is a circle $ z-2 =1$.	πi
3	Evaluate $\oint_C z^2 \cdot \epsilon$	$e^{\frac{1}{z}}dz$ where C is the circle $ z =1$.	$\frac{\pi i}{3}$
4	Obtain Taylor	's series of $f(z) = \frac{z-1}{z^2}$ in powers of $z-1$.	$\sum_{n=1}^{\infty} (-1)^{n-1} n(z-1)^n$
5	Obtain Lauren	at's series of $f(z) = \frac{1}{z(z-1)} \text{ in } z < 1 \text{ and } z > 1.$	$\sum_{n=1}^{\infty} (-1)^{n-1} n(z-1)^n$ (i) $-\frac{1}{z} - \sum_{n=0}^{\infty} z^n$ (ii) $-\frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{z}\right)^n$
		Part – B	
6	Evaluate $\oint_{c} \frac{d}{(z-z)^{2}}$	$\frac{\cos \pi z^2}{-1(z-2)} dz \text{ where } C \text{ is the circle } z = \frac{3}{2}.$	$2\pi i$
7	Evaluate $\oint_C \frac{1}{z^2}$	$\frac{z+4}{+2z+5}$ dz where C is the circle $ z+1+i =2$.	$\frac{\pi}{2}(2i-3)$
8	Expand $\frac{1}{(z-1)}$	$\frac{1}{(z-2)}$ in the region $0 < z-1 < 1$	$-\frac{1}{z-1} - \sum_{n=0}^{\infty} (z-1)^n$
9	Expand $\frac{7z}{(z+1)}$	$\frac{z-2}{z(z-2)}$ in the region $1< z+1 <3$	$\frac{-2}{z+1} + \sum_{n=2}^{\infty} \frac{1}{(z+1)^n} - \frac{2}{3} \sum_{n=0}^{\infty} \left(\frac{z+1}{3}\right)^n$
10		function $\frac{4z+3}{z(z-3)(z+2)}$ in Laurent's series	(i) $\frac{z^{-1}}{2} - \frac{5}{3} \sum_{n=0}^{\infty} \left(\frac{z}{3}\right)^n - \frac{1}{4} \sum_{n=0}^{\infty} (-1)^n \left(\frac{z}{2}\right)^n$
	•	z =2 (ii) in the annular region between 3 and (iii) exterior to $ z =3$.	(ii) $\frac{z^{-1}}{2} - \frac{5}{3} \sum_{n=0}^{\infty} \left(\frac{z}{3}\right)^n - \frac{1}{2z} \sum_{n=0}^{\infty} \left(-1\right)^n \left(\frac{2}{z}\right)^n$
			(iii) $\frac{z^{-1}}{2} - \frac{5}{z} \sum_{n=0}^{\infty} \left(\frac{3}{z}\right)^n - \frac{1}{2z} \sum_{n=0}^{\infty} (-1)^n \left(\frac{2}{z}\right)^n$

		SRM Institute of Science and Technology Kattankulathur	
		DEPARTMENT OF MEATHEMATICS	
		18MAB102T ADVANCED CALCULUS & COMPLEX ANALYSIS	
		UNIT - V : Taylor's & Laurent' series, Singularity, Poles and Residue Tutorial Sheet 14	
	Sl.No.	Questions	Answer
1		Part – A	
1		ylor's series expansion of $f(z) = \frac{z+3}{(z-1)(z-4)}$ about $z=2$ ermine the region of convergence.	$\sum_{n=0}^{\infty} \left\{ \frac{4}{3} (-1)^{n+1} - \frac{7}{6} \cdot \frac{1}{2^n} \right\} (z-2)^n$
2		veries for $\frac{1}{z-3}$ valid in (i) $ z < 3$, (ii) $ z > 3$.	$(i) - \frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{z}{3}\right)^n$
			$(ii)\frac{1}{z}\sum_{n=0}^{\infty}\left(\frac{3}{z}\right)^n$
3	Expand $f(1 < z < 3$	$z) = \frac{z}{(z-1)(z-3)}$ as Laurent's series valid in the region	$-\frac{1}{2z}\sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^n - \frac{1}{2}\sum_{n=0}^{\infty}\left(\frac{z}{3}\right)^n$
4	' '	7	1
4	Find the res	idues of $\frac{e^{x}}{z^{8}}$.	$\frac{1}{7!}$
5	Find the res	idue of $\frac{1-\cos(z)}{z^3}$.	1
	1	Part – B	
6		aurent's series of $f(z) = \frac{1}{z(1-z)}$ valid in the region	$(i) - \sum_{n=0}^{\infty} (z+1)^n + \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z+1}{2}\right)^n$
	(i) z+1 <1,	(ii) z+1 > 2.	(ii) $\sum_{n=1}^{\infty} \frac{1}{(z+1)^n} - \frac{1}{(1+z)} \sum_{n=0}^{\infty} \left(\frac{2}{z+1}\right)^n$
7	Find the L	caurent's series of $f(z) = \frac{z}{(z^2+1)(z^2+4)}$ in the region	$\frac{1}{3z} \sum_{n=0}^{\infty} (-1)^n \left(\frac{1}{z^2}\right)^n - \frac{z}{12} \sum_{n=0}^{\infty} (-1)^n \left(\frac{z^2}{4}\right)^n$
	1< z <2.		
8	Find the res	idue at $z = 0$ for $f(z) = \frac{1 + e^z}{\sin z + z \cos z}$ and $f(z) = \frac{1}{z^2 e^z}$	1,-1
9		idue at each pole of $f(z) = \frac{z^2}{(z-1)^2(z+2)}$.	$\frac{4}{9}, \frac{5}{9}$
10	Find the 1	residue at $z = 0$ for $\csc^2 z$	0

		SRM Institute of Science and Technology Kattankulathur		
		DEPARTMENT OF MEATHEMATICS		
		18MAB102T ADVANCED CALCULUS & COMPLEX ANALYSIS		
		UNIT - V: Residue and Cauchy's residue theorem Tutorial Sheet 15		
	Sl.No.	Questions	Answer	
		Part – A		
1	Find the residues	s of $f(z) = \frac{z}{(z-1)^2}$ at the poles	1	
2	Find the residues	s of $f(z) = \frac{z}{(z-1)^2}$ at the poles s of $f(z) = \frac{e^z}{z^2 + a^2}$ at $z = ai$	2aie ^{ai}	
3	Find the residue of $f(z) = \frac{1 - e^z}{z^2}$.			
4	Find the residues	$-\frac{i}{4}, -\frac{i}{4}$		
5	Find the residue	s of $f(z) = \frac{1}{(z^2 + 1)^2}$. of $f(z) = \frac{1}{(z^2 + a^2)^2}$ at $z = ai$	$-\frac{i}{4a^3}$	
		Part – B		
6	Evaluate $\oint_C \frac{z}{z^2 + 1}$	$\left \frac{z-3}{-2z+5} dz \right $ where C is the circle $\left z+1-i \right = 2$	$\pi(i-2)$	
7		residue theorem evaluate $\oint_C \frac{z \sec z}{1-z^2} dz$ where C is the	$-2\pi i \sec 1$	
8	Show that $\int_0^{2\pi} \frac{1}{1+}$	$\frac{d\theta}{da\cos\theta} = \frac{2\pi}{\sqrt{1-a^2}}, (a^2 < 1).$		
9	Evaluate $\int_0^{2\pi} \frac{1}{13}$	$\frac{d\theta}{+5\sin\theta}$	$\frac{\pi}{6}$	
10	Evaluate $\int_0^{2\pi} -$	$\frac{d\theta}{1 - 2a\cos\theta + a^2}, a^2 < 1$	$\frac{2\pi}{1-a^2}$	