Crash Recovery

Chapter 18

Review: The ACID properties

- ♦ A tomicity: All actions in the Xact happen, or none happen.
- C onsistency: If each Xact is consistent, and the DB starts consistent, it ends up consistent.
- **♦ I solation:** Execution of one Xact is isolated from that of other Xacts.
- D urability: If a Xact commits, its effects persist.
- * The **Recovery Manager** guarantees Atomicity & Durability.

Motivation

- * Atomicity:
 - Transactions may abort ("Rollback").
- * Durability:
 - What if DBMS stops running? (Causes?)
- ☑ Desired Behavior after system restarts:
 - T1, T2 & T3 should be durable.
 - T4 & T5 should be aborted (effects not seen).

Assumptions

- Concurrency control is in effect.
 - Strict 2PL, in particular.
- Updates are happening "in place".
 - i.e. data is overwritten on (deleted from) the disk.
- * A simple scheme to guarantee Atomicity & Durability?

Handling the Buffer Pool

- Force every write to disk at commit time?
 - Poor response time.
 - But provides durability.
- Steal buffer-pool frames from uncommitted Xacts?
 - If not, poor throughput
 - Can run out of buffer pool for No Force large xacts
 - If so, how can we ensure atomicity?

More on Steal and Force

* STEAL

- *To steal frame F:* Current page in F (say P) is written to disk; some Xact holds lock on P.
 - What if the Xact with the lock on P aborts?
 - i.e. uncommited Xact data on disk
 - Must remember the old value of P at steal time (to support UNDOing the write to page P).

NO FORCE

- What if system crashes before a page modified by a committed Xact is written to disk?
- i.e. committed Xact data not on disk
- Write as little as possible, in a convenient place, at commit time, to support REDOing modifications.

Basic Idea: Logging

- Record REDO and UNDO information, for every update, in a *log*.
 - Sequential writes to log (put it on a separate disk).
 - Minimal info (diff) written to log, so multiple updates fit in a single log page.
- Log: An ordered list of REDO/UNDO actions
 - Log record contains:
 - <XID, pageID, offset, length, old data, new data>
 - and additional control info (which we'll see soon).

Write-Ahead Logging (WAL)

- The Write-Ahead Logging Protocol:
 - 1. Must force the log record for an update <u>before</u> the corresponding data page gets to disk.
 - 2. Must write all log records for a Xact <u>before</u> <u>commit</u>.
- * #1 guarantees Atomicity.
- * #2 guarantees Durability.
- Exactly how is logging (and recovery!) done?

WAL & the Log

- Each log record has a unique Log Sequence Number (LSN).
 Log records
 - LSNs always increasing.
- * Each <u>data page</u> contains a pageLSN.
 - The LSN of the most recent *log record* for an update to that page.
- System keeps track of flushedLSN.
 - The max LSN flushed so far.
- * WAL: Before a page is written,
 - pageLSN ≤ flushedLSN

flushed to disk

Log Records

LogRecord fields:

prevLSN
XID
type
pageID
length
offset
only
before-image
after-image

Possible log record types:

- Update
- * Commit
- * Abort
- End (signifies end of commit or abort)
- Compensation Log Records (CLRs)
 - for UNDO actions

Other Log-Related State

Transaction Table:

- One entry per active Xact.
- Contains XID, status (running/committed/aborted), and lastLSN.

Dirty Page Table:

- One entry per dirty page in buffer pool.
- Contains recLSN -- the LSN of the log record which first caused the page to be dirty.

Checkpointing

- Periodically, the DBMS creates a <u>checkpoint</u>, in order to minimize the time taken to recover in the event of a system crash. Write to log:
 - begin_checkpoint record: Indicates when chkpt began.
 - end_checkpoint record: Contains current *Xact table* and *dirty page table*. This is a `fuzzy checkpoint':
 - Other Xacts continue to run; so these tables accurate only as of the time of the begin_checkpoint record.
 - No attempt to force dirty pages to disk; effectiveness of checkpoint limited by oldest unwritten change to a dirty page. (So it's a good idea to periodically flush dirty pages to disk!)
 - Store LSN of chkpt record in a safe place (master record).

The Big Picture: What's Stored Where

LogRecords

prevLSN XID type

pageID

length

offset

before-image

after-image

Data pages

each with a pageLSN

master record

Xact Table

lastLSN status

Dirty Page Table recLSN

flushedLSN

Simple Transaction Abort

- For now, consider an explicit abort of a Xact.
 - No crash involved.
- We want to "play back" the log in reverse order, UNDOing updates.
 - Get lastLSN of Xact from Xact table.
 - Can follow chain of log records backward via the prevLSN field.
 - Before starting UNDO, write an *Abort* log record.
 - For recovering from crash during UNDO!

- To perform UNDO, must have a lock on data!
 - No problem!
- Before restoring old value of a page, write a CLR:
 - You continue logging while you UNDO!!
 - CLR has one extra field: undonextLSN
 - Points to the next LSN to undo (i.e. the prevLSN of the record we're currently undoing).
 - CLRs never Undone (but they might be Redone when repeating history: guarantees Atomicity!)
- ❖ At end of UNDO, write an "end" log record.

Transaction Commit

- Write commit record to log.
- * All log records up to Xact's lastLSN are flushed.
 - Guarantees that flushedLSN ≥ lastLSN.
 - Note that log flushes are sequential, synchronous writes to disk.
 - Many log records per log page.
- Commit() returns.
- Write end record to log.

Crash Recovery: Big Picture

Start from a checkpoint (found via master record).

- Figure out which Xacts committed since checkpoint, which failed (Analysis).
- UNDO effects of failed Xacts.

Recovering From a Crash

- There are 3 phases in the Aries recovery algorithm:
 - <u>Analysis</u>: Scan the log forward (from the most recent *checkpoint*) to identify all Xacts that were active, and all dirty pages in the buffer pool at the time of the crash (i.e. restore these TT and DPT at time of crash per log).
 - <u>Redo</u>: Redoes all updates to dirty pages in the buffer pool, as needed, to ensure that all logged updates are in fact carried out and written to disk (this brings buffer pool up-to-date).
 - <u>Undo</u>: The writes of all Xacts that were active at the crash are undone (by restoring the *before value* of the update, which is in the log record for the update), working backwards in the log. (Some care must be taken to handle the case of a crash occurring during the recovery process!)

Recovery: The Analysis Phase

- Reconstruct state at checkpoint.
 - via end_checkpoint record.
- Scan log forward from checkpoint.
 - End record: Remove Xact from Xact table.
 - Other records: Add Xact to Xact table, set lastLSN=LSN, change Xact status on commit.
 - Update record: If P not in Dirty Page Table,
 - Add P to D.P.T., set its recLSN=LSN.

Recovery: The REDO Phase

- We repeat History to reconstruct state at crash:
 - Reapply all updates (even of aborted Xacts!), redo CLRs.
- ❖ Scan forward from log rec containing smallest recLSN in D.P.T. For each CLR or update log rec LSN, REDO the action unless:
 - Affected page is not in the Dirty Page Table, or
 - Affected page is in D.P.T., but has recLSN > LSN, or
 - pageLSN (in DB) ≥ LSN.
- * To REDO an action:
 - Reapply logged action.
 - Set pageLSN to LSN. No additional logging!

Recovery: The UNDO Phase

ToUndo={ *l* | *l* a lastLSN of a "loser" Xact}

Repeat:

- Choose largest LSN among ToUndo.
- If this LSN is a CLR and undonextLSN==NULL
 - Write an End record for this Xact.
- If this LSN is a CLR, and undonextLSN != NULL
 - Add undonextLSN to ToUndo
- Else this LSN is an update. Undo the update, write a CLR, add prevLSN to ToUndo.

Until ToUndo is empty.

Example of Recovery

Xact Table
lastLSN
status
Dirty Page Table
recLSN
flushedLSN

ToUndo

Example: Crash During Restart!

Xact Table
lastLSN
status
Dirty Page Table
recLSN
flushedLSN

ToUndo

Summary of Logging/Recovery

- Recovery Manager guarantees Atomicity & Durability.
- Use WAL to allow STEAL/NO-FORCE w/o sacrificing correctness.
- LSNs identify log records; linked into backwards chains per transaction (via prevLSN).
- pageLSN allows comparison of data page and log records.

Summary, Cont.

- * Checkpointing: A quick way to limit the amount of log to scan on recovery.
- * Recovery works in 3 phases:
 - Analysis: Forward from checkpoint.
 - Redo: Forward from oldest recLSN.
 - Undo: Backward from end to first LSN of oldest Xact alive at crash.
- Upon Undo, write CLRs.
- Redo "repeats history": Simplifies the logic!