Universidad de Buenos Aires		Facultad de Ingeniería		
1º Cuatrimestre 2010	75.12 - Análisis Numérico I. Curso 008	Parcial. Segunda Oportunidad.	Tema 1	Nota
Padrón	Apellido y Nombres			

Ejercicio 1. A partir de los datos de la tabla, correspondientes a puntos equidistantes, se han calculado una derivada por Diferencias Centradas en x1, una integral por Simpson con los puntos x0,x1,x2 y una integral por Trapecios con los puntos x2,x3,x4. Asimismo, se ha calculado parte de una matriz de ajuste polinómico por Cuadrados Mínimos y un polinomio interpolante de Lagrange Baricéntrico con los puntos x0,x2,x4. Se sabe, además, que los puntos son equidistantes.

f ' (x1), centrado =	1,00000	A(CM) =	5	20
Simpson $(x0,x1,x2) =$	14,0000	0000		nd
Trapecios (x2,x3,x4) =	17,5000	PLB(x3) =	8,6	2500

i	0	1	2	3	4
Xi	?	?	?	?	?
Yi	6	?	8	?	?

- a) Caracterizar el término de error (orden de la derivada, potencia que acompaña a h) de los métodos de diferenciación, integración e interpolación, indicando –si corresponde- el grado de exactitud en cada caso.
- b) Utilizar el valor de la derivada para hallar el paso h (en caso de no haberlo hallado, tomar h=1,5).
- c) Considerando la información del método de Lagrange Baricéntrico, obtenga y3 (en caso de no haberlo hallado, tomar y3=9,5).
- d) Obtener los puntos x0,x1,x2,x3 y x4 a partir de la información proporcionada para Cuadrados Mínimos
- e) A partir de los valores de las integrales ofrecidas obtener y1 e y3, indicando si las formulas de cuadratura utilizadas son simples o compuestas (en caso de no tener información suficiente, x0=1)

Ejercicio 2. Sean la matriz A, la función f(t) = t.cos(t) + e^t y la variable t perteneciente al intervalo [1; 2]:

$$A(t) := \begin{pmatrix} 4 & 2 & 4 \\ 2 & 9 & 4 \\ 4 & 4 & f(t) \end{pmatrix}$$

- a) Realizar la descomposición por Cholesky de la matriz A(t), expresando S(t)
- b) Mediante un método de refinamiento, encontrar el valor de p para el que S33(p) = 0
- c) Indicar qué ocurre con la descomposición obtenida en los intervalos [1,p) y (p,2]. Justificar
- d) Considerando como variable de salida ||A|| estimar Cp por perturbaciones experimentales a partir de una perturbación $\Delta t = 0.05$ (dada en términos absolutos) en el punto $t_0 = 2.5$

Ejercicio 3. La ecuación $(x-c)^2 e^x = 0$ tiene una raíz doble en c. Explique y justifique por qué no puede aplicarse el método de la bisección en un intervalo (a;b) tal que $c \in (a;b)$.

Firma	

Universidad de Buenos Aires		Facultad de Ingeniería		
1º Cuatrimestre 2010	75.12 - Análisis Numérico I. Curso 008	Parcial. Segunda Oportunidad.	Tema 2	Nota
Padrón	Apellido y Nombres			

Ejercicio 1. A partir de los datos de la tabla, correspondientes a puntos equidistantes, se han calculado una derivada por Diferencias Centradas en x1, una integral por Simpson con los puntos x0,x1,x2 y una integral por Trapecios con los puntos x2,x3,x4. Asimismo, se ha calculado parte de una matriz de ajuste polinómico por Cuadrados Mínimos y un polinomio interpolante de Lagrange Baricéntrico con los puntos x0,x2,x4. Se sabe, además, que los puntos son equidistantes.

F'(x1), centrado =	2,00000	A(CM) =	5	30
Simpson (x0,x1,x2) =	32,0000	A(CIVI) -	30	nd
Trapecios (x2,x3,x4) =	39,0000	PLB(x3) =	9,6	2500

i	0	1	2	3	4
Xi	?	?	?	?	?
Yi	7	?	9	?	?

- a) Caracterizar el término de error (orden de la derivada, potencia que acompaña a h) de los métodos de diferenciación, integración e interpolación, indicando –si corresponde- el grado de exactitud en cada caso.
- b) Utilizar el valor de la derivada para hallar el paso h (en caso de no haberlo hallado, tomar h=1,5).
- c) Considerando la información del método de Lagrange Baricéntrico, obtenga y3 (en caso de no haberlo hallado, tomar y3=9,5).
- d) Obtener los puntos x0,x1,x2,x3 y x4 a partir de la información proporcionada para Cuadrados Mínimos
- e) A partir de los valores de las integrales ofrecidas obtener y1 e y3, indicando si las formulas de cuadratura utilizadas son simples o compuestas (en caso de no tener información suficiente, x0=1)

Ejercicio 2. Sean la matriz A, la función f(t) = t.cos(t) + e^t y la variable t perteneciente al intervalo [1; 2]:

$$A(t) := \begin{pmatrix} 4 & 2 & 4 \\ 2 & 10 & 4 \\ 4 & 4 & f(t) \end{pmatrix}$$

- a) Realizar la descomposición por Cholesky de la matriz A(t), expresando S(t)
- b) Mediante un método de refinamiento, encontrar el valor de p para el que S33(p) = 0
- c) Indicar qué ocurre con la descomposición obtenida en los intervalos [1,p) y (p,2]. Justificar
- d) Considerando como variable de salida ||A|| estimar Cp por perturbaciones experimentales a partir de una perturbación $\Delta t = 0.05$ (dada en términos absolutos) en el punto $t_0 = 2.5$

Ejercicio 3. La ecuación $(x-c)^2 e^x = 0$ tiene una raíz doble en c. Explique y justifique por qué no puede aplicarse el método de la «regula–falsi» en un intervalo (a;b) tal que $c \in (a;b)$.

Firma	