MSO-203 B ASSIGNMENT 1 IIT, KANPUR

18th October, 2020

1. Consider the following functions defined on the interval $[-\pi, \pi]$.

- a) f(x) = |x|
- b) $f(x) = |\sin(x)|$
- c) $f(x) = \sin|x|$
- d) $f(x) = x^2$.

Which one of the above functions admits Fourier series expansion? (It is understood that the functions are extended 2π periodically to whole of real line). Write down their Fourier series expansion.

Solution (a):

$$f(x) = |x| = \left\{ \begin{array}{ll} -x, & x \le 0 \\ x, & x > 0 \end{array} \right..$$

Since left hand and right hand derivatives exist at all the points of $(-\pi, \pi)$.

$$\implies |x| = a_0 + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx.$$

where

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |x| dx.$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx.$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx.$$

Solving

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^0 (-x) dx + \frac{1}{2\pi} \int_0^{\pi} x dx$$

$$= \frac{1}{2\pi} \left(\frac{-x^2}{2} \right) \Big|_{-\pi}^0 + \frac{1}{2\pi} \left(\frac{x^2}{2} \right) \Big|_0^{\pi}$$

$$= \frac{1}{2\pi} \frac{\pi^2}{2} + \frac{1}{2\pi} \frac{\pi^2}{2}$$

$$= \frac{\pi^2}{2\pi} = \frac{\pi}{2}$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| \cos(nx) dx.$$

$$= \frac{2}{\pi} \int_{0}^{\pi} x \cos(nx) dx \text{ (why?)}$$

$$= \frac{2}{\pi} \left[\frac{x \sin(nx)}{n} \Big|_{0}^{\pi} - \frac{1}{n} \int_{0}^{\pi} \sin(nx) dx \right]$$

$$= \frac{2}{\pi} \frac{\cos(nx)}{n^{2}} \Big|_{0}^{\pi}$$

$$= \frac{2}{\pi n^{2}} ((-1)^{n} - 1)$$

 $b_n = 0$, because the integrand $f(x) = |x| \sin(nx)$ is an odd function on $(-\pi, \pi)$.

$$\implies |x| = \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{2}{\pi n^2} ((-1)^n - 1) \cos nx, \forall x \in (-\pi, \pi).$$

Solution (b): $f(x) = |\sin x|$ admits left hand derivative and right hand derivative at all the points. Hence proceed as previous exercise.

Solution (c): Notice

$$f(x) = \sin|x| = \begin{cases} \sin x, & \text{if } 0 \le x < \pi \\ -\sin x, & \text{if } -\pi \le x < 0 \end{cases} = |\sin x|.$$

Thus in part (b) and part (c) we have same functions.

Solution (d): Notice the function $f(x) = x^2$ is infinitely differentiable. Proceed as part (a).

2. Find the Fourier even half series of the function f(x) = x on the interval [0, L].

Solution We have to calculate the Fourier coefficients for the arbitrary length L.

Since it is even series NO b_n terms will be present or in other other words $b_n = 0$.

We need to calculate

$$a_0 = \frac{1}{L} \int_0^L f(x) dx = \frac{1}{L} \int_0^L x dx = \frac{L}{2}.$$

Fourier cosine coefficients are given by the formula,

$$a_n = \frac{2}{L} \int_0^L f(x) \cos(\frac{n\pi x}{L}) dx = \frac{2}{L} \int_0^L x \cos(\frac{n\pi x}{L}) dx.$$

After calculation $a_n = 0$ if n is even, and $a_n = \frac{-4L}{n^2\pi^2}$, if n is odd.

Therefore, finally since f(x) = x is a differentiable function on (0, L), we have for all $x \in (0, L)$

$$x = \frac{L}{2} - \frac{4L}{\pi^2} \sum_{m=1}^{\infty} \frac{1}{(2m+1)^2} \cos\left(\frac{(2m+1)\pi x}{L}\right).$$

3. Consider the function defined by

$$g(x) := \sum_{n=1}^{\infty} \frac{4\cos((2n+1)x)}{\pi(2n+1)^2} + \sum_{m=1}^{\infty} \frac{2\sin((2m+1)x)}{2m+1}, \quad x \in \mathbb{R}.$$

Then which of the following are correct:

a)
$$g(\frac{\pi}{2}) = \frac{\pi}{2}$$

b)
$$g(0) = 0$$

c)
$$g(0) = \frac{\pi}{2}$$

d)
$$g(1) = 1$$
.

Hint: Work with the Fourier series of the periodical extension of the following function

$$f(x) = \begin{cases} x, & x \in [-\pi, 0) \\ \pi - x, & x \in (0, \pi]. \end{cases}$$

Solution: Let us work with the Fourier series of the following function

$$f(x) = \begin{cases} x, & x \in [-\pi, 0) \\ \pi - x, & x \in (0, \pi]. \end{cases}$$

Solving

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^0 x dx + \frac{1}{2\pi} \int_0^{\pi} (\pi - x) dx$$
$$= \frac{1}{2\pi} \left(\frac{x^2}{2} \right) \Big|_{-\pi}^0 + \frac{1}{2\pi} \left(\pi x - \frac{x^2}{2} \right) \Big|_0^{\pi}$$
$$= -\frac{1}{2\pi} \frac{\pi^2}{2} + \frac{1}{2\pi} \pi^2 - \frac{1}{2\pi} \frac{\pi^2}{2} = 0$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^0 x \cos(nx) dx + \frac{1}{\pi} \int_0^{\pi} (\pi - x) \cos(nx) dx$$

$$= \frac{1}{\pi} \left(\frac{1 - \cos n\pi}{n^2} - \frac{\cos n\pi - 1}{n^2} \right)$$

$$= \frac{2}{n^2 \pi} (1 - \cos n\pi) = \begin{cases} 0, & \text{when } n = 2m \\ \frac{4}{n^2 \pi}, & \text{when } n = 2m + 1. \end{cases}$$

Similarly

$$b_n = \frac{1}{n}(1 - \cos n\pi) = \begin{cases} 0, & \text{when } n = 2m\\ \frac{2}{n}, & \text{when } n = 2m + 1. \end{cases}$$

. Thus

$$f(x) = \sum_{m=1}^{\infty} \frac{4}{(2m+1)^2 \pi} \cos(2m+1)x + \sum_{m=1}^{\infty} \frac{2}{(2m+1)} \sin(2m+1)x.$$

Then we know from our theorem that if $x \in (-\pi, \pi) \setminus \{0\}$, then f(x) is differentiable $\implies f(x) = g(x)$ if $x \in (-\pi, \pi) \setminus \{0\}$ and

$$g(0) = \frac{f(0+) + f(0-)}{2} = \frac{\pi}{2} \implies (c) \text{ is true}$$
$$g(\pi/2) = f(\pi/2) = \pi - \pi/2 = \pi/2 \implies (a) \text{ is true}$$

Then (b) and (d) will be false.

4. Pick the correct answers from the following:

a)
$$\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}$$

b)
$$\frac{\pi^2}{2} = \sum_{n=1}^{\infty} \frac{1}{n^2}$$

c)
$$0 = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2} \cos(n\pi)$$

d)
$$0 = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{3}{n^2} \cos(n\pi)$$

Hint: Work with the Fourier transform of the periodical extension of the following function $f(x) = x^2$ on the interval $(-\pi, \pi)$

Solution: Let us find the Fourier Series of the function $f(x) = x^2$ on $(-\pi, \pi)$. Fourier coefficients are

$$a_{0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^{2} dx = \frac{\pi^{2}}{3}$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos(nx) dx$$

$$= \frac{1}{\pi} \left[\frac{x^{2} \sin nx}{n} \Big|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \frac{2x \sin(nx)}{n} dx \right]$$

$$= -\frac{2}{\pi n} \left[\frac{x \cos nx}{n} \Big|_{\pi}^{-\pi} + \int_{-\pi}^{\pi} \frac{\cos(nx)}{n} dx \right]$$

$$= \frac{4}{n^{2}} \cos n\pi = \frac{4(-1)^{n}}{n^{2}}, \quad n \in \mathbb{N}.$$

 $b_n = 0$ as $x^2 \sin nx$ is an odd function.

$$\implies x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx. \tag{1}$$

At $x = \pi$, we have from (1)

$$\implies \pi^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^{2n}}{n^2}.$$

$$\implies \frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

(a) is correct. If (a) is correct then definitely (b) is false.

Putting x = 0 in (1) and noticing $\cos n\pi = (-1)^n$, $\forall n$ gives (c) is true. (d) is false if (c) is true.

5. Find the half range series (both even and odd) for the following function:

$$f(x) = \begin{cases} 0, & x \in [0, \frac{\pi}{2}) \\ 1, & x \in [\frac{\pi}{2}, \pi]. \end{cases}$$

Solution: Even half range series is given by

$$a_0 = \frac{1}{\pi} \int_0^{\frac{\pi}{2}} 0 dx + \frac{1}{\pi} \int_{\frac{\pi}{2}}^{\pi} 1 dx = \frac{1}{2}$$

$$a_n = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} 0 dx + \frac{2}{\pi} \int_{\frac{\pi}{2}}^{\pi} 1 \cos nx dx = \frac{2}{n\pi} (-\sin \frac{n\pi}{2})$$

$$= \begin{cases} 0, & n = 2m \\ \frac{2}{(2m+1)\pi} (-1)^m, & n = 2m+1 \end{cases}$$

$$\implies f(x) = \frac{1}{2} + \frac{2}{\pi} \sum_{m=0}^{\infty} \frac{(-1)^m}{2m+1} \cos(2m+1)x.$$

Similarly find the odd half range series.

6. Apply Parsevals formula to the function f(x) = x on $[-\pi, \pi]$ to find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

Solution: Let us calculate the Fourier series of the function "x" on $[-\pi, \pi]$.

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x dx = 0,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos nx dx = 0$$

as $x \cos nx$ is an odd function.

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin nx dx$$
$$= \frac{1}{\pi} \left[\frac{-2\pi \cos n\pi}{n} \right] = -\frac{2}{n} (-1)^n.$$

From Parseval's Identity we know that

$$\frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx = 2a_0^2 + \sum_{n=1}^{\infty} a_n^2 + b_n^2$$

$$\iff \frac{2\pi^3}{3.\pi} = \sum_{n=1}^{\infty} \frac{4}{n^2}$$

$$\iff \frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}$$