ÁLGEBRA VECTORIAL

Introdução

- Estudo das operações (definição, propriedades e aplicações) que podem ser realizadas com os vectores.
- A noção de *vector* pode ser encontrada em diversas áreas da ciência:
 - i) Geometria: recta, plano, curva, superfície, etc;
 - ii) **Análise**: sistemas de equações lineares, gradiente, derivada direccional, etc;
 - iii) Física: força, deslocamento, velocidade, aceleração, etc;
 - iv) **Mecânica**: estática, cinemática, dinâmica, cálculo estrutural, etc.

Estudo dos vectores

Geométrico:

- i) Vectores segmentos orientados definidos pelo ponto de aplicação, direcção, sentido e norma (comprimento);
- ii) Operações definidas e estudadas usando métodos geométricos (*regra do paralelogramo*, ou *do triângulo*, por exemplo).

Analítico:

- i) Vectores representados a partir das suas coordenadas (escalares reais);
- ii) Operações definidas a partir das coordenadas dos vectores e estudadas recorrendo às propriedades dos escalares reais.

Axiomático:

- i) Vectores e operações conceitos abstractos que devem satisfazer um certo conjunto de axiomas pré-definidos (noção de *Espaço Linear ou Vectorial*);
- ii) Propriedades das operações derivadas a partir dos axiomas referidos.

Representação matemática (coordenadas)

• Espaço unidimensional, ℝ

$$\vec{a} = \boldsymbol{a} = (a)$$

Vector posição do ponto A: $A = \overrightarrow{OA} = \vec{a} = (a)$

• Espaço bidimensional, \mathbb{R}^2

Referencial ortonormal (ortogonal e monométrico) Oxy

$$\vec{a} = \mathbf{a} = (a_1, a_2)$$

a₁: abcissa

a₂: ordenada

Vector posição do ponto A: $A = \overrightarrow{OA} = \vec{a} = (a_1, a_2)$

• Espaço tridimensional, \mathbb{R}^3

Referencial ortonormal (ortogonal e monométrico) e directo (ou positivo) Oxyz

$$\vec{a} = a = (a_1, a_2, a_3)$$

a₁: abcissa

a₂: ordenada

a₃: cota

Vector posição do ponto A: $A = \overrightarrow{OA} = \vec{a} = (a_1, a_2, a_3)$

• Espaço *n*-dimensional, \mathbb{R}^n

$$\vec{a} = \mathbf{a} = (a_1, a_2, a_3, ..., a_n)$$

Vector posição do ponto A: $A = \overrightarrow{OA} = \vec{a} = (a_1, a_2, a_3, ..., a_n)$

Igualdade de vectores

Definição: Os vectores de \mathbb{R}^n

$$\vec{a} = (a_1, a_2, a_3, ..., a_n) \text{ e } \vec{b} = (b_1, b_2, b_3, ..., b_n)$$

são iguais, se e só se possuírem as mesmas coordenadas, isto é,

$$\vec{a} = \vec{b} \iff a_1 = b_1 \land a_2 = b_2 \land a_3 = b_3 \land \dots \land a_n = b_n$$

ou

$$\vec{a} = \vec{b} \iff a_i = b_i, i = 1, 2, ..., n$$

Adição de vectores

Definição: Sejam os vectores de \mathbb{R}^n

$$\vec{a} = (a_1, a_2, a_3, ..., a_n) \in \vec{b} = (b_1, b_2, b_3, ..., b_n)$$

O $vector\ adição\ de\ \vec{a}\ com\ \vec{b}\ \acute{e}\ o\ vector\ \vec{a}+\vec{b}\ ,$ cujas coordenadas são dadas por

$$\vec{a} + \vec{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3, ..., a_n + b_n)$$

• A definição apresentada satisfaz a *regra do paralelogramo*, ou *do triângulo*, para a adição de vectores em \mathbb{R}^2 .

Propriedades: Sejam os vectores \vec{x} , \vec{y} e \vec{z} de \mathbb{R}^n

- **a**) Propriedade *comutativa*: $\vec{x} + \vec{y} = \vec{y} + \vec{x}$
- **b**) Propriedade associativa: $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$
- **c**) Existência de *elemento zero*: $\vec{x} + \vec{0} = \vec{x}$
- **d**) Existência de *elemento simétrico*, ou *oposto*: $\vec{x} + (-\vec{x}) = \vec{0}$
- Em \mathbb{R}^n , o elemento zero é o vector nulo:

$$\vec{0} = \mathbf{0} = (0,0,0,\ldots,0)$$

• Em \mathbb{R}^n , o *vector simétrico*, ou *oposto*, de \vec{x} é o vector:

$$-\vec{x} = (-x_1, -x_2, -x_3, \dots, -x_n)$$

• A subtração de vectores pode ser encarada como um caso particular da adição; sendo \vec{x} e \vec{y} vectores de \mathbb{R}^n , o vector subtração $\vec{x} - \vec{y}$ é o resultado da adição do vector \vec{x} com o vector simétrico, ou oposto, de \vec{y} , ou seja,

$$\vec{x} - \vec{y} = \vec{x} + (-\vec{y}) = (x_1 - y_1, x_2 - y_2, x_3 - y_3, ..., x_n - y_n)$$

Multiplicação por escalar

Definição: Seja o vector de \mathbb{R}^n

$$\vec{a} = (a_1, a_2, a_3, ..., a_n)$$

O *vector multiplicação* de \vec{a} *pelo escalar* $k \in \mathbb{R}$ é o vector $k\vec{a}$, cujas coordenadas são dadas por

$$k\vec{a} = (ka_1, ka_2, ka_3, ..., ka_n)$$

dizendo-se, neste caso, que \vec{a} e $k\vec{a}$ são vectores múltiplos.

• Em \mathbb{R}^n , o *vector simétrico*, ou *oposto*, de \vec{x} pode ser expresso sob a forma:

$$-\vec{x} = (-1)\vec{x} = (-x_1, -x_2, -x_3, \dots, -x_n)$$

Propriedades: Sejam os vectores \vec{x} e \vec{y} de \mathbb{R}^n e os escalares $k, h \in \mathbb{R}$:

- **a**) Propriedade associativa: $k(h\vec{x}) = (kh)\vec{x} = h(k\vec{x})$
- **b**) Propriedade distributiva em relação à adição de vectores:

$$k(\vec{x} + \vec{y}) = k\vec{x} + k\vec{y}$$

c) Propriedade distributiva em relação à adição de escalares:

$$(k+h)\vec{x} = k\vec{x} + h\vec{x}$$

d) Existência de *elemento unidade*: $1\vec{x} = \vec{x}$

Definição: Paralelismo ou colinearidade entre vectores

Dois vectores \vec{x} e \vec{y} de \mathbb{R}^n dizem-se *paralelos*, ou *colineares*, sendo usada a notação $\vec{x} \parallel \vec{y}$ para exprimir tal condição, se e só se existir um escalar não nulo k, tal que $\vec{y} = k\vec{x}$, isto é,

$$\vec{x} \parallel \vec{y} \iff \exists k \in \mathbb{R} \setminus \{0\} : \vec{y} = k\vec{x}$$

Se k > 0 os vectores \vec{x} e \vec{y} têm o mesmo sentido, se k < 0 possuem sentidos opostos.

Vectores coordenados unitários – \mathbb{R}^2

- São os vectores $\vec{i} = (1,0) \ e \ \vec{j} = (0,1)$:
 - i) O vector $\vec{i} = (1,0)$ define o eixo dos xx;
 - ii) O vector $\vec{j} = (0,1)$ define o eixo dos yy;
 - iii) Definem o referencial ortonormal Oxy ou (O, \vec{i}, \vec{j}) ;
 - iv) Possuem norma (comprimento) unitária (são versores);
 - v) São vectores ortogonais;
 - vi) São vectores ortonormados.
- Relativamente a qualquer vector $\vec{a} = (a_1, a_2)$ de \mathbb{R}^2 :
 - i) Pode escrever-se como combinação linear dos versores \vec{i} e \vec{j}

$$\vec{a} = (a_1, a_2) = a_1(1,0) + a_2(0,1) = a_1\vec{i} + a_2\vec{j}$$

- ii) Os escalares a₁ e a₂ da combinação linear são únicos;
- iii) O vector \vec{a} é gerado de forma única pelos versores \vec{i} e \vec{j} ;
- iv) Os versores \vec{i} e \vec{j} geram de forma única qualquer vector de \mathbb{R}^2 ;
- v) O conjunto $\{\vec{i}, \vec{j}\}$ é uma *base* para os vectores *de* \mathbb{R}^2 ;
- vi) O conjunto $\{\vec{i}, \vec{j}\}$ é uma base ortonormal para \mathbb{R}^2 ;
- vii) O conjunto $\{\vec{i}, \vec{j}\}$ é a base canónica (ou natural) para \mathbb{R}^2 .

J.A.T.B.

• Relativamente ao vector de \mathbb{R}^2

$$\vec{a} = (a_1, a_2) = a_1(1,0) + a_2(0,1) = a_1\vec{i} + a_2\vec{j}$$

- i) O vector $a_1\vec{i}$ é a 1ª componente (na direcção de \vec{i} ou na direcção do eixo dos xx) do vector \vec{a} ;
- ii) O vector $a_2\vec{j}$ é a $2^{\underline{a}}$ componente (na direcção de \vec{j} ou na direcção do eixo dos yy) do vector \vec{a} ;
- iii) Os escalares a_1 e a_2 da combinação linear são as coordenadas do vector \vec{a} em relação à base canónica $\{\vec{i},\vec{j}\}$ ou em relação ao referencial ortonormal Oxy ou (O,\vec{i},\vec{j}) ;
- iv) Os escalares a_1 e a_2 são as coordenadas naturais de \vec{a} .

Vectores coordenados unitários – \mathbb{R}^3

- São os vectores $\vec{i} = (1,0,0), \ \vec{j} = (0,1,0) \ e \ \vec{k} = (0,0,1)$:
 - i) O vector $\vec{i} = (1,0,0)$ define o eixo dos xx;
 - ii) O vector $\vec{j} = (0,1,0)$ define o eixo dos yy;
 - iii) O vector $\vec{k} = (0,0,1)$ define o eixo dos zz;
 - iv) Definem o referencial ortonormal Oxyz ou $(O, \vec{i}, \vec{j}, \vec{k})$;
 - iv) Possuem norma (comprimento) unitária (são versores);
 - v) São vectores ortogonais;
 - vi) São vectores ortonormados.
- Relativamente a qualquer vector $\vec{a} = (a_1, a_2, a_3)$ de \mathbb{R}^3 :
 - i) Pode escrever-se como *combinação linear* dos versores \vec{i} , \vec{j} e \vec{k} $\vec{a} = (a_1, a_2, a_3) = a_1(1,0,0) + a_2(0,1,0) + a_3(0,0,1) = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}$
 - ii) Os escalares a_1 , a_2 e a_3 da combinação linear são únicos;
 - iii) O vector \vec{a} é gerado de forma única pelos versores \vec{i} , \vec{j} e \vec{k} ;
 - iv) Os versores \vec{i} , \vec{j} e \vec{k} geram de forma única qualquer vector de \mathbb{R}^3 ;
 - v) O conjunto $\{\vec{i}, \vec{j}, \vec{k}\}$ é uma *base* para os vectores *de* \mathbb{R}^3 ;
 - vi) O conjunto $\{\vec{i}, \vec{j}, \vec{k}\}$ é uma base ortonormal para \mathbb{R}^3 ;
 - vii) O conjunto $\{\vec{i}, \vec{j}, \vec{k}\}$ é a base canónica (ou natural) para \mathbb{R}^3 .

• Relativamente ao vector de \mathbb{R}^3

$$\vec{a} = (a_1, a_2, a_3) = a_1(1,0,0) + a_2(0,1,0) + a_3(0,0,1) = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}$$

- i) O vector $a_1\vec{i}$ é a 1ª componente (na direcção de \vec{i} ou na direcção do eixo dos xx) do vector \vec{a} ;
- ii) O vector $a_2\vec{j}$ é a $2^{\underline{a}}$ componente (na direcção de \vec{j} ou na direcção do eixo dos yy) do vector \vec{a} ;
- iii) O vector $a_3\vec{k}$ é a $3^{\underline{a}}$ componente (na direcção de \vec{k} ou na direcção do eixo dos zz) do vector \vec{a} ;
- iv) Os escalares a_1 , a_2 e a_3 da *combinação linear* são as *coordenadas* do vector \vec{a} em relação à *base canónica* $\{\vec{i}, \vec{j}, \vec{k}\}$ ou em relação ao *referencial ortonormal Oxyz* ou $(O, \vec{i}, \vec{j}, \vec{k})$;
- v) Os escalares a_1 , a_2 e a_3 são as coordenadas naturais de \vec{a} .

Vectores coordenados unitários – \mathbb{R}^n

São os vectores

$$\vec{e}_1 = (1,0,0,\ldots,0), \ \vec{e}_2 = (0,1,0,\ldots,0), \ \vec{e}_3 = (0,0,1,\ldots,0),\ldots, \ \vec{e}_n = (0,0,0,\ldots,1)$$

- i) Possuem norma (comprimento) unitária (são versores);
- ii) São vectores ortogonais;
- iii) São vectores ortonormados.
- Relativamente a qualquer vector $\vec{a} = (a_1, a_2, a_3, ..., a_n)$ de \mathbb{R}^n :
 - i) Pode ser escrito como combinação linear dos vectores coordenados unitários

$$\vec{a} = (a_1, a_2, a_3, ..., a_n) = a_1 \vec{e}_1 + a_2 \vec{e}_2 + a_3 \vec{e}_3 + ... + a_n \vec{e}_n$$

- ii) Os escalares $a_1, a_2, a_3, ..., a_n$ da combinação linear são únicos;
- iii) O vector \vec{a} é gerado de forma única pelos vectores coordenados unitários;
- iv) Os vectores coordenados unitários *geram de forma única* qualquer vector $de \mathbb{R}^n$;
- v) O conjunto $\{\vec{e}_1, \vec{e}_2, \vec{e}_3, ..., \vec{e}_n\}$ é uma base para os vectores de \mathbb{R}^n ;
- vi) O conjunto $\{\vec{e}_1, \vec{e}_2, \vec{e}_3, ..., \vec{e}_n\}$ é uma base ortonormal para \mathbb{R}^n ;
- vii) O conjunto $\{\vec{e}_1,\vec{e}_2,\vec{e}_3,...,\vec{e}_n\}$ é a base canónica (ou natural) para \mathbb{R}^n .

• Relativamente ao vector de \mathbb{R}^n

$$\vec{a} = (a_1, a_2, a_3, \dots, a_n) = a_1 \vec{e}_1 + a_2 \vec{e}_2 + a_3 \vec{e}_3 + \dots + a_n \vec{e}_n$$

- i) O vector $\vec{a_1}\vec{e_1}$ é a componente na direcção de $\vec{e_1}$ do vector \vec{a} ;
- ii) O vector $a_2\vec{e}_2$ é a componente na direcção de \vec{e}_2 do vector \vec{a} ;
- iii) O vector $a_3\vec{e}_3$ é a componente na direcção de \vec{e}_3 do vector \vec{a} ;
- iv) O vector $a_n \vec{e}_n$ é a componente na direcção de \vec{e}_n do vector \vec{a} ;
- v) Os escalares $a_1, a_2, a_3, ..., a_n$ da *combinação linear* são as *coordenadas* do vector \vec{a} em relação à *base canónica* $\{\vec{e}_1, \vec{e}_2, \vec{e}_3, ..., \vec{e}_n\}$;
- vi) Os escalares $a_1, a_2, a_3, ..., a_n$ são as coordenadas naturais de \vec{a} .