Math 69: Logic Winter '23

Homework assigned February 06, 2023

Prof. Marcia Groszek Student: Amittai Siavava

Problem 1.

Let \mathcal{L} be a language for first-order logic, including the equality symbol (and any number of other symbols), and \mathcal{L}^* be \mathcal{L} without the equality symbol, but with an additional 2-place predicate symbol E. For any formula α of \mathcal{L} , define α^* to be the formula of \mathcal{L}^* obtained from α by replacing every occurrence of = with E. If Σ is a set of formulas of \mathcal{L} , define

$$\Sigma^* = \left\{ a^* \mid a \in \Sigma \right\}.$$

(a) This is a short answer problem. For which logical axiom groups is it true that α is a logical axiom in that group if and only if α^* is a logical axiom in that group?

(b) This is a short answer problem.

Which, if any, of the following are true?

- (i) If $\alpha_1, \alpha_2, \dots, \alpha_n$ is a deduction from Σ in the language \mathcal{L} then $\alpha_1^*, \alpha_2^*, \dots, \alpha_n^*$ is a deduction from Σ^* in the language \mathcal{L}^*
- (ii) If $\alpha_1^*, \alpha_2^*, \dots, \alpha_n^*$ is a deduction from Σ^* in the language \mathcal{L}^* then $\alpha_1, \alpha_2, \dots, \alpha_n$ is a deduction from Σ in the language \mathcal{L}
- (c) Show that if Σ is a consistent set of formulas in \mathcal{L} then Σ^* is a consistent set of formulas in \mathcal{L}^* .

You may use your answers in (a) and (b).

Hint: Recall that Σ is inconsistent if there is some α such that $\Sigma \vdash \alpha$ and $\Sigma \vdash \neg \alpha$.

(d) Show by example that it is possible for Σ to be inconsistent but Σ^* to be consistent.

Problem 2.

Math 69: Logic

Let \mathcal{L} have equality, a one-place function symbol f, and a two-place predicate symbol P.

Define \mathcal{L}^* as in problem 1.

Suppose $\mathfrak A$ is a structure for $\mathcal L^*$ with the property that if α is a logical axiom of $\mathcal L$ in group 5 or group 6 then $\mathfrak A^*$ satisfies α^* .

You showed in last-week's homework that in this case, $E^{\mathfrak{A}^*}$ defines an equivalence relation on $|\mathfrak{A}^*|$, and $f^{\mathfrak{A}^*}$ and $P^{\mathfrak{A}^*}$ induce a well-defined function and a well-defined relation on equivalence classes.

Let \mathfrak{B}^* be a structure for \mathcal{L}^* defined by setting

$$|\mathfrak{B}| = |\mathfrak{A}| / E^{\mathfrak{A}^*} = \{ [a] \mid a \in |\mathfrak{A}^*| \}$$

where [a] denotes the equivalence class of a under the equivalence relation $E^{\mathfrak{A}^*}$, and letting $f^{\mathfrak{B}^*}$, $P^{\mathfrak{B}^*}$, and $E^{\mathfrak{B}^*}$ be induced by $f^{\mathfrak{A}^*}$, $P^{\mathfrak{A}^*}$, and $E^{\mathfrak{A}^*}$, such that:

$$f^{\mathfrak{B}^*}([a]) = [f^{\mathfrak{A}^*}(a)]$$

$$\langle [a], [b] \rangle \in P^{\mathfrak{B}^*} \iff \langle a, b \rangle \in P^{\mathfrak{A}^*}$$

$$\langle [a], [b] \rangle \in E^{\mathfrak{B}^*} \iff \langle a, b \rangle \in E^{\mathfrak{A}^*}$$

The second and third condition can be rewritten (informally) as:

$$[a]P^{\mathfrak{B}^*}[b] \iff aP^{\mathfrak{A}^*}b$$
$$[a]E^{\mathfrak{B}^*}[b] \iff aE^{\mathfrak{A}^*}b$$

Define a function h from $|\mathfrak{A}^*|$ to $|\mathfrak{B}^*|$ by h(a) = [a].

- (a) Show that h is a surjective homomorphism from \mathfrak{A}^* onto \mathfrak{B}^* .
- (b) Show that if α is any formula of $\mathcal L$ and s is a variable assignment for $|\mathfrak A^*|$, then

$$\mathfrak{A}^* \vDash \alpha^*[s] \iff \equiv \alpha^*[h \circ s]$$

(c) Show that

$$E^{\mathfrak{B}^*} = \{([a], [b]) \in |B^*| \times |B^*| \mid [a] = [b]\}$$

Amittai, S Math 69: Logic

Problem 3.

With the same definitions as in problem (2), let $\mathfrak B$ be the *reduct* of $\mathfrak B^*$ to a structure for $\mathcal L$. This means that:

$$|\mathfrak{B}| = |\mathfrak{B}^*|$$

$$f^{\mathfrak{B}} = f^{\mathfrak{B}^*}$$

$$P^{\mathfrak{B}} = P^{\mathfrak{B}^*}$$

In other words, $\mathfrak B$ translates every parameter $\mathcal L$ in exactly the same way as $\mathfrak B^*$. It merely has no translation for E, since E is not a symbol of $\mathcal L$. (Of course, $\mathfrak B$ must translate = as equality).

Because \mathfrak{B}^* translated E as equality, we can conclude that for any wff α of \mathcal{L} and variable assignment \overline{s} for \mathfrak{B} , since α^* is α with E replaced by =,

$$\mathfrak{B} \vDash \alpha[\overline{s}] \iff \mathfrak{B}^* \vDash \alpha^*[\overline{s}].$$

This makes sense because \mathfrak{B} and \mathfrak{B}^* have the same universe, so \overline{s} is also a variable assignment for \mathfrak{B} .

By problem (2),

$$\mathfrak{B}^* \vDash \alpha [h \circ s] \iff \mathfrak{A}^* \vDash \alpha^* [s],$$

and therefore

$$\mathfrak{B} \vDash \alpha[h \circ s] \iff \mathfrak{A}^8 \vDash \alpha^*[s].$$

We conclude that if Σ is any set of formulas of \mathcal{L} including all the logical axioms in groups 5 and 6, and the set Σ^* (obtained by replacing = with E in every element of Sigma) is satisfiable by some structure \mathfrak{A}^* and variable assignment s, then the original set Σ is also satisfiable by the structure \mathfrak{B} and variable assignment s0.

Using problem (1) and the further context, show that if every consistent set of sentences in \mathcal{L}^* is satisfiable then every consistent set of sentences in \mathcal{L} is satisfiable.