Estadísticos Suficientes

- 1. Sea X una variable aleatoria tal que $X \sim n(0, \sigma^2)$. Es |X| un estadístico suficiente para σ^2 .
- 2. Sea X_1, X_2, \dots, X_n variables aleatorias independientes tales que:

$$f_{X_i}(x \mid \theta) = \begin{cases} \exp(i \theta - x) & ; x \ge i \theta \\ 0 & ; x < i \theta \end{cases}.$$

Sea $T = Min_i \left\{ \frac{X_i}{i} \right\}$. Muestre que T es un estadístico suficiente para θ .

3. Sea X_1, X_2, \dots, X_n una muestra aleatoria de una p.d.f. dada por:

$$f_X(x \mid \theta) = \frac{1}{\sigma} \exp \left[-\frac{(x - \mu)}{\sigma} \right] \quad ; \quad \mu < x < \infty , \quad \sigma > 0.$$

Encuentre un estimador bidimensional suficiente para $\theta = (\mu, \sigma)$.

- 4. Sea X_1, \dots, X_n una muestra aleatoria tal que X_i tiene una distribución uniforme discreta definida en $\{1, 2, \dots, \theta\}$. Pruebe que $T(\mathbf{X}) = \max_i X_i$ es un estadístico suficiente para θ .
- 5. Sea X_1, X_2, \dots, X_n una muestra aleatoria de una p.d.f. dada por:

$$f_X(x \mid \theta) = \exp(-(x - \theta))$$
 ; $x > \theta$.

Sea $Y = min(X_1, X_2, \dots, X_n)$. Muestre que Y es un estadístico suficiente para θ .

6. Sea X_1, X_2, \dots, X_n una muestra aleatoria de una población con distribución de probabilidad dada por:

$$p_X(x \mid \theta) = \theta^x (1 - \theta)$$
 ; $0 < \theta < 1$, $x = 0, 1, 2, \cdots$

Encuentre un estadístico suficiente para θ .

- 7. Sea X_1, X_2, \dots, X_n una muestra aleatoria de una población con p.d.f. $Beta(\alpha, 2)$. Halle un estadístico suficiente para α .
- 8. Sea $X_1,\,X_2,\,\cdots,\,X_n$ una muestra aleatoria de una p.d.f. dada por:

$$f_X(x \mid \boldsymbol{\theta}) = \frac{\alpha x^{\alpha - 1}}{\beta^{\alpha}} \quad ; \quad \alpha > 0 \quad , \quad 0 < x < \beta \; ,$$

con $\boldsymbol{\theta} = (\alpha, \beta)$. Halle un estadístico suficiente bidimensional para $\boldsymbol{\theta}$.

9. Sea $X_1,\,X_2,\,\cdots,\,X_n$ una muestra aleatoria de una p.d.f. dada por:

$$f_X(x \mid \theta) = \frac{\theta}{(1+x)^{\theta+1}}$$
 ; $x > 0 \ \theta > 0$.

Halle un estadístico suficiente para θ .