System Control Flow & Processes

CSE 351 Spring 2019

Instructor: Teaching Assistants:

Ruth Anderson Gavin Cai Jack Eggleston John Feltrup

Britt Henderson Richard Jiang Jack Skalitzky

Sophie Tian Connie Wang Sam Wolfson

Casey Xing Chin Yeoh

REFRESH TYPE	EXAMPLE SHORTCUTS	EFFECT
SOFT REFRESH	GMAIL REFRESH BUTTON	REQUESTS UPDATE WITHIN JAVASCRIPT
NORMAL REFRESH	F5, CTRL-R, #R	REFRESHES PAGE
HARD REFRESH	CTRL-F5, CTRL-仓, 光仓R	REFRESHES PAGE INCLUDING CACHED FILES
HARDER REFRESH	CTRL-☆-HYPER-ESC-R-F5	REMOTELY CYCLES POWER TO DATACENTER
HARDEST REFRESH	CTRL-H=10#-R-F5-F-5-ESC-O-Ø-Ø-≜-SCROLLIXK	INTERNET STARTS OVER FROM ARPANET

Administrivia

- Homework 4, due Wed (5/22) (Structs, Caches)
- Lab 4, due Fri (5/24)

Roadmap

C:

```
car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);
```

Java:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches

Processes

Virtual memory Memory allocation Java vs. C

Assembly language:

```
get_mpg:
    pushq %rbp
    movq %rsp, %rbp
    ...
    popq %rbp
    ret
```

Machine code:

Computer system:

Leading Up to Processes

- System Control Flow
 - Control flow
 - Exceptional control flow
 - Asynchronous exceptions (interrupts)
 - Synchronous exceptions (traps & faults)

Control Flow

- So far: we've seen how the flow of control changes as a single program executes
- Reality: multiple programs running concurrently
 - How does control flow across the many components of the system?
 - In particular: More programs running than CPUs
- Exceptional control flow is basic mechanism used for:
 - Transferring control between processes and OS
 - Handling I/O and virtual memory within the OS
 - Implementing multi-process apps like shells and web servers
 - Implementing concurrency

Control Flow

- Processors do only one thing:
 - From startup to shutdown, a CPU simply reads and executes (interprets) a sequence of instructions, one at a time
 - This sequence is the CPU's control flow (or flow of control)

Altering the Control Flow

- Up to now, two ways to change control flow:
 - Jumps (conditional and unconditional)
 - Call and return
 - Both react to changes in program state
- Processor also needs to react to changes in system state
 - Unix/Linux user hits "Ctrl-C" at the keyboard
 - User clicks on a different application's window on the screen
 - Data arrives from a disk or a network adapter
 - Instruction divides by zero
 - System timer expires
- Can jumps and procedure calls achieve this?
 - No the system needs mechanisms for "exceptional" control flow!

Java Digression

This is extra (non-testable) material

- Java has exceptions, but they're something different
 - <u>Examples</u>: NullPointerException, MyBadThingHappenedException, ...
 - throw statements
 - try/catch statements ("throw to youngest matching catch on the callstack, or exit-with-stack-trace if none")
- Java exceptions are for reacting to (unexpected) program state
 - Can be implemented with stack operations and conditional jumps
 - A mechanism for "many call-stack returns at once"
 - Requires additions to the calling convention, but we already have the CPU features we need
- System-state changes on previous slide are mostly of a different sort (asynchronous/external except for divide-byzero) and implemented very differently

Exceptional Control Flow

- Exists at all levels of a computer system
- Low level mechanisms
 - Exceptions
 - Change in processor's control flow in response to a system event (i.e. change in system state, user-generated interrupt)

L20: Processes

- Implemented using a combination of hardware and OS software
- Higher level mechanisms
 - Process context switch
 - Implemented by OS software and hardware timer
 - Signals
 - Implemented by OS software
 - We won't cover these see CSE451 and CSE/EE474

Exceptions

An exception is transfer of control to the operating system (OS) kernel in response to some event (i.e. change in processor state)

L20: Processes

- Kernel is the memory-resident part of the OS
- Examples: division by 0, page fault, I/O request completes, Ctrl-C

How does the system know where to jump to in the OS?

Exception Table

- A jump table for exceptions (also called *Interrupt Vector Table*)
 - Each type of event has a unique exception number k
 - k = index into exception table
 (a.k.a interrupt vector)

Exception Table (Excerpt)

Exception Number	Description	Exception Class
0	Divide error	Fault
13	General protection fault	Fault
14	Page fault	Fault
18	Machine check	Abort
32-255	OS-defined	Interrupt or trap

Leading Up to Processes

- System Control Flow
 - Control flow
 - Exceptional control flow
 - Asynchronous exceptions (interrupts)
 - Synchronous exceptions (traps & faults)

Asynchronous Exceptions (Interrupts)

- Caused by events external to the processor
 - Indicated by setting the processor's interrupt pin(s) (wire into CPU)
 - After interrupt handler runs, the handler returns to "next" instruction

Examples:

- I/O interrupts
 - Hitting Ctrl-C on the keyboard
 - Clicking a mouse button or tapping a touchscreen
 - Arrival of a packet from a network
 - Arrival of data from a disk
- Timer interrupt
 - Every few ms, an external timer chip triggers an interrupt
 - Used by the OS kernel to take back control from user programs

Synchronous Exceptions

Caused by events that occur as a result of executing an instruction:

Traps

- Intentional: transfer control to OS to perform some function
- Examples, system calls, breakpoint traps, special instructions
- · Returns control to "next" instruction ("current" instr did what it was supposed to)

Faults

- Unintentional but possibly recoverable
- <u>Examples</u>: page faults, segment protection faults, integer divide-by-zero exceptions
- Either re-executes faulting ("current") instruction or aborts
- Aborts Lif recoverable Lif not recoverable
 - Unintentional and unrecoverable
 - <u>Examples</u>: parity error, machine check (hardware failure detected)
 - Aborts current program

System Calls

- Each system call has a unique ID number
- Examples for Linux on x86-64:

Number	Name	<u>Description</u>
0	read	Read file
1	write	Write file
2	open	Open file
3	close	Close file
4	stat	Get info about file
57	fork	Create process
59	execve	Execute a program
60	_exit	Terminate process
62	kill	Send signal to process

Traps Example: Opening File

- User calls open(filename, options)
- Calls __open function, which invokes system call instruction syscall

```
00000000000e5d70 < open>:
                                   $0x2, %eax
e5d79:
        b8 02 00 00 00
                                              # open is syscall 2
                             mov
       0f 05
                                              # return value in %rax
e5d7e:
                              syscall
         48 3d 01 f0 ff ff
e5d80:
                                   $0xfffffffffffff001,%rax
                             cmp
e5dfa:
         C3
                             retq
```


- %rax contains syscall number
- Other arguments in %rdi, %rsi, %rdx, %r10, %r8, %r9
- Return value in %rax
- Negative value is an error corresponding to negative errno

Fault Example: Page Fault

- User writes to memory location
- That portion (page) of user's memory is currently on disk
 and not directly in RAM

```
int a[1000];
int main ()
{
    a[500] = 13;
}
```


- Page fault handler must load page into physical memory
- Returns to faulting instruction: mov is executed again!
 - Successful on second try

Fault Example: Invalid Memory Reference

```
int a[1000];
int main()
{
    a[5000] = 13;
}
```

```
80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360
```


- Page fault handler detects invalid address
- Sends SIGSEGV signal to user process
- User process exits with "segmentation fault"

Summary

- Exceptions
 - Events that require non-standard control flow
 - Generated externally (interrupts) or internally (traps and faults)
 - After an exception is handled, one of three things may happen:
 - Re-execute the current instruction
 - Resume execution with the next instruction
 - Abort the process that caused the exception

Processes

- Processes and context switching
- Creating new processes
 - fork(), exec*(), and wait()
- Zombies

What is a process?

It's an illusion!

Disk

Chrome.exe

What is a process?

- Another abstraction in our computer system
 - Provided by the OS
 OS uses a data structure to represent each process

 - Maintains the *interface* between the program and the underlying hardware (CPU + memory)
- What do processes have to do with exceptional control flow?
 - Exceptional control flow is the *mechanism* the OS uses to enable multiple processes to run on the same system
- What is the difference between:
 - A processor? A program? A process?

Processes

- * A process is an instance of a running program
 - One of the most profound ideas in computer science
 - Not the same as "program" or "processor"
- Process provides each program with two key abstractions:
 - Logical control flow
 - Each program seems to have exclusive use of the CPU
 - Provided by kernel mechanism called context switching
 - Private address space
 - Each program seems to have exclusive use of main memory
 - Provided by kernel mechanism called virtual memory

What is a process?

It's an illusion!

What is a process?

It's an illusion!

Multiprocessing: The Illusion

- Computer runs many processes simultaneously
 - Applications for one or more users
 - Web browsers, email clients, editors, ...
 - Background tasks
 - Monitoring network & I/O devices

Multiprocessing: The Reality

- Single processor executes multiple processes concurrently
 - Process executions interleaved, CPU runs one at a time
 - Address spaces managed by virtual memory system (later in course)
 - Execution context (register values, stack, ...) for other processes saved in memory

Multiprocessing

- Context switch
 - 1) Save current registers in memory

Multiprocessing

- Context switch
 - 1) Save current registers in memory
 - 2) Schedule next process for execution (05 decides)

Multiprocessing

Context switch

- 1) Save current registers in memory
- 2) Schedule next process for execution
- 3) Load saved registers and switch address space

Multiprocessing: The (Modern) Reality

- Lacif call execute a separate process
 - Kernel schedules processes to cores
 - Still constantly swapping processes

Concurrent Processes

- Each process is a logical control flow
- Two processes run concurrently (are concurrent) if their instruction executions (flows) overlap in time
 - Otherwise, they are sequential
- Example: (running on single core)
 - Concurrent: A & B, A & C
 - Sequential: B & C

User's View of Concurrency

Assume only one CPU

- Control flows for concurrent processes are physically disjoint in time
 - CPU only executes instructions for one process at a time
- However, the user can think of concurrent processes as executing at the same time, in parallel

Context Switching

Assume only one CPU

- Processes are managed by a shared chunk of OS code called the kernel
 - The kernel is not a separate process, but rather runs as part of a user process

Assume only one CPU

Context Switching

- Processes are managed by a shared chunk of OS code called the kernel
 - The kernel is not a separate process, but rather runs as part of a user process
- Context switch passes control flow from one process to another and is performed using kernel code

Processes

- Processes and context switching
- Creating new processes
 - fork(), exec*(), and wait()
- Zombies

Creating New Processes & Programs

Creating New Processes & Programs

- fork-exec model (Linux):
 - fork() creates a copy of the current process
 - exec () replaces the current process' code and address space with the code for a different program
 - Family: execy, execl, execye, execle, execyp, execlp
 - fork() and execve() are system calls

Lintentional, synchronous exceptions = traps

- Other system calls for process management:
 - getpid()
 - exit()
 - wait(), waitpid()

fork: Creating New Processes

* (pid_t) fork(void)

- Creates a new "child" process that is identical to the calling "parent" process, including all state (memory, registers, etc.)
- Returns 0 to the child process
- Returns child's process ID (PID) to the parent process
- Child is almost identical to parent:
 - Child gets an identical (but separate) copy of the parent's virtual address space
 - Child has a different PID than the parent

```
pid_t pid = fork(); parent gets child's illo
if (pid == 0) { // (h ) d
    printf("hello from child\n");
} else { // prent parent\n");
}
```

fork is unique (and often confusing) because it is called once but returns "twice"

Understanding fork

```
Process X (parent)

pid_t pid = fork();
if (pid == 0) {
    printf("hello from child\n");
} else {
    printf("hello from parent\n");
}
Process Y (child)

pid_t pid = fork();
if (pid == 0) {
    printf("hello from child\n");
} else {
    printf("hello from parent\n");
}
```

Understanding fork

Process X (parent)

```
pid_t pid = fork();
if (pid == 0) {
   printf("hello from child\n");
} else {
   printf("hello from parent\n");
}
```

pid_t pid = fork(); if (pid == 0) { printf("hello from child\n"); } else { printf("hello from parent\n"); }

Process Y (child)

```
pid_t pid = fork();
if (pid == 0) {
    printf("hello from child\n");
} else {
    printf("hello from parent\n");
}
```

```
pid_t pid = fork();
if (pid == 0) {
    printf("hello from child\n");
} else {
    printf("hello from parent\n");
```

Understanding fork

Process X (parent)

```
pid_t pid = fork();
if (pid == 0) {
   printf("hello from child\n");
} else {
   printf("hello from parent\n");
}
```

```
pid_t pid = fork();
if (pid == 0) {
    printf("hello from child\n");
} else {
    printf("hello from parent\n");
}
```

hello from parent

Process Y (child)

```
pid_t pid = fork();
if (pid == 0) {
    printf("hello from child\n");
} else {
    printf("hello from parent\n");
}
```

```
pid_t pid = fork();
if (pid == 0) {
   printf("hello from child\n");
} else {
   printf("hello from parent\n");
}
```

hello from child

Which one appears first?

Fork Example


```
child
X=12
```

- Both processes continue/start execution after fork
 - Child starts at instruction after the call to fork (storing into pid)
- Can't predict execution order of parent and child
- Both processes start with x=1
 - Subsequent changes to x are independent
- Shared open files: stdout is the same in both parent and child

Modeling fork with Process Graphs

- A process graph is a useful tool for capturing the partial ordering of statements in a concurrent program
 - Each vertex is the execution of a statement

X=0 Parent has...

- a means a happens before b
- Edges can be labeled with current value of variables
- printf vertices can be labeled with output
- Each graph begins with a vertex with no inedges
- Any topological sort of the graph corresponds to a feasible total ordering
 - Total ordering of vertices where all edges point from left to right

Fork Example: Possible Output

```
void fork1() {
   int x = 1;
   pid_t pid = fork();
   if (pid == 0)
        printf("Child has x = %d\n", ++x);
   else
        printf("Parent has x = %d\n", --x);
   printf("Bye from process %d with x = %d\n", getpid(), x);
}
```


Peer Instruction Question

- Are the following sequences of outputs possible?
 - Vote at http://pollev.com/rea

```
void nestedfork() {
          printf("L0\n");
          if (fork() == 0) {
              printf("L1\n");
              if (fork() == 0) {
                  printf("L2\n");
          printf("Bye\n");
10
```

```
Seq 1:
             Seq 2:
 T_1O
             LO ←Process 1
             Bye - Pracess 1
 Ь1
             L1 ← Process 2
 Bye
 Bye
             L2 - Process 3
 Bye
             Bye - Process 2/3
  L2
             Bye - Process 3/2
             No
 No
             Yes
 Yes
             No
 Yes
             Yes
We're lost...
```

Fork-Exec

Note: the return values of fork and exec* should be checked for errors

- fork-exec model:
 - fork() creates a copy of the current process
 - exec*() replaces the current process' code and address space with the code for a different program
 - Whole family of exec calls see exec(3) and execve(2)

Exec-ing a new program

execve Example

```
int main (int argc, char argv[])

get command-line
arguments into program
```

This is extra (non-testable) material

Execute "/usr/bin/ls -1 lab4" in child process using current environment:

```
myargv[argc]
                                   = NULL
                    myargv[2]
                                               → "lab4"
  (argc == 3)
                                               → "-]"
                   myarqv[1]
                   myarqv[0]
                                               → "/usr/bin/ls"
    myargv
                                         point to
                                         string literals
arrays of pointers
                    envp[n] = NULL
                                            "PWD=/homes/iws/jhsia"
                    envp[n-1]
  to strings
                    envp[0]
                                          → "USER=jhsia"
   environ
```

```
if ((pid = fork()) == 0) {    /* Child runs program */
    if (execve(myargv[0], myargv, environ) < 0) {
        printf("%s: Command not found.\n", myargv[0]);
        exit(1);
    }
}</pre>
```

Run the printenv command in a Linux shell to see your own environment variables

exit: Ending a process

- void exit(int status)
 - Explicitly exits a process
 - Status code: 0 is used for a normal exit, nonzero for abnormal exit
- The return statement from main() also ends a process in C
 - The return value is the status code

Summary

Processes

- At any given time, system has multiple active processes
- On a one-CPU system, only one can execute at a time, but each process appears to have total control of the processor
- OS periodically "context switches" between active processes
 - Implemented using exceptional control flow

Process management

- fork: one call, two returns
- execve: one call, usually no return
- wait or waitpid: synchronization
- exit: one call, no return

BONUS SLIDES

Detailed examples:

Consecutive forks

Example: Two consecutive forks

```
void fork2() {
    printf("L0\n");
    fork();
    printf("L1\n");
    fork();
    printf("Bye\n");
}
```


Feasible output:	Infeasible output:
LO	LO
L1	Bye
Bye	L1
Bye	Bye
L1	L1
Bye	Bye
Bye	Bye

Example: Three consecutive forks

Both parent and child can continue forking

```
void fork3() {
    printf("L0\n");
    fork();
    printf("L1\n");
    fork();
    printf("L2\n");
    fork();
    printf("Bye\n");
}
```

