Narrowband ISDN (N-ISDN)

- Integrated Services Digital Network (ISDN) was the first *fully digital* WAN technology that integrated voice and non-voice services
 - Caller ID from a database
 - Remote meter readings
 - Online alarms
 - Other data
- Primary application of circuit switching

N-ISDN Architecture (1/2)

- Digital bit pipe:
- Connecting the customer with the carrier
- Bidirectional flow of bits
- Network terminating device: NT1
- Placed at the customer's side (ISDN `modem'')
- Connects to the carrier's network
- An NT1 Can support up to 8 ISDN devices
- NT2: ISDN PBX (Private Branch eXchange)
- For supporting larger installations
- Provides a real-time interface for ISDN devices

N-ISDN Architecture (2/2)

- Bit pipe supports multiple channels arbitrarily interleaved using time division multiplexing:
- A: 4 KHz analog telephone channel
- B: 64 Kbps digital channel (voice or data)
- C: 8 or 16 Kbps digital channel
- D: 16 Kbps digital channel for out-of-band signaling
- Standardized combinations:
- Basic rate: 2B + 1D
- Primary rate: 23B + 1D (U.S) / 30B + 1D (Europe)
- Focused on 64 Kbps channels, therefore *narrowband*

N-ISDN Summary

- Massive attempt to replace analog telephone system with a digital one
- Most important shortcoming limited bandwidth
 - LANs: 10 Mbps to 100 Mbps
- Managed to stay alive longer that it deserved
 - Basic rate sold as Internet access method

Packet Switching

- Based on *message switching*:
- No physical circuit path is established between sender and receiver; *connectionless*
- Blocks of data are sent, stored in *switching devices* (routers) then forwarded one hop at a time
- No limit on block size
- Packet switching:
- Tight upper limit on block size
- Blocks buffered in memory
- Packets:
- Include a destination and sequence number
- Information about the data stream to which they belong
- Can follow different routes before being reassembled by the destination
- New paradigm, changed the world

Circuit vs Packet Switching

Item	Circuit Switching	Packet Switching
Dedicated path	Yes	No
Bandwidth	Fixed	Dynamic
Wasted bandwidth	Yes	No
Store-and-forward	No	Yes
Data follow same path	Yes	No
Call setup in advance	Required	Not required
Congestion	Setup	Every packet
Charging	Time/Distance	Time/Bytes

Broadband ISDN (B-ISDN)

- Based on ATM (Asynchronous Transfer Mode) technology
 - Packet switching, well yes, but not really
- Emulates circuit switching using packet switching
- Therefore, backwards compatible with N-ISDN
- Bandwidth increase by a factor of 2500
 - 156 Mbps
- High expectations, thought to be the ``universal telecommunications technology of the future''

B-ISDN Packets

• All information is carried in fixed size blocks

B-ISDN: Virtual Circuit Switching (1/3)

- No physical path is established, but a *virtual* one using packet switching
- Route is chosen from source to destination
- Intermediate routers (switches) make table entries so they can route incoming packets along the virtual circuit path
- When a packet arrives, a switch:
- Inspects the packet's header to find the virtual circuit it belongs to
- Looks up that virtual circuit in its table to find which communication line to send it on

B-ISDN: Virtual Circuit Switching (2/3)

• Connection-oriented service paradigm:

B-ISDN: Virtual Circuit Switching (3/3)

- Permanent Virtual Circuit (PVC) paths are setup ahead of time after an agreement between a customer and a carrier
- Table entries are hard-coded in switches
- Charged monthly
- May be idle most of time
- No setup time; important in some applications (credit card verifications)
- Switched Virtual Circuit (SVC) paths:
- Like telephone calls
- Path is setup dynamically when needed; torn down afterwards

Asynchronous Transfer Mode (ATM)

- The underlying transfer technology of B-ISDN
- Data are divided into fixed size blocks called *cells*
- 53 bytes: 5 header, 48 payload

Bits:

0	1	2	3	4	5	6	7
	FLOW CONTROL		VPI (FIRST 4 BITS)				
	VPI (LAST 4 BITS)		V	CI (FIRS	ST 4 BITS)		
	VCI (MIDDLE 8 BITS)						
	VCI (LAST 4 BITS)		PT		PRIO		
	CYCLIC REDUNDANCY CHECK						

ATM: Cell Header

- VPI: Virtual Path Identifier
- VCI: Virtual Channel Identifier
- Together identify the cell's destination
- PT: Payload type (voice or data)
- PRIO: Cell loss priority bit
 - Can a packet be discarded when the network becomes congested?
- CRC: Used to verify that the cell was not damaged in transit

ATM: VPI/VCI

- ATM connection: VC
- Actually stands for virtual channel
- Most people prefer the more descriptive term *virtual circuit*
- Each VC is assigned a 24-bit ID
- VPI: Specifies the path the VC follows through the network (8 bits)
- VCI: Specifies a single VC within the path (16 bits)
- The two fields are not interpreted
- Viewed as a single 24-bit binary value that gives the connection identifier

ATM: Label Switching

- ATM network formed using ATM switches
- Attachment points: ports
- An ATM switch:
- Changes the VPI/VCI in each cell it handles
- Forwarding table specifying how incoming cells are forwarded:
- Each entry corresponds to a possible VPI/VCI for a given port (over which the cell will be sent)
- Replacement VPI/VCI
- The switch rewrites the VPI/VCI in the cell header with the replacement and forwards the cell

ATM: Label Switching Example

old VPI/VCI	port	new VPI	/VCI
0			
1			
2			
3	2	4	
4			
5			
6			

old VPI/VCI	port	new VPI	/VCI
0			
1			
2			
3			
4	2	1	
5			
6			

old VPI/VCI	port	new VPI/VC
0		
1	2	6
2		
3		
4		
5		
6		

ATM: Network Setup

- ATM PVCs (provisioning):
- One pair of switches is considered at a time
- Data-specific VPI/VCI identifiers are not global
- A VPI/VCI that is not used is selected, a table entry is reserved
- On the next router the table is filled accordingly
- ATM SVCs:
- Connection request propagates and table entries are created
- If a router rejects the VC an error message is sent back
 - * Request and error messages are control traffic
 - * Denoted by global VPI/VCI values