10

33

By increasing the polyvinyl alcohol loading from 0% through 3% of total solids (0%-0.080% of solution), post develop residue can be significantly decreased or eliminated, as shown by scanning electron micrograph of the processed wafer substrate.

EXAMPLE 35

Improved Coat Quality with Hydrolyzed PVA

A further coating composition of the inventions was prepared by admixing the following components in the following amounts based on total composition weight: 0.053 weight % Poly(vinyl alcohol), Variable degree of hydrolysis

0.080 weight % Perfluorobutane sulfonic acid

0.027 weight % Dodecyl benzene sulfonic acid

0.080 weight % Surfynol-104

2.650 weight % Colloidal silica, <20 nm

2.000 weight % 1-Propanol

95.110 weight % Water

The above solution was spin coated onto an unprimed ²⁵ silicon wafer substrate. It was found by scanning electron micrograph analysis that Increasing the degree of hydrolysis of polyvinyl alcohol improved the applied coating quality, in particular a more uniform coating was provided.

EXAMPLE 36

Preparation of Surface Modified Silica

6 nm colloidal silica stabilized with ammonium hydroxide (pH of 7.3) in a 6.3 weight % solids solution in deionized water was surface modified with various water soluble, reactive silanes.

3-(trihydroxysilyl)-1-propane-sulfonic acid, as shown below, was used as the surface modifier.

Preparation:

100 grams of a 6.3 wt % colloidal silica solution was mixed with 3-(trihydroxysilyl)-1-propane-sulfonic acid in varying ratios. The resulting solutions were then heated to 30° C. for 60 hours. Upon cooling the resulting solutions were mixed with a 5 wt % poly(ethylene oxide) solution, 2000 Mn, in a 1:1 volume ratio to check for compatibility. The solutions were also coated on silicon substrates to check film properties.

34

EXAMPLE 37

Coating Composition Comprising Modified Silica

A further coating composition of the inventions was prepared by admixing the following components in the following amounts based on total composition weight:

0.013 weight % Poly(vinyl alcohol)

0.027 weight % Dodecyl benzene sulfonic acid

0.080 weight % Surfynol-104

2.650 weight % Colloidal silica, Sulfonic acid modified (23 wt % silane)

20 2.000 weight % 1-Propanol

95.230 weight % Water

The modified silica was prepared as described in Example 36 above. This composition solution was spin coated onto a dried DUV photoresist layer that had been applied to an HMDS primed silicon wafer substrate. The above stack was then imaged on an ASML/300 DUV stepper. Following exposure, the wafers were baked at 110° C./60 sec. and then developed for 45 seconds with 0.26N TMAH developer. The resulting 400 nm 1:1 line/space patterns were then screened under SEM (Scanning Electron Micrograph). Improved resolution of the patterned photoresist image was seen with use of this overcoating composition relative to a comparable processed photoresist that did not include use of the overcoating composition.

EXAMPLE 38

Preparation of Additional Surface Modified Silica

6 nm colloidal silica stabilized with ammonium hydroxide (pH of 7.3) as 6.3% solids solution in deionized water was surface modified with various water soluble, reactive silanes

Methoxy-poly(ethylene oxide)-tri(methoxy)silane, 525 Mw, as shown below, was used as the surface modifier.

Preparation:

100 grams of a 6.3 wt % colloidal silica solution was mixed with the above silane in various ratios. The resulting solutions were then heated to 40° C. for 60 hours. Upon cooling the resulting solutions were mixed with a 5 wt % poly(ethylene oxide) solution, 2000 Mn, in a 1:1 volume ratio to check for compatibility. The solutions were also coated on silicon substrates to check film properties.

Sample	Silica 6.3% solution grams	Silica solids grams	Silane solids grams	Silane wt %	SiOH:Silane molar ratio	Compati- bility with PEO	Redispers- ibility in Water
A	100.00	6.300	3.250	34.0%	1.5	Yes	Yes
В	100.00	6.300	2.600	29.2%	1.9	Yes	Yes
C	100.00	6.300	1.950	23.6%	2.5	Yes	No
D	100.00	6.300	1.300	17.1%	3.7	No	No
E	100.00	6.300	0.650	9.4%	7.5	No	No
F	100.00	6.300	0.325	4.9%	15.0	No	No
G	100.00	6.300	0.163	2.5%	29.9	No	No
H	100.00	6.300	0.000	0.0%	8	No	No