Package 'DLPCA'

October 12, 2022

October 12, 2022
Type Package
Title The Distributed Local PCA Algorithm
Version 0.0.5
Date 2022-08-07
Maintainer Guangbao Guo <ggb1111111110163.com></ggb1111111110163.com>
Description Algorithm to handle with optimal subset selection for distributed local principal component analysis. The philosophy of the package is described in Guo G. (2020) <doi:10.1080 02331888.2020.1823979="">.</doi:10.1080>
License MIT + file LICENSE
NeedsCompilation no
Author Guangbao Guo [aut, cre] (https://orcid.org/0000-0002-4115-6218), Guoqi Qian [aut], Yixiao Liu [aut], Haoyue Song [aut]
Depends R (>= $3.5.0$)
RoxygenNote 7.2.0
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
Repository CRAN
Date/Publication 2022-08-07 02:20:02 UTC
Application
gt2015

DLPCA

Index 11

Application Application

Description

Application data set

Usage

```
data("Application")
```

Format

```
The format is: int [1:48, 1:15] 6 9 7 5 6 7 9 9 9 4 ... - attr(*, "dimnames")=List of 2 ..$ : NULL ..$ : chr [1:15] "FL" "APP" "AA" "LA" ...
```

Details

It is the scoring of 15 indicators on 48 interviewees

Examples

```
data(Application)
## maybe str(Application) ; plot(Application) ...
```

DLPCA

Distributed local PCA

Description

Calculate the estimator on the DLPCA method

Usage

```
DLPCA(X = X, n = n, p = p, m = m, K = K, L = L)
```

Arguments

Χ	is the original data matrix
n	is the sample size
p	is the number of variables
m	is the number of eigenvalues
K	is the number of nodes
L	is the number of subgroups

gt2011 3

Value

time	is the time cost
V	is the right singular matrix
Vm	is the m-right singular matrix
Smean	is the mean covariance matrix
MMSER	is the mean MSE values of the robust covariance matrix sub-estimators
MMSES	is the mean MSE values of the covariance matrix sub-estimators
MMSEX	is the mean MSE values of the sub-estimators of the matrix X
MSER	is the min MSE values of the robust covariance matrix sub-estimators
MSES	is the min MSE values of the covariance matrix sub-estimators
MSEX	is the min MSE values of the sub-estimators of the matrix X
wMSER	is the location of the min MSE values of the robust covariance matrix sub-estimators
wMSES	is the location of the min MSE values of the covariance matrix sub-estimators
wMSEX	is the location of the \min MSE values of the sub-estimators of the matrix X
sigm	is the estimator of the covariance matrix of the matrix X

Examples

```
data(Application)
X=Application
n=nrow(Application);p=ncol(Application)
m=5;L=4;K=4
DLPCA_result=DLPCA(X=X,n=n,p=p,m=m,K=K,L=L)
```

gt2011	Gas-Turbine CO and NOx Emission Data	
--------	--------------------------------------	--

Description

Gas-Turbine CO and NOx Emission Data in 2011

Usage

```
data("gt2011")
```

gt2012

Format

A data frame with 7411 observations on the following 11 variables.

AT a numeric vector

AP a numeric vector

AH a numeric vector

AFDP a numeric vector

GTEP a numeric vector

TIT a numeric vector

TAT a numeric vector

TEY a numeric vector

CDP a numeric vector

CO a numeric vector

NOX a numeric vector

Details

The dataset contains 36733 instances of 11 sensor measures aggregated over one hour, from a gas turbine located in Turkey for the purpose of studying flue gas emissions, namely CO and NOx.

Source

Heysem Kaya, Department of Information and Computing Sciences, Utrecht University, 3584 CC, Utrecht, The Netherlands

Examples

data(gt2011)

gt2012

Gas-Turbine CO and NOx Emission Data

Description

Gas-Turbine CO and NOx Emission Data in 2012

Usage

data("gt2012")

gt2013 5

Format

A data frame with 7628 observations on the following 11 variables.

AT a numeric vector

AP a numeric vector

AH a numeric vector

AFDP a numeric vector

GTEP a numeric vector

TIT a numeric vector

TAT a numeric vector

TEY a numeric vector

CDP a numeric vector

CO a numeric vector

NOX a numeric vector

Details

The dataset contains 36733 instances of 11 sensor measures aggregated over one hour, from a gas turbine located in Turkey for the purpose of studying flue gas emissions, namely CO and NOx.

Source

Heysem Kaya, Department of Information and Computing Sciences, Utrecht University, 3584 CC, Utrecht, The Netherlands

Examples

data(gt2012)

gt2013

Gas-Turbine CO and NOx Emission Data

Description

Gas-Turbine CO and NOx Emission Data in 2013

Usage

```
data("gt2013")
```

gt2014

Format

A data frame with 7152 observations on the following 11 variables.

AT a numeric vector

AP a numeric vector

AH a numeric vector

AFDP a numeric vector

GTEP a numeric vector

TIT a numeric vector

TAT a numeric vector

TEY a numeric vector

CDP a numeric vector

CO a numeric vector

NOX a numeric vector

Details

The dataset contains 36733 instances of 11 sensor measures aggregated over one hour, from a gas turbine located in Turkey for the purpose of studying flue gas emissions, namely CO and NOx.

Source

Heysem Kaya, Department of Information and Computing Sciences, Utrecht University, 3584 CC, Utrecht, The Netherlands

Examples

data(gt2013)

gt2014

Gas-Turbine CO and NOx Emission Data

Description

Gas-Turbine CO and NOx Emission Data in 2014

Usage

data("gt2014")

gt2015 7

Format

A data frame with 7158 observations on the following 11 variables.

AT a numeric vector

AP a numeric vector

AH a numeric vector

AFDP a numeric vector

GTEP a numeric vector

TIT a numeric vector

TAT a numeric vector

TEY a numeric vector

CDP a numeric vector

CO a numeric vector

NOX a numeric vector

Details

The dataset contains 36733 instances of 11 sensor measures aggregated over one hour, from a gas turbine located in Turkey for the purpose of studying flue gas emissions, namely CO and NOx.

Source

Heysem Kaya, Department of Information and Computing Sciences, Utrecht University, 3584 CC, Utrecht, The Netherlands

Examples

data(gt2014)

gt2015

Gas-Turbine CO and NOx Emission Data

Description

Gas-Turbine CO and NOx Emission Data in 2015

Usage

```
data("gt2015")
```

8 Iris

Format

A data frame with 7384 observations on the following 11 variables.

AT a numeric vector

AP a numeric vector

AH a numeric vector

AFDP a numeric vector

GTEP a numeric vector

TIT a numeric vector

TAT a numeric vector

TEY a numeric vector

CDP a numeric vector

CO a numeric vector

NOX a numeric vector

Details

The dataset contains 36733 instances of 11 sensor measures aggregated over one hour, from a gas turbine located in Turkey for the purpose of studying flue gas emissions, namely CO and NOx.

Source

Heysem Kaya, Department of Information and Computing Sciences, Utrecht University, 3584 CC, Utrecht, The Netherlands

Examples

data(gt2015)

Iris

Iris

Description

Iris data set

Usage

data("Iris")

MSEpca 9

Format

A data frame with 150 observations on the following 5 variables.

```
Sepal.length a numeric vector
Sepal.width a numeric vector
Petal.length a numeric vector
Petal.width a numeric vector
Species a character vector
```

Details

It contains 150 samples with 5 variables

Source

Gaspar peninsula in Canada

Examples

```
data(Iris)
## maybe str(Iris) ; plot(Iris) ...
```

MSEpca

MSE on PCA

Description

Caculate the MSE value on PCA

Usage

```
MSEpca(V = V, X = X, n = n, p = p, m = m, K = K, L = L)
```

Arguments

V	is the right singular matrix
Χ	is the orignal data set
n	is the sample size
p	is the number of variables
m	is the number of eigenvalues
K	is the number of nodes
L	is the number of subgroups

Value

MSEpca the MSE value on PCA

10 MSEpca

Examples

data(Application)
X=Application
n=nrow(Application);p=ncol(Application)
m=5;L=4;K=4
DLPCA_result=DLPCA(X=X,n=n,p=p,m=m,K=K,L=L)
V=DLPCA_result\$V
MSEpca_result=MSEpca(V=V,X=X,n=n,p=p,m=m,K=K,L=L)
MSE_PCA=MSEpca_result\$MSEpca

Index

```
* datasets
      {\small \textit{Application}, \textcolor{red}{2}}
      gt2011, 3
      gt2012, 4
      gt2013, 5
      gt2014, 6
      gt2015, 7
      Iris, 8
{\small \textit{Application}, \textcolor{red}{2}}
DLPCA, 2
gt2011, 3
gt2012, 4
gt2013, 5
gt2014, 6
gt2015, 7
Iris,8
MSEpca, 9
```