מטלת מנחה (ממ"ן) 12

הקורס: 20474 – חשבון אינפיניטסימלי 1

חומר הלימוד למטלה: יחידה 2

מספר השאלות: 4 מספר השאלות: 4

סמסטר: ב2015 מועד אחרון להגשה: 6.4.2015

קיימות שתי חלופות להגשת מטלות:

- שליחת מטלות באמצעות מערכת המטלות המקוונת באתר הבית של הקורס
 - שליחת מטלות באמצעות הדואר או הגשה ישירה למנחה במפגשי ההנחיה

הסבר מפורט ב"נוהל הגשת מטלות מנחה"

שאלה 1 (30 נקודות)

אטענה אף אף או ומבלי ומבלי בלשון arepsilon-N א.

.
$$\lim_{n\to\infty}\frac{n^2}{n^2+1}=L$$
 : 2 אחרת מיחידה

בעמוד 92: "הגדרת הגבול בלשון arepsilon - N היא להגדרה שמופיעה בעמוד

,
$$N$$
אם מספר קיים $\varepsilon>0$ לכל ווה $\displaystyle \lim_{n\to\infty}a_n=L$

.
$$\left|a_{n}-L\right| מתקיים $n>N$ כך שלכל$$

ב. M-N (הגדרת השאיפה ל- ∞ בלשון M-N (הגדרת המגדרת השאיפה ל-

$$\lim_{n\to\infty} \frac{n^2 - n}{n+2} = \infty$$

. מספר ממשי בהה ויהי L מספר ממשי ג.

.
$$\lim_{n\to\infty}a_n\neq\infty$$
 : $M-N$ נסחו בלשון

 $1.\infty$ -לומר, עליכם לנסח בלשון אינו את הטענה את את את בלשון שווה ל-M-N

.
$$\lim_{n\to\infty}(n\sqrt{2}+(-1)^n\left\lfloor n\sqrt{2}\right\rfloor)\neq\infty$$
 -שירות בהסתמך על סעיף גי ש- הוכיחו ישירות בהסתמך על האיף גי

שאלה 2 (20 נקודות)

חשבו את הגבולות שלהלן אם הם קיימים. בכל מקרה שהגבול לא קיים, גם לא במובן הרחב, הוכיחו זאת.

$$\lim_{n \to \infty} \left(\frac{n}{n+1} \sum_{k=1}^{n} \frac{k}{k+1} \right) \qquad .7 \qquad \qquad \lim_{n \to \infty} \frac{n^7 - 2n^4 - 1}{n^4 - 3n^6 + 7} \qquad .3$$

שאלה 3 (20 נקודות)

. $\lim_{n\to\infty}(a_{n+1}-a_n)=0$ -שירה כך שר סדרה (a_n) תהי

- : אז מתקיים אם קיים או , $\left|a_n\right| \geq c$ מתקיים מתקיים כc>0 אז מתקיים או הוכיחו איברי a_n חיוביים או כמעט כל איברי a_n שליליים.
 - ,nלכל $\left|a_{n}\right|>0$ ב- הראו (באמצעות דוגמא) אינה מסתפקים בדרישה אי טענת סעיף אי אינה נכונה.
 - $,\left|a_{n}\right|\geq n$ מתקיים nלכל הוכיח אי כדי להוכיח אי היעזרו בסעיף אי מתכנסת (a_{n} אז הרחב.

שאלה 4 (30 נקודות)

. $\lim_{n \to \infty} (a_n b_n) = 0$ יהיו כך שמתקיים (b_n) -ו (a_n) יהיו

הוכיחו או הפריכו כל אחת מהטענות:

$$\lim_{n\to\infty}b_n=0$$
 או $\lim_{n\to\infty}a_n=0$.

$$a_n < 1$$
 ב. אם $a_n < \frac{1}{2}$ אז קיים $n > 0$ כך ש- $\lim_{n \to \infty} b_n = 1$ ב.

.
$$\lim_{n\to\infty}a_n=0$$
 אם , $\lim_{n\to\infty}b_n=1$ ג.

.
$$\lim_{n \to \infty} a_n \neq \infty$$
 אז חיוביים, אז (b_n) ד. ד.

.
$$\lim_{n \to \infty} a_n = 0$$
 אם כמעט כל איברי $\left(b_n\right)$ חיוביים, אם .ה

.
$$\lim_{n \to \infty} a_n = 0$$
 אז n , אז כמעט לכל $b_n \geq c$ ש- כך ש $c > 0$ ו.

8