Beschrijving Algoritmes

Roel Matthysen - September 25, 2012

The concept of optimal coefficients was introduced in [1], and their significance for the approximate computation of multidimensional integrals of arbitrary multiplicity s was indicated. Various algorithms for computing s-dimensional optimal coefficients modulo p where p is he number of nodes of the quadrature formula were obtained in [1]-[3]. The realization of these algorithms required the execution of $O(p^2)$ or $O(p^{1+1/3})$ elementary arithmetic operations.

In this note we present more economical algorithms for $p=2^n$ whose realization requires the execution of O(p) or $O(p \ln p)$ operations.

Let n and s be positive integers, and $x_1, ..., x_s$ odd integers. Summations over odd integers m is indicated by \sum_{m}^{*} . For v = 1, ..., n we define the function $h_v(x_1, x_2, ..., x_s)$ by

$$h_v(x_1, x_2, ..., x_s) = \frac{1}{2^v} \sum_{m=1}^{2^v} {}^* \left(2n - 2v + \frac{1}{||mx_1/2^v||} \right) \cdots \left(2n - 2v + \frac{1}{||mx_s/2^v||} \right)$$
(1)

where $||mx_j/2^v||$ is the distance from $mx_j/2^v$ to the nearest integer.

Take $a_{11} = ... = a_{s1} = 1$. Suppose that $v \ge 2$ and that the odd integers $a_{1v-1}, ..., a_{sv-1}$ are known for $2 \le v \le n$ we define $a_{1v}, ..., a_{sv}$ by the equalities

$$a_{1v} = a_{1v-1} + 2^{v-1}z'_1, ..., a_{sv} = a_{sv-1} + 2^{v-1}z'_s$$
 (2)

where $z'_1, ... z'_s$ are the variables at which the function

$$h_v(a_{1v-1} + 2^{v-1}z_1', ..., a_{sv-1} + 2^{v-1}z_s')$$
 (3)

attains a minimum as the variables $z_1, ..., z_s$ run through the values 0 and 1 independently.

THEOREM 1. For an arbitrary positive integer n the integer $a_1, ..., a_s$ defined by the equalities $a_1 = a_{1n}, ..., a_s = a_{sn}$ are optimal coeffecients modulo $p = 2^n$.

Proof. For v = 1, ..., n we introduce the notation

$$h_v = \tag{4}$$