CSE 150A/250A

AI: Probabilistic Methods Spring 2025 - Practice Final Exam

Instructor: Trevor Bonjour

34 Points

Thursday, June 5th, 2025

Instructions

- Do not turn to any other page of this exam until instructed to begin.
- Once instructed to begin, write your name (in all caps) and PID on all odd pages.
- You may use both sides of a one 8.5"x11" (or A4-sized) sheet of handwritten notes during the exam. Write your name and PID on the sheet of notes. No other notes or resources are allowed.
- There are a total of **5** questions. For any multiple choice or true/false question, please **fill in the bubble completely** to mark your answer.
- You have **75 minutes** to complete the exam.
- The pages at the end of the exam may be used as a scratch paper. No other scratch paper is allowed.
- In the name slot below, write your name in **ALL CAPITAL LETTERS** as it appears on Gradescope.

Declaration:

I understand and will abide by the above instructions.

Signature:			
Name (ALL CAPS):			
DID.			

1 T/F [10 points]

For each statement, select either true or false. Please fill in the bubble completely to mark your answer.

			\sim
1.	Value Iteration algorithm converges in a finite number of steps.	(T)	(\mathbf{F})
2.	A Markov decision process (MDP) is defined by a state space, action space probabilities, and reward function.	, trans	ition F
3.	In most reinforcement learning problems, we should maximize the best-case the expected return.	return	over F
4.	The CPTs of a belief network grows linearly when applying node clustering.	\bigcirc T	F
5.	All belief networks are polytrees.	\bigcirc T	F
6.	The run time of the EM algorithm on Hidden Markov Models is quadratic watto the number of states.	ith res	spect F
7.	$P(O_{t+1}=k S_t=i)$ is a parameter of hidden Markov models (HMMs) a represented by the emission matrix.	and ca	n be
8.	In an n -gram model, we should always try to maximize n to model long-randencies between words.	nge de	pen-
9.	Markov Chain Monte Carlo (MCMC) is generally faster than Likelihood Wei Rejection Sampling.	ghting	and F
10.	The objective function optimized by the EM algorithm can also be optimized ent descent algorithm which will find the global optimal solution, whereas E solution more quickly but may return only a locally optimal solution.	, .	

2 Viterbi Algorithm (3 pts)

The Viterbi algorithm finds the most probable sequence of hidden states $S_{1:T}$, given a sequence of observations $O_{1:T}$. Throughout this question, you may assume there are no ties. Recall that for the HMM structure, the Viterbi algorithm performs the following dynamic programming computations:

For the HMM structure above, which of the following probabilities are maximized by the sequence of states returned by the Viterbi algorithm? Mark **all** the correct options.

- A. $P(S_{1:T})$
- B. $P(S_T \mid O_T)$
- C. $P(S_{1:T} \mid O_{1:T})$
- D. $P(S_{1:T}, O_{1:T})$
- E. $P(S_1)P(O_1 \mid S_1) \prod_{t=2}^{T} P(O_t \mid S_t)P(S_t \mid S_{t-1})$
- F. $P(S_1) \prod_{t=2}^{T} P(S_t \mid S_{t-1})$
- G. None of the above

3 D-Separation [7 points]

Answer the following questions referring to the Bayesian network shown below:

- 1. **(3 points)** Assume that the shaded nodes, E1 and E2, are observed evidence. Which of the following statements must be true?
 - A Nodes A and F would be conditionally independent if D was also observed

 - \bigcirc P(F|D,G) = P(F)
 - D Nodes B and G are conditionally independent
- 2. (1 point) Is the graph above a Polytree? If not, which 2 nodes could we merge to make the graph a Polytree?

3. (3 points) Assume that all variables only take on the values of 1 or 0. Further, for this question, assume that $E_{-}2$ is **NOT** observed. We know that:

- (a) $P(G=1) = \frac{3}{5}$
- (b) $P(F=1) = \frac{1}{2}$
- (c) $P(A=1) = \frac{1}{2}$
- (d) $P(D=0|A=1, F=1) = \frac{1}{3}$
- (e) $P(D=1|A=0, F=1) = \frac{2}{3}$
- (f) P(D=0|A=1, F=0) = 0
- (g) P(D=1|A=0, F=0)=1

What is the probability that D = 0? You may leave your answer as a fraction.

4

4 Expectation Maximization [8 points]

- 1. (1 point) During the Expectation (E) step of the EM algorithm applied to a Bayesian network, the algorithm:
 - A Maximizes the expected complete-data log-likelihood with respect to the parameters.
 - B Updates the parameters to maximize the likelihood given the observed data.
 - © Estimates the expected values of hidden variables using current parameter estimates.
 - D Introduces regularization to prevent overfitting.
- 2. (1 point) Which of the following is a common criterion for convergence of the EM algorithm in Bayesian networks?
 - A The algorithm stops after a fixed number of iterations regardless of convergence.
 - B The change in parameter estimates between iterations falls below a predefined threshold.
 - C All missing data have been accurately predicted.
 - D The likelihood of the observed data decreases between iterations.
- 3. (6 points) Consider the belief network shown in Figure 1, with observed nodes B and C and hidden node A. For each of the following questions, please select **only one** answer. Fill in the bubble completely to mark your answer. The formula should be in its simplest form, expressing them in terms of the posterior probabilities $P(a \mid b, c)$, as well as the functions $I(b, b_t)$ and $I(c, c_t)$.

Figure 1: Belief network with observed nodes B and C, and hidden node A.

(a) Updating $P_{\text{new}}(A = a)$ Which of the following is the correct EM update equation for $P_{\text{new}}(A = a)$?

(A)
$$P_{\text{new}}(A = a) = \frac{\sum_{t} P(a \mid b_{t}, c_{t})}{T}$$

$$P_{\text{new}}(A = a) = \frac{\sum_{t} P(a \mid b_t, c_t) \cdot I(b_t, b_t) \cdot I(c_t, c_t)}{T}$$

(C)

$$P_{\text{new}}(A = a) = \frac{\sum_{t} I(a, a_t)}{T}$$

(D)

$$P_{\text{new}}(A = a) = \frac{\sum_{t} P(a \mid b_t, c_t)}{\sum_{t} P(b_t, c_t)}$$

(b) Updating $P_{\text{new}}(B = b \mid A = a)$

Which of the following is the correct EM update equation for $P_{\text{new}}(B = b \mid A = a)$?

(A)

$$P_{\text{new}}(B = b \mid A = a) = \frac{\sum_{t} P(a \mid b_{t}, c_{t}) \cdot I(b, b_{t})}{\sum_{t} P(a \mid b_{t}, c_{t})}$$

(B)

$$P_{\text{new}}(B = b \mid A = a) = \frac{\sum_{t} I(a, a_{t}) \cdot I(b, b_{t})}{\sum_{t} I(a, a_{t})}$$

(C)

$$P_{\text{new}}(B = b \mid A = a) = \frac{\sum_{t} P(b \mid a_{t}) \cdot I(b, b_{t})}{\sum_{t} P(a \mid b_{t}, c_{t})}$$

(D)

$$P_{\text{new}}(B = b \mid A = a) = \frac{\sum_{t} P(a \mid b_{t}, c_{t}) \cdot I(b, b_{t}) \cdot I(c, c_{t})}{\sum_{t} P(a \mid b_{t}, c_{t})}$$

(c) Updating $P_{\text{new}}(C = c \mid A = a, B = b)$

Which of the following is the correct EM update equation for $P_{\text{new}}(C = c \mid A = a, B = b)$?

 $\widehat{\mathbf{A}}$

$$P_{\text{new}}(C = c \mid A = a, B = b) = \frac{\sum_{t} P(a \mid b_{t}, c_{t}) \cdot I(b, b_{t}) \cdot I(c, c_{t})}{\sum_{t} P(a \mid b_{t}, c_{t}) \cdot I(b, b_{t})}$$

(B)

$$P_{\text{new}}(C = c \mid A = a, B = b) = \frac{\sum_{t} I(a, a_{t}) \cdot I(b, b_{t}) \cdot I(c, c_{t})}{\sum_{t} I(a, a_{t}) \cdot I(b, b_{t})}$$

(C)

$$P_{\text{new}}(C = c \mid A = a, B = b) = \frac{\sum_{t} P(a \mid b_{t}, c_{t}) \cdot I(c, c_{t})}{\sum_{t} P(a \mid b_{t}, c_{t})}$$

(D)

$$P_{\text{new}}(C = c \mid A = a, B = b) = \frac{\sum_{t} P(a \mid b_{t}, c_{t}) \cdot I(b, b_{t})}{\sum_{t} P(a \mid b_{t}, c_{t})}$$

5 HMMs [6 points]

A casino alternates between using a fair dice $(S_t = 1)$ and a loaded dice $(S_t = 2)$. The probabilities which will be used for calculation in this question are defined as below:

• When using the **fair dice** $(S_t = 1)$, all faces have an equal probability of showing up:

$$P(O_t = k | S_t = 1) = \frac{1}{6}, \quad k \in \{1, 2, 3, 4, 5, 6\}.$$

• When using the **loaded dice** ($S_t = 2$), the face 6 is more likely, we have:

$$P(O_t = k | S_t = 2) = \begin{cases} 0.5 & \text{if } k = 6, \\ 0.1 & \text{if } k \in \{1, 2, 3, 4, 5\}. \end{cases}$$

- The probability of switching between dice:
 - If the current dice is fair $(S_t = 1)$:

$$P(S_{t+1} = 1 | S_t = 1) = 0.8, \quad P(S_{t+1} = 2 | S_t = 1) = 0.2.$$

- If the current dice is loaded $(S_t = 2)$:

$$P(S_{t+1} = 1 | S_t = 2) = 0.1, \quad P(S_{t+1} = 2 | S_t = 2) = 0.9.$$

• The initial probabilities:

$$P(S_1 = 1) = 0.9, \quad P(S_1 = 2) = 0.1.$$

Given the observation sequence O = [1, 6, 5], please solve the following problems.

1. (2 points) Calculate the likelihood that the first roll of die observed is a 1.

2.	(3 points) Recall that in the forward algorithm, we use a matrix to keep track of all intermediary values α_{it} , where $\alpha_{it} = P(o_1, o_2, \cdots, o_t, S_t = i)$. How will you calculate the value of α_{12} given the second observation is a 6? Assume you are also given α_{11} and α_{21} . You may leave your answer as a formula (using the terms given in the question above), no need for any calculations.
3.	(1 point) Once you have computed the whole matrix of α_{it} for the forward algorithm, how will you extract the probability of the observation sequence O?