Comparing fit_gls.m and fit_fgls.m

Objectives

- 1. Compare the runtime of fit_gls and fit_fgls.
- 2. Evaluate the estimation accuracy of the coefficients for different:
 - Number of observations (T).
 - AR model orders (p).
 - Variance settings (σ^2) .

fit_fgls

The fit_fgls function leverages MATLAB's built-in fgls method to perform GLS estimation with AR(p) innovations.

Simulation Settings

Data Generation

The response variable y is generated using the following model:

$$y_t = \mathbf{X}_t \boldsymbol{\beta} + \epsilon_t$$

where:

- X: Design matrix $(T \times 3)$ including an intercept and two predictors.
- $\beta = [2, 3, -1]^T$: True coefficients.
- ϵ_t : Follows an AR(p) process:

$$\epsilon_t = \phi_1 \epsilon_{t-1} + \phi_2 \epsilon_{t-2} + \dots + \phi_p \epsilon_{t-p} + \nu_t$$

with $\nu_t \sim N(0, \sigma^2)$ and $\phi_i = 0.5$.

Simulation Parameters

- Number of Observations (T): 300, 500, 1000.
- AR Orders (p): 1, 2, 3.
- Variance (σ^2) : 1, 2, 5.

Results

NumObs	AR_Order	Variance	Time_GLS	Time_FGLS	Error_GLS	Error_FGLS
3000	1	0.5	4.8653	0.61412	0.010509	0.010546
3000	1	1	4.8735	0.34319	0.014861	0.014915
3000	1	2	5.0796	0.55947	0.021017	0.021092
3000	1	5	5.1589	0.38876	0.033231	0.03335
3000	2	0.5	6.205	0.62165	0.045429	0.055118
3000	2	1	6.1852	0.40217	0.064246	0.077948
3000	2	2	6.2933	0.36049	0.090858	0.11024
3000	2	5	8.2	0.40436	0.14314	0.1743
3000	3	0.5	7.2615	0.44126	0.046341	0.055176
3000	3	1	7.2624	0.44037	0.065536	0.078031
3000	3	2	7.4196	0.44359	0.092682	0.11035
3000	3	5	9.9644	0.43784	0.14619	0.17448
4000	1	0.5	13.578	0.60796	0.0028872	0.0028262
4000	1	1	13.358	0.61421	0.0040831	0.0039968
4000	1	2	13.769	0.69032	0.0057744	0.0056523
4000	1	5	13.55	0.6424	0.0091301	0.0089372
4000	2	0.5	15.835	0.781	0.021428	0.013634
4000	2	1	15.585	0.7364	0.030304	0.019281
4000	2	2	15.597	0.71291	0.042857	0.027268
4000	2	5	15.599	0.74211	0.067762	0.043114
4000	3	0.5	17.371	0.72368	0.020237	0.013679
4000	3	1	17.602	0.7362	0.028619	0.019345
4000	3	2	18.494	0.74799	0.040473	0.027358
4000	3	5	17.939	0.7187	0.063994	0.043257
5000	1	0.5	28.008	1.272	0.0063323	0.0063574
5000	1	1	28.184	1.2951	0.0089552	0.0089907
5000	1	2	33.098	1.2773	0.012665	0.012715
5000	1	5	31.907	1.2956	0.020024	0.020104
5000	2	0.5	33.87	1.2676	0.033262	0.034415
5000	2	1	34.813	1.2898	0.047039	0.04867
5000	2	2	32.441	1.2685	0.066523	0.06883
5000	2	5	33.045	1.2887	0.10518	0.10883
5000	3	0.5	37.036	1.3511	0.034045	0.034343
5000	3	1	37.339	1.2402	0.048147	0.048568
5000	3	2	36.871	1.4232	0.068091	0.068686
5000	3	5	47.189	1.7243	0.10766	0.1086

Runtime Results Table

${\bf Runtime\ Comparison\ Plot}$

Discussion

• Runtime:

- fit_fgls is consistently faster than fit_gls, particularly for larger datasets and higher AR orders.
- The performance gap increases as the dataset size grows.

• Estimation Accuracy:

- Both methods perform similarly in terms of estimation accuracy.
- fit_fgls shows slightly lower errors, particularly for larger datasets and higher AR orders.

Conclusion

This simulation study demonstrates that: 1. fit_fgls is more efficient in terms of runtime, particularly for larger datasets. 2. Both methods provide accurate parameter estimates, but fit_fgls is slightly more reliable for complex settings.