Numerical Simulation of Compressible Flows with Immersed Boundaries Using Discontinuous Galerkin Methods

Bachelor thesis by Simone Stange Prof. Dr.-Ing. habil. Martin Oberlack Betreuer: Dr.-Ing Björn Müller

Outline

- Introduction and Fundamentals
 - Introduction
 - The Discontinuous Galerkin Method
 - The Immersed Boundary Method
- Verification of BoSSS for Inviscid Flows
 - Robustness
 - Convergence
- 3 Evaluation of BoSSS for Viscid Flows
 - Theory
 - Simulations
- 4 Conclusion and Outlook

- Introduction and Fundamentals
 - Introduction
 - The Discontinuous Galerkin Method
 - The Immersed Boundary Method
- Verification of BoSSS for Inviscid Flows
 - Robustness
 - Convergence
- 3 Evaluation of BoSSS for Viscid Flows
 - Theory
 - Simulations
- 4 Conclusion and Outlook

Introduction

kurzes blabla

Flow Properties

- Compressible flow
- Ideal gas
 - ► Heat capacity ratio $\gamma = \frac{c_p}{c_V} = 1.4$
- Newtonian fluid

Stress tensor
$$\tau_{ij} = \mu \left[\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right]$$

- Mach number Ma = $\frac{v_{\infty}}{a_{\infty}}$ = 0.2
- ${\bf P} \ \, {\rm Reynolds \; number \; Re} = \frac{\rho_{\infty} \, V_{\infty} L}{\mu_{\infty}} \propto \frac{{\rm inertia \; forces}}{{\rm viscous \; forces}}$
- Prandtl number $\Pr = \frac{\mu_{\infty} c_p}{k_{\infty}} \propto \frac{\text{viscous diffusion rate}}{\text{thermal diffusion rate}}$

Non-dimensional 2D Compressible Navier-**Stokes Equations**

- 2D
- Non-dimensional conserved flow variables: density ρ , momentum ρu , ρv , energy ρE

$$\frac{\partial U}{\partial t} + \left(\frac{\partial F_c^x(U)}{\partial x} + \frac{\partial F_c^y(U)}{\partial y} \right) - \left(\frac{\partial F_v^x(U, \nabla U)}{\partial x} + \frac{\partial F_v^y(U, \nabla U)}{\partial y} \right) = 0$$

$$U = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho E \end{pmatrix} \quad F_c^x = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ u(\rho E + p) \end{pmatrix} \quad F_c^y = \begin{pmatrix} \rho v \\ \rho uv \\ \rho v^2 + p \\ v(\rho E + p) \end{pmatrix} \qquad \qquad \textbf{Temporal derivative}$$

$$\blacktriangleright \text{ Convective fluxes}$$

$$\blacktriangleright \text{ Viscous fluxes}$$

$$F_{v}^{x} = \frac{1}{\mathsf{Re}} \left(\begin{array}{c} 0 \\ \tau_{xx} \\ \tau_{xy} \\ \tau_{xx}u + \tau_{xy}v + \frac{\gamma}{\mathsf{Pr}(\gamma - 1)}\kappa \frac{\partial T}{\partial x} \end{array} \right) \quad F_{v}^{y} = \frac{1}{\mathsf{Re}} \left(\begin{array}{c} 0 \\ \tau_{xy} \\ \tau_{yy} \\ \tau_{xy}u + \tau_{yy}v + \frac{\gamma}{\mathsf{Pr}(\gamma - 1)}\kappa \frac{\partial T}{\partial y} \end{array} \right)$$

The Discontinuous Discretisation

Galerkin

Space

(a) First order FEM

(b) Zeroth order DG (FVM)

(c) First order DG

Abbildung: Comparison of FEM, FVM and DG

DG space discretisation Vorgehen, Bildchen, fluxes

The Immersed Boundary Method

Abbildung: Cut cell with physical (red) and void region (white) [4]

regions mit Bild, Aufteilung Integrale mass matrix rk time discretisation formel cell agglomeration

Cell Agglomeration

(a) Initial mesh partitioning

(b) Cell agglomeration with small agglomeration threshold

- 1 Introduction and Fundamentals
 - Introduction
 - The Discontinuous Galerkin Method
 - The Immersed Boundary Method
- Verification of BoSSS for Inviscid Flows
 - Robustness
 - Convergence
- 3 Evaluation of BoSSS for Viscid Flows
 - Theory
 - Simulations
- 4 Conclusion and Outlook

Problem Specification

- Supersonic inlet
- > Adiabatic slip wall
- ► Flow properties:
 - Symmetrical flow
 - Isentropic inviscid flow with

$$\frac{p}{e^{\gamma}} = \text{const}$$

$$\rightarrow$$
 Entropy $s = 0$

▶
$$0 \le y \le 40$$

$$-40 < x < 40$$

- ► Cylinder with radius r = 1 at (0, 0)
 - → Level set $\varphi = x^2 + y^2 1$ set as adiabatic slip wall

15. April 2016 | fdv TUD | Simone Stange | 11

Robustness Study - Preparation

shift, degree 1 bis 3, agglo 0.5, 64 mal 64 cells Parameter, was wird getan

Robustness Study – Evaluation

Position of Centre Point of the Cylinder

Abbildung: Convergence Plot

Ergebnisse, Plot, komischer punkt wird angeschaut

Comvergence Study – Preparation

Parameter, was wird getan

Convergence Study – Evaluation

Abbildung: Convergence Plot

Ergebnisse, Plot

- 1 Introduction and Fundamentals
 - Introduction
 - The Discontinuous Galerkin Method
 - The Immersed Boundary Method
- 2 Verification of BoSSS for Inviscid Flows
 - Robustness
 - Convergence
- 3 Evaluation of BoSSS for Viscid Flows
 - Theory
 - Simulations
- 4 Conclusion and Outlook

Theory - Differentiation into Flow Regimes

- ▶ 40 50 < Re < 190: laminar vortex shedding,
- ► 190 < Re < 260: 3D wake-transition regime,

Abbildung: Base Suction Coefficient over Reynolds Numbers [4]

Theory - Laminar Steady Regime

laminar steady regime Bild

Abbildung: Recirculation Area [4]

Theory - Laminar Vortex Shedding

Bild

UNSTEADY WAKE

Abbildung: Kármán Vortex Street [4]

Karman vortex street frequency /strouhal

Simulation Properties

simulation parameter gitter cD, CL, W*, St

Simulation at Re = 20 I

Re = 20	Source	2D/3D	W*	C_D
Numerical – Incompressible	Dennis and Chang	2D	0.94	2.05
	Fornberg	2D	0.91	2.00
	Linnick and Fasel	2D	0.93	2.06
Experimental	Coutanceau and Bouard	-	0.93	-
	Tritton	-	-	2.09
Numerical – Compressible	Brehm, Hader and Fasel (Ma = 0.1)	3D	0.96	2.02
	Ayers	2D	0.975	2.06
	Present Results:	2D	0.928	2.136

Simulation at Re = 20 II

- hier
- kommt
- beschreibung hin

Simulation at Re = 40 I

Re = 40	Source	2D/3D	W*	C_D
Numerical – Incompressible	Dennis and Chang	2D	2.35	1.52
	Fornberg	2D	2.24	1.50
	Linnick and Fasel	2D	2.28	1.54
Experimental	Coutanceau and Bouard	-	2.13	-
Lxperimental	Tritton	-	-	1.59
Numerical – Compressible	Brehm, Hader and Fasel (Ma = 0.1)	3D	2.26	1.51
	Ayers	2D	2.250	1.605
P	Present Results:	2D	2.201	1.608

Simulation at Re = 40 II

- hier
- kommt
- beschreibung hin

Comparison of Re = 20 and Re = 40

	<i>W</i> *	C_D
Re = 20	0.928	2.136
Re = 40	2.201	1.608

Simulation at Re = 100 I

Re = 100	Source	2D/3D	St	C_D	C_L
Numerical – Incompressible	Gresho, Chan, Lee, et al.	2D	0.18	1.76	-
	Linnick and Fasel (λ = 0.056)	2D	0.169	$\textbf{1.38} \pm \textbf{0.010}$	±0.337
	Linnick ad Fasel (λ = 0.023)	2D	0.1696	$\textbf{1.34} \pm \textbf{0.009}$	±0.333
	Persillon and Braza	2D	0.165	1.253	-
	Saiki and Biringen	2D	0.171	1.26	-
	Persillon and Braza	3D	0.164	1.240	-
	Liu, Zheng and Sung	3D	0.165	$\textbf{1.35} \pm \textbf{0.012}$	±0.339
Experimental	Berger and Wille	-	0.16 - 0.17	-	-
Lxperimental	Clift, Grace and Weber	-	-	1.24	-
	Williamson	-	0.164	-	-
Numerical – Compressible	Brehm, Hader and Fasel (Ma = 0.1)	3D	0.165	$\textbf{1.32} \pm \textbf{0.01}$	±0.32
	Ayers	2D	0.167	1.371 ± 0.011	±0.333
25	Present Results:	2D	0.1669	$\textbf{1.3593} \pm \textbf{0.00805}$	±0.3291

Simulation at Re = 100 II

- hier
- kommt
- beschreibung hin

Simulation at Re = 200 I

Re = 200	Source	2D/3D	St	C _D	C_L
Numerical – Incompressible	Belov, Martinelli and Jameson	2D	0.193	1.19 ± 0.042	±0.64
	Gresho, Chan, Lee et al.	2D	0.21	1.76	-
	Linnick and Fasel (λ = 0.056)	2D	0.199	$\textbf{1.37} \pm \textbf{0.046}$	±0.70
	Linnick and Fasel (λ = 0.023)	2D	0.197	$\textbf{1.34} \pm \textbf{0.044}$	±0.69
	Miyake, Sakamoto, Tokunaga et al.	2D	0.196	$\textbf{1.34} \pm \textbf{0.043}$	±0.67
	Persillon and Braza	2D	0.198	1.321	-
	Saiki and Biringen	2D	0.197	1.18	-
	Persillon and Braza	3D	0.181	1.306	-
	Liu, Zheng and Sung	3D	0.192	1.31 ± 0.049	±0.69
Experimental	Berger and Wille	-	0.18 - 0.19	-	-
	Clift, Grace and Weber	-	-	1.16	-
	Williamson	-	0.181	-	-
Numerical – Compressible	Brehm, Hader and Fasel (Ma = 0.1)	3D	0.192	$\textbf{1.3} \pm \textbf{0.04}$	±0.66
	Ayers	2D	0.201	1.371 ± 0.011	±0.70
	Present Results:	2D	0.2002	1.344 ± 0.0462	±0.6887

Simulation at Re = 200 II

- hier
- kommt
- beschreibung hin

Simulation at Re = 200 III

re 200 tabelle, plot, lift over time, vorticity

Comparison of Re = 100 and Re = 200 I

Comparison of Re = 100 and Re = 200 II

- 1 Introduction and Fundamentals
 - Introduction
 - The Discontinuous Galerkin Method
 - The Immersed Boundary Method
- 2 Verification of BoSSS for Inviscid Flows
 - Robustness
 - Convergence
- 3 Evaluation of BoSSS for Viscid Flows
 - Theory
 - Simulations
- 4 Conclusion and Outlook

Summary

conclusion

Outlook

future works

The End

ende, fragen

Bibliography I

- [1] [Müller, 2014] B. Müller Methods for higher order numerical simulations of complex inviscid fluids with immersed boundaries PhD thesis, TU Darmstadt, 2014.
- [2] [Ayers, 2015] L. F. Ayers Validation of a discontinuous Galerkin based compressible CFD solver Bachelor thesis, TU Darmstadt, 2015.
- [3] [Müller, 2016] B. Müller, S. Krämer-Eis, F. Kummer et al. A high-order Discontinuous Galerkin method for compressible flows with immersed boundaries International Journal of Numerical Methods in Engineering, 2016, submitted.

Bibliography II

[4] [Williamson, 1996] C. H. Williamson Vortex dynamics in the cylinder wake Annual review of fluid mechanics, 1996.

alle tabellen und graphen die man brauchen könnte in anhang