Introduction to the Theory of Computation Homework #8 Brian Gianforcaro

1 Venn Diagram:

2 Proof:

- M = "On input x check if x = (G) where G is an CFG.
 - 1. Convert G into Chomsky normal form.
 - 2. Mark all non-terminals NT which have some rule $NT \rightarrow n$
 - 3. Repeat until no new non-terminals are marked:
 - (a) Mark the non-terminal NT if there is a rule
 - (b) $NT \to XZ$ such that Z and X are already marked.
 - 4. If W is marked $(L(G) \neq \emptyset)$ then M rejects, else accepts."
- Since decider M can be constructed for the problem: "Given a CFG G, is L(G) not empty?" then it must be decidable

3 Proof:

- Assume B is countable and that $f: \mathbb{N} \to \mathbb{B}$ is a functional correspondence.
- Let $f_i(j)$ denote the i^{th} symbol in f(j).
- Consider the string s whose i^{th} element differs from $f_i(i)$, then the i^{th} symbol in s is 1 and vice versa.
- Then s cannot be in the image of f since it differs from every string in the image of f by at least one symbol.
- Furthermore, s is in B since it is an infinite sequence over $\{0,1\}$.
- Therefore, B is uncountable.

4 Proof:

- M = "On input $\langle R, S \rangle$ where R and S are regular expressions
 - 1. Convert R to DFA A and S to DFA B
 - 2. Construct DFA C such that L(C) = L(B)?L(A)
 - 3. Submit $\langle A, C \rangle$ to the decider for EQDFA
 - 4. If it accepts, accept.
 - 5. If it rejects, reject."
- M is a decidable since steps 1, 2, 4, and 5 will not create and infinite loops and step 2 calls a decider.
- Also, M accepts $\langle R, S \rangle$ if and only if L(R) = L(R)? L(S).
- Therefore, M is a decider for A so A is decidable.

5 **Problem:** Given a CFG G, is $L(G) = \Sigma^*$

- (a) CFGs are strictly more powerful than REs, this problem is in both RE and \overline{RE} .
- (b) Proof Sketch:
- Given that ALL_{CFG} is is undecidable, $L(M_1) = L(M_2)$ is a similar problem.
- As it asks if each FA produces the same set of all possible strings.
- As the set of strings is countably infinite, the question is answerable but it would in essence never return.
- For example any case similar to a^* .
- In summary, the problem is at least as hard as ALL_{CFG} , and would create a endless loop.

2

• Thus the problem is undecidable.

6 Proof:

- We show that the language T is undecidable by showing that $H_{TM} \geq T$.
- The reduction function f takes as input (M, w) where M is a Turing Machine and w is a string.
- f outputs $f(M, w) = (N_{M,w})$, where $N_{M,w}$ is the Turing Machine that does the following:
 - On input x:
 - 1. If x = 01, then accept.
 - 2. Else if $x \neq 10$, then reject.
 - 3. Else then simulate M on w. If M halts on w, then accept.
- Clearly, the function f is computable. If $(M, w) \in H_{TM}$ or M halts on w then $L(N_{M,w}) = \{01, 10\}$, thus $(N_{M,w}) \notin T$.
- We conclude that $(M, w) \in H_{TM}$ if and only if $f(M, w) \in T$.
- Therefore f is a reduction from H_{TM} to T. It follows that T is undecidable as H_{TM} is undecidable.

7 Proof:

- We show that $USELESS_{TM}$ is undecidable by showing that $\overline{H_{TM}} \geq USELESS_{TM}$.
- The reduction function f takes as input (M, w) where M is a Turing Machine and w is a string.
- f outputs $f(M, w) = (N_{M,w})$, where $N_{M,w}$ is the Turing Machine that does the following:
 - On input symbol 0, $N_{M,w}$ simply enters all it's states except for a special state \overline{q} .
 - On input symbol 1, $N_{M,w}$ simulates M on w, if M halts on w, then enters state \overline{q} .
- \bullet Clearly, the function f is computable.
- From the behavior of $N_{M,w}$ on input symbol 0, it is clear that only the special state \overline{q} can be useless.
- From the behavior of $N_{M,w}$ on input symbol 1, it is clear that \overline{q} is useless if and only if M does not halt on w.
- Therefore $(M, w) \in \overline{H_{TM}}$ if and only if $f(M, w) \in USELESS_{TM}$, and hence f is a reduction from $\overline{H_{TM}}$ to $USELESS_{TM}$.
- It follows that $USELESS_{TM}$ is undecidable as H_{TM} is undecidable.