CSCI-1680 Network Layer: Inter-domain Routing – Policy and Security

Rodrigo Fonseca

Administrivia

- Homework 2 is out
- Rodrigo's office hours:
 - Wednesday 1-3 (or by appointment)

Today

- BGP Continued
 - Policy routing, instability, vulnerabilities

Route Selection

- More specific prefix
- Next-hop reachable?
- Prefer highest weight
 - Computed using some AS-specific local policy
- Prefer highest local-pref
- Prefer locally originated routes
- Prefer routes with shortest AS path length
- Prefer eBGP over iBGP
- Prefer routes with lowest cost to egress point
 - Hot-potato routing
- Tie-breaking rules
 - E.g., oldest route, lowest router-id

Customer/Provider AS relationships

Customer pays for connectivity

- E.g. Brown contracts with OSHEAN
- Customer is stub, provider is a transit

Many customers are multi-homed

- E.g., OSHEAN connects to Level3, Cogent

Typical policies:

- Provider tells all neighbors how to reach customer
- Provider prefers routes from customers (\$\$)
- Customer does not provide transit service

Peer Relationships

- ASs agree to exchange traffic for free
 - Penalties/Renegotiate if imbalance
- Tier 1 ISPs have no default route: all peer with each other
- You are Tier *i* + 1 if you have a default route to a Tier *I*
- Typical policies
 - AS only exports customer routes to peer
 - AS exports a peer's routes only to its customers
 - Goal: avoid being transit when no gain

AS Relationships

- How to prevent X from forwarding transit between B and C?
- How to avoid transit between CBA?
 - **−** B: BAZ -> X
 - B: BAZ -> C ? (=> Y: CBAZ and Y:CAZ)

Gao-Rexford Model

- (simplified) Two types of relationships: peers and customer/provider
- Export rules:
 - Customer route may be exported to all neighbors
 - Peer or provider route is only exported to customers
- Preference rules:
 - Prefer routes through customer (\$\$)
- If all ASes follow this, shown to lead to stable network

Peering Drama

- Cogent vs. Level3 were peers
- In 2003, Level3 decided to start charging Cogent
- Cogent said no
- Internet partition: Cogent's customers couldn't get to Level3's customers and vice-versa
 - Other ISPs were affected as well
- Took 3 weeks to reach an undisclosed agreement

"Shutting off" the Internet

- Starting from Jan 27th, 2011, Egypt was disconnected from the Internet
 - 2769/2903 networks withdrawn from BGP (95%)!

Source: RIPEStat - http://stat.ripe.net/egypt/

Egypt Incident

Some BGP Challenges

- Convergence
- Traffic engineering
 - How to assure certain routes are selected
- Scaling (route reflectors)
- Security

Convergence

- Given a change, how long until the network restabilizes?
 - Depends on change: sometimes never
 - Open research problem: "tweak and pray"
 - Distributed setting is challenging
- Some reasons for change
 - Topology changes
 - BGP session failures
 - Changes in policy
 - Conflicts between policies can cause oscillation

Routing Change: Before and After

Routing Change: Path Exploration

• AS 1

- Delete the route (1,0)
- Switch to next route (1,2,0)
- Send route (1,2,0) to AS 3

• AS 3

- Sees (1,2,0) replace (1,0)
- Compares to route (2,0)
- Switches to using AS 2

Routing Change: Path Exploration

Initial situation

- Destination 0 is alive
- All ASes use direct path

When destination dies

- All ASes lose direct path
- All switch to longer paths
- Eventually withdrawn

• E.g., AS 2

- $-(2,0) \rightarrow (2,1,0)$
- $-(2,1,0) \rightarrow (2,3,0)$
- $-(2,3,0) \rightarrow (2,1,3,0)$
- $-(2,1,3,0) \rightarrow \text{null}$

Convergence may be slow!

Route Engineering

- Route filtering
- Setting weights
- More specific routes: longest prefix
- AS prepending: "477 477 477"
- More of an art than science

Multiple Stable Configurations BGP Wedgies [RFC 4264]

Typical policy:

- Prefer routes from customers
- Then prefer shortest paths

BGP Wedgies

BGP Wedgies

BGP Wedgies

3 prefers customer route: stable configuration!

Unstable Configurations

• Due to policy conflicts (Dispute Wheel)

Avoiding BGP Instabilities

Detecting conflicting policies

- Centralized: NP-Complete problem!
- Distributed: open research problem
- Requires too much cooperation

Detecting oscillations

Monitoring for repetitive BGP messages

Restricted routing policies and topologies

Some topologies / policies proven to be safe*

Scaling iBGP: route reflectors

 $iBGP Mesh == O(n^2) mess$

Scaling iBGP: route reflectors

Solution: Route Reflectors O(n*k)

BGP Security Goals

- Confidential message exchange between neighbors
- Validity of routing information
 - Origin, Path, Policy
- Correspondence to the data path

Origin: IP Address Ownership and Hijacking

• IP address block assignment

- Regional Internet Registries (ARIN, RIPE, APNIC)
- Internet Service Providers

Proper origination of a prefix into BGP

- By the AS who owns the prefix
- ... or, by its upstream provider(s) in its behalf

However, what's to stop someone else?

- Prefix hijacking: another AS originates the prefix
- BGP does not verify that the AS is authorized
- Registries of prefix ownership are inaccurate

Consequences for the affected ASes

- Blackhole: data traffic is discarded
- Snooping: data traffic is inspected, and then redirected
- Impersonation: data traffic is sent to bogus destinations

Hijacking is Hard to Debug

- Real origin AS doesn't see the problem
 - Picks its own route
 - Might not even learn the bogus route
- May not cause loss of connectivity
 - E.g., if the bogus AS snoops and redirects
 - ... may only cause performance degradation
- Or, loss of connectivity is isolated
 - E.g., only for sources in parts of the Internet
- Diagnosing prefix hijacking
 - Analyzing updates from many vantage points
 - Launching traceroute from many vantage points

• Originating a more-specific prefix

- Every AS picks the bogus route for that prefix
- Traffic follows the longest matching prefix

How to Hijack a Prefix

The hijacking AS has

- Router with eBGP session(s)
- Configured to originate the prefix

Getting access to the router

- Network operator makes configuration mistake
- Disgruntled operator launches an attack
- Outsider breaks in to the router and reconfigures

Getting other ASes to believe bogus route

- Neighbor ASes not filtering the routes
- ... e.g., by allowing only expected prefixes
- But, specifying filters on *peering* links is hard

Pakistan Youtube incident

- Youtube's has prefix 208.65.152.0/22
- Pakistan's government order Youtube blocked
- Pakistan Telecom (AS 17557) announces 208.65.153.0/24 in the wrong direction (outwards!)
- Longest prefix match caused worldwide outage
- http://www.youtube.com/watch?v=IzLPKuAOe50

Many other incidents

Spammers steal unused IP space to hide

- Announce very short prefixes (e.g., /8). Why?
- For a short amount of time

• China incident, April 8th 2010

- China Telecom's AS23724 generally announces 40 prefixes
- − On April 8th, announced ~37,000 prefixes
- About 10% leaked outside of China
- Suddenly, going to <u>www.dell.com</u> might have you routing through AS23724!

Attacks on BGP Paths

- Remove an AS from the path
 - E.g., 701 3715 88 -> 701 88
- Why?
 - Attract sources that would normally avoid AS 3715
 - Make path through you look more attractive
 - Make AS 88 look like it is closer to the core
 - Can fool loop detection!
- May be hard to tell whether this is a lie
 - 88 could indeed connect directly to 701!

Attacks on BGP Paths

- Adding ASes to the path
 - E.g., 701 88 -> 701 3715 88
- Why?
 - Trigger loop detection in AS 3715
 - This would block unwanted traffic from AS 3715!
 - Make your AS look more connected
- Who can tell this is a lie?
 - AS 3715 could, if it could see the route
 - AS 88 could, but would it really care?

Attacks on BGP Paths

- Adding ASes at the end of the path
 - E.g., 701 88 into 701 88 3
- Why?
 - Evade detection for a bogus route (if added AS is legitimate owner of a prefix)
- Hard to tell that the path is bogus!

Proposed Solution: S-BGP

- Based on a public key infrastructure
- Address attestations
 - Claims the right to originate a prefix
 - Signed and distributed out of band
 - Checked through delegation chain from ICANN

Route attestations

- Attribute in BGP update message
- Signed by each AS as route along path

S-BGP can avoid

- Prefix hijacking
- Addition, removal, or reordering of intermediate ASes

S-BGP Deployment

Very challenging

- PKI (RPKI)
- Accurate address registries
- Need to perform cryptographic operations on all path operations
- Flag day almost impossible
- Incremental deployment offers little incentive

• But there is hope! [Goldberg et al, 2011]

- Road to incremental deployment
- Change rules to break ties for secure paths
- If a few top Tier-1 ISPs
- Plus their respective stub clients deploy simplified version (just sign, not validate)
- Gains in traffic => \$ => adoption!

Data Plane Attacks

- Routers/ASes can advertise one route, but not necessarily follow it!
- May drop packets
 - Or a fraction of packets
 - What if you just slow down some traffic?
- Can send packets in a different direction
 - Impersonation attack
 - Snooping attack
- How to detect?
 - Congestion or an attack?
 - Can let ping/traceroute packets go through
 - End-to-end checks?
- · Harder to pull off, as you need control of a router

BGP Recap

- Key protocol that holds Internet routing together
- Path Vector Protocol among Autonomous Systems
- Policy, feasibility first; non-optimal routes
- Important security problems

Next Class

• Network layer wrap up

