Computer Science & IT

Data Structure & Programming

Tree

Lecture No. 08

Recap of Previous Lecture

Topics to be Covered

Topic

Topic Max heap

Topic Min Heap

Topic Investion

Topic

Topic: Tree

Skewed tree 3 Node

if with n key value

No. of 6st with

height n-1 = 2ⁿ⁻¹

Topic: Tree

if BST constaucted with 4 Node

How many BST will have height

at most 2. ____6

if with n key value

No of 6st with

height n-1 = 2ⁿ⁻¹

Total BST - total BST of Height 3 with 4 Node C4=14 - 2ⁿ⁻¹:
14-8:6

Heap is Complete Binay tree (CBT) Complete Binay tree is tree inwhich earh Level (Height) is full except possibly the Last. (Last mayor may not befull) In last level element will stoictly filled from left to right

Sequential representation

3

CBT takes minimum space in Sequential representation

Height 3 Height formula Logen 1092 15

Height formula Height Logen 1092 3

Height 3 Height formula Llogen] [loga 10]

Heap is Not BST

projointy queue! Max Heap! A mox Heap is a CBT in

which the key value at parsent Node is greater than the

Key value at it children.

Min Heap: The key value at parsent Node will be lesser than the key value at its children.

Heap construction 2 ways

- 1 By inserting element one ofter another
- 2. By converting entire may to Head (Build Heap)

Sequential Representation

Algorithm Insert
$$(a, n, x)$$
 {
$$a[n] = x; \quad i = n;$$

$$while(i>1) and (a[Li] < a[i])$$

$$O(\log_{2}n) \frac{30}{30} \frac{11}{30} = 3$$

$$(25)^{2} \frac{16}{3} \frac{300}{300} = 3$$

$$(11) \frac{10}{5} \frac{10}{5} \frac{10}{5} \frac{10}{5} = 3$$

$$(12) \frac{30}{300} = 16$$

$$(13) \frac{11}{500} = 1$$

$$(14) \frac{11}{500} = 3$$

$$(15) \frac{11}{500} = 3$$

$$(17) \frac{1}{500} = 3$$

$$(17) \frac{1}$$

Algorithm Insert
$$(a, n, x)$$
 {

 $a[n] = x$; $i = n$;

 $while(i>1 and (a[Li]) > a[i])$ {

 $swap(a[i], a[Li])$
 $i=[i]$;

Min Heap

Topic: Question

3

The number of nodes a heap of height k can hold is

Insertion in Binary Heaps

Inserts a[n] into the heap which is stored in a[l...n-1]

```
Algorithm Insert(a,n,x) {
i := n;
while ((i > 1) \text{ and } (a[[i/2]] < item)) {
   swap(a[i], a[[i/2]];
   i := [i/2]
```

Insertion in Binary Heaps

Inserts a[n] into the heap which is stored in a[l...n-1]

```
Algorithm Insert(a,n,x) {
i := n;
while ((i > 1) \text{ and } (a[[i/2]] < item)) {
   swap(a[i], a[[i/2]];
   i := [i/2]
```


Consider a binary max-heap implemented using an array.

Which one of the following array represents a binary max-heap?

A.
$$\{25, 12, 16, 13, 10, 8, 14\}$$
 \(\text{\alpha}\) \(\text{\alpha

GATE 2004, Question Number 37, 2-Marks,

The elements 32, 15, 20, 30, 12, 25, 16, are inserted one by one in the given order into a maxHeap. The resultant

mavHaan ie

32, 15,20,30,12,25,16

GATE 2015 Set-I, Question Number 27, 2-Marks

Consider a max heap, represented by the array: 40, 30, 20, 10, 15, 16, 17, 8, 4.

Array Index	1	2	3	4	5	6	7	8	9
Value	40	30	20	10	15	16	17	8	4

Now consider that a value 35 is inserted into this heap. After insertion, the new heap is

- (A) 40, 30, 20, 10, 15, 16, 17, 8, 4, 35
- (B) 40, 35, 20, 10, 30, 16, 17, 8, 4, 15
- (C) 40, 30, 20, 10, 35, 16, 17, 8, 4, 15
- (D) 40, 35, 20, 10, 15, 16, 17, 8, 4, 30

- (A) 40, 30, 20, 10, 15, 16, 17, 8, 4, 35
- (B) 40, 35, 20, 10, 30, 16, 17, 8, 4, 15
- (C) 40, 30, 20, 10, 35, 16, 17, 8, 4, 15
- (D) 40, 35, 20, 10, 15, 16, 17, 8, 4, 30

if heap is represented by {25,14, 16, 13, 10,8,12}

What is the content of the array after two delete operations on the correct answer to the previous question:

- (a) {14, 13, 12, 10, 8}
- (b) {14, 12, 13, 8, 10}
- (c) {14, 13, 8, 12, 10}
- (d) {14, 13, 12, 8, 10}

Deletion from Max heap

- 1. De lete only roust element of Max heap
- 2. copy Last element as root
- 3. Heapify or Adust the Heap

Heapfy or Adjust

Adjust algorithm applied on index i which violates Heap pooprofy 2 rest of element satisfy Heap pooprofy.

- 1. Compare left2 nightchild 2 find
 max (max heap) min (min Heup)
- 2. Felement voorted at i is greater (mux heap) the stop
- 3. else swap i and max child repeat above process

Consider a binary max-heap implemented using an array.

Which one of the following array represents a binary max-heap?

- A. {25, 12, 16, 13, 10, 8, 14}
- B. {25, 14, 13, 16, 10, 8, 12}
- C. $\{25, 14, 16, 13, 10, 8, 12\}$
- D. {25, 14, 12, 13, 10, 8, 16}

Suppose mox-heap represented by

25, 14, 16, 13, 10, 8, 12

What is content of away ofter 2 delete operation

A. 14,13,12,10,8

B. 14,12, 13, 8,10

C. 14, 13, 8, 12, 10

D 14, 13, 12, 8, 10

Suppose mox-heap represented by

25, 14, 16, 13, 10, 8, 12

delete 16 [14, 13, 12, 8, 10]

2 mins Summary

Topic Heap

Topic CBT

Topic Max - Min Heap

Topic Insert

Topic Dele e.

THANK - YOU