Build a Personalized Online Course Recommender System with Machine Learning

Mohamed MZAOUALI August the 21th, 2022

Outline

- Introduction and Background
- Exploratory Data Analysis
- Content-based Recommender System using Unsupervised Learning
- Collaborative-filtering based Recommender System using Supervised learning
- Conclusion
- Appendix

Introduction

- User rating of Audited courses
- User rating of Completed Courses

Data

Tools

- Supervised ML Models
- Unsupervised ML Models

 Generate Course Recommendations

Goal

Exploratory Data Analysis

Course counts per genre

Using seaborn barplot method to plot course genre counts using a barchart.

Course enrollment distribution

Using the Matplotlib hist methods to get a histogram showing the enrollment distributions

20 most popular courses

The 20 items with the most rating counts

ENROLLS

TITLE	
python for data science	14936
introduction to data science	14477
big data 101	13291
hadoop 101	10599
data analysis with python	8303
data science methodology	7719
machine learning with python	7644
spark fundamentals i	7551
data science hands on with open source tools	7199
blockchain essentials	6719
data visualization with python	6709
deep learning 101	6323
build your own chatbot	5512
r for data science	5237
statistics 101	5015
introduction to cloud	4983
docker essentials a developer introduction	4480
sql and relational databases 101	3697
mapreduce and yarn	3670
data privacy fundamentals	3624

Word cloud of course titles

Popular IT keywords from the course titles

Content-based Recommender System using Unsupervised Learning

Flowchart of content-based recommender system using user profile and course genres

Evaluation results of user profile-based recommender system

 The top-10 commonly recommended courses across all users are:

score_threshold = 10.0

On average, 61 new/unseen courses have been recommended per user (in the test user dataset)

- 1. TA0106EN
- 2. GPXX0IBEN
- 3. excourse22
- 4. excourse21
- 5. ML0122EN
- 6. GPXX0TY1EN
- 7. excourse04
- 8. excourse06
- 9. excourse31
- 10. excourse73

Flowchart of content-based recommender system using course similarity

Evaluation results of course similarity based recommender system

score_threshold = 0.6

On average, 12 new/unseen courses have been recommended per user (in the test user dataset)

- 1)'BD0101EN'
- 2) 'DS0101EN'
- 3)'DS0110EN'
- 4)'excourse04'
- 5)'excourse23'
- 6) 'excourse32'
- 7)'excourse33'
- 8) 'excourse36'
- 9)'excourse63'
- 10)'excourse67'
- 11)'excourse68'
- 12)'excourse72'

Flowchart of clustering-based recommender system

Collaborative-filtering Recommender System using Supervised Learning

Flowchart of KNN based recommender system

Flowchart of NMF based recommender system

Flowchart of Neural Network Embedding based recommender system

Compare the performance of collaborative-filtering models

Conclusions

Recommender Systems - Sbarse - Sbarse

Sparse Matrix

Limitations

Out Of Memory

Curse of Dimensionality

Alternative Solutions

Deep Neural Network

StaticRecommendationSystems

Deep Reinforcement Learning

Dynamic and Online Recommendation Systems

Appendix

- The entire project capstone can be fount in the followin Github repo:
- https://github.com/mzaoualim/Coursera IBM Machine Learning Professional Certificate/tree/main/Machine%20Learning%20Capstone