Spis treści

Wstęp	3
Cel pracy	3
Zakres pracy	3
Struktura pracy	3
Ogólne założenia i wymagania funkcjonalne	4
Podstawowe zagadnienia dotyczące robotów mobilnych	4
Algorytmy i metody używane przy badaniu otoczenia	4
Metody planowania ruchu i określania dokładnej pozycji robota	5
Sposoby reprezentacji badanego obszaru	6
Przegląd narzędzi i urządzeń wykorzystywanych do opomiarowania pomieszczeń	7
Platformy sprzętowe	7
Arduino	7
RaspberryPi	7
STM32	8
Czujniki i sensory używane w robotyce	8
Enkodery i silniki krokowe	8
Czujniki ultradźwiękowe	8
Czujniki na podczerwień	9
Czujniki i skanery laserowe	9
Czujniki ToF	9
Kamery	9
Czujniki pola magnetycznego, przyspieszenia i prędkości kątowej	10
Realizacja prototypu pojazdu autonomicznego do pomiarowania pomieszczeń wewnątrz budynk	ки . 10
Konstrukcja mechaniczna	10
Płytka Nucleo STM32F103RB	10
Magnetometr i akcelerometr Pololu LSM303D	11
Czujniki ultradźwiękowe HC-SR04	11
Dwukanałowy sterownik silników Pololu DRV8835	12
Komunikacja bezprzewodowa: moduł Bluetooth HC-06 ZS-040	12
Moduł zasilania: ogniwa Li-ion 2600mAh	12
Stabilizacja zasilania: kondensator 1000µF 25V	12
Wykorzystanie algorytmu DFS w połączeniu z algorytmem Trémauxa	13
Reprezentacja pomieszczenia: dyskretyzacja pomieszczenia i macierz zajętości	14
Problemy dotyczące poprawnego działania magnetometru w pomieszczeniach	14

Weryfikacja wskazań magnetometru LSM303D: Arduino Uno oraz dedykowana biblioteka Pololu 14	ļ
Weryfikacja wskazań magnetometru: Nucleo STM32F411E Discovery wraz z układem LSM303DLHC	
Magnetometr: kalibracja i kompensacja przechyłu	
Zmiana położenia modułu z magnetometrem i wykorzystanie serwomechanizmu 16	5
Niestabilność pola magnetycznego przy badaniu pomieszczeń17	7
Źródła i przyczyny niepoprawnych wskazań magnetometru19)
Opracowanie alternatywnego sposobu opomiarowania pomieszczeń19)
Badanie otoczenia na podstawie przejazdu robota wzdłuż ścian20)
Przebudowa robota)
Wykorzystanie odeometrii i czujników odległości20)
Określenie kierunku i położenia robota20)
Sposób jazdy i korekta kierunku21	L
Zakończenie pomiarów i korekta współrzędnych23	3
Peryferia i spis wyprowadzeń23	3
Aplikacja do komunikacji pomiędzy robotem a komputerem (środowisko .NET)23	3
Tryb autonomiczny23	3
Tryb zdalnego sterowania24	1
Testy robota i zaprojektowanego algorytmu oraz aplikacji do komunikacji w warunkach rzeczywistych 25	
Stopień realizacji wymagań funkcjonalnych i pierwotnych założeń27	7
Wady i zalety metod opomiarowania zaproponowanych w projekcie28	3
Dalsze prace	3
Podsumowanie i wnioski29)

Wstęp

W nowoczesnej robotyce badanie i pomiarowanie pomieszczeń nabiera coraz większego znaczenia. Eksploracja nieznanego obszaru oraz określanie dokładnej lokalizacji robota wykorzystywane jest na masową skalę w wielkopowierzchniowych zakładach produkcyjnych, np. roboty odpowiedzialne za dostarczanie produktów w magazynie lub transportujące materiały pomiędzy poszczególnymi stanowiskami produkcyjnymi. Autonomiczne pojazdy dokonujące rozpoznania nieznanego pomieszczenia wykorzystywane są także powszechnie w codziennym użytku domowym. Najlepszym przykładem są nowoczesne odkurzacze, które pozwalają na sprzątanie i czyszczenie pomieszczeń bez jakiejkolwiek ingerencji człowieka. Najbardziej znana seria produktów tego typu to urządzenie Roomba produkcji firmy iRobot.

Cel pracy

Celem niniejszej pracy była realizacja prototypu pojazdu autonomicznego do pomiarowania pomieszczeń wewnątrz budynku. Przeznaczeniem robota tego typu jest zbadanie nieznanego środowiska bez ingerencji człowieka. Pojazd wykonuje automatyczny przejazd dopóki nie zgromadzi wszystkich danych potrzebnych do wyznaczenia kształtów i rozmiaru pomieszczenia. Do eksploracji otoczenia pojazd wykorzystuje zainstalowane na jego pokładzie liczne czujniki i sensory. Po skończonej pracy robot generuje mapę zbadanego obszaru. Mapa ta przedstawia kształt mierzonego pomieszczenia i wszystkie napotkane przez robota przeszkody. W pracy przedstawiono poszczególne etapy prac nad prototypem pojazdu, sposoby rozwiązania napotkanych problemów oraz sprawozdanie z testów zaimplementowanych algorytmów w warunkach rzeczywistych.

Zakres pracy

Zakres pracy można podzielić na kilka zasadniczych punktów. Niniejszy projekt porusza szeroką tematykę z różnych dziedzin informatyki, elektroniki oraz robotyki. Zakres pracy obejmuje:

- 1. Przegląd algorytmów i metod używanych przy mapowaniu pomieszczeń przez roboty.
- 2. Przegląd urządzeń i oprzyrządowania, które wykorzystuje się w robotach przeznaczonych do pomiarowania pomieszczeń.
- 3. Stworzenie projektu robota i zaprogramowanie go w taki sposób, aby badał kształt i rozmiary pomieszczenia oraz generował odpowiadającą mu mapę.
- 4. Stworzenie programu komputerowego, który komunikuje się z robotem. Program prezentuje mapę pomieszczenia stworzoną podczas przejazdu robota na badanym obszarze.
- 5. Testy robota i zaimplementowanych algorytmów oraz analiza uzyskanych efektów.

Struktura pracy

Struktura niniejszej pracy w pełni odwzorowuje kolejne etapy prac nad projektem. W pierwszych rozdziałach przedstawiono ogólne założenia i wymagania funkcjonalne, omówiono podstawowe zagadnienia dotyczące robotów autonomicznych i eksplorowania przez nie nieznanego obszaru, a tale dokonano przeglądu dostępnych platform sprzętowych i możliwych do wykorzystania urządzeń i sensorów. W kolejnych rozdziałach omówiono przyjętą koncepcję pomiarowania oraz przedstawiono proces tworzenia konstrukcji mechanicznej robota odpowiedniej dla przyjętej koncepcji badań i stosowną dla przyjętych założeń. Następne rozdziały opisują napotkane problemy, sposoby diagnostyki i badań oraz obmyślenie sposobu rozwiązania tychże kłopotów i modyfikacje wprowadzone do pierwotnie przyjętych wymagań i założeń. Przedostatni etap pracy opisuje aplikację zbudowaną specjalnie na potrzeby niniejszej pracy, służącą do obsługi robota i prezentacji wyników przeprowadzanych pomiarów. Ostatni rozdział opisuje rezultaty testów i badań zaimplementowanych algorytmów i metod pomiarowania. Końcowa część pracy stanowi krótki opis dalszych możliwości rozbudowy prototypu oraz podsumowanie pracy.

Ogólne założenia i wymagania funkcjonalne

Przed przystąpieniem do wyboru koncepcji i realizacji projektu dokonano opracowania ogólnych założeń i wymagań funkcjonalnych. Poniżej przedstawiono najważniejsze punkty przeprowadzonej analizy.

- Przed przystąpieniem do pomiarów robot nie posiada informacji ani o wymiarach pomieszczenia, które bada, ani o jego kształcie i może zostać umieszczony w dowolnym miejscu w pomieszczeniu.
- 2. Robot kończy pracę w tym samym miejscu, w którym rozpoczynał pomiary.
- 3. Mapa pomieszczenia reprezentowana jest jako macierz komórek (macierz zajętości). Komórka może przyjmować trzy wartości : "wolne", "zajęte", "nieznane".
- 4. Praca robota odbywa się bez żadnego udziału człowieka i jest w pełni automatyczna. Do poprawnej pracy nie jest wymagane żadne wcześniejsze przygotowanie pomieszczenia bądź robota
- 5. Robot wykonuje przejazd po pomieszczeniu i na podstawie odczytu z czujników generuje mapę odpowiadającą rozkładowi pomieszczenia.
- 6. Obsługa robota i prezentacja wyników odbywa się w aplikacji stworzonej specjalnie do celów niniejszego projektu. Użytkownik aplikacji w każdej chwili może zatrzymać pracę pojazdu.
- 7. Po zakończonym przejeździe robot wysyła dane drogą bezprzewodową do komputera, który prezentuje stworzoną macierz zajętości.
- 8. Robot posiada odrębny tryb ręcznego sterowania, który daje użytkownikowi możliwość swobodnej jazdy. W trybie tym użytkownik aplikacji ma możliwość bezpośredniego odczytywania wskazań czujników robota. Dane te wyświetlane są w czasie rzeczywistym.

Podstawowe zagadnienia dotyczące robotów mobilnych

Tematyka związana z robotami mobilnymi obejmuje szeroki zakres zagadnień i porusza szereg rozbudowanych problemów. Podczas pracy nad robotami mobilnymi mamy do czynienia z kilkoma ważnymi aspektami. Pierwszym ważnym aspektem z jakim mamy do czynienia podczas pracy nad robotami mobilnymi to dobór odpowiedniej platformy sprzętowej, która odpowiada za sterowanie robota i obsługę wszystkich czujników. Platforma taka musi posiadać odpowiednio wysokie taktowanie, posiadać odpowiednią liczbę portów i interfejsów, wystarczającą do obsługi wszystkich zamontowanych w robocie czujników i urządzeń. Kolejną kwestią jest dobór odpowiedniej konstrukcji mechanicznej. Zależy ona nie tylko od przyjętego modelu badań oraz przyjętych mechanizmów korekcyjnych, ale także od rodzaj terenu w jakim porusza się robot. Pod względem konstrukcji mechanicznej możemy wyróżnić pięć głównych typów robotów: kołowe, gąsienicowe, kroczące, latające i pływające. Nieodpowiedni dobór konstrukcji mechanicznej i mechanizmów korekcyjnych może mieć katastrofalny wpływ na rezultaty badania i pozycjonowania robota. Przykładowo, niewielka różnica prędkości obrotowej kół sprawia, że po przejechaniu dużego dystansu robot będzie znajdował się w dużej odległości od miejsca estymowanego.

Algorytmy i metody używane przy badaniu otoczenia

Do poprawnego pomiarowania i zbadania pomieszczenia konieczne jest precyzyjne wyznaczenie pozycji oraz kierunku robota. Dobór odpowiedniej metody reprezentacji otoczenia często bezpośrednio wiąże się ze sposobem w jaki określamy pozycję robota w przestrzeni, a także od samej konstrukcji mechanicznej pojazdu. We wszystkich metodach wymienionych w kolejnych podrozdziałach do poprawnego określania kierunku robot wspomaga się odczytami z czujników takich jak magnetometr (kompas elektroniczny), enkoder, akcelerometr, żyroskop czy kamera 3D.

Metody planowania ruchu i określania dokładnej pozycji robota

Omawiając metody planowani ruchu i pozycjonowania robota możemy wyróżnić zarówno metody związane z metodą reprezentacji otoczenia jak i metody od niej niezależne. Główny podział jaki możemy wyodrębnić ze względu na pozycjonowanie robota w pomieszczeniu to podział na metody globalne oraz metody lokalne. Metody globalne wykorzystują globalny układ odniesienia, zaś metody lokalne bazują na informacjach dotyczących bezpośredniego otoczenia robota, zebranych przez jego czujniki.

Spośród lokalnych metod planowania trasy i wyznaczania kierunku robota wymienić należy dwie najeważniejsze: BugAlgorithm oraz VFH (ang. Vector Field Histogram). Jest to sposób pomiarowania inspirowany zachowaniami odwadów. Do poprawnego planowania trasy robot wykorzystuje przybliżone dane o kierunku napotkanej przeszkody oraz aktualne odczyty z czujników. Robot może poruszać się po linii prostej w kierunku celu. W momencie napotkania przeszkody pojazd otacza lub okrąża ją, po czym oddala się od niej w punkcie przecięcia prostej łączącej punkt startowy i docelowy.

W metodzie Histogramu Pola Wektorowego dane na temat otoczenia robota zapisywane jest w formie siatki w krartezjańskim układzie współrzędnych. Na podstawie odczytu z czujników robota każdej komórce przypisuje się wartość równą prawdopodobieństwu wystąpienia w niej przeszkody. Stworzona siatka redukowana jest następnie do histogramu biegunowego. Każdy wycinek histogramu obrazuje prawdopodobieństwo wystąpienia przeszkody w danym kierunku. Dzięki temu robot może ominąć przeszkodę wykorzystują np. funkcję kosztu do obliczenia kierunku, który powinien przyjąć.

Podział metod planowania ruchu i pozycjonowania robota

Metoda orientacji robota wykorzystująca dekompozycję komórkową polega na podzieleniu przestrzeniii na regiony (komórki) i określeniu trasy i kierunku na podstawie określenia, które puste komórki są sąsiadujące. W zależności od przyjętego poziomu dokładności podziału, przejazd odbywa się na podstawie wyznaczonego na tej podstawie grafu spójności lub na podstawie generowanej siatki zajętości.

Pierwszą omawianą globalną metodą określania pozycji robota jest metoda oparta na mapach drogowych. Robot podczas przejazdu generuje graf określający sieć ścieżek po jakich może poruszać się robot. Graf zawiera informacje o relacjach pomiędzy poszczególnymi jego wierzchołkami (odległość, kierunek). Jest to rodzaj mapy topologicznej, która opiera się na utworzeniu grafu przejścia między znacznikami, które w grafie umieszczane są jako węzły. W celu poprawnego korzystania z mapy robot musi zlokalizować siebie w jednym z węzłów oraz być w stanie przemiszczać się między węzłami (wymagana duża precyzja: rzeczywista pozycja musi odpowiadać pozycji estymowanej – wyznaczanej przez konkretny węzęł).

Kolejną metodą globalną jest traktowanie przejazdu robota jako ruchu po macierzy komórek. W metodzie tej zazwyczaj rozmiar symbolicznej komórki jest stały i odpowiada rozmiarom robota.

Algorytm ten jest prosty do implementacji. Skutecznie działa w większych pomieszczeniach o regularnych kształtach. Jest on bardzo szybki, wymaga niewielkich zasobów sprzętowych , ale cechuje się niedokładnością i błędami przy niewielkich i nieregularnych przeszkodach. Komórka oznaczona jest jako obszar niedostępny, nawet jeżeli jest ona zajęta w niewielkim stopniu. Wyznaczenie granic pomiędzy komórkami może być wykonane poprzez określenie wszystkich punktów jednakowo odległych od wszystkich przeszkód. Inne podejście bazuje na podziale na komórki o stałej szerokości (najczęściej stosowany wariant tej metody).

Następną istotną metodą jest wyznaczanie pozycji robota na podstawie zewnętrznego sygnału radiowego. Do poprawnego działania wymagane jest użycie przynajmniej trzech nadajników ułożonych w różnych miejscach w pomieszczeniu. Dzięki procesowi triangulacji istnieje możliwość określenia gdzie znajduje się robot. Poza oczywistą wadą, jaką jest konieczność wcześniejszego ustawineja nadajników, dodatkowo sygnał może być zagłuszony przez elementy konstrukcyjne budynku (ciany, zbrojenie, rury itd.) lub inne nadajniki pracujące na tej samej częstotliwości.

Ostatnim omówionym sposobem określneia pozycji robota jest system użycia kamer. Z ich pomocą możliwe jest np. wykrycie krawędzi ścian i zmierzenie odległości do nich. Kamera umożliwia także określanie pozycji robota z wykorzystaniem rozmieszczonych przed badaniem pomieszczenia znaków charakterystycznych (zazwyczaj są to różnokolorowe kształty). Na rynku istnieją kamery 2 D, 2, 5 D oraz 3 D. Te ostatnie umożliwiają tworzenie modelu środowiska w trójwymiarze. Aby w szybki i skuteczny sposób używać kamery potrzebne są zazwyczaj większe moce obliczneiowe. Kamery wysokiej jakości wiążą się z dość wysokimi kosztami (zwłaszcza kamery 3D, potrafiące badać głębie obrazu). Do interpretowania obrazu stosuje się zazwyczaj specjalistyczne biblioteki do przetwarzania obrazu.

Sposoby reprezentacji badanego obszaru

Możemy wyróżnić dwie podstawowe metody reprezentacji badanego obszaru: mapę metryczną (ciągłą i dyskretną) oraz mapę topologiczną. Pierwsza z nich polega na orientacji obiektów w dwuwymiarowej płaszczyźnie, druga – opiera się na grafach i połączeniach pomiędzy jego poszczególnymi węzłami.

Dyskretna mapa metryczna

Pierwszym sposobem odwzorowania badanego obszaru jest dyskretna mapa metryczna. W metodzie tej tworzona mapa przyjmuje formę siatki komórek o stałym rozmiarze. Im mniejsze wymiary pojedynczej komórki tym większa mapa. W metodzie tej pomieszczenie przedstawione jest jako dwuwymiarowa macierz, gdzie pojedynczy element może przyjmować wartości: nieznane, zajęte, wolne (względnie wybrane dwie wartości spośród trzech wymienionych (wolne/nieznane, zajęte). Reprezentacja ta wiąże się często z metodą określania pozycji robota przy użyciu dekompozycji komórkowej.

Ciągła mapa metryczna

Nieco odmienną formą reprezentacji jest ciągła mapa metryczna. Robot zbierając dane z czujników pozyskuje dane o otoczeniu zazwyczaj z wykorzystaniem chmury punktów. Chmura punktów generowana jest na podstawie wartości odczytywanych z czujników robota (np. sensorów laserowych lub grupy czujników ultradźwiękowych). Zebrane punkty umieszczane są w kartezjańskim układzie

współrzędnych. Następnie dane te przetwarzane są przez CPU lub GPU. Mapa generowana jest w absolutnym układzie odniesienia. Model ten bazuje na dokładnych wymiarach i pozycjach przeszkód w otoczeniu.

Mapa topologiczna

Ostatnią metodą, o której należy wspomnieć w kontekście reprezentacji badanego obszaru jest mapa topologiczna. Mapa taka tworzona jest jako siatka węzłów oraz informacji o połączeniach pomiędzy nimi. Zazwyczaj w węzłach przechowuje się dane na temat odległości i kierunku innych sąsiadujących wierzchołków grafu (węzłów). Informacje te pozwalają na podróż robota w odpowiednim kierunku i na odpowiednią odległość.

Przegląd narzędzi i urządzeń wykorzystywanych do opomiarowania pomieszczeń

Dobór odpowiedniej platformy sprzętowej oraz dodatkowych czujników, w ścisły sposób powiązany jest z przyjętą koncepcją badania pomieszczenia oraz samą konstrukcją mechaniczną robota. W kilku kolejnych podrozdziałach dokonano ogólnego omówienia najważniejszych mikrokontrolerów oraz sensorów i urządzeń powszechnie stosowanych w pojazdach autonomicznych, których przeznaczeniem jest eksploracja nieznanego środowiska wewnątrz budynku.

Platformy sprzętowe

Spośród platform sprzętowych dostępnych na rynku, możemy wyróżnić trzy główne rodziny mikrokontrolerów. Każda z nich posiada różną charakterystykę pracy i zakres wykorzystania.

Arduino

Pierwszym popularną rodziną układów jest seria Arduino. Najbardziej rozpowszechnionym mikrokontrolerem z tej rodziny jest moduł Arduino Uno (podstawowa platforma z rodziny Ardiuno). Na jego pokładzie znajduje się mikrokontroler AVR ATmega328. Zestaw z tej rodziny posiadają jednak dość skromne parametry. Maksymalna częstotliwość zegara wynosi zaledwie 16 MHz. Pamięć SRAM to 2 kB, a pamięć Flash 32 kB, z czego 5 kB zarezerwowane jest dla bootloadera. Moduł Arduino Uno posiada 14 portów I/O, z czego 6 portów może pracować w trybie PWM. Arduino posiada także interfejsy szeregowe UART, SPI oraz I2C. Obsługuje także zewnętrzne przerwania. Posiada gniazdo USB A przeznaczone do programowania oraz złącze DC 5,5 X 2,1 mm umożliwiające podłączenie układu do zewnętrznego źródła zasilania. Istnieją także wersje Arduino wyposżone w większa ilość portów i nieco większe zasoby sprzętowe, z kilkoma dodatkowymi poratami pracującymi w trybie PWM. Koszty jakie trzeba ponieść przy zakupie modułów z rodziny Arduino są więc niewspółmierne do możliwości jakie oferuje produkt. Przykładowo, koszt modułu Arduino Uno Rev3 wynosi ok. 100 zł.

RaspberryPi

Najlepszą dostępną na rynku platformą omawianą w tym rozdziale jest seria modułów RaspberryPi. Jest to rodzaj minikomputera, który posiada duże zasoby obliczeniowe i szereg wysokiej jakości peryferiów. Przykładem urządzenia tej klasy jest produkt najnowszej produkcji Raspberry Pi 4 model B. Minikomoputer wyposażony jest w cztery złącza USB (2 w standardzie 3.0 oraz 2 w standardzie 2.0), 2 złącza microHDMI, oraz złącze zasilania USB C. Dodatkowo urządzenie wyposażone jest w dwuzakresowe WiFi 2,4GHz i 5 GHz, Bluetooth 5 / BLE oraz port Ethernet o prędkości do 1000Mb/s. Minikmputer może być zasilany przez PoE. Na pokładzie płytki znajduje się 40 złącz GPIO, złącze SCI , DSI oraz slot kart pamięci microSD. Minikomputer produkowany jest w trzech różnych wersjach, odmiennych pod względem dostępnej pamięci RAM (2, 4 ORAZ 8 Gb). Serce układu stanowi procesor BCM2711. Jest to chipset z 64-bitowym rdzeniem Quad-core ARM-8 Cortex-A72 CPU, taktowany z częstotliwością 1,5 GHz. Powyższy opis doskonale obrazuje doskonałe parametry urządzenia oraz możliwości i zastosowania jakie oferuje. Zakup urządzenia tego typu pociąga za sobą duże koszty. Najnowszy model Rasppbery Pi 4 kosztuje około 400 zł. Moduły z rodziny RaspberryPi charakteryzują

doskonałym stosunkiem jakości do ceny. Jednak jednostkowy koszt modułu jest na tyle duży, że warto rozważyć wybór innych produktów. Szczególnie jeżeli możliwośći produktu nie będą w pełni wykorzystane.

STM32

Ostatnią omawianą platformą sprzętową jest seria mikrokontrolerów z rodziny STM32. Doskonale nadaje się do użytku w robotach i konstrukcjach, które nie potrzebują dużych zasobów obliczeniowych. Są to moduły z 32-bitowym mikrokontrelerem wyposażonym w rdzeń ARM Cortex. Platforma ta jest kompatybilna z nakładkami Arduino oraz platformą mbed. Rodzina tych układów posiada liczne timery, dużą ilość wyprowadzeń, liczne interfejsy (m.in. SPI, I2C, USART, UART, USB Full Speed, Canwirtualny port COM). Płytki wyposażone są zazwyczaj w dwa przyciski (jeden resetujący i jeden do dyspozycji użytkownika). Programując mikrokontroler istnieje możliwość zasilenia mikrokontrolera z zewnętrznego źródła napięcia w zakresie od 3,3 V do 12 V. Możliwości układów tego typu dodatkowo rozszerzają liczniki, (ang. timer) i przetworniki analogowo cyfrowe.inne. Płytki bardzo często wyposażone są w dodatkowe układy i wewnętrzne czujniki, np. czujnik temperatury, wilgotności, magnetometr, akcelerometr, żyroskop, referencyjny pomiar napięcia itd. Bardzo ważną cechą układów STM32 jest bardzo niska cena w stosunku do oferowanych możliwości i jakości. Przykładowo mikrokontroler STM32 NUCLEO-F103RB kosztuje jedynie 50 zł, oferując prz tym dużą ilość wyprowadzeń, liczne interfejsy, doskonałe parametry i wysoką wydajność (częstotliwość taktowania układu do 72 MHz).

Czujniki i sensory używane w robotyce

Dane, które potrzebne są do prawidłowego określenia rozmiaru i kształtu pomieszczenia zależne są od przyjętej techniki wykonywania pomiarów i ściśle wiążą się z zaimplementowanymi algorytmami. W kilku następnych podrozdziałach dokonano ogólnego przedstawienia i omówienia czujników, które najczęściej wykorzystuje się w projektach związanych z pomiarowaniem pomieszczeń wewnątrz budynków.

Enkodery i silniki krokowe

Dość powszechnym rozwiązaniem w robotyce jest zastosowanie silników krokowych lub silników wyposażonych w enkodery. Silnik krokowy umożliwia precyzyjny obrót silnika o zadany kąt dzięki czemu posiadamy dokładną informację o przejechanej odległości. Enkoder jest licznikiem, który działa na podobnej zasadzie i zlicza ilość obrotów lub część obrotu jakie wykonują koło pojazdu. Zasada działania takiego mechanizmu polega na wykrywaniu zmian w naświetleniu elementów koła bądź wykrywaniu impulsu magnetycznego generowanego przez element umieszczony na kole lub wykrywaniu zmian w rezystancji wbudowanych oporników. Enkoder zazwyczaj jest mniej dokładny, ale umożliwia jazdę z szybszą prędkością w porównaniu do silnika krokowego. Poważną wadą obu rozwiązań jest jednak wysoka cena silników krokowych i silników wyposażonych w ekodery.

Czujniki ultradźwiękowe

Jednym z najbardziej rozpowszechnionych czujników do badania otoczenia robota są ultradźwiękowe czujniki odległości. Szczególnie popularne są sensory ze zintegrowanym transmiterem i odbiornikiem wiązki. Czujniki tego typu mierzą odległość od wykrytej przeszkody wykorzystując emitowane przez sensor ultradźwięki. Wadą tego typu sensorów jest dość mała odległość, od czujnika, która może być zbadana (zwykle jest to od 1 m do 4 m). Z racji wykorzystania wiązki akustycznej cechują się one także niskim czasem pojedynczego pomiaru. Obliczenie odległości od wykrytej przeszkody wykonuje się na podstawie czasu zmierzonego od momentu wyemitowania fali akustycznej do momentu wykrycia odbitej wiązki przez odbiornik. Do wyliczeń wykorzystuje się prosty wzór oraz wartość prędkości dźwięku w powietrzu (340m/s).

dystans = czas_zmierzony_w_sekundach × prędkość_dźwięku_w_powietrzu / 2

Czujniki na podczerwień

Kolejną popularną grupą czujników są czujniki wykorzystujące promieniowania światła podczerwonego. Sensor wysyła wiązkę promieniowania, a następnie wykrywa wiązkę odbitą od przeszkody. Podobnie jak ma to miejsce w przypadku sensorów ultradźwiękowych, do badania odległości czujnika od przeszkody wykorzystuje się pomiar czasu, który upłynął od momentu wyemitowania wiązki z transmitera do momentu wykrycia odbitej fali świetlnej przez odbiornik. Dużą wadą sensorów tego typu jest niewielkia odległość od czujnika jaką możemy zbadać (zwykle około 2 m).

Czujniki i skanery laserowe

Ostatnim i jednocześnie najbardziej zaawansowanym sposobem badania sąsiedztwa robota są czujniki i skanery laserowe. Jest to szeroka grupa sensorów, które charakteryzują się niezwykle dużą precyzją i dokładnością. Pomimo wykorzystania wiązki laserowej, używane powszechnie czujniki tego typu są bezpieczne dla ludzkiego oka i nie wymagają szczególnych środków ostrożności. Mo9żemy wyróżnić dwie podgrupy sensorów wwykorzystujące wiązkę lasera. Pierwszą grupą są czujniki wysyłające pojedynczą wiązkę laserową w jednym kierunku. Precyzyjne pomiarowanie ułatwia fakt, niewielki kąt działania takiego czujnika wynoszący zazwyczaj od 0,5° do 1°. Drugą podgrupę czujników wykorzystujących wiązkę laserowa są skanery laserowe. Zasada działania takiego układu polega na tym, że

Pomimo tego, że czujniki tego typu doskonale sprawdzają się przy pomiarowaniu pomieszczeń i budowaniu mapy nieznanego obszaru, czujniki te mają jedną zasadniczą wadę, którą jest wysoki koszt sensora.

Czujniki ToF

Odrębną grupę czujników stanowią sensory typu Time of Flight. W rozwiązaniu tym wykorzystuje się pomiar czasu jaki wygenerowana wiązka światła widzialneg potrzebuje na powrót do czujnika po odbiciu się od przeszkody. W porównaniu do czujników ultrawiękowych i wykorzystujących podczerwień, sensory te posiadają duży zasięg oraz cechują się szybszą prędkością działania. Zasada ToF jest metodą pomiarów dystansu pomiędzy sensorem a obiektem napodstawie różnicy czasu pomiędzy momentem wygenerowania wiązki, a jej powrotem do sensora po odbiciu się od przedszkody/obiektu. Rozwiązanie takie jest w pełni bezpieczne dla ludzkiego oka i nie stanowi zagrożenia dla człowieka. Pomiarowanie pomieszczeń z wykorzystaniem metody ToF posiada jednak znaczące wady. Największe z nich jakie należy wymienić to większe zakłócenia w porównainiu do pomiarów czujnikami wykorzystującymi podczerwień i ultradźwięki. Zaletą takiego rozwiązaniajest duży zasięg czujników. Profesjonalne sensory mogą badać obszar oddalony nawet o 60 metrów od czujnika, choć ich koszt jest wysoki, wynosi około 400 zł.

Kamery

Do pomiarowania pomieszczeń z powodzeniem można wykorzystać także kamery i systemy wizualne. Co więcej wykorzystanie bardziej zaawansowanych kamer pozwala na tworzenie dwu i trójwymiarowych map badanego obszaru. Możemy wyróżnić dwa główne podejścia, które wykorzystywane są podczas korzystania z systemów wizualnych. Pierwsze z nich polega na tworzeniu określaniu krawędzi, idendyfikacji powierzchni, ścian i przeszkód na podstawie obrazu uzyskiwanego z kamery i odpowiednim przetworzeniu go. Połączenie obrazu z kamery oraz metod wykorzystywanych w symultanicznej lokalizacji i mapowaniu daje bardzo dobre eefekty, ale zazwyczaj cechuje się zwiększonym zapotrzebowaniem na zasoby sprzętowe moc obliczeniową. Drugi ze sposobów polega na wcześniejszym przygotowaniu pomieszczenia poprzez wyznaczenie w nim

kilku punktów charakterystycznych (np. plakietki z symbolem lub linii po której pojazd ma podążać). Pojazd podczas pracy określa swoją lokalizację na podstawie wyznaczonych wcześniej w ten sposób punktów charakterystycznych bądź podąża po wcześniej przygotowanej drodze.

Czujniki pola magnetycznego, przyspieszenia i prędkości kątowej

Kolejną grupą sensorów są czujniki przeznaczone do określania kierunku robota na podstawie wartości pola magnetycznego, przyspieszenia i prędkości kątowej. Są to odpowiednio: magnetometr, akcelerometr i żyroskop. Sensory takie występują zarówno pod postacią osobnych modułów dedykowanych pomiarom jedynie pojedynczych wielkości, jak i kilku czujników zintegrowanych w jednym układzie wykorzystującym do komunikacji jeden interfejs. Zazwyczaj głównym modułem jest magnetometr, a pozostałe elementy pełnią jedynie rolę pomocniczą i korekcyjną.

Realizacja prototypu pojazdu autonomicznego do pomiarowania pomieszczeń wewnątrz budynku

Faza prac konstrukcyjnych była poprzedzona etapem, w którym dokonano opracowania koncepcji działania pojazdu. Po przeanalizowaniu literatury i dostępnych materiałów, powszechnie stosowanych rozwiązań i dostępnych urządzeń opracowano koncepcję, w której najważniejszymi elementami są ultradźwiękowe czujniki odległości oraz kompas elektroniczny. Przyjęto, że robot powinien być uniwersalny i na każdym podłożu działać z taką samą skutecznością. Założono, że do określania kierunku i korekcji kursu robota wykorzystany zostanie magnetometr, a za badanie bliskiego sąsiedztwa robota odpowiedzialne będą sensory ultradźwiękowe. Dobór sposobu pomiaru i urządzeń pozwolił na skonstruowanie robota przy rozsądnych kosztach. W kolejnych rozdziałach opisano kolejne etapy prac nad próbą wdrożenia opracowanej koncepcji pomiarów, pojawiające się problemy oraz sposoby ich rozwiązania. W kilku następnych rozdziałach opisano natomiast całą konstrukcję prototypu oraz wszystkie wykorzystane komponenty elektroniczne.

Konstrukcja mechaniczna

Podwozie robota zostało złożone przy użyciu elementów z zestawu Black Gladiator firmy DFRobot. Szkielet pojazdu stanowi aluminiowa rama, do której przymocowano pozostałe elementy konstrukcji. Do poruszania się robot wykorzystuje gąsienice napędzane dwoma silnikami prądu stałego. Zarówno prowadnice gąsienic jak i same gąsienice wykonane są z tworzywa sztucznego. Zakres napięcia zasilania silników wynosi od 6 V do 12 V. Ich prędkość bez obciążenia wynosi od 170 do 350 obrotów na minutę. W czasie pracy bez obciążenia silniki pobierają 100 mA. Nadwozie robota stanowi lekka drewniana płytka odseparowana od podwozia za pomocą tulei dystansowych o długości 25 mm. W płytce znajduje się szereg wycięć i otworów ułatwiających podłączenie komponentów elektronicznych potrzebnych do poprawnego działania prototypu.

Płytka Nucleo STM32F103RB

Podczas tworzenia prototypu podjęto decyzję o wykorzystaniu zestawu NUCLEO -F103RB z rodziny STM32 Nucleo64. Jest on wyposażony w mikrokontroler STM32F103RBT6 w obudowie LQFP64. Jego rdzeń to 32-bitowy mikroprocesor ARM Cortex M3 o częstotliwości taktowania do 72MHz. Użyta płytka posiada siedem Timerów, 3 interfejsy USART, dwa przetworniki analogowo-cyfrowe (zarówno 12 jak i 16-kanałowy), dwa przyciski (jeden przycisk RESET i jeden do dyspozycji użytkownika) oraz debugger ST-Link/V2. Mikrokontroler wyposażony jest także w dwa interfejsy SPI i I2C. Złącze miniUSB udostępnia nam trzy różne

interfejsy: wirtualny port COM, pamięć masową oraz port do programowania i debuggowania. Niezwykle ważną zaletą zestawu jest elastyczny sposób zasilania całego układu. Nucleo64 umożliwia podłączenie zasilania w trzech różnych wariantach. Nucleo-F103RB może być zasilany poprzez złącze USB, lub za pomcą zewnętrznego źródła zasilania. W drugim przypadku mamy do wyboru wejście zasilania VIN, które można podłączyć do napięcia od 7V do 12 V (przy maksymalnym obciążeniu prądowym 800mA) oraz wejście zasilania E5V, które pozwala podłączyć napięcie w zakresie 4,75 – 5,35 V (przy maksymalnym obciążeniu prądowym 500mA).

Magnetometr i akcelerometr Pololu LSM303D

Podczas prac koncepcyjnych nad robotem założono, że najważniejszym czujnikiem robota będzie moduł LSM303D produkcji firmy Pololu. Układ zawiera w sobie 3-osiowy akcelerometr oraz magnetometr. Wbudowany regulator napięcia pozwala na zasilenie modułu napięciem z zakresu od 2,5V do 5,5V. LSM303D obsługuje dwie magistrale: I2C oraz SPI. Rozdzielczość akcelerometru i magnetometru wynosi 16 bitów na każdą oś. Układ może pracować w kilku zakresach czułości przyspieszenia/indukcji magnetycznej. Dla akcelerometru są to odpowiednio wartości: ±2, ±4, ±6, ±8, ±16 g. Dla magnetometru: 2, ±4, ±8, ±12 Gs. Moduł wyposażony jest dodatkowo w zintegrowany czujnik temperatury. Pobór prądu przez moduł LSM303D podczas pracy wynosi zaledwie 5mA.

Czujniki ultradźwiękowe HC-SR04

Do monitorowania pomieszczenia, w którym znajduje się robot wykorzystano popularne czujniki ultradźwiękowe HC-SR04. Przy doborze elementów odpowiedzialnych za sprawdzanie sąsiedztwa robota głównym czynnikiem była ich przystępność cenowa. Czujnik posiada nieduże wymiary 45 x 20 x 15 mm. Do jego stabilnego zamocowania w robocie użyto dedykowanych mu uchwytów montażowych. Sensory te pracują w zakresie od 2 cm do 200cm. Ich dużą wadą jest jednak wysokie napięcie zasilania potrzebne do poprawnej pracy. Wynosi ono aż 5 V. Ogranicza to możliwość swobodnego podłączenia czujnika do płytki, ponieważ musi on zostać podłączony do pinów tolerujących napięcie 5 V (ang. 5 V tolerant I/O). Obsługa czujnika polega na wystawieniu stanu wysokiego na odpowiednie wejście przez 10 mikrosekund. Czujnik wysyła falę akustyczną o częstotliwości 40 kHz. Odbita wiązka powraca do sensora. Sygnalizowane jest to stanem wysokim na wyjściu czujnika. Schemat procedury pomiarowej przedstawiono na rysunku poniżej.

Prędkość rozprzestrzeniania się fali dźwiękowej w powietrzu wynosi 340 m/s. Monitorując czas jaki upłynął od wysłania do odebrania wiązki z łatwością możemy obliczyć dystans przemierzony przez wiązkę zgodnie ze wzorem.

Test_distance = (high_level_time × velocity_of_sound (340m/s) / 2

Ostatecznie do wyliczenia odległości w programie komputerowym użyto wzoru przedstawionego poniżej.

distance [cm] = (high level time [us] * 34) / 1000 / 2

Dwukanałowy sterownik silników Pololu DRV8835

Do sterowania pracą obu silników w jakie wyposażony jest pojazd użyto dwukanałowego sterownika silników DRV8835 produkcji firmy Pololu. Układ ten pracuje z napięciem w zakresie od 2 V do 11V oraz prądem na kanał do 1,2 A. Wytrzymuje on także kilkusekundowe skoki natężenia prądu maksymalnie do 1,5 A. Część logiczna zasilana jest napięciem 3,3 V. Prędkość obrotową silników kontroluje się przy pomocy sygnału PWM o częstotliwości do 250 kHz. Moduł może pracować w dwóch trybach. Pierwszy z nich to prosty tryb PHASE/ENABLE, przy którym prędkość silników jest wprost proporcjonalna do stopnia wypełnienia sygnału PWM. Drugi z nich to zaawansowany tryb IN/IN MODE, który pozwala zarówno na sterowanie wprost proporcjonalne, jak i odwrotnie proporcjonalne do stopnia wypełnienia sygnału PWM. Sterownik posiada zabezpieczenie przed nieprawidłowym podłączeniem zasilania, co dodatkowo chroni konstrukcję elektroniczną robota przed przypadkowymi błędami przy konstruowaniu prototypu. Do tworzenia prototypu wykorzystano tryb PHASE/ENABLE.

Komunikacja bezprzewodowa: moduł Bluetooth HC-06 ZS-040

Komunikację bezprzewodową zrealizowano za pomocą modułu Bluetooth HC-06 ZS-040. Urządzenie komunikuje się poprzez szeregowy interfejs UART. Posiada piny do transmisji i odbioru danych (TX i RX), które pracują z napięciem 3,3 V. Sam moduł może być zasilana napięciem z zakresu 3,6 V do 6 V. Podczas pracy układ pobiera około 50 mA. Nadajnik posiada zasięg do 10 m, a jego moc i czułość wynoszą odpowiednio 4 dBm i 85 dBm. Urządzenie wspiera komendy AT, dzięki czemu istnieje możliwość zmiany domyślnych ustawień modułu. Do wyprowadzenia statusowego urządzenia została podłączona dioda LED, która sygnalizuje status poprawnego połączenia.

Moduł zasilania: ogniwa Li-ion 2600mAh

Na układ zasilania całego urządzenia składa się moduł z zestawem dwóch akumulatorów litowo-jonowych. Pojemność każdego ogniwa wynosi

Na moduł zasilania całej konstrukcji składa się moduł złożony z dwóch wydajnych akumulatorów litowo – jonowych firmy Xtar o pojemności 2600 mAh zbudowany w oparciu o oryginalne ogniwo firmy Samsung. Posiada on zabezpieczenie przed nadmiernym rozładowaniem , przeładowaniem, przeciążeniem, a także zwarciem. Użyte ogniwa, choć droższe od standardowych ogniw o około 20% zabezpiecza nas przed uszkodzeniami innych elementów elektronicznych użytych przy tworzeniu prototypu. Prąd łądowania akumulatorów wynosi 2 A, przy prądzie rozładowania 5 A. Napięcie nominalne każdego ogniwa wynosi 3, 7 V. Wymiary obu baterii wynoszą 18,4 x 69,2 mm.

Stabilizacja zasilania: kondensator 1000µF 25V

Do stablizacji układu zasilania użyto pojedynczego kondensatora elektrolitycznego o pojemności 1000 uF i maksymalnym napięciu 25V. Zarówno oba silniki jak i serwomechanizm podłączony został do tej samej linii co mikrokontroler. Wymusza to zastosowanie filtracji zasilania w celu eliminacji zakłóceń powstających przy działaniu tych elementów. Dzięki temu mikrokontroler nie resetuje ani nie zaicna się i zawsze działa stabilnie zgodnie z

naszymi oczekiwaniami. Zastosowanie osobnego źródła zasilania dla każdego modułu niepotrzebnie zwiększyłoby masę oraz stopień skomplikowania prototypu.

Wykorzystanie algorytmu DFS w połączeniu z algorytmem Trémauxa

W początkowym etapie projektu założono, że robot będzie badał całe pomieszczenie na podstawie algorytmu bardzo zbliżonego do algorytmu przeszukiwania w głąb (ang. Depth-First-Search). Poniżej opisano podstawowe założenia opracowanego algorytmu.

Pojazd może poruszać się w cztery strony (symbolicznie północ, południe, wschód, zachód). Robot może zostać umieszczony w dowolnym punkcie pomieszczenia, a jego symboliczne kierunki zostają wyznaczone na podstawi odczytu magnetometru. Kierunek, w którym znajduje się robot jest traktowany jako "północ". Reszta symbolicznych kierunków jest wyznaczana przez dodanie do aktualnego wartości odpowiednio: 90, 180 oraz 270 stopni. Następnie dzięki dzieleniu modulo przez 360 otrzymujemy wszystkie symbolicne strony świata. Traktujemy je jako osie, po których może poruszać się robot. Według tych kierunków następuje także korekta kursu, jeśli robot odchyli się za bardzo z osi jazdy.

Badanie bezpośredniego sąsiedztwa robota przeprowadzane jest za pomocą czterech czujników ultradźwiękowych umieszcznocyh z każdej jego strony. Przeszkoda wykrywana jest gdy odczyt z czujnika odległości wynosi mniej niż 25 cm. Dodatkowym zabezpieczeniem jest także czujnik dotykowy umieszczony z przodu robota. Zabezpiecza on przed niebezpieczną sytuacją, w której robot stoi nachylony do ściany pod dużym kątem. W takim przypadku odczyt z czujnika odległości będzie drastycznie zawyżony, a robot zderzy się ze ścianą lub inną przeszkodą, czego konsekwencją może być jego całkowite zablokowanie. Zastosowanie czujnika dotykowego pozwala zapobiec takiej sytuacji. Dzięki temu po zderzeniu z przeszkodą robot zatrzymuje się, wraca do punktu poprzedniego i oznacza obszar jako zajęty.

Niezwykle ważnym aspektem w zaprojektowanej metodzie pomiarowania jest dodatkowa macierz z mapą odwiedzonych komórek (jej rozmiar odpowiada rozmiarowi macierzy zajętości). Komórki w tej tablicy mogą przyjmować dwie wartości: odwiedzone lub nieodwiedzone, co w programie komputerowym odpowiada wartości boolowskiej. Początkowo wszystkie komórki przyjmują wartość nieodwiedzone (logiczne 0). Jedynym wyjątkiem jest tutaj komórka odpowiadająca pozycji początkowej robota. Analogicznie jak w macierzy zajętości jej współrzędnym odpowiada połowa długości tablicy. Zastosowanie dodatkowej tablicy reprezentującej odwiedzone już miejsca jest konieczne, żeby robot nie badał wielokrotnie tego samego miejsca. Inspiracją do pomiarowania pomieszczeń z wykorzystaniem dodatkowej tablicy reprezentującą zbadany już obszar był algorytm Trémauxa. Jest to trywialny algorytm, którego pierwotnym przeznaczeniem jest rozwiązywanie labiryntu. Jednak pomimo tego, doskonale nadaje się on do adaptacji przy badaniu pomieszczeń metodą podobną do metody DFS. Połączenie macierzy zajętości i macierzy miejsc odwiedzonych pozwala na skuteczne i łatwe w implementacji rozwiązanie przeznaczone do badania każdego rodzaju pomieszczenia, nawet tego o nieregularnych kształtach.

Reprezentacja pomieszczenia: dyskretyzacja pomieszczenia i macierz zajętości

Na etapie projektowania algorytmu pomiarowania pomieszczeń przyjęto założenie, że badany obszar reprezentowany jest jako macierz komórek. Każda komórka odpowiada kwadratowi o wymiarach 20 na 20 cm. Zakładamy, ze robot nie posiada żadnej informacji o pomieszczeniu, które ma zbadać. Rozmiar dwuwymiarowej tablicy jest stały w czasie działania programu i nie ulega zmianie. Może on jednak zostać rozszerzony lub zmniejszony przed przystąpieniem do pomiarów. Jako początkową wartość położenia pojazdu przyjmujemy połowę długości tablicy. Na potrzeby projektu założono początkowo, że wartości w macierzy mogą przyjmować jeden z trzech stanów: wolny, zajęty lub nieznany. Początkowo wszystkie komórki dwuwymiarowej macierzy przyjmują wartość nieznaną. Jedynie pozycja początkowa robota określona jest na początku jako wolna. Robot, wykonując automatyczny przejazd, sprawdza swoje sąsiedztwo w czterech kierunkach i na tej podstawie aktualizuje macierz zajętości. W przypadku wykrycia przeszkody oznacza odpowiednią komórkę jako zajętą. Robot wykonuje pomiary do momentu, w którym w macierzy zajętości pozostaje co najmniej jedna komórka o statusie nieznanym do której może dotrzeć i sprawdzić jej stan. Jeżeli w macierzy nie ma więcej takich komórek robot powraca w miejsce od którego zaczynał pomiary.

Problemy dotyczące poprawnego działania magnetometru w pomieszczeniach

W czasie prac nad pierwotną wersją prototypu urządzenia napotkano na niespodziewane i bardzo poważne problemy związane z kluczowym komponentem elektronicznym robota jakim jest kompas elektroniczny (moduł Pololu LSM303D). Przy próbie zaimplementowania mechanizmu skrętu robota zgodnie z głównymi kierunkami w jakich może się on poruszać, pojazd wykazywał się niestabilnym i nieprzewidywalnym działaniem. W celu zdiagnozowania źródła problemu dokonano badania i diagnostyki magnetometru oraz dokonano weryfikacji pomiarów pola magnetycznego.

Weryfikacja wskazań magnetometru LSM303D: Arduino Uno oraz dedykowana biblioteka Pololu

Pierwszym działaniem przeprowadzonym w ramach diagnostyki magnetometru było podłączenie go do mikrokontrolera Arduino Auno oraz sprawdzenie odczytu kompasu elektronicznego i wartości przyspieszeń przy użyciu dedykowanej biblioteki udostępnionej specjalnie dla tego modelu płytki przez firmę Pololu. Biblioteka pozwala na szybką kalibrację czujnika oraz udostępnia wygodny interfejs do odczytywania aktualnych wartości przyspieszenia, kierunku i wartości pola magnetycznego. Na obu przetestowanych mikrokontrolerach (STM32RBT6 i Arduino Uno) wskazania magnetometru były bardzo zbliżone, wobec czego przystąpiono do dalszej weryfikacji wartości pola magnetycznego z wykorzystaniem innego modułu magnetometru.

Weryfikacja wskazań magnetometru: Nucleo STM32F411E Discovery wraz z układem LSM303DLHC

Do celu dalszej diagnostyki wartości pola magnetycznego wykorzystano mikrokontroler z rodizny STM Nucleo STM32F411E Discovery. Posiada ona wbudowany moduł magnetometru LSM303DLHC zintegrowany z akcelerometrem. Zastosowana płytka nie posiada wbudowanego portu COM, dlatego do odczytania aktualnych wskazań pola magnetycznego

wykorzystano konwerter UART – USB, która pozwala na komunikację płytki z komputerem i umożliwia wygodną transmisję danych oraz odczytanie transmitowanych wyników w terminalu. Porównując wskazania modułu LSM303DLHC oraz modułu LSM303D nie zauważono jednak znaczących różnic przy pomiarach pola przy dwóch ustawionych obok siebie modułach. Szczególną uwagę zwrócono natomiast na różnice wskazań kierunku w zależności od umiejscowienia kompasu elektronicznego na powierzchni stołu, na którym wykonywano pomiary. Aby upewnić się, że wartości odczytane z sensorów magnetycznych cechują się jak najmniejszym błędem, przeprowadzono dalszą analizę problemu z uwzględnieniem możliwych niedokładności powstałych na skutek wychylenia układu względem jego płaszczyzny poziomej.

Magnetometr: kalibracja i kompensacja przechyłu

W celu eliminacji błędów związanych z wypoziomowaniem płytki wykorzystano metodę kompensacji przechyłu. Metoda ta polega na jednoczesnym wykorzystaniu zarówno wskazań magnetometru jak i wartości odczytanych z akcelerometru. Na rysunkach poniżej przedstawiono schematy z noty aplikacyjnej producenta modułu, obrazujący omawiane przechylenia. Istnieje kilka różnych metod wyznaczenia kątów wychylenia i skorygowanych wartości pola magnetycznego. W projekcie skorzystano ze sposobu opisanego w instrukcji użytkownika i w nocie aplikacyjnej układu.

Do wyznaczenia wychylenia podłużnego i poprzecznego (ang. pitch and roll) posłużono się dwoma wzorami wykorzystujące dane z akcelerometru.

Roll = atan(A_z / A_y) Pitch = atan($-A_x / (A_y * sin(Roll) + A_z * cos(Roll))$)

Gdzie A_x, A_y, A_z oznaczają wartości odczytane z sensora przyspieszenia

Obliczone w ten sposób wartości wychyleń wykorzystujemy następnie do wyznaczenia znormalizowanych wartości wektorów pola magnetycznego.

$$X_h = Y_M * cos(Roll) - Z_M * sin(Roll)$$

$$Y_h = X_M * cos(Pitch) + Y_M * sin(Pitch) * sin(Roll) + Z_M * sin(Pitch) * cos(Roll)$$

Gdzie X_h , Y_h oznaczają znormalizowane wartości wektora magnetycznego, a wartości X_M , Y_M , Z_M oznaczają nieprzetworzone wartości odczytane z sensora magnetycznego.

Aby obliczyć znormalizowany kierunek wstawiamy wyliczone wartości do wzoru:

Heading =
$$atan(Y_H / X_H)$$

Obliczona wartość może jednak przyjąć wartość mniejszą od zera, dlatego ostateczną wartość naszego kierunku otrzymujemy wykonując prostą operację modulo zgodnie ze wzorem umieszczonym poniżej.

$H = (Heading + 360) \mod 360$

Testy zaimplementowanej kompensacji przechyłu wykazały, że znormalizowane wartości wektora pola magnetycznego wykazują się dużą stabilnością. Przy wychyleniu 45 stopni błąd bezwzględny kierunku wynosił około 2 stopnie. Przed zastosowaną normalizacją nie było możliwości poprawnego odczytu kierunku przy tak dużym odchyleniu układu. Porównanie wskazań magnetometru LSM303D oraz modułu LSM303LDHC nie przyniosło jednak odpowiedzi na pytanie o przyczynę nieprzewidywalnej jazdy pojazdu przy korzystaniu z magnetometru. Po weryfikacji poprawności wskazań układu LSM303D kolejnym krokiem było więc zbadanie odczytów z magnetometru umieszczonego bezpośrednio na robocie.

Zmiana położenia modułu z magnetometrem i wykorzystanie serwomechanizmu

Aby przetestować działanie magnetometru podczas pracy robota moduł LSM303D odseparowano od innych urządzeń i przewodów umieszczając go na osobnej płytce stykowej. Następnie wykonano serię odczytów przy włączonych i wyłączonych silnikach. Wszystkie odczytane przyspieszenia miały wartości poprawne, jednak odczyty z sensora magnetycznego wykazywały się dużą zależnością od miejscu ułożenia płytki stykowej z modułem oraz pracy silników elektrycznych. Moduł LSM303D jest urządzeniem czułym, mocno reagującym na kontakt ze wszystkimi metalowymi elementami i urządzeniami wytwarzającymi pole elektromagnetyczne. Aby zaradzić temu problemowi zastosowano podkładkę przyklejoną do serwomechanizmu dodanego na przedzie robota. Serwomechanizm dodano w celu weryfikacji odczytów z magnetometru przed i po wykonaniu obrotu przez pojazd. Robota zaprogramowano w taki sposób, aby sam wykonał próbę skrętu o 90 stopni. Przebieg badania wyglądał następująco:

- obrót serwa o 90 stopni i odczyt kąta wartości referencyjnej
- powrót serwa do położenia 0 stopni
- powolny skręt robota przy jednoczesnym odświeżaniu aktualnych wartości z sensora magnetycznego
- zatrzymanie robota w momencie kiedy wartość bezwzględna różnicy wartości referencyjnej i

aktualnego kąta jest mniejsza od 15 stopni (umyślna duża tolerancja – pewność, że nie skręcimy za daleko)

W wyniku testu okazało się jednak, że zastosowanie modułu LSM303D w takim układzie jeszcze bardziej potęguje problem. Ostatecznie do serwomechanizmu doklejona została cienka płytka z tworzywa sztucznego, na której końcu umieszczono magnetometr. Pozwoliło to na całkowite odseparowanie magnetometru od wszelkich źródeł pola magnetycznego. Początkowo obiecujące testy wykazały jednak, że stabilność pracy pojazdu wykorzystującego do skrętów magnetometr jest silnie skorelowana z miejscem w jakim znajduje się robot. Zachowanie takie dało powody do przypuszczeń, że błędy w pracy prototypu spowodowane są bardzo dużymi zewnętrznymi zakłóceniami magnetycznymi.

Niestabilność pola magnetycznego przy badaniu pomieszczeń

W celu potwierdzenia podejrzeń o wpływie zewnętrznego pola magnetycznego na pracę robota, przeprowadzono szereg pomiarów w pomieszczeniach, w którym robot był do tej pory budowany i testowany. Pomiary rozpoczęto od zbadania odczytu wszystkich wektorów z sensora magnetycznego opisanego wcześniej modułu LSM303LDHC (wraz z kompensacją przechyłu). Zbadane wartości drastycznie różniły się w zależności od umiejscowienia magnetometru w pomieszczeniu. Ogromnym różnicom podlegały nie tylko odczyty z sensorów w osi poziomej (X, Y), ale także odczyt z sensora osi pionowej. Pionowy wektor pola magnetycznego jest stały dla danej szerokości geograficznej i nie zmienia się nawet w dużej odległości od konkretnego punktu. Kierunek wskazywany przez magnetometr porównano także z kompasem elektronicznym w telefonie komórkowym. W obu przypadkach otrzymano identyczne odchylenia od normy. Ostatecznego potwierdzenia wpływu zewnętrznego pola magnetycznego na pomiary dokonano tradycyjnym kompasem analogowym. Również w tym przypadku kierunek północny zależał od miejsca ułożenia kompasu. Wskazania z kompasu analogowego zgadzały się ze wskazaniami kierunku z modułu LSM. Trudnością w szybkim zidentyfikowaniu problemu było testowanie wskazania kierunku północnego w jednym miejscu podczas pracy z modułem przy biurku i komputerze. Moduł LSM testowany wraz z kompensacją przechyłu tylko w jednym punkcie, działał stabilnie i zgodnie z przewidywaniami. Utrudniło to szybką identyfikację problemu.

Źródła i przyczyny niepoprawnych wskazań magnetometru

Podczas przeprowadzonych testów nie udało się określić jednego punktu, z którego pochodziłyby zakłócenia. Nie zaobserwowano, żeby rozchodziły się one koncentrycznie lub liniowo. Szczególnym zaskoczeniem okazała się być niestabilność wektora magnetycznego skierowanego do ziemi. Za główną przyczynę problemu można podejrzewać bezpośrednie sąsiedztwo linii wysokiego napięcia z badanymi pomieszczeniami (testy prowadzono w budynku stojącym 30 metrów od słupów energetycznych). Dodatkowo zaobserwowano silną korelację pomiędzy bliskością podłoża a skalą błędów. Z tego powodu można wywnioskować, że wpływ na błędne wskazania mają w tym przypadku także elementy zbrojenia budynku. Używanie magnetometru wewnątrz pomieszczeń wiąże się zwykle z niewielkimi zakłóceniami, ale nie wpływają one znacząco na działanie magnetometru. Układy tego typu z powodzeniem stosowane są nawet w amatorskiej automatyce i robotyce. Dlatego skala zjawiska napotkana podczas pracy na prototypem robota w badanych pomieszczeniach nie była brana na początku pod uwagę. Ogromne zakłócenia przy pomiarach pola magnetycznego sprawiają, że robot opierający swe działanie na pomiarach kierunku pozbawiony jest uniwersalności, a jego użycie ogranicza się do miejsc, w których nie występuje promieniowanie elektromagnetyczne tła. Z tego powodu na dalszym etapie prac dokonano modyfikacji początkowych założeń projektowych w taki sposób, aby zachować uniwersalność robota.

Opracowanie alternatywnego sposobu opomiarowania pomieszczeń

Niespodziewane problemy przy wyznaczaniu kierunku z wykorzystaniem magnetometru sprawiły, że pojawiła się konieczność zmiany pierwotnie opracowanej i przyjętej koncepcji. Zmiana sposobu pomiarów wiązała się z koniecznością zamiany zastosowanych części i elementów elektronicznych. Wiązałoby się to jednak ze znacznym zwiększeniem kosztów finansowych przeznaczonych na budowę prototypu. Z tego względu podjęto decyzję o zachowaniu dotychczasowej konstrukcji mechanicznej robota. Zdecydowano się na opracowanie nowej koncepcji pomiarów opierającej się na pomiarowaniu pomieszczeń w oparciu o usytuowanie ścian.

Badanie otoczenia na podstawie przejazdu robota wzdłuż ścian

W przyjętej koncepcji alternatywnej cały ciężar badania oparto na czujnikach ultradźwiękowych. Zmiana koncepcji badania pociągnęła za sobą konieczność zmiany ułożenia czujników i opracowanie szeregu mechanizmów korygujących błędy i niedokładności. Nowa forma pomiarów uniemożliwiła jednakże zrealizowanie wcześniej przyjętego założenia o sprawdzeniu całej powierzchni badanych pomieszczeń. Nowo opracowana koncepcja wymusiła zmiany dotyczące macierzy zajętośći. W nowym algorytmie pomiarowania macierz zajętości przyjmuje domyślnie dwa stany wolny i zajęty. Dodatkowa macierz miejsc odwiedzonych w tym przypadku nie jest wykorzystywana.

Przebudowa robota

Początkowa koncepcja alternatywnej pracy robota obejmowała dokonywanie pomiarów przed i po każdym skręcie (zarówno w lewo jak i prawo). Z tego powodu czujnik odległości HC-SR04, który znajdował się na przodzie robota zamieniono na bardziej efektywny czujnik HY-SRF05. Charakteryzuje się on lepszymi parametrami pomiarów, ponieważ potrafi wykrywać przeszkody w zakresie od 2 do 400 cm. Dodatkowo należało ulepszyć metodę badania przeszkód na prawym boku robota. W prototypie przyjęto, że robot będzie badał położenie ścian z przodu i po swojej prawej stronie. W celu dokładnego określania odległości od ściany i kąta odchylenia robota, na prawym boku zamontowano dwa czujniki HC-SR04, w odległości 17 cm.

Wykorzystanie odeometrii i czujników odległości

W alternatywenj wersji algorytmu główną rolę przy pomiarowaniu spełnia odometria. Pojazd stale monitoruje kierunek, w którym się porusza. Jadąc wzdłuż ściany, w czasie rzeczywistym modyfikuje macierz zajętości. Po każdym ruchu na bieżąco aktualizuje także swoją obecną pozycję. Do orientacji w przestrzeni robot wykorzystuje czujniki odległości HC-SR04 i wspomniany powyżej HY-SRF05. Przedni sensor sprawdza, czy przed pojazdem znajduje się przeszkoda i czy istnieje możliwość jazdy do przodu. Dwa boczne czujniki mają na celu monitorowanie otoczenia po prawej stronie pojazdu. Za ich pomocą dokonujemy sprawdzenia, czy istnieje możliwość skrętu w prawo, a także określamy odpowiedni kurs pojazdu. Robot nie porusza się ruchem jednostajnym, lecz bada pomiezczenie etapami. Po sprawdzeniu, czy przed robotem nie ma przeszkody robot przesuwa się do przodu o odległość 20 cm. Zastosowanie gąsienic i dopasowanie pracy ich prowadnic pozwoliło uniknąć niepożądanego poślizgu.

Określenie kierunku i położenia robota

W alternatywnej wersji projektu przyjęto bardzo zbliżone założenia dotyczące określania kierunku robota. Zakładamy, że pojazd może poruszać się w czterech różnych kierunkach (północ/góra, południe/dół, wschód/prawo, zachód/ lewo). Przeważająca większość pomieszczeń posiada proste, regularne kształty, a ściany w nich nachylone są do siebie pod kątem 90 stopni. Dzięki temu robot sprawdza się przy pomiarowaniu więszkości wnętrz budynków. Bardzo ważnym mechanizmem, który zaimplementowano w celu bezbłędnego skręcania pojazdu jest system kontroli odległości od elewacji przed i w czasie obrotu robota. Określenie pozycji robota określa się w oparciu o kartezjański układ współrzędnych. Współrzędne w projekcie traktowane są jako para liczb całkowitych.

Początkowo określanie pozycji robota miało odybwać się z wykorzystnaiem liczb zmiennoprzecinkowych, na pdstawie odczytów z frontowego czunika odległości HY-SRO4(POPRAWIĆ NAZWĘ). Zaplanowany początkowo algorytm zawierał kilka prostych

króków. W momencie rozpoczęcia odczytujemy odległość z przedniego czujnika. Dokonujemy jazdy prosto do momentu, w który mmamy możliwość wykonania skrętu w lewo lub prawo. Wykonujemy skręt, a następnie pomiar odległości. Powtarzamy czynności aż do znalezienia się w tym samym punkcie, względnie zliczenia podobnych odległości we wszystkich kierunkach. Niestety przy natrafieniu na załamania, filary itp. czujnik ultradźwiękowy nie jest w stanie dostarczyć precyzyjnych wskazań odległości. Metoda ta została więc odrzucona już na etapie wstępnych testów podczas jej wstępnych testów.

Sposób jazdy i korekta kierunku

Jednym z kluczowych mechanizmów korygujących jazdę jest system kontroli położenia robota względem ściany, wzdłuż której porusza się robot.

Na potrzeby projektu opracowano specjalną metodę przejazdu robota wraz z mechanizmem korekcji błędów. Mechanizm pomiarowania i tworznia mapy pomieszczenia wykorzystuje zliczanie ilości ruchów wykonywanych w poszczególnych osiach, w których robot może się poruszać. Robot wykonuje pomiary, dopóki nie przejedzie całego pomieszczenia wzdłuż jego ścian. W momencie, gdy pojazd skierowany jest w kierunku startowym oraz znajduje się w tym samym miejscu, w którym zaczynał pomiar badanie pomieszczenia kończy się.

Podczas tworzenia prototypu eksperymentalnie dobrano odpowiednią wartość wypełnienia sygnału PWM dostarczanego do sterownika silników. Jest ona dobrana w taki sposób, aby robot bez problemu ruszał z miejsca, ale prędkość gąsienic nie była zbyt duża, ponieważ zbyt szybkie przesuwanie gąsienic na prowadnicach powoduje bardzo niepożądane poślizgi. Prędkość lewego silnika jest o około 20% większa niż silnika lewego. Wartość tą dobrano eksperymentalnie. Podejście takie pozwala na stabilną jazdę wzdłuż elewacji. Pojazd nie odchyla się znacząco od oczekiwanego kierunku jazdy. Podczas poruszania się na wprost robot nieustannie koryguje swój kurs względem badanej elewacji. Korekta ta polega na sprawdzeniu kąta nachylenia oraz odległości środka robota do ściany. Do tego celu wykorzystano dwa czujniki umieszczone po prawej stronie robota rozlokowane 17 cm od siebie. Jeżeli odległość do wykrytej przeszkody od prawego czujnika przedniego jest mniejsza niż 20 cm, a kąt jest większy niż 45 stopni, w celu natychmiastowego wyrównania kierunku jazdy uruchomiony jest mechanizm wyrównania kąta i przyjęcia minimalnej odległości. System ten został zaimplementowany w ten sposób, że nie ma mowy o znaczącym wpływie tego mechanizmu korekcyjnego na odmierzaną odległość / odmierzanie przemierzonej odległości.

Przed wykonaniem skrętu w prawo pojazd dokonuje odczytu z prawego czujnika odlgłości. Odczyt ten traktowany jest jako wartość referencyjna. Robot obraca się następnie dopóki odczyt z przedniego czujnika odległości nie będzie taki sam jak odległość referencyjna. W celu eliminacji błędów przy obrocie zastosowano tolerancję 8 cm. Ten sam schemat realizowany jest dla skrętu w lewo, z tą różnicą, że wartość referencyjna pobierana jest z czujnika przedniego, a odległość aktualną odczytujemy z czujnika prawego. Dodatkowo po wykonanym skręcie robot przeprowadza kontrolę równoległego położenia względem ściany. Pojazd dokonuje sprawdzenia czy nachylenie robota do ściany jest nie większe niż 4 stopnie. W przeciwnym wypadku robot dokonuje dalszej korekty, aby robot ustawił się równolegle do ściany.

Tuż po obrocie w prawo czujniki odległości wykrywają wolną przestrzeń po jego prawej stronie. Aby robot nie zawrócił zastosowano w tym przypadku dodatkowy mechanizm protekcji trasy i dodatkowy licznik (jeżeli robot nie napotyka wolnej przestrzeni po swojej prawej stronie licznik automatycznie przywracany jest do stanu początkowego).

). Jeżeli obszar przed robotem i po jego prawej stronie jest wolny, wówczas licznik jest inkrementowany a robot porusza się do przodu. Jeżeli po tym ruchu sytuacja się powtarza robot ponownie porusza się do przodu.

Dopiero po tych czynnościach robot może ponownie skręcić w prawo. Zapobiega to zawracaniu robota i jego obracaniu się w kółka, a dwukrotne przejechanie w przód chroni także przed błędnymi wyliczeniami kątów i odległości z sensorów ultradźwiękowych.

Jeżeli robot nie napotka wolnej przestrzeni licznik przywracany jest do stanu początkowego.

Dodatkowym zabezpieczeniem przed wpadnięciem robota na przeszkodę, co mogłoby spowodować błędy w pomiarach lub całkowite zablokowanie się, jest kontrola odległości do przeszkody wykonywana przed skrętem. W przypadku zbyt bliskiej odległości do przeszkody robot wykonuje manewr cofnięcia się o 5 cm.

Zakończenie pomiarów i korekta współrzędnych

Istotnym mechanizmem zaprojektowanym do korekty błędów i niedokładności przy pomiarowaniu pomieszczeń jest korekta błędów przy wyznaczaniu pozycji robota i korekta jego współrzędnych., Robot kończy prace po przejechaniu trasy wzdłuż ścian pomieszczenia. Zakończenie działania pracy pojazdu uwarunkowane jest znalezieniem się w tym samym miejscu, w którym rozpoczęto pracę. Dodatkowo aktualny kierunek robota musi pokrywać się z kierunkiem początkowym. W zaimpoementowanym algorytmie kierunek początkowo zawsze przyjmowany jest jako północ (góra). Istnieje niebezpieczeństwo, że przy licznych skrętach i niekorzystnym ułożeniu ścian i przeszkód robot błędnie określi swoje współrzędne. W celu zabezpieczenia się przed taką sytuacją warunek zakończenia pracy obudowano dodatkowym sprawdzeniem, czy różnica początkowej współrzędnej jej aktualnej wartości nie jest większa lub równa jeden (dotyczy obu współrzędnych X i Y w kartezjańskim układzie współrzędnych).

Peryferia i spis wyprowadzeń

Aplikacja do komunikacji pomiędzy robotem a komputerem (środowisko .NET)

Do sterowania prototypem stworzono aplikację przeznaczoną na komputery PC. Aplikacja zostałą napisana w środowisk .NET z wykorzystaniem języka C# oraz technologii Windows Forms. Przy projektowaniu zachowania robota przewidziano dwa główne tryby działania: tryb automatyczny oraz dodatkowy tryb ręcznego sterowania.

Tryb autonomiczny

Pierwszy zaprojektowany tryb pracy robota to tryb autonomicznego badania i opomiarowywania pomieszczeń. W trybie tym użytkownik wydaje robotowi polecenie rozpoczęcia wykonania pomiarów i czeka aż robot zbada całe pomieszczenie i zakończy pomiary. Użytkownik może w każdej chwili ręcznie przerwać pomiary. W trybie tym robot na bieżąco aktualizuje mapę z badanym pomieszczeniem.

Prezentacja wyników przedstawiona jest jako macierz komórek, które robot genruje na podstawie przejazdu podczas autonomicznej jazdy i badania pomieszczenia. Wszystkie komórki macierzy początkowo przyjmują wartość '_'. W miejscach, w których robot podczas pomiarów w trybie autonomicznym wykrył przeszkodę w macierzy zapisywana jest wartość 'X'. Pozwala to na wygodną i szybką prezentację wyników pomiarów.

Tryb zdalnego sterowania

Drugim zaprojektowanym modelem działania jest tryb zdalnego sterowania. Pracując w tym trybie, robot zachowuje się jak robot inspekcyjny. Użytkownik posiada wygodny interfejs do służący do sterowani i jazdy robotem. Za pomocą grupy przycisków wydaje rozkazy do jazdy w przód, tył, lewo i prawo. Program wysyła żądania użytkownika bezpośrednio do robota za pośrednictwem komunikacji bezprzewodowej.

W trybie inspekcyjnym robot nieustannie monitoruje użytkownika aplikacji o swoim stanie. Aplikacja w trybie rzeczywistym aktualizuje informację o stanie robota, wskazania ze wszystkich czujników odległości zamontowanych w robocie, a także z czujników z układu LSM303D zamontowanego na pokładzie robota. Dzięki temu użytkownik widzi odległości oraz pochylenia podłużne i poprzeczne całej konstrukcji.

Testy robota i zaprojektowanego algorytmu oraz aplikacji do komunikacji w warunkach rzeczywistych

Prototyp robota poddano licznym testom i próbom. Testy rozpoczęto od sprawdzenia zachowania robota przy warunkach brzegowych, w których robot otoczony jest ze wszystkich stron znajdującą się w niewielkiej odległości przeszkodą. Robot czterokrotnie powinien odnotować przeszkodę i brak możliwości skrętu w prawo lub jazdy na wprost, po czym powinien obrócić się w lewo. Czterokrotny powtórzenie tej czynności kończy pomiary, a ich wynikiem jest odnotowanie w macierzy zajętości pojedynczej komórki otoczonej przez cztery komórki oznaczone jako przeszkoda. Testy te pokazały, że korekta błędów przy skręcaniu w lewo jest niewystarczająca. Pojazd przy skręcie początkowo korygował swoją pozycję do momentu, w którym kąt nachylenia do ściany był nie większy niż 15 stopni. Kąt ten okazał się zbyt duży, a dalsze eksperymenty pokazały, że do osiągnięcia wymaganej precyzji potrzeba ograniczenia wartości progowej poniżej 8 stopni.

Kolejnym testem była seria przejazdów robota w przygotowanym korytarzu o szerokości około 45cm. Podczas prób okazało się, że zaproponowana korekta błędu dotycząca korekty odchylenia nie spełnia w wystarczającym stopniu swoich założeń. Pojazd podczas jazdy zachowywał się bardzo dużą niestabilnością jeżeli chodzi o nachylenie do ściany podczas jazdy (miejscami nachylenie wynosiło nawet ok. 45 stopni). Aby poprawić efektywność mechanizmu korekcji błędów podczas jazdy przy ścianie wprowadzono serię poprawek i ulepszeń. Zmniejszono minimalną odległość wymaganą podczas jazdy przy ścianie. W konsekwencji zredukowano także dystans wykrycia ściany przed robotem. Powstało jednak niebezpieczeństwo, że robot może zahaczyć o przeszkodę, która znajdzie się zbyt blisko, co zniekształci pomiary, a w najgorszym przypadku całkowicie zablokuje pracę pojazdu. Spowodowało to jednak konieczność wprowadzenia mechanizmu wycofującego robota o 5 –

10 cm jeżeli znajduje się on niemal na przeszkodzie. Na koniec zmniejszono graniczne wartości kąta, przy której następuje korekta kursu co również znacząco wpłynęło na płynność jazdy. Wszystkie zastosowane techniki pozwoliły na znaczące ustabilizowanie toru jazdy robota co ma kluczowe znaczenie przy określaniu wartości danej komórki w macierzy zajętości. Żeby dobrze odwzorować pomieszczenie robot musi zachowywać się w sposób przewidywalny i stabilny.

Kolejnym etapem było sprawdzenie poprawności działania robota na w teście, który wymaga zarówno skrętu w lewo jak i w prawo. Podczas próby robot bardzo dobrze poradził sobie z odwzorowaniem badanego obszaru, a ulepszenia zaimplementowane do skrętu w lewo oraz ich odpowiednik do skrętu w prawo działały bez zarzutu.

Po wszystkich wymienionych testach przyszedł czas na przetestowanie robota w prawdziwych i realnych pomieszczeniach. Robot został sprawdzony w kilku pomieszczeniach. Zarówno tych prostokątnych, jak i tych nieregularnych, wymagających skrętów zarówno w lewo jak i prawo. Podczas testów zmodyfikowana jeszcze wartość graniczną kąta sprawdzenia nachylenia do ściany po skręcie (dwukrotne zmniejszenie wartości). Po zmianie kąta powtórzono całą serię testów od samego początku. Zachowanie robota dla wszystkich wcześniej wymienionych testów okazało się równie skuteczne jak poprzednio, a w testach w warunkach rzeczywistych na większym obszarze dało w rezultacie większą stabilność toru jazdy.

Do prezentacji wyników i weryfikacji poprawności działania algorytmu i zastosowanych mechanizmów wykorzystano stworzoną uprzednio aplikację z graficznym interfejsem użytkownika napisaną z wykorzystaniem technologii .NET. Aplikacja okazała się być niezwykle użyteczna przy prezentacji wyników i pomagała w wygodny sposób na weryfikację rezultatów każdego pomiarowania, szczególnie, że pole z wynikami pozwala nam nie tylko na prezentację wartości macierzy, ale także wydrukowanie innych dodatkowych informacji. Przez cały okres testów aplikacja działała stabilnie, ani razu nie zrywając połączenia.

Stopień realizacji wymagań funkcjonalnych i pierwotnych założeń

Podczas pracy nad prototypem udało się zrealizować większość założeń i wymagań przyjętych przed rozpoczęciem pisania pracy i tworzeniem projektu. Problemy z poprawnymi wartościami wskazań kompasu elektronicznego wewnątrz wszystkich badanych pomieszczeń okazały się bardzo poważnym problemem, który można obejść przy zastosowaniu o wiele bardziej zaawansowanych algorytmów w połączeniu np. z czujnikami laserowymi. Poważnie

podniosłoby to jednak koszt całego projektu. Istnieją także inne metody pomiarów wiążące się także m.in. z koniecznością wcześniejszego oznaczenia kilku punktów odniesienia do poprawnej pracy robota. Stoi to jednak w sprzeczności z początkowo przyjętym założeniem o w pełni autonomicznej pracy robota bez udziału człowieka w całym procesie. Elementami pracy, którego nie udało się w pełni osiągnąć jest bardzo dokładne zbadanie całego obszaru wewnątrz pomieszczenia. Początkowo pomiarowanie pomieszczeń miało być wykonane w oparciu o przejazd po całym obszarze. Robot miał wykonywać badania dopóki w macierzy zajętości pozostaje chociaż jedna niezbadana komórka. Problemy błędnych wskazań magnetometru okazały się jednak przeszkodą nie do pokonania i wymusiły drastyczną modyfikację tego założenia. Konsekwencją tego jest także to, że robot umieszczony w dowolnym punkcie pomieszczenia nie odnajdzie poprawnej drogi, przez co powinien zostać umieszczony w pobliżu ściany. Zmodyfikowany algorytm badania działa jednak w bardzo zadowalający sposób. Chociaż jego poprawne zaimplementowanie okazało się być trudnym, złożonym i czasochłonnym zadaniem. Szczególnie, że wprowadzenie zmian i ulepszeń na etapie znacznego zaawansowania projektu skutkowało koniecznością sprawdzenia wszystkich warunków brzegowych i przeprowadzenia serii wszystkich testów na nowo.

Wady i zalety metod opomiarowania zaproponowanych w projekcie

Pierwotnie opracowana koncepcja pomiarowania pomieszczeń wewnątrz budynku pozwala na zbudowanie pełnej i kompletnej mapy całego badanego obszaru. Metoda polegająca na wykorzystaniu magnetometru w połączneiu z czujnikami ultradźwiękowymi pozwala na precyzyjne zmapowanie pomieszcenia. Niestety jak okazało się podczas prac jest ona zależna on promieniowania elektoromagnetycznego tła. Robot taki będzie działał tylko w sprzyjających warunkach. W przypadku pojawienia się jakichkolwiek zakłóceń mogą one całkowicie uniemowżliwić poprawne działanie robota. Pojazd pracuje wtedy niestabilnie i nieprzewidywalnie. Niestety uzupełnienie kompasu elektronicznego o żyroskop, ze względu na źródło charakter i skalę problemu nie przyniesie w tym przypadku pożądanych efektów. Alternatywne rozwiązanie, które wymyślono w zastępstwie uniezależnia poprawne dziąłanie prototypu od wszelkich zakłóceń elektromagnetycznych. Wykorzystanie do badania pomieszczeń koncepcji wykorzystującej przede wszystkim ultradźwiei pozwoliło wyeliminować problem zakłócen elektromagnetycznych. Wadą tego rozwiązania jest w ty przypadku uzależnienei robota od ścian. Robot najlepiej sprawdza się w pomieszczeniach o regularnych i standarowych ksztatach takich jak korytarze, pokoje, sale i pomieszcenia o układzie ścian i krawędzi pod kątem 90 stopni.

Dalsze prace

Skonstruowany prototyp porusza wiele trudnych i skomplikowanych zagadnień. Nie wszystkie tematy zostały w pełni rozwinięte. Zastosowana konstrukcja umożliwia jednak dalsze rozwijanie stworzonego pojazdu. Przede wszystkim robot może zostać rozbudowany o urządzenia potrzebne do badania pomieszczeń z wykorzystaniem algorytmu SLAM. Zastosowanie mocnego napędu gąsienicowego o dobrych parametrach umożliwia duże zwiększenie masy pojazdu i wyposażenie go w profesjonalny skaner laserowy. Pojazd można uzupełnić także o dodatkowe czujniki i sensory takie jak czujnik wilgotności, czujnik natężenia światła itd. Dodatkowo po dodaniu kamery robot może pracować jako robot inspekcyjny be z konieczności bezpośredniej obserwacji pojazdu przez użytkownika.

Podsumowanie i wnioski

Przedstawione w niniejszej pracy etapy projektu doskoanle pokazują jak skmplikowanym zagadnieniem jest tematyka związan a z konstrukcją robotów autonomicznych, które potrafią pomiarować pomieszczenia wewnątrz budynku. Do poprawnego dziłania takiego pojazdu wymagane jest precyzyjne określenie jego położenia oraz jednoczesne badanie obszaru w bezpośrednim sąsiedztwie robota. Prace nad prototypuem uwidocnziły także problemy, które mogą pojawić się w prostszych konstrukcjach tego typu. Niespodziewane zakłócenia lub nieprawidłowości w działaniu jednego z sensorów powodują niepoprawne działanie całego pojazdu, uniemożliwiają jego stabilne i przewidywalne działaniae, przez co robot nie nadaje się do użytku. Doskonale pokazuje to, że do niezawodnego działania robotów autonomicznych w każdych warunkach wymagane jest zastosowanie wysokiej jakości komponentów i czujników. Oczywistą tego konsekwencją jest jednak drastyczne zwiększenie kosztów ze względu na ceną używanych w takim projekcie elementów i sensorów. Napotkane niespodziewanie problemy z działaniem magnetmoetru w pierwotnie opracowanej koncepcji wymusiło konieczność modyfikacji wstępnych załozeń projektowych i wymagań funkcjonalnych robota. Opracowanie odpowiedni koncecpji, skonstruowanie robota oraz zaimplementowanie wszystkich kpotrzebnych mechanizmów korygujących było zajęciem czasochłonnym i wymagającym. Główną wadą koncepcji alternatywnej była konieczność ograniczenia się do pomiarowania pomieszczenia jedynie przez wykorzystanie przejazdu wzdłuż ścian. Uniezależniło to jednak pojazd od promieniowania elektormagnetycznego tła. Pomimo dużych trudności napotkanych w projekcie, dzięki obmyśleniu szeregu mechanizmów korekcyjnych oraz korygujących i sprawdczających położenie i oreientację robota na badanym obszarze udało się opracować skuteczny mechanizm pomiarowania pomieszczen wewnątrz budynku. Co więcej, generowane podczas testowych przejazdów roba mapy niezwykle dokładnie odwzorowują kształt i wymiary badanych obszarów.

Dopisać potem o slamie to:

Metoda ta wykorzystywana jest między innymi w algorytmie SLAM. Jest to algorytm służący do jednoczesnego określania pozycji robota oraz tworzenia mpay badanego obszaru. Jest to algorytm nizwykle precyzyjny i dający wspaniałe efekty. Wymaga on jednak zastosowania drogich czujników i zaangażowania dużych mocy obliczeniowych do przetwrozenia danych pochodzącyzch z używanych w tej metodzie czujnikoów, sensorów i skanerów.