

# Natural Language Processing

AIMS
Romain Benassi
Course 4
Spring 2023

### Course Schedule

- Course 1: NLP introduction
- Course 2: Word embedding
- Course 3: Long Short-Term Memory (LSTM) architecture
- Course 4: "Attention" mechanism and Transformer architectures
- Course 5: Large Language Models and Generative Al

### **Evaluation**

1. A graded exam will be used as evaluation and will be done at the beginning of the last course (Course 5)

#### This exercise will contain

- multiple-choice-questions (MCQ)
- theoretical questions
- Coding questions

### 2. A graded project

# Real life dataset for the Graded Project



#### Data related to a Data for Good project

- Data For Good is a non-profit association whose point is to use data for the common good
- The data corresponds to **article headlines** (in French)
- The point is to recognize automatically those related to climate, in order to challenge the media on their coverage of the subject
- Solving this (open) use-case corresponds to Question 4 of the Graded Project

### Course Schedule

- Course 1: NLP introduction
- Course 2: Word embedding
- Course 3: Long Short-Term Memory (LSTM) architecture
- Course 4: "Attention" mechanism and Transformer architectures
- Course 5: Large Language Models and Generative Al

### Course Schedule

- Course 1: NLP introduction
- Course 2: Word embedding
- Course 3: Long Short Term Memory (LSTM) architecture
- Course 4: "Attention" mechanism and Transformer architectures
  - Encoder-decoder
  - Attention Mechanism
  - Transformer architectures
  - BERT model
  - Hugging Face



Course 5: Large Language Models and Generative Al

# Previously in Course 3

# Recurrent Neural Network (RNN): Definition

- A RNN is a kind of neural network dealing with recurrent connection
- Allows to deal with temporal sequences
- E.g., on the figure below, a sequence X is given as input, and we get a sequence Y as output
- A cell hidden state h and the output y may be different

A hidden state RNN



# LSTM (Long Short Term Memory)



### Bidirectional LSTM

In a **classic LSTM** architecture, the sentence/sequence is processed only in **one direction** (generally from the past to the present or future)

The **bidirectional** structure process the data in **both directions** => can be useful for some applications



The queen of the United Kingdom

The queen of hearts

The queen of bees

Here, the word queen will be encode differently if read in reverse order

https://medium.com/the-official-integrate-ai-blog/what-you-need-to-know-about-natural-language-processing-2c8240e6c38e



#### sequence-to-sequence

e.g. predicting time series









# Course 4: Attention Mechanism and Transformer Architectures

# Encoder-decoder

#### Principle

The goal is to project the input values into a smaller vector space before returning into the larger vector space expected

#### **Architecture**

- An encoder
- An encoded vector
- A decoder



Encoder-decoder sequence to sequence model

#### Principle

The goal is to project the input values into a smaller vector space before returning into the larger vector space expected

#### **Architecture**

- An encoder
- An encoded vector
- A decoder



Encoder-decoder sequence to sequence model

#### Principle

The goal is to project the input values into a smaller vector space before returning into the larger vector space expected

#### **Architecture**

- An encoder
- An encoded vector
- A decoder



Encoder-decoder sequence to sequence model

#### Principle

The goal is to project the input values into a smaller vector space before returning into the larger vector space expected

#### **Architecture**

- An encoder
- An encoded vector
- A decoder



Encoder-decoder sequence to sequence model

# Encoder-decoder: Translation example



### Encoder-decoder: Keras

```
import tensorflow addons as tfa
encoder inputs = keras.layers.Input(shape=[None], dtype=np.int32)
decoder inputs = keras.layers.Input(shape=[None], dtype=np.int32)
sequence_lengths = keras.layers.Input(shape=[], dtype=np.int32)
embeddings = keras.layers.Embedding(vocab size, embed size)
encoder embeddings = embeddings(encoder inputs)
decoder embeddings = embeddings(decoder inputs)
encoder = keras.layers.LSTM(512, return state=True)
encoder outputs, state h, state c = encoder(encoder embeddings)
encoder state = [state h, state c]
sampler = tfa.seq2seq.sampler.TrainingSampler()
decoder cell = keras.layers.LSTMCell(512)
output layer = keras.layers.Dense(vocab size)
decoder = tfa.seq2seq.basic decoder.BasicDecoder(decoder cell, sampler,
                                                 output layer=output layer)
final outputs, final state, final sequence lengths = decoder(
   decoder embeddings, initial state=encoder state,
   sequence length=sequence lengths)
Y proba = tf.nn.softmax(final outputs.rnn output)
model = keras.Model(inputs=[encoder inputs, decoder inputs, sequence lengths],
                    outputs=[Y proba])
```

### Encoder-decoder: Keras

```
import tensorflow addons as tfa
encoder inputs = keras.layers.Input(shape=[None], dtype=np.int32)
decoder inputs = keras.layers.Input(shape=[None], dtype=np.int32)
sequence_lengths = keras.layers.Input(shape=[], dtype=np.int32)
embeddings = keras.layers.Embedding(vocab size, embed size)
encoder embeddings = embeddings(encoder inputs)
decoder embeddings = embeddings(decoder inputs)
encoder = keras.layers.LSTM(512, return state=True)
encoder outputs, state h, state c = encoder(encoder embeddings)
encoder state = [state h, state c]
sampler = tfa.seq2seq.sampler.TrainingSampler() 
decoder cell = keras.layers.LSTMCell(512)
output layer = keras.layers.Dense(vocab size)
decoder = tfa.seq2seq.basic decoder.BasicDecoder(decoder cell, sampler,
                                                 output layer=output layer)
final outputs, final state, final sequence lengths = decoder(
    decoder embeddings, initial state=encoder state,
    sequence length=sequence lengths)
Y proba = tf.nn.softmax(final outputs.rnn output)
model = keras. Model (inputs=[encoder inputs, decoder inputs, sequence lengths],
                    outputs=[Y proba])
```

allow to get both ht and Ct

indicate to the decoder at each step what was the previous output

model construction

encoder

decoder

# **Attention Mechanism**

### Attention Mechanism: Introduction

#### **Problem to solve**

• Even with a LSTM architecture, it can be difficult to characterize long sentences in an efficient way

#### Attention mechanism principle

 To put more weight on specific word positions of the sentence depending both on the context and the relative positions of words

#### Example

Despite being from Uttar Pradesh, as he was brought up in Bengal, he is more comfortable in Bengali.

To predict the word *Bengali*, the expressions *brought up* and *Bengal* must be associated to higher weights.

### Attention Mechanism: Translation illustration



### Attention Mechanism: Get the intuition

Imagine you want to translate the sentence using an **encoder-decoder**:

"They play chess..."

Actually, you expect the encoder to deal with it that way:

```
"They play chess..." \[ \bigs\{ \text{subject}: they; \text{verb}: play; ...}\\ \text{subject verb} \quad \text{encoded information} \\ \text{(in a very simplified way)} \end{array}
```

Just imagine you already translated the **first word** and are looking for the **next one**:

### Attention Mechanism: Get the intuition

Imagine you want to translate the sentence using an **encoder-decoder**:

"They play chess..."

Actually, you expect the encoder to deal with it that way:

```
"They play chess..." (subject: they; verb: play; ...)

subject verb

encoder

Encoded information

(in a very simplified way)
```

Just imagine you already translated the first word and are looking for the next one:

```
//s ???
subject verb?
```

You are looking for a **verb** in the encoder information:

Query

{subject: they; verb: play; ...}

Keys and Values are oftenly fused together in the encoder vector, so you take Keys = Values

# Attention Mechanism: Principle

#### **Formalism**

- To associate a query and a set of (key-value) tuples with an output
- The query, the (key-value) set and the ouput are all vectors
- The output corresponds to the weighted sum of values, with weights determined from a compatibility function between the query and the corresponding key



### Attention Mechanism: Formula

#### **Formula**

The mathematical expression generally used to compute the attention function is

$$softmax(QK^T)V$$

With Q, K and V respectively the query, key and value, matrices.

The *softmax* function gives normalized values between 0 and 1

### Attention Mechanism: Illustration 1

#### **Example for the case of English-German translation**

- The bright squares show where the algorithm « look » to translate a word
- Here, words in English and German share the same order
- So, the match is only on the diagonal
- No need to look other word positions (on this specific example)



### Attention Mechanism: Illustration 2

#### **Example for the case of English-French translation**

- Here, the match is not on a specific word only
- The figure shows the contribution of each word
- Several words can contribute to the translation of another



# Attention Mechanism: Examples

#### Intuition behind query and (key, value) concepts

Depends on the application

In NLP, usually, the **key** and **value** correspond to the **same vectors**:

- Translation: the query can be the encoded sentence vector in one language and both key and value can be the encoded sentence vector in the other language
- Text similarity: the query can be the sequence embedding of the first piece of text and both key and value can be the sequence embedding of the second piece of text

**However**, in some cases, the concepts **key** and **value can be different**:

if you are looking for a video in Youtube, the query can be derived from the text you entered, the
keys can correspond to the video descriptions and the values can be the videos themselves

### Attention Mechanism

#### **DEMYSTIFYING QUERIES, KEYS, AND VALUES**

The notion of query, key, and value vectors may seem a bit cryptic the first time you encounter them. Their names were inspired by information retrieval systems, but we can motivate their meaning with a simple analogy. Imagine that you're at the supermarket buying all the ingredients you need for your dinner. You have the dish's recipe, and each of the required ingredients can be thought of as a query. As you scan the shelves, you look at the labels (keys) and check whether they match an ingredient on your list (similarity function). If you have a match, then you take the item (value) from the shelf.

In this analogy, you only get one grocery item for every label that matches the ingredient. Self-attention is a more abstract and "smooth" version of this: *every* label in the supermarket matches the ingredient to the extent to which each key matches the query. So if your list includes a dozen eggs, then you might end up grabbing 10 eggs, an omelette, and a chicken wing.

### Visual Attention: Illustration

Goal: Generate automatically the caption of a picture with an attention mechanism



"A woman is throwing a frisbee in a park"

### Visual Attention: Illustration

Goal: Generate automatically the caption of a picture with an attention mechanism



"A woman is throwing a **frisbee** in a park"

### Transformer architecture

### Transformer: Introduction

#### **Principle**

- A quite new deep learning model (2017), introduced in the **game changing** article *Attention is all* you need
- Relies heavily on the Attention mechanism
- Does not need to process a sequence in a specific order
- Solves the issue of keeping into memory the information related to distant words (and that even without LSTM)
- Makes possible a significant use of parallelization computing
- At every moment, the algorithm can access the complete set of the successive states visited during the procedure

The main idea is that the Attention mechanism alone, without any recurrent sequential procedure, is powerful enough to reach the state of the art

#### Transformer Output **Probabilities** Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward $N \times$ Hyperparameter: Add & Norm The number of $N \times$ Add & Norm Masked Hyperparameter: encoders Multi-Head Multi-Head The number of Attention Attention attention heads Positional Positional Encoding Encoding Output Input Embedding Embedding Inputs Outputs (shifted right)

### Transformer: Architecture

The Transformer is made of two main components:

- A stack of identical encoders (independents form each other)
- Followed by a stack of identical decoders (independents form each other)





### Transformer: Scaled Dot-Product Attention

#### Formula

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

dk corresponds to the query and key dimension



- The normalization prevents the result of the dot-product to reach high values and, doing so, prevents the gradient to vanish into small values
- An additive variant of the attention function exists, but the dot-product version is preferred
  here for the efficiency of the matrix calculations it allows

#### Principle

- Several Attention layers computed in parrallel
  - the *queries*, *keys* and *values* are projeted *h* times
  - the h results are concatenated
  - then projeted one last time
- Enable the use of different sub-space information
- The mathematical expression is the following

$$\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h)W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$$



Where the Wi\* corresponds to the respective projection matrices

The Multi-Head Attention is used three times in the Transformer

- Inside the encoder
- Inside the decoder
- At the encoder-decoder interface



Output

The Multi-Head Attention is used three times in the Transformer

- Inside the encoder
  - the queries, keys and values all come from the previous encoder output
- Inside the decoder
- At the encoder-decoder interface



Output Probabilities

The Multi-Head Attention is used three times in the Transformer

- Inside the encoder
- Inside the decoder
  - the queries, keys and values all come from the previous decoder output
  - use of a « mask » to decode only from known elements
- At the encoder-decoder interface



Output Probabilities

Softmax

The Multi-Head Attention is used three times in the Transformer

- Inside the encoder
- Inside the decoder
- At the encoder-decoder interface
  - the queries come from the previous decoder layer
  - the keys and values come from the encoder outputs
  - identical to the classical "encoder-decoder" Attention mechanism



Output Probabilities

Softmax

### **Transformer: Attention**

#### **Transformer**



# Transformer: Embeddings et Softmax

### **Embedding** learning in order to convert

- The input *tokens*
- The output *tokens*

### Use of a Softmax layer

Convert the decoder output into the next token prediction probability



Output

# Transformer: Positional Encoding

### **Principle**

- Keep in memory the token positions in the sequence
- Add of "positional encodings" to the input embeddings
- Used just before the encoder-decoder stacks

#### **Formulas**

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$
  
 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$ 

- with pos the position and i the dimension
- Each dimension corresponds to a sinusoïd
- For each k, PEpos+k is a linear function of PEpos



Here

### Transformer: Illustration





### Transformer: get the intuition

#### DEMYSTIFYING ENCODER-DECODER ATTENTION

Let's see if we can shed some light on the mysteries of encoder-decoder attention. Imagine you (the decoder) are in class taking an exam. Your task is to predict the next word based on the previous words (decoder inputs), which sounds simple but is incredibly hard (try it yourself and predict the next words in a passage of this book). Fortunately, your neighbor (the encoder) has the full text. Unfortunately, they're a foreign exchange student and the text is in their mother tongue. Cunning students that you are, you figure out a way to cheat anyway. You draw a little cartoon illustrating the text you already have (the query) and give it to your neighbor. They try to figure out which passage matches that description (the key), draw a cartoon describing the word following that passage (the value), and pass that back to you. With this system in place, you ace the exam.

# Transformer: Results on the Benchmark BLEU

| Model                      | BLEU  |       | Training Cost (FLOPs) |                     |  |
|----------------------------|-------|-------|-----------------------|---------------------|--|
|                            | EN-DE | EN-FR | EN-DE                 | EN-FR               |  |
| ByteNet                    | 23.75 |       |                       |                     |  |
| Deep-Att + PosUnk          |       | 39.2  |                       | $1.0 \cdot 10^{20}$ |  |
| GNMT + RL                  | 24.6  | 39.92 | $2.3 \cdot 10^{19}$   | $1.4 \cdot 10^{20}$ |  |
| ConvS2S                    | 25.16 | 40.46 | $9.6\cdot 10^{18}$    | $1.5\cdot 10^{20}$  |  |
| MoE                        | 26.03 | 40.56 | $2.0\cdot 10^{19}$    | $1.2\cdot 10^{20}$  |  |
| Deep-Att + PosUnk Ensemble |       | 40.4  |                       | $8.0 \cdot 10^{20}$ |  |
| GNMT + RL Ensemble         | 26.30 | 41.16 | $1.8 \cdot 10^{20}$   | $1.1\cdot 10^{21}$  |  |
| ConvS2S Ensemble           | 26.36 | 41.29 | $7.7\cdot 10^{19}$    | $1.2 \cdot 10^{21}$ |  |
| Transformer (base model)   | 27.3  | 38.1  | 3.3 ·                 | $3.3\cdot 10^{18}$  |  |
| Transformer (big)          | 28.4  | 41.8  | $2.3 \cdot$           | $2.3\cdot 10^{19}$  |  |

### Transformer: Tutorial notebook

course4\_transformer\_tutorial.ipynb

**Goal**: Illustration of how a Transformer can be build step by step in Python

### **Remarks:**

• This notebook comes from a tutorial notebook freely accessible (the original reference is given at the very beginning, in the first cell)

# **BERT** model

### **BERT: Introduction**

BERT (2018) is for **B**idirectional **E**ncoder **R**epresentations from **T**ransformers

- A Transformer variant with a Bidirectional specificity
- Thanks to it, there is no need for the end sequence token masking constraint anymore (into the decoders Attention mechanism)
- Build an efficient and generic language representation

### The two main BERT steps

- A pre-training step on non-labelled data
- A **specialization** step ("**fine tuning**") for a specialized task, from pre-trained parameters
  - There is only need to train the « last » layers of the model to get such a specialization

**French versions** of BERT exists, the most famous one being probably **CamemBERT** 

### **BERT:** Architecture

### The initial **BERT** architecture (2018) is the following:

- Length of the processed sequences: 512 (Limitation to contain a quadratic explosion)
- Stack of Nx = 12 blocks of encoders and decoders (a 24-blocks variant exists)
- h = 12 attention heads
- It means there are h x Nx =  $12 \times 12 = 144$  distinct attention mechanisms
- Each head gives an output vector of size: 64
- A hidden layer of  $h \times 64 = 768$  dimensions
- Roughly 110 millions of parameters for the basic version (12 encoders) and 340 millions for the large version (24 encoders)

### Reminder, the initial Transformer architecture (2017)

- Length of the processed sequences: **512** as well
- Stack of Nx = 6 blocks of encoders and decoders
- **h** = **8** attention heads

# **BERT:** Pre-training

#### BERT is pre-trained from two unsupervised tasks:

Masked Language Modeling (MLM)

- The model is pre-trained from sequences decomposed into tokens
- The goal is to predict some of these tokens (15%) randomly masked in the text

#### Next Sentence Prediction (NSP)

- The goal is to understand the relationship between two successive sentences
- To do that, the algorithm is trained in order to predict the sentence following a given sentence
- The training set is composed of sentence tuples (A,B)
  - In 50% of the cases, B is the sentence following the sentence A (the tuple is then labelled IsNext)
  - In 50% of the cases, B is a sentence **randomly** chosen in the corpus (*NotNext* label)

### CamemBERT and Attention mechanism

Attention level, for each head, relativly to the french word "ils" (« they »). Each head "see" different things from others (complementarity)



### CamemBERT and Attention mechanism

On the first 6 layers (out of 12), attention mechanism visualization example over the 12 heads



# **BERT:** Fine-tuning

The initial pre-training step needs:

- A huge corpus of generic texts
- Very high computational resources

The fine-tuning step relies on the already pre-trained algorithm, so it only needs:

- A reduce and specialized corpus
- Significantly **reduces** resources

The aim is obviously to move from a **generic language** modelization to a **task** specific one

### Classify text with BERT: Exercise

course4\_classify\_text\_with\_BERT.ipynb

**Goal**: Illustration of how a pre-trained Transformer model such as BERT can be used to solve practical and specific use case

#### **Remarks:**

- Shows how to train, from BERT outputs, a classifier model with only few layers
- Can help you solve question 3 of the Graded Project
- This notebook comes from a tutorial notebook freely accessible (the original reference is given in the correction)

# **Hugging Face**

### Hugging Face



- Hugging Face is an open-source provider of NLP technologies for Python
- A Hugging Face Transformer package is available and quite popular
- It gives access to pretrained models such as BERT but also to modules to perform fine-tuning
- It previously supported only **Pytorch**, but now **Tensorflow** is more and more supported as well

### Transformer libraries: Tutorial notebook

course4\_transformer\_model\_libraries.ipynb

**Goal**: Illustration of how pre-trained Transformer can be loaded and used from open-source libraries such as Hugging Face

### **Remarks:**

• This notebook comes from a tutorial notebook freely accessible (the original reference is given at the very beginning, in the first cell)

- Reference book written by **Hugging Face** employees
- Explain how to use pre-trained Transformer models to solve most of classic NLP use case
  - text generation
  - text summarization
  - text classification
  - text tagging
  - ...
- Access to the book is not free but a GitHub repo containing all the main explanations and code is freely accessible (!): <a href="https://github.com/nlp-with-transformers/notebooks/tree/main">https://github.com/nlp-with-transformers/notebooks/tree/main</a>



- Reference book written by **Hugging Face** employees
- Explain how to use pre-trained Transformer models to solve most of classic NLP use case
  - text generation
  - text summarization
  - text classification  $\Rightarrow$  can be useful for question 3 of the Graded Project
  - text tagging
  - ...
- Access to the book is not free but a GitHub repo containing all the main explanations and code is freely accessible (!): <a href="https://github.com/nlp-with-transformers/notebooks/tree/main">https://github.com/nlp-with-transformers/notebooks/tree/main</a>





If you want to use these notebooks directly on Google Colab, you may need to:

- manually copy-paste the content (error with direct import)
- change the models by lighter versions
  - "gpt2" instead of "gpt2-xl"
  - "t5-base" instead of "t5-large"
  - ...
- change the datasets since some are not available any longer





If you want to use these notebooks directly on Google Colab, you may need to:

- manually copy-paste the content (error with direct import)
- change the models by lighter versions
  - "gpt2" instead of "gpt2-xl"
  - "t5-base" instead of "t5-large"
  - ...

This is the case for **02\_classifcation.ipynb**If you want to get some inspiration from there for question 3 of **the Graded Project**, there will be some adaptations to make. **However**, you can simply get inspiration from exercise

course4\_classify\_text\_with\_BERT.ipynb if that make things easier for you

 1 branch 
 ○ 0 tags lewtun Merge pull request #104 from nlp-with-transformers/lvwerra-patch-1 .... 884293a on May 29 122 commits .aithub/ISSUE TEMPLATE Update issue templates 2 years ago SageMaker text optimised data Move dataset to data directory 2 years ago add figures ch11 images last year scripts Update issue templates 2 years ago gitignore ... Chapter 1 ready for SageMaker. last year 1 01\_introduction.ipynb add figures ch01 last year O2\_classification.ipynb Fix emotion dataset URL 5 months ago add figures ch03 03\_transformer-anatomy.ipynb last year 1 04\_multilingual-ner.ipynb Merge pull request #34 from EdwardJRoss/main last year 05\_text-generation.ipynb add figures ch05 last year 06\_summarization.ipynb fix chapters 2 and 6 with dependencies last year 7 07\_question-answering.ipynb add figures ch07 last year 07\_question\_answering\_v2.ipynb fix labels in logits image last year 08 model-compression.ipvnb Ensure tensors are on the same device 9 09\_few-to-no-labels.ipynb Chapter 9, added missing variables 10 months ago 10\_transformers-from-scratch.ipynb 11\_future-directions.ipynb add figures ch11 last year P LICENSE Initial commit 2 years ago README.md Updated Readme.md 10 months ago

### Take-away from Course 4

- LSTM architectures are historically important but there are not the state-of-the-art any more
- The "Attention" mechanism allowed a significant performance improvement than using LSTM only
- It has been demonstrated in the seminal paper **Attention is all you need (2017)**, thanks to the **Transformer architecture** introduced in it, that "Attention" **alone** is enough to reach the state-of-the-art (no LSTM needed and no need to process a sequence in a specific order)
- BERT is an example of such pre-trained Transformer models, and it can be fined-tuned for specific tasks
- Hugging Face offers quite convenient tools for using and fine-tuning BERT
- Some **freely** accessible **code and resources** can be found online to help you get the most from the **Transformer pre-trained models** available (see e.g. the *NLP with Transformers* **GitHub** repo)

### References

#### **Books**

- A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems (2019)
- L. Tunstall, L. Von Werra, T. Wolf, Natural Language Processing with Transformers: Building Language Applications with Hugging Face, (2022)
- F. Chollet, Deep Learning with Python (2021)

#### **Online formations**

- https://www.udemy.com/course/nlp-natural-language-processing-with-python
- https://www.coursera.org/specializations/natural-language-processing
- https://www.coursera.org/learn/natural-language-processing-tensorflow

#### **Internet sites**

- https://arxiv.org/abs/1706.03762 (Attention is al you need)
- https://www.youtube.com/watch?reload=9&v=OyFJWRnt\_AY
- http://jalammar.github.io/illustrated-transformer/
- https://medium.com/dissecting-bert/dissecting-bert-part-1-d3c3d495cdb3
- https://camembert-model.fr/
- https://huggingface.co/
- <a href="https://lesdieuxducode.com/blog/2019/4/bert--le-transformer-model-qui-sentraine-et-qui-represente">https://lesdieuxducode.com/blog/2019/4/bert--le-transformer-model-qui-sentraine-et-qui-represente</a>

#### Online notebooks

- https://colab.research.google.com/github/tensorflow/text/blob/master/docs/tutorials/transformer.ipynb
- https://colab.research.google.com/github/ziadloo/attention\_keras/blob/master/examples/colab/LSTM.ipynb