1 Section 1.7

Question 6

Question 7

Let $\alpha : \mathbb{R} \to \mathbb{R}^2$ be a plane curve defined in the entire real line \mathbb{R} . Assume that α does not pass through the origin O = (0,0) and that both limits

$$\lim_{t \to -\infty} |\alpha(t)| = \lim_{t \to \infty} |\alpha(t)| = \infty.$$

- (a) Prove that there exists a point t_0 such that $|\alpha(t_0)| \leq |\alpha(t)|$ for all $t \in \mathbb{R}$.
- (b) Show, by an example, that the assertion in part a is false if one does not assume that both $\lim_{t\to\infty} |\alpha(t)| = \infty$ and $\lim_{t\to\infty} |\alpha(t)| = \infty$. Solution.
- (a) Consider $f: \mathbb{R} \to \mathbb{R}$ sending t to $|\alpha(t)|$. Pick an arbitrary $t_1 \in \mathbb{R}$. We can find a, b such that for all t < a, $f(t) > f(t_1)$ and for all t > b, we have $f(t) > f(t_1)$. Then, we can consider the restriction $f|_{[a,b]}$ to the compact interval [a,b]. By the Extreme Value Theorem, we have that this takes a minimum on [a,b], say at t_0 . Then this t_0 satisfy the required properties as for $t \in [a,b]$, $|\alpha(t_0)| \le |\alpha(t)|$, and for $t \notin [a,b]$, $|\alpha(t)| > |\alpha(t_1)| \ge |\alpha(t_0)|$.
- (b) Consider $f(t) = (e^t, 0)$. Then, $\inf_t |\alpha(t)| = 0$, but this is non-zero for all t.

Question 8

Question 9

2 Section 2.2

Question 4

Let $f(x, y, z) = z^2$. Prove that 0 is not a regular value off and yet that $f^{-1}(0)$ is a regular surface.

Solution. Note that

$$df = (f_x, f_y, f_z) = (0, 0, 2z),$$

which is not surjective only when z = 0. Hence, (0,0,0) is a critical point and thus f(0,0,0) = 0 is not a regular value.

However,

$$f^{-1}(0) = \{(x, y, z) \in \mathbb{R}^3 | z^2 = 0\}$$
$$= \{(x, y, 0) | x, y \in \mathbb{R}\}$$
$$= \mathbb{R}^2 \times \{0\}.$$

Hence, $f^{-1}(0)$ is homeomorphic to \mathbb{R}^2 and therefore is regular.

Question 5

Let $P = \{(x, y, z) \in \mathbb{R}^3 | x = y\}$ (a plane) and let $x : U \subset \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$x(u,v) = (u+v, u+v, uv),$$

where $U = \{(u, v) \in \mathbb{R}^2 | u > v\}$. Clearly, $x(U) \subset P$. Is x a parametrization of P?

Solution. Yes, x is a parametrization. Clearly, x is differentiable in U with

$$dx(u,v) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ u & v \end{pmatrix}.$$

Note that for $(u, v) \in U$, we have u > v. Then

$$\left| \begin{array}{cc} 1 & 1 \\ u & v \end{array} \right| = v - u \neq 0.$$

This implies dx(u,v) is injective for all $(u,v) \in U$. Now let (a,a,b) be any point in x(U). Then

$$u + v = a, uv = b$$

$$\Rightarrow u(a - u) = b$$

$$\Rightarrow (u - \frac{a}{2})^2 = \frac{a^2}{4} - b.$$

Notice that here one must have $\frac{a^2}{4} - b \ge 0$ as the equations $\begin{cases} u + v = a \\ uv = b \end{cases}$ should have real solutions for $(a, a, b) \in x(U)$. Then given u > v, we have

$$u = \frac{a}{2} + \sqrt{\frac{a^2}{4} - b}$$
$$v = \frac{a}{2} - \sqrt{\frac{a^2}{4} - b}.$$

These are the unique (u, v) solving x(u, v) = (a, b), which shows x is injective. Hence, by Prop. 4, x^{-1} must be continuous and we can conclude that x is indeed a parametrization.

Question 6

Give another proof of Prop. 1 by applying Prop. 2 to h(x, y, z) = f(x, y) - z.

Solution. Since f is differentiable in U, for any point in $U \times \mathbb{R}$, we have

$$dh = (f_x, f_y, -1),$$

which is always surjective regardless of the value of f_x , f_y . Hence, any $z_0 \in f(U)$ with $f(x_0, y_0) = z_0$, we have

$$h(x_0, y_0, z_0) = f(x_0, y_0) - z_0 = 0,$$

being a regular value. This implies that

$$h^{-1}(0) = \{(x, y, z) \in U \times \mathbb{R} | h(x, y, z) = 0\}$$
$$= \{(x, y, z) \in U \times \mathbb{R} | f(x, y) = z\}$$
$$= \{(x, y, f(x, y)) | (x, y) \in U\}$$

is a regular surface.