RISPOSTE DI TEORIA FISICA T-1

1) Discutere le proprietà dei conduttori.

- Il campo elettrico interno ai conduttori è sempre nullo
- Nei conduttori le cariche in eccesso si dispongono in superficie, in una configurazione tale che il campo elettrico interno al conduttore sia nullo
- Il campo elettrico è sempre normale alla superficie del conduttori
- All'interno del conduttore non ci sono cariche in eccesso
- Il campo elettrostatico in prossimità dei conduttori è sempre ortogonale alla superficie del conduttore ed il modulo è proporzionale alla densità superficiale di carica (Teorema di Coulomb)

2) Enunciare e discutere la legge di Ampère-Maxwell

• Il rotore del campo magnetico è proporzionale alla somma della densità di corrente di conduzione e alla variazione del campo elettrico

 $\overrightarrow{\nabla} \wedge \overrightarrow{B} = \mu_0 \overrightarrow{J} + \mu_0 \varepsilon_0 \frac{\partial \overrightarrow{E}}{\partial t}$

Ovvero, il campo magnetico può essere generato da cariche in moto e da campi elettrici variabili nel tempo. Ciò è valido sia in regime stazionario che non.

3) Discutere la legge di Gauss per il campo elettrostatico, utilizzando un esempio.

• Il flusso del campo elettrico attraverso una superficie chiusa S è uguale al rapporto tra la carica elettrica QS contenuta all'interno della superficie e la costante dielettrica.

$$\Phi_{S}(\overrightarrow{E}) = \bigoplus_{S} \overrightarrow{E} \cdot \hat{n} dS = \frac{Q_{S}}{\varepsilon_{0}}$$

4) Due fili paralleli molto lunghi, percorsi da correnti in verso opposto si attraggono o si respingono? (motivare la risposta)

• Si respingono, si dimostra calcolando la forza con la 2º legge di Laplace e regola mano dx.

5) Discutere l'effetto Joule.

 Aumento della temperatura del conduttore attraversato da corrente. Ciò è dovuto alla dispersione di potenza generata dal lavoro compiuto dal campo elettrico nello spostamento della carica in un'intervallo di tempo.

6) Spiegare la differenza tra corrente di conduzione e corrente di spostamento.

- La corrente di spostamento è proporzionale alla variazione del flusso del campo elettrico e non dipende da cariche in movimento.
- ...

7) Perché il campo elettrico è molto intenso in prossimità delle punte dei conduttori?

• Perchè nei condensatori il modulo del campo elettrico è proporzionale alla densità superficiale di carica (1) e quindi abbiamo la stessa carica in un punto con meno superficie che rende il campo elettrico più intenso.

8) Discutere il moto di una carica elettrica in presenza di un campo magnetico.

• Secondo la legge di Lorentz, in un campo magnetico, una carica in movimento viene deviata da una forza sempre perpendicolare alla velocità che quindi definisce sempre un moto circolare uniforme.

9) Enunciare e discutere la legge di Faraday-Neumann-Lenz.

• La forza elettromotrice indotta si oppone alla variazione del flusso del campo magnetico nel tempo che l'ha generata.

10) Discutere le condizioni di statica per un punto materiale e per un corpo rigido.

• Un corpo/punto materiale è in equilibrio se si annulla la risultante delle forze e dei momenti in esso.

11) Enunciare e discutere il teorema delle forze vive

• il lavoro compiuto dalla risultante delle forze che agiscono su un sistema, da un punto A a uno B è uguale alla corrispondente variazione di energia cinetica.

12) Enunciare e discutere il primo principio della dinamica.

• Se su un corpo agisce una forza risultante nulla, se questo era in quiete rimarrà in quiete mentre se era in moto proseguirà di moto rettilineo uniforme.

13) Enunciare e discutere il secondo principio della dinamica.

• Un qualunque punto materiale che sia sottoposto ad una o più forze ha un'accelerazione vettorialmente proporzionale alla risultante di tali forze.

14) Enunciare e discutere il terzo principio della dinamica.

• Se un corpo esercita una forza su un secondo corpo allora il secondo esercita sul primo una forza uguale e contraria.

14) Scrivere le equazioni di Maxwell in forma locale e discuterne brevemente il significato fisico.

- Le cariche elettrice generano il campo elettrico
- Il campo magnetico è solenoidale, le linee di campo sono sempre chiuse su loro stesse
- In ogni punto dello spazio in cui è presente un campo magnetico variabile nel tempo, in quel punto si genera un campo elettrico. Il campo elettrico indotto ha rotore non nullo e quindi non è conservativo a differenza di quello generato dalle cariche.
- Il campo magnetico può essere generato da cariche in moto e da campi elettrici variabili nel tempo.

