خلايا بدائية النواة	خلايا حقيقية النواة	
متزامنة	غير متزامنة لوجود غشاء فاصل بين النواة و الهيولي	التزامن (استنساخ و ترجمة)
ARNm ناضج مباشرة	حدوث نضج للنسخة الوراثية ARNm	النضج
أكبر	أُقل	كمية البروتين
أكبر	أقل	سرعة تركيب البروتين

59- قارن عملية النضج بين الخلايا حقيقية و بدائية النواة في جدول

ج

خلايا بدائية النواة	خلايا حقيقية النواة	
متساوي	ADN أطول من الـ ARNm الناضج	طول ADN – ARNm
قطع دالة	قطع دالة + قطع غير دالة	ADN بنية

60 – أذكر خصائص الـARNm

ج- يستهلك و مدة بقائه قصيرة في الهيولى و ينقل نسخة للمعلومات وراثية لنوع من البروتين

61- بين القصد من المنطقة الرامزة

ج- و هي المنطقة المشفرة للأحماض الامينية محدودة بثلاثية بدء و ثلاثية توقف و هي جزء من المورثة

62- بين القصد من بالمورثة

ج- و هي تتابع نيكليوتيدي للمعلومات الوراثية لها منطقتين الأولى غير رامزة و الثانية رامزة

الوحدة 2 : العلاقة بين بنية و وظيفة البروتين (56 سؤال و جواب)

1-كيف يتم تمثيل الجزيئات البسيطة (الأحماض الامينية) ؟

ج- بـ 3 نماذج عرض و هي العود, الكرة و الكرة و العود

2-كيف يتم تمثيل الجزيئات الكبيرة (البروتين) ؟

ج- بـ 5 نماذج عرض و هي العود, الكرة و الكرة و العود , الشريط و الشريط السميك

3-كيف تظهر البنية ₩ بناذج العرض في الراستوب ؟

ج- تظهر على شكل شريط حلزوني بنموذج الشريطي و الشريطي السميك بلون أحمر

 $oldsymbol{eta}$ بنهاذج العرض في الراستوب $oldsymbol{eta}$

 $oldsymbol{eta}$ ج- تظهر بشكل مسطح و بشكل سهم لتحديد الاتجاه و تمييز البنيات $oldsymbol{eta}$ المتوازية و المتعاكسة بلون أصفر أو أزرق

5- وضح الفائدة من دراسة البروتينات بالكمبيوتر (راستوب)

ج- تغيير طريقة تمثيل البروتين (نماذج العرض), إجراء دراسة مفصلة لبنية البروتين, تحديد مواقـــع الأحماض الامنية داخل البنية الفراغية, ربط العلاقة بين موقع الحمض الاميني و البنية الفراغية, تــحديد الموقع الفعال, طريقة ارتباط البروتين أو الإنزيم بمادة التفاعل

6- حدد مستويات البنية الفراغية للبروتين

ج- البنية الأولية, البنية الثانوية, البنية الثالثية و البنية الرابعية

7- عرف البنية الأولية

ج- هي تتابع الأحاض الامينية مرتبطة بروابط بيبتيدية لتكوين سلسلة بيبتيدية

8- عرف البنية الثانوية

ج- هي التفاف السلسلة البيبتيدية ذات البنية الاولية لتكوين بنيات ثانوية في مناطق محددة من السلسلة البيبتيدية و نميز نوعين من البنيات الثانوية و هي α عبارة عن التفاف السلسلة البيبتيدية في مناطق محددة لتأخذ الشكل الحلزوني و β و هي انطواء السلسلة البيبتيدية في مناطق محددة لتأخذ شكل وريقات مطوية

9- بين كيف تحافظ البنية الثانوية على تماسكها

ج- بواسطة روابط هيدروجينية بين المجاميع الوظيفة البيبتيدية CO و NH للرابطة البيبتيدية للحمض الاميني 1 و 4

10- تعرف على البنيات التي تسمح للبنية الثانوية أن تأخذ شكل البنية الثالثية

ج- المناطق البينية التي ليس لها أشكال فراغية محددة و التي تتواجد بين البنيات الثانوية

11- عرف البنية الثالثية

ج- هي انطواء السلسلة البيبتيدية المحتوية على عدد من البنيات الثانوية و المناطق البينية

12- أين يحدث الانطواء للسلسلة البيبتيدية ذات البنيات الثانوية ؟

ج- في مستوى المناطق البينية فيطلق عليها اسم مناطق الانعطاف

13- بين كيف تحافظ البنية الثالثية على تماسكها و استقرارها

ج- بفضل الروابط الهيدروجينية بين الوظائف الكيميائية للجذور الالكيلية, الروابط الملحية (**الشاردية**), تجاذب الجذور الكارهة للماء, الجسور الثنائية الكبريت S-S

14- بين كيف تتشكل الروابط الهيدروجينية في البنية الثالثية

ج- بين جذور الأحماض الامينية الكحولية و الكربوكسيلية مثلا

15- بين كيف تتشكل الروابط الملحية (الشاردية) في البنية الثالثية

ج- بين جذور الأحماض الامنية الحامضية و القاعدية

16- بين كيف تتشكل الجسور الثنائية الكبريت في البنية الثالثية

ج- بين الأحماض الامينية ذات الجذور الكبريتية

17- بين كيف تتشكل الجذور الكارهة للماء في البنية الثالثية

ج- بين الأحماض الامينية ذات الجذور CH₃ أو العطرية مثلا

18- عرف البنية الرابعية

ج- هي تجمع سلسلتين بيبتيدتين أو أكثر لكل منها بنية ثالثية.

19- قدم تسمية للسلسلة البيبتيدية ضمن البنية الرابعية

ج- تحت الوحدة

20- بين كيف تحافظ البنية الرابعية على تماسكها

ج- تتاسك بروابط ضعيفة كالروابط الهيدروجينية,الشاردية و الكارهة للماء

21- حدد أدنى و أقصى عدد لتحت الوحدات في البنية الرابعية

ج- أدنى عدد هو 02 و أقصاه غير محدود (القنوات الفولطية لها 5 تحت وحدات)

22- حدد مصدر الاختلاف في البنية الفراغية للبروتينات و علاقته بالوظيفة ؟

ج- يعود الاختلاف في البنية الفراغية للبروتينات إلى نوع عدد و ترتيب الاحماض الامينية و يؤدي إلى تنوع في وظيفة البروتين

23- تعرف على الوحدات البنائية للبروتين ؟

ج- الأحماض الامينية

24- عرف الحمض الاميني

ج- مركب عضوي يحتوي على الكربون, الهيدروجين, الأكسجين و النيتروجين له جزئين أحدهـما متغير يمثل الجذر الالكيلي تختلف فيه جميع الأحماض الامينية و الأخر ثابت تشترك فيه جميع الأحمـــاض الامينية عبارة عن كربون هيكلي يحمل هيدروجين و وظيفتين كربوكسيلية و قاعدية

25- استنتج قاعدة لتصنيف الاحاض الامينة

ج- تصنف الاحماض الامينية الى قاعدية جذرها يحتوي على وظيفة قاعدية و أحمـــــــــاض أمينية حمضية جذرها يحتوي على وظيفة كربوكسيلية (تصنيف كهربائي) كربوكسيلية و معتدلة جذرها لا يحتوي لا على وظيفة قاعــــــدية و لا على وظيفة كربوكسيلية (تصنيف كهربائي)

26- صنف الأحماض الامينية في جدول (يوجد تصنيف كيميائي يعتمد على شكل الجذر و المجموعات الكيميائية)

حامضية قاعدية أميدات الاحاض الحلقية الكحولية الكبريتية حمض الغلوتاميك الميثيلية أرجنين , حمض الاسبارتيك الامينية ليزين, الحلقية العطرية الانين, فالين, الاسبارجين و الغلوتامين هيستيدين سيرين برولين لوسين, ثريونين سيستبئين تيروزين غليسين, تربتوفان فنيل ألانين ايزولوسين,

27- تعرف على أبسط حمض أميني

ج- الغلايسين

28- تعرف على أعقد حمض أميني

ج- التربتوفان

29- بين لماذا نلجأ للهجرة الكهربائية للأحماض الامينية

ج- من أجل دراسة سلوك الاحماض الامينية الكهربائية في أوساط ذات درجات حموضة مختلفة

30- حدد سلوك الحمض الاميني في وسط معتدل

ج- سلوك متعادل كهربائيا

31- حدد سلوك الحمض الاميني في وسط قاعدي

ج- سلوك حامضي

32- حدد سلوك الحمض الاميني في وسط حمضي

ج- سلوك قاعدي

33- تعرف على الخاصية الفيزيائية التي تتميز بها الاحماض الامينية

ج- الخاصية الامفوتيرية (الحمقلية)

34- بين القصد من الخاصية الحمقلية

ج- سلوك الحمض الاميني هو عكس الوسط الموجود فيه سلوك قواعد باكتساب \mathbf{H}^{\dagger} في وسط حمضي و سلوك أحماض في وسط قاعدي \mathbf{H}^{\dagger}

35- فسر سلوك الحمض الاميني اتجاه الوسط الموجود فيه

ج- يفسر حسب طبيعة الشحنة الكهربائية المكتسبة و بمقارنة PH الوسط مع PHi الحمض الاميني

36- بين القصد من أيون ثنائي القطب

ج- أيون أكتسب نوعين من الشحنات الكهربائية موجبة و سالبة بعدد متساوي

37- فسر المسافة التي يقطعها الحمض الاميني اتجاه الأقطاب انطلاقا من نقطة البداية

ج- بقوة الشحنة المكتسبة من طرف الحمض الاميني

38- فسر أكتساب شحنة موجبة من طرف الحمض الاميني

ج- باكتساب بروتون و فقد إلكترون أي تأين الوظيفة القاعدية

g- فسر اكتساب شحنة سالبة من طرف الحمض الاميني

ج- باكتساب إلكترون و فقد بروتون أي تأين الوظيفة الكربوكسيلية

-40 حدد سلوك الحمض الاميني الذي يحمل شحنة موجبة

ج- سلوك قاعدي في وسط حامضي

41- حدد سلوك الحمض الاميني الذي يحمل شحنة سالبة

ج- سلوك حمضي في وسط قاعدي

-42 حدد سلوك الحمض الاميني الذي يحمل شحنة موجبة و سالبة

ج- سلوك متعادل كهربائيا في وسط معتدل

43-كم تنتج جزيئة ماء و رابطة بيبتيدية من اتحاد 10 أحماض أمينية

ج- 9 جزيئات ماء و 9 روابط بيبتيدية

-44- تعرف على الوظائف الكيميائية المشاركة في تشكيل روابط بيبيتيدية

ج- الكربوكسيلية للحمض الاميني الاول و القاعدية للحمض الاميني الثاني

45- هل يتأثر عدد الوظائف الكربوكسيلية و القاعدية الحرة (الجانبية) بطول البروتين ؟

ج- لا تبقى ثابتة مما تغير طول السلسلة البيبتيدية

46- بين كيف تتشكل الرابطة البيبتيدية

ج- بنزع هيدروكسيل من الوظيفة الكربوكسيلية للحمض الاميني الاول و نزع هيدروجين من الوظيفة القاعدية للحمض الاميني الثاني و ينتج عن ذلك جزيئة ماء

47- حدد تأثير اليوريا

ج- اعاقة الانطواء الطبيعي للبروتين

مرکبتو ایثانول $oldsymbol{eta}$ مرکبتو ایثانول

ج- تحليل الجسور الكبريتية و منع اعادة تشكلها

49- بين كيف تكون البنية الفراغية للبروتين غير طبيعي أي مخرب البنية الاصلية

ج- بنية فراغية غير طبيعية (تشكل الجسور الكبريتية في غير أماكنها الصحيحة)

50- بين كيف يصبح البروتين الذي له بنية فراغية غير طبيعية مرة ثانية فعالا ؟

ج- عندما يستعيد البنية الفراغية الطبيعية بعودة تشكل الجسور ثنائية الكبريت في أماكنها الصحيحة

51- وضح المقصود بالتفاعل العكوس (تخريب عكسي)

ج- استعادة البنية الفراغية الطبيعية للبروتين و يصبح فعالا

52- وضح المقصود بالتفاعل الغير العكوس (تخريب غير عكسي) ؟

ج- عدم استعادة البنية الفراغية الطبيعية للبروتين

53-كيف نسمى الوظيفة القاعدية الموجودة في بداية السلسلة البروتينية ؟

ج- الطرف الاميني و يكتب على اليسار

54-كيف نسمى الوظيفة الكربوكسيلية الموجودة في نهاية السلسلة البروتينية ؟

ج- النهاية الكربوكسيلية يكتب على اليمين

55-كيف يتم قراءة الأحماض الامينية في البروتين ؟

ج- من الطرف الاميني إلى النهاية الكربوكسيلية

56- بين كيف تحافظ البروتينات على بنيتها الفراغية المحددة

ج- نتيجة لعدد من الروابط التي تنشأ بين المجموعات الكيميائية المتواجدة بين جذور الأحماض الامينية في مواقع محددة حيث تؤدي المحافظة على البنية الفراغية للبروتين على المحافظة على الوظيفة

الوحدة 3 : النشاط الأنزيمي للبروتينـــــات (40 سؤال و جواب)

1-كيف يتم تبسيط المواد الغذائية ؟

ج- بواسطة أنزيمات هاضمة متواجدة في الأنبوب الهضمي ابتداء من الفم فالمعدة فالأمـــــعاء الدقيقة

2- بماذا تقوم الإنزيمات لتبسيط الغذاء ؟

ج- تسريع التفاعلات الكيميائية و تعتبر محفزات لأنها تسرع التفاعل بتراكيز ضعيفة منها

3- ما هي عواقب غياب أو نقص الإنزيمات ؟

ج- خلل وظيفي للعضوية (خلل في النشاط الايضي), ظهور الأمراض

- قارن بين التفاعلات الكيميائية التي تتم في وجود و في غياب الأنزيمات في جدول

 في وجود الإنزيم
 في غياب الإنزيم

 السرعة
 مدة زمنية قصيرة) أصغر (مدة زمنية طويلة)

 المردودية
 مرتفعة

5- حدد الطبيعة الكيميائية للإنزيم

ج- بروتينية

6- وضح كيف يتم قياس النشاط الإنزيمي

ج- عن طريق التجريب المدعم بالحاسوب EXAO أي دراسة الحركية الإنزيمية

7- أذكر مزايا استعمال التجريب المدعم بالحاسوب

