LUR'E PROBLEM: ABSOLUTE STABILITY

LUR'E SYSTEM

- L: time-invariant dynamic system
- N: nonlinear static system

LUR'E SYSTEM

LUR'E SYSTEM

Equivalent forms

$$\alpha = -w$$

$$\eta = -y$$

$$\beta = v$$

AUTONOMOUS LUR'E SYSTEM

AUTONOMOUS LUR'E SYSTEM

$$L: \begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases} \text{ (A,B,C) stabilizable}$$

Assumption: (A,B) reachable & (A,C) observable

$$G(s) = C(sI - A)^{-1}B$$

AUTONOMOUS LUR'E SYSTEM

 $N: u(t) = \varphi(e(t))$

- $\varphi:\Re o \Re$ piecewise continuous function
- $\varphi(\cdot) \in \Phi_{[k_1,k_2]} = \{\phi(\cdot): k_1 e \le \phi(e) \le k_2 e, \forall e \in \Re\}$

SECTOR NONLINEARITY

$$\Phi_{[k_1,k_2]} = \{ \phi(\cdot) : k_1 e \le \phi(e) \le k_2 e \ \forall e \in \Re \}$$

SECTOR NONLINEARITY

$$\Phi_{[k_1,k_2]} = \{ \phi(\cdot) : k_1 e \le \phi(e) \le k_2 e \ \forall e \in \Re \}$$

$$\Phi_{[k_1,k_2]} = \{ \phi(\cdot) : (k_2e - u)(u - k_1e) \ge 0, \ u = \phi(e), \ \forall e \in \Re \}$$

AUTONOMOUS LUR'E SYSTEM

$$S: \begin{cases} \dot{x} = Ax + B\varphi(-Cx) \\ y = Cx \end{cases}$$

$$f(x) := Ax + B\varphi(-Cx)$$

 $\varphi(0)=0 o f(0)=0 o ar x=0$ is an equilibrium for S, for any sector nonlinearity $\ \varphi(\cdot)\in \Phi_{[k_1,k_2]}$

ABSOLUTE STABILITY IN THE SECTOR $[k_1, k_2]$

S:
$$\varphi(\cdot)$$
 U L γ

Definition

System S is absolutely stable in the sector $[k_1, k_2]$ is x=0 is a a globally asymptotically stable equilibrium, for every sector nonlinearity $\varphi(\cdot) \in \Phi_{[k_1,k_2]}$

STABILITY OF AN EQUILIBRIUM

$$\dot{x}(t) = f(x(t))$$

Definition (equilibrium):

 x_e 5 ? n such that $f(x_e)=0$

Definition (stable equilibrium):

$$\forall \varepsilon > 0, \exists \delta > 0: \|x_0 - x_e\| < \delta \Rightarrow \|x(t) - x_e\| < \varepsilon, \forall t \ge 0$$

$$\|v\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$
execution starting from x(0)=x₀

Definition (stable equilibrium):

$$\forall \varepsilon > 0, \exists \delta > 0: \|x_0 - x_e\| < \delta \Rightarrow \|x(t) - x_e\| < \varepsilon, \forall t \ge 0$$

$$\|v\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$
execution starting from x(0)=x₀

small perturbations lead to small changes in behavior

Definition (asymptotically stable equilibrium):

$$\forall \varepsilon > 0, \exists \delta > 0: \ \|x_0 - x_e\| < \delta \to \|x(t) - x_e\| < \varepsilon, \forall t \geq 0$$
 and δ can be chosen so that $\lim_{t \to \infty} (x(t) - x_e) = 0$

Definition (asymptotically stable equilibrium):

$$\forall \varepsilon > 0, \exists \delta > 0: \ \|x_0 - x_e\| < \delta \to \|x(t) - x_e\| < \varepsilon, \forall t \geq 0$$
 and δ can be chosen so that $\lim_{t \to \infty} (x(t) - x_e) = 0$

small perturbations lead to small changes in behavior and are re-absorbed, in the long run

Definition (asymptotically stable equilibrium):

$$\forall \varepsilon > 0, \exists \delta > 0: \|x_0 - x_e\| < \delta \to \|x(t) - x_e\| < \varepsilon, \forall t \ge 0$$
 and δ can be chosen so that $\lim_{t \to \infty} (x(t) - x_e) = 0$

Graphically:

small perturbations lead to small changes in behavior and are re-absorbed, in the long run

Let x_e be asymptotically stable.

Definition (domain of attraction):

The domain of attraction of \mathbf{x}_{e} is the set of \mathbf{x}_{0} such that

$$\lim_{t\to\infty} x(t) - x_e = 0$$
execution starting from $x(0) = x_0$

Definition (globally asymptotically stable equilibrium):

 \boldsymbol{x}_{e} is globally asymptotically stable (GAS) if its domain of attraction is the whole state space $\mbox{?}^{\,n}$

LUR'E PROBLEM

Lur'e problem

Given the transfer function G(s) of the linear system L, determine necessary and/or sufficient conditions for the absolute stability of S in the sector $[k_1, k_2]$.

LUR'E PROBLEM

Lur'e problem

Given the transfer function G(s) of the linear system L, determine necessary and/or sufficient conditions for the absolute stability of S in the sector $[k_1, k_2]$.

Why is this problem meaningful?

A SIGNIFICANT EXAMPLE

Assumption: $g_P=g_T=0 \, {\rm and} \, g_R=1$

Let $\ \bar{y}^{\circ},\ \bar{d}_{a},\ u_{0}$ be constant,

and denote with $\bar{x}=(\bar{x}_P'\ \bar{x}_T'\ \bar{x}_R')'$ the corresponding equilibrium.

Assumption: $g_P = g_T = 0$ and $g_R = 1$

Let $\bar{y}^{\circ}, \bar{d}_a, u_0$ be constant,

and denote with $\bar{x}=(\bar{x}_P'\ \bar{x}_T'\ \bar{x}_R')'$ the corresponding equilibrium.

$$g_R = 1 \to \bar{e} = 0 \to \bar{y} = \bar{y}^{\circ} \to \bar{c} = \frac{\bar{y}^{\circ}}{\mu_T}$$
 $\bar{c} = \bar{m}\mu_P + \bar{d}_a \to \bar{m} = \frac{1}{\mu_P}(\bar{c} - \bar{d}_a) = \frac{1}{\mu_P}(\frac{\bar{y}^{\circ}}{\mu_T} - \bar{d}_a)$
 $\bar{u} = \psi^{-1}(\bar{m})$
 $\bar{w} = \bar{u} - u_0$

A SIGNIFICANT EXAMPLE

Typical control design approach:

'linear' design + nonlinear analysis (for instance, by simulation)

Linear design:

• build the system $\delta\Sigma$ by linearizing Σ around the equilibrium associated with the constant inputs $\ \bar{y}^\circ,\ \bar{d}_a,\ u_0$

$$k := \frac{\partial \psi}{\partial u}(\bar{u})$$

A SIGNIFICANT EXAMPLE

Linear design:

• build the system $\delta\Sigma$ by linearizing Σ around the equilibrium associated with the constant inputs $\ \bar{y}^\circ,\ \bar{d}_a,\ u_0$

$$k := \frac{\partial \psi}{\partial u}(\bar{u})$$

Linear design:

- build the system $\delta\Sigma$ by linearizing Σ around the equilibrium associated with the constant inputs $\ \bar{y}^\circ,\ \bar{d}_a,\ u_0$
- choose R(s) that makes $\delta\Sigma$ asymptotically stable

A SIGNIFICANT EXAMPLE

Different triples $\bar{y}^\circ, \ \bar{d}_a, \ u_0$ map into different equilibria for Σ . Hence, the linear gain k of the actuator is uncertain

$$k := \frac{\partial \psi}{\partial u}(\bar{u}) \in [k_{\min}, k_{\max}]$$

Different triples \bar{y}° , \bar{d}_a , u_0 map into different equilibria for Σ . Hence, the linear gain k of the actuator is uncertain

$$k := \frac{\partial \psi}{\partial u}(\bar{u}) \in [k_{\min}, k_{\max}]$$

ightarrow robust linear control design needed to guarantee that $\delta\Sigma$ is asymptotically stable for every k in the admissible range

A SIGNIFICANT EXAMPLE

Guarantees for $\delta\Sigma$:

every equilibrium of $\delta\Sigma$ associated with constant inputs is globally asymptotically stable and the controlled variable will converge to the desired set-point after some suitable transient, irrespectively of the (constant) value of the disturbances

What about the nonlinear system Σ ?

A SIGNIFICANT EXAMPLE

What about the nonlinear system Σ ?

We need to verify that *all* equilibria associated with admissible constant inputs are *globally asymptotically stable*.

What about the nonlinear system Σ ?

We need to verify that *all* equilibria associated with admissible constant inputs are *globally asymptotically stable*.

→ Lur'e problem

A SIGNIFICANT EXAMPLE

Consider the constant input values \bar{y}° , \bar{d}_a , u_0 and the corresponding equilibrium. We can then adopt the following expressions:

$$x(t) = \bar{x} + \Delta x(t)$$

$$e(t) = \bar{e} + \Delta e(t)$$

$$w(t) = \bar{w} + \Delta w(t)$$

$$u(t) = \bar{u} + \Delta u(t)$$

$$m(t) = \bar{m} + \Delta m(t)$$

$$c(t) = \bar{c} + \Delta c(t)$$

$$y(t) = \bar{y} + \Delta y(t)$$

Consider the constant input values \bar{y}° , \bar{d}_a , u_0 and the corresponding equilibrium. We can then adopt the following expressions:

$$\begin{array}{ll} x(t) = \bar{x} + \Delta x(t) & \Delta x(t) := x(t) - \bar{x} \\ e(t) = \bar{e} + \Delta e(t) & \Delta e(t) := e(t) - \bar{e} \\ w(t) = \bar{w} + \Delta w(t) & \text{where} \\ u(t) = \bar{u} + \Delta u(t) & \Delta u(t) := w(t) - \bar{w} \\ m(t) = \bar{m} + \Delta m(t) & \Delta u(t) := u(t) - \bar{u} \\ c(t) = \bar{c} + \Delta c(t) & \Delta m(t) := m(t) - \bar{m} \\ c(t) = \bar{c} + \Delta y(t) & \Delta y(t) := y(t) - \bar{y} \end{array}$$

A SIGNIFICANT EXAMPLE

A SIGNIFICANT EXAMPLE

autonomous system

System Σ^* in compact form:

- L: G(s) = P(s)T(s) R(s)
- → Lur'e autonomous system

A SIGNIFICANT EXAMPLE

- Given that $x(t)=\bar{x}+\Delta x(t)$, then, the global asymptotic stability of the equilibrium \bar{x} of Σ is equivalent to that of the equilibrium $\Delta x=0$ of Σ^*
- Function $\varphi(\cdot)$ depends on \bar{x}

$$\Sigma$$
 *: $\phi(\cdot)$ Δm L

L: G(s) = P(s)T(s) R(s)

 $\boldsymbol{\rightarrow} \,$ autonomous Lur'e system with $\varphi(\cdot) \in \Phi_{[k_1,k_2]}$

Conclusions:

If Σ^* is absolutely stable in the sector [k₁, k₂], then, all equilibria of Σ are globally asymptotically stable

LUR'E PROBLEM

Lur'e problem

determine necessary and/or sufficient conditions for the absolute stability of S in some sector $[k_1,\,k_2].$

A NECESSARY CONDITION

A NECESSARY CONDITION

Admissible sector functions can be linear:

$$\varphi(e) = ke \in \Phi_{[k_1, k_2]}$$

A NECESSARY CONDITION

Admissible sector functions can be linear:

$$\varphi(e) = ke \in \Phi_{[k_1, k_2]}$$

A NECESSARY CONDITION

Admissible sector functions can be linear:

$$\varphi(e) = ke \in \Phi_{[k_1, k_2]}$$

If S is absolutely stable in $[k_1, k_2]$,

then, S_L is (globally) asymptotically stable for any $k \in [k_1,\,k_2].$

A NECESSARY CONDITION

Admissible sector functions can be linear:

$$\varphi(e) = ke \in \Phi_{[k_1, k_2]}$$

If S is absolutely stable in $[k_1, k_2]$,

then, S_L is (globally) asymptotically stable for any $k \in [k_1, \, k_2]$.

If $0 \in [k_1, k_2]$, then, system L with t.f. G(s) is asymptotically stable

ASYMPTOTIC STABILITY OF SL

For a given k,

System S_L is asymptotically stable if and only if the Nyquist plot of G(s) encircles (anti-clockwise) the point in the complex plan corresponding to the real number -1/k as many times as the number of poles of G(s) with positive real part (Nyquist criterion)

ASYMPTOTIC STABILITY OF S_L

ROBUST ASYMPTOTIC STABILITY OF S_L

If $k \in [k_1, k_2] \rightarrow \text{robust stability of } S_L$

ROBUST ASYMPTOTIC STABILITY OF \mathbf{S}_{L}

If $k \in [k_1, k_2] \rightarrow \text{robust stability of } S_L$

$$I(k_1, k_2) := \{ \alpha \in \Re : \ \alpha = -\frac{1}{k}, \ k \in [k_1, k_2] \}$$

ROBUST ASYMPTOTIC STABILITY OF S_L

If $k \in [k_1, k_2] \rightarrow \text{robust stability of } S_L$

ROBUST ASYMPTOTIC STABILITY OF SL

<u>k uncertain, $k \in [k_1, k_2]$,</u>

System S_L is asymptotically stable for any $k \in [k_1, k_2]$ if and only if the Nyquist plot of G(s) encircles (anti-clockwise) $I(k_1, k_2)$ as many times as the number of poles of G(s) with positive real part.

A NECESSARY CONDITION

Theorem (necessary condition)

If S is absolutely stable in the sector $[k_1, k_2]$,

then the Nyquist plot of G(s) encircles (anti-clockwise) $I(k_1, k_2)$ as many times as the number of poles of G(s) with positive real part.

In particular, if $0 \in [k_1, k_2]$, then system L with transfer function G(s) is asymptotically stable.