Assignment -3

Python Programming

1. Download the dataset

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

2. Load the dataset into the tool.

```
In [2]: #Loading the dataset
d = pd.read_csv(r'Downloads/abalone.csv')
```

3. Perform Below Visualizations.

· Univariate Analysis

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	- 1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

```
In [4]: #BoxpLot
sns.boxplot(d['Diameter'])
```

Out[4]: <AxesSubplot:xlabel='Diameter'>


```
In [6]: #line plot

plt.plot(d['Diameter'].head(10))
```

Out[6]: [<matplotlib.lines.Line2D at 0x1c2ed71d130>]


```
In [7]: #piechart
plt.pie(d['Diameter'].head(),autopct='%.2f')
```



```
In [8]: #distplot
           sns.distplot(d['Diameter'].head(200))
  Out[8]: <AxesSubplot:xlabel='Diameter', ylabel='Density'>
            • Bi - Variate Analysis
   In [9]: #scatter plot
            plt.scatter(d['Diameter'].head(500),d['Length'].head(500))
   Out[9]: <matplotlib.collections.PathCollection at 0x1c2edcc2d60>
             0.7
             0.6
             0.5
             0.4
             0.3
             0.2
In [10]: #bar plot
          plt.bar(d['Sex'].head(10),d['Rings'].head(10))
          \#labelling of x, y and result
          plt.title('Bar plot')
plt.xlabel('Diameter')
plt.ylabel('Rings')
Out[10]: Text(0, 0.5, 'Rings')
                                      Bar plot
              17.5
              15.0
              12.5
           10.0
               7.5
               5.0
In [11]: sns.barplot(d['Sex'], d['Rings'])
Out[11]: <AxesSubplot:xlabel='Sex', ylabel='Rings'>
             10
           Rings
```

In [13]: #bar plot
sns.barplot('Diameter','Rings',hue='Sex',data=d.head())

Out[13]: <AxesSubplot:xlabel='Diameter', ylabel='Rings'>

In [14]: sns.lineplot(d['Diameter'].head(),d['Rings'].head())

Out[14]: <AxesSubplot:xlabel='Diameter', ylabel='Rings'>

• Multi - Variate Analysis

0.13

```
In [15]: #boxplot
           sns.boxplot(d['Sex'].head(10),d['Diameter'].head(10),d['Rings'].head(10))
Out[15]: <AxesSubplot:xlabel='Sex', ylabel='Diameter'>
              0.425
              0.400
              0.375
              0.350
            0.325
              0.300
              0.275
              0.250
  In [16]: #heat map
             fig=plt.figure(figsize=(8,5))
sns.heatmap(d.head().corr(),annot=True)
 Out[16]: <AxesSubplot:>
                                    0.99
                                                         0.97
                                                               0.98
                                                                       0.99
                     Length -
                             0.86
                                            1
                                                                       0.9
                     Height -
                                    0.87
                                                  0.87
                                                         0.83
                                                               0.92
                Whole weight - 0.99
                                           0.87
                                                         0.99
                                                               0.99
              Shucked weight - 0.97
                                                  0.99
                                                                                         0.5
                                                                              0.48
               Viscera weight - 0.98
                                    0.99
                                           0.92
                                                  0.99
                                                         0.98
                                                                                         0.4
                                                                                         0.3
                            0.99
                                            0.9
                                                         0.98
                      Rings -
      In [17]: #pair plot
                 sns.pairplot(d.head(),hue='Rings')
      Out[17]: <seaborn.axisgrid.PairGrid at 0x1c2edd07fd0>
                  0.45
0.40
                    0.40
                  ₹ 0.35
```


4. Perform descriptive statistics on the dataset.

	Sex	Length	Diameter	Height	Whole weight	Shucked weight V	iscera weight S	hell weight	Rings	
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15	
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	
4	- 1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	
to	il									
٠.	ail()								
1.t							Viscera weight	Challwain	ht Dings	

```
4174 M 0.600 0.475 0.205
                                 1.1760
                                              0.5255
                                                         0.2875
                                                                   0.3080 9
4175 F 0.625
                 0.485 0.150
                                              0.5310
                                 1.0945
                                                         0.2610
                                                                   0.2960
                                                                            10
4176 M 0.710
                0.555 0.195
                                              0.9455
                                                         0.3765
                                                                   0.4950 12
                                 1.9485
```

In [21]: d.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

In [22]: d.describe()

Out[22]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

In [23]: #mode

d.mode().T

Out[23]:

 Sex
 M
 NaN

 Length
 0.55
 0.625

 Diameter
 0.45
 NaN

 Height
 0.15
 NaN

 Whole weight
 0.2225
 NaN

 Shucked weight
 0.175
 NaN

 Viscera weight
 0.1715
 NaN

 Shell weight
 0.275
 NaN

 Rings
 9.0
 NaN

In [24]: d.shape

Out[24]: (4177, 9)

```
In [25]: #Rurtosis
   Out[25]: Length
                                     0.064621
                                    -0.045476
76.025509
-0.023644
              Diameter
              Height
Whole weight
Shucked weight
Viscera weight
                                     0.595124
                                     0.084012
               Shell weight
                                     0.531926
              Rings
                                     2.330687
              dtype: float64
   In [26]: #skewness
              d.skew()
   Out[26]: Length
                                   -0.639873
               Diameter
                                   -0.609198
               Height
                                    3.128817
               Whole weight
                                    0.530959
                                    0.719098
               Shucked weight
              Viscera weight
Shell weight
                                    0.591852
                                    0.620927
                                    1.114102
               Rings
              dtype: float64
in [2/]: #variance
              d.var()
   Out[27]: Length
Diameter
                                     0.014422
                                     0.009849
              Height
Whole weight
Shucked weight
Viscera weight
                                     0.001750
0.240481
                                     0.049268
                                     0.012015
               Shell weight
                                     0.019377
               Rings
                                    10.395266
               dtype: float64
   In [28]: #finding unique values for columns
               d.nunique()
   Out[28]: Sex
Length
                                     3
134
               Diameter
              Height
Whole weight
                                     51
                                    2429
               Shucked weight
              Viscera weight
Shell weight
                                     880
                                     926
                                      28
               Rings
               dtype: int64
```

5. Check for Missing values and deal with them.

In [29]: #finding missing values
d.isna()

Out[29]: Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False
					***	444	***		
4172	False	False	False	False	False	False	False	False	False
4173	False	False	False	False	False	False	False	False	False
4174	False	False	False	False	False	False	False	False	False
4175	False	False	False	False	False	False	False	False	False
4176	False	False	False	False	False	False	False	False	False

4177 rows × 9 columns

```
In [30]: d.isna().any()
Out[30]: Sex
                                    False
                                    False
            Length
            Diameter
                                    False
            Height
Whole weight
                                    False
                                    False
            Shucked weight
Viscera weight
                                    False
                                    False
            Shell weight
                                    False
            Rings
            dtype: bool
In [31]: d.isna().sum()
Out[31]: Sex
            Length
            Diameter
            Height
            Whole weight
Shucked weight
Viscera weight
            Shell weight
            Rings
dtype: int64
                 dtype: bool
     In [31]: d.isna().sum()
     Out[31]: Sex
                 Length
                 Diameter
                Dlameter
Height
Whole weight
Shucked weight
Viscera weight
Shell weight
                                       0
                Rings
dtype: int64
    In [32]: d.isna().any().sum()
#no missing values
     Out[32]: 0
```

6. Find the outliers and replace them outliers

```
01 02 03 04 05 06

Diameter

In [34]: #handLing outLiers

qnt=d.quantile(q=[0.25,0.75])
qnt
```

Out[34]:		Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
	0.25	0.450	0.35	0.115	0.4415	0.186	0.0935	0.130	8.0
	0.75	0.615	0.48	0.165	1.1530	0.502	0.2530	0.329	11.0

dtype: float64

In [36]: lower=qnt.loc[0.25]-(1.5*iqr) lower

```
Out[36]: Length
                             0.20250
            Diameter
                             0.15500
            Height
                             0.04000
            Whole weight
                            -0.62575
            Shucked weight -0.28800
            Viscera weight -0.14575
            Shell weight
                            -0.16850
            Rings
                             3.50000
            dtype: float64
   In [37]: upper=qnt.loc[0.75]+(1.5*iqr)
            upper
  Out[37]: Length
            Diameter
                              0.67500
                              0.24000
            Height
                              2.22025
            Whole weight
            Shucked weight
                              0.97600
            Viscera weight
                              0.49225
            Shell weight
                              0.62750
                             15.50000
            Rings
            dtype: float64
In [38]: # replacing outliers
          ##Diameter
          d['Diameter']=np.where(d['Diameter']<0.155,0.4078,d['Diameter'])</pre>
          sns.boxplot(d['Diameter'])
 Out[38]: <AxesSubplot:xlabel='Diameter'>
```

Out[41]: <AxesSubplot:xlabel='Length'>

0.3

0.4

0.5

0.2

0.6

```
In [42]: ## Height
sns.boxplot(d['Height'])
Out[42]: <AxesSubplot:xlabel='Height'>
```

```
In [42]: ## Height
          sns.boxplot(d['Height'])
Out[42]: <AxesSubplot:xlabel='Height'>
In [43]: d['Height']=np.where(d['Height']<0.04,0.139, d['Height'])
d['Height']=np.where(d['Height']>0.23,0.139, d['Height'])
           d['Height']=np.where(d['Height']>0.23,0.139, d['Height'])
 In [44]: sns.boxplot(d['Height'])
 Out[44]: <AxesSubplot:xlabel='Height'>
               0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
Height
 In [45]: ## Whole weight
           sns.boxplot(d['Whole weight'])
 Out[45]: <AxesSubplot:xlabel='Whole weight'>
             Out[45]: <AxesSubplot:xlabel='Whole weight'>
                                                         [6]
                0.0
                                 1.5
Whole weight
    In [46]: d['Whole weight']=np.where(d['Whole weight']>0.9,0.82, d['Whole weight'])
    In [47]: sns.boxplot(d['Whole weight'])
    Out[47]: <AxesSubplot:xlabel='Whole weight'>
```

```
In [47]: sns.boxplot(d['Whole weight'])
  Out[47]: <AxesSubplot:xlabel='Whole weight'>
  In [48]: ## Shucked weight
            sns.boxplot(d['Shucked weight'])
  Out[48]: <AxesSubplot:xlabel='Shucked weight'>
Out[48]: <AxesSubplot:xlabel='Shucked weight'>
                                0.6 0.8
Shucked weight
                0.0
                          0.4
                                           1.0
   In [49]: d['Shucked weight']=np.where(d['Shucked weight']>0.93,0.35, d['Shucked weight'])
   In [50]: sns.boxplot(d['Shucked weight'])
   Out[50]: <AxesSubplot:xlabel='Shucked weight'>
     Out[50]: <AxesSubplot:xlabel='Shucked weight'>
                 0.0
                         0.2
                                0.4 0
Shucked weight
                                                  0.8
      In [51]: ## Viscera weight
               sns.boxplot(d['Viscera weight'])
      Out[51]: <AxesSubplot:xlabel='Viscera weight'>
```

```
Out[51]: <AxesSubplot:xlabel='Viscera weight'>
```



```
In [52]: d['Viscera weight']=np.where(d['Viscera weight']>0.46,0.18, d['Viscera weight'])
```

In [53]: sns.boxplot(d['Viscera weight'])

Out[53]: <AxesSubplot:xlabel='Viscera weight'>

In [53]: sns.boxplot(d['Viscera weight'])

Out[53]: <AxesSubplot:xlabel='Viscera weight'>


```
In [54]: ## Shell weight
```

sns.boxplot(d['Shell weight'])

Out[54]: <AxesSubplot:xlabel='Shell weight'>

In [54]: ## Shell weight

sns.boxplot(d['Shell weight'])

Out[54]: <AxesSubplot:xlabel='Shell weight'>


```
In [55]: d['Shell weight']=np.where(d['Shell weight']>0.61,0.2388, d['Shell weight'])
```

In [56]: sns.boxplot(d['Shell weight'])

Out[56]: <AxesSubnlot:xlabel='Shell weight'>

```
In [56]: sns.boxplot(d['Shell weight'])
Out[56]: <AxesSubplot:xlabel='Shell weight'>
```


7. Check for Categorical columns and perform encoding.

In [57]: #one hot encoding

d['Sex'].replace({'M':1,'F':0,'I':2},inplace=True)

d

Out[57]: Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	1	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	1	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	2	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
	1999			355	200		***	225	***
4172	0	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	1	0.590	0.440	0.135	0.8200	0.4390	0.2145	0.2605	10
4174	1	0.600	0.475	0.205	0.8200	0.5255	0.2875	0.3080	9
4175	0	0.625	0.485	0.150	0.8200	0.5310	0.2610	0.2960	10
4176	1	0.710	0.555	0.195	0.8200	0.3500	0.3765	0.4950	12

8. Split the data into dependent and independent variables.

In [58]: x=d.drop(columns= ['Rings'])
y=d['Rings']
x

Out[58]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
0	1	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500
1	1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100
3	1	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550
4	2	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550
			(233)		1233	122	(AVV)	210
4172	0	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490
4173	1	0.590	0.440	0.135	0.8200	0.4390	0.2145	0.2605
4174	1	0.600	0.475	0.205	0.8200	0.5255	0.2875	0.3080
4175	0	0.625	0.485	0.150	0.8200	0.5310	0.2610	0.2960
4176	1	0.710	0.555	0.195	0.8200	0.3500	0.3765	0.4950

4177 rows × 8 columns

4177 rows × 9 columns

9. Scale the independent variables

Name: Rings, Length: 4177, dtype: int64

10. Split the data into training and testing

```
In [62]: from sklearn.model_selection import train_test_split

In [63]: #spliting data to train and test
    x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.2)
    print(x_train.shape, x_test.shape)

(3341, 8) (836, 8)
```

11. Build the Model

```
In [64]: ##ultiple Regression

from sklearn.linear_model import LinearRegression

MLR=LinearRegression()
```

40 Tarin Har Madal

12. Train the Model

```
In [65]: MLR.fit(x_train,y_train)
Out[65]: LinearRegression()
```

13. Test the Model

```
In [66]: #predcition on the test data
y_pred=MLR.predict(x_test)
y_pred

Out[66]: array([11.46655124, 9.2166091, 6.59967857, 7.81824648, 12.18984569,
11.44220895, 11.20545145, 8.71621092, 10.98237601, 6.83381457,
10.46227495, 9.10809044, 12.39359143, 14.54491772, 13.54791716,
10.12045364, 11.48597397, 7.73511543, 12.86466796, 8.37939955,
6.51920876, 8.16682072, 8.05416099, 10.22713858, 10.57995698,
11.31090826, 7.52742935, 9.88582514, 11.25644638, 11.38973324,
10.95569239, 10.28552912, 10.40475249, 10.44887526, 11.03343746,
10.15213587, 10.04733695, 6.54448931, 11.86305246, 6.73817965,
4.07354447, 11.09033543, 7.69897797, 9.56311429, 11.63066462,
13.17063754, 6.34451832, 7.27896893, 15.31511539, 6.92860099,
3.63485054, 6.80184256, 11.451762, 10.69664795, 8.59383781,
7.50446583, 10.33994154, 11.85072027, 13.544946, 10.27236403,
```

13. Test the Model

```
In [66]: #predcition on the test data
          y_pred=MLR.predict(x_test)
          y pred
Out[66]: array([11.46655124, 9.2166091, 6.59967857, 7.81824648, 12.18984569, 11.44220895, 11.20545145, 8.71621092, 10.98237601, 6.83381457,
                  10.46227495, 9.10809044, 12.39359143, 14.54491772, 13.54791716,
                 10.12045364, 11.48597397, 7.73511543, 12.86466796, 8.37939955, 6.51920876, 8.16682072, 8.05416099, 10.22713858, 10.57995698,
                  11.31009826, 7.52742935, 9.88582514, 11.25644638, 11.38973324,
                  10.95569239, 10.28552912, 10.40475249, 10.44887526, 11.03343746,
                 10.15213587, 10.04733695, 6.54448931, 11.86305246, 6.73817965,
                   4.07354447, 11.09033543, 7.69897797, 9.56311429, 11.63006462,
                  13.17063754, 6.34451832, 7.27896893, 15.31511539, 6.92860099,
                   3.63485054, 6.80184256, 11.451762 , 10.69664795, 8.59383781,
                   7.50446583, 10.33994154, 11.85072027, 13.544946 , 10.27236403,
                   9.18410191, 7.7208794 , 12.33421272, 6.527156 , 11.17483778,
                   7.97617745, 9.31452692, 9.56473016, 9.51077399, 12.20917888,
                  12.10672271, 4.70427674, 6.38943267, 10.02410014, 11.97786002,
                  12.77246335, 6.50139525, 10.64829499, 7.7058727, 6.05475715,
                  11.28248424, 10.75341994, 17.22835762, 9.53819376, 8.96368426,
                   6.61412036, 12.00162611, 5.85400348, 4.07058709, 10.08426584,
                  10.15760235, 11.50892785, 10.58412873, 10.32113545, 12.98841501,
```

```
13.1/003/54, 0.34451032, /.2/0370033, 15.31511533, 0.32000033, 3.63485054, 6.80184256, 11.451762 , 10.69664795, 8.59383781, 7.50446583, 10.33994154, 11.85072027, 13.544946 , 10.27236403,
                    7.50440505, 10.53594134, 11.5367427, 15.544946 , 16.27250405, 9.18410191, 7.7208794 , 12.33421272, 6.527156 , 11.17483778, 7.97617745, 9.31452692, 9.56473016, 9.51077399, 12.20917888, 12.10672271, 4.70427674, 6.38943267, 10.02410014, 11.97786002, 12.77246335, 6.50139525, 10.64829499, 7.7058727 , 6.05475715,
                    11.28248424, 10.75541994, 17.22835762, 9.53819376, 8.96368426, 6.61412036, 12.00162611, 5.85400348, 4.07058709, 10.08426584,
                     10.15760235, 11.50892785, 10.58412873, 10.32113545, 12.98841501,
In [67]: #prediction in the train data
            pred=MLR.predict(x_train)
            pred
Out[67]: array([10.64104453, 11.72955404, 9.71670847, ..., 9.33031288,
                    11.94411399, 9.8609076 ])
In [68]: from sklearn.metrics import r2_score
            acc=r2_score(y_test,y_pred)
Out[68]: 0.4331576346139585
In [69]: #test this model
Out[68]: 0.4331576346139585
In [69]: #test this model
            MLR.predict([[1,0.455,0.365,0.095,0.5140,0.2245,0.1010,0.150]])
Out[69]: array([9.91033204])
             14. Measure the performance using Metrics.¶
In [70]: from sklearn import metrics
             from sklearn.metrics import mean_squared_error
 In [71]: np.sqrt(mean_squared_error(y_test,y_pred))
 Out[71]: 2.4905110779015462
             LASSO
 In [72]: from sklearn.linear_model import Lasso, Ridge
In [73]: #intialising model
In [73]: #intialising model
            lso=Lasso(alpha=0.01,normalize=True)
In [74]: #fit the model
            lso.fit(x_train,y_train)
Out[74]: Lasso(alpha=0.01, normalize=True)
In [75]: #predcition on test data
            lso_pred=lso.predict(x_test)
In [76]: #coef
            coef
                            , 0. , 0. , 0.4751529 , 0.18634695, 
, 0. , 0.8021721 ])
Out[76]: array([-0.
In [77]: #accuracy
            from sklearn import metrics
            from sklearn.metrics import mean_squared_error
metrics.r2_score(y_test,lso_pred)
Out[771: 0.3260900261255968
```

```
In [78]: #error
            np.sqrt(mean_squared_error(y_test,lso_pred))
Out[78]: 2.715552909824135
            RIDGE
In [79]: rg=Ridge(alpha=0.01,normalize=True)
In [80]: #fit
            rg.fit(x_train,y_train)
Out[80]: Ridge(alpha=0.01, normalize=True)
In [81]: #predcition
            rg_pred=rg.predict(x_test)
           rg_pred
 Out[81]: array([11.49838542, 9.22452452, 6.72241086, 7.80010402, 12.09475499,
                      11.33701357, 11.13313 , 8.85299136, 10.95426872, 6.83332623,
                      10.48221326, 9.08348674, 12.3098871 , 14.39846005, 13.62343834, 10.11925891, 11.53997639, 7.75730522, 12.85320604, 8.43018605,
                     6.53855123, 8.20224034, 7.58755052, 10.2671289 , 10.65653767, 11.30141111, 7.50735436, 9.91086293, 11.27856902, 11.29021902,
                     10.93344581, 10.32246436, 10.4456454 , 10.47230589, 11.05682097, 10.1640513 , 10.10050704, 6.5623351 , 11.84100809, 6.75171646,
                     4.18665064, 11.0291328 , 7.72116038, 9.60080953, 11.57691909, 13.01362452, 6.35434964, 7.30414243, 15.1541625 , 6.91515291,
                       4.16356146, 6.81943931, 11.43766939, 10.62078881, 8.65255458,
                       7.53582353, 10.44494347, 11.86697333, 13.45239251, 10.40153892,
                       9.1961334, 7.75332002, 12.25958727, 6.54710958, 11.17149665, 7.96864693, 9.37526527, 9.69298327, 9.54666379, 12.19633696,
                     12.1127204 , 4.82993146 , 6.43644112 , 9.93303646 , 12.00590353 , 12.76127566 , 6.53636246 , 10.58092597 , 7.71945979 , 5.98307484 ,
                      11.30567761, 10.77297947, 16.83531384, 9.62951405, 9.07577717,
                       6.65047637, 11.98056215, 5.83715385, 4.18471904, 10.06479866,
                      10.18956629, 11.5066688 , 10.63940289, 10.38796727, 12.94599046,
 In [82]: #coef
             rg.coef_
 Out[82]: array([-0.30797338, -0.75443399, 0.34843757, 0.94370227, 0.96851431, -1.38791368, -0.04943813, 1.70772786])
In [82]: #coef
            rg.coef_
Out[82]: array([-0.30797338, -0.75443399, 0.34843757, 0.94370227, 0.96851431, -1.38791368, -0.04943813, 1.70772786])
In [83]: #accuracy
            metrics.r2_score(y_test,rg_pred)
Out[83]: 0.43177328549243543
In [84]: #error
            \verb"np.sqrt(mean_squared_error(y_test,rg_pred)")"
Out[84]: 2.4935504011542577
 In [ ]: # 1. Download the dataset
            #importing the libraries
            import pandas as pd
            import numpy as np
            import matplotlib.pyplot as plt
            import seaborn as sns
```

```
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
# 2. Load the dataset into the tool.
#Loading the dataset
d = pd.read_csv(r'Downloads/abalone.csv')
# 3. Perform Below Visualizations.
# · Univariate Analysis
d.head()
#Boxplot
sns.boxplot(d['Diameter'])
#histogram
plt.hist(d['Diameter'])
#line plot
#line plot
plt.plot(d['Diameter'].head(10))
#piechart
plt.pie(d['Diameter'].head(),autopct='%.2f')
#distplot
sns.distplot(d['Diameter'].head(200))
# • Bi - Variate Analysis
#scatter plot
plt.scatter(d['Diameter'].head(500),d['Length'].head(500))
#bar plot
plt.bar(d['Sex'].head(10),d['Rings'].head(10))
#labelling of x,y and result
plt.title('Bar plot')
plt.ylabel('Rings')
sns.barplot(d['Sex'], d['Rings'])
#joint plot
sns.jointplot(d['Diameter'].head(50),d['Rings'].head(50))
#bar plot
sns.barplot('Diameter', 'Rings', hue='Sex', data=d.head())
sns.lineplot(d['Diameter'].head(),d['Rings'].head())
# • Multi - Variate Analysis
sns.boxplot(d['Sex'].head(10),d['Diameter'].head(10),d['Rings'].head(10))
#heat map
fig=plt.figure(figsize=(8,5))
sns.heatmap(d.head().corr(),annot=True)
#pair plot
sns.pairplot(d.head(),hue='Rings')
```

```
sns.pairplot(d.head()), hue='Rings')
sns.pairplot(d.head())
# 4. Perform descriptive statistics on the dataset.
#head
d.head()
#tail
d.tail()
d.info()
d.describe()
#mode
d.mode().T
d.shape
#kurtosis
```

```
d.kurt()

#skewness

d.skew()

#variance

d.var()

#finding unique values for columns

d.nunique()

# 5. Check for Missing values and deal with them.

#finding missing values

d.isna()

d.isna().any()

d.isna().sum()

# o missing values
```

```
# 6. Find the outliers and replace them outliers
#finding outliers
sns.boxplot(d['Diameter'])
#handling outliers
qnt=d.quantile(q=[0.25,0.75])
qnt
iqr=qnt.loc[0.75]-qnt.loc[0.25]
iqr
lower=qnt.loc[0.25]-(1.5*iqr)
lower
upper=qnt.loc[0.75]+(1.5*iqr)
upper
# replacing outliers
##Diameter
d['Diameter']=np.where(d['Diameter']\0.155,0.4078,d['Diameter'])
sns.boxplot(d['Diameter'])
```

```
## Length
sns.boxplot(d['Length'])
d['Length']=np.where(d['Length']<0.23,0.52, d['Length'])</pre>
sns.boxplot(d['Length'])
## Height
sns.boxplot(d['Height'])
d['Height']=np.where(d['Height']<0.04,0.139, d['Height'])
d['Height']=np.where(d['Height']>0.23,0.139, d['Height'])
sns.boxplot(d['Height'])
## Whole weight
sns.boxplot(d['Whole weight'])
d['Whole weight']=np.where(d['Whole weight']>0.9,0.82, d['Whole weight'])
sns.boxplot(d['Whole weight'])
## Shucked weight
## Shucked weight
sns.boxplot(d['Shucked weight'])
d['Shucked weight']=np.where(d['Shucked weight']>0.93,0.35, d['Shucked weight'])
sns.boxplot(d['Shucked weight'])
## Viscera weight
sns.boxplot(d['Viscera weight'])
d['Viscera weight']=np.where(d['Viscera weight']>0.46,0.18, d['Viscera weight'])
sns.boxplot(d['Viscera weight'])
## Shell weight
sns.boxplot(d['Shell weight'])
d['Shell weight']=np.where(d['Shell weight']>0.61,0.2388, d['Shell weight'])
sns.boxplot(d['Shell weight'])
# 7. Check for Categorical columns and perform encoding.
#one hot encoding
```

```
# 8. Split the data into dependent and independent variables.

x=d.drop(columns= ['Rings'])
y=d['Rings']
x

y

# 9. Scale the independent variables

from sklearn.preprocessing import scale #StandardScaler

#Scaling the independent variables

x = scale(x)
x

# 10. Split the data into training and testing

from sklearn.model_selection import train_test_split
```

```
# 10. Split the data into training and testing
from sklearn.model_selection import train_test_split
#spliting data to train and test
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.2)
print(x_train.shape, x_test.shape)
# 11. Build the Model
#Multiple Regression
from sklearn.linear_model import LinearRegression

MLR=LinearRegression()
# 12. Train the Model
MLR.fit(x_train,y_train)
# 13. Test the Model
#predcition on the test data
y_pred=MLR.predict(x_test)
y_pred
```

```
#prediction in the train data
pred=MLR.predict(x_train)
pred
from sklearn.metrics import r2_score
acc=r2 score(y test,y pred)
acc
#test this model
MLR.predict([[1,0.455,0.365,0.095,0.5140,0.2245,0.1010,0.150]])
# 14. Measure the performance using Metrics.¶
from sklearn import metrics
from sklearn.metrics import mean_squared_error
np.sqrt(mean_squared_error(y_test,y_pred))
# LASSO
from sklearn.linear_model import Lasso, Ridge
#intialisina model
lso=Lasso(alpha=0.01,normalize=True)
```

```
# LASSO
from sklearn.linear_model import Lasso, Ridge
#intialising model
lso=Lasso(alpha=0.01,normalize=True)
#fit the model
lso.fit(x_train,y_train)
#predcition on test data
lso_pred=lso.predict(x_test)
#coef
coef
coef
coef
from sklearn import metrics
from sklearn.metrics import mean_squared_error
metrics.r2_score(y_test,lso_pred)
#error
```