Nulladrendű logika

2023. október 20.

A gyakorlati anyag alapjául Polos L. – Ruzsa I. A logika elemei című műve szolgált.

Logikai műveletek:

Negáció (tagadás): ellenkezőre vált az igazságérték.

És: ott igaz, ahol mindkettő igaz.

Vagy: ott igaz, ahol legalább az egyik igaz.

Implikáció $(A \to B)$: ott hamis, ahol az A igaz és B hamis. Implikáció tagadása: $\neg(A \to B) \equiv \neg(\neg A \lor B) \equiv A \land \neg B$

1. Formalizáljuk az alábbi mondatokat!

(a) Legolas szőke, mindazonáltal nekem nem tetszik, annak ellenére, hogy a szőkéket kedvelem.

Megoldás. Bevezetem: SZ: Legolas szőke, T: tetszik Legolas, K: A szőkéket kedvelem

$$SZ \wedge \neg T \wedge K$$

(b) Karen hazament, de nem maradt otthon, bár mindenki ezt várta tőle.

Megoldás. Bevezetem: H: Karen hazament, O: Otthon maradt Karen, V: Mindenki ezt várta tőle

$$H \wedge \neg O \wedge V$$

(c) Esik az eső, de nincsen hideg, és a szél sem fúj.

Megoldás. E: Esik az eső, H: Hideg van, F: fúj a szél

$$E \wedge \neg H \wedge \neg F$$

Megjegyzés: Az a)-c) részek tanulsága: a de, bár, annak ellenére stb. kötőszavak mind logikai és-t takarnak! Gondoljunk bele: az "A de nem B" állítás akkor és csak akkor igaz, ha A igaz, és B hamis.

(d) Ha hazajössz, és be is vásárolsz, nekem nem kell lemennem és megfőzhetem az ebédet.

Megoldás. H: hazajössz, B: bevásárolsz, L: le kell mennem, M: megfőzhetem az ebédet

$$(H \wedge B) \to (\neg L \wedge M)$$

(e) Ha okos vagyok vagy nagyon szorgalmas, akkor kapok megajánlott jegyet és nem kell vizsgáznom.

Megoldás. O: okos vagyok, SZ: nagyon szorgalmas vagyok, K: megajánlott jegyet kapok, V: vizsgáznom kall

$$(O \lor SZ) \to (K \land \neg V)$$

(f) Rizikó nélkül nincs kockázat.

Megoldás.

$$kock\'azat \rightarrow rizik\'o$$

(g) Jeromos vadászik, vagy ha nem esik és meleg van, kertészkedik.

$$V \lor ((\neg E \land M) \to K)$$

2. Igazoljuk, hogy:

(a)
$$(A \lor B) \land \neg (A \land B) \equiv (A \land \neg B) \lor (B \land \neg A)$$

Megoldás. Igazságtáblával:

			_							
A	B	$\neg A$	$\neg B$	$A \vee B$	$A \wedge B$	$\neg(A \land B)$	b.o.	$(A \land \neg B)$	$B \wedge \neg A)$	j.o.
h	h	i	i	h	h	i	h	h	h	h
h	i	i	h	i	h	i	i	h	i	i
i	h	h	i	i	h	i	i	i	h	i
i	i	h	h	i	i	h	h	h	h	h

A jobb oldal és a bal oldal minden **interpretációban** megegyezik, tehát a formulák ekvivalensek. Egy interpretáció a változók egy kiértékelése, az igazságtábla sorai felelnek meg ezeknek.

Modell: olyan interpretáció, amelyben igaz a formula. A $\neg (A \land B)$ formula modellje az első három interpretáció.

Logikai következmény: a következmény legalább ott igaz, ahol a feltételek együttesen igazak. (A feltétel és a következmények nem feltétlen ekvivalensek.) Így például az $A \wedge B$ logikai következménye az $A \vee B$, hiszen abban az interpretációban, amelyikben az $A \wedge B$ igaz, abban az $A \vee B$ is igaz. A többi interpretációban igaz és hamis is lehet a következmény.

Lássuk be ekvivalens átalakításokkal: b.o. $\equiv (A \lor B) \land \neg (A \land B) \equiv (A \lor B) \land (\neg A \lor \neg B) \equiv (A \land \neg A) \lor (A \land \neg B) \lor (B \land \neg A) \lor (B \land \neg A) \lor (B \land \neg A) \Rightarrow j.o.$

(b) Igazoljuk, hogy az implikáció nem asszociatív művelet, tehát $(A \to B) \to C \not\equiv A \to (B \to C)$

	A	B	C	$A \rightarrow B$	b.o.	$B \to C$	j.o.
	h	h	h	i	h	i	i
	h	h	i	i	i	i	i
	h	i	h	i	h	h	i
Megoldás.	h	i	i	i	i	i	i
	i	h	h	h	i	i	i
	i	h	i	h	i	i	i
	i	i	h	i	h	h	h
	i	i	i	i	i	i	i

A jobb oldal és a bal oldal igazságértéke nem egyezik meg minden interpretációban, tehát nem ekvivalens a két formula, az implikáció művelet nem asszociatív.

(c) Igazolja, hogy teljesül a disztributív szabály! $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$

	A	B	C	$B \wedge C$	b.o.	$A \vee B$	$A \lor C$	j.o.
	h	h	h	h	h	h	h	h
	h	h	i	h	h	h	i	h
	h	i	h	h	h	i	h	h
Megoldás.	h	i	i	i	i	i	i	i
	i	h	h	h	i	i	i	i
	i	h	i	h	i	i	i	i
	i	i	h	h	i	i	i	i
	i	i	i	i	i	i	i	i

 $A\ jobb\ oldal\ \acute{e}s\ a\ bal\ oldal\ igazs \acute{a}g\acute{e}rt\acute{e}ke\ minden\ interpret\'{a}ci\acute{o}ban\ megegyezik,\ ez\acute{e}rt\ a\ k\acute{e}t\ formula\ ekvivalens\ egym\'{a}ssal.$