Package 'latentSNA'

June 14, 2024

Type Package
Title LatentSNA

Version 0.1.0
Author Selena Wang
Maintainer Selena Wang <selewang@iu.edu></selewang@iu.edu>
Description Neuroimaging connectivity analysis needs network science for brain-behavior linking (Wang et al. (2023) < arXiv:2309.11349>).
License GPL (>= 2)
Encoding UTF-8
LazyData true
Depends R (>= 4.3.2), MASS
Imports dplyr, plyr
RoxygenNote 7.3.1
R topics documented:
latentSNA
rbeta_a
rFl_nrm
rH nrm
rs1 b
rs2
rSu
rTheta_b
rU
rXi
simH
simX_nrm
simY_nrm
simZ
Index 1

2 latentSNA

latentSNA	Attribute informed brain con	nnectivity
-----------	------------------------------	------------

Description

An MCMC algorithm for fitting the latentSNA model

Usage

```
latnetSNA(X, Y, W, H, seed = 1, nscan =
10000, burn = 500, odens = 25,
prior=list())
```

Arguments

Χ	a list of V x V brain	connectivity data.
/\	a not of v A v orani	commedition autu.

Y a list of V x P attribute data.

W a matrix of N x Q covariates for the connectivity data.
H a matrix of N x Q1 covariates for the attribute data.

seed random seed

nscan number of iterations of the Markov chain (beyond burn-in)

burn burn in for the Markov chain odens output density for the Markov chain

prior list: A list of hyperparameters for the prior distribution

Value

COV posterior mean of the covariance parameters between brain and behaviors

BETAPM posterior mean of the regression coefficient parameters for the connectivity data

GAMMAPM posterior mean of the regression coefficient parameters for the attribute data

THETAPM posterior samples of the latent person variable
APM posterior mean of connectivity intercepts
BPM posterior mean of attribute intercepts

U last iteration of latent connectivity for all regions

UPM posterior mean of U

UVPM.1 list of posterior mean of connectivity
Theta the last iteration of the Theta estimate

X observed X Y observed Y

 $\begin{array}{ll} \hbox{EF1PM} & \hbox{posterior mean estimates of } X \\ \hbox{ETPM} & \hbox{posterior mean estiamtes of } Y \\ \end{array}$

TMPM posterior mean estimates of latent behavior component FLPM posterior mean estiamtes of latent connectivity component

input input values

Author(s)

Selena Wang

rbeta_a 3

rbeta_a

Conditional simulation of intercept and regression coefficients

Description

Simulates from the joint full conditional distribution of (beta) in a brain connectivity model

Usage

```
rbeta_a(F1, W = NULL, s2 = 1, U = U, ivA = NULL, beta0 = NULL, S0 = NULL)
```

Arguments

F1	9	liet c	τV	V Y	V norm	nal conn	ectivity	matriv
LT	а	HIST C)I V	^	v norn	iai conn	ECHVIIV	шаптх

W N x Q covariate matrix

s2 variance

U a V by V by N array

ivA prior inverse variance for the intercept parameters

beta0 prior mean vector for regression parameters S0 prior precision matrix for regression parameters

Value

beta regression coefficients
a subject-specific intercept

Author(s)

Selena Wang

rFl_nrm

Simulate missing values in a normal connectivity model

Description

Simulates missing values of a sociomatrix under a normal connectivity model

Usage

```
rFl_nrm(Z, EZ, s2, X)
```

Arguments

Ζ	a	square	matrix,	the	current	va	lue	ot	Z	
---	---	--------	---------	-----	---------	----	-----	----	---	--

EZ expected value of Z s2 dyadic variance

X square relational matrix

rH_nrm

Value

a square matrix, equal to at non-missing values

Author(s)

Selena Wang

rH_bin

Simulate H

Description

Simulates a random latent matrix H given its expectation and a behavior matrix Y

Usage

```
rH_bin(H, EH, Y)
```

Arguments

H a n X m matrix, the current value of H

EH expected value of H

Y n X m binary item response matrix

s1 item response variance

Value

a n X m matrix, the new value of H

Author(s)

Selena Wang

rH_nrm

Simulate missing values in a normal behavior model

Description

Simulates missing values under a behavior model

Usage

```
rH_nrm(H, EH,s1, Y)
```

Arguments

H a matrix, the current value of H

EH expected value of H
s1 behavior variance
Y behavior matrix

rs1_b

Value

a behavior matrix, equal to at non-missing values

Author(s)

Selena Wang

rs1_b

Gibbs update for behavior variance

Description

Gibbs update for behavior variance

Usage

```
rs1(Tm, offset=0,nu1=NULL,s10=NULL)
```

Arguments

Tm a list of V X P normal behavior matrix

nu1 prior degrees of freedom

s10 prior estimate of s1

Value

a new value of s1

Author(s)

Selena Wang

rs2

Gibbs update for connectivity variance

Description

Gibbs update for connectivity variance

Usage

```
rs2(Fl, offset=0,nu2=NULL,s20=NULL)
```

Arguments

F1 a list of V X V normal connectivity matrix

nu2 prior degrees of freedom

s20 prior estimate of s2

rTheta_b

Value

a new value of s2

Author(s)

Selena Wang

rSu

Gibbs update for latent effects covariance

Description

Gibbs update for latent effects covariance

Usage

```
rSu(U,Su0=NULL,etau=NULL)
```

Arguments

U latent connectivity and behavior

Su0 prior (inverse) scale matrix for the prior distribution etau prior degrees of freedom for the prior distribution

Author(s)

Selena Wang

rTheta_b

Gibbs sampling of Theta

Description

A Gibbs sampler for updating the Person latent effect Theta.

Usage

```
rTheta(H, beta, Alpha, Theta ,U, Stheta, Sutheta, Su, s1)
```

Arguments

H N X P normal behavior matrix beta P X 1 behavior intercept vector

Alpha 1 X 1 intercept vector
Theta current value of Theta

U matrix containing current value of U

Stheta covariance of Theta

Sutheta covariance between U and Theta
Su matrix containing covariance of U

s1 behavior variance

rU 7

Value

Theta a new value of Theta

Author(s)

Selena Wang

rU

Gibbs sampling of U

Description

A Gibbs sampler for updating U.

Usage

```
rU(F1,U,Theta, Stheta, Sutheta, Su, s2=1, offset=offset)
```

Arguments

F1 a list of V X V normal relational matrix

EF1 a list of the same dimension as Fl. It is assumed that Fl-offset follows a SRRM,

so the offset should contain any multiplicative effects (such as U%*% t(U))

U V X K matrix containing current value of U

Theta D X V current value of Theta

Stheta D X D covariance of Theta

Sutheta D X K covariance between U and Theta

Su KXK matrix containing covariance of U

s2 dyadic variance

Value

U a new value of U

Author(s)

Selena Wang

8 simH

rXi

Gibbs sampling of behaivor parameters Xi

Description

A Gibbs sampler for updating the behavior parameters.

Usage

```
rXi(H, beta, Alpha, Theta, mxi, Sigmaxi, s1 = 1)
```

Arguments

H normal behavior matrix
beta behavior intercept vector
Alpha behavior intercept vector
Theta current value of Theta

mxi vector of prior for the mean of Xi Sigmaxi matrix of prior for the variance of Xi

s1 behavior variance

Value

beta a new value of beta
Alpha a new value of Alpha

Author(s)

Selena Wang

simH

Simulate H given its expectation and covariance

Description

Simulate H given its expectation and covariance

Usage

```
simH(EH, s1 = 1)
```

Arguments

EH expected value of H s1 attribute variance

simX_nrm

Value

a simulated value of H

Author(s)

Selena Wang

simX_nrm

Simulate a normal connectivity matrix

Description

Simulates a normal connectivity matrix

Usage

```
simX_nrm(EX, s2)
```

Arguments

EX square matrix giving the expected value of the connectivity matrix

s2 dyadic variance

Value

a square matrix

Author(s)

Selena Wang

simY_nrm

Simulate a normal behavior matrix

Description

Simulates a normal behavior matrix

Usage

```
simY_nrm(EY, s1)
```

Arguments

EY matrix giving the expected value of the behavior matrix

s1 variance

Value

a N by P matrix

10 simZ

Author(s)

Selena Wang

simZ

Simulate Z given its expectation and covariance

Description

Simulate Z given its expectation and covariance

Usage

```
simZ(EZ, rho, s2 = 1)
```

Arguments

EZ expected value of Z s2 dyadic variance

Value

a simulated value of Z

Author(s)

Selena Wang

Index

```
latentSNA, 2

rbeta_a, 3

rFl_nrm, 3

rH_bin, 4

rH_nrm, 4

rs1_b, 5

rs2, 5

rSu, 6

rTheta_b, 6

rU, 7

rXi, 8

simH, 8

simX_nrm, 9

simY_nrm, 9

simZ, 10
```