

Instituto Politécnico Nacional Escuela Superior de Cómputo

Cuestionario 1

Unidad de aprendizaje: Compiladores

Profesor: Sánchez Juárez José

Grupo: 4CV12

Alumno: Hernández Cárdenas Daniel

Fecha de entrega: 30 - Marzo - 2023

Pregunta 1

Obtener el AFN de la siguiente expresión regular:

(a|b)*bb

Para comenzar con el proceso primero aplicaremos la cerradura épsilon al primer estado.

$$cerr - \epsilon(\{1\}) = \{1\} = S_1$$

Luego aplicamos los movimientos para los símbolos del alfabeto a y b

$$mov(S_1, a) = \emptyset$$

Cómo salió el conjunto vacío no aplicamos la cerradura de Kleene, ahora para b

$$mov(S_1, b) = \{2\}$$

$$cerr - \epsilon(mov(S_1, b)) = cerr - \epsilon(\{2\}) = \{2,3\} = S_2$$

Ahora aplicaremos el movimiento de S2 con a y b respectivamente

$$mov(S_2, a) = \emptyset$$

Cómo salió el conjunto vacío no aplicamos la cerradura de Kleene, ahora para b

$$mov(S_2, b) = \{4\}$$

$$cerr - \epsilon(mov(S_2, b)) = cerr - \epsilon(\{4\}) = \{4,5,6,8\} = S_3$$

Ahora aplicaremos el movimiento de S₃ con a y b respectivamente

$$mov(S_3, b) = \{7\}$$

$$cerr - \epsilon(mov(S_3, b)) = cerr - \epsilon(\{7\}) = \{5,6,7,8,10\} = S_4$$

Ahora para b

$$mov(S_3, b) = \{9\}$$

$$cerr - \epsilon(mov(S_3, b)) = cerr - \epsilon(\{9\}) = \{5,6,8,9,10\} = S_5$$

Ahora aplicaremos el movimiento de S4 con a y b respectivamente

$$mov(S_4, a) = \{7\}$$

$$cerr - \epsilon(mov(S_4, a)) = cerr - \epsilon(\{7\}) = \{5,6,7,8,10\} = S_4$$

Ahora para b

$$mov(S_{_{4}},b) \ = \ \{9\}$$

$$cerr \ - \ \epsilon(mov(S_{_{4}},b)) \ = \ cerr \ - \ \epsilon(\{9\}) = \{5,6,8,9,10\} = S_{_{5}}$$

Ahora aplicaremos el movimiento de S₅ con a y b respectivamente

$$mov(S_5, a) = \{7\}$$

$$cerr - \epsilon(mov(S_5, a)) = cerr - \epsilon(\{7\}) = \{5,6,7,8,10\} = S_4$$

Ahora para b

$$mov(S_{5}, b) = \{9\}$$

$$cerr - \epsilon(mov(S_{5}, b)) = cerr - \epsilon(\{9\}) = \{5,6,8,9,10\} = S_{5}$$

De modo que nos queda el siguiente autómata

Pregunta 3

Primero obtenemos su tabla de transiciones

Estado	a	b
1	Ø	{2}
2	{5}	{3}
3	{5}	{4}
4	{5}	Ø
5	Ø	Ø

Generamos dos grupos de estados, el primero de estados no finales y el segundo el de estados finales

$$m_0 = \{1, 2, 3, 4\} = Grupo de estados no finales$$
 $m_1 = \{5\} = Grupo de estados finales$

Realizando la tabla de m0

Estado	а	b
1	Ø	{2}
2	{5}	{3}

3	{5}	{4}
4	{5}	Ø

Realizando la tabla de m1

Estado	a	b
5	Ø	Ø

Realizando los nuevos grupos

$$m_2^{} = \{1\}$$

$$m_3 = \{2\}$$

$$m_4 = \{3\}$$

$$m_5 = \{4\}$$

Comprobando la inconsistencia

Estado	a	b
1	Ø	m_3
2	$m_{\scriptscriptstyle 1}$	m ₄
3	$m_{\scriptscriptstyle 1}$	m ₅
4	$m_{\scriptscriptstyle 1}$	Ø

Como vemos podemos comprobar que el AFD mínimo es igual al AFD no mínimo