United International University School of Science and Engineering

Final Examination Trimester: Spring 2023

Course Title: Coordinate Geometry and Vector Analysis

Course Code: Math 2201 Marks: 40

Total Time: 2 hours

Answer all questions.

- 1. a) Consider, $F(x, y) = e^x \sin y i + e^x \cos y j$
 - i) Show that F is a conservative vector field on the entire xy -plane.
 - ii) Find the potential function $\phi(x, y)$. Find $\int_{(0,0)}^{\left(1,\frac{\pi}{2}\right)} F \cdot dr$ using (ii).
 - b) Using Green's theorem find the value of $\oint_{C} F \cdot dr$ Where $F(x,y) = (2e^{-5x} - y^{2})i + (y^{3} + 2x^{2})j$ and C is the closed circle with parametric equations $x = 4\cos t$, and $y = 4\sin t$. [5]

[5]

- 2. a) Evaluate $\int_c^{\infty} (2x y) dx (y x) dy$ along the rectangle with vertices [5] (0, 0), (0, 3), (3, 3) and (3, 0).
 - b) Evaluate the surface integral $\iint_{\sigma} (x + y) ds$; σ is the part of the plane [5]
 - x + y + z = 4 that lies in the first octant.
- a) Find the flux of the vector field F(x, y, z) = 2xi yj + 2zk across σ, where σ is the portion of the surface z = 9 x² y² that lies above the xy plane and suppose that σ is oriented up.
 - b) Using double integral to find the area enclosed by the equations -x + y = -2, x + y = -2 and y = 0. [5]
- 4. a) Use cylindrical coordinate systems to evaluate: [5]

$$\int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \int_{0}^{16-4x^2-4y^2} 5x dz dx dy$$

b) Find the volume of the sphere by using spherical coordinate system [5] where the radius of sphere is 2.

Or,

Using triple integral find the volume of the solid bounded by the $x^2 + y^2 = 2$, xy - plane and z = 3.