Optimality conditions for non-convex, non-coercive autonomous variational problems with constraints

Cristina Marcelli

Università Politecnica delle Marche (Ancona)

Week-end sul Calcolo delle Variazioni Firenze, 4-6 November 2005

(P) minimize
$$F(v) := \int_a^b f(v(t), v'(t)) dt$$
, $v \in \Omega$

$$\Omega := \{ v \in W^{1,1}(a,b) : v(a) = \alpha, v(b) = \beta, v'(t) \ge 0 \text{ a.e. in } (a,b) \}$$

 $f: [\alpha, \beta] \times \mathbb{R}_0^+ \to \mathbb{R}$ is a lower semicontinuous, non-negative integrand (not necessarily smooth, convex or coercive).

(P) minimize
$$F(v) := \int_a^b f(v(t), v'(t)) dt$$
, $v \in \Omega$

$$\Omega := \{ v \in W^{1,1}(a,b) : v(a) = \alpha, v(b) = \beta, v'(t) \ge 0 \text{ a.e. in } (a,b) \}$$

 $f: [\alpha, \beta] \times \mathbb{R}_0^+ \to \mathbb{R}$ is a lower semicontinuous, non-negative integrand (not necessarily smooth, convex or coercive).

Aims:

(P) minimize
$$F(v) := \int_a^b f(v(t), v'(t)) dt$$
, $v \in \Omega$

$$\Omega := \{ v \in W^{1,1}(a,b) : v(a) = \alpha, v(b) = \beta, v'(t) \ge 0 \text{ a.e. in } (a,b) \}$$

 $f: [\alpha, \beta] \times \mathbb{R}_0^+ \to \mathbb{R}$ is a lower semicontinuous, non-negative integrand (not necessarily smooth, convex or coercive).

Aims:

• necessary and sufficient conditions for the optimality of a function $v_0 \in \Omega$

(P) minimize
$$F(v) := \int_a^b f(v(t), v'(t)) dt$$
, $v \in \Omega$

$$\Omega := \{ v \in W^{1,1}(a,b) : v(a) = \alpha, v(b) = \beta, v'(t) \ge 0 \text{ a.e. in } (a,b) \}$$

 $f: [\alpha, \beta] \times \mathbb{R}_0^+ \to \mathbb{R}$ is a lower semicontinuous, non-negative integrand (not necessarily smooth, convex or coercive).

Aims:

- necessary and sufficient conditions for the optimality of a function $v_0 \in \Omega$
- relaxation result

(P) minimize
$$F(v) := \int_a^b f(v(t), v'(t)) dt$$
, $v \in \Omega$

$$\Omega := \{ v \in W^{1,1}(a,b) : v(a) = \alpha, v(b) = \beta, v'(t) \ge 0 \text{ a.e. in } (a,b) \}$$

 $f: [\alpha, \beta] \times \mathbb{R}_0^+ \to \mathbb{R}$ is a lower semicontinuous, non-negative integrand (not necessarily smooth, convex or coercive).

Aims:

- necessary and sufficient conditions for the optimality of a function $v_0 \in \Omega$
- relaxation result
- necessary and sufficient conditions for the existence of the minimum in terms of the prescribed slope $\xi_0 := \frac{\beta \alpha}{b \alpha}$

- Botteron-Dacorogna (JDE 1990)
- Botteron-Marcellini (Ann. Poincaré 1991)
- Clarke (TAMS 1993)
- Mariconda (Nonlin. Anal. 1994)
- Reymond (JOTA 1994)
- Crasta (Nonlin. Anal. 1996)
- Cellina Treu Zagatti (JDE 1996)
- Fusco Marcellini Ornelas (Port. Math. 1998)
- Celada Perrotta (SICON 2002)
- Cellina (TAMS 2003)

- Botteron-Dacorogna (JDE 1990)
- Botteron-Marcellini (Ann. Poincaré 1991)
- Clarke (TAMS 1993)
- Mariconda (Nonlin. Anal. 1994)
- Reymond (JOTA 1994)
- Crasta (Nonlin. Anal. 1996)
- Cellina Treu Zagatti (JDE 1996)
- Fusco Marcellini Ornelas (Port. Math. 1998)
- Celada Perrotta (SICON 2002)
- Cellina (TAMS 2003)

$$\lim_{|z| \to +\infty} \sup_{|s| \le R} \sup(f^{**}(s, z) - z\partial f^{**}(s, z)) = -\infty \quad \forall R \ge 0$$

(weaker than superlinearity, example: $f(z) = |z| - \sqrt{|z|}$)

$$- \ \mu := \min_{s \in [\alpha,\beta]} f(s,0); \ A_{v_0} := \{t: \ v_0'(t) > 0\}; \ B_{v_0} := \{t: \ v_0'(t) = 0\}$$

$$- \frac{\partial f(s, z_0)}{\partial s} := \{ c \in \mathbb{R} : f(s, z) - f(s, z_0) \ge c(z - z_0) \ \forall z > 0 \}$$

$$- \ \mu := \min_{s \in [\alpha,\beta]} f(s,0); \ A_{v_0} := \{t: \ v_0'(t) > 0\}; \ B_{v_0} := \{t: \ v_0'(t) = 0\}$$

$$- \frac{\partial f(s, z_0)}{\partial s} := \{ c \in \mathbb{R} : f(s, z) - f(s, z_0) \ge c(z - z_0) \ \forall z > 0 \}$$

Theorem 1. A function $v_0 \in \Omega$ is a minimizer for problem (P) if and only if $\partial f(v_0(t), v_0'(t)) \neq \emptyset$ for a.e. $t \in A_{v_0}$, and the following DuBois-Reymond condition (DBR) holds:

$$- \ \mu := \min_{s \in [\alpha,\beta]} f(s,0); \ A_{v_0} := \{t: \ v_0'(t) > 0\}; \ B_{v_0} := \{t: \ v_0'(t) = 0\}$$

$$- \frac{\partial f(s, z_0)}{\partial s} := \{ c \in \mathbb{R} : f(s, z) - f(s, z_0) \ge c(z - z_0) \ \forall z > 0 \}$$

Theorem 1. A function $v_0 \in \Omega$ is a minimizer for problem (P) if and only if $\partial f(v_0(t), v_0'(t)) \neq \emptyset$ for a.e. $t \in A_{v_0}$, and the following DuBois-Reymond condition (DBR) holds:

• (DBR)₁ (when $|B_{v_0}| = 0$): there exists $c \le \mu$ such that $f(v_0(t), v_0'(t)) - c \in v_0'(t) \ \partial f(v_0(t), v_0'(t)) \quad \text{a.e. in } (a, b)$

$$- \ \mu := \min_{s \in [\alpha,\beta]} f(s,0); \ A_{v_0} := \{t: \ v_0'(t) > 0\}; \ B_{v_0} := \{t: \ v_0'(t) = 0\}$$

$$- \frac{\partial f(s, z_0)}{\partial f(s, z_0)} := \{ c \in \mathbb{R} : f(s, z) - f(s, z_0) \ge c(z - z_0) \ \forall z > 0 \}$$

Theorem 1. A function $v_0 \in \Omega$ is a minimizer for problem (P) if and only if $\partial f(v_0(t), v_0'(t)) \neq \emptyset$ for a.e. $t \in A_{v_0}$, and the following DuBois-Reymond condition (DBR) holds:

• (DBR)₁ (when $|B_{v_0}| = 0$): there exists $c \le \mu$ such that $f(v_0(t), v_0'(t)) - c \in v_0'(t) \ \partial f(v_0(t), v_0'(t)) \quad \text{a.e. in } (a, b)$

• (DBR)₂ (when $|B_{v_0}| > 0$): $f(v_0(t), 0) = \mu$ for a.e. $t \in B_{v_0}$ and $f(v_0(t), v_0'(t)) - \mu \in v_0'(t) \ \partial f(v_0(t), v_0'(t))$ a.e. in A_{v_0}

Approach: by means of an equivalent Bolza problem

Approach: by means of an equivalent Bolza problem

$$\tilde{F}(u) := \int_{\alpha}^{\beta} f\left(\tau, \frac{1}{u'(\tau)}\right) u'(\tau) d\tau + \mu(b - u(\beta)), \quad u \in \tilde{\Omega}$$

$$\tilde{\Omega} := \{ u \in W^{1,1}(\alpha, \beta) : \ u(\alpha) = a, \ u(\beta) \leq b, \ u'(\tau) > 0 \text{ a.e. in } (\alpha, \beta) \}.$$

Approach: by means of an equivalent Bolza problem

$$\tilde{F}(u) := \int_{\alpha}^{\beta} f\left(\tau, \frac{1}{u'(\tau)}\right) u'(\tau) d\tau + \mu(b - u(\beta)), \quad u \in \tilde{\Omega}$$

$$\tilde{\Omega} := \{ u \in W^{1,1}(\alpha, \beta) : u(\alpha) = a, u(\beta) \le b, u'(\tau) > 0 \text{ a.e. in } (\alpha, \beta) \}.$$

Define two maps $\chi: \Omega \to \tilde{\Omega}$ and $\Psi: \tilde{\Omega} \to \Omega$ by

$$\chi_v(\tau) := a + \int_{\alpha}^{\tau} w_v'(s) \ ds \quad \text{where} \quad w_v(\tau) := \min\{t \in [a, b] : v(t) = \tau\}$$

$$\Psi_{u}(t) := \begin{cases} u^{-1}(t) & \text{if } a \leq t \leq u(s^{*}) \\ s^{*} & \text{if } u(s^{*}) \leq t \leq u(s^{*}) + b - u(\beta) \\ u^{-1}(t - b + u(\beta)) & \text{if } u(s^{*}) + b - u(\beta) \leq t \leq b \end{cases}$$

where $s^* := \min\{\tau \in [\alpha, \beta] : f(\tau, 0) = \min_{s \in [\alpha, \beta]} f(s, 0)\}.$

If $v \in \Omega$ is a minimizer for problem (P) then $\chi_v \in \tilde{\Omega}$ is a minimizer for problem (\tilde{P}) . Vice versa, if $u \in \tilde{\Omega}$ is a minimizer for problem (\tilde{P}) , then $\Psi_u \in \Omega$ is a minimizer for problem (P).

If $v \in \Omega$ is a minimizer for problem (P) then $\chi_v \in \tilde{\Omega}$ is a minimizer for problem (\tilde{P}) . Vice versa, if $u \in \tilde{\Omega}$ is a minimizer for problem (\tilde{P}) , then $\Psi_u \in \Omega$ is a minimizer for problem (P).

Theorem 3.

A function $u_0 \in \tilde{\Omega}$ is a minimizer for problem (\tilde{P}) if and only if the following Euler-Lagrange condition (EL) holds:

If $v \in \Omega$ is a minimizer for problem (P) then $\chi_v \in \tilde{\Omega}$ is a minimizer for problem (\tilde{P}) . Vice versa, if $u \in \tilde{\Omega}$ is a minimizer for problem (\tilde{P}) , then $\Psi_u \in \Omega$ is a minimizer for problem (P).

Theorem 3.

A function $u_0 \in \tilde{\Omega}$ is a minimizer for problem (\tilde{P}) if and only if the following Euler-Lagrange condition (EL) holds:

$$(EL)_1$$
 (when $u_0(\beta) = b$) $\exists c \leq \mu : c \in \partial \tilde{f}(\tau, u'_0(\tau))$ a.e. in (α, β)

If $v \in \Omega$ is a minimizer for problem (P) then $\chi_v \in \tilde{\Omega}$ is a minimizer for problem (\tilde{P}) . Vice versa, if $u \in \tilde{\Omega}$ is a minimizer for problem (\tilde{P}) , then $\Psi_u \in \Omega$ is a minimizer for problem (P).

Theorem 3.

A function $u_0 \in \tilde{\Omega}$ is a minimizer for problem (\tilde{P}) if and only if the following Euler-Lagrange condition (EL) holds:

$$(EL)_1$$
 (when $u_0(\beta) = b$) $\exists c \leq \mu : c \in \partial \tilde{f}(\tau, u'_0(\tau))$ a.e. in (α, β)

$$(EL)_2$$
 (when $u_0(\beta) < b$) $\mu \in \partial \tilde{f}(\tau, u'_0(\tau))$ a.e. in (α, β)

where $\partial \tilde{f}(\tau, u_0'(\tau))$ denotes the subdifferential of $\tilde{f}(\tau, \cdot)$ at $u_0'(\tau)$.

Theorem 4. Let $f(s,\cdot)$ be continuous at 0 for every $s \in [\alpha,\beta]$.

Then, problem (P) admits minimum if and only if problem (P^{**}) admits a minimizer $v_0 \in \Omega$ such that

$$v'_0(t) \in co(C_{v_0(t)})$$
 for a.e. $t \in A_{v_0}$

where:

- $C_s := \{z > 0 : f(s, z) = f^{**}(s, z)\}$ denotes the contact set
- $co(C_{v_0(t)})$ denotes the convex envelope of the set $C_{v_0(t)}$.

Theorem 4. Let $f(s,\cdot)$ be continuous at 0 for every $s \in [\alpha,\beta]$.

Then, problem (P) admits minimum if and only if problem (P^{**}) admits a minimizer $v_0 \in \Omega$ such that

$$v'_0(t) \in co(C_{v_0(t)})$$
 for a.e. $t \in A_{v_0}$

where:

- $C_s := \{z > 0 : f(s, z) = f^{**}(s, z)\}$ denotes the contact set
- $co(C_{v_0(t)})$ denotes the convex envelope of the set $C_{v_0(t)}$.

Corollary 5. Under the same assumptions above, if $co(C_s) = (0, +\infty)$ for every $x \in [\alpha, \beta]$, then problem (P) admits minimum if and only if problem (P^{**}) admits minimum.

Necessary and sufficient conditions for the existence of the minimum for (P^{**})

Necessary and sufficient conditions for the existence of the minimum for (P^{**})

Notations: for every $(s,z) \in [\alpha,\beta] \times (0,+\infty)$ put

$$g^{-}(s,z) := f^{**}(s,z) - zf_{-}^{**}(s,z) \quad g^{+}(s,z) := f^{**}(s,z) - zf_{+}^{**}(s,z)$$

where $f_{-}^{**}(s,z)$, $f_{+}^{**}(s,z)$ respectively denote the left and right derivative of $f^{**}(s,\cdot)$ at the point z.

Necessary and sufficient conditions for the existence of the minimum for (P^{**})

Notations: for every $(s,z) \in [\alpha,\beta] \times (0,+\infty)$ put

$$g^{-}(s,z) := f^{**}(s,z) - zf_{-}^{**}(s,z) \quad g^{+}(s,z) := f^{**}(s,z) - zf_{+}^{**}(s,z)$$

where $f_{-}^{**}(s,z)$, $f_{+}^{**}(s,z)$ respectively denote the left and right derivative of $f^{**}(s,\cdot)$ at the point z.

$$\lambda(s) := \inf_{z>0} g^+(s,z) \ge -\infty$$
 $\Lambda(s) := \sup_{z>0} g^-(s,z) \le +\infty$

and for $\lambda(s) < y < \Lambda(s)$ put $\gamma(s, y) := \max\{z > 0 : g^-(s, z) \ge y\}$

Necessary and sufficient conditions for the existence of the minimum for (P^{**})

Notations: for every $(s,z) \in [\alpha,\beta] \times (0,+\infty)$ put

$$g^{-}(s,z) := f^{**}(s,z) - zf_{-}^{**}(s,z) \quad g^{+}(s,z) := f^{**}(s,z) - zf_{+}^{**}(s,z)$$

where $f_{-}^{**}(s, z)$, $f_{+}^{**}(s, z)$ respectively denote the left and right derivative of $f^{**}(s, \cdot)$ at the point z.

$$\lambda(s) := \inf_{z>0} g^+(s,z) \ge -\infty \qquad \Lambda(s) := \sup_{z>0} g^-(s,z) \le +\infty$$

and for $\lambda(s) < y < \Lambda(s)$ put $\gamma(s, y) := \max\{z > 0 : g^-(s, z) \ge y\}$

$$c_0 := \operatorname{ess sup}_{s \in [\alpha, \beta]} \lambda(s)$$

• (necessity) If problem (P^{**}) admits minimum then

$$\int_{\alpha}^{\beta} \frac{1}{\gamma(s,\hat{c})} ds \le b - a \tag{1}$$

for some real constant $\hat{c} \in [c_0, \mu]$.

• (necessity) If problem (P^{**}) admits minimum then

$$\int_{\alpha}^{\beta} \frac{1}{\gamma(s,\hat{c})} ds \le b - a \tag{1}$$

for some real constant $\hat{c} \in [c_0, \mu]$.

• (<u>sufficiency</u>) Vice versa, if (1) holds for some constant $\hat{c} \in (c_0, \mu]$ then problem (P^{**}) admits minimum.

• (necessity) If problem (P^{**}) admits minimum then

$$\int_{\alpha}^{\beta} \frac{1}{\gamma(s,\hat{c})} ds \le b - a \tag{1}$$

for some real constant $\hat{c} \in [c_0, \mu]$.

- (<u>sufficiency</u>) Vice versa, if (1) holds for some constant $\hat{c} \in (c_0, \mu]$ then problem (P^{**}) admits minimum.
- (<u>Lip-regularity</u>) Moreover, if (1) holds for some constant $\hat{c} > \max_{s \in [\alpha, \beta]} \lambda(s)$, then the minimizers are Lipschitz continuous.

• (strict monotonicity) Finally, if v_0 is a minimizer, we have

$$v_0'(t) > 0$$
 a.e. in (α, β) \Leftrightarrow $\int_{\alpha}^{\beta} \frac{1}{\gamma(s, \mu)} ds \ge b - a$.

• (strict monotonicity) Finally, if v_0 is a minimizer, we have

$$v_0'(t) > 0$$
 a.e. in (α, β) \Leftrightarrow $\int_{\alpha}^{\beta} \frac{1}{\gamma(s, \mu)} ds \ge b - a$.

Condition (1) is an upper limitation for the assigned mean slope ξ_0 :

$$\xi_0 \le 1/\int_{\alpha}^{\beta} \frac{1}{\gamma(s,\hat{c})} \ ds$$

Theorem 7. Under the same assumptions, if $\lambda(s) < c_0$ for a.e. $s \in (\alpha, \beta)$, then problem (P^{**}) admits minimum if and only if

Theorem 7. Under the same assumptions, if $\lambda(s) < c_0$ for a.e. $s \in (\alpha, \beta)$, then problem (P^{**}) admits minimum if and only if

$$c_0 \le \mu$$
 and $\int_{\alpha}^{\beta} \frac{1}{\gamma(s, c_0)} ds \le b - a$.

Theorem 7. Under the same assumptions, if $\lambda(s) < c_0$ for a.e. $s \in (\alpha, \beta)$, then problem (P^{**}) admits minimum if and only if

$$c_0 \le \mu$$
 and $\int_{\alpha}^{\beta} \frac{1}{\gamma(s, c_0)} ds \le b - a$.

Corollary 8. If $c_0 < \mu$ and $\lim_{c \to c_0^+} \int_{\alpha}^{\beta} \frac{1}{\gamma(s,c)} ds < b-a$, then problem (P^{**}) admits minimum.

Theorem 7. Under the same assumptions, if $\lambda(s) < c_0$ for a.e. $s \in (\alpha, \beta)$, then problem (P^{**}) admits minimum if and only if

$$c_0 \le \mu$$
 and $\int_{\alpha}^{\beta} \frac{1}{\gamma(s, c_0)} ds \le b - a$.

Corollary 8. If $c_0 < \mu$ and $\lim_{c \to c_0^+} \int_{\alpha}^{\beta} \frac{1}{\gamma(s,c)} ds < b-a$, then problem (P^{**}) admits minimum.

Instead, if $c_0 = -\infty$ and $\lim_{c \to -\infty} \int_{\alpha}^{\beta} \frac{1}{\gamma(s,c)} ds > b - a$ then (P^{**}) does not admit minimum.

- if $c_0 > \mu$ then (P^{**}) does not admit minimum for any $\xi_0 > 0$;

- if $c_0 > \mu$ then (P^{**}) does not admit minimum for any $\xi_0 > 0$;
- if $c_0 < \mu$ then (P^{**}) admits minimum for ξ_0 small enough;

- if $c_0 > \mu$ then (P^{**}) does not admit minimum for any $\xi_0 > 0$;
- if $c_0 < \mu$ then (P^{**}) admits minimum for ξ_0 small enough;
- if $c_0 < \mu$ and $\lim_{c \to c_0^+} \int_{\alpha}^{\beta} \frac{1}{\gamma(s,c)} ds = 0$, then the minimum exists for every $\xi_0 > 0$.

- if $c_0 > \mu$ then (P^{**}) does not admit minimum for any $\xi_0 > 0$;
- if $c_0 < \mu$ then (P^{**}) admits minimum for ξ_0 small enough;
- if $c_0 < \mu$ and $\lim_{c \to c_0^+} \int_{\alpha}^{\beta} \frac{1}{\gamma(s,c)} ds = 0$, then the minimum exists for every $\xi_0 > 0$.

More in particular:

- If
$$c_0 > \lambda(s)$$
 a.e. in $[\alpha, \beta]$ then $\int_{\alpha}^{\beta} \frac{1}{\gamma(s, c_0)} ds > 0$ and the minimum exists if and only if $\xi_0 \leq 1/\int_{\alpha}^{\beta} \frac{1}{\gamma(s, c_0)} ds$.

- if $c_0 > \mu$ then (P^{**}) does not admit minimum for any $\xi_0 > 0$;
- if $c_0 < \mu$ then (P^{**}) admits minimum for ξ_0 small enough;
- if $c_0 < \mu$ and $\lim_{c \to c_0^+} \int_{\alpha}^{\beta} \frac{1}{\gamma(s,c)} ds = 0$, then the minimum exists for every $\xi_0 > 0$.

More in particular:

- If $c_0 > \lambda(s)$ a.e. in $[\alpha, \beta]$ then $\int_{\alpha}^{\beta} \frac{1}{\gamma(s, c_0)} ds > 0$ and the minimum exists if and only if $\xi_0 \leq 1/\int_{\alpha}^{\beta} \frac{1}{\gamma(s, c_0)} ds$.
- If $c_0 = \lambda(s)$ a.e. in $[\alpha, \beta]$, then the minimum exists for every $\xi_0 > 0$.

with $a \in C[\alpha, \beta]$ and $h \in C^1[0, +\infty)$ convex (but not coercive).

with $a \in C[\alpha, \beta]$ and $h \in C^1[0, +\infty)$ convex (but not coercive).

$$M := \max_{s \in [\alpha, \beta]} a(s), \quad m := \min_{s \in [\alpha, \beta]} a(s)$$

$$\ell := \inf_{z > 0} (h(z) - zh'(z))$$

$$\gamma(y) = \max\{z > 0 : h(z) - zh'(z) \ge y\}.$$

with $a \in C[\alpha, \beta]$ and $h \in C^1[0, +\infty)$ convex (but not coercive).

$$M := \max_{s \in [\alpha, \beta]} a(s), \quad m := \min_{s \in [\alpha, \beta]} a(s)$$

$$\ell := \inf_{z > 0} (h(z) - zh'(z))$$

$$\gamma(y) = \max\{z > 0: \ h(z) - zh'(z) \ge y\}.$$

- if $\ell = -\infty$, then the minimum exists for every slope $\xi_0 > 0$ with Lipschitz continuous minimizers;

- if $\ell > -\infty$ and a(x) < M a.e. in (α, β) , then the minimum exists if and only if $M + \ell \le m + h(0)$ and

$$\int_{\alpha}^{\beta} \frac{1}{\gamma(M+\ell-a(s))} ds \le b-a.$$

- if $\ell > -\infty$ and a(x) < M a.e. in (α, β) , then the minimum exists if and only if $M + \ell \le m + h(0)$ and

$$\int_{\alpha}^{\beta} \frac{1}{\gamma(M+\ell-a(s))} ds \le b-a.$$

Moreover, if $M + \ell < m + h(0)$ and

$$\lim_{c \to (M+\ell)^+} \int_{\alpha}^{\beta} \frac{1}{\gamma(c-a(s))} ds < b-a$$

then the minimizers are Lipschitz continuous.

- If $\ell = -\infty$ the minimum exists for every slope $\xi_0 > 0$; moreover, if m > 0 the minimizers are Lipschitz continuous.

- If $\ell = -\infty$ the minimum exists for every slope $\xi_0 > 0$; moreover, if m > 0 the minimizers are Lipschitz continuous.
- If $\ell = 0$, m > 0 and h is not affine in any half-line, then the minimum exists for every slope $\xi_0 > 0$ and the minimizers are Lipschitz continuous. Instead, if $\ell = 0$, m = 0 and h is strictly convex, then the minimum does not exists for any slope $\xi_0 > 0$.

- If $\ell = -\infty$ the minimum exists for every slope $\xi_0 > 0$; moreover, if m > 0 the minimizers are Lipschitz continuous.
- If $\ell = 0$, m > 0 and h is not affine in any half-line, then the minimum exists for every slope $\xi_0 > 0$ and the minimizers are Lipschitz continuous. Instead, if $\ell = 0$, m = 0 and h is strictly convex, then the minimum does not exists for any slope $\xi_0 > 0$.
- If $\ell > 0$ and a(s) < M a.e. in (α, β) , then the minimum exists if and only if $M\ell \le mh(0)$ and

$$\int_{\alpha}^{\beta} \frac{1}{\gamma(M\ell/a(s))} \ ds \le b - a.$$

Moreover, if $M\ell < mh(0)$ and

$$\lim_{c \to (M\ell)^+} \int_{\alpha}^{\beta} \frac{1}{\gamma(c/a(s))} ds < b - a$$

then the minimizers are Lipschitz continuous.

Moreover, if $M\ell < mh(0)$ and

$$\lim_{c \to (M\ell)^+} \int_{\alpha}^{\beta} \frac{1}{\gamma(c/a(s))} ds < b - a$$

then the minimizers are Lipschitz continuous.

- If $-\infty < \ell < 0$ and a(s) > m a.e. in (α, β) , then the minimum exists if and only if

$$\int_{\alpha}^{\beta} \frac{1}{\gamma(m\ell/a(s))} ds \le b - a.$$

Moreover, if $M\ell < mh(0)$ and

$$\lim_{c \to (M\ell)^+} \int_{\alpha}^{\beta} \frac{1}{\gamma(c/a(s))} ds < b - a$$

then the minimizers are Lipschitz continuous.

- If $-\infty < \ell < 0$ and a(s) > m a.e. in (α, β) , then the minimum exists if and only if

$$\int_{\alpha}^{\beta} \frac{1}{\gamma(m\ell/a(s))} \ ds \le b - a.$$

Moreover, if m>0 and $\lim_{c\to(m\ell)^+}\int_{\alpha}^{\beta}\frac{1}{\gamma(c/a(s))}\ ds< b-a$ then the minimizers are Lipschitz continuous.

Example 1. $f(s,z) = a(s) (\sqrt{1+z^2} + k), \ k \ge 0.$ We have $\ell = k$.

Example 1. $f(s,z) = a(s) \left(\sqrt{1+z^2} + k \right), \ k \ge 0.$ We have $\ell = k$.

- case k = 0: if m > 0 then problem (P) admits minimum for every $\xi_0 > 0$; if m = 0, then the minimum does not exist for any positive slope ξ_0 .

Example 1. $f(s,z) = a(s) \left(\sqrt{1+z^2} + k \right), \ k \ge 0.$ We have $\ell = k$.

- case k = 0: if m > 0 then problem (P) admits minimum for every $\xi_0 > 0$; if m = 0, then the minimum does not exist for any positive slope ξ_0 .
- case k > 0: the minimum exists if and only if $Mk \le m(k+1)$ and

$$b-a \ge \int_{\alpha}^{\beta} k \frac{M - a(s)}{\sqrt{a^2(s) - k^2(M - a(s))^2}} dx.$$

Example 1. $f(s,z) = a(s)\left(\sqrt{1+z^2} + k\right)$, $k \ge 0$. We have $\ell = k$.

- case k = 0: if m > 0 then problem (P) admits minimum for every $\xi_0 > 0$; if m = 0, then the minimum does not exist for any positive slope ξ_0 .
- case k > 0: the minimum exists if and only if $Mk \le m(k+1)$ and

$$b-a \ge \int_{\alpha}^{\beta} k \frac{M - a(s)}{\sqrt{a^2(s) - k^2(M - a(s))^2}} dx.$$

For instance, take $[\alpha, \beta] = [0, 1]$ and a(s) = s + 1. Then, $k \le 1$ is a necessary condition for the existence of the minimum. Moreover, for k = 1 the minimum exists if and only if $b - a \ge 2/3$.

$$F(v) := \int_0^1 v(t) \frac{(v'(t))^3}{1 + (v'(t))^2} dt$$

in
$$\Omega := \{ v \in W^{1,1}(0,1) : v(0) = 0, v(1) = \beta, v'(t) \ge 0 \text{ a.e.} \}.$$

$$F(v) := \int_0^1 v(t) \frac{(v'(t))^3}{1 + (v'(t))^2} dt$$

in $\Omega := \{ v \in W^{1,1}(0,1) : v(0) = 0, v(1) = \beta, v'(t) \ge 0 \text{ a.e.} \}.$

Put $h(z) = \frac{z^3}{1+z^2}$, we have $h^{**}(z) = h(z)$ if $0 \le z \le 1$, $h^{**}(z) = z - \frac{1}{2}$ if z > 1. Hence, $\ell = -\frac{1}{2}$, m = 0, so $c_0 = \mu = 0$ and $\gamma(0) = 0$.

$$F(v) := \int_0^1 v(t) \frac{(v'(t))^3}{1 + (v'(t))^2} dt$$

in $\Omega := \{ v \in W^{1,1}(0,1) : v(0) = 0, v(1) = \beta, v'(t) \ge 0 \text{ a.e.} \}.$

Put $h(z) = \frac{z^3}{1+z^2}$, we have $h^{**}(z) = h(z)$ if $0 \le z \le 1$, $h^{**}(z) = z - \frac{1}{2}$ if z > 1. Hence, $\ell = -\frac{1}{2}$, m = 0, so $c_0 = \mu = 0$ and $\gamma(0) = 0$.

Then, the problem does not admit minimum for any $\beta > 0$.

$$F(v) := \int_0^1 v(t) \frac{(v'(t))^3}{1 + (v'(t))^2} dt$$

in $\Omega := \{ v \in W^{1,1}(0,1) : v(0) = 0, v(1) = \beta, v'(t) \ge 0 \text{ a.e.} \}.$

Put $h(z) = \frac{z^3}{1+z^2}$, we have $h^{**}(z) = h(z)$ if $0 \le z \le 1$, $h^{**}(z) = z - \frac{1}{2}$ if z > 1. Hence, $\ell = -\frac{1}{2}$, m = 0, so $c_0 = \mu = 0$ and $\gamma(0) = 0$.

Then, the problem does not admit minimum for any $\beta > 0$.

Indeed, the functional

$$\int_0^1 v(t) \frac{(v'(t))^3}{1 + (v'(t))^2} dt + \frac{1}{2} (v(0))^2$$

in the class $\bar{\Omega} := \{v \in W^{1,1}(0,1) : v(0) \geq 0, v(1) = \beta, v'(t) \geq 0 \text{ a.e.} \}$ admits minimum attained at a function satisfying v(0) > 0.

Then $\ell = 0$ and the minimum exists provided if m > 0.

Then $\ell = 0$ and the minimum exists provided if m > 0.

Instead, for $f(s,z) = a(s) + e^{-z}$, if M - m > 1, the minimum does not exist for any $\xi_0 > 0$; while, if $0 < M - m \le 1$ then the minimum exists if and only if the slope ξ_0 is sufficiently small.

Then $\ell = 0$ and the minimum exists provided if m > 0.

Instead, for $f(s,z) = a(s) + e^{-z}$, if M - m > 1, the minimum does not exist for any $\xi_0 > 0$; while, if $0 < M - m \le 1$ then the minimum exists if and only if the slope ξ_0 is sufficiently small.

Example 4. Take $f(s, z) = (s^p + k)z^q$, $(s, z) \in [0, \beta] \times [0, +\infty)$, with $k \ge 0, p > 0$ and q > 1.

Then $\ell = 0$ and the minimum exists provided if m > 0.

Instead, for $f(s,z) = a(s) + e^{-z}$, if M - m > 1, the minimum does not exist for any $\xi_0 > 0$; while, if $0 < M - m \le 1$ then the minimum exists if and only if the slope ξ_0 is sufficiently small.

Example 4. Take $f(s, z) = (s^p + k)z^q$, $(s, z) \in [0, \beta] \times [0, +\infty)$, with $k \ge 0, p > 0$ and q > 1.

In this case $\ell = -\infty$ and the minimum exists for every slope $\xi_0 > 0$, but the minimizer is Lipschitz continuous only if k > 0.

Then $\ell = 0$ and the minimum exists provided if m > 0.

Instead, for $f(s,z) = a(s) + e^{-z}$, if M - m > 1, the minimum does not exist for any $\xi_0 > 0$; while, if $0 < M - m \le 1$ then the minimum exists if and only if the slope ξ_0 is sufficiently small.

Example 4. Take $f(s,z) = (s^p + k)z^q$, $(s,z) \in [0,\beta] \times [0,+\infty)$, with $k \ge 0, p > 0$ and q > 1.

In this case $\ell = -\infty$ and the minimum exists for every slope $\xi_0 > 0$, but the minimizer is Lipschitz continuous only if k > 0.

Indeed, when k = 0, the minimizer is $v_0(t) = \beta t^{q/(p+q)}$ which is not Lipschitz continuous.

$$\lambda(s) = -\infty \ \forall s \in [\alpha, \beta] \quad \Rightarrow \quad c_0 = -\infty$$

$$\lambda(s) = -\infty \ \forall s \in [\alpha, \beta] \quad \Rightarrow \quad c_0 = -\infty$$

When f(s,z) = a(s)h(z), with $\ell = \inf_{z>0}(h(z) - zh^-(z)) = -\infty$, the conditions coincide only when $m = \min_{s \in [\alpha,\beta]} a(s) > 0$.

$$\lambda(s) = -\infty \ \forall s \in [\alpha, \beta] \quad \Rightarrow \quad c_0 = -\infty$$

When f(s,z) = a(s)h(z), with $\ell = \inf_{z>0}(h(z) - zh^{-}(z)) = -\infty$, the conditions coincide only when $m = \min_{s \in [\alpha,\beta]} a(s) > 0$.

Nevertheless, when m = 0 and a(s) > 0 a.e. in (α, β) we have $c_0 = -\infty$ and the existence results can be applied.