ModApp Simulations de Réseaux : Etude de la surcharge sur les réseaux d'accès sans fils

Hugo Chelle, Airbus Defence And Space

Mai 2017

1 Introduction

Nous allons étudier durant ce ModApp la surcharge sur les réseaux d'accès sans fils. Une surcharge se caractérise par un nombre d'utilisateurs (supérieur à la capacité du système) qui transmettent en même temps. Les objectifs du ModApp sont les suivants :

- Comprendre le fonctionnement d'un réseau d'accès et acquérir des connaissances sur les méthodes d'accès.
- Modéliser simplement un réseau d'accès grâce à Matlab.
- Interpréter des résultats de simulation.

Figure 1 – Schéma réseau d'accès sans fils

Lorsqu'un utilisateur veut transmettre des données, il effectue les étapes suivantes :

- 1. L'utilisateur a besoin de ressources pour transmettre, il envoie une requête de ressources à la station de base via un canal d'accès aléatoire partagé par tous les utilisateurs. Pour transmettre sur ce canal, l'utilisateur utilise une méthode d'accès.
- 2. L'utilisateur attend ensuite la réponse de la station de base, si il ne reçoit pas de réponse il retransmet la demande de ressources.
- 3. Transmission de la donnée utile via les ressources attribuées par la station de base.

Questions:

- 1. Quel est le nom de la méthode d'accès la plus basique?
- 2. Deux versions de cette méthode d'accès sont possibles. Donnez pour les deux versions la formule mathématique qui exprime le débit en fonction de la charge.
- 3. Tracez le débit en fonction de la charge pour les deux versions, qu'en pensez vous ?
- 4. Citez des méthodes d'accès qui améliorent le débit, dans quel(s) contexte(s) ces nouvelles méthodes sont utilisées et pourquoi ?

2 Modélisation simple d'un réseau d'accès 4G

2.1 Abstraction couche physique

La méthode d'accès utilisée par la 4G est l'Aloha slotté en temps, t_{slot} représente la durée du slot temporel ($t_{slot}=10 \mathrm{ms}$). Des codes orthogonaux sont utilisés pour améliorer les performance du canal d'accès aléatoire, le nombre de codes orthogonaux est donné par N_{codes} .

Questions:

- 1. Selon vous pourquoi le 3GPP a fait ce choix de méthode d'accès ?
- 2. Donnez le packet loss ratio (PLR) en fonction du nombre de trames transmises. En déduire le débit du canal d'accès aléatoire.
- 3. Combien de trames la station de base peut recevoir correctement au maximum par time slot?

2.2 Abstraction couche MAC

Nous supposons que toutes les requêtes transmises durant un time slot sont traitées par la station de base pendant $d_{traitement}$ time slots. Ensuite, des acquittements sont envoyés aux utilisateurs. Pour des raisons de simplification nous supposons que les ressources attribués à l'utilisateur sont envoyés avec l'acquittement.

- Lorsqu'un utilisateur reçoit un acquittement, il arrête la procédure de contention pour transmettre sa donnée utile.
- L'utilisateur ne reçoit pas d'acquittement, il continue la procédure de contention. Son time slot de retransmission est déterminé par d_{rand} . Nous considérons que le nombre de transmission de requête de ressources est borné par $N_{MaxTransmission}$, lorsque l'utilisateur dépasse cette borne il abandonne la procédure de contention.

La figure 2 illustre le fonctionnement de l'abstraction de couche MAC utilisée.

FIGURE 2 – Schéma explicatif de l'abstraction de couche MAC

$d_{traitement}$	$5 t_{slot}$
d_{rand}	$rand(\llbracket 1; 3 \rrbracket)$
$N_{MaxTransmission}$	10

Table 1 – Paramètres couche MAC considérés pour notre étude

Questions:

- 1. Quelles sont les hypothèses importantes faites par cette abstraction?
- 2. Quel est l'intérêt de d_{rand} ?
- 3. Quel est l'intérêt de $N_{MaxTransmission}$?

2.3 Implémentation

Veuillez remplir le squelette de simulateur fourni ($F_SimulateurSansCC.m$).

2.4 Analyse des résultats

Questions:

- 1. A partir de combien de nouveaux utilisateurs par time slot le système commence à être instable (Fournissez des courbes) ? Est ce que c'était prévisible mathématiquement ?
- 2. L'impatience des utilisateurs n'est pas simulé dans le simulateur, rajoutez la. Quel est l'impact sur les simulations ?
- 3. Une station de base peut couvrir une zone assez vaste, en vous basant sur toutes vos réponses précédentes, expliquez pourquoi dans certaines situations il est compliquer d'accéder "au réseau".

3 Introduction au contrôle de charge

3.1 Présentation du mécanisme back-off

Supposons lorsque la station de base est surchargée de requêtes, elle utilise un mécanisme de type back-off afin de limiter le nombre de requête transmises par les utilisateurs. Le mécanisme est composé de deux paramètres :

- Une probabilité d'accès p_{acces} .
- Un nombre de slot maximal de blockage $N_{\text{Slot Barring}}$.

Avant de transmettre un utilisateur va tirer un nombre aléatoire et le comparer à p_{acces} pour savoir si il est autorisé à transmettre. Si l'utilisateur échoue ce test, il essayera de transmettre de nouveau rand ($[1; N_{Slot Barring}]$) time slots plus tard.

3.2 Implémentation

Remplir le squelette de code $F_SimulateurAvecCC.m.$

3.3 Analyse des résultats

Questions:

- 1. Selon vous quelle(s) métrique(s) peux t-on utiliser pour évaluer les performances du contrôle de charge ?
- 2. En faisant varier les paramètres du contrôle de charge (p_{acces} et $N_{Slot\ Barring}$), expliquez l'influence de chacun des paramètres.
- 3. Selon quel couple de paramètres $(p_{acces}, N_{Slot Barring})$ permet d'obtenir les meilleurs performances pour un scénario de traffic donné ?