Cálculo Integral: RepasoII

Jonatan Ahumada Fernández

<2019-02-23 Sat>

Contents

1 Sustitución			2
	1.1	Sustitución simple	2
	1.2	Sustitución por partes	2
2	Trig	gonometría	2
	2.1	Integrales fundamentales	2
	2.2	Identidad fundamental (potencias impares)	3
	2.3	Ángulo Medio (potencias pares)	3
		2.3.1 Variación	3
	2.4	Eliminación de raíces	3
		2.4.1 Con ángulo medio	3
		2.4.2 Con variación	3
	2.5	Integrales capciosas	3
	2.6	Sustitución trigonométrica	4
	2.7	Tablas trignométricas	4
	2.8	Fracciones Parciales	4
		2.8.1 Siempre simplifica el denomindador	5
	2.9	Teorema Fundamental	5
	2.10	Promedio	5
3	Vol	úmenes	5
	3.1	Aplicaciones	5
4	Tab	las	5
5	Poli	inomios	6
6	Got	chas	6

1 Sustitución

1.1 Sustitución simple

- 1. Identifica si u y du aparecen en la misma expresión (salvo una diferencia de constantes).
- 2. Sustituye lo más complejo. Después integrar y derivar sus exponentes será más fácil.
- 3. Identifica qué identidad trigonométrica usarás.

1.2 Sustitución por partes

- 1. Se usa cuando las funciones implicadas no tienen relación en términios de sus derivadas (no hay u y du)
- 2. Ten claro el acrónimo ALPES antes de seleccionar u y dv.
- 3. Como aquí toca derivar, no olvides regla de la cadena.
- 4. Aquí se tienen en cuenta las potencias al reemplazar.

2 Trigonometría

2.1 Integrales fundamentales

$$\int \cos(mx)dx = \frac{1}{m}\sin(mx)$$
$$\int \sin(mx)dx = -\frac{1}{m}\cos(mx)$$

2.2 Identidad fundamental (potencias impares)

$$\sin^2(x) + \cos^2(x) = 1$$

Consistirá en expresar una expresión trigonometrica impar en términos de una par. Luego, se reemplazará una función trigonometrica al cuadrado por su identidad.

Luego, de sustituir, u y du, se resolverá un binomio cuadrado.

2.3 Ángulo Medio (potencias pares)

Tener cuidado con los signos.

$$\sin^2(x) = \frac{1 - \cos(2x)}{2}$$

El coeficiente de x se duplica.

$$\cos^2(x) = \frac{1 + \cos(2x)}{2}$$

2.3.1 Variación

$$2\cos^2(x) = 1 + \cos(2x)$$

Es lo mismo, solamente pasa el dos al otro lado. Como es el proceso inverso, el coeficiente de x se divide y crece la potencia.

2.4 Eliminación de raíces

2.4.1 Con ángulo medio

$$\int \sqrt{\frac{1 - \cos(2x)}{2}} dx = \int \sqrt{\sin^2(x)} dx$$

2.4.2 Con variación

$$\int \sqrt{1 - \cos(2x)} dx = \int \sqrt{2\cos^2(x)} dx$$

2.5 Integrales capciosas

Integral Expresión
$$\int \ln(x) dx \qquad \frac{1}{x}$$

$$\int e^{cx} dx \qquad \frac{e^{cx}}{c}$$

$$\int \tan(x) dx \qquad \sec^{2}(x)$$

$$\int \sec(x) dx \qquad \sec(x) \tan(x)$$

2.6 Sustitución trigonométrica

Caso Expresión
$$\int \sqrt{a^2 - x^2} dx \quad x = a \sin \theta$$

$$\int \sqrt{a^2 + x^2} dx \quad x = a \tan \theta$$

$$\int \sqrt{x^2 - a^2} dx \quad x = a \sec \theta$$

Identidades específicas

$$\begin{array}{ll}
\sin(2\theta) & 2\sin\theta\cos\theta \\
\cos(2\theta) & \cos^2\theta - \sin^2\theta
\end{array}$$

2.7 Tablas trignométricas

θ	radianes	$\sin \theta$	$\cos \theta$	$\tan \theta$
0	0	0	1	0
30	$\frac{\pi}{6}$	$\frac{1}{2}$ _	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90	$\frac{\pi}{2}$	1	0	_

2.8 Fracciones Parciales

Caso	Fórmula
lineal irrepetible	$\frac{A}{(ax+b)}$
lineal repetible	A_n
cuadrática irrepetible	$\frac{(ax+b)^n}{(ax+B)}$
cuadrática repetible	$\frac{Ax+B}{(ax+b)^n}$

2.8.1 Siempre simplifica el denomindador

2.9 Teorema Fundamental

$$\frac{dF}{dx} = \frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

2.10 Promedio

$$\frac{1}{b-a} \int_{a} bf(x) dx$$

3 Volúmenes

Caso	Fórmula
S. trans.	$\int_a^b Base \times Alturadx$
Cilindros	$\int_a^b \pi R^2 dx$
Arandelas	$\int_{a}^{b} \pi (R^2 - r^2) dx$
C. cilíndr.	$\int_a^b 2\pi x f(x) dx$

3.1 Aplicaciones

C. cilíndr.
$$\int_{a}^{b} 2\pi x f(x) dx$$
caciones

L. arco
$$\int_{a}^{b} \sqrt{1 + \frac{dy^{2}}{dx}} dx$$
A. s. rev.
$$\int_{a}^{b} 2\pi f(x) \sqrt{1 + \frac{dy^{2}}{dx}} dx$$
Resortes
$$W = \int_{a}^{b} F(x) dx, F(x) = kx$$
Momento (M_{0})
$$\int_{a}^{b} x \delta(x) dx$$
Masa (M)
$$\int_{a}^{b} \delta(x) dx$$
C. masa
$$\frac{M_{0}}{M}$$

4 Tablas

Derivada	\mathbf{S}
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\sec^2 x$
$\cot x$	$-\csc^2 x$
$\sec x$	$x \tan x$
$\csc x$	$-\csc x \cot x$

Integrales			
$\sin x$	$-\cos x + x$		
$\cos x$	$\sin x + c$		
$\tan x$	$-\ln(\cos x) + c$		
$\cot x$	$\ln(\sin x) + c$		
$\sec x$	$\ln(\sec x + \tan x) + c$		
$\csc x$	$\ln(\csc x - \cot x) + c$		
Casos notables			
$\int \tan^2 \theta d\theta$	$\int \sec^2 \theta - 1d\theta$		

5 Polinomios

Si f(x) y p(x) son polinomios:

$$f(x) = p(x) * q(x) + r$$

6 Gotchas

- la sustitución simple resuelve problemas
- \bullet desde encima de las xadebajo de las xpasan cosas
- los signos
- La integral es también una resta