

Lógica para Programação

Repescagem do Primeiro Teste

11 de Julho de 2009

9:00-10:30

Nome:	N T /
Nomo:	Número:
NOME.	Nuncio,

- Esta prova, individual e sem consulta, tem 9 páginas com 13 perguntas. A cotação de cada pergunta está assinalada entre parêntesis.
- Escreva o seu número em todas as folhas da prova. O tamanho das respostas deve ser limitado ao espaço fornecido para cada questão. O corpo docente reserva-se o direito de não considerar a parte das respostas que excedam o espaço indicado.
- Pode responder usando lápis.
- Em cima da mesa devem apenas estar o enunciado, caneta ou lápis e borracha e cartão de aluno. Não é permitida a utilização de folhas de rascunho, telemóveis, calculadoras, etc.
- Boa sorte.

Pergunta	Cotação	Nota
1.	1.0	
2.	1.0	
3.	1.0	
4.	1.0	
5.	1.0	
6.	1.0	
7.	3.0	
8.	1.0	
9.	1.0	
10.	2.0	
11.	2.0	
12.	2.5	
13.	2.5	
Total	20.0	

Número:	Pág. 2 de 9
---------	-------------

1. (1.0) O que é um argumento? Quais são as duas grandes classes em que podemos classificar argumentos? Quais as características dos argumentos em cada uma delas?

Resposta:

Um argumento é um par constituído por um conjunto de proposições, as premissas, e por uma única proposição, a conclusão. Os argumentos podem ser válidos ou inválidos. Um argumento diz-se válido se for impossível que todas as premissas sejam verdadeiras e a conclusão seja falsa. Um argumento diz-se inválido em caso contrário.

2. (1.0) O que afirma o princípio da irrelevância do valor lógico?

Resposta:

Excepto no caso em que as premissas são todas verdadeiras e a conclusão é falsa, a verdade ou a falsidade das proposições que constituem um argumento não é relevante para determinar a validade ou a invalidade do argumento.

3. (1.0) Diga o que é uma lógica completa.

Resposta:

Uma lógica é completa se todos os argumentos válidos de acordo com a sua semântica são demonstráveis no seu sistema dedutivo.

4. (1.0) O que é um conjunto satisfazível?

Resposta:

Um conjunto de *fbfs* diz-se satisfazível se e só se existir uma interpretação que satisfaz todas as *fbfs* desse conjunto.

5. **(1.0)** O que é uma *fbf* fechada?

Resposta:

É uma fbf sem variáveis livres.

6. (1.0) A frase "Se amanhã for Sábado e amanhã for Domingo, então eu vou obter uma boa classificação neste teste." representa um dos paradoxos da implicação. Explique de que paradoxo se trata.

Resposta:

Trata-se do paradoxo que formalmente é representado por $(P \land \neg P) \to Q$ e significa que uma contradição implica qualquer coisa.

Número: _____ Pág. 3 de 9

7. Usando as regras do sistema de dedução natural, demonstre:

(a) (1.5)
$$(\{P \to (Q \lor R), Q \to S, R \to S\}, P \to S)$$

Resposta:

1

$$P \rightarrow (Q \lor R)$$
 Prem

 2
 $Q \rightarrow S$
 Prem

 3
 $R \rightarrow S$
 Prem

 4
 P
 Hyp

 5
 $P \rightarrow (Q \lor R)$
 Rei, 1

 6
 $Q \lor R$
 $P \rightarrow E$, (4, 5)

 7
 $Q \rightarrow E$
 Hyp

 8
 $Q \rightarrow S$
 Rei, 2

 9
 $Q \rightarrow S$
 Rei, 2

 9
 $Q \rightarrow S$
 Rei, 3

 10
 $Q \rightarrow S$
 Rei, 3

 11
 $Q \rightarrow S$
 Rei, 3

 12
 $Q \rightarrow S$
 Rei, 3

 12
 $Q \rightarrow S$
 Rei, 3

 12
 $Q \rightarrow S$
 $Q \rightarrow S$

 10
 $Q \rightarrow S$
 $Q \rightarrow S$

 11
 $Q \rightarrow S$
 $Q \rightarrow S$

 12
 $Q \rightarrow S$
 $Q \rightarrow S$

 13
 $Q \rightarrow S$
 $Q \rightarrow S$

 14
 $Q \rightarrow S$
 $Q \rightarrow S$

 15
 $Q \rightarrow S$
 $Q \rightarrow S$

 16
 $Q \rightarrow S$
 $Q \rightarrow S$

 17
 $Q \rightarrow S$
 $Q \rightarrow S$

 <

(b) (1.5)
$$\exists x[P(x) \land Q(x)] \to (\exists x[P(x)] \land \exists x[Q(x)])$$
 Resposta:

1
$$\exists x[P(x) \land Q(x)]$$
 Hyp
2 $x_0 \mid P(x_0) \land Q(x_0)$ Hyp
3 $P(x_0) \land E, 2$
4 $\exists x[P(x)]$ $\exists I, 3$
5 $Q(x_0) \land E, 2$
6 $\exists x[Q(x)]$ $\exists I, 5$
7 $\exists x[P(x)] \land \exists x[Q(x)]$ $\land I, (4, 6)$
8 $\exists x[P(x)] \land \exists x[Q(x)]$ $\exists E, (1, (2, 7))$
9 $\exists x[P(x) \land Q(x)] \rightarrow (\exists x[P(x)] \land \exists x[Q(x)])$ $\rightarrow I, (1, 8)$

8. **(1.0)** Transforme a seguinte *fbf* em forma clausal

$$P \to \neg (Q \lor ((R \land S) \to P)).$$

Indique todos os passos efectuados.

Resposta:

• Eliminação do símbolo \rightarrow $\neg P \lor \neg (Q \lor ((R \land S) \rightarrow P))$ $\neg P \lor \neg (Q \lor (\neg (R \land S) \lor P))$

- Redução do domínio do símbolo ¬
 - $\neg P \lor (\neg Q \land \neg (\neg (R \land S) \lor P))$
 - $\neg P \lor (\neg Q \land (\neg \neg (R \land S) \land \neg P))$
 - $\neg P \lor (\neg Q \land ((R \land S) \land \neg P))$
- Obtenção da forma conjuntiva normal

$$(\neg P \vee \neg Q) \wedge (\neg P \vee ((R \wedge S) \wedge \neg P))$$

$$(\neg P \vee \neg Q) \wedge (\neg P \vee (R \wedge S)) \wedge (\neg P \vee \neg P)$$

$$(\neg P \vee \neg Q) \wedge (\neg P \vee R) \wedge (\neg P \vee S) \wedge (\neg P \vee \neg P)$$

• Eliminação do símbolo \wedge

$$\{\neg P \vee \neg Q, \neg P \vee R, \neg P \vee S, \neg P \vee \neg P\}$$

Eliminação do símbolo ∨

$$\{\{\neg P, \neg Q\}, \{\neg P, R\}, \{\neg P, S\}, \{\neg P\}\}$$

9. (1.0) Considere o conjunto de cláusulas $\Delta = \{\{P,Q\}, \{\neg P, \neg Q\}, \{P\}\}\}$. Faça uma demonstração por refutação de $\neg Q$ a partir de Δ , usando a estratégia de resolução *linear*.

Resposta:

- 10. Considere os seguintes predicados:
 - P(x) = x é um ponto
 - R(x) = x é uma recta
 - Em(x, y) = o ponto x pertence à recta y
 - $L(x, y, z) = a \operatorname{recta} x \operatorname{passa} \operatorname{pelos} \operatorname{pontos} y \operatorname{e} z$
 - I(x,y) = x é igual a y.

Represente em lógica de primeira ordem as seguintes proposições:

(a) (0.4) Dados dois pontos, existe uma recta que passa por esses pontos. Resposta:

$$\forall x, y [(Ponto(x) \land Ponto(y)) \rightarrow \exists r [Recta(r) \land L(r, x, y)]]$$

(b) **(0.4)** Para qualquer recta, existe pelo menos um ponto que não lhe pertence (a recta não passa por esse ponto).

$$\forall r[Recta(r) \rightarrow \exists p[Ponto(p) \land \neg Em(p,r)]]$$

Número: _____ Pág. 5 de 9

(c) (0.4) Dados três pontos quaisquer, não é verdade que exista uma recta que passa por esses pontos.

Resposta:

$$\forall x,y,z[(Ponto(x) \land Ponto(y) \land Ponto(z)) \rightarrow \neg \exists r[Recta(r) \land Em(x,r) \land Em(y,r) \land Em(z,r)]]$$

(d) **(0.4)** Dados dois pontos diferentes, existe *exactamente* uma recta que passa por esses pontos.

Resposta:

$$\forall x, y [(Ponto(x) \land Ponto(y) \land \neg I(x,y)) \rightarrow \exists r [Recta(r) \land L(r,x,y) \land \forall q [L(q,x,y) \rightarrow I(r,q)]]]$$

(e) (0.4) Usando os predicados anteriores, defina um predicado que afirma que os seus argumentos são rectas paralelas, ou seja, rectas que não têm nenhum ponto em comum.

Resposta:

$$\forall r, q[Paralelas(r,q) \leftrightarrow (Recta(r) \land Recta(q) \land \forall p[Ponto(p) \rightarrow (Em(p,r) \leftrightarrow \neg Em(p,q))])]$$

- 11. Considere a *fbf* $(A \land \neg B) \land (B \land \neg (B \land C))$.
 - (a) (1.0) Crie o seu DAG. Efectue a propagação de valores, de modo a que a *fbf* seja verdadeira. O que pode concluir?

Resposta:

Esta fórmula não é satisfazível porque existem duas marcas contraditórias para *B*, ou seja, a *fbf* corresponde a uma contradição.

(b) **(1.0)** Faça o mesmo para a negação da *fbf* dada. Consegue encontrar uma testemunha usando apenas o algoritmo de propagação de marcas?

Número: _____ Pág. 6 de 9

Esta fórmula é satisfazível e uma testemunha é A=V , B=V e C=V .

12. Considere a ordenação [P, Q, R] e a seguinte árvore binária, relativa à fbf α = $P \rightarrow (R \land \neg Q)$.

(a) (0.5) Tendo em conta que a árvore binária anterior representa a fbf α , indique na própria figura quais os valores das suas folhas. Resposta:

(b) (0.5) Indique na figura quais os rótulos de cada nó da árvore resultantes da aplicação do algoritmo *rotula*.

(c) (0.5) De acordo com os rótulos calculados na alínea (b), apresente o OBDD resultante da aplicação do algoritmo *compacta*.

Resposta:

(d) (0.5) Com base no OBDD obtido na alínea (c), indique quais os modelos da fórmula α . Justifique a sua resposta.

Resposta:

I(P) = F e quaisquer valores de Q e R; I(P) = V = I(R), I(Q) = F.

(e) (0.5) Será que a fbf α é uma uma fórmula falsificável? Justifique a sua resposta.

Resposta:

A fórmula é falsificável dado que existe pelo menos uma interpretação na qual a fórmula é falsa. Por exemplo, I(P)=V, I(Q)=V (e qualquer valor de R).

13. Considere os OBDDs γ e β , com as formas canónicas (a) e (b), respectivamente:

(a) (1.5) Considere o operador binário xpto, definido através da seguinte tabela de verdade:

P	Q	$P \ xpto \ Q$
\overline{V}	V	F
V	F	V
F	V	V
F	F	V

Através do algoritmo aplica, calcule o OBDD reduzido correspondente à fbf γ $xpto~\beta.$

Número: _____ Pág. 9 de 9

NOTA: O 1* indica que foram abreviadas várias etapas.

(b) (1.0) Sem fazer cálculos e utilizando os resultados calculados anteriormente, indique qual seria o OBDD reduzido correspondente à $\mathit{fbf}\ \psi = \gamma \land \beta$. Justifique a sua resposta.

Resposta:

Dado que *fbf* γ xpto β é equivalente à *fbf* $\neg(\gamma \land \beta)$ o OBDD da fórmula ψ seria o anterior, com as folhas trocadas, ou seja:

