Analysis and optimization: Midterm 2

Spring 2016

- Answer the questions in the space provided.
- Give concise but adequate reasoning unless asked otherwise.
- You may use any statement from class, textbook, or homework without proof, but you must clearly write the statements you use.
- The exam contains 6 questions.

Name:	Solutions.						
Section:		8:40-9:55	10:10-11:25				

Question	Points	Score
1	5	
2	9	
3	8	
4	8	
5	10	
6	10	
Total:	50	

1. (a) (2 points) State the definition of a convex function.

$$f: S \to IR$$
 is convex if S is a convex set and for every $\overline{X}, \overline{Y}$ in S and λ in $[0,1]$, we have $\lambda f(\overline{x}) + (1-\lambda) f(\overline{y}) \geq f(\lambda \overline{x} + (1-\lambda) \overline{y})$.

(b) (3 points) Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function and a is a real number. Show that the set $\{\vec{x} \in \mathbb{R}^n \mid f(\vec{x}) \leq a\}$ is convex. Call the set $\{\vec{x} \in \mathbb{R}^n \mid f(\vec{x}) \leq a\}$

Let
$$\overline{x}$$
, $\overline{y} \in K$ and $\lambda \in [0,1]$.
We want to show that $\lambda \overline{x} + (1-\lambda)\overline{y}$ is in K .
 $f(\lambda \overline{x} + (1-\lambda)\overline{y}) \in \lambda f(\overline{x}) + (1-\lambda)f(\overline{y})$
 $\leq \lambda \alpha + (1-\lambda)\alpha$
 $= \alpha$.

So $\lambda \bar{x} + (1-\lambda)\bar{y}$ lies in K.

- 2. Give examples of the following:
 - (a) (3 points) A function with gradient (1,-1) and Hessian $\begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$ at (e,π) .

$$(x-e) - (y-\pi) + \frac{1}{2} \left(2(x-e)^2 + 2(x-e)(y-\pi) + 3(y-\pi)^2 \right)$$

(b) (3 points) A function on \mathbb{R}^2 with a critical point at (0,0) which is neither a local minimum nor a local maximum.

$$xy$$
 or x^2-y^2 or x^3+y^3

(c) (3 points) A convex function on \mathbb{R}^2 which is not strictly convex.

A constant function or a linear function are the easiest examples.

3. (8 points) Consider the equations

$$x^2 + y^2 = u$$
, $x^3 + y^3 = v$.

Show that we can express x and y as functions of u and v around the point (x, y, u, v) = (1, 2, 5, 9) and find the partial derivatives $\frac{\partial x}{\partial u}$, $\frac{\partial x}{\partial v}$, $\frac{\partial y}{\partial u}$, and $\frac{\partial y}{\partial v}$ at this point.

Set
$$F_1 = x^2 + y^2 - y$$
 g $F_2 = x^3 + y^3 - v$.

Then $\frac{\partial F}{\partial (x_1 y)} = \begin{pmatrix} 2x & 2y \\ 3x^2 & 3y^2 \end{pmatrix}$

$$= \begin{pmatrix} 2 & 4 \\ 3 & 12 \end{pmatrix} \text{ at } (x_1 y) = (1,2).$$

Since this matrix is invertible, by the implicit function theorem, we can write x, y as functions of u, v around (1,2,5,9).

we have the equation

$$\frac{\partial F}{\partial(x,y)} \cdot \frac{\partial(x,y)}{\partial(u,v)} = -\frac{\partial F}{\partial(u,v)}. \quad \text{so} \quad \text{at} \quad (1,2,5,9):$$

$$\begin{pmatrix} 2 & 4 \\ 3 & 12 \end{pmatrix} \begin{pmatrix} \partial x/\partial u & \partial x/\partial v \\ \partial y/\partial u & \partial y/\partial v \end{pmatrix} = -\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\text{So} \quad \begin{pmatrix} \partial x/\partial u & \partial x/\partial v \\ \partial y/\partial u & \partial x/\partial v \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 3 & 12 \end{pmatrix}^{-1}$$

$$= \frac{1}{12} \begin{pmatrix} 12 & -4 \\ -3 & 2 \end{pmatrix}$$

$$= 4 \begin{pmatrix} 1 & -1/3 \\ -1/4 & -1/4 \end{pmatrix}$$

- 4. Let A be a symmetric $n \times n$ matrix and B any $m \times n$ matrix.
 - (a) (2 points) Show that B^TAB is symmetric.

$$(B^{T}AB)^{T} = B^{T}A^{T}B^{TT}$$

= $B^{T}AB$ since $A^{T}=A$.

so BTAB is symmetric.

(b) (4 points) Suppose A is positive definite. Show that $B^{T}AB$ is positive semi-definite.

A positive def
$$\Rightarrow \overline{X}^T A \overline{X} \ge 0$$
 for every \overline{X} .

NOW,
$$\overline{X}^T B^T A B \overline{X} = (B \overline{X})^T A (B \overline{X}).$$

So, for any
$$\overline{X}$$
 we got \overline{X}^T (B^TAB) $\overline{X} \ge 0$
 \Rightarrow B^TAB is positive semidefinite.

(c) (2 points) What condition on B will ensure that $B^{T}AB$ is positive definite?

Equivalently,
$$\ker(B) = 0$$
 or nullify $(B) = 0$.

or B is left invertible.

5. (10 points) Consider the function

$$f(x, y, z) = x^3 + y^3 - 3xy + z^2 - 2z.$$

Find all the critical points of f and classify each one as a local maximum, local minimum, or saddle point.

$$\nabla f(x_{1/2}) = (3x^{2}-3y, 3y^{2}-3x, 2z-2)$$

= (0,0,0) means

$$x^{2}=y$$
 ? $x^{4}=x$ = $x=0$ or $x=1$
 $y^{2}=x$ } $y=0$ $y=1$

So critical points are (0,0,1) and (1,1,1).

Hess
$$(f)$$
 =
$$\begin{pmatrix} 6x & -3 & 0 \\ -3 & 6y & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

At
$$(0,0,1)$$
: $\begin{pmatrix} 0 & -3 & 0 \\ -3 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

 $\begin{pmatrix}
0 & -3 & 0 \\
-3 & 0 & 0 \\
0 & 0 & 2
\end{pmatrix}$ Leading principal minors: 0,-9,-18 $\Rightarrow \text{ indefinite.}$

=> Saddle point.

At
$$(1,1,1)$$
 $\begin{pmatrix} 6 & -3 & 0 \\ -3 & 6 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ Leading principal minon: 6,27,54 =) pos. definite

=) Local minimum.

6. (10 points) The plane 8x - 5y + z = 5 and the cylinder $x^2 + y^2 = 1$ intersect in an ellipse. What are the maximum and minimum values of the function f(x, y, z) = y + z on this ellipse and where are they attained?

Constraints:
$$8x-5y+z-5=0$$
 call $9(x,y,z)=0$
 $x^2+y^2-1=0$ call $9z(x,y,z)=0$

$$\nabla 9_1 = (8_1 - 5, 1)$$

$$\nabla 9_2 = (2x, 25, 0).$$

$$\nabla f = (0, 1, 1).$$

Since the domain is compact and f is continuous,
min/max exist!

At max/min there exist λ_1, λ_2 such that

$$(0,1,1) = \lambda_1 (8,-5,1) + \lambda_2 (2\times,29,0).$$

$$0 = 8\lambda_1 + 2x\lambda_2$$
 $2x\lambda_2 = -8$ also $2^2 + y^2 = 1$ $y = -5\lambda_1 + 2y\lambda_2$ $2y\lambda_2 = 6$ 82-5y+2=1

$$1 = -5\lambda_1 + 24\lambda_2$$

$$1 = \lambda_1$$

$$2x \lambda_2 = -8$$

$$\frac{-8}{6} = \frac{2}{5} \Rightarrow y = -\frac{6x}{8} = -\frac{3}{4}x$$

$$x^{2}+y^{2}=1$$
 \Rightarrow $x^{2}+36$ $x^{2}=1$ \Rightarrow $x^{2}=\frac{64}{100}=\frac{16}{25}$

80
$$x = \frac{4}{5}$$
 or $-\frac{4}{5}$

$$x = \frac{4}{5} \Rightarrow y = -\frac{3}{5}, z = -\frac{22}{5}$$
 & $f(x_{13/2}) = 15. \in MAX$

$$. , z = \frac{-22}{5}$$

$$x = \frac{4}{5} \Rightarrow y = \frac{3}{5}$$
, $z = \frac{72}{5}$ & $f(xy_1z) = -5$. $\leftarrow MIN$.

$$f(x_{1},z)=-5.$$

82-54+2=5

max at (4/5, -3/5, -22/5)90