6. Construction de la courbe Zero Coupon

La construction de la courbe zero coupon est une étape cruciale dans l'entreprise de pricing des swaptions en raison de la nécessité des prix de zero coupon à chaque maturité $\left(P(0,T_i)\right)_{i=0,N}$. Il est possible de les calculer à l'aide de l'expression

$$P(0,T_i) = e^{-\int_0^{T_i} f(0,u) \, du}$$

à condition d'avoir accès à la courbe de taux forward initiale $t \to f(0,t)$.

Dans l'optique de simplifier au maximum les calculs et d'assurer une certaine cohérence des résultats, il est possible de choisir la forme suivante $P(0,T)=e^{-rT}$, en d'autres termes on considère le taux forward initial f(0,t) constant. Cette approche simpliste sera utilisée à de nombreuses reprises dans les tests lorsque les calculs requièrent la courbe zero coupon pour un nombre important de maturités. Cela évite en effet des calculs et peut s'avérer pratique lorsque l'on dispose de données de marché insuffisantes.

Présentons maintenant une méthode de bootstrapping sur le taux swap au pair, qui va nous servir à construire une courbe zero coupon plus réaliste de 0 à 50 ans avec une base semi-annuelle.

Données: Considérons que nous avons accès à des données historiques de taux swap pour N maturités $T_1 < ... < T_N$. On peut construire à partir de cela la courbe zéro coupon en M points $(t_j)_{j=1,M}$, admettons que l'on veuille une valeur de zéro coupon tous les 6 mois, on aurait alors $t_j = 0.5 \times j$ Y.

Nous avons d'abord récupéré les données de taux swap suivantes dans (Andersen 2010a, Section 6.2):

Maturity	Swap par
(Y)	rate
1	4.20%
2	4.30%
3	4.70%
5	5.40%
7	5.70%
10	6.00%
12	6.10 %
15	5.90%
20	5.60%
25	5.55%

Voyons à présent comment procéder.

Rendement continuellement composé linéaire par morceaux

Le rendement continuellement composé ou Continuously compounded yield est définit comme la fonction $y:[0,T_{max}]\to\mathbb{R}^+$ telle que

$$e^{-y(T)T} = P(0,T) = e^{-\int_0^T f(0,u) \, du}$$

On note que

$$f(0,T) = y(T) + \frac{\mathrm{d}y}{\mathrm{d}T}(T) \times T$$

Cette méthode consiste à considérer le **rendement linéaire par morceaux** sur $\{T_i\}_i$, en d'autres termes

$$\forall i \in [|1, N|], \quad y(T) = y(T_i) \frac{T_{i+1} - T}{T_{i+1} - T_i} + y(T_{i+1}) \frac{T - T_i}{T_{i+1} - T_i}, \quad T \in [T_i, T_{i+1}]$$

On se doit également de fixer le taux initial tel que $y(t) \equiv y(T_1)$, $t < T_1$. Il est essentiel de rappeler d'après (6) que:

$$S(T_i) = \frac{1 - P(T_i)}{\sum_{j,tj \le T_i} \tau P(t_j)}$$

L'algorithme de Bootstrapping pour nos données est le suivant: i = 1:

• On fixe le yield sur le premier intervalle $y(t) = y(T_1), t \le T_1$: On a dans notre cas y(0.5) = y(1)

Pour i=2,...,N:

- Connaissant $P(t), t \leq T_{i-1}$, on va chercher la valeur de $P(T_i)$. On pose $y(T_i) = x$ et $\forall t_j \in [T_{i-1}, T_i], \ y(t_j) = y(T_{i-1}) \frac{T_i - t_j}{T_i - T_{i-1}} + x \frac{t_j - T_{i-1}}{T_i - T_{i-1}}$
- On trouve x par une méthode de recherche de racine telle que

$$S(T_i) = \frac{1 - P(T_i)}{\sum_{j=1, t_j < T_i} \tau P(t_j, x)}$$

Avec le tableau de données d'entrée présenté plus haut, voici les courbes de taux générées grâce à cette méthode:

Taux forward constant par morceaux

Nous aborderons dans ce paragraphe une méthode similaire de construction de la courbe zéro coupon par Bootstrapping sur le taux swap, mais cette fois-ci en considérant une forme particulière du taux forward.

Figure 25: Courbe de taux linéaire par morceaux

Il s'agit ici d'assumer un taux forward constant par morceaux, c'est-à-dire:

$$\forall i \in [[0, N]], \quad f(T) \equiv f(T_i), \quad T \in [T_i, T_{i+1}]$$

On rappelle que (voir page précédente)

$$\forall T \in [0, T_N], \ y(T) \times T = \int_0^T f(0, u) \ du$$

D'où

$$y(T) = \frac{y(T_i)T_i + f(T_i)(T - T_i)}{T}$$

et de manière équivalente

$$y(T) = \frac{1}{T} \left(T_i y(T_i) \frac{T_{i+1} - T_i}{T_{i+1} - T_i} + T_{i+1} y(T_{i+1}) \frac{T - T_i}{T_{i+1} - T_i} \right)$$

Algorithme de Bootstrapping:

- On initialise $y(t) \equiv y(T_1), \ t \leq T_1$ et on déduit P(0.5) et P(1) à partir de S(1). Pour $\mathbf{i} = \mathbf{2}, ..., \mathbf{N}$:
- Sachant $P(t), t \leq T_{i-1}$ on va faire déduire la valeur de $P(T_i)$.

 On pose $y(T_i) = x$ et on détermine x par recherche de racine comme précédemment avec $\forall t_j \in [T_{i-1}, T_i], \ y(t_j) = \frac{1}{t_j} \left(y(T_{i-1}) T_{i-1} \frac{T_i t_j}{T_i T_{i-1}} + x T_i \frac{t_j T_{i-1}}{T_i T_{i-1}} \right)$

Voici le rendu ci-dessous:

On peut ainsi construire une courbe jusqu'à l'horizon désiré, du moment que les données sont suffisamment fournies. Pour l'application de la courbe zéro coupon au pricing d'instruments

Figure 26: Courbe de taux forward constant par morceaux

financiers, il est, dans la majorité des cas, nécessaire d'aller au delà de 25 ans et 50 ans est un horizon assez lointain. Nous allons donc construire une courbe zéro coupon allant de 0 à 50 ans en usant des deux méthodes présentées précédemment afin de réaliser les travaux numériques par la suite.

Voici une table de données disponible dans l'article (Healy 2019) datant de Novembre 2019.

OIS swap 1Y	2020/11/09	0.01455
OIS swap 2Y	2021/11/08	0.01373
OIS swap 3Y	2022/11/08	0.01354
OIS swap 4Y	2023/11/08	0.01347
OIS swap 5Y	2024/11/08	0.01355
OIS swap 6Y	2025/11/10	0.01375
OIS swap 7Y	2026/11/09	0.01398
OIS swap 8Y	2027/11/08	0.01429
OIS swap 9Y	2028/11/08	0.01451
OIS swap 10Y	2029/11/08	0.01484
OIS swap 12Y	2031/11/10	0.01534
OIS swap 15Y	2034/11/08	0.01591
OIS swap 20Y	2039/11/08	0.01645
OIS swap 25Y	2044/11/08	0.01662
OIS swap 30Y	2049/11/08	0.01672
OIS swap 40Y	2059/11/10	0.01650
OIS swap 50Y	2069/11/08	0.01617

Maintenant que deux méthodes plus élaborées ont été présentées, il est intéressant de revenir à la première forme du prix de l'obligation zéro coupon $P(0,T)=e^{-rT}$. On peut effectivement constater que l'hypothèse d'un taux forward initial constant n'est pas délirant en ce sens qu'il permet de reproduire une courbe zéro coupon proche de la réalité sur le court terme, sous réserve que la constante soit évidemment bien choisie. Ce constat peut être fait en comparant la courbe zéro coupon bootstrappée et celle induite par le taux forward initial constant.