\mathbb{Z}

纵

辅礽第一卷 · 2025 辅礽复仇赛

试卷类型: Eric-熊特供版

2025 Fureng Olympic Revenge

本试卷共 2 页, 6 题. 全卷满分 300 分. 考试时间 12 天.

出卷方:辅礽教育考试院 审卷方:皖辅教育集团

注意事项:

1. 本卷所有题均为原创题,且首发于此试卷.

2. 本赛事仿照巴西复仇赛 (Brazil Olympic Revenge), 但题型和考点参照全国高中数学联合竞赛 (第二试).

3. 答题前, 先将自己的姓名、准考证号、考场号、座位号填写在试卷上.

4. 解答题的作答:直接写在试卷上的答题区域.

5. 考试结束后,请将本试卷以及草稿纸一并上交,不上交者按照零分处理.

6. 本次考试时长为 12 天,每两天有且仅有一道题目,考生可自行选择做题顺序.

7. 本卷的题目顺序按照 CMO 标准, 第1至3题由易到难, 第4至6题由易到难.

8. 考试严禁作弊,包括但不限于传抄答案,使用电子设备等,一经发现按照零分处理.

一、第一天(陈宇涵供题)

1. (50分)

设 $\triangle ABC$ 对应边 a,b,c,分别对应的高为 h_a,h_b,h_c ,且满足 $\sqrt{a+h_b}+\sqrt{b+h_c}+\sqrt{c+h_a}=\sqrt{a+h_c}+\sqrt{b+h_a}+\sqrt{c+h_b}$.

(1) 证明: △ABC 为等腰三角形;

(2) 在 $\triangle ABC$ 中, $\angle BAC = 90^{\circ}$,I 为其内心,D 为 BC 的中点,E,F 分别在直线 BI,CI 上,满足 $\angle EDF = 90^{\circ}$.求证: $\angle EAF = 45^{\circ}$.

二、第二天 (缪语博供题)

2. (50分)

已知
$$f(n) = \frac{1}{\frac{2}{\tan^2 \frac{\pi}{n} + \frac{2}{\tan^2 \frac{2\pi}{n} + \tan^2 \frac{3\pi}{n} + \dots + \frac{2}{\tan^2 \frac{(n-1)\pi}{n}}}}$$
, $S_n = \sum_{i=3}^n (n-i+1)f(i)$.

求证: $2S_n + 3 < 3(n - \ln n)$.

三、第三天(童彦宸供题)

3. (50分)

T. 证明: $\exists \alpha, \beta, \gamma$, 使得对于任意 $n \in \mathbb{N}$, 均有 $\frac{|f(n) - g(n)|}{a + b + c} < T$. 友情提示: 本题要用到第二天的某个结论.

四、第四天(高扬供题)

4. (50分)

设 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$,其零点分别为 x_1, x_2, \dots, x_n .其中, $a_0 < a_1 < a_2 < \dots < a_n$.设 $S_k = x_1^k + x_2^k + \dots + x_n^k$.求证: $\sum_{i=1}^{n-1} (a_i - a_0) \cdot S_{i+2} = 0$.

五、第五天 (窦世杰供题)

5. (50分)

若

给定 r+1 位 p 进数 $n=(\overline{n_r\cdots n_\alpha}\underbrace{00\cdots 0}_{\alpha\ zeros})_p$ 和正整数 $k,n\geqslant k, V_p(n)=\alpha, V_p(k)=\beta, \alpha\geqslant\beta.$

$$v_p\left(\binom{n}{k}\right) = r - \beta$$

则称 $\binom{n}{k}$ 为 p 幂最大组合数. 试求 p 幂最大组合数 $\binom{n}{k}$ 的个数.

注:设p为一个质数,n为一个正整数, $V_p(n)$ 表示n中所含有的p的最大幂次,即:

$$V_n(n) = \max\{k \in \mathbb{N} \mid p^k \mid n\}$$

换句话说, $V_p(n)$ 是使得 p^k 整除 n 的最大整数 k.

六、第六天 (方逸宸供题)

6. (50分)

对于一个长度为 n,元素互不相同的序列 $\{a_i\}$.称一种交换操作为:将数列中的 a_i 与 a_j 交换 (i < j).易知下标不同的交换操作有 $\frac{n(n-1)}{2}$ 种.现在请你构造这 $\frac{n(n-1)}{2}$ 种交换操作的顺序,使得按照该顺序对序列进行交换,交换完成后的序列与原序列相同.对于任意正整数 n,构造方案或说明无解.

世

纵(

₹

) ||

征

徊

愚