Subreddit's Sentiment Impact On Stock Performance

Kevin Shi, Lixiao Yang, Chris Fluta, Vandan Patel

Table of contents

01

Introduction and Motivation

03

Experimental Results

02

Methodology

04

Conclusion & Future Direction

01

Introduction and Motivation

Intro & Motivation

- Hedge funds were heavily shorting GameStop (GME), betting on its decline
 - Decline in Physical Retail
 - Competition (sony, microsoft, nintendo)
 - Declined Profits due to Covid -19

_

- January 22 2021 users of r/wallstreetbets initiated a short squeeze on GameStop, pushing their stock prices up significantly
- Rose from \$17.25 to a pre market value of \$500 per share
- Melvin Capital required a \$2.75 billion bailout from other hedge funds, including Citadel, to stay afloat

Research Question: Does the sentiment towards a brand on their subreddit affect the brand's stock performance

02

Methodology

Methodology

Objective: Investigate whether the sentiment towards brand on their subreddit affects the stock performance of GameStop, Tesla, and Nvidia.

<u>Importance:</u> Understanding the influence of online communities on stock prices can help investors and analysts make more informed decisions.

Data Collection

- Reddit Data: Use Reddit API (praw) to collect posts from r/GameStop, r/Tesla, and r/Nvidia
- Stock Data: Obtain historical stock prices from Yahoo Finance (yfinance) for GameStop, Tesla, and Nvidia

GameStop[®]

Data Preprocessing

- Reddit Data Cleaning: Remove URLs, mentions, special characters, and irrelevant posts
- Remove useless fields and those not needed for sentiment analysis and drop any null values

Methodology...

Sentiment Analysis

- VADER Sentiment Analysis: Use NLTK's VADER to analyze the sentiment of each Reddit post
- BERT (Bidirectional Encoder Representations from Transformers) models for sentiment Analysis analyzes the relationships between words in a sentence in both directions
 - FinBERT
 - Pre-trained NLP model to analyze sentiment of financial text
 - BERTweet
 - Designed for processing and understanding tweets and trained on 850 million
 English tweets
 - RoBERTa (Robustly Optimized BERT Approach)
 - Optimized variant of BERT that improves performance by using more data and longer training times (trained on 160GB text data)

Data Extraction

Why we extracted the data we extracted?

- Attempted to extract the top 10,000 posts from the past year
- Gamestop
 - Extracted 990 posts
 - 2023-04-05 to 2024-04-03
- Tesla
 - Extracted 534 posts
 - o 2009-12-19 to 2023-11-22
- Nvidia
 - Extracted 988 posts
 - o 2023-04-06 to 2024-04-03

```
def extract_posts(_reddit, _subreddit_name, _time_filter):
     Function to extract raw top posts from 'r/___' from the past time filter and save to a file
     :param reddit: an authenticated Reddit instance
     :param _subreddit_name: a string, name of the subreddit
     :param _time_filter: a string, "year" or "all"
     :return: _posts_df, dataframe of raw subreddit posts
def create_relevant_df(df):
   selected_columns = df[['score', 'created_utc', 'title', 'selftext']]
   selected_columns['text'] = selected_columns['title'].fillna('') + ' ' + selected_columns['selftext'].fillna('']
   # Create a new dataframe with the 'score', 'date', and 'text' columns
   cleaned_df = selected_columns[['score', 'created_utc', 'text']]
   return cleaned df
def clean_text(text):
    :param text: strings in 'text' column of the df
    text = re.sub( pattern: r'<[^<]+?>', repl: ' ', text) # remove HTML tags
    text = text.lower() # Convert text to lowercase
    text = re.sub( pattern: r'http\S+|www\S+|https\S+', repl: '', text, flags=re.MULTILINE) # Remove URLs
    text = re.sub( pattern: r'[^a-z\s]', repl: '', text) # Remove special characters, numbers, and punctuation
    text = re.sub( pattern: r'\s+', repl: ' ', text).strip() # Remove extra spaces
    return text
```

Data Preprocessing

- Standard text cleaning
- Merge stock and sentiment data
- Adjust merged stock and sentiment data

```
import yfinance as yf

def merge_with_historical_stock_data(stock_ticker, sentiment_df):

"""

Function to merge sentiment data with stock data

:param stock_ticker: a string (stock abbreviation)

:param sentiment_df: sentiment_df dataframe

:return: merged_data, a dataframe with the merged sentiment data with stock data
```

```
def adjust_sentiment_scores_merged_data(merged_data):

"""

Function to adjust sentiment scores in merged data by taking the average of each models' scores on each day

:param merged_data: a dataframe with the merged sentiment data with stock data

:return: merged_data_aggregated, a dataframe with the merged sentiment data with stock data with adjusted sentiment scores

"""
```

in	dex	Date	0pen	High	Low	Close Adj	Close	Volume	score	tex	t FinBERT_sentiment_score	BERTweet_sentiment_score	RoBERTa_sentiment_score	vader_sentiment_score	FinBERT_sentiment_score_adj
0	0 2023	3-04-05 2	2.469999	22.469999	21.23	22.07	22.07	3638100	182.0	really warehouse i mean sure its happened befo.	. 0.906191	0.931234	0.717845	-0.4438	0.943087
1	0 2023	3-04-05 2	2.469999	22.469999	21.23	22.07	22.07	3638100	139.0	thi	0.979983	-0.797670	-0.347687	0.0000	0.943087
2	1 2023	3-04-06 2	2.000000	22.670000	21.77	22.40	22.40	2506900	62.0	anyone else win a golden ticket and never get .	. 0.999028	0.000000	-0.292112	0.8821	0.999028

03

Experimental Results

BERT-Based Models Structure

- BERT-Based Models
 - Advanced NLP models based on neural networks using Transformer architecture
 - Fine-tuned for sub-tasks and fields
 - Known for achieving state-of-the-art performance
- Comparison of Three BERT-based Models

Model	FinBERT	BERTweet	RoBERTa
Purpose	Financial sentiment analysis	General purpose	General purpose
Training Data	Financial texts	Tweets	General domain text
Parameters	110M	134M	125M
Fine-tuned Tasks	Sentiment analysis in finance	Sentiment analysis in social media text	Various NLP tasks (classification, QA, etc.)

Model Sentiment Scores (Range -1 to +1)

GameStop:

Sentiment Scores Pre-Adjustment

GameStop: positive negative zero	FinBERT_sentiment_score 604 57 0	BERTweet_sentiment_score 236 256 169	\
positive negative zero	RoBERTa_sentiment_score 375 286 0	vader_sentiment_score 340 248 73	
Tesla:			
positive negative zero	FinBERT_sentiment_score 343 18 0	BERTweet_sentiment_score 14 333 14	\
	RoBERTa_sentiment_score	vader_sentiment_score	
positive	29	141	
negative	332	48	
zero	0	172	
Nvidia:			
positive negative zero	FinBERT_sentiment_score 521 161 0	BERTweet_sentiment_score 51 510 121	\
	RoBERTa_sentiment_score	vader_sentiment_score	
positive	78	392	
negative	604	96	
zero	0	194	

Sentiment Scores Post-Adjustment

positive negative zero	FinBERT_sentiment_score_adj 226 12 0	BERTweet_sentiment_score_adj 122 102 14	\
positive negative zero	RoBERTa_sentiment_score_adj 174 64 0	vader_sentiment_score_adj 133 101 4	
Tesla:			
positive negative zero	FinBERT_sentiment_score_adj 301 16 0	BERTweet_sentiment_score_adj 13 294 10	\
positive negative zero	RoBERTa_sentiment_score_adj 26 291 0	vader_sentiment_score_adj 126 45 146	
negative	26 291 0	126 45 146	
negative zero	26 291 0	126 45	\

BERT-Based Experimental Results

GameStop results across three models

- We wanted to see the relationship between the sentiment scores and the adjusted daily close price of the stock
- The visual comparison of adjusted close stock price vs results of the FinBERT model (On the Top Right)
- The visual comparison of adjusted close stock price vs the BERTTweet model
 (On the Middle)
- The visual comparison of adjusted close stock price vs results of the RoBERTa model (On the Bottom Right)

BERT-Based Experimental Results

Nyidia results across three models:

- The visual comparison of adjusted close stock price vs results of the FinBERT model
 (On the Top Right)
- The visual comparison of adjusted close stock price vs the BERTTweet model (On the Middle)
- The visual comparison of adjusted close stock price vs results of the RoBERTa model (On the Bottom Right)

BERT-Based Experimental Results

Tesla results across three models:

- All time top post data for Tesla due to insufficient data for past year
- The visual comparison of adjusted close stock price vs results of the FinBERT model (On the Top Right)
- The visual comparison of adjusted close stock price vs the BERTTweet model (On the Middle)
- The visual comparison of adjusted close stock price vs results of the RoBERTa model (On the Bottom Right)

VADER Structure

- Valence Aware Dictionary and sEntiment Reasoner
 - Tuned for Social Media
 - Excels at short text sentiment
- VADER scores text by looking at individual token sentiments as well as the compound score
- Default VADER vs AFINN
 - Default VADER is more similar to BERT

VADER Results

Gamestop Results

 The visual comparison of adjusted close stock price vs the NLTK VADER model (Top Right)

Nvidia Results

 The visual comparison of adjusted close stock price vs the NLTK VADER model (Bottom Right)

VADER Results

Tesla Results

 The visual comparison of adjusted close stock price vs the NLTK VADER model (On the Bottom)

04

Conclusion

Conclusion

- One lesson learned is that with data extractions using Reddit APIs, you cannot pull top posts for two years or a specified time frame but only for "all", "day", "hour", "month", "week", or "year"

If we were to do it differently we would find a way to get data for each day from the past 2 years

- In the future, if we had more funds, time, and computational power, we could potentially develop and train our own model
- Though findings did not directly show a relationship between online sentiment and stock price, we still believe it has an impact we would expand to other sources like twitter, stock-specific subreddits, etc.
- Recent Events:

Roaring Kitty posted a screenshot on Reddit late Sunday - paid \$175 million building a position in game stock -> Stock rose nearly 75% at market open

Thank You

