A.1 Quelques exercices corrigés

1. 33 Mettre sous forme normale de Chomsky la grammaire définie par les règles de production suivantes $S \to AB \mid aS \mid a$

$$\begin{array}{c} A \to Ab \mid \varepsilon \\ B \to AS \end{array}$$

- 2. 34 Eliminer la récursivité gauche de la grammaire ETF.
- 3. 34 Appliquer l'algorithme de dé-récursivation (gauche) vu en cours à la grammaire suivante, grammaire de la liste.

$$S \to (L) \mid a$$
$$L \to L, S \mid S$$

nº 1, p 33

Il faut commencer par rendre la grammaire ε -libre, ce qui est assez simple dans ce cas particulier, puisque seul A est susceptible de s'effacer :

Il faut ensuite débarrasser la grammaire des productions singulières, qui sont exclues dans une grammaire quadratique.

L'algorithme général est le suivant :

- 1. Partir d'une grammaire ε -libre.
- 2. Pour tout $A \in V$, construire $N_A = \{B \in V / A \xrightarrow{*} B\}$
- 3. Soit P l'ensemble initial de règles; on construit P' le nouvel ensemble de productions de la manière suivante :
 - (a) Ajouter dans P' toutes les règles non singulières de P.
 - (b) Pour toute règle $B \longrightarrow \alpha$ de P' (non singulière par hypothèse), pour tout $A \in V$ tel que $B \in N_A$, ajouter $A \longrightarrow \alpha$ à P'.

L'application systématique de l'algorithme à notre grammaire donne :

Cela donne la grammaire suivante, qu'il est alors simple de rendre quadratique :

Il y a deux cycles imbriqués dans la grammaire ε -libre $(S \xrightarrow{*} B \xrightarrow{*} S)$, ce qui explique qu'in fine S et B engendrent le même langage. Cela suggère une simplication de la grammaire, mais ce n'était pas demandé ici.

à propos de la simplication : dans le cas particulier de cette grammaire, il aurait été possible de se contenter de la grammaire :

$$S' \to S \mid \varepsilon$$
 ... mais cela tient au fait que B n'est atteint que par S , dans la règle $S \to AS \mid AB \mid aS \mid a$... mais cela tient au fait que B n'est atteint que par S , dans la règle $A \to AB \mid aS \mid a$... mais cela tient au fait que B n'est atteint que par S , dans la règle $A \to AB \mid aS \mid a$ dérivation $A \to AB \mid aS \mid a$ derivation $A \to AB \mid aS \mid a$ de

Si dans la grammaire initiale on avait en en plus $A \to Bb$, par exemple, alors il n'en aurait pas été de même : en supprimant la règle $B \to S$ sans ajouter toutes les dérivations d'origine B que nous avons ajoutées, on perdrait certaines possibilités de dérivation, par exemple :

Sans préjuger du fait que dans ce cas particulier, le langage engendré peut ne pas être différent.

nº 2, p 33

$$\begin{split} E &\rightarrow TE' \\ E' &\rightarrow +TE' \mid \varepsilon \\ T &\rightarrow FT' \\ T' &\rightarrow \times FT' \mid \varepsilon \\ F &\rightarrow (E) \mid a \end{split}$$

nº 3, p 33

Corrigé : On a une seule règle récursive gauche (directe) et aucune indirecte. A la place du couple règle récursive gauche $L \to L, S$ plus règle de terminaison de la récursion $L \to S$, on commence par dériver la terminaison par S avec la nouvelle règle $L \to SL'$ puis c'est L' qui capte la récursion $L' \to SL'$ ou bien termine $L' \to \varepsilon$.