Hide Code

Created with Jupyter, delivered by Fastly, rendered by Rackspace.

Relatório Regras de Associação - Nicholas Richers

Linguagem: ¶

Para a realização dessa análise foi utilizada a linguagem python (v.3.6), com o auxílio das bibliotecas
 Pandas e Mlextend

```
#bibliotecas utilizadas
import pandas as pd
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
```

Preparação dos Dados:

- · Limpeza do dataset:
 - Obs: Haviam 18 filmes com Id duplicado, que foram removidos

```
#carregando os datasets de ratings
ratings_100k = pd.read_csv('./ml-100k/u.data', header=None, delimiter="\t")
ratings_1M = pd.read_csv('./ml-1m/ratings.dat', header=None, delimiter=":")

#carregando os datasets de filmes
movies_100k = pd.read_csv('./ml-100k/u.item', header=None, sep='|', encoding='latin-1')
movies_1M = pd.read_csv('./ml-1m/movies.dat', header=None, sep=';', encoding='latin-1')
```

```
#funcão para limpar os datasets
def setup BD(ratings, movies):
    #retira as colunas 2 e 3 da tabela rating e renomeia
   ratings.drop([2,3], axis=1, inplace=True)
   ratings.columns = ['User', 'Movie_Id']
   #seleciona apenas as colunas 0 e 1 da tabela movies e renomeia
   movies = movies.loc[:,[0,1]]
   movies.columns = ['Movie_Id', 'Movie']
   #Crinado um merge dos 2 datasets
   ratings = ratings.merge(movies,on='Movie Id')
   ratings = ratings.loc[:,['User', 'Movie']]
   ratings.sort_values('User').head()
    #Limpando os registros duplicados
   ratings = ratings.drop duplicates(keep='first')
   return ratings, movies
#obter os datasets limpos
ratings 100k, movies 100k = setup BD(ratings 100k, movies 100k)
ratings_1M, movies_1M = setup_BD(ratings_1M, movies_1M)
```

Criação das Regras de Associação

- Passo 1: Criar uma tabela pivot com os filmes vistos por cada usuário em formato de vetor [0,1].
- Passo 2: Através do algoritmo apriori selecionamos o item (ou grupo de itens, com max_len=2), para um suporte mínimo desejado.
- Passo 3: Finalmente, devemos gerar as regra de associação para o nível de confiança desejado.

```
# Coloca 0 e 1 em todos os elementos do vetor
def hot encoded(x):
    if x == 0: return 0
    else: return 1
def create_rules(ratings, sup, con):
    #1 Cria uma tabela pivot
    basket = (ratings.pivot(index='User', columns='Movie', values='User').fillna(0
))
    basket sets = basket.applymap(hot encoded)
    #2 Algoritmo apriori com regra de tamanho 2, e suporte mínimo
    frequent_itemsets = apriori(basket_sets, min_support=sup, use_colnames=True, ma
x_len=2)
    #3 cria as regras de associacao para a confiança
    rules = association_rules(frequent_itemsets, metric="confidence", min_threshold
=con)
    print('Suporte = {}, Confiaça = {}, Qtde. Regras = {}'.format(sup, con, rules.a
ntecedents.count()))
    return basket_sets, rules
suport = 0.3
confidence = 0.58
print("Dataset 100k:")
basket sets 100k, rules 100k = create rules(ratings 100k, suport, confidence)
print("\nDataset 1M:")
basket_sets_1M, rules_1M= create_rules(ratings_1M, suport, confidence)
Dataset 100k:
Suporte = 0.3, Confiaça = 0.58, Qtde. Regras = 100
Dataset 1M:
```

Regras Adicionais

 Devemos criar algumas regras adicionais n\u00e3o inclusas na bibilioteca utilizada para completar a tabela de regras solicitada.

Lift (B,!C)

$$Lift(B, !C) = (Suporte(B) - Suporte)/(1 - Suporte(C))$$

Suporte = 0.3, Confiaça = 0.58, Qtde. Regras = 40

χ^2 Test

• De acordo com [1], podemos obter χ^2 em função do suporte, da confiança e do Lift, logo temos:

$$\chi^2 = \frac{P(B)P(C)}{((1 - P(B))(1 - P(C)))}$$

[1] S. Alvarez. Chi-squared computation for association rules: preliminary results. Computer ScienceDept. Boston College, 2003

Análise das Regras

Dataset 100k

 Ao ordenar as melhores regras pelo "Lift", não foi encontrad nenhuma relação com as melhores regras através do "Chi_Sq", através das duas tabelas abaixo, percebe-se que não há nenhuma repetição de regra, nem de antedecente, e apenas um consequente (Independence Day (ID4) (1996)) foi encontrado em ambos os casos.

```
#Dataset 100k ordenado pelo lift (5 maiores)
rules_100k.sort_values(['lift'], ascending=False).head()
```

	antecedents	consequents	support	confidence	lift	neg_lift	chi_sq
49	(Independence Day (ID4) (1996))	(Mission: Impossible (1996))	0.332980	0.731935	2.006437	0.191987	321.817291
48	(Mission: Impossible (1996))	(Independence Day (ID4) (1996))	0.332980	0.912791	2.006437	0.058366	236.963779
18	(Raiders of the Lost Ark (1981))	(Empire Strikes Back, The (1980))	0.346766	0.778571	2.000525	0.161458	317.662600
17	(Empire Strikes Back, The (1980))	(Raiders of the Lost Ark (1981))	0.346766	0.891008	2.000525	0.076482	261.893365
59	(Raiders of the Lost Ark (1981))	(Indiana Jones and the Last Crusade (1989))	0.306469	0.688095	1.960344	0.214052	304.408625

```
#Dataset 100k ordenado pelo chi_sq (5 maiores)
rules_100k.sort_values(['chi_sq'], ascending=False).head()
```

	antecedents	consequents	support	confidence	lift	neg_lift	chi_sq
97	(Star Wars (1977))	(Toy Story (1995))	0.404030	0.653516	1.363420	0.411405	672.536590
86	(Star Wars (1977))	(Return of the Jedi (1983))	0.509014	0.823328	1.531357	0.236239	669.869862
34	(Star Wars (1977))	(Fargo (1996))	0.417815	0.675815	1.254514	0.434483	669.651675
54	(Star Wars (1977))	(Independence Day (ID4) (1996))	0.383881	0.620926	1.364880	0.429961	668.215279
78	(Star Wars (1977))	(Raiders of the Lost Ark (1981))	0.402969	0.651801	1.463449	0.388145	665.651584

Análise adicional (Dataset 100k):

 Contudo ao analisar o gráfico abaixo, podemos perceber que o lift possui uma correlação positiva com a confiança, apesar do comportamento um tanto errático, já com o chi_sq, a correlação passa a ser negativa.

```
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

plt.figure(1)
plt.subplot(211)
plt.title('Dataset 100k - Lift & Chi_Sq x Confiança')
sns.lineplot(x="confidence", y="lift", data=rules_100k)

plt.subplot(212)
sns.lineplot(x="confidence", y="chi_sq", color="coral", data=rules_100k)

plt.show()
```


Dataset 1M

• Para o dataset 1M nas duas tabelas abaixo, chegamos a uma conclusão semelhante ao dataset 100k

```
#Dataset 1M ordenado pelo lift (5 maiores)
rules_1M.sort_values(['lift'], ascending=False).head()
```

	antecedents	consequents	support	confidence	lift	neg_lift	chi_sq
23	(Terminator 2: Judgment Day (1991))	(Matrix, The (1999))	0.327483	0.746697	1.741332	0.194493	709.095232
22	(Matrix, The (1999))	(Terminator 2: Judgment Day (1991))	0.327483	0.763707	1.741332	0.180478	685.049502
11	(Men in Black (1997))	(Jurassic Park (1993))	0.321026	0.763987	1.726977	0.177850	662.545259
10	(Jurassic Park (1993))	(Men in Black (1997))	0.321026	0.725674	1.726977	0.209309	716.314378
25	(Terminator 2: Judgment Day (1991))	(Men in Black (1997))	0.307119	0.700264	1.666508	0.226728	705.331802

```
#Dataset 1M ordenado pelo chi_sq (5 maiores)
rules_1M.sort_values(['chi_sq'], ascending=False).head()
```

	antecedents	consequents	support	confidence	lift	neg_lift	chi_sq
30	(Star Wars: Episode IV - A New Hope (1977))	(Star Wars: Episode V - The Empire Strikes Bac	0.389901	0.787362	1.590524	0.208525	908.785845
31	(Star Wars: Episode V - The Empire Strikes Bac	(Star Wars: Episode IV - A New Hope (1977))	0.389901	0.787625	1.590524	0.208265	908.190018
32	(Star Wars: Episode IV - A New Hope (1977))	(Star Wars: Episode VI - Return of the Jedi (1	0.349834	0.706453	1.480047	0.278112	907.005145
36	(Star Wars: Episode V - The Empire Strikes Bac	(Star Wars: Episode VI - Return of the Jedi (1	0.368874	0.745151	1.561120	0.241368	906.404621
12	(Star Wars: Episode IV - A New Hope (1977))	(Jurassic Park (1993))	0.301987	0.609829	1.378507	0.346496	896.807152

Análise Adicional (Dataset 1M):

• Para o dataset 1M, com menos regras, apesar de bastante errático, ainda podemos perceber o mesmo comportamento das regras selecionadas em relação ao lift e chi_sq versus confiança.

```
plt.figure(1)
plt.subplot(211)
plt.title('Dataset 1M - Lift & Chi_Sq x Confiança')
sns.lineplot(x="confidence", y="lift", data=rules_1M)

plt.subplot(212)
sns.lineplot(x="confidence", y="chi_sq", color="coral", data=rules_1M)

plt.show()
```


Análse Comparariva

 Por fim ao comparar as regras selecionadas nos 2 datasets, percebemos que há pouca interseção entre elas, apenas 4 antecedentes e 2 consequentes estão contidos nas duas regras, além disso não há nenhuma regra idêntica.

```
#Antecedentes em ambas as listas de regras
antecedents_list = [ant for ant in rules_lM.antecedents.unique() if ant in rules_l0
0k.antecedents.unique()]
print("Número de Antecedentes nas regras dos dois datasets:", len(antecedents_list
))
antecedents_list
```

```
Número de Antecedentes nas regras dos dois datasets: 4

[frozenset({'Fargo (1996)'}),
frozenset({'Silence of the Lambs, The (1991)'}),
frozenset({'Back to the Future (1985)'}),
frozenset({'Raiders of the Lost Ark (1981)'})]
```

```
#consequentes em ambas as listas de regras
consequents_list = [con for con in rules_1M.consequents.unique() if con in rules_10
0k.consequents.unique()]
print("Número de Consequentes nas regras dos dois datasets:", len(consequents_list
))
consequents_list
```

Número de Consequentes nas regras dos dois datasets: 2 [frozenset({'Back to the Future (1985)'}), frozenset({'Raiders of the Lost Ark (1981)'})]

```
rules_list_100k = [(a,b) for a,b in zip(rules_100k.antecedents, rules_100k.conseque
nts)]
rules_list_1M = [(a,b) for a,b in zip(rules_1M.antecedents, rules_1M.consequents)]
print("Numero de regras idêntica:", len([rule for rule in rules_list_1M if rule in
rules_list_100k]))
```

Numero de regras idêntica: 0