

1. SPD geometry

1-1 Covariance matrix

Covariance matrix

Covarianza entre las características i, j de la imagen I será:

$$C_{i,j}(I) = \frac{1}{M-1} \sum_{\ell=1}^{M} (F_{\ell}^{(i)} - m_i) (F_{\ell}^{(j)} - m_j)$$

Y la matriz de covarianza que describe la imagen I se define como:

$$C_I = [C_{ij}]_{i=1,j=1}^{N,N}$$

Covariance matrix

A matriz de covarianza \Rightarrow A es semidefinida positiva ($A \in S_+^n$)

Matriz Simétrica

Matriz cuadrada A de dimensión n es **simétrica** si $A = A^T$, es decir, $a_{ij} = a_{ji}$ para todo i, j = 1, 2, ..., n.

Matriz semidefinida positiva

Una matriz cuadrada A de dimensión n es **semidefinida positiva** si

•Para todo $v \in \mathbb{R}^n$ no nulo se tiene que $v^T A v \ge 0$.

Diagonalización y Propiedades

A es Matriz diagonalizable \Leftrightarrow Se puede descomponer

$$A = Z D Z^{-1}$$

donde $D = diag(\lambda_i)$ es una matriz diagonal con los **autovalores de** A, y las **columnas de** Z son los respectivos **autovectores**.

$$A$$
 es simétrica $\Leftrightarrow A = \mathbf{Z} \mathbf{D} \mathbf{Z}^{\mathsf{T}}$

$$A \in S_+^n o \forall \ autovalor \ \lambda_i, \lambda_i \geq 0$$

 $A \in S_{++}^n o \forall \ autovalor \ \lambda_i, \lambda_i > 0$

Regularización

Si v, λ son el autovector y el autovalor respectivamente de una matriz A entonces $v, \lambda + \alpha$ son el autovector y el autovalor de la matriz $A + diag(\alpha)$

Demostración. Se tiene por hipótesis que $Av = \lambda v$, entonces

$$(A + diag(\alpha))v = (A + \alpha I)v$$
$$= Av + \alpha v$$
$$= \lambda v + \alpha v$$
$$= (\lambda + \alpha)v,$$

Basta con sumar una matriz diagonal

Recomendación: $\alpha \approx 1 \times 10^{-9}$

[Sección 5.2 TesisJO]

Y que es S_{++}^n ?

[Sección 2 TesisJO]

Espacio topológico:

Es una pareja (X,T), conjunto X y una colección de subconjuntos de X

- $\emptyset \in T$, $X \subset T$.
- Intersección de numero finito de conjuntos en T está en T.
- Unión arbitraria de conjuntos en T está en T.

Ejs:

- Todo espacio métrico. (Euclideano con dist. Ind. Norma)
- Topología discreta.
- Espacio matrices cuadradas es topologia? Cual distancia?

Para que sirve la topología? ir

For $A, B \in \mathbb{R}^{n \times n}$, a straightforward and commonly used distance between A and B is the Euclidean distance, which is also called the Frobenius distance, defined by

$$d_E(A, B) = ||A - B||_F. (2.1)$$

Here $|| \cdot ||_F$ denotes the Frobenius norm, which is defined by

$$||A||_F = \sqrt{\operatorname{tr}(A^T A)} = \sqrt{\sum_{i,j=1}^n a_{ij}^2}, \quad A = (a_{ij})_{i,j=1}^n.$$
 (2.2)

The Frobenius norm is associated with the Frobenius inner product

$$\langle A, B \rangle_F = \operatorname{tr}(A^T B) = \sum_{i,j=1}^n a_{ij} b_{ij}, \quad A = (a_{ij})_{i,j=1}^n, B = (b_{ij})_{i,j=1}^n.$$
 (2.3)

Espacio localmente euclidiano de dimensión n

Espacio Topológico \mathcal{M} tal que para cada $p \in \mathcal{M}$ existe un abierto $U \subseteq \mathcal{M}$ con $p \in U$ y un homeomorfismo $\phi: U \subseteq \mathcal{M} \to \overline{U} \subseteq \mathbb{R}^n$

Variedad topológica de dimensión n

Es un espacio topológico que es localmente euclidiano de dimensión n, Hausdorff y 2-numerable.

Carta

Dado un espacio topológico \mathcal{M} , una carta es una pareja (U, ϕ) donde U es un abierto y $\phi: U \to \overline{U} \subseteq \mathbb{R}^n$ es un homeomorfismo.

Función de transición

Es la composición $\Phi := \phi \circ \varphi^{-1}$ donde (U, ϕ) y (V, φ) son cartas con $U \cap V \neq \emptyset$.

Dos cartas son diferencialmente compatibles si Φ es un difeomorfismo.

Atas

Es la colección de cartas $\left\{(U_i,\phi_i)\right\}_{i\in I}$ tales que $\mathcal{M}=\cup_{i\in I}U_i$.

Es un **atlas diferenciable** si sus funciones de transición son diferencialmente compatibles.

Estructura diferenciable

Dada una variedad topológica de dimensión *n* una estructura diferenciable es un atlas diferenciable maximal.

Variedad diferenciable

Es la pareja (\mathcal{M}, A) donde \mathcal{M} es una variedad topológica de dimensión n y A es una estructura diferenciable de \mathcal{M} .

Vector tangente

Una **curva diferenciable** es una función $\gamma:(\epsilon,-\epsilon)\to\mathcal{M}$.

Un vector tangente es el vector $\gamma'(0)$ tal que $\gamma(0) = P$.

Plano tangente en P

Conjunto de los vectores tangentes en P.

Variedad de las matrices SPD

Teorema

- S_{++}^n es una variedad diferenciable.
- $T_P S_{++}^n = S^n$
- S_{++}^n es un cono convexo.

Variedad de Riemann

Métrica Riemanniana

Una **métrica Riemanniana** es una familia de productos internos $\left\{\left\langle \right., \left.\right\rangle_{P}\right\}_{P \in S^{n}_{++}}$ sobre los respectivos planos tangentes $T_{P}S^{n}_{++}$.

Distancia Riemanniana

Una **distancia Riemanniana** entre dos puntos $A,B\in\mathcal{M}$ inducida por una métrica Riemanniana $\langle\;,\;\rangle_P$ se define como

$$\begin{split} d_r(A,B) &= \inf \big\{ L(\gamma) \, | \, \gamma : [a,b] \to \mathcal{M}, \ \gamma(a) = A, \gamma(b) = B \big\}, \\ \operatorname{donde} L(\gamma) &= \int_a^b | \, | \, \dot{\gamma}_V(t) \, | \, |_{\gamma_V(t)} dt. \end{split}$$

Variedad de Riemann

Una variedad de Riemann es una variedad diferenciable equipada de una métrica Riemanniana.

Teorema

Con esta distancia se tiene que $\left(\mathcal{M},d_r\right)$ es un espacio métrico.

Geodésica

Geodésica

Curva mas corta entre dos puntos, cumple que

$$\frac{d}{dt} ||\dot{\gamma}(t)||_{\gamma(t)} = 0.$$

Geodésica en dirección de un vector

Dado $V \in T_P \mathcal{M}$, existe una **única geodésica** $\gamma_V(t)$ en dirección de V. Sea

$$V_P = \left\{ V \in T_P \mathcal{M} : \mathop{\gamma_V}_{\mathclap{\vdash\!\vdash\!\vdash}} \text{ bien definida [0,1]}
ight\}$$

Geodésica

Función exponencial

Función exponencial

Dado $V \in T_P \mathcal{M}$, se define la exponencial $\exp_P: V_P \to \mathcal{M}$ como $\exp_P(V) = \gamma_V(1)$, donde

Variedad geodésicamente completa

- ullet exp $_P$ está bien definida en $T_P\mathcal{M}$
- Las geodésicas se extienden infinitamente y su longitud coincide con d_r .

Definiciones preliminares.

Distancia de una geodésica

$$L(\gamma_V) = \int_0^1 ||\dot{\gamma}_V(t)||_{\gamma_V(t)} dt$$
$$= ||V||_P$$

Teorema (Hopf-Rinow)

Observación: En toda variedad que cumpla lo anterior, todo par de puntos se puede unir por una geodésica de longitud $|\ |\ V|\ |_P$

Simplemente conexo

Si el conjunto es conexo por caminos y todo lazo es reducible a un punto.

Teorema (Cartan-Hadamard)

Sea \mathcal{M} geodésicamente completa con curvatura seccional **no-positiva.** Si \mathcal{M} es simplemente conexa, exp_P es un <u>difeomorfismo</u> global.

Consecuencia: Para toda variedad que cumpla lo anterior, cualesquiera $P,Q\in\mathcal{M}$ se pueden unir por una **única** geodésica.

Función logaritmo

El difeomorfismo global permite definir esta función como la inversa de la función exponencial.

$$\log_P(Q) := (\exp_P(V))^{-1} = V$$

Geometría de las matrices SPD.

Métrica Riemanniana afín-invariante

La **métrica Riemanniana afín-invariante** sobre $T_PS_{++}^n$ se define como

$$\langle A,B\rangle_P = \langle P^{-\frac{1}{2}}AP^{-\frac{1}{2}}, P^{-\frac{1}{2}}BP^{-\frac{1}{2}}\rangle_F$$

De forma que para $A \in S_{++}^n$

$$||A||_{P} = ||P^{-\frac{1}{2}}AP^{-\frac{1}{2}}||_{F}$$

Teorema

 S_{++}^n es:

- Una variedad de Riemann.
- · Una variedad de Cartan-Hadamard.

Consecuencia: Todo par $P,Q\in\mathcal{M}$ se puede unir por una única geodésica de longitud

$$||V||_{p} = ||\log_{p}(Q)||_{p}.$$