2.2 S-metaheuristics Simulated Annealing (SA)

- Annealing process in metallurgy
 - Heating and then slowly cooling a substance to obtain a strong crystalline structure

Casting: pouring molten gold into an ingot

- Structure strength depends on metal cooling rate
- Imperfections (metastable states) are obtained
 - Initial temperature is not sufficiently high
 - Fast cooling
- Strong crystals (equilibrium state) are obtained
 - Careful and slow cooling

- Simulated Annealing algorithm
 - Escape from local optima (how?)

- Simulated Annealing algorithm
 - Escape from local optima → Enable under some conditions the degradation of a solution

- Simulated Annealing algorithm
 - Escape from local optima → Enable under some conditions the degradation of a solution

- Simulated Annealing algorithm
 - Escape from local optima → Enable under some conditions the degradation of a solution

Minimization problem

Algorithm

Template of simulated annealing algorithm.

Save **S** as **best_solution**

Input: Cooling schedule.

 $s = s_0$; /* Generation of the initial solution */ $T = T_{max}$; /* Starting temperature */

Repeat

Compare **S** with the **best_solution** and update if necessary

Repeat /* At a fixed temperature */

Generate a random neighbor s';

$$\Delta E = f(s) - f(s') ;$$

If $\Delta E \ge 0$ Then s = s' /* Accept the neighbor solution */

Else Accept s' with a probability $e^{\frac{-|\Delta E|}{T}}$;

Until Equilibrium condition

/* e.g. a given number of iterations executed at each temperature T */

$$T = g(T)$$
; /* Temperature update */

Until Stopping criteria satisfied /* e.g. $T < T_{min}$ */

Output: Best solution found.

Minimization problem

Algorithm

Template of simulated annealing algorithm.

Save **S** as **best_solution**

Input: Cooling schedule.

$$s = s_0$$
; /* Generation of the initial solution */
 $T = T_{max}$; /* Starting temperature */

Repeat

Compare **S** with the **best_solution** and update if necessary

Repeat /* At a fixed temperature */

Generate a random neighbor s';

$$\Delta E = f(s) - f(s') ;$$

If $\Delta E \ge 0$ Then s = s' /* Accept the neighbor solution */

Else Accept s' with a probability $e^{\frac{-|\Delta E|}{T}}$;

Until Equilibrium condition

 $/^*$ e.g. a given number of iterations executed at each temperature $T^*/$

$$T = g(T)$$
; /* Temperature update */

Until Stopping criteria satisfied /* e.g. $T < T_{min}$ */

Output: Best solution found.

- Simulated Annealing algorithm
 - Stochastic algorithm that enables under some conditions the degradation of a solution

FIGURE Simulated annealing escaping from local optima. The higher the temperature, the more significant the probability of accepting a worst move. At a given temperature, the lower the increase of the objective function, the more significant the probability of accepting the move. A better move is always accepted.

- Simulated Annealing algorithm
 - Stochastic algorithm that enables under some conditions the degradation of a solution

FIGURE Simulated annealing escaping from local optima. The higher the temperature, the more significant the probability of accepting a worst move. At a given temperature, the lower the increase of the objective function, the more significant the probability of accepting the move. A better move is always accepted.

- SA parameters
 - Initial temperature
 - Can be set to high value but time consuming
 - Other strategies (page 130 from pdf doc)
 - Cooling schedule (page 132 from pdf doc) / temperature update, $T_i > 0$, $\forall i$ and $\lim_{i \to \infty} T_i = 0$
 - Linear (with constant) $T_i = T_0 i imes eta$
 - Geometric (most popular) $T = \alpha T$ where $\alpha \in [0.5, 0.99]$
 - Logarithmic (convergence proof to Global Optimum) $T_i = rac{T_0}{\log(i)}$
 - Very slow decrease (one iteration at each temperature) $T_{i+1} = \frac{T_i}{1 + \beta T_i}$ with $\beta = T_0 T_F/(L-1)T_0T_F$
 - Acceptance probability function (move's acceptance)
 - Neighbor solution always accepted/selected if it improves the current solution
 - Otherwis, it is selected with a <u>probability</u> P depending on the current temperature and amount of energy degradation.

Boltzmann distribution
$$P(\Delta E, T) = \mathrm{e}^{-\frac{|f(s) - f(s')|}{T}}$$

S-metaheuristics - Simulated Annealing Algorithm (SA) (page 128 from pdf doc)

Example Illustration of the SA algorithm. Let us maximize the continuous function $f(x) = x^3 - 60x^2 + 900x + 100$. A solution x is represented as a string of 5 bits. The neighborhood consists in flipping randomly a bit. The global maximum of this function is 01010(x = 10, f(x) = 4100). The first scenario starts from the solution 10011(x = 19, f(x) = 2399) with an initial temperature T_0 equal to 500 (Table 2.5). The second scenario starts from the same solution 10011 with an initial temperature T_0 equal to 100 (Table 2.6). The initial temperature is not high enough and the algorithm gets stuck by local optima.

TABLE 2.5 First Scenario T = 500 and Initial Solution (10011)

T	S'	Solution	f	Δf	Move?	New Neighbor Solution
500	3	00011	2287	112	Yes	00011
450	7	00111	3803	<0	Yes	00111
405	6	00110	3556	247	Yes	00110
364.5	14	01110	3684	<0	Yes	01110
328	12	01100	3998	<0	Yes	01100
295.2	8	01000	3972	16	Yes	01000
265.7	10	01010	4100	<0	Yes	01010
239.1	11	01011	4071	29	Yes	01011
215.2	27	11011	343	3728	No	01011

S-metaheuristics - Simulated Annealing Algorithm (SA) (page 128 from pdf doc)

Example Illustration of the SA algorithm. Let us maximize the continuous function $f(x) = x^3 - 60x^2 + 900x + 100$. A solution x is represented as a string of 5 bits. The neighborhood consists in flipping randomly a bit. The global maximum of this function is 01010(x = 10, f(x) = 4100). The first scenario starts from the solution 10011(x = 19, f(x) = 2399) with an initial temperature T_0 equal to 500 (Table 2.5). The second scenario starts from the same solution 10011 with an initial temperature T_0 equal to 100 (Table 2.6). The initial temperature is not high enough and the algorithm gets stuck by local optima.

TABLE 2.6 Second Scenario: T = 100 and Initial Solution (10011). When Temperature is not High Enough, Algorithm Gets Stuck

T	S'	Solution	f	Δf	Move?	New Neighbor Solution
100	3	00011	2287	112	No	10011
90	23	10111	1227	1172	No	10011
81	18	10010	2692	< 0	Yes	10010
72.9	26	11010	516	2176	No	10010
65.6	16	10000	3236	< 0	Yes	10000
59	20	10100	2100	1136	Yes	10000

• Lab session

Implement your second S-metaheuristic algorithm

- The Simulated Annealing Algorithm (SA) with the parametrization strategies (cooling schedule) and apply it for
 - The TSP problem Data available on Teams
 - The example of maximization function (slide 36, x in [0,31]
 - Show for each strategy the associated trajectory curve