Chương 6: Các giao thức truy nhập đường truyền

- ✓ Khái niệm về đa truy nhập
- ✓ Phân loại giao thức
- ✓ Các tiêu chí đánh giá giao thức đa truy nhập
- ✓ Các giao thức phân kênh cố định
- ✓ Các giao thức truy nhập ngẫu nhiên
- ✓ Các giao thức gán kênh theo yêu cầu

6.1 Khái niệm về đa truy nhập

• Khái niệm.

Đa truy nhập là tập hợp các quy tắc dùng để điều khiển truy nhập vào môi trường truyền dẫn dùng chung giữa các người dùng khác nhau.

- Phương pháp xây dựng.
- + Trên cơ sở định nghĩa về xung đột rồi thiết kế các giao thức sao cho tránh hoặc triệt tiêu được xung đột.
- + Dựa trên cơ sở xét tạp nhiễu rồi tìm cách tách sóng trên nền tạo âm.

6.2 Phân loại giao thức

Các giao thức đa truy nhập		
Phân kênh cố định	Ngẫu nhiên	Gán kênh theo yêu cầu
FDMA	ALOHA	Token Passing (Chuyển thẻ bài)
TDMA	CSMA	Polling (Thăm dò)
CDMA	CSMA/CD	Reservation (Giữ chỗ trước)
SDMA	CSMA/CA	Các giao thức đa truy nhập
•••	•••	•••

6.3 Các tiêu chí đánh giá giao thức đa truy nhập

6.3.1 Thông lượng

$$\rho = \frac{\text{Tổng số gói tin phát thành công}}{\text{Tổng số gói tin phát đi}} = \frac{\text{Tổng số gói tin phát thành công trong thời gian quan sát}}{\text{Tổng số gói tin phát liên tục trong khoảng thời gian quan sát}}$$

6.3.2 Độ trễ trung bình của gói tin (ΔD)

D = thời gian chờ + thời gian phát 1 gói tin+trễ truyền dẫn từ đầu cuối đến đầu cuối.

$$\Delta D = rac{\displaystyle\sum_{\mathrm{i=1}}^{\mathrm{N}} \Delta D_{i}}{N}$$

Trong đó:

 ΔD_i là độ trễ của gói tin thứ i.

N là số gói tin phát đi trong khoảng thời gian quan sát.

6.3 Các tiêu chí đánh giá giao thức đa truy nhập

6.3.3 Độ tin cậy.

$${\it D}$$
ộ tin cậy = $\frac{{\it Tổng số thời gian đảm bảo tiêu chí \rho, \Delta D}}{{\it Tổng thời gian quan sát}}$

6.3.4 Các tiêu chí phụ khác.

- Các mức độ ưu tiên.
- Đối xứng công bằng.
- Hiệu quả đầu tư.

6.4 Các giao thức phân kênh cố định

✓ Ý tưởng chung của phương pháp này là: đường truyền sẽ được chia thành nhiều kênh truyền, mỗi kênh truyền sẽ được cấp phát riêng cho một trạm.

✓ Các phương pháp chia kênh chính:

da truy nhap fan chia theo tan so

• FDMA (Frequency Division Muliple Access)

da truy nhap fan chia theo thoi gian

- TDMA (Time Division Multiple Access)
- CDMA (Code Division Multiple Access)

•

6.4.1 Giao thức FDMA

- Giả sử tốc độ dữ liệu qua hệ thống là R (bps).
- Mỗi trạm phát với một tốc độ là R/M (bps).

6.4.1 Giao thức FDMA

Tốc độ dữ liệu:

- Xét hệ thống FDMA trong 1 khung tin T(s), băng tần W:
- Để truyền gói tin có độ dài b (bít) mỗi trạm truyền trong T (s).
- Tốc độ dữ liệu yêu cầu cho mỗi trạm: $R_i = b/T \ (bps)$
- Do vậy, tốc độ bít yêu cầu hệ thống là: R = M(b/T) (bps).

6.4.1 Giao thức FDMA

Độ trễ trung bình của gói tin.

$$D = w + t$$
.

Trong đó:

w là thời gian chờ để phát 1 gói tin.

t là thời gian truyền hết 1 gói tin.

Do không có thời gian chờ $\Rightarrow w = 0$

Độ trễ trung bình gói tin trong FDMA: $D_{FDMA} = t = T(s)$

6.4.2 Giao thức TDMA

Giả sử tốc độ dữ liệu qua hệ thống là R (bps).

Mỗi trạm phát với tốc độ R (bps) trong khoảng thời gian T/M (s)

6.4.2 Giao thức TDMA

Tốc độ dữ liệu:

- Xét hệ thống TDMA trong 1 khung tin T(s), băng tần W:
- Để truyền gói tin có độ dài b (bít) mỗi trạm phải truyền trong

T/M(s).

- Tốc độ dữ liệu yêu cầu cho mỗi trạm: $R_i = M.b/T \, (bps)$
- Do vậy, tốc độ bít yêu cầu hệ thống là: $R = M(b/T) \ (bps)$.

6.4.2 Giao thức TDMA

Độ trễ trung bình của gói tin. 🖰 = W++

Thời gian truyền hết 1 gói tin: t = T/M (s)

thời gian chờ phát tin: $W \neq 0$. Tính W

- Gọi P_i là xác suất (phân bố đều) gói tin tới vào khe thứ i:

$$P_i = \frac{1}{M}$$
 \Rightarrow W = $\sum_{i=1}^{M} P_i (M-i) \frac{T}{M} = \frac{T}{M} \frac{(M-1)}{2}$

Vậy

$$\left(D_{TDMA} = \frac{T}{M} \frac{(M-1)}{2} + \frac{T}{M} = \frac{T}{M} \left(\frac{M+1}{2}\right)(s)\right)$$

6.4 Các giao thức phân kênh cố định.

· So sánh về tốc độ dữ liệu.

$$R_{FDMA} = R_{TDMA} = M.\frac{b}{T}(bps)$$

· So sánh về độ trễ trung bình của gói tin.

$$D_{TDMA} = \frac{T}{M} \frac{(M+1)}{2} = T \left(\frac{1}{2} + \frac{1}{2M} \right) < T = D_{FDMA}$$

6.5 Các giao thức truy nhập ngẫu nhiên

6.5.1 Giao thức ALOHA

6.5.2 Họ giao thức CSMA

6.5.3 Giao thức CSMA/CD

6.5.1 Giao thức ALOHA

✓ Giới thiệu:

Dùng 1 tần số cho phát, 1 tần số cho thu. Trước khi truyền tin các trạm không kiểm tra kênh truyền, do đó rất dễ xảy ra xung đột.

- ✓ Phân loại:
- Pure Aloha.
- Slotted Aloha.

- Tính toán thông lượng.
 - Gọi S là thông lượng của hệ thống Pure Aloha.
 - Gọi G là lưu lượng của hệ thống Pure Aloha.
 - Gọi γ là xác suất truyền thành công 1 gói tin.

(G được tính bằng số gói tin được truyền đi trên 1s)

$$V_{PALOHA} = G. \gamma$$

- Giả sử các gói tin có phân bố poát xông (Poisson).
- Xác suất có k gói tin đến trong khoảng thời gian t. $P = \frac{\lambda . t^{\kappa}}{k!} . e^{-\lambda t}$
- Với λ là tốc độ dữ liệu tới. $\lambda = \frac{G}{T}$ (packet/s)
- Xét gói tin tham chiếu P_n, được truyền [t, t+T]
- Ta có: $\gamma = \frac{(\lambda 2T)^0}{0!} e^{-\lambda 2T} = e^{-2G}$ với $\lambda = \frac{G}{T}$ Vậy: $S_{P_ALOHA} = G.e^{-2G}$

$$(S_{P-ALOHA})_{\text{max}} = \frac{1}{2e} \approx 18,5\% \text{ v\'oi } G = \frac{1}{2}$$

* Tính toán độ trễ trung bình của gói tin trong giao

thức Pure Aloha

(Tự tính tương tự như trong giao thức Slotted Aloha)

6.5.1.2 Giao thức Slotted_Aloha

6.5.1.2 Giao thức Slotted_Aloha

- Phân tích về thông lượng.
- Gọi S_{S ALOHA} là thông lượng hệ thống Slotted_Aloha.
- Gọi G là lưu lượng của hệ thống Slotted_Aloha.
- Gọi γ là xác suất truyền thành công 1 gói tin.

$$S_{S \text{ ALOHA}} = G.\gamma$$

6.5.1.2 Giao thức Slotted Aloha

- Giả sử lưu lượng của kênh là 1 quá trình ngẫu nhiên theo phân phối Poisson
- Xét gói tin tham chiếu P_n.

- Điều kiện để P_n truyền tin thành công thì [t-T, t] = T không có trạm nào có nhu cầu truyền tin. Ta có: $\gamma = \frac{\lambda T^{-0}}{\Omega t} e^{-\lambda T} = e^{-G} \Rightarrow \gamma = \frac{\lambda T^{-0}}{\Omega t} e^{-\lambda T} = e^{-G}$
- Vậy: $S_{S_ALOHA} = Ge^{-G} \Rightarrow (S_{S_ALOHA})_{max} = \frac{1}{e} \approx 37\% \ với \ G = 1$

6.5.1.2 Giao thức Slotted_Aloha

Độ trễ trung bình của 1 gói tin trong giao thức Slottted_Aloha.

- Gọi D_{S ALOHA} là độ trễ trung bình của 1 gói tin.
- T là thời gian phát 1 gói tin.
- τ là độ trễ truyền dẫn từ đầu cuối đến đầu cuối.
 - \Rightarrow Sau $2\tau(s)$ trạm sẽ biết truyền tin thành công hay không.
- $2\tau(s) \Leftrightarrow R$ khe thời gian $\Rightarrow R = \frac{2\tau}{T}$

6.5.1.2 Giao thức Slotted_Aloha

$$\begin{split} T_u &= T + 2\tau + T_{B.O}\left(s\right) = 1 + R + B.O \text{ (khe thời gian)} \\ Vậy: D_{S_ALOHA} &= \frac{T}{2} + T_u. \text{ Số lần xung đột} + 1 lần truyền thành công} \\ Hay: D_{S_ALOHA} &= \frac{T}{2} + T_u. E + T + 2\tau \text{ (s). (E là số lần xung đột)} \\ &= \frac{1}{2} + T_u. E + 1 + R \text{ (Khe)} \end{split}$$

6.5.1.2 Giao thức Slotted Aloha

• Tính B.O xác định số khe trung bình mà trạm phải chờ cho tới khi truyền lại. $\overline{B.O} = \sum_{i=0}^{k-1} iP(i)$

- Với P(i) là xác suất truyền ở khe thứ i. $P(i) = \frac{1}{k}$
- Vậy: $\overline{B.O} = \sum_{i=0}^{k-1} i \frac{1}{k} = \frac{1}{k} (1+2+...+k-2+k-1)$ $= \frac{1}{k} \frac{(k-1)k}{2} = \frac{k-1}{2}$

• Thay B.O Vào $T_u = 1 + R + \frac{k-1}{2} = R + \frac{k+1}{2}$ khe

6.5.1.2 Giao thức Slotted Aloha

Tính số lần truyền lại E.

Giả sử gói tin phải truyền lại cho đến lần thừ n
 mới thành công. $1 \le n \le \infty$

Gọi
$$P_n$$
 là xác suất truyền thành công lần thứ n. $P_n = 1 - e^{-G^{-n-1}} e^{-G}$

Số lần truyền trung bình 1 gói tin:
$$\overline{n} = \sum_{n=1}^{\infty} n P_n = \sum_{n=1}^{\infty} n \ 1 - e^{-G} e^{-G}$$

$$=e^{-G}\sum_{n=1}^{\infty}n \ 1-e^{-G^{n-1}}=e^{-G}\frac{1}{\left[1-1-e^{-G^{-G}}\right]^{2}}=e^{G}$$

Vậy: $E = n - 1 = e^G - 1$

Độ trễ trung bình của 1 gói tin trong hệ thống Slotted_Aloha là:

$$D_{S_{-}ALOHA} = \frac{1}{2} + T_u$$
. E + 1+R = $\frac{1}{2} + \left(R + \frac{k+1}{2}\right) \left(e^G - 1\right) + 1 + R$ (Khe)

* Họ giao thức CSMA

* Giao thức CSMA/CD

Chú ý: (*) Tự đọc ở nhà.