Tarea 04

David Gómez

VIGILADA MINEDUCACIÓN

Índice

1.	Punto 1	2
		2
	1.2. b)	3
2.	Punto 2	4
3.	Punto 3	5
4.	Punto 4	5
	Punto 5	6
	Punto 6	7
	Punto 7	7
	Punto 8	8
9.	Punto 9	9

Página 1 Taller 02

1. Punto 1

1.1. a)

Э.	$((\phi \lor (\psi \equiv \tau)) \equiv ((\phi \lor \psi) \equiv (\phi \lor \psi)))$	Enunciado
1.	$\mathbf{v}[(\phi \lor (\psi \equiv \tau))] = \mathbf{v}[((\phi \lor \psi) \equiv (\phi \lor \psi))]$	MT 2.23 (\equiv) $(p0)$
2.	$\mathbf{v}[(\phi \lor (\psi \equiv au))] = \mathtt{T}$	Suposición 1
3.	$\mathbf{v}[\phi] = \mathtt{T} \mathrm{o} \mathbf{v}[(\psi \equiv au)] = \mathtt{T}$	
1.	$\mathbf{v}[\phi] = \mathtt{T}$	Suposición 1.1
5.	$\mathbf{v}[((\phi \lor \psi) \equiv (\phi \lor \psi))] = \mathtt{T}$	MT 2.23 (\vee, \equiv) $(p2, p4)$
5.	$\mathbf{v}[\phi] = \mathbf{F} \ \mathbf{v} \ \mathbf{v}[(\psi \equiv \tau)] = \mathbf{T}$	Suposición 1.2
7.	$ig \mathbf{v}[\psi] = \mathtt{T}$	Suposición 1.2.1
3.	$ig \mathbf{v}[au] = \mathtt{T}$	MT 2.23 (\equiv) (p7)
9.	$\mathbf{v}[((\phi \lor \psi) \equiv (\phi \lor \psi))] = T$	MT 2.23 (\equiv , \vee) (p8, p7)
.0.	$\mathbf{v}[\psi] = \mathtt{F}$	Suposición 1.2.2
1.	$\mathbf{v}[au] = \mathtt{F}$	MT 2.23 (\equiv) (p10)
2.	$\mathbf{v}[((\phi \lor \psi) \equiv (\phi \lor \psi))] = \mathbf{F}$	MT 2.23 (\equiv , \vee) (p10, p11, p6)
	$\mathbf{v}[(\phi \lor (\psi \equiv \tau))] = \mathbf{F}$	Suposición 2
4.	$\mathbf{v}[\phi] = \mathbf{F} \ \mathbf{v} \ \mathbf{v}[(\psi \equiv \tau)] = \mathbf{F}$	MT 2.23 (V) (p13)
.5.	$\mathbf{v}[\psi] = \mathtt{T}$	Suposición 2.1
6.	$\mathbf{v}[au] = \mathbf{F}$	MT 2.23 (\equiv) (p15, 14)
.7.	$\mathbf{v}[((\phi \lor \psi) \equiv (\phi \lor \psi))] = \mathbf{F}$	MT 2.23 (\equiv , \vee) (p16, p15, p14)
8.	$\mathbf{v}[\psi] = \mathtt{F}$	Suposición 2.2
.9.	$\mathbf{v}[\tau] = \mathtt{T}$	MT 2.23 (\equiv) (p18, 14)
20.	$\mathbf{v}[((\phi \lor \psi) \equiv (\phi \lor \psi))] = \mathbf{F}$	MT 2.23 (\equiv , \vee) (p19, p18, p14)

Página 2 Taller 02

1.2. b)

b)

0. $((\phi \to (\psi \to \tau)) \equiv ((\phi \to \psi) \to (\phi \to \tau)))$ Enunciado

1. $\mathbf{v}[(\phi \to (\psi \to \tau))] = \mathbf{v}[((\phi \to \psi) \to (\phi \to \tau))]$ MT 2.23 $(\equiv)(p0)$

2. Suposición 1

3. Suposición 2

4. $((\phi \to (\psi \to \tau)) \equiv ((\phi \to \psi) \to (\phi \to \tau)))$

Suposición 1

0. $\mathbf{v}[(\phi \to (\psi \to \tau))] = \mathbf{F}$

1. $\mathbf{v}[\phi] = \mathbf{T} \ \mathbf{v}[(\psi \to \tau)] = \mathbf{F}$ MT 2.23 $(\to)(p0)$

2. $\mathbf{v}[\psi] = \mathsf{T} \ \mathsf{y} \ \mathbf{v}[\tau] = \mathsf{F}$ MT 2.23 $(\rightarrow)(\mathsf{p}1)$

3. $\mathbf{v}[(\phi \to \psi)] = \mathbf{T}$ MT 2.23 (\to)(p2, p1)

4. $\mathbf{v}[(\phi \to \tau)] = \mathbf{F}$ MT 2.23 (\to)(p2, p1)

5. $\mathbf{v}[((\phi \to \psi) \to (\phi \to \tau))] = \mathbf{F}$ MT 2.23 $(\to)(\mathrm{p3}, \mathrm{p4})$

6. $\mathbf{v}[(\phi \to (\psi \to \tau))] = \mathbf{v}[((\phi \to \psi) \to (\phi \to \tau))]$ (p5, p0)

Suposición 2

0. $\mathbf{v}[(\phi \to (\psi \to \tau))] = \mathbf{T}$

1. $\mathbf{v}[\phi] = \mathbf{F} \circ \mathbf{v}[(\psi \to \tau)] = \mathbf{T} \quad \text{MT 2.23 } (\to)(\text{p0})$

2. Suposición 2.1

3. Suposición 2.2

suposición 2.1

 $0. \quad \mathbf{v}[\phi] = \mathbf{F}$

1. $\mathbf{v}[(\phi \to \psi)] = \mathbf{T}$ MT 2.23 $(\to)(p0)$

2. $\mathbf{v}[(\phi \to \tau)] = \mathbf{T}$ MT 2.23 $(\to)(p0)$

3. $\mathbf{v}[((\phi \to \psi) \to (\phi \to \tau))] = \mathbf{T}$ MT 2.23 $(\to)(\mathbf{p}2, \mathbf{p}1)$

4. $\mathbf{v}[(\phi \to (\psi \to \tau))] = \mathbf{v}[((\phi \to \psi) \to (\phi \to \tau))]$ (p0 Suposición 2, p3)

Suposición 2.2

0. $\mathbf{v}[\phi] = \mathbf{T} \ \mathbf{v}[(\psi \to \tau)] = \mathbf{T}$

1. $\mathbf{v}[\psi] = \mathbf{F} \text{ o } \mathbf{v}[\tau] = \mathbf{T}$ MT 2.23 $(\rightarrow)(\text{p0})$

2. Suposición 2.2.1

3. Suposición 2.2.2

Página 3 Taller 02

Suposición 2.2.1

0.
$$\mathbf{v}[\psi] = \mathbf{F}$$

1.
$$\mathbf{v}[(\phi \to \psi)] = \mathbf{F}$$

MT 2.23 (\rightarrow) (p0 Suposición 2.2, p0)

2.
$$\mathbf{v}[((\phi \to \psi) \to (\phi \to \tau))] = \mathbf{T}$$

MT 2.23 $(\rightarrow)(p1)$

3.
$$\mathbf{v}[(\phi \to (\psi \to \tau))] = \mathbf{v}[((\phi \to \psi) \to (\phi \to \tau))]$$

(p0 Suposición 2, p2)

Suposición 2.2.2

$$0. \quad \mathbf{v}[\psi] = \mathsf{T} \ \mathbf{v}[\tau] = \mathsf{T}$$

1.
$$\mathbf{v}[(\phi \to \psi)] = \mathbf{T}$$

MT 2.23 (\rightarrow) (p0 Suposición 2.2, p0)

2.
$$\mathbf{v}[(\phi \to \tau)] = \mathbf{T}$$

MT 2.23 (\rightarrow) (p0 Suposición 2.2, p0)

3.
$$\mathbf{v}[((\phi \to \psi) \to (\phi \to \tau))] = \mathbf{T}$$

MT 2.23 $(\rightarrow)(p2, p1)$

4.
$$\mathbf{v}[(\phi \to (\psi \to \tau))] = \mathbf{v}[((\phi \to \psi) \to (\phi \to \tau))]$$

(p0 Suposición 2, p3)

2. Punto 2

$((\neg(p \lor q)) \to p) = \phi$

0. ϕ es satisfacible pero no tautología

Enunciado

- 1. demostración 1
- 2. demostración 2
- 3. ϕ es satisfacible pero no tautología

demostración 1

0. $(\exists \mathbf{v} \,|\, \mathbf{v}[\phi] = \mathbf{T})$

Enunciado

- 1. $\mathbf{v}[((\neg(p \lor q)) \to p)] = \mathbf{T}$
- Def(p0)
- 2. $\mathbf{v}[(\neg(p \lor q))] = \mathbf{F} \circ \mathbf{v}[p] = \mathbf{T}$
- MT 2.23 $(\rightarrow)(p1)$
- 3. $\mathbf{v}[(p \lor q)] = \mathbf{T} \circ \mathbf{v}[p] = \mathbf{T}$
- ()(1)
- 4. $\mathbf{v}[p] = \mathbf{T} \circ \mathbf{v}[p] = \mathbf{T}$ $\mathbf{v}[p] = \mathbf{T} \circ \mathbf{v}[p] = \mathbf{T}$
- MT 2.23 $(\neg)(p2)$
- MT 2.23 $(\vee)(p3)$
- $5. \quad \mathbf{v} = \{p \mapsto \mathtt{T}, q \mapsto \mathtt{T}\}$
- Suposición (p4)

demostración 2

0. $(\exists \mathbf{v} \mid \mathbf{v}[\phi] = \mathbf{F})$

Enunciado

- 1. $\mathbf{v}[((\neg(p \lor q)) \to p)] = \mathbf{F}$
- Def. (p0)
- 2. $\mathbf{v}[(\neg(p \lor q))] = \mathbf{T} \ \mathbf{v}[p] = \mathbf{F}$
- MT 2.23 $(\rightarrow)(p1)$
- 3. $\mathbf{v}[(p \lor q)] = \mathbf{F} \ \mathbf{v}[p] = \mathbf{F}$
- MT $2.23 (\neg)(p2)$
- 4. $\mathbf{v}[p] = \mathbf{F} \ \mathbf{v}[q] = \mathbf{F} \ \mathbf{v}[p] = \mathbf{F}$
- MT 2.23 (\vee)(p3)
- 5. $\mathbf{v} = \{ p \mapsto \mathtt{F}, q \mapsto \mathtt{F} \}$

Página 4 Taller 02

3. Punto 3

• ϕ tiene a \vee como único conector lógico.

primer inciso	0.	$\phi = (\psi \vee \tau)$	Enunciado
		$\models \phi$	Enunciado
	2.	$(\exists \mathbf{v} \mathbf{v}[\phi] = \mathtt{F})$	Suposición
	3.	$\mathbf{v}[(\psi \vee \tau)] = \mathtt{F}$	Def.(p2)
	4.	$\mathbf{v}[\psi] = \mathtt{F} \ \mathrm{o} \ \mathbf{v}[\tau] = \mathtt{F}$	MT 2.23 $(\vee)(p3)$
	5.	$\not\models \phi$	(p4, p2)

 \bullet ϕ tiene a \land como único conector lógico.

primer inciso	0.	$\phi = (\psi \wedge \tau)$	Enunciado	
	1.	$\vDash \phi$	Enunciado	
	2.	$(\exists \mathbf{v} \mathbf{v}[\phi] = \mathtt{F})$	Suposición	
	3.	$\mathbf{v}[(\psi \wedge \tau)] = \mathtt{F}$	Def.(p2)	
	4.	$\mathbf{v}[\psi] = \mathtt{F} \ \mathtt{y} \ \mathbf{v}[\tau] = \mathtt{F}$	MT $2.23 (\land)(p3)$	
	5.	$ ot = \phi$	(p4, p2)	

4. Punto 4

$$\vdash (\phi \equiv \psi) \text{ sii } (\phi \to \psi) \text{ y } (\phi \leftarrow \psi)$$

$$0. \quad \text{demostración 1}$$

$$1. \quad \text{demostración 2}$$

$$2. \quad \therefore \quad \vdash (\phi \equiv \psi) \text{ sii } (\phi \to \psi) \text{ y } (\phi \leftarrow \psi)$$

demostración 1

0. Si
$$\models (\phi \equiv \psi)$$
 sin $(\phi \rightarrow \psi)$ y $(\phi \leftarrow \psi)$

1. $\models (\phi \equiv \psi)$,entonces $\models (\phi \rightarrow \psi)$ y $\models (\phi \leftarrow \psi)$

1. $\models (\phi \equiv \psi)$ Suposición

2. $\mathbf{v}[(\phi \equiv \psi)] = \mathbf{T}$ Def.(p1)

3. $\mathbf{v}[\phi] = \mathbf{v}[\psi]$ MT 2.23 (\equiv) (p2)

4. Suposición 1

5. Suposición 2

6. \therefore Si $\models (\phi \equiv \psi)$,entonces $\models (\phi \rightarrow \psi)$ y $\models (\phi \leftarrow \psi)$

```
Suposición 1 0. \quad \mathbf{v}[\phi] = \mathbf{T}
1. \quad \mathbf{v}[\psi] = \mathbf{T} \qquad (\text{p0, p3 demostración 1})
2. \quad \mathbf{v}[(\phi \to \psi)] = \mathbf{T} \qquad \text{MTT 2.23 } (\to)(\text{p1, p0})
3. \quad \mathbf{v}[(\phi \leftarrow \psi)] = \mathbf{T} \qquad \text{MTT 2.23 } (\leftarrow)(\text{p1, p0})
```

Página 5 Taller 02

Suposición 2

0.
$$\mathbf{v}[\phi] = \mathbf{F}$$

1.
$$\mathbf{v}[\psi] = \mathbf{F}$$
 (p0, p3 demostración 1)

2.
$$\mathbf{v}[(\phi \to \psi)] = \mathbf{T}$$
 MTT 2.23 $(\to)(\mathbf{p}1, \mathbf{p}0)$

3.
$$\mathbf{v}[(\phi \leftarrow \psi)] = \mathbf{T}$$
 MTT 2.23 $(\leftarrow)(\mathbf{p}1, \mathbf{p}0)$

demostración 2

0. Si
$$\models (\phi \rightarrow \psi)$$
 y $\models (\phi \leftarrow \psi)$, entonces $\models (\phi \equiv \psi)$

1.
$$\models (\phi \rightarrow \psi) \text{ y } \models (\phi \leftarrow \psi)$$

Suposición

2.
$$\mathbf{v}[(\phi \to \psi)] = \mathbf{T} \ \mathbf{v}[(\phi \leftarrow \psi)] = \mathbf{T}$$

Def.(p1)

3.
$$(\mathbf{v}[\phi] = \mathbf{F} \circ \mathbf{v}[\psi] = \mathbf{T}) \text{ y } (\mathbf{v}[\phi] = \mathbf{T} \circ \mathbf{v}[\psi] = \mathbf{F})$$
 MT 2.23 $(\rightarrow, \leftarrow)$ (p2)

- 4. Suposición 1
- 5. Suposición 2

6. : Si
$$\models (\phi \rightarrow \psi)$$
 y $\models (\phi \leftarrow \psi)$, entonces $\models (\phi \equiv \psi)$

Suposición 1

0.
$$\mathbf{v}[\phi] = \mathbf{T}$$

1.
$$\mathbf{v}[\psi] = \mathbf{I}$$

1. $\mathbf{v}[\psi] = \mathbf{T}$ MT 2.23 (\leftarrow)(p0, p3 demostración 2)

2.
$$\mathbf{v}[\phi] = \mathbf{v}[\psi]$$

(p1, p0)

3.
$$\mathbf{v}[(\phi \equiv \psi)] = \mathbf{T}$$

MT 2.23 (\equiv)(p2)

Suposición 2

$$0. \quad \mathbf{v}[\phi] = \mathbf{F}$$

1.
$$\mathbf{v}[\psi] = \mathbf{F}$$

1. $\mathbf{v}[\psi] = \mathbf{F}$ MT 2.23 (\rightarrow)(p0, p3 demostración 2)

2.
$$\mathbf{v}[\phi] = \mathbf{v}[\psi]$$

(p1, p0)

3.
$$\mathbf{v}[(\phi \equiv \psi)] = \mathbf{T}$$

MT 2.23 (\equiv)(p2)

5. Punto 5

$\models (\phi \land \psi) \text{ sii } \models \phi \text{ y } \models \psi$

0. demostración 1

1. demostración 2

2. $\therefore \models (\phi \land \psi) \text{ sii } \models \phi \text{ y } \models \psi$

demostración 1

0. Si $\models (\phi \land \psi)$, entonces $\models \phi$ y $\models \psi$

1. $\models (\phi \land \psi)$

Suposición

2. $\mathbf{v}[(\phi \wedge \psi)]$

Def.(p1)

3. $\mathbf{v}[\phi] = T \mathbf{v} \mathbf{v}[\psi] = T$

MT 2.23 (\land)(p2)

4. $\models \phi \ y \models \psi$

Def.(p3)

5. \therefore Si $\models (\phi \land \psi)$, entonces $\models \phi \lor \psi$

Página 6 Taller 02

demostración 2

0. Si $\models \phi$ y $\models \psi$, entonces $\models (\phi \land \psi)$ 1. $\models \phi$ y $\models \psi$ Suposición

2. $\mathbf{v}[\phi] = \mathbf{T}$ y $\mathbf{v}[\psi] = \mathbf{T}$ Def.(p1)

3. $\mathbf{v}[(\phi \land \psi)] = \mathbf{T}$ MTT 2.23 (\land)(p2)

4. $\models (\phi \land \psi)$ Def.(p3)

5. Si $\models \phi$ y $\models \psi$, entonces $\models (\phi \land \psi)$

6. Punto 6

 $\{(\phi \lor \psi), ((\neg \phi) \lor \tau)\} \vDash (\psi \lor \tau)$

0. Existe **v** tal que **v** satisface $\{(\phi \lor \psi), ((\neg \phi) \lor \tau)\}$

1. $\mathbf{v}[(\phi \lor \psi)] = \mathbf{T}$

Def.(p0)

2. $\mathbf{v}[((\neg \phi) \lor \tau)] = \mathsf{T}$

Def.(p0)

3. $\mathbf{v}[\phi] = \mathbf{T} \circ \mathbf{v}[\psi] = \mathbf{T}$

MT $2.23 \ (\lor)(p1)$

4. $\mathbf{v}[(\neg \phi)] = \mathbf{T} \circ \mathbf{v}[\tau] = \mathbf{T}$

MT 2.23 $(\vee)(p2)$

5. Suposición 1

6. Suposición 2

7. $(\phi \lor \psi), ((\neg \phi) \lor \tau) \models (\psi \lor \tau)$

Suposición 1

0. $\mathbf{v}[\phi] = \mathbf{T}$

1. $\mathbf{v}[(\neg \phi)] = \mathbf{F}$

MT 2.23 $(\neg)(p0)$

2. $\mathbf{v}[\tau] = \mathbf{T}$

MT 2.23 (\vee) (p1, p4 Enunciado)

3. $\mathbf{v}[(\psi \vee \tau)] = \mathbf{T}$

MT 2.23 $(\vee)(p2)$

Suposición 2

0. $\mathbf{v}[\phi] = \mathbf{F}$

1. $\mathbf{v}[\psi] = \mathbf{T}$

MT $2.23(\vee)(p0, p3 \text{ Enunciado})$

 $2. \quad \mathbf{v}[(\psi \vee \tau)] = \mathtt{T}$

MT $2.23(\vee)(p1)$

7. Punto 7

 $\Gamma \cup \{\phi\} \vDash \psi \text{ sii } \Gamma \vDash (\phi \rightarrow \psi)$

0. demostración 1

1. demostración 2

2. $\Gamma \cup \{\phi\} \vDash \psi \text{ sii } \Gamma \vDash (\phi \rightarrow \psi)$

Página 7 Taller 02

demostración 1

0. Si $\Gamma \cup \{\phi\} \vDash \psi$, entonces $\Gamma \vDash (\phi \rightarrow \psi)$

1. $\Gamma \cup \{\phi\} \models \psi$

Suposición

2. Existe **v** tal que**v**satisface $\Gamma \cup \{\phi\}$

Def(p1)

3. **v** satisface Γ y a $\{\phi\}$

 $\Gamma \cup \{\phi\} := (\exists \xi \,|\, \xi \in \Gamma \land \xi \in \{\phi\})$

4. $\mathbf{v}[\psi] = \mathbf{T}$

Def.(p2, p1)

5. $\mathbf{v}[\phi] = \mathbf{T}$

Def.(p3)

6. $\mathbf{v}[(\phi \to \psi)] = \mathbf{T}$

MT 2.23 $(\to)(p5, p4)$

7. **v** satisface Γ y a $(\phi \rightarrow \psi)$

(p6, p3)

8. .: Si $\Gamma \cup \{\phi\} \vDash \psi$, entonces $\Gamma \vDash (\phi \rightarrow \psi)$

demostración 2

0. Si $\Gamma \vDash (\phi \to \psi)$, entonces $\Gamma \cup \{\phi\} \vDash \psi$

1. $\Gamma \vDash (\phi \rightarrow \psi)$

Suposición

2. Existe \mathbf{v} tal que \mathbf{v} satisface Γ

3. $\mathbf{v}[(\phi \to \psi)] = \mathbf{T}$

Def.(p2, p1)

4. $\mathbf{v}[\phi] = \mathbf{F} \circ \mathbf{v}[\psi] = \mathbf{T}$

MT 2.23 $(\rightarrow)(p3)$

5. $\mathbf{v}[\phi] = T \ y \ \mathbf{v}[\psi] = T$

Suposición

6. **v** satisface Γ y a $\{\phi\}$

7. \therefore Si $\Gamma \vDash (\phi \to \psi)$, entonces $\Gamma \cup \{\phi\} \vDash \psi$

Punto 8

Si $\Delta \not\vDash \phi$ y $\Gamma \subset \Delta$, entonces $\Gamma \not\vDash \phi$

0. Existe \mathbf{v} tal que \mathbf{v} satisface Δ y $\mathbf{v}[\phi] = \mathbf{F}$

1. $(\forall \xi \mid \xi \in \Gamma : \xi \in \Delta)$

Def. (\subset)

2. $(\forall \xi \mid \xi \in \Delta : \mathbf{v}[\xi] = T)$

Def. (p0)

3. $(\forall \xi \mid \xi \in \Gamma : \mathbf{v}[\xi] = T)$

(p2, p1)

4. \mathbf{v} satisface Γ y $\mathbf{v}[\phi] = \mathbf{F}$

Si $\Delta \not \models \phi$ y $\Gamma \subset \Delta$, entonces $\Gamma \not \models \phi$

Página 8 Taller 02

9. Punto 9

Si Pedro entiende matemáticas, entonces puede entender lógica. Pedro no entiende lógica. Consecuentemente,
 Pedro no entiende matemáticas.

Si Pedro... p: Pedro entiende matemáticas q: Pedro puede entender lógica $\Gamma = \{(p \to q), (\neg q)\}, \phi = (\neg p)$ 0. Existe \mathbf{v} tal que \mathbf{v} satisface Γ Suposición 1. $\mathbf{v}[(p \to q)] = \mathbf{T}$ Def.(p0)2. $\mathbf{v}[(\neg q)] = \mathbf{T}$ Def(p0)3. $\mathbf{v}[q] = \mathbf{F}$ MT 2.23 $(\neg)(p2)$ MT 2.23 (\rightarrow) (p3, p1) 4. $\mathbf{v}[p] = \mathbf{F}$ 5. $\mathbf{v}[(\neg p)] = \mathbf{T}$ MTT $2.23 (\neg)(p4)$ 6. $\Gamma \vDash \phi$

■ Si llueve o cae nieve, entonces no hay electricidad. Llueve. Entonces, no habrá electricidad.

Si llueve...No habrá electricidad Llueve p: q: Nieva r: Hay electricidad $\Gamma = \{((p \lor q) \to (\neg r)), p\}, \phi = r$ 0. Existe \mathbf{v} tal que \mathbf{v} satisface Γ Suposición 1. $\mathbf{v}[((p \lor q) \to (\neg r))] = \mathbf{T}$ Def.(p0)2. $\mathbf{v}[p] = \mathbf{T}$ Def.(p0)3. $\mathbf{v}[(p \lor q)] = \mathbf{T}$ MT 2.23 $(\vee)(p2)$ 4. $\mathbf{v}[(\neg r)] = \mathbf{T}$ MT 2.23 $(\to)(p3, p1)$ 5. $\mathbf{v}[r] = \mathbf{F}$ MT $2.23 (\neg)(p4)$

■ Si llueve o cae nieve, entonces no hay electricidad. Hay electricidad. Entonces no nevó.

Si llueve...No nevó p:Llueve q:Nieva r: Hay electricidad $\Gamma = \{((p \lor q) \to (\neg r)), r\}, \phi = (\neg q)$ 0. Existe \mathbf{v} tal que \mathbf{v} satisface Γ Suposición 1. $\mathbf{v}[((p \lor q) \to (\neg r))] = \mathbf{T}$ Def.(p0) $2. \quad \mathbf{v}[(r)] = \mathbf{T}$ Def.(p0)3. $\mathbf{v}[(p \lor q)] = \mathbf{F}$ MT 2.23 $(\to)(p2, p1)$ 4. $\mathbf{v}[p] = \mathbf{F} \ \mathbf{v}[q] = \mathbf{F}$ MT 2.23 $(\vee)(p3)$ 5. $\mathbf{v}[(\neg q)] = \mathbf{T}$ MT 2.23 $(\neg)(p4)$

■ Es peligroso conducir cuando está nevando. Esta nevando ahora. Sería peligroso conducir en este momento.

Página 9 Taller 02

Es peligroso conducir...

$$p$$
: Es peligroso conducir

$$q$$
: Nieva

$$\Gamma = \{(p \leftarrow q), q\}, \phi = p$$

0. Existe
$$\mathbf{v}$$
 tal que \mathbf{v} satisface Γ

Suposición

1.
$$\mathbf{v}[(p \leftarrow q)] = \mathbf{T}$$

Def.(p0)

2.
$$\mathbf{v}[q] = \mathbf{T}$$

Def.(p0)

3.
$$\mathbf{v}[p] = \mathbf{T}$$

MT $2.23(\leftarrow)(p2)$

Cuando llueve los árboles se mojan. Los árboles están húmedos esta mañana, así que llovió anoche.

Cuando llueve...

$$p$$
: Llueve

$$\frac{q: \text{Los \'arboles se mojan}}{\Gamma = \{(p \to q), p\}, \phi = q}$$

0. Existe
$$\mathbf{v}$$
 tal que \mathbf{v} satisface Γ

Suposición

1.
$$\mathbf{v}[(p \to q)] = \mathbf{T}$$

Def.(p0)

$$2. \quad \mathbf{v}[p] = \mathtt{T}$$

Def.(p0)

3.
$$\mathbf{v}[q] = \mathbf{T}$$

MT $2.23(\leftarrow)(p2)$

■ Un paraguas evita que se moje bajo la lluvia. Alicia tomó su paraguas y no se mojó. Probablemente estaba lloviendo.

Un paraguas...

Alicia toma su paraguas

q: Alicia se moja

r: Llueve

$$\Gamma = \{((p \land r) \to (\neg q)), (p \land (\neg q))\}, \phi = (r \lor (\neg r))$$

0. Existe \mathbf{v} tal que \mathbf{v} satisface Γ

Suposición

1.
$$\mathbf{v}[((p \wedge r) \to (\neg q))] = \mathbf{T}$$

Def.(p0)

2.
$$\mathbf{v}[(p \wedge (\neg q))] = \mathsf{T}$$

Def.(p0)

3.
$$\mathbf{v}[(r \vee (\neg r))] = \mathbf{T}$$

MT 2.23(∨), MT 2.19 N 2.20

■ Las luces rojas previenen accidentes. Miguél no tuvo un accidente, por lo tanto, Miguél se detuvo en una luz roja.

Las luces rojas...

Miguél tiene un accidente

Miguél se detiene en la luz roja $\Gamma = \{(q \to (\neg p)), q\}, \phi = q$

$$\Gamma = \{(q \to (\neg p)), q\}, \phi = q$$

0. Existe \mathbf{v} tal que \mathbf{v} satisface Γ

Suposición

1.
$$\mathbf{v}[(q \to (\neg p))] = \mathsf{T}$$

Def.(p0)

$$2. \quad \mathbf{v}[q] = \mathtt{T}$$

Def.(p0)

3.
$$\mathbf{v}[q] = \mathbf{F}$$

MT 2.23 $(\to)(p2, p1)$

■ Si sin(x) es diferenciable, entonces sin(x) es continua. Si sin(x) es continua, entonces sin(x) es diferenciable. La función sin(x) es diferenciable. Consecuentemente, la función sin(x) es integrable.

Taller 02Página 10

Si sin(x) ...

p: sin(x) es diferenciable q: sin(x) es continua

 $\frac{r: sin(x) \text{ es integrable}}{\Gamma = \{(p \to q), (q \to p), p\}, \phi = r}$

Suposición 0. Existe \mathbf{v} tal que \mathbf{v} satisface Γ

1. $\mathbf{v}[(p \to q)] = \mathbf{T}$ Def.(p0)

2. $\mathbf{v}[(q \to p)] = \mathbf{T}$ Def.(p0)

3. $\mathbf{v}[p] = T$ Def.(p0)

Desde el punto de vista de la lógica (hasta el tema que hemos visto), la argumentación no es válida, sin embargo, es válida si es posible añadir el teorema fundamental del cálculo como razón para concluir r .

■ Si Gödel fuera presidente, entonces el Congreso presentaría leyes razonables. Gödel no es presidente. Por lo tanto, el Congreso no presenta leves razonables.

Si Gödel fuera presidente... p: Gödel es presidente

q: El Congreso presenta leyes razonables $\Gamma = \{(p \to q), (\neg p)\}, \phi = (\neg q)$

0. Existe ${\bf v}$ tal que ${\bf v}$ satisface Γ Suposición

1. $\mathbf{v}[(p \to q)] = \mathbf{T}$ Def.(p0)

2. $\mathbf{v}[(\neg p)] = \mathbf{T}$ Def.(p0)

3. $\mathbf{v}[p] = \mathbf{F}$ MT 2.23 (¬)

4. $\mathbf{v}[q] = \mathbf{F} \circ \mathbf{T}$ MT 2.23 $(\to)(p3, p2)$

La argumentación no es válida, y es una falacia.

■ Si llueve, entonces no hay picnic. Si cae nieve, entonces no hay picnic. Llueve o cae nieve. Por lo tanto, no hay picnic.

Si llueve...no hay picnic

p: Llueve

q: Hay picnic

0. Existe \mathbf{v} tal que \mathbf{v} satisface Γ

Suposición

1. $\mathbf{v}[(p \to (\neg q))] = \mathbf{T}$

Def.(p0)

2. $\mathbf{v}[(r \to (\neg q))] = \mathbf{T}$

Def.(p0)

3. $\mathbf{v}[(p \lor r)] = \mathbf{T}$

Def.(p0)

4. $\mathbf{v}[p] = \mathbf{T} \circ \mathbf{v}[r] = \mathbf{T}$

MT 2.23 $(\vee)(p3)$ MT 2.23 (V)

5. $\mathbf{v}[((\neg p) \land (\neg r))] = \mathbf{F}$ 6. $(\not\exists \mathbf{v} [][v]p = \mathbf{F} \ \mathbf{v} [r] = \mathbf{F})$

7. $\mathbf{v}[(\neg q)] = \mathbf{T}$

MT 2.23 (\rightarrow)(p6, p2, p1)

Taller 02 Página 11