CSSE2010 Course Notes

Paddy Maher August 14, 2021

1 Introduction

Following on from the lecture notes as prescribed by the CSSE2010 course, the course notes will be outputting through looking at the levels of abstraction of a computer.

[insert graph of abstraction in computers]

2 Digital logic level

2.1 Bytes and bits

- Computers represent everything in binary
- $\mathbf{Bit} = \text{binary digit } (0 \text{ or } 1)$
- **Byte** = 8 bits
- Modern computers deal with words which are usually a power of 2 number of bytes. For example:
 - -1, 2, 4 or 8 bytes = 8, 16, 32 or 64 bits

2.2 Representing whole unsigned numbers in binary

2.2.1 Conversion from binary to decimal and vice versa

Converting binary to decimal

- Add values of each position where bit is 1
- Example: 1010011 = 128 + 32 + 4 + 2 + 1 = 167

Converting Decimal to Binary

Method 1

- Rewrite 'n' as the sum of powers of 2 (by repeating subtracting largest powers of 2 not greater than n)
- Assemble binary number from 1's in bit positions corresponding to those powers of 2, 0's elsewhere

Method 2

Building up bits from the right (least significant bit (LSB) to most (MSB))

- Divide n by 2
- Remainder of division (0 or 1) is next bit
- Repeat with n =quotient

2.2.2 Least and Most Significant Bits

The most significant bit is denoted as **MSB**, likewise, the least significant bit is denoted as **LSB**. These bits can be found on a binary number typically as the leftmost and rightmost bits respectively.

[arrow pointing to example of MSB and LSB in binary number]

2.3 Basic Digital Logic

2.3.1 Digital circuits and Logic gates

Digital Circuits

- Only two logical levels present (i.e. binary)
 - Logic '0'; usually small voltage (e.g. around 0 volts)
 - Logic '1'; usually larger voltage (e.g. 0.8 to 5 volts, depending on the "logic family", i.e. type/size of transistors)

Logic gates

- Are the building blocks of computers
- Each gate has
 - One or more inputs
 - Exactly one ouput
- Perform logic operations or functions
 - 7 basic types: NOT, AND, OR, NAND, NOR, XOR XNOR
 - Inputs and outputs can have only two states 1 and 0; can be called "true" and "false" respectively.
 - Logic symbol, truth table, boolean expression, timing diagram

2.3.2 Basic Logic Gates

2.4 Boolean Logic

2.4.1 Boolean Logic Functions

- Logic functions can be expressed as expressions involving:
 - variables (literals), e.g A, B, X
 - functions, e.g +, ., \oplus , \overline{X}
- Rules about how this works are called Boolean algebra
- Variables and functions can only take on values 0 or 1

2.4.2 Boolean Algebra conventions

Conventions

- Inverstion: [insert overline] (overline)
 - e.g. $NOT(A) = \overline{A} (A bar)$
- AND: dot(.) or implied (by adjacency)

$$- \text{ e.g. } \text{AND}(A,B) = AB = A.B$$

- OR: plus sign (+)
 - e.g. OR(A,B,C) = A+B+C

Other examples

- $XOR(A,B) = A \oplus B = \overline{A}B + A\overline{B}$
- NAND(A,B,C) = \overline{ABC}
- $NOR(A,B) = \overline{A+B}$

2.4.3 Summary of logic function representations

There are four representations of logic functions (assume function of n inputs)

- Truth
 - Lists output for all 2^n combinations of inputs (Best to list inputs in a systematic way)
- Boolean function (or equation)
 - Describes the conditions under which the function output is 1
- Logic Diagram
 - Combination of logic symbols joined by wires
- Timing Diagram

2.4.4 Logic function implementation

- $\bullet\,$ Any logic function can implemented as the \mathbf{OR} of \mathbf{AND} combinations of the inputs
 - Called 'sum of products'
- Example:

	Α	B	C	M	
	0	0	0	0	
	0	0	1	0	
	0	1	0	0	
- Consider truth table	0	1	1	1	
	1	0	0	0	
	1	0	1	1	
	1	1	0	1	
	1	1	1	1	

- For each '1' in the output column, write down the ${\bf AND}$ combination of inputs that give 1
- **OR** these together

Equivalent functions

- Sum of products does not necessarily produce circuit with minimum number of gates
- Can 'manipulater' boolean functions to give an equivalent function
 - Use rules of boolean algebra
- Example: $\mathbf{Z} = \mathbf{AB} + \mathbf{AC} = \mathbf{A}(\mathbf{B} + \mathbf{C})$

Boolean identities

Name	AND form	OR form
Identity law	$1\mathbf{A} = \mathbf{A}$	$0 + \mathbf{A} = \mathbf{A}$
Null law	$0\mathbf{A} = \mathbf{A}$	$1 + \mathbf{A} = 1$
Idempotent law	$\mathbf{A}\mathbf{A} = \mathbf{A}$	$\mathbf{A} + \mathbf{A} = \mathbf{A}$
Inverse law	$\mathbf{A}\overline{A}=0$	$\mathbf{A} + \overline{\mathbf{A}} = 1$
Commutative law	AB = BA	$\mathbf{B} + \mathbf{A} = \mathbf{B} + \mathbf{A}$
Associative law	$(\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})$	$(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C})$
Distributive law	A+BC = (A+B).(A+C)	$\mathbf{A.(B+C)} = \mathbf{AB} + \mathbf{AC}$
Absorption law	$\mathbf{A}(\mathbf{A} + \mathbf{B}) = \mathbf{A}$	A + AB = A
De Morgan's law	$\overline{f AB} = \overline{f A} + \overline{f B}$	$\overline{\mathbf{A}} + \overline{\mathbf{B}} = \overline{\mathbf{A}}\overline{\mathbf{B}}$

2.4.5 Number bases

[Flow diagram of Binary(base 2), Decimal(base 10), Hex(base 16), Octal(base 8)] [May need to add further details of the table (in regard to the individual binary representations)]

ary representations)							
MSB				LSB			
$2^{(n-1)}$	$2^{(n-2)}$		2^1	2^{0}	Excess- $2^{(n-1)}$; $-2^{(n-1)} \le x \le (2^{(n-1)} - 1)$		
-2(n-1)	$2^{(n-2)}$		2^1	2^{0}	2's comp; $-2^{(n-1)} \le x \le (2^{(n-1)} - 1)$		
-2(n-1)-1	$2^{(n-2)}$		2^1	2^{0}	1's comp; $-(2^{(n-1)}-1) \le x \le (2^{(n-1)}-1)$		
+/-	$2^{(n-2)}$		2^1	2^{0}	Sign-Mag; $-(2^{(n-1)}-1) \le x \le (2^{(n-1)}-1)$		
$2^{(n-1)}$	$2^{(n-2)}$		2^1	2^{0}	Unsigned; $0 \le x \le 2^n - 1$		

[fix peculiar exponential layout]

2.4.6 Equivalent Circuits

- \bullet All circuits can be constructed from ${\bf NAND}$ or ${\bf NOR}$ gates
 - These are called 'complete' gates
- Examples: [insert NOT AND OR logic gates]
- Reason: Easier to build NAND and NOR gates from transistors

2.5 Binary Arthmetic

2.5.1 Binary addition

• Addition is quite simple in binary

• Above ignores carry in

[make sense of the table above]

and beinge of the table above										
Decimal	8-bit unsigned	Decimal	2's complement							
10	00001010	10	00001010							
+ 243	$+\ 11110011$	+ (-13)	+ 11110011							
253	11111101	-3	11111101							

- Format matters upon interpreting the number
- Whatever the format is the bit-wise addition (which leads to the hardware circuit) is the same.
- Two's complement; there is no need to do anything with the carry out from the MSB to get the correct result

• But in one's complement, the carry out from the MSB will have to be added back to the result to get the correct answer; this is one drawback of one's complement representation

Overflow in binary addition

Decimal	8-bit unsigned	Decimal	2's complement
15	00001111	125	01111101
+ 243	+ 11110011	+ 4	$+\ 00000100$
258	00000010	129	10000001

Overflow: Not enough bits to represent the answer. The result goes out of range thus outputting an incorrect answer.

- Unisgned: carry-out from the $MSB \rightarrow \text{overflow}$
- 2's comp: carry-in to the \mathbf{MSB} and carry-out from the \mathbf{MSB} are different \rightarrow overflow
- Equivalently, overflow occurs if (in 2's comp)
 - * Two negatives added together give a positive, or;
 - * Two positives added together give a negative

2.5.2 Adders and addition of binary words

A device which adds 2 bits $(with \ no \ carry-in)$ is called a 'half-adder' [insert half adder diagrams]

Addition of binary words

• Have to be able to deal with carry-in

	A	В	Cin	Cout	Sum
	0	0	0	0	0
	0	0	1	0	1
	0	1	0	0	1
•	0	1	1	1	0
	1	0	0	0	1
	1	0	1	1	0
	1	1	0	1	0
	1	1	1	0	1

- $S = \overline{AB}C + \overline{A}B\overline{C} + ...$
- $S = A \oplus B \oplus Cin$

[insert full adder diagram with relevant sum and carry-out equation] Binary Adder

- Can cascade full adders to make binary adder
 - Example: for 4 bits ... [insert 4 bit binary adder diagram]
- This is a ripple-carry adder

2.5.3 Binary subtraction

- $\mathbf{A} \mathbf{B}$; usually implemented as $\mathbf{A} + (-\mathbf{B})$
 - A and B are multi-bit quantities
 - '+' in this case means addition (not **OR**)
 - -B means negative B the two's complement of B
- ullet Two's complement of ${f B}$ can be calculated by flipping bits and adding 1.

[add relevant equations and interpretations]

How can one use a gate to flip a bit, but only somtimes? i.e

- $\mathbf{Z} = \text{NOT}(\mathbf{B})$ when \mathbf{M} is 1
- $\mathbf{Z} = \mathbf{B}$ when \mathbf{M} is 1

2.5.4 Adder-subtractor

 $\mathbf{M} = \text{carry-in}$

2.6 Combinational Circuits

- Generally, n inputs \rightarrow m outputs [insert image of combinational circuit]
- \bullet Each output can be expressed as a function of n input variables
- Output depends on current inputs only
- Can write truth table also:
 - n input columns
 - m output columns
 - -2^n rows (i.e. possible input combinations)

2.6.1 Multiplexer (or Mux)

- 2^n data inputs
- 1 output
- *n* control (or select) inputs- that select one of the inputs to be "sent" or "steered" to the output
- Example: 4-to-1 multiplexer [insert image of logical symbol for multiplexer]
 - S_1 S_0 F
 - 0 0 D_0
 - 0 0 D_0
 - 0 0 D_0
 - 0 0 D_0

[insert 4-to-1 Multiplexer Logic Circuit Implementation]

2.6.2 Decoder

Decoder

• Converts n-bit input to be a logic-1 on exactly one of 2^n outputs

•	Example	3-to-8	decoder

A	В	\mathbf{C}	D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7	
0	0	0	1	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	0	0	0	$n: 2^n$ decoder
0	1	0	0	0	1	0	0	0	0	0	
0	1	1	0	0	0	1	0	0	0	0	

2.6.3 Gates aren't perfect

Gates aren't perfect.. The reality of timing [insert gates]

- Propagation delay- time for change in input to affect output
- Fall time- time taken for output to fall from 1 to 0
- Rise time- time for output to rise from 0 to 1

2.7 Recap of Week 2

- Combinational Logic Circuits- Adder, Adder/Subtractor, Multiplexer, Decoder
- Logic Gates- NOT, AND, OR, NAND, NOR, XOR, XNOR, and Boolean algebra

2.7.1 Circuits that remember values

- The output of any logic gate or 'combinational circuit' is dependent on the current value of inputs only
- If an input changes, the output can also change and the previous value is lost forever
- Sequential circuits: the current output depends not only on the current inputs but also on the past outputs
- Circuits with memory can remember values, even if the input changes

Memory element: D Flip Flop

- **D** is input
- **Q** is output
- **CLK** (clock) is control input
- How does it work
 - Q copies the value of D (and remember it) whenever CLK goes from 0 to 1 (rising edge)

[insert logic time graphs of D, CLK, Q and logical symbols]

2.7.2 Characteristic Tables

- 'Characteristic table' defines operation of flip-flop in tabular form
- D flip-flop $\begin{bmatrix} \mathbf{D} & \mathbf{Q}(t+1) \\ 0 & 1 \end{bmatrix}$

2.7.3 D Flip-flops

- \bullet Summary: D flip-flops remember either a "1" to "0" i.e a single bit. That is the flip-flop remember the value till the next clock edge, upon which the D input is transformed to output Q
- To rmemeber 'n bits'
- \bullet Definition: A n-bit register can be made using n D flip-flops
- There are other types of flip-flops, e.g.
 - **JK** flip-flops
 - **T** flip-flops
- Flip-flops can be made out of logic gates

2.7.4 SR Latch

[insert logic image of SR Latch]

2.7.5 Flip-flops vs Latches

- Latches are level triggered devices- i.e. able to latch the output and respond to changes of logic levels on the inputs
- Latch circuits can be modified such that they become sensitive to an edge (i.e momentary transitions) of a control input (i.e a clock signal)
- Such circuits are called "flip-flops" and a flip-flop can store one bit of information while being sensitive to a clock edge (i.e a flip-flop will change its output only at the clock edges, based on the inputs)
- A clock signal has two edges
 - Positive edge- 0 to 1 transition
 - Negative edge- 1 to 0 transition
- There are different types of flip-flops
 - **D** flip-flop
 - JK flip-flop
 - T flip-flop
- So, a D flip-flop can be positive edge triggered or negative edge triggered
- Positive edge triggered \mathbf{D} flip-flop \rightarrow input \mathbf{D} is copied to output \mathbf{Q} at the positive edge of the clock. In between the clock edges, the flip-flop is non-reponsive, thus stores the value

[insert symbolic image of 'real D flip-flop]

2.7.6 D Latches and Flip-flops- Symbols used

[insert 4 images of latches and flip-flops]

- Triangle indicates edge-triggered (therefore flip-flop)
 - (c) sensitive to rising edge of click
 - (d) to falling edge
- 'State' of a flip-flop is the value stored
- Flip-flops are generally more useful than latches

D Flip-flop chips

- 1. 74HCT74 chip; Dual **D** flip-flop
- 2. **74HCT273** chip; eight **D** flip-flops
 - can hold one byte of information (8 bits)

2.8 Combinational vs Sequential Circuits

- Combinational circuits
 - Logic gates only
- Output is uniquely determined by the inputs
 - i.e: one will always get the same output for a given set of inputs
- Example of a combinational circuit [insert this]
- Sequential Circuits
 - Include flip-flops
 - Output determined by current inputs and current 'state'
 - Output can only change when clock 'ticks'

2.8.1 Sequential Circuits

- 'State' = value stored in flip-flops
- Output depends on input and state
- Next state depends on input and state [insert sequential circuit picture]

2.8.2 Synchronous Sequential Circuit

- Storage elements (flip-flops) can only change at discrete instants of time
- Assume:
 - There is a clock signal
 - Output of storage elements change only on the edges of control signal
 - * (compare with logic gates whose output changes whenever the input changes)

Registers

- A register is a group of flip-flops
 - n-bit register consists of n flip-flops capable of storing n bits
- A register is a sequential circuit without any combinational logic

- 3 Microarchitecture level
- 4 Instruction set architecture level
- 5 Assembly language level
- 6 Problem-oriented language level