On Count pairs "ag" Given a character array, colculate the no of pairs in such that. i Lj ll s[i] = 'a' ll s[i] = 'g'. All characters are lower case. Exi ansi] = baagdcag Pairs (1,2), (1,7), (2,3), (2,77, (6,77) ans = 5Pseudo (ode [Boute force] int c > 0 lor (int i=0; i Ln; i++) } if (aro (i) = = (a1) 1 for (Mt j= i+1; j 2 n; j+4) 2 if (an (j] == 'g') $Tc: O(n^2)$ Sc: 0(1)

$$\frac{\mathcal{E}_{x1}}{2}$$
 and = b a a g d c a g

$$Cnf = 0$$
 , $cnf - g = 0$

Ь	a	a	q	ال	ے	а	9
			d	·			Q
υo	(n+-9= 2	(n+-9= 2	(n+-9= 2	υo	υo	(n+-9=1	(nt-9=1
Charge	cn+=5	cn4 = 3	cnt = 1	Charge	Charge	cn+=1	cnf = 0

$$\frac{\mathcal{E}_{11}}{\sqrt{100}} = \frac{1}{2} = \frac$$

Parudo Code

int cut = 0, cut -q = 0

for (int i = n - i; $i \ge 0$; i - -)

if (abb[i] = = (g') (n+g++i)else if (abb[i] = = (a') (n+f+=(n+g))

TC: O(n) SC: O(1) Jedvan cnt;

Pseudo Code

$$cnt = 1$$

$$\int_{\partial \delta} \left(\ln \lambda \right) i = n-2 ; i \geq 0 ; i-- \right) \mathcal{L}.$$

3

Subassay Basics

- Continuous part of an array.

) Single Element

2) Full array.

3) Empty array

 $\sum_{x_1} a_{x_1}(7 = 2 + 6 + 1 + 2 - 3)$

indices Suborray. [1,2,3,4] = [1,4] = [4,5]

heryth of a subarray [i,i] = j-i+1

D3 C	Posest Min	n Max					
Svls	in an a	array J ch conta	and the	longth Min	of Smax	allest of assoz.	
Ext ass	0	. 2 2 2	3 4	5 3 4	6 7 6 4	8 9	
(i) (ii)	[3,6] [0,6] [0,8]	74 = 7 = 9				x = P	
(v)	[3, 8]	76	70	1	2	7	
Exz	[]88D			8	8 8	3	
ars = 1							

No of Subarrays in a arr of length n. $= \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ a_1 & a_2 & a_3 & a_4 & a_5 \end{bmatrix}$ arr [] Start no of ending points 5 [0,1,2,3,4] 0 4 [1,2,3,4] 3 [2,3,4] 3 2 [3,4] 1 [4] Slast ending ponts FAUDS [0, 10-] (1, n-1)0-1 \int_{-2}^{2} , n-i0-5 [n-1, n-i] n-1 (U+1)

Observation
0 1 2 3 4 5 6 7 8 9
and [] = 1 2 3 1 3 4 6 4 6 3
1) Min le Max would be endpoints of the subarray.
2) Only 1 min & 1 max in sobass
3) (ASE 1: [min, max] (ASE 2: [max, min]
4 7
min max min

index_max = 2
$$min = 1$$
 $qik = 2$
 $index_max = 6$
 $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$
 $1 \quad 2 \quad 6 \quad 1 \quad 3 \quad 4 \quad 6 \quad 4 \quad 6 \quad 3$
 $\downarrow \quad X \quad \downarrow \quad X \quad$

Predefined function. inta, intb; max (a,b). min (a, b); : [] rED Sout (and); Int a = [-2 × 109] long q - [-2 ×1018, 2×108]

Q	n	Q_{Λ}	0+N
1	1	1	2
2	2	4	4