Chapitre 3: Relations d'ordre

Dans tout ce qui suit, E désigne un ensemble quelconque.

I Généralités

A) Relations binaires

Une relation binaire définie sur E est une propriété que chaque couple (x, y) d'éléments de E est susceptible d'avoir ou non.

Si R désigne une relation binaire définie sur E, on note xRy pour signifier que x et y sont en relation par R.

Ainsi, se donner une relation binaire R sur E, c'est se donner la partie G de $E \times E$ constituée des couples (x, y) tels que xRy.

Exemples:

- Sur l'ensemble R des nombres réels, on connaît les relations usuelles :

$$\leq$$
 , $<$, \geq , $>$, $=$,etc

(on peut aussi considérer les restrictions de ces relations à Q, Z, N...)

- Sur l'ensemble \mathbb{Z} des entiers relatifs, on peut penser à la relation de divisibilité $x|y \Leftrightarrow \exists k \in \mathbb{Z}, y = kx$

On peut aussi imaginer (sur \mathbb{Z}) la relation \equiv définie par $x \equiv y \Leftrightarrow x - y$ est pair

- Sur l'ensemble $P(\Omega)$ des parties d'un ensemble Ω , on connaît la relation d'inclusion, on peut aussi imaginer la relation définie par : $A\delta B \Leftrightarrow A \cap B = \emptyset$

B) Relations d'ordre

Définition :

Soit *R* une relation binaire définie sur *E*. *R* est une relation d'ordre lorsque :

- R est réflexive, c'est-à-dire : $\forall x \in E, xRx$
- R est transitive, c'est-à-dire : $\forall x \in E, \forall y \in E, \forall z \in E, (xRy \text{ et } yRz \Rightarrow xRz)$
- R est antisymétrique, c'est-à-dire : $\forall x \in E, \forall y \in E, (xRy \text{ et } yRx \Rightarrow x = y)$

Exemple:

En reprenant les relations binaires précédentes :

 \leq , \geq , = sont des relations d'ordre sur \mathbb{R} (et sur \mathbb{Q} , \mathbb{Z} , \mathbb{N} ...)

<, > n'en sont pas.

| = ne sont pas des relations d'ordre sur \mathbb{Z} , mais | en est une sur \mathbb{N} .

 \subset est une relation d'ordre sur $P(\Omega)$, mais pas δ .

C) Ordre total, ordre partiel

Soit R une relation d'ordre sur E. On dit que R définit un ordre total sur E lorsque deux éléments de E sont toujours comparables pour R, c'est-à-dire : $\forall x \in E, \forall y \in E, (xRy \text{ ou } yRx)$.

Dans le cas contraire, on parle d'ordre partiel.

Exemples:

 \leq définit un ordre total sur \mathbb{R} (et sur \mathbb{Q} , \mathbb{Z} , \mathbb{N} ...)

définit un ordre partiel sur N.

 \subset définit un ordre partiel sur $P(\Omega)$.

II Vocabulaire dans un ensemble ordonné

Dans tout ce paragraphe, \leq désigne une relation d'ordre quelconque sur E.

A) Maximum, minimum

Proposition, définition:

Soit A une partie de E. S'il existe un élément a de A tel que $\forall x \in A, x \leq a$, alors il

n'en existe qu'un seul, et on l'appelle le maximum de A (ou le plus grand élément de A), noté $\max(A)$. La définition est analogue pour le minimum (ou plus petit élément)...

Attention, il n'y a pas nécessairement existence!

Exemple:

Pour la relation usuelle \leq dans \mathbb{R} ,]0,1[et \mathbb{N} n'ont pas de maximum.

Pour la relation de divisibilité dans N, {1,2,...,10} non plus.

B) Majorants, minorants

Définition

Soit A une partie de E, et soit $z \in E$. On dit que z est un majorant de A (dans E) lorsque $\forall x \in A, x \preceq z$

La définition est analogue pour le minorant.

Attention, il n'y a pas toujours existence, ni unicité!

D'ailleurs, si z majore A, alors tout élément z' de E tel que $z \prec z'$ majore aussi A.

Remarque:

On a l'équivalence : $a = \max(A) \Leftrightarrow a \in A$ et a majore A

Une partie A est dite majorée (respectivement minorée) lorsqu'elle admet au moins un majorant (respectivement minorant), et enfin est dite bornée lorsqu'elle est à la fois majorée et minorée.

Chapitre 3: Relations d'ordre

C) Borne supérieure, borne inférieure

Définition:

Soit A une partie de E. Si A est majorée, et si l'ensemble des majorants de A admet un plus petit élément, celui-ci est appelé la borne supérieure de A, notée $\sup(A)$.

La définition est analogue pour l'éventuelle borne inférieure :

Si A est minorée, et si l'ensemble des minorants de A admet un plus grand élément, celui-ci est appelé la borne inférieure de A, notée $\inf(A)$.

Attention, il n'y a pas toujours existence.

Remarque:

Si A admet un maximum, alors A admet une borne supérieure, et $\sup(A) = \max(A)$ mais A peut très bien avoir une borne supérieure sans avoir de maximum.

En effet:

Supposons que A admette un maximum, disons a. On note S l'ensemble des majorants de A (S n'est pas vide puisqu'il contient a).

Soit $b \in S$.

Alors $a \leq b$ puisque $a \in A$ et b est un majorant de A.

Ainsi, $\forall b \in S, a \leq b$. donc a est le minimum de S.

Donc a est la borne supérieure de A.

D) Notations

Soit $f: D \to E$, où D est un ensemble quelconque. (E est toujours ordonné par \prec)

Si l'ensemble image $f(D) = \{f(x), x \in D\}$ admet une borne supérieure, on l'appelle la borne supérieure de f et on la note $\sup(f)$ ou $\sup f(x)$.

Soit $(a_i)_{i \in I}$ une famille d'éléments de E indexée par un ensemble I quelconque. Si l'ensemble $\{a_i, i \in I\}$ admet une borne supérieure, on la note sup a_i .

Les notations sont analogues pour les éventuels max, min, inf.

E) Applications croissantes, décroissantes etc.

Ici, on considère deux ensembles ordonnés (E, \preceq) et (F, \leq)

```
Définition : Soit f: E \to F

f est croissante lorsque \forall x \in E, \forall x' \in E, (x \le x' \Rightarrow f(x) \le f(x'))

f est décroissante lorsque \forall x \in E, \forall x' \in E, (x \le x' \Rightarrow f(x') \le f(x))

Et, en notant "x < x'" pour "x \le x' et x \ne x'", "y < y'" pour "y \le y' et y \ne y'" : f est strictement croissante lorsque \forall x \in E, \forall x' \in E, (x < x' \Rightarrow f(x) < f(x'))

f est strictement décroissante lorsque \forall x \in E, \forall x' \in E, (x < x' \Rightarrow f(x') < f(x))
```