

Monday, 21.02.2021 Presentation of solutions and award ceremony

Agenda

10:00 Welcome

10:05 Team presentations (10 min each, 2 min Q&A)

10:45 Data origin, DATEV approach

11:00 Announcing the Winners

11:10 Feedback session

Give us a quick feedback: How did you like the hackathon?

Put -- / - / o / + / + + in the chat window

Team Presentation IAB

DATA SCIENCE LEAGUE CHALLENGE 3

IAB

Ben Börschlein Leonie Wicht Lina Metzger Michael Oberfichtner Sophie Hensgen

DATA INSPECTION

FACTS

- Multi-step forcast problem → cannot use short-run autoregressive features
- Feature engineering based on time and dates
 - date-related features (seasonality), period number (trend), sales last year (yearly similarities)
- Validation set of 1 year
- Training share of 75%
- Excluded 5 largest and 5 smallest values
- Model:
 - Deep Feed Forward Neural Network
 - 3 dense layers of 100 neurons each
 - Optimizer: Adam
 - Learning rate: 0.001

THE MODEL

```
model_setup = Sequential(
        Dense(100, activation="relu", ),
       Dense(100, activation="relu"),
       Dense(100, activation="relu"),
       Dense(1, activation="linear")
epochs = 500
loss = "mean_absolute_percentage_error"
learning_rate = 0.001 # --> smaller makes predictions more stable
# define early stopping rule
stop_early = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=10)
def train_model(model_setup, X_train, y_train, X_test, y_test, epochs):
    model_setup.compile(optimizer=Adam(learning_rate=learning_rate), loss=loss)
    history = model_setup.fit(X_train, y_train, epochs=epochs, validation_data=(X_test, y_test), callbacks=stop_early)
   return model_setup, history
model, hist = train_model(model_setup, X_train, y_train, X_test, y_test, epochs=epochs)
```

PREDICTED AND OBSERVED VALUES TRAINING PERIOD

PREDICTED AND OBSERVED VALUES VALIDATION PERIOD

PLANNED: ENSEMBLE-DESIGN

Team Presentation GfK

See DSL Datev-Challenge GfK submission.pdf

Team Presentation adidas

Visualization – Additive decomposition

SARIMA

S	Seasonal (monthly, quarterly, yearly etc.)
A R	Autoregressive (based on past values)
I	Integrated (accounts for trend trend)
M A	Moving average (takes periodic average to smooth out noise)

- Used weekly sales values as univariate time series
- Identified parameters for SARIMA model using pmdarima library
- Best model found at 52 weeks seasonality
- Used last 26 weeks of training data for evaluation
- Forecasted next 26 steps for final submission using all available data to train

XGBoost

- Used xgboost regressor for modeling the time series
- Feature engineering:
 - Added date-time related features
 - Only kept ship mode information and discarded other features
- Trained model on daily sales
- During prediction for future 26 sales added all combinations of the ship mode

date	weekofyear zi	pcode city	/		customer	product	ship mode	sales
2016-01-02	2015-W53	86150 Aug	gsburg		KND-0160	PRK-0055	Standard Shipping	8
2016-01-03	2015-W53	47051 Dui	sburg, Stadt		KND-0250	PRK-0010	Premium Shipping	2669
2016-01-03	2015-W53	47798 Kre	feld, Stadt		KND-0097	7 PRK-0058	Standard Shipping	1
2016-01-03	2015-W53	41061 Mö	nchengladbach, St	adt	KND-0177	7 PRK-0118	Standard Shipping	3
2016-01-03	2015-W53	30159 Hai	nnover, Landeshau	ptstadt	KND-0190	PRK-0411	Standard Shipping	87
2016-01-03	2015-W53	52062 Aad	hen, Stadt		KND-0248	PRK-0112	Express Shipping	1117
2016-01-03	2015-W53	47051 Dui	sburg, Stadt		KND-0264	PRK-0073	Standard Shipping	7
w	eekofyear		ship mode	♥ month	year	dayofweek	dayofmont	h sales
	eekofyear 2015-W53	Expre	ship mode	month 1	year 2016	dayofweek 6		h sales
0							3	
0	2015-W53 2015-W53	Premi	ess Shipping um Shipping	1	2016 2016	6	5	3 1126 3 2669
0	2015-W53	Premi	ess Shipping	1	2016	6	5	3 1126
0 1 2	2015-W53 2015-W53	Premiu Standa	ess Shipping um Shipping	1	2016 2016	6	5	3 1126 3 2669

MERLION - FORECASTING FRAMEWORK FROM SALESFORCE

DATA EXPLORATION

- After an exploration of data we decided to use only **sales** and **date** features since there were no substantial pattern in other features.
- On a weekly level the sales has been shown some **trend** and there were clearly a **seasonality** pattern.

MODEL: LGBM

- It has been used a predictive model for forecasting the sales values
- The model is LGBM from Merlion, a Python library for time series
- The mean absolute percentage error: 0.26

EXPONENTIAL SMOOTHING

- Split weekly sales as average x number of sales
- Both series exhibit opposite trends and somewhat indep. fluctuations (corr=0.38)
- Fit independent models to both series and combine their predictions
- Model: statsmodels.tsa.exponential smoothing.ets.ETSModel

FINAL SUBMISSION

- Our MAPEs were very similar & our models were diverse
- Ensemble model: voting regressor made from averaging our different solutions
- Might lose accuracy in capturing the fluctuations but might improve the overall trend

Data Origin

Example: this-person-does-not-exist.com

Creation of the (base-)dataset

Christmas Spending

Christmas spending was added by scaling the december transactions by a Beta-distributed parameter.

December Transactions

Scaling by $\kappa \sim B(\alpha, \beta)$

Christmas Spending

Reoccurring Postings

Typical data sets at DATEV contain a variety of reoccurring high-volume postings. This was simulated using some sensible boundaries.

DATEV Approach to DSL

Looking at the Data

	date	weekofyear	ship mode	sales	customer	product	city	zipcode
0	2016-01-02	2015-W53	Standard Shipping	8	KND-0160	PRK-0055	Mainz, Stadt	55116
1	2016-01-03	2015-W53	Premium Shipping	2669	KND-0250	PRK-0010	Kassel, documenta-Stadt	34117
2	2016-01-03	2015-W53	Standard Shipping	1	KND-0097	PRK-0058	Hamburg, Freie und Hansestadt	20038
3	2016-01-03	2015-W53	Standard Shipping	3	KND-0177	PRK-0118	Rostock, Hansestadt	18055
4	2016-01-03	2015-W53	Standard Shipping	87	KND-0190	PRK-0411	Magdeburg, Landeshauptstadt	39104

Examining the Data

Selecting specific products or product-customer combinations:

- Intern -

Modeling Regular Transactions

Model Approach

Results

Results

38

Results + Winners

Evaluation: Input Data

Evaluation: Forecast Plot

