# Langages et Automates Automates (et langages ?)

Engel Lefaucheux

Prépas des INP

### Objectif du cours

- Découvrir encore d'autres opérations usuelles sur les automates
- Voir ce qu'on peut en faire

Soit  $A = (Q, \Sigma, T, I, F)$  un automate

- ullet  $Q'=2^Q$  l'ensemble contenant tous les ensembles d'états de Q
- $I' = \{I\}$
- $F' = \{C \in Q' \mid C \cap F \neq \emptyset\}$
- $(C, A, C') \in T'$  iff for all  $q \in C'$ , there exists  $q \in C$  such that  $(q, a, q') \in T$ .



Soit  $A = (Q, \Sigma, T, I, F)$  un automate

- $Q'=2^Q$  l'ensemble contenant tous les ensembles d'états de Q
- $I' = \{I\}$
- $F' = \{C \in Q' \mid C \cap F \neq \emptyset\}$
- $(C, A, C') \in T'$  iff for all  $q \in C'$ , there exists  $q \in C$  such that  $(q, a, q') \in T$ .



Soit  $A = (Q, \Sigma, T, I, F)$  un automate

- $Q'=2^Q$  l'ensemble contenant tous les ensembles d'états de Q
- $I' = \{I\}$
- $F' = \{C \in Q' \mid C \cap F \neq \emptyset\}$
- $(C, A, C') \in T'$  iff for all  $q \in C'$ , there exists  $q \in C$  such that  $(q, a, q') \in T$ .



Soit  $A = (Q, \Sigma, T, I, F)$  un automate

- $Q'=2^Q$  l'ensemble contenant tous les ensembles d'états de Q
- $I' = \{I\}$
- $F' = \{C \in Q' \mid C \cap F \neq \emptyset\}$
- $(C, A, C') \in T'$  iff for all  $q \in C'$ , there exists  $q \in C$  such that  $(q, a, q') \in T$ .



Soit  $A = (Q, \Sigma, T, I, F)$  un automate

- $Q' = 2^Q$  l'ensemble contenant tous les ensembles d'états de Q
- $I' = \{I\}$
- $F' = \{C \in Q' \mid C \cap F \neq \emptyset\}$
- $(C, A, C') \in T'$  iff for all  $q \in C'$ , there exists  $q \in C$  such that  $(q, a, q') \in T$ .



Soit  $A = (Q, \Sigma, T, I, F)$  un automate

- $Q' = 2^Q$  l'ensemble contenant tous les ensembles d'états de Q
- $I' = \{I\}$
- $F' = \{C \in Q' \mid C \cap F \neq \emptyset\}$
- $(C, A, C') \in T'$  iff for all  $q \in C'$ , there exists  $q \in C$  such that  $(q, a, q') \in T$ .



Soit  $A = (Q, \Sigma, T, I, F)$  un automate

- $Q' = 2^Q$  l'ensemble contenant tous les ensembles d'états de Q
- $I' = \{I\}$
- $F' = \{C \in Q' \mid C \cap F \neq \emptyset\}$
- $(C, A, C') \in T'$  iff for all  $q \in C'$ , there exists  $q \in C$  such that  $(q, a, q') \in T$ .



Soit  $A = (Q, \Sigma, T, I, F)$  un automate

- $Q' = 2^Q$  l'ensemble contenant tous les ensembles d'états de Q
- $I' = \{I\}$
- $F' = \{C \in Q' \mid C \cap F \neq \emptyset\}$
- $(C, A, C') \in T'$  iff for all  $q \in C'$ , there exists  $q \in C$  such that  $(q, a, q') \in T$ .















### Exercice

#### Déterminisez et émondez l'automate suivant



### Preuve : les deux automates ont le même langage

On montre par récurrence sur n=|w| que pour tout mot  $w\in \Sigma^*$ , il existe dans  $\mathcal A$  un chemin étiqueté par w menant à un état q si et seulement s'il existe dans  $\mathcal A'$  un chemin étiqueté par w menant à un état P contenant q.

- si n = 0,  $w = \varepsilon$  et  $q \in I$
- supposons que l'hypothèse est correcte pour  $n \in \mathbb{N}$ . Soit  $w = a_1 \dots a_{n+1}$

Considérons un chemin  $q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_{n+1}} q_{n+1}$ Par hypothèse, il existe C tel que  $q_n \in C$  et C est l'unique état de

 $\mathcal{A}'$  atteint en lisant  $a_1 \dots a_n$ 

Par définition de T', il existe C' tel que  $q_{n+1} \in C'$  et  $(C, a_{n+1}, C') \in T'$ .

Réciproquement ...

Sachant que  $F' = \{C \in Q' \mid C \cap F \neq \emptyset\}$ , on atteint dans  $\mathcal{A}'$  avec le mot w un ensemble de F' ssi il existe un chemin pour w dans  $\mathcal{A}$  terminant en F

### Une conséquence de toute ces opérations

On a vu que, si  $A_1$  et  $A_2$  sont déterministes et produisant les langages  $L_1$  et  $L_2$ , on peut construire l'automate construisant

- $\bullet$   $L_1 \cdot L_2$
- L<sub>1</sub>\*
- $L_1 \cup L_2$

Que peut-on déduire du résultat de déterminisation ?

### **Exercices**

Construire un automate déterministe pour les langages suivants

• 
$$L_1 = (a+b+c)^*a(a+b+c)^*$$

• L<sub>2</sub> : les mots ne contenant pas le facteur aab