Implementación de un UAV con arquitectura de Cuadricóptero

Segundo Hito

Manuel López, Santiago Paternain, Rodrigo Rosa, Matías Tailanián

28 de Febrero de 2012

Diseñar e integrar un **sistema de control** que permita el vuelo *autónomo* de un Cuadricópetro comercial.

- Generador de rutas
- Instrumentación: obtener variables del sistema
- Actuador sobre motores

No se diseará ni la mecánica ni la electrónica del sistema Se integrarán los componentes. Se conservará la posibilidad del manejo manual

Diseñar e integrar un **sistema de control** que permita el vuelo *autónomo* de un Cuadricópetro comercial.

■ Generador de rutas

- Instrumentación: obtener variables del sistema
- Actuador sobre motores

No se diseará ni la mecánica ni la electrónica del sistema Se integrarán los componentes. Se conservará la posibilidad del manejo manual

Diseñar e integrar un **sistema de control** que permita el vuelo *autónomo* de un Cuadricópetro comercial.

- Generador de rutas
- Instrumentación: obtener variables del sistema
- Actuador sobre motores

No se diseará ni la mecánica ni la electrónica del sistema Se integrarán los componentes. Se conservará la posibilidad del maneio manual

Diseñar e integrar un **sistema de control** que permita el vuelo *autónomo* de un Cuadricópetro comercial.

- Generador de rutas
- Instrumentación: obtener variables del sistema
- Actuador sobre motores

No se diseará ni la mecánica ni la electrónica del sistema Se integrarán los componentes. Se conservará la posibilidad del manejo manual

Diseñar e integrar un **sistema de control** que permita el vuelo *autónomo* de un Cuadricópetro comercial.

- Generador de rutas
- Instrumentación: obtener variables del sistema
- Actuador sobre motores

No se diseará ni la mecánica ni la electrónica del sistema. Se integrarán los componentes. Se conservará la posibilidad del manejo manual

PLANIFICACIÓN ORIGINAL

- Terminar modelo físico
- Implementar simulado
- Resultados del estudio de vuelo
- Realizar ingeniería inversa al protocolo I2C utilizado para el control de motores
- Domesticar el cuadricóptero
 - Caracterización de los motores
 - Control de motores
- Comunicación Wifi mediante red (Ad-Hoc)
- Instrumentación
 - Comunicación con el microprocesador
 - Calibración
- Comenzar a definir integración de sensores
- Comenzar a definir esquema v técnica de contro
- Generador de rutas

- Terminar modelo físico
- Implementar simulador
- Resultados del estudio de vuelo
- Realizar ingeniería inversa al protocolo I2C utilizado para el control de motores
- Domesticar el cuadricóptero
 - Caracterización de los motores
 - Control de motores
- Comunicación Wifi mediante red (Ad-Hoc)
- Instrumentación
 - Comunicación con el microprocesador
 - Calibración
- Comenzar a definir integración de sensores
- Comenzar a definir esquema y técnica de contro
- Generador de rutas

- Terminar modelo físico
- Implementar simulador
- Resultados del estudio de vuelo
- Realizar ingeniería inversa al protocolo I2C utilizado para el control de motores
- Domesticar el cuadricóptero
 - · Caracterización de los motores
 - Control de motores
- Comunicación Wifi mediante red (Ad-Hoc)
- Instrumentación
 - Comunicación con el microprocesador
 - Calibración
- Comenzar a definir integración de sensores
- Comenzar a definir esquema v técnica de control
- Generador de rutas

PLANIFICACIÓN ORIGINAL

- Terminar modelo físico
- Implementar simulador
- Resultados del estudio de vuelo
- Realizar ingeniería inversa al protocolo I2C utilizado para el control de motores
- Domesticar el cuadricóptero
 - Caracterización de los motores
 - Control de motores
- Comunicación Wifi mediante red (Ad-Hoc)
- Instrumentación
 - Comunicación con el microprocesador
 - Calibración
- Comenzar a definir integración de sensores
- Comenzar a definir esquema y técnica de contro
- Generador de rutas

- Terminar modelo físico
- Implementar simulador
- Resultados del estudio de vuelo
- Realizar ingeniería inversa al protocolo I2C utilizado para el control de motores
- Domesticar el cuadricóptero
 - Caracterización de los motores
 - Control de motores
- Comunicación Wifi mediante red (Ad-Hoc)
- Instrumentación
 - Comunicación con el microprocesador
 - Calibración
- Comenzar a definir integración de sensores
- Comenzar a definir esquema y técnica de contro
- Generador de rutas

PLANIFICACIÓN ORIGINAL

- Terminar modelo físico
- Implementar simulador
- Resultados del estudio de vuelo
- Realizar ingeniería inversa al protocolo I2C utilizado para el control de motores
- Domesticar el cuadricóptero
 - Caracterización de los motores
 - Control de motores
- Comunicación Wifi mediante red (Ad-Hoc)
- Instrumentación
 - · Comunicación con el microprocesador
 - Calibración
- Comenzar a definir integración de sensores
- Comenzar a definir esquema y técnica de contro
- Generador de rutas

PLANIFICACIÓN ORIGINAL

- Terminar modelo físico
- Implementar simulador
- Resultados del estudio de vuelo
- Realizar ingeniería inversa al protocolo I2C utilizado para el control de motores
- Domesticar el cuadricóptero
 - Caracterización de los motores
 - Control de motores
- Comunicación Wifi mediante red (Ad-Hoc)
- Instrumentación
 - Comunicación con el microprocesador
 - Calibración
- Comenzar a definir integración de sensores
- Comenzar a definir esquema y técnica de contro
- Generador de rutas

- Terminar modelo físico
- Implementar simulador
- Resultados del estudio de vuelo
- Realizar ingeniería inversa al protocolo I2C utilizado para el control de motores
- Domesticar el cuadricóptero
 - Caracterización de los motores
 - Control de motores
- Comunicación Wifi mediante red (Ad-Hoc)
- Instrumentación
 - Comunicación con el microprocesador
 - Calibración
- Comenzar a definir integración de sensores
- Comenzar a definir esquema y técnica de contro
- Generador de rutas

- Terminar modelo físico
- Implementar simulador
- Resultados del estudio de vuelo
- Realizar ingeniería inversa al protocolo I2C utilizado para el control de motores
- Domesticar el cuadricóptero
 - Caracterización de los motores
 - Control de motores
- Comunicación Wifi mediante red (Ad-Hoc)
- Instrumentación
 - Comunicación con el microprocesador
 - Calibración
- Comenzar a definir integración de sensores
- Comenzar a definir esquema y técnica de control
- Generador de rutas

- Terminar modelo físico
- Implementar simulador
- Resultados del estudio de vuelo
- Realizar ingeniería inversa al protocolo I2C utilizado para el control de motores
- Domesticar el cuadricóptero
 - Caracterización de los motores
 - Control de motores
- Comunicación Wifi mediante red (Ad-Hoc)
- Instrumentación
 - Comunicación con el microprocesador
 - Calibración
- Comenzar a definir integración de sensores
- Comenzar a definir esquema y técnica de contro
- Generador de rutas

- Terminar modelo físico
- Implementar simulador
- Resultados del estudio de vuelo
- Realizar ingeniería inversa al protocolo I2C utilizado para el control de motores
- Domesticar el cuadricóptero
 - Caracterización de los motores
 - Control de motores
- Comunicación Wifi mediante red (Ad-Hoc)
- Instrumentación
 - Comunicación con el microprocesador
 - Calibración
- Comenzar a definir integración de sensores
- Comenzar a definir esquema y técnica de control
- Generador de rutas

- Dificultad para conseguir los medios necesarios para realizar la ingeniería inversa del control de motores
- Falta de sensores en la placa adquirida
- Avería del microprocesador

- Dificultad para conseguir los medios necesarios para realizar la ingeniería inversa del control de motores
- Falta de sensores en la placa adquirida
- Avería del microprocesador

- Dificultad para conseguir los medios necesarios para realizar la ingeniería inversa del control de motores
- Falta de sensores en la placa adquirida
- Avería del microprocesador

- Dificultad para conseguir los medios necesarios para realizar la ingeniería inversa del control de motores
- Falta de sensores en la placa adquirida
- Avería del microprocesador

Se han logrado la mayor parte de los objetivos planteados, por lo cual no se considera necesario replanificar el trabajo futuro.

Plan de contingencia

Adquirir nueva placa de sensores

- Simulador
- Completar la integración de los sensores
- Diseñar e implementar los algoritmos de vuelo
 - Autocalibración
 - Generador de Rutas
 - · Adquisición de datos y estimación de estado
 - Técnica de control
 - Switcheo manual automático

Se han logrado la mayor parte de los objetivos planteados, por lo cual no se considera necesario replanificar el trabajo futuro.

Plan de contingencia

Adquirir nueva placa de sensores

- Simulador
- Completar la integración de los sensores
- Diseñar e implementar los algoritmos de vuelo
 - Autocalibración
 - Generador de Rutas
 - · Adquisición de datos y estimación de estado
 - Técnica de control
 - Switcheo manual automático

Se han logrado la mayor parte de los objetivos planteados, por lo cual no se considera necesario replanificar el trabajo futuro.

Plan de contingencia

■ Adquirir nueva placa de sensores

- Simulador
- Completar la integración de los sensores
- Diseñar e implementar los algoritmos de vuelo
 - Autocalibración
 - Generador de Rutas
 - · Adquisición de datos y estimación de estado
 - Técnica de control
 - Switcheo manual automático

Se han logrado la mayor parte de los objetivos planteados, por lo cual no se considera necesario replanificar el trabajo futuro.

Plan de contingencia

■ Adquirir nueva placa de sensores

- Simulador
- Completar la integración de los sensores
- Diseñar e implementar los algoritmos de vuelo
 - Autocalibración
 - Generador de Rutas
 - · Adquisición de datos y estimación de estado
 - Técnica de control
 - Switcheo manual automático

Se han logrado la mayor parte de los objetivos planteados, por lo cual no se considera necesario replanificar el trabajo futuro.

Plan de contingencia

■ Adquirir nueva placa de sensores

- Simulador
- Completar la integración de los sensores
- Diseñar e implementar los algoritmos de vuelo
 - Autocalibración
 - Generador de Rutas
 - Adquisición de datos y estimación de estado
 - Técnica de control
 - Switcheo manual automático

Se han logrado la mayor parte de los objetivos planteados, por lo cual no se considera necesario replanificar el trabajo futuro.

Plan de contingencia

■ Adquirir nueva placa de sensores

- Simulador
- Completar la integración de los sensores
- Diseñar e implementar los algoritmos de vuelo
 - Autocalibración
 - Generador de Rutas
 - Adquisición de datos y estimación de estado
 - Técnica de control
 - Switcheo manual automático

Se han logrado la mayor parte de los objetivos planteados, por lo cual no se considera necesario replanificar el trabajo futuro.

Plan de contingencia

■ Adquirir nueva placa de sensores

- Simulador
- Completar la integración de los sensores
- Diseñar e implementar los algoritmos de vuelo
 - Autocalibración
 - Generador de Rutas
 - Adquisición de datos y estimación de estado
 - Técnica de control
 - Switcheo manual automático

Se han logrado la mayor parte de los objetivos planteados, por lo cual no se considera necesario replanificar el trabajo futuro.

Plan de contingencia

■ Adquirir nueva placa de sensores

- Simulador
- Completar la integración de los sensores
- Diseñar e implementar los algoritmos de vuelo
 - Autocalibración
 - Generador de Rutas
 - · Adquisición de datos y estimación de estado
 - Técnica de control
- Switcheo manual automático

Se han logrado la mayor parte de los objetivos planteados, por lo cual no se considera necesario replanificar el trabajo futuro.

Plan de contingencia

■ Adquirir nueva placa de sensores

- Simulador
- Completar la integración de los sensores
- Diseñar e implementar los algoritmos de vuelo
 - Autocalibración
 - Generador de Rutas
 - · Adquisición de datos y estimación de estado
 - Técnica de control
- Switcheo manual automático

Preguntas?