P2 - Funções diferenciáveis e séries

Lourenço Henrique Moinheiro Martins Sborz Bogo - 11208005

Questão 1

Preciso obter a expressão da série $\frac{x^4}{4} + \frac{x^8}{8} + \frac{x^{12}}{12} + \dots$

Vamos chamar a série de f(x). Agora, precisaremos derivar essa série:

$$f(x) = \frac{x^4}{4} + \frac{x^8}{8} + \frac{x^{12}}{12} + \dots$$

$$f'(x) = x^3 + x^7 + x^{11} + \dots$$

É fácil notar que essa f'(x) é uma P.G. de termo inicial x^3 e razão x^4 . Logo podemos escrever ela da seguinte maneira:

$$f'(X) = \frac{x^3}{1-x^4}$$
, com convergência para $-1 < x < 1$.

Queremos a expressão de f(x), logo precisamos integrar f'(x).

Iremos fazer a seguinte substituição:

$$u = 1 - x^4 \to du = -4x^3 \to x^3 = \frac{-du}{4}$$
.

Nossa integral então fica:

$$f(x) = \frac{-1}{x^4} \int \frac{1}{u} du = \frac{-1}{4} \ln u + c = \frac{-1}{4} \ln \left(1 - x^4\right) + c$$
, com convergência para $-1 < x < 1$.

Agora precisamos descobrir a constante. Para isso iremos usar a fórmula para calcular $\frac{-1}{4}$ ln 1 e para isso queremos x=0:

$$\frac{-1}{4}\ln 1 - 0^4 + c = \frac{-1}{4}\ln 1 + c = \frac{0^4}{4} + \frac{0^8}{8} + \frac{0^{12}}{12} + \dots \to 0 + c = 0 \to c = 0.$$

Nossa resposta então, é $\frac{x^4}{4} + \frac{x^8}{8} + \frac{x^{12}}{12} + \dots = \frac{-1}{4} \ln(1 - x^4)$.

Questão 2

Precisamos achar o valor de $\int_0^1 x^2 e^{-x^2} dx$ com um erro menor que 0.01.

Começaremos primeiro com a série de taylor de e^z ao redor de x=0.

Todas as derivadas serão 1, logo temos a seguinte série:

$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots$$
 Vamos mostrar que converge para qualquer z:

$$e^z=1+z+\frac{z^2}{2!}+\frac{z^3}{3!}+\ldots$$
 Vamos mostrar que converge para qualquer z:
$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{z^{n+1}}{(n+1)!}\frac{n!}{z^n}=\lim_{n\to\infty}\frac{z}{n+1}=0,\,\forall z\in\mathbb{R}.$$

Como isso vale para qualquer z, podemos trocá-lo por $-x^2$, conseguindo a série de taylor de e^{-x^2} .

Multiplicamos então a série inteira por x^2 , conseguindo então a série de $x^2e^{-x^2}$:

$$x^{2}e^{-x^{2}} = x^{2} - x^{4} + \frac{x^{6}}{2!} - \frac{x^{8}}{3!} \cdot \cdot \cdot = t(x)$$

Queremos então, a integral dessa série, de 0 até 1, com erro menor que 0.01, e como a série é alternada, para conseguir esse erro, precisamos simplesmente parar no termo anterior ao que fica menor que 0.01.

 $\int_0^1 t(x)dx = \frac{1^3}{3} - \frac{1^5}{5} + \frac{1^7}{14} - \frac{1^9}{54}, \text{ paramos aqui, pois o próximo termo \'e } \frac{1^{11}}{269} < \frac{1}{100}. \text{ Nossa soma \'e aproximadamente } 0.18.$

Questão 3

Queremos mostrar, usando séries de taylor, que:

$$\lim_{x \to 1} x^{\frac{1}{1-x}} = \frac{1}{e}.$$

Primeiro, iremos fazer a seguinte substituição h=1-x, e também iremos escrever a expressão na forma de ln:

$$\lim_{x \to 1} x^{\frac{1}{1-x}} = \lim_{h \to 0} (1-h)^{\frac{1}{h}} = \lim_{h \to 0} e^{\ln(1-h)^{\frac{1}{h}}} = \frac{1}{e}.$$

Portanto, temos que:

$$\lim_{h \to 0} \ln (1 - h)^{\frac{1}{h}} = -1 \to \lim_{h \to 0} \frac{1}{h} \ln (1 - h).$$

Agora iremos usar a série de taylor de $\ln{(1-h)}$:

$$f(x) = \ln(1-x) \to f'(x) = \frac{-1}{1-x} = \sum_{n=1}^{\infty} -x^{n-1} \to f(x) = \int f'(x) dx = \sum_{n=1}^{\infty} \frac{=x^{n-1}}{n} + c,$$

$$-1 < x < 1. \text{ Para provar que a constante \'e 0, \'e s\'o calcular ln 1, ou seja, a s\'erie para } x = 0.$$

Logo, voltando para nosso limite, temos que:

$$\lim_{h \to 0} \frac{1}{h} \ln(1 - h) = \lim_{h \to 0} \frac{1}{h} \sum_{n=1}^{\infty} \frac{-h^n}{n} = \lim_{h \to 0} \sum_{n=1}^{\infty} \frac{-h^{n-1}}{n} = \lim_{h \to 0} -h^0 = -1.$$

Concluímos então que:

$$\lim_{h \to 0} (1 - h)^{\frac{1}{h}} = \lim_{h \to 0} e^{\ln(1 - h)^{\frac{1}{h}}} = e^{-1} = \frac{1}{e}.$$

Ouestão 4

Primeiro vamos provar que a função f_n converge uniformemente usando o Critério "M" de Weierstrass. Isso não é muito difícil de mostrar, pois:

Como nossos " M_n ", usaremos a sequência c_n . Então, temos que mostrar que nossa $f_n(x) <= c_n$ e que $\sum_{n=0}^{\infty} c_n < \infty$. Nos foi dado que $\sum_{n=0}^{\infty} c_n < \infty$, logo precisamos apenas provar que $f_n(x) <= c_n$:

$$f_n(x) = \sum_{i=1}^n c_i I(x - x_i)$$
, e como $I(x - x_i) \le 1$, temos que $f_n(x) \le c_n$.

Agora precisamos provar que a função f(x) é contínua. Vamos separar isso em dois

casos.

1. A sequência x_n não converge para um certo ponto $z \in [a, b]$

Nesse caso, existe um certa vizinhança ao redor de z na qual, para qualquer y o seguinte vale:

- f(z)=f(y). Desse modo, temos que $f(z)-f(y)<\epsilon,\, \forall \epsilon\in\mathbb{R}-0$. Logo f é contínua em [a,b].
- 2. Agora temos que a sequência x_n converge para um $z \in [a,b]$. Sabemos por convergência uniforme que $(\forall \epsilon > 0)(\forall x \in [a,b])(\exists n_0 \in \mathbb{N})(\forall n > n_0)|f_n(x) f(x)| < \epsilon$. Vamos pegar então o menor n possível, ou seja n_0+1 . Agora vamos definir $k_i = z-x_i$, $i=0,\ldots,n_0+1=n$. Vamos pegar o mínimo dos k_i e chamar de k. Essa era a vizinhança que precisávamos. De x-k até x+k, $f_n(z)=f_n(y)$, $\forall y \in]z-k, z+k[$. Sabemos também que se f_n converge uniformemente para f e f_n é contínua, f também é, que é exatamente a situação que temos. Logo f é contínua.

Provamos então que a f é contínua para os dois casos, mostrando que a f é contínua em [a,b].