CV 510% Modeling, Uncertainty, and Data for Engineers (July – Nov 2025)

Dr. Prakash S Badal

Flow

- Announcement
- Summary of Part-B

Announcements

- Today's lab on sampling and reliability
- Part 3 starts from tomorrow (9th Oct)
 - signal processing
 - time series
 - machine learning
- Make-up exam?

Why should you care?

Why should you care about Risk & Reliability?

Space Shuttle Challenger disaster (1986)
 https://www.youtube.com/watch?v=yibNEcn-4yQ

Catch-all approach:

Build for every "what if" scenario: create backup for every imaginable scenario, even wildly unlikely ones

If everything is important, then nothing is!

Module Overview

A crash course in probability, probabilistic models, and probabilistic methods.

Summary of Uncertainty & Estimation

Probability basics and RVs

- S: sample space; E: events in a random experiment
- Probability axioms are $\Pr(S) = 1$ $0 \le \Pr(E) \le 1$ For mutually exclusive E_1 and E_2 , $\Pr(E_1 \cup E_2) = \Pr(E_1) + \Pr(E_2)$
- Conditional probability: $\Pr(E_1|E_2) = \Pr(E_1E_2)$
- Multiplication rule: $\Pr(E_1E_2) = \Pr(E_1|E_2) \cdot \Pr(E_2)$
- Statistically independence (SI):
- "Conditional probability of one event given the other has occurred" is identical to "its marginal probability." $\Pr(E_1|E_2) = \Pr(E_1)$ For SI events, $\Pr(E_1E_2) = \Pr(E_1) \cdot \Pr(E_2)$

Settlers of Catan

Wikimedia commons

What is the probability that you get at least one 8 in a single round consisting of four players?

Probability rules: total probability rule

• If E_1, E_2, \dots, E_n are n MECE events,

10

$$Pr(A) =$$

$$\Pr(AE_1) + \Pr(AE_2) + \dots + \Pr(AE_n)$$

$$= \sum_{i=1}^{n} \Pr(AE_i)$$
• Breaking down of calculation of event A into computing the conditional probabilities $P(A|E_i)$
• Conditionals usually easier to compute
$$= \sum_{i=1}^{n} \Pr(A|E_i) \Pr(E_i)$$
• Clever selection of events E_i

Total Probability Rule

= Pr(D|W)Pr(W) + Pr(D|M)P(M) + Pr(D|S)P(S)

= 0.009 + 0.008 + 0.012 = 0.029

Random variables, distributions, uncertainty propagation

Random variables: $E[\cdot]$, $Var[\cdot]$

Black dots \rightarrow red dots \rightarrow blue dots

Covariance

• Covariance is the expected value of $(X_1 - \mu_1)(X_2 - \mu_2)$,

$$Cov[X_1, X_2] = E[(X_1 - \mu_1)(X_2 - \mu_2)]$$

$$\Rightarrow Cov[X_1, X_2] = E[X_1 X_2] - E[X_1]E[X_2]$$

Correlation coefficient

$$\rho_{12} = \frac{\operatorname{Cov}[X_1, X_2]}{\sigma_1 \sigma_2}.$$

$$Cov[X_1, X_2] = \rho_{12}\sigma_1\sigma_2$$

$$-1 \le \rho_{12} \le 1$$

Correlation

Empirical distribution

Standard ECDF:

$$F_n(x) = \frac{l}{n}$$

goes from 0 to 1

Standard ECDF:
$$F_n(x) = \frac{i}{n}$$

Bounded ECDF: $F_{n,b}(x) = \frac{i}{n+1}$

stays clear of 0 and 1

useful in Q-Q/probability plotting, avoids $-\infty$ or $+\infty$.

Core distributions

• Tails: thick/light

Lognormal

• $X \sim Lognormal \Leftrightarrow Y = \ln(X) \sim Normal$

Gumbel distributions

When we are interested in

the smallest

or

the largest of a set of rv's,

e.g., a chain of links: smallest strength.

Flood level under a bridge: highest flood level during its lifetime.

$$Y_1 = \min(X_1, X_2, \dots, X_n),$$

$$Y_n = \max(X_1, X_2, \dots, X_n).$$

Gumbel distributions

Error propagation

Revise

•Two structural engineers, Alice and Bob, independently measure the wind speed in m/s at the top of each tower.

Alice's reading $X \sim \mathcal{N}(\mu = 40, \sigma = 5)$

Bob's reading $Y \sim \mathcal{N}(\mu = 42, \sigma = 6)$

Their readings are correlated with ho=0.8

- 1. What's the probability that Alice's reading exceeds 50?
- 2. What's the covariance of *X* and *Y*?
- 3. If Alice and Bob average their measurements, W = (X + Y)/2, what are E[W] and Var[W]?
- 4. If design wind speed is 55 m/s, what's the prob. that the average exceeds 55 m/s?

Mean and Variance propagation laws

If $Y = a_1X_1 + a_2X_2 + c$, with a_i and c deterministic const.

$$E[Y] = a_1 \mu_1 + a_2 \mu_2 + c$$

```
\begin{aligned} & \text{Var}[Y] = & \text{E}[(Y - \mu_Y)^2] \\ &= \text{E}[\{(a_1 X_1 + a_2 X_2 + c) - (a_1 \mu_1 + a_2 \mu_2 + c)\}^2] \\ &= \text{E}[\{(a_1 X_1 - a_1 \mu_1) + (a_2 X_2 - a_2 \mu_2)\}^2] \\ &= \text{E}[(a_1 X_1 - a_1 \mu_1)^2 + (a_2 X_2 - a_2 \mu_2)^2 + 2(a_1 X_1 - a_1 \mu_1)(a_2 X_2 - a_2 \mu_2)] \\ &= a_1^2 \text{E}[(X_1 - \mu_1)^2] + a_2^2 \text{E}[(X_2 - \mu_2)^2] + 2a_1 a_2 \text{E}[2(X_1 - \mu_1)(X_2 - \mu_2)] \\ &= a_1^2 \sigma_1^2 + a_2^2 \sigma_2^2 + 2a_1 a_2 \text{Cov}[X_1, X_2] \end{aligned}
```

Mean and Variance propagation laws

• If Y = g(X) is a nonlinear function of X. Find E[Y] & Var(Y).

$$\mathsf{E}[Y] = \mathsf{E}[g(X)]$$

Taylor series expansion:

$$g(X) = g(\mu_X) + \left(\frac{\partial g}{\partial x}\right)_{\mu_X} (X - \mu_X) + \frac{1}{2!} \left(\frac{\partial^2 g}{\partial x^2}\right)_{\mu_X} (X - \mu_X)^2 + \text{H. O. T.}$$

$$\mathbf{E}[Y] \cong \mathbf{E}\left(g(\mu_X) + \left(\frac{\partial g}{\partial x}\right)_{\mu_X} (X - \mu_X) + \frac{1}{2!} \left(\frac{\partial^2 g}{\partial x^2}\right)_{\mu_X} (X - \mu_X)^2\right)$$

$$= g(\mu_X) + 0 + \frac{1}{2!} \left(\frac{\partial^2 g}{\partial x^2} \right)_{\mu_X} E[(X - \mu_X)^2]$$

$$\mathsf{E}[Y] \cong g(\mu_X)$$

First-order mean approximation

$$\mathrm{E}[Y] \cong g(\mu_X) + \frac{1}{2} \left(\frac{\partial^2 g}{\partial x^2}\right)_{\mu_X} \sigma_X^2$$
 Second-order mean approximation

Mean and Variance propagation laws

• If Y = g(X) is a nonlinear function of X. Find E[Y] & Var(Y).

Taylor series expansion:

$$g(X) = g(\mu_X) + \left(\frac{\partial g}{\partial x}\right)_{\mu_X} (X - \mu_X) + \frac{1}{2!} \left(\frac{\partial^2 g}{\partial x^2}\right)_{\mu_X} (X - \mu_X)^2 + \text{H. O. T.}$$

$$\operatorname{Var}[Y] = \operatorname{E}[(Y - \mu_Y)^2] \cong \left(\left(\frac{\partial g}{\partial x}\right)_{\mu_X}\right)^2 \sigma_X^2$$
 First-order var. approx.

Regression & estimation

Elements of models

- O. Eyeball the data.
 Scatter plot, histogram, change scales
- 1. Estimation Goal: Obtain parameter estimates $(\hat{\beta})$ Concepts: least squares, maximum likelihood, fitting the model
- 2. Inference Goal: Model comparison; uncertainty in parameter $(\hat{\beta})$ Concepts: Conf. interval for $\hat{\beta}$, hyp. testing, std. error, p-values
- 3. Prediction Goal: Forecast new outcomes (x is now a predictor) Concepts: CI for \hat{y} (prediction error), mean-squared error (MSE)
- 4. Explanation Goal: Interpret the fitted model, understand relationships Concepts: feature importance, causality
- 5. Diagnosis Goal: Assess model assumptions and validity Concepts: error (constant Var.), unusual observations (outliers)

Elements of models: Estimation

†0. Eyeball the data.

Scatter, histogram, change scales (log-log, semilogX, semilogY, e^X , so on).

1. Estimation

| Model:

$$Y = Ax + \epsilon$$
 $Y = x\beta + \epsilon$

Predicted/response:

Y dependent var.

2. Inference

Predictor/feature:

ind./explanatory/covariate

3. Prediction

4. Explanation

A or β **Parameters:**

Estimating parameters aka "model building stage": Role of x is not to predict (y) as yet!

- - It is to estimate A or β
 - Better call x at this stage feature/covariate/explanatory var.

5. Diagnosis

Goal of estimation: Obtain parameter estimates (\widehat{A})

Linear models: example

• Is this a linear model

Write its linear functional relationship

observation observations x_2 t_1 t_i time

Least-square errors

A linear model with a single feature has two parameters:

slope

An example:

$$y_1 = mx_1 + c$$

Intercept

• • •

$$y_5 = mx_5 + c$$

$$A = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}; x = \begin{bmatrix} m \\ c \end{bmatrix}$$

5 equations; 2 unknowns (m, c)

$$A^{\mathrm{T}}y = A^{\mathrm{T}}Ax \Rightarrow x = (A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}y$$

Magic: What does the calculated m and c mean?

Least-square estimates of m, c.

Exploiting central moments

Central moments:

First: $E[(X - \mu)]$ zero

Second: $E[(X - \mu)^2]$ Variance

Third: $E[(X - \mu)^3]$ scaled Skewness (divide by σ^3 to get Skewness)

Fourth: $E[(X - \mu)^4]$ scaled Kurtosis (divide by σ^4 to get Kurtosis)

skewness =
$$E\left[\left(\frac{X-\mu}{\sigma}\right)^3\right] = \frac{E[X^3] - 3\mu\sigma^2 - \mu^3}{\sigma^3}$$

31

Exploiting central moments				
S. No.	Distribution	Skewness	Kurtosis (excess)	#param.
1	Normal $\mathcal{N}(\mu, \sigma)$	0	3 (0)	2
2	Uniform [a, b]	0	1.8 (-1.2)	2
3	Exponential $Exp(\lambda)$	2	9 (+6)	1
4	Lognormal $\mathcal{LN}(\lambda,\zeta)$	Bad-looking fun of ζ	Bad-looking fun of ζ (above -3)	2
5	Gumbel type-1 (largest)	≈ 1.14	5.4 (+2.4)	2
6	Gumbel type-2 (smallest)	≈ −1.14	5.4 (+2.4)	2
7	t-distribution	0	$\frac{3(n-2)}{n-4}$; excess of $\frac{6}{n-4}$	2, #dof
8	Weibull	Param-	Param-dependent	3

dependent

dependent

Param-

Param-dependent

4 (2 shape,

loc, scale)

9

Beta

Maximum Likelihood Estimation

Maximum likelihood estimation

Find $\mathcal{L}(\mu, \sigma | x_i) = f(x_i | \mu, \sigma)$ for each dart, x_i . Maximize the product of likelihood,

$$\mathcal{L}(\mu, \sigma | \mathbf{x}) = \prod_{i}^{n} f(x_i | \mu, \sigma)$$

$$\hat{\mu}, \hat{\sigma} = \arg \max_{\mu, \sigma} \mathcal{L}(\mu, \sigma | \mathbf{x})$$

$$\hat{\mu}, \hat{\sigma} = \arg\max_{\mu, \sigma} \ln[\mathcal{L}(\mu, \sigma | \mathbf{x})]$$

Excel Demo!

Precision and Bias

Bias and precision

Accuracy/bias:

How far off, on average, are your darts from the bullseye?

• Precision:

How close are the darts to each other?

Confidence Interval Objective

Confidence interval

e.g., election polls, mechanical properties.

Population parameter:

Population average

Use sample mean/proportion to estimate population mean/proportion

Confidence Interval Estimation

CLT and CI: (estimating mean)

Hypothesis Testing

Spot the error*

Type I error (false positive)

Type II error (false negative)

People are generally not pregnant!

Default You are not pregnant H_0 Alternative You are pregnant H_1

Hypothesis testing (& justice system)

No numerical values in courts, but they share four common features:

- 11 The alternative hypothesis: This is why a criminal is arrested.
 - The police, of course, do not think that the criminal is innocent.
 - The researchers think that their treatment is effective. H_1 or H_A .
- **2.** The null hypothesis: The presumption of innocence.
 - The suspect or treatment didn't do anything. H_0 is the logical opposite of H_1 .
- **3** A standard of justice: A reasonable doubt. A test score!
 - No possibility of absolute proof. So, a standard has to be set.
 - Reject the null hypothesis beyond a reasonable doubt.
- 4. A data sample: Evaluation of partial information.
 - Eye-witnesses/fingerprints/DNA analysis/experimental/numericaldata of treatment.
 - Getting the "whole truth and nothing but the truth" is often impossible.

Type II error

Type II error will be committed if $\bar{x} \in [485,515]$ when $\mu = 520$ $\beta = P(485 \le \bar{x} \le 515 \text{ when } \mu = 520)$

Tail of distributions

• Excess Kurtosis:
$$E[(X - \mu)^4]/\sigma^4 - 3$$

Selection of GEV distribution type

Tail type	Extreme value type	Parent distribution
Medium-/baseline tailed	Gumbel	Normal
Heavy-/fat-tailed	Fréchet	t-distribution
Light-/thin-tailed	Reversed Weibull	Uniform, beta

Magnitude of extremes

Generalized extreme value (GEV) distributions

- Smallest/largest values?
- Look out for the tails? Thin/thick? Bounded?
- Estimate excess Kurtosis
- Pick one of the GEV models
- Frequency of extremes

Poisson process

- Count of extremes \rightarrow Estimate event rate (λ)
- Independent or clustered?
 - Proceed with Poisson models
 - Decluster using peak-over-threshold/block maxima

Risk & Reliability

Risk from monkey attack on campus

The risk from the monkey hazard involves:

```
    (or lack thereof)
    Person's familiarity with the hazard (immeasurable; Not useful)
    Severity of attack: How bad was the attack? (intensity measure)
```

bitten

Let's call it "Monkey Attack Scale, MAS".

charged

Rate of monkey attack: How often? (hazard rate)

scratched

Damage to person: Time in the hospital? (damage measure)

None Hours days week-or-more none minor major severe

Consequence of damage: \$, downtime? (consequence function)

mauled

Probabilistic seismic risk assessment

Three components

Given: location & building design (\mathcal{L} and \mathcal{D})

- Seismic hazard, $\mathcal{H}_{sa} \coloneqq k_0 s_a^{-k}$
 - Occurrence rate, $g(S_a|\mathcal{L})$ Depends on location/seismicity
- Building's fragility, drift demand, $\mathcal{F}_{col,\mathcal{D}}(s_a) \coloneqq \Pr(col|s_a,\mathcal{D})$
 - Probability density, $p(DM|S_a, \mathcal{L}, \mathcal{D})$ Depends on building (type, material, age)
- Consequence of damage, e.g., downtime, repair cost ratio:

$$C_{DT}(dm) := \Pr(DT = dt|dm) \quad \text{or} \quad C_{RCR}(dm) := \Pr(RCR = rcr|dm)$$

• Probability density, $p(DV|DM, \mathcal{L}, \mathcal{D})$

$$g[DV|\mathcal{L},\mathcal{D}] = \iint p(DV|DM,\mathcal{L},\mathcal{D}) p(DM|IM,\mathcal{L},\mathcal{D}) g(IM|\mathcal{L}) dIM dDM$$

$$g[DV|\mathcal{L},\mathcal{D}] = \iiint p(DV|DM,\mathcal{L},\mathcal{D})p(DM|EDP,\mathcal{L},\mathcal{D})p(EDP|IM,\mathcal{L},\mathcal{D})g(IM|\mathcal{L})dIM \, dDM_{56}$$

Questions, comments, or concerns?