Question	Scheme	Marks
number 10.		
(a)	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = 3t^2 - 8t + 5$	M1A1 (2)
(b)	$3t^2 - 8t + 5 = 0 \Longrightarrow (3t - 5)(t - 1) = 0 \Longrightarrow t = \frac{5}{3}, 1$	M1A1 (2)
(c)	$s = \int t^3 - 4t^2 + 5t + 1 = \frac{t^4}{4} - \frac{4t^3}{3} + \frac{5t^2}{2} + t + c$	M1A1
	When $t = 0, s = 3 \Rightarrow c = 3$	B1
	$s = \frac{t^4}{4} - \frac{4t^3}{3} + \frac{5t^2}{2} + t + 3$	dM1
	So $s = 8\frac{1}{3}$ m	A1 (5)
	ALT	
	$s = 3 + \int_0^2 t^3 - 4t^2 + 5t + 1 dx = 3 + \left[\frac{t^4}{4} - \frac{4t^3}{3} + \frac{5t^2}{2} + t \right]_0^2 = 8\frac{1}{3} \text{ m}$	{M1A1B1
	For correct substitution and evaluation	dM1A1} {(5)}

		Notes
(a)	M1	For an attempt to differentiate the given v. See general guidance for the
		definition of an attempt
	A1	For the correct $a = 3t^2 - 8t + 5$
(b)	M1	Sets their $a = 0$ and attempts to solve their 3TQ. They must achieve 2 values only for t for the award of this mark.
	A1	For $t = \frac{5}{3}, 1$
Plea	se chec	ck the whole method in part (c) before you begin to award marks.
(c)	M1	Attempts to integrate the given v. See general guidance for the definition of an
		attempt. Award this mark if the constant of integration is not seen.
	A1	For the correct integrated expression for s , which must include $+c$.
	B1	For $c = 3$ (Or any other letter given for the constant of integration)
	dM1	For substituting the value of $t = 2$ into an integrated expression
	A1	For $s = 8\frac{1}{3}$
AL	Γ1	
(c)	M1	Attempts to integrate the given v. See general guidance for the definition of an
		attempt. The limits of integration not required for this mark
	A1	For the correct integrated expression
	B1	For +3
	dM1	For substituting their limits of integration.
	A1	For $s = 8\frac{1}{3}$ Note: if their limits were the wrong way around they will achieve
		$s = -8\frac{1}{3}$. Even if they give the final answer as $s = 8\frac{1}{3}$ this is A0.
	Γ 2 On at <i>t</i> = 0	ly apply this scheme when see they have added the additional displacement of
	M1	Attempts to integrate the given v. See general guidance for the definition of an
		attempt. The limits of integration not required for this mark
	A1	For the correct integrated expression $+c$ not required
	dM1	For substituting the value of $t = 2$ into an integrated expression
	A1	For achieving $s = \frac{16}{3}$
		$\frac{1}{3}$
	B1	For adding 3 to their s to achieve $s = \frac{25}{3}$ oe
		_

Question	Scheme	Marks
number 11.	Mark parts (i) and (ii) together	
(a)	$f'(x) = p + 2qx = 0 \Rightarrow p + 2q(3) = 0 \Rightarrow p + 6q = 0$	M1
	$9 = p(3) + q(3)^2 \Rightarrow 9 = 3p + 9q \Rightarrow (3 = p + 3q)$	M1A1
	Solves simultaneous equations by substitution or elimination	
	(i) $[6p+q=0]-[3=p+3q]=3q=-3 \Rightarrow q=-1 \Rightarrow p=6$	M1A1
	q = -1	B1
	(ii) $f''(x) = -2 \Rightarrow$ negative constant so point is a maximum	B1 (7)
(b)	$-x+10 = 6x - x^2 \implies 0 = x^2 - 7x + 10 \implies (x-2)(x-5) = 0 \implies x = 2,5$	M1M1A1 (3)
(c)	Volume = $\pi \int_{2}^{5} (-x^{2} + 6x)^{2} dx - \pi \int_{2}^{5} (-x + 10)^{2} dx$	M1
	Volume = $\pi \int_{2}^{5} \{ (x^4 - 12x^3 + 36x^2) - (x^2 - 20x + 100) \} dx$	
	$= \pi \left[\frac{x^5}{5} - 3x^4 + \frac{35}{3}x^3 + 10x^2 - 100x \right]_2^5$ (or integrate without simplification)	M1A1
	$= \pi \left[625 - 3 \times 625 + \frac{35 \times 125}{3} + 250 - 500 \right] - \left[\frac{32}{5} - 48 + \frac{35 \times 8}{3} + 40 - 200 \right]$	M1
	$V = \frac{333\pi}{5}$	A1
		(5)
		(15)
	$V = \frac{333\pi}{5}$	(5)

	Notes		
(a)	M1	Attempts to differentiate the given equation for curve C , equates to 0 , and	
		substitutes in $x = 3$ to form an equation in p and q .	
	M1	Substitutes $(3,9)$ into the given equation to form an equation in p and q .	
	A1	For both correct equations; $p+6q=0$ and $3=p+3q$ or any equivalent to either	
		equation.	
	M1	Attempts to solve the simultaneous equations by any method.	
	A1	For $p = 6$. This is a show so check that the method is correct.	
	B1	For $q = -1$	
	B1	Finds the second derivate, substitutes the value of q and finds $f''(x) = -2$ with a	
		conclusion hence maximum. E.g. Minimally acceptable -2 hence maximum	
		OR	
		Completes the square to show that the maximum value of y is 9 when $x = 3$	
		$y = -x^2 + 6 = -(x^2 - 6) = -[(x - 3)^2 - 9] = -(x - 3)^2 + 9$	
		with a conclusion that the maximum value of $y = 9$ occurs when $x = 3$	
(b)	M1	Sets the equation of l = equation of c with their values of p and q and forms a 3TQ.	
	M1	Attempts to solve their 3TQ by any method, but must achieve two values of x.	
	A1	For $x = 2,5$	
	_	art (c) are dependent on their method being dimensionally correct and	
	plete	11 (6 1: 1: 4 4:)	
(c)			
	M1	For a statement using the correct formula for the volume of rotation	
		$V = \pi \int y^2 dx$, using the equation for C with their value of q, minus the equation	
		for line l rearranged to make y the subject. Ignore missing dx and ignore limits	
		for this mark. π must be present and the equations must be squared.	
	M1	For integrating their statement for V. Their limits of integration found in (b) must	
		be shown, the correct way around for the award of this mark.	
		The highest power of x must be a term in x^4 . Ignore missing π for this mark.	
	A1	For the correct integrated expression for V, complete with limits. It need not be	
	1 13 51	simplified for this mark and ignore missing π for this mark.	
	ddM1	For substituting in both of their values from (b) and subtracting them.	
	A1	For the correct volume in terms of π only of $V = \frac{333\pi}{5}$ or 66.6π oe.	
		isw erroneous attempts to simplify after 66.6π oe seen	

Metho	d 2 (Integration of curve and volume of truncated cone)
M1	For a statement using the correct formula for the volume of rotation
	$V = \pi \int y^2 dx$, using the equation for C with their value of q. π must be present
	and the equations must be squared. Evidence of an attempt to find the volume
	a truncated cone must be seen for this mark.
M1	For integrating their statement for V. Their limits of integration found in (b)
	must be shown, the correct way around for the award of this mark, and
	substituted into their integrated expression.
	The highest power of x must be a term in x^4 . Ignore missing π for this mark
A1	For the correct volume for C ($V = 195.6$ (π))
ddM1	For a correct method to find the volume of a truncated cone using their values
	x from (b) to find y and substitute into the volume of a truncated cone.
	When $x = 5$, $y = 5$ and $x = 2$, $y = 8$ $V = \frac{1}{3} \times \pi \times '8'^2 \times '8' - \frac{1}{3} \times \pi \times '5'^2 \times '5'$ (=12)
A1	For the correct volume in terms of π only of $V = \frac{333\pi}{5}$ or 66.6π oe.
	isw erroneous attempts to simplify after 66.6π oe seen
	d 3 (Integration of curve and line separately)
M1	For a statement using the correct formula for the volume of rotation
	$V = \pi \int y^2 dx$, using the equation for C with their value of q. Ignore missing α
	and ignore limits for this mark.
	π must be present and the equation must be squared.
	AND
	For a statement using the correct formula for the volume of rotation
	$V = \pi \int y^2 dx$, using the equation for <i>l</i> with their values of <i>p</i> and <i>q</i> . Ignore
	missing dx and ignore limits for this mark.
	π must be present and the equation must be squared.
M1	For integrating their statements for V. Their limits of integration found in (b)
	must be shown, the correct way around for the award of this mark.
	The highest power of x in C must be a term in x^4 , and x^2 in l.
A 1	Ignore missing π for this mark.
A1	For the correct integrated expressions for C and l, complete with limits. They
ddM1	need not be simplified for this mark and ignore missing π for this mark. For substituting in their values from (b) and subtracting them.
aawr	AND subtracting the volume of the truncated cone fromm the volume of the
	curve.
A1	For the correct volume in terms of π only of $V = \frac{333\pi}{5}$ or 66.6π oe.
	isw erroneous attempts to simplify after 66.6π oe seen
E: Vol	ume of revolution of $C = 195.6\pi$
Vol	lume of truncated come = 129π