

Grundlagen der Programmierung 2 A (Listen)

Haskell: Listen

Prof. Dr. Manfred Schmidt-Schauß

Sommersemester 2018

Objekten.		
	Ausdruck im Programm	Erklärung

Ausdruck im Programm	Erklärung
[0,1,2,3,4,5,6,7,8]	Typ: [Integer]; d.h. Liste von Integer.

Ausdruck im Programm	Erklärung
[0,1,2,3,4,5,6,7,8]	Typ: [Integer]; d.h. Liste von Integer.
D	leere Liste, (Nil)

Ausdruck im Programm	Erklärung
[0,1,2,3,4,5,6,7,8]	Typ: [Integer]; d.h. Liste von Integer.
[]	leere Liste, (Nil)
['a', 'b', 'c']	Typ: [Char];

Ausdruck im Programm	Erklärung
[0,1,2,3,4,5,6,7,8]	Typ: [Integer]; d.h. Liste von Integer.
[]	leere Liste, (Nil)
['a', 'b', 'c']	Typ: [Char];
[[], [0], [1,2]]	Liste von Listen; Typ [[Integer]], d.h. eine Liste von Listen von Integer-Objekten.

Ausdruck im Programm	Erklärung
[0,1,2,3,4,5,6,7,8]	Typ: [Integer]; d.h. Liste von Integer.
[]	leere Liste, (Nil)
['a', 'b', 'c']	Typ: [Char];
[[], [0], [1,2]]	Liste von Listen; Typ [[Integer]], d.h. eine Liste von Listen von Integer-Objekten.
[1]	potentiell unendliche Liste der Zahlen 1,2,3,; Typ: [Integer]

Listen?

Vorteile der Listen im Vergleich mit z.B Arrays:

- Haskell-Listen sind seiteneffektfrei;
 Programmierung mit Arrays ist eher imperativ
- Potentiell unendliche Listen sind möglich
- Programmlogik mit Listen ist einfacher: Es gibt mehr korrekte Programmtransformationen

Listen?

Vorteile der Listen im Vergleich mit z.B Arrays:

- Haskell-Listen sind seiteneffektfrei;
 Programmierung mit Arrays ist eher imperativ
- Potentiell unendliche Listen sind möglich
- Programmlogik mit Listen ist einfacher: Es gibt mehr korrekte Programmtransformationen
- Weniger ist Mehr

zwei Schreibweisen für Listen:

[0,1,2]	(0:(1:(2:[])))
	interne Darstellung mit
Druckbild einer Liste	zweistelligem Infix-Listen-Konstruktor ": "
	und dem Konstruktor []

zwei Schreibweisen für Listen:

[0,1,2]	(0:(1:(2:[])))
schöne Darstellung	interne Darstellung mit
Druckbild einer Liste	zweistelligem Infix-Listen-Konstruktor ": "
	und dem Konstruktor []

Eingebaute, listenerzeugende Funktionen:

Ausdruck im Programm	Erklärung
[n]	erzeugt die Liste der Zahlen ab n .
[nm]	erzeugt die Liste von n bis m
[110]	ergibt [1,2,3,4,5,6,7,8,9,10]
[n,mk]	erzeugt die Liste von n bis k
	mit Schritten $m-n$

Listen

- Listendarstellung
- Listenerzeugung
- Listen-Druckbild

Darstellung von Listen

Listen als interne Datenstrukturen sind aufgebaut mittels zwei Konstruktoren:

Konstante für die leere Liste

: Zweistelliger Infix-Konstruktor

Darstellung von Listen

Listen als interne Datenstrukturen sind aufgebaut mittels zwei Konstruktoren:

- Konstante für die leere ListeZweistelliger Infix-Konstruktor
 - Zweisteiliger IIIIX-Nonstruktor
 - a : b Linkes Argument a: erstes Element der Liste Rechtes Argument b: Restliste

Beispiel für Haskells Listenerzeugung:

8: [] Liste [8] mit dem Element 8 9: (8: []) Liste [9,8] mit zwei Elementen 9,8 10: (9: (8: [])) Liste [10,9,8] mit drei Elementen

Baum-Bild einer Liste

wird gedruckt als: [10,9,8]

Pattern-Matching und Listendarstellung

Pattern

Liste

Pattern-Matching und Listendarstellung

Ergebnis des Pattern-Match: $x \mapsto 10$, $xs \mapsto [9, 8]$

Einfache Listenfunktionen

Definitionen

```
head (x:xs) = x -- extrahiert das erste Element
tail (x:xs) = xs -- extrahiert die Restliste
```

Auswertungen


```
length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + (length xs)
```

```
Auswertung bei bereits ausgewerteter Liste length (10:(9:(8:[])))
```



```
length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + (length xs)
```

```
Auswertung bei bereits ausgewerteter Liste length (10:(9:(8:[])))
```



```
length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + (length xs)
```

```
Auswertung bei bereits ausgewerteter Liste length (10:(9:(8:[]))) Zweiter Fall; [10/x, (9:(8:[]))/xs] 1+ (length (9:(8:[])))
```



```
length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + (length xs)
```

```
Auswertung bei bereits ausgewerteter Liste length (10:(9:(8:[]))) Zweiter Fall; [10/x, (9:(8:[]))/xs] 1+ (length (9:(8:[])))
```



```
length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + (length xs)
```

```
Auswertung bei bereits ausgewerteter Liste length (10:(9:(8:[]))) Zweiter Fall; [10/x, (9:(8:[]))/xs] 1+ (length (9:(8:[]))) Zweiter Fall; [9/x, (8:[])/xs] 1+(1+ (length (8:[])))
```



```
length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + (length xs)
```

```
Auswertung bei bereits ausgewerteter Liste length (10:(9:(8:[]))) Zweiter Fall; [10/x, (9:(8:[]))/xs] 1+ (length (9:(8:[]))) Zweiter Fall; [9/x, (8:[])/xs] 1+(1+ (length (8:[])))
```



```
length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + (length xs)
```

```
Auswertung bei bereits ausgewerteter Liste length (10:(9:(8:[])) Zweiter Fall; [10/x, (9:(8:[]))/xs] 1+ (length (9:(8:[])) Zweiter Fall; [9/x, (8:[])/xs] 1+(1+ (length (8:[])) Zweiter Fall; [8/x, ([])/xs] 1+(1+ (1+ (length [])))
```



```
length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + (length xs)
```

```
Auswertung bei bereits ausgewerteter Liste length (10:(9:(8:[])) Zweiter Fall; [10/x, (9:(8:[]))/xs] 1+ (length (9:(8:[])) Zweiter Fall; [9/x, (8:[])/xs] 1+(1+ (length (8:[])) Zweiter Fall; [8/x, ([])/xs] 1+(1+ (length (8:[])))
```



```
length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + (length xs)
```

```
Auswertung bei bereits ausgewerteter Liste length (10:(9:(8:[])) Zweiter Fall; [10/x, (9:(8:[]))/xs] 1+ (length (9:(8:[]))) Zweiter Fall; [9/x, (8:[])/xs] 1+(1+ (length (8:[]))) Zweiter Fall; [8/x, ([])/xs] 1+(1+ (1+ (length []))) Erster Fall 1+(1+ (1+ (0)))
```



```
length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + (length xs)
```

```
Auswertung bei bereits ausgewerteter Liste length (10:(9:(8:[]))) Zweiter Fall; [10/x, (9:(8:[]))/xs] 1+ (length (9:(8:[]))) Zweiter Fall; [9/x, (8:[])/xs] 1+(1+ (length (8:[]))) Zweiter Fall; [8/x, ([])/xs] 1+(1+ (1+ (length []))) Erster Fall 1+(1+ (1+ (0))) 3 Additionen
```



```
length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + (length xs)
```

```
Auswertung bei bereits ausgewerteter Liste length (10:(9:(8:[]))) Zweiter Fall; [10/x, (9:(8:[]))/xs] 1+ (length (9:(8:[]))) Zweiter Fall; [9/x, (8:[])/xs] 1+(1+ (length (8:[]))) Zweiter Fall; [8/x, ([])/xs] 1+(1+ (1+ (length []))) Erster Fall 1+(1+ (1+ (0))) 3 Additionen 3
```

Funktionen auf Listen: map


```
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = (f x) : (map f xs)
```

```
map definiert durch eine Fallunterscheidung.

[] und (x:xs) links von "=" sind Muster(Pattern)

Z.B. Muster (x:xs)

und Argument (s:t)
```

Funktionen auf Listen: map


```
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = (f x) : (map f xs)
```

```
map definiert durch eine Fallunterscheidung. [] und (x:xs) links von "=" sind Muster(Pattern) Z.B. Muster (x:xs) und Argument (s:t) ergibt die Ersetzung: [s/x, t/xs]
```

Funktionen auf Listen: map


```
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = (f x) : (map f xs)
```

```
map definiert durch eine Fallunterscheidung.
```

```
[] und (x:xs) links von "=" sind Muster(Pattern)

Z.B. Muster (x:xs)

und Argument (s:t)

ergibt die Ersetzung: [s/x, t/xs]
```

map wendet eine Funktion f auf alle Elemente einer Liste an und konstruiert die Liste der Ergebnisse.


```
map f [] = []
map f (x:xs) = (f x) : (map f xs)
```

Auswertung von map quadrat (1:(2:[])):

```
map quadrat (1:(2:[]))
```



```
map f [] = []
map f (x:xs) = (f x) : (map f xs)

Auswertung von map quadrat (1:(2:[])):
```



```
map f [] = []
map f (x:xs) = (f x) : (map f xs)

Auswertung von map quadrat (1:(2:[])):
```

```
 \begin{array}{lll} \text{map quadrat } (1:(2:[])) & [\text{quadrat/f, } 1/x, \; (2:[])/xs] \\ & (\text{quadrat 1}) : (\text{map quadrat}(2:[])) \end{array}
```



```
map f [] = []
map f (x:xs) = (f x) : (map f xs)

Auswertung von map quadrat (1:(2:[])):
Bei vollständiger Auswertung der Ergebnisliste durch den
```

```
\begin{array}{lll} \text{map quadrat } & (1:(2:[])) & [\text{quadrat/f, } 1/x, & (2:[])/xs] \\ & (\text{quadrat } 1): (\text{map quadrat}(2:[])) & \text{bei vollst. Auswertung:} \\ & 1*1: \text{map quadrat } & (2:[]) & \end{array}
```



```
map f [] = []
map f (x:xs) = (f x) : (map f xs)

Auswertung von map quadrat (1:(2:[])):
Bei vollständiger Auswertung der Ergebnisliste durch den
```

Bei vollständiger Auswertung der Ergebnisliste durch den Interpreter:

```
\begin{array}{lll} \text{map quadrat } & (1:(2:[])) & [\text{quadrat/f, } 1/x, & (2:[])/xs] \\ & (\text{quadrat } 1): (\text{map quadrat}(2:[])) & \text{bei vollst. Auswertung:} \\ & 1*1: \text{map quadrat } & (2:[]) & \end{array}
```

1*1: map quadrat (2:[])
1: map quadrat (2:[])

1*1: map quadrat (2:[])
1: map quadrat (2:[])


```
map f [] = []
map f (x:xs) = (f x) : (map f xs)

Auswertung von map quadrat (1:(2:[])):
Bei vollständiger Auswertung der Ergebnisliste durch den
Interpreter:
map quadrat (1:(2:[])) [quadrat/f, 1/x, (2:[])/xs]
(quadrat 1) : (map quadrat(2:[])) bei vollst. Auswertung:
```



```
map f []
                     = []
 map f (x:xs) = (f x) : (map f xs)
Auswertung von map quadrat (1:(2:[])):
Bei vollständiger Auswertung der Ergebnisliste durch den
Interpreter:
 map quadrat (1:(2:[]))
                                    [quadrat/f, 1/x, (2:[])/xs]
 (quadrat 1): (map quadrat(2:[]))
                                    bei vollst. Auswertung:
 1*1: map quadrat (2:[])
 1 : map quadrat (2:[])
                                    Zweite Gleichung
 1: (quadrat 2: map quadrat [])
```



```
map f []
                     = []
 map f (x:xs) = (f x) : (map f xs)
Auswertung von map quadrat (1:(2:[])):
Bei vollständiger Auswertung der Ergebnisliste durch den
Interpreter:
 map quadrat (1:(2:[]))
                                    [quadrat/f, 1/x, (2:[])/xs]
 (quadrat 1): (map quadrat(2:[]))
                                    bei vollst. Auswertung:
 1*1: map quadrat (2:[])
 1 : map quadrat (2:[])
                                    Zweite Gleichung
 1: (quadrat 2: map quadrat [])
```



```
map f []
                     = []
 map f (x:xs) = (f x) : (map f xs)
Auswertung von map quadrat (1:(2:[])):
Bei vollständiger Auswertung der Ergebnisliste durch den
Interpreter:
 map quadrat (1:(2:[]))
                                    [quadrat/f, 1/x, (2:[])/xs]
 (quadrat 1): (map quadrat(2:[]))
                                    bei vollst. Auswertung:
 1*1: map quadrat (2:[])
 1 : map quadrat (2:[])
                                    Zweite Gleichung
 1: (quadrat 2: map quadrat [])
 1:(2*2:map quadrat [])
```



```
map f []
                     = []
 map f (x:xs) = (f x) : (map f xs)
Auswertung von map quadrat (1:(2:[])):
Bei vollständiger Auswertung der Ergebnisliste durch den
Interpreter:
 map quadrat (1:(2:[]))
                                    [quadrat/f, 1/x, (2:[])/xs]
 (quadrat 1): (map quadrat(2:[]))
                                    bei vollst. Auswertung:
 1*1: map quadrat (2:[])
 1 : map quadrat (2:[])
                                    Zweite Gleichung
 1: (quadrat 2: map quadrat [])
 1:(2*2:map quadrat [])
```



```
map f []
 map f (x:xs) = (f x) : (map f xs)
Auswertung von map quadrat (1:(2:[])):
Bei vollständiger Auswertung der Ergebnisliste durch den
Interpreter:
 map quadrat (1:(2:[]))
                                    [quadrat/f, 1/x, (2:[])/xs]
 (quadrat 1): (map quadrat(2:[]))
                                    bei vollst. Auswertung:
 1*1: map quadrat (2:[])
 1 : map quadrat (2:[])
                                    Zweite Gleichung
 1: (quadrat 2: map quadrat [])
 1:(2*2:map quadrat [])
 1: (4: map quadrat [])
```



```
map f []
                     = []
 map f (x:xs) = (f x) : (map f xs)
Auswertung von map quadrat (1:(2:[])):
Bei vollständiger Auswertung der Ergebnisliste durch den
Interpreter:
 map quadrat (1:(2:[]))
                                    [quadrat/f, 1/x, (2:[])/xs]
 (quadrat 1): (map quadrat(2:[]))
                                    bei vollst. Auswertung:
 1*1: map quadrat (2:[])
 1 : map quadrat (2:[])
                                    Zweite Gleichung
 1: (quadrat 2: map quadrat [])
 1:(2*2:map quadrat [])
 1: (4: map quadrat [])
                                    Erste Gleichung
 1:(4:[7])
                                    = [1.4]
```



```
istLeer [] = True
istLeer (x:xs) = False
zahlenAb n = n: zahlenAb (n+1)
```

Auswertung (mit Listenerzeuger als Argument)


```
istLeer [] = True
istLeer (x:xs) = False
zahlenAb n = n: zahlenAb (n+1)
```

```
Auswertung (mit Listenerzeuger als Argument) istLeer [1..]
```



```
istLeer [] = True
istLeer (x:xs) = False
zahlenAb n = n: zahlenAb (n+1)
```

```
Auswertung (mit Listenerzeuger als Argument)
istLeer [1..] verwende zahlenAb
```



```
istLeer [] = True
istLeer (x:xs) = False
zahlenAb n = n: zahlenAb (n+1)
```

```
Auswertung (mit Listenerzeuger als Argument)
istLeer [1..] verwende zahlenAb
istLeer (zahlenAb 1)
```



```
istLeer [] = True
istLeer (x:xs) = False
zahlenAb n = n: zahlenAb (n+1)
```

```
Auswertung (mit Listenerzeuger als Argument)
istLeer [1..] verwende zahlenAb
istLeer (zahlenAb 1)
istLeer (1: zahlenAb (1+1))
```



```
istLeer [] = True
istLeer (x:xs) = False
zahlenAb n = n: zahlenAb (n+1)
```

```
Auswertung (mit Listenerzeuger als Argument)
istLeer [1..] verwende zahlenAb
istLeer (zahlenAb 1)
istLeer (1: zahlenAb (1+1)) Zweite Gleichung von istLeer
```



```
istLeer [] = True
istLeer (x:xs) = False

zahlenAb n = n: zahlenAb (n+1)
```

```
Auswertung (mit Listenerzeuger als Argument)
istLeer [1..] verwende zahlenAb
istLeer (zahlenAb 1)
istLeer (1: zahlenAb (1+1)) Zweite Gleichung von istLeer
False
```

Listenfunktionen und Listenerzeuger


```
*Main> map quadrat [1..10] [ [1,4,9,16,25,36,49,64,81,100] 

*Main> map quadrat [1..] [ [1,4,9,16,25,36,49,64,81,100,121, ....
```

Der Listenerzeuger [1..] erzeugt soviel von der potentiell unendlichen Liste [1,2,3,4,5,... wie für das Ergebnis benötigt wird.

Typen von Listenausdrücken


```
mapQuadrat xs = map quadrat xs
```

```
*Main> :t mapQuadrat [ mapQuadrat :: forall a. (Num a) => [a] -> [a]
```

```
mapLength xs = map length xs
```

Listenfunktion append

Die folgende Funktion hängt zwei Listen zusammen (genauer: sie konstruiert die Resultat-Liste)

```
append :: [a] -> [a] -> [a]
append [] ys = ys
append (x:xs) ys = x : (append xs ys)
```

```
Haskell-Operator für append: ++ (Infix-Operator)
Haskell-Schreibweise: [1,2,3] ++ [4,5,6,7]
ergibt [1,2,3,4,5,6,7]
```

Beispiele


```
*Main> [] ++ [3,4,5] ←
[3,4,5]
*Main> [0,1,2] ++ [] ←
[0,1,2]
*Main> [0,1,2] ++ [3,4,5] ←
[0,1,2,3,4,5]
*Main> [0..10000] ++ [10001..20000] == [0..20000]
True
```

Funktionen auf Listen (2)

Filtern von Elementen aus einer Liste:

```
filter :: (a -> Bool) -> [a] -> [a]

filter f [] = []

filter f (x:xs) = if (f x) then x : filter f xs

else filter f xs
```

Beispiele:

```
*Main> filter (< 5) [1..10] [1,2,3,4]

*Main> filter primzahlq [2..] [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,
```

Funktionen auf Listen

Die ersten n Elemente der Liste xs:

```
take :: Int -> [a] -> [a]

take 0 _ = []

take n [] = []

take n (x:xs) = x : (take (n-1) xs)
```

```
*Main> take 10 [20..40] [ [20,21,22,23,24,25,26,27,28,29] 

*Main> take 10 [20,23..] [ [20,23,26,29,32,35,38,41,44,47]
```

Auswertungsreihenfolge, Definitionseinsetzung GOETHE UNIVERSITÄT

```
Auswertung von f s_1 ... s_n wenn f mittels Pattern (Muster) definiert ist, innerhalb einer Fallunterscheidung:
```

Erster Schritt:

die Argumente soweit auswerten, bis die Fallunterscheidung möglich ist. (von links nach rechts)

Zweiter Schritt:

Definitionseinsetzung

Geschachtelte Pattern

elimdub eliminiert doppelte benachbarte Vorkommen von Elementen aus Listen:

Beachte das Pattern (x:(y:r))

nub im Modul Data.List eliminiert alle Doppelten:

```
elimdub [1,2,3,3,2,1] [ [1,2,3,2,1] [ [1,2,3,3,2,1] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1,2,3] [ [1
```

Paare und Tupel (Einschub)

Beispiel:

- Tupel: mehrere Ausdrücke werden zusammengefasst.
- (1, 2, ['a', 'b']) oder (1 + 2, 3 * 4)
- Es gibt Tupel mit 2,3,.. Komponenten.

Paare und Tupel (Einschub)

Beispiel:

- Tupel: mehrere Ausdrücke werden zusammengefasst.
- (1, 2, ['a', b']) oder (1 + 2, 3 * 4)
- Es gibt Tupel mit 2,3,.. Komponenten.

Verwendung in Funktionen:

- dritteKomponente (x,y,z) = z
- addierePaar (x1,x2)(y1,y2) = (x1+y1,x2+y2)

Paare und Tupel (Einschub)

Beispiel:

- Tupel: mehrere Ausdrücke werden zusammengefasst.
- (1, 2, ['a', b']) oder (1 + 2, 3 * 4)
- Es gibt Tupel mit 2,3,.. Komponenten.

Verwendung in Funktionen:

- dritteKomponente (x,y,z) = z
- addierePaar (x1,x2)(y1,y2) = (x1+y1,x2+y2)

Typen:

- dritteKomponente:: $(a, b, c) \rightarrow c$
- ullet addierePaar :: Num a, Num $b \implies (a,b) \rightarrow (a,b) \rightarrow (a,b)$

Listen: Auswertung

Listen (bzw. Listenargumente) nennt man: einfach ausgewertet:

wenn Listen-Fallunterscheidung möglich ist, d.h. [] oder von der Form s : t

vollständig ausgewertet:

wenn Liste endlich ist und der Tail, Tail-von Tail, ... alle usgewertet sind und alle Elemente ebenfalls vollständig ausgewertet sind,

Iterative Prozesse mit Listenargumenten

Bei Verwendung von Listenargumenten: Die folgenden Begriffe sind unverändert:

- linear rekursiv,
- end-rekursiv (= tail-recursive)
- Baum-rekursiv
- geschachtelt Baum-rekursiv

(Bei applikativer Reihenfolge der Auswertung)

iterativ muss genauer erklärt werden.

Iterativer Auswertungsprozess zu f

Ein iterativer Auswertungsprozess liegt bei einer rekursiven Funktion f, vor wenn:

iterative Version f_{iter} von f


```
f_{iter} ist iterative Version von f
```

Wenn: f und f_{iter} das gleiche berechnen und f_{iter} einen iterativen Prozess erzeugt (unter applikativer R.)

für alle Basiswerte und alle komplett ausgewerteten endlichen Listen als Eingaben

Beispiel: iterative Version von length:


```
length_lin xs = length_linr 0 xs
length_linr s [] = s
length_linr s (x:xs) = length_linr (s+1) xs
```

nicht-iterative Version: (auch nicht endrekursiv)

```
length [] = 0
length (x:xs) = 1 + length xs
```

```
length (9:(8:(7:(6:...(1:[])))))
```

```
length (9:(8:(7:(6:...(1:[])))))
1+(length (8:(7:(6:...(1:[]))))
```

```
length (9:(8:(7:(6:...(1:[])))))
1+(length (8:(7:(6:...(1:[]))))
1+(1+(length (7:(6:...(1:[])))
```

```
length (9:(8:(7:(6:...(1:[])))))
1+(length (8:(7:(6:...(1:[]))))
1+(1+(length (7:(6:...(1:[]))))
1+(1+(1+(length (6:...(1:[])))
```

```
length (9:(8:(7:(6:...(1:[])))))
1+(length (8:(7:(6:...(1:[]))))
1+(1+(length (7:(6:...(1:[])))
1+(1+(1+(length (6:...(1:[])))
......
```


Beachte: wir benutzen hier die applikative Reihenfolge der Auswertung

length_lin (9:(8:(7:(6:...(1:[])))))


```
length_lin (9:(8:(7:(6:...(1:[])))))
length_linr 0 (9:(8:(7:(6:...(1:[])))))
```



```
length_lin (9:(8:(7:(6:...(1:[]))))
length_linr 0 (9:(8:(7:(6:...(1:[])))))
length_linr 1 (8:(7:(6:...(1:[]))))
```



```
length_lin (9:(8:(7:(6:...(1:[])))))
length_linr 0 (9:(8:(7:(6:...(1:[]))))
length_linr 1 (8:(7:(6:...(1:[]))))
length_linr 2 (7:(6:...(1:[])))
```



```
length_lin (9:(8:(7:(6:...(1:[])))))
length_linr 0 (9:(8:(7:(6:...(1:[])))))
length_linr 1 (8:(7:(6:...(1:[]))))
length_linr 2 (7:(6:...(1:[])))
length_linr 3 (6:...(1:[]))
```



```
length_lin (9:(8:(7:(6:...(1:[])))))
length_linr 0 (9:(8:(7:(6:...(1:[])))))
length_linr 1 (8:(7:(6:...(1:[]))))
length_linr 2 (7:(6:...(1:[])))
length_linr 3 (6:...(1:[]))
```


Beachte: wir benutzen hier die applikative Reihenfolge der Auswertung

```
length_lin (9:(8:(7:(6:...(1:[])))))
length_linr 0 (9:(8:(7:(6:...(1:[])))))
length_linr 1 (8:(7:(6:...(1:[]))))
length_linr 2 (7:(6:...(1:[])))
length_linr 3 (6:...(1:[]))
.......
length_linr 9 []
```

Grundlagen der Programmierung 2 (Listen-B)


```
length_lin (9:(8:(7:(6:...(1:[])))))
length_linr 0 (9:(8:(7:(6:...(1:[])))))
length_linr 1 (8:(7:(6:...(1:[]))))
length_linr 2 (7:(6:...(1:[])))
length_linr 3 (6:...(1:[]))
......
length_linr 9 []
```

Allgemeine Funktionen auf Listen

Allgemeine Funktionen (Methoden):

foldl und foldr Links-Faltung und Rechts-Faltung Die 3 Argumente sind:

- eine zweistellige Operation,
- ein Anfangselement (Einheitselement) und
- die Liste.

$$\begin{array}{ll} \texttt{fold1} \, \otimes \, e \, \left[a_1, \ldots, a_n \right] \, \texttt{entspricht} \\ \left(\left(\ldots \, \left(\left(e \, \otimes \, a_1 \right) \, \otimes \, a_2 \right) \, \ldots \, \right) \, \otimes \, a_n \right). \\ \\ \texttt{foldr} \, \otimes \, e \, \left[a_1, \ldots, a_n \right] \, \texttt{entspricht} \, \, a_1 \otimes \left(a_2 \otimes \left(\ldots \left(a_n \otimes e \right) \right) \right) \end{array}$$

Definitionen der fold-Funktionen


```
fold1 (Linksfaltung)
foldr (Rechtsfaltung)
```

Fold-Verwendungen

Summe bzw. Produkt einer Liste von Zahlen:

```
sum xs = foldl (+) 0 xs
produkt xs = foldl (*) 1 xs
concat xs = foldr (++) [] xs
```

```
foldl (+) 0 [1,2,3,4] \equiv ((((0+1)+2)+3)+4) foldr (++) [] [[0],[2,3],[5]] \equiv [0] ++ ([2,3] ++ ([5] ++ []))
```

Je nach Operator ergibt foldl, oder foldr eine schnellere Verarbeitung.

Lokale Funktionsdefinitionen, anonyme Funktionen

Lambda-Ausdruck

$$|x_1 \dots x_n -\rangle \langle \mathsf{Ausdruck} \rangle$$

 x_1, x_2, \dots sind die formalen Parameter

Beispiel

Der Lambdaausdruck kann wie eine Funktion verwendet werden

let und lokale Bindungen

let
$$\{x_1=s_1;\ldots;x_n=s_n\}$$
 in t

$$\{x_1=s_1;\ldots;x_n=s_n\}\quad\text{ist eine lokale Umgebung}$$

die Variablen x_i können in t vorkommen mit der Bedeutung: "Wert von s_i "

t

der eigentliche Ausdruck

```
let x1 = 5
    x2 = "abc"
    x3 = 7*x1
    in (x1,x2,x3)
```

let und lokale Bindungen

In Haskell: rekursives let. D.h. x_i kann in jedem s_j vorkommen in $\{x_1 = s_1; \ldots; x_n = s_n\}$

Beachte im ghci-Interpreter: Spezielle Verwendung des 1et

Erweiterungen des 1et

Funktionen sind definierbar direkt in einem rekursiven let:

let
$$\{f \ x_1 \ \dots \ x_n = s; \dots\}$$
 in t

Zum Beispiel:

let
$$\{\text{hochdrei } x = x*x*x; a = 3\}$$
 in hochdrei a

Neue Sichtweise: Jetzt betrachten wir Programme als statischen, strukturierten Text

Freie und Gebundene Variablen

Statische Analysen:

Untersuche den Programmtext bzw. den Syntaxbaum.

Um Definitionen von lokalen Variablen (Namen) korrekt zu handhaben, braucht man neue Begriffe:

Gültigkeitsbereich	Text-Fragment(e) des Programms in
einer Variablen \boldsymbol{x}	dem dieses x gemeint ist.
freie Variablen	Variablen, deren Bedeutung außerhalb
eines Ausdrucks	des Ausdrucks festgelegt wird.
gebundene Variablen	Variablen, deren Bedeutung innerhalb
eines Ausdrucks	des Ausdrucks festgelegt wird.

Freie und Gebundene Variablen (2)

Problem: Variablen können mit gleichem Namen, aber verschiedener Bedeutung (bzw. Verwendung / Intention) in einem Ausdruck vorkommen:

Freie und Gebundene Variablen (2)

Problem: Variablen können mit gleichem Namen, aber verschiedener Bedeutung (bzw. Verwendung / Intention) in einem Ausdruck vorkommen:

Lösung:

- Exakte Festlegung der Gültigkeitsbereiche für jedes syntaktische Konstrukt
- Umbenennen von gebundenen Variablennamen, falls nötig

Gültigkeitsbereich von x: der Ausdruck x*x die Variable x ist gebunden von x

Gültigkeitsbereich von x: der Ausdruck x*x die Variable x ist gebunden von x

x*x

in diesem Ausdruck ist x frei

Gültigkeitsbereich von x: der Ausdruck x*x die Variable x ist gebunden von \x

x*x

in diesem Ausdruck ist x frei

(let
$$x = 1$$
; $y = 2$
in $x*y*z$)

x und y sind gebunden, z ist frei

Definition von FV

FV: ergibt Menge von Variablen-Namen.

- $FV(x) := \{x\}$, wenn x ein Variablenname ist
- $FV((s\ t)) := FV(s) \cup FV(t)$
- $FV(\text{if }t_1 \text{ then }t_2 \text{ else }t_3) := FV(t_1) \cup FV(t_2) \cup FV(t_3)$
- $FV(\backslash x_1 \dots x_n \rightarrow t) := FV(t) \backslash \{x_1, \dots, x_n\}$
- FV(let $x_1 = s_1, \dots, x_n = s_n \text{ in } t)$:= $(FV(t) \cup FV(s_1) \cup \dots \cup FV(s_n)) \setminus \{x_1, \dots, x_n\}$
- $FV(\text{let } f \ x_1 \ \dots \ x_n = s \text{ in } t)$:= $FV(\text{let } f = \backslash x_1 \dots x_n \rightarrow s \text{ in } t)$

Beachte: FV ist eine Funktion auf dem Syntaxbaum;

Beispiel: freie Variablen

$$FV(\x \to (f x y)) = FV(f x y) \setminus \{x\}$$

= ...
= $\{x, f, y\} \setminus \{x\}$
= $\{f, y\}$

Gebundene Variablen GV(t)

Entsprechend der FV-Definition:

- $GV(\mathbf{x}) := \emptyset$
- $GV((s\ t)) := GV(s) \cup GV(t)$
- $GV(\text{if }t_1 \text{ then }t_2 \text{ else }t_3) := GV(t_1) \cup GV(t_2) \cup GV(t_3)$
- $GV(\x_1 \dots x_n \rightarrow t) := GV(t) \cup \{x_1, \dots, x_n\}$
- $GV(\text{let } x_1 = s_1, \dots, x_n = s_n \text{ in } t)$:= $(GV(t) \cup GV(s_1) \cup \dots \cup GV(s_n) \cup \{x_1, \dots, x_n\}\})$
- $GV(\text{let } f \ x_1 \ \dots \ x_n = s \text{ in } t)$ $:= GV(\text{let } f = \backslash x_1 \ \dots \ x_n \Rightarrow s \text{ in } t)$ $= \{f, x_1, \dots, x_n\} \cup GV(s) \cup GV(t)$

Auch hier GV ist eine Funktion auf dem Syntaxbaum;

Beispiel: Berechnung von gebundenen Variab GOETHE STANKFURT AM MAIN

$$GV(\x \rightarrow (f x y)) = GV(f x y) \cup \{x\}$$

$$= \dots$$

$$= \emptyset \cup \{x\}$$

$$= \{x\}$$

Lexikalischer Gültigkeitsbereich einer Variable

let x = s in t

die Vorkommen der freien Variablen x in s,twerden gebunden.

s, t ist der lexikalische Gültigkeitsbereich der Variablen x

f x y z = t

die freien Variablen x, y, z in t werden gebunden.

t ist der lexikalische Gültigkeitsbereich von x, y, z;

auch tlw. von f.

 $\xyz \rightarrow t$

t ist der lexikalische Gültigkeitsbereich von x, y, z.

Ausdruck $t = \x -> (x (\x -> x*x))$ x ist in t gebunden, aber in zwei Bindungsbereichen:

$$\xspace x -> (x (\xspace x -> x + x))$$

In $(x (\xspace x -> x + x))$ kommt x frei und gebunden vor.

Umbenennen des gebundenen x in y ergibt:

$$(x (y \rightarrow y*y))$$

Zwei Bindungsbereiche für x in einem 1et-Ausdruck:

let
$$x = 10$$
 in (let $x = 100$ in $(x+x)$) + x

Umbenennung ergibt:

```
let x1 = 10 in (let x2 = 100 in (x2+x2)) + x1 Dieser Term wertet zu 210 aus.
```

Beispiel:

```
let x = (x*x) in (x+x)
```

Diese rekursiven Bindungen sind erlaubt.

Zwei Bindungsbereiche für x in einem 1et-Ausdruck:

let
$$x = 10$$
 in (let $x = 100$ in $(x+x)$) + x

Umbenennung ergibt:

```
let x1 = 10 in (let x2 = 100 in (x2+x2)) + x1 Dieser Term wertet zu 210 aus.
```

Beispiel:

```
let x = (x*x) in (x+x)
```

Diese rekursiven Bindungen sind erlaubt.

Aber führt zu Nichtterminierung des Haskell-Interpreters ohne Reduktionen auszuführen.

Beispiel: Reihenfolgenunabhängigkeit


```
let    y = 20*z
    x = 10+y
    z = 15
    in x
```

Wertet aus zu : 310.

Beispiel geschachtelte Bindungsbereiche


```
let \{x = 1; y = 7\}
in (let \{y = 2; z = 4\}
in (let z = 5
in (x+y+z))
```

```
x = 1; y = 7
       y = 2; z = 4
              z = 5
                     x+y+z
```

Optimierung mittels 1et

Vermeidung redundanter Auswertungen mit 1et

$$f(x,y) := x(1 + xy)^2 + y(1-y) + (1+xy)(1-y)$$

optimierbar durch Vermeidung von Doppelauswertungen:

Der zugehörige Ausdruck ist:

Zusammengesetzte Daten Datenobjekte Tupel Verallgemeinerungen von Listen

Zusammengesetzte Objekte: Datentypen

Für Datentypen benötigt man:

Datenkonstruktor(en)

Datenselektor(en)

Beispiel

Paarkonstruktor $s, t \longrightarrow (s, t)$ Paarselektoren fst, snd

Eigenschaften:

fst(s,t) = s und snd(s,t) = t.

Beispiel *n*-Tupel

$$n$$
-Tupelkonstruktor $t_1, \ldots, t_n \longrightarrow (t_1, \ldots, t_n)$

Tupelselektoren n Selektoren: pro Stelle des Konstruktors ein Selektor

n-Tupel haben einen impliziten Konstruktor:

$$(\underbrace{.,\dots,.}_n)$$

Definition der Selektoren

Muster (pattern) statt Selektoren.

Muster sind syntaktisch dort erlaubt, wo formale Parameter (Variablen) neu eingeführt werden:

- in Funktionsdefinitionen,
- in Lambda-Ausdrücken und
- in let-Ausdrücken.

Beispiel-Definitionen von Selektoren mittels Muster

```
fst (x,y) = x
snd (x,y) = y
selektiere_erstes_von_3 (x1,x2,x3) = x1
selektiere_zweites_von_3 (x1,x2,x3) = x2
selektiere_drittes_von_3 (x1,x2,x3) = x3
```

Beispiel: Typen von Selektoren, Konstruktoren GOETHE FRANKFURT AM MAIN

```
\begin{array}{lll} (1,1) & & :: & (\mathtt{Integer},\mathtt{Integer}) \\ \\ (1,(2,\mathtt{True})) & :: & (\mathtt{Integer},(\mathtt{Integer},\mathtt{Bool})) \\ \\ \underbrace{(.,\ldots,.)}_{n} & :: & a1 \to a2 \to \ldots \to an \to (a1,a2,\ldots,an) \end{array}
```

selektiere_drittes_von_3 :: $(a1, a2, a3) \rightarrow a3$

Benutzerdefinierte Konstruktoren

Benutzerdefinierte Konstruktoren sind definierbar in Haskell mittels data-Anweisung

```
data Punkt = Punktkonstruktor Double Double
data Strecke = Streckenkonstruktor Punkt Punkt
```

Punkt, Strecke:	Typen
Punktkonstruktor	Konstruktoren
Streckenkonstruktor	
Double, Punkt (rechts)	Typen der Argumente

Benutzerdefinierte Konstruktoren

Beispiel

```
data Punkt = Punktkonstruktor Double Double
    deriving (Show,Eq)

data Strecke = Streckenkonstruktor Punkt Punkt
    deriving (Show,Eq)
```

Grund für die Ergänzung
deriving (Show,Eq):
man kann dann Objekte drucken und mit == vergleichen.

Muster (pattern)


```
streckenAnfang (Streckenkonstruktor x y) = x
```

- Nutzen der Muster: tiefes Selektieren
 - Ersatz für Selektoren Man braucht keine Funktionsnamen

Syntax der Muster:

```
\langle Muster \rangle ::= \langle Variable \rangle \mid (\langle Muster \rangle)
                                          |\langle \mathsf{Konstruktor}_{(n)} \rangle \langle \mathsf{Muster} \rangle \dots \langle \mathsf{Muster} \rangle|
                                          | (\langle \mathsf{Muster} \rangle, \dots, \langle \mathsf{Muster} \rangle) |
```

Bedingung: in einem Muster darf keine Variable doppelt vorkommen

Anpassen des Objekts an das Muster gleichzeitige Selektion mittels impliziter 1et-Bindungen Tlw. vorher Auswertung des Objekts erforderlich

Anpassen des Objekts an das Muster gleichzeitige Selektion mittels impliziter 1et-Bindungen Tlw. vorher Auswertung des Objekts erforderlich

```
(x,y,(u,v)) anpassen an: (1,2,(3,4))
ergibt: let x = 1;y = 2;u = 3;v = 4 in ...
```


Anpassen des Objekts an das Muster gleichzeitige Selektion mittels impliziter 1et-Bindungen Tlw. vorher Auswertung des Objekts erforderlich

```
(x,y,(u,v)) anpassen an: (1,2,(3,4))
    ergibt: let x = 1;y = 2;u = 3;v = 4 in ...
(x,y,(u,v)) anpassen an: (1,2,True)
    ergibt: Fehler. Kann nicht vorkommen wegen Typcheck.
```


Anpassen des Objekts an das Muster gleichzeitige Selektion mittels impliziter 1et-Bindungen Tlw. vorher Auswertung des Objekts erforderlich

```
(x,y,(u,v)) anpassen an: (1,2,(3,4))
    ergibt: let x = 1;y = 2;u = 3;v = 4 in ...
(x,y,(u,v)) anpassen an: (1,2,True)
    ergibt: Fehler. Kann nicht vorkommen wegen Typcheck.
(x,y,u) anpassen an: (1,2,(4,5))
    ergibt: let x = 1; y = 2;u = (4,5) in ...
```


Anpassen des Objekts an das Muster gleichzeitige Selektion mittels impliziter 1et-Bindungen Tlw. vorher Auswertung des Objekts erforderlich

```
(x,y,(u,v)) anpassen an: (1,2,(3,4))
    ergibt: let x = 1;y = 2;u = 3;v = 4 in ...
(x,y,(u,v)) anpassen an: (1,2,True)
    ergibt: Fehler. Kann nicht vorkommen wegen Typcheck.
(x,y,u) anpassen an: (1,2,(4,5))
    ergibt: let x = 1; y = 2;u = (4,5) in ...
(x,y,u) anpassen an: (1,2,4+5)
    ergibt: let x = 1; y = 2;u = 4+5 in ...
```

Benutzerdefinierte Typnamen mit Parameternen GOETHE TRANKFURT AM MAIN FRANKFURT AM M

Beispiel Punkt, Strecke, Polygonzug

```
data Punkt a = Punkt a a

data Strecke a = Strecke (Punkt a) (Punkt a)

data Vektor a = Vektor a a

data Polygon a = Polygon [Punkt a]
```

```
Typ und Konstruktor können gleiche Namen haben. Der Parameter a kann jeder Typ sein: z.B.: Float, Int, aber auch [[(Int,Char)]]
```

Funktionen auf Punkt, Strecke, Polygonzug


```
addiereVektoren::Num a => Vektor a -> Vektor a ->Vektor a addiereVektoren (Vektor a1 a2) (Vektor b1 b2) =

Vektor (a1 + b1) (a2 + b2)

skalarProdukt (Vektor a1 a2) (Vektor b1 b2) =

a1*b1 + a2*b2

streckenLaenge (Strecke (Punkt a1 a2) (Punkt b1 b2)) =

sqrt (fromInteger ( (quadrat (a1-b1))

+ (quadrat (a2-b2))))
```

Summentypen und Fallunterscheidung

Summentypen: diese haben mehr als einen Konstruktor

Beispiele: Bool mit True False

```
data Bool = True | False
```

Aufzählungstyp:

```
data Farben = Rot | Gruen | Blau | Weiss | Schwarz
```

```
data Kontostand = Euro Integer | Dollar Integer | Renminbi Integer | SFranken Integer
```

Datentyp Maybe

[Just 1, Nothing]


```
data Maybe a = Just a | Nothing

Just 1 : Nothing : [] ←
```

Liste als Summentyp

selbstdefinierte Listen: (sogar rekursiv definierter Typ)

Listen-Definition in Haskell:

data [a] = [] | a : [a]

Fallunterscheidung mit case

und x y = case x of True -> y; False -> False

case: Gültigkeitsbereich und Beispiel

$$FV(\text{case x of True } \rightarrow \text{y; False} \rightarrow \text{False}) = \{\text{x,y}\}$$

$$FV(\text{case x of (Punkt u v)} \rightarrow \text{u}) = \{\text{x}\}$$

$$GV(\text{case x of (Punkt u v)} \rightarrow \text{u}) = \{\text{u,v}\}$$

Auswertungsregel zum case

(zusätzliche Auswertungsregel)

case-Reduktion

$$\frac{(\operatorname{case}\ (c\ t_1 \dots t_n)\ \operatorname{of}\ \dots (c\ x_1 \dots x_n \to s)\dots)}{s[t_1/x_1,\dots,t_n/x_n]}$$

Beispiel-Verwendung (Entzuckerung)


```
map f [] = []
map f (x:xs) = f x : map f xs
```

kann man auch so programmieren:

```
map f lst =
   (case lst of [] -> []; (x:xs) -> f x : map f xs)
```

Bemerkungen zur Auswertung

- Normale und verzögerte Reihenfolge der Auswertung werten nicht die Argumentausdrücke von Konstruktoren aus;
 - erst wenn explizit angefordert (durch Pattern z.B.
- ⇒ Dadurch kann man (potentiell) unendliche Listen verarbeiten

Beispiele:

```
(1+2):[] wird nicht ausgewertet: ist ein Wert
1:repeat 1 wird nicht ausgewertet: ist ein Wert
Tests: seq (1:repeat 1) 7
```

seq (bot:repeat 1) 8

Grundlagen der Programmierung 2 (Listen-B)