Chapitre 6 : Couche réseau

Présentation des réseaux Lawrence BENEDICT Janvier 2017

Plan du chapitre

- 6.0 Introduction
- 6.1 Protocoles de couche réseau
- 6.2 Routage
- 6.3 Routeurs
- 6.4 Configuration d'un routeur Cisco
- 6.5 Résumé

Section 6.1 : Protocoles de couche réseau

À la fin de cette section, vous saurez :

- Décrire l'utilité de la couche réseau dans le cadre de la communication de données
- Expliquer pourquoi le protocole IPv4 nécessite d'autres couches pour garantir la fiabilité du réseau (Inclure : indépendant des supports, non fiable et sans connexion)
- Expliquer le rôle des principaux champs d'en-tête dans le paquet IPv4
- Expliquer le rôle des principaux champs d'en-tête dans le paquet IPv6

Rubrique 6.1.1 : Couche réseau dans la communication

Couche réseau

Transport de bout en bout

- Adressage des périphériques finaux
- E ncapsulation
- Routage
- Désencapsulation

L'échange des données

Les protocoles de couche réseau transfèrent les PDU de la couche transport entre les hôtes.

© 2013 Cisco et/ou ses filiales. Tous droits réservés. Document public de Cisco

Protocoles de couche réseau

Application 6 Présentation 5 Session Transport 4 Réseau Liaison de données Physique

- Protocole IP version 4 (IPv4)
- Protocole IP version 6 (IPv6)

Rubrique 6.1.2 : Caractéristiques du protocole IP

Encapsulation IP

PDU de couche transport = segment

Encapsulation de couche transport

PDU de couche transport

La couche transport ajoute un en-tête de sorte que les segments puissent être réassemblés une fois arrivés à destination.

Encapsulation IP (suite)

PDU de couche réseau = paquet IP

La couche réseau ajoute un en-tête de sorte que les paquets puissent être acheminés via des réseaux complexes et atteindre leur destination. Dans les réseaux TCP/IP, le PDU de couche réseau est le paquet IP.

Caractéristiques du protocole IP

IP – Sans connexion

Envoi d'une lettre.

L'expéditeur ignore:

- si le destinataire est présent ;
- si la lettre est arrivée ;
- si le destinataire peut lire la lettre.

Le destinataire ignore :

- quand elle va arriver.

IP – Sans connexion (suite)

L'expéditeur ignore :

- si le destinataire est présent ;
- si le paquet est arrivé ;
- si le destinataire peut lire le paquet.

Le destinataire ignore :

quand il va arriver.

IP – Acheminement au mieux

Processus d'acheminement au mieux (best effort)

IP est un protocole de couche réseau peu fiable, il ne garantit donc pas que tous les paquets envoyés seront reçus. D'autres protocoles gèrent le processus de suivi des paquets et garantissent leur livraison.

© 2013 Cisco et/ou ses filiales. Tous droits réservés.

Document public de Cisco

IP – Indépendance vis-à-vis des supports

Les paquets IP peuvent transiter par différents supports.

Rubrique 6.1.3 : Paquet IPv4

En-tête de paquet IPv4

- Version = 0100
- DS = priorité du paquet
- TTL = limite la durée de vie du paquet
- Protocol = protocole de la couche supérieure tel que TCP
- Source IP Address = source du paquet
- Destination IP Address = destination du paquet

Rubrique 6.1.4 : Paquet IPv6

© 2013 Cisco et/ou ses filiales. Tous droits réservés.

Document public de Cisco

Limites du protocole IPv4

- Manque d'adresses IP
- Croissance de la table de routage Internet
- Absence de connectivité de bout en bout

© 2013 Cisco et/ou ses filiales. Tous droits réservés.

Document public de Cisco

Présentation de l'IPv6

- Espace d'adressage plus important
- Amélioration du traitement des paquets
- Élimination du besoin d'adresses réseau (NAT)

4 milliards d'adresses IPv4

VS

4 000 000 000

340 undécillions d'adresses IPv6

Encapsulation IPv6

En-tête IPv4

Version	IHL	Type de service	Longueur totale				
Identification			Indicateurs	Décalage du fragment			
Time To Live (durée de vie)		Protocoles	Somme de contrôle d'en-tête				
Adresse source							
Adresse de destination							
Options Remplis							

IPv6 utilise un en-tête simplifié.

Légende

- Noms des champs conservés de IPv4 à IPv6
- Nom et position modifiés dans IPv6
- Champs non conservés dans IPv6

Encapsulation IPv6 (suite)

En-tête IPv6

IPv6 utilise un en-tête simplifié.

Légende

- Noms des champs conservés de IPv4 à IPv6
- Nom et position modifiés dans IPv6
- Nouveau champ dans IPv6

Encapsulation IPv6 (suite)

En-tête de paquet IPv6

Champs dans l'en-tête de paquet IPv6

- Version = 0110
- Traffic Class = priorité
- Flow Label = le même flux recevra le même traitement
- Payload Length = identique à la longueur totale
- Next Header = protocole de la couche 4
- Hop Limit = remplace le champ
 TTL

Section 6.2 : Routage

À la fin de cette section, vous saurez :

- Expliquer comment un périphérique hôte utilise les tables de routage pour diriger les paquets vers les périphériques, une destination locale ou une passerelle par défaut
- Comparer une table de routage d'hôte à une table de routage de routeur

Rubrique 6.2.1 : Méthode de routage par un hôte

Décisions relatives aux transmissions

Trois types de destinations

 Luimême

Hôte local

 Un hôte distant

Document public de Cisco

Passerelle par défaut

- Route le trafic vers d'autres réseaux
- A une adresse IP locale dans la même plage d'adresses que les autres hôtes sur le réseau
- Peut recevoir et transmettre des données

Utilisation de la passerelle par défaut

Adresse de la passerelle par défaut de l'hôte

Tables de routage des hôtes

Table de routage IPv4 pour PC1

<résultat omis=""> IPv4 Route Table</résultat>							
Network Destinatio	n Netmask	Gateway	Interface	Metric			
0.0.0.0	0.0.0.0	192.168.10.1	192.168.10.10	25			
127.0.0.0	255.0.0.0	On-link	127.0.0.1	306			
127.0.0.1	255.255.255.255	On-link	127.0.0.1	306			
127.255.255.255	255.255.255.255	On-link	127.0.0.1	306			
192.168.10.0	255.255.255.0	On-link	192.168.10.10	281			
192.168.10.10	255.255.255.255	on-link	192.168.10.10	281			
192.168.10.255	255.255.255.255	on-link	192.168.10.10	281			
224.0.0.0	240.0.0.0	On-link	127.0.0.1	306			
224.0.0.0	240.0.0.0	on-link	192.168.10.10	281			
255.255.255.255	255.255.255.255	On-link	127.0.0.1	306			
255.255.255.255	255.255.255.255	on-link	192.168.10.10	281			

Rubrique 6.2.2 : Table de routage des routeurs

Décisions relatives à la transmission de paquets du routeur

Routes de réseaux connectés directement et distants

Table de routage d'un routeur IPv4

Table de routage IPv4 de R1


```
R1#show ip route
<résultat omis>
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
       10.1.1.0/24 [90/2170112] via 209.165.200.226, 00:00:05,
        Serial0/0/0
       10.1.2.0/24 [90/2170112] via 209.165.200.226, 00:00:05,
        serial0/0/0
     192.168.10.0/24 is variably subnetted, 2 subnets, 3 masks
        192.168.10.0/24 is directly connected, GigabitEthernet0/0
        192.168.10.1/32 is directly connected, GigabitEthernet0/0
     192.168.11.0/24 is variably subnetted, 2 subnets, 3 masks
        192.168.11.0/24 is directly connected, GigabitEthernet0/1
       192.168.11.1/32 is directly connected, GigabitEthernet0/1
     209.165.200.0/24 is variably subnetted, 2 subnets, 3 masks
        209.165.200.224/30 is directly connected, Serial0/0/0
        209.165.200.225/32 is directly connected, Serial0/0/0
```

© 2013 Cisco et/ou ses filiales. Tous droits réservés.

Document public de Cisco

Entrées de table de routage d'un réseau connecté directement

Comprendre les entrées de routage d'un réseau local

Source de la route : indique comment le réseau a été découvert par le routeur.

Réseau de destination : identifie le réseau de destination et la façon dont il a été appris.

Interface de sortie : identifie l'interface de sortie à utiliser pour transférer un paquet vers la destination finale.

Entrées de table de routage d'un réseau distant

Adresse du tronçon suivant


```
R1# show ip route
<résultat omis>
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
        10.1.1.0/24 [90/2170112] via 209.165.200.226, 00:00:05,
        serial0/0/0
       10.1.2.0/24 [90/2170112] via 209.165.200.226, 00:00:05,
        serial0/0/0
     192.168.10.0/24 is variably subnetted, 2 subnets, 3 masks
        192.168.10.0/24 is directly connected, GigabitEthernet0/0
        192.168.10.1/32 is directly connected, GigabitEthernet0/0
     192.168.11.0/24 is variably subnetted, 2 subnets, 3 masks
С
        192.168.11.0/24 is directly connected, GigabitEthernet0/1
        192.168.11.1/32 is directly connected, GigabitEthernet0/1
     209.165.200.0/24 is variably subnetted, 2 subnets, 3 masks
        209.165.200.224/30 is directly connected, Serial0/0/0
        209.165.200.225/32 is directly connected, Serial0/0/0
R1#
```

Section 6.3 : Routeurs

À la fin de cette section, vous saurez :

- Décrire les interfaces et les composants courants d'un routeur
- Décrire le processus de démarrage d'un routeur Cisco IOS

Rubrique 6.3.1 : Anatomie d'un routeur

Un routeur est une unité centrale d'ordinateur/de routeur et un système d'exploitation

Un routeur nécessite :

- des unités centrales
- des systèmes d'exploitation

La mémoire est composée de :

- Mémoire vive (RAM)
- Mémoire morte (ROM)
- Mémoire vive non volatile
- Flash
- Cisco IOS est le logiciel système utilisé pour la plupart des périphériques Cisco, indépendamment de leur taille et de leur type.

Mémoire des routeurs

La mémoire vive utilise les applications et les processus suivants :

La mémoire morte stocke les informations suivantes :

- Les informations de démarrage qui contiennent les instructions de démarrage
- L'autotest de mise sous tension POST qui teste tous les composants matériels
- Un IOS limité qui sert de version de sauvegarde de l'IOS

Intérieur d'un routeur

Connexion à un routeur

Interfaces LAN et WAN

Rubrique 6.3.2 : Démarrage d'un routeur

Fichiers de démarrage prédéfinis

Processus de démarrage d'un routeur

Résultat de la commande show version

```
Router#show version
Cisco IOS Software, C1900 Software (C1900-UNIVERSALK9-M),
Version 15.2(4)M1, RELEASE SOFTWARE (fc1)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2012 by Cisco Systems, Inc.
Compiled Thu 26-Jul-12 19:34 by prod rel team
ROM: System Bootstrap, Version 15.0(1r)M15,
RELEASE SOFTWARE (fc1)
Router uptime is 10 hours, 9 minutes
System returned to ROM by power-on
System image file is
"flash0:c1900-universalk9-mz.SPA.152-4.M1.bin"
Last reload type: Normal Reload
Last reload reason: power-on
<résultat omis>
Cisco CISCO1941/K9 (revision 1.0)
with 446464K/77824K bytes of memory.
Processor board ID FTX16368487
```

Résultat de la commande show version (suite)

Section 6.4 : Configuration d'un routeur Cisco

À la fin de cette section, vous saurez :

- Configurer les paramètres initiaux d'un routeur Cisco IOS
- Configurer deux interfaces actives sur un routeur Cisco IOS
- Configurer les périphériques pour utiliser la passerelle par défaut

Rubrique 6.4.1 : Configuration des paramètres initiaux

Étapes de la configuration de base d'un commutateur

Étapes de la configuration de base d'un routeur

Limitation de l'accès au périphérique

Rubrique 6.4.2 : Configuration des interfaces

Configurer les interfaces des routeurs

Vérification de la configuration d'interface

 show ip route : affiche le contenu de la table de routage IPv4 stocké dans la mémoire vive.

 show interfaces : affiche des statistiques pour toutes les interfaces d'un périphérique.

show ip interfaces:

 affiche des statistiques
 IPv4 pour toutes les
 interfaces d'un routeur.

Rubrique 6.4.3 : Configuration de la passerelle par défaut

Passerelle par défaut pour un hôte

Envoi d'une requête ping à un hôte local

192.168.10.0/24 .1 G0/0 G0/1 192.168.11.0/24

Envoi d'une requête ping à un hôte distant

Passerelle par défaut pour un commutateur

Si la passerelle par défaut n'était pas configurée sur le périphérique S1, les paquets de réponse de S1 ne pourraient pas contacter l'administrateur à l'adresse 192.168.11.10. L'administrateur ne pourrait pas gérer le périphérique à distance.

Section 6.5 : Résumé

Objectifs du chapitre :

- Expliquer comment les protocoles et services de couche réseau prennent en charge les communications sur les réseaux de données
- Expliquer en quoi les routeurs permettent une connectivité de bout en bout dans un réseau de PME
- Expliquer comment les équipements acheminent le trafic sur un réseau de PME
- Effectuer la configuration de base d'un routeur

Merci.

CISCO Cisco Networking Academy
Mind Wide Open