1 Bewegungsplanung bei unvollständiger Information

1.1 Ausweg aus einem Labyrinth

1.1.1 Pledge-Strategie

Input: polygonales Labyrinth L, Roboter R, Drehwinkel $\varphi \in \mathbb{R}$ Output: Ausweg aus Labyrinth falls möglich, ansonsten Endlosschleife

- · While $R \in L$
 - gehe vorwärts, bis $R \notin L$ oder Wandkontakt
 - gehe links der Wand, bis $R \notin L \text{ oder } \varphi = 0$

1.2 Zum Ziel in unbekannter Umgebung 1.2.1 Wanze (Bug)

Input:

- · P_1, \dots, P_n disj. einf. zsh. endl. poly. Gebiete aus \mathbb{R}^2
- $\mathbf{s}, \mathbf{z} \in \mathbb{R}^2 \setminus \bigcup_{i=1}^n P_i$ R Roboter mit Position \mathbf{r} Output:
- · While $\mathbf{r} \neq \mathbf{z}$
 - · laufe in Richtung \mathbf{z} bis $\mathbf{r} = \mathbf{z}$ oder $\exists i : r \in P_i$
 - · If $\mathbf{r} \neq \mathbf{z}$
 - umlaufe P_i und suche ein $\mathbf{q}\in \arg\min_{\mathbf{x}\in P_i}||\mathbf{x}-\mathbf{z}||_2$ gehe zu q

Universales Steuerwort: Führt für alle Startpunkte zum geg. Ziel. (ungültige Befehle werden ignoriert)

1.3 Behälterproblem (bin packing)

Maximale Füllmenge h, verteile Zahlenmenge auf möglichst wenige Behälter. NP-hart.

- For $i = 1, \dots, m$
- · Bestimme kleinstes j mit $b_i + \sum_{b \in B_i} b \le h$
- Füge b_i zu B_i hinzu

ist 2-kompetitiv.

Algorithmus A ist c-kompetitiv falls $k_A \leq a + c k_{min}$ für alle Eingaben

Türsuche

- Wähle Erkundungstiefen $f_i>0$ für $i \in \mathbb{N}$
- · For i := 1 to ∞ (stoppe, wenn Tür gefunden)
 - · gehe f_i Meter die Wand entlang und zurück
 - · wechsle Laufrichtung

 $d:=\mathrm{dist}(\mathbf{s},\mathrm{T}\ddot{\mathbf{u}}\mathbf{r})=\boldsymbol{f}_n+\boldsymbol{\varepsilon}\in$ $(f_n, f_{n+1}]$ Legt $L = 2\sum_{i=0}^{n} f_i + d$ zurück $(oder^{n+1})$ $L \in \Theta(n^2) = \Theta(d^2)$ Bestmöglich: 9-kompetetitiv (z.B. für $f_i = 2^i$)

1.4 Sternsuche

Gleich Türsuche, nur mit mehr als zwei Wänden (Halbgeraden). Bestmöglich: Für $f_i = (\frac{m}{m-1})^i$ c-kompetitiv mit $c := 2m(\frac{m}{m-1})^{m-1} + 1 < 2me + 1$

1.5 Suche in Polygonen

Roboter R sucht Weg in polygonalem Gebiet P mit n Ecken von s nach z.

Weglängen: gefunden: l, kürzest: dStrategie existiert mit $\frac{l}{d} \in O(n)$ Baum der kürzesten Wege (BkW) (Blätter sind Polygonecken)

2 Konvexe Hüllen 2.1 Dualität

 $\mathbf{x} := \begin{bmatrix} 1 \ \bar{\mathbf{x}} \end{bmatrix}^t, \bar{\mathbf{x}} \in \mathbb{R}^d$ bilden affinen Raum A^d . $\mathbf{u}^{t}\mathbf{x} := \begin{bmatrix} u_{0} \ u_{1} \dots \ u_{d} \end{bmatrix} \cdot \begin{bmatrix} 1 \ x_{1} \vdots x_{d} \end{bmatrix}^{t} > 0$ ${\bf u}$ bezeichnet Halbraumvektor und ${f x}$ einen seiner Punkte Nur betrachtet mit $(1 \quad 0 \quad \dots \quad 0)^t$ im Inneren, d.h.

 $u_0 > 0$, normiert $u_0 = 1$. \mathbf{u}^* ist dual zu \mathbf{u} und bezeichnet den Halbraum.

 $\mathbf{x} \in \mathbf{u}^* \Leftrightarrow \mathbf{u} \in \mathbf{x}^* \text{ (Dualität)}$

2.2 Konvexe Mengen

Verbindungsstrecke $\mathbf{x} := \mathbf{a}(1-t) + \mathbf{b}t, \quad t \in [0,1] \text{ wird}$ genannt ab.

 $M\subset A$ ist konvexwenn sie zu je zwei ihrer Punkte auch die Verbingungsstrecke enthält. Konvexe Hülle [M] von M ist Schnitt aller konvexen Obermengen.

Ist $M \subset A$ bilden alle Halbräume, die M enthalten, eine konvexe Menge im Dualraum.

Ist $M^* \subset A^*$ eine Halbraummenge, bilden alle Punkte, die in allen $m^* \in M^*$ enthalten sind, eine konvexe Menge im Primalraum A.

2.3 Konvexe Polyeder *P*

ist Schnitt endlich vieler Halbräume.

Rand ∂P ; Facetten darauf. Jede Facectte liegt auf Rand eines Halbraums (FHR)

P ist konvexe Hülle seiner Eckenmenge

Ist P ein konvexes Polyeder mit den Ecken $\mathbf{p}_1,\dots,\mathbf{p}_e$ und den FHRen $\mathbf{u}_1^*,\dots,\mathbf{u}_f^*$, hat die Menge $U^*:=\{\mathbf{u}^*|\mathbf{u}^*\supset P\}\subset A^*$ die Ecken $\mathbf{u}_1^*, \dots, \mathbf{u}_f^*$ und die FHRe $\mathbf{p}_1, \dots, \mathbf{p}_e$. Dual ausgedrückt heißt das, dass die Menge $U := \{\mathbf{u} | \mathbf{u}^* \supset P\} \subset A$ die Ecken \mathbf{u}_i und die FHR
e \mathbf{p}_i^* hat. Polyeder P und $U\subset A$ heißen dual zueinander.

2.4 Euler: Knoten, Kanten, Facetten

v Knoten, e Kanten, f Seiten Eulers Formel: v - e + f = 2

2.5 Datenstruktur für Netze

Für jede Ecke **p**:

- · Koordinaten von \mathbf{p}
- · Liste von Zeigerpaaren:
 - die ersten Zeiger im Gegenuhrzeigersinn auf alle Nachbarn von \mathbf{p}
 - Sind $\mathbf{p},\mathbf{q},\mathbf{r}$ im GUS geordnete Nachbarn einer Facette und weist der 1. Zeiger eines Paares auf \mathbf{q} , zeigt der 2. Zeiger indirekt auf **r**. Er weist auf das Zeigerpaar von q

2.6 Konvexe Hülle

 $\mathit{Input:}\ P := (\mathbf{p}_1, \dots, \mathbf{p}_n) \subset A^3$ Output: [P]

- 1. Verschiebe P sodass Ursprung in P liegt
- $2. \ \ U_4 \leftarrow \mathbf{p}_1^* \cap \ldots \cap \mathbf{p}_4^*$ $3. \ \ \text{For} \ \ i=5,\ldots,n$
- - · (falls $U_4 \subset \mathbf{p}_i^*$, markiere \mathbf{p}_i als gelöscht
 - · sonst verknüpfe \mathbf{p}_i bidirektional mit einem Knoten von $U_4 \notin \mathbf{p}_i^*$
- 4. For $i = 5, \dots, n$
 - $\cdot \ U_i \leftarrow U_{i-1} \cap \mathbf{p}_i^*$
 - ...zeug
- 5. Dualisiere, verschiebe und gib $\bigcap_{\mathbf{u}\in U}\mathbf{u}^*-\mathbf{v}$ aus

3 Distanzprobleme

3.1 Voronoi-Gebiet

eines der Punkte \mathbf{p}_i ist
$$\begin{split} V_i &= \{\mathbf{x} \in \mathbb{R}^2 | \forall j = 1, \dots, n: \\ ||\mathbf{x} - \mathbf{p}_i||_2 &\leq ||\mathbf{x} - \mathbf{p}_j||_2 \} \end{split}$$
 ${\cal V}_i$ ist konvex da Schnitt der Halbebenen.

Voroni-Kreis (Punkte des Schnitts von drei Voronoi-Gebieten) ist leer.

3.2 Delaunay-Triangulierung

Delaunay-Triangulierung D(P)einer Punktemenge P hat Kantenmenge $\{\mathbf{p}_i\mathbf{p}_j|V_i\cap V_j \text{ ist }$ Kante des Voronoi-Diagramms

Ist der zu V(P) duale Graph. Die Gebiete von D(P) sind disjunkte Dreiecke und zerlegen die konvexe Hülle [P]

3.2.1 Eigenschaften

Umkreise der Dreiecke sind leer Paraboloid-Eigenschaft:

Sei $Z(x, y) = x^2 + y^2$.

Projiziert man den unteren Teil der

konvexen Hülle
$$[\{\begin{pmatrix} \mathbf{p}_i \\ Z(\mathbf{p}_i) \end{pmatrix} | i=1,\dots,n\}$$

 $[\{\begin{pmatrix} \mathbf{p}_i\\ Z(\mathbf{p}_i) \end{pmatrix}|i=1,\ldots,n\}]$ orthogonal auf die xy-Ebene, erhält $\min \, \bar{D}(P)$

D(P) kann mit Konvexe Hülle und mittlerem Aufwand $O(n \log n)$ berechnet werden

Kanten einer Triangulierung von Q sind konvex (Tal) oder konkav (Berg), ersetze sukzessiv in

konkave durch konvexe Kanten Winkeleigenschaft: Der kleinste Winkel in jedem Viereck ist größer bei DT als bei jeder anderen Triangulierung

 \mathbf{jeder} Punkt \mathbf{p}_i ist mit nächstem Nachbarn durch Kante in D(P) $verbunden \rightarrow n$ ächste Nachbarn aller p_i können in O(n) bestimmt werden

minimale Spannbäume von P liegen auf D(P) (findbar mit Kruskal (greedy))

Rundweg um minimalen Spannbaum ist 2-kompetitiv zu kürzestem Rundweg.

4 Stationäre Unterteilung für Kurven

4.1 Kardinale Splines

$$\begin{split} N^0(u) &:= \begin{cases} 1, & u \in [0,1) \\ 0, & sonst \end{cases} \\ N^n(u) &:= \int_{u-1}^u N^{n-1}(t) dt \\ N^n(u) & \begin{cases} =0, & u \notin [0,n+1) \\ >0, & u \in (0,n+1) \end{cases} \end{split}$$

4.2 Symbole

Dopplung: $\alpha_0(z) = 1 + z$ Mittelung: $\mu(z) = (1+z)/2$ Lane-Riesenfeld-Algorithmus: $\alpha_n(z) = \frac{(1+z)^{n+1}}{2^n}$, Differenz: $\beta(z) = \alpha_{n-1}(z)/2$ Chaikin: $\alpha_1(z) = \frac{1}{2}(1+z)^2$ Unterteilungsgleichung: $\alpha(z)c(z^2) = b(z)$ Differenzenschema zu einem $\alpha(z)$: $\beta(z) = \frac{\alpha(z)}{1+z}$ (Polynomdivision).

Existiert nur wenn $\alpha(z)$ den Faktor (1+z) hat, bzw. wenn $\alpha(-1) =$ $\sum_{j\in\mathbb{Z}}\alpha_{2j}-\sum_{j\in\mathbb{Z}}\alpha_{2j+1}=0$ Für konvergentes $\alpha(z)$ gilt $\sum_{j\in\mathbb{Z}} \alpha_{2j} = \sum_{j\in\mathbb{Z}} \alpha_{2j+1} = 1$

Ableitungsschema: $2\alpha(z)/(1+z)$ Existiert das r-te Ableitungsschema

von α und ist konvergent, konvergieren alle durch α erzeugten Folgen $(c^m)_{m\in\mathbb{N}}$ gegen r-mal stetig differenzierbare Funktionen.

Unterteilungsschema konvergent \leftrightarrow Differenzenschema Nullschema

konvergent: für jede Maske ist die Summe der Gewichte 1

5 Unterteilung für Flächen

Matrix $C = \mathbf{c}_{\mathbb{Z}^2}$ hat das Symbol $\mathbf{c}(\mathbf{x}) \coloneqq \mathbf{c}(x,y)$
$$\begin{split} &:= \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} \mathbf{c}_{ij} x^i y^j \\ &:= \sum_{\mathbf{i} \in \mathbb{Z}^2} \mathbf{c}_{\mathbf{i}} \mathbf{x}^{\mathbf{i}} \\ &\text{Seien U,V} \end{split}$$
Unterteilungsalgorithmen mit Symbol $\alpha(x), \beta(x)$ Das Unterteilte Netz

 $\begin{array}{l} B \coloneqq \mathbf{b}_{\mathbb{Z}^2} \coloneqq UCV^t \text{ hat das Symbol} \\ \mathbf{b}(x,y) \coloneqq \alpha(x)\mathbf{c}(x^2,y^2)\beta(y) \end{array}$ $\gamma(x,y) := \alpha(x)\beta(y)$ ist das Symbol des Tepus(U, V) mit der Unterteilungsgleichung $\mathbf{b}(\mathbf{x}) =$ $\gamma(\mathbf{x})\mathbf{c}(\mathbf{x}^2)$ $\mathbf{b_i} = \sum_{\mathbf{k} \in \mathbb{Z}^2} \gamma_{\mathbf{i}-2\mathbf{k}} \mathbf{c_k}$

 $\mathbf{x}^2 = (x^2, y^2)!$ $\textit{Verfeinerungsschema}\ (U_1,U_1) :$

$$\tfrac{1}{4}[1\,x\,x^2] \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \cdot [1\,2\,1] \begin{bmatrix} 1 \\ y \\ y^2 \end{bmatrix}$$

5.1 Wavelets 1D

Grundfunktionen $B_i^k \coloneqq N_i^0(2^k u)$

 $\gamma(x,y) :=$

$$\begin{aligned} & \mathbf{Wavelets} \ W_i^k \coloneqq B_{2i}^{k+1} - B_{2i}^{k+1} \\ & \text{geg: } s(u) = \sum_{i=0}^{2^{m-1}} c_i^m N_i^0(2^m u) \\ & \text{oder } s = \\ & \sum_{i=0}^{2^{m-1}-1} (c_i^{m-1} B_i^{m-1} + d_i^{m-1} W_i^{m-1}) \end{aligned}$$

Zerlegung ·

For
$$k=m-1,\ldots,0$$

• For $i=0,\ldots,2^k-1$
• $c_i^k=0.5(c_{2i}^{k+1}+c_{2i+1}^{k+1})$
• $d_i^k=0.5(c_{2i}^{k+1}-c_{2i+1}^{k+1})$

$$\begin{array}{c} \text{Ausgabe: } s = c_0^0 B_0^0 + \sum\limits_{i=0}^{2^0-1} d_i^0 W_i^0 + \\ \dots + \sum\limits_{i=0}^{2^{m-1}-1} d_i^{m-1} W_i^{m-1} \end{array}$$

Rekonstruktion -

· For k = 0...m-1For $k = 0...n^{-1}$ · For $i = 0...2^k - 1$ · $c_{2i}^{k+1} = c_i^k + d_i^k$ · $c_{2i+1}^{k+1} = c_i^k - d_i^k$

5.2 Wavelets 2D
$$s(x,y) = \sum_{i,j=0}^{2^m-1} c_{ij}^m B_i^m(x) B_j^m(y)$$

Zerlegung^2 (Spalte erster Index!)

- · Für k = m-1...0
 - · Für i,j = $0...2^k 1$

Beachte auch: in der nächsten Matrix sind die c_{ij} nur in den 4er Feldern jeweils links oben! Rekonstruktion² analog zu Zerlegung^2, jedoch mit Faktor 4 statt 0.25 und c, d, e, f, ergeben jeweils (2i,2j), (2i+1,2j) usw.

6 Flussmaximierung

Flussnetzwerk F := (G = $(V,E), q \in V, s \in V, k: V^2 \to \mathbb{R}_{\geq 0}$ Graph zusammenhängend (für jeden Knoten ex. Weg von q zu s), $|E| \ge |V| - 1$ Fluss $f:V^2\to\mathbb{R}$ mit Residual graph $G_f := (V, E_f :=$ $\{e \in V^2 | f(e) < \dot{k(e)}\})$

Residualnetz $F_f := (G_f,q,s,k_f := k-f)$

6.1 Methoden

6.1.1 Ford-Fulkerson (naiv)

solange es einen Weg $q \rightsquigarrow s$ in G_f gibt, erhöhe f maximal über diesen Weg. (Nur für $k \in \mathbb{Q}$)

6.1.2 Edmonds-Karp

=FF, erhöhen immer längs eines kürzesten Pfades in G_f . (für bel. $k \in \mathbb{R}$)

6.1.3 Präfluss-Pusch

Präfluss-Eigenschaft Fluss mit Rein-Raus >= 0

Höhenfunktion h(q) = |V|, h(s)

 $\forall (x,y) \in E_f : h(x) - h(y) <= 1$ Push(x,y) schiebe maximal

Mögliches (ü und k beachten!) über **Pushbar(x,y)** $x \in V \setminus \{q, s\}$ und

h(x) - h(y) = 1 und $\ddot{\mathbf{u}}(x) > 0$ und $(x,y)\in E_f$

Lift(x)

 $\begin{aligned} & \overbrace{h(x)} \leftarrow 1 + \min_{(x,y) \in E_f} h(y) \\ & \mathbf{Liftbar(x)} \ x \in V \setminus \{q,s\} \ \text{und} \end{aligned}$ $\ddot{\mathbf{u}}(x) > 0$ und

 $h(x) \leq \min_{(x\,,\,y) \in E_f} h(y)$

Präfluss-Push: ·

- · $h(x) \leftarrow \text{if } x = q \text{ then } |V| \text{ else } 0$
- $f(x,y) \leftarrow \text{if } x =$ q then $k(\boldsymbol{x},\boldsymbol{y})$ else 0

6.1.4 An-Die-Spitze Leere(x) ·

- while $\ddot{\mathbf{u}}(x) > 0$
 - $\cdot \text{ if } i_x \leq Grad(x) \\$
 - · if $pushbar(x, n_x(i_x))$: $\operatorname{push}(x,n_x(i_x))$
 - \cdot sonst: $i_x \mathrel{+}= 1$
- · Lift(x), $i_x \leftarrow 1$

List Liste aller $x \in V \setminus \{q,s\}$ mit x vor y falls pushbar(x,y) $n_x(i) \quad (1 \leq i \leq Grad(x)) \text{ sind }$ Nachbarn von x (auch Gegenrichtung) i_x ist Zähler (alle $n_x(i)$ mit $i \leq i_x$

An die Spitze \cdot Initialisiere f und h wie bei Präfluss-Push

 $\forall x \in V: i_x \leftarrow 1$

nicht pushbar)

- · Generiere L
- $\cdot x \leftarrow \text{Kopf}(L)$
- · while $x \neq \text{NIL}$
 - · Leere(x)
 - Falls $h_{alt} < h(x)$, setze x an Spitze von L
 - · $x \leftarrow$ Nachfolger von x in L

7 Zuordnungsprobleme 7.1 Paaren in allgemeinen Graphen

Alternierender Weg ist maximal, wenn er nicht Teil eines längeren alternierenden Weges ist.

 \rightarrow Maximale Paarung kann durch sukzessive Vergrößerung gefunden werden

7.2 Berechnung vergrößender Wege

 $\begin{tabular}{ll} \begin{tabular}{ll} \be$ und P, Output: Vergrößernder Weg für P

- $h(x) \leftarrow 0$ wenn x frei, -1 wenn x gebunden
- Solange kein vergrößernder Pfad gefunden und gibt unutersuchte Kante $\langle x, y \rangle$ mit $h(x) \in 2\mathbb{N}_0$ \cdot if h(y) = -1
- $\cdot \ v(y) \leftarrow x, v(p(y)) \leftarrow y, h(y) \leftarrow$ $h(x)+1, h(p(y)) \leftarrow h(y)+1$
- $\cdot \text{ if } y = v^i(x) \text{ und } i \in 2\mathbb{N}_0$ schrumpfe die Blüte

 $x-v(x)-v^2(x)-\cdots-y-x$

· if $h(y) \in 2\mathbb{N}$ und $\begin{array}{l} w_x \coloneqq v^{h(x)}(x) \neq w_y \coloneqq v^{h(y)}(y), \\ \text{ist ein vergrößernder Pfad} \end{array}$ $w_x \leadsto w_y$ über $\langle x,y \rangle$ gefunden

7.3 Maximal gewichtete Paarungen

Berechnung möglich in $O(|V|^3)$ bzw. $O(|V| \cdot |E| \log |V|)$

8 Minimale Schnitte

Sei

 \cdot $\bar{G}:=(V,\bar{E}), \bar{E}:=\{(x,y)|\langle y,x\rangle=0\}$ $\langle x, y \rangle \in E$

 $\cdot \ k: V^2 \to \mathbb{R}_{\geq 0}, k(x,y) :=$ if $(\langle x,y\rangle \in$

E) then $\gamma(\langle x,y\rangle)$ else 0 $x, z \in V$ beliebig

Berechne maximalen Fluss $\rightarrow A := \{ y \mid \exists \text{ Pfad } x \leadsto y \text{ in } G_f \}$ und $B := V \setminus A$ bilden minimalen xz-Schnitt $(x \in A, z \in B)$ Gewicht des Schnitts = Wert des Flusses

kleinster xz-Schnitt in G lässt sich mit Flussmaximierung in $O(|V|^4)$

(es existieren Algorithmen in $O(|V|^2 \log |V| + |V||E|))$

8.1 Zufällige Kontraktion

ggf. todo

 $Monte\hbox{-} Carlo\hbox{-} Algorithmus =$ stochastischer Algorithmus, kann falsche Ergebnisse Liefern Las-Vegas-Algorithmus = stoch.Algo., immer richtig

IV Optimierungsalgorithmen

9 Kleinste Kugeln

Für jede Punktmenge P ist die kleinste Kugel $K(P) \supset P$ eindeutig.

9.1 Algorithmus von Welzl

K(P,R)ist Kugel die P
 enthält und R auf der Oberfläche hat

Welzl · Input: $P, R \subset \mathbb{R}^d$, K(P,R) exist., P,R endlich

- · if $P = \emptyset$ or |R| = d + 1
 - $\cdot \ C \leftarrow K(R)$
- else wähle $\mathbf{p} \in P$ zufällig
- $\cdot \ \mathsf{C} \leftarrow \mathsf{Welzl}(P \setminus \{\mathbf{p}\}, R)$ · if $\mathbf{p} \notin C$
- $\cdot C \leftarrow \text{Welzl}(P \setminus \{\mathbf{p}\}, R \cup \{\mathbf{p}\})$
- · Gib C aus

10 Lineare **Programmierung** 10.1 Lineare Programme

$$\begin{split} \text{LP ist } z(\mathbf{x}) &:= \mathbf{z}\mathbf{x} = \text{max!}, \ A\mathbf{x} \geq \mathbf{a}, \\ \text{wobei } \mathbf{z}, \mathbf{x} \in \mathbb{R}^d, A \in \mathbb{R}^{n \times d}, \mathbf{a} \in \mathbb{R}^n, \end{split}$$
und $\mathbf{z}\mathbf{x} := \mathbf{z}^t\mathbf{x}$

d ist die Dimension des linearen Programms.

Die Ungleichungen $A\mathbf{x} \geq \mathbf{a}$ repräsentieren den Schnitt S von n Halbräumen, der Simplex genannt

Die Punkte $\mathbf{x} \in S$ heißen zulässig. Die Ecken von S liegen je auf d Hyperebenen (d Gleichungen des Gleichungssystems).

 $Simple xalgorithm us:\ Iterativ$ Ecken entlang gehen, bis z maximal.

10.2 Flussmaximierung als

maximiere Summe der ausgehenden Flüsse aus der Quelle. Gleichungen zur Flusserhaltung (je eingehende Kanten - ausgehende $Kanten = 0 \ (\geq und \leq))$ Gleichungen zur Kapazitätsbeschränkung (Fluss \geq 0 und (Kapazität - Fluss) ≥ 0)

10.3 Kürzester Weg als LP

Suche Weg $1 \leadsto 2$

f(a,b) = -f(b,a)

$$\begin{array}{c} \sum_{(i,j)\in E} x_{ij} \gamma_{ij} = \min! \\ x_{ij} \geq 0, (i,j) \in E \end{array}$$

$$\sum_{j} x_{ij} - \sum_{j} x_{ji} = \begin{cases} 1 & i = 1 \\ -1 & i = 2 \\ 0 & sonst \end{cases}$$

(Ausgehende Kanten = Eingehende Kanten außer für $i \neq 1, 2$) negative Kreise \Rightarrow keine endliche Lösung. Erzwingbar durch $x_{ij} \le 1, (i, j) \in E$ (?)

10.4 Maximusnorm

geg: r = A * a - c mit A Matrix wobei c konstanter Vektor und a Vektor aus Variablen. Dann LP mit $y_0 = 1/r, y_1 = a_1/r, y_2 = a_2/r, \dots$ $\begin{array}{ccc}
-c & A \\
c & -A
\end{array} <= [1, 1,, 1]$

10.5 Simplexalgorithmus

 $\mathbf{y}(\mathbf{x}) = A\mathbf{x}$

$$\begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

wobei n = d + 1 und $x_n = 1$

 $\begin{aligned} & \text{Hyperebenen} \ H_i: y_i(\mathbf{x}) = 0 \\ & \text{Gegeben:} \ A = [a_{ij}]_{i,j=1,1}^{m,n} \\ & \text{Gesucht:} \ B = [b_{ij}]_{i,j=1,1}^{m,n} \\ & \text{r=Pivotzeile, s=Pivotspalte} \end{aligned}$

Austausch ·

- Austriastri \cdot \cdot $b_{rs} \leftarrow \frac{1}{a_{rs}}$ \cdot $b_{rj} \leftarrow -\frac{a_{rj}}{a_{rs}}$ (Pivotzeile, $j \neq s$) \cdot $b_{is} \leftarrow \frac{a_{is}}{a_{rs}}$ (Pivotspalte, $i \neq r$)
- $\cdot \ b_{ij} \leftarrow a_{ij} \frac{a_{is}a_{rj}}{a_{rs}} \ (i \neq r, j \neq s)$

10.6 Normalform

Jedes lin. Programm kann auf die Form

$$\mathbf{z}\mathbf{x} = \max!$$

$$A\mathbf{x} \ge 0$$

mit $\mathbf{x} = [x_1 \dots x_d \ 1]^t$ kann auf die Form

$$[\mathbf{c}^t c]\mathbf{y} = \max!$$

$$\mathbf{y} \geq 0$$

 $[B\mathbf{b}]\mathbf{y} \ge 0$

 $\text{mit } \mathbf{y} \coloneqq [y_1 \dots y_d \ 1]^t \text{ gebracht}$ werden.

Notation:

$$y_{d+1} = \begin{bmatrix} x_{0...d} & 1 \\ \vdots & B & \mathbf{b} \\ y_m = \\ z = \begin{bmatrix} \mathbf{c}^t & c \end{bmatrix} \ge 0$$
 = max!

 $\mathbf{b} \geq 0$, sonst Simplex leer.

10.7 Simplexalgorithmus

Simplex \cdot Input: \bar{A}

Normalformmatrix eines lin.

- Progr. $\bar{A} := \begin{bmatrix} A & \mathbf{a} \\ \mathbf{c}^t & c \end{bmatrix}$ - Solange ein $c_s > 0$
- aus; Ende
- · sonst \cdot bestimme
r so, dass

· Falls alle $a_{is} \geq 0$: gib $c \leftarrow \infty$

- $\begin{array}{l} \cdot \ \frac{a_r}{a_{rs}} = \max_{a_{is} < 0} \frac{a_i}{a_{is}} \\ \cdot \ \bar{A} \leftarrow \operatorname{Austausch}(\bar{A}, r, s) \end{array}$

Die Lösung ist dann, dass alle y_i die oben an der Tabelle stehen = 0

(total) unimodular = quadratisch, $det A \in \{-1, 0, 1\}$ (+alle quad. Untermatrizen)

6

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \sphericalangle (\mathbf{a}, \mathbf{b})$$

$$\sum_{k=0}^{n} 2^{k} = 2^{n+1} - 1$$
Laufzeiten Kap. Name Laufzeit

2.6 Konvexe erw: $O(n \log n)$, max: Hülle $O(n^2)$

Ford- O(|E|*W) (k Wert Fulkerson eines max. Flusses)

Edmonds $O(|E|^2 * |V|)$ Karp

Präfluss- $|O(|V|^2 * |E|)$ 6 Push

An-Die- $|O(|V|^3)$ Spitze

Paare $|O(|E| \cdot \min\{|L|, |R|\})$ Vergrö- $|O(|V| \cdot |E|)$

ßernder

Weg Schnitt $O(|V|^2)$ gef. mit $P = 1 - 1/e^2$

 $\begin{array}{ll} \text{Min} & O(|V|^2\log|V|) \text{ richtig} \\ \text{Schnitt} & \text{mit } P \in \Theta(1/\log|V|) \end{array}$ 8.3

Welzl mittl: O(n)Simplex erw: $O(n^2d)$, max:

 $\Omega(n^{d/2})$ 10 Ellipsoid polyn.; in praxis

langsamer als Simplex 10 Innere polyn.; in praxis fast Punkte so gut wie Simplex

10.5 Seidel $O(d^3d! + dnd!)$