Biostatistics for Health Care Researchers: A Short Course

Evaluation of Diagnostic Tests

Presented by:

Siu L. Hui, Ph.D.

Department of Medicine, Division of Biostatistics Indiana University School of Medicine

Objectives

- Calculate and interpret sensitivity, specificity, predictive value positive, and predictive value negative.
- Understand the principle behind ROC curves.
- Understand the use of kappa and intraclass correlation coefficients to measure agreement.

Examples

- Screening
 - Lab (BMP, lipids)
 - Imaging (bone density, mammogram)
 - Questionnaires (depression, dementia, QOL)
- Diagnostic
 - Blood tests for infection
 - Imaging (X-ray, CT, MRI)
 - Histology

All tests have errors. How accurate are they?

Outline

- Accuracy of a diagnostic test:
 - Binary data: **sensitivity** and **specificity predictive value** positive and negative
 - Ordinal or continuous data: ROC curve
- Measure of the agreement of two tests:
 - nominal or ordinal data: Kappa
 - Continuous data: Intraclass correlation coefficient

Example 1: Staging of Prostate Cancer with MRI

Tempany, et al. (1994) studied the accuracy of conventional MRI in detecting advanced stage prostate cancer.

- Disease: advanced stage prostate cancer.
- Test: conventional MRI.
- The true disease status was established by surgery.

Question: How accurate is conventional MRI in detecting advanced stage prostate cancer?

Tempany, Zhou, Zerhouni, Rifkin, Quint, Piccoli, Ellis, and McNeil (1994). "Staging of Prostate Cancer: Results of Radiology Diagnostic Oncology Group Project Comparison of Three MR Imaging Techniques" Radiology, 192:47-54.

Example 1 (continued)

Disease\MRI	T+	T-	total
D+	70	45	115
D-	32	53	85
total	102	98	200

Accuracy of a Test

True Disease Status:

Disease (D⁺) and non-disease (D⁻) by **gold standard** {Advanced stage vs. early stage by surgery}

Test Result:

Positive (T⁺) and negative (T⁻) results from a test of interest.

{Advanced stage vs. early stage as assessed by MRI}

Example 1 (continued)

Disease\MRI	T+	T-	total
D+	70	45	115
D-	32	53	85
total	102	98	200

Overall Accuracy

- N = total # of cases
- A = # of correctly diagnosed cases
- Overall accuracy = A/N

Example 1 (continued)

Disease\MRI	T+	T-	total
D+	70	45	115
D-	32	53	85
total	102	98	200

Overall Accuracy = $(70 + 53)/200 = 0.615 \sim 62\%$

Sensitivity and Specificity

- **Sensitivity** (Sens) the ability of a test to give a positive finding when the person tested truly has the disease under study.
- **Specificity** (Spec) the ability of a test to give a negative finding when the person tested truly is free of the disease under study.

Sensitivity and Specificity

Sens =
$$P(T^+|D^+) = \frac{\text{# of } T^+ \text{ and } D^+}{\text{# of } D^+}$$

Spec =
$$P(T^-|D^-) = \frac{\text{# of } T^- \text{ and } D^-}{\text{# of } D^-}$$

Sensitivity and Specificity

- Sensitivity: True positive rate (TPR)
- **Specificity**: True negative rate (1-FPR)

where FPR=false positive rate

Example 1 (continued)

Disease\MRI	T+	T-	total
D+	70	45	115
D-	32	53	85
total	102	98	200

Sens = 70/115 = 61%

Example 1 (continued)

Disease\MRI	T+	T-	total
D+	70	45	115
D-	32	53	85
total	102	98	200

 In summary, Sensitivity and Specificity are two intrinsic properties of a test.

BUT, clinical providers have to infer a patient's disease status from test results.

 How well can a given test result of a patient predict the disease status of the patient?
 {How likely a patient with positive MRI result actually has advanced stage prostate cancer?}

Predictive Values

 Predictive value positive (PV+) is the probability that a patient with a positive test result actually has the disease:

$$\mathbf{PV}^{+} = \frac{\text{# of diseased patients with a positive test}}{\text{# of patients with a positive test}}$$

• **Predictive value negative (PV**) is the probability that a patient with a negative test does not have the disease:

$$\mathbf{PV}^{-} = \frac{\text{# of non-diseased patients with a negative test}}{\text{# of patients with a negative test}}$$

PV+ and PV-

• Both PV⁺ and PV⁻ depend on the sensitivity, the specificity and the disease prevalence (Prev).

$$PV^{+} = P(D^{+}|T^{+}) = \frac{Sens \times Prev}{Sens \times Prev + (1 - Spec) \times (1 - Prev)}$$

$$PV^{-} = P(D^{-}|T^{-}) = \frac{Spec \times Prev}{Spec \times Prev + (1 - Sens) \times (1 - Prev)}$$

Example 2: A Screening Test for a Rare Disease

Disease\Test	T+	T-	total
D+	19	1	20
D-	99	1881	1980
total	118	1882	2000

Disease prevalence=20/2000=1%.

Example 2: A Screening Test for a Rare Disease

Disease\Test	T+	T-	total
D+	19	1	20
D-	99	1881	1980
total	118	1882	2000

- Disease prevalence=20/2000=1%.
- Sens=19/20=95%
- Spec=1881/1980=95%.

Example 2: A Screening Test for a Rare Disease

Disease\Test	T+	T-	total
D+	19	1	20
D-	99	1881	1980
total	118	1882	2000

- Disease prevalence=20/2000=1%.
- Sens=19/20=95%, Spec=1881/1980=95%.
- PV⁺=19/118=16.1%...

Example 2: A Screening Test for a Rare Disease

Disease\Test	T+	T-	total
D+	19	1	20
D-	99	1881	1980
total	118	1882	2000

- Disease prevalence=20/2000=1%.
- Sens=19/20=95%, Spec=1881/1980=95%.
- PV+=19/118=16.1%, PV-=1881/1882=99.9%.

Example 2 (continued)

Prev(%)	PV ⁺ (%)	PV ⁻ (%)
1	16.1	99.9
5	50.0	99.7
20	82.6	98.7
50	95.0	95.0
75	98.3	83.7

- Sens = Spec = 95%.
- Note how the prevalence affects PV⁺ and PV⁻.
- When does it not make sense to screen?

 What if your test gives a continuous reading rather than +/-?

Example 3: Blood Test for Disease

ID	D	Т	≤1	≤2	≤3	≤4
1	-	0.2	-	-	-	-
2	-	0.7	-	-	-	-
3	-	1.8	+	-	-	-
4	-	2.0	+	-	-	-
5	-	3.1	+	+	-	-
6	-	3.3	+	+	+	_
7	+	1.5	+	-	-	-
8	+	2.4	+	+	-	-
9	+	3.0	+	+	+	-
10	+	3.1	+	+	+	-
11	+	3.8	+	+	+	_
12	+	4.0	+	+	+	_
Sens			1.00	0.83	0.67	0.00
Spec			0.33	0.67	0.83	1.00
FPR			0.67	0.33	0.17	0.00

ROC Curve

(Receiver Operating Characteristic Curve)

- When is it applied?
 - Test results are continuous and we may have more than one possible cutoff points, or
 - We have multiple degrees of suspicion for a given a test (*ordinal* response, e.g. definitely no disease, probably no disease, probably disease, and definitely disease).
- How is it plotted? FPR on the horizontal axis and TPR on the vertical axis.

Recall: True positive rate (TPR) = Sens False positive rate (FPR) = 1-Spec

ROC Curve

(Receiver Operating Characteristic Curve)

- When is it applied?
 - Test results are continuous and we may have more than one possible cutoff points, or
 - We have multiple degrees of suspicion for a given a test (*ordinal* response, e.g. definitely no disease, probably no disease, probably disease, and definitely disease).
- How is it plotted? FPR on the horizontal axis and TPR on the vertical axis.

Recall: True positive rate (TPR) = Sens False positive rate (FPR) = 1-Spec

Example 3 (continued)

ROC Curves

- Why do we need the ROC curve?
 - Displays Sens (benefit) and FPR (cost) under different thresholds so decision makers can choose the appropriate threshold for their situation.
 - How to choose a threshold in practice? Based on how the test is used e.g. screening vs. diagnostic
 - Provides the ability to compare two or more diagnostic tests.

ROC Curve Comparison

Comments

- We can compare the accuracies of two tests if we know the gold standard.
- What if we don't have the gold standard?

Reliability

- When the gold standard is not available, a test is considered reliable if it agrees with another reference test.
- A test is considered reliable if it provides higher interrater and intra-rater (or inter-assay and intra-assay) agreement.
- Kappa: used for nominal or ordinal data agreement
- ICC: used for continuous data agreement

Example 4: Biphasic Radiography vs. Fiberoptic Endoscopy in Gastric Ulcers

Endo\Radio	No Ulcer	Ulcer	total
No Ulcer	351	4	355
Ulcer	7	12	19
total	358	16	374

Shaw, van Romunde, Griffioen, Janssens, Kreuning, Eilers (1987). "Peptic Ulcers and Gastric Carcinoma: Diagnosis with Biphasic Radiography Compared with Fiberoptic Endoscopy" Radiology, 163:39-42.

Kappa (к)

- P_o=observed agreement.
- P_e=agreement expected by chance.
- P_o-P_e=agreement beyond chance.
- 1-P_e=the maximum agreement possible beyond chance.

$$\kappa = \frac{P_o - P_e}{1 - P_e}$$

An Interpretation of Kappa

Карра	Strength of Agreement	
<0.00	poor	
0.00-0.20	Slightly poor	
0.21-0.40	Fair	
0.41-0.60	Moderate	
0.61-0.80	Substantial	
0.81-1.00	Almost perfect	

Example 4 (continued)

Endo\Radio	No ulcer	Ulcer	total
No Ulcer	351	4	355
Ulcer	7	12	19
total	358	16	374

- Total observed agreement = (351+12)/374 = 97%.
- κ =.67 (Substantial).

Intraclass Correlation

- ICC compares the variability of a trait between subjects to the total variation across all ratings and all subjects.
- As the variability of a trait between subjects increases relative to the total variability, ICC moves closer to 1.

Example 5: Faculty Ratings of Residents' Performances

Resident	Faculty1	Faculty2
1	77	81
2	80	79
3	55	60
4	91	88
5	60	62
6	80	84

ICC=.96

Summary

- Measure of accuracy with gold standard:
 - Sens, Spec, PV+, PV-
 - ROC curve
- Measure the agreement of two tests in the absence of gold standard:
 - Kappa
 - ICC