

Государственный комитет
СССР
по делам изобретений
и открытий

О П И С А Н И Е ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(11) 852914

(61) Дополнительное к авт. свид-ву -

(22) Заявлено 20.12.79 (21) 2856356/23-05

с присоединением заявки № -

(23) Приоритет -

Опубликовано 07.08.81. Бюллетень № 29

Дата опубликования описания 07.08.81

(51) М. Кл.³

С 08 L 63/02
С 08 G 59/50 //
С 09 J 3/16

(53) УДК 678.686
(088.8)

(72) Авторы
изобретения

В.Г. Каркозов, И.Я. Квитко, А.Ф. Николаев, А.В. Ельцов,
Л.И. Яковлева, Т.Г. Шавва и Д.Н. Дворников

(71) Заявитель

Ленинградский ордена Октябрьской Революции и ордена
Трудового Красного Знамени технологический институт
им. Ленсовета

(54) ЭПОКСИДНАЯ КОМПОЗИЦИЯ

1 Изобретение относится к области получения композиций на основе эпоксидных смол, которые могут быть использованы в качестве заливочных и пропиточных составов, пресс-композиций, а также клеев, способных работать при повышенных температурах (до 250°C).

Известна эпоксидная композиция, содержащая эпоксидную диановую смолу и отвердитель - ароматический диамин, например 4,4-диаминодифенилметан (ДДМ) [1].

Недостатком известной композиции является низкая жизнеспособность (20 ч при 23°C и 30 мин при 100°C) и невысокая теплостойкость (122-135°C по Мартенсу).

Известно также, что для повышения теплостойкости в качестве отвердителя используют 4,4-диаминодифенилсульфон (157-175°C по Мартенсу) [2].

Однако и в этом случае жизнеспособность невелика, а теплостойкость недостаточна. Кроме этого, 4,4-диаминодифенилсульфон требует длительного высокотемпературного режима отверждения (24 ч при 120°C и 4-8 ч при 175-200°C).

2 Наиболее близким из известных решений к изобретению является эпоксидная композиция, содержащая эпоксидную диановую смолу и ароматический аминный отвердитель - м-фенилендиамин (МФДА) [1].

Для этой композиции характерны те же самые недостатки: низкая жизнеспособность и невысокая теплостойкость. Кроме этого, МФДА имеет высокую летучесть. Попытки уменьшить летучесть путем модификации МФДА, например, кислотами (салациловой, акриловой) приводят к снижению теплостойкости.

Цель изобретения состоит в повышении жизнеспособности композиции на холода и увеличении теплостойкости отверженных материалов.

Поставленная цель достигается тем, что эпоксидная композиция, включающая эпоксидную диановую смолу и отвердитель - ароматический диамин, в качестве ароматического диамина содержит 5-амино-2-(п-аминофенол)-бензоксазол в количестве 10-30% от веса композиции.

5-Амино-2-(п-аминофенил)-бензоксазол (АФБО) имеет формулу

АФБО представляет собой кристаллическое вещество от белого до светлокоричневого цвета с т.пл. 228-232°C, хорошо растворяющееся при комнатной температуре в диметилформамиде, диметилацетамиде, пиридине, а при нагревании - в спиртах, толуоле, бензоле, хлороформе. АФБО рекомендуется вводить в измельченном виде в нагретую до 140°C эпоксидную смолу. При 140°C АФБО хорошо растворяется в эпоксидной смоле, что позволяет получать прозрачные заливочные компаунды. Жизнеспособность 0,1 кг композиции при 140°C составляет 60 мин. С целью увеличения жизнеспособности композицию после совмещения следует охладить до комнатной температуры. При этом жизнеспособность композиций на основе смолы ЭД-16 составляет 3-5 сут. Предлагаемая композиция обладает длительной жизнеспособностью, а в отверженном состоянии высокой теплостойкостью (температура размягчения по Вика 250°C, т.е. достигает практически предельного для эпоксидно-диаконовых полимеров значения) и хорошей термостабильностью. Так, потеря в весе 10% по данным дифференциального-термического анализа (DTA) в атмосфере воздуха наблюдается при 330°C, а 20% - при 380°C. Разрушающее напряжение при сдвиге kleевых соединений на стали Ст. 3 отверженных композиций,

содержащих 20 мас.% АФБО в эпоксидной смоле ЭД-16, при 180°C в течение 6 ч достигает 25 МПа при 23°C и не изменяется при температуре испытания 110°C.

Пример 1. Эпоксидную смолу ЭД-16 нагревают до 140°C, вводят 10 мас.% измельченного 5-амино-2-(п-аминофенил)-бензоксазола (АФБО) и перемешивают до получения однородной массы. Затем композицию заливают в предварительно обработанную антиадгезивом форму и отверждают в термошкафу при 140°C в течение 10 ч.

Пример 2. Получение композиции на основе ЭС ЭД-16 проводят, как указано в примере 1. АФБО вводят в количестве 10 мас.% к эпоксидной смоле. Отверждение ее проводят при 180°C в течение 6 ч.

Пример 3. Композицию, содержащую 20 мас.% отвердителя АФБО к эпоксидной смоле ЭД-16, полученную аналогично изложенному в примере 1, отверждают при 140°C в течение 10 ч.

Пример 4. Композицию, содержащую 20 мас.% отвердителя АФБО к эпоксидной смоле ЭД-16, полученную аналогично примеру 1, отверждают при 180°C в течение 6 ч.

Пример 5. Композицию, содержащую 30 мас.% АФБО, полученную аналогично примеру 1, отверждают при 180°C в течение 6 ч.

Свойства отверженных композиций I - VI, содержащих мас.%: I - 0,63 ДДМ, II - 0,15 МДФА (стехиометрические коэффициенты), III - 10 МФДА, IV - 10 МФДА, V - 20 АФБО, VI - 30 АФБО, приведены в таблице.

Физико-химические свойства	Показатель при режиме отверждения, °C - ч							
	I*	II*	III	IV	V	VI		
	100-4	180-8	180-6	140-10	180-6	140-10	180-6	180-6
Разрушающее напряжение при сжатии, МПа	118	130	122	146	130	129	145	132
Разрушающее напряжение при изгибе, МПа	105	128	88	100	110	120	130	100
Температура размягчения, по Вика, °C	-	-	144	200	250	250	250	190
Теплостойкость по Мартенсу, °C	122	128	-	-	-	-	-	-
Твердость по Бринеллю, МПа	-	-	152	228	200	193	200	152
Ударная вязкость, кДж/мм	14,8	16,4	3-4	2-3	5-6	6-7	8-10	2-3
Содержание гель-фракции, %	-	-	97	96	97	98	98	95
Разрушающее напряжение при сдвиге на Ст. 3, МПа, при температуре испытания +23°C	-	-	20	15,0	23,7	23,1	25,8	19,3
+110°C	-	-	17,0	15,7	25,0	20,9	25,0	18,7

* Показатели даны для смолы ЭД-20.

П р и м е р 6. Клеевые композиции, содержащие, 10, 20, 30 мас.% АФБО, готовят аналогично изложенному в примере 1, наносят на зашкуренные и обезжиренные ацетоном образцы в виде пластин 60x20x2 мм из стали Ст.3. Склеиваемые поверхности соединяют внахлест (площадь нахлеста 300 мм^2) и, создают с помощью соответствующего приспособления давления $P_{уд.} = 0,1 - 0,3 \text{ МПа}$. Отваждают образцы по 2 режимам: при 140°C в течение 10 ч, при 180°C в течение 6 ч.

В таблице для сравнения приведены свойства смолы ЭД-16, отверженной расчетным количеством МФДА (10 мас.%) и литературные данные по свойствам смолы ЭД-20, отверженной ДДМ и МФДА.

Таким образом, полученная композиция, пригодная для получения заливочных компаундов и kleев, обладает повышенной теплостойкостью (250°C по Вика) и значительно превосходит по жизнеспособности на холода (в 12 раз) известные композиции.

Физико-механические свойства компози-

ции остаются на уровне с аналогичными свойствами известных составов.

Формула изобретения

5 Эпоксидная композиция, включающая эпоксидную диановую смолу и отвердитель – ароматический диамин, отличающаяся тем, что, с целью повышения жизнеспособности на холода и теплостойкости отверженной композиции, в качестве ароматического диамина она содержит 5-амино-2-(*n*-аминофенол)-бензоксазол в количестве 10-30% от веса композиции.

Источники информации, принятые во внимание при экспертизе

1. Справочник по пластическим массам. Под ред. В.М.Катаева и др. Т.2, М., "Химия", 1975, с. 224 (прототип).

2. Ли Х., Невилл К. Справочное руководство по эпоксидным смолам, М., "Энергия", 1973, с. 95.

Редактор Н. Потапова

Составитель А. Акимов
Техред Ж.Кастелевич

Корректор О. Билак

Заказ 5588/3

Тираж 530

Подписьное

ВНИИПИ Государственного комитета СССР

по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4