LICENCE 3^E ANNÉE PARCOURS MATHÉMATIQUES

2017-2018 M67, GÉOMÉTRIE ÉLÉMENTAIRE

SOLUTIONS DE L'INTERROGATION

9 avril 2018

[durée : 1 heure]

Exercice 1 (Carré dans un triangle)

Soient $\triangle ABC$ un triangle, H le pied de la hauteur issue de A, et IJKL un carré tel que $I \in [AB], J, K \in [BC]$ et $L \in [CA]$. On note les longueurs a = BC, h = AH et d = IJ.

- a) Déterminer une relation entre les longueurs a, h et d. Indication: Vous pouvez utiliser Thalès à deux reprises.
- b) Exprimer le rapport des aires du carré IJKL et du triangle $\triangle ABC$ en fonction de a et h.
- c) Que vaut ce rapport dans le cas où le triangle $\triangle ABC$ est équilatéral?

Solution:

a) D'après Thalès appliqué à [IL]//[BC] on a $\frac{d}{a} = \frac{AI}{AB}$. D'après Thalès appliqué à [IJ]//[AH] on a $\frac{d}{h}=\frac{BI}{BA}$ Et comme $\frac{AI}{AB} + \frac{BI}{BA} = \frac{AI + IB}{AB} = 1$ on trouve

$$|\mathcal{A}_{IJKL}:\mathcal{A}_{\triangle ABC}| = \left(\frac{ah}{a+h}\right)^2:\frac{ah}{2}| = \frac{2ah}{(a+h)^2}.$$

c) Dans le triangle équilatéral $\triangle ABC$ on a la relation $h = \frac{\sqrt{3}}{2}a$ et donc

$$\frac{\mathcal{A}_{IJKL}: \mathcal{A}_{\triangle ABC}}{\mathcal{A}_{IJKL}: \mathcal{A}_{\triangle ABC}} = \frac{2\alpha^2 \frac{\sqrt{3}}{2}}{\alpha^2 (1 + \frac{\sqrt{3}}{2})^2} = \frac{4\sqrt{3}}{7 + 4\sqrt{3}} = 4(7\sqrt{3} - 12)^*.$$

Exercice 2 (cas particulier du théorème de Ptolémée)

Soient $\triangle ABC$ un triangle équilatéral et M un point du cercle circonscrit situé sur le petit arc $\stackrel{\frown}{BC}$ (qui ne contient pas A). Montrer l'égalité

$$MA = MB + MC$$
.

Solution:

Méthode 1 (utilisant la trigonométrie)

Soit 2θ la mesure du petit arc \widehat{MB} , donc $(120^{\circ}-2\theta)$ et $(120^{\circ}+2\theta)$ sont les mesures respectivement de \widehat{CM} et \widehat{AM} . En utilisant le fait que la longueur d'une corde d'arc 2γ est $D\sin(\gamma)$, où D est le diamètre du cercle, on trouve $MA = D\sin(60^{\circ} + \theta)$, $MB = D\sin(\theta)$ et $MC = D\sin(60^{\circ} - \theta)$. Donc on a l'équivalence

$$MA = MB + MC \iff \sin(60^{\circ} + \theta) = \sin(\theta) + \sin(60^{\circ} - \theta)$$
.

On peut démontrer cette deuxième égalité par des méthodes différentes, par exemple en utilisant la formule $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$ on trouve

$$\sin(60^{\circ} + \theta) = \sin(60^{\circ})\cos(\theta) + \cos(60^{\circ})\sin(\theta)$$
$$\sin(\theta) + \sin(60^{\circ} - \theta) = \sin(\theta) + \sin(60^{\circ})\cos(\theta) - \cos(60^{\circ})\sin(\theta)$$

et comme $1 - \cos(60^{\circ}) = \cos(60^{\circ})$ on obtient l'égalité cherchée.

Méthode 2 (par construction géométrique)

Nous allons utiliser ici la même construction géométrique que celle vue en td pour le théorème de Ptolémée.

Soit K un point sur [AM] tel que MK = MB. Comme $\widehat{BMA} = \widehat{BCA} = 60^\circ$, le triangle $\triangle BMK$ est équilatéral. Ainsi la rotation à 60° autour de B envoie A en C et K en M, donc KA = MC. On conclut avec MA = MK + KA = MB + MC.

