7.7 Section pre-lecture comments

Lecture Outline

New terminology

- 1. (orthogonal) projection
- 2. vector component along \boldsymbol{a}
- 3. vector component perpendicular to \mathbf{a}

Projection onto a line

- $ightharpoonup \vec{x}_1$ is the part of \vec{x} parallel to \vec{a} .
- $ightharpoonup \vec{x}_2$ is the part of \vec{x} perpendicular to \vec{a} .

How do we find x_1 and x_2 ?

Assume that $\theta < 90^{\circ}$ (the case $\theta > 90^{\circ}$ is similar).

- ▶ We already know the direction of x_1 . same direction as \overrightarrow{a}
- ▶ So we only need to find $||x_1||$.

From definition of cosine:

$$\cos\theta = \frac{\|\vec{x}_1\|}{\|\vec{x}_1\|} \qquad \left(\frac{a_1}{h_{yp}}\right)$$

From the dot product $\mathbf{a} \cdot \mathbf{x}$:

$$\cos\theta = \frac{\vec{\alpha} \cdot \vec{x}}{\|\vec{\alpha}\| \|\vec{x}\|}$$

$$\|\mathbf{x}_1\| = \|\vec{\mathbf{x}}\| \cos \theta = \|\vec{\mathbf{x}}\| \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{x}}}{\|\vec{\mathbf{a}}\| \|\vec{\mathbf{x}}\|} = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{x}}}{\|\vec{\mathbf{a}}\|}$$
 (scalar)

$$\mathbf{x}_1 = \left(\frac{\vec{\alpha} \cdot \vec{x}}{\|\vec{\alpha}\|}\right) \cdot \left(\frac{\vec{\alpha}}{\|\vec{\alpha}\|^2}\right) \vec{\alpha}$$
unit vector in direction of $\vec{\alpha}$

This is referred to as the (orthogonal) projection of x onto span(a).

Orthogonal projection Let **a** be a nonzero vector in \mathbb{R}^n . For any vector **x** in \mathbb{R}^n , the **(orthogonal) projection** of **x** onto span(**a**) is defined as:

$$\operatorname{proj}_{\mathbf{a}} \mathbf{x} = \left(\frac{\mathbf{a} \cdot \mathbf{x}}{\|\mathbf{a}\|^2}\right) \mathbf{a}$$

- $ightharpoonup x_1 = \text{proj}_{\mathbf{a}} x \text{ is the vector component of } x \text{ along } \mathbf{a}.$
- $ightharpoonup x_2 = x \text{proj}_a x$ is the vector component of x perpendicular to a.

$$\overrightarrow{x} - \overrightarrow{x}_1$$
Ex: What are \mathbf{x}_1 and \mathbf{x}_2 for

Ex: What are x_1 and x_2 for the following?

1)
$$\mathbf{a} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$ (projection onto $y = x$)

2)
$$\mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} 0 \\ 3 \\ 5 \end{bmatrix}$

$$|\vec{x}_1| = \left(\frac{\vec{\alpha} \cdot \vec{x}}{\|\vec{\alpha}\|^2}\right) \vec{\alpha} = \frac{7}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{7}{2} \\ \frac{7}{2} \end{bmatrix}$$

$$\vec{x}_2 = \begin{bmatrix} 2 \\ 5 \end{bmatrix} - \begin{bmatrix} \frac{7}{2} \\ \frac{7}{2} \end{bmatrix} = \begin{bmatrix} \frac{-3}{2} \\ \frac{3}{2} \end{bmatrix}$$

Projection matrix

Standard matrix of a projection For a vector **a** in \mathbb{R}^n , the standard matrix of $T(\mathbf{x}) = \text{proj}_{\mathbf{a}}\mathbf{x}$ is the $n \times n$ matrix:

$$A = \left(\frac{1}{\|\mathbf{a}\|^2}\right) \mathbf{a} \mathbf{a}^T$$

where \mathbf{a} is in column vector form and \mathbf{a}^T is in row vector form, multiplied together using matrix multiplication.

Ex: What is the standard matrix of projection along:

1)
$$\mathbf{a} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 (projection onto $y = x$) 2) $\mathbf{a} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

3)
$$\mathbf{a} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$
 (projection onto line of angle θ)

3)
$$\mathbf{a} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$
 (projection onto line of angle θ)

1) $A = \frac{1}{\|\mathbf{a}\|^2} \alpha \alpha^T = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1$

2)
$$A = \frac{1}{14} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$

3)
$$A = \frac{1}{\cos^2\theta + \sin^2\theta} \left[\cos \theta \right] \left[\cos \theta \right] \left[\cos \theta \right] \left[\cos^2\theta \right] \left[\cos \theta \right] \sin^2\theta$$

Projections onto subspaces

Let W be a subspace of \mathbb{R}^n . As before, we would like to project x onto W.

We can break \mathbf{x} into $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$, where \mathbf{x}_1 is in W and \mathbf{x}_2 is orthogonal to W (in W^{\perp}).

To calculate x, use the following result:

Projection onto a subspace Let W be a subspace of \mathbb{R}^n and let M be any matrix whose column vectors form a basis for W. Then the **(orthogonal) projection** of \mathbf{x} onto W is defined as:

$$\operatorname{proj}_{W} \mathbf{x} = \underbrace{M(M^{T}M)^{-1}M^{T}\mathbf{x}}_{\mathbf{A}}$$

Note: The standard matrix of the transformation is $A = M(M^TM)^{-1}M^T$.

Projection onto a subspace Let W be a subspace of \mathbb{R}^n and let M be any matrix whose column vectors form a basis for W. Then the **(orthogonal) projection** of \mathbf{x} onto W is defined as:

$$\operatorname{proj}_{W} \mathbf{x} = M(M^{T}M)^{-1}M^{T}\mathbf{x}$$

Note: The standard matrix of the transformation is $A = M(M^TM)^{-1}M^T$.

Ex: Projection of
$$\vec{x} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$$
 onto the plane $\vec{x} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} s + \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} t$

$$M = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$M^{T}M = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$(M^{T}M)^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = A$$

$$M(M^{T}M)^{-1}M^{T} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 2 & -1 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = A$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 2/3 \\ 1 & 2/3 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 2/3 \\ 2/3 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 2/3 \\ 2/3 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 2/3 \\ 1 & 2/3 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 2/3 \\ 1 & 2/3 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 2/3 \\ 1 & 2/3 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 2/3 \\ 1 & 2/3 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 2/3 \\ 1 & 2/3 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 2/3 \\ 1 & 2/3 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 2/3 \\ 1 & 2/3 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 2/3 \\ 1 & 2/3 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 2/3 \\ 2/3 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 2 & -1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2/3 \\ 2/3 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 2 & -1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2/3 \\ 2/3 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 2 & -1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2/3 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 2 & -1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2/3 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 2 & -1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2/3 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2/3 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2/3 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 2 & 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix}$$