Universidad Nacional de Cuyo Facultad de Ingeniería Licenciatura en Ciencias de la Computación

Trabajo Práctico N° 5

Algoritmos y Estructuras de Datos Grafos

2024

Gonzalo Padilla Lumelli Mayo 2024

Parte 1

A partir de la siguiente definición:

Graph = Array(n, LinkedList())

Donde Graph es una representación de un grafo simple mediante listas de adyacencia resolver los siguiente ejercicios.

Ejercicio 1

Implementar la función crear grafo que dada una lista de vértices y una lista de aristas cree un grafo con la representación por Lista de Adyacencia.

def createGraph(List, List)

Descripción: Implementa la operación crear grafo.

Entrada: LinkedList con la lista de vértices y la LinkedList con la lista de aristas

donde por cada par de elementos representa una conexión entre dos vértices.

Salida: Retorna el nuevo grafo.

Solución

Ejercicio 2

Implementar la función que responde a la siguiente especificación.

def existPath(Grafo, v1, v2)

Descripción: Implementa la operación existe camino que busca si existe un camino entre los vértices v1 y v2.

Entrada: Grafo con la representación de Lista de Adyacencia, v1 y v2 vértices en el

grafo.

Salida: retorna True si existe camino entre v1 y v2, False en caso contrario.

Solución

Ejercicio 3

Implementar la función que responde a la siguiente especificación.

def isConnected(Grafo)

Descripción: Implementa la operación es conexo.

Entrada: Grafo con la representación de Lista de Adyacencia.

Salida: retorna True si existe camino entre todo par de vértices, False en caso

contrario.

Solución

Ejercicio 4

Implementar la función que responde a la siguiente especificación.

def isTree(Grafo)

Descripción: Implementa la operación es árbol.

Entrada: Grafo con la representación de Lista de Advacencia.

Salida: Retorna True si el grafo es un árbol.

Solución

Ejercicio 5

Implementar la función que responde a la siguiente especificación.

def isComplete(Grafo)

Descripción: Implementa la operación es completo.

Entrada: Grafo con la representación de Lista de Adyacencia.

Salida: Retorna True si el grafo es completo.

Nota: tener en cuenta que un grafo es completo cuando existe una arista entre todo par de vértices.

Solución

Ejercicio 6

Implementar una función que dado un grafo devuelva una lista de aristas que si se eliminan el grafo se convierte en un árbol. Respetar la siguiente especificación.

def convertTree(Grafo)

Descripción: Implementa la operación convertir a árbol.

Entrada: Grafo con la representación de Lista de Adyacencia.

Salida: LinkedList de las aristas que se pueden eliminar y el grafo resultante se

convierte en un árbol.

Solución

Parte 2

Ejercicio 7

Implementar la función que responde a la siguiente especificación.

def countConnections(Grafo)

Descripción: Implementa la operación cantidad de componentes conexas.

Entrada: Grafo con la representación de Lista de Adyacencia.

Salida: Retorna el número de componentes conexas que componen el grafo.

Solución

Ejercicio 8

Implementar la función que responde a la siguiente especificación.

def convertToBFSTree(Grafo, v)

Descripción: Convierte un grafo en un árbol BFS.

Entrada: Grafo con la representación de Lista de Adyacencia, v vértice que representa

la raíz del árbol.

Salida: Devuelve una Lista de Adyacencia con la representación BFS del grafo recibido

usando v como raíz.

Solución

Ejercicio 9

Implementar la función que responde a la siguiente especificación.

def convertToDFSTree(Grafo, v)

Descripción: Convierte un grafo en un árbol DFS.

Entrada: Grafo con la representación de Lista de Adyacencia, v vértice que representa

la raíz del árbol.

Salida: Devuelve una Lista de Adyacencia con la representación DFS del grafo recibido

usando v como raíz.

Solución

Ejercicio 10

Implementar la función que responde a la siguiente especificación.

def bestRoad(Grafo, v1, v2)

Descripción: Encuentra el camino más corto, en caso de existir, entre dos vértices. Entrada: Grafo con la representación de Lista de Adyacencia, v1 y v2 vértices del grafo. Salida: Retorna la lista de vértices que representan el camino más corto entre v1 y v2. La lista resultante contiene al inicio a v1 y al final a v2. En caso que no exista camino se retorna la lista vacía.

Solución

Ejercicio 11 (Opcional)

Implementar la función que responde a la siguiente especificación.

def isBipartite(Grafo)

Descripción: Implementa la operación es bipartito.

Entrada: Grafo con la representación de Lista de Adyacencia.

Salida: Retorna True si el grafo es bipartito.

NOTA: Un grafo es bipartito si no tiene ciclos de longitud impar.

Solución

Ejercicio 12

Demuestre que si el grafo G es un árbol y se le agrega una arista nueva entre cualquier par de vértices se forma exactamente un ciclo y deja de ser un árbol.

Solución

Ejercicio 13

Demuestre que si la arista (u,v) no pertenece al árbol BFS, entonces los niveles de u y v difieren a lo sumo en 1.

Solución

Parte 3

Ejercicio 14

Implementar la función que responde a la siguiente especificación.

def PRIM(Grafo)

Descripción: Implementa el algoritmo de PRIM.

Entrada: Grafo con la representación de Lista de Adyacencia.

Salida: Retorna el árbol abarcador de costo mínimo.

Solución

Ejercicio 15

Implementar la función que responde a la siguiente especificación.

def KRUSKAL(Grafo)

Descripción: Implementa el algoritmo de KRUSKAL.

Entrada: Grafo con la representación de Lista de Adyacencia.

Salida: Retorna el árbol abarcador de costo mínimo.

Solución

Ejercicio 16

Demostrar que si la arista (u,v) de costo mínimo tiene un nodo en U y otro en V - U, entonces la arista (u,v) pertenece a un árbol abarcador de costo mínimo.

Solución

Parte 4

Ejercicio 17

Sea e la arista de mayor costo de algún ciclo de G(V,A). Demuestre que existe un árbol abarcador de costo mínimo AACM(V,A-e) que también lo es de G.

Solución

Ejercicio 18

Demuestre que si unimos dos AACM por un arco (arista) de costo mínimo el resultado es un nuevo AACM. (Base del funcionamiento del algoritmo de Kruskal).

Solución

Ejercicio 19

Explique qué modificaciones habría que hacer en el algoritmo de Prim sobre el grafo no dirigido y conexo G(V,A), o sobre la función de costo $c(v1,v2) \to \mathbb{R}$ para lograr:

- 1. Obtener un árbol de recubrimiento de costo máximo.
- 2. Obtener un árbol de recubrimiento cualquiera.
- 3. Dado un conjunto de aristas $E \in A$, que no forman un ciclo, encontrar el árbol de recubrimiento mínimo $G^c(V, A^c)$ tal que $E \in A^c$.

Solución

Ejercicio 20

Sea $G = \langle V, A \rangle$ un grafo conexo, no dirigido y ponderado, donde todas las aristas tienen el mismo costo. Suponiendo que G está implementado usando matriz de adyacencia, haga en pseudocódigo un algoritmo $O(V^2)$ que devuelva una matriz M de VxV donde: M[u, v] = 1 si $(u, v) \in A$ y (u, v) estará obligatoriamente en todo árbol abarcador de costo mínimo de G, y cero en caso contrario.

Solución

Parte 5

Ejercicio 21

Implementar el Algoritmo de Dijkstra que responde a la siguiente especificación.

def shortestPath(Grafo, s, v)

Descripción: Implementa el algoritmo de Dijkstra.

Entrada: Grafo con la representación de Matriz de Adyacencia, vértice de inicio s y

destino v.

Salida: Retorna la lista de los vértices que conforman el camino iniciando por s y

terminando en v. Devolver NONE en caso que no exista camino entre s y v.

Solución

Ejercicio 22 (Opcional)

Sea $G = \langle V, A \rangle$ un grafo dirigido y ponderado con la función de costos $C: A \to R$ de forma tal que C(v, w) > 0 para todo arco $\langle v, w \rangle \in A$. Se define el costo C(p) de todo camino $p = \langle v_0, v_1, \dots, v_k \rangle$ como $C(v_0, v_1) \times C(v_1, v_2) \times \dots \times C(v_k - 1, v_k)$.

- 1. Demuestre que si $p = \langle v_0, v_1, \dots, v_k \rangle$ es el camino de menor costo con respecto a C en ir de v_0 hacia v_k , entonces $\langle v_i, v_i + 1, \dots, v_j \rangle$ es el camino de menor costo (también con respecto a C) en ir de v_i a v_j para todo $0 \le i < j \le k$.
- 2. ¿Bajo qué condición o condiciones se puede afirmar que con respecto a C existe camino de costo mínimo entre dos vértices a, $b \in V$? Justifique su respuesta.
- 3. Demuestre que, usando la función de costos C tal y como la dan, no se puede aplicar el algoritmo de Dijkstra para hallar los costos de los caminos de costo mínimo desde un vértice de origen s hacia el resto.
- 4. Plantee un algoritmo, lo más eficiente en tiempo que usted pueda, que determine los costos de los caminos de costo mínimo desde un vértice de origen s hacia el resto usando la función de costos C.
- 5. Suponiendo que C(v,w) > 1 para todo $< v,w > \in A$, proponga una función de costos $C':A \to R$ y además la forma de calcular el costo C'(p) de todo camino $p = < v_0, v_1, \ldots, v_k >$ de forma tal que: aplicando el algoritmo de Dijkstra usando C', se puedan obtener los costos (con respecto a la función original C) de los caminos de costo mínimo desde un vértice de origen s hacia el resto. Justifique su respuesta.

Solución