Homework 1

Anonymous

September 24, 2020

Problem 1. Let $d \in N$ and $V := \{0,1\}^d$; thus V is the set of all 0-1 sequences of length d. The graph on V in which two such sequences form an edge if and only if they differ in exactly one position is called the d-dimensional cube. Determine the average degree, number of edges, diameter, girth and circumference of this graph.

Solution. Denote the d-dimensional cube as graph G.

- Average degree. For any vertex in d-dimensional cube, there are exactly d vertices with exactly one different digit. Thus the degree of each vertex is d(G) = d.
- Number of edges. $||G|| = \frac{1}{2} \times |G| \times d(G) = \frac{1}{2} \times 2^d \times d = d2^{d-1}$.
- **Diameter.** It's obvious that a shortest path connecting two vertices in G can be constructed by flipping the different digits sequencially. With the fact that two vertices have at most d different digits, the diameter of G is diam(G) = d.
- Girth.

Case 1. d=1. G has no cycle, $g(G)=\infty$

Case 2. $d \ge 2$. Note that every cycle has an even length because digits should be flipped over and over again to return back. Only by flipping one digit will generate a path but not a cycle. Thus at least 2 digits should be flipped to generate a 4-cycle.

Finally, we have

$$g(G) = \begin{cases} \infty, & d = 1\\ 4, & d \ge 2 \end{cases}$$

- Circumference. To show that the circumference of G is 2^d with $d \geq 2$, we can prove that G has a Hamiltonian cycle by induction.
 - Base case: The 2-dimensional cube is a 4-cycle. It's itself a Hamiltonian cycle.

- **Inductive step:** Assume that an n-dimensional cube have a Hamiltonian cycle, say $v_1, v_2, \ldots, v_{2^n}, v_1$. Then the n+1-dimensional cube H_{n+1} is formed from two n-dimensional cubes, say H_n with Hamiltonian cycle $v_1, v_2, \ldots, v_{2^n}, v_1$ and I_n with Hamiltonian cycle $w_1, w_2, \ldots, w_{2^n}, w_1$, where we connect v_i to w_i for $i=1,2,\ldots,2^n$ to form H_{n+1} . Then the cycle $v_1, v_2, \ldots, v_{2^n}, w_{2^n}, \ldots, w_2, w_1, v_1$ is the new Hamiltonian cycle we want.

Finally, we have

circumference of
$$G = \begin{cases} 0, & d = 1 \\ 2^d, & d \ge 2 \end{cases}$$

Problem 2. Let G be a graph containing a cycle C, and assume that G contains a path of length at least k between two vertices of C. Show that G contains a cycle of length at least \sqrt{k} .

Solution. Assume that the path, say P and C share n vertices.

Case 1. $n \ge \sqrt{k}$. C has a length of at least \sqrt{k} , which is what we want.

Case 2. $n < \sqrt{k}$. The shared vertices slice P into n-1 segments. The minimum value of the maximum length of n-1 segments is

$$\frac{k}{n-1} > \frac{k}{\sqrt{k}-1} > \sqrt{k}+1$$

Because both ends of the longest slice is on C, the endpoints have a path in C. Combining the path with P, we get a cycle with length of at least $\sqrt{k} + 2$.

Problem 3. Is the bound in Proposition 1.3.2 (Diestel) best possible?

Solution. Yes. Take K^3 as an example.

Problem 4. Let v_0 be a vertex in a graph G, and $D_0 := \{v_0\}$. For $n = 1, 2, \cdots$ inductively define $D_n := N_G(D_0 \cup \cdots \cup D_{n-1})$. Show that $D_n = \{v | d(v_0, v) = n\}$ and $D_{n+1} \subseteq N(D_n) \subseteq D_{n-1} \cup D_{n+1}$ for all $n \in N$.

Solution. • $D_n = \{v | d(v_0, v) = n\}$: We prove that $D_n = \{v | d(v_0, v) = n\}$ by induction.

- Base case: $D_0 = \{v_0\} = \{v | d(v_0, v) = 0\}.$

- Inductive step: Assume that $D_i = \{v | d(v_0, v) = i\}$ for i = 1, 2, ..., n. For any vertex $u \in D_{n+1}$, we have $d(v_0, u) \ge n+1$, otherwise $u \in \bigcup_{i=0}^n D_i$, which is contradict with $D_{n+1} := N_G(D_0 \cup \cdots \cup D_n)$. Also by the defination of D_{n+1} , we have $\exists w \in \bigcup_{i=0}^n D_i$ s.t. d(u, w) = 1. Thus $d(v_0, u) \le d(v_0, w) + d(w, u) \le n+1$. So far we proved that $D_{n+1} \subseteq \{v | d(v_0, v) = n+1\}$. Consider any vertex $v \in \{u | d(v_0, u) = n+1\}$, there exists a path $v_0, u_1, u_2, \ldots, u_n, v$. Obviously $d(v_0, u_n) \le n$ and thus $u_n \in \bigcup_{i=0}^n D_i$. This means $\{v | d(v_0, v) = n+1\} \subseteq D_{n+1}$. In all, $D_{n+1} = \{v | d(v_0, v) = n+1\}$.
- $D_{n+1} \subseteq N(D_n)$: $\forall v \in D_{n+1}$, there exists a path $v_0, u_1, u_2, \ldots, u_n, v$. Obviously $d(v_0, u_n) = n$, otherwise $d(v_0, v) \leq n$. This means $u_n \in D_n$ and there exists an edge (u_n, v) . Thus $D_{n+1} \subseteq N(D_n)$ for all $n \in N$.
- $N(D_n) \subseteq D_{n-1} \cup D_{n+1}$: $\forall v \in N(D_n), \exists u \in D_n \text{ s.t. } (u,v) \in E(G)$. Thus $d(v_0,v) \leq d(v_0,u) + d(u,v) = n+1 \text{ and } d(v_0,v) \geq d(v_0,u) d(v,u) = n-1$. Noticing that $v \notin D_n$, we can conclude that $N(D_n) \subseteq D_{n-1} \cup D_{n+1}$ for all $n \in N$.

Problem 5. Let G be a graph. If $\delta(G) \geq d \geq 2$ and $g(G) \geq g \in N$ then $|G| \geq n_0(d,g)$. (The defination of n_0 is presented in Page 9 (Diestel)).

Solution. Case 1. g =: 2r + 1 is odd. Let v be any vertex in G, and for $i \in \mathbb{N}$

$$D_i = \{v | d(v_0, v) = i\}.$$

Since v cannot be in any cycle of length of lesser than 2r+1, which equals to $\forall u, w \in D_i, 0 \le i \le r-1$, there is no edge connecting $N(u) \cap D_{i+1}$ and $N(w) \cap D_{i+1}$. Hence $\forall u \in D_i, 0 \le i \le r-1$, u is connected to exactly one vertex in D_{i-1} and at least $\delta-1$ vertices in D_{i+1} . Hence $|D_0|=1$ and $|D_i| \ge \delta(\delta-1)^{i-1}$ for $1 \le i \le r$. Thus

$$|G| \ge \bigcup_{i=0}^{r-1} |D_i| = 1 + \delta \sum_{i=0}^{r-1} (\delta - 1)^{i-1}$$

Case 2. g =: 2r is even. Let $uv \in E(G)$, and for $i \in \mathbb{N}$,

$$D_i^u = \{w : \hat{d}(u, w) = i\}, \quad D_i^v = \{w : \hat{d}(v, w) = i\},$$

where

$$\hat{d}(x,w) := d_{G-uv}(x,w).$$

Similarly, $\forall x \in \{u, v\}, \forall y, z \in D_i^x$, $N(x) \cap D_{i+1}^x$ is disjoint from $N(y) \cap D_{i+1}^y$ for $i = \{1, 2, \dots, r-2\}$. Also $\forall w \in D_i^x, 0 \le i \le r-2$, w is connected to exactly one vertex in D_{i-1}^x and at least $\delta-1$ vertices in D_{i+1}^x . Hence $|D_0^x| = 1$ and $|D_i^x| \ge \delta(\delta-1)^{i-1}$ for $1 \le i \le r-1$. Note that $(\bigcup_{i=0}^{r-1} D_i^u) \cap (\bigcup_{i=0}^{r-1} D_i^v) = \emptyset$, otherwise there exist a cycle in G of length at most 2r-1. Hence

$$|G| \ge \bigcup_{i=0}^{r-1} D_i^u + \bigcup_{i=0}^{r-1} D_i^v = 2 \sum_{i=0}^{r-1} (\delta - 1)^i.$$

Problem 6. Show that graphs of girth at least 5 and order n have a minimum degree of o(n). In other words, show that there is a function $f: N \to N$ such that $f(n)/n \to 0$ as $n \to \infty$ and $\delta(G) \le f(n)$ for all such graph G.

Solution. From *Problem 5* we have

$$n \ge 1 + \delta(G) \sum_{i=0}^{1} (\delta(G) - 1)^i = (\delta(G))^2 + 1$$

Then

$$\delta(G) \le \sqrt{n-1} = o(n)$$

Problem 7. Show that the components of a graph partition its vertex set.

Solution. Given a graph G and its components G_i for $i \in \{1, 2, ..., n\}$.

- $G_i \cap G_j = \emptyset, i, j \in \{1, 2, \dots, n\}$. Otherwise we can get a new component $G_i \cup G_j$.
- $\bigcup_{i=1}^n G_i = G$. Otherwise vertices in $G \setminus \bigcup_{i=1}^n G_i$ can either be added into some G_i or make up new component(s).

Problem 8. Show that every 2-connected graph contains a cycle.

Solution. Let G be a 2-connected graph. Then $\delta(G) \geq 2$, since if $d(v) \leq 1$ for some $v \in V(G)$, v will be either a cutvertex or isolated, which is contradict with G to be 2-connected. From *Proposition* (1.3.1, D), we know that G contains a cycle.

Problem 9. Determine $\kappa(G)$ and $\lambda(G)$ for $G = P^m, C^n, K^n, K_{m,n}$ and the d-dimensional cube; d, m, n > 2.

Solution. Given graphs are all connected.

- $\kappa(P^m) = 1$. For $m \leq 2$ it's clear and for m > 2 every interior vertex is a cutvertex.
- $\lambda(P^m) = 1$. Every edge is a bridge.
- $\kappa(C^n) = 2$. By deleting any vertex we will get P^{n-1} . Hence we need to delete at least 2 vertices to get a disconnected graph.
- $\lambda(C^n) = 2$. By deleting any edge we will get P^n . Hence we need to delete at least 2 edges to get a disconnected graph.
- $\kappa(K^n) = n 1$. By deleting any vertex we will get K^{n-1} . Hence we need to delete at least n-1 vertices to get a disconnected graph.
- $\lambda(K^n) = n 1$. From Proposition (1.4.2, D) we have $n 1 = \kappa(K^n) \le \lambda(K^n) \le \delta(K^n) = n 1$.
- $\kappa(K_{m,n}) = \min\{m, n\}$. For complete bipartite graph $K_{m,n} = (V_1, V_2, E)$ with $|V_1| = m, |V_2| = n$, by deleting any p vertices in V_1 and q vertices in V_2 we will get $K_{m-p,n-q}$. Hence we need to delete at least $\min\{m, n\}$ vertices to get a disconnected graph.
- $\lambda(K_{m,n}) = \min\{m, n\}$. From Proposition (1.4.2, D) we have $\min\{m, n\} = \kappa(K_{m,n}) \le \lambda(K_{m,n}) \le \delta(K_{m,n}) = \min\{m, n\}$.
- $\kappa(Q_d) = d, \lambda(Q_d) = d.$ (Prove using Balinski's theorem)
 - **Proof of** $\kappa(Q_d) \geq d$. If S is a set of fewer than d vertices to be removed from Q_d , we can add one more vertex v_0 to S and find a linear function f that has value 0 on $S \cup \{v_0\}$ but is not identically zero on the whole space. Then any remained vertex at which f is non-negative (including v_0) can be connected to the vertex with the maximum value of f, while any remained vertex at which f is non-positive (including v_0) can be connected to the vertex with the minimum value of f. Thus the entire remaining graph is connected.
 - From Proposition (1.4.2, D) we have $d = \kappa(Q_d) \le \lambda(Q_d) \le \delta(Q_d) = d$.

Problem 10. If $\delta(G) \geq \frac{n-2}{2}$, then G need not be connected.

Solution. Take $G = K^{\frac{n}{2}} \cup K^{\frac{n}{2}}$ for even n and then G is what we want.

Problem 11. Find the relation between 'G has a cutvertex.' and 'G has a bridge'.

Figure 1: An example

Solution. 'G has a cutvertex.' \Leftarrow 'G has a bridge'.

For any bridge $uw \in E(G)$, u and w are both cutvertex.

In some case, G has a cutvertex but no bridge. For example, in figure 1, C is a cutvertex but there is no bridge.