

General information

Designation

Bismuth Metal (as sold on world commodity markets)

Typical uses

Alloying element; Pharmaceuticals; Electronics; Catalysts; Cosmetics; Pigments; Medicines; Thermocouples; Carrier for Uranium fuel in nuclear reactors; Fire sensing equipment;

Composition overview

Compositional summary

Bi100							
Material family	Metal	Metal (other)					
Base material	Bi (Bis	Bi (Bismuth)					
Composition detail (metals, ceramics and	glasses)						
Bi (bismuth)	100			%			
Price							
Price	* 17.2	-	20.7	USD/kg			
Price per unit volume	* 1.68e	5 -	2.03e5	USD/m^3			
Physical properties							
Density	9.74e3	3 -	9.8e3	kg/m^3			
Mechanical properties							
Young's modulus	33	-	35	GPa			
Yield strength (elastic limit)	* 2	-	14	MPa			
Tensile strength	4	-	20	MPa			
Elongation	* 20	-	30	% strain			
Compressive strength	* 2	-	14	MPa			
Flexural modulus	* 33	-	35	GPa			
Flexural strength (modulus of rupture)	* 2	-	14	MPa			
Shear modulus	12	-	13.5	GPa			
Bulk modulus	31	-	36	GPa			
Poisson's ratio	0.325	-	0.335				
Shape factor	30						
Hardness - Vickers	* 5	-	10	HV			
Fatigue strength at 10^7 cycles	* 8	-	10	MPa			
Fatigue strength model (stress range)	* 2.99	-	31.5	MPa			

Parameters: Stress Ratio = -1, Number of Cycles = 2.5e4cycles

Number of Cycles

Mechanical loss coefficient (tan delta)	*	0.02	-	0.2		
Impact & fracture properties						
Fracture toughness	*	5	-	20	MPa.m^0.5	
Thermal properties						
Melting point		267	-	272	$\mathcal C$	
Maximum service temperature		240	-	250	$\mathcal C$	
Minimum service temperature		-273			$\mathcal C$	
Thermal conductivity		8.1	-	8.7	W/m.℃	
Specific heat capacity		115	-	130	J/kg.℃	
Thermal expansion coefficient		13	-	13.6	µstrain/℃	
Latent heat of fusior		48	-	56	kJ/kg	
Electrical properties						
Electrical resistivity		105	-	109	µohm.cm	
Galvanic potential	*	-0.25	-	-0.17	V	
Magnetic properties						
Magnetic type		Non-magnetic				
Optical properties						
Transparency		Opaque				
Critical materials risk						
Contains >5wt% critical elements?		Yes				

Bismuth, commercial purity

Durability	
Water (fresh)	Excellent
Water (salt)	Excellent
Weak acids	Acceptable
Strong acids	Unacceptable
Weak alkalis	Acceptable
Strong alkalis	Limited use
Organic solvents	Excellent
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Excellent
Galling resistance (adhesive wear)	Limited use
Flammability	Non-flammable

Corrosion resistance of metals

Stress corrosion cracking	Not susceptible
Note	Rated in chloride; May be susceptible in halide, ammonia, nitrogen, acidic, caustic, carbonate environments

Primary production energy, CO2 and water

Embodied energy, primary production	* 138	-	152	MJ/kg
CO2 footprint, primary production	* 8.63	-	9.51	kg/kg
Water usage	* 2.8e3	-	3.09e3	l/kg

Processing energy, CO2 footprint & water

Casting energy	* 5.27	-	5.83	MJ/kg
Casting CO2	* 0.395	-	0.437	kg/kg
Casting water	* 9.98	-	15	l/kg
Rough rolling, forging energy	* 0.319	-	0.353	MJ/kg
Rough rolling, forging CO2	* 0.0239	-	0.0265	kg/kg
Rough rolling, forging water	* 1.69	-	2.53	l/kg
Extrusion, foil rolling energy	* 0.354	-	0.391	MJ/kg
Extrusion, foil rolling CO2	* 0.0265	-	0.0293	kg/kg
Extrusion, foil rolling water	* 1.7	-	2.55	l/kg
Wire drawing energy	* 0.542	-	0.599	MJ/kg
Wire drawing CO2	* 0.0407	-	0.045	kg/kg
Wire drawing water	* 0.2	-	0.31	l/kg
Metal powder forming energy	* 4.17	-	4.62	MJ/kg
Metal powder forming CO2	* 0.334	-	0.37	kg/kg
Metal powder forming water	* 4.55	-	6.83	l/kg
Vaporization energy	* 2.07e3	-	2.29e3	MJ/kg
Vaporization CO2	* 155	-	171	kg/kg

Bismuth, commercial purity

Vaporization water	* 862	-	1.29e3	l/kg
Coarse machining energy (per unit wt removed)	* 0.48	-	0.531	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.036	-	0.0398	kg/kg
Fine machining energy (per unit wt removed)	* 0.526	-	0.582	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.0395	-	0.0436	kg/kg
Grinding energy (per unit wt removed)	* 0.578	-	0.639	MJ/kg
Grinding CO2 (per unit wt removed)	* 0.0433	-	0.0479	kg/kg
Non-conventional machining energy (per unit wt removed	* 20.7	-	22.9	MJ/kg
Non-conventional machining CO2 (per unit wt removed	* 1.55	-	1.71	kg/kg

Recycling and end of life

Recycle	✓			
Embodied energy, recycling	* 25.3	-	28	MJ/kg
CO2 footprint, recycling	* 1.99	-	2.2	kg/kg
Recycle fraction in current supply	9.59	-	10.6	%
Downcycle	✓			
Combust for energy recovery	×			
Landfill	×			
Biodegrade	×			

Notes

Warning

Excess bismuth can cause mild kidney damage to humans;

Other notes

Bismuth is one of the less toxic heavy metals. It has a silver luster with a pink tinge.

Links

ProcessUniverse	
Producers	
Reference	
Shape	