2023/24		Folha 3	
	Exercícios de Lógica		
		Universidade do Minho	
		E	

- 2.7 Para cada uma das seguintes fórmulas, encontre uma fórmula que lhe seja logicamente equivalente e que envolva apenas conetivos no conjunto $\{\neg, \lor\}$.
- a) $(p_0 \land p_2) \to p_3$.
- b) $p_1 \lor (p_2 \to \bot)$.
- c) $\neg p_4 \leftrightarrow p_2$.
- d) $(p_1 \lor p_2) \to \neg (p_1 \land \bot)$.
- **2.8** Defina, por recursão estrutural em fórmulas, uma função $f:\mathcal{F}^{CP}\longrightarrow\mathcal{F}^{CP}_{\gamma,\vee}$ que a cada fórmula φ faça corresponder uma fórmula $f(\varphi)$ logicamente equivalente a φ .
- **2.9** Investigue se os conjuntos de conetivos $\{\lor, \land\}$ e $\{\neg, \lor, \land\}$ são ou não completos
- 2.10 Calcule formas normais conjuntivas e disjuntivas logicamente equivalentes a cada uma das seguintes fórmulas:
- a) ¬p₀.
- **b)** $p_1 \wedge (p_2 \wedge p_3)$.
- c) $(p_1 \lor p_0) \lor \neg (p_2 \lor p_0)$.
- $(p_1 \to \bot)$. p
- $(p_1 \to p_2) \leftrightarrow (\neg p_2 \to \neg p_1).$ (j $(p_1 \lor p_0) \land (p_2 \lor (p_1 \land p_0)).$
- **2.11** Considere que φ e ψ são fórmulas cujo conjunto de variáveis é $\{p_1,p_2\}$ e $\{p_1,p_2,p_3\}$ respetivamente, e que têm as seguintes tabelas de verdade

zd	Ι	I	0	0	_	_	0	0
p_1	1	1	1	П	0	0	0	0
				е				
		e	0	_	_	0		
		p_2	1	0	_	0		

0 0 1 1

 p_1

1 0 0 0 1

Determine FND's e FNC's logicamente equivalentes a cada uma das fórmulas.

- **2.12** Será que existem outros conetivos binários para além de \land , \lor , \rightarrow , e \leftrightarrow ? Para responder a esta questão, adotemos esta definição: um conetivo binário \diamond é determinado pela sua função de verdade $v_{\diamond}: \{0,1\}^2 \longrightarrow \{0,1\}$.
- a) Quantos conetivos binários existem?
- b) Para cada $v_{\diamond}:\{0,1\}^2\longrightarrow\{0,1\}$, escreva v_{\diamond} como uma tabela de verdade e traduza essa tabela de verdade como uma FND.
- c) Conclua que $\{\neg, \land, \lor, \lor\}$ permaneceria um conjunto completo de conetivos, mesmo se tivéssemos adoptado no Cálculo Proposicional outros conetivos binários.

Folha 4	2.13 De entre os seguintes conjuntos de fórmulas, indique os que são consistentes e os que são
	o consiste
	os que sã
	indique
	fórmulas,
	juntos de
inho	intes con
iversidade do Minho	e os segu
Universid	De entr
Щ	2.13

Exercícios de Lógica

2023/24

- inconsistentes.
- a) $\{p_0 \land p_2, p_1 \to \neg p_3, p_1 \lor p_2\}.$
- $\mathbf{b}) \ \{p_0 \lor \neg p_1, p_1, p_0 \leftrightarrow (p_2 \land \bot)\}.$
 - c) FCP.
- d) $\mathcal{F}_{\{\vee,\wedge\}}^{CP}$.
- **2.14** Sejam $\Gamma, \Delta \subseteq \mathcal{F}^{CP}$. Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações.
- a) Se $\Gamma \cup \Delta$ é consistente, então Γ e Δ são conjuntos consistentes.
- b) Se Γ e Δ são conjuntos consistentes, então $\Gamma \cup \Delta$ é consistente.
- c) Se Γ é consistente e $\varphi \in \Gamma$, então $\neg \varphi \notin \Gamma$.
- d) Se Γ contém uma contradição, então Γ é inconsistente.
- 2.15 Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:
- a) $p_3 \lor p_0, \neg p_0 \models p_3$.
- b) $p_0 \vee \neg p_1, p_1 \vee p_2 \models p_0 \vee p_2$.
- c) $\neg p_2 \rightarrow (p_1 \lor p_3), \neg p_2 \models \neg p_1.$
- **d**) para todo $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$, $\neg \psi, \psi \rightarrow \sigma \models \sigma \lor \varphi$.
- **2.16** Sejam $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$ e Γ um conjunto de fórmulas. Demonstre que:
- a) $\varphi \lor \psi, \neg \varphi \lor \sigma \models \psi \lor \sigma$.
- **b)** $\models \varphi \rightarrow \psi$ se e só se $\varphi \models \psi$.
- c) $\Gamma \models \varphi \lor \psi$ se e só se $\Gamma, \neg \varphi \models \psi$.
- **d**) Γ é inconsistente se e só se $\Gamma \models \bot$.
- 2.17 O Carlos, o João e o Manuel, suspeitos de um crime, fizeram os seguintes depoimentos, respetivamente:
- O João é culpado, mas o Manuel é inocente.
- Se o Carlos é culpado, o Manuel também o é.
- Eu estou inocente, mas um dos outros dois é culpado
- a) Os três depoimentos são consistentes?
- b) Algum dos depoimentos é consequência dos outros dois? c) Supondo os três réus inocentes, quem mentiu?
- d) Supondo que todos disseram a verdade, quem é culpado?
- e) Supondo que os inocentes disseram a verdade e que os culpados mentiram, quem é culpado?

7023/24		Folha 5
	Exercícios de Lógica	
		Universidade do Minho

3. Dedução Natural para o Cálculo Proposicional

- 3.1 a) Indique uma derivação em DNP com conclusão $p_0 \wedge p_1$ e cuja única hipótese não cancelada seja $p_1 \wedge p_0$.
- b) Indique uma derivação em DNP com conclusão $(p_0 \land p_1) \to p_1$ e sem hipóteses por
- c) Indique uma derivação em DNP com conclusão $p_0 \to p_2$ e cujas hipóteses não canceladas sejam $p_0 \to p_1$ e $p_1 \to p_2$.
- d) Indique duas derivações distintas em DNP com conclusão $p_0 \to (p_1 \to (p_0 \vee p_1))$ e
- e) Indique as subderivações de cada uma das derivações apresentadas nas alíneas ante sem hipóteses por cancelar.
- 3.2 Sejam $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$. Encontre demonstrações em DNP das fórmulas abaixo indicadas.

$$\begin{array}{llll} \mathbf{a} & (\varphi \wedge \psi) \rightarrow (\varphi \vee \psi), & \mathbf{b} & (\varphi \rightarrow (\psi \rightarrow \sigma)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \sigma)), \\ \mathbf{c}) & \varphi \rightarrow \varphi, & \mathbf{d}) & (\neg \varphi \vee \psi) \rightarrow (\varphi \rightarrow \psi), \\ \mathbf{e}) & \varphi \leftrightarrow \neg \neg \varphi, & \mathbf{f}) & ((\varphi \rightarrow \psi) \wedge (\psi \rightarrow \varphi)) \leftrightarrow (\varphi \leftrightarrow \psi), \\ \mathbf{g}) & (\varphi \vee \psi) \leftrightarrow (\psi \vee \varphi), & \mathbf{h}) & (\varphi \wedge \psi) \leftrightarrow (\neg \varphi \vee \neg \psi). \end{array}$$

$$\mathbf{d}) \quad (\neg \varphi \lor \psi) \to (\varphi \to \psi).$$

$$\mathbf{f}$$
) \Leftrightarrow $((\phi \leftarrow \phi) \lor (\phi \leftarrow \phi))$ (\mathbf{f}

- $\mathbf{g}) \quad (\varphi \vee \psi) \leftrightarrow (\psi \vee \varphi).$
- 3.3 Mostre que:
- a) $p_0 \leftrightarrow p_1, \neg p_1 \vdash \neg p_0$.
- **b)** $p_0 \to p_1, p_1 \to p_2, p_2 \to p_0 \vdash ((p_0 \leftrightarrow p_1) \land (p_1 \leftrightarrow p_2)) \land (p_0 \leftrightarrow p_2).$
 - **c)** $\{p_0 \lor p_1, \neg p_0 \land \neg p_1\}$ é sintaticamente inconsistente.
- **3.4** Demonstre as seguintes proposições, para todo $\varphi, \psi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$.
- a) $\Gamma \vdash \varphi \land \psi$ so c só so $\Gamma \vdash \varphi \circ \Gamma \vdash \psi$.
- b) $\Gamma \vdash \varphi$ se e só se $\Gamma, \neg \varphi \vdash \bot$.
- c) $\Gamma \vdash \bot$ sc c só sc $\Gamma \vdash p_0 \land \neg p_0$.
 - d) Se Γ , $\neg \varphi \vdash \varphi$, então $\Gamma \vdash \varphi$.
- Mostre que a Lei de Peirce é um teorema de DNP. (Sugestão: tenha em atenção a resolução 3.5 Sejam $\varphi, \psi \in \mathcal{F}^{CP}$ fórmulas. A fórmula $((\varphi \to \psi) \to \varphi) \to \varphi$ é chamada a Lei de Peirce. da alínea d) do exercício anterior.)
- **3.6** Sejam $\varphi, \psi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$. Mostre que:
- a) $(p_0 \lor p_1) \to (p_0 \land p_1)$ não é um teorema de DNP.
 - **b)** $p_0 \lor p_1 \not\vdash p_0 \land p_1$.
- **c)** $\{p_0 \lor p_1, \neg p_0 \land p_1\}$ é sintaticamente consistente.
- d) $\Gamma \vdash \varphi \in \Gamma \vdash \neg \varphi$ se e só se Γ é semanticamente inconsistente.
- e) Se $\Gamma, \varphi \vdash \psi$ e φ é uma tautologia, então $\Gamma \vdash \psi$.

(Sugestão: aplique o Teorema da Correção e/ou o Teorema da Completude.)