1

NCERT Discrete - 10.5.2.2

EE23BTECH11058 - Sindam Ananya*

Question 10.5.2.2:

- 1) 30th term of the AP: 10, 7, 4, ... is
- 2) 11th term of the AP: $-3, -\frac{1}{2}, 2, ...$ is

Solution:

Parameter	value	Description
$x_i(0)$	10	First
	-3	term
d_i	-3	Common
	<u>5</u>	difference
$x_1(29)$?	30th term
$x_2(10)$?	11th term
TABLE 2		

INPUT PARAMETERS

The (n + 1)th term of the AP is given by:

$$x_i(n) = [x_i(0) + (n) \times d_i] \times u(n) \tag{1}$$

1)Let the AP be a function $x_1(n)$ where $x_1(n)$ is the (n + 1)th term.

For the 30th term of the series we need to find $x_1(30-1)$ which is $x_1(29)$.

From the equation (1) and the values from the table Table 2:

$$x_1(29) = (10 + (29)(-3))(u(n))$$
 (2)

$$= (10 + 29(-3))(1) \tag{3}$$

$$= 10 + (-87) \tag{4}$$

$$= -77 \tag{5}$$

$$=\sum_{n=0}^{\infty}x_1(n)\times u(n)\cdot z^{-n} \tag{7}$$

$$= x_1(0) \times U(z) + d_1 \times \frac{d \times U(z)}{dz}$$
 (8)

$$= \frac{10 - 13z^{-1}}{(1 - z^{-1})^2} \quad \forall \quad |z| > 1 \tag{9}$$

So, the 30th term of the AP is -77.

2)Let the AP be a function $x_2(n)$ where $x_2(n)$ is the (n + 1)th term.

For the 11th term of the series we need to find $x_2(11-1)$ which is $x_2(10)$.

From the equation (1) and the values from the table Table 2:

$$x_2(10) = (-3 + (10)\left(\frac{5}{2}\right))(u(n))$$
 (10)

$$= (-3 + 10(2.5))(1) \tag{11}$$

$$= -3 + 25$$
 (12)

$$= 22 \tag{13}$$

$$X_2(z) = \sum_{n = -\infty}^{\infty} x_2(n) \times u(n) \cdot z^{-n}$$
 (14)

$$=\sum_{n=0}^{\infty}x_2(n)\times u(n)\cdot z^{-n} \tag{15}$$

$$= x_2(0) \times U(z) + d_2 \times \frac{d \times U(z)}{dz}$$
 (16)

$$= \frac{0.5z^{-1} - 3}{(1 - z^{-1})^2} \quad \forall \quad |z| > 1 \tag{17}$$

so, the 11th term of the AP is 22.

