29.2 Sesquilinear Forms

In order to accommodate Hermitian forms, we assume that some involutive automorphism, $\lambda \mapsto \overline{\lambda}$, of the field K is given. This automorphism of K satisfies the following properties:

$$\overline{(\lambda + \mu)} = \overline{\lambda} + \overline{\mu}$$
$$\overline{(\lambda \mu)} = \overline{\lambda} \, \overline{\mu}$$
$$\overline{\overline{\lambda}} = \lambda.$$

Since any field automorphism maps the multiplicative unit 1 to itself, we have $\overline{1} = 1$.

If the automorphism $\lambda \mapsto \overline{\lambda}$ is the identity, then we are in the standard situation of a bilinear form. When $K = \mathbb{C}$ (the complex numbers), then we usually pick the automorphism of \mathbb{C} to be *conjugation*; namely, the map

$$a + ib \mapsto a - ib$$
.

Definition 29.8. Given two vector spaces E and F over a field K with an involutive automorphism $\lambda \mapsto \overline{\lambda}$, a map $\varphi \colon E \times F \to K$ is a (right) sesquilinear form iff the following conditions hold: For all $u, u_1, u_2 \in E$, all $v, v_1, v_2 \in F$, for all $\lambda, \mu \in K$, we have

$$\varphi(u_1 + u_2, v) = \varphi(u_1, v) + \varphi(u_2, v)$$

$$\varphi(u, v_1 + v_2) = \varphi(u, v_1) + \varphi(u, v_2)$$

$$\varphi(\lambda u, v) = \lambda \varphi(u, v)$$

$$\varphi(u, \mu v) = \overline{\mu} \varphi(u, v).$$

Again, $\varphi(0, v) = \varphi(u, 0) = 0$. If E = F, then we have

$$\varphi(\lambda u + \mu v, \lambda u + \mu v) = \lambda \varphi(u, \lambda u + \mu v) + \mu \varphi(v, \lambda u + \mu v)$$
$$= \lambda \overline{\lambda} \varphi(u, u) + \lambda \overline{\mu} \varphi(u, v) + \overline{\lambda} \mu \varphi(v, u) + \mu \overline{\mu} \varphi(v, v).$$

If we let $\lambda = \mu = 1$ and then $\lambda = 1, \mu = -1$, we get

$$\varphi(u+v,u+v) = \varphi(u,u) + \varphi(u,v) + \varphi(v,u) + \varphi(v,v)$$

$$\varphi(u-v,u-v) = \varphi(u,u) - \varphi(u,v) - \varphi(v,u) + \varphi(v,v),$$

so by subtraction, we get

$$2(\varphi(u,v) + \varphi(v,u)) = \varphi(u+v,u+v) - \varphi(u-v,u-v) \quad \text{for } u,v \in E.$$

If we replace v by λv (with $\lambda \neq 0$), we get

$$2(\overline{\lambda}\varphi(u,v) + \lambda\varphi(v,u)) = \varphi(u + \lambda v, u + \lambda v) - \varphi(u - \lambda v, u - \lambda v),$$