Advanced
Topic Graph Data
Analytics

Why Graphs?

Common model across different fields, they use graph databases.

Web Graph

Road Network

Social Network

Chemical Compound

Protein Interaction Network

Ontology Graph

Social Networks

The Scale/Growth of Social Networks

Facebook statistics

- 829 million daily active users on average in June 2014
- 1.32 billion monthly active users as of June 30, 2014
- 22% increase in Facebook users from 2012 to 2013.

Facebook activities (every 20 minutes on Facebook)

- 1 million links shared
- 2 million friends requested
- 3 million messages sent

http://newsroom.fb.com/company-info/
http://www.statisticbrain.com/facebook-statistics/

The Scale/Growth of Social Networks

Facebook statistics

- 1.04 billion daily active users on average in Dec 2015
- 1.59 billion monthly active users as of Dec 31, 2015
- 12% increase in Facebook users from 2014 to 2015

Facebook activities (every 20 minutes on Facebook)

- 1 million links shared
- 2 million friends requested
- 3 million messages sent

http://newsroom.fb.com/company-info/
http://www.statisticbrain.com/facebook-statistics/

The Scale/Growth of Social Networks

Facebook statistics

- 1.47 billion daily active users on average in Jun. 2018
- 2.23 billion monthly active users as of June 30, 2018

http://newsroom.fb.com/company-info/

Transportation Networks: Airlines

Picture taken from a course by L Adamic

Financial Networks

What is a Graph?

G = (V, E), where

- V represents the set of vertices (entities)
- E represents the set of edges (relations)
- Both vertices and edges may contain additional information

A twitter network

The Structural Analysis of Graphs

Communities

A community is a cohesive group of nodes that are connected more densely to each other than to the other nodes in other communities

- Edges within a community: high density
- Edges between communities: low density

Community structures are common in real networks.

Finding Communities

People tend to work together.

Discovering social circles in ego networks (McAuley, Leskovec, 2012)

Definition (ego network): a portion of a social network formed of a given individual, termed ego, and the other persons with whom she has a social relationship with

How to Measure Cohesiveness

A community is a subgraph in a network.

One proposed model is the K-core: Where every node in a **subgraph** connects to at least k other nodes.

K-core is one of the models to model communities

Definition (**subgraph**): A portion of a graph G obtained by either eliminating edges from G and/or eliminating some vertices and their associated edges. – *oxfordrederence.com*

K-cores

Given a graph G, the k-core of G is a **subgraph** where each vertex has at least k neighbors (i.e., k adjacent vertex, or a **degree** of k).

S. B. Seidman. Network structure and minimum degree. Social networks, 5(3):269-287, 1983.

Why Study K-core?

The engagement of a user is influenced by the number of her engaged friends.

K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden, and A. Sharma. Preventing unraveling in social networks: the anchored k-core problem. *SIAM Journal on Discrete Mathematics*, 29(3):1452–1475, 2015.

Why Study K-core?

Assume a user will leave if less than k friends in the group

An equilibrium: a group has the minimum degree of k, namely k-core

K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden, and A. Sharma. Preventing unraveling in social networks: the anchored k-core problem. *SIAM Journal on Discrete Mathematics*, 29(3):1452–1475, 2015.

Why Study K-core?

A stable social group tends to be a k-core in the network

Computation of a *K*-core

Given a graph G, the k-core of G can be computed by recursively deleting every vertex and its adjacent edges if its degree is less than k.

Repeat until no vertex has a **degree** less than k.

Definition (degree): total number of edges connected to that vertex

S. B. Seidman. Network structure and minimum degree. Social networks, 5(3):269–287, 1983.

Batagelj and Zaversnik Algorithm:

Algorithm 1 In the algorithm the core number of vertex v, core(v), is represented by the table element core[v], and its degree by the table element degree[v].

INPUT: graph $\mathcal{G} = (\mathcal{V}, \mathcal{L})$ represented by lists of neighbors Neighbors(v) for each vertex vOUTPUT: table core with core number core[v] for each vertex v

compute the degrees of vertices;

order the set of vertices V in increasing order of their degrees; for each $v \in V$ in the order do begin

for each $v \in V$ in the order do beg 2.1 core[v] := degree[v];

for each $u \in Neighbors(v)$ do

2.2.1 if degree[u] > degree[v] then begin 2.2.1.1 degree[u] := degree[u] - 1;

2.2.1.1 aegree[u] := aegree[u] - 1;2.2.1.2 reorder V accordingly

end

end:

Number in green color: degree

Number in red color: core number

Batagelj and Zaversnik Algorithm:

Algorithm 1 In the algorithm the core number of vertex v, core(v), is represented by the table element core[v], and its degree by the table element degree[v].

INPUT: graph $\mathcal{G} = (\mathcal{V}, \mathcal{L})$ represented by lists of neighbors Neighbors(v) for each vertex vOUTPUT: table core with core number core[v] for each vertex v

1.1 compute the degrees of vertices;
1.2 order the set of vertices V in increasing order of their degrees;
2 for each v ∈ V in the order do begin

2.1 core[v] := degree[v];2.2 for each $u \in Neighbors(v)$ do 2.2.1 if degree[u] > degree[v] then begin 2.2.1.1 degree[u] := degree[u] - 1;2.2.1.2 reorder \mathcal{V} accordingly end end;

Number in green color: degree

Number in red color: core number

Batagelj and Zaversnik Algorithm:

Algorithm 1 In the algorithm the core number of vertex v, core(v), is represented by the table element core[v], and its degree by the table element degree[v].

INPUT: graph $\mathcal{G} = (\mathcal{V}, \mathcal{L})$ represented by lists of neighbors Neighbors(v) for each vertex v

OUTPUT: table core with core number core[v] for each vertex v

```
compute the degrees of vertices;
1.1
      order the set of vertices V in increasing order of their degrees;
1.2
2
      for each v \in \mathcal{V} in the order do begin
2.1
           core[v] := degree[v];
           for each u \in Neighbors(v) do
                 if degree[u] > degree[v] then begin
2.2.
                      degree[u] := degree[u] - 1;
2.2.1
                      reorder \mathcal{V} accordingly
                 end
      end:
```

Number in green color: degree

Number in red color: core number

Batagelj and Zaversnik Algorithm:

Algorithm 1 In the algorithm the core number of vertex v, core(v), is represented by the table element core[v], and its degree by the table element degree[v].

INPUT: graph $\mathcal{G} = (\mathcal{V}, \mathcal{L})$ represented by lists of neighbors Neighbors(v) for each vertex v

OUTPUT: table core with core number core[v] for each vertex v

- 1.1 compute the degrees of vertices;
 1.2 order the set of vertices V in increasing order of their degrees;
- 2 for each $v \in \mathcal{V}$ in the order do begin
- 2.1 core[v] := degree[v];
- 2.2 for each $u \in Neighbors(v)$ do
- 2.2.1 if degree[u] > degree[v] then begin
- 2.2.1.1 degree[u] := degree[u] 1;
- 2.2.1.2 $\frac{degree[u]}{degree[u]} = \frac{degree[u]}{degree[u]}$ reorder \mathcal{V} accordingly

end

end:

Number in green color: degree

Number in red color: core number

Batagelj and Zaversnik Algorithm:

Algorithm 1 In the algorithm the core number of vertex v, core(v), is represented by the table element core[v], and its degree by the table element degree[v].

INPUT: graph $\mathcal{G} = (\mathcal{V}, \mathcal{L})$ represented by lists of neighbors Neighbors(v) for each vertex vOUTPUT: table core with core number core[v] for each vertex v

- 1.1 compute the degrees of vertices;
- 1.2 order the set of vertices V in increasing order of their degrees;
- 2 for each $v \in \mathcal{V}$ in the order do begin
- 2.1 core[v] := degree[v];
- 2.2 for each $u \in Neighbors(v)$ do
- 2.2.1 if degree[u] > degree[v] then begin
- $2.2.1.1 \qquad \qquad degree[u] := degree[u] 1;$
- 2.2.1.2 reorder V accordingly

end

end;

Number in green color: degree

Number in red color: core number

Batagelj and Zaversnik Algorithm:

Algorithm 1 In the algorithm the core number of vertex v, core(v), is represented by the table element core[v], and its degree by the table element degree[v].

INPUT: graph $\mathcal{G} = (\mathcal{V}, \mathcal{L})$ represented by lists of neighbors Neighbors(v) for each vertex v

OUTPUT: table core with core number core[v] for each vertex v

- 1.1 compute the degrees of vertices;
 1.2 order the set of vertices V in increasing order of their degrees;
- 2 for each $v \in \mathcal{V}$ in the order do begin
- 2.1 core[v] := degree[v];

end

- 2.2 for each $u \in Neighbors(v)$ do
- 2.2.1 if degree[u] > degree[v] then begin
- 2.2.1 If aegree[u] > aegree[v] then begin
- $2.2.1.1 \qquad \qquad degree[u] := degree[u] 1;$

2.2.1.2 reorder V accordingly

end:

Number in green color: degree

Number in red color: core number

Number in red color, core number

Batagelj and Zaversnik Algorithm:

Algorithm 1 In the algorithm the core number of vertex v, core(v), is represented by the table element core[v], and its degree by the table element degree[v].

INPUT: graph $\mathcal{G} = (\mathcal{V}, \mathcal{L})$ represented by lists of neighbors Neighbors(v) for each vertex vOUTPUT: table core with core number core[v] for each vertex v

oc 11 o 1. table core with core number core[v] for each vertex

- 1.1 compute the degrees of vertices;
- 1.2 order the set of vertices V in increasing order of their degrees;
- 2 for each $v \in \mathcal{V}$ in the order do begin
- $2.1 \qquad core[v] := degree[v];$
- 2.2 for each $u \in Neighbors(v)$ do
- 2.2.1 if degree[u] > degree[v] then begin
- 2.2.1.1 degree[u] := degree[u] 1;
- 2.2.1.2 reorder \mathcal{V} accordingly

end

end;

Number in green color: degree

Number in red color: core number

Batagelj and Zaversnik Algorithm:

Algorithm 1 In the algorithm the core number of vertex v, core(v), is represented by the table element core[v], and its degree by the table element degree[v].

INPUT: graph $\mathcal{G} = (\mathcal{V}, \mathcal{L})$ represented by lists of neighbors Neighbors(v) for each vertex v

OUTPUT: table core with core number core[v] for each vertex v

- 1.1 compute the degrees of vertices;
 1.2 order the set of vertices V in increasing order of their degrees;
- 2 for each $v \in \mathcal{V}$ in the order do begin
- 2.1 core[v] := degree[v];2.2 for each $u \in Neighbors(v)$ do
- 2.2 for each $u \in Neighbors(v)$ do
- 2.2.1 if degree[u] > degree[v] then begin 2.2.1.1 degree[u] := degree[u] - 1;
- 2.2.1.1 degree[u] := degree[u] 1;2.2.1.2 reorder V accordingly

reorder $\mathcal V$ accordingly end

end:

Number in green color: degree

Number in red color: core number

Batagelj and Zaversnik Algorithm:

Algorithm 1 In the algorithm the core number of vertex v, core(v), is represented by the table element core[v], and its degree by the table element degree[v].

INPUT: graph $\mathcal{G} = (\mathcal{V}, \mathcal{L})$ represented by lists of neighbors Neighbors(v) for each vertex vOUTPUT: table core with core number core[v] for each vertex v

- 1.1 compute the degrees of vertices;
- 1.2 order the set of vertices V in increasing order of their degrees;
- 2 for each $v \in \mathcal{V}$ in the order do begin
- $2.1 \qquad core[v] := degree[v];$
- 2.2 for each $u \in Neighbors(v)$ do
- 2.2.1 if degree[u] > degree[v] then begin
- 2.2.1.1 degree[u] := degree[u] 1;
- 2.2.1.2 reorder V accordingly

end

end;

Number in green color: degree

Number in red color: core number

K-core Decomposition

The (k + 1)-core is contained in the k-core, for each $k \ge 0$.

For a vertex v, its **coreness** is the maximum k such that v is in the k-core but not in the (k+1)-core.

• A k-core contains vertices with **coreness** $\geq k$.

K-core Decomposition

i.e, Core number/coreness of a vertex v: the largest value of k such that there is a k-core containing v.

Core **decomposition**: computes the core number of each vertex in G.

Other Applications

- Community detection
- User engagement
- Event detection
- Influence study
- Graph clustering
- Protein function prediction
- Network Visualization

...

Practice:

What is the k-core of the graph on the right?

What is the corenumber of the green vertex? 1

Can I draw conclusions based on its degree alone (degree of 7)? No...

Learning Outcome

K-core: definition and its computation