Aprendizaje Reforzado

David Peña Peralta

2024 - 02 - 09

Table of contents

Preface		;
1	Introduction	11
2	Summary	12
References		13

Preface

This is a Quarto book.

To learn more about Quarto books visit https://quarto.org/docs/books.

```
import numpy as np x = 10
```

Ejercicio 4

Considerando ${\cal J}_N$ como sigue

$$J_N(x) = \beta^N x^{1-\gamma} K_N,$$

con ${\cal K}_N=1$ bajo la hipótesis de que

$$c_k(x,a) = \beta^k a^{1-\gamma}$$

calculamos J_{N-1} .

$$\begin{split} J_{N-1}\left(x\right) &= \max_{a \in A(x)} \left\{ c_{N-1}(x,a) + J_{N}\left((1+i)(x-a)\right) \right\} \\ &= \max_{a \in A(x)} \left\{ \beta^{N-1}a^{1-\gamma} + \beta^{N}\left((1+i)(x-a)\right)^{1-\gamma} \right\} \end{split}$$

Definimos el argumento como una función q.

$$\begin{split} q(x,a) &= \beta^{N-1}a^{1-\gamma} + \beta^{N}\left((1+i)(x-a)\right)^{1-\gamma} \\ &= C_{1}a^{1-\gamma} + C_{2}\left(x-a\right)^{1-\gamma}, \end{split}$$

donde $C_1=\beta^{N-1}$ y $C_2=\beta^N(1+i)^{1-\gamma}K_N$. Como q es continua en (x,a). Podemos calcular el máximo mediante el gradiente.

$$\partial_a q = C_1 (1 - \gamma) a^{-\gamma} - C_2 (1 - \gamma) (x - a)^{-\gamma}.$$

Igualando, $\partial_a q = 0.$

$$\begin{split} C_1 a^{-\gamma} &= C_2 \left(x-a\right)^{-\gamma} \\ \frac{C_1}{C_2} &= \left(\frac{x-a}{a}\right)^{-\gamma} \\ \left(\frac{C_1}{C_2}\right)^{-\frac{1}{\gamma}} &= \frac{x}{a} - 1 \\ \left(\frac{C_1}{C_2}\right)^{-\frac{1}{\gamma}} + 1 &= \frac{x}{a} \\ a &= \frac{x}{\left(\frac{C_1}{C_2}\right)^{-\frac{1}{\gamma}} + 1} \end{split}$$

Finalmente

$$a = h(x) = \frac{x}{(\beta(1+i)^{1-\gamma})^{\frac{1}{\gamma}} + 1}$$

Definiendo $\eta=\left(\beta(1+i)^{1-\gamma}\right)^{\frac{1}{\gamma}}+1,\,\eta-1=\left(\beta(1+i)^{1-\gamma}\right)^{\frac{1}{\gamma}}$ entonces

$$h(x) = \frac{x}{\eta},$$

$$\begin{split} J_{N-1}(x) &= \beta^{N-1} \left(\frac{x}{\eta}\right)^{1-\gamma} + \beta^{N} \left((1+i) \left(x - \frac{x}{\eta} \right) \right)^{1-\gamma} \\ &= \beta^{N-1} x^{1-\gamma} \left(\eta^{\gamma-1} + \beta \left(1+i \right)^{1-\gamma} \left(\frac{\eta-1}{\eta} \right)^{1-\gamma} \right) \\ &= \beta^{N-1} x^{1-\gamma} \eta^{\gamma-1} \left(1 + \beta \left(1+i \right)^{1-\gamma} \left(\eta-1 \right)^{1-\gamma} \right) \\ &= \beta^{N-1} x^{1-\gamma} \eta^{\gamma-1} \left(1 + \beta \left(1+i \right)^{1-\gamma} \left(\eta-1 \right)^{1-\gamma} \right) \\ &= \beta^{N-1} x^{1-\gamma} \eta^{\gamma-1} \left(1 + \beta \left(1+i \right)^{1-\gamma} \left(\left(\beta (1+i)^{1-\gamma} \right)^{\frac{1}{\gamma}} \right)^{1-\gamma} \right) \\ &= \beta^{N-1} x^{1-\gamma} \eta^{\gamma-1} \left(1 + \beta \left(1+i \right)^{1-\gamma} \left(\beta (1+i)^{1-\gamma} \right)^{\frac{1}{\gamma}-1} \right) \\ &= \beta^{N-1} x^{1-\gamma} \eta^{\gamma-1} \left(1 + \beta^{\frac{1}{\gamma}} (1+i)^{(1-\gamma)\left(\frac{1}{\gamma}-1\right)+1-\gamma} \right) \\ &= \beta^{N-1} x^{1-\gamma} \eta^{\gamma-1} \left(1 + \beta^{\frac{1}{\gamma}} (1+i)^{\left(\frac{1}{\gamma}-1\right)} \right) \\ &= \beta^{N-1} x^{1-\gamma} \eta^{\gamma}, \end{split}$$

Entonces

$$K_{N-1}=\eta^{\gamma},h_{k-1}\left(x\right)=\frac{x}{\left(K_{N-1}\right)^{1/\gamma}}$$

Ahora calculamos J_{N-2}

$$\begin{split} J_{N-2}\left(x\right) &= \max_{a \in A\left(x\right)} \left\{ \beta^{N-2} a^{1-\gamma} + \beta^{N-1} \left[\left(1+i\right)\left(x-a\right)\right]^{1-\gamma} \eta^{\gamma} \right\} \\ &= \max_{a \in A\left(x\right)} \left\{ q\left(x,a\right) \right\}, \end{split}$$

donde

$$q\left(x,a\right) =C_{1}a^{1-\gamma}+C_{2}\left(x-a\right) ^{1-\gamma},$$

con $C_1=\beta^{N-2}$ y $C_2=\beta^{N-1}\left(1+i\right)^{1-\gamma}K_{N-1}$. Obteniendo, por recursividad

$$\begin{split} h_{N-2} &= \frac{x}{\left(\frac{C_1}{C_2}\right)^{-\frac{1}{\gamma}} + 1} \\ &= \frac{x}{\left(\frac{1}{\beta \left(1 + i\right)^{1 - \gamma} K_{N-1}}\right)^{-\frac{1}{\gamma}} + 1} \\ &= \frac{x}{\left(\beta \left(1 + i\right)^{1 - \gamma} K_{N-1}\right)^{\frac{1}{\gamma}} + 1} \end{split}$$

Entonces, sea

$$\eta' = \left(\beta (1+i)^{1-\gamma} K_{N-1}\right)^{\frac{1}{\gamma}} + 1.$$

Repitiendo, el caso anterior, tenemos que

$$\begin{split} J_{N-2}\left(x\right) &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + K_{N-1} \beta \left(1 + i\right)^{1-\gamma} \left(\left(\beta (1+i)^{1-\gamma} K_{N-1}\right)^{\frac{1}{\gamma}}\right)^{1-\gamma}\right) \\ &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + K_{N-1} \beta \left(1 + i\right)^{1-\gamma} \left(\left(\beta (1+i)^{1-\gamma} K_{N-1}\right)^{\frac{1}{\gamma}}\right)^{1-\gamma}\right) \\ &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + K_{N-1} \beta \left(1 + i\right)^{1-\gamma} \left(\beta (1+i)^{1-\gamma} K_{N-1}\right)^{\frac{1}{\gamma}-1}\right) \\ &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + K_{N-1} \beta \left(1 + i\right)^{1-\gamma} \left(1 + i\right)^{(1-\gamma)\left(\frac{1}{\gamma}-1\right)} K_{N-1}^{\frac{1}{\gamma}-1}\right) \\ &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + K_{N-1} \beta^{1/\gamma} \left(1 + i\right)^{\frac{1}{\gamma}-1} K_{N-1}^{\frac{1}{\gamma}-1}\right) \\ &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + \beta^{1/\gamma} \left(1 + i\right)^{\frac{1}{\gamma}-1} K_{N-1}^{\frac{1}{\gamma}}\right) \\ &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + \beta^{1/\gamma} \left(1 + i\right)^{\frac{1}{\gamma}-1} K_{N-1}^{\frac{1}{\gamma}}\right) \\ &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + \beta^{1/\gamma} \left(1 + i\right)^{\frac{1}{\gamma}-1} K_{N-1}^{\frac{1}{\gamma}}\right) \\ &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + \beta^{1/\gamma} \left(1 + i\right)^{\frac{1}{\gamma}-1} K_{N-1}^{\frac{1}{\gamma}}\right) \\ &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + \beta^{1/\gamma} \left(1 + i\right)^{\frac{1}{\gamma}-1} K_{N-1}^{\frac{1}{\gamma}}\right) \\ &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + \beta^{1/\gamma} \left(1 + i\right)^{\frac{1}{\gamma}-1} K_{N-1}^{\frac{1}{\gamma}}\right) \\ &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + \beta^{1/\gamma} \left(1 + i\right)^{\frac{1}{\gamma}-1} K_{N-1}^{\frac{1}{\gamma}}\right) \\ &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + \beta^{1/\gamma} \left(1 + i\right)^{\frac{1}{\gamma}-1} K_{N-1}^{\frac{1}{\gamma}-1}\right) \\ &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + \beta^{1/\gamma} \left(1 + i\right)^{\frac{1}{\gamma}-1} K_{N-1}^{\frac{1}{\gamma}-1}\right) \\ &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + \beta^{1/\gamma} \left(1 + i\right)^{\frac{1}{\gamma}-1} K_{N-1}^{\frac{1}{\gamma}-1}\right) \\ &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + \beta^{1/\gamma} \left(1 + i\right)^{\frac{1}{\gamma}-1} K_{N-1}^{\frac{1}{\gamma}-1}\right) \\ &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + \beta^{1/\gamma} \left(1 + i\right)^{\frac{1}{\gamma}-1} K_{N-1}^{\frac{1}{\gamma}-1}\right) \\ &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + \beta^{1/\gamma} \left(1 + i\right)^{\frac{1}{\gamma}-1} K_{N-1}^{\frac{1}{\gamma}-1}\right) \\ &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + \beta^{1/\gamma} \left(1 + i\right)^{\frac{1}{\gamma}-1} K_{N-1}^{\frac{1}{\gamma}-1}\right) \\ &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + \beta^{1/\gamma} \left(1 + i\right)^{\frac{1}{\gamma}-1} K_{N-1}^{\frac{1}{\gamma}-1}\right) \\ &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + \beta^{1/\gamma} \left(1 + i\right)^{\frac{1}{\gamma}-1} K_{N-1}^{\frac{1}{\gamma}-1}\right) \\ &= \beta^{N-2} x^{1-\gamma} \eta_{\gamma}^{\gamma-1} \left(1 + \beta^$$

entonces

$$K_{N-2}=\eta'{}^{\gamma},$$

у

$$h_{N-2}=\frac{x}{K_{N-2}^{1/\gamma}}$$

Por lo tanto, tenemos que

$$K_n = \left(\beta (1+i)^{1-\gamma} K_{n+1}\right)^{\frac{1}{\gamma}} + 1, n = 0, 1, 2, \dots, N,$$

 $\mathrm{con}\ K_N=1.$

Obteniendo así

$$J_n(x) = \beta^n x^{1-\gamma} K_n$$
$$h_n(x) = \frac{x}{K_n^{1/\gamma}}$$

Ejercicio 5

Para el caso infinito. Estamos considerando

$$c\left(x,a\right) =a^{1-\gamma }$$

Entonces

$$\nu\left(x\right) = \max_{a \in A\left(x\right)} \left\{a^{1-\gamma} + \beta\nu\left(\left(1+i\right)\left(x-a\right)\right)\right\},$$

considerando $\nu\left(x\right)=cx^{1-\gamma}$. Entonces

$$\nu\left(x\right) = \max_{a \in A(x)} \left\{a^{1-\gamma} + \beta c \left[\left(1+i\right)\left(x-a\right)\right]^{1-\gamma}\right\},$$

definimos

$$q(x, a) = a^{1-\gamma} + \beta c [(1+i)(x-a)]^{1-\gamma},$$

entonces

$$\partial_{a}q=\left(1-\gamma\right)a^{-\gamma}+\beta c\left(1-\gamma\right)\left(1+i\right)^{1-\gamma}\left(-1\right)\left(x-a\right)^{-\gamma}.$$

Si $\partial_a q=0.$ Entonces

$$a^{-\gamma} = \beta c \left(1+i\right)^{1-\gamma} \left(x-a\right)^{-\gamma}$$
$$\left(\beta c \left(1+i\right)^{1-\gamma}\right)^{-1} = \left(\frac{x-a}{a}\right)^{-\gamma}$$
$$\beta^{-1} c^{-1} \left(1+i\right)^{\gamma-1} = \left(\frac{x}{a}-1\right)^{-\gamma}$$
$$\left[\beta^{-1} c^{-1} \left(1+i\right)^{\gamma-1}\right]^{-\frac{1}{\gamma}} + 1 = \frac{x}{a}$$

Por lo tanto

$$a = \frac{x}{\left[\beta^{-1}c^{-1}\left(1+i\right)^{\gamma-1}\right]^{-\frac{1}{\gamma}} + 1}$$
$$= \frac{x}{\left[\beta c\left(1+i\right)^{1-\gamma}\right]^{\frac{1}{\gamma}} + 1}$$

Ahora remplazamos en q

$$\nu\left(x\right) = \left(\frac{x}{\left[\beta c\left(1+i\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}+1}\right)^{1-\gamma} + \beta c \left[\left(1+i\right)\left(x - \frac{x}{\left[\beta c\left(1+i\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}+1}\right)\right]^{1-\gamma}$$

$$= x^{1-\gamma} \left(\frac{1}{\left[\beta c\left(1+i\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}+1}\right) + x^{1-\gamma} \left(1+i\right)^{1-\gamma} \beta c \left(1 - \frac{1}{\left[\beta c\left(1+i\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}+1}\right)^{1-\gamma}$$

$$= x^{1-\gamma} \left[\left(\frac{1}{\left[\beta c\left(1+i\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}+1}\right) + \left(1+i\right)^{1-\gamma} \beta c \left(1 - \frac{1}{\left[\beta c\left(1+i\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}+1}\right)^{1-\gamma}\right].$$

Entonces

$$c = \left(\frac{1}{\left[\beta c \left(1+i\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}+1}\right)^{1-\gamma} + \left(1+i\right)^{1-\gamma}\beta c \left(1 - \frac{1}{\left[\beta c \left(1+i\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}+1}\right)^{1-\gamma}$$

$$= \left(\frac{1}{\left[\beta c \left(1+i\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}+1}\right)^{1-\gamma} + \left(1+i\right)^{1-\gamma}\beta c \left(\frac{\left[\beta c \left(1+i\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}+1}{\left[\beta c \left(1+i\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}+1}\right)^{1-\gamma}$$

$$= \left(\frac{1}{\left[\beta c \left(1+i\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}+1}\right)^{1-\gamma} \left(1+\left(1+i\right)^{1-\gamma}\beta c \left(\left[\beta c \left(1+i\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}\right)^{1-\gamma}\right)$$

$$= \left(\frac{1}{\left[\beta c \left(1+i\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}+1}\right)^{1-\gamma} \left(1+\left[\beta c \left(1+i\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}\right)$$

$$= \left(\frac{1}{\left[\beta c \left(1+i\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}+1}\right)^{1-\gamma} \left(1+\left[\beta c \left(1+i\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}\right)$$

$$= \left(\left[\beta c \left(1+i\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}+1\right)^{\gamma-1} \left(1+\left[\beta c \left(1+i\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}\right)$$

$$c = \left(\left[\beta c \left(1+i\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}+1\right)^{\gamma}$$

Ahora, nos queda despejar c.

$$c^{\frac{1}{\gamma}} = \beta^{\frac{1}{\gamma}} c^{\frac{1}{\gamma}} (1+i)^{\frac{1}{\gamma}-1} + 1$$

$$1 = \beta^{\frac{1}{\gamma}} (1+i)^{\frac{1}{\gamma}-1} + c^{-\frac{1}{\gamma}}$$

$$c^{-\frac{1}{\gamma}} = 1 - \beta^{\frac{1}{\gamma}} (1+i)^{\frac{1}{\gamma}-1}$$

$$c = \left(1 - \beta^{\frac{1}{\gamma}} (1+i)^{\frac{1}{\gamma}-1}\right)^{-\gamma}$$

Ejercicio 6

$$\begin{split} \nu\left(x\right) &= \max_{a \in A(x)} \left\{ c\left(x,a\right) + \nu\left(f\left(x,a\right)\right) \right\} \\ &= \max_{a \in A(x)} \left\{ a^2 + x^2 + E\left[\nu\left(x + a + \xi\right)\right] \right\} \end{split}$$

Para $\nu(x) = ax^2 + b$

$$\begin{split} \nu\left(x\right) &= \max_{a \in A(x)} \left\{c\left(x,a\right) + \beta E\left[\nu\left(f\left(x,a\right)\right)\right]\right\} \\ &= \max_{a \in A(x)} \left\{A^2 + x^2 + \beta\left(E\left[a\left(f^2\left(x,a\right)\right)\right] + b\right)\right\} \\ &= \max_{a \in A(x)} \left\{A^2 + x^2 + \beta\left(aE\left[f^2\left(x,a\right)\right] + b\right)\right\} \end{split}$$

Notemos que

$$E[f^{2}(x,a)] = E[(x+A+\xi)^{2}]$$

$$= E[x^{2} + A^{2} + \xi^{2} + 2xA + 2x\xi + 2\xi A]$$

$$= x^{2} + A^{2} + E[\xi^{2}] + 2xA + 2xE[\xi] + 2AE[\xi]$$

$$= x^{2} + A^{2} + d + 2xA$$

Entonces

$$\begin{split} ax^2 + b &= \max_{a \in A(x)} \left\{ A^2 + x^2 + \beta \left[a \left(x^2 + A^2 + d + 2xA \right) + b \right] \right\} \\ &= \max_{a \in A(x)} \left\{ A^2 + x^2 + \beta a \left(x^2 + A^2 + d + 2xA \right) + \beta b \right\} \\ &= \max_{a \in A(x)} \left\{ A^2 + x^2 + \beta a x^2 + \beta a A^2 + \beta a d + 2\beta a x A + \beta b \right\} \\ &= \max_{a \in A(x)} \left\{ A^2 \left(\beta a + 1 \right) + 2\beta a x A + x^2 + \beta a x^2 + \beta a d + \beta b \right\} \end{split}$$

Definimos

$$w(x, A) = A^{2}(\beta a + 1) + 2\beta axA + x^{2} + \beta ax^{2} + \beta ad + \beta b$$

entonces

$$\partial_A w = 2A(\beta a + 1) + 2\beta ax.$$

Si $\partial_A w = 0$, entonces

$$A = -\frac{\beta ax}{\beta a + 1}$$

Entonces

$$\nu(x) = (\beta ax)^{2} - 2\frac{(\beta ax)^{2}}{\beta a + 1} + x^{2} + \beta ax^{2} + \beta ad + \beta b$$
$$= x^{2} \left([\beta a]^{2} - 2\frac{(\beta a)^{2}}{\beta a + 1} + 1 + \beta a \right) + \beta ad + \beta b$$

Entonces

$$a = [\beta a]^2 - 2\frac{(\beta a)^2}{\beta a + 1} + 1 + \beta a$$
$$b = \beta ad + \beta b.$$

de forma rapida

$$b = \frac{\beta ad}{1 - \beta},$$

entonces queda pendiente calcular a

$$a = [\beta a]^{2} - 2\frac{(\beta a)^{2}}{\beta a + 1} + 1 + \beta a.$$

$$0 = (\beta a)^{2} \left(1 - \frac{2}{\beta a + 1}\right) + 1 + (\beta - 1) a$$

$$= (\beta a)^{2} (\beta a + 1 - 2) + \beta a + 1 + (\alpha \beta - a) (\beta a + 1)$$

$$= (\beta a)^{2} (\beta a - 1) + \beta a + 1 + \left[(\alpha \beta)^{2} + \alpha \beta - \beta a^{2} - a\right]$$

$$= (\beta a)^{3} + 2\alpha \beta + 1 - \beta a^{2} - a$$

$$= \beta^{3} a^{3} - \beta a^{2} + (2\beta - 1) a + 1$$

1 Introduction

This is a book created from markdown and executable code.

See Knuth (1984) for additional discussion of literate programming.

2 Summary

In summary, this book has no content whatsoever.

References

Knuth, Donald E. 1984. "Literate Programming." Comput. J. 27 (2): 97–111.
 https://doi.org/10.1093/comjnl/27.2.97.