Laboratório Nº 7: Naive Bayes

Extração Automática de Informação 2022/2023

Prof. Joaquim Filipe Eng. Filipe Mariano

Objetivos

Criar um classificador probabilístico de acordo com a teoria de decisão de Bayes.

1. Introdução

No laboratório anterior foi introduzida uma primeira abordagem a aplicar na classificação de documentos na aprendizagem supervisionada, através da identificação da similaridade entre documentos recorrendo à métrica da similaridade do cosseno. Neste laboratório irá ser introduzida uma nova forma de classificação de documentos através de métodos probabilísticos, assentes na teoria de decisão de Bayes.

2. Teoria de Decisão de Bayes

A teoria de decisão de Bayes é uma abordagem estatística utilizada nos problemas de classificação em reconhecimento de padrões. É considerada uma das melhores abordagens quando a estrutura de probabilidade subjacente às categorias é conhecida perfeitamente. Apesar desse tipo de situação ocorrer com pouca frequência, permite determinar um classificador com o qual poderá ser comparado com outros.

Esta abordagem baseia-se na quantificação das compensações entre várias decisões de classificação usando a probabilidade e os custos que acompanham tais decisões. Parte do pressuposto de que o problema de decisão é colocado num modo probabilístico, e que todos os valores de probabilidade relevantes são conhecidos.

2.1. Naive Bayes para Texto

As características são representadas pelos termos presentes na *bag of words*, em que de acordo com a teoria de Bayes pode ser descrita pela seguinte fórmula:

$$P(c \mid x) = \frac{P(x \mid c)P(c)}{P(x)}$$
Posterior Probability
$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

Se considerarmos o X1, X2, ..., Xn os termos da *bag of words* podemos observar que a fórmula é composta pelo produto da probabilidade do termo Xi na classe C com a probabilidade dessa classe.

A probabilidade da classe, descrita na fórmula por P(C) pode ser calculada a partir das observações realizadas, ou seja, através do conjunto de treino.

2.2. Exemplo Prático 1

Se considerarmos um conjunto de treino com 9 documentos em que 5 são para a classe positive e 4 para a classe negative, podemos concluir que a probabilidade a priori é P(positive) = 5/9 e P(negative) = 4/9.

Agora que compreendemos como se calcula a probabilidade a priori da classe, iremos calcular a verosimilhança através da *bag of words*. Se imaginarmos a frase (para esta análise não irei retirar o and como stopword):

d1: Very good food and service.

Considerando os seguintes valores para o conjunto de treino:

Probability of Test Word *j*

counts of word " j " in class c counts of words in class c

	Count of Test Word " j " in Class c				
Class c	very	good	food	and	service
Positive Class	1	2	1	0	0
Negative Class	1	0	3	0	0

	Probability of Test Word " j " in Class c				
Class c	very	good	food	and	service
Positive Class	0.038461538	0.0769231	0.0384615	0	0
Negative Class	0.047619048	0	0.1428571	0	0

product (p of a test word " j " in class positive c) = p (very) * p (good) * p (food) * p (and) * p (service)Class c very good food and service
Positive Class 0.038461538 0.0769231 0.0384615 0 0
Negative Class 0.047619048 0 0.1428571 0 0

Deparamo-nos com uma situação que iremos multiplicar por 0, o que tornaria o resultado da nossa probabilidade também em 0. Desta forma, poderemos optar por uma abordagem mais simplista de se ignorar

essas palavras considerando apenas que estão contidas na *bag of words*. Caso contrário, terá de seguir uma abordagem denominada de Laplace Correction de modo a atribuir um valor muito baixo para essas palavras que ocorrem no documento que se pretende classificar, mas que não estavam contidas no conjunto de treino (|V| representa o número de palavras únicas existente em todo o conjunto de treino, independentemente da classe).

No entanto, nesta perspetiva todos os termos do vocabulário deverão ser incrementados em 1 para ir ao encontro da fórmula das palavras desconhecidas.

	Count of Test Word " j " in Class $c+1$				
Class c	very	good	food	and	service
Positive Class	1+1	2 + 1	1+1	0 + 1	0 + 1
Negative Class	1 + 1	0 + 1	3 + 1	0 + 1	0+1

	Count of Test Word " j " in Class c + 1				
Class c	very	good	food	and	service
Positive Class	2	3	2	1	1
Negative Class	2	1	4	1	1

	Probability of Test Word " j " in Class c				
Class c	very	good	food	and	service
Positive Class	0.03389831	0.05084746	0.03389831	0.01694915	0.01694915
Negative Class	0.03703704	0.01851852	0.07407407	0.01851852	0.01851852

Agora já é possível fazer o produto de todos os termos porque já não existe valores a \emptyset . Na seguinte figura irá aparecer o resultado para cada classe da $P(X \mid C)$.

Multiplicando pela probabilidade a priori calculada anteriormente obtemos o resultado descrito no quadro seguinte:

p (i belonging to class c) = product (p of a
test word "j" in class c) * p of class c

Positive Class	1.6785E-08	* 5 / 9	9.33E-09
Negatice Class	1.74229E-08	* 4/9	7.74E-09

De acordo com os cálculos realizados, a P(positive | d1) > P(negative | d1). O que se pode concluir que o d1 que correspondia à frase Very good food and service é da classe positive.

3. Exercícios

- **1.** Criar uma função que permita calcular a $P(\omega)$. Sendo que para o problema que temos vindo a trabalhar, apenas temos 2 classes: positive e negative.
- **a.** Esta função deverá receber como parâmetro de entrada qual a classe e obter a contagem de documentos dessa classe utilizado no conjunto de treino (tabela trainingset).
- **b.** Para calcular a probabilidade a priori da classe $P(\omega)$ terá de obter também o total de documentos utilizado em todo o conjunto de treino, independentemente da classe. Assim, utilizando o número de documentos do conjunto de treino para a classe e dividindo pelo número de documentos total utilizado no conjunto de treino, obtém a probabilidade a priori para uma classe.
- **c.** Fazer este cálculo da probabilidade a priori de cada classe (positive e negative) na fase em que se processa o conjunto de treino (módulo train) e gravar esse valor, para cada classe, em base de dados ou ficheiro, para serem posteriormente utilizados no cálculo da P(W | X), de acordo com a teoria de Bayes.
- **2.** No módulo classifier criar uma função probabilisticClassification que irá realizar os cálculos necessário para identificar qual a classe do texto recebido como parâmetro de entrada.
- **a.** Deve substituir nas fórmulas demonstradas na secção 2.2, o count pela soma/média dos tf-idf. Ou seja, a soma/média dos tf-idf de todos os documentos do conjunto de treino para o termo j na classe c a dividir pela soma de todos os tf-idf da classe c.

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \dots \times P(x_n \mid c) \times P(c)$$

b. Obter a partir da base de dados ou ficheiro o valor calculado para cada classe da probabilidade a priori.

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \dots \times P(x_n \mid c) \times P(c)$$

c. Multiplicar ambos os valores obtido em a) e b) para a classe positive e classe negative e a que der o valor maior será a previsão de classe que será devolvida pela função.