Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 12

Math 237 – Linear Algebra Fall 2017

Version 6

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

	Mark:
Standard V1.	

Let V be the set of all points on the line x + y = 2 with the operations, for any $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2 - 1, y_1 + y_2 - 1)$$

 $c \odot (x_1, y_1) = (cx_1 - (c - 1), cy_1 - (c - 2))$

Determine if V is a vector space or not.

Solution:

- 1) Since real addition is associative, \oplus is associative.
- 2) Since real addition is commutative, \oplus is commutative.
- 3) $(x_1, y_1) \oplus (1, 1) = (x_1, y_1)$, so (1, 1) is an additive identity element.
- 4) $(x_1, y_1) \oplus (2 x_1, 2 y_1) = (1, 1)$, so $(2 x_1, 2 y_1)$ is the additive inverse of (x_1, y_1) .

5)

$$\begin{split} c\odot(d\odot(x_1,y_1)) &= c\odot(dx_1-(d-1),dy_1-(d-1))\\ &= (c(dx_1-(d-1))-(c-1),c(dy_1-(d-1)))\\ &= (cdx_1-cd+c-(c-1),cdy_1-cd+c-(c-1))\\ &= (cdx_1-(cd-1),cdy_1-(cd-1))\\ &= (cd)\odot(x_1,y_1) \end{split}$$

6)
$$1 \odot (x_1, y_1) = (x_1 - (1 - 1), y_1 - (1 - 1)) = (x_1, y_1)$$

7)

$$\begin{split} c\odot((x_1,y_1)\oplus(x_2,y_2)) &= c\odot(x_1+y_1-1,x_2+y_2-1)\\ &= (c(x_1+y_1-1)-(c-1),c(x_2+y_2-1)-(c-1))\\ &= (cx_1+cx_2-2c+1,cy_1+cy_2-2c+1)\\ &= (cx_1-(c-1),cy_1-(c-1))\oplus(cx_2-(c-1),cy_2-(c-1))\\ &= c\odot(x_1,y_1)\oplus c\odot(x_2,y_2) \end{split}$$

8)

$$(c+d) \odot (x_1, y_1) = ((c+d)x_1 - (c+d-1), (c+d)y_1 - (c+d-1))$$
$$= (cx_1 - (c-1), cy_1 - (c-1)) \oplus (dx_1 - (d-1), dy_1 - (d-1))$$
$$= c \odot (x_1, y_1) \oplus c \odot (x_2, y_2)$$

Standard V3.

Mark:

Determine if the vectors $\begin{bmatrix} 8\\21\\-7 \end{bmatrix}$, $\begin{bmatrix} -3\\-8\\3 \end{bmatrix}$, $\begin{bmatrix} -1\\-3\\2 \end{bmatrix}$, and $\begin{bmatrix} 4\\11\\-5 \end{bmatrix}$ span \mathbb{R}^3 .

Solution:

RREF
$$\left(\begin{bmatrix} 8 & -3 & -1 & 4\\ 21 & -8 & -3 & 11\\ -7 & 3 & 2 & -5 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 1 & -1\\ 0 & 1 & 3 & -4\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the rank is less than 3, they do not span \mathbb{R}^3 .

Standard V4.

Mark:

Let W be the set of all polynomials of even degree. Determine if W is a subspace of the vector space of all polynomials.

Solution: W is closed under scalar multiplication, but not under addition. For example, $x - x^2$ and x^2 are both in W, but $(x - x^2) + (x^2) = x \notin W$.

 ${\bf Additional\ Notes/Marks}$