





# Privacidad en la era de los datos

Jocelyn Dunstan, PhD MSc <u>idunstan@uc.cl</u>

¿Qué tan grande es un Large

Language Model?

## Ciclos de Charlas ReLeLa



https://relela.com/ciclos/

# Si llevamos a texto todo lo que escuchamos para aprender a comunicarnos, ¿cómo se compara con GPT?



Charla de Jorge Ortiz Fuentes

# ¿Cuánto pesa la transcripción de lo que escuchamos en 18 años?

- Una persona habla entre 150 y 160 palabras por minuto
- Supongamos que un niño pasa 15 horas diarias despierto
- En 15 horas el niño puede escuchar 15\*60\*155 = 139,500 palabras
- Multipliquemos esto por 365 días por 18 años = 916,5 millones de palabras
- En total esto corresponde a 75 mb de texto

| Modelo            | GB de textos      |  |  |
|-------------------|-------------------|--|--|
| GPT               | 4.8 gb            |  |  |
| GPT2              | 40 gb             |  |  |
| GPT3              | 570 gb            |  |  |
| GPT3.5 (ChatGPT)  | ¿570 gb?          |  |  |
| GPT4 (ChatGPT4)   | ?                 |  |  |
| Humano de 18 años | Entre 75 y 300 mb |  |  |

# ¿Por qué esto es importante en el contexto de los modelos del lenguaje aplicados a medicina?

#### Interconsulta real obtenida por Ley de Transparencia





INSCRIPCIÓN: https://bit.ly/HDalianis

## MARTES 14/11/2023

Casa Central PUC Av. Libertador Bernardo O'Higgins 340, Santiago







Proyecto Fondecyt 11201250

**Hercules Dalianis** Professor in Computer and Systems Science, Stockholm University, Sweden

Presenta: Jocelyn Dustan Pontificia Universidad Católica de Chile















**Hercules Dalianis** 



Thomas Vakili

#### Cortesía de Thomas Vakili

# Memorización involuntaria de modelos del lenguaje

- El tamaño de los modelos conduce a una memorización involuntaria
- Carlini et al. (2020) extraen pasajes memorizados largos del GPT-2 entrenado con datos de dominio general
- Queremos adaptar los modelos para su uso clínico utilizando historiales médicos electrónicos
- La privacidad en medicina es crucial y además es un derecho humano

#### Cortesía de Hércules Dalianis



Pat arrives to hospital with broken tibia.

Anaesthetic given by nurse FIRST\_NAME.

Paracetamol prescribed by dr LAST\_NAME.

Pat arrives to hospital with broken tibia. Anaesthetic given by nurse **Fredrik**. Paracetamol prescribed by dr **Modig**.



Pat arrives to hospital with broken tibia.



Pat arrives to hospital with broken tibia. Anaesthetic given by nurse **Stefan**. Paracetamol prescribed by dr **Lundvall**.

# Utility Preservation of Clinical Text After De-Identification

### Thomas Vakili and Hercules Dalianis



## Cortesía de Hércules Dalianis

| Model              | ICD-10         | PHI   | <b>Clinical Entity</b> | <b>Factuality</b> | Factuality | ADE            |
|--------------------|----------------|-------|------------------------|-------------------|------------|----------------|
|                    | Classification | NER   | NER                    | Classification    | NER        | Classification |
| KB-BERT            | 0.799          | 0.91  | 0.803                  | 0.635             | 0.630      | 0.183          |
| KB-BERT + Real     | 0.833          | 0.941 | 0.858                  | 0.732             | 0.682      | 0.199          |
| KB-BERT + Filtered | 0.833          | 0.929 | 0.854                  | 0.731             | 0.672      | 0.199          |
| KB-BERT + Pseudo   | 0.832          | 0.941 | 0.861                  | 0.736             | 0.684      | 0.191)         |

# ¿Qué estamos tratando de hacer en Chile?

# **Textos clínicos sintéticos**

- ACHS ha recopilado un corpus clínico de mil millones de palabras.
- La ley de derechos y deberes de los pacientes podría prohibir el uso de datos para entrenar modelos
- Desde el punto de vista académico es muy interesante utilizar texto clínico real para crear textos sintéticos.
- La correctitud de estos textos se puede medir desde el punto de vista clínico y lingüistico



### En colaboración con la Asociación Chilena de Seguridad - ACHS



# Ciencia de Datos en Salud



# Gracias por su atención

jdunstan@uc.cl

o jo\_cientifica

# Si nos alcanza el tiempo... más de texto clínico en español

# Listas de espera en hospitales públicos chilenos

- El 75% de la población Chilena está en el sistema público de salud
- Para tener una primera consulta de especialidad hay que entrar en la LE
- Largos tiempos de espera en consultas no-GES



# The Chilean waiting list corpus

Durante el 2018 conseguimos interconsultas escritas por médicos/as de atención primaria. De las 11 millones de interconsultas se anotaron 10.000





- Annotation guidelines
- Word Embeddings (W2V)



**BRAT** 



# **Artículos publicados**



Jocelyn Dunstan
Universidad Católica de Chile
No verified email - Homepage
Clinical NLP

#### Journals

BMC Public Health (2019)

(2000)

Revista Med. Chile (2021)

ACM Healthcare (2022)

Revista Med. Clinica Las Condes (2022)

BMC Med. Inf. Dec. Mak (2021)

Clinical Dermatology (2021)

<u>Scholar</u> <u>Página del grupo</u> <u>Twitter</u> Linkedin

#### **Conference Proceedings**

EMNLP Clinical Workshop (2020)

**Coling** (2022)

ACL Clinical Workshop (2022)

EMNLP Clinical Workshop (2022)

# Usando PLN ¿Podemos mejorar el manejo de listas de espera?

¿Podemos hacer un uso secundario de los datos? (por ej, para estimar incidencia de enfermedades)

# Codificación automática de enfermedades



#### Automatic Coding at Scale: Design and Deployment of a Nationwide System for Normalizing Referrals in the Chilean Public Healthcare System

#### Fabián Villena

& Department of Computer Sciences
University of Chile
fabian.villena@uchile.cl

#### **Matías Rojas**

Center for Mathematical Modeling
University of Chile
matias.rojas.g@ug.uchile.cl

#### **Felipe Arias**

Center for Mathematical Modeling D
University of Chile
felipe.arias.t@ug.uchile.cl

#### **Jorge Pacheco**

Dept. of Statistics and Health Information
Chilean Ministry of Health
jorge.pacheco@minsal.cl

#### Paulina Vera

Dept. of Statistics and Health Information
Chilean Ministry of Health
paulina.vera@minsal.cl

#### **Jocelyn Dunstan**

Dept. Computer Science & IMC Pontifical Catholic University of Chile jdunstan@uc.cl

https://aclanthology.org/2023.clinicalnlp-1.37/



## Caso de éxito

III. - Tiroidectomía total: Cáncer del tiroides de 6 mm. de eje mayor con los caracteres de un

8260/3 | Morfologia

8010/3 | Morfologia

C73.9 | Topografia

C73.9 | Topografia

C73.9 | Topografia

C73.9 | Topografia

carcinoma diferenciado papilar con esclerosis del estroma con infiltración de cápsula tiroidea .

# Cálculo de Incidencia de Psoriasis



ORIGINAL ARTICLE

The incidence of psoriasis in Chile: an analysis of the national Waiting List Repository

C. Lecaros, J. Dunstan, F. Villena, D.M. Ashcroft, R. Parisi, C.E.M. Griffiths, S. Härtel, J.T. Maul, C. De la Cruz



First published: 29 April 2021 | https://doi.org/10.1111/ced.14713

https://onlinelibrary.wiley.com/doi/abs/10.1111/ced.14713





# **Conclusiones**

- IA tiene variadas aplicaciones en medicina
- PLN apoya la extracción de información clave desde textos y dictado por voz
- PLN en medicina tiene características propias y es necesario crear recursos
   lingüísticos y computacionales para apoyar su uso en países que no hablan inglés
- El avance del área requiere el acceso a datos anonimizados y el apoyo a iniciativas interdisciplinarias