L1-Mine et Petrole

Série de TD transfert thermique

I - Un mur de béton de 15 cm d'épaisseur sépare une pièce à la température $T_i = 20$ °C de l'extérieur où la température est $T_e = 5$ °C.

On donne:
$$h_i = 9.1 \text{ W.m}^{-2}.\text{K}^{-1}$$

 $h_e = 16.7 \text{ W.m}^{-2}.\text{K}^{-1}$
 $\lambda = 1.74 \text{ W.m}^{-1}.\text{K}^{-1}$.

Calculer:

- la résistance thermique totale
- la densité de flux
- les températures interne et externe du mur.
- II Le mur d'un local est constitué de trois matériaux différents :

- du béton d'épaisseur $e_1 = 15$ cm à l'extérieur (conductivité thermique $\lambda_1 = 0.23$ W.m⁻¹.K⁻¹),
- un espace $e_2 = 5 cm$ entre les deux cloisons rempli de polystyrène expansé (conductivité thermique $\lambda_2 = 0{,}035 \text{ W.m}^{-1}.\text{K}^{-1}$),
- des briques d'épaisseur $e_3=5$ cm à l'intérieur (conductivité thermique $\lambda_3=0,47$ W.m⁻¹.K⁻¹).
- 1) On a mesuré en hiver, les températures des parois intérieures θ_i et extérieure θ_e qui étaient $\theta_i = 25$ °C et $\theta_e = -8$ °C.
- a) Donner la relation littérale, puis calculer la résistance thermique du mur pour un mètre carré.
- **b)** Donner la relation littérale, puis calculer le flux thermique dans le mur pour un mètre carré.
- c) Calculer la quantité de chaleur transmise par jour à travers un mêtre carré de mur, pour ces températures. En déduire la quantité de chaleur transmise, par jour, à travers 10 m² de mur.
- d) Tracer la courbe de variation de température $\theta = f(e)$ à travers le mur, de paroi intérieure à paroi extérieure.
- 2) Les résistances thermiques superficielles interne et externe du mur ont respectivement pour valeur : $1/h_i = 0.11 \text{ m}^2.\text{K.W}^{-1}$ et $1/h_e = 0.06 \text{ m}^2.\text{K.W}^{-1}$
 - a) A quels types de transfert thermique ces données se rapportent-elles ?
 - **b)** Calculer les températures ambiantes extérieure θ_{ae} et intérieure θ_{ai} .

Ш

De l'eau chaude à une température $T_{\infty 1}$ circule dans un tube de conductivité thermique λ , de longueur L, de rayon intérieur r_1 et de rayon extérieur r_2 . La surface extérieure du tube est exposée à l'air froid à une température $T_{\infty 2}$. La différence de température entre le fluide chaud et le fluide froid donne naissance à un flux de chaleur q. Les coefficients de transfert de chaleur par convection aux surfaces intérieure et extérieure de la conduite sont respectivement h_1 et h_2 .

- 1. Tracer le schéma électrique équivalent.
- 2. Trouver l'expression du coefficient h_2 en fonction de $(q, L, \lambda, h_1, r_1, r_2, T_{\infty 1}, T_{\infty 2})$.

Un cylindre homogène de diamètre D, de longueur L et de conductivité λ est plongé dans un fluide de température T_{∞} et de coefficient de convection h. L'une de ces extrémités (x=L) est isolée et l'autre(x=0) est maintenue à une température fixe $T_0 > T_{\infty}$.

- Lorsque la conduction est monodimensionnelle et stationnaire, établissez l'expression de la distribution de la température au sein du cylindre.
- 2. Déduisez l'expression du flux de chaleur échangé avec le fluide.