

Internet Entrepreneurship Competition

面向动态互联网环境的持续记忆系统

A continuous identification system for a dynamic Internet environment

01 项目背景

Entrepreneurship Plan

行业背景及市场现状

机器学习一直的"痛"

The current state of the market

灾难性遗忘是指在新的数据集上训练模型,会遗忘 掉旧数据上学习到的知识,在旧数据上测试会发生很大 的掉点。

灾难性遗忘

数据丢失

行业背景及市场现状

难以解决的问题

The current state of the market

源于此,"灾难性遗忘"的存在,**所有人工智能**在一些场景中的应用都存在局限性。

谷歌大脑团队, Siri或小爱这样的人工智能助手都面临着"灾难性遗忘", 是人工智能深度学习中一个普遍且严重的问题。

局限性

普遍问题

Deep Learning

02

What should we do

改进计划 Entrepreneurship Plan

参考相关论文文献,在此基础上通过学习的深度学习、NER等相关基础知识,以及Pytorch、Zotero、GitLab、Hugging face等软件和平台的学习实践进行模型重构和数据优化。

论文学习

学习《Learning "O" Helps for Learning More: Handling the Unlabeled Entity Problem。 for Class-incremental NER》,了解NER技术原理,梳理技术路线并复现细节。

模型训练

训练uie_base_pytorch模型进行命名实体识别任务的训练,利用教师-学生模型,通过知识蒸馏的方法进行类增量学习,减轻灾难性遗忘问题。

对抗性学习

知识蒸馏

原型学习

03 研发进程

技术实现

模型重构

使用uie_nase_pytorch模型代替BERT-CR模型作为预训练模型,并使用对抗性匹配方法增强模型的抗干扰以及对数据进行扩充的能力。

数据优化

使用LSTM模型合成了较为真实的数据,训练效果有一定提升 (F1高了0.01-0.05)。我们使用 合成的数据集,不存在人为针对 数据集的调整,结果更优秀,更 加有广泛的适用性。

目标用户

所有人工智能用户

- •50% 到 60% 的组织正在使用人工智能。
- •全球人工智能市场价值136.55亿美元。
- •人工智能自动化可以取代300亿现有的人类工作岗位。
- •到 3.7 年底, 生成式 AI 软件的价值预计将达到 2023 亿美元。
- •到2030年,全球人工智能市场预计将达到1.81万亿美元。

没有目标, 只有所有。

项目成果

解决效果

经过对uie_nase_pytorch模型的训练,以及代入LSTM的数据优化,基于类增量学习方法,我们对于灾难性遗忘问题的解决效果达到了70%以上,达到项目预期效果。并且在当前深度学习领域中,对于该问题的解决效果,已经比肩世界领先成果。

商业价值

版权收费

打响ai革新的<u>第一枪</u>,通过售卖版权创造难以预估的价值。

社会便利

通过提高ai记忆时长,完善其功能,可将其投入到新的领域, 开展一片<u>新的版图</u>。(教育行业,护工行业,自动驾驶)

04 项目团队

Project team

成员介绍

项目负责人: 陈兴森

集成电路学部本科生,微电子科学与工程专业,曾获国家大学生数学建模竞赛一等奖,主持一项国家级大创和一项领飞科创项目,掌握Pytorch深度学习框架、Linux和FPGA,曾参与基于Linux的Arduino开发培训。

成员介绍

李天功

2022级通信工程专业本 科生,曾获数模校赛特 等奖,美赛M,大创国家 级项目,软件著作权

胡桐洁

人文学院本科生 擅长论 文写作与文案编辑 负责商业计划书撰写

景士玲

计算机科学与技术学院本科生,负责运用大模型缓解NER灾难性遗忘问题技术开发项目负责人.

李珂

计算机科学与技术学院 本科生,负责few-shot 的论文研读和实验复现 测试。

成员介绍

谭楷睿

计算机科学与技术学院本科生,负责算法分析,编码实现,熟练应用bert,uie等深度学习模型。

王越洋

计算机科学与技术学院本科生,负责模型框架搭建及调整,熟悉使用Pytorch框架。

相博文

空间科学与技术学院 钱学森班本科生,负 责硬件设计及文本编 撰,多项电子比赛获 奖。

张继开

计算机科学与技术 学院本科生,负责 记录和整理技术路 线和思路。

张之显赫

计算机科学与技术学院本科生,,负责资料与文献的搜集与整理和书面结果的输出。

指导老师

孔婉秋

以第一作者身份在 Remote Sensing、Information Sciences 等 SCI 期刊上发表 学术论文 7 篇

感谢观看

从根本解决灾难性遗忘问题,搭建专属于ai的"永记机"

汇报人:

