

Matemática Discreta Solución Práctico 6

Licenciatura en Informática Ingeniería en Informática

Se proponen soluciones de ejemplo para algunos ejercicios del práctico. Las soluciones presentadas no son las únicas posibles. Pueden existir otras soluciones igualmente correctas.

Ejercicio 1

Considere el tipo de similaridad < 1,2 ; 1 ; 2 > con símbolos de relación P (unario) y R (binario), símbolo de función f (unario) y símbolos de constante c_1 , c_2 . Construya derivaciones que demuestren las siguientes consecuencias sintácticas de lógica de predicados. Justifique cuando corresponda que las restricciones sobre las variables se cumplen al aplicar las reglas:

a)
$$P(c_1)$$
, $\forall x (P(x) \rightarrow P(f(x))) \mid P(f(c_1))$

Solución:

b) $\forall x \forall y R(x,y) \vdash R(f(c_1), f(c_2))$

Solución:

$$\frac{\forall x \forall y R(\mathbf{x}, y)}{\forall y R(\mathbf{f}(\mathbf{c}_1), y)} \forall E(*)$$

$$\frac{\forall x \forall y R(\mathbf{x}, y)}{\forall y R(\mathbf{f}(\mathbf{c}_1), \mathbf{f}(\mathbf{c}_2))} \forall E(**)$$

- (*) $f(c_1)$ es libre para x en $\forall y \ R(x,y)$ por ser c_1 una constante
- (*) $f(C_2)$ es libre para y en $R(f(C_1),y)$ por ser C_2 una constante
- c) $P(c_1)$, $P(c_2) \vdash \exists x \exists y (P(x) \land P(y))$

Solución:

$$\begin{split} \frac{P(\textbf{c}_1) & P(\textbf{c}_2)}{P(\textbf{c}_1) \wedge P(\textbf{c}_2)} & \wedge I \\ \\ \overline{\frac{\exists y (P(\textbf{c}_1) \wedge P(y))}{\exists x \, \exists y \, (P(x) \wedge P(y))}} & \exists \, I \, (**) \end{split}$$

- (*) C_2 es libre para y en $(P(C_1) \wedge P(y))$ por ser una constante
- (*) C1 es libre para x en $\exists y (P(x) \land P(y))$ por ser una constante
- d) $\forall x R(x, c_1), \forall x (R(x, c_1) \rightarrow P(x)) \models \forall y P(f(y))$

Solución: (próxima página)

$$\frac{R(\mathbf{f}(\mathbf{y}), c_1)}{R(\mathbf{f}(\mathbf{y}), c_1)} \forall E (*) \qquad \frac{\forall x (R(\mathbf{x}, c_1) \to P(\mathbf{x}))}{R(\mathbf{f}(\mathbf{y}), c_1) \to P(\mathbf{f}(\mathbf{y}))} \forall E (**)$$

$$\frac{P(f(y))}{\forall y P(f(y))} \forall I (***)$$

- (*) f (y) es libre para x en R(x,c₁) porque luego de la sustitución, y no queda ligada
- (**) f(y) es libre para x en $R(x,c_1) \rightarrow P(x)$ porque luego de la sustitución, y no queda ligada
- (***) $y \notin FV(\forall x R(x,c_1))$ porque no ocurre en ella. $y \notin FV(\forall x R(x,c_1) \rightarrow P(x))$

porque no ocurre en ella.

e) $\forall x \forall y (R(x,y) \rightarrow \neg R(y,x)) \mid \neg \forall x R(x,x) \rightarrow \exists y \neg R(y,y)$

Solución:

$$\forall E (*) \frac{ (1) \qquad \forall x R(x,x)}{R(x,x)} \qquad \frac{ \forall x \forall y (R(x,y) \to \neg R(y,x))}{ \forall y (R(x,y) \to \neg R(y,x))} \quad \forall E (*) \\ \hline \frac{R(x,x)}{R(x,x)} \qquad \frac{R(x,x)}{R(x,x)} \rightarrow E \\ \hline \frac{R(x,x)}{\exists y \neg R(y,y)} \qquad \frac{\exists I (***)}{\exists y \neg R(y,y)} \rightarrow I (1) \\ \hline \forall x R(x,x) \to \exists y \neg R(y,y)$$

- (*) x siempre es libre para x en cualquier fórmula
- (**) \mathbf{x} es libre para y en $R(x,y) \to \neg R(y,x)$ porque no hay cuantificadores que la liguen tras la sustitución
- (***) \mathbf{x} es libre para y en $\neg R(y,y)$ porque no hay cuantificadores que la liguen tras la sustitución
- f) $\forall x (P(x) \rightarrow \neg R(x,x)) \vdash \exists x R(x,x) \rightarrow \neg \forall x P(x)$

Solución:

Ejercicio 2

Sean α , $\beta \in FORM$ fórmulas cualesquiera. Construya derivaciones que demuestren las siguientes consecuencias sintácticas de lógica de predicados. Justifique cuando corresponda que las restricciones sobre las variables se cumplen al aplicar las reglas:

a)
$$\forall x (\alpha \rightarrow \beta), \exists x \alpha \vdash \exists x \beta$$

- (*) x siempre es libre para x
- porque está ligada al ∀. $x \notin FV(\exists x \beta)$ porque está

b)
$$\forall x \alpha \wedge \exists x \beta \vdash \exists x (\alpha \wedge \beta)$$

Solución:

$$\frac{\forall x \alpha \wedge \exists x \beta}{} \wedge E$$

$$\frac{\forall x \alpha}{\alpha} \forall E (*) \qquad (1)$$

$$\frac{\alpha}{} \wedge B \qquad \wedge I$$

$$\frac{\forall x \alpha \wedge \exists x \beta}{} \wedge E \qquad \frac{\alpha \wedge \beta}{} \exists I (*)$$

$$\frac{\exists x \beta}{} \exists x (\alpha \wedge \beta)$$

$$\exists x (\alpha \wedge \beta)$$

- (*) x siempre es libre para x en cualquier fórmula
- (**) $x \notin FV(\forall x \alpha \land \exists x \beta)$ porque está ligada al \forall o al \exists respectivamente. $x \notin FV(\exists x (\alpha \land \beta))$ porque está ligada al \exists .
- c) $\forall x (\alpha \leftrightarrow \beta) \vdash \forall x \alpha \leftrightarrow \forall x \beta$

Solución:

$$\forall E (*) \frac{\forall x (\alpha \leftrightarrow \beta)}{\alpha \leftrightarrow \beta} \qquad \frac{\forall x \beta}{\beta} \forall E (*) \qquad \frac{\forall x (\alpha \leftrightarrow \beta)}{\alpha \leftrightarrow \beta} \forall E (*) \frac{\forall x \alpha}{\alpha} \forall E (*)$$

$$\frac{\alpha}{\forall x \alpha} \forall I (**) \qquad \frac{\forall x (\alpha \leftrightarrow \beta)}{\alpha \leftrightarrow \beta} \forall E (*) \frac{\forall x \alpha}{\alpha} \forall E (*)$$

$$\forall I (***) \frac{\beta}{\forall x \beta} \leftrightarrow I (1)$$

$$\forall X \alpha \leftrightarrow \forall X \beta$$

- (*) x siempre es libre para x en cualquier fórmula
- (**) $x \notin FV(\forall x \beta)$ porque está ligada al \forall . $x \notin FV(\forall x(\alpha \leftrightarrow \beta))$ porque está ligada al \forall .

(***) $x \notin FV(\forall x \alpha)$ porque está ligada al \forall . $x \notin FV(\forall x(\alpha \leftrightarrow \beta))$ porque está ligada al \forall .

d)
$$\exists x (\neg \beta \rightarrow \alpha), \forall x (\alpha \rightarrow \beta) \vdash \exists x \beta$$

Solución:

$$\frac{\beta}{\alpha} \xrightarrow{(2)} E \xrightarrow{\forall x (\alpha \to \beta)} \forall E (*)$$

$$\frac{\beta}{\beta} \xrightarrow{\beta} E \xrightarrow{(1)} E$$

$$\frac{\beta}{\beta} \xrightarrow{\beta} E \xrightarrow{\beta} E$$

$$\frac{\beta}{\beta} E$$

$$\frac{\beta}{\beta} E \xrightarrow{\beta} E$$

$$\frac{\beta}{\beta} E$$

$$\frac{\beta}{\beta} E \xrightarrow{\beta} E$$

$$\frac{\beta}{\beta} E$$

- (*) x siempre es libre para x en cualquier fórmula
- (**) $x \notin FV (\forall x (\alpha \rightarrow \beta))$ porque está ligada al \forall $x \notin FV (\exists x \beta)$ porque está ligada al \exists

e) $\forall x \alpha \vee \forall x \beta \vdash \forall x (\alpha \vee \beta)$

Solución:

$$\frac{\frac{(1)}{2\pi\alpha}}{\frac{\alpha}{\alpha\vee\beta}} \forall E(*) \qquad \frac{\frac{(1)}{2\pi\beta}}{\frac{\beta}{\alpha\vee\beta}} \forall E(*)$$

$$\frac{\alpha\vee\beta}{\forall x(\alpha\vee\beta)} \forall I(**)$$

- (*) x siempre es libre para x en cualquier fórmula
 - (**) $x \notin FV(\forall x \alpha \vee \forall x \beta)$ porque está ligada a alguno de los dos \forall .

Ejercicio 3

Sean α , $\beta \in$ FORM fórmulas cualesquiera. Construya derivaciones que demuestren los siguientes teoremas de lógica de predicados. Justifique cuando corresponda que las restricciones sobre las variables se cumplen al aplicar las reglas:

a)
$$\vdash \forall x(\alpha \land \beta) \rightarrow \forall x \alpha \land \forall x \beta$$

Solución:

$$\forall E (*) \frac{ \frac{\forall x (\alpha \wedge \beta)}{}{ \frac{\forall x (\alpha \wedge \beta)}{}{ \alpha \wedge \beta}} \qquad \forall E (*) \frac{ \frac{\forall x (\alpha \wedge \beta)}{}{ \frac{\forall x (\alpha \wedge \beta)}{}{ \beta}} \qquad (*)$$

$$\forall I (**) \frac{ \alpha \wedge \beta}{ \forall x \alpha} \qquad \forall I (**) \frac{ \beta}{ \forall x \beta} \qquad \land I$$

$$\frac{ \forall x \alpha \wedge \forall x \beta}{ \forall x (\alpha \wedge \beta) \rightarrow \forall x \alpha \wedge \forall x \beta} \rightarrow I (1)$$

- (*) x siempre es libre para x en cualquier fórmula
- (**) $x \notin FV(\forall x (\alpha \land \beta))$ porque está ligada al \forall .

b)
$$\vdash \exists x (\alpha \land \beta) \rightarrow \exists x \alpha \land \exists x \beta$$

Solución:

$$\begin{array}{c}
(1) & (1) \\
\hline
\alpha & \beta \\
\hline
\alpha & \exists I (*) \\
\hline
\frac{\beta}{\exists x \beta} & \exists I (*) \\
\hline
\frac{\beta}{\exists x \beta} & \exists I (*) \\
\hline
\frac{\beta}{\exists x \beta} & \land I \\
\hline
\frac{\beta}{\exists x (\alpha \land \beta)} & \exists \beta \in (**) (1) \\
\hline
\frac{\beta}{\exists x (\alpha \land \beta)} & \rightarrow \exists x \alpha \land \exists x \beta \\
\hline
\frac{\beta}{\exists x (\alpha \land \beta)} & \rightarrow I (2)
\end{array}$$

- (*) x siempre es libre para x en cualquier fórmula
- (**) $x \notin FV (\exists x \alpha \land \exists x \beta)$ porque está ligada a alguno de los dos \exists

c) |- $\forall x \forall y \alpha \leftrightarrow \forall y \forall x \alpha$

Solución:

- (*) x siempre es libre para x en cualquier fórmula
- (**) y siempre es libre para y en cualquier fórmula
- $\begin{array}{ll} (***) & x \not\in FV \ (\forall x \forall y \ \alpha) \\ & \text{por estar ligada al 1}^{\circ} \ \forall. \end{array}$
- $\begin{array}{cc} (****) & y \not\in FV \ (\forall x \forall y \ \alpha) \\ & \text{por estar ligada al } 2^{\text{o}} \ \forall. \end{array}$
- (*****) $y \notin FV (\forall y \forall x \alpha)$ por estar ligada al 1° \forall .
- (*****) $x \notin FV (\forall y \forall x \alpha)$ por estar ligada al 2° \forall .

d) $\vdash \neg \exists x \alpha \leftrightarrow \forall x \neg \alpha$

Solución:

- (*) x siempre es libre para x en cualquier fórmula
- $\begin{array}{ll} (**) & x \not\in FV \ (\forall x \neg \alpha) \ porque \\ & \text{est\'a ligada al} \ \forall \\ & x \not\in FV \ (\bot) \ porque \ \bot \ no \\ & \text{posee variables} \end{array}$
- (***) $x \notin FV (\neg \exists x \alpha)$ porque está ligada al \exists

e)
$$\vdash \exists x (\alpha \rightarrow \beta) \leftrightarrow \exists x (\neg \beta \rightarrow \neg \alpha)$$

Solución:

Llamaremos **D1** a la siguiente derivación:

Llamaremos **D2** a la siguiente derivación:

Construimos la prueba final a partir de las derivaciones D1 y D2:

Ejercicio 4

Un conjunto $\Gamma \subset \mathsf{SENT}$ es *inconsistente* si y sólo si $\Gamma \vdash \bot$. Al igual que en PROP, para probar la inconsistencia de Γ basta con dar una derivación que concluya \bot partiendo de hipótesis en Γ . En cambio, para probar la consistencia de Γ es necesario usar el Teorema de Completitud.

Utilizando el Teorema de Completitud, demuestre la Condición necesaria y suficiente de consistencia para la Lógica de Predicados, cuyo enunciado es el siguiente:

Dado $\Gamma \subset \mathsf{SENT}$, Γ es consistente \Leftrightarrow Existe una estructura \mathcal{M} tal que $\mathcal{M} \models \Gamma$.

Solución:

 (\Longrightarrow)

Hipótesis: Γ es consistente.

Tesis: Existe una estructura \mathcal{M} tal que $\mathcal{M} \models \Gamma$.

Demostración: Por hipótesis, sabemos que Γ es consistente. Entonces, por definición de consistencia, tenemos que $\Gamma \vdash \bot$. Aplicando el teorema de completitud, concluimos que $\Gamma \not \models \bot$. Luego, por definición de consecuencia lógica, existe una estructura $\mathcal M$ tal que $\mathcal M \models \Gamma$ y $\mathcal{M} \not\models \bot$. En particular, nos interesa que $\mathcal{M} \models \Gamma$ (LQQD).

(⇐)

Hipótesis: Existe una estructura \mathcal{M} tal que $\mathcal{M} \models \Gamma$.

Tesis: Γ es consistente.

Demostración: Por absurdo supongamos que Γ es inconsistente. Entonces, por definición de inconsistencia se cumple que $\Gamma \vdash \bot$. Luego, por teorema de completitud, $\Gamma \models \bot$. Por definición de consecuencia lógica, existe una estructura \mathcal{M} tal que $\mathcal{M} \models \Gamma$ y $\mathcal{M} \models \bot$. Esto es absurdo, pues toda estructura \mathcal{M} cumple que $v^{\mathcal{M}}(\bot) = 0$. Luego, Γ es consistente (LQQD).

Considere el tipo de similaridad < 1; -; 1 > con un símbolo de relación P (unario) y símbolo de constante c₁. Determine si cada uno de los siguientes conjuntos es consistente o inconsistente, justificando apropiadamente su respuesta en cada caso

$$\begin{split} \Gamma_1 = \{ \ \forall x \ P(x), \ \exists x \neg P(x) \ \} \\ \Gamma_2 = \{ \ \forall x \ P(x), \ \neg \exists x \ P(x) \ \} \\ \Gamma_4 = \{ \ \forall x \neg P(x), \ \neg \exists x \ P(x) \ \} \end{split}$$

Solución:

El conjunto $\Gamma_1 = \{ \forall x \ P(x), \ \exists x \neg P(x) \}$ es *inconsistente*. Lo probamos mediante una derivación del absurdo a partir de las hipótesis del conjunto:

$$\frac{\forall x \ P(x)}{P(x)} \forall E \ (*) \qquad (*) x \ siempre es libre para x en cualquier fórmula$$

$$\frac{\exists x \neg P(x)}{P(x)} \qquad \frac{\bot}{\exists E \ (**) \ (1)} \qquad (**) x \notin FV \ (\forall x \ P(x)) \text{ por estar ligada al } \forall x \notin FV \ (\bot) \text{ porque } \bot \text{ no tiene variable}$$

- (*) x siempre es libre para x
- $x \notin FV (\bot)$ porque \bot no tiene variables

El conjunto $\Gamma_2 = \{ \ \forall x \ P(x), \ \neg \exists x \ P(x) \ \}$ es *inconsistente*. Lo probamos mediante una derivación del absurdo a partir de las hipótesis del conjunto:

$$\frac{P(x)}{\exists x \ P(x)} \exists I \ (*) \qquad \neg \exists x \ P(x) \qquad \neg E$$

$$\frac{\forall x \ P(x)}{P(x)} \forall E \ (*) \qquad \frac{\bot}{\neg P(x)} \neg E$$

$$\frac{\neg P(x)}{\bot} \neg E$$
(*) x siempre es libre para x en cualquier fórmula

El conjunto $\Gamma_3 = \{ \neg \forall x P(x), \exists x P(x) \}$ es *consistente*. Lo probamos aplicando la CN y S de consistencia de la parte anterior:

Sea $\mathcal{M}=$ < N; Par; -; 3 > siendo N el universo de los números naturales y Par la relación unaria $\{x\in N\mid x\bmod 2=0\}$. Probaremos que $\mathcal{M}\models\neg\forall x\,P(x)$ y que $\mathcal{M}\models\exists x\,P(x)$. Luego, por la CN y S de consistencia, se tendrá que Γ_3 es consistente.

$$\begin{split} \mathcal{M} &\models \forall x \, P(x) \\ v^{\mathcal{M}} \, (\forall x \, P(x)) = 1 \\ \text{Para todo } a \in N \text{ se cumple que } v^{\mathcal{M}} \, (P(a)) = 1 \\ \text{Para todo } a \in N \text{ se cumple que a es par.} \end{split}$$

Esto es <u>falso</u> en los naturales ya que existe al menos un natural que <u>no</u> es par (por ejemplo, el 3). Por lo tanto, $v^{\mathcal{M}}(\forall x P(x)) = 0$ y luego (por definición de $v^{\mathcal{M}}$, caso \neg), $v^{\mathcal{M}}(\neg \forall x P(x)) = 1$.

$$\mathcal{M} \models \exists x \, P(x) \qquad \Leftrightarrow \qquad \text{(por def. de modelo)}$$

$$v^{\mathcal{M}} \, (\exists x \, P(x)) = 1 \qquad \Leftrightarrow \qquad \text{(por definición de } v^{\mathcal{M}}, \, \text{caso } \exists)$$

$$\text{Existe algún } a \in N \text{ tal que } v^{\mathcal{M}} \, (P(a)) = 1 \qquad \Leftrightarrow \qquad \text{(por definición de } v^{\mathcal{M}}, \, \text{caso } 2)$$

$$\text{Existe algún } a \in N \text{ tal que a es par.}$$

Esto es <u>cierto</u> en los naturales ya que existe al menos un natural par (por ejemplo, el 2). Por lo tanto, $v^{\mathcal{M}}(\exists x P(x)) = 1$.

El conjunto $\Gamma_4 = \{ \neg \forall x P(x), \exists x \neg P(x) \}$ es *consistente*. Lo probamos aplicando la CN y S de consistencia de la parte anterior:

Sea $\mathcal M$ la misma estructura usada para probar la consistencia de Γ_3 . Ya hemos probado que $\mathcal M \models \neg \forall x \, P(x)$. Probaremos ahora que $\mathcal M \models \exists x \neg P(x)$. Luego, por la CN y S de consistencia, se tendrá que Γ_4 es consistente.

$$\begin{split} \mathcal{M} &\models \exists x \, \neg \, P(x) \\ v^{\mathcal{M}} \, (\exists x \, \neg \, P(x)) = 1 \\ &\Leftrightarrow \qquad \text{(por def. de modelo)} \\ &\Leftrightarrow \qquad \text{(por definición de $v^{\mathcal{M}}$, caso \exists)} \\ &\text{Existe algún $a \in N tal que $v^{\mathcal{M}}$ $(\neg \, P(a)) = 1$} \\ &\Leftrightarrow \qquad \text{(por definición de $v^{\mathcal{M}}$, caso \neg)} \\ &\text{Existe algún $a \in N tal que $v^{\mathcal{M}}$ $(P(a)) = 0$} \\ &\Leftrightarrow \qquad \text{(por definición de $v^{\mathcal{M}}$, caso 2)} \\ &\text{Existe algún $a \in N tal que a $\underline{\textbf{no}}$ es par.} \end{split}$$

Esto es <u>cierto</u> en los naturales ya que existe al menos un natural que <u>no</u> es par (por ejemplo, el 3). Por lo tanto, $v^{\mathcal{M}}(\exists x \neg P(x)) = 1$.