3/18/2019

2,10,100,1
Definition: An open set 6 is simply connected it 6 is connected
Definition: An open set 6 is simply connected if 6 is connected and every curve in 6 is homotopic to zero.
Cauchy's theorem (4th version) I 6 is simply connected then
\$ \ \ \ \ \ \ \ \ \ \ \ \ \
analytic function of
Example: Every star-shaped domain is simply connected.
Corollary: If 6 is simply connected and f: 6-> C analytic,
in B
then I has a primitive in G. in G.
proof: Fix a & & & let 8, 82 rectifiable curves in 6
// /2
from a to 266. Then
0= { } - { }
S O Y O Y
07-82 01 02
by 4th lauchy theorem
) afour.
and from 6 to 2 class V
gues from a to 2 along 1, t back along - 1/2.
9 back along -12.

Let F(z) = SS Claim: F = primitive8 grown a for f f. 1 266 8 P>O 3 B(20, P) CG, let y Be a path from For $z \in B(z_0, r)$, $\zeta_z = \zeta + [z_0, z_1]$, i.e. $\zeta_z = \zeta_z + [z_0, z_1]$, i.e. $\zeta_z = \zeta_z$ It follows that F(t)-F(to) - 1 } {2-20 2-20 } {[20,2]} => F(zo)= f(to) by the proof of
Morera's theorem. It is natural to explore at this point, whether one can define a reasonable branch of log ((2) Corollary: Let 6 be simply connected and let 1:6-7€ analytic > ((2) ≠ 0 for any 2 € 6. Then I analytic function $g: G \rightarrow C \rightarrow g(z) = \exp g(z)$ If $z_0 \in G$ and $e^{w_0} = g(z_0)$ we may choose $g \rightarrow g(z_0) = w_0$ Proof: Since $g \neq 0$, g is analytic on g, so if must have a primitive g_1 if $h(t) = \exp g_1(t)$, f is analytic g never vanishes.

It follows that I is analytic up derivative R(t) S(t) - R(t) S(t) Since k = g, k = fk = > kf - fk = 0 = > f/h is a constant.In other words, $f(z) = c \exp g_1(z) = \exp(g_1(z) + c')$ Let $g(z) = g_1(z) + c' + 2\pi i K$ for an appropriate K $g(z) = g_1(z) + c' + 2\pi i K$ for an appropriate K $g(z) = g_1(z) + c' + 2\pi i K$ for an appropriate K $g(z) = g_1(z) + c' + 2\pi i K$ for an appropriate K $g(z) = g_1(z) + c' + 2\pi i K$ for an appropriate K $g(z) = g_1(z) + c' + 2\pi i K$ for an appropriate K $g(z) = g_1(z) + c' + 2\pi i K$ for an appropriate K $g(z) = g_1(z) + c' + 2\pi i K$ for an appropriate K $g(z) = g_1(z) + c' + 2\pi i K$ for an appropriate KDefinition: If 6 is an open set, then 8 is homologous to 3eno, $\chi \approx 0$ if $n(\xi, w) = 0$ if $w \in C - 6$.

We proved in the previous fecture that $\chi \sim 0 = 7$ $\chi \approx 0$. Our next frontier is counting seroes of analytic functions. This is one of the most natural applications of the laucky Integral Theorem. Wrife $f(t) = (2-q_1)(2-q_2)_{11}(2-q_m)g(t), g(2) \neq 0$ $g(t) = \frac{1}{2-a_1} + \frac{1}{2-a_2} + \frac{1}{2-a_m} + \frac{g(t)}{g(t)}$ $\frac{2}{2} \neq a_1, a_2, \dots, a_m$

4 Theorem: 6 region; l'analytic on 6

w/ zeroes a, a, ..., am (repeated according) zeroes a, a, ..., am (repeated according to

Y is a closed rectifiable curve in which does

pass through any point ax and if $\chi \approx 0$ than $\frac{((\xi))}{(t)} dt = \sum_{k=1}^{\infty} n(\xi, G_{K.})$ 1: If $g(z) \neq 0$ for any $z \in G$, then $g'(z) \quad \text{analy fic in } G; \text{ since } I \approx 0,$ $G(z) \quad \text{lauchy's theorem yills} \quad S_{\frac{1}{4}}$ So we are done by the formula on the previous page. loro llary: Let f, G : S : B : as above except that $f(z) = \alpha \quad at \quad a_1, a_2, \dots, a_m \quad Then$ $\frac{1}{2\pi i} \int_{X} \frac{f(\xi)}{f(\xi)-\lambda} d\xi = \sum_{K=1}^{m} n(\xi) G_{K}$ Example: $\int \frac{(2z+1)}{z^2+z^2+1} dz = 4\pi i$

6 Open mapping theorem: Let 6 be a region and suppose that f is non-constant analytic function on 60 Then for any open set Uin 6, f(U) is open. Proof: Note that the previous theorem says, in particular, that 3 € >0 \$ 8 >0 > B(a, E) < U + $(B(a, \epsilon)) \supset B(a, \delta).$ In other words, we must show that for mack as a, 3 8 20 > B(a,8) c g(u), where \(\alpha = g(a). Now just use the observation above to see that 3 e > 0, 5 > 0 w/ $B(a,\delta) \subset \{(B(a,\epsilon)) \mid u \mid B(a,\epsilon) \subset C.$ Corollary: Suppose that $f:G \rightarrow \mathbb{C}$ is I-1, analytic and f(G) = S2. Then $f:S2 \rightarrow \mathbb{C}$ is analytic f(G) = f(G) and f(G) = f(G). Proof: By the open mapping theorem, f is continuous Since == ((s/2)), the result follows by alculus.