1. 设[x]*= $a_0.a_1a_2...a_6$,其中 a_i 取 0 或 1,为补码的二进制数,若要x>-0.5,求 $a_0,a_1,a_2...a_6$ 的取值

2. 试列式子利用 IEEE754 标准格式表示 32 位浮点数(1)27/64,(2)-27/64

2.
$$\hat{\mathbf{H}}_{1}$$
 0 $\frac{1}{14}$ = (0.4218]5), = (0.011011), = (1.101) \times e^{-1}

$$\hat{\mathbf{H}}_{2} = \mathbf{E} = \mathbf{E} + 12 = (125)_{10} = (0.011011)_{2}$$

$$\hat{\mathbf{H}}_{3} = \mathbf{E} = \mathbf{E} + 12 = (125)_{10} = (0.011011)_{2}$$

$$\hat{\mathbf{H}}_{3} = 0 = 0$$

$$\hat{\mathbf{H}}_{4} = 0 = 0 = 0$$

$$\hat{\mathbf{H}}_{4} = 0 = 0 = 0$$

$$\hat{\mathbf{H}}_{4} = 0 = 0 = 0$$

$$\hat{\mathbf{H}}_{5} = (-0.4218]5)_{10} = (-0.011011)_{2} = (-1.1011 \times e^{-2})_{2}$$

$$\hat{\mathbf{H}}_{5} = (-0.4218]5)_{10} = (0.011011)_{2}$$

$$\hat{\mathbf{H}}_{5} = (-0.4218]5)_{10} = (0.011011)_{2}$$

$$\hat{\mathbf{H}}_{5} = (-0.4218]5)_{10} = (0.011011)_{2}$$

- 3. 己知 x 和 y,用变形(扩展)补码计算 x+y,同时指出结果是否溢出。
 - (1) x=0.11011 y=0.00011
 - (2) x=0.11011 y=-0.10101
 - (3) x=-0.10110 y=-0.00001

- 4. 己知 x 和 y, 用变形(扩展)补码计算 x-y, 同时指出结果是否溢出。
 - (1) x=0.11011 y=-0.11111
 - (2) x=0.10111 y=0.11011
 - (3) x=0.11011 y=-0.10011

- 5. 用原码一位乘法、补码一位乘法计算 X*Y
 - (1) x=0.11011 y=-0.11111
 - (2) x=-0.1111 y=-0.11011

批注[宝贝1]: (2) 题完全没有做, 扣分-2, 正确如下:

批注[宝贝2]: (1) 中没有按原码一位乘法计算, (2) 中那个补码计算出错了吧,结果也不对,扣分-1,正确如下:

(1)

原码一位乘法:

部分积 乘数 判断位

00.00000

+00.11011 0.11111

00.11011

00.01101 1 0.1111

+00.11011

01.01000 1

00.10100 01 0.111

+00.11011

01.01111 01

00.10111 101 0.11

+00.11011

01.10010 101

00.11001 0101 0.1

+00.11011

01.10100 0101

00.11010 00101

X*y=0.1101000101

补码一位乘法:

[x]?+=00.11011[y]?+=11.00001,[-x]?+=11.00101

0

部分积 乘数 判断位

00.00000	00001		
+00.11011		y5=1,+[x]补	
00.11011			
00.01101	1 0000	右移一位	
+00.00000		y4=0,+0	
00.01101			
00.00110	11 000	右移一位	
+00.00000		y3=0,+0	
00.00110			
00.00011	011 00	右移一位	
+00.00000		y2=0,+0	
00.00011			
00.00001	1011 0	右移一位	
+00.00000	_	y1=0,+0	
00.00001	_		
00.00000	11011	右移一位	
+11.00101		y0=1,+[-x]补修正	
11.00101	11011		
结果是			
[x*y]补=1.0010111011			
x*y=-0.1101000101			
(2)			
原码一位乘法	:		
部分积	乘数	判断位	

00.0000 +00.11110 0.11011 00.11110 00.01111 0 0.1101 +00.11110 01.01101 0 00.10110 10 0.110 +00.00000 00.10110 10 00.01011 010 0.11 +00.11110 01.01001 010 00.10100 1010 0.1 +00.11110 01.10010 1010 00.11001 01010 0 X*y=0.1100101010

补码一位乘法:

[x]补=11.00010 [y]补=11.00101,[-x]补=00.11110			
部分积	乘数	判断位	
00.00000	00101		
+11.00010		y5=1,+[x]补	
11.00010			
11.10001	0 0010	右移一位	
+00.00000		y4=0,+0	
11.10001			
11.11000	10 001	右移一位	
+11.00010		y3=1,+[x]补	
10.11010			
11.01101	010 00	右移一位	
+00.00000		y2=0,+0	
11.01101			
11.10110	1010 0	右移一位	
+00.00000		y1=0,+0	
11.10110			
11.11011	01010	右移一位	
+00.11110		y0=1,+[-x]补	
00.11001	01010		
x*y=0.11001010	010		

- (1) x=0.11000 y=-0.11111
- (2) x=-0.01011 y=0.11001

^{6.} 用原码恢复余数法和不恢复余数法计算 x÷y

(D) 解: 11)原母恢复余教法
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
01,000 0
R=0000011 >0
20000110
$\frac{7}{100000000000000000000000000000000000$
10000110 加速 0001100
$\frac{+11.00001}{R_{s}=11.21101.50}$
+ 00 · 11 1 V

批注[宝贝3]:画圈处抄错了吧,后面全错,扣分-1,然后(1)题漏做了不恢复余数法部分,(2)题漏做了恢复余数法部分,扣分-2,正确结果如下:

(1) 用原码恢复余数法:

+[-|y|]补 11.00001

11.01101

+00.11111 00.01100

00.11000

被除数/余数	上商位	判断及录商
00.11000	1. h) h.	/ 1時/久不同
+[- y]补 11.00001		减Y进行比较
11.11001	0	余数 R0<0,商=0
+00.11111		加y恢复余数
00.11000		左移一位
01.10000	0	
+[- y]补 11.00001		减Y进行比较
00.10001	0.1	余数 R1>0,商上 1
01.00010		左移一位
+[- y]补 11.00001		减Y进行比较
00.00011	0.11	余数 R2>0,商上 1
00.00110		左移一位
+[- y]补 11.00001		减Y进行比较
11.00111	0.110	余数 R3<0,商上 0
+00.11111		加Y恢复余数
00.00110		
00.01100		左移一位

减Y进行比较

加 Y 恢复余数 左移一位

0.1100 余数 R4<0,商上 0 加 Y 恢复余数

[x]原=00.11000, [|y|]原=00.11111,[-|y|]补=11.00001

+[-|y|]补 11.00001减 Y 进行比较11.110010.11000余数 R5<0,商上 0</td>+00.11111加 Y 恢复余数

00.11000

[x/y]=-0.11000,余数 0.0000011000

用原码不恢复余数法

[x]原=00.11000, [|y|]原=00.11111,[-|y|]补=11.00001,

被除数/余数 判断/交叉运算 0.11000 0.00000 +1.00001 +[-|y|]补 1.11001 0 余数为负,商0 1.10010 左移 +[|y|]补 +0.11111 0.10001 01 余数为正,商1 1.00010 左移 +1.00001 +[-|y|]补 0.00011 011 余数为正,商1 0.00110 左移 +1.00001 +[-|y|]补 0110 余数为负,商0 1.00111 0.01110 左移 +[|y|]补 +0.11111

所以 [x/y]=-0.11000, 余数应为 (11)11001+(00)11111=(00)11000=0.11000,实际余数是 0.0000011000

余数为负,商0

左移

+[|y|]补

011000 余数为负,商0

(2) 用原码恢复余数法

1.01101

0.11010

+0.11111

1.11001

[|x|]原=00.01011,[y]原=00.11001,[-y]补=11.00111

01100

被除数/余数 判断及求商 上商位 00.01011 +[-|y|]补 11.00111 减Y进行比较 余数 RO<0,商=0 11.10010 0 加y恢复余数 +00.11001 00.01011 左移一位 00.10110 +[-|y|]补 11.00111 减Y进行比较 11.11101 0.0 余数 R1<0,商=0 +00.11001 加y恢复余数 00.10110 0.0 左移一位 01.01100 减Y进行比较 +[-|y|]补 11.00111

00.10011	0.01	余数 R1>0,商=1
01.00110		左移一位
+[- y]补 11.00111		减Y进行比较
00.01101	0.011	余数 R1>0,商=1
00.11010		左移一位
+[- y]补 11.00111		减Y进行比较
00.00001	0.0111	余数 R1>0,商=1
00.00010		左移一位
+[- y]补 11.00111		减Y进行比较
11.01001	0.01110	余数 R1<0,商=0
+00.11001		加y恢复余数
00.00010		

[x/y]=-0.01110,余数是 0.000000010

用原码不恢复余数法:

[|x|]原=00.01011,[y]原=00.11001,[-y]补=11.00111

被除数/余数	商	判断/交叉运算
0.01011	0.00000	
+1.00111		+[- y]补
1.10010	0	余数为负,商0
1.00100		左移
+0.11001	_	+[y]补
1.11101	00	余数为负,商0
1.11010		左移
+0.11001	_	+[y]补
0.10011	001	余数为正,商1
1.00110		左移
+1.00111		+[- y]补
0.01101	0011	余数为正,商1
0.11010		左移
+1.00111		+[- y]补
0.00001	00111	余数为正,商1
0.00010		左移
+1.00111	_	+[- y]补
1.01001	001110	余数为负,商0

[x/y]=-0.01110,余数 11.01001+00.11001=00.00010,实际余数是 0.0000000010

- 7. 设阶码 3 位, 尾数 6 位, 按浮点运算方法, 完成下列取值的[x+y],[x-y]运算
 - (1) $x=2^{-0.11}\times 0.100101 \text{ y}=2^{-0.10}\times (-0.011110)$
 - (2) $x=2^{-101}\times (-0.100010) y=2^{-100}\times (0.010110)$

```
阶对采用双符号位,
           尾数采用单符号位
7 \frac{1}{\sqrt{100}} 10 \sqrt{\frac{2}{3}} = \frac{2^{-0}}{2} \times (\frac{-0.0111}{2}) = 2^{-011} \times (\frac{-0.111100}{2})
                 (x) 3 = 11 101, 0. 100101
                 19/18 - 11 101, 1.000100
                1-y) + - 11 101 , 0, 111100
             > > [ * my ] # = 11 10 | . 1 10 100 |
           [x-y]# = 11 101 , 1-10001
          \begin{cases} 374 = 2^{-91} \times [-p,0(p)]) = 2^{-10} \times [-p,(p)]) \\ 7-4 = 2^{-91} \times [-p,p) + (-p,p) \\ \end{cases} = 2^{-10} \times [-p,(p)] 
   (3) \lambda = T_{-100} \times (0.01011_0) = T_{-101} \times (0.1011_0)
           (X) 将 = 11011, 1,011110
          [4] = 1101, 0.10110
          [-4] &= 11011, 1,01010
       1,011110 1,011110
+ 0.101100 + 1,010100
+ 1,010100
    :, {[x+y] = 11011, 0.001010
     |\vec{p}| < x + y = 2^{-|\vec{p}|} \times |0.00|0| = 2^{-|\vec{p}|} \times |0.00|0|
```

批注[宝贝4]: (1)(2)的加法结果 正确,但注意要按标准6位输出,减 法出错,扣分-2,正确如下:

```
(1)
X=2^{-0.11}\times 0.100101=2^{-0.010}\times 0.0100101
X+y=2^{-010}\times (0.0100101-0.011110)=2^{-010}\times (-0.0010111)=2^{-100}(-0.101110)
方法2
[x]浮=11101,0.100101
[y]浮=11110,-0.011110
Ex-Ey=11101+00010=111111<0
[x]浮=11110,0.010010(1),对齐处理
[y]尾补=11.100010(0)
Х+у
             00.0100101
            +11.1000100
             11.1101001
按规格化处理,由于是11.11***型的要左规处理,阶码-2
规格化后补 11.01001(00), 11110+11110=11100=-4
x+y=11100,-0.101110=2^{-100}*-0.101110=2^{-4}*-0.101110
             00.0100101
х-у
            +00.011110
             00.110000(1)
规格化处理:0.110000(1)
                        阶码 11110
x-y=2^{-010}*0.110001=2^{-2}*0.110001
```

```
(2)
[x]浮=11011, -0.100010
[y]浮=11100, 0.010110
Ex-Ey=11011+00100=11111<0
[x]浮=11100, -0.010001(0),对齐处理
[x]尾补=11.101111(0)
Х+у
       11.101111(0)
       +00.010110
        00.000101(0)
规格化处理,由于是00.00**型的要左规处理,阶码-3
规格化后尾补 00.101(000), 阶码 11100+11101=11001=-7
X+y=2^{-7}*0.101000
[-y]尾补=11.101010
х-у
       11.101111(0)
      +11.101010
        11.011001(0)
规格化后 1.011001(0)=-0.100111(0),阶码是 11100=-4
x-y=2^{-4}*(-0.100111)
```

- 8. 设数阶码 3 位, 尾数 6 位, 按浮点运算方法, 计算下列各式:
 - (1) $(2^3 \times 0.1101) \times (2^4 \times -0.1001)$
 - (2) $(2^{-2} \times 0.01101) \div (2^{3} \times 0.1111)$

8. 解: (1) X=2 x(0:1101)
$y = 2^4 \times (-0.100)$
) - () / · · · · · · · · · · · · · · · · · ·
$E_{x} \cdot E_{y} = 2^{+y} = 2^{7} = 2^{11}$
0.1101° x 0.1001
0 0 0 0
0.011000
Sx · Sy = -0.01110101
V 7. y = (21) (-0.1110101)
(1) $\chi = \sum_{j} \times 0.01 01 = \sum_{j} \times 0.110 $
$y=2^{\frac{1}{2}}\times 0.111$
$E_x \cdot E_y = \lambda^{-3} + \lambda^3 = \lambda^{-b} = \lambda^{-100}$
187 × = 0.1101
[Sy]* = 0.1111
Sy 2= 1,0001

0.1101 + 1.0001
R. = 1.1110 < 0
← 1.11 0 0
+ 0·11
€ 1.00 1 0
+ 1.000
Ro= 0.00 >0
+ 1.000
\mathcal{R}_{0} = 1.0 < 0
← 0.11 0
+ 0.11 1 1 Rosell 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+ 0 1 1 1
R ₀ = 0 1 1 0 0 1 > 0
$\frac{Sx}{Sy} = 0 \cdot 11001$
·
$\frac{x}{y} = 2^{110} \times 04100$
· ·

批注[宝贝5]: (1) 画圈处,阶数不对,然后后面的尾数要归一化为6位的 (2) 也应该按6位计算,结果也不正确,扣分-2,正确如下:

(1)

Ex=0011,Mx=0.110100, Ey=0100,My=0.100100 Mx*My=0.01110101 规格化后是 2⁶ *-0.111011

(2)

Ex=1110,Mx=0.011010, Ey=0011,My=0.111100

[-My]补 1.000100

Ex-Ey=1110+1101=1011=-5

LX LY IIIO.II	01 1011 3	
0.011010	商	
+ 1.000100	-	+[-My]
1.011110	0	
0.111100		左移
+0.111100		+[My]
1.111000	0.0	
1.110000		左移
+0.111100		
0.101100	0.01	
1.011000		左移
+1.000100		
0.011100	0.011	
0.111000		左移
+1.000100		
1.111100	0.0110	
1.111000		左移
+0.111100		
0.110100	0.01101	
1.101000		左移
+1.000100		
0.101100	0.011011	
1.011000		左移
+1.000100		
0.011100	 0.0110111	

商是 0.0110111, 余数 0.000000011100 规则化后,尾数是 0.110111,阶码是-5-1=-6 [x/y]= 2^{-6} *0.110111,余数是 2^{-7} *0.011100