Conteúdo

- 1. Introdução
- 2. Listas
- 3. Pilhas
- 4. Filas
- 5. Árvores
 - Árvore Binária e Árvore AVL
 - Árvore N-ária e Árvore B
- 6. Tabelas de Dispersão (Hashing)
- 7. Métodos de Acesso a Arquivos
- 8. Métodos de Ordenação de Dados

Métodos de Ordenação de Dados

(continuação)

Métodos de Ordenação de Dados

Métodos de Ordenação mais conhecidos

- Selection Sort
- Bubble Sort
- Insertion Sort
- → Merge Sort
- → Quick Sort
 - Heap Sort

métodos simples

Complexidade dos Métodos Simples

$$\sum_{i=1}^{n-7} i = \frac{(n-1)n}{2} \Rightarrow O(n^2)$$

Métodos de Divisão e Conquista

<u>Divisão e Conquista</u>: um array é dividido em dois segmentos; cada segmento é ordenado e, então, eles são unidos de novo.

Métodos de Divisão e Conquista

Complexidade dos Métodos de Divisão e Conquista: O(N log₂N)

Alguns Métodos de Divisão e Conquista:

- → Merge Sort
- → Quick Sort

Método de Ordenação Merge Sort

Merge Sort

Baseia-se em junções sucessivas (<u>merge</u>) de 2 seqüências ordenadas em uma única seqüência ordenada

Aplica um método "divisão e conquista"

- ° divide o array em 2 seqüências de comprimento Ln/2 ∫ e Γ n/2 7
- ordena recursivamente cada seqüência (dividindo novamente, quando possível)
- faz o merge das 2 seqüências ordenadas para obter o array ordenado completo

• • • • • • •

Merge Sort

Merge - Algoritmo

 Utiliza um array temporário (tempArray) para manter o resultado da ordenação das 2 partes

Após a ordenação, o conteúdo de tempArray é transferido para o array

Merge Sort - Algoritmo

MergeSort ()

— método recursivo

se o array tem pelo menos 2 elementos

divide o array na metade

MergeSort a metade da esquerda (recursivo)

MergeSort a metade da direita (recursivo)

Merge (junta) as duas partes ordenadas em um array ordenado

• • • • • • •

Merge - Algoritmo

```
Merge (primEsq, ultEsq, primDir, ultDir)
indice ← primEsq
enquanto existem mais elementos na metade esquerda E
           existem mais elementos na parte direita
   se array[primEsq] < array[primDir] então
      <u>tempArray</u>[indice] ← array[primEsq]
      primEsq ++
   else
      <u>tempArray</u>[indice] ← array[primDir]
      primDir ++
   incrementa indice
copiar os elementos restantes da metade esquerda para tempArray
copiar os elementos restantes da metade direita para tempArray
copiar os elementos ordenados de tempArray de volta para array
```

Merge Sort - Exemplo

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
54	8	47	10	12	70	33	61	48	53

.

Merge Sort - Complexidade

Número de comparações?

- máximo de comparações: n 1
- Complexidade: O(N)

Merge Sort - Complexidade

- Custo da divisão do array original (número de níveis): O(log N)
- O número de níveis de chamadas do merge é igual ao número de vezes que o array original pode ser dividido pela metade: logN
- Em cada nível, são feitas N-1 comparações: O(N)
 - → custo total da operação Merge é O(N logN)
- Custo do algoritmo Merge Sort (para qualquer caso):

 $O(\log N + N \log N) = O(N \log N)$

• • • • • • •

Merge Sort - Desvantagem

- Requer um array auxiliar que é tão grande quanto o array original a ser ordenado.
 - Se espaço é um fator crítico e o array é grande, o algoritmo Merge Sort não é uma boa escolha.

Método de Ordenação Quick Sort

Ordena através de sucessivas trocas entre pares de elementos do array.

Exemplo: ordenar uma grande pilha de exames pelo nome

A escolha do elemDivisão é crítica para o desempenho

 pior escolha: gera um segmento com tamanho 0 e outro com tamanho n-1

• melhor escolha: gera segmentos balanceados

melhor elemDivisão: elemento mais próximo da média de valores dos elementos

complexidade para determiná-lo: O(N)

Quick Sort - Algoritmo

QuickSort ()

Se existe mais de um elemento em array[prim] .. array[ult]

- Split
 - seleciona elemDivisao
 - dividir o array de maneira que
 - array[prim]..array[posDivisao-1] ≤ elemDivisao
 - array[posDivisao] = elemDivisao
 - array[posDivisao+1]..array[ult] ≥ elemDivisao
- QuickSort a metade da esquerda
- QuickSort a metade da direita

Quick Sort - Algoritmo

Split

- •Transfere o elemDivisão para uma das extremidades do array (direita, p.ex.)
- Utiliza apontadores (*esq* e *dir*) que partem das extremidades do array e se deslocam para o centro do vetor, trocando elementos quando necessário
- O deslocamento termina quando um apontador cruza o outro
- Transfere-se o elemDivisão para a posição apontada por esq

.

Quick Sort - Exemplo

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
54	8	47	10	12	70	33	61	48	53

.

Quick Sort - Complexidade

- Melhor caso: segmentos balanceados
 - → elemDivisão é o elemento com valor mais próximo da média

$$(\log n + 1) (n - 1) \Rightarrow O(N \log N)$$

Quick Sort - Complexidade

- Pior caso: segmentos totalmente desbalanceados
 - → elemDivisão é o menor elemento do array

$$\sum_{i=1}^{n-1} i = \frac{(n-1) n}{2} \Rightarrow O(N^2)$$

Quick Sort - Complexidade

- Custo do algoritmo para o melhor caso:
- Custo da divisão do array original (número de níveis): O(log N)
- Em cada nível, são feitas N-1 comparações: O(N)

$$\rightarrow$$
 custo = O(N logN)

- Custo do algoritmo para o pior caso:
- Custo da divisão do array original (número de níveis): O(N)
- Em cada nível i, são feitas N-i comparações: O(N)

$$\rightarrow$$
 custo = O(N²)

Comparação

	melhor caso	pior caso	
Selection Sort	$O(N^2)$	$O(N^2)$	
Bubble Sort	$O(N^2)$	$O(N^2)$	
Insertion Sort	O(N)	$O(N^2)$	
Merge Sort	O(N logN)	O(N logN)	
Quick Sort	O(N logN)	$O(N^2)$	

.

Comparação de N² e N log N

N	N^2	N log N
32	1.024	160
64	4.096	384
128	16.384	896
256	65.536	2.048
512	262.144	4.608
1.024	1.048.576	10.240
2.048	4.194.304	22.528
4.096	16.777.216	49.152

.

Métodos de Ordenação

Simulação de funcionamento

http://math.hws.edu/TMCM/java/xSortLab

Implementação

- Implementar os seguintes algoritmos de acordo com a hierarquia apresentada a seguir:
 - Merge Sort
 - Quick Sort

Implementação

Hierarquia das Classes de Ordenação

