	AS2520 Engsem	KirtanPatel
Q1	Apparatus	
	a). Burn rate measurement in solid rocket	
	· Crawford Bomb	
	· Pressure transducer	
	DC supply	
	Pressure Gauge	
	· Pressure regulator	
	· Electrodus	
	· Propellant	
	· Propellan holder.	
	· Heat ex changer	
	· Heat ex changer · DAS (Data CICquisiHm system	
	O	
	b) Ramjet	
	. Ramjer model	
	. sequential timer	
	· Rotanefer	
	· Presure aange	
	· Pressure acuge · Air compressor · ignitor buttery · Data Aguisition system.	
	· ignitor buttery	
	· Data Aguisition system.	
	c) · Propellar + piston engine ·slider mechanism	
	* Engline	
	· Threst load cell	

Puel weight load cell.

· motors arduit

DAS.

d) Hybrid Rocket
· oxidizer
. Nature confess
· pressure transducer and indicator · settling chamber · typhid rocker · Ignitor cable / battery
· settling chamber
· typnid rocker
· Ignitor cable/battery
e) Diffusion flame height
* bunsen bymer
· fuel
· Rotemeter
· Needle value · height measurement device
· neight measurement device

dis=0.009m

dmax = dis+(webthickness)*2

= 0.009m + 0.044

= 0.053 m.

*To carry out calculations at 5 evenly spaced intervals, we will take them at the following intervals.

0.009m 0.017m 0.025m 0.033m 0.041m 0.049m 0.053 m

dis=0.009m 0.017m 0.025m 0.033m 0.041m 0.049m 0.053 m

dis=0.009m 0.017m 0.025m 0.033m 0.041m 0.049m 0.053 m

Following the above mentioned steps; we have ... 0/F = mo/mg

m = 0.030 kg/s

İ	lnt.	initial diameter	final diameter (in m)	Arg. port area (in m²)	Clax (in kg/m²s)	Y (in mm/s)	mg (in kg/s)	%F
Ī	1	0.009	0.017	13.273 e-5	226.01885	3.342 e-3	0.39925 e-3	75.141
	2	0.017	0.025	34.636 e-5	86.615	1.844 e-3	0.57 483 e-3	52.1897
	8.	0.025	0.033	66.052 e-s	45 . 41 877	1.236 e-3	0.73 464 e-3	40.8365
	4.	०.०३३	0-041	107.521 e-s	27.90152	0.9136	0.88406	33, 93424
	5.	0.041	0.049	159.043 e-s	18.8628	0.7167 e-3	1.02587 c-3	29.24354

from initial and final diameter, we can even find Am, using (5)

•	lut.	initial diameter	final diameter (in m)	△m (in kg)
	1	0.009	0.017	0.0197
	2	0.017	0.025	0.0318
	گ .	0.025	0.033	0.04395
	4.	0.033	0-041	0.056 07
	5.	0.041	0.049	0.06819

m = Dm .. Ot for interval, found using Dm/in

<i>1</i> 50	lut.	· Dm (in kg)	mf (in kg/s)	At (in's)
	1	0.0197	0.39925 e-3	49.3462
	2	0.0318	0.57 483 e-3	55.3659
	ع ٠	0.04395	0.73 464 e-3	59 .82502
	4.	0.056 07	0.88406	63.42723
	5.	0.06819	1.02587 c-3	66. 478 06

	characteristic veloc	city(c*)	
		() C* =	YRT
			1 M
			<u> </u>
		γ	<u>2</u> Y-1
	0		
	for our system		
	T = 3400	K, $M=22$	g/mole
for MM=	a		νως ζ.
x p* = 35	77.53	c* = 325	7.222 m/s
for NW=3			
	chamber pre	mure (Pc)	
	1	- (10/	buck prevoure
		Pc = c*	(mf+mo) + Pb pressure
			At Pressure
,	1.030 kg/s		7
, , ,		throat	
	lnt. imf (in kg/s)	Pc (atm)	throat diameter=0.008m
	1 0.39925 e-3	2.9531	thmat area = Td
	2 0.57 483 e-3	2.9644	71
	s 0.73 464 e-3	2.9746	= 50 <u>.265</u> e-6
	4., 0.88406 E-3	2.9842	Pb = 1 atm = 101325 Pa
	5.1.02587 e-3	2.9933	ŭ
			tura (ANIII)
	we then calcula		
		Λ Τ	$\frac{2r}{(r-1)} \left[1 - \frac{1}{(r-1)} \left[\frac{2r}{r} \right] \right]$
		A+ O VA	_ F
		$\frac{-\frac{r_e}{p_c}}{\frac{r_e}{p_c}}$	$\frac{2r}{(r-1)} \left[1 - \left(\frac{\rho_e}{\rho_c} \right)^{\frac{r}{r}} \right]$
	T. Control of the Con		

in only converging nozzle used in Ae=At

$$\left(\frac{\text{Re}}{\text{Pc}}\right)^{\prime \gamma} \cdot \left[\frac{2r}{(r-1)}\left[1-\frac{\text{Re}}{\text{Pc}}\right]^{-1}\right] = \int_{\Gamma} \left(\frac{2}{r+1}\right)^{\frac{r+1}{2(r-1)}}$$

taking
$$(P=)= \times$$

$$(12) \left(1 - \chi^{\gamma-1}\right) = \sqrt{1.2} \left(\frac{10}{11}\right)^{\frac{212}{2}} \cdot \frac{1}{0.52}$$

$$\propto \sqrt{12(1-x^{\circ-2})} = \sqrt{1.2} \cdot \frac{1}{10}$$

$$\chi^2 (1-\chi^{0.2}) = 0.035049389$$

$$1 + 1 = 0.6209$$

lnt.	imit (in kg/s)	Pc (atm)	Pe (atm)
1	0.39925 e-3	2.9531	1.66686
2	0.57 483e-3	2.9644	1.67323
3	0.73 464 e-3	2.9746	1.67903
4.,	0.88406	2.9842	1.68445
5.3	1.02587 c-3	2.9933	1.68959

Similarly.

O.6209

Thrust

CF =
$$\sqrt{\frac{2}{2(r_1)}}$$
 $\sqrt{\frac{2r}{2(r_1)}}$
 $\sqrt{\frac{2r}{2(r_$

$$C_F = 0.6256676 + (0.6209 + \frac{1}{P_c})$$

1	lnt.	imit (in kg/s)	Pc (atm)	Pe (atm)	CF
	1	0.39925 e-3	2.9531	1.66686	1.5851976
	2	0.57 483 e-3	2.9644	1.67323	1.5839090
	0	0.73 464 e-3	2.9746	1.67903	1.58 2 7446
	5		2.9842		1.5816632
	4.,	0.88406		1.68445	1.5806432
١	5.3	1.02587 c-3	2. 9933	1.68959	1,50

and further jmis jkgls writtees

thrust (F) = c* (m_f+m₈).(F ... n

lut.	imit (in kg/s)	Pc (atm)	Pe (atm)	CF	Thoust (N)
	0.39925 e-3	2.9531	1.66686	1.5851976	15.768446
_		2.9644		1.5839090	15.8466264
2	0.57 483 e-3		1.67323	1.58 2 7446	15.917744
3	0.73 464 e-3	2.9746	1.67903		
1,	0.88406	2.9842	1.68445	1.5816632	15.38 4204
4 .	1.02587 c-3	2.9933	1.68959	1.5806432	16.0472413
5 - 3	1.02-07 6-3	L 2000)	1. 007		

Q2 Answer

St. No.	Time(s)	mg (kg/s)	9/F	Pc (atm)	Thrust(N)
1	49.8462	0.39925 e-3	75-141	1.66686	15.76 8446
2	104.7121	0.57483 e- <u>3</u>	52.1897	1. 67323	15.84663
3	164.53712	0.73464 e-3	40.8365	1. 67903	15.917744
4	227.96435	0.88406 e-3	33.93424	1. 68445	15.984204
5	294.44241	1.02587 e-3	29. 24354	1. 68959	16.047 2413

as fuel is used, the part diameter inc : Ap 1 : in is constant, Gox I : it

mf = Abî Pf. Y

with n=0.5 i.e. n lus than 0.62,
than the correlation of Gox, and it will be lesser
at n=0,
is will be independent of any change in Gox
and will keep on incheasing as Az 1.