Importing Libraries

```
In [152]:
```

```
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import math
import pdb
```

```
In [153]:
```

```
pd.set_option('mode.chained_assignment', None)
```

Name of columns of different files

```
In [154]:
```

```
user_cols = ['user_id', 'age', 'sex', 'occupation', 'zip_code']
rating_cols = ['user_id', 'movie_id', 'rating', 'timestamp']
movie_cols = ['movie_id', 'title', 'release_date', 'video_release_date', 'imdb_url']
```

Read genres file to get list of name of columns in movie dataset

```
In [155]:
```

```
genre = pd.read_csv("u.genre", sep='|', header=None, names = ['Name', 'Id'])
genre_list = list(genre['Name'])
```

Read Dataset

In [156]:

```
def read_data():
    user_info = pd.read_csv("u.user",sep='|',names=user_cols)
    user_movie_data = pd.read_csv("u.data",sep='\t', names=rating_cols)
    item_info = pd.read_csv("u.item", sep='|', encoding='latin-1', names= movie_cols + gen
    movielens = pd.merge(user_info,user_movie_data)
    movielens = pd.merge(movielens,item_info)
    return movielens
```

In [157]:

```
movielens = read_data()
movielens.head()
```

Out[157]:

	user_id	age	sex	occupation	zip_code	movie_id	rating	timestamp	title	release_
0	1	24	М	technician	85711	61	4	878542420	Three Colors: White (1994)	01-Jan- 1
1	13	47	М	educator	29206	61	4	882140552	Three Colors: White (1994)	01-Jan-1
2	18	35	F	other	37212	61	4	880130803	Three Colors: White (1994)	01-Jan-1
3	58	27	М	programmer	52246	61	5	884305271	Three Colors: White (1994)	01-Jan-1
4	59	49	М	educator	08403	61	4	888204597	Three Colors: White (1994)	01-Jan- 1

5 rows × 31 columns

Part A)

In [158]:

```
ratings_Across_user = movielens.groupby(['user_id'])['rating'].agg(['count']).sort_values(b
ratings_Across_user = ratings_Across_user.rename(columns={'count':'RatingCount'})
plt_data = ratings_Across_user.groupby(['RatingCount'])['user_id'].agg(['count']).reset_ind
```

In [159]:

```
f, ax = plt.subplots(figsize=(25,10))
# Create bars
plt.bar(plt_data['RatingCount'], plt_data['count'])

# # Create LabeLs
ax.set_title('Number of Ratings per Number of Users')
ax.set_xlabel('Number of Ratings')
ax.set_ylabel('Number of Users')

# Show graphic
plt.show()
```


Part B)

In [160]:

```
ratings_Across_movie = movielens.groupby(['movie_id'])['rating'].agg(['count']).sort_values
ratings_Across_movie = ratings_Across_movie.rename(columns={'count':'RatingCount'})
plt_data_movies = ratings_Across_movie.groupby(['RatingCount'])['movie_id'].agg(['count']).
```

In [161]:

```
f, ax = plt.subplots(figsize=(25,10))
# Create bars
plt.bar(plt_data_movies['RatingCount'], plt_data_movies['count'])

# # Create LabeLs
ax.set_title('Number of Ratings per Number of Movies/Items')
ax.set_xlabel('Number of Ratings')
ax.set_ylabel('Number of Movies/Items')

# Show graphic
plt.show()
```


Part C)

In [162]:

```
movies_list = pd.read_csv("u.item", sep='|', encoding='latin-1', names= movie_cols + genre
user_info = pd.read_csv("u.user",sep='|',names=user_cols)
ratings = pd.read_csv("u.data",sep='\t', names=rating_cols)
```

In [163]:

```
# creating new column and setting it some random string
movies_list['genres'] = 'unknown'
```

In [164]:

```
for index, row in movies_list[genre_list].iterrows():
    true_ind = np.array(row)
    correct_genre = list(np.where(true_ind == 1)[0])
    genre_array = np.array(genre_list)
    all_genres = genre_array[correct_genre]
    names = all_genres[0]
    for genres in all_genres[1:]:
        names = names + '|' + genres
    movies list.loc[index, 'genres'] = names
movies_list_genres = movies_list[movies_list.columns.drop(genre_list)]
movies_list_genres.genres = movies_list_genres.genres.str.split('|')
movies = movies_list_genres.explode('genres')
ratings = ratings.merge(movies, left_on='movie_id', right_on='movie_id', how='inner')
genre_rt = ratings.groupby(['genres', 'rating'])['rating'].agg({'count'})
df_grouped = genre_rt.reset_index()
max_rating_genres = df_grouped.groupby(['genres'])['count'].agg({'max'})
final_plot_data = df_grouped[df_grouped['count'].isin(list(max_rating_genres['max']))]
```

In [165]:

```
f, ax = plt.subplots(figsize=(25,10))
# Create bars
plt.bar(final_plot_data['genres'], final_plot_data['count'])

# # Create LabeLs
ax.set_title('Genres per Number of Highest Ratings')
ax.set_xlabel('Genres')
ax.set_ylabel('Number of Highest Ratings')

# Show graphic
plt.show()
```


Part D)

Here I have first added the new column age_group based on age of user. Then grouped the data based on age_group, genres and rating. Then I counted the each rating and took maximum rating value based on its count.

In [166]:

```
com_lens = ratings.merge(user_info, left_on='user_id', right_on='user_id', how='inner')
com_lens.head()
```

Out[166]:

	user_id	movie_id	rating	timestamp	title	release_date	video_release_date	
0	196	242	3	881250949	Kolya (1996)	24-Jan-1997	NaN	http://us.imdb.c exact?Kolya
1	196	257	2	881251577	Men in Black (1997)	04-Jul-1997	NaN	http://us.imdb.c exact?Men+i
2	196	257	2	881251577	Men in Black (1997)	04-Jul-1997	NaN	http://us.imdb.c exact?Men+i
3	196	257	2	881251577	Men in Black (1997)	04-Jul-1997	NaN	http://us.imdb.c exact?Men+i
4	196	257	2	881251577	Men in Black (1997)	04-Jul-1997	NaN	http://us.imdb.c exact?Men+i

In [167]:

```
labels=['0-9','10-19','20-29','30-39','40-49','50-59','60-69','70-79']
com_lens['age_group'] = pd.cut(com_lens.age, range(0, 81, 10), right=False, labels=labels)
rating_count = com_lens.groupby(['age_group','genres','rating'])['rating'].agg({'count'}).r
rating_max = rating_count.groupby(['age_group','genres'])['count'].agg({'max'}).reset_index
z = rating_max.groupby(['age_group'])['max'].agg({'max'}).reset_index()
max_rating_genre = {}
for i,j in zip(z['max'],z['age_group']):
    max_rating_genre[j] = rating_max[(rating_max.age_group == j ) & (rating_max['max'] == i
plot_data = pd.DataFrame(max_rating_genre.items(), columns=['Age-Group', 'Preferred Genres'
plot_data
```

Out[167]:

	Age-Group	Preferred Genres
0	0-9	Comedy
1	10-19	Drama
2	20-29	Drama
3	30-39	Drama
4	40-49	Drama
5	50-59	Drama
6	60-69	Drama
7	70-79	Drama