Delta Functions, Heaviside Steps, and Level Crossing Counts for Differentiable Paths

Stephen Crowley September 14, 2025

Contents

1	Foundations of Distributions on Real Line	1
2	Basic Identities	2
3	Delta of a Smooth Function	3
4	Counting Function for Level Crossings	4

1 Foundations of Distributions on Real Line

Definition 1 (Schwartz Test Function Space) The Schwartz space $\mathcal{S}(\mathbb{R})$ is the space of all infinitely differentiable functions $\phi : \mathbb{R} \to \mathbb{R}$ such that for every pair of nonnegative integers m, n,

$$\sup_{x \in \mathbb{R}} |x^m \phi^{(n)}(x)| < \infty \tag{1}$$

Functions in $\mathcal{S}(\mathbb{R})$ are called rapidly decreasing smooth test functions.

Definition 2 (Tempered Distribution) A tempered distribution is a continuous linear functional

$$T: \mathcal{S}(\mathbb{R}) \to \mathbb{R}$$
 (2)

Definition 3 (Dirac Delta Distribution) The Dirac delta distribution $\delta_a \in \mathcal{S}'(\mathbb{R})$ centered at $a \in \mathbb{R}$ is defined by

$$\langle \delta_a, \phi \rangle = \phi(a) \tag{3}$$

for all $\phi \in \mathcal{S}(\mathbb{R})$. When a = 0, one writes $\delta = \delta_0$.

Definition 4 (Heaviside Step Function) The Heaviside step function $H : \mathbb{R} \to \{0,1\}$ is defined by

$$H(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x \le 0 \end{cases}$$
 (4)

Definition 5 (Distributional Derivative) For a tempered distribution $T \in \mathcal{S}'(\mathbb{R})$, its distributional derivative $T' \in \mathcal{S}'(\mathbb{R})$ is defined by

$$\langle T', \phi \rangle = -\langle T, \phi' \rangle$$

for all $\phi \in \mathcal{S}(\mathbb{R})$.

Basic Identities $\mathbf{2}$

Theorem 1 (Heaviside Derivative) The Heaviside step function H satisfies

$$H' = \delta \tag{5}$$

as distributions on $\mathcal{S}'(\mathbb{R})$.

Proof For all $\phi \in \mathcal{S}(\mathbb{R})$,

$$\langle H', \phi \rangle = -\langle H, \phi' \rangle$$
 (6)

$$= -\int_{-\infty}^{\infty} H(x)\phi'(x) dx \tag{7}$$

$$= -\int_0^\infty \phi'(x) \, dx \tag{8}$$

$$= -[\phi(x)]_0^{\infty} \tag{9}$$

$$= -[\phi(x)]_0^{\infty}$$

$$= -(\lim_{x \to \infty} \phi(x) - \phi(0))$$
(10)

$$=\phi(0)\tag{11}$$

where the limit vanishes since $\phi \in \mathcal{S}(\mathbb{R})$ decays rapidly at infinity. Thus

$$\langle H', \phi \rangle = \phi(0) = \langle \delta, \phi \rangle \tag{12}$$

Theorem 2 (Integral of Delta) For any $a \in \mathbb{R}$ and $T \in \mathbb{R}$,

$$\int_{-\infty}^{T} \delta(t-a) dt = H(T-a) \tag{13}$$

Proof Define

$$F(T) = \int_{-\infty}^{T} \delta(t - a) dt$$
 (14)

Taking the distributional derivative with respect to T:

$$F'(T) = \frac{d}{dT} \int_{-\infty}^{T} \delta(t - a) dt = \delta(T - a)$$
(15)

Since $F(-\infty) = 0$ and

$$F'(T) = \delta(T - a) = H'(T - a) \tag{16}$$

from the previous theorem, one has

$$F(T) = H(T - a) + C \tag{17}$$

for some constant C. The boundary condition

$$F(-\infty) = 0 = H(-\infty) + C \tag{18}$$

implies C = 0, thus

$$F(T) = H(T - a) \tag{19}$$

3 Delta of a Smooth Function

Theorem 3 (Delta under Change of Variables) Let $g : \mathbb{R} \to \mathbb{R}$ be continuously differentiable with isolated, simple zeros $\{x_i\}$ such that $g(x_i) = 0$ and $g'(x_i) \neq 0$. Then the identity

$$\delta(g(x)) = \sum_{i} \frac{\delta(x - x_i)}{|g'(x_i)|} \tag{20}$$

holds in $\mathcal{S}'(\mathbb{R})$.

Proof For $\phi \in \mathcal{S}(\mathbb{R})$,

$$\langle \delta(g(x)), \phi \rangle = \int_{-\infty}^{\infty} \phi(x) \delta(g(x)) dx$$
 (21)

Near each zero x_i , where g is locally monotone by the implicit function theorem, the change of variables u = g(x) gives

$$\int_{I_{i}} \phi(x)\delta(g(x)) dx = \int_{g(I_{i})} \frac{\phi(g^{-1}(u))}{|g'(g^{-1}(u))|} \delta(u) du
= \frac{\phi(x_{i})}{|g'(x_{i})|}$$
(22)

by the sifting property of δ . Summing over all zeros yields

$$\langle \delta(g(x)), \phi \rangle = \sum_{i} \frac{\phi(x_i)}{|g'(x_i)|} = \left\langle \sum_{i} \frac{\delta(x - x_i)}{|g'(x_i)|}, \phi \right\rangle$$
 (23)

Since this holds for all $\phi \in \mathcal{S}(\mathbb{R})$, the distributional equality follows.

4 Counting Function for Level Crossings

Let $x : \mathbb{R} \to \mathbb{R}$ be continuously differentiable, and fix $u \in \mathbb{R}$. Assume the zeros of g(t) := x(t) - u are isolated and simple; that is, for every zero t_i ,

$$g'(t_i) = x'(t_i) \neq 0 \tag{24}$$

Definition 6 [Level Crossing Counting Function] Define the counting function

$$N(T) := the number of zeros t_i of x(t) - uwith t_i \le T$$
(25)

Theorem 4 (Counting Function as Integral Over Delta) For every $T \in \mathbb{R}$,

$$N(T) = \int_{-\infty}^{T} |x'(t)| \delta(x(t) - u) dt$$
(26)

Proof Using the delta change of variables theorem with

$$g(t) = x(t) - u (27)$$

one finds that

$$|x'(t)|\delta(x(t) - u) = |x'(t)| \sum_{i} \frac{\delta(t - t_i)}{|x'(t_i)|}$$
 (28)

$$= \sum_{i} |x'(t)| \frac{\delta(t - t_i)}{|x'(t_i)|}$$
 (29)

Since $x'(t_i) \neq 0$ by assumption, and $\delta(t - t_i)$ picks out the value at $t = t_i$,

$$|x'(t)|\delta(x(t) - u) = \sum_{i} \frac{|x'(t_i)|}{|x'(t_i)|} \delta(t - t_i)$$

$$= \sum_{i} \delta(t - t_i)$$
(30)

Therefore,

$$\int_{-\infty}^{T} |x'(t)| \delta(x(t) - u) dt = \sum_{i} \int_{-\infty}^{T} \delta(t - t_i) dt$$

$$= \sum_{t_i \le T} 1$$

$$= N(T)$$
(31)

Theorem 5 (Counting Function as Sum of Heaviside Steps) The counting function (6) is given by

$$N(T) = \sum_{i} H(T - t_i) \forall T \in \mathbb{R}$$
(32)

where the sum runs over all zero crossing times t_i .

Proof By definition of the Heaviside function,

$$H(T - t_i) = 1 (33)$$

if and only if $T \geq t_i$, and

$$H(T - t_i) = 0 (34)$$

otherwise. Therefore,

$$\sum_{i} H(T - t_i) = \sum_{t_i \le T} 1$$

$$= N(T)$$
(35)

Theorem 6 (Equivalence of Representations) The delta integral representation and the Heaviside step sum representation are equivalent:

$$\int_{-\infty}^{T} |x'(t)| \delta(x(t) - u) dt = \sum_{i} H(T - t_i)$$
(36)

Proof This follows immediately from the two previous theorems, since both expressions equal N(T).