# CS4102 Algorithms

Nate Brunelle

Spring 2018

Warm up:

Show that no cycle crosses a cut exactly once

#### no cycle crosses a cut exactly once

- Consider some edge (u, v) in the cycle which crosses the cut
- If we remove (u, v) then there is still a path from u to v which must somewhere cross the cut



# Today's Keywords

- Graphs
- Minimum Spanning Tree
- Prim's Algorithm
- Shortest path
- Dijsktra's Algorithm
- Breadth-first search

# **CLRS** Readings

- Chapter 22
- Chapter 23

#### Homeworks

- HW6 Released
  - Due Friday April 13 at 11pm
  - Written (use latex)
  - DP and Greedy

# Graphs

Vertices/Nodes

Definition: 
$$G = (V, E)$$

weight of edge  $e$ 

w(e) = weight of edge e



#### **Definition: Path**

A sequence of nodes  $(v_1, v_2, ..., v_k)$ 





#### Simple Path:

A path in which each node appears at most once

#### Cycle:

A path of > 2 nodes in which  $v_1 = v_k$ 

#### Definition: Minimum Spanning Tree

A Tree  $T = (V_T, E_T)$  which connects ("spans") all the nodes in a graph G = (V, E), that has minimal cost



$$Cost(T) = \sum_{e \in E_T} w(e)$$

How many edges does T have? V-1

#### **Definition:** Cut

A Cut of graph G = (V, E) is a partition of the nodes into two sets, S and V - S



Edge  $(v_1, v_2) \in E$  crosses a cut if  $v_1 \in S$  and  $v_2 \in V - S$  (or opposite), e.g. (A, C)

A set of edges R Respects a cut if no edges cross the cut e.g.  $R = \{(A, B), (E, G), (F, G)\}$ 

#### **Cut Property**

Consider any cut (S, V - S) in a graph G = (V, E), the minimum weight edge crossing that cut is in *some* MST of G



# Warm up 2gether: Cycle Theorem

Consider any cycle in a graph G = (V, E), the maximum weight edge on that cycle is not in some MST of G What is our strategy?



- 1. tree has max weight edge
- does not have max weight

# Cycle Theorem: Case 1

Consider any cycle  $v_1, v_2, \dots v_k, v_1$  in a graph G = (V, E), the maximum weight edge e on that cycle is *not* in *some* MST of G

Consider some MST T,

Case 1: (the easy case)

If  $e \notin T$  Then claim holds



# Cycle Theorem: Case 2

Consider any cycle  $c=(v_1,v_2,\dots v_k,v_1)$  in a graph G=(V,E), the maximum weight edge e on that cycle is *not* in *some* MST of G

Consider some MST T, Case 2:



Consider if  $e = (v_1, v_2) \in T$ Let (S, V - S) be a cut which e crosses

There is some other edge e' not in T which crosses (S, V - S)

Build tree T' by exchanging e' for e

# Cycle Theorem: Case 2

Consider any cycle  $c=(v_1,v_2,\dots v_k,v_1)$  in a graph G=(V,E), the maximum weight edge e on that cycle is *not* in *some* MST of G

Consider some MST *T*, Case 2:



if 
$$e = (v_1, v_2) \in T$$

T' = T with edge e' instead of e

We assumed  $w(e) \ge w(e')$ 

$$w(T') = w(T) - w(e) + w(e')$$

$$w(T') \le w(T)$$

So T' is also a MST!

Thus the claim holds

Start with an empty tree A

Pick a start node

Repeat V-1 times:



Start with an empty tree A

Pick a start node

Repeat V-1 times:



Start with an empty tree A

Pick a start node

Repeat V-1 times:



Start with an empty tree A

Pick a start node

Repeat V-1 times:



Start with an empty tree A

Pick a start node

Keep edges in a Heap  $O(E \log V)$ 

Repeat V-1 times:



Initialize  $d_v=\infty$  for each node v Keep a priority queue PQ of nodes, using  $d_v$  as key Pick a start node s, set  $d_s=0$  While PQ is not empty:

v = PQ.extractmin()

for each  $u \in V$  s.t.  $(v, u) \in E$ :



Initialize  $d_v=\infty$  for each node vKeep a priority queue PQ of nodes, using  $d_v$  as key Pick a start node s, set  $d_s=0$ While PQ is not empty:

v = PQ.extractmin()

for each  $u \in V$  s.t.  $(v, u) \in E$ :



Initialize  $d_v=\infty$  for each node vKeep a priority queue PQ of nodes, using  $d_v$  as key Pick a start node s, set  $d_s=0$ While PQ is not empty:

v = PQ.extractmin() for each  $u \in V$  s.t.  $(v, u) \in E$ :



Initialize  $d_v = \infty$  for each node v

Keep a priority queue PQ of nodes, using  $d_{v}$  as key

Pick a start node s, set  $d_s = 0$ 

While PQ is not empty: V loops

$$v = PQ.extractmin() \frac{O(\log V)}{\log V}$$

for each  $u \in V$  s.t.  $(v, u) \in E$ : E times total

 $PQ.decreaseKey(u, min(d_u, w(v, u))) o(log V)$ 



# Single-Source Shortest Path



Find the quickest way to get from UVA to each of these other places

Given a graph G = (V, E) and a start node  $s \in V$ , for each  $v \in V$  find the least-weight path from  $s \to v$  (call this weight  $\delta(s, v)$ )

(assumption: all edge weights are positive)

Given some start node sStart with an empty tree ARepeat V-1 times:



Given some start node sStart with an empty tree ARepeat V-1 times:



Given some start node sStart with an empty tree ARepeat V-1 times:



Given some start node sStart with an empty tree ARepeat V-1 times:

VERY similar to Prim's!



Initialize  $d_v=\infty$  for each node v Keep a priority queue PQ of nodes, using  $d_v$  as key Pick a start node s, set  $d_s=0$  While PQ is not empty:

v = PQ.extractmin()

for each  $u \in V$  s.t.  $(v, u) \in E$ :



Initialize  $d_v = \infty$  for each node vKeep a priority queue PQ of nodes, using  $d_{\nu}$  as key Pick a start node s, set  $d_s = 0$ While PQ is not empty: V loops  $O(\log V)$ v = PQ.extractmin()for each  $u \in V$  s.t.  $(v, u) \in E$ : E times total  $O(\log V)$ 



# Dijkstra's Algorithm Proof Strategy

- Proof by induction
- Idea: show that when node u is removed from the priority queue,  $d_u = \delta(s, u)$ 
  - Claim 1: when u is removed from the queue,  $d_u \ge \delta(s, u)$ 
    - i.e.  $d_u$  is at least the length of the shortest path
  - Claim 2: if we consider any path (s, ..., u),  $w(s, ..., u) \ge d_u$ 
    - i.e.  $d_u$  is no longer than any other path from s to u, including the shortest one

# Proof of Dijkstra's

- Assume that nodes  $v_1 = s, ..., v_i$  have been removed from PQ already, and for each of them  $d_{v_i} = \delta(s, v_i)$
- Let node u be the  $(i + 1)^{th}$  node extracted
- Base case:

$$-i = 0, u = v_1 = s$$

#### Proof of Dijkstra's: Claim 1

- Let node u be the  $(i+1)^{th}$  node extracted
- Claim 1:  $d_u \ge \delta(s, u)$ 
  - Proof: node u has a path of weight  $d_u$  from s
  - Since  $d_u$  is the weight of SOME path, its weight is at least that of the SHORTEST path

# Proof of Dijkstra's: Claim 2

- Let node u be the  $(i+1)^{th}$  node extracted
- for any path (s, ..., u),  $w(s, ..., u) \ge d_u$
- Extracted nodes define a cut of the graph
- Let edge (x, y) be the last edge in this path which crosses the cut



Still in PQ

34

# Proof of Dijkstra's: Finale

- Claim 1:  $d_u \ge \delta(s, u)$
- Claim 2:  $d_u \le w(s, ..., u)$  for any path from s to u (including the shortest one)
- 1&2 Together:  $w(s, ..., u) \ge d_u \ge \delta(s, u)$ 
  - therefore  $\delta(s, u) \ge d_u \ge \delta(s, u)$
  - $-d_u = \delta(s, u)$

#### **Breadth-First Search**

- Input: a node s
- Behavior: Start with node s, visit all neighbors of s, then all neighbors of neighbors of s, ...
- Output: lots of choices!
  - Is the graph connected?
  - Is there a path from s to u?
  - Shortest number of "hops" from s to u

Sounds like Dijkstra's!

Initialize  $d_v = \infty$  for each node v

Keep a priority queue PQ of nodes, using  $d_v$  as key

Pick a start node s, set  $d_s = 0$ 

While PQ is not empty:

Replace with a (plain-old) Queue

v = PQ.extractmin()

for each  $u \in V$  s.t.  $(v, u) \in E$ :



#### **BFS**

Keep a queue *Q* of nodes Pick a start node *s* 

Q. enqueue(s)

While *Q* is not empty:

v = Q.dequeue()

for each "unvisited"  $u \in V$  s.t.  $(v, u) \in E$ :

Q. enqueue(u)



## BFS: Shortest "Hops" Path

```
Keep a queue Q of nodes
Pick a start node S
Q. enqueue(s)
hops = 0
While Q is not empty:
      v = Q.dequeue()
      hops += 1
      for each "unvisited" u \in V s.t. (v, u) \in E:
            u.hops = hops
            Q.enqueue(u)
```