Syndrome Decoding 對稱通道的徵狀解碼

- Error pattern 誤差向量
 - 接收的碼-傳送的碼 y-x = e

令 徵狀
$$\vec{s} = H\vec{y}^T = H\vec{e}^T$$

- ◆一個(n,k)線性碼有 2^{n-k} 個可能的徵狀, 2^{n-k} 個陪集(coset) ◆因為徵狀是一個 $n-k\times 1$ 的矩陣 $(因為 H是n-k\times n, \vec{y}^T 是n\times 1)$

 - \Diamond 對一個固定的徵狀 \dot{s} ,集合 $\{\dot{e} \mid H\dot{e}^T = \dot{s}\}$ 形成線性碼 C 的一個陪集(coset)

例:線性碼 C_2 的同位檢查矩陣為 $H_2 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \end{bmatrix} \Rightarrow n=5$,n-k=2

可能的徵狀有 $2^{n-k}=2^2=4$ 種為 $\begin{bmatrix}0\\0\end{bmatrix}$, $\begin{bmatrix}1\\0\end{bmatrix}$, $\begin{bmatrix}0\\1\end{bmatrix}$, $\begin{bmatrix}1\\1\end{bmatrix}$, 記做 00 , 10 , 01 , 11

徴狀	陪集領導	-						
00	00000	00011	00101	00110	11001	11010	11100	11111
01	00100	00111	00001	00010	11101	11110	11000	11011
10	01000	01011	01101	01110	10001	10010	10100	10111
_11	10000	10014	10101	10110	01001	01010	01100	01111

每個陪集中,漢明重量最小的一個放在最前面,叫做陪集領導(coset leader) 陪集領導是發生機率最高的誤差向量 Step 1.計算接收向量 \vec{y} 的徵狀 $\vec{s} = H\vec{y}$ 。

 $Step\ 2.$ 在標準陣列查表,找徵狀s所在的列,以陪集領導作為估計的誤差向量e。

Step 3.以接收向量 \vec{y} 減去估計的誤差向量 \vec{e} ,就是估計的傳送向量 $\hat{x} = \vec{y} - \vec{e}$ 。

例:若接收到的是 $\vec{y} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \end{bmatrix}$,首先計算徵狀 $\vec{s} = H\vec{y}$

$$\vec{s} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$
 在標準陣列查表,徵狀 11 的陪集領導 10000 當作 誤差向量 \vec{e}

估計的傳送向量 $\hat{x} = \vec{y} - \vec{e} = [1 \ 0 \ 1 \ 1 \ 0] - [1 \ 0 \ 0 \ 0] = [0 \ 0 \ 1 \ 1 \ 0]$

漢明碼的徵狀解碼

例:
$$(7,4)$$
漢明碼 C_1 的同位檢查矩陣 $H_1 = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$

行向量不能是0,假設有一行為0,當誤差向量

只錯在該行所對應的位元,則得到的徵狀是0,表示沒有錯

(徴狀
$$\vec{s} = H\vec{y}^T = H\vec{e}^T$$
)

漢明碼的dmin是3,所以任兩行也不能相同

因為每一行有3個元素,若要每一行均相異,且非零向量,則行數最多有 2^3 -1=7 行

Step 1.計算接收向量 \vec{y} 的徵狀 $\vec{s} = H\vec{y}$ 。

 $Step\ 2.$ 如果 $\vec{s} = \vec{0}$,則輸出 $\hat{x} = \vec{y}$ 。

Step 3.如果 $\vec{s} \neq \vec{0}$,則 \vec{s} 是 H 的某一行,設 $\vec{s} = \vec{c_i}$,把 \vec{y} 的第 i 位元加 1 成為 \hat{x} 輸出。如果誤差向量 $\vec{e} = \vec{0}$,則徵狀 $\vec{s} = \vec{0}$

 $w_H(e)=1$ 且e的第 i 個分量 $e_i \neq 0$,表示第 i 位元錯誤,則徵狀s 是 H 的第 i 行 c_i