Exercícios

- **2.1.** Prove que, sendo $A \subseteq B$ anéis e $b_1, \ldots, b_n \in B$, então $A[b_1, \ldots, b_n]$ é o menor subanel de B que contém A e os elementos b_1, \ldots, b_n (isto é, é o subanel de B gerado por $A \cup \{b_1, \ldots, b_n\}$).
- **2.2.** Quais dos seguintes polinómios têm factorizações próprias em $\mathbb{Z}[x][y]$? e em $\mathbb{Z}[y][x]$?

(a)
$$x^2 + xy + x + y$$
. (b) $xy^2 + x^2y + x^2 + y^2 + 2xy + x + y$.

2.3. Sabendo que $\mathbb{Z}[x,y]$ é um DFU, determine o

$$\operatorname{mdc}(x^2y^2 - xy^2 + 2x^2y - 2y^2 - 2xy + x^2 - 4y - x - 2, xy^2 + x^2y + y^2 + 2xy + x^2 + y + x).$$

- **2.4.** Determine a multiplicidade de a como raiz de $p \in A[x]$ nos seguintes casos:
 - (a) $p = x^3 yx^2 y^2x + y^3$, a = y, $A = \mathbb{Z}[y]$.

(b)
$$p = x^2y^2 + 2xy^2 + y^2 + x^2 + 2x + 1$$
, $a = -1$, $A = \mathbb{Z}[y]$.

- **2.5.** Seja D um domínio de integridade. Mostre que $D[x_1,\ldots,x_n]^*=D^*$.
- **2.6.** Seja D um DFU. Prove que se $p \in D$ é primo em D, então p é primo em $D[x_1, \ldots, x_n]$.
- **2.7.** Factorize os seguintes polinómios num produto de irredutíveis em $\mathbb{Z}[x,y]$, $\mathbb{R}[x,y]$ e $\mathbb{C}[x,y]$.

(a)
$$x^2 + y^2$$
. (b) $x^3 - 2y^3$.

- **2.8.** Factorize ou prove que são irredutíveis em $\mathbb{Z}[x,y]$:
 - (a) $xy^2 + 2x 4y + 2$.
 - (b) $x^5y^2 + x^2y + 2xy + y + x$.
 - (c) $xy^2 + x^2y + xy + x + y + 1$.
- **2.9.** Mostre que os seguintes polinómios são irredutíveis em $\mathbb{C}[x,y,z]$:

(a)
$$x^2 + y^2 - 1$$
. (b) $x^2 - y^2 + z^2$.

- **2.10.** Seja C um corpo e $p(x,y) \in C[x,y]$. Prove que p tem um factor de grau 1 em C[x,y] se e só se
 - existir $q \in C[x]$ com $gr(q) \le 1$ e p(x, q(x)) = 0 ou
 - existir $r \in C[y]$ com $gr(r) \le 1$ e p(r(y), y) = 0.