■ 다원 배치법(multi-factor design)

- 관심의 요인이 3개 이상인 경우, 모든 요인의 수준조합에 대해 확률화를 적용하여 실험
- 요인의 수가 늘어나면, 실험횟수가 많아지고 이에 대해 랜덤화가 어려워짐
- 실험전체를 비슷한 관리 상태 하에서 수행하는데 여러 가지 어려움이 따름

 □ 요인에 대한 충분한 기술적 검토를 거쳐 불필요한 요인라고 판단되면

 과감히 요인의 수를 줄임

□ 반복이 없는 삼원배치법 (고정효과모형)

- \circ 요인 A, B, C가 각각 a, b, c 개의 수준을 가짐
- abc 개의 모든 수준 조합에 대해 확률화를 적용하여 배치

○ 자료의 구조

		A_1	A_2	• • •	A_a
	C_1	Y_{111}	Y_{211}	• • •	Y_{a11}
B_1	•	•	•	٠.	:
	$igcap_c$	Y_{11c}	Y_{21c}	• • •	Y_{a1c}
•	•	•	•	•	•
	C_1	Y_{1b1}	Y_{2b1}	• • •	Y_{ab1}
$B_{\!b}$	•	•	•	٠.	•
	C_c	Y_{1bc}	Y_{2bc}	• • •	Y_{abc}

○ 모형의 구조식

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + \varepsilon_{ijk}$$

- *µ*: 전체평균
- \circ $\alpha_i, \beta_i, \gamma_k$: 요인의 주효과
- \circ $(\alpha\beta)_{ij}, (\alpha\gamma)_{ik}, (\beta\gamma)_{jk}$: 두 요인의 상호작용
- \circ $\varepsilon_{ijk} \sim \text{ iid } N(0,\sigma^2)$
- \circ 3 요인의 상호작용 $(\alpha \beta \gamma)_{ijk}$ 는 오차항 ε_{ijk} 에 교락되어 있어 별도로 검정할 수 없음

○ 변동 분해

$$\begin{split} &(Y_{ijk} - \overline{Y}_{...}) = (\overline{Y}_{i...} - \overline{Y}_{...}) + (\overline{Y}_{.j.} - \overline{Y}_{...}) + (\overline{Y}_{..k} - \overline{Y}_{...}) \\ &+ (\overline{Y}_{ij.} - \overline{Y}_{i..} - \overline{Y}_{.j.} + \overline{Y}_{...}) + (\overline{Y}_{i.k} - \overline{Y}_{i..} - \overline{Y}_{..k} + \overline{Y}_{...}) + (\overline{Y}_{.jk} - \overline{Y}_{.j.} - \overline{Y}_{..k} + \overline{Y}_{...}) \\ &+ (Y_{ijk} - \overline{Y}_{ij.} - \overline{Y}_{i.k} - \overline{Y}_{.jk} + \overline{Y}_{i..} + \overline{Y}_{.j.} + \overline{Y}_{..k} - \overline{Y}_{...}) \\ &\circ & TSS = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} Y_{ijk}^{2} - CT, \quad CT = \frac{Y_{...}^{2}}{abc} \\ &\circ & SSA = \frac{1}{bc} \sum_{i=1}^{a} Y_{i..}^{2} - CT, \quad SSB = \frac{1}{ac} \sum_{j=1}^{b} Y_{.j.}^{2} - CT, \quad SSC = \frac{1}{ab} \sum_{k=1}^{c} Y_{..k}^{2} - CT \\ &\circ & SSAB = \frac{1}{c} \sum_{i=1}^{a} \sum_{j=1}^{b} Y_{ij.}^{2} - CT, \quad SSAC = \frac{1}{b} \sum_{i=1}^{a} \sum_{k=1}^{c} Y_{i.k}^{2} - CT, \\ &SSBC = \frac{1}{a} \sum_{i=1}^{b} \sum_{k=1}^{c} Y_{.jk}^{2} - CT \end{split}$$

$$SS(AB) = SSAB - SSA - SSB, SS(AC) = SSAC - SSA - SSC,$$

$$SS(BC) = SSBC - SSB - SSC$$

$$\circ$$
 $SSE = TSS - (SSA + SSB + SSC + SS(AB) + SS(AC) + SS(BC))$

○ 분산분석표

변인		자유도	제곱합	평균제곱	F
	Α	a-1	SSA	MSA	MSA/MSE
주효과	В	b-1	SSB	MSB	MSB/MSE
	С	c-1	SSC	MSC	MSC/MSE
상호	(AB)	(a-1)(b-1)	SS(AB)	MS(AB)	MS(AB)/MSE
	(AC)	(a-1)(c-1)	SS(AC)	MS(AC)	MS(AC)/MSE
작용	(BC)	(b-1)(c-1)	SS(BC)	MS(BC)	MS(BC)/MSE
오차		(a-1)(b-1)(c-1)	SSE	MSE	
전체		abc-1	TSS		

■ 화학공장의 합성반응공정에서 합성율의 향상

○ 반응압력 : 8, 10, 12 (kg/cm^2)

○ 반응시간 : 1.5, 2.0, 2.5 (hr)

○ 반응온도 : 140, 150, 160 (°C)

		A_1	A_2	A_3												
	C_1	74	61	50												
B_1	C_2	86	78	70												
	C_3	76	71	60		A_1	A_2	A_3		A_1	A_2	A_3		B_1	B_{2}	B_3
	C_1	72	62	49	B_1	236	210	180	C_1	194	178	151	C_1	185	183	155
B_{2}	C_2	91	81	68	B_2	250	220	181	C_2	242	231	207	C_2	234	240	206
	C_3	87	77	64	B_3	169	190	181	C_3	219	211	184	C_3	207	228	179
	C_1	48	55	52												
B_3	C_2	65	72	69												
	C_3	56	63	60												

$$\circ$$
 $CT = 1817^2/27 = 122277.37$

$$\circ$$
 $TSS = 74^2 + \dots + 60^2 - CT = 3613.6$

$$SSA = \frac{1}{9}(655^2 + 620^2 + 542^2) - CT = 743.6$$

$$SSB = \frac{1}{9}(626^2 + 651^2 + 540^2) - CT = 753.4$$

$$SSC = \frac{1}{9}(523^2 + 680^2 + 614^2) - CT = 1380.9$$

$$SSAB = \frac{1}{3}(236^2 + \dots + 181^2) - CT = 2148.9$$

$$\circ SSAC = \frac{1}{3}(194^2 + \dots + 184^2) - CT = 2133.6$$

$$\circ SSBC = \frac{1}{3}(185^2 + \dots + 179^2) - CT = 2190.9$$

$$\circ$$
 $SS(AB) = SSAB - SSA - SSB = 651.9$

$$\circ$$
 $SS(AC) = SSAC - SSA - SSC = 9.1$

$$\circ$$
 $SS(BC) = SSBC - SSB - SSC = 56.6$

$$\circ \quad SSE = TSS - (SSAB + SSAB + SSBC - SSA - SSB - SSC) = 18.1$$

○ 분산분석표

변인	자유도	제곱합	평균제곱	F
Α	2	743.6	371.8	164.5
В	2	753.4	376.7	166.7
С	2	1380.9	690.4	305.5
(AB)	4	651.9	163.0	72.1
(AC)	4	9.1	2.3	1.0
(BC)	4	56.6	14.2	6.3
오차	8	18.1	2.26	
전체	26	3613.6		

\circ 분산분석표상에서 (AC)는 유의수준 $\alpha = 0.10$ 에서 기각시키지 못하기 때문에 오차항에 포함시켜 재작성

변인	자유도	제곱합	평균제곱	F
Α	2	743.6	371.8	163.8
В	2	753.4	376.7	165.7
С	2	1380.9	690.4	304.1
(AB)	4	651.9	163.0	71.8
(BC)	4	56.6	14.2	6.3
오차	12	27.2	2.27	
전체	26	3613.6		

○ 분산 분석후 추정

- 일차적으로 분산분석표에 의한 F-검정이 끝나면, 유의하지 않은 상호작용은 오차항에 흡수시켜 다시 F-검정을 실시
- 주효과만 유의한 경우
 - 각 요인수준에서의 모평균 추정
 - 점추정 : $\hat{\mu}(A_i) = \overline{Y}_{i..}$
 - 구간추정 : $\overline{Y}_{i..} \pm t_{\alpha/2,\nu} \sqrt{MSE^*} / \sqrt{bc}$
 - 수준조합에 대한 모평균 추정
 - 점추정 : $\hat{\mu}(A_iB_jC_k)=\overline{Y}_{i..}+\overline{Y}_{.j.}+\overline{Y}_{..k}-2\overline{Y}_{...}$
 - 구간추정 : $\overline{Y}_{i..}+\overline{Y}_{.j.}+\overline{Y}_{..k}-2\overline{Y}_{..}\pm t_{\alpha/2,\nu}\sqrt{\mathit{MSE}^*}/\sqrt{n_e}$
 - $\frac{1}{n_e} = \frac{1}{bc} + \frac{1}{ac} + \frac{1}{ab} \frac{2}{abc} \to n_e = \frac{abc}{a+b+c-2}$

- 주효과와 일부 상호작용만 유의한 경우
 (예) A, B, C, (AC) 만 유의하다면,
 - 수준조합에 대한 모평균 추정

- 점추정 :
$$\hat{\mu}(A_iB_jC_k) = \hat{\mu} + \hat{\alpha_i} + \hat{\beta_j} + \hat{\gamma_k} + (\widehat{\alpha\gamma})_{ik}$$
$$= \hat{\mu} + \hat{\alpha_i} + \hat{\gamma_k} + (\widehat{\alpha\gamma})_{ik} + \hat{\beta_j} = \overline{Y}_{i.k} + \overline{Y}_{.j.} - \overline{Y}_{...}$$

- 구간추정 :
$$\overline{Y}_{i.k}+\overline{Y}_{.j.}-\overline{Y}_{...}\pm t_{\alpha/2,\nu}\sqrt{\mathit{MSE}^*}/\sqrt{n_e}$$

$$- \frac{1}{n_e} = \frac{1}{b} + \frac{1}{ac} - \frac{1}{abc} \rightarrow n_e = \frac{abc}{ab+b-1}$$

- 모든 요인이 유의한 경우
 - 수준조합에 대한 모평균 추정

- 점추정 :
$$\hat{\mu}(A_iB_jC_k)=\overline{Y}_{ij.}+\overline{Y}_{i.k}+\overline{Y}_{.jk}-\overline{Y}_{i..}-\overline{Y}_{.j.}-\overline{Y}_{..k}+\overline{Y}_{...}$$

- 구간추정 :
$$\hat{\mu}(A_iB_jC_k)\pm t_{\alpha/2,\nu}\sqrt{\mathit{MSE}^*}/\sqrt{n_e}$$

-
$$n_e = \frac{abc}{ab+ac+bc-a-b-c+1}$$

lacktriangle 수준조합 $A_1B_2C_2$ 의 모평균의 점추정값과 95% 신뢰구간

$$\circ \quad \hat{\mu}(A_1B_2C_2) = \overline{y}_{12.} + \overline{y}_{.22} - \overline{y}_{.2.} = \frac{250}{3} + \frac{240}{3} - \frac{651}{9} = 91$$

$$\circ$$
 91 ± $t_{0.025,12}\sqrt{2.27/1.8} = 91 ± 2.179 × 1.123 = 91 ± 2.4 \Rightarrow (88.6%, 93.4%)$

□ 반복이 있는 삼원배치법 (고정효과모형)

- \circ 요인 A, B, C가 각각 a, b, c 개의 수준을 가짐
- \circ 반복수가 r일 때 N=abcr개의 모든 수준 조합에 대해 확률화를 적용하여 배치

○ 자료의 구조

		A_1	• • •	A_a
B_1	•	$Y_{1111}\cdots Y_{111r} \ \vdots \ Y_{11c1}\cdots Y_{11cr}$	•••	•
•	•	•	•	:
B_{b}	•	$Y_{1b11}\cdots Y_{1b1r} \ \vdots \ Y_{1bc1}\cdots Y_{1bcr}$	•••	•

○ 모형의 구조식

$$Y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \varepsilon_{ijkl}$$

- *µ*: 전체평균
- \circ $\alpha_i, \beta_i, \gamma_k$: 요인의 주효과
- \circ $(\alpha\beta)_{ij}, (\alpha\gamma)_{ik}, (\beta\gamma)_{jk}$: 두 요인의 상호작용
- \circ $(\alpha\beta\gamma)_{ijk}$: 세 요인의 상호작용
- \circ $\varepsilon_{ijk} \sim$ iid $N(0,\sigma^2)$

○ 변동 분해

$$\begin{split} (Y_{ijkl} - \overline{Y}_{...}) &= (\overline{Y}_{i...} - \overline{Y}_{...}) + (\overline{Y}_{.j..} - \overline{Y}_{...}) + (\overline{Y}_{..k.} - \overline{Y}_{...}) + (\overline{Y}_{ij..} - \overline{Y}_{i...} - \overline{Y}_{j...} + \overline{Y}_{...}) \\ &+ (\overline{Y}_{i.k.} - \overline{Y}_{i...} - \overline{Y}_{..k.} + \overline{Y}_{...}) + (\overline{Y}_{.jk.} - \overline{Y}_{.j..} - \overline{Y}_{..k.} + \overline{Y}_{...}) \\ &+ (Y_{ijk.} - \overline{Y}_{ij..} - \overline{Y}_{i.k.} - \overline{Y}_{.jk.} + \overline{Y}_{i...} + \overline{Y}_{.j..} + \overline{Y}_{..k.} - \overline{Y}_{...}) + e_{ijkl} \\ & \circ \quad TSS = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} \sum_{l=1}^{r} Y_{ijkl}^{2} - CT, \quad CT = \frac{Y_{....}^{2}}{N} \\ & \circ \quad SSA = \frac{1}{bcr} \sum_{i=1}^{a} Y_{i...}^{2} - CT, \quad SSB = \frac{1}{acr} \sum_{j=1}^{b} Y_{.j..}^{2} - CT, \\ & SSC = \frac{1}{abr} \sum_{k=1}^{c} Y_{..k.}^{2} - CT \\ & \circ \quad SSAB = \frac{1}{cr} \sum_{i=1}^{a} \sum_{j=1}^{b} Y_{ij..}^{2} - CT, \quad SSAC = \frac{1}{br} \sum_{i=1}^{a} \sum_{k=1}^{c} Y_{i.k.}^{2} - CT, \end{split}$$

$$SSBC = \frac{1}{ar} \sum_{j=1}^{b} \sum_{k=1}^{c} Y_{.jk.}^{2} - CT$$

$$\circ SSABC = \frac{1}{r} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} Y_{ijk}^{2} - CT$$

$$SS(AB) = SSAB - SSA - SSB, SS(AC) = SSAC - SSA - SSC,$$

$$SS(BC) = SSBC - SSB - SSC$$

$$\circ SS(ABC) = SSABC - (SSA + SSB + SSC + SS(AB) + SS(AC) + SS(BC))$$

$$= SSABC - (SSAB + SSAC + SSBC - SSA - SSB - SSC)$$

$$\circ$$
 SSE= TSS-SSABC

○ 분산분석표

변인		자유도	제곱합	평균제곱	F
	Α	a-1	SSA	MSA	MSA/MSE
주효과	В	b-1	SSB	MSB	MSB/MSE
	С	c-1	SSC	MSC	MSC/MSE
	(AB)	(a-1)(b-1)	SS(AB)	MS(AB)	MS(AB)/MSE
상호	(AC)	(a-1)(c-1)	SS(AC)	MS(AC)	MS(AC)/MSE
작용	(BC)	(b-1)(c-1)	SS(BC)	MS(BC)	MS(BC)/MSE
	(ABC)	(a-1)(b-1)(c-1)	SS(ABC)	MS(ABC)	MS(ABC)/MSE
오차		abc(r-1)	SSE	MSE	
전체		abcr-1	TSS		