EM78P507N

8-Bit Microcontroller

Product Specification

Doc. Version 0.9

ELAN MICROELECTRONICS CORP.
May 2009

Trademark Acknowledgments:

IBM is a registered trademark and PS/2 is a trademark of IBM. Windows is a trademark of Microsoft Corporation.

ELAN and ELAN logo are trademarks of ELAN Microelectronics Corporation.

Copyright © 2009 by ELAN Microelectronics Corporation All Rights Reserved Printed in Taiwan

The contents of this specification are subject to change without further notice. ELAN Microelectronics assumes no responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics makes no commitment to update, or to keep current the information and material contained in this specification. Such information and material may change to conform to each confirmed order.

In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information or material.

The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and may be used or copied only in accordance with the terms of such agreement.

ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of ELAN Microelectronics product in such applications is not supported and is prohibited.

NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.

ELAN MICROELECTRONICS CORPORATION

Headquarters:

No. 12, Innovation Road 1 Hsinchu Science Park Hsinchu, TAIWAN 308 Tel: +886 3 563-9977 Fax: +886 3 563-9966

http://www.emc.com.tw

Hong Kong:

Elan (HK) Microelectronics Corporation, Ltd.

Flat A, 19F., World Tech Centre 95 How Ming Street, Kwun Tong Kowloon, HONG KONG

Tel: +852 2723-3376 Fax: +852 2723-7780

Shenzhen:

Elan Microelectronics Shenzhen, Ltd.

3F, SSMEC Bldg., Gaoxin S. Ave. I Shenzhen Hi-tech Industrial Park (South Area), Shenzhen CHINA 518057

Tel: +86 755 2601-0565 Fax: +86 755 2601-0500 elan-sz@elanic.com.cn

USA:

Elan Information Technology Group (U.S.A.)

PO Box 601 Cupertino, CA 95015 U.S.A.

Tel: +1 408 366-8225 Fax: +1 408 366-8225

Shanghai:

Elan Microelectronics Shanghai, Ltd.

#23, Zone 115, Lane 572, Bibo Rd. Zhangjiang Hi-Tech Park Shanghai, CHINA 201203 Tel: +86 21 5080-3866 Fax: +86 21 5080-4600 elan-sh@elanic.com.cn

Contents

1	Gen	eral De	scription	1		
2	Feat	ures		1		
3	Pin A	Assignr	ment	2		
4	Pin I	Descrip	otion	4		
	4.1	-	P507N LQFP 48 pins			
	4.2		P507N LQFP/QFP 44 pins			
5			ram			
6	Fund	ction D	escription	9		
	61	Onerat	Potion 9 Registers 9 Indirect Addressing Register) 9 ROM Page and RAM Bank Select Register) 9 Program Counter) and Stack 9 Itatus Register) 12 IAM Select Register) 12 0 R5 TBLP (Low byte of Table Pointer Register) 13 0 R6 TBHP (High byte of Table Pointer Register) 13 0 R7 ~ RB (Port 7 ~ Port B) 13 0 RC SOCR (System Clock Control Register) 13			
	0.1	6.1.1	R0 (Indirect Addressing Register)	٥		
		6.1.2	The state of the s			
		6.1.3				
		6.1.4				
		6.1.5				
		6.1.6				
		6.1.7				
		6 1.8				
		6.1.9	Bank 0 RC SOCR (System Clock Control Register)			
		6.1.10	Bank 0 RD TWTCR (TCC and WDT Timer Control Register)	14		
		6.1.11	Bank 0 RE IMR (Interrupt Mask Register)	15		
		6.1.12	Bank 0 RF ISR (Interrupt Status Register)	15		
		6.1.13	Bank 1 R5 ADCR1 (A/D Control Register 1)	16		
		6.1.14	Bank 1 R6 ADCR2 (A/D Control Register)	17		
		6.1.15	Bank 1 R7 ADDL (A/D Low 8-Bit Data Buffer)	18		
		6.1.16	Bank 1 R8 ADDH (A/D High 8-Bit Data Buffer)	18		
		6.1.17	Bank 1 R9 ADIC1 (A/D Input Control Register 1)	18		
		6.1.18	Bank 1 RA ADIC2 (A/D Input Control Register 2)	18		
		1 407	Bank 1 RB ADIC3 (A/D Input Control Register 3)			
	8 7		Bank 1 RC COCR (Clock Output Control Register)			
9	/	447	Bank 1 RE EIMR (External Interrrupt Mask Register)			
) n \		Bank 1 RF EISR (External Interrrupt Status Register)			
7			Bank 2 R5 T1CR (Timer 1 Control Register)			
T			Bank 2 R6 TSR (Timer 1 Status Register)			
			Bank 2 R7 T1PD (Timer 1 Period Buffer)			
			Bank 2 R8 T1TD (Timer 1 Duty Buffer)			
			Bank 2 R9 T2CR (Timer 2 Control Register)			
			Bank 2 RA T2PD (Timer 2 Period Buffer)			
			Bank 2 RB T2TD (Timer 2 Duty Buffer)			
			Bank 2 RC T3CR1 (Timer 3 Control Register 1)			
		0.1.31	Bank 2 RD T3CR2 (Timer 3 Control Register 2)	24		

6.1.32	Bank 2 RE T3PD (Timer 2 Period Buffer)	.24
6.1.33	Bank 2 RF TCC (Timer Clock/Counter)	.24
6.1.34	Bank 3 R5 URC (UART Control Register)	.24
6.1.35	Bank 3 R6 URS (UART Status)	.25
6.1.36	Bank 3 R7 URRD (UART_RD Data Buffer)	.26
6.1.37	Bank 3 R8 URTD (UART_TD Data Buffer)	.26
6.1.38	Bank 3 R9 URC1 (UART Status)	.26
6.1.39	Bank 3 RA SPIS (SPI Status Register)	.26
6.1.40	Bank 3 RB SPIC (SPI Control Register)	.27
	Bank 3 RC SPIR (SPI Read Buffer)	47
	Bank 3 RD SPIW (SPI Write Buffer)	
6.1.43	Bank 3 RE EIESH (External Interrupt Edge Select Control Register)	.28
	Bank 3 RF EIESL (External Interrupt Edge Select Control Register)	
	Bank 4 R7 IOC7 (Port 7 I/O Control Register)	
	Bank 4 R8 IOC8 (Port 8 I/O Control Register)	
	Bank 4 R9 IOC9 (Port 9 I/O Control Register)	
	Bank 4 RA IOCA (Port A I/O Control Register)	
	Bank 4 RB IOCB (Port B I/O Control Register)	
	Bank 4 RC IOCC (Port C I/O Control Register)	
	Bank 4 RF WKCR (Wake-up Control Register)	
	Bank 5 R7 P7PHCR (Port 7 Pull-high Control Register)	
	Bank 5 R8 P8PHCR (Port 8 Pull-high Control Register)	
	Bank 5 R9 P9PHCR (Port 9 Pull-high Control Register)	
	Bank 5 RA PAPHCR (Port A Pull-high Control Register)	
	Bank 5 RB PBPHCR (Port B Pull-high Control Register)	
	Bank 5 RC PCPHCR (Port C Pull-high Control Register)	
	Bank 6 R7 P7ODCR (Port 7 Open-drain Control Register)	
	Bank 6 R8 P8ODCR (Port 8 Open-drain Control Register)	
	Bank 6 R9 P9ODCR (Port 9 Open-drain Control Register)	
400	Bank 6 RA PAODCR (Port A Open-drain Control Register)	
47	Bank 6 RB PBODCR (Port B Open-drain Control Register)	
	Bank 6 RC Port C	
	Bank 7 R5 I2CCR1 (I2C Status and Control Register 1)	
	Bank 7 R6 I2CCR2 (I2C Status and Control Register 2)	
	Bank 7 R7 I2CSA (I2C Slave Address Register)	
	Bank 7 R8 I2CDA (I2C Device Address Register)	
	Bank 7 R9 I2CA (I2C Address Register)	
	Bank 7 RA I2CDB (I2C Data Buffer)	
	Bank 7 RB DACDL (DA Convert Low Data Buffer)	
	Bank 7 RC DACDH (DA Convert High Data Buffer)	
	Bank 7 RD DACC1 (DA Convert Control Register 1)	
	Bank 7 RF I2CCR3 (I2C Control Register 3)	
	/DT and Prescaler	
I/O Por	t	39
Reset a	and Wake-up	41
6.4.1	Reset and Wake-up Function	.41

6.26.36.4

	6.4.2	Status of T, and P of the Status Register	44
6.5	Interru	pt	. 45
6.6	AD		. 47
6.7	SPI (S	erial Peripheral Interface)	. 49
	6.7.1	•	
	6.7.2	SPI Function Description	51
	6.7.3	SPI Signal and Pin Description	52
	6.7.4	SPI Mode Timing	54
6.8	I2C		55
	6.8.1	Master Mode	62
	6.8.2	Slave Mode	
6.9	Timer/	Counter 1	. 63
	6.9.1	Timer Mode	
	6.9.2	T1OUT Mode	64
	6.9.3	Capture Mode	64
	6.9.4	PWM Mode	65
	6.9.5	16-Bit Mode	65
6.10	Timer	2	. 66
	6.10.1	Timer Mode	67
		PWM Mode	
6.11	Timer	3	. 68
		Timer Mode	
	6.11.2	T3OUT Mode	69
6.12	UART.	<u> </u>	. 69
	6.12.1	UART MODE:	71
	6.12.2	Transmitting	71
	6.12.3	Receiving	72
	6.12.4	Baud Rate Generator:	72
	6.12.5	UART Timing:	73
6.13	DA Co	nversion	74
6.14	Initializ	red Values after Reset	. 75
6.15	Oscilla	tor	. 88
	**************************************	Oscillator Modes	
A P.	W A	Crystal Oscillator/Ceramic Resonators (Crystal)	
	400h. All	External RC Oscillator Mode	
	460	Internal RC Oscillator Mode	
6.16		-on Considerations	
0.10		External Power-on Reset Circuit	
		Residue-voltage Protection	
6 17		Option	
J. 11		Code Option Register (Word 0)	
		Code Option Register (Word 1)	
		Code Option Register (Word 2)	
		Code Option Register (Word F)	

		1
	6.18 Instruction Set	97
7	Absolute Maximum Rating	100
8	Electrical Characteristics	100
	8.1 DC Electrical Characteristic	100
	8.2 AC Electrical Characteristic	101
9	Timing Diagrams	102
		~0
	APPENDIX	

Specification Revision History

Package Type.....

Doc. Version Revision Description		Date	
0.9	Preliminary version	2009/05/22	

1 General Description

The EM78P507N is an 8-bit microprocessors designed and developed with low-power and high-speed CMOS technology. Integrated onto a single IC are on-chip Watchdog Timer (WDT), RAM, ROM, programmable real time clock counter (TCC), internal/external interrupt, power down mode, four 8-bit timers, SPI, I²C, UART, Current type DA Converter,10 bits/24 channels AD, LVD and tri-state I/O. It is equipped with a 6K×13-bit Electrical One Time Programmable Read Only Memory (OTP-ROM).

With its enhanced OTP-ROM features, the EM78P507N provides a convenient way of developing and verifying user's programs. Moreover, this OTP-ROM device offers the advantages of easy and effective program updates, using development and programming tools. Users can avail of the ELAN Writer to easily program their development code.

2 Features

- CPU Configuration
 - 6K×13 bits on-chip ROM
 - 272×8 bits on-chip registers
 - · 8-level stacks for subroutine nesting
 - Dual clock operation mode
 - Four operation mode: Normal, Green, Idle, Sleep
 - Four programmable Level Voltage Detector (LVD): 2.3V, 3.0V
 - Power-on reset Level Voltage: 1.8 reset level,
 1.9 release
 - Less than 1.0 mA at 5V / 4 MHz
 - Typically 15 μA, at 3V / 32kHz
 - Typically 2 μA, during sleep mode
- I/O Port Configuration
 - 6 bidirectional I/O ports: P7, P8, P9, PA, PB and PC
 - 46 I/O pins
 - 46 programmable pull-high I/O pins
 - 40 programmable open-drain I/O pins
 - External interrupt with Wake-up: P74~P77, P82~P83, PB0~PB3
- Operating Voltage
 - 2.2V~3.6V at -20°C~85°C (Industrial)
 - 2.1V~3.6V at 0°C~70°C (Commercial)
- Operating Frequency
 - Crystal/IRC/ERC oscillation circuit selected by code option for system clock
 - IRC oscillation circuit selected by code option or register

Main Clock

- Crystal mode: DC~20 MHz/2 clks @ 3.3V;
 DC~100ns inst. cycle @ 3.3V
 DC~16 MHz/2 clks @ 2.2V; DC~250ns inst. cycle @ 2.2V
- ERC mode :
- IRC mode: DC~16 MHz/2 clks @ 2.2V;
 DC~400ns inst. cycle @ 2.2V

Sub Clock

IRC mode : 16kHz

- Peripheral Configuration
 - One clock output pin can output the presently working frequency
 - 8-bit real time clock/counter (TCC)
 - 24-channel Analog-to-Digital Converter with 12-bit resolution in Vref mode
 - Three 8-bit timers
 - 8-bit Timer 1, auto reload counter/timer which can be an interrupt source. Function mode; Timer, Toggle output, UART baud rate generator, Capture, PWM
 - 8-bit Timer 2, auto reload timer which can be an interrupt source. Function mode; Timer, SPI baud rate generator, PWM
 - Two sets of 8 bits auto reload counter/timer which can be cascaded to one 16-bit counter/timer
 - 8-bit Timer 3 with external clock source and can generate a 50% duty pulse output from T3OUT Pin.
 - Universal Asynchronous Receiver/Transmitter (UART) available (operates in 16 MHz/2Mbps, 2.2V)
 - I²C-bus function, including 7-bit/10-bit address 8-bit data transmit/ receive mode and 16 bytes buffer to save the data.
 - Serial Peripheral Interface (SPI)
 - Digital-to-Analog Converter current type with 10-bit resolution
- Single instruction cycle commands
- 22 available interrupts: 10 external, 12 internal
 - TCC overflow interrupt
 - Ten External interrupts (wake-up from sleep mode)
 - Three timer interrupts
 - A/D converter interrupt
 - SPI interrupt
 - Two I²C interrupts
 - Three UART interrupts
 - Low voltage detect (LVD)

- Special Features
 - Programmable free running watchdog timer
 - · High ESD immunity
 - Power saving Sleep mode
 - · Selectable Oscillation mode

Package Type:

44 pin LQFP/QFP 10×10mm : EM78P507NQ/L44J/S
 48 pin LQFP 7×7mm : EM78P507NQ48J/S

Note: Green products do not contain hazardous substances.

3 Pin Assignment

Figure 3-1 EM78P507N 44-pin QFP/LQFP Package

Figure 3-2 EM78P507N 48-pin LQFP Package

4 Pin Description

4.1 EM78P507N LQFP 48 pins

Symbol	Pin No.	Туре	Function
OSCI	6	I	Crystal type: Crystal input terminal or external clock input pin. RC type: RC oscillator input pin.
0000	-	0	Crystal type: Output terminal for crystal oscillator or external clock input pin.
OSCO	7	0	RC type: Clock output with a period of 1 instruction cycle time.
			External clock signal input.
			P70~P77 are bidirectional I/O pins.
			P70 can be used as AD13.
			P71 can be used as AD14.
	20.42		P72 can be used as AD15, DACO.
P70 ~ P77	39~42 1~4	I/O	P73 can be used as AD16.
	1~4		P74 can be used as INT0.
			P75 can be used as INT1, T1OUT and PWM1.
			P76 can be used as INT2 and T1CK.
			P77 can be used as INT3 and T1CAP
			P80, P82~P87are bidirectional I/O pins.
			P81 only act as intupt pin.
			P80 can be used as T3CLK.
			P81 can be used as /RESET.
P80 ~ P87	9	1/0	P82 can be used as INT8 and AD8.
F00 ~ F01	12 ~ 18	1/0	P83 can be used as INT9 and AD7.
			P84 can be used as Vref.
	1		P85 can be used as AD6.
			P86 can be used as AD5.
			P87 can be used as AD4.
			P90~P97are bidirectional I/O pins.
			P90 can be used as AD3 and PWM2.
7			P91 can be used as AD2 and CLKOUT.
			P92 can be used as AD1.
P90 ~ P97	19 ~ 26	I/O	P93 can be used as AD0.
			P94 can be used as AD22.
			P95 can be used as AD21.
			P96 can be used as AD20.
			P97 can be used as AD19.

	ı		
Symbol	Pin No.	Type	Function
			PA0~PA7are bidirectional I/O pins.
			PA0 can be used as AD18.
			PA1 can be used as AD17.
			PA2 can be used as SCL.
PA0 ~ PA7	27 ~ 34	I/O	PA3 can be used as SDA.
			PA4 can be used as SI.
			PA5 can be used as SO.
			PA6 can be used as SCK.
			PA7 can be used as /SS
			PB0~PB7are bidirectional I/O pins.
	25 . 20	I/O	PB0 can be used as INT4 and AD9.
			PB1 can be used as INT5 and AD10.
PB0 ~ PB7	35 ~ 38 43 ~ 46		PB2 can be used as INT6 and AD11.
	10 10		PB3 can be used as INT7 and AD12.
			PB4 can be used as RX.
			PB5 can be used as TX.
		1/0	PC0~PC5 are bidirectional I/O pins.
	7 ~ 6		PC0 can be used as OSCO.
PC0 ~ PC5	10 ~ 11		PC1 can be used as OSCI.
	47 ~ 48		PC2 can be used as T3OUT.
			PC3 can be used as AD23.
	1 PA		If it remains at logic low, the device will be reset.
/RESET	12		Wake-up from sleep mode when pin status changes.
MEGET	1		Voltage on /RESET must not be over VDD during normal
VDD 5 -			mode.
		_	Power supply for IC emulation. Can be adjusted as per
			customer requirement.
VSS	8	_	Ground

4.2 EM78P507N LQFP/QFP 44 pins

Symbol	Pin No.	Туре	Function
OSCI	6	l	Crystal type: Crystal input terminal or external clock input pin.
			RC type: RC oscillator input pin.
osco	7	0	Crystal type: Output terminal for crystal oscillator or external clock input pin. RC type: Clock output with a period of 1 instruction cycle time. External clock signal input.
P70 ~ P77	39~42 1~4	I/O	P70~P77 are bidirectional I/O pins. P70 can be used as AD13. P71 can be used as AD14. P72 can be used as AD15, DACO P73 can be used as AD16. P74 can be used as INT0. P75 can be used as INT1, T1OUT and PWM1. P76 can be used as INT2 and T1CK. P77 can be used as INT3 and T1CAP.
			P80, P82~P87are bidirectional I/O pins.
			P81 only act as input pin.
			P80 can be used as T3CLK.
			P81 can be used as /RESET.
P80 ~ P87	9, 12 ~ 18	 //O	P82 can be used as INT8 and AD8.
1 00 1 07	3, 12 10	1/0	P83 can be used as INT9 and AD7.
	N.		P84 can be used as Vref.
			P85 can be used as AD6.
			P86 can be used as AD5.
			P87 can be used as AD4.
			P90~P97are bidirectional I/O pins.
			P90 can be used as AD3 and PWM2.
			P91 can be used as AD2 and CLKOUT.
			P92 can be used as AD1.
P90 ~ P97	19 ~ 26	I/O	P93 can be used as AD0.
			P94 can be used as AD22.
			P95 can be used as AD21.
			P96 can be used as AD20.
			P97 can be used as AD19.

(This specification is subject to change without further notice)

	Symbol	Pin No.	Туре	Function
	PA0 ~ PA7	27 ~ 34	I/O	PA0~PA7are bidirectional I/O pins. PA0 can be used as AD18. PA1 can be used as AD17. PA2 can be used as SCL. PA3 can be used as SDA. PA4 can be used as SI. PA5 can be used as SO. PA6 can be used as SCK. PA7 can be used as /SS
	PB0 ~ PB5	35 ~ 38 43 ~ 44	I/O	PB0~PB5are bidirectional I/O pins. PB0 can be used as INT4 and AD9. PB1 can be used as INT5 and AD10. PB2 can be used as INT6 and AD11. PB3 can be used as INT7 and AD12. PB4 can be used as RX. PB5 can be used as TX.
•	PC0 ~ PC3	7 ~ 6 10 ~ 11	I/O	PC0~PC3 are bidirectional I/O pins. PC0 can be used as OSCO. PC1 can be used as OSCI. PC2 can be used as T3OUT. PC3 can be used as AD23.
/RESET 12		_	If it remains at logic low, the device will be reset. Wake-up from sleep mode when pins status changes. Voltage on /RESET must not be over VDD during normal mode.	
VDD 5 -			-	Power supply for IC emulation. Can be adjusted as per customer requirement.
P	VSS	6	-	Ground

5 Block Diagram

Figure 5-1 Functional Block Diagram

6 Function Description

6.1 Operational Registers

6.1.1 R0 (Indirect Addressing Register)

R0 is not a physically implemented register. It is used as an indirect addressing pointer. Any instruction using R0 as a pointer actually accesses data pointed by the RAM Select Register (R4).

6.1.2 R1 (ROM Page and RAM Bank Select Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	PS2	PS1	PS0	0	BS2	BS1	BS0

Bit 7: not used bits, fixed to "0" all the time.

Bits 6~4 (PS2~PS0): ROM Page Select Register. They are used to select Pages 0~15. These are read only.

Bit 3: not used, fixed to "0" all the time.

Bits 2~0 (BS2~BS0): RAM Bank Select Register. They are used to select Banks 0~7 for R20~R3F or Banks 0~7 for control register.

6.1.3 R2 (Program Counter) and Stack

- R2 and hardware stacks are 10-bit wide. The structure is depicted in Figure 6-1.
- Generates 6K×13 bits on-chip ROM addresses to the relative programming instruction codes. One program page is 1024 words long.
- The contents of R2 are set to all "0"s upon a RESET condition.
- "JMP" instruction allows the direct loading of the lower 10 program counter bits.
 Thus, "JMP" allows PC to jump to any location within a page.
- "CALL" instruction loads the lower 10 bits of the PC, and then PC+1 is pushed onto the stack. Thus, the subroutine entry address can be located anywhere within a page.
- "LJMP" instruction allows direct loading of the lower 12 program counter bits. Therefore, "LJMP" allows PC to jump to any location within 6K (212).
- "LCALL" instruction loads the lower 12 bits of the PC, and then PC+1 is pushed onto the stack. Thus, the subroutine entry address can be located anywhere within 6K (212).

- "RET" ("RETL k", "RETI") instruction loads the program counter with the contents of the top of stack.
- "ADD R2, A" allows a relative address to be added to the current PC, and the ninth and above bits of the PC will increase progressively.
- "MOV R2, A" allows to load an address from the "A" register to the lower 8 bits of the PC, and the ninth and tenth bits (A8~A9) of the PC remain unchanged.
- Any instruction except "ADD R2,A" that is written to R2 (e.g. "MOV R2, A", "BC R2, 6", etc.) will cause the ninth and the tenth bits (A8~A9) of the PC to remain unchanged.
- In the case of EM78P507N, the most significant bits (A12~A10) will be loaded with the contents of PS2~PS0 in the status register (R1) upon the execution of a "JMP", "CALL", or any other instruction set which are written to R2.

Figure 6-1 Program Counter Organization

R6 R7 R7<	Addr.	Bank 0 Registers	Bank 1 Registers	Bank 2 Registers	Bank 3 Registers	Bank 4 Registers	Bank 5 Registers	Bank 6 Registers	Bank 7 Registers			
	00	R0 (Indirect	Addressing R	egister, IAR)								
03 R3 (Status Register, SR) 04 R4 (Select Indirect Address Register, RSR) 05 R5 R5 R5 R5 R5 (J2CCR1) 06 R6 R6 R6 R6 R6 (J2CCR1) Reserve (J2CCR1) 07 R7 R	01	R1 (ROM Pa	R1 (ROM Page and RAM Bank Select Register, RPBSR)									
No.	02	R2 (Program	R2 (Program Counter, PC)									
R5	03	R3 (Status Register, SR)										
O5	04	R4 (Select II	ndirect Addres	s Register, RSF	₹)							
O6	05					Reserve	Reserve	Reserve	R5 (I2CCR1)			
07 (Port 7) (ADDL) (T1PD) (URRD) (IOC7) (P7PHCR) (P7ODCR) (I2CSA) 08 R8 R9 R9 <td>06</td> <td></td> <td></td> <td></td> <td></td> <td>Reserve</td> <td>Reserve</td> <td>Reserve</td> <td>R6 (I2CCR2)</td>	06					Reserve	Reserve	Reserve	R6 (I2CCR2)			
08 (Port 8) (ADDH) (T1TD) (URTD) (IOC8) (P8PHCR) (P8ODCR) (I2CDA) 09 R9 R9 <td>07</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	07											
09 (Port 9) (ADIC1) (T2CR) (URC2) (IOC9) (P9PHCR) (P9ODCR) (I2CA) 0A RA (Port A) RA (ADIC2) RA (T2PD) RA (SPIS) RA (PAPHCR) RA (I2CDB) <	08					T						
OA (Port A) (ADIC2) (T2PD) (SPIS) (IOCA) (PAPHCR) PAODCR) (I2CDB) OB RB RB RB RB (Port B) (ADIC3) (T2TD) (SPIC) (IOCB) (IOCB) (PAPHCR) PAODCR) (I2CDB) OC RC RC RC RC RC RC (SCCR) (COCR) (T3CR1) (SPIR) (IOCC) (PCPHCR) (PORT C) (DACDL) OD RD (TWTCR) Reserve RESERVE (SPIW) Reserve Rese	09								-			
OB (Port B) (ADIC3) (T2TD) (SPIC) (IOCB) (PBPHCR) PBODCR) (DACDL) OC RC RC (SCCR) (COCR) (T3CR1) (SPIR) (IOCC) (PCPHCR) (Port C) (DACDH) OD RD (TWTCR) Reserve RESERVE (SPIW) Reserve Reserv	0A											
OC (SCCR) (COCR) (T3CR1) (SPIR) (IOCC) (PCPHCR) (Port C) (DACDH) OD RD (TWTCR) Reserve RD (SPIW) Reserve Rese	0B			40					RB (DACDL)			
OD (TWTCR) Reserve (T3CR2) (SPIW) Reserve Reserve Reserve (DACC1) RE RE RE RE (EISH) Reserve Reserve Reserve Reserve (DACC1) OF RF RF RF (EISR) (TCC) (EIESL) (WKCR) Reserve	0C								RC (DACDH)			
OE (IMR) (EIMR) (T3PD) (EIESH) Reserve Reserve Reserve Reserve Reserve OF RF RF RF (EISR) (TCC) (EIESL) (WKCR) Reserve Reserv	0D		Reserve	~6		Reserve	Reserve	Reserve	RD (DACC1)			
OF (ISR) (EISR) (TCC) (EIESL) (WKCR) Reserve Reserve I2CCR3) 10 General Registers (16x8 bits) 15 20 General General General Registers	0E			In the second se		Reserve	Reserve	Reserve	Reserve			
: 1F 20 General General General General General Registers	0F	A Li worth					Reserve	Reserve	RF I2CCR3)			
Registers Registers Registers Registers Registers Registers Registers Registers	Mira											
[20 ; 3F								General Registers (32×8 bits)			

Figure 6-2 Data Memory Configuration

6.1.4 R3 (Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
VDB	LVDEN	LVDS	Т	Р	Z	DC	С

Bit 7 (VDB): Voltage Detector. This is read only. When VDD pin voltage is lower than Vdet (selected by LVDS), this bit will be cleared.

0: Low voltage is detected

1: Low voltage is not detected or LVD function is disabled.

Bit 6 (LVDEN): Voltage Detect Enable Bit

0: No action

1: Voltage detect enable

Bit 5 (LVDS): Detect Voltage Select Bits

LVDS	Detect Voltage
0	2.3V
1	3.0V

Bit 4 (T): Time-out bit. Set to 1 by the "SLEP" and "WDTC" commands or during power-on and reset to 0 by WDT time-out. This bit is read only.

Event	Т	Р	Remark
WDT wake-up from sleep mode	0	0	_
WDT time out (not sleep mode)	0	1	-
/RESET wake-up from sleep	1	0	-
Power up	1	1	-
Low pulse on /RESET	×	×	x: d'on't care

Bit 3 (P): Power-down bit. Set to 1 during power-on or by a "WDTC" command and reset to 0 by a "SLEP" command. This bit is read only.

Bit 2 (Z): Zero flag. Set to "1" if the result of an arithmetic or logic operation is zero.

Bit 1 (DC): Auxiliary carry flag

Bit 0 (C): Carry flag

6.1.5 R4 (RAM Select Register)

Bits 7 ~ 6: Used to select Bank 0 ~ Bank 3

Bits 5~0: Used to select registers (Address: 00~3F) in indirect addressing mode.

See the data memory configuration in Figure 6-2.

6.1.6 Bank 0 R5 TBLP (Low byte of Table Pointer Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RBit 7	RBit 6	RBit 5	RBit 4	RBit 3	RBit 2	RBit 1	RBit 0

Bits 7 ~ 0 (RBit 7 ~ RBit 0): Table Pointer Address Bits 0 ~7

6.1.7 Bank 0 R6 TBHP (High byte of Table Pointer Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TBSHL	0	0	RBit 12	RBit 11	RBit 10	RBit 9	RBit 8

Bit 7 (TBSHL): Table address select high bit and low bit.

0: Take the low 8 bits of machine code to the "TBLP" register.

1: Take the high 5 bits of machine code to the "TBHP" register.

Bits 4 ~ 0 (RBit 12 ~ RBit 8): Table Pointer Address Bits 12 ~ 8.

6 1.8 Bank 0 R7 ~ RB (Port 7 ~ Port B)

R7 ~ RB are I/O registers.

6.1.9 Bank 0 RC SOCR (System Clock Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	0	IDLE	0	0	CPUS

Bits 7~4: not used, fixed to "0" all the time.

Bit 3 (IDLE): Idle Mode Enable Bit. This bit will determine as to which mode to enter after SLEP instruction.

IDLE="0"+SLEP instruction \rightarrow sleep mode.

IDLE="1"+SLEP instruction → idle mode.

Bits 2 ~ 1: not used, fixed to "0" all the time.

Bit 0 (CPUS): CPU Oscillator Source Select

0: sub-oscillator (Fs)

1: main oscillator (Fosc)

When CPUS=0, the CPU oscillator selects the sub-oscillator and the main oscillator is stopped.

■ CPU Operation Mode

Figure 6-3 CPU Operation Mode

6.1.10 Bank 0 RD TWTCR (TCC and WDT Timer Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDTE	WPSR2	WPSR1	WPSR0	TCCS	TPSR2	TPSR1	TPSR0

Bit 7 (WDTE): Watchdog Timer Enable. This control bit is used to enable the watchdog timer.

0: Disable WDT function

1: Enable WDT function

Bits 6 ~ 4 (WPSR2 ~ WPSR0): WDT Prescaler Bits

	WPSR2	WPSR1	WPSR0	WDT Rate
	0	0	0	1:1 (Default)
	0	0	1	1:2
	0	1	0	1:4
	0	1	1	1:8
M	1	0	0	1:16
	1	0	1	1:32
	1	1	0	1:64
	1	1	1	1:128

Bit 3 (TCCS): TCC Clock Source Select Bit.

0: Fm (main clock).

1: Fs (sub clock).

Bits 2 ~ 0 (TPSR2 ~ TPSR0): TCC Prescaler Bits

TPSR2	TPSR1	TPSR0	WDT Rate
110	0	0	1:2 (Default)
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

6.1.11 Bank 0 RE IMR (Interrupt Mask Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T1IE	LVDIE	ADIE	SPIE	URTIE	EXIE9	EXIE8	TCIE

NOTE

- "1" means with interrupt request; "0" means no interrupt occurs.
- Banks 0 ~ 1-RF can be cleared by instruction but cannot be set.
- Banks 0 ~ 1-RE are the interrupt mask register.
- Reading Banks 0 ~ 1-RF will result to "logic AND" of Banks 0 ~ 1-RE and Banks 0 ~ 1-RF.

Bits 7~0 (TCIE ~ T1IE): Interrupt Enable Bit. Enable interrupt source respectively.

0: Disable interrupt

1: Enable interrupt

6.1.12 Bank 0 RF ISR (Interrupt Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T1IF	LVDIF	ADIF	SPIIF	URTIF	EXIF9	EXIF8	TCIF

NOTE

- "1" means with interrupt request; "0" means no interrupt occurs.
- Bank 0-RF can be cleared by instruction but cannot be set.
- Bank 0-RE is the interrupt mask register.
- Reading Bank 0-RF will result to "logic AND" of Bank 0-RE and Bank 0-RF.

Bit 7 (T1IF): Timer 1 Interrupt Flag.

Bit 6 (LVDIF): Low Voltage Detector Interrupt Flag.

Bit 5 (ADIF): A/D Conversion Complete Interrupt Flag.

Bits 4 (SPIIF): SPI Transfer Complete Interrupt Flag.

Bits 3 (URTIF): UART Transmit Interrupt Flag.

Bits 2 (EXIF9): External Interrupt 9 Occur Flag.

Bits 1 (EXIF8): External Interrupt 8 Occur Flag.

Bits 0 (TCIF): TCC Overflow Interrupt Flag.

6.1.13 Bank 1 R5 ADCR1 (A/D Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADRUN	ADP	ADCK1	ADCK0	-		A -	-

Bit 7 (ADRUN): Start AD Conversion

0: Reset on conversion completion by hardware. This bit cannot be reset by software.

1: Start Conversion

Bit 6 (ADP): A/D Power Control

Bits 5 ~ 4 (ADCK1~ADCK0): AD Conversion Time Select Bits.

ADCK1	ADCK0	Clock Source	Max. Operating Frequency (Fc)
0	0	Fc/4	1 MHz
0	1	Fc/16	4 MHz
1	0	Fc/32	8 MHz
1	1	Fc/64	16 MHz

Bit 3 ~ Bit0: not used

6.1.14 Bank 1 R6 ADCR2 (A/D Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	ADREF	0	ADIS4	ADIS3	ADIS2	ADIS1	ADIS0

Bit 7: Not used

Bit 6 (ADP): A/D Reference Voltage Input Select.

0: Internal VDD, P84 is used as I/O.

1: External reference pin, P84 is used as reference input pin.

Bit 5: not used fixed '0'.

Bits 4~0 (ADIS4~ADIS0): A/D Input Select Bits

ADIS4	ADIS3	ADIS2	ADIS1	ADIS0	Analog Input Pin
0	0	0	0	0	AD0
0	0	0	0	1	AD1
0	0	0	1	0	AD2
0	0	0	1	1	AD3
0	0	1	0	0	AD4
0	0	1	0	1	AD5
0	0	1	1	O	AD6
0	0	1	T	1	AD7
0	1	0	0	0	AD8
0	1	0	0	1	AD9
0	4	0	1	0	AD10
0	1	0	1	1	AD11
0	1	1	0	0	AD12
0	1	1	0	1	AD13
0	1	1	1	0	AD14
0	1	1	1	1	AD15
1	0	0	0	0	AD16
1 /	0	0	0	1	AD17
1	0	0	1	0	AD18
1	0	0	1	1	AD19
1	0	1	0	0	AD20
1	0	1	0	1	AD21
1	0	1	1	0	AD22
1	0	1	1	1	AD23

6.1.15 Bank 1 R7 ADDL (A/D Low 8-Bit Data Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0

Bits 7~0 (ADD7~ADD0): AD Low 8-bit Data Buffer.

6.1.16 Bank 1 R8 ADDH (A/D High 8-Bit Data Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	0	ADD11	ADD10	ADD9	ADD8

Bits 7~4: not used, fixed to "0" all the time.

Bits 3~0 (ADD11~ADD8): AD High 4-bit Data Buffer.

6.1.17 Bank 1 R9 ADIC1 (A/D Input Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0

Bits 7~0 (ADE7~ADE0): AD Input pin enable control.

0: Act as I/O pin

1: Act as analog input pin

6.1.18 Bank 1 RA ADIC2 (A/D Input Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADE15	ADE14	ADE13	ADE12	ADE11	ADE10	ADE9	ADE8

Bits 7~0 (ADE15~ADE8): AD Input pin enable control.

0: Act as I/O pin

1: Act as analog input pin

6.1.19 Bank 1 RB ADIC3 (A/D Input Control Register 3)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADE23	ADE22	ADE21	ADE20	ADE19	ADE18	ADE17	ADE16

Bits 7~0 (ADE23~ADE16): AD Input pin enable control.

0: Act as I/O pin

1: Act as analog input pin

6.1.20 Bank 1 RC COCR (Clock Output Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	RCM1	RCM0	CLKOE	CLKB1	CLKB0

Bits 7~5: not used fixed "0".

Bits 4~3 (RCM1~0): IRC Mode Select Bits

RCM1	RCM0	Frequency
0	0	1 MHz
0	1	8 MHz
1	0 16 MHz	
1	1	4 MHz

Bit 2 (CLK): Port 9.1 as CLK Output Pin.

1: No action

0: Enable CLK output

Bits 1~0 (CLKB1~0): Clock Output Rate Select Bits.

CLKB1	CLKB0	CLK Rate
0	0	1:1
0	1	1:2
1	0	1:4
1	1	1:8

6.1.21 Bank 1 RE EIMR (External Interrrupt Mask Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EXIE7	EXIE6	EXIE5	EXIE4	EXIE3	EXIE2	EXIE1	EXIE0

Bits 7~0 (EXIE7~EXIE0): Interrupt Enable Bit, enable interrupt source respectively

6.1.22 Bank 1 RF EISR (External Interrrupt Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EXIF7	EXIF6	EXIF5	EXIF4	EXIF3	EXIF2	EXIF1	EXIF0

Bits 7~0 (EXIE7~EXIE0): Interrupt Flag of External Interrupts 0~7 occur

6.1.23 Bank 2 R5 T1CR (Timer 1 Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TIS1	TIS0	T1MS2	T1MS1	T1MS0	T1P2	T1P1	T1P0

Bits 7~6 (T1S1~0): Timer 1 and Timer 2 Interrupt Type Select Bits. These two bits are used when the Timer operates in PWM mode.

TIS1	TIS0	Timer 1 and Timer 2 Interrupt Type Select
0	0	TXPD underflow
0	1	TXTD underflow
1	×	TXPD and TXTP underflow

Bit 5~ (T1MS2~T1MS0): Timer 1 Operation Mode Select Bits

T1MS2	T1MS1	T1MS0	Timer 2 Mode Select		
0	0	0	Timer 1		
0	0	1	T1OUT mode		
0	1	0	Capture Mode Rising Edge		
0	1	1	Capture Mode falling Edge		
1	0	0	UART Baud Rate Generator		
1	0	1			
1	1	0	PWM		
1	1	1			

Bits 2~0 (T1CSS1~T1CSS0): Timer 1 Clock Source Select Bits

T1P2	T1P1	T1P0	Prescaler
0	0	0	1:2 (Default)
0	0	1	1:4
0	0 1		1:8
0	0 1		1:16
4	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

6.1.24 Bank 2 R6 TSR (Timer 1 Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T1MOD	TRCB	T1CSS1	T1CSS0	T2CSS	T1EN	0	T10C

Bit 7 (T1MOD): Timer Operating Mode Select Bit

0: Two 8-bit Timers

1: Timer 1 and Timer 2 cascade to one 16-bit Timer

NOTE

By setting T1MOD to "1", the Timer can cascade to one 16-bit Timer. This 16-bit Timer is controlled by Timer 1, including enable clock source and prescaler. Timer 1 is MSB and Timer 2 is LSB in value of period and duty.

Bit 6 (TRCB): Timers 1, 2, 3 Read Control Bit

0: When this bit is set to 0, read data from T1PD, T2PD or T3PD.

1: When this bit is set to 1, read data from T1PD, T2PD or T3PD, but this is value of the timer counter.

Bits 5~4 (T1CSS1~0): Timer 1 Clock Source Select bits.

T1CSS1	T1CSS0	Timer 1 Clock Source Select
0	0	Fm
0	1	Fs
1	×	T1CK

Bit 3 (T2CSS): Timer 2 Clock Source Select Bit

0: Main clock with prescaler

1: Sub clock with prescaler

Bit 2 (T1EN): Timer 1 Start Bit

0: Timer 1 stop

1: Timer 1 start

Bit 1: Not used

Bit 0 (T10C): Timer 1 Output Flip-Flop Control Bit

0: T-FF is low

1: T-FF is high

6.1.25 Bank 2 R7 T1PD (Timer 1 Period Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PRD1[7]	PRD1[6]	PRD1[5]	PRD1[4]	PRD1[3]	PRD1[2]	PRD1[1]	PRD1[0]

Bits 7~0 (PRD1[7]~PRD1[0]): The content of this register is a period of Timer 1.

6.1.26 Bank 2 R8 T1TD (Timer 1 Duty Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TD1[7]	TD1[6]	TD1[5]	TD1[4]	TD1[3]	TD1[2]	TD1[1]	TD1[0]

Bits 7~0 (TD1[7]~TD1[0]): The content of this register is a period of Timer 1

6.1.27 Bank 2 R9 T2CR (Timer 2 Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T2IF	T2IE	T2EN	T2MS1	T2MS0	T2P2	T2P1	T2P0

Bit 7: Interrupt Flag of Timer 2 Interrupt

Bit 6: Timer 2 Interrupt Mask bit

0: Disable Timer 2 interrupt

1: Enable Timer 2 interrupt

Bit 5 (T2EN): Timer 2 Start Bit

0: Timer 2 stop

1: Timer 2 start

Bits 4~3 (T2MS1~T2MS0): Timer 2 Operation Mode Selects Bits

T2MS1	T2MS0	Timer 2 Mode Select			
0	0	Timer 2			
0	1	SPI Baud Rate Generator			
1	0	PWM2			
1	1	PVVIVIZ			

Bits 2~0 (T2P2~T2P0): Timer 2 Prescaler Bits

T2P2	T2P1	T2P0	Prescaler
0	0	0	1:2 (Default)
0	0 1		1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1 :32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

6.1.28 Bank 2 RA T2PD (Timer 2 Period Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PRD2[7]	PRD2[6]	PRD2[5]	PRD2[4]	PRD2[3]	PRD2[2]	PRD2[1]	PRD2[0]

Bits 7~0 (PRD2[7]~PRD2[0]): The content of this register is a period of Timer 2.

6.1.29 Bank 2 RB T2TD (Timer 2 Duty Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TD2[7]	TD2[6]	TD2[5]	TD2[4]	TD2[3]	TD2[2]	TD2[1]	TD2[0]

Bits 7~0 (TD2[7]~TD2[0]): The content of this register is a duty of Timer 2.

6.1.30 Bank 2 RC T3CR1 (Timer 3 Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T3IF	T3IE	T3EN	T3CSS1	T3CSS0	T3P2	T3P1	T3P0

Bit 7 (T3IF): Interrupt Flag of Timer 3 Interrupt

Bit 6 (T3IE): Timer 3 Interrupt Mask bit

0: Disable Timer 3 interrupt

1: Enable Timer 3 interrupt

Bit 5 (T3EN): Timer 2 Start Bit

0: Timer 2 stop

1: Timer 2 start

Bits 4~3 (T3CSS1~T3CSS0): Timer 3 Clock Source Selects Bits

T3CSS1	T3CSS0	Timer 3 Clock Source Select					
0	0	Fm					
0	1	Fs					
1	×	T3CK					

Bits 2~0 (T3P2~T3P0): Timer 3 Pre-scaler Bits

T3P2	T3P1	T3P0	Prescaler
0	0	0	1:2 (Default)
0	0	1	1:4
0	1	0	1:8
0	1	1	1 : 16
1	0	0	1 : 32
1	0	1	1 : 64
1	1	0	1 : 128
1	1	1	1 : 256

6.1.31 Bank 2 RD T3CR2 (Timer 3 Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	0	0	0	T3MS1	T3MS0

Bits 7~2: Not used, fixed "0"

Bits 2~0 (T3MS1~T3MS0): Timer 3 Operation Mode Select Bits

T3MS1	T3MS0	Timer 3 Mode Select
0	0 Timer 3	
0	1 T3OUT Mode	
1	0	Reserved
1	1	Reserved

6.1.32 Bank 2 RE T3PD (Timer 2 Period Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PRD2[7]	PRD2[6]	PRD2[5]	PRD2[4]	PRD2[3]	PRD2[2]	PRD2[1]	PRD2[0]

Bits 7~0 (PRD2[7]~PRD2[0]): The content of this register is a period of Timer 2

6.1.33 Bank 2 RF TCC (Timer Clock/Counter)

Increased by the main oscillator clock (Fm) or sub oscillator clock (Fs) (controlled by TWTCR register).

6.1.34 Bank 3 R5 URC (UART Control Register)

I	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	URTD8	UMODE1	UMODE0	BRATE2	BRATE1	BRATE0	UTBE	TXE

Bit 7 (URTD8): Transmission Data Bit 8

Bits 6~5 (UMODE1~UMODE0): UART Transmission Mode Select Bits.

49' 100	dtottotto/	
UMODE1	UMODE0	UART Mode
0	0	Mode 1:7 bits
0	1	Mode 2 : 8 bits
1	0	Mode 3:9 bits
1	1	Reserved

Bits 4~2 (BRATE2~BRATE0): Transmit Baud Rate Select (Tuart = Fc/16)

BRATE2	BRATE1	RRATE0	Baud Rate	e.g. Fc = 8 MHz
0	0	0	Tuart/13	38400
0	0	0	Tuart/26	19200
0	0	1	Tuart/52	9600
0	0	1	Tuart/104	4800
0	1	0	Tuart/208	2400
0	1	0	Tuart/416	1200

0	1	1	Timer 1
0	1	1	2M

Bit 1 (UTBE): UART transfer buffer empty flag. Set to 1 when transfer buffer empty.

Reset to 0 automatically when in URTD register. The UTBE bit should be cleared by hardware when enabling transmission. The UTBE bit is read-only. Therefore, writing to the URTD register is necessary when user wants to start transmit shifting.

Bit 0 (TXE): Enable transmission

0: Disable1: Enable

6.1.35 Bank 3 R6 URS (UART Status)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
URRD8	EVEN	PRE	PRERR	OVERR	FMERR	URBF	RXE

Bit 7(URRD8): Receiving Data Bit 8

Bit 6 (EVEN): Select Parity Check

0: Odd parity

1: EVEN parity

Bits 5 (PRE): Enable Parity Addition

0: Disable

1: Enable

Bit 4 (PRERR): Parity Error Flag

Set to 1 when parity error occurs and clear to 0 by software.

Bit 3 (OVERR): Overrun Error flag

Set to 1 when overrun error occurs and clear to 0 by software.

Bit 2 (FMERR): Framing Error Flag.

Set to 1 when framing error occurs and clear to 0 by software.

Bit 1 (UBF): UART Read Buffer Full Flag

Set to 1 when one character is received, Reset to 0 automatically when read from URS register, URBF will be clear by hardware when enabling receiving. And URBF bit is read-only. Therefore, read URS register is necessary to avoid overrun error.

Bit 0 (RXE): Enable Receiving

0: Disable

1: Enable

6.1.36 Bank 3 R7 URRD (UART_RD Data Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
URRD7	URRD6	URRD5	URRD4	URRD3	URRD2	URRD1	URRD0

Bits 7~0 (URRD7~URRD0): UART Receive Data Buffer. Read only.

6.1.37 Bank 3 R8 URTD (UART_TD Data Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
URTD7	URTD6	URTD5	URTD4	URTD3	URTD2	URTD1	URTD0

Bits 7~0 (URTD7~URTD0): UART Transmit Data Buffer. Write only.

6.1.38 Bank 3 R9 URC1 (UART Status)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	UARTE	0	UINVEN	0	0	URRIF

Bits 7~6: Not used, fixed to "0"

Bit 5 (UARTE): UART Function Enable.

0: UART function disable, PB4, PB5 act as general I/O.

1: UART function enable, PB4, PB5 act as UART Rx, Tx pin.

Bit 4: Not used, fixed to "0".

Bit 3 (UINVEN): Enable UART Tx and Rx Port Inverse Output

0: Disable Tx and Rx port inverse output.

1: Enable Tx and Rx port inverse output.

Bits 2~1: Not used, fixed to "0".

Bit 0 (URRIF): Interrupt flag of UART receive complete. Reset to 0 by software.

6.1.39 Bank 3 RA SPIS (SPI Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DORD	TD1	TD0	0	OD3	OD4	0	RBF

Bit 7 (DORD): Data Shift Control Bit

0: Shift left (MSB first).1: Shift right (LSB first).

Bits 5~6 (TD0~TD1): SDO Status Output Delay Times Options

TD1	TD0	Delay Time		
0	0	8 clk		
0	1	16 clk		
1	0	24 clk		

1 1 32 clk	
------------	--

Bit 4: Not used, fixed to "0".

Bit 3 (OD3): Open-drain Control Bit

0: Open-drain disable for SDO.

1: Open-drain enable for SDO.

Bit 2 (OD4): Open-Drain Control Bit

0: Open-drain disable for SCK.

1: Open-drain enable for SCK.

Bit 1: Not used, fixed to "0"

Bit 0 (RBF): Read Buffer Full Flag.

0: Receiving completed, and SPIRB is fully exchanged.

1: Receiving completed, and SPIRB has not fully exchanged.

6.1.40 Bank 3 RB SPIC (SPI Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CES	SPIEN	SRO	SSE	SDOC	SBRS2	SBR1	SBR0

Bit 7 (CES): Clock Edge Select Bit

0: Data shift out on a rising edge, and shifts in on a falling edge. Data is on hold during low-level.

1: Data shift out on a falling edge, and shifts in on a rising edge. Data is on hold during high-level.

Bit 6 (SPIEN): SPI Enable bit

0: Disable SPI mode

1: Disable SPI mode

Bit 5 (SRO): SPI Read Overflow Bit

0: No overflow

1: A new data is received while the previous data is still being held in the SPIR register. In this situation, the data in SPIS register will be destroyed. To avoid setting this bit, user is required to read the SPIRB register although only transmission is implemented. This can only occur in slave mode.

Bit 4 (SSE): SPI Shift Enable Bit

0: Reset as soon as the shift is complete, and the next byte is read to shift.

1: Start to shift, and kept on "1" while the current byte is still being transmitted.

Bit 3 (SDOC): SDO Output Status Control Bit

0: After the serial data output, the SDO remain high.

1: After the serial data output, the SDO remain low.

Bits 2~0 (SBRS2~SBRS0): SPI Baud Rate Select Bits

SBRS2	SBRS1	SBRS0	Mode	SPI Baud Rate
0	0	0	Master	Fosc/2
0	0	1	Master	Fosc/4
0	1	0	Master	Fosc/8
0	1	1	Master	Fosc/16
1	0	0	Master	Fosc/32
1	0	1	Master	Timer 2
1	1	0	Slave	/SS enable
1	1	1	Slave	/SS disable

6.1.41 Bank 3 RC SPIR (SPI Read Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SRB7	SRB6	SRB5	SRB4	SRB3	SRB2	SRB1	SRB0

Bits 7~0 (SRB7 ~ SRB0): SPI Read Data Buffer

6.1.42 Bank 3 RD SPIW (SPI Write Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SWB7	SWB6	SWB5	SWB4	SWB3	SWB2	SWB1	SWB0

Bits 7~0 (SWB7 ~ SWB0): SPI Read Data Buffer

6.1.43 Bank 3 RE EIESH (External Interrupt Edge Select Control Register)

	W W						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EIES7	EIES6	EIES5	EIES4	EIES3	EIES2	EIES1	EIES0

Bits 7~0 (EIES7 ~ EIES0): External Interrupts 0~7 Edge Select Bit

0: Falling edge interrupt

1: Rising edge interrupt

6.1.44 Bank 3 RF EIESL (External Interrupt Edge Select Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LVDWE	I2CWE	SPIWE	ADWK	INTWK9	INTWK8	EIES9	EIES8

Bit 7 (LVDWE): LVD Wake-up Function Enable Bit

0: Disable

1: Enable

Bit 6 (I2CWE): I2C Receive Wake-up Function Enable Bit

0: Disable

1: Enable

Bit 5 (SPIWE): SPI Receive Wake-up Function Enable Bit

0: Disable

1: Enable

Bit 4 (ADWE): AD Converter Wake-up Function Enable Bit

0: Disable

1: Enable

Bit 3 (INTWK9): External Interrupts 8~9 Wake-up Function Enable Bit

0: Disable

1: Enable

Bits 2~0 (EIES9 ~ EIES8): External Interrupts 8~9 Edge Select Bit

0: Falling edge interrupt

1: Rising edge interrupt

6.1.45 Bank 4 R7 IOC7 (Port 7 I/O Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOC77	IOC76	IOC75	IOC74	IOC73	IOC72	IOC71	IOC70

Bits 7~0 (IOC77~IOC70): Port 7 8-Bit I/O Direction Control Register

0: Define Port 7 as output port

1: Define Port 7 as input port

6.1.46 Bank 4 R8 IOC8 (Port 8 I/O Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOC87	IOC86	IOC85	IOC84	IOC83	IOC82	IOC81	IOC80

Bits 7~0 (IOC87~IOC80): Port 8 8-Bit I/O Direction Control Register

0: Define Port 8 as output port

1: Define Port 8 as input port

6.1.47 Bank 4 R9 IOC9 (Port 9 I/O Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOC97	IOC96	IOC95	IOC94	IOC93	IOC92	IOC91	IOC90

Bits 7~0 (IOC97~IOC90): Port 9 8-Bit I/O Direction Control Register

0: Define Port 9 as output port

1: Define Port 9 as input port

6.1.48 Bank 4 RA IOCA (Port A I/O Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOCA7	IOCA6	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0

Bits 7~0 (IOCA7~IOCA0): Port A 8-Bit I/O Direction Control Register

0: Define Port A as output port

1: Define Port A as input port

6.1.49 Bank 4 RB IOCB (Port B I/O Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOCB7	IOCB6	IOCB5	IOCB4	IOCB3	IOCB2	IOCB1	IOCB0

Bits 7~0 (IOCB7~IOCB0): Port B 8-Bit I/O Direction Control Register

0: Define Port B as output port

1: Define Port B as input port

6.1.50 Bank 4 RC IOCC (Port C I/O Control Register)

Bit 7	7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0		0	IOCC5	IOCC4	IOCC3	IOCC2	IOCC1	IOCC0

Bits 7~ 6: Not used fixed "0"

Bits 5~0 (IOCC5~IOCC0): Port C 6-Bit I/O Direction Control Register

0: Define Port C as output port

1: Define Port C as input port

6.1.51 Bank 4 RF WKCR (Wake-up Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTWK7	INTWK6	NTWK5	INTWK4	INTWK3	INTWK2	INTWK1	INTWK0

Bits 7~ 0 (INTWK7 ~ INTWK0): External Interrupts 7~0 Wake-up Function Enable Bits

0: Disable

1: Enable

6.1.52 Bank 5 R7 P7PHCR (Port 7 Pull-high Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PH77	PH76	PH75	PH67	PH73	PH72	PH71	PH70

Bits 7~0 (PH77~PH70): Port 7 8-bit I/O Pull-high Control Registers.

0: Pull-high disable

1: Pull-high enable

6.1.53 Bank 5 R8 P8PHCR (Port 8 Pull-high Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PH87	PH86	PH85	PH84	PH83	PH82	0	PH80

Bits 7~0 (PH87~PH80): Port 8 8-bit I/O Pull-high Control Registers.

0: Pull-high disable

1: Pull-high enable

6.1.54 Bank 5 R9 P9PHCR (Port 9 Pull-high Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PH97	PH96	PH95	PH94	PH93	PH92	PH91	PH90

Bits 7~0 (PH97~PH90): Port 9 8-bit I/O Pull-high Control Registers.

0: Pull-high disable

1: Pull-high enable

6.1.55 Bank 5 RA PAPHCR (Port A Pull-high Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PHA7	PHA6	PHA5	PHA4	PHA3	PHA2	PHA1	PHA0

Bits 7~0 (PHA7~PHA0): Port A 8-bit I/O Pull-high Control Registers.

0: Pull-high disable

1: Pull-high enable

6.1.56 Bank 5 RB PBPHCR (Port B Pull-high Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PHB7	PHB6	PHB5	PHB4	PHB3	PHB2	PHB1	PHB0

Bits 7~0 (PHB7~PHB0): Port B 8-bit I/O Pull high Control Registers.

0: Pull-high disable

1: Pull-high enable

6.1.57 Bank 5 RC PCPHCR (Port C Pull-high Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	PHC5	PHC4	PHC3	PHC2	PHC1	PHC0

Bits 7~0 (PHC7~PHC0): Port C 8-bit I/O Pull-high Control Registers.

0: Pull-high disable

1: Pull-high enable

6.1.58 Bank 6 R7 P7ODCR (Port 7 Open-drain Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OD77	OD76	OD75	OD74	OD73	OD72	OD71	OD70

Bits 7~0 (OD77~OD70): Port 7 8-bit I/O Open-drain Control Registers.

0: Open Drain disable

1: Open Drain enable

6.1.59 Bank 6 R8 P8ODCR (Port 8 Open-drain Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OD87	OD86	OD85	OD84	OD83	OD82	0	OD80

Bits 7~0 (OD87~OD80): Port 8 8-bit I/O Open Drain Control Registers.

0: Open Drain disable

1: Open Drain enable

6.1.60 Bank 6 R9 P9ODCR (Port 9 Open-drain Control Register)

Bit	7 Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ODS	7 OD96	OD95	OD94	OD93	OD92	OD91	OD90

Bits 7~0 (OD97~OD90): Port 9 8-bit I/O Open-drain Control Registers.

0: Open-drain disable

1: Open-drain enable

6.1.61 Bank 6 RA PAODCR (Port A Open-drain Control Register)

	. / 🔻						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ODA7	ODA6	ODA5	ODA4	ODA3	ODA2	ODA1	ODA0

Bits 7~0 (ODA7~ODA0): PortA 8-bits I/O Open-drain Control Registers.

0: Open-drain disable

1: Open-drain enable

6.1.62 Bank 6 RB PBODCR (Port B Open-drain Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0

Bits 7~0 (ODB7~ODB0): Port B 8-bit I/O Open-drain Control Registers.

0: Open-drain disable

1: Open-drain enable

6.1.63 Bank 6 RC Port C

6.1.64 Bank 7 R5 I2CCR1 (I2C Status and Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Strobe/Pend	IMS	ISS	STOP	SAR_EMPTY	ACK	FULL	EMPTY

Bit 7 (Strobe/Pend): In master mode, it is used as strobe signal to control the I2C circuit to send SCL clock. Reset automatically after receiving or transmitting handshake signal (ACK or NACK). In slave mode, it is used as pending signal, user should clear it after filling data into the Tx buffer or getting data from Rx buffer to inform slave I2C circuit to release SCL signal.

Bit 6 (IMS): I2C Master/Slave mode select bit.

0: Slave

1: Master

Bit 5 (ISS): I2C Fast/Standard mode select bit.

0: Standard mode (100K bit/s)

1: Fast mode (400K bit/s)

Bit 4 (STOP): In Master mode, if STOP=1 and R/nW=1 then EM78P507N must return a nACK signal to the slave device before sending a STOP signal. If STOP=1 and R/nW=0 then EM78P507N sends a STOP signal after receiving an ACK signal. Reset when the EM78P507N sends a STOP signal to the Slave device.

In slave mode, if STOP=1 and R/nW=0 then the EM78P507N must return a nACK signal to the master device.

Bit 3 (SAR_EMPTY): Set when the EM78P507N transmits a 1-byte data from the I2C Slave Address Register and receive an ACK (or nACK) signal. Reset when the MCU writes a 1-byte data to the I2C Slave Address Register.

Bit 2 (ARK): The Ack condition bit is set to 1 by hardware when the device responds with an acknowledge (ACK). Reset when the device responds with a not-acknowledge (nACK) signal.

Bit 1 (FULL): Set by hardware when I2C receive buffer register is full. Reset by hardware when the MCU read data from I2C receive buffer register.

Bit 0 (EMPTY): Set by hardware when the I2C transmit buffer register is empty and receives an ACK (or nACK) signal. Reset by hardware when the MCU writes new data to the I2C transmit buffer register.

6.1.65 Bank 7 R6 I2CCR2 (I2C Status and Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I2CRIF	I2CRIE	I2CTIF	12CTIE	I2CTS1	I2CTS0	12CCS	I2CEN

Bit 7 (I2CRIF): I2C Receive Interrupt Flag. Set when the I2C receives a 1 byte data and responds with an ACK signal. Reset by firmware or I2C disable.

Bits 6 (I2CRIE): I2C Interface Rx Interrupt Enable Bit

0: Disable Interrupt

1: Enable Interrupt

Bit 5 (I2CTIF): I2C transmit interrupt flag. Set when I2C transmits 1 byte data and responds ACK signal. Reset by firmware or I2C disable.

Bits 4 (I2CTIE): I2C Interface Tx interrupt enable bit

0: Disable Interrupt

1: Enable Interrupt

Bits 3~2 (I2CTS1~I2CTS0): I2C Transmit Clock Source Select Bits (When I2CCS=0). I2C source must low 6 MHz.

I2CTS1	I2CTS0	Source	Max. Operating Fm(MHz)
0	0	Fm/1	6
0	1	Fm/2	12
1	×	Fm/4	20

Bit 1 (I2CCS): I2C Clock Source Select Bit

0: Fm (main clock)

1: Fs (sub clock)

Bit 0 (I2CEN): I2C Enable Bit

0: Disable I2C mode

1: Enable I2C mode

6.1.66 Bank 7 R7 I2CSA (I2C Slave Address Register)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
V	SA6	SA5	SA4	SA3	SA2	SA1	SA0	IRW

Bits 7~1 (SA6~SA0): When EM78P507N used as master device for I2C application. This is the slave device address register.

Bit 0 (IRW): When EM78P507N used as master device for I2C application. This bit is Read/Write transaction control bit.

0: Write

1: Read

6.1.67 Bank 7 R8 I2CDA (I2C Device Address Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0

Bit 7: not used bit, fixed to "0" all the time.

Bits 6~0 (DA6~DA0): When the EM78P507N is used as a slave device for I2C application, this register stores the address of the EM78P507N. It is used to identify the data on the I2C bus to extract the message delivered to the EM78P507N.

6.1.68 Bank 7 R9 I2CA (I2C Address Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	IBFULL	AMB	IBEN	12CSPE	12CSPF	DA9	DA8

Bit 7: not used, fixed to "0" all the time.

Bit 6 (IBFULL): Set by hardware when the I2C 16-byte buffer is full, reset by software when the MCU reads data from the I2C 16-byte buffer.

Bit 5 (AMB): Don't care MSB bit of slave address. If this bit is enabled and the two slave devices have the same address, Bit 1 ~ Bit 6, the data would be received by the two slave devices.

0: disable the AMB bit

1: enable the AMB bit

Bit 4 (IBEN): I2C 16 bytes Buffer Enable bit. The EM78P507N I2C has a 16-byte buffer which is distributed in Bank 7 0x30 ~ 0x3F to save the received data, if this bit is disabled, the buffer would be the general purpose RAM

0: disable the I2C Buffer

1: enable the I2C Buffer

Bit 3 (I2CSPE): I2C Interface stop interrupt enable bit

Bit 2 (I2CSPF): I2C Interface Interrupt Stop flag. Set after the EM78P507N acting as slave device has received the stop signal from the master device and the I2CSPE bit has been enabled. Reset by software.

Bits 1~0 (DA9~8): Device address bits

6.1.69 Bank 7 RA I2CDB (I2C Data Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0

Bits 7~0 (DB7~ DB0): I2C Receive/Transmit Data Buffer.

6.1.70 Bank 7 RB DACDL (DA Convert Low Data Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DACD7	DACD6	DACD5	DACD4	DACD3	DACD2	DACD1	DACD0

Bits 7~0 (DACD7 ~ DACD0): DA Convert Low Data Buffer

6.1.71 Bank 7 RC DACDH (DA Convert High Data Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	0	0	0	DACD9	DACD8

Bits 7~2: Not used, fixed at "0".

Bits 1~0 (DACD9 ~ DACD8): DA Convert high Data Buffer

6.1.72 Bank 7 RD DACC1 (DA Convert Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DARUN	0	0	SEMCL	COF[3]	COF[2]	COF[1]	COF[0]

Bit 7 (DARUN): DA Conversion Start.

Bits 6~5: Not used, fixed at "0".

Bit 4 (SEMCL): Set the maximum output current

COEISI COEISI COEISI

0: output maximum current set at 3mA1: output maximum current set at 4mA

Bits 3~0 (COF[3]~COF[0]): Control AC Max between middle Level output Bits

	COF[3]	COF[2]	COF[1]	COF[0]	DA Max Level (lc = 3 mA)
	0	0	0	0	lc/16
	0	0	0	1	lc/15
	0	0	1	0	Ic/14
	0	0	1	1	lc/13
P	0	1	0	0	lc/12
41 V	0	1	0	1	lc/11
	0	1	1	0	Ic/10
	0	1	1	1	Ic/9
#	1	0	0	0	Ic/8
	1	0	0	1	lc/7
	1	0	1	0	Ic/6
	1	0	1	1	Ic/5
	1	1	0	0	lc/4
	1	1	0	1	Ic/3
	1	1	1	0	lc/2
	1	1	1	1	Ic/1

6.1.73 Bank 7 RF I2CCR3 (I2C Control Register 3)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	0	0	0	GCEN	I2CSF

Bits 7~2: Not used, fixed "0"

Bit 1 (GCEN): I2C general call function enable bit. If this bit is enabled, and the master device transmitted "0000000", the connected slave device would issue an acknowledgment.

0: Disable

1: Enable

Bit 0 (I2CBF): I2C Busy flag, If the slave received the address from the master, this flag would be set, and would be cleared after slave receive the stop signal from master or I2C slave address not much.

0: I2C does not operate

1: I2C is in operation

6.2 TCC/WDT and Prescaler

R_BANK	Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 0	0X0D	TWTCR	WDTE	WPSR2	WPSR1	WPSR0	TCCS	TPSR2	TPSR1	TPSR0
	A	174	R/W							
Bank 2	0X0F	тсс	TCC[7]	TCC[6]	TCC[5]	TCC[4]	TCC[3]	TCC[2]	TCC[1]	TCC[0]
4	9		R/W							
Bank 0	0x0E	IMR	T1IE	LVDIE	ADIE	SPIIE	URTIE	EXIE9	EXIE8	TCIE
			R/W							
Bank 0	0x0E	ISR	T1IF	LVDIF	ADIF	SPIIF	URTIF	EXIF9	EXIF8	TCIF
			R/W							

There are two 8-bit counter available as prescalers for the TCC and WDT respectively. The PST0~PST2 bits of the Bank 0 RD TWTCR register are used to determine the ratio of the prescaler of TCC, and the PWR0~PWR2 bits of the Bank 0 RD register used to determine the prescaler of WDT. The prescaler counter is cleared by the instructions each time they are written into TCC. The WDT and prescaler will be cleared by the "WDTC" and "SLEP" instructions. Figure 6-4 depicts the circuit diagram of TCC/WDT.

Bank 2 RF (TCC) is an 8-bit timer/counter. The TCC clock source can be internal clock or external signal input (edge selectable from the TCC pin). If the TCC signal source is from an internal clock, the TCC will be incremented by 1 in every oscillator cycle (without prescaler). If the TCC signal source is from an external clock input, the TCC

will be incremented by 1 on every falling edge or rising edge of the TCC pin. The TCC pin input time length (kept in high or low level) must be greater than 1CLK.

The watchdog timer is a free running on-chip RC oscillator. The WDT will keep running even if the oscillator driver has been turned off (i.e. in sleep mode). During normal operation or sleep mode, a WDT time-out (if enabled) will cause the device to reset. The WDT can be enabled or disabled any time during normal mode by software programming. Refer to the WDTE bit of the TWTCR register. With no presacler, the WDT time-out period is approximately 18 ms¹.

Figure 6-4 TCC and WDT Block Diagram

6.3 I/O Port

Port 5, Port 6, Port 7, Port 8, Port 9, Port A, Port B and Port C and the I/O registers are bidirectional tri-state I/O ports. The function of Pull-high and Open-drain can be set internally by Bank 5 R7, R8, R9, RA, RB and RC, Bank 6 R7, R8, R9, RA and RB respectively. Port 7 [4:7], Port 8 [2:3] and Port B [0:3] features an input status (Rising or Falling edge) changed interrupt (or wake-up) function. Each I/O pin can be defined as "input" or "output" pin by the I/O control register (Bank 4 R7~RD IOC7 ~IOCC). P81 cannot be defined as pull-high and open drain. The I/O registers and I/O control registers are both readable and writable. The I/O interface circuits for Port 7, Port 8, Port 9, Port A, Port B and Port C are shown in the following Figure 6-5, Figure 6-6 and Figure 6-7 respectively.

The I/O interface circuits for Port 7, Port 8, Port 9, Port A, Port B and Port C are shown in the following Figure 6-5, Figure 6-6 and Figure 6-7 respectively.

Note: Pull-high and Open-drain are not shown in the figure.

Figure 6-5 Circuit of I/O Port and I/O Control Register for Port 5~Port A

Note: Pull-high and Open-drain are not shown in the figure.

Figure 6-6 Circuit of I/O Port and I/O Control Register for INT

Note: Pull-high (down) and Open-drain are not shown in the figure.

Figure 6-7 Block Diagram of Port 7 with Input changed Interrupt/Wake-up

6.4 Reset and Wake-up

6.4.1 Reset and Wake-up Function

A reset is initiated by one of the following events-

- (1) Power-on reset
- (2) /RESET pin input "low"
- (3) WDT time-out (if enabled)

NOTE

The power-on reset circuit is always enabled, it will reset the CPU at 1.8V and consumed about $0.5\mu A$ or lower than $0.5 \mu A$.

The device is kept in a reset condition for a period of approximately 18ms (one oscillator start-up timer period) after the Power-on reset is detected. If the /Reset pin goes "low" or WDT time-out is active, a reset is generated.

Once a Reset occurs, the following functions are performed:

- The oscillator is running, or will be started.
- The Program Counter (R2) is set to all "0".
- All I/O port pins are configured as input mode (high-impedance state).
- The Watchdog Timer and prescaler are cleared.
- When power is switched on, the R1 are cleared.
- The bits of the P7ODCR, P8ODCR, P9ODCR, PAODCR, PBODCR registers are set to all "0".
- The bits of the P7PHCR, P8PHCR, P9PHCR, PAPHCR, PBPHCR, PCPHCR registers are set to all "0".
- Bits 7~0 of Bank 0 RE, RF register and Bank 1 RE, RF registers are cleared.

Executing the "SLEP" instruction will assert the sleep (power down) mode. While entering sleep mode, the Oscillator, TCC and Timers 2~1 are stopped. The WDT (if enabled) is cleared but keeps on running.

The controller can be awakened by -

- (1) External reset input on /RESET pin.
- (2) WDT time-out (if enabled).
- (3) External Interrupt status changes (if INTWE is enabled).
- (4) Low Voltage Detector (if LVDWE is enabled).

The first two cases will cause the EM78P507N to reset. The T and P flags of R3 can be used to determine the source of the reset (wake-up). Cases 3 and 4 are considered the continuation of program execution and the global interrupt ("ENI" or "DISI" being executed) determines whether or not the controller branches to the interrupt vector following wake-up. If ENI is executed before SLEP, the instruction will begin to execute from the Address 0x3~0x42 by each interrupt vector after wake-up. If DISI is executed before SLEP, the execution will restart from the instruction right next to SLEP after wake-up. Only one of Cases 2 to 4 can be enabled before entering into sleep mode. That is,

- [a] If WDT is enabled before SLEP, all of Bank 0, 1 RE bit is disabled. Hence, the EM78P507 can be woken-up only by Case 1 or 2. Refer to the section on Interrupt for further details.
- [b] If External interrupt status change is used to wake-up the EM78P507N and INTWK bit of Banks 3, 4 RF register is enabled before SLEP, WDT must be disabled by software. Hence, the EM78P507N can be waken-up only by Case 3.
- [c] If Low voltage detector is used to wake-up the EM78P507N and LVDWE bit of Bank 3-RF register is enabled before SLEP, the WDT must be disabled by software. Hence, the EM78P507N can be awakened only with Case 4.

All kinds of the wake-up mode and interrupt mode are shown below:

Wake-up Signal	Sleep Mode	Idle Mode	Green Mode	Normal Mode
TCC time out	×	Wake-up + interrupt + next instruction	Interrupt	Interrupt
INT pin	Wake-up + interrupt (if interrupt is enabled) + next instruction	Wake-up + interrupt (if interrupt is enabled) + next instruction	Interrupt	Interrupt
Timer 1	×	Wake-up + interrupt + next instruction	Interrupt	Interrupt
Timer 2	×	Wake-up + interrupt + next instruction	Interrupt	Interrupt
Timer 3	×	Wake-up + interrupt + next instruction	Interrupt	Interrupt
UART	×	Wake-up + interrupt (if interrupt is enabled) + next instruction	Interrupt	Interrupt
LVD	Wake-up + interrupt (if interrupt is enabled) + next instruction	Wake-up + interrupt (if interrupt is enabled) + next instruction	Interrupt	Interrupt
I2C	Wake-up + interrupt (if interrupt enable) + next instruction	Wake-up + interrupt + next instruction	Interrupt	Interrupt
SPI	Wake-up + interrupt (if interrupt is enabled) + next instruction	Wake-up + interrupt + next instruction	Interrupt	Interrupt
A/D	Wake-up + interrupt (if interrupt is enabled) + next instruction	Wake-up + interrupt (if interrupt is enabled) + next instruction	Interrupt	Interrupt
WDT time out	RESET	RESET	RESET	RESET

- 1. If interrupt is enabled \rightarrow interrupt+ next instruction
- 2. If interrupt is disabled \rightarrow next instruction

6.4.2 Status of T, and P of the Status Register

A reset condition is initiated by one of the following events:

- (1) Power-on condition
- (2) High-low-high pulse on the /RESET pin
- (3) Watchdog Timer time-out

The values of T and P, as listed in Table 6-1 below, are used to check how the processor wakes up. Table 6-2 shows the events, which may affect the status of T and P.

Table 6-1 Values of RST, T, and P after Reset

Reset Type	Т	Р
Power-on	1	1
/RESET during Operation mode	*P	*P
/RESET wake-up during Sleep mode	1	0
WDT during Operation mode	0	*P
WDT wake-up during Sleep mode	0	0
Wake-up on pin change during Sleep mode	1	0

^{*}P: Previous status before reset

Table 6-2 Status of RST, T and P being Affected by Events

Event	Т	Р
Power-on	1	1
WDTC instruction	1	1
WDT time-out	0	*P
SLEP instruction	1	0
Wake-up on pin changed during Sleep mode	1	0

*P: Previous value before reset

Figure 6-8 Controller Reset Block Diagram

6.5 Interrupt

The EM78P507N has 21 interrupts as listed below:

- 1. Low voltage detector interrupt
- 2. TCC overflow interrupt
- 3. External Interrupt (INT0~INT9) Pin
- 4. Timers 1~3 Underflow Interrupt
- 5. A/D Convert complete interrupt
- 6. SPI Transmit / Receive Interrupt
- 7. UART transmit/receive/error complete interrupt
- 8. I2C transmit/receive interrupt

External interrupt can select the detector edge in Bank 3 RE, RF (EIESH, EIESL). During a power source unstable situation, like external power noise interference or EMS test condition, it will cause the power to vibrate fiercely. While VDD is still unsettled, the supply voltage may be below the working voltage. When the system supply voltage VDD is below the working voltage, the IC kernel must automatically keep all the register status.

ISR is the interrupt status register that records the interrupt requests in the relative flags/bits. IMR is an interrupt mask register. The global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. When one of the interrupts (when enabled) occurs, the next instruction will be fetched from its address. Once in the interrupt service routine, the source of an interrupt can be determined by polling the flag bits in ISR. The interrupt flag bit must be cleared by instructions before leaving the interrupt service routine to avoid recursive interrupts.

The flag in the Interrupt Status Register is set regardless of the status of its mask bit or the execution of ENI. Note that the outcome of ISR will be the logic AND of ISR and IMR. The RETI instruction ends the interrupt routine and enables the global interrupt (the execution of ENI).

Figure 6-9 Interrupt Backup Diagram

Table 6-3 Interrupt Vector

Interrupt Vector	Interrupt Status
0003H	Low voltage detector interrupt
0006H	TCC overflow interrupt
0009H	External INT0 interrupt
000CH	External INT1 interrupt
000FH	External INT2 interrupt
0012H	External INT3 interrupt
0015H	External INT4 interrupt
0018H	External INT5 interrupt
001BH	External INT6 interrupt
001EH	External INT7 interrupt
0021H	External INT8 interrupt
0024H	External INT9 interrupt
0027H	Timer 1 overflow interrupt
002AH	Timer 2 overflow interrupt
002DH	Timer 3 overflow interrupt
0030H	A/D Converter complete interrupt
0033H	SPI transmti/receive complete interrupt
0036H	UART transmit complete interrupt
0039H	UART error complete interrupt
003CH	UART receive complete interrupt
003FH	I2C transmit/receive complete interrupt
0042H	I2C Slave stop interrupt

Figure 6-10 Interrupt Input Circuit

6.6 AD

Registers for AD Circuit

R_BANK	Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 1	0×05	ADCR1	ADRUN	ADP	ADCK1	ADCK0	SIGN	VOF[2]	VOF[1]	VOF[0]
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 1	0×06	ADCR2	CALI	ADREF		ADIS4	ADIS3	ADIS2	ADIS1	ADIS0
			R/W	R/W		R/W	R/W	R/W	R/W	R/W
Bank 1	0×07	ADDL	ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
			R	R	R	R	R	R	R	R
Bank 1	0×08	ADDH					ADD11	ADD10	ADD9	ADD8
						A	R/W	R/W	R/W	R/W
Bank 1	0×09	ADIC1	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 1	0×0A	ADIC2	ADE15	ADE14	ADE13	ADE12	ADE11	ADE10	ADE9	ADE8
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 1	0×0B	ADIC3	ADE23	ADE22	ADE21	ADE20	ADE19	ADE18	ADE17	ADE16
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0×0E	IMR			ADIE					
			•		R/W					
Bank 0	0×0F	ISR			ADIF					
			10		R/W					

Figure 6-11 AD Block Diagram

It is a 12-bit successive approximation type AD converter. The upper side of analog reference voltage can select either internal VDD or external input pin P84 (VREF) by setting the ADREF bit in ADCR2.

ADC Data Register:

When the A/D conversion is complete, the result is loaded to the ADDH (4-bit) and ADDL (8-bit). The START/END bit is cleared, and the ADIF is set.

A/D Sampling Time:

The accuracy, linearity, and speed of the successive approximation A/D converter are dependent on the properties of the ADC. The source impedance and the internal sampling impedance directly affect the time required to charge the sample holding capacitor. The application program controls the length of the sample time to meet the specified accuracy. Generally speaking, the program should wait for 2 μ s for each K Ω of the analog source impedance and at least 2 μ s for the low-impedance source. The maximum recommended impedance for the analog source is 10K Ω at Vdd =3.3V. After the analog input channel is selected, this acquisition time must be done before A/D conversion can be started.

A/D Conversion Time:

ADCK0 and ADCK1 select the conversion time (Tct), in terms of instruction cycles. This allows the MCU to run at maximum frequency without sacrificing accuracy of A/D conversion. For the EM78P507N, the conversion time per bit is about 4µs. Table 6-4 shows the relationship between Tct and the maximum operating frequencies.

Table 6-4

ADCK1:0	Operation Mode	Maximum Frequency (Fc)	Maximum Conversion Rate per Bit	Maximum Conversion Rate
00/	Fc/4	1 MHz	250kHz (4 μs)	48 μs (20.83kHz)
0 1	Fc/16	4 MHz	250kHz (4 μs)	48 μs (20.83kHz)
10	Fc/32	8 MHz	250kHz (4 μs)	48 μs (20.83kHz)
11	Fc/64	16 MHz	250kHz (4 μs)	48 μs (20.83kHz)

6.7 SPI (Serial Peripheral Interface)

Registers for SPI Circuit

R_BANK	Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 3	0X0A	SPIS	DORD	TD1	TD0	0	OD3	OD4	0	RBF
			R/W	R/W	R/W		R/W	R/W		R
Bank 3	0X0B	SPIC	CES	SPIE	SRO	SSE	SDOC	SBRS2	SBRS1	SBRS0
			R/W							
Bank 3	0X0C	SPIR	SRB7	SRB6	SRB5	SRB4	SRB3	SRB2	SRB1	SRB0
			R	R	R	R	R	R	R	R
Bank 3	0X0D	SPIW	SWB7	SWB6	SWB5	SWB4	SWB3	SWB2	SWB1	SWB0
			R/W							
Bank 0	0x0E	IMR				SPIE				
						R/W	1			
Bank 0	0x0F	ISR				SPIF				
						R/W				

6.7.1 Overview and Features

Overview:

Figures 7-12 and 7-13 show how the EM78P507N communicates with other devices through the SPI module. If the EM78P507N is a master controller, it sends a clock through the SCK pin. A couple of 8-bit data are transmitted and received at the same time. However, if the EM78P507N is defined as a slave, its SCK pin could be programmed as an input pin. Data will continue to be shifted based on both the clock rate and the selected edge. User can also set the SPIS Bit 7 (DORD) to determine the SPI transmission order, SPIC Bit 3 (SDOC) to control the SO pin after serial data output status and SPIS Bit 6 (TD1), Bit 5 (TD0) determines the SO status output delay times.

Features:

- Operation in either Master mode or Slave mode
- Full duplex, 3-wire synchronous communication
- Programmable baud rates of communication
- Programming clock polarity, (RD Bit 7)
- Interrupt flag available for the read buffer full
- SPI transmission order
- After serial data output SDO status select
- SDO status output delay times
- Up to 8 MHz bit frequency (maximum)

Figure 6-12 SPI Master/Slave Communication

Figure 6-13 SPI Configuration of Single-Master and Multi-Slave

6.7.2 SPI Function Description

Figure 6-14 SPI Block Diagram

Figure 6-15 SPI Transmission Function Block Diagram

Below are the functions of each block and explanations on how to carry out the SPI communication with the signals depicted in Figures 6-16 and 6-17.

- PA4/SDI: Serial Data In
- PA5/SDO: Serial Data Out
- PA6/SCK: Serial Clock
- PA7//SS: /Slave Select (Option). This pin (/SS) may be required in slave mode
- RBF: Set by Buffer Full Detector
- Buffer Full Detector: Set to 1 when an 8-bit shifting is completed.
- SSE: Loads the data in SPIS register, and begin to shift
- SPIS reg.: Shifting byte in and out. The MSB is shifted first. Both the SPIR and the SPIW registers are shifted at the same time. Once data are written, SPIS starts transmission/reception. The data received will be moved to the SPIR register as the shifting of the 8-bit data is completed. The RBF (Read Buffer Full) flag and the SPIIF (SPI transmit/receive complete Interrupt) flag are then set.
- SPIR reg.: Read buffer. The buffer will be updated as the 8-bit shifting is completed. The data must be read before the next reception is completed. The RBF flag is cleared as the SPIR register reads.
- SPIW reg.: Write buffer. The buffer will deny any attempts to write until the 8-bit shifting is completed.

The SSE bit will be kept in "1" if communication is still undergoing. This flag must be cleared as the shifting is completed. Users can determine if the next write attempt is available.

- SBRS2~SBRS0: Programming the clock frequency/rates and sources.
- Clock Select: Selecting either the internal or the external clock as the shifting clock.
- Select: Selects the appropriate clock edges by programming the CES bit.

6.7.3 SPI Signal and Pin Description

The detailed functions of the four pins, SDI, SDO, SCK, and /SS are as follows:

PA4/SDI:

- Serial Data In
- Receive sequentially, the Most Significant Bit (MSB) first, Least Significant Bit (LSB) last

- Defined as high-impedance, if not selected
- Program the same clock rate and clock edge to latch on both the master and slave devices
- The byte received will update the transmitted byte
- The RBF will be set as the SPI operation is completed
- Timing is shown in Figures 6-16 and 6-17

PA5/SDO:

- Serial Data Out
- Transmit sequentially; the Most Significant Bit (MSB) first, Least Significant Bit (LSB) last
- Program the same clock rate and clock edge to latch on both the master and slave devices
- The received byte will update the transmitted byte
- The CES bit will be reset, as the SPI operation is completed
- Timing is shown in Figures 6-16 and 6-17

PA6/SCK:

- Serial Clock
- Generated by a master device
- Synchronize the data communication on both the SDI and SDO pins
- The CES is used to select the edge to communicate.
- The SBR0~SBR2 is used to determine the baud rate of communication
- The CES, SBR0, SBR1, and SBR2 bits have no effect in slave mode
- Timing is shown in Figures 6-16 and 6-17

PA7//SS:

- Slave Select; negative logic
- Generated by a master device to signify the slave(s) to receive data
- Goes low before the first cycle of SCK appears, and remains low until the last (eighth) cycle is completed
- Ignores the data on the SDI and SDO pins while /SS is high, because the SO is no longer driven
- Timing is shown in Figures 6-16 and 6-17

Note:

1. The Priority of PA4/SDO Pin

PA4/SDO Pin Priority						
High	Low					
SDO	PA4					

2. The Priority of PA5/SCK Pin

PA5/SCK Pin Priority							
High	Low						
SCK	PA5						

3. The Priority of PA6/SDI Pin

PA6/SDI Pin Priority							
High	Low						
SDI	PA6						

4. The Priority of PA7//SS Pin

PA7/AD10//SS Pin Priority						
High	Low					
/SS	PA7					

6.7.4 SPI Mode Timing

Figure 6-16 SPI Mode with /SS Disabled

The SCK edge is selected by programming bit CES. The waveform shown in Figure 6-16 is applicable regardless whether the EM78P507N is in master or slave mode with /SS disabled. However, the waveform in Figure 6-17 can only be implemented in slave mode with /SS enabled.

Figure 6-17 SPI Mode with /SS Enabled

6.8 I²C

Registers for I2C Circuit

R_BANK	Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 7	0X05	I2CCR1	Storbe/Pend	IMS	ISS	STOP	SAR_EMPTY	ACK	FULL	EMPTY
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 7	0X06	I2CCR2	I2CRIF	I2CRIE	12CTIF	12CTIE	I2CTS1	I2CT0	12CCS	I2CEN
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 7	0X07	12CSA	SA6	SA5	SA4	SA3	SA2	SA1	SA0	IRW
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 7	80X0	I2CDA	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 7	0X09	I2CA	0	IBFULL	AMB	IBEN	I2CSPE	12CSPF	DA9	DA8
			0	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 7	0x0A	I2CDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 7	0x0F	I2CCR3	0	0	0	0	0	0	GCEN	I2CSF
	·		0	0	0	0	0	0	R/W	R/W

Figure 6-18 I2C Block Diagram

The EM78P507N supports a bidirectional, 2-wire bus, 7-bit/10-bit addressing and data transmission protocol, and has 16 provisional buffers to save the received data. A device that sends data onto the bus is defined as transmitter, while a device receiving data is defined as a receiver. The bus has to be controlled by a master device which generates the Serial Clock (SCL), controls the bus access and generates the Start and Stop conditions. Both master and slave can operate as transmitter or receiver, but the master device determines which mode is activated.

Both SDA and SCL are bi-directional lines, connected to a positive supply voltage via a pull-up resistor. When the bus is free, both lines are HIGH. The output stages of the devices connected to the bus must have an open-drain or open-collector to perform the wired-AND function. Data on the I2C-bus can be transferred at rates of up to 100kbit/s in the Standard-mode or up to 400kbit/s in the Fast-mode.

The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW.

Within the procedure of the I2C bus, unique situations arises which are defined as START (S) and STOP (P) conditions.

A HIGH to LOW transition on the SDA line while SCL is HIGH is one such unique case. This situation indicates a START condition.

A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition.

The EM78P507N has a 16 bytes buffer (BANK 7 0X30 \sim 0X3F) of the received data in I2C function. The procedure of 16 bytes buffer is when user wants to use this buffer, the IBEN bit in BANK 7 R9 needs to be enabled. For example, in accessing the buffer, if the buffer has received the data from one device, the next time it receives data from the other device, the received data for the first time would be covered by the second time, because the I2C receives the different device address, in other words, if the received data of the first and second time were from the same device, the first time data would be saved to be followed by the second time data in the 16 bytes buffer. If the 16 bytes buffer were full, the IBFULL flag would be set by hardware, and be cleared by software.

Figure 6-19 I2C Transfer Condition

7-Bit Slave Address:

Master-transmitter transmits to slave-receiver. The transfer direction is not changed.

The Master reads the slave immediately after the first byte. At the moment of the first acknowledge, the master- transmitter becomes a master-receiver and the slave-receiver becomes a slave-transmitter. This first acknowledge is still generated by the slave. The STOP condition is generated by the master, which has previously sent a not-acknowledge (A). The difference between master transmitter with master receiver is only in R//W bit, if the R//W bit were "0", the master device would be a transmitter, the other way, the master device would be a receiver. The master transmitter is described in the "Figure 7-Bit slave address in Master-transmitter transmits to slave -receiver", and the master receiver is described in the "Figure 7-Bit slave address in Master-receiver read slave -transmitter".

Figure 6-20 7-Bit Slave Address in Master-transmitter Transmits to Slave-receiver

Figure 6-21 7-Bit Slave Address in Master Receiver Read Slave-transmitter

10-Bit Slave Address:

In 10-Bit slave address mode, using 10-Bit for addressing exploits the reserved combination 11110XX for the first 7 bits of the first byte following a START (S) or repeated START (Sr) condition. The first 7 bits of the first byte are the combination 11110XX of which the last 2 bits (XX) are the two most-significant bits of the 10-bit address. If the R//W bit were "0", the second byte after acknowledge would be the 8 address bits of the10-bit slave address; on the other way, the second byte would just only be the next transmitted data from a slave to master device. The first bytes 11110XX be transmitted by using the slave address register (I2CSA), and the second bytes XXXXXXXX would be transmitted by using the data buffer (I2CDB).

There are few kinds of different formats that would be explained in Figure 6-22 ~ Figure 6-26 in the 10-bit slave address mode. The possible data transfer formats are:

Master-Transmitter Transmits to Slave-Receiver with a 10-bit Slave Address

When the slave has received the first byte after the START bit from the master, each slave device will compare the 7 bits of the first byte (11110XX) with their own address and the 8th bit, R//W, if the R//W bit is "0", the slave would return the acknowledge (A1) and that would be possible for more than 1 slave device to return it. Then all slave devices will continue to compare the second address (XXXXXXXX), if the slave device has matched, that would be only 1 slave device to return acknowledge. The matching slave device will remain addressed by the master until it receives a STOP condition or a repeated START condition followed by the different slave address.

Figure 6-22 Master-transmitter Transmits to Slave-receiver with a 10-bit Slave Address

Master-Receiver Read Slave-Transmitter with a 10-bit Slave Address

Up to and including Acknowledge Bit A2, the procedure is the same as that described for master-transmitter addressing a slave receiver. After the Acknowledge A2, a repeated START condition (Sr) followed by 7 bits slave address (11110XX) but the 8th bit R//W is "1", the addressed slave device will return an Acknowledge A3. If the repeated START (Sr) condition and the 7 bits of the first byte (11110XX) are received by the slave device, all the slave device would compare with their own address and test the 8th R//W, but none of the slave devices return an acknowledge because R//W=1.

Figure 6-23 Master-receiver Read slave-transmitter with a 10-bit Slave Address

Master Addresses a Slave with 10-Bit Addresses Transmits and Receives Data in the Same Slave Device.

At first, the transmitter procedure is the same as the section of the "Master-transmitter transmits to slave-receiver with a 10-bit slave address", then the master device can start to transmit the data to the slave device. If the slave device has received an Acknowledge or None Acknowledge which were followed by repeat START (Sr), repeat the procedure of the section of "Master-receiver read slave-transmitter with a 10-bit slave address".

Figure 6-24 Master Addresses a Slave with 10-Bit addresses Transmits and Receives Data in the Same Slave Device.

Master Device Transmits Data to Two or More Than Two Slave Devices

The section of "Master-transmitter transmits to slave-receiver with a 10-bits slave address" describe the procedure how to transmit the data to slave device, if the master device have finished the transmittal, and want to transmit the data to another device, the master would need to address the new slave device, the address procedure is described by the section of the "Master-transmitter transmits to slave-receiver with a 10-Bits slave address". If the master device wants to transmit the data in 7-Bits slave address mode and transmit the data in 10-Bits slave address mode in the serial transfer, after the START or repeat START conditions, a 7-Bits and 10-Bits address could be transmitted. The Figure 6-26 shows how to transmit the data in 7-Bit and 10-Bit address mode in serial transfer.

Figure 6-25 Transmit one more Device with a 10-bit Slave Address

Figure 6-26 7-bits and 10-bits Slave Address Mode

6.8.1 Master Mode

In transmitting serial data, the I2C operates as follows:

- 1. Set I2CTS1~0, I2CCS and ISS bits to select I2C transmit clock source.
- 2. Set I2CEN and IMS bits to enable I2C master function.
- Write slave address into the I2CSA register and IRW bit to select read or write.
- 4. Set strobe bit will start transmit and then Check SAR EMPTY bit.
- 5. Write 1st data into the I2CDB register, set strobe bit and Check EMPTY bit.
- 6. Write 2nd data into the I2CDB register, set strobe bit, STOP bit and Check EMPTY bit.

6.8.2 Slave Mode

In receiving, the I2C operates as follows:

- 1. Set I2CTS1~0, I2CCS and ISS bits to select I2C transmit clock source.
- Set I2CEN and IMS bits to enable I2C slave function.
- Write device address into the I2CDA register.
- 4. Check Full bit, read I2CDB register (address) and then clear Pend bit.
- 5. Check Full bit, read I2CDB register (1st data) and then clear Pend bit.
- 6. Check Full bit, read I2CDB register (2nd data) and then clear Pend bit.
- 7. If the I2CSPE bit is enabled and the slave device has received a stop signal from the master device, the flag of I2CSPF would be set automatic and the device be into interrupt address.

6.9 Timer/Counter 1

Registers for Timer/Counter 1 Circuit

R_BANK	Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 2	0X06	T1CR	TIS1	TIS0	T1MS2	T1MS1	T1MS0	T1P2	T1P1	T1P0
			R/W							
Bank 2	0X07	TSR	T1MOD	TRCB	T1CSS1	T1CSS0	T2CSS	T1EN	0	T10C
			R/W	R/W	R/W	R/W	R/W	R/W		R/W
Bank 2	0X08	T1PD	PRD1[7]	PRD1[6]	PRD1[5]	PRD1[4]	PRD1[3]	PRD1[2]	PRD1[1]	PRD1[0]
			R/W							
Bank 2	0X09	T1TD	TD1[7]	TD1[6]	TD1[5]	TD1[4]	TD1[3]	TD1[2]	TD1[1]	TD1[0]
			R/W	R/W	R/W	R/W	R/W	R/W	P/W	R/W
Bank 1	0x0E	IMR	T1IE	LVDIE	ADIE	SPILE	URTIE	EXIE9	EXIE8	TCIE
			R/W							
Bank 0	0x0F	ISR	T1IF	LVDIF	ADIF	SPIIF	URTIF	EXIF9	EXIF9	TCIF
			R/W							

Figure 6-27 Timer/Counter 1 Configuration

6.9.1 Timer Mode

In Timer mode, counting down is performed using the internal clock. The down-counter value auto reloads from T1PD. When the contents of the down-counter underflows, interrupt is the generated and the counter is cleared. Counting down resumes after the counter is cleared.

6.9.2 T1OUT Mode

In Timer 1 underflow Output mode, counting down is performed using the internal clock with prescaler or External clock through T1CLK Pin or Sub Frequency with prescaler. The counter value is loaded from T1PD, when the counter underflows. The F/F output is toggled and the counter is auto-reloaded from T1PD, each time an overflow is found. The F/F output is inverted and output to /T1OUT pin. This mode can generate 50% duty pulse output. The program can initialize the F/F and it is initialized to "0" during a reset. A T1OUT interrupt is generated each time the /T1OUT output is toggled.

Figure 6-28 T10UT Mode Timing Chart

6.9.3 Capture Mode

In Capture mode, the pulse width, period and duty of the T1CAP input pin are measured in this mode, which can be used in decoding the remote control signal. The counter is free running by the internal clock. On the rising (falling) edge of T1CAP pin input, the contents of the counter is loaded into T1PD, then the counter is cleared and interrupt is generated. On the falling (rising) edge of T1CAP pin input, the contents of the counter are loaded into T1TD. The counter is still counting, on the next rising edge of the T1CAP pin input, the contents of the counter are loaded into T1PD, counter is cleared and interrupt is generated again. If an overflow occurs before the edge is detected, the 00H is loaded into T1PD and an underflow interrupt is generated. During interrupt processing, it can be determined whether or not there is an overflow by checking whether the T1PD value is 00H. After an interrupt (capture to T1PD or overflow detection) is generated, capture and underflow detection are halted until T1PD is read out.

Figure 6-29 Capture Mode Timing Chart

6.9.4 PWM Mode

In Pulse Width Modulation (PWM) Output mode, counting down is performed using the internal clock with prescaler or external clock trough T1CLK Pin or Sub Frequency with prescaler. The Duty of PWM1 control by T1TD, and the period of PWM1 control by T1PD. The pulse at the PWM1 pin is held to high level as long as the counter value of T1TD greater than or equal to zero, while the pulse is held to low level until the counter value of T1PD is underflow. The F/F is toggled when underflow. The counter is still counting, the F/F is toggled again when the counter underflows, then the counter is auto reload from T1PD. The F/F output is inverted and output to the /PWM pin. A Timer1 interrupt is generated each time an underflow occurs. T1PD is configured as a 2-stage shift register and, during output, will not switch until one output cycle is completed even if T1PD is overwritten. Therefore, the output can be changed continuously. T1PD is also shifted the first time by setting T1S to "1" after data is loaded to T1PD.

Figure 6-30 PWM Mode Timing Chart

6.9.5 16-Bit Mode

In 16-bit timer mode, all function in Timer 1 resolution become 16 bits.

6.10 Timer 2

Registers for Timer/Counter 2 Circuit

R_BANK	Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 2	0X06	T1CR	TIS1	TIS0	T1MS2	T1MS1	T1MS0	T1P2	T1P1	T1P0
			R/W							
Bank 2	0X07	TSR	T1MOD	TRCB	T1CSS1	T1CSS0	T2CSS	T1EN	0	T10C
			R/W	R/W	R/W	R/W	R/W	R/W		R/W
Bank 2	0X0A	T2CR	T2IF	T2IE	T2S	T2MS1	T2MS0	T2P2	T2P1	T2P0
			R/W							
Bank 2	0X0B	T2PD	PRD2[7]	PRD2[6]	PRD2[5]	PRD2[4]	PRD2[3]	PRD2[2]	PRD2[1]	PRD2[0]
			R/W	R/W	R/W	R/W	●R/W	R/W	R/W	R/W
Bank 2	0X0C	T2TD	TD2[7]	TD2[6]	TD2[5]	TD2[4]	TD2[3]	TD2[2]	TD2[1]	TD2[0]
			R/W							

Figure 6-31 Timer 2 Configuration

6.10.1 Timer Mode

In Timer mode, counting down is performed using the internal clock with prescaler. When the counter value from T2PD underflows, interrupt is then generated and the counter is cleared. Counting down resumes after the counter is cleared. The counter value will automatically reload from T2PD.

Figure 6-32 Timer Mode Timing Chart

6.10.2 PWM Mode

In Pulse Width Modulation (PWM) Output mode, counting down is performed using the internal clock with prescaler or Fsub with frequency. The PWM2 duty cycle is controlled by T2TD, and the PWM2 period is controlled by T2PD. The pulse at the PWM2 pin is held to high level as long as the T2TD counter value is greater than or equal to zero while the pulse is held to low level until the T2PD counter value underflows.

Figure 6-33 PWM Mode Timing Chart

6.11 Timer 3

Registers for Timer/Counter 3 Circuit

R_BANK	Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 2	0X0C	T3CR1	T3IF	T3IE	T3EN	T3CSS1	T3CSS0	T1P2	T1P1	T1P0
			R/W	R/W						
Bank 2	0X0D	T3CR2	0	0	0	0	0	0	T3MS1	T3MS0
			-	-	-	-	-	-	R/W	R/W
Bank 2	0X0E	T3PD	PRD3[7]	PRD3[6]	PRD3[5]	PRD3[4]	PRD3[3]	PRD3[2]	PRD3[1]	PRD[0]
			R/W	R/W						

Figure 6-34 Timer 2 Configuration

6.11.1 Timer Mode

In Timer mode, counting down is performed using the internal clock with prescaler. When the counter value from T3PD underflows, interrupt is then generated and the counter is cleared. Counting down resumes after the counter is cleared. The counter value will automatically reload from T3PD.

6.11.2 T3OUT Mode

In Timer 3 underflow Output mode, counting down is performed using the internal clock with prescaler or external clock through T3CLK Pin or Sub Frequency with prescaler. The counter value is loaded from T3PD. When the counter underflows, this mode can generate 50% duty pulse output. A T3OUT interrupt is generated each time the /T3OUT output is toggled.

Figure 6-35 PWM Mode Timing Chart

6.12 UART

Registers for UART Circuit

R_BANK	Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BANK 3	0×05	URC1	URTD8	UMODE1	UMODE0	BRATE2	BRATE1	BRATE0	UTBE	TXE
			W	R/W	R/W	R/W	R/W	R/W	R	R/W
BANK 3	0×06	URS	URRD8	EVEN	PRE	PRERR	OVERR	FMERR	URBF	RXE
		N S	R	R/W	R/W	R	R	R	R	R/W
BANK 3	0×07	URRD	URRD7	URRD6	URRD5	URRD4	URRD3	URRD2	URRD1	URRD0
			R	R	R	R	R	R	R	R
BANK 3	0×08	URTD	URTD 7	URTD 6	URTD 5	URTD 4	URTD 3	URTD 2	URTD 1	URTD0
			W	W	W	W	W	W	W	W
BANK3	0×09	URC2			UARTE		UINVEN			URRIF
\$					R/W		R/W			R/W
BANK 0	0×0E	ISR	T1IE	LVDIE	ADIE	SPIE	URTIE	EXIE9	EXIE8	TCIE
			R/W	R/W						
BANK 0	0×0F	IMR	T1IF	LVDIF	ADIF	SPIF	URTIF	EXIF9	EXIF8	TCIF
			R/W	R/W						

Figure 6-36 Function Block Diagram

In Universal Asynchronous Receiver Transmitter (UART), each transmitted or received character is individually synchronized by framing it with a start bit and stop bit.

Full duplex data transfer is possible since the UART has independent transmit and receive sections. Double buffering for both sections allows the UART to be programmed for continuous data transfer.

The figure below shows the general format of one character sent or received. The communication channel is normally held in the marked state (high). Character transmission or reception starts with a transition to the space state (low).

The first bit transmitted or received is the start bit (low). It is followed by the data bits, in which the least significant bit (LSB) comes first. The data bits are followed by the parity bit. If present, then the stop bit or bits (high) confirm the end of the frame.

In receiving, the UART synchronizes on the falling edge of the start bit. When two or three "0" are detected during three samples, it is recognized as normal start bit and the receiving operation is started.

Figure 6-37 Data Format in UART

6.12.1 UART MODE:

There are three UART modes, Mode 1 ~ Mode 3. Mode 1 (7 bits data) and Mode 2 (8 bits data) allow the addition of a parity bit. The parity bit addition is not available in Mode 3. The Figure below shows the data format in each mode.

Figure 6-38 UART Mode

6.12.2 Transmitting

In transmitting serial data, the UART operates as follows:

- 1. Set the TXE bit of the URC register to enable the UART transmission function.
- 2. Write data into the URTD register and the UTBE bit of the URC register will be set by hardware.
- 3. Then start transmitting.
- 4. Serially transmitted data are transmitted in the following order from the TX pin.
- 5. Start bit: one "0" bit is output.
- 6. Transmit data: 7, 8 or 9 bits data are output from the LSB to the MSB.
- 7. Parity bit: one parity bit (odd or even selectable) is output.
- 8. Stop bit: one "1" bit (stop bit) is output.
- 9. Mark state: output "1" continues until the start bit of the next transmitted data.

After transmitting the stop bit, the UART generates a URTIF interrupt (if enabled).

6.12.3 Receiving

In receiving, the UART operates as follows:

- 1. Set RXE bit of the URS register to enable the UART receiving function.
- 2. The UART monitors the RX pin and synchronizes internally when it detects a start bit.
- 3. Receive data is shifted into the URRD register in the order from LSB to MSB.
- 4. The parity bit and the stop bit are received.

After one character is received, UBIF bit of URC2 register will be set to 1. This means the UART receive interrupt will occur.

- 5. The UART makes the following checks:
 - (a) Parity check: The number of 1 of the received data must match the even or odd parity setting of the EVEN bit in the URS register.
 - (b) Frame check: The start bit must be 0 and the stop bit must be 1.
 - (c) Overrun check: The URBF bit of the URS register must be cleared (that means the URRD register should be read out) before the next received data is loaded into the URRD register.

If any checks failed, an ERROR interrupt would be generated (if enabled), and if the UART has received completely, the receiving-complete interrupt would be generated (if enabled). The error flag and receive complete flag should be cleared by software. The URTIE bit is the interrupt enable bit of ERROR, UBIF and URTIF.

6. Read received data from URRD register. And URBF bit will be clear by hardware.

6.12.4 Baud Rate Generator:

The baud rate generator is comprised of a circuit that generates a clock pulse to determine the transfer speed for transmission/reception in the UART.

The BRATE2~BRATE0 bits of the URC register can determine the desired baud rate.

6.12.5 UART Timing:

1. Transmission Counter Timing:

2. Receiving Counter Timing:

3. UART Transmit Operation (8 bits data with parity bit):

6.13 DA Conversion

Registers for DAC Circuits

R_BANK	Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 7	0X0B	DACDL	DACD7	DACD6	DACD5	DACD4	DACD3	DACD2	DACD1	DACD0
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 7	0X0C	DACDH	-	-	-	-	-	-	DACD9	DACD8
			-	-	-	-	-	-	R/W	R/W
Bank 7	0X0D	DACC1	DARUN	-	-	SEMC	COF[3]	COF[2]	COF[1]	COF[0]
			R/W			R/W	R/W	R/W	R/W	R/W

Follow these steps to control the output current of DA:

- 1. Load the data to the DA buffer DACDL and DACDH.
- 2. Set the SEMC bit to determine the maximum level (3 or 4mA) of the output current.
- 3. Set the COF [3:0] to determine the range and resolution of the output current.
- 4. Set DARUN bit to 1 and clear by software.

The DA module uses an internal circuit to fit. When the register is set to enable the DA module, the output current of the DA pin DACO will output 0~3 or 4mA.

The maximum level of the DA output current is determined by the SEMC bit. If the SEMCL is enabled, the maximum level of the DA output current would output 4mA. The COF [3:0], COAC [3:0] and SEMC are used to control the output current of DA Conversion. Examples are shown below.

If the SEMC are disabled and COF [3:0] are all "1", the output current range of DA Conversion would be between 0 and 3mA. In this case, the output current of DA Conversion can be adjusted to 3mA×1/16, 3mA×2/16, 3mA×3/16...3mA×16/16, by COF[3:0].

6.14 Initialized Values after Reset

Table 6-5 Summary of Registers Initialized Values

Addr.	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	-	-	-	-	-	-	-	-
	R0	Power-on	U	U	U	U	U	U	U	U A
0×00	(IAR)	/RESET and WDT	U	U	U	U	U	U	U	U
	, ,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	0	PS2	PS1	PS0	0	BS2	BS1	BS0
	R1	Power-on	0	0	0	0	0	0	0	0
0×01	(RPBSR)	/RESET and WDT	0	0	0	0	0	0	0	0
	, ,	Wake-up from Sleep & Idle mode	0	0	Р	Р	0	Р	Р	Р
		Bit Name	-	-	-	- 4		-	-	-
	R2	Power-on	0	0	0	0	0	0	0	0
0×02	(PC)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep & Idle mode			Continue	to execu	ite next in	struction		
		Bit Name	VDB	LVDEN	LVDS	Т	Р	Z	DC	С
	R3	Power-on	0	0	0	1	1	U	U	U
0×03	(SR)	/RESET and WDT	0	0	0	t	t	Р	Р	Р
	, ,	Wake-up from Sleep & Idle mode	0	0	Р	t	t	Р	Р	Р
		Bit Name	ı	-	-	ı	ı	ı	ı	-
	R4	Power-on	0	0	C	U	U	U	U	U
0×04	(RSR)	/RESET and WDT	0	0	Р	Р	Р	Р	Р	Р
		Wake-up from Sleep & Idle mode	0	0	Р	Р	Р	Р	Р	Р
		Bit Name	Rbit7	Rbit6	Rbit5	Rbit4	Rbit3	Rbit2	Rbit1	Rbit0
Bank 0	R5	Power-on	0	0	0	0	0	0	0	0
0×05	(TBLP)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep & Idle mode	0	0	0	Р	Р	Р	Р	Р
	715	Bit Name	TBSHL	0	0	Rbit12	Rbit11	Rbit10	Rbit9	Rbit8
Bank 0	R6	Power-on	0	0	0	0	0	0	0	0
0×06	(TBHP)	/RESET and WDT	0	0	0	0	0	0	0	0
Was		Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р

Addr.	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	P77	P76	P75	P74	P73	P72	P71	P70
Bank 0	R7	Power-on	0	0	0	0	0	0	0	0
0×07	(Port 7)	/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	P87	P86	P85	P84	P83	P82	P81	P80
Bank 0	R8	Power-on	0	0	0	0	0	0	0	0
0×08	(Port 8)	/RESET and WDT	0	0	0	0	0	0	0	0
	()	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	P97	P96	P95	P94 🚄	P93	P92	P91	P90
Bank 0	R9	Power-on	0	0	0	0	0	0	0	0
0×09	(Port 9)	/RESET and WDT	0	0	0	0	0	0	0	0
	(* 2.1.2)	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
		Power-on	0	0	0	0	0	0	0	0
Bank 0	RA	/RESET and WDT	0	0	0	0	0	0	0	0
0×0A	(Port A)	Wake-up from Sleep and Idle mode	P	Р	P	Р	Р	Р	Р	Р
		Bit Name	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
Bank 0	RB	Power-on	0	0	0	0	0	0	0	0
0×0B	(Port B)	/RESET and WDT	0	0	0	0	0	0	0	0
	(,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
	A	Bit Name	0	0	0	0	IDLE	0	0	CPUS
Bank 0	RC	Power-on	0	0	0	0	1	0	0	1
0×0C	(SCCR)	/RESET and WDT	0	0	0	0	1	0	0	1
Vra		Wake-up from Sleep & Idle mode	0	0	Р	Р	Р	0	Р	Р

Addr.	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	WDTE	WPSR2	WPSR1	WPSR0	TCCS	TPSR2	TPSR1	TPSR0
Bank 0	RD	Power-on	0	0	0	0	0	0	0	0
0×0D	(TWTCR)	/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	T1IE	LVDIE	ADIE	SPIE	URTIE	EXIE9	EXIE8	TCIE
Bank 0	RE	Power-on	0	0	0	0	0	0	0	0
0×0E	(IMR)	/RESET and WDT	0	0	0	0	0	0	0	0
	, ,	Wake-up from Sleep & Idle mode	0	0	0	Р	P	Р	Р	Р
		Bit Name	T1IF	LVDIF	ADIF	SPIF	URTIF	EXIF9	EXIF8	TCIF
Bank 0	RF	Power-on	0	0	0	0	0	0	0	0
0×0F	(ISR)	/RESET and WDT	0	0	0	0	0	0	0	0
	, ,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	ı			ı	ı	-	-
0×10	R10~R3	Power-on	U	U	U	Ú	J	U	U	U
~	F	/RESET and WDT	Р	Р	Р	P	Р	Р	Р	Р
0×3F		Wake-up from Sleep & Idle mode	Р	Р	P	Р	Р	Р	Р	Р
		Bit Name	ADRUN	ADP	ADCK1	ADCK0	0	0	0	0
Bank 1	R5	Power-on	0	0	0	0	0	0	0	0
0×05	(ADCR1)	/RESET and WDT	0	0	0	0	0	0	0	0
	` ,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	0	ADREF	0	ADIS4	ADIS3	ADIS2	ADIS1	ADIS0
Bank 1	R6	Power-on	0	0	0	0	0	0	0	0
0×06	(ADCR2)	/RESET and WDT	0	0	0	0	0	0	0	0
	SK	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р

Addr.	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
Bank 1	R7	Power-on	0	0	0	0	0	0	0	0
0×07	(ADDL)	/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	0	0	0	0	ADD11	ADD10	ADD9	ADD8
Bank 1	R8	Power-on	0	0	0	0	0	0	0	0
0×08	(ADDH)	/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	P	Р	Р	Р
		Bit Name	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0
Bank 1	R9	Power-on	0	0	0	0	0	0	0	0
0×09	(ADIC1)	/RESET and WDT	0	0	0	0	0	0	0	0
	(Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	ADE15	ADE14	ADE13	ADE12	ADE11	ADE10	ADE9	ADE8
Bank 1	RA	Power-on	0	0	0	0	0	0	0	0
0×0A	(ADIC2)	/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	ADE23	ADE22	ADE21	ADE20	ADE19	ADE18	ADE17	ADE16
		Power-on	0	0	0	0	0	0	0	0
Bank 1	RB	/RESET and WDT	0	0	0	0	0	0	0	0
0×0B	(ADIC3)	Wake-up from Sleep and Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
	AD	Bit Name	0	0	0	RCM1	RCM0	CLKOE	CLKB1	CLKB0
Bank 1	RC	Power-on	0	0	0	1	1	1	0	0
0×0C	(COCR)	/RESET and WDT	0	0	0	1	1	1	0	0
Ma	1	Wake-up from Sleep & Idle mode	Р	0	Р	Р	Р	Р	0	0

Addr.	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	EXIE7	EXIE6	EXIE5	EXIE4	EXIE3	EXIE2	EXIE1	EXIE0
Bank 1	RE	Power-on	0	0	0	0	0	0	0	0
0×0E	(EIMR)	/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	EXIF7	EXIF6	EXIF5	EXIF4	EXIF3	EXIF2	EXIF1	EXIF0
Bank 1	RF	Power-on	0	0	0	0	0	0	0	0
0×0F	(EISR)	/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	0	P	0	0	0
		Bit Name	TIS1	TIS0	T1MS2	T1MS1	T1M0	T1P2	T1P1	T1P0
Bank 2	R5	Power-on	0	0	0	0	0	0	0	0
0×05	(T1CR)	/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	T1MOD	TRCB	T1CSS 1	T1CSS 0	T2CSS	T1EN	0	T1OC
Bank 2	R6	Power-on	0	0	0	0	0	0	0	0
0x06	(TSR)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PRD1[7]	PRD1[6]	PRD1[5]	PRD1[4]	PRD1[3]	PRD1[2]	PRD1[1]	PRD1[0]
Bank 2	R7	Power-on	0	0	0	0	0	0	0	0
0×07	(T1PD)	/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TD1[7]	TD1[6]	TD1[5]	TD1[4]	TD1[3]	TD1[2]	TD1[1]	TD1[0]
Bank 2	R8	Power-on	0	0	0	0	0	0	0	0
0×08	(T1TD)	/RESET and WDT	0	0	0	0	0	0	0	0
	1	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р

Addr.	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	T2IF	T2IE	T2EN	T2MS1	T2MS0	T2P2	T2P1	T2P0
Bank 2	R9	Power-on	0	0	0	0	0	0	0	0
0×09	(T2CR)	/RESET and WDT	0	0	0	0	0	0	0	0
	, ,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	P
		Bit Name	PRD2[7]	PRD2[6]	PRD2[5]	PRD2[4]	PRD2[3]	PRD2[2]	PRD2[1]	PRD2[0]
Bank 2	RA	Power-on	0	0	0	0	0	0	0	0
0×0A	(T2PD)	/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	P	Р	P	Р
		Bit Name	TD2[7]	TD2[6]	TD2[5]	TD2[4]	TD2[3]	TD2[2]	TD2[1]	TD2[0]
Bank 2	RB	Power-on	0	0	0	0	0	0	0	0
0×0B	(T2TD)	/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	T3IF	T3IE	T3EN	T3CSS1	T3CSS0	T3P2	T3P1	T3P0
Bank 2	RC	Power-on	0	0	0	0	0	0	0	0
0×0C	(T3CR1)	/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	0	0	0	0	0	0	T3MS1	T3MS0
Bank 2	RD	Power-on	0	0	0	0	0	0	0	0
0×0D	(T3CR2)	/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PRD2[7]	PRD2[6]	PRD2[5]	PRD2[4]	PRD2[3]	PRD2[2]	PRD2[1]	PRD2[0]
Bank 2	RE	Power-on	0	0	0	0	0	0	0	0
0×0E	(T3PD)	/RESET and WDT	0	0	0	0	0	0	0	0
	K	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р

Addr.	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	TCC[7]	TCC[6]	TCC[5]	TCC[4]	TCC[3]	TCC[2]	TCC[1]	TCC[0]
Bank 2	RF	Power-on	0	0	0	0	0	0	0	0
0×0F	(TCC)	/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	URTD8	UMODE 1	UMODE 0	BRATE 2	BRATE 1	BRATE 0	UTBE	TXE
Bank 3	R5	Power-on	כ	0	0	0	0	0	1	0
0×05	(URC)	/RESET and WDT	Р	0	0	0	0	0	1	0
		Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	URRD8	EVEN	PRE	PRERR	OVERR	FMERR	UTBF	RXE
Bank 3	R6	Power-on	U	0	0	0	0	0	0	0
0×06	(URS)	/RESET and WDT	Р	0	0	0	0	0	0	0
	(,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	URRD7	URRD6	URRD5	URRD4	URRD3	URRD2	URRD1	URRD0
Bank 3	R7	Power-on	U	U	U	U	U	U	U	U
0×07	(URRD)	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
	(- /	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	URTD7	URTD6	URTD5	URTD4	URTD3	URTD2	URTD1	URTD0
Bank 3	R8	Power-on	Ü	J	J	U	J	J	J	U
0×08	(URTD)	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	0	0	UARTE	0	UINVE N	0	0	URRIF
Bank 3	R9	Power-on	0	0	0	0	0	0	0	0
0×09	(URC2)	/RESET and WDT	0	0	0	0	0	0	0	0
Ma	1/4	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р

Addr.	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	DORD	TD1	TD0	0	OD3	OD4	0	RBF
Bank 3	RA	Power-on	0	0	0	0	0	0	0	0
0×0A	(SPIS)	/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	CES	SPIEN	SRO	SSE	SDOC	SBRS2	SBRS1	SBRS0
Bank 3	RB	Power-on	0	0	0	0	0	0	0	0
0×0B	(SPIC)	/RESET and WDT	0	0	0	0	0	0	0	0
	(31.12)	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	SRB7	SRB6	SRB5	SRB4	SRB3	SRB2	SRB1	SRB0
Bank 3	RC	Power-on	C	U	U	U	U	U	U	U
0×0C	(SPIR)	/RESET and WDT	C	U	U	U	U	U	U	U
	(-)	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	SWB7	SWB6	SWB5	SWB4	SWB3	SWB2	SWB1	SWB0
Bank 3	RD	Power-on	C	U	U	Ú	U	U	U	U
0×0D	(SPIW)	/RESET and WDT	U	U		U	U	U	U	U
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	EIES7	EIES6	EIES5	EIES4	EIES3	EIES2	EIES1	EIES0
Bank 3	RE	Power-on	0	0	0	0	0	0	0	0
0×0E	(EIESH)	/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	LVDWE	I2CWE	SPIWE	ADWK	INTWK9	INTWK8	EIES9	EIES8
Bank 3	RF	Power-on	0	0	0	0	0	0	0	0
0×0F	(EIESL)	/RESET and WDT	0	0	0	0	0	0	0	0
	K	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р

Addr.	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	IOC77	IOC76	IOC75	IOC74	IOC73	IOC72	IOC71	IOC70
Bank 4	R7	Power-on	1	1	1	1	1	1	1	1
0×07	(IOC7)	/RESET and WDT	1	1	1	1	1	1	1	1
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	IOC87	IOC86	IOC85	IOC84	IOC83	IOC82	IOC81	IOC80
Bank 4	R8	Power-on	1	1	1	1	1	1	1	1
0×08	(IOC8)	/RESET and WDT	1	1	1	1	1	1	1	1
	()	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	IOC97	IOC96	IOC95	IOC94	IOC93	IOC92	IOC91	IOC90
Bank 4	R9	Power-on	1	1	1	1	1	1	1	1
0×09	(IOC9)	/RESET and WDT	1	1	1	1	1	1	1	1
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	IOCA7	IOCA6	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0
Bank 4	R9	Power-on	1	1	1	1	1	1	1	1
0×0A	(IOCA)	/RESET and WDT	1	1		1	1	1	1	1
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	IOCB7	IOCB6	IOCB5	IOCB4	IOCB3	IOCB2	IOCB1	IOCB0
Bank 4	RB	Power-on		1	1	1	1	1	1	1
0×0B	(IOCB)	/RESET and WDT	1	1	1	1	1	1	1	1
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	0	0	IOCC5	IOCC4	IOCC3	IOCC2	IOCC1	IOCC0
Bank 4	RC	Power-on	0	0	1	1	1	1	1	1
0×0C	(IOCC)	/RESET and WDT	0	0	1	1	1	1	1	1
	S	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р

Addr.	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	INTWK7	INTWK6	INTWK5	INTWK4	INTWK3	INTWK2	INTWK1	INTWK0
Bank 4	RF	Power-on	0	0	0	0	0	0	0	0
0×0F	(WKCR)	/RESET and WDT	0	0	0	0	0	0	0	0
	(**************************************	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PH77	PH76	PH75	PH74	PH73	PH72	PH71	PH70
		Power-on	0	0	0	0	0	0	0	0
Bank 5	R7	/RESET and WDT	0	0	0	0	0	0	0	0
0×07	(P7PHCR)	Wake-up from Sleep and Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PH87	PH86	PH85	PH84	PH83	PH82	0	PH80
		Power-on	0	0	0	0	0	0	0	0
Bank 5	R8	/RESET and WDT	0	0	0	0	0	0	0	0
0×08	0×08 (P8PHCR)	Wake-up from Sleep and Idle mode	Р	Р	P	Р	Р	Р	Р	Р
		Bit Name	PH97	PH96	PH95	PH94	PH93	PH92	PH91	PH90
		Power-on	0	0	0	0	0	0	0	0
Bank 5	R9	/RESET and WDT	0	0	7 0	0	0	0	0	0
0×09	(P9PHCR)	Wake-up from Sleep and Idle mode	P	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PHA7	PHA6	PHA5	PHA4	PHA3	PHA2	PHA1	PHA0
		Power-on	0	0	0	0	0	0	0	0
Bank 5	RA	/RESET and WDT	0	0	0	0	0	0	0	0
0×0A	(PAPHCR)	Wake-up from Sleep and Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
-		Bit Name	PHB7	PHB6	PHB5	PHB4	PHB3	PHB2	PHB1	PHB0
		Power-on	0	0	0	0	0	0	0	0
Bank 5	RB	/RESET and WDT	0	0	0	0	0	0	0	0
0×0B	(PBPHCR)	Wake-up from Sleep and Idle mode	Р	Р	Р	Р	Р	Р	Р	Р

Addr.	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	0	0	PHC5	PHC4	PHC3	PHC2	PHC1	PHC0
Bank 5	RC	Power-on	0	0	0	0	0	0	0	0
0×0C		/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	OD77	OD76	OD75	OD74	OD73	OD72	OD71	OD70
Bank 6	R7	Power-on	0	0	0	0	0	0	0	0
0×07	(P7ODCR)	/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	OD87	OD86	OD85	OD84	OD83	OD82	0	OD80
Bank 6	R8	Power-on	0	0	0	0	0	0	0	0
0×08	(P8ODCR)	/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	OD97	OD96	OD95	OD94	OD93	OD92	OD91	OD90
Bank 6	R9	Power-on	0	0	0	0	0	0	0	0
0×09	(P9ODCR)	/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	ODA7	ODA6	ODA5	ODA4	ODA3	ODA2	ODA1	ODA0
Bank 6	RA	Power-on	0	0	0	0	0	0	0	0
0×0A	(PAODCR)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0
Bank 6	RB	Power-on	0	0	0	0	0	0	0	0
0×0B	(PBODCR)	/RESET and WDT	0	0	0	0	0	0	0	0
	0×0B (PBODCR)	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р

Addr.	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	0	0	PC5	PC4	PC3	PC2	PC1	PC0
Bank 6	RC	Power-on	0	0	0	0	0	0	0	0
0×0C		/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	Strobe/ Pend	IMS	ISS	Stop	SAR_ EMPTY	ACK	FULL	EMPTY
Bank 7	R5	Power-on	0	0	0	0	U	U	U	U
0×05	(I2CCR1)	/RESET and WDT	0	0	0	0	U	U	U	U
		Wake-up from Sleep & Idle mode	0	Р	Р	Р	Р	Р	Р	Р
		Bit Name	I2CRIF	I2CRIE	I2CTIF	12CTIE	I2CTS1	I2CTS0	I2CCS	I2CEN
		Power-on	0	0	0	0	0	0	0	0
Bank 7	R6	/RESET and WDT	0	0	0	0	0	0	0	0
0×06	0×06 (I2CCR2)	Wake-up from Sleep and Idle mode	Р	Р	P	Р	Р	Ъ	Р	Р
		Bit Name	SA6	SA5	SA4	SA3	SA2	SA1	SA0	IRW
Bank 7	R7	Power-on	0	0	0	0	0	0	0	0
0×07	(I2CSA)	/RESET and WDT	0	0	70	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	P	Р	Р	Р	Р	Р	Р	Р
		Bit Name	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
Bank 7	R8	Power-on	0	0	0	0	0	0	0	0
0×08	(I2CDA)	/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
	A	Bit Name	0	IBFULL	AMB	IBEN	I2CSPE	I2CSPF	DA9	DA8
Bank 7	R9	Power-on	0	0	0	0	0	0	0	0
0×09	(I2CA)	/RESET and WDT	0	0	0	0	0	0	0	0
V		Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р

Addr.	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Pank 7	Bank 7 RA 0×0A (I2CDB)	Power-on	0	0	0	0	0	0	0	0
		/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	DACD7	DACD6	DACD5	DACD4	DACD3	DACD2	DACD1	DACD0
Bank 7	RB	Power-on	0	0	0	0	0	0	0	0
0×0B	(DACDL)	/RESET and WDT	0	0	0	0	0	0	0	0
	Wake-up from Sleep & Idle mode	Р	0	Р	Р	Р	Р	Р	Р	
		Bit Name	0	0	0	0	0	0	DACD9	DACD8
Bank 7	RC	Power-on	0	0	0	0 🚄	0	0	0	0
0×0C	(DACDH)	/RESET and WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	DARUN	0	0	SEMC	COF[3]	COF[2]	COF[1]	COF[0]
Bank 7	RD	Power-on	0	0	0	0	0	0	0	0
0×0D	(DACC1)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Sleep & Idle mode	Р	P	0	Р	Р	Р	Р	Р
		Bit Name	0	0	0	0	0	0	GCEN	I2CSF
Bank 7	RF	Power-on	0	0	0	0	0	0	0	0
0×0F	(I2CCR3)	/RESET and WDT	0	0	0	0	0	0	0	0
	, ,,	Wake-up from Sleep & Idle mode	Р	Р	Р	Р	Р	Р	Р	Р

^{- :} not used.U: unknown or don't care.P: previous value before wake-up.

t: check "Reset Type" table

6.15 Oscillator

6.15.1 Oscillator Modes

The EM78P507N can be operated in five different oscillator modes, such as High Crystal oscillator mode (HXT), Crystal oscillator mode (XT), Low Crystal oscillator mode, External RC oscillator mode (ERC) and Internal RC oscillator mode (IRC). Users can select one of the five modes by programming the Code Option. The up-limited operation frequency of crystal/resonator on the different VDD is listed in Table 6-6.

Table 6-6 Summary of Maximum Operating Speeds

Conditions	VDD	Fxt Max. (MHz)
Two clocks	2.2	16
	3.3	20

6.15.2 Crystal Oscillator/Ceramic Resonators (Crystal)

The EM78P507N can be driven by an external clock signal through the OSCI pin as shown in Figure 6-39 below.

Figure 6-39 External Clock Input Circuit

In most applications, Pin OSCI and Pin OSCO can be connected with a crystal or ceramic resonator to generate oscillation. Figure 6-40 depicts such a circuit. The same applies to the HXT1, HXT2, XT and LXT mode. Table 6-7 provides the recommended values of C1 and C2. Since each resonator has its own attribute, user should refer to their specifications for appropriate values of C1 and C2. RS, a serial resistor, may be necessary for AT strip cut crystal or low frequency mode.

Figure 6-40 Circuit for Crystal/Resonator

Oscillator Type	Frequency Mode	Frequency	C1 (pF)	C2 (pF)
		100kHz	60pF	60pF
	LXT	200kHz	60pF	60pF
	(100K~1 MHz)	455kHz	40pF	40pF 🦼
Ceramic Resonators		1 MHz	30pF	30pF
	VT	1.0 MHz	30pF	30pF
	XT (1M~6 MHz)	2.0 MHz	30pF	30pF
	(1111 0 111112)	4.0 MHz	20pF	20pF
		100kHz	60pF	60pF
	LXT	200kHz	60pF	60pF
	(100K~1 MHz)	455Hz	40pF	40pF
		1 MHz	30pF	30pF
		1.0 MHz	30pF	30pF
	XT	2.0 MHz	30pF	30pF
Crystal Oscillator	(1M~6 MHz)	4.0 MHz	20pF	20pF
Crystal Oscillator		6.0 MHz	30pF	30pF
	LIVTA	6.0 MHz	30pF	30pF
	HXT1 (6M~12 MHz)	8.0 MHz	30pF	30pF
	(OM 12 MI12)	12.0 MHz	30pF	30pF
	LIVEO	12.0 MHz	30pF	30pF
	HXT2 (12M~20 MHz)	16 MHz	20pF	20pF
	(12101 20 1011 12)	20 MHz	15pF	15pF

Table 6-7 Capacitor Selection Guide for Crystal Oscillator or Ceramic Resonators

6.15.3 External RC Oscillator Mode

For some applications that do not require precise timing calculation, the RC oscillator (Figure 6-41) could offer users with an effective cost savings.

Nevertheless, it should be noted that the frequency of the RC oscillator is influenced by the supply voltage, the resistor values (Rext), the capacitor (Cext), and even by the operation temperature. Moreover, the frequency also changes slightly from one chip to another due to manufacturing process variations.

Figure 6-41 Circuit for External RC Oscillator

Mode

In order to maintain a stable system frequency, the values of the Cext should not be less than 20pF, and that the value of Rext should not be greater than 1 M Ω . If they cannot be kept in this range, the frequency can be affected easily by noise, humidity, and leakage.

The smaller the Rext in the RC oscillator, the faster its frequency will be. On the contrary, for very low Rext values, for instance, 1 K Ω , the oscillator becomes unstable because the NMOS cannot discharge the current of the capacitance correctly.

Based on the above reasons, it must be kept in mind that all supply voltage, the operation temperature, the components of the RC oscillator, the package types, and the PCB layout have certain effects on the system frequency.

ERC Oscillator Frequencies

Cext	Rext	Average Fosc 3.3V, 25°C	Average Fosc 2.4V, 25°C
	3.3k	2.1 MHz	2 MHz
20 pF	5.1k	1.4 MHz	1.33 MHz
20 μ	10k	0.7 MHz	0.63 MHz
	100k	77kHz	77kHz
	3.3k	0.77 MHz	0.71 MHz
100 pF	5.1k	504kHz	483kHz
100 μ	10k	294kHz	280kHz
	100k	34kHz	32kHz
	3.3k	476kHz	448kHz
300 pF	5.1k	315kHz	294kHz
300 pi	10k	172kHz	160kHz
	100k	20kHz	19kHz

Note: 1. Measured on DIP packages

2. Design reference only

3. The frequency drift is about ± 30%

6.15.4 Internal RC Oscillator Mode

The EM78P507N offers a versatile internal RC mode with default frequency value of 4 MHz. In Internal RC oscillator mode, there are other frequencies (16 MHz, 8 MHz and 1 MHz) that can be set by Code Option (Word 1), RCM1 and RCM0 and Bank 1 RC. The Table below describes the EM78P507N internal RC drift with variation of temperature, voltage, and process.

Internal RC Drift Rate (Ta=25°C, VDD=3.3V±5%, VSS=0V)

1.4		Drift Rate								
Internal RC Frequency	Temperature (-40℃~+85℃)	Voltage (2.0V~5.5V)	Process	Total						
4 MHz	±5%	±5%	±2.35%	±12.35%						
1 MHz	±5%	±5%	±2.35%	±12.35%						
16 MHz	±5%	±5%	±2.35%	±12.35%						
8 MHz	±5%	±5%	±2.35%	±12.35%						

The theoretical values are for reference only. Actual values may vary depending on the actual process.

All these four main frequencies can be calibrated by programming the Option bits, C4~C0. Table 6-8 describes a typical instance of the calibration.

Table 6-8 Calibration Selection for Internal RC Mode

C4	C3	C2	C 1	C0	Frequency (MHz)
0	0	0	0	0	(1-24.2%) x F
0	0	0	0	1	(1-23.10%) x F
0	0	0	1	0	(1-21.9%) x F
0	0	0	1	1	(1-20.6%) x F
0	0	1	0	0	(1-19.4%) x F
0	0	1	0	1	(1-18.0%) x F
0	0	1	1	0	(1-16.7%) x F
0	0	1	1	1	(1-15.3%) x F
0	1	0	0	0	(1-13.8%) x F
0	1	0	0	1	(1-12.3%) x F
0	1	0	1	0	(1-10.7%) x F
0	1	0	1	71	(1-9.1%) x F
0	1	1	0	0	(1-7.4%) x F
0	1	1	0	1	(1-5.7%) x F
0	1	1	1	0	(1-3.8%) x F
0	1	1	1	1	(1-2.0%) x F
1	1	1	1	1	F (default)
1	1	1	1	0	(1+2.0%) x F
1		1	0	1	(1+4.2%) x F
1	1	1	0	0	(1+6.4%) x F
4	1	0	1	1	(1+8.7%) x F
1	1	0	1	0	(1+11.1%) x F
1	1	0	0	1	(1+13.6%) x F
1 /	1	0	0	0	(1+16.3%) x F
1	0	1	1	1	(1+19.0%) x F
1	0	1	1	0	(1+22.0%) x F
1	0	1	0	1	(1+25.0%) x F
1	0	1	0	0	(1+28.2%) x F
1	0	0	1	1	(1+31.6%) x F
1	0	0	1	0	(1+35.1%) x F
1	0	0	0	1	(1+38.65%) x F
1	0	0	0	0	(1+42.00%) x F

Note: These are theoretical values and for reference only. Actual values depend on the process..

6.16 Power-on Considerations

Any microcontroller is not warranted to start proper operation before the power supply has stabilized in a steady state. The EM78P507N is equipped with Power-on Voltage Detector (POVD) with detection level range of 1.8V to 1.9V. The circuitry eliminates any extra external reset circuit. It will work well if VDD rises quickly enough. However, under critical applications, extra devices are still required to assist in solving power-on problems.

6.16.1 External Power-on Reset Circuit

The circuit shown in Figure 6-42 implements an external RC to produce a reset pulse. The pulse width (time constant) should be kept long enough to allow the VDD to reach minimum operation voltage. This circuit is used when the power supply has a slow rise time. Because the current

Figure 6-42 External Power on Reset Circuit

leakage from the /RESET pin is about $\pm 5\mu A$, it is recommended that R should not be greater than 40K. In this way, the voltage at Pin /RESET is held below 0.2V. The diode (D) acts as a short circuit at power-down. The capacitor, C, is discharged rapidly and fully. The current-limited resistor Rin, prevents high current discharge or ESD (electrostatic discharge) from flowing into Pin /RESET.

6.16.2 Residue-voltage Protection

When battery is replaced, device power (VDD) is taken off but residue-voltage remains. The residue-voltage may trips below VDD minimum, but not to zero. This condition may cause a poor power on reset. Figure 6-43 and Figure 6-44 show how to build a residue-voltage protection circuit

Figure 6-43 Residue Voltage Protection Circuit 1

Figure 6-44 Residue Voltage Protection Circuit 2

6.17 Code Option

The EM78P507N has three Code Option words and one Customer ID word that are not a part of the normal program memory.

Word 0	Word 1	Word 2	Word F
Bit 12~Bit 0	Bit 12~Bit 0	Bit 12, Bit 7~Bit 0	Bit 9~Bit 0

6.17.1 Code Option Register (Word 0)

	Word 0											
Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
COBS1	1	TYPE	RESETB	ENWDTB	LPF	-	OSC2	OSC1	OSC0	PR2	PR1	PR0

Bit 12 (COBS1): Code Option Bit Selection

0: Select internal Bank 1 RC Bit 2 as code option input. The other code option depends on the H/W definition.

1: Select H/W code option input (default)

Bit 11: Reserved

Bit 10 (TYPE): Code Option Bit Select

EM78P507N TYPE:

TYPE	Type Selection
0	44 Pins
1	48 Pins

Bit 9 (RESETB): Reset Pin Enable Bit

0: Enable, P81//RESET → RESET pin.
1: Disable, P81//RESET → P81 (default)

Bit 8 (ENWDTB): Watchdog Timer Enable Bit.

0: Enable

1: Disable (default)

Bit 7 (LPF): Low pass filter.

1: Enable (default)

0: Disable

Bits 5~3 (OSC2~OSC0): Oscillator Modes Select Bits

Mode	OSC2	OSC1	OSC0
ERC (External RC oscillator mode) ; PC0/OSCO act PC0	0	0	0
ERC (External RC oscillator mode) ; PC0/OSCO act OSCO	0	0	1
IRC (Internal RC oscillator mode); PC0/OSCO act PC0 (default)	0	1	0
IRC (Internal RC oscillator mode) ; PC0/OSCO act OSCO	0	1	1 🙏
LXT (Low Crystal oscillator mode)	1	0	0
HXT2 (High Crystal 2 oscillator mode)	1	0	1
HXT1 (High Crystal 1 oscillator mode)	1	1	0
XT (Crystal oscillator mode)	1	1	1

Note: 1. Frequency range of HXT2 mode is 20 MHz ~ 12 MHz.

- ². Frequency range of HXT1 mode is 12 MHz ~ 6 MHz.
- 3. Frequency range of XT mode is 6 MHz ~ 1 MHz.
- 4. Frequency range of LXT mode is 1 MHz ~ 100kHz.

Bits 2~0 (PR2~PR0): Protect Bits

PR2~PR0 are protect bits, protect type are as follows:

PR2	PR1	PR0	Protect
0	0	0	Enable
0	0	1	Enable
0	1	0	Enable
0	1	1	Enable
1	0	0	Enable
1	0	1	Enable
1		0	Enable
1	1	1	Disable

6.17.2 Code Option Register (Word 1)

	Word 1											
Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKOEB	RCOUT	EFTIM	SHT	C4	C3	C2	C1	C0	RCM1	RCM0	HLFS	SHOLDENB

Bit 12 (CLKOEB): P9.1 act as CLK output pin

0: P9.1 act as CLK output Pin

1: P9.1 act as General I/O Pin (Default)

Bit 11 (RCOUT): System Clock Output Enable Bit in IRC or ERC mode

0: OSCO pin is open drain

1: OSCO output system clock (default)

Bit 10 (EFTIM): EFT Improvement

0: Low EFT improvement (default) (2.2V, 16 MHz)

1: High EFT improvement (1.8V, 4MHz)

Bit 9 (SHT): System Hold Time

0: System hold time 16 CLK.

1: System hold time 8 CLK (default)

Bits 8~4 (C4~C0): Calibrator of Internal RC Mode. For IRC calibration value, refer to Table 6-8.

Bits 3~2 (RCM1~RCM0): RC Mode Selection Bits

RCM 1	RCM 0	*Frequency (MHz)
0	0	1M
0	1	8M
1	0	16M
1	1	4M

Bits 1 (HLFS): Reset to Normal or Green Mode Select Bit

0: CPU is selected as Green mode when a reset occurs

1: CPU is selected as Normal mode when a reset occurs (default).

Bit 0 (SHOLDENB): System hold enable bit

0: Enable1: Disable

6.17.3 Code Option Register (Word 2)

					١	Nord 2						
Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Customer ID											

6.17.4 Code Option Register (Word F)

	Word F											
Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PR15	PR14	PR13	PR12	PR11	PR10	PR9	PR8	PR7	PR6	PR5	PR4	PR3

Bits 12~0 (PR15~PR3): Protect Bits

6.18 Instruction Set

Each instruction in the instruction set is a 13-bit word divided into an OP code and one or more operands. Normally, all instructions are executed within one single instruction cycle (one instruction consists of 2 oscillator periods), unless the program counter is changed by instruction "MOV R2,A", "ADD R2,A", or by instructions of arithmetic or logic operation on R2 (e.g. "SUB R2,A", "BSI R2,6", "CLR R2", …). In this case, these instructions need one or two instruction cycle as determined by Code Option Register CYES bit.

In addition, the instruction set has the following features:

- (1) Every bit of any register can be set, cleared, or tested directly.
- (2) The I/O registers can be regarded as general registers. That is, the same instruction can operate on I/O registers.

Convention:

- **R** = Register designator that specifies which one of the registers (including operation and general purpose registers) is to be utilized by the instruction.
- **b** = Bit field designator that selects the value for the bit located in the register R and which affects the operation.
- **k** = 8 or 10-bit constant or literal value

Table 6-9 List of Instruction Set of EM78P507N

	Binary Instruction	HEX	Mnemonic	Operation	Status Affected
	0 0000 0000 0000	0000	NOP	No Operation	None
	0 0000 0000 0001	0001	DAA	Decimal Adjust A	С
	0 0000 0000 0011	0003	SLEP	$0 \rightarrow WDT$, Stop oscillator	T, P
	0 0000 0000 0100	0004	WDTC	$0 \rightarrow WDT$	T, P
	0 0000 0001 0000	0010	ENI	Enable Interrupt	None
	0 0000 0001 0001	0011	DISI	Disable Interrupt	None
	0 0000 0001 0010	0012	RET	$[Top\;of\;Stack]\toPC$	None
PA P	0 0000 0001 0011	0013	RETI	$[Top\;of\;Stack]\toPC,Enable$ $Interrupt$	None
4	0 0000 01rr rrrr	00rr	MOV R,A	$A \to R$	None
	0 0000 1000 0000	0800	CLRA	$0 \rightarrow A$	Z
	0 0000 11rr rrrr	00rr	CLR R	$0 \rightarrow R$	Z
	0 0001 00rr rrrr	01rr	SUB A,R	$R-A \rightarrow A$	Z, C, DC
	0 0001 01rr rrrr	01rr	SUB R,A	$R-A \rightarrow R$	Z, C, DC
	0 0001 10rr rrrr	01rr	DECA R	$R-1 \rightarrow A$	Z
	0 0001 11rr rrrr	01rr	DEC R	$R-1 \rightarrow R$	Z
	0 0010 00rr rrrr	02rr	OR A,R	$A \vee VR \to A$	Z
	0 0010 01rr rrrr	02rr	OR R,A	$A \lor VR \to R$	Z

				•
Binary Instruction	n HEX	Mnemonic	Operation	Status Affected
0 0010 10rr rrrr	02rr	AND A,R	$A \& R \rightarrow A$	Z
0 0010 11rr rrrr	02rr	AND R,A	$A \& R \rightarrow R$	Z
0 0011 00rr rrrr	03rr	XOR A,R	$A \oplus R \to A$	Z
0 0011 01rr rrrr	03rr	XOR R,A	$A \oplus R \to R$	Z A
0 0011 10rr rrrr	03rr	ADD A,R	$A + R \rightarrow A$	Z, C, DC
0 0011 11rr rrrr	03rr	ADD R,A	$A + R \rightarrow R$	Z, C, DC
0 0100 00rr rrrr	04rr	MOV A,R	$R \rightarrow A$	Z
0 0100 01rr rrrr	04rr	MOV R,R	$R \rightarrow R$	Z
0 0100 10rr rrrr	04rr	COMA R	$/R \rightarrow A$	Z
0 0100 11rr rrrr	04rr	COM R	$/R \rightarrow R$	Z
0 0101 00rr rrrr	05rr	INCA R	$R+1 \rightarrow A$	Z
0 0101 01rr rrrr	05rr	INC R	R+1 → R	Z
0 0101 10rr rrrr	05rr	DJZA R	$R-1 \rightarrow A$, skip if zero	None
0 0101 11rr rrrr	05rr	DJZ R	R-1 → R, skip if zero	None
0 0110 00rr rrrr	06rr	RRCA R	$R(n) \rightarrow A(n-1), R(0) \rightarrow C, C$ $\rightarrow A(7)$	С
0 0110 01rr rrrr	06rr	RRCR	$R(n) \rightarrow R(n-1), R(0) \rightarrow C, C$ $\rightarrow R(7)$	С
0 0110 10rr rrrr	06rr	RLCA R	$\begin{array}{l} R(n) \rightarrow A(n+1), R(7) \rightarrow C, \ C \\ \rightarrow A(0) \end{array}$	С
0 0110 11rr rrrr	06rr	RLC R	$R(n) \rightarrow R(n+1), R(7) \rightarrow C, C$ $\rightarrow R(0)$	С
0 0111 00rr rrrr	07rr	SWAPA R	$R(0-3) \rightarrow A(4-7), R(4-7) \rightarrow A(0-3)$	None
0 0111 01rr rrrr	07rr	SWAP R	$R(0-3) \leftrightarrow R(4-7)$	None
0 0111 10rr rrrr	07rr	JZA R	$R+1 \rightarrow A$, skip if zero	None
0 0111 11rr rrrr	07rr	JZ R	$R+1 \rightarrow R$, skip if zero	None
0 100b bbrr rrrr	0xxx	BC R,b	$0 \rightarrow R(b)$	None
0 101b bbrr rrrr	0xxx	BS R,b	$1 \rightarrow R(b)$	None <note1></note1>
0 110b bbrr rrrr	0xxx	JBC R,b	if R(b)=0, skip	None
0 111b bbrr rrrr	0xxx	JBS R,b	if R(b)=1, skip	None
1 00kk kkkk kkkk	1kkk	CALL k	$PC+1 \rightarrow [SP], (Page, k) \rightarrow PC$	None
1 01kk kkkk kkkk	1kkk	JMP k	$(Page,k) \to PC$	None
1 1000 kkkk kkkk	18kk	MOV A,k	$k \rightarrow A$	None
1 1001 kkkk kkkk	19kk	OR A,k	$A \vee k \to A$	Z
1 1010 kkkk kkkk	1Akk	AND A,k	$A \& k \rightarrow A$	Z
1 1011 kkkk kkkk	1Bkk	XOR A,k	$A \oplus k \to A$	Z

Binary Instruction	HEX	Mnemonic	Operation	Status Affected
1 1100 kkkk kkkk	1Ckk	RETL k	$k \to A, [Top \ of \ Stack] \to PC$	None
1 1101 kkkk kkkk	1Dkk	SUB A,k	$k-A \rightarrow A$	Z, C, DC
1 1110 1001 kkkk	1E9k	BANK K	K→R4(7:6)	None
1 1110 1010 kkkk	1EAK	LCALL	Next instruction: k kkkk kkkk kkkk; PC+1 → [SP], k->PC	None
1 1110 1011 kkkk	1EBK	LJMP	Next instruction: k kkkk kkkk kkkk; k→PC	None
1 1111 kkkk kkkk	1Fkk	ADD A,k	$k+A \rightarrow A$	Z, C, DC
1 1110 11rr rrrr	1Err	TBRD R	If R6, machine code(0:7)→R else R5 machine code (12:8)→R	None

Note: ¹ This instruction cannot operate under interrupt status register.

7 Absolute Maximum Rating

Items		Rating	
Temperature under bias	-40°C	to	85°C
Storage temperature	-65°C	to	150°C
Input voltage	Vss-0.3V	to	Vdd+0.5V
Output voltage	Vss-0.3V	to	Vdd+0.5V
Working Voltage	2.1V	to	3.6V
Working Frequency	DC	to	20 MHz

8 Electrical Characteristics

8.1 DC Electrical Characteristic

Ta= 25°C, VDD= 3.3V, VSS= 0V

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
FXT	Crystal: VDD to 3.6V	Two cycles with two clocks	0.1	-	20	MHz
ERC	ERC: VDD to 3.3V	R: 5.1KΩ, C: 100 pF	504	760	936	kHz
IRC1	IRC:VDD to 3.3V	RCM0:RCM1=1:1	2.9	4	5.7	MHz
IRCE	Internal RC oscillator error per stage		±2.15	±2.35	±2.55	%
IRC2	IRC:VDD to 3.3V	RCM0:RCM1=1:0	11.65	16	22.8114	MHz
IRC3	IRC:VDD to 3.3V	RCM0:RCM1=0:1	5.8	8	11.4	MHz
IRC4	IRC:VDD to 3.3V	RCM0:RCM1=0:0	0.725	1	1.425	MHz
IIL	Input Leakage Current for input pins	VIN = VDD, VSS	-1	0	1	μΑ
VIH1	Input High Voltage (Schmitt trigger)	Ports 7, 8, 9, A, B, C	0.8VDD	-	-	V
VIL1	Input Low Voltage (Schmitt trigger)	Ports 7, 8, 9, A, B, C	VSS	-	0.2VDD	V
VIHT1	Input High Threshold Voltage (Schmitt trigger)	/RESET	0.7VDD	-	-	V
VILT1	Input Low Threshold Voltage (Schmitt trigger)	/RESET	VSS	-	0.2VDD	V
VIHX1	Clock Input High Voltage	OSCI in crystal mode	2.5	-	-	٧
VILX1	Clock Input Low Voltage	OSCI in crystal mode	-	-	1.0	٧
ЮН	Output High Voltage (Ports 5, 6, 7, 8, 9, A)	VOH = VDD-0.5V	-6	-6.5	-7	mA
IOL	Output Low Voltage (Ports 5, 6, 7, 8, 9, A)	VOL = GND+0.5V	12.5	13	14	mA

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
IPH	Pull-high current	Pull-high active, input pin at VSS	-20	-25	-30	μА
IPL	Pull-low current	Pull-low active, input pin at VDD	10	15	20	μА
ISB1	Power down current	All input and I/O pins at VDD, output pin floating, WDT disabled	-	-	1.0	μА
ISB2	Power down current	All input and I/O pins at VDD, output pin floating, WDT enabled	-	-	2.0	μА
ICC1	Operating supply current at two clocks	/RESET= 'High', Fosc=4MHz (Crystal type), output pin floating, WDT disabled		4	1	mA
ICC2	Operating supply current at two clocks	/RESET= 'High', Fosc=16 MHz (Crystal type), output pin floating, WDT enabled	-	-	2	mA
ICC3	Operating supply current at two clocks	/RESET= 'High', In Green mode, output pin floating, WDT enabled	-	-	200	μА
ICC4	Operating supply current at two clocks	/RESET= 'High', in idle mode, output pin floating, WDT enabled	-	-	30	μΑ

8.2 AC Electrical Characteristic

Ta= -40°C ~ 85°C, VDD=3.3V \pm 5%, VSS=0V

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Dclk	Input CLK duty cycle	-	45	50	55	%
Tins	Instruction cycle time (CLKS="0")	Crystal type	125	ı	DC	ns
		RC type	500	1	DC	ns
Tdrh	Device reset hold time	Ta = 25°C	9	18	30	ms
Trst	/RESET pulse width	Ta = 25°C	2000	-	-	ns
Twdt	Watchdog timer period	Ta = 25°C	9	18	30	ms
Tset	Input pin setup time	-	1	0	1	ns
Thold	Input pin hold time	-	1	20	-	ns
Tdelay	Output pin delay time	Cload=20pF	-	50	-	ns

^{*}N = selected prescaler ratio

9 Timing Diagrams

AC Test Input/Output Waveform

AC Testing: Input is driven at VDD-0.5V for logic "1", and GND+0.5V for logic "0".

Timing measurements are made at 0.75VDD for logic "1" and 0.25VDD for logic "0".

Figure 9-1 AC Timing Diagram

Figure 9-2 Reset Timing Diagram

Figure 9-3 TCC Input Timing Diagram

APPENDIX

A Package Type

Flash MCU	Package Type	Pin Count	Package Size
EM78P507N	LQFP	44	
EM78P507N	QFP	44	
EM78P507N	LQFP	48	-7

Green products do not contain hazardous substances.

This complies with the third edition of Sony SS-00259 standard.

Pb contents should be less the 100ppm.

Pb contents comply with Sony specs.

