

车路协同专用短程通信第2部分媒体接入控制层和物理层

标准介绍

标准概述

TOF-XChange TOF-X

车路协同 专用短程通信 第2部分 MAC层和PHY层

■ 应用场景:车载单元(OBU)与路边单元(RSU)以及车与车之间的无线连接

标准第2部分所实现的功能

在车与路及车与车之间建立无线通道

■ 接入网

- 路边单元 RSU
 - □与OBU通信
 - □IP透传通道,把OBU连接至网络平台
- 车载单元 OBU
 - 连接RSU
 - □ 应急消息至周围OBU
- 网络平台(将由标准第3部分定义)
 - □ 设备监控服务器/车辆管理服务器/业务服务器/计费服务器/业务网关...
 - □网络层服务

目标频段: 5.4GHz~5.8GHz,专用频段;

• 峰值速率: 155Mbps

• 系统带宽: 20MHz/40MHz

• 双工方式: TDD (车—路) /CSMA(车—车)

• 多址方式: TDMA

• 频谱效率: 约7.5bit/s/Hz

• 最大发射功率: 33~36dBm

• 覆盖半径: >1Km

• 支持的终端运动速度: ≥120Km/h

标准文本结构

车路系统流程 (第8章)	车路帧结构定义 (第7章)				
入网流程	广播帧	随机接入请求	随机接入响应	能力协商请求	
	能力协商响应				
业务管理流程	业务建立请求	业务建立响应	业务修改请求	业务修改响应	
QoS管理	业务删除请求	业务删除响应			
资源请求流程	独立资源请求	随路资源请求			
ACK反馈与重传	确认帧	组确认请求帧	组确认帧		
链路自适应	CSI反馈帧	CMI反馈帧	BFM反馈帧	CQI反馈帧	
休眠流程	休眠请求帧	休眠响应帧	下行业务指示		
信道切换流程	信道切换通知				
退网流程	退网请求帧				

MAC的关键特性(车路模式-MAC帧结构)

帧结构设计: MAC帧头设计,减少开销

数据帧: 6字节

有序号管理帧: 2字节

无序号管理帧:6字节

 G-MPDU 定界符
 MPDU
 填充

 字节:2
 可变
 0-1
 G-MPDU:MAC级别的超帧

定界符: 2字节,节省开销。

MAC的关键特性(车车模式-MAC帧结构)

	4	MAC	头(12字	节)			◆ 0-4095字节 ▶	4字节
	帧控制	跳数 指示	源 MAC 地址	序列 号	长度	预留	数据	FCS
比特	f: 16	8	48	8	12	4		

帧结构设计: MAC帧头12字节, 含源mac的地址

跳数指示字段: 支持MAC级别的包转发

MAC子层功能(车路模式-管理平面)

涉及流程	STA功能列表	CAP功能列表	相关流程涉及的mac帧
驱动	操作系统驱动	操作系统驱动	
入网过程	扫描、连接	建网 (包括建网前信道检测,自 动选择一个稍空闲的信 道)	广播BCF帧,随机接入请求, 随机接入响应,能力协 商请求,能力协商响应
BCF	累计丢失数次BCF,断开连接	周期性发送BCF帧	BCF
入网操作	入网 (随机接入和能力协商)	STA入网、退网	退网帧
业务流操作 DL/UL	建流、修改流、删流	建流、修改流、删流	业务流建立、修改、删除请 求和响应
调度算法 STA UL资 源请求	调度请求,独立资源请求和捎 带资源请求	简单的接纳控制 (建流、入网等,可以通过 划分软规格来实现)	独立资源请求,捎带资源请 求
	二次调度	核心调度算法	
		轮询资源分配,周期测距	
链路自适应	CQI反馈	信道探测,周期调度cqi反馈	Cqi反馈
退网	退网	强制退网	退网帧
休眠/节电	启用禁用网卡,Radio on/off 休眠	休眠管理	休眠请求、休眠响应、下行 业务指示
切换	切换	切换管理	测量请求,测量响应,切换 请求,切换响应。

MAC子层功能(车路模式-数据平面)

涉及流程	STA功能列表	CAP功能列表
数据平面操作	A. 分段/重组	A. 分段/重组
	A. 聚合/解聚合	A. 聚合/解聚合
	A. 重传	A. 重传
	A. 校验	A. 校验
IP适配层	A. Qos业务分类(从外部来的数据)	A. Qos业务分类(从外部来的数据)

车路通信:频谱聚合方案

物理层主要参数

传输方式	OFDM, MIMO
支持最大天线数	2*2
系统带宽	20/40 MHz
频率域子载波间隔	78.125KHz
FFT样点数	256
CP样点数	32
数据子载波数	224
相位跟踪导频子载波数	6
虚拟子载波数	26
FFT时间窗口	12.8us
循环前缀周期	1.6us
OFDM符号周期	14.4us

车路通信: 动态可配置物理帧结构

S-Preamble	帧检测、粗频率/时间同步、AGC	UL-SRCH	STA触发调度请求	
L-Preamble	精频率/时间同步、信道估计	UL-RACH	STA触发随机接入	
SICH	帧配置信息广播 DL-TCH		下行业务与信令传输	
ССН	DL/UL-TCH资源调度 UL-TCH		上行业务与反馈传输	
DL-SCH	H 下行信道测量 DGI		下行至上行保护间隔	
UL-SCH	上行信道测量、上下行互易性	UGI	上行至下行保护间隔	

车车通信: 物理帧结构

同步机制可靠、支持高速移动场景

●低成本高可靠性的同步机制

使用短前导和长前导信道完成频率同步和时间同步

- ●系统通过灵活的配置自适应的频率和时域导频,能够支持高速的移动场景
- ●通过外场测试验证,系统目前支持 >120km/h的移动速度。

车路物理层规范要求

版 海 取 人 棋 子

TIL	频 谱 聚台	主模式					
号发射	系统参数				帧结构		
信号发射处理流程	前导	系统信 信道	息	控制信道		下行传输 信道	下行探测 信道
望	信道	调度请 信道	求	随机接入 信道		上行传输 信道	上行探测 信道
射频	射频指标要求						
频率信道	频谱掩膜	带 外 杂 散	发射功率	中心频率容差	时钟频率容差	星座误差	机 灵

与国际同类技术的对比

	本标准的MAC/PHY	美国 DSRC(802.11p)	
覆盖半径	1Km~2Km	1Km, 实测300m	
峰值速率	155Mbps (2×2天线,链路自适应)	27Mbps(单天线)	
双工方式	TDD (车路) CSMA (车车)	共享竞争信道资源	
无线资源管理方式	基于调度的TDMA方式 (车路)	竞争共享方式(CSMA)	
可靠性	空口资源严格管理,可靠性高	随车辆数增大而下降	
QoS	内置完善的QoS保障机制	车辆较多时无法避免空口的数 据包碰撞	
车速	120Km/h (实测)	高速运动场景下性能较差	
时延 (车到车)	<20ms	< 20ms	

感谢!