Errata for the HoTT Book, first edition

May 24, 2023

For the benefit of all readers, the available PDF and printed copies of the book are being updated on a rolling basis with minor corrections and clarifications as we receive them. Every copy has a version marker that can be found on the title page and is of the form "first-edition-XX-gYYYYYY", where XX is a natural number and YYYYYYYY is the git commit hash that uniquely identifies the exact version. Higher values of XX indicate more recent copies.

Below is a list of corrections and clarifications that have been made so far (except for trivial formatting and spacing changes), along with the version marker in which they were first made. This list is current as of May 24, 2023 and version marker "first-edition-1404-g79e6d60".

While the page numbering may differ between copies with different version markers (and indeed, already differs between the letter/A4 and printed/ebook copies with the same version marker), we promise that the numbering of chapters, sections, theorems, and equations will remain constant, and no new mathematical content will be added, unless and until there is a second edition.

Location	Fixed in	Change
§1.1	182-gb29ea2f	Change notation $a \equiv_A b$ to $a \equiv$
		Appendix A. (Neither are used a
§1.1	154-g42698c2	Clarify that algorithmic decidab
		only meta-theoretic.
§1.1	154-gac9b226	Mention notation $a = b = c = d$
		c = d, hence $a = d''$, possibly ind
§1.3	42-g4bc5cc2	Cumulativity means some eleme
		the index i on \mathcal{U}_i is not an interna
		ambiguity must be justified by r
§§1.3 and 1.4	42-ga34b313	Explain that we can't define Fir
		mention them.
§1.4	165-g0ad2aba	Add swap as another example of
		discuss the use of subscripts and
		dent functions.
Remark 1.5.1	80-g8f95fa5	In the discussion of formation i
		type example should be $\prod_{(x:A)} B$
§1.5	51-g67e86db	Better explanation of recursion of

tified, and how it relates to the u

Location	Fixed in	Change
§1.6	2-gbe277a8	In the types of g and $\operatorname{ind}_{\sum_{(x:A)} B(x)}$,
		which x should be a .
§1.6	27-gd0bfa0d	At two places in the definition of
		$R(x,\operatorname{pr}_1(g(x))).$
§1.6	125-g7fdadbf	When substituting λx . $pr_1(g(x))$ if
		is well-typed, the left side of the
		be $\prod_{(x:A)} R(x, \operatorname{pr}_1(g(x)))$, not $\prod_{(x:A)} R(x, \operatorname{pr}_1(g(x)))$
§1.7	30-g264d934	In two displayed equations, $f(inl($
Theorem 1.8.1	391-g1ce619a	This should not be called a "Theo
		introduced what that means. Ins
		struct an element of".
§ 1.8	125-g433f87e	In the definition of binary produ
		tions of $pr_1(p)$ and $pr_2(p)$ should i
		der of arguments to rec_2 and ind_2 .
§1.11	111-g1e868fa	When translating English to type t
		are unnamed in English but must
§1.12	154-g4ef49f7	Emphasize that path induction, lil
		ples, defines a <i>specified</i> function.
§1.12	1373-g142de42	In the second proof that based pat
		duction, the observation should l
		an instance of ind $_{=_A}$, not ind $'_{=_A}$.
§1.12	244-gd58529d	In proof that path induction im
		$D(x,y,p)$ should be written $\prod_{i=0}^{n}$
		type of <i>C</i> matches the premise of l
Remark 1.12.1	563-g3286941	The facts that any (x, y, p) : \sum
		$(x, x, refl_x)$, and that any (y, p) :
		$(a, refl_a)$, can be proven by path in
		duction respectively.
Exercise 1.4	78-gcce4dc0	The second defining equation of
		side $c_s(\text{iter}(C, c_0, c_s, n))$.
Exercise 1.4	293-g4663bfe	The defining equations of the recu
		tor only hold propositionally, and
		ciple to prove.
Exercise 1.6	229-ged891f3	This exercise requires function ex
Exercise 1.8	450-g7f38c9a	This exercise requires symmetry
T	440 6 4741	Lemmas 2.1.1 and 2.1.2.
Exercise 1.10	110-gfe4641b	To match the usual Ackermann–Po
.		played equation should be ack(su
Chapter 2	239-gaf3d682	In the chapter introduction, clar
		topies between paths must be end

Location	Fixed in	Change
Lemma 2.1.1	166-g37b78ef	Add remarks before and after the
		statement and proof should be in
		ement of some type.
Lemma 2.1.2	374-g0bc0908	In the penultimate display in th
		be simply d .
Lemma 2.1.4	750-g91b7348	In the first proofs of (i)-(iii
		$ind_{=_A}(D,d,x,y,p).$
§2.1	435-gee0b28a	In the third paragraph after Len
		be $p \cdot \operatorname{refl}_y \equiv p$.
§2.1	165-g18642ca	Mention that the notation $a = 1$
		variant, indicate concatenation c
§2.1	253-gdd47c75	Lemma 2.1.4(iv) justifies writing
Theorem 2.1.6	253-gdd47c75	The induction defining $\alpha \cdot_r r$ has
		$\operatorname{ru}_p^{-1} \cdot \alpha \cdot \operatorname{ru}_q$, with ru_p the right
		be well-typed, we assume $p \equiv$
		$ru_{refl_a} = refl_{refl_a}$ and its dual. Pr
		induction not only on α and β b
		1-paths. After the proof, remar
		construct such operations from I
Definition 2.1.8	233-gc3fb777	The three displays should be $:=$
§2.2	336-g8ff8a7f	In the type of ap_f towards the
		Lemma 2.2.1, $g(x)$ should be $f(y)$
§2.3	154-g4ef49f7	Emphasize that unlike fibrations
		type families come with a specific
§2.3	343-g6efd724	The functions Eq. (2.3.6) and Eq
		catenating with transportconst $_p^B$ (
		tively.
Corollary 2.4.4	253-gdd47c75	Canceling $H(x)$ may be done by
§2.4	1171-gab3c0aa	In the proof that isequiv $(f) \rightarrow$
J	Ö	should be $\gamma(x) :\equiv \beta(g(x))^{-1} \cdot h(x)$
§2.6	74-g9896e32	In the type of pair (just after th
<i>U</i> ····································		second factor in the domain sho
§2.6	895-g96db894	In the displayed equation just b
<i>G</i> ····································		$q, r, p' \cdot q', r$) should be pair $(p \cdot q)$
		$r, p', q' \cdot r)$ should be pair $(p, q \cdot q')$
		are missing).
Theorem 2.6.4	349-gc7fd9d8	The path is in $A(w) \times B(w)$, not
Theorem 2.6.4	76-ga42354c	The third displayed judgmental
1110010111 2.0.1	. 0 0	be transport ^B (p , pr_2x) $\equiv pr_2x$.
Theorem 2.7.2	507-g8f10eda	In the proof, the equation $f(g)$
1110010111 2.7.2	oor gorrocuu	$f(g(\operatorname{refl}_{w_1},\operatorname{refl}_{w_2})) = (\operatorname{refl}_{w_1},\operatorname{refl}_{w_1})$
		$f(g(\operatorname{ren}_{w_1},\operatorname{ren}_{w_2})) = (\operatorname{ren}_{w_1},\operatorname{ren}_{w_2})$

Location	Fixed in	Change
§2.9	269-g3880fe2	The paragraph preceding the defi
		(before Eq. (2.9.5)) misstated the (
Axiom 2.10.3	992-gc4a5314	The axiom should read "For any A
		is an equivalence. The display ($\it A$
		be deduced afterwards, outside th
Theorem 2.11.1	310-gd5fa240	The second half of the proof is mo
		follows abstractly using the 2-out
		or more concretely by concatenati
CO 11	226 - 221 - 000	side and then repeatedly using na
§2.11	236-g32be999	The second display after the pro
The acres 2 11 2	620 ~1h40602	be $\prod_{(x:A)}$ (happly $(p)(x) =_{f(x)=g(x)}$
Theorem 2.11.3	628-g1bd8602	The sentence preceding the theor
		from Lemmas 2.3.10 and 2.11.2, but rate path induction.
Theorem 2.11.3	704-g70c069e	The sentence after the theorem sh
Theorem 2.11.5	70 1 g7000076	refl _c , not refl _c .
Theorem 2.11.4	364-g3c47534	The right-hand side of the dis
1110010111 2.11.1	501 <u>5</u> 5617 551	$(\operatorname{apd}_f(p))^{-1} \cdot \operatorname{ap}_{(\operatorname{transport}^B p)}(q) \cdot \operatorname{apc}$
§2.12	101-g645f763	In Theorem 2.12.5 and the preced
3=11=	101 80 1011 00	alence (inl(a) = x) \simeq code(x), the
§2.12	370-g114db82	In the two displays after the proof
	O	should be $encode(inl(a), -)$ and $encode(inl(a), -)$
§2.14.2	261-g4ccda0a	In the first displayed pair of equa
		be transport $SemigroupStr(p_1, (m, a)) =$
§2.14.2	402-g2297ecb	The right hand side of the last di
		$m'(e(x_1),e(x_2)).$
§2.15	305-g64685f1	In the discussion of universal prop
		Σ -types surrounding Eq. (2.15.9)
		and "right-to-left" should be swit
Chapter 2 Notes	379-ga57eab2	It should be mentioned that Ho
		proposed an axiom similar to univ
E (0.0.1)	1100 54100 0	equivalent to univalence) for a un
Eq. (3.2.1)	1193-g54b20e3	The domain of $g: \prod_{(x:A)} A(x)$ sho
§3.5	86-g39feab1	The definition of subset $(P(x), P(x)) = P(x)$
		$\prod_{(x:A)} (P(x) \rightarrow Q(x))$, not $\forall (x)$ the latter notation has not been in
Lemma 3.11.7	95-gce0131f	In the proof, p should be r to ma
Lemma J.11./	70 gcc01011	of retraction.
Exercise 3.14	1162-ga97cb70	Should be to show that $\neg \neg A$ sati
DACICIOC U.14	1102 5077 6070	of $ A $ but with only a propositio
Lemma 4.1.1	87-g693e9b9	At the end of the proof, Lemma (
	0-//-	reason why $\sum_{(g:A\to A)}(g=id_A)$ is
		$ (g:A \to A) (S \longrightarrow A) $

Location	Fixed in	Change
Theorem 4.2.3	275-g8ea9f71	In the proof, the path concater
		and $ au$ were written in reverse o
Theorem 4.2.3	1043-gcfce4d7	In the proof, the type of
		$ \frac{\epsilon(f(g(f(a))))^{-1} \cdot (f(\eta(g(f(a)))^{-1})^{-1}}{\epsilon(f(g(f(a))))^{-1} \cdot (f(\eta(g(f(a)))^{-1})^{-1})^{-1}} $
Lemma 4.2.12	296-ge3dc076	In the proof, $(fgx, \epsilon(fx)) =$
		$(gfx, \epsilon(fx)) =_{fib_f(fx)} (x, refl_{fx}).$
Corollary 4.3.3	272-gfd47093	At the end of the proof, the equ
		that $ishae(f)$, not $isContr(f)$, is a
Theorem 4.4.3	299-g85b729b	In the proof, $lcoh_f(g, \epsilon)$ should l
		played equation should have p
_		of $P(fx)$.
Lemma 4.7.3	265-g64000fb	The path concatenations in the
		subsequent equations) are reve
mi 4.5.4	275 04 1 022	two displayed equations should
Theorem 4.7.6	275-g84ab032	The first equivalence in the pro
TI 4.7.	202 FFF 262	ercise 2.10.
Theorem 4.7.6	202-g775a3f0	The last equivalence in the proo
TI 102	205 - (01-207	mas 3.11.8 and 3.11.9 and Exerc
Theorem 4.8.3	205-gf9fe386	In the proof, $e \cdot pr_1$ should be (
S4 0	114 caba76a0	computation better.
§4.9	114-gaba76c8	The point of Lemma 4.9.2 is the without assuming function over
Corollary 4.9.3	484-g2ce1249	without assuming function external statement, "precomp
Colonaly 4.9.5	404-g2Ce1249	composition".
Theorem 4.9.4	746-g4d540d6	In the definition of ψ in the pr
Theorem 4.7.4	710 91001000	happly(p, x) instead of along p .
Exercise 4.2	358-g9543064	The text should be "Show that
2	200 870 10001	type is equivalent to $A \simeq B$. Ca
		nition of a type satisfying the th
§5.2	706-ged2c765	In the proof that $\mathbb{N} \simeq \mathbb{N}'$, the d
	U	$rec_{\mathbb{N}}(\mathbb{N}',0',\lambda n.succ')$ and $rec_{\mathbb{N}}$
§5.3	125-g433f87e	In the definition of N^w , use 0_2
	O .	the ordering of 0_2 and 1_2 in §1.8
§5.3	551-g82b74bf	The definitions of N^w and L
-		$W_{(b:2)}rec_{2}(\mathcal{U},0,1,b)$ and $W_{(x:1+}$
§5.3	218-g42219cb	In the description of the constr
-		is more clearly written as $f: B($
§5.3	525-gb1957b8	In the computation rule, the r
-		an argument. It should read
		$e(a, f, (\lambda b. \operatorname{rec}_{W_{(x:A)}B(x)}(E, e, f(b)))$

Location	Fixed in	Change
§5.3	570-g6ec04c3	In the verification that double com
		be e_0 and e_f should be e_1 .
§5.4	554-g9b2a34b	The definition of the type of W
		fore Theorem 5.4.7) should read V
		$\sum_{(f:C \to D)} \prod_{(a:A)} \prod_{(h:B(a) \to C)} f(s_C(a))$
§5.5	917-gd6960ad	In the first paragraph, the de
		$W_{(b:2)}rec_{2}(\mathcal{U},0,1,b).$
§5.5	608-g6af101f	In the computation rule for homo
		side should be $\operatorname{rec}_{W^h_{(x:A)}B(x)}(E,e,su)$
§5.5	1261-g4cdab82	In the commutative diagram p
		$W_s(A, B)$, all occurrences of x sho
§5.5	1261-g4cdab82	In the definition of $W_s(A, B)$
		$\alpha(\sup(a,f))$, and $\prod_{(a,f)}$ should be
Eq. (5.6.6)	912-g04d3fb6	In the preceeding sentence, $\delta:d$ s
§5.7	908-g4b2eb10	The second two constructors of
		$paritynat(1_{2}) \; o \; paritynat(0_{2}) \; ar$
		$paritynat(1_2).$
Theorem 5.8.2	139-gd5c5d01	In the proof of $(iv) \Rightarrow (i)$, the
		$(\sum_{(b:A)} R(b)) o \mathcal{U}.$
Exercise 5.2	622-ga0bd007	The two functions should satisfy
E	(22 - 01-1007	mentally.
Exercise 5.3	622-ga0bd007	The subscript of will as a sho
§5.8	171-gdc4966e	The subscript of $refl_A : a =_A a$ sho
§6.2	54-gd4a47c2	Soon after Remark 6.2.1, the phras the fiber over the constructor base
Lemma 6.2.8	423-gf763ae1	Theorems 2.11.3 and 2.11.5 are r
Lemma 0.2.0	423-g1703ae1	required by the induction princip
Lemma 6.3.2	417-g4aa6a15	Added Exercise 6.10: the function
Lemma 0.5.2	417 g4440415	is actually an inverse to happly, so
		sionality axiom follows from an ir
Lemma 6.4.2	625-g950efa9	In the second paragraph of the p
201111101 01112	020 870001417	extensionality should be omitted.
§6.4	327-g7cbe31c	In the first sentence after the proc
U	O	P'' should be " $P:\mathbb{S}^2 \to \mathcal{U}''$.
§6.4	1039-g30da4c6	In the sentence after the proof of I
-		in which s is a dependent path sho
		Р.
§6.6	289-gdefeb8c	In the induction principle for the
		should be $b' = \frac{P}{p} b'$ and $b = \frac{P}{q} b$ resp
§6.7	289-gdefeb8c	In the induction principle for the
		should be $b' = {}^P_p b'$ and $b = {}^P_q b$ resp
		, , , , , , , , , , , , , , , , , , ,

Fixed in	Change
468-g5472874	The induction principle for $ A $
	$g(a)$, not $f(a) \equiv a$. And in
	tion principle for $ A _0$ and in t
	$p = {}^{B}_{u(x,y,p,q)} q$ should instead be
860-gc7d862c	In the penultimate paragraph, th
	tor for $ A _0$ should begin "For ϵ
	every $f: S \to A''$.
961-gde36592	The first sentence of the second
	end with $g(x) = \overline{g \circ q}(x)$.
514-g18ade45	Instead of "is the set-quotient of
	say "satisfies the universal prop
	by \sim , and hence is equivalent
	ond displayed equation should
	fourth displayed equation shoul
	$(g \circ \operatorname{pr}_1 \circ q, _)$, the fifth should
	g(x), and the proof should concl
	assumption s'' .
535-g0a9abfe	The "computation rules" satisfie
	equalities. Also, the proof requi
	mentioned equivalences.
535-g0a9abfe	The defining clauses should use
	ratum for Lemma 6.10.12). Als
	refl _a rather than refl _{base} .
682-g3af5dbe	Three occurrences of P in the sta
457-g411ec6d	The right-hand side of the disp
	should be $(c(g(b)), D(b)(y))$.
961-gde36592	After the display we should hav
519-gc99a54c	f denotes a map $B \to A$ in this
	used for functions defined by i
	may use k instead. Thus f shou
	Lemma 6.12.4; the first sentence
	third sentences of the paragraph
	tence of Lemma 6.12.5; the first,
	its proof; throughout the stateme
	the statement of Lemma 6.12.8;
EOF 1/01 F4 1	proof.
537-gaf3b51d	In the display after the definition
	line should be with respect to <i>x</i>
	second line the subscript of ap sl
	468-g5472874 860-gc7d862c 961-gde36592 514-g18ade45 535-g0a9abfe 535-g0a9abfe 682-g3af5dbe 457-g411ec6d

Location	Fixed in	Change
Lemma 6.12.4	961-gde36592	The subscript of ap should also be
		fourth, and fifth displays. In the f
		path-concatenations should be in
		fifth display, $\operatorname{refl}_{g(b)}$ should be refl_g
Lemma 6.12.8	961-gde36592	Both occurrence of the function f
		the final two steps of the calculati
Lemma 6.12.7	501-ge895f81	Both occurrences of <i>P</i> in the state
		occurrences of Q in the proof show
Theorem 7.1.4	180-gb672a4d	In the last displayed equation of t
Theorem 7.1.10	101-g713f48c	The base case in the proof is just I
§7.3	480-gdc84050	The third paragraph is wrong: in
		would actually work to define $ A $
Theorem 7.2.2	1131-gc1748fa	In the second paragraph of the first
		function $f(x, x)$ should be $x =_X x$
Lemma 7.2.4	644-g627c0a8	In the proof of the lemma, "If x
	<u> </u>	inr(t)".
Theorem 7.3.12	412-gb9582fc	In the proof, encode and decode sh
Lemma 7.5.12	801-g01922a8	The converse direction is false u
	O	inhabited. Also, the occurrences
		proof should be just p and pr_2w , p
Lemma 7.5.14	367-g1c8c07e	In the proof that the first compos
	O	rences of y should be $f(x)$.
Theorem 7.7.4	658-g016f3a4	In the second paragraph of the pro-
	O	of pr ₂ (but not the third) should be
Exercise 7.2	101-ga366be2	"entires" should be "entirely".
Exercise 7.2	683-g8941e50	This exercise needs more precise of
	O	"colimit".
Exercise 7.8	1074-gcd42187	$AC_{\infty,\infty}$ is not Theorem 2.15.7, but
Exercise 7.8	603-ge113e08	The penultimate sentence should
	O	univalence for any $m > 0$ and any
Lemma 8.1.8	535-g0a9abfe	The proof by induction on $n : \mathbb{Z}$ is
	0.11	not Corollary 6.10.13.
Lemma 8.1.12	535-g0a9abfe	The clauses defining q_z should us
Zemma o.i.iz	ooo goarante	erratum for Lemma 6.10.12).
Theorem 8.2.1	1062-gf3bfeae	In the proof, E is not $(n + 1)$ -conn
Lemma 8.4.4	1181-g3e51973	In the proof, $(x : A)$ should be $(x : A)$
Corollary 8.4.8	1023-gf188aeb	The proof requires a separate argument and the proof requires a separate argument ar
Theorem 8.5.1	256-g9e6fcb8	The phrase "whose fibers are S ¹ "
1110010111 0.0.1	200 87001000	the basepoint is S^{1} ". The same ch
		ercises 8.8 and 8.9.
Lemma 8.5.3	1062-gf3bfeae	In the definition of $E^{\text{tot}'}$ in the pro
Lemma 0.J.J	1002-81001646	in the definition of L in the pro

Location	Fixed in	Change
Lemma 8.6.1	396-g868335b	In the proof, the function k shou
		should also be named ℓ , to avoid
Definition 8.6.5	87-g3f977b2	In the second displayed equa
		should be merid $(x_1)^{-1}$.
Lemma 8.6.2	1203-g7464bf1	The type family <i>P</i> defined in the
		Q, to avoid clashes with the ty
	200 0007 04	statement.
Lemma 8.6.2	399-g8897c94	In the last sentence of the proof
I 0 (10	00 0 01 67	be " $(n-1)$ -truncated".
Lemma 8.6.10	88-g0c0be67	The type of m should be $a_1 = a_1$
		begin with $C(a_1, \text{transport}^B(m^{-1}, m^{-1}))$
CO (1(5 ~ 15504-("we may assume a_2 is a_1 and m :
§8.6	165-gd5584c6	In (8.6.11), r'' should be r' , the transport f'' (merid f'') and f''
		tifying this with $q \cdot \text{merid}(x_0)^{-1}$.
		point of r should be transport ^{B} (n
§8.6	474-g5289470	$\pi_3(\mathbb{S}^2) = \mathbb{Z}$ should be stated a
80.0	1/1-8020/1/0	from Corollary 8.5.2 and Theore
Theorem 8.8.3	1092-ge3b8b71	After applying the induction hy
THEOTEIN 0.0.0	10,2 gcobor1	to be checked that for every pat
		$\pi_k(x=x,p) \to \pi_k(f(x)=f(x),$
§8.9	1154-g301662b	In the strengthening of condition
<i>3</i> -12		right side should read just "c" ir
Example 9.1.15	1307-gfe63517	Stating that every isomorphism
1	O .	curate (consider the discrete ca
		a more accurate statement is th
		identity arrow. Notice that for
		must be combined with skeletali
Definition 9.2.1	807-gebec78b	In Item (iv), it should rea
		"hom $_B(b,c)$ ".
§9.4	1218-gcb6ba30	Just before Definition 9.4.6, it sho
		a category" instead of "Howeve
Theorem 9.5.4	971-g6096085	The sequence of equations at the
		with $\alpha_{a'}(f) = \alpha_{a'}(\mathbf{y}a_{a,a'}(f)(1_a)),$
		should remain a , a' rather than a
Definition 9.8.1	897-g94fb722	In (iv), "if $f : \text{hom}_X(x, y)$ " show
00.0	1111 0000 01	$g: \text{hom}_X(y, z)''.$
§9.8	1111-g3332a31	The type of objects A_0 of th
C1 1 0	0// 0/07/15	structures should be defined as)
Chapter 9	966-g04374f5	The first sentence after Theorem
		if a precategory <i>A</i> admits a wea
		into a category".

Location	Fixed in	Change
Theorem 9.9.5	313-g8ee79db	In the second proof, the third cons
		follows from the fourth constructo
		fifth constructor, $j(g) \cdot j(f)$ should
		throughout the proof. Finally, for
		constructor should be included e
		to be implied by "higher inductiv
Chapter 9 Notes	379-ga57eab2	It should be mentioned that Hofm
		considered this definition of categ
Lemma 10.2.4	1303-ga530d97	The equation $ B _0 \times A _0 \equiv B \times$
		$ B _0 \cdot A _0 \equiv B \times A _0.$
Lemma 10.3.8	1290-g4101ad3	In the proof, the second sentence
		should have " $s(a')$: $acc(a')$ " rathe
Theorem 10.3.20	140-g55de417	The second sentence of the proof s
		induction on A , suppose $A_{/b}$ is ac
Lemma 10.3.22	140-gd7f8960	The statement should say $X:\mathcal{U}$ ra
Theorem 10.4.3	140-gcca0bcf	The penultimate sentence of the p
		b < c'' rather than "if $a < b$ and a
Theorem 10.4.4	871-g85bcd11	The statement of (i) should end w
§10.5	753-gc87ce23	The second clause in the inductio
		"Verify that if $f: A \rightarrow V$ and $g:$
		$h(\operatorname{set}(A,f)) =_q^p h(\operatorname{set}(B,g))$, whe
		the second constructor of V and (1
		that $h(f(a)) = p h(g(b))$ wheneve:
§10.5	706-ged2c765	The proof that membership is we
		"hence $x = g(b)$ and $x \in set(B, g)$
§10.5	1056-g4060c2b	In the definition of V -set, the nota
Theorem 10.5.8	708-g6f53189	In the pairing axiom, the pair clas
		not $u \cup v$.
Theorem 10.5.8	723-g9cf5b44	The replacement axiom should be
		the displayed class should be $\{y\}$
		Its proof should begin "let C deno
Theorem 10.5.8	706-ged2c765	In the proof of the function set ax
		$[u] \rightarrow V$ and $[u] \rightarrow V''$ should
		$[u] \rightarrowtail V \text{ and } [v] \rightarrowtail V."$
Exercise 10.12	1053-ge13dd65	Extra parentheses around $\forall (x \in v)$
		make the formula unambiguous.
Exercise 10.13	1053-ge13dd65	Extra parentheses around $\forall (y \in x)$
		to make the formula unambiguou
Exercise 10.13	1056-g4060c2b	The notation $\in V$ should be : V .
Lemma 11.2.2	165-gb002a64	The statement should say "For al
		$(q < x)$ and $U_x(q) \Leftrightarrow (x < q)$ ".

Location	Fixed in	Change
Theorem 11.2.4	165-g179b359	In the proof, the sentence begin
		should be replaced by "From 0 <
		a, b , and c are either all positive
		0 < a < x or $x < b < 0$, so that $x < a < b < 0$
Theorem 11.2.4	merge of 38792ed8fb9b08275d14ed1c92830d42a806e2b5	In the proof of the theorem, the
	-	changed as follows: $L_{x^{-1}}(q) :\equiv$
		$(qr < 1)$ and $U_{x^{-1}}(q) :\equiv (q > 0)$
		for positive x , and $L_{x^{-1}}(q) :\equiv (q)$
		1) and $U_{x^{-1}}(q) :\equiv (q < 0) \Rightarrow 1$
		negative x .
§11.2.2	832-g0cb658e	In the second paragraph, at "Fro
		quantification should be over δ a
§11.3.2	1209-g3e5ad94	In the statement of (\mathbb{R}_c, \sim) -recu
		" $f(\operatorname{lim}(x)):A$ ".
Theorem 11.3.16	1069-g3b333d5	In the description of openness of
		" $\exists (\delta: \mathbb{Q}_+)$.".
Lemma 11.4.1	87-g82b27c3	(11.4.2) should be $c: \prod_{(q,r:\mathbb{Q})} (q < q)$
		therefore the use of c in the proc
TT 44 F 6	4000 0000	c(x,s,t).
Theorem 11.5.6	1270-g3f17b85	In the proof, $n : \mathbb{N}$ should be $k :$
		be $0 \le i \le k$. Also in the last equ
011 (11000-2560	$\lim x = \ell.$
§11.6	1189-ga9c35f0	The inductive case of $\iota_{\mathbb{Q}_D}$ shoul
Evample 11 6 19	636 98279792	$\left\{ \iota_{\mathbb{Q}_D}(a/2^n - 1/2^n) \middle \iota_{\mathbb{Q}_D}(a/2^n + 1/2^n) \middle \iota_{\mathbb{Q}_D}($
Example 11.6.18	636-g827e7ea	induction on z , since only wher
		say that $x^L + z$ is a left option of
Exercise 11.13	222-g3453cf1	This is the intermediate value
Exercise 11.10	222 80 100011	theorem.
Example 11.6.18	980-ge9d0398	For the codomain of the outer re-
2/(0.11)	700 g 07 u 0070	be $(x < y) \rightarrow (g(x) < g(y))$ ar
		In the first bullet of the verifica
		served, the outer inductive hypo
		ities $x^L + y \le x^L + z$ and $x^R + y$
		No-induction on z is required (
		fined by a cut).
Example 11.6.18	980-ge9d0398	The verification that Conway's
		number (i.e. all its left options a
		omitted. This requires turning t
		ner induction with codomain a v
		orem 11.6.7.

Location	Fixed in	Change
Appendix A	165-g76db618	After the introduction of the judg
		inaries, the sentence beginning "
		should say instead "In particular,
Appendix A.2.1	64-g7c2312e	Clarify the distinction between ty
		well-formedness judgments, and
		tion for the latter.
Appendix A.2.5	26-gcd691e8	In Σ -COMP and the following pa
		and "we bind $\dots y$ in C " should li
Appendix A.2.8	338-g4e1c688	The c argument in the eliminator
		COMP rules) should not bind a va
Appendix A.2.10	578-ga4b94a5	The unbased eliminator for the id
		$ind_{=_A}$, $not\;ind'_{=_A}$.