Lucrare I (142)

① $f \in End(\mathbb{R}^2)$, $A = [f]_{R_0,R_0} = \begin{pmatrix} 1 & -3 \\ 3 & -6 \end{pmatrix}$, $R_0 = \text{reperul xanonic}$ a) f nu se soate diagonaliza; b) f se soate diagonaliza; c) $polin : \text{ caract are said} \in C(R;d) \text{ valorile proprie sunt egale}$

(2) (\mathbb{R}^3, g_0) Tie reperul $\mathbb{R} = \{f_1 = (0, -1, 1), f_2 = (0, 0, 1), f_3 = (1, 1, 1)\}$. Reperul ortonormat obtinut ou Gram-Schmidt este:

a) $\{\frac{1}{\sqrt{2}}(1_1-1_10), \frac{1}{\sqrt{2}}(1_10_11), \frac{1}{\sqrt{3}}(-1_1-1_11)\}; b\} \{\frac{1}{\sqrt{2}}(0_1-1_11), \frac{1}{\sqrt{2}}(0_11_11), \frac{1}{\sqrt{2}}(0_11$

(3) (R^3, g_0) , M = (0,1,1) $S \in End(R^3)$ simetria ortogonala fata $de(\{M_1^2\})$ $a) S(x) = (x_{11} - x_{31} - x_{21}), b) S(x) = (x_{11} - x_{21} - x_{31})$ $c) S(x) = (-x_{21}, x_{11}, x_{31}), d) S(x) = (-x_{11}, -x_{21}, -x_{31})$

(4) (\mathbb{R}^{3}, g_{0}) , $U = \{(\chi_{1} - \chi_{1}, 2\chi) | \chi \in \mathbb{R}^{2}\}$ Complemental ortogonal U^{\perp} este a) $\{\chi \in \mathbb{R}^{3} | \chi_{1} + \chi_{2} + 2\chi_{3} = 0\}$; b) $\{\chi \in \mathbb{R}^{3} | -\chi_{1} + \chi_{2} + 2\chi_{3} = 0\}$ e) $\{\chi \in \mathbb{R}^{3} | \chi_{1} - \chi_{2} + 2\chi_{3} = 0\}$; d) $\{\chi \in \mathbb{R}^{3} | 2\chi_{1} + \chi_{2} + \chi_{3} = 0\}$

(5) $Q: \mathbb{R}^3 \to \mathbb{R}$ forma patratica, $Q(\pi) = 2\sqrt{2}+22\sqrt{2}+22\sqrt{3}$ Lignatura lui Q este a) (1,1); b) (1,2); c) (3,0), d) (2,1)

(6) (R^3, g_0) , $\mathcal{U} = (1, 2, -1)$, $f \in End(R^3)$, $f(x) = \mathcal{U} \angle \mathcal{I}, \mathcal{U} > g_0 = \angle \cdot$, \forall produs scalar ranonic

(a) $\dim \ker f = 1$, b) $\dim \ker f = 2$; c) $f \in Sim(R^3)$, d) $f \in Aut(R^3)$.