# **Example of proteomics in cancer biology with Matlab**

#### **Table of Contents**

| Summary                          | 1 |
|----------------------------------|---|
| Loading pre-processed dataset    | 1 |
| Initializing variables           | 2 |
| Visualizing a set of the samples | 3 |
| Ranking features                 |   |

### **Summary**

This report represents a represents an example Matlab proteomic data analysis. The data set analyze in this report can be found <a href="https://examples.org/nc/4">here</a> which is the FDA-NCI Clinical Proteomics Program Databank. The samples downloaded from the FDA-NIC Proteomics Programa Databank corresponds to SELDI Mass-Spec profiles of overian cancer samples: **Cancer Group** vs **Normal Group**. The study related to this dataset was published, in 2004, the Endocrine Related Cancer journal.

### Loading pre-processed dataset

After preprocessing the dataset (find the code <u>here</u>, the dataset was loaded.

load OvarianCancerQAQCdataset
whos

| Name                 | Size<br>Attributes | Bytes    | Class   |
|----------------------|--------------------|----------|---------|
| Cidx                 | 216x1              | 216      | logical |
| Cvec                 | 121x1              | 968      | double  |
| MZ                   | 15000x1            | 120000   | double  |
| N                    | 1x1                | 8        | double  |
| Nidx                 | 216x1              | 216      | logical |
| NumberCancerDatasets | 1x1                | 8        | double  |
| NumberNormalDatasets | 1x1                | 8        | double  |
| Nvec                 | 95x1               | 760      | double  |
| Y                    | 15000x216          | 25920000 | double  |

| ans                                    | 1x10                            | 80     | double |
|----------------------------------------|---------------------------------|--------|--------|
| feat                                   | 100x1                           | 800    | double |
| files                                  | 1x216                           | 32400  | cell   |
| filesCancer                            | 121x1                           | 113519 | struct |
| filesNormal                            | 95x1                            | 89209  | struct |
| grp                                    | 216x1                           | 26784  | cell   |
| <pre>hC matlab.graphics.chart hN</pre> | 10x1<br>.primitive.Line<br>10x1 | 0      |        |
| matlab.graphics.chart                  |                                 | U      |        |
| max_C                                  | 15000x1                         | 120000 | double |
| max_N                                  | 15000x1                         | 120000 | double |
| mean_C                                 | 15000x1                         | 120000 | double |
| mean_N                                 | 15000x1                         | 120000 | double |
| min_C                                  | 15000x1                         | 120000 | double |
| min_N                                  | 15000x1                         | 120000 | double |
| repository                             | 1x85                            | 170    | char   |
| repositoryC                            | 1x92                            | 184    | char   |
| repositoryN                            | 1x92                            | 184    | char   |
| sig_Masses                             | 100x1                           | 800    | double |
| stat                                   | 15000x1                         | 120000 | double |
| xAxisLabel                             | 1x17                            | 34     | char   |
| yAxisLabel                             | 1x13                            | 26     | char   |

## Initializing variables

A set of vector variables, which will be used in the downstream workflow, are initialized.

### Visualizing a set of the samples

The spectogram of 10 samples

```
figure; hold on;
hC = plot(MZ,Y(:,Cvec(1:10)),'b');
hN = plot(MZ,Y(:,Nvec(1:10)),'g');
xlabel(xAxisLabel); ylabel(yAxisLabel);
axis([2000 12000 -5 60])
legend([hN(1),hC(1)],{'Control Group','Ovarian Cancer'})
title('Spectrograms of 10 Samples')

figure; hold on;
hC = plot(MZ,Y(:,Cvec(1:10)),'b');
hN = plot(MZ,Y(:,Nvec(1:10)),'g');
xlabel(xAxisLabel); ylabel(yAxisLabel);
axis([8000 9000 -1 7])
legend([hN(1),hC(1)],{'Control Group','Ovarian Cancer'})
title('Zoomed Spectrograms of 10 Samples')
```





#### **Ranking features**

```
% Significant masses using a two-way t-statistic
[feat,stat] = rankfeatures(Y,grp,'CRITERION','ttest','NUMBER',100);
sig Masses = MZ(feat);
sig_Masses(1:10)' %display the first 10 significant masses
% Set variables for two-way t-statistic plotting
mean_N = mean(Y(:,Nidx),2); % group average for control samples
\max_{N} = \max(Y(:,Nidx),[],2); % top envelopes of the control samples
\min_{N} = \min(Y(:,Nidx),[],2); % bottom envelopes of the control samples
mean_C = mean(Y(:,Cidx),2); % group average for cancer samples
\max_{C} = \max(Y(:,Cidx),[],2); % top envelopes of the control samples
\min_{C} = \min(Y(:,Cidx),[],2); % bottom envelopes of the control samples
% Plotting the two-way t-statistic
figure;
yyaxis left
plot(MZ, [mean_N mean_C]);
ylim([-1,20])
xlim([8000,9000])
title('Significant M/Z Values')
xlabel(xAxisLabel);
ylabel(yAxisLabel);
```

```
yyaxis right
plot(MZ,stat);
ylim([-1,22])
ylabel('Test Statistic');
legend({'Control Group Avg.', 'Cancer Group Avg.', 'Test Statistics'})
ans =
   1.0e+03 *
  Columns 1 through 7
    8.1009
              8.1016
                         8.1024
                                   8.1001
                                             8.1032
                                                        7.7366
                                                                  7.7359
  Columns 8 through 10
    7.7374
              7.7253
                         7.7245
```



Published with MATLAB® R2017a