# **Automatic Differentiation**

Benoît Legat

|               | Full  | Width Mode       | ☐ Present Mode |
|---------------|-------|------------------|----------------|
| $\overline{}$ | ı uıı | vv iatii i vioat |                |

### **≡** Table of Contents

Differentiation approaches

Chain rule

**Forward Differentiation** 

Reverse differentiation

Comparison

**Discontinuity** 

**Neural network** 

# **Differentiation approaches** $\ominus$

We can compute partial derivatives in different ways:

- 1. **Symbolically**, by fixing one of the variables and differentiating with respect to the others, either manually or using a computer.
- 2. Numerically, using the formula f'(x) pprox (f(x+h)-f(x))/h.
- 3. Algorithmically, either forward or reverse: this is what we will explore here.

### Chain rule

Consider  $f(x)=f_3(f_2(f_1(x)))$ . If we don't have the expression of  $f_1$  but we can only evaluate  $f_i(x)$  or f'(x) for a given x? The chain rule gives

$$f'(x) = f_3'(f_2(f_1(x))) \cdot f_2'(f_1(x)) \cdot f_1'(x).$$

Let's define  $s_0=x$  and  $s_k=f_k(s_{k-1})$ , we now have:

$$f'(x) = f_3'(s_2) \cdot f_2'(s_1) \cdot f_1'(s_0).$$

Two choices here:

$$egin{array}{ll} ext{Forward} & ext{Reverse} \ t_0 = 1 & r_3 = 1 \ t_k = f_k'(s_{k-1}) \cdot t_{k-1} & r_k = r_{k+1} \cdot f_{k+1}'(s_k) \end{array}$$

### Forward Differentiation



Figure 8.1

### **Implementation** ⇔

```
1 struct Dual{T}
2     value::T # s_k
3     derivative::T # t_k
4 end

1 Base.:-(x::Dual{T}) where {T} = Dual(-x.value, -x.derivative)

1 Base.:*(x::Dual{T}, y::Dual{T}) where {T} = Dual(x.value * y.value, x.value * y.derivative + x.derivative * y.value)

Dual(-3, -10)

1 -Dual(1, 2) * Dual(3, 4)

f_1 (generic function with 1 method)

1 f_1(x, y) = x * y

f_2 (generic function with 1 method)

1 f_2(s1) = -s1
```

```
▶ Dual(-3, -10)
1 (f_2 ∘ f_1)(Dual(1, 2), Dual(3, 4))
```

### Reverse differentiation



Backward pass

# Two different takes on the multivariate chain rule =

The chain rule gives us

$$rac{\partial f_3}{\partial x}(f_1(x),f_2(x)) = rac{\partial f_3}{\partial s_1}(s_1,s_2) \cdot rac{\partial s_1}{\partial x} + rac{\partial f_3}{\partial s_2}(s_1,s_2) \cdot rac{\partial s_2}{\partial x}$$

To compute this expression, we need the values of g(x) and h(x) as well as the derivatives  $\partial g/\partial x$  and  $\partial h/\partial x$ .

#### Forward =

$$t_3 = rac{\partial s_3}{\partial s_1} t_1 + rac{\partial s_3}{\partial s_2} t_2$$

- ullet Given  $s_1,s_2$ , computes  $rac{\partial s_3}{\partial s_1}(s_1,s_2)$  and  $rac{\partial s_3}{\partial s_2}(s_1,s_2)$
- Given  $t_1$  and  $t_2$ , computes  $\partial f_3/\partial x$

#### Reverse =

- ullet Given  $s_1,s_2$ , computes  $rac{\partial s_3}{\partial s_1}(s_1,s_2)$  and  $rac{\partial s_3}{\partial s_2}(s_1,s_2)$
- Given  $r_3 = \partial s_K/\partial s_3$ 
  - $\circ$  Add  $r_3 \cdot (\partial s_3/\partial s_1)$  to  $r_1$
  - $\circ$  Add  $r_3 \cdot (\partial s_3/\partial s_2)$  to  $r_2$

When using automatic differentiation, don't forget that we must always evaluate the derivatives. For the following example we choose to evaluate it in  $m{x}=m{3}$ 

lacktriangle Apply the automatic differentiation to  $s_3=f_3(s_1,s_2)=s_1+s_2$ , with  $s_1=f_1(x)=x$  and  $s_2=f_2(x)=x^2$ 

### **Forward tangents** ⇔





#### **Forward mode**



### Reverse tangents 👄





#### Reverse mode



▶ Why is  $\partial \mathrm{dup}^*$  a sum ?

### **Expression graph** $\ominus$



- ► Can this directed graph have cycles ?
- lacktriangle What happens if  $f_4$  is handled before  $f_5$  in the backward pass ?
- ► How to prevent this from happening?

### Comparison =

- ullet Forward mode of f(x) with dual numbers <code>Dual.(x, v)</code> computes Jacobian-Vector Product (JVP)  $J_f(x) \cdot v$
- Reverse mode of f(x) computes Vector-Jacobian Product (VJP)  $v^ op J_f(x)$  or in other words  $J_v(x)^ op v$
- ▶ How can we compute the full Jacobian?
- ▶ When is each mode faster than the other one to compute the full Jacobian?
- ▶ When is the speed of numerical differentation comparable to autodiff?

### Memory usage of forward mode ⇔



Algorithm steps

# **Memory usage of reverse mode** ⇔



## **Discontinuity** $\subseteq$

lacksquare Is the function |x| is differentiable at x=0 ?.



▶ What about returning a convex combination of the derivative from the left and right ?

### Forward mode ⇔

1  $abs_bis(x) = ifelse(x > 0, x, -x)$ 

```
abs (generic function with 1 method)
1 abs(x) = ifelse(x < 0, -x, x)

abs_bis (generic function with 1 method)</pre>
```

```
1 Base.isless(x::Dual, y::Real) = isless(x.value, y)
```

```
1 Base.isless(x::Real, y::Dual) = isless(x, y.value)

Dual(0, 1)

1 abs(Dual(0, 1))

Dual(0, -1)

1 abs_bis(Dual(0, 1))
```

### Neural network

Two equivalent approaches,  $b_k$  is a **column** vector,  $S_i, X, W_i, Y$  are matrices.

### Right-to-left ⇔

$$egin{aligned} S_0 &= X \ S_{2k-1} &= W_k S_{2k-2} + b_k \mathbf{1}^ op \ S_{2k} &= \sigma(S_{2k-1}) \ S_{2H+1} &= W_{k+1} S_{2H} \ S_{2H+2} &= \ell(S_{2H+1}; Y) \end{aligned}$$

### **Left-to-right** ⇒

$$egin{aligned} S_0 &= X \ S_{2k-1} &= S_{2k-2}W_k + \mathbf{1}b_k^ op \ S_{2k} &= \sigma(S_{2k-1}) \ S_{2H+1} &= S_{2H}W_{k+1} \ S_{2H+2} &= \ell(S_{2H+1};Y) \end{aligned}$$

### **Evaluation** =



### Matrix multiplication (Vectorized way)

Useful: 
$$\operatorname{vec}(AXB) = (B^{\top} \otimes A)\operatorname{vec}(X)$$

$$egin{aligned} F(X) &= AX \ G( ext{vec}(X)) & ext{$ riangle vec}(F(X)) = (I \otimes A) ext{vec}(X) \ J_G &= (I \otimes A) \ J_G^ op ext{vec}(R) &= (I imes A^ op) ext{vec}(R) \ \partial F^*[R] &= ext{mat}(J_G^ op ext{vec}(R)) &= A^ op R \end{aligned}$$

► How should we store the Jacobian in the forward pass to save it for the backward pass ?

### Matrix multiplication (Scalar product way)

The adjoint of a linear map A for a given scalar product  $\langle \cdot, \cdot 
angle$  is the linear map  $A^*$  such that

$$orall x,y, \qquad \langle A(x),y
angle = \langle x,A^*(y)
angle.$$

For the scalar product

$$\langle X,Y 
angle = \sum_{i,j} X_{ij} Y_{ij} = \langle \operatorname{vec}(X), \operatorname{vec}(Y) 
angle, \quad A^* = A^ op$$

Now, given a forward tangent  $oldsymbol{T}$  and a reverse tangent  $oldsymbol{R}$ 

$$\langle AT,R 
angle = \langle T,A^{ op}R 
angle$$

so the backward pass computes  $A^{\top}R$ .

▶ How to prove that  $A^* = A^\top$  ?

### Broadcasting (Vectorized way)

Consider applying a scalar function f (e.g. tanh to each entry of a matrix X.)

$$(F(X))_{ij} = f(X_{ij}) = f.(X)$$
 $G(\operatorname{vec}(X)) riangleq \operatorname{vec}(F(X)) = \operatorname{vec}(f.(X))$ 
 $J_G = \operatorname{Diag}(\operatorname{vec}(f'.(X)))$ 
 $J_G^ op \operatorname{vec}(T) = \operatorname{Diag}(\operatorname{vec}(f'.(X)))\operatorname{vec}(T)$ 
 $\partial F[T] = \operatorname{mat}(J_G^ op \operatorname{vec}(T)) = f'.(X) \odot T$ 
 $J_G^ op \operatorname{vec}(R) = \operatorname{Diag}(\operatorname{vec}(f'.(X)))\operatorname{vec}(R)$ 
 $\partial F^*[R] = \operatorname{mat}(J_G^ op \operatorname{vec}(R)) = f'.(X) \odot R$ 

### Broadcasting (Scalar product way)

$$\langle f'.(X) \odot T, R \rangle = \langle T, f'.(X) \odot R \rangle.$$

▶ Let  $A(X) = B \odot X$ , what is the adjoint  $A^*$  ?

▶ What should be saved for the backward pass ?

### **Putting everything together** ⇔



### **Product of Jacobians** =

Suppose that we need to differentiate a composition of functions:  $(f_n \circ f_{n-1} \circ \cdots \circ f_2 \circ f_1)(w)$ . For each function, we can compute a jacobian given the value of its input. So, during a forward pass, we can compute all jacobians. We now just need to take the product of these jacobians:

$$J_nJ_{n-1}\cdots J_2J_1$$

While the product of matrices is associative, its computational complexity depends on the order of the multiplications! Let  $d_i \times d_{i-1}$  be the dimension of  $J_i$ .

- What is the complexity of forward mode
- **▶** What is the complexity of reverse mode
- ▶ What about the complexity of meeting in the middle between k and k+1?

- lacktriangle Which mode should be used depending on the  $d_i$  ?
- ▶ What about neural networks?

### Acknowledgements and further readings

- Dual is inspired from ForwardDiff
- Node is inspired from micrograd
- Here is a good intro to AD
- Figures are from the The Elements of Differentiable Programming book

The End

### Utils 🖘

using Plots, PlutoUI, PlutoUI.ExperimentalLayout, HypertextLiteral; @htl, @htl\_str
PlutoTeachingTools

img (generic function with 3 methods)

qa (generic function with 2 methods)