Megoldások

■ 1. feladat

Jelölje x a kivágott négyzetek oldalát. Ekkor a doboz térfogata: $V(x) = x(1-2x)(2-2x) = 4x^3 - 6x^2 + 2x$, ahol $0 < x < \frac{1}{2}$. A V függvény maximumát keressük.

$$V'(x) = 12 x^2 - 12 x + 2 = 0 \Leftrightarrow x_1 = \frac{3 - \sqrt{3}}{6} \approx 0.211 \text{ vagy } x_2 = \frac{3 + \sqrt{3}}{6} \approx 0.789. \text{ A } V \text{ függvénynek } x_1\text{-ben lehet maximuma, } x_2 \text{ a feladat szövege miatt nem jöhet szóba.}$$

V''(x) = 24 x - 12 és $V''(x_1) = -4 \sqrt{3} < 0$, tehát itt valóban maximum van.

■ 2. feladat

Jelölje x az egyenes szakaszok hosszát és r a félkörívek sugarát. Ekkor a futópálya hossza $400 = 2 x + 2 r \pi$. A focipálya területe 2 r x. Az egyenletből például x-et kifejezve, $x = 200 - r \pi$, így keressük a $T(r) = 2 r (200 - r \pi)$ függvény maximumát. $T'(r) = 400 - 4 \pi r = 0 \Leftrightarrow r = \frac{100}{\pi}$, itt lehet szélsőérték. $T''(r) = -4 \pi < 0$, tehát ez valóban maximum. A focipálya területe akkor maximális, ha a félkörívek sugara $r = \frac{100}{\pi} \approx 31$, 83 m, az egyenes szakaszok hossza x = 100 m.

■ 3. feladat

Az $f(x) = (100 - 30 (x - 1)^2) \cdot 50 (x - 1) \cdot \frac{1}{100} = -35 + 5 x + 45 x^2 - 15 x^3$ függvény maximumát keressük. $f'(x) = 5 + 90 x - 45 x^2 = 0 \Leftrightarrow x = \frac{3 \pm \sqrt{10}}{3}$. A lehetséges szélsőértékhely $\frac{3 + \sqrt{10}}{3} \approx 2.05$, mivel a negatív gyök nyilván nem jöhet szóba. Könnyen látható, hogy ebben a pontban a derivált előjelet vált (vagy a második derivált negatív), így itt valóban maximum van. Tehát a bérek 2.05-szörösére emelésével érhető el a legtöbb szavazat.

■ 4. feladat

1. megoldás: Jelölje a és b a derékszögű háromszög befogóit. Ekkor $a^2+b^2=100$ és a területe $\frac{ab}{2}$. Az egyenletből b-t kifejezve, keressük a $T(a)=\frac{1}{2}$ a $\sqrt{100-a^2}$ függvény maximumát, ahol 0< a<10.

$$T'(a) = -\frac{a^2}{2\sqrt{100-a^2}} + \frac{\sqrt{100-a^2}}{2} = \frac{50-a^2}{\sqrt{100-a^2}} = 0$$
, ahonnan $a = \sqrt{50} = 5\sqrt{2}$ (mivel $a > 0$), itt lehet szél-

sőérték. Könnyen ellenőrizhető, hogy ebben a pontban a derivált előjelet vált (azaz T'(a) > 0, ha $a < 5\sqrt{2}$ és T'(a) < 0, ha $a > 5\sqrt{2}$), tehát a háromszög területe akkor maximális, ha $a = b = 5\sqrt{2} \approx 7$, 1 cm.

2. megoldás: Felhasználva a számtani és mértani középre vonatkozó egyenlőtlenséget, $\frac{a^2+b^2}{2} \ge \sqrt{a^2\,b^2}$, azaz $\frac{100}{2} \ge a\,b = 2\,T$. Innen látható, hogy a háromszög területe: $T \le 25$, és egyenlőség pontosan akkor teljesül, ha $a^2 = b^2$, azaz $a = b = 5\,\sqrt{2}$.

■ 5. feladat

A kúp magassága m=5, alapkörének sugara r=2. Jelölje x a henger alapkörének sugarát, y a henger magasságát és α a kúp alkotójának az alapkör síkjával bezárt szögét. Ekkor tg $\alpha=\frac{m}{r}=\frac{y}{r-x}$. A henger térfogata, amelynek a maximumát keressük: $V(x)=x^2$ $y=\frac{5}{2}$ $x^2(2-x)=-\frac{5x^3}{2}+5$ x^2 , ahol 0< x<2. Ekkor $V'(x)=-\frac{15x^2}{2}+10$ x=0, ahonnan $x=\frac{4}{3}$ (mivel x>0). Ebben a pontban valóban maximum van, mert V''(x)=-15 x+10, így $V''\left(\frac{4}{3}\right)=-10<0$. A maximális térfogatú henger sugara $x=\frac{4}{3}$, magassága $y=\frac{5}{3}$.

• 6. feladat

A fizetendő adó $10^{13} \cdot y$ forint lenne, de ebből nem fizetnek be $10^{13} \cdot y \cdot y^3$ forintot. A befizetett adó a kettő különbsége, így keressük az $f(y) = 10^{13} \ y \left(1 - y^3\right)$ függvény maximumát. $f'(y) = 10^{13} \left(1 - 4 \ y^3\right) = 0 \Leftrightarrow y = \frac{1}{\sqrt[3]{4}} \approx 0.63$, itt lehet szélsőérték. Ebben a pontban a második derivált negatív, tehát itt valóban maximum van, az adókulcsot 63 %-ra kell állítani, hogy a lehető legtöb pénz folyjon be.

7. feladat

Jelölje α a trapéz szárainak a függőlegessel bezárt szögét. Ekkor a trapéz magassága $\cos \alpha$. Ha a szárak párhuzamosak, akkor a trapéz rombusz, így területe akkor maximális, ha négyzet (területe $1 \cdot \cos \alpha$, ami $\alpha = 0$ -nál maximális.)

Ha a szárak nem párhuzamosak, akkor a szemközti oldal hossza $1-2\sin\alpha$, ha a szárak "befelé" hajlanak, és $1+2\sin\alpha$, ha a szárak "kifelé" hajlanak. Összefoglalva, tekinthetjük úgy, hogy a szemközti oldal hossza

Keressük a $T(\alpha)=\frac{1+(1+2\sin\alpha)}{2}\cos\alpha=(1+\sin\alpha)\cos\alpha$ függvény maximumát a $-\frac{\pi}{6}<\alpha<\frac{\pi}{2}$ intervallumon. $T(\alpha)=\cos\alpha+\frac{1}{2}\sin2\alpha$, így a $T'(\alpha)=-\sin\alpha+\cos2\alpha=0$ egyenletet kell megoldanunk. Felhasználva, hogy $\cos2\alpha=\cos^2\alpha-\sin^2\alpha=1-2\sin^2\alpha$, $\sin\alpha$ -ra a $-2\sin^2\alpha-\sin\alpha+1=0$ másodfokú egyenlet adódik, ahonnan $\sin\alpha=-1$ vagy $\sin\alpha=\frac{1}{2}$. Az értelmezési tartománnyal összevetve azt kapjuk, hogy $\alpha=\frac{\pi}{6}$ -nál lehet a függvénynek maximuma. A második derivált $T''(\alpha)=-\cos\alpha-2\sin2\alpha$ és $T''(\frac{\pi}{6})=-\frac{3\sqrt{3}}{2}<0$, tehát itt valóban maximum van. Ekkor a száraknak a hosszabbik alappal bezárt szöge $\frac{\pi}{3}$.

■ 8. feladat

Ha egy vödörbe L liter víz fér, akkor $\frac{10\,000}{L}$ fordulóra lesz szükség, ami $\frac{10\,000}{L}$ (64 + L^2) ideig tart. Tehát keressük az $F(L) = 10\,000\left(\frac{64}{L} + L\right)$ függvény minimumát, ahol L > 0. $F'(L) = 10\,000\left(1 - \frac{64}{L^2}\right) = 0$, ahonnan L = 8 a lehetséges szélsőértékhely. Mivel $F''(L) = 10\,000 \cdot \frac{128}{L^3}$ és F''(8) > 0, ezért F-nek itt valóban minimuma van.

■ 9. feladat

Az $f(t) = 2t + 10\left(1 + \frac{1}{t}\right)$ függvény minimumát keressük, ahol t > 0. $f'(t) = 2 - \frac{10}{t^2} = 0$, ahonnan $t = \sqrt{5} \approx 2.24$, itt lehet szélsőérték. Mivel $f''(t) = \frac{20}{t^3}$ és így $f''\left(\sqrt{5}\right) > 0$, ezért ebben a pontban valóban minimuma van a függvénynek.

■ 10. feladat

Jelölje AB a létrát. Az ábra épp a maximális hosszúságú létrát szemlélteti fordulás közben. Az AB szakasz x és y része α -val kifejezhető:

$$\text{AB} = f(\alpha) = \frac{2.4}{\cos \alpha} + \frac{1.6}{\sin \alpha}. \quad \text{A} \quad \text{sz\'els\'o\'ert\'ek} \quad \text{meghat\'aroz\'as\'ahoz} \quad \text{deriv\'aljuk} \quad f(\alpha) \text{-t:}$$

$$f'(\alpha) = \frac{2.4 \sin \alpha}{\cos^2 \alpha} - \frac{1.6 \cos \alpha}{\sin^2 \alpha} = \frac{0.8}{\sin^2 \alpha \cos^2 \alpha} \left(3 \sin^3 \alpha - 2 \cos^3 \alpha \right).$$

$$f'(\alpha) = 0, \text{ ha } 3\sin^3 \alpha = 2\cos^3 \alpha, \text{ tg } \alpha = \sqrt[3]{\frac{2}{3}} \approx 0.8736, \ \alpha \approx 41^{\circ}. \text{ AB} = 3, 2 + 2, 4 = 5, 6 \text{ m}.$$

■ 11. feladat

A hajó 1 óra alatt v kilométert tesz meg, ezalatt A+B forint a kiadás. A kilométerenkénti költség: $f(v) = \frac{A+B}{v} = 0$, $03 \ v^2 + \frac{480}{v}$. Szélsőérték ott lehet, ahol

$$f'(v) = 0$$
, $06v - \frac{480}{v^2} = 0$, azaz $v = 20$.

f''(v) = 0, $06 + \frac{960}{v^3}$, így f''(20) > 0, ezért itt valóban minimum van, a kilométerenkénti költség v = 20 km/h-s sebességnél a legkisebb.

■ 12. feladat

Jelölje r a félkör sugarát, ekkor a téglalap vízszintes oldala 2r. A téglalap függőleges oldalát jelölje x. Az ablak kerülete K=2 x+2 r+r π , területe $T=\frac{1}{2}$ r^2 $\pi+2$ r x. Az első egyenletből 2 x-et kiefejezve, keressük

a
$$T(r) = \frac{1}{2} r^2 \pi + r(K - 2r - r\pi) = Kr - \frac{1}{2} (4 + \pi) r^2$$
 függvény maximumát.

 $T'(r) = K - (4 + \pi) r = 0$, ahonnan $r = \frac{K}{4 + \pi}$ a lehetséges maximumhely. Mivel $T''(r) = -(4 + \pi) < 0$, ezért itt valóban maximum van, és ekkor $x = \frac{K}{4 + \pi}$.