



# Overview: Performance Adaptive Aeroelastic Wing

Kelley Hashemi

*Universities Space Research Association*

*NASA Ames Research Center*

ACGSC Meeting



November 1-3 , 2017  
Seattle, WA

# Overview

*Applications for the Performance Adaptive Aeroelastic Wing equipped with the Variable Camber Continuous Trailing Edge Flap (VCCTEF)*

- **Configuration optimization for drag reduction**

- Rapid aero-structural solver
- Optimal configuration study

- **Real-time drag minimization**

- Algorithm development
- Wind tunnel demonstration

- **Multi-objective control**

- Gust load alleviation
- Maneuver load alleviation
- Drag-cognizant control



# Configuration optimization for drag reduction



- Analyzed VCCTEF configuration to determine an optimal drag-reducing arrangement and deflection profile
- High fidelity CFD is impractical, rapid aero-structural solver with reasonable accuracy needed to help narrow the design space
- Developed a vortex lattice method with transonic and boundary layer corrections
  - 3% error when compared to CFD
  - 26x faster than Euler-based model
- Optimization results identify “best” configuration that provides 8% drag benefit
  - parabolic deflection
  - 3 camber segments
  - 4-16 outboard flaps



*Parabolic-3 configuration*  
 $(\delta_1 = 1^\circ \quad \delta_2 = 3^\circ \quad \delta_3 = 6^\circ)$



*-4-16 configuration*



# Real-time drag minimization

- Developed a real-time drag optimization algorithm for aeroelastic wings with wing-shaping control
  - Recursive least-squares system identification of aerodynamic lift and drag model
  - Optimization based on Newton-Raphson nonlinear solve of quadratic drag surrogate model



**Initial sweep:** Aerodynamic lift model estimated

**Directed sweep:** Drag approximation model estimated for design lift

**Optimization:** Nonlinear solve to identify flap solution corresponding to drag minimum

**Iterative Refinement:** Random perturbations about flap solution to refine surrogate model

# Real-time drag minimization



- Subscale wind tunnel test of VCCTEF-equipped flexible wing conducted
  - SBIR Phase 2 agreement with Scientific Systems Company, Inc. and University of Washington Aeronautical Laboratory
  - Follow-on test planned to address actuator failures



# Gust and maneuver load alleviation



- Designed controller for flexible wings utilizing the VCCTEF to mitigate gust and maneuver loads as measured through *wing root bending moment*  $M_y$
- Gust and some quantities poorly known
  - Generate adaptive estimates
  - Results in time-varying control gains, solve Riccati equation online
- Multi-objective control formulation addresses several goals simultaneously
  - Cost function and weights used to combine potentially competing objectives
  - Can combine with use of nominal controller
- Cost function for gust load alleviation (GLA):

$$J = \lim_{t \rightarrow \infty} \frac{1}{2} \int_0^t (q_f \hat{x}^T G_x^T Q G_x \hat{x} + u_a^T R u_a + q_M \hat{M}_y^T \hat{M}_y) dt$$

*Modal suppression*                    *Load alleviation*

↓

$$\hat{M}_y = \hat{M}_x \hat{x} + \hat{M}_{u_n} u_n + \hat{M}_{u_a} u_a + \hat{M}_w \hat{w}$$

*Tracking*

- Wind tunnel test for GLA planned as part of SBIR Phase 2x agreement with Scientific Systems Company, Inc., University of Washington Aeronautical Laboratory, and Boeing

# Gust and maneuver load alleviation



- Gust load alleviation applied to Generic Transport Model



- Maneuver load alleviation

## Baseline Pitch Rate Control

# Drag-cognizant control



- Multi-objective formulation easily accommodates other goals, such as drag reduction

$$J = \lim_{t \rightarrow \infty} \frac{1}{2} \int_0^t (q_f \hat{x}^T G_x^T Q G_x \hat{x} + u_a^T R u_a + q_D \Delta C_D) dt$$



Baseline Flight Path Control



---

# Questions?