

Экспериментальное задание ОГЭ

к.т.н. Опаловский В.А., методист корпорации «Российский учебник»

Изменения структуры ОГЭ по физике

Первую часть вебинара можно посмотреть здесь:

«Новая модель ОГЭ»

Структура ОГЭ 2020

Нет группировки заданий по разделам физики

1	Умение трактовать физический смысл используемых величин	
2	Умение различать физические законы и формулы	
3 – 4	Умение распознавать физические явления	
	Умение использовать формулы для расчёта физических величин	
5 – 6	Механические явления	
7	Тепловые явления	
8 – 9	Электромагнитные явления	
10	Квантовые явления	
	Умение описывать изменения физических величин в процессах	
11	Механические и тепловые явления	
12	Электромагнитные и квантовые явления	
13 – 14	Умение работать с графиками, таблицами и схемами	
	Методологические умения	
15	Умение проводить прямые измерения физических величин	
16	Умение анализировать опыты	
17	Умение проводить косвенные измерения физических величин	
	Технические устройства	
18	А) Принципа действия технических устройств	
	Б) Вклад учёных-физиков в развитие науки	
	Умение работать с текстом	
19 – 20	Умение интерпретировать и преобразовывать информацию из текста	
21	Умение применять информацию из текста	
	Умение решать задачи	
22	Умение решать качественные задачи («жизненные ситуации»)	
23 – 25	Умение решать расчётные задачи	

Задание 17 (экспериментальное задание)

Используя рычажные весы с разновесом, мензурку, стакан с водой, цилиндр № 1, соберите экспериментальную установку для измерения плотности материала, из которого изготовлен цилиндр № 1. Абсолютная погрешность измерения массы тела составляет ±1 г. Абсолютная погрешность измерения объёма тела равна цене деления мензурки.

В бланке ответов № 2:

- сделайте рисунок экспериментальной установки для определения объёма тела;
- 2) запишите формулу для расчёта плотности;
- укажите результаты измерения массы цилиндра и его объёма с учётом абсолютных погрешностей измерений;
- 4) запишите числовое значение плотности материала цилиндра.
- ✓ Максимум 3 балла

- √ Учёт погрешностей
- ✓ Новые комплекты оборудования
- ✓ Расширение тематики

Задание 17 (экспериментальное задание)

Образец возможного оформления

2.
$$\rho = \frac{m}{V}$$

3.
$$m = (195\pm 1)$$
 г; $V = V_2 - V_1 = (25\pm 2)$ мл = (25 ± 2) см³.

4.
$$\rho = \frac{195}{25} = 7.8(r/\text{cm}^2)$$

Содержание критерия	Баллы	
Полностью правильное выполнение задания, включающее в себя:		
1) рисунок экспериментальной установки;		
2) формулу для расчёта искомой величины (в данном случае: для		
плотности через массу тела и его объём);		
3) правильно записанные результаты прямых измерений с учётом		
заданных абсолютных погрешностей измерений (в данном случае:		
массы тела и его объёма);		
4) полученное правильное числовое значение искомой величины		
Записаны правильные результаты прямых измерений, но в одном	2	
из элементов ответа (1, 2 или 4) присутствует ошибка.		
ИЛИ		
Записаны правильные результаты прямых измерений, но один из		
элементов ответа (1, 2 или 4) отсутствует		
Записаны правильные результаты прямых измерений, но в		
элементах ответа 1, 2 и 4 присутствуют ошибки, или эти элементы		
отсутствуют.		
или		
Записаны результаты прямых измерений, но в одном из них		
допущена ошибка при записи абсолютной погрешности измерений.		
В элементах ответа 1, 2 и 4 присутствуют ошибки, или эти		
элементы отсутствуют		
Все случаи выполнения, которые не соответствуют	0	
вышеуказанным критериям выставления 1, 2 или 3 баллов.		
Разрозненные записи. Отсутствие попыток выполнения задания		
*		

Задание 17 Темы экспериментального задания 2020 г

Nº	Тема задания	
1	Плотность	
2	Сила Архимеда	
3	Жёсткость пружины	
4	Коэффициент трения скольжения	
5	Работа силы трения	
6	Работа силы упругости	
7	Сопротивление резистора	
8	Мощность электрического тока	
9	Работа электрического тока	
10	Оптическая сила собирающей линзы	
11	Момент силы	
12	Работа силы упругости при подъёме груза с помощью подвижного блока	
13	Работа силы упругости при подъёме груза с помощью неподвижного блока	

Задание 17 (экспериментальное задание)

Используя штатив с держателем, пружину №1 со шкалой (или линейку), динамометр №2 и грузы №1 и №2, соберите экспериментальную установку для измерения жёсткости пружины. Определите жёсткость пружины, подвесив к ней груз. Для измерения веса грузов воспользуйтесь динамометром. Абсолютная погрешность измерения удлинения пружины составляет ±2 мм, а абсолютная погрешность измерения веса грузов равна ±0,1 Н.

В бланке ответов №2:

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта жёсткости пружины;
- укажите результаты измерения веса грузов и удлинения пружины с учётом абсолютных погрешностей измерений;
- 4) запишите числовое значение жёсткости пружины.

Образец возможного выполнения

1. Схема экспериментальной установки (см. рисунок).

2.
$$F_{ymp} = mg = P$$
; $F_{ymp} = kx$, следовательно, $k = \frac{P}{x}$.

3.
$$x = (40 \pm 2) \text{ MM}$$

$$P = (2,0 \pm 0,1) \text{ H}.$$

4.
$$k = 2:0,04 = 50 \text{ H/M}.$$

Задание 17 (экспериментальное задание)

Используя штатив с муфтой, неподвижный блок, нить, три груза и динамометр, соберите экспериментальную установку для измерения работы силы упругости при равномерном подъёме грузов с использованием неподвижного блока. Определите работу, совершаемую силой упругости при подъёме грузов на высоту 20 см. Абсолютная погрешность измерения силы составляет \pm 0,1 H, расстояния \pm 5 мм.

В бланке ответов №2:

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта работы силы упругости;
- укажите результаты прямых измерений силы упругости и пути с учётом абсолютных погрешностей измерений;
- 4) запишите числовое значение работы силы упругости.

- $2. A = F_{\rm ynp} S.$
- 3. $F_{\text{ymp}} = (3.0 \pm 0.1) \text{ H}; \ S = (0.200 \pm 0.005) \text{ M}.$
- $4. A = 3.0 H \cdot 0.2 M = 0.6 Дж.$

Задание 17 (экспериментальное задание)

- Определите электрическое сопротивление резистора R_1 . Для этого соберите экспериментальную установку, используя источник тока, вольтметр, амперметр, ключ, реостат, соединительные провода и резистор, обозначенный R_1 . При помощи реостата установите в цепи силу тока 0,3 A. Абсолютная погрешность измерения силы тока составляет \pm 0,1 A, а напряжения \pm 0,2 B.
 - В бланке ответов №2:
 - 1) нарисуйте электрическую схему эксперимента;
 - 2) запишите формулу для расчёта электрического сопротивления;
 - укажите результаты измерения напряжения и силы тока с учётом абсолютных погрешностей измерений;
 - 4) запишите численное значение электрического сопротивления.

Образец возможного выполнения

1. Схема экспериментальной установки.

$$2. R = \frac{U}{I}$$

3.
$$I = (0.3 \pm 0.1) \text{ A}$$
; $U = (1.4 \pm 0.2) \text{ B}$.

4.
$$R = 4.7 \text{ Om}$$
.

Изменения структуры ОГЭ по физике после 2021 г

Экспериментальное задание

Изменения ОГЭ - 2021

Задание Что нового Будут добавлены задания Экспериментальное на проведение задание исследований.

Изменения ОГЭ – 2022

Задание Что нового Будут добавлены задания Экспериментальное на проверку задание предположений.

После 2022 г

1	Умение трактовать физический смысл используемых величин	
2	Умение различать физические законы и формулы	
	Умение распознавать физические явления	
3	Нестандартная учебная либо «жизненная» ситуация	
4	Стандартная учебная ситуация	
	Умение использовать основные формулы для расчёта физических величин	
5	Механические явления	
6	Тепловые явления	
7	Электромагнитные явления	
8	Квантовые явления	
9 – 10	Умение описывать изменения физических величин в различных процессах	
11 – 12	Умение работать с графиками, таблицами и схемами	
	Методологические умения	
13	Умение проводить прямые измерения физических величин	
14	Умение анализировать опыт	
15	Умение самостоятельно планировать опыт	
16	Работа с реальным оборудованием	
17 – 18	Технические устройства	
17	А) Умение описывать принцип действия технических устройств	
	Б) Знание вклада учёных-физиков в развитие науки	
18	Умение описывать принцип действия технических устройств (текст)	
	Умение работать с текстом	
19	Умение интерпретировать и преобразовывать информацию из текста	
20	Умение применять информацию из текста	
	Умение решать задачи	
21 – 22	Умение решать качественные задачи	
23 – 25	Умение решать расчётные задачи	

Задание № 16

Соберите экспериментальную установку для измерения ускорения скольжения бруска по наклонной плоскости (см. рисунок).

Для проведения измерений используйте штатив, направляющую, электронный секундомер с датчиками, брусок, линейку и транспортир.

Установите направляющую под углом 45°. Первый датчик установите в точке «0» направляющей, второй – в точке 50 см. При пуске бруска пусковой магнит установите на 0,5 см выше первого датчика. Абсолютная погрешность измерения промежутка времени при помощи электронного секундомера составляет $\Delta t = 0,05$ с, абсолютную погрешность измерения расстояния $\Delta l = 1$ см.

Определите ускорение бруска.

В развёрнутом ответе запишите:

- формулу, по которой рассчитывается путь, пройденный бруском при равноускоренном движении без начальной скорости, и получите из неё формулу для определения ускорения;
- результат измерения пути, пройденного бруском, с учётом абсолютной погрешности измерения;
- результаты трёх измерений промежутков времени движения бруска и среднее значение промежутка времени с учётом абсолютной погрешности измерений;
- 4) численное значение ускорения бруска.

- ✓ Не нужен рисунок
- ✓ Серия измерений

Задание № 16 Экспериментальное задание

Образец возможного выполнения

1.
$$S = \frac{at^2}{2}$$
; $a = \frac{2S}{t^2}$

2. Результаты измерения:

$$t_1 = 0.409 \text{ c}$$
; $t_2 = 0.407 \text{ c}$; $t_3 = 0.409 \text{ c}$

$$t_{cp.} = (0.41\pm0.05) \text{ c}; \qquad S = (0.50\pm0.01) \text{ M}$$

3. Ускорение равно
$$a = \frac{2 \cdot 0.5 \,\mathrm{m}}{(0.41)^2 \,\mathrm{c}^2} \approx 6.0 \,\mathrm{m/c^2}$$
.

Задание № 16 Экспериментальное задание

	ОГЭ ФК ГОС	ОГЭ ФГОС ООО
Количество наборов оборудования	8	7
Количество лабораторных работ	21	43

Комплект № 1		
элементы оборудования рекомендуемые характеристики ⁽¹⁾		
• весы электронные		
• измерительный цилиндр	предел измерения 250 мл ($C = 1$ мл)	
(мензурка)		
• два стакана с водой		
 динамометр № 1 	предел измерения 1 H ($C = 0.02$ H)	
• динамометр № 2	предел измерения 5 H ($C = 0.1 \text{ H}$)	
• поваренная соль, палочка для		
перемешивания		
• цилиндр стальной на нити;	$V = (25,0\pm0,3) \text{ cm}^3, m = (195\pm2) \text{ r}$	
обозначить № 1	2	
• цилиндр алюминиевый на нити;	$V = (25,0\pm0,7) \text{ cm}^3, m = (70\pm2) \text{ r}$	
обозначить № 2	TT (500110) 3 (6610)	
• пластиковый цилиндр на нити;	$V = (56.0\pm1.8) \text{ cm}^3, m = (66\pm2) \text{ r},$	
обозначить № 3	имеет шкалу вдоль образующей с	
	ценой деления 1 мм, длина не менее	
	80 мм	
• цилиндр алюминиевый на нити;	$V = (34,0\pm0,7) \text{ cm}^3, m = (95\pm2) \Gamma$	
обозначить № 4	имеет шкалу вдоль образующей с	
	ценой деления 1 мм, длина не менее	
	80 мм	

Измерение:

- 1. Средней плотности вещества (цилиндры №1-4)
- 2. Архимедовой силы (цилиндры №3-4)

Исследование зависимости:

- 4. F_{АРХ} от плотности жидкости (цилиндр №3)
- 5. Независимости F_{АРХ} от массы тела (цилиндры №1-2)

Комплект № 2		
элементы оборудования рекомендуемые характеристики ⁽²⁾		
гатив лабораторный с ержателями		
инамометр 1 предел измерения 1 H ($C = 0.02 \text{ H}$)		
инамометр 2 предел измерения 5 H ($C = 0.1 \text{ H}$)		
ружина 1 на планшете с жёсткость (50±2) Н/м иллиметровой шкалой		
ужина 2 на планшете с жёсткость (10±2) Н/м иллиметровой шкалой		
и груза, обозначить №1, №2 и массой по (100±2) г каждый 23		
бор грузов, обозначить № 4, наборный груз, позволяющий		
9 5 и № 6 устанавливать массу грузов:		
№ 4 массой (60±1) г, № 5 массой		
(70±1) г и № 6 массой (80±1) или набор		
отдельных грузов		
длина 300 мм с миллиметровыми делениями		
русок с крючком и нитью масса бруска $m = (50 \pm 5) \text{г}$		
правляющая длиной не менее поверхность «А» — приблизительно 0,2; поверхность «Б» — приблизительно 0,6 или две направляющие с разными коэффициенты трения бруска о направляющей, обозначить		

Измерение:

- 1. Жёсткости пружины
- 2. Коэффициента трения скольжения
- 3. Работы силы трения
- 4. Работы силы упругости

Исследование зависимости:

- Силы трения скольжения от силы нормального давления
- 6. Силы трения скольжения от рода поверхности
- 7. $F_{V\Pi P}$ от степени деформации пружины

Комплект № 3		
элементы оборудования	рекомендуемые характеристики ⁽³⁾	
• источник питания постоянного тока	выпрямитель с входным напряжением 36÷42 В или батарейный блок 1,5÷7,5 В с возможностью регулировки выходного напряжения	
• вольтметр двухпредельный	предел измерения 3 В, $C = 0.1$ В; предел измерения 6 В, $C = 0.2$ В	
• амперметр двухпредельный	предел измерения 3 A, $C = 0.1$ A; предел измерения 0.6 A, $C = 0.02$ A	
• резистор, обозначить R1	сопротивление (4,7±0,5) Ом	
• резистор, обозначить R2	сопротивление (5,7±0,6) Ом	
• резистор, обозначить R3	сопротивлением (8,2±0,8) Ом	
ullet проволочных резисторов $ ho l S$	резисторы обеспечивают проведение исследования зависимости сопротивления от длины, площади поперечного сечения и удельного сопротивления проводника	
• лампочка	номинальное напряжение 4,8 В, сила тока 0,5 А	
• переменный резистор (реостат)	сопротивление 10 Ом	
• соединительные провода, 10 шт.		
• ключ		

Измерение:

- 1. Электрического сопротивления резистора
- 2. Мощности электрического тока
- 3. Работы электрического тока

Исследование зависимости:

- 4. Силы тока, возникающего в проводнике (резистор, лампочка) от напряжения на концах проводника
- 5. Сопротивления от длины проводника
- 6. Сопротивления от площади поперечного сечения проводника
- 7. Сопротивления от удельного сопротивления проводника

Проверка:

- 8. Правила электрического напряжения при параллельном соединении проводников
- 9. Правила для силы электрического тока при последовательном соединении проводников

Комплект № 4		
элементы оборудования	рекомендуемые характеристики ⁽⁴⁾	
• источник питания	выпрямитель с входным напряжением	
постоянного тока	36÷42 В или батарейный блок	
	1,5÷7,5 В с возможностью	
	регулировки выходного напряжения	
• собирающая линза 1	фокусное расстояние $F_1 = (100\pm10)$ мм	
• собирающая линза 2	фокусное расстояние $F_2 = (50\pm 5)$ мм	
• рассеивающая линза 3	фокусное расстояние $F_3 = -(75\pm 5)$ мм	
• линейка	длина 300 мм с миллиметровыми	
	делениями	
• экран		
• направляющая	(оптическая скамья)	
• соединительные провода		
• ключ		
• осветитель, диафрагма		
щелевая с одной щелью, слайд		
«Модель предмета»		
• полуцилиндр	диаметр (50±5) мм, показатель	
	преломления примерно 1,5	
• планшет на плотном листе	на планшете обозначено место для	
с круговым транспортиром	полуцилиндра	

Измерение:

- 1. Оптической силы собирающей линзы
- 2. Фокусного расстояния собирающей линзы
- 3. Показателя преломления стекла

Исследование:

- 4. Свойства изображения, получаемого с помощью собирающей линзы
- 5. Фокусного расстояния двух сложенных линз
- 6. Зависимости угла преломления от угла падения на границе воздух стекло

Комплект № 5 ²		
элементы оборудования	рекомендуемые характеристики ⁽⁵⁾	
• секундомер электронный с датчиками		
• направляющая со шкалой	обеспечивает установку датчиков положения и установку пружины маятника	
• брусок деревянный с пусковым магнитом	масса бруска (50±2) г (одна из поверхностей бруска имеет отличный от других коэффициент трения скольжения)	
• штатив с креплением для наклонной плоскости		
 транспортир нитяной маятник с грузом с пусковым магнитом и с возможностью изменения длины нити 	длина нити не менее 50 см	
4 грузапружина 1	масса по (100±2) г каждый жёсткость (50±2) Н/м	
пружина 2мерная лента	жёсткость (20±2) Н/м	

Не будет использован в ОГЭ – 2020

Измерение:

- 1. Средней скорости движения бруска по наклонной плоскости
- 2. Ускорения бруска при движении по наклонной плоскости
- 3. Частоты и периода колебаний математического маятника
- 4. Частоты и периода колебаний пружинного маятника

Исследование зависимости:

- Ускорения бруска от угла наклона направляющей
- Периода (частоты) нитяного маятника от длины нити
- Периода колебаний пружинного маятника от массы груза и жёсткости пружины
- Независимости периода колебаний нитяного маятника о массы груза

Комплект № 6		
элементы оборудования	рекомендуемые характеристики ⁽⁶⁾	
• штатив лабораторный с		
держателями		
• рычаг	длина не менее 40 см с креплениями	
	для грузов	
• блок подвижный		
• блок неподвижный		
• нить		
• три груза	масса по (100±2) г каждого	
• динамометр	предел измерения 5 H ($C = 0.1 \text{ H}$)	
• линейка	длиной 300 мм с миллиметровыми	
	делениями	
• транспортир		

Измерение:

- 1. Момента силы, действующей на рычаг
- 2. Работы силы упругости при подъёме груза с помощью неподвижного блока
- 3. Работы силы упругости при подъёме груза с помощью подвижного блока

Проверка:

4. Условия равновесия рычага

Комплект № 7 ³		
элементы оборудования	рекомендуемые характеристики ⁽⁷⁾	
• калориметр		
• термометр		
• весы электронные		
 измерительный цилиндр (мензурка) 	предел измерения 250 мл ($C = 1$ мл)	
 цилиндр стальной на нити; обозначить № 1 	$V = (25,0\pm0,1) \text{ cm}^3, m = (189\pm2) \Gamma$	
 цилиндр алюминиевый на нити; обозначить № 2 	$V = (25,0\pm0,1) \text{ cm}^3, m = (68\pm2) \text{ r}$	
Оборудование для использования специалистом по физике:		
• чайник с термостатом (один на аудиторию)	устанавливается температура 70 °C	
• термометр (один на аудиторию)		
• графин с водой комнатной температуры (один на аудиторию)		

Не будет использован в ОГЭ – 2020

Измерение:

- 1. Удельной теплоёмкости металлического цилиндра
- 2. Количества теплоты, полученного водой комнатной температуры фиксированной массы, в которую опущен нагретый цилиндр
- 3. Количества теплоты, отданного нагретым цилиндром, после опускания его в воду комнатной температуры

Исследование:

4. Изменения температуры воды при различных условиях

УМК Пурышевой

УМК Грачёва

7 класс № 1; 5; 6

8 класс № 1; 2

7 класс №2; 5; 6; 8; 1Д; 5Д; 10Д

УМК Пурышевой	УМК Грачёва
7 класс № 7; 8	7 класс № 7; 8
9 класс № Д2; Д3	9 класс № 5Д

УМК Пурышевой

УМК Грачёва

8 класс №6; 7; 8; 9; 10; 11;12 8 класс № 5; 6; 7; 8

УМК Пурышевой

УМК Грачёва

7 класс № 11; 12; 13; 14

9 класс № 6; 7; 8; 8Д; 9Д;10Д

УМК Пурышевой	УМК Грачёва
7 класс № 10 9 класс № 2; 3*	9 класс № 4; 5; 7Д

Комплект №6 УМК Пурышевой УМК Грачёва 7 класс № 9 7 класс № 9

Комплект №7 УМК Пурышевой УМК Грачёва 8 класс № 4; 5 8 класс № 1; 2; 3

Перспективная модель КИМ ОГЭ

Результаты апробации 2018 – 2019

№16 – Экспериментальное задание. Уровень выполнения: 16%

Рекомендации к выбору УМК

- Учёт абсолютных погрешностей прямых измерений начиная с 7 класса.
- Возможность проведения лабораторных работ как на старом, так и на новом оборудовании.
- **3** Возможность самостоятельного планирования лабораторной работы учеником.

УМК «Физика» Пурышевой Н.С.

ФП № 1.2.5.1.8.1 - 3

ФП № 1.3.5.1.9.1 - 2

УМК «Физика» Грачёва А.В.

ФП № 1.2.5.1.3.1 - 3

ФП № 1.3.5.1.5.1 - 2

Электронная форма учебника

Бесплатно получить электронные формы учебников можно на сайте

https://lecta.rosuchebnik.ru/

по промо-коду:

УчимсяДома

УМК «Физика» Грачёва А.В. – единственные учебники, которые школа может получить бесплатно

Если Вы желаете работать по учебникам Грачёва А.В., а школа не имеет возможности их закупить, то можно написать на адрес Opalovskiy.VA@rosuchebnik.ru

Вам будет отправлена форма заявки для бесплатного обеспечения школы учебниками физики Грачёва А.В.

Опаловский Владимир Александрович

Методист по физике и астрономии корпорации «Российский учебник»

- ✓ Учитель высшей квалификационной категории
- ✓ Педагогический стаж 15 лет
- ✓ Кандидат технических наук

Opalovskiy.VA@rosuchebnik.ru

rosuchebnik.ru, росучебник.рф

Москва, Пресненская наб., д. 6, строение 2 +7 (495) 795 05 35 help@rosuchebnik.ru

Нужна методическая поддержка?

Методический центр 8-800-700-64-83 (звонок бесплатный) help@rosuchebnik.ru

Хотите купить?

Отдел продаж sales@rosuchebnik.ru

Цифровая среда школы lecta.rosuchebnik.ru

Хотите продолжить общение?

w vk.com/ros.uchebnik

9 ok.ru/rosuchebnik

Учимся дома

Моя школа в online 4 четверть. Учусь дома. Учусь сам! Учебные материалы для самостоятельной работы в помощь учителям, ученикам 1-11 классов и их родителям. Выбрать предмет

Краткие конспекты уроков на сайте

https://cifra.school/

Занимательна физика для учеников 5-8 классов

Опыты на воздушных шариках

В вебинаре представлены
15 экспериментов с воздушными шариками,
которые можно без жертв и разрушений
повторить дома.

