

What we claim is:

1. A compound of the Formula:



or a pharmaceutically acceptable salt thereof, wherein;

- 5        B is phenyl or a heteroaryl of 5 or 6 ring members, wherein a nitrogen with a removable hydrogen or a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R<sup>32</sup>, a nitrogen with a removable hydrogen or a carbon at the other position adjacent to the point of attachment is optionally substituted by R<sup>36</sup>, a nitrogen with a removable hydrogen or a carbon adjacent to R<sup>32</sup> and two atoms from the point of attachment is optionally substituted by R<sup>33</sup>, a nitrogen with a removable hydrogen or a carbon adjacent to R<sup>36</sup> and two atoms from the point of attachment is optionally substituted by R<sup>35</sup>, and a nitrogen with a removable hydrogen or a carbon adjacent to both R<sup>33</sup> and R<sup>35</sup> is optionally substituted by R<sup>34</sup>;
- 10      with a removable hydrogen or a carbon adjacent to R<sup>32</sup> and two atoms from the point of attachment is optionally substituted by R<sup>33</sup>, a nitrogen with a removable hydrogen or a carbon adjacent to R<sup>36</sup> and two atoms from the point of attachment is optionally substituted by R<sup>35</sup>, and a nitrogen with a removable hydrogen or a carbon adjacent to both R<sup>33</sup> and R<sup>35</sup> is optionally substituted by R<sup>34</sup>;
- 15      R<sup>9</sup>, R<sup>10</sup>, R<sup>11</sup>, R<sup>12</sup>, R<sup>13</sup>, R<sup>32</sup>, R<sup>33</sup>, R<sup>34</sup>, R<sup>35</sup>, and R<sup>36</sup> are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkylenedioxy, haloalkylthio, alkanoyloxy, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy, heteroaralkoxy, heterocyclcloxy, heterocyclalkoxy, alkoxyalkyl, haloalkoxylalkyl, hydroxy, amino, alkoxyamino, nitro, alkylamino, N-alkyl-N-arylamino, arylamino, aralkylamino, heteroarylarnino, heteroaralkylamino, heterocyclamino, heterocyclalkylamino, alkylthio, alkylthioalkyl, alkylsulfinyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl,

heteroarylsulfinyl, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl,  
 cycloalkylsulfonyl, heteroarylsulfonyl, alkylsulfonylalkyl, aryl, aralkyl,  
 cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, alkylsulfonamido,  
 amidosulfonyl, alkanoyl, haloalkanoyl, alkyl, alkenyl, halo, haloalkyl,  
 5      haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxylalkyl, aminoalkyl,  
 haloalkoxyalkyl, carboxylalkyl, carboalkoxy, carboxy, carboxamido,  
 carboxamidoalkyl, and cyano;

$R^{32}$ ,  $R^{33}$ ,  $R^{34}$ ,  $R^{35}$ , and  $R^{36}$  are independently optionally Q<sup>b</sup>;

- B is optionally selected from the group consisting of hydrido,  
 10     trialkylsilyl, C2-C8 alkyl, C3-C8 alkylenyl, C3-C8 alkenyl, C3-C8 alkynyl, and  
 C2-C8 haloalkyl, wherein each member of group B may be optionally  
 substituted at any carbon up to and including 6 atoms from the point of  
 attachment of B to A with one or more of the group consisting of  $R^{32}$ ,  $R^{33}$ ,  
 $R^{34}$ ,  $R^{35}$ , and  $R^{36}$ ;
- 15       B is optionally a C3-C12 cycloalkyl or a C4-C9 heterocyclyl, wherein  
 each ring carbon may be optionally substituted with  $R^{33}$ , a ring carbon other  
 than the ring carbon at the point of attachment of B to A may be optionally  
 substituted with oxo provided that no more than one ring carbon is substituted  
 by oxo at the same time, ring carbons and nitrogens adjacent to the carbon at  
 20      the point of attachment may be optionally substituted with  $R^9$  or  $R^{13}$ , a ring  
 carbon or nitrogen adjacent to the  $R^9$  position and two atoms from the point of  
 attachment may be substituted with  $R^{10}$ , a ring carbon or nitrogen adjacent to  
 the  $R^{13}$  position and two atoms from the point of attachment may be  
 substituted with  $R^{12}$ , a ring carbon three atoms from the point of attachment  
 25      and adjacent to the  $R^{10}$  position may be substituted with  $R^{11}$ , a ring carbon  
 three atoms from the point of attachment and adjacent to the  $R^{12}$  position may  
 be substituted with  $R^{33}$ , and a ring carbon four atoms from the point of

attachment and adjacent to the  $R^{11}$  and  $R^{33}$  positions may be substituted with

$R^{34}$ ;

$A$  is selected from the group consisting of a bond,  $(W^7)_{rr^-}$

$(CH(R^{15}))_{pa}$  and  $(CH(R^{15}))_{pa}(W^7)_{rr^-}$  wherein  $rr$  is 0 or 1,  $pa$  is an integer

5      selected from 0 through 6, and  $W^7$  is selected from the group consisting of O,

S, C(O),  $(R^7)NC(O)$ ,  $(R^7)NC(S)$ , and  $N(R^7)$ , with the proviso that no more than one of the group consisting of  $rr$  and  $pa$  is 0 at the same time;

$R^7$  is selected from the group consisting of hydrido, hydroxy, and

alkyl;

10       $R^{15}$  is selected from the group consisting of hydrido, hydroxy, halo,

alkyl, and haloalkyl;

$\Psi$  is NH or NOH;

M is N or  $R^1-C$ ;

$R^1$  is selected from the group consisting of hydrido, alkyl, alkenyl,

15      cyano, halo, haloalkyl, haloalkoxy, haloalkylthio, amino, aminoalkyl, alkylamino, anidino, hydroxy, hydroxyamino, alkoxy, hydroxyalkyl, alkoxyamino, thiol, and alkylthio;

$R^2$  is  $Z^0-Q$ ;

$Z^0$  is selected from the group consisting of a bond,

20       $W^0-(CH(R^{42}))_p$  wherein  $p$  is an integer selected from 0 through 3 and  $W^0$  is selected from the group consisting of O, S, C(O), S(O),  $N(R^{41})$ , and  $ON(R^{41})$ ,

$(CH(R^{41}))_g-O$  wherein  $g$  is an integer selected from 1 through 3, and

$(CH(R^{41}))_g-S$  wherein  $g$  is an integer selected from 1 through 3, with the

proviso that  $Z^0$  is directly bonded to the pyrimidinone ring;

$Z^0$  is optionally  $W^{22}$ - $(CH(R^{42}))_h$  wherein  $h$  is 0 or 1 and  $W^{22}$  is selected from the group consisting of  $CR^{41}=CR^{42}$ , 1,2-cyclopropyl, 1,2-cyclobutyl, 1,2-cyclohexyl, 1,3-cyclohexyl, 1,2-cyclopentyl, 1,3-cyclopentyl, 2,3-morpholinyl, 2,4-morpholinyl, 2,6-morpholinyl, 3,4-morpholinyl,

5    3,5-morpholinyl, 1,2-piperazinyl, 1,3-piperazinyl, 2,3-piperazinyl, 2,6-piperazinyl, 1,2-piperidinyl, 1,3-piperidinyl, 2,3-piperidinyl, 2,4-piperidinyl, 2,6-piperidinyl, 3,4-piperidinyl, 1,2-pyrrolidinyl, 1,3-pyrrolidinyl, 2,3-pyrrolidinyl, 2,4-pyrrolidinyl, 2,5-pyrrolidinyl, 3,4-pyrrolidinyl, 2,3-tetrahydrofuranyl, 2,4-tetrahydrofuranyl, 2,5-tetrahydrofuranyl, and

10   3,4-tetrahydrofuranyl, wherein  $Z^0$  is directly bonded to the pyrimidinone ring and  $W^{22}$  is optionally substituted with one or more substituents selected from the group consisting of  $R^9$ ,  $R^{10}$ ,  $R^{11}$ ,  $R^{12}$ , and  $R^{13}$ ;

$R^{41}$  and  $R^{42}$  are independently selected from the group consisting of amidino, hydroxyamino, hydrido, hydroxy, amino, and alkyl;

15   Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a nitrogen with a removable hydrogen or a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to  $Z^0$  is optionally substituted by  $R^9$ , a nitrogen with a removable hydrogen or a carbon at the other position adjacent to the point of attachment is optionally substituted by  $R^{13}$ , a nitrogen with a removable hydrogen or a carbon adjacent to  $R^9$  and two atoms from the point of attachment is optionally substituted by  $R^{10}$ , a nitrogen with a removable hydrogen or a carbon adjacent to  $R^{13}$  and two atoms from the point of attachment is optionally substituted by  $R^{12}$ , and a nitrogen with a removable hydrogen or a carbon adjacent to both  $R^{10}$  and  $R^{12}$  is optionally substituted by

20    $R^{11}$ , with the proviso that Q is other than phenyl when  $Z^0$  is a bond;

Q is optionally hydrido with the proviso that  $Z^0$  is other than a bond;

K is  $(CR^{4a}R^{4b})_n$  wherein n is 1 or 2;

$R^{4a}$  and  $R^{4b}$  are independently selected from the group consisting of

halo, hydrido, hydroxyalkyl, alkyl, alkoxyalkyl, alkylthioalkyl, and haloalkyl;

$E^0$  is  $E^1$ , when K is  $(CR^{4a}R^{4b})_n$ , wherein  $E^1$  is selected from the group

5 consisting of a bond,  $C(O)$ ,  $C(S)$ ,  $C(O)N(R^7)$ ,  $(R^7)NC(O)$ ,  $S(O)_2$ ,

$(R^7)NS(O)_2$ , and  $S(O)_2N(R^7)$ ;

$Y^0$  is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by  $Q^S$ , a carbon two or three

contiguous atoms from the point of attachment of  $Q^S$  to the phenyl or

10 heteroaryl ring is substituted by  $Q^b$ , a carbon adjacent to the point of

attachment of  $Q^S$  is optionally substituted by  $R^{17}$ , another carbon adjacent to

the point of attachment of  $Q^S$  is optionally substituted by  $R^{18}$ , a carbon

adjacent to  $Q^b$  is optionally substituted by  $R^{16}$ , and another carbon adjacent to

$Q^b$  is optionally substituted by  $R^{19}$ ;

15  $R^{16}$ ,  $R^{17}$ ,  $R^{18}$ , and  $R^{19}$  are independently selected from the group

consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, nitro, alkoxyamino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, alkenyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, haloalkoxyalkyl, carboalkoxy, and cyano;

20  $R^{16}$  or  $R^{19}$  is optionally selected from the group consisting of

$NR^{20}R^{21}$ ,  $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$ , and  $C(NR^{25})NR^{23}R^{24}$ , with the

proviso that  $R^{16}$ ,  $R^{19}$ , and  $Q^b$  are not simultaneously hydrido;

$Q^b$  is selected from the group consisting of  $NR^{20}R^{21}$ , aminoalkyl, hydrido,  $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$ , and  $C(NR^{25})NR^{23}R^{24}$ , with the proviso that no more than one of  $R^{20}$  and  $R^{21}$  is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time and with the further proviso that no more than one of  $R^{23}$  and  $R^{24}$  is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time;

$R^{20}, R^{21}, R^{23}, R^{24}, R^{25}$ , and  $R^{26}$  are independently selected from the group consisting of hydrido, alkyl, hydroxy, aminoalkyl, amino, dialkylamino, alkylamino, and hydroxyalkyl;

$Q^s$  is selected from the group consisting of a bond,  $(CR^{37}R^{38})_b$  wherein b is an integer selected from 1 through 4, and  $(CH(R^{14}))_c-W^1-$   $(CH(R^{15}))_d$  wherein c and d are integers independently selected from 1 through 3 and  $W^1$  is selected from the group consisting of  $C(O)N(R^{14})$ ,  $(R^{14})NC(O)$ ,  $S(O)$ ,  $S(O)_2$ ,  $S(O)_2N(R^{14})$ ,  $N(R^{14})S(O)_2$ , and  $N(R^{14})$ , with the provisos that  $R^{14}$  is selected from other than halo when directly bonded to N and that  $(CR^{37}R^{38})_b$ , and  $(CH(R^{14}))_c$  are bonded to  $E^0$ ;

$R^{14}$  is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

20       $R^{37}$  and  $R^{38}$  are independently selected from the group consisting of hydrido, alkyl, and haloalkyl;

$R^{38}$  is optionally aroyl or heteroaroyl, wherein  $R^{38}$  is optionally substituted with one or more substituents selected from the group consisting of  $R^{16}, R^{17}, R^{18}$ , and  $R^{19}$ ;

$Y^0$  is optionally  $Y^{AT}$  wherein  $Y^{AT}$  is  $Q^b-Q^s$ ;

$Y^0$  is optionally  $Q^b-Q^{ss}$  wherein  $Q^{ss}$  is  $(CH(R^{14}))_e-W^2-(CH(R^{15}))_h$ ,

wherein e and h are independently 1 or 2 and  $W^2$  is  $CR^{4a}=CR^{4b}$  with the

proviso that  $(CH(R^{14}))_e$  is bonded to  $E^0$ ;

- 5        $Y^0$  is optionally  $Q^b-Q^{ssss}$  or  $Q^b-Q^{ssssr}$  wherein  $Q^{ssss}$  is  
 $(CH(R^{38}))_r-W^5$  and  $Q^{ssssr}$  is  $(CH(R^{38}))_r-W^6$ , r is an integer selected  
from 1 through 2,  $W^5$  and  $W^6$  are independently selected from the group  
consisting of 1,4-indenyl, 1,5-indenyl, 1,6-indenyl, 1,7-indenyl, 2,7-indenyl, 2,6-  
indenyl, 2,5-indenyl, 2,4-indenyl, 3,4-indenyl, 3,5-indenyl, 3,6-indenyl, 3,7-  
indenyl, 2,4-benzofuranyl, 2,5-benzofuranyl, 2,6-benzofuranyl, 2,7-  
benzofuranyl, 3,4-benzofuranyl, 3,5-benzofuranyl, 3,6-benzofuranyl, 3,7-  
benzofuranyl, 2,4-benzothiophenyl, 2,5-benzothiophenyl, 2,6-benzothiophenyl,  
2,7-benzothiophenyl, 3,4-benzothiophenyl, 3,5-benzothiophenyl, 3,6-  
benzothiophenyl, 3,7-benzothiophenyl, 2,7-imidazo(1,2-a)pyridinyl, 3,4-  
imidazo(1,2-a)pyridinyl, 3,5-imidazo(1,2-a)pyridinyl, 3,6-imidazo(1,2-  
a)pyridinyl, 3,7-imidazo(1,2-a)pyridinyl, 2,4-indolyl, 2,5-indolyl, 2,6-indolyl,  
2,7-indolyl, 3,4-indolyl, 3,5-indolyl, 3,6-indolyl, 3,7-indolyl, 1,4-isoindolyl, 1,5-  
isoindolyl, 1,6-isoindolyl, 2,4-isoindolyl, 2,5-isoindolyl, 2,6-isoindolyl, 2,7-  
isoindolyl, 1,3-isoindolyl, 3,4-indazolyl, 3,5-indazolyl, 3,6-indazolyl, 3,7-  
indazolyl, 2,4-benzoxazolyl, 2,5-benzoxazolyl, 2,6-benzoxazolyl, 2,7-  
benzoxazolyl, 3,4-benzisoxazolyl, 3,5-benzisoxazolyl, 3,6-benzisoxazolyl, 3,7-  
benzisoxazolyl, 1,4-naphthyl, 1,5-naphthyl, 1,6-naphthyl, 1,7-naphthyl, 1,8-  
naphthyl, 2,4-naphthyl, 2,5-naphthyl, 2,6-naphthyl, 2,7-naphthyl, 2,8-naphthyl,  
2,4-quinolinyl, 2,5-quinolinyl, 2,6-quinolinyl, 2,7-quinolinyl, 2,8-quinolinyl, 3,4-  
quinolinyl, 3,5-quinolinyl, 3,6-quinolinyl, 3,7-quinolinyl, 3,8-quinolinyl, 4,5-  
quinolinyl, 4,6-quinolinyl, 4,7-quinolinyl, 4,8-quinolinyl, 1,4-isoquinolinyl, 1,5-  
isoquinolinyl, 1,6-isoquinolinyl, 1,7-isoquinolinyl, 1,8-isoquinolinyl, 3,4-  
isoquinolinyl, 3,5-isoquinolinyl, 3,6-isoquinolinyl, 3,7-isoquinolinyl, 3,8-  
isoquinolinyl, 4,5-isoquinolinyl, 4,6-isoquinolinyl, 4,7-isoquinolinyl, 4,8-  
30      isoquinolinyl, 3,4-cinnolinyl, 3,5-cinnolinyl, 3,6-cinnolinyl, 3,7-cinnolinyl, 3,8-  
cinnolinyl, 4,5-cinnolinyl, 4,6-cinnolinyl, 4,7-cinnolinyl, and 4,8-cinnolinyl, and

each carbon and hyrido containing nitrogen member of the ring of the  $W^5$  and  
 of the ring of the  $W^6$ , other than the points of attachment of  $W^5$  and  $W^6$ , is  
 optionally substituted with one or more of the group consisting of  $R^9$ ,  $R^{10}$ ,  
<sup>5</sup>  $R^{11}$ , and  $R^{12}$ , with the proviso that  $Q^b$  is bonded to lowest number substituent  
 position of each  $W^5$ , with further proviso that  $Q^b$  is bonded to highest number  
 substituent position of each  $W^6$ , and with the additional proviso that  
<sup>10</sup>  $(CH(R^{38}))_r$  is bonded to  $E^0$ .

2. Compound of Claim 1 of the Formula:



<sup>10</sup> or a pharmaceutically acceptable salt thereof, wherein;  
 B is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by  $R^{32}$ , the other carbon adjacent to the  
<sup>15</sup> carbon at the point of attachment is optionally substituted by  $R^{36}$ , a carbon adjacent to  $R^{32}$  and two atoms from the carbon at the point of attachment is optionally substituted by  $R^{33}$ , a carbon adjacent to  $R^{36}$  and two atoms from the carbon at the point of attachment is optionally substituted by  $R^{35}$ , and any carbon adjacent to both  $R^{33}$  and  $R^{35}$  is optionally substituted by  $R^{34}$ ;  
<sup>20</sup>  $R^{32}$ ,  $R^{33}$ ,  $R^{34}$ ,  $R^{35}$ , and  $R^{36}$  are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino,

alkylenedioxy, haloalkylthio, alkanoyloxy, alkoxy, hydroxy, amino,  
 alkoxyamino, haloalkanoyl, nitro, alkylamino, alkylthio, aryl, aralkyl, cycloalkyl,  
 cycloalkylalkyl, heteroaryl, heterocyclyl, alkylsulfonamido, amidosulfonyl,  
 monoalkyl amidosulfonyl, dialkyl amidosulfonyl, alkyl, alkenyl, halo, haloalkyl,  
 5      haloalkenyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl,  
       carboalkoxy, carboxy, carboxamido, cyano, and Q<sup>b</sup>;

B is optionally selected from the group consisting of hydrido,  
 trialkylsilyl, C2-C8 alkyl, C3-C8 alkylenyl, C3-C8 alkenyl, C3-C8 alkynyl, and  
 C2-C8 haloalkyl, wherein each member of group B is optionally substituted at  
 10     any carbon up to and including 6 atoms from the point of attachment of B to A  
       with one or more of the group consisting of R<sup>32</sup>, R<sup>33</sup>, R<sup>34</sup>, R<sup>35</sup>, and R<sup>36</sup>;

B is optionally a C3-C12 cycloalkyl or C4-C9 heterocyclyl, wherein  
 each ring carbon may be optionally substituted with R<sup>33</sup>, a ring carbon other  
 than the ring carbon at the point of attachment of B to A may be optionally  
 15     substituted with oxo provided that no more than one ring carbon is substituted  
       by oxo at the same time, ring carbons and nitrogens adjacent to the carbon at  
       the point of attachment may be optionally substituted with R<sup>9</sup> or R<sup>13</sup>, a ring  
       carbon or nitrogen adjacent to the R<sup>9</sup> position and two atoms from the point of  
       attachment may be substituted with R<sup>10</sup>, a ring carbon or nitrogen adjacent to  
 20     the R<sup>13</sup> position and two atoms from the point of attachment may be  
       substituted with R<sup>12</sup>, a ring carbon three atoms from the point of attachment  
       and adjacent to the R<sup>10</sup> position may be substituted with R<sup>11</sup>, a ring carbon  
       three atoms from the point of attachment and adjacent to the R<sup>12</sup> position may  
       be substituted with R<sup>33</sup>, and a ring carbon four atoms from the point of  
 25     attachment and adjacent to the R<sup>11</sup> and R<sup>33</sup> positions may be substituted with  
       R<sup>34</sup>;

$R^9, R^{10}, R^{11}, R^{12}$ , and  $R^{13}$  are independently selected from the group consisting of hydrido, acetamido, haloacetamido, alkoxyamino, alkanoyl, haloalkanoyl, amidino, guanidino, alkyleneoxy, haloalkylthio, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy, heteroaralkoxy, heterocyclxy, heterocyclalkoxy, hydroxy, amino, alkylamino, N-alkyl-N-arylarnino, arylamino, aralkylamino, heteroarylarnino, heteroaralkylarnino, heterocyclarnino, heterocyclalkylarnino, alkylthio, alkylsulfinyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylsulfinyl, alkylsulfamido, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, heteroarylsulfonyl, amidosulfonyl, alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocycl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, and cyano;

$A$  is a bond or  $(CH(R^{15}))_{pa}(W^7)_{rr}$  wherein  $rr$  is 0 or 1,  $pa$  is an integer selected from 0 through 3, and  $W^7$  is selected from the group consisting of O, S, C(O),  $(R^7)NC(O)$ ,  $(R^7)NC(S)$ , and  $N(R^7)$ ;

$R^7$  is selected from the group consisting of hydrido, hydroxy and alkyl;

$R^{15}$  is selected from the group consisting of hydrido, hydroxy, halo, alkyl, and haloalkyl;

20      M is N or  $R^1-C$ ;

$R^1$  is selected from the group consisting of hydrido, alkyl, cyano, halo, haloalkyl, haloalkoxy, amino, aminoalkyl, alkylamino, amidino, hydroxy, hydroxyamino, alkoxy, hydroxyalkyl, alkoxyamino, thiol, and alkylthio;

$R^2$  is  $Z^0-Q$ ;

25       $Z^0$  is selected from the group consisting of a bond,  $W^0-(CH(R^{42}))_p$  wherein  $p$  is an integer selected from 0 through 3 and  $W^0$  is selected from the group consisting of O, S, and  $N(R^{41})$ , and  $(CH(R^{41}))_g-O$  wherein  $g$  is an

integer selected from 1 through 3, with the proviso that  $Z^0$  is directly bonded to the pyrimidinone ring;

$Z^0$  is optionally  $W^{22}-(CH(R^{42}))_h$  wherein h is 0 or 1 and  $W^{22}$  is

selected from the group consisting of 1,2-cyclopropyl, 1,2-cyclobutyl,

- 5 1,2-cyclohexyl, 1,3-cyclohexyl, 1,2-cyclopentyl, 1,3-cyclopentyl,  
2,3-morpholinyl, 2,4-morpholinyl, 2,6-morpholinyl, 3,4-morpholinyl,  
3,5-morpholinyl, 1,2-piperazinyl, 1,3-piperazinyl, 2,3-piperazinyl,  
2,6-piperazinyl, 1,2-piperidinyl, 1,3-piperidinyl, 2,3-piperidinyl, 2,4-piperidinyl,  
2,6-piperidinyl, 3,4-piperidinyl, 1,2-pyrrolidinyl, 1,3-pyrrolidinyl,  
10 2,3-pyrrolidinyl, 2,4-pyrrolidinyl, 2,5-pyrrolidinyl, 3,4-pyrrolidinyl,  
2,3-tetrahydrofuranyl, 2,4-tetrahydrofuranyl, 2,5-tetrahydrofuranyl, and  
3,4-tetrahydrofuranyl, wherein  $Z^0$  is directly bonded to the pyrimidinone ring  
and  $W^{22}$  is optionally substituted with one or more substituents selected from  
the group consisting of  $R^9, R^{10}, R^{11}, R^{12}$ , and  $R^{13}$ ;

- 15  $R^{41}$  is selected from the group consisting of hydrido, hydroxy, amino,  
and alkyl;

$R^{42}$  is selected from the group consisting of amidino, hydroxyamino,  
hydrido, hydroxy, amino, and alkyl;

- Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon  
20 adjacent to the carbon at the point of attachment of said phenyl or heteroaryl  
ring to  $Z^0$  is optionally substituted by  $R^9$ , the other carbon adjacent to the  
carbon at the point of attachment of said phenyl or heteroaryl ring to  $Z^0$  is  
optionally substituted by  $R^{13}$ , a carbon adjacent to  $R^9$  and two atoms from the  
carbon at the point of attachment is optionally substituted by  $R^{10}$ , a carbon  
25 adjacent to  $R^{13}$  and two atoms from the carbon at the point of attachment is  
optionally substituted by  $R^{12}$ , and any carbon adjacent to both  $R^{10}$  and  $R^{12}$  is

optionally substituted by  $R^{11}$ , with the proviso that Q is other than a phenyl when  $Z^0$  is a bond;

Q is optionally hydrido with the proviso that  $Z^0$  is selected from other than a bond;

5 K is  $CHR^{4a}$  wherein  $R^{4a}$  is selected from the group consisting of hydrido, hydroxyalkyl, alkyl, alkoxyalkyl, alkylthioalkyl, and haloalkyl;  $E^0$  is selected from the group consisting of a bond,  $C(O)N(H)$ ,  $(H)NC(O)$ ,  $(R^7)NS(O)_2$ , and  $S(O)_2N(R^7)$ ;

10  $Y^0$  is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by  $Q^S$ , a carbon two or three contiguous atoms from the point of attachment of  $Q^S$  to the phenyl or heteroaryl ring is substituted by  $Q^b$ , a carbon adjacent to the point of attachment of  $Q^S$  is optionally substituted by  $R^{17}$ , another carbon adjacent to the point of attachment of  $Q^S$  is optionally substituted by  $R^{18}$ , a carbon adjacent to  $Q^b$  is optionally substituted by  $R^{16}$ , and another carbon adjacent to  $Q^b$  is optionally substituted by  $R^{19}$ ;

15  $R^{16}$ ,  $R^{17}$ ,  $R^{18}$ , and  $R^{19}$  are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

20  $R^{16}$  or  $R^{19}$  is optionally selected from the group consisting of  $NR^{20}R^{21}$ ,  $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$ , and  $C(NR^{25})NR^{23}R^{24}$ , with the proviso that  $R^{16}$ ,  $R^{19}$ , and  $Q^b$  are not simultaneously hydrido;

$Q^b$  is selected from the group consisting of  $NR^{20}R^{21}$ , hydrido,  
 $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$ , and  $C(NR^{25})NR^{23}R^{24}$ , with the proviso that no  
more than one of  $R^{20}$  and  $R^{21}$  is selected from the group consisting of hydroxy,  
amino, alkylamino, and dialkylamino at the same time and with the further proviso  
5 that no more than one of  $R^{23}$  and  $R^{24}$  is selected from the group consisting of  
hydroxy, amino, alkylamino, and dialkylamino at the same time;  
 $R^{20}, R^{21}, R^{23}, R^{24}, R^{25}$ , and  $R^{26}$  are independently selected from the  
group consisting of hydrido, alkyl, hydroxy, amino, alkylamino and dialkylamino;  
 $Q^s$  is selected from the group consisting of a bond,  $(CR^{37}R^{38})_b$   
10 wherein  $b$  is an integer selected from 1 through 4, and  $(CH(R^{14}))_cW^1$ -  
 $(CH(R^{15}))_d$  wherein  $c$  and  $d$  are integers independently selected from 1  
through 3 and  $W^1$  is selected from the group consisting of  $C(O)N(R^{14})$ ,  
 $(R^{14})NC(O)$ ,  $S(O)$ ,  $S(O)_2$ ,  $S(O)_2N(R^{14})$ ,  $N(R^{14})S(O)_2$ , and  $N(R^{14})$ , with the  
proviso that  $R^{14}$  is selected from other than halo when directly bonded to N  
15 and with the further proviso that  $(CR^{37}R^{38})_b$ , and  $(CH(R^{14}))_c$  are bonded to  
 $E^0$ ;  
 $R^{14}$  is selected from the group consisting of hydrido, halo, alkyl, and  
haloalkyl;  
 $R^{37}$  and  $R^{38}$  are independently selected from the group consisting of  
20 hydrido, alkyl, and haloalkyl;  
 $R^{38}$  is optionally aroyl or heteroaroyl, wherein  $R^{38}$  is optionally  
substituted with one or more substituents selected from the group consisting of  
 $R^{16}, R^{17}, R^{18}$ , and  $R^{19}$ ;  
 $Y^0$  is optionally  $Y^{AT}$  wherein  $Y^{AT}$  is  $Q^b-Q^s$ ;

$Y^0$  is optionally  $Q^b$ - $Q^{ss}$  wherein  $Q^{ss}$  is  $(CH(R^{14}))_e-W^2-(CH(R^{15}))_h$ , wherein e and h are independently 1 or 2 and  $W^2$  is  $CR^{4a}=CH$  with the proviso that  $(CH(R^{14}))_e$  is bonded to  $E^0$ .

5     3. Compound of Claim 2 or a pharmaceutically acceptable salt thereof, wherein;  
 B is selected from the group consisting of hydrido, trialkylsilyl, C2-C8 alkyl, C3-C8 alkylenyl, C3-C8 alkenyl, C3-C8 alkynyl, and C2-C8 haloalkyl, wherein each member of group B is optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A with one or more  
 10    of the group consisting of  $R^{32}$ ,  $R^{33}$ ,  $R^{34}$ ,  $R^{35}$ , and  $R^{36}$ ;

$R^{32}$ ,  $R^{33}$ ,  $R^{34}$ ,  $R^{35}$ , and  $R^{36}$  are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboalkoxy, 15    carboxy, carboxamido, cyano, and  $Q^b$ ;

A is  $(CH(R^{15}))_{pa}-W^7$  wherein pa is an integer selected from 0 through 3 and  $W^7$  is selected from the group consisting of O, S, and  $N(R^7)$  wherein  $R^7$  is hydrido or alkyl;

20     $R^{15}$  is selected from the group consisting of hydrido, hydroxy, halo, alkyl, and haloalkyl with the proviso that  $R^{15}$  is other than hydroxy and halo when  $R^{15}$  is on the carbon bonded directly to  $W^7$ ;

M is N or  $R^1-C$ ;

25     $R^1$  is selected from the group consisting of hydrido, alkyl, cyano, halo, haloalkyl, haloalkoxy, amino, aminoalkyl, alkylamino, amidino, hydroxy, hydroxyamino, alkoxy, hydroxyalkyl, alkoxyamino, thiol, and alkylthio;

$R^2$  is  $Z^0-Q$ ;

$Z^0$  is a bond or  $W^0-(CH(R^{42}))_p$  wherein p is an integer selected from 0 through 3 and  $W^0$  is selected from the group consisting of O, S, and  $N(R^{41})$ ,

with the proviso that  $Z^0$  is directly bonded to the pyrimidinone ring;

$R^{41}$  is selected from the group consisting of hydrido, hydroxy, and

5 alkyl;

$R^{42}$  is selected from the group consisting of amidino, hydrido, hydroxy, amino, and alkyl;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl

10 ring to  $Z^0$  is optionally substituted by  $R^9$ , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by  $R^{13}$ , a carbon adjacent to  $R^9$  and two atoms from the carbon at the point of attachment is optionally substituted by  $R^{10}$ , a carbon adjacent to  $R^{13}$  and two atoms from the carbon at the point of attachment is optionally substituted by  $R^{12}$ , and any

15 carbon adjacent to both  $R^{10}$  and  $R^{12}$  is optionally substituted by  $R^{11}$ , with the proviso that Q is other than a phenyl when  $Z^0$  is a bond;

$R^9, R^{10}, R^{11}, R^{12}$ , and  $R^{13}$  are independently selected from the group

consisting of hydrido, acetamido, haloacetamido, alkoxyamino, alkanoyl, haloalkanoyl, amidino, guanidino, alkyleneoxy, haloalkylthio, alkoxy,

20 cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy, heteroaralkoxy, heterocyclxy, heterocyclalkoxy, hydroxy, amino, alkylamino, N-alkyl-N-arylarnino, arylamino, aralkylamino, heteroarylarnino, heteroaralkylarnino, heterocyclarnino, heterocyclalkylarnino, alkylthio, alkylsulfinyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylulsfinyl, 25 alkylsulfamido, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, heteroarylulsfonyl, amidosulfonyl, alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocycl, halo, haloalkyl, haloalkoxy,

hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, and cyano;

K is  $\text{CHR}^{4a}$  wherein  $\text{R}^{4a}$  is selected from the group consisting of

hydrido, hydroxyalkyl, alkyl, alkoxyalkyl, alkylthioalkyl, and haloalkyl;

5        $\text{E}^0$  is selected from the group consisting of a bond,  $\text{C}(\text{O})\text{N}(\text{H})$ ,  $(\text{H})\text{NC}(\text{O})$ ,  $(\text{R}^7)\text{NS}(\text{O})_2$ , and  $\text{S}(\text{O})_2\text{N}(\text{R}^7)$ ;

Y<sup>0</sup> is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by  $\text{Q}^S$ , a carbon two or three contiguous atoms from the point of attachment of  $\text{Q}^S$  to the phenyl or

10      heteroaryl ring is substituted by  $\text{Q}^b$ , a carbon adjacent to the point of attachment of  $\text{Q}^S$  is optionally substituted by  $\text{R}^{17}$ , another carbon adjacent to the point of attachment of  $\text{Q}^S$  is optionally substituted by  $\text{R}^{18}$ , a carbon adjacent to  $\text{Q}^b$  is optionally substituted by  $\text{R}^{16}$ , and another carbon adjacent to  $\text{Q}^b$  is optionally substituted by  $\text{R}^{19}$ ;

15       $\text{R}^{16}$ ,  $\text{R}^{17}$ ,  $\text{R}^{18}$ , and  $\text{R}^{19}$  are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

20       $\text{R}^{16}$  or  $\text{R}^{19}$  is optionally selected from the group consisting of  $\text{NR}^{20}\text{R}^{21}$ ,  $\text{N}(\text{R}^{26})\text{C}(\text{NR}^{25})\text{N}(\text{R}^{23})(\text{R}^{24})$ , and  $\text{C}(\text{NR}^{25})\text{NR}^{23}\text{R}^{24}$ , with the proviso that  $\text{R}^{16}$ ,  $\text{R}^{19}$ , and  $\text{Q}^b$  are not simultaneously hydrido;

$\text{Q}^b$  is selected from the group consisting of  $\text{NR}^{20}\text{R}^{21}$ , hydrido,  $\text{N}(\text{R}^{26})\text{C}(\text{NR}^{25})\text{N}(\text{R}^{23})(\text{R}^{24})$ , and  $\text{C}(\text{NR}^{25})\text{NR}^{23}\text{R}^{24}$ , with the proviso that no

- more than one of  $R^{20}$  and  $R^{21}$  is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time and with the further proviso that no more than one of  $R^{23}$  and  $R^{24}$  is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time;
- 5         $R^{20}$ ,  $R^{21}$ ,  $R^{23}$ ,  $R^{24}$ ,  $R^{25}$ , and  $R^{26}$  are independently selected from the group consisting of hydrido, alkyl, hydroxy, amino, alkylamino and dialkylamino;  $Q^s$  is selected from the group consisting of a bond,  $(CR^{37}R^{38})_b$  wherein b is an integer selected from 1 through 3, and  $(CH(R^{14}))_c - W^1 - (CH(R^{15}))_d$  wherein c and d are independently 1 or 2 and
- 10       $W^1$  is selected from the group consisting of  $C(O)N(R^{14})$ ,  $(R^{14})NC(O)$ ,  $S(O)$ ,  $S(O)_2$ ,  $S(O)_2N(R^{14})$ ,  $N(R^{14})S(O)_2$ , and  $N(R^{14})$ , with the proviso that  $R^{14}$  is selected from other than halo when directly bonded to N and with the further proviso that  $(CR^{37}R^{38})_b$ , and  $(CH(R^{14}))_c$  are bonded to  $E^0$ ;  $R^{14}$  is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;
- 15       $R^{14}$  is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;  $R^{37}$  and  $R^{38}$  are independently selected from the group consisting of hydrido, alkyl, and haloalkyl;  $R^{38}$  is optionally aroyl and heteroaroyl;
- 20       $Y^0$  is optionally  $Q^b - Q^{ss}$  wherein  $Q^{ss}$  is  $(CH(R^{14}))_e - W^2 - (CH(R^{15}))_h$ , wherein e and h are integers independently selected from 1 through 2 and  $W^2$  is  $CR^{4a} = CH$  with the proviso that  $(CH(R^{14}))_e$  is bonded to  $E^0$ .

## 4. Compound of Claim 3 of the Formula:



or a pharmaceutically acceptable salt thereof, wherein;

- B is selected from the group consisting of hydrido, trialkylsilyl,  
 5 C2-C4 alkyl, C3-C5 alkylenyl, C3-C4 alkenyl, C3-C4 alkynyl, and  
 C2-C4 haloalkyl, wherein each member of group B is optionally substituted at  
 any carbon up to and including 3 atoms from the point of attachment of B to A  
 with one or more of the group consisting of R<sup>32</sup>, R<sup>33</sup>, and R<sup>34</sup>;

- 10 R<sup>32</sup>, R<sup>33</sup>, and R<sup>34</sup> are independently selected from the group  
 consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy,  
 hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo,  
 haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboalkoxy, carboxy,  
 carboxamido, and cyano;

- A is (CH(R<sup>15</sup>))<sub>pa</sub>-N(R<sup>7</sup>) wherein pa is an integer selected from 0  
 15 through 2 and R<sup>7</sup> is selected from the group consisting of hydrido and alkyl;  
 R<sup>15</sup> is selected from the group consisting of hydrido, halo, alkyl, and  
 haloalkyl;

- M is N or R<sup>1</sup>-C;  
 20 R<sup>1</sup> is selected from the group consisting of hydrido, alkyl, cyano, halo,  
 haloalkyl, haloalkoxy, amino, aminoalkyl, alkylamino, amidino, hydroxy,  
 hydroxyamino, alkoxy, hydroxyalkyl, alkoxyamino, thiol, and alkylthio;

- R<sup>2</sup> is Z<sup>0</sup>-Q;  
 Z<sup>0</sup> is a bond or W<sup>0</sup>-CH(R<sup>42</sup>) wherein W<sup>0</sup> is selected from the group  
 consisting of O, S, and N(R<sup>41</sup>);

$R^{41}$  and  $R^{42}$  are independently hydrido or alkyl;

$Q$  is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to  $Z^0$  is optionally substituted by  $R^9$ , the other carbon adjacent to the

- 5      carbon at the point of attachment is optionally substituted by  $R^{13}$ , a carbon adjacent to  $R^9$  and two atoms from the carbon at the point of attachment is optionally substituted by  $R^{10}$ , a carbon adjacent to  $R^{13}$  and two atoms from the carbon at the point of attachment is optionally substituted by  $R^{12}$ , and any carbon adjacent to both  $R^{10}$  and  $R^{12}$  is optionally substituted by  $R^{11}$ , with the proviso that  $Q$  is other than a phenyl when  $Z^0$  is a bond;

$R^9$ ,  $R^{11}$ , and  $R^{13}$  are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkylsulfonamido, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboxy, carboxamido, and cyano;

- 15      $R^{10}$  and  $R^{12}$  are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy, heteroaralkoxy, heterocyclxyloxy, heterocyclalkoxy, hydroxy, amino, alkoxyamino, alkylamino, arylamino, aralkylamino, heteroarylalmino, heteroaralkylamino, heterocyclamino, heterocyclalkylamino, alkylsulfonamido, amidosulfonyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylsulfinyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, heteroarylsulfonyl, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, halo, haloalkyl, and cyano;

$Y^0$  is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by  $Q^S$ , a carbon two or three contiguous atoms from the point of attachment of  $Q^S$  to the phenyl or heteroaryl ring is substituted by  $Q^b$ , a carbon adjacent to the point of attachment of  $Q^S$  is optionally substituted by  $R^{17}$ , another carbon adjacent to the point of attachment of  $Q^S$  is optionally substituted by  $R^{18}$ , a carbon adjacent to  $Q^b$  is optionally substituted by  $R^{16}$ , and another carbon adjacent to  $Q^b$  is optionally substituted by  $R^{19}$ ;

$R^{16}, R^{17}, R^{18}$ , and  $R^{19}$  are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

$R^{16}$  or  $R^{19}$  is optionally selected from the group consisting of  $NR^{20}R^{21}$ ,  $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$ , and  $C(NR^{25})NR^{23}R^{24}$ , with the proviso that  $R^{16}$ ,  $R^{19}$ , and  $Q^b$  are not simultaneously hydrido;

$Q^b$  is selected from the group consisting of  $NR^{20}R^{21}$ , hydrido,  $C(NR^{25})NR^{23}R^{24}$ , and  $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$ , with the proviso that no more than one of  $R^{20}$  and  $R^{21}$  is hydroxy at the same time and with the further proviso that no more than one of  $R^{23}$  and  $R^{24}$  is hydroxy at the same time;

$R^{20}, R^{21}, R^{23}, R^{24}, R^{25}$ , and  $R^{26}$  are independently selected from the group consisting of hydrido, alkyl, and hydroxy;

$Q^S$  is selected from the group consisting of abond,  $CH_2$ , and  $CH_2CH_2$ .

5. Compound of Claim 4 or a pharmaceutically acceptable salt thereof, wherein;  
 B is selected from the group consisting of ethyl, 2-propenyl,  
 2-propynyl, propyl, isopropyl, -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-, butyl,  
 5 2-butenyl, 3-but enyl, 2-butynyl, sec-butyl, tert-butyl, isobutyl,  
 2-methylpropenyl, 2,2,2-trifluoroethyl, 3,3,3-trifluoropropyl, and  
 2,2-difluoropropyl, wherein each member of group B is optionally substituted  
 at any carbon up to and including 3 atoms from the point of attachment of B to  
 A with one or more of the group consisting of R<sup>32</sup>, R<sup>33</sup>, and R<sup>34</sup>;
- 10 R<sup>32</sup>, R<sup>33</sup>, and R<sup>34</sup> are independently selected from the group  
 consisting of hydrido, amidino, guanidino, carboxy, methoxy, ethoxy,  
 isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido,  
 trifluoroacetamido, N-methylamino, dimethylamino, N-ethylamino, methylthio,  
 ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl,  
 15 trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo,  
 amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl,  
 hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl,  
 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl,  
 amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, and  
 20 cyano;
- A is selected from the group consisting of a bond, NH, and N(CH<sub>3</sub>);  
 M is N or R<sup>1</sup>-C;  
 R<sup>1</sup> is selected from the group consisting of hydrido, hydroxy, amino,  
 amidino, hydroxyamino, aminomethyl, 1-aminoethyl, methylamino,  
 25 dimethylamino, cyano, methyl, ethyl, trifluoromethyl, pentafluoroethyl, 2,2,2-  
 trifluoroethyl, methoxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl,  
 methoxyamino, methylthio, ethylthio, trifluoromethoxy,  
 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, and bromo;
- R<sup>2</sup> is Z<sup>0</sup>-Q;  
 30 Z<sup>0</sup> is selected from the group consisting of a bond, O, S, NH, N(CH<sub>3</sub>),  
 OCH<sub>2</sub>, SCH<sub>2</sub>, N(H)CH<sub>2</sub>, and N(CH<sub>3</sub>)CH<sub>2</sub>;

Q is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z<sup>0</sup> is optionally substituted by R<sup>9</sup>, the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R<sup>13</sup>, a carbon adjacent to R<sup>9</sup> and two atoms from the carbon at the point of attachment 10 is optionally substituted by R<sup>10</sup>, a carbon adjacent to R<sup>13</sup> and two atoms from the carbon at the point of attachment is optionally substituted by R<sup>12</sup>, and any carbon adjacent to both R<sup>10</sup> and R<sup>12</sup> is optionally substituted by R<sup>11</sup>, with the proviso that Q is other than a phenyl when Z<sup>0</sup> is a bond;

R<sup>9</sup>, R<sup>11</sup>, and R<sup>13</sup> are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl, 20 N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, and cyano;

R<sup>10</sup> and R<sup>12</sup> are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, carboxymethyl, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl,

- N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl,  
 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl,  
 amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl,  
 N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl,
- 5    N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl,  
 N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl,  
 N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl,  
 N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl,  
 N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl,
- 10   N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl,  
 N-cyclohexylamidocarbonyl, fluoro, chloro, bromo, cyano, cyclobutoxy,  
 cyclohexoxy, cyclohexylmethoxy, 4-trifluoromethycyclohexylmethoxy,  
 cyclopentoxy, benzyl, benzyloxy, 4-bromo-3-fluorophenoxy,  
 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromobenzylamino,
- 15   5-bromopyrid-2-ylmethylamino, 4-butoxyphenamino, 3-chlorobenzyl,  
 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-ethylbenzylamino,  
 4-chloro-3-ethylphenylamino, 3-chlorobenzyloxy, 4-chlorobenzyloxy,  
 4-chlorobenzylsulfonyl, 4-chlorophenylamino, 4-chlorophenylsulfonyl,  
 5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 2,3-difluorobenzyloxy,
- 20   2,4-difluorobenzyloxy, 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy,  
 3,5-difluorophenoxy, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy,  
 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy,  
 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3,4-dimethylbenzyloxy,  
 3,5-dimethylbenzyloxy, 4-ethoxyphenoxy, 4-ethylbenzyloxy, 3-ethylphenoxy,
- 25   4-ethylaminophenoxy, 3-ethyl-5-methylphenoxy, 4-fluorobenzyloxy,  
 2-fluoro-3-trifluoromethylbenzyloxy, 3-fluoro-5-trifluoromethylbenzyloxy,  
 4-fluoro-2-trifluoromethylbenzyloxy, 4-fluoro-3-trifluoromethylbenzyloxy,  
 2-fluorophenoxy, 4-fluorophenoxy, 2-fluoro-3-trifluoromethylphenoxy,  
 2-fluorobenzyloxy, 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,
- 30   4-isopropylbenzyloxy, 3-isopropylphenoxy, 4-isopropylphenoxy,  
 4-isopropyl-3-methylphenoxy, 4-isopropylbenzyloxy, 3-isopropylphenoxy,  
 4-isopropylphenoxy, 4-isopropyl-3-methylphenoxy, phenylamino,  
 1-phenylethoxy, 2-phenylethoxy, 2-phenylethyl, 2-phenylethylamino,  
 phenylsulfonyl, 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
- 35   3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy,

3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,  
 2,4-bis-trifluoromethylbenzyloxy, 3-trifluoromethylbenzyl,  
 3,5-bis-trifluoromethylbenzyloxy, 4-trifluoromethylphenoxy,  
 3-trifluoromethylphenoxy, 3-trifluoromethylthiobenzyloxy,  
 5 4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy,  
 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, and  
 3-trifluoromethylthiophenoxy;

$Y^0$  is selected from the group consisting of:

1-Q<sup>b</sup>-4-Q<sup>s</sup>-2-R<sup>16</sup>-3-R<sup>17</sup>-5-R<sup>18</sup>-6-R<sup>19</sup> benzene,  
 10 2-Q<sup>b</sup>-5-Q<sup>s</sup>-6-R<sup>17</sup>-4-R<sup>18</sup>-3-R<sup>19</sup> pyridine,  
 3-Q<sup>b</sup>-6-Q<sup>s</sup>-2-R<sup>16</sup>-5-R<sup>18</sup>-4-R<sup>19</sup> pyridine, 2-Q<sup>b</sup>-5-Q<sup>s</sup>-3-R<sup>16</sup>-6-R<sup>18</sup> pyrazine,  
 3-Q<sup>b</sup>-6-Q<sup>s</sup>-2-R<sup>18</sup>-5-R<sup>18</sup>-4-R<sup>19</sup> pyridazine,  
 2-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>17</sup>-6-R<sup>18</sup> pyrimidine, 5-Q<sup>b</sup>-2-Q<sup>s</sup>-4-R<sup>16</sup>-6-R<sup>19</sup> pyrimidine,  
 3-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup>-2-R<sup>19</sup> thiophene, 2-Q<sup>b</sup>-5-Q<sup>s</sup>-3-R<sup>16</sup>-4-R<sup>17</sup> thiophene,  
 15 3-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup>-2-R<sup>19</sup> furan, 2-Q<sup>b</sup>-5-Q<sup>s</sup>-3-R<sup>16</sup>-4-R<sup>17</sup> furan,  
 3-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup>-2-R<sup>19</sup> pyrrole, 2-Q<sup>b</sup>-5-Q<sup>s</sup>-3-R<sup>16</sup>-4-R<sup>17</sup> pyrrole,  
 4-Q<sup>b</sup>-2-Q<sup>s</sup>-5-R<sup>19</sup> imidazole, 2-Q<sup>b</sup>-4-Q<sup>s</sup>-5-R<sup>17</sup> imidazole,  
 3-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup> isoxazole, 5-Q<sup>b</sup>-3-Q<sup>s</sup>-4-R<sup>16</sup> isoxazole,  
 2-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup> pyrazole, 4-Q<sup>b</sup>-2-Q<sup>s</sup>-5-R<sup>19</sup> thiazole, and  
 20 2-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>17</sup> thiazole;

R<sup>16</sup>, R<sup>17</sup>, R<sup>18</sup>, and R<sup>19</sup> are independently selected from the group  
 consisting of hydrido, methyl, ethyl, isopropyl, propyl, carboxy, amidino,  
 guanidino, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino,  
 aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino,  
 25 N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethylthio,  
 methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, trifluoromethyl,

pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, and cyano;

$R^{16}$  or  $R^{19}$  is optionally selected from the group consisting of

5  $NR^{20}R^{21}$ ,  $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$ , and  $C(NR^{25})NR^{23}R^{24}$ , with the proviso that  $R^{16}$ ,  $R^{19}$ , and  $Q^b$  are not simultaneously hydrido;

$Q^b$  is selected from the group consisting of  $NR^{20}R^{21}$ , hydrido,  $C(NR^{25})NR^{23}R^{24}$ , and  $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$ , with the proviso that no more than one of  $R^{20}$ ,  $R^{21}$ ,  $R^{23}$ , and  $R^{24}$  can be hydroxy, when any two 10 of the group consisting of  $R^{20}$ ,  $R^{21}$ ,  $R^{23}$ , and  $R^{24}$  are bonded to the same atom and with the further proviso that said  $Q^b$  group is bonded directly to a carbon atom;

$R^{20}$ ,  $R^{21}$ ,  $R^{23}$ ,  $R^{24}$ ,  $R^{25}$ , and  $R^{26}$  are independently selected from the group consisting of hydrido, methyl, ethyl, propyl, butyl, isopropyl, and hydroxy; 15  $Q^S$  is selected from the group consisting of a bond,  $CH_2$ , and  $CH_2CH_2$ .

#### 6. Compound of Claim 4 of the Formula:



or a pharmaceutically acceptable salt thereof, wherein;

20 A is selected from the group consisting of  $CH_2N(CH_3)$ ,

$CH_2N(CH_2CH_3)$ ,  $CH_2CH_2N(CH_3)$ , and  $CH_2CH_2N(CH_2CH_3)$ ;

M is N or  $R^1-C$ ;

$R^1$  is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, 1-aminoethyl, methylamino, dimethylamino, cyano, methyl, ethyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, methoxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 5 methoxyamino, methylthio, ethylthio, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, and bromo;

$R^2$  is  $Z^0-Q$ ;

$Z^0$  is selected from the group consisting of a bond, O, S, NH, N(CH<sub>3</sub>),

OCH<sub>2</sub>, SCH<sub>2</sub>, N(H)CH<sub>2</sub>, and N(CH<sub>3</sub>)CH<sub>2</sub>;

10 Q is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to  $Z^0$  is optionally substituted by R<sup>9</sup>, the other carbon adjacent

15 to the carbon at the point of attachment is optionally substituted by R<sup>13</sup>, a carbon adjacent to R<sup>9</sup> and two atoms from the carbon at the point of attachment is optionally substituted by R<sup>10</sup>, a carbon adjacent to R<sup>13</sup> and two atoms from

20 the carbon at the point of attachment is optionally substituted by R<sup>12</sup>, and any carbon adjacent to both R<sup>10</sup> and R<sup>12</sup> is optionally substituted by R<sup>11</sup>, with the proviso that Q is other than a phenyl when Z<sup>0</sup> is a bond;

$R^9$ ,  $R^{11}$ , and  $R^{13}$  are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, methyl, ethyl, propyl, isopropyl, 25 methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl,

N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, and cyano;

$R^{10}$  and  $R^{12}$  are independently selected from the group consisting of

- 5 hydrido, amidino, guanidino, carboxy, carboxymethyl, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl,
- 10 N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl, N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl,
- 15 15 N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl, N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl, N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl, N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl,
- 20 20 N-cyclohexylamidocarbonyl, fluoro, chloro, bromo, cyano, cyclobutoxy, cyclohexoxy, cyclohexylmethoxy, 4-trifluoromethylcyclohexylmethoxy, cyclopentoxy, benzyl, benzyloxy, 4-bromo-3-fluorophenoxy, 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromobenzylamino, 5-bromopyrid-2-ylmethylamino, 4-butoxyphenamino, 3-chlorobenzyl,
- 25 25 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-ethylbenzylamino, 4-chloro-3-ethylphenylamino, 3-chlorobenzyloxy, 4-chlorobenzyloxy, 4-chlorobenzylsulfonyl, 4-chlorophenylamino, 4-chlorophenylsulfonyl, 5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 2,3-difluorobenzyloxy, 2,4-difluorobenzyloxy, 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy,
- 30 30 3,5-difluorophenoxy, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy, 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3,4-dimethylbenzyloxy, 3,5-dimethylbenzyloxy, 4-ethoxyphenoxy, 4-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy, 3-ethyl-5-methylphenoxy, 4-fluorobenzyloxy,
- 35 35 2-fluoro-3-trifluoromethylbenzyloxy, 3-fluoro-5-trifluoromethylbenzyloxy,

4-fluoro-2-trifluoromethylbenzyloxy, 4-fluoro-3-trifluoromethylbenzyloxy,  
 2-fluorophenoxy, 4-fluorophenoxy, 2-fluoro-3-trifluoromethylphenoxy,  
 2-fluorobenzyloxy, 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,  
 4-isopropylbenzyloxy, 3-isopropylphenoxy, 4-isopropylphenoxy,  
 5 4-isopropyl-3-methylphenoxy, 4-isopropylbenzyloxy, 3-isopropylphenoxy,  
 4-isopropylphenoxy, 4-isopropyl-3-methylphenoxy, phenylamino,  
 1-phenylethoxy, 2-phenylethoxy, 2-phenylethyl, 2-phenylethylamino,  
 phenylsulfonyl, 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,  
 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy,  
 10 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,  
 2,4-bis-trifluoromethylbenzyloxy, 3-trifluoromethylbenzyl,  
 3,5-bis-trifluoromethylbenzyloxy, 4-trifluoromethylphenoxy,  
 3-trifluoromethylphenoxy, 3-trifluoromethylthiobenzyloxy,  
 4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy,  
 15 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, and  
 3-trifluoromethylthiophenoxy;

$Y^0$  is selected from the group consisting of:

1-Q<sup>b</sup>-4-Q<sup>s</sup>-2-R<sup>16</sup>-3-R<sup>17</sup>-5-R<sup>18</sup>-6-R<sup>19</sup> benzene,  
 2-Q<sup>b</sup>-5-Q<sup>s</sup>-6-R<sup>17</sup>-4-R<sup>18</sup>-3-R<sup>19</sup> pyridine,  
 20 3-Q<sup>b</sup>-6-Q<sup>s</sup>-2-R<sup>16</sup>-5-R<sup>18</sup>-4-R<sup>19</sup> pyridine, 2-Q<sup>b</sup>-5-Q<sup>s</sup>-3-R<sup>16</sup>-6-R<sup>18</sup> pyrazine,  
 3-Q<sup>b</sup>-6-Q<sup>s</sup>-2-R<sup>18</sup>-5-R<sup>18</sup>-4-R<sup>19</sup> pyridazine,  
 2-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>17</sup>-6-R<sup>18</sup> pyrimidine, 5-Q<sup>b</sup>-2-Q<sup>s</sup>-4-R<sup>16</sup>-6-R<sup>19</sup> pyrimidine,  
 3-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup>-2-R<sup>19</sup> thiophene, 2-Q<sup>b</sup>-5-Q<sup>s</sup>-3-R<sup>16</sup>-4-R<sup>17</sup> thiophene,  
 3-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup>-2-R<sup>19</sup> furan, 2-Q<sup>b</sup>-5-Q<sup>s</sup>-3-R<sup>16</sup>-4-R<sup>17</sup> furan,  
 25 3-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup>-2-R<sup>19</sup> pyrrole, 2-Q<sup>b</sup>-5-Q<sup>s</sup>-3-R<sup>16</sup>-4-R<sup>17</sup> pyrrole,  
 4-Q<sup>b</sup>-2-Q<sup>s</sup>-5-R<sup>19</sup> imidazole, 2-Q<sup>b</sup>-4-Q<sup>s</sup>-5-R<sup>17</sup> imidazole,  
 3-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup> isoxazole, 5-Q<sup>b</sup>-3-Q<sup>s</sup>-4-R<sup>16</sup> isoxazole,  
 2-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup> pyrazole, 4-Q<sup>b</sup>-2-Q<sup>s</sup>-5-R<sup>19</sup> thiazole, and

$2\text{-Q}^{\text{b}}\text{-5-Q}^{\text{s}}\text{-4-R}^{\text{l7}}$  thiazole;

$\text{R}^{\text{l6}}$ ,  $\text{R}^{\text{l7}}$ ,  $\text{R}^{\text{l8}}$ , and  $\text{R}^{\text{l9}}$  are independently selected from the group

consisting of hydrido, methyl, ethyl, isopropyl, propyl, carboxy, amidino, guanidino, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino,

5 aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo,

10 hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, and cyano;

$\text{Q}^{\text{b}}$  is selected from the group consisting of  $\text{NR}^{\text{l}20}\text{R}^{\text{l}21}$ ,

$\text{C}(\text{NR}^{\text{l}25})\text{NR}^{\text{l}23}\text{R}^{\text{l}24}$ , and  $\text{N}(\text{R}^{\text{l}26})\text{C}(\text{NR}^{\text{l}25})\text{N}(\text{R}^{\text{l}23})(\text{R}^{\text{l}24})$ , with the proviso that

no more than one of  $\text{R}^{\text{l}20}$ ,  $\text{R}^{\text{l}21}$ ,  $\text{R}^{\text{l}23}$ , and  $\text{R}^{\text{l}24}$  can be hydroxy, when any two of the group consisting of  $\text{R}^{\text{l}20}$ ,  $\text{R}^{\text{l}21}$ ,  $\text{R}^{\text{l}23}$ , and  $\text{R}^{\text{l}24}$  are bonded to the same

15 atom and with the further proviso that said  $\text{Q}^{\text{b}}$  group is bonded directly to a carbon atom;

$\text{R}^{\text{l}20}$ ,  $\text{R}^{\text{l}21}$ ,  $\text{R}^{\text{l}23}$ ,  $\text{R}^{\text{l}24}$ ,  $\text{R}^{\text{l}25}$ , and  $\text{R}^{\text{l}26}$  are independently selected from the group consisting of hydrido, methyl, ethyl, propyl, butyl, isopropyl, and hydroxy;

20  $\text{Q}^{\text{s}}$  is selected from the group consisting of a bond,  $\text{CH}_2$ , and  $\text{CH}_2\text{CH}_2$ .

7. Compound of Claim 6 or a pharmaceutically acceptable salt thereof, wherein;

A is selected from the group consisting of  $\text{CH}_2\text{N}(\text{CH}_3)$ ,

$\text{CH}_2\text{N}(\text{CH}_2\text{CH}_3)$ ,  $\text{CH}_2\text{CH}_2\text{N}(\text{CH}_3)$ , and  $\text{CH}_2\text{CH}_2\text{N}(\text{CH}_2\text{CH}_3)$ ;

25 M is N or  $\text{R}^{\text{l1}}\text{-C}$ ;

$\text{R}^{\text{l1}}$  is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, methylamino, cyano, methyl,

trifluoromethyl, methoxy, hydroxymethyl, methoxyamino, methylthio, trifluoromethoxy, fluoro, and chloro;

$R^2$  is  $Z^0$ -Q;

$Z^0$  is selected from the group consisting of a bond, O, S, NH, and

5 N(CH<sub>3</sub>);

Q is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl,

3-amino-5-(N-benzylamidocarbonyl)phenyl,

3-amino-5-benzylphenyl, 3-amino-5-(2-phenylethyl)phenyl,

10 3-amino-5-benzylaminophenyl, 3-amino-5-(2-phenylethylamino)phenyl,

3-amino-5-benzylxylophenyl, 3-amino-5-(2-phenylethoxy)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,

15 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-benzylamidosulfonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,

3-amino-5-(N-ethylamidocarbonyl)phenyl,

20 3-amino-5-(N-isopropylamidocarbonyl)phenyl,

3-amino-5-(N-propylamidocarbonyl)phenyl,

3-amino-5-(N-isobutylamidocarbonyl)phenyl,

3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,

3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,

25 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,

3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,

3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,

3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,

-aminophenyl, 3-amino-5-(4-trifluoromethylbenzylamino)phenyl,

30 3-amino-5-(4-trifluoromethylbenzyloxy)phenyl, 3-carboxyphenyl,

3-carboxy-5-hydroxyphenyl, 3-amino-5-carboxyphenyl, 3-chlorophenyl,

2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,

2-fluorophenyl, 3-fluorophenyl, 2-hydroxyphenyl, 3-hydroxyphenyl,

3-methanesulfonylaminophenyl, 2-methoxyphenyl, 3-methoxyphenyl,

- 3-methoxyaminophenyl, 3-methoxycarbonylphenyl, 2-methylaminophenyl,  
 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl,  
 phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,  
 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,  
 5  
 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl, with the  
 proviso that Q is other than a phenyl or a substituted phenyl when Z<sup>0</sup> is a bond;  
 Y<sup>0</sup> is selected from the group consisting of:  
 1-Q<sup>b</sup>-4-Q<sup>s</sup>-2-R<sup>16</sup>-3-R<sup>17</sup>-5-R<sup>18</sup>-6-R<sup>19</sup> benzene,  
 2-Q<sup>b</sup>-5-Q<sup>s</sup>-6-R<sup>17</sup>-4-R<sup>18</sup>-3-R<sup>19</sup> pyridine,  
 10 3-Q<sup>b</sup>-6-Q<sup>s</sup>-2-R<sup>16</sup>-5-R<sup>18</sup>-4-R<sup>19</sup> pyridine,  
 3-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup>-2-R<sup>19</sup> thiophene, and 2-Q<sup>b</sup>-5-Q<sup>s</sup>-3-R<sup>16</sup>-4-R<sup>17</sup> thiophene;  
 R<sup>16</sup> and R<sup>19</sup> are independently selected from the group consisting of  
 hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy,  
 hydroxymethyl, fluoro, chloro, and cyano;  
 15 R<sup>17</sup> and R<sup>18</sup> are independently selected from the group consisting of  
 hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;  
 Q<sup>b</sup> is C(NR<sup>25</sup>)NR<sup>23</sup>R<sup>24</sup>;  
 R<sup>23</sup>, R<sup>24</sup>, and R<sup>25</sup> are independently hydrido or methyl;  
 Q<sup>s</sup> is CH<sub>2</sub>.  
 20  
 8. Compound of Claim 7 or a pharmaceutically acceptable salt thereof, where  
 said compound is selected from the group consisting of:  
 25 2-[3-[2-[3-aminophenoxy]-6-chloro-N-[[4-  
 aminoiminomethylphenyl]methyl]-5-[N,N-dimethylhydrazino]-4-oxo-1(4H)-  
 pyrimidinyl]]acetamide;  
 2-[3-[2-[3-aminophenoxy]-6-chloro-5-[N-ethyl-N-methylhydrazino]-  
 N-[[4-aminoiminomethylphenyl]methyl]-4-oxo-1(4H)-pyrimidinyl]]acetamide;

- 2-[3-[2-[3-aminophenoxy]-6-chloro-5-[N,N-diethylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-4-oxo-1(4H)-pyrimidinyl]]acetamide;
- 2-[4-[3-aminophenoxy]-N-[[4-aminoiminomethylphenyl]methyl]-6-[N,N-dimethylhydrazino]-5-oxo-1(5H)-1,2,4-triazinyl]]acetamide;
- 5      2-[4-[3-aminophenoxy]-6-[N-ethyl-N-methylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-5-oxo-1(5H)-1,2,4-triazinyl]]acetamide;
- 2-[4-[3-aminophenoxy]-6-[N,N-diethylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-5-oxo-1(5H)-1,2,4-triazinyl]]acetamide;
- 2-[3-[2-[3-amino-5-carboxyphenoxy]-6-chloro-N-[[4-aminoiminomethylphenyl]methyl]-5-[N,N-dimethylhydrazino]-4-oxo-1(4H)-pyrimidinyl]]acetamide;
- 10     2-[3-[2-[3-amino-5-carboxyphenoxy]-6-chloro-5-[N,N-dimethylhydrazino]-4-oxo-1(4H)-pyrimidinyl]]acetamide;
- 2-[3-[2-[3-amino-5-carboxyphenoxy]-6-chloro-5-[N,N-diethylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-4-oxo-1(4H)-pyrimidinyl]]acetamide;
- 15     2-[3-[2-[3-amino-5-carboxyphenoxy]-6-chloro-5-[N,N-diethylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-4-oxo-1(4H)-pyrimidinyl]]acetamide;
- 2-[4-[3-aminophenoxy]-N-[[4-aminoiminomethylphenyl]methyl]-6-[N,N-dimethylhydrazino]-5-oxo-1(5H)-1,2,4-triazinyl]]acetamide;
- 20     2-[4-[3-aminophenoxy]-6-[N-ethyl-N-methylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-5-oxo-1(5H)-1,2,4-triazinyl]]acetamide;
- 2-[4-[3-aminophenoxy]-6-[N,N-diethylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-5-oxo-1(5H)-1,2,4-triazinyl]]acetamide;
- 25     2-[4-[3-aminophenoxy]-6-[N,N-diethylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-5-oxo-1(5H)-1,2,4-triazinyl]]acetamide.

9. Compound of Claim 2 of the Formula:



or a pharmaceutically acceptable salt thereof, wherein;

- B is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R<sup>32</sup>, the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R<sup>36</sup>, a carbon adjacent to R<sup>32</sup> and two atoms from the carbon at the point of attachment is
- 5     optionally substituted by R<sup>33</sup>, a carbon adjacent to R<sup>36</sup> and two atoms from the carbon at the point of attachment is optionally substituted by R<sup>35</sup>, and any carbon adjacent to both R<sup>33</sup> and R<sup>35</sup> is optionally substituted by R<sup>34</sup>;
- R<sup>32</sup>, R<sup>33</sup>, R<sup>34</sup>, R<sup>35</sup>, and R<sup>36</sup> are independently selected from the
- 10    group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboalkoxy, carboxy, carboxamido, cyano, and Q<sup>b</sup>;
- A is a or (CH(R<sup>15</sup>))<sub>pa</sub>-(W<sup>7</sup>)<sub>rr</sub> wherein rr is 0 or 1, pa is an integer
- 15    selected from 0 through 3, and W<sup>7</sup> is (R<sup>7</sup>)NC(O) or N(R<sup>7</sup>);
- R<sup>7</sup> is selected from the group consisting of hydrido, hydroxy and alkyl;
- R<sup>15</sup> is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;
- M is N or R<sup>1</sup>-C;
- 20    R<sup>1</sup> is selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;
- R<sup>2</sup> is Z<sup>0</sup>-Q;
- Z<sup>0</sup> is a bond or W<sup>0</sup>-(CH(R<sup>42</sup>))<sub>p</sub> wherein p is 0 or 1 and W<sup>0</sup> is selected
- 25    from the group consisting of O, S, and N(R<sup>41</sup>);

$R^{41}$  and  $R^{42}$  are independently hydrido or alkyl;

$Q$  is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to  $Z^0$  is optionally substituted by  $R^9$ , the other carbon adjacent to the

- 5      carbon at the point of attachment is optionally substituted by  $R^{13}$ , a carbon adjacent to  $R^9$  and two atoms from the carbon at the point of attachment is optionally substituted by  $R^{10}$ , a carbon adjacent to  $R^{13}$  and two atoms from the carbon at the point of attachment is optionally substituted by  $R^{12}$ , and any carbon adjacent to both  $R^{10}$  and  $R^{12}$  is optionally substituted by  $R^{11}$ , with the proviso that  $Q$  is other than a phenyl when  $Z^0$  is a bond;

10      $R^9$ ,  $R^{11}$ , and  $R^{13}$  are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkylsulfonamido, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboxy, carboxamido, and cyano;

- 15      $R^{10}$  and  $R^{12}$  are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy, heteroaralkoxy, heterocyclyloxy, heterocyclalkoxy, hydroxy, amino, alkoxyamino, alkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclamino, heterocyclalkylamino, alkylsulfonamido, amidosulfonyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylulfinyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, heteroarylulfonyl, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, halo, haloalkyl, and cyano;

20      $Y^0$  is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by  $Q^S$ , a carbon two or three

contiguous atoms from the point of attachment of  $Q^S$  to the phenyl or heteroaryl ring is substituted by  $Q^b$ , a carbon adjacent to the point of attachment of  $Q^S$  is optionally substituted by  $R^{17}$ , another carbon adjacent to the point of attachment of  $Q^S$  is optionally substituted by  $R^{18}$ , a carbon adjacent to  $Q^b$  is optionally substituted by  $R^{16}$ , and another carbon adjacent to  $Q^b$  is optionally substituted by  $R^{19}$ ;

$R^{16}, R^{17}, R^{18}$ , and  $R^{19}$  are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

$R^{16}$  or  $R^{19}$  is optionally  $NR^{20}R^{21}$  or  $C(NR^{25})NR^{23}R^{24}$ , with the proviso that  $R^{16}$ ,  $R^{19}$ , and  $Q^b$  are not simultaneously hydrido;

$Q^b$  is selected from the group consisting of  $NR^{20}R^{21}$ , hydrido, and  $C(NR^{25})NR^{23}R^{24}$ , with the proviso that no more than one of  $R^{20}$  and  $R^{21}$  is hydroxy at the same time and with the further proviso that no more than one of  $R^{23}$  and  $R^{24}$  is hydroxy at the same time;

$R^{20}, R^{21}, R^{23}, R^{24}$ , and  $R^{25}$  are independently selected from the group consisting of hydrido, alkyl, and hydroxy;

$Q^S$  is selected from the group consisting of a bond,  $CH_2$ , and  $CH_2CH_2$ .

10. Compound of Claim 9 or a pharmaceutically acceptable salt thereof, wherein;

- B is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 5
- 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R<sup>32</sup>, the other carbon adjacent
- 10 to the carbon at the point of attachment is optionally substituted by R<sup>36</sup>, a carbon adjacent to R<sup>32</sup> and two atoms from the carbon at the point of attachment is optionally substituted by R<sup>33</sup>, a carbon adjacent to R<sup>36</sup> and two atoms from the carbon at the point of attachment is optionally substituted by R<sup>35</sup>, and any carbon adjacent to both R<sup>33</sup> and R<sup>35</sup> is optionally substituted by R<sup>34</sup>;
- R<sup>32</sup>, R<sup>33</sup>, R<sup>34</sup>, R<sup>35</sup>, and R<sup>36</sup> are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, N-methylamino, dimethylamino, N-ethylamino, 20 methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, 25 methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, cyano, and Q<sup>b</sup>;

A is selected from the group consisting of a bond, NH, N(CH<sub>3</sub>),

N(OH), CH<sub>2</sub>, CH<sub>3</sub>CH, CF<sub>3</sub>CH, NHC(O), N(CH<sub>3</sub>)C(O), C(O)NH,

C(O)N(CH<sub>3</sub>), CH<sub>2</sub>CH<sub>2</sub>, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>, CH<sub>3</sub>CHCH<sub>2</sub>, and CF<sub>3</sub>CHCH<sub>2</sub>;

M is N or R<sup>1</sup>-C;

5       R<sup>1</sup> is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, 1-aminoethyl, methylamino, dimethylamino, cyano, methyl, ethyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, methoxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, methoxyamino, methylthio, ethylthio, trifluoromethoxy,

10      1,1,2,2-tetrafluoroethoxy, fluoro, chloro, and bromo;

R<sup>2</sup> is Z<sup>0</sup>-Q;

Z<sup>0</sup> is selected from the group consisting of a bond, O, S, NH, N(CH<sub>3</sub>),

OCH<sub>2</sub>, SCH<sub>2</sub>, N(H)CH<sub>2</sub>, and N(CH<sub>3</sub>)CH<sub>2</sub>;

Q is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl,

15      2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl,

3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl,

3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl,

5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or

20      heteroaryl ring to Z<sup>0</sup> is optionally substituted by R<sup>9</sup>, the other carbon adjacent

to the carbon at the point of attachment is optionally substituted by R<sup>13</sup>, a

carbon adjacent to R<sup>9</sup> and two atoms from the carbon at the point of attachment

is optionally substituted by R<sup>10</sup>, a carbon adjacent to R<sup>13</sup> and two atoms from

the carbon at the point of attachment is optionally substituted by R<sup>12</sup>, and any

25      carbon adjacent to both R<sup>10</sup> and R<sup>12</sup> is optionally substituted by R<sup>11</sup>, with the proviso that Q is other than a phenyl when Z<sup>0</sup> is a bond;

- $R^9$ ,  $R^{11}$ , and  $R^{13}$  are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, 5 trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, 10 N,N-dimethylamidocarbonyl, and cyano;
- $R^{10}$  and  $R^{12}$  are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, carboxymethyl, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, aminomethyl, 15 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, 20 N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl, N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl, N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl, N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl, 25 N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl, N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl, N-cyclohexylamidocarbonyl, fluoro, chloro, bromo, cyano, cyclobutoxy, cyclohexoxy, cyclohexylmethoxy, 4-trifluoromethylcyclohexylmethoxy, cyclopentoxy, benzyl, benzyloxy, 4-bromo-3-fluorophenoxy, 30 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromobenzylamino, 5-bromopyrid-2-ylmethylamino, 4-butoxyphenamino, 3-chlorobenzyl, 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-ethylbenzylamino, 4-chloro-3-ethylphenylamino, 3-chlorobenzyloxy, 4-chlorobenzyloxy, 4-chlorobenzylsulfonyl, 4-chlorophenylamino, 4-chlorophenylsulfonyl,

- 5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 2,3-difluorobenzylloxy,  
 2,4-difluorobenzylloxy, 3,4-difluorobenzylloxy, 2,5-difluorobenzylloxy,  
 3,5-difluorophenoxy, 3,5-difluorobenzylloxy, 4-difluoromethoxybenzylloxy,  
 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy,  
 5 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3,4-dimethylbenzylloxy,  
 3,5-dimethylbenzylloxy, 4-ethoxyphenoxy, 4-ethylbenzylloxy, 3-ethylphenoxy,  
 4-ethylaminophenoxy, 3-ethyl-5-methylphenoxy, 4-fluorobenzylloxy,  
 2-fluoro-3-trifluoromethylbenzylloxy, 3-fluoro-5-trifluoromethylbenzylloxy,  
 4-fluoro-2-trifluoromethylbenzylloxy, 4-fluoro-3-trifluoromethylbenzylloxy,  
 10 2-fluorophenoxy, 4-fluorophenoxy, 2-fluoro-3-trifluoromethylphenoxy,  
 2-fluorobenzylloxy, 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,  
 4-isopropylbenzylloxy, 3-isopropylphenoxy, 4-isopropylphenoxy,  
 4-isopropyl-3-methylphenoxy, 4-isopropylbenzylloxy, 3-isopropylphenoxy,  
 4-isopropylphenoxy, 4-isopropyl-3-methylphenoxy, phenylamino,  
 15 1-phenylethoxy, 2-phenylethoxy, 2-phenylethyl, 2-phenylethylamino,  
 phenylsulfonyl, 3-trifluoromethoxybenzylloxy, 4-trifluoromethoxybenzylloxy,  
 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy,  
 3-trifluoromethylbenzylloxy, 4-trifluoromethylbenzylloxy,  
 2,4-bis-trifluoromethylbenzylloxy, 3-trifluoromethylbenzyl,  
 20 3,5-bis-trifluoromethylbenzylloxy, 4-trifluoromethylphenoxy,  
 3-trifluoromethylphenoxy, 3-trifluoromethylthiobenzylloxy,  
 4-trifluoromethylthiobenzylloxy, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy,  
 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, and  
 3-trifluoromethylthiophenoxy;

25  $Y^0$  is selected from the group consisting of:

- 1- $Q^b$ -4- $Q^s$ -2-R<sup>16</sup>-3-R<sup>17</sup>-5-R<sup>18</sup>-6-R<sup>19</sup> benzene,  
 2- $Q^b$ -5- $Q^s$ -6-R<sup>17</sup>-4-R<sup>18</sup>-3-R<sup>19</sup> pyridine,  
 3- $Q^b$ -6- $Q^s$ -2-R<sup>16</sup>-5-R<sup>18</sup>-4-R<sup>19</sup> pyridine, 2- $Q^b$ -5- $Q^s$ -3-R<sup>16</sup>-6-R<sup>18</sup> pyrazine,  
 3- $Q^b$ -6- $Q^s$ -2-R<sup>18</sup>-5-R<sup>18</sup>-4-R<sup>19</sup> pyridazine,  
 30 2- $Q^b$ -5- $Q^s$ -4-R<sup>17</sup>-6-R<sup>18</sup> pyrimidine, 5- $Q^b$ -2- $Q^s$ -4-R<sup>16</sup>-6-R<sup>19</sup> pyrimidine,  
 3- $Q^b$ -5- $Q^s$ -4-R<sup>16</sup>-2-R<sup>19</sup> thiophene, 2- $Q^b$ -5- $Q^s$ -3-R<sup>16</sup>-4-R<sup>17</sup> thiophene,

- $3\text{-}Q^b\text{-}5\text{-}Q^s\text{-}4\text{-}R^{16}\text{-}2\text{-}R^{19}$  furan,  $2\text{-}Q^b\text{-}5\text{-}Q^s\text{-}3\text{-}R^{16}\text{-}4\text{-}R^{17}$  furan,  
 $3\text{-}Q^b\text{-}5\text{-}Q^s\text{-}4\text{-}R^{16}\text{-}2\text{-}R^{19}$  pyrrole,  $2\text{-}Q^b\text{-}5\text{-}Q^s\text{-}3\text{-}R^{16}\text{-}4\text{-}R^{17}$  pyrrole,  
 $4\text{-}Q^b\text{-}2\text{-}Q^s\text{-}5\text{-}R^{19}$  imidazole,  $2\text{-}Q^b\text{-}4\text{-}Q^s\text{-}5\text{-}R^{17}$  imidazole,  
 $3\text{-}Q^b\text{-}5\text{-}Q^s\text{-}4\text{-}R^{16}$  isoxazole,  $5\text{-}Q^b\text{-}3\text{-}Q^s\text{-}4\text{-}R^{16}$  isoxazole,  
5     $2\text{-}Q^b\text{-}5\text{-}Q^s\text{-}4\text{-}R^{16}$  pyrazole,  $4\text{-}Q^b\text{-}2\text{-}Q^s\text{-}5\text{-}R^{19}$  thiazole, and  
 $2\text{-}Q^b\text{-}5\text{-}Q^s\text{-}4\text{-}R^{17}$  thiazole;  
 $R^{16}$ ,  $R^{17}$ ,  $R^{18}$ , and  $R^{19}$  are independently selected from the group  
consisting of hydrido, methyl, ethyl, isopropyl, propyl, carboxy, amidino,  
guanidino, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino,  
10   aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino,  
N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethylthio,  
methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, trifluoromethyl,  
pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl,  
trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo,  
15   hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, and cyano;  
 $R^{16}$  or  $R^{19}$  is optionally  $C(NR^{25})NR^{23}R^{24}$  with the proviso that  $R^{16}$ ,  
 $R^{19}$ , and  $Q^b$  are not simultaneously hydrido;  
 $Q^b$  is  $C(NR^{25})NR^{23}R^{24}$  or hydrido, with the proviso that no more than  
one of  $R^{23}$  and  $R^{24}$  is hydroxy at the same time;  
20    $R^{23}$ ,  $R^{24}$ , and  $R^{25}$  are independently selected from the group consisting of  
hydrido, methyl, ethyl, and hydroxy;  
 $Q^s$  is selected from the group consisting of a bond,  $CH_2$  and  $CH_2CH_2$ .  
  
11. Compound of Claim 10 or a pharmaceutically acceptable salt thereof,  
25   wherein;  
B is selected from the group consisting of 2-aminophenyl,  
3-aminophenyl, 3-amidinophenyl, 4-amidinophenyl, 3-carboxyphenyl,

3-carboxy-5-hydroxyphenyl, 3-chlorophenyl, 4-chlorophenyl,  
 3,4-dichlorophenyl, 2-fluorophenyl, 3-fluorophenyl, 3,4-difluorophenyl,  
 3-hydroxyphenyl, 4-hydroxyphenyl, 3-methoxyaminophenyl,  
 3-methoxyphenyl, 4-methoxyphenyl, 3-methylphenyl, 4-methylphenyl, phenyl,  
 5 3-trifluoromethylphenyl, 2-imidazoyl, 2-pyridyl, 3-pyridyl,  
 5-chloro-3-trifluoromethyl-2-pyridyl, 4-pyridyl, 2-thienyl, 3-thienyl, and  
 3-trifluoromethyl-2-pyridyl;

A is selected from the group consisting of  $\text{CH}_2$ ,  $\text{CH}_3\text{CH}$ ,  $\text{CF}_3\text{CH}$ ,

$\text{NHC(O)}$ ,  $\text{CH}_2\text{CH}_2$ , and  $\text{CH}_2\text{CH}_2\text{CH}_2$ ;

10 M is N or  $\text{R}^1\text{-C}$ ;

$\text{R}^1$  is selected from the group consisting of hydrido, hydroxy, amino,  
 amidino, hydroxyamino, aminomethyl, methylamino, cyano, methyl,  
 trifluoromethyl, methoxy, hydroxymethyl, methoxyamino, methylthio,  
 trifluoromethoxy, fluoro, and chloro;

15  $\text{R}^2$  is  $\text{Z}^0\text{-Q}$ ;

$\text{Z}^0$  is selected from the group consisting of a bond, O, S, NH,  $\text{N}(\text{CH}_3)$ ,

$\text{OCH}_2$ , and  $\text{SCH}_2$ ;

Q is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,  
 20 3-amino-5-benzylphenyl, 3-amino-5-(2-phenylethyl)phenyl,  
 3-amino-5-benzylaminophenyl, 3-amino-5-(2-phenylethylamino)phenyl,  
 3-amino-5-benzyloxyphenyl, 3-amino-5-(2-phenylethoxy)phenyl,  
 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,  
 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,  
 25 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,  
 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,  
 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,  
 3-amino-5-(N-benzylamidosulfonyl)phenyl,  
 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,  
 30 3-amino-5-(N-ethylamidocarbonyl)phenyl,  
 3-amino-5-(N-isopropylamidocarbonyl)phenyl,  
 3-amino-5-(N-propylamidocarbonyl)phenyl,

- 3-amino-5-(N-isobutylamidocarbonyl)phenyl,  
 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,  
 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,  
 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,  
 5 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,  
 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,  
 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,  
 3-aminophenyl, 3-amino-5-(4-trifluoromethylbenzylamino)phenyl,  
 3-amino-5-(4-trifluoromethylbenzyloxy)phenyl, 3-carboxyphenyl,  
 10 3-carboxy-5-hydroxyphenyl, 3-amino-5-carboxyphenyl, 3-chlorophenyl,  
 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,  
 2-fluorophenyl, 3-fluorophenyl, 2-hydroxyphenyl, 3-hydroxyphenyl,  
 3-methanesulfonylaminophenyl, 2-methoxyphenyl, 3-methoxyphenyl,  
 3-methoxyaminophenyl, 3-methoxycarbonylphenyl, 2-methylaminophenyl,  
 15 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl,  
 phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,  
 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,  
 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl, with the  
 proviso that Q is other than a phenyl or substituted phenyl when  $Z^0$  is a bond;  
 20  $Y^0$  is selected from the group consisting of:  
 $1\text{-}Q^{\text{b}}\text{-}4\text{-}Q^{\text{s}}\text{-}2\text{-}R^{16}\text{-}3\text{-}R^{17}\text{-}5\text{-}R^{18}\text{-}6\text{-}R^{19}$  benzene,  
 $2\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}6\text{-}R^{17}\text{-}4\text{-}R^{18}\text{-}3\text{-}R^{19}$  pyridine,  
 $3\text{-}Q^{\text{b}}\text{-}6\text{-}Q^{\text{s}}\text{-}2\text{-}R^{16}\text{-}5\text{-}R^{18}\text{-}4\text{-}R^{19}$  pyridine,  
 $3\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}4\text{-}R^{16}\text{-}2\text{-}R^{19}$  thiophene, and  $2\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}3\text{-}R^{16}\text{-}4\text{-}R^{17}$  thiophene;  
 25  $R^{16}$  and  $R^{19}$  are independently selected from the group consisting of  
 hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy,  
 hydroxymethyl, fluoro, chloro, and cyano;  
 $R^{16}$  or  $R^{19}$  is optionally  $C(NR^{25})NR^{23}R^{24}$  with the proviso that  $R^{16}$ ,  
 $R^{19}$ , and  $Q^{\text{b}}$  are not simultaneously hydrido;

$R^{17}$  and  $R^{18}$  are independently selected from the group consisting of hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;  
 $Q^b$  is  $C(NR^{25})NR^{23}R^{24}$  or hydrido;  
 $R^{23}$ ,  $R^{24}$ , and  $R^{25}$  are independently hydrido or methyl;  
5       $Q^s$  is  $CH_2$ .

12. Compound of Claim 9 of the Formula:



or a pharmaceutically acceptable salt thereof, wherein;

10      B is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by  $R^{32}$ , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by  $R^{36}$ , a carbon adjacent to  $R^{32}$  and two atoms from the carbon at the point of attachment is  
15      optionally substituted by  $R^{33}$ , a carbon adjacent to  $R^{36}$  and two atoms from the carbon at the point of attachment is optionally substituted by  $R^{35}$ , and any carbon adjacent to both  $R^{33}$  and  $R^{35}$  is optionally substituted by  $R^{34}$ ;  
 $R^{32}$ ,  $R^{33}$ ,  $R^{34}$ ,  $R^{35}$ , and  $R^{36}$  are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboalkoxy, carboxy, carboxamido, cyano, and  $Q^b$ ;  
20

A is a or  $(CH(R^{15}))_{pa}-(W^7)_{rr}$  wherein rr is 0 or 1, pa is an integer selected from 0 through 3, and  $W^7$  is  $N(R^7)$ ;

$R^7$  is hydrido or alkyl;

$R^{15}$  is selected from the group consisting of hydrido, halo, alkyl, and

5     haloalkyl;

M is N or  $R^1-C$ ;

$R^1$  is selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

10     $R^2$  is  $Z^0-Q$ ;

$Z^0$  is a bond or  $W^0-(CH_2)_p$  wherein p is 0 or 1 and  $W^0$  is selected from the group consisting of O, S, and N(H);

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl

15    ring to  $Z^0$  is optionally substituted by  $R^9$ , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by  $R^{13}$ , a carbon adjacent to  $R^9$  and two atoms from the carbon at the point of attachment is optionally substituted by  $R^{10}$ , a carbon adjacent to  $R^{13}$  and two atoms from the carbon at the point of attachment is optionally substituted by  $R^{12}$ , and any

20    carbon adjacent to both  $R^{10}$  and  $R^{12}$  is optionally substituted by  $R^{11}$ , with the proviso that Q is other than a phenyl when  $Z^0$  is a bond;

$R^9$ ,  $R^{11}$ , and  $R^{13}$  are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkoxy, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboxy, carboxamido, and cyano;

$R^{10}$  and  $R^{12}$  are independently selected from the group consisting of  
 hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, alkoxy,  
 alkoxyamino, hydroxy, amino, alkylamino, alkylsulfonamido, amidosulfonyl,  
 hydroxyalkyl, aminoalkyl, halo, haloalkyl, carboalkoxy, carboxy, carboxamido,  
 5 carboxyalkyl, and cyano;

$Y^0$  is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon  
 of said phenyl or said heteroaryl is substituted by  $Q^S$ , a carbon two or three  
 contiguous atoms from the point of attachment of  $Q^S$  to the phenyl or  
 heteroaryl ring is substituted by  $Q^b$ , a carbon adjacent to the point of  
 10 attachment of  $Q^S$  is optionally substituted by  $R^{17}$ , another carbon adjacent to  
 the point of attachment of  $Q^S$  is optionally substituted by  $R^{18}$ , a carbon  
 adjacent to  $Q^b$  is optionally substituted by  $R^{16}$ , and another carbon adjacent to  
 $Q^b$  is optionally substituted by  $R^{19}$ ;

$R^{16}$ ,  $R^{17}$ ,  $R^{18}$ , and  $R^{19}$  are independently selected from the group  
 15 consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy,  
 hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl,  
 haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and  
 cyano;

$R^{16}$  or  $R^{19}$  is optionally  $NR^{20}R^{21}$  or  $C(NR^{25})NR^{23}R^{24}$ , with the  
 20 proviso that  $R^{16}$ ,  $R^{19}$ , and  $Q^b$  are not simultaneously hydrido;

$Q^b$  is selected from the group consisting of  $NR^{20}R^{21}$ , hydrido, and  
 $C(NR^{25})NR^{23}R^{24}$ ;

$R^{20}$ ,  $R^{21}$ ,  $R^{23}$ ,  $R^{24}$ , and  $R^{25}$  are independently hydrido or alkyl;

$Q^S$  is  $CH_2$ .

13. Compound of Claim 12 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl,  
 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl,  
 5 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, and 5-isoxazolyl, wherein a carbon  
 adjacent to the carbon at the point of attachment of said phenyl or heteroaryl  
 ring to A is optionally substituted by R<sup>32</sup>, the other carbon adjacent to the  
 carbon at the point of attachment is optionally substituted by R<sup>36</sup>, a carbon  
 adjacent to R<sup>32</sup> and two atoms from the carbon at the point of attachment is  
 10 optionally substituted by R<sup>33</sup>, a carbon adjacent to R<sup>36</sup> and two atoms from the  
 carbon at the point of attachment is optionally substituted by R<sup>35</sup>, and any  
 carbon adjacent to both R<sup>33</sup> and R<sup>35</sup> is optionally substituted by R<sup>34</sup>;  
 R<sup>32</sup>, R<sup>33</sup>, R<sup>34</sup>, R<sup>35</sup>, and R<sup>36</sup> are independently selected from the  
 group consisting of hydrido, amidino, guanidino, methyl, ethyl, methoxy,  
 15 ethoxy, hydroxy, amino, N-methylamino, dimethylamino, methoxyamino,  
 methylthio, ethylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl,  
 fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, hydroxymethyl,  
 amidocarbonyl, carboxy, cyano, and Q<sup>b</sup>;

A is selected from the group consisting of a bond, NH, N(CH<sub>3</sub>), CH<sub>2</sub>,  
 20 CH<sub>3</sub>CH, and CH<sub>2</sub>CH<sub>2</sub>;

M is N or R<sup>1</sup>-C;

R<sup>1</sup> is selected from the group consisting of hydrido, hydroxy,  
 hydroxymethyl, amino, aminomethyl, methylamino, cyano, methyl,  
 trifluoromethyl, methoxy, methylthio, trifluoromethoxy, fluoro, and chloro;  
 25 R<sup>2</sup> is Z<sup>0</sup>-Q;

Z<sup>0</sup> is selected from the group consisting of a bond, O, S, NH, OCH<sub>2</sub>,  
 SCH<sub>2</sub>, and N(H)CH<sub>2</sub>;

- Q is selected from the group consisting of phenyl, 2-thienyl, 2-furyl, 2-pyrrolyl, 2-imidazolyl, 2-thiazolyl, 3-isoxazolyl, 2-pyridyl, and 3-pyridyl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to  $Z^0$  is optionally substituted by  $R^9$ , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by  $R^{13}$ , a carbon adjacent to  $R^9$  and two atoms from the carbon at the point of attachment is optionally substituted by  $R^{10}$ , a carbon adjacent to  $R^{13}$  and two atoms from the carbon at the point of attachment is optionally substituted by  $R^{12}$ , and any carbon adjacent to both  $R^{10}$  and  $R^{12}$  is optionally substituted by  $R^{11}$ , with the proviso that Q is other than a phenyl when  $Z^0$  is a bond;
- $R^9$ ,  $R^{11}$ , and  $R^{13}$  are independently selected from the group consisting of hydrido, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, methylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, carboxy, and cyano;  $R^{10}$  and  $R^{12}$  are independently selected from the group consisting of hydrido, amidino, amidocarbonyl, N-methylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl, N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl, N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl, N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl, N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl, N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl, N-cyclohexylamidocarbonyl, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, carboxy, carboxymethyl, amino, acetamido, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoroacetamido, aminomethyl, N-methylamino, dimethylamino, methoxyamino, amidosulfonyl, N-methylamidosulfonyl,

N,N-dimethylamidosulfonyl, methanesulfonamido, methoxycarbonyl, fluoro, chloro, bromo, and cyano;

$Y^0$  is selected from the group consisting of:

$1\text{-}Q^{\text{b}}\text{-}4\text{-}Q^{\text{s}}\text{-}2\text{-}R^{16}\text{-}3\text{-}R^{17}\text{-}5\text{-}R^{18}\text{-}6\text{-}R^{19}$  benzene,

- 5       $2\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}6\text{-}R^{17}\text{-}4\text{-}R^{18}\text{-}3\text{-}R^{19}$  pyridine,  $2\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}3\text{-}R^{16}\text{-}4\text{-}R^{17}$  thiophene,  
 $3\text{-}Q^{\text{b}}\text{-}6\text{-}Q^{\text{s}}\text{-}2\text{-}R^{16}\text{-}5\text{-}R^{18}\text{-}4\text{-}R^{19}$  pyridine,  $3\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}4\text{-}R^{16}\text{-}2\text{-}R^{19}$  thiophene,  
 $3\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}4\text{-}R^{16}\text{-}2\text{-}R^{19}$  furan,  $2\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}3\text{-}R^{16}\text{-}4\text{-}R^{17}$  furan,  
 $3\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}4\text{-}R^{16}\text{-}2\text{-}R^{19}$  pyrrole,  $2\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}3\text{-}R^{16}\text{-}4\text{-}R^{17}$  pyrrole,  
 $4\text{-}Q^{\text{b}}\text{-}2\text{-}Q^{\text{s}}\text{-}5\text{-}R^{19}$  thiazole, and  $2\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}4\text{-}R^{17}$  thiazole;

10         $R^{16}$ ,  $R^{17}$ ,  $R^{18}$ , and  $R^{19}$  are independently selected from the group  
 consisting of hydrido, methyl, ethyl, amidino, guanidino, methoxy, hydroxy,  
 amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino,  
 dimethylamino, methylthio, ethylthio, trifluoromethylthio, methylsulfinyl,  
 methylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl,  
 15      trifluoromethoxy, fluoro, chloro, hydroxymethyl, carboxy, and cyano;

$Q^{\text{b}}$  is  $NR^{20}R^{21}$  or  $C(NR^{25})NR^{23}R^{24}$ ;

$R^{20}$ ,  $R^{21}$ ,  $R^{23}$ ,  $R^{24}$ , and  $R^{25}$  are independently selected from the group  
 consisting of hydrido, methyl, and ethyl;

$Q^{\text{s}}$  is  $CH_2$ .

20

14. Compound of Claim 13 or a pharmaceutically acceptable salt thereof,  
 wherein;

- B is selected from the group consisting of 2-aminophenyl,  
 3-aminophenyl, 3-amidinophenyl, 4-amidinophenyl, 3-carboxyphenyl,  
 25      3-carboxy-5-hydroxyphenyl, 3-chlorophenyl, 4-chlorophenyl,  
 3,4-dichlorophenyl, 2-fluorophenyl, 3-fluorophenyl, 3,4-difluorophenyl,  
 3-hydroxyphenyl, 4-hydroxyphenyl, 3-methoxyaminophenyl,  
 3-methoxyphenyl, 4-methoxyphenyl, 3-methylphenyl, 4-methylphenyl, phenyl,  
 3-trifluoromethylphenyl, 2-imidazoyl, 2-pyridyl, 3-pyridyl,

5-chloro-3-trifluoromethyl-2-pyridyl, 4-pyridyl, 2-thienyl, 3-thienyl, and 3-trifluoromethyl-2-pyridyl;

A is selected from the group consisting of CH<sub>2</sub> and CH<sub>2</sub>CH<sub>2</sub>;

M is N or R<sup>1</sup>-C;

5       R<sup>1</sup> is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro;

R<sup>2</sup> is Z<sup>0</sup>-Q;

Z<sup>0</sup> is selected from the group consisting of a bond, O, S, NH, and

10      OCH<sub>2</sub>;

Q is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl, 3-amidocarbonyl-5-aminophenyl,

3-amino-5-(N-benzylamidocarbonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,

15      3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-benzylamidosulfonyl)phenyl,

20      3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,

3-amino-5-(N-ethylamidocarbonyl)phenyl,

3-amino-5-(N-isopropylamidocarbonyl)phenyl,

3-amino-5-(N-propylamidocarbonyl)phenyl,

3-amino-5-(N-isobutylamidocarbonyl)phenyl,

25      3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,

3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,

3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,

3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,

3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,

30      3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,

3-aminophenyl, 3-carboxyphenyl, 3-carboxy-5-aminophenyl,

3-carboxy-5-hydroxyphenyl, 3-carboxymethyl-5-aminophenyl,

- 3-carboxymethyl-5-hydroxyphenyl, 3-carboxymethylphenyl, 3-chlorophenyl,  
 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,  
 2-fluorophenyl, 3-fluorophenyl, 2,5-difluorophenyl, 2-hydroxyphenyl,  
 3-hydroxyphenyl, 3-methanesulfonylaminophenyl, 2-methoxyphenyl,
- 5    3-methoxyphenyl, 3-methoxyaminophenyl, 3-methoxycarbonylphenyl,  
 2-methylaminophenyl, 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl,  
 4-methylphenyl, phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,  
 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,  
 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl, with the  
 10 proviso that Q is other than a phenyl or a substituted phenyl when Z<sup>0</sup> is a bond;  
 Y<sup>0</sup> is selected from the group consisting of:  
 1-Q<sup>b</sup>-4-Q<sup>s</sup>-2-R<sup>16</sup>-3-R<sup>17</sup>-5-R<sup>18</sup>-6-R<sup>19</sup> benzene,  
 2-Q<sup>b</sup>-5-Q<sup>s</sup>-6-R<sup>17</sup>-4-R<sup>18</sup>-3-R<sup>19</sup> pyridine,  
 3-Q<sup>b</sup>-6-Q<sup>s</sup>-2-R<sup>16</sup>-5-R<sup>18</sup>-4-R<sup>19</sup> pyridine,  
 15    3-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup>-2-R<sup>19</sup> thiophene, and 2-Q<sup>b</sup>-5-Q<sup>s</sup>-3-R<sup>16</sup>-4-R<sup>17</sup> thiophene;  
 R<sup>16</sup> and R<sup>19</sup> are independently selected from the group consisting of  
 hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy,  
 hydroxymethyl, fluoro, chloro, and cyano;  
 R<sup>17</sup> and R<sup>18</sup> are independently selected from the group consisting of  
 20    hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;  
 Q<sup>b</sup> is C(NR<sup>25</sup>)NR<sup>23</sup>R<sup>24</sup>;  
 R<sup>23</sup>, R<sup>24</sup>, and R<sup>25</sup> are independently hydrido or methyl;  
 Q<sup>s</sup> is CH<sub>2</sub>.
- 25    15. Compound of Claim 14 or a pharmaceutically acceptable salt thereof,  
 wherein;  
 B is selected from the group consisting of 3-aminophenyl,  
 3-amidinophenyl, 4-amidinophenyl, 3-chlorophenyl, 4-chlorophenyl,  
 3,4-dichlorophenyl, 2-fluorophenyl, 4-methylphenyl, phenyl, 2-imidazoyl,

3-pyridyl, 4-pyridyl, and 3-trifluoromethyl-2-pyridyl;

A is selected from the group consisting of  $\text{CH}_2$  and  $\text{CH}_2\text{CH}_2$ ;

M is N or  $\text{R}^1\text{-C}$ ;

$\text{R}^1$  is selected from the group consisting of hydrido, hydroxy,

- 5 hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro;

$\text{R}^2$  is  $\text{Z}^0\text{-Q}$ ;

$\text{Z}^0$  is selected from the group consisting of a bond, O, S, and NH;

Q is selected from the group consisting of

- 10 3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,  
3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,  
3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,  
3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,  
3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,  
15 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,  
3-amino-5-(N-benzylamidosulfonyl)phenyl,  
3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,  
3-amino-5-(N-ethylamidocarbonyl)phenyl,  
3-amino-5-(N-isopropylamidocarbonyl)phenyl,  
20 3-amino-5-(N-propylamidocarbonyl)phenyl,  
3-amino-5-(N-isobutylamidocarbonyl)phenyl,  
3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,  
3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,  
3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,  
25 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 3-aminophenyl,  
3-carboxy-5-aminophenyl, 3-chlorophenyl, 3,5-diaminophenyl,  
3-dimethylaminophenyl, 3-hydroxyphenyl, 3-methanesulfonylaminophenyl,  
3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, phenyl,  
3-trifluoroacetamidophenyl, 3-bromo-2-thienyl, 2-thienyl, and 3-thienyl, with  
30 the proviso that Q is other than a phenyl or a substituted phenyl when  $\text{Z}^0$  is a  
bond;

$\text{Y}^0$  is selected from the group consisting of 5-amidino-2-thienylmethyl,  
4-amidinobenzyl, 2-fluoro-4-amidinobenzyl, and 3-fluoro-4-amidinobenzyl.

16. Compound of Claim 9 where said compound is selected from the group of the Formula:



5 or a pharmaceutically acceptable salt thereof, wherein:

$R^2$  is 3-aminophenoxy, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-aminophenoxy, B is phenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

10  $R^2$  is phenylthio, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-amino-4-carboxy-2-thienyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

15  $R^2$  is 3,4-diamino-2-thienyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is phenoxy, B is 3-aminophenyl, A is  $C(O)NH$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is phenoxy, B is 3-amidinophenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

20  $R^2$  is 3-(N-methylamino)-2-thienyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-methylsulfonamido-2-thienyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is phenylthio, B is 4-amidinophenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, 25 and M is CH;

- R<sup>2</sup> is 3-methylaminophenoxy, B is phenyl, A is CH<sub>2</sub>CH<sub>2</sub>, Y<sup>0</sup> is 4-amidinobenzyl, and M is CH;
- R<sup>2</sup> is 3-aminophenylthio, B is 3-chlorophenyl, A is CH<sub>2</sub>CH<sub>2</sub>, Y<sup>0</sup> is 4-amidinobenzyl, and M is CH;
- 5 R<sup>2</sup> is 3-aminophenylamino, B is phenyl, A is CH<sub>2</sub>, Y<sup>0</sup> is 4-amidinobenzyl, and M is CH;
- R<sup>2</sup> is 3-aminophenoxy, B is 3-chlorophenyl, A is CH<sub>2</sub>CH<sub>2</sub>, Y<sup>0</sup> is 4-amidinobenzyl, and M is CH;
- 10 R<sup>2</sup> is 3-amino-2-thienyl, B is phenyl, A is CH<sub>2</sub>, Y<sup>0</sup> is 4-amidinobenzyl, and M is CH;
- R<sup>2</sup> is phenylthio, B is 3-chlorophenyl, A is CH<sub>2</sub>CH<sub>2</sub>, Y<sup>0</sup> is 4-amidinobenzyl, and M is CH;
- R<sup>2</sup> is 3-aminophenoxy, B is 3-chlorophenyl, A is CH<sub>2</sub>CH<sub>2</sub>, Y<sup>0</sup> is 4-amidinobenzyl, and M is CH;
- 15 R<sup>2</sup> is 3-amino-2-thienyl, B is phenyl, A is CH<sub>2</sub>, Y<sup>0</sup> is 4-amidinobenzyl, and M is CH;
- R<sup>2</sup> is 3-amidocarbonyl-5-aminophenoxy, B is 3-chlorophenyl, A is CH<sub>2</sub>CH<sub>2</sub>, Y<sup>0</sup> is 4-amidinobenzyl, and M is CH;
- 20 R<sup>2</sup> is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is 3-chlorophenyl, A is CH<sub>2</sub>CH<sub>2</sub>, Y<sup>0</sup> is 4-amidinobenzyl, and M is CH;
- R<sup>2</sup> is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenoxy, B is 3-chlorophenyl, A is CH<sub>2</sub>CH<sub>2</sub>, Y<sup>0</sup> is 4-amidinobenzyl, and M is CH;
- 25 R<sup>2</sup> is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenoxy, B is 3-chlorophenyl, A is CH<sub>2</sub>CH<sub>2</sub>, Y<sup>0</sup> is 4-amidinobenzyl, and M is CH;
- R<sup>2</sup> is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenoxy, B is 3-chlorophenyl, A is CH<sub>2</sub>CH<sub>2</sub>, Y<sup>0</sup> is 4-amidinobenzyl, and M is CH;

- $R^2$  is 3,5-diaminophenoxy, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 5        $R^2$  is 3-amidocarbonyl-5-aminophenylthio, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 10       $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)-2-thienyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)-2-thienyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl and M is CH;
- 15       $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-2-thienyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3,5-diaminophenylamino, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxyphenylamino, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 20       $R^2$  is 3-aminophenoxy, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is 3-aminophenoxy, B is phenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is phenylthio, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- 25       $R^2$  is 3-amino-4-carboxy-2-thienyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

- $R^2$  is 3,4-diamino-2-thienyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- $R^2$  is phenoxy, B is 3-aminophenyl, A is  $C(O)NH$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- 5        $R^2$  is phenoxy, B is 3-amidinophenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- $R^2$  is 3-(N-methylamino)-2-thienyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- 10       $R^2$  is 3-methylsulfonamido-2-thienyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- $R^2$  is phenylthio, B is 4-amidinophenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- $R^2$  is 3-methylaminophenoxy, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- 15       $R^2$  is 3-aminophenylthio, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- $R^2$  is 3-aminophenylamino, B is phenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- 20       $R^2$  is 3-aminophenoxy, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- $R^2$  is 3-amino-2-thienyl, B is phenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- $R^2$  is phenylthio, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- 25       $R^2$  is 3-aminophenoxy, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- $R^2$  is 3-amino-2-thienyl, B is phenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;

- $R^2$  is 3-amidocarbonyl-5-aminophenoxy, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- 5        $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenoxy, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenoxy, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- 10       $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenoxy, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- $R^2$  is 3,5-diaminophenoxy, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- 15       $R^2$  is 3-amidocarbonyl-5-aminophenylthio, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- 20       $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)-2-thienyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)-2-thienyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl and M is  $CCl$ ;
- $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-2-thienyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- 25       $R^2$  is 3,5-diaminophenylamino, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;

- $R^2$  is 3-amino-5-carboxyphenylamino, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  
 $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- $R^2$  is 3-aminophenoxy, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CH$ ;
- 5        $R^2$  is 3-aminophenoxy, B is phenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CH$ ;
- $R^2$  is phenylthio, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-amino-4-carboxy-2-thienyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 10       $R^2$  is 3,4-diamino-2-thienyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is phenoxy, B is 3-aminophenyl, A is  $C(O)NH$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 15       $R^2$  is phenoxy, B is 3-amidinophenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-(N-methylamino)-2-thienyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 20       $R^2$  is 3-methylsulfonamido-2-thienyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is phenylthio, B is 4-amidinophenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 25       $R^2$  is 3-methylaminophenoxy, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-aminophenylthio, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-aminophenylamino, B is phenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;

- $R^2$  is 3-aminophenoxy, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-amino-2-thienyl, B is phenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 5        $R^2$  is phenylthio, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-aminophenoxy, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 10       $R^2$  is 3-amino-2-thienyl, B is phenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-amidocarbonyl-5-aminophenoxy, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 15       $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenoxy, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 20       $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenoxy, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenoxy, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 25       $R^2$  is 3,5-diaminophenoxy, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 25       $R^2$  is 3-amidocarbonyl-5-aminophenylthio, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)-2-thienyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;

5        $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)-2-thienyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl and M is N;

$R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-2-thienyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;

10       $R^2$  is 3,5-diaminophenylamino, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-amino-5-carboxyphenylamino, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N.

17. Compound of Claim 2 of the Formula:



or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of hydrido, C2-C8 alkyl, C3-C8 alkenyl, C3-C8 alkynyl, and C2-C8 haloalkyl, wherein each member of group B is optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A with one or more of the group consisting of  $R^{32}$ ,

$R^{33}$ ,  $R^{34}$ ,  $R^{35}$ , and  $R^{36}$ ;

$R^{32}$ ,  $R^{33}$ ,  $R^{34}$ ,  $R^{35}$ , and  $R^{36}$  are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboalkoxy, 5 carboxy, carboxamido, cyano, and  $Q^b$ ;

$A$  is a or  $(CH(R^{15}))_{pa}(W^7)_{rr}$  wherein  $rr$  is 0 or 1,  $pa$  is an integer

selected from 0 through 3, and  $W^7$  is  $(R^7)NC(O)$  or  $N(R^7)$ ;

$R^7$  is selected from the group consisting of hydrido, hydroxy and alkyl;

$R^{15}$  is selected from the group consisting of hydrido, halo, alkyl, and

10 haloalkyl;

$M$  is N or  $R^1-C$ ;

$R^1$  is selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

15  $R^2$  is  $Z^0-Q$ ;

$Z^0$  is a bond or  $W^0-(CH(R^{42}))_p$  wherein  $p$  is 0 or 1 and  $W^0$  is selected from the group consisting of O, S, and  $N(R^{41})$ ;

$R^{41}$  and  $R^{42}$  are independently hydrido or alkyl;

20  $Q$  is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl

ring to  $Z^0$  is optionally substituted by  $R^9$ , the other carbon adjacent to the

carbon at the point of attachment is optionally substituted by  $R^{13}$ , a carbon

adjacent to  $R^9$  and two atoms from the carbon at the point of attachment is

optionally substituted by  $R^{10}$ , a carbon adjacent to  $R^{13}$  and two atoms from the

25 carbon at the point of attachment is optionally substituted by  $R^{12}$ , and any

carbon adjacent to both  $R^{10}$  and  $R^{12}$  is optionally substituted by  $R^{11}$ , with the proviso that Q is other than a phenyl when  $Z^0$  is a bond;

$R^9$ ,  $R^{11}$ , and  $R^{13}$  are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, 5 alkylsulfonamido, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboxy, carboxamido, and cyano;

$R^{10}$  and  $R^{12}$  are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, aryl, aralkyl, 10 cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy, heteroaralkoxy, heterocyclyoxy, heterocyclalkoxy, hydroxy, amino, alkoxyamino, alkylamino, arylamino, aralkylamino, heteroarylarnino, heteroaralkylamino, heterocyclamino, heterocyclalkylamino, alkylsulfonamido, amidosulfonyl, 15 arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylsulfinyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, heteroarylsulfonyl, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, halo, haloalkyl, and cyano;

$Y^0$  is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon 20 of said phenyl or said heteroaryl is substituted by  $Q^S$ , a carbon two or three contiguous atoms from the point of attachment of  $Q^S$  to the phenyl or heteroaryl ring is substituted by  $Q^b$ , a carbon adjacent to the point of attachment of  $Q^S$  is optionally substituted by  $R^{17}$ , another carbon adjacent to the point of attachment of  $Q^S$  is optionally substituted by  $R^{18}$ , a carbon 25 adjacent to  $Q^b$  is optionally substituted by  $R^{16}$ , and another carbon adjacent to  $Q^b$  is optionally substituted by  $R^{19}$ ;

$R^{16}$ ,  $R^{17}$ ,  $R^{18}$ , and  $R^{19}$  are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

5       $R^{16}$  or  $R^{19}$  is optionally selected from the group consisting of  $NR^{20}R^{21}$ ,  $C(NR^{25})NR^{23}R^{24}$ , and  $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$ , with the proviso that  $R^{16}$ ,  $R^{19}$ , and  $Q^b$  are not simultaneously hydrido;

10      $Q^b$  is selected from the group consisting of  $NR^{20}R^{21}$ , hydrido,  $C(NR^{25})NR^{23}R^{24}$ , and  $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$ , with the proviso that no more than one of  $R^{20}$  and  $R^{21}$  is hydroxy at the same time and with the further proviso that no more than one of  $R^{23}$  and  $R^{24}$  is hydroxy at the same time;

15      $R^{20}$ ,  $R^{21}$ ,  $R^{23}$ ,  $R^{24}$ ,  $R^{25}$ , and  $R^{26}$  are independently selected from the group consisting of hydrido, alkyl, and hydroxy;

20      $Q^s$  is selected from the group consisting of a bond,  $CH_2$ , and  $CH_2CH_2$ .

18. Compound of Claim 17 or a pharmaceutically acceptable salt thereof,  
20 wherein;

25     B is selected from the group consisting of hydrido, ethyl, 2-propynyl, 2-propenyl, propyl, isopropyl, butyl, 2-butenyl, 3-butenyl, 2-butynyl, sec-butyl, tert-butyl, isobutyl, 2-methylpropenyl, 1-pentyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 2-pentynyl, 3-pentynyl, 2-pentyl, 1-methyl-2-butenyl, 1-methyl-3-butenyl, 1-methyl-2-butynyl, 3-pentyl, 1-ethyl-2-propenyl, 2-methylbutyl, 2-methyl-2-butenyl, 2-methyl-3-butenyl, 2-methyl-3-butynyl, 3-methylbutyl, 3-methyl-2-butenyl, 3-methyl-3-butenyl, 1-hexyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 2-hexyl,

- 1-methyl-2-pentenyl, 1-methyl-3-pentenyl, 1-methyl-4-pentenyl,  
 1-methyl-2-pentynyl, 1-methyl-3-pentynyl, 3-hexyl, 1-ethyl-2-butenyl,  
 1-ethyl-3-butenyl, 1-propyl-2-propenyl, 1-ethyl-2-butynyl, 1-heptyl, 2-heptenyl,  
 3-heptenyl, 4-heptenyl, 5-heptenyl, 6-heptenyl, 2-heptynyl, 3-heptynyl,  
 5 4-heptynyl, 5-heptynyl, 2-heptyl, 1-methyl-2-hexenyl, 1-methyl-3-hexenyl,  
 1-methyl-4-hexenyl, 1-methyl-5-hexenyl, 1-methyl-2-hexynyl,  
 1-methyl-3-hexynyl, 1-methyl-4-hexynyl, 3-heptyl, 1-ethyl-2-pentenyl,  
 1-ethyl-3-pentenyl, 1-ethyl-4-pentenyl, 1-butyl-2-propenyl, 1-ethyl-2-pentynyl,  
 1-ethyl-3-pentynyl, 2,2,2-trifluoroethyl, 2,2-difluoropropyl,  
 10 4-trifluoromethyl-5,5,5-trifluoropentyl, 4-trifluoromethylpentyl,  
 5,5,6,6,6-pentafluorohexyl, and 3,3,3-trifluoropropyl, wherein each member of  
 group B is optionally substituted at any carbon up to and including 5 atoms  
 from the point of attachment of B to A with one or more of the group  
 consisting of R<sup>32</sup>, R<sup>33</sup>, R<sup>34</sup>, R<sup>35</sup>, and R<sup>36</sup>;
- 15 R<sup>32</sup>, R<sup>33</sup>, R<sup>34</sup>, R<sup>35</sup>, and R<sup>36</sup> are independently selected from the  
 group consisting of hydrido, amidino, guanidino, carboxy, methoxy, ethoxy,  
 isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido,  
 trifluoroacetamido, N-methylamino, dimethylamino, N-ethylamino, methylthio,  
 ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl,  
 20 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro,  
 chloro, bromo, amidosulfonyl, N-methylamidosulfonyl,  
 N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl,  
 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl,  
 amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, cyano,  
 25 and Q<sup>b</sup>;

A is selected from the group consisting of a bond, NH, N(CH<sub>3</sub>),  
 N(OH), CH<sub>2</sub>, CH<sub>3</sub>CH, CF<sub>3</sub>CH, NHC(O), N(CH<sub>3</sub>)C(O), C(O)NH,  
 C(O)N(CH<sub>3</sub>), CH<sub>2</sub>CH<sub>2</sub>, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>, CH<sub>3</sub>CHCH<sub>2</sub>, and CF<sub>3</sub>CHCH<sub>2</sub>;

M is N or R<sup>1</sup>-C;

$R^1$  is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, 1-aminoethyl, methylamino, dimethylamino, cyano, methyl, ethyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, methoxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl,

5 methoxyamino, methylthio, ethylthio, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, and bromo;

$R^2$  is  $Z^0-Q$ ;

$Z^0$  is selected from the group consisting of a bond, O, S, NH, N(CH<sub>3</sub>), OCH<sub>2</sub>, SCH<sub>2</sub>, N(H)CH<sub>2</sub>, and N(CH<sub>3</sub>)CH<sub>2</sub>;

10 Q is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or

15 heteroaryl ring to  $Z^0$  is optionally substituted by  $R^9$ , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by  $R^{13}$ , a carbon adjacent to  $R^9$  and two atoms from the carbon at the point of attachment is optionally substituted by  $R^{10}$ , a carbon adjacent to  $R^{13}$  and two atoms from

20 the carbon at the point of attachment is optionally substituted by  $R^{12}$ , and any carbon adjacent to both  $R^{10}$  and  $R^{12}$  is optionally substituted by  $R^{11}$ , with the proviso that Q is other than a phenyl when  $Z^0$  is a bond;

$R^9$ ,  $R^{11}$ , and  $R^{13}$  are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl,

N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl,  
 2,2,2-trifluoro-1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl,  
 N,N-dimethylamidocarbonyl, and cyano;

R<sup>10</sup> and R<sup>12</sup> are independently selected from the group consisting of

- 5 hydrido, amidino, guanidino, carboxy, carboxymethyl, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl,
- 10 N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl, N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl,
- 15 15 N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl, N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl, N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl, N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl,
- 20 20 N-cyclohexylamidocarbonyl, fluoro, chloro, bromo, cyano, cyclobutoxy, cyclohexoxy, cyclohexylmethoxy, 4-trifluoromethycyclohexylmethoxy, cyclopentoxy, benzyl, benzyloxy, 4-bromo-3-fluorophenoxy, 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromobenzylamino, 5-bromopyrid-2-ylmethylamino, 4-butoxyphenamino, 3-chlorobenzyl,
- 25 25 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-ethylbenzylamino, 4-chloro-3-ethylphenylamino, 3-chlorobenzyloxy, 4-chlorobenzyloxy, 4-chlorobenzylsulfonyl, 4-chlorophenylamino, 4-chlorophenylsulfonyl, 5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 2,3-difluorobenzyloxy, 2,4-difluorobenzyloxy, 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy,
- 30 30 3,5-difluorophenoxy, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy, 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3,4-dimethylbenzyloxy, 3,5-dimethylbenzyloxy, 4-ethoxyphenoxy, 4-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy, 3-ethyl-5-methylphenoxy, 4-fluorobenzyloxy,
- 35 35 2-fluoro-3-trifluoromethylbenzyloxy, 3-fluoro-5-trifluoromethylbenzyloxy,

- 4-fluoro-2-trifluoromethylbenzyloxy, 4-fluoro-3-trifluoromethylbenzyloxy,  
 2-fluorophenoxy, 4-fluorophenoxy, 2-fluoro-3-trifluoromethylphenoxy,  
 2-fluorobenzyloxy, 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,  
 4-isopropylbenzyloxy, 3-isopropylphenoxy, 4-isopropylphenoxy,  
 5 4-isopropyl-3-methylphenoxy, 4-isopropylbenzyloxy, 3-isopropylphenoxy,  
 4-isopropylphenoxy, 4-isopropyl-3-methylphenoxy, phenylamino,  
 1-phenylethoxy, 2-phenylethoxy, 2-phenylethyl, 2-phenylethylamino,  
 phenylsulfonyl, 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,  
 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy,  
 10 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,  
 2,4-bis-trifluoromethylbenzyloxy, 3-trifluoromethylbenzyl,  
 3,5-bis-trifluoromethylbenzyloxy, 4-trifluoromethylphenoxy,  
 3-trifluoromethylphenoxy, 3-trifluoromethylthiobenzyloxy,  
 4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy,  
 15 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, and  
 3-trifluoromethylthiophenoxy;

$Y^0$  is selected from the group consisting of:

- 1-Q<sup>b</sup>-4-Q<sup>s</sup>-2-R<sup>16</sup>-3-R<sup>17</sup>-5-R<sup>18</sup>-6-R<sup>19</sup> benzene,  
 2-Q<sup>b</sup>-5-Q<sup>s</sup>-6-R<sup>17</sup>-4-R<sup>18</sup>-3-R<sup>19</sup> pyridine,  
 20 3-Q<sup>b</sup>-6-Q<sup>s</sup>-2-R<sup>16</sup>-5-R<sup>18</sup>-4-R<sup>19</sup> pyridine, 2-Q<sup>b</sup>-5-Q<sup>s</sup>-3-R<sup>16</sup>-6-R<sup>18</sup> pyrazine,  
 3-Q<sup>b</sup>-6-Q<sup>s</sup>-2-R<sup>18</sup>-5-R<sup>18</sup>-4-R<sup>19</sup> pyridazine,  
 2-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>17</sup>-6-R<sup>18</sup> pyrimidine, 5-Q<sup>b</sup>-2-Q<sup>s</sup>-4-R<sup>16</sup>-6-R<sup>19</sup> pyrimidine,  
 3-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup>-2-R<sup>19</sup> thiophene, 2-Q<sup>b</sup>-5-Q<sup>s</sup>-3-R<sup>16</sup>-4-R<sup>17</sup> thiophene,  
 3-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup>-2-R<sup>19</sup> furan, 2-Q<sup>b</sup>-5-Q<sup>s</sup>-3-R<sup>16</sup>-4-R<sup>17</sup> furan,  
 25 3-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup>-2-R<sup>19</sup> pyrrole, 2-Q<sup>b</sup>-5-Q<sup>s</sup>-3-R<sup>16</sup>-4-R<sup>17</sup> pyrrole,  
 4-Q<sup>b</sup>-2-Q<sup>s</sup>-5-R<sup>19</sup> imidazole, 2-Q<sup>b</sup>-4-Q<sup>s</sup>-5-R<sup>17</sup> imidazole,  
 3-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup> isoxazole, 5-Q<sup>b</sup>-3-Q<sup>s</sup>-4-R<sup>16</sup> isoxazole,  
 2-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup> pyrazole, 4-Q<sup>b</sup>-2-Q<sup>s</sup>-5-R<sup>19</sup> thiazole, and

$2\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}4\text{-}R^{17}$  thiazole;

$R^{16}$ ,  $R^{17}$ ,  $R^{18}$ , and  $R^{19}$  are independently selected from the group

consisting of hydrido, methyl, ethyl, isopropyl, propyl, carboxy, amidino, guanidino, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino,

5 aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo,

10 hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, and cyano;

$R^{16}$  or  $R^{19}$  is optionally selected from the group consisting of  $NR^{20}R^{21}$ ,

$C(NR^{25})NR^{23}R^{24}$ , and  $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$ , with the proviso that  $R^{16}$ ,  $R^{19}$ , and  $Q^{\text{b}}$  are not simultaneously hydrido;

$Q^{\text{b}}$  is selected from the group consisting of  $NR^{20}R^{21}$ , hydrido,

15  $C(NR^{25})NR^{23}R^{24}$ , and  $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$ , with the proviso that no more than one of  $R^{20}$  and  $R^{21}$  is hydroxy at the same time and with the further proviso that no more than one of  $R^{23}$  and  $R^{24}$  is hydroxy at the same time;

$R^{20}$ ,  $R^{21}$ ,  $R^{23}$ ,  $R^{24}$ ,  $R^{25}$ , and  $R^{26}$  are independently selected from the group consisting of hydrido, methyl, ethyl, propyl, butyl, isopropyl, and hydroxy;

20  $Q^{\text{s}}$  is selected from the group consisting of a bond,  $\text{CH}_2$ , and  $\text{CH}_2\text{CH}_2$ .

19. Compound of Claim 18 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of hydrido, ethyl, 2-propenyl,

25 2-propynyl, propyl, isopropyl, butyl, 2-butyl, (R)-2-butyl, (S)-2-butyl, tert-butyl, isobutyl, 1-pentyl, 3-pentyl, 2-methylbutyl, 2,2,2-trifluoroethyl, 6-amidocarbonylhexyl, 4-methyl-2-pentyl, 3-hydroxypropyl, 1-methoxy-2-propyl, 2-methoxyethyl, 2-methyl-2-butyl, 3-methyl-2-butyl,

2-dimethylaminopropyl, 2-cyanoethyl, 6-hydroxyhexyl, 2-hydroxyethyl,  
 2-amidinoethyl, 2-guanidinoethyl, 3-guanidinopropyl, 4-guanidinobutyl,  
 3-hydroxypropyl, 4-hydroxybutyl, 6-cyanoethyl, 2-dimethylaminoethyl,  
 3-methylbutyl, 2-methylbutyl, (S)-2-methylbutyl, 3-aminopropyl, 2-hexyl, and  
 5 4-aminobutyl;

A is selected from the group consisting of a bond,  $\text{CH}_2$ ,  $\text{NHC(O)}$ ,

$\text{CH}_2\text{CH}_2$ ,  $\text{CH}_2\text{CH}_2\text{CH}_2$ , and  $\text{CH}_3\text{CHCH}_2$ ;

M is N or  $\text{R}^1\text{-C}$ ;

$\text{R}^1$  is selected from the group consisting of hydrido, hydroxy, amino,  
 10 amidino, hydroxyamino, aminomethyl, methylamino, cyano, methyl,  
 trifluoromethyl, methoxy, hydroxymethyl, methoxyamino, methylthio,  
 trifluoromethoxy, fluoro, and chloro;

$\text{R}^2$  is  $\text{Z}^0\text{-Q}$ ;

$\text{Z}^0$  is selected from the group consisting of a bond, O, S, NH,  $\text{N}(\text{CH}_3)$ ,

15  $\text{OCH}_2$ , and  $\text{SCH}_2$ ;

Q is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,  
 3-amino-5-benzylphenyl, 3-amino-5-(2-phenylethyl)phenyl,  
 3-amino-5-benzylaminophenyl, 3-amino-5-(2-phenylethylamino)phenyl,  
 20 3-amino-5-benzyloxyphenyl, 3-amino-5-(2-phenylethoxy)phenyl,  
 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,  
 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,  
 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,  
 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,  
 25 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,  
 3-amino-5-(N-benzylamidosulfonyl)phenyl,  
 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,  
 3-amino-5-(N-ethylamidocarbonyl)phenyl,  
 3-amino-5-(N-isopropylamidocarbonyl)phenyl,  
 30 3-amino-5-(N-propylamidocarbonyl)phenyl,  
 3-amino-5-(N-isobutylamidocarbonyl)phenyl,  
 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,

- 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,  
 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,  
 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,  
 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,  
 5  
 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,  
 3-aminophenyl, 3-amino-5-(4-trifluoromethylbenzylamino)phenyl,  
 3-amino-5-(4-trifluoromethylbenzyloxy)phenyl, 3-carboxyphenyl,  
 3-carboxy-5-hydroxyphenyl, 3-amino-5-carboxyphenyl, 3-chlorophenyl.  
 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,  
 10 2-fluorophenyl, 3-fluorophenyl, 2-hydroxyphenyl, 3-hydroxyphenyl,  
 3-methanesulfonylaminophenyl, 2-methoxyphenyl, 3-methoxyphenyl,  
 3-methoxyaminophenyl, 3-methoxycarbonylphenyl, 2-methylaminophenyl,  
 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl,  
 phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,  
 15 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,  
 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl, with the  
 proviso that Q is other than a phenyl or substituted phenyl when  $Z^0$  is a bond;

$Y^0$  is selected from the group consisting of:

- 1-Q<sup>b</sup>-4-Q<sup>s</sup>-2-R<sup>16</sup>-3-R<sup>17</sup>-5-R<sup>18</sup>-6-R<sup>19</sup> benzene,  
 20 2-Q<sup>b</sup>-5-Q<sup>s</sup>-6-R<sup>17</sup>-4-R<sup>18</sup>-3-R<sup>19</sup> pyridine,  
 3-Q<sup>b</sup>-6-Q<sup>s</sup>-2-R<sup>16</sup>-5-R<sup>18</sup>-4-R<sup>19</sup> pyridine,  
 3-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup>-2-R<sup>19</sup> thiophene, and 2-Q<sup>b</sup>-5-Q<sup>s</sup>-3-R<sup>16</sup>-4-R<sup>17</sup> thiophene;

$R^{16}$  and  $R^{19}$  are independently selected from the group consisting of  
 hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy,  
 25 hydroxymethyl, fluoro, chloro, and cyano;

$R^{16}$  or  $R^{19}$  is optionally  $C(NR^{25})NR^{23}R^{24}$  with the proviso that  $R^{16}$ ,  
 $R^{19}$ , and  $Q^b$  are not simultaneously hydrido;

$R^{17}$  and  $R^{18}$  are independently selected from the group consisting of  
 hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

$Q^b$  is hydrido or  $C(NR^{25})NR^{23}R^{24}$ ;

$R^{23}$ ,  $R^{24}$ , and  $R^{25}$  are independently hydrido or methyl;

$Q^s$  is  $CH_2$ .

5 20. Compound of Claim 17 of the Formula:



or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of hydrido, C2-C8 alkyl, C3-C8 alkenyl, C3-C8 alkynyl, and C2-C8 haloalkyl, wherein each member of group B  
10 is optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A with one or more of the group consisting of  $R^{32}$ ,  
 $R^{33}$ ,  $R^{34}$ ,  $R^{35}$ , and  $R^{36}$ ;

$R^{32}$ ,  $R^{33}$ ,  $R^{34}$ ,  $R^{35}$ , and  $R^{36}$  are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboalkoxy, carboxy, carboxamido, cyano, and  $Q^b$ ;

A is a  $(CH(R^{15}))_{pa}(W^7)_{\pi r}$  wherein  $\pi r$  is 0 or 1, pa is an integer selected from 0 through 3, and  $W^7$  is  $N(R^7)$ ;

20  $R^7$  is hydrido or alkyl;

$R^{15}$  is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

M is N or R<sup>1</sup>-C;

R<sup>1</sup> is selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

5      R<sup>2</sup> is Z<sup>0</sup>-Q;

Z<sup>0</sup> is a bond or W<sup>0</sup>-(CH<sub>2</sub>)<sub>p</sub> wherein p is 0 or 1 and W<sup>0</sup> is selected from the group consisting of O, S, and N(H);

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z<sup>0</sup> is optionally substituted by R<sup>9</sup>, the other carbon adjacent to the 10 carbon at the point of attachment is optionally substituted by R<sup>13</sup>, a carbon adjacent to R<sup>9</sup> and two atoms from the carbon at the point of attachment is optionally substituted by R<sup>10</sup>, a carbon adjacent to R<sup>13</sup> and two atoms from the carbon at the point of attachment is optionally substituted by R<sup>12</sup>, and any 15 carbon adjacent to both R<sup>10</sup> and R<sup>12</sup> is optionally substituted by R<sup>11</sup>, with the proviso that Q is other than a phenyl when Z<sup>0</sup> is a bond;

R<sup>9</sup>, R<sup>11</sup>, and R<sup>13</sup> are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkoxy, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, 20 hydroxyalkyl, carboxy, carboxamido, and cyano;

R<sup>10</sup> and R<sup>12</sup> are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, alkoxy, alkoxyamino, hydroxy, amino, alkylamino, alkylsulfonamido, amidosulfonyl, hydroxyalkyl, aminoalkyl, halo, haloalkyl, carboalkoxy, carboxy, carboxamido, 25 carboxyalkyl, and cyano;

Y<sup>0</sup> is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q<sup>S</sup>, a carbon two or three

- contiguous atoms from the point of attachment of  $Q^S$  to the phenyl or heteroaryl ring is substituted by  $Q^b$ , a carbon adjacent to the point of attachment of  $Q^S$  is optionally substituted by  $R^{17}$ , another carbon adjacent to the point of attachment of  $Q^S$  is optionally substituted by  $R^{18}$ , a carbon adjacent to  $Q^b$  is optionally substituted by  $R^{16}$ , and another carbon adjacent to  $Q^b$  is optionally substituted by  $R^{19}$ ;
- $R^{16}$ ,  $R^{17}$ ,  $R^{18}$ , and  $R^{19}$  are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;
- $R^{16}$  or  $R^{19}$  is optionally selected from the group consisting of  $NR^{20}R^{21}$ ,  $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$ , and  $C(NR^{25})NR^{23}R^{24}$ , with the proviso that  $R^{16}$ ,  $R^{19}$ , and  $Q^b$  are not simultaneously hydrido;
- $Q^b$  is selected from the group consisting of  $NR^{20}R^{21}$ , hydrido,  $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$ , and  $C(NR^{25})NR^{23}R^{24}$ ;
- $R^{20}$ ,  $R^{21}$ ,  $R^{23}$ ,  $R^{24}$ ,  $R^{25}$ , and  $R^{26}$  are independently selected from the group consisting of hydrido and alkyl;
- $Q^S$  is  $CH_2$ .
- 20           21. Compound of Claim 20 or a pharmaceutically acceptable salt thereof, wherein;
- B is selected from the group consisting of hydrido, ethyl, 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butenyl, 2-butynyl, sec-butyl, *tert*-butyl, 25       isobutyl, 2-methylpropenyl, 1-pentyl, 2-pentenyl, 3-pentenyl, 2-pentynyl, 3-pentynyl, 2-pentyl, 3-pentyl, 2-methylbutyl, 2-methyl-2-but enyl,

- 3-methylbutyl, 3-methyl-2-butenyl, 1-hexyl, 2-hexenyl, 3-hexenyl, 4-hexenyl,  
 2-hexynyl, 3-hexynyl, 4-hexynyl, 2-hexyl, 1-methyl-2-pentenyl,  
 1-methyl-3-pentenyl, 1-methyl-2-pentyne, 1-methyl-3-pentyne, 3-hexyl,  
 1-ethyl-2-butene, 1-heptyl, 2-heptenyl, 3-heptenyl, 4-heptenyl, 5-heptenyl,  
 5 2-heptyne, 3-heptyne, 4-heptyne, 5-heptyne, 2-heptyl, 1-methyl-2-hexenyl,  
 1-methyl-3-hexenyl, 1-methyl-4-hexenyl, 1-methyl-2-hexynyl,  
 1-methyl-3-hexynyl, 1-methyl-4-hexynyl, 3-heptyl, 1-ethyl-2-pentenyl,  
 1-ethyl-3-pentenyl, 1-ethyl-2-pentyne, 1-ethyl-3-pentyne, 2,2,2-trifluoroethyl,  
 2,2-difluoropropyl, 4-trifluoromethyl-5,5,5-trifluoropentyl,
- 10 4-trifluoromethylpentyl, 5,5,6,6,6-pentafluorohexyl, and 3,3,3-trifluoropropyl,  
 wherein each member of group B is optionally substituted at any carbon up to  
 and including 5 atoms from the point of attachment of B to A with one or more  
 of the group consisting of  $R^{32}$ ,  $R^{33}$ ,  $R^{34}$ ,  $R^{35}$ , and  $R^{36}$ ;  
 $R^{32}$ ,  $R^{33}$ ,  $R^{34}$ ,  $R^{35}$ , and  $R^{36}$  are independently selected from the
- 15 group consisting of hydrido, amidino, guanidino, methyl, ethyl, methoxy,  
 ethoxy, hydroxy, amino, N-methylamino, dimethylamino, methoxyamino,  
 methylthio, ethylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl,  
 fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, hydroxymethyl,  
 amidocarbonyl, carboxy, cyano, and  $Q^b$ ;
- 20 A is selected from the group consisting of a bond, NH,  $N(CH_3)$ ,  $CH_2$ ,  
 $CH_3CH$ , and  $CH_2CH_2$ ;
- A is optionally selected from the group consisting of  $CH_2N(CH_3)$ ,  
 $CH_2N(CH_2CH_3)$ ,  $CH_2CH_2N(CH_3)$ , and  $CH_2CH_2N(CH_2CH_3)$  with the  
 proviso that B is hydrido;
- 25 M is selected from the group consisting of N and  $R^1-C$ ;  
 $R^1$  is selected from the group consisting of hydrido, hydroxy,  
 hydroxymethyl, amino, aminomethyl, methylamino, cyano, methyl,  
 trifluoromethyl, methoxy, methylthio, trifluoromethoxy, fluoro, and chloro;  
 $R^2$  is  $Z^0-Q$ ;

$Z^0$  is selected from the group consisting of a bond, O, S, NH, OCH<sub>2</sub>,

SCH<sub>2</sub>, and N(H)CH<sub>2</sub>;

Q is selected from the group consisting of phenyl, 2-thienyl, 2-furyl, 2-pyrrolyl, 2-imidazolyl, 2-thiazolyl, 3-isoxazolyl, 2-pyridyl, and 3-pyridyl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z<sup>0</sup> is optionally substituted by R<sup>9</sup>, the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R<sup>13</sup>, a carbon adjacent to R<sup>9</sup> and two atoms from the carbon at the point of attachment is optionally substituted by R<sup>10</sup>, a carbon adjacent to R<sup>13</sup> and two atoms from the carbon at the point of attachment is optionally substituted by R<sup>12</sup>, and any carbon adjacent to both R<sup>10</sup> and R<sup>12</sup> is optionally substituted by R<sup>11</sup>, with the proviso that Q is other than a phenyl when Z<sup>0</sup> is a bond;

R<sup>9</sup>, R<sup>11</sup>, and R<sup>13</sup> are independently selected from the group consisting of hydrido, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, methylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, carboxy, and cyano;

R<sup>10</sup> and R<sup>12</sup> are independently selected from the group consisting of hydrido, amidino, amidocarbonyl, N-methylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl, N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl, N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl, N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl, N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl, N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl, N-cyclohexylamidocarbonyl, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, carboxy, carboxymethyl, amino, acetamido, trifluoromethyl, pentafluoroethyl,

2,2,2-trifluoroethyl, trifluoroacetamido, aminomethyl, N-methylamino, dimethylamino, methoxyamino, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, methanesulfonamido, methoxycarbonyl, fluoro, chloro, bromo, and cyano;

5        $Y^0$  is selected from the group consisting of:

$1-Q^b-4-Q^s-2-R^{16}-3-R^{17}-5-R^{18}-6-R^{19}$  benzene,

$2-Q^b-5-Q^s-6-R^{17}-4-R^{18}-4-R^{19}$  pyridine,  $2-Q^b-5-Q^s-3-R^{16}-4-R^{17}$  thiophene,

$3-Q^b-6-Q^s-2-R^{16}-5-R^{18}-4-R^{19}$  pyridine,  $3-Q^b-5-Q^s-4-R^{16}-2-R^{19}$  thiophene,

$3-Q^b-5-Q^s-4-R^{16}-2-R^{19}$  furan,  $2-Q^b-5-Q^s-3-R^{16}-4-R^{17}$  furan,

10       $3-Q^b-5-Q^s-4-R^{16}-2-R^{19}$  pyrrole,  $2-Q^b-5-Q^s-3-R^{16}-4-R^{17}$  pyrrole,

$4-Q^b-2-Q^s-5-R^{19}$  thiazole, and  $2-Q^b-5-Q^s-4-R^{17}$  thiazole;

$R^{16}, R^{17}, R^{18}$ , and  $R^{19}$  are independently selected from the group

consisting of hydrido, methyl, ethyl, amidino, guanidino, methoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino,

15      dimethylamino, methylthio, ethylthio, trifluoromethylthio, methylsulfinyl, methylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoromethoxy, fluoro, chloro, hydroxymethyl, carboxy, and cyano;

$Q^b$  is selected from the group consisting of  $NR^{20}R^{21}$ ,

$C(NR^{25})NR^{23}R^{24}$ , and  $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$ ;

20       $R^{20}, R^{21}, R^{23}, R^{24}, R^{25}$ , and  $R^{26}$  are independently selected from the group consisting of hydrido, methyl, and ethyl;

$Q^s$  is  $CH_2$ .

22. Compound of Claim 21 or a pharmaceutically acceptable salt thereof,

25      wherein;

B is selected from the group consisting of hydrido, ethyl, 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butyl, (R)-2-butyl, (S)-2-butyl, *tert*-butyl, isobutyl, 1-pentyl, 3-pentyl, 2-methylbutyl, 2,2,2-trifluoroethyl, 6-

amidocarbonylhexyl, 4-methyl-2-pentyl, 3-hydroxypropyl, 3-methoxy-2-propyl, 2-methoxyethyl, 2-methyl-2-butyl, 3-methyl-2-butyl, 2-dimethylaminopropyl, 2-cyanoethyl, 6-hydroxyhexyl, 2-hydroxyethyl, 2-amidinoethyl, 2-guanidinoethyl, 3-guanidinopropyl, 4-guanidinobutyl, 3-  
5 hydroxypropyl, 4-hydroxybutyl, 6-cyanoethyl, 2-dimethylaminoethyl, 3-methylbutyl, 2-methylbutyl, (S)-2-methylbutyl, 3-aminopropyl, 2-hexyl, and 4-aminobutyl;

A is selected from the group consisting of a bond,  $\text{CH}_2$ ,  $\text{CH}_3\text{CH}$ , and  $\text{CH}_2\text{CH}_2$ ;

10 M is selected from the group consisting of N and  $\text{R}^1\text{-C}$ ;

$\text{R}^1$  is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro;

$\text{R}^2$  is  $Z^0\text{-Q}$ ;

15  $Z^0$  is selected from the group consisting of a bond, O, S, NH, and

$\text{OCH}_2$ ;

Q is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl, 3-amidocarbonyl-5-aminophenyl,  
3-amino-5-(N-benzylamidocarbonyl)phenyl,

20 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,

25 3-amino-5-(N-benzylamidosulfonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,

3-amino-5-(N-ethylamidocarbonyl)phenyl,

3-amino-5-(N-isopropylamidocarbonyl)phenyl,

3-amino-5-(N-propylamidocarbonyl)phenyl,

30 3-amino-5-(N-isobutylamidocarbonyl)phenyl,

3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,

3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,

- 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,  
 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,  
 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,  
 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,  
 5 3-aminophenyl, 3-carboxyphenyl, 3-carboxy-5-aminophenyl,  
 3-carboxy-5-hydroxyphenyl, 3-carboxymethyl-5-aminophenyl,  
 3-carboxymethyl-5-hydroxyphenyl, 3-carboxymethylphenyl, 3-chlorophenyl,  
 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,  
 2-fluorophenyl, 3-fluorophenyl, 2,5-difluorophenyl, 2-hydroxyphenyl,  
 10 3-hydroxyphenyl, 3-methanesulfonylaminophenyl, 2-methoxyphenyl,  
 3-methoxyphenyl, 3-methoxyaminophenyl, 3-methoxycarbonylphenyl,  
 2-methylaminophenyl, 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl,  
 4-methylphenyl, phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,  
 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,  
 15 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl, with the  
 proviso that Q is other than a phenyl or a substituted phenyl when  $Z^0$  is a bond;

$Y^0$  is selected from the group consisting of:

- 1-Q<sup>b</sup>-4-Q<sup>s</sup>-2-R<sup>16</sup>-3-R<sup>17</sup>-5-R<sup>18</sup>-6-R<sup>19</sup> benzene,  
 2-Q<sup>b</sup>-5-Q<sup>s</sup>-6-R<sup>17</sup>-4-R<sup>18</sup>-3-R<sup>19</sup> pyridine,  
 20 3-Q<sup>b</sup>-6-Q<sup>s</sup>-2-R<sup>16</sup>-5-R<sup>18</sup>-4-R<sup>19</sup> pyridine,  
 3-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup>-2-R<sup>19</sup> thiophene, and 2-Q<sup>b</sup>-5-Q<sup>s</sup>-3-R<sup>16</sup>-4-R<sup>17</sup> thiophene;

$R^{16}$  and  $R^{19}$  are independently selected from the group consisting of  
 hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy,  
 hydroxymethyl, fluoro, chloro, and cyano;

- 25  $R^{17}$  and  $R^{18}$  are independently selected from the group consisting of  
 hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

$Q^b$  is  $C(NR^{25})NR^{23}R^{24}$ ;

$R^{23}$ ,  $R^{24}$ , and  $R^{25}$  are independently selected from the group consisting of  
 hydrido and methyl;

$Q^S$  is  $CH_2$ .

23. Compound of Claim 22 or a pharmaceutically acceptable salt thereof, wherein;

- 5        B is selected from the group consisting of hydrido, ethyl, 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butyl, (R)-2-butyl, (S)-2-butyl, tert-butyl, isobutyl, 1-pentyl, 3-pentyl, 2-methylbutyl, 2,2,2-trifluoroethyl, 6-amidocarbonylhexyl, 4-methyl-2-pentyl, 3-hydroxypropyl, 1-methoxy-2-propyl, 2-methoxyethyl, 2-methyl-2-butyl, 3-methyl-2-butyl,
- 10      2-dimethylaminopropyl, 2-cyanoethyl, 6-hydroxyhexyl, 2-hydroxyethyl, 2-amidinoethyl, 2-guanidinoethyl, 3-guanidinopropyl, 4-guanidinobutyl, 3-hydroxypropyl, 4-hydroxybutyl, 6-cyanoethyl, 2-dimethylaminoethyl, 3-methylbutyl, 2-methylbutyl, (S)-2-methylbutyl, 3-aminopropyl, 2-hexyl, and 4-aminobutyl;
- 15      A is selected from the group consisting of a bond,  $CH_2$ ,  $CH_3CH$ , and  $CH_2CH_2$ ;

M is selected from the group consisting of N and  $R^1-C$ ;

- 20       $R^1$  is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro;

$R^2$  is  $Z^0-Q$ ;

$Z^0$  is selected from the group consisting of a bond, O, and S, NH;

- 25      Q is selected from the group consisting of  
3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,  
3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,  
3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,  
3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,  
3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,  
3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,
- 30      3-amino-5-(N-benzylamidosulfonyl)phenyl,  
3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,  
3-amino-5-(N-ethylamidocarbonyl)phenyl,

- 3-amino-5-(N-isopropylamidocarbonyl)phenyl,
- 3-amino-5-(N-propylamidocarbonyl)phenyl,
- 3-amino-5-(N-isobutylamidocarbonyl)phenyl,
- 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,
- 5 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,
- 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,
- 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 3-aminophenyl,
- 3-carboxy-5-aminophenyl, 3-chlorophenyl, 3,5-diaminophenyl,
- 3-dimethylaminophenyl, 3-hydroxyphenyl, 3-methanesulfonylaminophenyl,
- 10 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, phenyl,
- 3-trifluoroacetamidophenyl, 3-bromo-2-thienyl, 2-thienyl, and 3-thienyl, with the proviso that Q is other than a phenyl or a substituted phenyl when Z<sup>0</sup> is a bond;

Y<sup>0</sup> is selected from the group consisting of 5-amidino-2-thienylmethyl,

- 15 4-amidinobenzyl, 2-fluoro-4-amidinobenzyl, and 3-fluoro-4-amidinobenzyl.

24. Compound of Claim 17 where said compound is selected from the group of the Formula:



- 20 or a pharmaceutically acceptable salt thereof, wherein:

R<sup>2</sup> is 3-aminophenoxy, B is 2,2,2-trifluoroethyl, A is single bond, Y<sup>0</sup> is 4-amidinobenzyl, and M is CH;

R<sup>2</sup> is 3-aminophenoxy, B is (S)-2-butyl, A is single bond, Y<sup>0</sup> is 4-amidinobenzyl, and M is CH;

- 25 R<sup>2</sup> is 5-amino-2-fluorophenoxy, B is isopropyl, A is single bond, Y<sup>0</sup> is 4-amidinobenzyl, and M is CH;

$R^2$  is 2-methyl-3-aminophenoxy, B is isopropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-aminophenoxy, B is ethyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

5        $R^2$  is 3-aminophenoxy, B is ethyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;

$R^2$  is 3-aminophenoxy, B is 2-propenyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

10       $R^2$  is 3-aminophenoxy, B is isopropyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;

$R^2$  is 3-aminophenoxy, B is isopropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-aminophenoxy, B is 2-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

15       $R^2$  is 3-aminophenoxy, B is (R)-2-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-aminophenoxy, B is 2-propynyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

20       $R^2$  is 3-aminophenoxy, B is 3-pentyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-aminophenoxy, B is hydrido, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl and M is CH;

$R^2$  is 3-aminophenoxy, B is ethyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

25       $R^2$  is 3-aminophenoxy, B is 2-methypropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-aminophenoxy, B is 2-propyl, A is  $CH_3CH$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-aminophenoxy, B is propyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;

$R^2$  is 3-aminophenoxy, B is 6-amidocarbonylhexyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

5        $R^2$  is 3-aminophenoxy, B is tert-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-aminophenoxy, B is tert-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

10       $R^2$  is 3-aminophenoxy, B is 3-hydroxypropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-aminophenoxy, B is 2-methylpropyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;

$R^2$  is 3-aminophenoxy, B is butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

15       $R^2$  is 3-aminophenoxy, B is 1-methoxy-2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-aminophenoxy, B is 2-methoxyethyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

20       $R^2$  is 3-aminophenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 5-amidino-2-thienylmethyl, and M is CH;

$R^2$  is 3-aminophenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidino-3-fluorobenzyl, and M is CH;

$R^2$  is 3-carboxyphenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

25       $R^2$  is 3-aminophenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidino-3-fluorobenzyl, and M is CH;

$R^2$  is 3-amino-5-carboxy-2-thienyl, B is 2,2,2-trifluoroethyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is (S)-2-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 5-amino-4-fluoro-3-carboxy-2-thienyl, B is isopropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 5        $R^2$  is 4-methyl-3-amino-5-carboxy-2-thienyl, B is isopropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is ethyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 10       $R^2$  is 3-amino-5-carboxy-2-thienyl, B is ethyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is 2-propenyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is isopropyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;
- 15       $R^2$  is 3-amino-5-carboxy-2-thienyl, B is isopropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is 2-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 20       $R^2$  is 3-amino-5-carboxy-2-thienyl, B is (R)-2-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is 2-propynyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is 3-pentyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 25       $R^2$  is 3-amino-5-carboxy-2-thienyl, B is hydrido, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is ethyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is 2-methypropyl, A is single bond,  
 $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is 2-propyl, A is  $CH_3CH$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 5       $R^2$  is 3-amino-5-carboxy-2-thienyl, B is propyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is 6-amidocarbonylhexyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 10      $R^2$  is 3-amino-5-carboxy-2-thienyl, B is tert-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is tert-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is 3-hydroxypropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 15      $R^2$  is 3-amino-5-carboxy-2-thienyl, B is 2-methylpropyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 20      $R^2$  is 3-amino-5-carboxy-2-thienyl, B is 1-methoxy-2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is 2-methoxyethyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 5-amidino-2-thienylmethyl, and M is CH;
- 25      $R^2$  is 3-amino-5-carboxy-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidino-3-fluorobenzyl, and M is CH;
- $R^2$  is 3-carboxy-5-carboxy-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-amino-5-carboxy-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidino-3-fluorobenzyl, and M is CH;

$R^2$  is 3-amino-5-carboxyphenylthio, B is 2,2,2-trifluoroethyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

5        $R^2$  is 3-amino-5-carboxyphenylthio, B is (S)-2-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 5-amino-2-fluoro-5-carboxyphenylthio, B is isopropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

10       $R^2$  is 2-methyl-3-amino-5-carboxyphenylthio, B is isopropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-amino-5-carboxyphenylthio, B is ethyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-amino-5-carboxyphenylthio, B is ethyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;

15       $R^2$  is 3-amino-5-carboxyphenylthio, B is 2-propenyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-amino-5-carboxyphenylthio, B is isopropyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;

20       $R^2$  is 3-amino-5-carboxyphenylthio, B is isopropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-amino-5-carboxyphenylthio, B is 2-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-amino-5-carboxyphenylthio, B is (R)-2-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

25       $R^2$  is 3-amino-5-carboxyphenylthio, B is 2-propynyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-amino-5-carboxyphenylthio, B is 3-pentyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

- $R^2$  is 3-amino-5-carboxyphenylthio, B is hydrido, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxyphenylthio, B is ethyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 5        $R^2$  is 3-amino-5-carboxyphenylthio, B is 2-methypropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxyphenylthio, B is 2-propyl, A is  $CH_3CH$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 10       $R^2$  is 3-amino-5-carboxyphenylthio, B is propyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxyphenylthio, B is 6-amidocarbonylhexyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxyphenylthio, B is tert-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 15       $R^2$  is 3-amino-5-carboxyphenylthio, B is tert-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxyphenylthio, B is 3-hydroxypropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 20       $R^2$  is 3-amino-5-carboxyphenylthio, B is 2-methylpropyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxyphenylthio, B is butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxyphenylthio, B is 1-methoxy-2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 25       $R^2$  is 3-amino-5-carboxyphenylthio, B is 2-methoxyethyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxyphenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 5-amidino-2-thienylmethyl, and M is CH;

- $R^2$  is 3-amino-5-carboxyphenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidino-3-fluorobenzyl, and M is CH;
- $R^2$  is 3-carboxy-5-carboxyphenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 5       $R^2$  is 3-amino-5-carboxyphenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidino-3-fluorobenzyl, and M is CH;
- 10      $R^2$  is 3-amidocarbonyl-5-aminophenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 15      $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 20      $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 25      $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)- phenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 30      $R^2$  is 3,5-diaminophenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 35      $R^2$  is 3-amino-5-carboxyphenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 40      $R^2$  is 3-amidocarbonyl-5-aminophenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- 45      $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- 50      $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- 55      $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

- $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is 3,5-diaminophenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- 5        $R^2$  is 3-amino-5-carboxyphenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is 3-amidocarbonyl-5-amino-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- 10       $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- 15       $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is 3,5-diamino-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- 20       $R^2$  is 3-amino-5-carboxy-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is 3-amidocarbonyl-5-amino-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 25       $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

- $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3,5-diamino-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 5       $R^2$  is 3-amino-5-carboxy-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amidocarbonyl-5-aminophenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 10      $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 15      $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 20      $R^2$  is 3,5-diaminophenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxyphenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 25      $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

$R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

$R^2$  is 3,5-diaminophenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

5        $R^2$  is 3-amino-5-carboxyphenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

$R^2$  is 3-amidocarbonyl-5-aminophenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

10       $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

15       $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3,5-diaminophenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

20       $R^2$  is 3-amino-5-carboxyphenylthio, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-amidocarbonyl-5-amino-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

25       $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3,5-diamino-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

5        $R^2$  is 3-amino-5-carboxy-2-thienyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-amidocarbonyl-5-aminophenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

10       $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

15       $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3,5-diaminophenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

20       $R^2$  is 3-amino-5-carboxyphenoxy, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N.

25. Compound of Claim 2 of the Formula:



or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of C3-C7 cycloalkyl and C4 saturated heterocyclyl, wherein each ring carbon is optionally substituted with R<sup>33</sup>, a ring carbon other than the ring carbon at the point of attachment of B to A is optionally substituted with oxo provided that no more than one ring carbon 5 is substituted by oxo at the same time, ring carbon sand a nitrogen adjacent to the carbon atom at the point of attachment is optionally substituted with R<sup>9</sup> or R<sup>13</sup>, a ring carbon or nitrogen adjacent to the R<sup>9</sup> position and two atoms from the point of attachment is optionally substituted with R<sup>10</sup>, a ring carbon or nitrogen adjacent to the R<sup>13</sup> position and two atoms from the point of 10 attachment is optionally substituted with R<sup>12</sup>, a ring carbon three atoms from the point of attachment and adjacent to the R<sup>10</sup> position is optionally substituted with R<sup>11</sup>, a ring carbon three atoms from the point of attachment and adjacent to the R<sup>12</sup> position is optionally substituted with R<sup>33</sup>, and a ring carbon atoms from the point of attachment and adjacent to the R<sup>11</sup> and R<sup>33</sup> 15 positions is optionally substituted with R<sup>34</sup>;

R<sup>9</sup>, R<sup>11</sup>, and R<sup>13</sup> are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkylsulfonamido, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboxy, 20 carboxamido, and cyano;

R<sup>10</sup> and R<sup>12</sup> are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy, 25 heteroaralkoxy, heterocyclxyloxy, heterocyclalkoxy, hydroxy, amino, alkoxyamino, alkylamino, arylamino, aralkylamino, heteroarylalmino, heteroaralkylamino, heterocyclylamino, heterocyclalkylamino,

alkylsulfonamido, amidosulfonyl, arylsulfinyl, aralkylsulfinyl,  
 cycloalkylsulfinyl, heteroarylsulfinyl, arylsulfonyl, aralkylsulfonyl,  
 cycloalkylsulfonyl, heteroarylsulfonyl, hydroxyalkyl, hydroxyhaloalkyl,  
 aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, halo, haloalkyl,

5 and cyano;

$R^{33}$  and  $R^{34}$  independently selected from the group consisting of  
 hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino,  
 alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl,  
 haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboalkoxy, carboxy,  
 10 carboxamido, cyano, and  $Q^b$ :

$A$  is a bond or  $(CH(R^{15}))_{pa}-(W^7)_{\tau\tau}$  wherein  $\tau$  is 0 or 1,  $pa$  is an  
 integer selected from 0 through 3, and  $W^7$  is  $(R^7)NC(O)$  or  $N(R^7)$ ;

$R^7$  is selected from the group consisting of hydrido, hydroxy and alkyl;

$R^{15}$  is selected from the group consisting of hydrido, halo, alkyl, and  
 15 haloalkyl;

$M$  is N or  $R^1-C$ ;

$R^1$  is selected from the group consisting of hydrido, hydroxy,  
 hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino,  
 aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

20  $R^2$  is  $Z^0-Q$ ;

$Z^0$  is a bond or  $W^0-(CH(R^{42}))_p$  wherein  $p$  is 0 or 1 and  $W^0$  is selected  
 from the group consisting of O, S, and  $N(R^{41})$ ;

$R^{41}$  and  $R^{42}$  are independently hydrido or alkyl;

25  $Q$  is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon  
 adjacent to the carbon at the point of attachment of said phenyl or heteroaryl  
 ring to  $Z^0$  is optionally substituted by  $R^9$ , the other carbon adjacent to the  
 carbon at the point of attachment is optionally substituted by  $R^{13}$ , a carbon

adjacent to R<sup>9</sup> and two atoms from the carbon at the point of attachment is optionally substituted by R<sup>10</sup>, a carbon adjacent to R<sup>13</sup> and two atoms from the carbon at the point of attachment is optionally substituted by R<sup>12</sup>, and any carbon adjacent to both R<sup>10</sup> and R<sup>12</sup> is optionally substituted by R<sup>11</sup>, with the proviso that Q is other than a phenyl when Z<sup>0</sup> is a bond;

Y<sup>0</sup> is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q<sup>s</sup>, a carbon two or three contiguous atoms from the point of attachment of Q<sup>s</sup> to the phenyl or heteroaryl ring is substituted by Q<sup>b</sup>, a carbon adjacent to the point of attachment of Q<sup>s</sup> is optionally substituted by R<sup>17</sup>, another carbon adjacent to the point of attachment of Q<sup>s</sup> is optionally substituted by R<sup>18</sup>, a carbon adjacent to Q<sup>b</sup> is optionally substituted by R<sup>16</sup>, and another carbon adjacent to Q<sup>b</sup> is optionally substituted by R<sup>19</sup>;

R<sup>16</sup>, R<sup>17</sup>, R<sup>18</sup>, and R<sup>19</sup> are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

R<sup>16</sup> or R<sup>19</sup> is optionally NR<sup>20</sup>R<sup>21</sup> or C(NR<sup>25</sup>)NR<sup>23</sup>R<sup>24</sup>, with the proviso that R<sup>16</sup>, R<sup>19</sup>, and Q<sup>b</sup> are not simultaneously hydrido;

Q<sup>b</sup> is selected from the group consisting of NR<sup>20</sup>R<sup>21</sup>, hydrido, and C(NR<sup>25</sup>)NR<sup>23</sup>R<sup>24</sup>, with the proviso that no more than one of R<sup>20</sup> and R<sup>21</sup> is

hydroxy at the same time and with the further proviso that no more than one of R<sup>23</sup>

and R<sup>24</sup> is hydroxy at the same time;

R<sup>20</sup>, R<sup>21</sup>, R<sup>23</sup>, R<sup>24</sup>, and R<sup>25</sup> are independently selected from the group consisting of hydrido, alkyl, and hydroxy;

5 Q<sup>s</sup> is selected from the group consisting of a bond, CH<sub>2</sub>, and  
CH<sub>2</sub>CH<sub>2</sub>.

26. Compound of Claim 25 or a pharmaceutically acceptable salt thereof, wherein;

10 B is selected from the group consisting of cyclopropyl, cyclobutyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, thiaetan-3-yl, cyclopentyl, cyclohexyl, norbornyl, 7-oxabicyclo[2.2.1]heptan-2-yl, bicyclo[3.1.0]hexan-6-yl, cycloheptyl, 2-morpholinyl, 3-morpholinyl, 4-morpholinyl, 1-piperazinyl, 2-piperazinyl, 1-piperidinyl, 2-piperidinyl, 15 3-piperidinyl, 4-piperidinyl, 1-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 2-dioxanyl, 4H-2-pyranyl, 4H-3-pyranyl, 4H-4-pyranyl, 4H-pyran-4-one-2-yl, 4H-pyran-4-one-3-yl, 2-tetrahydrofuran-3-yl, 3-tetrahydrofuran-3-yl, 2-tetrahydropyran-3-yl, 3-tetrahydropyran-3-yl, 4-tetrahydropyran-4-yl, 2-tetrahydrothienyl, and 3-tetrahydrothienyl, wherein each ring carbon is 20 optionally substituted with R<sup>33</sup>, ring carbons and a nitrogen adjacent to the carbon atom at the point of attachment are optionally substituted with R<sup>9</sup> or R<sup>13</sup>, a ring carbon or nitrogen adjacent to the R<sup>9</sup> position and two atoms from the point of attachment is optionally substituted with R<sup>10</sup>, and a ring carbon or 25 nitrogen adjacent to the R<sup>13</sup> position and two atoms from the point of attachment is optionally substituted with R<sup>12</sup>;

R<sup>9</sup>, R<sup>11</sup>, and R<sup>13</sup> are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, N-methylamino,

- N,N-dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl,
- 5 N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, and cyano;
- R<sup>10</sup> and R<sup>12</sup> are independently selected from the group consisting of
- 10 hydrido, amidino, guanidino, carboxy, carboxymethyl, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl,
- 15 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl, N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl, N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl,
- 20 N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl, N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl, N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl, N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl, N-cyclohexylamidocarbonyl, fluoro, chloro, bromo, cyano, cyclobutoxy,
- 25 cyclohexoxy, cyclohexylmethoxy, 4-trifluoromethylcyclohexylmethoxy, cyclopentoxy, benzyl, benzyloxy, 4-bromo-3-fluorophenoxy, 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromobenzylamino, 5-bromopyrid-2-ylmethylamino, 4-butoxyphenamino, 3-chlorobenzyl, 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-ethylbenzylamino,
- 30 4-chloro-3-ethylphenylamino, 3-chlorobenzyloxy, 4-chlorobenzyloxy, 4-chlorobenzylsulfonyl, 4-chlorophenylamino, 4-chlorophenylsulfonyl, 5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 2,3-difluorobenzyloxy, 2,4-difluorobenzyloxy, 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy, 5-difluorophenoxy, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy,
- 35 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy,

- 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3,4-dimethylbenzyloxy,  
 3,5-dimethylbenzyloxy, 4-ethoxyphenoxy, 4-ethylbenzyloxy, 3-ethylphenoxy,  
 4-ethylaminophenoxy, 3-ethyl-5-methylphenoxy, 4-fluorobenzyloxy,  
 2-fluoro-3-trifluoromethylbenzyloxy, 3-fluoro-5-trifluoromethylbenzyloxy,  
 5    4-fluoro-2-trifluoromethylbenzyloxy, 4-fluoro-3-trifluoromethylbenzyloxy,  
 2-fluorophenoxy, 4-fluorophenoxy, 2-fluoro-3-trifluoromethylphenoxy,  
 2-fluorobenzyloxy, 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,  
 4-isopropylbenzyloxy, 3-isopropylphenoxy, 4-isopropylphenoxy,  
 4-isopropyl-3-methylphenoxy, 4-isopropylbenzyloxy, 3-isopropylphenoxy,  
 10   4-isopropylphenoxy, 4-isopropyl-3-methylphenoxy, phenylamino,  
 1-phenylethoxy, 2-phenylethoxy, 2-phenylethyl, 2-phenylethylamino,  
 phenylsulfonyl, 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,  
 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy,  
 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,  
 15   2,4-bis-trifluoromethylbenzyloxy, 3-trifluoromethylbenzyl,  
 3,5-bis-trifluoromethylbenzyloxy, 4-trifluoromethylphenoxy,  
 3-trifluoromethylphenoxy, 3-trifluoromethylthiobenzyloxy,  
 4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy,  
 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, and  
 20   3-trifluoromethylthiophenoxy;
- $R^{33}$  and  $R^{34}$  are independently selected from the group consisting of  
 hydrido, amidino, guanidino, carboxy, methoxy, ethoxy, isopropoxy, propoxy,  
 hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido,  
 N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio,  
 25   isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl,  
 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro,  
 chloro, bromo, amidosulfonyl, N-methylamidosulfonyl,  
 N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl,  
 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl,  
 30   amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, cyano,  
 and  $Q^b$ ;

A is selected from the group consisting of a bond, NH, N(CH<sub>3</sub>),

N(OH), CH<sub>2</sub>, CH<sub>3</sub>CH, CF<sub>3</sub>CH, NHC(O), N(CH<sub>3</sub>)C(O), C(O)NH,

C(O)N(CH<sub>3</sub>), CH<sub>2</sub>CH<sub>2</sub>, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>, CH<sub>3</sub>CHCH<sub>2</sub>, and CF<sub>3</sub>CHCH<sub>2</sub>;

M is N or R<sup>1</sup>-C;

5       R<sup>1</sup> is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, 1-aminoethyl, methylamino, dimethylamino, cyano, methyl, ethyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, methoxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, methoxyamino, methylthio, ethylthio, trifluoromethoxy,

10      1,1,2,2-tetrafluoroethoxy, fluoro, chloro, and bromo;

R<sup>2</sup> is Z<sup>0</sup>-Q;

Z<sup>0</sup> is selected from the group consisting of a bond, O, S, NH, N(CH<sub>3</sub>), OCH<sub>2</sub>, SCH<sub>2</sub>, N(H)CH<sub>2</sub>, and N(CH<sub>3</sub>)CH<sub>2</sub>;

Q is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl,

15      2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or

20      heteroaryl ring to Z<sup>0</sup> is optionally substituted by R<sup>9</sup>, the other carbon adjacent

to the carbon at the point of attachment is optionally substituted by R<sup>13</sup>, a

carbon adjacent to R<sup>9</sup> and two atoms from the carbon at the point of attachment

is optionally substituted by R<sup>10</sup>, a carbon adjacent to R<sup>13</sup> and two atoms from

the carbon at the point of attachment is optionally substituted by R<sup>12</sup>, and any

25      carbon adjacent to both R<sup>10</sup> and R<sup>12</sup> is optionally substituted by R<sup>11</sup>, with the proviso that Q is other than a phenyl when Z<sup>0</sup> is a bond;

$Y^0$  is selected from the group consisting of:

- 1- $Q^b$ -4- $Q^s$ -2- $R^{16}$ -3- $R^{17}$ -5- $R^{18}$ -6- $R^{19}$  benzene,
- 2- $Q^b$ -5- $Q^s$ -6- $R^{17}$ -4- $R^{18}$ -3- $R^{19}$  pyridine,
- 3- $Q^b$ -6- $Q^s$ -2- $R^{16}$ -5- $R^{18}$ -4- $R^{19}$  pyridine, 2- $Q^b$ -5- $Q^s$ -3- $R^{16}$ -6- $R^{18}$  pyrazine,
- 5 3- $Q^b$ -6- $Q^s$ -2- $R^{18}$ -5- $R^{18}$ -4- $R^{19}$  pyridazine,
- 2- $Q^b$ -5- $Q^s$ -4- $R^{17}$ -6- $R^{18}$  pyrimidine, 5- $Q^b$ -2- $Q^s$ -4- $R^{16}$ -6- $R^{19}$  pyrimidine,
- 3- $Q^b$ -5- $Q^s$ -4- $R^{16}$ -2- $R^{19}$  thiophene, 2- $Q^b$ -5- $Q^s$ -3- $R^{16}$ -4- $R^{17}$  thiophene,
- 3- $Q^b$ -5- $Q^s$ -4- $R^{16}$ -2- $R^{19}$  furan, 2- $Q^b$ -5- $Q^s$ -3- $R^{16}$ -4- $R^{17}$  furan,
- 3- $Q^b$ -5- $Q^s$ -4- $R^{16}$ -2- $R^{19}$  pyrrole, 2- $Q^b$ -5- $Q^s$ -3- $R^{16}$ -4- $R^{17}$  pyrrole,
- 10 4- $Q^b$ -2- $Q^s$ -5- $R^{19}$  imidazole, 2- $Q^b$ -4- $Q^s$ -5- $R^{17}$  imidazole,
- 3- $Q^b$ -5- $Q^s$ -4- $R^{16}$  isoxazole, 5- $Q^b$ -3- $Q^s$ -4- $R^{16}$  isoxazole,
- 2- $Q^b$ -5- $Q^s$ -4- $R^{16}$  pyrazole, 4- $Q^b$ -2- $Q^s$ -5- $R^{19}$  thiazole, and
- 2- $Q^b$ -5- $Q^s$ -4- $R^{17}$  thiazole;

$R^{16}$ ,  $R^{17}$ ,  $R^{18}$ , and  $R^{19}$  are independently selected from the group

- 15 consisting of hydrido, methyl, ethyl, isopropyl, propyl, carboxy, amidino, guanidino, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, and cyano;
- 20  $R^{16}$  or  $R^{19}$  is optionally  $C(NR^{25})NR^{23}R^{24}$  with the proviso that  $R^{16}$ ,  $R^{19}$ , and  $Q^b$  are not simultaneously hydrido;

$Q^b$  is  $C(NR^{25})NR^{23}R^{24}$  or hydrido, with the proviso that no more than one of  $R^{23}$  and  $R^{24}$  is hydroxy at the same time;

$R^{23}$ ,  $R^{24}$ , and  $R^{25}$  are independently selected from the group consisting of hydrido, methyl, ethyl, and hydroxy;

5        $Q^s$  is selected from the group consisting of a bond,  $CH_2$  and  $CH_2CH_2$ .

27. Compound of Claim 26 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of cyclopropyl, cyclobutyl,  
 10      cyclopentyl, cyclohexyl, cycloheptyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl,  
       1-pyrrolidinyl, 1-piperidinyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl,  
       azetidin-3-yl, 7-oxabicyclo[2.2.1]heptan-2-yl, bicyclo[3.1.0]hexan-6-yl,  
       2-morpholinyl, 3-morpholinyl, 4-morpholinyl, 1-piperazinyl, 2-piperazinyl,  
       1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1-pyrrolidinyl,  
 15      2-pyrrolidinyl, 3-pyrrolidinyl, 2-dioxanyl, 4H-2-pyranyl, 4H-3-pyranyl,  
       4H-4-pyranyl, 4H-pyran-4-one-2-yl, 4H-pyran-4-one-3-yl, 2-tetrahydrofuranyl,  
       3-tetrahydrofuranyl, 2-tetrahydropyranyl, 3-tetrahydropyranyl,  
       4-tetrahydropyranyl, 2-tetrahydrothienyl, and 3-tetrahydrothienyl;

A is selected from the group consisting of a bond,  $CH_2$ ,  $NHC(O)$ ,  
 20       $CH_2CH_2$ , and  $CH_2CH_2CH_2$ ;

M is selected from the group consisting of N and  $R^1-C$ ;

$R^1$  is selected from the group consisting of hydrido, hydroxy, amino,  
 amidino, hydroxyamino, aminomethyl, methylamino, cyano, methyl,  
 trifluoromethyl, methoxy, hydroxymethyl, methoxyamino, methylthio,  
 25      trifluoromethoxy, fluoro, and chloro;

$R^2$  is  $Z^0-Q$ ;

$Z^0$  is selected from the group consisting of a bond, O, S, NH,  $N(CH_3)$ ,

$OCH_2$ , and  $SCH_2$ ;

Q is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,  
 3-amino-5-benzylphenyl, 3-amino-5-(2-phenylethyl)phenyl,  
 3-amino-5-benzylaminophenyl, 3-amino-5-(2-phenylethylamino)phenyl,  
 3-amino-5-benzylxyphenyl, 3-amino-5-(2-phenylethoxy)phenyl,  
 5 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,  
 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,  
 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,  
 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,  
 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,  
 10 3-amino-5-(N-benzylamidosulfonyl)phenyl,  
 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,  
 3-amino-5-(N-ethylamidocarbonyl)phenyl,  
 3-amino-5-(N-isopropylamidocarbonyl)phenyl,  
 3-amino-5-(N-propylamidocarbonyl)phenyl,  
 15 3-amino-5-(N-isobutylamidocarbonyl)phenyl,  
 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,  
 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,  
 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,  
 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,  
 20 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,  
 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,  
 3-aminophenyl, 3-amino-5-(4-trifluoromethylbenzylamino)phenyl,  
 3-amino-5-(4-trifluoromethylbenzyloxy)phenyl, 3-carboxyphenyl,  
 3-carboxy-5-hydroxyphenyl, 3-amino-5-carboxyphenyl, 3-chlorophenyl,  
 25 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,  
 2-fluorophenyl, 3-fluorophenyl, 2-hydroxyphenyl, 3-hydroxyphenyl,  
 3-methanesulfonylaminophenyl, 2-methoxyphenyl, 3-methoxyphenyl,  
 3-methoxyaminophenyl, 3-methoxycarbonylphenyl, 2-methylaminophenyl,  
 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl,  
 30 phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,  
 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,  
 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl, with the  
 proviso that Q is other than a phenyl or substituted phenyl when Z<sup>0</sup> is a bond;

$Y^0$  is selected from the group consisting of:

1-Q<sup>b</sup>-4-Q<sup>s</sup>-2-R<sup>16</sup>-3-R<sup>17</sup>-5-R<sup>18</sup>-6-R<sup>19</sup> benzene,

2-Q<sup>b</sup>-5-Q<sup>s</sup>-6-R<sup>17</sup>-4-R<sup>18</sup>-3-R<sup>19</sup> pyridine,

3-Q<sup>b</sup>-6-Q<sup>s</sup>-2-R<sup>16</sup>-5-R<sup>18</sup>-4-R<sup>19</sup> pyridine,

5 3-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup>-2-R<sup>19</sup> thiophene, and 2-Q<sup>b</sup>-5-Q<sup>s</sup>-3-R<sup>16</sup>-4-R<sup>17</sup> thiophene;

$R^{16}$  and  $R^{19}$  are independently selected from the group consisting of

hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

$R^{16}$  or  $R^{19}$  is optionally  $C(NR^{25})NR^{23}R^{24}$  with the proviso that  $R^{16}$ ,

10  $R^{19}$ , and  $Q^b$  are not simultaneously hydrido;

$R^{17}$  and  $R^{18}$  are independently selected from the group consisting of

hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

$Q^b$  is  $C(NR^{25})NR^{23}R^{24}$  or hydrido;

$R^{23}$ ,  $R^{24}$ , and  $R^{25}$  are independently hydrido or methyl;

15  $Q^s$  is  $CH_2$ .

28. Compound of Claim 25 of the Formula:



or a pharmaceutically acceptable salt thereof, wherein;

B is a C3-C7 cycloalkyl or a C4-C6 saturated heterocyclyl, wherein each ring carbon is optionally substituted with R<sup>33</sup>, a ring carbon other than the ring carbon at the point of attachment of B to A is optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbons and a nitrogen adjacent to the carbon atom at the point of attachment are optionally substituted with R<sup>9</sup> or R<sup>13</sup>, a ring carbon or 5 nitrogen adjacent to the R<sup>9</sup> position and two atoms from the point of attachment is optionally substituted with R<sup>10</sup>, a ring carbon or nitrogen adjacent to the R<sup>13</sup> position and two atoms from the point of attachment is optionally substituted 10 with R<sup>12</sup>, a ring carbon or nitrogen three atoms from the point of attachment and adjacent to the R<sup>10</sup> position is optionally substituted with R<sup>11</sup>, a ring carbon or nitrogen three atoms from the point of attachment and adjacent to the R<sup>12</sup> position is optionally substituted with R<sup>33</sup>, and a ring carbon or nitrogen four atoms from the point of attachment and adjacent to the R<sup>11</sup> and R<sup>33</sup> 15 positions is optionally substituted with R<sup>34</sup>;

R<sup>9</sup>, R<sup>11</sup>, and R<sup>13</sup> are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkoxy, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboxy, carboxamido, and cyano;

20 R<sup>10</sup> and R<sup>12</sup> are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, alkoxy, alkoxyamino, hydroxy, amino, alkylamino, alkylsulfonamido, amidosulfonyl, hydroxyalkyl, aminoalkyl, halo, haloalkyl, carboalkoxy, carboxy, carboxamido, carboxyalkyl, and cyano;

25 R<sup>33</sup> and R<sup>34</sup> are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino,

alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboalkoxy, carboxy, carboxamido, and cyano;

$R^{33}$  is optionally  $Q^b$ ;

A is a bond or  $(CH(R^{15}))_{pa}-(W^7)_{rr}$  wherein rr is 0 or 1, pa is an

5 integer selected from 0 through 3, and  $W^7$  is  $N(R^7)$ ;

$R^7$  is hydrido or alkyl;

$R^{15}$  is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

M is N or  $R^1-C$ ;

10  $R^1$  is selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

$R^2$  is  $Z^0-Q$ ;

15  $Z^0$  is a bond or  $W^0-(CH_2)_p$  wherein p is 0 or 1 and  $W^0$  is selected from the group consisting of O, S, and N(H);

$Q$  is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to  $Z^0$  is optionally substituted by  $R^9$ , the other carbon adjacent to the carbon at the

20 point of attachment is optionally substituted by  $R^{13}$ , a carbon adjacent to  $R^9$  and two atoms from the carbon at the point of attachment is optionally

substituted by  $R^{10}$ , a carbon adjacent to  $R^{13}$  and two atoms from the carbon at

the point of attachment is optionally substituted by  $R^{12}$ , and any carbon

adjacent to both  $R^{10}$  and  $R^{12}$  is optionally substituted by  $R^{11}$ , with the proviso

that Q is other than a phenyl when  $Z^0$  is a bond;

$\text{Y}^0$  is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by  $\text{Q}^{\text{s}}$ , a carbon two or three contiguous atoms from the point of attachment of  $\text{Q}^{\text{s}}$  to the phenyl or

- 5     heteroaryl ring is substituted by  $\text{Q}^{\text{b}}$ , a carbon adjacent to the point of attachment of  $\text{Q}^{\text{s}}$  is optionally substituted by  $\text{R}^{17}$ , another carbon adjacent to the point of attachment of  $\text{Q}^{\text{s}}$  is optionally substituted by  $\text{R}^{18}$ , a carbon adjacent to  $\text{Q}^{\text{b}}$  is optionally substituted by  $\text{R}^{16}$ , and another carbon adjacent to  $\text{Q}^{\text{b}}$  is optionally substituted by  $\text{R}^{19}$ ;

10      $\text{R}^{16}, \text{R}^{17}, \text{R}^{18}$ , and  $\text{R}^{19}$  are independently selected from the group

- 10     consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

- 15      $\text{R}^{16}$  or  $\text{R}^{19}$  is optionally  $\text{NR}^{20}\text{R}^{21}$  or  $\text{C}(\text{NR}^{25})\text{NR}^{23}\text{R}^{24}$ , with the proviso that  $\text{R}^{16}, \text{R}^{19}$ , and  $\text{Q}^{\text{b}}$  are not simultaneously hydrido;

15      $\text{Q}^{\text{b}}$  is selected from the group consisting of  $\text{NR}^{20}\text{R}^{21}$ , hydrido, and  $\text{C}(\text{NR}^{25})\text{NR}^{23}\text{R}^{24}$ ;

20      $\text{R}^{20}, \text{R}^{21}, \text{R}^{23}, \text{R}^{24}$ , and  $\text{R}^{25}$  are independently hydrido or alkyl;

20      $\text{Q}^{\text{s}}$  is  $\text{CH}_2$ .

20

29. Compound of Claim 28 or a pharmaceutically acceptable salt thereof, wherein;

- 25     B is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, bicyclo[3.1.0]hexan-6-yl, 2-morpholinyl, 3-morpholinyl, 4-morpholinyl, 1-piperazinyl, 2-piperazinyl,

1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1-pyrrolidinyl,  
 2-pyrrolidinyl, 3-pyrrolidinyl, 2-dioxanyl, 2-tetrahydrofuranyl,  
 3-tetrahydrofuranyl, 2-tetrahydropyranyl, 3-tetrahydropyranyl,  
 4-tetrahydropyranyl, 2-tetrahydrothienyl, and 3-tetrahydrothienyl, wherein each  
 5 ring carbon is optionally substituted with R<sup>33</sup>, ring carbons and a nitrogen  
 adjacent to the carbon atom at the point of attachment are optionally substituted  
 with R<sup>9</sup> or R<sup>13</sup>, a ring carbon or nitrogen adjacent to the R<sup>9</sup> position and two  
 atoms from the point of attachment are optionally substituted with R<sup>10</sup>, and a  
 10 ring carbon or nitrogen atom adjacent to the R<sup>13</sup> position and two atoms from  
 the point of attachment is optionally substituted with R<sup>12</sup>;  
 R<sup>9</sup>, R<sup>11</sup>, and R<sup>13</sup> are independently selected from the group consisting  
 of hydrido, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino,  
 N,N-dimethylamino, methylthio, trifluoromethyl, pentafluoroethyl,  
 15 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl,  
 N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl,  
 1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, carboxy, and cyano;  
 R<sup>10</sup> and R<sup>12</sup> are independently selected from the group consisting of  
 hydrido, amidino, amidocarbonyl, N-methylamidocarbonyl,  
 N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl,  
 20 N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl,  
 N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl,  
 N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl,  
 N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl,  
 N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl,  
 25 N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl,  
 N-cyclohexylamidocarbonyl, guanidino, methyl, ethyl, methoxy, ethoxy,  
 hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, carboxy,  
 carboxymethyl, amino, acetamido, trifluoromethyl, pentafluoroethyl,  
 2,2,2-trifluoroethyl, trifluoroacetamido, aminomethyl, N-methylamino,  
 30 dimethylamino, methoxyamino, amidosulfonyl, N-methylamidosulfonyl,

N,N-dimethylamidosulfonyl, methanesulfonamido, methoxycarbonyl, fluoro, chloro, bromo, and cyano;

5            $R^{33}$  is selected from the group consisting of hydrido, amidino, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, dimethylamino, methoxyamino, methylthio, ethylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, hydroxymethyl, amidocarbonyl, carboxy, cyano, and  $Q^b$ ;

A is selected from the group consisting of a bond, NH, N(CH<sub>3</sub>), CH<sub>2</sub>, CH<sub>3</sub>CH, CH<sub>2</sub>CH<sub>2</sub>, and CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>;

10          M is selected from the group consisting of N and R<sup>1</sup>-C;

R<sup>1</sup> is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, methylthio, trifluoromethoxy, fluoro, and chloro;

R<sup>2</sup> is Z<sup>0</sup>-Q;

15          Z<sup>0</sup> is selected from the group consisting of a bond, O, S, NH, OCH<sub>2</sub>, SCH<sub>2</sub>, and N(H)CH<sub>2</sub>;

Q is selected from the group consisting of phenyl, 2-thienyl, 2-furyl, 2-pyrrolyl, 2-imidazolyl, 2-thiazolyl, 3-isoxazolyl, 2-pyridyl, and 3-pyridyl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z<sup>0</sup> is optionally substituted by R<sup>9</sup>, the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R<sup>13</sup>, a carbon adjacent to R<sup>9</sup> and two atoms from the carbon at the point of attachment is optionally substituted by R<sup>10</sup>, a carbon adjacent to R<sup>13</sup> and two atoms from the carbon at the point of attachment is optionally substituted by R<sup>12</sup>, and any carbon adjacent to both R<sup>10</sup> and R<sup>12</sup> is optionally substituted by R<sup>11</sup>, with the proviso that Q is other than a phenyl when Z<sup>0</sup> is a bond;

$Y^0$  is selected from the group consisting of:

- 1-Q<sup>b</sup>-4-Q<sup>s</sup>-2-R<sup>16</sup>-3-R<sup>17</sup>-5-R<sup>18</sup>-6-R<sup>19</sup> benzene,  
 2-Q<sup>b</sup>-5-Q<sup>s</sup>-6-R<sup>17</sup>-4-R<sup>18</sup>-3-R<sup>19</sup> pyridine, 2-Q<sup>b</sup>-5-Q<sup>s</sup>-3-R<sup>16</sup>-4-R<sup>17</sup> thiophene,  
 3-Q<sup>b</sup>-6-Q<sup>s</sup>-2-R<sup>16</sup>-5-R<sup>18</sup>-4-R<sup>19</sup> pyridine, 3-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup>-2-R<sup>19</sup> thiophene,  
 5 3-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup>-2-R<sup>19</sup> furan, 2-Q<sup>b</sup>-5-Q<sup>s</sup>-3-R<sup>16</sup>-4-R<sup>17</sup> furan,  
 3-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>16</sup>-2-R<sup>19</sup> pyrrole, 2-Q<sup>b</sup>-5-Q<sup>s</sup>-3-R<sup>16</sup>-4-R<sup>17</sup> pyrrole,  
 4-Q<sup>b</sup>-2-Q<sup>s</sup>-5-R<sup>19</sup> thiazole, and 2-Q<sup>b</sup>-5-Q<sup>s</sup>-4-R<sup>17</sup> thiazole;

R<sup>16</sup>, R<sup>17</sup>, R<sup>18</sup>, and R<sup>19</sup> are independently selected from the group  
 consisting of hydrido, methyl, ethyl, amidino, guanidino, methoxy, hydroxy,  
 10 amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino,  
 dimethylamino, methylthio, ethylthio, trifluoromethylthio, methylsulfinyl,  
 methylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl,  
 trifluoromethoxy, fluoro, chloro, hydroxymethyl, carboxy, and cyano;  
 Q<sup>b</sup> is NR<sup>20</sup>R<sup>21</sup> or C(NR<sup>25</sup>)NR<sup>23</sup>R<sup>24</sup>;  
 15 R<sup>20</sup>, R<sup>21</sup>, R<sup>23</sup>, R<sup>24</sup>, and R<sup>25</sup> are independently selected from the group  
 consisting of hydrido, methyl, and ethyl;  
 Q<sup>s</sup> is CH<sub>2</sub>.

30. Compound of Claim 29 or a pharmaceutically acceptable salt thereof,  
 20 wherein;  
 B is selected from the group consisting of cyclopropyl, cyclobutyl,  
 cyclopentyl, cyclohexyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl, oxetan-3-yl,  
 azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, 1-pyrrolidinyl and 1-piperidinyl;  
 A is selected from the group consisting of a bond, CH<sub>2</sub>, CH<sub>2</sub>CH<sub>2</sub> and  
 25 CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>;  
 M is N or R<sup>1</sup>-C;

$R^1$  is selected from the group consisting hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro;

$R^2$  is  $Z^0-Q$ ;

- 5         $Z^0$  is selected from the group consisting of a bond, O, S, NH, and  $OCH_2$ ;

Q is selected from the group consisting of

- 3-amidocarbonyl-5-aminophenyl, 3-amidocarbonyl-5-aminophenyl,
- 3-amino-5-(N-benzylamidocarbonyl)phenyl,
- 10 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,
- 15 3-amino-5-(N-benzylamidosulfonyl)phenyl,
- 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,
- 3-amino-5-(N-ethylamidocarbonyl)phenyl,
- 3-amino-5-(N-isopropylamidocarbonyl)phenyl,
- 3-amino-5-(N-propylamidocarbonyl)phenyl,
- 20 3-amino-5-(N-isobutylamidocarbonyl)phenyl,
- 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,
- 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,
- 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,
- 25 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,
- 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,
- 3-aminophenyl, 3-carboxyphenyl, 3-carboxy-5-aminophenyl,
- 3-carboxy-5-hydroxyphenyl, 3-carboxymethyl-5-aminophenyl,
- 3-carboxymethyl-5-hydroxyphenyl, 3-carboxymethylphenyl, 3-chlorophenyl,
- 30 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,
- 2-fluorophenyl, 3-fluorophenyl, 2,5-difluorophenyl, 2-hydroxyphenyl,
- 3-hydroxyphenyl, 3-methanesulfonylaminophenyl, 2-methoxyphenyl,
- 3-methoxyphenyl, 3-methoxyaminophenyl, 3-methoxycarbonylphenyl,

- 2-methylaminophenyl, 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl,  
 4-methylphenyl, phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,  
 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,  
 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl, with the  
 5 proviso that Q is other than a phenyl or a substituted phenyl when Z<sup>0</sup> is a bond;  
 Y<sup>0</sup> is selected from the group consisting of:  
 $1\text{-}Q^{\text{b}}\text{-}4\text{-}Q^{\text{s}}\text{-}2\text{-}R^{16}\text{-}3\text{-}R^{17}\text{-}5\text{-}R^{18}\text{-}6\text{-}R^{19}$  benzene,  
 $2\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}6\text{-}R^{17}\text{-}4\text{-}R^{18}\text{-}3\text{-}R^{19}$  pyridine,  
 $3\text{-}Q^{\text{b}}\text{-}6\text{-}Q^{\text{s}}\text{-}2\text{-}R^{16}\text{-}5\text{-}R^{18}\text{-}4\text{-}R^{19}$  pyridine,  
 10  $3\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}4\text{-}R^{16}\text{-}2\text{-}R^{19}$  thiophene, and  $2\text{-}Q^{\text{b}}\text{-}5\text{-}Q^{\text{s}}\text{-}3\text{-}R^{16}\text{-}4\text{-}R^{17}$  thiophene;  
 R<sup>16</sup> and R<sup>19</sup> are independently selected from the group consisting of  
 hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy,  
 hydroxymethyl, fluoro, chloro, and cyano;  
 R<sup>17</sup> and R<sup>18</sup> are independently selected from the group consisting of  
 15 hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;  
 Q<sup>b</sup> is  $C(NR^{25})NR^{23}R^{24}$ ;  
 $R^{23}, R^{24}$ , and R<sup>25</sup> are independently hydrido or methyl;  
 $Q^{\text{s}}$  is CH<sub>2</sub>.  
 20 31. Compound of Claim 30 or a pharmaceutically acceptable salt thereof,  
 wherein;  
 B is selected from the group consisting of cyclopropyl, cyclobutyl,  
 cyclopentyl, cyclohexyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl, oxetan-3-yl,  
 azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, and 1-piperidinyl;  
 25 A is selected from the group consisting of a bond, CH<sub>2</sub>, CH<sub>2</sub>CH<sub>2</sub> and  
 CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>;  
 M is N or R<sup>1</sup>-C;

$R^1$  is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro;

$R^2$  is  $Z^0-Q$ ;

- 5       $Z^0$  is selected from the group consisting of a bond, O, and S, NH;  
 Q is selected from the group consisting of  
 3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,  
 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,  
 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,
  - 10     3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,  
 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,  
 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,  
 3-amino-5-(N-benzylamidosulfonyl)phenyl,  
 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,
  - 15     3-amino-5-(N-ethylamidocarbonyl)phenyl,  
 3-amino-5-(N-isopropylamidocarbonyl)phenyl,  
 3-amino-5-(N-propylamidocarbonyl)phenyl,  
 3-amino-5-(N-isobutylamidocarbonyl)phenyl,  
 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,
  - 20     3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,  
 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,  
 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 3-aminophenyl,  
 3-carboxy-5-aminophenyl, 3-chlorophenyl, 3,5-diaminophenyl,  
 3-dimethylaminophenyl, 3-hydroxyphenyl, 3-methanesulfonylaminophenyl,
  - 25     3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, phenyl,  
 3-trifluoroacetamidophenyl, 3-bromo-2-thienyl, 2-thienyl, and 3-thienyl, with  
 the proviso that Q is other than a phenyl or a substituted phenyl when  $Z^0$  is a  
 bond;
- $Y^0$  is selected from the group consisting of 5-amidino-2-thienylmethyl,
- 30    4-amidinobenzyl, 2-fluoro-4-amidinobenzyl, and 3-fluoro-4-amidinobenzyl.

32. Compound of Claim 25 where said compound is selected from the group of the Formula:



or a pharmaceutically acceptable salt thereof, wherein:

- 5         $R^2$  is 3-aminophenoxy, B is cyclopropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-aminophenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;
- $R^2$  is 3-aminophenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 10        $R^2$  is 3-aminophenoxy, B is cyclopropyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;
- $R^2$  is 3-aminophenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 15        $R^2$  is 3-aminophenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidino-3-fluorobenzyl, and M is CH;
- $R^2$  is 3-aminophenoxy, B is cyclopentyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-aminophenoxy, B is cyclopropyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 20       and M is CH;
- $R^2$  is 3-aminophenoxy, B is 2-(2R)-bicyclo[2.2.1]-heptyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-aminophenoxy, B is cyclopentyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;

- $R^2$  is 3-aminophenoxy, B is cyclohexyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 2-hydroxyphenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 5        $R^2$  is phenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 2,6-dichlorophenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 10       $R^2$  is 3-aminophenoxy, B is cyclopropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is 3-aminophenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CCl;
- $R^2$  is 3-aminophenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- 15       $R^2$  is 3-aminophenoxy, B is cyclopropyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CCl;
- $R^2$  is 3-aminophenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- 20       $R^2$  is 3-aminophenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidino-3-fluorobenzyl, and M is CCl;
- $R^2$  is 3-aminophenoxy, B is cyclopentyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is 3-aminophenoxy, B is cyclopropyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- 25       $R^2$  is 3-aminophenoxy, B is 2-(2R)-bicyclo[2.2.1]-heptyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is 3-aminophenoxy, B is cyclopentyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CCl;

- $R^2$  is 3-aminophenoxy, B is cyclohexyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- $R^2$  is 2-hydroxyphenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- 5        $R^2$  is phenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- $R^2$  is 2,6-dichlorophenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- 10       $R^2$  is 3-amidocarbonyl-5-aminophenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- 15       $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- 20       $R^2$  is 3,5-diaminophenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- $R^2$  is 3-amino-5-carboxyphenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;
- 25       $R^2$  is 3-amidocarbonyl-5-aminophenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is  $CH$ ;
- $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is  $CH$ ;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is  $CH$ ;

- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 5        $R^2$  is 3,5-diaminophenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxyphenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 10       $R^2$  is 3-amidocarbonyl-5-aminophenylthio, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- 15       $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenylthio, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenylthio, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- 20       $R^2$  is 3,5-diaminophenylthio, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is 3-amino-5-carboxyphenylthio, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is 3-amidocarbonyl-5-aminophenylthio, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 25       $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenylthio, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenylthio, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenylthio, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 5        $R^2$  is 3,5-diaminophenylthio, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-carboxyphenylthio, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 10       $R^2$  is 3-amidocarbonyl-5-amino-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- 15       $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- 20       $R^2$  is 3,5-diamino-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is 3-amidocarbonyl-5-amino-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 25       $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 5        $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3,5-diamino-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 10       $R^2$  is 3-amino-5-carboxy-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amidocarbonyl-5-amino-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 15       $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 20       $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3,5-diamino-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 25       $R^2$  is 3-amidocarbonyl-5-aminophenylthio, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

- $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenylthio, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 5       $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenylthio, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenylthio, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 10      $R^2$  is 3,5-diaminophenylthio, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-amino-5-carboxyphenylthio, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 15      $R^2$  is 3-amidocarbonyl-5-aminophenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 20      $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 25      $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenoxy, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

## 33. Compound of Claim 2 of the Formula:



or a pharmaceutically acceptable salt thereof, wherein;

- B is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R<sup>32</sup>, the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R<sup>36</sup>, a carbon adjacent to R<sup>32</sup> and two atoms from the carbon at the point of attachment is optionally substituted by R<sup>33</sup>, a carbon adjacent to R<sup>36</sup> and two atoms from the carbon at the point of attachment is optionally substituted by R<sup>35</sup>, and any carbon adjacent to both R<sup>33</sup> and R<sup>35</sup> is optionally substituted by R<sup>34</sup>;
- R<sup>32</sup>, R<sup>33</sup>, R<sup>34</sup>, R<sup>35</sup>, and R<sup>36</sup> are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyleneedioxy, haloalkylthio, alkanoyloxy, alkoxy, hydroxy, amino, alkoxyamino, haloalkanoyl, nitro, alkylamino, alkylthio, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, alkylsulfonamido, amidosulfonyl, alkyl, alkenyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyalkyl, alkylamino, carboalkoxy, carboxy, carboxamido, cyano, and Q<sup>b</sup>;
- B is optionally selected from the group consisting of hydrido, trialkylsilyl, C2-C8 alkyl, C3-C8 alkylenyl, C3-C8 alkenyl, C3-C8 alkynyl, and C2-C8 haloalkyl, wherein each member of group B is optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A with one or more of the group consisting of R<sup>32</sup>, R<sup>33</sup>, R<sup>34</sup>, R<sup>35</sup>, and R<sup>36</sup>;

B is optionally a C3-C12 cycloalkyl or a C4-C9 saturated heterocyclyl,  
 wherein each ring carbon is optionally substituted with R<sup>33</sup>, a ring carbon other  
 than the ring carbon at the point of attachment of B to A is optionally  
 substituted with oxo provided that no more than one ring carbon is substituted  
 5 by oxo at the same time, ring carbons and a nitrogen adjacent to the carbon  
 atom at the point of attachment are optionally substituted with R<sup>9</sup> or R<sup>13</sup>, a ring  
 carbon or nitrogen adjacent to the R<sup>9</sup> position and two atoms from the point of  
 attachment is optionally substituted with R<sup>10</sup>, a ring carbon or nitrogen adjacent  
 to the R<sup>13</sup> position and two atoms from the point of attachment is optionally  
 10 substituted with R<sup>12</sup>, a ring carbon or nitrogen three atoms from the point of  
 attachment and adjacent to the R<sup>10</sup> position is optionally substituted with R<sup>11</sup>,  
 a ring carbon or nitrogen three atoms from the point of attachment and adjacent  
 to the R<sup>12</sup> position is optionally substituted with R<sup>33</sup>, and a ring carbon or  
 nitrogen four atoms from the point of attachment and adjacent to the R<sup>11</sup> and  
 15 R<sup>33</sup> positions is optionally substituted with R<sup>34</sup>;  
 R<sup>9</sup>, R<sup>10</sup>, R<sup>11</sup>, R<sup>12</sup>, and R<sup>13</sup> are independently selected from the group  
 consisting of hydrido, acetamido, haloacetamido, alkoxyamino, alkanoyl,  
 haloalkanoyl, amidino, guanidino, alkylenedioxy, haloalkylthio, alkoxy,  
 cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy,  
 20 heteroaralkoxy, heterocyclxyloxy, heterocyclalkoxy, hydroxy, amino,  
 alkylamino, N-alkyl-N-arylarnino, arylamino, aralkylamino, heteroarylarnino,  
 heteroaralkylarnino, heterocyclarnino, heterocyclalkylarnino, alkylthio,  
 alkylsulfinyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylsulfinyl,  
 alkylsulfamido, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl,  
 25 heteroarylsulfonyl, amidosulfonyl, alkyl, aryl, aralkyl, cycloalkyl,  
 cycloalkylalkyl, heteroaryl, heterocycl, halo, haloalkyl, haloalkoxy,  
 hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy,  
 carboxyalkyl, carboxamido, and cyano;

A is a bond or  $(CH(R^{15}))_{pa}-(W^7)_{rr}$  wherein rr is 0 or 1, pa is an integer selected from 0 through 3, and W<sup>7</sup> is selected from the group consisting of O, S, C(O), (R<sup>7</sup>)NC(O), (R<sup>7</sup>)NC(S), and N(R<sup>7</sup>); R<sup>7</sup> is selected from the group consisting of hydrido, hydroxy and alkyl;

5      R<sup>15</sup> is selected from the group consisting of hydrido, hydroxy, halo, alkyl, and haloalkyl;

    M is N or R<sup>1</sup>-C;

    R<sup>1</sup> is selected from the group consisting of hydrido, alkyl, cyano, halo, haloalkyl, haloalkoxy, amino, aminoalkyl, alkylamino, amidino, hydroxy,

10     hydroxyamino, alkoxy, hydroxyalkyl, alkoxyamino, thiol, and alkylthio;

    R<sup>2</sup> is Z<sup>0</sup>-Q;

    Z<sup>0</sup> is selected from the group consisting of a bond,

    W<sup>0</sup>-(CH(R<sup>42</sup>))<sub>p</sub> wherein p is an integer selected from 0 through 3 and W<sup>0</sup> is selected from the group consisting of O, S, and N(R<sup>41</sup>), and (CH(R<sup>41</sup>))<sub>g</sub>-O

15     wherein g is an integer selected from 1 through 3, with the proviso that Z<sup>0</sup> is directly bonded to the pyrimidinone ring;

    Z<sup>0</sup> is optionally W<sup>22</sup>-(CH(R<sup>42</sup>))<sub>h</sub> wherein h is 0 or 1 and W<sup>22</sup> is selected from the group consisting of 1,2-cyclopropyl, 1,2-cyclobutyl, 1,2-cyclohexyl, 1,3-cyclohexyl, 1,2-cyclopentyl, 1,3-cyclopentyl,

20     2,3-morpholinyl, 2,4-morpholinyl, 2,6-morpholinyl, 3,4-morpholinyl, 3,5-morpholinyl, 1,2-piperazinyl, 1,3-piperazinyl, 2,3-piperazinyl, 2,6-piperazinyl, 1,2-piperidinyl, 1,3-piperidinyl, 2,3-piperidinyl, 2,4-piperidinyl, 2,6-piperidinyl, 3,4-piperidinyl, 1,2-pyrrolidinyl, 1,3-pyrrolidinyl, 2,3-pyrrolidinyl, 2,4-pyrrolidinyl, 2,5-pyrrolidinyl, 3,4-pyrrolidinyl,

25     2,3-tetrahydrofuranyl, 2,4-tetrahydrofuranyl, 2,5-tetrahydrofuranyl, and

3,4-tetrahydrofuryl, wherein  $Z^0$  is directly bonded to the pyrimidinone ring and  $W^{22}$  is optionally substituted with one or more substituents selected from the group consisting of  $R^9$ ,  $R^{10}$ ,  $R^{11}$ ,  $R^{12}$ , and  $R^{13}$ ;

$R^{41}$  and  $R^{42}$  are independently selected from the group consisting of  
5 hydrido, hydroxy, and amino;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to  $Z^0$  is optionally substituted by  $R^9$ , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by  $R^{13}$ , a carbon adjacent to  $R^9$  and two atoms from the carbon at the point of attachment is 10 optionally substituted by  $R^{10}$ , a carbon adjacent to  $R^{13}$  and two atoms from the carbon at the point of attachment is optionally substituted by  $R^{12}$ , and any carbon adjacent to both  $R^{10}$  and  $R^{12}$  is optionally substituted by  $R^{11}$ , with the proviso that Q is other than a phenyl when  $Z^0$  is a bond;

15 Q is optionally hydrido with the proviso that  $Z^0$  is selected from other than a bond;

K is  $CHR^{4a}$  wherein  $R^{4a}$  is selected from the group consisting of hydrido, hydroxyalkyl, alkyl, alkoxyalkyl, alkylthioalkyl, and haloalkyl;  $E^0$  is selected from the group consisting of a bond,  $C(O)N(H)$ ,

20  $(H)NC(O)$ ,  $(R^7)NS(O)_2$ , and  $S(O)_2N(R^7)$ ;

$Y^{AT}$  is  $Q^b-Q^s$ ;

$Q^s$  is  $(CR^{37}R^{38})_b$  wherein b is an integer selected from 1 through 4,

$R^{37}$  is selected from the group consisting of hydrido, alkyl, and haloalkyl, and  $R^{38}$  is selected from the group consisting of hydrido, alkyl, haloalkyl, aroyl,

and heteroaroyl with the proviso that there is at least one aroyl or heteroaroyl substituent, with the further proviso that no more than one aroyl or heteroaroyl is bonded to  $(CR^{37}R^{38})_b$  at the same time, with the still further proviso that said aroyl and said heteroaroyl are optionally substituted with one or more substituents selected from the group consisting of  $R^{16}$ ,  $R^{17}$ ,  $R^{18}$ , and  $R^{19}$ ,

5 with another further proviso that said aroyl and said heteroaroyl are bonded to the  $CR^{37}R^{38}$  that is directly bonded to  $E^0$ , with still another further proviso that no more than one alkyl or one haloalkyl is bonded to a  $CR^{37}R^{38}$  at the same time, and with the additional proviso that said alkyl and haloalkyl are bonded to a carbon other than the one bonding said aroyl or said heteroaroyl;

10  $R^{16}$ ,  $R^{17}$ ,  $R^{18}$ , and  $R^{19}$  are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

15  $R^{16}$  or  $R^{19}$  is optionally selected from the group consisting of  $NR^{20}R^{21}$ ,  $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$ , and  $C(NR^{25})NR^{23}R^{24}$ , with the proviso that  $R^{16}$ ,  $R^{19}$ , and  $Q^b$  are not simultaneously hydrido;

$Q^b$  is selected from the group consisting of  $NR^{20}R^{21}$ , hydrido,

20  $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$ , and  $C(NR^{25})NR^{23}R^{24}$ , with the proviso that no more than one of  $R^{20}$  and  $R^{21}$  is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time and with the further proviso that no more than one of  $R^{23}$  and  $R^{24}$  is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time;

25

$R^{20}$ ,  $R^{21}$ ,  $R^{23}$ ,  $R^{24}$ ,  $R^{25}$ , and  $R^{26}$  are independently selected from the group consisting of hydrido, alkyl, hydroxy, amino, alkylamino and dialkylamino.

- 5 34. Compound of Claim 33 of the Formula:



or a pharmaceutically acceptable salt thereof, wherein;

- B is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 10 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, and 5-isoxazolyl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by  $R^{32}$ , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by  $R^{36}$ , a carbon adjacent to  $R^{32}$  and two atoms from the carbon at the point of attachment is optionally substituted by  $R^{33}$ , a carbon adjacent to  $R^{36}$  and two atoms from the carbon at the point of attachment is optionally substituted by  $R^{35}$ , and any carbon adjacent to both  $R^{33}$  and  $R^{35}$  is optionally substituted by  $R^{34}$ ;

- 15  $R^{32}$ ,  $R^{33}$ ,  $R^{34}$ ,  $R^{35}$ , and  $R^{36}$  are independently selected from the group consisting of hydrido, amidino, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, dimethylamino, methoxyamino, methylthio, ethylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, hydroxymethyl, amidocarbonyl, carboxy, cyano, and  $Q^b$ ;

- B is optionally selected from the group consisting of hydrido, ethyl, 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butenyl, 2-butynyl, sec-butyl, tert-butyl, isobutyl, 2-methylpropenyl, 1-pentyl, 2-pentenyl, 3-pentenyl, 2-pentynyl, 3-pentynyl, 2-pentyl, 3-pentyl, 2-methylbutyl,
- 5 2-methyl-2-butenyl, 3-methylbutyl, 3-methyl-2-butenyl, 1-hexyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 2-hexyl, 1-methyl-2-pentenyl, 1-methyl-3-pentenyl, 1-methyl-2-pentynyl, 1-methyl-3-pentynyl, 3-hexyl, 1-ethyl-2-butenyl, 1-heptyl, 2-heptenyl, 3-heptenyl, 4-heptenyl, 5-heptenyl, 2-heptynyl, 3-heptynyl, 4-heptynyl, 5-heptynyl, 2-heptyl, 1-methyl-2-hexenyl, 1-methyl-3-hexenyl, 1-methyl-4-hexenyl, 1-methyl-2-hexynyl, 1-methyl-3-hexynyl, 1-methyl-4-hexynyl, 3-heptyl, 1-ethyl-2-pentenyl, 1-ethyl-3-pentenyl, 1-ethyl-2-pentynyl, 1-ethyl-3-pentynyl, 2,2,2-trifluoroethyl, 2,2-difluoropropyl, 4-trifluoromethyl-5,5,5-trifluoropentyl, 4-trifluoromethylpentyl,
- 10 15 5,5,6,6,6-pentafluorohexyl, and 3,3,3-trifluoropropyl, wherein each member of group B is optionally substituted at any carbon up to and including 5 atoms from the point of attachment of B to A with one or more of the group consisting of  $R^{32}$ ,  $R^{33}$ ,  $R^{34}$ ,  $R^{35}$ , and  $R^{36}$ ;
- B is optionally selected from the group consisting of cyclopropyl, 20 cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, bicyclo[3.1.0]hexan-6-yl, 2-morpholinyl, 3-morpholinyl, 4-morpholinyl, 1-piperazinyl, 2-piperazinyl, 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 25 2-dioxanyl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydropyranyl, 3-tetrahydropyranyl, 4-tetrahydropyranyl, 2-tetrahydrothienyl, and 3-tetrahydrothienyl, wherein each ring carbon is optionally substituted with  $R^{33}$ , ring carbons and a nitrogen adjacent to the carbon atom at the point of attachment are optionally substituted with  $R^9$  or  $R^{13}$ , a ring carbon or nitrogen 30 adjacent to the  $R^9$  position and two atoms from the point of attachment is optionally substituted with  $R^{10}$ , and a ring carbon or nitrogen adjacent to the

$R^{13}$  position and two atoms from the point of attachment is optionally substituted with  $R^{12}$ :

$R^9$ ,  $R^{11}$ , and  $R^{13}$  are independently selected from the group consisting of hydrido, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino,

- 5      N,N-dimethylamino, methylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, carboxy, and cyano;

$R^{10}$  and  $R^{12}$  are independently selected from the group consisting of

- 10     hydrido, amidino, amidocarbonyl, N-methylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl, N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl, N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl,
- 15     N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl, N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl, N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl, N-cyclohexylamidocarbonyl, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, carboxy,
- 20     carboxymethyl, amino, acetamido, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoroacetamido, aminomethyl, N-methylamino, dimethylamino, methoxyamino, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, methanesulfonamido, methoxycarbonyl, fluoro, chloro, bromo, and cyano;

- 25     A is selected from the group consisting of a bond, NH,  $N(CH_3)$ ,  $CH_2$ ,

$CH_3CH$ ,  $CH_2CH_2$ , and  $CH_2CH_2CH_2$ :

M is N or  $R^1-C$ ;

$R^1$  is selected from the group consisting of hydrido, hydroxy,

- hydroxymethyl, amino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, methylthio, trifluoromethoxy, fluoro, and chloro;

$R^2$  is  $Z^0-Q$ ;

$Z^0$  is selected from the group consisting of a bond, O, S, NH,  $OCH_2$ ,

$SCH_2$ , and  $N(H)CH_2$ ;

$Q$  is selected from the group consisting of phenyl, 2-thienyl, 2-furyl,

- 5      2-pyrrolyl, 2-imidazolyl, 2-thiazolyl, 3-isoxazolyl, 2-pyridyl, and 3-pyridyl,  
 wherein a carbon adjacent to the carbon at the point of attachment of said  
 phenyl or heteroaryl ring to  $Z^0$  is optionally substituted by  $R^9$ , the other carbon  
 adjacent to the carbon at the point of attachment is optionally substituted by  
 $R^{13}$ , a carbon adjacent to  $R^9$  and two atoms from the carbon at the point of  
 10     attachment is optionally substituted by  $R^{10}$ , a carbon adjacent to  $R^{13}$  and two  
 atoms from the carbon at the point of attachment is optionally substituted by  
 $R^{12}$ , and any carbon adjacent to both  $R^{10}$  and  $R^{12}$  is optionally substituted by  
 $R^{11}$ , with the proviso that  $Q$  is other than a phenyl when  $Z^0$  is a bond;

$Y^{AT}$  is  $Q^b-Q^s$ ;

- 15      $Q^s$  is selected from the group consisting of:

- C[ $R^{37}$ (benzoyl)( $CR^{37}R^{38}$ )<sub>b</sub>],  
 C[ $R^{37}$ (2-pyridylcarbonyl)( $CR^{37}R^{38}$ )<sub>b</sub>],  
 C[ $R^{37}$ (3-pyridylcarbonyl)( $CR^{37}R^{38}$ )<sub>b</sub>],  
 C[ $R^{37}$ (4-pyridylcarbonyl)( $CR^{37}R^{38}$ )<sub>b</sub>],  
 20    C[ $R^{37}$ (2-thienylcarbonyl)( $CR^{37}R^{38}$ )<sub>b</sub>],  
 C[ $R^{37}$ (3-thienylcarbonyl)( $CR^{37}R^{38}$ )<sub>b</sub>],  
 C[ $R^{37}$ (2-thiazolylcarbonyl)( $CR^{37}R^{38}$ )<sub>b</sub>],  
 C[ $R^{37}$ (4-thiazolylcarbonyl)( $CR^{37}R^{38}$ )<sub>b</sub>], and

$C[R^{37}(5\text{-thiazolylcarbonyl})(CR^{37}R^{38})_b]$ , wherein b is an integer selected from 1 through 3,  $R^{37}$  and  $R^{38}$  are independently selected from the group consisting of hydrido, alkyl, and haloalkyl, with the proviso that said benzoyl and the heteroaroyls are optionally substituted with one or more substituents selected from the group consisting of  $R^{16}$ ,  $R^{17}$ ,  $R^{18}$ , and  $R^{19}$  with the proviso that  $R^{17}$  and  $R^{18}$  are optionally substituted at a carbon selected from other than the meta and para carbons relative to the carbonyl of the benzoyl or heteroaroyl, with the further proviso that said benzoyl or said heteroaroyl are bonded to the carbon directly bonded to amide nitrogen of the 1-(amidocarbonylmethylene) group, and with the still further proviso that is no more than one alkyl or one haloalkyl is bonded to a  $CR^{37}R^{38}$  at the same time;

$R^{16}$ ,  $R^{17}$ ,  $R^{18}$ , and  $R^{19}$  are independently selected from the group consisting of hydrido, methyl, ethyl, amidino, guanidino, methoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, methylthio, ethylthio, trifluoromethylthio, methylsulfinyl, methylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoromethoxy, fluoro, chloro, hydroxymethyl, carboxy, and cyano;

$Q^b$  is  $C(NR^{25})NR^{23}R^{24}$  or  $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$ ;

$R^{23}$ ,  $R^{24}$ ,  $R^{25}$ , and  $R^{26}$  are independently selected from the group consisting of hydrido, methyl, and ethyl.

35. Compound of Claim 34 or a pharmaceutically acceptable salt thereof, wherein:

B is selected from the group consisting of 2-aminophenyl, 25 3-aminophenyl, 3-amidinophenyl, 4-amidinophenyl, 3-carboxyphenyl, 3-carboxy-5-hydroxyphenyl, 3-chlorophenyl, 4-chlorophenyl, 3,4-dichlorophenyl, 2-fluorophenyl, 3-fluorophenyl, 3,4-difluorophenyl, 3-hydroxyphenyl, 4-hydroxyphenyl, 3-methoxyaminophenyl, 3-methoxyphenyl, 4-methoxyphenyl, 3-methylphenyl, 4-methylphenyl, phenyl, 30 3-trifluoromethylphenyl, 2-imidazoyl, 2-pyridyl, 3-pyridyl,

5-chloro-3-trifluoromethyl-2-pyridyl, 4-pyridyl, 2-thienyl, 3-thienyl, and 3-trifluoromethyl-2-pyridyl;

B is optionally selected from the group consisting of hydrido, ethyl, 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butyl, (R)-2-butyl,

- 5 (S)-2-butyl, tert-butyl, isobutyl, 1-pentyl, 3-pentyl, 2-methylbutyl, 2,2,2-trifluoroethyl, 6-amidocarbonylhexyl, 4-methyl-2-pentyl, 3-hydroxypropyl, 1-methoxy-2-propyl, 2-methoxyethyl, 2-methyl-2-butyl, 3-methyl-2-butyl, 2-dimethylaminopropyl, 2-cyanoethyl, 6-hydroxyhexyl, 2-hydroxyethyl, 2-amidinoethyl, 2-guanidinoethyl, 3-guanidinopropyl,
- 10 4-guanidinobutyl, 3-hydroxypropyl, 4-hydroxybutyl, 6-cyanoethyl, 2-dimethylaminoethyl, 3-methylbutyl, 2-methylbutyl, (S)-2-methylbutyl, 3-aminopropyl, 2-hexyl, and 4-aminobutyl;

B is optionally selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl, 15 oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, 1-pyrrolidinyl and 1-piperidinyl;

A is selected from the group consisting of a bond, CH<sub>2</sub>, CH<sub>3</sub>CH,

CH<sub>2</sub>CH<sub>2</sub>, and CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>;

M is N or R<sup>1</sup>-C;

- 20 R<sup>1</sup> is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, fluoro, and chloro;

R<sup>2</sup> is Z<sup>0</sup>-Q;

Z<sup>0</sup> is selected from the group consisting of a bond, O, S, NH, and

- 25 OCH<sub>2</sub>;

Q is selected from the group consisting of

- 3-amidocarbonyl-5-aminophenyl, 3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl, 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,
- 30 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl, 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl, 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,

- 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,  
 3-amino-5-(N-benzylamidosulfonyl)phenyl,  
 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,  
 3-amino-5-(N-ethylamidocarbonyl)phenyl,  
 5 3-amino-5-(N-isopropylamidocarbonyl)phenyl,  
 3-amino-5-(N-propylamidocarbonyl)phenyl,  
 3-amino-5-(N-isobutylamidocarbonyl)phenyl,  
 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,  
 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,  
 10 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,  
 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,  
 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,  
 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl.  
 3-aminophenyl, 3-carboxyphenyl, 3-carboxy-5-aminophenyl,  
 15 3-carboxy-5-hydroxyphenyl, 3-carboxymethyl-5-aminophenyl,  
 3-carboxymethyl-5-hydroxyphenyl, 3-carboxymethylphenyl, 3-chlorophenyl,  
 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,  
 2-fluorophenyl, 3-fluorophenyl, 2,5-difluorophenyl, 2-hydroxyphenyl,  
 3-hydroxyphenyl, 3-methanesulfonylaminophenyl, 2-methoxyphenyl,  
 20 3-methoxyphenyl, 3-methoxyaminophenyl, 3-methoxycarbonylphenyl,  
 2-methylaminophenyl, 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl,  
 4-methylphenyl, phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,  
 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,  
 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl, with the  
 25 proviso that Q is other than a phenyl or a substituted phenyl when Z<sup>0</sup> is a bond;

$Y^{AT}$  is  $Q^b - Q^s$ ;

$Q^s$  is selected from the group consisting of:

- [CH(benzoyl)](CH<sub>2</sub>)<sub>b</sub>, [CH(2-pyridylcarbonyl)](CH<sub>2</sub>)<sub>b</sub>,  
 [CH(3-pyridylcarbonyl)](CH<sub>2</sub>)<sub>b</sub>, [CH(4-pyridylcarbonyl)](CH<sub>2</sub>)<sub>b</sub>,  
 30 [CH(2-thienylcarbonyl)](CH<sub>2</sub>)<sub>b</sub>, [CH(3-thienylcarbonyl)](CH<sub>2</sub>)<sub>b</sub>,  
 [CH(2-thiazolylcarbonyl)](CH<sub>2</sub>)<sub>b</sub>, [CH(4-thiazolylcarbonyl)](CH<sub>2</sub>)<sub>b</sub>,

and  $[\text{CH}(\text{5-thiazolylcarbonyl})(\text{CH}_2)_b]$ , wherein b is an integer selected from 1 through 3, with the proviso that said benzoyl and said heteroaroys are optionally substituted with one or more substituents selected from the group consisting of  $\text{R}^{16}$ ,  $\text{R}^{17}$ ,  $\text{R}^{18}$ , and  $\text{R}^{19}$  with the proviso that  $\text{R}^{17}$  and  $\text{R}^{18}$  are

5     optionally substituted at a carbon selected from other than the meta and para carbons relative to the carbonyl of the benzoyl or the heteroaroyl, and that said benzoyl or said heteroaroyl are bonded to the carbon directly bonded to amide nitrogen of the 1-(amidocarbonylmethylene) group;

10      $\text{R}^{16}$  and  $\text{R}^{19}$  are independently selected from the group consisting of hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

15      $\text{R}^{17}$  and  $\text{R}^{18}$  are independently selected from the group consisting of hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;  
 $\text{Q}^b$  is  $\text{N}(\text{R}^{26})\text{C}(\text{NR}^{25})\text{N}(\text{R}^{23})(\text{R}^{24})$ ;

20      $\text{R}^{23}$ ,  $\text{R}^{24}$ ,  $\text{R}^{25}$ , and  $\text{R}^{26}$  are independently hydrido or methyl.

36. Compound of Claim 35 or a pharmaceutically acceptable salt thereof, wherein;

20     B is selected from the group consisting of 3-aminophenyl, 3-amidinophenyl, 4-amidinophenyl, 3-chlorophenyl, 4-chlorophenyl, 3,4-dichlorophenyl, 2-fluorophenyl, 4-methylphenyl, phenyl, 2-imidazoyl, 3-pyridyl, 4-pyridyl, and 3-trifluoromethyl-2-pyridyl;

25     B is optionally selected from the group consisting of hydrido, ethyl, 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butyl, (R)-2-butyl, (S)-2-butyl, tert-butyl, isobutyl, 1-pentyl, 3-pentyl, 2-methylbutyl, 2,2,2-trifluoroethyl, 6-amidocarbonylhexyl, 4-methyl-2-pentyl, 3-hydroxypropyl, 1-methoxy-2-propyl, 2-methoxyethyl, 2-methyl-2-butyl, 3-methyl-2-butyl, 2-dimethylaminopropyl, 2-cyanoethyl, 6-hydroxyhexyl, 2-hydroxyethyl, 2-amidinoethyl, 2-guanidinoethyl, 3-guanidinopropyl,

30     4-guanidinobutyl, 3-hydroxypropyl, 4-hydroxybutyl, 6-cyanoethyl, 2-dimethylaminoethyl, 3-methylbutyl, 2-methylbutyl, (S)-2-methylbutyl.

3-aminopropyl, 2-hexyl, and 4-aminobutyl;

B is optionally selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, and 1-piperidinyl;

5 A is selected from the group consisting of a bond, CH<sub>2</sub>, CH<sub>2</sub>CH<sub>2</sub> and CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>;

M is N or R<sup>1</sup>-C;

R<sup>1</sup> is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro;

10 R<sup>2</sup> is Z<sup>0</sup>-Q;

Z<sup>0</sup> is selected from the group consisting of a bond, O, S, and NH;

Q is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,

15 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,

20 3-amino-5-(N-benzylamidosulfonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,

3-amino-5-(N-ethylamidocarbonyl)phenyl,

3-amino-5-(N-isopropylamidocarbonyl)phenyl,

3-amino-5-(N-propylamidocarbonyl)phenyl,

25 3-amino-5-(N-isobutylamidocarbonyl)phenyl,

3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,

3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,

3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,

3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 3-aminophenyl,

30 3-carboxy-5-aminophenyl, 3-chlorophenyl, 3,5-diaminophenyl,

3-dimethylaminophenyl, 3-hydroxyphenyl, 3-methanesulfonylaminophenyl,

3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, phenyl,

3-trifluoroacetamidophenyl, 3-bromo-2-thienyl, 2-thienyl, and 3-thienyl, with the proviso that Q is other than a phenyl or a substituted phenyl when  $Z^0$  is a bond;

- 5       $Y^{AT}$  is selected from the group consisting of 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, 5-guanidino-1-oxo-1-(4-thiazolyl)-2-pentyl, 5-guanidino-1-oxo-1-(5-thiazolyl)-2-pentyl, 5-guanidino-1-oxo-1-(4-amino-2-thiazolyl)-2-pentyl, and 5-guanidino-1-oxo-1-phenyl-2-pentyl.

- 10     37. Compound of Claim 33 where said compound is selected from the group of the Formula:



or a pharmaceutically acceptable salt thereof, wherein:

$R^2$  is 3-aminophenoxy, B is phenyl, A is  $CH_2CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

15      $R^2$  is 3,5-diaminophenoxy, B is phenyl, A is  $CH_2CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

$R^2$  is 3-carboxy-5-aminophenoxy, B is phenyl, A is  $CH_2CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

20      $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is phenyl, A is  $CH_2CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

$R^2$  is 3,5-diaminophenoxy, B is isopropyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

$R^2$  is 3-carboxy-5-aminophenoxy, B is isopropyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

- R<sup>2</sup> is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is isopropyl, A is single bond, Y<sup>AT</sup> is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
- R<sup>2</sup> is 3,5-diaminophenoxy, B is cyclobutyl, A is single bond, Y<sup>AT</sup> is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
- 5 R<sup>2</sup> is 3-carboxy-5-aminophenoxy, B is cyclobutyl, A is single bond, Y<sup>AT</sup> is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
- R<sup>2</sup> is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is cyclobutyl, A is single bond, Y<sup>AT</sup> is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH.
- 10 R<sup>2</sup> is 3-aminophenylthio, B is phenyl, A is CH<sub>2</sub>CH<sub>2</sub>, Y<sup>AT</sup> is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
- R<sup>2</sup> is 3,5-diaminophenylthio, B is phenyl, A is CH<sub>2</sub>CH<sub>2</sub>, Y<sup>AT</sup> is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
- 15 R<sup>2</sup> is 3-carboxy-5-aminophenylthio, B is phenyl, A is CH<sub>2</sub>CH<sub>2</sub>, Y<sup>AT</sup> is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
- R<sup>2</sup> is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is phenyl, A is CH<sub>2</sub>CH<sub>2</sub>, Y<sup>AT</sup> is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
- 20 R<sup>2</sup> is 3,5-diaminophenylthio, B is isopropyl, A is single bond, Y<sup>AT</sup> is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
- R<sup>2</sup> is 3-carboxy-5-aminophenylthio, B is isopropyl, A is single bond, Y<sup>AT</sup> is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
- 25 R<sup>2</sup> is 3-carboxy-5-aminophenylthio, B is cyclobutyl, A is single bond, Y<sup>AT</sup> is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
- R<sup>2</sup> is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is cyclobutyl, A is single bond, Y<sup>AT</sup> is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

- $R^2$  is 3-amino-2-thienyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
- $R^2$  is 3,5-diamino-2-thienyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
- 5       $R^2$  is 3-carboxy-5-amino-2-thienyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
- $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
- 10      $R^2$  is 3,5-diamino-2-thienyl, B is isopropyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
- $R^2$  is 3-carboxy-5-amino-2-thienyl, B is isopropyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
- $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is isopropyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
- 15      $R^2$  is 3,5-diamino-2-thienyl, B is cyclobutyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
- $R^2$  is 3-carboxy-5-amino-2-thienyl, B is cyclobutyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
- 20      $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is cyclobutyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
- $R^2$  is 3-aminophenoxy, B is phenyl, A is  $CH_2CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
- $R^2$  is 3,5-diaminophenoxy, B is phenyl, A is  $CH_2CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
- 25      $R^2$  is 3-carboxy-5-aminophenoxy, B is phenyl, A is  $CH_2CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
- $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is phenyl, A is  $CH_2CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

- $R^2$  is 3,5-diaminophenoxy, B is isopropyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
- $R^2$  is 3-carboxy-5-aminophenoxy, B is isopropyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
- 5       $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is isopropyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
- $R^2$  is 3,5-diaminophenoxy, B is cyclobutyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
- 10      $R^2$  is 3-carboxy-5-aminophenoxy, B is cyclobutyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
- $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is cyclobutyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N.
- $R^2$  is 3-aminophenylthio, B is phenyl, A is  $CH_2CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
- 15      $R^2$  is 3,5-diaminophenylthio, B is phenyl, A is  $CH_2CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
- $R^2$  is 3-carboxy-5-aminophenylthio, B is phenyl, A is  $CH_2CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
- 20      $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is phenyl, A is  $CH_2CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
- $R^2$  is 3,5-diaminophenylthio, B is isopropyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
- $R^2$  is 3-carboxy-5-aminophenylthio, B is isopropyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
- 25      $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is isopropyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
- $R^2$  is 3,5-diaminophenylthio, B is cyclobutyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

$R^2$  is 3-carboxy-5-aminophenylthio, B is cyclobutyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

$R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is cyclobutyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

5        $R^2$  is 3-amino-2-thienyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

$R^2$  is 3,5-diamino-2-thienyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

10       $R^2$  is 3-carboxy-5-amino-2-thienyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

$R^2$  is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

$R^2$  is 3,5-diamino-2-thienyl, B is isopropyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

15       $R^2$  is 3-carboxy-5-amino-2-thienyl, B is isopropyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

$R^2$  is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is isopropyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

20       $R^2$  is 3,5-diamino-2-thienyl, B is cyclobutyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

$R^2$  is 3-carboxy-5-amino-2-thienyl, B is cyclobutyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

$R^2$  is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is cyclobutyl, A is single bond,  $Y^{AT}$  is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N.

25

38. A composition for inhibiting thrombotic conditions in blood comprising a compound of any one of Claims 8, 16, 24, 32, and 37 and a pharmaceutically acceptable carrier.

39. A composition for inhibiting thrombotic conditions in blood comprising a compound of any one of Claims 1 through 7, Claims 9 through 15, Claims 17 through 23, Claims 25 through 31, and Claims 33 through 36 and a pharmaceutically acceptable carrier.

5

40. A method for inhibiting thrombotic conditions in blood comprising adding to blood a therapeutically effective amount of a composition of any one of Claims 38 and 39.

10 41. A method for inhibiting formation of blood platelet aggregates in blood comprising adding to blood a therapeutically effective amount of a composition of any one of Claims 38 and 39.

15 42. A method for inhibiting thrombus formation in blood comprising adding to blood a therapeutically effective amount of a composition of any one of Claims 38 and 39.

20 43. A method for treating or preventing venous thromboembolism and pulmonary embolism in a mammal comprising administering to the mammal a therapeutically effective amount of a composition of any one of Claims 38 and 39.

25 44. A method for treating or preventing deep vein thrombosis in a mammal comprising administering to the mammal a therapeutically effective amount of a composition of any one of Claims 38 and 39.

45. A method for treating or preventing cardiogenic thromboembolism in a mammal comprising administering to the mammal a therapeutically effective amount of a composition of any one of Claims 38 and 39.

30

46. A method for treating or preventing thromboembolic stroke in humans and other mammals comprising administering to the mammal a therapeutically effective amount of a composition of any one of Claims 38 and 39.

47. A method for treating or preventing thrombosis associated with cancer and cancer chemotherapy in humans and other mammals comprising administering to the mammal a therapeutically effective amount of a composition of any one of Claims 38 and 39.

5

48. A method for treating or preventing unstable angina in humans and other mammals comprising administering to the mammal a therapeutically effective amount of a composition of any one of Claims 38 and 39.

10 49. A method for inhibiting thrombus formation in blood comprising adding to blood a therapeutically effective amount of a compound of any one of Claims 1 through 37 with a therapeutically effective amount of fibrinogen receptor antagonist.

15 50. The use of a compound of any one of Claims 1 through 37, or a pharmaceutically acceptable salt thereof, in the manufacture of medicament for inhibiting thrombus formation, treating thrombus formation, or preventing thrombus formation in a mammal.

20 51. A method of treating or preventing a TF VIIA-mediated disorder in a subject by administering a therapeutically effective amount of a compound or a pharmaceutically acceptable salt thereof, said compound selected from the group consisting of:

25 2-[3-[2-[3-aminophenyl]-6-chloro-N-[[4-aminoiminomethylphenyl]methyl]-5-[N,N-dimethylhydrazino]-4-oxo-1(4H)-pyrimidinyl]]acetamide;

2-[3-[2-[3-aminophenyl]-6-chloro-5-[N-ethyl-N-methylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-4-oxo-1(4H)-pyrimidinyl]]acetamide;

30 2-[3-[2-[3-aminophenyl]-6-chloro-5-[N,N-diethylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-4-oxo-1(4H)-pyrimidinyl]]acetamide;

2-[3-[2-[3-aminophenyl]-5-[N-(azetidin-1-yl)amino]-6-chloro-N-[[4-aminoiminomethylphenyl]methyl]-4-oxo-1(4H)-pyrimidinyl]]acetamide;

2-[4-[3-[3-aminophenyl]-N-[[4-aminoiminomethylphenyl]methyl]-6-[N,N-dimethylhydrazino]-5-oxo-1(5H)-1,2,4-triazinyl]]acetamide;

2-[4-[3-[3-aminophenyl]-6-[N-ethyl-N-methylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-5-oxo-1(5H)-1,2,4-triazinyl]]acetamide;

2-[4-[3-[3-aminophenyl]-6-[N,N-diethylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-5-oxo-1(5H)-1,2,4-triazinyl]]acetamide;

5 2-[4-[3-[3-aminophenyl]-6-[N-(azetidin-1-yl)amino]-N-[[4-aminoiminomethylphenyl]methyl]-5-oxo-1(5H)-1,2,4-triazinyl]]acetamide.

52. A method of treating or preventing a TF VIIA-mediated disorder in a subject by administering a therapeutically effective amount of a compound or a 10 pharmaceutically acceptable salt thereof, said compound of the formula:



wherein:

$R^2$  is 3-aminophenyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

15  $R^2$  is 3-aminophenyl, B is phenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is phenyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

20  $R^2$  is 3-dimethylaminophenyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 2-methylphenyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is phenyl, B is 3-aminophenyl, A is  $C(O)NH$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

25  $R^2$  is phenyl, B is 3-amidinophenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-(N-methylamino)phenyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-methylsulfonamidophenyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

5        $R^2$  is phenyl, B is 4-amidinophenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-methylaminophenyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is phenyl, B is phenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

10       $R^2$  is 3-methylphenyl, B is 4-phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-aminophenyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

15       $R^2$  is 3-aminophenyl, B is phenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

$R^2$  is phenyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

$R^2$  is 3-dimethylaminophenyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

20       $R^2$  is 2-methylphenyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

$R^2$  is phenyl, B is 3-aminophenyl, A is  $C(O)NH$ ,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

25       $R^2$  is phenyl, B is 3-amidinophenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

$R^2$  is 3-(N-methylamino)phenyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

$R^2$  is 3-methylsulfonamidophenyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;

$R^2$  is phenyl, B is 4-amidinophenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;

5        $R^2$  is 3-methylaminophenyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;

$R^2$  is phenyl, B is phenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;

$R^2$  is 3-methylphenyl, B is 4-phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CCl$ ;

10       $R^2$  is 3-aminophenyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CF$ ;

$R^2$  is 3-aminophenyl, B is phenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CF$ ;

$R^2$  is phenyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CF$ ;

15       $R^2$  is 3-dimethylaminophenyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CF$ ;

$R^2$  is 2-methylphenyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CF$ ;

20       $R^2$  is phenyl, B is 3-aminophenyl, A is  $C(O)NH$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CF$ ;

$R^2$  is phenyl, B is 3-amidinophenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CF$ ;

25       $R^2$  is 3-(N-methylamino)phenyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CF$ ;

$R^2$  is 3-methylsulfonamidophenyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is  $CF$ ;

$R^2$  is phenyl, B is 4-amidinophenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CF;

$R^2$  is 3-methylaminophenyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CF;

5        $R^2$  is phenyl, B is phenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CF;

$R^2$  is 3-methylphenyl, B is 4-phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CF;

$R^2$  is 3-aminophenyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;

10       $R^2$  is 3-aminophenyl, B is phenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is phenyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;

15       $R^2$  is 3-dimethylaminophenyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 2-methylphenyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is phenyl, B is 3-aminophenyl, A is  $C(O)NH$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;

20       $R^2$  is phenyl, B is 3-amidinophenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-(N-methylamino)phenyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;

25       $R^2$  is 3-methylsulfonamidophenyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is phenyl, B is 4-amidinophenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;

- $R^2$  is 3-methylaminophenyl, B is phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is phenyl, B is phenyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-methylphenyl, B is 4-phenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 5       $R^2$  is 3-amidocarbonyl-5-aminophenyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 10      $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 15      $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-amidocarbonyl-5-aminophenyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- .         $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 20      $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 25      $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;

- $R^2$  is 3,5-diaminophenoxy, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-amino-5-carboxy-2-thienyl, B is 3-chlorophenyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 5       $R^2$  is 3-aminophenyl, B is 2,2,2-trifluoroethyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-aminophenyl, B is (S)-2-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 10      $R^2$  is 5-amino-2-fluorophenyl, B is isopropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 2-methyl-3-aminophenyl, B is isopropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-aminophenyl, B is ethyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 15      $R^2$  is 3-aminophenyl, B is ethyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;
- $R^2$  is 3-aminophenyl, B is 2-propenyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 20      $R^2$  is 3-aminophenyl, B is isopropyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;
- $R^2$  is 3-aminophenyl, B is isopropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-aminophenyl, B is 2-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 25      $R^2$  is 3-aminophenyl, B is (R)-2-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-aminophenyl, B is 2-propynyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

- $R^2$  is 3-aminophenyl, B is 3-pentyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-aminophenyl, B is hydrido, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 5        $R^2$  is 3-aminophenyl, B is ethyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-aminophenyl, B is 2-methypropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 10       $R^2$  is 3-aminophenyl, B is 2-propyl, A is  $CH_3CH$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-aminophenyl, B is propyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;
- 15       $R^2$  is 3-aminophenyl, B is 6-amidocarbonylhexyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-aminophenyl, B is tert-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 20       $R^2$  is 3-aminophenyl, B is tert-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-aminophenyl, B is 3-hydroxypropyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;
- 25       $R^2$  is 3-aminophenyl, B is 2-methylpropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-aminophenyl, B is butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-aminophenyl, B is 3-methoxy-2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-aminophenyl, B is 3-methoxy-2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-aminophenyl, B is 2-methoxy-2-ethyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-aminophenyl, B is 2-propyl, A is single bond,  $Y^0$  is 5-amidino-2-thienylmethyl, and M is CH;

5        $R^2$  is 3-aminophenyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidino-3-fluorobenzyl, and M is CH;

$R^2$  is 3-carboxyphenyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

10       $R^2$  is 3-aminophenyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidino-3-fluorobenzyl, and M is CH;

$R^2$  is 3-aminophenyl, B is 2,2,2-trifluoroethyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-aminophenyl, B is (S)-2-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

15       $R^2$  is 5-amino-2-fluorophenyl, B is isopropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 2-methyl-3-aminophenyl, B is isopropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

20       $R^2$  is 3-aminophenyl, B is ethyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-aminophenyl, B is ethyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is N;

$R^2$  is 3-aminophenyl, B is 2-propenyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

25       $R^2$  is 3-aminophenyl, B is isopropyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is N;

$R^2$  is 3-aminophenyl, B is isopropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-aminophenyl, B is 2-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-aminophenyl, B is (R)-2-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

5        $R^2$  is 3-aminophenyl, B is 2-propynyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-aminophenyl, B is 3-pentyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

10      M is N;  
 $R^2$  is 3-aminophenyl, B is ethyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is

N;  
 $R^2$  is 3-aminophenyl, B is 2-methypropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

15       $R^2$  is 3-aminophenyl, B is 2-propyl, A is  $CH_3CH$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-aminophenyl, B is propyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is N;

20       $R^2$  is 3-aminophenyl, B is 6-amidocarbonylhexyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-aminophenyl, B is tert-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-aminophenyl, B is tert-butyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

25       $R^2$  is 3-aminophenyl, B is 3-hydroxypropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-aminophenyl, B is 2-methylpropyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is N;

- $R^2$  is 3-aminophenyl,  $B$  is butyl,  $A$  is single bond,  $Y^0$  is 4-amidinobenzyl, and  $M$  is N;
- $R^2$  is 3-aminophenyl,  $B$  is 3-methoxy-2-propyl,  $A$  is single bond,  $Y^0$  is 4-amidinobenzyl, and  $M$  is N;
- 5       $R^2$  is 3-aminophenyl,  $B$  is 3-methoxy-2-propyl,  $A$  is single bond,  $Y^0$  is 4-amidinobenzyl, and  $M$  is N;
- $R^2$  is 3-aminophenyl,  $B$  is 2-methoxy-2-ethyl,  $A$  is single bond,  $Y^0$  is 4-amidinobenzyl, and  $M$  is N;
- 10      $R^2$  is 3-aminophenyl,  $B$  is 2-propyl,  $A$  is single bond,  $Y^0$  is 5-amidino-2-thienylmethyl, and  $M$  is N;
- $R^2$  is 3-aminophenyl,  $B$  is 2-propyl,  $A$  is single bond,  $Y^0$  is 4-amidino-3-fluorobenzyl, and  $M$  is N;
- $R^2$  is 3-carboxyphenyl,  $B$  is 2-propyl,  $A$  is single bond,  $Y^0$  is 4-amidinobenzyl, and  $M$  is N;
- 15      $R^2$  is 3-aminophenyl,  $B$  is 2-propyl,  $A$  is single bond,  $Y^0$  is 4-amidino-3-fluorobenzyl, and  $M$  is CH;
- $R^2$  is 3-amidocarbonyl-5-aminophenyl,  $B$  is 2-propyl,  $A$  is single bond,  $Y^0$  is 4-amidinobenzyl, and  $M$  is N;
- 20      $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenyl,  $B$  is 2-propyl,  $A$  is single bond,  $Y^0$  is 4-amidinobenzyl, and  $M$  is N;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,  $B$  is 2-propyl,  $A$  is single bond,  $Y^0$  is 4-amidinobenzyl, and  $M$  is N;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,  $B$  is 2-propyl,  $A$  is single bond,  $Y^0$  is 4-amidinobenzyl, and  $M$  is N;
- 25      $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,  $B$  is 2-propyl,  $A$  is single bond,  $Y^0$  is 4-amidinobenzyl, and  $M$  is N;
- $R^2$  is 3,5-diaminophenyl,  $B$  is 2-propyl,  $A$  is single bond,  $Y^0$  is 4-amidinobenzyl, and  $M$  is N;

$R^2$  is 3-amino-5-carboxyphenyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-amidocarbonyl-5-aminophenyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

5        $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

10       $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3,5-diaminophenyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

15       $R^2$  is 3-amino-5-carboxyphenyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-amino-5-carbomethoxyphenyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

20       $R^2$  is 3-amidocarbonyl-5-aminophenyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

$R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

$R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

25       $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

$R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

- $R^2$  is 3,5-diaminophenyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- $R^2$  is 3-amino-5-carboxyphenyl, B is 2-propyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;
- 5       $R^2$  is 3-aminophenyl, B is cyclopropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-aminophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;
- $R^2$  is 3-aminophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 10      $R^2$  is 3-aminophenyl, B is cyclopropyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;
- $R^2$  is 3-aminophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 15      $R^2$  is 3-aminophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidino-3-fluorobenzyl, and M is CH;
- $R^2$  is 3-aminophenyl, B is cyclopentyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 20      $R^2$  is 5-amino-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-aminophenyl, B is cyclopropyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- $R^2$  is 3-aminophenyl, B is 2-(2R)-bicyclo[2.2.1]-heptyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;
- 25      $R^2$  is 3-aminophenyl, B is cyclopentyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CH;
- $R^2$  is 3-aminophenyl, B is cyclohexyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 2-hydroxyphenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is phenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

5        $R^2$  is 3-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 2,6-dichlorophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

10       $R^2$  is 3-aminophenyl, B is cyclopropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-aminophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is N;

$R^2$  is 3-aminophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

15       $R^2$  is 3-aminophenyl, B is cyclopropyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is N;

$R^2$  is 3-aminophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

20       $R^2$  is 3-aminophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidino-3-fluorobenzyl, and M is N;

$R^2$  is 3-aminophenyl, B is cyclopentyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 5-amino-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

25       $R^2$  is 3-aminophenyl, B is cyclopropyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-aminophenyl, B is 2-(2R)-bicyclo[2.2.1]-heptyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

- $R^2$  is 3-aminophenyl, B is cyclopentyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is N;
- $R^2$  is 3-aminophenyl, B is cyclohexyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 5       $R^2$  is 2-hydroxyphenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is phenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 10      $R^2$  is 3-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 2,6-dichlorophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-aminophenyl, B is cyclopropyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CF;
- 15      $R^2$  is 3-aminophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CF;
- $R^2$  is 3-aminophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CF;
- $R^2$  is 3-aminophenyl, B is cyclopropyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CF;
- 20      $R^2$  is 3-aminophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CF;
- $R^2$  is 3-aminophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CF;
- $R^2$  is 3-aminophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidino-3-fluorobenzyl, and M is CF;
- 25      $R^2$  is 3-aminophenyl, B is cyclopentyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CF;
- $R^2$  is 5-amino-2-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CF;

- $R^2$  is 3-aminophenyl, B is cyclopropyl, A is  $CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CF;
- $R^2$  is 3-aminophenyl, B is 2-(2R)-bicyclo[2.2.1]-heptyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CF;
- 5        $R^2$  is 3-aminophenyl, B is cyclopentyl, A is single bond,  $Y^0$  is 4-amidino-2-fluorobenzyl, and M is CF;
- $R^2$  is 3-aminophenyl, B is cyclohexyl, A is  $CH_2CH_2$ ,  $Y^0$  is 4-amidinobenzyl, and M is CF;
- 10       $R^2$  is 2-hydroxyphenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CF;
- $R^2$  is phenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CF;
- $R^2$  is 3-thienyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CF;
- 15       $R^2$  is 2,6-dichlorophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CF;
- $R^2$  is 3-amidocarbonyl-5-aminophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 20       $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- 25       $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;
- $R^2$  is 3,5-diaminophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-amino-5-carboxyphenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is N;

$R^2$  is 3-amidocarbonyl-5-aminophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

5        $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

10       $R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3,5-diaminophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

15       $R^2$  is 3-amino-5-carboxyphenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CH;

$R^2$  is 3-amidocarbonyl-5-aminophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

20       $R^2$  is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

$R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

$R^2$  is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

25       $R^2$  is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

$R^2$  is 3,5-diaminophenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl;

$R^2$  is 3-amino-5-carboxyphenyl, B is cyclobutyl, A is single bond,  $Y^0$  is 4-amidinobenzyl, and M is CCl.

53. A method of treating or preventing a TF VIIA-mediated disorder in a  
 5 subject by administering a therapeutically effective amount of a compound or a pharmaceutically acceptable salt thereof, said compound of the formula:



wherein;

- $R^2$  is 3-aminophenyl, B is phenyl, A is  $CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-  
 10 1-(2-thiazolyl)-2-pentyl, and M is  $CH$ ;  
 $R^2$  is 3-aminophenyl, B is phenyl, A is  $CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-  
 1-(2-thiazolyl)-2-pentyl, and M is  $CF$ ;  
 $R^2$  is 3-aminophenyl, B is phenyl, A is  $CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-  
 1-(2-thiazolyl)-2-pentyl, and M is  $CCl$ ;  
 15  $R^2$  is 3-aminophenyl, B is phenyl, A is  $CH_2$ ,  $Y^{AT}$  is 5-guanidino-1-oxo-  
 1-(2-thiazolyl)-2-pentyl, and M is  $N$ .