Instruction set architecture (RISC)

Instruction formats

1. RRR type

2. RI type

3. I type

Architecture

Data Memory (RAM) – 8M x 16 bits

Instruction Memory (ROM) – 4K x 24 bits

MAR – 24-bit Register

PC – 24-bit Register

Accumulator (AC, R0) – 24-bit Register

R1 – R7 General Purpose Registers – 24-bit

Instruction	Opcode	operation
NOP	00000	No operation
LOAD	00001	$Reg A \leftarrow RAM[MAR]$
STORE	00010	RAM[MAR] ← Reg A
MOVE		Reg A ← Reg B
LDPC		PC ← Reg A
LDMAR		MAR ← Reg A
LOADI		Reg A ← signed immediate (8-bit)
LDACI		AC ← signed immediate (11-bit)
ADD		$Reg A \leftarrow Reg B + Reg C$
SUB		Reg A ← Reg B - Reg C
MUL		Reg A ← Reg B << Reg C
DIV		$Reg A \leftarrow Reg B \gg Reg C$
INC		$Reg A \leftarrow Reg A + 1$
DEC		Reg A ← Reg A - 1
NEG		Reg A ← -Reg B
NOT		Reg A ← Reg B (NOT) Reg C
AND		Reg A ← Reg B (AND) Reg C
OR		$Reg A \leftarrow Reg B (OR) Reg C$
XOR		Reg A ← Reg B (XOR) Reg C
JGT		If ALU out > 0 then PC \leftarrow Reg B else PC \leftarrow PC + 1
JEQ		If ALU out = 0 then PC \leftarrow Reg B else PC \leftarrow PC + 1
JGE		If ALU out \geq 0 then PC \leftarrow Reg B else PC \leftarrow PC + 1
JLT		If ALU out < 0 then PC \leftarrow Reg B else PC \leftarrow PC + 1
JNE		If ALU out != 0 then PC \leftarrow Reg B else PC \leftarrow PC + 1
JLE		If ALU out \leftarrow 0 then PC \leftarrow Reg B else PC \leftarrow PC + 1
JMP		PC ← Reg B (Unconditional Jump)

Data path

