Components in wireless technology 5XTC0

Module 4 Lecture: RF systems

Vojkan Vidojkovic



Where innovation starts

### **Outline**

- Goals of the lecture
- Scope
- Trends & challenges in wireless communications
- RF systems examples
- RF integrated circuits examples
- Summary
- Assignment



### Goals of the lecture

- Orientation in the field of wireless communication
  - Understanding trends, applications, challenges, directions
  - Getting overview of the landscape in wireless communications
    - Companies
    - Universities
    - Institutes
- Getting familiar with RF systems
- Getting familiar with real RF integrated circuit designs
- Making the link between course content and examples of RF integrated circuits



### Scope



- Scope: TRX from application, system and circuit design perspective
- Purpose: signal conditioning
- Goal: minimizing impairments (noise, nonlinearity, energy)



### **Development of Wireless Communications**

#### Observations

- Wireless communications experienced explosive growth
- Number of connected devices exponentially grows vs time
- Smart phone revenue increases vs time

#### Connected devices vs population



#### Smart phone revenue



# **Applications for Wireless Technologies**

### **Applications**

### **Cellular & Connectivity**

- 2G (GSM, GPRS, EDGE)
- 3G
- 4G
- 5G
- ZigBee
- Bluetooth
- WiFi, WiGig

### **Emerging applications**

- 6G
- Automotive
  - radar
  - self & driving assistance
- Medical, BAN
  - monitoring
  - detection
- Industry
  - machine to machine com
  - identification
- Spectroscopy
- THz imaging
- Flexible electronics
- Environment & food monitoring
- Agriculture

### **Important!!!**



# Trends in Wireless Technologies

# **Applications**

### **Important!!!**

### **Cellular & Connectivity**

- Phone centric
- Progress to higher data rates
- Drivers: commodity & low cost



### **Emerging applications**

- Fast growing field
- Car and medical centric





- Extension to different areas
  - Environment
  - Food
  - Agriculture
- Drivers: quality & low cost



### Trends in semiconductor technologies



- Moore's law enabled modern wireless communications
- Supply voltages are decreasing
- World is waiting for alternative to CMOS !!!

**Important!!!** 



### Cellular & Connectivity Challenges





# Challenges and Focus in Emerging Applications

- Combination application/system/circuit
- Multidisciplinary approach
- Proof of concept
- Form factor
- Example: sensing plant health status













 Form factor reduction in mobile communications

1982

2020









### Wireless Communications Landscape



Many universities: UC Berkeley, UCLA, Toronto, Cornell, KU Leuven, Lund, Pavia, Twente, Delft, Eindhoven, ...

echnische Universiteit **Eindhoven** Jniversity of Technology

### Engineer career - possibilities

### Industry

- Properties: product oriented, focused on certain task, practical
- Career ladders
  - Management: group lead, department lead, director, CEO
  - Technical: junior

#### Academia

- Properties: scientific oriented, broad scope, theoretical & practical
- Career lather
  - Scientific: assistant professor, associate professor, full professor



# Radio Frequency (RF) Spectrum

- RF spectrum for wireless communications is the same as high way for traffic
- Spectrum division and use





mm-wave

**5G** including mm-wave

IoT, 5G



### Smartphone architecture



IC - integrated circuit (chip)

PCB – printed circuit board

### RF system - transceiver block diagram



#### TRX functions Important !!!

Data conversion

Filtering/selectivity

Frequency conversion

Amplification

Frequency synthesis

#### Legend

RF – radio frequency

BB - baseband

MN – matching netwok

LNA – low noise amplifier

MIX - mixer

FIL - filter

PA – power amplifier

ADC – analog to digital converter

DAC – digital to analog converter

DSP – digital signal processing

PLL – phased locked loop

# RF system example: DECT TRX



MINE ADC DBLR DIGITAL CONTROL -VCO REG DEMOD

Figure 25.6.7: Die micrograph.



### RF system example: 2G/3G/4G Transmitter





Figure 13.2.7: Die micrograph including DPLL and AM path of TX.

Figure 13.2.1: Concept of digital polar modulator with signed AM path.



### RF system: 60GHz RX front-end

 $C_{C}$ 

IN





- First 60GHz passive mixer
- Noise/impedance matching
- Patent granted
- Cited by 87





### 60GHz LNA design and link to course topics

- LNA is challenging block with many requirements:
  - High gain
  - Stability

 $\lambda = c/f$ 

- Impedance matching
  - In order to prevent reflection S<sub>11</sub>< -10dB</li>
- Low noise figure





Topics addressed in course

### RF system and circuit example: 60GHz TX front-end



# RF system example: 60GHz RX and TX chips











### Die phots of 60GHz RX and TX chips



- Digital CMOS 40nm LP, 7 Cu layers + 1 Al layer,  $V_{DD}$  = 1.1V
- Occupied area: RX 6.5mm<sup>2</sup>, TX 6mm<sup>2</sup>



## 60GHz RX module photo

#### FRONT-SIDE



#### **BACK-SIDE**



### Characterization of 60GHz TX-RX LINK





### Summary

- Relevance of wireless communications is increasing
- Applications in wireless communications are increasing
  - The last 20 years were about communications
  - The race towards high data rates will continue
  - Nowdays medical and automotive applications are in the focus
  - There is plenty of work in front of us
- Digitization of the world is progressing. But our world is analog and there will always be a need for an analog interface to digital world
- The course content is very practical and will help you in practice
- Provided RF system and RF circuit examples show relevance of course content

