512-point FFT Accelerator

Praveen Kumar Yadav

MS By Research in VLSI, Signal Processing, and Imaging
Department of Electrical Engineering, IIT Palakkad
Guide: Dr. Sabarimalai Manikandan

IIT PALAKKAD

Feb 14, 2025

- 1 Introduction
- 2 Architecture
- 3 Block Diagram without ZYNQ PS
- 4 Outcomes
- **5** BLOCK Diagram using ZYNQ PS
- 6 Comparsion HW and SW
- Timing and Power report

512 point DIT- FFT Hardware Accelerator

Design 512 FFT, which can help detect the peaks in PPG signals by identifying dominant pulse rate frequencies.

- 1 Introduction
- 2 Architecture
- 3 Block Diagram without ZYNQ PS
- 4 Outcomes
- 5 BLOCK Diagram using ZYNQ PS
- 6 Comparsion HW and SW
- Timing and Power report

Architecture of 512-point FFT

- Introduction
- 2 Architecture
- 3 Block Diagram without ZYNQ PS
- 4 Outcomes
- **5** BLOCK Diagram using ZYNQ PS
- 6 Comparsion HW and SW
- Timing and Power report

Block Diagram of 512-Point FFT using IP generated from HLS

Simulation waveform for 512-Point FFT from Vivado

- Introduction
- 2 Architecture
- 3 Block Diagram without ZYNQ PS
- 4 Outcomes
- 5 BLOCK Diagram using ZYNQ PS
- 6 Comparsion HW and SW
- Timing and Power report

Error plot comparing MATLAB FFT and HLS FFT

Magnitude of Amplitude spectrum of FFT for 125 Hz sample rate

Co-Simulation Report

Result

		Latency			Interval		
RTL	Status	min	avg	max	min	avg	max
VHDL	NA	NA	ΝĀ	NA	NA	ΝĀ	NA
Verilog	Pass	5428	5684	5941	1026	1026	1026

Export the report(.html) using the Export Wizard

Simulation report

Utilization Estimates

Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	-	-	-
Expression	-	-	0	67
FIFO	-	-	-	-
Instance	19	72	4115	5018
Memory	84	-	0	0
Multiplexer	-	-	-	22
Register	-	-	22	-
Total	103	72	4137	5107
Available	120	80	35200	17600
Utilization (%)	85	90	11	29

- Introduction
- 2 Architecture
- 3 Block Diagram without ZYNQ PS
- 4 Outcomes
- **6** BLOCK Diagram using ZYNQ PS
- 6 Comparsion HW and SW
- Timing and Power report

SDK: Block Diagram of 512-Point FFT using ZYNQ PS

- 1 Introduction
- 2 Architecture
- 3 Block Diagram without ZYNQ PS
- 4 Outcomes
- 5 BLOCK Diagram using ZYNQ PS
- 6 Comparsion HW and SW
- 7 Timing and Power report

Comparsion HW and SW

```
COM4 - Tera Term VT
 File Edit Setup Control Window Help
Starting software FFT computation...
Starting hardware FFT computation...
FFT Hardware finished in 349 cycles
PASS
SW Cycles: 137354
WriteToFFT cycles: 21893
Compute FFT cycles: 225447
ReadFromFFT cycles: 19533
```

- Introduction
- 2 Architecture
- 3 Block Diagram without ZYNQ PS
- 4 Outcomes
- 5 BLOCK Diagram using ZYNQ PS
- 6 Comparsion HW and SW
- Timing and Power report

Timing and Power report

Static and Dynamic Power report

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power:	0.457 W	
Design Power Budget:	Not Specified	
Process:	typical	
Power Budget Margin:	N/A	
Junction Temperature:	30.3°C	
Thermal Margin:	54.7°C (4.6 W)	
Ambient Temperature:	25.0 °C	
Effective 3JA:	11.5°C/W	
Power supplied to off-chip devices:	0 W	
Confidence level:	Medium	
Launch Power Constraint Advisor to find and fix		

invalid switching activity

Area report

Report Cell Usage:

+	-+	++
1	Cell	Count
+	-+	++
11	CARRY4	481
12	CFGLUT5	1561
13	LUT1	361
14	LUT2	2301
15	LUT3	1081
16	LUT4	1361
17	LUT5	1061
18	LUT6	5731
19	MUXF7	191
10	RAMB18E1	1
11	RAMB36E1	1 51
12	SRL16E	2011
13	SRLC16E	1 21
114	SRLC32E	171
15	FDRE	2179
16	FDSE	101
+	-+	++

Finished Writing Synthesis Report : Time (s): cpu = 00:00:58 ; elapsed = 00:03:01 . Memory (MB): peak = 1860.633 ; gain = 972.688

Synthesis finished with 0 errors, 0 critical warnings and 3231 warnings.

Synthesis Optimization Runtime: Time (s): cpu = 00:00:25; elapsed = 00:02:39. Memory (MB): peak = 1860.633; gain = 972.688 Synthesis Optimization Complete: Time (s): cpu = 00:00:88; elapsed = 00:03:01. Memory (MB): peak = 1860.633; gain = 972.688 IMFO: [Protect 1-571] Translating synthesized netlist

Matlist sorting complete. Time /si: cnn = 00:00:00 : elanged = 00:00:00 112 | Memory /MR1: neak = 1860 633 : gain = 0.000

Literature Survey

ullet 32-bit posit FFTs can replace 64-bit float FFTs for many HPC tasks. Speed, energy efficiency, and storage costs can thus be improved by $2\times$ for a broad range of HPC workloads.

References

Leong, S.H., Gustafson, J.L. (2023)

Lossless FFTs Using Posit Arithmetic.

https://doi.org/10.1007/978-3-031-32180-1_1

DSP Architecture NPTEL

Lecture: for Basics: 45, 46, 57, 58, 67, 68, 77, 80, 81, 83, For HLS design: 80, 82, For SDK: 89, 90, 91

https://www.youtube.com/watch?v=mkmWNUFBC51&list= PLv78DAx1VAV10VRc3kX62AsZ-igfw5D2q&index=91 https://gitlab.com/chandrachoodan/teach-fpga

Thank You!

TAM-Logo.png