		Tipo de Prova Exame Teórico – Época Normal	Ano letivo 2020/2021	Data 24-06-2021
P.PORTO	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	^{Curso} Licenciatura em Engenharia Informática		Hora 10:00
		Unidade Curricular Inteligência Artificial		Duração 2:30 horas

Observações:

- Pode trocar a ordem das questões, desde que as identifique convenientemente.
- Qualquer tentativa de fraude implica a anulação do exame.
- A Parte 1 deste exame é constituída por questões de escolha múltipla. As mesmas devem ser respondidas na folha de resposta. Cada resposta errada desconta 0.25 valores da Parte 1.
- O enunciado deve ser entreque juntamente com a folha de resposta.

Número:	Nome:	
	PARTE I – Escolha Múltipla (10V)	
1. (1V)	 Considere os classificadores do tipo Naive Bayes. Assinale a afirmação c A. Um classificador Naive Bayes não precisa de um dataset pois é eventos ocorrerem B. Um classificador Naive Bayes assume que as variáveis são dep uma influencia o(s) valor(es) de outra(s) C. Os classificadores do tipo Naive Bayes pertencem à categoria A D. Nenhuma das restantes 	baseado nas probabilidades de os endentes entre si, isto é, o valor de
2. (1V)	Quando se cria um modelo para um problema de Machine Learning: A. É obrigatória a existência de um dataset de teste B. É obrigatória a existência de um dataset de validação C. É obrigatória a existência de um dataset de treino D. Nenhuma das restantes	
3. (1V)	Considere a seguinte base de conhecimento Prolog que se apresenta à direita. Qual o resultado da seguinte query? ?- multa(portugal, 500). A. A query devolve false pelo princípio do mundo fechado B. A query devolve false pelo princípio do mundo aberto C. A query devolve o valor '500'	<pre>%multa(pais,valor) multa(espanha,500). multa(franca,750). multa(reino_unido,1250).</pre>
4. (1V)	D. A query devolve o valor 'portugal' Considere uma Árvore de Decisão de um problema de classificação. Nes A. Cada nó tem um valor B. Cada folha tem um valor	te tipo de modelo:

ESTG-PR05-Mod013V2 Página 1 de4

Assuma que treinou um modelo utilizando um algoritmo de Redes Neuronais e que, ao analisar as métricas de performance resultantes, constatou que existe overfitting. Decide então treinar um novo modelo, com

Cada folha tem uma variável

D. Nenhuma das restantes

5. (1V)

	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	Tipo de Prova Exame Teórico — Época Normal	Ano letivo 2020/2021	Data 24-06-2021
P.PORTO		^{Curso} Licenciatura em Engenharia Informática		Hora 10:00
		Unidade Curricular Inteligência Artificial		Duração 2:30 horas

uma configuração diferente, que permita evitar a ocorrência de overfitting. Assinale a melhor decisão a tomar:

- A. Aumentar o número de camadas
- B. Diminuir o número de camadas
- C. Aumentar o nº de neurónios na camada de output
- D. Diminuir o nº de neurónios na camada de output
- Considere a Imagem que se apresenta à direita. A qual dos seguintes 6. (1V) algoritmos esta pode ser associada?
 - A. Naive bayes
 - B. K-nearest Neighbours
 - C. Redes Neuronais
 - D. Nenhuma das restantes

- Indique qual das seguintes é uma afirmação verdadeira quando se comparam os algoritmos de Redes 7. (1V) Neuronais e Deep Learning:
 - A. O Deep Learning automatiza o processo de feature extraction
 - B. A Rede Neuronal automatiza o processo de feature extraction
 - C. A Rede Neuronal utiliza o método backpropagation para ajustar o nº de ligações entre cada par de neurónios
 - D. O Deep Learning utiliza o método backpropagation para ajustar o nº de ligações entre cada par de neurónios
- Qual dos seguintes algoritmos pode dar origem a diferentes modelos, mesmo quando treinado com a 8. (1V) mesma configuração e os mesmos dados:
 - A. Árvore de Decisão
 - B. Naive Bayes
 - KNN
 - D. Nenhum dos restantes
- De que forma são inicializados os pesos de cada ligação numa rede neuronal? 9. (1V)
 - A. De forma completamente aleatória
 - B. Com base nas opções de configuração da rede neuronal
 - C. Com base nas métricas de erro do modelo
 - D. Não há necessidade de inicializar os pesos numa rede neuronal
- Dos seguintes problemas, assinale aquele que poderia ser resolvido recorrendo a Algoritmos Genéticos: 10. (1V)
 - A. Num servidor de correio eletrónico, distinquir entre mensagens que são spam e mensagens que não são spam
 - B. Elaborar os horários da ESTG, garantindo que se minimizam os tempos vazios entre aulas e se evitam colisões na utilização das salas
 - C. Prever a probabilidade de um determinado aluno passar ou não na UC de Inteligência Artificial
 - D. Prever a probabilidade de uma pessoa, selecionada aleatoriamente de entre a população, estar ou não infetada com COVID-19.

ESTG-PR05-Mod013V2 Página 2 de

	Tipo de Prova Exame Teórico – Época Normal	Ano letivo 2020/2021	Data 24-06-2021
P.PORTO ESCOLA SUPERIO	Curso Licenciatura em Engenharia Informática		Hora 10:00
DE TECNO E GESTÂC	Unidade Curricular Inteligência Artificial		Duração 2:30 horas

PARTE II – Prolog (5V)

11. Considere a matriz de risco apresentada abaixo, que tem vindo a ser utilizada para definir o nível de risco relativamente à infeção por covid-19 em Portugal. As duas variáveis que permitem distinguir entre os 4 níveis de risco, indicados em cada um dos quadrantes, são a Incidência (nº de novos casos nos últimos 14 dias por 100.000 habitantes, no eixo dos YY) e o R(t) (transmissibilidade).

Considere ainda a existência da seguinte base de conhecimento (excerto) que contém, para cada concelho nacional, e cada dia (contado desde o início da pandemia), os valores da Incidência e do R(t).

```
%estado(dia,concelho,incidencia,rt)
estado(49, braga, 123, 0.97).
estado(50, braga, 180, 1.02).
estado(51, braga, 198, 1.01).
estado(49, lisboa, 170, 1.24).
estado(50, lisboa, 220, 1.04).
estado(51, lisboa, 60, 0.97).
estado(49, porto, 97, 0.9).
estado(50, porto, 120, 1.05).
estado(51, porto, 170, 1.0).
```

ESTG-PR05-Mod013V2 Página 3 de

	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	Tipo de Prova Exame Teórico – Época Normal	Ano letivo 2020/2021	Data 24-06-2021
P.PORTO		Curso Licenciatura em Engenharia Informática		Hora 10:00
		Unidade Curricular Inteligência Artificial		Duração 2:30 horas

o seu nível de risco segundo a matriz (um nº entre 1 e 4) para esse concelho/dia.
Implemente em Prolog o predicado variação , de aridade 4, que, dado o nome de um concelho e dois dias, determina se entre esses dois dias o concelho melhorou, piorou, ou manteve o seu nível de risco.
Implemente o predicado lista_concelhos, de aridade 2, que, dado um nível de risco (nº entre 1 e 4) encontra a lista de todos os concelhos que estão nesse nível de risco ou num nível superior. Caso não tenha resolvido a questão 11.1, e se achar necessário, considere a existência do predicado risco.

PARTE III – Desenvolvimento (5V)

Considere o processo de treino de um modelo de Machine Learning. Dê um exemplo de um problema de Machine Learning, incluindo o tipo de problema bem como exemplificando algumas das potenciais variáveis.				
Descreva ainda os principais passos que seguiria para treinar um modelo para o problema descrito, de forma				
a garantir a validade científica do modelo resultante.				

ESTG-PR05-Mod013V2 Página 4 de