# 7.4 Hermite 插值

• 一.问题描述

P207

- <u>二.定义</u>
- · 三.构造Hermite插值
- 四. 余项定理
- 五.一般插值

## 一. 问题描述

Hermite插值也叫带指定微商值的插值,它要构造一个插值函数,不但在给定节点上取函数值,而且取已知微商值,使插值函数和被插函数的密和程度更好。

### 







$$H_{2n+1}(x) = \sum_{i=0}^{n} y_{i} q_{n,i}(x) + \sum_{i=0}^{n} y_{i} h_{n,i}(x)$$

三次Hermite插值函数的构造(n=1,2n+1=3)

已知数表:

(7)

(8)

构造三次Hermite插值多项式H<sub>3</sub>(x).

) 其中

 $H_3(x)=y_0 q_{1,0}(x)+y_1 q_{1,1}(x)+y_0' h_{1,0}(x)+y_1' h_{1,1}(x)$ 

 $q_{1,0}(x) = [1+2(x-x_0)/(x_1-x_0)][(x-x_1)/(x_0-x_1)]^2$ 

(6)  $q_{1,1}(x)=[1+2(x-x_1)/(x_0-x_1)][(x-x_0)/(x_1-x_0)]^2$ 

 $h_{1.0}(x) = (x-x_0)[(x-x_1)/(x_0-x_1)]^2$ 

 $h_{1,1}(x) = (x-x_1)[(x-x_0)/(x_1-x_0)]^2$ 

例1: 求过0、1两点构造一个三次插值多项式H3(x),满足 条件: H<sub>3</sub>(0)=1, H<sub>3</sub> '(0)=1/2, H<sub>3</sub>(1)=2, H<sub>3</sub> '(1)=1/2.

•**M**:  $x_0=0, x_1=1; y_0=1, y_1=2; y_0'=1/2, y_1'=1/2;$ 

•由式(5)-(8)得

 $q_{1,0}(x)=(2x+1)(x-1)^2$ ,  $q_{1,1}(x)=(3-2x)x^2$ 

 $h_{1.0}(x)=x(x-1)^2$ ,  $h_{1.1}(x)=x^2(x-1)$ 

•  $H_3(x)=(1+2x)(x-1)^2+2(3-2x)x^2+0.5(x-1)^2x+0.5(x-1)x^2$  $=-x^3+1.5x^2+0.5x+1$ 

### 利用Newton差商插值构造 Hermite 插值多项式

已给数 据表:

| x      | x <sub>0</sub> | x <sub>1</sub> | <br>X <sub>n</sub> | $H_{2n+I}(x_i) = y_i$ |
|--------|----------------|----------------|--------------------|-----------------------|
| f(x)   | f(x0)          | f(x1)          | <br>f(xn)          | $H_{2n+1}'(x_i)=y'_i$ |
| f '(x) | f'(x0)         | f'(x1)         | <br>f'(xn)         |                       |
|        |                |                |                    | i=0,1,2n              |

定义新点列  $z_{2i}=z_{2i+1}=x_i$ , (i=0,1,...,n),得:  $z_0,z_1,z_2,...,z_{2n+1}$ 定义  $f[z_{2i}, z_{2i+1}] = f'(x_i)$ , (i=0,1,...,n),构造差商表:

z f(z) 1阶差商

2阶差商 … 2n阶差商

 $z_0 = x_0$   $f(z_0) - f[z_0, z_1] = f'(x_0) - f[z_0, z_1, z_2]$  ···  $f[z_0, z_1, \dots, z_{2n+1}]$ 

 $z_1 = x_0$   $f(z_1, \overline{z_2})$   $f[z_1, z_2, z_3]$  ...  $f(z_2) - f[z_2, z_3] = f'(x_2) - f[z_2, z_3, z_4] \cdots$ 

 $z_3 = x_1 \qquad f(z_3)$ 

 $f[z_3,z_4]$   $f[z_3,z_4,z_5]$  ...

 $z_{2n} = x_n$   $f(z_{2n}) f[z_{2n}, z_{2n+1}] = f'(x_n)$ 

 $z_{2n+1} = x_n \quad f(z_{2n+1})$ 

Hermite 插值多项式为

$$H_{2n+1}(x) = f[z_0] + \sum_{k=1}^{2n+1} f[z_0, \dots, z_k](x - z_0)(x - z_1) \dots (x - z_{k-1})$$

特别,三次Hermite插值多项式为(n=1,2n+1=3)

 $H_3(x) = f[z_0] + f[z_0, z_1](x - z_0) + f[z_0, z_1, z_2](x - z_0)(x - z_1) + f[z_0, z_1, z_2](x - z_0)(x - z_1) + f[z_0, z_1](x - z_0)(x - z_$  $+ f[z_0, z_1, z_2, z_3](x-z_0)(x-z_1)(x-z_2)$ 

 $= f(x_0) + f'(x_0)(x - x_0) + f[z_0, z_1, z_2](x - x_0)^2 +$ 

 $f[z_0, z_1, z_2, z_3](x-x_0)^2(x-x_1)$ 

例1: 求过0、1两点构造一个三次插值多项式H<sub>3</sub>(x),满足 条件:  $H_3(0)=1$ ,  $H_3'(0)=1/2$ ,  $H_3(1)=2$ ,  $H_3'(1)=1/2$ .

解:构造差商表 z; f(z;) 1阶差商 2阶差商 3阶差商

定义 z<sub>0</sub>=z<sub>1</sub>=0,  $z_2 = z_3 = 1$ 

 $\underline{1} \longrightarrow \underline{1/2} \longrightarrow \underline{1/2}$ - 11 -1/2 $1^{-}$ 

2 1/2 2.

 $H_3(x) = f(x_0) + f'(x_0)(x - x_0) + f[z_0, z_1, z_2](x - x_0)^2 +$  $f[z_0, z_1, z_2, z_3](x-x_0)^2(x-x_1)$ 

所求  $H_3(x)=1+(1/2)x+(1/2)x^2-x^2(x-1)$ 

**四. 余项定理** 

P209

<mark>定理7-4</mark> 若f(x)在区间[a,b]存在2n+2阶导数,则其 Hermite插值余项为:

 $\frac{\gamma(2n+2)}{2}(\xi)[\omega_{n+1}^{2}(x)] \quad \xi \in (a,b) \quad (1)$  $R_{2n+1}(x) = f(x) - H_{2n+1}(x) = \frac{f(x)}{x^2}$ (2n+2)!

 $\omega_{n+1}(x) = (x-x_0)(x-x_1)....(x-x_n)$ 

特别,三次Hermite插值余项为

 $R_3(x) = f(x) - H_3(x) = \frac{f^{(4)}(\xi)[\omega_2^2(x)]}{4!} \quad \xi \in (a,b) \quad (10)$ 

 $\omega_2(x) = (x - x_0)(x - x_1)$ 

<del>定理7-4</del> 若f(x)在区间[a, b]存在2n+2阶导数,则其 Hermite插值余项为:

$$R_{2n+1}(x) = f(x) - H_{2n+1}(x) = \frac{f^{(2n+2)}(\xi)[\omega_{n+1}^2(x)]}{(2n+2)!} \quad \xi \in (a,b) \quad (1)$$

 $\omega_{n+1}(x) = (x-x_0)(x-x_1)....(x-x_n)$ 

### 证明

当 $x=x_i$ ,i=0,1,2....时,左右两端为零,公式成立.

以下考虑
$$x_{\neq x_i}, x \in [a,b]$$
。 因为在结点 $x_0, x_1, \dots, x_n$ 上 
$$\begin{cases} f(x_i) = H_{2n+1}(x_i) \\ f'(x_i) = H_{2n+1}'(x_i) \end{cases}$$
 所以 
$$\begin{cases} R_{2n+1}(x_i) = f(x_i) - H_{2n+1}(x_i) = 0 \\ R_{2n+1}'(x_i) = f'(x_i) - H_{2n+1}'(x_i) = 0, \end{cases}$$

因此  $x_i(i=0,1....n)$ 为 $R_{2n+1}(x)$ 的二重零点。  $R_{2n+1}(x)$ 可设为:  $R_{2n+1}(x) = k(x) \left[ \omega_{n+1}(x) \right]^2$ 

 $R_{2n+1}(x)$ 可设为:  $R_{2n+1}(x) = k(x) [\omega_{n+1}(x)]^2$ 

- k(x)为待定函数。做辅助函数
- $F(z)=f(z)-H_{2n+1}(z)-k(x)[\omega_{n+1}(z)]^2$
- F(x)=0,所以z=x是F(z)的一个零点,此外  $x_0$ ..... $x_n$ 都是F(z)的二重零点,F(z)在[a,b]上有n+2个零点。
- 由洛尔定理, F'(z)在[a,b]上至少有2n+2个零点,
- F"(z)在[a,b]上至少有2n+1个零点.依此类推,
- ・  $F^{(2n+2)}(x)$ 在插值区间[a,b]中至少存在一个零点,设为 $\xi$ ,即  $F^{(2n+2)}(\xi)=0$ 。
- 故有  $0=F^{(2n+2)}(\xi)=f^{(2n+2)}(\xi)-0-(2n+2)!k(x)$

注意 $|\omega_n \frac{k(x) = f^{(2n+2)}(\xi)/(2n+2)!}{\blacksquare}$  页式,  $H_{2n+1}(z)$ 是 2n+1次多项式,

$$R_{2n+1}(x) = \frac{f^{(2n+2)}(\xi)[\omega_{n+1}^2(x)]}{(2n+2)!} \quad \xi \in (a,b)$$

### 五.一般插值

实际问题中还会有其它的插值问题,这类问题可用多种方法解决.

例2 已知数据表: x

$$\begin{array}{c|cc} x & 0 & 1 \\ \hline f(x) & y_0 & y_1 \end{array}$$

 $f'(x) y_0'$ 

P210,例7-5

求过0,1两点的插值多项式 p(x),满足条件  $p(0)=y_0$ ,  $p'(0)=y_0'$ ,, $p(1)=y_1$ ,并估计余项。

解:(k-1) (基函数法)它有三个条件,故 p(x)可设为二次多项式

 $p(x) = y_0 L_0(x) + y_1 L_1(x) + y_0' h_0(x)$ 

这里,  $L_0(x)$ ,  $L_1(x)$ ,  $h_0(x)$ 是基函数.

 $p(x) = y_0 L_0(x) + y_1 L_1(x) + y_0 ' h_0(x)$ 要求  $L_0(x)$ ,  $L_1(x)$ ,  $h_0(x)$ 都是二次多项式, 且满足

对  $x_0$ =0有  $L_0(0)=1$   $L_1(0)=0$   $h_0(0)=0$   $L_0'(0)=0$   $L_1'(0)=0$   $h_0'(0)=1$ 

对  $x_1=1$ 有  $L_0(1)=0$   $L_1(1)=1$   $h_0(1)=0$ 

经计算,得  $L_0(x)=(-x-1)(x-1)=1-x^2$ 

P 210,例7-5

 $^{\bullet}L_1(x)=x^2$ ,  $h_0(x)=x(1-x)$ 

•从而  $p(x)=y_0(1-x^2)+y_1x^2+y_0'(1-x)x$ 

法二) 令 p(x)=f(0)+f[0,1]x+ax(x-1), 这里

$$f(0) = y_0, \quad f[0,1] = \frac{y_1 - y_0}{1 - 0} = y_1 - y_0$$

从而 
$$p(x)=y_0+(y_1-y_0)x+ax(x-1)$$

$$p'(x)=y_1-y_0+a(x-1)+ax$$
,  $\boxplus p'(0)=y_0'$ 

得  $a=y_1-y_0-y_0$ ,

从而  $p(x)=y_0+(y_1-y_0)x+(y_1-y_0-y_0')x(x-1)$ 

法三) 令  $p(x)=ax^2+bx+c$ 

由:  $p(0)=y_{\theta}$ ,  $p(1)=y_{1}$ ,  $p'(0)=y_{\theta}'$ 

得:  $c = y_{\theta}$ ,  $b = y_{\theta}'$ ,  $a = y_1 - y_{\theta} - y_{\theta}'$ 

从而  $p(x) = (y_1 - y_\theta - y_\theta')x^2 + y_\theta'x + y_\theta$ 

法四)构造差商表  $z_i f(z_i)$  I阶差商 2阶差商

0  $\underline{y_0}'$  $\underline{y_0}$  $\underline{y_1 - y_0 - y_0}$  $y_0$  $y_1 - y_0$ 

$$p(x) = f[z_0] + f[z_0, z_1](x - z_0) + f[z_0, z_1, z_2](x - z_0)(x - z_1)$$

所求多项式为:  $p(x)=y_0 + y_0'x + (y_1-y_0-y_0')x^2$ 

其余项表达式为  $R(x) = f(x) - p(x) = \frac{f^{(3)}(\xi)}{2}x^2(1-x)$ 

 $R(\theta) = R'(\theta) = R(1) = \theta$ 

- 设R(x)=k(x)(1-x)  $x^2$ ,k(x)待求, $x\neq0$ ,1; 作辅助函数
- $g(t)=f(t)-p(t)-k(x)(1-t)t^2$ , g(t)有三个零点: 0、1、x; 利用洛尔定理,g'(t)有三个零点:  $\xi_{x0}$ 、 $\xi_{x1}$ 、0
- ...,  $g^{(3)}(t)$  至少有一个零点 $\xi$ ,即  $g^{(3)}(\xi)=0$ 。
- 由此可得  $k(x)=f^{(3)}(\xi)/3!$

## 作业

习题 7 P232: 14

4