人工智能之机器学习

K近邻算法(KNN)

主讲人: 李老师

课程内容

- KNN算法
- KD-Tree

KNN直观解释

KNN算法原理

- K近邻(K-nearst neighbors, KNN)是一种基本的机器学习算法,所谓k 近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的 k个邻居来代表。比如:判断一个人的人品,只需要观察与他来往最密切 的几个人的人品好坏就可以得出,即"近朱者赤,近墨者黑"; KNN算 法既可以应用于分类应用中,也可以应用在回归应用中。
- KNN在做回归和分类的主要区别在于最后做预测的时候的决策方式不同。 KNN在分类预测时,一般采用**多数表决法**;而在做回归预测时,一般采 用**平均值法**。

KNN算法原理

- 1. 从训练集合中获取K个离待预测样本距离最近的样本数据;
- 2. 根据获取得到的K个样本数据来预测当前待预测样本的目标属性值。

一个案例了解KNN

电影名称	打斗镜头	接吻镜头	电影类型
California Man	3	104	爱情片
He's Not Really into Dudes	2	100	爱情片
Beautiful Woman	1	81	爱情片
Kevin Longblade	101	10	动作片
Robo Slayer 3000	99	5	动作片
Amped ll	98	2	动作片
?	18	90	未知

- 我们标记电影的类型: 爱情片, 动作片
- 每个电影有两个特征属性: 打斗镜头, 接吻镜头
- 预测一个新的电影的电影类型

一个案例了解KNN

• 第一步: 将训练集中的所有样例画入坐标系, 也将待测样例画入

一个案例了解KNN

• 第二步: 计算待测分类的电影与所有已知分类的电影的欧式距离

电影名称	与未知电影的距离		
California Man	20.5		
He's Not Really into Dudes	18.7		
Beautiful Woman	19.2		
Kevin Longblade	115.3		
Robo Slayer 3000	117.4		
Amped II	118.9		

• 第三步:将这些电影按照距离升序排序,取前k个电影,假设k=3,那么我们得到的电影依次是《He's Not Really Into Dudes》、《Beautiful Woman》和《California Man》。而这三部电影全是爱情片,因此我们判定未知电影是爱情片。

KNN三要素

- 如左图中,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?
- 如果K=3,由于红色三角形所占比例为2/3, 绿色圆将被赋予红色三角形那个类;
- 如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。

KNN三要素

- · 在KNN算法中, 非常重要的主要是三个因素:
 - **K值的选择**:对于K值的选择,一般根据样本分布选择一个较小的值,然后通过交叉验证来选择一个比较合适的最终值;当选择比较小的K值的时候,表示使用较小领域中的样本进行预测,训练误差会减小,但是会导致模型变得复杂,容易过拟合;当选择较大的K值的时候,表示使用较大领域中的样本进行预测,训练误差会增大,同时会使模型变得简单,容易导致欠拟合;
 - 距离的度量:一般使用欧氏距离(欧几里得距离);
 - 决策规则:在分类模型中,主要使用多数表决法或者加权多数表决法;在 回归模型中,主要使用平均值法或者加权平均值法。

KNN分类预测规则

- · 在KNN分类应用中, 一般采用多数表决法或者加权多数表决法。
- **多数表决法**:每个邻近样本的权重是一样的,也就是说最终 预测的结果为出现类别最多的那个类,比如右图中蓝色圆圈 的最终类别为红色;
- 加权多数表决法:每个邻近样本的权重是不一样的,一般情况下采用权重和距离成反比的方式来计算,也就是说最终预测结果是出现权重最大的那个类别;比如右图中,假设三个红色点到待预测样本点的距离均为2,两个黄色点到待预测样本点距离为1,那么蓝色圆圈的最终类别为黄色。

KNN回归预测规则

- · 在KNN回归应用中, 一般采用平均值法或者加权平均值法。
- 平均值法:每个邻近样本的权重是一样的,也就是说最终预测的结果为所有邻近样本的目标属性值的均值;比如右图中,蓝色 3 圆圈的最终预测值为: 2.6;

2

2

• 加权平均值法:每个邻近样本的权重是不一样的,一般情况下 采用权重和距离成反比的方式来计算,也就是说在计算均值的时候进行加权操作;比如右图中,假设上面三个点到待预测样本点 的距离均为2,下面两个点到待预测样本点距离为1,那么蓝色圆圈的最终预测值为: 2.43。(权重分别为: 1/7和2/7)

编程——经典面试题KNN的实现

• 使用Python的二维List对KNN进行实现(使用等权投票),然后对未知影片的类型进行预测

电影名称	打斗镜头	接吻镜头	电影类型
California Man	3	104	爱情片
He's Not Really into Dudes	2	100	爱情片
Beautiful Woman	1	81	爱情片
Kevin Longblade	101	10	动作片
Robo Slayer 3000	99	5	动作片
Amped ll	98	2	动作片
?	18	90	未知

思考

· 训练KNN模型需要进行特征标准化吗?

KNN算法实现方式

- KNN算法的重点在于找出K个最邻近的点,主要方式有以下几种:
 - **蛮力实现(brute)**: 计算预测样本到所有训练集样本的距离,然后选择最小的k个距离即可得到K个最邻近点。缺点在于当特征数比较多、样本数比较多的时候,算法的执行效率比较低;
 - KD树(kd_tree): KD树算法中,首先是对训练数据进行建模,构建KD树,然后再根据建好的模型来获取邻近样本数据。
- 除此之外,还有一些从KD_Tree修改后的求解最邻近点的算法, 比如:Ball Tree、BBF Tree、MVP Tree等。

KD Tree

- KD Tree是KNN算法中用于计算最近邻的快速、便捷构建方式。
- 当样本数据量少的时候,我们可以使用brute这种暴力的方式进行求解最近邻,即计算到所有样本的距离。但是当样本量比较大的时候,直接计算所有样本的距离,工作量有点大,所以在这种情况下,我们可以使用kd tree来快速的计算。

KD Tree构建方式

KD树采用从m个样本的n维特征中,分别计算n个特征取值的方差,用方差最大的第k维特征n_k作为根节点。对于这个特征,选择取值的中位数n_{kv}作为样本的划分点,对于小于该值的样本划分到左子树,对于大于等于该值的样本划分到右子树,对左右子树采用同样的方式找方差最大的特征作为根节点,递归即可产生

KD树。

KD tree

• 二维样本: {(2,3), (5,4), (9,6), (4,7), (8,1), (7,2)}

构造kd树

• 给定一个二维空间的数据集 $T = \{(2,3)^T, (5,4)^T, (9,6)^T, (4,7)^T, (8,1)^T, (7,2)^T\}$

请画出:特征空间的划分过程、kd树的构造过程。

• 第一步:选择x⁽¹⁾轴,6个数据点的x⁽¹⁾坐标上的数字分别是2,5,9,4,8,7。取中位数7(不是严格意义的中位数,取较大的数),以x⁽¹⁾=7将特征空间分为

两个矩形:

构造kd树

• 第二步:选择x⁽²⁾轴,处理左子树,3个数据点的x⁽²⁾坐标上的数字分别是3,4,7。取中位数4,以x⁽²⁾=4将左子树对应的特征空间分为两个矩形;处理右子树,2个数据点的x⁽²⁾坐标上的数字分别是6,1。取6,以x⁽²⁾=6将右子树对应的特征空间分为两个矩形:

构造kd树

• 第三步: x⁽¹⁾轴,分别处理所有待处理的节点:

KD tree查找最近邻

• 当我们生成KD树以后,就可以去预测测试集里面的样本目标点了。对于 一个目标点,我们首先在KD树里面找到包含目标点的叶子节点。以目标 点为圆心,以目标点到叶子节点中样本实例的最短距离为半径,得到一 个超球体,最近邻的点一定在这个超球体内部。然后返回叶子节点的父 节点,检查另一个子节点包含的超矩形体是否和超球体相交,如果相交 就到这个子节点寻找是否有更加近的近邻,有的话就更新最近邻。如果不 相交那就简单了,我们直接返回父节点的父节点,在另一个子树继续搜 索最近邻。当回溯到根节点时,算法结束,此时保存的最近邻节点就是 最终的最近邻。

KD tree查找最近邻

- 找到所属的叶子节点后,以目标点为圆心,以目标点到最近样本 点(一般为当前叶子节点中的其它训练数据或者刚刚经过的父节点) 为半径画圆,从最近样本点往根节点进行遍历,如果这个圆和分 割节点的分割线有交线,那么就考虑分割点的另外一个子树。如 果在遍历过程中,找到距离比刚开始的样本距离近的样本,那就 进行更新操作。
- 一直迭代遍历到根节点上,结束循环找到最终的最小距离的样本。

KD tree查找最近邻

KNN参数说明

参数	KNeighborsClassifier	KNeighborsRegressor
weights	样本权重,可选参数: uniform(等权重)、distan	nce(权重和距离成反比,越近影响越强);默认为uniform
n_neighbors	邻近数目,默认为5	
algorithm	计算方式,默认为auto,可选参数: auto、ball_tree、kd_tree、brute;推荐选择kd_tree	
leaf_size	在使用KD_Tree、Ball_Tree的时候,允许存在最多的叶子数量,默认为30	
metric	样本之间距离度量公式,默认为minkowski(闵可夫斯基);当参数p为2的时候,其实就是欧几里得距离	
р	给定minkowski距离中的p值,默认为2	

