(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年4 月21 日 (21.04.2005)

PCT

(10) 国際公開番号 WO 2005/034953 A1

(51) 国際特許分類7: A61K 31/444, A61P 35/00, 27/02, 27/06, 3/10, C07D 401/14

(21) 国際出願番号:

PCT/JP2004/014956

(22) 国際出願日:

2004年10月8日(08.10.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 60/510,012

2003年10月10日(10.10.2003) US

(71) 出願人(米国を除く全ての指定国について): 奥和株式会社 (KOWA CO., LTD.) [JP/JP]; 〒4608625 愛知県名古屋市中区錦三丁目 6番29号 Aichi (JP).

(72) 発明者; および

- (75) 発明者/出願人 (米蘭についてのみ): 土肥 武 (DOI, Takeshi) [JP/JP]; 〒1890022 東京都東村山市野口町 2-17-43-36 Tokyo (JP). 田村 正宏 (TAMURA, Masahiro) [JP/JP]; 〒1940003 東京都町田市小川 1601-11-1304 Tokyo (JP).
- (74) 代理人: 特許集務法人アルガ特許事務所 (THE PATENT CORPORATE BODY ARUGA PATENT OFFICE); 〒1030013 東京都中央区日本橋人形町1丁目3番6号共同ビルTokyo (JP).

- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

- 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: ANGIOGENESIS INHIBITOR

(54) 発明の名称: 血管新生抑制薬

$$R^{2} = - \sum_{\substack{|P| \\ |P|}} CH_{2} - N \underbrace{CH_{2} \setminus_{m}} CH_{2} - N \underbrace{CH_{2} \setminus_{m}} - X - (CH_{2} \setminus_{m} - X) \underbrace{CH_{2} \setminus_{m}} - X = CH_{2} \cdot_{m} - X$$

(57) Abstract: A preventive/therapeutic agent for diseases attributable to angiogenesis which contains as an active ingredient a cyclic amine compound represented by the general formula (1): (Chemical formula 1) (1) (wherein R¹, R², and R³

each independently represents hydrogen, halogeno, hydroxy, alkyl, halogenoalkyl, alkoxy, alkylthio, carboxy, alkoxycarbonyl, or alkanoyl; W^1 and W^2 each independently represents nitrogen or CH; X represents oxygen, NR⁴, CONR⁴, or NR⁴CO; R⁴'s each represents hydrogen, alkyl, alkenyl, alkynyl, (un)substituted aryl, (un)substituted heteroaryl, (un)substituted aralkyl, or (un)substituted heteroaralkyl; and l, m, and n each is 0 or 1), a salt of the compound, or a solvate of either.

[観葉有]