Model Evaluation Report

Objective: To compare and evaluate the performance of five regression models to predict US regional sales, and select the best-performing model for deployment.

1. Overview of the Evaluation Strategy

To ensure a robust evaluation, each model was tested using the following metrics:

- Mean Squared Error (MSE): Measures the average squared difference between actual and predicted values. Lower is better.
- Root Mean Squared Error (RMSE): Square root of MSE; provides error in the same units as the target variable.
- Mean Absolute Error (MAE): Measures the average magnitude of the errors in predictions. Less sensitive to outliers than RMSE.
- **R-squared** (\mathbb{R}^2): Indicates the proportion of the variance in the dependent variable explained by the model. Closer to 1 means better fit.

All models were trained and evaluated on the same training and testing splits to ensure fairness in comparison.

② 2. Models Evaluated

Model	MSE	RMSE	MAE	R ² Score
XGBoost	94,829.28	307.94	184.98	0.9913
Gradient Boosting	116,016.12	340.61	192.12	0.9894
Random Forest	209,040.68	457.21	241.95	0.9809
Decision Tree	580,253.89	761.74	405.24	0.9470
AdaBoost	2,896,720.22	1701.98	1377.80	0.7356

3. Analysis of Results

✓ XGBoost

- **Best performance** across all metrics.
- Extremely low MSE, RMSE, and MAE, indicating very close predictions.
- R² of 0.9913, meaning it explains over 99% of the variability in sales data.
- Benefited from **boosting techniques** that reduce bias and variance.

• Well-tuned using hyperparameters such as n_estimators, max_depth, and learning rate.

⚠ Gradient Boosting

- Strong performance, second to XGBoost.
- Close RMSE and MAE, but slightly worse generalization power ($R^2 = 0.9894$).
- Slower training time compared to XGBoost.

Random Forest

- Performs well but with noticeable error margins.
- Higher MSE and RMSE suggest reduced accuracy.
- R² of 0.9809, still considered a strong fit.

X Decision Tree

- Much higher errors due to overfitting.
- Lacks ensemble robustness.
- R² dropped to 0.947, making it unsuitable for precise predictions.

X AdaBoost

- Poor performance in this regression context.
- Extremely high MSE and MAE.
- $R^2 = 0.7356$ suggests poor model fit and generalization.

4. Insights Gained

- Ensemble methods outperform single estimators significantly.
- Boosted models (XGBoost and Gradient Boosting) consistently lead to better generalization.
- Tuning hyperparameters played a crucial role in XGBoost's performance edge.
- Model choice should consider both performance and scalability—XGBoost excels in both.

★ 5. Model Training and Hyperparameter Tuning

• **Cross-Validation**: 5-fold cross-validation was used to mitigate overfitting and ensure model generalization.

- GridSearchCV / RandomizedSearchCV: Employed to optimize hyperparameters for each model, especially for XGBoost (max depth, n estimators, learning rate, subsample, etc.).
- Early Stopping (XGBoost): Prevented overfitting by monitoring validation error and halting training when improvement plateaued.

6. Final Recommendation

Given its superior performance, XGBoost is selected as the final model for predicting US regional sales. It strikes the best balance between accuracy, generalization, and **computational efficiency**, making it highly suitable for both batch and real-time sales prediction applications.

7. Visual Evidence

