	<u>TP4 Eycon - Menini</u>	Pt		A E	С	D Note	
ı.	Signaux						
1	Donner le nom de chacun des signaux.	0,5	Α			0,5	5
2	Donner la transformée de Laplace s1(p) et s2(p) de chacun des signaux.	0,5	В			0,375	5
(i)	Proposer un enregistrement de la mesure x et la consigne w, qui fournisse une erreur conforme au signal 1. On n'agira que sur la mesure x.	1	Α			1	1
II.	Régulation proportionnelle						
1	Régler le PID pour une régulation avec un gain A=1 et un décalage de bande Y0=0. On donnera le nom des paramètres modifiés ainsi que leur valeur respective.	0,5	Α			0,5	5
2	Relever la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la mesure x.	1	Α			1	1
3	Exprimer la réponse obtenue y1(t) en fonction de s1(t) et s2(t).	1	D			0,05	5
	Justifier la réponse Y1(p) obtenue en utilisant la transformée de Laplace.	1	D			0,05	5
5	Régler le PID pour une régulation avec un gain A=2 et un décalage de bande FF_PID=0. On donnera le nom des paramètres modifiés ainsi que leur valeur respective.	0,5	Α			0,5	5
6	Relever la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la mesure x.	1	Α			1	1
7	Exprimer la réponse obtenue y2(t) en fonction de s1(t) et s2(t).	1	D			0,05	5
8	Justifier la réponse Y2(p) obtenue en utilisant la transformée de Laplace.	1	D			0,05	5
III.	Régulation proportionnelle intégrale						
1	Régler le PID pour une régulation avec un gain A=1 et un temps intégral ti=10s.	0,5	Α			0,5	5
2	Relever la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la mesure x.	1	Α			1	ı
3	Exprimer la réponse obtenue y3(t) en fonction de s1(t) et s2(t).	1	D			0,05	5
4	Justifier la réponse Y3(p) obtenue en utilisant la transformée de Laplace.	1	D			0,05	5
5	Régler le PID pour une régulation avec un gain A=2 et un temps intégral ti=10s.	0,5	Α			0,5	5
6	Relever la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la mesure x.	1	D			0,05	5
7	Quelle est la structure du régulateur PI ? Justifier votre réponse.	1	D			0,05	5
8	Quelle peut être la structure du régulateur PID ?	1	D			0,05	5
	Exprimer la réponse obtenue y4(t) en fonction de s1(t) et s2(t).	1	D			0,05	5
	Justifier la réponse Y4(p) obtenue en utilisant la transformée de Laplace.	1	D			0,05	5
	Régulation proportionnelle intégrale dérivée						
1	Régler le PID pour une régulation avec un gain A=2 et un temps intégral ti=10s et un temps dérivé td=10s.	0,5	Α			0,5	5
2	Relever la commande du régulateur en réponse à un signal d'erreur correspondant au signal 1. On n'agira que sur la mesure x.	1	Α			1	ı
3	Justifier pourquoi la réponse Y4(p) obtenue n'est pas une composition de S1(p) et S2(p) en utilisant la transformée de Laplace.	1				(
4	Déduire de y4(t) la structure du régulateur. On fera apparaître toutes les constructions.	1				(
			ote:	8,92	5/21	,5	

I. Signaux

3)

1)Le signal 1 est un échelon, le signal 2 est une rampe.

2)La transformée de Laplace du signal 1 est t=1 et p=1/p,celle du signal 2 est t=t et p=1/p²

II. Régulation proportionnelle

1)			
	FF_PID	0.0	%
	XP	100.0	%

2)Pour que le signal d'erreur corresponde au signal 1.Sachant que W=100,il faut donc monter x à 100 pour que l'erreur soit de 0 et ensuite descendre la mesure à 90 % pour que le signal d'erreur affiche un échelon comme le signal 1.

3) pour le signal 1:

Pour le signal 2,on peut pas car pour faire une rampe il faut une action intégrale ,il n'y en a pas dans cette parti e

7)Pour le signal 1 :

Pour le signal 2, on ne peut pas car il faut une action intégrale et il n'y en a pas dans cette partie.

III. Régulation proportionnelle intégrale

1)

ΧР	100.0	%
TI	10.00	

2)

3)

Pour le signal 1

-PID.PV -PID.OP -PID.SL 04:02:00.000 04:02:10.000 04:02:15.000 04:02:25.000 04:02:25.000 04:02:35.000 04:02:35.000 04:02:45.000 04:02:50.000 04:02:55.000 Heure

Pour le signal 2 :

5)			
	XP	50.0	%
	TI	10.00	
6)			

7.L a structure du régulateur PI est instable car y a évolué en ligne au lieu de faire une vague 8)Le régulateur PID est donc stable.

9) Pour le signal 1:

Pour le signal 2 :

IV. Régulation proportionnelle intégrale dérivée

1)

TimeBase	Secs	
XΡ	50.0	%
TI	10.00	
TD	10.00	

2)

-PID.PV -PID.OP -PID.SL

