Colegio Bilingüe San Juan Prof. David Sunun

ACT1S2

Mario Humberto Cruz Rodriguez
4to Bachillerato
Guatemala 12 de julio de 2024

Ejercicios Python

1. Realice un programa que lea de la entrada estándar los siguientes datos de una persona:

Edad: dato de tipo entero.

Sexo: dato de tipo carácter.

Altura en metros: dato de tipo real.

Tras leer los datos, el programa debe mostrarlos en la salida estándar.

- 2. Escriba un programa que lea la nota final de cuatro alumnos y calcule la nota final media de los cuatro alumnos.
- 3. La calificación final de un estudiante es la media ponderada de tres notas: la nota de prácticas que cuenta un 30% del total, la nota teórica que cuenta un 60% y la nota de participación que cuenta el 10% restante. Escriba un programa que lea de la entrada estándar las tres notas de un alumno y escriba en la salida estándar su nota final.
- 4. Realice un programa que calcule el valor que toma la siguiente función para unos valores dados de x e y: f(x,y) = sqrt(x) / (pow(y,2)-1).
- 5. Escriba un programa que calcule las soluciones de una ecuación de segundo grado de la forma $ax^2 + bx + c = 0$, teniendo en cuenta que: (-b+sqrt(pow(b,2)-4*a*c))/(2*a) y (-b+sqrt(pow(b,2)-4*a*c))/(2*a)

```
Untitled2.py
main.py
    # Solicitar la edad
    edad = int(input("Ingrese su edad: "))
 2
 3
 4 # Solicitar el sexo
    sexo = input("Ingrese su sexo (M/F): ")
 6
 7 # Solicitar la altura en metros
 8 altura = float(input("Ingrese su altura en metros: "))
 9
10 # Imprimir los datos ingresados
    print("\nDatos de la persona:")
11
12 print(f"Edad: {edad} años")
13 print(f"Sexo: {sexo}")
    print(f"Altura: {altura} metros")
14
Ingrese su edad:
16
Ingrese su sexo (M/F):
Ingrese su altura en metros:
1.68
Datos de la persona:
Edad: 16 años
Sexo: m
Altura: 1.68 metros
** Process exited - Return Code: 0 **
Press Enter to exit terminal
```

```
1 # Solicitar las notas finales de cuatro alumnos
 2 nota1 = float(input("Ingrese la nota final del primer alumno: "))
 nota2 = float(input("Ingrese la nota final del segundo alumno: "))
 4 nota3 = float(input("Ingrese la nota final del tercer alumno: "))
 5 nota4 = float(input("Ingrese la nota final del cuarto alumno: "))
 7 # Calcular la nota final media
 8 nota_media = (nota1 + nota2 + nota3 + nota4) / 4
10 # Imprimir la nota final media
print(f"\nLa nota final media de los cuatro alumnos es: {nota_media}")
12
Ingrese la nota final del primer alumno:
Ingrese la nota final del segundo alumno:
100
Ingrese la nota final del tercer alumno:
69
Ingrese la nota final del cuarto alumno:
89
La nota final media de los cuatro alumnos es: 86.25
** Process exited - Return Code: 0 **
Press Enter to exit terminal
```

```
1 # Solicitar las notas del alumno
2 nota_practicas = float(input("Ingrese la nota de prácticas (30%): "))
3 nota_teorica = float(input("Ingrese la nota teórica (60%): "))
4 nota_participacion = float(input("Ingrese la nota de participación (10%): "))
6 # Calcular la nota final ponderada
7 nota_final = (nota_practicas * 0.30) + (nota_teorica * 0.60) + (nota_participacion * 0.10)
8
9 # Imprimir la nota final
print(f"\nLa nota final del alumno es: {nota_final}")
Ingrese la nota de prácticas (30%):
97
Ingrese la nota teórica (60%):
Ingrese la nota de participación (10%):
78
La nota final del alumno es: 89.1
** Process exited - Return Code: 0 **
Press Enter to exit terminal
```

```
1 import math
2
3 # Solicitar los valores de x e y
4 x = float(input("Ingrese el valor de x: "))
5 y = float(input("Ingrese el valor de y: "))
7 # Calcular el valor de la función
8 - try:
       numerador = math.sqrt(x)
10
       denominador = math.pow(y, 2) - 1
       if denominador == 0:
11 •
          raise ValueError("El denominador es cero, lo que produce una división por cero.")
12
       resultado = numerador / denominador
13
       print(f"\nEl valor de la función f(x, y) es: {resultado}")
15 → except ValueError as e:
       print(f"\nError: {e}")
Ingrese el valor de x:
20
Ingrese el valor de y:
5
El valor de la función f(x, y) es: 0.18633899812498247
** Process exited - Return Code: 0 **
Press Enter to exit terminal
```

```
import math
     # Solicitar los coeficientes a, b y c
  3
    a = float(input("Ingrese el coeficiente a: "))
    b = float(input("Ingrese el coeficiente b: "))
     c = float(input("Ingrese el coeficiente c: "))
  7
    # Calcular el discriminante
     discriminante = math.pow(b, 2) - 4 * a * c
 10
    # Verificar si el discriminante es negativo, cero o positivo
11
12 - if discriminante > 0:
          # Dos soluciones reales
13
         sol1 = (-b + math.sqrt(discriminante)) / (2 * a)
14
          sol2 = (-b - math.sqrt(discriminante)) / (2 * a)
15
      print(f"\nLas soluciones de la ecuación son: {sol1} y {sol2}")
17 • elif discriminante == 0:
      # Una solución real
      sol = -b / (2 * a)
19
      print(f"\nLa solución de la ecuación es: {sol}")
20
21 * else:
22
      # Soluciones complejas
23
      real = -b / (2 * a)
24
      imag = math.sqrt(-discriminante) / (2 * a)
25
      print(f"\nLas soluciones de la ecuación son: {real} + {imag}i y {real} - {imag}i")
```

```
Ingrese el coeficiente a:
2
Ingrese el coeficiente b:
-7
Ingrese el coeficiente c:
3
Las soluciones de la ecuación son: 3.0 y 0.5
** Process exited - Return Code: 0 **
Press Enter to exit terminal
```