

T₁: a chaque fois qu'on envoie une trome on lance un compte à rebours = temporisateur si le Rx n'a par dit explicitement qu'il a bien reçu le Tx renvoie l'info

tel: lien par lien

internet : filaire - de bout en bout

fenêtre d'anticipate

m si 2 bien nequ, on neprend à portir de

l'erreur = " go back-n n

 $S_{i,3} & S_{i,5} \Rightarrow ok = 0$

si W=3: par de chynt car tjs max 3 tranes ds le buffer

Scénario 2

- 3°) Les machines sont toutes supposées éteintes et les trois tables de commutations sont vides. Les machines d'adresses aa :bb :cc :dd :ee :03 et aa :bb :cc :dd :ee :04 sont allumées simultanément. Nous supposerons qu'au cours de leur procédure de démarrage, aucune information n'est envoyée sur le réseau Ethernet. Supposons maintenant, que la machine d'adresse Ethernet aa :bb :cc :dd :ee :03 envoie une trame à la machine d'adresse aa :bb :cc :dd :ee :04.
 - a) Décrire comment le switch 1 va procéder pour envoyer la trame à la machine aa :bb :cc :dd :ee :03.
 - b) Quel est le contenu de la table de commutation du switch 1 à l'issue de cette procédure.
 - c) Quel est le contenu de la table de commutation du switch 2 à l'issue de cette procédure.
 - d) Quel est le contenu de la table de commutation du switch 3 à l'issue de cette procédure.

Numéro de port	Adresse Ethernet
1	03
15	~ 04

Table de commutation du switch 1

Numéro de port	Adresse Ethernet
U2	~ 05
U2	94

Numéro de port	Adresse Ethernet
U	~~ o3
Ü	<u> </u>

Table de commutation du switch 3

- 4°) Mêmes question si la machine aa :bb :cc :dd :ee :04 veut envoyer une trame à la machine aa :bb :cc :dd :ee :01.
- 5°) Mêmes question si la machine aa :bb :cc :dd :ee :04 veut envoyer une trame à la machine aa :bb :cc :dd :ee :02.

Cont opprendre la machine 02 : la machine 02 doit envoyer une treme à une machine inconnue du système ou faire un broedcest

Switch / commutateur

Structure d'une adresse ethernet

	Préambule	SFD	Header	Payload	FCS
			γ		
	Couche Pl	ΗY	Couche MAC		

- Préambule :
 - Synchronisation de la couche physique
- SFD (Start Frame Delimiter) :
 - Indique le début de la trame
 - 10101011
- Ethernet header
 - En-tête
- Payload:
 - Contenu de la trame issu des couches supérieures (IP)
- FCS (Frame Check Sequence):
 - Bits de redondance pour la détection d'erreur
 - Checksum basé sur CRC

En-tête Ethernet

peut ê changée (EEPROM)

- · Adresses MAC sources et destination
 - de la liaison point-à-point
 - sur 6 octets
- Type
 - Indique le type du payload, i.e. le protocole de la couche supérieure (3)
 - 0x0800 : IPv4
 - 0x86DD : IPv6
 - 0x0806 : ARP
 - Sur 2 octets
 - Dans Ethernet I, ce champ indiquait la longueur de la trame. Parrétro-compatibilité, la règle suivante est appliquée :
 - Si valeur ≤ 1536 : le champ EtherType indique la longueur de la trame (Ethernet I)
 - Si valeur > 1536 : le champ EtherType indique le protocole de couche 3 (Ethernet II)

co-existence des 2 versions ethernet