北京林业大学

数据库原理与应用

关系模式的分解

定义

设有关系模式R(U), R_1 , R_2 , ..., R_k 都是R 的子集(此处把关系模式看成是属性的集合), $R=R_1\cup R_2\cup...\cup R_k$,关系模式的集合用 ρ 表示, $\rho=\{R_1, R_2, ..., R_k\}$ 。用 ρ 代替R 的过程称为关系模式的分解。这里 ρ 称为R的一个分解,也称为数据库模式。

泛关系模式

数据库模式

$$R \longrightarrow \rho = \{R_1, R_2, \cdots, R_k\}$$

$$r \longrightarrow \sigma = \langle r_1, r_2, \cdots, r_k \rangle$$

泛关系

数据库实例

模式分解示意图

111101010∮0101011010

衡量关系模式的分解是否可取

分解是否具有无损连接 分解是否保持了函数依赖

111101010∮0101011010

CONTENTS

- **一** 无损连接的分解
- **无损分解测试算法**
- 保持函数依赖的分解

无损连接 的分解

定义

设有关系模式R, F是R上的函数依赖集, ρ ={ R_1 , R_2 , ..., R_k }。如果对R中满足F的每一个关系r, 有 $r=\Pi_{R_1}(r)\infty\Pi_{R_2}(r)\infty...\infty\Pi_{R_k}(r)$, 那么就称分解 ρ 相对于F是"无损连接分解";否则称为"损失分解"。

设关系模式R (A, B, C) ,分解成 $\rho = \{AB, AC\}$, $F = \{A \rightarrow C\}$ 是R上的函数依赖集

r	\boldsymbol{A}	В	C
	1	1	1
	1	2	1

r_1	\boldsymbol{A}	В
	1	1
	1	2

r_2	\boldsymbol{A}	C
	1	1

0

设关系模式R (A , B , C) ,分解成 ρ ={AB , AC},F={ $B\to C$ }是R上的函数依赖集

r	\boldsymbol{A}	В	C
	1	1	4
	1	2	3

r_1	A	В
	1	1
	1	2

r_2	A	C
	1	4
	1	3

	\boldsymbol{A}	В	C
	1	1	4
r _{1,} r ₂ 自然 连接	1	1	3
	1	2	4
	1	2	3

无损分解测 试算法

无损分解测试算法

输入: 关系模式R (A_1 , A_2 , ..., A_n), F

是R上的函数依赖集,R的一个分解 $\rho=\{R_1,$

 R_2, \ldots, R_k

输出: 判断p相对于F是否为无损连接分解

构造一个k行n列的表格 R_{ρ} ,表中每一列对应一个属性 A_{j} ($1 \le j \le n$),每一行对应一个模式 R_{i} ($1 \le i \le k$)。如果 A_{j} 在 R_{i} 中,则在表中的第i行第j列处填上符号 a_{j} ,否则填上 b_{ij} 。

十无损分解测试算法

把表格看成模式R的一个关系,根据F中的每个 函数依赖,修改表中元素的符号,其方法如下。

- ◆ 对F中的某个函数依赖 $X \rightarrow Y$,在表中寻找X分量上相等的行,把这些行的Y分量也都改成一致。具体做法是分别对Y分量上的每一列做修改。
- ◆ 如果列中有一个是 a_j , 那么这一列上 (X相同的 行) 的元素都改成 a_j ;

无损分解测试算法

- ◆ 如果列中没有 a_j ,那么这一列上(X相同的行)的元素都改成 b_{ij} (下标ij取i最小的那个)。
- ◆ 对F中所有的函数依赖,反复地执行上述的修改操作,一直到表格不能再修改为止(这个过程称为"追踪"过程)。

若修改到最后,表中有一行全为a,即 $a_1a_2...a_n$,那么称 ρ 相对于F是无损连接分解。

[例]

设有关系模式R(A, B, C, D), R分解成 $\rho = \{AB, BC, CD\}$, 如果在R上成立的函数 依赖集 $F = \{B \rightarrow A, C \rightarrow D\}$, 那么 ρ 相对于F是否为无损连接分解?

修改后的表格中的第二行为 $a_1a_2a_3a_4$,因此, ρ 相对于F是无损连接分解。

		$B \rightarrow A$		
0.00	\boldsymbol{A}	В	C	D
AB	a_1	a_2	<i>b</i> ₁₃	b_{14}
BC	a_1	$-a_2$	a_3	<i>→ a</i> ₄
CD	b ₃₁	b ₃₂	a_3	a_4
			$C \rightarrow D$	

保持函数依赖的 分解

定义

设有关系模式R(U), F 是R(U)上的函数依赖集, Z 是属性集U上的一个子集, $\rho = \{R_1, R_2, ..., R_k\}$ 是R 的一个分解。

◆ F 在Z上的一个投影用 $\Pi_Z(F)$ 表示:

 $\Pi_{Z}(F) = \{X \rightarrow Y \mid X \rightarrow Y \in F^{+} \land XY \subseteq Z \};$

- igoplus F 在 R_i 上的一个投影用 $\Pi_{R_i}(F)$ 表示: $\bigcup_{k=1}^k \Pi_{R_i}(F) = \Pi_{R_1}(r) \cup \Pi_{R_2}(r) \cup \ldots \cup \Pi_{R_k}(r);$
- ◆ 如果有F +=($\bigcup_{i=1}^{n} \prod_{R_i} (F)$)+, 则称 ρ 是保持函数依赖集F 的分解。

一个无损连接分解不一定是保持函数依 赖的

一个保持函数依赖的分解也不一定是无 损连接的