Fusion of Tree Ring Data and Forest Inventory Data to Improve Estimates of Tree Growth, C Sequestration Variability, and Climate Sensitivity

Kelly A. Heilman^{1,2}, Andria Dawson³, Courtney Giebink⁴, Michael C. Dietze⁵, Margaret E.K. Evans⁶, Grant M. Domke¹ GC21K-0018 ¹USDA Forest Service, Northern Research Station FIA, ²ORAU, ³Mount Royal University, ⁴USDA Forest Service, Washington DC, ⁵Boston University, ⁶University of Arizona

U.S. Periodic Forest Inventories 1950

> GHG LULUC baseline –1971 1985

Periodic-annual data gap

GHG Baseline—1990

U.S. Annual Design Forest Inventory and Analysis (FIA)

1. interannual variation in climate

important for some species

2050

1999 2022

Introduction & objectives

- National Forest Inventory (NFI) data support greenhouse gas (GHG) estimation for UNFCCC reporting (USGHG Inventory)
- The USGHG Inventory includes estimates for the period 1990two years before present & ideally including data back to 1971
- Attribution of interannual variability in forest GHG estimates is important for assessing progress and informing mitigation strategies
- The US forest C sink is declining & this work advances understanding of drivers of this change

In-sample tree ring observations

Fig. 1. Map of tree ring samples from periodic NFI plots in Northeast US

>20,000 tree cores

Bayesian State-Space Model of Tree Growth

Process model

 $Diameter_{i,t} = Diameter_{i,t-1} + increment_{i,t}$ $increment_{i.t} = lognormal(\mu_{i,t}, \sigma_{additive})$

$$\mu_{i,t} = \alpha_{plot} + \beta_1 * diameter_{i,t-1} +$$

$$\mu_{i,t} = \alpha_{plot} + \beta_1 * diameter_{i,t-1} + \beta_1 * site mariables$$

 $\beta_2 * climate_{i,t} + \beta_6 * pollution_{i,t} + \beta_6 * disturb. + \beta_4 * competition + \beta_7 * site variables)$

using Climwin)

In-sample

Diameters

N deposition (annual) variables selected

Tree-level annual growth and diameter predictions

Fig. 5. Posterior estimates for species-specific best fit models

In-sample

BA non-focal Species

Slope aspect elevation MAP & MAT

Software

Data models

 $y_{i,t} \sim normal(inc_{i,t}, \sigma_{inc})T(0,)$ $z_{i,t} \sim normal(x_{i,t}, \sigma_{dbh})$

Priors for covariate effects $\beta_i \sim normal(0, 10)$

STAN via rstan Cyverse DE

Future work: Interannual variation

in FIA tree tables

Future work will extend this work to the nationally consistent

inventory, which has remeasurements that inform growth,

Continuous tree ring data associated with inventories allow

2. spatial variation in temperature across species

% damage information from inventory records is

us to estimate interannual variation in growth & parse

Step 1: Link tree level FIA measurements with ForestTIME

Results

important drivers:

damage, and mortality

ranges

long Data previously analyzed in: Smith, R. B . e*t al. (*1990). *Res. Pap. NE-637;* Canham, C. D. *et al* (2018) *Ecosphere*

Species-specific growth responses **Model Validation with Site Tree Data**

Table 1. Fit statistics for species-specific growth models

Species	SPCD model		R-squared		
		In-Sample Diameter	In-Sample Increment	Held-Out Increment	
Virginia pine	132 model.7	1.0000	0.9974	0.6481	
bigtooth aspen	743 model.5	1.0000	0.9980	0.5734	
paper birch	375 model.7	1.0000	0.9890	0.5245	
black cherry	762 model.6	1.0000	0.9971	0.4265	
white ash	541 model.5	0.9999	0.9898	0.3527	
red maple	316 model.3	1.0000	0.9948	0.3505	
northern red oak	833 model.3	0.9999	0.9835	0.3456	
yellow birch	371 model.6	1.0000	0.9894	0.3451	
American beech	531 model.7	1.0000	0.9890	0.2322	
hickory spp.	400 model.7	0.9999	0.9716	0.1018	
chestnut oak	832 model.7	0.9995	0.9419	0.0562	
eastern hemlock	261 model.5	0.9999	0.9762	0.0247	
yellow-poplar	621 model.5	0.9999	0.9934	0.0185	
sugar maple	318 model.3	0.9996	0.9783	0.0153	
white oak	802 model.5	0.9998	0.9637	0.0128	
red spruce	97 model.6	0.9999	0.9702	0.0109	

Solutions to improved predictive ability for some species:

- 1. QA/QC
- revisit original crossdating

2. Model improvement

 spatially varying responses better disturbance representation Fig. 5. Posterior estimates for species-specific best fit models

Incorporate growth predictions with a tool to create longitudinal dataset, linking trees through time from FIAdb

Step 2: Prediction & validation with climate-sensitive growth models, then assimilating with repeat observations

Step 3. Using predictions with assimilated remeasurements, generate Annualized tree tables

Example Assimilation of second diameter with Kalman Filter to improve estimation

Interannual estimates of growth & diameter

(historic forest inventories)

3. Tree-level hindcast

Data

assimilation (Kalman Filter and Constraining) for a single plot in New Hampshire 10.0 **-**Assimilation eastern hemlock eastern white pine — FIA interpolation northern red oak 1990 2000 2010 2000 2010 2000 2010 Year