Homework 9

Michael Pham

Fall 2023

Contents

1	Eigenvalues of Dual Maps	3
2	Partial Derivatives?!	4
3	Diagonalisability	6
4	Checking a Bunch of Stuff	7

1 Eigenvalues of Dual Maps

Problem 1.1. Suppose V is a complex finite-dimensional vector space, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbb{C}$. Prove or disprove: if λ is an eigenvalue of T, then it is also an eigenvalue of T'.

Solution. To begin with, let us denote $A = \mathcal{M}(T)$. Then, since V is a finite-dimensional vector space, with $T \in \mathcal{L}(V)$, then we note that $\mathcal{M}(T') = A^{\mathsf{T}}$.

From here, we note that since V is a complex, finite-dimensional vector space, then we know that T is triangularisable under some basis. In other words, for some basis of V, we have

$$\mathcal{M}(T) = A = \begin{bmatrix} \lambda_1 & * & \cdots & * \\ 0 & \lambda_2 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

We note here that since $\mathcal{M}(T)$ is an upper-triangular matrix, the eigenvalues of T are precisely the diagonal entries of the matrix $\mathrm{M}(T)$.

Then, with this in mind, we observe the following:

$$\mathcal{M}(T') = A^{\mathsf{T}} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ * & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \cdots & \lambda_n \end{bmatrix}$$

Then, since M(T') is a lower-triangular matrix, we note that its eigenvalues are precisely the diagonal entries. Thus, we note that if λ is an eigenvalue of T, then it must be an eigenvalue of T' as well.

Problem 1.2. Prove or disprove the converse.

Solution. We proceed similarly: let us denote $A = \mathcal{M}(T')$. Then, we note that $\mathcal{M}(T) = A^{\mathsf{T}}$.

Then, as before, we note that T' can be triangularised under some basis of V, yielding us the following matrix representation:

$$\mathcal{M}(T') = A = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ * & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \cdots & \lambda_n \end{bmatrix}$$

And since $\mathcal{M}(T')$ is a lower-triangular matrix, we note that the diagonal entries $\lambda_1, \ldots, \lambda_n$ are its eigenvalues.

Then, as before, we note that

$$\mathcal{M}(T) = A^{\mathsf{T}} = \begin{bmatrix} \lambda_1 & * & \cdots & * \\ 0 & \lambda_2 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

And since $\mathcal{M}(T)$ is an upper-triangular matrix, we see that its diagonal entries $\lambda_1, \ldots, \lambda_n$ are precisely its eigenvalues as well. Thus, if λ is an eigenvalue of T', it must also be an eigenvalue of T.

2 Partial Derivatives?!

Problem 2.1. Let V be the complex vector space of bivariate polynomials of total degree at most 2, and let T be a linear operator defined as such:

$$T: p \mapsto \frac{\partial p}{\partial x} - \frac{\partial p}{\partial y}.$$

Determine the minimal polynomial.

Solution. First, we note that a basis for V is: $1, x, y, x^2, y^2, xy$.

Then, we apply T on each of the basis vectors to see the following:

- 1. T(1) = 0,
- 2. T(x) = 1,
- 3. T(y) = -1,
- 4. $T(x^2) = 2x$
- 5. $T(y^2) = -2y$
- 6. T(xy) = y x.

Then, we note that the matrix representation for T is as such:

Now, we note that $T^2(x^2)=2$, which is non-zero. So the smallest power of T which annihilates everything is T^3 . This is because every time we apply T onto some vector, it reduces the degree by one. As such, x^2, y^2, xy all have degree 2, so we need to apply T there times.

Thus, we see that the minimal polynomial must be $p(z) = z^3$.

Problem 2.2. Determine all eigenvalues.

Solution. We observe that since \mathcal{T} is an upper-triangular matrix under our chosen basis, the eigenvalues are in fact the diagonal entries. In this case, all eigenvalues λ are 0.

Problem 2.3. Determine the corresponding eigenvectors.

Solution. First, we note that $\dim \operatorname{range} T=3$. So, by the Rank-Nullity Theorem, we know that $\dim \operatorname{null} T=\dim V-\dim \operatorname{range} T=6-3=3$. Then, we must have three eigenvectors. The eigenvectors are some $p\in V$ such that Tp=0v=0. So, by inspection, we have the following:

1. 1,

2.
$$x + y$$
,

3.
$$2xy + x^2 + y^2$$
.

To confirm that these are our eigenvectors, we proceed as follows:

$$T(1) = 0$$

$$T(x+y) = 1 - 1$$
$$= 0$$

$$T(2xy + x^{2} + y^{2}) = (2y + 2x) - (2x + 2y)$$
$$= 2y + 2x - 2x - 2y$$
$$= 0$$

3 Diagonalisability

Problem 3.1. Suppose that V is a finite-dimensional vector space. Prove or disprove: if two operators T, S from L(V) commute, then T is diagonalisable if and only if S is.

Solution. We provide the following counterexample: let us define $V = \mathbb{F}^3$. Then, let us define $T, S \in \mathcal{L}(\mathbb{F}^3)$ to have the following matrix representations:

$$\mathcal{M}(T) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathcal{M}(S) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Now, we note that T=I, and the identity matrix always commute. Then, we have that TS=ST as desired. Furthermore, note that the identity matrix is diagonalisable.

However, we observe that S is not diagonalisable: we note that since $\mathcal{M}(S)$ is an upper-triangular matrix, its eigenvalues are the diagonal entries. In this case, $\lambda=0$ is the only eigenvalue of S. Furthermore, we note that:

$$E(0,S) = \left\{ (a,0,0) \in \mathbb{F}^3 : a \in \mathbb{F} \right\}.$$

Thus, we see that V does not have a basis consist of the eigenvectors of S, and thus S is not diagonalisable.

4 Checking a Bunch of Stuff

Problem 4.1. Let $V := \mathcal{P}_3(\mathbb{R})$ and let $T \in \mathcal{L}(V)$ be the operator $f(x) \mapsto f(x-1) + f(x+1)$. Is T triangularisable?

Solution. Let us consider a basis for $V: 1, x, x^2, x^3$. Then, we note that the matrix representation of T under this basis is:

$$\mathbf{M}(T) = \begin{bmatrix} 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 6 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

Then, we see that $\mathrm{M}(T)$ is already upper-triangular, so T is indeed triangularisable.

Problem 4.2. Is *T* diagonalisable?

Solution. To begin with, we can see that since $\mathcal{M}(T)$ is upper-triangular, its eigenvalues are the diagonal entries of the matrix. More specifically, we know that $\lambda=2$ is the only eigenvalue of T.

From here, we note that the eigenvectors are non-zero vectors such that (T-2I)v=0. In other words, $v \in \text{null}(T-2I)$. We note as well that:

$$T - 2I = \begin{bmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then, we see that $\dim \mathrm{range}(T-2I) = 2$. Now, by the Rank-Nullity theorem, we know that $\dim \mathrm{null}(T-2I) = \dim V - \dim \mathrm{range}(T-2I) = 4-2 = 2$. So, we know that we have two eigenvectors. From here, by inspection, we can also determine the eigenvectors to be:

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}.$$

However, we note that V does not have a basis consisting of the eigenvectors of T, and thus T is not diagonalisable.