Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

28 de junho de 2017

Plano de Aula

- Revisão
 - União e Intersecção de Grafos
 - Subgrafos
- 2 Subgrafos (cont.)
- 3 Caminhos e circuitos em grafos
- 4 Cortes

Pensamento

Frase

Jamais corte o que pode ser desatado.

Quem?

Joseph Joubert (1754 - 1824) Moralista e ensaísta francês.

Sumário

- Revisão
 - União e Intersecção de Grafos
 - Subgrafos
- Subgrafos (cont.)
- Caminhos e circuitos em grafos
- 4 Cortes

União e Intersecção de Grafos

União

A união de dois grafos G e H é o grafo ($V_G \cup V_H, E_G \cup E_H$). É natural denotar esse grafo por $G \cup H$.

Intersecção

A intersecção de dois grafos G e H é o grafo $(V_G \cap V_H, E_G \cap E_H)$. É natural denotar esse grafo por $G \cap H$.

Alguns cuidados...

Para evitar grafos sem vértices, só trataremos da interação $G \cap H$ se $V_G \cap V_H$ não for vazio.

União e Intersecção de Grafos

Grafos disjuntos

Dois grafos G e H são **disjuntos** se os conjuntos V_G e V_H são disjuntos.

Corolário

Se G e H são disjuntos, então E_G e E_H são disjuntos.

Definição

Um **subgrafo** de um grafo G é qualquer grafo H tal que $V_H \subseteq V_G$ e $E_H \subseteq E_G$.

Notações e Nomenclaturas

- É conveniente escrever "H ⊆ G" para dizer que H é subgrafo de G;
- Um subgrafo H de G é **gerador** (abrangente, para alguns) se $V_H = V_G$;
- Um subgrafo H de G é **próprio** se $V_H \neq V_G$ ou $E_H \neq E_G$ (notação: $H \subset G$).

Sumário

- Revisão
 - União e Intersecção de Grafos
 - Subgrafos
- 2 Subgrafos (cont.)
- Caminhos e circuitos em grafos
- 4 Cortes

Subgrafo induzido - G[X]

O subgrafo de G induzido por um subconjunto X de V_G é o grafo (X,F) em que F é o conjunto $E_G\cap X^{(2)}$.

Esse subgrafo é denotado por G[X].

Subgrafo induzido - G[X]

O subgrafo de G induzido por um subconjunto X de V_G é o grafo (X, F) em que F é o conjunto $E_G \cap X^{(2)}$. Esse subgrafo é denotado por G[X].

G-X

Para qualquer subconjunto X de V_G , denotaremos por G-X o subgrafo $G[V_G \setminus X]$.

Subgrafo induzido - G[X]

O subgrafo de G induzido por um subconjunto X de V_G é o grafo (X, F) em que F é o conjunto $E_G \cap X^{(2)}$. Esse subgrafo é denotado por G[X].

G-X

Para qualquer subconjunto X de V_G , denotaremos por G - X o subgrafo $G[V_G \setminus X]$.

G - v

Uma abreviação para $G - \{v\}$.

G - a

Uma abreviação para o grafo $(V_G, E_G \setminus \{a\})$.

G - a

Uma abreviação para o grafo $(V_G, E_G \setminus \{a\})$.

G - A

Se A é um subconjunto de E_G , então G-A é uma abreviação para o grafo $(V_G, E_G \setminus A)$.

G - a

Uma abreviação para o grafo $(V_G, E_G \setminus \{a\})$.

G - A

Se A é um subconjunto de E_G , então G-A é uma abreviação para o grafo $(V_G, E_G \setminus A)$.

Corolário

G - A é um grafo gerador de G.

Sumário

- Revisão
 - União e Intersecção de Grafos
 - Subgrafos
- Subgrafos (cont.)
- 3 Caminhos e circuitos em grafos
- 4 Cortes

Caminho em um grafo

Se um caminho $v_1 ldots v_p$ é subgrafo de G, dizemos simplesmente que $v_1 ldots v_p$ é um caminho em G ou que G contém o caminho $v_1 ldots v_p$.

Caminho em um grafo

Se um caminho $v_1 ldots v_p$ é subgrafo de G, dizemos simplesmente que $v_1 ldots v_p$ é um caminho em G ou que G contém o caminho $v_1 ldots v_p$.

Circuitos em um grafo

Aplica-se identicamente a circuitos.

Nomenclatura

Se v e w são os dois extremos de um caminho em G, é cômodo dizer que o caminho vai de v a w ou que começa em v e termina em w.

Nomenclatura

Se v e w são os dois extremos de um caminho em G, é cômodo dizer que o caminho vai de v a w ou que começa em v e termina em w.

Cuidado!

Use estas expressões com cautela pois caminhos são objetos estáticos e não têm orientação.

Caminho máximo em G

Um caminho P em um grafo G é máximo se G não contém um caminho de comprimento maior que o de P.

Caminho máximo em G

Um caminho P em um grafo G é máximo se G não contém um caminho de comprimento maior que o de P.

Caminho maximal em *G*

Um caminho P em G é maximal se não existe caminho P' em G tal que $P \subset P'$.

Caminho máximo em G

Um caminho P em um grafo G é máximo se G não contém um caminho de comprimento maior que o de P.

Caminho maximal em G

Um caminho P em G é maximal se não existe caminho P' em G tal que $P \subset P'$.

Caminho Hamiltoniano

Um caminho é hamiltoniano se contém todos os vértices do grafo.

Sumário

- Revisão
 - União e Intersecção de Grafos
 - Subgrafos
- 2 Subgrafos (cont.)
- Caminhos e circuitos em grafos
- 4 Cortes

Definição

• Suponha que X é um conjunto de vértices de um grafo G.

Definição

- Suponha que X é um conjunto de vértices de um grafo G.
- O corte associado a X (ou franja de X) é o conjunto de todas as arestas que têm uma ponta em X e outra em $V_G \setminus X$.

Definição

- Suponha que X é um conjunto de vértices de um grafo G.
- O corte associado a X (ou franja de X) é o conjunto de todas as arestas que têm uma ponta em X e outra em $V_G \setminus X$.

Notação

O corte associado a X será denotado por

$$\partial_G(X)$$

Definição

- ullet Suponha que X é um conjunto de vértices de um grafo G.
- O corte associado a X (ou franja de X) é o conjunto de todas as arestas que têm uma ponta em X e outra em $V_G \setminus X$.

Notação

O corte associado a X será denotado por

$$\partial_G(X)$$

Outros autores...

Alguns preferem escrever $\delta(X)$ ou $\nabla(X)$.

Cortes triviais

∂(∅);

Cortes triviais

- ∂(∅);
- $\partial(V_G)$.

Cortes triviais

- ∂(∅);
- $\partial(V_G)$.

Corolário

$$|\partial(\{v\})| = d(v)$$

Cortes triviais

- ∂(∅);
- $\partial(V_G)$.

Corolário

$$|\partial(\{v\})| = d(v)$$

Grau de um conjunto

• Diremos que $|\partial(X)|$ é o grau de X;

Cortes triviais

- ∂(∅);
- $\partial(V_G)$.

Corolário

$$|\partial(\{v\})| = d(v)$$

Grau de um conjunto

- Diremos que $|\partial(X)|$ é o grau de X;
- Denotamos este número como se segue:

$$d(X) := |\partial(X)|$$

Corte - Definição

Um corte (= cut = coboundary) em um grafo G é qualquer conjunto da forma $\partial(X)$, em que X é um subconjunto de V_G .

Corte - Definicão

Um **corte** (= cut = coboundary) em um grafo G é qualquer conjunto da forma $\partial(X)$, em que X é um subconjunto de V_G .

Cuidado

Um corte é um conjunto de arestas, não de vértices.

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

28 de junho de 2017

