

EMBEDDED SYSTEM DESIGN 2 – LABO MASTERPLAN

Project 'Ter Zee'

Brecht Van Eeckhoudt – Sarah Goossens – Matthias Alleman Benjamin Van der Smissen – Arno Plaetinck MELICTE

28 maart 2019

Inhoudsopgave

1	Ider	ntificatie van het project
	1.1	Het team
		1.1.1 Technologie
		1.1.2 Project
	1.2	Kost en duur van het project
2	Het	project
3	Doe	elstellingen en specificaties
	3.1	Doelstellingen
	3.2	Functioneel technische specificaties
	3.3	Niet functioneel technische specificaties
	3.4	Doelstellingen buiten scoop project
4	Uity	voering
	4.1	Onderdelen
		4.1.1 Sensoren
		4.1.1.1 Temperatuursensor DS18B20
		4.1.1.2 Accelerometer ADXL362
		4.1.1.3 Driftsensor – eigen ontwerp
		4.1.2 LoRaWAN
		4.1.3 Behuizing
	4.2	Planning
	4.3	Risico's
	4.4	Kostenanalyse
	4.5	Communicatie
_		
\mathbf{R}	efere	${ m nties}$

1 Identificatie van het project

1.1 Het team

In volgende paragrafen worden de verantwoordelijkheden van de verschillende teamleden gespecificeerd. Dit zowel op het technologisch- als op het projectmatige domein.

1.1.1 Technologie

Temperatuursensor Sarah
Breekbare draad Matthias
Levensduurscalculatie Arno
Powermanagement Brecht
LoRaWAN-connectie Benjamin
Behuizing Matthias
Accelerometer Brecht

1.1.2 Project

Time-manager Matthias
Integratie-manager Brecht
Verslagmanager Sarah
Presentatiemanager Arno
Externe communicatie Benjamin

1.2 Kost en duur van het project

In deze paragraaf worden de geschatte kosten en duur van het project weergegeven. Ze behoren tot de niet-technische specificaties van het project. Op basis van de gebruikte componenten bekomen we een geschatte kostprijs van 64 euro. Voor de NRE kosten en de testkost moeten er geen kosten in rekening gebracht worden. Voor het maken van een eerste prototype worden twee maanden voorzien. Om een volledig werkend product te hebben, rekenen we drie maanden. Een detailbeschrijving van alle kosten is te vinden in paragraaf 4.4 op pagina 13.

2 Het project

Ons project is een onderdeel van een groter project waarbij het hoofddoel het detecteren is van driftende boeien en het meten van verschillende parameters van zowel het zeewater als de lucht. Deze info wordt via draadloze communicatie doorgegeven aan het vaste land waar de info verwerkt wordt. Op die manier kan er tijdig actie ondernomen worden indien een boei zou gaan driften. Verder verkrijgen we heel wat informatie over het zeewater en de lucht.

3 Doelstellingen en specificaties

3.1 Doelstellingen

Als Team 'Ter Zee' zijn wij verantwoordelijk om een totaalconcept uit te werken dat het mogelijk maakt om de watertemperatuur en golfsterkte te meten, te verwerken en door te sturen. Verder zal het team ook in staat moeten zijn om de drift van een boei waar te nemen en te signaleren aan het vasteland, zodat er tijdig actie ondernomen kan worden. Over de exacte locatie van de boei nadat deze is losgekomen, is geen info gekend.

Bij het meten van de golfsterkte beperken we ons tot het alarmeren van het vasteland indien er een storm gedetecteerd wordt. Een storm wordt gedefinieerd door het overschrijden van een bepaalde threshold waarde, gedetecteerd door een accelerometer. Deze waarde zal proefondervindelijk vastgelegd worden doorheen het project. Wanneer de accelerometer een storm detecteert, betekent dit dat er een verhoogd risico is op het driften van een boei. Er zal dan ook frequenter nagegaan worden of een boei aan het driften is.

Alle sensoren zullen gelijktijdig actief moeten zijn en we zullen in het totaalconcept ook zeer nauwkeurig letten op het vermogenverbruik aangezien het niet de bedoeling is dat de batterijen waarvan we gebruik zullen maken regelmatig moeten vervangen worden. Als kers op de taart is bij ons de extra moeilijkheid dat ons systeem bestand moet zijn tegen het zoute water van de zee. Een aangepaste behuizing die zowel water als zout resistent is, zal dus één van onze uitdagingen worden.

Om deze doelstellingen te bereiken, zal ons systeem aan bepaalde specificaties moeten voldoen.

3.2 Functioneel technische specificaties

- Watertemperatuur meten om het uur.
- Detectie van driftende boeien om het uur.
- Stormdetectie door het meten van de grootte van de golven. Indien een bepaalde waarde overschreden wordt, concluderen we dat we te maken hebben met een storm. Deze waarde wordt gedurende het project proefondervindelijk vastgelegd. Metingen gebeuren om de seconde gedurende 1 minuut en dit éénmaal per uur.
- Data verzamelen, verwerken en vier keer per dag doorsturen naar het vasteland.
- Nauwkeurigheid temperatuurmeting: 0,5 °C.
- Elk uur wordt het systeem gewekt en voert het zijn functie uit.
 - In geval van een storm wordt het systeem onmiddellijk gewekt via een interrupt van de accelerometer. Dit wordt ook meteen doorgestuurd naar het vaste land.
 Indien dit gebeurt, zal er een frequentere controle zijn op het driften van boeien.
 Elke 10 minuten wordt een controle uitgevoerd.
 - Het systeem gaat telkens terug in slaap van zodra alle functies afgerond zijn.

3.3 Niet functioneel technische specificaties

- We kiezen voor een zeer energiezuinige implementatie en schakelen onderdelen van het ontwerp uit op momenten dat deze niet nodig zijn.
- De batterij moet minstens 5 jaar meegaan.
- Het gehele ontwerp, zonder temperatuursensor zal in een behuizing van ongeveer $10 \times 10 \times 10$ cm moeten passen.
- Het geheel weegt ongeveer 500 gram.
- Behuizing moet bestand zijn tegen zout water.
- Alle componenten en verbindingen moeten goed bevestigd zijn zodat ze tegen een stootje van de wilde golven kunnen.
- De componenten moeten temperaturen verdragen tussen de -30 °C en de +100 °C.

3.4 Doelstellingen buiten scoop project

Aangezien we gelimiteerd zijn om het project tot een goed einde te brengen sluiten we bepaalde ontwikkelingen uit. Om te beginnen zetten we geen LoRaWAN gateway op. We gaan er vanuit dat deze al op het vaste land aanwezig zal zijn en zorgen enkel dat we er berichten naartoe kunnen sturen.

Vervolgens gebruiken we ook niet de acceleratiewaarden om de golfhoogte en golffrequentie te berekenen. We zouden dit in principe kunnen doen aan de hand van FFT (beschikbaar in de CMSIS libraries) op waarden in de FIFO van de accelerometer. We gebruiken de accelerometer enkel om aan de hand van een threshold value de Happy Gecko via een interrupt wakker te maken en zo te zorgen dat hij regelmatiger meet of de boei al dan niet is losgeslagen.

Daarnaast werd ook het gebruik van een zonnepaneel onderzocht. Hieruit konden we concluderen dat het zeker nuttig en haalbaar was om hiervan gebruik te maken. We hebben echter beslist om dit niet zelf toe te passen om te kunnen focussen op een goed werkend systeem. Het gebruik van een zonnepaneel kan later nog toegevoegd worden.

Als laatste vullen we onze behuizing niet op met gel. Om bijvoorbeeld opbouwdozen helemaal waterdicht te maken wordt dit aangeraden, maar aangezien dit debugwerk zou bemoeilijken opteren we ervoor om dit niet te doen.

4 Uitvoering

Om de verschillende metingen uit te voeren, werden de nodige sensoren geselecteerd. De temperatuurmeting zullen we doen met behulp van de DS18B20 die wordt uitgelezen met behulp van een EFM32 Happy Gecko die door ons team ontworpen is. De golfsterkte meten we met behulp van de accelerometer ADXL362. De drift van de boei zullen we trachten te achterhalen met behulp van een simpele maar toch ingenieuze methode. Communicatie van alle gegevens naar het vaste land zal gebeuren via LoRaWAN. Alle onderdelen komen tenslotte terecht in een specifieke behuizing voor dit systeem. Op elke boei zal er dan een volledig systeem geplaatst worden, waarbij enkel de temperatuursensor en de driftdetectieconstructie contact maken met het zoute zeewater.

We bespreken alle onderdelen van het systeem uitgebreider in volgende paragrafen. Het blokschema van het concept is afgebeeld op figuur 1.

Figuur 1: Blokschema van het concept.

4.1 Onderdelen

4.1.1 Sensoren

4.1.1.1 Temperatuursensor DS18B20

Om de temperatuur van het water te meten zullen we gebruik maken van de temperatuursensor DS18B20, dewelke is afgebeeld op figuur 2. Deze sensor geeft als resultaat de digitale waarde van de temperatuur in 9 tot 12 bits. Er kan een temperatuur gemeten worden tussen -55 °C en +125 °C. De sensor is daarenboven ook waterdicht. Verdere tests zullen uitwijzen of de sensor ook bestand is tegen het zeewater. Indien zou blijken dat dit niet het geval is, wordt hiervoor een oplossing gezocht.

De sensor zal communiceren met de Happy Gecko via OneWire. Om energie te sparen zal slechts op bepaalde tijdstippen de temperatuur van het water gemeten worden, nl. om het uur. De Happy Gecko geeft telkens opdracht aan de sensor om de temperatuur te meten. De sensor stuurt hierop een digitale waarde naar de Happy Gecko, die deze temperatuur zal omzetten in een aantal graden Celsius zodat deze waarde naar het vaste land kan gestuurd worden en daar correct geïnterpreteerd kan worden.

Figuur 2: Temperatuursensor DS18B20.

Figuur 3: ADXL362 accelerometer op het breakoutbord.

4.1.1.2 Accelerometer ADXL362

Om de Happy Gecko, in het geval van een storm, wakker te maken uit zijn slaaptoestand zullen we gebruik maken van een ADXL362 accelerometer die een interrupt zal sturen naar de microcontroller. Dit is een ultra low power MEMS accelerometer die in drie assen de acceleratie kan meten. Deze sensor laat het ook toe om de golfslag en golf-frequentie te meten.

Voor dit labo is er gebruik gemaakt van het Sparkfun breakoutbord van deze sensor, zodat de sensor gemakkelijk aan het ontwikkelbord gekoppeld kan worden. De sensor kan gevoed worden met een spanning tussen de 1,6 V en 3,5 V en kan dus rechtstreeks verbonden worden met het development bordje. De meting van de sensorwaarde wordt digitaal doorgestuurd via SPI.

4.1.1.3 Driftsensor – eigen ontwerp

De drift van een boei zullen we detecteren aan de hand van een zelfontworpen sensor. De sensor zal bestaan uit een draad die op een bepaalde spanning gehouden wordt. Deze draad zal verwikkeld zijn in de schakels van de ketting waaraan de boei bevestigd is.

Op het moment dat een boei loskomt van zijn ketting zal de spanning op de pin waarmee de kabel verbonden is wegvallen (aangezien het draadje breekt) waardoor wij zullen weten dat de boei op drift is. Een extra veiligheidsmechanisme zullen we mogelijks inbouwen zodat de boei niet direct wegdrift, maar dat de boei nog enige tijd op zijn plaats blijft.

4.1.2 LoRaWAN

Om data vanop zee door te sturen naar 'de cloud' moet er gebruik gemaakt worden van een communicatieprotocol met twee belangrijke specificaties. De communicatie-range moet groot zijn, en de toepassing moet energiezuinig werken.

LoRaWAN is een long-range wireless communicatieprotocol gebruikt om data over lange afstanden te versturen, wat dus een perfecte *match* is voor ons project. Dit is onder andere mogelijk doordat het een lage datarate (onder 50kbps) heeft. Hierdoor is LoRaWAN wel enkel een goede keuze voor energiezuinige en *non-realtime* applicaties.

4.1.3 Behuizing

Voor het ontwerp van de behuizing zullen we voornamelijk op zoek gaan naar materialen die bestand zijn tegen corrosie van het zoute water van de Noordzee. We zullen dus rekening moeten houden met de vijsjes en het materiaal waaruit de behuizing gemaakt wordt.

Het initiële plan bestond eruit om een behuizing te 3D-printen, maar in realiteit is het zeer moeilijk deze volledig waterdicht te krijgen. Tevens is PLA ook niet echt bestand tegen de zon en het zoute water.

We gingen vervolgens op zoek naar bestaande cases en vonden enkele die gebruikt worden op werven. Ze bestaan in verschillende uitvoeringen met verschillende materiaalsterktes. De betreffende case is van het merk WISKA en is volgend model: 'COMBIQ IP68 SET 1010/5 LG'. We hopen hiermee een voldoende waterdicht systeem te realiseren, hoewel dit een risico is dat we nog niet kunnen inschatten. Volledig waterdichte behuizingen lopen vrij snel op in prijs wat voor ons project niet gunstig is.

Figuur 4: De behuizing die we mogelijks zullen gebruiken.

4.2 Planning

Op volgende figuren is een overzicht gegeven van de planning van het project. Hierbij is steeds vermeld wat er moet gebeuren en hoeveel tijd we hieraan denken te spenderen. Voor elke taak is ook een eindverantwoordelijke aangesteld.

TAAKBESCHRIJVING	START DATUM	EIND DATUM	VERANTWOORDELIJK TEAM LID			
Uitdenken concept, opstellen masterplan en kiezen van componenten						
Verslag masterplan	18/02/2019	1/03/2019	Sarah			
Herwerken verslag masterplan	15/03/2019	29/03/2019	Sarah			
Verslag keuzes op basis van vermogenbalans	15/03/2019	29/03/2019	Sarah			
Uittesten van de verschillende aparte onderdelen, werking controleren en debuggen						
Werking testen accelerometer	4/03/2019	15/03/2019	Brecht			
Werking testen temperatuursensor	4/03/2019	15/03/2019	Sarah			
Onderzoek naar mogelijke behuizing	4/03/2019	29/03/2019	Matthias			
Werking testen van driftdetectiesysteem	15/03/2019	29/03/2019	Matthias			
LoRaWAN	4/03/2019	29/03/2019	Benjamin			
Vermogenverbruik bepalen	4/03/2019	15/03/2019	Arno			
Keuze batterij	16/03/2019	29/03/2019	Benjamin			
Ontwerp eigen Happy Gecko	15/03/2019	24/03/2019	Brecht			
Samenbrengen van de verschillende onderdelen tot één geheel, werking controleren en debuggen						
Sensoren samenbrengen	29/03/2019	12/04/2019	Sarah			
Doorsturen data sensoren via LoRaWAN	13/04/2019	19/04/2019	Benjamin			
Bestukken en testen eigen Happy Gecko	29/03/2019	19/04/2019	Brecht			
Behuizing	1/04/2019	19/04/2019	Matthias			
Indoor test met alle sensoren en eigen Happy Gecko	20/04/2019	28/04/2019	Brecht			
Eerste outdoor test						
Outdoor test op de campus en bijsturing	29/04/2019	10/05/2019	Brecht			
Presentatie						
Samenstellen presentatie	6/05/2019	12/05/2019	Arno			
Presentatie	16/05/2019	16/05/2019	Arno			

Figuur 5: Overzicht van het werk in de tijd.

Figuur 6: Overzicht van het werk in de tijd.

4.3 Risico's

Op volgende tabel lijsten we de mogelijke risico's op met mogelijke bijhorende oplossingen.

Tabel 1: Mogelijke risico's en bijhorende oplossingen.

Mogelijk risico	Mogelijke oplossing
Eigen Happy Gecko werkt niet.	Gebruik maken van een Happy Gecko van Silicon Labs.
Behuizing is niet waterdicht.	Kleine aanpassingen aanbrengen zodat systeem toch waterdicht is. Eventueel zoeken naar waterdichte alternatieven.
Ons systeem blijkt niet zoutbestendig.	In de toekomst uitgebreidere research doen.
Kosten zijn hoger dan verwacht.	Kosten zoveel mogelijk proberen te beperken, eventueel zoeken naar alternatieven.
Sensoren werken niet zoals voorzien.	Nieuwe sensor gebruiken of eventueel een andere sensor kiezen.
Een teamlid is ziek.	We verdelen de taken over de overige teamleden.

Kostenanalyse

- De NRE-kosten zijn 0 aangezien er geen lonen in rekening worden gebracht.
- Variabele kost:
 - 1. Eigen Happy Gecko 6 euro
 - 2. Temperatuursensor 10 euro
 - 3. Accelerometer -15 euro
 - 4. Driftdetector 1 euro
 - 5. LoRa-module 10 euro
 - 6. Batterij 12 euro
 - 7. Behuizing 10 euro

Totaal: 64 euro

- Testkost 0 euro daar er geen lonen in rekening worden gebracht.
- Tijd tot eerste prototype 2 maand
- Tijd tot eerste product 3 maand
- Tijd tot massaproductie niet van toepassing

4.5 Communicatie

Om tijdens het project een goede communicatie te hebben in het team wordt gebruik gemaakt van een groepschat op Facebook Messenger. Documenten worden hier eveneens in gedeeld en er wordt ook gebruik gemaakt van Google Drive en Overleaf. De groep spreekt op regelmatige basis af om de voortgang te bespreken. Dit gebeurt enerzijds om de twee weken tijdens een labozitting en anderzijds op een moment gekozen door het team zelf. Binnen het team is er ook een verantwoordelijke aangesteld om te communiceren met professoren en om bestellingen door te geven.

Referenties

```
[1] Github, Project Labo Embedded System Design 1,
https://github.com/Fescron/Project-LabEmbeddedDesign1
```

[2] DS18B20, DS18B20 datasheet, https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf