Obliczenia naukowe - lista pierwsza

Bartosz Rajczyk 16 października 2019

Spis treści

1	Zada	nie 1.												3
	1.1	Opis problemu	 			 								3
	1.2]	Rozwiązanie	 											3
	1.3	Wyniki i interpretacja	 			 								3
	1.4	Wnioski	 				•		 •					4
2	Zada	nie 2.												4
	2.1	Opis problemu	 											4
		Rozwiązanie												4
	2.3	Wyniki i interpretacja	 			 								5
	2.4	Wnioski	 							•				5
3	Zada	nie 3.												5
	3.1	Opis problemu	 			 								5
	3.2	Rozwiązanie	 			 								5
		Wyniki i interpretacja												6
		Wnioski												6
4	Zada	nie 4.												6
		Opis problemu	 			 								6
		Rozwiązanie												6
		Wyniki i interpretacja												7
		Wnioski												7
5	Zada	nie 5.												7
_		Opis problemu	 			 								7
		Rozwiązanie												7
		Wyniki i interpretacja												7
		Wnioski												8
6	Zada	nie 6.												8
Ū		Opis problemu	 			 								8
		Rozwiązanie												8
		Wyniki i interpretacja												8
		Wnioski												9
7	Zada	nie 7.												9
	7.1	Opis problemu	 			 								9
		Rozwiązanie												9
		Wyniki i interpretacja												10
		Wnioski												11
8	Bibli	ografia												12

1 Zadanie 1.

1.1 Opis problemu

Problem polega na wyznaczeniu liczb:

- 1. macheps, czyli najmniejszej liczby spełniającej fl(1.0 + macheps) > 1.0
- 2. eta, czyli najmniejszej reprezentowalnej liczby
- 3. max, czyli największej reprezentowalnej liczby

dla typów zmiennoprzecinkowych o precyzji 16-, 32- oraz 64-bitowej.

1.2 Rozwiązanie

Zaprezentowane rozwiązania w pliku 1. j l polegają na iteracyjnym dzieleniu lub mnożeniu liczby początkowej (uzyskiwanej najczęściej przez wywołanie one (type) zwracające jedynkę w podanym typie danych w Julii) aż do spełnienia określonego warunku, będącego w kolejności:

- 1. $1 + aktualna_liczba/2 \neq 1$
- 2. $aktualna_liczba/2 \neq 0$
- 3. $aktualna_liczba*2 \neq \infty$

Przy spełnieniu tego warunku pętla jest zakańczana i zwracana jest aktualna liczba.

1.3 Wyniki i interpretacja

typ danych	moja funkcja	eps	float.h
Float16	0.000977	0.000977	niedostępne
Float32	1.1920929e-7	1.1920929e-7	1.192093e-07
Float64	2.220446049250313e- 16	2.220446049250313e- 16	2.220446e-16

Tabela 1: wartości epsilona maszynowego

typ danych	moja funkcja	nextfloat(0)
Float16	6.0e-8	6.0e-8
Float32	1.0e-45	1.0e-45
Float64	5.0e-324	5.0e-324

Tabela 2: wartości eta

typ danych	moja funkcja	floatmax
Float16	3.277e4	6.55e4
Float32	1.7014118e38	3.4028235e38
Float64	8.98846567431158e307	1.7976931348623157e308

Tabela 3: wartości max

Z powyższych danych wynika, że zaimplementowane przeze mnie funkcje poprawnie zwracały wyniki poza przypadkiem wyliczania liczby maksymalnej, gdzie uzyskane rezultaty były dwukrotnie za małe. Wynika to najprawdopodobniej z tego, że mnożąc liczbę za każdym krokiem dwukrotnie wkraczamy w pewnym momencie na dokładną wartość nieskończoności, kiedy poprawnym rozwiązaniem jest jedna liczba przed nią, stąd ta rozbieżność.

1.4 Wnioski

Standardowa reprezentacja liczb zgodna z IEEE754 w komputerze ma skończoną dokładność i posiada skończone zakresy liczb, które potrafi reprezentować. Jednocześnie istnieją dwie osobne i rozróżnialne reprezentacje bardzo małych liczb - znormalizowane i zdenormalizowane. Wyznaczone przez nas liczby eta oraz liczby zwracane przez nextfloat(0) dla różnych typów danych maja postać zdenormalizowaną (aczkolwiek nie pokrywają się idealnie z wartościami podawanymi przez źródła [1], najpewniej przez zaokrąglenia). Inne funkcje, jak chociażby floatmin zwracają wartości znormalizowane. Należy więc pamiętać o istnieniu obu reprezentacji i odpowiednim używaniu ich - także ze względu na używany procesor, bo ze źródeł wynika, że nie każde CPU obsługuje liczby zdenormalizowane całkowicie poprawnie.

2 Zadanie 2.

2.1 Opis problemu

Problem polega na odnalezieniu epsilonu maszynowego używając wyrażenia:

$$3*(4/3-1)-1$$

w arytmetyce zmiennoprzecinkowej.

2.2 Rozwiązanie

Zaprezentowane rozwiązanie w pliku 2. j l polega na użyciu funkcji one do uzyskania wartości 1 w danym typie liczbowym, a nastepnie wykonanie podanego działania korzystając z liczb opartych na tej jedynce.

2.3 Wyniki i interpretacja

typ danych	moja funkcja	eps
Float16	-0.000977	0.000977
Float32	1.1920929e-7	1.1920929e-7
Float64	-2.220446049250313e-16	2.220446049250313e-16

Tabela 4: obliczone wartości 3*(4/3 - 1) - 1

Widzimy, że wartość bezwzględna z uzyskanych przez nas wyników pokrywa się z epsilonem zwracanym przez funkcję. Zmiana znaku spowodowana jest najpewniej tym, że liczba bitów znaczących dla kolejnych danych wynosi:

- Float16 10
- Float32 23
- Float64 52

A rozwinięciem binarnym ułamka 4/3 jest 1.(10), więc dla typów Float16 i Float52 ostatnią cyfrą mantysy będzie 0, a dla typu Float32 - 1, co powinno decydować o znaku odejmowania.

2.4 Wnioski

Przez skończoną dokładność reprezentacji, niektóre równania dające w normalnej arytmetyce zero, w arytmetyce zmiennoprzecinkowej mogą dawać inne wyniki.

3 Zadanie 3.

3.1 Opis problemu

Problem polega na sprawdzeniu rozmieszczenia liczb zmiennoprzecinkowych w arytmetyce IEEE 754 podwójnej precyzji w danych przedziałach liczbowych.

3.2 Rozwiązanie

Zaprezentowane rozwiązania w pliku 3. j 1 to dwa różne podejścia do tego problemu. Pierwsze polega na ręcznym przeiterowaniu przez wszystkie istniejące liczby podanego przedziału i sprawdzenie, czy odległości między kolejnymi rzeczywiście zawsze wynoszą sprawdzaną wartość. Drugie to bardziej analityczne rozwiązanie bazujące na naszej znajomości standardu IEEE754 i analizie rozmieszczenia bitów zwracanego przez funkcję bitstring. W tym podejściu porównujemy pierwszą i ostatnią liczbę z przedziału; jeżeli ich eksponenty są inne,

wyklucza to równomierny rozkład pomiędzy nimi. Jeżeli są równe, możemy obliczyć jak bardzo zmienia się liczba przy powiększeniu o jeden mantysy używając wzoru:

$$2^{eksponenta-1023}*2^{-52}$$

ponieważ biasem dla eksponenty Float
64 jest 1023, a mantysa ma 52 bity znaczące.

3.3 Wyniki i interpretacja

Utworzona przez mnie funkcja potwierdziła, że w przedziale [1,2] liczby rozmieszczone są co 2^{-52} . Dodatkowo udało się wyznaczyć rozmieszczenie liczb dla innych przedziałów:

przedział	odległości
[0.5, 1]	1.1102230246251565e-16
[1, 2]	2.220446049250313e-16
[2, 4]	4.440892098500626e-16

Tabela 5: przedziały i odległości między liczbami

Te wyniki pokrywają się z moim rozumieniem standardu IEEE754 - ze względu na powiększenie się eksponenty o jeden, odległości pomiędzy kolejnymi liczbami rosną dwukrotnie (ponieważ eksponenta jest wykorzystywana jako wykładnik w $2^{eksponenta}$).

3.4 Wnioski

Liczby w IEEE754 są reprezentowane z określoną dokładnością różniącą się zależnie od przedziału, w którym się znajdują.

4 Zadanie 4.

4.1 Opis problemu

Problem polega na znalezieniu dwóch liczb:

- 1. najmniejszego 1 < x < 2, takiego że $x * \frac{1}{x} \neq 1$
- 2. najmniejszego 0 < x, takiego że $x * \frac{1}{x} \neq 1$

4.2 Rozwiązanie

Zaprezentowane rozwiązania w pliku 4. j l polegają na rozpoczęciu od jednej liczby powyżej dolnego ograniczenia dla x i powiększaniu jej do następnej aż do uzyskania szukanej nierówności.

4.3 Wyniki i interpretacja

Algorytm zwrócił następujące wyniki:

2.
$$x = 1.0e - 323 \rightarrow x * \frac{1}{x} = \infty$$

4.4 Wnioski

Arytmetyka zmiennoprzecinkowa ze względu na swoją skończoną dokładność nie zawsze zwraca poprawne wyniki nawet najprostszych działań.

5 Zadanie 5.

5.1 Opis problemu

Problem polega na obliczaniu iloczynu skalarnego dwóch podanych wektorów na kilka różnych sposobów:

- 1. w przód, zaczynając dodawanie od pierwszych indeksów
- 2. w tył, zaczynając dodawanie od ostatnich indeksów
- 3. od największego iloczynu
- 4. od najmniejszego iloczynu

5.2 Rozwiązanie

Zaprezentowane rozwiązania w pliku 5. j
 l $\,$ polegają na dosłownej implementacji podanych algoryt
mów.

5.3 Wyniki i interpretacja

algorytm	wynik
1	1.0251881368296672e-10
2	-1.5643308870494366e-10
3	0.0
4	0.0

Tabela 6: Wyniki dla Float64

algorytm	wynik
1	-0.3472038161853561
2	-0.3472038162872195
3	-0.5
4	-0.5

Tabela 7: Wyniki dla Float32

5.4 Wnioski

Kolejność wykonywanych obliczeń może drastycznie wpłynąć na otrzymywany wynik.

6 Zadanie 6.

6.1 Opis problemu

Problem polega na obliczeniu wartości dwóch równoważnych matematycznie funkcji w dla kolejnych wartości $8^{-1}, 8^{-2}, 8^{-3}, \dots$ Funkcje to:

$$f(x) = \sqrt{x^2 + 1} - 1$$

$$g(x) = \frac{x^2}{\sqrt{x^2 + 1} + 1}$$

6.2 Rozwiązanie

Zaprezentowane rozwiązania w pliku 6. j
 l $\,$ polegają na dosłownej implementacji podanych równań.

6.3 Wyniki i interpretacja

wartość x	$f(8^{-x})$	$\mathbf{g}(8^{-x})$
1	0.0077822185373186414	0.0077822185373187065
2	0.00012206286282867573	0.00012206286282875901
3	1.9073468138230965e-6	1.907346813826566e-6
4	2.9802321943606103e-8	2.9802321943606116e-8
5	4.656612873077393e-10	4.6566128719931904e-10
6	7.275957614183426e-12	7.275957614156956e-12
7	1.1368683772161603e-13	1.1368683772160957e-13
8	1.7763568394002505e-15	1.7763568394002489e-15
9	0.0	2.7755575615628914e-17
20	0.0	3.76158192263132e-37
40	0.0	2.8298997121333476e-73
60	0.0	2.1289799200040754e-109

80	0.0	1.6016664761464807e-145
100	0.0	1.204959932551442e-181
120	0.0	9.065110999561118e-218
140	0.0	6.819831532519088e-254
160	0.0	5.1306710016229703e-290
180	0.0	0.0

Tabela 8: porównanie wyników f i g

Widzimy, że fukcja f bardzo szybko daje wyniki równe zeru, natomiast funkcja g pozwala obliczyć swoją wartość bardzo blisko minimalnych liczb w zakresie typu danych Float64. Widzimy dodatkowo, że dla wartości x, dla których obie funkcje nadal dają rezultaty, są one dosyć podobne, chociaż nie identyczne. Funkcja f radzi sobie gorzej ze względu na to, że operuje ona na wartościach bardzo bliskich zeru ze względu na odejmowanie jedynki od pierwiastka - w ten sposób traci dużo cyfr znaczących z wyniku pierwiastka. Funkcja g obchodzi ten problem i dlatego pozwala na otrzymanie wyników przy znacznie mniejszym wejściu.

6.4 Wnioski

Należy wykonywać obliczenia w ten sposób, aby liczba cyfr znaczących przy kolejnych działaniach zbytnio się nie różniła, ponieważ pozwala to na znaczne poprawienie dokładności obliczeń.

7 Zadanie 7.

7.1 Opis problemu

Problem polega na sprawdzeniu dokładności pochodnej funkcji liczonej przy pomocy wzoru

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$

dla $h\to 0$ i porównanie jej z wartością matematycznej pochodnej funkcji w punkcie $x_0=1.$ Badaną funkcją jest

$$f(x) = \sin(x) + \cos(3x)$$

$$f'(x) = \cos(x) - 3\sin(3x)$$

7.2 Rozwiązanie

Zaprezentowane rozwiązanie w pliku 7. j l polega na dosłownej implementacji podanych równań.

7.3 Wyniki i interpretacja

Obliczoną wartością pochodnej w punkcie x+0=1 było 0.11694228168853815. Tabela w kolumnie "pochodna" zawiera obliczona pochodną ze wzoru dla danego h, kolumna "różnica" jest odległością obliczonej w ten sposób pochodnej od jej prawdziwej wartości.

h	1+h	pochodna	różnica
2^{-0}	2.0	2.0179892252685967	1.9010469435800585
2^{-1}	1.5	1.8704413979316472	1.753499116243109
2^{-2}	1.25	1.1077870952342974	0.9908448135457593
2^{-3}	1.125	0.6232412792975817	0.5062989976090435
2^{-4}	1.0625	0.3704000662035192	0.253457784514981
2^{-5}	1.03125	0.24344307439754687	0.1265007927090087
2^{-6}	1.015625	0.18009756330732785	0.0631552816187897
2^{-7}	1.0078125	0.1484913953710958	0.03154911368255764
2^{-8}	1.00390625	0.1327091142805159	0.015766832591977753
2^{-9}	1.001953125	0.1248236929407085	0.007881411252170345
2^{-10}	1.0009765625	0.12088247681106168	0.0039401951225235265
2^{-11}	1.00048828125	0.11891225046883847	0.001969968780300313
2^{-12}	1.000244140625	0.11792723373901026	0.0009849520504721099
2^{-13}	1.0001220703125	0.11743474961076572	0.0004924679222275685
2^{-14}	1.00006103515625	0.11718851362093119	0.0002462319323930373
2^{-15}	1.000030517578125	0.11706539714577957	0.00012311545724141837
2^{-16}	1.0000152587890625	0.11700383928837255	6.155759983439424e-5
2^{-17}	1.0000076293945312	0.11697306045971345	3.077877117529937e-5
2^{-18}	1.0000038146972656	0.11695767106721178	1.5389378673624776e-5
2^{-19}	1.0000019073486328	0.11694997636368498	7.694675146829866e-6
2^{-20}	1.0000009536743164	0.11694612901192158	3.8473233834324105e-6
2^{-21}	1.0000004768371582	0.1169442052487284	1.9235601902423127e-6
2^{-22}	1.000000238418579	0.11694324295967817	9.612711400208696e-7
2^{-23}	1.0000001192092896	0.11694276239722967	4.807086915192826e-7
2^{-24}	1.0000000596046448	0.11694252118468285	2.394961446938737e-7
2^{-25}	1.0000000298023224	0.116942398250103	1.1656156484463054e-7
2^{-26}	1.0000000149011612	0.11694233864545822	5.6956920069239914e-8
2^{-27}	1.0000000074505806	0.11694231629371643	3.460517827846843e-8
2^{-28}	1.0000000037252903	0.11694228649139404	4.802855890773117e-9
2^{-29}	1.0000000018626451	0.11694222688674927	5.480178888461751e-8
2^{-30}	1.0000000009313226	0.11694216728210449	1.1440643366000813e-7
2^{-31}	1.0000000004656613	0.11694216728210449	1.1440643366000813e-7
2^{-32}	1.0000000002328306	0.11694192886352539	3.5282501276157063e-7
2^{-33}	1.0000000001164153	0.11694145202636719	8.296621709646956e-7
2^{-34}	1.0000000000582077	0.11694145202636719	8.296621709646956e-7
2^{-35}	1.0000000000291038	0.11693954467773438	2.7370108037771956e-6
2^{-36}	1.00000000014552	0.116943359375	1.0776864618478044e-6

2^{-37}	1.000000000007276	0.1169281005859375	1.4181102600652196e-5
2^{-38}	1.000000000003638	0.116943359375	1.0776864618478044e-6
2^{-39}	1.000000000001819	0.11688232421875	5.9957469788152196e-5
2^{-40}	1.0000000000009095	0.1168212890625	0.0001209926260381522
2^{-41}	1.0000000000004547	0.116943359375	1.0776864618478044e-6
2^{-42}	1.0000000000002274	0.11669921875	0.0002430629385381522
2^{-43}	1.0000000000001137	0.1162109375	0.0007313441885381522
2^{-44}	1.0000000000000568	0.1171875	0.0002452183114618478
2^{-45}	1.0000000000000284	0.11328125	0.003661031688538152
2^{-46}	1.0000000000000142	0.109375	0.007567281688538152
2^{-47}	1.0000000000000007	0.109375	0.007567281688538152
2^{-48}	1.00000000000000036	0.09375	0.023192281688538152
2^{-49}	1.00000000000000018	0.125	0.008057718311461848
2^{-50}	1.000000000000000009	0.0	0.11694228168853815
2^{-51}	1.000000000000000004	0.0	0.11694228168853815
2^{-52}	1.000000000000000002	-0.5	0.6169422816885382
2^{-53}	1.0	0.0	0.11694228168853815
2^{-54}	1.0	0.0	0.11694228168853815

Tabela 9: porównanie wyników f i g

Możemy zauważyć, że wbrew intuicji matematycznej najlepsze przybliżenie wartości pochodnej w tym punkcie jest uzyskiwane dla $h=2^{-28}$, gdzie błąd spada do rzędu wielkości 10^{-9} , natomiast po tej wartości już tylko rośnie, aby na sam koniec wynieść 100%. Jest to spowodowane faktem, że bardzo małe liczby zmiennoprzecinkowe posiadają niewielką liczbę cyfr znaczących w swoim zapisie, więc wraz z ich maleniem tracona jest dokładność obliczeń, aż do momentu, w którym stają się one bezużyteczne.

7.4 Wnioski

W prowadzonych obliczeniach najlepiej unikać wartości bardzo bliskich zeru.

8 Bibliografia

Literatura

[1] W. Kahan Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic. 1997