Statistical Computation

Derek Li

Contents

1	Rev	view	3			
	1.1	Complex Number	3			
2	Bas	Basics				
	2.1	Floating Point	4			
		2.1.1 Floating Point Representation	4			
		2.1.2 Round-Off Error	4			
		2.1.3 Machine Epsilon and Other Constants	4			
		2.1.4 Overflow and Underflow Error	4			
		2.1.5 Catastrophic Cancellation	5			
	2.2	Sparse Matrices	5			
	2.3	Application: Computation of Probability Distributions	5			
		2.3.1 Brute Force Approach	5			
		2.3.2 Probability Generating Function	6			
		2.3.3 Discrete Fourier Transform (DFT)	6			
	2.4	Application: Image Processing	7			
		2.4.1 Transformation	7			
		2.4.2 Hadamard Matrices and Walsh-Hadamard Transform	8			
	2.5	Application: Denoising	9			
		2.5.1 Assumption	9			
		2.5.2 Thresholding	9			
		2.5.3 The Fast W-H Transform	9			
		2.5.4 R code for FWHT	10			
	2.6		10			
		2.6.1 FFT Derivation	11			
		2.6.1.1 Case I: Even Number and Product of Small Prime Numbers	12			
		2.6.1.2 Case II: Prime Number with Zero-Padding	12			
		2.6.2 Analysis of DFT Approach	12			
3	Ger	neration of Random Variates	L4			
	3.1	Generation of Random Numbers	14			
	3.2	Generation of $Unif(0,1)$	14			
		3.2.1 Linear Congruential RNG	14			
		3.2.2 Combining Unif $(0,1)$ RNGs	15			
			15			
	3.3		16			
	3 4		16			

3.5	Metho	ds for Continuous Distribution	16
	3.5.1	Inverse Method	16

1 Review

1.1 Complex Number

Definition 1.1. A complex number z consists of two component, real and imaginary:

$$z = x + \iota y$$

where $\iota = \sqrt{-1}$.

Property 1.1. If $z_1 = x_1 + \iota y_1, z_2 = x_2 + \iota y_2$ then

$$z_1 + z_2 = (x_1 + x_2) + \iota(y_1 + y_2)$$

$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + \iota(x_1 y_2 + x_2 y_1)$$

Property 1.2. $\exp(\iota\theta) = \cos(\theta) + \iota \sin(\theta)$.

Property 1.3. $z = x + \iota y = r \exp(\iota \theta)$ where $r = |z| = \sqrt{x^2 + y^2}, x = r \cos(\theta), y = r \sin(\theta)$.

Property 1.4. $\exp(\iota(\theta_1 + \theta_2)) = \cos(\theta_1 + \theta_2) + \iota \sin(\theta_1 + \theta_2).$

2 Basics

2.1 Floating Point

2.1.1 Floating Point Representation

Definition 2.1. A *floating point number* is represented by three components: (S, F, E) where S is the sign of the number (± 1) , F is a fraction (lying between 0 and 1), E is an exponent. S, F, E are all represented as binary digits (bits). The *floating point representation* of x, fl(x) is

$$fl(x) = S \times F \times 2^E$$

Note. x and f(x) need not be the same, since f(x) is a binary approximation to x, and there are only a finite number of floating point numbers.

2.1.2 Round-Off Error

Mathematical operations introduce further approximation errors

$$f(f(x)) = f(x + \varepsilon) \approx f(x) + \varepsilon f'(x)$$

and the goal is to make the round-off error |f(x) - f(f(f(x)))| as small as possible.

2.1.3 Machine Epsilon and Other Constants

For a given real number x, we have

$$|f(x) - x| \le U|x| \text{ or } f(x) = x(1+u), |u| \le U$$

where U is **machine epsilon** or **machine unit**. U is machine dependent but very small. In R, $U = 2^{-52} = 2.220 \times 10^{-16}$.

Other machine dependent constants include:

- 1. The minimum and maximum positive floating point numbers: $x_{\text{min}} = 2^{-1022} = 2.225 \times 10^{-308}$ and $x_{\text{max}} = 2^{1024} 1 = 1.798 \times 10^{308}$.
 - 2. The maximum integer: $2147383647 = 2^{31} 1$.

2.1.4 Overflow and Underflow Error

Definition 2.2. If the result of a floating point operation exceeds x_{max} , then the value returned is Inf.

Note. Inf indicates an overflow error.

Definition 2.3. If the result of a floating point operation is undefined then NaN is returned.

Definition 2.4. An *underflow error* occurs when the result of a floating point calculation is smaller (in absolute value) than x_{\min} .

Note. There are two possible outcomes: an error is reported or an exact 0 is returned. The latter outcome may cause problems in subsequent computations (e.g., division by 0).

Note. There are some ways to avoid overflow and underflow errors:

- 1. Use logarithmic scale: Changes multiplication/division into addition/subtraction, e.g., lgamma, lfactorial, lchoose.
 - 2. Use series expansions (e.g., Taylor series).

Example 2.1. For x close to 0, $\frac{\exp(x)-1}{x} \approx 1$. Naive computation of $\frac{\exp(x)-1}{x}$ is problematic for x close to 0 due to possible round-off and underflow errors:

$$\frac{\mathrm{fl}(\exp(x) - 1)}{\mathrm{fl}(x)} \neq \frac{\exp(x) - 1}{x}$$

We solve the problem by using a series approximation, for $|x| \leq \varepsilon$,

$$\frac{\exp(x) - 1}{x} = \frac{x + x^2/2 + x^3/6 + \dots}{x} = 1 + \frac{x}{2} + \frac{x^2}{6} + \dots$$

2.1.5 Catastrophic Cancellation

Suppose $z_1 = g_1(x_1, \dots, x_n)$ and $z_2 = g_2(x_1, \dots, x_n)$. We want to compute $y = z_1 - z_2$. What we actually compute is

$$y^* = \mathrm{fl}(\mathrm{fl}(z_1) - \mathrm{fl}(z_2))$$

where $f(z_1) = z_1(1 + u_1)$ and $f(z_2) = z_2(1 + u_2)$. We have

$$fl(z_1) - fl(z_2) = \underbrace{z_1 - z_2}_{y} + \underbrace{z_1 u_1 - z_2 u_2}_{error}$$

If z_1 and z_2 are large but $y = z_1 - z_2$ is small then the magnitude of the error may be larger than the magnitude of y - **catastrophic cancellation**.

2.2 Sparse Matrices

Definition 2.5. We say an $n \times n$ matrix is **sparse** if it has $k \times n$ non-zero elements where $k \ll n$.

Note 1. An $n \times n$ matrix needs at least n non-zero elements to be invertible.

Note 2. Sparse matrices are useful because we need only store non-zero elements and their row and column indices; multiplication by and addition to 0 are free operations.

2.3 Application: Computation of Probability Distributions

Question: Suppose X_i are independent discrete r.v.s. taking values $0, \dots, l$ with

$$P(X_i = x) = p(x), x = 0, \cdots, l$$

Define $S = X_1 + \cdots + X_n$ and find the probability distribution of S.

2.3.1 Brute Force Approach

Start with n = 2 and proceed inductively:

$$p_2(x) := P(X_1 + X_2 = x) = \sum_{y=0}^{x} P(X_1 = y, X_2 = x - y)$$

$$p_3(x) := P(X_1 + X_2 + X_3 = x) = \sum_{y=0}^{x} P(X_1 + X_2 = y, X_3 = x - y)$$
.

5

 $p_k(x)$ requires x+1 multiplications and to evaluate $p_k(x)$ for $x=0,\cdots,kl$, we need

$$N(k) = \sum_{x=0}^{kl} (x+1) \approx \frac{(kl)^2}{2}$$
 multiplications

Thus the total number of multiplications is

$$\sum_{k=2}^{n} N(k) \approx \frac{n^3 l^2}{6} = O(n^3 l^2)$$

2.3.2 Probability Generating Function

Definition 2.6. If X is a discrete r.v. taking values $0, 1, \dots$, then its **probability generating** function is

$$\phi(t) = \mathbb{E}[t^X] = \sum_{x=0}^{\infty} P(X = x)t^x$$

Note. If X takes values $0, \dots, l$, then P(X = x) can be recovered from evaluating $\phi(t)$ at l + 1 distinct (non-zero) points t_0, \dots, t_l .

If $\phi(t) = \mathbb{E}[t^{X_i}]$, then the probability generating function of S is

$$\mathbb{E}[t^S] = \mathbb{E}[t^{X_1 + \dots + X_n}] = [\phi(t)]^n$$

Thus we can recover P(S=x) for $x=0,\cdots,nl$ by evaluating $[\phi(t)]^n$ at t_0,\cdots,t_{nl} . We have nl+1 linear equations in nl+1 unknowns, and solving typically requires $O(n^3l^3)$ operations, which is slower than the brute force approach.

2.3.3 Discrete Fourier Transform (DFT)

A choice for t_0, \dots, t_{nl} are complex exponentials

$$t_j = \exp\left(-2\pi\iota\frac{j}{nl+1}\right), j = 0, \dots, nl$$

where $\iota = \sqrt{-1}$. Since p(x) = 0 for $x = l + 1, \dots, nl$, we have

$$\phi(t_j) = \sum_{x=0}^{l} p(x) \exp\left(-2\pi \iota \frac{jx}{nl+1}\right) = \sum_{x=0}^{nl} p(x) \exp\left(-2\pi \iota \frac{jx}{nl+1}\right)$$

 $\phi(t_0), \dots, \phi(t_{nl})$ is the **discrete Fourier transform** (DFT) of $p(0), \dots, p(nl)$, and thus, the DFT of $P(S=0), \dots, P(S=nl)$ is $[\phi(t_0)]^n, \dots, [\phi(t_{nl})]^n$. Hence, given $\phi(t_0), \dots, \phi(t_{nl})$, we can compute the probability distribution of S using the inverse DFT:

$$P(S=x) = \frac{1}{nl+1} \sum_{j=0}^{nl} [\phi(t_j)]^n \exp\left(2\pi \iota \frac{jx}{nl+1}\right), x = 0, \dots, nl$$

Naive computation of P(S = x) using DFT requires $O(n^3 l^2)$ multiplications; but with divide-and-conquer algorithm, we can reduce the number of multiplications by a factor of n.

In R, if x is a vector of length n we can compute its DFT with fft(x) and the inverse DFT with fft(tx, inv=T) / length(x):

```
probs = # The vector for P(X=x)
dft = fft(probs)
dft.s = dtf^n # S=X1+...+Xn
idft.s = fft(dft.s, inv=T) / length(probs)
Re(idft.s) # Real component of idft.s, or P(S=x)
```

Note. fft is the fast Fourier transform, which is an efficient algorithm for computing the DFT when the length of the sequence is a product of small primes.

2.4 Application: Image Processing

Question: We observe an image denoted by $x(i, j).i = 1, \dots, m, j = 1, \dots, n$, where (i, j) denotes a pixel location. We want:

1. Denoising: Think of $\{x(i,j)\}$ as a image corrupted by noise

$$x(i,j) = \underbrace{s(i,j)}_{\text{True}} + \underbrace{\varepsilon(i,j)}_{\text{Noise}}$$

2. Compression: Approximate x(i,j) by $x^*(i,j)$ where

$$x^*(i,j) = \sum_{k=1}^p \beta_k \phi_k(i,j)$$

where $p \ll m \times n$ and ϕ_1, \dots, ϕ_p are known functions.

2.4.1 Transformation

Define X to be the $m \times n$ matrix whose elements are x(i,j). Define orthogonal matrices H_1 ($m \times m$) and H_2 ($n \times n$) and define $\hat{X} = H_1XH_2$, which has the same dimensions as X. Since for orthogonal matrix H, $H^{-1} = H^T$ and so $X = H_1^T \hat{X} H_2^T$. Assume the noisy image model X = S + E, if H_1 and H_2 are chosen appropriately,

$$\hat{X} = \underbrace{H_1 S H_2}_{\text{Sparse}} + \underbrace{H_1 E H_2}_{\approx 0}$$

Therefore,

1. Denoising: Given \hat{X} , find a transformation $\hat{X} \mapsto T(\hat{X})$ and define the denoised image

$$X_{\mathrm{dn}} = H_1^T T(\hat{X}) H_2^T$$

where we assume the smallest elements of \hat{X} are due to noise and set these equal to 0

$$T(\hat{X})(i,j) = 0, |\hat{X}(i,j)| \leq \text{Threshold}$$

2. Compression: The same idea is used for compression: for some T,

$$X_{\rm c} = H_1^T T(\hat{X}) H_2^T$$

Note. T is usually defined more deterministically. The form of T depends on the amount of compression and the type of image.

Hadamard Matrices and Walsh-Hadamard Transform

Definition 2.7. A *Hadamard matrix* is an $n \times n$ matrix whose elements are all ± 1 with orthogonal rows s.t. $HH^T = nI$.

Note 1. $H^{-1} = \frac{H^T}{r}$.

Note 2. Hadamard matrices only exist if n = 1, n = 2, or n is a multiple of 4.

Note 3. We focus on the case where $n=2^k$ since it is simple to construct and we can write the Hadamard matrix as a product of sparse matrices. We start with the trivial 1×1 Hadamard matrix $H_1 = 1$, and then define H_2, H_4, H_8, \cdots recursively:

$$H_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$H_{2^k} = \begin{pmatrix} H_{2^{k-1}} & H_{2^{k-1}} \\ H_{2^{k-1}} & -H_{2^{k-1}} \end{pmatrix}$$

for $k=2,3,\cdots$.

Note 4. H_2 is symmetric and so H_{2^k} is symmetric and thus $H_{2^k}^{-1} = \frac{H_{2^k}}{2^k}$.

Definition 2.8. Given arbitrary matrices A and B, the **Kronecker product** $A \otimes B$ is

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{pmatrix}$$

for an $m \times n$ matrix A.

Property 2.1. Assume below that any matrix sums, products or inverses are well-defined.

- 1. $A \otimes (B+C) = (A \otimes B) + (A \otimes C)$.
- 2. $(B+C)\otimes A=(B\otimes A)+(C\otimes A)$.
- 3. $A \otimes (B \otimes C) = (A \otimes B) \otimes C$.
- 4. $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$.
- 5. $(A \otimes B)^T = A^T \otimes B^T$. 6. $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$.

Note. For Hadamard matrices, $H_{2^k} = H_2 \otimes H_{2^{k-1}}$. We rewrite it as $H_{2^k} = (H_2 I_2) \otimes (I_{2^{k-1}} H_{2^{k-1}})$ and using the property, we have

$$H_{2^k} = (H_2 \otimes I_{2^{k-1}})(I_2 \otimes H_{2^{k-1}})$$

Repeating the process with $H_{2^{k-1}}, H_{2^{k-2}}, \cdots$, we get

$$H_{2^{k}} = \underbrace{(H_{2} \otimes I_{2^{k-1}})(I_{2} \otimes H_{2} \otimes I_{2^{k-2}})(I_{4} \otimes H_{2} \otimes I_{2^{k-3}}) \cdots (I_{2^{k-1}} \otimes H_{2})}_{k = \log_{2}(n) \text{ terms}}$$

Definition 2.9. Given an $n \times n$ Hadamard matrix H and a vector \mathbf{x} of length n, we define its Walsh-Hadamard transform by $\hat{\mathbf{x}} = H\mathbf{x}$.

Note 1. Given the W-H transform, we can recover \mathbf{x}

$$\mathbf{x} = \frac{1}{n} H^T \hat{\mathbf{x}}$$

Note 2. If $n = 2^k$, since $H = H^T$, then

$$\mathbf{x} = \frac{1}{n}H\hat{\mathbf{x}}$$

8

2.5 Application: Denoising

Question: Suppose we observe $\mathbf{x} = (x_1, \dots, x_n)^T$ where we assume that

$$\mathbf{x} = \mathbf{s} + \mathbf{e} = \text{Signal} + \text{Noise}$$

We want to recover or estimate the signal s.

2.5.1 Assumption

Assume **s** is structured so that its W-H transform $\hat{\mathbf{s}} = H\mathbf{s}$ contains mostly 0s

$$\hat{\mathbf{x}} = H\mathbf{x} = H\mathbf{s} + H\mathbf{e}$$
Sparse Relatively small

2.5.2 Thresholding

We shrink smaller components of $\hat{\mathbf{x}}$ towards 0, and then estimate \mathbf{s} by the inverse W-H transform of the thresholded $\hat{\mathbf{x}}$. Thresholded W-H transform $\hat{\mathbf{x}}_s$ is an estimate of the W-H transform of \mathbf{s} , and thus we can estimate \mathbf{s} by the inverse W-H transform

$$\widetilde{\mathbf{s}} = \frac{1}{n} H^T \widehat{\mathbf{x}}_s$$

Define thresholds $\lambda_1, \dots, \lambda_n \ge 0$. The **hard thresholding** is to modify $\hat{\mathbf{x}}$ as follows:

$$\hat{\mathbf{x}}_s = \begin{pmatrix} \hat{x}_1 I(|\hat{x}_1| \geqslant \lambda_1) \\ \vdots \\ \hat{x}_n I(|\hat{x}_n| \geqslant \lambda_n) \end{pmatrix}$$

The **soft** thresholding is to modify $\hat{\mathbf{x}}$ as follows:

$$\hat{\mathbf{x}}_s = \begin{pmatrix} \operatorname{sgn}(\hat{x}_1)(|\hat{x}_1| - \lambda_1)_+ \\ \vdots \\ \operatorname{sgn}(\hat{x}_n)(|\hat{x}_n| - \lambda_n)_+ \end{pmatrix}$$

where sgn(y) is the sign of y, and y_+ equals y if y > 0 and 0 if $y \le 0$.

Typically we set $\lambda_1 = 0$, and use knowledge of the problem to decide $\lambda_2, \dots, \lambda_n$; or take $\lambda_2 = \dots = \lambda_n$ and choose the common value based on tools such as half normal plots.

2.5.3 The Fast W-H Transform

A Hadamard matrix H consists of ± 1 so computation of $H\mathbf{x}$ involves only additions and subtractions, but naive computation involves $n(n-1) = O(n^2)$ additions and subtractions, which is less than ideal if n is very large. We can write H as a product of sparse matrices to reduce complexity.

Example 2.2 $(n = 2^3 = 8)$. The 8×8 Hadamard matrix is

Naive computation of $H_8\mathbf{x}$ needs 56 additions and subtractions. But if $H_8=A^3$ where

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \end{pmatrix}$$

Computation of $AAA\mathbf{x}$ needs $3 \times 8 = 24$ additions and subtractions.

2.5.4 R code for FWHT

The function fwht below computes the W-H transform of data in a vector x.

```
fwht = function(x) {
    h=1
    len = length(x)
    while (h < len) {
        for (i in seq(1, len, by=h*2)) {
            for (j in seq(i, i+h-1)) {
                a = x[j]
                b = x[j+h]
                x[j] = a + b
                x[j+h] = a - b
                }
        }
        h = 2 * h
    }
    x
}</pre>
```

We can compute the inverse W-H transform using fwht by dividing the output by the length of the vector.

2.6 Fast Fourier Transform (FFT)

Definition 2.10 (Discrete Fourier Transform). Suppose we have data x_0, \dots, x_{n-1} , and define $\widehat{x}_0, \dots, \widehat{x}_{n-1}$ by

$$\hat{x}_j = \sum_{t=0}^{n-1} \exp\left(-2\pi \iota \frac{j}{n}t\right) x_t$$

where $\iota = \sqrt{-1}$.

Property 2.2 (Inverse DFT). Given DFT, recover the original sequence by

$$x_t = \frac{1}{n} \sum_{j=0}^{n-1} \exp\left(2\pi i \frac{j}{n} t\right) \hat{x}_j$$

Proof. For complex numbers z,

$$\sum_{j=0}^{n-1} z^j = \begin{cases} n, & z=1\\ \frac{1-z^n}{1-z}, & \text{otherwise} \end{cases}$$

Thus if $z = \exp\left(\frac{2\pi \iota t}{n}\right)$ for an integer t. we have

$$\sum_{j=0}^{n-1} z^j = \sum_{j=0}^{n-1} \exp\left(2\pi \iota \frac{t}{n}j\right) = \frac{1 - \exp(2\pi \iota t)}{1 - \exp(2\pi \iota t/n)} = 0$$

since $\exp(2\pi \iota t) = \cos(2\pi t) + \iota \sin(2\pi t) = 1$. Hence,

$$\frac{1}{n} \sum_{j=0}^{n-1} \exp\left(2\pi \iota \frac{j}{n}t\right) \widehat{x}_j = \frac{1}{n} \sum_{j=0}^{n-1} \sum_{s=0}^{n-1} \exp\left(2\pi \iota \frac{t-s}{n}j\right) x_s$$
$$= \frac{1}{n} \sum_{s=0}^{n-1} x_s \sum_{j=0}^{n-1} \exp\left(2\pi \iota \frac{t-s}{n}j\right)$$
$$= x_t$$

since

$$\sum_{j=0}^{n-1} \exp\left(2\pi \iota \frac{t-s}{n}j\right) = \begin{cases} n, & s=t\\ 0, & s\neq t \end{cases}$$

Definition 2.11 (Matrix Formulation of DFT). Define $\mathbf{x} = (x_0, \dots, x_{n-1})^T$ and $\hat{\mathbf{x}} = (\hat{x}_0, \dots, \hat{x}_{n-1})^T$. Then

$$\hat{\mathbf{x}} = F\mathbf{x}$$

where F is an $n \times n$ matrix whose jth row and kth column is

$$f_{jk} = \exp\left(-2\pi\iota\frac{(j-1)(k-1)}{n}\right)$$

The elements of F^{-1} are

$$\overline{f}_{jk} = \frac{1}{n} \exp\left(2\pi \iota \frac{(j-1)(k-1)}{n}\right)$$

Note 1. Using the matrix form directly, we need $O(n^2)$ additions and multiplications to compute the DFT (and its inverse).

Note 2. We can write F as a product of sparse matrices, but unlike the W-H transform, factorization of the DFT matrix is more complicated.

2.6.1 FFT Derivation

Assume n is a product of prime numbers $n_1, \dots, n_k : n = n_1 \times \dots \times n_k$.

2.6.1.1 Case I: Even Number and Product of Small Prime Numbers

Assume n is even, then

$$\hat{x}_{j} = \sum_{t=0}^{n/2-1} \exp\left(-2\pi \iota \frac{j}{n} 2t\right) x_{2t} + \sum_{t=0}^{n/2-1} \exp\left(-2\pi \iota \frac{j}{n} (2t+1)\right) x_{2t+1}$$

$$= \sum_{t=0}^{n/2-1} \exp\left(-2\pi \iota \frac{j}{n/2} t\right) x_{2t} + \exp\left(-2\pi \iota \frac{j}{n}\right) \sum_{t=0}^{n/2-1} \exp\left(-2\pi \iota \frac{j}{n/2} t\right) x_{2t+1}$$
DFT of x_{0}, x_{2}, \cdots

Hence, the DFT of x_0, \dots, x_{n-1} is a linear combination of the DFT of the even and odd indices. Our rearrangement into DFT of odd and even indices can be written in matrix form as

$$\widehat{\mathbf{x}} = \begin{pmatrix} I & \Omega \\ I & -\Omega \end{pmatrix} \begin{pmatrix} F_{n/2} & 0 \\ 0 & F_{n/2} \end{pmatrix} P \mathbf{x}$$
Sparse Sparser

where Ω is a diagonal matrix (sparse) and P is a permutation matrix (sparse), i.e., if n is even, we can write F as a product of two sparse matrices and a matrix that is sparser than F ($n^2/2$ 0s).

If n/2 is divisible by a prime number n', we can perform a similar decomposition of $F_{n/2}$ and F is now the product of sparser matrices. When n_1, \dots, n_k are small then we need $O(n \ln(n))$ additions and multiplications.

2.6.1.2 Case II: Prime Number with Zero-Padding

Definition 2.12 (Zero Padding). Add 0s to the end of the sequence so that the length of the **zero padded** sequence is a product of small prime numbers:

$$x_0, \cdots, x_{n-1}, \underbrace{0, \cdots, 0}_{m}$$

with $n + m = n_1 \times \cdots \times n_k$ where n_1, \cdots, n_k are small primes.

Note 1. The function nextn is useful for zero-padding.

Note 2. Adding 0s to a sequence changes the nature of the sequence - creating a large discontinuity, which is reflected in the DFT.

2.6.2 Analysis of DFT Approach

For the application in computation of probability distributions with DFT approach, we take $m \ge nl = 1$ where m is a product of small prime numbers, and follow the steps:

- 1. Define $\hat{p}_i(0), \dots, \hat{p}_i(m-1)$ to be the DFT of $p_i(0), \dots, p_i(m-1)$ for $i=1,\dots,n$.
- 2. Define

$$\widehat{p}_s(k) = \prod_{i=1}^n \widehat{p}_i(k), k = 0, \cdots, m-1$$

3. Inverse DFT: $P(S=0), \dots, P(S=m-1)$ is the inverse DFT of $\hat{p}_s(0), \dots, \hat{p}_s(m-1)$.

The number of multiplications at each step is:

- 1. DFT: $n \times O(m \ln(m)) = O(nm \ln(m))$.
- 2. Product of DFTs: O(nm).

3. Inverse DFT: $O(m \ln(m))$.

The total number of multiplications is $O(nm\ln(m))$ and thus if $m \approx nl$, the number of multiplications is $O(n^2l\ln(nl))$ versus $O(n^3l^2)$ for the brute force algorithm.

3 Generation of Random Variates

3.1 Generation of Random Numbers

Example 3.1 (Importance Sampling). Suppose we want to estimate

$$I = \int \cdots \int g(\mathbf{x}) d\mathbf{x}$$

for some integrand $g: \mathbb{R}^p \to \mathbb{R}$. If f is a probability density function on \mathbb{R}^p , then

$$I = \int \cdots \int g(\mathbf{x}) d\mathbf{x} = \int \cdots \int \frac{g(\mathbf{x})}{f(\mathbf{x})} f(\mathbf{x}) d\mathbf{x} = \mathbb{E}_f \left[\frac{g(\mathbf{X})}{f(\mathbf{X})} \right]$$

where **X** has a density f. We can use the law of large numbers to estimate the expected value provided $\operatorname{Var}_f\left[\frac{g(\mathbf{X})}{f(\mathbf{X})}\right] < \infty$. Take $\mathbf{X}_1, \dots, \mathbf{X}_n$ independent from f, LLN gives

$$\hat{I} = \frac{1}{n} \sum_{i=1}^{n} \frac{g(\mathbf{X}_i)}{f(\mathbf{X}_i)} \approx \int \cdots \int g(\mathbf{x}) d\mathbf{x}$$

Note. We choose f satisfying precision and expediency:

- 1. Precision: Minimize the variance of I.
- 2. Expediency: Be able to sample from f.

Example 3.2 (Monte Carlo Estimation of π). If X and Y are independent Unif(-1,1) r.v.s., then

$$P(X^2 + Y^2 \leqslant 1) = \frac{\pi}{4}$$

We generate independent pairs and have

$$\widehat{\pi} = \frac{4}{n} \sum_{i=1}^{n} I(X_i^2 + Y_i^2 \le 1)$$

3.2 Generation of Unif(0,1)

To generate pseudo-random U_1, U_2, \cdots , we generate integers V_1, V_2, \cdots from a uniform distribution on $\{1, \cdots, N\}$ and define $U_i = \frac{V_i}{N+1}$ for $i=1,2,\cdots$. Note that U_1, U_2, \cdots are uniform on the set $\{1/(N+1), \cdots, N/(N+1)\}$. If N is large enough, U_1, U_2, \cdots are independent Unif(0,1) r.v.s.:

$$\sup_{0 \le x \le 1} |P(U_i \le x) - x| \le \frac{1}{N}$$

3.2.1 Linear Congruential RNG

Define V_1, V_2, \cdots via the recursion:

$$V_{k+1} = (aV_k + b) \mod m$$

for some integers a, b, and m.

Note 1. The initial value V_0 is the **seed** of the RNG.

Note 2. V_1, V_2, \cdots take values in the set $\{0, \cdots, m-1\}$.

Note 3. If b = 0 then we have a multiplicative congruential RNG.

Note 4. We have $V_{k+p} = V_k$ for some $p \leq m$, and p is the **period** of the RNG.

Property 3.1. If b = 0, then the maximum possible period is m - 1. Furthermore, if m is prime, and

$$a^{(m-1)/q} \mod m \neq 1$$

for every prime factor q of m-1 then the RNG has period m-1.

Example 3.3. Take m = 5 and m - 1 = 4 has a single prime factor 2. We need $a^2 \mod 5 \neq 1$ so we can take a = 3 (for example).

Example 3.4. Let m to be the largest possible prime number $m = 2^{31} - 1$. We can take a = 16807 or 48271, or 397204094.

3.2.2 Combining Unif(0,1) RNGs

Combination increases the period of the RNG.

Example 3.5 (Wichmann-Hill RNG). Combine three multiplicative congruential RNGs:

$$\begin{split} V_{k+1}^{(1)} &= 171 V_k^{(1)} \mod 30269 \\ V_{k+1}^{(2)} &= 172 V_k^{(2)} \mod 30307 \\ V_{k+1}^{(3)} &= 170 V_k^{(3)} \mod 30323 \end{split}$$

where the periods are short ($\approx 3 \times 10^4$). Then

$$U_k = \left(\frac{V_k^{(1)}}{30269} + \frac{V_k^{(2)}}{30307} + \frac{V_k^{(3)}}{30323}\right) \mod 1$$

where the period is

$$p = \frac{30268 \times 30306 \times 30322}{4} = 6.9536 \times 10^{12}$$

3.2.3 Shift Register Method

We use the binary representation of Unif(0, 1). Suppose Z_1, Z_2, \cdots are independent binary r.v.s. with

$$P(Z_k = 0) = P(Z_k = 1) = \frac{1}{2}$$

then

$$U = \sum_{k=1}^{\infty} \frac{Z_k}{2^k} \sim \text{Unif}(0,1)$$

In practice, we define U as a finite sum

$$U = \sum_{k=1}^{r} \frac{Z_k}{2^k}$$

where r is the number of bits.

We generate $\{Z_k\}$ via **exclusive-or** operations for binary variables x and y. We construct $\{Z_k\}$ as follows:

$$Z_k = Z_{k-p} \oplus Z_{k-p+q}, 1 < q < p$$

and

$$U_n = \sum_{k=1}^r \frac{Z_{n-s(k)}}{2^k}$$

for some shifts $\{s(k)\}.$

Recall. If Z_1 and Z_2 are independent, and $Z_3 = Z_1 \oplus Z_2$, then Z_3 is independent of Z_1 and Z_2 .

Note 1. For the shifts, we need $s(k) - s(k-1) \gg p$.

Note 2. Initialization of shift register RNGs is much complicated, and we need a $p \times r$ matrix of binary seeds.

Example 3.6 (Lewis-Payne RNG). p = 98, q = 27, and s(k) = 100p(k-1) s.t. s(k) - s(k-1) = 100p. The period is $2^{98} - 1$.

Example 3.7 (Mersenne Twister). The period is $2^{19937} - 1$.

3.3 Testing Unif(0,1) RNGs

We need to check:

1. Uniformity on [0,1]: For $0 \le a < b \le 1$,

$$\frac{1}{n}\sum_{i=1}^{n}I(a\leqslant U_{i}\leqslant b)\approx b-a$$

2. Uniformity of k-tuples on $[0,1]^k$: For $A \subset [0,1]^k$,

$$\binom{n}{k}^{-1} \sum_{(i_1, \dots, i_k)} I[(U_{i_1}, \dots, U_{i_k}) \in A] \approx \text{Volume}(A)$$

3. Independence: U_i independent of U_{i+1}, U_{i+2}, \cdots .

3.4 RNGs in R

The function RNGkind that allows a user to specify the RNG used to generate Unif(0, 1) r.v.s. and the method used to generate normal r.v.s..

3.5 Methods for Continuous Distribution

3.5.1 Inverse Method

Suppose F is a univariate distribution and we want to generate $X \sim F$.

Definition 3.1. For a general univariate distribution function F, we define

$$F^{-1}(t) = \inf\{x : F(x) \ge t\}, 0 < t < 1$$

Property 3.2. If F is a univariate distribution function with inverse F^{-1} and $U \sim \text{Unif}(0,1)$, then

$$X = F^{-1}(U) \sim F$$

Proof. We need to show $P(F^{-1}(U) \leq x) = F(x)$ or equivalently $[F^{-1}(U) \leq x] = [U \leq F(x)]$. By definition of F^{-1} , $[U \leq F(x)]$ implies $[F^{-1}(U) \leq x]$. If $F^{-1}(U) \leq x$ then $F(x + \varepsilon) \geq U, \forall \varepsilon > 0$. F is right continuous so $[F^{-1}(U) \leq x]$ implies $[U \leq f(x)]$.

Example 3.8 (Exponential Distribution). $F(x) = 1 - \exp(-\lambda x)$ for $x \ge 0, \lambda > 0$. Solving $F(F^{-1}(t)) = t$ for $F^{-1}(t)$, we have

$$F^{-1}(t) = -\frac{\ln(1-t)}{\lambda}$$

Thus $X = -\frac{\ln(1-U)}{\lambda}$ has an exponential distribution. Since $1-U \sim \text{Unif}(0,1)$ so we define $X = -\frac{\ln(U)}{\lambda}$.

Example 3.9 (Logistic Distribution). $F(x) = \frac{\exp(x)}{1 + \exp(x)}$. Solving $F(F^{-1}(t)) = t$, we have

$$F^{-1}(t) = \ln\left(\frac{t}{1-t}\right)$$

which is called logit function. Thus $X = \ln\left(\frac{U}{1-U}\right)$ has a Logistic distribution.

Example 3.10 (Approximation of Euler's Constant). The Euler's constant is

$$\gamma = \lim_{m \to \infty} \left[\sum_{k=1}^{m} \frac{1}{k} - \ln(m) \right]$$
$$= \int_{1}^{\infty} \left(\frac{1}{|x|} - \frac{1}{x} \right) dx$$
$$= \int_{1}^{\infty} x^{2} \left(\frac{1}{|x|} - \frac{1}{x} \right) x^{-2} dx$$

where $f(x) = x^{-2}$ is a density function on $[1, \infty)$. If we can sample X_1, \dots, X_n from f(x), we can estimate γ by

$$\widehat{\gamma} = \frac{1}{n} \sum_{i=1}^{n} X_i^2 \left(\frac{1}{[X_i]} - \frac{1}{X_i} \right)$$

The distribution function is $F(x) = 1 - x^{-1}$ whose inverse is $F^{-1}(t) = (1 - t)^{-1}$. We can use inverse method to sample from f(x).

x = 1 / (1 - u)

n = 1000000
u = runif(n)

gammahat = $mean(x^2 * (1 / floor(x) - 1 / x))$