

09481: Inteligencia Artificial

Profesor del curso: Breyner Posso, Ing. M.Sc. e-mail: breyner.posso1@u.icesi.edu.co

Programa de Ingeniería de Sistemas.

Departamento TIC.

Facultad de Ingeniería.

Universidad Icesi.

Cali, Colombia.

Agenda

- 1. Introducción
- 2. Regresión Logística

1. Introducción

- Bayes ingenuo
- Árboles de decisión
- SVM
- Redes neuronales
- ...

- Regresión Lasso
- .

Redes neuronales

Ejemplo: tenemos datos que relacionan la cantidad de grasa consumida con la masa corporal de las personas, es decir un problema de regresión.

Ejemplo: tenemos datos que relacionan la cantidad de grasa consumida con la masa corporal de las personas, es decir un problema de regresión.

• Si un doctor estima que más de 95 kg implica riesgo de diabetes, ahora el problema se convierte en uno de clasificación.

0: a salvo, 1: en peligro.

Ejemplo: tenemos datos que relacionan la cantidad de grasa consumida con la masa corporal de las personas, es decir un problema de regresión.

• Si un doctor estima que más de 95 kg implica riesgo de diabetes, ahora el problema se convierte en uno de clasificación.

0: a salvo, 1: en peligro.

Ejemplo: tenemos datos que relacionan la cantidad de grasa consumida con la masa corporal de las personas, es decir un problema de regresión.

• Si un doctor estima que más de 95 kg implica riesgo de diabetes, ahora el problema se convierte en uno de clasificación.

0: a salvo, 1: en peligro.

 Una regresión lineal podría ayudar a estimar el límite sobre el cual se estaría en peligro de diabetes.

Ejemplo: tenemos datos que relacionan la cantidad de grasa consumida con la masa corporal de las personas, es decir un problema de regresión.

• Si un doctor estima que más de 95 kg implica riesgo de diabetes, ahora el problema se convierte en uno de clasificación.

0: a salvo, 1: en peligro.

 Una regresión lineal podría ayudar a estimar el límite sobre el cual se estaría en peligro de diabetes.

Ejemplo: tenemos datos que relacionan la cantidad de grasa consumida con la masa corporal de las personas, es decir un problema de regresión.

• Si un doctor estima que más de 95 kg implica riesgo de diabetes, ahora el problema se convierte en uno de clasificación.

0: a salvo, 1: en peligro.

 Una regresión lineal podría ayudar a estimar el límite sobre el cual se estaría en peligro de diabetes.

Ejemplo: tenemos datos que relacionan la cantidad de grasa consumida con la masa corporal de las personas, es decir un problema de regresión.

• Si un doctor estima que más de 95 kg implica riesgo de diabetes, ahora el problema se convierte en uno de clasificación.

0: a salvo, 1: en peligro.

- Una regresión lineal podría ayudar a estimar el límite sobre el cual se estaría en peligro de diabetes.
- Pero no se pueden interpretar sus predicciones como probabilidades (valores no están entre [0, 1]).

Ejemplo: tenemos datos que relacionan la cantidad de grasa consumida con la masa corporal de las personas, es decir un problema de regresión.

• Si un doctor estima que más de 95 kg implica riesgo de diabetes, ahora el problema se convierte en uno de clasificación.

0: a salvo, 1: en peligro.

- Una regresión lineal podría ayudar a estimar el límite sobre el cual se estaría en peligro de diabetes.
- Pero no se pueden interpretar sus predicciones como probabilidades (valores no están entre [0, 1]).
- Además, podría no ser muy robusto...

Ejemplo: tenemos datos que relacionan la cantidad de grasa consumida con la masa corporal de las personas, es decir un problema de regresión.

• Si un doctor estima que más de 95 kg implica riesgo de diabetes, ahora el problema se convierte en uno de clasificación.

0: a salvo, 1: en peligro.

- Una regresión lineal podría ayudar a estimar el límite sobre el cual se estaría en peligro de diabetes.
- Pero no se pueden interpretar sus predicciones como probabilidades (valores no están entre [0, 1]).
- Además, podría no ser muy robusto...

 $\hat{y} = f(x)$ Sin tomar este

Ejemplo: tenemos datos que relacionan la cantidad de grasa consumida con la masa corporal de las personas, es decir un problema de regresión.

• Si un doctor estima que más de 95 kg implica riesgo de diabetes, ahora el problema se convierte en uno de clasificación.

0: a salvo, 1: en peligro.

- Una regresión lineal podría ayudar a estimar el límite sobre el cual se estaría en peligro de diabetes.
- Pero no se pueden interpretar sus predicciones como probabilidades (valores no están entre [0, 1]).
- Además, podría no ser muy robusto...

 $\hat{y} = f(x)$ Sin tomar este

- A pesar de su nombre, es un algoritmo de clasificación, no de regresión!!!!
- Parte de la idea de la regresión lineal, pero se modifica su resultado para obtener una salida continua **que varía entre 0 y 1**: sólo permite distinguir entre 2 clases:
 - Cliente que abandona vs. cliente que se queda.
 - Cliente que compra vs. cliente que no compra.
 - Cliente valioso vs. cliente no valioso.
 - Paciente con diabetes o no diabetes.
 - ...
- Se agrega una transformación al resultado de la regresión lineal (z) a partir de una función logística, también conocida como función **logit** o **sigmoide**.

$$f(\mathbf{z}) = \boldsymbol{\sigma}(\mathbf{z}) = \frac{1}{1 + e^{-\mathbf{z}}}$$

• El modelo pasa de:

$$h_{w}(x) = w_0 + w_1 x_1 + \dots + w_n x_n$$

a

$$f(\mathbf{z}) = \sigma(\mathbf{z}) = \sigma(\mathbf{w}^T \mathbf{x}) = \sigma(\mathbf{w}_0 + \mathbf{w}_1 \mathbf{x}_1 + \dots + \mathbf{w}_n \mathbf{x}_n),$$

Donde:

- $\mathbf{z} = \mathbf{w}^T \mathbf{x} = w_0 + w_1 x_1 + \dots + w_n x_n$
- $\sigma(z)$ es la función **sigmoide** o **logística.**
- $\max(\sigma(z)) = 1$ y $\min(\sigma(z)) = 0$

$$f(\mathbf{z}) = \boldsymbol{\sigma}(\mathbf{z}) = \frac{1}{1 + e^{-z}}$$

 Se pueden interpretar los valores de σ (z) como probabilidades que una instancia con atributos x pertenezca a la clase Y=1:

$$P(Y = 1 | x_1, ..., x_n) = p_1(X) = \sigma(w_0 + w_1 x_1 + ... + w_n x_n)$$

$$f(\mathbf{z}) = \sigma(\mathbf{z}) = \frac{1}{1 + e^{-\mathbf{z}}} = p_1(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

$$p_1(\mathbf{x}) = f(\mathbf{z}) = \sigma(\mathbf{z}) = \frac{1}{1 + e^{-\mathbf{z}}}$$

Comportamiento:

- ✓Si y=1, queremos que $p_1(x) \approx 1$ y por lo tanto $w^T X \gg 0$
- ✓ Si y=0, queremos que $p_1(x) \approx 0$ y por lo tanto $w^T X \ll 0$

$$p_1(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

Comportamiento:

- ✓ Si y=1, queremos que $p_1(x) \approx 1$ y por lo tanto $w^T X \gg 0$
- ✓ Si y=0, queremos que $p_1(x) \approx \mathbf{0}$ y por lo tanto $\mathbf{w}^T \mathbf{X} \ll \mathbf{0}$
- Para hacer **Predicción**, se debe establecer un valor de umbral.

Fuente: Wikipedia.

$$p_1(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

Comportamiento:

- ✓ Si y=1, queremos que $p_1(x) \approx 1$ y por lo tanto $w^T X \gg 0$
- ✓ Si y=0, queremos que $p_1(x) \approx \mathbf{0}$ y por lo tanto $\mathbf{w}^T \mathbf{X} \ll \mathbf{0}$
- Para hacer Predicción, se debe establecer un valor de umbral.
- Por ejemplo, ¿qué sucede si el umbral se fija por en 0.5?
 - ✓ Si $p_1(x) \ge 0.5$, se predice clase 1.
 - ✓ Si $p_1(x)$ < 0.5, se predice clase 0.

$$p_1(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

• ¿Qué impacto tiene este **umbral** en los falsos positivos y falsos negativos?

- ¿Qué impacto tiene este **umbral** en los falsos positivos y falsos negativos?
- Una herramienta que se tiene para determinar el impacto de este umbral es la curva ROC (Receiver Operating Characteristic).

- ¿Qué impacto tiene este umbral en los falsos positivos y falsos negativos?
- Una herramienta que se tiene para determinar el impacto de este umbral es la curva ROC (Receiver Operating Characteristic).

TPR =sensitivity=recall=
$$\frac{TP}{TP+FN}$$

FPR =1-specificity=
$$\frac{FP}{FP+TN}$$

27

- ¿Qué impacto tiene este umbral en los falsos positivos y falsos negativos?
- Una herramienta que se tiene para determinar el impacto de este umbral es la curva ROC (Receiver Operating Characteristic).
- A partir de la curva ROC se puede calcular el AUC (Area Under the Curve) y usarlo para comparar diferentes modelos.

TPR =sensitivity=recall=
$$\frac{TP}{TP+FN}$$

FPR =1-specificity=
$$\frac{FP}{FP+TN}$$

- ¿Qué impacto tiene este **umbral** en los falsos positivos y falsos negativos?
- Una herramienta que se tiene para determinar el impacto de este umbral es la curva ROC (Receiver Operating Characteristic).
- A partir de la curva ROC se puede calcular el AUC (Area Under the Curve) y usarlo diferentes para comparar modelos.
- El umbral se escoge dependiendo del contexto de la clasificación.

Clase verdadera (actual class)

	Clase que se predijo (predicted class)				
	1	0			
1	Verdaderos positivos (true positive)	Falsos negativos (false negative)			
o	Falsos positivos (false positive)	Verdaderos negativos (true negative)			

TPR =sensitivity=recall=
$$\frac{TP}{TP+FN}$$

FPR =1-specificity=
$$\frac{FP}{FP+TN}$$

- Coeficientes w_i:
 - $\log\left(\frac{p_1(x)}{1-p_1(x)}\right) = w_0 + w_1x_1 + \dots + w_nx_n$
 - Relación **lineal** entre los coeficientes y el logaritmo de la razón de probabilidades (*odds ratio*).
 - Un crecimiento de una unidad de x_1 indica que el log de la razón de probabilidades va a crecer w_1 unidades.
 - El **signo** indica la dirección de la influencia.
 - Análisis de sensibilidad de p(y=1) con respecto a una variable, fijando las otras en sus valores promedios.
 - Prueba de hipótesis para evaluar la **significancia** de cada coeficiente (diferencia de 0).

- Razón de probabilidades
 - A probabilidades altas, razón alta y viceversa

$p_1(X)$	odds
1,0	+Inf
0,99	99
0,75	3
0,5	1
0,25	0,33
0	0

• El algoritmo de regresión logística determina una frontera de decisión lineal.

$$h_{\mathbf{w}}(\mathbf{x}) = f(-3 + x_1 + x_2)$$

Predecir la clase roja de cruz cuando:

$$h_w(x) \ge 0.5$$

$$f(-3 + x_1 + x_2) \ge 0.5$$

• Para fronteras de decisión no lineales: usar polinomios de un mayor orden.

$$h_{\mathbf{w}}(\mathbf{x}) = f(-1 + x_1^2 + x_2^2)$$

Predecir la clase roja de cruz cuando:

$$h_w(x) \ge 0.5$$

$$f(-1 + x_1^2 + x_2^2) \ge 0.5$$

Variables de confusión (confounding variables)

- Problema que ocurre cuando un modelo de regresión no considera variables independientes relevantes.
- Posibles efectos en la relación entre variables independientes y dependiente:
 - Sobrestimar / subestimar la fortaleza de una relación.
 - Cambiar la dirección de una relación.
 - Esconder un efecto que en realidad existe.
- Causas
 - La variable que se omite está correlacionada con la variable dependiente.
 - La variable que se omite está correlacionada con al menos una de las variables independientes del modelo.

¿Qué se puede hacer si se tienen más de 2 clases?

- Para problemas de clasificación con más de dos clases, se puede utilizar la aproximación de uno contra todos.
- Se requiere un clasificador de regresión logística para cada clase.
- Para una nueva instancia, la clase con la mayor probabilidad en su propio modelo es la que se retorna.

También se puede hacer regresión logística multinomial con la función softmax.

Softmax

Softmax

Softmax

• La función softmax permite tomar un conjunto de medidas (*scores*) de clasificación y convertirlos en probabilidades.

$$S(y^{(i)}) = \frac{e^{y^{(i)}}}{\sum_{j} e^{y^{(j)}}} = \frac{e^{w^{T}X^{(i)}}}{\sum_{j} e^{w^{T}X^{(j)}}}$$

- Se puede crear un clasificador logístico basado en softmax y no en la función sigmoide, entrenando los parámetros de una combinación lineal de predictores usando gradiente descendente, a partir de una función de costo.
- La función sigmoide calcula una sola salida, mientras que la softmax calcula múltiples valores intermedios que después se normalizan.
- Se trata de una generalización de la función sigmoide para más de dos clases (en el taller veremos que la función sigmoide es un caso particular de la función softmax).

Softmax

• Noten en los siguientes ejemplos el efecto no proporcional de las diferencias entre los resultados dadas las magnitudes de los puntajes de entrada a la transformación del Softmax:

Consideraciones:

- Produce estimación de "probabilidades".
- No hay parámetros a afinar, solo las variables independientes a considerar.
- Permite usar variables independientes, numéricas y categóricas.
- La estimación de los parámetros es eficiente computacionalmente.
- No se ve afectado por situaciones de multicolinealidad leves. Casos importantes se pueden resolver con una regularización L₂ (Ridge).
- Se puede utilizar gradiente descendente para encontrar los parámetros.
- No es ideal en casos donde se tienen muchas variables categóricas.
- No es muy flexible (lineal) aunque se puede extender usando ingeniería de atributos como vimos cuando creamos atributos polinomiales.

Consideraciones:

- Las variables predictivas deben ser numéricas.
- Las variables categóricas debes ser convertidas a variables numéricas:
 - Codificación *uno de n* (*one-hot encoding*): se crea una variable para cada valor posible de cada variable categórica.
 - Variables de contraste o "dummy": variables numéricas adicionales para cada valor posible. Se acostumbra a crear una menos que el total de categorías para evitar problemas de multicolinealidad en modelos estadísticos.

Ejemplo: suponga una variable de estrato con tres valores posibles (bajo, medio, y alto).

	Estrato_bajo	Estrato_medio
Valor = bajo	1	0
Valor = medio	0	1
Valor = alto	0	0

- Consideraciones:
- Supuestos estadísticos para la utilización de una carb 0.43 0.75 0.53 0.39 -0.66 -0.57 -0.55 -0.09 0.06 0.27 regresión lineal múltiple en:

$$f(\mathbf{z}) = \sigma(\mathbf{z}) = \sigma(\mathbf{w}^T \mathbf{x}) = \sigma(\mathbf{w}_0 + \mathbf{w}_1 \mathbf{x}_1 + \dots + \mathbf{w}_n \mathbf{x}_n)$$

- ✓ Variables predictoras linealmente independientes entre ellas.
- ✓ Evitar el problema de la multicolinealidad.
- Para validar:
 - ✓ En la matriz de correlación filtrar variables con correlaciones altas (e.g.: $\rho > |0.85|$).

Consideraciones:

Si existen varias variables independientes, se puede definir el modelo de regresión múltiple a utilizar, dada una medida de calidad del ajuste:

- Completo: se evalúan todas las posibles combinaciones de variables independientes, y se escoge la mejor.
- **Tamaño fijo**: se evalúan todas las posibles combinaciones de *K* variables independientes y se escoge la mejor.
- Paso a paso (stepwise)
 - ✓ Hacia adelante (forward): se prueba una a una con las variables independientes que aún no se escogen y se evalúa el modelo conjuntamente con las variables seleccionadas previamente. Se detiene cuando la medida de la calidad del ajuste no mejore.
 - √ Hacia atrás (backward): sigue un proceso contrario al método de búsqueda "hacia adelante", en este caso, se empieza con todas las variables y se va eliminando la variable que, cuando no se considera, optimiza la medida de calidad del ajuste.
- **PCA**: se transforman los datos a un nuevo espacio vectorial de menor dimensionalidad que el de entrada.

Lecturas Complementarias

• Logistic Regression (https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc)

What is Logistic Regression
 (https://aws.amazon.com/what-is/logistic-regression/)