Методическая комиссия по физике при центральном оргкомитете Всероссийских олимпиад школьников

XLII Всероссийская олимпиада школьников по физике

Заключительный этап

Теоретический тур

Методическое пособие

Новосибирск, 2008 г.

Комплект задач подготовлен методической комиссией по физике при центральном оргкомитете Всероссийских олимпиад школьников Телефоны: (495) 408-80-77, 408-86-95.

E-mail: physolymp@gmail.com

Авторы задач

9 класс	10 класс	11 класс
1. Ко́зел С.	1. Слободянин В.	1. Гуденко А.
2. Слободянин В.	2. Ко́зел С.	2. Осин М.
3. Слободянин В.	3. Ко́зел С.	3. Ольховец А.
4. Ко́зел С.	4. Соболев М.	4. Фольклор
	5. Кармазин С.	5. Тарнопольский Г.

Общая редакция — Ко́зел С.

Оформление и вёрстка — Воробель О., Гущин И., Ерофеев И.

При подготовке оригинал-макета использовалась издательская система $\LaTeX 2_{\mathcal{E}}$.

© Авторский коллектив Подписано в печать 31 января 2013 г. в 16:22.

141700, Московская область, г. Долгопрудный Московский физико-технический институт

Задача 1. График скорости частицы

На рисунке 1 изображена зависимость скорости v частицы от времени t. Масштабы по осям заданы в условных единицах. Известно, что площадь заштрихованного на рисунке прямоугольника равна 12 м, а ускорение частицы в точке A равно $a_A = 1.5 \text{ m/c}^2$.

Определите из этих данных:

- 1. Масштабы по осям.
- 2. Скорость частицы v_A в точке A.
- 3. Путь, пройденный частицей от начала движения до достижения скорости $v_{\rm A}$.

Задача 2. Разгон автомобиля

Автомобиль стартует с ускорением a_0 . Из-за сопротивления воздуха ускорение падает по мере увеличения скорости v по закону $a \sim (v_0 + v)^{-1}$, где v_0 — известный коэффициент.

- 1. Постройте график, изображающий связь между a и v, выбрав координаты так, чтобы он являлся отрезком прямой линии.
- 2. Через какое время t_0 после начала движения автомобиль достигает скорости v_0 ?
- 3. Определите зависимость скорости v от времени t и постройте (качественно) график v(t).

Задача 3. Электрический мостик

Два идеальных амперметра (внутреннее сопротивление которых равно нулю) включены в цепь (рис. 2). Сопротивления резисторов соответственно равны $R_1=3$ кОм, $R_2=3R_1$, $R_3=2R_1$. Сопротивление переменнго резистора R_x может принимать любые значения от нуля до бесконечности. Напряжение источника постоянного тока U=81 В. Вычислите, при каких значениях сопротивления R_x :

- 1. Сила тока |I|, протекающего через амперметр A_1 , минимальна. Чему она равна?
- 2. Сила тока |I|, протекающего через амперметр A_1 , максимальна. Чему она равна?
- 3. Сила тока I_0 , протекающего через амперметр A_2 , вдвое меньше $|I|_{\max}$ (смотри пункт 2)?

Задача 4. Передача тепловой энергии

Имеются два сосуда. В первом из них находится кипящая вода ($t_1 = 100^{\circ}$ C). Во втором теплоизолированном сосуде находится смесь воды и льда ($t_2 = 0^{\circ}$ C). Сосуды соединены металлическим стержнем длиной L = 50 см, по которому тепловая энергия от кипящей воды передаётся тающему льду (рис. 3). Стержень не теплоизолирован, и поэтому часть тепловой энергии рассеивается в окружающее пространство. Стрелками на рисунке указаны направления тепловых потоков. На приведённом графике (рис. 4) показано распределение температуры вдоль стержня.

- 1. Определите графически, какая доля тепловой энергии, поступающей в левый конец стержня от сосуда с кипящей водой, рассеивается в окружающее пространство.
- 2. Во сколько раз быстрее растает весь лёд во втором сосуде, если поверхность стержня покрыть теплоизолирующим слоем?

Примечание. Тепловой по-

ток через слой вещества толщиной Δx пропорционален разности температур Δt между поверхностями, ограничивающими слой, и обратно пропорционален толщине: $\Delta Q \propto \Delta t/\Delta x$.

Рис. 4. Распределение температуры вдоль стержня.

10 класс Задача 1. Колесо с ребордой

По рельсам катится с постоянной скоростью вагонетка. Радиус её колеса равен r, а радиус реборды (бортика, выступающего за обод колеса и предохраняющего колесо от схода с рельса) существенно больше. В некоторый момент времени скорости двух диаметрально противоположных точек A и Bобода равны по модулю v_A и v_B соответственно (рис. 5).

- 1. С какой скоростью v_0 катится колесо?
- 2. В тот же момент времени скорость некоторой точки C, находящейся на реборде, направлена вертикально и равна v_C . Однозначно ли определяется положение этой точки?
- 3. Чему равна проекция ускорения a_{Cu} этой точки на вертикальную координатичю ось?

Задача 2. Шайба на наклонной плоскости

На наклонной плоскости находится небольшая шайба массы т (рис. 6). К шайбе прикреплён один конец лёгкой пружины жёсткости k и длины L(в недеформированном состоянии). Другой конец пружины закреплён в некоторой точке O. Угол α наклона плоскости и коэффициент трения μ шайбы о плоскость связаны соотношением: $tg \alpha = \mu$.

Определите области, в которых шайба находится в состоянии равновесия, их границы и изобразите их качественно на плоскости xy в двух случаях:

- 1. Пружина подчиняется закону Гука как при растяжении, так и при сжатии.
- 2. Пружина подчиняется закону Гука только при растяжении (например, пружина заменена лёгкой резинкой).

Задача 3. Сложный конденсатор

Сложный конденсатор состоит из четырёх одинаковых пластин плошалью $S=1 \text{ м}^2$ каждая, расположенных параллельно друг другу (рис. 7). Расстояние между средними пластинами b и c равно l=2 см. Расстояние между пластинами а и b, c и d равно $l_1 = l/2$. Пластины b и c подключены к идеальному источнику напряжения с $\mathscr{E}=120~\mathrm{B}$ через резистор R_1 . В начальном состоянии ключ K разомкнут.

- 1. Нарисуйте эквивалентную схему сложного конденсатора после замыкания ключа K и найдите его ёмкость C.
- 2. Какое количество теплоты Q выделится на резисторах R_1 и R_2 (в сумме) при замыкании ключа K.

Электрическая постоянная $\varepsilon_0 = 8.85 \cdot 10^{-12} \ \Phi/\text{м}.$

Указание. Воспользуйтесь законом сохранения энергии.

Рис. 5

б) Рис. 8

- 1. Тонкое кольцо радиусом R = 5 см однородно заряжено зарядом $Q = +10^{-8}$ Кл (рис. 8 а). Какую минимальную скорость v_{\min} нужно сообщить протону, находящемуся вдали от кольца, чтобы он пролетел по оси кольца через его центр?
- 2. Пусть теперь заряд $Q = +10^{-8} \; \mathrm{K}$ л равномерно распределён по поверхности тонкого диска радиуса R == 5 см (рис. 8 б). В центре диска имеется небольшое отверстие. Какую минимальную скорость нужно сообщить протону в этом случае, чтобы он пролетел через отверстие в диске?

Элементарный заряд $e = 1,602 \cdot 10^{-19} \text{ Kл}$, масса протона $m_n = 1,672 \cdot 10^{-27} \text{ кг}$, электрическая постоянная $\varepsilon_0 = 8.85 \cdot 10^{-12} \ \Phi/{\rm M}$.

Задача 4. Минимальная скорость протона

Задача 5. Смесь воздуха и пара

В цилиндре под поршнем находится смесь воздуха и паров некоторой жидкости. Смесь изотермически сжимают. На рисунке 9 представлена экспериментальная зависимость давления в сосуде от объёма в этом процессе.

Чему равны давление насыщенных паров жидкости $p_{\rm H}$ при данной температуре и внутренняя энергия смеси при объёме цилиндра более 5 л?

Примечание. Считать воздух идеальным двухатомным газом, а пары жидкости — идеальным трёхатомным газом.

Задача 1. Груз с пружинами

На гладком горизонтальном столе лежит груз массы m, к которому прикреплены две одинаковые пружины жесткости k каждая (рис. 10).

Левый конец пружины I прикреплён к стенке, в момент времени t=0 правый конец пружины II начинают медленно перемещать с постоянной скоростью u.

- 1. Через какое время груз впервые приобретёт скорость u?
- 2. На каком расстоянии от первоначального положения будет он в этот момент нахолиться?

Указание. Перейдите в систему отсчета, движущуюся со скоростью u/2.

Задача 2. Вращение заряженного цилиндра

На длинном тонкостенном диэлектрическом цилиндре радиуса R, длины $L\gg R$ и массы M размещён электрический заряд с одинаковой поверхностной плотностью σ (Кл/м²). Цилиндр может свободно (без трения) вращаться вокруг своей оси под действием груза массы m, подвешенного на невесомой нити, намотанной на цилиндр (рис. 11). Определите ускорение груза.

Рис. 11

Магнитную постоянную μ_0 считать заданной.

Задача 3. Заряженный мыльный пузырь

Через короткую трубку выдувают мыльный пузырь с массой m=0.01 г и коэффициентом поверхностного натяжения $\sigma=0.01$ Н/м (рис. 12). Пузырь 2R заряжают зарядом $Q=5.4\cdot 10^{-8}$ Кл. Трубка остаётся открытой.

- 1. Определите равновесный радиус пузыря R_0 .
- 2. Определите период малых колебаний пузыря, если при колебаниях он сохраняет сферическую форму.
- 3. Оцените, с какой скоростью разлетятся брызги, если пузырь внезапно зарядить зарядом $Q_1=10Q$?

Электрическая постоянная $\varepsilon_0 = 8.85 \cdot 10^{-12} \; \mathrm{K} \pi^2 / (\mathrm{Дж} \cdot \mathrm{M}).$

Задача 4. Использование энергии морских волн

Первое устройство, вырабатывающее электричество для бакена за счёт энергии морских волн, было создано в 1964 году. Схема бакена показана на рисунке 13. Воздух сначала засасывается при опускании поршня через клапан K_2 , затем сжимается и впускается в рабочую полость через клапан K_1 . Когда поверхность воды опускается, клапан K_1 закрыт, а клапан K_2 открыт.

За один раз засасывается $V_1=0,233~{\rm m}^3$ воздуха при давлении $p_1=1,0\cdot 10^5~{\rm \Pi a}$ и температуре $t_1=7^{\circ}{\rm C}$.

Когда поверхность воды начинает подниматься, клапан K_2 закрывается и воздух адиабатически сжимается поршнем до давления $p_2=6,0\cdot 10^5$ Па. После этого открывается клапан K_1 и поршень продолжает двигаться вверх до тех пор, пока весь воздух не будет вытолкнут в рабочую полость. При этом воздух в рабочей полости приводит в движение турбину и генератор, вырабатывающий электричество. После открытия клапана K_1 давление воздуха над поршнем остаётся приблизительно неизменным.

Пренебрегая массой поршня и трением между поршнем и стенкой, определите, какую работу за один цикл совершает вода при подъёме поршня.

Воздух можно считать идеальным двухатомным газом, для которого $\gamma = C_p/C_V = 7/5$. Универсальная газовая постоянная $R = 8.31~\rm{Дж/(моль \cdot K)}$.

Задача 5. Оптическая система

Говорят, что в архиве Снеллиуса нашли чертёж оптической схемы. От времени чернила выцвели, и на чертеже остались видны только параллельные друг другу собирающая линза, объект и его действительное изображение (рис. 14). Из пояснений к чертежу было ясно, что за линзой было расположено плоское зеркало. Восстановите построением по имеющимся данным положение зеркала и найдите положение фокусов линзы.

Возможные решения 9 класс

Задача 1. График скорости частицы

1. Введём обозначения для масштаба по оси скорости: 1 усл. ед. $= b \, [\text{м/c}],$ для масштаба по оси времени: 1 усл. ед. $= d \, [\text{c}].$

Тогда по условию задачи $2b \cdot 3d = 12$ м, bd = 2 м.

Для определения ускорения в точке A построим касательную (рис. 15). Из построения следует, что коэффициент наклона

$$k = \left(\frac{\Delta v}{\Delta t}\right)_A = \frac{6b}{8d} = \frac{3}{4} \cdot \frac{b}{d} = a_A = 1,5 \text{ m/c}^2.$$

Откуда получим: d = 1 c, b = 2 м/с.

- 2. Как следует из графика, скорость в точке A равна $v_A = 3b = 6$ м/с.
- 3. Для определения пройденного пути нужно вычислить площадь под кривой v(t) (заштриховано на рисунке). Приближённый подсчёт даёт $S \approx 8bd \approx 16$ м.

Критерии оценивания

Определение масштаба по оси абсцисс	. 2
Определение масштаба по оси ординат	. 2
Графическое определение скорости в точке $A\dots$. 2
Графическое определение пройденного пути	. 4

Задача 2. Разгон автомобиля

1. Ускорение автомобиля $a = C/(v_0 + v)$, где C — постоянный коэффициент, который можно найти из начальных условий: $a_0 = C/v_0$. Отсюда

$$a = \frac{a_0 v_0}{v_0 + v} = a_0 \frac{1}{1 + v/v_0}.$$

По определению $a = \Delta v/\Delta t$. Следовательно,

$$\Delta t = \frac{1}{a} \Delta v = \frac{1}{a_0} \left(1 + \frac{v}{v_0} \right) \Delta v. \tag{1}$$

XLII Всероссийская олимпиада школьников по физике

Из формулы (1) видно, что a^{-1} зависит от скорости v линейно (рис. 16).

2. Площадь трапеции высотой Δv численно равна промежутку времени Δt , который требуется для увеличения скорости на Δv . Соответственно, площадь под графиком в диапазоне скоростей от 0 до v_0 численно равна времени разгона.

Для определения площади под графиком воспользуемся формулой для площади трапеции. Тогда искомое время

$$t_0 = \frac{1}{2} \left(\frac{1}{a_0} + \frac{2}{a_0} \right) \cdot v_0 = \frac{3}{2} \cdot \frac{v_0}{a_0}.$$

3. Используя график зависимости a^{-1} от v, можно найти зависимость скорости v от времени t. Для этого нужно найти для произвольного значения v площадь трапеции с основаниями a_0^{-1} и $(1+v/v_0)a_0^{-1}$ и высотой v. Эта площадь равна времени t, необходимому для достижения скорости v:

$$\frac{1}{2a_0}\left(2+rac{v}{v_0}
ight)v=t,$$
 или $v^2+2v_0v-2a_0v_0t=0.$

Решая квадратное уравнение, получим

$$v = -v_0 \pm \sqrt{v_0^2 + 2a_0v_0t}.$$

Так как $v \geqslant 0$, знак «—» в решении квадратного уравнения не имеет физического смысла. Итак,

$$v = -v_0 + \sqrt{v_0^2 + 2a_0v_0t}.$$

График этой зависимости качественно представлен на рисунке 17. *Критерии оценивания*

Определение зависимости $a(v)$
Формула, связывающая изменения Δv и Δt
Выбор координат для построения линейного графика
Определение времени t_0 по графику
Определение по графику скорости в любой момент времени
Формула для $v(t)$
Качественный график $v(t)$

Найдём сопротивления соответствующих участков схемы, выразив их через сопротивление R_1 :

$$\begin{split} R_{12} &= \frac{R_1 R_2}{R_1 + R_2} = \frac{R_1 \cdot 3R_1}{R_1 + 3R_1} = \frac{3}{4} R_1, \\ R_{34} &= \frac{R_3 R_x}{R_3 + R_x} = \frac{2R_1 R_x}{2R_1 + R_x}, \\ R_{06\text{\tiny III}} &= R_{12} + R_{34} = R_1 \cdot \frac{6R_1 + 11R_x}{4(2R_1 + R_x)}. \end{split}$$

Найдём силу тока I:

$$I = I_1 - I_3 = I_0 \frac{R_2}{R_1 + R_2} - I_0 \frac{R_x}{R_3 + R_x} = \frac{U}{R_1} \left(\frac{6R_1 - R_x}{6R_1 + 11R_x} \right). \tag{2}$$

- 1. Минимум модуля тока I достигается при $R_x = 6R_1 = 18$ кОм, таким образом, $|I|_{\min} = 0$.
- 2. Преобразуем (2) к следующему виду:

$$I = \frac{U}{R_1} \left(1 - \frac{12R_x}{6R_1 + 11R_x} \right).$$

Эта функция имеем максимум при $R_x=0$, при этом $|I|_{\max}=U/R_1=27$ мА.

3. Запишем уравнение из условия $I_0 = |I|_{\text{max}}/2$:

$$I_0 = \frac{U}{R_1} \cdot \frac{4(2R_1 + R_x)}{6R_1 + 11R_x} = \frac{|I|_{\text{max}}}{2} = \frac{U}{2R_1} = 13.5 \text{ MA}.$$

Отсюда найдём $R_x = \frac{10}{3} R_1 = 10$ кОм.

Критерии оценивания

Расчёт схемы	2
Определение $ I _{\min}$	1
Определение соответствующего R_x	

Рис. 18

XLII Всероссийская олимпиада школьников по физике

Определение $ I _{ m max}$
Определение соответствующего R_x
Определение R_x , при котором $I_0 = I _{\max}/2 \dots 1$

Задача 4. Передача тепловой энергии

Количество теплоты, поступающей в стержень за 1 с от кипящей воды, пропорционально отношению $\Delta t/\Delta x$ при x=0, то есть на левом конце стержня. Это отношение равно угловому коэффициенту касательной к кривой распределения температуры вдоль стержня при x=0. Точно так же количество теплоты, передаваемой смеси вода—лёд, пропорционально отношению $\Delta t/\Delta x$ при x=L.

Проведём на графике касательные к кривой распределения температур при x = 0 и x = L и определим угловые коэффициенты (рис. 20):

$$k_1 = \frac{\Delta t}{\Delta x}\Big|_{x=0} = 5^{\circ} \text{C/cM}, \qquad k_2 = \frac{\Delta t}{\Delta x}\Big|_{x=L} = 0.8^{\circ} \text{C/cM}.$$

Следовательно, до сосуда со смесью воды и льда доходит только $k_2/k_1=16\%$ теплового потока, поступающего в стержень от кипящей воды, а 84% рассеивается в окружающее пространство.

Если стержень теплоизолировать, то распределение температуры вдоль стержня будет выражаться отрезком прямой линии. Соединим прямой линией точки $t=100^{\circ}\mathrm{C}$ при x=0 и $t=0^{\circ}\mathrm{C}$ при x=L. Наклон этой прямой, как следует из графика, равен $k_0=2^{\circ}\mathrm{C/cm}$. Следовательно, поток тепловой энергии от кипящей воды в стержень уменьшится в $k_1/k_0=2,5$ раза, а поток энергии в сосуд со смесью воды и льда увеличится в $k_0/k_1=2,5$ раза. Во столько же раз уменьшится время таяния льда.

Критерии оценивания

11

Задача 1. Колесо с ребордой

1. Скорости точек A и B можно выразить через скорость поступательного движения колеса как целого и скорость вращательного движения. Но проще воспользоваться идеей о мгновенной оси вращения для тела, катящегося без проскальзывания. Обозначим точку касания колеса с рельсом буквой D. Скорость этой точки равна нулю. Ось, проходящая через точку D — мнгновенная ось вращения всех точек колеса. Пусть расстояние AD = L, а расстояние BD = l (рис. 21).

Предположим, что угловая скорость вращения колеса равна ω . Тогда скорость $v_A = \omega L$, скорость $v_B = \omega l$, а скорость колеса $v_0 = \omega r$. По условию AB = 2r. Угол ABD прямой, так как опирается на диаметр окружности. Тогда по теореме Пифагора $L^2 + l^2 = (2r)^2$. Умножим это равенство на квадрат угловой скорости: $L^2\omega^2 + l^2\omega^2 = (2r)^2\omega^2$. Легко видеть, что получившееся вы-

ражение эквивалентно равенству $v_A^2 + v_B^2 = (2v_0)^2$. Следовательно, искомая скорость

$$v_0 = \frac{\sqrt{v_A^2 + v_B^2}}{2}.$$

- 2. Поскольку вектор скорости точки C направлен вертикально, эта точка должна находиться на одном уровне с рельсом, а её скорость $v_C = \omega x$, где x = CD. Таких точек две: по одной слева и справа от мгновенной оси вращения (точки D).
- 3. Пусть расстояние OC от оси колеса до точки C равно R. Ускорение любой заданной точки колеса одинаково во всех инерциальных системах отсчёта. Найдем ускорение точки в системе отсчёта движущейся, как и центр колеса, поступательно со скоростью v_0 .

Ускорение

$$a_C = \omega^2 R = \left(\frac{v_0}{r}\right)^2 R.$$

Его проекция на вертикальную ось

$$a_{Cy} = a_C \frac{r}{R} = \left(\frac{v_0}{r}\right)^2 R \frac{r}{R} = \frac{v_0^2}{r} = \frac{v_A^2 + v_B^2}{4r}$$

и одинакова для всех точек колеса, находящихся на одном уровне с рельсом! $Kpumepuu\ ouehuвания$

Определение скорости v_0
Определение ускорения a_C
Определение проекции ускорения a_{Cy}

Залача 2. Шайба на наклонной плоскости

Изобразим на плоскости xy окружность радиуса L и введём обозначение r=L+z (рис. 22). Здесь z — деформация пружины. Рассмотрим силы, действующие на шайбу: $F_{\rm ynp}=kz$ — упругая сила, $mg\sin\alpha$ — составляющая силы тяжести вдоль плоскости (рис. 23).

Равнодействующая F этих сил может быть найдена с помощью теоремы косинусов:

$$F^{2} = (kz)^{2} + (mg\sin\alpha)^{2} + 2 \cdot kz \cdot mg\sin\alpha \cdot \sin\theta.$$

Сила F не может превышать по модулю максимальную силу трения покоя:

$$F_{\text{TD. max}} = \mu mg \cos \alpha,$$

$$F \leqslant F_{\text{тр. max}} = mg \sin \alpha$$
 (так как $\operatorname{tg} \alpha = \mu$).

В итоге получаем уравнение, определяющее границы областей равновесия:

$$(kz)^2 + 2kz \cdot mg\sin\alpha \cdot \sin\theta = 0.$$

Это уравнение имеет два корня:

- 1. z = 0 граница совпадает с окружностью радиуса L.
- 2. $z=-rac{2mg}{k}\sin \alpha \sin \theta=-A\sin \theta$, где $A=rac{2mg}{k}\sin \alpha>0$.

І случай: пружина работает как на растяжение, так и на сжатие (рис. 24):

$$0\leqslant \theta\leqslant \pi$$
 — сжатие,
$$\pi\leqslant \theta\leqslant 2\pi$$
 — растяжение.

$$x = (L + z)\cos\theta = (L - A\sin\theta)\cos\theta = L\cos\theta - \frac{A}{2}\sin 2\theta,$$

$$y = (L + z)\sin\theta = (L - A\sin\theta)\sin\theta = L\sin\theta - A\sin^2\theta.$$

II случай: пружина работает только на растяжение (рис. 25). В этом случае вся область внутри окружности радиуса L является равновесной, так как

Критерии оценивания

Условие равновесия шайбы	2
Уравнение для границ областей равновесия	. 2
Определение границ областей равновесия в I случае (пружина)	2
График областей равновесия в I случае	. 1
Определение границ областей равновесия во II случае (резинка)	2
График областей равновесия во II случае	1

Задача 3. Сложный конденсатор

Первоначальная ёмкость конденсатора (то есть ёмкость между пластинами b и c) равна

$$C_0 = \frac{\varepsilon_0 S}{l} = 0,44$$
 н Φ .

После замыкания ключа K и установления нового равновесного состояния все токи обращаются в ноль и, следовательно, разность потенциалов между крайними пластинами также обращается в ноль. Эквивалентная схема сложного конденсатора имеет вид, показанный на рисунке 26. Ёмкость сложного конденсатора равна $C=2C_0=0.89~{\rm H\Phi}$. Следовательно, при замыкании ключа ёмкость изменилась на $\Delta C=2C_0-C_0=C_0$.

Применим закон сохранения энергии:

$$A_{\text{бат}} = \Delta W_{\text{9}} + \Delta Q,$$

где $A_{\text{бат}}$ — работа батареи.

$$A_{\text{бат}} = \mathscr{E}\Delta q = \mathscr{E}^2 \Delta C = \mathscr{E}^2 C_0,$$

где Δq — заряд, протёкший через батарею после замыкания ключа K.

Изменение ΔW электрической энергии сложного конденсатора равно:

$$\Delta W_9 = W_2 - W_1 = \frac{\mathscr{E}^2 \cdot 2C_0}{2} - \frac{\mathscr{E}^2 C_0}{2} = \frac{\mathscr{E}^2 C_0}{2}.$$

Таким образом, количество теплоты, выделившейся в схеме на обоих резисторах, равно:

$$\Delta Q = A_{\mathrm{бат}} - \Delta W_{\mathrm{9}} = \frac{\mathscr{E}^2 C_0}{2} = \frac{\mathscr{E}^2 \varepsilon_0 S}{2l} \approx 3.2 \ \mathrm{MKДж}.$$

Критерии оценивания

XLII Всероссийская олимпиада школьников по физике

Применение закона сохранения энергии	2
Определение работы батареи	2
Определение изменения электростатической энергии	1
Формула для количества теплоты	1
Численное значение	1

Задача 4. Минимальная скорость протона

1. По принципу суперпозиции потенциал φ_a в центре кольца равен

$$\varphi_{\rm a} = \frac{Q}{4\pi\varepsilon_0 R}.$$

Потенциальная энергия $W_{\rm a}$ протона в центре кольца:

$$W_{\rm a} = \frac{Qe}{4\pi\varepsilon_0 R}.$$

По закону сохранения энергии $W_{\rm a} = m_p v^2/2$. Тогда

$$v_{
m a\,min} = \sqrt{rac{2W_{
m a}}{m_p}} = \sqrt{rac{Qe}{2\pi arepsilon_0 R m_p}} = 5.9 \cdot 10^5 \ {
m m/c}.$$

2. Найдём потенциал φ_6 в центре равномерно заряженного диска. Поверхностная плотность заряда на диске $\sigma = Q/S = Q/(\pi R^2)$. Рассмотрим элементарное кольцо радиусом r и толщиной dr. Заряд этого кольца равен

$$dq = \sigma \cdot 2\pi r \cdot dr = \frac{2Qrdr}{R^2}.$$

Потенциал, создаваемый элементарным кольцом в его центре, равен

$$d\varphi_6 = \frac{dq}{4\pi\varepsilon_0 r} = \frac{Qdr}{2\pi\varepsilon_0 R^2}.$$

Отсюда потенциал в центре диска:

$$\varphi_6 = \int_0^R \frac{Q}{2\pi\varepsilon_0 R^2} dr = \frac{Q}{2\pi\varepsilon_0 R}.$$

Как видно, $\varphi_6 = 2\varphi_a$. Следовательно, $W_6 = 2W_a$, и тогда

$$v_{6 \text{ min}} = \sqrt{2}v_{a \text{ min}} = 8.3 \cdot 10^5 \text{ M/c}.$$

Критерии оценивания

L	Потенциал в центре кольца	
q	Φ ормула для $v_{ m min}$ в случае кольца	

Рис. 26

Задача 5. Смесь воздуха и пара

Предположим, что эксперимент проводится при температуре T. Очевидно, что насыщение пара наступает в точке излома изотермы. Тогда для объёмов V>5 л уравнение газового состояния в соответствии с законом Дальтона имеет вид:

$$p_1 V_1 = (\nu_1 + \nu_2) RT, \tag{3}$$

где ν_1 — количество молей воздуха в сосуде, а ν_2 — количество молей паров жидкости в сосуде, V_1 — любой объём, превышающий 5 л, а p_1 — соответствующее ему давление в сосуде (рис. 27).

Для объёмов V < 5 л давление в сосуде складывается из давления воздуха и давления насыщенного пара. Уравнение газового состояния имеет вид:

$$p_2 V_2 = p_{\rm H} V_2 + \nu_1 R T, \tag{4}$$

где V_2 — любой объём, не превышающий 5 л.

Изотермы (3) и (4) пересекаются в точке (V_0, p_0) , следовательно, при $V = V_0$ имеем:

$$\nu_2 RT = p_{\rm H} V_0. \tag{5}$$

XLII Всероссийская олимпиада школьников по физике

Подставляя (4) и (5) в (3) и решая полученное уравнение относительно $p_{\rm H}$, находим:

$$p_{\rm H} = \frac{p_1 V_1 - p_2 V_2}{V_0 - V_2} \approx 50 \text{ k}\Pi \text{a}.$$
 (6)

Следует заметить, что для получения более точного численного результата целесообразно с помощью графика на рисунке 27 вычислить несколько произведений p_1V_1 для различных объемов V>5 л и усреднить полученные значения. Аналогичным образом, вычисление окончательного результата с помощью выражения (6) следует проводить для нескольких значений V_2 и соответствующих ему значений p_2 . При построении графика использовались численные значения: $T=300~{\rm K},\ \nu_1=0,05~{\rm молей},\ \nu_2=0,1~{\rm молей},\ p_{\rm H}=50~{\rm к}$ Па.

Внутренняя энергия смеси при V > 5 л вычисляется по формуле:

$$U = \frac{5}{2}\nu_1 RT + 3\nu_2 RT.$$

С учётом выражений (5) и (6) формула приобретает вид:

$$U = \frac{5}{2} (p_0 - p_H) V_0 + 3 p_H V_0 \approx 1060 \text{ Дж.}$$

Критерии оценивания

Уравнение газового состояния для смеси воздуха и паров воды
Применение закона Дальтона для парциальных давлений
Выражение для p_{H}
Графическое определение произведения p_1V_1
Графическое определение произведения $p_2V_2\dots 2$
Численное значение $p_{ m H}$
Формула для вычисления внутренней энергии1
Численное значение $U\ldots 1$

Задача 1. Груз с пружинами

Введем обозначения: x — смещение груза из первоначального положения, y = ut — смещение правого конца пружины II (рис. 28).

На груз действуют упругие силы:

$$F_1 = kx$$
, $F_2 = (y - x)k = (ut - x)k$.

Результирующая сила:

$$F = F_2 - F_1 = kut - kx - kx = k(ut - 2x).$$

Второй закон Ньютона (уравнение движения груза) запишется в виде:

$$ma_x = k(ut - 2x).$$

Перейдем теперь в систему отсчета, движущуюся с постоянной скоростью u/2 относительно «неподвижной» системы. Обе системы инерциальные, поэтому ускорения груза в обеих системах одинаковы: $a_x=a_z$. В момент времени t начало координат новой системы находится в точке $x'=t\cdot u/2$. Координата груза в этот момент времени равна: z=-(x'-x)=-x'+x. Второй закон Ньютона в «движущейся» системе отсчета запишется в виде:

$$ma_z = k(ut - 2z - ut) = -2kz.$$

Это уравнение свободных колебаний груза с угловой частотой

$$\omega_0 = \sqrt{\frac{2k}{m}}.$$

В момент времени t=0 груз находится в начале координат «движущейся» системы $z_0=0$ и имеет скорость $v_0=-u/2$. Через полпериода колебаний

$$\Delta t = \frac{T}{2} = \frac{\pi}{\omega_0} = \pi \sqrt{\frac{m}{2k}}$$

скорость груза в этой системе будет равна +u/2 и он снова будет находиться в точке z=0. Следовательно, в «неподвижной» системе скорость груза в этот момент будет равна u, а его координата

$$x = \frac{u}{2}\Delta t = \frac{\pi}{2}u\sqrt{\frac{m}{2k}}.$$

Критерии оценивания

Определение результирующей силы, действующей на груз
Запись второго закона Ньютона1
Переход в движущуюся систему отсчёта
Уравнение движения груза2
Определение частоты свободных колебаний1
Учёт начальных условий
Время достижения грузом скорости u
Определение координат груза в момент достижения скорости $u = 1$

Задача 2. Вращение заряженного цилиндра

При вращении цилиндра возникает круговой ток, создающий магнитное поле внутри цилиндра. Полная сила тока, текущего по поверхности цилиндра, равна $I=\sigma vL$, где v — линейная скорость зарядов. Ток, приходящийся на единицу длины цилиндра, $i=I/L=\sigma v$. Магнитное поле B внутри цилиндра совпадает с магнитным полем длинной катушки:

$$B = \frac{\mu_0 I}{L} = \mu_0 \sigma v.$$

Плотность магнитной энергии $w_{\rm M}=B^2/(2\mu_0)=\mu_0\sigma^2v^2/2$. Полная энергия магнитного поля $W_{\rm M}=w_{\rm M}\cdot\pi R^2L=kv^2/2$, где $k=\pi\mu_0\sigma^2R^2L$.

Кинетическая энергия вращающегося цилиндра и груза $W_{\rm K}=(m+M)v^2/2$. Если координатную ось x направить вниз, то потенциальная энергия груза запишется в виде $W_{\Pi}=-mgx+{\rm const.}$

Запишем теперь закон сохранения энергии, включая механическую энергию вращающегося цилиндра и груза и энергию магнитного поля внутри цилиндра:

$$W_{
m K}+W_{
m II}+W_{
m M}={
m const}$$
 или $\left(m+M+k
ight)rac{v^2}{2}-mgx={
m const}\,.$

Принимая во внимание, что $v=\frac{dx}{dt}$ и $a=\frac{dv}{dt}$, получим, продифференцировав это уравнение по времени:

$$a = \frac{mg}{m+M+k} = \frac{mg}{m+M+\pi\mu_0\sigma^2R^2L}.$$

Критерии оценивания

Выражение для силы поверхностного тока
Вычисление магнитной индукции
Формула для плотности магнитной энергии
Полная энергия магнитного поля
Кинетическая энергия вращающегося цилиндра
Потенциальная энергия груза
Закон сохранения энергии
Определение ускорения груза1

Задача 3. Заряженный мыльный пузырь

1. Найдём давление на пузырь, обусловленное электростатическими силами. Рассмотрим малый элемент ΔS поверхности. Напряжённость электрического поля E_0 , действующего на него, по модулю равна напряжённости поля E_1 , создаваемого им самим вблизи его поверхности (это следует, например, из того, что напряжённость поля внутри пузыря должна быть равна нулю). Тогда на него действует сила

$$F_9 = E_0 \cdot rac{Q\Delta S}{4\pi R^2},$$
 где $E_0 = E_1 = rac{1}{2arepsilon_0} \cdot rac{Q}{4\pi R^2}.$

Таким образом давление на пузырь, обусловленное электростатическими силами:

$$p_{\mathfrak{d}} = \frac{F_{\mathfrak{d}}}{\Delta S} = \frac{Q^2}{32\pi^2 \varepsilon_0 R^4}.$$

Давление сил поверхностного натяжения равно $p_{\sigma} = -4\sigma/R$. Суммарное давление равно $p = p_{9} + p_{\sigma}$. В равновесном состоянии p = 0:

$$\frac{Q^2}{32\pi^2\varepsilon_0 R_0^4} - \frac{4\sigma}{R_0} = 0.$$

Следовательно, равновесный радиус

$$R_0 = \sqrt[3]{rac{Q^2}{128\pi^2 arepsilon_0 \sigma}} pprox 3.0 \ {
m cm}.$$

2. Если радиус пузыря отклонился от равновесного значения R_0 , то сила, которая действует на малый элемент ΔS поверхности, может быть записана в виде:

$$F = p\Delta S = 4\sigma \left(\frac{R_0^3}{R^4} - \frac{1}{R}\right) \Delta S.$$

При малых изменениях радиуса ($\Delta R \ll R_0$) выражение для силы имеет вид:

$$F = \left. \frac{dp}{dR} \right|_{R=R_0} \cdot \Delta R \cdot \Delta S = 4\sigma \Delta R \Delta S \left(-\frac{4R_0^3}{R^5} + \frac{1}{R^2} \right) \right|_{R=R_0} = -\frac{12\sigma}{R_0^2} \Delta R \Delta S.$$

 $m\Delta S$, $\pi\sigma$

ним второй закон Ньютона к элементу поверхности ΔS массы Δm :

Знак «-» означает, что равновесное состояние пузыря устойчиво. Приме-

$$\Delta m \Delta \ddot{R} = -rac{12\sigma}{R_0^2} \Delta R \Delta S, \qquad \Delta m = rac{m \Delta S}{4\pi R_0^2}, \qquad \text{откуда} \qquad \Delta \ddot{R} + 48 rac{\pi \sigma}{m} \Delta R = 0.$$

Это уравнение свободных колебаний с круговой частотой $\omega = \sqrt{48\pi\sigma/m}$. Таким образом,

$$T=rac{2\pi}{\omega}=\sqrt{rac{\pi m}{12\sigma}}pprox 16 {
m \ MC}.$$

3. Скорость разлёта брызг можно оценить из закона сохранения энергии. Пренебрегая поверхностной энергией, получим:

$$rac{1}{2} rac{Q_1^2}{4\pi arepsilon_0 R_0} = rac{m v^2}{2},$$
 откуда $v = \sqrt{rac{100 Q^2}{4\pi arepsilon_0 R_0 m}} pprox 94$ м/с.

Критерии оценивания

Формула давления внутри пузыря из-за сил поверхностного натяжения ... 1
Давление, обусловленное электростатическими силами 2
Условие равновесия пузыря 1
Определение равновесного радиуса (формула и численное значение) 1
Вычисление силы, действующей 1
на элемент плёнки при нарушении равновесия 2

Задача 4. Использование энергии морских волн

Работа, произведённая водой, может быть представлена в виде двух слагаемых: A_1 и A_2 .

1. Сначала происходит адиабатическое сжатие:

$$A_1 = \Delta U = \nu C_V \Delta T = \nu \frac{5}{2} R(T_2 - T_1),$$
 (7)

где ν — количество газа над поршнем. Уравнение адиабаты:

$$rac{p_1}{p_2} = \left(rac{V_2}{V_1}
ight)^{7/5}, \qquad$$
 откуда $rac{T_2}{T_1} = rac{p_2 V_2}{p_1 V_1} = rac{p_2}{p_1} \left(rac{p_1}{p_2}
ight)^{5/7}.$

Таким образом, $T_2 = T_1 \left(\frac{p_2}{p_1}\right)^{2/7} \approx 280 \cdot 6^{2/7} \approx 468 \text{ K}.$

Число молей $u = \frac{p_1 V_1}{R T_1} \approx 10$ моль.

Подставляя найденные значения в (7), получим $A_1 \approx 39$ кДж.

2. Так как давление после открытия клапана K_1 не изменяется, то второй процесс изобарный:

$$A_2=p_2\Delta V=p_2V_2=p_1V_1\left(rac{p_1}{p_2}
ight)^{5/7}pprox 6,5$$
 кДж.

Окончательно получим: $A = A_1 + A_2 \approx 38.9 + 6.5 = 45.4$ кДж. Критерии оценивания

Формула для работы при адиабатическом сжатии	1
Уравнение адиабаы в координатах p и V	2
Уравнение адиабаы в координатах p и T	2
Определение числа молей	1
Численное значение работы при адиабатическом сжатии	1
Определение работы на изобарном участке	2
Вычисление полной работы	1

Задача 5. Оптическая система

Из обратимости хода лучей следует, что результат решения задачи не зависит от того, какая из стрелок a или b, заданных в условии, является предметом, а какая его изображением в системе линза—зеркало. Так как стрелки a и b параллельны линзе, то их изображения A и B тоже параллельны линзе и, следовательно, друг другу. А поскольку A и B параллельны друг другу, то они параллельны и зеркалу, причём прямая, проходящая через их концы, параллельна главной оптической оси. Следовательно, луч, распростроняющийся вдоль этой прямой, преломляясь в линзе, пройдёт через фокус и концы стрелок A и B.

Таким образом, построение будем проводить в следующем порядке (рис. 29):

- 1. Построим главную оптическую ось линзы OO_1 , которая проходит через оптический центр перпендикулярно плоскости линзы.
- 2. Проведём лучи, проходящие через начала и концы предмета и его изображения. Эти лучи должны пересекать оптическую ось в фокусе линзы.

XLII Всероссийская олимпиада школьников по физике

- 3. Задний фокус линзы находится стандартным построением.
- 4. Одна из стрелок a или b, указанных в условии, является предметом, а другая его изображением в системе линза—зеркало. Построим изображения этих стрелок в линзе, используя обратимость хода лучей. Для этого используем стандартные лучи проходящие через фокус линзы и через её центр. Получим изображения A и B.
- 5. Одна из стрелок A или B является предметом по отношению к плоскому зеркалу, а другая его изображением. Следовательно, плоское зеркало должно располагаться посередине между стрелками A и B.

Критерии оценивания

Построение оптической оси
Определение положения переднего фокуса
Определение положения заднего фокуса
Идея обращения хода лучей или эквивалентные построения
Определение положений «предмета» и «изображения» в плоском зеркале 2
Определение положения плоского зеркала
Вывод о независимости ответа от того, какая из стрелок, заданных
в условии является предметом а какая — его изображением 1