Rappels de Statistique

FX Jollois

BUT TC - 2ème année

Qu'est-ce que la statistique ?

- Ensemble de méthodes permettant de décrire et d'analyser des observations (communément appelées données de nos jours)
- Utilisé maintenant dans tous les secteurs d'activités
 - Economie et finance : marketing, sondages. . .
 - Industrie : fiabilité, contrôle qualité...
 - Santé : recherche médicale, gestion des hôpitaux...
 - Environnement : prévisions climatiques et météorologiques, pollution. . .
 - Web : réseaux, publicité...
 - ...
- Essor important avec le développement des outils informatiques et du web

Définitions de base

Population

ensemble d'entités (personnes, objets...) étudiés

Individu (ou *unité statistique*)

entité étudié

Variable

caractéristique étudié sur chaque individu

Observation

mesure

Série statistique

série d'observations recueillies sur les individus

Tableau de données

stockage de la série statistique

Données diamants

- Exemple utilisé dans ce document
- ~54000 diamants (10 premières lignes ici)

carat	cut	color	clarity	depth	table	price	Х	у	Z
0.90	Fair	D	SI2	66.9	57	2885	6.02	5.90	3.99
1.01	Fair	F	SI2	58.2	61	4127	6.48	6.52	3.78
1.54	Premium	D	VS2	59.3	59	16889	7.61	7.54	4.49
0.27	Very Good	F	VVS2	61.3	57	682	4.14	4.18	2.54
2.04	Premium	I	SI2	60.2	59	15543	8.28	8.22	4.97
0.32	Premium	Н	VVS2	61.6	55	828	4.44	4.42	2.73
1.61	Ideal	F	VS1	62.0	55	17256	7.52	7.55	4.67
0.70	Very Good	F	SI1	63.1	54	2278	5.64	5.67	3.57
0.32	Premium	G	VS1	62.4	58	828	4.40	4.35	2.73
0.82	Very Good	D	SI1	63.1	58	2954	5.97	5.95	3.76

Recensement vs Sondage

2 méthodes de recueil de données

Recensement vs Sondage

2 méthodes de recueil de données

Recensement

Etude de tous les individus d'une population

- Recueil exhaustif de toutes les informations sur tous les entités
- Difficile à mettre en œuvre la plupart du temps

Recensement vs Sondage

2 méthodes de recueil de données

Recensement

Etude de tous les individus d'une population

- Recueil exhaustif de toutes les informations sur tous les entités
- Difficile à mettre en œuvre la plupart du temps

Sondage

Etude d'une partie de la population pour extrapolation sur l'ensemble de la population

- Partie des individus étudiés = échantillon
- Représentativité de l'échantillon ?

Variable quantitative

• Caractéristiques numériques : opérations de type somme ayant un sens

Variable quantitative

• Caractéristiques numériques : opérations de type somme ayant un sens

Continue

- Mesurable
- Ex : taille, poids, durée...

Variable quantitative

• Caractéristiques numériques : opérations de type somme ayant un sens

Continue

- Mesurable
- Ex : taille, poids, durée...

Discrète

- Dénombrable ou mesurable en espace fini
- Ex : âge, quantité en stock...

Variable qualitative

- Caractéristiques non numériques : opérations de type somme n'ayant pas de sens
 - Valeurs possibles : Modalités (ou catégories)

Variable qualitative

- Caractéristiques non numériques : opérations de type somme n'ayant pas de sens
 - Valeurs possibles : Modalités (ou catégories)

Nominale

- Modalités n'ayant pas de lien entre elles
- Ex : couleur des yeux, sexe. . .
- Cas particulier : binaire

Variable qualitative

- Caractéristiques non numériques : opérations de type somme n'ayant pas de sens
 - Valeurs possibles : Modalités (ou catégories)

Nominale

- Modalités n'ayant pas de lien entre elles
- Ex: couleur des yeux, sexe...
- Cas particulier : binaire

Ordinale

- Modalités devant être triées dans un ordre spécifique
- Ex: mois, sentiment...

Transformation de variable

Quantitative en qualitative

- Courant de transformer une variable quantitative en variable qualitative ordinale
 - Ex : Catégorie d'âge, Nombre d'enfants du foyer, ...
- Différents problèmes se posent
 - Combien de modalités (intervalles ici) ?
 - Taille identique des intervalles ou variable (amplitude) ?
 - Seuils des intervalles ?

Transformation de variable

Standardisation ou normalisation d'une variable quantitative

- Obligatoire pour l'utilisation de certaines méthodes statistiques
- 2 opérations sont réalisées :
 - Centrage : on retire la moyenne à chaque valeur
 - Réduction : on divise par la variance

$$x_{norm} = \frac{x - \bar{x}}{\sigma^2}$$

Premier problème : décrire les données

On parle de Statistique descriptive ou exploratoire

Objectifs

- Résumer l'information contenue dans les données
- Faire ressortir des éléments intéressants
- Poser des hypothèses sur des phénomènes potentiellement existant dans les données

Outils

- Description numérique (moyenne, occurrences, corrélation...)
- Description graphique (histogramme, diagramme en barres, nuage de points...)

• Moyenne \bar{x}

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• Variance (et écart-type $\sigma(x)$)

$$\sigma^{2}(x) = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

 Médiane med(x): valeur permettant de séparer les observations ordonnées prises par x en 2 groupes de même taille

$$med(x) = m|p(x \le m) = .5$$

- si n est impair : $med(x) = x_{(n+1)/2}$
- si *n* est pair : $med(x) = \frac{x_{n/2} + x_{n/2+1}}{2}$
- Quantile $q_p(x)$: valeur pour laquelle une proportion p d'observations sont inférieures

$$q_p(x) = q|p(x \le q) = p$$

• Quartiles Q1 et Q3 : respectivement 25% et 75% (utilisés dans les boîtes à moustaches)

Exemple: prix des diamants

Représentation numérique

Statistique	Valeur
Moyenne	3932.80
Ecart-Type	3989.44
Variance	15915629.42
Médiane	2401.00
Minimum	326.00
Maximum	18823.00

A regarder aussi:

- Divergence moyenne et médiane
 - Valeurs extrêmes présentes
 - Déséquilibre de la répartition des valeurs
- Présence de valeurs aberrantes
 - On parle d'outliers

Nominale

- Modalités de la variable $x: m_j$ (avec $j=1,\ldots,p$)
- Effectif (ou occurrences) d'une modalité n_j : nombre d'individus ayant la modalité m_j
- Fréquence d'une modalité f_j

$$f_j=\frac{n_j}{n}$$

Ordinale

- Effectif cumulé n_j^{cum} : nombre d'individus ayant une modalité entre n_1 et n_j
- Fréquence cumulée

$$n_j^{cum} = \sum_{k=1}^j n_k$$
 and $f_j^{cum} = \sum_{k=1}^j f_k$

Exemple : Qualité de découpe (ordinale de plus)

Représentation numérique

Modalités	Effectifs	Effectifs	Fréquences	Fréquences
		cumulés	·	cumulées
Fair	1610	1610	0.03	0.03
Good	4906	6516	0.09	0.12
Very Good	12082	18598	0.22	0.34
Premium	13791	32389	0.26	0.60
Ideal	21551	53940	0.40	1.00

A regarder aussi:

- Différence entre les proportions
- Si modalités peu fréquentes, regroupement de modalités à envisager
 - Attention au sens de ces regroupements

Quantitative vs quantitative

Covariance

$$cov(x, y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

- Problème : non bornée et donc non exploitable
- Coefficient de corrélation linéaire (de Pearson)

$$\rho(x,y) = \frac{cov(x,y)}{\sigma^2(x)\sigma^2(y)}$$

- Covariance des variables normalisées
- Valeurs comprises entre -1 et 1
 - 0 : pas de lien linéaire (autre type de lien possible)
 - 1 : lien positif fort (si x augmente, y augmente)
 - -1: lien négatif fort (si x augmente, y diminue)

Quantitative vs quantitative

Exemple : Prix et Carat

Représentation numérique

Statistique	Valeur
Covariance	1742.77
Corrélation	0.92

A regarder aussi:

• Présence d'outliers avec un comportement atypique

Quantitative vs quantitative

Anscombe

La visualisation est aussi importante (voire plus) que la représentation numérique !

Entre ces quatres séries :

- même moyenne et même variance pour x et y
- même coefficient de corrélation entre les deux

	1	2	3	4
Moyenne(x)	9.00	9.00	9.00	9.00
Moyenne(y)	7.50	7.50	7.50	7.50
Ecart-type(x)	3.32	3.32	3.32	3.32
Ecart-type(y)	2.03	2.03	2.03	2.03
Covariance	5.50	5.50	5.50	5.50
Corrélation	0.82	0.82	0.82	0.82

Anscombe

- Table de contingence
 - Croisement des 2 ensembles de modalités, avec le nombre d'individus ayant chaque couple de modalités
 - n_{ij} : Nombre d'observations ayant la modalité i pour x et j pour y
 - n_{i.}: Effectif marginal (nombre d'observations ayant la modalité i pour x)
 - n_{.j}: Effectif marginal (nombre d'observations ayant la modalité j pour y)

	1	 j	 1	total
1				
i		n_ij		n_i.
k				
total		nj		n = n

- Profils lignes et colonnes
 - Distribution d'une variable conditionnellement aux modalités de l'autre

Exemple : Qualité et couleur

Représentation numérique

color	Fair	Good	Very Good	Premium	Ideal
D	163	662	1513	1603	2834
E	224	933	2400	2337	3903
F	312	909	2164	2331	3826
G	314	871	2299	2924	4884
Н	303	702	1824	2360	3115
1	175	522	1204	1428	2093
J	119	307	678	808	896

A regarder aussi:

- Couple de modalités très peu pris
- Ici aussi, regroupement de modalités à envisager éventuellement

Exemple : Qualité et couleur

Représentation numérique

Profils colonnes ici (sommes en colonnes = 100%)

color	Fair	Good	Very Good	Premium	Ideal
D	0.10	0.13	0.13	0.12	0.13
E	0.14	0.19	0.20	0.17	0.18
F	0.19	0.19	0.18	0.17	0.18
G	0.20	0.18	0.19	0.21	0.23
Н	0.19	0.14	0.15	0.17	0.14
1	0.11	0.11	0.10	0.10	0.10
J	0.07	0.06	0.06	0.06	0.04

Exemple : Qualité et couleur

Représentation numérique

Profils lignes ici (sommes en lignes = 100%)

color	Fair	Good	Very Good	Premium	Ideal
D	0.02	0.10	0.22	0.24	0.42
Е	0.02	0.10	0.24	0.24	0.40
F	0.03	0.10	0.23	0.24	0.40
G	0.03	0.08	0.20	0.26	0.43
Н	0.04	0.08	0.22	0.28	0.38
1	0.03	0.10	0.22	0.26	0.39
J	0.04	0.11	0.24	0.29	0.32

- Soit Y la variable qualitative à m modalités, et X la variable quantitative
- Sous-populations déterminées par les modalités de Y
- Indicateurs calculés pour chaque modalité

$$\bar{x}_j = \frac{1}{n_j} \sum_{i|y_i=j} x_i$$

$$\sigma^2(x_j) = \frac{1}{n_j} \sum_{i|y_i=j} (x_i - \bar{x}_j)^2$$

Exemple : Qualité et prix

Représentation numérique

cut	Moyenne	Ecart-type	Médiane
Fair	4358.76	3560.39	3282.0
Good	3928.86	3681.59	3050.5
Very Good	3981.76	3935.86	2648.0
Premium	4584.26	4349.20	3185.0
ldeal	3457.54	3808.40	1810.0

A regarder aussi:

Outliers

Deuxième problème : Extrapoler à partir de données

On parle alors de statistique inférentielle

Cadre

- Données issues d'un échantillon d'une population
- Modèle probabiliste sur la population
- Méthodes d'échantillonnage pour choisir au mieux l'échantillon

Objectifs

- Etendre les conclusions faites sur l'échantillon à toute la population
- Valider (ou non) des hypothèses faites sur la population en analysant l'échantillon

Outils

- Estimation : approximer des paramètres de la population à partir de l'échantillon
- Test : valider les hypothèses
- Modélisation : rechercher des liens entre variables