Analysis Homework 1

Colin Williams

September 1, 2021

Question 1

Which of the following are metrics on \mathbb{R} ?

- (a) $d(x,y) = (x-y)^2$;
 - Note that $d(x,y) \ge 0$ for all x,y since $(\cdot)^2$ is a non-negative function on the real numbers. Next, assume that $d(x,y) = (x-y)^2 = 0$ for some $x,y \in \mathbb{R}$. From this, we obtain $x-y=0 \implies x=y$. Similarly, if $x=y \in \mathbb{R}$, then $d(x,x) = (x-x)^2 = 0^2 = 0$ which satisfies the first property of a metric.
 - Next, if $x, y \in \mathbb{R}$, note that $d(x, y) = (x y)^2 = (-1[y x])^2 = (-1)^2(y x)^2 = (y x)^2 = d(y, x)$ meaning it satisfies the second property of a metric.
 - Lastly, let x = 1, y = -1, and z = 0, then it is clear to see that $d(x, y) \not\leq d(x, z) + d(z, y)$ since $4 \not\leq 1 + 1$ so the triangle inequality does not apply to this function, so d(x, y) is not a metric
- (b) $d(x,y) = |x^2 y^2|$;
 - Note that the first property of a metric does not hold for this function since for x = 1 and y = -1, we have $d(x,y) = |1^2 (-1)^2| = 0$ but $1 \neq -1$ meaning d(x,y) is not a metric
- (c) $d(x,y) = \frac{|x-y|}{1+|x-y|}$
 - Note that $d(x,y) \ge 0$ for all $x,y \in \mathbb{R}$ since the numerator and denominator are both non-negative functions on \mathbb{R} . Furthermore, it is clear that if x=y, then d(x,y)=0 since the numerator would be zero. On the other hand, assume that d(x,y)=0:

$$\frac{|x-y|}{1+|x-y|} = 0$$

$$\implies |x-y| = 0(1+|x-y|)$$

$$\implies |x-y| = 0$$

$$\implies x = y$$

since $|\cdot, \cdot|$ is a metric

Thus, the first property of a metric is satisfied.

• Next, let $x, y \in \mathbb{R}$, then note:

$$d(x,y) = \frac{|x-y|}{1+|x-y|} = \frac{|(-1)(y-x)|}{1+|(-1)(y-x)|} = \frac{|-1||y-x|}{1+|-1||y-x|} = \frac{|y-x|}{1+|y-x|} = d(y,x)$$

1

which satisfies the second property of a metric.

(d) Lastly, we need to deal with the Triangle Inequality, I will do so in a reverse fashion: let $x, y, z \in \mathbb{R}$, then we have:

$$d(x,z) + d(z,y) = \frac{|x-z|}{1+|x-z|} + \frac{|z-y|}{1+|z-y|}$$

$$\geq \frac{|x-z|}{1+|x-z|+|z-y|} + \frac{|z-y|}{1+|x-z|+|z-y|}$$

$$= \frac{|x-z|+|z-y|}{1+|x-z|+|z-y|}$$

$$= \frac{1+|x-z|+|z-y|-1}{1+|x-z|+|z-y|}$$

$$= 1 - \frac{1}{1+|x-z|+|z-y|}$$

$$\geq 1 - \frac{1}{1+|x-y|}$$

$$= \frac{1+|x-y|-1}{1+|x-y|}$$

$$= \frac{1+|x-y|-1}{1+|x-y|}$$

$$= \frac{|x-y|}{1+|x-y|}$$

$$= d(x,y)$$

Altogether, this states that $d(x,y) \leq d(x,z) + d(z,y)$ which is precisely the Triangle Inequality. Thus, d(x,y) is a metric.

Question 2

Let (X, d) be a metric space, and let $Y \subset X$. Prove the following:

(a) Y° is open;

Proof.

Recall that a set $E \subset X$ is open if $E \subset E^{\circ}$. Thus, I need only check that $Y^{\circ} \subset (Y^{\circ})^{\circ}$. Let $x \in Y^{\circ}$. This means that there exists some r > 0 such that $U_r(x) \subset Y$. Furthermore, let $z \in U_r(x)$, then if we take $\rho = r - d(x, z)$, it is clear that $U_{\rho}(z) \subset U_r(x) \subset Y$ since for any $y \in U_{\rho}(z)$, $d(x, y) \leq d(x, z) + d(z, y) < d(x, z) + r - d(x, z) = r$. Thus, z is an interior point of Y as well. In fact, since z was chosen arbitrarily from $U_r(x)$, we can conclude that $U_r(x) \subset Y^{\circ}$.

Thus, we have shown that for any $x \in Y^{\circ}$, there is some radius r where $U_r(x) \subset Y^{\circ}$. By definition, this means that $x \in (Y^{\circ})^{\circ}$ so that $Y^{\circ} \subset (Y^{\circ})^{\circ}$, i.e. Y° is an open set.

(b) if $Z \subset Y$ and Z is open, then $Z \subset Y^{\circ}$;

Proof.

Let $x \in Z$. Since Z is open, we know that x is an interior point of Z, i.e. there exists some r > 0 such that $U_r(x) \subset Z$. However, since $Z \subset Y$, this means that $U_r(x) \subset Y$, so x is indeed an interior point of Y as well. Thus, we have some arbitrary point in Z must be an interior point of Y, so $Z \subset Y^{\circ}$.

(c) $(Y^{\circ})^c = \overline{Y^c}$.

Proof.

Let $x \in (Y^{\circ})^c$. In other words, $x \in X$, but $x \notin Y^{\circ}$. Since $x \notin Y^{\circ}$, then for any r > 0, we know that $U_r(x) \not\subset Y$. Thus, there is some element in $U_r(x)$ which is not in Y, i.e. $U_r(x) \cap Y^c \neq \emptyset$. If the point $x \notin Y$, then $x \in Y^c$ and obviously $x \in \overline{Y^c} = Y^c \cup (Y^c)'$. If $x \in Y$, we can improve the previous result about the intersection to say that $\overset{\circ}{U}_r(x) \cap Y^c \neq \emptyset$ since x is not in Y^c , it is clearly not in the intersection. However, we have just shown that x is a limit point of Y^c which means that $x \in (Y^c)' \subset \overline{Y^c}$. Thus, whether $x \in Y$ or $x \notin Y$, we can say that $x \in \overline{Y^c}$ meaning that $(Y^c)^c \subset \overline{Y^c}$.

Next, let $x \in \overline{Y^c}$. If $x \in Y^c$, then clearly $x \in (Y^\circ)^c$ since $Y^\circ \subset Y$. Thus, let $x \in (Y^c)'$. By definition, this means that for all r > 0, $\overset{\circ}{U}_r(x) \cap Y^c \neq \emptyset$. In particular, since the punctured ball with the intersection is nonempty, so too must the standard ball with the intersection be nonempty. Thus, $U_r(x) \cap Y^c \neq \emptyset$. This means there is some element in $U_r(x)$ which is not in Y^c . In other words, $U_r(x) \not\subset Y$. Since this argument was made in terms of all r > 0, then we can say that there is no ball around x of any radius that is contained in Y, i.e. x is not an interior point of Y which means $x \in (Y^\circ)^c$ showing that $\overline{Y^c} \subset (Y^\circ)^c$.

Together, this shows that $(Y^{\circ})^c = \overline{Y^c}$.

Question 3

Let X be an infinite set. Define $d: X \times X \to \mathbb{R}$ as

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$$

Prove that d is a metric. Which subsets of X are open? Closed? Compact?

Proof.

The first property of a metric is trivial based off of the definition of d. Clearly $d(x,y) \geq 0$ for all $x,y \in X$ and $d(x,y) = 0 \iff x = y$. The second property is also trivial to show since $x = y \iff y = x$ and $x \neq y \iff y \neq x$ which clearly shows that d(x,y) = d(y,x).

The Triangle Inequality takes a little bit more work. Let $x, y, z \in X$ and consider the following cases:

- x = y = z, then $d(x, y) \le d(x, z) + d(z, y)$ since $0 \le 0 + 0$.
- x = y and $x \neq z$, then $d(x, y) \leq d(x, z) + d(z, y)$ since $0 \leq 1 + 1$.
- $x \neq y$ and x = z, then $d(x, y) \leq d(x, z) + d(z, y)$ since $1 \leq 0 + 1$.
- $x \neq y$ and y = z, then $d(x, y) \leq d(x, z) + d(z, y)$ since $1 \leq 1 + 0$.
- $x \neq y, y \neq z$, and $x \neq z$, then $d(x,y) \leq d(x,z) + d(z,y)$ since $1 \leq 1 + 1$.

Since this exhausts the list of possibilities, we have the Triangle Inequality holds as well Thus, d is a metric.

Answer.

To determine which subsets are open, closed, or compact, I will first establish those definitions using this metric.

A set $S \subset X$ will be open if for every $x \in S$, there exists some r > 0 such that $U_r(x) \subset S$. More precisely, there exists some r > 0 such that $\{y \in X \mid d(x,y) < r\} \subset S$. Note that if r > 1, then $U_r(x) = X$ and if r < 1, then $U_r(x) = \{y \mid y = x\} = \{x\}$. Thus, $U_r(x) \subset S$ for all r < 1 since $x \in S$. Thus, any subset S must be open since every point is an interior point.

A set $S \subset X$ will be closed if every point $x \in X$ satisfying $\overset{\circ}{U}_r(x) \cap S \neq \emptyset$ is also a point in S for any r > 0. In particular, this must be true for r = 0.5, but $\overset{\circ}{U}_{0.5}(x) = \emptyset$. This means there are no points x satisfying that criteria. Thus, there are no limits points in this metric space, so every subset S must be closed as they trivially contain all of their limit points.

Lastly, recall that for a subset S to be compact, that any open cover of S must admit a finite subcover. However, note that for each $x \in S$, $\{x\}$ is an open set. Therefore $\{\{x\}\}_{x \in S}$ is an open cover for S since

$$S \subset \bigcup_{x \in S} \{x\}$$

However, this cover has no strict subcover since removing any element from the set no longer makes it a cover. Therefore, the only "subcover" is the cover itself. Therefore, a finite subcover only exists whenever the set S itself is a finite set. Consequently, each finite set S is compact by the same construction as above, and we can conclude that the compact subsets are precisely the finite subsets of X.

Question 4

Consider the metric space (X, d), where $X = \mathbb{Q}$, d(x, y) = |x - y|. Prove that the subset $Y = \{x \in X \mid 2 < x^2 < 3\}$ is closed and bounded, but not compact.

Proof.

First, it is clear that Y is bounded since $Y \subset \{x \in X \mid x^2 < 4\} = U_2(0)$. Next, I will use the following two theorems that we have proven in class:

Theorem 1.

Let (A,d) be a metric space where $B \subseteq A$ and let $C \subseteq B$, then C is open in $B \iff C = B \cap G$ and G is open in A.

Theorem 2.

Let (A,d) be a metric space where $B \subseteq A$, then B is closed if and only if B^c is open.

First, I will show that $Y^c = \{x \in X \mid x^2 \le 2 \text{ or } x^2 \ge 3\}$ is an open set. I will do this by using Theorem 1 with $A = \mathbb{R}$, $B = \mathbb{Q}$ (= X), $C = Y^c$, and $G = \{x \in \mathbb{R} \mid x^2 < 2 \text{ or } x^2 > 3\}$. To verify that the hypotheses of the Theorem hold, I simply need to realize that G is open in \mathbb{R} since it is the union of three open sets in \mathbb{R} : namely, $(-\infty, -\sqrt{3}), (-\sqrt{2}, \sqrt{2})$, and $(\sqrt{3}, \infty)$. Note that since $\sqrt{2}$ and $\sqrt{3}$ are not rational, then Y^c is equivalent to $Y^c = \{x \in X \mid x^2 < 2 \text{ or } x^2 > 3\}$. Thus, $Y^c = \mathbb{Q} \cap G$, so by Theorem 1, Y^c is open in \mathbb{Q} .

Now, by using Theorem 2, I can say that Y must be closed in \mathbb{Q} since we have established that Y^c is open in \mathbb{Q} .

Finally, I need to show that Y is not compact. To do this, I will find a cover for Y that does not admit a finite subcover. Consider the intervals:

$$U_n = \left(\sqrt{3} + \frac{1}{n}(\sqrt{2} - \sqrt{3}), \sqrt{3} + \frac{1}{n+1}(\sqrt{2} - \sqrt{3})\right)$$
$$V_n = \left(-\sqrt{2} + \frac{1}{n}(\sqrt{2} - \sqrt{3}), -\sqrt{2} + \frac{1}{n+1}(\sqrt{2} - \sqrt{3})\right)$$

Notice that U_n simply partitions the interval $(\sqrt{2}, \sqrt{3})$ into distinct intervals where the nth interval is of length $(\sqrt{2} - \sqrt{3})(1/(n+1)-1/n)$. Similarly, V_n covers the interval $(-\sqrt{3}, -\sqrt{2})$. Furthermore, we can see that each of these individual intervals is open in \mathbb{Q} since they are equal to the same (open) interval in \mathbb{R} intersected with \mathbb{Q} which makes them each open. Thus, the set $\{W_n\}_{n=1}^{\infty}$ for $W_n = U_n \cup V_n$ is an open cover for Y. However, there does not exist any finite subcover because $W_i \cap W_j = \emptyset$ for all $i \neq j$. Thus, removing any W_i from the set no longer makes it a cover, since the elements in that set is not included in any other sets. Thus, Y is not compact.