

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-059365

(43)Dat of publication of application: 09.03.1993

(51)Int.CI.

(22)Date of filing:

CO9K 19/42 GO2F 1/137

(21)Application number: 03-220696

30.08.1991

(71)Applicant : RODEITSUKU KK

(72)Inventor: OTSUKA TETSUO

ONISHI HIROYUKI KAWAKAMI SHOTARO KANECHIKA MASAKAZU

(54) LIQUID CRYSTAL COMPOSITION, IT PREPARATION AND LIQUID CRYSTAL DISPLAY ELEMENT (57) Abstract:

PURPOSE: To obtain a liquid crystal composition useful in a liquid crystal display element capable of completely displaying black and white by mixing a liquid crystal compound component having a higher birefringence ratio than that of a liquid crystal composition having a desired wavelength dispersion of birefringence ratio and a liquid crystal compound component having a lower birefringence ratio than that of the liquid crystal composition. CONSTITUTION: A liquid crystal composition is obtained by mixing (A) the first component containing a liquid crystal compound having a higher birefringence ratio than that of a liquid crystal composition having a desired wavelength dispersion with (B) the second component containing a liquid crystal compound having a lower birefringence ratio than that of the above—mentioned liquid crystal composition. The resultant liquid crystal composition is suitable as liquid crystal display elements capable of completely displaying black and white.

LEGAL STATUS

[Date of request for examination]

30.07.1998

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3218635

[Date of registration]

10.08.2001

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C): 1998,2000 Japan Patent Office

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平5-59365

(43)公開日 平成5年(1993)3月9日

(51)Int.CL⁵

識別記号

101

庁内整理番号

技術表示箇所

C 0 9 K 19/42 G 0 2 F 1/137 6742-4H

17

7348-2K

審査請求 未請求 請求項の数6(全23頁)

(21)出頗番号

特顯平3-220696

(71)出願人 591190759

ロディツク株式会社

東京都千代田区外神田 2丁目16番 2号

(22)出顧日 平成3年(1991)8月30日

(72)発明者 大塚 哲郎

埼玉県桶川市鴨川1-5-8

(72)発明者 大西 博之

埼玉県浦和市大原1-8-4

(72)発明者 川上 正太郎

東京都練馬区石神井台 4-10-46

(72)発明者 金親 昌和

埼玉県北足立郡伊奈町寿 3 -78-2

(74)代理人 弁理士 志賀 正武 (外2名)

(54)【発明の名称】 液晶組成物とその調製方法、および液晶表示素子

(57)【要約】

【目的】 完全な白黒表示が可能な被晶表示素子とそれ に用いる液晶組成物とその調製方法を提供することを目 的とする。

【構成】 所望の複屈折率波長分散を有する液晶組成物の複屈折率よりも大きい複屈折率を有する液晶化合物を少なくとも一種類以上含有してなる第一成分と、該液晶組成物の複屈折率よりも小さい複屈折率を有する液晶化合物を一種類以上含有してなる第二成分とを、混合することを特徴とする液晶組成物の調製方法。

【特許請求の範囲】

【請求項1】 所望の波長分散を有する液晶組成物の調

該液晶組成物の複屈折率よりも大きい複屈折率を有する 液晶化合物を少なくとも…種以上含有してなる第…成分 と、該液晶組成物の複屈折率よりも小さい複屈折率を有 する液晶化合物を一種以上含有してなる第二成分とを、 混合することを特徴とする液晶組成物の調製方法。

【請求項2】 第一成分の液晶化合物と、第二成分の液 晶化合物との骨格が互いに異なることを特徴とする請求 項1記載の液晶組成物の調製方法。

【韵求項3】 請求項1または請求項2記載の液晶組成 物の調製方法によって得られることを特徴とする液晶組 成物。

【韵求頃4】 所望の波長分散を有する液晶組成物の調 製方法であって、

該液晶組成物の複屈折率とほぼ等しい複屈折率を有する。 液晶化合物を少なくとも二種以上混合することを特徴と する液晶組成物の調製方法。

【請求項5】 請求項4記載の液晶組成物の調製方法に よって得られることを特徴とする液晶組成物。

【請求項6】 請求項3または請求項5記載の液晶組成 物を用いることを特徴とする液晶表示素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は位相差フィルム補償型ス パーツイスティドネマティック表示素子 (以下、FST - L C D と略称する。) に好適に用いられる液晶組成物 の調製方法に関する。

[0002]

【従来の技術】従来、時計または電卓などにはツイステ ィドネマティック型液晶表示素子(以下、TN-LCD と略称する。)が好適に用いられていた。近年、液晶素 子の多用化にともない表示容量の増大が求められてい る。しかし前記TN-LCDでは、その要望に対応でき なかった。そして、前配要望に対応するスパーツイステ ィドネマティック型表示索子(以下、STN-LCDと 略称する。)が考案された。このSTN-LCDは表示 容量が大きく、かつしきい値特性が急峻で充分なコント ラストが得られる。

【0003】しかし、前記STN-LCDでは用いられて ている液晶の複屈折率を利用しているため、表示に着色 が生じるという問題があった。この為、位相差フィルム を補償板として使用することを特徴とする位相差フィル ム補償型スパーツイスティドネマティック表示素子(以 下、FST-LCDと略称する。)が開発されるに至っ た。このFST-LCDの表示には着色が生じないた め、白黒表示が可能となった。

[0004]

ポリピニルアルコール (以下、PVAと略称する。) ま たはポリカーボネイト(以下、アCと略称する。)など を一軸延伸したものであり、素材のレタデーション特有 の波長分散を有している。この為、位相差フィルムの波 長分散と液晶表示素子の波長分散とが適合しない場合に は、表示素子が着色してしまい、完全な白黒表示が困難 であった。

【0005】本発明は前記事情に鑑みてなされたもの で、完全な白黒表示が可能な液晶表示素子とそれに用い る液晶組成物とその調製方法を提供することを目的とす る。

[0006]

【課題を解決するための手段】請求項1記載の液晶の調 製方法においては、所望の波長分散を有する液晶組成物 のの復屈折率よりも大きい複屈折率を有する液晶化合物 を少なくとも一種以上含有してなる第一成分と、該液晶 組成物の複屈折率よりも小さい複屈折率を有する液晶化 合物を…種以上含有してなる第二成分とを、混合するこ とにより前記課題の解決を図った。

【0007】請求項2記載の液晶組成物の調製方法にお いては、請求項1の液晶組成物の調製方法における第一 成分の液晶化合物と、第二成分の液晶化合物とに互いに 骨格が異なる化合物を用いることにより前記課題の解決 を図った。

【0008】請求項4記載の液晶組成物の調製方法にお いては、該液晶組成物の複屈折率とほぼ等しい複屈折率 を有する液晶化合物を少なくとも二種以上混合すること により前記課題の解決を図った。

こ。【0009】請求項6記載の液晶表示素子においては請 求項3または請求項5記載の液晶組成物を用いることに より前記課題の解決を図った。

[0010]

【実施例】以下に実施例をあげて、本発明を具体的に説 明するが、勿論本発明の主旨、及び適用範囲はこれらの 実施例により制限されるものではない。

【0011】まず、PVA製の位相差フィルムとPC製 の位相差フィルムを用意し、これら位相差フィルムのレ タデーション(複屈折率×位相差フィルムの厚さ)の波 長分散を分光法により求めた。この時使用した光源はタ ングステンランプであり、干渉フィルターを用いて被屈 折率を測定した。その結果を図1に示した。

【0012】図1から明らかなように、PVA製の位相 差フィルムのレタデーションは波長分散が小さく、PC 製の位相差フィルムのレタデーションは波長分散が大き い。前記位相差フィルムのレタデーションの波長分散は 素材特有のものである。

【0013】先に述べたように、コントラストのよい白 黒表示の液晶表示素子を得るためには、位相差フィルム の波長分散と液晶表示素子の波長分散とを適合させるこ 【発明が解決しようとする課題】前記位相差フィルムは 50 とが必要である。しかし、液晶表示素子の液長分散は液 晶組成物の波長分散に近似しているので、液晶表示索子 の波長分散を液晶組成物の波長分散で代替することが可 能である。従って、液晶組成物の波長分散を位相差フィ ルムの波長分散に適合させることにより削記目的を遠成 することができる。

3

【0014】複屈折率が大きい液晶組成物もしくは液晶 化合物はその液長分散も大きいということは従来より知 表 1-1 られている。このことは、下記表1より明らかである。 表1には種々の液晶組成物の組成とそれらの複屈折率と 波畏分散とを深した。図2は表1をグラフにすることに より視覚的に分かりやすく結果を深したグラフである。 【0015】

i .

【表1】

	組成		Δn	Δni
	C3H7-H-C00-O-0-C2H5	32.2%		
1	C4H9 -(H)- COO -(O)- O - C2H5	33.9%	880.0	1.062
	C5HH -(H)- COO -(O)- O - CH3	33.9%	100 ×41 1	·
	C3H7 - H- COO - H- C3H7	66.7%	1. (v. 3. f.)	
2	C4H9-H- COO-H- C4H9	16.7%	0.039	1.002
	C ₅ H ₁₁ -(H)- COO -(H)- C ₃ H ₇	16.6%		
7	C ₃ H ₇ -(H)-(O)- O - C ₂ H ₅	50%	0.075	1.061
3	C ₃ H ₇ - (H) - (O) - O - C ₄ H ₉	50%	0.073	1.001

【表2】

表 1-2

· ·			
	組 成	Δη	Δni
4	$CH_2 = CH - H - H - CN$ 33.4% $C_2H_4 = CH - H - H - CN$ 33.3% $CH_2 = C_3H_5 - H - H - CN$ 33.3%	0.076	1.140
5	$C_3H_7 - H - CH_2CH_2 - O - O - C_2H_5 = 30\%$ $C_3H_7 - H - CH_2CH_2 - O - O - C_4H_9 = 30\%$ $C_5H_{11} - H - CH_2CH_2 - O - O - C_2H_5 = 40\%$	0.079	1.069
6	CH3CH = CHCH2CH2 - (H)-(H)- 0 - CH3 100%	0.053	1.053
7	C ₃ H ₇ -(H)-(O)- CN 65% C ₅ H ₁₁ -(H)-(O)- CN 35%	0.123	1.101

【表3】

Programme Control

表 1-2

	粗成	Δn	Δni
8	C6H13-H-O-N=C=S 100%	0.152	1.156
9	C ₃ H ₇ -{H}- CH ₂ CH ₂ -{O}- O - C ₄ H ₉ 100%	0.073	1.067
ΙO	CH ₃ -(O)- COO -(O)- O - C ₅ H ₁₁ 50% C ₆ H ₁₃ -(O)- COO -(O)- O - C ₅ H ₁₁ 50%	0.138	1.149
ŧI	C3H7 — H-OF 100%	0.074	1.064
12	$C_2H_5 - \bigcirc - COO - \bigcirc - CN$ 33.4% $C_3H_7 - \bigcirc - COO - \bigcirc - CN$ 33.3% $C_4H_9 - \bigcirc - COO - \bigcirc - CN$ 33.3%	0.175	1.158

【表4】

.

表 1-4

	祖 成	ΔΠ	Δni	
13	CH3-0-O- CN = N-O- C4H9 100%	0.215	1.347	
	$C_3H_7 - \bigcirc - C \equiv C - \bigcirc - O - C_7H_{15}$ 11.25%		ì	
;	$C_4H_9 - \bigcirc - C \equiv C - \bigcirc - O - C_2H_5$ 16.88%		'	ĺ
* · •	$C_4H_9 - \bigcirc - C \equiv C - \bigcirc - O - C_7H_{15}$ 7.50%			
i	$C_5H_{II} - \bigcirc - C = C - \bigcirc - O - CH_3$ 22.50%		;	
14	$C_5H_{11} - \bigcirc - C = C - \bigcirc - O - C_2H_5$ 16.87%	0.231	1.254	
	$C_2H_5 - \bigcirc - C = C - \bigcirc - C_3H_7$ 6.25%			
	$C_2H_5 - \bigcirc - C = C - \bigcirc - C_4H_9$ 6.25%	* ";		
***	$C_2H_5 - \bigcirc - C = C - \bigcirc - C_5H_1$ 6.25%			÷
1	$C_3H_7 - \bigcirc - C = C - \bigcirc - C_4H_9$ 6.25%			
****	Land Andrew Community and The Community of the Community	<u> </u>	<u> </u>	

化水黄碱橡胶物 法人工 电电路 人名

The state of the s

表 1-5

	粗 成	Δn	Δni
15	C5H11-0-0-CN 100%	0.185	1.219
	C6H13 - N O - C5H11 25%	. : '	
16	C ₆ H ₁₃ - N O - C ₆ H ₁₃ 25%	0.168	1.206
١	C ₆ H ₁₃ -{0 - 0 - C ₇ H ₁₅ 25%		1,200
	C ₆ H ₁₃ - (N)-(O)- O - C ₉ H ₁₉ 25%		
	CH ₃ - 0 - C ₂ H ₄ - H - H - O F 25%		•
	CH ₃ - O - C ₃ H ₆ - H - H - O - F 25%	* * * * .	
17	CH ₃ - O - C ₄ H ₈ - H - H - O F 25%	0.092	1.026
	CH ₃ - O - C ₅ H ₁₀ -(H)-(H)-(F) 25%		

【表6】

表 1-6

	粗咙	Δn	Δπί
	CH ₂ = CH-(H)-(H)-(O)-F 40%		
18	CH₃CH=CH-(H)-(H)-(O)-F 20%	0.076	1.026
	CH ₂ = CHCH ₂ CH ₂ - H H O F 40%		

(但し、表1中、「%」は「重量%」を示し、Δnは6 00nmにおける複屈折率を示し、Δniは450nm における複屈折率/650nmにおける複屈折率の値を 示す。)以下、「%」はすべて「重量%」を示すものと する。

【0016】ここで所望の波長分散を有する液晶組成物の調製方法としては、以下に示す場合が考えられる。 40 ①複屈折率の大きい液晶化合物と複屈折率の小さい液晶 化合物とを混合することにより、所望の液長分散を有す る液晶組成物を得る。

②所望の波長分散を有する液晶組成物の複屈折率と同程

度の複屈折率を有する液晶組成物同志を混合して前記液 晶組成物を得る。

【0017】次に前記2種の調製方法によって液晶組成物もしくは液晶化合物である第一成分Aと第二成分Bを混合して所望の波長分散を有する液晶組成物Cを調製した。また調製した前記液晶組成物Cの複屈折率と同程度の複屈折率を有する液晶組成物C。を比較例として例ぶした。表2に得られた液晶組成物の組成比、波長分散、複屈折率を各成分のそれと共に併せて示した。

[0018]

【表7】

		組成	Δn	¯Δni
	Α	C ₅ H ₁₁ - C ₃ H ₇ 100%	0.02	
実施例	В	$C_3H_7 - \bigcirc - C \equiv C - \bigcirc - 0 - C_2H_5 = 24\%$ $C_4H_9 - \bigcirc - C \equiv C - \bigcirc - 0 - CH_3 = 24\%$ $C_4H_9 - \bigcirc - C \equiv C - \bigcirc - 0 - C_2H_5 = 24\%$ $C_5H_{11} - \bigcirc - C \equiv C - \bigcirc - 0 - CH_3 = 24\%$ $C_5H_{11} - \bigcirc - C \equiv C - \bigcirc - 0 - C_2H_5 = 4\%$	0.231	1.254
	С	A 58 % + B 42%	0.113	1.200

·		組成	ΔN	Δni
	Δ'	$CH_3 - \bigcirc - COO - \bigcirc - O - C_5H_{II}$ 50% $C_6H_{I3} - \bigcirc - COO - \bigcirc - O - C_5H_{II}$ 50%	0.138	1.149
比较例	в'	$C_3H_7 - H - C00 - O - C_2H_5$ 32.2% $C_4H_9 - H - C00 - O - C_2H_5$ 33.9% $C_5H_{11} - H - C00 - O - CH_3$ 33.9%	0.088	1.062
	c'	A 50 % + B 50 %	0.112	1.126

【表9】

		and commercial services and the services of th	·· · · · · · · · · · · · · · · · · · ·		•
		組成		ΔΠ	Δni
		C3H7-H- COO-O- O- C2H5	16.6%		
		C4H9 -(H)- COO -(O)- O - C2H5			
実施	Δ	C5H11-H- COO-O- O - CH3		0.088	1.062
例		C3H7 - H- COO - O- C4H9	16.7%	0.000	1.002
		C ₅ H _{II} -(H)- COO -(O)- O - C ₂ H ₅			
		C4H9-H- COO-O- O- CH3	16.7%		
	<u>. </u>				I

【表10】

// 表 2-2-b 12

【表11】

2 – 2 – c

0 ~

		<u> </u>	·	
L_		組 成	· 4n	Δni
	A'	$C_6H_{13} - H - O - N = C = S 100\%$	0.152	1.156
比較例	B' :	$CH_2 = CH - H - O - CN$ 25% $C_2H_4 = CH - H - O - CN$ 25% $CH_2 = C_3H_5 - H - O - CN$ 25% $C_2H_4 = C_3H_5 - H - O - CN$ 25%	0.152	1.10 7
	C,	A50% + B50%	0.148	1.131

【表12】

13 設 2-3-a

		祖 成	Δn	Δni
	Δ	C5H11 -(O)-(O)- CN 100%	0.185	1.219
実施例	В	C ₃ H ₇ -{H}- COO -{H}- C ₃ H ₇ 66.7% C ₄ H ₉ -{H}- COO -{H}- C ₄ H ₉ 16.7% C ₅ H ₁₁ -{H}- COO -{H}- C ₃ H ₇ 16.6%	0.039	1.002
	С	A50% + B50%	0.080	1.183

【表13】

表 2-3-6

		組 成	ΔΠ	∆ni
	A t	$C_3H_7 - H - C00 - O - C_2H_5 32.2\%$ $C_4H_9 - H - C00 - O - C_2H_5 33.9\%$ $C_5H_1 - H - C00 - O - CH_3 33.9\%$	0.088	1.062
8	•	$C_3H_7 - H - O - O - C_2H_5$ 50% $C_3H_7 - H - O - O - C_4H_9$ 50%	0.075	1.061
	С	A50% + B50%	0.083	1.077

(但し、表2中、 Δ nは600nmにおける複屈折率を示し、 Δ niは450nmにおける複屈折率/650nmにおける複屈折率の値を示す。)

【0019】妻2から明らかなように、前記①の方法によって得た液晶組成物の波艮分散の方が②の方法で得た液晶組成物のものよりも大きい。この実験により、所望の波及分散を有する液晶組成物の複屈折率より大きい複屈折率を有する液晶化合物を少なくとも一種類以上含有してなる第一成分と、液液晶組成物の複屈折率より小さ。40い複屈折率を有する液晶化合物を少なくとも一種類以上含有してなる第二成分とを混合すると、大きい波艮分散を有する液晶組成物が得られることが明かとなった。

【0020】また、所望の波長分散を有する液晶組成物の複屈折率と同程度の複屈折率を有する液晶化合物を少なくとも2種以上混合すると、小さい波長分散を有する液晶組成物が得られる。

【0021】次に液晶組成物を構成する液晶化合物の骨格が、液晶組成物の波長分散に与える影響に付いて調べた。まず、下記組成の液晶組成物Aを調製した。

[0022]

【化1】

$$CH_2 = CH - H - O - CN$$
 25%
 $C_2H_4 = CH - H - O - CN$ 25%
 $CH_2 = C_3H_5 - H - O - CN$ 25%
 $C_2H_4 = C_3H_5 - H - O - CN$ 25%

【0023】この液晶組成物Aは同じ骨格を有する液晶化合物同志を混合して得られたものである。次に下記組成の液晶組成物Bを調製した。

[0024]

【化2】

【0025】この液晶組成物Bは異なる骨格を有する液 晶化合物同志を混合して得られたものである。前記液晶 組成物Aの複屈折率は0、151であり、液晶組成物の **復屈折率は0.150であった。**

【0026】液晶組成物Aと液晶組成物Bとを混合し て、液晶組成物Cを得た。ついで、前記液晶組成物Cの 複屈折率および波長分散を測定した。その結果を表3お よび図3に示した。

[0027]

【表14】

		0	100	0. 150	1.109 1.115 1.124 1.140 1.155 1.156 1.176 1.187 1.193 1.208 1.214	52. 6	
		. Q	6. ··	0. 145	1. 208	51. \$	
•		0.2	80	0.141	1. 193	49.9	
		30	70	0.138-	1.187	48.7	
	この組成	07	09	0.137	1.176	48. 1	
	液晶組成物にの組成	20	20	0. 137	1.156	47.8	
	泛	09	40	D. 13T	1.155	47.8	
	<u> </u> 	70	98	0.140	1. 140	48.6	
. • .:		08	02	0.143	1.124	50. 5	
	£ . ₹'•	06	10	0.148	1.115	53. 3	
		100	0	0.151	1.109	56.0 53.3 50.5 48.6 47.8 47.8 48.1 48.7 49.9 51.3	
\$		液品組成物 A の 含有率(重量%)	液晶組成物 B の 含有率(重量%)	Δn (600nm) 0.151 0.148 0.143 0.137 0.137 0.137 0.138 0.141 0.145 0.150	△n i (450na/650nm)	TN1 (°C)	

30

(但し、表3中Twi はネマティック相からアイソトロピ ック相へ転移する温度を示す。また、Δnは600nm 50 における複屈折率を示し、 Aniは450 nmにおける

複屈折率/650nmにおける複屈折率の値を示す。) 【0028】表3および図3から明らかなように、液晶 組成物Aおよび液晶組成物Bの複屈折率は同程度である にも係わらず、両者を混合した場合、液晶組成物Bの含 有率が大きいほど液晶組成物Cの波長分散が大きくな る。さらに、液晶組成物Aおよび液晶組成物Bの含有率 を変化させることにより、液晶組成物Cの波長分散を速 統的に変化させることができる。

【0029】波長分散の大きい液晶組成物を調製するには、所望の波長分散を有する液晶組成物の複屈折率より 10大きい複屈折率を有する液晶化合物を少なくとも一種類以上含有してなる第一成分と、該液晶組成物の複屈折率より小さい複屈折率を有する液晶化合物を少なくとも一種類以上含有してなる第二成分とを混合するればよいこ表 4-1-a

とは明かである。さらに、第一成分と第二成分との骨格が互いに異なると、より容易に被長分散特性の大きい液 晶組成物を得ることができることが明かとなった。

18

【0030】波長分散の小さい液晶組成物を調製するのに適した液晶化合物に適する腎格を求めるため、異なる 腎格を有する液晶化合物からなる液晶組成物Aと液晶組成物Bとを混合して液晶組成物Cを得て、その波長分散を測定した。比較例としては、同じ骨格を有する液晶化合物を混合して液晶組成物A、および液晶組成物B、そして液晶組成物C、を混合して、液晶組成物D、を得た。ついで液晶組成物D、の波長分散を測定した。その測定結果を表4に示した。

【0031】

		粗 成	Δn	Δπί
	Α.	C ₃ H ₇ - H COO - H C ₃ H ₇ 66.7% C ₄ H ₉ - H COO - H C ₄ H ₉ 16.7% C ₅ H ₁₁ - H COO - H C ₃ H ₇ 16.6%	0.039	1.002
実施例	B	C ₄ H ₉ -H -H -CH ₂ CH ₂	0.041	roio
	С	A50% + B50%	0.038	1.013

【表16】

表 4-1-5

		組成	Δπ	Δni
比	Δ'	$C_3H_7 - H - C00 - H - C_3H_7$ 66.7% $C_4H_9 - H - C00 - H - C_4H_9$ 33.3%	0.037	i . 010
例	8'	C ₃ H ₇ -(H)- C ₀₀ -(H)- C ₃ H ₇ 66.7% C ₅ H ₁₁ -(H)- C ₀₀ -(H)- C ₃ H ₇ 33.3%	0.040	1.025
	c,	A'50% + B'50%	0.039	1,002

【表17】

19 表 4-2-6

		組 成	Δη	Δni
	Д	$C_3H_7 - H - O - O - C_2H_5 = 50\%$ $C_3H_7 - H - O - O - C_4H_9 = 50\%$	0.075	1.061
実施例	В	$CH_{3} - 0 - C_{2}H_{4} - H - H - O - F = 25\%$ $CH_{3} - 0 - C_{3}H_{6} - H - H - O - F = 25\%$ $CH_{3} - 0 - C_{4}H_{8} - H - H - O - F = 25\%$ $CH_{3} - 0 - C_{5}H_{10} - H - H - O - F = 25\%$	0.076	1.026
_	С	A50% + B50%	0.078	1.058

【表18】

表 4-2-b

		組成	Δn	Δni
比	Α'	C3H7 - H- CH2CH2 - O- C4H9 100%	0.073	1.061
較例	В'	C5H11 -(H)- CH2CH2 -(O)- O - C2H5 100%	0.082	1.065
	c,	A50% + B50%	0.07	1.069

(但し、表4中、 Δ nは600nmにおける複屈折率を示し、 Δ niは450nmにおける複屈折率/650nmにおける複屈折率/00を示す。)

【0032】 骨格が異なる液晶化合物を混合しても、同一な液晶化合物を混合しても、両者の液長分散に差はみられないことが表4から分かった。このことから、波長分散の小さい液晶組成物を構成する液晶化合物の要因は、骨格には関係なく、複屈折率のみであることが明かとなった。

【0033】これら実験の結果をまとめると、波段分散の大きい液晶組成物を得る方法としては、前記液晶組成物の複屈折率よりも大きい複屈折率を有する液晶化合物を少なくとも…種類以上と、小さい複屈折率を有する液晶化合物を少なくとも…種類以上とを混合すればよい。また波長分散特性の小さい液晶組成物を得る方法としては、前記液晶組成物の複屈折率と同等の複屈折率を有する液晶化合物同志を混合すればよい。

【0034】 (調製例1) 波長分散の大きい液晶組成物 を下記第一成分と第二成分とを混合することによって得た。

30 第一成分:所望の波段分散を有する液晶組成物の複屈折率よりも大きい複屈折率を有する液晶化合物を少なくとも一種類以上含有してなる成分

第二成分:所望の波長分散を有する液晶組成物の複屈折率よりも小さい複屈折率を有する液晶化合物を少なくとも一種類以上含有してなる成分

但し、前記第一成分と第二成分とを構成する液晶組成物 もしくは液晶化合物は互いに異なる骨格を有するもので ある。

【0035】比較例として、複屈折率が前記液晶組成物 20 と同程度である液晶組成物を調製した。この比較例は従来より液晶組成物として一般的に用いられているものである。ついて調製例1と比較例とで得られた各液晶組成物の波長分散を測定した。その結果を表5に示した。表5中、Cは、Aで表される組成の液晶組成物とBで表される組成の液晶組成物とを混合した液晶組成物の組成を示す。

[0036]

【表19】

2. 表 5−1

		· · · · · · · · · · · · · · · · · · ·	·		
		組成		Δπ	∆ni .
		C3H7-H-C00-O-0-C2H5	16.6 %		
		C ₄ H ₉ -(H)- COO -(O)- O - C ₂ H ₅	16.6%		·
実施		C ₅ H _{II} -(H)- COO -(O)- O - CH ₃	16.7%	0.000	1,062
99		C ₃ H ₇ -(H)- COO -(O)- O - C ₄ H ₉	16.7%	0.088	1,062
		C ₅ H ₁₁ -(H)- COO -(O)- O - C ₂ H ₅	16.7%		
		C4H9 -(H)- COO -(O)- O - CH3	16.7%		

【表20】

表 5-2

			40 -		·		
			組成	· · · · · · · · · · · · · · · · · · ·		Δn	Δлі
		C3H7-O-C	e c -{⊙}- (0 - C ₇ H ₁₅	11.25%		
- :	¥	C4H9 - O- C	≝ c -{⊙}- (0 - C ₂ H ₅	16.88%		
		C4H9-O-C	= c - (⊙}- 9	0 - C7H15	7.50%		
実	-	C5H11-O-C	= c- (0)- (0 — СН ₃	22.50%		
施	В	C5H11-O-C	= c - (⊙ - (0 - C ₂ H ₅	16.87%	0.231	1.254
9 9		C ₂ H ₅ -O- C =	i c -{⊙}- () - C ₃ H ₇	6.25%	· -	
		C2H5 C ■	e c -∕⊙}- c) - C ₄ H ₉	6.25%		
	-	C ₂ H ₅ O C :	≣ C - ⟨⊙}- () - C5H11	6.25%		:
		C ₃ H ₇ - C =	E C -{O}- 0	O – C₄ H9	6.25%		
	C	A68% + B32	%	有少数的 数	14, 14, 1	0.147	1.166

【表21】

麦 5 – 9

		1 7 A K () 組成 () 3 7 7 7	<u>, , , , , , , , , , , , , , , , , , , </u>	- Δл	Δпі
		CH2 = CH -(H)-(O)- CN	25%		
比較	~ 1	C ₂ H ₄ '= CH- (H)-(O)- CN	25%		
例	C'	CH2 = C3H5 - H-O- CN	25%	0.151	1.109
		C2H4 = C3H5 -(H)-(O)- CN	25%	* * *	

(但し、表 5中、 Δ nは600nmにおける複屈折率を示し、 Δ niは450nmにおける複屈折率/650nmにおける複屈折率の値を示す。)

【0037】実施例1の液晶組成物は比較例の液晶組成物と比べて、複屈折率は小さいがその波長分散は大きい。

【0038】調製例1では、所望の波長分散を有する被 晶組成物の複屈折率より大きい複屈折率を有する液晶化 合物を少なくとも一種類以上含有してなる第一成分と、 該液晶組成物の複屈折率より小さい複屈折率を有する液 晶化合物を少なくとも一種類以上含有してなる第二成分 とを混合したので、波長分散の大きい液晶組成物を得る ことができた。従来から行われている液晶組成物の調製 方法では、複屈折率が小さいとその波曼分散も前記複屈 折率に比例して小さかったが、本実施例の液晶組成物の 調製方法では、複屈折率が小さく、波曼分散の大きい液 晶組成物を調製することができた。

【0039】 (調製例2) 小さい波長分散を有する液晶 組成物の調製を行った。調製例2ではこのような特性を 有する液晶組成物を下記に示す方法により調製した。所 望の複屈折率を有する液晶組成物の複屈折率と、同程度 の複屈折率を有する液晶化合物を少なくとも2種以上混*10

*合した。ついで前記両者の液晶組成物の波長分散を測定した。その結果を表6に示した。表6中Cは、Aで表される組成からなる液晶化合物とBで表される組成からなる液晶組成物とを重量比で50:50の割合で混合することにより得られる液晶組成物の組成を示す。前記Bで表される組成からなる液晶組成物は、従来から一般に波長分散の小さいものとして使用されている液晶組成物である。

【0040】

	組 成	Δn	Δni
Δ	C ₆ H ₁₃ - N = C = S 100%	0.152	1.156
В	$CH_2 = CH - H - O - CN$ 25% $C_2H_4 = CH - O - CN$ 25%	0.153	1.10 7
	$CH_2 = C_3H_5 - H - O - CN$ 25% $C_2H_4 = C_3H_5 - H - O - CN$ 25%	0.152	1.10 7
С	A50% + B50%	0.148	1.131

(但し、表6中、 Δ nは600nmにおける複屈折率を示し、 Δ n iは450nmにおける複屈折率/650nmにおける複屈折率/650nmにおける複屈折率の値を示す。)

【0041】表6から明らかなように、調製例2の液晶組成物Cは、液晶組成物Aおよび液晶組成物Bと比べて、複屈折率は同程度であり、液長分散も同程度である。つまり、本調製例で調製した液晶組成物Cは、従来から液長分散の小さいものとして使用されているBで表される組成からなる液晶組成物と同等の波長分散を有する。

【0042】調製例2では、所望の波長分散を有する液晶組成物の複屈折率と同程度の複屈折率を有する少なくとも二種以上の液晶化合物を混合したので、小さい波長分散を有する液晶組成物を得ることができた。

【0043】 (調製例3) 波長分散が1.20である液晶組成物を調製した。

[0045]

【数1】 1.10 ≦ Δni ≦ 1.25 の時 0.15 ≦ Δn ≦ 0.23 ---- (I)

(但し、関係式 (1) における、Δnは600nmにお 30 ける液晶組成物の複屈折率を示し、Δniは450nm における複屈折率/650nmにおける複屈折率を示 す。)

【0046】を用いると、1.20という波長分散を有する液晶組成物を得るには、該液晶組成物の複屈折率を0.15以上0.23以下に調整すれば良いことが分かる。そこで、上記条件を満たす複屈折率が0.15である液晶組成物を調製することにした。

【0047】まず、複屈折率が0.15である液晶組成物Aおよび液晶組成物Bを調製した。この液晶組成物Aの組成は、

[0048]

---【化3】 --

$$CH_2 = CH - H - O - CN$$
 25%
 $C_2H_4 = CH - H - O - CN$ 25%
 $CH_2 = C_3H_5 - H - O - CN$ 25%
 $C_2H_4 = C_3H_5 - H - O - CN$ 25%

【0049】で表され、液晶組成物Bの組成は、

*【化4】

[0050]

$$C_3H_7 - H - C_5H_{11}$$
 46.0%
 $C_4H_9 - O - C = C - O - O - C_2H_5$ 13.5%
 $C_5H_{11} - O - C = C - O - O - C_4H_5$ 18.0%
 $C_5H_{11} - O - C = C - O - O - C_2H_5$ 13.5%
 $C_3H_7 - H - O - C = C - O - C_2H_5$ 5.0%
 $C_4H_9 - H - O - C = C - O - C_4H_5$ 4.0%

【0051】で表されるものである。これら液晶組成物

※【0052】

1.109

Aおよび液晶組成物Bの物性は以下に示す通りである。※

(IV)

0.151

液晶組成物A 液晶組成物B

0.150

.

1. 214 10.

10.6

26

但し、 Δ nは600nmにおける複屈折率を示し、 Δ n 20 iは450nmにおける複屈折率/650nmにおける複屈折率を示す。また、 (IV) は関係式 (IV) により得られる値を示す。

[0053]

【数2】

$$\Sigma$$
 (Ian-aNilxyi) ---- (IV)

(但し、関係式 (IV) におけるANiは液晶組成物の 複屈折率を示し、Anは600nmにおける前記液晶組 成物を構成する液晶化合物の複屈折率を示し、yiは各、30 液晶化合物の混合重量%を示す。)

【0054】次に、先に示した図3を用いて、波長分散 1 20という値を有する液晶組成物Cにおける液晶組 成物Bの含有率を求めた。液晶組成物Bの含有率は87 重量%であった。

【0055】液晶組成物Bを87重量%と液晶組成物Aを13重量%とからなる液晶組成物Cを調製した。ついで、この液晶組成物Cの複屈折率および液長分散を測定したら、複屈折率0.150、波長分散1.20という

所望の物性を有していることが分かった。

Δn

【0056】調製例3では液晶組成物の複屈折率と波長分散との関係を用いて、所望の波長分散を有する液晶組成物を調製することができた。

【0057】 (調製例4) 前記調製例3とは別の方法により、波長分散が1.20である液晶組成物を調製した。本調製例では前記関係式(IV)により得られる値をパラメーターとして用いることにより所望の波長分散を有する液晶組成物を調製した。

【0058】液晶組成物の波長分散と前記関係式(1V)により得られる値との間には、図4に示すように、非常によい相関関係が認められる。前記、図4から1.2という波長分散を有する液晶組成物を得るには、前記関係式(1V)から得られる値を9.2に調製すれば良いことが分かる。

【0059】本調製例では、前記調製例3で用いた液晶組成物Bと新たな液晶組成物である液晶組成物Dとを用いた。前記液晶組成物Bの組成は、

[0.060]

【化5】

$$C_3H_7 - H - C_5H_{II}$$
 46.0%
 $C_4H_9 - O - C = C - O - O - C_2H_5$ 13.5%
 $C_5H_{II} - O - C = C - O - O - CH_3$ 18.0%
 $C_5H_{II} - O - C = C - O - O - C_2H_5$ 13.5% --- (B)
 $C_3H_7 - H - O - C = C - O - C_2H_5$ 5.0%
 $C_4H_9 - H - O - C = C - O - CH_3$ 4.0%

【0061】であり、前記液晶組成物Dは

*【化6】

[0062]

$$C_3H_7 - H - COO - O - C_2H_5 = 66 \omega 1\%$$
 $C_4H_9 - O - C = C - O - O - C_2H_5 = 34 \omega 1\%$

【0063】で表される組成からなる液晶組成物である。この液晶組成物Dの複屈折率は0.15であり、関係式(IV)により得られる値は7.3である。

【0064】前記関係式(IV)により得られる値には 10 加成性が成り立つので、液晶組成物Bと液晶組成物Dとの比率計算をすると、関係式(IV)により得られる値を9.2に調製するには、液晶組成物Bを58重量%、液晶組成物Dを42重量%を混合すればよいことがわかる

【0065】前記組成により得られた液晶組成物の複屈 折率は0.150、波長分散は1.20であり、所望の 表 7-1 物性であった。

【0066】本調製例4では前記関係式(IV)をパラメーターとして用いたので、所望の複屈折率を有する液晶組成物を調製することができた。

28

【0067】さらに、発明者らは表7に示すように、1 8種の液晶組成物を調製し、その波長分散および関係式 (IV)による値を算出した。その値を表7に記載し

【0068】

組成 (IV) ΔΠ Δni (O)- N = C = S 100% 1.156 0.152 - COO -(H)- C3H7 0.039 1.002 $C_4H_9 - H - COO - H - C_4H_9$ 16.7% В C5H11 -(H)- COO -(H)- C3H7 16.6% A50% + B50% 0.080

30¹³ / 1

【表24】

		· - · · · .		* *	
		組成	Δn	Δni	(1V)
	Α	C6H3 -H-O-N=C=S 100%	0.152	1.156	
		C4H9 - H - H - CH ₂ CH ₂ CH= CH ₂ 20%	· . · . · · · · · · · · · · · · · · · ·		
2	В	C ₅ H _{II} -(H)-(H)-(CH ₂ CH ₂	0.041	1.010	
,		C ₇ H ₁₅ -(H)-(H)-(CN) CH ₂ CH ₂ CH ₂ CH= CH ₂			
	С	A50% + B50%	0.092	1.148	5.55

【表25】

29 表 7-3 30

		祖 成	Δη	Δnt	(IV)
	Δ	C ₆ H ₁₃ -(H)-(O)- N = C = S 100%	0.152	1.156	
3	В	C ₃ H ₇ -(H)-(O)- CN 65% C ₅ H _{II} -(H)-(O)- CN 35%	0.123	1.101	
	С	A50% + B50%	0.135	1.139	1.45
	Α	C ₆ H _{I3} -(H)-(O)- N = C = S 100%	0.152	1.156	
4	8	$C_3H_7 - H - COO - O - O_2H_5 = 66.7\%$ $C_4H_9 - H - COO - O - O_2H_5 = 16.7\%$ $C_5H_{11} - H - COO - O - O - CH_3 = 16.6\%$	0.088	1.062	
	С	A50% + B50%	0.120	1.135	3.20

【表26】

- **4**

20

		粗 成	- Δ Π	Δni	(IV)
	А	C5H11 - CO- CN 100%	0.185	1.219	_
5	В	$C_3H_7 - H - C00 - H - C_3H_7 - 66.7\%$ $C_4H_9 - H - C00 - H - C_4H_9 - 16.7\%$ $C_5H_{11} - H - C00 - H - C_3H_7 - 16.6\%$	0.039	1.002	
		A50% + 850%	0.080	1.183	7.30

【表27】

表 7-5

		祖成	· · · · · · · · · · · · · · · · · · ·	Δπ	ΔΠΙ	(IV)
	A	C ₅ H ₁₁ - H- C ₃ H ₇ 100%		0.02		
6	8	$C_4 H_9 - \bigcirc - C \equiv C - \bigcirc - O - C_2 H_5$ $C_5 H_{11} - \bigcirc - C \equiv C - \bigcirc - O - C_{13}$ $C_5 H_{11} - \bigcirc - C \equiv C - \bigcirc - O - C_{2} H_5$	30% 40% 30%	0.231	1.254	
	C	C_3H_7 \leftarrow \bigcirc \leftarrow \leftarrow \bigcirc \bigcirc \leftarrow \bigcirc \leftarrow \bigcirc \leftarrow \bigcirc \leftarrow \bigcirc \leftarrow \bigcirc \leftarrow \bigcirc \bigcirc \leftarrow \bigcirc	56% 44%	0.26		
		A46% + B45%+C9%		0.152	1,174	9.63

【表28】

		組 成	Δη	ΔΠΐ	(IV)
	Δ	$C_3H_7 - H - C00 - O - C_2H_5 32.2\%$ $C_4H_9 - H - C00 - O - C_2H_5 33.9\%$ $C_5H_{11} - H - C00 - O - CH_3 33.9\%$	0.088	1.062	
7.	В	$C_4 H_9 - \bigcirc - C \equiv C - \bigcirc - O - C_2 H_5 = 30\%$ $C_5 H_{11} - \bigcirc - C \equiv C - \bigcirc - O - C_{H_3} = 40\%$ $C_5 H_{11} - \bigcirc - C \equiv C - \bigcirc - O - C_2 H_5 = 20\%$	0.231	1.254	·
		A68% + B32%	0.147	1.166	6.70

【表29】

		租 成	ΔΠ	Δni	(IV)
8	Δ	C ₅ H _{II} - C ₃ H ₇ 100%	0.02		<u>.</u>
	B	C ₅ H _{II} -(O)-(O)- CN 61% C ₆ H _{I3} -(O)-(O)- CN 39%	0.185	1.219	
	С	$C_{8}H_{25} - O - O - O - CN 33.4 \%$ $C_{5}H_{11} - O - O - CN 66.6 \%$	0.350		
		A40% + B37% + C23% + (2)	0.152	1.220	8.91

【麥30】

· 33 表 7-8

		租 成	Δn	Δni	(IV)
.	Δ	C ₅ H ₁₁ - (H)- C ₃ H ₇ 100%	0.02		
9	В	$C_4H_9 \xrightarrow{N} \bigcirc C_0 C_0 C_0 C_0$ $C_5H_{11} \xrightarrow{N} \bigcirc C_0 C_0 C_0$	0.168	1.206	
	·	C7H15 - CN - CN 30%			
	С	C4 H 9 - O - O - C5H11 100%	0.37		
	,	A28%+862%+CIO%	0.156	1.183	6.69

【表31】

表 7-9

		組 成	Δn	Δni	(IV)
	Δ	$C_3H_7 - H - O - O - C_2H_5$ 50% $C_3H_7 - H - O - O - C_4H_9$ 50%	0.075	1.061	v
10	8	C ₅ H _{II} - O - O - CN 61% C ₆ H _{I3} - O - O - CN 39%	0.185	1.219	
	С	C ₈ H ₂₅ - 0; -(O)-(O)- CN 33.4 % C ₅ H ₁₁ -(O)-(O)- CN 66.6 %	0.350	· 	·
		A46% + B41% + C13%	0.163	1.203	6.55

【表32】

表 7-10

į	5. 4. 組成	Δη	Δni	(IV)
	C ₄ H ₉ - ○ - C = C - ○ - 0 - C ₂ H ₅ 30%			
A	$C_5H_{11} - \bigcirc - C = C - \bigcirc - O - CH_3 - 40\%$ $C_5H_{11} - \bigcirc - C = C - \bigcirc - O - C_2H_5 - 30\%$		1.254	
В	C ₄ H ₉ -(H) - COO -(H) - C ₄ H ₉ 50% C ₅ H ₁₁ -(H) - COO -(H) - C ₃ H ₇ 50%	0.039	1.002	· -
	A50% + B50%	0.141	1.209	9.60

【表33】

表 7-11

		組成		Δπ	Δni	(IA)
		C3H7-H- COO-O-O-C2H5	16.7%			
		C ₄ H ₉ -(H)- COO -(O)- O - C ₂ H ₅				
	Α	C5H11-(H) COO-(O) O CH3	16.7%	0.088	1.062	
		C ₃ H ₇ - (H)- COO - (O)- O - C ₄ H ₉	16.7%	0.088	1.062	
12		C ₅ H _{II} -(H)- COO -(O)- O - C ₂ H ₅	16.6%			
		C4H9-H- COO-O- O- CH3	16.6%		. :	
	В	$CH_3 - H - O - C_5H_{11}$ $C_6H_{13} - H - O - C_5H_{11}$	50% 50%	0.138	1.149	
		A50% + B50%		0.112	1.126	2.50

表 7-12

		組成	. <u>۵</u> n	Δni	(IV)
	Δ	C ₅ H ₁₁ - C ₃ H ₇ 100%	0.02		÷
13	. 8	$C_3H_7 - \bigcirc - C \equiv C - \bigcirc - 0 - C_2H_5 = 24\%$ $C_4H_9 - \bigcirc - C \equiv C - \bigcirc - 0 - CH_3 = 24\%$ $C_4H_9 - \bigcirc - C \equiv C - \bigcirc - 0 - C_2H_5 = 24\%$ $C_5H_{11} - \bigcirc - C \equiv C - \bigcirc - 0 - CH_3 = 24\%$ $C_5H_{11} - \bigcirc - C \equiv C - \bigcirc - 0 - C_2H_5 = 4\%$	0.231	1.254	: . !
		A 58 % + B 42%	0.113	1.200	5.36

【表35】

表 7-13

		祖成	Δn	Δni	(JA)
		C ₃ H ₇ -(H)- C00 -(O)- 0 - C ₂ H ₅ 32,2%		·	
	Δ.	C ₄ H ₉ -(H)- COO -(O)- O - C ₂ H ₅ 33.9%	0.088	1.062	í
	·	$C_4H_9 - H - C00 - O - O - C_2H_5$ 33.9% $C_5H_{11} - H - C00 - O - O - CH_3$ 33.9%	*	·	;
14	В	$C_3H_7 - H - O - C_2H_5$ 50% $C_3H_7 - H - O - C_4H_9$ 50%	0.075	1.061	
		A50% + 850%	0.083	1.077	0.65

37

【表36】

7-14

		租 成	Δη	Δni	(IV)
	Α	$C_3H_7 - H - COO - O - C_2H_5$ 32.2% $C_4H_9 - H - COO - O - C_2H_5$ 33.9% $C_5H_{11} - H - COO - O - CH_3$ 33.9%	0.088	1.062	
15	В	$C_3H_7 - H - CH_2CH_2 - O - O - C_2H_5 30\%$ $C_3H_7 - H - CH_2CH_2 - O - O - C_4H_9 30\%$ $C_5H_{11} - H - CH_2CH_2 - O - O - C_2H_5 40\%$	0.079	1.069	
	i	A50% + B50%	0.083	1.066	0.45

【表37】

表 7-15

	. 3	粗成	ΔΠ	Δni .	(IV)
	Δ	$C_3H_7 - H - C00 - H - C_3H_7 = 66.7\%$ $C_4H_9 - H - C00 - H - C_4H_9 = 16.7\%$ $C_5H_{11} - H - C00 - H - C_3H_7 = 16.7\%$	0.039	1.002	
16	В	C ₄ H ₉ H H CH ₂	0.041	1.010	
# (A)	i a kili. Girik ki	CH ₂ CH ₂ CH= CH ₂ C ₇ H ₁₅ H H CH ₂ CH ₂ CH= CH ₂ 40%	-		
1.4		A50% + B50%	0.038	1.013	0.20

【表38】

表 7-16

		組 成	Δn	ΔΠΙ	(VI)
17	Δ	C ₆ H _{I3} -(H)-(O)- N = C = S 100%	0.152	1.156	
	В	$CH_2 = CH - H - O - CN$ 25% $C_2H_4 = CH - H - O - CN$ 25% $CH_2 = C_3H_5 - H - O - CN$ 25% $C_2H_4 = C_3H_5 - H - O - CN$ 25%	0.152	1.10 7	
		A50% + B50%	0.148	1.131	0.40

【表39】

39

-8-		組成	Δn	Δni	(IA)
18	Δ	$C_3H_7 - H - O - O - C_2H_5 = 50\%$ $C_3H_7 - H - O - O - C_4H_9 = 50\%$	0.075	1.061	
	æ	$CH_{3} - O - C_{2}H_{4} - H - H - O_{F} = 25\%$ $CH_{3} - O - C_{3}H_{6} - H - H - O_{F} = 25\%$ $CH_{3} - O - C_{4}H_{8} - H - H - O_{F} = 25\%$ $CH_{3} - O - C_{5}H_{10} - H - H - O_{F} = 25\%$	0.076	1.026	,
<u></u>		A50% + B50%	0.078	1.058	0.25

(但し、表7中、Anは600nmにおける複屈折率を 示し、Aniは450nmにおける複屈折率/650n 20 波段分散の大きい液晶組成物を得ることができる。 mにおける複屈折率の値を示す。また、(IV)は前記 関係式 (IV) により得られる値を示す。)

【0069】表7の結果から明らかなように、前記関係 式(1V)から得られる値を1以下になるように液晶組 成物を調製すると、その調製した液晶組成物の波長分散 は小さくなった。

【0070】また、前記関係式(IV)から得られる値 を2以上になるように液晶組成物を調製すると、その調 製した液晶組成物の液長分散は大きくなった。より好ま 【0076】請求項5配載の液晶組成物では、請求項4 しくは前記値を5以上の値を有する液晶組成物がよい。

【0071】 (調製例5) 実施例1ないし実施例3で得 た液晶組成物を、厚さ6~8 μ mからなる液晶セルのな かに注入し、表示素子を作成した。ついでこれを室温ま で放冷して、FST-LCDを得た。このFST-LC Dには着色が認められず、充分なコントラストが得られ

[0072]

【発明の効果】請求項1記載の液晶組成物の調製方法に おいては、該液晶組成物の複屈折率よりも大きい複屈折 率を有する液晶化合物を少なくとも一種以上含有してな 40 分散の関係を示すグラフ る第一成分と、該液晶組成物の複屈折率よりも小さい複 【図3】骨格の異なる液晶化合物からなる液晶組成物 屈折率を有する液晶化合物を一種以上含有じてなる第二 しょり 資格が同じ液晶化合物からなる液晶組成物とを混合 成分とを、混合するので波長分散の大きい液晶組成物を 得ることができる。

【0073】請求頃2記載の液晶組成物の調製方法で は、請求項1の第一成分の液晶化合物と第二成分の液晶

化合物とに骨格の異なる液晶化合物を用いるので、より

【0074】請求項3記載の液晶組成物では、請求項1 または請求項2記載の液晶組成物の調製方法によって液 晶組成物を得るので、その液晶組成物は波長分散の大き いものとなる。

40

【0075】請求項4記載の液晶組成物の調製方法にお いては、該液晶組成物の複屈折率とほぼ等しい複屈折率 を有する液晶化合物を少なくとも二種以上混合するの で、波長分散の小さい液晶組成物を得ることができる。

30 の液晶組成物の調製方法によって液晶組成物を得るの で、その液晶組成物は波長分散の小さいものとなる。

【0077】請求項6記載の液晶表示素子では、これら の液晶組成物の調製方法により調製した液晶組成物を使 用するので、着色がなくかつ充分なコントラストを有す る液晶表示素子が得られる。

【図面の簡単な説明】

【図1】位相差フィルムのリタデーションの波長分散を 示すグラフ

【図2】液晶組成物および液晶化合物の複屈折率と波長

して得た液晶組成物の波長分散を示すグラフ

【図4】液晶組成物の波長分散と関係式(IV)により 得られる値との関係を示すグラフ

【図2】

【図3】

THIS PAGE BLANK (USPTO)

The second of th

Table 8 - Street Land Control of the Control Karling and the Grant and the contract of the