Schaltungsanalys & -synthese

Digitale Schaltungen werden als Verknüpfungsschaltungen für Steuerungsaufgaben verwendet. Der Entwurf wird Schaltungssynthese genannt. Es geht darum, mit minimalen Gatterbausteinen die für erforderliche Schaltung zu realisieren.

Folgende Strategie für die Synthese ist einzuhalten:

- Benennung der Eingangs- und Ausgangsvariablen (Eingangsvariablen: A, B, C, D, E1, E2, E3, Ausgangsvariablen: Z, X, Y, V1, V2, V3,)
- Formulierung der Bedingungen, nach denen für die einzelnen Variablen die logischen Werte 0 und 1 angenommen werden.
- Erstellung der Wahrheitstabelle
- Realisierung der Schaltung mit AND und OR-Gatterbausteinen
- Vereinfachung / Umformung der Schaltung

Erklärungsbeispiel

Schaltungsfunktion bei einer Heizkesselüberwachung

Die Heizung soll nur eingeschaltet werden, wenn ausreichend Wasser sich im Kessel befindet und die Kesseltemperatur noch nicht einen einstellbaren Höchstwert er- reicht hat und der Hauptschalter geschlossen ist.

Fall	C	В	A	Z		
1	0	0	0	0		
2	0	0	1	0		
3	0	1	0	0		
4	0	1	1	0		
5	1	0	0	0		
6	1	0	1	1		
7	1	1	0	0		
8	1	1	1	0		

Für die Ausgangsvariable Z kann folgende Bedingung formuliert werden: Wenn Wasser im Kessel ist (A=1) und die Temperatur den Höchstwert NICHT erreicht hat (B=0) und Schalter EIN (C=1)dann ist Heizung einzuschalten (Z=1)

Vorgehensweise im einzelnen (1)

Schritt 1:

Beschreibung der Funktion zu der gesuchten Funktion: Die Heizung dar nur dann einschalten, wenn der Füllstand ausreichend und wenn die Temperatur nicht den Höchststand erreicht hat und wenn der Hauptschalter geschlossen ist.

Schritt 2:

Festlegung der Eingangs- und Ausgangsvariablen:

A = Status Füllstand

A = 1 bedeutet, Füllstand ist ausreichend

B = Status Temperatur Höchststand

B = 0 bedeutet, Temperatur ist nicht auf Höchststand

C = Status Hauptschalter

C = 1 bedeutet, Hauptschalter ist ein

Vorgehensweise im einzelnen (2)

Schritt 3: Wahrheitstabelle

Fal	l C	B	Α	∥ Z							
1	0	0	0	0							
2	0	0	1	0							
3	0	1	0	0							
4	0	1	1	0							
5	1	0	0	0							
6	1	0	1	1		7	= A	\	B	^	C
7	1	1	0	0			•	• • •		•	
_ 8	1	1	1	0							

Vorgehensweise im einzelnen (3)

Schritt 4: Bestimmung der logischen Verknüpfungsschaltung

Die Verknüpfungen der Eingangsvariablen mit UND ODER, NICHT Elementen führt meistens zu einer möglichen Schaltung.

Normalformen

Normalformen (NF) bezeichnet man in der Mathematik bestimmte vereinbarte Gleichungsformen. Gleichungen lassen sich in Normalformen überführen.

Es gibt die ODER- (disjunktive) sowie die UND-Normalform (konjunktive).

Definition:

Eine Vollkonjunktion ist eine UND-Verknüpfung, in der alle vorhandenen Variablen (negiert/nicht negiert) vorkommen. Die ODER-NF ist die Form einer schaltalgebraischen Gleichung, in der Vollkonjunktionen miteinander durch ODER verknüpft sind.

Vorgehensweise im einzelnen (4)

Schritt 5: Schaltungsvereinfachung / Umformung auf ausschließ- liche Verwendung von NAND oder NOR-Bausteinen

$$Z = A \wedge \overline{B} \wedge C = \overline{\overline{A} \wedge \overline{B} \wedge C} = \overline{\overline{A} \vee B \vee \overline{C}}$$

ODER-Normalform

Definition:

Eine ODER-NF besteht aus mehreren Vollkonjunktionen, die durch ODER verknüpft sind. Sie kann auch nur aus einer einzigen Vollkonjunktion bestehen.

Beispiel für zwei Variablen A und B:

ODER-Normalform

Man kann die ODER-NF direkt aus der Wahrheitstabelle erstellen, Wenn man alle 1-Zustände der Ausgangsvariable nimmt und alle logischen Verknüpfungen dieser Zustände mit ODER verknüpft.

Beispiel mit Rückverwandlung einer ODER-NF in eine Wahrheitstabelle

Fall	C	В	A	Z	
1	0	0	0	0	
2	0	0	1	1	⇒ AABAC
3	0	1	0	0	20
4	0	1	1	0	
5	1	0	0	1	⇒ ĀABAC
6	1	0	1	0	
7	1	1	0	0	
8	1	1	1	1	⇒ AABAC

UND-Normalform

Definition:

Eine UND-NF besteht aus mehreren Volldisjunktionen, die durch UND verknüpft sind. Sie kann auch nur aus einer einzigen Volldisjunktion bestehen.

Beispiele für Volldisjunktionen für die Variablen A und B

Wenn man das Arbeiten mit der ODER-NF kann, benötigt man die UND-NF nicht. Es ist jedoch leicht möglich, die beiden NF ineinander zu überführen.

Überführung der beiden Normalformen

Gegeben ist eine UND-NF. Gesucht ist die gleichwerte ODER-NF.

$$Z = (A \vee \overline{B}) \wedge (\overline{A} \vee B)$$

$$Z = (A \vee \overline{B}) \wedge (\overline{A} \vee B)$$

$$Z = \overline{(A \vee \overline{B}) \wedge (\overline{A} \vee B)}$$

$$Z = \overline{(A \vee \overline{B})} \vee \overline{(\overline{A} \vee B)}$$

$$Z = \overline{(\overline{A} \wedge B) \vee (A \wedge \overline{B})}$$

$$\overline{Z} = (\overline{A} \wedge B) \vee (A \wedge \overline{B})$$

Vereinfachung / Umformung der ODER-Normalform

Ergebnis:

Aus der ODER-NF ergibt sich eine Schaltung, welche die zugehörige Wahrheitstabelle erfüllt. Sie ist nicht unbedingt die einfachste mögliche Schaltung.

Beispiel 1:

$$Z = (A \wedge B) \vee (A \wedge \overline{B})$$

$$Z = (A \wedge B) \vee (A \wedge \overline{B})$$

$$Z = A \wedge (B \vee \overline{B}) = A \wedge 1 = A$$

Beispiel

$$Z = (\overline{A} \wedge B \wedge \overline{C}) \vee (\overline{A} \wedge \overline{B} \wedge C) \vee (\overline{A} \wedge \overline{B} \wedge \overline{C})$$

$$Z = \overline{A}$$

Vereinfachungen

Die Vereinfachungen werden durchgeführt unter Anwendung der Schaltalgebra (Gesetze, Rechenregeln und Theoreme). Die ODER-NF kann mit Grundgliedern NAND- oder NOR- realisiert

Beispiel 1:

$$Z = (\overline{A} \wedge B \wedge \overline{C}) \vee (A \wedge \overline{B} \wedge C)$$

$$Z = \overline{\overline{A} \wedge B \wedge \overline{C}} \wedge \overline{A \wedge \overline{B} \wedge C}$$

Beispiel

$$Z = (\overline{A} \wedge B \wedge \overline{C}) \vee (A \wedge \overline{B} \wedge C)$$

$$Z = \overline{\overline{A \vee \overline{B} \vee C} \vee \overline{\overline{A} \vee B \vee \overline{C}}}$$

