Transformée de Fourier-Plancherel 1

Leçons: 207, 234, 235, 240, 201, 202, 208, 241

[Far], section IX.2 [Rud], lemme 4.16

Théorème

Soit
$$f \in L^1 \cap L^2$$
. On rappelle que $\forall x \in \mathbb{R}$, $\widehat{f}(x) = \int_{\mathbb{R}} f(t) e^{-ixt} dt$.
Alors $\widehat{f} \in L^2$ et $||f||_2 = \frac{1}{\sqrt{2\pi}} ||\widehat{f}||_2$.

Démonstration:

Étape 1: On définit $\widetilde{f}: x \to \overline{f(-x)}$ et $g = f \star \widetilde{f}$. Ainsi, $\forall x \in \mathbb{R}, g(x) = \int_{\mathbb{R}} f(y)\widetilde{f}(x-y) \, \mathrm{d}y = \int_{\mathbb{R}} f(x+y)\overline{f(y)} \, \mathrm{d}y$ et $g(0) = \int_{\mathbb{R}} |f(y)|^2 \, \mathrm{d}y = \|f\|_2^2$. On $a: \forall x \in \mathbb{R}, \widehat{\widetilde{f}}(x) = \int_{\mathbb{R}} \overline{f(-t)} \mathrm{e}^{-\mathrm{i}xt} \, \mathrm{d}t = \int_{\mathbb{R}} f(u) \mathrm{e}^{-\mathrm{i}xu} \, \mathrm{d}u = \widehat{\widehat{f}(x)}$ et $\widehat{g} = \widehat{f} \star \widehat{f} = \widehat{f} \widehat{\widetilde{f}} = \left|\widehat{f}\right|^2$. Par inégalité de Young², comme $f, \widetilde{f} \in L^1$, alors $g \in L^1$ et $\|g\|_1 \leqslant \|f\|_1 \|\widetilde{f}\|_s$.

Et par propriété de régularisation³, comme $f, \tilde{f} \in L^2$, alors $g \in C^0$ et $\|g\|_{\infty} \leq \|f\|_2 \|\tilde{f}\|_2$.

Étape 2: Introduisons une partition de l'unité.

On pose, pour $n \in \mathbb{N}^*$ et $t \in \mathbb{R}$: $\Phi_n(t) = e^{-\frac{|t|}{n}}$; pour $x \in \mathbb{R}$:

$$\varphi_n(x) = \frac{1}{2\pi} \widehat{\Phi}_n(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-\frac{|t|}{n} - ixt} dt = \frac{1}{2\pi} \int_{\mathbb{R}^-} e^{\frac{t}{n} - ixt} dt + \frac{1}{2\pi} \int_{\mathbb{R}^+} e^{-\frac{t}{n} - ixt} dt$$
$$= \frac{1}{2\pi} \left(\frac{1}{\frac{1}{n} - ix} - \frac{1}{-\frac{1}{n} - ix} \right) = \frac{n}{2\pi} \left(\frac{1}{1 - inx} + \frac{1}{1 + inx} \right) = \frac{1}{\pi} \frac{n}{1 + n^2 x^2}$$

Or
$$(\varphi_n \star g)(0) = \int_{\mathbb{R}} \varphi_n(y)g(-y) \, dy = \frac{1}{2\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} \Phi_n(t) e^{-iyt} \, dt g(-y) \, dy.$$

On va utiliser Fubini car $\int_{\mathbb{R}} \int_{\mathbb{R}} |\Phi_n(t)| \left| e^{-iyt} \right| dt \left| g(-y) \right| dy = \|\Phi_n\|_1 \|g\|_1 < +\infty$:

$$\left(\varphi_n \star g\right)(0) = \frac{1}{2\pi} \int_{\mathbb{R}} \Phi_n(t) \int_{\mathbb{R}} e^{-iyt} g(-y) \, dy \, dt = \frac{1}{2\pi} \int_{\mathbb{R}} \Phi_n(t) \overline{\widehat{g}(t)} \, dt = \frac{1}{2\pi} \int_{\mathbb{R}} \Phi_n(t) \left| \widehat{f}(t) \right|^2 \, dt$$

Étape 3 : Montrons que $\lim_{n\to\infty} (\varphi_n \star g)(0) = g(0)$.

Soit $\varepsilon > 0$, comme g est continue : $\exists \eta > 0, \forall x \in \mathbb{R}, |x| < \eta \Rightarrow |g(x) - g(0)| < \varepsilon$. Ainsi :

$$|(\varphi_n \star g)(0) - g(0)| = \left| \int_{\mathbb{R}} \varphi_n(y)g(-y) \, \mathrm{d}y - \int_{\mathbb{R}} \varphi_n(y)g(0) \, \mathrm{d}y \right|$$

$$\leq \underbrace{\int_{-\eta}^{\eta} \varphi_n(y)|g(-y) - g(0)| \, \mathrm{d}y}_{\leqslant \varepsilon} + \underbrace{\int_{|y| > \eta} \varphi_n(y)|g(-y) - g(0)| \, \mathrm{d}y}_{\leqslant 2||g||_{\infty} \int_{|y| > \eta} \varphi_n(y) \, \mathrm{d}y \xrightarrow{\longrightarrow} 0}$$

Donc pour *n* assez grand, $|(\varphi_n \star g)(0) - g(0)| \leq 2\varepsilon$.

^{1.} On n'hésitera pas à sauter les calculs qui donnent $\varphi_n(x)$; on admettra l'inversion de la transformée de Fourier dans $\mathcal{S}(\mathbb{R})$, et la densité de $L^1 \cap L^2$ dans L^2 (sauf dans la 235).

^{2.} Inégalité de Young : Soient $p, q \in [1, +\infty]$, tels que $\frac{1}{p} + \frac{1}{q} \ge 1$. Soit r vérifiant $1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$. Si $f \in L^p$ et $g \in L^q$, alors $f \star g \in L^r$ et $||f \star g||_r \le ||f||_p ||g||_q$.

^{3.} Soient $p, p' \in [1, +\infty]$ deux exposants conjugués. Si $f \in L^p$ et $g \in L^{p'}$, alors $f \star g$ est uniformément continue et bornée et $||f \star g||_{\infty} \leq ||f||_p ||g||_{p'}$.

Étape 4: Concluons!

Par convergence monotone, puisque $0 \leqslant \Phi_n \left| \widehat{f} \right|^2 \leqslant \Phi_{n+1} \left| \widehat{f} \right|^2$, on a : $\lim_{n \to \infty} (\varphi_n \star g) (0) = \frac{1}{2\pi} \int_{\mathbb{R}} \left| \widehat{f}(t) \right|^2 dt$. D'où $||f||_2^2 = \frac{1}{2\pi} ||\widehat{f}||_2^2$, montrant également que $\widehat{f} \in L^2$.

Théorème

La transformée de Fourier, définie sur $L^1 \cap L^2$, se prolonge en un isomorphisme, proportionnel à une isométrie, de L² sur L².

Démonstration:

Étape 1 : $L^1 \cap L^2$ est dense dans L^2 . Si $f \in L^2$, alors $f_n = \mathbb{1}_{[-n,n]} f \in L^1 \cap L^2$ et par convergence dominée : $\|f - f_n\|_2 \underset{n \to \infty}{\longrightarrow} 0$.

Étape 2 : Montrons qu'on prolonge ainsi la transformée de Fourier à L² tout entier.

Soit (f_n) une suite de $L^1 \cap L^{\times}$ qui tend vers f dans L^2 .

Comme $\|\widehat{f_n} - \widehat{f_m}\|_{2} = \sqrt{2\pi} \|\widehat{f_n} - f_m\|_2$, donc $(\widehat{f_n})$ est de Cauchy dans L² qui est complet donc

converge; on note \hat{f} sa limite. Soit (g_n) une autre suite de $L^1 \cap L^2$ qui tend vers f dans L^2 .

On pose $h_{2n} = f_n$ et $h_{2n+1} = g_n$, pour $n \in \mathbb{N}$; ainsi $h_n \stackrel{\|\cdot\|_2}{\underset{n \to \infty}{\longrightarrow}} f$.

Ainsi $(\widehat{h_n})$ est de Cauchy donc converge dans L^2 , donc $(\widehat{f_n})$ et $(\widehat{g_n})$ ont même limite.

Cela montre donc que \hat{f} est indépendant de la suite convergeant vers f.

Et par passage à la limite dans $\|f_n\|_2 = \frac{1}{\sqrt{2\pi}} \|\widehat{f}_n\|_2$, il vient $\|f\|_2 = \frac{1}{\sqrt{2\pi}} \|\widehat{f}\|_2$.

Étape 3: Montrons que la transformée de Fourier est une bijection de $\mathcal{S}(\mathbb{R})$ sur lui-même.

Par intégrations par parties successives, on montre que :

$$\forall k, p \in \mathbb{N}, (\mathrm{i}t)^k \widehat{f}^{(p)}(t) = \int_{\mathbb{R}} \mathrm{e}^{-\mathrm{i}tx} \frac{\partial^k}{\partial x^k} \left((-\mathrm{i}x)^p f(x) \right) \, \mathrm{d}x$$

Cela fournit donc : $f \in \mathcal{S}(\mathbb{R}) \Rightarrow \widehat{f} \in \mathcal{S}(\mathbb{R})$.

Ainsi, si $f \in \mathcal{S}(\mathbb{R})$, alors $\widehat{f} \in L^1$, et la formule d'inversion de la transformée de Fourier fournit : $f(x) = \frac{1}{2\pi}\widehat{\widehat{f}(-x)}$.

Étape 4 : On en déduit que l'image de L^2 par $\, \hat{} \,$ est dense et fermée dans L^2 . On a : $\mathcal{C}_C^\infty(\mathbb{R}) \subset \mathcal{S}(\mathbb{R}) \subset \text{Im } (\, \hat{} \,) \subset L^2(\mathbb{R})$, donc Im $(\, \hat{} \,)$ est dense dans $L^2(\mathbb{R})$.

Soit $g \in L^2(\mathbb{R})$, comme Im (^) est dense dans $L^2(\mathbb{R}) : \exists (f_n) \in L^2(\mathbb{R})^{\mathbb{N}}$, $\widehat{f_n} \underset{n \to \infty}{\longrightarrow} g$.

Donc $(\widehat{f_n})$ est de Cauchy, alors (f_n) est de Cauchy dans L^2 donc converge vers $f \in L^2(\mathbb{R})$.

Par continuité de \hat{f} : $f_n \xrightarrow[n \to \infty]{L^2} f$ donc $\widehat{f}_n \xrightarrow[n \to \infty]{L^2} \widehat{f}$ d'où $g = \widehat{f}$.

Donc Im ($^{\hat{}}$) = L²(\mathbb{R}).

Références

[Far] J. FARAUT – Calcul intégral, EDP Sciences, 2006.

[Rud] W. RUDIN – Analyse réelle et complexe, 3e éd., Dunod, 2009.