BERTによる擬似訓練データ生成に基づく述語項構造解析

今野颯人^{1*}〇,松林優一郎^{1,2},清野舜^{2,1},高橋諒^{1,2},大内啓樹^{2,1},乾健太郎^{1,2} * ryuto@ecei.tohoku.ac.jp 1. 東北大学 2. 理化学研究所

述語項構造解析: 述語とその項の間の関係を解析する

文内ゼロのF₁値 58%[1]

ゼロ照応解析の精度向上が主要な課題

仮説

訓練事例数が足りていないため精度が低い

・ゼロの事例数は約1.6万 (全体の20%程度)

擬似訓練データ生成による事例数の増加

- ・BERTにより自然な文を生成
- ・項のバリエーションを増やす

2. 擬似訓練データ生成

項を異なる単語に置き換えて訓練事例を増やす

訓練データ …離党 問題 について「政権 に 影響 を 及ぼす…

BERT^[2]の予測単語で置き換え

擬似データ …離党 届 について「政権 に 影響 を 及ぼす…

新しく作られた文を文中の全ての項を学習に使う

文中の項を1つずつBERTの予測確率が best

最も高い単語に置き換える

文中の項を1つずつBERTの予測した確率分 sampling 布からサンプリングした単語に置き換える

sampling-multi 文中の全ての項を同時にsamplingで

3.3 擬似訓練データによるデータサイズ別解析精度

40

70.78

73.41

73.70

73.71

73.32

73.55

72.53

best (pretrain)

20

BASE

best

samp

samp-multi

best

samp

samp-multi

sampling (pretrain)

置き換える. これをn事例作る (n=5)

cons データサイズ100%では

80 データサイズ (%)

ZERO

54.71

53.56

53.40

50.95

54.00

53.79

52.78

データサイズ100%

90.22

89.67

89.68

89.17

89.86

89.82

83.48

82.89

82.85

82.16

83.13

83.09

82.93

精度向上せず

pros データサイズが小さい時に有効

ZERO

37.76

38.77

39.56

38.63

39.74

39.50

38.15

60

データサイズ5%

DEP

79.21

81.67

81.98

81.95

81.46

81.74

88.08

3. 実験

mix

学習方法

擬似訓練データと真の訓練データを混ぜる

pretrain 疑似訓練データで事前学習後,

真の訓練データでfine-tune

実験設定

4. 考察

モデル Matsubayashi+'18[] ベースモデル

(10層 Bi-GRU)

3種類 seed

学習率 {0.001, 0.0005, 0.0001}から探索

その他ハイパラ Matsubayashi+'18[1] に準拠

3.1 擬似訓練データ生成による事例数の増加

	ALL	DEP	ZERO
BASE	83,941	67,246	16,695
best	346,266	266,382	79,884
sampling	346,266	266,382	79,884
sampling-multi	419,705	336,230	83,475

約4倍 増大

3.2 擬似訓練データによる解析精度 精度向上せず

Q. データサイズが上がるにつれて精度のゲインが小さくなるのはなぜか

BASE F_1 : 83.48 > 1 1 1 1 1 83.13

A. データサイズが上がるにつれて、擬似訓練データによる未知の項に対するカバーが少なくなるため

80

78

74

mix

pretrain

未知の項:開発データに出現するが 訓練データに出現しない項

未知の項に対する 解析精度は著しく低い

Dev Datasetにおける未知の項の解析精度 DEP事例数 ZERO ZERO事例数

3391 BASE 82.23 88.36 13880 53.26 BASE (既知の項) 82.68 88.95 53.68 3157 12671 BASE (未知の項) 77.29 82.15 1209 47.38 234

訓練データサイズ別のDev Datasetでの既知な項の種類数

5. Future work

未知語をカバーしたい

- トランスダクティブ学習
 - 評価データでBERTをfine-tune

項の置き換えでは増える情報量が少ない

- ・述語と項を同時に置き換える
- ・chunk全体をBERTに予測させ、置き換える
- ・生文から擬似データを生成
 - 直接係り受けありの解析結果からゼロ事例を作成

[1] Yuichiroh Matsubayashi, Kentaro Inui:Distance-Free Modeling of Multi-Predicate Interactions in End-to-End Japanese Predicate-Argument Structure Analysis. COLING 2018 [2] 柴田 知秀, 河原 大輔, 黒橋 禎夫: BERTによる日本語構文解析の精度向上, 言語処理学会 第25回年次大会, pp.205-208, 名古屋, (2019.3).