MCQ I

- **2.1** The number of significant figures in 0.06900 is
 - (a) 5
 - (b) 4
 - (c) 2
 - (d) 3
- **2.2** The sum of the numbers 436.32, 227.2 and 0.301 in appropriate significant figures is
 - (a) 663.821
 - (b) 664
 - (c) 663.8
 - (d) 663.82
- **2.3** The mass and volume of a body are 4.237 g and 2.5 cm³, respectively. The density of the material of the body in correct significant figures is

- (a) 1.6048 g cm⁻³
 (b) 1.69 g cm⁻³
 (c) 1.7 g cm⁻³
- **2.4** The numbers 2.745 and 2.735 on rounding off to 3 significant figures will give
 - (a) 2.75 and 2.74

(d) 1.695 g cm⁻³

- (b) 2.74 and 2.73
- (c) 2.75 and 2.73
- (d) 2.74 and 2.74
- 2.5 The length and breadth of a rectangular sheet are 16.2 cm and 10.1cm, respectively. The area of the sheet in appropriate significant figures and error is
 - (a) $164 \pm 3 \text{ cm}^2$
 - (b) $163.62 \pm 2.6 \text{ cm}^2$
 - (c) $163.6 \pm 2.6 \text{ cm}^2$
 - (d) $163.62 \pm 3 \text{ cm}^2$
- **2.6** Which of the following pairs of physical quantities does not have same dimensional formula?
 - (a) Work and torque.
 - (b) Angular momentum and Planck's constant.
 - (c) Tension and surface tension.
 - (d) Impulse and linear momentum.

Measure of two quantities along with the precision of respective measuring instrument is

You measure two quantities as $A = 1.0 \text{ m} \pm 0.2 \text{ m}$, $B = 2.0 \text{ m} \pm 0.2 \text{ m}$.

- $A = 2.5 \text{ m s}^{-1} \pm 0.5 \text{ m s}^{-1}$ $B = 0.10 \text{ s} \pm 0.01 \text{ s}$
 - The value of AB will be
 - (a) (0.25 ± 0.08) m
 - (b) (0.25 ± 0.5) m (c) (0.25 ± 0.05) m
 - (d) (0.25 ± 0.135) m
- We should report correct value for \sqrt{AB} as:

2.7

2.8

- (a) $1.4 \text{ m} \pm 0.4 \text{ m}$
 - (b) $1.41m \pm 0.15 m$ (c) $1.4m \pm 0.3 m$
 - (d) $1.4m \pm 0.2 m$

2.9	Which of the following measurements is most precise?
	(a) 5.00 mm (b) 5.00 cm (c) 5.00 m (d) 5.00 km.
2.10	The mean length of an object is 5 cm. Which of the following measurements is most accurate?
	(a) 4.9 cm (b) 4.805 cm (c) 5.25 cm (d) 5.4 cm
2.11	Young's modulus of steel is $1.9 \times 10^{11} \text{N/m}^2$. When expressed in CGS units of dynes/cm ² , it will be equal to (1N = 10^5 dyne, $1\text{m}^2 = 10^4 \text{cm}^2$)
	(a) 1.9×10^{10} (b) 1.9×10^{11} (c) 1.9×10^{12} (d) 1.9×10^{13}
2.12	If momentum (P) , area (A) and time (T) are taken to be fundamental quantities, then energy has the dimensional formula
	(a) (P ¹ A ⁻¹ T ¹) (b) (P ² A ¹ T ¹) (c) (P ¹ A ^{-1/2} T ¹) (d) (P ¹ A ^{1/2} T ⁻¹)