Высокопроизводительные вычисления Лабораторная работа №1

Срок сдачи: 29.02.24

<u>Указание.</u> При решении заданий разрешается использовать лишь функции и методы NumPy, т. е. массивы должны быть массивами NumPy, нельзя использовать циклы, условные операторы, списковые включения, генераторы и т. д. Циклы разрешается использовать для вывода данных на экран.

Список вариантов

Варианты заданий	
8, 17, 26	Дедяева Дарья Александровна
2, 14, 27	Денисова Наталия Николаевна
9, 11, 28	Иванчук Александра Дмитриевна
6, 12, 24	Исмагилов Матвей Георгиевич
4, 7, 20	Капланов Заур Джамалович
7, 14, 18	Кузьмин Илья Евгеньевич
3, 10, 23	Островский Артём Витальевич
16, 18, 22	Руденко Кирилл Вячеславович
5, 13, 21	Садыков Тимур Наилевич
8, 13, 19	Степанов Алексей Игоревич
6, 17, 20	Сулейманова Саида Сулеймановна
9, 19, 22	Усманов Ильнур Ленарович
1, 15, 25	Янченко Ксения Сергеевна

Задания

1. Создайте массив размера $n \times m$ заполненный нулями и единицами в шахматном порядке. Например, для массива 3×3 :

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

2. Создайте массива размера $n \times n$, на главной диагонали которого стоят числа от 1 до n, ниже главной диагонали элементы равны -1, а выше главной диагонали равны 1. Например, для массива 3×3 :

$$\begin{pmatrix}
1 & 1 & 1 \\
-1 & 2 & 1 \\
-1 & -1 & 3
\end{pmatrix}$$

- 3. Создать массив размера $n \times n$, заполненный случайными целыми числами в пределах от 0 до 100. Пусть m среднее значение элементов этого массива. Обнулить все элементы массива, которые больше чем $\frac{m}{2}$ и меньше, чем $\frac{3m}{2}$.
- 4. На основе заданного вектора целых чисел создать новый вектор, который получается из

исходного вставкой двух нулей между его элементами. Например, если исходный вектор имеет вид [1, 2, 3, 4, 5], то результирующий вектор должен иметь вид:

$$[1, 0, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0, 5]$$

- 5. Написать функцию, которая принимает в качестве аргумента целочисленный массив размера $n \times n$ и возвращает True, если на главной диагонали этого массива стоят единицы, и False в противном случае.
- 6. Написать функцию, которая принимает в качестве аргумента целочисленный массив размера $n \times m$ и возвращает True, если в данном массиве есть элемент, равный среднему значению элементов этого массива, и False в противном случае.
- 7. Создать целочисленный массив размера $n \times n$, у которого ниже главной диагонали расположены нули, а остальные элементы равны числам 1, 2, 3 и т. д., расположенным по строкам. Например, для массива размера 4×4 :

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & 5 & 6 & 7 \\
0 & 0 & 8 & 9 \\
0 & 0 & 0 & 10
\end{pmatrix}$$

8. Создать целочисленный массив размера $n \times n$, у которого все элементы ниже главной диагонали равны -1, а остальные элементы равны 1. Например, для массива размера 4×4 :

- 9. Дан целочисленный вектор размера n. Пусть m среднее значение элементов этого вектора. Увеличить на 1 те элементы вектора, которые меньше m, и уменьшить на 1 те элементы, которые больше или равны m.
- 10. Создать массив размера $n \times n$, на k диагоналях которого стоят единицы, а остальные элементы равны 0 (k нечетное число). Например, если n = 5, k = 3:

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

11. Для двух заданных массивов A и B одинакового размера вычислить результат поэлементной операции (A+B)*(-A/2) без создания копий и использования оператора присваивания.

Указание. Использовать аргумент **out** для функций NumPy.

12. Для двух заданных массивов A и B одинакового размера вычислить результат поэлементной операции $\sin(\cos(A)) + \cos(\sin(B))$ без создания копий и использования

оператора присваивания.

Указание. Использовать аргумент **out** для функций NumPy.

- 13. Создать массив размера $n \times n$, заполненный случайными целыми числами в пределах от 0 до 100. Пусть m – среднее значение элементов этого массива. Найти индексы элемента, который меньше всего отличается от среднего значения m.
- 14. Создать массив A размера $n \times n$, заполненный случайными целыми числами в пределах от 0 до 100. Далее создать новый массив B размера $2 \times n$ следующим образом:
- 1) j-й элемент 0-й строки массива B есть максимум j-го столбца массива A;
- 1) j-й элемент 1-й строки массива B есть минимум j-го столбца массива A .
- 15. Создать матрицу Вандемонда для размера $n \times n$ для чисел 1,2,3,...,n. Элементы a_{ik} этой матрицы должны определятся по формуле $a_{ik}=i^{k-1},\ i=1,2,...,n,\ k=1,2,...,n$. Например, если n=4:

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{pmatrix}$$

16. Матрица Гильберта H это симметричная квадратная матрица, элементы которой определяются по формуле $H_{ij}=1/(i+j-1)$, i=1,2,...,n, j=1,2,...,n. Создать матрицу определяются по формуле --y Гильберта размера $n \times n$. Например, если n=3: $\begin{pmatrix} 1. & 0.5 & 0.333333 \\ 0.5 & 0.333333 & 0.25 \\ 0.333333 & 0.25 & 0.2 \end{pmatrix}$

$$\begin{pmatrix} 1. & 0.5 & 0.333333 \\ 0.5 & 0.333333 & 0.25 \\ 0.333333 & 0.25 & 0.2 \end{pmatrix}$$

- 17. Создать массив A размера $n \times n$, заполненный случайными целыми числами в пределах от 0 до 100. Пусть m – среднее значение элементов этого массива. Вывести на экран все элементы массива A большие, чем m, а также их индексы.
- 18. Пусть A, B, C, D матрицы размера $n \times n$. A единичная матрица, B матрица, заполненная единицами, C – матрица, заполненная нулями, D – матрица заполненная случайными числами. Создать матрицу F размера $2n\times 2n$ со следующей структурой:

$$F = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

19. Создать матрицу размера $n \times n$, элементы главной диагонали которой равны -1, а элементы побочной диагонали равны 1. Например, если n=4:

$$\begin{pmatrix} -1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix}$$

20. Создать матрицу размера $n \times n$ со следующей структурой:

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 & 0 \\ n-1 & 0 & 2 & 0 & \dots & 0 & 0 \\ 0 & n-2 & 0 & 3 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & 0 & n-1 \\ 0 & 0 & 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$

21. Создать матрицу размера $n \times n$ со следующей структурой:

$$\begin{pmatrix}
1 & 2 & 3 & \dots & n-1 & n \\
2 & 3 & 4 & \dots & n & 1 \\
3 & 4 & 5 & \dots & 1 & 2 \\
\dots & \dots & \dots & \dots & \dots \\
n & 1 & 2 & \dots & n-2 & n-1
\end{pmatrix}$$

22. Создать матрицу размера $n \times n$ со следующей структурой:

$$\begin{pmatrix}
1 & 2 & 3 & \dots & n \\
0 & 1 & 2 & \dots & n-1 \\
0 & 0 & 1 & \dots & n-2 \\
\dots & \dots & \dots & \dots & \dots \\
0 & 0 & 0 & \dots & 1
\end{pmatrix}$$

23. Создать матрицу размера $n \times n$ со следующей структурой:

$$\begin{pmatrix}
0 & 2 & 3 & \dots & n \\
-1 & 0 & 3 & \dots & n \\
-1 & -2 & 0 & \dots & n \\
\dots & \dots & \dots & \dots \\
-1 & -2 & -3 & \dots & 0
\end{pmatrix}$$

24 Написать программу, которая находит в заданном целочисленном массиве A размера $m \times n$ номер строки, которая целиком совпадает с заданным вектором v длины n. Например, если

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}, v = \begin{pmatrix} 3 & 4 \end{pmatrix},$$

то результат должен быть равен 1.

- 25. Создать массив A размера $n \times n$, заполненный случайными целыми числами в пределах от 0 до 100. Найти число элементов этого массива равных 50.
- 26. Создать массив A размера $n \times n$, заполненный случайными целыми числами в пределах от 0 до 100. Из каждой строки массива A вычесть среднее значение элементов этой строки.
- 27. Создать массив A размера $n \times n$, заполненный случайными целыми числами в пределах от 0 до 100. Из каждого столбца массива A вычесть минимальный элемент этого столбца.
- 28. Создать два массива A и B размера $n \times n$, заполненных случайными целыми числами в

пределах от 0 до 100. Найти число элементов массива B , больших максимального элемента массива A .