

Kolmogorov's extension theorem

 ${\bf Canonical\ name} \quad {\bf Kolmogorovs Extension Theorem}$

Date of creation 2013-04-12 21:33:32 Last modified on 2013-04-12 21:33:32

Owner Filipe (28191) Last modified by Filipe (28191)

Numerical id 3

Author Filipe (28191) Entry type Theorem Classification msc 60G07 For all t_1, \dots, t_k , $k \in \mathbb{N}$, let v_{t_1,\dots,t_k} be probability measures on \mathbb{R}^{nk} satisfying the following properties (consistency conditions):

- 1. $v_{t_{\sigma(1)},\cdots,t_{\sigma(k)}}(F_1\times\cdots\times F_k)=v_{t_1,\cdots t_k}(F_{\sigma^{-1}(1)}\times\cdots F_{\sigma^{-1}(k)})$ for all permutations σ of $\{1,2,\cdots,k\}$ and for all Borel sets F_i of \mathbb{R}^n
- 2. $v_{t_1,\dots,t_k}(F_1 \times \dots \times F_k) = v_{t_1,\dots,t_k,t_{k+1},\dots t_{k+m}}(F_1 \times \dots \times F_k \times \mathbb{R}^n \times \dots \times \mathbb{R}^n)$ for all $m \in \mathbb{N}$ and for all Borel sets F_i of \mathbb{R}^n

Then there exists a probability space (Ω, \mathcal{F}, P) and a stochastic process X_t on Ω , indexed by T, taking values in \mathbb{R}^n such that

$$v_{t_1,\dots,t_k}(F_1\times\dots\times F_k)=P(X_{t_1}\in F_1,\dots,X_{t_k}\in F_k)$$

for all $t_i \in T, k \in \mathbb{R}^n$ and all Borel sets F_i of \mathbb{R}^n