Instituto de Física e Química (IFQ)

2025.1

Informações da disciplina

Disciplina: QUI016 - Química Geral

Créditos: 64 horas

Sala: X1104

Dia/hora: TER/QUI, 21:00 – 22:40

Pré-requisitos: -

Informações do professor

Nome: Lucas Raposo Carvalho

Sala: Sala C2248, Instituto de Física e Química, 2º andar.

E-mail: lucasraposo@unifei.edu.br

Horário de atendimento: Mediante agendamento por e-mail.

Conteúdo

1	Breve descrição da disciplina	2
2	Bibliografia principal e auxiliar 2.1 Bibliografia principal	2 2 2
3	Objetivos da disciplina	2
4	Formas de avaliação	3
5	Datas importantes	4
6	Calendário	4
7	Ementa	6
	7.1 Módulo 1. Teoria atômica e estrutura eletrônica	6
	7.2 Módulo 2. Ligações químicas	7
	7.3 Módulo 3. Reações químicas e estequiometria	7
	7.4 Módulo 4. Gases	
	7.5 Módulo 5. Líquidos e soluções	7

7.6	Módulo 6. Termodinâmica	8
7.7	Módulo 7. Equilíbrio químico	8
7.8	Módulo 8. Ácidos e bases e outros equilíbrios aquosos	8
7.9	Módulo 9. Cinética química	9
7.10	Módulo 10. Eletroquímica	9

1 Breve descrição da disciplina

Pretende-se preparar os alunos dos cursos de Engenharia de Bioprocessos, Engenharia Química e Licenciatura em Biologia em tópicos centrais de Química que serão úteis em situações acadêmicas e profissionais futuras. Especificamente, serão abordados fundamentos teóricos sobre (i) modelo atômico, (ii) estequiometria, (iii) reações químicas, (iv) ligação química, (v) gases, (vi) líquidos e soluções, (vii) termodinâmica, (viii) equilíbrio químico, (ix) ácido e bases, (x) cinética química e (xi) eletroquímica.

2 Bibliografia principal e auxiliar

2.1 Bibliografia principal

- BROWN, T. L.; LEMAY JR, H. E.; BURSTEN, B. E.; MURPHY, C. J.; WOODWARD, P. M.; STOLTZFUS, M. W. Química: A Ciência Central, 13^a ed. Pearson Education do Brasil, Rio de Janeiro. 1188 pp., 2017;
- 2. ATKINS, P.; JONES, L. Princípios de Química: Questionando a Vida Moderna e o Meio Ambiente, 5^a ed. Bookman, Porto Alegre. 922 pp., **2013**;
- 3. KOTZ, J. C.; TREICHEL, P. M.; TOWNSEND, J. R.; TREICHEL, D. A. Química Geral e Reações Químicas, 10^a ed., vols. 1 e 2. Cengage Learning. 816 pp., 2023.

2.2 Bibliografia auxiliar

1. TRO, N. J. Química - uma abordagem molecular, 3^a ed, vols. 1 e 2. LTC. 680 pp. e 612 pp., **2016**.

3 Objetivos da disciplina

Ao final da disciplina, espera-se que o aluno possua as seguintes habilidades/compentências:

- Saber as principais características do modelo atômico atual e seus impactos nas propriedades dos elementos;
- Dominar cálculos estequiométricos de diferentes tipos;
- Saber identificar os diversos tipos de reações químicas e suas características principais;
- Ter conhecimento das características cruciais dos diferentes tipos de ligação química;
- Dominar a confecção de estruturas de Lewis de compostos químicos e a teoria VSEPR para analisar geometria molecular;
- Ter domínio do tratamento físico-químico de gases em condições ideais e reais;
- Saber as principais características dos diferentes tipos de forças intermoleculares;
- Ter conhecimentos básicos sobre a físico-química de soluções;
- Saber manipular variáveis termodinâmicas como entalpia, entropia e energia livre de Gibbs para processos físicos químicos;
- Dominar descrições físicas de equilíbrios químicos e a lei de Le Chatelier;
- ullet Saber conceitos centrais sobre pH, p $K_{\rm a}$, soluções-tampão, titulações e ácidos polipróticos;
- Ter domínio de conceitos básicos de cinética química, como leis de velocidade de reação, ordens de reação e catálise;
- Saber identificar componentes principais de uma reação redox, calcular números de oxidação e balancear reações redox em diferentes meios;
- Ter domínio das principais características de uma oxirredução e uma eletrólise e manipular as equações que descrevem o fenômeno, incluindo tabelas de potencial de redução.

4 Formas de avaliação

Os alunos serão avaliados por um total de duas provas (P1 e P2) e dois testes (T1 e T2). Cada prova valerá 8 (oito) pontos e cada teste, 2 (dois). A N1 será composta pela P1 e pelo T1, enquanto a N2, pela P2 e pelo T2. Ao final do semestre, a N1 e a N2 serão calculadas de acordo com as **Equações 1 e 2**.

$$N1 = T1 + P1 \tag{1}$$

$$N2 = T2 + P2 \tag{2}$$

As provas e os testes terão conteúdo definido, conforme a seção seguinte. Os testes serão aplicados em dias *com aula normal*, no primeiro horário, conforme mostra o calendário.

5 Datas importantes

Teste 1 (Módulo 3)
Prova 1 (Módulos 1 a 5) $$
Teste 2 (Módulo 8)
Prova 2 (Módulos 6 a 10) $\ldots\ldots10/07/2025$
Prova substitutiva

6 Calendário

Terça-feira		Quinta-feira	
Data: 11/3	1	Data: 13/3	2
Ementa, datas e informações		1. Teoria atômica e estrutura eletrônica	
1. Teoria atômica e estrutura eletrônica			
Data: 18/3	3	Data: 20/3	4
1. Teoria atômica e estrutura eletrônica		1. Teoria atômica e estrutura eletrônica	
Data: 25/3	5	Data: 27/3	6
2. Ligações químicas		2. Ligações químicas	
Data: 1/4	7	Data: 3/4	8
2. Ligações químicas		2. Ligações químicas	
Data: 8/4	9	Data: 10/4	10
3. Reações químicas e estequiometria		3. Reações químicas e estequiometria	
Data: 15/4	11	Data: 17/4	12
3. Reações químicas e estequiometria		T1: Módulo 3	
		4. Gases	

Terça-feira		Quinta-feira	
Data: 22/4	13	Data: 24/4	14
4. Gases		4. Gases	
Data: 29/4	15	Data: 1/5	
5. Líquidos e soluções		Dia do Trabalho	
Data: 6/5	16	Data: 8/5	17
5. Líquidos e soluções		P1: Módulos 1 a 5	
Data: 13/5	18	Data: 15/5	19
6. Termodinâmica		6. Termodinâmica	
Data: 20/5	20	Data: 22/5	21
6. Termodinâmica		6. Termodinâmica	
Data: 27/5	22	Data: 29/5	23
7. Equilíbrio químico		7. Equilíbrio químico	
Data: 3/6	24	Data: 5/6	25
8. Ácidos e bases e outros equilíbrios		8. Ácidos e bases e outros equilíbrios	
aquosos		aquosos	
Data: 10/6	26	Data: 12/6	27
Não haverá aula		8. Ácidos e bases e outros equilíbrios	
		aquosos	
Data: 17/6	28	Data: 19/6	
T2: Módulo 8		Corpus Christi	
9. Cinética química			
o. cincolos quintos			

Terça-feira	Quinta-feira
Data: 24/6 29	Data: 26/6 30
9. Cinética química	9. Cinética química
Data: 1/7 31	Data: 3/7 32
10. Eletroquímica	10. Eletroquímica
Data: 8/7 33	Data: 10/7 34
10. Eletroquímica	P2: Módulos 6 a 10
Data: 15/7 35	Data: 17/7 36
	Prova substitutiva

7 Ementa

7.1 Módulo 1. Teoria atômica e estrutura eletrônica

Tópicos discutidos incluem (i) modelos atômicos iniciais – viz., Dalton, Thomson e Rutherford –, (ii) quantização da energia, (iii) o efeito fotoelétrico, (iv) espectros de emissão, (iv) o modelo de Bohr, (v) dualidade onda-partícula, (vi) o princípio da incerteza de Heisenberg, (vii) a mecânica quântica e descrição orbitalar do átomo, (viii) configurações eletrônicas, e (ix) propriedades periódicas – carga nuclear efetiva, raio atômico, energia de ionização, afinidade eletrônica e eletronegatividade.

Tópico principal	Duração pretendida	Bibliografia
Descrição moderna do átomo e propriedades periódicas	Três aulas e meia	Brown: Cap. 2, 6 e 7 Atkins: B e Foco 1 Kotz: Cap. 2, 6 e 7

7.2 Módulo 2. Ligações químicas

Tópicos discutidos incluem (i) símbolos de Lewis e regra do octeto, (ii) a ligação iônica, (iii) a ligação covalente, (iv) polaridade e eletronegatividade, (v) estruturas de Lewis, (vi) carga formal e ressonância, (vii) exceções da regra do octeto, (viii) geometria molecular e o modelo VSEPR, (ix) orbitais híbridos, e (x) orbitais moleculares.

Tópico principal	Duração pretendida	Bibliografia
Tipos de ligação química, fórmulas de Lewis, geometria molecular e orbitais moleculares	Quatro aulas	Brown: Cap. 8 e 9 Atkins: Tópico 2A-2G Kotz: Cap. 3 e 4

7.3 Módulo 3. Reações químicas e estequiometria

Tópicos discutidos incluem (i) equações químicas e seu balanceamento, (ii) tipos de reações químicas, (iii) fórmulas e massas molares, (iv) a constante de Avogadro e o mol, (v) fórmulas empíricas, (vi) reagentes limitantes, e (vii) rendimentos.

Tópico principal	Duração pretendida	Bibliografia
Cálculos estequiométricos e noções básicas de reação química	Três aulas	Brown: Cap. 3 Atkins: E, F, H, L e M Kotz: Cap. 3 e 4

7.4 Módulo 4. Gases

Tópicos discutidos incluem (i) características de gases, (ii) leis dos gases, (iii) a equação dos gases ideais, (iv) misturas de gases, (v) a teoria cinético-molecular dos gases, (vi) efusão e difusão e (vii) gases reais.

Tópico principal	Duração pretendida	Bibliografia
Descrição termodinâmica do comportamento de gases ideais e reais	Duas aulas e meia	Brown: Cap. 10 Atkins: Tópico 3A-3E Kotz: Cap. 10

7.5 Módulo 5. Líquidos e soluções

Tópicos discutidos incluem (i) forças intermoleculares, (ii) propriedades de líquidos, (iii) mudanças de fase, (iv) diagramas de fase, (v) o processo de dissolução, (vi) soluções saturadas e fatores que influenciam a solubilidade, (vii) concentrações de soluções.

Tópico principal	Duração pretendida	Bibliografia
Forças intermoleculares e aspectos centrais de soluções	Duas aulas	Brown: Cap. 11 e 13 Atkins: Tópico 3G e 5D Kotz: Cap. 11 e 13

7.6 Módulo 6. Termodinâmica

Tópicos discutidos incluem (i) sistema, energia, trabalho e a primeira lei da termodinâmica, (ii) entalpia e reações químicas, (iii) calorimetria, (iv) a lei de Hess, (v) entalpias de formação e de ligação, (vi) espontaneidade e reversibilidade, (vii) entropia e a segunda lei da termodinâmica, (viii) a interpretação molecular/estatística da entropia, (ix) a terceira lei da termodinâmica, (x) variações de entropia em reações químicas, (x) a energia livre de Gibbs.

Tópico principal	Duração pretendida	Bibliografia
Conceitos básicos de termodinâmica e termoquímica	Quatro aulas	Brown: Cap. 5 e 19 Atkins: Tópico 4A-4J Kotz: Cap. 5 e 18

7.7 Módulo 7. Equilíbrio químico

Tópicos discutidos incluem (i) o conceito de equilíbrio, (ii) a constante de equilíbrio, (iii) cálculos de constantes de equilíbrio, (iv) aplicação de constantes de equilíbrio, e (v) o princípio de Le Châtelier.

Tópico principal	Duração pretendida	Bibliografia
Conceitos básicos de equilíbrio químico	Duas aulas	Brown: Cap. 15 Atkins: Tópico 5G-5J Kotz: Cap. 15

7.8 Módulo 8. Ácidos e bases e outros equilíbrios aquosos

Tópicos discutidos incluem (i) a teoria ácido-base de Arrhenius, (ii) a teoria ácido-base de Brønsted-Lorwy, (iii) a auto-ionização da água, (iv) a escala de pH e ácido polipróticos, (v) ácidos e bases fortes e fracos, (vi) relação entre $K_{\rm a}$ e $K_{\rm b}$, (vii) a teoria ácido-base de Lewis, (vii) o efeito do íon-comum, (ix) soluções-tampão, (x) titulações ácido-base, (xi) equilíbrio de solubilidade, e (xii) precipitação e separação de íons.

Tópico principal	Duração pretendida	Bibliografia
Teorias ácido-base, escala de pH, K_a e K_b , titulação solubilidade e precipitação	Três aulas	Brown: Cap. 16 e 17 Atkins: Tópico 6A-6J Kotz: Cap. 16 e 17

7.9 Módulo 9. Cinética química

Tópicos discutidos incluem (i) fatores que afetam a velocidade de reações, (ii) velocidades de reação, (iii) concentração e leis de velocidade, (iv) a mudança de concentração com o tempo, (v) a relação entre temperatura e velocidade, (vi) mecanismos de reação, e (vii) catálise.

Tópico principal	Duração pretendida	Bibliografia
Cinética química	Duas aulas e meia	Brown: Cap. 14 Atkins: Tópico 7A-7E Kotz: Cap. 14

7.10 Módulo 10. Eletroquímica

Tópicos discutidos incluem (i) estados de oxidação e reações redox, (ii) balanceamento de reações redox, (iii) células voltaicas, (iv) potenciais de células em condições-padrão, (v) termodinâmica de reações redox, (vi) baterias, (vii) corrosão, (viii) eletrólise.

Tópico principal	Duração pretendida	Bibliografia
Reações redox	Três aulas	Brown: Cap. 20 Atkins: Tópico 6K-6O Kotz: Cap. 19