

5コマ目 データシートについて

データシートとは

データシートとは

- データシートとはデバイスを使用するための 必要な情報が記載されているドキュメント
- データシートには、以下の3つが記載
 - 1. デバイス概要
 - このデバイスで出来ること
 - 2. 什様
 - サイズ,電流・電圧,ピン配置
 - 3. 使用方法
 - 通信方式,値の計算方法など

DRV8830使用DCモータドライプキット マイコンで正転・逆転・ブレーキ・速度 のコントロールが出来ます。*

*マイコン、モータは、付属していません。

- ★DCモータモータドライプICのDRV8830を使用しています。
- ★マイコンのI2CインターフェイスでDCモータの正転・逆転・プレーキ・構走の切り替、速度コントロール が出来ます。当社FA-130RA-2270モーターに適しています。
- ★12Cアドレスの設定で、最大9キットまで制御が出来ます。
- ★幅広い動作電源電圧 2.75V~6.8V(マイコンの電源電圧と同じにする必要があります。)

作電圧: 2,75V~6,8V(マイコンの電源電圧と同じ電圧にする必要があります。)

番册	品名	規格等	備書	
U1	モータドライプЮ	DRV8830	実装半田付済み	a
C1	横層セラミックコンデンサ	10uF 10V	実装半田付済み	O.
C2	横層セラミックコンデンサ	0.1uF 50V	実装半田付済み	8
C3	機能セラミックコンデンサ	1000pF 16V	実装半田付済み	8
R1	チップ製版統	0.2Ω 0.5W	実装半田付済み	9
R2	チップ製版抗	1KΩ O.TW	実装半田付済み	8
LED1	チップ製LED	赤色	実装半田付済み	8
CNL2	赐子台	小型 2ピン	8 1	
CN3	ピンヘッダ	6P	8 1	
おまけ	機器セラミックコンデンサ	1000pF 50V	モータノイズ用	

端子台は、ケーブル接続面が基板の外側にな る様に半田付けしてください。おまけの1000pF コンデンサはモータ端子間に付けてください。

http://akizukidenshi.com/download/ds/akizuki/AE-MOTOR8830 manual.pdf

データシートとは

• 電子回路作成時やデバイスを使う場合, まず始めに,データシートを見て使い方を調べる

データシート内の情報は多いので, このコマでは必要な部分を紹介する

データシートの確認箇所

- 1. 特徵
 - デバイスのおおざっぱな性能を説明
- 2. 通信方式
 - デバイスへアクセスする通信規格
- 3. 端子又は回路
 - デバイスのハードウェア的なつながり
- 4. アクセス方法
 - 通信をするとき、デバイスの選択方法やデータのアクセス方法
- 5. 入出力する値
 - 値の書き込み、読み込みの方法、値の意味

特徴

特徴

- そのデバイスの主な性能が記載
 - デバイスの内容: そのデバイスが何のために使われるかの情報
 - 電流・電圧:デバイスを使用するときの電流・電圧の値 電子回路を作成するときに必要
 - ※今回の講習会では、FaBo側で考えているので考慮しない。
 - ・動作電源電圧範囲:使用できる電圧の範囲
 - ・最大連続駆動電流:過熱することなく使用できる電流の最大値
 - 通信方式:データの通信の方法

通信方式

通信方式

- デバイスとの間の通信方法様々な種類があるため、 通信方式により確認するものが変わるため注意する
 - SPI
 - SCLKと単方向のMOSI,MISO,CEの4本の信号線で通信する 同期式のシリアル通信方法
 - 12C
 - SCLと,双方向のSDAの2本の信号線で通信する同期式の シリアル通信方法
 - ・ デジタル入出力
 - 値をデジタル (ON/OFF また 1/0) で入出力する方法
 - アナログ入力
 - 値をアナログ(量などの変化を連続的に表したもの)で入出力

SPI

- モトローラ社が開発した通信規格
- 4本線で通信
 - MOSI:データを送信
 - MISO:データを受信
 - SCLK:デバイス間の同期
 - CE:通信するデバイスを選択
- 複数のデバイスに並列して接続可能

SPI

• 複数のデバイスへの接続方法

12C

- フィリップ社が開発した通信規格
- SDA, SCLの2本信号線でデバイスを制御
 - SDA:データの通信
 - SCL:同期の通信
- 複数のデバイスに並列して接続可能

12C

デジタル入出力

- デジタル出力
 - 値をON(1)かOFF(0)で出力
 - Raspberry Piだと電圧を「3.3V出力」「0V出力」の2種類
- デジタル入力
 - 値をON(1)かOFF(0)かを識別する

アナログ入力

- アナログ入力
 - Raspberry Piではデジタル入出力のみなので, ADコンバータを使用してデジタル値に変更する

端子, 回路

端子

- デバイスの入出力を行う物理的な場所
 - 通信を行うための端子(SDAやMISOなど)やアドレス設定の 端子などがあるため確認

例) DRV8330(モータドライバ)

CN1モータ接続端子

CN1	OUT1	正転時に「+」
	OUT2	正転時に「-」

CN2モータ接続端子

CN2	VCC	電源入力	
CNZ	GND	GND	

アドレス設定の 端子がある CN3マイコン接続端子

CN3	SCL	クロックライン
	SDA	データライン
	A1	アドレス設定1
	A2	アドレス設定 2
	FAULTh	障害状態の出力
	GND	GND

回路

• この講習会で使用するFaBoのような拡張ボードを使用する場合, デバイスが組み込まれているので,アドレスや設定の 確認のために回路を確認する必要がある

FaBo**回路図**:

http://www.fabo.io/605.html

アクセス方法

アクセス方法

- デバイスへのアクセス方法, データの入出力先の決定方法
 - 通信方式により確認項目が変わる
- I2C:スレイブアドレス,レジスタ番号
- SPI:CE番号, コンフィギュアービット, レジスタなど
- デジタル入出力:GPIOピン番号

I2Cのアクセス方法

- デバイスの選択
 - スレイブアドレス
 - デバイスの番号
- データの入出力先
 - ・レジスタ
 - データの格納場所

I2Cはスレイブアドレスでどのデバイスにアクセスするか決め、 レジスタでどのデータを取得するか、格納するかを決める

SPIのアクセス方法

- デバイスの選択
 - CE番号
 - マスタのCE番号で使用デバイスを選択
- データの入出力先
 - コンフィギュアービット
 - どのCHを使用しているかの値
 - レジスタ番号
 - データを格納してある場所

• SPIはCE番号でデバイスを選択,コンフィギュアービット またはレジスタ番号で値の入出力

デジタル入出力のアクセス方法

- デバイスの選択
 - Raspbrry Piでデジタル入出力を行うにはGPIOピンの指定が必要
 - GPIOピンを指定してそのピンで入出力をする
 - GPIO2~GPIO27まである
- データの入出力先
 - GPIOピン番号

• デジタル入出力はGPIOピンでデバイスの選択と データの入出力先を決定

https://elinux.org/File:Pi-GPIO-header.png

入出力する値

入出力する値

- デバイスの入出力値を確認
- デバイスへ書き込む値
 - データシートを見て、デバイスへの値の書き込み方を確認する
 - 値を2進数で考え,下位ビットと上位ビットでは意味が異なることもある
- デバイスから受け取る値
 - デバイスから値を取得したとき,その値がそのまま使えないこともあるので,目的の値への変換を確認する

入力する値

• デバイスを動作させるときの値を確認

例) DRV8830(モータドライバ)でのモータへ電圧をかける時

Controlレジスタ

D7-D2	D1	D0
VSET[50]	IN2	IN1

動作論理表

IN2	IN1	モータの動作
0	0	惰走
0	1	逆転
1	0	正転
1	1	停止

電圧表

値 (VSET[50])	出力電圧 [V]
0x06h	0.48
0x07h	0.56
0x3Fh	5.06

0,1bit目:モータの回転情報,2~7bit目:電圧値

出力する値

・受け取った値を目的の値に変換する計算式を確認 例)MCP3008の出力の値は以下の式で出力

EQUATION 4-2: DIGITAL OUTPUT CODE CALCULATION

```
Digital\ Output\ Code\ =\ \frac{1024\times V_{IN}}{V_{REF}} Where: V_{IN}\ =\ \text{analog\ input\ voltage} V_{REF}\ =\ \text{analog\ input\ voltage}
```

Digital OutPut Code:出力する値

V_{IN}:CHから入力された電圧

V_{REF}:端子VREFに接続された電圧

1024:分解能

データシート:http://akizukidenshi.com/download/ds/microchip/mcp3008.pdf

使用するには出力値を√nの値に直すことが必要