Digitaalitekniikan alkeiskurssi

Logiikkojen jaottelu

- Kombinaatiologiikka
 - Lähtöjen tilat riippuvat ainoastaan tämän hetkisistä tulojen tiloista
- Sekvenssilogiikka
 - Lähtöjen tilat riippuvat sekä tämän hetkisistä että aikaisemmista tulojen tiloista

Sekvenssilogiikat

- Kiikut/latchit
 - RS, JK, D, monostabiili
 - addressable
- Laskurit
 - ripple carry, synchronous
 - ÷10, ÷16, ...
 - up/down, presettable
- Siirtorekisterit
 - serial in, parallel out
 - parallel in, serial out

RS-kiikku NANDeilla

NAND-portin totuustaulu:

Α	В	С
0	0	1
0	0	1
1	1	0

RS-kiikku symbolina

D-kiikku

Läpinäkyvä latch

Laskevalla reunalla liipaistava D-flip-flop

JK-kiikku

JK with preset and clear

Esimerkkejä

- 4-bittinen binäärilaskuri, ripple carry (74xx93)
 - play-hookey: basic 4-bit counter
- 4-bittinen binäärilaskuri, synkroninen (74xx163)
 - play-hookey: synchronous binary counter
- Siirtorekisteri: sarja sisään, rinnan ulos (74xx595)
 - play-hookey: shift register (S to P)
- Siirtorekisteri: rinnan sisään, sarja ulos (74xx165/166)
 - play-hookey: shift register (P to S)

Sekvenssilogiikan "sukupuu"

Kombinaatio- ja sekvenssilogiikat

Logiikkojen jaottelu

- Kombinaatiologiikka
 - Lähtöjen tilat riippuvat ainoastaan tämän hetkisistä tulojen tiloista
- Sekvenssilogiikka
 - Lähtöjen tilat riippuvat sekä tämän hetkisistä että aikaisemmista tulojen tiloista

Sekvenssilogiikat

- Kiikut/latchit
 - RS, JK, D, monostabiili
 - addressable
- Laskurit
 - ripple carry, synchronous
 - ÷10, ÷16, ...
 - up/down, presettable
- Siirtorekisterit
 - serial in, parallel out
 - parallel in, serial out

Perus-RS-kiikku toteutettuna kahdella NAND-piirillä. Kytkennällä on kaksi tilaa ja se pysyy niistä kummassa tahansa.

Toisessa tilassa lähtö Q=L ja toisessa Q=H. Lähtö \overline{Q} on aina päinvastaisessa tilassa kuin Q.

Normaalisti S (set) ja R (reset) ovat H-tilassa. Kun S käy L-tilassa Q asettuu ja jää asettuneeksi. Kun R käy L-tilassa, Q nollaantuu ja jää nollaantuneeksi.

Tila, jossa S ja R ovat yhtäaikaa L-tilassa on kielletty. Tämän tilan aika molemmat lähdöt ovat H-tilassa. Kielletyn tilan poistuttua lähdön Q-tila on satunnainen.

Normaalisti kiikut, myös RS-kiikku, piirretään symbolina, joka kuvaa sen toiminnan, ei sisäistä porttitason rakennetta.

Erilaisia D-kiikkuja. Tarkemmin play-hookey.com.

Erilaisia JK-kiikkuja. Tarkemmin play-hookey.com.

Esimerkkejä

- 4-bittinen binäärilaskuri, ripple carry (74xx93)
 play-hookey: basic 4-bit counter
- 4-bittinen binäärilaskuri, synkroninen (74xx163)
 play-hookey: synchronous binary counter
- Siirtorekisteri: sarja sisään, rinnan ulos (74xx595)
 play-hookey: shift register (S to P)
- Siirtorekisteri: rinnan sisään, sarja ulos (74xx165/166)
 play-hookey: shift register (P to S)

Synkronisessa logiikassa kaikki D-flip-flopit saavat saman kellopulssin eli liipaistuvat samalla hetkellä. Koko hommaa tahdittaa yhteinen kello-oskillaattori.

Asynkronisessa logiikassa flip-flopin kello voi tulla jonkun toisen piirin lähdöstä, eikä kaikille yhteistä kellogeneraattoria ole välttämättä ollenkaan.

Jatkossa keskitytään lähes pelkästään synkroniseen logiikkaan, koska CPLD- ja FPGA-piirit on tarkoitettu synkronisen logiikan toteuttamiseen. CPLD:llä voi tietyin rajoituksin toteuttaa asynkronistakin logiikkaa, FPGA:lla se ei yleensä ole järkevää.