Lower Bounds for the Polynomial Calculus via the "Pigeon Dance"

Imogen Hergeth

January 2023

Overview

00000

- We will present [raz]
- Required background
- Overview of the proof

Definition

- Similar to sequent calculus, but lines are polynomials
- We use multilinear polynomials $S_n(\mathbb{K})$ $(xy + xz + v \equiv x^2y + x^3z^5 + v)$
- Addition

$$\frac{f}{af + bg}$$

Multiplication

$$\frac{f}{f \cdot x}$$

The polynomial calculu

Motivation

- g is provable from f_1, \ldots, f_n if and only if it is in the ideal generated by them
- A proof of g=1 exists if and only if f_1,\ldots,f_n have no common zeroes
- We construct polynomials such that their zeroes correspond to satisfying assignments
- Proving 1 from them is a *refutation*

00000

Example proof

• Try to prove xy + z from x + 1 and z

$$\frac{(y)}{xy+y} \frac{x+1}{xy+y+z} (+)$$

- We now want to subtract u
- There is no way to prove y from x+1 and z
- Closest to xy + z we can prove is xy + y + z

Algebraic view of proofs

 \bullet V are polynomials we can prove

$$xy + y + z$$

 \bullet Δ are leading terms of ones we cannot prove

y

•
$$S_n(\mathbb{K}) \cong \mathbb{K}\Delta \oplus V$$

$$xy + y + z = -y + xy + y + z$$

• R is the projection onto Δ

$$R(xy + y + z) = y$$

Similarly:

 V_d, Δ_d, R_d for polynomials up to degree d V_I, Δ_I, R_I for polynomials using variables for pigeons in I Overvie

The pigeonhole principle

- ullet If there are m pigeons, n pigeon holes, and m>n then at least two pigeons have to share a hole
- Formally: if m > n there is no injection $[m] \hookrightarrow [n]$
- Variables: $x_{i,j}, i \in [m], n \in [n]$
- Assignment of $x_{3,5}$ corresponds to pigeon 3 being in hole 5

Definition $(\neg \mathcal{PHP}_n^m)$

$$Q_i \coloneqq 1 - \sum_{i \in [n]} x_{ij}$$

$$\text{ for each } i \in [m]$$

$$Q_{i_1,i_2,j} \coloneqq x_{i_1j} x_{i_2j}$$

for each
$$i_1 \neq i_2 \in [m], j \in [n]$$

Main result

Theorem

For any m > n, every polynomial calculus refutation of $\neg PHP_n^m$ must have degree at least n/2 + 1.

- Characterize R_d semantically
- Problem: only works if R_I agree on their intersections
- Characterize R_I syntactically
- Show the different operators are identical

Introduction

Semantics of $\neg \mathcal{PHP}_n^m$

- What polynomials are derivable from $\neg \mathcal{PHP}_n^m$?
- Pigeons cannot share holes
- Pigeon assignments are variable assignments

$$\Delta(x) = \begin{cases} 1, & \text{if } x \in \{x_{1,2}, x_{2,4}, x_{3,1}\} \\ 0, & \text{otherwise} \end{cases}$$

Polynomials are evaluated to 0 if they allow the assignment

$$\Delta(1 - x_{1,1} - x_{1,2} - x_{1,3} - x_{1,4}) = 0$$
$$\Delta(x_{1,1}x_{3,1}) = \Delta(x_{1,2}x_{2,2}) = 0$$

Characterizing R_I

- M_I is the set of all assignments corresponding to injections $I \hookrightarrow [m]$
- V_I is polynomials that M_I evaluates to 0
- Define Δ_I , R_I to be the restrictions of Δ , R onto I
- Note: this definition completely ignores degrees

Combining R_I

- We want a characterization of R_d , not R_I
- $V_d := \bigcup_{|I| \le d} V_I$
- $R_d := R_{\text{dom}(t)}(t)$
- Does this definition actually work?
- Yes it does! But only if $R_I(t) = R_{\text{dom}(t)}(t)$ for all $I \supseteq \text{dom}(t)$

Characterizing R_{I}

Idea

- ullet Goal: define $R_I(t)$ so that it is independent of $I \setminus \mathrm{dom}(t)$
- We first define Δ_I using the pigeon dance

Characterizing $R_{m{I}}$

Example

Formalization

- The first pigeon flies to an unoccupied hole to its right
- Repeat until all pigeons have moved once
- If a pigeon cannot find an empty hole, the dance is aborted
- Define Δ_I to be the set of terms that let pigeons complete the dance
- $t \in \Delta_I$ independent of I since pigeons not in the dance do not affect it

Defining R_T

- We need $R_I(t) = f$ with $LT(f) \prec t$ and $t = f \mod V_I$
- If $t \in \Delta_I$, then f := t
- Otherwise, we use $Q_{i_1} = 0$ to derive

$$t = x_{i_1 j_1} \cdots x_{i_d j_d}$$

$$= -\sum_{j' < j_1} x_{i_1 j'} x_{i_2 j_2} \cdots x_{i_d j_d} + x_{i_2 j_2} \cdots x_{i_d j_d} - \sum_{j' > j_1} x_{i_1 j'} x_{i_2 j_2} \cdots x_{i_d j_d} \mod V_I.$$

- The first two summands are $\prec t$ and can be ignored
- Any terms with $j' \in \{j_2, \dots, j_d\}$ are 0 and can be ignored

Defining R_I (cont.)

- Remaining terms have $i > i_1$, $j' > j_1$, and $j' \notin \{j_2, \ldots, j_d\}$
- Repeat the same process with all of them
- ullet At each step the next i has x_{ij} replaced with $x_{ij'}$ for some unused j'>j
- This is the pigeon dance!
- Since $t \notin \Delta_I$ the dance cannot be completed
- Process terminates with $LT(f) \prec t$ and $t = f \mod V_I$

The Kill operator

- Idea: operator that lets us block specific holes
- The Kill operator kills the first pigeon and moves its hole to the left
- $\operatorname{Kill}(x_{i_1j_1}\cdots x_{i_d,j_d})=x_{i_2j'_2}\cdots x_{i_dj'_d}$ with

$$j_k' \coloneqq \begin{cases} j_k + 1, & \text{if } j_k < j_1 \\ j_k, & \text{if } j_k > j_1. \end{cases}$$

Properties of the dance

The dance in terms of Kill

Theorem

 $x_{i_1j_1}\cdots x_{i_dj_d}\in \Delta_I$ if and only if there is a $j'>j_1$ such that $\mathrm{Kill}(x_{i_1j'}\cdots x_{i_dj_d})\in \Delta_I$.

Proof sketch

This operator effectively moves the first pigeon to an empty hole to its right and then kills it. This is the same as each step in the dance, where the first pigeon flies to some free hole to its right and then occupies it. \Box

Properties of the dance

Closure of Δ_I

Theorem

 Δ_I is closed under Kill.

Proof sketch

If $t \in \Delta_I$ then the pigeons can complete their dance. During this the first pigeon will start at j and fly to j'. Killing the pigeon frees up j' so any other pigeon that wanted to use j can use it instead.

Properties of the dance

The lower bound

Theorem

If $|I| \le (n+1)/2, t \in \Delta_I$ and the minimal element i of I is not in dom(t), then there exists a $j \in [n]$ such that $Kill(x_{ij}t) \in \Delta_I$.

Proof sketch

At most

$$|\operatorname{dom}(t)| \le |I \setminus \{i\}| \le \frac{n-1}{2}$$

pigeons involved in the dance, each occupying two holes. Thus the total number of holes is n-1 and one hole j remains free. For the purposes of the dance, $\mathrm{Kill}(x_{ij}t)$ is the same as t since the only difference is j being moved to the left. \Box

Putting things together

- Show that the two operators are identical
- Induction over |I| providing an $a \in M_I$ with $a(f) \neq 0$ for any $f \in \mathbb{K}\Delta_I$
- Remove variables x_{ij} for minimal $i \in I$ from f
- Inductive assumption gives us $a' \in M_{I \setminus \{i\}}$ with $a'(f') \neq 0$
- Pick a j such that $Kill(x_{ij}t) \in \Delta_I$
- Extend assignment to I with $a(f) \neq 0$

Summary

- If $d \leq n/2 + 1$, then definition of R_I via the pigeon dance and via M_I are identical
- ullet Pigeons not in the dance do not affect its success, so $R_I(t)=R_{\mathrm{dom}(t)}(t)$
- ullet V_d is precisely polynomials identically zero on M_I
- $R_d \neq 0$
- \bullet There is no refutation of $\neg \mathcal{PHP}_n^m$ with $d \leq n/2+1$