

Chapter 2

Boolean Arithmetic

These slides support chapter 2 of the book

The Elements of Computing Systems

(1st and 2nd editions)

By Noam Nisan and Shimon Schocken

MIT Press

Nand to Tetris Roadmap: Hardware

Nand to Tetris Roadmap: Hardware

Project 1
Build 15 elementary logic gates

Nand to Tetris Roadmap: Hardware

Project 2
Building chips that do arithmetic, ending up with an ALU

Computer system

Computer system

Arithmetic Logical Unit

The ALU computes a given function on two given *n*-bit values, and outputs an *n*-bit value

$\underline{\text{ALU functions}}(f)$

- Arithmetic: x + y, x y, x + 1, x 1, ...
- Logical: $x & y, x \mid y, !x, \dots$

Challenges

- Use 0's and 1's for representing numbers
- Use logic gates for realizing arithmetic functions.

Chapter 2: Boolean Arithmetic

Theory

- Representing numbers
- Binary numbers
- Boolean arithmetic
- Signed numbers

Practice

- Arithmetic Logic Unit (ALU)
- Project 2: Chips
- Project 2: Guidelines

Chapter 2: Boolean Arithmetic

Theory

Representing numbers

- Binary numbers
- Boolean arithmetic
- Signed numbers

Practice

- Arithmetic Logic Unit (ALU)
- Project 2: Chips
- Project 2: Guidelines

Representation

This is not a pipe (by René Magritte)

Representation

Rather, it's an agreed-upon code (*numeral*) that represents the number seventeen.

A brief history of numeral systems

Twenty seven goats

Unary:

Egyptian:

Roman: XXVII

A brief history of numeral systems

Six thousands, five hundreds, and seven goats

Egyptian:

Roman:

MMMMMDVII

Old numeral systems:

- Don't scale
- Cumbersome arithmetic
- Used until about 1000 years ago
- Blocked the progress of Algebra (and commerce, science, technology)

Positional numeral system

0

Where *n* is the number of

numeral, and d_i

digits in the

is the digit in

position i

Six thousands, five hundreds, and seven goats

3 2 1 0

A most important innovation, brought to the West from the East around 1200

Positional representation

- *Digits*: A fixed set of symbols, including 0
- *Base*: The number of symbols

The method mentions no specific base.

- *Numeral*: An ordered sequence of digits
- *Value*: The digit in position i (counting from right to left, and starting at 0) encodes how many copies of $base^i$ are added to the value.

Chapter 2: Boolean Arithmetic

Theory

- Boolean arithmetic
- Representing signed numbers

Practice

- Arithmetic Logic Unit (ALU)
- Project 2: Chips
- Project 2: Guidelines

Positional number system

Positional number system

Binary and decimal systems

Binary	<u>Decimal</u>	
0	0	
1	1	
1 0	2	
1 1	3	
100	4	Humans are used to enter and view numbers in base 10;
1 0 1	5	Computers represent and process numbers in base 2;
1 1 0	6	
1 1 1	7	Therefore, we need efficient algorithms for converting from one base to the other.
1000	8	from one base to the other.
1001	9	
1010	10	
1 0 1 1	11	
1 1 0 0	12	
1 1 0 1	13	
• • •	• • •	

Decimal ← binary conversions

Powers of 2: (aids in calculations)

Decimal ← binary conversions

Powers of 2: (aids in calculations)

The binary system

Binary numerals are easy to:

- CompareStore
- AddTransmit
- SubtractVerify
- MultiplyCorrect
- DivideCompress
- · ...

Chapter 2: Boolean Arithmetic

Theory

- ✓ Representing numbers
- ✓ Binary numbers
- Boolean arithmetic
 - Signed numbers

Practice

- Arithmetic Logic Unit (ALU)
- Project 2: Chips
- Project 2: Guidelines

Boolean arithmetic

We have to figure out efficient ways to perform, on binary numbers:

Addition is the foundation of all arithmetic operations.

Addition

Decimal addition

Addition

Computers represent integers using a fixed number of bits, sometimes called "word size". For example, let's assume n = 4:

Handling overflow

- Our decision: Ignore it
- As we will soon see, ignoring the overflow bit is not a bug, it's a feature.

Addition

Word size n = 16, 32, 64, ...

Same addition algorithm for any *n*

Hardware implementation

We'll build an *Adder* chip that implements this addition algorithm, Using the chips built in project 1.

How? Later.

Teaching Note

In Nand to Tetris we always separate abstraction from implementation

First we present the abstraction, leaving the implementation to a later stage in the lecture.

Chapter 2: Boolean Arithmetic

Theory

- ✓ Representing numbers
- ✓ Binary numbers
- ✓ Boolean arithmetic (addition)
- Signed numbers

$$(x + y, -x + y, x + -y, -x + -y)$$

Practice

- Arithmetic Logic Unit (ALU)
- Project 2: Chips
- Project 2: Guidelines

Signed integers

- Positive
- 0
- Negative

In most programming languages, the short, int, and long data types use 16, 32, and 64 bits for representing signed integers

Arithmetic operations on signed integers (x op y, -x op y, x op -y, -x op -y, where op = {+, -, *, /}) are by far what computers do most of the time

Therefore ...

Efficient algorithms for handling arithmetic operations on signed integers hold the key to building efficient computers.

<u>Teaching Note</u>: All the algorithms presented in this course can be implemented efficiently in either hardware of software.

Signed integers

code	e(x)	X	
0000	0	0	This particular example: word size is $n = 4$
0001	1	1	This particular example: Word Size is $n=1$
0010	2	2	In general, n bits allow representing all the unsigned
0011	3	3	integers $0 \dots 2^n - 1$
0100	4	4	
0101	5	5	
0110	6	6	What about negative numbers?
0111	7	7	
1000	8	8	We can use half of the code space for representing
1001	9	9	positive numbers, and the other half for negatives.
1010	10	10	
1011	11	11	
1100	12	12	
1101	13	13	
1110	14	14	
1111	15	15	

Signed integers

code	e(x)	х	
0000	0	0	Representation:
0001	1	1	
0010	2	2	Left-most bit (MSB): Represents the sign, +/-
0011	3	3	Remaining bits: Represent a positive integer
0100	4	4	
0101	5	5	Logues
0110	6	6	<u>Issues</u>
0111	7	7	• -0 : Huh
1000	8	-0	
1001	9	-1	• $code(x) + code(-x) \neq code(0)$
1010	10	-2	• The codes are not monotonically increasing
1011	11	-3	
1100	12	-4	 more complications.
1101	13	-5	
1110	14	-6	
1111	15	-7	

Two's complement

code 0000 0001 0010 0011	$\frac{e(x)}{0}$ 1 2 3	$\begin{bmatrix} x \\ 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$	 The representation Assumption: Word size = n bits The "two's complement" of x is defined to be 2ⁿ - x The negative of x is coded by the two's complement of x
0100	4	4	
0101	5	5	From decimal to binary:
0110	6	6	
0111	7	7	if $x \ge 0$ return $binary(x)$
1000	8	-8	else return $binary(2^n - x)$
1001	9	-7	From binary to decimal:
1010	10	-6	•
1011	11	-5	if $MSB = 0$ return $decimal(bits)$
1100	12	-4	else return "-" and then $(2^n - decimal(bits))$
1101	13	-3	
1110	14	-2	
1111	15	-1	

code	x	
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	-1	

Compute x + y where x and y are signed

Algorithm: Regular addition, modulo 2^n

code	x	
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Compute x + y where x and y are signed

Algorithm: Regular addition, modulo 2^n

Practice:

code	e(x)	X	Compute $x + y$ where x and y are signed
0000	0	0	Algorithm: Regular addition, modulo 2^n
0001	1	1	Algorithm. Regular addition, modulo 2"
0010	2	2	
0011	3	3	+ 6 = + 6
0100	4	4	<u>-2</u> <u>14</u>
0101	5	5	20 % 16 = 4 codes 4
0110	6	6	Practice:
0111	7	7	<u>1 factice.</u>
1000	8	-8	4 4
1001	9	-7	+ = +
1010	10	-6	<u>-7</u> <u>9</u>
1011	11	-5	13 % 16 = 13 codes -3
1100	12	-4	_2 14
1101	13	-3	-2 + = +
1110	14	-2	_412
1111	15	-1	26 % 16 = 10 codes -6

code	X	
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

At the binary level (same algorithm):

$$+\frac{6}{-2} = +\frac{0110}{1110}$$
 $= +\frac{1110}{10100}$ codes 4

$$+\frac{-2}{-5} = +\frac{1110}{1011}$$
 $\frac{11001}{1001}$ codes -7

Ignoring the overflow bit is the binary equivalent of modulo 2^n

code	e(x)	X	At the binary level (same algorithm):
0000	0	0	•
0001	1	1	+ = +
0010	2	2	-2 1110
0011	3	3	10100 codes 4
0100	4	4	More examples:
0101	5	5	5 0101
0110	6	6	+ = +
0111	7	7	7 0111
1000	8	-8	1100 codes -4 $5 + 7 = -4$???
1001	9	-7	-7 1001
1010	10	-6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1011	11	-5	
1100	12	-4	10110 codes 6 $-7 + -3 = 6$???
1101	13	-3	
1110	14	-2	Overflow detection
1111	15	-1	When you add up two positives (negatives) and get a negative
			(positive) result, you know that you have overflow

Two's complement: Subtraction

code	e(x)	х
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	- 1

Compute x - y where x and y are signed

- x y is the same as x + (-y)
- So... convert *y* and add up the two values (we already know how to add up signed numbers)

But ... How to convert a number (efficiently)?

Two's complement: Sign conversion

code	code(x)		Compute $-x$ from x
0000	0	0	
0001	1	1	Insight: $code(-x) = (2^n - x) = 1 + (2^n - 1) - x$
0010	2	2	= 1 + (1111) - x
0011	3	3	= 1 + flippedBits(x)
0100	4	4	
0101	5	5	Algorithm: To convert bbbb:
0110	6	6	Flip all the bits and add 1 to the result
0111	7	7	
1000	8	-8	Example: Convert 0010 (2)
1001	9	-7	Example: Convert 0010 (2)
1010	10	-6	1101 (flipped) + 1
1011	11	-5	' <u>+</u>
1100	12	-4	1110 (-2)
1101	13	-3	
1110	14	-2	
1111	15	– 1	

Two's complement: Sign conversion

code	e(x)	X	Compute $-x$ from x
0000	0	0	
0001	1	1	Insight: $code(-x) = (2^n - x) = 1 + (2^n - 1) - x$
0010	2	2	= 1 + (1111) - x
0011	3	3	= 1 + flippedBits(x)
0100	4	4	
0101	5	5	Algorithm: To convert bbbb:
0110	6	6	Flip all the bits and add 1 to the result
0111	7	7	
1000	8	-8	Practice: Convert 1010 (6)
1001	9	-7	Practice: Convert 1010 (–6)
1010	10	-6	
1011	11	-5	
1100	12	-4	
1101	13	-3	
1110	14	-2	
1111	15	– 1	

Two's complement: Sign conversion

code	e(x)	X	Compute $-x$ from x
0000	0	0	
0001	1	1	Insight: $code(-x) = (2^n - x) = 1 + (2^n - 1) - x$
0010	2	2	= 1 + (1111) - x
0011	3	3	= 1 + flippedBits(x)
0100	4	4	
0101	5	5	Algorithm: To convert bbbb:
0110	6	6	Flip all the bits and add 1 to the result
0111	7	7	
1000	8	-8	Practice: Convert 1010 (6)
1001	9	-7	Practice: Convert 1010 (-6)
1010	10	-6	0101 (flipped) + 1
1011	11	-5	' <u> </u>
1100	12	-4	0110 (6)
1101	13	-3	
1110	14	-2	But How to compute $x + 1$ (efficiently)?
1111	15	-1	<u> 230</u> 110 % to compate x + 1 (c) ic tellity).

Two's complement: Add 1

```
code(x)
              \boldsymbol{\mathcal{X}}
                        Compute x + 1 (efficiently)
0000
        0
              0
                        Given bbb...b, compute bbb...b + 1
0001
         1
0010
                        Algorithm: Flip bits from right to left,
0011
              3
                                     stop when the flipped bit becomes 1
0100
         4
              4
0101
                        <u>Example:</u> Compute 0101 + 1
                                                        (5+1)
0110
              6
0111
                                                        (6)
                                             0110
1000
            -8
1001
            -7
                        Practice:
                                   Compute 0110 + 1 (6 + 1)
1010
       10
            -6
1011
       11
            -5
                                    Compute 0011 + 1 (3 + 1)
1100
       12
            -4
1101
       13
            -3
                                   Compute 1000 + 1 (-8 + 1)
1110
       14
            -2
                                   Compute 1011 + 1 \quad (-5 + 1)
1111
       15
            -1
```

Two's complement: Recap

code	X	
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Observations

- The method represents all the integers in the range -2^{n-1} , ..., -1, 0, 1, ..., $2^{n-1}-1$
- code(x) + code(-x) = code(0)
- The codes are monotonically increasing
- Arithmetic on signed integers is the same as arithmetic on unsigned integers
- Simple! Elegant! Powerful!

<u>Implications for hardware designers</u>

Arithmetic on signed integers can be implemented using *the same hardware* used for handling arithmetic of unsigned integers

Chapter 2: Boolean Arithmetic

Theory

• Representing numbers

- Binary numbers
- Boolean arithmetic
- Signed numbers

Practice

- Arithmetic Logic Unit (ALU)
- Project 2: Chips
- Project 2: Guidelines

Chapter 2: Boolean Arithmetic

Theory

- Representing numbers
- Binary numbers
- Boolean arithmetic
- Signed numbers

Practice

- Project 2: Chips
- Project 2: Guidelines

Von Neumann Architecture

The Arithmetic Logical Unit

The ALU computes a given function on its two given data inputs, and outputs the result

f: one out of a family of pre-defined arithmetic functions (add, subtract, multiply...) and logical functions (And, Or, Xor, ...)

Design issue: Which functions should the ALU perform?

A hardware / software tradeoff: Any function not implemented by the ALU can be implemented later in system software

- Hardware implementations: Faster, and more expensive
- Software implementations: Slower, less expensive

• Operates on two 16-bit, two's complement values

- Operates on two 16-bit, two's complement values
- Outputs a 16-bit, two's complement value

out
0
1
-1
X
У
!x
y !x !y -x
-X
-y
x+1
y+1
y+1 x-1
y-1
x+y
x-y
y-x
x-y y-x x&y x y
x y

- Operates on two 16-bit, two's complement values
- Outputs a 16-bit, two's complement value
- Also outputs two 1-bit values (later)

out	
0	
0 1	
-1	
X	
x y !x !y -x -y x+1 y+1	
!x	
!y	
-X	
-y	
x+1	
y+1	
x-1	
y-1	
х+у	
x-y	
y-x	
y-x x&y	
x y	

- Operates on two 16-bit, two's complement values
- Outputs a 16-bit, two's complement value
- Also outputs two 1-bit values (later)
- Which function to compute is set by six 1-bit inputs

out	
0	
0 1	
-1	
X	
у	
y !x !y	
!y	
- X	
-y	
x+1	
y+1	
x-1	
y-1	
х+у	
x-y	
y-x x&y	
x y	

To cause the ALU to compute a function:

Set the control bits to one of the binary combinations listed in the table.

control bits							
ZX	nx	zy	ny	f	no	out	
1	0	1	0	1	0	0	
1	1	1	1	1	1	1	
1	1	1	0	1	0	-1	
0	0	1	1	0	0	X	
1	1	0	0	0	0	У	
0	0	1	1	0	1	!x	
1	1	0	0	0	1	!y	
0	0	1	1	1	1	-X	
1	1	0	0	1	1	-y	
0	1	1	1	1	1	x+1	
1	1	0	1	1	1	y+1	
0	0	1	1	1	0	x-1	
1	1	0	0	1	0	y-1	
0	0	0	0	1	0	х+у	
0	1	0	0	1	1	x-y	
0	0	0	1	1	1	y-x x&y	
0	0	0	0	0	0	x&y	
0	1	0	1	0	1	x y	

The Hack ALU in action: Compute y-x

To cause the ALU to compute a function:

Set the control bits to one of the binary combinations listed in the table.

The Hack ALU in action: Compute y-x

The Hack ALU in action: Compute x & y

To cause the ALU to compute a function:

Set the control bits to one of the binary combinations listed in the table.

The Hack ALU in action: Compute x & y

The Hack ALU operation

pre-setting the x input		pre-setting the y input		selecting between computing + or &	post-setting the output	Resulting ALU output
zx	nx	zy	ny	f	no	out
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out=x&y	if no then out=!out	out(x,y)=

The Hack ALU operation

pre-setting the x input		pre-setting the y input		selecting between computing + or &	•	_
zx	nx	zy	ny	f	no	out
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out=x&y	if no then out=!out	out(x,y)=
1	0	1	0	1	0	0
1	1	1	1	1	1	1
1	1	1	0	1	0	-1
0	0	1	1	0	0	Х
1	1	0	0	0	0	у
0	0	1	1	0	1	!x
1	1	0	0	0	1	! y
0	0	1	1	1	1	- X
1	1	0	0	1	1	-y
0	1	1	1	1	1	x+1
1	1	0	1	1	1	y+1
0	0	1	1	1	0	x-1
1	1	0	0	1	0	y-1
0	0	0	0	1	0	x+y
0	1	0	0	1	1	x-y
0	0	0	1	1	1	y-x
0	0	0	0	0	0	x&y
0	1	0	1	0	1	x y

The Hack ALU operation: Compute !x

pre-setting the x input		-	etting input	selecting between computing + or &			
zx	nx	zy	ny	f	no	out	
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out=x&y	if no then out=!out	out(x,y)=	
1	0	1	0	1	0	0	
1	1	1	1	1	1	1	
1	1	1	0	1	0	-1	
0	0	1	1	0	0	х	
1	1	0	0	0	0	у	_
0	0	1	1	1	!x		
1	1		<u> </u>	1	! y		
0	0	Ex	ample:	compute !x		-x	
1	1	x:		1 1 0 0		-у	
0	1	y:		1 0 1 1 (irre)	levant)	x+1	
1	1		11 .			y+1	
0	0	Fo	ollowing	g pre-setting:		x-1	
1	1	x:		1 1 0 0		y-1	
0	0	y :			x+y		
0	1	\Box	mputat	etting:	x-y		
0	0		•	•		y-x	
0	0		-	1 1 0 0		x&y	
0	1	!(x&y):	0 0 1 1 (!:	×)	x y	

The Hack ALU operation: Compute y-x

pre-setting the x input				selecting between computing + or &		Resulting ALU output	
zx	nx	zy	ny	f	no	out	
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out=x&y	if no then out=!out	out(x,y)=	
1	0	1	0	1	0	0	
1	1	1	1	1	1	1	
1	1	1	0	Evennler	nuto v. v	l	
0	0	1	1	Example: com			
1	1	0	e		1 0 (2)		
0	0	1	1	y: 0 1	1 1 (7)	<	
1	1	0	e	Following pre-setting:			
0	0	1	1		×		
1	1	0	1 9		1 0	У	
0	1	1	1	y: 1 0	0 0	1	
1	1	0	1	Computation and post-se		tting: 1	
0	0	1	1	x+y: 1 0	1 0	1	
1	1	0	0	!(x+y): 0 1	0 1 (5)	1	
0	0	0	Ø		. ,	У	
0	1	0	0	1	1	x-y	
0	0	0	1	1	1	y-x	
0	0	0	0	0	0	x&y	
0	1	0	1	0	1	x y	

The Hack ALU operation: Compute x|y

The Hack ALU operation: Compute y-1

	etting input		etting input	selecting between computing + or &	post-setting the output	Resulting ALU output	
ZX	nx	zy	ny	f	no	out	
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out=x&y	if no then out=!out		
1	0	1	0	1	0		
1	1	1	1	1	1	_	
1	1	1	0	1	0	_	
0	0	1	1	0	0		
1	1	0	0	0	0		
0	0	1	1	0	1		
1	1	0	0	0	1		
0	0	1	1	1	1		
1	1	0	0	1	1		
0	1	1	1	1	1		
1	1	0	1	1	1	y+1	
0	0	1	1	1	0	x-1	
1	1	0	0	1	0	y-1	
0	0	0	0	1	0	x+y	Practice:
0	1	0	0	1	1	x-y	
0	0	0	1	1	1	y-x	See if you get
0	0	0	0	0	0	x&y	0 1 0 1 (5)
0	1	0	1	0	1	x y	

The Hack ALU operation

One more detail:

The zr and ng output bits will come into play when we'll build the complete CPU architecture, later in the course.

Chapter 2: Boolean Arithmetic

Theory

- Representing numbers
- Binary numbers
- Boolean arithmetic
- Signed numbers

Practice

• Project 2: Guidelines

Project 2

Given: All the chips built in Project 1

Goal: Build the chips:

- HalfAdder
- FullAdder
- Add16
- Inc16
- ALU

Half Adder

a	b	sum	carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

HalfAdder.hdl

```
/** Computes the sum of two bits. */
CHIP HalfAdder {
    IN a, b;
    OUT sum, carry;
    PARTS:
    // Put your code here:
}
```

<u>Implementation tip</u>

Can be built from two gates built in project 1.

Full Adder

a	b	С	sum	carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

FullAdder.hdl

```
/** Computes the sum of three bits. */
CHIP FullAdder {
    IN a, b, c;
    OUT sum, carry;
    PARTS:
    // Put your code here:
}
```

Implementation tip
Can be built from two half-adders.

16-bit adder

Add16.hdl

```
/* Adds two 16-bit, two's-complement values.
The most-significant carry bit is ignored. */

CHIP Add16 {
    IN a[16], b[16];
    OUT out[16];
    PARTS:
    // Put you code here:
}
```

- The bitwise additions are done in parallel
- The carry propagation is sequential
- Yet... it works fine, as is. How? Stay tuned for chapter 3.

<u>Implementation note</u>

If you need to set a pin x to \emptyset (or 1) in HDL, use: x = false (or x = true)

16-bit incrementor

Inc16.hdl

```
/** Outputs in + 1. */
CHIP Inc16 {
    IN in[16];
    OUT out[16];
    PARTS:
    // Put you code here:
}
```

<u>Implementation</u>:

Simple.

ALU

pre-setting the x input			etting input	selecting between computing + or &		
zx	nx	zy	ny	f	no	out
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out=x&y	if no then out=!out	out(x,y)=
1	0	1	0	1	0	0
1	1	1	1	1	1	1
1	1	1	0	1	0	-1
0	0	1	1	0	0	x
1	1	0	0	0	0	у
0	0	1	1	0	1	!x
1	1	0	0	0	1	!y
0	0	1	1	1	1	-x
1	1	0	0	1	1	-у
0	1	1	1	1	1	x+1
1	1	0	1	1	1	y+1
0	0	1	1	1	0	x-1
1	1	0	0	1	0	y-1
0	0	0	0	1	0	x+y
0	1	0	0	1	1	x-y
0	0	0	1	1	1	y-x
0	0	0	0	0	0	x&y
0	1	0	1	0	1	x y

ALU

ALU.hdl

zr

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

ALU

<u>Implementation tips</u>

We need logic for:

- Implementing "if bit == 0/1" conditions
- Setting a 16-bit value to 111111111111111
- Negating a 16-bit value (bitwise)
- Computing Add and or on two 16-bit values

ALU.hdl

Implementation strategy

- Start by building an ALU that computes out
- Next, extend it to also compute zr and ng.

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Relevant bus tips

Using multi-bit truth / false constants:

We can assign values to sub-buses

```
// Suppose that x, y, z are 8-bit bus-pins:
chipPart(..., x=true, y=false, z[0..2]=true, z[6..7]=true);
...
```


Unassigned bits are set to 0

Relevant bus tips

Sub-bussing:

- We can assign n-bit values to sub-buses, for any n
- We can create *n*-bit bus pins, for any *n*

```
/* 16-bit adder */
CHIP Add16 {
    IN a[16], b[16];
    OUT out[16];
    PARTS:
                        CHIP FOO {
                                                      Another example of assigning
                              x[8], y[8], z[16]
                                                      a multi-bit value to a sub-bus
                           0UT out[16]
                           PARTS
                           Add16 (a[0..7] = x, a[8..15] = y, b = z, out = ...);
                           Add16 (a = ..., b = ..., out[0..3] = t1, out[4..15] = t2);
                                                       Creating an n-bit bus (internal pin)
```

ALU: Recap

The Hack ALU is:

- Simple
- Elegant

- "Simplicity is the ultimate sophistication."
- Leonardo da Vinci

Chapter 2: Boolean Arithmetic

Theory

- Representing numbers
- Binary numbers
- Boolean arithmetic
- Signed numbers

Practice

Project 2: Guidelines

Project 2

Given: All the chips built in Project 1

Goal: Build the chips:

- HalfAdder
- FullAdder
- Add16
- Inc16
- ALU

Guidelines: www.nand2tetris.org/project02

Home

Prerequisites

Syllabus

Course

Software

Terms

Papers

Talks

Cool Stuff

About

Team

Q&A

Project 2: Combinational Chips

Background

The centerpiece of the computer's architecture is the *CPU*, or *Central Processing Unit*, and the centerpiece of the CPU is the *ALU*, or *Arithmetic-Logic Unit*. In this project you will gradually build a set of chips, culminating in the construction of the *ALU* chip of the *Hack* computer. All the chips built in this project are standard, except for the ALU itself, which differs from one computer architecture to another.

Objective

Build all the chips described in Chapter 2 (see list below), leading up to an *Arithmetic Logic Unit* - the Hack computer's ALU. The only building blocks that you can use are the chips described in chapter 1 and the chips that you will gradually build in this project.

Chips

Chip (HDL)	Description	Test script	Compare file
HalfAdder	Half Adder	HalfAdder.tst	HalfAdder.cmp
FullAdder	Full Adder	FullAdder.tst	FullAdder.cmp
Add16	16-bit Adder	Add16.tst	Add16.cmp
Inc16	16-bit incrementer	Inc16.tst	Inc16.cmp
ALU	Arithmetic Logic Unit	ALU.tst	ALU.cmp

Resources

```
Project 2 folder (.hdl, .tst, .cmp files):
nand2tetris/projects/02
```

Tools

- Text editor (for completing the given .hdl stub-files)
- Hardware simulator: nand2tetris/tools

Guides

- Hardware Simulator Tutorial
- HDL Guide
- Hack Chip Set API

Chip interfaces: Hack chip set API

Add16 (a= ,b= ,out=); ALU (x = y = zx = nx = zy = ny = f = no = out = zr = ng =);And16 (a= ,b= ,out=); And (a= ,b= ,out=); Aregister (in= ,load= ,out=); Bit (in= ,load= ,out=); CPU (inM= ,instruction= ,reset= ,outM= ,writeM= ,ac DFF (in= ,out=); DMux4Way (in= ,sel= ,a= ,b= ,c= ,d=); DMux8Way (in= ,sel= ,a= ,b= ,c= ,d= ,e= ,f= ,g= ,h= Dmux (in= ,sel= ,a= ,b=); Dregister (in= ,load= ,out=); FullAdder (a= ,b= ,c= ,sum= ,carry=); HalfAdder (a= ,b= ,sum= , carry=); Inc16 (in= ,out=); Keyboard (out=); Memory (in= ,load= ,address= ,out=); Mux16 (a= ,b= ,sel= ,out=); Mux4Way16 (a= ,b= ,c= ,d= ,sel= ,out=); Mux8Way16 (a= ,b= ,c= ,d= ,e= ,f= ,g= ,h= ,sel= ,o

Open the API in a window, and copy-paste chip signatures into your HDL code, as needed

```
Mux8Way (a= ,b= ,c= ,d= ,e= ,f= ,g= ,h= ,sel= ,out= );
Mux (a= ,b= ,sel= ,out= );
Nand (a= ,b= ,out= );
Not16 (in= ,out= );
Not (in= ,out= );
Or16 (a= ,b= ,out= );
Or8Way (in= ,out= );
Or (a= ,b= ,out= );
PC (in= ,load= ,inc= ,reset= ,out= );
PCLoadLogic (cinstr= ,j1= ,j2= ,j3= ,load= ,inc= );
RAM16K (in= ,load= ,address= ,out= );
RAM4K (in= ,load= ,address= ,out= );
RAM512 (in= ,load= ,address= ,out= );
RAM64 (in= ,load= ,address= ,out= );
RAM8 (in= ,load= ,address= ,out= );
Register (in= ,load= ,out= );
ROM32K (address= ,out= );
Screen (in= ,load= ,address= ,out= );
Xor (a= ,b= ,out= );
```

Best practice advice

- Implement the chips in the order in which they appear in the project guidelines
- If you don't implement some chips, you can still use their built-in implementations
- No need for "helper chips": Implement / use only the chips we specified
- In each chip definition, strive to use as few chip-parts as possible
- You will have to use chips implemented in Project 1; For efficiency and consistency's sake, use their built-in versions, rather than your own HDL implementations.

That's It!
Go Do Project 2!

What's next?

Next lecture / chapter / project:
Build the computer's RAM