5. REKURZIVNE RELACIJE

5.1 Fibonaccijev slijed (niz)

Primjer rekurzivnih relacija:

Svaki par zečica-zec dobiva tijekom svakog sljedećeg mjeseca par mladih: zečicu i zeca.

Pitanje: Ako je na početku bio samo jedan par $f_0 = 1$, koliko će parova f_n biti nakon n mjeseci?

Rješenje je jednoznačno određeno nizom prirodnih brojeva (f_n) , n=0,1,2,.. koji je dan rekurzivnom relacijom

$$f_n = f_{n-1} + f_{n-2}, \quad n = 2, 3, \dots$$

gdje je $f_0 = 1$ i $f_1 = 1$.

Definicija *Fibonaccijev slijed (niz)* (F_n) definira se početnim vrijednostima $F_0=0$ i $F_1=1$ i rekurzivnom relacijom

$$F_n = F_{n-1} + F_{n-2}, \quad n = 2, 3, \dots$$

Propozicija 1 (A. de Moivre) Za Fibonaccijev slijed (F_n) vrijedi "zatvorena formula"

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right], \quad n = 0, 1, 2, \dots.$$

Napomena: Može se pokazati (iz zatvorene formule) da je

$$\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \frac{1 + \sqrt{5}}{2} \approx 1.618.$$

Ovaj broj naziva se zlatni prerez (božanski omjer).

Posljedica 1 Broj F_n u Fibonaccijevom slijedu jednak je cijelom broju koji je nabliži broju $\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^n$. Slijed (F_n) ima eksponencijalni rast.

5.1 Linearne rekurzivne relacije

Opći oblik linearne rekurzivne relacije reda n je

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_r a_{n-r} + f(n), \qquad n \ge r,$$

$$(1)$$

gdje su $c_1, c_2, ..., c_r$ zadani realni ili kompleksni brojevi i $c_r \neq 0$, a $f : \{r, r+1, ...\} \rightarrow \mathbb{R}$ (ili \mathbb{C}).

Ovdje je n-ti član <u>rekurzivno</u> određen vrijednostima <u>predhodnih</u> članova $a_{n-1}, a_{n-2}, \dots, a_{n-r}$ (početne <u>vrijednosti</u>).

<u>Cilj:</u> Riješiti (1) po a_n , tj. uz zadane početne vrijednosti $a_{n-1}, a_{n-2}, \ldots, a_{n-r}$ naći a_n eksplicitno kao funkciju od n (zatvorenu formu).

Linearne homogene rekurzivne relacije s konstantnim koeficijentima

Rekurzivna relacija (1) je homogena ako je $f(n) \equiv 0$ za sve n. Dakle, imamo

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_r a_{n-r}, \qquad n \ge r.$$
 (2)

Propozicija 2 Ako za dva slijeda (a'_n) i (a''_n) , $n \geq 0$ vrijedi rekurzivna relacija (2), onda vrijedi i za njihovu linearnu kombinaciju $(\lambda a'_n + \mu a''_n)$, gdje su $\lambda, \mu \in \mathbb{R}$ (ili \mathbb{C}) bilo koji skalari.

Rješenje od (2) tražimo u obliku:

$$a_n = x^n$$
, Eulerova supstitucija.

Uvrštavanjem u (2) za $x \neq 0$ dobivamo

$$x^{n} = c_1 x^{n-1} + c_2 x^{n-2} + \dots + c_r x^{n-r}, \qquad n \ge r,$$

što povlači (dijeljenjem s $x^{n-r} \neq 0$)

$$x^{r} - c_1 x^{r-1} - c_2 x^{r-2} - \dots - c_r = 0.$$
 (3)

Po Osnovnom teoremu algebre <u>karakteristična jednadžba</u> (3) ima u skupu kompleksnih brojeva r korijena $x_1, x_2, ..., x_r$ (neki mogu biti međusobno jednaki). Zbog pretpostavke $c_r \neq 0$ niti jedan x_i nije 0.

Razlikujemo dva slučaja:

1. Slučaj r različitih korijena karakteristične jednadžbe

Teorem 1 Neka su svi korijeni $x_1, x_2, ..., x_r$ karakteristične jednadžbe međusobno različiti. Tada je opće rješenje linearne homogene rekurzivne relacije s konstantnim koeficijentima jednako linearnoj kombinaciji

$$a_n = \lambda_1 x_1^n + \lambda_2 x_2^n + \dots + \lambda_r x_r^n, \quad n = 0, 1, 2, \dots$$
 (4)

gdje su $\lambda_1, \lambda_2, ..., \lambda_r$ bilo koji kompleksni brojevi.

2. Slučaj kada postoje višestruki korijeni karakteristične jednadžbe

Lema1 Ako je kompleksni broj x_0 k—struki korijen polinoma $P\left(x\right)$, onda je on (k-1)—struki korijen derivacije $P'\left(x\right)$.

Propozicija 3 Ako je kompleksni broj x_0 k—struki korijen karakteristične jednadžbe (3), onda svaki od k sljedova

$$a_n = x_0^n$$
, $a_n = nx_0^n$, ..., $a_n = n^{k-1}x_0^n$,

predstavlja rješenje rekurzivne relacije (2).

Teorem 2 Neka su $x_1, x_2, ..., x_m$ svi različiti korijeni karakteristične jednadžbe kratnosti $k_1, k_2, ...k_m$. Rješenje $a_n^{(i)}$ od (2), koje odgovara korijenu x_i kratnosti k_i , je linearna kombinacija k_i sljedova

$$a_n^{(i)} = \lambda_1^{(i)} x_i^n + \lambda_2^{(i)} n x_i^n + \dots + \lambda_{k_i}^{(i)} n^{k_i - 1} x_i^n, \quad n = 0, 1, 2, \dots,$$

pri čemu su $\lambda_1^{(i)},\,\lambda_2^{(i)},...,\lambda_{k_i}^{(i)}$ kompleksni koeficijenti. Opće rješenje je dano sa

$$a_n = a_n^{(1)} + \dots + a_n^{(m)}.$$

(ovdje imamo ukupno $r=k_1+k_2+...+k_m$ slobodnih koeficijenata).

Linearne nehomogene rekurzivne relacije s konstantnim koeficijentima

Opći oblik je

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_r a_{n-r} + f(n), \qquad n \ge r,$$

$$(4)$$

gdje su $c_1, c_2, ..., c_r$ zadani realni ili kompleksni brojevi i $c_r \neq 0$, a $f: \{r, r+1, ...\} \rightarrow \mathbb{R}$ (ili \mathbb{C}).

Propozicija 4. Neka je $\left(a_n^{(0)}\right)$ opće rješenje pripadne homogene rekurzivne relacije je dano Teoremom 2. Ako znamo neko patikularno rješenje $\left(a_n^{(p)}\right)$ od (4) onda je opće rješenje nehomogene rekurzivne relacije (4) dano sa

$$a_n = a_n^{(0)} + a_n^{(p)}. (5)$$

Napomena: Općenito nalaženje partikularnog rješenja je općenito komplicirano, ali u nekim slučajevima postoje recepti. Evo nekih:

$f\left(n\right)$	$a_n^{(p)}$
C (const.)	A
Cn	An + B
$P_{k}\left(n ight)$	$Q_{k}\left(n ight)$
$C\alpha^n$	$A\alpha^n$
$C\alpha^n \cos \beta n + D\alpha^n \sin \beta n$	$A\alpha^n \cos \beta n + B\alpha^n \sin \beta n$

Primjedba: Ako je $f(n)=C\alpha^n$ i $x=\alpha$ korijen karakteristične jednadžbe, onda partikularno rješenje ne možemo tražiti u obliku $a_n^{(p)}=A\alpha^n$.

5.2 Primjeri

Primjer 1 Dana je rekurzivna relacija

$$a_n = 6a_{n-1} - 9a_{n-2} + 2n, \qquad n \ge 2$$
 uz početni uvjet $a_0 = 1, \, a_1 = 2.$

Primjer 2 Dana je rekurzivna relacija

$$a_n = a_{n-1} + n - 1, \quad n \ge 1$$

uz početni uvjet $a_0 = 0$.

Primjer 3 Hanojske kule

- Imamo n kolutova s rupom u sredini, svi različitih polumjera i na ravnoj podlozi zabodena tri štapića;
- Svi kolutovi su nanizani na jedan štapić tako da je kolut s većim polumjerom uvijek ispod onog s manjim polumjerom;
- <u>Cilj:</u> Prenijeti sve kolutove (jedan po jedan) na treći štapić tako da ni u jednom trenutku ne bude onaj s većim polumjerom iznad onog s manjim. Pri tome svaki od štapića možemo koristiti za privremeno smještanje kolutova;
- Pitanje: Koliki je najmanji broj prijenosa a_n potreban da se svih n kolutova prenese s prvog na treći štapić?

Induktivni opis:

- Za n = 1 (jedan kolut) imamo samo jedan prijenos $a_1 = 1$;
- Pretpostavimo da znamo prenijeti n kolutova (imamo a_n prijenosa).
- Za prijenos n+1 koluta imamo sljedeće:
- prenesemo n kolutova na drugi štapić (ukupno a_n prijenosa);
- prenosimo najveći kolut na treći štapić (ukupno 1 prijenos);
- prenesemo n kolutova s drugog na drugi štapić (ukupno a_n prijenosa).

Dakle, vrijedi

$$a_{n+1} = 2a_n + 1, \ a_1 = 1$$

Rješenje je:

$$a_n = 2^n - 1, n \in \mathbb{N}$$

Napomena: Zapravo imamo

$$a_{n+1} \le 2a_n + 1$$
.

Ali budući je

$$a_{n+1} \ge 2a_n + 1$$

imamo jednakost.

5.3 Rješavanje pomoću funkcija izvodnica

Definicija Neka je zadan niz $(c_n)_{n\geq 0}$. Funkciju

$$g\left(x\right) = \sum_{n=0}^{\infty} c_n x^n$$

nazivamo funkcija izvodnica (ili generirajuća funkcija) niza $(c_n)_{n\geq 0}$.

Napomena: Vrijedi:

$$\sum_{n=0}^{k} a_n = \sum_{n-1=0}^{k} a_{n-1} = \sum_{n=1}^{k+1} a_{n-1} = \sum_{n=2}^{k+2} a_{n-2}$$

Primjer Fibonaccijev niz (F_n) definira se početnim vrijednostima $F_0=0$ i $F_1=1$ i rekurzivnom relacijom

$$F_n = F_{n-1} + F_{n-2}, \quad n = 2, 3, \dots$$

Treba riješiti rekurzivnu relaciju.

6. KOMBINATORIKA

6.1 Produktno pravilo

Osnovni problem: Nalaženje kardinalnog broja (|A|) konačnih skupova zadanih na razne načine.

Pravilo zbrajanja:

• Ako su A i B konačni disjunktni skupovi, onda vrijedi $|A \cup B| = |A| + |B|$;

Propozicija 1 Neka su A_1 i A_2 neprazni konačni skupovi. Onda vrijedi $|A_1 \times A_2| = |A_1| \cdot |A_2|$.

Napomena: Ako se nešto može obaviti na m načina, a svaki način ima n ishoda, onda je ukupan broj mogućih ishoda jednak mn.

Teorem 1 (Produktno pravilo) Neka su $A_1, A_2, ..., A_n$ neprazni konačni skupovi. Onda vrijedi

$$|A_1 \times ... \times A_n| = |A_1| \cdot ... \cdot |A_n|$$

ili
$$\left|\prod_{k=1}^n A_k\right| = \prod_{k=1}^n |A_k|$$
 .

Skup svih funkcija $f:A\to B$, gdje su A i B neprazni konačni skupovi, označimo sa B^A .

Teorem 2 Neka su A i B neprazni konačni skupovi. Onda vrijedi $\left|B^A\right| = \left|B\right|^{|A|}$.

Napomena: Bilo koja funkcja $f:A\to B$ može vrijednost $f(a_1)$ poprimiti na |B|=m načina, $f(a_2)$ isto na |B|=m načina,..., $f(a_n)$ na |B|=m načina, onda f možmo zadati na m^n načina.

Korolar 1 Broj uređenih n—torki sastavjenih od 0 i 1 (ili neka druga dva različita elmenta) jednak je 2^n .

Skup svih funkcija $f:A\to B$, gdje su A i B neprazni konačni skupovi, označimo sa B^A .

Teorem 3 Neka je X neprazni konačan skup. Onda za partitivni skup 2^X vrijedi $\left|2^X\right|=2^{|X|}$.

Napomena: Broj podskupova n—članog skupa jednak je broju uređenih n—torki nula i jedinica, a to je 2^n .

Propozicija 2 Neka je dan prirodan broj n. Kardinalan broj skupa svih Booleovi funkcija $F:B^n\to B$, $B=\{0,1\}$ je jednak 2^{2^n} .

6.2 Varijacije, permutacije i kombinacije bez ponavljanja

Razlikujemo:

- Varijacije (i permutacije kao specijalan slučaj) prebrojavamo uređene k-torke nekog konačnog skupa (poredak bitan);
- Kombinacije prebrojavamo podskupove nekog konačnog skupa (poredak nije bitan);

Razlikujemo: varijacije i kombinacije bez i sa ponavljanjem.

Definicija Varijacijom bez ponavljanja reda k konačnog skupa $A_n = \{a_1, ..., a_n\}, k \leq n$, nazivamo bilo koju uređenu k-torku različitih elmenata iz A. Broj varijacija bez ponavljanja reda k označavamo sa P_k^n .

Varijaciju bez ponavljanja reda n nazivamo permutacija n—članog skupa. Broj permutacija n—članog skupa označavamo sa P^n .

Napomena: Svaku permutaciju skupa A_n možemo poistovjetiti s nekom bijekcijom $f: A_n \to A_n$.

Teorem 4 Broj varijacija bez ponavljanja reda $k \leq n$ skupa od n elemenata jednak je

$$P_k^n = \frac{n!}{(n-k)!} = n(n-1) \cdot \dots \cdot (n-k+1).$$

Broj permutacija n-članog skupa jednak je n!.

Definicija Kombinacijom bez ponavljanja reda k konačnog skupa $A_n = \{a_1, ..., a_n\}$, $k \le n$, nazivamo bilo koji k—člani podskup od A.

Teorem 5 Broj kombinacija bez ponavljanja reda $k \le n$ skupa od n elemenata jednak je

$$\binom{n}{k} := \frac{n(n-1) \cdot \dots \cdot (n-k+1)}{k!}$$

Svojstva:

1.
$$\binom{n}{0} = \binom{n}{n} = 1$$

$$2. \binom{n}{1} = \binom{n}{n-1} = n$$

3.
$$\binom{n}{k} = \binom{n}{n-k}$$

4.
$$\binom{n}{k} = \binom{n-1}{k} + \binom{n+1}{k-1}$$

Pascalov trokut

Propozicija 3 (Binomna formula) Za svaki $n \in \mathbb{N}$ vrijedi

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Dokaz. Matematičkom indukcijom ili kombinatorički.

6.3 Varijacije, permutacije i kombinacije s ponavljanjem

Definicija Neka je zadan skup od k elemenata $A_k = \{a_1, ..., a_k\}$. Promatrajmo sve uređene n—torke elmenata iz A u kojima se element a_1 pojavljuje n_1 puta, element a_2 pojavljuje n_2 puta, ..., element a_k pojavljuje n_k puta, pri čemu je $n_1 + n_2 + ... + n_k = n$. Takve n—torke nazivamo permutacije n—tog reda s ponavljanjem, a njihov broj označavamo s $P_{n_1 n_2 ... n_k}^n$.

Teorem 6 Broj permutacije n—tog reda s ponavljanjem skupa $A_k = \{a_1, ..., a_k\}$, u kojima se element a_i pojavljuje n_i puta, i = 1, ..., k, jednak je

$$P_{n_1 n_2 \dots n_k}^n = \frac{n!}{n_1! n_2! \cdot \dots \cdot n_k!}.$$

Teorem 7 (Multinomni teorem)

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{n_1 + n_2 + \dots + n_k = n} \frac{n!}{n_1! n_2! \cdot \dots \cdot n_k!} x_1^{n_1} x_2^{n_2} \dots x_k^{n_k},$$

gdje u gornjoj sumi zbrajamo po svim k-torkama cijelih brojeva $n_1, n_2, ..., n_k \ge 0$ takvim da je $n_1 + n_2 + ... + n_k = n$.

Definicija Neka je zadan skup od n elemenata $A_n = \{a_1, ..., a_n\}$. Promatrajmo sve uređene k—torke elmenata iz A, pri čemu se svaki element može i ponavljati. Takve k—torke nazivamo varijacije k—tog reda s ponavljanjem n—članog skupa, a njihov broj označavamo s V_n^k .

Teorem 8

$$V_n^k = n^k$$
.

Definicija Neka je zadan skup od n elemenata $A_k = \{a_1, ..., a_k\}$. Promatrajmo sve neuređene k—torke elmenata iz A, pri čemu se svaki element može i ponavljati. Takve neuređene k—torke nazivamo kombinacije k—tog reda s ponavljanjem n—članog skupa.

Teorem 9 Broj kombinacije k—tog reda s ponavljanjem n—članog skupa jedanak je

$$\binom{n+k-1}{k}$$
.

6.4 Formula uključivanja i isključivanja

Ako su A_1 i A_2 konačni skupovi, onda je

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$
.

Slično, za tri konačna skupa

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_2| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|.$$

Teorem 9 (Formula uključivanja i isključivanja ili Sylvesterova formula) Neka su $A_1, A_2, ..., A_k$ konačni skupovi. Onda vrijedi

$$|A_1 \cup ... \cup A_k| = \sum_{i=1}^n |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \sum_{1 \le i < j \le n} |A_i \cap A_j \cap A_k| - ... + (-1)^{n-1} |A_1 \cap ... \cap A_k|.$$

Općenitiji problem:

Neka je zadan konačan skup X s N elemenata. Neka su $S\left(1\right),...,S\left(n\right),$ neka svojstva koja imaju neki njegovi elementi. Pretpostavka je da znamo za svaki element ima li svojstvo $S\left(i\right)$ ili ne. Neki element može imati više navedenih svojstava.

Oznake:

- N_0 je broj elemenata iz X koje nemaju ni jedno od svojstava S(1),...,S(n);
- $N_{i_1...i_k}$ je broj elemenata iz X koji imaju svojstva $S(i_1),...,S(i_k)$.

Teorem 10 (Formula uključivanja i isključivanja)

$$N_0 = N - \sum_{i < j} N_{ij} + \sum_{i < j < k} N_{ijk} + \dots + (-1)^n N_{12\dots n}.$$

Napomena: Ako je n=2, tj. ako imamo samo dva svojstva $S\left(1\right),\,S\left(2\right),\,$ onda je

$$N_0 = N - (N_1 + N_2) + N_{12}$$

Primjer: Koliko ima permutacija bez ponavljanja f skupa $\{1,2,...,n\}$ takvih da je $f(k) \neq k$ za sve k=1,2,...,n? Takve permutacije kod kojih niti jedan element nije na svom mjestu nazivamo <u>neredima</u> ili deranžmanima.