LUNDS TEKNISKA HÖGSKOLA MATEMATIK Helsingborg

TENTAMENSSKRIVNING LINJÄR ALGEBRA, FMAA55 2025-06-05 kl 8.00–13.00

INGA HJÄLPMEDEL.

Lösningarna skall vara försedda med ordentliga motiveringar och svaren förenklas maximalt. Alla baser och koordinatsystem får antas vara ortonormerade och positivt orienterade, om inte annat anges.

- 1. Låt $\mathbf{u} = (1, -1, 2), \mathbf{v} = (1, a, 3)$ och $\mathbf{w} = (1, 2, -1).$
 - a) Bestäm talet a så att \mathbf{u} och \mathbf{v} blir ortogonala. (0.2)
 - b) Beräkna minsta vinkeln mellan \mathbf{u} och \mathbf{w} . (0.4)
 - c) Beräkna, för a = 2, volymen av parallellepipeden som spänns upp av \mathbf{u} , \mathbf{v} och \mathbf{w} . (0.4)
- **2. a)** Beräkna eventuella skärningen mellan linjen ℓ : (x, y, z) = (3 2t, 2 t, -3 + t) och planet π : 2x y + z = 5. (0.3)
 - **b)** Bestäm en ekvation på affin form för planet π_1 som innehåller punkterna P_1 : (1,0,2), P_2 : (2,-1,1) och P_3 : (2,2,3). (0.4)
 - c) Ange avståndet mellan punkten P_0 : (1,2,3) och planet π_2 : 2x 6y + 3z = 6. (0.3)
- 3. Lös matrisekvationen $XA + X = B^{\mathsf{T}} \operatorname{där} A = \begin{pmatrix} 4 & 3 \\ 2 & 0 \end{pmatrix} \operatorname{och} B = \begin{pmatrix} 5 & 2 & 1 \\ 3 & 1 & 1 \end{pmatrix}$ (1.0)
- **4.** Låt $\mathbf{u}_1 = (1, 1, 2), \ \mathbf{u}_2 = (0, 1, b) \text{ och } \mathbf{u}_3 = (b, 2, 0).$
 - a) Ange de värden på talet b, för vilka vektorerna \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 är linjärt beroende. (0.4)
 - b) För varje sådant b, skriv \mathbf{u}_3 som en linjärkombination av \mathbf{u}_1 och \mathbf{u}_2 . (0.6)
- 5. Låt $F: \mathbb{R}^3 \to \mathbb{R}^3$ beteckna avbildningen $F(\mathbf{x}) = (1, 2, 3) \times \mathbf{x}$.
 - a) Bevisa, med hjälp av definitionen, att F är linjär. (0.3)
 - b) Ange avbildningsmatrisen för F. (0.5)
 - c) Ange värdemängden för F. (0.2)
- 6. Linjen ℓ_1 innehåller punkten (1, 2, -3) och skär linjen ℓ_2 : (x, y, z) = (1 + t, -2t, -2 + 3t) ortogonalt. Bestäm ekvationen för ℓ_1 . (1.0)

SLUT!