MA372: Differential Equations

Baker University — Fall 2023

Each of the following comes from the textbook *Elementary Differential Equations and Boundary Value Problems* (Ninth Edition) by William E. Boyce and Richard C. DiPrima.

Exam 1: First Order Differential Equations

date	day	section	$\mathrm{topic}(\mathrm{s})$
			o direction fields
8/23	W	§1.1: Mathematical Models; Direction Fields	o equilibrium solutions
			o basic examples
			o basic examples
8/25	F	F §1.2: Solutions of Some Differential Equations	o initial value problems
			o integral curves

date	day	section	topic(s)
			o ODEs versus PDEs
8/28	$_{ m M}$	§1.3: Classification of Differential Equations	o order
0/20	101	gr.5. Classification of Differential Equations	o linearity
			o basic examples
			• first order linear equations
8/30	W	§2.1: Linear Equations; Integrating Factors	o integrating factors
			o initial value problems
			o Chain Rule for Derivatives
9/1	\mathbf{F}	F §2.2: Separable Equations	o initial value problems
			o integral curves

date	day	section	$\mathrm{topic}(\mathrm{s})$
9/4	M	Labor Day	
			o potential functions
9/6	W	§2.6: Exact Equations	o solutions of exact equations
			o integrating factors
			o integral equations
9/8	F	§2.8: Existence and Uniqueness Theorem	o Picard's Method
			\circ basic examples

date	day	section	$\mathrm{topic}(\mathrm{s})$
9/11	M	Exam I Review	
9/13	W	Exam I Review	
9/15	F	Exam I	

Exam 2: Second Order Linear Equations

date	day	section	$\mathrm{topic}(\mathrm{s})$
			o homogeneity
9/18	$_{ m M}$	\$2.1. Homogeneous Equations	o linearity
9/10	IVI	§3.1: Homogeneous Equations	o characteristic equation
			o initial value problems
			o existence and uniqueness
9/20	W	§3.2: Linear Homogeneous Equations	o superposition
			o computing the Wronskian
			• fundamental set of solutions
9/22	F	F §3.2: Linear Homogeneous Equations	o Abel's Theorem
			o basic examples

date	day	section	$\mathrm{topic}(\mathrm{s})$
		§3.3: Complex Roots of Characteristic Eq'n	o discriminant
9/25	M		∘ Euler's Formula
			\circ initial value problems
9/27	117	W §3.4: Repeated Roots; Reduction of Order	o D'Alembert's Method
9/21	l vv		• reduction of order
9/29	F	§3.5: Method of Undetermined Coefficients	• the fundamental theorem
9/29	Г		o basic examples

date	day	section	$\mathrm{topic}(\mathrm{s})$
10/2	2 M §3.6: Variation of Parameters		\circ motivation
10/2	101	§3.6: Variation of Parameters	\circ basic examples
10/4	117	\$2.6. Variation of Danamatana	\circ the fundamental theorem
10/4	W	§3.6: Variation of Parameters	\circ further examples
			o radius of convergence
10/6	F	St. 1. Deview of Dowen Copies	o interval of convergence
10/6		F §5.1: Review of Power Series	o common examples of power series
			• change of index

date	day	section	$\mathrm{topic}(\mathrm{s})$
			o ordinary point
10/9	M	§5.2: Series Solutions, Part I	o singular point
			\circ recurrence relations
			o analytic functions
10/11	W	§5.3: Series Solutions, Part II	\circ the fundamental theorem
			\circ further examples
10/13	F	Fall Break	

date	day	section	$\mathrm{topic}(\mathrm{s})$
			o real distinct roots
10/16	M	§5.4: Euler Equations	o real repeated roots
			o complex roots
10/18	W	Exam II Review	
10/20	F	Exam II Review	

date	day	section	$\mathrm{topic}(\mathrm{s})$
10/23	M	Exam II	

Exam 3: Other Methods of Solving Ordinary Differential Equations

date	day	section	$\mathrm{topic}(\mathrm{s})$
		§6.1: Definition of the Laplace Transform	o improper integration
10/25	W		• Comparison Theorem
10/20	VV		\circ integral transforms
			o basic examples
10/27	F §6.1: Definition of the Laplace Transform	o inverse Laplace transforms	
10/27		go.1: Definition of the Laplace Transform	\circ further examples

date	day	section	$\mathrm{topic}(\mathrm{s})$
10/30	М	§6.2: Solutions of Initial Value Problems	\circ further examples
10/30	М		\circ initial value problems
	W	§6.3: Step Functions	• Heaviside function
11/1			o computing step functions
			o inverse Laplace transforms
11/3	E	F §6.5: Impulse Functions	o Dirac delta function
	Г		o basic examples

date	day	section	topic(s)
			o properties
11/6	M	§6.6: The Convolution Integral	o inverse Laplace transforms
			o initial value problems
11/8		§8.1: The Euler or Tangent Line Method	Euler Method
	W		o Backward Euler Formula
			o basic examples
11/10		§8.1: The Euler or Tangent Line Method	o basic examples
			o order of convergence
	F		o global truncation error
			o local truncation error
			∘ round-off error

date	day	section	$\mathrm{topic}(\mathrm{s})$
11/13	M	§8.2: The Runge-Kutta Method	 basic examples order of convergence local truncation error
11/15	W	Exam III Review	
11/17	F	Exam III Review	

date	day	section	$\mathrm{topic}(\mathrm{s})$
11/20	M	Exam III	
11/22	W	Thanksgiving Break	
11/24	F	Thanksgiving Break	

Final Exam Review

date	day	section	$\mathrm{topic}(\mathrm{s})$
11/27	M	Final Exam Review	
11/29	W	Final Exam Review	
12/1	F	Final Exam Review	

date	day	section	$\mathrm{topic}(\mathrm{s})$
12/4	M	Final Exam Review	
12/6	W	Final Exam Review	
12/8	F	Final Exam Review	

Final Exam: Tuesday, December 12 from 1:00 to 4:00 PM in Mulvane 202