Michael NLP Literature Review

Natural Language Inference

Facebook Infersent

Input:

Output:

Architecture:

Evaluation Metrics:

Side Notes:

Resources:

Implementation:

Decomposable Attention Model for Natural Language Inference

Input:

Output:

Architecture:

Evaluation Metrics:

Side Notes:

Resources:

Implementation:

Question Generation

Neural Question Generation from Text, A Preliminary Study

<u>Input</u>

Text sentence(not the passage or paragraph) and Answer position (answer-aware input representation)

Output:

Generated Answer-aware question

Architecture:

Lexical Features:
NER and POS
Answer Position Feature:
BIO (begin, continue, not included in the answer)

For the decoder part, each RNN cell should look like this

w: word vector selected from last step

s: hidden state

c: context vector by attention

This is essentially a generative language model. They use a *copy mechanism* in decoder which generates a probability p of copying a word from source sentence in order to cope with unknown words.

Evaluation Metrics:

- 1. BLEU-4 Score (13.29%)
 - a. More on Bleu Score: Bleu Score: Michael Machine Learning Notes
- 2. Precision and Recall for question type
 - a. types: when...what...how...
 - b. Precision: for all generated T type question, how many of them are actually T?

Conclusion:

Three things that largely improve performance (by ablation analysis):

- 1. The use of answer position
- 2. The use the lexical features
- 3. The use of copy mechanism

Implementation:

https://github.com/magic282/NQG/blob/master/seq2seq_pt/s2s/Models.py

My Thoughts:

This model is easy to understand and can serve as a good baseline model.

Inspired by the question type metric, I think maybe we can train different models for different types. (type is limited, $4\sim5$)

One problem is that we may also need to provide answer positions during inference time.

Learning to Ask: Neural Question Generation for Reading Comprehension

Input:

For **basic model**, the input is just the sentence that contains the answer
For **paragraph-level model**, the inputs are the sentence and the truncated paragraph containing it
Sometimes the answers may span 2 or more sentences, we just concatenate the sentences.

<u>Preprocessing</u>: CoreNLP - tokenization, lower case and sentence splitting

Output:

Generated question

Architecture:

Encoder is just a Bi-LSTM sentence encoder. Suppose the generated vector of the sentence is s and generated vector of the truncated context paragraph is s'.

For decoder,

- Initialization: we initialize the first hidden state of the decoder using "s" for basic model and "s + s" for paragraph-level model.
- Beam search is utilized: & Beam Search: Michael Machine Learning Notes
- To cope with UNKs, we copy the word in the source sentence with the highest attention score at this step

Evaluation Metrics:

- 1. BLEU Score
- 2. METEOR and ROUGE

Side notes:

They randomly sample some sentence-questions pairs from the test set and categorize them to 4 categories:

- w/ sentence: only requires the sentence tot answer the question
- w/ paragraph: requires the sentence and context paragraph tto answer the question
- w/ article: requires the sentence and entire article to answer the question
- no ask-able: maybe annotation error, cannot answer

Implementation:

Original Implementation in Torch/Lua: https://github.com/xinyadu/nqg

Tensorflow implementation: https://github.com/yanghoonkim/neural_question_generation

My Thoughts:

Inspired by the motivation part of rule-based method vs NN method: is BLEU score a syntactic measurement instead of semantic? If so, how about applying our question matching (between generated and reference sentences) model as one of the performance metrics for Question generation?

A Generator-Evaluator Framework for Question Generation

Input:

Output:

Architecture:

Evaluation Metrics:

Side Notes:

Reinforcement learning Perspective

- Some basics: & Reinforcement Learning: Michael Machine Learning Notes
- Reinforcement Learning with NLP

Word Coverage Mechanism

- Motivation: TODO
- More Details on their own paper: Modeling Coverage for Neural Machine Translation

Resources:

Implementation:

Question Answering

Stanford Attentive Reader

Input:

Output:

Architecture:

Evaluation Metrics:

Side Notes:

Resources:

Implementation:

Stanford Attentive Reader ++

Input:

Output:

Architecture:

Evaluation Metrics:

Side Notes:

Resources:

Implementation:

Bidirectional Attention Flow for Machine Comprehension

Input:

Output:

Architecture:

Evaluation Metrics:

Side Notes:

Resources:

Implementation:

https://github.com/jojonki/BiDAF

Dynamic Coattention Networks For Question Answering

Input:

Output:

Architecture:

Evaluation Metrics:

Side Notes:

Resources:

Implementation:

QANet

Input:

Output:

Architecture:

Evaluation Metrics:

Side Notes:

Resources:

Implementation:

FusionNet

Input:

Output:

Architecture:

Evaluation Metrics:

Side Notes:

Resources:

Implementation:

Text Generation

Tutorial on Variational Autoencoders

Input:

Output:

Architecture:

Evaluation Metrics:

Side Notes:

Resources:

[Highly Recommend!] University of Waterloo <u>Deep Learning Lecture</u> by Dr. Ali Aghosi

Implementation:

Generating Sentences from a Continuous Space

Input:

Output:

Architecture:

Evaluation Metrics:

Side Notes:

Resources:

Implementation:

A Hybrid Convolutional Variational Autoencoder for Text Generation

Input:

Output:

Architecture:

Evaluation Metrics:

Side Notes:

Resources:

Implementation:

Chatbot

Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues

Input:

Output:

Architecture:

Evaluation Metrics:

Side Notes:

Resources:

Implementation:

Building Dialogue Using Generative Hierarchical Neural Network Models

Input:

Output:

Architecture:

Evaluation Metrics:

Side Notes:

Resources:

Implementation:

A Persona-Based Neural Conversation Model

Input:
Output:
Architecture:
Evaluation Metrics:
Side Notes:
Resources:
Implementation:

Deep Reinforcement Learning for Dialogue Generation

Input:

Output:

Architecture:

Evaluation Metrics:

Side Notes:

Resources:

Implementation:

A Diversity-Promoting Objective Function for Neural Conversation Models

Input:

Output:

Architecture:

Evaluation Metrics:

Side Notes:

Resources:

Implementation:

Adversarial Learning for Neural Dialogue Generation

Input:

Output:

Architecture:

Evaluation Metrics:

Side Notes:

Resources:

Implementation:

Learning through Dialogue Interactions by Asking Questions

Input:

Output:

Architecture:

Evaluation Metrics:

Side Notes:

Resources:

Implementation:

Dialogue Learning With Human-In-The-Loop

Input:

Output:

Architecture:

Evaluation Metrics:

Side Notes:

Resources:

Implementation:

Classic NLP

Attention Is All You Need

Motivation:

Traditional models for NMT task are usually many-to-many RNNs. There are two drawbacks here:

- 1. Long term dependency problem
- 2. The sequential property precludes parallelization

Input:

sentence from source language

Output:

sentence from target language

Architecture:

Transformer Explanation. TODO

Side Notes:

Resources:

- 1. A great blog post on Attention mechanism
- 2. Soft vs Hard attention
- 3. Local vs global attention