92586 Computational Linguistics

Lesson 18. Bidirectional RNN \rightarrow Long Short-Term Memory Networks

Alberto Barrón-Cedeño

Alma Mater Studiorum-Università di Bologna a.barron@unibo.it @_albarron_

04/05/2022

Left and right context

Not only the previous context is important to understand the *current* token

They wanted to pet the dog whose fur was brown.

- ► Descriptions and relevant information often come later (not earlier)
- ► A standard RNN neglects information from the *future*

Table of Contents

End of Chapter 8, Chapter 9 of Lane et al. (2019)

Bidirectional recurrent neural network

- ► We arrange 2 RNNs:
 - ► one takes the input as usual
 - ► the other takes the backward input
 - ► ⊕ means concatenation

BiRNN zoom into results

Accuracies after 2 epochs

units	Acc	Acc_{val}
50	0.8156	0.7662
40	0.8244	0.7540
30	0.8259	0.7874
20	0.8072	0.8076
10	0.8007	0.8016
5	0.7973	0.8006
1	0.7070	0.7822

^{*} remember we had used 50 units last time for the RNN

Short effect from the past

The effect of token x_t dilutes significantly as soon as in t+2

Consider the following —fairly plausible— texts...

The young woman went to the movies with her friends.

The young woman, having found a free ticket on the ground, went to the movies.

- ► In both cases, **went** is the main verb
- ► A (Bi)RNN would hardly consider that in the second case
- ▶ We need an architecture able to "remember" the entire input

State: the memory of an LSTM

- ► The memory state contains attributes
- ► The attributes are updated with every instance
- ► The *rules* of the state are trained NNs

Now we have two learning objectives:

- ► Learn to predict the target labels
- ► Learn to identify what has to be remembered

LSTMs

(Lane et al., 2019, p. 276)

Unrolled LSTM

- \blacktriangleright Activation from t-1 plus memory state
- ► The memory state sends a vector with the state of each LSTM cell, of cardinality number_of_units

(Lane et al., 2019, p. 277)

LSTM Forget Gate

Input:

 $[x_{[t,0]},x_{[t,1]},\ldots,x_{[t,299]},h_{[t-1,0]},h_{[t-1,1]},\ldots h_{[t-1,49]},1]$

Forget: How much of the memory should be erased

—forgetting long-term dependencies as new ones arise

351 * 50 = 17,550 parameters

Feed-forward NN with sigmoid activation function:

[0, 1]

(Lane et al., 2019, p. 280)

The LSTM cell (layer)

Input: $output_{t-1} \bigoplus input_t$

Gates: An FF layer + an activation function **each**

LSTM Forget Gate

Forget is a mask:

LSTM Candidate Gate

Input:

$$[x_{[t,0]},x_{[t,1]},\ldots,x_{[t,299]},h_{[t-1,0]},h_{[t-1,1]},\ldots h_{[t-1,49]},1]$$

Candidate: How much to augment the memory —what to remember and where to do it

LSTM Output Gate

Input:

$$[x_{[t,0]},x_{[t,1]},\ldots,x_{[t,299]},h_{[t-1,0]},h_{[t-1,1]},\ldots h_{[t-1,49]},1]$$

Output: produces the output vector —both for the actual task and back to the memory

- ► sigmoid to the input
- ► tanh to the state

LSTM Candidate Gate

Candidate choice

Which values should be updated (~forget)

Candidate values

Computes those new values

(Lane et al., 2019, p. 283)

LSTM: Wrapping Up

- ► The *main* network uses the output of the memory in the same fashion as in a RNN
- ► The memory *decides* what to keep/feed to the network
- ► The weights of the memory are also learned by back-propagation

Let us see

LSTM: Result

arch	units	Acc	Acc _{val}
BiRNN	50	0.8156	0.7662
BiRNN	40	0.8244	0.7540
BiRNN	30	0.8259	0.7874
BiRNN	20	0.8072	0.8076
BiRNN	10	0.8007	0.8016
BiRNN	5	0.7973	0.8006
BiRNN	1	0.7070	0.7822
LSTM	50	0.7121	0.8678

References

Lane, H., C. Howard, and H. Hapkem 2019. *Natural Language Processing in Action*. Shelter Island, NY: Manning Publication Co.