Schema design and dependencies

name	location	breed	kind	job
casa	LA	tabby	cat	NULL
kira	seattle	tuxedo	cat	NULL
remy	LA	NULL	NULL	prof
vincent	LA	NULL	NULL	TA

nc	ıme l	ocation	breed	kind	job
C	asa	LA	tabby	cat	NULL
k	ira	seattle	tuxedo	cat	NULL
re	emy	LA	NULL	NULL	prof
vin	cent	LA	NULL	NULL	TA

1 table stores 1 kind of data

name	location	salary	graduate	funding
remy	LA	\$30	NULL	\$10
vincent	LA	\$20	2025	NULL

name	location	salary	graduate	funding
remy	LA	\$30	NULL	\$10
vincent	LA	\$20	2025	NULL

name	location	salary	funding
remy	LA	\$30	\$10

name	location	salary	graduate
vincent	LA	\$20	2025

name	location	salary	funding
remy	LA	\$30	\$10

:	name	location	salary	graduate
	vincent	LA	\$20	2025

payroll

name	location	salary
remy	LA	\$30
vincent	LA	\$20

prof

name	funding
remy	\$10

student

name	graduate
vincent	2025

each kind of data has its own table

name	location	salary	course
remy	LA	\$30	143
remy	LA	\$30	240
remy	LA	\$30	249

		_
location	salary	course
LA	\$30	143
LA	\$30	240
LA	\$30	249
	LA	LA \$30 LA \$30

redundancy!

(complicates updates & deletes)

each piece of information stored once

name \rightarrow location, salary

functional dependency

$$X \to Y$$

the values of X uniquely determines Y

$$\forall t, t' \in R : \pi_X(t) = \pi_X(t') \implies \pi_Y(t) = \pi_Y(t')$$

	name	location	salary	course
	remy	LA	\$30	143
>	remy	LA	\$30	240
>	remy	LA	\$30	249
	dan	seattle	\$50	344
	dan	seattle	\$50	444

$$\forall t, t' \in R : \pi_{\text{name}}(t) = \pi_{\text{name}}(t') \implies \pi_{\text{salary}}(t) = \pi_{\text{salary}}(t')$$

$name \rightarrow salary$

determines

first n.	last n.	location	salary	course
remy	W	LA	\$30	143
remy	W	LA	\$30	240
remy	W	LA	\$30	249
dan	S	seattle	\$50	344
dan	S	seattle	\$50	444
dan	Ο	zurich	\$50	101
dan	Ο	zurich	\$50	113

determines

first n.	last n.	location	salary	course
remy	W	LA	\$30	143
remy	W	LA	\$30	240
remy	W	LA	\$30	249
dan	S	seattle	\$50	344
dan	S	seattle	\$50	444
dan	О	zurich	\$50	101
dan	О	zurich	\$50	113

 $\{\text{first n., last n.}\} \rightarrow \{\text{location, salary}\}$

Check X → Y using SQL?

Check X → Y using SQL?

SELECT * FROM R
GROUP BY X
HAVING COUNT(Y) > 1

Trivial FDs?

A	В	С	D	E

Trivial FDs?

A	В	С	D	E

$$A \to A, B \to B, \dots$$

$$AB \to A, AB \to B, \dots$$

Trivial FDs?

A	В	С	D	E

$$A \to A, B \to B, \dots$$

$$AB \to A, AB \to B, \dots$$

$$X\supseteq Y\implies X\to Y$$

name	job	location	salary	tax %
remy	prof	LA	\$30	20
dan	prof	seattle	\$50	15
vincent	TA	LA	\$20	10

name \rightarrow location

name	job	location	salary	tax %
remy	prof	LA	\$30	20
dan	prof	seattle	\$50	15
vincent	TA	LA	\$20	10

 $name \rightarrow location \implies name, job \rightarrow ?$

name	job	location	salary	tax %
remy	prof	LA	\$30	20
dan	prof	seattle	\$50	15
vincent	TA	LA	\$20	10

 $name \rightarrow location \implies name, job \rightarrow tax \%$

name	job	location	salary	tax %
N	J	L	S	Т
N	J	?	?	?
vincent	TA	LA	\$20	10

 $name \rightarrow location \implies name, job \rightarrow tax \%$

FD inference

Given

$$X_1 \to Y_1$$

$$X_2 \to Y_2$$

$$X_3 \to Y_3$$

. . .

Does this hold?

$$X \to Y$$

Armstrong's axioms

$$Y \subseteq X \implies X \to Y$$

$$X \to Y \implies XZ \to YZ$$

$$X \to Y \land Y \to Z \implies X \to Z$$

Armstrong's axioms

X	Y	Z
X	У	Z
X	?	Z

$$Y\subseteq X \implies X\to Y$$
 Reflexivity
$$X\to Y \implies XZ\to YZ$$
 Augmentation
$$X\to Y\wedge Y\to Z \implies X\to Z$$
 Transitivity

 $name \rightarrow location \implies name, job \rightarrow tax \%$

location, salary \rightarrow tax %

job, name \rightarrow salary, name

name, salary \rightarrow location, salary

name, salary \rightarrow tax %

FD closure

given

$$X_1 \rightarrow Y_1$$

$$X_2 \to Y_2$$

$$X_3 \to Y_3$$

. . .

compute X^+ :

start w/ $\,X\,$

repeat until no change:

add Y_i to X if $X_i \subseteq X$

 $name \rightarrow location \implies name, job \rightarrow tax \%$

location, salary \rightarrow tax %

 ${name, job}^+ = {name, job}$

Why FDs?

FDs cause anomalies

first n.	last n.	location	salary	course		
remy	W	LA	\$30	143		
remy	W	LA	\$30	240		
remy	W	LA	\$30	249		

$$X \subseteq \{A_1, \ldots, A_5\}$$
 is a superkey if $\forall i: X \to A_i$

i.e.
$$X^+ = \{A_1, \dots, A_5\}$$

A1	A2	А3	A4	A5

PK

name	location	salary
remy	LA	\$30
vincent	LA	\$20

first n.	last n.	location	salary	course
remy	W	LA	\$30	143
remy	W	LA	\$30	240
remy	W	LA	\$30	249
dan	S	seattle	\$50	344
dan	S	seattle	\$50	444
dan	O	zurich	\$50	101
dan	Ο	zurich	\$50	113

name	job	location	salary	tax %
remy	prof	LA	\$30	20
dan	prof	seattle	\$50	15
vincent	TA	LA	\$20	10

 $job \rightarrow salary$

 $name \rightarrow location \implies name, job \rightarrow tax \%$

location, salary \rightarrow tax %

$$X \subseteq \{A_1, \dots, A_5\}$$
 is a superkey if $\forall i: X \to A_i$

A key is a minimal superkey

(no longer a superkey if removing anything)

to find a key: guess X from small to large, check if $X^+ = \{A_1, ..., A_5\}$

$$job^{+} = \{?\}$$
 $salary^{+} = \{?\}$ $name^{+} = \{?\}$ $location^{+} = \{?\}$ $tax^{+} = \{?\}$ $name, job\}^{+} = \{?\}$

 $job \rightarrow salary$

 $name \rightarrow location \implies name, job \rightarrow tax \%$

location, salary \rightarrow tax %

to find a key: guess X from small to large, check if $X^+ = \{A_1, ..., A_5\}$

any key must contain **name**, job

 $job \rightarrow salary$

 $name \rightarrow location \implies name, job \rightarrow tax \%$

location, salary \rightarrow tax %

more exercises

$$A \to BC$$

$$B \to AC$$

$$AB \to C$$

Decompose relations, finally!

Boyce-Codd Normal Form:

$$\forall X \to Y \models R: Y \subseteq X \lor X$$
 is a superkey

i.e.
$$\forall X: X^+ = X \lor X^+ = \{A_1, \ldots\}$$

Decomposition

repeat

find X → Y violating BCNF

"factor out" X+ from R

job \rightarrow salary name \rightarrow location location, salary \rightarrow tax %

Payroll(name, location, job, salary, tax%)

job \rightarrow salary name \rightarrow location location, salary \rightarrow tax %

Payroll(name, location, job, salary, tax%)

(name, job, location, salary) (location, salary, tax%)

(name, job, salary) (name, location)

me. job) (job, salary)

Why care about preserving FDs?

Find tax rate for ("LA", \$50)

(name, job) (job, salary) (name, location) (location, salary, tax%)

(name, job, tax%) (name, location) (job, salary)

Other considerations

security & privacy

compliance

geolocation

performance