Chapitre 6

Forme algébrique.

Sommaire.

1 Le corps des nombres complexes.

2 Représentation géométrique.

3 Conjugué d'un nombre complexe.

4 Module d'un nombre complexe.

5 Exercices.

Les propositions marquées de \star sont au programme de colles.

1 Le corps des nombres complexes.

On admet l'existence d'un ensemble de nombres noté $\mathbb C$ ainsi que d'une addition et d'un produit:

$$+: \begin{cases} \mathbb{C}^2 & \to & \mathbb{C} \\ (z, z') & \mapsto & z + z' \end{cases} \quad \text{et} \quad \cdot: \begin{cases} \mathbb{C}^2 & \to & \mathbb{C} \\ (z, z') & \mapsto & z \cdot z' \end{cases}$$

Les éléments de \mathbb{C} sont appelés **nombres complexes**. La construction de $(\mathbb{C}, +, \cdot)$ n'est pas très difficile, mais elle est hors-programme. La liste des propriétés ci-dessous est donc admise.

• Les nombres réels sont des nombres complexes : $\mathbb{R} \subset \mathbb{C}$. Dans \mathbb{C} il existe un nombre i tel que

$$i^2 = -1.$$

Ainsi, l'équation $x^2 = -1$ qui n'a pas de solutions dans \mathbb{R} , en possède une dans \mathbb{C} .

- Tout nombre complexe z s'écrit sous la forme a + ib avec a + ib avec a + ib avec a + ib est la forme algébrique de a + ib e
- \bullet Les lois + et \cdot sont commutatives et associatives.
- La loi · est distributive par rapport à +.
- Il existe un élément neutre pour +:0 et un élément neutre pour $\cdot:1$.

Méthode : Un premier calcul dans $\mathbb C$

$$(a+ib)(c+id) = ac + iad + ibc + i^2bd = (ac - bd) + i(ad + bc).$$

• L'ensemble $\mathbb{C} \setminus \{0\}$ sera noté \mathbb{C}^* . Pour tout nombre complexe z non nul, il existe un unique nombre complexe ω tel que $\omega z = z\omega = 1$.

Ce nombre sera appelé **inverse** de z et noté z^{-1} . Comme dans \mathbb{R} , 0 n'a pas d'inverse dans \mathbb{C} .

• Le quotient de deux nombres complexes est défini ainsi : si $(z, z') \in \mathbb{C}^* \times \mathbb{C}$,

$$\frac{z'}{z} = z'(z)^{-1}.$$

Les égalités suivantes sont vraies pour tous $z_1, z_2, z_3 \in \mathbb{C}^*$:

$$\left(\frac{z_1}{z_2}\right)^{-1} = \frac{z_2}{z_1}, \quad \frac{z_1 + z_2}{z_3} = \frac{z_1}{z_3} + \frac{z_2}{z_3}, \quad \frac{z_1 z_2}{z_3} = z_1 \frac{z_2}{z_3}.$$

- Un produit de nombres complexes est nul si et seulement si l'un des facteurs est nul.
- Les nombres complexes n'ont pas de signe : écrire une égalité entre deux nombres complexes n'a aucun sens.
- Les identités démontrées dans le cours Sommes et Produits sont toujours vraies pour les nombres complexes.

Exemple 1

1.
$$\forall p \in \mathbb{Z}$$
 $i^{2p} = (-1)^p$ et $i^{2p+1} = (-1)^p i$. En particulier, $\boxed{\frac{1}{i} = -i}$

2. Calcul de

$$1 + 2i + 3i^2 + 4i^3 + 5i^4$$
, $(1+2i)^2$, $(1+i)^3$.

Solution:

2.
$$1 + 2i + 3i^2 + 4i^3 + 5i^4 = 1 - 3 + 5 + 2i - 4i = 3 - 2i$$
. $(1 + 2i)^2 = 1 + 4i + 4i^2 = -3 + 4i$, et $(1 + i)^3 = 1 + 3i + 3i^2 + i^3 = -2 + 2i$.

Exemple 2: Calcul de l'inverse.

1. Soient $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$. Vérifier que

$$\frac{1}{a+ib} = \frac{a-ib}{a^2+b^2}.$$

Le nombre a-ib sera appelé plus loin le conjugué de a+ib et $\sqrt{a^2+b^2}$ son module.

2. Calculer $\frac{1}{1+i}$ et $\frac{2-i}{1-3i}$.

Solution:

1. On a
$$\frac{1}{a+ib} = \frac{a-ib}{(a+ib)(a-ib)} = \frac{a-ib}{a^2-(ib)^2} = \frac{a-ib}{a^2+b^2}$$
.

$$\begin{array}{|c|c|c|}\hline 1. & \text{On a } \frac{1}{a+ib} = \frac{a-ib}{(a+ib)(a-ib)} = \frac{a-ib}{a^2-(ib)^2} = \frac{a-ib}{a^2+b^2}.\\ \hline 2. & \frac{1}{1+i} = \frac{1-i}{(1+i)(1-i)} = \frac{1-i}{2} & \text{et} & \frac{2-i}{1-3i} = \frac{(2-i)(1+3i)}{10} = \frac{1}{2} + \frac{1}{2i}. \end{array}$$

Proposition 3: Retour sur l'unicité de la forme algébrique.

Soient $a, a', b, b' \in \mathbb{R}$. L'unicité de l'écriture de la forme algébrique donne

$$a + ib = a' + ib' \iff (a = a' \text{ et } b = b').$$

En particulier,

$$a + ib = 0 \iff (a = 0 \text{ et } b = 0).$$

Soit z = a + ib un nombre complexe, avec (a, b) tel que z = a + ib.

Le réel a est appelé **partie réelle** de z et noté Re(z).

Le réel b est appelé **partie imaginaire** de z et noté Im(z).

Proposition 4: Réel et imaginaires purs.

$$\forall z \in \mathbb{C}, \quad z \in \mathbb{R} \iff \operatorname{Im}(z) = 0.$$

La nullité de Re(z) caractérise quant à elle l'appartenance de z aux imaginaires purs, parfois noté $i\mathbb{R}$.

Preuve:

Soit $z \in \mathbb{C}$, z = Re(z) + iIm(z).

Supposons Im(z) = 0, alors $z = \text{Re}(z) \in \mathbb{R}$.

Supposons $z \in \mathbb{R}$, alors $z = z + i \times 0 = \text{Re}(z) + \text{Im}(z)$. Par unicité, Im(z) = 0.

Proposition 5

Pour tous $z, z' \in \mathbb{C}$, pour tout $\lambda \in \mathbb{R}$ réel, on a

$$\operatorname{Re}(z+z') = \operatorname{Re}(z) + \operatorname{Re}(z')$$
 et $\operatorname{Re}(\lambda z) = \lambda \operatorname{Re}(z)$.

$$\operatorname{Im}(z+z') = \operatorname{Im}(z) + \operatorname{Im}(z')$$
 et $\operatorname{Im}(\lambda z) = \lambda \operatorname{Im}(z)$.

Plus généralement, si $z_1, ..., z_n \in \mathbb{C}$,

$$\operatorname{Re}\left(\sum_{k=1}^{n} z_{k}\right) = \sum_{k=1}^{n} \operatorname{Re}(z_{k}) \quad \text{ et } \quad \operatorname{Im}\left(\sum_{k=1}^{n} z_{k}\right) = \sum_{k=1}^{n} \operatorname{Im}(z_{k}).$$

Preuve:

Soient $z, z' \in \mathbb{C}$, $\exists a, b \in \mathbb{R} \mid z = a + ib$ et $\exists a', b' \in \mathbb{R} \mid z' = a' + ib'$.

On a z + z' = (a + a') + i(b + b'), et par unicité de la forme algébrique:

-
$$\operatorname{Re}(z+z') = a + a' = \operatorname{Re}(z) + \operatorname{Re}(z')$$
 et $\operatorname{Im}(z+z') = b + b' = \operatorname{Im}(z) + \operatorname{Im}(z')$.

Soit $\lambda \in \mathbb{R}$, on a $\lambda z = \lambda a + i\lambda b$, et par unicité de la forme algébrique:

 $-\operatorname{Re}(\lambda z) = \lambda a + \lambda \operatorname{Re}(z) \text{ et } \operatorname{Im}(\lambda z) = \lambda b = \lambda \operatorname{Im}(z).$

« La partie réelle de la somme, c'est la somme des parties réelles ». Idem pour la partie imaginaire.

Corrolaire 6

Les applications partie rélle et partie imaginaire sont \mathbb{R} -linéaires, c'est à dire que pour tous $z, z' \in \mathbb{C}$, pour tout $\lambda, \mu \in \mathbb{R}$ réels, on a

$$\operatorname{Re}(\lambda z + \mu z') = \lambda \operatorname{Re}(z) + \mu \operatorname{Re}(z')$$

$$\operatorname{Im}(\lambda z + \mu z') = \lambda \operatorname{Im}(z) + \mu \operatorname{Im}(z')$$

Le nombre $\lambda z + \mu z'$ peut être désigné comme une **combinaison linéaire** de z et z' à coefficients réels.

2 Représentation géométrique.

On travaille dans cette partie avec un repère orthonormé du plan (O, \vec{i}, \vec{j}) .

Définition 7

Soient a et b deux réels.

- 1. Si M est le point du plan de coordonnées (a,b), le nombre a+ib est appelé l'affixe de M. Réciproquement, si z = a + ib, le point M de coordonnées (a, b) est l'unique point du plan d'affixe z, on pourra le noter
- 2. Cette correspondance bijective $z \mapsto M(z)$ entre nombre complexes et points du plan permet d'identifier \mathbb{C} à \mathbb{R}^2 : on parle de **plan complexe**.
- 3. L'affixe d'un vecteur $\vec{u}(a,b)$ est le nombre complexe a+ib.

Proposition 8

Si A a pour affixe z_A et B pour affixe z_B , le vecteur \overrightarrow{AB} a pour affixe $z_B - z_A$.

Si \vec{u} et \vec{v} sont deux vecteurs d'affixe respectives z et z', et λ et μ deux réels, le vecteur $\lambda \vec{u} + \mu \vec{v}$ a pour affixe $\lambda z + \mu z'$.

$\mathbf{3}$ Conjugué d'un nombre complexe.

Définition 9

On appelle **conjugué** d'un nombre complexe z, et on note \overline{z} le nombre

$$\overline{z} := \operatorname{Re}(z) - i \operatorname{Im}(z).$$

Autrement dit,

$$\forall (a, b) \in \mathbb{R}^2 \quad \overline{a + ib} = a - ib.$$

Soit $z \in \mathbb{C}$, le point M' d'affixe \overline{z} , est le symétrique par rapport à l'axe des abscisses, du point M d'affixe z.

Proposition 10

Pour tout $z \in \mathbb{C}$,

$$z + \overline{z} = 2\operatorname{Re}(z)$$
 et $z - \overline{z} = 2i\operatorname{Im}(z)$.

Ceci permet d'obtenir les caractérisations suivantes:

$$z \in \mathbb{R} \iff z = \overline{z} \quad \text{et} \quad z \in i\mathbb{R} \iff z = -\overline{z}.$$

Proposition 11: Conjugaison et opérations. *

Pour tous nombres complexes z et z', on a

c)
$$\overline{z \cdot z'} = \overline{z} \cdot \overline{z'}$$

b)
$$\overline{z+z'} = \overline{z} + \overline{z}$$

a)
$$\overline{\overline{z}} = z$$
 c) $\overline{z \cdot z'} = \overline{z} \cdot \overline{z'}$.
b) $\overline{z + z'} = \overline{z} + \overline{z'}$ d) si $z' \neq 0$, $\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$.

Par conséquent, l'application $z \mapsto \overline{z}$ est \mathbb{R} -linéaire, c'est-à-dire que pour tous nombres $z, z' \in \mathbb{C}$ et tous réels λ, μ ,

$$\overline{\lambda z + \mu z'} = \lambda \overline{z} + \mu \overline{z'}.$$

« Le conjugué de la somme, c'est la somme des conjugués ». Marche avec le produit et le quotient.

Module d'un nombre complexe.

Définition 12

Pour tout nombre complexe z, on appelle **module** de z et on note |z| le nombre réel positif

$$|z| := \sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}.$$

Exemple 13

$$|i| = 1$$
 $|2+3i| = \sqrt{2^2+3^3} = \sqrt{13}$

Le moudle d'un nombre réel a vaut $\sqrt{a^2 + 0^2} = |a|$.

pour $z, z' \in \mathbb{C}$, |z - z'| est la **distance** entre z et z'.

Exemple 14: Module, cercles et disques.

Représenter les points dont l'affixe z satisfait |z-1|=1 et $|z+1|\leq 2$.

Proposition 15

Pour tout nombre complexe z = a + ib,

a)
$$|z| = 0 \iff z = 0$$

c)
$$|\operatorname{Re}(z)| \le |z|$$
 et $|\operatorname{Im}(z)| \le |z|$.

b)
$$|-z| = |z| = |\overline{z}|$$
.

d)
$$\operatorname{Re}(z) = |z| \iff z \in \mathbb{R}_+.$$

Preuve:

a) Supposons |z| = 0, alors $|z|^2 = 0$ donc $a^2 + b^2 = 0$ donc a = b = 0 donc z = 0.

Supposons z = 0, alors a = b = 0, donc $|z| = \sqrt{0^2 + 0^2} = 0$.

$$\boxed{|b| |-z| = |-a-ib| = \sqrt{(-a)^2 + (-b)^2} = \sqrt{a^2 + b^2} = |z| = \sqrt{a^2 + (-b)^2} = |\overline{z}|.}$$

c) $|z|^2 \ge a^2$ donc $|z| \ge |a|$ donc $|z| \ge |\text{Re}(z)|$, idem pour Im(z).

d) Supposons $\operatorname{Re}(z) = |z|$, alors $\operatorname{Re}(z)| = |z|^2 = \operatorname{Re}(z)^2 + \operatorname{Im}(z)^2 \ge 0$ donc $\operatorname{Im}(z) = 0$ donc $z = \operatorname{Re}(z) \in \mathbb{R}_+$.

Supposons $z \in \mathbb{R}_+$, alors $\operatorname{Re}(z) = z$ et |z| = z car $z \ge 0$, donc $\operatorname{Re}(z) = |z|$.

Proposition 16: Propriétés multiplicatives du module.

Pour tous nombres complexes z et z', on a

$$\mathrm{a)}\ |z|^2=z\cdot\overline{z}\quad \mathrm{b)}\ |z\cdot z'|=|z|\cdot|z'|,\quad \mathrm{c)}\ \mathrm{si}\ z'\neq0,\quad \left|\frac{z}{z'}\right|=\frac{|z|}{|z'|}\quad \mathrm{d)}\ \mathrm{si}\ z\neq0,\quad \frac{1}{z}=\frac{\overline{z}}{|z|^2}.$$

Preuve:

Notons z = a + ib avec $(a, b) \in \mathbb{R}^2$.

a)
$$z \cdot \overline{z} = (a+ib)(a-ib) = a^2 + b^2 = |z|^2$$
.

$$\overline{|b)|}|zz'|^2 = zz' \times \overline{zz'} = z\overline{z} \times z'\overline{z'} = |z|^2|z'|^2$$
, tout est positif: $|zz'| = |z||z'|$.

Supposons
$$z' \neq 0$$
: $|z'| \left| \frac{z}{z'} \right| = |z| \operatorname{donc} \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$.

d)
$$z\overline{z} = |z|^2$$
 donc $z\frac{\overline{z}}{|z|^2} = 1$ donc $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$.

Proposition 17: Inégalité triangulaire. *

Pour tous nombres complexes z, z', on a

$$|z + z'| \le |z| + |z'|$$
.

Cas d'égalité: les deux membres sont égaux ssi z = 0 ou $\exists \lambda \in \mathbb{R}_+ \mid z' = \lambda z$.

Preuve:

On compare les carrés.

$$(|z| + |z'|)^{2} - |z + z'|^{2} = |z|^{2} + 2|z||z'| + |z'|^{2} - (z + z')(\overline{z + z'})$$

$$= |z|^{2} + 2|z||z'| + |z'|^{2} - z\overline{z} - \overline{z}z' - z'\overline{z} - z'\overline{z}'$$

$$= 2|z||z'| - (z\overline{z'} + \overline{z}z')$$

$$= 2(|zz'| - \operatorname{Re}(zz'))$$

Or on a vu que $\forall z \in \mathbb{C}$, $|\text{Re}(z)| \leq |z|$, le résultat est donc positif. Alors:

$$|z + z'|^2 \le (|z| + |z'|)^2 \iff |z + z'| \le |z| + |z'|$$

Corrolaire 18

1.
$$\forall (z, z') \in \mathbb{C}^2 \quad |z - z'| \le |z| + |z'|$$
.

$$\begin{aligned} &1. \ \, \forall (z,z') \in \mathbb{C}^2 \quad |z-z'| \leq |z| + |z'|. \\ &2. \ \, \forall (z,z') \in \mathbb{C}^2 \quad ||z| - |z'|| \leq |z-z'|. \end{aligned}$$

3. Soit
$$n \in \mathbb{N}^*$$
, pour tous $z_1, ..., z_n \in \mathbb{C}$:

$$\left| \sum_{k=1}^{n} z_k \right| \le \sum_{k=1}^{n} |z_k|.$$

Preuve:

1. Soient
$$z, z' \in \mathbb{C}$$
. On a $|z - z'| = |z + (-z')| \le |z| + |-z'| = |z| + |z'|$.

2. Soient
$$z, z' \in \mathbb{C}$$
. On a $|z| = |z + z' - z'| \le |z| + |z - z'|$ donc $|z| - |z'| \le |z - z'|$.

Par symétrie, $|z'| - |z| \le |z - z'| = |z - z'|$. Alors $\max(|z| - |z'|, |z'| - |z|) \le |z - z'|$.

On en déduit que $||z| - |z'|| \le |z - z'|$.

5 Exercices.

Exercice 1: $\Diamond \Diamond \Diamond$

Résoudre $4z^2 + 8|z|^2 - 3 = 0$.

Solution:

Soit $z \in \mathbb{C}$ et $(a, b) \in \mathbb{R}^2$ tels que z = a + ib. On a :

$$4z^{2} + 8|z|^{2} - 3 = 0$$

$$\iff 4(a+ib)^{2} + 8(a^{2} + b^{2}) - 3 = 0$$

$$\iff 4a^{2} + 8aib - 4b^{2} + 8a^{2} + 8b^{2} - 3 = 0$$

$$\iff (12a^{2} + 4b^{2} - 3) + i(8ab) = 0$$

$$\iff \begin{cases} 12a^{2} + 4b^{2} - 3 = 0 \\ 8ab = 0 \end{cases}$$

$$\iff \begin{cases} 12a^{2} + 4b^{2} - 3 = 0 \\ a = 0 \end{cases} \quad \text{ou} \quad \begin{cases} 12a^{2} + 4b^{2} - 3 = 0 \\ b = 0 \end{cases}$$

$$\iff 4b^{2} - 3 = 0 \text{ ou} \quad 12a^{2} - 3 = 0$$

$$\iff b^{2} = \frac{3}{4} \text{ ou} \quad a^{2} = \frac{1}{4}$$

$$\iff b = \pm \frac{\sqrt{3}}{2} \text{ ou} \quad a = \pm \frac{1}{2}$$

Les solutions sont donc :

$$\left\{ -\frac{1}{2}, \frac{1}{2}, -i\frac{\sqrt{3}}{2}, i\frac{\sqrt{3}}{2} \right\}$$

Exercice 2: $\Diamond \Diamond \Diamond$

Soient a et b deux nombres complexes non nuls. Montrer que :

$$\left| \frac{a}{|a|^2} - \frac{b}{|b|^2} \right| = \frac{|a-b|}{|a||b|}.$$

Solution:

On a:

$$\begin{split} \left| \frac{a}{|a|^2} - \frac{b}{|b|^2} \right| &= \left| \frac{a|b|^2 - b|a|^2}{|a|^2|b|^2} \right| = \frac{|ab\overline{b} - ba\overline{a}|}{||ab|^2|} \\ &= \frac{\left| ab(\overline{b} - \overline{a}) \right|}{||ab|^2|} = \frac{|ab||\overline{a} - \overline{b}|}{|ab|^2} \\ &= \frac{|a - b|}{|ab|} = \frac{|a - b|}{|a||b|} \end{split}$$

Exercice 3: ♦♦◊

Soit $z \in \mathbb{C} \setminus \{1\}$, montrer que :

$$\frac{1+z}{1-z} \in i\mathbb{R} \iff |z| = 1.$$

Solution:

Supposons $\frac{1+z}{1-z} \in i\mathbb{R}$. Montrons |z| = 1.

Soit $b \in \mathbb{R}$, on a:

$$\frac{1+z}{1-z} = ib \iff 1+z = ib-zib \iff z(1+ib) = ib-1 \iff z = \frac{ib-1}{1+ib}$$

Ainsi, $|z| = \left| \frac{ib-1}{1+ib} \right| = \frac{\sqrt{1+b^2}}{\sqrt{1+b^2}} = 1.$

Supposons |z| = 1, montrons $\frac{1+z}{1-z} \in i\mathbb{R}$.

Soient $(a,b) \in \mathbb{R}$ tels que z=a+ib. Par supposition, $a^2+b^2=1$. On a :

$$\frac{1+z}{1-z} = \frac{1+a+ib}{1-a-ib} = \frac{(1+a+ib)(1-a+ib)}{(1-a-ib)(1-a+ib)} = \frac{1+2ib-a^2-b^2}{1-2a+a^2+b^2}$$
$$= \frac{2ib}{2-2a} = \frac{ib}{1-a} = i\frac{b}{1-a}$$

Exercice 4: $\Diamond \Diamond \Diamond$

Soient z_1, z_2, \dots, z_n des nombres complexes non nuls de mêmes module. Démontrer que

$$\frac{(z_1+z_2)(z_2+z_3)\dots(z_{n-1}+z_n)(z_n+z_1)}{z_1z_2\dots z_n} \in \mathbb{R}.$$
 (1)

Solution:

Commençons par énoncer que :

$$\forall (i,j) \in [1,n]^2, \qquad \frac{\overline{z_i}}{\overline{z_j}} = \frac{z_j}{z_i}.$$

En effet,

$$\frac{z_i}{z_j} \cdot \frac{\overline{z_i}}{\overline{z_j}} = \left| \frac{z_i}{z_j} \right|^2 = 1 \iff \frac{\overline{z_i}}{\overline{z_j}} = \frac{z_j}{z_i}.$$

Le conjugué de (1) est :

$$\frac{(\overline{z_1} + \overline{z_2})(\overline{z_2} + \overline{z_3})\dots(\overline{z_{n-1}} + \overline{z_n})(\overline{z_n} + \overline{z_1})}{\overline{z_1}\overline{z_2}\dots\overline{z_n}} = (1 + \frac{\overline{z_2}}{\overline{z_1}})(1 + \frac{\overline{z_3}}{\overline{z_2}})\dots(1 + \frac{\overline{z_n}}{\overline{z_{n-1}}})(1 + \frac{\overline{z_1}}{\overline{z_n}})$$

Ainsi:

$$\frac{(\overline{z_1} + \overline{z_2})(\overline{z_2} + \overline{z_3}) \dots (\overline{z_{n-1}} + \overline{z_n})(\overline{z_n} + \overline{z_1})}{\overline{z_1 z_2} \dots \overline{z_n}} = (1 + \frac{z_1}{z_2}) \dots (1 + \frac{z_n}{z_1})$$

$$= \frac{z_1 + z_2}{z_2} \dots \frac{z_n + z_1}{z_1} = \frac{(z_1 + z_2)(z_2 + z_3) \dots (z_{n-1} + z_n)(z_n + z_1)}{z_1 z_2 \dots z_n}$$

Puisque (1) est égal à son conjugué, (1) $\in \mathbb{R}$.

Exercice 5: ♦♦♦

Soient a, b deux nombres complexes tels que $\overline{a}b \neq 1$ et $c = \frac{a-b}{1-\overline{a}b}$. Montrer que

$$(|c|=1) \iff (|a|=1 \text{ ou } |b|=1).$$

Solution:

Supposons |c| = 1. Montrons que |a| = 1 ou |b| = 1.

On a:

$$|c| = 1$$

$$\iff |c|^2 = \frac{(a-b)(\overline{a} - \overline{b})}{(1 - \overline{a}b)(1 - a\overline{b})} = \frac{|a|^2 - a\overline{b} - b\overline{a} + |b|^2}{1 - a\overline{b} - \overline{a}b + |a|^2|b|^2} = 1$$

$$\iff |a|^2 - a\overline{b} - \overline{a}b + |b|^2 = 1 - a\overline{b} - \overline{a}b + |a|^2|b|^2$$

$$\iff |a|^2 + |b|^2 - |a|^2|b|^2 = 1$$

$$\iff |a|^2(1 - |b|^2) = 1 - |b|^2$$

Si on suppose $|b| \neq 1$, on obtient : $|c| = 1 \iff |a|^2 = \frac{1-|b|^2}{1-|b|^2} = 1$ donc |a| = 1.

Si on suppose $|a| \neq 1$, on obtient : $|c| = 1 \iff |b|^2 = \frac{1 - |a|^2}{1 - |a|^2} = 1$ donc |b| = 1.

Supposons |a| = 1. On a:

$$|c| = \left| \frac{a-b}{1-\overline{a}b} \right| = \left| \frac{a-b}{\overline{a}a-\overline{a}b} \right| = \left| \frac{1}{\overline{a}} \right| \left| \frac{a-b}{a-b} \right| = |a| = 1$$

Supposons |b| = 1. On a:

$$|c| = \left| \frac{a-b}{1-\overline{a}b} \right| = \left| \frac{a-b}{\overline{b}b-\overline{a}b} \right| = \left| \frac{1}{b} \right| \left| \frac{a-b}{\overline{b}-\overline{a}} \right| = |b| \frac{|a-b|}{|a-b|} = |b| = 1$$

Exercice 6: ♦♦♦

Pour $n \in \mathbb{N}^*$, calculer $R^2 + S^2$ où

$$R = \sum_{0 \le 2k \le n} (-1)^k \binom{n}{2k}$$
 et $S = \sum_{0 \le 2k+1 \le n} (-1)^k \binom{n}{2k+1}$.

Solution:

On a:

$$(1+i)^n = \sum_{k=0}^n \binom{n}{k} i^k = \sum_{0 \le 2k \le n} \binom{n}{2k} i^{2k} + \sum_{0 \le 2k+1 \le n} \binom{n}{2k+1} i^{2k} \cdot i = R+iS$$

Ainsi:

$$\begin{cases} R = \text{Re}((1+i)^n) = 2^{\frac{n}{2}}\cos(\frac{n\pi}{4}) \\ S = \text{Im}((1+i)^n) = 2^{\frac{n}{2}}\sin(\frac{n\pi}{4}) \end{cases}$$

Finalement, $R^2 + S^2 = 2^n(\cos^2(\frac{n\pi}{4}) + \sin^2(\frac{n\pi}{4})) = 2^n$.

Exercice 7: ♦♦♦

Soit ABCD un parallélogramme.

Montrer que $AC^2 + BD^2 = AB^2 + BC^2 + CD^2 + DA^2$

Solution:

Soient $(z, z') \in \mathbb{R}$. Les points A, B, C, D d'affixes 0, z, z + z', z' forment un parallélogramme.

Alors :

$$\begin{cases} AC^2 = |z + z'|^2 \\ BD^2 = |z - z'|^2 \\ AB^2 = CD^2 = |z|^2 \\ BC^2 = DA^2 = |z'|^2 \end{cases}$$

On a :

$$AC^{2} + BD^{2} = |z + z'|^{2} + |z - z'|^{2} = (z + z')(\overline{z} + \overline{z'}) + (z - z')(\overline{z} - \overline{z'})$$

$$= z\overline{z} + z\overline{z'} + z'\overline{z} + z'\overline{z'} + z\overline{z} - z\overline{z'} - z'\overline{z} + z'\overline{z'}$$

$$= |z|^{2} + |z'|^{2} + |z|^{2} + |z'|^{2}$$

$$= AB^{2} + BC^{2} + CD^{2} + DA^{2}$$