De la loi binomiale à la loi de Poisson

Rappel sur la loi binomiale

La loi binomiale modélise le nombre de succès X dans une répétition de n épreuves de Bernoulli, avec une probabilité de succès p constante.

$$X \sim \mathcal{B}(n,p)$$

$$P(X=k)=inom{n}{k}p^k(1-p)^{n-k}$$

L'espérance d'une variable binomiale est : $\mathbb{E}(X) = np$

Exercices de révision

- 1. Une pièce est lancée 8 fois. On note X le nombre de piles obtenues.
 - ullet Donnez la loi de X
 - Calculez $\mathbb{E}(X)$ et interprétez-la
 - Déterminez P(X=4)

- 2. Dans un lot de 10 articles, chaque pièce a 20% de chances d'être défectueuse. Soit X le nombre de pièces défectueuses.
 - Quelle loi suit X ?
 - Calculez P(X=0)
 - · Donnez l'espérance

- 3. Un étudiant répond au hasard à un QCM de 15 questions vrai/faux.
 - Quelle est la probabilité qu'il ait exactement 10 bonnes réponses ?
 - Quelle est son espérance de réussite ?

Approximations : quand utiliser la loi de Poisson ?

Quand on observe un grand nombre d'épreuves n, avec une probabilité de succès faible p, mais un produit $\lambda=np$ modéré, la loi binomiale devient difficile à manipuler. Dans ce cas, on peut l'approximer par une loi plus simple : **la loi de Poisson**.

Si n est grand, p est petit, et $\lambda = np$, alors :

$$\mathcal{B}(n,p)pprox \mathcal{P}(\lambda)$$

Exemple : 100 épreuves avec $p=0.02 \rightarrow \lambda=2 \rightarrow \mathcal{B}(100,0.02) \approx \mathcal{P}(2)$

✓ Loi de Poisson

La loi de Poisson modélise le nombre d'occurrences d'un événement rare dans un intervalle (temps, surface, etc.). Elle dépend d'un seul paramètre λ :

$$X \sim \mathcal{P}(\lambda) \ P(X=k) = rac{e^{-\lambda} \lambda^k}{k!}$$

L'espérance et la variance sont toutes les deux égales à λ .

- ✓ La loi de Poisson est très utilisée pour modéliser :
 - le nombre d'appels reçus par minute dans un standard
 - le nombre d'accidents sur une route donnée
 - le nombre de fautes d'impression sur une page

III Exemple

Une imprimante fait en moyenne 3 fautes par page. Quelle est la probabilité qu'une page comporte exactement 2 fautes ?

$$X \sim \mathcal{P}(3) \Rightarrow P(X=2) = rac{e^{-3} \cdot 3^2}{2!} pprox 0.224$$

Exercices

- 1. Un site reçoit en moyenne 5 messages de contact par heure.
 - Modélisez cette situation par une loi de Poisson
 - Calculez P(X=0)
 - Interprétez ce résultat

- 2. Un livre contient en moyenne 0.5 erreur par page.
 - Quelle est la probabilité qu'une page soit sans erreur ?
 - Quelle est la probabilité qu'elle contienne au moins 2 erreurs ?

- 3. Une entreprise reçoit en moyenne 12 commandes par jour.
 - Déterminez $\mathbb{E}(X)$ et la variance
 - Quelle est la probabilité qu'elle reçoive exactement 15 commandes un jour donné ?