GRAPH SEARCH ALGORITHMS

>DFS(Depth First Search)

Mashiwat Tabassum Waishy

Lecturer

Department of

STAMFORD UNIVERSITY BANGLADESH

Depth First Search

- □ DFS, go as far as possible along a single path until it reaches a dead end (that is a vertex with no edge out or no neighbor unexplored) then backtrack
- As the name implies the DFS search deeper in the graph whenever possible. DFS explores edges out of the most recently discovered vertex v that still has unexplored edges leaving it. Once all of v's edges have been explored, the search backtracks to explore edges leaving the vertex from which v was discovered.

Depth-First Search

- Graph G = (V, E) directed or undirected
- Adjacency list representation
- Goal: Systematically explore every vertex and every edge
- Idea: search deeper whenever possible
 - Using a Stack(LIFO)

Information Needed to Maintain in DFS Algorithm

- Input graph G = (V,E) is represented using adjacency list.
- Each vertex is colored **white**, **gray or black**.
 - (1) **Vertex with White Color**: undiscovered vertex.
 - (2) **Vertex with Gray Color**: Consider to be discovered.
 - (3) **Vertex with Black Color:** Adjacency-list of Vertex has been discovered.
- Additional Data Structures
 - (1) color[u]: Store the color of each vertex $u \in V$
 - (2) $\Pi[u]$: Store the predecessor of u.
- Besides creating depth first forest DFS also timestamps each vertex. Each vertex goes through two timestamps:
 - (3) d[u] : Store when u is first discovered and grayed (discovery time).
 - (4) f[u] : Store when the search finishes examining u's adjacency-list and blackens u (finishing time).
 - \Box f[u] > d[u]

DFS: Algorithm

- \Box DFS(G)
- 1. for each vertex u € V[G]
- 2. color[u]=white
- 3. $\pi[u]=NIL$
- 4. time = 0
- 5. for each vertex u € V[G]
- 6. if (color[u] = = white)
- 7. DFS-VISIT(G,u)

DFS:Algorithm (Cont.)

☐ DFS-VISIT(u)

- 1. time = time + 1
- 2. d[u] = time
- 3. color[u] = gray
- 4. for each v € Adj(u) in **G** do
- 5. if (color[v] == white)
- 6. $\pi [v] = u;$
- 7. DFS-VISIT(G,v);
- 8. $\operatorname{color}[u] = \operatorname{black}$
- 9. time = time +1;
- 10. f[u]=time;

source vertex

Directed Depth First Search

Adjacency Lists

A: FG

B: A H

C: AD

D: CF

E: CDG

F: E

G:

H: B

I: H

DIRECTED DEPTH FIRST SEARCH

Function call stack:

dfs(A) A-F A-G

Function call stack:

dfs(A)
A-F A-G

Function call stack:

Nodes reachable from A: A, C, D, E, F, G

Nodes reachable from A: A, C, D, E, F, G

Running Time of DFS Algorithm

Lines 1-2 and lines 4-5 of DFS take time $\Theta(V)$, exclusive of the time to execute the calls to DFS-VISIT.

The procedure DFS_VISIT is called exactly once for each vertex $v \in V$. During an execution DFS_VISIT(v), the loop on lines 4-7 is executed |Adj[v]| times. Since $\Sigma |Adj[v]| = \Theta(E)$, the total cost of executing lines 2-6 of DFS-VISIT is $\Theta(E)$.

So the total running time of DFS is $\Theta(V+E)$.

DFS: Application

- Topological Sort
- Strongly Connected Component

Classification of Edges

- ☐ Another interesting property of DFS is that the DFS can be used to classify the edges of the input graph G=(V,E). The DFS creates depth first forest which can have four types of edges:
- ☐ **Tree edge:** Edge (u,v) is a tree edge if **v** was first discovered by exploring edge (u,v). **White** color indicates tree edge.
- **Back edge:** Edge (u,v) is a back edge if it connects a vertex **u** to a ancestor **v** in a depth first tree. **Gray** color indicates back edge.
- □ **Forward edge:** Edge (u,v) is a forward edge if it is non-tree edge and it connects a vertex **u** to a descendant **v** in a depth first tree. **Black** color indicates forward edge.
- ☐ Cross edge: rest all other edges are called the cross edge. Black color indicates forward edge.

Example of Edges

Tree edges Back edges Forward edges Cross edges

Example of Edges

Thank