49. Computations of SVD

MTH 309

 $\underline{\textbf{Goal:}}$ Given a matrix A compute its singular value decomposition

$$A = U \cdot \Sigma \cdot V^T$$

How to compute SVD of a matrix A

$$A = U \cdot \Sigma \cdot V^T$$

1) Compute an orthogonal diagonalization of the symmetric $n \times n$ matrix A^TA :

$$A^T A = QDQ^T$$

such that eigenvalues on the diagonal of the matrix D are arranged from the largest to the smallest. We set $V=\mathbb{Q}$.

2) If

$$D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

then $\sigma_i = \sqrt{\lambda_i}$. This gives the matrix Σ .

Note: if n > m then we use only $\lambda_1, \ldots, \lambda_m$. The remaining eigenvalues $\lambda_{m+1}, \ldots, \lambda_n$ of D will be equal to 0 in this case.

3) Let $V = [\mathbf{v}_1 \dots \mathbf{v}_n]$ and let $\sigma_1, \dots, \sigma_r$ be non-zero singular values of A. The first r columns of the matrix $U = [\mathbf{u}_1 \dots \mathbf{u}_m]$ are given by

$$\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i$$

The remaining columns $\mathbf{u}_{r+1}, \ldots, \mathbf{u}_m$ can be added arbitrarily so that U is an orthogonal matrix (i.e. $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$) is an orthonormal basis of \mathbb{R}^m .

Example. Find SVD of the following matrix:

$$A = \left[\begin{array}{rr} -1 & 0 \\ 1 & -1 \\ 0 & 1 \end{array} \right]$$

Solution.

1) Compute an orthogonal diagonalization of A^TA .

2) Get matrices V and Σ .

3)	Comp	ute	the matr	ix <i>U</i> .			
4)	Write	the	singular	· value	decomp	osition	of A.