Instruções

- Use apenas instruções vistas em aula até agora (slides)
- No MARS, use a seguinte configuração:
 - No menu Settings, desabilite as opções:
 - *Permit extended (pseudo) instructions and formats* e
 - Delayed Branching
- Seus exercícios serão corrigidos com o MARS configurado da forma descrita acima
- Utilize **EXATAMENTE** os registradores explicitados nos exercícios
 - Resultados armazenados em registradores diferentes serão considerados incorretos
- Comente seu código
- Todos os exercícios são individuais
 - Cópias detectadas resultarão em nota zero para ambos os alunos

Instruções

- O material deve ser entregue pelo AVA (http://ava.ufpel.edu.br) e deverá obedecer às seguintes regras:
 - Será um arquivo compactado (obrigatoriamente no formato .zip) contendo os códigos fonte dos TPs
 - Ex: fulano_da_silva.zip
 - Cada exercício deve ter o seguinte nome:
 - matricula_tp{n}_e{m}.asm
 - Onde:
 - matricula é a matrícula do aluno e
 - {n} é o número do TP
 - {m} é o número do exercício
 - Ex: 16100001_tp1_e1.asm, 16100001_tp1_e2.asm, ...
- Trabalhos que não seguirem as regras a cima NÃO SERÃO CORRIGIDOS!
- O prazo de submissão do trabalho é até as 23:55 da próxima terça-feira.
 NÃO serão aceitos exercícios após a data/hora-limite

Instruções

1. Faça um programa que calcule os produtos abaixo (interprete os valores como números hexadecimais com sinal). Coloque o produto (parte alta e parte baixa) nos registradores destacados na tabela abaixo. Nos comentários ao final do código, complete a tabela abaixo com o resultado dos produtos e o número de bits significativos de cada operando e produto.

# Operando 1	0x100	0x0FFF	0xFF00	0x8000	0xFFFFF888
# Bits Significativos	?	?	?	?	?
# Operando 2	0x1000	0x0FFF	0xFFFF	0x1000	0x3333
# Bits Significativos	?	?	?	?	?
# Produto (alta)	? (\$t1)	? (\$t3)	? (\$t5)	? (\$t7)	? (\$t9)
# Produto (baixa)	? (\$t2)	? (\$t4)	? (\$t6)	? (\$t8)	? (\$t0)
# Bits Significativos	?	?	?	?	?

Instruções

2. Faça um programa que calcule a seguinte equação:

$$y = 3x^2 - 5x + 13$$

Armazene x no registrador **\$t5** com a instrução **ori \$t5**, **\$0**, x, substituindo x pelo valor desejado, e sempre que precisar o valor de x, utilize o valor armazenado no registrador **\$t5**.

Armazene o resultado y no registrador \$t6.

Faça teste com diferentes valores **positivos** e **negativos** de x.

Instruções

3. Faça um programa que calcule a seguinte equação:

$$y = \frac{9x + 7}{2x + 8}$$

Armazene x em \$t1, com a instrução **ori** \$t1, \$0, x, substituindo x pelo valor desejado, e sempre que precisar o valor de x, utilize o valor armazenado no registrador \$t1.

Armazene o quociente da divisão em \$t2 e o resto em \$t3.

Responda o que acontece quando x = -4.

Instruções

4. Faça um programa que calcule a área do triângulo equilátero abaixo e escreva o resultado em **\$t3**.

Armazene b em t1 e h em t2 utilizando as instruções ori t1, 0, b e ori t2, 0, h, substituindo b e h pelos valores desejados, e sempre que precisar de b e h, utilize os valores armazenados nos registradores t1 e t2.

b: base/lado

h: altura

$$A=\frac{b\cdot h}{2}$$