# **QUICK RECAP**

### AND

| р | q | p ^ q |
|---|---|-------|
| 0 | 0 | 0     |
| 0 | 1 | 0     |
| 1 | 0 | 0     |
| 1 | 1 | 1     |

# OR

| р | q | p V q |
|---|---|-------|
| 0 | 0 | 0     |
| 0 | 1 | 1     |
| 1 | 0 | 1     |
| 1 | 1 | 1     |

# NOT

| р | ¬р |
|---|----|
| 0 | 1  |
| 1 | 0  |

# **IMPLICATION**

| р | q | $p \rightarrow q$ |
|---|---|-------------------|
| 0 | 0 | 1                 |
| 0 | 1 | 1                 |
| 1 | 0 | 0                 |

| 1 1 | 1 |
|-----|---|
|-----|---|

#### **XOR**

| р | q | p⊕q |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 1   |
| 1 | 0 | 1   |
| 1 | 1 | 0   |

### **EQUIVALENCE**

| р | q | p ⇔ q |
|---|---|-------|
| 0 | 0 | 1     |
| 0 | 1 | 0     |
| 1 | 0 | 0     |
| 1 | 1 | 1     |

## **PIGEONHOLE PRINCIPLE**

- If 'n+1' objects are to be partitioned into 'n' pieces at least one part must contain at least two objects.(Assuming objects cannot be divided into fractions)
- i.e., if n+1 objects are to be placed into n boxes, then at least one box contains two or more objects.
- Likewise, if there are (nk+1) objects and have to be distributed among k persons then one must have (n+1) items.

#### Example:-

n=10, k=5 = (nk + 1) / n

In this case, each person will receive 5 objects but one person will receive the extra 1 object.

- There is no Limit on the number of formulas we construct using the rules of syntax which can be infinite.
- But, the evaluation using the truth table mechanism shows that the number of formulas can be 2^(2^k) which can be some number but not the same as infinite so in this case it will be finite.
- We can make infinite formulas using rules of syntax but there can be only 2^(2^k) distinct formulas.
- So, according to the <u>Pigeonhole principle</u> some two of them will be representing the same formula.

#### Example 1:-

- 1.  $p \rightarrow q$
- 2. ¬p v q
- 3.  $\neg (p \land (\neg q))$
- All 3 of these formulas are semantically same but syntactically different.
- Formulas are semantically same when they have the same truth table.
- With these 2 variable we will be able to make 16 formulas( $2^{2^{k}} \rightarrow 2^{2^{2}}$ )

## Example 2:-

- 1.  $\neg(p \oplus q)$
- 2. p ⇔ q

| <u> </u> |   |     |
|----------|---|-----|
| р        | q | p⇔q |
| 0        | 0 | 1   |
| 0        | 1 | 0   |
| 1        | 0 | 0   |
| 1        | 1 | 1   |

| р | q | p⊕q | ¬(p ⊕ q) |
|---|---|-----|----------|
| 0 | 0 | 0   | 1        |
| 0 | 1 | 1   | 0        |
| 1 | 0 | 1   | 0        |
| 1 | 1 | 0   | 1        |

• Both these formulas are also semantically same.

So by **pigeonhole principle**, it says that though we can make infinitely many formulas, they all fall under 16 equivalent classes.

# There are two standard ways for writing propositional formula

- 1. CNF (Conjunctive normal form)
- 2. DNF (Disjunctive normal form )

# Example:-

Converting (p  $\rightarrow$  (q  $\rightarrow$  r)) into CNF and DNF

#### **DNF**

$$(\neg p) \vee (q \rightarrow r)$$
 $\neg p \vee (\neg q \vee r)$ 
 $(\neg p) \vee (\neg q) \vee (r)$ 
3 CLAUSE

#### **CNF**

| (¬p v ¬q v r) | Only 1 CLAUSE |
|---------------|---------------|
|---------------|---------------|

Conjunctive means AND OF OR'S in simpler terms –
 (v v) ^ (v) ^ (v) there can be any number of OR, AND
 In CNF the outer operator (outside bracket) is AND, and inner operator is
 OR.

**Example:** 
$$A \rightarrow (B \land C) \equiv \neg A \lor (B \land C) \equiv (\neg A \lor B \land (A \neg \lor C))$$

2) Disjunctive means OR OF AND'S

(  $^{\circ}$  ) v (  $^{\circ}$  ) v (  $^{\circ}$  ) there can be any number of OR, AND In DNF the outer operator (outside bracket) is OR and inner operator is AND.

- Whatever is inside ( ) are clauses.
- Variables  $\rightarrow$  p1, p2, p3...pn
- Literals → Variables or their negation. Variable without a negation sign in positive literal otherwise it's called negative literal or negated literal.
   In proposition logic, variables are atomic prepositions/atomic variables/boolean variables
- Clauses are literals and in case of :-
  - 1. CNF Conjunction of clauses where each clause is a disjunction/or of literals.
  - 2. DNF Disjunction of clauses where each clause is a conjunction/AND of literals.

### **Evaluating Boolean formula for some assignment of truth values**

$$\frac{((p \rightarrow q) \rightarrow r)}{\text{If,}}$$

$$q=T$$

$$r=F$$

- Value for this will be F.
- This evaluation of truth value of formula under specific assignment.
- There will be a total of 8 assignments under which it is checked.(23)

# Partial assignment/evaluation in $((p \rightarrow q) \rightarrow r)$

Step 1: If q = F then,

|    |   | · • |           |
|----|---|-----|-----------|
| Гp | р | q   | $p \to q$ |
| F  | Т | F   | F         |
| Т  | F | F   | Т         |

 $p \rightarrow q$  can also be written as  $\neg p$ Therefore,  $((\neg p) \rightarrow r)$ 

Step 2: If q = T then,

| р | q | $p \to q$ |
|---|---|-----------|
| Т | Т | Т         |
| F | Т | Т         |

As,  $p \rightarrow q$  is true Therefore  $T \rightarrow r$ 

Step 3: Now If, r = T

| $p \rightarrow q / T$ | r | $T \rightarrow r$ |
|-----------------------|---|-------------------|
| Т                     | Т | Т                 |

When r is T,  $T \rightarrow r$  is also T

Step 4: Now If, r = F

| $p \rightarrow q$ /T | r | T→<br>r |
|----------------------|---|---------|
| Т                    | F | F       |

When r is F,  $T \rightarrow r$  is also F

# Step 5: This whole process is called Evaluation tree

### **Evaluation tree for the above example**



• A formula is satisfiable if it has at least one satisfying assignment. A satisfying assignment is an assignment which evaluates to TRUE. A formula which has no such assignment is called unsatisfiable..

### **ABSTRACT TRUTH TABLE**

|                  | VAR 1 | <br>VAR K |                        |
|------------------|-------|-----------|------------------------|
| A1               |       |           |                        |
| A2               |       |           | Combination of 0 and 1 |
|                  |       |           |                        |
| •                |       |           |                        |
| A 2 <sup>K</sup> |       |           |                        |

- IN DNF, it's AND of everything therefore only 1 will make it TRUE and rest all in make it FALSE.
- IN CNF, it's OR of everything therefore only 1 will make it FALSE and rest all in make it TRUE.
- FALSE = 0, TRUE = 1
- For the case of FALSE we will use CNF.
   For the case of TRUE we will use DNF.

#### **CNF** construction

- 1. Take all rows where the formula evaluate to 0/F
- 2. Each row is a clause in the CNF.
- 3. The clause for a row is disjunction/OR of positive literals for variables which are false/0 and negate the literals for variables which are true/1.

#### **EXAMPLE:-**

|    | р | q | r | Ψ |
|----|---|---|---|---|
| A1 | 0 | 0 | 0 | 0 |
| A2 | 0 | 0 | 1 | 1 |
| А3 | 0 | 1 | 0 | 1 |
| A4 | 0 | 1 | 1 | 0 |
| A5 | 1 | 0 | 0 | 0 |
| A6 | 1 | 0 | 1 | 1 |
| A7 | 1 | 1 | 0 | 1 |
| A8 | 1 | 1 | 1 | 0 |

```
CNF
```

```
Step 1: Take all rows where the formula evaluate to 0

A1

A4

A5

A8

Step 2: A1 (p v q v r)

A4 (p v (¬q v¬r))

A5 (¬p v q v r)

A8 (¬p v ¬q v¬r)

(p v q v r) ^ (p v (¬q v¬r)) ^ (¬p v q v r) ^ (¬p v ¬q v¬r)

=Evaluates to 0
```

#### **DNF**

Step 1: Take all rows where the formula evaluate to 1

A2

А3

A6

A7

Step 2: A2 (¬p ^ ¬q ^ r)

A3 
$$(\neg p \land q \land \neg r)$$

A7 
$$(p ^q q ^q r)$$

$$(\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (p \land q \land \neg r)$$
 =Evaluates to 1