ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ		
ПРЕПОДАВАТЕЛЬ		
доцент, канд. техн. наук,	подпись, дата	О.О. Жаринов инициалы, фамилия
ОТЧЕТ	О ЛАБОРАТОРНОЙ РА	БОТЕ
РАЗРАБОТКА МОДУЛЯ АЛГОРИТМА	І СЧЁТНОГО УСТРОЙС МИ РАБОТЫ, В СРЕДЕ	, ,
по н	курсу: СХЕМОТЕХНИКА	A
РАБОТУ ВЫПОЛНИЛ		
СТУДЕНТ ГР. № 4142	подпись, дата	А.Д. Белов инициалы, фамилия

1. Цель работы.

Разработать проект модуля счётного устройства, работающего по заданному алгоритму, в среде программирования Quartus.

2. Вариант задания №3. M = 27.

Значение возрастает до 27, далее равно «27» на протяжении 27 тактов и убывает до 1 (таблица 1).

Таблица 1. Последовательность выходных кодов.

Номер	0	1	 26	27	28	 53	54	55	 80	81
Значение	0	1	 26	27	27	 27	27	26	 1	0

3. Обобщённая структурная схема модуля счётного устройства и описание концепции проектирования.

Схема будет построена на двухстороннем счётчике, регистре сдвига и дополнительном счётчике по основанию 3. Двухсторонний счётчик будет задавать выходной сигнал. Регистр сдвига нужен, чтобы остановка двухстороннего счётчика длилась необходимое количество тиков. Счётчик по основанию три будет хранить текущее состояние: счёт вверх, счёт вниз, ожидание счёта (сигнал 27). Состояния переключаются один за другим, поэтому для переключения состояния можно воспользоваться переполнением счётчика. Из-за того, что состояния 3, а не 4, то формула получения текущего направления счёта сокращается до $f_{upwards}(t) = \overline{state_1}$, а различать состояние счёта и ожидания можно по формуле $f_{iscount}(t) = \overline{state_0}$ (Рис. 1). Переполнением двухстороннего счётчика воспользоваться не получится, потому что на верхней границе необходимо остановиться, поэтому введены два компаратора: на 0+1 и на M-1. Формула переключения состояния

составляется из достижения верхней границы при счёте вверх, нижней границы при счёте вниз и при переполнении регистра сдвига ожидания. Единица в регистр сдвига будет загружается каждую смену состояния, но это не повлияет на работу схемы, потому что в 2 из 3 случаев он будет выключен (enable = false).

	state		cou	shiftreg	
	state[1]	state[0]	count ena	up/down	count ena
	0	0	1	1	0
	0	1	0	X	1
	1	0	1	0	0
function	X	x	!state[0]	!state[1]	state[0]

Рисунок 1 – вывод формул

4. Схема устройства в графическом формате в среде Quartus.

Рисунок 2 – схема устройства в графическом формате в среде Quartus

5. Временная диаграмма работы схемы в среде Quartus.

На рисунках 3 и 4 представлена диаграмма работы.

Рисунок 3 – диаграмма работы схемы

Рисунок 4 – диаграмма работы схемы

6. Заключение

Был разработан проект модуля счётного устройства, работающего по заданному алгоритму, в среде программирования Quartus.

На рисунке 5 представлено расположение пинов.

На рисунке 6 представлен отчёт о компиляции проекта.

MAX II - EPM240ZM100C6

Рисунок 5 – расположение пинов

Flow Status	Successful - Sat Nov 25 15:29:38 2023
Quartus II Version	9.1 Build 222 10/21/2009 SJ Web Edition
Revision Name	BF311C5F-9912-4A75-B84C-53D7210A22FF
Top-level Entity Name	BF311C5F-9912-4A75-B84C-53D7210A22FF
Family	MAX II
Device	EPM240ZM100C6
Timing Models	Final
Met timing requirements	Yes
Total logic elements	39 / 240 (16 %)
Total pins	6/80(8%)
Total virtual pins	0
UFM blocks	0/1(0%)

Рисунок 6 – отчёт о компиляции