Information Retrieval Latent Semantic Analysis (SNLP tutorial)

Vilém Zouhar

March 12, 2021

Overview

- Information retrieval
- Metrics
- - Preprocessing
- Retrieval using LM
- Retrieval example
- Document vector representation
- Solution 1 (counts)
- Solution 2 (tf)
- Solution 3 (tf-idf)
- - Solution 4 (LSA, SVD)
- Code & Considerations
- Homework

- Documents D, queries Q
- System: $Q \to \mathcal{P}(D)$
- ullet For $q \in Q$: retrieved (output), relevant (gold)

- Documents D, queries Q
- System: $Q \rightarrow \mathcal{P}(D)$
- For $q \in Q$: retrieved (output), relevant (gold)
- Recall | retrieved \(\cap relevant \) | relevant |
- Precision $\frac{|\text{retrieved} \cap \text{relevant}|}{|\text{retrieved}|}$

- Documents D, queries Q
- System: $Q \rightarrow \mathcal{P}(D)$
- For $q \in Q$: retrieved (output), relevant (gold)
- Recall | retrieved \(\text{relevant} \) | relevant |
- Precision | retrieved | retrieved | retrieved | retrieved |
- System: $Q \times D \to \mathbb{R}$
- {Precision,Recall}@k retrieve k documents (top k scoring)
- Recall@ $k \frac{|\text{retrieved}@k \cap \text{relevant}|}{|\text{relevant}|}$
- Precision@ $k \frac{|\text{retrieved@}k \cap \text{relevant}|}{k}$

- Average precision: $AveP(q) = \frac{\sum_{1}^{n} P@k \times rel(k)}{|relevant|}$
- $rel(k) = \begin{cases} 1 & k\text{-th document relevant} \\ 0 & otherwise \end{cases}$

- Average precision: $AveP(q) = \frac{\sum_{1}^{n} P@k \times rel(k)}{|relevant|}$
- $rel(k) = \begin{cases} 1 & k\text{-th document relevant} \\ 0 & otherwise \end{cases}$
- Mean average precision $MAP(Q) = \frac{\sum_{q \in Q} AveP(q)}{|Q|}$
- Q can be a "testset"

- Average precision: $AveP(q) = \frac{\sum_{1}^{n} P@k \times rel(k)}{|relevant|}$
- $rel(k) = \begin{cases} 1 & k\text{-th document relevant} \\ 0 & otherwise \end{cases}$
- Mean average precision $MAP(Q) = \frac{\sum_{q \in Q} AveP(q)}{|Q|}$
- • Q can be a "testset"
- F-score $2 \cdot \frac{p \cdot r}{p+r}$
- F-score@k $2 \cdot \frac{p@k \cdot r@k}{p@k + r@k} = 2 \cdot \frac{p@k \cdot r@k}{k + r@k}$

- Taking the rank into consideration
- Mean Reciprocal Rank
- $rank_a = position of the first relevant document$
- $MRR(Q) = \frac{1}{|Q|} \sum_{q \in Q} \frac{1}{\operatorname{rank}_q}$

- Taking the rank into consideration
- Mean Reciprocal Rank
- $rank_q = position of the first relevant document$

•
$$MRR(Q) = \frac{1}{|Q|} \sum_{q \in Q} \frac{1}{\operatorname{rank}_q}$$

document	position	relevant
a	4	+
b	1	
С		
d		+
е	2	+
f	3	

- Taking the rank into consideration
- Mean Reciprocal Rank
- rank_q = position of the first relevant document

•
$$MRR(Q) = \frac{1}{|Q|} \sum_{q \in Q} \frac{1}{\operatorname{rank}_q}$$

document	position	relevant
a	4	+
b	1	
С		
d		+
е	2	+
f	3	

•
$$Q = \{\text{example}\}, MRR(Q) = \frac{1}{\text{rankeyample}} = \frac{1}{2}$$

ullet Stemming (going o go, studies o studi)

- Stemming ($going \rightarrow go$, $studies \rightarrow studi$)
- - Not always: query becomes stressed vs. becom stress

- Stemming ($going \rightarrow go$, $studies \rightarrow studi$)
- - Not always: query becomes stressed vs. becom stress
- Lemmatization ($going \rightarrow go$, $studies \rightarrow study$)

- Stemming ($going \rightarrow go$, $studies \rightarrow studi$)
- - Not always: query becomes stressed vs. becom stress
- Lemmatization ($going \rightarrow go$, $studies \rightarrow study$)
- - Not always: query becomes stressed vs. become stress

- Stemming ($going \rightarrow go$, $studies \rightarrow studi$)
- - Not always: query becomes stressed vs. becom stress
- Lemmatization ($going \rightarrow go$, $studies \rightarrow study$)
- - Not always: query becomes stressed vs. become stress
- Stop words (for, of, and, or)

- Stemming ($going \rightarrow go$, $studies \rightarrow studi$)
- - Not always: query becomes stressed vs. becom stress
- Lemmatization ($going \rightarrow go$, $studies \rightarrow study$)
- - Not always: query becomes stressed vs. become stress
- Stop words (for, of, and, or)
- - Not always: query Wizard of Oz vs. Wizard Oz

- Stemming ($going \rightarrow go$, $studies \rightarrow studi$)
- - Not always: query becomes stressed vs. becom stress
- Lemmatization ($going \rightarrow go$, $studies \rightarrow study$)
- - Not always: query becomes stressed vs. become stress
- Stop words (for, of, and, or)
- - Not always: query Wizard of Oz vs. Wizard Oz
- Typo correction ($Wizzard \rightarrow Wizard$)

- Stemming ($going \rightarrow go$, $studies \rightarrow studi$)
- - Not always: query becomes stressed vs. becom stress
- Lemmatization ($going \rightarrow go$, $studies \rightarrow study$)
- Not always: query becomes stressed vs. become stress
- Stop words (for, of, and, or)
- - Not always: query Wizard of Oz vs. Wizard Oz
- Typo correction ($Wizzard \rightarrow Wizard$)
- - Not always: query Tokyo vs. Tokio

- Stemming ($going \rightarrow go$, $studies \rightarrow studi$)
- - Not always: query becomes stressed vs. becom stress
- Lemmatization ($going \rightarrow go$, $studies \rightarrow study$)
- Not always: query becomes stressed vs. become stress
- Stop words (for, of, and, or)
- - Not always: query Wizard of Oz vs. Wizard Oz
- Typo correction ($Wizzard \rightarrow Wizard$)
- - Not always: query Tokyo vs. Tokio

- Stemming ($going \rightarrow go$, $studies \rightarrow studi$)
- - Not always: query becomes stressed vs. becom stress
- Lemmatization ($going \rightarrow go$, $studies \rightarrow study$)
- - Not always: query becomes stressed vs. become stress
- Stop words (for, of, and, or)
- - Not always: query Wizard of Oz vs. Wizard Oz
- Typo correction (Wizzard → Wizard)
- - Not always: query Tokyo vs. Tokio

Always depends on the task.

Query: Goethe, devil

- Query: Goethe, devil
- Document:
 - A: Wolfgang's idea of the demon Mephistopheles who makes a bet with God
 - B: Faust is Wolfgang Goethe's play in German about a pact with the devil
 - C: **Devil**ishly good lasagne
 - D: The impact of **Goethe**'s demon play on the German literature:

- Query: Goethe, devil
- Document:
 - A: Wolfgang's idea of the demon Mephistopheles who makes a bet with God
 - B: Faust is Wolfgang Goethe's play in German about a pact with the devil
 - C: **Devil**ishly good lasagne
 - D: The impact of **Goethe**'s demon play on the German literature:
- How to rank them?
 - B (contains the two key words)
 - D (Goethe, literature)
 - A (Wolfgang Goethe, Mephistopheles devil)
 - C (unrelated context)

- Query: Goethe, devil
- Document:
 - A: Wolfgang's idea of the demon Mephistopheles who makes a bet with God
 - B: Faust is Wolfgang Goethe's play in German about a pact with the devil
 - C: **Devil**ishly good lasagne
 - D: The impact of **Goethe**'s demon play on the German literature:
- How to rank them?
 - B (contains the two key words)
 - D (Goethe, literature)
 - A (Wolfgang Goethe, Mephistopheles devil)
 - C (unrelated context)
- Can these inferences be made automatically? [2]

• Pretend the query was generated by a LM based on the document

- Pretend the query was generated by a LM based on the document
- $argmax_d \ p(d|q) = argmax_d \ \frac{p(q|d) \cdot p(d)}{p(q)} = argmax_d \ p(q|d) \cdot p(d)$

- Pretend the query was generated by a LM based on the document
- $argmax_d \ p(d|q) = argmax_d \ \frac{p(q|d) \cdot p(d)}{p(q)} = argmax_d \ p(q|d) \cdot p(d)$
- $\approx argmax_d \ p_{LM}(q|d) \cdot p(d)$

- Pretend the query was generated by a LM based on the document
- $argmax_d \ p(d|q) = argmax_d \ \frac{p(q|d) \cdot p(d)}{p(q)} = argmax_d \ p(q|d) \cdot p(d)$
- $\approx argmax_d \ p_{LM}(q|d) \cdot p(d)$
- $p(d) pprox rac{1}{|D|}$

- Pretend the query was generated by a LM based on the document
- $argmax_d \ p(d|q) = argmax_d \ \frac{p(q|d) \cdot p(d)}{p(q)} = argmax_d \ p(q|d) \cdot p(d)$
- $\approx argmax_d \ p_{LM}(q|d) \cdot p(d)$
- $p(d) \approx \frac{1}{|D|}$
- $\approx \operatorname{argmax}_d p_{LM}(q|d)$

- Pretend the query was generated by a LM based on the document
- $argmax_d \ p(d|q) = argmax_d \ \frac{p(q|d) \cdot p(d)}{p(q)} = argmax_d \ p(q|d) \cdot p(d)$
- $\approx argmax_d \ p_{LM}(q|d) \cdot p(d)$
- $p(d) \approx \frac{1}{|D|}$
- $\approx \operatorname{argmax}_d p_{LM}(q|d)$

- Pretend the query was generated by a LM based on the document
- $argmax_d \ p(d|q) = argmax_d \ \frac{p(q|d) \cdot p(d)}{p(q)} = argmax_d \ p(q|d) \cdot p(d)$
- $\approx argmax_d \ p_{LM}(q|d) \cdot p(d)$
- $p(d) \approx \frac{1}{|D|}$
- $\approx \operatorname{argmax}_d p_{LM}(q|d)$
- Unigram: $p(d|q) \approx \prod_i p_{LM}(q_i|d)$

- Pretend the query was generated by a LM based on the document
- $argmax_d \ p(d|q) = argmax_d \ \frac{p(q|d) \cdot p(d)}{p(q)} = argmax_d \ p(q|d) \cdot p(d)$
- $\approx argmax_d \ p_{LM}(q|d) \cdot p(d)$
- $p(d) \approx \frac{1}{|D|}$
- $\approx \operatorname{argmax}_d p_{LM}(q|d)$
- Unigram: $p(d|q) \approx \prod_i p_{LM}(q_i|d)$
- Jelinek-Mercer smoothing [9]: $p(q_i|d,D) = \lambda \cdot p(q_i|d) + (1-\lambda) \cdot p(q_i|D)$
- High λ : documents with all query words (conjunctive)
- Low λ : suitable for long queries (disjunctive)

- Pretend the query was generated by a LM based on the document
- $argmax_d \ p(d|q) = argmax_d \ \frac{p(q|d) \cdot p(d)}{p(q)} = argmax_d \ p(q|d) \cdot p(d)$
- $\approx argmax_d \ p_{LM}(q|d) \cdot p(d)$
- $p(d) pprox rac{1}{|D|}$
- $\approx \operatorname{argmax}_d p_{LM}(q|d)$
- Unigram: $p(d|q) \approx \prod_i p_{LM}(q_i|d)$
- Jelinek-Mercer smoothing [9]: $p(q_i|d,D) = \lambda \cdot p(q_i|d) + (1-\lambda) \cdot p(q_i|D)$
- High λ : documents with all query words (conjunctive)
- Low λ : suitable for long queries (disjunctive)
- Issue: Without word embeddings, no word relatedness Query: Goethe, devil

A: Wolfgang's idea of the demon Mephistopheles who makes a bet with God

Document vector representation

• Represent the query and all documents as a vector Measure their similarity (L-norm, cosine distance: $\frac{D \cdot Q}{|D||Q|}$)

Document vector representation

- Represent the query and all documents as a vector Measure their similarity (L-norm, cosine distance: $\frac{D \cdot Q}{|D||Q|}$)
- How to represent a query/document as a fixed size vector?

• Solution: vector with counts of words:

```
(<the>, <a>, <dog>, , fent>, ...)
```

• Solution: vector with counts of words:
 (<the>, <a>, <dog>, , president>, ...)
(57, 68, 0, 2, ...)

• Issue: representation vectors are enormous

• Solution: vector with counts of words:
 (<the>, <a>, <dog>, , president>, ...)
(57, 68, 0, 2, ...)

- Issue: representation vectors are enormous
- Issue: longer documents have naturally higher counts

• Solution: vector with counts of words:
 (<the>, <a>, <dog>, , president>, ...)
(57, 68, 0, 2, ...)

- Issue: representation vectors are enormous
- Issue: longer documents have naturally higher counts
- Issue: useless stop words

Solution 2 (tf)

Solution 2 (tf)

 Issue: some words naturally occur with higher frequency but don't contribute to document meaning (<thing>)

Solution 2 (tf)

- Issue: some words naturally occur with higher frequency but don't contribute to document meaning (<thing>)
- Issue: how do we know which words are useful?

Term Frequency - Inverse Document Frequency

TF-IDF

$$tf(term, doc) = \frac{count_{doc}(term)}{|doc|}$$

$$df(term) = \frac{|\{doc|term \in doc, doc \in D\}|}{|D|}$$

$$idf'(term) = \frac{|D|}{df(term)}, idf(term) = \log_2\left(\frac{|D|}{df(term)}\right)$$

$$tf - idf(term, doc) = tf(term, doc) \times idf(term)$$

Term Frequency - Inverse Document Frequency

TF-IDF

$$tf(\textit{term}, \textit{doc}) = \frac{\textit{count}_{\textit{doc}}(\textit{term})}{|\textit{doc}|}$$

$$\textit{df}(\textit{term}) = \frac{|\{\textit{doc}|\textit{term} \in \textit{doc}, \textit{doc} \in \textit{D}\}|}{|\textit{D}|}$$

$$\textit{idf}'(\textit{term}) = \frac{|\textit{D}|}{\textit{df}(\textit{term})}, \textit{idf}(\textit{term}) = \log_2\left(\frac{|\textit{D}|}{\textit{df}(\textit{term})}\right)$$

$$\textit{tf} - \textit{idf}(\textit{term}, \textit{doc}) = \textit{tf}(\textit{term}, \textit{doc}) \times \textit{idf}(\textit{term})$$

Augmented TF

$$tf'(term, doc) = 0.5 + 0.5 \cdot \frac{count_{doc}(term)}{max_{term'}\{count_{doc}(term')\}}$$

Solution 3

- Solution: vector of tf-idf
- Good metrics to determine the significance of a term in a document collection
- Issue: still enormous vectors

Solution 3

- Solution: vector of tf-idf
- Good metrics to determine the significance of a term in a document collection
- Issue: still enormous vectors
- Issue: demon Mephistopheles are equally separate concepts as demon lassagne

Solution 3

- Solution: vector of tf-idf
- Good metrics to determine the significance of a term in a document collection
- Issue: still enormous vectors
- Issue: demon Mephistopheles are equally separate concepts as demon lassagne
- Issue: independent terms assumption

Solution 4 (LSA)

- Solution: Perform dimensionality reduction using SVD
- ullet ightarrow eigenvalues, singular value decomposition
- $A_{i,j} = \#$ occurrences of term t_i id document d_j (replace with tf-idf later)

	d_1	d_2	d ₃	d_4
Wolfgang	1	1	0	0
Mephistopheles	1	0	0	0
Faust	0	1	0	0
Goethe	0	1	0	1
devil	0	1	1	0
demon	1	0	0	1
lassagne	0	0	1	0
German	0	1	0	1

d_1	d_2	d_3	d_4
1	1	0	0
1	1	0	1
1	1	0	0
1	1	0	0
1	1	0	1
1	1	0	1
0	0	1	0
1	1	0	0
	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0

	c_1	<i>c</i> ₂	<i>c</i> ₃
Wolfgang	1	0	0
Mephistopheles	0	1	0
Faust	1	0	0
Goethe	1	0	0
devil	0	1	0
demon	0	1	0
lassagne	0	0	1
German	1	0	0

3 latent concepts:

{Goethe (Wolfgang, Faust, German), devil (Mephistopheles, demon), lassagne}

	d_1	d_2	d_3	d_4
Wolfgang	1	1	0	0
Mephistopheles	1	1	0	1
Faust	1	1	0	0
Goethe	1	1	0	0
devil	1	1	0	1
demon	1	1	0	1
lassagne	0	0	1	0
German	1	1	0	0

	c_1	<i>c</i> ₂	<i>c</i> ₃
Wolfgang	1	0	0
Mephistopheles	0	1	0
Faust	1	0	0
Goethe	1	0	0
devil	0	1	0
demon	0	1	0
lassagne	0	0	1
German	1	0	0

3 latent concepts:

{Goethe (Wolfgang, Faust, German), devil (Mephistopheles, demon), lassagne}

$$d_1 = 1 \times c_1 + 1 \times c_2$$

• Given: *A*, *k*

- Given: A, k
- $A' = argmin_{A'rankk}||A A'||$

- Given: *A*, *k*
- $A' = argmin_{A'rankk} ||A A'||$ Distance e.g. Frobenius $(\sqrt{\sum_{i,j} a_{i,j}})$

SVD

- $A_{i,j} = \#$ occurrences of term t_i id document d_i (replace with tf-idf later)
- $(A^TA)_{i,j} = \#$ intersection of documents d_i and d_j
- $(AA^T)_{i,j} = \#$ documents in which both terms t_i and t_j occur (multiplied counts)
- $U = \text{eigenvectors of } A^T A$
- $V = \text{eigenvectors of } AA^T$
- $S = \text{roots of corresponding eigenvalues of } A^T A$
- $A = USV^T$

Eigen{vector, value}

Nonzero $v \in \mathbb{R}^n, \lambda \in \mathbb{R}$

Eigenvector

$$Av = \lambda v$$
 $Av = \lambda Iv$ $(A - \lambda I)v = 0$ $ker(A - \lambda I)$

"Directions (v) which A only scales."

Eigenvalue

$$Av = \lambda v$$

"The stretch (λ) of eigenvector v by A."

SVD

Proof sketch

$$A = USV^T, A^T = VSU^T, S$$
 diagonal $U^TU = VV^T = I$ orthogonal $AA^TU = US^2 \rightarrow U$ eigenvectors of AA^T, S root of eigenvalues $(\forall i: AA^TU_{i,*} = U_{i,*} \cdot S_{i,i}^2)$ $A^TAV = VS^2 \rightarrow V$ eigenvectors of A^TA, S root of eigenvalues $(\forall i: A^TAV_{i,*} = V_{i,*} \cdot S_{i,i}^2)$

LSA

- Order eigenvalues by descending values $(S_{i,i} > S_{i+1,i+1} \ge 0)$ (proof next slide)
- Take top-k eigenvectors + values (or all above threshold)

LSA

- Order eigenvalues by descending values $(S_{i,i} > S_{i+1,i+1} \ge 0)$ (proof next slide)
- Take top-k eigenvectors + values (or all above threshold)
- Term \rightarrow latent representation: $U_k S_k$

LSA

- Order eigenvalues by descending values $(S_{i,i} > S_{i+1,i+1} \ge 0)$ (proof next slide)
- Take top-k eigenvectors + values (or all above threshold)
- Term \rightarrow latent representation: $U_k S_k$
- Document \rightarrow latent representation: $(S_k V_k^T)^T = V_k S_k^T = V_k S_k$

Properties of S

Descending

$$U' = U$$
 +swapped i, j column, $S' = S$ +swapped i, j values, ${V'}^T = V^T$ +swapped i, j row $U' = U \times C(i, j), S' = S \times C(i, j), {V'}^T = V^T \times R(i, j)$ $U'S' = (US)$ with swapped i, j columns, $U'S' = (US) \times C(i, j)$ $U'S'V'^T = (US) \times C(i, j) \times V^T \times R(i, j) = (US) \times C(i, j) \times C(i, j) \times V^T = USV^T$

Properties of S

Descending

$$U' = U$$
 +swapped i, j column, $S' = S$ +swapped i, j values, ${V'}^T = V^T$ +swapped i, j row $U' = U \times C(i, j), S' = S \times C(i, j), {V'}^T = V^T \times R(i, j)$ $U'S' = (US)$ with swapped i, j columns, $U'S' = (US) \times C(i, j)$ $U'S'V'^T = (US) \times C(i, j) \times V^T \times R(i, j) = (US) \times C(i, j) \times C(i, j) V^T = USV^T$

Non-negative

$$A^T A$$
 is positive semidefinite $\Rightarrow S_{i,i} \ge 0$
 $\forall x \ne \overrightarrow{0} : x^T A^T A x = (Ax)^T (Ax) = ||Ax|| \ge 0$

LSA Concepts

- $U_k S_k$ maps terms to latent "concepts" $(m \to k)$
- $V_k S_k$ maps documents to "concepts" $(n \to k)$

	d_1	d_2	d ₃	d_4
Wolfgang	1	1	0	0
Mephistopheles	1	0	0	0

• Choose k=2

	d_1	d_2	d ₃	d_4
Wolfgang	1	1	0	0
Mephistopheles	1	0	0	0

- Choose k=2
- ullet Representation of Goethe: fourth row of U_k (m imes k o 1 imes 2) scaled by S_k : $[0.13, -0.13]^T$

	d_1	d_2	d ₃	d_4
Wolfgang	1	1	0	0
Mephistopheles	1	0	0	0

- Choose k=2
- Representation of Goethe: fourth row of U_k $(m \times k \to 1 \times 2)$ scaled by S_k : $[0.13, -0.13]^T$
- Representation of devil: fifth row of U_k $(m \times k \to 1 \times 2)$ scaled by S_k : $[0.58, -0.01]^{T}$

	d_1	d_2	d ₃	d_4
Wolfgang	1	1	0	0
Mephistopheles	1	0	0	0

- Choose k=2
- Representation of Goethe: fourth row of U_k $(m \times k \to 1 \times 2)$ scaled by S_k : $[0.13, -0.13]^T$
- Representation of devil: fifth row of U_k $(m \times k \to 1 \times 2)$ scaled by S_k : $[0.58, -0.01]^T$
- Representation of d_1 : first column of V_k^T $(k \times n \to 2 \times 1)$ scaled first by S_k : $r_d = [0.3, 0.02]^T$

	d_1	d_2	d ₃	d_4
Wolfgang	1	1	0	0
Mephistopheles	1	0	0	0

- Choose k=2
- Representation of Goethe: fourth row of U_k $(m \times k \to 1 \times 2)$ scaled by S_k : $[0.13, -0.13]^T$
- Representation of devil: fifth row of U_k $(m \times k \to 1 \times 2)$ scaled by S_k : $[0.58, -0.01]^T$
- Representation of d_1 : first column of V_k^T $(k \times n \to 2 \times 1)$ scaled first by S_k : $r_d = [0.3, 0.02]^T$
- Query representation: vector average: $r_q = [0.13, -0.13]^T/2 + [0.58, -0.01]^T/2 = [0.355, -0.07]^T$

	d_1	d_2	d ₃	d_4
Wolfgang	1	1	0	0
Mephistopheles	1	0	0	0

- Choose k=2
- Representation of Goethe: fourth row of U_k $(m \times k \to 1 \times 2)$ scaled by S_k : $[0.13, -0.13]^T$
- Representation of devil: fifth row of U_k $(m \times k \to 1 \times 2)$ scaled by S_k : $[0.58, -0.01]^T$
- Representation of d_1 : first column of V_k^T $(k \times n \to 2 \times 1)$ scaled first by S_k : $r_d = [0.3, 0.02]^T$
- Query representation: vector average:
 - $r_q = [0.13, -0.13]^T/2 + [0.58, -0.01]^T/2 = [0.355, -0.07]^T$
- Query-document match: cosine similarity: $\frac{r_q \cdot r_d}{|r_q| \cdot |r_d|} = \frac{0.01205}{0.10879} \approx 0.11$

LSA Graphics

Figure 1: Term-document matrix, no ordering, k=5; Source [6]

LSA Graphics

Figure 2: Term-document matrix, group documents, k = 5; Source [6]

LSA Graphics

Figure 3: Term-document matrix, group documents+terms, k = 5; Source [6]

LSA Code

```
from sklearn.decomposition import TruncatedSVD
from sklearn.feature extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(stop_words='english',
   max_features= 1000,
   \max df = 0.5,
    smooth_idf=True)
X = vectorizer.fit transform(documents)
svd model = TruncatedSVD(n components=20)
svd model.fit(X)
```

LSA Code

```
from sklearn.decomposition import TruncatedSVD
from sklearn.feature extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(stop_words='english',
    max_features= 1000,
    \max df = 0.5,
    smooth_idf=True)
X = vectorizer.fit transform(documents)
svd model = TruncatedSVD(n components=20)
svd model.fit(X)
                     Compression: m \times n \rightarrow m \times k + n \times k + k \times k
```

Fast SVD

• Naive approach $det(A - \lambda I) = 0$ solving *n*-th order polynomial (variable λ) Eigenvector Decomposition (EVD), get eigenvectors

Fast SVD

- Naive approach $det(A \lambda I) = 0$ solving *n*-th order polynomial (variable λ) Eigenvector Decomposition (EVD), get eigenvectors
- Jacobi rotation [4, 5], Jacobi eigenvalue algorithm [7]: Create almost a diagonal matrix (bidiagonal): A = UBV, $O(mn^2)$ Compute SVD of 2×2 matricis $O(n^2)$

Fast SVD

- Naive approach $det(A \lambda I) = 0$ solving *n*-th order polynomial (variable λ) Eigenvector Decomposition (EVD), get eigenvectors
- Jacobi rotation [4, 5], Jacobi eigenvalue algorithm [7]: Create almost a diagonal matrix (bidiagonal): A = UBV, $O(mn^2)$ Compute SVD of 2×2 matricis $O(n^2)$
- Can be parallelized (ARPACK)

Fast SVD

- Naive approach $det(A \lambda I) = 0$ solving *n*-th order polynomial (variable λ) Eigenvector Decomposition (EVD), get eigenvectors
- Jacobi rotation [4, 5], Jacobi eigenvalue algorithm [7]: Create almost a diagonal matrix (bidiagonal): A = UBV, $O(mn^2)$ Compute SVD of 2×2 matricis $O(n^2)$
- Can be parallelized (ARPACK)

Fast SVD

- Naive approach $det(A \lambda I) = 0$ solving *n*-th order polynomial (variable λ) Eigenvector Decomposition (EVD), get eigenvectors
- Jacobi rotation [4, 5], Jacobi eigenvalue algorithm [7]: Create almost a diagonal matrix (bidiagonal): A = UBV, $O(mn^2)$ Compute SVD of 2×2 matricis $O(n^2)$
- Can be parallelized (ARPACK)

Latent Semantic Analysis

Also called LSI (Latent Semantic Indexing)

Fast SVD

- Naive approach $det(A \lambda I) = 0$ solving *n*-th order polynomial (variable λ) Eigenvector Decomposition (EVD), get eigenvectors
- Jacobi rotation [4, 5], Jacobi eigenvalue algorithm [7]: Create almost a diagonal matrix (bidiagonal): A = UBV, $O(mn^2)$ Compute SVD of 2×2 matricis $O(n^2)$
- Can be parallelized (ARPACK)

Latent Semantic Analysis

- Also called LSI (Latent Semantic Indexing)
- tf-idf is just a weighting scheme (tf, counts)

Considerations

Pros:

- Easy to implement
- Explainable terms
- Quite fast runtime

Considerations

Pros:

- Easy to implement
- Explainable terms
- Quite fast runtime

Cons:

- Only surface dependencies
- SVD is not updatable

Homework

TBD

Resources

- Python code: https://medium.com/acing-ai/what-is-latent-semantic-analysis-lsa-4d3e2d18417a
- $\textbf{@} \ \, \mathsf{Comprehensive} \ \, \mathsf{tutorial} \ \, \mathsf{for} \ \, \mathsf{LSA+SVD:} \ \, \mathsf{https:}//\mathsf{www.engr.uvic.ca}/\sim \mathsf{seng474/svd.pdf}$
- SVD example: http://web.mit.edu/be.400/www/SVD/Singular_Value_Decomposition.htm
 Computation:
- https://en.wikipedia.org/wiki/Singular_value_decomposition#Calculating_the_SVD
- Omputation: https://www.cs.utexas.edu/users/inderjit/public_papers/HLA_SVD.pdf
- $\textbf{ 0} \ \ \ Visualization: \ https://topicmodels.west.uni-koblenz.de/ckling/tmt/svd_ap.html \\$
- $\hbox{ @ Computation: https://en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm} \\$
- ${\color{red} \bullet} \ \ \, \text{Python code: https://www.analyticsvidhya.com/blog/2018/10/stepwise-guide-topic-modeling-latent-semantic-analysis/}$
- $\textbf{9} \hspace{0.1cm} \textbf{Jelinek-Mercer:} \hspace{0.1cm} \textbf{http://ctp.di.fct.unl.pt/~jmag/ir/slides/a05\%20Language\%20models.pdf} \\$