Discrete Mathematics: Homework 5

Name ID: Number

2020.4.8

1. Let $a \in \mathbb{Z}, b \in \mathbb{Z}^+$ and $x \in \mathbb{R}$. Show that there exist unique $q, r \in \mathbb{Z}$ such that a = bq + r and $x \le r < x + b$.

证明. For $a-\lceil x \rceil = bq+r^{'},\,q,r^{'}$ is unique and exists. $r^{'} \in [0,b)$. Because r is an integer, $r^{'} \in [0,b-1]$

 $a=bq+r^{'}+\lceil x\rceil,\,q,r^{'}\text{ is unique and exists.}r^{'}\in[0,b-1].$

Let $r = r' + \lceil x \rceil, \lceil x \rceil \in [x, x + 1)$

Because r' is unique and exists, [x] is known, r is unique and exists.

 $r \in [\lceil x \rceil, b + \lceil x \rceil - 1)$, we have $r \in [x, x + b)$

- 2. Let a, b > 1 be relatively prime integers. Show that if a|n and b|n, then ab|n.
 - 证明. Proof by contradiction:

let $S = \{x | x \in \mathbb{Z}, a | x \text{ and } b | x\}$ and n is the smallest elements of S and n exists.

Suppose $n = k(ab) + r, r \in (0, ab)$, a|n and b|n

By a|n, we have $\frac{n}{a} = kb + \frac{r}{a}, r = aq, q \in \mathbb{Z}^+$

By b|n, we have $\frac{n}{b} = ka + \frac{r}{b}$, r = bp, $p \in \mathbb{Z}^+$

So, a|r and b|r.

By surmise, $r \in S$ and r < ab < n

So, n doesn't exists as the smallest elements in S.

So, ab|n.

3. Let $a, b_1, b_2, \ldots, b_k \in \mathbb{Z}^+$. Show that $gcd(a, b_1b_2 \ldots b_k) = 1$ iff $gcd(a, b_i) = 1$ for every $i \in k$

证明. By undamental theorem of arithmetic, we have

$$a = p_{0_1}^{e_{0_1}} p_{0_2}^{e_{0_2}} \dots p_{0_r}^{e_{0_r}}$$

$$b_1 = p_{1_1}^{e_{1_1}} p_{1_2}^{e_{1_2}} \dots p_{1_r}^{e_{1_r}}$$

...

$$b_k = p_{k_1}^{e_{k_1}} p_{k_2}^{e_{k_2}} \dots p_{k_r}^{e_{k_r}}$$

where p_{k_i} are primes and $e_{k_i} \geq 1$

Prove if:

if $gcd(a, b_i) = 1$ for every $i \in k$

then $\forall m, n \in \mathbb{Z}^+, p_{i_m} \neq p_{0_n}$

and
$$b_1 b_2 \dots b_k = p_{1_1}^{e_{1_1}} p_{1_2}^{e_{1_2}} \dots p_{1_r}^{e_{1_r}} \dots p_{k_1}^{e_{k_1}} p_{k_2}^{e_{k_2}} \dots p_{k_r}^{e_{k_r}}$$

doesn't have same divisor p with a except 1.

So $gcd(a, b_1b_2...b_k) = 1$.

Prove **only if**: if $gcd(a, b_1b_2 \dots b_k) = 1$

$$\forall m, n \in \mathbb{Z}^+, i \in \{k\} , p_{0_n} \neq p_{i_m}$$

so b_i doesn't have same divisor p_{i_m} with a except 1.

 $gcd(a, b_i) = 1$ for every $i \in k$

4. Let $x \in \mathbb{R}$ and $n \in \mathbb{Z}^+$. Show that $\lfloor \frac{\lfloor x \rfloor}{n} \rfloor = \lfloor \frac{x}{n} \rfloor$

证明. $\forall x \in \mathbb{R}, \exists a \in \mathbb{Z}, \exists \epsilon \in [0,1)$, such that $x = a + \epsilon, |x| = a$

By division algorithm, there exists unique $p \in \mathbb{Z}, r \in (0, n)$, such that a = pn + r

Because $a \in \mathbb{Z}$, so $r \in \mathbb{Z}$, we have $r \in (0, n-1]$

For the left side of the equation, $\lfloor \frac{\lfloor x \rfloor}{n} \rfloor = \lfloor \frac{a}{n} \rfloor = p$

For the right side of the equation, $\lfloor \frac{x}{n} \rfloor = \lfloor \frac{a+\epsilon}{n} \rfloor = \lfloor \frac{a}{n} + \frac{\epsilon}{n} \rfloor = \lfloor p + \frac{r}{n} + \frac{\epsilon}{n} = \lfloor p + \frac{r+\epsilon}{n} \rfloor$

Because $r \leq n-1, \epsilon < 1, \, r+\epsilon < n$, so $\lfloor p + \frac{r+\epsilon}{n} \rfloor = p$

Left side = Right side

5. Let $a, b \in \mathbb{Z}, n \in \mathbb{Z}^+$ and $a \equiv b \pmod{n}$. Let $c_0, c_1, \ldots, c_k \in \mathbb{Z}$, where $k \in \mathbb{Z}^+$. Show that $c_0 + c_1 a + \cdots + c_k a^k \equiv c_0 + c_1 b + \cdots + c_k b^k \pmod{n}$.

证明. By division algorithm, $a = q_a n + r_a$ and $b = q_b n + r_b$ $r_a, r_b \in \mathbb{Z}, r_a \in [0, n), r_b \in [0, n)$

Because $a \equiv b \pmod{n}$, we have $r_a = r_b$

$$a^i = (q_a n + r_a)^i = f(q_a, r_a) n + r_a^i \equiv r_a^i \pmod n$$

$$b^i = (q_b n + r_b)^i = f(q_b, r_b) n + r_b^i \equiv r_b^i \pmod{n}$$

where f(x, y) =

$$\sum_{i=0}^{j< i} C_i^j x^{i-j} y^j$$

Because $r_a^i \equiv r_b^i \pmod{n}$, so we have $a_i \equiv b_i \pmod{n}$

which equals to,

$$c_0 + c_1 a + \dots + c_k a^k \equiv c_0 + c_1 b + \dots + c_k b^k \pmod{n}$$

6. Let p be a prime and $p \notin \{2, 5\}$. Show that p divides infinitely many elements of the set $\{9, 99, 999, 9999, 9999, \dots\}$.

证明. $[10]_p = 10 + np$ and $p \notin \{2, 5\}$, we have $gcd([10]_p, p) = 1$

By Fermat's little theorem, we have $[10]_p^{p-1} \equiv 1 \pmod{p}$

which is $p|([10]_p^{p-1}-1) \Rightarrow p|((10+np)^{p-1}-1)$.

$$\Rightarrow p|(10^{p-1} + \sum_{i=0}^{i < p-1} C_{p-1}^{i} 10^{i} (np)^{p-1-i} - 1)$$

$$\Rightarrow p|(10^{p-1}-1)$$