2/4. Simplicity Frank The ovy! Wagner's book. Simple Theories. + various articles. From Stability to Simplicity / Kim & Pillay JSL? Nice Paper: Stability = theory of independence + multiplicity. simplicity types over models have unique actoms ons. Framework of FO model theory. Urganisation: 1. Basic Definitions & Framework Z Bosic stuff Everyone should 2 Simplicity & independence. 3. Canonical Bases. 3. Canonical Bases. ' A. Generic Constructions! - adding making predicate etc. "Simple" graps. 6. Lovely Pairs. Analogue of Monster Model in CAT. Defn: Let il be a signature, a \(\int_{\alpha}\). Liet of formulas). Assume that a is closed under positive boolean combinations. Then a is a positive fragment of R. We fix a positive frayment d. A "formula" always means a formula tram &. OK Work in purely relational language or a is closed under substition at terms for Data chose and a character of the contraction of the contractio

Definition: An L-structure U is a 1C-universal domain

(IC is a cardinal) if it satisfies:

1. Homogenesty: If $A \subseteq U \in A \mid C \mid C$ and $f:A \to U$ is a mapping st. $\forall \psi(\bar{x}) \in \Delta \quad \forall \bar{u} \in A$, if $U \not\models \psi(\bar{a}) \Rightarrow U \not\models \psi(\bar{a})$.

[We say that f is a partial Z-endomorphism of U.J

Then If EAUT (U) which extends f.

	meory (2)
2). Compactness: If ξ(x) is a set of Δ-formulas of x is a possibly infinite tuple of variables, either ξ(x) is reglised in U (ie faculty or there is 20 ξ ξ finite which is not realisty. Important	hen st. (1 = ≥(ē)) ect.
Important (12, g).	
Fact: Assume Wis & universal domain at U. \(\pi(\fi)\) \(\pi\)	a and
Then there is a formula $\psi(\bar{x}) \in \Delta$ st	
Then there is a formula $\psi(\bar{x}) \in \Delta$ st (1) $U \neq \psi(\bar{y})$. (2) $U \neq \forall \bar{x} (\psi(\bar{x}) \rightarrow 7 \exists y \psi(\bar{x}, \bar{y}))$.	
Proof Set pur) = tp(\bar{a}) := $\{\chi(\bar{x}) \in \bar{a} : \mathcal{U} \mid \chi(\bar{a}) \}$ Then $p(\bar{x}) \cup \chi(\bar{x}, y)$ is not realized in \mathcal{U} . by ho	Emogeneity.
(Otherwise me'd get E, d & U st. p(E) 1 y (E, E) so f: ā +> E is a partial endomorphism extending an automorphism f and then U + y (a, f'(d))	and the same of th
by compactness: I x(z) & p(x) st x(z) 1 P(z,i)	
Remark: If U is a universal domain wit a and	
Then Wis a universal domain art o'.	
Proof Homogenesty becomes exiet / Compathess: by replacing each 39 4 LTG) with a	p(\overline{7}, \overline{7}) \overline{12}
Therefore we allow ourselves the following additional assum	phon:
Convention: For every p(x,y) & co, the formula Fig (equivalent in W to a partial stype.	etzing) is
	17 14 200 P. San College Colle

2/4 Simplicity Theory

We say that U is a universal domain for T= Th(U) where Th(U) = \$7] I x y(x), : y & Q, 21 = 3.

lenna

Sn(T) = { tp(a): a & was = { all maximal sets of } A-formulas in (xo xn-1) = or consistent with T}

Proof (1)

Let $p(\bar{x}) = tp(\bar{a})$ where $\bar{a} \in \mathcal{W}$.
Then $p(\bar{x})$ is consistent with T since $\mathcal{U} \neq p(\bar{a}) \cup T$.
Mythinget

If $\psi(\overline{\lambda}) \notin p(\overline{\lambda})$ (but $\psi(\xi)$). Then $\mathcal{U} \notin \psi(\overline{\lambda})$. so by the fact, there is $\psi(\overline{\lambda}) \in p(\overline{\lambda})$ st. $\mathcal{U} \notin T \exists \overline{\lambda} \psi(\overline{\lambda}) \land \psi(\overline{\lambda})$. (by the fact).

50 p(x) U ?y(x) SUT is inconsistment.

(2) Assume that p(x) is maximal consistent with T.

Since it is ionsistent with T, it is reclised in U (by compretness)

Say by a: U + p(x).

Then p(si) = tp(a), and tp(a) is consistent with T. So by meximelity p=tp(a).

trom homogeneity, two types are the same type & they correspond by an automorphism of U.

Thebefore Sol(T) = Wa/Aut(W). orbits of action of Aut 12 on 212.

The logic topology on $S_{\alpha}(T)$: If $q(x) \in Z$, then $\langle \psi \rangle \subseteq S_{\alpha}(T)$:= $ip(\bar{x}): \psi(\bar{x}) \in p\bar{s}$ The topology sets are governted by the sets of this form.

Z/4 Simplicity Theory

This is a compact topology.