Also published as:

🔼 JP55066535 (A)

Sunscreen agents

Publication number: CH642536 (A5)

Publication date:

1984-04-30

Inventor(s):

POLO KARL-FRED DE DR [CH] + GIVAUDAN & CIE SA [CH] +

Applicant(s): Classification:

- international:

C09K3/00; A61K8/00; A61K8/35; A61K8/37; A61Q17/04; C07C45/00; C07C45/45; C07C49/84; C07C67/00; C09K3/00; A61K8/30; A61K8/30; A61Q17/04; C07C45/00; C07C49/00;

C07C67/00; (IPC1-7): A61K7/42; C07C49/84

- European:

A61Q17/04; A61K8/35; A61K8/37; C07C45/45; C07C49/84

Application number: CH19780011639 19781113 **Priority number(s):** CH19780011639 19781113

Abstract of CH 642536 (A5)

The compounds of the general formula I in which R<1> is C1-4-alkyl are excellent UVA filters in that, while being extremely well tolerated by the skin and having excellent stability (to light, heat, moisture), they greatly slow down ageing of the skin. The compounds of the formula I furthermore increase the protective action of UVB filters.

$$R^4$$
 \longrightarrow $-\infty$ $-\alpha t_2$ $-\cos^2$ I

Data supplied from the **espacenet** database — Worldwide

BUNDESAMT FÜR GEISTIGES EIGENTUM

C07 C

Erfindungspatent für die Schweiz und Liechtenstein Schweizerisch-liechtensteinischer Patentschutzvertrag vom 22. Dezember 1978

12 PATENTSCHRIFT A5

11

642 536

(21) Gesuchsnummer:

11639/78

(73) Inhaber:

L. Givaudan & Cie Société Anonyme, Vernier-Genève, Patentdienst, Basel

22 Anmeldungsdatum:

13.11.1978

24) Patent erteilt:

30.04.1984

45 Patentschrift veröffentlicht:

30.04.1984

(72) Erfinder:

Dr. Karl-Fred de Polo, Onex

54 Lichtschutzmittel.

5 Die Verbindungen der allgemeinen Formel I

$$R^4$$
 \longrightarrow $CO-CH_2-CO \bigcirc$ OR^1 1

worin R¹, C₁₋₄-Alkyl darstellt, stellen vorzügliche UV A-Filter dar, indem sie bei ausgezeichneter Hautverträglichkeit und Stabilität (Licht, Hitze, Feuchtigkeit) eine starke Verzögerung der Hautalterung bewirken.

Die Verbindungen der Formel I erhöhen ferner die Schutzwirkung von UV B-Filtern.

PATENTANSPRÜCHE

1. Verbindungen der Formel

$$R^1$$
 CO-CH₂-CO- \mathbb{Z} OR¹ 1

worin R¹ C₁₋₄-Alkyl darstellt.

2. 4-Methyl-4'-methoxydibenzoylmethan als Verbindung 10 nach Anspruch 1.

3. 4-Isopropyl-4'-methoxydibenzoylmethan als Verbindung nach Anspruch 1.

 4. 4-(1,1-Dimethyläthyl)-4'-methoxydibenzoylmethan als Verbindung nach Anspruch 1.

Lichtschutzmittel, gekennzeichnet durch einen Gehalt an einer Verbindung der Formel

worin R1 C1-4-Alkyl darstellt.

6. Lichtschutzmittel nach Anspruch 5, gekennzeichnet durch einen Gehalt an einer Kombination einer Verbindung der Formel I mit einem UV B-Filter.

7. Mittel nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass der Gehalt an Verbindung I 1 bis 6 Gew.-% beträgt.

8. Mittel nach Ansprüchen 5, 6 oder 7, gekennzeichnet durch einen Gehalt an 4-Methyl-4'-methoxy-dibenzoylmethan.

9. Mittel nach Ansprüchen 5, 6 oder 7, gekennzeichnet durch einen Gehalt an 4-Isopropyl-4'-methoxy-dibenzoyl-methan.

10. Mittel nach Ansprüchen 5, 6 oder 7, gekennzeichnet durch einen Gehalt an 4-(1,1-Dimethyläthyl)-4'-methoxydibenzoylmethan.

11. Verfahren zur Herstellung von Verbindungen der

$$R^{1}$$
 CO-CH₂-CO- \mathbb{Z} OR \mathbb{Z}

40

worin R¹ C₁₋₄-Alkyl darstellt, dadurch gekennzeichnet, dass man eine Verbindung der Formel

Alkoxycarbonyl darstellen und R¹ obige Bedeutung hat, umsetzt.

mit einer Verbindung der Formel

wobei in den Verbindungen der Formeln II und III X nieder- 50 Alkoxycarbonyl und Y Acetyl, oder X Acetyl und Y nieder-

Es ist bekannt, dass Sonnenlicht die Alterung der Haut beschleunigt, und zwar wird dieser unerwünschte Effekt vor allem durch die die Haut direkt bräunende UV A-Strahlung mit Wellenlängen im Bereich von etwa 320 bis 400 nm verursacht.

Es wurde nun gefunden, dass die Verbindungen der allgemeinen Formel I

$$R^{4}$$
 — $CO-CH_{2}-CO$ — OR^{1} 1

worin R¹ C₁₋₄-Alkyl darstellt, vorzügliche UV A-Filter darstellen, indem sie bei ausgezeichneter Hautverträglichkeit und Stabilität (Licht, Hitze, Feuchtigkeit) eine starke Verzögerung der Hautalterung bewirken.

Die Alkylreste können geradkettig oder verzweigt sein. R¹ ist bevorzugt Methyl, Äthyl, Propyl, Isopropyl, 1,1-Dimethyläthyl oder sek.-Butyl.

Es wurde weiter gefunden, dass die Verbindungen der Formel I die Schutzwirkung von UV B-Filtern, d.h. von Substanzen, welche die erythemerzeugende UV B-Strahlung im Bereiche von etwa 290 bis 320 nm absorbieren, überra-

schenderweise erhöhen, obwohl das Absorptionsmaximum der Verbindungen I nicht in diesem Bereich, sondern im Bereich von etwa 330 bis 360 nm liegt.

Gegenstand der Erfindung sind demgemäss Lichtschutzmittel mit einem Gehalt an einer Verbindung der obigen allgemeinen Formel I, vorzugsweise in Kombination mit einem UV B-Filter.

Im letzteren Fall werden Lichtschutzpräparate erhalten, die die UV-Strahlung im Bereich von 280 bis 380 nm vollständig absorbieren – einen sogenannten «A+B-Total-

block» darstellen – und die Haut vor zu früher Alterung und in vielen Fällen vor Lichtdermatosen schützen.

Die Herstellung dieser neuen Lichtschutzmittel (insbesondere von Hautschutzpräparaten für die Alltagskosmetik) erfolgt durch Einarbeiten einer Verbindung der allgemeinen Formel I, vorzugsweise in Kombination mit einem UV B-Filter, in eine für Lichtschutzmittel übliche kosmetische Grundlage.

Als UV B-Filter im Sinne der vorliegenden Erfindung, d.h. als Substanzen mit Absorptionsmaxima zwischen etwa 290 und 320 nm, können übliche UV B-Filter, wie beispielsweise die nachstehenden, zu den verschiedensten Stoffklassen gehörenden organischen Verbindungen genannt werden:

- l. Derivate der p-Aminobenzoesäure, wie z. B. Äthyl-paminobenzoat und andere Ester, wie Propyl-, Butyl-, Isobutyl-p-aminobenzoat. Äthyl-p-dimethylaminobenzoat, Glyceryl-p-aminobenzoat, Amyl-p-dimethylaminobenzoat.
- 2. Derivate der Zimtsäure, wie z.B. 2-Äthoxyäthyl-p-methoxyzimtsäureester, 2-Äthylhexyl-p-methoxyzimtsäureester, p-Methoxyzimtsäureestergemische, Zimtsäureestergemische.
 - Dibenzalazine.
- 4. Heterozyklische Stickstoffverbindungen, wie Derivate des 2-Phenylbenzimidazols, z.B. 2-Phenylbenzimidazol-5sulfosäure.

 4. Heterozyklische Stickstoffverbindungen, wie Derivate durchgeführt.

 5. durchgeführt.

 6. Man arbei inerten Lösun
- 5. Derivate der Salicylsäure, wie z. B. Salicylsäurementhylester, Salicylsäure-homomenthylester, Salicylsäurephenylester.
- 6. Derivate des Benzophenons, wie z.B. 4-Phenylbenzophenon, 4-Phenylbenzophenon-2-carbonsäure-isooctylester, 2-Hydroxy-4-methoxybenzophenon-5-sulfosäure.
- 7. Derivate des Cumarins, wie z. B. 7-Oxycumarin, β-Umbelliferonessigsäure, 6,7-Dioxycumarin.
 - 8. Derivate der Gallussäure, wie z.B. Digalloyl-trioleat.
 - 9. Arylidencycloalkanone, wie z. B. Benzylidencampher.
- 10. Derivate der Anthranilsäure, wie z. B. Anthranilsäurementhylester.
 - 11. Hydroxyphenylbenztriazol.

Die unter 2) aufgeführten Verbindungen, ganz besonders der 2-Äthylhexyl-p-methoxyzimtsäureester, sind bevorzugt.

Als für Lichtschutzmittel übliche kosmetische Grundlage im Sinne der vorliegenden Erfindung kann jede übliche Zubereitung dienen, die den kosmetischen Anforderungen entspricht, z. B. Crèmes, Lotions, Emulsionen, Salben, Gele, Lösungen, Sprays, Sticks, Milch u. dgl. Die Lichtschutzwirkung ist natürlich auch von der verwendeten Grundlage abhängig. Die Intensität der Lichtschutzwirkung hängt weiter bei gleicher Grundlage von der Wirkstoffkonzentration ab. Geeignete Konzentrationen sind z. B. zwischen 1 bis 6%, vorzugsweise zwischen 2 bis 5% einer Verbindung der Formel I im kosmetischen Präparat. Das Verhältnis von Verbindung I zum UV B-Filter ist nicht kritisch. Aus ökonomischen Gründen beträgt es beispielsweise 1 bis 2 Teile des UV B-Filters auf 1 Teil der Verbindung I.

Auf Grund ihrer Lipophilität lassen sich die Verbindungen I gut in öl- und fetthaltige kosmetische Zubereitungen einarbeiten.

Die Verbindungen der Formel I sind neu. Sie bilden einen weiteren Gegenstand der vorliegenden Erfindung. Sie sind nach den an sich bekannten Methoden der Claisen-Kondensation eines aromatischen Esters mit einem substituierten Acetophenon (siehe diesbezüglich z. B. R. Hauser et al. in Organic Reactions Vol. VIII, Seite 59, John Wiley &

Sons Inc., New York 1954) zugänglich, also durch Umsetzung einer Verbindung der Formel

mit einer Verbindung der Formel

wobei in den Verbindungen der Formeln II und III X nieder-Alkoxycarbonyl (insbesondere Methoxy- oder Äthoxy-carbonyl) und Y Acetyl, oder X Acetyl und Y nieder-Alkoxycarbonyl darstellen.

Die Reaktion von II mit III wird demgemäss zweckmässigerweise in Anwesenheit einer starken Base, wie z.B. eines Alkalimetallhydrids, z.B. Natriumhydrid, eines Alkalimetallamids, z.B. Natriumamid, oder eines Alkalimetallalkoholats, z.B. Natriummethylat oder Natriumäthylat, durchgeführt.

Man arbeitet zweckmässigerweise in Anwesenheit eines inerten Lösungsmittels, wie z.B. eines Äthers, z.B. Tetrahydrofuran, oder eines Kohlenwasserstoffes, wie z.B. Toluol. Die Reaktionstemperatur beträgt zweckmässigerweise etwa 20 bis 70°, insbesondere etwa 50°.

Die Isolierung des als fester Niederschlag anfallenden Metallsalzes von I wird vorzugsweise so durchgeführt, dass durch Zugabe von Eis und einer Säure, z. B. einer Mineralsäure oder einer Alkancarbonsäure, wie Essigsäure, die Verbindung der Formel I freigesetzt wird, welche nun durch Konzentrieren der organischen Phase erhalten wird.

I kann nötigenfalls durch Umkristallisation aus einem niederen Alkohol, z.B. Methanol oder Äthanol, weiter gereinigt werden.

Beispiel 1

a) Sonnenschutzereme, halbfett

40

			Gewichtsteile	
45	A:	Stearinsäure, dreifach gepresst	10,0	
		Cetylalkohol extra	1,0	
		Glycering-monomyristat	5,0	
		Isopropylmyristat (DELTYL EXTRA)	7,0	
		Oleylalkohol, stabilisiert (SATOL)	4,0	
50		2-Äthylhexyl-p-methoxyzimtsäureester	3,0	
		(PARSOL MCX)		
		4-(1,1-Dimethyläthyl)-4'-methoxydi-	2,0	
		benzoylmethan		
	B:	Diaethanolamin-cetylphosphat	3,0	
55		(AMPHISOL)		
	C:	destilliertes Wasser	58,8	
		Propylenglycol	6,0	
		Komplexbildner (Äthylendiamin-tetra-	0,2	
		essigsäure, Dinatriumsalz)		
60	D:	Parfum 0,5%	Q.S.	
		Konservierungsmittel	Q.S.	

Die vereinigten Komponenten von A werden auf dem Wasserbad auf 85° erhitzt, hierauf wird B bei dieser Tem65 peratur zugegeben. Das Gemisch C wird auf 75° erhitzt und zu A + B gegeben. Nach Abkühlung auf 25 bis 30° werden allfällige Wasserverluste kompensiert und es wird D zugegeben.

		Gewichtsteile
A:	nichtionogener Emulgator (Arlacel 481)	9,0
	mikrokristallines Wachs (Texwax MP	0,2
	121)	
	DELTYL EXTRA	1,0
	PARSOL MCX	3,0
	4(1,1-Dimethyläthyl)-4'-methoxydi-	2,0
	benzoylmethan	·
B:	Paraffinöl ($d = 0.865-0.880$)	24,0
	Aluminiumstearat (Alugel 30 DS 2)	0,2
C:	destilliertes Wasser	54,9
	Propylenglycol	5,0
	Magnesiumsulfat getrocknet	0,5
	Komplexbildner (Äthylendiamin-tetra-	0,2
	essigsäure, Dinatriumsalz)	•
D:	Parfum 0,5-1%	Q.S.
	Konservierungsmittel	Õ.S.
	•	Ç

Das Gemisch A wird auf dem Wasserbad auf 80° erhitzt. Das Alugel wird im Paraffinöl bei Zimmertemperatur dispergiert und dieses Gemisch bis zum völligen Verschwinden grösserer Partikel gerührt. Hierauf gibt man B zu A und rührt bis zum Vorliegen einer homogenen Lösung. C wird auf 75 bis 80° erhitzt. Unter heftigem Rühren wird C in A + B eingearbeitet. Nach Abkühlung auf 25 bis 30° werden die Wasserverluste ausgeglichen und es wird D zugegeben. Hierauf wird homogenisiert.

Sonnenschutzmilch

		Gewichtsteile
A:	Stearinsäure dreifach gepresst	3,0
	Vaselinöl ($d = 0.849 - 0.866$)	6,0
	Diäthylenglykolmonostearat	0,5
	PARSOL MCX	3,0
	4(1,1-Dimethyläthyl)-4'-methoxy-	2,0
	dibenzoylmethan	
	AMPHISOL	3,0
C:	destilliertes Wasser	78,8
	Propylenglykol	3.0
	Panthothenylalkohol (Panthenol)	0,5
	Komplexbildner (Athylendiamin-tetra-	0,2
	essigsäure, Dinatriumsalz)	ľ
D:	Parfum 0,5%	Q.S.
	Konservierungsmittel	Q.S.

Das Gemisch A wird auf dem Wasserbad auf 80 bis 85° erhitzt. Hierauf wird B bei dieser Temperatur darin gelöst. Das Gemisch C wird auf 75° vorerhitzt und zu A + B gegeben. Nach Abkühlen auf 25 bis 30° werden die Wasserverluste ausgeglichen und es wird D zugegeben. Es wird weitergerührt, bis eine Temperatur von 25 bis 30° erreicht ist.

d) Sonnenschutzmilch

		Gewichtsteile	55
A:	Cetylalkohol	1,0	
	DELTYL EXTRA	5,0	
	Glycerinmonomyristat	4,0	
	Arachisöl hydriert pharmacop.	2,0	
	PARSOL MCX	1,0	60
	4(1,1-Dimethyläthyl)-4'-metoxy-	0,5	
	dibenzoylmethan		
B:	AMPHISOL	3,0	
C:	destilliertes Wasser	74,8	
	Propylenglykol	3,5	65
	Harnstoff	5,0	
	Komplexbildner (Äthylendiamin-tetra-	0,2	
	essigsäure, Dinatriumsalz)		

D: Parfum 0,5% Q.S. Konservierungsmittel Q.S.

Das Gemisch A wird auf dem Wasserbad auf 85° erhitzt, hierauf wird bei dieser Temperatur B zugegeben. Die vereinigten Komponenten von C werden auf 75° erhitzt und hierauf zu A + B gegeben. Die Wasserverluste werden nach Abkühlung auf 25 bis 30° ausgeglichen und dann folgt Zugabe von D. Man rührt weiter, bis die Temperatur auf 25 bis 30° gefallen ist.

Beispiel 2

a) In einen Vierhals-Rundkolben, der mit Rührer und Kühler versehen ist, gibt man 356 g (2 Mole) p-tert.-Butyl-15 benzoesäure, 243 g (7,6 Mol) Methylalkohol und 35 g Schwefelsäure (96%ig).

Unter leichtem Rühren hält man das Gemisch 8 Stunden bei Rückflusstemperatur. Nun wird der Kühler durch eine Destillierkolonne ersetzt und der überschüssige Methylal20 kohol wird abdestilliert, gegen Schluss unter leichtem Vakuum, aber ohne die Temperatur von 100° zu überschreiten. Man kühlt ab und gibt auf Eis. Man lässt die Phasen trennen, wäscht die organische Phase mit Eiswasser, mit einer gesättigten Natriumkarbonatlösung in Anwesenheit von Eis, und schliesslich mit Eis bis zur neutralen Reaktion. Man trocknet über Natriumsulfat und erhält so einen Niederschlag, der 393 g wiegt. Durch Destillation an einer Widmerkolonne (120 mm) erhält man 345 g (90% Ausbeute) des Esters, Sdp. 76°/0,02 mmHg.

b) In einen Rundkolben, der gut getrocknet und mit Stickstoff gespült worden war, gibt man 85 g (1,1 Mol) Natriumamid (50% ige Suspension in Toluol), 180 g Isopropyläther und gibt nun bei einer Temperatur von 50 bis 60° tropfenweise 150,2 g (1 Mol) Acetylanisol in 180 g Isopro-35. pyläther dazu. Es tritt sofort Reaktion ein und es bildet sich eine weisse, teigförmige Masse. Nach beendigter Zugabe wird ½ Stunde weitergerührt und hierauf rasch bei 25 bis 30° 192,3 g p-tert.-Butyl-benzoesäure-methylester zugegeben. Man rührt ½ Stunde bei Raumtemperatur, hierauf 3 40 Stunden bei 60 bis 70° und lässt 12 Stunden stehen. Hierauf werden 200 g Eis zugegeben und das Gemisch mit 128 g (1,1 Mol) technischer Salzsäure und 200 ml Eiswasser angesäuert. Es wird gerührt, bis sich das Natriumsalz des Produktes aufgelöst hat. Die Phasen werden getrennt und die 45 organische Phase mit Eiswasser bis zur neutralen Reaktion gewaschen. Man konzentriert am Rotationsverdampfer und gewinnt so 290 g Isopropyläther zurück. Das rohe Endprodukt wiegt 347 g und enthält noch Lösungsmittel.

Umkristallisation aus Methanol liefert 199,8 g (64,5%) 50 4-(1,1-Dimethyläthyl)-4'-methoxydibenzoylmethan vom Schmelzpunkt 83,5°.

c) In einen Rundkolben, der mit Stickstoff gespült ist, gibt man 36 g (1,2 Mol) 80% iges Natriumamid und 300 g s trockenes Toluol. Man erhitzt auf 50° und gibt 150,2 g (1 Mol) Acetylanisol in 309 g Toluol innert 1 ½ Stunden dazu. Nach beendigter Zugabe hält man das Gemisch 15 Minuten bei 50° und gibt dann bei dieser Temperatur 192,3 g (1 Mol) p-tert.-Butylbenzoesäure-methylester innert 1 Stunde 50 Minuten zu. Man rührt 1 Stunde bei 50° weiter, hierauf erhitzt man I Stunde auf 100°, nach welcher Zeit sich das Reaktionsprodukt als fester Niederschlag ausgeschieden hat. Man lässt das Gemisch 12 Stunden stehen und gibt 300 ml Eiswasser zu, hierauf ein Gemisch von 100 ml reiner Salzsäure 5 und 250 ml Eiswasser. Die Phasen werden getrennt, die organische Phase 2mal mit Wasser gewaschen. Man trocknet über Natriumsulfat und behandelt gleichzeitig mit 20 g Aktivkohle. Man filtriert und konzentriert das Filtrat, bis die

Kristallisation beginnt. Man gibt 50 ml Hexan zu, kühlt ab und filtriert über einen Büchnertrichter. Man kristallisiert aus 600 ml Methanol um und erhält eine Totalausbeute von 220,91 g (71,2%) des Esters vom Schmelzpunkt 83,5°.

d) Nach der Methode b) wird aus dem p-Isopropylbenzoesäuremethylester und Acetylanisol das 4-Isopropyl4'-methoxydibenzoylmethan erhalten, Schmelzpunkt (Methanol-Äther) 90,5°.

e) Nach der Methode b) ist ausgehend von p-Tolylsäuremethylester und Acetylanisol das 4-Methyl-4'-methoxydibenzoylmethan zugänglich, Schmelzpunkt (Methanol-Äther) 100,3".