Fake News Detection System

${\bf 23BCE7143},\,{\bf 23BCE9580},\,{\bf 23BCE7054}$

April 2025

Contents

1	Introduction	2
2	Literature Survey	3
3	Dataset Description with Visualization	4
4	Algorithms	6
5	Architectural Diagram and Explanation	7
6	Evaluation Metrics with Graphical Explanation	8
7	Conclusion	10

1. Introduction

The Fake News Detection System aims to identify whether a given news article is real or fake using machine learning algorithms. The project falls under the domain of Natural Language Processing and supervised machine learning.

Objective: Build a model to classify news as Fake or Real.

Why ML? Machine learning provides scalability, speed, and better accuracy in dynamic data environments. We experimented with two algorithms: Logistic Regression for simplicity and Random Forest for high-performance ensemble learning. This comparative approach helped us identify the most effective model.

2. Literature Survey

Reference	Algorithm Used	Dataset	Accuracy
recicione	riigoriumi esea	Davasev	(\mathbf{R}^2)
Advancing Fake	SVM, Logistic Re-	Real & Fake News	0.89
News Detection	gression	Dataset	
Energy-Efficient	VerifyNews, Com-	Custom Dataset	0.91
Ensemble System	pareText		
Fake News Detec-	Logistic Regression,	Social Media	0.87
tion in OSM Net-	Bi-LSTM	Datasets	
works			
User-Centered	XGBoost, SVM, RF	LIAR, FakeNews-	0.92
Fake News Model		Net	
Dynamic Graph	GNN	Custom Dataset	0.90
Neural Network			
Cyber Security En-	LFDD	Social Media	0.88
abled Fake News		Datasets	
Detection			
Hybrid DL Frame-	CNN + RNN	Custom Dataset	0.93
work			
Fake News Detec-	DT, SVM	Twitter News	0.86
tion using DT &			
SVM			
Detection using LR	Logistic Regression,	Facebook News	0.85
& SVM	SVM		
Detection Using	LSTM + Word2Vec	Real & Fake	0.94
NLP & DL	CA . AFT	Dataset	
Using Sentiment	SA + ML	Indonesian	0.89
Analysis	CAPN 0 CCDN	Dataset	0.05
Financial Fake	CAEN & CSRN	WELFake	0.95
News Detection	T CODY	Cl. 1.77110001	0.01
Multi-Class Detec-	LSTM	CheckThat!2021	0.91
tion using LSTM Time-Aware Fake	Tomporel Learning	Weibe Twitter	0.90
News Detection	Temporal Learning	Weibo, Twitter	0.90
Tri-FusionDet	Multimodal Network	 Fakeddit	0.93
T11-1, rigioiiDer	manifical network	rakeddit	บ.ฮอ

3. Dataset Description with Visualization

The dataset used includes 9900 news articles with two labels: Fake and Real.

Attributes: Text (news content), Label (classification)

Class Distribution: Fake - 5000, Real - 4900

Figure 1: Bar Chart - Distribution of News Classes

Figure 2: Pie Chart - Proportion of Fake vs Real News

4. Algorithms

We used two different classification models:

1. Logistic Regression:

$$\hat{y} = \frac{1}{1 + e^{-z}}, \quad z = w^T x + b$$
 (1)

Loss Function:

$$\mathcal{L}(y, \hat{y}) = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y}) \tag{2}$$

2. Random Forest:

- Ensemble of Decision Trees
- Majority voting to decide final prediction
- Reduces overfitting and improves accuracy

TF-IDF Vectorization (used for both models):

$$TFIDF(t,d) = TF(t,d) \times \log\left(\frac{N}{df(t)}\right)$$
 (3)

5. Architectural Diagram and Explanation

6. Evaluation Metrics with Graphical Explanation

Logistic Regression:

Accuracy: 99.24%, Precision: 99.27%, Recall: 99.17%, F1 Score: 99.22%

Random Forest:

Accuracy: 99.75%, Precision: 99.79%, Recall: 99.69%, F1 Score: 99.74%

Figure 3: Logistic Regression - Confusion Matrix

Figure 4: Random Forest - Confusion Matrix

Figure 5: Comparison of Evaluation Metrics for Both Models

7. Conclusion

This project applied both Logistic Regression and Random Forest classifiers for fake news detection. While Logistic Regression gave good results with simplicity, Random Forest outperformed it in accuracy and F1-score. This dual-model approach helped us choose the best solution for real-world deployment.