Find all solutions to the following complex equations.

1.
$$(1+i)\overline{z} = i(2+8i)$$

2.
$$z^3 = -8i$$

3.
$$e^{\bar{z}} = -2 + 2i$$

Proof.

 $\overline{1. (1+i)\overline{z} = i(2+8i)}.$

Suppose that z is of the form z = a + bi, for $a, b \in \mathbb{R}$. Then the equation becomes

$$(1+i)(a-bi) = i(2+8i) \implies a+b+(a-b)i = -8+2i.$$

Equating coefficients, we get

$$a + b = -8$$
 and $a - b = 2$.

Solving the system of equations gives us a = -3 and b = -5, so z = -3 - 5i.

$$2 z^3 = -8i$$

Suppose that z is of the form $z = re^{i\theta}$, for $r, \theta \in \mathbb{R}$. Then the equation becomes

$$r^3e^{3i\theta} = -8i \implies r^3e^{3i\theta} = 8e^{-i\left(\frac{\pi}{2} + 2n\pi\right)}$$
, for $n \in \mathbb{Z}$

Equating the coefficient and exponent gives us

$$r^{3} = 8 \text{ and } 3\theta = \frac{\pi}{2} + 2n\pi \implies r = 2, \ \theta = \frac{\pi}{6} + \frac{2n\pi}{3}$$

Therefore

$$z = 2e^{i\left(\frac{\pi}{6} + \frac{2n\pi}{3}\right)} = 2\cos\left(\frac{\pi}{6} + \frac{2n\pi}{3}\right) + 2i\sin\left(\frac{\pi}{6} + \frac{2n\pi}{3}\right).$$

We can convert this into the standard form by considering cases when n = 0, 1, 2, as any other value will give us a value of z that is already accounted for. Therefore

$$z = \sqrt{3} + i, -\sqrt{3} + i, -2i$$

3.
$$e^{\overline{z}} = -2 + 2i$$

Let z = a + bi, for $a, b \in \mathbb{R}$. Converting the right hand side of the equation into polar form, we get

$$e^a e^{bi} = 2\sqrt{2}e^{i\left(\frac{3\pi}{4} + 2n\pi\right)}$$
, where $n \in \mathbb{Z}$

We can equate real and complex parts to get that

$$e^a = 2\sqrt{2}$$
 and $b = \frac{3\pi}{4} + 2n\pi$

so

$$z = \frac{3}{2}\ln(2) + i\left(\frac{3\pi}{2} + 2n\pi\right)$$

Find all solutions to the following equations in \mathbb{Z}_9 , or show that they have no solution.

- (a) [4]x + [3] = [1]
- (b) [6]x + [3] = [5]
- (c) $x^2 = [0]$.

Proof. (a)
$$[4]x + [3] = [1]$$

Adding [6] to both sides of the equation yields

$$[4]x = [7].$$

Multiplying both sides by [7], we get

$$[28]x = [49]$$

$$\implies x = [4]$$

(b)
$$[6]x + [3] = [5]$$

This equation has no solution. We can simply substitute x = [0], ..., [8] into the left hand side and see that it does not equal the right hand side.

(c)
$$x^2 = [0]$$

П

Let $\mathbb{Z}_3[i] = \{a + bi \mid a, b \in \mathbb{Z}_3\}$, where we define operations $+, \cdot$ by:

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

$$(a+bi)\cdot(c+di) = (ac-bd) + (ad+bc)i.$$

Set 1 = [1] + [0]i and 0 = [0] + [0]i.

- (a) Using only the definition of the operations above, and the fact that \mathbb{Z}_3 is a field, show that $\mathbb{Z}_3[i]$ satisfies Axioms 1-4, as well as the existence of additive inverses.
- (b) Compute the multiplication table for $\mathbb{Z}_3[i]$ to verify that multiplicative inverses exist, and hence conclude that $\mathbb{Z}_3[i]$ is a field.
- (c) What is the characteristic of $\mathbb{Z}_3[i]$? (See question #6 for the definition of characteristic of a field.)

Proof.

(a):

To show closure under addition and multiplication, let $a, b, c, d \in \mathbb{Z}_3$. Then $a + bi, c + di \in \mathbb{Z}_3[i]$, but notice that since $a + c \in \mathbb{Z}_3$ and $b + d \in \mathbb{Z}_3$, it follows that $(a + c) + (b + d)i \in \mathbb{Z}_3[i]$.

4

We introduce a new definition in this question:

Definition: Let \mathbb{F} be a field. We say a subset $\mathbb{K} \subseteq \mathbb{F}$ is a **subfield** of \mathbb{F} if \mathbb{K} is also a field, using the same operations as \mathbb{F} .

For example: \mathbb{Q} is a subfield of \mathbb{R} . \mathbb{R} is a subfield of \mathbb{C} . \mathbb{Z}_3 is not a subset of \mathbb{Q} .

- (a) Let $\mathbb{K} \subseteq \mathbb{F}$ be a subfield. Let $0_{\mathbb{F}}$, $1_{\mathbb{F}}$ denote the additive and multiplicative identities in \mathbb{F} . Similarly, we denote by $0_{\mathbb{K}}$, $1_{\mathbb{K}}$ the identities in \mathbb{K} . Prove that $0_{\mathbb{F}} = 0_{\mathbb{K}}$ and $1_{\mathbb{F}} = 1_{\mathbb{K}}$. (Hint: Prove that in a field, the only solution to the equation $x^2 = x$ are x = 0, x = 1.)
- (b) Let $\mathbb{K} \subseteq \mathbb{F}$ be a subfield. Prove that for all $x \in \mathbb{K}$, we have $-x \in \mathbb{K}$, and that for all $x \in \mathbb{K} \setminus \{0\}$ we have $x^{-1} \in \mathbb{K}$. (Here -x is the additive inverse of x treated as an element of \mathbb{F} and x^{-1} is the multiplicative inverse of x treated as an element of \mathbb{F} .)
- (c) Prove that a subset $\mathbb{K} \subseteq \mathbb{F}$ is a subfield if and only if the following conditions are met:
 - (i) $0, 1 \in \mathbb{K}$
 - (ii) For all $x, y \in \mathbb{K}$, we have $x + y, x \cdot y \in \mathbb{K}$.
 - (iii) For all $x \in \mathbb{K}$, we have $-x \in \mathbb{K}$.
 - (iv) For all $x \in \mathbb{K} \setminus \{0\}$, we have $x^{-1} \in \mathbb{K}$.

(Hints: For the \implies direction: this is "part c" for a reason. For the \iff direction, you only need one or two short sentences to argue why addition and multiplication in \mathbb{K} satisfy Axioms 1-3. Axioms 4 and 5 should also have fairly short proofs. If you find yourself with a very long argument, you should rethink your argument.)

Let $\mathbb{Q}[\sqrt{-2}] = \{a + b\sqrt{-2} | a, b \in \mathbb{Q}\}$. Prove that if \mathbb{K} is a subfield of \mathbb{C} and $\sqrt{-2} \in \mathbb{K}$, then $\mathbb{Q}[\sqrt{-2}] \subseteq \mathbb{K}$.

Definition: Let \mathbb{F} be a field. The smallest non-negative integer n so that $\underbrace{1+1+\cdots+1}_{}=$

n=3 is the smallest integer so that $\underbrace{1+1+\cdots+1}_{}=0$ in \mathbb{Z}_3 . However, \mathbb{Q} has characteristic 0, because for any n we have $\underbrace{1+1+\cdots+1}_{n \text{ times}}=n\neq 0$ in \mathbb{Q} .

In this question we introduce a new definition:

Definition: Let $f, g \in \mathbb{P}(\mathbb{F})$. We say that a polynomial $d \in \mathbb{P}(\mathbb{F})$ is a **greatest common divisor** of f and g if:

- d is a divisor of both f and g, and;
- for any other divisor d' of f and g, we have $\deg d \geq \deg d'$
- (a) Prove that if d is a common divisor of f and g, then for all $a \in \mathbb{F}$, the polynomial ad is also a common divisor for f and g. Explain why this shows that there is no "unique" greatest common divisor for f and g like there is for integers.
- (b) Prove that if d_1, d_2 are both greatest common divisors for f and g, then $d_1 = ad_2$ for some non-zero field element a.
- (c) Prove that we can compute a greatest common divisor for f and g like we do for integers: repeatedly apply long division until the remainder is 0, then the last non-zero remainder is a greatest common divisor for f and g.
- (d) Deduce from (c) that if d is a greatest common division for f and g, then we can write d = pf + qg for some polynomials p, q.

Apply the procedures in Question 8 to compute a greatest common divisor for the polynomials $f(x) = x^4 + x^2 + 1$, $g(x) = x^4 + 2x^3 + x^2 + 1 \in \mathbb{P}(\mathbb{Q})$, and express this divisor as a combination of f and g.

(In particular, you should not try to factor f, g to find the greatest common divisor, and doing so will not receive any credit.)

Let $p \in \mathbb{P}(\mathbb{C})$ be a polynomial with real coefficients. Prove that if a is a root of p, then \bar{a} is a root of p. (Hint: Write down an equation that means "a is a root of p". Conjugate this equation.)

Question 10.

Using Question 9 and the Fundamental Theorem of Algebra, prove that the only irreducible polynomials over \mathbb{R} are linear and quadratics with no real roots. Use this to deduce our Theorem from class (Week 2) about the factorization of real polynomials.