

A. Propositional Logic

1.1 - 1.2

@2021 A.D. Gunawardena

A. Propositional Logic

- Atomic and compound propositions
- Logical Operators: AND, OR, Exclusive OR, Negation
- Satisfiability
- Implications

@2021 A.D. Gunawardena DO not share these slides

The foundation for writing proofs

INTRODUCTION TO DISCRETE STRUCTURES

Propositions

INTRODUCTION TO DISCRETE STRUCTURES

- A proposition is a statement that can be determined to be true or false.
- Propositions do not contain variables that need to be defined.
- If a statement, such as an imperative or question, cannot be determined true or false, it is not a proposition.

Example: 7 is prime.

Example: 2 is odd.

Example: Please walk to the metro.

Example: If the temperature is 200F, you win

one million dollars.

Example: n+1 is even.

Example: What is your favorite color?

This is a proposition since we can verify that 7 is prime.

This is a proposition since we can verify that 2 is even.

This is not a proposition. It is an imperative.

This is a vacuously true proposition (sadly we cannot collect that money).

This is not a proposition. Unless we know what value n is we cannot determine its truth.

This question is not a proposition as we cannot determine if it is true or false.

Atomic and Compound Propositions

INTRODUCTION TO DISCRETE STRUCTURES

- A single proposition may be represented as a propositional variable.
- An atomic proposition is a single proposition.
- A compound proposition is a proposition that combines atomic propositions using logical operators.

Atomic Proposition using propositional variable p: p = "7" is prime".

Atomic Proposition using propositional variable q: q = 25 is divisible by 2.

Compound proposition using and operator:

 $p \wedge q$ 7 is prime and 25 is divisible by 2.

Compound proposition using or operator: 7 is prime or 25 is divisible by 2.

 $p \vee q$

1.2 Propositional Logic

- Atomic and compound propositions
- Logical Operators: AND, OR, Exclusive OR, Negation
- Satisfiability
- Implications

@2021 A.D. Gunawardena

DO not share these slides

Logical Operator: AND

INTRODUCTION TO DISCRETE STRUCTURES

- A truth table assigns T or F to each proposition and calculates the truth assignment of the entire compound proposition.
- Logical and is also called conjunction.
- Given two atomic propositions, p, q, let's construct truth table for the conjunction.

p	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Logical Operator: OR

INTRODUCTION TO DISCRETE STRUCTURES

- A truth table assigns T or F to each proposition and calculates the truth assignment of the entire compound proposition.
- Logical or is also called disjunction.
- Given two atomic propositions, p, q, let's construct truth table for the disjunction.

p	q	$p \vee q$
Т	T	Т
Т	F	T
F	T	Т
F	F	F

Logical Operator: Exclusive OR

INTRODUCTION TO DISCRETE STRUCTURES

- A truth table assigns T or F to each proposition and calculates the truth assignment of the entire compound proposition.
- Exclusive OR is true if exactly one of the propositions is true.
- Given two atomic propositions, p, q, let's construct truth table for the
 exclusive OR.
 True Example: p = "2 is prime", q = "25 is divisible by 3"

False Example: p = "2 is prime", q = "25 is divisible by 5"

p	q	$p \otimes q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

False Example

True Example

Logical Operator: Negation

INTRODUCTION TO DISCRETE STRUCTURES

DO not share these slides

- Observe either a proposition is true or its negation is true.
- Let's construction the truth table for negation and double negation.
- We'll see to prove a statement is false, show its negation is true. We do
 this when we give counterexamples.

False Example: p = "All prime numbers are odd."

Negation of p = "There is a prime number that is not odd."

Counterexample: 2 is prime and even.

p	$\neg p$	$\neg \neg p$
Т	F	Т
F	Т	F

1.2 Propositional Logic

- Atomic and compound propositions
- Logical Operators: AND, OR, Exclusive OR, Negation
- Satisfiability
- Implications

@2021 A.D. Gunawardena

Satisfiability

INTRODUCTION TO DISCRETE STRUCTURES

- A compound proposition is satisfiable if and only if there exists at least one assignment to the propositional variables that makes the entire proposition true
- In a truth table this is a line that is true.
- For example, exclusive OR had two such assignments.

p	q	$p \otimes q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Satisfiability

INTRODUCTION TO DISCRETE STRUCTURES

- A compound proposition is satisfiable if and only if there exists at least one assignment to the propositional variables that makes the entire proposition true
- A tautology is true for every assignment to the variables
- For any proposition, the following is a tautology:

Example: p = "There was a blizzard on April 1, 1997 in Cambridge, MA."

p	$\neg p$	$p \vee \neg p$
Т	F	Т
F	Т	T

Satisfiability

INTRODUCTION TO DISCRETE STRUCTURES

- A compound proposition is satisfiable if and only if there exists at least one assignment to the propositional variables that makes the entire proposition true
- There exists compound propositions that are unsatisfiable.
- For any proposition, the following is unsatisfiable:

Example: p = "There was a blizzard on April 1, 1997 in Cambridge, MA."

p	$\neg p$	$p \land \neg p$
Т	F	F
F	Т	F

Consistency

INTRODUCTION TO DISCRETE STRUCTURES

- A set of compound propositions are consistent if there exists truth
- assignment such that all propositions are satisfied at the same time.
- First, we will show how two compound propositions using the atomic propositions, p and q, are consistent.
- Then we will introduce a third proposition to show when they are not longer consistent.

Example: p = "There was a heatwave in Los Angeles in July 2019."

q = "There was a heatwave in London in July 2019."

p	q	$p \vee q$	$p \vee \neg q$	$\neg p$
Ť	Ť	Т	T	F
Т	F	Т	Т	F
F	Т	Т	F	Т
F	F	F	Т	Т

1.2 Propositional Logic

- Atomic and compound propositions
- Logical Operators: AND, OR, Exclusive OR, Negation
- Satisfiability
- Implications

@2021 A.D. Gunawardena

Implications

@2021 A.

INTRODUCTION TO DISCRETE STRUCTURES

- An implication is a compound proposition using propositions, p and q,
 stated as if p then q or p implies q.
- p is called the premise or sufficient condition for q.
- q is called the conclusion or necessary condition for p.
- Let's draw the truth table for the implication:

Example: p = "There was a day in London in July 2019 with a temperature of 110 F."

q = "There was a record high temperature in London in July 2019."

p	q	$p \Rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
D. Gunawardena	F	T

Record London temperature July 2019: 101F

Vacuously true!

DO not share these slides

Implications: Converse

INTRODUCTION TO DISCRETE STRUCTURES

- Give an implication, p implies q, the converse is q implies p.
- If an implication is true, its converse need not be true.
- Let's consider the true table for each and an example

Example: Let x and y be real numbers with y not equal to 0.

p = "x is rational and y is rational"

q = "x/y is rational."

p	q	$p \Rightarrow q$	$q \Rightarrow p$
T	T	Т	Т
Т	F	F	Т
F	T	Т	F
F	F	Т	Т

$$x = y = \sqrt{2}$$

Implications: Contrapositive

INTRODUCTION TO DISCRETE STRUCTURES

- Give an implication, p implies q, the contrapositive is not q implies not p.
- If an implication is true, its contrapositive is true and vice versa.
- Let's consider the true table for each and an example

Example: Let x and y be real numbers with y not equal to 0.

p = "x is rational and y is rational" negation of p: "x is not rational or y is not rational."

q = "x/y is rational." negation of q: "x/y is not rational."

p	q	$p \Rightarrow q$	$\neg q \Rightarrow \neg p$
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

Implications: Inverse

INTRODUCTION TO DISCRETE STRUCTURES

- Give an implication, p implies q, the inverse is not p implies not q.
- If an implication is true, its inverse need not be true.
- If the converse is true, the inverse is true and vice versa.

Example: Let x and y be real numbers with y not equal to 0.

p = "x is rational and y is rational" negation of p: "x is not rational or y is not rational."

q = "x/y is rational." negation of q: "x/y is not rational."

p	q	$p \Rightarrow q$	$\neg p \Rightarrow \neg q$
T	Т	Т	Т
Т	F	F	Т
F	Т	T	F
F	F	Т	Т

$$x = y = \sqrt{2}$$

1.2 Propositional Logic

- Atomic and compound propositions
- Logical Operators: AND, OR, Exclusive OR, Negation
- Satisfiability
- Implications

@2021 A.D. Gunawardena DO not share these slides

1. Propositional Logic

1.1 - 1.2

@2021 A.D. Gunawardena

DO not share these slides