BIAS VARIANCE BOOTSTRAPPING AND BOOSTING

MOD1: INTUITIVE INTERPRETATION OF ### FAMILY AND RISK

ERROR/RISK IN FUNCTIONAL SPACE

ERROR/RISKS OF TWO HYPOTHESES

ERROR/RISKS OF MANY HYPOTHESES

 \mathcal{X},\mathcal{Y}

Risk: Distance in Functional Space Error Area in Data Space

ERROR/RISKS OF SELECTED HYPOTHESES FROM MANY

ERROR/RISKS OF SELECTED HYPOTHESIS FROM%

MOD2: DISCRIMINATE TWO TYPES OF RISKS WHEN FACING RANDOM DATA BIAS AND VARIANCE

OPTIMUM WITHIN

 $f_{f ground ext{-truth}}$

Consider in an ideal world,

- we can obtain as many training data as possible — the evaluation is accurate — call this "oracle criteria"
- we have omnipotently powerful learning method, which always finds the best h* ∈ ℋ for any selection criteria call this "oracle learning algorithm"
 Putting together, we then consider the minimal risk of an ℋ.

NOT INFINITE DATA, BUT INFINITE LEARNING EXPERIMENTS AND AVERAGING

DEFINITION OF BIAS

(Approximately) The minimal risk reachable from within an $\mathcal H$ The average risk by learning ∞ times from $\mathcal H$

 $f_{\mbox{{\it ground-truth}}}$

RISK OF TRAINING WITH ONE, RANDOM

TOTAL RISK OF A TRAINING

 The expected risk of the hypothesis selected by the learning framework consists of the following two parts.

SUMMARISE: RANDOMISATION OF THE PREDICTION

• "Microscope of risk", consider the generalisation error at one x_{test} .

RANDOMISATION ANALYSIS

• The only factor that is inevitably random is the data sample D_{train} , so the final result of the following flow is random.

NOTEBOOK STUDY

- 4.2 and 4.3, Skip the "bootstrapping" parts (the notebook contains Python implementation, which must respect the structure of the contents, rather than the progress of ideas.)
 - 4.2 further simplified the procedure:

 $y_{test}^* = h^*(x_{test}) \quad \longleftarrow$

All deterministic steps are replaced with a simple computation of the sample median.

NOTEBOOK STUDY

- 4.2 and 4.3, Skip the "bootstrapping" parts (the notebook contains Python implementation, which must respect the structure of the contents, rather than the progress of ideas.)
 - 4.2 simplify -> median computation.
 - 4.3 Experiment with the first Exercise in "Bias and Variance Explained".

TOTAL RISK OF A TRAINING SMALL

VARIANCE (small) + BIAS (big)

TOTAL RISK OF A TRAINING BIG

VARIANCE (big) + BIAS (small/zero when $f_{\text{ground-truth}} \in \mathcal{H}$) fground-truth

MOD3: ASSESSING AND ADDRESSING VARIANCE USING A SINGLE D_{train}

REVIEW: BOOTSTRAP / BAGGING

- ullet IN: Data D_{train} , Model Family and Learning Method
- Repeat \$bootstrap-number times: do
 - Re-sample D_{train} with replacement, get $D_{bootstrap,i}$
 - Train model, get h_i^B

• Prediction: Aggregate $h_i^B(x_{test})$'s

BAGGING IS AN ATTEMPT TO ACHIEVE "INFINITE" MODEL AVERAGING

• The bootstrap samples are used to assess statistical information and reduce the variance due to the randomisation of D_{train}

BOOTSTRAP SAMPLES

• The bootstrap samples are used to assess statistical information and reduce the variance due to the randomisation of D_{train}

BOOTSTRAP: FREE LUNCH?

 Bootstrap cannot change the bias. But it can reduce variance given right settings at the cost of computation.

NOTEBOOK STUDY

- 4.2 "bootstrap" parts
 - What is bootstrap samples.
 - Experiment and contemplate: For the estimation of median from samples, how bootstrap (resampling) helps reduce variance.
- 4.3 Observe Bias and Variance in sample model (if not done in the previous notebook study).
- 4.4 Bootstrap helps reduce variance in some settings.

THANKS