EC 97911-43 FEATURES

Features

- Trifab® VG 451/451T is 4-1/2" deep with a 2" sightline
- Front, Center, Back or Multi-Plane glass applications
- Flush glazed from either the inside or outside
- Screw Spline, Shear Block, Stick or Type-B fabrication
- SSG / Weatherseal option
- Isolock® lanced and debridged thermal break option with Trifab® VG 451T
- Infill options up to 1-1/8" thickness
- Permanodic® anodized finishes in 7 choices
- Painted finishes in standard and custom choices

Optional Features

- High performance interlocking flashing
- Acoustical rating per AAMA 1801 and ASTM E 1425
- Project specific U-factors (See Thermal Charts)

Product Applications

- Storefront, Ribbon Window or Punched Openings
- Single-span
- Integrated entrance framing allowing Kawneer standard entrances or other specialty entrances to be incorporated
- Kawneer Sealair® windows or GLASSvent® are easily incorporated

For specific product applications, Consult your Kawneer representative.

BLANK PAGE

EC 97911-43

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

3

© Kawneer Company, Inc., 2012

PICTORIAL VIEWS	5-9
CENTER	11-22
CENTER (LARGE MISSLE IMPACT)	23-25
FRONT	27-42
BACK	43-49
MULTI-PLANE	51-57
CHARTS (WINDLOAD DEADLOAD END REACTION & THERMAL)	59-98

LAWS AND BUILDING AND SAFETY CODES GOVERNING THE DESIGN AND USE OF GLAZED ENTRANCE, WINDOW, AND CURTAIN WALL PRODUCTS VARY WIDELY. KAWNEER DOES NOT CONTROL THE SELECTION OF PRODUCT CONFIGURATIONS, OPERATING HARDWARE, OR GLAZING MATERIALS, AND ASSUMES NO RESPONSIBILITY THEREFOR.

Metric (SI) conversion figures are included throughout these details for reference. Numbers in parentheses () are millimeters unless otherwise noted.

The following metric (SI) units are found in these details:

m - meter

cm - centimeter

mm - millimeter

s - second

Pa - pascal

MPa - megapascal

Kawneer reserves the right to change configurations without prior notice when deemed necessary for product improvement.

DETAILS

BLANK PAGE

EC 97911-43

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

EC 97911-43

PICTORIAL VIEW (CENTER)

The split vertical in the **Screw Spline** system allows a frame to be installed from unitized assemblies. Screws are driven through the back of the verticals into splines extruded in the horizontal framing members. The Individual units are then snapped together to form a complete frame.

SCREW SPLINE
ASSEMBLY

MULLION

SNAP-IN FILLER

SPLINE SCREWS

HEAD

INTERMEDIATE
HORIZONTAL

GLASS STOP

SILL

SILL

FLASHING

The **Shear Block** system of fabrication allows a frame to be preassembled as a single unit. Horizontals are attached to the verticals with shear blocks.

The **Stick** system allows on-site construction. Head and sill receptors are fastened to the surround. Vertical mullions are then installed in these receptors and are held in place by snap-in inserts. Intermediate horizontal members are attached to the verticals with shear blocks. Flashing is not required.

NOTE:

If the end reaction of the mullion (mullion spacing (ft.) times height (ft.) times specified windload (psf) divided by two) is more than 500 lbs., the optional mullion anchors must be used. (See page 14)

EC 97911-43

The split vertical in the Screw Spline system allows a frame to be installed from unitized assemblies. Screws are driven through the back of the verticals into splines extruded in the horizontal framing members. The Individual units are then snapped together to form a complete frame.

PICTORIAL VIEW (FRONT)

The Shear Block system of fabrication allows a frame to be preassembled as a single unit. Horizontals are attached to the verticals with shear blocks.

The Stick system allows on-site construction. Head and sill receptors are fastened to the surround. Vertical mullions are then installed in these receptors and are held in place by snap-in inserts. Intermediate horizontal members are attached to the verticals with shear blocks. Flashing is not required.

If the end reaction of the mullion (mullion spacing (ft.) times height (ft.) times specified windload (psf) divided by two) is more than 500 lbs., the optional mullion anchors must be used. (See page 36)

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

7

© Kawneer Company, Inc., 2012

EC 97911-43 PICTORIAL VIEW (FRONT)

The Stick system allows on-site construction. Head and sill receptors are fastened to the surround. Vertical mullions are then installed in these receptors and are held in place by snap-in inserts. Intermediate horizontal members are attached to the verticals with shear blocks. Flashing is not required.

NOTE:

If the end reaction of the mullion (mullion spacing (ft.) times height (ft.) times specified windload (psf) divided by two) is more than 500 lbs., the optional mullion anchors must be used. (See page 36)

The TYPE-B punched opening fabrication allows a frame to be pre-assembled and installed as a single unit. Screws are driven through the back of the head and sill members into splines extruded in the vertical framing members. Intermediate horizontals are attached to the verticals with shear blocks.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wail products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

The split vertical in the Screw Spline system allows a frame to be installed from unitized assemblies. Screws are driven through the back of the verticals into splines extruded in the horizontal framing members. The Individual units are then snapped together to form a complete frame.

The Shear Block system of fabrication allows a frame to be preassembled as a single unit. Horizontals are attached to the verticals with shear blocks.

The Stick system allows on-site construction. Head and sill receptors are fastened to the surround. Vertical mullions are then installed in these receptors and are held in place by snap-in inserts. Intermediate horizontal members are attached to the verticals with shear blocks. Flashing is not required.

If the end reaction of the mullion (mullion spacing (ft.) times height (ft.) times specified windload (psf) divided by two) is more than 500 lbs., the optional mullion anchors must be used.

BLANK PAGE

EC 97911-43

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

BASIC FRAMING DETAILS	12-13
MISCELLANEOUS FRAMING	14-15
CORNERS	16
CURVING & TRIM DETAILS	17
ENTRANCE FRAMING	18
ENTRANCE FRAMING (OPEN BACK)	19
GLASSvent	20-21
VENTS	22
I ARGE MISSLE IMPACT	23-25

12

*Note: See Misc. Details for Thermal Pocket Filler

and Thermal Flashing.

ELEVATION IS NUMBER KEYED TO DETAILS

NUMBERS IN BRACKETS ARE THERMALLY BROKEN MEMBERS

SCREW SPLINE

CAD Details (TF451) = TF_VG_451-SS-Center--CAD.zip (TF451T) = TF_VG_451T-SS-Center--CAD.zip

*See Page 14 for Thermal Flashing and Optional High Performance Flashing

SHEAR BLOCK

CAD Details (TF451) = TF_VG_451-SB-Center--CAD.zip (TF451T) = TF_VG_451T-SB-Center--CAD.zip

*See Page 14 for Thermal Flashing and Optional High Performance Flashing

STICK

CAD Details (TF451) = TF_VG_451-Stick-Center--CAD.zip (TF451T) = TF_VG_451T-Stick-Center--CAD.zip

SILL

KAWNEER

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

SCALE 3" = 1'-0"

*Note: See Misc. Details for Thermal Pocket Filler

and Thermal Flashing.

ELEVATION IS NUMBER KEYED TO DETAILS

NUMBERS IN BRACKETS ARE THERMALLY BROKEN MEMBERS

SCREW SPLINE

CAD Details (TF451) = TF_VG_451-SS-Center--CAD.zip $(TF451T) = TF_VG_451T-SS-Center--CAD.zip$

*See Page 14 for Thermal Flashing and Optional High Performance Flashing

SHEAR BLOCK

CAD Details (TF451) = TF_VG_451-SB-Center--CAD.zip (TF451T) = TF_VG_451T-SB-Center--CAD.zip

*See Page 14 for Thermal Flashing and Optional High Performance Flashing

STICK

CAD Details (TF451) = TF_VG_451-Stick-Center--CAD.zip (TF451T) = TF_VG_451T-Stick-Center--CAD.zip

SILL

14

SCALE 3" = 1'-0"

CAD Details - SCREW SPLINE

 $\begin{array}{ll} (TF451) & = TF_VG_451\text{--}SS\text{--}Center--CAD.zip} \\ (TF451T) & = TF_VG_451T\text{--}SS\text{--}Center--CAD.zip} \end{array}$

CAD Details - **SHEAR BLOCK** (TF451) = TF_VG_451-SB-Center--CAD.zip (TF451T) = TF_VG_451T-SB-Center--CAD.zip CAD Details - STICK

 $\begin{array}{ll} (TF451) & = TF_VG_451\text{-Stick-Center--CAD.zip} \\ (TF451T) & = TF_VG_451T\text{-Stick-Center--CAD.zip} \end{array}$

TUBULAR EXPANSION MULLION

TUBULAR EXPANSION MULLION WITH OPTIONAL STEEL

W/STEEL

1/4" INFILL SNAP-IN ADAPTOR

5/8" INFILL SNAP-IN ADAPTOR

SNAP-IN FLAT FILLER

THERMAL FLAT FILLER

SNAP-IN FLAT POCKET FILLER

SNAP-IN DOOR STOP

THERMAL FLASHING

HIGH PERFORMANCE FLASHING

THERMAL POCKET FILLERS

NOTE:

If the end reaction of the mullion (mullion spacing (ft.) times height (ft) times specified windload (psf), divided by two) is more than 500 LBS., the optional mullion anchor must be used. Consult Application Engineering.

NOTE:

Mullion Anchor not used with Lightwieght Receptor.

OPTIONAL LIGHTWEIGHT CAN RECEPTORS

OPTIONAL UNEQUAL LEG CAN RECEPTORS

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

SCALE 3" = 1'-0"

CAD Details - SCREW SPLINE (TF451) = TF_VG_451-SS-Center--CAD.zip (TF451T) = TF_VG_451T-SS-Center--CAD.zip CAD Details - SHEAR BLOCK (TF451) = TF VG 451-SB-Center--CAD.zip (TF451T) = TF_VG_451T-SB-Center--CAD.zip CAD Details - STICK (TF451) = TF_VG_451-Stick-Center--CAD.zip (TF451T) = TF_VG_451T-Stick-Center--CAD.zip

HEAD COMPENSATING RECEPTOR

HEAVY WEIGHT HEAD COMPENSATING RECEPTOR

ONE PIECE HEAD COMPENSATING RECEPTOR

JAMB COMPENSATING RECEPTOR

HORIZONTAL

SIDELITE BASES ARE NON-THERMAL APPLICATIONS

*NARROW SIDELITE BASES REQUIRE THE USE OF NON-THERMAL 2-PIECE VERTICALS ONLY.

NOTE: SIDELITE BASES SHOWN ARE FOR USE WITH SCREW SPLINE AND SHEAR BLOCK SYSTEMS ONLY.

(TF451) = TF_VG_451-SS-Center--CAD.zip (TF451T) = TF_VG_451T-SS-Center--CAD.zip

TWO POCKET 90° CORNER

FOUR POCKET 90° CORNER

VARIABLE DEGREE BRAKE METAL CORNER

CAD Details - SHEAR BLOCK

(TF451) = TF_VG_451-SB-Center--CAD.zip (TF451T) = TF_VG_451T-SB-Center--CAD.zip

TWO PIECE NO POCKET CORNER

TWO POCKET CORNER POST

135° CORNER (NON-THERMAL)

155° TO 180° PIVOT MULLION (OUTSIDE CORNER)

CAD Details - STICK

(TF451) = TF_VG_451-Stick-Center--CAD.zip (TF451T) = TF_VG_451T-Stick-Center--CAD.zip

ONE POCKET CORNER

THREE POCKET 90° CORNER

135° CORNER (THERMAL)

155° TO 180° PIVOT MULLION (INSIDE CORNER)

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wail products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

CAD Details - SCREW SPLINE

 $\begin{array}{ll} (TF451) & = TF_VG_451\text{-SS-Center--CAD.zip} \\ (TF451T) & = TF_VG_451T\text{-SS-Center--CAD.zip} \end{array}$

© Kawneer Company, Inc., 2012

CURVING DETAILS (Center Plane Only)

2

CAD Details - **SCREW SPLINE** (TF451) = TF_VG_451-SS-Center--CAD.zip (TF451T) = TF_VG_451T-SS-Center--CAD.zip CAD Details - **SHEAR BLOCK** (TF451) = TF_VG_451-SB-Center--CAD.zip (TF451T) = TF_VG_451T-SB-Center--CAD.zip CAD Details - **STICK** (TF451) = TF_VG_451-Stick-Center--CAD.zip (TF451T) = TF_VG_451T-Stick-Center--CAD.zip

STOOL TRIM CLIP WITH STANDARD FLASHING

STOOL TRIM CLIP WITH HIGH PERFORMANCE FLASHING

BRAKE METAL ADAPTOR AT HORIZONTAL

BRAKE METAL ADAPTOR AT VERTICAL

EC 97911-43

SCALE 3" = 1'-0"

CAD Details - ENTRANCE

(TF451) = TF_VG_451_Ent-Center--CAD.zip (TF451T) = TF_VG_451T_Ent-Center--CAD.zip

TRIFAB® VG 451 FRAMING INCORPORATING KAWNEER® "190" DOORS. DOOR FRAMING NON-THERMAL ONLY

NOTE: OTHER TYPES OF KAWNEER DOORS MAY BE USED WITH THIS FRAMING SYSTEM. SEE ENTRANCE DETAILS FOR ADDITIONAL INFORMATION.

ELEVATIONS ARE NUMBER KEYED TO DETAILS

TRANSOM JAMBS

Transom area for both double or single acting doors with glass surround. Jambs above transom bar are routed out to accept glass holding insert with or without steel reinforcing.

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wail products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

SCALE 3" = 1'-0"

CAD Details - ENTRANCE (TF451) = TF_VG_451_Ent-Center--CAD.zip (TF451T) = TF_VG_451T_Ent-Center--CAD.zip

TRIFAB® VG 451 FRAMING INCORPORATING KAWNEER® "190" DOORS.

DOOR FRAMING NON-THERMAL ONLY

NOTE: OTHER TYPES OF KAWNEER DOORS MAY BE USED WITH THIS FRAMING SYSTEM. SEE ENTRANCE DETAILS FOR ADDITIONAL INFORMATION.

ELEVATIONS ARE NUMBER KEYED TO DETAILS

TRANSOM JAMBS

Transom area for both double or single acting doors with glass surround. Jambs above transom bar are routed out to accept glass holding insert with or without steel reinforcing.

NOTE: Sidelite mullions must be oriented to provide at least one (1) deep vertical pocket per lite to facilitate glazing.

EC 97911-43

SCALE 3" = 1'-0"

CAD Details - **SCREW SPLINE** (TF451) = TF_VG_451-SS-Center--CAD.zip (TF451T) = TF_VG_451T-SS-Center--CAD.zip CAD Details - **SHEAR BLOCK** (TF451) = TF_VG_451-SB-Center--CAD.zip (TF451T) = TF_VG_451T-SB-Center--CAD.zip CAD Details - **STICK**(TF451) = TF_VG_451-Stick-Center--CAD.zip
(TF451T) = TF_VG_451T-Stick-Center--CAD.zip

OUTSWING CASEMENT VERTICAL SECTION

ELEVATION IS NUMBER KEYED TO DETAILS

PROJECT-OUT VERTICAL SECTION

OUTSWING CASEMENT HORIZONTAL SECTION

PROJECT-OUT HORIZONTAL SECTION

NOTE: Bronze spacer is recommended when 1" insulating glass is used.

MAXIMUM / MINIMUM SIZES (1" INFILL)

PROJECT-OUT

MAXIMUM 60" x 36"

MINIMUM 14" x 14"

OUTSWING CASEMENT MAXIMUM 36" x 60"

MINIMUM 14" x 14"

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wail products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

DETAILS

GLASSvent® (CENTER)

STOREFRONT GLASSvent® HARDWARE SELECTION GUIDE

DESCRIPTION	PROJECT - OUT	OUTSWING CASEMENT
Stainless steel 4-bar hinge	STANDARD	STANDARD
Cast white bronze cam lock	STANDARD	STANDARD
Cast white bronze cam lock with pole ring	OPTIONAL	OPTIONAL
Cast white bronze custodial lock with removable handle	OPTIONAL	OPTIONAL
Cast white bronze concealed lock with removable hex key	OPTIONAL	OPTIONAL
Cast white bronze pole/pull ring	OPTIONAL	
Pivot-shoe roto-operator	OPTIONAL	
Multi-point lock with cast white bronze locking handle		OPTIONAL
Insect screen	OPTIONAL	OPTIONAL

CAM LOCK

CAM LOCK WITH POLE RING

PULL RING

CUSTODIAL LOCK

REMOVABLE HANDLE

PIVOT SHOE ROTO-OPERATOR

STAINLESS STEEL **4 BAR HINGES**

CONCEALED LOCK

INSECT SCREEN WITH STANDARD WICKET

INSECT SCREEN WITH FULL WICKET

EC 97911-43

SCALE 3" = 1'-0"

CAD Details - SCREW SPLINE $(TF451) = TF_VG_451\text{-}SS\text{-}Center\text{--}CAD.zip$ (TF451T) = TF_VG_451T-SS-Center--CAD.zip CAD Details - SHEAR BLOCK (TF451) = TF_VG_451-SB-Center--CAD.zip (TF451T) = TF_VG_451T-SB-Center--CAD.zip CAD Details - STICK $(\mathsf{TF451}) \quad = \mathsf{TF}_\mathsf{VG}_\mathsf{451}\text{-}\mathsf{Stick}\text{-}\mathsf{Center}\text{--}\mathsf{CAD}.\mathsf{zip}$ (TF451T) = TF_VG_451T-Stick-Center--CAD.zip

PROJECT-OUT VERTICAL SECTION

8225T•L VENTS SHOWN

NOTE: OTHER VENT TYPES CAN BE ACCOMMODATED, CONSULT YOUR KAWNEER REPRESENTATIVE FOR OTHER OPTIONS

ELEVATION IS NUMBER KEYED TO DETAILS

PROJECT-OUT HORIZONTAL SECTION

3

4

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wail products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

EC 97911-43

SCALE 3" = 1'-0"

BASIC FRAMING DETAILS (CENTER - Outside Glazed) LEVEL D - LARGE MISSILE IMPACT

Hurricane Resistant Product

ELEVATION IS NUMBER KEYED TO DETAILS

NUMBERS IN BRACKETS ARE THERMALLY BROKEN MEMBERS

SCREW SPLINE

451-CG-001 [451T-CG-001] 451-CG-001 [451T-CG-001] 451-CG-002 [451T-CG-002]* 451-CG-363 **VERTICAL JAMB**

[451T-HP-037]*

OPTIONAL FRAMING (CENTER)

TWO POCKET OUTSIDE CORNER POST

TWO POCKET CORNER POST

TWO POCKET INSIDE CORNER POST

ENTRANCE FRAMING (CENTER)
LEVEL D - LARGE MISSILE IMPACT

Hurricane Resistant Product

SCALE 3" = 1'-0"

TRIFAB® VG 451 FRAMING INCORPORATING KAWNEER® "350IR" DOORS (DRY GLAZED). DOOR FRAMING NON-THERMAL ONLY

ELEVATIONS ARE NUMBER KEYED TO DETAILS

CONCEALED OVERHEAD CLOSERS

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

ENTRANCE FRAMING (CENTER) LEVEL D - LARGE MISSILE IMPACT

Hurricane Resistant Product

TRIFAB® VG 451/451T

SCALE 3" = 1'-0"

TRIFAB® VG 451 FRAMING INCORPORATING KAWNEER® "350 IR" DOORS (DRY GLAZED).

DOOR FRAMING NON-THERMAL ONLY

3M TAPE 350 IR DOOR **GLAZING OPTION**

MEETING STILES

26

BASIC FRAMING DETAILS	28-34
MISCELLANEOUS FRAMING	35-36
CORNERS	37-38
ENTRANCE FRAMING	39
GLASSVENT	40-41
VENTS	42

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

BASIC FRAMING DETAILS (FRONT - Outside Glazed)

EC 97911-43

ELEVATION IS NUMBER KEYED TO DETAILS

NUMBERS IN BRACKETS ARE THERMALLY BROKEN MEMBERS

CAD Details (TF451) = TF_VG_451-SS-Front--CAD.zip (TF451T) = TF_VG_451T-SS-Front--CAD.zip

*See Page 35 for Thermal Flashing and Optional High Performance Flashing

SHEAR BLOCK

CAD Details (TF451) = TF_VG_451-SB-Front--CAD.zip (TF451T) = TF_VG_451T-SB-Front--CAD.zip

*See Page 35 for Thermal Flashing and Optional High Performance Flashing

STICK

CAD Details (TF451) = TF_VG_451-Stick-Front--CAD.zip (TF451T) = TF_VG_451T-Stick-Front--CAD.zip

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

SCALE 3" = 1'-0"

ELEVATION IS NUMBER KEYED TO DETAILS

NUMBERS IN BRACKETS ARE THERMALLY BROKEN MEMBERS

*See Page 35 for Thermal Flashing and

Optional High Performance Flashing

Optional High Performance Flashing

EC 97911-43

STICK (INSIDE GLAZED) TWO COLOR OPTION

STANDARD RECEPTOR with SSG ADAPTOR

CAD Details - **STICK** (TF451) = TF_VG_451-Stick-Front--CAD.zip (TF451T) = TF_VG_451T-Stick-Front--CAD.zip

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wail products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

BASIC FRAMING DETAILS (FRONT)

© Kawneer Company, Inc., 2012

SCALE 3" = 1'-0"

ELEVATION IS NUMBER KEYED TO DETAILS

NUMBERS IN BRACKETS ARE THERMALLY BROKEN MEMBERS

STICK (INSIDE GLAZED) SSG RECEPTOR

CAD Details - STICK SSG $(TF451) = TF_VG_451-Stick-SSG-F--CAD.zip$

STICK (OUTSIDE GLAZED) SSG RECEPTOR

CAD Details - STICK SSG $(TF451) = TF_VG_451-Stick-SSG-F--CAD.zip$ (TF451T) = TF_VG_451T-Stick-SSG-F--CAD.zip

BASIC FRAMING DETAILS (FRONT)

EC 97911-43

SCALE 3" = 1'-0"

ELEVATION IS NUMBER KEYED TO DETAILS

NUMBERS IN BRACKETS ARE THERMALLY BROKEN MEMBERS

STICK (INSIDE GLAZED) TWO COLOR OPTION

CAD Details - STICK SSG $(TF451) = TF_VG_451-Stick-SSG-F--CAD.zip$ (TF451T) = TF_VG_451T-Stick-SSG-F--CAD.zip

SSG RECEPTOR

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

kawneer.com

BASIC FRAMING DETAILS (FRONT)

SCALE 3" = 1'-0"

ELEVATION IS NUMBER KEYED TO DETAILS

THERMALLY BROKEN MEMBERS

TYPE-B (INSIDE GLAZED)

CAD Details - TYPE-B (TF451) = TF_VG_451-Type_B-Front--CAD.zip

(TF451T) = TF_VG_451T-Type_B-Front--CAD.zip

PUNCHED OPENING

BASIC FRAMING DETAILS (FRONT)

EC 97911-43

SCALE 3" = 1'-0"

THERMALLY BROKEN MEMBERS

TYPE-B (INSIDE GLAZED) SSG \ WEATHERSEAL

CAD Details - TYPE-B (TF451) = TF_VG_451-Type_B-Front--CAD.zip (TF451T) = TF_VG_451T-Type_B-Front--CAD.zip

PUNCHED OPENING

451-VG-325

3 SILL

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wail products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

SCALE 3" = 1'-0"

CAD Details - **SCREW SPLINE** (TF451) = TF_VG_451-SS-Front--CAD.zip (TF451T) = TF_VG_451T-SS-Front--CAD.zip

CAD Details - **SHEAR BLOCK** (TF451) = TF_VG_451-SB-Front--CAD.zip (TF451T) = TF_VG_451T-SB-Front--CAD.zip

TUBULAR EXPANSION MULLION

CAD Details- **STICK** (TF451) = TF_VG_451-Stick-Front--CAD.zip (TF451T) = TF_VG_451T-Stick-Front--CAD.zip

TUBULAR EXPANSION MULLION WITH STEEL

1/4" INFILL SNAP-IN ADAPTOR

5/8" INFILL SNAP-IN ADAPTOR

PVC FLAT FILLER (NON STRUCTURAL)

THERMAL FLAT FILLER

SNAP-IN FLAT FILLER

STANDARD - HEAD COMPENSATING RECEPTOR

HEAVY WEIGHT - HEAD COMPENSATING RECEPTOR

451T-037

THERMAL FLASHING

HIGH PERFORMANCE FLASHING

ONE PIECE - HEAD COMPENSATING RECEPTOR

JAMB
COMPENSATING RECEPTOR

MISCELLANEOUS FRAMING (FRONT)

EC 97911-43

CAD Details - SCREW SPLINE $(TF451) = TF_VG_451-SS-Front--CAD.zip$ (TF451T) = TF_VG_451T-SS-Front--CAD.zip CAD Details - SHEAR BLOCK (TF451) = TF_VG_451-SB-Front--CAD.zip (TF451T) = TF_VG_451T-SB-Front--CAD.zip CAD Details - STICK (TF451) = TF_VG_451-Stick-Front--CAD.zip (TF451T) = TF_VG_451T-Stick-Front--CAD.zip

MULLION ANCHOR

SSG MULLION ANCHOR

OPTIONAL LIGHTWEIGHT CAN RECEPTORS

OPTIONAL UNEQUAL LEG CAN RECEPTORS

NOTE:

If the end reaction of the mullion (mullion spacing (ft.) times height (ft) times specified windload (psf), divided by two) is more than 500 LBS., the optional Mullion Anchor must be used. Consult Application Engineering.

Mullion Anchor not used with Lightweight Receptor.

BRAKE METAL ADAPTOR

STOOL TRIM CLIP with STANDARD FLASHING

© Kawneer Company, Inc., 2012

CORNERS (FRONT) **DETAILS**

SCALE 3" = 1'-0"

CAD Details - SCREW SPLINE $(TF451) = TF_VG_451-SS-Front--CAD.zip$ (TF451T) = TF_VG_451T-SS-Front--CAD.zip CAD Details - SHEAR BLOCK $(TF451) = TF_VG_451-SB-Front--CAD.zip$ (TF451T) = TF_VG_451T-SB-Front--CAD.zip CAD Details - STICK (TF451) = TF_VG_451-Stick-Front--CAD.zip (TF451T) = TF_VG_451T-Stick-Front--CAD.zip

4-1/2" X 4-1/2" TUBE

TWO PIECE NO POCKET CORNER

ONE POCKET CORNER

TWO POCKET 90° CORNER

CORNER POST

VARIABLE DEGREE BRAKE METAL OUTSIDE CORNER

VARIABLE DEGREE **BRAKE METAL INSIDE CORNER**

90° CORNER

CAD Details - **STICK SSG** (TF451) = TF_VG_451-Stick-SSG-F--CAD.zip (TF451T) = TF_VG_451T-Stick-SSG-F--CAD.zip CAD Details - **TYPE-B** (TF451) = TF_VG_451-Type_B-Front--CAD.zip (TF451T) = TF_VG_451T-Type_B-Front--CAD.zip

90° OUTSIDE CORNER

90° INSIDE CORNER

135° OUTSIDE CORNER

135° INSIDE CORNER

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

SCALE 3" = 1'-0"

CAD Details - ENTRANCE (TF451) = TF_VG_451_Ent-Center--CAD.zip (TF451T) = TF_VG_451T_Ent-Center--CAD.zip

TRIFAB® VG 451 FRAMING INCORPORATING KAWNEER® "190" DOORS.

DOOR FRAMING NON-THERMAL ONLY

NOTE: OTHER TYPES OF KAWNEER DOORS MAY BE USED WITH THIS FRAMING SYSTEM. SEE ENTRANCE DETAILS FOR ADDITIONAL INFORMATION.

ELEVATIONS ARE NUMBER KEYED TO DETAILS

Transom area for both double or single acting doors with glass surround. Jambs above transom bar are routed out to accept glass holding insert.

TRANSOM HEAD

SINGLE ACTING **HEADER**

DOUBLE ACTING HEADER

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wail products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

SINGLE ACTING

SCALE 3" = 1'-0"

CAD Details - **SCREW SPLINE** (TF451) = TF_VG_451-SS-Front--CAD.zip (TF451T) = TF_VG_451T-SS-Front--CAD.zip CAD Details - **SHEAR BLOCK** (TF451) = TF_VG_451-SB-Front--CAD.zip (TF451T) = TF_VG_451T-SB-Front--CAD.zip CAD Details - **STICK** (TF451) = TF_VG_451-Stick-Front--CAD.zip (TF451T) = TF_VG_451T-Stick-Front--CAD.zip

OUTSWING CASEMENT VERTICAL SECTION

PROJECT-OUT

VERTICAL SECTION

ELEVATION IS NUMBER KEYED TO DETAILS

OUTSWING CASEMENT HORIZONTAL SECTION

PROJECT-OUT HORIZONTAL SECTION

NOTE: Bronze spacer is recommended when 1" insulating glass is used.

MAXIMUM / MINIMUM SIZES (1" INFILL)

PROJECT-OUT MAXIMUM 60" x 36"

MINIMUM 14" x 14"

OUTSWING CASEMENT MAXIMUM 36" x 60"

MINIMUM 14" x 14"

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

DETAILS

© Kawneer Company, Inc., 2012

EC 97911-43

GLASSvent® (FRONT)

STOREFRONT GLASSvent® HARDWARE SELECTION GUIDE

DESCRIPTION	PROJECT - OUT	OUTSWING CASEMENT
Stainless steel 4-bar hinge	STANDARD	STANDARD
Cast white bronze cam lock	STANDARD	STANDARD
Cast white bronze cam lock with pole ring	OPTIONAL	OPTIONAL
Cast white bronze custodial/ Air conditioning locks with removable handle	OPTIONAL	OPTIONAL
Cast white bronze concealed lock with removable hex key	OPTIONAL	OPTIONAL
Cast white bronze pole/pull ring	OPTIONAL	
Pivot-shoe roto-operator	OPTIONAL	
Multi-point lock with cast white bronze locking handle		OPTIONAL
Insect screen	OPTIONAL	OPTIONAL

CAM LOCK

CAM LOCK WITH POLE RING

PULL RING

CUSTODIAL LOCK

REMOVABLE HANDLE

PIVOT SHOE ROTO-OPERATOR

STAINLESS STEEL **4 BAR HINGES**

LOCK

INSECT SCREEN WITH STANDARD WICKET

INSECT SCREEN WITH FULL WICKET

VENTS (FRONT)

EC 97911-43

SCALE 3" = 1'-0"

CAD Details - **SCREW SPLINE** (TF451) = TF_VG_451-SS-Front--CAD.zip (TF451T) = TF_VG_451T-SS-Front--CAD.zip CAD Details - **SHEAR BLOCK** (TF451) = TF_VG_451-SB-Front--CAD.zip (TF451T) = TF_VG_451T-SB-Front--CAD.zip CAD Details - STICK

(TF451) = TF_VG_451-Stick-Front--CAD.zip (TF451T) = TF_VG_451T-Stick-Front--CAD.zip

PROJECT-OUT VERTICAL SECTION

451-CG-004

8225T•L VENTS SHOWN

NOTE: OTHER VENT TYPES CAN BE ACCOMMODATED, CONSULT YOUR KAWNEER REPRESENTATIVE FOR OTHER OPTIONS

ELEVATION IS NUMBER KEYED TO DETAILS

PROJECT-OUT HORIZONTAL SECTION

451-CG-011 [451T-CG-011]

4

2

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

BASIC FRAMING DETAILS...... 44-45

MISCELLANEOUS FRAMING.......46-47

© Kawneer Company, Inc., 2012

entraines, window, and outerin war products vary was the selection of product configurations, operating ha and assumes no responsibility therefor.
entrance, window, and curtain wall products vary wic
Laws and building and safety codes governing the d

KAW	/NEER

44

BASIC FRAMING DETAILS (BACK - Outside Glazed)

EC 97911-43

SCALE 3" = 1'-0"

NUMBERS IN BRACKETS ARE THERMALLY BROKEN MEMBERS

SCREW SPLINE

CAD Details (TF451) = TF_VG_451-SS-Back--CAD.zip (TF451T) = TF_VG_451T-SS-Back--CAD.zip

*See Page 46 for Thermal Flashing and Optional High Performance Flashing

SHEAR BLOCK

CAD Details (TF451) = TF_VG_451-SB-Back--CAD.zip (TF451T) = TF_VG_451T-SB-Back--CAD.zip

*See Page 46 for Thermal Flashing and Optional High Performance Flashing

STICK

CAD Details (TF451) = TF_VG_451-Stick-Back--CAD.zip (TF451T) = TF_VG_451T-Stick-Back--CAD.zip

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

© Kawneer Company, Inc., 2012

SCALE 3" = 1'-0"

NUMBERS IN BRACKETS ARE THERMALLY BROKEN MEMBERS

*See Page 46 for Thermal Flashing and Optional High Performance Flashing

*See Page 46 for Thermal Flashing and

Optional High Performance Flashing

CAD Details - **SHEAR BLOCK** (TF451) = TF_VG_451-SB-Back--CAD.zip (TF451T) = TF_VG_451T-SB-Back--CAD.zip

TUBULAR EXPANSION MULLION

CAD Details - **STICK** (TF451) = TF_VG_451-Stick-Back--CAD.zip (TF451T) = TF_VG_451T-Stick-Back--CAD.zip

TUBULAR EXPANSION MULLION WITH STEEL

1/4" INFILL SNAP-IN ADAPTOR

5/8" INFILL SNAP-IN ADAPTOR

PVC FLAT FILLER (NON STRUCTURAL)

THERMAL FLAT FILLER

SNAP-IN FLAT FILLER

THERMAL FLASHING

STANDARD - HEAD COMPENSATING RECEPTOR

HEAVY WEIGHT - HEAD COMPENSATING RECEPTOR

HIGH PERFORMANCE FLASHING

STANDARD - HEAD COMPENSATING RECEPTOR

JAMB
COMPENSATING RECEPTOR

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wail products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer Company, Inc., 2012

SCALE 3" = 1'-0"

CAD Details - **SCREW SPLINE** (TF451) = TF_VG_451-SS-Back--CAD.zip (TF451T) = TF_VG_451T-SS-Back--CAD.zip CAD Details - **SHEAR BLOCK** (TF451) = TF_VG_451-SB-Back--CAD.zip (TF451T) = TF_VG_451T-SB-Back--CAD.zip CAD Details - **STICK**(TF451) = TF_VG_451-Stick-Back--CAD.zip
(TF451T) = TF_VG_451T-Stick-Back--CAD.zip

MULLION ANCHOR

NOTE:

If the end reaction of the mullion (mullion spacing (ft.) times height (ft) times specified windload (psf), divided by two) is more than 500 LBS., the optional Mullion Anchor must be used. Consult Application Engineering.

Mullion Anchor not used with Lightweight Receptor.

OPTIONAL LIGHTWEIGHT CAN RECEPTORS

OPTIONAL UNEQUAL LEG CAN RECEPTORS

BRAKE METAL ADAPTOR

STOOL TRIM CLIP with STANDARD FLASHING

STOOL TRIM CLIP with HP FLASHING

STOOL TRIM CLIP FOR STICK ASSEMBLY

SCALE 3" = 1'-0"

CAD Details - SCREW SPLINE (TF451) = TF_VG_451-SS-Back--CAD.zip (TF451T) = TF_VG_451T-SS-Back--CAD.zip

CAD Details - SHEAR BLOCK (TF451) = TF_VG_451-SB-Back--CAD.zip (TF451T) = TF_VG_451T-SB-Back--CAD.zip CAD Details - STICK (TF451) = TF_VG_451-Stick-Back--CAD.zip (TF451T) = TF_VG_451T-Stick-Back--CAD.zip

CORNERS (BACK)

4-1/2" X 4-1/2" TUBE

TWO PIECE NO POCKET CORNER

ONE POCKET CORNER

OUTSIDE 90° CORNER

TWO POCKET CORNER POST

INSIDE 90° CORNER

135° OUTSIDE CORNER

135° INSIDE **CORNER**

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

ENTRANCE FRAMING (BACK)

© Kawneer Company, Inc., 2012

SCALE 3" = 1'-0"

CAD Details - ENTRANCE (TF451) = TF_VG_451_Ent-Back--CAD.zip (TF451T) = TF_VG_451T_Ent-Back--CAD.zip

TRIFAB® VG 451 FRAMING INCORPORATING KAWNEER® "190" DOORS.

DOOR FRAMING NON-THERMAL ONLY

NOTE: OTHER TYPES OF KAWNEER DOORS MAY BE USED WITH THIS FRAMING SYSTEM.

SEE ENTRANCE DETAILS FOR ADDITIONAL INFORMATION.

ELEVATIONS ARE NUMBER KEYED TO DETAILS

TRANSOM JAMBS

Transom area for both double or single acting doors with glass surround. Jambs above transom bar are routed out to accept glass holding insert.

TRANSOM HEAD

HEADER

BLANK PAGE EC 97911-43

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2012

51

© Kawneer Company, Inc., 2012

BASIC FRAMING DETAILS...... 52-57 (See appropriate Center, Front or Back Section for Miscellaneous Details.)

52

EC 97911-43

SCALE 3" = 1'-0"

SCREW SPLINE ASSEMBLY

ELEVATION IS NUMBER KEYED TO DETAILS

CAD Details - MULTI-PLANE

 $(TF451) = TF_VG_451-SS+SB-Multi--CAD.zip$ $(TF451T) = TF_VG_451T-SS+SB-Multi--CAD.zip$

NUMBERS IN BRACKETS ARE THERMALLY BROKEN MEMBERS

FRONT

See Pages 28 thru 42 for all FRONT details.

*See Page 35 for Thermal Flashing and Optional High Performance Flashing

BACK

See Pages 44 thru 49 for all BACK details.

*See Page 46 for Thermal Flashing and Optional High Performance Flashing

CENTER

See Pages 12 thru 22 for all CENTER details.

*See Page 14 for Thermal Flashing and Optional High Performance Flashing

3 SILL Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wail products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

© Kawneer Company, Inc., 2012

SCALE 3" = 1'-0"

SCREW SPLINE ASSEMBLY

ELEVATION IS NUMBER KEYED TO DETAILS

CAD Details - MULTI-PLANE

 $(TF451) = TF_VG_451-SS+SB-Multi--CAD.zip$ $(TF451T) = TF_VG_451T-SS+SB-Multi--CAD.zip$

NUMBERS IN BRACKETS ARE THERMALLY BROKEN MEMBERS

See Pages 28 thru 41 for all FRONT details.

Optional High Performance Flashing

BACK

See Pages 44 thru 49 for all BACK details.

*See Page 46 for Thermal Flashing and Optional High Performance Flashing

CENTER

See Pages 12 thru 22 for all CENTER details.

*See Page 14 for Thermal Flashing and Optional High Performance Flashing

54

BASIC FRAMING DETAILS (MULTI-PLANE - Outside Glazed)

EC 97911-43

SCALE 3" = 1'-0"

CAD Details - MULTI-PLANE

(TF451) = TF_VG_451-SS+SB-Multi--CAD.zip (TF451T) = TF_VG_451T-SS+SB-Multi--CAD.zip

NUMBERS IN BRACKETS ARE THERMALLY BROKEN MEMBERS

See Pages 28 thru 42 for all FRONT details.

*See Page 35 for Thermal Flashing and Optional High Performance Flashing

BACK

See Pages 44 thru 49 for all BACK details.

*See Page 46 for Thermal Flashing and Optional High Performance Flashing

CENTER

See Pages 12 thru 22 for all CENTER details.

2" (50.8) **HEAD** 451-CG-004 451-CG-003 [451T-CG-003]

*See Page 14 for Thermal Flashing and Optional High Performance Flashing

KAWNEER

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2012

© Kawneer Company, Inc., 2012

SCALE 3" = 1'-0"

CAD Details - MULTI-PLANE

 $\begin{array}{ll} (\mathsf{TF451}) &= \mathsf{TF_VG_451\text{-}SS+SB\text{-}Multi\text{--}CAD.zip} \\ (\mathsf{TF451T}) &= \mathsf{TF_VG_451T\text{-}SS+SB\text{-}Multi\text{--}CAD.zip} \end{array}$

NUMBERS IN BRACKETS ARE THERMALLY BROKEN MEMBERS

See Pages 28 thru 42 for all FRONT details.

Optional High Performance Flashing

BACK

See Pages 44 thru 49 for all BACK details.

*See Page 46 for Thermal Flashing and Optional High Performance Flashing

CENTER

See Pages 12 thru 22 for all CENTER details.

*See Page 14 for Thermal Flashing and Optional High Performance Flashing

56

CAD Details - MULTI-PLANE

(TF451) = TF_VG_451-Stick-Multi--CAD.zip (TF451T) = TF_VG_451T-Stick-Multi--CAD.zip

NUMBERS IN BRACKETS ARE THERMALLY BROKEN MEMBERS

FRONT

See Pages 28 thru 42 for all FRONT details.

BACK

See Pages 44 thru 49 for all BACK details.

CENTER

See Pages 12 thru 22 for all CENTER details.

SILL

© Kawneer Company, Inc., 2012

© Kawneer Company, Inc., 2012

ELEVATION IS NUMBER KEYED TO DETAILS

CAD Details - **MULTI-PLANE**(TF451) = TF_VG_451-Stick-Multi--CAD.zip
(TF451T) = TF_VG_451T-Stick-Multi--CAD.zip

NUMBERS IN BRACKETS ARE THERMALLY BROKEN MEMBERS

BLANK PAGE

EC 97911-43

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

© Kawneer Company, Inc., 2012

INDEX (CHARTS)

© Kawneer Company, Inc., 2012

TF VG 451 (Non-Thermal)	WINDLOAD CHARTS (CENTER)	
WINDLOAD CHARTS (FRONT or BACK) TF VG 451 (Non-Thermal)	TF VG 451 (Non-Thermal)	60-63
TF VG 451 (Non-Thermal)	TF VG 451T (Thermal)	64-67
TF VG 451T (Thermal)	WINDLOAD CHARTS (FRONT or BACK)	
WINDLOAD CHARTS (FRONT or BACK) TF VG 451/451T (SSG Mullions)	TF VG 451 (Non-Thermal)	68-71
TF VG 451/451T (SSG Mullions)	TF VG 451T (Thermal)	72-74
WINDLOAD CHARTS (MULTI PLANE) 76 TF VG 451 (Non-Thermal) 76 TF VG 451T (Thermal) 77 WINDLOAD CHARTS (ENTRANCE FRAMING) 78-79 DEADLOAD CHARTS 80-81 END REACTION CHARTS 82 THERMAL CHARTS 82 EXAMPLE CALCULATION 83 TF VG 451 (CENTER – Non-Thermal) 84-86 TF VG 451T (FRONT – Thermal) 90-92 TF VG 451T (BACK – Thermal) 93-95	WINDLOAD CHARTS (FRONT or BACK)	
TF VG 451 (Non-Thermal) 76 TF VG 451T (Thermal) 77 WINDLOAD CHARTS (ENTRANCE FRAMING) 78-79 TF VG 451/451T 80-81 END REACTION CHARTS 82 THERMAL CHARTS 83 EXAMPLE CALCULATION 83 TF VG 451 (CENTER – Non-Thermal) 84-86 TF VG 451T (CENTER – Thermal) 90-92 TF VG 451T (BACK – Thermal) 93-95	TF VG 451/451T (SSG Mullions)	75
TF VG 451T (Thermal) 77 WINDLOAD CHARTS (ENTRANCE FRAMING) 78-79 DEADLOAD CHARTS 80-81 END REACTION CHARTS 82 THERMAL CHARTS 83 EXAMPLE CALCULATION 83 TF VG 451 (CENTER – Non-Thermal) 84-86 TF VG 451T (FRONT – Thermal) 90-92 TF VG 451T (BACK – Thermal) 93-95	WINDLOAD CHARTS (MULTI PLANE)	
WINDLOAD CHARTS (ENTRANCE FRAMING) 78-79 TF VG 451/451T 78-79 DEADLOAD CHARTS 80-81 END REACTION CHARTS 82 THERMAL CHARTS 83 EXAMPLE CALCULATION 83 TF VG 451 (CENTER – Non-Thermal) 84-86 TF VG 451T (CENTER – Thermal) 90-92 TF VG 451T (BACK – Thermal) 93-95	TF VG 451 (Non-Thermal)	76
TF VG 451/451T 78-79 DEADLOAD CHARTS 80-81 TF VG 451/451T 82 END REACTION CHARTS 82 THERMAL CHARTS 83 EXAMPLE CALCULATION 83 TF VG 451 (CENTER – Non-Thermal) 84-86 TF VG 451T (CENTER – Thermal) 87-89 TF VG 451T (FRONT – Thermal) 90-92 TF VG 451T (BACK – Thermal) 93-95	TF VG 451T (Thermal)	77
DEADLOAD CHARTS 80-81 TF VG 451/451T	WINDLOAD CHARTS (ENTRANCE FRAMING)	
TF VG 451/451T	TF VG 451/451T	78-79
END REACTION CHARTS 82 THERMAL CHARTS 83 EXAMPLE CALCULATION 83 TF VG 451 (CENTER – Non-Thermal) 84-86 TF VG 451T (CENTER – Thermal) 87-89 TF VG 451T (FRONT – Thermal) 90-92 TF VG 451T (BACK – Thermal) 93-95	DEADLOAD CHARTS	
THERMAL CHARTS EXAMPLE CALCULATION	TF VG 451/451T	80-81
EXAMPLE CALCULATION	END REACTION CHARTS	82
TF VG 451 (CENTER – Non-Thermal) 84-86 TF VG 451T (CENTER – Thermal) 87-89 TF VG 451T (FRONT – Thermal) 90-92 TF VG 451T (BACK – Thermal) 93-95	THERMAL CHARTS	
TF VG 451T (CENTER – Thermal)	EXAMPLE CALCULATION	83
TF VG 451T (FRONT – Thermal)	TF VG 451 (CENTER – Non-Thermal)	84-86
TF VG 451T (BACK – Thermal)	TF VG 451T (CENTER – Thermal)	87-89
	TF VG 451T (FRONT – Thermal)	90-92
TF VG 451T with Steel (CENTER)96-98	TF VG 451T (BACK – Thermal)	93-95
	TF VG 451T with Steel (CENTER)	96-98

WINDLOAD CHARTS (CENTER) Non-Thermal

CHARTS

Mullions are designed for deflection limitations in accordance with AAMA TIR-A11 of L\175 up to 13'-6" and L\240 + 1/4" above 13'-6". These curves are for mullions WITH and WITHOUT HORIZONTALS and are based on engineering calculations for stress and deflection. Allowable windload stress for ALUMINUM (assuming full lateral buckling support) 15,152 P.S.I. (104 MPa), FORMED STEEL 30,000 P.S.I. (207 MPa), STEEL BAR 20,000 P.S.I. (138 MPa). Charted curves, in all cases, are for the limiting value. For special situations not covered by these curves, contact your Kawneer representative for additional information.

NOTE:

If the end reaction of the mullion (mullion spacing (ft.) times height (ft.) times specified windload (psf) divided by two) is more than 500 lbs., the optional Mullion Anchors must be used. Consult Application Engineering. (Mullion Anchor not used with Lightweight Receptor.)

A = 15 PSF (720 Pa) B = 20 PSF (960 Pa) C = 25 PSF (1200 Pa) D = 30 PSF (1440 Pa) E = 40 PSF (1920 Pa)

I = 3.237 (134.73 x 104) $S = 1.429 (23.42 \times 10^3)$

WITHOUT HORIZONTALS

WITH HORIZONTALS

 $I = 3.137 (130.57 \times 10^{4})$ $S = 1.384 (22.68 \times 10^3)$

WITHOUT HORIZONTALS

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Kawneer Company, Inc., 2012

WITH HORIZONTALS

A = 15 PSF (720 Pa) B = 20 PSF (960 Pa) C = 25 PSF (1200 Pa) D = 30 PSF (1440 Pa) E = 40 PSF (1920 Pa)

451-CG-013 451-CG-002

 $I = 5.907 (245.86 \times 10^4)$ $S = 2.615 (42.85 \times 10^3)$

WITHOUT HORIZONTALS

WITH HORIZONTALS

 $I = 3.346 (139.27 \times 10^4)$ $S = 1.474 (24.15 \times 10^3)$

WITHOUT HORIZONTALS

WITH HORIZONTALS

451-CG-112 451-CG-002 with 450-110 STEEL

= 3.346 (139.27 x 104) $\hat{S}_{A} = 1.474 (24.15 \times 10^{3})$ $I_{S} = 1.935 (80.54 \times 10^{4})$ $S_{S} = 0.938 (15.37 \times 10^{3})$

WITHOUT HORIZONTALS

WITH HORIZONTALS

A = 15 PSF (720 Pa) B = 20 PSF (960 Pa) C = 25 PSF (1200 Pa) D = 30 PSF (1440 Pa) E = 40 PSF (1920 Pa)

451-CG-005

 $I = 2.907 (120.99 \times 10^4)$ $S = 1.292 (21.17 \times 10^3)$

WITHOUT HORIZONTALS

WITH HORIZONTALS

WITHOUT HORIZONTALS

WITH HORIZONTALS

451-CG-005A

 $I = 3.016 (125.53 \times 10^4)$ $S = 1.340 (21.96 \times 10^3)$

WITHOUT HORIZONTALS

451-CG-005A with 450-110 STEEL

$$\begin{split} I_{A} &= 3.016 \ (125.53 \times 10^{4}) \\ S_{A} &= 1.340 \ (21.96 \times 10^{3}) \\ I_{S} &= 1.935 \ (80.54 \times 10^{4}) \\ S_{S} &= 0.938 \ (15.37 \times 10^{3}) \end{split}$$

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer Company, Inc., 2012

WITH HORIZONTALS

A = 15 PSF (720 Pa) B = 20 PSF (960 Pa) C = 25 PSF (1200 Pa) D = 30 PSF (1440 Pa)

E = 40 PSF (1920 Pa)

451-CG-001A 451-CG-002

I = 4.507 (187.59 x 10⁴) S = 1.993 (32.66 x 10³)

WITHOUT HORIZONTALS

WITH HORIZONTALS

451-CG-010 451-CG-540

I = 4.301 (179.02 x 10⁴) S = 1.887 (30.92 x 10³)

WITHOUT HORIZONTALS

WITH HORIZONTALS

451-CG-010A 451-CG-540

 $I = 5.083 (211.57 \times 10^4)$ $S = 2.230 (36.54 \times 10^3)$

WITHOUT HORIZONTALS

MAY 2012

CHARTS

WINDLOAD CHARTS (CENTER) Thermal

EC 97911-43

WITH HORIZONTALS

A = 15 PSF (720 Pa) B = 20 PSF (960 Pa) C = 25 PSF (1200 Pa) D = 30 PSF (1440 Pa) E = 40 PSF (1920 Pa)

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-A8 AND AAMA 505

WITHOUT HORIZONTALS

WITH HORIZONTALS

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-A8 AND AAMA 505

WITHOUT HORIZONTALS

WITH HORIZONTALS

WIDTH IN FEET

451T-CG-013

WITHOUT HORIZONTALS

WIDTH IN FEET

AAMA TIR-A8 AND AAMA 505

Kawneer Company, Inc., 2012

WITH HORIZONTALS

WITH HORIZONTALS

WITH HORIZONTALS

A = 15 PSF (720 Pa) B = 20 PSF (960 Pa)

C = 25 PSF (1200 Pa)

D = 30 PSF (1440 Pa)

E = 40 PSF (1920 Pa)

451T-CG-112

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-A8 AND AAMA 505

451T-CG-112 with 450-110 STEEL

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-A8 AND AAMA 505

451T-CG-005

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-A8 AND AAMA 505

WITHOUT HORIZONTALS

WITHOUT HORIZONTALS

WIDTH IN FEET WITHOUT HORIZONTALS

3 4 5 6 7 8

WINDLOAD CHARTS (CENTER) Thermal

EC 97911-43

WITH HORIZONTALS

A = 15 PSF (720 Pa) B = 20 PSF (960 Pa) C = 25 PSF (1200 Pa) D = 30 PSF (1440 Pa) E = 40 PSF (1920 Pa)

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-A8 AND AAMA 505

WITHOUT HORIZONTALS

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer cloes not control the selection of product configurations, operating hardware, or glazing materials, and assumes on responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2012

Kawneer Company, Inc., 2012

WITH HORIZONTALS

A = 15 PSF (720 Pa) B = 20 PSF (960 Pa) C = 25 PSF (1200 Pa) D = 30 PSF (1440 Pa) E = 40 PSF (1920 Pa)

451T-CG-001A

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-A8 AND AAMA 505

WITHOUT HORIZONTALS

WITHOUT HORIZONTALS

WITH HORIZONTALS

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-A8 AND AAMA 505

451T-CG-010

WITH HORIZONTALS

451T-CG-540 451T-CG-010A

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-A8 AND AAMA 505

WITHOUT HORIZONTALS

CHARTS

WINDLOAD CHARTS (FRONT/BACK) Non-Thermal

EC 97911-43

WITH HORIZONTALS

A = 15 PSF (720 Pa) B = 20 PSF (960 Pa) C = 25 PSF (1200 Pa) D = 30 PSF (1440 Pa) E = 40 PSF (1920 Pa)

I = 3.346 (139.27 x 104) $S = 1.447 (23.71 \times 10^3)$

WITHOUT HORIZONTALS

WITH HORIZONTALS

451-VG-012 451-VG-026 with 1" x 2-1/4" STEEL BAR

 $= 3.346 (139.27 \times 10^{4})$ $\hat{S}_{A} = 1.447 (23.71 \times 10^{3})$ $I_s = 0.949 (39.50 \times 10^4)$ $S_{s} = 0.844 (13.83 \times 10^{3})$

WITHOUT HORIZONTALS

WITH HORIZONTALS

WIDTH IN METERS

451-VG-005

I = 3.001 (124.91 x 104) $S = 1.323 (21.68 \times 10^3)$

WITHOUT HORIZONTALS

KAWNEER

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2012

and curtain wall products vary widely. Kawneer does not control

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not continue selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer Company, Inc., 2012

WITH HORIZONTALS

WITH HORIZONTALS

WIDTH IN METERS

WITH HORIZONTALS

A = 15 PSF (720 Pa) B = 20 PSF (960 Pa)

C = 25 PSF (1200 Pa)

D = 30 PSF (1440 Pa)

E = 40 PSF (1920 Pa)

451-VG-005 with 1" x 2-1/4" STEEL BAR

 $I_A = 3.001 (124.91 \times 10^4)$ $\hat{S}_{A} = 1.323 (21.68 \times 10^{3})$

 $I_{\rm S} = 0.949 (39.50 \times 10^4)$

 $S_s = 0.844 (13.83 \times 10^3)$

I = 5.604 (233.25 x 104) $S = 2.397 (39.28 \times 10^3)$

451-VG-014 with 1" x 2" STEEL BAR

 $I = 5.604 (233.25 \times 10^4)$ $S = 2.397 (39.28 \times 10^3)$

 $I_S = 0.667 (27.26 \times 10^4)$ $S_s = 0.667 (10.93 \times 10^3)$

WITHOUT HORIZONTALS

WITHOUT HORIZONTALS

WIDTH IN METERS

WITHOUT HORIZONTALS

WITH HORIZONTALS

A = 15 PSF (720 Pa) B = 20 PSF (960 Pa) C = 25 PSF (1200 Pa) D = 30 PSF (1440 Pa) E = 40 PSF (1920 Pa)

I = 2.930 (121.96 x 104) $S = 1.290 (21.13 \times 10^3)$

WITHOUT HORIZONTALS

WITH HORIZONTALS

WITHOUT HORIZONTALS

WIDTH IN METERS

WITH HORIZONTALS

WIDTH IN METERS

451-VG-134

with 1" x 2-1/4" STEEL BAR

451-VG-010 451-VG-540

 $I = 4.418 (183.89 \times 10^4)$ $S = 1.831 (30.00 \times 10^3)$

WITHOUT HORIZONTALS

Laws and building and safety codes governing the design and use of glazed entrance, window, and curfain wall products vary widely, Kawneer does not contlet selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

© Kawneer Company, Inc., 2012

WITH HORIZONTALS

A = 15 PSF (720 Pa) B = 20 PSF (960 Pa) C = 25 PSF (1200 Pa) D = 30 PSF (1440 Pa) E = 40 PSF (1920 Pa)

I = 5.076 (211.27 x 10⁴) $S = 2.133 (34.95 \times 10^3)$

WITHOUT HORIZONTALS

WITH HORIZONTALS

A = 15 PSF (720 Pa) B = 20 PSF (960 Pa) C = 25 PSF (1200 Pa) D = 30 PSF (1440 Pa) E = 40 PSF (1920 Pa)

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-A8 AND AAMA 505

WITH HORIZONTALS

451T-VG-012 451-VG-026 with 1" x 2-1/4" STEEL BAR

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-A8 AND AAMA 505

WITHOUT HORIZONTALS

WITHOUT HORIZONTALS

WIDTH IN METERS

WITH HORIZONTALS

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-A8 AND AAMA 505

WITHOUT HORIZONTALS

WIDTH IN FEET

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not contrain see selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

s and building and safety codes governing the design and use of glazed rance, window, and curtain wall products vary widely. Kawneer does not control selection of product configurations, operating hardware, or glazing materials, Laws a entran the se and a

Kawneer Company, Inc., 2012

WITH HORIZONTALS

A = 15 PSF (720 Pa) B = 20 PSF (960 Pa) C = 25 PSF (1200 Pa) D = 30 PSF (1440 Pa) E = 40 PSF (1920 Pa)

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-A8 AND AAMA 505

WITH HORIZONTALS

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-A8 AND AAMA 505

WITH HORIZONTALS

WIDTH IN METERS

451T-VG-134 with 1" x 2-1/4" STEEL BAR

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-A8 AND AAMA 505

WITHOUT HORIZONTALS

WITHOUT HORIZONTALS

WIDTH IN METERS

WITHOUT HORIZONTALS

WITH HORIZONTALS

A = 15 PSF

B = 20 PSF

C = 25 PSF (1200 Pa) D = 30 PSF (1440 Pa) E = 40 PSF (1920 Pa)

(720 Pa)

(960 Pa)

451T-VG-540 451T-VG-010

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-A8 AND AAMA 505

WITH HORIZONTALS

451T-VG-540 451T-VG-010A

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-A8 AND AAMA 505

WITHOUT HORIZONTALS

WITHOUT HORIZONTALS

WIDTH IN METERS

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

© Kawneer Company, Inc., 2012

WINDLOAD CHARTS (FRONT/BACK) SSG Mullions

WIDTH IN METERS

HEIGHT IN METERS

D

E 1.5

15

14

13

12

11

10

9

8

7

6

5

2 3 4 5 6 7 8

WIDTH IN FEET

HEIGHT IN FEET

A = 15 PSF (720 Pa) B = 20 PSF (960 Pa) C = 25 PSF (1200 Pa) D = 30 PSF (1440 Pa) E = 40 PSF (1920 Pa)

451-SSG-005

 $I = 1.527 (63.55 \times 10^4)$ $S = 1.057 (17.32 \times 10^3)$

451-SSG-005 with 1" x 2" STEEL BAR

 $I_A = 1.527 (63.55 \times 10^4)$ $S_A = 1.057 (17.32 \times 10^3)$ $I_S = 0.667 (27.76 \times 10^4)$ $S_s = 0.667 (10.93 \times 10^3)$

WITHOUT HORIZONTALS

WITHOUT HORIZONTALS

WITH HORIZONTALS

A = 15 PSF (720 Pa) B = 20 PSF (960 Pa) C = 25 PSF (1200 Pa) D = 30 PSF (1440 Pa) E = 40 PSF (1920 Pa)

I = 3.485 (145.05 x 10⁴) S = 1.468 (24.06 x 10³)

WITHOUT HORIZONTALS

WITH HORIZONTALS

WIDTH IN METERS

WITHOUT HORIZONTALS

WIDTH IN METERS

WITH HORIZONTALS

WIDTH IN METERS

451-VG-052

451-CG-028

I = 3.470 (144.43 x 104)

 $S = 1.431 (23.45 \times 10^3)$

451-VG-069 451-VG-069

I = 3.362 (139.94 x 10⁴) S = 1.180 (19.34 x 10³)

WITHOUT HORIZONTALS

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer Company, Inc., 2012

WITH HORIZONTALS

A = 15 PSF (720 Pa) B = 20 PSF (960 Pa) C = 25 PSF (1200 Pa) D = 30 PSF (1440 Pa) E = 40 PSF (1920 Pa)

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-A8 AND AAMA 505

WITH HORIZONTALS

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-A8 AND AAMA 505

451T-VG-052

WITH HORIZONTALS

451T-VG-069 451T-VG-069

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-A8 AND AAMA 505

WITHOUT HORIZONTALS

WITHOUT HORIZONTALS

WITHOUT HORIZONTALS

WITH HORIZONTALS

A = 15 PSF (720 Pa) B = 20 PSF (960 Pa) C = 25 PSF (1200 Pa) D = 30 PSF (1440 Pa)

E = 40 PSF (1920 Pa)

I = 3.116 (129.7 x 10⁴) S = 1.385 (22.7 x 10³)

WITHOUT HORIZONTALS

WITH HORIZONTALS

WITHOUT HORIZONTALS

WITH HORIZONTALS

 $I_A = 3.116 (129.70 \times 10^4)$ $S_A = 1.385 (22.70 \times 10^3)$

 $I_S = 1.935 (80.54 \times 10^4)$ $S_S = 0.938 (15.37 \times 10^3)$

WITHOUT HORIZONTALS

451-599 451-064 451-CG-002 451-CG-002

I = 3.565 (148.39 x 10⁴) S = 1.559 (25.55 x 10³) Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

CHARTS

HEIGHT IN METERS

2.5

2

15

Kawneer Company, Inc., 2012

WINDLOAD CHARTS (ENTRANCES) Non-Thermal

15

14

13

12

11

10

9

8

7

6

5

4

HEIGHT IN FEET

WITH HORIZONTALS

A = 15 PSF (720 Pa) B = 20 PSF (960 Pa) C = 25 PSF (1200 Pa) D = 30 PSF (1440 Pa) E = 40 PSF (1920 Pa)

with 450-110 STEEL $I = 3.565 (148.39 \times 10^{4})$ $S = 1.559 (25.55 \times 10^3)$

 $I_S = 1.935 (80.54 \times 10^4)$ $S_s = 0.938 (15.37 \times 10^3)$

WITH HORIZONTALS

451-VG-019

I = 3.124 (130.03 x 104) $S = 1.333 (21.84 \times 10^3)$

WITHOUT HORIZONTALS

WIDTH IN FEET

3 4 5 6 7

WITHOUT HORIZONTALS

WIDTH IN METERS

WITH HORIZONTALS

451-VG-019 with 1" x 2-1/4" STEEL BAR

 $I_{A} = 3.124 (130.03 \times 10^{4})$ $S_A = 1.333 (21.84 \times 10^3)$ $I_s = 0.949 (39.50 \times 10^4)$ $S_s = 0.844 (13.83 \times 10^3)$

WITHOUT HORIZONTALS

EC 97911-43

Horizontal or deadload limitations are based upon 1/8" (3.2) maximum allowable deflection at the center of an intermediate horizontal member. The accompanying charts are calculated for 1" (25.4) thick insulating glass supported on two setting blocks at the loading points shown.

NOTE: Charts are for THERMAL and NON-THERMAL members.

A = (1/4 POINT LOADING)

B = (1/6 POINT LOADING)

C = (1/8 POINT LOADING)

451T-VG-111

KAWNEER
AN ALCOA COMPANY

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wail products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Horizontal or deadload limitations are based upon 1/8" (3.2) maximum allowable deflection at the center of an intermediate horizontal member. The

accompanying charts are calculated for 1" (25.4) thick insulating glass supported on two setting blocks at the loading points shown.

NOTE: Charts are for THERMAL and NON-THERMAL members.

A = (1/4 POINT LOADING) B = (1/6 POINT LOADING) C = (1/8 POINT LOADING)

Height limitations for transom glass over a doorway are based upon a 1/16" (1.6) maximum allowable deflection at the center of a transom bar. The accompanying charts are calculated for 1" (25.4) thick insulating glass supported on two setting blocks placed at the loading points shown.

A = (1/4 POINT LOADING)

© Kawneer Company, Inc., 2012

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

For each application, end reactions MUST be checked. These charts are used to verify that the end reactions at the head and sill receptors are 500 lbs. (2224N) or less and will meet the specified windload.

WITH HORIZONTALS

451-SSG-106

500lbs. Max. End Reaction

WITHOUT HORIZONTALS

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

EC 97911-43 THERMAL CHARTS **CHARTS**

Project Specific U-factor Example Calculation

Example Glass U-factor = 0.42 Btu/hr·ft².°F

Total Daylight Opening = $3(5' \times 7') + 3(5' \times 2') = 135ft^2$

Total Projected Area = (Total Daylight Opening + Total Area of Framing System)

= 15'-8" x 9'-6" = 148.83ft²

Percent of Glass = (Total Daylight Opening ÷ Total Projected Area)

 $= (135 \div 148.83)100 = 91\%$

System U-factor vs Percent of Glass Area

Based on 91% glass and center of glass (COG) U-factor of 0.42 System U-factor is equal to 0.49 Btu/hr x ft2 x °F

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2012

TRIFAB® VG 451 (CENTER – Non-Thermal)

System U-factor vs Percent of Glass Area

Percent of Glass = Vision Area/Total Area (Total Daylight Opening / Projected Area)

Notes for System U-Factor, SHGC and VT charts:

For glass values that are not listed, linear interpolation is permitted.

Glass properties are based on center of glass values and are obtained from your glass supplier.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

TRIFAB® VG 451 (CENTER – Non-Thermal)

System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area

System Visible Transmittance (VT) vs Percent of Vision Area

TRIFAB® VG 451 (CENTER – Non-Thermal)

Thermal Transmittance 1

Glass U-Factor ³	Overall U-Factor ⁴
0.48	0.63
0.46	0.61
0.44	0.60
0.42	0.58
0.40	0.57
0.38	0.55
0.36	0.53
0.34	0.52
0.32	0.50
0.30	0.49
0.28	0.47
0.26	0.45
0.24	0.44
0.22	0.42
0.20	0.41

SHGC Matrix ²

Glass SHGC ³	Overall SHGC 4
0.90	0.80
0.85	0.76
0.80	0.71
0.75	0.67
0.70	0.63
0.65	0.58
0.60	0.54
0.55	0.49
0.50	0.45
0.45	0.41
0.40	0.36
0.35	0.32
0.30	0.27
0.25	0.23
0.20	0.18

Visible Transmittance ²

Glass VT ³	Overall VT 4
0.90	0.79
0.85	0.75
0.80	0.71
0.75	0.66
0.70	0.62
0.65	0.57
0.60	0.53
0.55	0.49
0.50	0.44
0.45	0.40
0.40	0.35
0.35	0.31
0.30	0.26
0.25	0.22
0.20	0.18

NOTE: For glass values that are not listed, linear interpolation is permitted.

- 1. U-Factors are determined in accordance with NFRC 100.
- 2. SHGC and VT values are determined in accordance with NFRC 200.
- 3. Glass properties are based on center of glass values and are obtained from your glass supplier.
- 4. Overall U-Factor, SHGC, and VT Matricies are based on the standard NFRC specimen size of 2000mm wide by 2000mm high (78-3/4" by 78-3/4").

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

EC 97911-43 THERMAL CHARTS

TRIFAB® VG 451T (CENTER – Thermal)

System U-factor vs Percent of Glass Area

Percent of Glass = Vision Area/Total Area (Total Daylight Opening / Projected Area)

Notes for System U-Factor, SHGC and VT charts:

For glass values that are not listed, linear interpolation is permitted. Glass properties are based on center of glass values and are obtained from your glass supplier.

TRIFAB® VG 451T (CENTER – Thermal)

System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area

System Visible Transmittance (VT) vs Percent of Vision Area

design and use of glazed widely. Kawneer does not control hardware, or glazing materials,

kawneer.com

TRIFAB® VG 451T (CENTER – Thermal)

Thermal Transmittance 1

Glass U-Factor ³	Overall U-Factor 4
0.48	0.55
0.46	0.54
0.44	0.52
0.42	0.51
0.40	0.49
0.38	0.47
0.36	0.46
0.34	0.44
0.32	0.43
0.30	0.41
0.28	0.39
0.26	0.38
0.24	0.36
0.22	0.34
0.20	0.33

SHGC Matrix ²

Glass SHGC ³	Overall SHGC ⁴
0.90	0.80
0.85	0.75
0.80	0.71
0.75	0.66
0.70	0.62
0.65	0.58
0.60	0.53
0.55	0.49
0.50	0.44
0.45	0.40
0.40	0.36
0.35	0.31
0.30	0.27
0.25	0.23
0.20	0.18

Visible Transmittance 2

Glass VT ³	Overall VT 4
0.90	0.79
0.85	0.75
0.80	0.70
0.75	0.66
0.70	0.61
0.65	0.57
0.60	0.53
0.55	0.48
0.50	0.44
0.45	0.40
0.40	0.35
0.35	0.31
0.30	0.26
0.25	0.22
0.20	0.18

NOTE: For glass values that are not listed, linear interpolation is permitted.

- 1. U-Factors are determined in accordance with NFRC 100.
- 2. SHGC and VT values are determined in accordance with NFRC 200.
- 3. Glass properties are based on center of glass values and are obtained from your glass supplier.
- 4. Overall U-Factor, SHGC, and VT Matricies are based on the standard NFRC specimen size of 2000mm wide by 2000mm high (78-3/4" by 78-3/4").

THERMAL CHARTS

© Kawneer Company, Inc., 2012

TRIFAB® VG 451T (FRONT – Thermal)

System U-factor vs Percent of Glass Area

(Total Daylight Opening / Projected Area)

Notes for System U-Factor, SHGC and VT charts:

For glass values that are not listed, linear interpolation is permitted.

Glass properties are based on center of glass values and are obtained from your glass supplier.

CHARTS

governing the design and use of glazed products vary widely. Kawneer does not control ns, operating hardware, or glazing materials,

THERMAL CHARTS

TRIFAB® VG 451T (FRONT – Thermal)

System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area

System Visible Transmittance (VT) vs Percent of Vision Area

CHARTS

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Laws and building and safety codes governing the design and use of glazed entrance, window, and cutain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

TRIFAB® VG 451T (FRONT – Thermal)

Thermal Transmittance 1

Glass U-Factor ³	Overall U-Factor 4
0.48	0.56
0.46	0.55
0.44	0.53
0.42	0.51
0.40	0.50
0.38	0.48
0.36	0.46
0.34	0.45
0.32	0.43
0.30	0.42
0.28	0.40
0.26	0.38
0.24	0.37
0.22	0.35
0.20	0.34

SHGC Matrix ²

Glass SHGC ³	Overall SHGC ⁴
0.90	0.81
0.85	0.76
0.80	0.72
0.75	0.67
0.70	0.63
0.65	0.58
0.60	0.54
0.55	0.50
0.50	0.45
0.45	0.41
0.40	0.36
0.35	0.32
0.30	0.27
0.25	0.23
0.20	0.19

Visible Transmittance ²

Glass VT ³	Overall VT 4
0.90	0.80
0.85	0.75
0.80	0.71
0.75	0.66
0.70	0.62
0.65	0.58
0.60	0.53
0.55	0.49
0.50	0.44
0.45	0.40
0.40	0.35
0.35	0.31
0.30	0.27
0.25	0.22
0.20	0.18

NOTE: For glass values that are not listed, linear interpolation is permitted.

- 1. U-Factors are determined in accordance with NFRC 100.
- 2. SHGC and VT values are determined in accordance with NFRC 200.
- 3. Glass properties are based on center of glass values and are obtained from your glass supplier.
- 4. Overall U-Factor, SHGC, and VT Matricies are based on the standard NFRC specimen size of 2000mm wide by 2000mm high (78-3/4" by 78-3/4").

© Kawneer Company, Inc., 2012

TRIFAB® VG 451T (BACK – Thermal)

System U-factor vs Percent of Glass Area

Percent of Glass = Vision Area/Total Area (Total Daylight Opening / Projected Area)

Notes for System U-Factor, SHGC and VT charts:

For glass values that are not listed, linear interpolation is permitted. Glass properties are based on center of glass values and are obtained from your glass supplier.

TRIFAB® VG 451T (BACK – Thermal)

System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area

System Visible Transmittance (VT) vs Percent of Vision Area

governing the design and use of glazed products vary widely. Kawneer does not control ns, operating hardware, or glazing materials,

TRIFAB® VG 451T (BACK - Thermal)

Thermal Transmittance 1

Glass U-Factor ³	Overall U-Factor 4
0.48	0.53
0.46	0.52
0.44	0.50
0.42	0.49
0.40	0.47
0.38	0.45
0.36	0.44
0.34	0.42
0.32	0.41
0.30	0.39
0.28	0.37
0.26	0.36
0.24	0.34
0.22	0.32
0.20	0.31

SHGC Matrix ²

Glass SHGC ³	Overall SHGC ⁴
0.90	0.80
0.85	0.76
0.80	0.71
0.75	0.67
0.70	0.62
0.65	0.58
0.60	0.53
0.55	0.49
0.50	0.45
0.45	0.40
0.40	0.36
0.35	0.31
0.30	0.27
0.25	0.22
0.20	0.18

Visible Transmittance ²

Glass VT ³	Overall VT ⁴
0.90	0.80
0.85	0.75
0.80	0.71
0.75	0.66
0.70	0.62
0.65	0.58
0.60	0.53
0.55	0.49
0.50	0.44
0.45	0.40
0.40	0.35
0.35	0.31
0.30	0.27
0.25	0.22
0.20	0.18

NOTE: For glass values that are not listed, linear interpolation is permitted.

- 1. U-Factors are determined in accordance with NFRC 100.
- 2. SHGC and VT values are determined in accordance with NFRC 200.
- 3. Glass properties are based on center of glass values and are obtained from your glass supplier.
- 4. Overall U-Factor, SHGC, and VT Matricies are based on the standard NFRC specimen size of 2000mm wide by 2000mm high (78-3/4" by 78-3/4").

TRIFAB® VG 451T with Steel (CENTER)

System U-factor vs Percent of Glass Area

Percent of Glass = Vision Area/Total Area (Total Daylight Opening / Projected Area)

Notes for System U-Factor, SHGC and VT charts:

For glass values that are not listed, linear interpolation is permitted.

Glass properties are based on center of glass values and are obtained from your glass supplier.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

ws and building and safety codes governing the design and use of glazed marane, window, and cutrain wilall products vary widely. Kawneer does not control selection of product configurations, operating hardware, or glazing materials, d assumes no responsibility therefor.

EC 97911-43 THERMAL CHARTS

TRIFAB® VG 451T with Steel (CENTER)

System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area

Vision Area / Total Area (%)

System Visible Transmittance (VT) vs Percent of Vision Area

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

TRIFAB® VG 451T with Steel (CENTER)

Thermal Transmittance 1

Glass U-Factor ³	Overall U-Factor 4
0.48	0.59
0.46	0.57
0.44	0.55
0.42	0.54
0.40	0.52
0.38	0.51
0.36	0.49
0.34	0.48
0.32	0.46
0.30	0.44
0.28	0.43
0.26	0.41
0.24	0.40
0.22	0.38
0.20	0.37

SHGC Matrix ²

Glass SHGC ³	Overall SHGC ⁴
0.75	0.66
0.70	0.62
0.65	0.58
0.60	0.53
0.55	0.49
0.50	0.45
0.45	0.40
0.40	0.36
0.35	0.32
0.30	0.27
0.25	0.23
0.20	0.19
0.15	0.14
0.10	0.10
0.05	0.05

Visible Transmittance ²

Glass VT ³	Overall VT ⁴
0.75	0.65
0.70	0.61
0.65	0.57
0.60	0.52
0.55	0.48
0.50	0.44
0.45	0.39
0.40	0.35
0.35	0.31
0.30	0.26
0.25	0.22
0.20	0.17
0.15	0.13
0.10	0.09
0.05	0.04

NOTE: For glass values that are not listed, linear interpolation is permitted.

- 1. U-Factors are determined in accordance with NFRC 100.
- 2. SHGC and VT values are determined in accordance with NFRC 200.
- 3. Glass properties are based on center of glass values and are obtained from your glass supplier.
- 4. Overall U-Factor, SHGC, and VT Matricies are based on the standard NFRC specimen size of 2000mm wide by 2000mm high (78-3/4" by 78-3/4").

