Interrogation écrite n°12

NOM: Prénom: Note:

1. Résoudre le système différentiel (S) : $\begin{cases} x' = -x + 3y \\ y' = -2x + 4y \end{cases}$

Posons $X = \begin{pmatrix} x \\ y \end{pmatrix}$ et $A = \begin{pmatrix} -1 & 3 \\ -2 & 4 \end{pmatrix}$. Alors le système (8) équivaut à X' = AX. On trouve $\chi_A = (X-1)(X-2)$, $Sp(A) = \{1, 2\}$,

 $E_1(A) = \text{vect}\left(\begin{pmatrix} 3 \\ 2 \end{pmatrix}\right)$ et $E_2(A)$ vect $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. On montre alors classiquement que l'ensemble des solutions est

$$\operatorname{vect}\left(t\mapsto e^t\left(\begin{array}{c}3\\2\end{array}\right),t\mapsto e^{2t}\left(\begin{array}{c}1\\1\end{array}\right)\right)$$

2. Résoudre l'équation différentielle $y'' - y = e^t$.

L'ensemble des solutions de l'équation homogène est $\text{vect}(t \mapsto e^t, t \mapsto e^{-t})$. En appliquant la méthode de variation des constantes, on trouve que $t \mapsto \frac{t}{2}e^t - \frac{1}{4}e^t$ est une solution particulière. Comme 1 est racine de l'équation caractéristique, on peut également rechercher une solution particulière de la forme $t \mapsto ae^t$ et on trouve $a = \frac{1}{2}$. L'ensemble des solutions est donc

$$\left(t \mapsto \frac{t}{2}e^{t}\right) + \text{vect}(t \mapsto e^{t}, t \mapsto e^{-t})$$

3. On pose $u_n = \sum_{k=1}^n \frac{1}{k+n}$ pour $n \in \mathbb{N}^*$. Déterminer la limite de (u_n) .

Remarquons qu'en posant $f: t \mapsto \frac{1}{1+t}$,

$$u_n = \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)$$

On reconnaît une somme de Riemann. Comme f est continue sur [0,1],

$$\lim_{n \to +\infty} u_n = \int_0^1 f(t) \, \mathrm{d}t = \ln(2)$$

- 4. Soit E un espace euclidien, I un intervalle de \mathbb{R} et $x: I \to E$ dérivable et de norme constante. Montrer que $x'(t) \perp x(t)$ pour tout $t \in I$.
- 5. Posons $f: t \in I \mapsto ||x(t)||^2 = \langle x(t), x(t) \rangle$. Par bilinéarité du produit scalaire, f est dérivable sur I et

$$\forall t \in I, \ f'(t) = \langle x'(t), x(t) \rangle + \langle x(t), x'(t) \rangle = 2\langle x(t), x'(t) \rangle$$

Comme f est constante, f' est nulle sur I de sorte que $x'(t) \perp x(t)$ pour tout $t \in I$.

6. Montrer que $f: M \in \mathcal{M}_n(\mathbb{R}) \mapsto M^2$ est différentiable sur $\mathcal{M}_n(\mathbb{R})$ et calculer sa différentielle en tout point de $\mathcal{M}_n(\mathbb{R})$. Soit $M \in \mathcal{M}_n(\mathbb{R})$. Alors pour tout $H \in \mathcal{M}_n(\mathbb{R})$,

$$f(M + H) = f(M) + MH + HM + H^2$$

En choissant une norme d'algèbre sur $\mathcal{M}_n(\mathbb{R})$, $\|H^2\| \leq \|H\|^2$ donc

$$f(M + H) = f(M) + MH + HM + o(H)$$

De plus, $H \mapsto MH + HM$ est linéaire. Ainsi f est différentiable en M et df(M) est l'application $H \mapsto MH + HM$.