Gradient Decent

September 21, 2023

1 Gradient Decent

Mục tiêu:

* Mô tả quá trình hoạt động của 3 thuật toán gần đúng Gradient Decent (chính là Batch Gradient Descent - GD), Stochasitic Gradient Decent (SGD), và Mini-batch Gradient Decent (MGD). Các thuật toán này là cơ sở của các thuật toán tối ưu hoá gần đúng sau này trong Deep Learning - AI

Nhắc lai lý thuyết:

Giả sử có hàm J(w) là cost-function của một mô hình. Ta muốn tìm ra w để J(w) đạt cực tiểu. Theo lý thuyết, J(w) đạt cực trị khi dJ/dw=0 nếu w là 1 biến 1 chiều và $\nabla_w J=0$ nều w là biến nhiều chiều.

Trong phương pháp GD, ta tính gần đúng w bằng:

```
w^{(i+1)} := w^{(i)} - \alpha \nabla_w J
```

Vậy ta cần phải:

- * Tao giá tri đầu cho w
- * Lua chon hyperparameter α
- * Lựa chọn số lần lặp
- * Tìm đao hàm của hàm cost-function cần tối ưu

Trong ví dụ này, ta sẽ dùng phương pháp này tính gần đúng bộ thông số cho hàm hồi quy tuyến tính, có cost function là \overline{MSE}

Bước 1: Nạp thư viện

```
[]: import numpy as np import matplotlib.pyplot as plt
```

Tao 1 bô dữ liêu ví du. Bô dữ liêu này có dang tuyến tính

```
[]: np.random.seed(42)
    x = 2 * np.random.rand(100,1)
    y = 4 + 3 * x + np.random.randn(100,1)
    plt.plot(x,y,'.')
    plt.xlabel('x')
    plt.ylabel('y')
    plt.show()
```


1.1 Dùng phương pháp giải tích như lý thuyết

Hàm có dạng y=w*x+b có thể được chuyển thành y=w*x nếu ta đổi x bằng [1, x] và đổi w bằng [w0, w]

```
Khi đó w = (x^T x)^{-1} xy
```

1.2 Dùng hàm của Scikit Learn

```
[]: from sklearn.linear_model import LinearRegression

lin_reg = LinearRegression()
lin_reg.fit(x, y)
lin_reg.intercept_, lin_reg.coef_
```

[]: (array([4.21509616]), array([[2.77011339]]))

Ta thấy rõ ràng kết quả giống nhau

1.3 Thuật toán Gradient Descent

```
[]: alpha = 0.1 #Learning rate
n_interation = 1000
m = len(y) #Tổng số phần tử

w_gd = np.random.randn(2,1) #tạo giá trị đầu
w_gd_list = []

for i in range(n_interation):
    gradient = 2 / m * x1.transpose().dot(x1.dot(w_gd)-y)
    w_gd = w_gd - alpha*gradient
    w_gd_list.append(w_gd)
```

```
[ ]: w_gd
```

1.4 Thuật toán Stochastic Gradient Descent

```
[]: w_sgd_list =[]
m = len(y)
t0, t1 = 5, 50

np.random.seed(42)

def learning_schedule(t):
    return t0 / (t0 + t1)

w = np.random.randn(2,1)

n_epochs = 50
for epoch in range(n_epochs):
    for i in range(m):
        random_index = np.random.randint(m)
```

```
xi = x1[random_index:random_index+1]
yi = y[random_index:random_index+1]
gradients = 2 * xi.T.dot(xi.dot(w) - yi)
alpha = 0.1 #learning_schedule(epoch * m + i)
w = w - alpha * gradients
w_sgd_list.append(w)
```

1.5 Thuật toán Mini-batch gradient descent

```
[]: w_mgd_list = []
     batch_size = 20
     n_{epochs} = 100
     np.random.seed(42)
     w = np.random.randn(2,1) # random initialization
    m = len(y)
     t0, t1 = 200, 1000
     def learning_schedule(t):
         return t0 / (t + t1)
     t = 0
     for epoch in range(n_epochs):
         shuffled_indices = np.random.permutation(m)
         x1_shuffled = x1[shuffled_indices]
         y_shuffled = y[shuffled_indices]
         for i in range(0, m, batch_size):
             xi = x1_shuffled[i:i+batch_size]
             yi = y_shuffled[i:i+batch_size]
             gradients = 2/batch_size * xi.T.dot(xi.dot(w) - yi)
             alpha = learning_schedule(t)
             w = w - alpha * gradients
             w_mgd_list.append(w)
```

```
[ ]: w
```

1.6 Sự hội tụ

```
[]: w_sgd_list=np.array(w_sgd_list)
w_mgd_list=np.array(w_mgd_list)
w_gd_list=np.array(w_gd_list)
```


[]: