Épreuve de Mathématiques A

Problème d'Algèbre linéaire

Partie I

1. Commençons par déterminer le polynôme caractéristique de A, dont les racines sont exactement les valeurs propres :

$$\chi_{A}(\lambda) = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ -2 & \lambda & 1 \\ 1 & -1 & \lambda - 1 \end{vmatrix} \begin{vmatrix} C_{1} \leftarrow C_{1} + C_{2} \\ = (\lambda - 2) \begin{vmatrix} 1 & -1 & 1 \\ 1 & \lambda & 1 \\ 0 & -1 & \lambda - 1 \end{vmatrix}$$

$$L_{2} \leftarrow L_{2} - L_{1}}{(\lambda - 2)} \begin{vmatrix} 1 & -1 & 1 \\ 0 & \lambda + 1 & 0 \\ 0 & -1 & \lambda - 1 \end{vmatrix} = (\lambda - 2)(\lambda + 1)(\lambda - 1)$$

par développements deuxième ligne puis première colonne. Ainsi : $\operatorname{Sp}(A) = \{-1, 1, 2\}$. Comme elle est carrée d'ordre 3 et qu'elle admet trois valeurs propres réelles distinctes, la matrice A est diagonalisable dans \mathbb{R} .

On calcule de même :

$$\chi_B(\lambda) = \begin{vmatrix} \lambda - 4 & 0 & 3 \\ -3 & \lambda - 1 & 3 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda - 4 & 0 \\ -3 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 4)$$

donc $Sp(B) = \{1, 4\}$ et la multiplicité m(1) de 1 est égale à 2.

Puisque son polynôme caractéristique est scindé dans $\mathbb{R}[X]$, la matrice B est diagonalisable si et seulement si m $(1) = \dim E_B(1)$ et m $(4) = \dim E_B(4)$.

On sait que $1 \le \dim E_B(4) \le \operatorname{m}(4)$ donc $\operatorname{m}(4) = \dim E_B(4)$ car $\operatorname{m}(4) = 1$. Par ailleurs,

$$B - I_3 = \left(\begin{array}{ccc} 3 & 0 & -3 \\ 3 & 0 & -3 \\ 0 & 0 & 0 \end{array}\right)$$

est clairement une matrice de rang 2, donc par le théorème du rang :

$$\dim E_B(1) = 3 - 1 = 2 = m(1)$$
.

1

En conclusion:

la matrice B est diagonalisable dans \mathbb{R} .

2. Sans difficulté, on obtient :

$$A^2 = B.$$

3. Déterminons les sous-espaces propres de A, qui sont des droites, puisque ses valeurs propres sont simples.

On a:

$$A + I_3 = \begin{pmatrix} 2 & 1 & -1 \\ 2 & 1 & -1 \\ -1 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

donc l'espace propre pour la valeur propre -1 est :

$$E_A\left(-1\right) = \left\{ \left(\begin{array}{c} x \\ y \\ z \end{array} \right) \in \mathbb{R}^3 \; ; \; x - z = 0 = z + y \right\} = \left\{ \left(\begin{array}{c} z \\ -z \\ z \end{array} \right) \; , \; z \in \mathbb{R} \right\} = \operatorname{Vect}\left(\left(\begin{array}{c} 1 \\ -1 \\ 1 \end{array} \right) \right).$$

On calcule de même :

$$A - I_3 = \begin{pmatrix} 0 & 1 & -1 \\ 2 & -1 & -1 \\ -1 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

donc l'espace propre pour la valeur propre 1 est :

$$E_A(1) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \; ; \; x - z = 0 = y - z \right\} = \left\{ \begin{pmatrix} z \\ z \\ z \end{pmatrix} \; , \; z \in \mathbb{R} \right\} = \operatorname{Vect} \left(\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right).$$

Enfin:

$$A - 2I_3 = \begin{pmatrix} -1 & 1 & -1 \\ 2 & -2 & -1 \\ -1 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

donc l'espace propre pour la valeur propre 2 est :

$$E_A(2) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \; ; \; x - y = 0 = z \right\} = \left\{ \begin{pmatrix} x \\ x \\ 0 \end{pmatrix} \; , \; x \in \mathbb{R} \right\} = \operatorname{Vect} \left(\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right).$$

En conclusion, on peut prendre par exemple:

$$D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \text{ et } P = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

4. Il résulte des deux questions précédentes que :

$$B = A^2 = (PDP^{-1})(PDP^{-1}) = PD^2P^{-1}.$$

Puisqu'elle est semblable à la matrice diagonale réelle D^2 ,

la matrice B est diagonalisable dans \mathbb{R} .

Partie II

1. (a) Comme composée de deux éléments de SO (\mathbb{R}^3), f^2 est une isométrie positive. Le vecteur $\overrightarrow{e_3}$ est invariant par f, donc par f^2 .

Pour $i \in \{1, 2\}$, le vecteur $\overrightarrow{e_i}$ est orthogonal à l'axe, donc :

$$f(\overrightarrow{e_i}) = \cos\left(\frac{\pi}{2}\right)\overrightarrow{e_i} + \sin\left(\frac{\pi}{2}\right)\overrightarrow{e_3} \wedge \overrightarrow{e_i}$$

soit
$$f(\overrightarrow{e_1}) = \overrightarrow{e_2}$$
 et $f(\overrightarrow{e_2}) = -\overrightarrow{e_1}$, puis $f^2(\overrightarrow{e_i}) = -\overrightarrow{e_i}$.

On peut conclure que

l'application f^2 est la symétrie orthogonale par rapport à la droite $\text{Vect}(\overrightarrow{e_3})$.

Peut-être plus simplement fallait-il dire que la composée de deux rotations de même axe est encore une rotation de même axe, et que les angles s'ajoutent? On reconnaît à nouveau un demi-tour. Quoi qu'il en soit, le principe des calculs sera utile pour la question 2.

(b) D'après les calculs précédents :

$$C = \left(\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

(c) Le polynôme caractéristique de C est

$$\begin{vmatrix} \lambda & 1 & 0 \\ -1 & \lambda & 0 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1) (\lambda^2 + 1) = (\lambda - 1) (\lambda - i) (\lambda + i).$$

Il n'est pas scindé dans $\mathbb{R}[X]$ donc

la matrice C n'est pas diagonalisable dans \mathbb{R} .

Puisqu'elle admet trois valeurs propres distinctes dans C,

la matrice C est diagonalisable dans \mathbb{C} .

Puisque
$$C^2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 est diagonale réelle,

la matrice C^2 est diagonalisable dans \mathbb{R} (donc dans \mathbb{C}).

2. (a) On peut prendre:

$$\overrightarrow{w} = \frac{1}{3\sqrt{2}}(1, 1, -4)$$

ou son opposé.

Le vecteur

$$\overrightarrow{u} = \frac{1}{\sqrt{2}} \left(-1, 1, 0 \right)$$

est clairement unitaire et orthogonal à \overrightarrow{w} .

Il suffit de compléter avec $\overrightarrow{v} = \overrightarrow{w} \wedge \overrightarrow{u}$ soit :

$$\overrightarrow{v} = \frac{1}{3}(2,2,1).$$

3

(b) Par un raisonnement analogue à celui de la question 1., la matrice de g dans la base \mathcal{B}' est :

$$M_{\mathcal{B}'} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = C.$$

Soit P la matrice de passage de \mathcal{B} vers $\overline{\mathcal{B}'}$

$$P = \frac{1}{3\sqrt{2}} \begin{pmatrix} -3 & 2\sqrt{2} & 1\\ 3 & 2\sqrt{2} & 1\\ 0 & \sqrt{2} & -4 \end{pmatrix}.$$

Cette matrice orthogonale a pour inverse sa transposée, et
$$M_{\mathcal{B}} = PM_{\mathcal{B}'}P^{-1}$$
. Après calculs :
$$M_{\mathcal{B}} = \frac{1}{18} \begin{pmatrix} 1 & 1 + 12\sqrt{2} & -4 + 3\sqrt{2} \\ 1 - 12\sqrt{2} & 1 & -4 - 3\sqrt{2} \\ -4 - 3\sqrt{2} & -4 + 3\sqrt{2} & 16 \end{pmatrix}.$$

La matrice $M_{\mathcal{B}}$ est semblable à $M_{\mathcal{B}'} = C$ donc d'après la

la matrice $M_{\mathcal{B}}$ est diagonalisable dans \mathbb{C} mais pas dans \mathbb{R} .

De même $M_{\mathcal{B}}^2$ est semblable à C^2 donc

la matrice M_B^2 est diagonalisable dans \mathbb{R} .

Partie III

1. Si $x \in \text{Im}(g)$, il existe $y \in E$ tel que x = g(y). Comme $f \circ g = 0$, on en déduit :

$$f(x) = f \circ g(y) = 0$$

c'est-à-dire $x \in \text{Ker}(f)$.

On a donc établi:

$$f \circ g = 0 \Rightarrow \operatorname{Im}(g) \subset \operatorname{Ker}(f).$$

2. (a) On calcule:

$$(f - \alpha I d_E) \circ (f - \beta I d_E) = f^2 - (\alpha + \beta) f + \alpha \beta I d_E$$

et de manière symétrique :

$$(f - \beta Id_E) \circ (f - \alpha Id_E) = f^2 - (\beta + \alpha) f + \beta \alpha Id_E$$

donc

$$\forall (\alpha, \beta) \in \mathbb{R}^2, \quad (f - \alpha Id_E) \circ (f - \beta Id_E) = (f - \beta Id_E) \circ (f - \alpha Id_E).$$

(b) Il en résulte que les endomorphismes $g_i = f - \lambda_i Id_E$ $(1 \le i \le p)$ commutent deux à deux, donc si v est un vecteur propre pour la valeur propre λ_i :

$$(f - \lambda_1 Id_E) \circ \cdots \circ (f - \lambda_p Id_E)(v) = g_1 \circ \cdots \circ g_{j-1} \circ g_{j+1} \circ \cdots \circ g_p \circ g_j(v) = 0$$

 $\operatorname{car} g_i(v_i) = 0.$

Pour tout vecteur propre v de f, on a : $(f - \lambda_1 Id_E) \circ \cdots \circ (f - \lambda_p Id_E)(v) = 0$.

- (c) Puisque f est diagonalisable, il existe une base (v_1, \ldots, v_n) de E (où $n = \dim E$) constituée de vecteurs propres de f. Il existe donc des réels $\alpha_1, \ldots, \alpha_n$ tels que $x = \sum_{i=1}^n \alpha_i v_i$. Par linéarité de l'endomorphisme $g = (f - \lambda_1 Id_E) \circ \cdots \circ (f - \lambda_p Id_E)$, on a $g(x) = \sum_{i=1}^n \alpha_i g(v_i)$. Mais la question précédente a établi que $g(v_i) = 0$ donc g(x) = 0. $\forall x \in E, \quad (f - \lambda_1 Id_E) \circ \cdots \circ (f - \lambda_p Id_E) (x) = 0.$
- 3. (a) On calcule:

$$a(f - \alpha Id_E) + b(f - \beta Id_E) = (a + b) f - (\alpha a + \beta b) Id_E$$

donc il suffit de trouver a et b réels tels que a+b=0 et $\alpha a+\beta b=-1$. Comme $\alpha-\beta\neq 0$ par hypothèse, on prend:

$$a = \frac{1}{\beta - \alpha}$$
 et $b = \frac{1}{\alpha - \beta}$.

(b) Il en résulte que tout $x \in E$ peut s'écrire x = y + z avec $y = a (f - \alpha I d_E) (x) \in \text{Im} (f - \alpha I d_E)$ et $z = b(f - \beta Id_E)(x) \in \text{Im}(f - \beta Id_E)$ donc

$$E \subset \operatorname{Im} (f - \alpha I d_E) + \operatorname{Im} (f - \beta I d_E)$$
.

L'inclusion contraire étant évidente, on peut conclure que :

$$E = \operatorname{Im} (f - \alpha I d_E) + \operatorname{Im} (f - \beta I d_E).$$

(c) En appliquant le résultat de la question 1 dans laquelle f est remplacé par $f - \alpha I d_E$ et g par $f - \beta Id_E$, on obtient:

$$\operatorname{Im}(f - \beta I d_E) \subset \operatorname{Ker}(f - \alpha I d_E).$$

 $\boxed{\text{Im}\,(f-\beta Id_E)\subset \text{Ker}\,(f-\alpha Id_E)\,.}$ D'après la question 2.(a), on a aussi $(f-\beta Id_E)\circ (f-\alpha Id_E)=0$ donc de même :

$$\operatorname{Im}(f - \alpha Id_E) \subset \operatorname{Ker}(f - \beta Id_E).$$

(d) Il résulte des deux questions précédentes que :

$$E = \operatorname{Im} (f - \alpha I d_E) + \operatorname{Im} (f - \beta I d_E) \subset \operatorname{Ker} (f - \beta I d_E) + \operatorname{Ker} (f - \alpha I d_E) \subset E$$

donc

$$E = \operatorname{Ker}(f - \alpha I d_E) + \operatorname{Ker}(f - \beta I d_E).$$

(e) Il reste à établir que $\operatorname{Ker}(f - \alpha Id_E)$ et $\operatorname{Ker}(f - \beta Id_E)$ sont en somme directe. Soit $x \in \text{Ker}(f - \alpha Id_E) \cap \text{Ker}(f - \beta Id_E)$. Alors $f(x) = \alpha x$ et $f(x) = \beta x$ donc $(\alpha - \beta) x = 0$ puis x = 0 car $\alpha \neq \beta$.

$$E = \operatorname{Ker}(f - \alpha I d_E) \oplus \operatorname{Ker}(f - \beta I d_E).$$

(f) On en déduit que la concaténation d'une base \mathcal{B}_1 de $\operatorname{Ker}(f - \alpha Id_E)$ et d'une base \mathcal{B}_2 de Ker $(f - \beta I d_E)$ forme une base \mathcal{B} de E. Mais les vecteurs de \mathcal{B}_1 (respectivement \mathcal{B}_2) sont vecteurs propres de f pour la valeur propre α (resp. β). Ainsi il existe une base \mathcal{B} de E constituée de vecteurs propres de f, donc

l'endomorphisme f est diagonalisable.

En toute rigueur, le raisonnement précédent suppose l'existence des bases \mathcal{B}_1 et \mathcal{B}_2 , ce qui n'est pas le cas si l'un des deux sous-espaces est réduit au vecteur nul.

Mais si par exemple $\operatorname{Ker}(f - \alpha I d_E) = \{0\}$, l'endomorphisme $f - \alpha I d_E$ est injectif, donc inversible, car E est de dimension finie. Il résulte alors de (\star) que $f - \beta Id_E = 0$, et f est bien diagonalisable, puisqu'il s'agit d'une homothétie.

4. (a) Il s'agit de montrer que si $x \in F_k$, alors $f(x) \in F_k$. Or, si $x \in F_k$, alors $f^2(x) = \lambda_k x$ donc

$$f^{2}(f(x)) = f(f^{2}(x)) = f(\lambda_{k}x) = \lambda_{k}f(x)$$

ce qui établit le résultat.

Pour tout $k \in \{1, ..., p\}$, F_k est stable par f.

(b) On a:

$$(f_k + \mu_k Id_{F_k}) \circ (f_k - \mu_k Id_{F_k}) = f_k^2 - \lambda_k Id_{F_k}$$

et si $x \in F_k$, alors $f_k^2(x) = f^2(x) = \lambda_k x$ donc $(f_k + \mu_k Id_{F_k}) \circ (f_k - \mu_k Id_{F_k})(x) = 0$. Ceci prouve que $\boxed{(f_k+\mu_k Id_{F_k})\circ (f_k-\mu_k Id_{F_k})=0}$ où 0 désigne ici l'endomorphisme nul de F_k .

$$f_k + \mu_k I d_{F_k} \circ (f_k - \mu_k I d_{F_k}) = 0$$

(c) L'endomorphisme f_k de F_k vérifie donc une relation du type (\star) avec $\alpha = -\mu_k$ et $\beta = \mu_k$ distincts car λ_k n'est pas nul par hypothèse. Par application de la question 3.(f), on en déduit

l'endomorphisme f_k est diagonalisable.

(d) Toujours par application de la question 3., cette fois en utilisant le (e), on peut écrire que $F_k = F_k^+ \oplus F_k^-.$

Mais par hypothèse f^2 est diagonalisable, donc $E = F_1 \oplus \cdots \oplus F_p$. On en déduit bien que

$$E = F_1^+ \oplus F_1^- \oplus \cdots \oplus F_p^+ \oplus F_p^-.$$

 $\boxed{E = F_1^+ \oplus F_1^- \oplus \cdots \oplus F_p^+ \oplus F_p^-.}$ La concaténation des bases de ces différents sous-espaces (lorsqu'ils ne sont pas réduits au vecteur nul) forme une base de E dans laquelle la matrice de f est diagonale, donc

l'endomorphisme f est diagonalisable.

Exercice de Probabilités

1. Si le nombre de boules est inférieur ou égal au nombre de cases, deux configurations extrêmes sont possibles : une seule case est non vide, et elle contient les n boules, ou les n boules sont tombées dans des cases différentes, donc il y a n cases non vides, et il ne peut y en avoir davantage. Toutes les configurations intermédiaires sont possibles.

Si
$$n \leq N$$
, alors $T_n(\Omega) = [1, n]$.

Si le nombre de boules est strictement supérieur au nombre de cases, les deux configurations extrêmes sont : une seule case contient toutes les boules, ou toutes les cases contiennent au moins une boule (ce qui est possible puisque n > N).

Si
$$n > N$$
, alors $T_n(\Omega) = [1, N]$.

2. Cas n = 1.

Ici, $N \geq n$ et $T_1(\Omega) = \{1\}$. Il est certain qu'il y aura exactement une case contenant l'unique boule, donc $\mathbb{P}(T_1 = 1) = 1$ On en déduit que $\mathbb{E}[T_1] = 1\mathbb{P}(T_1 = 1) = 1$. $T_1(\Omega) = \{1\} \text{ et } \mathbb{P}(T_1 = 1) = 1 \text{ ; } \mathbb{E}[T_1] = 1.$

$$T_1(\Omega) = \{1\} \text{ et } \mathbb{P}(T_1 = 1) = 1; \mathbb{E}[T_1] = 1.$$

Cas n=2.

Si N=1, alors les deux boules tombent dans l'unique urne, donc $T_2(\Omega)=\{1\}$, $\mathbb{P}(T_2=1)=1$ et $\mathbb{E}\left[T_2\right] = 1.$

Si $N \geq 2$, alors $T_2(\Omega) = \{1, 2\}$. La variable aléatoire $U = T_2 - 1$ suit donc une loi de Bernoulli de paramètre $p = \mathbb{P}(U=1) = \mathbb{P}(T_2=2) = 1 - \mathbb{P}(T_2=1)$. Mais $\{T_2=1\}$ est réalisé si l'un des événements (incompatibles) $C_{1,i} \cap C_{2,i}$ est réalisé $(1 \leq i \leq N)$, où $C_{1,i}$ (respectivement $C_{2,i}$) est l'événement : « la première (resp. deuxième) boule tombe dans la case numéro $i \gg$. Par indépendance des lancers :

$$\mathbb{P}(T_2 = 1) = \sum_{i=1}^{N} \mathbb{P}(C_{1,i} \cap C_{2,i}) = \sum_{i=1}^{N} \mathbb{P}(C_{i,1}) \, \mathbb{P}(C_{i,2}) = \sum_{i=1}^{N} \frac{1}{N^2} = \frac{1}{N}$$

donc $p = 1 - \frac{1}{N} = \frac{N-1}{N}$. On sait que $\mathbb{E}[U] = p$ et $\mathbb{E}[T_2] = \mathbb{E}[U] + 1$ donc $\mathbb{E}[T_2] = \frac{2N-1}{N}$. On note que les cas N = 1 et $N \ge 2$ diffèrent par la valeur de $T_2(\Omega)$, mais dans les deux cas il est possible d'écrire :

 $\boxed{T_2\left(\Omega\right)\subset\left\{1,2\right\},\quad\mathbb{P}\left(T_2=1\right)=\frac{1}{N},\quad\mathbb{P}\left(T_2=2\right)=\frac{N-1}{N},\quad\mathbb{E}\left[T_2\right]=\frac{2N-1}{N}}.$ 3. En notant $C_{k,j}$ l'événement « la j-ème boule tombe dans la case numéro k », on a de manière

analogue à un calcul précédent :

$$\mathbb{P}\left(T_{2}=1\right)=\sum_{i=1}^{N}\mathbb{P}\left(C_{1,i}\cap\ldots\cap C_{n,i}\right)=\sum_{i=1}^{N}\mathbb{P}\left(C_{i,1}\right)\ldots\mathbb{P}\left(C_{i,n}\right)=\sum_{i=1}^{N}\left(\frac{1}{N}\right)^{n}$$

donc

$$\boxed{\mathbb{P}(T_2=1) = \left(\frac{1}{N}\right)^{n-1}.}$$

Si N=1, l'événement $\{T_n=2\}$ est impossible, donc de probabilité nulle.

Si $N \geq 2$, l'événement $\{T_n = 2\}$ est réalisé si l'un des $\binom{N}{2}$ événements incompatibles $K_{i,d} \cap K_{j,n-d}$ est réalisé, où $K_{r,d}$ est l'événement « r boules sont tombés dans la case numéro r » (avec $1 \le i \ne i$ $j \leq N$ et $1 \leq d \leq n-1$). Il y a $\binom{n}{d}$ choix possibles pour les numéros de lancer mettant une boule dans la case i, les autres boules lancées allant dans la case j. Par incompatibilité et indépendance,

$$\mathbb{P}(K_{i,d} \cap K_{j,n-d}) = \sum_{d=1}^{n-1} \binom{n}{d} \left(\frac{1}{N}\right)^n = \frac{1}{N^n} \left(\sum_{d=0}^n \binom{n}{d} - 2\right) = \frac{2^n - 2}{N^n}$$

et finalement $\mathbb{P}(T_n=2) = \binom{N}{2} \frac{2^n-2}{N^n}$

En conclusion

$$\boxed{\mathbb{P}(T_n=2) = \binom{N}{2} \frac{2^n - 2}{N^n}}$$

avec la convention $\binom{N}{2} = 0$ si N = 1.

Si N < n, l'évément $\{T_n = n\}$ est impossible, donc de probabilité nulle.

Supposons $N \geq n$. Pour qu'au n-ième lancer n cases soient non vides, il faut qu'au lancer précédent n-1 cases soient non vides et que le dernier lancer atteigne une case vide. Dans cette configuration, il y a N-(n-1) cases vides lors du n-ième lancer, donc, les cases pouvant être atteintes de manière équiprobable et par indépendance des lancers,

$$\mathbb{P}\left(T_{n}=n\right)=\frac{N+1-n}{N}\mathbb{P}\left(T_{n-1}=n-1\right).$$

On en déduit

$$\mathbb{P}(T_n = n) = \frac{(N+1-n)(N-(n-1))\dots(N-1)}{N^{n-1}} \mathbb{P}(T_1 = 1)$$
$$= \frac{N(N-1)\dots(N-(n-1))}{N^n} = \frac{N!}{(N-n)!} \frac{1}{N^n}.$$

En conclusion:

$$P(T_n = n) = \binom{N}{n} \frac{n!}{N^n}$$

avec la convention $\binom{N}{n} = 0$ si n > N.

4. Les $\{T_n=i\}$, pour $1\leq i\leq \min{(n,N)}$ forment un système complet d'événements car $T_n\left(\Omega\right)=$ $[1, \min(n, N)]$ d'après la question 1.

On peut donc écrire:

$$\mathbb{P}(T_{n+1} = k) = \sum_{i=1}^{\min(n,N)} \mathbb{P}(T_{n+1} = k | T_n = i) \, \mathbb{P}(T_n = i).$$

Mais pour i > k l'on a $\mathbb{P}(T_{n+1} = k | T_n = i) = 0$ car le nombre de cases non vides ne peut pas diminuer avec un lancer supplémentaire.

On a aussi $\mathbb{P}(T_{n+1} = k | T_n = i) = 0$ si i < k-1 car le nombre de case non vides ne peut évoluer qu'au plus de 1 avec un lancer supplémentaire.

On a donc:

$$\mathbb{P}\left(T_{n+1}=k\right)=\mathbb{P}\left(T_{n+1}=k|T_n=k\right)\mathbb{P}\left(T_n=k\right)+\mathbb{P}\left(T_{n+1}=k|T_n=k-1\right)\mathbb{P}\left(T_n=k-1\right).$$

Or $\mathbb{P}(T_{n+1}=k|T_n=k)$ est la probabilité que le nombre de cases non vides n'ait pas évolué, c'està-dire que la dernière boule lancée arrive dans l'une des k cases non vides parmi les N disponibles.

Par équiprobabilité : $\mathbb{P}(T_{n+1} = k | T_n = k) = \frac{k}{N}$. De même, $\mathbb{P}(T_{n+1} = k | T_n = k - 1)$ est la probabilité que la dernière boule lancée arrive dans l'une des N-(k-1) cases encore vides, donc $\mathbb{P}(T_{n+1}=k|T_n=k-1)=\frac{N-(k-1)}{N}$.

On a bien établi que :

$$\mathbb{P}(T_{n+1} = k) = \frac{k}{N} \mathbb{P}(T_n = k) + \frac{N - k + 1}{N} \mathbb{P}(T_n = k - 1).$$

5. (a) Par définition, puisque $T_n(\Omega) \subset \mathbb{N}^*$:

$$G_n(x) = \sum_{k=1}^{+\infty} \mathbb{P}(T_n = k) x^k$$

la somme devant être limitée aux valeurs prises par T_n , qui sont ici en nombre fini d'après la question 1. Cette série entière est donc en fait une fonction polynomiale, donc

la fonction G_n est définie sur \mathbb{R} .

(b) Notamment la fonction G_n est dérivable en x=1 et

$$\mathbb{E}\left[T_n\right] = G'_n\left(1\right).$$

(c) On utilisera toujours une somme infinie pour l'expression de G_n , pour ne pas avoir à distinguer si $n \leq N$ ou non.

D'après la relation $(\star\star)$, pour tout x réel :

$$NG_{n+1}(x) = \sum_{k=1}^{+\infty} k \mathbb{P}(T_n = k) x^k + N \sum_{k=1}^{+\infty} \mathbb{P}(T_n = k - 1) x^k - \sum_{k=1}^{+\infty} (k - 1) \mathbb{P}(T_n = k - 1) x^k$$
$$= \sum_{k=1}^{+\infty} k \mathbb{P}(T_n = k) x^k + N \sum_{k=2}^{+\infty} \mathbb{P}(T_n = k - 1) x^k - \sum_{k=2}^{+\infty} (k - 1) \mathbb{P}(T_n = k - 1) x^k$$

 $\operatorname{car} \mathbb{P}(T_n = 0) = 0 \operatorname{donc}$

$$NG_{n+1}(x) = x \sum_{k=1}^{+\infty} k \mathbb{P}(T_n = k) x^{k-1} + Nx \sum_{k=1}^{+\infty} \mathbb{P}(T_n = k) x^k - x^2 \sum_{k=1}^{+\infty} k \mathbb{P}(T_n = k) x^{k-1}$$
$$= xG'_n(x) + NxG_n(x) - x^2G'_n(x)$$

ce qui conduit bien à :

$$\forall x \in \mathbb{R}, \quad G_{n+1}(x) = \frac{1}{N} (x - x^2) G'_n(x) + xG_n(x).$$

(d) Par dérivation de la relation précédente, pour tout x réel

$$G'_{n+1}(x) = \frac{1}{N} (1 - 2x) G'_n(x) + \frac{1}{N} (x - x^2) G''_n(x) + G_n(x) + xG'_n(x).$$

En prenant x = 1, sachant que $G_n(1) = 1$, on obtient :

$$G'_{n+1}(1) = \left(1 - \frac{1}{N}\right) G'_n(1) + 1$$

donc, d'après le (b):

$$\mathbb{E}\left[T_{n+1}\right] = \left(1 - \frac{1}{N}\right) \mathbb{E}\left[T_n\right] + 1.$$

On reconnaît une suite arithmético-géométrique, le nombre $\ell = N$ vérifiant

$$\ell = \left(1 - \frac{1}{N}\right)\ell + 1$$

et la suite de terme général $\mathbb{E}(T_n) - \ell$ est géométrique de raison $1 - \frac{1}{N}$ et de premier terme $\mathbb{E}(T_1) - \ell = 1 - N$. Ainsi, pour tout $n \ge 1$:

$$\mathbb{E}(T_n) - N = \left(1 - \frac{1}{N}\right)^{n-1} (1 - N) = -N \left(1 - \frac{1}{N}\right)^n$$

donc

$$\mathbb{E}(T_n) = N\left(1 - \left(1 - \frac{1}{N}\right)^n\right).$$

6. (a) La fonction indicatrice $\mathbb{I}_{\{X_i=k\}}$ vaut 1 si la *i*-ème boule arrive dans la case numéro k et 0 sinon. On a alors

$$Y_k = \sum_{i=1}^n \mathbb{I}_{\{X_i = k\}}.$$

(b) Les variables aléatoires $\mathbb{I}_{\{X_i=k\}}$ sont indépendantes (car les lancers sont indépendants) et suivent une même loi de Bernoulli de paramètre $\frac{1}{N}$ (probabilité qu'une boule arrive dans l'urne k). On en déduit que Y_k suit une loi binomiale de paramètres n et $\frac{1}{N}$: $Y_k \hookrightarrow \mathcal{B}\left(n; \frac{1}{N}\right).$

$$Y_k \hookrightarrow \mathcal{B}\left(n; \frac{1}{N}\right)$$
.

Autrement dit, si l'on appelle « succès » le fait qu'une boule arrive dans l'urne numéro k, la variable Y_k compte le nombre de succès dans la répétition de n épreuves de Bernouilli indépendantes de même paramètre $\frac{1}{N}$.

La variable Z_k suit une loi de Bernoulli de paramètre $p = \mathbb{P}(Y_k \ge 1)$ avec

$$1 - p = \mathbb{P}(Y_k = 0) = \binom{n}{0} \left(\frac{1}{N}\right)^0 \left(1 - \frac{1}{N}\right)^{n-0} = \left(1 - \frac{1}{N}\right)^n$$

donc

$$Z_k \hookrightarrow \mathcal{B}\left(1 - \left(1 - \frac{1}{N}\right)^n\right).$$

(c) L'événement $\{Z_1=0\}\cap\ldots\cap\{Z_N=0\}$ est impossible, car toutes les cases ne peuvent être vides à l'issue des lancers, donc

$$\mathbb{P}(\{Z_1 = 0\} \cap ... \cap \{Z_N = 0\}) = 0 \neq \mathbb{P}(Z_1 = 0) \times ... \times \mathbb{P}(Z_N = 0)$$

d'où l'on déduit que

les variables aléatoires \mathbb{Z}_k ne sont pas mutuellement indépendantes.

(d) Puisque T_n compte le nombre de cases non vides :

$$T_n = \sum_{k=1}^N Z_k.$$

Par linéarité de l'espérance :

$$\mathbb{E}\left[T_n\right] = \sum_{k=1}^{N} \mathbb{E}\left[Z_k\right] = \sum_{k=1}^{N} \left(1 - \left(1 - \frac{1}{N}\right)^n\right)$$

ce qui redonne bien :

$$\mathbb{E}\left[T_n\right] = N\left(1 - \left(1 - \frac{1}{N}\right)^n\right).$$