ТЕХНИЧЕСКИ УНИВЕРСИТЕТ – СОФИЯ							
КАТЕДРА ТЕОРЕТИЧНА ЕЛЕКТРОТЕХНИКА							
Студент		Фак. №					
Факултет	Група	Дата					
Преподавател		Подпис					

Упражнение №9

ИЗСЛЕДВАНЕ НА ПРЕХОДНИ ПРОЦЕСИ В ЛИНЕЙНИ ЕЛЕКТРИЧЕСКИ ВЕРИГИ

1. Теоретични положения

2. Опитна постановка

2.1. Изследване на преходен процес в RC верига

2.2. Изследване на преходен процес в RLC верига

3. Резултати от измерванията и изчисленията

- 3.1. Изследване на преходен процес в RC верига
- 3.1.1. Определяне на времеконстантата на веригата au

Чрез с	убтангент	ата S_t	Чрез стойности на $u_{\scriptscriptstyle C}$				Теоретично			
\overline{S}_{t}	\overline{T}_{np}	τ	$ar{t}_1$	$\overline{u}_{c}(0)$	$\overline{u}_{C}(t_{1})$	τ	R	C	τ	
дел	дел	S	дел	дел	дел	S	Ω	μF	S	

- 3.2. Изследване на преходен процес в RLC верига
- 3.2.1. Определяне на индуктивността $\,L\,$ и активното съпротивление $\,R_{_L}\,$ на бобината

$$f_{np} = 250Hz$$
, $R_{op} = 510\Omega$

C	ab	ac	A_1	A_2	f_{ce}	Δ	b	Ω	ω_{0}	L	R	R_L
μF	дел	дел	дел	дел	Hz	Np	s^{-1}	rad / s	rad / s	Н	Ω	Ω
0,01												
0,02												
0,03												
0,04												
0,05												

Получени средни стойности на:

- индуктивността на бобината $\overline{L}=$
- активното съпротивлението на бобината $\overline{R}_{\scriptscriptstyle L}$ =

3.2.2. Определяне на критичното съпротивление на веригата $R_{\kappa p.}$

С	μF	0,01	0,02	0,03	0,04	0,05
$R_{_{\partial e\kappa}}$	Ω					
$R_{\kappa p.on.}$	Ω					
$R_{\kappa p.u34.}$	Ω					

4. Графики

5. Изчисления