Electrochemistry

12.

Calculate the standard potential, E° , for this reaction from its ΔG° value.

$$X(s) + Y^{2+}(aq) \longrightarrow X^{2+}(aq) + Y(s) \qquad \Delta G^{\circ} = 11.0 \text{ kJ}$$

	Number	
$E^{\circ} =$		v

17.

A galvanic (voltaic) cell consists of an electrode composed of nickel in a 1.0 M nickel(II) ion solution and another electrode composed of copper in a 1.0 M copper(II) ion solution, connected by a salt bridge. Calculate the standard potential for this cell at 25 °C. Standard reduction potentials can be found here.

18.

Predict the standard potential for the galvanic cell. Standard reduction potentials can be found here.

 $Hg(I)|Hg_2CI_2(s)|CI^-(aq)||Hg_2^{2+}(aq)|Hg(I)$

Number			
v			
	_	_	_

19. Rank these species by their ability to act as an oxidizing agent. Pb^{2+} , Br_2 , Na^+ , Zn^{2+}

20.

Based on the sign of E°_{cell} , classify these reactions as spontaneous or nonspontaneous as written. Assume standard conditions.

$$Al^{3+}(aq) + 3Na(s) \longrightarrow Al(s) + 3Na^{+}(aq)$$

$$Ni^{2+}(aq) + S^{2-}(aq) \longrightarrow Ni(s) + S(s)$$

$$Pb^{2+}(aq) + H_2(g) \longrightarrow Pb(s) + 2H^+(aq)$$

21.

Calculate the standard free-energy change for the following reaction at 25 °C. Standard reduction potentials can be found here.

$$2Au^{3+}(aq) + 3Ni(s)$$
 \implies $2Au(s) + 3Ni^{2+}(aq)$

Using a table of standard reduction potentials, determine the best answer to the following questions.

a) Which of the following reagents would oxidize Fe to Fe²⁺, but not Pb to Pb²⁺?

Co Ca²⁺

Co²⁺

Br⁻

Са

 Br_2

b) Which of the following reagents would oxidize Ag to Ag⁺, but not F⁻ to F₂?

Co²⁺ Ca²⁺ Co

Ca

Br⁻

 Br_2

23.

Given the following half-reactions and their respective standard reduction potentials

1. $Cu^{3+} + 2e^{-} \longrightarrow Cu^{+}$

$$E_1^{\circ} = +1.28 \text{ V}$$

2. $Cu^{2+} + e^{-} \longrightarrow Cu^{+}$

$$E_2^{\circ} = +0.15 \text{ V}$$

3. $Cu^{2+} + 2e^{-} \longrightarrow Cu(s)$

$$E_3^{\circ} = +0.34 \text{ V}$$

4. $Cu^+ + e^- \longrightarrow Cu(s)$

$$E_4^{\circ} = +0.52 \text{ V}$$

calculate the standard reduction potential for the reduction half-reaction of Cu(III) to Cu(II).

$$Cu^{3+} + e^{-} \longrightarrow Cu^{2+}$$

24.

Complete this table relating the values of E°_{cell} and ΔG° to K.

K	E°cell	ΔG°	
			> 0 = 0
			> 0 = 0
	1	()	

26.

Consider a generic redox reaction

$$\mathbf{X}(s) + \mathbf{Y}^{+}(aq) \implies \mathbf{X}^{+}(aq) + \mathbf{Y}(s)$$

then suppose that the coefficients in the redox reaction are doubled. How will the following quantities be affected for a voltaic cell under nonstandard conditions?

N, Q, E, lnQ, E^o

What would the potential of a standard hydrogen electrode (S.H.E.) be if it was under the following conditions?

28.

For the following electrochemical cell

 $Cu(s)|Cu^{2+}(aq, 0.0155 M)||Ag^{+}(aq, 1.50 M)|Ag(s)$

write the net cell equation. Phases are optional. Do not include the concentrations.

Calculate the following values at 25.0 °C using standard potentials as needed.

29.

The voltage generated by the zinc concentration cell described by,

$$Zn(s)|Zn^{2+}(aq, 0.100 M)||Zn^{2+}(aq, ? M)|Zn(s)$$

is 25.0 mV at 25 °C. Calculate the concentration of the $Zn^{2+}(aq)$ ion at the cathode.

30.

When an ion-selective electrode for X^+ was immersed in 0.0510 M XCI, the measured potential was 0.0370 V. What is the concentration of X^+ when the potential is 0.0520 V? Assume that the electrode follows the Nernst equation, the temperature is at 25°C, and that the activity coefficient of X^+ is 1.

35.

A current of 3.89 A is passed through a $Pb(NO_3)_2$ solution. How long (in hours) would this current have to be applied to plate out 7.60 g of lead?

36.

Current is applied to a molten mixture of AgF, ZnCl₂, and CaS. Standard potentials may be found here.

What is produced at the cathode?		the cathode? What is p	What is produced at the anode?		
	Ag		Ca		
	Ca		Zn		
	F ₂		Cl ₂		
	S		S		
	Zn		F ₂		
	Cl ₂		Ag		