Decision tree learning

Sunita Sarawagi IIT Bombay

http://www.cse.iitb.ac.in/~sunita

Decision tree classifiers

- Widely used learning method
- Easy to interpret: can be re-represented as if-then-else rules
- Approximates function by piece wise constant regions
- Does not require any prior knowledge of data distribution, works well on noisy data.
- Has been applied to:
 - classify medical patients based on the disease,
 - equipment malfunction by cause,
 - loan applicant by likelihood of payment.
 - lots and lots of other applications...

Setting

 Given old data about customers and payments, predict new applicant's loan eligibility.

Decision trees

 Tree where internal nodes are simple decision rules on one or more attributes and leaf nodes are predicted class labels.

Training Dataset

This follows an example from Quinlan's ID3

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3040	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Output: A Decision Tree for "buys_computer"

Weather Data: Play or not Play?

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	false	No
sunny	hot	high	true	No
overcast	hot	high	false	Yes
rain	mild	high	false	Yes
rain	cool	normal	false	Yes
rain	cool	normal	true	No
overcast	cool	normal	true	Yes
sunny	mild	high	false	No
sunny	cool	normal	false	Yes
rain	mild	normal	false	Yes
sunny	mild	normal	true	Yes
overcast	mild	high	true	Yes
overcast	hot	normal	false	Yes
rain	mild	high	true	No

Note:
Outlook is the
Forecast,
no relation to
Microsoft
email program

Example Tree for "Play?"

Topics to be covered

- Tree construction:
 - Basic tree learning algorithm
 - Measures of predictive ability
 - High performance decision tree construction: Sprint
- Tree pruning:
 - Why prune
 - Methods of pruning
- Other issues:
 - Handling missing data
 - Continuous class labels
 - Effect of training size

Tree learning algorithms

- ID3 (Quinlan 1986)
- Successor C4.5 (Quinlan 1993)
- CART
- SLIQ (Mehta et al)
- SPRINT (Shafer et al)

Example: 2-D data

Basic algorithm for tree building

Greedy top-down construction.

Split criteria

- Select the attribute that is best for classification.
- Intuitively pick one that best separates instances of different classes.
- Quantifying the intuitive: measuring separability:
- First define *impurity* of an arbitrary set S consisting of K classes
- Smallest when consisting of only one class, highest when all classes in equal number.
- Should allow computations in multiple stages.

Measures of impurity

Entropy

Entropy
$$(S) = -\sum_{i=1}^{k} p_i \log p_i$$
 fraction of examples is

Gini

Gini
$$(S) = 1 - \sum_{i=1}^{k} p_i^2$$

Information gain

K =

- Information gain on partitioning S into r subsets
- Impurity (S) sum of weighted impurity of each subset

$$Gain(S, S_1..S_r) = Entropy(S) - \sum_{j=1}^{N} \frac{S_j}{S} Entropy(S_j)$$

Average enhapy ofher/splitting Sinto S, 3 57-. Ske

*Properties of the entropy

The multistage property:

entropy
$$(p,q,r)$$
 = entropy $(p,q+r)+(q+r)\times$ entropy $(\frac{q}{q+r},\frac{r}{q+r})$

Simplification of computation:

$$\inf_{(2,3,4]} = -2/9 \times \log(2/9) - 3/9 \times \log(3/9) - 4/9 \times \log(4/9)$$

Information gain: example

$$K= 2$$
, $|S| = 100$, $p_1 = 0.6$, $p_2 = 0.4$
 $E(S) = -0.6 \log(0.6) - 0.4 \log(0.4) = 0.29$

Information gain: $E(S) - (0.7 E(S_1) + 0.3 E(S_2)) = 0.1$

Weather Data: Play or not Play?

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	false	No
sunny	hot	high	true	No
overcast	hot	high	false	Yes
rain	mild	high	false	Yes
rain	cool	normal	false	Yes
rain	cool	normal	true	No
overcast	cool	normal	true	Yes
sunny	mild	high	false	No
sunny	cool	normal	false	Yes
rain	mild	normal	false	Yes
sunny	mild	normal	true	Yes
overcast	mild	high	true	Yes
overcast	hot	normal	false	Yes
rain	mild	high	true	No

Which attribute to select?

Example: attribute "Outlook"

"Outlook" = "Sunny":

info([2,3]) = entropy(2/5,3/5) = -2/5log(2/5) - 3/5log(3/5) = 0.971 bits

"Outlook" = "Overcast":

 $\inf([4,0]) = \operatorname{entropy}(1,0) = -1\log(1) - 0\log(0) = 0 \text{ bits}$

"Outlook" = "Rainy":

Note: log(0) is
not defined, but
we evaluate
0*log(0) as zero

info([3,2]) = entropy $(3/5,2/5) = -3/5\log(3/5) - 2/5\log(2/5) = 0.971$ bits

Expected information for attribute:

$$\inf_{\text{o}([3,2],[4,0],[3,2]) = (5/14) \times 0.971 + (4/14) \times 0 + (5/14) \times 0.971}$$
= 0.693 bits

Computing the information gain

Information gain:
 (information before split) – (information after split)

```
gain("Outlook") = info([9,5]) - info([2,3],[4,0],[3,2]) = 0.940 - 0.693
= 0.247 bits
```

• Information gain for attributes from weather data:

```
gain("Outlook") = 0.247 bits
gain("Temperatue") = 0.029 bits
gain("Humidity") = 0.152 bits
gain("Windy") = 0.048 bits
```

Continuing to split

gain("Humidity") = 0.971 bits

gain("Temperatue") = 0.571 bits

gain("Windy") = 0.020 bits

The final decision tree

- Note: not all leaves need to be pure; sometimes identical instances have different classes
 - ⇒ Splitting stops when data can't be split any further

Highly-branching attributes

- Problematic: attributes with a large number of values (extreme case: ID code)
- Subsets are more likely to be pure if there is a large number of values
 - ⇒Information gain is biased towards choosing attributes with a large number of values
 - ⇒This may result in *overfitting* (selection of an attribute that is non-optimal for prediction)

Data Setup: Attribute Lists

- One list for each attribute
- Entries in an Attribute List consist of:
 - attribute value
 - class value
 - record id

Example list:

Age	Risk	RID
17	High	1
20	High	5
23	High	0
32	Low	4
43	High	2
orde	row	3

- Lists for continuous attributes are in sorted orderow
- Lists may be disk-resident
- Each leaf-node has its own set of attribute lists representing the training examples belonging to that leaf

Attribute Lists: Example, ad,

Car Type Age Risk 23 family High 17 High sports High 43 sports 68 family Low 32 truck Low High 20 family

Car Type	Risk	RID
family	High	0
sports	High	1
sports	High	2
family	Low	3
truck	Low	4
family	High	5

Initial Attribute Lists for the root node:

- group o	n cou	tego	bel
Car Type	Risk	RID	
family	High	0	
family	High	5	
family	Low	3	
sports	High	2	
sports	High	1	

Low

truck

4

Split Points: Continuous Attrib.

Attribute List

Risk **RID** Age High 17 High 5 20 High 23 0 32 4 Low High 43 3 68 Low

Position of cursor in scan

State of Class Histograms:

Left Child

Right Child

GINI Index:

$$--$$
 0: Age $<$ 17 $--$

1: Age < 20

High	Low
0	0

High	Low
4	2

GINI = undef

High	Low
1	0

High	Low
3	2

$$GINI = 0.4$$

`	1	High	Low
- 6 \		3	0

High	Low
1	2

$$GINI = 0.222$$

High	Low
4	2

High	Low
4	2

High	Low
0	0

$$GINI = undef$$

Split Points: Categorical Attrib.

- Consider splits of the form: value(A) ∈ {x1, x2, ..., xn}
 - Example: CarType ∈ {family, sports}
- Evaluate this split-form for subsets of domain(A)
- To evaluate splits on attribute A for a given tree node:

for each record in the attribute list do increment appropriate count in matrix;

evaluate splitting index for various subsets using the constructed matrix;

Pros and Cons of decision trees

• Pros

- + Reasonable training time
- + Fast application
- + Easy to interpret
- + Easy to implement
- + Intuitive

Cons

- Not effective for very high dimensional data where information about the class is spread in small ways over many correlated features
 - -Example: words in text classification
- -Not robust to dropping of important features even when correlated substitutes exist in data