Recursos para Matemática

EXAME NACIONAL DO ENSINO SECUNDÁRIO - MATEMÁTICA A

Prova Modelo n.º 4 - Proposta de Resolução

12.º ANO DE ESCOLARIDADE

Site: http://recursos-para-matematica.webnode.pt/

Facebook: https://www.facebook.com/recursos.para.matematica

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1. Comecemos por determinar o número de elementos de cada conjunto.

Conjunto X: os elementos deste conjunto são todos os números pares de quatro algarismos distintos que se podem formar com os algarismos 1, 3, 5, 6, 7, 8 e 9:

Dos restantes seis algarismos, escolhemme, ordenadamente, três. O número de maneiras de o fazer é
$${}^6A_3 = 6 \times 5 \times 4$$
.

Logo, o número de elementos do conjunto $X \in 2 \times {}^6A_3 = 2 \times 6 \times 5 \times 4 = 240$.

Conjunto *Y*: os elementos deste conjunto são todos os números de três algarismos se podem formar com os algarismos 0, 3, 5, 6, 7 e 9.

Logo, o número de elementos do conjunto $Y \neq 5 \times 6 \times 6 = 180$.

Portanto, o número de maneiras de escolher três elementos de X e dois de Y é dado por $^{240}C_3 \times ^{180}C_2$.

Resposta: B

2. Tem-se que:

$$P(A)+0.75P(B)=1 \Leftrightarrow 0.75P(B)=1-P(A) \Leftrightarrow 0.75P(B)=P(\overline{A})$$

•
$$P(A|B) = 0.5 \Leftrightarrow \frac{P(A \cap B)}{P(B)} = 0.5 \Leftrightarrow P(A \cap B) = 0.5P(B)$$

Assim:

$$P((A \cup B)|\bar{A}) = \frac{P((A \cup B) \cap \bar{A})}{P(\bar{A})} = \frac{P((\bar{A} \cap \bar{A}) \cup (B \cap \bar{A}))}{0,75P(B)} =$$

$$= \frac{P(\emptyset \cup (B \cap \bar{A}))}{0,75P(B)} = \frac{P(B \cap \bar{A})}{0,75P(B)} = \frac{P(B) - P(A \cap B)}{0,75P(B)} =$$

$$= \frac{P(B) - 0,5P(B)}{0,75P(B)} = \frac{0,5}{0,75P(B)} = \frac{0,5}{0,75P(B)} = \frac{2}{3}$$
i)
$$P(\bar{A} \cap \bar{B}) = P(A) - P(\bar{A} \cap \bar{B})$$

$$P(\bar{A} \cap \bar{B}) = P(B) - P(\bar{A} \cap \bar{B})$$

Resposta: C

3. Vamos começar por determinar uma equação da recta r usando o produto escalar. Sendo Q(x,y) um ponto do plano, Q pertence à recta r se $\overrightarrow{TQ} \cdot \overrightarrow{TC} = 0$, onde C é o centro da circunferência c_1 . Portanto, C(1,1). Assim:

$$\overrightarrow{TQ} \cdot \overrightarrow{TC} = 0 \Leftrightarrow (x-1, y-1) \cdot (1,1) = 0 \Leftrightarrow x-1+y-1 = 0 \Leftrightarrow x+y = 2$$

O número de casos possíveis é $4^2 = 16$. O ponto P pertence à recta r se a soma das suas coordenadas for 2. Assim, o número de casos favoráveis é 3: sair 1 no primeiro lançamento e 1 no segundo, formando o ponto de P de coordenadas (1,1); sair 2 no primeiro lançamento e 0 no segundo, formando o ponto de P de coordenadas (2,0); sair 0 no primeiro lançamento e 2 no segundo, formando o ponto de P de coordenadas (0,2).

Logo, a probabilidade pedida é $\frac{3}{16}$

Resposta: B

4. Tem-se que:

$$\log_4(9000c^5) = \log_4(9 \times 1000 \times c^2 \times c^3) = \log_4(9c^2 \times 1000c^3) = \log_4(9c^2) + \log_4(1000c^3) =$$

$$= \log_4(3c)^2 + \log_4(10c)^3 = 2\log_4(3c) + 3\log_4(10c) = 2 \times \frac{\log_2(3c)}{\log_2 4} + 3b =$$

$$= 2 \times \frac{a}{\log_2(2^2)} + 3b = 2 \times \frac{a}{2} + 3b = a + 3b$$

Resposta: A

5. Tem-se que $v_{n+1} = \frac{2v_n}{3} \Leftrightarrow \frac{v_{n+1}}{v} = \frac{2}{3}$. Portanto, (v_n) é uma progressão geométrica de razão $\frac{2}{3}$. Assim:

$$v_n = v_1 \times \left(\frac{2}{3}\right)^{n-1} = -2 \times \left(\frac{2}{3}\right)^{n-1} \xrightarrow[n \to +\infty]{} 0^- \ (v_n < 0 \ , \forall n \in \mathbb{N} \)$$

Logo, pela definição de limite segundo Heine:

lim
$$g(v_n) = \lim_{x \to 0^-} g(x) = \lim_{x \to 0^-} \frac{e - e^{-2x + 1}}{3x} = \frac{1}{3} \times \lim_{x \to 0^-} \frac{e - e^{-2x} \times e}{x} = -\frac{e}{3} \times \lim_{x \to 0^-} \frac{e^{-2x} - 1}{-2x} \times (-2) = -\frac{e}{3} \times 1 \times (-2) = \frac{2e}{3}$$
Se $x \to 0^-$ então $-2x \to 0^+$ (fimite notável)

- **6.** Tem-se que $(f \circ g)'(x) = f'(g(x)) \times g'(x)$. Portanto, $(f \circ g)'(1) = f'(g(1)) \times g'(1)$.
- Seja t a recta tangente ao gráfico de g no ponto de abcissa 1. Como t é perpendicular a r, vem:

$$m_t = -\frac{1}{m_r} = -\frac{1}{2} = 2$$

Logo, $g'(1) = m_t = 2$. O ponto de coordenadas (2,3), pertence à recta t, assim, a sua equação é dada por:

$$t: y-3=2(x-2) \Leftrightarrow y=2x-4+3 \Leftrightarrow y=2x-1$$

O ponto de coordenadas (1, g(1)) é o ponto de tangência, portanto $(1, g(1)) \in t$. Logo, $g(1) = 2 \times 1 - 1 = 1$.

• Tem-se
$$f'(x) = \frac{(x^2 + x)'}{x^2 + x} = \frac{2x + 1}{x^2 + x}$$
.

Assim,
$$(f \circ g)'(1) = f'(g(1)) \times g'(1) = f'(1) \times 2 = \frac{2 \times 1 + 1}{1^2 + 1} \times 2 = \frac{3}{2} \times 2 = 3$$

Resposta: C

•
$$i^{5-16n} = \frac{i^5}{i^{16n}} = \frac{i^{4\times 1+1}}{i^{4\times 4n+0}} = \frac{i^1}{i^0} = \frac{i}{1} = i = \operatorname{cis} \frac{\pi}{2}$$

$$\frac{z^2 \times i^{5-16n}}{\overline{z}} = \frac{\left(2\operatorname{cis}\theta\right)^2 \times \operatorname{cis}\frac{\pi}{2}}{2\operatorname{cis}(-\theta)} = \frac{4\operatorname{cis}\left(2\theta\right) \times \operatorname{cis}\frac{\pi}{2}}{2\operatorname{cis}(-\theta)} = \frac{4\operatorname{cis}\left(2\theta + \frac{\pi}{2}\right)}{2\operatorname{cis}\left(-\theta\right)} = 2\operatorname{cis}\left(2\theta + \frac{\pi}{2} + \theta\right) = 2\operatorname{cis}\left(3\theta + \frac{\pi}{2}\right)$$

A imagem geométrica do número complexo $\frac{z^2 \times i^{5-16n}}{\overline{z}}$ pertence à bissectriz dos quadrantes ímpares se o seu argumento for da forma $\frac{\pi}{4} + k\pi$, $k \in \mathbb{Z}$. Assim:

$$3\theta + \frac{\pi}{2} = \frac{\pi}{4} + k\pi, \quad k \in \mathbb{Z} \Leftrightarrow 3\theta = \frac{\pi}{4} - \frac{\pi}{2} + k\pi, \quad k \in \mathbb{Z} \Leftrightarrow 3\theta = -\frac{\pi}{4} + k\pi, \quad k \in \mathbb{Z} \Leftrightarrow \theta = -\frac{\pi}{12} + \frac{k\pi}{3}, \quad k \in \mathbb{Z}$$

Logo,
$$\theta = \frac{11\pi}{12}$$
 ($k = 3$).

Resposta: A

8. Tem-se que |z|=1, portanto $z=\operatorname{cis}\theta$, com $\theta\in\left]0,\frac{\pi}{4}\right[$, pois a condição $\operatorname{Im}(z)-\operatorname{Re}(z)=0\Leftrightarrow\operatorname{Im}(z)=\operatorname{Re}(z)$, define a bissectriz dos quadrantes ímpares. Assim:

$$iz^{2} - 2i = \operatorname{cis}\frac{\pi}{2} \times \left(\operatorname{cis}\theta\right)^{2} - 2i = \operatorname{cis}\frac{\pi}{2} \times \operatorname{cis}\left(2\theta\right) - 2i = \operatorname{cis}\left(2\theta + \frac{\pi}{2}\right) + \left(-2i\right)$$

Utilizando a regra do paralelogramo:

A imagem geométrica de iz^2 obtém-se rodando a imagem geométrica de iz^2 , $+90^\circ$ em torno da origem.

Logo, a imagem geométrica de $iz^2 - 2i$ pertence ao terceiro quadrante.

Outra resolução: Tem-se que $iz^2-2i=i\left(z^2-2\right)=i\left(\operatorname{cis}\left(2\theta\right)-2\right)=i\left(\operatorname{cis}\left(2\theta\right)+\left(-2\right)\right)$. Utilizando a regra do paralelogramo:

A imagem geométrica de iz^2-2i obtém-se rodando a imagem geométrica de $i\left(z^2-2\right)$, $+90^{\rm o}$ em torno da origem.

Logo, a imagem geométrica de $iz^2 - 2i$ pertence ao terceiro quadrante.

Resposta: C

1.

1.1. Como $\begin{bmatrix} ABCDE \end{bmatrix}$ é um pentágono regular inscrito numa circunferência centrada na origem e $\overline{OA}=2$, então $\overline{OC}=2$ e portanto $|z_3|=2$. Os vértices do pentágono dividem a circunferência em que está inscrito em cinco arcos de amplitude $\frac{2\pi}{5}$, ou seja, $A\hat{OB}=B\hat{OC}=\ldots=E\hat{OA}=\frac{2\pi}{5}$. Logo, um argumento de z_3 é $2\times\frac{2\pi}{5}=\frac{4\pi}{5}$. Assim:

$$\frac{\left(z_{3}\right)^{5} \times \operatorname{cis} \frac{\pi}{12}}{-\sqrt{6} + \sqrt{2}i} - \frac{2 - 6i}{1 - i} = \frac{\left(2\operatorname{cis} \frac{4\pi}{5}\right)^{5} \times \operatorname{cis} \frac{\pi}{12}}{2\sqrt{2}\operatorname{cis} \frac{5\pi}{6}} - \frac{2 - 6i}{1 - i} \times \frac{1 + i}{1 + 1} = \frac{2^{5}\operatorname{cis} \left(\cancel{5} \times \frac{4\pi}{\cancel{5}}\right) \times \operatorname{cis} \frac{\pi}{12}}{2\sqrt{2}\operatorname{cis} \frac{5\pi}{6}} - \frac{2 + 2i - 6i - 6i^{2}}{1^{2} - i^{2}} = \frac{32\operatorname{cis} \left(4\pi\right) \times \operatorname{cis} \frac{\pi}{12}}{2\sqrt{2}\operatorname{cis} \frac{5\pi}{6}} - \frac{8 - 4i}{2} = \frac{32\operatorname{cis} \left(0 + \frac{\pi}{12}\right)}{2\sqrt{2}\operatorname{cis} \frac{5\pi}{6}} - 4 + 2i = \frac{32}{2\sqrt{2}}\operatorname{cis} \left(\frac{\pi}{12} - \frac{5\pi}{6}\right) - 4 + 2i = \frac{16}{\sqrt{2}}\left(\operatorname{cis} \left(-\frac{3\pi}{4}\right) - 4 + 2i = \frac{16}{\sqrt{2}}\left(\operatorname{cos} \left(-\frac{3\pi}{4}\right) + i\operatorname{sen} \left(-\frac{3\pi}{4}\right)\right) - 4 + 2i = \frac{16}{\sqrt{2}}\left(-\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right) - 4 + 2i = \frac{16\sqrt{2}}{2\sqrt{2}} \cdot \frac{16\sqrt{2}}{2\sqrt{2}}i - \frac{16\sqrt{2}}{2\sqrt{2}}i - 4 + 2i = -8 - 8i - 4 + 2i = -12 - 6i$$

i) Para escrever $-\sqrt{6}+\sqrt{2}i$ na forma trigonométrica, vem: $\left|-\sqrt{6}+\sqrt{2}i\right|=\sqrt{\left(-\sqrt{6}\right)^2+\left(\sqrt{2}\right)^2}=\sqrt{8}=2\sqrt{2}$. Sendo θ um argumento de $-\sqrt{6}+\sqrt{2}i$, tem-se $\operatorname{tg}\theta=\frac{\sqrt{2}}{-\sqrt{6}}=\sqrt{\frac{1}{3}}=-\frac{1}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}}=-\frac{\sqrt{3}}{3}$ e $\theta\in 2.^\circ$ quadrante, pelo que $\theta=-\frac{\pi}{6}+\pi=\frac{5\pi}{6}$. Assim $-\sqrt{6}+\sqrt{2}i=2\sqrt{2}\operatorname{cis}\frac{5\pi}{6}$.

1.2. Tem em atenção a figura seguinte:

- * As coordenadas do ponto C são dadas por $\left(2\cos\left(\frac{4\pi}{5}\right),2\sin\left(\frac{4\pi}{5}\right)\right)$ e, consequentemente, as do ponto F são dadas por $\left(2\cos\left(\frac{4\pi}{5}\right),0\right)$. Assim, F é a imagem geométrica do número complexo $2\cos\left(\frac{4\pi}{5}\right)+0i=2\cos\left(\frac{4\pi}{5}\right)$ e a medida do comprimento do raio da circunferência de centro em F que contém o ponto C é igual $\overline{CF}=2\sin\left(\frac{\pi}{5}\right)$. Logo, uma condição que define essa circunferência é $\left|z+2\cos\left(\frac{\pi}{5}\right)\right|=2\sin\left(\frac{\pi}{5}\right)$.
- As semi-recta OC e OD são definidas, respectivamente, pelas condições $\arg(z) = \frac{4\pi}{5}$ e $\arg(z) = \frac{4\pi}{5}$.

Portanto, uma condição que define a região sombreada da figura, incluindo as fronteiras, é:

$$\left|z - 2\cos\left(\frac{4\pi}{5}\right)\right| \le 2\sin\left(\frac{4\pi}{5}\right) \wedge \frac{4\pi}{5} \le \arg(z) \le \frac{6\pi}{5}$$

2.

2.1. Pela regra de Laplace a probabilidade de um acontecimento é o quociente entre o número de casos favoráveis ao acontecimento e o número de casos possíveis, desde que os acontecimentos elementares sejam equiprováveis.

Como se sabe que entre os quatro funcionários escolhidos pelo menos dois são do sexo masculino, o número de casos possíveis é ${}^7C_2 \times {}^3C_2 + {}^7C_3 \times {}^3C_1 + {}^7C_4 = {}^7C_2 \times {}^3C_2 + {}^7C_3 \times 3 + {}^7C_4$: dos sete homens escolhem-se dois e das três mulheres escolhem-se duas ou dos sete homens escolhem-se três e das três mulheres escolhe-se uma ou dos sete homens escolhem-se quatro. Pretende-se calcular a probabilidade de os quatro funcionários escolhidos serem homens. Portanto, o número de casos favoráveis é 7C_4 : dos sete homens escolhem-se quatro.

 $\text{Logo, pela regra de Laplace, a probabilidade pedida \'e} \ \ \frac{^7C_4}{^7C_2\times ^3C_2+^7C_3\times ^3C_1+^7C_4} \ .$

2.2. A variável aleatória Y: «altura das funcionárias da empresa» tem distribuição normal de valor médio 162 cm e P(Y > 168) = 0,2. Tem em atenção a seguinte figura:

Tem-se que P(156 < Y < 162) = P(162 < Y < 168) = 0,5 - 0,2 = 0,3.

A variável aleatória X: «número de funcionárias do Departamento Financeiro com altura entre 156 cm e 162 cm» tem distribuição binomial de parâmetros n=3 e p=(162 < Y < 168)=0,3, ou seja, $X \sim \text{Bin}(3;0,3)$. Assim, $X=\{0,1,2,3\}$ e portanto tem-se:

•
$$P(X=0) = {}^{3}C_{0} \times (0,3)^{0} \times (1-0,3)^{3} = 0.343$$

•
$$P(X=1) = {}^{3}C_{1} \times (0,3)^{1} \times (1-0,3)^{2} = 0,441$$

•
$$P(X=2) = {}^{3}C_{2} \times (0,3)^{2} \times (1-0,3)^{1} = 0,189$$

•
$$P(X=3) = {}^{3}C_{3} \times (0.3)^{3} \times (1-0.3)^{0} = 0.027$$

Logo, a tabela de distribuição de probabilidades da variável aleatória *X* é dada por:

X_i	0	1	2	3
$P(X=x_i)$	0,343	0,441	0,189	0,027

2.3. Seja n o número de funcionárias que foram contratadas. Assim, o Departamento Financeiro da empresa fica constituído por n+10 funcionários, sete homens e n+3 mulheres.

O número de maneiras distintas de escolher dois funcionários entre os n+10 é:

$$^{n+10}C_{2} = \frac{(n+10)!}{2! \times (n+10-2)!} = \frac{(n+10)(n+9)(n+8)!}{2(n+8)!} = \frac{(n+10)(n+9)}{2}$$

O número de maneiras distintas de escolher dois funcionários do sexo feminino entre os n+3 é:

$${}^{n+3}C_2 = \frac{(n+3)!}{2! \times (n+3-2)!} = \frac{(n+3)(n+2)(n+1)!}{2(n+1)!} = \frac{(n+3)(n+2)}{2}$$

Logo, como a probabilidade de escolher ao acaso dois funcionários do Departamento Financeiro a e estes serem do sexo feminino é $\frac{4}{15}$, vem:

$$\frac{{}^{n+3}C_2}{{}^{n+10}C_2} = \frac{4}{15} \Leftrightarrow \frac{\frac{(n+3)(n+2)}{\cancel{Z}}}{\frac{(n+10)(n+9)}{\cancel{Z}}} = \frac{4}{15} \Leftrightarrow \frac{(n^2+2n+3n+6)}{(n^2+9n+10n+90)} = \frac{4}{15} \Leftrightarrow 15(n^2+5n+6) = 4(n^2+19n+90) \Leftrightarrow$$

$$\Leftrightarrow 15n^2 + 75n + 90 = 4n^2 + 76n + 360 \Leftrightarrow 11n^2 - n - 270 = 0 \Leftrightarrow n = \frac{1 \pm \sqrt{(-1)^2 - 4 \times 11 \times (-270)}}{2 \times 11} \Leftrightarrow 2 + 15n^2 + 1$$

$$\Leftrightarrow n = \frac{1 \pm \sqrt{11881}}{22} \Leftrightarrow n = \frac{1 - 109}{22} \quad \lor \quad n = \frac{1 + 109}{22} \Leftrightarrow n = -\frac{54}{11} \quad \lor \quad n = 5$$

Portanto, foram contratadas cinco funcionárias para o Departamento Financeiro.

3.

3.1.
$$3x - \ln(3-x) - f(x) \ge \ln(2x+2)$$

■
$$D = \left\{ x \in \mathbb{R} : 3 - x > 0 \land \underbrace{x^2 + 2 > 0}_{Condição\ Universal} \land 2x + 2 > 0 \right\} = \left\{ x \in \mathbb{R} : x < 3 \land x > -1 \right\} = \left[-1, 3 \right]$$

Neste domínio tem-se

$$3x - \ln(3-x) - f(x) \ge \ln(2x+2) \Leftrightarrow 3x - \ln(3-x) - \left(3x - \ln(x^2+2)\right) \ge \ln(2x+2) \Leftrightarrow$$

$$\Leftrightarrow 3x - \ln(3-x) - 3x + \ln(x^2+2) \ge \ln(2x+2) \Leftrightarrow \ln(x^2+2) \ge \ln(2x+2) + \ln(3-x) \Leftrightarrow$$

$$\Leftrightarrow \ln(x^2+2) \ge \ln((2x+2)(3-x)) \Leftrightarrow x^2 + 2 \ge 6x - 2x^2 + 6 - 2x \Leftrightarrow 3x^2 - 4x - 4 \ge 0$$

Cálculo Auxiliar: Tem-se
$$3x^2 - 4x - 4 = 0 \Leftrightarrow x = \frac{4 \pm \sqrt{(-4)^2 - 4 \times 3 \times (-4)}}{2 \times 3} \Leftrightarrow x = -\frac{2}{3} \lor x = 2$$

Como a função $y=3x^2-4x-4$ é quadrática e o seu gráfico tem a concavidade voltada para cima, então as soluções da inequação $3x^2-4x-4 \ge 0$ são os valores de x tais que $x \in \left] -\infty, -\frac{2}{3} \right] \cup \left[2, +\infty \right[$.

Tendo em conta o domínio D calculado, os valores de x que satisfazem a inequação dada são os valores de x que satisfazem a condição -1 < x < 3 $\land \left(x \le -\frac{2}{3} \lor x \ge 2 \right)$:

Conjunto Solução:
$$\left]-1,\frac{2}{3}\right] \cup \left[2,3\right[$$

3.2.

Assimptotas verticais

$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} \frac{f(x)}{x} = \lim_{x \to 0^{-}} \frac{3x - \ln(x^{2} + 2)}{x} = \frac{3 \times 0 - \ln(0^{2} + 2)}{0^{-}} = \frac{-\ln 2}{0^{-}} = +\infty$$

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^-} \frac{f(x)}{x} = \lim_{x \to 0^+} \frac{3x - \ln(x^2 + 2)}{x} = \frac{3 \times 0 - \ln(0^2 + 2)}{0^+} = \frac{-\ln 2}{0^+} = -\infty$$

Logo, a recta de equação $\,x=0\,$ é assimptota vertical do gráfico de $\,g.\,$

Como a função g é contínua em $\mathbb{R}\setminus\{0\}$, o seu gráfico não tem mais assimptotas verticais.

Assimptotas n\u00e3o verticais

$$m = \lim_{x \to -\infty} \frac{g(x)}{x} = \lim_{x \to -\infty} \frac{\frac{f(x)}{x}}{x} = \lim_{x \to -\infty} \frac{f(x)}{x^2} = \lim_{x \to -\infty} \frac{3x - \ln(x^2 + 2)}{x^2} = \lim_{x \to -\infty} \frac{3\cancel{x}}{x^2} - \lim_{x \to -\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to -\infty} \frac{3\cancel{x}}{x^2} = \lim$$

$$= \lim_{x \to -\infty} \frac{3}{x} - \lim_{x \to -\infty} \frac{\ln(x^2 + 2)}{x^2 + 2} \times \lim_{x \to -\infty} \frac{x^2 + 2}{x^2} = \frac{3}{10} - 0 \times \lim_{x \to -\infty} \frac{x^2}{x^2} = 0 - 0 \times 1 = 0$$

$$b = \lim_{x \to -\infty} \left(g\left(x\right) - mx \right) = \lim_{x \to -\infty} \frac{f\left(x\right)}{x} = \lim_{x \to -\infty} \frac{3x - \ln\left(x^2 + 2\right)}{x} = \lim_{x \to -\infty} \frac{3x}{x} - \lim_{x \to -\infty} \frac{\ln\left(x^2 + 2\right)}{x} = \lim_{x \to -\infty} \frac{3x}{x} - \lim_{x \to -\infty} \frac{\ln\left(x^2 + 2\right)}{x} = \lim_{x \to -\infty} \frac{3x}{x} - \lim_{x \to -\infty} \frac{\ln\left(x^2 + 2\right)}{x} = \lim_{x \to -\infty} \frac{3x}{x} - \lim_{x \to -\infty} \frac{\ln\left(x^2 + 2\right)}{x} = \lim_{x \to -\infty} \frac{3x}{x} - \lim_{x \to -\infty} \frac{\ln\left(x^2 + 2\right)}{x} = \lim_{x \to -\infty} \frac{3x}{x} - \lim_{x \to -\infty} \frac{\ln\left(x^2 + 2\right)}{x} = \lim_{x \to -\infty} \frac{3x}{x} - \lim_{x \to -\infty} \frac{\ln\left(x^2 + 2\right)}{x} = \lim_{x \to -\infty} \frac{3x}{x} - \lim_{x \to -\infty} \frac{\ln\left(x^2 + 2\right)}{x} = \lim_{x \to -\infty} \frac{3x}{x} - \lim_{x \to -\infty} \frac{\ln\left(x^2 + 2\right)}{x} = \lim_{x \to -\infty} \frac{3x}{x} - \lim_{x \to -\infty} \frac{\ln\left(x^2 + 2\right)}{x} = \lim_{x \to -\infty} \frac{3x}{x} - \lim_{x \to -\infty} \frac{\ln\left(x^2 + 2\right)}{x} = \lim_{x \to -\infty} \frac{3x}{x} - \lim_{x \to -\infty} \frac{\ln\left(x^2 + 2\right)}{x} = \lim_{x \to -\infty} \frac{\ln\left(x^$$

$$= 3 - \lim_{y \to +\infty} \frac{\ln\left((-y)^2 + 2\right)}{-y} = 3 + \lim_{y \to +\infty} \frac{\ln\left(y^2 + 2\right)}{y} = 3 + \lim_{y \to +\infty} \frac{\ln\left(y^2\left(1 + \frac{2}{y^2}\right)\right)}{y} = 3 + \lim_{y \to +\infty} \frac{\ln\left(y^2\right) + \ln\left(1 + \frac{2}{y^2}\right)}{y} = 3 + \lim_{y \to +\infty} \frac{\ln\left(y^2 + 2\right$$

$$= 3 + \lim_{y \to +\infty} \frac{2\ln y}{y} + \lim_{y \to +\infty} \frac{\ln\left(1 + \frac{2}{y^2}\right)}{y} = 3 + 2 \times \lim_{y \to +\infty} \frac{\ln y}{y} + \frac{\ln\left(1 + \frac{2}{+\infty}\right)}{+\infty} = 3 + 2 \times 0 + \frac{\ln 1}{+\infty} = 3 + \frac{0}{+\infty} = 3 + 0 = 3$$

i) Se
$$x \to -\infty$$
 então $x^2 + 2 \to +\infty$. Portanto $\lim_{x \to -\infty} \frac{\ln(x^2 + 2)}{x^2 + 2} = 0$ (limite notável).

ii) Mudança de variável: Se $x \to -\infty$ então $-x \to +\infty$ Seja $y = -x \Leftrightarrow x = -y$, $y \to +\infty$.

Logo, a recta de equação y=3 é assimptota horizontal do gráfico de g, quando $x \rightarrow -\infty$.

$$m = \lim_{x \to +\infty} \frac{g(x)}{x} = \lim_{x \to +\infty} \frac{\frac{f(x)}{x}}{x} = \lim_{x \to +\infty} \frac{f(x)}{x^2} = \lim_{x \to +\infty} \frac{3x - \ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{1}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{1}{x^2} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2} = \lim_{x \to +\infty} \frac{1}{x^2} - \lim_{x \to +\infty} \frac{1}{x^2} - \lim_{x \to +\infty} \frac{1}{x^2} = \lim_{x \to +\infty} \frac{1}{x^2} - \lim_{x \to +\infty} \frac{1}{x^2} = \lim_{x \to +\infty} \frac{1}{x^2} - \lim_{x \to +\infty} \frac{1}{x^2} - \lim_{x \to +\infty} \frac{1}{x^2} = \lim_{x \to +\infty} \frac{1}{x^2} - \lim_{x \to +\infty} \frac{1}{x^2} = \lim_{x \to +\infty} \frac{1}{x^2} - \lim_{x \to +\infty} \frac{1}{x^2} = \lim_{x \to +\infty} \frac{1}{x^2} - \lim_{x \to +\infty} \frac{1}{x^2} = \lim_{x \to +\infty} \frac{1}{x^2} - \lim_{x \to +\infty} \frac{1}{x^2} = \lim_{x \to +\infty} \frac{1}{x^2} - \lim_{x \to +\infty} \frac{1}{x^2} = \lim_{x \to +\infty} \frac{1}{x^2} - \lim_{x \to +\infty} \frac{1}{x^2} = \lim_{x \to +\infty} \frac{1}{x^2} - \lim_{x \to +\infty} \frac{1}{x^2} = \lim_{x \to +\infty} \frac{1}{x^2} - \lim_{x \to +\infty} \frac{1}{x^2} = \lim_{x \to +\infty} \frac{1}{x^2} - \lim_{x \to$$

$$= \lim_{x \to +\infty} \frac{3}{x} - \lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2 + 2} \times \lim_{x \to +\infty} \frac{x^2 + 2}{x^2} = \frac{3}{i} - 0 \times \lim_{x \to +\infty} \frac{x^2}{x^2} = 0 - 0 \times 1 = 0$$

$$b = \lim_{x \to +\infty} \left(g\left(x\right) - mx \right) = \lim_{x \to +\infty} \frac{f\left(x\right)}{x} = \lim_{x \to +\infty} \frac{3x - \ln\left(x^2 + 2\right)}{x} = \lim_{x \to +\infty} \frac{3x}{x} - \lim_{x \to +\infty} \frac{\ln\left(x^2 \left(1 + \frac{2}{x^2}\right)\right)}{x} = \lim_{x \to +\infty} \frac{3x - \ln\left(x^2 + 2\right)}{x} = \lim_{x \to +\infty} \frac{3x - \ln\left(x - 2\right)}{x} = \lim_{x \to +\infty} \frac{3x - \ln\left(x - 2\right)}{x} = \lim_{x \to +\infty} \frac{3x - \ln\left(x - 2\right)}{x} = \lim_{x \to +\infty} \frac{3x - \ln\left(x - 2\right)}{x} = \lim_{x \to +\infty} \frac{3x - \ln\left(x - 2\right)}{x} = \lim_{x \to +\infty} \frac{3x - \ln\left(x - 2\right)}{x} = \lim_{x \to +\infty} \frac{3x - \ln\left(x - 2\right)}{x} = \lim_{x \to +\infty} \frac{3x - \ln\left(x - 2\right)}{x} = \lim_{x \to +\infty} \frac{3x - \ln\left(x - 2\right)}{x} = \lim_{x \to +\infty} \frac{3x - \ln\left(x - 2\right)}{x} = \lim_{x \to +\infty} \frac{3x - \ln\left(x - 2\right)}{x} = \lim_{x \to +\infty} \frac{3x - \ln\left(x - 2\right)}{x} = \lim_{x \to +\infty} \frac{3x - \ln\left(x - 2\right)}{x} = \lim_{x \to +\infty} \frac{3x -$$

$$=3+\lim_{x\to+\infty}\frac{\ln\left(x^2\right)+\ln\left(1+\frac{2}{x^2}\right)}{x}=3+\lim_{x\to+\infty}\frac{2\ln x}{x}+\lim_{x\to+\infty}\frac{\ln\left(1+\frac{2}{x^2}\right)}{x}=3+2\times\lim_{x\to+\infty}\frac{\ln x}{x}+\frac{\ln\left(1+\frac{2}{+\infty}\right)}{+\infty}=3+2\times\lim_{x\to+\infty}\frac{\ln x}{x}+\frac{\ln\left(1+\frac{2}{+\infty}\right)}{+\infty}=3+2\times\lim_{x\to+\infty}\frac{\ln x}{x}+\frac{\ln\left(1+\frac{2}{+\infty}\right)}{+\infty}=3+2\times\lim_{x\to+\infty}\frac{\ln x}{x}+\frac{\ln\left(1+\frac{2}{+\infty}\right)}{+\infty}=3+2\times\lim_{x\to+\infty}\frac{\ln x}{x}+\frac{\ln x}{x}+\frac{\ln x}{x}$$

$$=3+2\times0+\frac{\ln 1}{+\infty}=3+\frac{0}{+\infty}=3+0=3$$

i) Se
$$x \to +\infty$$
 então $x^2 + 2 \to +\infty$. Portanto $\lim_{x \to +\infty} \frac{\ln(x^2 + 2)}{x^2 + 2} = 0$ (limite notável).

Logo, a recta de equação y=3 é assimptota horizontal do gráfico de g, quando $x \to +\infty$.

3.3.

•
$$f'(x) = 3 - \frac{2x}{x^2 + 2}$$

$$f''(x) = 0 - \frac{2 \times (x^2 + 2) - 2x \times 2x}{(x^2 + 2)^2} = -\frac{2x^2 + 4 - 4x^2}{(x^2 + 2)^2} = -\frac{-2x^2 + 4}{(x^2 + 2)^2} = \frac{2x^2 - 4}{(x^2 + 2)^2}$$

•
$$f''(x) = 0 \Leftrightarrow \frac{2x^2 - 4}{\left(x^2 + 2\right)^2} = 0 \Leftrightarrow 2x^2 - 4 = 0 \quad \land \quad \underbrace{\left(x^2 + 2\right)^2 \neq 0}_{Condição\ Universal} \Leftrightarrow x^2 = 2 \Leftrightarrow x = -\sqrt{2} \quad \lor \quad x = \sqrt{2}$$

Fazendo um quadro de variação do sinal da função f", vem:

х	-∞	$-\sqrt{2}$		$\sqrt{2}$	+∞
$2x^2 - 4$	+	0	_	0	+
$\left(x^2+2\right)^2$	+	+	+	+	+
f''(x)	+	0	-	0	+
f(x)	U	p.i.	\cap	p.i.	y &

O gráfico da função f tem a concavidade votada para baixo em $\left\lceil -\sqrt{2},\sqrt{2}\right\rceil$, tem a concavidade votada para cima em $-\infty, -\sqrt{2}$ e em $\sqrt{2}, +\infty$ e tem pontos de inflexão em $x = -\sqrt{2}$ e em $x = \sqrt{2}$.

- 4. Pretende-se mostrar que os gráficos de f e g se intersectam pelo menos uma vez em cada intervalo do tipo [k, k+1], com $k \in \mathbb{N}$, ou seja, pretende-se mostrar que existe pelo menos um $c \in [k, k+1]$, com $k \in \mathbb{N}$, tal que $f(c) = g(c) \Leftrightarrow f(c) - g(c) = 0$.
- Seja h a função de domínio \mathbb{R} definida por h(x) = f(x) g(x). h é contínua em \mathbb{R} , pois é a diferença entre funções contínuas em $\mathbb R$. Logo, h é contínua em cada intervalo do tipo $[k,k+1] \subset \mathbb R$, com $k \in \mathbb N$.

• *k* par:

$$h(k) = f(k) - g(k) = (-1)^{k} \times (k^{2} + k) - \underbrace{(-1)^{k+1}}_{-1} \times k^{3} = k^{2} + k + k^{3} > 0$$

$$h(k+1) = f(k+1) - g(k+1) = \underbrace{(-1)^{k+1}}_{-1} \times \Big((k+1)^2 + k + 1\Big) - \underbrace{(-1)^{k+2}}_{1} \times (k+1)^3 = -\Big((k+1)^2 + k + 1\Big) - (k+1)^3 = -(k+1)^2 - (k+1) - (k+1)^3 = -(k+1)(k+1+1+(k+1)^2) = -(k+1)(k^2 + 2k + 1 + k + 2) = \underbrace{(-1)^{k+1}}_{>0} \underbrace{(k+1)^2 - (k+1) - (k+1)^3}_{>0} = -(k+1)(k^2 + 3k + 3) < 0$$

$$= -\underbrace{(k+1)}_{>0} \underbrace{(k^2 + 3k + 3)}_{>0} < 0$$

• *k* ímpar:

$$h(k) = f(k) - g(k) = (-1)^{k} \times (k^{2} + k) - \underbrace{(-1)^{k+1}}_{1} \times k^{3} = -k^{2} - k - k^{3} = -\underbrace{(k^{3} + k^{2} + k)}_{>0} < 0$$

$$h(k+1) = f(k+1) - g(k+1) = \underbrace{(-1)^{k+1}}_{1} \times \Big((k+1)^{2} + k + 1\Big) - \underbrace{(-1)^{k+2}}_{-1} \times (k+1)^{3} = (k+1)^{2} + k + 1 + (k+1)^{3} = (k+1)(k+1+1+(k+1)^{2}) = \underbrace{(k+1)(k+1+1+(k+1)^{2})}_{>0} = \underbrace{(k+1)(k+1+(k+1)^{2})}_{>0} = \underbrace{(k+1)(k+1)(k+1+(k+1)^{2})}_{>0} = \underbrace{(k+1)(k+1)(k+1)}_{>0} =$$

Nota: $(-1)^n = \begin{cases} -1 & \text{se} & n \text{ impar} \\ 1 & \text{se} & n \text{ par} \end{cases}$. Se k é par, então k+1 é impar e k+1 é par. Se k é impar, então k+1 é par e k+1 é impar.

Assim, como h é contínua em cada intervalo do tipo [k,k+1], com $k \in \mathbb{N}$ e como h(k) e h(k+1) têm sinais contrários, $\forall k \in \mathbb{N}$ $(h(k) \times h(k+1) < 0)$, pelo corolário do teorema de Bolzano:

$$\exists c \in]k, k+1[:k(c)=0 \Leftrightarrow f(c)-g(c)=0 \Leftrightarrow f(c)=g(c)$$

Ou seja, os gráficos de f e g se intersectam pelo menos uma vez em cada intervalo do tipo [k,k+1], com $k \in \mathbb{N}$.

5.

5.1. Tem-se que
$$h\left(\frac{\pi}{2}\right) = \operatorname{sen}\left(2 \times \frac{\pi}{2}\right) - 2\operatorname{sen}\left(\frac{\pi}{2}\right) = \operatorname{sen}\pi - 2 \times 1 = 0 - 2 = -2$$
. Assim:

$$h'\left(\frac{\pi}{2}\right) = \lim_{x \to \frac{\pi}{2}} \frac{h(x) - h\left(\frac{\pi}{2}\right)}{x - \frac{\pi}{2}} = \lim_{x \to \frac{\pi}{2}} \frac{\operatorname{sen}(2x) - 2\operatorname{sen}x + 2}{x - \frac{\pi}{2}} = \lim_{x \to \frac{\pi}{2}} \frac{\operatorname{sen}\left(2\left(y + \frac{\pi}{2}\right)\right) - 2\operatorname{sen}\left(y + \frac{\pi}{2}\right) + 2}{y} = \lim_{x \to \frac{\pi}{2}} \frac{\operatorname{sen}\left(2x\right) - 2\operatorname{sen}x + 2}{x - \frac{\pi}{2}} = \lim_{x \to \frac{\pi}{2}} \frac{\operatorname{sen}\left(2\left(y + \frac{\pi}{2}\right)\right) - 2\operatorname{sen}\left(y + \frac{\pi}{2}\right) + 2}{y} = \lim_{x \to \frac{\pi}{2}} \frac{\operatorname{sen}\left(2x\right) - 2\operatorname{sen}x + 2}{x - \frac{\pi}{2}} = \lim_{x \to \frac{\pi}{2}} \frac{\operatorname{sen}\left(2x\right) - 2\operatorname{sen}x + 2}{x - \frac{\pi}{2}} = \lim_{x \to \infty} \frac{\operatorname{sen}\left(2\left(y + \frac{\pi}{2}\right)\right) - 2\operatorname{sen}\left(y + \frac{\pi}{2}\right) + 2}{y} = \lim_{x \to \infty} \frac{\operatorname{sen}\left(2x\right) - 2\operatorname{sen}x + 2}{x - \frac{\pi}{2}} = \lim_{x \to \infty} \frac{\operatorname{sen}\left(2\left(y + \frac{\pi}{2}\right)\right) - 2\operatorname{sen}\left(y + \frac{\pi}{2}\right) + 2}{y} = \lim_{x \to \infty} \frac{\operatorname{sen}\left(2x\right) - 2\operatorname{sen}\left(y + \frac{\pi}{2}\right) + 2}{x - \frac{\pi}{2}} = \lim_{x \to \infty} \frac{\operatorname{sen}\left(2x\right) - 2\operatorname{sen}\left(y + \frac{\pi}{2}\right) + 2}{x - \frac{\pi}{2}} = \lim_{x \to \infty} \frac{\operatorname{sen}\left(2x\right) - 2\operatorname{sen}\left(y + \frac{\pi}{2}\right) + 2}{x - \frac{\pi}{2}} = \lim_{x \to \infty} \frac{\operatorname{sen}\left(2x\right) - 2\operatorname{sen}\left(y + \frac{\pi}{2}\right) + 2}{x - \frac{\pi}{2}} = \lim_{x \to \infty} \frac{\operatorname{sen}\left(2x\right) - 2\operatorname{sen}\left(y + \frac{\pi}{2}\right) + 2}{x - \frac{\pi}{2}} = \lim_{x \to \infty} \frac{\operatorname{sen}\left(2x\right) - 2\operatorname{sen}\left(y + \frac{\pi}{2}\right) + 2}{x - \frac{\pi}{2}} = \lim_{x \to \infty} \frac{\operatorname{sen}\left(2x\right) - 2\operatorname{sen}\left(y + \frac{\pi}{2}\right) + 2\operatorname{sen}\left(y + \frac{\pi}$$

$$= \lim_{ii)} \frac{\sin(2y+\pi) - 2\cos y + 2}{y} = \lim_{ii)} \frac{-\sin(2y) - 2\cos y + 2}{y} = \lim_{y \to 0} \frac{-\sin(2y)}{y} + \lim_{y \to 0} \frac{-2\cos y + 2}{y} = \lim_{y \to 0} \frac{-\sin(2y) - 2\cos y + 2}{y} = \lim_{y \to 0} \frac{-\sin(2y) - 2\cos y + 2}{y} = \lim_{y \to 0} \frac{-\sin(2y) - 2\cos y + 2}{y} = \lim_{y \to 0} \frac{-\sin(2y) - 2\cos y + 2}{y} = \lim_{y \to 0} \frac{-\sin(2y) - 2\cos y + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) + 2}{y} = \lim_{y \to 0} \frac{-\cos(2y) - 2\cos(2y) + 2}{y}$$

$$= -\frac{2}{1 + \cos y} \times \lim_{y \to 0} \frac{\sin(2y)}{2y} + 2 \times \lim_{y \to 0} \left(\frac{1 - \cos y}{y} \times \frac{1 + \cos y}{1 + \cos y} \right) = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y)} = -2 \times 1 + 2 \times \lim_{y \to 0} \frac{(1 - \cos y)(1 + \cos y)}{y(1 + \cos y$$

$$= 2 + 2 \times \lim_{y \to 0} \frac{1 - \cos^2 y}{y(1 + \cos y)} = -2 + 2 \times \lim_{y \to 0} \frac{\sin^2 y}{y(1 + \cos y)} = -2 + 2 \times \lim_{y \to 0} \frac{\sin y}{y} \times \lim_{y \to 0} \frac{\sin y}{1 + \cos y} = -2 + 2 \times \lim_{y \to 0} \frac{\sin y}{y(1 + \cos y)} = -2 + 2 \times \lim_{y \to$$

$$= -2 + 2 \times 1 \times \frac{\operatorname{sen}(0)}{1 + \cos(0)} = -2 + 2 \times \frac{0}{1+1} = -2 + 2 \times 0 = -2$$

i) Mudança de variável: Se
$$x \to \frac{\pi}{2}$$
 então $x - \frac{\pi}{2} \to 0$ Seja $y = x - \frac{\pi}{2} \Leftrightarrow x = y + \frac{\pi}{2}, \ y \to 0$.

ii) Recorrendo ao Círculo Trigonométrico, verifica-se que
$$\operatorname{sen}(2y+\pi) = -\operatorname{sen}(2y)$$
 e $\operatorname{sen}(y+\frac{\pi}{2}) = \cos y$.

5.2. Comecemos por fazer uma representação do triângulo [*OPQ*]:

A área do triângulo [OPQ] é dada por $\frac{\overline{OQ} \times \overline{QP}}{2}$. Tem-se que $\overline{OQ} = x$ e $\overline{QP} = |f(x)| = -f(x)$, pois f(x) < 0, $\forall x \in [0,\pi]$. Assim:

$$A_{[OPQ]} = \frac{\overline{OQ} \times \overline{QP}}{2} = \frac{x(-\sin(2x) + 2\sin x)}{2} = \frac{2x \sin x - x \sin(2x)}{2}$$

Utilizando o editor de funções da calculadora, define-se $y_1 = \frac{2x \sin x - x \sin(2x)}{2}$ na janela de visualização $[0,\pi] \times [0,4]$.

A área do triângulo [OPQ] é máxima se x = a, com $a \approx 2,3$.

5.3. Comecemos por ter em atenção a figura:

A área do polígono [ABOCD] é dada por:

$$A_{\left[ABOCD\right]} = A_{\left[ABO\right]} + A_{\left[ODC\right]} = \frac{\overline{OA} \times h}{2} + \frac{\overline{OD} \times \overline{CD}}{2}$$

Uma equação da circunferência é $x^2+y^2=4$, logo o seu a medida do seu raio é 2. Como os ângulos AOB e COD são verticalmente oposto, então $h=\overline{CD}$. Assim:

$$A_{[ABOCD]} = \frac{\cancel{Z} \times \overline{CD}}{\cancel{Z}} + \frac{\overline{OD} \times \overline{CD}}{2} = \overline{CD} + \frac{\overline{OD} \times \overline{CD}}{2}$$

Como as coordenadas do ponto C são com tipo $C(2\cos\alpha, 2\sin\alpha)$, onde $2\cos\alpha < 0$ e $2\sin\alpha < 0$, pois $\alpha \in \left[\pi, \frac{3\pi}{2}\right]$. Portanto, $\overline{CD} = -2 \operatorname{sen} \alpha$ e $\overline{OD} = -2 \operatorname{cos} \alpha$. Assim:

$$A_{[ABOCD]} = \overline{CD} + \frac{\overline{OD} \times \overline{CD}}{2} = -2 \operatorname{sen} \alpha + \frac{-\cancel{2} \cos \alpha \times (-2 \operatorname{sen} \alpha)}{\cancel{2}} = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha = -2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha = -2 \operatorname{$$

$$= \operatorname{sen}(2\alpha) - 2\operatorname{sen}\alpha = h(\alpha)$$

Nota: Seja *A* um ponto pertencente a uma circunferência centrada na origem e raio *r*

As coordenadas do ponto A são dada por $A(r\cos\alpha, r\sin\alpha)$

As coordenadas do ponto A são dada por $A(r\cos\beta, r\sin\beta)$

Para determinar o valor de α para o qual a área do polígono [ABOCD] é máxima, recorre-se ao estudo do sinal de h':

•
$$h'(\alpha) = 2\cos(2\alpha) - 2\cos\alpha$$

•
$$h'(\alpha) = 0 \Leftrightarrow 2\cos(2\alpha) - 2\cos\alpha = 0 \Leftrightarrow 2\cos(2\alpha) = 2\cos\alpha \Leftrightarrow \cos(2\alpha) = \cos\alpha \Leftrightarrow$$

$$\Leftrightarrow 2\alpha = \alpha + 2k\pi \quad \forall 2\alpha = -\alpha + 2k\pi, \quad k \in \mathbb{Z} \Leftrightarrow \alpha = 2k\pi \quad \forall 3\alpha = 2k\pi, \quad k \in \mathbb{Z} \Leftrightarrow$$
$$\Leftrightarrow \alpha = 2k\pi \quad \forall \alpha = \frac{2k\pi}{3}, \quad k \in \mathbb{Z}$$

$$\Leftrightarrow \alpha = 2k\pi \quad \forall \alpha = \frac{2k\pi}{3}, \quad k \in \mathbb{Z}$$

Como
$$\alpha \in \left[\pi, \frac{3\pi}{2}\right]$$
, vem $\alpha = \frac{4\pi}{3}$ $(k=2)$

Fazendo um quadro de variação do sinal da função $\,h'$, vem:

α	π		$\frac{4\pi}{3}$		$\frac{4\pi}{3}$
h'(lpha)	n.d.	+	0	_	n.d.
h(lpha)	n.d.	7	máx.	7	n.d.

A área do polígono [ABOCD] é máxima se $\alpha = \frac{4\pi}{3}$. O valor dessa área máxima é dado por:

$$h\left(\frac{4\pi}{3}\right) = \operatorname{sen}\left(2 \times \frac{4\pi}{3}\right) - 2\operatorname{sen}\left(\frac{4\pi}{3}\right) = \operatorname{sen}\left(\frac{8\pi}{3}\right) - 2\left(-\frac{\sqrt{3}}{2}\right) = \operatorname{sen}\left(\frac{8\pi}{3} - 2\pi\right) + \sqrt{3} = \operatorname{sen}\left(\frac{2\pi}{3}\right) + \operatorname{sen}\left(\frac{2\pi}{3}\right) + \sqrt{3} = \operatorname{sen}\left(\frac{2\pi}{3}\right) + \operatorname{sen}\left(\frac{2$$

6.

6.1. Os planos *ABF* e *BCF* é a recta *BF*. Assim:

$$\begin{cases} 6x + 2y + z = 34 & (E_1) \\ 8x + 32y + 5z = 192 & (E_2) \end{cases} \xrightarrow{-5E_1+E_2} \begin{cases} 6x + 2y + z = 34 \\ -22x + 22y = 22 \end{cases} \xrightarrow{\frac{E_2}{22}} \begin{cases} -x + y = 1 \end{cases} \Leftrightarrow \begin{cases} 6x + 2(x+1) + z = 34 \\ y = x + 1 \end{cases} \Leftrightarrow \begin{cases} -22x + 22y = 22 \end{cases} \Rightarrow \begin{cases} -22x + 22y =$$

$$\Leftrightarrow \begin{cases} 6x + 2x + 2 + z = 34 \\ y = x + 1 \end{cases} \Leftrightarrow \begin{cases} 8x + z = 32 \\ y = x + 1 \end{cases} \Leftrightarrow \begin{cases} x = \frac{32 - z}{8} \\ y - 1 = x \end{cases} \qquad \begin{cases} -5E_1 + E_2 : -30x - 10y - 5z = -170 \\ \frac{8x + 32y + 5z = 192}{-22x + 22y + 0 = 22} \end{cases}$$

Logo, as equações cartesianas da recta *BF* podem ser $x = y - 1 = \frac{32 - z}{8}$

6.2.

• O ponto A pertence ao plano xOy. Portanto, as suas coordenadas são do tipo A(x, y, 0). Como A pertence à recta AF, vem:

$$(x,y,0) = (6-3k,5k-1,8k), \quad k \in \mathbb{R} \Leftrightarrow \begin{cases} x = 6-3k \\ y = 5k-1 \Leftrightarrow \\ 0 = 8k \end{cases} \begin{cases} x = 6 \\ y = -1 \\ k = 0 \end{cases}$$

Logo, A(6,-1,0).

O ponto C pertence ao eixo Oy. Portanto, as suas coordenadas são do tipo C(0, y, 0). Como C pertence ao plano BCF, vem:

$$8 \times 0 + 32y + 5 \times 0 = 192 \Leftrightarrow y = \frac{192}{32} \Leftrightarrow y = 6$$

Logo, C(0,6,0).

• F é o ponto de intersecção entre a recta AF e o plano BCF. (não podemos usar o plano ABF pois a recta AF está contida nesse plano). Assim:

$$\begin{cases} (x, y, z) = (6 - 3k, 5k - 1, 8k), & k \in \mathbb{R} \\ 8x + 32y + 5z = 192 \end{cases} \Leftrightarrow \begin{cases} x = 6 - 3k \\ y = 5k - 1 \\ z = 8k \\ 8(6 - 3k) + 32(5k - 1) + 5 \times 8k = 192 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2k} \\ -\frac{1}{2k} \\ -\frac{1}{2k} \\ -\frac{1}{2k} \end{cases} \Leftrightarrow \begin{cases} x = 3 \\ y = 4 \\ z = 8k \\ k = 1 \end{cases}$$

Logo, F(3,4,8).

• Seja $\vec{n} = (a,b,c)$ um vector normal ao plano ACF. Este vector é perpendicular aos vetores \overrightarrow{AC} e \overrightarrow{AF} , dois vectores não colineares do plano ACF. Assim tem-se:

$$\begin{cases}
\overrightarrow{AC} \cdot \overrightarrow{n} = 0 \\
\overrightarrow{AF} \cdot \overrightarrow{n} = 0
\end{cases}
\Leftrightarrow
\begin{cases}
(-6,7,0) \cdot (a,b,c) = 0 \\
(-3,5,8) \cdot (a,b,c) = 0
\end{cases}
\Leftrightarrow
\begin{cases}
-6a + 7b = 0 \\
-3a + 5b + 8c = 0
\end{cases}
\Leftrightarrow
\begin{cases}
a = \frac{7b}{6} \\
-3 \times \frac{7b}{6} + 5b + 8c = 0
\end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{1}{-7b} \\ -\frac{7b}{2} + 5b + 8c = 0 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{-7b + 10b + 16c} \\ -7b + 10b + 16c = 0 \end{cases} \Leftrightarrow \begin{cases} a = \frac{7b}{6} \\ c = -\frac{3b}{16} \end{cases}$$

Concluímos então que as coordenadas do vetor \vec{n} são da forma $\vec{n} = \left(\frac{7b}{6}, b, -\frac{3b}{16}\right)$, com $b \in \mathbb{R} \setminus \{0\}$. Fazendo, por exemplo, b = 48 (m.m.c.(6,16) = 48), um vector normal de ACF é $\vec{n} = \left(56,48,-9\right)$. Logo, como $C \in ACF$, uma equação do plano ACF é:

$$56(x-0)+48(y-6)-9(z-0)=0 \Leftrightarrow 56x+48y-288-9z=0 \Leftrightarrow 56x+48y-9z=288$$

De uma outra forma:

O plano ACF pode ser definido por uma equação do tipo 56x + 48y - 9z = d. Como o ponto C pertence ao plano ACF, vem:

$$56 \times 0 + 48 \times 6 - 9 \times 0 = d \Leftrightarrow d = 288$$

Logo, uma equação do plano ACF é 56x + 48y - 9z = 288.

Cálculos Auxiliares: $\overrightarrow{AC} = C - A = (0,6,0) - (6,-1,0) = (-6,7,0)$; $\overrightarrow{AF} = F - A = (3,4,8) - (6,-1,0) = (-3,5,8)$