CS 577: Natural Language Processing

Investigating Knowlege Graph Completion with Pre-trained Language model and Graph Neural Networks

Amit Roy Taisuke Mori

Computer Science Purdue University

Outline

- Introduction
- Methods
- Experimental Design
- Results
- Discussion

Introduction

- Predicting missing links between entities in knowledge graph is useful for many applications
 - Question answering
 - Information retrieval, etc.
- Several possible approaches
 - GNN-based: encode graph structure well (RGCN)
 - Language model-based: exploit textual information related to entities and relations (BERT)
- We aim to combine two lines of research together to achieve the best of both worlds!

Method: BERT-RGCN

- Goal: learning a function that gives a higher score for a true triplet (entity1, relation, entity2)
- We feed pre-trained BERT embeddings to the input layer of R-GCN as entity and relation representation
- Due to memory constraint, we fix the BERT embeddings during training and test

Experimental Design

- Datasets
 - WN18, WN18RR, FB15k-237
- Baseline
 - R-GCN
- Evaluation
 - Create a ranking for each true triplet with dummy triplets based on the scores of the model and compute the ranking metrics over test set
 - MRR
 - Hits@k (k = 1, 3, 10)

Triplet	Score
(Purdue, is_in, TX)	80
(Purdue, is_in, IN)	75
(Purdue, is_in, IL)	70
(Purdue, is_in, CA)	60
(Purdue, is_in, NY)	50

Results: WN18

Dataset	R-GCN	BERT-RGCN
MRR (filtered)	0.003353	0.002122
Hits (filtered) @ 1	0.000729	0.000298
Hits (filtered) @ 3	0.001943	0.001043
Hits (filtered) @ 10	0.006412	0.006553

Results: WN18RR

Dataset	R-GCN	BERT-RGCN
MRR (filtered)	0.000228	0.000693
Hits (filtered) @ 1	0.000002	0.000160
Hits (filtered) @ 3	0.000005	0.001043
Hits (filtered) @ 10	0.000008	0.000957

Results: FB15k-237

Dataset	R-GCN	BERT-RGCN
MRR (filtered)	0.000798	0.000657
Hits (filtered) @ 1	0.000400	0.000024
Hits (filtered) @ 3	0.000600	0.000513
Hits (filtered) @ 10	0.001200	0.000684

Discussion

- For WN18RR, BERT-RGCN performs better than R-GCN
- However, the other two datasets, the performance of BERT-RGCN is worse
- Possible reason:
 - Training does not proceed well
 - Possibly the model underfits because embeddings are fixed
 - With fine-tuning, the performance may improve

Training Loss for WN18 dataset (100 - 1000 epochs)

