PX4 Autopilot

Firmware Guide (Spring-22)

Multicopter Control Architecture

Multicopter Control Architecture

- http://docs.px4.io/master/en/concept/architecture.html
- http://docs.px4.io/master/en/concept/px4_systems_architecture.html
- https://www.youtube.com/watch?v=nEo4WGI4Lgc&t=118s

Multicopter Control Architecture

Controller Diagrams

This section contains diagrams for the main PX4 controllers.

The diagrams use the standard PX4 notation (and each have an annotated legend).

Multicopter Control Architecture

- This is a standard cascaded control architecture.
- The controllers are a mix of P and PID controllers.
- Estimates come from EKF2.
- · Depending on the mode, the outer (position) loop is bypassed (shown as a multiplexer after the outer loop). The position loop is only used when holding position or when the requested velocity in an axis is null.

http://docs.px4.io/master/en/flight_stack/controller_diagrams.html

Github Repo

https://github.com/PX4/PX4-Autopilot/blob/master/src/modules

- mc_pos_control
 - **PositionControl**
 - PositionControl.cpp a.
 - b. PositionControl.hpp
 - MulticopterPositionControl.cpp
 - MulticopterPositionControl.hpp

- mc_att_control
 - AttitudeControl
 - AttitudeControl.cpp a.
 - AttitudeControl.hpp
 - mc_att_control.cpp
 - mc_att_control.hpp

Position & Velocity Control

Position & Velocity Control

http://docs.px4.io/master/en/flight_stack/controller_diagrams.html

Codeflow

mc_pos_control:

CERLAB.

Setpoint Hierarchy

- If position-setpoint && velocitysetpoint true:
 - (Velocity component of P-Controller) >>> (feedforward component from velocity-setpoint)
- If position/velocity-setpoint && thrust-setpoint true:
 - thrust-setpoint omitted and recomputed from next cascade/step in the architecture (i.e. Velocity PID controller)


```
53
54
             Core Position-Control for MC.
55
             This class contains P-controller for position and
            PID-controller for velocity.
             Inputs:
                     vehicle position/velocity/yaw
                     desired set-point position/velocity/thrust/yaw/yaw-speed
                     constraints that are stricter than global limits
            Output
                     thrust vector and a yaw-setpoint
            If there is a position and a velocity set-point present, then
             the velocity set-point is used as feed-forward. If feed-forward is
             active, then the velocity component of the P-controller output has
             priority over the feed-forward component.
             A setpoint that is NAN is considered as not set.
            If there is a position/velocity- and thrust-setpoint present, then
         the thrust-setpoint is ommitted and recomputed from position-velocity-PID-loop.
73
     class PositionControl
```

mc_pos_control/PositionControl/PositionControl.hpp

Hover Thrust Update

- void PositionControl::updateHov erThrust(const float hover_thrust_new)
 - Line 73-85

mc_pos_control/PositionControl/PositionControl.cpp

Thrust Setpoint and Acceleration Setpoint (1)

- Output of Velocity-PID block
- void PositionControl:: accelerationControl
 - Line 197-208
 - This is called earlier in void PositionControl::_velocityControl()

mc_pos_control/PositionControl/PositionControl.cpp

Thrust Setpoint and Acceleration Setpoint (2)

- Output of Velocity-PID block
- void PositionControl::_accelerationControl
 - Line 197-208
 - This is called earlier in void PositionControl::_velocityControl()

mc_pos_control/PositionControl/PositionControl.cpp

Attitude Control

Attitude & Angular Rate Control

http://docs.px4.io/master/en/flight_stack/controller_diagrams.html **Refer this link for an additional note on IMU pipeline

Codeflow

mc_att_control: (quaternion based control: https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/154099/eth-7387-01.pdf)

Quaternion Starter-Pack

- https://www.youtube.com/watch?v=zjMulxRvygQ
- https://github.com/Optimal-Control-16-745/lecture-notebooks-2021/blob/main/Lecture%2013/Lecture%2013.pdf
- https://github.com/Optimal-Control-16-745/lecture-notebooks-2021/blob/main/Lecture%2014/Lecture%2014.pdf
- https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/154099/eth-7387-01.pdf
- https://ieeexplore.ieee.org/document/9326337

Attitude Setpoint

UUV Control Architecture

Coming soon...

**The following slides are for shapes/arrows etc. **

- 2 DIY TBS drones ready
- Relevance?
 - Experience/knowledge transfer to BlueROV platform
- **Custom Firmware**
 - Need to understand PX4 Codebase first

Drone Communication

^[1] Nvidia Developer, Jetson Xavier NX Developer Kit; Retrieved from: https://developer.nvidia.com/embedded/jetson-tx2-nx

^[2] Pixracer-R15 Flight Controller; Retrieved from: https://docs.px4.io/master/en/flight controller/pixracer.htm

Ongoing and Future Work

Hardware

Software

- **Mount Jetson Nano onboard**
- **Mount Wifi-modules/Radio telemetry** modules if necessary
- Reassess hardware design because of increased payload
- **Brainstorm Tether integration**

- **PX4 Codebase**
- **ROS offboard control**
- **OptiTrack integration**
- **Custom Control Architecture flashing**
- **Reinforcement Learning Research**

M

 Cheap Mattress → 35-50\$ each

 Gymnastic mats → 300-400\$ each