## **Supporting Information**

## Schneeberger et al. 10.1073/pnas.1107739108

## **SI Materials and Methods**

Sample preparation for Illumina sequencing. Plant DNA as well as single- and paired-end libraries were prepared as described (1, 2). *Arabidopsis* Biological Resource Center (ABRC) stock numbers for the *Arabidopsis thaliana* accessions Ler-1, Bur-0, C24, and Kro-0 are CS22686, CS22679, CS22680, and CS1301, respectively. Mate-pair libraries were prepared with kits no. 1004876 and no.1005363 preRelease (Illumina) according to manufacturer's instructions, but with 5 psi pressure and 5-s duration for the first nebulization, and 35 psi/6 s for the second. Approximately 5-kb fragments were purified in the first size selection step. Data for seven flow cell lanes of the Bur-0 paired-end library were kindly provided by Illumina.

Short Read Mapping and Consensus Analysis. Short read alignment followed by a consensus analysis was used at three different stages within the assembly. First, the read partitioning was based on short read alignments against the reference sequence. Second, short reads were aligned against supercontigs for assembly correction and scaffolding. Third, short reads were aligned against the final scaffolds for per-base quality assessment and filtering.

For each such alignment-consensus analysis we used the short read analysis pipeline SHORE with GenomeMapper as alignment tool. Within the alignment we allowed for at most 10% of the positions of a read to mismatch, including 7% being involved in gaps. Repetitive alignments were removed if another alignment of the same read in combination with an alignment of the read pair was more likely to resemble the sequenced clone (paired-end correction). Base calling was performed using SHORE's quality metric for homozygous variation. For the third analysis we additionally allowed base calling in repetitive positions.

Blocks, Superblocks, and Initial Alignment. On the basis of the initial alignment we partitioned the reads according to their alignment locations. For this we defined regions with contiguous read coverage as blocks. A block ends at any region without read alignments. If such a region was spanned with discordantly mapped read pairs we expanded the block up to the next region with absence of read coverage. The rational behind this is the assumption that the discordantly mapped read pairs indicate the coherence of the blocks in the focal genome, and thus there is no need to split them. On the basis of these nonoverlapping blocks we define superblocks, by joining two or more adjacent blocks until their combined length reaches a minimum length of 12 kb. The superblocks are built up in an overlapping manner such that a minimal overlap length of 300 bp is shared between two neighboring superblocks (Fig. 1). For each noncentromeric superblock we gathered all reads mapped to comprised blocks in addition to all of the unmapped reads with a mate pair mapped to one of these blocks, called dangling reads from here on. Note reads with multiple mapping locations can be members of multiple blocks and superblocks. Each set of reads was used as input for the short read assembly tools VELVET, ABYSS, and EULER-SR.

To incorporate not only the leftover reads with a mapped mate, but all unalignable read pairs, we applied SUPERLOCAS. This short read assembly tool initially builds up one assembly graph of all unmapped reads, called leftover graph. Subsequently assembly graphs for each superblock are generated separately and linked into the leftover graph, to allow incorporation of unmapped reads as long as they have high quality overlaps with conserved regions of blocks. After the contigs of a superblock assembly have been successfully elongated, the superblock assembly graph is dis-

carded and the reads of the next superblock will be subject to the same procedure. This presents a computationally feasible solution compared with assembling all leftover reads over and over within the assembly of each superblock. Incorporating unalignable read pairs also allows for assembly of diverged regions between blocks longer than twice the insert size of the sequenced samples. Furthermore we used VELVET to assemble all read pairs where one or both mates could not be mapped (leftover reads and dangling pairs). The resultant contigs are expected to originate in part from large insertions or highly diverged regions and can subsequently be used to bridge remaining gaps between blocks.

**Running AMOScmp.** We used AMOScmp (version 2.0.8) to assemble the contigs that were produced by the short read assembly tools. This program allows removing redundancy inherent in the contig assemblies. Contigs were separated by chromosome arm and assembled using the respective chromosome arm reference sequence as homology target. Within the AMOScmp script we executed all programs with default values except for casm-layout using parameter -t 3,500 (maximum ignorable trim length) and make-consensus using parameter -o 10 (minimum overlap bases).

Running BAMBUS. All read pairs that align to two different supercontigs define a connection (bridge) between the respective supercontigs, suggesting that these two supercontigs, although not assembled together, are in local vicinity in the focal genome and have a defined order. In addition we used MUMmer/nucmer to infer links between supercontigs based on nucmer alignments to the reference sequence, as described in the BAMBUS manual. For this step we only allowed for anchor matches that are unique in the reference and postfiltered the resulting MUMmer links removing links connecting supercontigs with opposite alignment orientation or more than 10 kb inferred distance relative to the reference. Furthermore the contig order and orientation proposed by MUMmer links was not allowed to disagree with the contig layout proposed by AMOScmp in the previous step.

Any supercontig providing at least five bridges to other supercontigs is classified as essential. Next, essential supercontigs smaller than 50 bp and nonessential supercontigs smaller than 100 bp and, further, essential supercontigs with more than 1 error per 200 bp and nonessential supercontigs with more than 1 error per 1,000 bp are removed.

We ran BAMBUS (version 2.33) with default parameter setting as described in the manual, in detail we started goBambus, untangle, and printScaff. The configuration file for goBambus was set to require at least six bridges for paired-end and mate pair libraries and the preferedBridges was set to equal or larger than 10. printScaff was run with the parameter –nomerge to prevent the concatenation of the contigs with 60 bp. Instead we calculated the most likely number of positions between contigs and introduced that many N's.

By default, BAMBUS incorporates 60 N's between contigs neighbored in a scaffold to report one sequence per scaffold. The read pairs aligning to these two different contig might suggest a different distance, however. Thus, we calculated the most likely distance between the two contigs on the basis of all pairs aligning to both contigs. First, we calculated the insert size distribution for each of the sequencing libraries on the basis of unique alignments of read pairs to one single contig. This was directly translated into a probability distribution for clone lengths. On the basis of this probability distribution and the

alignment locations, we calculated the most likely number of N's. If there were reads from multiple libraries spanning the same contigs usually the most likely number of N's did not match. Thus, we prioritized the paired-end libraries over the mate pairs, as their SD was much smaller. Conflicting read pairs within a library were excluded as well.

After the first run of BAMBUS we manually checked all connections between contigs for spurious connections and removed ~10 per chromosome arm. Afterward we ran BAMBUS a second time now permitting these connections.

Comparison with a Standard Alignment-Consensus Approach. We performed a standard resequencing analysis on all four strains to analyze the difference between the reference-guided assembly and the alignment-consensus methods, comparing both the contig sizes, genome coverage, and the resultant polymorphism calls. We used the same set of reads as for the assembly and applied SHORE's resequencing pipeline using GenomeMapper as alignment tool. We allowed for 10% and 7% of the nucleotide of a read to mismatch and or to gap, respectively. Concatenating adjacent base calls (including reference, SNP, and microindel calls) generated the alignment-consensus contigs.

Running MUMmer to Generate Whole-Genome Alignment. We used the MUMmer whole-genome alignment tool to align all scaffolds of each assembly to the reference sequence. We followed the instructions for "Mapping a draft sequence to a finished sequence" (http://mummer.sourceforge.net/manual/#mappingdraft). For this we ran nucmer using a parameter setting favoring specificity over sensitivity ("nucmer-mum -b 100 -g 90 -l 35 -c 80 -f-prefix= outputFolder referenceSquence assemblySequence"), where the -f parameter was omitted when aligning de novo assemblies. Therefore, we only allowed for alignment anchors that were unique in both the reference and query. Further we allowed nucmer to extend alignments across poor scoring regions by maximally 100 edit distance, whereas longer diverged regions or indels larger than 50 bp always lead to an alignment break. Finally we increased nucmer's default values for minimum length of a single match and a cluster of matches and restricted the alignment to matches of the forward strand of the query.

The reasoning behind using strict alignment parameters is that relaxed alignments tend to produce false positives due to aligning regions that are not orthologous to each other. Long indels can nonetheless be accurately defined by annotating the alignment breakpoints and the distance between high-scoring segment pairs (HSPs).

Resultant scaffold to reference alignments were parsed to retrieve SNPs, insertions, and deletions without any further fil-

**Annotation of Polymorphisms.** All polymorphisms overlapping exons were characterized as either major (deleterious) or minor changes. Deleterious changes encompass long indels and HDRs as well as microindels causing a frameshift or SNPs introducing or removing a stop codon. Microindels changing the length of the coding sequence by a factor of three (including multiple compensating indels in the same gene) are classified as minor changes as are any amino acid changes except for stop mutations. Genes not featuring any mutation or only synonymous SNPs are classified as conserved.

Sample Preparation for Expression Analysis. The *A. thaliana* (Bur-0 and C24) sRNA data were generated from inflorescences including flowers up to stage 14 grown at 23 °C and in a 16-h light period. Libraries were constructed as described (3), except that sRNAs were isolated from a 15% denaturing polyacrylamide gel, and RNA amplicons were reverse transcribed using the Revertaid kit (Fermentas) before PCR amplification using the Phusion polymerase (Finnzymes). For tiling array analysis, probes were synthesized from RNA extracted from inflorescences as for sRNAs and hybridized to Affymetrix GeneChip *Arabidopsis* Tiling 1.0R arrays. Triplicate biological replicates were used, and array data were analyzed to generate RMA expression summaries.

tering except that ambiguous insertions featuring more then 10% N's were removed. Additionally we analyzed alignments with multiple HSPs by annotating the alignment breaks (gaps between HSPs) to distinguish between simple deletions or insertions, highly diverged regions, and spurious alignments in repetitive regions. Therefore, a deletion was defined if more than 20 bp of the reference sequence are not matched by scaffold sequence, whereas the scaffold sequence could be fully aligned to the HSPs upstream and downstream of the break. Vice versa, an insertion is defined if more than 20 bp of scaffold sequence is not matched by reference sequence. Finally we defined a highly diverged region (HDR) if more than 20 bp from both reference and scaffold could not be aligned against each other, thus the break between the HSPs represents diverged but not deleted alleles in the reference and the analyzed strain. The last category includes all spurious alignments, e.g., negative distance between alignment breakpoints (overlapping HSP alignments indicating wrongly aligned or assembled repeats), and was removed from further analysis. Table S4 shows a complete overview of all variation found in the four strains using the assembly and whole-genome alignment approach compared with variation found with the alignment-consensus approach.

Ossowski S, et al. (2008) Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 18:2024–2033.

Mirouze M, et al. (2009) Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461:427–430.

Mosher RA, et al. (2009) Uniparental expression of PollV-dependent siRNAs in developing endosperm of Arabidopsis. Nature 460:283–286.



Fig. S1. Allele length comparisons of highly diverged regions (HDRs).



Fig. S2. Shared SNPs (A), deletions (B), and insertions (C) relative to Col-0 reference.



Fig. S3. Length variation in coding sequences, relative to Col-0 reference.



Fig. 54. Tiling array expression analysis. (A) Effect of probe correction on expression estimates for 7,056 genes for which half or more of all probes were removed. Note that the distribution is skewed toward the estimates being higher after correction. (B) Expression of conserved genes (at least 97.5% of exonic nucleotides conserved between Col-0, Bur-0, and C24). (C) Expression of polymorphic genes (at least 2.5% of exonic nucleotides differ between Col-0, Bur-0, and C24).



Fig. S5. sRNA expression analysis. Increase in expression estimates for distinct sRNA loci resulting from incorporating information from genome assemblies.

Table S1. Read statistics

|                  | Bur-0       | C24                   | Kro-0      | Le <i>r</i> -1 |
|------------------|-------------|-----------------------|------------|----------------|
|                  |             | Single end            |            |                |
| Reads            | 142,532,346 | 27,033,381            | 4,443,603  | 10,076,255     |
| Mb               | 5,118.6     | 1,113.2               | 183.8      | 550.0          |
| Coverage         | 42.7x       | 9.3x                  | 1.5x       | 4.6x           |
| -                | Pa          | aired end (library 1) |            |                |
| Pairs            | 55,811,985  | 89,737,786            | 91,624,757 | 189,763,954    |
| Avg. insert size | 187         | 185                   | 177        | 178            |
| SD               | 24          | 27                    | 17         | 23             |
| Mb               | 4,094.9     | 7,210.9               | 8,124.6    | 26,774.8       |
| Coverage         | 34.1x       | 60.1x                 | 67.7x      | 223.1x         |
|                  | Pa          | aired end (library 2) |            |                |
| Pairs            | _           | _                     | _          | 84,223,339     |
| Avg. insert size | _           | _                     | _          | 458            |
| SD               |             |                       |            | 45             |
| Mb               | _           | _                     | _          | 10,803.5       |
| Coverage         | _           | _                     | _          | 90.0x          |
|                  |             | Mate pair*            |            |                |
| Pairs            | 9,676,627   | 9,319,898             | 5,900,939  | 4,169,512      |
| Avg. insert size | 3795        | 4617                  | 4700       | 3711           |
| SD               | 508         | 920                   | 571        | 477            |
| Mb               | 770.2       | 671.0                 | 424.9      | 564.0          |
| Coverage         | 6.4x        | 5.6x                  | 3.5x       | 4.7x           |

<sup>\*</sup>Including potential clonal events.

Table S2. Comparison of alignment-consensus and assembly-derived contigs

|                    | Bur-0   |         |         |         | C24     |         | Kro-0   |         |         | Le <i>r</i> -1 |         |         |
|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------------|---------|---------|
|                    | CA      | AS      | sAS     | CA      | AS      | sAS     | CA      | AS      | sAS     | CA*            | AS*     | sAS*    |
| N50 (intrinsic)    | 6,563   | 193     | 185     | 6,154   | 109     | 105     | 6,831   | 161     | 154     | 4,405          | 113     | 108     |
| L50, kb            | 3.7     | 147.3   | 147.1   | 4.0     | 273.2   | 273.7   | 3.6     | 163.5   | 167.3   | 5.7 kb         | 272.5   | 270.8   |
| N50 (target)       | 7,788   | 208     | 216     | 7,265   | 117     | 119     | 8,011   | 178     | 181     | 5,016          | 121     | 126     |
| L50, kb            | 3.3     | 139.7   | 135.0   | 3.5     | 260.4   | 251.2   | 3.2     | 151.8   | 145.6   | 5.2            | 261.9   | 246.5   |
| Scaffolds          | 145,683 | 2,526   | 2,143   | 138,438 | 2,052   | 1,740   | 160,535 | 2,670   | 2,408   | 104,403        | 1,528   | 1,261   |
| Total length, Mb   | 96.7    | 101.0   | 96.5    | 96.8    | 101.3   | 98.1    | 97.3    | 99.9    | 96.7    | 98.6           | 100.8   | 96.3    |
| Longest scaffold   | 59 kb   | 1.12 Mb | 1.12 Mb | 64 kb   | 2.18 Mb | 2.18 Mb | 51 kb   | 1.48 Mb | 1.48 Mb | 88 kb          | 1.09 Mb | 1.09 Mb |
| Ambiguous bases, % | 0.0     | 4.03    | 8.30    | 0.0     | 3.60    | 6.81    | 0.0     | 5.10    | 8.12    | 0.0%           | 1.3%    | 8.53%   |

CA, consensus-alignment approach; AS, assembly; sAS, stringently masked assembly.

Table S3. Comparison of accessibility, SNPs, deletions, and insertions obtained by assembly and alignment-consensus approach, respectively

|                | Accessibility (Mb, %) | SNPs          | Microdeletion | Microinsertion |
|----------------|-----------------------|---------------|---------------|----------------|
|                |                       | Assembly      |               |                |
| Bur-0          | 101.0 (96)            | 541,713       | 52,429        | 49,421         |
| C24            | 101.3 (96.3)          | 552,177       | 53,157        | 50,596         |
| Kro-0          | 99.9 (94.9)           | 451,928       | 43,847        | 40,659         |
| L <i>er</i> -1 | 100.8 (95.8)          | 530,081       | 50,230        | 49,025         |
|                |                       | Consensus Q25 |               |                |
| Bur-0          | 93.9 (89.2)           | 487,550       | 37,231        | 38,136         |
| C24            | 94.1 (89.4)           | 484,757       | 37,340        | 37,035         |
| Kro-0          | 94.4 (89.7)           | 391,301       | 32,203        | 31,271         |
| L <i>er</i> -1 | 93.7 (89.1)           | 478,925       | 47,902        | 47,731         |
|                |                       | Overlap       |               |                |
| Bur-0          | N/A                   | 440,254       | 31,815        | 30,553         |
| C24            | N/A                   | 439,990       | 32,457        | 31,002         |
| Kro-0          | N/A                   | 355,170       | 27,159        | 26,005         |
| L <i>er</i> -1 | N/A                   | 426,107       | 36,247        | 35,658         |

Table S4. Variants of different lengths relative to reference

Bur-0

|                     |        | eletions    | In     | sertions    | HDRs |             |  |  |
|---------------------|--------|-------------|--------|-------------|------|-------------|--|--|
|                     |        |             |        |             |      |             |  |  |
| Variant length (bp) | n      | Length (bp) | n      | Length (bp) | n    | Length (bp) |  |  |
| 1                   | 36,694 | 36,694      | 34,573 | 34,573      |      |             |  |  |
| 2                   | 10,423 | 20,846      | 10,135 | 20,270      |      |             |  |  |
| 3–4                 | 8,858  | 30,120      | 7,859  | 26,723      |      |             |  |  |
| 5–8                 | 6,354  | 40,067      | 5,438  | 34,134      |      |             |  |  |
| 9–16                | 4,334  | 50,323      | 3,274  | 37,834      |      |             |  |  |
| 17–32               | 1,827  | 40,533      | 1,166  | 26,539      | 70   | 1,756       |  |  |
| 33-64               | 762    | 34,564      | 481    | 22,113      | 180  | 8,727       |  |  |
| 65–128              | 350    | 30,748      | 291    | 25,665      | 358  | 33,830      |  |  |
| 129–256             | 241    | 44,852      | 85     | 14,463      | 352  | 64,532      |  |  |
| 257–512             | 210    | 75,280      | 50     | 17,652      | 282  | 101,696     |  |  |
| 513-1,024           | 234    | 174,908     | 13     | 7,542       | 199  | 139,709     |  |  |
| 1,025-2,048         | 163    | 228,097     | 1      | 2,038       | 106  | 152,209     |  |  |
| >2,048              | 189    | 1,087,692   | 3      | 31,965      | 64   | 327,035     |  |  |
|                     | Kro-0  |             |        |             |      |             |  |  |
|                     | D      | eletions    | In     | sertions    |      | HDRs        |  |  |
| Variant length (bp) | n      | Length (bp) | n      | Length (bp) | n    | Length (bp) |  |  |
| 1                   | 31,032 | 31,032      | 28,571 | 28,571      |      |             |  |  |
| 2                   | 8,592  | 17,184      | 8,031  | 16,062      |      |             |  |  |
| 3–4                 | 7,082  | 24,105      | 6,677  | 22,651      |      |             |  |  |
| 5–8                 | 5,141  | 32,314      | 4,583  | 28,824      |      |             |  |  |
| 9–16                | 3,713  | 43,569      | 2,789  | 32,032      |      |             |  |  |
| 17–32               | 1,971  | 43,522      | 946    | 21,576      | 54   | 1,397       |  |  |
| 33-64               | 554    | 25,448      | 479    | 22,331      | 154  | 7,480       |  |  |
| 65-128              | 279    | 23,974      | 236    | 20,369      | 310  | 28,789      |  |  |
| 129-256             | 215    | 40,143      | 92     | 15,307      | 254  | 47,401      |  |  |
| 257-512             | 174    | 63,710      | 21     | 6,990       | 232  | 83,324      |  |  |
| 513-1,024           | 188    | 139,313     | 6      | 3,319       | 145  | 105,935     |  |  |
| 1,025-2,048         | 112    | 157,612     | 5      | 5,851       | 80   | 112,926     |  |  |
| >2,048              | 162    | 949,727     | 3      | 111,514     | 60   | 326,617     |  |  |
|                     |        |             | 1      | C24         |      |             |  |  |
|                     | D      | eletions    | In     | sertions    |      | HDRs        |  |  |
| Variant length (bp) | n      | Lenath (bp) | n      | Length (bp) | n    | Lenath (bp) |  |  |

|                     | De     | eletions    | In     | sertions    | rtions HDRs |             |  |
|---------------------|--------|-------------|--------|-------------|-------------|-------------|--|
| Variant length (bp) | n      | Length (bp) | n      | Length (bp) | n           | Length (bp) |  |
| 1                   | 37,595 | 37,595      | 35,206 | 35,206      |             |             |  |
| 2                   | 10,355 | 20,710      | 10,457 | 20,914      |             |             |  |
| 3–4                 | 8,714  | 29,649      | 8,346  | 28,451      |             |             |  |
| 5–8                 | 6,367  | 40,117      | 5,633  | 35,522      |             |             |  |
| 9–16                | 4,225  | 49,338      | 3,496  | 40,555      |             |             |  |
| 17–32               | 1,851  | 41,941      | 1,216  | 27,618      | 71          | 1,815       |  |
| 33-64               | 720    | 32,754      | 601    | 27,530      | 176         | 8,547       |  |
| 65–128              | 401    | 34,927      | 306    | 27,125      | 396         | 36,878      |  |
| 129-256             | 251    | 46,516      | 153    | 25,993      | 415         | 76,388      |  |
| 257-512             | 209    | 76,249      | 64     | 22,170      | 337         | 119,336     |  |
| 513-1,024           | 248    | 180,813     | 20     | 12,599      | 258         | 187,392     |  |
| 1,025-2,048         | 186    | 262,125     | 4      | 5,884       | 124         | 173,796     |  |
| >2,048              | 185    | 911,483     | 10     | 186,588     | 119         | 804,913     |  |

For HDRs we listed the length of the Col-0 allele (see main text for definition of HDR). Whole-genome alignment was adjusted to align through regions of high divergence being shorter than 20 bp.

Table S5. Inversions

| Accession      | Chr. | Begin      | End        | Length | Scaffold | Begin   | End     | Length | Affected gene |
|----------------|------|------------|------------|--------|----------|---------|---------|--------|---------------|
| Le <i>r</i> -1 | 1    | 1,771,291  | 1,771,586  | 295    | 17       | 42,411  | 42,116  | 295    | AT1G05870     |
| Bur-0          | 1    | 16,614,139 | 16,614,251 | 112    | 729      | 11,212  | 11,100  | 112    | _             |
| C24            | 1    | 20,333,803 | 20,334,503 | 700    | 763      | 193,870 | 193,170 | 700    | _             |
| Le <i>r</i> -1 | 1    | 27,858,219 | 27,858,368 | 149    | 600      | 412,916 | 412,768 | 148    | _             |
| C24            | 1    | 27,858,227 | 27,858,368 | 141    | 921      | 156,825 | 156,684 | 141    | _             |
| Kro-0          | 1    | 27,858,237 | 27,858,368 | 131    | 1,166    | 52,004  | 51,873  | 131    | _             |
| L <i>er</i> -1 | 2    | 10,153,298 | 10,153,423 | 125    | 1,010    | 53,559  | 53,434  | 125    | _             |
| Le <i>r</i> -1 | 2    | 17,617,485 | 17,617,698 | 213    | 1,081    | 54,963  | 54,756  | 207    | AT2G42270     |
| C24            | 3    | 3,365,964  | 3,366,120  | 156    | 1,937    | 581,455 | 581,299 | 156    | _             |
| Bur-0          | 3    | 6,620,232  | 6,620,327  | 95     | 2,268    | 243,613 | 243,518 | 95     | _             |
| Le <i>r</i> -1 | 3    | 8,081,491  | 8,081,607  | 116    | 1,234    | 249,654 | 249,538 | 116    | _             |
| C24            | 3    | 15,381,184 | 15,381,316 | 132    | 2,368    | 21,136  | 21,004  | 132    | _             |
| Bur-0          | 3    | 15,778,040 | 15,778,871 | 831    | 2,769    | 17,065  | 16,239  | 826    | _             |
| Kro-0          | 3    | 15,942,027 | 15,942,108 | 81     | 2,872    | 60,388  | 60,307  | 81     | _             |
| Ler-1          | 3    | 18,124,079 | 18,125,014 | 935    | 1,603    | 9,335   | 8,403   | 932    | AT3G48840     |
| Kro-0          | 3    | 18,124,430 | 18,125,014 | 584    | 3,028    | 9,709   | 9,125   | 584    | AT3G48840     |
| Bur-0          | 4    | 5,212,688  | 5,212,878  | 190    | 3,319    | 33,720  | 33,530  | 190    | _             |
| C24            | 4    | 7,555,219  | 7,555,851  | 632    | 3,086    | 7,637   | 7,005   | 632    | _             |

Shaded rows highlight inversions that have been identified in more than one strain.