

College of Computer and Information Sciences Computer Science Department Computer Organization (CSC 220)

Homework-2

2nd Semester 2019-2020

Last date of submission: 5/04/2020 (Sunday)

Student Name:	
Student ID:	
Section ID:	
Signature of the Student:	

	ABET Outcomes	NCAAA Outcomes
a)	Apply knowledge of computing	Knowledge
	and mathematics appropriate to	
	the discipline;	
b)	Analyze a problem, and identify	Cognitive Skills
	and define the computing	
	requirements appropriate to its	
	solution	
c)	Design, implement and evaluate a	
	computer-based system, process,	
	component, or program to meet	
	desired needs;	

Section	Maximum	Score	
Q1	1		
Q2	1		
Q3	1		
Q4	1		
Q5	1		
Total	5		

Question 1: For the given diagram below, draw the Q and Y activities, assuming Y and CLK start at 0?

Question 2: For the following asynchronous counter, draw the output waveform at Q_0 , Q_1 , Q_2 .

Question 3: Show how to construct an asynchronous MOD-35 counter. 2^6 35 < 64

110001

Question 4: Design a 4-bit register that can perform the following functions

S1	S0	Function
0	0	Parallel Load
0	1	Rotate right
1	0	Shift Left
1	1	No change

Done "y &

Page 3 of 4

Question 5: Consider the following **RTL program** with the initial values of 8-bit registers $R1 = 1110\ 0111$, $R2 = 0001\ 0111$, $R3 = 0010\ 1000$ (2's complement representation). Show the contents of the registers after execution of each micro-operation sequentially.

micro-operations	R1	R2	R3
R3 ← R1 + R2	/// 00///	00010111	1111 1110
R1 ← R2 + 1	00011000	00010111	())) (((6
R2 ← R1 ∧ R3	00011000	00011000	1111 1110

$$M01: R3 \leftarrow R1+R2 = \frac{11106111}{000101111} + \frac{1111100}{11111100}$$

Done 1) &