Analysis Module: Basic

Mathlib4 Documentation

September 9, 2025

1 Module Overview

1.1

This file gathers basic facts of analytic nature on the complex numbers.

1.2

This file registers $% \left(1\right) =0$ as a normed field, expresses basic properties of the norm, and gives tools on the real vector space structure of . Notably, it defines the following functions in the name space .

—Name —Type —Description —

 $\begin{array}{lll} & ---- \mathbb{C} \ \mathbb{L}[\mathbb{R}] \ \mathbb{R} \times \mathbb{R} | The natural from to ||| \mathbb{C}[\mathbb{R}] \mathbb{R} | Real part function as a ||| \mathbb{C}[\mathbb{R}] \mathbb{R} \\ & [\mathbb{R}] \mathbb{C} | Embedding of the real sasa ||| \mathbb{C}L[\mathbb{R}] \mathbb{C} | Complex conjugation as a ||| \mathbb{C}[\mathbb{R}] \mathbb{C} || Complex conjugation as a ||| Complex conjugation$

2 Key Definitions

Definition 1 (continuous_n orm Sq). A theorem defining continuous_n orm Sq

Definition 2 (nnnorm_e $q_o n e_o f_p o w_e q_o n e$). A theorem defining nnnorm_e $q_o n e_o f_p o w_e q_o n e$

Definition 3 (norm_e $q_o n e_o f_p o w_e q_o n e$). A theorem defining $\mathtt{norm}_e q_o n e_o f_p o w_e q_o n e$

Definition 4 (le_o $f_eq_sum_of_eq_sum_norm$). A lemma defining $le_of_eq_sum_of_eq_sum_norm$

Definition 5 (equivRealProd_a $pply_le$). A theorem defining equivRealProd_a $pply_le$

Definition 6 (equivRealProd_a $pply_le$). A theorem defining equivRealProd_a $pply_le$

Definition 7 (lipschitz_e quivRealProd). A theorem defining lipschitz_e quivRealProd

Definition 8 (antilipschitz_equivRealProd). A theorem defining antilipschitz_equivRealProd

Definition 9 (is Uniform Embedding equivRealProd). A theorem defining is Uniform Embedding equivRealProd

Definition 10 (equivRealProdCLM). A def defining equivRealProdCLM

3 Main Theorems

Theorem 1 (tendsto $_normSq_cocompact_atTop$). The 'normSq' function on 'C' is proper.

Theorem 2 (ringHom_e $q_ofReal_of_continuous$). The only continuous ring homomorphism from 'R' to 'C' is the identity.

Theorem 3 (ball $one_subset_slitPlane$). The slit plane includes the open unit ball of radius '1' around '1'.

Theorem 4 (mem_slitPlane_o f_n orm_l t_o ne). The slit plane includes the open unit ball of radius '1' around '1'.