

Universidad Nacional Autónoma de México Facultad de Ciencias Geometria Moderna

Tarea examen 1

Problema 1

Sea:

$$F = \{0, 1\}$$

con las operaciones modulo 2 definidas, es decir:

I. Suma:
$$0 + 0 = 0$$
, $0 + 1 = 1$, $1 + 1 = 0$, $1 + 0 = 1$

II. **Multiplicación**:
$$1 \cdot 1 = 1$$
, $0 \cdot 0 = 0$, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$

- a) Verificar que la multiplicación es una operación asociativa, que posee elemento neutro 1 y cada elemento distinto de 0 posee inverso multiplicativo
- b) Confirmar la distributividad del producto sobre la suma

Concluir que F es un campo

 \square

Problema 2

Sea:

$$F = \mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$$

con las operaciones modulo 2 definidas, es decir:

- *I.* Suma: 0 + 0 = 0, 0 + 1 = 1, 1 + 1 = 0, 1 + 0 = 1
- *II. Multiplicación*: $1 \cdot 1 = 1$, $0 \cdot 0 = 0$, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$
- a) Verificar que la multiplicación es una operación asociativa, que posee elemento neutro 1 y cada elemento distinto de 0 posee inverso multiplicativo
- b) Confirmar la distributividad del producto sobre la suma

Concluir que F es un campo

Demostraci'on.

Problema 3

Sea:

$$F = \{ a + b\sqrt{2} \, | a, \, b \in \mathbb{Q} \}$$

con las operaciones de suma y multiplicación: a) Comprobar que F es cerrado bajo la suma y la multiplicación de $\mathbb Q$

- b) Demostrar que existe un elemento neutro para la suma (el cero) y para la multiplicación
- c) Para cada elemento $x=a+b\sqrt{2}$ con $x\neq 0$, encontrar o demostrar la existencia de su inverso multiplicativo en F
- d) Verificar las demas propiedades: existencia de inversos aditivos, asociatividad, conmutatividad y distributividad

Concluir que F es un campo

 \square

Problema 4

Sea $F = \mathbb{Z}$ con la operaciones definidas de la siguiente forma:

• Suma: Para $a, b \in \mathbb{Z}$ se define

$$a \oplus b = a + b - 1$$
.

■ **Producto:** Para $a, b \in \mathbb{Z}$ se define

$$a \odot b = a \cdot b - a - b - 2$$
.

- I. Demostrar que (F, \oplus) es un grupo abeliano. En particular, determinar el elemento neutro aditivo e_{\oplus} y hallar el inverso aditivo de un elemento a.
- II. Determinar el elemento neutro multiplicativo e_{\odot} en $(F \setminus \{e_{\oplus}\}, \odot)$ y comprobar que no todo elemento $a \in F$ con $a \neq e_{\oplus}$ tiene inverso multiplicativo.
- III. Verificar la distributividad de \odot respecto a \oplus

Concluir que (F, \oplus, \odot) no es un campo

Demostración.

Problema 5

Sea:

$$F = \mathbb{R}^2$$

con las operaciones definidas de la siguiente forma:

- *I.* $Suma:(a,b) \oplus (c,d) = (a+c,b+d)$
- II. Multiplicación: $(a,b) \odot (c,d) = (ac bd, ad + bc)$
- a) Verificar que la suma y el producto estan bien definidos y son operaciones en F
- b) Demostrar que existe un elemento neutro para la suma (0,0) y para el producto (1,0)
- c) Comprobar que para cada elemento $(a,b) \neq (0,0)$ le corresponde un inverso mutiplicativo.
- $m{d}$) Verificar la conmutatividad, la asociatividad y la distributividad del producto respecto a la suma

Demostraci'on.

Problema 6

Una función $f: \mathbb{R} \to \mathbb{R}$ se llama **función par** si para todo $t \in \mathbb{R}$ se cumple que f(t) = f(-t). Demostrar que el conjunto $P := \{f: \mathbb{R} \to \mathbb{R} | f \text{ es par} \}$, con las siguientes operaciones:

$$\forall\,f,g\in P\ y\ c\in\mathbb{R}: (f+g)(s)=f(s)+g(s)\ y\ (cf)(s)=c\left(f(s)\right)$$

Es un \mathbb{R} – espacio vectorial

Demostración.