Onde elettromagnetiche

github.com/asdrubalini

May 1, 2021

1 Definizione di onda elettromagnetica

$$\bar{E}^{+}(x,t) = E_M^+ \cdot e^{j\omega(t - \frac{x}{u})} \tag{1}$$

Con k si indica la costante di fase che è definita con seguente rapporto

$$k = -\frac{\omega}{u} \tag{2}$$

quindi

$$\bar{E}^{+}(x,t) = E_M^{+} \cdot e^{j(\omega t - kx)} \tag{3}$$

2 Velocità di onde elettromagnetiche

La velocità di un'onda elettromagnetica è costante e si può calcolare con

$$u = \frac{1}{\sqrt{\varepsilon \mu}} \ [m/s] \tag{4}$$

dove μ è la permeabilità magnetica e ε è la permittività elettrica. Nel vuoto, la formula diventa

$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 299792458 \ [m/s] \tag{5}$$

La permeabilità magnetica si può esprimere come il prodotto

$$\mu = \mu_0 \mu_r \tag{6}$$

dove μ_0 è la permeabilità magnetica del vuoto e μ_r è la permeabilità magnetica relativa del materiale.

Allo stesso modo, la permittività elettrica si può esprimere come il prodotto

$$\varepsilon = \varepsilon_0 \varepsilon_r \tag{7}$$

dove ε_0 è la permittività elettrica del vuoto e ε_r è la permittività elettrica relativa del materiale.

3 Impedenza caratteristica

L'impedenza caratteristica del vuoto è costante e si può calcolare con

$$Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} = c_0 \mu_0 \approx 377 \ [\Omega]$$
 (8)

In generale, l'impedenza caratteristica di un mezzo diverso dal vuoto si calcola con $\,$

$$Z = \sqrt{\frac{\mu}{\varepsilon}} = c\mu = Z_0 \frac{u}{c} \ [\Omega]$$
 (9)

$$Z = Z_0 \sqrt{\frac{\mu_r}{\varepsilon_r}} \ [\Omega] \tag{10}$$