Breast Cancer: Wisconsin

Jose Tamez

2023-05-15

Contents

1 1 1	1.3 Modeling	1 2 17 20 21
1	Showcasing RRPlots	
1.0.	1 Libraries	
	rary(survival) rary(FRESA.CAD)	
##]	Loading required package: Rcpp	
##]	Loading required package: stringr	
##]	Loading required package: miscTools	
##]	Loading required package: Hmisc	
## ##	Attaching package: 'Hmisc'	
## : ##	The following objects are masked from 'package:base':	
##	format.pval, units	
##]	Loading required package: pROC	
## 3	Type 'citation("pROC")' for a citation.	
## ##	Attaching package: 'pROC'	
##	The following objects are masked from 'package:stats':	
##	cov, smooth, var	
op op	<pre>urce("~/GitHub/FRESA.CAD/R/RRPlot.R") urce("~/GitHub/FRESA.CAD/R/PoissonEventRiskCalibration.R") <- par(no.readonly = TRUE) der::panderOptions('digits', 3) nder::panderOptions('table.split.table', 400)</pre>	

```
pander::panderOptions('keep.trailing.zeros',TRUE)
layout(matrix(1:1, nrow=1))
```

1.0.2 Wisconsin Data Set

```
dataBreast <- read.csv("~/GitHub/RISKPLOTS/DATA/wpbc.data", header=FALSE)</pre>
table(dataBreast$V2)
##
##
        R
   N
## 151 47
rownames(dataBreast) <- dataBreast$V1</pre>
dataBreast$V1 <- NULL</pre>
dataBreast$status <- 1*(dataBreast$V2=="R")</pre>
dataBreast$V2 <- NULL
dataBreast$time <- dataBreast$V3</pre>
dataBreast$V3 <- NULL
dataBreast <- sapply(dataBreast,as.numeric)</pre>
## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion
dataBreast <- as.data.frame(dataBreast[complete.cases(dataBreast),])</pre>
table(dataBreast$status)
##
     0
## 148 46
```

1.1 Exploring Raw Features with RRPlot

```
convar <- colnames(dataBreast)[lapply(apply(dataBreast,2,unique),length) > 10]
convar <- convar[convar != "time"]
topvar <- univariate_BinEnsemble(dataBreast[,c("status",convar)],"status")
pander::pander(topvar)</pre>
```

V35	V24	V34	V7	V16	V14	V17
0.0261	0.0261	0.0261	0.0623	0.126	0.126	0.126

```
idx <- idx + 1 }
```


Kaplan-Meier: V35

Kaplan-Meier: V24

Number at risk

Low Risk < 23.910	148	104	69	41	19	1
23.910 <= Risk < 25.487	20	11	8	1	1	0
High Risk >= 25.487	26	12	9	2	0	Ó

Kaplan-Meier: V34

Survival probability

Kaplan-Meier: V16

Number at risk

Low Risk < 5.360	148	102	74	39	19	1
5.360 <= Risk < 7.295	26	15	6	3	1	0
High Risk >= 7.295	20	10	6	2	0	Ŏ

names(RRanalysis) <- topFive</pre>

Survival probability

1.2 Reporting the Metrics

pander::pander(RRanalysis[[1]]\$keyPoints,caption=topFive[1])

Table 2: V35

	Thr	RR	RR_LCI	RR_UCI	SEN	SPE	BACC
@:0.9	1.00e+01	1.57	0.8370	2.93	0.174	0.899	0.536
@:0.8	3.00e+00	2.32	1.4235	3.77	0.478	0.777	0.628
@MAX_BACC	1.00e+00	2.75	1.5713	4.82	0.696	0.622	0.659
$@MAX_RR$	1.00e+00	2.75	1.5713	4.82	0.696	0.622	0.659
@SPE100	-8.89e-09	9.68	0.0212	4428.27	1.000	0.027	0.514

pander::pander(RRanalysis[[2]]\$keyPoints,caption=topFive[2])

Table 3: V24

	Thr	RR	RR_LCI	RR_UCI	SEN	SPE	BACC
@:0.9	25.4	1.94	1.1306	3.34	0.239	0.8919	0.566
@:0.8	23.9	1.67	1.0015	2.78	0.348	0.7905	0.569
@MAX_BACC	20.3	2.45	1.3530	4.44	0.739	0.5270	0.633

	Thr	RR	RR_LCI	RR_UCI	SEN	SPE	BACC
@MAX_RR @SPE100	16.6 15.5	$3.87 \\ 33.04$	0.9914 0.0685	$15.08 \\ 15945.00$	0.957 1.000	$0.1824 \\ 0.0878$	$0.569 \\ 0.544$

RRanalysis[[2]] \$keyPoints["@MAX_BACC",c("BACC","RR")]

BACC RR

@MAX_BACC $0.6330787 \ 2.451923$

```
ROCAUC <- NULL
CstatCI <- NULL
LogRangp <- NULL
Sensitivity <- NULL
Specificity <- NULL
MAXBACC <- NULL
RREst <- NULL
for (topf in topFive)
  CstatCI <- rbind(CstatCI,RRanalysis[[topf]]$c.index$cstatCI)</pre>
  LogRangp <- rbind(LogRangp,RRanalysis[[topf]]$surdif$pvalue)</pre>
  Sensitivity <- rbind(Sensitivity,RRanalysis[[topf]]$ROCAnalysis$sensitivity)</pre>
  Specificity <- rbind(Specificity,RRanalysis[[topf]]$ROCAnalysis$specificity)</pre>
  ROCAUC <- rbind(ROCAUC,RRanalysis[[topf]]$ROCAnalysis$aucs)</pre>
  MAXBACC <- rbind(MAXBACC,RRanalysis[[topf]]$keyPoints["@MAX_BACC",c("BACC")])</pre>
  RREst <- rbind(RREst,RRanalysis[[topf]]$keyPoints[1,c("RR")])</pre>
rownames(CstatCI) <- topFive</pre>
rownames(LogRangp) <- topFive</pre>
rownames(Sensitivity) <- topFive</pre>
rownames(Specificity) <- topFive</pre>
rownames(ROCAUC) <- topFive</pre>
rownames(MAXBACC) <- topFive
rownames(RREst) <- topFive</pre>
pander::pander(ROCAUC)
```

	est	lower	upper
V35	0.652	0.559	0.746
V24	0.634	0.542	0.725
V34	0.657	0.570	0.743
V7	0.610	0.515	0.705
V16	0.598	0.504	0.692

pander::pander(CstatCI)

	mean.C Index	median	lower	upper
V35	0.630	0.632	0.533	0.730
V24	0.677	0.674	0.592	0.747
V34	0.654	0.655	0.582	0.723

	mean.C Index	median	lower	upper
V7	0.667	0.665	0.578	0.745
V16	0.614	0.614	0.529	0.702

pander::pander(LogRangp)

V35	0.00104
V24	0.00938
V34	0.00282
V7	0.07332
V16	0.02135

pander::pander(Sensitivity)

	est	lower	upper
V35	0.152	0.0634	0.289
V24	0.239	0.1259	0.388
V34	0.152	0.0634	0.289
V7	0.152	0.0634	0.289
V16	0.109	0.0362	0.236

pander::pander(Specificity)

	est	lower	upper
V35	0.899	0.838	0.942
V24	0.899	0.838	0.942
V34	0.892	0.830	0.937
V7	0.899	0.838	0.942
V16	0.899	0.838	0.942
• •	0.000		0.0

pander::pander(MAXBACC)

V35	0.659
V24	0.633
V34	0.637
V7	0.621
V16	0.614

pander::pander(RREst)

V35	1.57
V24	1.94
V34	1.33
V7	1.33
V16	1.00

meanMatrix <- cbind(ROCAUC[,1],CstatCI[,1],RREst,Sensitivity[,1],Specificity[,1],MAXBACC)
colnames(meanMatrix) <- c("ROCAUC","C-Stat","RR","Sen","Spe","MAX_BACC")
pander::pander(meanMatrix)</pre>

	ROCAUC	C-Stat	RR	Sen	Spe	MAX_BACC
V35	0.652	0.630	1.57	0.152	0.899	0.659
V24	0.634	0.677	1.94	0.239	0.899	0.633
V34	0.657	0.654	1.33	0.152	0.892	0.637
V7	0.610	0.667	1.33	0.152	0.899	0.621
V16	0.598	0.614	1.00	0.109	0.899	0.614

1.3 Modeling

ml <- BSWiMS.model(Surv(time, status)~1, data=dataBreast, NumberofRepeats = 10)</pre>

sm <- summary(ml)</pre>

pander::pander(sm\$coefficients)

Table 12: Table continues below

	Estimate	lower	HR	upper	u.Accuracy	r.Accuracy
V24	4.93e-02	1.02	1.05	1.09	0.598	0.237
V26	4.55e-03	1.00	1.00	1.01	0.593	0.245
V27	2.37e-04	1.00	1.00	1.00	0.608	0.254
V34	1.20e-02	1.00	1.01	1.02	0.634	0.260
V7	4.45e-08	1.00	1.00	1.00	0.588	0.237
V35	5.67e-04	1.00	1.00	1.00	0.727	0.605
V6	9.05 e-08	1.00	1.00	1.00	0.577	0.237

Table 13: Table continues below

	full.Accuracy	u.AUC	r.AUC	full.AUC	IDI	NRI	z.IDI
V24	0.598	0.609	0.500	0.609	0.0619	0.437	2.87
V26	0.593	0.598	0.502	0.599	0.0625	0.392	2.77
V27	0.608	0.608	0.505	0.608	0.0563	0.434	2.76
V34	0.632	0.618	0.506	0.618	0.0315	0.467	2.41
V7	0.588	0.595	0.500	0.595	0.0487	0.380	2.30
V35	0.614	0.641	0.607	0.597	0.0288	0.551	2.27
V6	0.577	0.588	0.500	0.588	0.0459	0.353	2.19

	z.NRI	Delta.AUC	Frequency
V24	2.67	0.1091	1.0
V26	2.38	0.0964	1.0
V27	2.63	0.1033	1.0
V34	2.83	0.1115	1.0
V7	2.30	0.0949	0.7

	z.NRI	Delta.AUC	Frequency
V35	3.41	-0.0102	1.0
V6	2.13	0.0881	0.1

1.4 Cox Model Performance

Here we evaluate the model using the RRPlot() function.

1.4.1 The evaluation of the raw Cox model with RRPlot()

Here we will use the predicted event probability assuming a baseline hazard for events

```
index <- predict(ml,dataBreast)
timeinterval <- round(2*mean(subset(dataBreast,status==1)$time),0)

h0 <- sum(dataBreast$status & dataBreast$time <= timeinterval)
h0 <- h0/sum((dataBreast$time > timeinterval) | (dataBreast$status==1))
pander::pander(t(c(h0=h0,timeinterval=timeinterval)),caption="Initial Parameters")
```

Table 15: Initial Parameters

h0	timeinterval
0.323	51

Cumulative vs. Observed: Raw Train: Breast Cancer

Decision Curve Analysis: Raw Train: Breast Cancer

Relative Risk: Raw Train: Breast Cancer

ROC: Raw Train: Breast Cancer

Time vs. Events: Raw Train: Breast Cancer

Kaplan-Meier: Raw Train: Breast Cancer

1.4.2 Uncalibrated Performance Report

pander::pander(t(rrAnalysisTrain\$keyPoints), caption="Threshold values")

Table 16: Threshold values

	@:0.9	@:0.8	@MAX_BAC	C @MAX_RR	@SPE100	p(0.5)
Thr	0.42085	0.360120	0.264	0.1646	1.61e-01	0.498827
$\mathbf{R}\mathbf{R}$	2.18301	1.833456	2.286	4.3220	2.50e + 01	2.307692
RR_LCI	1.30105	1.111407	1.304	0.6348	5.22e-02	1.275480
RR_UCI	3.66282	3.024598	4.007	29.4258	1.20e + 04	4.175246
\mathbf{SEN}	0.26087	0.369565	0.696	0.9783	1.00e+00	0.152174
\mathbf{SPE}	0.89865	0.797297	0.561	0.1081	6.76 e-02	0.952703
\mathbf{BACC}	0.57976	0.583431	0.628	0.5432	5.34e-01	0.552438
NetBenefit	0.00568	0.000613	0.045	0.0979	1.01e-01	0.000176

pander::pander(t(rrAnalysisTrain\$OERatio\$estimate),caption="0/E Test")

Table 17: O/E Test

O/E	Low	Upper	p.value
0.842	0.616	1.12	0.278

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Mean")

Table 18: O/E Mean

mean	50%	2.5%	97.5%
1.02	1.02	0.969	1.07

pander::pander(t(rrAnalysisTrain\$0ARatio\$estimate), caption="0/Acum Test")

Table 19: O/Acum Test

O/A	Low	Upper	p.value
0.811	0.593	1.08	0.163

pander::pander(t(rrAnalysisTrain\$0Acum95ci),caption="0/Acum Mean")

Table 20: O/Acum Mean

mean	50%	2.5%	97.5%
0.792	0.792	0.785	0.798

pander::pander(t(rrAnalysisTrain\$c.index\$cstatCI), caption="C. Index")

Table 21: C. Index

mean.C Index	median	lower	upper
0.681	0.681	0.596	0.759

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 22: ROC AUC

est	lower	upper
0.638	0.547	0.729

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 23: Sensitivity

est	lower	upper
0.261	0.143	0.411

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 24: Specificity

est	lower	upper
0.899	0.838	0.942

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 25: Probability Thresholds

90%	80%
0.419	0.359

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 26: Logrank test Chisq = 12.263179 on 2 degrees of freedom, p = 0.002173

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	147	29	36.9	1.688	8.685
class=1	20	5	4.2	0.151	0.168
class=2	27	12	4.9	10.269	11.609