ЛАБОРАТОРНА РОБОТА № 4

ДОСЛІДЖЕННЯ МЕТОДІВ АНСАМБЛЕВОГО НАВЧАННЯ ТА СТВОРЕННЯ РЕКОМЕНДАЦІЙНИХ СИСТЕМ

Mema роботи: використовуючи спеціалізовані бібліотеки та мову програмування Python дослідити методи ансамблів у машинному навчанні та створити рекомендаційні системи.

Завдання 2.1. Створення класифікаторів на основі випадкових та гранично випадкових лісів

3мн.	Арк.	№ докум.	Підпис	Дата	ДУ «Житомирська політехніка».22.121.04.000 — Лр4			
Розроб.		Демченко Я. Д.			Звіт з	∕lim.	Арк.	Аркушів
Пере	вір.	Філіпов В. О.		3811.3		1	22	
Kepit	Вник				лабораторної роботи			
Н. контр.					ФIКТ Гр. IПЗ-19			7 <i>3–19–2</i>
Зав.	каф.							

```
Візуалізація вхідних даних
plt.title('Input data')
plt.show()
params = {'n estimators': 100, 'max depth': 4, 'random state': 0}
classifier.fit(X train, Y train)
visualize classifier(classifier, X train, Y train, 'Training dataset')
class_names = ['Class-0', 'Class-1', 'Class-2']
print("\n" + "#" * 40)
print("\nClassifier performance on training dataset\n")
Y train pred = classifier.predict(X train)
print(classification report(Y train, Y train pred, target names=class names))
print("#" * 40 + "\n")
print("#" * 40)
print("\nClassifier performance on test dataset\n")
Y test pred = classifier.predict(X test)
print(classification report(Y test, Y test pred, target names=class names))
```


Рис. 1. Зображення розподілення даних

		Демченко Я. Д.		
		Філіпов В. О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 2. Класифікація методом випадкових дерев

Classifier pe	rformance on	test dat	aset	
	precision	recall	f1-score	support
Class-0	0.92	0.85	0.88	79
Class-1	0.86	0.84	0.85	70
Class-2	0.84	0.92	0.88	76
accuracy			0.87	225
macro avg	0.87	0.87	0.87	225
weighted avg	0.87	0.87	0.87	225

Рис. 3. Характеристики роботи методу випадкових дерев

Рис. 4. Класифікація методом гранично випадкових дерев

		Демченко Я. Д.		
		Філіпов В. О.		
Змн.	Арк.	№ докум.	Підпис	Дата

lassifier pe	rformance on	test dat	aset	
	precision	recall	f1-score	support
Class-0	0.92	0.85	0.88	79
Class-1	0.84	0.84	0.84	70
Class-2	0.85	0.92	0.89	76
accuracy			0.87	225
macro avg	0.87	0.87	0.87	225
weighted avg	0.87	0.87	0.87	225

Рис. 5. Характеристики роботи методу гранично випадкових дерев

Рис. 6. Візуалізація можливих класів точок (rf)

```
Confidence measure:
Datapoint: [5 5]
Predicted class: Class-0
Probabilities: [0.81427532 0.08639273 0.09933195]
Datapoint: [3 6]
Predicted class: Class-0
Probabilities: [0.93574458 0.02465345 0.03960197]
Datapoint: [6 4]
Predicted class: Class-1
Probabilities: [0.12232404 0.7451078 0.13256816]
Datapoint: [7 2]
Predicted class: Class-1
Probabilities: [0.05415465 0.70660226 0.23924309]
Datapoint: [4 4]
Predicted class: Class-2
Probabilities: [0.20594744 0.15523491 0.63881765]
Datapoint: [5 2]
Predicted class: Class-2
Probabilities: [0.05403583 0.0931115 0.85285267]
```

Рис. 7. Дані про можливі класи (rf)

		Демченко Я. Д.				Арк.	
		Філіпов В. О.			ДУ «Житомирська політехніка».22.121.04.000 — Лр4		
Змн.	Арк.	№ докум.	Підпис	Дата		4	

Рис. 8. Візуалізація можливих класів точок (erf)

```
Confidence measure:
Datapoint: [5 5]
Predicted class: Class-0
Probabilities: [0.48904419 0.28020114 0.23075467]
Datapoint: [3 6]
Predicted class: Class-0
Probabilities: [0.66707383 0.12424406 0.20868211]
Datapoint: [6 4]
Predicted class: Class-1
Probabilities: [0.25788769 0.49535144 0.24676087]
Datapoint: [7 2]
Predicted class: Class-1
Probabilities: [0.10794013 0.6246677 0.26739217]
Datapoint: [4 4]
Predicted class: Class-2
Probabilities: [0.33383778 0.21495182 0.45121039]
Datapoint: [5 2]
Predicted class: Class-2
Probabilities: [0.18671115 0.28760896 0.52567989]
```

Рис. 9. Дані про можливі класи (erf)

Використоуючи випадкові дерева та граничні випадкові дерева можна ефективно класифікувати дані, з цих двох методів останній ϵ більш ефективним.

Завдання 2.2. Обробка дисбалансу класів

		Демченко Я. Д.		
		Філіпов В. О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 10. Розподілення незбалансованих даних

		Демченко Я. Д.		
		Філіпов В. О.		
Змн.	Арк.	№ докум.	Підпис	Дата

		#########		
Classifier p	erformance on			
	precision	recall	f1-score	support
Class-0	0.00	0.00	0.00	69
Class-1	0.82	1.00	0.90	306
accuracy			0.82	375
macro avg	0.41	0.50	0.45	375
weighted avg	0.67	0.82	0.73	375
###########	############	######################################	#####	
Classifier p	erformance on	test data	aset	
	precision	recall	f1-score	support
	bi corsion	1910/00/00/00/00	12 333,3	20hhoi r
Class-0				69
Class-0 Class-1	0.00		0.00	
	0.00 0.82	0.00	0.00	69 306
Class-1	0.00 0.82	0.00 1.00	0.00 0.90 0.82	69 306

Рис. 13. Характеристики збалансованої класифікаці

Оскільки має місце балансування даних, то отримано коректно та ефективно класифіковано дані.

Завдання 2.3. Знаходження оптимальних навчальних параметрів за допомогою сіткового пошуку

		Демченко Я. Д.		
		Філіпов В. О.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
metrics = ['precision weighted', 'recall weighted']
   classifier = GridSearchCV(ExtraTreesClassifier(random_state=0), parameter grid,
#### Searching optimal parameters for precision_weighted
```

Рис. 14. Отримання даних процесу класифікації

C03311101 P	erformance on		f1-score	cunnent
	precision	recatt	11-20016	support
Class-0	0.94	0.81	0.87	79
Class-1	0.81	0.86	0.83	70
Class-2	0.83	0.91	0.87	76
accuracy			0.86	225
macro avg	0.86	0.86	0.86	225
weighted avg	0.86	0.86	0.86	225

Рис. 15. Характеристика класифікації зі сітковим пошуком

		Демченко Я. Д.				Арк.
		Філіпов В. О.			ДУ «Житомирська політехніка».22.121.04.000 — Лр4	Q
Змн.	Арк.	№ докум.	Підпис	Дата		O

Рис. 16. Візуалізація класифікації даних зі сітковим пошуком

Завдання 4. Обчислення відносної важливості ознак

Завдання неможливо виконати, оскільки відсутні дані.

Завдання 5. Прогнозування інтенсивності дорожнього руху за допомогою класифікатора на основі гранично випадкових лісів

```
import numpy as np
from sklearn.metrics import mean_absolute_error
from sklearn.model selection import train_test_split
from sklearn.ensemble import ExtraTreesRegressor
from sklearn import preprocessing

input_file = 'traffic_data.txt'
data = []
with open(input_file, 'r') as f:
    for line in f.readlines():
        items = line[:-1].split(',')
        data.append(items)

data = np.array(data)

label_encoder = []
X_encoded = np.empty(data.shape)
for i, item in enumerate(data[0]):
    if item.isdigit():
        X_encoded[:, i] = data[:, i]
    else:
        label_encoder.append(preprocessing.LabelEncoder())
        X_encoded[:, i] = label_encoder[-1].fit_transform(data[:, i])

X = X_encoded[:, :-1].astype(int)
Y = X_encoded[:, -1].astype(int)
```

		Демченко Я. Д.		
		Філіпов В. О.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25,
random_state=5)
params = {'n_estimators': 100, 'max_depth': 4, 'random_state': 0}
regressor = ExtraTreesRegressor(**params)
regressor.fit(X_train, Y_train)

Y_pred = regressor.predict(X_test)
print("Mean absolute error =", round(mean_absolute_error(Y_test, Y_pred), 2))

test_datapoint = ['Saturday', '10:20', 'Atlanta', 'no']
test_datapoint_encoded = [-1] * len(test_datapoint)
count = 0

for i, item in enumerate(test_datapoint):
    if item.isdigit():
        test_datapoint_encoded[i] = int(test_datapoint[i])
    else:
        test_datapoint_encoded[i] =
int(label_encoder[count].transform([test_datapoint[i]]))
        count = count + 1

test_datapoint_encoded = np.array(test_datapoint_encoded)
print("Predicted traffic:", int(regressor.predict([test_datapoint_encoded])[0]))
```

Mean absolute error = 7.42 Predicted traffic: 26

Рис. 17. Результат регресії на основі гранично випадкових лісів Отримано число 26, воно ϵ дуже близьким до фактичного значення.

Завдання 6. Створення навчального конвеєра (конвеєра машинного навчання)

		Демченко Я. Д.		
		Філіпов В. О.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
print("Score:", processor_pipeline.score(X, Y))
# Виведення ознак, відібраних селектором конвеєра
status = processor_pipeline.named_steps['selector'].get_support()
# Вилучення та виведення індексів обраних ознак
selected = [i for i, x in enumerate(status) if x]
print("Selected features:", selected)
```

Рис. 18. Отримані результати навчального конвеєра

Були обрані найбільш важливі ознаки з вхідних даних.

Завдання 7. Пошук найближчих сусідів

```
X = np.array([[2.1, 1.3], [1.3, 3.2], [2.9, 2.5], [2.7, 5.4], [3.8, 0.9],
# Number of nearest neighbors
k = 5
test datapoint = [4.3, 2.7]
plt.figure()
plt.title('Input data')
plt.scatter(X[:,0], X[:,1], marker='o', s=75, color='black')
# Build K Nearest Neighbors model
knn model = NearestNeighbors(n neighbors=k, algorithm='ball tree').fit(X)
distances, indices = knn model.kneighbors([test datapoint])
# Print the 'k' nearest neighbors
print("\nK Nearest Neighbors:")
plt.figure()
plt.title('Nearest neighbors')
plt.scatter(X[:, 0], X[:, 1], marker='o', s=75, color='k')
plt.scatter(test_datapoint[0], test_datapoint[1],
```

		Демченко Я. Д.		
		Філіпов В. О.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
marker='x', s=75, color='k')
plt.show()
```

На графіку 1 – вхідні дані.

Найближчі сусіди зображені на графіку 2

Рис. 19. Пошук найближчих сусідів

Координати було виведено в термінал

```
K Nearest Neighbors:
1 ==> [5.1 2.2]
2 ==> [3.8 3.7]
3 ==> [3.4 1.9]
4 ==> [2.9 2.5]
5 ==> [5.7 3.5]
```

Рис. 20. Дані про найближчих сусідів

Завдання 8: Створити класифікатор методом к найближчих сусідів

		Демченко Я. Д.		
		Філіпов В. О.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
num neighbors = 12
step\_size = 0.01
classifier = neighbors.KNeighborsClassifier(num_neighbors, weights='distance')
classifier.fit(X, y)
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1

y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
x values, y values = np.meshgrid(np.arange(x min, x max, step size),
output = classifier.predict(np.c [x values.ravel(), y values.ravel()])
output = output.reshape(x values.shape)
plt.figure()
plt.pcolormesh(x values, y values, output, cmap=cm.Paired)
for i in range(X.shape[0]):
    plt.scatter(X[i, 0], X[i, 1], marker=mapper[i],
plt.xlim(x values.min(), x values.max())
plt.ylim(y values.min(), y values.max())
plt.title('K Nearest Neighbors classifier model boundaries')
test datapoint = [5.1, 3.6]
plt.figure()
plt.title('Test datapoint')
for i in range(X.shape[0]):
    plt.scatter(X[i, 0], X[i, 1], marker=mapper[i],
plt.scatter(test datapoint[0], test datapoint[1], marker='x',
# Extract the K nearest neighbors
indices = indices.astype(np.int)[0]
# Plot k nearest neighbors
plt.figure()
plt.title('K Nearest Neighbors')
    plt.scatter(X[i, 0], X[i, 1], marker=mapper[y[i]],
plt.scatter(test datapoint[0], test datapoint[1], marker='x',
```

			Демченко Я. Д.		
			Філіпов В. О.		
ı	Змн.	Арк.	№ докум.	Підпис	Дата

print("Predicted output:", classifier.predict([test_datapoint])[0])
plt.show||

Рис. 21. Вхідні дані

Рис. 22. Межі класів

		Демченко Я. Д.		
		Філіпов В. О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 23. Тестова точка даних

Рис. 24. Найближчі сусіди введеної точки

Predicted output: 1

Рис. 25. Обрахований клас точки

		Демченко Я. Д.		
		Філіпов В. О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання 9. Обчислення оцінок подібності

```
mport argparse
import numpy as np
def build arg parser():
def euclidean score(dataset, user1, user2):
            squared diff.append(np.square(dataset[user1][item] -
dataset[user2][item]))
def pearson score(dataset, user1, user2):
```

		Демченко Я. Д.		
		Філіпов В. О.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
common movies])
common movies])
PS F:\for ZSTU\AI\Lab4> py -W ignore .\LR_4_task_9.py --user1 "David Smith" --user2 "Bill Duffy" --score-type Euclidean
```

```
Euclidean score:
0.585786437626905
PS F:\for ZSTU\AI\Lab4> py -W ignore .\LR_4_task_9.py --user1 "David Smith" --user2 "Bill Duffy" --score-type Pearson
Pearson score:
0.9909924304103233
```

Рис. 26. Обрахунок оцінок для David Smith та Bill Duffy

		Демченко Я. Д.		
		Філіпов В. О.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
PS F:\for ZSTU\AI\Lab4> py -W ignore .\LR_4_task_9.py --user1 "David Smith" --user2 "Brenda Peterson" --score-type Euclidean

Euclidean score:
0.1424339656566283

PS F:\for ZSTU\AI\Lab4> py -W ignore .\LR_4_task_9.py --user1 "David Smith" --user2 "Brenda Peterson" --score-type Pearson

Pearson score:
-0.7236759610155113
```

Рис. 27. Обрахунок оцінок для David Smith та Brenda Peterson

```
PS F:\for ZSTU\AI\Lab4> py -W ignore .\LR_4_task_9.py --user1 "David Smith" --user2 "Samuel Miller" --score-type Euclidean

Euclidean score:
0.30383243470068705
PS F:\for ZSTU\AI\Lab4> py -W ignore .\LR_4_task_9.py --user1 "David Smith" --user2 "Samuel Miller" --score-type Pearson

Pearson score:
0.7587869106393281
PS F:\for ZSTU\AI\Lab4>
```

Рис. 28. Обрахунок оцінок для David Smith та Samuel Miller

```
PS F:\for ZSTU\AI\Lab4> py -W ignore .\LR_4_task_9.py --user1 "David Smith" --user2 "Julie Hammel" --score-type Euclidean

Euclidean score:
0.2857142857
PS F:\for ZSTU\AI\Lab4> py -W ignore .\LR_4_task_9.py --user1 "David Smith" --user2 "Julie Hammel" --score-type Pearson

Pearson score:
0
```

Рис. 29. Обрахунок оцінок для David Smith та Julie Hammel

```
PS F:\for ZSTU\AI\Lab4> py -W ignore .\LR_4_task_9.py --user1 "David Smith" --user2 "Clarissa Jackson" --score-type Euclidean

Euclidean score:
0.28989794855663564

PS F:\for ZSTU\AI\Lab4> py -W ignore .\LR_4_task_9.py --user1 "David Smith" --user2 "Clarissa Jackson" --score-type Pearson

Pearson score:
0.6944217862199275
```

Рис. 30. Обрахунок оцінок для David Smith та Clarissa Jackson

```
PS F:\for ZSTU\AI\Lab4> py -W ignore .\LR_4_task_9.py --user1 "David Smith" --user2 "Adam Cohen" --score-type Euclidean

Euclidean score:

0.38742588672279304

PS F:\for ZSTU\AI\Lab4> py -W ignore .\LR_4_task_9.py --user1 "David Smith" --user2 "Adam Cohen" --score-type Pearson

Pearson score:

0.9081082718950217
```

Рис. 31. Обрахунок оцінок для David Smith та Adam Cohen

```
PS F:\for ZSTU\AI\Lab4> py -W ignore .\LR_4_task_9.py --user1 "David Smith" --user2 "Chris Duncan" --score-type Euclidean

Euclidean score:
0.38742588672279304
PS F:\for ZSTU\AI\Lab4> py -W ignore .\LR_4_task_9.py --user1 "David Smith" --user2 "Chris Duncan" --score-type Pearson

Pearson score:
1.0
```

Рис. 32. Обрахунок оцінок для David Smith та Chris Duncan

		Демченко Я. Д.				Арк.
		Філіпов В. О.			ДУ «Житомирська політехніка».22.121.04.000— Лр4	1.0
Змн.	Арк.	№ докум.	Підпис	Дата		10

Завдання 10. Пошук користувачів зі схожими уподобаннями методом колаборативної фільтрації

```
from LR 4 task 9 import pearson score
def build arg parser():
def find_similar_users(dataset, user, num_users):
    if user not in dataset:
    args = build_arg_parser().parse args()
```

		Демченко Я. Д.		
		Філіпов В. О.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
PS F:\for ZSTU\AI\Lab4> py -W ignore .\LR_4_task_10.py --user "Bill Duffy"

Users similar to Bill Duffy:

User Similarity score

David Smith 0.99

Samuel Miller 0.88

Adam Cohen 0.86

PS F:\for ZSTU\AI\Lab4>
```

Рис. 33. Знаходження користувачів схожих на Bill Duffy

```
PS F:\for ZSTU\AI\Lab4> py -W ignore .\LR_4_task_10.py --user "Clarissa Jackson"

Users similar to Clarissa Jackson:

User Similarity score

Chris Duncan 1.0

Bill Duffy 0.83

Samuel Miller 0.73

PS F:\for ZSTU\AI\Lab4>
```

Рис. 34. Знаходження користувачів схожих на Clarissa Jackson

Завдання 11. Створення рекомендаційної системи фільмів

		Демченко Я. Д.		
		Філіпов В. О.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
similarity score = pearson score(dataset, input user, user)
args = build_arg_parser().parse_args()
```

```
PS F:\for ZSTU\AI\Lab4> py -W ignore .\LR_4_task_11.py --user "Chris Duncan"

Movie recommendations for Chris Duncan:

1. Vertigo

2. Scarface

3. Goodfellas

4. Roman Holiday
```

Рис. 35. Рекомендації для Chris Duncan

		Демченко Я. Д.		
		Філіпов В. О.		
Змн.	Арк.	№ докум.	Підпис	Дата

PS F:\for ZSTU\AI\Lab4> py -W ignore .\LR_4_task_11.py --user "Julie Hammel"

Movie recommendations for Julie Hammel:

1. The Apartment

2. Vertigo

3. Raging Bull

PS F:\for ZSTU\AI\Lab4>

Рис. 36. Рекомендації для Julie Hammel

Репозиторій: https://github.com/ipz192dyad/Artificial-intelligence-systems

Висновок: в ході виконання лабораторної роботи використовуючи спеціалізовані бібліотеки та мову програмування Python досліджено методи ансамблів у машинному навчанні та створено рекомендаційні системи.

		Демченко Я. Д.		
		Філіпов В. О.		
Змн.	Арк.	№ докум.	Підпис	Дата