Problem B. Number of Pairs

Time limit 2000 ms **Mem limit** 262144 kB

You are given an array a of n integers. Find the number of pairs (i,j) $(1 \le i < j \le n)$ where the sum of $a_i + a_j$ is greater than or equal to l and less than or equal to r (that is, $l \le a_i + a_j \le r$).

For example, if n=3, a=[5,1,2], l=4 and r=7, then two pairs are suitable:

- i = 1 and j = 2 ($4 \le 5 + 1 \le 7$);
- $i=1 \text{ and } j=3 \text{ } (4 \leq 5+2 \leq 7).$

Input

The first line contains an integer t ($1 \le t \le 10^4$). Then t test cases follow.

The first line of each test case contains three integers n,l,r ($1 \le n \le 2 \cdot 10^5$, $1 \le l \le r \le 10^9$) — the length of the array and the limits on the sum in the pair.

The second line contains n integers a_1, a_2, \ldots, a_n ($1 \le a_i \le 10^9$).

It is guaranteed that the sum of n overall test cases does not exceed $2 \cdot 10^5$.

Output

For each test case, output a single integer — the number of index pairs (i, j) (i < j), such that $l \le a_i + a_j \le r$.

Examples

MC521/MC721 2023-03-24 Mar 25, 2023

Input	Output
4 3 4 7	2 7
5 1 2	0
5 5 8 5 1 2 4 3	
4 100 1000 1 1 1 1	
5 9 13 2 5 5 1 1	
2 3 3 1 1	