МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) Физтех-школа физики и исследований им. Ландау

ЛАБОРАТОРНАЯ РАБОТА №1.4.5

Изучение колебаний струны

Пилюгин Л. С. Б02-212 11 декабря 2022 г.

1 Аннотация

Цель работы: Исследование зависимости частоты колебаний струны от величины натяжения, а также условий установления стоячей волны, получающейся в результате сложения волн, идущих в противоположных направлениях.

Оборудование: Рейка со струной, звуковой шгенератор, постоянный магнит, равновесы.

2 Теоритические сведения

При рассмотрении колебаний струны можно пренебречь изгибными напряжениями. У прямой натянутой струны сила натяжения значительно превышает силу тяжести.

Движение элементов струны связано с передачей ей импульса и изменением формы. Натяжение струны стремится вернуть ее в прямолинейное положение.

Скорость распространения поперечной волны в струне

$$u = \sqrt{\frac{F}{\rho}}$$

F — сила натяжения, ρ — масса струны на единицу длины.

Длина волны при частоте ν

$$\lambda = \frac{u}{\nu}$$

Частоты собственных колебаний

$$\nu_n = n \frac{u}{2l}$$

l — длина струны, n — число полуволн

3 Оборудование и инструментальные погрешности

Схема установки изображена на рисунке. На массивной рейке 1 установлены опора 2 и магнит 3, которые можно перемещать вдоль рейки, а также неподвижная опора 4. Один конец струны закреплён в изоляторе опоры 4. От него струна проходит между полюсами магнита и через опору 2, которая дает возможность струне перемещаться в горизонтальном направлении, неподвижный блок и соединяться с чашкой 5, на которую помещают грузы. Такое устройство необходимо для натяжения струны. К концу струны, закреплённому в изоляторе опоры 4, и к

массивной рейке 1 подводится переменное напряжение от звукового генератора 6. Движение струны вызывается силой Ампера, действующей на проводник с током в магнитном поле. Частота действия силы, раскачивающей струну, равна частоте генератора.

Сила Ампера не только возбуждает колебания, но и поддержтивает их. Поток энергии распространяется по всей струне. Однако в чисто стоячей волне распространение энергии невозможно, поэтому узлы размываются. Коэффициент бегучасти должен быть много меньше 1:

$$\frac{A_1 - A_2}{A_2} \ll 1$$

 A_1 — амплитуда падающей волны, A_2 — амплитуда отражённой волны. Величина $A_1 - A_2$ равна половине величины размытия узлов. Амплитуда в пучности равна $2A_2$.

Если это соотношение выполняется недостаточно хорошо, то надо уменьшить величину подводимой мощности.

Действие силы Ампера должно привести к поляризации колебаний в плоскости, перпендикулярной направлению магнитного поля. В реальности это не всегда так.

4 Результаты измерений

Длина струны $l = 50 \pm 0.05$ см.

Таблица 1. Частоты основных гармоник, Гц

n	$m = 1037.988 \mathrm{r}$	$m = 1375.988 \Gamma$	$m = 1857.988 \mathrm{r}$	$m = 2319.688 \mathrm{r}$	$m = 2820.588 \mathrm{r}$
1	133.8	154.2	176.4	196.3	217.9
2	217.07	309	355.7	393.3	436.1
3	408	464	533.2	589.9	654.5
4	544.5	619.3	711.7	786.7	872.8
5	683	774.2	890.3	983.6	1091.7
6	820.1	931	1069.3	1181.1	1310.2
7	956.7	1088.7	1248.7	1379.8	1530.1
8	1096.3	1244.8	1429.3	1578.6	1750.2
9	1239.6	1404.3	1610.7	1778.2	1971.5

$$\begin{split} v_1 &= 138.0 \pm 0.4 \, \text{m/c} \\ v_2 &= 156.1 \pm 0.4 \, \text{m/c} \\ v_3 &= 179.1 \pm 0.4 \, \text{m/c} \\ v_4 &= 197.6 \pm 0.4 \, \text{m/c} \\ v_5 &= 219.0 \pm 0.4 \, \text{m/c} \end{split}$$

$$\rho = 564 \pm 2 \,\mathrm{MT/M}$$

Почти совпадает с значением, указаным на установке (568,4 мг/м)

Таблица 2. Частоты основных гармоник, Гц

n	$ u_1, \Gamma$ ц	$ u_2, \Gamma$ ц	$ u_3, \Gamma$ ц
1	217.773	217.703	217.876
2	198.11	198.09	198.24
3	177.026	176.976	177.116

 $Q_1 = 1258$ $Q_2 = 1320$ $Q_3 = 1264$ $Q \approx 1280$

Благодаря высокой добротности струны, возможно возбуждение колебаний при кратных частотах генератора, меньших частоты первой гармоники. При частоте генератора $\nu=108.95\,\Gamma$ ц. На экране осциллографа можно увидеть фигуру Лиссажу с одним самопересечением.

5 Вывод

Была исследована зависимость частоты колебаний струны от величины её натяжения и оценена её добротность.