A Brief History of Null Models

Jarvinen 1982

• Jarvinen, Olli. "Species-to-genus ratios in biogeography: a historical note." *Journal of Biogeography* (1982): 363-370.

Jarvinen 1982

FIG. 1. Maillefer's simulation results showing (I) the maximum and (IV) the minimum values of the G/S ratio (multiplied by 100) in relation to the number of species. Curve II shows the expected value based on sampling without replacement (dashed line shows the standard deviation), and curve III is based on sampling species in the systematic order (standard deviation not given, but it is very large for small S). From Maillefer (1929).

Species Pools

- Null models will require a pool of species to randomly sample
- The output of your analyses could be very sensitive to your decision regarding how species pool definition

Species Pools

So how might we define a species pool?

• Is there a species pool?

 Colwell, R. K., and D. W. Winkler. "A null model for null models in biogeography." *Ecological* communities: conceptual issues and the evidence 440 (1984): 344-59.

- The Narcissus Effect:
 - "Sampling from a post-competition pool underestimates the role of competition, since its effect is already reflected in the pool"
 - Pool is too small

- The Icarus Effect:
 - "Correlations between vagility and morphology can obscure the effects of competition in morphological comparisons of mainland and island biotas"

- Pool scale as it relates to non-random dispersal ability
 - Pool possibly too inclusive

- The J.P. Morgan Effect:
 - "The weaker the taxonomic constraints on sampling, the harder it becomes to detect competition"
 - Pool taxonomic scale

 Grant, P. R., and I. Abbott. "Interspecific competition, island biogeography and null hypotheses." *Evolution* (1980): 332-341.

 "1. The first problem is that the choice of species within families is unfortunate.
 Species of birds in different genera are less likely to be in the same feeding group or guild than are species in the same genus, and hence are less likely in general to be in potential competition for food ..."

"2. The second problem is in the choice of a mainland area for comparison with the island (Grant, 1966). Geographical variation in community membership and beak sizes of the members within the mainland region could influence the results of a random simulation of the process of island colonization."

 "3. In the original analyses Simberloff (1970) assumed equiprobability of dispersal among all species in the mainland pool, in order to obtain expected species/genus ratios on islands. This assumption seems unlikely to be true (Grant, 1970; Terborgh et al., 1978), as has been recently acknowledged, "Biologically this assumption implies that all species have equal dispersal and persistence abilities. In fact, species have different abilities to disperse and persist, and this assumption is therefore absurd" (Connor and Simberloff, 1978)."

Keddy & Weiher 1995

 Weiher, Evan, and Paul A. Keddy. "Assembly rules, null models, and trait dispersion: new questions from old patterns." *Oikos* (1995): 159-164.

Keddy & Weiher 1995

Fig. 1. A qualitative model for trait dispersion.

Ecology, 87(10), 2006, pp. 2418-2424 © 2006 by the Ecological Society of America

THE PROBLEM AND PROMISE OF SCALE DEPENDENCY IN COMMUNITY PHYLOGENETICS

Nathan G. Swenson, 1,3 Brian J. Enquist, 1 Jason Pither, 1 Jill Thompson, 2 and Jess K. Zimmerman 2

¹Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721 USA
²Institute for Tropical Ecosystems Research, University of Puerto Rico, Rio Piedras, Puerto Rico 00931 USA

TABLE 1. The number of species in pools (n) at each scale utilized and the forest types included in the pool.

	0.36 ha		1 ha		FDP		Region		Country		Multiple countries	
Location	n	Forest types	n	Forest types	n	Forest types	n	Forest types	n	Forest types	n	Forest types
BCI†	118–144	moist	157–181	moist	301	moist	1270	dry, moist, wet forests	2446	cloud, dry, moist, wet forests	3435	cloud, dry, moist, wet forests
San Emilio	55–74	dry	85–88	dry	173	dry	197	dry forest	2261	cloud, dry, moist, wet forests	3435	cloud, dry, moist, wet forests
Luquillo	49–70	moist	71–87	moist	151	moist	281	cloud, moist, wet forests	738	cloud, dry, moist, wet forests	779	cloud, dry, moist, wet forests

[†] Barro Colorado Island.

Ecology, 88(7), 2007, pp. 1770-1780 © 2007 by the Ecological Society of America

THE INFLUENCE OF SPATIAL AND SIZE SCALE ON PHYLOGENETIC RELATEDNESS IN TROPICAL FOREST COMMUNITIES

Nathan G. Swenson, 1,3 Brian J. Enquist, 1 Jill Thompson, 2 and Jess K. Zimmerman 2

¹Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721 USA
²Institute for Tropical Ecosystem Studies, University of Puerto Rico, Rio Piedras, Puerto Rico 00931 USA

Fig. 4. (a) A figure adapted from Weiher and Keddy (1995), depicting a graphical model of the effect of spatial and body size scale on phylogenetic dispersion in ecological communities. (b) A graphical model of the spatial and taxonomic scale dependency of phylogenetic dispersion in ecological communities. The graphical predictions presented are based on and consistent with the findings of this study and Swenson et al. (2006).

Ecology, 87(7) Supplement, 2006, pp. S86-S99 © 2006 by the Ecological Society of America

THE PHYLOGENETIC STRUCTURE OF A NEOTROPICAL FOREST TREE COMMUNITY

STEVEN W. KEMBEL^{1,3} AND STEPHEN P. HUBBELL²

¹Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G2E9 Canada ²Department of Plant Biology, University of Georgia, Athens, Georgia 30602 USA

Table 2. Tree community phylogenetic structure in quadrats at four spatial scales within the 50-ha Forest Dynamics Plot on Barro Colorado Island, Panama.

		Net relat	edness index		Nearest taxon index			
Spatial scale	N	Estimated mean	SE	P	Estimated mean	SE	P	
Unconstrained null	model							
$10 \times 10 \text{ m}$	5000	0.260	0.008	0.0001	0.142	0.012	0.0001	
$20 \times 20 \text{ m}$	1250	0.389	0.016	0.0001	0.154	0.021	0.0001	
$50 \times 50 \text{ m}$	200	0.771	0.047	0.0001	0.453	0.045	0.0001	
$100 \times 100 \text{ m}$	50	0.074	0.099	0.4605	-0.019	0.099	0.8459	
Constrained null m	nodel							
$10 \times 10 \text{ m}$	5000	0.061	0.016	0.0001	0.070	0.014	0.0001	
$20 \times 20 \text{ m}$	1250	0.056	0.033	0.0952	0.020	0.028	0.4854	
$50 \times 50 \text{ m}$	200	0.051	0.093	0.5825	-0.046	0.076	0.5427	
$100 \times 100 \text{ m}$	50	0.043	0.180	0.8110	0.003	0.161	0.9858	

Notes: Net relatedness index (NRI) and nearest taxon index (NTI) are measures of community phylogenetic structure based on constrained and unconstrained null models (see *Methods* for description). Positive NRI and NTI values indicate phylogenetic clustering; negative values indicate phylogenetic overdispersion of species occurring together in a quadrat. Parameter estimates at each scale are based on a spatial generalized least-squares model with a first-order spatial-neighbor simultaneous spatial autoregression term (SAR). Significant P values indicate that the phylogenetic structure at a given spatial scale differed from zero according to a two-tailed t test.

Kraft et al. 2007

VOL. 170, NO. 2 THE AMERICAN NATURALIST AUGUST 2007

1

Trait Evolution, Community Assembly, and the Phylogenetic Structure of Ecological Communities

Nathan J. B. Kraft,1,* William K. Cornwell,2,† Campbell O. Webb,3,‡ and David D. Ackerly1,5

Kraft et al. 2007

Kraft & Ackerly 2010

Ecological Monographs, 80(3), 2010, pp. 401-422 © 2010 by the Ecological Society of America

Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest

NATHAN J. B. KRAFT1 AND DAVID D. ACKERLY

Department of Integrative Biology, University of California, Berkeley, California 94720 USA

