Errata of the textbook "Traffic Flow Dynamics – Data, Models, and Simulation"

Martin Treiber und Arne Kesting

October 21, 2016

In the following, we list only errors relating to the content.

• Chapter 3.1, page 14: The second term of Eq. (3.3) is incorrect. The correct equation reads

$$\rho = \frac{Q}{V} \left(\frac{1}{1 + \frac{\sigma_V}{V} Q \sigma_{\Delta t} \ r_{\nu_{\alpha}, \Delta t_{\alpha}}} \right) \tag{3.4}$$

where $\sigma_{\Delta t}$ is the standard deviation of the (vehicle-to-vehicle) time headways.

• Chapter 3.3, page 19: Equation (3.20) is incorrect. The correct equation reads

$$\rho = \frac{Q}{V} \left(\frac{1}{1 + \frac{\sigma_V}{V} Q \sigma_{\Delta t} \ r_{v_{\alpha}, \Delta t_{\alpha}}} \right)$$
(3.21)

where $\sigma_{\Delta t}$ is the standard deviation of the (vehicle-to-vehicle) time headways.

- Chapter 8.3.2, page 86, Eq. (8.9): Replace $Q_{\rm e}(\rho_1)$ by $Q_{\rm e}(\rho_2)$ and vice versa
- Chapter 9.5, page 146: There are sign errors in Equation (9.31): The correct equation reads

$$S_{\rm inh} = -\frac{Q^2}{\rho I} \frac{\mathrm{d}I}{\mathrm{d}x} + \frac{Q\nu_{\rm rmp}}{\rho} + \rho A_{\rm rmp}. \tag{9.31}$$

- Chapter 9.5.5, page 152: Spurious "S" at the beginning of the text below Eq. (9.45)
- Solutions to Problem 9.5, page 455: In the last equation of this solution, there are sign errors related to that of Chapter 9.5: The right-hand side of this equation should read

$$\frac{\rho V_{\rm e}^* - Q}{\tau} - \frac{Q^2}{\rho I} \frac{\mathrm{d}I}{\mathrm{d}x} + \frac{Q\nu_{\rm rmp}}{\rho} + \rho A_{\rm rmp}.$$

- Chapter 10.8, page 176: Replace $\frac{\partial V(x,t)}{\partial t}t$ by $\frac{\partial V(x,t)}{\partial t}T$ in the second line of Eq. (10.29).
- Chapter 11.1, page 182: replace "=≥" by "=" in Eq. (11.3)

• Table 11.2, page 190: The typical parameter values of this table are valid for cars, only. On freeways/highways, trucks (and their drivers) are characterized by a desired speed of 80 km/h. In any scenario, the time-gap parameter of trucks is of the order of 2s, and the acceleration and comfortable deceleration parameters are somewhat lower than that for cars, e.g.,

Parameter	Cars Freeway	Cars City	Trucks Freeway	Pedestrians Single File
	Ticcway	City	Treeway	
Desired speed v_0	$120\mathrm{km/h}$	$54\mathrm{km/h}$	$80\mathrm{km/h}$	$5\mathrm{km/h}$
Time gap T	$1.0\mathrm{s}$	$1.0\mathrm{s}$	$1.8\mathrm{s}$	$0.8\mathrm{s}$
Minimum gap s_0	$2\mathrm{m}$	$2\mathrm{m}$	$3\mathrm{m}$	$0.2\mathrm{m}$
Acceleration exponent δ	4	4	4	1
Acceleration a	$1.0 {\rm m/s^2}$	$1.5 {\rm m/s^2}$	$0.5 {\rm m/s^2}$	$1.5 {\rm m/s^2}$
Comfortable deceleration b	$1.5\mathrm{m/s^2}$	$2.0\mathrm{m/s^2}$	$1.0{\rm m/s^2}$	$2.0\mathrm{m/s^2}$