HW2

B10209040 陳彦倫

1.1

	Taipei	Taitung
1960s	28.80°c	$27.65^{\circ}\mathrm{c}$
2000s	29.85°c	29.34°c

Table 1: Mean Ts for the two stations in the two periods.

1.2

	Taipei	Taitung
1960s	$33.61^{\circ} \text{c} / 25.24^{\circ} \text{c}$	$30.94^{\circ} c/24.87^{\circ} c$
2000s	$33.82^{\circ} c/26.53^{\circ} c$	$31.80^{\circ} c/26.26^{\circ} c$

Table 2: Mean max and min Ts.

1.3

	Taipei	Taitung
1960s	$8.37^{\circ} c/9.53^{\circ} c^2$	$6.07^{\circ} c/6.92^{\circ} c^2$
2000s	$7.30^{\circ} \text{c}/6.89^{\circ} \text{c}^2$	$5.55^{\circ} c/5.22^{\circ} c^2$

Table 3: Mean DTR and variance(Based on hourly data).

Discussion

由Table 3的結果我們可以看出在此案例中,較大的每日最高温及最低温差大致上也 代表著資料擁有較大的變異數。但變異數代表的涵義為資料分布的離散程度,因此 我們也須考量資料的特性以思考各個統計度量的關聯。如氣象資料可能因測量器材 及環境因素使得較常有離群值的產生,而此變化皆會對上述兩者造成影響。

1.4

Figure 1:

藉由圖表比較四個不同時空背景下每日時間點的平均温度,可以驗證隨著時間氣温 有逐漸變暖的趨勢,且台北氣温普遍高於台東地區。每日最高温及最低温方面, 可以看出最低温皆落在早上5點,而最高温根據時間及地點的不同,出現在下午3點 到5點的區間。隨著年代演進,每日最高温出現時間漸漸提前。