1

GATE 2022 -AE 63

EE23BTECH11057 - Shakunaveti Sai Sri Ram Varun

Question: For the circuit shown, the locus of the impedance $Z(j\omega)$ is plotted as ω increases from zero to infinity. The values of R_1 and R_2 are:

(B)
$$R_1 = 5 \text{ k}\Omega, R_2 = 2 \text{ k}\Omega$$

(C)
$$R_1 = 5 \text{ k}\Omega, R_2 = 2.5 \text{ k}\Omega$$

(D)
$$R_1 = 2 \text{ k}\Omega, R_2 = 5 \text{ k}\Omega$$

Fig. 1. Figure of circuit

Fig. 2.

(GATE ECE 2022 QUESTION 38)

Solution:

In ω domain (i.e. after Laplace transform) Fig. 1

Parameter	Description	Value
$Z(j\omega)$	Impedance of circuit	?
R_1	Resistor 1	?
R_1	Resistor 2	?
C	Capacitor	?
ω	angular frequency of input voltage	ω

TABLE I INPUT VALUES

Fig. 3.

the circuit in ω domain is:

$$Z(j\omega) = R_1 + \frac{1}{\frac{1}{R_2} + j\omega C}$$
 (1)

From Fig. 2, $Z(j\omega) = 2k\Omega$ as $\omega \to \infty$ and $Z(j\omega) = 5k\Omega$ as $\omega \to 0$.

$$2 = R_1 + \frac{1}{\frac{1}{R_2} + j\infty} \tag{2}$$

$$\implies 2k\Omega = R_1$$
 (3)

$$5 = R_1 + \frac{1}{\frac{1}{R_2} + 0} \tag{4}$$

$$\implies 3k\Omega = R_2 \tag{5}$$

Hence, option (A) is correct.

can be represented as Fig. 3 So, the impedance for