AI504: Programming for Artificial Intelligence

Week 3: Neural Nets & Backpropagation

Edward Choi

Grad School of AI

edwardchoi@kaist.ac.kr

Today's Topic

- Deep Learning Frameworks
- Logistic Regression
- Neural Networks
- Backpropagation
- Autograd (in PyTorch)

Deep Learning Frameworks

Deep Learning Libraries

- Theano
 - Probably the first popular deep learning framework
 - Developed in MILA (Yoshua Bengio's group)
- Caffe
 - Deep learning framework in C++
 - Developed in UC Berkeley
- MXNet
 - Deep learning framework for speed and scalability
 - Supported by Amazon
- TensorFlow
- PyTorch

Deep Learning Libraries

- Theano
- Caffe
- MXNet
- TensorFlow 1.0
 - Compile the model then execute.
 - Big boilerplate.
 - Supposed to be fast.
 - Good for production.
- PyTorch (Came from Torch written in Lua)
 - Compile as you go.
 - Small boilerplate.
 - Supposed to be slow.
 - Good for research.

TensorFlow VS PyTorch

PyTorch is catching up

TensorFlow VS PyTorch

PyTorch is catching up

Alternatives

- TensorFlow 2.0
 - Trying to be similar to PyTorch.
 - Eager-mode (lazy compilation).
- JAX (& FLAX)
 - Support higher-order differentiation.
 - Good for calculating Hessian.

- Maybe the most popular model in statistical studies
 - A well-studied model. (Used since 19th century)
 - Analysis of coefficients of predictor variables (i.e. explanatory variable, independent variable, feature).

Multivariate Logistic Regression

$$p=rac{1}{1+b^{-(eta_0+eta_1x_1+eta_2x_2+\cdots+eta_mx_m)}}$$

where usually b = e.

Odds

- Win Probability *p*
 - 0.2, 0.5, 0.8
 - [0, 1]
- Odds

•
$$odds(p) = \frac{p}{1-p}$$

•
$$p = 0.8$$
 $Odds = 4$

•
$$p = 0.1$$
 \rightarrow $Odds = 0.1111...$

• [0, inf)

Log-Odds (Logit)

Logit

•
$$logit(p) = log(\frac{p}{1-p})$$

•
$$p = 0.8$$
 \rightarrow $logit = 1.3863$

•
$$p = 0.5$$
 \rightarrow $logit = 0$

•
$$p = 0.1$$
 \rightarrow $logit = -0.9542$

• (-inf, inf)

Linear Modeling of Logit

$$logit(p) = log(rac{p}{1-p}) = eta_0 + eta_1 x_1 + \dots + eta_k x_k$$

$$rac{1-p}{p} = rac{1}{exp(eta_0 + eta_1 x_1 + \cdots + eta_k x_k)}$$

$$p = rac{exp(eta_0 + eta_1 x_1 + \cdots + eta_k x_k)}{1 + exp(eta_0 + eta_1 x_1 + \cdots + eta_k x_k)}$$

$$p = rac{1}{1 + b^{-(eta_0 + eta_1 x_1 + eta_2 x_2 + \cdots + eta_m x_m)}}$$

where usually b = e.

- Vector form
 - Inner product

$$p = rac{1}{1 + b^{-(eta_0 + eta_1 x_1 + eta_2 x_2 + \cdots + eta_m x_m)} \hspace{0.2cm} igwedge h_{ heta}(X) = rac{1}{1 + e^{- heta^T X}} = \Pr(Y = 1 \mid X; heta)$$

- Vector form
 - Inner product

$$p = rac{1}{1 + b^{-(eta_0 + eta_1 x_1 + eta_2 x_2 + \cdots + eta_m x_m)} \hspace{0.2cm} iggleq h_{ heta}(X) = rac{1}{1 + e^{- heta_1^T X}} = \Pr(Y = 1 \mid X; heta)$$

- Vector form
 - Inner product

$$p=rac{1}{1+b^{-(eta_0+eta_1x_1+eta_2x_2+\cdots+eta_mx_m)}$$
 $ag{h_{ heta}(X)}=rac{1}{1+e^{- heta^TX}}=\Pr(Y=1\mid X; heta)$

Image Representation Vector

0	1	0	0	0	1	0	0	0	0	1	1			•••	
						l			l			l		l	i

- Vector form
 - Inner product

$$p=rac{1}{1+b^{-(eta_0+eta_1x_1+eta_2x_2+\cdots+eta_mx_m)}} \hspace{0.2cm} igwedge h_ heta(X)=rac{1}{1+e^{-eta_1^TX}}=\Pr(Y=1\mid X; heta)$$

Need to learn this to correctly predict for **X** (i.e. image representation vector)

Maximum Likelihood Estimate

- Need to estimate θ .
 - Learn from data \rightarrow Training pairs $(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots, (x_N, y_N)$
- Log Likelihood Function

Probability Function

$$h_{ heta}(X) = rac{1}{1 + e^{- heta^T X}} = \Pr(Y = 1 \mid X; heta)$$

Likelihood Function

$$egin{aligned} L(heta \mid x) &= \Pr(Y \mid X; heta) \ &= \prod_i \Pr(y_i \mid x_i; heta) \ &= \prod_i h_{ heta}(x_i)^{y_i} (1 - h_{ heta}(x_i))^{(1 - y_i)} \end{aligned}$$

Log Likelihood Function

$$N^{-1} \log L(heta \mid x) = N^{-1} \sum_{i=1}^N \log \Pr(y_i \mid x_i; heta)$$

Negative Log Likelihood Function

$$-rac{1}{N}\sum_{n=1}^N \left[y_n \log \hat{y}_n + (1-y_n) \log (1-\hat{y}_n)
ight]$$

Negative Log Likelihood (NLL) is the same as the Cross Entropy loss

Maximum Likelihood Estimate

- Need to estimate θ .
 - Learn from data \rightarrow Training pairs $(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots, (x_N, y_N)$
- Log Likelihood Function

Probability Function

$$h_{ heta}(X) = rac{1}{1 + e^{- heta^T X}} = \Pr(Y = 1 \mid X; heta)$$

Likelihood Function

$$egin{aligned} L(heta \mid x) &= \Pr(Y \mid X; heta) \ &= \prod_i \Pr(y_i \mid x_i; heta) \ &= \prod_i h_{ heta}(x_i)^{y_i} (1 - h_{ heta}(x_i))^{(1 - y_i)} \end{aligned}$$

Log Likelihood Function

$$N^{-1} \log L(heta \mid x) = N^{-1} \sum_{i=1}^N \log \Pr(y_i \mid x_i; heta)$$

Negative Log Likelihood Function

$$-rac{1}{N}\sum_{n=1}^N \left[y_n \log \hat{y}_n + (1-y_n) \log (1-\hat{y}_n)
ight]$$

Minimize the negative log likelihood (NLL) by Gradient Descent

Neuron

Logistic Regression

Another layer of neurons.

Example: Feedforward neural network with one hidden layer of 4 neurons.

Assume hidden layer activation function → sigmoid function

• 4 logistic regression classifiers (when using sigmoid activation)

• Higher-level logistic regression classifiers

Higher-level logistic regression classifiers

Need to estimate all parameter values

Need to estimate all parameter values

Maximum likelihood estimation

negative log-likelihood function

• Minimize NLL with gradient descent.

Updating w₁

• Updating $v_{1,1}$

Backpropagation

Backpropagation

Multiple hidden layers

Multiple output nodes (e.g. multi-class classification)

Reference: https://medium.com/@erikhallstrm/backpropagation-from-the-beginning-77356edf427d

Backpropagation

 \boldsymbol{x}

Given an input-output pair (x,y), the loss is:

$$C(y,f^L(W^Lf^{L-1}(W^{L-1}\cdots f^2(W^2f^1(W^1x))\cdots)))$$
 a $^{l-1}$

Backpropagation

$$z_{k}^{l} = \sum_{j} w_{kj}^{l} a_{j}^{l-1} + b_{k}^{l}$$

$$a_{k}^{l} = \sigma(z_{k}^{l})$$

$$z_{m}^{l+1} = \sum_{k} w_{mk}^{l+1} a_{k}^{l} + b_{m}^{l}$$

Backpropagation

Derivative of the loss function C w.r.t. input **x**

$$\frac{dC}{da^L} \cdot \frac{da^L}{dz^L} \cdot \frac{dz^L}{da^{L-1}} \cdot \frac{da^{L-1}}{dz^{L-1}} \cdot \frac{dz^{L-1}}{da^{L-2}} \cdot \cdots \frac{da^1}{dz^1} \cdot \frac{\partial z^1}{\partial x}$$

Backpropagation

Derivative of the loss function C w.r.t. input x

$$\frac{dC}{da^L} \cdot \frac{da^L}{dz^L} \cdot \frac{dz^L}{da^{L-1}} \cdot \frac{da^{L-1}}{dz^{L-1}} \cdot \frac{dz^{L-1}}{da^{L-2}} \cdot \cdots \frac{da^1}{dz^1} \cdot \frac{\partial z^1}{\partial x}$$

$$rac{dC}{da^L} \cdot (f^L)' \cdot W^L \cdot (f^{L-1})' \cdot W^{L-1} \cdot \cdots (f^1)' \cdot W^1$$

$$abla_x C = (W^1)^T \cdot (f^1)' \cdot \dots \cdot (W^{L-1})^T \cdot (f^{L-1})' \cdot (W^L)^T \cdot (f^L)' \cdot
abla_{a^L} C$$

Define delta (error at layer *l*)

$$\delta^l := (f^l)' \cdot (W^{l+1})^T \cdot \dots \cdot (W^{L-1})^T \cdot (f^{L-1})' \cdot (W^L)^T \cdot (f^L)' \cdot
abla_{a^L} C$$

Backpropagation

Define delta at each neuron δ_k^l : How much the cost (loss) function changes when the input to the k-th neuron at layer l changes.

Backpropagation

Derivative of the loss function C w.r.t. input x

$$abla_x C = (W^1)^T \cdot (f^1)' \cdot \dots \cdot (W^{L-1})^T \cdot (f^{L-1})' \cdot (W^L)^T \cdot (f^L)' \cdot
abla_{a^L} C$$

Define delta (error at layer *l*)

$$\delta^l := (f^l)' \cdot (W^{l+1})^T \cdot \dots \cdot (W^{L-1})^T \cdot (f^{L-1})' \cdot (W^L)^T \cdot (f^L)' \cdot
abla_{a^L} C$$

Deltas at each layer

$$\begin{split} \delta^1 &= (f^1)' \cdot (W^2)^T \cdot (f^2)' \cdot \dots \cdot (W^{L-1})^T \cdot (f^{L-1})' \cdot (W^L)^T \cdot (f^L)' \cdot \nabla_{a^L} C \\ \delta^2 &= (f^2)' \cdot \dots \cdot (W^{L-1})^T \cdot (f^{L-1})' \cdot (W^L)^T \cdot (f^L)' \cdot \nabla_{a^L} C \\ &\vdots \\ \delta^{L-1} &= (f^{L-1})' \cdot (W^L)^T \cdot (f^L)' \cdot \nabla_{a^L} C \\ \delta^L &= (f^L)' \cdot \nabla_{a^L} C, \end{split}$$

Backpropagation

Derivative of the loss function C w.r.t. input x

$$abla_x C = (W^1)^T \cdot (f^1)' \cdot \dots \cdot (W^{L-1})^T \cdot (f^{L-1})' \cdot (W^L)^T \cdot (f^L)' \cdot
abla_{a^L} C$$

Define delta (error at layer *l*)

$$\delta^l := (f^l)' \cdot (W^{l+1})^T \cdot \dots \cdot (W^{L-1})^T \cdot (f^{L-1})' \cdot (W^L)^T \cdot (f^L)' \cdot
abla_{a^L} C$$

Deltas at each layer

$$\begin{split} \delta^1 &= (f^1)' \cdot (W^2)^T \cdot (f^2)' \cdot \dots \cdot (W^{L-1})^T \cdot (f^{L-1})' \cdot (W^L)^T \cdot (f^L)' \cdot \nabla_{a^L} C \\ \delta^2 &= (f^2)' \cdot \dots \cdot (W^{L-1})^T \cdot (f^{L-1})' \cdot (W^L)^T \cdot (f^L)' \cdot \nabla_{a^L} C \\ &\vdots \\ \delta^{L-1} &= (f^{L-1})' \cdot (W^L)^T \cdot (f^L)' \cdot \nabla_{a^L} C \\ \delta^L &= (f^L)' \cdot \nabla_{a^L} C, \end{split}$$

Delta can be recursively defined!

$$\delta^{l-1} := (f^{l-1})' \cdot (W^l)^T \cdot \delta^l$$

Derivative of C w.r.t weights can be defined via delta

$$abla_{W^l}C=\delta^l(a^{l-1})^T$$
 Needed for $ightharpoonup$ $\mathsf{w_1}^\mathsf{new}$ = $\mathsf{w_1}^\mathsf{old}$ - $\eta\cdotrac{\partial \mathit{NLL}}{\partial \mathit{w_1}}$

Backpropagation

Backprop is faster than forward-prop! But need to store $(f^l)'$, a_k^l for every node in every layer.

Derivative of the loss function C w.r.t. input x

$$abla_x C = (W^1)^T \cdot (f^1)' \cdot \dots \cdot (W^{L-1})^T \cdot (f^{L-1})' \cdot (W^L)^T \cdot (f^L)' \cdot
abla_{a^L} C$$

Define delta (error at layer *l*)

$$\delta^l := (f^l)' \cdot (W^{l+1})^T \cdot \dots \cdot (W^{L-1})^T \cdot (f^{L-1})' \cdot (W^L)^T \cdot (f^L)' \cdot
abla_{a^L} C$$

Deltas at each layer

$$\begin{split} \delta^1 &= (f^1)' \cdot (W^2)^T \cdot (f^2)' \cdot \dots \cdot (W^{L-1})^T \cdot (f^{L-1})' \cdot (W^L)^T \cdot (f^L)' \cdot \nabla_{a^L} C \\ \delta^2 &= (f^2)' \cdot \dots \cdot (W^{L-1})^T \cdot (f^{L-1})' \cdot (W^L)^T \cdot (f^L)' \cdot \nabla_{a^L} C \\ & \vdots \\ \delta^{L-1} &= (f^{L-1})' \cdot (W^L)^T \cdot (f^L)' \cdot \nabla_{a^L} C \\ \delta^L &= (f^L)' \cdot \nabla_{a^L} C, \end{split}$$

Delta can be recursively defined!

$$\delta^{l-1} := (f^{l-1})' \cdot (W^l)^T \cdot \delta^l$$

Derivative of C w.r.t weights can be defined via delta

$$\sim
abla_{W^l} C = \delta^l (a^{l-1})^T$$
 Needed for $igothedow{} \mathsf{w_1}^\mathsf{new} = \mathsf{w_1}^\mathsf{old}$ - $\eta \cdot rac{\partial \mathit{NLL}}{\partial \mathit{w_1}}$

Autograd (in PyTorch)

In Practice

- Computer does backpropagation for you.
 - Autograd
 - Theano, TensorFlow, PyTorch
- A neural network model is represented as a Directed Acyclic Graph
 - Each node contains a mathematical operation.
 - Each node contains the derivative of the math operation.
 - The error signal is propagated from the output nodes to the input nodes.

- x: [[1, 1], [1, 1]]
- a = x + 2
- b = a * a * 3
- c = b.mean()

- x: [[1, 1], [1, 1]]
- a = x + 2
- b = a * a * 3
- c = b.mean()

- x: [[1, 1], [1, 1]]
- a = x + 2
- b' = a * a
- b = b' * 3
- c = b.mean()

- x: [[1, 1], [1, 1]]
- a = x + 2
- b' = a * a
- b = b' * 3
- c = b.mean()

Each grad_fn has

- forward
 - Compute forward propagation
 - Save input & misc. for backward
- backward
 - Given δ^l , calculate δ^{l-1}
 - Calculate $abla_{W^l}C = \delta^l(a^{l-1})^T$, if necessary

- x: [[1, 1], [1, 1]]
- a = x + 2
- b' = a * a
- b = b' * 3
- c = b.mean()

- x: [[1, 1], [1, 1]]
- a = x + 2
- b' = a * a
- b = b' * 3
- c = b.mean()

- x: [[1, 1], [1, 1]]
- a = x + 2
- b' = a * a
- b = b' * 3
- c = b.mean()

AI504: Programming for Artificial Intelligence

Week 3: Neural Nets & Backpropagation

Edward Choi

Grad School of AI

edwardchoi@kaist.ac.kr

• There is a matrix between layers

Weight matrix

Weight matrix

• A bit of linear algebra

• A bit of linear algebra

A bit of linear algebra

• A bit of linear algebra

• Logistic regression VS feedforward neural network

Logistic regression VS feedforward neural network

