

PHYSICS 3APHY and 3BPHY Formulae and constants sheet

Physics 3A/3B: Formulae and constants sheet

Forces and motion

Mean velocity $v_{av} = \frac{s}{t} = \frac{v+u}{2}$

Equations of motion $a = \frac{\Delta v}{\Delta t}$; $s = ut + \frac{1}{2}at^2$; $v^2 = u^2 + 2as$; v = u + at

Force F = ma

Weight force F = mg

Momentum p = mv

Change in momentum (impulse) $F\Delta t = mv - mu$

Kinetic energy $E_k = \frac{1}{2}mv^2$

Gravitational potential energy $E_p = mgh$

Work done $W = Fs = \Delta E$

Power $P = \frac{W}{A} = \frac{\Delta E}{A} = Fv_{av}$

Centripetal acceleration $a_c = \frac{V^2}{r}$

Centripetal force $F_c = ma_c = \frac{mv^2}{r}$

Newton's Law of Universal $F = G \frac{m_1 m_2}{r^2} \label{eq:F}$ Gravitation

Gravitational field strength $g = G \frac{M}{r^2}$

Moment of a force $\tau = rF$

Electricity and magnetism

Electric current
$$I = \frac{q}{t}$$

Electric field
$$E = \frac{F}{q} = \frac{V}{d}$$

Work and energy
$$W = qV = VIt$$

Ohm's law
$$V = IR$$

Resistances in series
$$R_T = R_1 + R_2 + ...$$

Resistances in parallel
$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$$

Power
$$P=VI=I^2R=\frac{V^2}{R}$$

Magnetic flux
$$\Phi = BA$$

Electromagnetic induction
$$\mathrm{emf} = -\mathrm{N}\frac{\Delta\Phi}{\Delta t} \text{, } \mathrm{emf} = \ell\,\mathrm{v}\,\mathrm{B}$$

Magnetic force
$$F = I \ell B$$
 , $F = qvB$

Ideal transformer turns ratio
$$\frac{V_{s}}{V_{p}} = \frac{N_{s}}{N_{p}}$$

Particles and waves

Energy of photon
$$E = hf$$

Energy transitions
$$E_2 - E_1 = hf$$

Wave period
$$T = \frac{1}{f}$$

Wave equation
$$v_{wave} = f\lambda$$

Internodal distance
$$d = \frac{1}{2}\lambda$$

Absolute refractive index
$$n_x = \frac{c}{C_x}$$

Snell's law
$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Physical constants

Speed of light in vacuum or airc	$= 3.00 \times 10^8 \text{ m s}^{-1}$
Electron chargee	$=-1.60 \times 10^{-19} \text{ C}$
Mass of electronme	$= 9.11 \times 10^{-31} \text{ kg}$
Planck's constanth	$= 6.63 \times 10^{-34} \text{ J s}$
Universal gravitational constantG	$= 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Electron volt	$= 1.60 \times 10^{-19} \text{ J}$
Mass of protonm _p	$= 1.67 \times 10^{-27} \text{ kg}$
Mass of alpha m_{α}	$= 6.65 \times 10^{-27} \text{ kg}$

Physical data

Mean acceleration due to gravity on Earth	g	$= 9.80 \text{ m s}^{-2}$
Mean acceleration due to gravity on the Moon	g _M	$= 1.62 \text{ m s}^{-2}$
Mean radius of the Earth	R_E	$= 6.37 \times 10^6 \text{ m}$
Mass of the Earth	$M_{ m E}$	$= 5.98 \times 10^{24} \text{ kg}$
Mean radius of the Sun	R_{S}	$= 6.96 \times 10^8 \text{ m}$
Mass of the Sun	$M_{ m S}$	$= 1.99 \times 10^{30} \text{ kg}$
Mean radius of the Moon	R_{M}	$= 1.74 \times 10^6 \text{ m}$
Mass of the Moon	M_{M}	$= 7.35 \times 10^{22} \text{ kg}$
Mean Earth-Moon distance		3.84 x 10 ⁸ m
Mean Earth-Sun distance		1.50 x 10 ¹¹ m
Tonne	1 tonne	$= 10^3 \text{ kg} = 10^6 \text{ g}$

Electromagnetic spectrum

Note: 1. Shaded areas represent regions of overlap. 2. Gamma rays and X-rays occupy a common region.

Prefixes of the metric system

Factor	Prefix	Symbol	Factor	Prefix	Symbol
10 ¹²	tera	T	10 ⁻³	milli	m
10^9	giga	G	10 ⁻⁶	micro	μ
10^6	mega	M	10-9	nano	n
10 ³	kilo	k	10 ⁻¹²	pico	p

Mathematical expressions

Given
$$ax^2 + bx + c = 0$$
, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The following expressions apply to the triangle ABC as shown:

The following expressions apply to the right-angled triangle ABC as shown:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$b = \sqrt{a^2 + c^2 - 2ac\cos B}$$

$$\sin A = \frac{a}{C}$$

$$\cos A = \frac{b}{c}$$

$$\tan A = \frac{a}{b}$$