Project Implementation of a (Big) Data Management Backbone

Organization

Big Data Management – FIB – UPC

Organization

Teams (only Local Masters)

- Work in pairs
 - You have to define the teams
 - All pairs must be different in P1 and P2
- How to deal with the incremental nature of the project?
 - You are free to extend the solution of the other team member
 - As long as both members of the team agree
 - Otherwise, use the provided solution

Teams (only Erasmus Mundus)

- Work with your business group
- Large teams (>3 people) will be split
 - 2+2
- The configuration of each sub-team will be made by the lecturers

Development environment

- Virtual machines hosted at FIB
 - Ubuntu Desktop with HDFS, HBase and MongoDB installed in standalone mode
 - See the manual in LearnSQL
 - Credentials will be provided in the team's description
- Your own development environment
 - Java (intellij IDEA)
 - Python (PyCharm)

Validation tests (only Local Masters)

- Each part (P1, P2) will have associated a validation test
 - See specific dates in LearnSQL
- Individual test
- Questions related to the project development and its relationship with the concepts studied in class

Evaluation (only Local Masters)

Final Mark = min(10; 60%E + 40%L + 10%P)

- L = Weighted average of the marks of the three lab deliverables
- E = Final exam
- P = Participation in the class

- L = (1/3) * P1 + (2/3) * P2
- Where, each Pi is computed as
 - Pi = 0.4 * Ti + 0.6 * Di
 - where Ti is the mark on the validation test, and Di is the deliverable's mark

Evaluation (only Erasmus Mundus)

Final Mark = min(10; 60%E + 40%L + 10%P)

- L = Weighted average of the marks of the three lab deliverables
- E = Final exam
- P = Participation in the class

- L = (1/4) * P1 + (1/2) * P2 + (1/4) * Pres.
- Where, each Pi is the deliverable's mark and Pres. is the final presentation's mark

Deliverables

- Document (max 5 pages)
 - Describe all relevant choices and specificities of your project
 - Justify choice of modeling approach and technology
 - These must be supported by the concepts studied in class
 - Present in a high-level manner (BPMN, sequence diagrams, boxes and arrows, ...)
 the data transformations implemented
 - Remember, there is not a single correct solution
 - The most important part is how you justify your choices, and discuss pros/cons
- All code required to deploy the proposed design
 - Java/Python
 - Scripts

Closing

