Semaine n° 33 : du 10 juin au 14 juin

Lundi 10 juin

- Cours à préparer : Chapitre XXX Fonctions de deux variables réelles
 - Partie 2.1 : Dérivées partielles.
 - Partie 2.2 : Fonctions de classe C^1 ; développement limité à l'ordre 1; plan tangent; gradient.
- Exercices à traiter en TD
 - Feuille d'exercices n° 29 : exercices 1, 2, 4, 7, 9, 10, 11.

Mardi 11 juin

- Cours à préparer : Chapitre XXX Fonctions de deux variables réelles
 - Partie 2.3 : Dérivée selon un vecteur.
 - Partie 2.4 : Règle de la chaîne; ligne de niveau; composition.
- Exercices à corriger en classe
 - Feuille d'exercices n° 29 : exercices 3, 5.

Jeudi 13 juin

- Cours à préparer : Chapitre XXX Fonctions de deux variables réelles
 - Partie 2.5: Extremum global, extremum global; point critique; recherche d'extrema.
- Exercices à corriger en classe
 - Feuille d'exercices n° 29 : exercices 15, 17.

Vendredi 14 juin

- Exercices à corriger en classe
 - Feuille d'exercices n° 29 : exercices 12, 13, 14, 16.

Échauffements

Mardi 11 juin

- Cocher toutes les phrases correctes : Soit $a_1, ..., a_n$ des réels.
 - $\Box (f,g) \mapsto \int_0^1 f(t)g(t)dt \text{ est un produit scalaire sur } \mathcal{C}^0([-1,1],\mathbb{R}).$ $\Box (f,g) \mapsto \int_0^1 f(t)g(t)dt \text{ est un produit scalaire sur } \mathcal{C}^0_m(]0,1[,\mathbb{R}).$

 - \Box $(f,g) \mapsto \int_0^1 f(t)g(t)dt$ est un produit scalaire sur $\mathbb{R}[X]$.
 - \square Si $a_1 < a_2 < ... < a_n$, $(P,Q) \mapsto \sum_{k=1}^n P(a_k)Q(a_k)$ est un produit scalaire sur $\mathbb{R}_n[X]$.
 - \square Si $a_1 < a_2 < ... < a_n, (P,Q) \mapsto \sum_{k=1}^n P(a_k)Q(a_k)$ est un produit scalaire sur $\mathbb{R}_n[X]$.

Jeudi 13 juin

- Cocher toutes les phrases correctes : Soit E un espace euclidien, soit $x, y, z \in E$.
 - □ La norme associée à un produit scalaire est linéaire.
 - \square Un produit scalaire sur E est une forme linéaire sur E^2 symétrique définie positive.
 - \square Si x et y sont de même norme, alors x + y et x y sont orthogonaux.

 - \square x et y sont orthogonaux si et seulement si $||x+y||^2 = ||x||^2 + ||y||^2$.
 - \square La famille (x, y, z) est orthogonale si et seulement si $||x + y + z||^2 = ||x||^2 + ||y||^2 + ||z||^2$.
 - \square Il y a égalité dans l'inégalité de Cauchy-Schwarz pour x et y si et seulement s'il existe $\lambda \in \mathbb{R}$ tel que $x = \lambda y$.
- Cocher toutes les phrases correctes :
 - \square $(A,B) \mapsto \operatorname{tr}(AB^{\top})$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.
 - \square Soit $S \in \mathcal{S}_n(\mathbb{R})$, $(X,Y) \mapsto X^\top SY$ est un produit scalaire sur $\mathcal{M}_{n,1}(\mathbb{R})$.
 - \square $(X,Y) \mapsto XY^{\top}$ est un produit scalaire sur $\mathcal{M}_{n,1}(\mathbb{R})$.

Vendredi 14 juin

- Cocher toutes les phrases correctes : Soit E un espace euclidien, F et G deux sous-espaces vectoriels de E.
 - \square Toute famille orthogonale de E est libre.
 - \square E admet une base orthonormée.
 - \square L'orthogonal de E est \varnothing .
 - \square F admet un supplémentaire orthogonal.
 - $\Box F^{\perp}$ est un sous-espace vectoriel de E, et dim $F^{\perp} = \dim E \dim F$.
 - $\Box F \subset G$ si et seulement si $F^{\perp} \subset G^{\perp}$.
- Cocher toutes les phrases correctes :
 - \square Pour toute base de \mathbb{R}^n , il existe un produit scalaire la rendant orthonormée.
 - \square Pour tout produit scalaire, $\mathbb{R}_n[X]$ admet une base orthonormée échelonnée en degré.
 - \square Soit a un réel. $(P,Q)\mapsto \sum_{k=0}^n P^{(k)}(a)Q^{(k)}(a)$ est un produit scalaire sur $\mathbb{R}_n[X]$, et la base

canonique est orthogonale pour ce produit scalaire.