## Schnute Growth Model

Case 1:  $a \neq 0$ ,  $b \neq 0$ 

(15) 
$$Y(t) = \left[ y_1^b + (y_2^b - y_1^b) \frac{1 - e^{-a(t-\tau_1)}}{1 - e^{-a(\tau_2 - \tau_1)}} \right]^{1/b},$$

Case 2:  $a \neq 0, b = 0$ 

(16) 
$$Y(t) = y_1 \exp \left[ \log (y_2/y_1) \frac{1 - e^{-a(t-\tau_1)}}{1 - e^{-a(\tau_2-\tau_1)}} \right],$$

Case 3:  $a = 0, b \neq 0$ 

(17) 
$$Y(t) = \left[ y_1^b + (y_2^b - y_1^b) \frac{t - \tau_1}{\tau_2 - \tau_1} \right]^{1/b},$$

Case 4: a = 0, b = 0

(18) 
$$Y(t) = y_1 \exp \left[ \log (y_2/y_1) \frac{t - \tau_1}{\tau_2 - \tau_1} \right].$$

Case 1: 
$$a \neq 0$$
,  $b \neq 0$   
(15)  $Y(t) = \left[ y_1^b + (y_2^b - y_1^b) \frac{1 - e^{-a(t-\tau_1)}}{1 - e^{-a(\tau_2 - \tau_1)}} \right]^{1/b}$ , (24)  $\tau_0 = \begin{cases} \tau_1 + \tau_2 - \frac{1}{a} \log \left[ \frac{e^{a\tau_2} y_2^b - e^{a\tau_1} y_1^b}{y_2^b - y_1^b} \right]; \\ a \neq 0, b \neq 0; \\ \tau_1 + \tau_2 - \frac{\tau_2 y_2^b - \tau_1 y_1^b}{y_2^b - y_1^b}; a = 0, b \neq 0; \end{cases}$ 

(25) 
$$y_{\infty} = \begin{cases} \left[ \frac{e^{a\tau_2} y_2^b - e^{a\tau_1} y_1^b}{e^{a\tau_2} - e^{a\tau_1}} \right]^{1/b}; a \neq 0, b \neq 0; \\ \exp\left( \frac{e^{a\tau_2} \log y_2 - e^{a\tau_1} \log y_1}{e^{a\tau_2} - e^{a\tau_1}} \right); a \neq 0, b = 0; \end{cases}$$

(26) 
$$\tau^* = \begin{cases} \tau_1 + \tau_2 - \frac{1}{a} \log \left[ \frac{b(e^{a\tau_2} y_2^b - e^{a\tau_1} y_1^b)}{y_2^b - y_1^b} \right]; \\ a \neq 0, b \neq 0; \\ \tau_1 + \tau_2 - \frac{1}{a} \log \left[ \frac{e^{a\tau_2} - e^{a\tau_1}}{\log (y_2/y_1)} \right]; a \neq 0, b = 0; \end{cases}$$

(27) 
$$y^* = \begin{cases} \left[ \frac{(1-b) (e^{a\tau_2} y_2^b - e^{a\tau_1} y_1^b)}{e^{a\tau_2} - e^{a\tau_1}} \right]^{1/b}; a \neq 0, b \neq 0; \\ \exp\left( \frac{(e^{a\tau_2} \log y_2 - e^{a\tau_1} \log y_1)}{e^{a\tau_2} - e^{a\tau_1}} - 1 \right); \\ a \neq 0, b = 0; \end{cases}$$