

Overview

- 1. Basics of Linear Algebra
- 2. Operators in Linear Algebra
- 3. Few more concepts in Linear Algebra
- 4. Linear Transformations
- 5. Hands-on Exercise

What they say about Linear Algebra

"Considering the inconceivable complexity of processes, even in a simple cell, it is little short of a miracle that the simplest possible model - namely, a linear equation between two variables - actually applies in quite a general number of cases "

— Ludwig von Bertalanffy, 1941

What they say about Linear Algebra

"we think basis-free, we write basis-free, but when the chips are down we close the office door and compute with matrices like fury."

— Irving Kaplansky, 1991

Application domains

Graphs and Networks, such as analyzing networks

Markov Matrices, Population, and Economics, such as population growth

Linear Programming, the simplex optimization method

Fourier Series: Linear Algebra for functions, used widely in signal processing

Linear Algebra for statistics and probability, such as least squares for regression

Computer Graphics, such as the various translation, rescaling and rotation of images

Course Plan

Sunday Sessions on Foundations of AIML

Online Tutorials/Quizzes/Exams

Start-ups and Case Studies

Grading and Attendance Policy

Internship Opportunities - Top Performers

Project Work Component - Promising Students

Basics of Linear Algebra

Why Linear Algebra

Simplicity - Occam's Razon
Well understood - mathematical results, models
Efficiency - speed, memory, power etc

Vector

The distance from (0,0,0) to the point P(a,b,c) is given by:

$$\text{distance } OP = \sqrt{a^2 + b^2 + c^2}$$

Vector - Norm or Length

Note: Image representations (C) 3Blue1Brown

Basis of a vector

Basis vectors - a few more characteristics

Basis vectors are usually of unit-length
They are linearly independent and orthogonal to each other
The set of basis vectors are not unique

Operators in Linear Algebra

Addition/Subtraction

Addition/Subtraction (python code)


```
In [ ]: # Import NumPy
        import numpy as np
In [ ]: # Vector addition
        vec1 = np.array([[0],[7],[3]])
        vec2 = np.array([[1],[2],[0]])
        res = vec1 + vec2
        print(res)
```

Scalar Multiplication

$$\begin{array}{c}
\mathbf{2} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \end{bmatrix} \\
2 \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}
\end{array}$$

This process of "scaling" (stretching)
a vector with a "scalar"

Scalar Multiplication


```
In [10]: # Vector-Scalar Multiplication
         # The result will be calculated in the following way
         \# res = s*vec1[0] + s*vec1[1] + s*vec1[2]
         s = 3
         vec1 = np.array([5,1,3])
         res = s * vec1
         print(res)
         print(type(res))
         [15 3 9]
         <class 'numpy.ndarray'>
```

Dot Product

$$\bar{X}.\bar{Y} = (x_1y_1 + x_2y_2 = \dots + x_dy_d)$$

$$\bar{X}.\bar{Y} = ||X||||Y||Cos\theta$$

Note: Dot product would be zero, if vectors X and Y are orthogonal, or if any of the norm of vectors is zero.

Matrices - Solving Equations

Matrices - Solving Equations


```
In [1]: import numpy as np
        import matplotlib.pyplot as plt
        %matplotlib inline
In [2]: a = np.array([[3,-5,4],[1,-2,7],[6,-8,1]])
        b = np.array([[7],[2],[0]])
In [3]: x = np.linalg.solve(a, b)
        print(x)
        [[-12.
         [ -9.07407407]
           -0.5925925911
```

Matrices - Solving Equations

$$\begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -4 \\ -1 \end{bmatrix}$$

$$A \quad \vec{x} \quad \vec{b}$$

$$A^{-1}A\vec{x} = A^{-1}\vec{b}$$
The "do nothing" matrix

Few more concepts in Linear Algebra

Rank, Determinant, Linear Dependency

Note: A⁻¹ exists only when ad - bc ≠ 0

Span of Vectors

The "span" of \vec{v} and \vec{w} is the set of all their Linear combinations

Let a and b vary over all real numbers

Conventional Equation for a Line

$$\mathbf{m} = \frac{\text{Change in Y}}{\text{Change in X}}$$

Generic Equations in Linear Algebra

$$egin{aligned} \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2 + ... + \mathbf{w}_n \mathbf{x}_n + \mathbf{w}_o &= \mathbf{0} \ & \mathbf{w} &= [w_0, w_1, w_2, ..., w_n] \ & \mathbf{x} &= [1, x_1, x_2, ..., x_n] \ & \mathbf{w} \cdot \mathbf{x} &= \mathbf{w}^{\mathbf{T}} \mathbf{x} &= \sum_{i=0}^n w_i * x_i \end{aligned}$$

Solving Generic Equations

Linear Combination of Vectors

"Linear combination" of \vec{v} and \vec{w}


```
In [6]: # Linear combination of vectors
        v = np.array([[3],[1]])
        w = np.array([[-2],[-4]])
In [7]: a = 1.5
        b = 1
In [8]: vec new = a*v + b*w
        print(vec new)
        [[ 2.5]
         [-2.5]]
```

Linearly independent and dependent vectors

If from a span we can simply remove one vector because it does not add any information or we can say that the set of vectors are **linearly dependent**, if all vectors add some information, they are **linearly independent**.

Linear Transformations

Linear Transformation

A linear transformation is actually a function that maps an input vector into an output vector.

Linear Transformation

Essential characteristics of a linear transformation

a line should remain a line after transforming coordinate system an origin should remain at the fixed place distance between grid lines should remain equidistant and parallel

Characteristics

Distance between lines remains equidistant

Hands-on

Colab Exercise - Warm-up