Convex Sets (II)

Lecture 2, Nonlinear Programming

National Taiwan University

September 20, 2016

Table of contents

- Convexity-Preserving Operations
 - Intersection
 - Affine functions
 - Linear-fractional and perspective functions
- 2 Generalized Inequality
 - Proper Cones
 - Generalized Inequality
 - Properties of generalized inequalities
 - Minimal and minimum elements
- 3 Separating and Supporting Hyperplanes
 - Separating hyperplane theorem
 - Supporting Hyperplanes

Intersection Preserves Convexity

Intersection Preserves Convexity

If S_1 and S_2 are convex, then $S_1 \cap S_2$ is convex.

Intersection of an infinite number of sets

If S_{α} is convex for every $\alpha \in \mathcal{A}$, then

$$\bigcap_{\alpha\in\mathcal{A}}\mathcal{S}_{\alpha}$$

is convex.

 Example: A polyhedron is the intersection of halfspaces and hyperplanes (which are convex), and therefore is convex.

Positive Semidefinite Cone

Positive Semidefinite

The positive semidefinite cone S_+^n can be expressed as

$$\bigcap_{z\neq 0} \left\{ X \in \mathbf{S}^n \mid z^T X z \ge 0 \right\}$$

and is convex.

• For each $z \neq 0$, $z^T X z$ is a linear function of X, so the set

$$\left\{X \in \mathbf{S}^n \mid z^T X z \ge 0\right\}$$

is a halfspace in S^n .

An Example

Consider the set

$$S = \{x \in \mathbb{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3\}$$

where $p(t) = \sum_{k=1}^{m} x_k \cos kt$.

 The set S can be expressed as the intersection of an infinite number of slabs:

$$S = \bigcap_{|t| \le \pi/3} S_t$$

where

$$S_t = \left\{ x \mid -1 \leq \left[\cos t, \cdots, \cos mt \right]^T x \leq 1 \right\}.$$

• So, *S* is convex.

An Example

$$p(t) = \sum_{k=1}^{m} x_k \cos kt$$

$$\begin{split} S &= \bigcap_{|t| \leq \pi/3} S_t \\ \text{where } S_t &= \\ \left\{ x \mid -1 \leq [\cos t, \cdots, \cos mt]^T x \leq 1 \right\} \end{split}$$

Convex Sets as Intersection of Halfspaces

- We have seen that the intersection of (possibly infinite) halfspaces is convex.
- It will be shown that a converse is true: every closed convex set S is the intersection of (usually infinite) halfspaces.
- A closed convex set S is the intersection of all halfspaces that contain it:

$$S = \bigcap \{ \mathcal{H} \mid \mathcal{H} \text{ halfspace}, S \subseteq \mathcal{H} \}$$
.

Affine functions

Affine function

A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is affine if it is a sum of a linear function and a constant. That is, it has the form

$$f(x) = Ax + b$$

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

Affine functions preserve convexity

Suppose $S \subseteq \mathbb{R}^n$ is convex and $f : \mathbb{R}^n \to \mathbb{R}^m$ is an affine function. Then the image of S under f,

$$f(S) = \{f(x) \mid x \in S\},\,$$

is convex.

Affine functions

Affine functions preserve convexity

Suppose $S \subseteq \mathbb{R}^n$ is convex and $f : \mathbb{R}^n \to \mathbb{R}^m$ is an affine function.

Then the image of S under f,

$$f(S) = \{f(x) \mid x \in S\},\,$$

is convex.

Inverse Image under Affine functions

Suppose $S \subseteq \mathbb{R}^n$ is convex and $f : \mathbb{R}^k \to \mathbb{R}^n$ is an affine function.

Then the inverse image of S under f,

$$f^{-1}(S) = \{x \mid f(x) \in S\},\$$

is convex.

Examples – Scaling, Translation, and Projection

• Scaling: If $S \subseteq \mathbb{R}^n$ is convex, then for any $\alpha \in \mathbb{R}$, the set

$$\alpha S = \{ \alpha x \mid x \in S \}$$

is convex.

• Translation: If $S \subseteq \mathbb{R}^n$ is convex, then for any $a \in \mathbb{R}^n$, the set

$$S + a = \{x + a \mid x \in S\}$$

is convex.

• Projection onto some coordinates: If $S \subseteq \mathbb{R}^m \times \mathbb{R}^n$ is convex, then

$$T = \{x_1 \in \mathbb{R}^m \mid (x_1, x_2) \in S \text{ for some } x_2 \in \mathbb{R}^n \}$$

is convex

Examples – Sums of Sets

Sum of two sets

The sum of two sets is defined as

$$S_1 + S_2 = \{x + y \mid x \in S_1, y \in S_2\}.$$

• If S_1 and S_2 are convex, then $S_1 + S_2$ is convex.

Partial sum of two sets

The partial sum of $S_1, S_2 \subseteq \mathbb{R}^n \times \mathbb{R}^m$ is defined as

$$S = \{(x, y_1 + y_2) \mid (x, y_1) \in S_1, (x, y_2) \in S_2, x \in \mathbb{R}^n, y_i \in \mathbb{R}^m\},$$

- Partial sums of convex sets are convex.
- Partial sums are general cases for set intersection (m = 0) and set addition (n = 0).

Examples – Polyhedra

• The polyhedron $\{x \mid Ax \leq b\}$ can be expressed as the inverse image of the nonnegative orthant under the affine function f(x) = b - Ax:

$$\{x \mid Ax \leq b\} = \{x \mid f(x) \in \mathbb{R}_+^m\}.$$

More generally, the polyhedron {x | Ax ≤ b, Cx = d} can be expressed as the inverse image of the Cartesian product of the nonnegative orthant and the origin under the affine function f(x) = (b - Ax, d - Cx):

$$\{x \mid Ax \leq b, \ Cx = d\} = \{x \mid f(x) \in \mathbb{R}_+^m \times \{0\}\}.$$

Examples – Hyperbolic Cone

The set

$$\left\{ x \mid x^T P x \le (c^T x)^2, \ c^T x \ge 0 \right\}$$

where $P \in \mathbf{S}^n_{\perp}$ and $c \in \mathbf{R}^n$, is convex.

• It is the inverse image of the second-order cone

$$\left\{ (z,t) \mid z^T z \le t^2, t \ge 0 \right\}$$

under the affine function

$$f(x) = (P^{1/2}x, c^Tx).$$

Examples - Ellipsoid

• The ellipsoid

$$\mathcal{E} = \left\{ x \mid (x - x_c)^T P^{-1} (x - x_c) \leq 1 \right\},$$

where $P \in \mathbf{S}_{++}^n$ is the image of the unit Euclidean ball $\{u \mid ||u||_2 \leq 1\}$ under the affine mapping $f(u) = P^{1/2}u + x_c$.

• It is also the inverse image of the unit Euclidean ball under the affine mapping $g(x) = P^{-1/2}(x - x_c)$.

Perspective Functions

Perspective function

The perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$, with domain dom $P = \mathbb{R}^n \times \mathbb{R}_{++}$, is defined as P(z, t) = z/t.

The perspective function can be interpreted as the action of a pin-hole camera.

Perspective Functions Preserve Convexity

• Let $C \subseteq \text{dom } P = \mathbb{R}^n \times \mathbb{R}_{++}$ be convex, then its image under the perspective function $P : \mathbb{R}^{n+1} \to \mathbb{R}^n$, defined as P(z,t) = z/t, i.e.,

$$P(C) = \{P(x) \mid x \in C\}$$

is also convex.

Proof idea: a line segment in C is mapped to a line segment P(C) under $P(\cdot)$.

Perspective Functions Preserve Convexity

- The inverse image of a convex set under the perspective function is also convex:
- If $C \subseteq \mathbb{R}^n$ is convex, then

$$P^{-1}(C) = \{(x,t) \in \mathbb{R}^{n+1} \mid x/t \in C, \ t > 0\}$$

is convex.

Linear-fractional functions

 A linear-fractional function is formed by composing the perspective function with an affine function.

Linear-fractional functions

Let $g: \mathbb{R}^n \to \mathbb{R}^{m+1}$ be affine:

$$g(x) = \left[\begin{array}{c} A \\ c^T \end{array} \right] x + \left[\begin{array}{c} b \\ d \end{array} \right],$$

where $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$, $c \in \mathbf{R}^n$, and $d \in \mathbf{R}$. The function $f : \mathbf{R}^n \to \mathbf{R}^m$ given by $f = P \circ g$, i.e.,

$$f(x) = \frac{Ax + b}{c^T x + d}$$
, dom $f = \left\{ x \mid c^T x + d > 0 \right\}$,

is called a linear-fractional (or projective) function.

 Affine functions and linear functions are special cases of linear-fractional functions.

Projective Interpretation

• A linear-fractional function can be represented as a matrix

$$Q = \begin{bmatrix} A & b \\ c^T & d \end{bmatrix} \in \mathbf{R}^{(m+1)\times(n+1)}.$$

• The matrix Q maps the point $\begin{bmatrix} x \\ 1 \end{bmatrix}$ to $\begin{bmatrix} Ax + b \\ c^Tx + d \end{bmatrix}$, a scalar multiple of $\begin{bmatrix} f(x) \\ 1 \end{bmatrix}$.

Projective Interpretation

- Let us associate \mathbb{R}^n with a set of rays in \mathbb{R}^{n+1} as follows.
- For any $z \in \mathbb{R}^n$ we associate the (open) ray

$$\mathcal{P}(z) = \left\{ t \begin{bmatrix} z \\ 1 \end{bmatrix} \mid t > 0 \right\}$$

in \mathbb{R}^{n+1} .

- Conversely, any ray in \mathbf{R}^{n+1} , with base at the origin and last component which takes on positive value, can be written as $\mathcal{P}(v) = \left\{ t \left[egin{array}{c} v \\ 1 \end{array} \right] \mid t \geq 0 \right\}$ for some $v \in \mathcal{R}^n$.
- ullet The correspondence ${\mathcal P}$ is therefore one-to-one and onto.
- The linear-fractional function f can be expressed as

$$f(x) = \mathcal{P}^{-1}(Q\mathcal{P}(x)).$$

Linear-fractional Functions Preserve Convexity

- Linear-fractional functions preserve convexity.
- If C is convex and $C \subseteq \text{dom } f = \{x \mid c^T x + d > 0\}$, then its image f(C) is convex.
 - Proof idea: $f = P \circ g$ where P is the perspective function and g is an affine function.
- Similarly, if $C \subseteq \mathbb{R}^n$ is convex, then the inverse image $f^{-1}(C)$ is convex.

Linear-fractional functions – An Example

• A set $C \subseteq \mathbb{R}^2$ and its image under the linear-fractional function

$$f(x) = \frac{x}{x_1 + x_2 + 1}$$
, dom $f = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mid x_1 + x_2 + 1 > 0 \right\}$.

Linear-fractional Functions – An Example

- Suppose u and v are random variables that take on values in $\{1, ..., n\}$ and $\{1, ..., m\}$, respectively.
- Let $p_{ij} = \operatorname{prob}(u = i, v = j)$. Then the conditional probability $f_{ij} = \operatorname{prob}(u = i | v = j)$ is

$$f_{ij} = \frac{p_{ij}}{\sum_{k=1}^{n} p_{kj}}.$$

 Then f is obtained by a linear-fractional mapping from p. (what is the mapping?)

Proper Cones

Proper Cone

A cone $K \subseteq \mathbb{R}^n$ is called **proper cone** if it satisfies the following:

- K is convex.
- K is closed.
- K is solid: it has nonempty interior.
- K is pointed: it contains no line $(x \in K, -x \in K \Longrightarrow x = 0)$.

Generalized Inequality – Definitions

- A proper cone K can be used to define a generalized inequality, a partial ordering on Rⁿ.
- Specifically, we associate the proper cone K with the partial ordering on Rⁿ defined by

$$x \leq_K y \iff y - x \in K$$
.

Also, $x \succeq_K y$ means $y \preceq_K x$.

Similarly, define an associated strict partial ordering by

$$x \prec_K y \iff y - x \in \text{int } K$$

and write $x \succ_{\kappa} y$ for $y \prec_{\kappa} x$.

Generalized Inequality – Examples

- When $K = \mathbb{R}_+$, the partial ordering \leq_K is the usual ordering \leq on \mathbb{R} , and the strict partial ordering \prec_K is the same as the usual strict order < on \mathbb{R} .
- Let $K = \mathbb{R}^n_+$ (the nonnegative orthant) in \mathbb{R}^n . Then K is a proper cone. The associated generalized inequality \preceq_K corresponds to component-wise inequality between vectors:

$$x \preceq_{\mathbf{R}_{+}^{n}} y \iff x_{i} \leq y_{i}, i = 1, ..., n$$

 $x \prec_{\mathbf{R}_{+}^{n}} y \iff x_{i} < y_{i}, i = 1, ..., n$

• The subscript is usually dropped when the proper cone is chosen as $K = \mathbb{R}^n_+$: \preceq means $\preceq_{\mathbb{R}^n_+}$, and \prec means $\prec_{\mathbb{R}^n_+}$.

Positive Semidefinite Cones and Matrix Inequalities

- Let $K = \mathbf{S}_{+}^{n}$. Then K is a proper cone in \mathbf{S}^{n} .
- The associated generalized inequality \leq_K is the usual matrix inequality:
 - $X \leq_K Y$ means Y X is positive semidefinite.
 - $X \prec_K Y$ means Y X is positive definite.
- Note that the interior of S_+^n consists of the positive definite matrices: int $S_+^n = S_{++}^n$.
- Similarly, the subscript is usually dropped when the proper cone in S^n is chosen as $K = S^n_+$:
 - \leq means $\leq_{\mathbf{S}_{1}^{n}}$, and \prec means $\prec_{\mathbf{S}_{1}^{n}}$.

Cone of Polynomials Nonnegative on [0,1]

• Let $K \subseteq \mathbb{R}^n$ be defined as

$$K = \{c \in \mathbb{R}^n \mid c_1 + c_2t + \dots + c_nt^{n-1} \ge 0 \text{ for } t \in [0,1]\}.$$

• K is a proper cone. And its interior is:

int
$$K = \{c \in \mathbb{R}^n \mid c_1 + c_2t + \dots + c_nt^{n-1} > 0 \text{ for } t \in [0,1]\}.$$

• For any two vectors $c, d \in \mathbb{R}^n$, we have $c \leq_K d$ if and only if

$$c_1 + c_2 t + \dots + c_n t^{n-1} \le d_1 + d_2 t + \dots + d_n t^{n-1}$$

for all $t \in [0, 1]$.

Generalized Inequality – Properties

Properties of generalized inequalities

- \leq_K is preserved under addition: if $x \leq_K y$ and $u \leq_K v$, then $x + u \leq_K y + v$.
- $2 \leq_K$ is transitive: if $x \leq_K y$ and $y \leq_K z$, then $x \leq_K z$.
- 3 \leq_K is preserved under nonnegative scaling: if $x \leq_K y$ and $\alpha \geq 0$, then $\alpha x \leq_K \alpha y$.
- \bullet \leq_K is reflexive: $x \leq_K x$.
- **3** \leq_K is antisymmetric: if $x \leq_K y$ and $y \leq_K x$, then x = y.
- **1** \leq_K is preserved under limits: if $x_i \leq_K y_i$ for i = 1, 2, ..., and as $i \to \infty$, $x_i \to x$ and $y_i \to y$, then $x \leq_K y$.

Generalized Inequality – Properties

Properties of (strict) generalized inequalities

- \bullet if $x \prec_K y$, then $x \preceq_K y$.
- 2 if $x \prec_K y$ and $u \preceq_K v$, then $x + u \prec_K y + v$.
- 3 if $x \prec_K y$ and $\alpha > 0$, then $\alpha x \prec_K \alpha y$.
- \bigcirc $x \not\prec_K x$.
- **1** if $x \prec_K y$, then for u and v small enough, $x + u \prec_K y + v$.

Minimum and Maximum elements

• For the linear ordering " \leq " on R, any two points are comparable: either $x \leq y$ or $y \leq x$. This is not always true for a partial ordering like " \leq_K " on \mathbb{R}^n .

Minimum and Maximum Elements

We say that $x \in S$ is the **minimum** element of S (w.r.t. \preceq_K) if $x \preceq_K y$ for all $y \in S$. Similarly, $x \in S$ is said to be the **maximum** element of S if $x \succeq_K y$ for all $y \in S$.

• Note: If S has a minimum (or maximum) element, then it is unique.

Minimal and Maximal Elements

Minimal and Maximal Elements

We say that $x \in S$ is a minimal element of S (w.r.t \leq_K) if $y \in S$, $y \leq_K x$ only if y = x. Similarly, $x \in S$ is a maximal element of S if $y \in S$, $y \succeq_K x$ only if y = x.

• A set can have many different minimal (maximal) elements.

Minimum and Minimal elements

Minimum Element

A point $x \in S$ is the minimum element of S if and only if

$$S \subseteq x + K$$
.

Minimal Element

A point $x \in S$ is the minimal element of S if and only if

$$(x-K)\cap S=\{x\}.$$

• For $K = R_+$, the concepts of minimal and minimum are the same.

Example – Component-wise inequality in \mathbb{R}^2

- Consider the cone R²₊, which induces componentwise inequality in R².
- The inequality $x \leq y$ means y is above and to the right of x.
- $x \in S$ being the minimum element of a set S means that all other points of S lie above and to the right.
- x being a minimal element of a set S means that no other point of S lies to the left and below x.

Example – Minimum and Minimal Elements of S^n

• Consider an ellipsoid centered at the origin and associated with $A \in \mathbf{S}_{++}^n$:

$$\mathcal{E}_{A} = \left\{ x \mid x^{T} A^{-1} x \leq 1 \right\}.$$

- $A \leq B$ if and only if $\mathcal{E}_A \subseteq \mathcal{E}_B$.
- Let $v_1, ..., v_k \in \mathbb{R}^n$ be given and define the set of ellipsoids that contain points $v_1, ..., v_k$:

$$S = \left\{ P \in \mathbf{S}_{++}^{n} \mid v_{i}^{T} P^{-1} v_{i} \leq 1, i = 1, ..., k \right\}.$$

• What is the minimum element of S?

Example – Minimum and Minimal Elements of S^n

- The set S does not have a minimum element.
- An ellipsoid is minimal if it contains the points, but no smaller ellipsoid does.

Separating Hyperplane Theorem

Separating Hyperplane

The hyperplane $\{x \mid a^Tx = b\}$ is called a **separating hyperplane** for the sets C and D, or is said to **separate** the sets C and D if $a^Tx \leq b$ for all $x \in C$ and $a^Tx \geq b$ for all $x \in D$.

Separating Hyperplane Theorem

Suppose C and D are two convex sets that do not intersect, i.e., $C \cap D = \phi$. Then there exist $a \neq 0$ and b such that the hyperplane $\{x \mid a^Tx = b\}$ separates C and D.

Separating Hyperplane Theorem – Proof Proof of a special case

- Consider that C and D are both convex, closed, and bounded.
- Assume that the **Euclidean distance** between *C* and *D*, defined as

$$dist(C, D) = \inf\{||u - v||_2 \mid u \in C, v \in D\},\$$

is positive.

• Since C and D are both closed and bounded, there exist $c \in C$ and $d \in D$ such that

$$||c-d||_2 = \operatorname{dist}(C,D).$$

Separating Hyperplane Theorem – Proof Proof of a special case

Let

$$a = d - c$$
, $b = \frac{||d||_2^2 - ||c||_2^2}{2}$.

Then, it can be shown that the affine function

$$f(x) = a^{T}x - b = (d - c)^{T}\left(x - \frac{d + c}{2}\right)$$

is nonpositive on C and nonnegative on D.

Example – A Convex Set and An Affine Set

- Suppose C is convex and D is affine, i.e., $D = \{Fu + g | u \in \mathbb{R}^m\}$, where $F \in \mathbb{R}^{n \times m}$.
- Suppose C and D are disjoint, so by the separating hyperplane theorem there are $a \neq 0$ and b such that $a^T x \leq b$ for all $x \in C$ and $a^T x > b$ for all $x \in D$.
- : $a^T x \ge b$ for all $x \in D$, : $a^T F u \ge b a^T g$ for all $u \in \mathbb{R}^m$.
- But a linear function is bounded below on \mathbb{R}^m only when it is zero, so we conclude $a^T F = 0$ (and hence, $b \leq a^T g$).
- Thus we conclude that there exists $a \neq 0$ such that $F^T a = 0$ and $a^T x \leq a^T g$ for all $x \in C$.

Strict Separation of Convex Sets

Strict separation of convex sets

For two sets $C, D \subseteq \mathbb{R}^n$, if there exists $a \in \mathbb{R}^n$, $b \in \mathbb{R}$ such that

$$a^T x < b \ \forall x \in C \ \text{and} \ a^T x > b \ \forall x \in D,$$

then C and D are said to be strictly separable, and the hyperplane $\{x \mid a^T x = b\}$ is called strict separation of C and D.

 Remark: The separating hyperplane theorem only dictates that two convex sets that are disjoint to be separated by a hyperplane. A strict separation is not guaranteed (even when the sets are closed).

Example – A Point and A Closed Convex Set

- Let C be a closed convex set and $x_0 \notin C$. Then there exists a hyperplane that strictly separates $\{x_0\}$ from C.
- Proof idea:
 - The two sets C and $B(x_0, \epsilon)$ do not intersect for some $\epsilon > 0$.
 - Apply the separating hyperplane theorem on C and $B(x_0, \epsilon)$ (getting a^T and b), and let f(x).
 - The affine function

$$f(x) = a^{T}x - b - \epsilon ||a||_{2}/2$$

strictly separates C and $\{x_0\}$.

 Corollary: a closed convex set is the intersection of all halfspaces that contain it. (Hint: proof by contradiction)

Converse of Separating Hyperplane Theorems

- Question: If there exists a hyperplane that separates convex sets C and D, does this imply C and D are disjoint?
 - (No. Consider $C = D = \{0\} \subseteq \mathbf{R}$.)
- Suppose C and D are convex sets, with C open, and there
 exists an affine function f that is nonpositive on C and
 nonnegative on D. Then C and D are disjoint.
 - Hint: f is negative on C.

$\mathsf{Theorem}$

Any two convex sets, at least one of which is open, are disjoint if and only if there exists a separating hyperplane.

Theorem of alternatives for strict linear inequalities

Theorem of alternatives for strict linear inequalities

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. The inequalities

$$Ax \prec b$$

are infeasible if and only if there exists $\lambda \in \mathbb{R}^m$ such that

$$\lambda \neq 0$$
, $\lambda \succeq 0$, $A^T \lambda = 0$, $\lambda^T b \leq 0$.

• Proof idea: consider the open convex set

$$D = R_{++}^m = \{ y \in R^m \mid y \succ 0 \}$$

and the affine set (hence convex)

$$C = \{b - Ax \mid x \in \mathbb{R}^n\}.$$

Supporting Hyperplanes

Supporting hyperplanes

Suppose $C \subseteq \mathbb{R}^n$, and x_0 is a point in its boundary **bd** C, i.e.,

$$x_0 \in \mathsf{bd}\ C = \mathsf{cl}\ C \backslash \mathsf{int}\ C.$$

If $a \neq 0$ satisfies $a^T x \leq a^T x_0$ for all $x \in C$, then the hyperplane $\{x | a^T x = a^T x_0\}$ is called a supporting hyperplane to C at the point x_0 .

- This is equivalent to the statement that $\{x_0\}$ and C are separated by the hyperplane $\{x|a^Tx=a^Tx_0\}$.
- The hyperplane is tangent to C at x_0 , and the halfspace $\{x|a^Tx \leq a^Tx_0\}$ contains C.

Supporting Hyperplanes

- This is equivalent to the statement that $\{x_0\}$ and C are separated by the hyperplane $\{x|a^Tx=a^Tx_0\}$.
- The hyperplane is tangent to C at x_0 , and the halfspace $\{x|a^Tx \leq a^Tx_0\}$ contains C.

Supporting Hyperplane Theorem

Supporting Hyperplane Theorem

For any nonempty convex set C, and any $x_0 \in \mathbf{bd}\ C$, there exists a supporting hyperplane to C at x_0 .

Proof: Use the separating hyperplane theorem.

- If int $C \neq \phi$: then by applying the separating hyperplane theorem on $\{x_0\}$, the statement is proved.
- If int $C = \phi$, then C lies in an affine set of dimension less than n. Then any hyperplane that contains this affine set contains both C and x_0 and therefore is a supporting hyperplane.

(Partial) Converse of the Supporting Hyperplane Theorem

Converse of the Supporting Hyperplane Theorem

If a set C is closed, has nonempty interior, and has a supporting hyperplane at any $x_0 \in bd$ C, then C is convex.