Modeling with First-Order Differential Equations

EXAMPLE 1

Bacterial Growth

A culture initially has P_0 number of bacteria. At t = 1 h the number of bacteria is measured to be $\frac{3}{2}P_0$. If the rate of growth is proportional to the number of bacteria P(t) present at time t, determine the time necessary for the number of bacteria to triple.

SOLUTION We first solve the differential equation in (1), with the symbol x replaced by P. With $t_0 = 0$ the initial condition is $P(0) = P_0$. We then use the empirical observation that $P(1) = \frac{3}{2}P_0$ to determine the constant of proportionality k.

Notice that the differential equation dP/dt = kP is both separable and linear. When it is put in the standard form of a linear first-order DE

$$\frac{dP}{dt} - kP = 0,$$

FIGURE 3.1.1 Time in which population triples in Example 1

EXERCISES 3.1

Growth and Decay

- 1. The population of a community is known to increase at a rate proportional to the number of people present at time t. If an initial population P_0 has doubled in 5 years, how long will it take to triple? To quadruple?
- 2. Suppose it is known that the population of the community in Problem 1 is 10,000 after 3 years. What was the initial population P_0 ? What will be the population in 10 years? How fast is the population growing at t = 10?
- 3. The population of a town grows at a rate proportional to the population present at time t. The initial population of 500 increases by 15% in 10 years. What will be the population in 30 years? How fast is the population growing at t = 30?
- **4.** The population of bacteria in a culture grows at a rate proportional to the number of bacteria present at time *t*. After 3 hours it is observed that 400 bacteria are present. After 10 hours 2000 bacteria are present. What was the initial number of bacteria?

Newton's Law of Cooling/Warming In equation (3) of Section 1.3 we saw that the mathematical formulation of Newton's empirical law of cooling/warming of an object is given by the linear first-order di ferential equation

$$\frac{dT}{dt} = k(T - T_m),\tag{2}$$

where k is a constant of proportionality, T(t) is the temperature of the object for t > 0, and T_m is the ambient temperature—that is, the temperature of the medium around the object. In Example 4 we assume that T_m is constant.

EXAMPLE 4 Cooling of a Cake

When a cake is removed from an oven, its temperature is measured at 300° F. Three minutes later its temperature is 200° F. How long will it take for the cake to cool off to a room temperature of 70° F?

T(t)	t (min)
75°	20.1
74°	21.3
73°	22.8
72°	24.9
71°	28.6
70.5°	32.3
	(b)

GURE 3.1.4 Temperature of cooling ke in Example 4

SOLUTION In (2) we make the identification $T_m = 70$. We must then solve the initial-value problem

$$\frac{dT}{dt} = k(T - 70), \quad T(0) = 300 \tag{3}$$

and determine the value of k so that $\overline{T}(3) = 200$.

Equation (3) is both linear and separable. If we separate variables,

$$\frac{dT}{T - 70} = k \, dt,$$

yields $\ln |T-70|=kt+c_1$, and so $T=70+c_2e^{kt}$. When t=0, T=300, so $300=70+c_2$ gives $c_2=230$; therefore $T=70+230e^{kt}$. Finally, the measurement T(3)=200 leads to $e^{3k}=\frac{13}{23}$, or $k=\frac{1}{3}\ln\frac{13}{23}=-0.19018$. Thus

$$T(t) = 70 + 230 e^{-0.19018t}. (4)$$

We note that (4) furnishes no finite solution to T(t) = 70, since $\lim_{t \to \infty} T(t) = 70$. Yet we intuitively expect the cake to reach room temperature after a reasonably long period of time. How long is "long"? Of course, we should not be disturbed by the fact that the model (3) does not quite live up to our physical intuition. Parts (a) and (b) of Figure 3.1.4 clearly show that the cake will be approximately at room temperature in about one-half hour.

- 13. A thermometer is removed from a room where the temperature is 70° F and is taken outside, where the air temperature is 10° F. After one-half minute the thermometer reads 50° F. What is the reading of the thermometer at t = 1 min? How long will it take for the thermometer to reach 15° F?
- 14. A thermometer is taken from an inside room to the outside, where the air temperature is 5° F. After 1 minute the thermometer reads 55° F, and after 5 minutes it reads 30° F. What is the initial temperature of the inside room?
- 15. A small metal bar, whose initial temperature was 20° C, is dropped into a large container of boiling water. How long will it take the bar to reach 90° C if it is known that its temperature increases 2° in 1 second? How long will it take the bar to reach 98° C?
- 17. A thermometer reading 70° F is placed in an oven preheated to a constant temperature. Through a glass window in the oven door, an observer records that the thermometer reads 110° F after ½ minute and 145° F after 1 minute. How hot is the oven?

JURE 3.1.7 LR-series circuit

Series Circuits For a series circuit containing only a resistor and an inductor, Kirchhoff's second law states that the sum of the voltage drop across the inductor (L(di/dt)) and the voltage drop across the resistor (iR) is the same as the impressed voltage (E(t)) on the circuit. See Figure 3.1.7.

Thus we obtain the linear differential equation for the current i(t),

$$L\frac{di}{dt} + Ri = E(t), (7)$$

where L and R are constants known as the inductance and the resistance, respectively. The current i(t) is also called the **response** of the system.

A 12-volt battery is connected to a series circuit in which the inductance is $\frac{1}{2}$ henry and the resistance is 10 ohms. Determine the current i if the initial current is zero.

SOLUTION From (7) we see that we must solve

$$\frac{1}{2}\frac{di}{dt} + 10i = 12,$$

subject to i(0) = 0. First, we multiply the differential equation by 2 and read off the integrating factor e^{20t} . We then obtain

$$\frac{d}{dt}[e^{20t}i] = 24e^{20t}.$$

Integrating each side of the last equation and solving for i gives $i(t) = \frac{6}{5} + ce^{-20t}$. Now i(0) = 0 implies that $0 = \frac{6}{5} + c$ or $c = -\frac{6}{5}$. Therefore the response is $i(t) = \frac{6}{5} - \frac{6}{5}e^{-20t}$.

- **29.** A 30-volt electromotive force is applied to an *LR*-series circuit in which the inductance is 0.1 henry and the resistance is 50 ohms. Find the current i(t) if i(0) = 0. Determine the current as $t \to \infty$.
- 31. A 100-volt electromotive force is applied to an RCseries circuit in which the resistance is 200 ohms and the capacitance is 10^{-4} farad. Find the charge q(t) on the capacitor if q(0) = 0. Find the current i(t).
- **32.** A 200-volt electromotive force is applied to an *RC*-series circuit in which the resistance is 1000 ohms and the capacitance is 5×10^{-6} farad. Find the charge q(t) on the capacitor if i(0) = 0.4. Determine the charge and current at t = 0.005 s. Determine the charge as $t \rightarrow \infty$.