<u>הערה לבודק!!!</u> כתבתי את התרגיל כולו ב One Note , אך הייתה לי בעיה עם הייצוא לPDF. הפתרון הזמני שחשבתי עליו היה לעשות סקרינשוטים ולהדביק בוורד. מצטער על אי הנוחות.

	2 שב
_	10:45 Friday, 11 November 2022
	207 129792 82176 1/2
Theory Questions	RUTIALTIA CINJICIA
 (15 points) PAC in Expectation. Consider le a hypothesis class H is PAC learnable in exp exists a function N(a): (0,1) → N such that ∀a (realizable by H), given a sample set S such that 	ectation using algorithm A if there $a \in (0,1)$ and for any distribution P
$\mathbb{E}\left[e_P(A(S))\right] \le$	a.
Show that \mathcal{H} is PAC learnable if and only if \mathcal{H} is For one direction, use the law of total expectation. inequality).	
. PAC 3746	H Ahno PAC 75H H : 1"3
nob A entile	" Ahus PAC 2248 He HIJ): <=
S jid PBN MAD, H "ONBUSTO P NO	
ble γ N(ε,δ) ρ°ρ ε,δε(ω) bl , γνιβ. Α εβε	We is PAC 23148 He 21028 237)
Pizal N(ES & n BIED Lini P-1 PBje id Se	Pr (ep(A(s)) > E) 45
िक्सी 'स्प रिस्त के क्या कि (A(S)) = E[A-1	(A,W),Y) : test errors yszminelo
7,7	(* *)
Markov & Sky H	ी केरी कर अंति सारी प्राप्त प्रिय
Pr[ep(A(S)) > E] = E[ep(A(S))] = a E	
E. f. e. (0.2) bol a	= E. S NW GODI QEGN 68 POJ (J3)
yino or relepholosome of a second	
1 ilk hd is PAC 23218 21 e by N(E.S))= N (W= N(E.T), a= &E nuy pol

 $E[e_{p}(A(S))] = E[e_{p}(A(S)) | e_{p}(A(S)) \leq E] \cdot P_{r} [e_{p}(A(S)) \leq E]$

E[ep (A(S)) | ep (A(S)) > E]- Pr [ep (A(S) > E]

: The Pions owners the Pions post is a function of pions of some

-handra THEN O \$ 61

. 2-4 staské while paid epla(5)) € 2 0 pgaz > * 40

E[ep(A(S))] < 8.1+1.5 - E & : (Ay) 500

E[Op(A(5))] & a : e'p) N(a) & n erah be pl, ac(a) ble 23) alon I e'of 20 no (estern) bly in white from it ones e', Se(a) and a= e'+5' and (3) for ac(a) for the estern bly in ac(a) he estern bly in ac(a) h

VCdim (HW = RK
: VCdim (2Ex) = 2K nog
Hy is ash as a cex os of the work of the
C= {X1, X2,, X1K Xe< Xe < < X1K} < x32 >21
100 JA1603 S. S, SEN € {0,1} 13'
ין און אל בא של מציין אי האופן הנגלי ליים אין איים באין SSimSj בן של הואיץ חוף איים יוי
الم
. 198 EL 88.
भटाय कीमा हार्टिश्व के मीमा 'h' तार्यावाग्य' दर्पदर्शित दहारी अह ता क्षे अ,
, L'alling to solon grow in St Sz Sz Sz Szk-z Szk-z Szk-z Szk- Szk : Kak
ersp erlingth x 200 with his wife with
: YColina(Hx) < QAL A:>11
. Hx "y Lyb py ko 2k-1 BKW CEX 2347 Be -1620 19-8
75 Me 25 M2 He HED -N" & C = {X4, , X2K+1 / X4 < X2 < < X2K+1} 73/27 65 px
S1 S2 S3 S4 S2K-2 SEK-2 SEK- SEK SIK44 PZ/20 B5 -6
1010 101
-1008 1819" 2016, 6 60 16 4' 1' 150"8 190 b 1501 it poe 150 8 km 25 4322 800 1000 165
مع المراكم ك مهر كاده م المراكم المرا
u त्व अ शहेती व मेहिस्स दात.

the hypothesis $h_P : \mathbb{R}^2 \to \{0, 1\}$ by, $h_P(x_1, x_2) = \begin{cases} 1 & P(x_1) \ge x_2 \\ 0 & otherwise. \end{cases}$ Determine the VC-dimension of $\mathcal{H}_{poly} = \{h_P \mid P \text{ is a polynomial}\}$. You can use the fact that given n distinct values $x_1, ..., x_n \in \mathbb{R}$ and $z_1, ..., z_n \in \mathbb{R}$ there exists a polynomial P of degree n-1 such that $P(x_i) = z_i$ for every $1 \le i \le n$. . VCdim (Hepsly) = 00 n Eles of the rate on the maple of maple of the Ko wine word god · 'Noj'k Flogle Ven 3mme joj pon . Ine N. Vedin (Rody) > n : 2mb. Apoly of -3mm C= { (X1, Z1), (X2, Z2), ..., (Xn, Zn) | 75N 85 PYR X1,..., X2 ER} : X & 38 PP 22 PA . |C|=n pho pym קל לכות שנין לפת של מצועות בצילוחים באת ולה של לבי מפל בדיל אור כם מוזורים . Hi: ho (xi, 7i) = 1 : P pylos sky pylos صدر رحاد عط مد مدمه عا مدمو مالام ومالح م الله كوال م ملام أن إل عامل Ch 3/ Hpdy wit, - 700/c 241603 6 bill file dos alple . Hpdy N 206 250000 15.17302 is op3/h ble p Horse poposon -190 do) 1642122-2; En rogask noo be . 4 Ely tin h, 15 77300 kill op3jik ble 3/7 h, (x, 2:) = 0 = 1/21 , C ASIDPD (15) = BN Ex NAD AL, BUE 15 4 CIZENCIE EN MOJSIK NAD EN : CE -18/25 - 3/2 - L SZ $C = \{(x_{i_1}, t_{i_2} - \epsilon), (x_{i_2}, t_{i_1} - \epsilon), \dots, (x_{i_K}, t_{i_K} - \epsilon)\}$ $(x_{i_1}, x_{i_2}) \in C \mid i \notin \{i_1, \dots, i_K\}$ So end selve of housene a grand a color activities activities and how some girly activities and من دوداده C. کور رس کادور کے دورید کل مزید کی کارد عرب و اور و اور دورید کی دورید Hià{in,...,iκ}, P, (x;)= 2; ⇒ Hi & {iq,...,iκ}. hp. (Xi,±i)=1 tiefin,...,in}, Pε (Xi)=2:-ε < 2: ⇒ ∀iefin,...,inβ, he (Xi, 2i)=0 . Kdim (Kpoly) = 00 pl X & n Isup saloz on 5 agn Alply mb

(15 points) Prediction by polynomials. Given a polynomial P : R → R define

(15 points) PAC learnability of ℓ₂-balls around the origin. Given a real number R ≥ 0 define the hypothesis h_R: ℝ^d → {0, 1} by,

$$h_R(\mathbf{x}) = \begin{cases} 1 & \|\mathbf{x}\|_2 \le R \\ 0 & otherwise. \end{cases}$$

Consider the hypothesis class $\mathcal{H}_{ball} = \{h_R \mid R \geq 0\}$. Prove directly (without using the Fundamental Theorem of PAC Learning) that \mathcal{H}_{ball} is PAC learnable in the realizable case (assume for simplicity that the marginal distribution of X is continuous). How does the sample complexity depend on the dimension d? Explain.

שנא א ההאשה במיקרה כדו מיהצי כש B. R. פי הצבלים דהיא לפנה. בשאום כנראה מאוד גנוץ אבל מצובר בסחי במיקרה דומה לתבניל צים ההלבנים מתבגול 2, אל התנונהי לרציון דמהה.

least of the list I see see of all of their set of their set of the תבים התוך בו זה ק, כי ודגו קינסים לי. צדיך לבתים להשלה בין הכדורים לפל אול בתך מכדור החילל ROBET TO T ep(hg)= Pr[RolB] = Pr[T] < E : Spy pol Z 31 ≤i ≤n. x(i) <T ⇒ ep(hz) ≤ E, TB => TA PINALINA ep(ho), E => Y 15i =n. x(i) &T . P. [LHS] < P. [RHS] = 72-N RHS - 12 >>6 LHS @ prow Pr[lo(ho)>ć] < Pr[Yrsikn. x()) & T] : RHS - L Sylv MON Pr[200 T] = 1- Pr[200 ET] = 1-E $Pr[\forall 1 \leq i \leq n, 2^{(i)} \nmid T] = \hat{\pi} Pr[2^{(i)} \leq T] = \hat{\pi} \cdot 1 + \epsilon = (J - \epsilon)^n \leq (J - \epsilon)^n = e^{-\epsilon \cdot n}$: e'g'e n rails Pr [ep(ho) > E] < 5 17/18 n plan Fall kisal >37 $e^{-6n} \le \delta \iff -cn \le \ln \delta \iff n \ge -\frac{1}{5} \ln \delta \iff n \ge \frac{1}{5} \ln \left(\frac{1}{5}\right)$ le (6.8)= 1/6 (1) N(E.8)= (8.8) N. - Parilles P MESO Sto efe (0.0) See > NESS= 1 la (4) Auge 13000 la provol LEDDON ild WORK porte - 1030 A 2 MED of Apal Web -k Soy sew has then 100 PB Rd bu Pr[Pp(ha) x5] = 5 :e yo haethall 25-17 7:5A ND, P About printles & PAC 23:46 Elbol 12/1 כא ען סיבוכיל פצאמה אינה אינה אינה בחימה ל. wes also I has Plad & VC RAHDE KIN OF FOOTE . RocreRy ep Ro, Roperp 11x11z=rso op xeRd So : VColin (Plant) >1 - (x) =1 , he (x)=1, he (x)=1, he (x)=1, he (x)=0, 1=1/2. . IDAI = 5 SE TO X. X. E Rd - JR ITY SE Sol : VColine (Hours) +1 h(x)=1 e - y of 10 h(x)=1 1 h(x)=0 e po 25-100 Plball 2 -11/p /68 - 1/4/1/2 (Xx)=1 = 1/4/1/2 6 R = 1/4/1/2 (1/Xella Sak 1/Xxlla 6 R & 7'73, 1/2" אכיון ש (loin(Plant) ב ולא תוי בגינה ל בן שם הסיבולים בשיחה לל תליה בו.

Programming Assignment

(a) (8 points) Assume that the true distribution $P[x, y] = P[y|x] \cdot P[x]$ is as follows: x is distributed uniformly on the interval [0, 1], and

$$P[y = 1|x] = \begin{cases} 0.8 & \text{if } x \in [0, 0.2] \cup [0.4, 0.6] \cup [0.8, 1] \\ 0.1 & \text{if } x \in (0.2, 0.4) \cup (0.6, 0.8) \end{cases}$$

and P[y=0|x]=1-P[y=1|x]. Since we know the true distribution P, we can calculate $e_P(h)$ precisely for any hypothesis $h \in \mathcal{H}_k$. What is the hypothesis in \mathcal{H}_{10} with the smallest error (i.e., $\arg\min_{h \in \mathcal{H}_{10}} e_P(h)$)?

. MAP 211 ON UN FACOIKE 2110M D-1 30M NO PY TYW 2110DE 1150 THE THE MAP 21 OF PREYEA |X=X| > PrEY=0 |X=X| THE MAP AND AND O IF PREY=1/X=X] $\leq PrEY=0 |X=X|$

Pr[Y=1 | X=x \in [0.0.2] \(\text{[0.4,0.6]} \(\text{[0.8,1]} \) = 0.8 : py X.Y be nyun leber of Pr[Y=1 | X=x \in [0.2,0.4] \(\text{[0.2,0.4]} \(\text{[0.2,0.4]} \) \(\text{[0.8,0.8]} \) = 0.1

Pr[Y=0 | X=x \in [0.2,0.4] \(\text{[0.4,0.6]} \(\text{[0.8,1]} \) = 1-0.8=0.2

Pr[Y=0 | X=x \in [0.2,0.4] \(\text{[0.6,0.8]} \) = 1-0.1=0.9

h'(x)= I if xe To,0.1] U [0.4,0.6] U [0.1,1] 177 hours also split

נים לה שון כון אנה כנים באקטחלים א פל וחלף היכונלה אל הלויי, פלור וביל חול המיום הווניטיוף לל מילך היפונלים אל המיני על החיבונים בא להוי מו החיבונים בא להוי אל החיבונים בא להוי אל החיבונים בא להוי אל החיבונים בא להוי היפונים אל היפונים בא היפונים אל היפונים בא היפוני

(b) (8 points) Write a function that, given a list of intervals I, calculates the true error e_P(h_I). Then, for k = 3, n = 10, 15, 20, ..., 100, perform the following experiment T = 100 times: (i) Draw a sample of size n and run the ERM algorithm on it; (ii) Calculate the empirical error for the returned hypothesis; (iii) Calculate the true error for the returned hypothesis. Plot the empirical and true errors, averaged across the T runs, as a function of n. Discuss the results. Do the empirical and true errors decrease or increase with n? Why?

رام كوركار عوده الم ورام و المراد و المراد و المراد و المرد المرد و ا

(c) (8 points) Draw a sample of size n = 1500. Find the best ERM hypothesis for k = 1, 2, ..., 10, and plot the empirical and true errors as a function of k. How does the error behave? Define k* to be the k with the smallest empirical error for ERM. Does this mean the hypothesis with k* intervals is a good choice?

Annyko _1860 | pn >nkol. 1 ≤ k ≤ 3 ×ek _1971 - 1/1.2e >nee _1/10 | p1)

. K = 10 | p3/11 - 20 | p2 = 20 | 1/180 |

- 1860 | nulb. over fit pizzule | 100 | 10 | k| milion pishigh and is pa

. 120 | nulb. |

6 ×2 | 1860 | nulb. |

k > 3 | 1/2 | nulb. |

k & 2 | 1/2 | nulb. | nulb. | nulb. | nulb. | nulb. | nulb. |

1 & nulb. | nulb. | nulb. | nulb. | nulb. | nulb. | nulb. |

1 & nulb. | nulb. | nulb. | nulb. | nulb. | nulb. | nulb. |

1 & nulb. | nulb. |

- (d) (8 points) Now we will use the principle of structural risk minimization (SRM), to search for a k that gives a good test error. Let $\delta = 0.1$:
 - Use to following penalty function:

$$2\sqrt{\frac{\operatorname{VCdim}(\mathcal{H}_k) + \ln \frac{2}{\delta}}{n}}$$

- Draw a data set of n = 1500 samples, run the experiment in (c) again, but now plot two additional lines as a function of k: 1) the penalty for the best ERM hypothesis and 2) the sum of penalty and empirical error.
- What is the best value for k in each case? is it better than the one you chose in (c)?

(e)	(8 points) Here we will give good test error. I holdout-validation. Ch you to finding the hypo	Draw a data s coose the best	et of $n = 1500$ hypothesis and	samples and discuss how of	use 20% for a
623245	teruals of the best hypothesis are: [(0.000] 3)] at & is: 3	2548497689384182, #.2007847	7317347445), (#.3998#16485813	M1, #.5005120(B1325733), (8.7900006373824257, 8.99
	. ///		-		
	31/W ployed revel	4. (4 Jalk 9	Capac you si	באושה בולתר	1 22232