CUTTING

AUTHOR

Abstract. abstrsct

1. Introduction

2. Definition

Definition. Let O be the pole of the plane U that has polar coordinate (r, θ) and M be a surface that is parameterized by an isometry $\phi: U \setminus \{O\} \to U \times \mathbb{R}$ such that $\phi(P) \to (0, \theta, z)$ as $P \to O$ for a positive real number z. Then M is developable surface that forms generalized cone from Lemma *. Suppose that γ is Jordan curve lying on $U \setminus \{O\}$. If z-coordinate of any point of the image $\phi(\gamma)$ vanishes, the curve γ is called cutting with folding ϕ .

Theorem 2.1. If a Jordan curve γ lying on $U\setminus\{O\}$ is cutting, then the pole O belongs to interior of γ . Moreover, there exists a bijective function between the points on γ and angular coordinates of each point.

 \Box

Definition. Let a mapping $\tau: U \to U$ be folding transformation of folding ϕ if $\tau \circ \phi^{-1}$ is a projection such that $\tau \circ \phi^{-1}(r, \theta, z) = (r, \theta)$.

3

Theorem 3.1. For certain positive real number Z, if a function $q(z, \theta)$ satisfies the followings:

- (1) $q(z,\theta)$ is continuous and bounded for z and θ ;
- (2) $q(z, \theta)$ is strictly increasing for z;
- (3) $q(z,\theta)$ is periodic with period 2π for θ ;
- (4) there is an interval $[\alpha, \beta) \subset [0, 2\pi)$ s.t. $q(z, \theta)$ is monotonic over $\theta \in [\alpha, \beta)$;
 - (5) $q(0,\theta) = 1$ for all θ in the domain

for all real number z in (0, Z) and θ , then there exists a real number $z_0 \in (0, Z)$ such that for all $z \in (0, z_0)$ there is a function $p(z, \theta)$ such that:

- (6) $|p(z,\theta)| = q(z,\theta);$
- (7) $p(z,\theta)$ is piecewise continuous for θ ;
- (8) $p(z,\theta)$ has simple folding curve for θ ;

 $2000\ Mathematics\ Subject\ Classification.$ subclass. Key words and phrases. keywords.

2 AUTHOR

(9)
$$\int_0^{2\pi} p(z,\theta) \, d\theta = 2\pi$$

Proof. Since q=1 where z=0 and $q(z,\theta)$ is strictly increasing for z, a real number ϕ is positive which is defined such that

$$\phi = \int_0^{2\pi} q(Z, \theta) d\theta - 2\pi > 0.$$

Let Q(z; a, b) be a function such that

$$Q(z; a, b) = \int_0^{2\pi} q(z, \theta) d\theta - 2 \int_{\frac{2a+b}{3}}^{\frac{a+2b}{3}} q(Z, \theta) d\theta.$$

That $q(Z, \theta)$ is bounded implies

$$\int_{\frac{2a+b}{3}}^{\frac{a+2b}{3}} q(Z,\theta) d\theta \le \frac{b-a}{3} \sup\{q(Z,\theta) : \theta \in \mathbb{R}\}$$

for all interval [a,b), therefore if we take an interval $[a_0,b_0)\subset [\alpha,\beta)$ whose length is less than $3\phi/2\sup\{q(Z,\theta)\}$, we have

(1)
$$Q(Z; a_0, b_0) > 2\pi.$$

 $Q(0; a_0, b_0) = 2\pi - \frac{2}{3}(b-a) < 2\pi$ and the inequality (1) imply that there exists $z_0 \in (0, Z)$ which makes $Q(z_0; a, b)$ be supposed to be 2π according to IVT. It means that there is an interval $[a_0, b_0)$ such that $q(z, \theta)$ is monotonic over $\theta \in [a_0, b_0)$ and there exists $z_0 \in (0, Z)$ such that $Q(z_0; a, b) = 2\pi$

To prove the proposition for all $z < z_0$, consider a positive real number t less than (b-a)/2. $Q(z; a_0 + t, b_0 - t)$ is continuous for t and

$$Q(z; a_0, b_0) < Q(z_0; a_0, b_0) = 2\pi$$
$$Q(z; a_0 + t, b_0 - t) = 0 < 2\pi$$

imply there exists $t \in (0, (b-a)/2)$ such that $Q(z; a, b) = 2\pi$ letting $[a, b) = [a_0 + t, b_0 - t)$. $q(z, \theta)$ is obviously monotonic over $\theta \in [a, b)$.

Let $p(z,\theta)$ be a function such that

$$p(z,\theta) = \begin{cases} -q(z,\theta), & \text{if } \theta \in [a,b) \\ q(z,\theta), & \text{if } \theta \notin [a,b) \end{cases}$$

where a, b is the numbers determined above. Then we can prove the function $p(z, \theta)$ satisfy the conditions.

In Theorem 3.1, let trivial supremum of z defined the supremum of Z, non-trivial supremum of z defined the supremum of z_0 .

References

 B. Blackadar, K-Theory for Operator Algebras, Math. Sci. Res. Inst. Publ. 5, Springer-Verlag, New York, 1986.

ADDRESS

 $E ext{-}mail\ address: email}$