Power Controller

Josh Wilkins 5/9/2017

In [1]:

Imports↔

In [38]: ightharpoonup # Designing the Controller using the slowest response for Kr so that the settling time spec is always met \leftrightarrow

Due to long lead times of the ADL6010, an alternative envelope detector was used until the ADL6010 arrived. The LTC5564 had a similar response to the ADL6010, but could not be used due to its high temperature dependency. The same PI filter was used with little consequence, just a slower response, but worked well enough until the ADL6010 arrived.

ADL6010

From the ADL6010 Datasheet, Kr is given as a linear value in V/V. But in the V/dBm units needed, it is very nonlinear as shown below. Taking the derivative of the graph below, the value of kr in units of V/dBm can be approximated.

In [37]: ► # ADL6010↔

R=3833.9 Ohms

C=1.0e-06 uF

LTC5564

Due to the long lead time of the From the ADL6010, the LTC5564 was also examined for use. It appears to have a similar response, however it looks like it will be unusable due to its temperature dependency. Again, using the data from the datasheet to estimate kr:

In [39]: ► # *LTC5564*↔

R=2767.0 Ohms

C=1.0e-06 uF

