AMENDMENT TO THE CLAIMS:

Please cancel Claims 7-16, without prejudice.

LISTING OF CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. A diagnostic method, comprising:

estimating a temperature of a NOx-reducing catalyst based on a thermodynamic model of said NOx-reducing catalyst;

estimating a hydrocarbon conversion efficiency of said NOxreducing catalyst based on said temperature estimate; and

estimating a parameter indicative of an age of said NOxreducing catalyst based on said estimated hydrocarbon conversion efficiency of said catalyst.

2. The method as set forth in Claim 1 wherein said thermodynamic model of said NOx-reducing catalyst is described by the following equations:

$$\frac{d}{dt}\left(c_{substrate}m_{cat}T + c_{gas}m_{gas}T\right) = c_{p}W(T_{ta} - T) + h_{t}A_{cat}(T_{daub} - T) + \left(W_{HC} \cdot f_{burn}(T) + f_{rel}(T) \cdot HC_{st}\right) \cdot Q_{lb}$$

$$\frac{d}{dt}HC_{st} = (1 - f_{burn}(T)) \cdot W_{HC} - f_{rel}(T) \cdot HC_{st}$$
(2)

wherein $c_{substrate}$ is a heat capacity of a NOx-reducing catalyst substrate substrate, m_{col} is a mass of said catalyst, c_{gas} is a heat capacity of the exhaust gas, m_{gas} is a mass of the exhaust gas in the catalyst, c_p is a heat capacity of air at constant pressure, W is a total exhaust flow into said catalyst, T_{in} is a temperature of an exhaust gas mixture entering said NOx-reducing catalyst, h_i is a convective heat transfer coefficient of said

catalyst, $A_{\rm art}$ is a catalyst area exposed to said exhaust gas mixture entering said catalyst, $T_{\rm amb}$ is an ambient temperature, $W_{\rm HC}$ is a hydrocarbon flow transported in said exhaust gas mixture, $f_{\rm burn}(T)$ is said hydrocarbon conversion efficiency of said catalyst, $Q_{\rm lhv}$ is a heat contained in a unit mass of fuel, $f_{\rm rel}(T)$ is an amount of hydrocarbons released and subsequently oxidized, and $HC_{\rm H}$ is an amount of hydrocarbons stored in the catalyst.

- 3. The method as set forth in Claim 2 wherein said hydrocarbon conversion efficiency of said NOx-reducing catalyst is estimated by inverting said model in order to obtain an input from an output.
- 4. The method as set forth in Claim 1 wherein said NOx-reducing catalyst is an ALNC.
- 5. The method as set forth in Claim 1 wherein said NOx-reducing catalyst is an oxidation catalyst.
- 6. The method as set forth in Claim 1 further comprising providing an indication of catalyst degradation based on said parameter.

7-16. Cancelled.

- 17.A diagnostic system, comprising:
 - an internal combustion engine;
- a NOx-reducing catalyst coupled downstream of said engine; and
- a computer storage medium having a computer program encoded therein, comprising:

- code for estimating a temperature of said NOx-reducing catalyst based on a thermodynamic model of said NOx-reducing catalyst;
- code for estimating a hydrocarbon conversion efficiency of said NOx-reducing catalyst based on said temperature estimate; and
- code for estimating a parameter indicative of an age of said NOx-reducing catalyst based on said estimated hydrocarbon conversion efficiency of said catalyst.