Дивергенция и ротор векторного поля

Верещагин Антон Сергеевич канд. физ.-мат. наук, доцент

Кафедра аэрогидродинамики ФЛА НГТУ

QR-код презентации

15 апреля 2021 г.

Аннотация

Дивергенция вектора. Теорема Гаусса-Остроградского. Ротор вектора. Теорема Стокса и ее следствия.

Определение

Интеграл, определенный для площадки S,

Определение

 $\it Интеграл, определенный для площадки <math>\it S, над векторным полем \vec a как предел$

Определение

Интеграл, определенный для площадки S, над векторным полем \vec{a} как предел

$$\int\limits_{S} \vec{a} \cdot d\vec{S} =$$

Определение

Интеграл, определенный для площадки S, над векторным полем \vec{a} как предел

$$\int_{S} \vec{a} \cdot d\vec{S} = \lim_{\Delta S_j \to 0} \sum_{j} \vec{a}_j \cdot \Delta \vec{S}_j,$$

Определение

Интеграл, определенный для площадки S, над векторным полем \vec{a} как предел

$$\int_{S} \vec{a} \cdot d\vec{S} = \lim_{\Delta S_j \to 0} \sum_{j} \vec{a}_j \cdot \Delta \vec{S}_j,$$

называется потоком вектора \vec{a} через поверхность S.

Определение

Интеграл, определенный для площадки S, над векторным полем \vec{a} как предел

$$\int_{S} \vec{a} \cdot d\vec{S} = \lim_{\Delta S_j \to 0} \sum_{j} \vec{a}_j \cdot \Delta \vec{S}_j,$$

называется потоком вектора \vec{a} через поверхность S.

3десь ΔS_j – элементарные площадки разбивающие поверхность S_i

Определение

Интеграл, определенный для площадки S, над векторным полем \vec{a} как предел

$$\int_{S} \vec{a} \cdot d\vec{S} = \lim_{\Delta S_j \to 0} \sum_{j} \vec{a}_j \cdot \Delta \vec{S}_j,$$

называется потоком вектора \vec{a} через поверхность S.

3десь ΔS_j – элементарные площадки разбивающие поверхность S_i \vec{n}_j – внешняя единичная нормаль в любой точке ΔS_j ;

Определение

Интеграл, определенный для площадки S, над векторным полем \vec{a} как предел

$$\int_{S} \vec{a} \cdot d\vec{S} = \lim_{\Delta S_j \to 0} \sum_{j} \vec{a}_j \cdot \Delta \vec{S}_j,$$

называется потоком вектора \vec{a} через поверхность S.

Здесь ΔS_j — элементарные площадки разбивающие поверхность S_i , \vec{n}_j — внешняя единичная нормаль в любой точке ΔS_j ; \vec{a}_j — значение векторного поля \vec{a} в любой точке площадки ΔS_i ;

Определение

Интеграл, определенный для площадки S, над векторным полем \vec{a} как предел

$$\int_{S} \vec{a} \cdot d\vec{S} = \lim_{\Delta S_j \to 0} \sum_{j} \vec{a}_j \cdot \Delta \vec{S}_j,$$

называется потоком вектора \vec{a} через поверхность S.

Здесь ΔS_j – элементарные площадки разбивающие поверхность S_i , \vec{n}_j – внешняя единичная нормаль в любой точке ΔS_j ; \vec{a}_j – значение векторного поля \vec{a} в любой точке площадки ΔS_i ; $\Delta \vec{S}_j = \vec{n}_j \Delta S_j$.

Определение

Дивергенция вектора \vec{a} в точке P есть отнесенный κ единице объема V поток вектора \vec{a} через поверхность S,

Определение

Дивергенция вектора \vec{a} в точке P есть отнесенный к единице объема V поток вектора \vec{a} через поверхность S, окружающую точку P, при стягивании последнего в точку P:

Определение

Дивергенция вектора \vec{a} в точке P есть отнесенный к единице объема V поток вектора \vec{a} через поверхность S, окружающую точку P, при стягивании последнего в точку P:

$$\operatorname{div} \vec{a} = \lim_{V \to 0} \frac{1}{V} \int_{S} \vec{a} \cdot \vec{n} dS = \lim_{V \to 0} \frac{1}{V} \int_{S} a_{n} dS.$$

Представление дивергенции в дифференциальной форме

Если разложить функцию $\vec{a}=a_x\vec{\mathbf{i}}+a_y\vec{\mathbf{j}}+a_z\vec{\mathbf{k}}$ в окрестности точки P, тогда

$$\operatorname{div} \vec{a} = \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z}.$$

Представление дивергенции в дифференциальной форме

Если разложить функцию $\vec{a}=a_x\vec{\mathbf{i}}+a_y\vec{\mathbf{j}}+a_z\vec{\mathbf{k}}$ в окрестности точки P, тогда

$$\operatorname{div} \vec{a} = \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z}.$$

С использованием оператора Гамильтона (наблы):

$$\operatorname{div} \vec{a} = \nabla \cdot \vec{a},$$

$$\nabla = \vec{\mathbf{i}} \frac{\partial}{\partial x} + \vec{\mathbf{j}} \frac{\partial}{\partial y} + \vec{\mathbf{k}} \frac{\partial}{\partial z}.$$

Теорема (Гаусса-Остроградского)

Поток вектора через замкнутую поверхность равен объемному интегралу от дивергенции вектора:

Теорема (Гаусса-Остроградского)

Поток вектора через замкнутую поверхность равен объемному интегралу от дивергенции вектора:

$$\int\limits_{S} \vec{a} \cdot \vec{n} dS = \int\limits_{V} \operatorname{div} \vec{a} dV.$$

Теорема (Гаусса-Остроградского)

Поток вектора через замкнутую поверхность равен объемному интегралу от дивергенции вектора:

$$\int\limits_{S} \vec{a} \cdot \vec{n} dS = \int\limits_{V} \operatorname{div} \vec{a} dV.$$

Определение

Векторное поле \vec{a} , для которого во всех точках справедливо равенство div $\vec{a}=0$, называется соленоидальным.

Определение

Векторное поле \vec{a} , для которого во всех точках справедливо равенство div $\vec{a}=0$, называется соленоидальным.

Теорема

Для соленоидального вектора его поток через любое поперечное сечение векторной трубки тока имеет одну и ту же величину.

$$0 = \int_{V} \operatorname{div} \vec{a} dV =$$

$$0 = \int_{V} \operatorname{div} \vec{a} dV = \int_{\Sigma} \vec{a} \cdot \vec{n} dS =$$

$$0 = \int_{V} \operatorname{div} \vec{a} dV = \int_{\Sigma} \vec{a} \cdot \vec{n} dS = \int_{\Sigma_{1}} \vec{a} \cdot \vec{n}_{1} dS + \int_{\Delta \Sigma} \vec{a} \cdot \vec{n}_{\Delta} dS + \int_{\Sigma_{2}} \vec{a} \cdot \vec{n}_{2} dS.$$

$$0 = \int\limits_V \operatorname{div} \vec{a} dV = \int\limits_\Sigma \vec{a} \cdot \vec{n} dS = \int\limits_{\Sigma_1} \vec{a} \cdot \vec{n}_1 dS + \int\limits_{\Delta \Sigma} \vec{a} \cdot \vec{n}_\Delta dS + \int\limits_{\Sigma_2} \vec{a} \cdot \vec{n}_2 dS.$$

Отсюда
$$\int\limits_{\Sigma_1} \vec{a} \cdot \vec{n}_1 dS = -\int\limits_{\Sigma_2} \vec{a} \cdot \vec{n}_2 dS,$$

Доказательство.

$$0 = \int\limits_V \operatorname{div} \vec{a} dV = \int\limits_\Sigma \vec{a} \cdot \vec{n} dS = \int\limits_{\Sigma_1} \vec{a} \cdot \vec{n}_1 dS + \int\limits_{\Delta \Sigma} \vec{a} \cdot \vec{n}_\Delta dS + \int\limits_{\Sigma_2} \vec{a} \cdot \vec{n}_2 dS.$$

Отсюда $\int\limits_{\Sigma_1} \vec{a}\cdot\vec{n}_1 dS=-\int\limits_{\Sigma_2} \vec{a}\cdot\vec{n}_2 dS$, т.к. $\int\limits_{\Delta\Sigma} \vec{a}\cdot\vec{n}_\Delta dS=0$ в силу ортогональности векторов \vec{a} и \vec{n}_Δ ,

Доказательство.

$$0 = \int\limits_V \operatorname{div} \vec{a} dV = \int\limits_\Sigma \vec{a} \cdot \vec{n} dS = \int\limits_{\Sigma_1} \vec{a} \cdot \vec{n}_1 dS + \int\limits_{\Delta \Sigma} \vec{a} \cdot \vec{n}_\Delta dS + \int\limits_{\Sigma_2} \vec{a} \cdot \vec{n}_2 dS.$$

Отсюда $\int\limits_{\Sigma_1} \vec{a} \cdot \vec{n}_1 dS = -\int\limits_{\Sigma_2} \vec{a} \cdot \vec{n}_2 dS$, т.к. $\int\limits_{\Delta\Sigma} \vec{a} \cdot \vec{n}_\Delta dS = 0$ в силу ортогональности векторов \vec{a} и \vec{n}_Δ , т.е. потоки вектора \vec{a} через Σ_1 и Σ_2 совпадают.

Циркуляция вектора по замкнутому контуру

Определение

<u>Циркуляцией вектора</u> \vec{a} по замкнутому контуру называется следующий интеграл (с выбранным направлением интегрирования):

Циркуляция вектора по замкнутому контуру

Определение

<u>Циркуляцией вектора</u> \vec{a} по замкнутому контуру называется следующий интеграл (с выбранным направлением интегрирования):

$$\Gamma_C(\vec{a}) = \int\limits_C \vec{a} \cdot d\vec{r}.$$

Ротор вектора

Определение

Выберем плоскую площадку S, содержащую точку P, c нормалью \vec{n} и контуром C,

Ротор вектора

Определение

Выберем плоскую площадку S, содержащую точку P, с нормалью \vec{n} и контуром C, тогда ротором \vec{s} направлении \vec{n} \vec{s} точке P называется отношение циркуляции вектора по контуру C к площади S, когда последняя стягивается \vec{s} точку P:

Ротор вектора

Определение

Выберем плоскую площадку S, содержащую точку P, c нормалью \vec{n} и контуром C, тогда ротором \vec{s} направлении \vec{n} \vec{s} точке P называется отношение циркуляции вектора по контуру C \vec{s} площади S, когда последняя стягивается \vec{s} точку P:

Ротор вектора

Определение

Выберем плоскую площадку S, содержащую точку P, c нормалью \vec{n} и контуром C, тогда ротором \vec{b} направлении \vec{n} в точке P называется отношение циркуляции вектора по контуру C к площади S, когда последняя стягивается \vec{b} точку P:

$$\operatorname{rot}_{\vec{n}} \vec{a} = \lim_{S \to 0} \frac{\int\limits_{C} \vec{a} \cdot d\vec{r}}{S}$$

Если представить ${\rm rot}_{\vec{n}}\,\vec{a}$ в дифференциальной форме по трем основным направления,

Если представить ${\rm rot}_{\vec{n}}\,\vec{a}$ в дифференциальной форме по трем основным направления, тогда

$$\operatorname{rot}_{x} \vec{a} = \frac{\partial a_{z}}{\partial y} - \frac{\partial a_{y}}{\partial z}, \quad \operatorname{rot}_{y} \vec{a} = \frac{\partial a_{x}}{\partial z} - \frac{\partial a_{z}}{\partial x}, \quad \operatorname{rot}_{z} \vec{a} = \frac{\partial a_{y}}{\partial x} - \frac{\partial a_{x}}{\partial y}.$$

Если представить ${\rm rot}_{\vec{n}}\,\vec{a}$ в дифференциальной форме по трем основным направления, тогда

$$\operatorname{rot}_{x} \vec{a} = \frac{\partial a_{z}}{\partial y} - \frac{\partial a_{y}}{\partial z}, \quad \operatorname{rot}_{y} \vec{a} = \frac{\partial a_{x}}{\partial z} - \frac{\partial a_{z}}{\partial x}, \quad \operatorname{rot}_{z} \vec{a} = \frac{\partial a_{y}}{\partial x} - \frac{\partial a_{x}}{\partial y}.$$

В терминах оператора Гамильтона (наблы)

$$\operatorname{rot} \vec{a} = \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ a_{x} & a_{y} & a_{z} \end{vmatrix} = \nabla \times \vec{a}$$

Если представить ${\rm rot}_{\vec{n}}\,\vec{a}$ в дифференциальной форме по трем основным направления, тогда

$$\operatorname{rot}_{x} \vec{a} = \frac{\partial a_{z}}{\partial y} - \frac{\partial a_{y}}{\partial z}, \quad \operatorname{rot}_{y} \vec{a} = \frac{\partial a_{x}}{\partial z} - \frac{\partial a_{z}}{\partial x}, \quad \operatorname{rot}_{z} \vec{a} = \frac{\partial a_{y}}{\partial x} - \frac{\partial a_{x}}{\partial y}.$$

В терминах оператора Гамильтона (наблы)

$$\operatorname{rot} \vec{a} = \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ a_{x} & a_{y} & a_{z} \end{vmatrix} = \nabla \times \vec{a}$$

И

$$\operatorname{rot}_{\vec{n}} \vec{a} = \operatorname{rot} \vec{a} \cdot \vec{n},$$

$$\nabla = \vec{\mathbf{i}} \frac{\partial}{\partial x} + \vec{\mathbf{j}} \frac{\partial}{\partial v} + \vec{\mathbf{k}} \frac{\partial}{\partial z}.$$

Теорема Стокса

Теорема (Стокса)

Циркуляция вектора по замкнутому контуру равна потоку ротора вектора через поверхность, ограниченную этим контуром:

Теорема Стокса

Теорема (Стокса)

Циркуляция вектора по замкнутому контуру равна потоку ротора вектора через поверхность, ограниченную этим контуром:

$$\int_{C} \vec{a} \cdot d\vec{r} = \int_{S} \operatorname{rot} \vec{a} \cdot d\vec{S} = \int_{S} \operatorname{rot}_{\vec{n}} \vec{a} dS.$$

Теорема Стокса

Доказательство.

Следствие теоремы Стокса

Теорема

Для того чтобы вектор \vec{a} был потенциальным необходимо и достаточно, чтобы ротор вектора \vec{a} был равен 0.

Следствие теоремы Стокса

Теорема

Для того чтобы вектор \vec{a} был потенциальным необходимо и достаточно, чтобы ротор вектора \vec{a} был равен 0.

Доказательство.

 (\Rightarrow) Пусть вектор $\vec{a}=\nabla\varphi$, т.е. \vec{a} – потенциальный. По теореме Стокса для любой площадки S

$$\int_{S} \operatorname{rot} \vec{a} \cdot d\vec{S} = \int_{C} \vec{a} \cdot d\vec{r} = \int_{C} \nabla \varphi \cdot d\vec{r} = 0$$

по свойству циркуляции потенциального вектора. В силу произвольности S rot $\vec{a}=0$ или rot grad $\varphi=0$ для любой φ .

Следствие теоремы Стокса

Теорема

Для того чтобы вектор \vec{a} был потенциальным необходимо и достаточно, чтобы ротор вектора \vec{a} был равен 0.

Доказательство.

 (\Leftarrow) Пусть rot $\vec{a}=0$, тогда для произвольной площадки S с произвольным контуром C по теореме Стокса

$$0 = \int_{S} \operatorname{rot} \vec{a} \cdot d\vec{S} = \int_{C} \vec{a} \cdot d\vec{r}.$$

Таким образом, циркуляция вектора \vec{a} по любому контуру C в выбранной области равна 0, следовательно вектор \vec{a} потенциален.

Теорема

div rot
$$\vec{a} = 0$$
 или $\nabla \cdot (\nabla \times \vec{a}) = 0$.

Теорема

$$\operatorname{div}\operatorname{rot}\vec{a}=0$$
 или $\nabla\cdot(\nabla\times\vec{a})=0.$

Доказательство.

Теорема

$$\operatorname{div}\operatorname{rot}\vec{a}=0$$
или $\nabla\cdot(\nabla\times\vec{a})=0.$

Доказательство.

Рассмотрим сферу с площадью S, из которой вырезали кусочек площади ΔS с контуром C.

Теорема

$$\operatorname{div}\operatorname{rot}\vec{a}=0$$
или $\nabla\cdot(\nabla\times\vec{a})=0.$

Доказательство.

Рассмотрим сферу с площадью S, из которой вырезали кусочек площади ΔS с контуром C. Тогда с использованием теоремы Стокса

$$\int\limits_{S} \operatorname{rot} \vec{a} \cdot d\vec{S} =$$

Теорема

$$\operatorname{div}\operatorname{rot}\vec{a}=0$$
или $\nabla\cdot(\nabla\times\vec{a})=0.$

Доказательство.

Рассмотрим сферу с площадью S, из которой вырезали кусочек площади ΔS с контуром C. Тогда с использованием теоремы Стокса

$$\int\limits_{S} \operatorname{rot} \vec{a} \cdot d\vec{S} = \lim_{\Delta S \to 0} \int\limits_{S \setminus \Delta S} \operatorname{rot} \vec{a} \cdot d\vec{S} =$$

Теорема

$$\operatorname{div}\operatorname{rot}\vec{a}=0$$
или $\nabla\cdot(\nabla\times\vec{a})=0.$

Доказательство.

Рассмотрим сферу с площадью S, из которой вырезали кусочек площади ΔS с контуром C. Тогда с использованием теоремы Стокса

$$\int_{S} \operatorname{rot} \vec{a} \cdot d\vec{S} = \lim_{\Delta S \to 0} \int_{S \setminus \Delta S} \operatorname{rot} \vec{a} \cdot d\vec{S} =$$

$$= \lim_{\Delta S \to 0} \int_{C} \vec{a} \cdot d\vec{r} =$$

Теорема

div rot
$$\vec{a} = 0$$
 или $\nabla \cdot (\nabla \times \vec{a}) = 0$.

Доказательство.

Рассмотрим сферу с площадью S, из которой вырезали кусочек площади ΔS с контуром C. Тогда с использованием теоремы Стокса

$$\int_{S} \operatorname{rot} \vec{a} \cdot d\vec{S} = \lim_{\Delta S \to 0} \int_{S \setminus \Delta S} \operatorname{rot} \vec{a} \cdot d\vec{S} =$$

$$= \lim_{\Delta S \to 0} \int_{C} \vec{a} \cdot d\vec{r} = 0.$$

Поделив полученное выражение на V и перейдя к пределу при $V \to 0$, получим утверждение теоремы.

Теорема (без доказательства)

Если div $\vec{a}=0$, то существует такое векторное поле \vec{b} , что $\vec{a}=\operatorname{rot}\vec{b}$.