Bayesian Statistics III/IV (MATH3341/4031)

Michaelmas term, 2019

## Handout 1: Random variables a

Lecturer: Georgios Karagiannis

georgios.karagiannis@durham.ac.uk

#### Aim

To revise a bit, linear algebra, random variables and probabilities

Linear algebra Cholesky decomposition

**Probability theory** Random variables, probabilities, expected values, covariance/variance matrices, characteristic function, compound distribution function

### Reading list:

- DeGroot, M. H. (1970, or 2005). Optimal statistical decisions (Vol. 82). John Wiley & Sons.
  - Part one: Survey of probability theory. Chapters 1-5

## 1 Linear Algebra

**Proposition 1.** [Cholesky decomposition] Every symmetric positive definite matrix  $A \in \mathbb{R}^d \times \mathbb{R}^d$  can be decomposed into a product of a unique lower triangular matrix  $L \in \mathbb{R}^d \times \mathbb{R}^d$  and its transpose  $L^{\top}$ , i.e.

$$A = LL^T$$

Matrix L is called lower triangular factor of the Cholesky decomposition, and it is often denoted as  $A^{1/2} = L$ .

## 2 Probability distributions

- Definition 2. A collection  $\mathscr{F} = \{A, A_1, A_2, ...\}$  of sets  $A, A_1, A_2, ...$ , each of which are subsets of set  $\Omega$ , is called a σ-algebra if and only if
  - 1.  $\Omega \in \mathscr{F}$
  - 2. If  $A \in \mathscr{F}$ , then  $A^{\complement} \in \mathscr{F}$
  - 3. If  $A_1, A_2, ... \in \mathscr{F}$  is an infinite sequence of sets in  $\mathscr{F}$  then  $\bigcup_{i=1}^{\infty} A_i \in \mathscr{F}$
- **Definition 3.** Probability distribution P on  $(\Omega, \mathcal{F})$  is called a non-negative function if and only if
  - 1.  $P(\Omega) = 1$ 
    - 2. If  $A, B \in \mathscr{F}$  and  $A \cap B = \emptyset$  then  $P(A \cup B) = P(A) + P(B)$
- 3. If  $A_1, A_2, ... \in \mathscr{F}$  and  $A_i \cap A_j = \emptyset$  for all  $i \neq j$  then  $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$
- Notation 4. We call the triple  $(\Omega, \mathcal{F}, P)$  as probability space.

<sup>&</sup>lt;sup>a</sup>Author: Georgios P. Karagiannis.

## 3 Random variables

- **Definition 5.** A d-dimensional random variable y on a probability space  $(\Omega, \mathscr{F}, P)$  is a function  $y : \Omega \to \mathbb{R}^d$  such as,
- for any subset  $A\subseteq\mathbb{R}^d$ , it is  $\{\omega\in\Omega\,:\,y(\omega)\in A\}\in\mathscr{F}.$
- **Definition 6.** A d-dimensional random variable y on a probability space  $(\Omega, \mathscr{F}, P)$ , induces a probability  $P_y(\cdot)$  such that, for all subsets  $A \subseteq \mathbb{R}^d$ ,

$$P_y(y \in A) = P(\{\omega \in \Omega : y(\omega) \in A\})$$

- Essentially, it induces a probability space  $(\mathbb{R}^d, \mathfrak{B}, P_y)$ , with  $\mathfrak{B}$  a  $\sigma$ -algebra containing sub-sets of  $\mathbb{R}^d$ .
- Definition 7. The (cumulative) distribution function (CDF) of a d-dimensional random variable  $y \in \mathcal{Y}$  is the function  $F_y : \mathbb{R}^d \to [0,1]$  such that

$$F_{y}(y) := F_{y}(y'_{1}, ..., y'_{d}) = P_{y}(y \in (-\infty, y'_{1}] \times ... \times (-\infty, y'_{d}])$$

- Notation 8. The distribution function defines the distribution of the random variable. As  $y \sim F_y$ , we will denote that the random variable y follows a distribution with distribution function  $F_y$ .
- **Definition 9.** The d-dimensional random variable  $y: \Omega \to \mathcal{Y}$  with distribution  $F_y$  is discrete, if  $\mathcal{Y}$  is a countable set and the distribution can be described by its Probability Mass Function (PMF)

$$f_{y}(y') := f_{y}(y'_{1}, ..., y'_{d}) = P(\{\omega \in \Omega : y(\omega) = y'\})$$

Definition 10. The d-dimensional random variable  $y: \Omega \to \mathcal{Y}$  with distribution  $F_y$  is absolutely continuous, if  $\mathcal{Y}$  is a uncountable set and the distribution can be described by its Probability Density Function (PDF)  $f_y(y)$  such that

$$P_y(y \in A) = \underbrace{\int \cdots \int}_A f_y(y_1',...,y_d') \mathrm{d}y_1' \cdots \mathrm{d}y_d', \text{ for any } A \subseteq \mathbb{R}^d.$$

- or briefly  $P_y(A) = \int_A f_y(y') \mathrm{d}y'$ , where  $\mathrm{d}y' = \prod_{j=1}^d \mathrm{d}y_j'$ .
- Fact 11. The PDF of d-dimensional random variable  $y:\Omega\to\mathcal{Y}$  with CDF  $F_y$  can be computed by the partial derivative as

$$f_y(y) = \frac{d}{dt_1 \cdots dt_d} F_y(t_1, ..., t_d) \Big|_{t_1 = y_1, \cdots t_d = y_d}$$
 if  $F_y$  is differential.

## 4 Transforming

Fact 12. Let  $y \in \mathcal{Y}$  be a d-dimensional random variable with PDF  $f_y(\cdot)$ . Consider a bijective function  $h: \mathcal{Y} \to \mathcal{Z}$  with z = h(y), and  $h^{-1}$  its inverse. The PDF of z is

$$f_z(z) = f_y(y) \left| \det \left( \frac{dy}{dz} \right) \right| = f_y(h^{-1}(z)) \left| \det \left( \frac{d}{dz} h^{-1}(z) \right) \right|$$

- Example 13. Let  $y \sim \text{Ex}(\lambda)$  r.v. with Exponential distribution with rate parameter  $\lambda > 0$ , and  $f_{\text{Ex}(\lambda)}(y) = \lambda \exp(-\lambda y) 1(y \ge 0)$ . Let  $z = 1 \exp(-\lambda y)$ . Calculate the PDF of z, and recognize its distribution.
- **Solution.** It is  $z=1-\exp(-\lambda y) \Longleftrightarrow y=-\frac{1}{\lambda}\log(1-z)$ , and  $z\in[0,1]$ . So  $h^{-1}(z)=-\frac{1}{\lambda}\log(1-z)$ . Then

$$f_{z}(z) = f_{\operatorname{Ex}(\lambda)}(h^{-1}(z)) \times \left| \det \left( \frac{\mathrm{d}}{\mathrm{d}z} h^{-1}(z) \right) \right| = f_{\operatorname{Ex}(\lambda)} \left( -\frac{1}{\lambda} \log(1-z) \right) \times \left| \det \left( \frac{\mathrm{d}}{\mathrm{d}z} \frac{-1}{\lambda} \log(1-z) \right) \right|$$
$$= \exp\left( -\lambda \frac{-1}{\lambda} \log(1-z) \right) 1 \left( -\frac{1}{\lambda} \log(1-z) \ge 0 \right) \times \left| -\frac{1}{\lambda} \frac{1}{1-z} \right| = 1 (z \in [0,1])$$

<sup>&</sup>lt;sup>1</sup>...this is not a rigorous definition; a more rigorous definition is out of the scope of the course.

From the density, we recognize that  $z \sim U(0, 1)$  follows a uniform distribution.

## 5 Marginalizing & Integrating out

Fact 14. Let (n+d)-dimensional random variable  $y \in \mathcal{Y}$  with distribution  $F_y(\cdot)$ . Consider a partition  $y = (x, \theta)$  where  $x \in \mathcal{X}$  is n-dimensional and  $\theta \in \Theta$  is d-dimensional. Then

1. the marginal CDF of x results by setting  $\theta$  as  $\infty$ 

$$F_x(x) = \lim_{\theta \to \infty} F_y(x, \theta) = \lim_{\theta_1 \to \infty, \dots, \theta_d \to \infty} F_y(x_1, \dots, x_n, \theta_1, \dots, \theta_d)$$

2. the marginal PDF/PMF of x results by integrating out  $\theta$  (the dimensions we marginalize)

$$f_x(x) = \begin{cases} \int_{\mathbb{R}^d} f_y(x,\theta) d\theta & \text{if $\theta$ is cont.} \\ \sum_{\forall \theta \in \mathbb{R}^d} f_y(x,\theta) & \text{if $\theta$ is discr.} \end{cases} = \begin{cases} \int_{\mathbb{R}^d} f_y(x_1,...x_n,\theta_1,...,\theta_d) d\theta_1...d\theta_d & \text{if $\theta$ is cont.} \\ \sum_{\forall \theta \in \mathbb{R}^d} f_y(x_1,...x_n,\theta_1,...,\theta_d) & \text{if $\theta$ is discr.} \end{cases}$$

## 6 Independence

**Definition 15.** Given a probability space  $(\Omega, \mathfrak{B}, P)$ , events  $A, B \in \mathfrak{B}$  are independent if and only if

$$P(A \cap B) = P(A)P(B)$$

**Fact 16.** Let (n+m)-dimensional random variable  $y \in \mathcal{Y}$ . Consider a partition y = (x, z) where  $x \in \mathcal{X}$  is n-dimensional and  $z \in \mathcal{Z}$  is m-dimensional.

• The r.v. x and y are independent if and only if for any  $A \subseteq \mathcal{X}$  and  $B \subseteq \mathcal{Z}$ 

$$P(\{x \in A\} \cap \{z \in B\}) = P(x \in A)P(z \in B)$$

• The r.v. x and y are independent if and only if

$$F(x,z) = F(x)F(z), \ \forall x \in \mathcal{X}, \ \forall z \in \mathcal{Z}$$

where  $F(\cdot)$  denotes the CDF.

• This implies that r.v. x and z are independent if and only if

$$f(x,z) = f(x)f(z)$$

where  $f(\cdot)$  denotes the PDF/PMF.

#### 7 Expected value

**Definition 17.** Expected value of the d-dimensional random variable  $y \in \mathcal{Y}$  with distribution F is the d-dimensional quantity

$$\mathbf{E}(y) = \int y \mathrm{d}F(y) = \begin{cases} \int_{y \in \mathcal{Y}} y f(y) \mathrm{d}y, & \text{if } y \text{ is cont.} \\ \\ \sum_{y \in \mathcal{Y}} y f(y), & \text{if } y \text{ is discr.} \end{cases}$$

whose *i*th element is

$$\left[\mathbf{E}(y)\right]_i = \begin{cases} \int y_i f_{y_i}(y_i) \mathrm{d}y_i, & \text{if } y_i \text{ is cont.} \\ \\ \sum_{\forall y_i} y_i f_{y_i}(y_i), & \text{if } y_i \text{ is discr.} \end{cases}$$

for i=1,...,d. Here  $f_{y_i}(y_i)=\int_{y\in\mathcal{Y}}f(y)\mathrm{d}y_1\cdots\mathrm{d}y_{i-1}\mathrm{d}y_{i+1}\cdots\mathrm{d}y_d$  is the marginal PMF/PDF of  $y_i$ .

Fact 18. If  $y \in \mathcal{Y}$  is a d-dimensional random variable with PDF/PMF  $f_y(\cdot)$ , and  $\psi : \mathcal{Y} \to \mathbb{R}^d$  is an integrate function with  $\psi(\cdot) := (\psi_1(\cdot), ..., \psi_d(\cdot))$ , then

$$E(\psi(y)) = \begin{cases} \int \psi(y) f_y(y) dy, & \text{if } y \text{ is cont.} \\ \\ \sum_{\forall y} \psi(y) f_y(y), & \text{if } y \text{ is discr.} \end{cases}$$

81 with elements

$$\left[E(\psi(y))\right]_i = \begin{cases} \int \psi_i(y) f_y(y) dy, & \text{if $y$ is cont.} \\ \\ \sum_{\forall y} \psi_i(y) f_y(y), & \text{if $y$ is discr.} \end{cases}$$

**Example 19.** If  $(q \times k)$ -dimensional random variable  $y \in \mathcal{Y}$  is a matrix, then its expectation  $E(y) = \int y dF(y)$  is a matrix too

$$\mathbf{E}(y) = \begin{bmatrix} \mathbf{E}(y_{1,1}) & \cdots & \mathbf{E}(y_{1,j}) & \cdots & \mathbf{E}(y_{1,m}) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \mathbf{E}(y_{i,1}) & \cdots & \mathbf{E}(y_{i,j}) & \cdots & \mathbf{E}(y_{i,m}) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \mathbf{E}(y_{n,1}) & \cdots & \mathbf{E}(y_{n,j}) & \cdots & \mathbf{E}(y_{n,m}) \end{bmatrix}$$

whose (i, j)-th element is

$$\left[ \mathbf{E}(y) \right]_{i,j} = \mathbf{E}(y_{i,j}) = \begin{cases} \int y_{i,j} f_{y_{i,j}}(y_{i,j}) \mathrm{d}y_{i,j}, & \text{if } y_{i,j} \text{ is cont.} \\ \\ \sum_{\forall y_{i,j}} y_{i,j} f_{y_{i,j}}(y_{i,j}), & \text{if } y_{i,j} \text{ is discr.} \end{cases}$$

- for i=1,...,n, and j=1,...,m. Here  $f_{y_{i,j}}(\cdot)$  is the marginal PMF/PDF of  $y_{i,j}$
- **Proposition 20.** The following properties are valid
  - 1. Let fixed matrix/vectors A, c, and z = c + Ay with suitable dimensions then

$$E(z) = E(c + Ay) = c + AE(y)$$

2. Let random variables  $z \in \mathcal{Z}$  and  $y \in \mathcal{Y}$ , and let functions  $\psi_1$  and  $\psi_2$  defined on  $\mathcal{Z}$  and  $\mathcal{Y}$ , then

$$E(\psi_1(z) + \psi_2(y)) = E(\psi_1(z)) + E(\psi_2(y))$$

3. Random variables  $z \in \mathcal{Z}$  and  $y \in \mathcal{Y}$  are independent if and only if

$$E(\psi_1(z)\psi_2(y)) = E(\psi_1(z))E(\psi_2(y))$$

for any functions  $\psi_1$  and  $\psi_2$  defined on  $\mathcal{Z}$  and  $\mathcal{Y}$ .

*Proof.* Given as Exercise 3 in the Exercise Sheet.

#### 8 Covariance matrix

Definition 21. The covariance matrix between random variable  $z \in \mathcal{Z} \subseteq \mathbb{R}^d$  and random variable  $y \in \mathcal{Y} \subseteq \mathbb{R}^q$  is defined as the  $d \times q$  matrix

$$Cov(z, y) = E((z - E(z))(y - E(y))^{\top})$$

**Proposition 22.** The following properties are the direct analogues of the 1D cases

- 1.  $Cov(z, y) = E(zy^{\top}) E(z)(E(y))^{\top}$
- 2.  $Cov(z, y) = (Cov(y, z))^{\top}$
- 3.  $Cov(c_1 + A_1z, c_2 + A_2y) = A_1Cov(z, y)A_2^{\top}$ , for fixed matrices  $A_1, A_2$ , and vectors  $c_1, c_2$  with suitable dimensions.
  - 4. If z and y are independent random vectors then Cov(z, y) = 0
- *Proof.* (1)-(3) result from the definition. (4) results from Prop 20, as  $E(zy^{\top}) = E(z) (E(y))^{\top}$ .
- op **Proposition 23.** It can be seen that

$$[Cov(z,y)]_{i,j} = Cov(z_i,y_j)$$

- for all i = 1, ..., d, and j = 1, ..., q. Namely, the (i, j)-th element of the covariance matrix between vector z and y is the covariance between their elements  $z_i$  and  $y_j$ .
- **Definition 24.** The covariance matrix of random vector  $y \in \mathcal{Y} \subseteq \mathbb{R}^d$  is defined as the  $d \times d$  matrix Var(y)

$$Var(y) = Cov(y, y) = E((y - E(y))(y - E(y))^{\top})$$

Proposition 25. It can be seen that

$$[Var(y)]_{i,j} = Cov(y_i, y_j) \text{ for all } i, j = 1, ..., d$$

17 and

$$[Var(y)]_{i,i} = Var(y_i)$$

- 119 for all i = 1, ..., d
- **Proposition 26.** The following properties are the direct analogues of the 1D cases
- 1.  $Var(y) = E(yy^{\top}) E(y) (E(y))^{\top}$
- 2.  $Var(c + Ay) = AVar(y)A^{\top}$ , for fixed matrix A, and vectors c with suitable dimensions.
- 3.  $Var(y) \ge 0$ ; (semi-positive definite)
- *Proof.* Given as Exercise 6 in the Exercise Sheet.

# 9 Characteristic function

- Characteristic functions (CF) provide an alternative way to the probability function for describing a random variable.
- Definition 27. The characteristic function of a d dimensional random variable X is

$$\varphi_x(t) = \mathbf{E}(e^{it^Tx}) = \int e^{it^Tx} dF(x)$$

for  $t \in \mathbb{R}^d$ , where  $e^{it^Tx} = \cos(t^Tx) + i\sin(t^Tx)$ .

### Proposition 28. Some properties of characteristic functions

- 1.  $\varphi_x(t)$  exists for all  $t \in \mathbb{R}^d$  and is absolutely continuous
- 2.  $\varphi_x(0) = 1$  and  $|\varphi_x(t)| \leq 1$  for all  $t \in \mathbb{R}^d$ 
  - 3.  $\varphi_{A+Bx}(t) = e^{it^T A} \varphi_x(B^T t)$  if  $A \in \mathbb{R}^d$  and  $B \in \mathbb{R}^{k \times d}$  are constants
- 4.  $\varphi_{x+y}(t) = \varphi_x(t)\varphi_y(t)$  if and only if x and y are independent
  - 5. if  $M_x(t) = E(e^{t^T x})$  is the moment generating function, then  $M_x(t) = \varphi_x(-it)$
- 136 *Proof.* Given as Exercise 7 in the exercise sheet.

**Fact 29.** Two random variables correspond have equal characteristic functions if and only if they follow the same distribution. AKA: CF completely determines the probability distribution of the random variable

**Fact 30.** If  $\varphi_x(t)$  is absolutely integrable, then x has PDF

$$f(x) = \frac{1}{(2\pi)^d} \int_{-\infty}^{+\infty} e^{-it^T x} \varphi_x(t) dt$$

**Example 31.** Address the following:

- 1. If  $z \sim N(0, 1)$  then  $\varphi_z(t) = \exp(-\frac{1}{2}t^2)$
- 2. If  $x \sim N(\mu, \sigma^2)$  then  $\varphi_x(t) = \exp(i\mu t \frac{1}{2}t^2\sigma^2)$
- 3. If  $\varphi_z(t) = \exp(-\frac{1}{2}t^2)$  then  $f_{N(0,1)}(z) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}z^2)$

**Solution.** It is

1. It is

$$\begin{split} \varphi_z(t) &= \mathbf{E}(e^{itz}) = \int e^{itz} \mathrm{d}F_{\mathbf{N}(0,1)}(z) = \int e^{itz} f_{\mathbf{N}(0,1)}(z) \mathrm{d}z = \int \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}z^2 + itz) \mathrm{d}z \\ &= \int \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}z^2 + \frac{2}{2}itz \pm \frac{1}{2}(it)^2 z) \mathrm{d}z = \int \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}(z-it)^2) \mathrm{d}z \times \exp(\frac{1}{2}(it)^2) \\ &= \exp(-\frac{1}{2}t^2) \end{split}$$

- 2. It is  $\varphi_x(t) = \varphi_{\mu+\sigma z}(t) = \exp(i\mu t)\varphi_z(\sigma t) = \exp(i\mu t \frac{1}{2}t^2\sigma^2)$ .
- 3. It is

$$f(z) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-itz} \varphi_z(t) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \exp(-itz) \exp(-\frac{1}{2}t^2) dt$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \exp(-\frac{1}{2}t^2 + i^2tz) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2}(t^2 - i^2z)^2 - z^2\right) dt$$

$$= \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{+\infty} \sqrt{\frac{1}{2\pi}} \exp\left(-\frac{1}{2}(t - i^2z)^2\right) dt \exp\left(-\frac{1}{2}z^2\right) = \sqrt{\frac{1}{2\pi}} \exp\left(-\frac{1}{2}z^2\right) = f_{N(0,1)}(z)$$

Theorem 32. The distribution of a d-dimensional random variable  $x \in \mathbb{R}^d$  is completely determined be the set of all 1--dimensional distributions of of linear combinations  $a^{\top}x$ , for any  $a \in \mathbb{R}^d$ .

*Proof.* Let  $y = a^{\top}x$ , for any  $a \in \mathbb{R}^d$ . Then for any  $s \in \mathbb{R}$ 

$$\varphi_y(s) = \mathbf{E}(e^{is^T y}) = \mathbf{E}(e^{is^T a^T x}) = \mathbf{E}(e^{i(as)^T x}) = \mathbf{E}(e^{i\tilde{t}^T x}) = \varphi_x(\tilde{t})$$

where  $\tilde{t} = as$  is any d-dimensional vector.

## 10 Conditioning

**Definition 33.** Assume a probability space  $(\Omega, \mathscr{F}, P)$ . For any sets  $A, B \in \mathscr{F}$ , the conditional probability of A given B is defined as

$$P(A|B) = \frac{P(B \cap A)}{P(B)}$$
 if  $P(B) \neq 0$ .

Definition 34. Let  $y \in \mathcal{Y}$  be a random variable. Consider a partition  $y = (x, \theta)$  with  $x \in \mathcal{X}$  and  $\theta \in \Theta$ . The expected value of  $\theta$  conditional that random variable  $x \in B \subseteq \mathcal{X}$  is

$$E(\theta|x \in B) = \frac{E(\theta 1(x \in B))}{P(x \in B)}, \quad \text{if } P(x \in B) > 0.$$

- **Fact 35.** Let a random variable  $y \in \mathcal{Y}$  with PDF/PMF  $f(\cdot)$ . Consider a partition  $y = (x, \theta)$  with  $x \in \mathcal{X}$  and  $\theta \in \Theta$ .
  - 1. The conditional MPF/PDF and CDF of random variable  $\theta$  given the random variable x

$$f_{\theta|x}(\theta|x) = \frac{f(\theta,x)}{f(x)}, \; ; \quad F_{\theta|x}(\theta|x) = \begin{cases} \int_{-\infty}^{\theta_1} \cdots \int_{-\infty}^{\theta_d} f_{\theta|x}(\vartheta|x) d\vartheta, & \theta, \ cont. \\ \\ \sum_{\vartheta_1 = -\infty}^{\theta_1} \cdots \sum_{\vartheta_d = -\infty}^{\theta_d} f_{\theta|x}(\vartheta|x), & \theta, \ discr. \end{cases}$$

- provided that f(x) > 0.
  - 2. The expected value of  $\theta$  given the random variable x

$$E(\theta|x) = \int \theta dF_{\theta|x}(\theta|x) = \begin{cases} \int \theta f_{\theta|x}(\theta|x) d\theta & \text{, if $\theta$ is cont.} \\ \\ \sum_{\forall \theta} \theta f_{\theta|x}(\theta|x) & \text{, if $\theta$ is discr.} \end{cases}$$
 provided that  $f(x) > 0$ 

- Example 36. Let a random variable  $y \in \mathcal{Y}$  with distribution  $F(\cdot)$ . Consider a partition  $y = (x, \theta)^{\top}$  with  $x \in \mathcal{X}$  and  $\theta \in \Theta$ . Then
- 1.  $E(\theta) = E(E(\theta|x))$ 
  - 2.  $Var(\theta) = E(Var(\theta|x)) + Var(E(\theta|x))$
- Solution.
  - 1. It is

$$\begin{split} \mathbf{E}\left(\mathbf{E}(\theta|x)\right) &= \int \left(\int \theta \mathrm{d}F(\theta|x)\right) \mathrm{d}F(x) = \int \int \theta \mathrm{d}F(x,\theta) = \int \int \theta \mathrm{d}F(\theta|x) \mathrm{d}F(x) \\ &= \int \theta \left(\int \mathrm{d}F(x|\theta)\right) F(\theta) = \int \theta F(\theta) = \mathbf{E}(\theta) \end{split}$$

2. It is

$$\begin{aligned} \operatorname{Var}(\theta) &= \operatorname{E}\left(\operatorname{E}(\theta\theta^{\top})\right) - \operatorname{E}\left(\theta\right) \operatorname{E}\left(\theta\right)^{\top} \\ &= \operatorname{E}\left(\operatorname{E}(\theta\theta^{\top}|x)\right) - \operatorname{E}\left(\operatorname{E}(\theta|x)\right) \operatorname{E}\left(\operatorname{E}(\theta|x)\right)^{\top} \\ &= \operatorname{E}\left(\operatorname{E}(\theta\theta^{\top}|x)\right) - \operatorname{E}\left(\operatorname{E}(\theta|x)\operatorname{E}(\theta|x)^{\top}\right) + \operatorname{E}\left(\operatorname{E}(\theta|x)\operatorname{E}(\theta|x)^{\top}\right) - \operatorname{E}\left(\operatorname{E}(\theta|x)\right) \operatorname{E}\left(\operatorname{E}(\theta|x)\right)^{\top} \\ &= \operatorname{E}\left(\operatorname{E}(\theta\theta^{\top}|x) - \operatorname{E}(\theta|x)\operatorname{E}(\theta|x)^{\top}\right) + \operatorname{E}\left(\operatorname{E}(\theta|x)\operatorname{E}(\theta|x) - \operatorname{E}\left(\operatorname{E}(\theta|x)\right)\operatorname{E}\left(\operatorname{E}(\theta|x)\right)^{\top}\right) \\ &= \operatorname{E}\left(\operatorname{Var}(\theta|x)\right) + \operatorname{Var}\left(\operatorname{E}(\theta|x)\right) \end{aligned}$$

#### 66 Conditional independence

**Definition 37.** Given a probability space  $(\Omega, \mathfrak{B}, P)$ , and events  $A, B, C \in \mathfrak{B}$ , A and B are conditionally independent given C if and only if

$$P(A \cap B|C) = P(A|C)P(B|C)$$
, for  $P(C) > 0$ .

**Fact 38.** Let (n+m+d)-dimensional random variable  $y \in \mathcal{Y} \subseteq \mathbb{R}^{n+m+d}$ . Consider a partition  $y = (x, z, \theta)$  where  $x \in \mathcal{X} \subseteq \mathbb{R}^n$ ,  $z \in \mathcal{Z} \subseteq \mathbb{R}^m$ , and  $\theta \in \Theta \subseteq \mathbb{R}^d$ .

• The r.v. x and y are independent given  $\theta$  if and only if

$$F(y, z|\theta) = F(y|\theta)F(z|\theta), \ \forall x \in \mathbb{R}^n, \ \forall z \in \mathbb{R}^m$$

where  $F(\cdot|\theta)$  denotes the conditional CDF.

• This implies that r.v. x and z are independent given  $\theta$  if and only if

$$f(y, z|\theta) = f(y|\theta)f(z|\theta)$$

where  $f(\cdot|\theta)$  denotes the conditional PDF/PMF.

# 11 Inverting / updating

This offers a probabilistic mechanism for (1.) inversion  $(B|A) \longmapsto (A|B)$ , or (2.) updating  $(A) \longmapsto (A|B)$ .

**Fact 39.** [Bayesian theorem with sets] Assume a probability space  $(\Omega, \mathscr{F}, P)$ . For any sets  $A, B \in \mathscr{F}$ , it is

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}, \quad provided that P(B) \neq 0.$$

The extension of the Bayesian theorem to the random variables is not straightforward.

**Proposition 40.** [Bayesian theorem with random variables] Let a random variable  $y \in \mathcal{Y}$ . Consider a partition  $y = (x, \theta)$  with  $x \in \mathcal{X}$  and  $\theta \in \Theta$ . Then the PDF/PMF of  $\theta | x$  is

$$f(\theta|x) = \frac{f(x|\theta)f(\theta)}{\int f(x|\theta)dF(\theta)} = \begin{cases} \frac{f(x|\theta)f(\theta)}{\int f(x|\theta)f(\theta)d\theta} & \text{, if $\theta$ is cont.} \\ \\ \frac{f(x|\theta)f(\theta)}{\sum_{\forall \theta}f(x|\theta)f(\theta)} & \text{, if $\theta$ is discr.} \end{cases}$$

Proof. Given as Exercise 10, in the Exercise Sheet.

## 12 Practice

**Question 41.** Try the Exercises 8, 9, 10, from the Exercise sheet.