

High Voltage IGBT

IXSH 45N120B IXST 45N120B

IASI 4

 $I_{C25} = 75 A$ $V_{CES} = 1200 V$

 $V_{CE(sat)} = 3.0 V$

"S" Series - Improved SCSOA Capability

Preliminary data

Symbol	Test Conditions		Maximum Ratings		
V _{CES}	T _J = 25°C to 150°C		1200	V	
$\mathbf{V}_{\mathtt{CGR}}$	$T_{J} = 25^{\circ}C \text{ to } 150^{\circ}C; R_{GE} = 1$	$M\Omega$	1200	V	
V _{GES}	Continuous		±20	V	
V _{GEM}	Transient		±30	V	
I _{C25}	T _c = 25°C (limited by leads)		75	Α	
I _{C90}	$T_{\rm C} = 90^{\circ} C$		45	Α	
I _{CM}	$T_{\rm C} = 25^{\circ} \rm C, 1 ms$		180	Α	
SSOA (RBSOA)	$V_{GE} = 15 \text{ V}, T_J = 125^{\circ}\text{C}, R_G = \text{Clamped inductive load}$	5 Ω	I _{CM} = 90 @ 0.8 V _{CES}	Α	
t _{sc}	$T_J = 125^{\circ}C, V_{GE} = 720 \text{ V}; V_{G}$	$_{\rm E}$ = 15 V, $R_{\rm G}$ = 5 Ω	10	μS	
$\overline{\mathbf{P}_{c}}$	T _C = 25°C		300	W	
T_{J}			-55 +150	°C	
T_JM			150	°C	
T _{stg}			-55 +150	°C	
\mathbf{M}_{d}	Mounting torque	(TO-247)	1.13/10	Nm/lb.in.	
Maximum lead temperature for soldering 1.6 mm (0.062 in.) from case for 10 s			300	°C	
Weight		TO-247	6	g	

G = Gate C = Collector S = Emitter TAB = Collector

Features

- Epitaxial Silicon drift region
 - fast switching
 - small tail current
- MOS gate turn-on for drive simplicity

Applications

- AC motor speed control
- DC servo and robot drives
- Uninterruptible power supplies (UPS)
- Switched-mode and resonant-mode power supplies
- Welding

Symbol	Test Conditions	Characteristic Value (T = 25°C, unless otherwise specified			
		min.	typ.	max.	
BV _{CES}	$I_{\rm C} = 1.0 \text{mA}, V_{\rm GE} = 0 \text{V}$	1200			V
V _{GE(th)}	$I_{\text{C}} = 250 \ \mu\text{A}, \ V_{\text{CE}} = V_{\text{GE}}$	3		6	V
I _{CES}	$V_{CE} = 0.8 \cdot V_{CES}$ Note 1	T _J = 125°C		50 2.5	μA mA
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$			±100	nA

T₁ = 125°C

2.5

2.6

3.0

 $= I_{C90}, V_{GE} = 15 V$

 $I_{\rm C} = Note 2$

 $\mathbf{V}_{\mathsf{CE}(\mathsf{sat})}$

Symbol	Test Conditions (Character Chara		ristic Va se speci max.	
g _{fs}	$I_{C} = I_{C90}$; $V_{CE} = 10 \text{ V}$, Note 2	16	23		S
C _{ies}			3300		рF
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	<u>.</u>	240		pF
C _{res}			65		pF
\mathbf{Q}_{g}			120		nC
\mathbf{Q}_{ge}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \rm V, V_{\rm CE} = 0.5 \rm V$	V _{CES}	40		nC
\mathbf{Q}_{gc}			45		nC
t _{d(on)}	Inductive load, T _J = 25°C		36		ns
t _{ri}	$I_{_{\rm C}} = I_{_{{\rm C90}}}, V_{_{{\rm GE}}} = 15 \text{ V}$ $R_{_{\rm G}} = 5 \Omega$		27		ns
t _{d(off)}	$R_{G} = 5 \Omega$ $V_{CE} = 0.8 V_{CES}$		360	500	ns
t _{fi} E _{off}	Note 3		380 13	750 22	ns mJ
t _{d(on)}	Inductive load, T _J = 125°C		38		ns
t _{ri}			29		ns
E _{on}	$I_{c} = I_{c90}, V_{GE} = 15 \text{ V}$ $R_{G} = 5 \Omega, V_{CE} = 0.8 V_{CES}$		2.9		mJ
t _{d(off)}	Note 3		440		ns
τ _{fi}			700		ns
E _{off}			22		mJ
R_{thJC}				0.42	K/W
R_{thCK}	(TO-247)		0.25		K/W

Notes: 1. Device must be heatsunk for high temperature leakage current measurements to avoid thermal runaway.

- Pulse test, $t \leq 300~\mu s,\,duty~cycle \leq 2~\%$
- Switching times may increase for V_{CE} (Clamp) > 0.8 V_{CES} , higher T_J or increased R_G.

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
		20.32	0.780	
В	20.80	21.46	0.819	0.845
С	15.75	16.26	0.610	0.640
D	3.55	3.65	0.140	0.144
Е	4.32	5.49	0.170	0.216
F	5.4	6.2	0.212	0.244
G	1.65	2.13	0.065	0.084
Н	-	4.5	-	0.177
J	1.0	1.4	0.040	0.055
K	10.8	11.0	0.426	0.433
L	4.7	5.3	0.185	0.209
М	0.4	0.8	0.016	0.031
N	1.5	2.49	0.087	0.102

13.3

18.70

2.40

1.20

1.00

3.80

е Н

L1

L2

L3

13.6 5.45 BSC

19.10

2.70

1.40

1.15

4.10

0.25 BSC

.524

.736

.094

.047

.039

.535

.752

.106

.055

.045

.215 BSC

.010 BSC

.150 .161

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS:

IXSH45N120