ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA

Foglio 3*

Esercizio 1. Determinare la decomposizione LU della matrice reale simmetrica

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$

Esercizio 2. Determinare la decomposizione LU della matrice

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 1 & 3 \end{bmatrix}$$

Esercizio 3. Determinare la decomposizione LU o P^TLU della matrice

$$A = \left[\begin{array}{cccc} 2 & 4 & 2 & -2 & 6 \\ 3 & 6 & 0 & 6 & 3 \\ 1 & 2 & 2 & 0 & 5 \\ 1 & 2 & 1 & -1 & 3 \end{array} \right]$$

Infine determinare le colonne dominanti edil rango della matrice A.

Esercizio 4. Determinare la decomposizione LU o P^TLU della matrice

$$A = \left[\begin{array}{ccccc} 1 & 0 & 2 & i & -i \\ 1 & 0 & 1-i & i & -1 \\ 0 & 2 & 1 & 0 & -i \\ 0 & i & 1-i & 2 & 1 \\ i & 0 & -i & 0 & 1 \end{array} \right]$$

Infine determinare le colonne dominanti edil rango della matrice A.

Esercizio 5. Si consideri la matrice

$$\mathbf{M} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Determinare, quando possibile, la decomposizione LU di M o la decomposizione P^TLU .

Esempio 6. Sia $\alpha \in \mathbb{R}$. Determinare una decomposizione LU per

$$\mathbf{A}_{\alpha} = \begin{bmatrix} \alpha & 2\alpha & 0 & \alpha & 0 \\ -1 & -1 & 2 & -3 & 0 \\ 0 & 0 & 1 & -1 & \alpha \\ 1 & 2 & 0 & 1 & \alpha \end{bmatrix}$$

per i valori di α per cui non è possibile, determinare una P^TLU .

^{*}Sono a grato a quanti mi indicheranno i molti errori presenti in questi fogli, al fine di fornire uno strumento migliore a quanti lo riterranno utile, e-mail: sansonetto@sci.univr.it

Sol. Sia $\alpha \neq 0$.

Passo 1. Dividiamo la prima riga per α , $I \rightarrow I/\alpha$:

$$\mathbf{A'}_{\alpha} = E_{11}(\alpha^{-1}) \,\mathbf{A}_{\alpha} = \begin{bmatrix} 1 & 2 & 0 & 1 & 0 \\ -1 & -1 & 2 & -3 & 0 \\ 0 & 0 & 1 & -1 & \alpha \\ 1 & 2 & 0 & 1 & \alpha \end{bmatrix}$$

Passo 2. Sostituiamo la seconda riga con la seconda più la prima, $II \to II + I$ e la quarta con la quarta meno la prima, $IV \to IV - I$:

$$\mathbf{A''}_{\alpha} = E_{41}(-1)E_{21}(1)\,\mathbf{A'}_{\alpha} = \begin{bmatrix} 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 1 & -1 & \alpha \\ 0 & 0 & 0 & 0 & \alpha \end{bmatrix}$$

Passo 3. Dividiamo la quarta riga per α , $IV \rightarrow IV/\alpha$:

$$\mathbf{U}_{\alpha} = E_{44}(\alpha^{-1}) \mathbf{A}''_{\alpha} = \begin{bmatrix} 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 1 & -1 & \alpha \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Abbiamo cosí che

$$\mathbf{A}_{\alpha} = \mathbf{L}_{\alpha} \, \mathbf{U}_{\alpha}$$

in cui

$$\mathbf{L_a} = E_{11}(\alpha)E_{21}(-1)E_{41}(1)E_{44}(\alpha) = \begin{bmatrix} \alpha & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & \alpha \end{bmatrix}$$

Consideriamo ora il caso $\alpha = 0$.

Passo 0. Scambiamo la prima con la quarta riga, $I \leftrightarrow IV$:

$$\mathbf{B}_0 = E_{14} \, \mathbf{A}_0 = \begin{bmatrix} 1 & 2 & 0 & 1 & 0 \\ -1 & -1 & 2 & -3 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 2 & 0 & 0 & 0 \end{bmatrix}$$

Passo 1. Sostituiamo la seconda riga con la seconda più la prima, $II \rightarrow II + I$:

$$\mathbf{U}_0 = E_{21}(1) \, \mathbf{B}_0 = \begin{bmatrix} 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 2 & 0 & 0 & 0 \end{bmatrix}$$

Da cui $\mathbf{A}_0 = P^T \mathbf{L}_0 \mathbf{U}_0 = \text{in cui } \mathbf{L}_0 = E_{21}(1) \text{ e } P^T = E_{14}^T.$

Esercizio 7. Sia α un parametro complesso e si consideri la matrice

$$A_{\alpha} = \begin{bmatrix} -1 & \alpha - 2 & 2 - \alpha & 1 & 0 \\ 2 - \alpha & 1 & -1 & 1 & 0 \\ -1 & \alpha - 2 & 0 & 1 & 0 \\ 2 - \alpha & 1 & 0 & 2 - \alpha & -1 \end{bmatrix}$$

Se ne trovi una decomposizione LU e, per i valori di α per cui ci non possibile, una decomposizione P^TLU . Per $\alpha=0$ e $\alpha=2$, determinare una base dello spazio nullo e una base dello spazio delle colonne di \mathbf{A}_{α} . Inoltre, pensando la matrice A_{α} , come alla matrice completa di un sistema lineare, determinare le soluzioni di tale sistema al variare di α .

Esercizi di Algebra Lineare e complementi di Geometria

Esercizio 8. Sia α un parametro complesso e si consideri la matrice

$$A_{\alpha} = \begin{bmatrix} \alpha - 1 & 2\alpha - 2 & 0 & \alpha^{2} - \alpha & \alpha^{2} - \alpha \\ 1 & 2 & -1 & -\alpha & \alpha \\ \alpha & 2\alpha & 2 & \alpha^{2} + 4\alpha & \alpha^{2} + 3 \\ \alpha^{2} & 2\alpha^{2} & 1 & \alpha^{3} + 2\alpha & \alpha^{3} \end{bmatrix}$$

Se ne trovi una decomposizione LU e, per i valori di α per cui ci non possibile, una decomposizione P^TLU . Per $\alpha=0$ e $\alpha=2$, determinare una base dello spazio nullo e una base dello spazio delle colonne di \mathbf{A}_{α} . Inoltre, pensando la matrice A_{α} , come alla matrice completa di un sistema lineare, determinare le soluzioni di tale sistema al variare di α .

Esercizio 9. Determinare al variare di $\alpha \in \mathbb{C}$ la decomposizione LU o P^TLU della matrice

$$A_{\alpha} = \begin{bmatrix} i & 0 & -i & i\alpha \\ 1 & \alpha^2 + 4 & 0 & \alpha \\ 1 & \alpha^2 + 4 & 0 & 2\alpha \end{bmatrix}$$

Infine determinare le colonne dominanti ed il rango di A_{α} .

Esempio 10. Sia α un parametro reale e si consideri la matrice

$$\mathbf{A}_{\alpha} = \begin{bmatrix} -1 & 0 & 1 & -\alpha & 0 \\ \alpha & 2 & 4-\alpha & \alpha^2-2 & 0 \\ 0 & -1 & -2 & \alpha+1 & -\alpha^2 \\ 0 & 0 & 0 & 1 & -\alpha \end{bmatrix}$$

Se ne trovi una decomposizione LU e, per i valori di α per cui ci non possibile, una decomposizione P^TLU . Per $\alpha=0$ e $\alpha=2$, determinare una base dello spazio nullo e una base dello spazio delle colonne di \mathbf{A}_{α} .

Esercizio 11. Sia $\alpha \in \mathbb{R}$. Determinare una decomposizione LU per

$$\mathbf{A}_{\alpha} = \begin{bmatrix} \alpha & 0 & 1 \\ -1 & 1 - 2\alpha & 2 \\ 2 & 2 & 0 \\ -\alpha & 0 & -1 \end{bmatrix}$$

per i valori di α per cui non è possibile, determinare una P^TLU .