Exercise - Getting and Knowing your Data-Occupation Dataset

This time we are going to pull data directly from the internet.

Step 1. Import the necessary libraries

In [1]: **import** pandas **as** pd

Step 2. Import the dataset from this address.

In [3]: pd.read_csv("https://raw.githubusercontent.com/justmarkham/DAT8/master/data/u.user",sep='|')

Out[3]:		user_id	age	gender	occupation	zip_code
	0	1	24	М	technician	85711
	1	2	53	F	other	94043
	2	3	23	М	writer	32067
	3	4	24	М	technician	43537
	4	5	33	F	other	15213
	938	939	26	F	student	33319
	939	940	32	М	administrator	02215
	940	941	20	М	student	97229
	941	942	48	F	librarian	78209
	942	943	22	М	student	77841

943 rows × 5 columns

Step 3. Assign it to a variable called users and use the 'user_id' as index

In [4]: user_id=pd.read_csv("https://raw.githubusercontent.com/justmarkham/DAT8/master/data/u.user",sep='|')

Step 4. See the first 25 entries

In [5]: user_id.head(25)

ZU FIVI							
Out[5]							

	user_id	age	gender	occupation	zip_code
0	1	24	М	technician	85711
1	2	53	F	other	94043
2	3	23	М	writer	32067
3	4	24	М	technician	43537
4	5	33	F	other	15213
5	6	42	М	executive	98101
6	7	57	М	administrator	91344
7	8	36	М	administrator	05201
8	9	29	М	student	01002
9	10	53	М	lawyer	90703
10	11	39	F	other	30329
11	12	28	F	other	06405
12	13	47	М	educator	29206
13	14	45	М	scientist	55106
14	15	49	F	educator	97301
15	16	21	М	entertainment	10309
16	17	30	М	programmer	06355
17	18	35	F	other	37212
18	19	40	М	librarian	02138
19	20	42	F	homemaker	95660
20	21	26	М	writer	30068
21	22	25	М	writer	40206
22	23	30	F	artist	48197
23	24	21	F	artist	94533

	user_id	age	gender	occupation	zip_code
24	25	39	М	engineer	55107

Step 5. See the last 10 entries

In [6]:	user_id.tail(10)							
Out[6]:		user_id	age	gender	occupation	zip_code		
	933	934	61	М	engineer	22902		
	934	935	42	М	doctor	66221		
	935	936	24	М	other	32789		
	936	937	48	М	educator	98072		
	937	938	38	F	technician	55038		
	938	939	26	F	student	33319		
	939	940	32	М	administrator	02215		
	940	941	20	М	student	97229		
	941	942	48	F	librarian	78209		

22

M

943

Step 6. What is the number of observations in the dataset?

77841

student

```
user_id.shape[0]
In [7]:
```

942

Out[7]:

Step 7. What is the number of columns in the dataset?

```
user_id.shape[1]
In [8]:
```

Out[8]: 5

Step 8. Print the name of all the columns.

```
In [11]: user_id.columns
Out[11]: Index(['user_id', 'age', 'gender', 'occupation', 'zip_code'], dtype='object')
```

Step 9. How is the dataset indexed?

```
In [20]: user_id.loc
Out[20]: <pandas.core.indexing._LocIndexer at 0x26adc9af860>
```

Step 10. What is the data type of each column?

```
user id.info()
In [13]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 943 entries, 0 to 942
         Data columns (total 5 columns):
                          Non-Null Count Dtype
              Column
                           943 non-null
              user id
                                           int64
              age
                           943 non-null
                                           int64
                           943 non-null
              gender
                                           object
              occupation 943 non-null
                                           object
              zip code
                           943 non-null
                                           object
         dtypes: int64(2), object(3)
         memory usage: 37.0+ KB
In [21]:
         df.dtypes
         user id
                         int64
Out[21]:
                         int64
         age
         gender
                        object
         occupation
                        object
         zip_code
                        object
         dtype: object
```

Step 11. Print only the occupation column

```
df.occupation
In [22]:
                    technician
Out[22]:
                         other
                        writer
                    technician
                         other
          938
                       student
          939
                 administrator
          940
                       student
          941
                     librarian
          942
                       student
          Name: occupation, Length: 943, dtype: object
```

Step 12. How many different occupations are in this dataset?

Step 13. What is the most frequent occupation?

```
In [26]: max(df['occupation'])
Out[26]: 'writer'
```

Step 14. Summarize the DataFrame.

```
In [32]: df.describe()
```

Out[32]:

	user_id	age
count	943.000000	943.000000
mean	472.000000	34.051962
std	272.364951	12.192740
min	1.000000	7.000000
25%	236.500000	25.000000
50%	472.000000	31.000000
75%	707.500000	43.000000
max	943.000000	73.000000

Step 15. Summarize all the columns

In [33]:	<pre>df.describe(include='all')</pre>						
Out[33]:		user_id	age	gender	occupation	zip_code	
	count	943.000000	943.000000	943	943	943	
	unique	NaN	NaN	2	21	795	
	top	NaN	NaN	М	student	55414	
	freq	NaN	NaN	670	196	9	
	mean	472.000000	34.051962	NaN	NaN	NaN	
	std	272.364951	12.192740	NaN	NaN	NaN	
	min	1.000000	7.000000	NaN	NaN	NaN	
	25%	236.500000	25.000000	NaN	NaN	NaN	
	50%	472.000000	31.000000	NaN	NaN	NaN	
	75%	707.500000	43.000000	NaN	NaN	NaN	
	max	943.000000	73.000000	NaN	NaN	NaN	

Step 16. Summarize only the occupation column

Step 17. What is the mean age of users?

```
df.age.describe(include='all')
In [40]:
                   943.000000
          count
Out[40]:
                    34.051962
          mean
          std
                    12.192740
                     7.000000
          min
          25%
                    25.000000
          50%
                    31.000000
          75%
                    43.000000
                    73.000000
          max
          Name: age, dtype: float64
          df['age'].mean()
In [41]:
          34.05196182396607
Out[41]:
```

Step 18. What is the age with least occurrence?

```
In [38]: df['age'].min()
Out[38]: 7
In []:
```