

Introduction to Machine Learning Assigned: Monday, April 15, 2024

Due: Sunday, April 28,2024

Assignment 2 Data Classification

1 Objectives

- 1. Exploring different classification models and performing tuning of their parameters.
- 2. Exploring different techniques for evaluating classification models.

2 Problem Statement

Given the MAGIC gamma telescope dataset that can be obtained using this Link. This dataset is generated to simulate registration of high energy gamma particles in a ground-based atmospheric Cherenkov gamma telescope using the imaging technique. The dataset consists of two classes; gammas (signal) and hadrons (background). There are 12332 gamma events and 6688 hadron events. You are required to use this dataset to apply different classification models such as **Decision Trees**, **N a"i ve Bayes Classifier**, **Random Forests** and **AdaBoost** You are also required to tune the parameters of these models, and compare the performance of models with each other.

3 Lab session

1. Data Balancing

Note that the dataset is class-imbalanced. To balance the dataset, randomly put aside the extra readings for the gamma "g" class to make both classes equal in size.

2. Data Split

Split your dataset randomly so that the training set would form 70% of the dataset and the testing set would form 30% of it.

Introduction to Machine Learning Assigned: Monday, April 15, 2024

Due: Sunday, April 28,2024

3. Classification

Apply the classifiers from the following models on your dataset, tune parameter(s) (if any), compare the performance of models with each other:

(a) Decision Tree

Parameters to be tuned: None

(b) AdaBoost

Parameters to be tuned: n estimators

(c) Random Forests

Parameters to be tuned: n estimators

(d) Na"ive Bayes

Parameters to be tuned: None

4. Model Parameter Tuning

Use cross-validation to tune the parameters of classifiers. Test the models trained with best obtained parameter values on the separate testing set.

5. Report Requirements

- For all the requirements mentioned above you should report the model accuracy, precision, recall and F-score as well as the resultant confusion matrix using the testing data.
- Your comments on all results and comparisons.

6. Notes

- You should write your code in python.
- You can use a third-party machine learning implementation like scikit-learn.
- You should work in groups of 3.

Good Luck