AIND-Planning

Shiv Shah

Heuristic Analysis

An action schema and three air cargo problems were provided, which were solved using planning algorithm and tested using three uninformed search strategies (Breadth First, Depth First, Uniform Cost Search) and three informed search strategies that uses heuristics (h1 heuristic, ignore preconditions, level sum).

The optimal solution for problem 1, problem 2, and problem 3 were 6, 9, and 12. Below are the sample optimal sequence of actions for each problem.

Problem 1:

Load(C1, P1, SFO) Fly(P1, SFO, JFK) Unload(C1, P1, JFK) Load(C2, P2, JFK) Fly(P2, JFK, SFO) Unload(C2, P2, SFO)

Problem 2:

Load(C3, P3, ATL)
Fly(P3, ATL, SFO)
Unload(C3, P3, SFO)
Load(C2, P2, JFK)
Fly(P2, JFK, SFO)
Unload(C2, P2, SFO)
Load(C1, P1, SFO)
Fly(P1, SFO, JFK)
Unload(C1, P1, JFK)

Problem 3:

Load(C2, P2, JFK)
Fly(P2, JFK, ORD)
Load(C4, P2, ORD)
Fly(P2, ORD, SFO)
Unload(C4, P2, SFO)
Load(C1, P1, SFO)
Fly(P1, SFO, ATL)
Load(C3, P1, ATL)
Fly(P1, ATL, JFK)
Unload(C3, P1, JFK)
Unload(C2, P2, SFO)
Unload(C1, P1, JFK)

Uninformed Search Strategy:

Test result:

	Search Strategy	Expansions	Execution Time	Path Length	Optimal
Problem 1	Breadth First Search	43	0.0563	6	Yes
	Depth First Search	21	0.0263	20	No
	Uniform Cost Search	55	0.0686	6	Yes
Problem 2	Breadth First Search	3343	15.32	9	Yes
	Depth First Search	624	4.4	619	No
	Uniform Cost Search	4852	19.84	9	Yes
Problem 3	Breadth First Search	14663	68.63	12	Yes
	Depth First Search	408	2.32	392	No
	Uniform Cost Search	18235	79.52	12	Yes

Here, the depth first search seems to beat Breadth First and Uniform Cost Search in execution time and number of node expansions in all cases. Even though, it is fastest and uses least memory of all, it is clearly not able to find optimal solution in any case. Its pathlength is way more than the optimal path length. On the other hand, both Breadth First and Uniform Cost search has found optimal solution for all three problems, but at the cost of more execution time and more memory usage. If we compare Breadth First and Uniform Cost search, we see that breadth first is performing better in space and execution time. Also, the breadth first will always find the shortest path solution. Because breadth-first search explores the shallower nodes first, so as soon as the goal node is found, we know it is the shallowest goal node, and this will always be true because we have the same path cost (1 in this case) in the problem search space (Russell and Norvig, AIMA).

Practically, we would want the solution to have less path length than the one provided by the depth first search, if not the optimal. Because, taking longer path will eventually end up costing more money and resources. So, even if we spend more on space and execution spend earlier, we will end up saving money in the end. So, Breadth first is the recommended strategy here.

Informed Search Strategy:

	Search Strategy	Expansions	Execution Time	Path Length	Optimal
Problem 1	A* h_1	55	0.0751	6	Yes
	A* h_ignore_precondition	41	0.0591	6	Yes
	A* h_pg_levelsum	11	0.4735	6	Yes
Problem 2	A* h_1	4852	20.23	9	Yes
	A* h_ignore_precondition	1450	6.13	9	Yes
	A* h_pg_levelsum	86	40.9	9	Yes
Problem 3	A* h_1	18235	81.04	12	Yes
	A* h_ignore_precondition	5040	22.6	12	Yes
	A* h_pg_levelsum	316	202.55	12	Yes

These searches are uniform cost search with a heuristic function. The h_1 is not a true heuristic, so it will behave similar to the uniform cost search. Here, h_pg_levelsum is expands fewer nodes than h_ignore_precondition, however the latter performs much better in time, while providing optimum path length. So, h_ignore_precondition is the best here.

Informed Search Strategy vs. Uninformed Search Strategy

	Search Strategy	Expansions	Execution Time	Path Length	Optimal
Problem 1	A* h_ignore_precondition	41	0.0591	6	Yes
	Breadth First Search	43	0.0563	6	Yes
Problem 2	A* h_ignore_precondition	1450	6.13	9	Yes
	Breadth First Search	3343	15.32	9	Yes
Problem 3	A* h_ignore_precondition	5040	22.6	12	Yes
	Breadth First Search	14663	68.63	12	Yes

Comparing two of the best strategies from the two types of searches, we clearly see A* search with ignore_precondition heuristic the winner here. While both provides optimal solution, heuristic search has faster execution and requires less memory. So, A* with ignore precondition would be the best choice for this problem. As discussed in the AIMA textbook as well as in the lecture, heuristic search does perform better by using that extra information about the goal, expanding those nodes first that are estimated to be closer to the goal.