EEE6216: MSc EEE Energy Efficient Semiconductor devices

Part I: Solid State Lighting

Professor Tao Wang
Room F163, Mappin Building,

Tel extension: 25902

E-mail: t.wang@sheffield.ac.uk

Dr Rick Smith
Room 203
Nanoscience & Technology Building,
North Campus

Policy on Hand-outs

- I will print out enough hand-outs for everyone before the class
- I <u>will throw away</u> any copies not picked up at the end of the class
- I will not keep copies for you to pick up later
- I will put the lecture-notes in the web

Objectives

- Understand principle of Solid State Lighting
- Understand fabrication of Solid State lighting
- Understand principle of Light Emitting Diode (LED)
- Understand Gallium Nitride LED device technologies
- Understand GaN LED operating characteristics, future prospects
- Understand organic LED (OLED) device technology
- Understand OLED operating characteristics, future prospects
- LED Lighting systems: colour rendering, power management

Course Books

- "Introduction to Solid-State lighting"
 By Arturas Zukauskas, Michael S Shur, Remis Gaska
 (A Wiley-Interscience Publication)
- "OLED Display Fundamentals and Applications" by Takatoshi Tsujimura (Wiley Series in Display Technology)

Course Organization

Professor Wang:

- Introduction of Solid State Lighting (~1 Lecture)
- Inorganic LEDs for solid state lighting (3 lectures)

Dr Smith:

Organic LEDs for solid state lighting (2 Lectures)

What You Need to Know

Take a look at

```
EEE207 "Semiconductor Electronics and Devices"; EEE118 "Electronic Devices"
```

- Basic semiconductor physics: energy bands
- Band-gaps, electrons, holes, dopants, optical transitions....
- > So on....

Introduction

- Artificial lighting plays a vital role in the civilisation process.
- Artificial lighting shaped our health, safety, and happiness.

History of lighting: early stage

- 500,000 years ago- first torch
- 70,000 BC- first lamp; Dried plant material soaked in animal fat
- 3,000 BC- stone oil lamps
- 700 BC- Terracotta oil lamps used by Greeks
- 1792 William Murdoch: gas lighting by heating coal
- 1807- Frederick Albert Winsor: light up the street of Pall Mall, London, with gas lighting
- 1826- Thomas Drummond: Limelight

Gas lighting

History of lighting: electric lighting

- 1663- Otto von Gericke: demonstrate 1st electric arc
- 1809- Humphry Davy: electric carbon arc
- 1876- Pavel Yablochkov: 1st practical electric lighting
- 1878- Joseph Swan: demonstrated 1st practical incandescent lamp
- 1879- Thomas Edison Edison: demonstrated his lamp
- 1897- Nernst: a filament made of cerium oxide-based solid electrolyte
- 1900- Peter Cooper Hewitt: mercury vapor lamp.
- 1903- A. Just and F. Hanaman: tungsten filament
- 1938- GE and Westinghouse Electric Corporation put on the market the new colored and white fluorescent lamps.

Yablochkov (1876): 1st electric arcbased lighting

Global Warming and Energy Savings

End Use Applications*		
Motor Control	32%	
Lighting	29%	
Heating & Cooling	24%	
Information Technology	15%	

- U.S. DOE has chosen, energy efficient LED lighting to play the key role in reducing our electric light consumption by 50% by 2025
- Over the next 20 years, rapid adoption of LED lighting in the U.S. can:
 - Reduce electricity demands from lighting by 62%/year
 - Eliminate 300 million metric tons of carbon emissions/year
 - Avoid building 133 new power plants
 - Anticipate financial savings that could exceed \$200 billion/year

Solid State Lighting- inorganic SSL

- Definition of solid-state lighting (SSL)
- Advantages of solid state lighting
- Category of solid-state lighting
- Key components of solid-state Lighting: LEDs
- Operational mechanism of LEDs
- Operational mechanism of white LEDs
- Fabrication of LEDs and white LEDs
- Characteristics of white LEDs
- Other applications of white LEDs
- Future development of solid-state lighting

Definition of solid-state lighting

- SSL: refer to a type of lighting that utilizes light-emitting diodes (LEDs), which are solid state as sources of illumination rather than electrical filaments or gas.
- Term "solid-state": refers to the fact that the light in an LED is emitted from a solid object—a block of semiconductor—rather than from a vacuum or gas tube, as in the case of incandescent and fluorescent lighting.
- •Key components of SSL: semiconductor based LEDs

Category of solid-state lighting

Inorganic LED (usually termed as LED):

Basically, III-V semiconductors 470 nm InGaN (blue) 540 nm InGaN (green) 670 nm InGaP/AlGaInP (red)

• Organic LED (usually termed as OLED):

поорногоост

Blue

Green

Red

Polymeric

$$C_{6}H_{13}$$
 $C_{6}H_{13}$
 $C_{6}H_{13}$

Color is determined by Molecular Structure

Major advantages of SSL (I)

• Incandescent lamps (light bulbs): generate light by using electricity to heat a thin filament to a very high temperature and then producing visible light.

>90% of its energy is emitted as invisible infrared light (or heat) during the incandescing process (highly inefficient!)

Typical lifespan: 1,000 hours.

• Fluorescent lamps: create light when electricity passes through mercury vapor to produce ultraviolet light, which is then absorbed by a phosphorous coating inside the lamp, generating glow or fluoresce.

Energy loss in generating UV light & converting into visible light.

Mercury is detrimental to health

Typical lifespan: 10,000 hours.

Major advantages of SSL (II)

- SSL: grouping one or a number of LEDs creating a unified beam.
 - High durability no filament or tube to break
 - Long life span approximately 100,000 hours
 - Low power consumption
 - Flexible application small size of LEDs devices
 - Low heat generation very little energy loss

Light Source	Luminous Efficiency	Lifetime
Incandescent bulb	16 lumens/watt	1000 hours
Fluorescent lamp	85 lumens/watt	10,000 hours
Today's white LEDs	80-100 lumens/watt	20,000 hours
Future white LEDs	>200 lumens/watt	100,000 hours

White lighting

• Red + green: yellow

• Red + blue: magenta

• Green + blue: cyan

Yellow (Red+ green)+ blue: white

Newton originally (1672) divided the solar spectrum into 5 main colours (red, yellow, green, blue and violet). Later he included orange and indigo.

How to produce white light using inorganic LEDs?

Generating White Light with LEDs

Wavelength Conversion.

- · Blue LED + yellow phosphor: simple but energy loss due to down conversion
- <u>Blue LED + several phosphors</u>: similar to the above method, except that the blue light excites several phosphors, each emitting different color (blue, green, yellow, red)

 Higher color-quality; energy loss due to down conversion
- · <u>Ultraviolet (UV) LEDs + red, green and blue phosphors</u>: UV LED to excite several phosphors, each emitting different color (blue, green, yellow, red).
 - Highest color-quality light; but issue on UV LED; energy loss due to down conversion
- Color Mixing: multiple LEDs in a single lamp, mixing the light to produce white light.
 - Two LEDs (blue and yellow); three (red, blue, and green) or four (red, blue, green, yellow).
 - No down conversion energy losses;

· Simple to create white

Highest efficiency; highest color quality; but issue on fabrication

Main

components:

UV, BLUE, Green

UV/Blue/Green:

III-nitrides

Light quality on healthy

Students under full spectrum light:

- Learn faster
- Test higher
- Grow faster
- •1/3 fewer absences due to illness
- LED: has a significant advantage over conventional lamps
- LED: color rendering index (CRI) can potentially be up to 100

Experiments on mice, and on average mice can live

- Under pink fluorescent light: 7.5 months
- Under cool white fluorescents (office): 8.2 months
- Under natural sunlight: 16.1 months.

Characteristics of white lighting

- Lumen: SI unit of luminous flux, a measure of the total "amount" of visible light emitted by a source, depending on sensitivity of human eye to different wavelengths
- Optical Power: a measure of radiant flux, the total power of all electromagnetic waves emitted, independent of human eye's sensitivity. (Unit: Watt)
- Luminous efficiency: (Different from "efficacy", misleading in current literature)
 - A measure of the efficiency with which electricity converts into visible light, and is defined as the ratio of luminous flux to power (lumen/Watt), namely, the ratio of luminous flux to radiant flux.
 - Not all wavelengths of light are detected by human eyes; radiation in the <u>infrared</u> and <u>ultraviolet</u> parts of the spectrum is useless for illumination.
 - The product of radiant efficiency (converts energy to electromagnetic radiation), and fraction (the emitted radiation detected by the human eye)
- Correlated color temperature (CCT)
- Color rendering index (CRI)

Luminous efficiency

$$Lu\min ous \cdot efficiency = \frac{Optical \cdot Power(W)}{Electric \cdot Power(W)}$$

 $Lu \min ous \cdot flux(lm)$ $Optical \cdot Power(W)$

- •1st item: wall plug efficiency; radiation efficiency
- •2nd item: not all radiation contributes to visible light. Eye sensitivity drops upon moving away from the 555 nm wavelength
- luminous efficacy: fraction of the emitted radiation detected by human eyes

$$lu \min ous \cdot efficacy = \frac{683 \times \int_{380}^{780} V(\lambda)S(\lambda)d\lambda}{\int_{0}^{\infty} S(\lambda)d\lambda} (lm/Watt)$$

Correlated color temperature

•Color temperature: define as surface temperature of electromagnetic radiation emitted from an ideal black body (SI unit: kelvins),

•Wien's displacement law:
$$\lambda = \frac{b}{T}$$

b: 2.8977721×10⁻³ m K

As black boy is getting hotter, it turns red, orange, yellow, white and finally blue. The light incandescent lamp is thermal radiation, and it is a good black body. Its color temperature is the temperature of the filament.

- •LEDs emit light primarily not by thermal radiation, and the emitted radiation does not follow the form of a black-body spectrum. These sources are assigned what is known as a **correlated color temperature** (CCT).
- •CCT is the color temperature of a black-body radiator which to human color perception most closely matches the light from the LED. CCT refers to the appearance of a black body heated to high temperature.

Color rendering index (CRI)

•CRI: is defined as being the measure of the degree of color shift of an object when illuminated by a light source as compared to when illuminated by a reference source of comparable Color Temperature. .

The test procedure involves comparing the appearance of eight color samples (see upper right for an approximation) under the light in question and a reference light source. The average differences measured are subtracted from 100 to get the CRI.

- •Reference light: incandescent light or outdoor north sky day light day (CRI 100)
- •Higher CRI: render those eight color samples well, i.e., very much like the incandescent or daylight references

Illuminance

- Practical applications of lighting usually deal with illuminance
- lux (lx): the measurement unit for illuminance, which is density of the illuminous flux incident on a surface (lumen per square meter)
- Sun generates the illuminance on the earth's surface: 10⁴ lx to 10⁵ lx, depending on weather
- Moon generates the illuminance on the earth's surface ≤ 0.1 lx.
- Higher illuminance help the eyes distinguish details, small contrasts and color hues.
- Different activities require different levels of illuminance.

How much light do you need?

Type of Activity	Illuminance (lx =lm/m²)
Orientation and simple visual tasks (public spaces)	30-100
Common visual tasks (commercial, industrial and residential applications)	300-1000
Special visual tasks, including those with very small or very low contrast critical elements	3,000-10,000

- Key components: blue LEDs
- Improve efficiency of blue LEDs
- Improve quality of light

Basic concepts (i)

What is LED? **Semiconductor (inorganic semiconductor)** p-doing, n-doping Fermi-level **Depletion region Forward Bias Reverse Bias** minority carrier majority carrier

- How does LED work?
 - Recombination of minority carriers with majority carriers

Homojunction LED

Zero biased p-n junction

 n_0 , p_0 = free carrier densities

Forward biased p-n junction

 Δn , Δp injected carrier densities

Review of p-n Junction

Review what we have learnt previously in p-n junction:

Excess minority charge (electrons and holes)

Contribution to currents: minority diffusion

Equilibrium:
$$V_0 = \frac{kT}{q} \ln \frac{p_p}{p_n} = \frac{kT}{q} \ln \frac{N_a}{n_i^2/N_d} = \frac{kT}{q} \ln \frac{N_a N_d}{n_i^2}$$

$$J_n(x) = q \mu_n n(x) \mathcal{E}(x) + q D_n \frac{dn(x)}{dx}$$

$$\frac{p_p}{p_n} = \frac{n_n}{n_p} = e^{qV_0/kT} \qquad (5-10) \qquad W = \left[\frac{2\epsilon(V_0 - V)}{q} \left(\frac{N_a + N_d}{N_a N_d}\right)\right]^{1/2} \quad (5-57)$$

One-sided abrupt
$$p^+$$
- n : $x_{n0} = \frac{WN_a}{N_a + N_d} \simeq W$ (5-23) $V_0 = \frac{qN_dW^2}{2\epsilon}$

$$\Delta p_n = p(x_{n0}) - p_n = p_n(e^{qV/kT} - 1)$$
 (5-29)

$$\delta p(x_n) = \Delta p_n e^{-x_n/L_p} = p_n (e^{qV/kT} - 1)e^{-x_n/L_p}$$
 (5-31b)

Ideal diode:
$$I = qA \left(\frac{D_p}{L_p} p_n + \frac{D_n}{L_n} n_p \right) (e^{qV/kT} - 1) = I_0 (e^{qV/kT} - 1)$$
 (5-36)

Electron-hole recombination

E-h recombination: radiative or non-radiative

- Non-radiative recombination: recombination at (i) defects; (ii)
 Auger recombination, etc
- •Radiative recombination: intersubband transition, excitonic recombination, recombination through impurity center (InGaN:Zn, GaP:N)
- Very important issue: Internal quantum efficiency (IQE)

Choice of materials for LEDs

Direct bandgap:

Electrons in conduction band minima Holes in valence band maxima Both have the same momentum

Indirect bandgap:

Electron and hole have different momentum

Phonon is required to participate to allow the recombination due to the requirement of the momentum conservation

SiC LED: 0.02% quantum efficiency (first LED)

GaN LED: >20 % quantum efficiency

GaP, GaAs, GaP (N)

LED: Bandgap determines the emission wavelength (colour)

Band structure: direct bandgap

UV: III-nitrides, ZnO, II-VI groups

Visible: III-nitrides, GaNP, AlGaInP

Infrared: III-nitrides, InAs, InSb, InGaAs, etc

31

Basic parameters to describe LEDs

How to characterise LEDs?
 Radiative recombination lifetime; Non-radiative recombination lifetime
 Internal quantum efficiency

Extraction efficiency

External quantum efficiency

32

Characteristics of LED performance (i)

(i) Internal quantum efficiency; (ii) Extraction efficiency; (iii) Injection efficiency; (iv) External quantum efficiency; (v) Luminous efficiency; (iii) wall plug efficiency;

IQE:

 η_{int} = photons internally generated/electrons in

Extraction efficiency:

 η_{ex} = photons out/photon generated

Injection efficiency:

fraction of the total diode current due to injection of electrons into p-side of junction

$\eta_{inj} = rac{rac{D_e n_{po}}{L_e}}{rac{D_e n_{po}}{L_e} + rac{D_h p_{no}}{L_h}}$

External quantum efficiency:

 $\eta_{tot} = \eta_{inj} \bullet \eta_{int} \bullet \eta_{ex}$ (photons out/electrons)

Luminous efficiency:

 η_{lum} = lumen out/electric power in

Characteristics of LED performance (ii)

IQE:

Ratio of radiative recombination rate to total recombination rate

Electrons in Radiative
$$(\frac{\Delta n}{\tau_{rad}})$$
+ non-radiative $(\frac{\Delta n}{\tau_{non}})$

Photons Radiative $(\frac{\Delta n}{\tau_{rad}})$

$$\eta = \frac{\frac{\Delta n}{\tau_{rad}}}{\frac{\Delta n}{\tau_{rad}} + \frac{\Delta n}{\tau_{non}}} = \frac{\frac{1}{\tau_{rad}}}{\frac{1}{\tau_{rad}} + \frac{1}{\tau_{non}}}$$

Characteristics of LED performance (iii)

$$\eta = \frac{\frac{1}{\tau_{rad}}}{\frac{1}{\tau_{rad}} + \frac{1}{\tau_{non}}} = \frac{1}{1 + \frac{\tau_{rad}}{\tau_{non}}}$$

Make τ_{non} long compared to τ_{rad} :

Growing materials with low defect densities Eliminating non-radiative centres

To achieve reasonable IQE: GaP and GaAs-based LED Defect density<10⁴/cm²

However: GaN-based LED with high IQE defect density> 108/cm²

Optical Output Power

Extraction efficiency (next)

Several factors determine η_{ext} :

- 1. Absorption: $I=I_0 \exp(-\alpha d)$
- Homojunction LED:
- d decreases, surface states destroy IQE
- d increases, absorption is enhanced
- DH-LED: absorption will be significantly reduced

- 3 Transmission losses
- 4 Reflection at top contact
- **5 Absorption from top-contact**

Transmission losses (i)

When light passes through from one material with n_1 to another one with n_2 . The angle will be changed, and obeys: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

When $n_1 > n_2$, $\theta_2 > \theta_1$. At a critical angle of $\theta_1(\theta_c)$, $\theta_2 = 90^0$

$$\theta_c = \sin^{-1}(\frac{n_2}{n_1})$$

- $\theta_1 > \theta_c$: total internal reflection will take place
- $\theta_1 < \theta_c$: there is still loss of light due to reflection For normal incident, i.e., $\theta_1 = 0^0$

$$\boldsymbol{R} = (\frac{\boldsymbol{n}_2 - \boldsymbol{n}_1}{\boldsymbol{n}_2 + \boldsymbol{n}_1})^2$$

$$T = 1 - \left(\frac{\boldsymbol{n}_2 - \boldsymbol{n}_1}{\boldsymbol{n}_2 + \boldsymbol{n}_1}\right)^2$$

Transmission losses (ii)

Only emitted light with a cone of $2\theta_c$ can be extracted

Extraction efficiency

Assume the emitted light is constant in all directions, we can calculate how much the emitted light can be extracted, i.e., **Extraction efficiency**.

The distance from the original emitted point to the surface is R

$$F = \frac{\pi (R \sin(\theta_c))^2}{4\pi R^2} = \frac{\sin^2(\theta_c)}{4} = \frac{(\frac{n_2}{n_1})^2}{4}$$

Extraction efficiency

$$I = FT = \frac{1}{4} \left(\frac{n_2}{n_1} \right)^2 \left[\left(1 - \left(\frac{n_1 - n_2}{n_1 + n_2} \right)^2 \right) \right]$$

For example: GaAs: n_1 =3.45,

only 1.5% generated light can be extracted!!!

Solution to improve extraction efficiency (i)

- Polish the LED and make its surface as a hemisphere to avoid θ_c issue
- Depositing a material with an intermediate refractive index n₂ increases, transmission increases
- •Depositing a layer which is an anti-reflection coating to make R ightarrow 0

$$d = \frac{\lambda}{4n} (2L - 1)$$

Solution to improve extraction efficiency (ii)

Combination of above the three methods

- •Make the intermediate layer shaped as a hemisphere to avoid θc issue, and then coat an anti-reflection layer to maximise efficiency
- •The method of using a hemispheric intermediate layer using epoxy has been generally used in the LED industry.

Commercial LEDs

General use in the opto-electronics industry

LED Design, Growth and Fabrication

- Epitaxial growth using MOVPE or MBE
- Wafer process using etching techniques and photolithgraph
- Final device packaging (Epoxy dome lens)

Epitaxial growth of III-nitrides

MOCVD

No affordable substrate for homo-epitaxial growth

Epitaxial growth of III-nitrides

- In order to have visible LEDs, n-type GaN, p-type GaN and InGaN as emitting regions all with device performance are necessary
- III-nitride growth is basically on large lattice-mismatch heterepitaxy due to lack of native substrates

A smooth surface with reasonably good crystal quality could not be obtained until 1986 when a major breakthrough was achieved

- p-type GaN was not obtained until 1989, when another major breakthrough was achieved
- High performance InGaN was not achieved until 1992

Lattice-mismatch of AlAs on GaAs as an example

GaAs	AlAs	
0.5653 nm	0.5660 nm	

- Lattice-mismatch between AlAs and GaAs $f=(a_{AlAs}-a_{GaAs})/a_{GaAs}=1.1\%$
- Compressive stress (AlAs on GaAs substrate)

zinc blende: two lattices (cubic) are positioned relative to one another

GaN crystal structure and choosing substrate

• GaN, InN, AIN: wurtzite structure

• Sapphire: wurtzite structure

• 6H SiC: wurtzite structure

But (111) silicon: cubic unit

Lattice-mismatch in GaN/sapphire

GaN	AIN	InN	sapphire
a=3.189	a=3.112	a=3.548	a=4.785
c=5.185	c=4.982	c=5.760	c=12.991

Lattice-mismatch:

GaN/sapphire:

$$f=(a_{GaN}-a_{sapphire})/a_{sapphire}=-33\%$$

tensile?

However, the actual epitaxial relationship between GaN and sapphire:

30°C rotation of GaN basal plane

$$f = (\sqrt{3} a_{GaN} - a_{sapphire})/a_{sapphire} = 16\%$$

compressive!

Two-step growth approach(i)

Amano and Akasaki (2014 Nobel Prize winners) invented the two-step growth method, first achieving GaN with an atomically flat surface (1986)

- A thin LT nucleation layer (500-600°C)
- Subsequent HT (>1000°C) GaN buffer + any further structure

Two-step growth approach (ii)

As-grown LT GaN buffer

LT GaN buffer after HT annealing

The thin nucleation layer

Two-step growth approach (iii)

An atomically flat smooth surface can be achieved by the twostep growth method through tuning the thickness of the thin nucleation layer.

2014 Nobel Prize winners for Physics

P-Type Conduction in Mg-Doped GaN achieved through Being Treated with Low-Energy Electron Beam Irradiation or High temperature annealing under N₂ ambient

H Amano and I Akaski first achieved a p-GaN (1989)

S Nakamura achieved p-GaN in 1992 using HT annealing under nitrogen ambient (mass production)

Opens new era: III-nitrides

- S. Nakamura, et al., "InGaN-based multi-quantum-well-structure laser diodes," Japan J. Appl. Phys. 2, 35(1B):L74-1, 1996.
- 2 S. Nakamura, T. Mukai, M. Sengh, "Candela-class high-brightness InGan-AlGan double heterostructure blue light-emitting diodes," *Appl. Phys. Lett.*, 64(13):1687-9, 1994.
- Nakamura, et al., "Superbright green InGaN singlequantum-well structure light-emitting diodes," Japan J. Appl. Phys. 2, 34(10B):1332-5, 1995.

Dislocation density of GaN: > 10⁸/cm²

University of Tokushima, Japan Nichia Chemical, Tokushima Now, Prof at UCSB, USA

Crsytal quality of GaN on sapphire

$$g = [-2110]$$

- TEM cross-sectional image of 2 μm un-doped GaN grown on sapphire using the two-step growth method
- Dislocation density: 5x10⁸/cm²

Basic structure of MOCVD

Two-flow MOCVD

- After S.Nakamura, Jpn. J. Appl. Phys. 30, L1705, (1991)
- First high brightness blue LED wafer was grown by this MOCVD

CCS-MOCVD reactor

- Close coupled showerhead (CCS)
- Sheffield has 1st CCS nitride MOCVD in the UK

Emcore MOCVD reactor

High speed rotation:

- modify the gas flowing pattern
- decrease boundary layer thickness

Nippon-Sanso MOCVD reactor

Axitron MOCVD reactor

Chip structure of blue LEDs

(Modified after S.Nakamura and G.Fasol, *The Blue Laser Diode: GaN Based Light Emitters and Lasers,* Springer, Berlin, 1997).

Electron Blocking Layer

Electron overflowing: recombination in p-type region

- •Large difference of carrier concentrations between electron and hole
- Large difference of carrier mobilities between electron and hole

Electron mobility: 300 cm²/VS (room temperature)

Hole mobility: <20 cm²/VS (room temperature)

63

Reducing electron overflowing:

(a) Structure with electron blocking layer (after S.J.Chang *et al., IEEE Photonic Tech. L.* 9, 1199, 1997)

(b) Structure with a multiquantum barrier (MQB) (after C.S.Chang et al., IEEE J. Quantum Elect. 34, 77, 1998).

Turning blue LEDs to white LEDs

InGaN based luminescence conversion white LED

Energy levels of Ce3+ (4f1) in yttrium aluminum garnet Y3Al5O12 (after M.Batenschuk et al., MRS Symp. Proc. 560, 215, 1999).

Simulation:

Model emission spectra of AllnGaN+(Y1-aGda)3(Al1-bGab)5O12:Ce3+ white LEDs for two compositions of garnet.

Solid line: 570 nm phosphor; and dashed line: 580 nm phosphor

Simulation: white emission spectrum from AllnGaN+(SrGa2S4:Eu2++SrS:Eu2+) system (after R.Mueller-Mach and G.O.Meuller, *Proc. SPIE* 3938, 30, 2000).

Simulation: white emission spectrum from UV pump + 3 phosphors (after D.Eisert et al., Inst. Pure Appl. Phys. Conf. Ser. 1, 841, 2000).

- Simulation: optimized spectral power distributions
- 4 or 5 LEDs with different colors from blue to red would be ideal

Thermal management

Current crowding due to the conductivity issue of p-GaN

Activation energy of Mg-doped p-GaN is very large, 130-150 meV, compared with silicon-doped n-GaN (<20 meV)

For example, Mg-doping level of 10^{20} /cm² means room temperature hole concentration of ~ 10^{20} ×exp(-150meV/KT), which is about 3×10^{17} /cm²

silicon-doped n-GaN with a doping level of 10²⁰/cm²~ electron concentration of 10²⁰/cm²

Heat dissipation due to sapphire substrate

Thermal management

- Factors which can affect the junction temperature of LED
 - (1) Driving current
 - (2) Current flowing path
 - (3) Current crowding due to the conductivity of p-GaN

Current Crowding due to p-GaN

- p-GaN generates so-called current crowding issues
- Long path for current to go through p-GaN laterally, generating:

EL intensity: decreases exponentially with increasing distance from the p-contact edge **Junction temperature**: strong non-uniform distribution with increasing the bias current; the temperature near the p-contact edge is much higher than that elsewhere. 73

Current paths in AlInGaN chips grown on sapphire.

- (a) Asymmetric design with current crowding towards the *n*-pad;
- (b) Symmetric design with a ring *n*-pad
- (after M. R. Krames et al., Proc. SPIE 3938, 2, 2000).

Contact Geometries

- Contact for better current spreading
- Pay attention to an issue on contact non-transparency

Contacts and Current Spreading

- a) Thin/low-conductivity current spreading layer. The current crowds under the top contact (p-GaN).
- b) Thick/high-conductivity CSL.

The current uniformly spreads over the entire cross-section.

Flip-Chip LED Sapphire n-GaN Contact Layer InGaN/GaN Multiple Quantum Well p-GaN Contact Layer Solder Submount

- Contact for better current spreading (large p-contact)
- Avoid non-transparency of contact
- After J. J. Wieret et al., Appl. Phys. Lett. 78, 3379, 2001.

Heat dissipation

A heat sink: need to maximize its surface area in contact with the cooling medium surrounding it, such as the air.

Materials fabricated for heat sink:

- Al alloy: the most common materials; thermal conductivity of 201-229 W/m•K
- Cu: excellent heat sink properties in terms of its thermal conductivity, corrosion resistance, biofouling resistance, and antimicrobial resistance; "twice the thermal conductivity of Al and faster; more efficient heat absorption; (but denser and more expensive)
- •Diamond: thermal conductivity of 2000 W/m•K, exceeding copper five-fold

Challenges of current III-nitrides

- Technological challenges:

 Ill-nitride Growth----- lattice mismatched heteroepitaxy
 - Lack of suitable and affordable substrates: III-nitrides are generally grown on large mismatched substrates (Sapphire, SiC, Si, etc), generating an extremely high dislocation density up to 10¹¹/cm².
- Scientific challenges
 - Polarization induced self-built electric fields
 - Efficiency droop
 - Difficulty in incorporation indium into GaN

US DOE road-map for SSL

- Blue LED +Yellow phosphor: <200 lm/Watt
- Color Mixed LEDs: Blue, Green, Yellow LEDs (red LED is no problem at all) requested
- Challenges: green/yellow LEDs (high indium content)

80

III-nitrides for future SSL and sustainable energy

Challenges: High indium content InGaN

Green/Yellow Gap

Great challenge: how to enhance indium incorporation into GaN

Current issues on blue LEDs

Thermal droop

Efficiency droop

Fundamental limits for current III-nitride LEDs

Strained InGaN QWs: induce piezoelectric polarization across QW

- Reduced wavefunction overlap
- Reduced radiative recombination rate
- Reduced transition energy
- Carrier transport issues
- Emission blue-shifts with current density
- QWs are limited in width

Possible solution: semi/non-polar GaN (i)

- Enhance radiative recombination rate
- Minimise emission shift with current density
- Enhance indium incorporation into GaN

Possible solution: semi/non-polar GaN (ii)

- Most popular semi-polar orientations (11-22) and (20-21)
- A number of advantages

Possible solution: semi/non-polar GaN (iii)

- Significant reduction in efficiency droop
- Challenges: growth on extremely expensive semipolar GaN freestanding substrates

Challenges of current semi/non-polar GaN

1x1 cm² Non/semi-polar GaN

- Current: 1x1 cm² non/semi-polar GaN (1000 US dollar)
- Challenges: ≥2 inch non/semi-polar GaN with high quality
- Lots of work on III-nitrides for SSL is waiting for you!