Pequeñas oscilaciones

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

10 de abril de 2025

Agenda

- Pequeñas oscilaciones 1D
- 2 Ejemplo: El péndulo simple
- Oscilaciones con varios grados de libertad
- 4 Ejemplo: El péndulo doble
- Recapitulando
- Para la discusión

ullet Como vimos en la clase de estabiliad dado un ${\cal L}=rac{1}{2}c\dot{q}^2-V_{
m ef}(q)$

- ullet Como vimos en la clase de estabiliad dado un $\mathcal{L}=rac{1}{2}c\dot{q}^2-V_{ ext{ef}}(q)$
- La ecuación de movimiento es $c\ddot{q}=f_{
 m ef}(q)\equiv -rac{\partial V_{
 m ef}}{\partial q}$

- ullet Como vimos en la clase de estabiliad dado un $\mathcal{L}=rac{1}{2}c\dot{q}^2-V_{ ext{ef}}(q)$
- La ecuación de movimiento es $c\ddot{q}=f_{
 m ef}(q)\equiv -rac{\partial V_{
 m ef}}{\partial q}$
- Que tendrá un mínimo en q_0 , cuando $f_{\rm ef}\left(q_0\right)=0\Rightarrow \left.\frac{\partial V_{\rm ef}}{\partial q}\right|_{q_0}=0$

- ullet Como vimos en la clase de estabiliad dado un $\mathcal{L}=rac{1}{2}c\dot{q}^2-V_{ ext{ef}}(q)$
- ullet La ecuación de movimiento es $c\ddot{q}=f_{
 m ef}(q)\equiv -rac{\partial V_{
 m ef}}{\partial q}$
- Que tendrá un mínimo en q_0 , cuando $f_{\rm ef}\left(q_0\right)=0\Rightarrow \left.\frac{\partial V_{\rm ef}}{\partial q}\right|_{q_0}=0$
- Será estable si $\left. \frac{\partial V_{\rm ef}^2}{\partial q^2} \right|_{q_0} > 0$

- ullet Como vimos en la clase de estabiliad dado un $\mathcal{L}=rac{1}{2}c\dot{q}^2-V_{ ext{ef}}(q)$
- ullet La ecuación de movimiento es $c\ddot{q}=f_{
 m ef}(q)\equiv -rac{\partial V_{
 m ef}}{\partial q}$
- Que tendrá un mínimo en q_0 , cuando $f_{
 m ef}\left(q_0\right)=0\Rightarrow \frac{\partial V_{
 m ef}}{\partial q}\Big|_{q_0}=0$
- Será estable si $\left. \frac{\partial V_{\rm ef}^2}{\partial q^2} \right|_{q_0} > 0$
- Igual que en el caso anterior perturbamos alrededor del mínimo

- ullet Como vimos en la clase de estabiliad dado un $\mathcal{L}=rac{1}{2}c\dot{q}^2-V_{ ext{ef}}(q)$
- ullet La ecuación de movimiento es $c\ddot{q}=f_{
 m ef}(q)\equiv -rac{\partial V_{
 m ef}}{\partial q}$
- Que tendrá un mínimo en q_0 , cuando $f_{\rm ef}\left(q_0\right)=0\Rightarrow \left.\frac{\partial V_{\rm ef}}{\partial q}\right|_{q_0}=0$
- Será estable si $\left. \frac{\partial V_{\rm ef}^2}{\partial q^2} \right|_{q_0} > 0$
- Igual que en el caso anterior perturbamos alrededor del mínimo

ullet Desarrollamos por Taylor, $V_{
m ef}\left(q
ight)$ alrededor de $q=q_0$, y tenemos

$$V_{ ext{ef}}(q) = V_{ ext{ef}}\left(q_0 + \eta
ight) = V\left(q_0
ight) + \left. rac{\partial V_{ ext{ef}}}{\partial q}
ight|_{q_0} \eta + \left. rac{1}{2} rac{\partial^2 V_{ ext{ef}}}{\partial q^2}
ight|_{q_0} \eta^2 + \cdots,$$

• Despreciando términos en potencias de η de orden superior al cuadrático, tenemos $V_{\rm ef}(q)=V_{\rm ef}\left(q_0+\eta\right)\approx \frac{1}{2}K\left(q-q_0\right)^2=\frac{1}{2}K\eta^2$

- Despreciando términos en potencias de η de orden superior al cuadrático, tenemos $V_{\rm ef}(q)=V_{\rm ef}\left(q_0+\eta\right)\approx \frac{1}{2}K\left(q-q_0\right)^2=\frac{1}{2}K\eta^2$
- ullet La ecuación de movimiento será $c\ddot{\eta}=-rac{\partial V_{ ext{ef}}}{\partial q}=-K\left(q-q_0
 ight)\equiv -K\eta$

- Despreciando términos en potencias de η de orden superior al cuadrático, tenemos $V_{\rm ef}(q)=V_{\rm ef}\left(q_0+\eta\right)\approx \frac{1}{2}K\left(q-q_0\right)^2=\frac{1}{2}K\eta^2$
- ullet La ecuación de movimiento será $c\ddot{\eta}=-rac{\partial V_{ ext{ef}}}{\partial q}=-K\left(q-q_{0}
 ight)\equiv-K\eta$
- Entonces, $\ddot{\eta} + \omega^2 \eta = 0$, donde $\omega^2 \equiv \frac{\kappa}{c} = \frac{1}{c} \frac{\partial^2 V_{\rm ef}}{\partial q^2} \Big|_{q_0}$ es la frecuencia angular de las pequeñas oscilaciones alrededor de q_0 .

- Despreciando términos en potencias de η de orden superior al cuadrático, tenemos $V_{\rm ef}(q)=V_{\rm ef}\left(q_0+\eta\right)\approx \frac{1}{2}K\left(q-q_0\right)^2=\frac{1}{2}K\eta^2$
- ullet La ecuación de movimiento será $c\ddot{\eta}=-rac{\partial V_{ ext{ef}}}{\partial q}=-K\left(q-q_0
 ight)\equiv -K\eta$
- Entonces, $\ddot{\eta} + \omega^2 \eta = 0$, donde $\omega^2 \equiv \frac{\kappa}{c} = \frac{1}{c} \frac{\partial^2 V_{\rm ef}}{\partial q^2} \Big|_{q_0}$ es la frecuencia angular de las pequeñas oscilaciones alrededor de q_0 .
- Que tendrá como solución $\eta(t) = c_1 \cos \omega t + c_2 \sin \omega t = A \cos(\omega t + \varphi) \equiv \text{Re}\left[Ae^{i(\omega t + \varphi)}\right] = \text{Re}\left(ae^{i\omega t}\right)$ donde $a = Ae^{i\varphi}$ es la amplitud compleja

Una masa m está unida a una varilla rígida sin masa de longitud ℓ , que oscila en un plano vertical bajo la acción de la gravedad.

• El lagrangiano $\mathcal{L} = T - V = \frac{1}{2}m\ell^2\dot{\theta}^2 - mg\ell(1-\cos\theta)$, donde $\theta = 0$, es un punto de equilibrio estable.

Una masa m está unida a una varilla rígida sin masa de longitud ℓ , que oscila en un plano vertical bajo la acción de la gravedad.

- El lagrangiano $\mathcal{L} = T V = \frac{1}{2}m\ell^2\dot{\theta}^2 mg\ell(1 \cos\theta)$, donde $\theta = 0$, es un punto de equilibrio estable.
- Para ángulos pequeños: $\cos\theta \approx 1 \frac{\theta^2}{2}$, tendremos $V(\theta) \approx mg\ell \cdot \frac{\theta^2}{2} \Rightarrow \mathcal{L} \approx \frac{1}{2}m\ell^2\dot{\theta}^2 \frac{1}{2}mg\ell\theta^2$

Una masa m está unida a una varilla rígida sin masa de longitud ℓ , que oscila en un plano vertical bajo la acción de la gravedad.

- El lagrangiano $\mathcal{L} = T V = \frac{1}{2}m\ell^2\dot{\theta}^2 mg\ell(1-\cos\theta)$, donde $\theta = 0$, es un punto de equilibrio estable.
- Para ángulos pequeños: $\cos\theta \approx 1 \frac{\theta^2}{2}$, tendremos $V(\theta) \approx mg\ell \cdot \frac{\theta^2}{2} \Rightarrow \mathcal{L} \approx \frac{1}{2}m\ell^2\dot{\theta}^2 \frac{1}{2}mg\ell\theta^2$
- La ecuación de movimiento es $m\ell^2\ddot{\theta} + mg\ell\theta = 0$ $\Rightarrow \ddot{\theta} + \frac{g}{\ell}\theta = 0$

Una masa m está unida a una varilla rígida sin masa de longitud ℓ , que oscila en un plano vertical bajo la acción de la gravedad.

- El lagrangiano $\mathcal{L} = T V = \frac{1}{2}m\ell^2\dot{\theta}^2 mg\ell(1-\cos\theta)$, donde $\theta = 0$, es un punto de equilibrio estable.
- Para ángulos pequeños: $\cos\theta \approx 1 \frac{\theta^2}{2}$, tendremos $V(\theta) \approx mg\ell \cdot \frac{\theta^2}{2} \Rightarrow \mathcal{L} \approx \frac{1}{2}m\ell^2\dot{\theta}^2 \frac{1}{2}mg\ell\theta^2$
- La ecuación de movimiento es $m\ell^2\ddot{\theta} + mg\ell\theta = 0$ $\Rightarrow \ddot{\theta} + \frac{g}{\ell}\theta = 0$
- La frecuencia de oscilación será $\omega^2 = \frac{K}{c} = \frac{g}{\ell} \quad \Rightarrow \omega = \sqrt{\frac{g}{\ell}}$

Una masa m está unida a una varilla rígida sin masa de longitud ℓ , que oscila en un plano vertical bajo la acción de la gravedad.

- El lagrangiano $\mathcal{L} = T V = \frac{1}{2}m\ell^2\dot{\theta}^2 mg\ell(1 \cos\theta)$, donde $\theta = 0$, es un punto de equilibrio estable.
- Para ángulos pequeños: $\cos \theta \approx 1 \frac{\theta^2}{2}$, tendremos $V(\theta) \approx mg\ell \cdot \frac{\theta^2}{2} \Rightarrow \mathcal{L} \approx \frac{1}{2}m\ell^2\dot{\theta}^2 - \frac{1}{2}mg\ell\theta^2$
- La ecuación de movimiento es $m\ell^2\ddot{\theta} + mg\ell\theta = 0$ $\Rightarrow \ddot{\theta} + \frac{g}{\ell}\theta = 0$
- La frecuencia de oscilación será $\omega^2 = \frac{K}{c} = \frac{g}{\ell} \implies \omega = \sqrt{\frac{g}{\ell}}$

Comparación	General	Péndulo
Coordenada	q	θ
Equilibrio	q_0	0
Perturbación	$\eta = q - q_0$	θ
Potencial expandido	$V(q_0) + \frac{1}{2}K\eta^2$	$\frac{1}{2}$ mgl θ^2
Frecuencia angular	$\omega = \sqrt{\frac{K}{c}}$	$\sqrt{\frac{g}{I}}$

• Dado un sistema con s grados de libertad $\{q_i : i = 1, ..., s\}$ con energía potencial $V(q_1, ..., q_s)$.

- Dado un sistema con s grados de libertad $\{q_i : i = 1, ..., s\}$ con energía potencial $V(q_1, ..., q_s)$.
- La configuración de equilibrio del sistema en $\{q_{0i}: i=1,\ldots,s\}$, con $\frac{\partial V}{\partial q_i}\Big|_{q_{0i}}=0, \quad i=1,2,\ldots,s$

- Dado un sistema con s grados de libertad $\{q_i : i = 1, ..., s\}$ con energía potencial $V(q_1, ..., q_s)$.
- La configuración de equilibrio del sistema en $\{q_{0i}: i=1,\ldots,s\}$, con $\frac{\partial V}{\partial q_i}\Big|_{q_{0i}}=0, \quad i=1,2,\ldots,s$

ullet Perturbando las q_i , tendremos $q_i=q_{0i}+\eta_i,$ con $\eta_i o 0$ $\left(rac{\eta_i}{q_{0i}}\ll 1
ight)$

- Dado un sistema con s grados de libertad $\{q_i : i = 1, ..., s\}$ con energía potencial $V(q_1, ..., q_s)$.
- La configuración de equilibrio del sistema en $\{q_{0i}: i=1,\ldots,s\}$, con $\frac{\partial V}{\partial q_i}\Big|_{q_{0i}}=0, \quad i=1,2,\ldots,s$

- ullet Perturbando las q_i , tendremos $q_i=q_{0i}+\eta_i,$ con $\eta_i o 0$ $\left(rac{\eta_i}{q_{0i}}\ll 1
 ight)$
- El valor del potencial $V(q_1, ..., q_s)$ cerca de la configuración de equilibrio se obtiene de la expansión de Taylor en varias variables de $V(q_1, ..., q_s)$ alrededor de $\{q_{0i}\}$, con $q_i = q_{0i} + \eta_{ir}$

• Esto es $V(q_1, ..., q_s) = V(q_{01}, ..., q_{0s}) + \sum_{i} \left(\frac{\partial V}{\partial q_i}\right)_{\{q_{0i}\}} \frac{1}{q_{i}} + \frac{1}{2} \sum_{i} \sum_{j} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_{\{q_{0i}\}} \eta_i \eta_j + \cdots$

- Esto es $V(q_1, ..., q_s) = V(q_{01}, ..., q_{0s}) + \sum_{i} \left(\frac{\partial V}{\partial q_i}\right)_{\{q_{0i}\}} \frac{0}{q_i} + \frac{1}{2} \sum_{i} \sum_{j} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_{\{q_{0i}\}} \eta_i \eta_j + \cdots$
- Los $V(q_{01}, \ldots, q_{0s})$ es un valor constante y las derivadas parciales están evaluadas en $\{q_{0i}\} = (q_{01}, \ldots, q_{0s})$.

- Esto es $V(q_1, ..., q_s) = V(q_{01}, ..., q_{0s}) + \sum_{i} \left(\frac{\partial V}{\partial q_i}\right)_{\{q_{0i}\}} \eta_i + \frac{1}{2} \sum_{i} \sum_{j} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_{\{q_{0i}\}} \eta_i \eta_j + \cdots$
- Los $V(q_{01},...,q_{0s})$ es un valor constante y las derivadas parciales están evaluadas en $\{q_{0i}\}=(q_{01},...,q_{0s})$.
- En la configuración de equilibrio $q_i = q_{0i} + \eta_i$, el potencial se puede expresar como $V(q_1, \ldots, q_s) = V(\eta_1, \ldots, \eta_s) = \frac{1}{2} \sum_{i,j} V_{ij} \eta_i \eta_j$

- Esto es $V(q_1, ..., q_s) = V(q_{01}, ..., q_{0s}) + \sum_{i} \left(\frac{\partial V}{\partial q_i}\right)_{\{q_{0i}\}} \eta_i + \frac{1}{2} \sum_{i} \sum_{j} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_{\{q_{0i}\}} \eta_i \eta_j + \cdots$
- Los $V(q_{01}, \ldots, q_{0s})$ es un valor constante y las derivadas parciales están evaluadas en $\{q_{0i}\} = (q_{01}, \ldots, q_{0s})$.
- En la configuración de equilibrio $q_i = q_{0i} + \eta_i$, el potencial se puede expresar como $V\left(q_1,\ldots,q_s\right) = V\left(\eta_1,\ldots,\eta_s\right) = \frac{1}{2}\sum_{i,j}V_{ij}\eta_i\eta_j$
- ullet donde los coeficientes $V_{ij}\equiv\left(rac{\partial^2 V}{\partial q_i\partial q_j}
 ight)_{\{q_{0i}\}}$ son simétricos, $V_{ij}=V_{ji}$

- Esto es $V(q_1, ..., q_s) = V(q_{01}, ..., q_{0s}) + \sum_{i} \left(\frac{\partial V}{\partial q_i}\right)_{\{q_{0i}\}} \eta_i + \frac{1}{2} \sum_{i} \sum_{j} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_{\{q_{0j}\}} \eta_i \eta_j + \cdots$
- Los $V(q_{01}, \ldots, q_{0s})$ es un valor constante y las derivadas parciales están evaluadas en $\{q_{0i}\} = (q_{01}, \ldots, q_{0s})$.
- En la configuración de equilibrio $q_i = q_{0i} + \eta_i$, el potencial se puede expresar como $V(q_1, \ldots, q_s) = V(\eta_1, \ldots, \eta_s) = \frac{1}{2} \sum_{i,j} V_{ij} \eta_i \eta_j$
- ullet donde los coeficientes $V_{ij}\equiv\left(rac{\partial^2 V}{\partial q_i\partial q_j}
 ight)_{\{q_{0i}\}}$ son simétricos, $V_{ij}=V_{ji}$
- La energía cinética del sistema es $T = \frac{1}{2} \sum_{i,j} T_{ij} \dot{q}_i \dot{q}_j$ donde los coeficientes $T_{ij} = T_{ji}$ representan parámetros constantes que dependen de propiedades del sistema (masas, longitudes, etc).

- Esto es $V(q_1, ..., q_s) = V(q_{01}, ..., q_{0s}) + \sum_{i} \left(\frac{\partial V}{\partial q_i}\right)_{\{q_{0i}\}} \eta_i + \frac{1}{2} \sum_{i} \sum_{j} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_{\{q_{0i}\}} \eta_i \eta_j + \cdots$
- Los $V(q_{01},...,q_{0s})$ es un valor constante y las derivadas parciales están evaluadas en $\{q_{0i}\}=(q_{01},...,q_{0s})$.
- En la configuración de equilibrio $q_i = q_{0i} + \eta_i$, el potencial se puede expresar como $V(q_1, \ldots, q_s) = V(\eta_1, \ldots, \eta_s) = \frac{1}{2} \sum_{i,j} V_{ij} \eta_i \eta_j$
- ullet donde los coeficientes $V_{ij}\equiv\left(rac{\partial^2 V}{\partial q_i\partial q_j}
 ight)_{\{q_{0i}\}}$ son simétricos, $V_{ij}=V_{ji}$
- La energía cinética del sistema es $T=\frac{1}{2}\sum_{i,j}T_{ij}\dot{q}_i\dot{q}_j$ donde los coeficientes $T_{ij}=T_{ji}$ representan parámetros constantes que dependen de propiedades del sistema (masas, longitudes, etc).
- Para pequeños desplazamientos $T=rac{1}{2}\sum_{i,j}T_{ij}\dot{\eta}_i\dot{\eta}_j$

- Esto es $V(q_1, ..., q_s) = V(q_{01}, ..., q_{0s}) + \sum_{i} \left(\frac{\partial V}{\partial q_i}\right)_{\{q_{0i}\}} \frac{1}{q_{0i}} \sum_{j} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_{\{q_{0i}\}} \eta_i \eta_j + \cdots$
- Los $V(q_{01},...,q_{0s})$ es un valor constante y las derivadas parciales están evaluadas en $\{q_{0i}\}=(q_{01},...,q_{0s})$.
- En la configuración de equilibrio $q_i = q_{0i} + \eta_i$, el potencial se puede expresar como $V(q_1, \ldots, q_s) = V(\eta_1, \ldots, \eta_s) = \frac{1}{2} \sum_{i,j} V_{ij} \eta_i \eta_j$
- ullet donde los coeficientes $V_{ij}\equiv\left(rac{\partial^2 V}{\partial q_i\partial q_j}
 ight)_{\{q_{0i}\}}$ son simétricos, $V_{ij}=V_{ji}$
- La energía cinética del sistema es $T=\frac{1}{2}\sum_{i,j}T_{ij}\dot{q}_i\dot{q}_j$ donde los coeficientes $T_{ij}=T_{ji}$ representan parámetros constantes que dependen de propiedades del sistema (masas, longitudes, etc).
- Para pequeños desplazamientos $T=rac{1}{2}\sum_{i,j}T_{ij}\dot{\eta}_i\dot{\eta}_j$
- El Lagrangiano del sistema cerca de la configuración de equilibrio es $\mathcal{L} = T V = \frac{1}{2} \sum_{i,j} (T_{ij} \dot{\eta}_i \dot{\eta}_j V_{ij} \eta_i \eta_j)$ $i,j = 1,2,\ldots,s$

• La ecuación de Lagrange en η_k es $\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\eta}_k}\right) - \frac{\partial \mathcal{L}}{\partial \eta_k} = 0$

- La ecuación de Lagrange en η_k es $\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\eta}_k}\right) \frac{\partial \mathcal{L}}{\partial \eta_k} = 0$
- $\frac{\partial \mathcal{L}}{\partial \dot{\eta}_k} = \frac{1}{2} \sum_{i,j} T_{ij} \left(\delta_{ik} \dot{\eta}_j + \delta_{jk} \dot{\eta}_i \right) = \frac{1}{2} \left(\sum_j T_{kj} \dot{\eta}_j + \sum_i T_{ik} \dot{\eta}_i \right) = \sum_j T_{kj} \dot{\eta}_j$

- La ecuación de Lagrange en η_k es $\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\eta}_k}\right) \frac{\partial \mathcal{L}}{\partial \eta_k} = 0$
- $\frac{\partial \mathcal{L}}{\partial \dot{\eta}_k} = \frac{1}{2} \sum_{i,j} T_{ij} \left(\delta_{ik} \dot{\eta}_j + \delta_{jk} \dot{\eta}_i \right) = \frac{1}{2} \left(\sum_j T_{kj} \dot{\eta}_j + \sum_i T_{ik} \dot{\eta}_i \right) = \sum_j T_{kj} \dot{\eta}_j$
- $\frac{\partial \mathcal{L}}{\partial \eta_k} = -\frac{1}{2} \sum_{i,j} \left(V_{ij} \delta_{ik} \eta_j + V_{ij} \delta_{jk} \eta_i \right) = \sum_j V_{kj} \eta_j$

- La ecuación de Lagrange en η_k es $\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\eta}_k}\right) \frac{\partial \mathcal{L}}{\partial \eta_k} = 0$
- $\frac{\partial \mathcal{L}}{\partial \dot{\eta}_k} = \frac{1}{2} \sum_{i,j} T_{ij} \left(\delta_{ik} \dot{\eta}_j + \delta_{jk} \dot{\eta}_i \right) = \frac{1}{2} \left(\sum_j T_{kj} \dot{\eta}_j + \sum_i T_{ik} \dot{\eta}_i \right) = \sum_j T_{kj} \dot{\eta}_j$
- $\frac{\partial \mathcal{L}}{\partial \eta_k} = -\frac{1}{2} \sum_{i,j} (V_{ij} \delta_{ik} \eta_j + V_{ij} \delta_{jk} \eta_i) = -\sum_j V_{kj} \eta_j$
- la ecuación de movimiento para η_k queda $\sum_j (T_{kj}\ddot{\eta}_j + V_{kj}\eta_j) = 0$, donde cada término de la suma tiene la forma de una ecuación para un oscilador armónico.

- La ecuación de Lagrange en η_k es $\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\eta}_k}\right) \frac{\partial \mathcal{L}}{\partial \eta_k} = 0$
- $\frac{\partial \mathcal{L}}{\partial \dot{\eta}_k} = \frac{1}{2} \sum_{i,j} T_{ij} \left(\delta_{ik} \dot{\eta}_j + \delta_{jk} \dot{\eta}_i \right) = \frac{1}{2} \left(\sum_j T_{kj} \dot{\eta}_j + \sum_i T_{ik} \dot{\eta}_i \right) = \sum_j T_{kj} \dot{\eta}_j$
- $\frac{\partial \mathcal{L}}{\partial \eta_k} = -\frac{1}{2} \sum_{i,j} (V_{ij} \delta_{ik} \eta_j + V_{ij} \delta_{jk} \eta_i) = -\sum_j V_{kj} \eta_j$
- la ecuación de movimiento para η_k queda $\sum_j (T_{kj}\ddot{\eta}_j + V_{kj}\eta_j) = 0$, donde cada término de la suma tiene la forma de una ecuación para un oscilador armónico.
- Como la solución es $\eta_j(t) = a_j e^{i\omega t}$ tenemos $\sum_j \left(-\omega^2 T_{kj} + V_{kj} \right) a_j e^{i\omega t} = 0 \quad \Rightarrow \sum_n \left(V_{mn} \omega^2 T_{mn} \right) a_n = 0$

- La ecuación de Lagrange en η_k es $\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\eta}_k}\right) \frac{\partial \mathcal{L}}{\partial \eta_k} = 0$
- $\frac{\partial \mathcal{L}}{\partial \dot{\eta}_k} = \frac{1}{2} \sum_{i,j} T_{ij} \left(\delta_{ik} \dot{\eta}_j + \delta_{jk} \dot{\eta}_i \right) = \frac{1}{2} \left(\sum_j T_{kj} \dot{\eta}_j + \sum_i T_{ik} \dot{\eta}_i \right) = \sum_j T_{kj} \dot{\eta}_j$
- $\frac{\partial \mathcal{L}}{\partial \eta_k} = -\frac{1}{2} \sum_{i,j} (V_{ij} \delta_{ik} \eta_j + V_{ij} \delta_{jk} \eta_i) = -\sum_j V_{kj} \eta_j$
- la ecuación de movimiento para η_k queda $\sum_j (T_{kj}\ddot{\eta}_j + V_{kj}\eta_j) = 0$, donde cada término de la suma tiene la forma de una ecuación para un oscilador armónico.
- Como la solución es $\eta_j(t) = a_j e^{i\omega t}$ tenemos $\sum_j \left(-\omega^2 T_{kj} + V_{kj} \right) a_j e^{i\omega t} = 0 \quad \Rightarrow \sum_n \left(V_{mn} \omega^2 T_{mn} \right) a_n = 0$
- Es decir, para dos grados de libertad s = 1,2 tendremos

$$m = 1 : (V_{11} - \omega^2 T_{11}) a_1 + (V_{12} - \omega^2 T_{12}) a_2 = 0$$

 $m = 2 : (V_{21} - \omega^2 T_{21}) a_1 + (V_{22} - \omega^2 T_{22}) a_2 = 0$

- La ecuación de Lagrange en η_k es $\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\eta}_k}\right) \frac{\partial \mathcal{L}}{\partial \eta_k} = 0$
- $\frac{\partial \mathcal{L}}{\partial \dot{\eta}_k} = \frac{1}{2} \sum_{i,j} T_{ij} \left(\delta_{ik} \dot{\eta}_j + \delta_{jk} \dot{\eta}_i \right) = \frac{1}{2} \left(\sum_j T_{kj} \dot{\eta}_j + \sum_i T_{ik} \dot{\eta}_i \right) = \sum_j T_{kj} \dot{\eta}_j$
- $\frac{\partial \mathcal{L}}{\partial \eta_k} = -\frac{1}{2} \sum_{i,j} (V_{ij} \delta_{ik} \eta_j + V_{ij} \delta_{jk} \eta_i) = -\sum_j V_{kj} \eta_j$
- la ecuación de movimiento para η_k queda $\sum_j (T_{kj}\ddot{\eta}_j + V_{kj}\eta_j) = 0$, donde cada término de la suma tiene la forma de una ecuación para un oscilador armónico.
- Como la solución es $\eta_j(t) = a_j e^{i\omega t}$ tenemos $\sum_j \left(-\omega^2 T_{kj} + V_{kj} \right) a_j e^{i\omega t} = 0 \quad \Rightarrow \sum_n \left(V_{mn} \omega^2 T_{mn} \right) a_n = 0$
- Es decir, para dos grados de libertad s=1,2 tendremos $m=1: (V_{11}-\omega^2 T_{11}) a_1 + (V_{12}-\omega^2 T_{12}) a_2 = 0$ $m=2: (V_{21}-\omega^2 T_{21}) a_1 + (V_{22}-\omega^2 T_{22}) a_2 = 0$
- En general, existe solución no trivial $\eta_j(t) \neq 0$ si $a_j \neq 0, \forall j$, cuando det $|V_{ij} \omega^2 T_{ij}| = 0$. Las frecuencias características ω deben ser reales para que las soluciones tengan sentido físico.

El Péndulo doble 1/3

Encontrar las frecuencias de oscilación del péndulo doble en el régimen de pequeñas oscilaciones. Sean dos masas puntuales $m_1=m_2=m$, suspendidas por dos varillas rígidas e inextensibles de longitud ℓ . Donde los angulos θ_1,θ_2 , son las desviaciones de las varillas respecto a la vertical. Suponga el que movimiento se desarrolla en un plan, la gravedad es uniforme y $\theta_1,\theta_2\ll 1$

Las posiciones de las masas son

$$x_1 = \ell \sin \theta_1 \approx \ell \theta_1, \quad y_1 = -\ell \cos \theta_1 \approx -\ell + \frac{1}{2}\ell \theta_1^2 \text{ y}$$

 $x_2 = x_1 + \ell \sin \theta_2 \approx \ell(\theta_1 + \theta_2), \quad y_2 = y_1 - \ell \cos \theta_2 \approx -2\ell + \frac{1}{2}\ell \theta_1^2 + \frac{1}{2}\ell \theta_2^2$

• La energía cinética $T = \frac{1}{2}m\dot{x}_1^2 + \frac{1}{2}m\dot{y}_1^2 + \frac{1}{2}m\dot{x}_2^2 + \frac{1}{2}m\dot{y}_2^2 \Rightarrow$ $T = \frac{1}{2}m\ell^2\dot{\theta}_1^2 + \frac{1}{2}m\ell^2(\dot{\theta}_1^2 + \dot{\theta}_2^2 + 2\dot{\theta}_1\dot{\theta}_2) = \frac{1}{2}m\ell^2\left(2\dot{\theta}_1^2 + \dot{\theta}_2^2 + 2\dot{\theta}_1\dot{\theta}_2\right)$

- La energía cinética $T = \frac{1}{2}m\dot{x}_1^2 + \frac{1}{2}m\dot{y}_1^2 + \frac{1}{2}m\dot{x}_2^2 + \frac{1}{2}m\dot{y}_2^2 \Rightarrow$ $T = \frac{1}{2}m\ell^2\dot{\theta}_1^2 + \frac{1}{2}m\ell^2(\dot{\theta}_1^2 + \dot{\theta}_2^2 + 2\dot{\theta}_1\dot{\theta}_2) = \frac{1}{2}m\ell^2\left(2\dot{\theta}_1^2 + \dot{\theta}_2^2 + 2\dot{\theta}_1\dot{\theta}_2\right)$
- Energía potencial $V = -mgy_1 mgy_2 pprox mg\ell\left(heta_1^2 + frac{1}{2} heta_2^2
 ight)$

- La energía cinética $\mathcal{T} = \frac{1}{2}m\dot{x}_1^2 + \frac{1}{2}m\dot{y}_1^2 + \frac{1}{2}m\dot{x}_2^2 + \frac{1}{2}m\dot{y}_2^2 \Rightarrow$ $\mathcal{T} = \frac{1}{2}m\ell^2\dot{\theta}_1^2 + \frac{1}{2}m\ell^2(\dot{\theta}_1^2 + \dot{\theta}_2^2 + 2\dot{\theta}_1\dot{\theta}_2) = \frac{1}{2}m\ell^2\left(2\dot{\theta}_1^2 + \dot{\theta}_2^2 + 2\dot{\theta}_1\dot{\theta}_2\right)$
- Energía potencial $V=-mgy_1-mgy_2pprox mg\ell\left(heta_1^2+rac{1}{2} heta_2^2
 ight)$
- El Lagrangiano $\mathcal{L} = T V = \frac{1}{2}m\ell^2 \left(2\dot{\theta}_1^2 + \dot{\theta}_2^2 + 2\dot{\theta}_1\dot{\theta}_2\right) \frac{1}{2}mg\ell \left(2\theta_1^2 + \theta_2^2\right)$

- La energía cinética $\mathcal{T} = \frac{1}{2}m\dot{x}_1^2 + \frac{1}{2}m\dot{y}_1^2 + \frac{1}{2}m\dot{x}_2^2 + \frac{1}{2}m\dot{y}_2^2 \Rightarrow$ $\mathcal{T} = \frac{1}{2}m\ell^2\dot{\theta}_1^2 + \frac{1}{2}m\ell^2(\dot{\theta}_1^2 + \dot{\theta}_2^2 + 2\dot{\theta}_1\dot{\theta}_2) = \frac{1}{2}m\ell^2\left(2\dot{\theta}_1^2 + \dot{\theta}_2^2 + 2\dot{\theta}_1\dot{\theta}_2\right)$
- Energía potencial $V = -mgy_1 mgy_2 pprox mg\ell\left(heta_1^2 + frac{1}{2} heta_2^2
 ight)$
- El Lagrangiano $\mathcal{L} = \mathcal{T} \mathcal{V} = \frac{1}{2}m\ell^2 \left(2\dot{\theta}_1^2 + \dot{\theta}_2^2 + 2\dot{\theta}_1\dot{\theta}_2\right) \frac{1}{2}mg\ell \left(2\theta_1^2 + \theta_2^2\right)$
- Si definimos $\eta_1=\theta_1$, y $\eta_2=\theta_2$, tendremos, respectivamente, la energía cinética y potencial de la forma

$$T = rac{1}{2}m\ell^2 \begin{pmatrix} \dot{\eta}_1 & \dot{\eta}_2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \dot{\eta}_1 \\ \dot{\eta}_2 \end{pmatrix}$$
 y $V = rac{1}{2}mg\ell \begin{pmatrix} \eta_1 & \eta_2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}$

- La energía cinética $T = \frac{1}{2}m\dot{x}_1^2 + \frac{1}{2}m\dot{y}_1^2 + \frac{1}{2}m\dot{x}_2^2 + \frac{1}{2}m\dot{y}_2^2 \Rightarrow$ $T = \frac{1}{2}m\ell^2\dot{\theta}_1^2 + \frac{1}{2}m\ell^2(\dot{\theta}_1^2 + \dot{\theta}_2^2 + 2\dot{\theta}_1\dot{\theta}_2) = \frac{1}{2}m\ell^2\left(2\dot{\theta}_1^2 + \dot{\theta}_2^2 + 2\dot{\theta}_1\dot{\theta}_2\right)$
- Energía potencial $V = -mgy_1 mgy_2 \approx mg\ell \left(\theta_1^2 + \frac{1}{2}\theta_2^2\right)$
- El Lagrangiano $\mathcal{L} = T - V = \frac{1}{2}m\ell^2\left(2\dot{ heta}_1^2 + \dot{ heta}_2^2 + 2\dot{ heta}_1\dot{ heta}_2\right) - \frac{1}{2}mg\ell\left(2 heta_1^2 + heta_2^2\right)$
- Si definimos $\eta_1 = \theta_1$, y $\eta_2 = \theta_2$, tendremos, respectivamente, la energía cinética y potencial de la forma

$$T = \frac{1}{2}m\ell^2 \begin{pmatrix} \dot{\eta}_1 & \dot{\eta}_2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \dot{\eta}_1 \\ \dot{\eta}_2 \end{pmatrix} y$$
 $V = \frac{1}{2}mg\ell \begin{pmatrix} \eta_1 & \eta_2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}$

• La ecuación de movimiento es $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \ddot{\eta}_1 \\ \ddot{\eta}_2 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = 0$

• Si buscamos soluciones de la forma $\eta_i(t)=a_ie^{i\omega t}$ tendremos det $\begin{bmatrix} mg\ell \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} - \omega^2 m\ell^2 \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \end{bmatrix}=0$, con lo cual

- Si buscamos soluciones de la forma $\eta_i(t) = a_i e^{i\omega t}$ tendremos det $\begin{bmatrix} mg\ell \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \omega^2 m\ell^2 \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \end{bmatrix} = 0$, con lo cual
- $\bullet \begin{vmatrix} g 2\ell\omega^2 & -\ell\omega^2 \\ -\ell\omega^2 & 2g \ell\omega^2 \end{vmatrix} = (g 2\ell\omega^2)(2g \ell\omega^2) (\ell\omega^2)^2 = 0$

- Si buscamos soluciones de la forma $\eta_i(t) = a_i e^{i\omega t}$ tendremos det $\begin{bmatrix} mg\ell \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \omega^2 m\ell^2 \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \end{bmatrix} = 0$, con lo cual
- $2g^2 3g\ell\omega^2 + 2\ell^2\omega^4 \ell^2\omega^4 = 0 \Rightarrow 2g^2 3g\ell\omega^2 + \ell^2\omega^4 = 0$

- Si buscamos soluciones de la forma $\eta_i(t) = a_i e^{i\omega t}$ tendremos det $\begin{bmatrix} mg\ell \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \omega^2 m\ell^2 \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \end{bmatrix} = 0$, con lo cual
- $\bullet \ \begin{vmatrix} g 2\ell\omega^2 & -\ell\omega^2 \\ -\ell\omega^2 & 2g \ell\omega^2 \end{vmatrix} = (g 2\ell\omega^2)(2g \ell\omega^2) (\ell\omega^2)^2 = 0$
- $2g^2 3g\ell\omega^2 + 2\ell^2\omega^4 \ell^2\omega^4 = 0 \Rightarrow 2g^2 3g\ell\omega^2 + \ell^2\omega^4 = 0$
- $\omega^2 = \frac{3g\ell \pm \sqrt{(3g\ell)^2 8g^2\ell^2}}{2\ell^2} = \frac{3g \pm \sqrt{9g^2 8g^2}}{2\ell} = \frac{3g \pm g}{2\ell}$

- Si buscamos soluciones de la forma $\eta_i(t) = a_i e^{i\omega t}$ tendremos det $\begin{bmatrix} mg\ell \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \omega^2 m\ell^2 \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \end{bmatrix} = 0$, con lo cual
- $\bullet \begin{vmatrix} g 2\ell\omega^2 & -\ell\omega^2 \\ -\ell\omega^2 & 2g \ell\omega^2 \end{vmatrix} = (g 2\ell\omega^2)(2g \ell\omega^2) (\ell\omega^2)^2 = 0$
- $2g^2 3g\ell\omega^2 + 2\ell^2\omega^4 \ell^2\omega^4 = 0 \Rightarrow 2g^2 3g\ell\omega^2 + \ell^2\omega^4 = 0$
- $\omega^2 = \frac{3g\ell \pm \sqrt{(3g\ell)^2 8g^2\ell^2}}{2\ell^2} = \frac{3g \pm \sqrt{9g^2 8g^2}}{2\ell} = \frac{3g \pm g}{2\ell}$
- y las frecuencias de oscilación son: $\omega_1^2 = \frac{4g}{2\ell} = \frac{2g}{\ell}$, y $\omega_2^2 = \frac{2g}{2\ell} = \frac{g}{\ell}$

- Si buscamos soluciones de la forma $\eta_i(t) = a_i e^{i\omega t}$ tendremos det $\begin{bmatrix} mg\ell \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \omega^2 m\ell^2 \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \end{bmatrix} = 0$, con lo cual
- $\bullet \begin{vmatrix} g 2\ell\omega^2 & -\ell\omega^2 \\ -\ell\omega^2 & 2g \ell\omega^2 \end{vmatrix} = (g 2\ell\omega^2)(2g \ell\omega^2) (\ell\omega^2)^2 = 0$
- $2g^2 3g\ell\omega^2 + 2\ell^2\omega^4 \ell^2\omega^4 = 0 \Rightarrow 2g^2 3g\ell\omega^2 + \ell^2\omega^4 = 0$
- $\omega^2 = \frac{3g\ell \pm \sqrt{(3g\ell)^2 8g^2\ell^2}}{2\ell^2} = \frac{3g \pm \sqrt{9g^2 8g^2}}{2\ell} = \frac{3g \pm g}{2\ell}$
- y las frecuencias de oscilación son: $\omega_1^2=\frac{4g}{2\ell}=\frac{2g}{\ell}$, y $\omega_2^2=\frac{2g}{2\ell}=\frac{g}{\ell}$
- Para ω_1 : masas oscilan en oposición de fase Para ω_2 : masas oscilan en fase

Oscilaciones en 1D:

- Desarrollamos $V_{\rm ef}(q)$ en serie de Taylor alrededor del punto q_0 .
- Despreciando órdenes superiores: $V_{\rm ef}(q) pprox V(q_0) + {1\over 2}K\eta^2, \quad \eta = q q_0$
- y la ecuación de movimiento: $\ddot{\eta} + \omega^2 \eta = 0$, con $\omega^2 = \frac{\kappa}{c} = \frac{1}{c} \left. \frac{d^2 V}{dq^2} \right|_{q_0}$

Oscilaciones en 1D:

- Desarrollamos $V_{\rm ef}(q)$ en serie de Taylor alrededor del punto q_0 .
- Despreciando órdenes superiores: $V_{\rm ef}(q) pprox V(q_0) + \frac{1}{2}K\eta^2, \quad \eta = q q_0$
- y la ecuación de movimiento: $\ddot{\eta} + \omega^2 \eta = 0$, con $\omega^2 = \frac{K}{c} = \frac{1}{c} \left. \frac{d^2 V}{dq^2} \right|_{q_0}$

Péndulo Simple

- Para ángulos pequeños: $\cos\theta \approx 1 \theta^2/2$, y $\mathcal{L} \approx \frac{1}{2} m \ell^2 \dot{\theta}^2 \frac{1}{2} m g \ell \theta^2$
- y la frecuencia: $\omega = \sqrt{g/\ell}$

Oscilaciones en 1D:

- Desarrollamos $V_{\rm ef}(q)$ en serie de Taylor alrededor del punto q_0 .
- Despreciando órdenes superiores: $V_{\rm ef}(q) pprox V(q_0) + \frac{1}{2}K\eta^2, \quad \eta = q q_0$
- y la ecuación de movimiento: $\ddot{\eta} + \omega^2 \eta = 0$, con $\omega^2 = \frac{K}{c} = \frac{1}{c} \left. \frac{d^2 V}{dq^2} \right|_{q_0}$

Péndulo Simple

- Para ángulos pequeños: $\cos\theta \approx 1-\theta^2/2$, y $\mathcal{L}\approx \frac{1}{2}m\ell^2\dot{\theta}^2-\frac{1}{2}mg\ell\theta^2$
- y la frecuencia: $\omega = \sqrt{g/\ell}$

Oscilaciones con Varios Grados de Libertad:

- Expandir el potencial y la energía cinética cerca del equilibrio: $V \approx \frac{1}{2} \sum_{ii} V_{ij} \eta_i \eta_j$, $T \approx \frac{1}{2} \sum_{ii} T_{ij} \dot{\eta}_i \dot{\eta}_j$
- Lagrangiano linealizado: $\mathcal{L} = \frac{1}{2} \sum_{ij} (T_{ij} \dot{\eta}_i \dot{\eta}_j V_{ij} \eta_i \eta_j)$
- La ecuación de movimiento para $\dot{\eta_k}$ queda $\sum_j \left(T_{kj} \ddot{\eta}_j + V_{kj} \eta_j \right) = 0$
- Si la solución es $\eta_j(t)=a_je^{i\omega t}$ tenemos $\sum_n\left(V_{mn}-\omega^2T_{mn}
 ight)a_n=0$
- Existe solución $\eta_j(t) \neq 0$ si $a_j \neq 0, \forall j$, cuando det $\left| V_{ij} \omega^2 T_{ij} \right| = 0$.
- ullet Las frecuencias ω deben ser reales.

Oscilaciones en 1D:

- Desarrollamos $V_{\rm ef}(q)$ en serie de Taylor alrededor del punto q_0 .
- Despreciando órdenes superiores: $V_{\rm ef}(q) pprox V(q_0) + \frac{1}{2}K\eta^2, \quad \eta = q q_0$
- y la ecuación de movimiento: $\ddot{\eta} + \omega^2 \eta = 0$, con $\omega^2 = \frac{K}{c} = \frac{1}{c} \left. \frac{d^2 V}{dq^2} \right|_{q_0}$

Péndulo Simple

- Para ángulos pequeños: $\cos\theta \approx 1-\theta^2/2$, y $\mathcal{L}\approx \frac{1}{2}m\ell^2\dot{\theta}^2-\frac{1}{2}mg\ell\theta^2$
- y la frecuencia: $\omega = \sqrt{g/\ell}$

Oscilaciones con Varios Grados de Libertad:

- Expandir el potencial y la energía cinética cerca del equilibrio: $V \approx \frac{1}{2} \sum_{ii} V_{ij} \eta_i \eta_j$, $T \approx \frac{1}{2} \sum_{ii} T_{ij} \dot{\eta}_i \dot{\eta}_j$
- Lagrangiano linealizado: $\mathcal{L} = \frac{1}{2} \sum_{ij} (T_{ij} \dot{\eta}_i \dot{\eta}_j V_{ij} \eta_i \eta_j)$
- La ecuación de movimiento para $\dot{\eta_k}$ queda $\sum_j \left(T_{kj} \ddot{\eta}_j + V_{kj} \eta_j \right) = 0$
- Si la solución es $\eta_j(t) = a_j e^{i\omega t}$ tenemos $\sum_n (V_{mn} \omega^2 T_{mn}) a_n = 0$
- Existe solución $\eta_j(t) \neq 0$ si $a_j \neq 0, \forall j$, cuando det $\left| V_{ij} \omega^2 T_{ij} \right| = 0$.
- ullet Las frecuencias ω deben ser reales.
- **Péndulo Doble**: Sistema con dos coordenadas generalizadas θ_1, θ_2

Para la discusión

1. Un péndulo triple consiste en tres masas, λm , m y m, unidas por sin masa, varillas de longitud I. Determine el valor del parámetro λ tal que una de las frecuencias de pequeñas oscilaciones de este sistema sea igual a la frecuencia de pequeñas amplitudes de un péndulo simple de longitud I/2.

2. Considere dos péndulos de longitud l y masa m cada uno, acoplados por un resorte de constante k. Encuentre las frecuencias de pequeñas oscilaciones del sistema.