CODE

- stress in the longitudinal bars of at least $1.25f_y$ and a strength reduction factor ϕ of 1.0, N·mm
- M_{sa} = maximum moment in wall due to service loads, excluding $P\Delta$ effects, N·mm
- M_{sc} = factored slab moment that is resisted by the column at a joint, N·mm
- M_u = factored moment at section, N·mm
- M_{ua} = moment at midheight of wall due to factored lateral and eccentric vertical loads, not including $P\Delta$ effects, N·mm
- M_1 = lesser factored end moment on a compression member, N·mm
- M_{1ns} = factored end moment on a compression member at the end at which M_1 acts, due to loads that cause no appreciable sidesway, calculated using a first-order elastic frame analysis, N·mm
- M_{1s} = factored end moment on compression member at the end at which M_1 acts, due to loads that cause appreciable sidesway, calculated using a first-order elastic frame analysis, N·mm
- M_2 = greater factored end moment on a compression member. If transverse loading occurs between supports, M_2 is taken as the largest moment occurring in member. Value of M_2 is always positive, N·mm
- $M_{2,min}$ = minimum value of M_2 , N·mm
- M_{2ns} = factored end moment on compression member at the end at which M_2 acts, due to loads that cause no appreciable sidesway, calculated using a first-order elastic frame analysis, N·mm
- M_{2s} = factored end moment on compression member at the end at which M_2 acts, due to loads that cause appreciable sidesway, calculated using a first-order elastic frame analysis, N·mm
- n = number of items, such as, bars, wires, monostrand anchorage devices, or anchors
- n_{ℓ} = number of longitudinal bars around the perimeter of a column core with rectilinear hoops that are laterally supported by the corner of hoops or by seismic hooks. A bundle of bars is counted as a single bar
- n_s = number of stories above the critical section
- N_a = nominal bond strength in tension of a single adhesive anchor, N
- N_{ag} = nominal bond strength in tension of a group of adhesive anchors, N
- N_b = basic concrete breakout strength in tension of a single anchor in cracked concrete, N
- N_{ba} = basic bond strength in tension of a single adhesive anchor, N
- N_c = resultant tensile force acting on the portion of the concrete cross section that is subjected to tensile stresses due to the combined effects of service loads and effective prestress, N

COMMENTARY

 n_t = number of threads per mm

N = tension force acting on anchor or anchor group, N

aci