Université Grenoble-ALPES MSIAM

Signal and Image processing

Cecile. Amblard@imag. fr

Atoms

The time frequency atoms are functions $\phi_{\gamma}(t) = \phi(t, \gamma)$ where $t \in \mathbb{R}$ and $\gamma \in \mathbb{R}^d$, $d \in \mathbb{N}$. We assume that $||\phi_{\gamma}||_{\mathbb{L}^2(\mathbb{R})} = 1$ These atoms allow to analysis a function $f \in \mathbb{L}^2(\mathbb{R})$ via the time frequency transform:

$$Tf(\gamma) = \int_{-\infty}^{+\infty} f(t) \overline{\phi_{\gamma}(t)} dt$$

1. Show that

$$\int_{-\infty}^{+\infty} f(t) \overline{\phi_{\gamma}(t)} dt = \int_{-\infty}^{+\infty} \hat{f}(\xi) \overline{\hat{\phi}_{\gamma}(\xi)} d\xi$$

2. Show that if $\phi_{\gamma}(t)$ is null outside a neigbourhoud v(u) of u and $\hat{\phi}_{\gamma}(\xi)$ is null outside a neigbourhoud $v(\omega)$ of ω , then $Tf(\gamma)$ uses only the values of f for $t \in v(u)$ and $\lambda \in v(\omega)$.

 $|\phi_{\gamma}(t)|^2$ can be considered as a probability distribution centered in $u_t(\gamma)$ and with variance $\sigma_t^2(\gamma)$ where:

$$\mu_t(\gamma) = \int_{-\infty}^{+\infty} t |\phi_{\gamma}(t)|^2 dt$$
 and $\sigma_t^2(\gamma) = \int_{-\infty}^{+\infty} (t - u_{\gamma})^2 |\phi_{\gamma}(t)|^2 dt$

 $|\hat{\phi}_{\gamma}(\xi)|^2$ can be considered as a probability distribution centered in $\mu_{\xi}(\gamma)$ and with variance $\sigma_{\xi}^2(\gamma)$ where:

$$\mu_{\xi}(\gamma) = \int_{-\infty}^{+\infty} \xi |\hat{\phi}_{\gamma}(\xi)|^2 d\xi \text{ and } \sigma_{\xi}^2(\gamma) = \int_{-\infty}^{+\infty} (\xi - \omega_{\gamma})^2 |\hat{\phi}_{\gamma}(\xi)|^2 d\xi.$$

We define in the time frequency space (t, ξ) , the Heisenberg's box of ϕ_{γ} as a rectangle of center $(\mu_t(\gamma), \mu_{\xi}(\gamma))$ and dimension $\sigma_t(\gamma) * \sigma_{\xi}(\gamma)$.

Let consider the Short Time Fourier transform:

$$\phi_{\gamma}(t) = w(t-b)e^{2i\pi\lambda t}$$
 with $\gamma = (b,\lambda)$

where w is odd.

Let consider the continuous wavelet transform::

$$\phi_{\gamma}(t) = \frac{1}{\sqrt{a}} \psi\left(\frac{t-b}{a}\right) \text{ with } \gamma = (b,a)$$

where $\psi(t)$ is centered at 0 ($|\psi(t)|^2$ is odd) and $\hat{\psi}(\xi) = 0, \forall \xi < 0$ (analytic wavelet).

- 1. Show that the Heisenberg's box of the Short Time Fourier Transform (STFT) atoms is centered at $\gamma = (b, \lambda)$ and that its dimensions do not depend on γ .
- 2. Show that the Heisenberg's box of the STFT atoms is centered at $(b, \frac{\eta}{a})$ with

$$\eta = \int_0^{+\infty} \xi |\hat{\psi}(\xi)|^2 d\xi$$

and that its dimension depend on a.

- 3. Represent in the time frequency space all these boxes and compare them.
- 4. What is about the Fourier Transform?