

数据挖掘

第2章 认识数据

2024年9月

01 数据对象和属性

02 数据统计与可视化

03 数据相似性和相异性度量

数据对象

- 数据集由数据对象组成
- 一个数据对象代表一个实体
- 例子
 - 销售数据库: 客户, 商店物品, 销售额,
 - 医疗数据库: 患者, 治疗信息
 - 大学数据库: 学生, 教授, 课程信息
- 称为样本,示例,实例,数据点, 对象,元组(tuple)

Attributes

Tid	Refund	Marital Taxable Status Income		Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

数据属性

- 数据对象所描述的属性
 - 数据库中的行 >数据对象
 - 列 > "属性"

Attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single 70K		No
4	Yes	Married 120K		No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced 220K		No
8	No	Single	85K	Yes
9	No	Married 75K		No
10	No	Single 90K		Yes

Objects

• 常见的四类属性:

- 标称 (Nominal)
 - Examples: ID numbers, zip codes
- 序数 (Ordinal)
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short}

• 常见的四类属性:

- 区间 (Interval)
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.

- •比率 (Ratio)
 - Examples: temperature in Kelvin, length, time, counts

- 标称: 类别, 状态
 - Hair_color={黑色,棕色,金色,红色, 红褐色,灰色,白色}
 - 婚姻状况, 职业, 身份证号码, 邮政编码
- 二进制
 - 只有2个状态 (0和1) 的属性
 - 对称二进制两种
 - 例如,性别
 - 不对称的二进制
 - 例如, 医疗测试(正面与负面)

Attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single 70K		No
4	Yes	Married	120K	No
5	No	Divorced 95K		Yes
6	No	Married 60K		No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

序数

- 价值观有一个有意义的顺序(排名),但不知道连续值之间的大小。
- 大小={小,中,大},等级,成绩排名

Attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single 70K		No
4	Yes	Married 120K		No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced 220K		No
8	No	Single	85K	Yes
9	No	Married 75K		No
10	No	Single 90K		Yes

Objects

- 区间标度属性
 - 以单位长度顺序性度量
 - 值有序, 比如温度、日历等
 - 不存在0点,倍数没有意义,比如我们 平常通常不说2000年是1000年的2倍

Attributes

Tid	Refund	Marital Taxabl Status Income		Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	Single 90K		

- 比率标度属性
 - 具有固定零点的数值属性,有序且可以计算倍数
 - 长度、重量等

Attributes

Tid	Refund	Marital Taxable Status Income		Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	Single 90K		

Objects

- 常见的四类属性:
 - □标称 (Nominal)
 - ✓ 标称类型的数据分类模型有哪些?
 - 口序数 (Ordinal)
 - ✓ 序数类型的数据求均值是否合理? 能否用K-means算法?
 - □区间 (Interval)
 - ✓区间类型的特征是否可以采用乘法原则?
 - 口比率 (Ratio)
 - ✓ 哪些数据挖掘算法适用于比率标定属性?

01 数据对象和属性

02 数据统计与可视化

03 数据相似性和相异性度量

数据统计

- 动机:为了更好地理解数据: 集中趋势,分布
- 数据的统计特性
 - 最大值,最小值,均值,中位数, 方差等。

当前薪金

性别	精资分组	均值	1/1	极小值	极大值	合计 N 的 %
女	低收人	17850.00	32	15750	19950	6.8%
	中收入	26046.07	173	20100	38850	36.5%
	高收入	49611.36	11	40800	58125	2.3%
	总计	26031.92	216	15750	58125	45.6%
男	低收入	19650.00	1	19650	19650	.2%
	中收入	29719.94	164	21300	39900	34.6%
	高收入	62346.88	93	40050	135000	19.6%
	总计	41441.78	258	19650	135000	54.4%
总计	低收入	17904.55	33	15750	19950	7.0%
	中收入	27833.95	337	20100	39900	71.1%
	高收入	60999.86	104	40050	135000	21.9%
	总计	34419.57	474	15750	135000	100.0%

中性化趋势度量:均值、中位数和众数

- 平均值一组数据的均衡点。
 - 均值对离群值很敏感。
- 因此,中位数和截断均值也很常用。
- 众数指一组数据中出现次数最多的 数据值。 $\max(x) = \overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$

$$median(x) = \begin{cases} x_{(r+1)} & \text{if } m \text{ is odd, i.e., } m = 2r + 1 \\ \frac{1}{2}(x_{(r)} + x_{(r+1)}) & \text{if } m \text{ is even, i.e., } m = 2r \end{cases}$$

经验公式 $mean-mode=3\times(mean-median)$

0.035

中性化趋势度量:均值、中位数和众数

• 中位数,均值和对称模式,正面和负面的偏斜数据

分布趋势度量

- 方差和标准差
- 分位数
 - 分位数: Q1 (第25百分位), Q3 (第75百分位)
 - 分位数极差: IQR= Q3 Q1
 - 离群点:通常情况下,一个值高于 Q3+/低于Q1-1.5×IQR

分布趋势度量

- 箱线图 (boxplot)
 - min, Q1, median, Q3, max;单独添加胡须表示离群点

max = Q3+1.5*IQR min = Q1- 1.5*IQR

分布趋势度量—例子

- 现在一家电商公司要卖两个同类型的商品,它们的一周销量(单位:个)如下:
 - 商品A: 10, 10, 10, 11, 12, 12, 12
 - 商品B: 3, 5, 6, 11, 16, 17, 19
- 它们的平均数一样,中位数也一样,可它们的真实情况呢?

$$s^{2} = \frac{(x_{1} - \overline{X})^{2} + (x_{2} - \overline{X})^{2} + (x_{3} - \overline{X})^{2} + \dots + (x_{n} - \overline{X})^{2}}{n}$$

上述公式是总体数据集的方差计算,当数据集为部分抽样样本时,n应该改为n-1。
 数据集足够大时,两者的误差也可以忽略不计。

盒状图能够分析多个属性数据的离散度差异性

- IRIS (sepal:萼片,petal:花瓣)
 - sepal length in cm
 - sepal width in cm
 - petal length in cm
 - petal width in cm
 - **class:**
 - Iris Setosa
 - Iris Versicolour
 - Iris Virginica


```
6.7,3.0,5.2,2.3,Iris-virginica
6.3,2.5,5.0,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-versicolor
6.4,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
```


参考: https://blog.csdn.net/H_lukong/article/details/90139700

- □盒状图能够分析多个属性数据的离散度差异性
- □ 如果希望分析单个属性在各个区间的变化分布怎么办?
 - 例如: 如果希望分析语文成绩在每个分数段的变化分布

数据可视化 —— 直方图分析

- 直方图
 - 用来分析单个属性在各个区间变化分布

- IRIS (sepal:萼片,petal:花瓣)
 - sepal length in cm
 - sepal width in cm
 - petal length in cm
 - petal width in cm
 - **class:**
 - Iris Setosa
 - Iris Versicolour
 - Iris Virginica


```
6.7,3.0,5.2,2.3,Iris-virginica
6.3,2.5,5.0,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-versicolor
6.4,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
```

数据可视化 —— 直方图分析案例

参考: https://blog.csdn.net/H_lukong/article/details/90139700

数据可视化 —— 直方图分析案例

分类算法特征分析: 我们可以看到花萼宽度在3个类别下的分布具有差异

数据可视化 —— 直方图分析案例

• 直方图: 用来分析单个属性在各个区间变化分布

如果希望分析2个属性数据的关联关系,怎么办?

例如:如果希望分析花瓣长度和花萼长度的关联关系

数据可视化 —— 散点图分析案例

- 散点图
 - 用来显示两组数据的相关性分布

- IRIS (sepal:萼片,petal:花瓣)
 - sepal length in cm
 - sepal width in cm
 - petal length in cm
 - petal width in cm
 - **class:**
 - Iris Setosa
 - Iris Versicolour
 - Iris Virginica


```
6.7,3.0,5.2,2.3,Iris-virginica
6.3,2.5,5.0,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-versicolor
6.4,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
```

数据可视化 —— 散点图分析案例

参考: https://www.cnblogs.com/star-zhao/p/9847082.html

散点图分析在数值预测中的应用-房价预测

房屋销售价格以及房屋的基本信息建立模型,来预测在此期间其他房屋的销售价格

出佳	出佳			₽₽	/☆₩		中巳	7 11 소소	サイチ	7 + 45	收信		
销售 日期	销售 价格	卧室数	浴室数	房屋 面积	停车 面积	楼层数	房屋 评分	建筑 面积	地下室面积	建筑 年份	修复 年份	纬度	经度
20150302	545000	3	2.25	1670	6240	1	8	1240		1974		47.6413	-122.113
20150302	785000	J	2.25	3300	10514	2	10	3300		1974	0	47.6323	-122.113
20150211	765000	3			5283		9		0	2007	0		-122.000
			3.25	3190		2		3190			0	47.5534	
20141103	720000	5	2.5	2900	9525	2	9	2900		1989	0	47.5442	-122.138
20140603	449500	5	2.75	2040	7488	1	7	1200	840	1969	0	47.7289	-122.172
20150506	248500		1	780	10064	1	7	780		1958	0	47.4913	-122.318
20150305	675000	4	2.5	1770	9858	1	8	1770		1971	0	47.7382	-122.287
20140701	730000	2	2.25	2130	4920	1.5	7	1530	600	1941	0	47.573	-122.409
20140807	311000	2	1	860	3300	1	6	860		1903	0	47.5496	-122.279
20141204	660000	2	1	960	6263	1	6	960		1942	0	47.6646	-122.202
20150227	435000	2	1	990	5643	1	7	870	120	1947	0	47.6802	-122.298
20140904	350000	3	1	1240	10800	1	7	1240	0	1959	0	47.5233	-122.185
20140902	385000	3	2.25	1630	1598	3	8	1630	0	2008	0	47.6904	-122.347
20150413	235000	2	1	930	10505	1	6	930	0	1930	0	47.4337	-122.329
20140930	350000	3	1	1300	10236	1	6	1300	0	1971	0	47.5028	-121.77
20150507	1350000	4	1.75	2000	3728	1.5	9	1820	180	1926	0	47.643	-122.299
20140530	459900	3	1.75	2580	11000	1	7	1290	1290	1951	0	47.5646	-122.181
20140723	430000	6	3	2630	8800	1	7	1610	1020	1959	0	47.7166	-122.293
20141003	718000	5	2.75	2930	7663	2	9	2930		2013	0	47.5308	-122.184
					-								

基本idea:哪些属性跟房价相关

散点图分析在数值预测中的应用-房价预测

- 房屋面积
- 停车面积
- 建筑面积
- 地下室面积

越是强相关,说明该属性 对预测房价更有作用

01 数据对象和属性

02 数据统计与可视化

03 数据相似性和相异性度量

度量数据的相似性和相异性

• 数据矩阵

• N个数据,p个维度

$$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$$

• 相异矩阵

- N个数据点, 记录两点之间的距离
- 三角矩阵

$$\begin{bmatrix} 0 & & & & & \\ d(2,1) & 0 & & & \\ d(3,1) & d(3,2) & 0 & & \\ \vdots & \vdots & \vdots & \vdots & \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

度量数据的相似性和相异性

- 相似度Similarity
 - 度量两个数据对象有多相似
 - 值越大就表示数据对象越相似
 - 通常取值范围为 [0,1]
- 相异度Dissimilarity (e.g., distance)
 - 度量两个数据对象的差别程度
 - 值越小就表示数据越相似
 - 最小相异度通常为0
- 邻近性Proximity
 - 指相似度或者相异度

标称属性的邻近性度量

• 标称属性可以取两个或多个状态

• 方法: 简单匹配

• m: 匹配次数, p: 属性总数

$$d(i,j) = \frac{p-m}{p}$$

id	属性1	属性2	属性3	属性4
1	弹琴	跳高	唱歌	背诗
2	弹琴	跳远	跳舞	读书

$$d(1,2) = \frac{4-1}{4}$$

• 二值属性的邻近性度量例子

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	\mathbf{Y}	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender 是对称属性,其余都是非对称属性,假设只计算非对称属性
- Y和P的值为1,N的值为0

```
d(jack, mary) = ?

d(jack, jim) = ?

d(jim, mary) = ?
```

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	\mathbf{Y}	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

● 一个邻接表		Obj	$\operatorname{ect} j$	
		1	0	sum
01.	1	q	r	q + r
Object i	0	s	t	s+t
	sum	q + s	r+t	p

• 距离度量对称的二值变量

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	\mathbf{Y}	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

Object jObject jObject iObject i

• 距离度量对称的二值变量

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

• 距离度量非对称的二值变量

$$d(i,j) = \frac{r+s}{q+r+s}$$

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

Object
$$j$$
Object j
Object i

• 距离度量对称的二值变量

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

• 距离度量非对称的二值变量

$$d(i,j) = \frac{r+s}{q+r+s}$$

通常正常用户占大多数,因此t远大于q,使得t 作为分母,将导致值非常小,而失去比较意义

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

Object
$$j$$
Object j
Object i

• 距离度量对称的二值变量

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

• 距离度量非对称的二值变量

$$d(i,j) = \frac{r+s}{q+r+s}$$

$$sim_{Jaccard}(i,j) = \frac{q}{q+r+s}$$

填空题

• 二值属性的邻近性度量例子

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	\mathbf{M}	\mathbf{Y}	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	\mathbf{M}	Y	P	N	N	N	N

- Gender 是对称属性,其余都是非对称属性,假设只计算非对称属性
- Y和P的值为1,N的值为0

```
d(jack, mary) = [填空1]

d(jack, jim) = [填空2]

d(jim, mary) = [填空3]
```

• 二值属性的邻近性度量例子

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender 是对称属性,其余都是非对称属性,假设只计算非对称属性
- Y和P的值为1,N的值为0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

point	attribute 1	attribute 2
x1	1	2
x2	3	5
x 3	2	0
x4	4	5

point	attribute 1	attribute 2
x1	1	2
x2	3	5
х3	2	0
x4	4	5

• 闵可夫斯基距离

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

• 性质

- d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (正定性)
- d(i, j) = d(j, i) (对称性)
- d(i, j) ≤ d(i, k) + d(k, j) (三角不等式)

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

● h = 1: 曼哈顿距离

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

● h = 2: 欧氏距离

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

● h →∞. "上确界距离".

$$d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{if} - x_{jf}|$$

填空题

point	attribute 1	attribute 2
x1	1	2
x2	3	5
x3	2	0
x4	4	5

• h = 1: 曼哈顿距离, 求x1和x2之间的曼哈顿距离: [填空1]

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

• h = 2: 欧氏距离, 求x1和x2之间的欧式距离: [填空2]

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

• $h \to \infty$. "上确界距离"., 求x1和x2之间的上确界距离: [填空3]

$$d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{if} - x_{jf}|$$

point	attribute 1	attribute 2
x1	1	2
x 2	3	5
х3	2	0
x4	4	5

曼哈顿距离 (L₁)

L	x1	x2	x3	x4
x 1	0			
x2	5	0		
x 3	3	6	0	
x4	6	1	7	0

欧氏距离 (L₂)

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

上确界距离

L_{∞}	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

余弦相似性

• 余弦相似性

• 一个文档可以用词频向量来表示(注意:词的对齐)

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

Baseball wins a score in the season (0,0,1,1,0,1,1,0,1)

In the season, soccer loss a score (0,0,0,0,1,0,1,0,1,1)

• 余弦度量

cos(d1, d2) = (d1 • d2) / | | d1 | | | | d2 | | ,

填空题

• 余弦相似性

• 一个文档可以用词频向量来表示 (注意: 词的对齐)

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

Baseball wins a score in the season (0,0,1,1,0,1,1,0,1)

In the season, soccer loss a score (0,0,0,0,1,0,1,0,1,1)

• 余弦度量

•
$$cos(d1, d2) = (d1 • d2) / ||d1|| ||d2||$$
,

$$d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$

 $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

· 求这两篇文档的余弦相似性: [填空1]

余弦相似性

$$\cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||,$$

• 例如:

$$d1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$
$$d2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$$

$$d1 \bullet d2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25$$

$$||d1|| = (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)0.5 = (42)0.5 = 6.481$$

$$||d2|| = (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)0.5 = (17)0.5 = 4.12$$

$$\cos(d1, d2) = 0.94$$

扫一扫二维码, 加入群聊

