模式识别实验一

实验人:叶平

实验内容:

p.127 Prob. 1

- (a)、编写程序,对实验数据中的W1的三个特征进行计算,求解最大似然估计u和 δ ;
- (b)、处理二维数据,处理 W1 中的任意两个特征的组合;
- (c)、处理三维数据,处理 W1 中的三个特征的组合;
- (d)、在这三维高斯模型可分离的条件下,编写程序估计类别 w2 中的均值和协方差矩阵中的 3 个参数:
- (e)、比较前4种方式计算出来的均值的异同,并加以解释;
- (f)、比较前4种方式计算出来的方差的异同,并加以解释。

p.129 Prob. 9

- (a)、编写用 FISHER 线性判别方法,对三维数据求最优方向 w 的通用程序;
- (b)、对表格中的类别 W2 和 W3, 计算最优方向 w;
- (c)、画出表示最优方向 w 的直线, 并且标记出投影后的点在直线上的位置;
- (d)、在这个子空间中,对每种分布用一维高斯函数拟合,并且求分类决策面;
- (e)、(b)中得到的分类器的训练误差是什么?
- (f)、为了比较,使用非最优方向 w=(1.0,2.0,-1.5)'重复(d)(e)两个步骤。在这个非最优子空间
- 中,训练误差是什么。

实验结果:

Prob. 1

(a)、运行实验一下 Res.m 文件,可以得到运行结果为:

```
x1的均值, 方差分别为:
```

-0.070900 0.906177

x2的均值,方差分别为:

-0.604700 4.200715

x3的均值, 方差分别为:

-0.911000 4.541949

(b)、运行实验一下 Res.m 文件,可以得到运行结果为:

x1,x2 特征组合的均值为:

E12 =

-0.0709 -0.6047

x1,x2 特征组合的协方差为:

S12 =

0.9062 0.5678

0.5678 4.2007

x2,x3 特征组合的均值为:

E23 =

-0.6047 -0.9110

x2, x3 特征组合的协方差为:

S23 =

4.2007 0.7337

0.7337 4.5419

x1,x3 特征组合的均值为:

E13 =

-0.0709 -0.9110

x1,x3 特征组合的协方差为:

S13 =

0.9062 0.3941

0.3941 4.5419

(c)、运行实验一下 Res.m 文件,可以得到运行结果为:

三维情况下的均值为:

E3d =

-0.0709 -0.6047 -0.9110

三维情况下的协方差为:

S3d =

0.9062 0.5678 0.3941 0.5678 4.2007 0.7337 0.3941 0.7337 4.5419

(d)、运行实验一下 Res.m 文件,可以得到运行结果为:

W2在三维情况下的均值为:

Ew2 =

-0.1126 0.4299 0.0037

W2在三维情况下的协方差为:

Sw2 =

0.0539 0 0 0 0.0460 0 0 0 0.0073

整理上述结果可得:

对单个特征求解均值和方差时

W1 的特征	均值	方差
X1	-0.070900	0.906177
X2	-0.604700	4.200715
X3	-0.911000	4.541949

对俩个组合特征求解均值和协方差

W1 的特征组合	均值	协方差		
X1 X2	(0 0700	0.9062 0.5678		
	(-0.0709 , -0.6047)	0.5678 4.2007		
X1 X3	(0.0700	0.9062 0.3941		
	(-0.0709 , -0.9110)	0.3941 4.5419		
X2 X3	(0 (047	4.2007 0.7337		
	(-0.6047 , -0.9110)	0.7337 4.5419		

三个特征时的均值和协方差

	均值			协方差			
W1	-0.0709 -0.6047		0.9062		0.5678	0.3941	
		-0.6047	-0.9110	0.56	678	4.2007	0.7337
				0.39	941	0.7337	4.5419
W2	-0.1126 0.4299		0.0037	0	.0539	0	0
		0.4299			0	0.0460	0
				0	0	0.0073	

(e) (f)

由表可以看出,一维和多维求均值都相等,说明均值独立。协方差对角元素和一维的方差相等,若相互独立,则协方差为对角阵。

Prob. 2

(a)、Fisher 线性判别的方向 W, 计算公式如下:

$$W = S_w^{-1}(\overrightarrow{m_1} - \overrightarrow{m_2}),$$

其中:
$$S_w = S_1 + S_2,$$
$$S_i = \sum_{Di} (x - m_i) (x - m_i)^T$$
$$m_i = \frac{1}{n_i} \sum_{Di} X$$

其中详细代码见实验一下FLDA.m 文件。

(b)、运行实验一下 FisherRes.m 文件,求得最优方向 w 为:

由fisher线性判别计算出来的最优方向为:

w =

- -0.3832
 - 0.2137
- -0.0767

fisher条件下最优w分类面为 x=0.020478 fisher条件下最优w下误差率为0.200000 fisher条件下非最优w的分类面为 x=-0.062467 fisher条件下非最优w下误差率为0.250000

(c)、最优方向 w 的直线如下,其中绿色,蓝色的点表示原来的点,红色的点表示为绿色的点在直线上的投影,黑色的点为蓝色的点在直线上的投影。

(d)(e)、在这个子空间中,对每种分布用一维高斯函数拟合,并且求分类决策面;

最优 w 的分类面为 x=0.020478; 误差率为 0.200000;

(f)、为了比较,使用非最优方向 w=(1.0,2.0,-1.5)'重复(d)(e)两个步骤。在这个非最优子空间中,训练误差是什么。

分类面为 x=-0.062467; 误差率为 0.250000;