Rappels

Définition. Soit $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ un vecteur du plan. On représente le vecteur \vec{u} par <u>une flèche</u>

 \vec{u} représente la translation « se déplacer de x unités vers la droite/gauche et de y unités vers le haut/bas ». Visuellement, deux vecteurs sont égaux s'ils pointent dans la même direction, et ont la même longueur.

Définition. Pour tous
$$\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, $\vec{u} + \vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$.

Additionner des vecteurs, c'est appliquer des translations successivement.

Définition. Pour tous
$$\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, $\vec{u} - \vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x - x' \\ y - y' \end{pmatrix}$

 $\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$ donc soustraire un vecteur, c'est additionner son opposé.

Définition. Pour tout
$$\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et tout réel k , $k\vec{u} = k \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} kx \\ ky \end{pmatrix}$

Multiplier un vecteur par $k \ge 0$, c'est multiplier sa longueur par k.

Multiplier un vecteur par k < 0, c'est multiplier sa longueur par |k| et inverser son sens.

Définition. Etant donnés deux points $A = (x_A; y_A)$ et $B = (x_B; y_B)$ on note $\overrightarrow{AB} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$.

Le vecteur \overrightarrow{AB} représente la translation qui déplace notamment le point A au point B

Propriété. Relation de Chasles.

Soit *A*, *B*, *C* trois points. Alors $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

Attention, $AB + BC \ge AC$.

Définition. La longueur d'un vecteur $\vec{u} = {x \choose v}$, notée $\|\vec{u}\|$ et lue « norme de \vec{u} » est $\|\vec{u}\| = \sqrt{x^2 + y^2}$.

Définition. La longueur d'un segment [AB] est $AB = \|\overrightarrow{AB}\| = \|\binom{x_B - x_A}{v_B - v_A}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$.

Propriété. M est le milieu d'un segment [AB] ssi $\overrightarrow{AM} = \overrightarrow{MB}$ ssi $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB}$

Les coordonnées du milieu M d'un segment [AB] sont donc : $x_M = \frac{x_A + x_B}{2}$ et $y_M = \frac{y_A + y_B}{2}$ **Exemple.** Si A = (3; 5) et B = (9; -1) alors le milieu de [AB] est le point $M = \left(\frac{3+9}{2}; \frac{5+(-1)}{2}\right) = (6; 2)$

Définition. Une **équation** est l'expression d'une égalité, par exemple « $3y + 4x^2 = 7$ ».

Définition et exemple. Un point (a; b) **vérifie l'équation** « $3y + 4x^2 = 7$ » ssi $3b + 4a^2 = 7$. **Exemples.** Le point (-1; 1) vérifie l'équation « $3y + 4x^2 = 7$ » car $3 \times (1) + 4 \times (-1)^2 = 3 + 4 = 7$.

Le point (1; 1) vérifie aussi l'équation « $3y + 4x^2 = 7$ ». Le point (0; 0) ne la vérifie pas car $0 \neq 7$.

Remarque. Une équation à deux variables réelles, correspond donc toujours à un ensemble de points du plan: L'ensemble de tous les points qui rendent l'équation vraie.

Propriété. Toute droite du plan d peut être décrite comme l'ensemble des points (x; y) du plan vérifiant une équation de la forme « ax + by + c = 0 » où a et b sont des constantes réelles, pas toutes les 2 nulles **Définition**. L'expression « ax + by + c = 0 » est <u>une</u> équation cartésienne de la droite d.

Remarque. Un point M = (x; y) du plan vérifie : $M \in d \Leftrightarrow ax + by + c = 0$

Propriétés et définitions.

Toute droite du plan d non verticale admet une équation de la forme « y = mx + p » où m et p sont des constantes réelles. Dans ce cas l'expression « y = mx + p » est <u>l'équation réduite de la droite d.</u> Toute droite du plan d verticale admet une équation de la forme « x = k » où k est une constante réelle. Dans ce cas l'expression « x = k » est l'équation réduite de la droite d.

Idée. 2 vecteurs non nuls sont colinéaires s'ils sont alignés dans le même sens ou dans des sens opposés **Définition.** Deux vecteurs non nuls \vec{u} et \vec{v} sont **colinéaires** ssi il existe un <u>réel</u> k tel que $\vec{u} = k\vec{v}$.

Exemple.
$$\binom{3}{2}$$
 et $\binom{-9}{-6}$ sont colinéaires car $\binom{-9}{-6} = -3\binom{3}{2}$. (ou ce qui revient au même $\binom{3}{2} = -\frac{1}{3}\binom{-9}{-6}$)

Idée. Un vecteur directeur d'une droite, est un vecteur aligné avec la droite dans un sens ou l'autre. **Définition**. \vec{u} est un vecteur directeur de la droite (AB) ssi \vec{u} est colinéaire à \overline{AB} .

Définition. Le **déterminant** de deux vecteurs
$$\vec{u} = {x \choose y}$$
 et $\vec{v} = {x' \choose y'}$ est $\det(\vec{u}; \vec{v}) = xy' - x'y$.

Exemple. Si $\vec{u} = {3 \choose 2}$ et $\vec{v} = {1 \choose -1}$, alors $\det(\vec{u}; \vec{v}) = (3)(-1) - (1)(2) = -3 - 2 = -5$.

Exemple. Si
$$\vec{u} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, alors $\det(\vec{u}; \vec{v}) = (3)(-1) - (1)(2) = -3 - 2 = -5$.

Propriété. Dans un repère orthonormé, l'aire du parallélogramme formé par \vec{u} et \vec{v} vaut $|\det(\vec{u}; \vec{v})|$

Propriété. Deux vecteurs sont colinéaires ssi leur déterminant est nul. (dans n'importe quel repère)

Exemple.
$$\det \begin{pmatrix} 3 \\ 2 \end{pmatrix}; \begin{pmatrix} -9 \\ -6 \end{pmatrix} = (3)(-6) - (2)(-9) = 18 - (-18) = 0 \text{ donc } \begin{pmatrix} 3 \\ 2 \end{pmatrix} \text{ et } \begin{pmatrix} -9 \\ -6 \end{pmatrix} \text{ sont bien colinéaires.}$$

Propriété. Deux droites (AB) et (MN) sont parallèles ssi \overrightarrow{AB} et \overrightarrow{MN} sont colinéaires ssi $\det(\overrightarrow{AB}; \overrightarrow{MN}) = 0$.

Propriété. Trois points distincts A, B et C sont alignés ssi \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires ssi $\det(\overrightarrow{AB}; \overrightarrow{AC}) = 0$.

Exemple. Les points A = (1,3), B = (2,6) et C = (3,9) sont-ils alignés ?

$$\det(\overrightarrow{AB}; \overrightarrow{AC}) = \det\left(\binom{2-1}{6-3}; \binom{3-1}{9-3}\right) = \det\left(\binom{1}{3}; \binom{2}{6}\right) = 1 \times 6 - 2 \times 3 = 0. \text{ Donc } A, B \text{ et } C \text{ sont alignés.}$$

Propriété. <u>Un</u> vecteur directeur d'une droite d d'équation cartésienne « ax + by + c = 0 » est $\binom{-b}{a}$.

Exemple. La droite d'équation cartésienne « 4x - 5y + 2 = 0 » admet comme vecteur directeur $\vec{u} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$.

Propriété. Etant donnés un point A et un vecteur \vec{u} non nul, il existe une unique droite d passant par le point A et ayant pour vecteur directeur \vec{u} .

Exemple. Déterminer une équation cartésienne de la droite passant par A = (-1, 3) et de vecteur directeur Soit M = (x; y) un point du plan.

$$M \in d \Leftrightarrow \overrightarrow{AM}$$
 colinéaire à $\overrightarrow{u} \Leftrightarrow \det(\overrightarrow{AM}; \overrightarrow{u}) = 0 \Leftrightarrow \det\left(\binom{x+1}{y-3}; \binom{-2}{1}\right) = 0 \Leftrightarrow (x+1)(1) - (y-3)(-2) = 0$ $M \in d \Leftrightarrow x+1+2y-6=0 \Leftrightarrow x+2y-5=0$. Donc une équation de d est $x+2y-5=0$.

Propriété. Equation cartésienne d'un cercle.

Le cercle C de centre le point A=(a;b), de rayon r>0 admet pour équation « $(x-a)^2+(y-b)^2=r^2$ »

Exemple. Une équation du cercle de centre A = (1; -2) et de rayon 3 est $(x - 1)^2 + (x + 2)^2 = 9$.