NI-KOP 2. Domácí úloha

Řešení problému max. vážené splnitelnosti booleovské formule (MWSAT) pokročilou iterativní metodou

Filip Kašpar

2025

Obsah

Zadání	3
Řešení	4
Použitý hardware	4
White box fáze	4
Nastavení	4
První iterace	5
Výsledky první iterace	5
Vyhodnocení iterace	6
Druhá iterace	6
Výsledky pro bod zmražení 0.15	6
Výsledky pro bod zmražení 0.1	7
Vyhodnocení iterace	8
Třetí iterace	8
Výsledky pro ekvilibrium 25	8
Výsledky pro ekvilibrium 100	9
Výsledky pro ekvilibrium 150	10
Vyhodnocení iterace	10
Čtvrtá iterace	11
Výsledky pro koeficient počáteční teploty 0.9	11
Výsledky pro koeficient počáteční teploty 0.7	12
Vyhodnocení iterace	12
Pátá iterace	13
Výsledky pro koeficient ochlazování 0.97	
Výsledky pro koeficient ochlazování 0.9	14
Vyhodnocení iterace	14
Black box fáze	15
Závěrečné nastavení heuristiky	
Závěrečné vyhodnocení heuristiky	
7ávěr	16

Zadání

Vaše řešení by se mělo blížit software nasaditelnému do praxe, tedy použitelnému bez znalosti použité heuristiky a s vyhovující úspěšností. Pokyny jsou navrženy tak, abyste prošli typickým nasazení heuristiky, ale zároveň jsme udrželi pracnost v rozumných mezích. Proto také nestanovujeme rigidní hranice úspěšnosti algoritmu (což by v praxi bylo samozřejmé).

Problém řešte některou z pokročilých heuristik:

- simulované ochlazování
- genetický algoritmus

Heuristika musí zvládat instance rozdílných vlastností (zejména velikosti) bez interaktivních zásahů. Minimální rozsah velikosti je 20–50 pro nejméně kvalitní práce. Heuristika musí zvládat instance, jejichž původní SAT instance (tj. bez vah) je těžká ve smyslu Sellmanova kritéria.

Základní kód musí být vypracován samostatně. Jazyk je libovolný. Komponenty použité z jiných zdrojů (knihovny, moduly) musí být jasně citovány.

Po nasazení heuristiky ověřte její vlastnosti experimentálním vyhodnocením, které přesvědčivě doloží, jakou třídu (rozsah, velikosti...) instancí heuristika zpracovává. Doporučujeme používat metriky nezávislé na platformě. Je třeba doložit práci heuristiky v celém stanoveném rozsahu (nikoliv pro jednu velikost někde v rozsahu). Zejména v případě použití nestandardních, např. originálních technik doložte jejich účinnost experimentálně (což vyloučí případné diskuse o jejich vhodnosti).

Zpráva musí dokládat Váš racionální přístup k řešení problému, tedy celý pracovní postup. Ve zprávě je nutno popsat obě fáze nasazení heuristiky, jak nastavení, (white box fáze), tak závěrečné vyhodnocení heuristiky (black box fáze). Práce bez jasně oddělených těchto dvou fází bude pokládána za neúplnou.

V popisu **white box fáze** prosím uvádějte i neúspěšné pokusy, slepé uličky atd., protože zpráva dokládá Váš postup. V opačném případě vzniká podezření na volbu parametrů ad hoc.

Prosím, aby popis **black box fáze** měl IMRAD strukturu (mnohem lépe se to posuzuje). Shrňte tedy, jaký algoritmus včetně adaptačních mechanismů, podpůrných heuristik atd. vstupuje do hodnocení. V diskusi uveďte, proč pokládáte výsledky za průkazné (alespoň úvahou).

Řešení

Řešení bylo vypracováno v programovacím jazyce C++. K vypracování zadání pak byla použita metoda simulovaného ochlazování, která byla vypracována dle přednášky. Primárně pak metody **try**, **howmuchworse** a samozřejmě pak jádro simulovaného ochlazování s teplotou a ekvilibriem.

V klíčovém algoritmu simulovaném ochlazování se vybírá nový stav ze stavového prostoru následujícím způsobem: Pokud nejsou splněné všechny klauzule, algoritmus vybere náhodnou nesplněnou klauzuli a z této klauzule náhodnou proměnou, kterou následně otočí (buďto přehodí na true nebo false). Pokud jsou všechny klauzule splněné, pak se otočí náhodná proměnná.

Použitý hardware

Pro provedení výpočtů byl použit laptop ASUS Zephyrus s následujícími komponenty:

Komponenta	Тур
CPU	AMD Ryzen 9 5900HS
GPU	Nvidia RTX 3060
RAM	16 GB DDR4

Algoritmy běželi na operačním systému **Windows 10** skrze aplikaci **CLion** od společnosti JetBrains.

White box fáze

Nastavení

White box testování bylo provedeno nad následujícími sadami:

- 1. wuf20-91 (M, N, Q, R)
- 2. wuf50-218 (M, N, Q, R)
- 3. wuf75-325 (M, N, Q, R)

Z každé sady bylo vybráno **10** instancí, které byly následně spuštěné celkem **10krát**. Výsledná data z těchto měření byla následně zprůměrována. Tento přístup byl vybrán kvůli tomu, aby se potlačila variance z randomizace a následně variance z instancí. Ideálně by pro účely white box testingu byly instance spuštěny vícekrát, nicméně výpočetní kapacita hardwaru by znamenala dlouhé časy na doběhnutí algoritmu.

Celkem bylo tedy pro každou iteraci white box testování provedeno 2400 běhů testování.

Ke každé iteraci je zobrazen průběh vybrané instance **wuf-75-325-M-01** a průměrná data dané sady v tabulce. Průběh vybrané instance se ukládá pouze v iteraci, **kdy daný stav má splněné všechny klauzule a má tedy nějakou platnou váhu.** Pro referenci, optimum pro tuto vybranou instanci je **20466**.

Výsledná průměrná data v tabulkách znamenají:

- Set_name Název zpracovaného datasetu
- **Succ** Procento úspěšných běhů (běhy, které měli alespoň splněné veškeré klauzule) průměrně přes instance ze sady
- Iter_amt Počet iterací na skončení algoritmu průměrně přes instance ze sady
- Max_wgh Maximální dosažená váha průměrně přes instance ze sady
- Optim Optimum přes všechny instance ze sady
- Avg_re Průměrná relativní chyba průměrně přes instance ze sady
- Max_re Maximální relativní chyba přes instance ze sady

Přes všechny iterace se kladl největší důraz na **relativní chybu** a **počet iterací**, aby se zhodnotila chybovost vůči časové náročnosti algoritmu.

První iterace

Jako prvotní parametry, pro white box fázi testování, byly nastaveny na základě získaných měření při konstruování algoritmu.

Jednotlivé parametry a jejich počáteční hodnoty jsou popsány níže:

Počáteční teplota – Počáteční teplota byla nastavena jako součet všech vah proměnných a následně přenásobena koeficientem počáteční teploty.

Koeficient počáteční teploty – Byl použit pro přenásobení počáteční teploty, pro snazší škálování. Proměnná byla nastavena na hodnotu **1.2**.

Počáteční stav – Počáteční stav byl při každém spuštění programu nastaven náhodně.

Koeficient ochlazování - Koeficient chlazení byl nastaven na hodnotu 0.95.

Bod zmražení – Bod zmražení byl nastaven na hodnotu 0.25.

Ekvilibrium - Ekvilibrium bylo nastaveno na hodnotu 50.

Výsledky první iterace

Set_name	Succ	Iter_amt	Max_wgh	Optim	Avg_re	Max_re
wuf20-91-M	1	9630	38642	38642	0	0
wuf20-91-N	1	12850	1107070	1107070	0	0

wuf20-91-Q	1	10285	15292	15292	0	0
wuf20-91-R	1	12530	150376	150376	0	0
wuf50-218-M	0.94	11730	315379	340192	0.00708518	0.305639
wuf50-218-N	0.94	13400	1736320	1881910	0.00782782	0.202693
wuf50-218-Q	0.9	11125	27512.3	33097	0.0220369	0.414815
wuf50-218-R	0.97	12895	182755	205207	0.0119693	0.226423
wuf75-325-M	0.74	11430	164921	237421	0.0287703	0.900038
wuf75-325-N	0.69	13470	1248920	2004610	0.033642	0.900004
wuf75-325-Q	0.65	10915	20748.3	42532	0.0601023	0.892178
wuf75-325-R	0.71	13695	416525	737600	0.0501753	0.900068

Vyhodnocení iterace

Z první iterace je viditelné, že nastavení heuristiky nemá problém s instancemi z datasetů **wuf-20-91**. Z náročnějšími data sety pak klesá celková úspěšnost na nalezení nějaké váhy. Je možné, že algoritmus se ukončuje tedy předčasně. V dalších iteracích se na tento problém tedy zaměřím.

Druhá iterace

V druhé iteraci jsem se zaměřil na ladění bodu zmražení. Jelikož by mohl být problém některých instancí v příliš brzkém ukončení algoritmu. Nové testovací hodnoty pro parametr bodu zmražení tedy budou **0.15 a 0.1**.

Výsledky pro bod zmražení 0.15

Set_name	Succ	Iter_amt	Max_wgh	Optim	Avg_re	Max_re
wuf20-91-M	1	10115	38642	38642	0	0
wuf20-91-N	1	13350	1107070	1107070	0	0
wuf20-91-Q	1	10785	15292	15292	0	0
wuf20-91-R	1	13025	150376	150376	0	0
wuf50-218-M	0.96	12230	319476	340192	0.00559274	0.200005
wuf50-218-N	0.94	13895	1753500	1881910	0.00687415	0.304732
wuf50-218-Q	0.96	11620	28886.6	33097	0.0138468	0.216616
wuf50-218-R	0.95	13390	181115	205207	0.0155738	0.414815
wuf75-325-M	0.74	11925	166348	237421	0.0283227	0.900038
wuf75-325-N	0.71	13965	1302710	2004610	0.0307522	0.626343
wuf75-325-Q	0.69	11415	23852.3	42532	0.052673	0.883936
wuf75-325-R	0.68	14195	424393	737600	0.051832	0.923086

Výsledky pro bod zmražení 0.1

Set_name	Succ	Iter_amt	Max_wgh	Optim	Avg_re	Max_re
wuf20-91-M	1	10515	38642	38642	0	0
wuf20-91-N	1	13745	1107070	1107070	0	0
wuf20-91-Q	1	11185	15292	15292	0	0
wuf20-91-R	1	13415	150376	150376	0	0
wuf50-218-M	0.92	12625	306620	340192	0.00882707	0.40001
wuf50-218-N	0.95	14295	1774790	1881910	0.00603162	0.200001
wuf50-218-Q	0.96	12020	28723.7	33097	0.0148444	0.240349
wuf50-218-R	0.91	13785	181844	205207	0.0170958	0.518519

wuf75-325-M	0.71	12320	158785	237421	0.03099	0.900052
wuf75-325-N	0.69	14365	1232650	2004610	0.0333321	0.912308
wuf75-325-Q	0.71	11805	24132.3	42532	0.0508534	0.849
wuf75-325-R	0.66	14595	380602	737600	0.0565934	1.00009

Vyhodnocení iterace

Z výsledků obou měření je patrné, že se moc nezvedl počet iterací na výpočet sad, tedy náročnost algoritmu se moc nezvedla. Relativní chyba byla průměrně lepší u hodnoty **0.15** bodu zmražení. Tuto hodnotu tedy zvolím i pro další iterace.

Třetí iterace

Ve třetí iterace jsem se zaměřil na ladění ekvilibria. Kde jsem se na základě výsledků z druhé iterace rozhodl vyzkoušet primárně vetší ale i menší hodnoty ekvilibria. Testovacími hodnoty jsou **25, 100 a 150**.

Výsledky pro ekvilibrium 25

Set_name	Succ	Iter_amt	Max_wgh	Optim	Avg_re	Max_re
wuf20-91-M	1	5057.5	38642	38642	0	0
wuf20-91-N	1	6675	1107070	1107070	0	0
wuf20-91-Q	1	5392.5	15292	15292	0	0
wuf20-91-R	1	6512.5	150376	150376	0	0
wuf50-218-M	0.81	6115	263522	340192	0.0220941	0.600015
wuf50-218-N	0.88	6947.5	1602300	1881910	0.0149997	0.700003

wuf50-218-Q	0.82	5810	24905.6	33097	0.0317423	0.725926
wuf50-218-R	0.88	6695	164245	205207	0.0242231	0.414815
wuf75-325-M	0.54	5962.5	115697	237421	0.0484458	0.902632
wuf75-325-N	0.57	6982.5	1002450	2004610	0.0460965	1.00001
wuf75-325-Q	0.52	5707.5	17836.2	42532	0.066545	1.00185
wuf75-325-R	0.66	7097.5	383058	737600	0.0570741	1.00008

Výsledky pro ekvilibrium 100

Set_name	Succ	Iter_amt	Max_wgh	Optim	Avg_re	Max_re
wuf20-91-M	1	20230	38642	38642	0	0
wuf20-91-N	1	26700	1107070	1107070	0	0
wuf20-91-Q	1	21570	15292	15292	0	0
wuf20-91-R	1	26050	150376	150376	0	0
wuf50-218-M	0.97	24460	326218	340192	0.00355468	0.300008
wuf50-218-N	1	27790	1876040	1881910	0.000326466	0.0124462
wuf50-218-Q	0.98	23240	30634.5	33097	0.00828418	0.218685
wuf50-218-R	0.99	26780	197190	205207	0.00446764	0.108808
wuf75-325-M	0.79	23850	179548	237421	0.0228546	0.703466
wuf75-325-N	0.81	27930	1544130	2004610	0.020785	0.800003
wuf75-325-Q	0.82	22830	28265.8	42532	0.0409239	0.867368
wuf75-325-R	0.82	28390	487292	737600	0.0393102	0.822816

Výsledky pro ekvilibrium 150

Set_name	Succ	Iter_amt	Max_wgh	Optim	Avg_re	Max_re
wuf20-91-M	1	30345	38642	38642	0	0
wuf20-91-N	1	40050	1107070	1107070	0	0
wuf20-91-Q	1	32355	15292	15292	0	0
wuf20-91-R	1	39075	150376	150376	0	0
wuf50-218-M	1	36690	339524	340192	0.000183699	0.00710293
wuf50-218-N	1	41685	1874330	1881910	0.000417863	0.0131104
wuf50-218-Q	1	34860	31896.8	33097	0.00314455	0.0588406
wuf50-218-R	1	40170	198066	205207	0.00282775	0.0625297
wuf75-325-M	0.93	35775	214262	237421	0.00910813	0.50518
wuf75-325-N	0.89	41895	1690880	2004610	0.0128067	0.801291
wuf75-325-Q	0.87	34245	30627.1	42532	0.0333104	0.767156
wuf75-325-R	0.88	42585	532356	737600	0.0313904	0.700047

Vyhodnocení iterace

Pro výsledky testování hodnoty **25** se sice počet iterací snížil zhruba o polovinu (což se dalo předpokládat, jelikož původní hodnota byla **50**), ale relativní chyba se zásadně zvedla od minulého měření. Pro hodnotu ekvilibria **100** byly už výsledky na sadách **wuf-50-218** dostačující. Pro hodnotu ekvilibria **150** se relativní chyba zlepšila v některých případech i **3krát**. Samozřejmě se pro hodnoty **100** a **150** zvedl i zásadně počet iterací na sadu. Jelikož počet iterací na sadu je pořád zvládnutelný pro můj hardware, rozhodl jsem se přijmout

hodnotu ekvilibria **150** pro další iterace, kvůli své nižší relativní chybě a vyššímu počtu úspěšných instancí.

Čtvrtá iterace

Zaměřením čtvrté iterace bylo ladění koeficientu počáteční teploty. Cílem této iterace bylo zjistit, jak moc se celkový počet iterací a relativní chyba změní při zmenšení počáteční teploty. Testovací hodnoty proto byly nastaveny na **0.9** a **0.7**.

Výsledky pro koeficient počáteční teploty 0.9

Set_name	Succ	Iter_amt	Max_wgh	Optim	Avg_re	Max_re
wuf20-91-M	1	29490	38642	38642	0	0
wuf20-91-N	1	39195	1107070	1107070	0	0
wuf20-91-Q	1	31515	15292	15292	0	0
wuf20-91-R	1	38205	150376	150376	0	0
wuf50-218-M	1	35850	339151	340192	0.000308169	0.00789093
wuf50-218-N	1	40875	1875050	1881910	0.000368065	0.010522
wuf50-218-Q	1	34035	32056.4	33097	0.00315218	0.120057
wuf50-218-R	1	39330	200370	205207	0.00188163	0.0869208
wuf75-325-M	0.89	34905	205452	237421	0.0125869	0.502598
wuf75-325-N	0.9	41085	1709150	2004610	0.0123241	0.606441
wuf75-325-Q	0.84	33405	29898.2	42532	0.0357489	1.00113
wuf75-325-R	0.9	41745	544440	737600	0.0289116	0.546071

Výsledky pro koeficient počáteční teploty 0.7

Set_name	Succ	Iter_amt	Max_wgh	Optim	Avg_re	Max_re
wuf20-91-M	1	28740	38642	38642	0	0
wuf20-91-N	1	38445	1107070	1107070	0	0
wuf20-91-Q	1	30795	15292	15292	0	0
wuf20-91-R	1	37470	150376	150376	0	0
wuf50-218-M	0.99	35115	334636	340192	0.00144386	0.100003
wuf50-218-N	1	40125	1877610	1881910	0.00023703	0.00662375
wuf50-218-Q	1	33315	32007.1	33097	0.00297746	0.0663446
wuf50-218-R	1	38580	198963	205207	0.00280244	0.093143
wuf75-325-M	0.82	34155	187540	237421	0.0197838	0.701316
wuf75-325-N	0.87	40365	1647550	2004610	0.0145647	0.700002
wuf75-325-Q	0.84	32655	29943	42532	0.036311	0.800903
wuf75-325-R	0.86	40995	525370	737600	0.0356556	0.722809

Vyhodnocení iterace

Snížení koeficientu, a tedy i počáteční teploty snížilo průměrné iterace na sadu, ale snížení bylo velmi malé a neefektivní k poměru zvětšení relativní chyby. Na základě tohoto pozorování jsem se rozhodl ponechat původní koeficient **1.2**.

Pátá iterace

Předmětem páté a zároveň poslední iterace bylo ladění koeficientu ochlazování. V této iteraci bylo cílem zjistit, jak se změní výsledky měření při pomalejším a rychlejším ochlazování. Proto byly pro účely čtvrté iterace vybrány hodnoty **0.97** a **0.9**.

Výsledky pro koeficient ochlazování 0.97

Set_name	Succ	Iter_amt	Max_wgh	Optim	Avg_re	Max_re
wuf20-91-M	1	51060	38642	38642	0	0
wuf20-91-N	1	67395	1107070	1107070	0	0
wuf20-91-Q	1	54435	15292	15292	0	0
wuf20-91-R	1	65715	150376	150376	0	0
wuf50-218-M	1	61725	339474	340192	0.000198157	0.00868166
wuf50-218-N	1	70185	1878400	1881910	0.000192319	0.00812552
wuf50-218-Q	1	58665	32721.4	33097	0.000839136	0.0368674
wuf50-218-R	1	67575	203056	205207	0.000825539	0.0399456
wuf75-325-M	0.94	60180	218557	237421	0.00734586	0.503887
wuf75-325-N	0.94	70545	1828770	2004610	0.00698773	0.502148
wuf75-325-Q	0.89	57585	32093.9	42532	0.0303042	0.800903
wuf75-325-R	0.92	71685	592548	737600	0.0236255	0.623059

Výsledky pro koeficient ochlazování 0.9

Set_name	Succ	Iter_amt	Max_wgh	Optim	Avg_re	Max_re
wuf20-91-M	1	14790	38642	38642	0	0
wuf20-91-N	1	19545	1107070	1107070	0	0
wuf20-91-Q	1	15780	15292	15292	0	0
wuf20-91-R	1	19065	150376	150376	0	0
wuf50-218-M	0.97	17895	325237	340192	0.00384615	0.200005
wuf50-218-N	0.98	20340	1809760	1881910	0.00380886	0.200001
wuf50-218-Q	0.96	16995	30128.8	33097	0.0118767	0.311111
wuf50-218-R	0.98	19590	195059	205207	0.00715595	0.207407
wuf75-325-M	0.72	17430	159430	237421	0.0308664	1.00005
wuf75-325-N	0.83	20460	1563060	2004610	0.0198158	0.703437
wuf75-325-Q	0.74	16710	25161.5	42532	0.0469701	0.894348
wuf75-325-R	0.83	20775	468711	737600	0.0385439	0.632136

Vyhodnocení iterace

Rychlejším ochlazováním, konkrétně koeficientem **0.9** se zmenšil počet iterací na polovinu. Zároveň se ale podstatně zvětšila relevantní chyba. Při zvolení koeficientu **0.97** se značně zvětšil počet iterací na sadu, zároveň se ale zmenšila relevantní chyba. Po výpočtech sem došel k závěru, že pro další testování použiji koeficient ochlazování **0.97**. Testování sice bude delší, ale bude pro hardware schůdné v rozumné časové horizontu.

Black box fáze

Pro black box testování jsem použil stejné sady jako pro white box testování. Z každé sady (M, N, Q, R) bylo vybráno **50** instancí, které se spustili **10krát**. Celkem bylo tedy vykonáno **7200** běhů.

Závěrečné nastavení heuristiky

Závěrečné nastavení heuristiky vyplynulo z white box testingu.

Parametr	Hodnota
Počáteční stav	Nastaven náhodně každý běh
Počáteční teplota	Součet vah proměnných * koeficient
	počáteční teploty
Koeficient počáteční teploty	1.2
Koeficient ochlazování	0.97
Bod zmrazení	0.15
Ekvilibrium	150

Závěrečné vyhodnocení heuristiky

Set_name	Succ	lter_amt	Max_wgh	Optim	Avg_re	Max_re
wuf20-91-M	1	50982	187454	187454	0	0
wuf20-91-N	1	67773	5668330	5668330	0	0
wuf20-91-Q	1	54339	101229	101229	0	0

wuf20-91-R	1	65649	1003700	1003700	0	0
wuf50-218-M	1	60942	1462170	1464730	0.000174241	0.0101691
wuf50-218-N	1	70701	104671000	10505900	0.000376644	0.101755
wuf50-218-Q	1	58659	206072	212905	0.00310742	0.397355
wuf50-218-R	1	67209	1141670	1177360	0.00176236	0.398039
wuf75-325-M	0.906	60213	1082190	1216440	0.0106886	0.512768
wuf75-325-N	0.928	69864	7915500	8717210	0.00862243	0.800005
wuf75-325-Q	0.902	57669	143905	177878	0.0245979	0.845299
wuf75-325-R	0.926	71619	2514290	3019710	0.0197122	0.794135

Finální heuristika nemá žádný problém s instancemi ze sady o **20** proměnných. Co se týče sady o **50** proměnných, heuristika najde vždy nějaké řešení, přičemž průměrná nalezená váha je velice blízko průměrnému optimu. Sada s **75** proměnnými je na tom o něco hůř. Zde najde heuristika instanci, která splňuje všechny klauzule s **91%** pravděpodobností a nalezená váha je o něco znatelněji dál než optimum.

Závěr

Byl implementován algoritmus simulované ochlazování pro problém maximální vážené splnitelnosti booleovské formule. Pro finální nastavení parametrů bylo provedeno pět iterací ve white box fázi testování. Finální nastavení se následně otestovalo na jedné iteraci black box testování. Z poznatků uvedených v závěrečném vyhodnocení heuristiky si celkově myslím, že je heuristika nastavená poměrně dobře a dává dobré výsledky na menších a středně velkých instancích. Nicméně je tu zde ještě prostor na zlepšení, aby heuristika vracela dobré výsledky i pro velké instance. Pro to by ale nejspíše musel být implementován jiný algoritmus a použit výkonnější hardware.