Module 8.6: The Chain Rule MCIT Online - CIT592 - Professor Val Tannen

LECTURE NOTES

Independence and conditional probability

Intuitively, $\Pr[E|U]$ should be the same as $\Pr[E]$ when E does not really depend on U. Indeed:

Proposition. For any two events A, B in the same probability space the following two statements are **equivalent**:

(i)
$$A \perp B$$
 (ii) $Pr[B] = 0$ or $(Pr[B] \neq 0$ and $Pr[A|B] = Pr[A]$)

Proof. To prove the logical equivalence of (i) and (ii) we have to show that: (i) \Rightarrow (ii) and (ii) \Rightarrow (i).

- (i) \Rightarrow (ii): Assume $A \perp B$. When $\Pr[B] \neq 0$ we have $\Pr[A|B] = \Pr[A \cap B]/\Pr[B] = (\Pr[A] \cdot \Pr[B])/\Pr[B] = \Pr[A]$
- (ii) \Rightarrow (i): If $\Pr[B] = 0$ then by **Ind (i)** $A \perp B$. If $\Pr[B] \neq 0$ then $\Pr[A|B] = \Pr[A]$ becomes $\Pr[A \cap B] = \Pr[A] \cdot \Pr[B]$ hence $A \perp B$.

The chain rule

We regard the equality $\Pr[A \cap B] = \Pr[A] \cdot \Pr[B|A]$ as **generalizing** the equality $\Pr[A \cap B] = \Pr[A] \cdot \Pr[B]$ that defines independence. For more than two events we have a further generalization:

Proposition (The chain rule). For any events A, B, C in the same probability space we have

$$\Pr[A \cap B \cap C] = \Pr[A] \cdot \Pr[B|A] \cdot \Pr[C|A \cap B]$$

For any events A_1, \ldots, A_n in the same probability space we have

$$\Pr[A_1 \cap A_2 \cap A_3 \dots \cap A_n] =$$

$$= \Pr[A_1] \cdot \Pr[A_2 | A_1] \cdot \Pr[A_3 | A_1 \cap A_2] \dots \Pr[A_n | A_1 \cap \dots \cap A_{n-1}]$$

The proof is given in the segment entitled "Conditional probability rules."

Tree diagrams and the chain rule I

Here is the upper part of the Monty Hall "tree of all possibilities":

Why is Pr[AAB] = 1/18?

Define E = "car is behind door A", F = "Ann chooses door A", G = "Monty opens door B".

Then $E \cap F \cap G = \{AAB\}.$

The chain rule gives: $\Pr[E \cap F \cap G] = \Pr[E] \cdot \Pr[F|E] \cdot \Pr[G|E \cap F]$

Tree diagrams and the chain rule II

The chain rule gives: $\Pr[E \cap F \cap G] = \Pr[E] \cdot \Pr[F|E] \cdot \Pr[G|E \cap F]$

We have Pr[E] = 1/3

We have Pr[F|E] = Pr[F] = 1/3

And we have $Pr[G|F \cap E] = 1/2$

Therefore Pr[AAB] = (1/3)(1/3)(1/2) = 1/18.

In general, the branches are labeled with conditional probabilities and along each branch the chain rule computes the probability of the outcome.