Проект по курсу "Сложность вычислений"

Тема: Проверка 3-раскрашиваемости графа (№ 49)

Студент: Ярослав Спирин (группа 594)

Формулировка:

Требуется имлементировать алгоритм проверки, можно ли покрасить граф из n вершин в 3 цвета, за время $O(c^n)$ для $c \le 2$. Реализация алгоритма для c > 1.8 принесёт не больше 7 баллов, для меньших c — вплоть до 12 при выборе наилучшего известного алгоритма.

Описание работы:

В этом практическом задании требуется имплементировать алгоритм проверки 3-раскрашиваемости графа. В данном проекте мы опишем алгоритм работы нашей программы, его реализацию, докажем его корректность, найдем время работы программы.

Описание алгоритма

Опр. Независимое множество - множество вершин, в котором никакие две вершины из этого множества не соединены ребром, и при этом нельзя добавить еще вершину в этом множество, чтобы оно осталось независимым.

Алгоритм: Найдем все максимальные по включению независимые множества в этом графе. Не теряя общности, покрасим все эти вершины в первый цвет. Проверим можем ли мы покрасить все остальные вершины в оставшиеся два цвета. Если найдем хоть одну такую покраску, то ответ - «существует», иначе «не существует».

Реализация алгоритма

Реалиазация алгоритма будет представлять собой код на C++ и основная идея, используемая в решении этой задачи будет основываться на следующую лемму:

Лемма. Либо вершина либо хотя бы одна из её соседей лежат в максимальном по включению независимом множестве.

Доказательство.

Предположим противное: пусть не лежит ни одна из соседей, тогда просто добавим эту вершину в множество. Будем поддерживать некоторое множество, в котором в конечном результате будет находиться максимальное по включению независимое множество. Возьмем вершину с минимальной степенью. Тогда добавим в искомое множество либо эту вершину, либо одну из её соседей, переберем так для всевозможных способов, в конечном итоге на каждом шаге будем получать некоторое максимальное по включению независимое множество. Для остальных вершин нужно проверить, можем ли мы их покрасить в 2 цвета, а это решается методом обхода в глубину исходного графа.

Корректность

Мы красим некоторое подмножество в один цвет, пусть оно не является максимальным по включению независимым множеством, тогда просто добавим в него вершин, чтобы сделать его таковым, это, как минимум, не ухудшит возможность покраски оставшихся вершин в остальные два цвета. В итоге, мы перебираем всевозможные максимальные по включению независимые множества, и для каждого из них пытаемся раскрасить граф рассматриваем все случаи покраски, значит, алгоритм выполняется корректно.

Время работы алгоритма

Оценим число максимальных по включению независимых множеств. Заметим, что на каждом шаге можем брать некоторую вершину с минимальной степенью, тогда время работы алгоритма выглядит следующим образом:

Пусть степень данной вершины равна d, тогда $T(n)\sim (d+1)*T(n-(d+1))$, где T(n) - время работы программы. Тогда $T(n)=(d+1)^{\frac{n}{d+1}}$, легко доказать, что эта функция максимальна при d=2, используя метод математической индукции. Кроме того, это легко следует из того, что в итоге нужно найти минимум функции $k^{\frac{1}{k}}$. Тогда у нас в итоге таких множеств не больше, чем $3^{\frac{n}{3}}\sim 1.44^n$. Кроме того, для каждого такого множества мы делаем 2-раскраску для оставшихся вершин, что занимает O(n+m) методом обхода в глубину.

Итоговая сложность работы программы: $O(1.44^n * (n+m))$, что лучше чем $O(1.8^n)$.

Результаты

В программе так же было написано тестирование для реализованного алгоритма:

- Для проверки корректности работы программы, был так же написан алгоритм 3раскрашиваемости графа за 3^n , и проверка совпадают ли ответы для данных алгоритмов. В результате проверки все ответы совпали.
- Для проверки времени работы программы, был протестирован алгоритм на достаточно больших данных (для данной задачи), где N достигало порядка $\sim 30-40$. В результате проверки программа выдавала ответ в приемлимое для данной сложности время.

Источники

- http://www.sci.brooklyn.cuny.edu/~amotz/GC-ALGORITHMS/PRESENTATIONS/coloring.pdf (http://www.sci.brooklyn.cuny.edu/~amotz/GC-ALGORITHMS/PRESENTATIONS/coloring.pdf)
- http://citeseerx.ist.psu.edu/viewdoc/download?
 doi=10.1.1.341.9463&rep=rep1&type=pdf
 (http://citeseerx.ist.psu.edu/viewdoc/download?
 doi=10.1.1.341.9463&rep=rep1&type=pdf)