Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

Практична робота №4 з дисципліни: «Твердотіла електроніка»

ВАХ ідеального та реального діода

Виконав: Студент 3-го курсу	(підпис)	Кузьмінський О.Р.
Перевірив:	(підпис)	Королевич Л.М.

1. Мета роботи

Побудувати вольт-амперні харакетристики (ВАХ) ідеалізованого та реального діоду у відповідності до варіанту. Побудову реальної ВАХ виконувати з урахуванням всіх факторів (пробій, опір пасивних елементів, струми термогенерації та рекомбінації). Визначити тип пробою p-n переходу.

Вказати:

- Концентрації домішок у базі та емітері.
- Тип пробою p-n переходу (лавинний чи тунельний).
- Напругу пробою.
- Значення струму для трьох значень зовнішньої напруги $0,1\cdot\varphi_0,\ 0,8\cdot U_{\rm np},\ 0,3\cdot\varphi_0$. як для реальної так і для ідеалізованої.

2.Вхідні дані

Табл.1.Вхідні параметри.

Матеріал	Si
Елементарний заряд q, Кл	$1,6 \cdot 10^{-19}$
Конентрація власних носіїв заряду n_i , см $^{-3}$	$1,45 \cdot 10^{10}$
Площа поперечного перерізу S , см ²	0,0098
l_p , cm	$1,458 \cdot 10^{-4}$
l_n , cm	$3,26 \cdot 10^{-5}$
Температурний потенціал $arphi_T,\; \mathrm{B}$	0,026
Градієнт концентрації акцепторів N_A' ,см $^{-4}$	$5 \cdot 10^{18}$
Градієнт концентрації донорів N_D' ,см $^{-4}$	$1 \cdot 10^{20}$
Коефіцієнт дифузії електронів $D_n, \frac{\mathrm{c} \mathrm{m}^2}{c}$	36
Коефіцієнт дифузії дірок $D_p, \frac{\mathrm{cm}^2}{c}$	12,5
Дифузійна довжина електронів L_n , см	0,005
Дифузійна довжина дірок L_p , см	0,002
Довжина діода L_D , см	0,0595
Час життя носіїв $ au$, с	$2.5 \cdot 10^{-3}$

3. Розрахунок ВАХ ідеалізованого рп-переходу

Виходячи з назви вольт-амперної характеристики, нам потрібно знайти залежність струму від напруги, тобто функцію I(U). Скористаймося формулою для знаходження аналітичного виразу BAX ідеалізованого pn-переходу:

$$I = \left(\frac{qD_p p_{n0} S}{L_p} + \frac{qD_n n_{p0} S}{L_n}\right) \left(e^{\frac{U}{\varphi_T}} - 1\right),\tag{1}$$

де p_{n0} та n_{p0} —рівноважні концентрації дірок та електронів.

Врахувавши закон діючих мас : $p_{n0} \approx \frac{n_i^2}{N_D}$, $n_{p0} \approx \frac{n_i^2}{N_A}$, та розписавши концентрації через їхні градієнти $N_A = N_A' l_p$ та $N_D = N_D' l_n$, перепищемо рівняння (1) наступним чином:

$$I = q n_i^2 S \left(\frac{D_p}{L_p N_D' l_n} + \frac{D_n}{L_n N_A' l_p} \right) \left(e^{\frac{U}{\varphi_T}} - 1 \right)$$
 (2)

Покладемо:

$$I_0 = q n_i^2 S \left(\frac{D_p}{L_p N_D' l_n} + \frac{D_n}{L_n N_A' l_p} \right)$$

$$\tag{3}$$

Тоді аналітичний вираз для BAX ідеального pn-переходу перепишеться наступним чином:

$$I = I_0 \left(e^{\frac{U}{\varphi_T}} - 1 \right) \tag{4}$$

Проведем чисельне спрощення для велични I_0 :

$$I_0 = q n_i^2 S \left(\frac{D_p}{L_p N_D' l_n} + \frac{D_n}{L_n N_A' l_p} \right) =$$

$$= 1.6 \cdot 10^{-19} \cdot (1.45 \cdot 10^{10})^2 \cdot 0.0098 \times$$

$$\left(\frac{12.5}{0.002 \cdot 10^{20} \cdot 3.26 \cdot 10^{-5}} + \frac{36}{0.005 \cdot 5 \cdot 10^{18} \cdot 1.458 \cdot 10^{-4}} \right) =$$

$$= 5.907 \cdot 10^{-12}$$

Остаточна функція для побудови ВАХ ідеального діода наступна:

$$I(U) = 5,907 \cdot 10^{-12} \left(e^{\frac{U}{0,026}} - 1 \right)$$
 (5)

4. Розрахунок ВАХ реального рп-переходу

4.1. Пряма гілка вольт-амперної характеристики

На вплив прямої ВАХ впливає струм, обумовлений рекомбінацією електронів та дірок-**струм рекомбінації** I_R .

Формула для його розрахунку наступна:

$$I_R = \frac{1}{2} q S l_0 \frac{n_i}{\tau} \times e^{\frac{U}{2\varphi_T}},\tag{6}$$

де: $l_0 = l_n + l_p$ —ширина плавного pn-переходу в рівноважному стані.

У реальних p-n переходах за прямого зміщення напруга зовнішнього джерела спадає не тільки на опорі p-n переходу, але й на опорі областей емітера та бази.

Для початку, знайдемо опір бази за такою формулою:

$$r_b = \frac{L\rho_b}{S},\tag{7}$$

де ho_b -питомий опір бази.

В свою чергу питомий опір бази можна знайти через рівняння електропровідності напівпровідника, врахувавши що матеріал бази у наснапівпровідник n-типу.

$$\rho_b = \frac{1}{\sigma_b} = \left[q \left(\frac{N_D + \sqrt{N_D^2 + 4n_i^2}}{2} \times \mu_n + \frac{-N_D + \sqrt{N_D^2 + 4n_i^2}}{2} \times \mu_p \right) \right]^{-1}$$
(8)

Перепишем формулу (8), врахувавши, що $N_D = N_D' l_n$:

$$\rho_b = \frac{1}{\sigma_b} = \left[q \left(\frac{N_D' l_n + \sqrt{(N_D' l_n)^2 + 4n_i^2}}{2} \times \mu_n + \frac{-(N_D' l_n) + \sqrt{(N_D' l_n)^2 + 4n_i^2}}{2} \times \mu_p \right) \right]^{-1}$$

Підставивши усі дані питомий опір бази дорівнює $\rho_b=1{,}278~{\rm Om}\cdot{\rm cm}~{\rm B}$ свою чергу, повний опір бази дорівнює:

$$r_b = \frac{L\rho_b}{S} = \frac{0.0595 \cdot 1.278}{0.0098} = 7.7592 \text{ Om}.$$

Опір емітера знаходимо за формулою:

$$r_e = \frac{L\rho_e}{S},\tag{9}$$

де ρ_e -питомий опір емітера.

Питомий опір емітера знаходим аналогічним чином за рівнянням електропровідності, врахувавши, що емітер є напівпровідником р-типу.

$$\rho_e = \frac{1}{\sigma_b} = \left[q \left(\frac{-N_A + \sqrt{N_A^2 + 4n_i^2}}{2} \times \mu_n + \frac{N_A + \sqrt{N_A^2 + 4n_i^2}}{2} \times \mu_p \right) \right]^{-1} \tag{10}$$

Або, з урахуванням $N_A = N_A' l_p$, маємо:

$$\rho_e = \frac{1}{\sigma_e} = \left[q \left(\frac{-(N_A' l_p) + \sqrt{(N_A' l_p)^2 + 4n_i^2}}{2} \times \mu_n + \frac{N_A' l_p + \sqrt{(N_A' l_p)^2 + 4n_i^2}}{2} \times \mu_p \right) \right]^{-1}$$

Підставивши усі дані, маємо $\rho_e = 19{,}052~{
m Om} \cdot {
m cm}$

Повний опір емітера дорівнює:

$$r_e = \frac{L\rho_e}{S} = \frac{0.0595 \cdot 19.052}{0.0098} = 115.672 \text{ Om}.$$

Знайдем загальний опір бази та емітера:

$$r_{b+e} = 7,7592 + 115,672 = 123,4312 \text{ Om.}$$

Маючи усі опори, запишемо вираз ВАХ в наступному вигляді:

$$I_{\text{onip}} = I_0 \times \left(e^{\frac{U - I \cdot r_{b+e}}{\varphi_T}} - 1\right),$$
 (11)

де I— ідеальна ВАХ. Тепер кінцева формула для побудови реальної ВАХ для прямої гілки складатиметься із суми струмів: струму рекомбінації та струму з впливом пасивних елементів.

$$I_{sum} = I_R + I_{\text{onip}} = \left(\frac{1}{2}qSl_0\frac{n_i}{\tau} \times e^{\frac{U}{2\varphi_T}}\right) + I_0 \times \left(e^{\frac{U - I \cdot r_{b+e}}{\varphi_T}} - 1\right)$$
(12)