

Trabajo Práctico N° 2

Números Complejos

1. Expresar el resultado de las siguientes operaciones como números imaginarios puros:

a)
$$\sqrt{-\frac{3}{4}}$$

c)
$$\sqrt{-\frac{4}{9}}$$

e)
$$\sqrt{-75}$$

b)
$$\sqrt{-49}$$

d)
$$\sqrt{-72}$$

$$f) \sqrt{-\frac{27}{100}}$$

2. Calcular las siguientes potencias de la unidad imaginaria:

a)
$$i^{14}$$

c)
$$i^{16}$$

e)
$$i^{13}$$

b)
$$i^{20}$$

d)
$$(-i^5)^5$$

e)
$$i^{13}$$
 f) i^{-10}

3. Calcular la parte real e imaginaria de $\frac{\overline{z}}{1+z^2}$. ¿A qué subconjunto de $\mathbb C$ pertenece z?

4. Calcular
$$\left| \frac{(2+\sqrt{5}i)(1+\sqrt{3}i)^3}{\sqrt{5}+\sqrt{3}i} \right|$$
.

5. Calcular las números complejos z tales que $w = \frac{2z - i}{2 + iz}$ es:

- *a*) un número real;
- b) un número imaginario puro.

6. Calcular los números complejos z tales que $w = \frac{z-1-i}{z+1+i}$ es:

- *a*) un número real;
- b) tiene módulo 1.

7. Simplificar $\frac{a-bi}{c+di} + \frac{a+bi}{c-di}$.

8. Determine los reales *a* y *b* que satisfacen:

$$(-1+i)a + (1+2i)b = 1$$

9. Resolver el siguiente sistema:

$$\begin{cases} (1+i)x - iy &= 2+i \\ (2+i)x + (2-i)y &= 2i \end{cases}$$

10. Resolver las ecuaciones dadas completando cuadrados.

a)
$$x^2 + 5x + 7 = 0$$
 c) $x^2 - x + 1 = 0$ e) $2x^2 - 6x + 5 = 0$

c)
$$x^2 - x + 1 = 0$$

e)
$$2x^2 - 6x + 5 = 0$$

b)
$$2x^2 + 10x + 15 = 0$$
 d) $3x^2 - 8x + 7 = 0$ f) $3x^2 - 2x + 1 = 0$

d)
$$3x^2 - 8x + 7 = 0$$

$$f) \ 3x^2 - 2x + 1 = 0$$

11. Determinar k, tal que el conjunto solución de la ecuación dada en x contenga: (a) dos números reales; (b) dos números complejos de la forma a + bi y a - bi, donde a y $b \neq 0$ son números reales.

a)
$$x^2 + 4x + k = 0$$

b)
$$x^2 - kx + 9 = 0$$

12. Si z y w son complejos, se consideran los tres números:

$$x = \frac{z+w}{1+zw}$$
 $y = i\frac{w-z}{1+zw}$, $z = \frac{1-zw}{1+zw}$

Demostrar que:

a)
$$x^2 + y^2 + z^2 = 1$$

- *b*) si $\overline{w} = z$, entonces x, y, z son reales.
- 13. Expresar en forma polar los siguientes números complejos:

a)
$$-1 + i$$

b)
$$\frac{-\sqrt{3}+i}{1+i}$$

$$c) \ \frac{1}{-1+\sqrt{3}i}$$

- 14. Calcular los números complejos z tales que $w = \frac{2z-1}{z-2}$
 - *a*) tiene argumento igual a $\pi/2$;
 - *b*) tiene argumento igual a $-\pi/2$;
- 15. Calcular las soluciones de las ecuaciones:

a)
$$z^4 + (1+i)z^2 + 5i = 0$$

b)
$$z^4 + (5+4i)z^2 + 10i = 0$$

16. Dada la siguiente igualdad:

$$|z + w|^2 + |z - w|^2 = 2(|z|^2 + |w|^2)$$

- a) Demostrar la identidad para todo $z, w \in \mathbb{C}$.
- b) Interpretar su significado geométrico.
- 17. Expresar en forma binómica los números:

a)
$$(1+i)^{25}$$

b)
$$\left(\frac{1+\sqrt{3}i}{-1+i}\right)^{24}$$

c)
$$(\sqrt{3}+i)^{37}$$

18. Haciendo uso de la fórmula de De Moivre, probar que:

a) $sen(3\phi) = 3 sen \phi - 4 sen^3 \phi$

c) $sen(5\phi) = 5 sen \phi - 20 sen^3 \phi + 16 sen^5 \phi$

b) $\cos(4\phi) = 8\cos^4\phi - 8\cos^2\phi + 1$

19. Encontrar las raíces cúbicas de z = -i y representarlas gráficamente.

20. Calcular y representar gráficamente la solución:

a) $\sqrt{1+i\sqrt{3}}$

c) $\sqrt[3]{-8}$

e) $\sqrt[4]{8i}$

b) $\sqrt[4]{1-i}$

d) $\sqrt[3]{-i}$

 $f) \sqrt[3]{\sqrt{3}+i}$

21. Resolver las ecuaciones |z|=4 y $(\overline{z})^2=z^2$. Hallar los puntos de intersección de los lugares geométricos que representan las soluciones de dichas ecuaciones.

22. Demostrar que:

a) $\frac{z-1}{1} = 1$

b) $|1-z|=|1-\overline{z}|$ e interpretar geométricamente.

23. Describa geométricamente la región determinada por cada una de las siguientes condiciones:

a) $Im(z) \geq 2$

c) $|z| \le 1$

e) |z - 3i| > 5

 $|z - (1+2i)| \le 2$

24. Hallar el lugar geométrico de $z = \frac{a+i}{1+2a+i}$, sabiendo que $a \in \mathbb{R}$.

25. Expresar en términos de la exponencial compleja:

a) $(1+i)^3$

b) $(-3+i\sqrt{3})^4$

c) $(5-5i)^{-6}$

26. Utilizando la forma exponencial de un complejo, calcular el $\ln(i)$.

27. Resolver las siguientes ecuaciones en \mathbb{C} :

a) sen(z) = 4

b) $4 \sin(z) = 3i$

28. La suma de dos números complejos es 3+2i, el cociente es un número imaginario puro y la parte real de uno de ellos es 2. Hallar dichos números complejos.

29. Analizar e indicar donde está el error:

 $-1 = i^2 = i \cdot i = \sqrt{-1} \cdot \sqrt{-1} = \sqrt{(-1) \cdot (-1)} = \sqrt{1} = 1$

3