Abstract Algebra: Homework #1

Joel Savitz

Wednesday 27 May 2020

Note: for the scope of this document, let \ni denote "such that".

1 Chapter 3: Excercise A1

Suppose * is defined on \mathbb{R} as a*b=a+b+k for any $a,b\in\mathbb{R}$ for some $k\in\mathbb{R}$.

Theorem 1. $\langle \mathbb{R}, * \rangle$ is a group.

Proof. Let a, b, and c be some arbitrary real numbers. Because $a * b = a + b + k \in \mathbb{R}$, we have that the real numbers are closed under *. Then, observe that a * (b * c) = a * (b + c + k) = a + (b + c + k) + k = (a + b + k) + c + k = (a + b + k) * c = (a * b) * c, so * is associative. We also have a * -k = a + (-k) + k = -k + a + k = -k * a = a, so -k is the identity for the real numbers under *. Finally, consider the quantity -(2k + a). Since we have a * -(2k + a) = a + (-2k) + (-a) + k = -(2k + a) * a = -k, that quantity is the inverse of any a. Since * is closed under the real numbers and * is associative and -k is the identity of * under the real numbers and any real number a has an inverse under * of -(2k - a), $\langle \mathbb{R}, * \rangle$ is a group. \square

2 Chapter 3: Exercise A3

Suppose * is defined on \mathbb{R} as a * b = a + b + ab for any $a, b \in \mathbb{R}$.

Theorem 2. $\langle \mathbb{R}, * \rangle$ is a group.

Proof. Let a, b, and c be some arbitrary real numbers. Because $a * b = a + b + ab \in \mathbb{R}$, we have that the real numbers are closed under *. Then, observe that

a*(b*c) = a*(b+c+bc) = a+b+c+ab+ac+bc+abc = (a+b+ab)*c = (a*b)*c, so * is associative. We also have a*0 = a+(0)+0a = 0*a = a, so 0 is the identity for the real numbers under * Finally, consider the quantity $\frac{-a}{1+a}$. Since we have $a*\frac{-a}{1+a} = a+\frac{-a}{1+a}+\frac{-a^2}{1+a} = \frac{-a}{1+a}*a = \frac{a^2+a}{1+a}+\frac{-a}{1+a}+\frac{-a^2}{1+a} = 0$, that quantity is the inverse of any a. Since * is closed under the real numbers and * is associative and 0 is the identity of * under the real numbers and any real number a has an inverse under * of $\frac{-a}{1+a}$, $\langle \mathbb{R}, * \rangle$ is a group.

3 Chapter 3: Exercise B1

Suppose * is defined on $\mathbb{R} \times \mathbb{R}$ as (a,b) * (c,d) = (ad + bc,bd) for any $(a,b),(c,d) \in \mathbb{R} \times \mathbb{R}$.

Theorem 3. $\langle \mathbb{R} \times \mathbb{R}, * \rangle$ is a group.

Proof. Let $(a,b), (c,d), (e,f) \in \mathbb{R} \times \mathbb{R}$. Consider that $(a,b)*(c,d) = (ad+bc,bd) \in \mathbb{R} \times \mathbb{R}$ since $ad+bc \in \mathbb{R} \wedge bc \in \mathbb{R}$. Then, $\mathbb{R} \times \mathbb{R}$ is closed under *. Now observe the following equivalence: $\Big((a,b)*(c,d)\Big)*(e,f) = (ad+bc,bd)*(e,f) = (adf+bcf+bde,bdf) = (a,b)*(cf+de,df) = (a,b)*((c,d)*(e,f))$. This equation holds if and only if $\mathbb{R} \times \mathbb{R}$ is associative under *. Since (a,b)*(0,1) = (1a+0b,1b) = (a,b) = (0b+1a,1b) = (0,1)*(a,b), we have that (0,1) is the identity of $\mathbb{R} \times \mathbb{R}$ under *, Because we have $(a,b)*(\frac{-a}{b^2},\frac{1}{b}) = (\frac{a}{b}+\frac{-a}{b},b\cdot\frac{1}{b}) = (0,1)=(\frac{-a}{b}+\frac{a}{b},\frac{1}{b})=(\frac{-a}{b^2},\frac{1}{b})*(a,b)$, that pair $(\frac{-a}{b^2},\frac{1}{b})$ is the inverse of any $a \in \mathbb{R} \times \mathbb{R}$ under *. Then, since * is a closed associative operation on $\mathbb{R} \times \mathbb{R}$ with an identity and an inverse for any element of $\mathbb{R} \times \mathbb{R}$, we have that $\langle \mathbb{R} \times \mathbb{R}, * \rangle$ is a group.

4 Chapter 3: Exercise D

Suppose * is defined as an operation on the set $A = \{I, V, H, D\}$ as specified in table 1.

Then, we have by table 1 that * is a closed operation on A. Given that * is associative, that I is an identity for * by table 1, and that any $a \in A$ has the inverse $a \in a$ by table 1, we conclude that $\langle A, * \rangle$ is a group.

Table 1: Operation table for * on A

Furthermore, since we have that * is commutative by table 1, $\langle A, * \rangle$ is an Abelian group.

5 Chapter 3: Exercise E

Suppose some set A is defined as follows in equation 1:

$$A = \{I, M_1, M_2, M_3, M_4, M_5, M_6, M_7\}$$
(1)

The, suppose the binary operation * is defined on A as follows in table 2:

*	I	M_1	M_2	M_3	M_4	M_5	M_6	M_7
\overline{I}	I	M_1	M_2	M_3	M_4	M_5	M_6	M_7
M_1	M_1	I	M_3	M_2	M_5	M_4	M_7	M_6
M_2	M_2	M_3	I	M_1	M_6	M_7	M_4	M_5
M_3	M_3	M_2	M_1	I	M_7	M_6	M_5	M_4
M_4	M_4	M_6	M_5	M_7	I	M_2	M_1	M_3
		M_7						
M_6	M_6	M_4	M_7	M_5	M_2	I	M_3	M_1
M_7	M_7	M_5	M_6	M_4	M_3	M_1	M_2	I

Table 2: Operation table for * on A

Theorem 4. Assuming associativity holds, $\langle A, * \rangle$ is a group.

Proof. We observe by inspection of table 2 that A is closed under *. We also conclude from inspection of table A that $(\forall a \in A)(a*I = I*a = a) \iff I$ is the identity element for A under * and that $(\forall a \in A)(\exists b \in A \ni a*b = b*a = I) \iff$ every element of A has an inverse under *. Then, since * is a closed associative binary operation on A, since A has the identity I under *,

and since every element of A has an inverse under *, we conclude that $\langle A, * \rangle$ is a group.

Since we some $a, b \in A \ni a * b \neq b * a$, for example $M_2 = M_4 * M_5 \neq M_5 * M_4 = M_1$, we also have that $\langle A, * \rangle$ is not commutative and therefore it is not an Abelian group.

6 A counterexample

Let * be an operation defined on the set $G = \{x \in \mathbb{Z} \ni x \neq -1\}$ defines as x * y = x + y + xy.

Theorem 5. $\langle G, * \rangle$ is not a group.

Proof. Assume for the sake of contradiction that G has an identity element and call it e. Then, we must have for any $a \in G$ that $a*e = a = a+e+ae \implies e = -ae \implies a = -1$. However, $-1 \notin G$ and so we reach a contradiction, therefore our assumption must be wrong and there does not in fact exist an identity in G under *. Then, since a group must have an identity element and G has no identity element under *, G is not a group.

$7 \quad 2 \times 2$ invertible matrices

Let
$$G = \{A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2 \times 2} \ni \exists A^{-1} \in \mathbb{R}^{2 \times 2} \ni AA^{-1} = A^{-1}A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \}$$

Let * be defined as standard matrix multiplication.

Theorem 6. $\langle G, * \rangle$ is a group.

Proof. Define the following three matrices $A,B,C\in\mathbb{R}^{2\times 2}$ as follows:

$$A = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} B = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix} C = \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix}$$
 (2)

Furthermore, suppose that matrices A and B are nonsingular, i.e. $A,B\in G$

The following equation defines a relationship between these matrices C = A * B and the subsequent equation makes an observation about related determinants.

$$C = AB = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \cdot \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix} = \begin{bmatrix} a_1b_1 + a_2b_3 & a_1b_2 + a_2b_4 \\ a_3b_1 + a_4b_3 & a_3b_2 + a_4b_4 \end{bmatrix}$$
(3)

$$det(C) = det(AB) = det(A) \cdot det(B) \neq 0$$
(4)

Then, since C has real entries as demonstrated in equation 3 and since it is nonsingular as demonstrated by the nonzero determinant in equation 4, we conclude that $C \in G$ and that G is closed under *.

From this point on, A, B and C refer to nonasingular 2 by 2 matrices with arbitrary entries and no specific relationship to each other.

Consider the following arithmetic:

$$A * B = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \cdot \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix} = \begin{bmatrix} a_1b_1 + a_2b_3 & a_1b_2 + a_2b_4 \\ a_3b_1 + a_4b_3 & a_3b_2 + a_4b_4 \end{bmatrix}$$
 (5)

$$B * C = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix} \cdot \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix} = \begin{bmatrix} b_1c_1 + b_2c_3 & b_1c_2 + b_2c_4 \\ b_3c_1 + b_4c_3 & b_3c_2 + b_4c_4 \end{bmatrix}$$
 (6)

$$A * (B * C) = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \cdot \begin{bmatrix} b_1c_1 + b_2c_3 & b_1c_2 + b_2c_4 \\ b_3c_1 + b_4c_3 & b_3c_2 + b_4c_4 \end{bmatrix}$$
(7)
$$= \begin{bmatrix} a_1b_1c_1 + a_1b_2c_3 + a_2b_3c_1 + a_2b_4c_3 & a_1b_1c_2 + a_1b_2c_4 + a_2b_3c_2 + a_2b_4c_4 \\ a_3b_1c_1 + a_3b_2c_3 + a_4b_3c_1 + a_4b_4c_3 & a_3b_1c_2 + a_3b_2c_4 + a_4b_3c_2 + a_4b_4c_4 \end{bmatrix}$$
(8)

$$(A * B) * C = \begin{bmatrix} a_1b_1 + a_2b_3 & a_1b_2 + a_2b_4 \\ a_3b_1 + a_4b_3 & a_3b_2 + a_4b_4 \end{bmatrix} \cdot \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix}$$

$$= \begin{bmatrix} a_1b_1c_1 + a_1b_2c_3 + a_2b_3c_1 + a_2b_4c_3 & a_1b_1c_2 + a_1b_2c_4 + a_2b_3c_2 + a_2b_4c_4 \\ a_3b_1c_1 + a_3b_2c_3 + a_4b_3c_1 + a_4b_4c_3 & a_3b_1c_2 + a_3b_2c_4 + a_4b_3c_2 + a_4b_4c_4 \end{bmatrix}$$

$$(10)$$

By equations 7 and 9, we have that G is associative under *. Consider the following:

$$A * I = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} = A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} = I * A$$
(11)

Then, $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is the identity element of G.

Let us write A^{-1} to mean $\frac{1}{a_1a_4-a_2a_3}\begin{bmatrix} a_4 & -a_2 \\ -a_3 & a_1 \end{bmatrix}$ Consider one last set of equations:

$$A * A^{-1} = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \cdot \frac{1}{a_1 a_4 - a_2 a_3} \begin{bmatrix} a_4 & -a_2 \\ -a_3 & a_1 \end{bmatrix} = \begin{bmatrix} \frac{a_1 a_4 - a_2 a_3}{a_1 a_4 - a_2 a_3} & \frac{a_2 a_4 - a_2 a_4}{a_1 a_4 - a_2 a_3} \\ \frac{-a_1 a_3 + a_1 a_3}{a_1 a_4 - a_2 a_3} & \frac{-a_2 a_3 + a_1 a_4}{a_1 a_4 - a_2 a_3} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$A^{-1} * A = \frac{1}{a_1 a_4 - a_2 a_3} \begin{bmatrix} a_4 & -a_2 \\ -a_3 & a_1 \end{bmatrix} \cdot \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} = \begin{bmatrix} \frac{a_1 a_4 - a_2 a_3}{a_1 a_4 - a_2 a_3} & \frac{a_2 a_4 - a_2 a_4}{a_1 a_4 - a_2 a_3} \\ \frac{-a_1 a_3 + a_1 a_3}{a_1 a_4 - a_2 a_3} & \frac{-a_2 a_3 + a_1 a_4}{a_1 a_4 - a_2 a_3} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$(13)$$

Then, any element $a \in G$ has an inverse $\frac{1}{a_1a_4-a_2a_3}\begin{bmatrix} a_4 & -a_2 \\ -a_3 & a_1 \end{bmatrix} \in G$.

Because G is closed under *, is associative, has an identity element, and has an inverse for each element, $\langle G, * \rangle$ is a group.

Theorem 7. $\langle G, * \rangle$ is not an Abelian group.

Proof. Let $A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$. Notice that $A * B = \begin{bmatrix} 0 & 1 \\ -2 & 1 \end{bmatrix}$ while $B * A = \begin{bmatrix} 1 & 1 \\ -2 & 0 \end{bmatrix}$. Then, we have some $A, B \in G$ where $A * B \neq B * A$. We conclude that G is not commutative under *. Finally, we have that $\langle G, * \rangle$ is not an Abelian group.

8 A subset of nonsingular 2×2 matrices

Let G be defined as follows:

$$G = \{A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2 \times 2} \ni \exists A^{-1} \in \mathbb{R}^{2 \times 2} \ni AA^{-1} = A^{-1}A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\land a + c = 1 \land b + d = 1\}$$

Let * be defined on G as standard matrix multiplication.

Theorem 8. $\langle G, * \rangle$ is a group.

Proof. Let the definitions in equation 2 hold and suppose C = AB as described by equation 3. We have the following equations by taking the sum of the columns of C from equation 3:

$$a_1 + a_3 = a_2 + a_4 = b_1 + b_3 = b_2 + b_4 = 1$$
 (14)

$$a_1b_1 + a_2b_3 + a_3b_1 + a_4b_3 = b_1(a_1 + a_3) + b_3(a_2 + a_4) = b_1 + b_3 = 1$$
 (15)

$$a_1b_2 + a_2b_4 + a_3b_2 + a_4b_4 = b_2(a_1 + a_3) + b_4(a_2 + a_4) = b_2 + b_4 = 1$$
 (16)

Since the columns of C sum to 1, we have that $C \in G$ and in general that G is closed under *.

Now, suppose A, B and C are defined with generic real entries as described by equation 2.

By equations 7 and 9, we have that G is associative under *, since those equations hold for our current defintiion of G.

By the same reasoning demonstrated in equation 11, we have that $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is the identity for G.

By the same reasoning demonstrated in equations 12 and 13, we have that $\frac{1}{a_1a_4-a_2a_3}\begin{bmatrix} a_4 & -a_2 \\ -a_3 & a_1 \end{bmatrix}$ is the inverse of any $A = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \in G$. Then, since G is closed under *, since G is associative under *, since

Then, since G is closed under *, since G is associative under *, since G has an identity element and since every element of G has an inverse, we conclude that $\langle G, * \rangle$ is a group.