Applied Statistics for Computer Science BSc, Exam

Probability Theory and Mathematical Statistics for Computer Science Engineering BSc, Term grade

István Fazekas University of Debrecen

2020/21 fall

This work was supported by the construction EFOP-3.4.3-16-2016-00021. The project was supported by the European Union, co-financed by the European Social Fund.

Main topics

- 1. Probability theory
- 2 Statistics

Mathematical tools: combinatorics, calculus

Computer tool: Matlab

Book:

Yates, Goodman:

Probability and Stochastic Processes: A Friendly Introduction for

Electrical and Computer Engineers

Lecture 4

Discrete random variables

Discrete random variables

Random variable: a quantity depending on randomness. Discrete random variable: the range is countable.

Examples

1. Toss a fair coin, if it shows H, then we get 1 EUR, if it shows T, then we pay 1 EUR. Then

$$P(X = 1) = \frac{1}{2}, \quad P(X = -1) = \frac{1}{2}$$

is its distribution.

2. Roll a fair die. Let X denote the number shown. Then

$$p_1 = P(X = 1) = \frac{1}{6}, \ p_2 = P(X = 2) = \frac{1}{6}, \dots, \ p_6 = P(X = 6) = \frac{1}{6}$$

is its distribution.

Definition of a discrete random variable

Definition. Let (Ω, \mathcal{F}, P) be a probability space.

Let $X:\Omega\to\mathbb{R}$ be real valued function depending on the elementary events.

X is called a discrete random variable if its range is countable and

$$\{\omega: X(\omega) = x\} \in \mathcal{F}, \quad \forall x \in \mathbb{R}.$$
 (1)

The distribution of a discrete random variable

Let x_1, x_2, \ldots be the range of X.

Denote by A_i the event $\{X = x_i\}$, $i = 1, 2, \ldots$

Then A_i , i = 1, 2, ..., is a partition of the sample space.

So

$$p_i = P(A_i) = P\{X = x_i\}, \quad i = 1, 2, ...,$$
 (2)

is a discrete distribution,

i.e.
$$p_i \ge 0$$
, $i = 1, 2, ...$, and $\sum_{i=1}^{\infty} p_i = 1$.

The sequence p_1, p_2, \ldots is called the distribution of X.

1. Hypergeometric distribution

In a box there are M red and N - M white balls (M < N).

Choose n balls without replacement (n < N)!

Denote by X the number of red balls chosen.

Then X has hypergeometric distribution:

$$h_k = P(X = k) = {M \choose k} {N - M \choose n - k} / {N \choose n}$$

where $k = \max\{n - N + M, 0\}, \dots, \min\{n, M\}.$

2a. Binomial distribution

In a box there are M red and N - M white balls (M < N).

Choose *n* balls with replacement!

Denote by X the number of red balls chosen.

Then X has binomial distribution:

$$b_k = P(X = k) = \binom{n}{k} \left(\frac{M}{N}\right)^k \left(1 - \frac{M}{N}\right)^{n-k}, \quad k = 0, 1, \dots, n.$$

2b. General form of the binomial distribution

Repeat an experiment n times.

Consider an event A in the experiment, P(A) = p.

Denote X the number of occurrences of A.

Then the distribution of X is

$$b_k = P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, ..., n.$$

3. Poisson distribution

We say that X has Poisson distribution with parameter λ if

$$p_k = P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, ...,$$

where $\lambda > 0$ is a constant.

4. Negative binomial distribution

Suppose there is a sequence of independent trials.

Each trial has two potential outcomes called 'success' and 'failure'.

In each trial the probability of success is p and of failure is 1-p.

We are observing this sequence until a predefined number r of successes have occurred.

Then the random number of necessary trials X, will have the negative binomial (or Pascal) distribution:

$$P(X = r + k) = {k + r - 1 \choose r - 1} p^r (1 - p)^k, \quad k = 0, 1, 2, ...,$$

where 0 and <math>r are fixed.

If r=1, then

$$P(X = 1 + k) = p(1 - p)^{k}, k = 0, 1, 2, ...,$$

is the geometric distribution.

Expectation

Example. Roll a fair die. If it shows k, then we win k EUR. The distribution of our random variable is

$$P(X = 1) = \frac{1}{6}, \dots, P(X = 6) = \frac{1}{6}.$$

The average of our win is

$$E(X) = (1+2+3+4+5+6)/6 = 3.5.$$

However, if we play with a manipulated die, then the average win will be another value. If

$$P(X = 1) = \frac{1}{12}, P(X = 2) = \frac{1}{6}, P(X = 3) = \frac{1}{6},$$

$$P(X = 4) = \frac{1}{6}, P(X = 5) = \frac{1}{6}, P(X = 6) = \frac{1}{4},$$

then the average will be

$$E(X) = \frac{1}{12} \cdot 1 + \frac{1}{6} \cdot 2 + \frac{1}{6} \cdot 3 + \frac{1}{6} \cdot 4 + \frac{1}{6} \cdot 5 + \frac{1}{6} \cdot 6 \approx 3.91$$

The definition of the expectation

Let $p_k = P(X = x_k)$, k = 1, 2, ..., be the distribution of X. Assume that the series $\sum_k p_k x_k$ is absolutely convergent.

Then the number

$$\boxed{EX = \sum_{k=1}^{\infty} p_k x_k}$$

is called the expectation of X.

Remark. If $\sum_{k} p_k x_k$ is absolutely convergent, then $\sum_{k=1}^{\infty} p_k x_k$ if finite and unique.

Remark. There are random variables such that the expectation do not exist. Sometimes the sum $\sum_{k=1}^{\infty} p_k x_k$ is not finite.

Calculation of the expectation

Hypergeometric distribution.

$$EX = \sum_{k} k \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}} = \frac{Mn}{N} \sum_{k} \frac{\binom{M-1}{k-1} \binom{N-1-(M-1)}{n-1-(k-1)}}{\binom{N-1}{n-1}} = \frac{Mn}{N}.$$

Poisson distribution. Let $P(X = k) = e^{-\lambda} \lambda^k / k!$, k = 0, 1, 2, ..., Then

$$EX = \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \cdot \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = e^{-\lambda} \cdot \lambda \cdot e^{\lambda} = \lambda.$$

Above we applied $e^{\lambda} = \sum_{k=0}^{\infty} \lambda^k / k!$

Properties of the expectation

Theorem. Let the distribution of X be $p_k = P(\xi = k)$, $k = 1, 2, \ldots$

Let $f: \mathbb{R} \to \mathbb{R}$ be a function and $Y = f(\xi)$. Then

$$EY = \sum_{k=1}^{\infty} p_k f(x_k),$$

if either $\sum_{k=1}^{\infty} p_k f(x_k)$ is absolutely convergent of EY is finite.

Example.

$$EX^2 = \sum_{k=1}^{\infty} p_k x_k^2$$

Properties of the expectation

Theorem. The expectation is **linear**, that is if EX and EY exist and are finite, c is a constant, then

- (i) E(X + Y) exists and it is finite and E(X + Y) = EX + EY;
- (ii) E(cX) exists and it is finite and E(cX) = cEX.

Example. Let X be binomial with parameters n and p. Then

$$X = X_1 + \cdots + X_n$$

where X_i has **Bernoulli distribution**:

$$P(X_i = 1) = p, P(X_i = 0) = 1 - p.$$

Then
$$EX_i = p \cdot 1 + (1-p) \cdot 0 = p$$
 for any i.

Therefore

$$EX = EX_1 + \cdots + EX_n = np.$$

Calculation of the expectation

Example. Let X have negative binomial distribution with parameters r and p. Then

$$X = X_1 + \cdots + X_r$$

where $X_1, ..., X_r$ are random variables with geometric distribution: $P(X_i = 1 + k) = p(1 - p)^k, \quad k = 0, 1,$ Now

$$EX_i = \sum_{k=0}^{\infty} (k+1)p(1-p)^k = p\sum_{k=0}^{\infty} (k+1)(1-p)^k =$$

$$= p(-\sum_{k=0}^{\infty} (1-p)^k)' = p\left(\frac{-1}{p}\right)' = \frac{p}{p^2} = \frac{1}{p}.$$

Above we applied that a convergent power series can be differentiate term by term.

Calculation of the expectation

Example (cont.)

We obtained: if an event A has probability p, then we should repeat the experiment 1/p times to obtain 1 occurrence of A. Using the above result

$$EX = EX_1 + \cdots + EX_r = \frac{r}{p}$$

So we should repeat the experiment r/p times to obtain r occurrences of A.

Variance

The variance is the expectation of the squared deviation of a random variable from its mean.

Informally, it measures how far a set of numbers is spread out from their average value.

Definition. Let X be a random variable, assume that EX = m exists and it is finite. Then

$$Var X = E(X - m)^2$$

is called the variance of X.

Calculation of the variance

Theorem. Let $Var X < \infty$, then

$$\boxed{\mathrm{Var}X = EX^2 - E^2X} ,$$

(where E^2X is the abbreviation of $(EX)^2$). **Proof.** $VarX = E(X - m)^2 = E(X^2 - 2mX + m^2) = EX^2 - 2mEX + m^2 = EX^2 - 2m^2 + m^2 = EX^2 - E^2X$

Calculation of the variance

Theorem. Let $Var X < \infty$, then

$$\boxed{\mathrm{Var} X = \sum\nolimits_{n=1}^{\infty} p_n (x_n - m)^2} \ ,$$

and

$$\mathrm{Var}X = \sum\nolimits_{n=1}^{\infty} p_n x_n^2 - m^2,$$

where m is the expectation of X and p_n is the distribution of X i.e.

$$P(X = x_n) = p_n, n = 1, 2,$$

Calculation of the variance

Example. Let X have Poisson distribution. Then

$$EX^{2} = \sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda} = \sum_{k=1}^{\infty} k \frac{\lambda^{k}}{(k-1)!} e^{-\lambda} =$$

$$= e^{-\lambda} \sum_{k=1}^{\infty} [(k-1)+1] \frac{\lambda^{k}}{(k-1)!} =$$

$$= \lambda^{2} e^{-\lambda} \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!} + \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} =$$

$$= \lambda^{2} e^{-\lambda} e^{\lambda} + \lambda e^{-\lambda} e^{\lambda} = \lambda^{2} + \lambda.$$

Therefore

$$Var X = E X^2 - E^2 X = \lambda^2 + \lambda - \lambda^2 = \lambda$$
.

Properties of the variance

Theorem.

$$Var(aX+b)=a^2VarX$$

for all numbers $a, b \in \mathbb{R}$.

Proof.
$$E(aX + b) = am + b$$
. So

$$Var(aX + b) = E((aX + b) - (am + b))^2 = Ea^2(X - m)^2 = a^2 Var X.$$

Steiner's formula

For any number a

$$Var X = E(X - a)^2 - (EX - a)^2,$$

$$E(X - a)^2 \ge Var X.$$
 (3)

In the inequality (3) we have equality if and only if a = EX.

Properties of the expectation and the variance

If $X \ge 0$ with probability 1, then $EX \ge 0$.

If $X \ge 0$ with probability 1 and EX = 0, then P(X = 0) = 1.

 $Var X \geq 0$;

Var X = 0 if and only if P(X = EX) = 1.