

# 파이썬 추천시스템 surprise 패키지

## Surprise – 파이썬 추천 패키지

- R은 recommenderlab, Spark 는 MLlib에서 쉽게 Recommendation을 수행할 수 있는 패키지를 가지고 있는 방면에 사이킷런에는 Recommendation을 쉽게 수행할수 있는 package 를 가지고 있지 않습니다.
- Python 에서 recommendation을 쉽게 제공하는 대표적인 패키지로서 surprise 가 있습니다. Surprise는 Scikit learn의 API 와 유사하게 작성되어 있으며 이를 이용해 Recommendation Process 를 쉽게 적용할 수 있습니다.
- pip 또는 conda로 설치할 수 있으며, 윈도우 운영체제에 설치시에는 Visual studio build tools이 미리 설치되어 있어야 합니다.



A Python scikit for recommender systems.

## Surprise 패키지를 이용한 추천 수행 프로세스





### 모델 설정 및 학습



### 예측 및 평가

데이터 컬럼 format , rating scaling Built-in , OS , DataFrame 에서 데이터 로딩

추천 Algorithm 설정 Train 데이터로 학습

예측

평가

Reader

Dataset

SVD, KNNBasic등

train() 메소드

test() , predict() 메소드

accuracy.rmse 등

cross\_validate GridSearchCV

### Surprise를 이용한 추천 구현 기본

필요한 라이브러리 로딩

from surprise import SVD, Dataset, accuracy from surprise.model\_selection import train\_test\_split

필요한 데이터 세트를 로딩. 데이타는 Dataset 패키지를 이용

Csv 파일 및 Pandas Dataframe에서도 Loading 가능. 로딩한 데이터 세트를 학습용과 테스트용 데이터 세트로 분리.

data = Dataset.load\_builtin('ml-100k')
trainset, testset = train\_test\_split(data, test\_size=.25)

3 행렬 분해를 수행할 알고리즘으로 SVD 생성하고 학습용 데이터로 학습.

algo = SVD()
algo.fit(trainset)

테스트 데이터 세트에 대해서 prediction을 수행. 일반적인 scikit learn의 predict() 메소드는 surprise에서 test() 메소드 특정 사용자와 item에 대한 predict는 predict() 메소드.

predictions = algo.test(testset)

### Surprise 주요 모듈 소개 - Dataset

- Surprise 는 무비렌즈 데이터 세트와 같이 userid, itemid, rating 컬럼들이 사용자(userid)를 기준으로 한 로우 레벨의 평점 데이터 로 구성된 데이터 세트만 입력 가능합니다.
- 입력받은 데이타의 첫번째 컬럼을 사용자 ID , 두번째 컬럼을 Item ID , 세번째 컬럼을 Rating으로 가정합니다. 네번째 부터는 Recommendation 알고리즘에 아예 사용하지 않습니다.
- 이렇게 로우 레벨로 입력 받은 사용자-아이템 데이터는 Dataset 객체로 로딩 후 사용자-아이템 평점 행렬로 변환 됩니다.

### Movie Lens 사용자 평점 데이타

| 사용자 ID | 아이템ID | 평점 | Time Stamp |
|--------|-------|----|------------|
| 196    | 242   | 3  | 881250949  |
| 186    | 302   | 3  | 891717742  |
| 22     | 377   | 1  | 878887116  |
| 244    | 51    | 2  | 880606923  |
| 166    | 346   | 1  | 886397596  |
|        |       |    |            |

일반 데이터 파일 , 또는 Pandas Dataframe에서 로딩 가능합니다. 단 사용자 ID, 아이템 ID, 평점의 컬럼순은 반드시 지켜야 합니다.

## Dataset 클래스의 주요 메소드

| 메소드 명                                         | 설명                                                                                                                                                                                                                                           |  |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Dataset.load_builtin(name='ml-100k')          | 무비렌즈 아카이브 FTP 서버에서 무비렌즈 데이터를 내려받습니다. ml-100k, ml-1M를 내려받을 수 있습니다. 일단 내려받은 데이터는 .surprise_data 디렉터리 밑에 저장되고, 해당 디렉터리에 데이터가 있으면 FTP에서 내려받지 않고 해당 데이터를 이용합니다. 입력 파라미터인 name으로 대상 데이터가 ml-100k인지 ml-1m인지를 입력합니다(name='ml-100k'). 디폴트는 ml-100k입니다 |  |
| Dataset.load_from_file<br>(file_path, reader) | OS 파일에서 데이터를 로딩할 때 사용합니다.<br>콤마, 탭 등으로 컬럼이 분리된 포맷의 OS 파일에서 데이터를 로딩합니다.<br>입력 파라미터로 OS 파일명, Reader로 파일의 포맷을 지정합니다                                                                                                                             |  |
| Dataset.load_from_df<br>(df, reader)          | 판다스의 DataFrame에서 데이터를 로딩합니다.<br>파라미터로 DataFrame을 입력받으며 DataFrame 역시 반드시 3개의 컬럼인 사용자 아이디, 아이템 아이디,<br>평점 순으로 컬럼 순서가 정해져 있어야 합니다.<br>입력 파라미터로 DataFrame 객체, Reader로 파일의 포맷을 지정합니다.                                                             |  |
|                                               |                                                                                                                                                                                                                                              |  |

### Surprise 주요 모듈 소개 - Reader

- Raw 데이터 소스에서 Dataset로 로딩 규칙을 지정하기 위해 사용됩니다.
- Surprise 데이터 세트는 기본적으로 무비렌즈 데이터와 같은 로우 레벨의 사용자-아이템 평점 데이터 형식을 따르므로 무비렌즈 데이터 형식이 아닌 경우 이를 변환하여 Dataset로 로딩해야 합니다.

from surprise import Reader

reader = Reader(line\_format='user item rating timestamp', sep=', ', rating\_scale=(0.5, 5))

data=Dataset.load\_from\_file('./ml-latest-small/ratings\_noh.csv', reader=reader)

- line\_format (string): 컬럼을 순서대로 나열합니다. 입력된 문자열을 공백으로 분리해 컬럼으로 인식합니다.
- sep (char): 컬럼을 분리하는 분리자이며, 디폴트는 '₩t'입니다. 판다스 DataFrame에서 입력받을 경우에는 기재할 필요가 없습니다.
- rating\_scale (tuple, optional): 평점 값의 최소 ~ 최대 평점을 설정합니다. 디폴트는 (1, 5)이지만 ratings.csv 파일의 경우는 최소 평점이 0.5, 최대 평점이 5이므로 (0.5, 5)로 설정했습니다.

# 무비렌즈 협업필터링 추천시스템 구현 실습 (surprise 패키지 기본 모델)

### surpriselib.com



#### Overview

Surprise is a Python scikit building and analyzing recommender systems that deal with explicit rating data.

#### Surprise was designed with the following purposes in mind:

· Give users perfect control over their experiments. To this end, a strong emphasis is laid on documentation, which we have tried to make as clear and precise as possible by pointing out every detail of the algorithms.

... 🗵 🊖

- Alleviate the pain of Dataset handling. Users can use both built-in datasets (Movielens, Jester), and their own custom datasets.
- Provide various ready-to-use prediction algorithms such as baseline algorithms, neighborhood methods, matrix factorization-based ( SVD, PMF, SVD++, NMF), and many others. Also, various similarity measures (cosine, MSD, pearson...) are built-in.
- · Make it easy to implement new algorithm ideas.
- · Provide tools to evaluate, analyse and compare the algorithms performance. Cross-validation procedures can be run very easily using powerful CV iterators (inspired by scikit-learn excellent tools), as well as exhaustive search over a set of parameters.

The name SurPRISE (roughly:)) stands for Simple Python Recommendation System Engine.

Please note that surprise does not support implicit ratings or content-based information.

#### Getting started, example

Here is a simple example showing how you can (down)load a dataset, split it for 5-fold cross-validation, and compute the MAE and RMSE of the SVD algorithm.

```
from surprise import SVD
from surprise import Dataset
from surprise.model selection import cross validate
# Load the movielens-100k dataset (download it if needed).
data = Dataset.load builtin('ml-100k')
```

### 서프라이즈 패키지 설치

### pip install scikit-surprise

```
Equirement already satisfied: scikit-surprise in c:\program files\program files\progr
```

## Surprise 추천 알고리즘 클래스

| 클래스명         | 설명                                      |  |
|--------------|-----------------------------------------|--|
| SVD          | 행렬 분해를 통한 잠재 요인 협업 필터링을 위한 SVD 알고리즘.    |  |
| KNNBasic     | 최근접 이웃 협업 필터링을 위한 KNN 알고리즘.             |  |
| BaselineOnly | 사용자 Bias와 아이템 Bias를 감안한 SGD 베이스라인 알고리즘. |  |

지원 알고리즘은 surprise 사이트 문서에서 참조할 수 있습니다 (http://surprise.readthedocs.io/en/stable/prediction\_algorithms\_package.html)

## 사용자의 성향을 반영한 Baseline rating

$$\hat{r}_{ui} = b_{ui} = \mu + b_u + b_i$$

사용자 u의 아이템 i에 대한 예측 평점은 전체 사용자의 평균 영화 평점 + 사용자 편향점수 + 아이템 편향 점수











🚨 🙎 모든 사용자의 평균 영화 평점 : 3.5



난 진정한 영화 매니아. 영화 평가는 언제나 깐깐하게

사용자 A 평균 평점

3.0

### 사용자 A 의 어벤저스 3편 베이스 라인 평점= 3.5 - 0.5 + 0.7= 3.7

모든 사용자의 평균 영화 평점

3.5



사용자 편향 점수



특정 사용자 평균 평점 -전체 사용자 평균 평점



아이템 편향 점수



특정 영화 평균 평점 – 전체 사용자 평균 평점

어벤저스 3편 평균 평점

4.2



파이썬 머신러닝 완벽 가이드

## Baseline rating을 반형한 행렬 분해의 비용 최소화 함수

$$min(\sum_{r_{ui} \in R_{train}} \left(r_{ui} - \hat{r}_{ui}
ight)^2 + \lambda \left(b_i^2 + b_u^2 + \left|\left|q_i
ight|\right|^2 + \left|\left|p_u
ight|\right|^2
ight)$$

 $b_i$ 는 아이템 편향 점수  $b_u$ 는 사용자 편향 점수

# SVD의 튜닝 파라미터

| 파라미터명         | 내용                                                             |
|---------------|----------------------------------------------------------------|
| n_factors     | 잠재 요인 K의 개수. 디폴트는 100, 커질수록 정확도가 높아질 수 있으나 과적합 문제가 발생할 수 있습니다. |
| n_epochs      | SGD(Stochastic Gradient Descent) 수행 시 반복 횟수, 디폴트는 20.          |
| biased (bool) | 베이스라인 사용자 편향 적용 여부이며, 디폴트는 True입니다.                            |

### 교차 검증과 하이퍼 파라미터 튜닝

Surprise는 교차 검증과 하이퍼 파라미터 튜닝을 위해 사이킷런과 유사한 cross\_validate()와 GridSearchCV 클래스를 제공합니다

## 추천 Summary

추천 시스템의 중요성

추천 시스템의 유형

콘텐츠 기반 필터링

협업 필터링

최근접 이웃 기반(Nearest Neighbor)

사용자 기반 (User-user CF) 아이템 기반 (Item-item CF)

잠재 요인 기반(Latent Factor)

행렬 분해 기반(Matrix Factorization)

Surprise – 파이썬 추천 패키지