Analyzing New York City Airbnb Data with Machine Learning and Geospatial Modeling

Charlie Zien and Raymond Atta-Fynn

NYC Data Science Academy: Capstone Presentation

September 19, 2019

Outline

Motivation and background information

The data

Data Analysis via visualization and geospatial modeling

Model training and prediction via machine learning

Concluding remarks

Introduction

- Airbnb generates revenue by charging its guests and host fees for arranging stays (hosts are charged 3% of the value of the booking; guests are charged 6-12% depending on the nature of the booking)
- As an ecosystem, Airbnb transactions generate a lot of data: density of rentals across cities and neighborhoods; price variations across rentals and cities; hostguest interactions in the form of reviews (mainly guest experiences).
- A "smart pricing" algorithm recommends hosts a price to set when posting

Nightly price

Smart Pricing

Automatically adjust your price based on demand. Your price stays within the range you set, and you can change it at any time.

What is Smart Pricing?

Base price

\$ 140

Tip: \$128

Motivation

- Airbnb's goal is to book as many properties as possible
- Question: Is the algorithm a smart move for hosts, or is it only "smart" with regard to Airbnb's objectives?
- What further information can be gleaned from Airbnb transactions in New York city?
 - How are the rental properties geographically distributed across the city?
 - How do prices vary across properties, neighborhoods and rental amenities?
 - How well can the rental prices be predicted using machine learning methods?

The data

- The data set is broken into three key groups:
 - Listings: a detailed list of rental listings with 106 attributes from <u>Inside Airbnb</u> (independent of Airbnb). A few of the attributes are price, number of beds, property type, neighborhood, cleaning fee, etc.
 - Mapping shapefiles: Inside Airbnb's map of neighborhood boundaries for mapping; <u>US Census</u> shapefiles of census tracts and blocks
 - Property taxes: Primary Land Use Tax Lot Output (<u>PLUTO</u>) Public register of NYC property values and taxes assessed. Values are based on estimates for 1 year worth of rental income

Exploring the data: listings per neighborhood

Exploring the data: price per neighborhood

Exploring the data: price distributions

 There are ~19,000 Airbnbs (entire apartments) in New York

Questions:

- Are there any geographic patterns in the data?
- Where to buy property for the best return on Airbnb?

Methodology:

- Divide the city and geospatially join sections with Airbnb coordinates (ArcGIS)
- Compare Airbnb prices to property values to determine where to buy
- Problem: How to subdivide the city?

- Problem: The neighborhoods provided by Airbnb give a highly generalized overview
- In reality these neighborhoods are extremely diverse, with luxury highrises a few blocks away from lowincome housing

- Idea 1: Show Airbnb prices with a heatmap
- Pros:
 - Easy to build
 - Does not depend on arbitrary boundaries
- Cons:

9/19/2019

- Does not take property values into account
- Difficult to analyze against other data (tax, census)
- Too easy

Modeling Airbnb Data: Capstone Presentation NYCDSA

- Idea 2: Divide the city by census tracts
- Pros:
 - Smaller than neighborhoods
 - Easy to define
 - Well documented, easy to digest
- Cons:

9/19/2019

- Too much price variation
- Housing values fluctuate wildly within tracts

Modeling Airbnb Data: Capstone Presentation NYCDSA

- Idea 3: Divide the city by census blocks
- Pros:
 - Much more granular than tracts
 - Less price variation
 - Can be joined with property tax and and census data
- Cons:
 - Computationally intensive

- Example: Fort Greene
- Median rent: \$3300 (approx.)
- Median nightly rate: \$224
- Median payback period: 176 nights

Caveats:

- Property taxes do not always coincide with rents
- Airbnbs are not necessarily a perfect cross-section of rentals
- For privacy reasons, Airbnb coordinates are not 100% accurate

Machine learning models for price prediction

• The number one factor that affects a customer's choice of rental is price (followed by the rental property type and the quality of the neighborhood, and other factors).

• Can accurate models be built to reliably predict the price of a rental given features such as: neighborhood, rental type, amenities, etc.?

To answer this question, we resort to machine learning methodologies.

Data splitting

 Before any preprocessing was done, the data was split in a 80%:20% ratio with 80% comprising the training data and 20% comprising the validation/test data.

 The division between training and test set is an attempt to replicate the situation where you have past information and are building a model which you will test on future as-yet unknown information.

• More specifically, anything done on the training data should not be informed by the test data (the philosophy here is that the future should not affect the past).

Feature selection

- Price was the response/dependent variable; there were 105 features (or predictors) of 63 were categorical and 42 were numerical.
- Feature selection: The features were selected with the customer in mind. Features like host picture verification, description of rental property were dropped as they virtually have no effect on price.
- We ended up selecting two sets of features: a small set of 26 features and a large set with 51 features.
- The discussions to follow will be focused on the data with the large set of features.

Feature selection

• Example: small feature set of size 26

```
11 categorical features=['amenities', 'bed type', 'cancellation policy',
'host has profile pic', 'host identity verified', 'host is superhost',
'instant bookable', 'neighbourhood cleansed', 'property type',
'require guest profile picture', 'room type']
```

```
15 numerical features=['accommodates', 'bathrooms', 'bedrooms', 'beds',
'cleaning fee', 'extra people', 'guests included', 'latitude', 'longitude',
'maximum nights', 'minimum nights', 'number of reviews', 'price',
'security deposit', 'square feet']
```

Cleaning the data

 Missing numerical values were imputed the with zero or the mean value of the feature; missing categorical values were imputed with the mode of the feature.

	Feature	Missing values	Feature type	Percentage missing	First 5 values		
0	security_deposit	8479	numerical	28.347431	(0.0, 0.0, 0.0, 600.0, 0.0)		
1	cleaning_fee	4613	numerical	15.422420	(10.0, nan, 20.0, 80.0, 15.0)		
2	zipcode	zipcode 265 categorical 0.8		0.885962	(10453, 10451, 10002, 10010, 11211)		
3	amenities	46	categorical	0.153790	(TV,TV,Internet,Wifi,Air conditioning,Free str		
4	city	44	categorical	0.147103	(Bronx, The Bronx, New York, New York, Brooklyn)		
5	bathrooms	27	numerical	0.090268	(1.0, 1.0, 1.0, 1.0, 1.0)		
6	bedrooms	16	numerical	0.053492	(1.0, 1.0, 1.0, 1.0, 1.0)		
7	beds	15	numerical	0.050149	(1.0, 1.0, 1.0, 1.0, 1.0)		
8	host_is_superhost	5	categorical	0.016716	(f, f, f, t, t)		
9	host_total_listings_count	5	numerical	0.016716	(8.0, 1.0, 5.0, 1.0, 1.0)		
10	host_has_profile_pic	5	categorical	0.016716	(t, t, t, t, t)		
11	host_identity_verified	5	categorical	0.016716	(t, f, t, t, f)		

Response variable transformation

The skewness of the response variable (price) was corrected using a logarithm transformation

Removal of outliers

Outliers in the numerical features were removed via visual/graphical inspection. Below is an example of outlier removal in the feature maximum nights:

Feature engineering

The amenities feature comprises several sub-features such as Wifi, TV, Heating, etc (128 of in total). Some were more frequent that others.

Feature engineering

The amenities feature was engineered as follows:

(i) Each sub-feature $i \in \{\text{Wifi}, \text{TV}, \text{heating}, \text{pool}, \dots \}$ was assigned weight w(i) given by:

$$w(i) = \frac{f(i)}{f_{max}}$$

where f(i) is the frequency of i in the data set and f_{max} is the maximum frequency.

(ii) The sum of the weights s is used to represent the value of each row of amenities column:

$$s = \sum w(i)$$

Feature engineering

```
train['amenities'].head()

0  TV,TV,Internet,Wifi,Air conditioning,Free stre...
1  Wifi,Air conditioning,Kitchen,Heating,Smoke de...
2  Wifi,Air conditioning,Kitchen,Heating,Smoke de...
3  TV,TV,Internet,Wifi,Air conditioning,Kitchen,P...
4  Wifi,Pets allowed,Heating,Smoke detector,Carbo...
Name: amenities, dtype: object

train['amenities'].head()

0  13.464043
1  10.242527
2  10.817777
3  17.599993
4  7.089850
Name: amenities, dtype: float64
```

• The remaining categorical variables were one-hot encoded (binary categorical variables) or label-encoded.

Regression models

We employed the following models as implemented in scikit-learn machine learning module in Python:

- Lasso regression
- Gradient boosting regression
- Extreme gradient boosting regression
- Random forest regression

Each regression method was hyperparameter-tuned using a grid search and a 10-fold cross-validation (CV). The CV scoring method was "negative root mean squared error."

Model	Training Score	Training RMSE	Test RMSE	Training R ²	Test R ²	Training Accuracy	Test Accuracy
Lasso	0.1563	\$82	\$79	65%	64%	69%	69%
GBR	0.0904	\$40	\$61	92%	79%	86%	77%
XGBR	0.0918	\$35	\$62	93%	78%	86%	77%
RF	0.0990	\$32	\$67	97%	77%	91.6%	76%

 Random forest "room type" was the feature with the most importance

Conclusions

- When it comes to Airbnb pricing, there are definitive numeric and geospatial patterns in pricing
- Understanding these patterns can benefit guests and hosts alike (but not Airbnb!)
- Next steps:

- Join with census data to extrapolate key attributes of profitable blocks for clustering
- Integrate better real estate pricing data to identify properties for sale
- Explore other cities
- Turn into a product (Flask web app)