1a. izpit iz Moderne fizike 1

15. december 2021

čas reševanja 90 minut

- 1. Pion z mirovno maso 135 MeV/ c^2 in kinetično energijo 200 MeV v letu razpade na dva fotona, $\pi^0 \to 2\gamma$. Določi maksimalno (minimalno) energijo posameznega fotona.
- 2. Delec v enodimenzionalni neskončni potencialni jami širine L opiše valovna funkcija

$$\psi(x) = N\left(x^2 - Lx\right) .$$

- (a) Določi normalizacijsko konstanto N.
- (b) Izračunaj pričakovane vrednosti lege in njenega kvadrata, $\langle x \rangle$ in $\langle x^2 \rangle$.
- (c) Izračunaj pričakovane vrednosti gibalne količine in njenega kvadrata, $\langle p \rangle$ in $\langle p^2 \rangle$.
- (d) Kolikšen je produkt nedoločenosti lege in gibalne količine, $\delta x \delta p$?
- (e) Izračunaj pričakovano vrednost energije $\langle E \rangle$.

- 3. Vesoljski ladji se približujeta Zemlji z razdalje enega svetlobnega leta. Z Zemlje pošiljamo signale s frekvenco ν pod kotom 90° glede na prvo ladjo, ki izmeri ν_1 . Na krovu 2. ladje, ki potuje s hitrostjo $v_2 = (4/\sqrt{21})v_1$, izmerijo frekvenco ν_2 pod kotom 90°. Ladji se srečata na Zemlji in ugotovita, da je $\nu_2 = (1/2)\nu_1$. Kolikšni sta hitrosti posameznih ladij glede na Zemljo? Določi čas, ki ga izmerijo na posamezni ladji za pot od začetne točke do Zemlje.
- 4. Delec postavimo v harmonski potencial $V=m\omega^2x^2/2$ in napravimo veliko meritev. Izmerjene energije pri posamezni meritvi so $(1/2)\hbar\omega < E_i < (7/2)\hbar\omega, \forall i$, torej ne izmerimo niti $(1/2)\hbar\omega$, niti $(7/2)\hbar\omega$. Izmerimo pa povprečji $\langle E \rangle = (11/6)\hbar\omega$ in $\langle x \rangle = \sqrt{(2/3)\hbar/(m\omega)}$. Določi časovni razvoj valovne funkcije in napovej $\langle x^2 \rangle$! Bodi pozoren, da so lahko koeficienti razvoja valovne funkcije v splošnem kompleksni in upoštevaj $\hat{x} \psi_n = \sqrt{\hbar/(2m\omega)} \left(\sqrt{n+1} \psi_{n+1} + \sqrt{n} \psi_{n-1}\right)$.