אינפי 2 ⁻ סמסטר א' תשע"ט תרגיל בית 1

להגשה עד יום חמישי, 1 בנובמבר, בשעה 20:00, דרך תיבת ההגשה במודל

a < b ' ו $a,b \in \mathbb{R}$ ' אנחנו מניחים ש "[a,b] אנחנר מחלרת, כאשר אחרת, כאשר מוזכר "קטע" אנחנו מניחים ש ' $a,b \in \mathbb{R}$ ' משפט 2.3" הוא מופיע בסיכום הרצאה 2, בעמוד 2.6 (עמוד 7 בקובץ).

- . בשאלה מהכיתה ההגדרות מחכיתה לעקוב אחרי בלבד. בשאלה או אתם מחכיתה בלבד. $f:[a,b] o \mathbb{R}$
 - [a,b] אינטגרבילית בקטע אינטגרבילית יהפונקציה אינטגרבילית (א)
 - ." $\int_a^b f$ בהנחה שמתקיים התנאי מסעיף א', הגדירו: "האינטגרל המסוים (ב
- י ו $L\left(f,P
 ight)$ את חשבו את $f:[0,1] o \mathbb{R}$ המוגדרת על־ידי $P=\left\{0,\frac{1}{4},\frac{1}{3},\frac{2}{3},\frac{8}{9},1\right\}$ חשבו את $L\left(f,P
 ight)$ חשבו את $L\left(f,P
 ight)$ חשבו את $L\left(f,P
 ight)$ המוגדרת על־ידי $L\left(f,P
 ight)$ חשבו את $L\left(f,P
 ight)$ המוגדרת על־ידי $L\left(f,P
 ight)$
 - [a,b] פונקציית דיריכלה. כלומר, $D(x)=egin{cases} 1 & x\in\mathbb{Q} \\ 0 & x\notin\mathbb{Q} \end{cases}$ הוכיחו ש $D:[a,b]\to\mathbb{R}$.3
- 4. עבל לאא 2.3 בעזרת משפט 2.3 מתוך הגדרה או בעזרת משפט 2.3 הפונקציה $f:[0,1] \to \mathbb{R}$ הפונקציה $f:[0,1] \to \mathbb{R}$ הוכיחו, משפטים שנלמדו מאוחר יותר) ש $f:[0,1] \to \mathbb{R}$ הפונקציה ב $f:[0,1] \to \mathbb{R}$ השבו את f:[0,1].
 - .5 יהיו 0 < a < b. חשבו את האינטגרלים המסוימים הבאים בעזרת משפט 2.3 (אם אתם מתקשים, כדאי לעבור על תרגול 2):

$$\int_a^b x^{100} dx \qquad \int_a^b 3^x dx \qquad \int_a^b \sqrt[3]{x} dx \qquad \int_a^b \frac{1}{x} dx$$

- הכיתה שדן במשפט מהכיתה להשתמש במשפט מהכיתה שדן $f:[a,b] \to \mathbb{R}$ מהכיתה את כל אחת מהטענות הבאות (רמז: באינטגרביליות של הרכבת פונקציות תחת תנאים מסוימים):
 - [a,b] אינטגרבילית ב [a,b], אז אותו הדבר נכון לגבי ל
 - [a,b] בי לגבי (כון הדבר נכון אינטגרבילית ב' ק[a,b]
- האינטגרל באגף שמאל קיים אם ורק אם (1) מספרים ממשיים. בכל אחד משני הסעיפים הבאים, עליכם להראות שני דברים: a < b יהיו מספרים ממשיים. בכל אחד משני האינטגרלים המסוימים בשני האגפים שווים.
 - $\int_{a}^{b}f\left(x+c
 ight)dx=\int_{a+c}^{b+c}f\left(x
 ight)dx$ הראו הראו, $f:\left[a+c,b+c
 ight]
 ightarrow\mathbb{R}$ ופונקציה כ $c\in\mathbb{R}$
 - $\int_a^b f(cx) dx = \frac{1}{c} \int_{ca}^{cb} f(x) dx$ הראו, $f: [ca, cb] \to \mathbb{R}$ ופונקציה $0 \neq c \in \mathbb{R}$ ב)

. רמז: עבור סעיף א', כדאי למצוא דרך טבעית "לייצר חלוקה של [a+c,b+c] בהינתן חלוקה של "למצוא דרך טבעית "לייצר חלוקה של [a+c,b+c]