Национальный исследовательский университет «МЭИ» Институт Радиотехники и электроники Кафедра радиотехнических приборов и антенных систем

ОТЧЕТ

по лабораторной работе №1

«Исследование основных энергетических соотношений в радиолокации»

по курсу «Теория и техника радиолокации и радионавигации»

Выполнил: Росляков А.Н.

Группа: ЭР-11м-21

Бригада №1

Цель работы:

Экспериментальное исследование энергетических соотношений в радиолокации. Экспериментально исследуются:

- Характеристики приемопередатчика импульсной РЛС с наносекундной разрешающей способностью;
- Зависимость мощности отраженного сигнала от расстояния до цели в соответствии с основным уравнение РЛС;
- Определение эффективной площади рассеяния (ЭПР) различных целей простой геометрической формы: шар, металлический лист, цилиндр, уголковые отражатели;
- Определение ширины диаграммы обратного рассеяния (ДОР) для целей различной геометрической формы: шар, металлический лист, цилиндр, уголковые отражатели.

Ход работы:

Структурная схема лабораторной установки:

Рисунок 1 – Структурная схема установки

Название блоков:

M – модулятор;

ГДГ – генератор на диоде Ганна;

В – вентиль;

НО – направленный ответвитель;

ВУ, ВУ1, ВУ2 – видеоусилители;

Д1, Д2 – квадратичные детекторы;

Aтт-2 – видеоаттенюатор;

Aтт-1 - CBЧ аттенюатор;

МШУ – малошумящий усилитель СВЧ;

ИЗП – импульс запуска передатчика.

Тактико-технические данные установки:

Рабочая длина волны — $\lambda = 3$ см;

Частота повторения зондирующих импульсов Fп = 7 кГц;

Полоса частот приемного тракта $\Delta fc = 500 \text{ M}\Gamma$ ц;

Шумовая температура приемника Тш $\approx 300~\mbox{K};$

Длительность импульсов – $\tau = 2$ нс;

Коэффициент направленного действия рупорной антенны -G = 83,3;

Ширина ДН антенны 26 градусов;

Мощность от 30 до 40 мВт (при расчетах взята средняя - 35 мВт).

Домашняя подготовка:

Пункт 4. Рассчитать ЭПР целей, используемых в лабораторной работе. *Таблица 1*

Объект	Размеры объекта, см	ЭПР, м ²
Сфера	Радиус $r_{\text{III}} = 12.9$	$\sigma = \pi \cdot r_{\text{III}}^2 = 0.052$
Уголковый отражатель-1	Размер ребра $l=15$	$\sigma = \frac{4 \cdot \pi}{3} \cdot \frac{L^4}{\lambda^2} = 2.356$
Цилиндр	Радиус $r = 12$ Высота $h = 44.6$	$\sigma = \frac{2 \cdot \pi}{3} \cdot r \cdot L^2 = 4.999$
Уголковый отражатель-2	Размер ребра $l=30$	$\sigma = \frac{4 \cdot \pi}{3} \cdot \frac{L^4}{\lambda^2} = 37.699$
Металлический лист	Ширина $a=21.2 \mathrm{cm}$ Длина $b=26.4 \mathrm{cm}$	$\sigma = 4 \cdot \pi \cdot \frac{a^2 \cdot b^2}{\lambda^2} = 43.737$

Пункт 5. Рассчитать мощность отраженного от цели сигнала на входе приемника при двух значениях R (1,5 м и 3 м) для шара, уголкового отражателя-1 и уголкового отражателя-2.

Мощность сигнала на входе приемника рассчитывается по формуле:

$$P_{c} = \frac{P_{\text{прд}} \cdot G_{\text{прд}} \cdot G_{\text{прм}} \cdot \lambda^{2} \cdot \sigma}{(4 \cdot \pi)^{3} \cdot R^{4}}$$

Таблица 2

Объект	Дальность (R1=1,5м, R2=3м)	$P_{\scriptscriptstyle ext{прм}}$, мк $ ext{B}$ т
Шар	R1	1.131
	R2	0.07
Уголковый отражатель – 1	R1	51.26
(l=15cm)	R2	3.204
Уголковый отражатель – 2	R1	820.2
(l=30cm)	R2	51.26

Пункт 6. Изобразить графически ДОР для шара, уголкового отражателя-1, металлического листа.

Шар:

Рисунок 2 – ДОР сферы

Металлическая пластина:

$$\sigma_{\mathbf{I}}(\theta,\varphi) = 4\pi \frac{a^2 b^2}{\lambda^2} \cos^2 \varphi$$

$$\cdot \cos^2 \theta \cdot \left[\frac{\sin \left(\frac{2 \cdot \pi}{\lambda} \cdot a \cdot \sin \varphi \cdot \cos \theta \right)}{\frac{2 \cdot \pi}{\lambda} \cdot a \cdot \sin \varphi \cdot \cos \theta} \right]^2 \cdot \left[\frac{\sin \left(\frac{2 \cdot \pi}{\lambda} \cdot b \cdot \sin \theta \right)}{\frac{2 \cdot \pi}{\lambda} \cdot b \cdot \sin \theta} \right]^2$$

Рисунок 3 – ДОР металлической пластины

Уголковый излучатель-1:

$$\sigma_{\rm u} = \frac{4}{3}\pi \frac{L^4}{\lambda^2}$$

Рисунок 4 – ДОР углового отражателя

Лабораторное задание

1. Исследование осциллограмм

Вывод: на осциллограмме приемного канала наблюдаются импульс прямого прохождения, вызванный связью между близко расположенными антеннами, и отраженный от цели импульс. При облучении неподвижной цели импульсами с периодической последовательностью, отраженные импульсы принимаются так же периодически. Время задержки будет отсчитываться от импульса прямого прохождения, так как в данном случае учитываются все прочие задержки и разница между импульсами показывает время на распространение э/м волны в пространстве.

2. Исследование технических характеристик РЛС

$ au_{\scriptscriptstyle \mathrm{H}}$	T_{Π}	$Q_{ m pac}$	<i>Р</i> _и прд	<i>Р</i> _{ср} прд
2.24 нс	2 мкс	892	30 — 40 мВт	35 — 45 мкВт

$$Q_{\text{pac}} = \frac{T_{\text{II}}}{\tau_{\text{II}}} = \frac{2 * 10^{-6}}{2.24 * 10^{-9}} = 892$$

$$P_{\rm cp}$$
прд = $\frac{P_{\scriptscriptstyle
m H}$ прд $Q_{
m pac}$ = 35 $-$ 45 мкВт

3. Исследование зависимости мощности отраженного от цели сигнала в зависимости от дальности до нее

	Цель	Дальность	Дальность	Разница
		$R_3 = 3$ м.	$R_3 = 1.5$ м.	$A_{1,5} - A_3$ дБ
		Аттенюатор	Аттенюатор	
		<i>A</i> ₃ дБ	A _{1,5} дБ	
1	Шар (№1)	0	14	14
2	Уголковый отр. (№2)	10	18	8
3	Уголковый отр. (№3)	22	29	7

Вывод: При увеличении дальности до цели мощность сигнала сильно падает, что соответствует основному уравнению радиолокации.

4. Исследование зависимости мощности отраженного от цели сигнала от величины ее ЭПР

Цель	Размер цели	$\sigma_{\rm ц}$, м 2	$\sigma_{\rm u}$ pac	Аттен	Разница
			$\sigma_{ ext{ iny III}}$	юатор	между
				<i>А</i> _{ц№} , дБ	целью и
					шаром
Шар (№1)	$r_{\!\scriptscriptstyle m III} = 12.5~{ m cm}$	0.052	0	0	-
Уголковый отр.	a = 20 cm	2.36	16.74	20	20
(№ 2)					
Уголковый отр.	a = 40 cm	37.7	28.77	30	30
(№ 3)					
Цилиндр	L = 44.6 cm	4.99	20	14	14
поперечно(№4)	r=12 см				
Пластина (№5)	a = b = 25 см	43.74	29.4	29	29

Вывод: при увеличении ЭПР цели мощность отраженного сигнала увеличивается. ЭПР зависит от геометрической формы цели и расположения её в пространстве относительно РЛС. Для конуса, расположенного вершиной в направлении РЛС ЭПР минимальна, так как уровень мощности, отраженной в сторону РЛС минимален.

5. Измерение ширины диаграммы обратного рассеивания целей

Цель	$ heta_{ ext{ iny u}}$, град
Уголковый отр. (№2)	36
Уголковый отр. (№3)	36
Цилиндр поперечно(№4)	22
Пластина (№5)	2

Вывод: ДОР, так же, как и ЭПР, зависит от геометрической формы цели. Для определения ширины диаграммы ДОР необходимо поворачивать цель на определенный угол, пока амплитуда импульса, отражённого от цели не уменьшится в 2 раза относительно её максимального значения. Для шара значение ЭПР постоянно для всех углов облучения. Уголковые отражатели имеют наибольшую ширину ДОР. Так же заметна зависимость ее ширины от расположения цели в пространстве относительно РЛС на примере конуса. В случае продольного расположения конуса — его ЭПР крайне мала и замерить ширину ДОР не удается.

6. Определение координат цели

t_3	$R_{\rm pac}$	$R_{_{\rm M3M}}$	α , град	$oldsymbol{eta}$, град
25.6 нс	384см	377 см	185	6

$$R_{\text{pac}} = \frac{c * t_3}{2} = \frac{3 * 10^8 * 25.6 * 10^{-9}}{2} = 3.84 \text{m} = 384 \text{cm}$$

Вывод: по времени задержки между импульсом прямого прохождения и импульсом, отраженным от цели, можно определить расстояние до цели. Для

определения угловых координат, необходимо, что бы главный лепесток излучающей антенны полностью облучал цель.В данной работе расчетная дальность практически совпадает с реальной.