Name: Shiska Raut

10:1001526329

CSE 5334 : Data Mining Homework 1 (100 points)

SUBMISSION DEADLINE: 03/31/2023, 11:59 PM

REQUIREMENTS: Homework must be handwritten and converted to pdf format for submission. We will NOT accept typed submissions.

1. Vector Space Model (25 Points)

Suppose you want to know which of Shakespeare's novels are the most similar based on the occurrence of certain characters (Anthony, Brutus, Caesar etc). Table 1 shows the count matrix (the number of occurrence of a certain term/character in a document/novel).

Anthony & Cleopetra Julias Caesar The Tempest Hamlet Anthony 157 73 50 100 4 10 2 Brutus 157 227 Caesar 232 100 2 Calpurnia 10 0

Table 1

Table 2 represents the document frequency of each term/character in your collection. Assume the total number of novels in your collection is 1000.

0

10

6

Table 2

5

Cleopetra

Term	Document Frequency	
Anthony	500	
Brutus	50	
Caesar	600	
Calpurnia	50	
Cleopetra	20	

Find out which novel is most similar to Anthony & Cleopetra. Use log weighted TF(term frequency), log weighted IDF(Inverse Document Frequency) and cosine similarity as the similarity measure.

1. USM

To find out which Novel is most similar to Anthony & Cleopatra, we need to calculate tf-idf vectors for each document.

Weighing scheme: Itn

let,

Anmony k deopatra = d,

Anthony = t_1 Tulras Caesar = d_2 The Tempest = d_3 Mamiet = d_4 Cloopatra = t_5

2) Weighted tf

	d,	d2	d_3	dy	
t,	3.1958	2.8633	2.6989	3	<u> </u>
t_2	1.6020	3.1958	2	1.3010	
t3	3.3654	1.3010	3.3560	3	
ty	1.3010	2	0	1.6989	
ts	1.6989	0	2	1,7781	

2) Weighted iff
$$(N = 4)$$
 $t_1 = log_{10}(looo/soo) \Rightarrow 0.3010$
 $t_2 = log_{10}(looo/so) \Rightarrow 1.3010$
 $t_3 = log_{10}(looo/600) \Rightarrow 0.2218$
 $t_4 = log_{10}(looo/so) \Rightarrow 1.3010$
 $t_5 = log_{10}(looo/20) \Rightarrow 1.6989$

3) tf * (df for each doc.

	d,	dz	d3	dy
Ł,	0.9619	0.8618	0.8123	0.903
t _z	2.0842	4.1577	2.602	1.6926
Łz	0.7469	0.2885	0.7463	0.6654
ty	1.6926	2.602	0	2.2102
ts	2.8862	0	3.3978	3.0208

4) Cosine similarity (NON-NOTMALIZED)

Since we are interested in finding out which doc is must similar to anmony & cleopatra (di), we calculate its similarity w.r.t each doc.

$$\cos(\vec{d}_1, \vec{d}_2) = (0.9619 * 0.8618) + (2.0842 * 4.1577) + (0.7464 * 0.2885) + (1.6926 * 2.602) + (2.8862 * 0)$$

$$= (4.1441)$$

$$\cos(d1, d3) = (0.9619 * 0.812) + (2.0842 * 2.602)$$

5) Mormalized cosine similarity

Calculate magnitude

$$||d_{1}||^{2} \sqrt{(0.9619)^{2} + (2.084)^{2} + (0.746)^{2} + (1.692)^{2}}$$

$$+ (2.8862)^{2}$$

$$= 4.12.57$$

$$||d_2|| = \sqrt{(0.861)^2 + (4.1577)^2 + (0.2885)^2 + (2.602)^2 + 0}$$

$$= 4.988$$

$$||d_3|| = \sqrt{(0.812)^2 + (2.602)^2 + (0.746)^2 + 0 + (0.397)^2}$$

= 4.4195

$$||d_4|| = \sqrt{(0.903)^2 + (1.692)^2 + (0.6654)^2 + (2.21)^2 + (3.02)^2}$$

$$= 4.2583$$

$$cos(d_1, d_2) = \frac{\vec{d_1} \cdot \vec{d_2}}{||d_1|| ||d_2||} = \frac{||4.1||41||}{||4.1257 * 4.988|}$$

$$(os(d_1, d_3) = \frac{\vec{d_1} \cdot \vec{d_3}}{\|d_1\| \|d_3\|} = \frac{16.5685}{4.1257 * 4.4195}$$

$$ws(d_1, d_4) = \overline{d_1 \cdot d_4} = \frac{17.353}{4.1257 * 4.2583}$$

.'. Using normalized cosine similarity, anthony & deopatra (d1) is most similar to Hamlet (d4)

2. Decision Tree (25 Points)

Suppose, you are a robot in a lumber yard, and must learn to discriminate Oak wood from Pine wood. You choose to learn a Decision Tree classifier. You are given the following examples:

ID	Density	Grain	Hardness	Class
1	Heavy	Small	Hard	Oak
2	Heavy	Large	Hard	Oak
3	3 Heavy		Hard	Oak
4	Light	Large	Soft	Oak
5	Light	Large	Hard	Pine
6	Heavy	Small	Soft	Pine
7	Heavy	Large	Soft	Pine
8	Heavy	Small	Soft	Pine

- a) Which attribute would information gain choose as the root of the tree? Show calculations. (10 points)
- b) Draw the decision tree that would be constructed by recursively applying information gain to select roots of sub-trees. Show calculations. (10 points)
- c) Classify the following two new examples as Oak or Pine using your decision tree above. (5 points)

[Density=Light, Grain=Small, Hardness=Hard]?

[Density=Light, Grain=Small, Hardness=Soft]?

2.

N = 8

Attributes = Density, Crown, Hardless
To find which split would result in max
information gain we must calculate
entropy w.r.t. each attribute split.

let, (0: Dak (1: Pine

Entropy of parent E(P)

 $CO: 4 E(P) = log_2(n_c) = 1$

C1: 4 C maximum entr

a) Splitting on Density

Heavy

(0:3) $E = \log_2(n_c) = 1$

CI - 5 C movimum entropy

Light

CO: 1
$$E = \log_2(n_c) = 1$$

C1: 1 Maximum entropy

 $E(Density) = \left(\frac{6}{8} \times 1\right) + \left(\frac{2}{8} \times 1\right) = 1$

Information gain = $E(P) - E(Density)$

= 1 - 1

= 0

B) Splitting on Grain

Small

CO: 2 $E = \log_2(n_c) = 1$

C1: 2 Max entropy

Large

CO: 2 $E = \log_2(n_c) = 1$

C1: 2 Max entropy

 $E(Grain) = \left(\frac{6}{8} \times 1\right) + \left(\frac{u}{8} \times 1\right) = 1$

Information gain =
$$E(p) - E(Grain)$$

= 1 - 1
= 0

= 0.81

 $E = -\frac{3}{4} \log_2(\frac{3}{4}) - (\frac{1}{4}) \log_2(\frac{1}{4})$

 $E = -\frac{1}{4}\log_2\left(\frac{1}{4}\right) - \frac{3}{4}\log\left(\frac{3}{4}\right)$

Mard

$$E\left(\text{Hardness}\right) = \left(\frac{4}{8} \times 0.81\right) + \left(\frac{.4}{8} \times 0.81\right)$$

= 0.81

Info. gain would choose Mardness as the root of the tree.

b) After choosing 'Hardness' as the noot

Remaining attributes: Density, Crain

For node: 1,

i) Splitting on deneity

heavy
$$(0:3) \text{ Jenne (oak)} \qquad (0:0) \text{ Jenne (pine)}$$

$$(1:0) \text{ Fine (pine)}$$

$$(0:0) \text{ Fure (pine)}$$

$$(1:1) \text{ Fine (pine)}$$

$$(0:0) \text{ Fine (pine)}$$

Info gain = E(P) - E(Density) = 0.81 - 0 = 0.81 ii) Speitting on Grain

Small

(0: 2
$$\frac{7}{2}$$
 pure (oak)

(1: 0)

C1: 1 $\frac{7}{2}$ max

c1: 1 $\frac{7}{2}$ entropy

Entropy = 0

Entropy = $\frac{1}{2}$ c2 = 1

E (Grain) = $\frac{1}{2}$ x1 = 0.5

inode 2 should be split on Density as it results in max info gain.

For node: 2,

i) Splitting on Density

Info gain =
$$E(P) - E(Density) = 0.81 - 0$$

= 0.81

ii) Splitting on Crain,

Small

(0:07 pore

(1:2)

(0:17 max

c1:1 = 0.5

Info gain = E(P) - E(Grain) = 0.81-0.5 = 0.31

.'. Node: 2 should be split on Density as it results in max info gain.

c) Using the descision tree from b):

- 1) Density = light

 Hardness = Mard

 Grain = Small

 would be classified as "Pine".
- 2) Density = Light

 Grain = Small

 Hardness = Soft

 Would be classified as "Oak".

3. Naive Bayes (25 points)

Given the weather dataset where the attributes (Outlook, Temperature, Humidity, Windy) shows the weather condition on a particular day and whether or not Golf was played on that day.

Instance	Outlook	Temperature	Humidity	Windy	Play Golf
1	Rainy	Hot	High	FALSE	No
2	Rainy	Hot	High	TRUE	No
3	Overcast	Hot	High	FALSE	Yes
4	Sunny	Mild	High	FALSE	Yes
5	Sunny	Cool	Normal	FALSE	Yes
6	Sunny	Cool	Normal	TRUE	No
7	Overcast	Cool	Normal	TRUE	Yes
8	Rainy	Mild	High	FALSE	No
9	Rainy	Cool	Normal	FALSE	Yes
10	Sunny	Mild	Normal	FALSE	Yes
11	Rainy	Mild	Normal	TRUE	Yes
12	Overcast	Mild	High	TRUE	Yes
13	Overcast	Hot	Normal	FALSE	Yes
14	Sunny	Mild	High	TRUE	No

Using the weather dataset table, classify the following test instance using Naive Bayes Classifier:

Instance	Outlook	Temperature	Humidity	Windy	Play Golf
Test#1	Rainy	Cool	High	TRUE	?

4. Support Vector Machine Classifier (25 Points)

Consider 8 training samples. The positive class has 4 points: (2,5),(2,2),(5,2) and (4,4). The negative class has 4 points: (-2,-2),(-4,0),(-4,-4) and (-8,-4).

- a. What are the coefficients of the support vectors? (7 points)
- b. Based on the coefficients of the support vectors, compute the maximum margin and then give the weights of the corresponding linear model. **(12 points)**
- c. Determine the class that (-1,-1) belongs to. Show your calculation to explain. (6 points)

3. Naive Bayes

n= 14

Te81 #1

To classify the instance we need to calculate P(class | Data) i.e.

P(Yes | Rainy, Cool, High, TRUE) and P(No | Rainy, Cool, High, TRUE)

a)
$$P(Yes) = \frac{9}{14}$$

 $P(No) = \frac{5}{14}$

b) Using naive bayes classifrer, we know,

P(wollyes). P(High lyes). P(TRUE lyes).

P(Yes)

i. Test #1 would be classified as "No", as me probability of belonging to mat class is higher.

4. SVM

+ ve dass: (2,5), (2,2), (5,2), (4,4) -ve dass: (-2,-2), (-4,0), (-4,-4), (-8,4)

The equation of our margin is: $\omega_1 x_1 + \omega_2 x_2 + b = 0$ the margin $\Rightarrow \omega_1 x_1 + \omega_2 x_2 + b + l = 0$ -ve margin $\Rightarrow \omega_1 x_1 + \omega_2 x_2 + b - l = 0$

a) (et (-2, -2) & (-4, 0) from the -ve class and (2, 2) from the tree class be the support vectors.

-> plugging (-2,-2) k (-4,0) in equation of the -ue margin gines us

$$-2\omega_{1} - 2\omega_{2} + b - 1 = 0$$
 (i)
 $-4\omega_{1} + 0\omega_{2} + b - 1 = 0$ (ii)

Multiplying eq (i) by -2 and adding with (iii) gives us,

$$4\omega_1 + 4\omega_2 - 2b + 2 = 0$$

 $-4\omega_1 + b - 1 = 0$
 $4\omega_2 - b + 1 = 0$

or,
$$w_2 = \frac{b-1}{4}$$
 — (iii)

$$2w_1 + 2w_2 + b + 1 = 0$$
 (iv)

$$2w_1 + 2\left(\frac{b-1}{4}\right) + b + 1 = 0$$

or,
$$4\omega_1 + b - 1 + 2b + 2 = 0$$

or,
$$4w_1 + 3b + 1 = 0$$
 _____(v)

$$4w_1 + 3b + 1 = 0$$

 $-4w_1 + b - 1 = 0$
 $4b = 0$

or,
$$b = 0$$

$$\omega_2 = \frac{0-1}{4} = -\frac{1}{4}$$

$$-2\omega_{1}-\cancel{2}(-\frac{1}{\cancel{9}})+0-1=0$$

$$-2\omega_{1}-\frac{1}{2}=0$$

$$w_1 = -\frac{1}{4}$$

or,
$$\chi_1 + \chi_2 = 0$$

The weights of the linear are: [1, 1,0]

plugging (-1,-1) into equation of me margin given:

$$\alpha_1 + \alpha_2 = (-1) + (-1) = -2$$