

Sapere utile

IFOA Istituto Formazione Operatori Aziendali

BIG DATA e Analisi dei Dati

Mauro Bellone, Robotics and Al researcher

bellonemauro@gmail.com www.maurobellone.com

Obiettivo

- ✓ Regressione lineare e logistica
- ✓ Regressione tutorial python
- ✓ Clusterizzazione per dati non annotati
- ✓ Clusterizzazione tutorial python

Task di data mining

Cluster Hadoop VS cloud service

- ✓ Forniscono piattaforme già integrate con numerose funzionalità
- ✓ Costo variabile in base all'utilizzo
- ✓ Alta flessibilità e adattabilità
- ✓ NO costo hardware
- ✓ NO costo di manutenzione (hardware e software)

Support vector machines

Il support vector machine o SVM è un algoritmo di apprendimento che ordina i dati disponibili in categorie

In termini più tecnici si cerca la retta che massimizza la distanza tra i primi dati delle classi x detti "support vectors"

D+ e d- sono le distanze tra il punto delle classi più vicino alla retta di separazione.

La somma è chiamata "margine"

L'algoritmo k-nearest neighbors (k-NN) è un metodo di classificazone non parametrica.

L'algoritmo k-nearest neighbors (k-NN) è un metodo di classificazone non parametrica.

Può usato per classificazione e regressione

Nella classificazione l'output è l'appartenenza ad una classe.

Un oggetto è classificato in base alla pluralità di voti di tutti i neighbors ai quali è associato

Nella regressione k-NN l'output è una proprietà dell'oggetto, tipicamente la media delle distanze dai k-vicini

k-NN memorizza tutti i casi disponibili e effettua una classificazione o una regressione in base ad una misura di somiglianza (es. distanza)

Ogni punto è classificato in base alla classe dei punti più vicini

k è il parametro che definisce il numero di vicini da considerare per effettuare la decisione

k è il parametro che definisce il numero di vicini da considerare per effettuare la decisione

Nel caso in figura:

- Se k=3 → ? = Classe A
- Se k=7 → ? = Classe B

 $k=\sqrt{n}$ dove n è il numero di campioni disponibili

C classe di appartenenza

input:

```
X dati, Y annotazioni, N_data #esempi, k soglia NN
c punto da classificare
output:
```

input:

for i←1 to N_data do
 d([X,Y],c)=distanza([X,Y], c)

end

calcola la distanza Euclidea tra il dato da classificare e tutti i punti dell'insieme (gli esempi delle classi).

input:

Selezioniamo k esempi dal nostro insieme di esempi noti

input:

Selezioniamo k esempi dal nostro insieme di esempi noti

Controlliamo la distanza tra i *k* esempi e il nostro nuovo dato per dare una stima sulla classe di appartenenza

input:

somma(annotazioni in N(c))

Cerchiamo la classe più commune tra gli esempi selezionati

```
input:
```

C = argmax(somma(annotazione))

Cerchiamo la classe più commune tra gli esempi selezionati

```
input:
    X dati, Y annotazioni, N_data #esempi, k soglia NN
    c punto da classificare

output:
    C classe di appartenenza

for i←1 to N_data do
    d([X,Y],c)=distanza([X,Y], c)
end

NN(c) = select(d([X,Y],c,k))
somma(annotazioni in N(c))
```

C = argmax(somma(annotazione))

SVM tutorial

Codice

k-NN tutorial

Codice

Regressione

Esempio1: regressione fatturato aziendale contro investimento in ricerca e sviluppo

Regressione

- ✓ Variabile indipendente X: Variabile il cui valore non cambia come risultato (effetto) della variabile dipendente
- ✓ Variabile dipendente Y: Variabile che cambia se come risultato (effetto) della variabile indipendente ----- Correlazione causa effetto!

Regressione

- ✓ Variabile indipendente X: Variabile il cui valore non cambia come risultato (effetto) della variabile dipendente
- ✓ Variabile dipendente Y: Variabile che cambia se come risultato (effetto) della variabile indipendente ----- Correlazione causa effetto!

Per il nostro esempio, non è possible controllare il fatturato aziendale a causa di eventi esterni, ma l'investimento in ricerca e sviluppo ha sicuramente un impatto positivo

Applicazioni

La regressione consiste nella generazione di un modello statistico usato per predire relazioni tra una variabile dipendente e una variabile indipendente

Esamina 2 fattori:

- 1. Quale variabile è significativa per predire l'output della variabile dipendente
- 2. Quanto è significativo la retta di regressione per fare una effettiva predizione con la massima accuratezza possibile

Categorie

✓ Regressione lineare semplice – Molti dati e si stima una retta di minima distanza

Categorie

- ✓ Regressione lineare semplice Molti dati e si stima una retta di minima distanza
- ✓ Regressione lineare multipla Variabili multiple (più uscite)

Categorie

- ✓ Regressione lineare semplice Molti dati e si stima una retta di minima distanza
- ✓ Regressione lineare multipla Variabili multiple (più uscite)
- ✓ Regressione polinomiale Invece di stimare una retta si stima una curva di grado polinomiale

Regressione lineare: applicazioni

- ✓ Crescita economica
- ✓ Prezzi
- ✓ Vendite

Valori numeri e categorici

La forma più semplice di regressione è la regressione su una retta, stimare quindi coefficiente angolare e quota della retta

$$y = mx + c$$

La forma più semplice di regressione è la regressione su una retta, stimare quindi coefficiente angolare e quota della retta

$$y = mx + c$$

y = variabile dipendente

La forma più semplice di regressione è la regressione su una retta, stimare quindi coefficiente angolare e quota della retta

y = variabile dipendente

La forma più semplice di regressione è la regressione su una retta, stimare quindi coefficiente angolare e quota della retta

y = variabile dipendente

La forma più semplice di regressione è la regressione su una retta, stimare quindi coefficiente angolare e quota della retta

y = variabile dipendente

R² coefficiente di determinazione statistica

il coefficiente di determinazione statistica R² indica il legame tra i dati e la correttezza di un modello generato

$$R^2 = 1 - \frac{RSS}{TSS}$$

Dove:

TSS = devianza totale

$$RSS = \sum (x_i - E[x])^2$$

RSS = devianza residua

$$RSS = \sum (x_i - \widehat{x_i})^2$$

con x_i , $\hat{x_i}$ rispettivamente le osservazioni e la stima del modello

R² coefficiente di determinazione statistica

il coefficiente di determinazione statistica R² indica il legame tra i dati e la correttezza di un modello generato

$$R^2 = 1 - \frac{RSS}{TSS}$$

- $R^2 \approx 1$ Significa che le previsioni del modello sono attendibili
- $R^2 \approx 0$ Significa che le previsioni del modello NON sono attendibili

Regressione polinomiale

Regressione su un polinomio di grado noto n, stimare i coefficienti a_n , ..., a_1 , a_o

$$y = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

y = variabile dipendente

x = variabile indipendente

Regressione polinomiale

Regressione su un polinomio di grado noto n, stimare i coefficienti a_n , ..., a_1 , a_o

$$y = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Aumentando il grado della polinomiale a piacere, è possibile approssimare i dati in maniera sempre più accurata

Regressione polinomiale

Regressione su un polinomio di grado noto n, stimare i coefficienti a_n , ..., a_1 , a_0

$$y = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Overfitting e underfitting

Aumentando a piacere il grado della polinomiale posso descrivere (fittare) meglio i dati, tuttavia questo non è sempre consigliabile

Overfitting e underfitting

Aumentando a piacere il grado della polinomiale posso descrivere (fittare) meglio i dati, tuttavia questo non è sempre consigliabile

In caso di underfitting:

si aumenta il grado del modello

In caso di overfitting (problema più ricorrente, difficile da vedere e risolvere):

- si diminuisce il grado del modello
- si aumenta la dimensione del dataset (se possibile)

Regressione lineare e polinomiale

✓ Tutorial

Funzione sigmoide

$$f(x) = \frac{1}{1 + e^{-x}}$$

Logit

$$f(p) = \log \frac{p}{1 - p}$$

Il logit è una funzione logaritmica che mappa l'intervallo di probabilità [0,1] in [-inf,+inf]

E' la funzione inversa della sigmoide

Consideriamo una variabile indipendente y e un insieme di variabili dipendenti $x=(x_1,x_2,\ldots x_r)$ dove r è il numero di predittori (o input).

L'obiettivo è quello di implementare una funzione di regressione logistica tale che la predizione sia più vicina possibile alla risposta del sistema.

Consideriamo una variabile indipendente y e un insieme di variabili dipendenti $x=(x_1,x_2,\ldots x_r)$ dove r è il numero di predittori (o input).

L'obiettivo è quello di implementare una funzione di regressione logistica tale che la predizione sia più vicina possibile alla risposta del sistema.

è importante ricordare che l'uscita della funzione deve essere sempre binario (0 o 1)

Consideriamo una variabile indipendente y e un insieme di variabili dipendenti $x=(x_1,x_2,...x_r)$ dove r è il numero di predittori (o input).

L'obiettivo è quello di implementare una funzione di regressione logistica tale che la predizione sia più vicina possibile alla risposta del sistema.

è importante ricordare che l'uscita della funzione deve essere sempre binario (0 o 1)

Una volta nota questa funzione può essere usata per predire nuovi output

La regressione logistica è di fatto un classificatore lineare che usa una funzione lineare del tipo:

$$f(x) = a_o + a_1 x_1 + \dots + a_n x_n$$

l parametri a_i sono detti stimatori

La regressione logistica è di fatto un classificatore lineare che usa una funzione lineare del tipo:

$$f(x) = a_o + a_1 x_1 + \dots + a_n x_n$$

I parametri a_i sono detti stimatori.

La funzione di regressione logistica e una probabilità p(x) espressa come una sigmoide:

$$f(x)$$
: $p(x) = \frac{1}{1 + e^{-f(x)}}$

In tal modo la funzione è tipicamente vicina a 0 o 1 ed interpretata come la probabilità di appartenere alla classe o a quella contraria

Il problema è quindi quello di determinare i pesi a_i tali da fittare i nostri dati di input in funzione delle nostre osservazioni in oputput

Il problema è quindi quello di determinare i pesi a_i tali da fittare i nostri dati di input in funzione delle nostre osservazioni in oputput

Per farlo si usa sempre la risoluzione di un problema di ottimizzazione, con una funzione del tipo funzione di verosimiglianza logistica anche nota come LLF log-likelihood function

Il problema è quindi quello di determinare i pesi a_i tali da fittare i nostri dati di input in funzione delle nostre osservazioni in oputput

Per farlo si usa sempre la risoluzione di un problema di ottimizzazione, con una funzione del tipo funzione di verosimiglianza logistica anche nota come LLF log-likelihood function

e' chiaro che, per come è definita, la funzione avrà in uscita sempre un valore continuo, quindi tipicamente si inserisce una soglia a 0.5 tale per cui se il valore è > o < scelgo una classe o la sua opposta

Regressione lineare vs regressione logistica

Regressione lineare, stimo m e c tali che:

$$y = mx + c$$

Regressione logistica, stimo m e c tali che:

$$f(x) = \frac{1}{1 + e^{-(mx+c)}}$$

Regressione lineare vs regressione logistica

	Regressione lineare	Regressione logistica
Definizione	Predizione variabili continue	Predizione delle categorie
Tipo var	Variabile dipendente continua	Variabile dipendente categorica
Medodo di stima	Errore quadratico	Massima verosimiglianza
Equazione	Retta	Logaritmo della probabilità
Best fit	Retta	Sigmoide
Relazione	Richiesta una relazione lineare tra variabile dipendente e indipendente	La relazione lineare non è richiesta
Output	Valore reale predetto	Valore binario [0,1]
Applicazioni	previsioni	classificazione

Tutorial

Clusterizzazione

La clusterizzazione è il processo di divisione di un dataset in sottogruppi che presentano una similarità

Tale che

- punti nello stesso gruppo siano più simili possibile (massima verosimiglianza)
- punti in gruppi diversi sono più DISimili possible (minima verosimiglianza)

Clusterizzazione

La separazione dei dati deve essere:

- Significativa, quindi deve espandere la conoscenza in un certo dominio, es.
 es. identificazione gruppi di pazienti per risposta ad un farmaco
- Utile, far parte di un processo, es. raggruppamento di clienti per campagne pubblicitarie dedicate

Tipologie di clusterizzazione

- Clusterizzazione esclusiva o ripartiva (partitional or exclusive clustering)
- Clusterizzazione sovrapponente (Overlapping clustering)
- Clusterizzazione gerarchica

Clusterizzazione esclusiva

Si dividono oggetti in insiemi esclusivi (no sovrapposizioni), queste tecniche richiedono l'indicazione del numero k di clusters nel quale dividere i dati

I punti possono appartenere solo ad un cluster

es. K-means clustering

Overlapping clustering

I gruppi vengono divisi in insiemi NON esclusivi, tipicamente i bordi si sovrappongono (soft clustering o density clustering).

La probabilità di appartenere ad una data classe è massima nel centro della classe.

es. Fuzzy/C-means clustering

Clusterizzazione gerarchica

Gruppi di dati vengono raggruppati per componenti esclusive e raggruppati per altre componenti al fine di creare insiemi e sottoinsiemi (modalità albero)

Es. Classificare vestiario come, magliette, pantaloni, camicie (base) – vestiti rossi, bianchi, neri (livello superiore)

Clusterizzazione gerarchica

Gruppi di dati vengono raggruppati per componenti esclusive e raggruppati per altre componenti al fine di creare insiemi e sottoinsiemi (modalità albero)

- ✓ Gli insiemi possono sono esclusivi nella profondità dell'albero (clustering divisivo)
- ✓ Gli insiemi possono essere inclusivi nella profondità dell'albero (clustering agglomerativo)

k-means clustering

E' un algoritmo di clusterizzazione finalizzato a raggruppare elementi dello stesso tipo in k gruppi

k-means clustering

E' un algoritmo di clusterizzazione finalizzato a raggruppare elementi dello stesso tipo in *k* gruppi

Algoritmo – k-means clustering

- 1 selezionare il numero di clusters da identificare k
- 2 Selezionare *k* punti random (centroidi del cluster) while (i centroidi cambiano)
 - 3 misurare la distanza tra il primo punto non assegnato e i diversi centroidi del clusters
 - 4 assegnare il primo punto al centroide più vicino
 - 5 calcolare la media tra il primo punto non assegnato e il centroide assegnato (questo punto sarà il nuovo centroide)

Algoritmo k-means clustering - Esempio

1 – selezionare il numero di clusters da identificare k = 3

Dati una serie di punti distribuiti lungo una retta, vogliamo determinare 3 gruppi

Algoritmo k-means clustering - Esempio

- 1 selezionare il numero di clusters da identificare k = 3
- 2 Selezionare *k* punti random (centroidi del cluster)

I primi 3 punti random saranno i primi centroidi delle classi da individuare, quindi gli assegno 3 colori diversi

- 1 selezionare il numero di clusters da identificare k
- 2 Selezionare *k* punti random (centroidi del cluster) while (i centroidi cambiano)
 - 3 misurare la distanza tra il primo punto non assegnato e i diversi centroidi del clusters

- 1 selezionare il numero di clusters da identificare k
- 2 Selezionare *k* punti random (centroidi del cluster) while (i centroidi cambiano)
 - 3 misurare la distanza tra il primo punto non assegnato e i diversi centroidi del clusters
 - 4 assegnare il primo punto al centroide più vicino

- 1 selezionare il numero di clusters da identificare k
- 2 Selezionare *k* punti random (centroidi del cluster) while (i centroidi cambiano)
 - 3 misurare la distanza tra il primo punto non assegnato e i diversi centroidi del clusters
 - 4 assegnare il primo punto al centroide più vicino
 - 5 calcolare la media tra il primo non assegnato punto e il centroide assegnato (questo punto sarà il nuovo centroide)

- 1 selezionare il numero di clusters da identificare k
- 2 Selezionare *k* punti random (centroidi del cluster) while (i centroidi cambiano)
 - 3 misurare la distanza tra il primo punto non assegnato e i diversi centroidi del clusters
 - 4 assegnare il primo punto al centroide più vicino
 - 5 calcolare la media tra il primo non assegnato punto e il centroide assegnato (questo punto sarà il nuovo centroide)

- 1 selezionare il numero di clusters da identificare k
- 2 Selezionare *k* punti random (centroidi del cluster) while (i centroidi cambiano)
 - 3 misurare la distanza tra il primo punto non assegnato e i diversi centroidi del clusters
 - 4 assegnare il primo punto al centroide più vicino
 - 5 calcolare la media tra il primo non assegnato punto e il centroide assegnato (questo punto sarà il nuovo centroide)

- 1 selezionare il numero di clusters da identificare k
- 2 Selezionare *k* punti random (centroidi del cluster) while (i centroidi cambiano)
 - 3 misurare la distanza tra il primo punto non assegnato e i diversi centroidi del clusters
 - 4 assegnare il primo punto al centroide più vicino
 - 5 calcolare la media tra il primo non assegnato punto e il centroide assegnato (questo punto sarà il nuovo centroide)

- 1 selezionare il numero di clusters da identificare k
- 2 Selezionare *k* punti random (centroidi del cluster) while (i centroidi cambiano)
 - 3 misurare la distanza tra il primo punto non assegnato e i diversi centroidi del clusters
 - 4 assegnare il primo punto al centroide più vicino
 - 5 calcolare la media tra il primo non assegnato punto e il centroide assegnato (questo punto sarà il nuovo centroide)

- 1 selezionare il numero di clusters da identificare k
- 2 Selezionare *k* punti random (centroidi del cluster) while (i centroidi cambiano)
 - 3 misurare la distanza tra il primo punto non assegnato e i diversi centroidi del clusters
 - 4 assegnare il primo punto al centroide più vicino
 - 5 calcolare la media tra il primo non assegnato punto e il centroide assegnato (questo punto sarà il nuovo centroide)

- 1 selezionare il numero di clusters da identificare k
- 2 Selezionare *k* punti random (centroidi del cluster) while (i centroidi cambiano)
 - 3 misurare la distanza tra il primo punto non assegnato e i diversi centroidi del clusters
 - 4 assegnare il primo punto al centroide più vicino
 - 5 calcolare la media tra il primo non assegnato punto e il centroide assegnato (questo punto sarà il nuovo centroide)

- 1 selezionare il numero di clusters da identificare k
- 2 Selezionare *k* punti random (centroidi del cluster) while (i centroidi cambiano)
 - 3 misurare la distanza tra il primo punto non assegnato e i diversi centroidi del clusters
 - 4 assegnare il primo punto al centroide più vicino
 - 5 calcolare la media tra il primo non assegnato punto e il centroide assegnato (questo punto sarà il nuovo centroide)

- 1 selezionare il numero di clusters da identificare k
- 2 Selezionare *k* punti random (centroidi del cluster) while (i centroidi cambiano)
 - 3 misurare la distanza tra il primo punto non assegnato e i diversi centroidi del clusters
 - 4 assegnare il primo punto al centroide più vicino
 - 5 calcolare la media tra il primo non assegnato punto e il centroide assegnato (questo punto sarà il nuovo centroide)

- 1 selezionare il numero di clusters da identificare k
- 2 Selezionare *k* punti random (centroidi del cluster) while (i centroidi cambiano)
 - 3 misurare la distanza tra il primo punto non assegnato e i diversi centroidi del clusters
 - 4 assegnare il primo punto al centroide più vicino
 - 5 calcolare la media tra il primo non assegnato punto e il centroide assegnato (questo punto sarà il nuovo centroide)

NON E' UNA DIVISIONE OTTIMA

- 1 selezionare il numero di clusters da identificare k
- 2 Selezionare *k* punti random (centroidi del cluster) while (i centroidi cambiano)
 - 3 misurare la distanza tra il primo punto non assegnato e i diversi centroidi del clusters
 - 4 assegnare il primo punto al centroide più vicino
 - 5 calcolare la media tra il primo non assegnato punto e il centroide assegnato (questo punto sarà il nuovo centroide)

Si misura la varianza delle distribuzioni nelle classi con l'obiettivo di minimizzare la variazianza

- 1 selezionare il numero di clusters da identificare k
- 2 Selezionare *k* punti random (centroidi del cluster) while (i centroidi cambiano)
 - 3 misurare la distanza tra il primo punto non assegnato e i diversi centroidi del clusters
 - 4 assegnare il primo punto al centroide più vicino
 - 5 calcolare la media tra il primo non assegnato punto e il centroide assegnato (questo punto sarà il nuovo centroide)

Reiteriamo l'algoritmo scegliendo dei punti random iniziali diversi

- 1 selezionare il numero di clusters da identificare k
- 2 Selezionare *k* punti random (centroidi del cluster) while (i centroidi cambiano)
 - 3 misurare la distanza tra il primo punto non assegnato e i diversi centroidi del clusters
 - 4 assegnare il primo punto al centroide più vicino
 - 5 calcolare la media tra il primo non assegnato punto e il centroide assegnato (questo punto sarà il nuovo centroide)

Al crescere del numero di iterazioni si trova la soluzione a varianza minima

k-means clustering

Tutorial

Confronto

	Alberi decisionali	Regole associative	k-NN	Reti neurali
Regressione	SI	NO	SI	SI
Classificazione	SI	SI	SI	SI
Astrazione	Bassa	Bassa	Media	Alta
Robustezza	Bassa	Bassa	Media	Alta
Complessità	Bassa	Bassa	Media	Alta
Comprensione	Alta	Alta	Media	Bassa
Debugging	Bassa	Bassa	Media	Impossibile

Libraries ecosystem

