Parallel Neural **Network Framework**

Srajan Garg

• 140050017

Anuj Mittal • 140050024

Sumith Kulal • 140050081

Shubham Goel • 140050086

Learn from DATA

Learn from DATA

Network (trainable)

Probability for each digit

Learn from DATA

Network (trainable)

Predict: Forward pass

Learn from DATA

Network (trainable)

Predict: Forward pass

Learn: Backward pass

Learn from DATA

Network (trainable)

Predict: Forward pass

Learn: Backward pass

REPEAT (a lot!)

Neural Network Framework

- Layers
 - Input
 - Dense
 - Convolution (Forward Pass)
 - Activation
 - Sigmoid
 - Leaky ReLU
- Error Criteria
 - Mean Squared Error
 - Cross Entropy

Neural Network Framework

- Layers
 - Input
 - Dense
 - Convolution (Forward Pass)
 - Activation
 - Sigmoid
 - Leaky ReLU
- Error Criteria
 - Mean Squared Error
 - Cross Entropy

Can be used to create **ANY** dense neural network architecture!

Parallelization

- OpenMP (CPU)
- CUDA (GPU)
 - Matrix Multiplication
 - Convolution
 - Tensor Operations : addition, multiplication etc
- Ensured that data is copied to GPU only once, further calls reuse the data copy present on GPU
 - Significant overhead time saved

Convolution Forward Pass on Image

- Evaluated using specific kernel on real images for
 - o Blur: Gaussian and Box
 - Edge Detection (Sobel Filters)
 - Emboss
 - High Pass Filter

Results

Results - Speedup

Epoch	Serial	2 Threads	4 Threads	8 Threads	CUDA
1	1	1.80	3.61	2.78	3.77
5	1	1.72	3.00	2.81	3.97
10	1	1.67	2.93	2.85	4.01