

Just.:

[A] -200 J

[A] 100 W

Física A

M. I. Engª de Comunicações

TESTE 28/01/2011

Nome:	Nº:
-------	-----

Parte 1

Assinale as opções verdadeiras nesta folha. Justifique sucintamente a sua escolha.

	Dois objectos de massas m_1 e m_2 têm a mesma energia cinética, movendo-se ambos para a direita. Para os fazer parar, aplica-se a ambos a mesma força constante e contrária ao seu						
	movimento. Se $m_1 = 4m_2$, a razão entre a distância de travagem de m_1 e a de m_2 é:						
[A]	1:4	[B] 4:1	[C] 1:2	[D] 2:1	[E] 1:1		

2. Um homem empurra um fardo de 80 N ao longo de 5,0 m, subindo um plano inclinado sem atrito, exercendo uma força paralela ao plano. O plano faz um ângulo de 30° com a horizontal. Se a velocidade do fardo diminuir à taxa de 1,47 m/s², o trabalho realizado pelo homem sobre o fardo é:

[D] 140 J

[C] 200 J

3. Um tapete rolante é usado no transporte de 20 pessoas (de 60,0 kg cada) por minuto, do primeiro para o segundo andar, 5 m acima, de um estabelecimento comercial. Desprezando atritos, a potência necessária é, aproximadamente:

[B] 200 W

[B] 60 J

[E] -60 J

[E] 6000 W

[C] 1000 W [D] 2000 W

- 4. A energia mecânica de um sistema de objectos é conservada...
- [A] apenas quando não há forças exteriores a actuar no sistema.
- [B] apenas quando os objectos se movem ao longo de percursos fechados.
- [C] apenas quando for nulo o trabalho realizado pela resultante das forças exteriores.
- [D] apenas quando é nulo o trabalho realizado pelas forças não conservativas.
- [E] sempre.

6	Um bloco ligado a uma mola executa um movimento harmónico simples ao longo do eixo- x . Os limites do seu movimento são $x = 10$ cm e $x = 50$ cm, e faz o percurso entre estes dois extremos em 0,25 s. A amplitude e a frequência angular deste movimento são respectivamente
[A] 4	40 cm, $4\pi \text{rad/s}$ [B] 20 cm, $2\pi \text{rad/s}$ [C] 20 cm, $4\pi \text{rad/s}$ [D] 40 cm, $2\pi \text{rad/s}$
[E] c	dependentes da massa do bloco.
Just.	:
	Uma mola suspensa verticalmente alonga-se 9,0 mm quando lhe é ligado um bloco de massa $\it M$.
6.1.	A frequência angular natural deste sistema bloco-mola, ω_{0} , é
[A] (0,088 rad/s [B] 33,0 rad/s [C] 200 rad/s [D] 1140 rad/s
[E] c	dependente do valor de $M.$
Just.	:
6.2.	O sistema é colocado a oscilar com amplitude A_0 num meio viscoso, ficando sujeito a uma força de atrito $F_a=-bv$, com $b=2M\omega_0$. Nestas condições,
[A] a	o fim de um período a amplitude reduz-se de um factor 1/2.
[B] a	o fim de um período a amplitude reduz-se de um factor 1/4.
[C] a	o fim de um período a amplitude reduz-se de um factor 1/10.
[D] c	o bloco não oscila, regressando à sua posição de equilíbrio.
[E] N	Nenhuma das anteriores.
Just.	:

Parte 2

Resolva os problemas justificando cada passo. Escreva com letra legível.

1. O escorrega da figura tem o perfil de um arco de circunferência de 12,0 m de raio, e 10,1 m de comprimento. O solo (horizontal) é tangente

à base do escorrega. Uma criança de 25,0 kg inicia a descida, do topo do escorrega, sem velocidade inicial.

- 1.a) Determine a altura h do escorrega.
- 1.b) Na ausência de atrito, com que velocidade atingirá a criança a base do escorrega? Admita agora que a criança chega ao solo com velocidade de 6,2 m/s.
- 1.c) Determine o aumento da energia térmica do sistema criança-escorrega.
- 1.d) Determine a força de atrito média que o escorrega exerce sobre a criança.
- 2. Um pequeno objecto de massa *m* é largado na posição indicada na figura, e desliza sem atrito pela calha vertical com um troço circular de raio R.

- 2.a) Determine o valor mínimo de y para que o objecto faça todo o percurso sem nunca perder o contacto com a calha.
- 2.b) No troço horizontal, à saída do looping, o coeficiente de atrito entre o objecto e a calha é 0,5. Determine a distância aí percorrida pelo objecto até parar.
- 3. Uma partícula de 100 g de massa, ligada a uma mola, executa um movimento oscilatório num plano horizontal sem atrito, e possui uma energia potencial $E_p = 20 \, x^2$ (J).
 - 3.a) Calcule o período do movimento.
 - 3.b) Sabendo que a partícula parte da origem com velocidade v_0 = 2,0 m/s, determine a posição da partícula em qualquer instante.
 - 3.c) Suponha agora que o movimento passa a fazer-se num meio viscoso e que existe uma força de atrito proporcional à velocidade ($F_{\alpha}=-bv$). Sabendo que após três oscilações a amplitude se reduz a 1/10 do seu valor inicial, determine a constante de amortecimento do meio e a frequência das oscilações.