Nombre de la asignatura: Generación de electricidad a partir de biomasa

LGAC: Sustentabilidad en Sistemas Energéticos

Tiempo de dedicación del estudiante a las actividades de:

DOC (48) - TIS (20) - TPS (100) - 168 horas totales - 6 Créditos

DOC: Docencia; TIS: Trabajo independiente significativo; TPS: Trabajo profesional supervisado

1. Historial de la asignatura. Establece información referente al lugar y fecha de elaboración y revisión, quiénes participaron en su definición y algunas observaciones académicas.

Fechas revisión	Dortisinantas	Observaciones, cambios o
/actualización	Participantes	justificación
Marzo de 2017	Dr. Iván Valencia Salazar	Análisis y conformación del
Instituto Tecnológico	Dr. Genoveva Domínguez Sánchez	programa. Metodología del
de Veracruz		desarrollo del curso, prácticas
		propuestas

2. Pre-requisitos y correquisitos.

Asignatura optativa después del primer período.

3. Objetivo de la asignatura.

Proporcionar al alumno las herramientas necesarias para el desarrollo y gestión de proyectos de sustentabilidad en sistemas energéticos.

4. Aportación al perfil del graduado.

La materia contribuye a la conformación de una actitud crítica y responsable en el egresado, ante los conocimientos en el desarrollo de la biomasa y le ayudará a plantear mejor los problemas que se le presenten en el proceso de generación y aplicación del conocimiento científico y de las innovaciones tecnológicas, con el que seguramente estará estrechamente relacionado en el desempeño de su vida profesional. Específicamente el curso coadyuva a:

- Conformar una cultura que favorezca la participación y discusión de procesos biotecnológicos sobre las orientaciones de la investigación científica y tecnológica.
- Favorecer el empleo de enfoques biológicos en el proceso de investigación científica y tecnológica, que incorporen las dimensiones de las ciencias biológicas en los proyectos de investigación.
- Contextualizar el proceso de generación y aplicación del conocimiento científico y tecnológico.
- Generar una capacidad de análisis sobre el rol social y ético del científico y del tecnólogo.
 - Asumir una clara responsabilidad respecto a los impactos que los proyectos de innovación tecnológica puedan tener en los aspectos socioeconómicos y ecológicos, a fin de evitar o minimizar los efectos negativos.
 - Favorecer el empleo de enfoques multi e interdisciplinarios y holísticos en el proceso de investigación científica y tecnológica, que incorporen las dimensiones sociales y ecológicas en los proyectos de investigación.
 - Además promoverá y fortalecerá la identidad del estudiante consciente de su papel catalizador de proyectos que solucionen los problemas colaterales o consecuentes, derivados de su ejercicio profesional y generadores o innovadores de tecnologías "limpias" o de menor impacto ambiental
 - **5. Contenido temático.** Se establece el temario (temas y subtemas) que conforman los contenidos del programa de estudio, debiendo estar organizados y secuenciados. Además de que los temas centrales conduzcan a lograr el objetivo de la materia

Unidad	Temas	Subtemas
		1.1 Concepto general de la energía
		1.2 La evolución del consumo de energía en México
I		1.3 Energías renovables y no renovable
	La energía	1.4 Opciones de fuentes de energía en México
		1.5 Desarrollo energético sustentable
II	ESTUDIO DEL BIOGÁS	2.1 Biomasa
		2.2 Biogás
		2.3 Biodigestion anaerobia
		2.4 Usos de la biodigestion anaeróbica.
		2.5 Proceso de la purificación del biogás
		2.6 Tipo de factores que afectan la producción del
		biogás
		2.7 Procesos de digestión para tratar los residuos
		orgánicos
		2.8 Aplicaciones de la biogeneración
III	Digestores metanogénicos	3.1 Tipos de digestores metanogénicos.
111	Digestores metanogenioss	3.2 Componentes y clasificación de los digestores
		3.3 Modelos de digestores
IV	Diseño e instalación de un	4.1. Concepto en el diseño de un biodigestor
	biodigestor	4.2. Conceptos en el dimensionamiento de un
		biodigestor
		4.3. Ejemplo de diseño de un biodigestor
		4.4. Estimación de biogás diario producido
		4 5. Biodigestores familiares modelo para las tres
		ecorregiones
		4.6. Instalación de biodigestores
		4.7. Conceptos en el dimensionamiento de un
		biodigestor

V	Genración de energía eléctrica a	5.1. Turbina de generación de energía eléctrica
	partir de biogás	5.2. Cargas eléctricas a nivel doméstico
		5.3. Introducción a la generación de energía eléctrica a
		partir de biogás
		5.4. Generación de energía eléctrica a partir de biogás
		5.5. Biogás como combustible en la generación de
		energía eléctrica

6. Metodología de desarrollo del curso. Queda a elección del docente manejar un problema específico para cada unidad, o bien un solo problema para todo el curso.

7. Sugerencias de evaluación.

Realizar:

- Portafolio de Evidencias: Recopilación de todas las investigaciones, evidencias de trabajos, proyectos, problemas, reportes de proyectos, etc.
- Rúbricas de evaluación: Matriz de calificación para exposiciones, trabajos, proyectos, resolución de problemas, tareas
- -Desarrollar, organizar y presentar al final de cada unidad el contenido de cada uno de los elementos del proyecto de gestión energética.
- Presentar los documentos correspondientes al proyecto ejecutivo

8. Bibliografía y Software de apoyo.

- 1. P. Gallagher, M. Dikeman, J. Fritz, E. Wailes, W. Gauthier, H. Shapouri, Supply and Social Cost Estimates for Biomass from Crop Residues in the United States, Environmental and Resource Economics, 24 (2003) 335-358.
- 2. "Plant Physiology" L. Taiz and E. Zeige., Fourth Edition. Sinauer Edit. 2006
- 3. "Preparation of plant tissue for laboratory analysis. In: Handbook of reference methods for plant analysis" C. R., Campbell and C. O. Plank. Y. P Kalra (Ed.). Soil and Plant Analysis Council, Inc. CRC Press. Boca Raton, Boston, London, New York,

Washington, D.C. 1998.

- 4. "Análisis químico de plantas" J. D. Etchevers, Colegio de Postgraduados. Chapingo, México. 1981
- 5. Alkalav, D. (s.f.). Universidad Técnica Federico. Santa María Chile.

David Kuria Njoroge. (2002). Evolution of biogas technology in South sudan, UNICEF/OLS, South Sudan.

- FAO. (1997). Reunión Regional sobre Biomasa para la producción de energía y alimentos;
 Aprovechamiento de desechos Agropecuarios para la Producción de Energía.
 JR. (2007). CEDECAP.
- 7. Richad, V. d., Faalj, a., & Van, K. A. (Mayo 1995). Background report 4.1 Biomass Combustion Power Generation Technologies.
- 8. Thompson, M., González, D., M., L., & J. Villaerde. (Julio 2004). Fault Toleran Integrated Proteccion and Control System for KM20 Substation MOdernization Project. Acapulco México: IEEE.

9. Actividades propuestas.

Se deberán desarrollar las actividades que se consideren necesarias por tema.

10. Nombre y firma del catedrático responsable.

Dr. Iván Valencia Salazar	
Dr. Genoveva Domínguez Sánchez	
Di. Conovova Domingaoz Canonoz	