

Cód. ST0245

Estructuras de Datos 1

## Laboratorio Nro. 5 Implementación de Grafos

## **Objetivos**

- 1. Entender la implementación de los grafos dirigidos
- **2.** Entender el concepto de sucesor (*successor*) como vecino, es decir, un nodo que es vecino de otro, un nodo que está conectado a otro por un arco.

## **Consideraciones Iniciales**

#### Leer la Guía



Antes de comenzar a resolver el presente laboratorio, leer la "Guía Metodológica para la realización y entrega de laboratorios de Estructura de Datos y Algoritmos" que les orientará sobre los requisitos de entrega para este y todos los laboratorios, las rúbricas de calificación, el desarrollo de procedimientos, entre otros aspectos importantes.

#### **Registrar Reclamos**



En caso de tener **algún comentario** sobre la nota recibida en este u otro laboratorio, pueden **enviarlo** a través de <a href="http://bit.ly/2g4TTKf">http://bit.ly/2g4TTKf</a>, el cual será atendido en la menor brevedad posible.



Cód. ST0245

Estructuras de Datos 1

Traducción de Ejercicios En el GitHub del docente, encontrarán la traducción al español de los enunciados de los Ejercicios en Línea.



#### Visualización de **Calificaciones**



A través de **Eafit Interactiva** encontrarán **un enlace** que les permitirá ver un registro de las calificaciones que emite el docente para cada taller de laboratorio y según las rubricas expuestas. Véase sección 3, numeral 3.7.

#### GitHub



Crear un repositorio en su cuenta de GitHub con el nombre st0245-suCodigoAqui. 2. Crear una carpeta dentro de ese repositorio con el nombre laboratorios. 3. Dentro de la carpeta laboratorios, crear una carpeta con nombre lab06. **4. Dentro de la carpeta** lab06, **crear tres** carpetas: informe, codigo y ejercicioEnLinea. 5. Subir el informe pdf a la carpeta infome, el código del ejercicio 1 a la carpeta codigo y el código del ejercicio en línea a la carpeta ejercicioEnLinea. Así:

```
st0245-suCodigoAqui
  laboratorios
      lab01
          informe
          codigo
          ejercicioEnLinea
      lab02
          . . .
```



Cód. ST0245

Estructuras de Datos 1

## Intercambio de archivos

Los archivos que **ustedes deben entregar** al docente son: **un archivo PDF** con el informe de laboratorio usando la plantilla definida, y **dos códigos**, uno con la solución al numeral 1 y otro al numeral 2 del presente. Todo lo anterior se entrega en **GitHub**.



## Porcentajes y criterios de evaluación para el laboratorio





Cód. ST0245

Estructuras de Datos 1

## **Resolver Ejercicios**

1. Códigos para entregar en GitHub:



En la vida real, la documentación del software hace parte de muchos estándares de calidad como CMMI e ISO/IEC 9126



Véase Guía en Sección 3, numeral 3.4



Código de laboratorio en GitHub. Véase Guía en Sección 4, numeral 4.24



Entregar documentación en **JavaDoc** o equivalente. El uso de JavaDoc es opcional



**No se reciben** archivos en **.RAR** ni en **.ZIP** 



En la vida real, los grafos se utilizan para representar redes sociales como *Facebook*, sistemas de información geográfica como *Google Earth* o enrutadores, como un enrutador ISR 4000 de Cisco

1.1 Teniendo en cuenta lo anterior:



Cód. ST0245

Estructuras de Datos 1

- a) Realicen una implementación de la clase abstracta *Digraph*, Ilámela *DigraphAM* e implementen grafos con la estructura de datos Matrices de Adyacencia Etiquetadas
- b) Posteriormente, creen la clase *DigraphAL* e implementen grafos con la estructura de datos Listas de Adyacencia. Ambas clases heredan de la clase abstracta *Digraph* (digrafo o grafo dirigido)
- 1.2 En la clase *GraphAlgorithms*, implementen un método que reciba como parámetro un grafo dirigido y que retorne cuál es el vértice que tiene más sucesores (vecinos). Debe funcionar para ambas implementaciones de grafo.
- 1.3 Prueben su código con los ejemplos construidos en los numerales 1.1 y 1.2 para el *Algoritmo de Dijkstra*. Deben obtener la misma respuesta con ambas implementaciones.



En la vida real, una aplicación de los grafos es para describir mapas, como los usados por Google Maps. El archivo medellin\_colombia-grande.txt que está en el ZIP que el docente les entregó, contiene un grafo que representa todas las calles de Medellín, es un grafo de aproximadamente 300.000 nodos

1.4 [Ejercicio Opcional]: Teniendo en cuenta lo anterior, implementen un método que permita crear un grafo a partir de ese archivo del texto *medellin\_colombia-grande.txt* 



Cód. ST0245

Estructuras de Datos 1

### 2) Ejercicios en línea sin documentación en GitHub:



Véase Guía en **Sección** 3, numeral 3.3



No entregar documentación HTML



Entregar un archivo en .JAVA



**No se reciben** archivos en **.PDF** 



**Resolver** los problemas de **CodingBat** usando **Recursión** 



Código del ejercicio en línea en GitHub. Véase Guía en Sección 4, numeral 4.24

### 2.1 Resuelvan el siguiente ejercicio

En 1976, el teorema de colorear un mapa con 4 colores fue probado con la ayuda de un computador. Este teorema muestra que un mapa puede ser coloreado solamente con 4 colores, de tal forma que no haya una región coloreada usando el mismo color que un vecino. Aquí hay un problema similar a ese problema, pero es mucho más simple.

Usted tiene que decidir si dado un grafo conexo arbitrario, ese grafo se puede colorear con 2 colores. Esto quiere decir, si uno puede asignar colores (de una paleta de 2 colores) a los nodos, de tal forma que no haya 2 nodos adyacentes del mismo color. Para simplificar el problema usted puede asumir que:

- 1. No hay un nodo que tenga un arco a sí mismo
- **2.** El grafo es no dirigido, es decir que, si un nodo a está conectado a un nodo b, usted puede asumir que el nodo *b* también está conectado al nodo *a*.



Cód. ST0245

Estructuras de Datos 1

3. El grafo será fuertemente conexo. Esto quiere decir, que hay al menos un camino de un nodo de grafo a cualquier otro nodo.

#### Entrada

La entrada consiste en varios casos de prueba. Cada caso de prueba comienza con una línea que tiene un número n (1 < n < 200) de nodos diferentes. La siguiente línea contiene el número de arcos.

Posteriormente, las siguientes líneas, cada una contiene 2 número que especifican que existe un arco entre dos nodos.

Un nodo en el grafo se representa con un número a (0 < a < n). Una entrada con n = 0 simboliza el fin de la entrada y no debe ser procesada.

#### Salida

Usted tiene que decidir si el grafo de entrada puede ser coloreado con dos colores o no, y debe imprimirlo como se muestra a continuación.

#### Entrada de los ejemplos

04



Cód. ST0245
Estructuras de Datos 1

0 6 0 7 0 8 0 Salida de los ejemplos

NOT BICOLORABLE. BICOLORABLE. BICOLORABLE.



### 2.2[Ejercicio Opcional]: Resuelvan el siguiente problema <a href="http://bit.ly/2gTLZ53">http://bit.ly/2gTLZ53</a>





Cód. ST0245
Estructuras de Datos 1

### 3) Simulacro de preguntas de sustentación de Proyectos



- 3.1 Incluyan una imagen de la respuesta de las pruebas del numeral 1.3
- 3.2 Escriban una explicación entre 3 y 6 líneas de texto del código del numeral 1.1. Digan cómo funciona, cómo está implementado el grafo con matrices y con listas que hizo, destacando las estructuras de datos y algoritmos usados
- 3.3 ¿En qué grafos es más conveniente utilizar la implementación con matrices de adyacencia y en qué casos en más convenientes listas de adyacencia? ¿Por qué?
- 3.4 Para representar el mapa de la ciudad de Medellín del ejercicio del numeral 1.3, ¿qué es mejor usar, Matrices de Adyacencia o Listas de Adyacencia? ¿Por qué?



En la vida real para una red social como *Facebook*, donde hay al menos 100 millones de usuarios, pero cada usuario tiene en promedio 200 amigos,



Cód. ST0245

Estructuras de Datos 1

3.5 Teniendo en cuenta lo anterior, respondan: ¿Qué es mejor usar, Matrices de Adyacencia o Listas de Adyacencia? ¿Por qué?



En la vida real, los enrutadores tienen una tabla de enrutamiento. Una tabla de enrutamiento guarda la distancia más corta para ir de un dispositivo a otro en la red. Un ejemplo de un enrutador es el ISR 4000 de Cisco. Otro ejemplo, es el que tiene en su casa para el Wifi

- 3.6 Teniendo en cuenta lo anterior, para representar la tabla de enrutamiento, respondan: ¿Qué es mejor usar, Matrices de Adyacencia o Listas de Adyacencia?
- 3.7 Calculen la complejidad de los ejercicios en línea, numerales 2.1 y [opcionalmente] 2.2, y agréguenla al informe PDF
- 3.8 Expliquen con sus palabras las variables (qué es 'n', qué es 'm', etc.) del cálculo de complejidad del numeral 3.7
- 4) Simulacro de Parcial en el informe PDF



Para este simulacro, agreguen sus respuestas en el informe PDF.



El día del Parcial no tendrán computador, JAVA o acceso a internet.



Cód. ST0245

Estructuras de Datos 1

1. Considere el siguiente grafo y complete la representación de **matrices de adyacencia**. Si no hay arco, por simplicidad, deje el espacio en blanco.



|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| 0 |   |   |   | 1 | 1 |   |   |   |
| 1 |   |   |   |   |   |   |   |   |
| 2 |   |   |   |   |   |   |   |   |
| 3 |   |   |   |   |   |   |   |   |
| 4 |   |   |   |   |   |   |   |   |
| 5 |   |   |   |   |   |   |   |   |
| 6 |   |   |   |   |   |   |   |   |
| 7 |   |   |   |   |   |   |   |   |

2. Para el mismo grafo, completen la representación de listas de adyacencia. Como el grafo no tiene pesos, sólo se colocan los sucesores en la lista de adyacencia.

- $0 \rightarrow [3,4]$
- 1 ->
- 2 ->
- 3 ->
- 4 ->



Cód. ST0245
Estructuras de Datos 1

- 5 ->
- 6 ->
- 7 ->
- **3.** ¿Cuánta memoria (ojo, no tiempo sino memoria) ocupa una representación usando listas de adyacencia para el peor grafo dirigido con *n* vértices?
  - **a)** O(n)
  - **b)**  $O(n^2)$
  - **c)** O(1)
  - **d)** O(*log n*)
  - **e)** O(*n*.log *n*)

### 5. [Ejercicio Opcional] Lectura recomendada



"Quienes se preparan para el ejercicio de una profesión requieren la adquisición de competencias que necesariamente se sustentan en procesos comunicativos. Así cuando se entrevista a un ingeniero recién egresado para un empleo, una buena parte de sus posibilidades radica en su capacidad de comunicación; pero se ha observado que esta es una de sus principales debilidades..."

Tomado de <a href="http://bit.ly/2gJKzJD">http://bit.ly/2gJKzJD</a>



Véase Guía en **Sección 3, numeral 3.5 y 4.20** de la Guía Metodológica, "Lectura recomendada" y "Ejemplo para realización de actividades de las Lecturas Recomendadas", respectivamente



Cód. ST0245

Estructuras de Datos 1

Posterior a la lectura del texto "Robert Lafore, Data Structures and Algorithms in Java (2nd edition), Chapter 13: Graphs. 2002" realicen las siguientes actividades que les permitirán sumar puntos adicionales:

- a) Escriban un resumen de la lectura que tenga una longitud de 100 a 150 palabras
- b) Hagan un mapa conceptual que destaque los principales elementos teóricos.



NOTA 1: Si desean otra lectura, consideren la siguiente: "John Hopcroft et al., Estructuras de Datos y Algoritmos, Capítulo 6: Grafos dirigidos. Páginas 267 – 276. 1983" que pueden encontrarla en biblioteca



NOTA 2: Estas respuestas también deben incluirlas en el informe PDF

5. [Ejercicio Opcional] Trabajo en Equipo y Progreso Gradual



El trabajo en equipo es una exigencia actual del mercado. "Mientras algunos medios retratan la programación como un trabajo solitario, la realidad es que requiere de mucha comunicación y trabajo con otros. Si trabajas para una compañía, serás parte de un equipo de desarrollo y esperarán que te comuniques y trabajes bien con otras personas"

Tomado de http://bit.ly/1B6hUDp



Véase Guía en **Sección 3, numeral 3.6** y **Sección 4, numerales 4.21, 4.22** y **4.23** de la Guía Metodológica

a) Entreguen copia de todas las actas de reunión usando el tablero Kanban, con fecha, hora e integrantes que participaron



Cód. ST0245

Estructuras de Datos 1

- **b)** Entreguen el reporte de *git*, *svn* o *mercuria*l con los cambios en el código y quién hizo cada cambio, con fecha, hora e integrantes que participaron
- c) Entreguen el reporte de cambios del informe de laboratorio que se genera *Google docs* o herramientas similares



NOTA 1: Estas respuestas también deben incluirlas en el informe PDF

### 6. [Ejercicio Opcional] Laboratorio en inglés:



El inglés es un idioma muy importante en la Ingeniería de Sistemas porque la mayoría de los avances en tecnología se publican en este idioma y la traducción, usualmente se demora un tiempo y es sólo un resumen de la información original.

Adicionalmente, dominar el inglés permite conseguir trabajos en el exterior que son muy bien remunerados

Tomado de goo.gl/4s3LmZ

Entreguen el código y el informe traducido al inglés. Utilicen la plantilla dispuesta en este idioma para el laboratorio

## Resumen de Ejercicios a Resolver

1a Realicen una implementación de la clase abstracta *Digraph*, Ilámela *DigraphAM* e implementen grafos con la estructura de datos Matrices de Adyacencia Etiquetadas



Cód. ST0245

Estructuras de Datos 1

- 1b Creen la clase *DigraphAL* e implementen grafos con la estructura de datos Listas de Adyacencia.
- 1.2 En la clase *GraphAlgorithms*, implementen un método que reciba como parámetro un grafo dirigido y que retorne cuál es el vértice que tiene más sucesores (vecinos).
- 1.3 Prueben su código con los ejemplos construidos en los numerales 1.1 y 1.2 para el *Algoritmo de Dijkstra*.
- 1.4 [Ejercicio Opcional]: Implementen un método que permita crear un grafo a partir de ese archivo del texto *medellin\_colombia-grande.txt*
- 2.1 Resuelvan el ejercicio planteado
- 2.3 [Ejercicio Opcional]: Resuelvan el siguiente problema <a href="http://bit.ly/2gTLZ53">http://bit.ly/2gTLZ53</a>
- 3.2 Incluyan una imagen de la respuesta de las pruebas del numeral 1.3
- 3.2 Escriban una explicación entre 3 y 6 líneas de texto del código del numeral 1.1. Digan cómo funciona, cómo está implementado el grafo con matrices y con listas que hizo, destacando las estructuras de datos y algoritmos usados
- 3.3 ¿En qué grafos es más conveniente utilizar la implementación con matrices de adyacencia y en qué casos en más convenientes listas de adyacencia? ¿Por qué?
- 3.4 Para representar el mapa de la ciudad de Medellín del ejercicio del numeral 1.3, ¿qué es mejor usar, Matrices de Adyacencia o Listas de Adyacencia? ¿Por qué?
- 3.5 ¿Qué es mejor usar, Matrices de Adyacencia o Listas de Adyacencia? ¿Por qué?
- 3.6 Para representar la tabla de enrutamiento, respondan: ¿Qué es mejor usar, Matrices de Adyacencia o Listas de Adyacencia?
- 3.7 Calculen la complejidad de los ejercicios en línea, numerales 2.1 y [opcionalmente] 2.2, y agréguenla al informe PDF
- 3.8 Expliquen con sus palabras las variables (qué es 'n', qué es 'm', etc.) del cálculo de complejidad del numeral 3.7



Cód. ST0245

Estructuras de Datos 1

- 4. Simulacro parcial
- 5. [Ejercicio Opcional] Lectura recomendada
- 6. [Ejercicio Opcional] Trabajo en Equipo y Progreso Gradual
- 7. [Ejercicio Opcional] Laboratorio en inglés

## Ayudas para resolver los ejercicios

| Ayudas para el Ejercicio 1   | <u>Pág. 18</u> |
|------------------------------|----------------|
| Ayudas para el Ejercicio 1a  | Pág. 18        |
| Ayudas para el Ejercicio 1b  | Pág. 18        |
| Ayudas para el Ejercicio 1.3 | Pág. 18        |
| Ayudas para el Ejercicio 1.4 | Pág. 19        |
| Ayudas para el Ejercicio 2.1 | Pág. 21        |
| Ayudas para el Ejercicio 2.2 | Pág. 21        |
| Ayudas para el Ejercicio 3.3 | Pág. 21        |
| Ayudas para el Ejercicio 3.7 | Pág. 21        |
| Ayudas para el Ejercicio 4   | Pág. 22        |
| Ayudas para el Ejercicio 5a  | <u>Pág. 22</u> |
| Ayudas para el Ejercicio 5b  | Pág. 22        |
| Ayudas para el Ejercicio 6a  | Pág. 22        |
| Ayudas para el Ejercicio 6b  | <u>Pág. 22</u> |
| Ayudas para el Ejercicio 6c  | Pág. 23        |



Cód. ST0245

Estructuras de Datos 1

## Ayudas para el Ejercicio 1



PISTA 1: Si deciden hacer la documentación de los puntos del numeral 1 vean la *Guía en Sección 4, numeral 4.1* "Cómo escribir la documentación HTML de un código usando JavaDoc"

## Ayudas para el Ejercicio 1a

PISTA 1: Un error común es retornar el peso de los arcos en lugar de los identificadores de los vértices en el método *getSuccessors* 

## Ayudas para el Ejercicio 1b

- PISTA 1: Un error común es retornar el peso de los arcos en lugar de los identificadores de los vértices en el método *getSuccessors*
- PISTA 2: Véase Guía en Sección 4, numeral 4.8 "Cómo definir una clase Pareja en Java"
- PISTA 3: Un error común es intentar acceder a una lista de listas con la instrucción listaDeListas.get(source).get(destination) porque el destino no se encuentra necesariamente en esa posición de la lista. No es una matriz.
- PISTA 4: Una lista de listas de parejas se define en Java como ArrayList<LinkedList<Pair<Integer,Integer>>> listaDeListas = new ...

## Ayudas para el Ejercicio .1.3



Cód. ST0245

Estructuras de Datos 1

PISTA 1: Véase Guía en Sección 4, numeral 4.14 "Cómo hacer pruebas unitarias en BlueJ usando JUnit" y numeral 4.15 "Cómo compilar pruebas unitarias en Eclipse"

## Ayudas para el Ejercicio 1.4

- PISTA 1: Véase Guía en Sección 4, numeral 4.13 "Cómo usar Scanner o BufferedReader"
- PISTA 2: Hay información que sobra, por ejemplo, la latitud y la longitud de cada vértice y el nombre de cada arista.
- PISTA 3: Es mejor usar *BufferedReader* porque es más rápido que *Scanner*. La idea es leer en una cadena de caracteres el contenido de cada línea y usando el método *split* de la clase *String* o usando *StringTokenizer*, dividir la cadena en partes cada que hay una coma (,).
- PISTA 4: Como los códigos no son secuenciales, es decir, no empiezan en cero y tampoco están todos los números consecutivos, una forma de manejar los vértices es usar un mapa (en Java, *HashMap* o *TreeMap*).

#### **Error Común**



Cód. ST0245

Estructuras de Datos 1





Como un ejemplo, para el siguiente mapa, el archivo de entrada es el siguiente:



Vértices. Formato: ID, coordenada x, coordenada y, nombre

10000 2.00000 0.00000 School

1 4.00000 1.00000 Movies

2 5.00000 2.00000 Snell

3 2.00000 5.00000 Planters

4 0.00000 2.00000 Gym

Arcos. Formato: ID, ID, distancia, nombre



Cód. ST0245

Estructuras de Datos 1

10000 1 10.0 Calle 1

10000 3 14.0 desconocido

10000 4 10.0 desconocido

1 10000 10.0 Calle 2a

1 2 7.0 desconocido

1 3 12.0 desconocido

1 4 15.0 desconocido

2 1 7.0 desconocido

2 3 20.0 desconocido

3 10000 14.0 desconocido

3 1 12.0 desconocido

3 2 20.0 desconocido

3 4 8.0 desconocido

4 10000 10.0 desconocido

4 1 15.0 desconocido

4 3 8.0 desconocido

## Ayudas para el Ejercicio 2.1



PISTA 2: Si desean, pueden usar DFS o BFS para resolver este problema, pero existe otro tipo de algoritmos para resolverlo también.

PISTA 3: Spoiler Alert! En este sitio web explican un algoritmo para verificar si un grafo es bipartito http://bit.ly/2lOsQFZ

## Ayudas para el Ejercicio 2.2



PISTA 2: Véase Guía en Sección 4, numeral 4.13 "Cómo usar Scanner o BufferedReader"



Cód. ST0245

Estructuras de Datos 1

## Ayudas para el Ejercicio 3.3

ď

PISTA 1: http://bit.ly/2gzZPLD

ď

PISTA 2: <a href="http://bit.ly/2gSMq1Z">http://bit.ly/2gSMq1Z</a>

## Ayudas para el Ejercicio 3.7

ď

PISTA 1: Véase Guía en Sección 4, numeral 4.11 "Cómo escribir la complejidad de un ejercicio en línea"

## Ayudas para el Ejercicio 4



PISTA 1: Véase Guía en Sección 4, Numeral 4.18 "Respuestas del Quiz"

ď

PISTA 2: Lean las diapositivas tituladas "Data Structures II: Graph Implementation", encontrarán la mayoría de las respuestas

## Ayudas para el Ejercicio 5a



PISTA 1: En el siguiente enlace, unos consejos de cómo hacer un buen resumen http://bit.ly/2knU3Pv

ď

PISTA 2: Aquí le explican cómo contar el número de palabras en Microsoft Word

## Ayudas para el Ejercicio 5b



Cód. ST0245

Estructuras de Datos 1



PISTA 1: Para que hagan el mapa conceptual se recomiendan herramientas como las que encuentran en <a href="https://cacoo.com/">https://cacoo.com/</a> o <a href="https://cacoo.com/">https://cacoo.com/</a> o <a href="https://www.mindmup.com/#m:new-a-1437527273469">https://www.mindmup.com/#m:new-a-1437527273469</a>

## Ayudas para el Ejercicio 6a



PISTA 1: Véase Guía en Sección 4, Numeral 4.21 "Ejemplo de cómo hacer actas de trabajo en equipo usando Tablero Kanban"

## Ayudas para el Ejercicio 6b

PISTA 1: Véase Guía en Sección 4, Numeral 4.23 "Cómo generar el historial de cambios en el código de un repositorio que está en svn"

## Ayudas para el Ejercicio 6c



PISTA 1: Véase Guía en Sección 4, Numeral 4.22 "Cómo ver el historial de revisión de un archivo en Google Docs"