Cetu LSTM и GRU

Нейросети для анализа текстов

Сети LSTM и GRU

Рекуррентные нейронные сети

• Сети с циклами

Проблемы рекуррентных нейросетей

- Обучение требует длительного времени
- Проблема исчезающего градиента
- Ограниченная «длительность» запоминания предыдущей информации

Более совершенные архитектуры рекуррентных сетей

- Long Short Term Memory LSTM (Hochreiter, Schmidhuber, 1997)
- Gated Recurrent Unit GRU (Cho, 2014)

Ячейка LSTM (LSTM cell)

Understanding LSTM Networks

• https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Как понять LSTM сети

https://alexsosn.github.io/ml/2015/11/17/LSTM.html

Состояние ячейки

Вентили LSTM

Вентиль (gate) LSTM

• Управляет передачей сигнала внутри ячейки LSTM

Структура вентиля

Типы вентилей в LSTM

- Вентиль забвения (forget gate)
- Входной вентиль (input gate)
- Выходной вентили (output gate)

Вентиль забвения

Входной вентиль

Обновление состояния

Выходной вентиль

Сети GRU

Сети LSTM в Keras

Сети GRU в Keras

Итоги

Популярные архитектуры рекуррентных сетей

- Long Short Term Memory LSTM
- Gated Recurrent Unit GRU

Ячейки LSTM и GRU

- «Ячейка памяти»
- Вентили

Преимущества

- Могут запоминать информацию на длительное время
- Решена проблема исчезающего градиента

Обучение сетей LSTM и GRU

- Обратное распространение ошибки
- Обучаются вентили и веса входов в нейроны