日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2003年11月11日

出 願 番 号

特願2003-381516

Application Number: [ST. 10/C]:

[JP2003-381516]

出 願 人
Applicant(s):

三井化学株式会社

REC'D 0 4 JAN 2005

WIPO POT

COMPLIANCE WITH RULE 17.1(a) OR (b)

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN

2004年12月16日

1)1

11]

特許庁長官 Commissioner, Japan Patent Office

特許願 【書類名】 P0002679 【整理番号】 【提出日】 平成15年11月11日 特許庁長官 【あて先】 G02B 3/00 【国際特許分類】 G02C 4/00 G02C 5/00 G02C 6/00 G02C 7/00 【発明者】 千葉県茂原市東郷1144 三井化学株式会社内 【住所又は居所】 小澤 修二 【氏名】 【発明者】 千葉県茂原市東郷1144 三井化学株式会社内 【住所又は居所】 若木 徳幸 【氏名】 【特許出願人】 000005887 【識別番号】 三井化学株式会社 【氏名又は名称】 中西 宏幸 【代表者】 【手数料の表示】 【予納台帳番号】 005278 21,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】

要約書 1

【物件名】

【魯類名】特許請求の範囲

【請求項1】

以下の(a)~(c)の工程より乾燥ゲル化物として得られることを特徴とする土壌薫蒸剤含有固形物。

- (a) 2価以上の金属塩と反応してゲル化する多糖類の水溶液と土壌薫蒸剤及び乳化助剤を攪拌して、10重量%以上85重量%以下の土壌薫蒸剤を含有するO/W型エマルジョン液を製造する、
- (b) 工程 (a) で得られたエマルジョン液を2価以上の金属塩と反応させて、ゲル化物を製造する、
 - (c) 工程 (b) で得られたゲル化物を乾燥させて乾燥ゲル化物を製造する。

【請求項2】

乾燥ゲル化物がゲル化物の重量に対して15重量%から80重量%の重量になるまで乾燥させて得られる乾燥ゲル化物であることを特徴とする請求項1記載の土壌薫蒸剤含有固形物。

【請求項3】

土壌薫蒸剤が沸点が40℃以上で且つ、蒸気圧が0.5mmHg/20℃以上である土 壌薫蒸剤であることを特徴とする請求項1、2のいずれか一項に記載の土壌薫蒸剤含有固 形物。

【請求項4】

土壌薫蒸剤がクロルピクリン及び/またはD-Dであることを特徴とする請求項3記載の土壌薫蒸剤含有固形物。

【請求項5】

乳化助剤がゼラチン粉末であることを特徴とする請求項1~4のいずれか一項に記載の 土壌薫蒸剤含有固形物。

【請求項6】

土壌薫蒸剤に対して、ゼラチン粉末を0.2重量%から20重量%加えることを特徴とする請求項5記載の土壌薫蒸剤含有固形物。

【請求項7】

乳化助剤がゼラチン粉末及び粒径が200μ以下の無機鉱物であることを特徴とする請求項1~4のいずれか一項に記載の土壌薫蒸剤含有固形物。

【請求項8】

土壌薫蒸剤に対して、無機鉱物を20重量%以下の量加えることを特徴とする請求項7 記載の土壌薫蒸剤含有固形物。

【請求項9】

2 価以上の金属塩と反応してゲル化する多糖類が水可溶性のアルギン酸塩、ローメトキシルペクチン、及びカッパーカラギーナンから選ばれる1種以上であることを特徴とする請求項1~8 のいずれか一項に記載の土壌薫蒸剤含有固形物。

【請求項10】

請求項1、請求項3~9のいずれか一項に記載の工程(a)の方法により製造されるO /W型エマルジョン液。

【請求項11】

請求項1、請求項3~9のいずれか一項に記載の工程(b)の方法で製造されるゲル化物。

【請求項12】

請求項1、2のいずれか一項に記載の土壌薫蒸剤含有固形物を土壌に混和、あるいは土 壌中に埋設することを特徴とする土壌薫蒸剤含有固形物を施用する方法。

【請求項13】

請求項1、2のいずれか一項に記載の土壌蔬蒸剤含有固形物を固形肥料、殺虫剤、殺菌剤、または除草剤の固形製剤と同時に土壌に混和、あるいは土壌中に埋設することを特徴とする土壌蒸蒸剤含有固形物を施用する方法。

【書類名】明細書

【発明の名称】土壌薫蒸剤含有固形物

【技術分野】

[0001]

本発明は、土壌薫蒸剤含有量の高い固形物に関し、且つ、農家が使用時に刺激臭を感じ ないほど、土壌薫蒸剤の放出を極度に抑制した固形物であり、更に、土壌に処理すると速 やかに土壌薫蒸剤を放出する固形物に関する。

【背景技術】

[0002]

クロルピクリンやDDに代表される土壌薫蒸剤は蒸気圧が高く、通常の使用条件では、 ガス化しやすい。特に、クロルピクリンは刺激臭を有しており、使用時には、保護眼鏡、 保護マスク、手袋を着用して、特殊な灌注器具を使って、土壌に灌注し、灌注後に土壌表 面をガスバリアー性のフィルムで被覆する方法で土壌を薫蒸している。

[0003]

クロルピクリンの無臭化製剤として、クロルピクリンをデキストリンに吸着させた後、 ポリビニルアルコールのフィルム袋に密封した製剤あるいはクロルピクリンを同袋に密封 した製剤が開発されている(特開平8-48603号公報、特開平7-324002号公 報)。

[0004]

クロルピクリン類などの土壌薫蒸剤は作物の栽培団地化地域、特産地化地域の連作障害 防止に広く使用されており、収穫後から次の作付けまでの合間に処理されている。1年間 の作物の作付け回数を多くするために、土壌薫蒸期間は短いほど好ましい。一般には、平 均地温が15℃~25℃の時に、土壌薫蒸に要する期間は10日~15日である。

[0005]

香料や農薬などの作用物質をアルギン酸ナトリウムやローメトキシルペクチンの水溶液 に対して、20重量%以下の量を使用して、同作用物質を分散させ、その後、2価以上の 金属塩を反応させて、多孔質構造のゲル化物中に作用物質を含有させたゲル化物は知られ ている。(特開昭55-25456号公報)また、同文献には、得られたゲル化物を乾燥 することにより、作用物質の放出を抑制できることも開示されている。クロルピクリンに 代表される土壌薫蒸剤は農家が施用する時には、農家が刺激臭を感じないほど、土壌薫蒸 剤の放出が極度に抑制されていることが好ましいが、反面、施用すると短期間に土壌薫蒸 を完了することが必要である。この相反する要求性能に対して、前記文献には作用性物質 の放出を抑制する方法は開示されているが、短期間に作用物質を放出することについては 何ら開示されていない。更に、クロルピクリンは比重が1.67と極めて重いため、界面 活性剤の存在下に、クロルピクリンとアルギン酸ナトリウムやローメトキシルペクチンの 水溶液を攪拌しても、高いクロルピクリン濃度のO/W型エマルジョン液は得られなかっ た。高いクロルピクリン濃度のO/W型エマルジョン液を得るために、界面活性剤の使用 量を増やせば、アルギン酸ナトリウムやローメトキシルペクチンの水溶液から固形物の析 出を引き起こし、均一なエマルジョン液は得られなかった。そのため、界面活性剤の存在 下に、クロルピクリンとアルギン酸ナトリウムやローメトキシルペクチンの水溶液を攪拌 して、クロルピクリンの分散液を得るためには、クロルピクリンの使用量を極端に少なく する必要があり、クロルピクリン濃度が5重量%以下の分散液しか得られなかった。低い クロルピクリン濃度の分散液から得られたゲル化物は、クロルピクリン含有量が低く、ク ロルピクリンの放出を極度に抑制するために、乾燥工程で、該ゲル化物から多量の水を除 去しなければならず、乾燥時の負荷が大きいことも問題であった。

【特許文献1】特開平8-48603号公報

【特許文献2】特開平7-324002号公報

【特許文献3】特開昭55-25456号公報

.infoweb.ne.jp/chlopic/siryou/ekizai/ekizai.htm

【非特許文献1】インターネット上のwebサイト

http://village

【発明の開示】

【発明が解決しようとする課題】

[0006]

本発明の課題は、土壌薫蒸剤の含有量の高い製剤が容易に製造でき、且つ、農家が使用時に土壌薫蒸剤の刺激臭を感じないほど、土壌薫蒸剤の放出を極度に抑制した製剤であり、更に、土壌に処理すると速やかに土壌薫蒸剤を放出し、短期間の土壌薫蒸を完了する土壌薫蒸剤製剤を提供することである。

【課題を解決するための手段】

[0007]

本発明者らは、クロルピクリンを用いて、アルギン酸ナトリウムやローメトキシルペクチンの水溶液とのエマルジョン化を鋭意検討した結果、従来の方法ではクロルピクリン含量の高いO/W型のエマルジョン液が得られなかったのに対して、クロルピクリン中にゼラチン粉末を共存させることにより、極めて容易にO/W型エマルジョン液が得られることを見出した。その結果、該エマルジョン液を2価以上の金属塩と反応させて、クロルピクリン含量が高いゲル化物が得られ、その後、該ゲル化物を乾燥すると、農家が刺激臭を感じない、すなわち、クロルピクリンの放出が極度に抑制され、しかも高いクロルピクリン含有量の乾燥ゲル化物を得た。該乾燥ゲル化物はクロルピクリンの放出が極度に抑制されているにも関わらず、土壌に施用すれば、速やかにクロルピクリンを放出し、短期間で土壌薫蒸が完了できることを見出し、本発明を完成させた。

[0008]

すなわち、本発明は以下のとおりである。

- [1] 以下の(a)~(c)の工程より乾燥ゲル化物として得られることを特徴とする 土壌薫蒸剤含有固形物。
- (a) 2 価以上の金属塩と反応してゲル化する多糖類の水溶液と土壌薫蒸剤及び乳化助剤を攪拌して、10重量%以上85重量%以下の土壌薫蒸剤を含有するO/W型エマルジョン液を製造する、
- (b) 工程(a) で得られたエマルジョン液を2価以上の金属塩と反応させて、ゲル化物を製造する、
- (c) 工程(b) で得られたゲル化物を乾燥させて乾燥ゲル化物を製造する。
- [2] 乾燥ゲル化物がゲル化物の重量に対して15重量%から80重量%の重量になるまで乾燥させて得られる乾燥ゲル化物であることを特徴とする[1]記載の土壌薫蒸剤含有固形物。
- [3] 土壌薫蒸剤が沸点が40℃以上で且つ、蒸気圧が0.5mmHg/20℃以上である土壌薫蒸剤であることを特徴とする[1]、[2]のいずれか一項に記載の土壌薫蒸剤含有固形物。
- [4] 土壌薫蒸剤がクロルピクリン及び/またはD-Dであることを特徴とする[3] 記載の土壌薫蒸剤含有固形物。
- [5] 乳化助剤がゼラチン粉末であることを特徴とする [1] ~ [4] のいずれか一項に記載の土壌薫蒸剤含有固形物。
- [6] 土壌薫蒸剤に対して、ゼラチン粉末を0.2重量%から20重量%加えることを特徴とする[5]記載の土壌薫蒸剤含有固形物。
- [7] 乳化助剤がゼラチン粉末及び粒径が200μ以下の無機鉱物であることを特徴とする[1]~[4]のいずれか一項に記載の土壌薫蒸剤含有固形物。
- [8] 土壌薫蒸剤に対して、無機鉱物を20重量%以下の量加えることを特徴とする[7]記載の土壌薫蒸剤含有固形物。
- [9] 2価以上の金属塩と反応してゲル化する多糖類が水可溶性のアルギン酸塩、ローメトキシルペクチン、及びカッパーカラギーナンから選ばれる1種以上であることを特徴とする[1]~[8]のいずれか一項に記載の土壌薫蒸剤含有固形物。
- [10] [1]、[3]~[9]のいずれか一項に記載の工程(a)の方法により製造されるO/W型エマルジョン液。

請求項1、請求項3~9のいずれか一項に記載の工程(b)の方法で製造され るゲル化物。

[1]、[2]のいずれか一項に記載の土壌薫蒸剤含有固形物を土壌に混和、 [12]あるいは土壌中に埋設することを特徴とする土壌薫蒸剤含有固形物を施用する方法。

[1]、[2]のいずれか一項に記載の土壌薫蒸剤含有固形物を固形肥料、殺 虫剤、殺菌剤、または除草剤の固形製剤と同時に土壌に混和、あるいは土壌中に埋設する ことを特徴とする土壌薫蒸剤含有固形物を施用する方法。

【発明の効果】

[0009]

本発明の土壌薫蒸剤含有固形物は土壌薫蒸剤の高濃度エマルジョン液から製造している ため、乾燥時の負荷の少ない高い含有量の土壌薫蒸剤含有固形物である。本固形物は人が 土壌薫蒸剤の臭気を感じないほど、土壌薫蒸剤の放出が極度に制御されているため、農家 が簡便に取り扱うことが可能である。また、同固形物を土壌に処理すると、速やかに、且 つ、短期間で土壌を薫蒸することができ、1年間の作物の作付け回数を減じることがなく 、作物生産において有用である。

【発明を実施するための最良の形態】

[0010]

本発明の土壌薫蒸剤含有固形物は以下の工程を経由して製造する。すなわち、(a)2 価以上の金属塩と反応してゲル化する多糖類の水溶液と土壌薫蒸剤、及び乳化助剤を攪拌 してO/W型エマルジョン液を製造する工程、(b)工程(a)で得られたエマルジョン 液を2価以上の金属塩と反応させて、土壌薫蒸剤を含有するゲル化物を製造する工程、(c) 工程(b) で得られたゲル化物を乾燥して乾燥ゲル化物を製造する工程、を経由して 本発明の土壌薫蒸剤含有固形物は製造される。本発明で言うゲル化物は(b)工程で得ら れる固形物であり、乾燥ゲル化物は(C)工程で得られる固形物であることを意味してい る。

[0011]

先ず、2価以上の金属塩と反応してゲル化する多糖類の水溶液と土壌薫蒸剤組成物、及 び乳化助剤を攪拌してO/W型エマルジョン液を製造する。

[0012]

本発明で使用する土壌薫蒸剤は沸点が40℃以上で且つ、蒸気圧が0.5mmHg/2 0℃以上である土壌薫蒸剤であり、クロルピクリン、D-D(1,3-ジクロルプロペン)が該当する。本発明の土壌薫蒸剤はクロルピクリン、D-Dを単独で、あるいは両者の 混合物として使用しても良い。また、クロルピクリン及び/またはD-Dに他の農薬、例 えば、ネマトリンやボルテージなどの有機リン系殺虫剤を溶解させた混合農薬も本発明の 土壌薫蒸剤に含まれる。

[0013]

本発明の多糖類は、2価以上の金属塩と反応して、ゲル化する多糖類である。この性質 を有する多糖類はアルギン酸塩、ローメトキシルペクチン、あるいはカッパーカラギーナ ンが該当する。アルギン酸塩としては、例えばアルギン酸のナトリウム塩、カリウム塩、 アンモニウム塩、その他アルギン酸を出発原料とした水可溶性の塩が使用できる。一般に 、安価で食品での使用量が多い、アルギン酸ナトリウムが好ましい。ローメトキシルペク チンはエステル化度が50%以下のペクチンをいう。カッパーカラギーナンはカッパ型に 分類されるカラギーナンであり、必ずしも精製されたものでなくても良く、粗抽出物でも 良い。これらの多糖類は単独で、あるいは2種以上を混合して使用してもよい。これらの 多糖類は0.1重量%から15重量%の濃度の水溶液として使用される。好ましくは、0 . 5 重量%から10重量%、更に好ましくは1重量%から10重量%の濃度の水溶液であ る。

[0014]

土壌薫蒸剤と多糖類を含有する水溶液の使用量は、〇/W型エマルジョン液中の土壌薫 蒸剤の含有量が高いほど、土壌薫蒸剤の臭気を抑制する被覆層が薄くなる。その結果、得

[0015]

土壌薫蒸剤と多糖類の水溶液を混合して、O/W型のエマルジョン液を製造するために 、乳化助剤を必要とする。本発明で言う乳化助剤は、エマルジョン液中の土壌薫蒸剤の含 有量が30重量%でも、O/W型のエマルジョン液を生成させることができる物質を言う 。この性質を有するものとして、ゼラチン粉末が例示できる。ゼラチン粉末を、多糖類を 含有する水溶液に溶解して使用しても、O/W型のエマルジョン液は得られない。土壌薫 蒸剤相に粉末の形状で加えて、その後、多糖類を含有する水溶液と攪拌して、土壌薫蒸剤 の含有量の高いエマルジョン液が得られる。

[0016]

ゼラチン粉末は粒径が大きくなると均一なエマルジョン液が得られなくなるため、微粒 子状のものを使用するのが好ましい。粒径として、3mm以下、好ましくは1mm以下の 粒径のゼラチンがよく、これに適するものに、R微粉(新田ゼラチン製)が挙げられる。

[0017]

ゼラチン粉末の使用量は土壌薫蒸剤に対して、0.2重量%から20重量%、好ましく は、0.5重量%~10重量%である。

[0018]

かくして、土壌薫蒸剤、乳化助剤、及び、多糖類の水溶液を攪拌すれば、容易に、土壌 薫蒸剤の含有量の高いO/W型のエマルジョン液を製造することができる。得られたO/ W型のエマルジョン液は、攪拌を止めて10分間放置しても、2相分離している状態、す なわち、土壌薫蒸剤の液滴の生成は目視で認められない。

[0019]

乳化助剤として、ゼラチン粉末のみでもO/W型のエマルジョン液を製造することがで きるが、更に無機鉱物を加えると、O/W型のエマルジョン液の生成は一層早まる。本発 明で言う無機鉱物はその粒径が200μ以下の微粒子であればよい。無機鉱物として、ゼ オライト、ホワイトカーボン、タルク、クレーなどである。その中で、微粒子状のものが 得やすいホワイトカーボンが好ましい。無機鉱物は土壌薫蒸剤に対して、20重量%以下 、好ましくは10重量%以下の量を添加すればよい。

[0020]

本発明の乳化助剤はゼラチン粉末、更には必要により無機鉱物で構成されるが、土壌薫 蒸剤の高含有エマルジョン化を妨げない程度の安定化剤を更に添加してもよい。

[0021]

次に、O/W型のエマルジョン液を2価以上の金属塩と反応させて、土壌薫蒸剤を含有 するゲル化物を製造する。ゲル化物中の土壌薫蒸剤の含有量はO/W型のエマルジョン液 中に土壌薫蒸剤の濃度とほぼ同じ値を示す。本発明ではエマルジョン液中の土壌薫蒸剤の 濃度が高いため、ゲル化物中の土壌薫蒸剤含量も高くなる。かくして得られるゲル化物中 に10重量%以上85重量%以下、好ましくは、20重量%以上80重量%以下、更に好 ましくは30重量%以上75重量%以下の土壌薫蒸剤を含有している。

[0022]

本発明で言う2価以上の金属塩は、そのカチオンとして、カルシウム、マグネシウム、 バリウム、亜鉛、ニッケル、銅、鉛等のカチオンであり、該カチオンを含有する水溶液と しては、塩化カルシウム、硝酸カルシウム、乳酸カルシウム、クエン酸カルシウム等のカ ルシウム塩、塩化マグネシウム等のマグネシウム塩、塩化バリウム等のバリウム塩、塩化 亜鉛、硝酸亜鉛、硫酸亜鉛等の亜鉛塩、塩化ニッケル等のニッケル塩、硫酸銅等の銅塩、

[0023]

O/W型のエマルジョン液を2価以上の金属塩と反応させる方法は、O/W型のエマル ジョン液の液滴を2価以上の金属塩を含有する水溶液中に落とし込む方法や該液滴に該水 溶液を噴霧する方法で行うことができる。本発明では土壌薫蒸剤の臭気を抑制するための 被覆を確実にするために、前者の方法でゲル化物を製造するのが好ましい。

[0024]

かくして得られたゲル化物は土壌薫蒸剤の放出は土壌薫蒸剤に対して抑制されているが 、土壌薫蒸剤の臭気は感じる。

[0025]

次にゲル化物を乾燥して、乾燥ゲル化物を製造する。

乾燥方法は一般的な乾燥方法、例えば、温風乾燥、減圧乾燥、風乾の乾燥方法いずれで も採用できるが、常圧下での乾燥が好ましい。また、乾燥温度は60℃以下、好ましくは 40℃以下である。乾燥ゲル化物中の水分量が30重量%以下、好ましくは25重量%以 下になるまで乾燥を行う。かくして得られた乾燥ゲル化物は土壌薫蒸剤の臭気を感じない ほど、土壌薫蒸剤の放出が極度に抑制されている。

[0026]

乾燥ゲル化物から土壌薫蒸剤の放出を促進させるために、乾燥ゲル化物を土壌に混和、 あるいは土壌中に埋設するだけでよい。本発明の更なる特徴は土壌薫蒸剤の放出が極度に 抑制されている乾燥ゲル化物を土壌中に処理すると、速やかに土壌薫蒸剤を土壌中に放出 することである。従来のクロルピクリン剤が処理できる土壌であれば、乾燥ゲル化物はク ロルピクリン剤と同様に、土壌薫蒸剤を土壌に放出し、土壌薫蒸期間もほぼ同じである。 本発明の乾燥ゲル化物は、乾燥ゲル化物の粒径、及び地温にもよるが、一般に乾燥ゲル化 物の粒径が2~30mm、地温が15℃~25℃で、土壌薫蒸が10日~15日で完了す る。乾燥ゲル化物の施用にあたって、乾燥ゲル化物を肥料散粒機などを使って土壌表面に 散布後に、土壌混和する方法や、苗植え付け個所に溝を堀り、該溝に乾燥ゲル化物を散布 して土壌被覆する方法などで処理すればよい。

[0027]

従来、土壌薫蒸剤の臭気があるが故に、土壌薫蒸剤と固形肥料、あるいは/または、殺 虫剤、殺菌剤、除草剤の固形製剤との同時処理は考えられなかった。本発明の乾燥ゲル化 物は、土壌薫蒸剤の放出が極端に抑制されている固形物であるため、上記の固形製剤と同 時処理することができる。乾燥ゲル化物を土壌表面に散布した後、上記の固形製剤を散布 してもよく、上記の固形製剤を散布後、乾燥ゲル化物を散布してもよく、あるいは、乾燥 ゲル化物と上記の固形製剤を予め混合して、混合粒剤として散布してもよい。その後、土 壌に混和すればよい。

土壌薫蒸効果を高めるため、乾燥ゲル化物を土壌に処理した後、定法にしたがって、ガ スバリアー性フィルムで土壌表面を被覆する。

以下に、実施例により、本発明を更に詳述する。

【実施例1】

[0029]

土壌薫蒸剤を含有するO/W型エマルジョン液の製造

300mlの四つ口フラスコにクロルピクリン (99.5%品、49g) 及びゼラチン 粉末 (新田ゼラチン社製R微粉、3.6g)を装入した。アルギン酸ナトリウム (キミカ 社製)の1.5%水溶液(48g)を加え、攪拌羽の周速が22m/分の条件で攪拌した 。攪拌開始からO/W型エマルジョン液が得られるまでの時間、及び、該エマルジョン液 が得られてから、攪拌を止め、10分間放置して、相分離の有無を調べた。

[0030]

同様にして、表-1記載の条件で、O/W型エマルジョン液の生成を調べた。その結果を表<math>-1に示した。尚、表中の略号、及び記号は以下の意味である。

CP:クロルピクリン (三井化学株式会社製品)

SO:ソイリーン (三井化学株式会社製品、クロルピクリン40重量%、D-D52 重量%の混合物)

ZE:ゼラチン粉末 (新田ゼラチン社製)

WH:ホワイトカーボン

ARG:アルギン酸ナトリウム(キミカ社製)

PEC:ローメトキシルペクチン (新田ゼラチン社製)

○ :攪拌を止めて10分静置しても相分離が起こらなかった。

× :攪拌を止めて10分静置した場合相分離が起こった、またはO/W型のエマル

ジョン液が得られなかった。

[0031]

【表1】

	•	24.1										_					- 1	
	祖分離の	有無	0	0	0	C			0	0	0		0	0	×	×	×	×
H	エクランコノラー	15年 (公) 間 (分)	2	2	22		7	ខ	ß	2	2		2	5	>15	>15	固形物析出	固形物析出
40 25 OF 101	汽车米 中	周選 (m/分)	99	99	99		99	99	99	99	99		99	99	175	175	175	175
1	松次	大浴液酯 (g)	48	48	200	3		20	48	48	48		48	48	48	48	48	48
1	多糖類の水浴液	濃度 (wt%)	1.5	1.5			5.0	5.0	2.0	各1.5	- 5	٠١	各1.5	1.5	1.5	1.5	7.	1.5
	W	多糖類	ARG	APC		ARG	PEC	PEC	PEC	ARG+	APG	2	ARG+ PEC	ARG	ARG	ARG	ARG	ARG
		使用盘 (g)		0			0.0			6.0	0	- 1	6.0			6.0	元中戦)	化学製)
海	乳化助剤	無機鉱物		WL	LIM	1	MM	1		HM.	7,5	E A	WH	1	1	¥	ソルポール355H(東邦化学製) 3.6g	ソルポール355H(東邦化学製) 0.4g
ン液の試験結果	野	使用量(点)	90			0.8	0.0	6.0		0.9		ر 0	6 .0	60			ポール3	ポール3
リン液		紫河	7 1	7 1	4	ZE	ΞZ	ZE	ZE	ΞZ	Ļ	7F	ZE	14	1	1	\$_	3
O/W型エマルジョ	土壤黨蒸剤	e/ml	٤	2	49	ထ	45	45	49	49	9	49	49	49	40	Ş	49	ω
くを産	土機	薬剤	p 8	3 8	ક	ပ္	පු	S C	S G	පි	1	ာ ပ	G G	Ç	3 2	- 1		පි
表一10,	コマル	127		X	m	ပ	٥	ш	J LL	. თ		I	-	-	力様値で	は特徴で	比数 比数 包3	比較例4

[0032]

以上の結果から、ゼラチンの使用により、土壌薫蒸剤の高濃度のO/W型エマルジョン 液が製造できることがわかった。更に、無機鉱物を添加すると、O/W型エマルジョン液 の生成が促進されることがわかった。

【実施例2】

[0033]

土壌蒸蒸剤含有のゲル化物の製造

実施例1で製造したO/W型エマルジョン液A(97g)を塩化カルシウムの1.5% 水溶液 (200g) に滴下し、クロルピクリンを含有するゲル化物 (a) を98g (クロ ルピクリン含有量、48重量%)を得た。

[0034]

同様にして、実施例1記載のエマルジョン液(B)~(H)から、それぞれ(b)~(h) のゲル化物を得た。結果を表一2に示した。

[0035]

【表2】

表-2 ゲル化物の製造結果

	O/W型工	マルジョン液	1%塩化カル		ゲル化物	
ゲル化 物番号	番号	使用量(g)	シウム水溶液 の使用量(g)	収量(g)	CP含量 (wt%)	D-D含量 (wt%)
a	Α	97	200	98	48	_
b	В	98	200	99	49	
c	С	58	200	60	13	
d	D	57	200	59	76	
0	E	65	200	66	67	
f	F	97	200	99	49	
g	G	98	200	99	47	
h	Н	100	200	102	48	
 	I	98	200	99	48	
 	J	97	200	98	19	25

[0036]

以上の結果より土壌薫蒸剤の含有量の高いゲル化物が製造できるのがわかった。

【実施例3】

[0037]

乾燥ゲル化物の製造

上記実施例 2 で得られたゲル化物 (a)~(j)表—3 記載の条件で乾燥して、それぞ れ乾燥ゲル化物(A-a)~(J-j)を得た。

[0038]

		_	_			-1						
	都径 (mm)		2 2 2 3 3	2~8	2~8	5~8	2~8	2~8	2~8	5~8	5~8	5~8
	水分量	(WL/U/	18.5	14. 5	24. 3	13.8	17.8	16.8	14.2	13.6	19.8	12. 1
乾燥ゲル化物	D-D含有 每(4%)	# (WL%)		1	ı		1	ł	3	l	1	47
A	曲	(WL%)	79	81	65	81	79	81	82	77	76	39
	収雷(g)		41	41	6	39	35	41	41	48	48	41
	乾燥条件		風乾、48時間	風鼓、48時間	屈乾、72時間		届数 24時間	圖勢 48時間	風勢 48時間		風乾、24時間	風乾、48時間
子哲	使用量	(g)	06	06	50	50	25	8	80	6	06	06
インプログライン	1	物番号	Ø	٤		7	,	,	- 6	ع ه	-	
大の大体とは一下に大権	乾燥ゲルトが数番号	1 2	A-a	ם נ		2 2	3 4	ון ו		ב מ ו	- 1	

[0039]

以上の結果より土壌薫蒸剤含量の高い乾燥ゲル化物が製造できるのがわかった。また、 得られた乾燥ゲル化物は土壌薫蒸剤の臭気は認められなかった。

【実施例4】

[0040]

乾燥ゲル化物の臭気測定

実施例 2、3で得られたゲル化物、乾燥ゲル化物をクロルピクリン換算にして、5 g量を500 m 1 ポリ容器に入れ、密封して 2 4 時間放置した。気相部の空気を200 m 1 採取し、メタノール 10 m 1 に吸収させた。メタノール液をH P L C 分析して、クロルピクリン量を調べた。

[0041]

【表4】

表-4 気相部のクロルピクリン量

夜一年 メルカロアリンプログ	
ゲル化物または 乾燥ゲル化物番号	クロルピクリン量 (mg/メタノール、10ml)
A-a	0. 01
B-b	0. 01
C-c	0. 05
F-f	0. 01
G-g	0. 01
а	15. 3
b	15. 7
f	15. 5
g	15. 9
クロルピクリン	24. 7

[0042]

以上の結果より乾燥ゲル化物は土壌薫蒸剤及びゲル化物に対して、極度に土壌薫蒸剤の 放出が抑制されていた。

【実施例5】

[0043]

乾燥ゲル化物の土壌処理試験

[0044]

比較製剤X:クロルピクリン3gを4cm×9cmのポリビニルアルコールフィルム(日本合成化学工業社製、ハイセロンS400C)袋に入れ、密封した製剤。

[0045]

比較製剤 Y:ソイリーン (三井化学株式会社製品) 3 gを4 c m×9 c mのポリビニルアルコールフィルム (日本合成化学工業社製、ハイセロン S 4 0 0 C) 袋に入れ、密封した製剤。

[0046]

表 — 5 乾燥	アラ行物の	ー5 乾燥ゲル化物の土壌処埋試験結果	凯斯勒希里	71/						
野婦ゲル化		気	気相部のクロルピクリン量(単位: με/メタノール、10ml)	リルピクリ	ン盟(単位	立: µ g/、	メタノール	, 10ml)		
物番号	0. 5hr	1hr	3hr	7hr	24hr	48hr	72hr	96hr	168hr	240hr
Aa	0	28	37	98	680	866	1245	1040	283	31
Bb	0	0	39	94	009	086	1340	1100	350	35
F-f	0	20	42	06	069	096	1230	1060	280	21
G-g	0	15	38	98	650	940	1227	1061	271	20
i–b	0	4	10	28	260	372	478	400	86	2
光数 检关	7	15	97	222	799	1184	1153	954	302	28
比較剤Y	0	2	40	68	330	464	450	371	102	80

[0047]

以上の結果より乾燥ゲル化物を土壌に処理すると、対照の土壌薫蒸剤と同様に土壌薫蒸 を行うことができるのがわかった。

【実施例6】

[0048]

キュウリつる割れ病に対する効果

キュウリつる割れ病菌(Fusarium oxysporum f. sp. cucumerinum)に汚染された圃場をトラクターにて耕耘砕土し、幅120cm、長さ600cmを一つの試験区とした。実施例3で得られた乾燥ゲル化物 H-h(55g)を全面に散布し、その後、土壌混和した。土壌混和後、土壌表面を厚さ0.05mmのポリエチレンフィルムで被覆した。対照剤として、クロルピクリン(三井化学製品)を深さ15cmのところに30cm間隔で、1穴当たり3mlずつ注入し覆土し、ポリエチレンフィルムで被覆した。処理20日後にポリエチレンフィルム被覆を除去し、キュウリ苗を1区当たり40本植え付けた。移植40日後に地際部の導管の褐変程度でキュウリつる割れ病の罹病程度を調べた。

【0049】 【表6】

表-6 きゅうりつる割れ病菌に対する効果

試験製剤	防除効果
乾燥ゲル化物Hーh	100
クロルピクリン	100
無処理区	0

[0050]

表―6から、乾燥ゲル化物H-hは対照のクロルピクリン剤と同様の効果を示した。すなわち、乾燥ゲル化物は対照の土壌薫蒸剤と同様の薫蒸効果を有することがわかった。 【産業上の利用可能性】

[0051]

本発明の土壌薫蒸剤固形物は土壌薫蒸剤の高濃度エマルジョン液から製造しているため、乾燥時の負荷の少ない高い含有量の土壌薫蒸剤固形物である。本固形物は人が土壌薫蒸剤の臭気を感じないほど、土壌薫蒸剤の放出が極度に制御されているため、農家が簡便に取り扱うことが可能である。また、同固形物を土壌に処理すると、速やかに、且つ、短期間で土壌を薫蒸することができ、1年間の作物の作付け回数を減じることがなく、作物生産において有用である。

【曹類名】要約曹

【要約】

【課題】土壌薫蒸剤含量が高く、且つ、土壌薫蒸剤使用時には土壌薫蒸剤の放出が極めて抑制されていて、且つ、土壌に施用後に短期間の土壌薫蒸を可能にする製剤及び方法を提供することである。

【解決手段】2価以上の金属塩と反応してゲル化物を構成する多糖類の水溶液と土壌薫蒸剤、及び乳化助剤を攪拌して、10重量%以上85重量%以下の土壌薫蒸剤を含有するO/W型エマルジョン液を製造し、該エマルジョン液を2価以上の金属塩と反応させて、ゲル化物を製造し、その後、該ゲル化物を乾燥させた乾燥ゲル化物であることを特徴とする土壌薫蒸剤含有固形物。

【選択図】 なし

特願2003-381516

出願人履歴情報

識別番号

[000005887]

1. 変更年月日

2003年11月 4日

[変更理由]

住所変更

住 所

東京都港区東新橋一丁目5番2号

氏 名

三井化学株式会社