

Cryptocurrency High-Frequency Liquidity Strategy based on Orderbook Behavior

Lynn, 朱致伶

Motivation

- Cryptocurrency market is renowned for its high volatility and fragmented liquidity across different exchanges.
- Liquidity plays a crucial role in determining the efficiency and stability of the market.
- Liquidity is not only a trading consideration but also a crucial element of risk management.
- Orderbook Behavior which reflects real-time market, also liquidity conditions.

Motivation

- Goal: Develop a predictive model for cryptocurrency liquidity using orderbook data.
- Why the project is important:
- Improving Market Efficiency
- Risk Management through Liquidity
- Reducing Trading Costs

Motivation

Motivation

- Attract the audience
- Disclaimer: A short summary of the style guide for presentations

this is a lead picture

Outline

- 1. Motivation ✓
- 2. Styleguide

Slide Title

- Use
- - ► w2
 - **►** w3

Styleguide 7

Logo and Links to Quantinar Courselets

Use Quantinar icon and name as source

Logo and Links to Quantlet/GitHub

- Use Quantlet icon and name as source
- Hyperlink both to GitHub repository Styleguide
- Change the presentation logo in the master slide (see View/Edit Master Slide, shortcut: Shift-Command-E)

- Use the formula creator within keynote 'Insert/Equation'
- All operators are to be defined by \operatorname{}
 - \blacktriangleright without operatorname: $\underline{argmax_if(x_i)}$
 - \blacktriangleright with operatorname: $\operatorname{argmax}_i f(x_i)$
- Equations covering multiple lines may be written aligned
- Conventional bracket rules represent and exemption of the rule above. For example: Y ~ $\mathcal{N}(\mu(X), \sigma(X))$

- Use ^{\top} to write the transpose symbol: $x^Tx = \|x\|$
- Use \widehat{} and \widetilde{} rather than \hat{}, \tilde{}: Y, Y
- lacksquare Write norms via \|: $\parallel x \parallel$

- The for convergence may be written with \mathcal{O}:
 O
- The operator for exponential terms with Euler's number as the base is defined by \exp: exp(1) ≈ 2.718
- Use \overset{\mathcal{L}}{\rightarrow} to write the symbol for convergence in distribution and denote the normal distribution by \mathcal{N}, this produces $X \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma^2)$
- Use \overset{\operatorname{as.}}{\sim} to write the symbol for asymptotic distribution $X \stackrel{\text{as.}}{\sim} \chi^2$
- To define a function, variable etc. use def \overset{\operatorname{def}}{=} f(x) = ax + b

- Use \log for the natural logarithm: log{exp(1)} = 1
- \odot Use \mathsf{E} for expectation: $\mathbf{E}[X] = \mu$
- Use \operatorname{P} to write the symbol for probability: P
- \Box Use \varepsilon instead of epsilon: $\varepsilon \to \varepsilon$

Tables

- Follow the Cambridge University Press Style
- Round appropriately (as much information as necessary, as little as possible)
- Align decimal points

\overline{d}	10	11	12
10%	2.2886	2.4966	2.6862
5%	2.5268	2.7444	2.9490
1%	3.0339	3.2680	3.4911

Figures

- Give informative axis labels
- □ If x- and y-axis are on the same domain, the plot should be square
- Use same color scheme for multiple plots if they show the same content.

TEN Template

Your Name

Repeat on last slide the lead picture

Your affiliation
Your Webpage