

### CAPSTONE PROJECT PROPOSAL

Machine Learning Engineer
Nanodegree

### **INFO**

Toni Magdy

15<sup>th</sup> August, 2020

Starbucks Capstone Challenge

### DOMAIN BACKGROUND

- •This project from the marketing system, An application by Starbucks to keep in touch with its costumers and to make orders online.
- •Once every few days, Starbucks sends out an offer to users of the mobile app. An offer can be merely an advertisement for a drink or an actual offer such as a discount or BOGO (buy one get one free).
- •There are three types of offers that can be sent: buy-one-get-one (BOGO), discount, and informational. In a BOGO offer, a user needs to spend a certain amount to get a reward equal to that threshold amount. In a discount, a user gains a reward equal to a fraction of the amount spent. In an informational offer, there is no reward, but neither is there a requisite amount that the user is expected to spend. Offers can be delivered via multiple channels.

### PROBLEM STATEMENT

- •Starbucks needs a way to send to each costumer the right offer.
- •Our goal is to analyze historical app data to find most appropriate offer for each one of the costumers.
- •The appropriate offer when the costumer sees the offer and buy the products under the offer influence.
- •The user can receive an offer, never actually view the offer, and still complete the offer, there will be an offer completion record in the data set, however, the customer was not influenced by the offer because the customer never viewed the offer.

## PROBLEM STATEMENT (CONT.)

•The offer lifecycle



•lt's a classification problem, we aim to know if the user will complete the offer or not, we will build a model that predicts whether or not the user will complete the offer,

### **DATASETS**

#### The data is contained in three files:

- •portfolio.json: containing offer ids and meta data about each offer (duration, type, etc.)
- •profile.json: demographic data for each customer.
- •transcript.json: records for transactions, offers received, offers viewed, and offers completed.

- •The dataset is provided by Udacity and Starbucks.
- •The program used to create the data simulates how people make purchasing decisions and how those decisions are influenced by promotional offers.
- •Each person in the simulation has some hidden traits that influence their purchasing patterns and are associated with their observable traits. People produce various events, including receiving offers, opening offers, and making purchases.
- •As a simplification, there are no explicit products to track. Only the amounts of each transaction or offer are recorded.

#### profile.json

Rewards program users (17000 users x 5 fields)

- •gender: (categorical) M, F, O, or null
- age: (numeric) missing value encoded as 118
- •id: (string/hash)
- •became\_member\_on: (date) format YYYYMMDD
- •income: (numeric)

#### profile.json

profile rows: 17000, profile columns: 5

#### Out[13]:

|       | age | became_member_on | gender | id                               | income  |
|-------|-----|------------------|--------|----------------------------------|---------|
| 10412 | 85  | 20180404         | F      | 503053089f114898b546bc6740d8e978 | 84000.0 |
| 14449 | 45  | 20180607         | F      | f2e49f5002c540eb92ca320fea990319 | 73000.0 |
| 16016 | 68  | 20171009         | M      | ab68c87257344ba7963064dd8b4b9350 | 33000.0 |
| 9449  | 118 | 20161031         | None   | c99a06c81f8540b49cb6a66719ea62dc | NaN     |
| 3302  | 60  | 20170302         | M      | 7366bef4c288476dab78b09a33d0e692 | 52000.0 |
| 12484 | 118 | 20160727         | None   | b04385001db14fdf87829c6163ae9ddd | NaN     |
| 14313 | 98  | 20150403         | M      | 75225655a1c44546a18f100f7c864f98 | 37000.0 |
| 15713 | 26  | 20180117         | F      | 28416b56bdc94890a4996dd2dcc598b4 | 45000.0 |
| 5257  | 56  | 20180711         | M      | 2d3c956111ad434786e39ed79354dd5a | 66000.0 |
| 15232 | 118 | 20180525         | None   | 270e7fd65f7e45c58b79d0d8ad2c72ab | NaN     |

#### transcript.json

Event log (306648 events x 4 fields)

- •person: (string/hash)
- event: (string) offer received, offer viewed, transaction, offer completed
- value: (dictionary) different values depending on event type
  - offer id: (string/hash) not associated with any "transaction"
  - amount: (numeric) money spent in "transaction"
  - reward: (numeric) money gained from "offer completed"
- •time: (numeric) hours after start of test

#### transcript.json

transcript rows: 306534, transcript columns: 4

#### Out[11]:

|        | event           | person                           | time | value                                            |
|--------|-----------------|----------------------------------|------|--------------------------------------------------|
| 39728  | transaction     | 9b9bd320b3b34859abfee2109a0b4831 | 90   | {'amount': 3.6}                                  |
| 50487  | transaction     | 06b1031271174d8596c1996478f07ede | 150  | {'amount': 0.31}                                 |
| 246979 | offer received  | 489f08a011894421991b8cc0e6e0a946 | 576  | {'offer id': '2298d6c36e964ae4a3e7e9706d1fb8c2'} |
| 146286 | transaction     | 991386e4c20041428093919ed3c8f2ba | 390  | {'amount': 0.43}                                 |
| 15223  | offer viewed    | 48225ea573e545e0b704ce3fcca8bb9e | 0    | {'offer id': '0b1e1539f2cc45b7b9fa7c272da2e1d7'} |
| 54706  | offer received  | 055640cd12d04eb4b8a51ec67d451fc7 | 168  | {'offer id': '2906b810c7d4411798c6938adc9daaa5'} |
| 51845  | transaction     | ae0e47bc419940d68686ae364e73212b | 156  | {'amount': 2.24}                                 |
| 232039 | transaction     | 796cc7c1e8534e78bdff45f9e11494d6 | 534  | {'amount': 1.97}                                 |
| 22257  | offer completed | e110e63527c24ad1b482f76acde24a42 | 18   | {'offer_id': 'f19421c1d4aa40978ebb69ca19b0e20d   |
| 7390   | offer received  | 8cc0db430879405898d8390ca74ad13a | 0    | {'offer id': '0b1e1539f2cc45b7b9fa7c272da2e1d7'} |

#### portfolio.json

Offers sent during 30-day test period (10 offers x 6 fields)

- •reward: (numeric) money awarded for the amount spent
- •channels: (list) web, email, mobile, social
- •difficulty: (numeric) money required to be spent to receive reward
- •duration: (numeric) time for offer to be open, in days
- offer\_type: (string) bogo, discount, informational
- •id: (string/hash)

#### portfolio.json

portfolio rows: 10, portfolio columns: 6

Out[12]:

|   | channels                     | difficulty | duration | id                               | offer_type    | reward |
|---|------------------------------|------------|----------|----------------------------------|---------------|--------|
| 0 | [email, mobile, social]      | 10         | 7        | ae264e3637204a6fb9bb56bc8210ddfd | bogo          | 10     |
| 1 | [web, email, mobile, social] | 10         | 5        | 4d5c57ea9a6940dd891ad53e9dbe8da0 | bogo          | 10     |
| 2 | [web, email, mobile]         | 0          | 4        | 3f207df678b143eea3cee63160fa8bed | informational | 0      |
| 3 | [web, email, mobile]         | 5          | 7        | 9b98b8c7a33c4b65b9aebfe6a799e6d9 | bogo          | 5      |
| 4 | [web, email]                 | 20         | 10       | 0b1e1539f2cc45b7b9fa7c272da2e1d7 | discount      | 5      |
| 5 | [web, email, mobile, social] | 7          | 7        | 2298d6c36e964ae4a3e7e9706d1fb8c2 | discount      | 3      |
| 6 | [web, email, mobile, social] | 10         | 10       | fafdcd668e3743c1bb461111dcafc2a4 | discount      | 2      |
| 7 | [email, mobile, social]      | 0          | 3        | 5a8bc65990b245e5a138643cd4eb9837 | informational | 0      |
| 8 | [web, email, mobile, social] | 5          | 5        | f19421c1d4aa40978ebb69ca19b0e20d | bogo          | 5      |
| 9 | [web, email, mobile]         | 10         | 7        | 2906b810c7d4411798c6938adc9daaa5 | discount      | 2      |

# SOLUTION STATEMENT

- •In order to solve this problem, we will build a machine learning model to study costumers behaviors.
- •we'll try to train several classification models to predict whether or not the user will complete the offer, we'll use Random Forest, Sagemaker XGBoost, RNN, SageMaker LinearLearner.
- •The output of the model should be 0 if the user will not complete the offer, and 1 if the user will complete the offer.

### BENCHMARK MODEL

- •We will use Logistic Regression as a simple machine learning algorithm to compare the results with.
- Logistic Regression is simple and easy to implement.

### **EVALUATION METRICS**

It's a classification problem, so that below evaluation metrics should be able to determine the model performance.

•Accuracy = 
$$\frac{True\ Positives + True\ Negatives}{Total}$$

Accuracy is how many points did we classify correctly.

•Precision = 
$$\frac{True\ Positives}{True\ Positives + False\ Positives}$$

Precision is proportion of positive cases that we classify correctly.

•Recall = 
$$\frac{True\ Positives}{True\ Positives + False\ Negatives}$$

Recall is proportion of actual positive cases the we classify correctly.

### PROJECT DESIGN

- •Data loading and exploration: load the dataset and present some data visualization in order to understand the data.
- Data Cleaning: clean the dataset and fix any issues.
- •Feature Engineering: prepare the data to be suitable for the model.
- Split Data: split the data into training and test sets.
- •Train the model: train the machine learning model.
- •Train the benchmark model: train the benchmark model to compare the results with.
- Evaluate the models: Test the models and compare the results.

# THANK YOU!