Dilation A & B = UAb

prove A & B = B & A

Consider A⊕B≠B⊕A: UAb≠UBa

beB aEA either UAb=0 A-UBa=1

UAb=1/UBa=0

Case 1: $VA_b = \emptyset \wedge VB_a = 1$ beB

 $UA_b = \emptyset \rightarrow A K | A_x = 1$. A $2 | B_q = 1$. $B_q = A_x$ for some K Contradiction

Cose 2:

reverse A&B labels from case 1 & apply same logic

			•		•	•			•			•	•	•	•											
	•	•			•	•	•		•		•			•	•	•										
			•	•	•			•		•	•	•		•	•	•						•		٠		
•		•	•	•				•			•		•	Q	2 Struc	t B					•	•	•	•		
		•	•	•	•	٠	•	•	•	٠		•									•	•	•	•		
		•	•	•	•	٠	•	•	•	•									•	•	•					
		•	•	•			•	•	•	٠	٠	•	•								•	•	•	•		
•	•		•	•			•	•	•	•			•							•	•	•	•	•		
			•		•	•	•		•												•			•		
		•			•	٠		•	•																	
•			•	•				•		•	٠		•													
		•	•	•	•		•				٠						Q2 Structure C									
	•		•		•		•		•	•		•	•													
•				•			•		•		•															
Question 2, Structure A																										

																X	X	X								
			•													X	•	X			X	X	X	X		
			•					•	•							X	•	X			X	•	•	X		
			•					•	•							X	•	X			X	•	•	X		
																X	X	X			X	X	X	X		
				-	-	-																				
					Questi	on 2, S	tructu	re A⊖ E	3	Į.		I.		Question 2, Structure (A⊖ B) ⊕ B = (A ∘ B)												
				Х	Х	X	X	Х																		
			X	X	•	X	•	X											•	•	•					
			Х	•	•	•	•	Х										•	٠	•	•					
	X	X	Х	•	•	•	•	X										٠	•	•	•					
	X	•	•	•	X	X	X	X								•	•	•	•	•	•					
	Х	X	Х	•	•	•	٠.	X									•	•	•	•	•					
		X	•	•	•	•	•	X									•	•	•	•	•					
		Х	X	•	X	X		X										•	•	•	•					
			Х	Х	Х	Х	X	Х																		
Q2 Structure C B														O2 64	ructur) (C	 }	. C . P								
Q2 Structure C * B											Q2 Structure (C⊕ B) ⊕ B = C ⋅ B															

