

19 a 21 de setembro, 2023, Cornélio Procópio, PR, Brasil

COMPARAÇÃO DA EFICIÊNCIA AERODINÂMICA ENTRE PERFIS SIMÉTRICOS E ASSIMÉTRICOS NO AERODESIGN

Giovanni Vinícius Guimarães Rodrigues* Mateus Matheus Prudêncio* Fernando H. O. Camara*

giovannivinicius@alunos.utfpr.edu.br mprudencio@alunos.utfpr.edu.br fernandocamara@utfpr.edu.br

Resumo: Neste estudo, foram analisados dois perfis aerodinâmicos: o NACA0012, que é um perfil simétrico biconvexo, e o Eppler 423, que é um perfil assimétrico côncavo-convexo. Foram realizadas simulações computacionais para investigar o comportamento desses perfis em diferentes ângulos de ataque. Os resultados mostraram que o perfil Eppler 423 apresentou coeficientes de sustentação (CI) mais elevados em comparação ao NACA0012. No entanto, o NACA0012 demonstrou um baixo coeficiente de arrasto (Cd), indicando uma menor resistência ao movimento. Ao analisar a eficiência aerodinâmica, que é a relação entre CI e Cd, o perfil Eppler 423 apresentou uma eficiência maior em todos os ângulos de ataque estudados. Isso significa que esse perfil é capaz de gerar uma maior sustentação com menor arrasto, resultando em um desempenho aerodinâmico superior.

Palavras-chaves: Perfil de asa. Coeficiente de sustentação. Coeficiente de arrasto. Eficiência aerodinâmica.

1. Introdução

Um perfil de asa é essencialmente a forma da seção transversal da asa ao longo de sua envergadura. Essa forma é projetada com o intuito de criar uma pressão diferencial entre a parte superior e inferior da asa, gerando assim a força de sustentação necessária para sustentar o peso da aeronave em voo. A curvatura, espessura e outras características do perfil são cuidadosamente projetadas para otimizar a eficiência aerodinâmica (RIBEIRO, 2011).

Além de gerar sustentação, os perfis de asa também produzem arrasto. O arrasto é uma força resistiva que atua na direção oposta ao movimento da aeronave. Minimizar o arrasto é essencial para aumentar a eficiência e o alcance da aeronave. Portanto, os projetistas de aeronaves buscam equilibrar a geração de sustentação com a minimização do arrasto, criando perfis de asa que possuam características aerodinâmicas favoráveis.

^{*} Universidade Tecnológica Federal do Paraná – Câmpus Cornélio Procópio

Existem diferentes tipos de perfis de asa, cada um projetado para atender a diferentes requisitos de desempenho, como mostra a figura 1.

Figura 1 – Diferentes modelos de perfil da família NACA.

Fonte: (PEQUENO, 2019)

É possível classificar os perfis de asa em diferentes categorias com base em sua simetria e tipo de curvatura. No aerodesign duas categorias são as mais comuns, essa são:

Perfis biconvexos simétricos: A linha de corda serve como uma espécie de plano de simetria, de modo que a geometria no intradorso e extradorso é idêntica. Dessa forma, não têm a capacidade de gerar forças de sustentação na condição de ângulo de ataque de 0° e geram efeitos de sustentação correspondentes em ângulos de ataque positivos e negativos de mesmo valor numérico. São perfis conhecidos por permitir considerável manobrabilidade em detrimento de altos valores de sustentação e portanto, aplicados em aeronaves de acrobacia e algumas aeronaves monomotoras (condições subsônicas e de valor mediano do número de Reynolds). Ademais, vale ressaltar que são perfis que são denominados como estáveis pelo baixo intervalo de deslocamento do centro de pressão à medida que se altera o ângulo de ataque (RIBEIRO, 2011).

O perfil simétrico escolhido para as análises é o NACA0012 cujo formato pode ser visto na figura 2.

Perfis assimétricos côncavo-convexos: São perfis de geometria mais complexa, pois neste caso o intradorso têm formato côncavo enquanto que o extradorso tem forma convexa. São conhecidos por oferecer alto potencial de sustentação, o que

por consequência gera também maiores valores de arrasto e ademais também acabam por restringir um pouco a manobrabilidade em voo (RIBEIRO, 2011). Tem aplicações no Aerodesign (condições subsônicas e baixos valores de Reynolds) dadas as características da competição SAE Aerodesign. Ademais, no âmbito de estabilidade, quanto mais acentuada a curvatura da asa e mais espesso o perfil, mais intensa será a instabilidade no centro de pressão (RODRIGUES, 2013).

O perfil assimétrico escolhido para as análises é o Eppler 423 cujo formato pode ser visto na figura 3.

A capacidade de geração de forças aerodinâmicas de um perfil de asa aumenta com o ângulo de ataque. O ângulo de ataque é a diferença entre a direção do fluxo de ar incidente e a direção média da corda do perfil, como pode ser visto na figura 4.

Figura 4 – Ângulo de ataque do perfil.

Fonte: (RODRIGUES, 2013)

O coeficiente de sustentação (C_l) é uma medida da força aerodinâmica vertical para cima gerada por um perfil de asa. Ele representa a capacidade do perfil de sustentar uma aeronave no ar. Quanto maior o valor de C_l , maior será a sustentação gerada pelo perfil (RODRIGUES, 2013).

O coeficiente de arrasto (C_d) é uma medida da força aerodinâmica oposta ao movimento de uma aeronave. Ele representa a resistência do perfil ao avanço no ar. Um menor valor de C_d indica um perfil com menor resistência ao movimento(RODRIGUES, 2013).

A razão C_l/C_d é um parâmetro que define a eficiência aerodinâmica de um perfil. Quanto maior for essa razão, mais eficiente é o perfil, pois ele é capaz de gerar uma maior sustentação com menor arrasto. Isso significa que a aeronave

pode voar mais eficientemente, alcançar maiores velocidades e consumir menos energia para manter o voo (RODRIGUES, 2013).

Portanto, para otimizar o desempenho aerodinâmico de uma aeronave, é desejável ter um perfil com um coeficiente de sustentação (C_l) elevado e um coeficiente de arrasto (C_d) baixo, resultando em uma alta razão C_l/C_d e uma eficiência aerodinâmica superior.

2. Metodologia e Materiais

Neste estudo, foram realizadas análises dos perfis aerodinâmicos utilizando o software XFLR5 (XFLR5, 2023). O objetivo foi investigar o comportamento dos perfis aerodinâmicos em diferentes ângulos de ataque e avaliar os coeficientes de sustentação (CI), coeficiente de arrasto (Cd) e eficiência aerodinâmica.

Para isso, foram selecionados dois perfis aerodinâmicos, o NACA0012 e o Eppler 423. O software XFLR5 foi utilizado para realizar as simulações computacionais, que permitiram obter informações precisas sobre o comportamento aerodinâmico desses perfis.

O ângulo de ataque variou de -5° a 20°, em intervalos de 1°, para abranger uma ampla faixa de condições de voo. As simulações foram realizadas considerando um número de Reynolds de 450.000, a fim de simular condições de voo representativas para aeronaves experimentais do tipo aerodesign.

3. Resultados

Os valores obtidos para os coeficientes estão representados nas tabelas 1 e 2.

Tabela 1 – Comparação dos coeficientes de sustentação.

Coeficiente de Sustentação			
Ângulo de ataque	Eppler 423	NACA0012	
-5°	0,4971	-0.6369	
0°	1,1143	0,1615	
5°	1,6216	0,6358	
10°	1,9732	1,0364	
15°	1,9648	1,1133	
20°	1,8463	0,8051	

Tabela 2 – Comparação dos coeficientes de arrasto.

Coeficiente de Arrasto			
Âlgulo de ataque	Eppler 423	NACA0012	
-5°	0,0551	0,0107	
0°	0,0131	0,0064	
5°	0,0142	0,0107	
10°	0,0198	0,0204	
15°	0,0617	0,0648	
20°	0,1351	0,2427	

Observa-se que o perfil simétrico NACA0012 apresenta um coeficiente de sustentação inferior em comparação ao Eppler 423. No entanto, o NACA0012 se

destaca por possuir um baixo valor de arrasto. Por outro lado, o perfil Eppler 423 demonstra um desempenho mais equilibrado, com altos valores de C_l e baixos valores de C_d , comparáveis ao NACA0012.

Para destacar a diferença entre os perfis, foi utilizada a razão entre os coeficientes de sustentação e arrasto, também conhecida como eficiência aerodinâmica. Os valores correspondentes a essa razão podem ser observados na Tabela 3. Esses resultados fornecem uma medida quantitativa da eficiência de cada perfil, permitindo uma comparação direta entre eles.

Tabela 3 – Eficiência aerodinâmica.

Eficiência Aerodinâmica			
Âlgulo de ataque	Eppler 423	NACA0012	
-5°	9,0282	-59,3908	
0°	85,9654	0,2509	
5°	114,0466	59,3951	
10°	99,1721	50,7684	
15°	31,8293	17,1696	
20°	13,6723	3,3158	

Ao analisar a tabela, fica evidente que o perfil Eppler 423 demonstrou maior eficiência em comparação ao NACA0012. Essa discrepância pode ser atribuída à diferença de geometria entre esses perfis.

Em geral, para aeronaves que operam em condições subsônicas, os perfis assimétricos côncavo-convexos são considerados as melhores opções. Isso se deve ao fato de que tais perfis apresentam altos valores de sustentação, resultando em um aumento significativo na carga paga.

4. Conclusões

Este artigo abordou os fundamentos teóricos da aerodinâmica de perfis de asa, destacando a importância dos coeficientes dos perfis para a realização dos projetos de asa. A utilização do software XFLR5 proporcionou a análise e geração de gráficos desses coeficientes, fornecendo informações cruciais para o projeto de asas e aeronaves eficientes.

Para o contexto do aerodesign, os perfis assimétricos côncavo-convexos, como o Eppler 423, são considerados mais adequados, devido à sua capacidade de gerar maior sustentação, o que é essencial para voos com cargas pesadas, como exigido na competição SAE Brasil Aerodesign.

Referências

Airfoil Tools. Airfoil plotter. 2023. http://airfoiltools.com/>.

PEQUENO, A. *Engenharia Aeronáutica: Perfil.* 2019. https://engenhariaaeronautica.com.br/artigos-engenharia-aeronautica/perfil/>.

RIBEIRO, F. A. Análise aerodinâmica de perfis de asa para aeronaves experimentais tipo jn-1. *Universidade Federal do Rio Grande do Norte*, 2011.

RODRIGUES, L. E. M. J. *Fundamentos da Engenharia Aeronáutica*. 1. ed. [S.I.]: Cengage Learning, 2013. ISBN 9788522112043.

XFLR5. XFLR5. [S.I.]: Techwinder, 2023. http://www.xflr5.tech/xflr5.htm.