OBJECT TRACKING

Computer Vision

Instructors:

Phạm Minh Hoàng

Nguyễn Trọng Việt

Võ Hoài Việt

Team Members: Group03

19127039 – Trần Hoàng Kim

20127578 – Phan Trí Nguyên

Agenda

01. Problem **Statement**

02. Related Works Methodology

03.

04. **Experiments Video Demo**

05.

06. **Conclusion**

01. Problem Statement

01. Problem Statement

Input: sequence of video contain objects (human, vehicle, animal, etc)

Output: Objects of each frame include bounding boxes and identifications

New Challenge

 Large-scale data for tracking, where objects have similar appearance, diverse motion. The numbers below show their identifications which experience frequent relative position switches and occlusions.

New Challenge

Kind of animals have high similarity appearance which easily causes switching identities

1/5/2024 ibo Zhang, Junyuan Gao, Zhen Xiao, Heng Fan (2022)
AnimalTrack: A Benchmark for Multi-Animal Tracking in the Wild

02. Related Works

64 02. Related Works

Two-stage method

☐ Simple Online Realtime Object Tracking

SORT with a Deep Assoc Association Metric Metric

One-stage method

Multi-Object Tracking with TrackForm Transformers

Quasi-Dense Similarity E Learning for Multiple Object Tracking

Two-Stage (Tracking-by-detection)

One characteristic of the class of Tracking-by-detection algorithms is to separate object detection as a separate problem and attempt to optimize the results in this task.

The next step is to find a way to link the bounding boxes obtained in each frame and assign an ID to each object.

Therefore, we have a processing pipeline for each new frame as follows:

Method 1

• SORT - Simple Online Realtime Object Tracking

Method 2

• DeepSORT - SORT with a Deep Association Metric

SORT - Simple Online Realtime Object Tracking

Alex Bewley, Zongyuan

Ge (2016): Simple Online
and Realtime Tracking

- SORT uses the Kalman filter to predict the position of tracks in the next frame based on the past frames.
- And then matching detections (from object detection) and tracks by Hungarian matching algorithm (matching IoU).

DeepSORT - SORT with a Deep Association Metric

Nicolai Wojke, Alex Bewley (2017) Simple Online and Realtime Tracking with a Deep Association Metric

DeepSort is the improvement of SORT by additional matching appearances.

Weakness of two-stage methods

- Completely depend on object detection.
- Slow speed is a problem in processing real-time tracking.
- => We utilize **one-stage method** in this seminar to improve this weaknesses.

Although one-stage method has a significant impact on practical application through its real-time capability, this method is complicated.

One-Stage (End-to-end)

Joint detection and tracking methods are classified as one-stage MOT, in which the detection and tracking steps are simultaneously produced in a **single network**.

In this category, object detection can be modeled within a single network with **re-ID feature extraction** or **motion features**.

TrackFormer: Multi-Object Tracking with Transformers

Tim Meinhardt, Alexander Kirillov(2022) TrackFormer: Multi-Object Tracking with Transformers

TrackFormer utilizes Transformer with two main taskes:

- Transform object queries (white squares) to new tracks queries or background (like object detection task)
- Transform track queries (color squares) from previous frames to tracks in current frame (like matching task)

Quasi-Dense Similarity Learning for Multiple Object Tracking

Training pipeline

The training process creates a powerful re-ID network by quasi-dense similarity learning which learn the feature embedding space that can associate identical objects and distinguish different objects for online multiple object tracking

Quasi-Dense Similarity Learning for Multiple Object Tracking

Testing pipeline

Jiangmiao Pang, Linlu Qiu, Xia Li (2021) Quasi-Dense Similarity Learning for Multiple Object Tracking

The testing process utilizes re-ID trained network to match proposal objects in the current/key frame and past/reference frames.

03. Methodology

Quasi-Dense Similarity Learning for Multiple Object Tracking

Object detection

Quasi-dense similarity learning

Object association

— Quasi-Dense Samples

Reference Frames

Key Frame

03. Methodology

OBJECT DETECTION

Faster R-CNN

Feature Pyramid Network

A multi-task loss function:

$$\mathcal{L}_{det} = \mathcal{L}_{rpn} + \lambda_1 \mathcal{L}_{cls} + \lambda_2 \mathcal{L}_{reg}$$
(1)
RPN loss Classification Loss Regression Loss

03. Methodology Quasi-dense similarity learning

1/5/2024

An auxiliary loss:

$$\mathcal{L}_{aux} = (\frac{v.k}{||v||.||k||} - c)^2$$
 (3)

✓ Aim: constrain the logit magnitude and cosine similarity

Quasi-dense similarity learning

A multi-task loss function:

$$\mathcal{L}_{det} = \mathcal{L}_{rpn} + \lambda_1 \mathcal{L}_{cls} + \lambda_2 \mathcal{L}_{reg}$$

An auxiliary loss:

$$\mathcal{L}_{aux} = \left(\frac{v.k}{||v||.||k||} - c\right)^2$$

Dense matching:

$$\mathcal{L}_{embed} = \log[1 + \sum_{k^{+}} \sum_{k^{-}} \exp(v.k^{-} - v.k^{+})]$$

The entire network:

$$egin{aligned} \mathcal{L} \ = \mathcal{L}_{det} + \gamma_1 \mathcal{L}_{embed} + \gamma_2 \mathcal{L}_{aux} \end{aligned}$$

O3. Methodology Object association

1/5/2024

Jiangmiao Pang, Linlu Qiu, Xia Li, Haofeng Chen, Qi Li, Trevor Darrell, Fisher Yu (2021) Quasi-Dense Similarity Learning for Multiple Object Tracking

Bi-directional softmax

$$f(i,j) = \left[\frac{\exp(n_i.m_j)}{\sum_{k=0}^{M-1} \exp(n_i.m_k)} + \frac{\exp(n_i.m_j)}{\sum_{k=0}^{N-1} \exp(n_k.m_j)} \right] / 2$$

1/5/2024

04. Experiments

MOT16

MOT17

04. Experiments Datasets

MOT16 and MOT17

Training Set: 7 videos - 5,316 images

Testing Set: 7 videos - 5,919 images

Video frame rate: 14 - 30 FPS

Object Tracking

1/5/2024

Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad Schindler, MOT16: A Benchmark for Multi-Object Tracking, arXiv:1603.00831v2 [cs.CV] 3 May 2016

04. Experiments **Datasets**

1/5/2024

DanceTrack

Peize Sun, Jinkun Cao, Yi Jiang, Zehuan Yuan, Song Bai, Kris Kitani, Ping Luo (2022) DanceTrack: Multi-Object Tracking in Uniform Appearance and Diverse Motion

04. Experiments Datasets

1/5/2024

AnimalTrack

26 videost Tracking

Libo Zhang, Junyuan Gao, Zhen Xiao, Heng Fan (2022) AnimalTrack: A Benchmark for Multi-Animal Tracking in the Wild

04. Experiments Metrics for evaluation

MOTA

MOTA [17, 18]

It measures the overall accuracy of both the tracker and detection.

It deals with both tracker output and detection output.

MOTA Calculation

04. Experiments Metrics for evaluation

HOTA

(Higher Order Tracking Accuracy)

Decomposing into submetrics

Providing a single score for tracker

Evaluating long-term higher-order tracking association

Measuring Association

$$TPA(c) = \{k\},\$$

$$k \in \{TP | prID(k) = prID(c) \land gtID(k) = gtID(c)\}$$
(1)

FNA(c) =
$$\{k\}$$
,
 $k \in \{\text{TP} \mid \text{prID}(k) \neq \text{prID}(c) \land \text{gtID}(k) = \text{gtID}(c)\}$ (2)
 $\cup \{\text{FN} \mid \text{gtID}(k) = \text{gtID}(c)\}$

$$FPA(c) = \{k\},\$$

$$k \in \{TP \mid prID(k) = prID(c) \land gtID(k) \neq gtID(c)$$

$$\cup \{FP \mid prID(k) = prID(c)\}$$
(3)

Dbj@02#racking

Measuring Association

A particular localisation threshold α for a scoring function from (4), (5) and (6) equations:

$$\mathcal{A}(c) = \frac{|\text{TPA}(c)|}{|\text{TPA}(c)| + |\text{FNA}(c)| + |\text{FPA}(c)|}$$

$$HOTA_{\alpha} = \sqrt{\frac{\sum_{c \in \{TP\}} \mathcal{A}(c)}{|TP| + |FN| + |FP|}}$$

04. Experiments Results 44

Let's make some comparisons!

965e2OTracking

04. Experiments - Results

Methods	DanceTrack (Proposed Dataset)							
Methods	HOTA	DetA	AssA	MOTA	IDF1			
CenterTrack ¹ [42]	41.8	78.1	22.6	86.8	35.7			
FairMOT ¹ [41]	39.7	66.7	23.8	82.2	40.8			
ODTrack ³ [25]	54.2	80.1	36.8	87.7	50.4			
TransTrack ¹ [29]	45.5	75.9	27.5	88.4	45.2			
TraDes ¹ [35]	43.3	74.5	25.4	86.2	41.2			
MOTR ² [39]	54.2	73.5	40.2	79.7	51.5			
GTR ² [44]	48.0	72.5	31.9	84.7	50.3			
ByteTrack ¹ [40]	47.7	71.0	32.1	89.6	53.9			
OC-SORT ² [5]	55.1	80.3	38.3	92.0	54.6			

DanceTrack: Multi-Object
Tracking in Uniform
Appearance and Diverse
Motion

04. Experiments - Results

Tracker	НОТА	MOTA	IDF1	IDP	IDR	MT	PT	$\mathrm{ML}{\downarrow}$	$\mathrm{FP}\!\!\downarrow$	$FN\downarrow$	$\mathrm{IDs}\!\!\downarrow$	$\mathrm{FM}\!\!\downarrow$
SORT [6]	42.8%	55.6%	49.2%	58.5%	42.4%	333	470	301	19,099	86,257	2,530	3,730
IOUTrack [7]	41.6%	55.7%	45.7%	51.9%	40.7%	388	454	262	$25,\!206$	77,847	4,639	$5,\!259$
DeepSORT $[54]$	32.8%	41.4%	35.2%	49.7%	27.2%	213	452	439	14,131	124,747	3,503	4,527
JDE [52]	26.8%	27.3%	31.0%	51.0%	22.0%	106	414	584	17,887	$155,\!623$	3,187	5,031
FairMOT [62]	30.6%	29.0%	38.8%	62.8%	28.0%	143	462	499	$17,\!653$	$152,\!624$	2,335	5,447
CenterTrack [63]	9.9%	1.6%	7.0%	8.9%	5.8%	265	423	416	32,050	$117,\!614$	89,655	$7,\!583$
CTracker [41]	13.8%	14.0%	14.7%	35.2%	9.3%	20	313	771	13,092	192,660	3,437	8,019
Tracktor++[3]	44.2%	55.2 %	51.0%	58.5%	45.1%	364	472	268	$25,\!477$	81,538	1,976	4,149
ByteTrack [61]	40.1%	38.5%	51.2%	64.9%	42.3%	310	465	329	31.591	116.587	1,309	3.513
QDTrack [39]	$\boldsymbol{47.0\%}$	$\boldsymbol{55.7\%}$	$\boldsymbol{56.3\%}$	$\boldsymbol{65.6\%}$	$\boldsymbol{49.3\%}$	367	420	317	22,696	83,057	1,970	$5,\!656$
TADAM [23]	32.5%	36.5%	37.2%	44.4%	32.0%	258	495	351	41,728	110,048	$2,\!538$	4,469
OMC [29]	43.0%	53.4%	50.3%	61.8%	42.4%	324	478	302	15,910	$92,\!570$	4,938	7,162
Trackformer [37]	31.0%	20.4%	36.5%	40.9%	32.8%	230	491	383	70,404	118,724	$4,\!355$	3,725
TransTrack [48]	$\boldsymbol{45.4\%}$	48.3%	$\boldsymbol{53.4\%}$	63.4%	$\boldsymbol{46.1\%}$	327	416	361	$28,\!553$	$95,\!212$	1,978	6,459
	_		_					_			•	

AnimalTrack: A Benchmark for Multi-Animal Tracking in the Wild

Jiangmiao Pang, (2021) Quasi-Dense Similarity Learning for Multiple Object Tracking

Dataset	Method	MOTA \uparrow	IDF1 ↑	$MOTP \uparrow$	$MT \uparrow$	$ML\downarrow$	$\mathrm{FP}\downarrow$	$FN\downarrow$	IDs ↓
MOT16	TAP [57]	64.8	73.5	78.7	292	164	12980	50635	571
	CNNMTT [29]	65.2	62.2	78.4	246	162	6578	55896	946
	POI* [54]	66.1	65.1	79.5	258	158	5061	55914	3093
	TubeTK_POI* [35]	66.9	62.2	78.5	296	122	11544	47502	1236
	CTrackerV1 [37]	67.6	57.2	78.4	250	175	8934	48305	1897
	Ours	69.8	67.1	79.0	316	150	9861	44050	1097
MOT17	Tracktor++v2 [2]	56.3	55.1	78.8	498	831	8866	235449	1987
	Lif_T* [20]	60.5	65.6	78.3	637	791	14966	206619	1189
	TubeTK* [35]	63.0	58.6	78.3	735	468	27060	177483	4137
	CTrackerV1 [37]	66.6	57.4	78.2	759	570	22284	160491	5529
	CenterTrack* [56]	67.8	64.7	78.4	816	579	18498	160332	3039
	Ours	68.7	66.3	79.0	957	516	26589	146643	3378

QDTrack's Results on MOT16 and MOT17 test set with private detectors

↑ means higher is better

↓ means lower is better

* means external data besides COCO and ImageNet is used

05. Video Demo

Applying "Quasi-dense Similarity Learning for Multiple Object Tracking method" on DanceTrack

Link demo

Tracking result

06. Conclusion

QDTrack, a tracking method based on contrastive learning and quasidense matching for instance similarity learning.

Quasi-dense is an extremely effective method for tracking objects that have similar appearances

