INTRODUCTION TO MACHINE LEARNING

Thomas Tiam-Lee, PhD

Machine Learning

- Part of "neural Al" school of thought
 - Bottom-up approach
- Top-down approach
 - Model the rules of the problem, then solve it.
- Bottom-up approach
 - Show many examples (data), let the model learn the rules of the problem from it

Traditional AI vs. Machine Learning

Traditional / Symbolic Al

Machine Learning

Traditional Al Mindset

- Task: Classify if an animal is quadruped.
 - Identify the rules.
 - Implement the rules.

Name	Class	Legs	Size				Quadruped?
Horse	Mammal	4	Medium	١.	if number of legs		Yes
Ram	Mammal	4	Small	4	is equal to 4,		Yes
Man	Mammal	2	Medium		quadruped		No
Chicken	Bird	2	Small				No

Machine Learning Mindset

- Task: Classify if an animal is quadruped.
 - Feed many examples of quadruped vs. non-quadruped animals
 - Infer the rules on when an animal is quadruped

Name	Class	Legs	Size		Quadruped?	
Horse	Mammal	4	Medium	_	Yes	if number of legs
Ram	Mammal	4	Small	4	Yes	is equal to 4,
Man	Mammal	2	Medium		No	quadruped
Chicken	Bird	2	Small		No	

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Source: https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/

Machine Learning

- Machine learning models are reflex-based models.
- They take an input, process it one time, and produce an output.

Hypothesis Function

- Where the "magic" happens.
- Transforms the input X to the output y.

 Many different types of ML models that can serve as the hypothesis function.

Machine Learning Framework

• **Dataset:** collection of data instances where the model will "learn" from.

	index	sepallength	sepalwidth	petallength	petalwidth	class
0	0	5.0	3.2	1.2	0.2	Iris-setosa
1	1	6.7	3.1	4.4	1.4	Iris-versicolor
2	2	5.7	2.8	4.5	1.3	Iris-versicolor
3	3	7.7	3.0	6.1	2.3	Iris-virginica
4	4	6.7	3.1	5.6	2.4	Iris-virginica
5	5	4.7	3.2	1.3	0.2	Iris-setosa
6	6	6.4	2.7	5.3	1.9	Iris-virginica
7	7	0.7	0.0	F.0	0.0	

• Instance: A single object / row in the dataset.

	index	sepallength	sepalwidth	petallength	petalwidth	class
(0	5.0	3.2	1.2	0.2	Iris-setosa
1	1	6.7	3.1	4.4	1.4	Iris-versicolor
2	2	5.7	2.8	4.5	1.3	Iris-versicolor
3	3	7.7	3.0	6.1	2.3	Iris-virginica
4	4	6.7	3.1	5.6	2.4	Iris-virginica
	5 5	4.7	3.2	1.3	0.2	Iris-setosa
6	6	6.4	2.7	5.3	1.9	Iris-virginica
	_	0.7	0.0	5.0	0.0	

• **Label:** The target variable that is being predicted, i.e., the model is "learning" how to predict this variable.

	index	sepallength	sepalwidth	petallength	petalwidth	class
0	0	5.0	3.2	1.2	0.2	Iris-setosa
1	1	6.7	3.1	4.4	1.4	Iris-versicolor
2	2	5.7	2.8	4.5	1.3	Iris-versicolor
3	3	7.7	3.0	6.1	2.3	Iris-virginica
4	4	6.7	3.1	5.6	2.4	Iris-virginica
5	5	4.7	3.2	1.3	0.2	Iris-setosa
6	6	6.4	2.7	5.3	1.9	Iris-virginica
_	7	0.7	0.0	5.0	0.0	

- Classes: The list of possible values for the label.
 - In this case: {Iris-setosa, Iris-versicolor, Iris-virginica}

	index	sepallength	sepalwidth	petallength	petalwidth	class
(0	5.0	3.2	1.2	0.2	Iris-setosa
•	1	6.7	3.1	4.4	1.4	Iris-versicolor
2	2 2	5.7	2.8	4.5	1.3	Iris-versicolor
;	3	7.7	3.0	6.1	2.3	Iris-virginica
4	4	6.7	3.1	5.6	2.4	Iris-virginica
,	5 5	4.7	3.2	1.3	0.2	Iris-setosa
(6	6.4	2.7	5.3	1.9	Iris-virginica
	, ,	0.7	0.0	F.0	0.0	

• **Features:** The variables that will be considered when "learning" the rules / making the prediction.

	index	sepallength	sepalwidth	petallength	petalwidth	class
0	0	5.0	3.2	1.2	0.2	Iris-setosa
1	1	6.7	3.1	4.4	1.4	Iris-versicolor
2	2	5.7	2.8	4.5	1.3	Iris-versicolor
3	3	7.7	3.0	6.1	2.3	Iris-virginica
4	4	6.7	3.1	5.6	2.4	Iris-virginica
5	5	4.7	3.2	1.3	0.2	Iris-setosa
6	6	6.4	2.7	5.3	1.9	Iris-virginica
7	7					

Classification of ML Algorithms

- 1. Supervised Machine Learning Algorithms
- 2. Unsupervised Machine Learning Algorithms
- 3. Reinforcement Learning Algorithms

Supervised Machine Learning

- There is a label.
 - The label is the "correct answer" for that instance.
 - The goal is to train the model to predict the target label.

• Examples:

- Given the dimensions of the different parts of a flower, classify it as either iris-setosa, iris-virginica, and iris-versicolor.
- Given the lot area and the number of bedrooms of a house, predict its price.
- Given an image of a handwritten digit, predict what digit it is.

Unsupervised Machine Learning

- There is no label.
 - You just want to feed the data, and gain some insights about those data without any particular target variable in mind.

• Examples:

- Given customer purchase histories in a website, create a clustering of similar customers
 - This type of clustering has applications in recommender systems
- Detecting anomalies in server usage logs over time

Types of Supervised Learning

- Regression: prediction of a numerical variable
 - Predict the lifespan of a person given data about their lifestyle
- Classification: prediction of a categorical variable
 - Binary Classification: only "yes" or "no"
 - Given an email, predict if it is spam or not spam
 - Multi-class Classification: more than 2 possible classes
 - Given a photo of a person, predict if he is Filipino, Indonesian, or Malaysian.
 - Structured Prediction: complex output
 - Given an image, output a **segmentation** of the image

Basic Supervised Machine Learning Pipeline

- Collect data.
- Preprocess data (exploratory data analysis, cleaning, etc.)
- Identify features and label.
- Split data into training set and test set.
- Build and fine-tune model from the training set.
- Run the test set on the model to measure its performance.
- Iterate as needed.

Training and Test Sets

- Test set must be separated to eliminate bias in evaluating the performance of the model
- **Key idea:** the model must perform well even on data that it has not yet seen before.
- Amount to set aside for the test set depends on a case-to-case basis. Common splits are 10%, 20%, 30%.

- Given k = 10:
- Divide the dataset into 10 parts.

Split 1 performance

- Given k = 10:
- Divide the dataset into 10 parts.

- Training Set

- Given k = 10:
- Divide the dataset into 10 parts.

Split 1 performance Split 2 performance

- Training Set
- Test Set

- Given k = 10:
- Divide the dataset into 10 parts.

Split 1 performance

Split 2 performance

Split 3 performance

- Training Set
- Test Set

- Given k = 10:
- Divide the dataset into 10 parts.

Split 1 performance

Split 2 performance

Split 3 performance

Split 4 performance

- Training Set

- Given k = 10:
- Divide the dataset into 10 parts.

Split 1 performance

Split 2 performance

Split 3 performance

Split 4 performance

and so on until...

- Training Set
- Test Set

- Given k = 10:
- Divide the dataset into 10 parts.

Split 1 performance

Split 2 performance

Split 3 performance

Split 4 performance

Split 5 performance

Split 6 performance

Split 7 performance

Split 8 performance

Split 9 performance

Split 10 performance

- Given k = 10:
- Divide the dataset into 10 parts.

Aggregate / get the average

■ Training Set

■ Test Set

Split 1 performance Split 2 performance Split 3 performance Split 4 performance Split 5 performance Split 6 performance Split 7 performance Split 8 performance Split 9 performance Split 10 performance

ML Models

- The machine learning model determines what it can predict and how it makes the prediction.
- Lingering questions:
 - What does a machine learning model look like?
 - How can a model "learn" or be fined-tuned from training data?
 (learning algorithm)

Acknowledgments

- Stanford University CS221 Autumn 2021 course. Available online at: https://stanford-cs221.github.io/autumn2021
- Previous STINTSY slides by the following instructors:
 - Courtney Ngo
 - Arren Antioquia