ECON5020 - Macroeconomics

Week 25 - Growth Theory

João Pedro Mainente email: jpd28@kent.ac.uk

Office Hours: Wednesdays, 9am - SIBSR1 Please book via: jpcmainente.youcanbook.me

Growth Theory

Two Countries with production function: $Y_t = F(K_t, L_t) = K_t^{0.5} L_t^{0.5}$

- ► Constant Returns to Scale
 - ▶ Interpretation: If inputs are increased proportionately, output grows in the same proportion.
 - ▶ **Condition:** Production function is homogenous of degree 1.

$$F(K_{t}, L_{t}) = K_{t}^{0.5} L_{t}^{0.5} \implies F(\lambda K_{t}, \lambda L_{t}) = (\lambda K_{t})^{0.5} (\lambda L_{t})^{0.5} = \lambda K_{t}^{0.5} L_{t}^{0.5} = \lambda F(K_{t}, L_{t})$$

- ▶ Per worker production function
 - \triangleright λ above can be any value, including L, so

$$\frac{Y_t}{L_t} = \frac{F(K_t, L_t)}{L_t} = \left(\frac{K_t}{L_t}\right)^{0.5} \left(\frac{L_t}{L_t}\right)^{0.5} \implies \frac{Y_t}{L_t} \equiv y_t = f(k_t) = k_t^{0.5}$$

- ▶ Steady state levels of capital per worker, consumption and income per worker
 - Evolution of capital:

$$K_{t+1} = (1-\delta)K_t + sY_t \implies \frac{K_{t+1}}{L} = (1-\delta)\frac{K_t}{L} + s\frac{Y_t}{L} \implies k_{t+1} = (1-\delta)k_t + sf(k_t)$$

▶ In the steady state $k_{t+1} = k_t = k_{ss}$. Replacing in the equation above and solving for k: $k_{ss} = \left(\frac{s}{\delta}\right)^2$. Income and consumption are given by $y_{ss} = k_{ss}^{0.5}$ and $c_{ss} = \left(1 - s\right)y_{ss}$

Growth Theory

Two Countries with production function: $y_t = f(k_t) = k_t^{0.5}$

		Count	ry 1		Country 2			
Year	k	$y=k^{0.5}$	$c=(1-s_1)y$	k	$y=k^{0.5}$	$c=(1-s_2)y$		
0	2.000	1.414	1.273	2.000	1.414	1.131		
1	2.041	1.429	1.286	2.183	1.477	1.182		
2	2.082	1.443	1.299	2.369	1.539	1.231		
3	2.122	1.457	1.311	2.559	1.600	1.280		
4	2.162	1.470	1.323	2.751	1.658	1.327		
5	2.201	1.484	1.335	2.945	1.716	1.373		
6	2.239	1.496	1.347	3.141	1.772	1.418		
7	2.277	1.509	1.358	3.338	1.827	1.462		
8	2.314	1.521	1.369	3.537	1.881	1.504		
9	2.350	1.533	1.380	3.736	1.933	1.546		
10	2.386	1.545	1.390	3.936	1.984	1.587		
SS	4.000	2.000	1.800	16.000	4.000	3.200		

Growth Theory

Two Countries with production function: $y_t = f(k_t) = k_t^{0.5}$ and $s_1 = 10\%$, $s_2 = 20\%$.

▶ Evolution of capital stock per worker

Figure: Overall caption for the figures

Technological progress and persistently rising living standards

► Say now that

$$Y_t = K_t^{0.5} \left(A_t L_t \right)^{0.5}$$
 and we can define $\hat{y}_t \equiv \frac{Y_t}{A_t L_t} = \hat{k}_t^{0.5}$

► Which will imply that Derivation here

$$\Delta \hat{k}_t = s\hat{k}_t^{0.5} - (\delta + a + n)\hat{k}_t$$

► And in the steady state

$$\hat{k}_{ss} = \left(rac{s}{\delta + a + n}
ight)^{rac{1}{1-.5}}$$
 and $\hat{y}_{ss} = \left(rac{s}{\delta + a + n}
ight)^{rac{.5}{1-.5}}$

▶ If we measure living standards as out-per-capita, in steady state:

$$y_{ss} \equiv \frac{Y_{ss}}{L_{ss}} = A_{ss} \underbrace{\frac{Y_{ss}}{A_{ss}L_{ss}}}_{\hat{V}_{cs}} \implies \Delta^{\%}y_{ss} = \Delta^{\%}A_{ss} + \underbrace{\Delta^{\%}\hat{y}_{ss}}_{=0} \implies \Delta^{\%}y_{ss} = a$$

Savings and Consumption

We know that
$$k_{ss} = (\frac{s}{\delta})^{\frac{1}{.25}}$$
, $y_{ss} = k_{ss}^{.75}$, $c = (1-s)y_{ss}$, $i = sy_{ss}$ and MPK = .75 $\left(\frac{1}{k_{ss}}\right)^{.25}$

Table: Add caption

S	$k_{ss} = \left(\frac{s}{\delta}\right)^{\frac{1}{.25}}$	$y_{ss}=k_{ss}^{.75}$	$c=(1-s)y_{ss}$	$i = sy_{ss}$	$MPK = .75 \left(\frac{1}{k_{ss}}\right)^{.25}$
0	0.00	0	0	0	-
0.5	625	125	63	63	0.150
0.8	4096	512	102	410	0.094
1	10000	1000	0	1000	0.075

▶ What would happened if $y_t = k_t^{.25}$ instead?

Here we show how to get $\Delta \hat{k}_t = s \hat{k}_t^{0.5} - (\delta + a + n) \hat{k}_t$:

From the standard version of the model, we know:

$$\Delta K_t = sY_t - \delta K_t$$

Which if we define "hat" variables as the original variable divided by A_tL_t we get

$$rac{\Delta K_t}{A_t L_t} = s \hat{y}_t - \delta \hat{k}_t$$
 where $\hat{y}_t = rac{Y_t}{A_t L_t}$ and $\hat{k}_t = rac{K_t}{A_t L_t}$

In order to get the proper $\Delta \hat{k}_t$ we use total differentiation. Notice that if $\hat{k}_t = \frac{K_t}{A_t L_t}$ we can write

$$\Delta \hat{k}_t = \frac{\partial \hat{k}_t}{\partial K_t} \Delta K_t + \frac{\partial \hat{k}_t}{\partial A_t} \Delta A_t + \frac{\partial \hat{k}_t}{\partial L_t} \Delta L_t$$

Calculating the partial derivatives we get

$$\frac{\partial \hat{k}_t}{\partial K_t} = \frac{1}{A_t L_t} \qquad \frac{\partial \hat{k}_t}{\partial A_t} = -\frac{K_t L_t}{(A_t L_t)^2} \qquad \frac{\partial \hat{k}_t}{\partial L_t} = -\frac{K_t A_t}{(A_t L_t)^2}$$

we can write

and

Now that we know

$$\frac{\partial \hat{k}_t}{\partial K_t} = \frac{1}{A_t L_t} \qquad \frac{\partial \hat{k}_t}{\partial A_t} = -\frac{K_t L_t}{(A_t L_t)^2} \qquad \frac{\partial \hat{k}_t}{\partial L_t} = -\frac{K_t A_t}{(A_t L_t)^2}$$

$$\frac{\Delta k}{A_t R}$$

$$\frac{1}{)^2}\Delta$$

 $\Delta \hat{k}_t = \frac{\partial \hat{k}_t}{\partial K} \Delta K_t + \frac{\partial \hat{k}_t}{\partial A} \Delta A_t + \frac{\partial \hat{k}_t}{\partial L} \Delta L_t$

 $\Delta \hat{k}_t = \frac{\Delta K_t}{A_t I_t} - \frac{K_t I_t}{(A_t I_t)^2} \Delta A_t - \frac{K_t A_t}{(A_t I_t)^2} \Delta I_t$

$$-\frac{K}{(A_i)}$$

$$-\frac{\Lambda}{(A_i)}$$

 $=\frac{\Delta K_t}{A_t L_t} - \frac{K_t L_t}{A_t (L_t)^2} \frac{\Delta A_t}{A_t} - \frac{K_t A_t}{(A_t)^2 L_t} \frac{\Delta L_t}{L_t}$

- $= \frac{\Delta K_t}{A_t L_t} \underbrace{\frac{K_t}{A_t L_t}}_{\hat{L}} \frac{\Delta A_t}{A_t} \underbrace{\frac{K_t}{A_t L_t}}_{\hat{L}} \frac{\Delta L_t}{L_t}$
- Remember now that $\frac{\Delta A_t}{A_t} = a_t$ and $\frac{\Delta L_t}{L_t} = n_t$ so we can write

$$A_t = a_t$$
 and $A_t = n_t$ so we can write

- $\Delta \hat{k}_t = \frac{\Delta K_t}{\Delta L} (a_t + n_t) \hat{k}_t \implies \frac{\Delta K_t}{\Delta L} = \Delta \hat{k}_t + (a_t + n_t) \hat{k}_t$ continue in next slide...

Plugging

$$\frac{\Delta K_t}{A_t L_t} = \Delta \hat{k}_t + (a_t + n_t) \hat{k}_t$$

into

$$\frac{\Delta K_t}{A_t L_t} = \hat{y}_t - \delta \hat{k}_t$$

we get

$$\Delta \hat{k}_t = s\hat{y}_t - \left(\delta + a_t + n_t\right)\hat{k}_t$$

