A New Approach to Probe Non-Standard Interactions in Atmospheric Neutrino Experiments

ID 26

Anil Kumar^{a, b, c}, Amina Khatun^{a, d}, Sanjib Kumar Agarwalla^{a, c, e}, Amol Dighe^f

anil.k@iopb.res.in

^a IOPB, India, ^b SINP, India, ^c HBNI, India, ^d Comenius University, Slovakia, ^e ICTP, Italy, ^f TIFR, India

The Iron Calorimeter (ICAL) detector at the proposed India-based Neutrino Observatory (INO) [1] can play a key role in constraining non-standard interactions over a multi-GeV range of energies.

- ICAL@INO: 50 kton magnetized iron detector
- Active detector element: RPC; Passive detector element: iron
- **Uniqueness:** CID for muons, distinguishes ν_{μ} and $\bar{\nu}_{\mu}$
- Muon energy range: 1-25 GeV, Muon energy resolution: $\sim 10\%$
- Baselines: 15 12000 km, Muon zenith angle resolution: $\sim 1^{\circ}$

Non-Standard Interactions (NSI)

Neutral-current NSI in propagation through matter

$$\mathcal{L}_{\text{NC-NSI}} = -2\sqrt{2}G_F \varepsilon_{\alpha\beta}^{Cf} (\bar{\nu}_{\alpha} \gamma^{\rho} P_L \nu_{\beta}) (\bar{f} \gamma_{\rho} P_C f)$$

where, $P_L = (1 - \gamma_5)/2$, $P_R = (1 + \gamma_5)/2$, and C = L, R.

$$\varepsilon_{\alpha\beta} = \sum_{f=e,u,d} \frac{V_f}{V_{CC}} \left(\varepsilon_{\alpha\beta}^{Lf} + \varepsilon_{\alpha\beta}^{Rf} \right)$$

where, $V_{CC} = \sqrt{2}G_F N_e$, $V_f = \sqrt{2}G_F N_f$, f = e, u, d.

$$H_{mat} = \sqrt{2}G_F N_e egin{pmatrix} 1 + arepsilon_{ee} & arepsilon_{e\mu} & arepsilon_{e\mu} & arepsilon_{\mu\mu} & arepsilon_{\mu au} \ arepsilon_{e au} & arepsilon_{\mu au}^* & arepsilon_{\mu au} & arepsilon_{ au au} \end{pmatrix}$$

In atmospheric neutrinos, $\mu - \tau$ channel is dominant, hence, we choose to constrain $\varepsilon_{\mu\tau}$ (only real values).

Methodology

- NUANCE neutrino event generator
- Neutrino flux at INO site
- Three-flavor matter oscillation with the PREM profile
- Migration matrices for muons from GEANT4 simulation of ICAL
- Ratio of upward-going (U) and downward-going (D) reconstructed muon events

U/D ratio (defined for $\cos \theta_{\mu}^{\rm rec} < 0$)

$$U/D(E_{\mu}^{\rm rec},\cos\theta_{\mu}^{\rm rec}) \equiv rac{N(E_{\mu}^{
m rec},-|\cos\theta_{\mu}^{
m rec}|)}{N(E_{\mu}^{
m rec},+|\cos\theta_{\mu}^{\rm rec}|)},$$

where $N(E_{\mu}^{\rm rec},\cos\theta_{\mu}^{\rm rec})$ is the number of events with energy $E_{\mu}^{\rm rec}$ and zenith angle $\theta_{\mu}^{\rm rec}$.

Shift in Reconstructed Oscillation Dip

Oscillation dip [2] shifts in the opposite directions for μ^- and μ^+ in the presence of NSI parameter $\varepsilon_{\mu\tau}$ [3]

Curvature in Reconstructed Oscillation Valley

The parameter α in the fitting function f(x, y) is the measure of the curvature of oscillation valley

$$f(x, y) = z_0 + N_0 \cos^2\left(m_\alpha \frac{x}{y} + \alpha x^2\right)$$
, where, $x \equiv \cos\theta_\mu^{\rm rec}$ and $y \equiv E_\mu^{\rm rec}$.

The oscillation valley [2] bends in the presence of NSI parameter $\varepsilon_{u\tau}$ [3]

Constraining $\varepsilon_{\mu\tau}$ using Osc. Dip & Valley

• $\Delta d = d^- - d^+$ • $\Delta m_{\alpha} = m_{\alpha^-} - m_{\alpha^+}$ • $\Delta \alpha = \alpha^- - \alpha^+$ • Calibration curve using 1000-yr MC • Gray bands using multiple simulated data sets for 10 years

Estimated bounds on $\varepsilon_{\mu\tau}$ at 90% C. L. with 500 kt·yr exposure:

	Oscillation dip	Oscillation valley
Fixed param., no syst.	$-0.024 < \varepsilon_{\mu\tau} < 0.020$	$-0.022 < \varepsilon_{\mu\tau} < 0.021$
Varied param., with syst.	$ -0.025 < \varepsilon_{\mu\tau} < 0.024 $	$ -0.024 < \varepsilon_{\mu\tau} < 0.020$

Existing bounds on $\varepsilon_{\mu\tau}$ at 90% C. L.:

Experiment	Their convention $(\tilde{\varepsilon}_{\mu\tau})$	Our convention $(\varepsilon_{\mu\tau} = 3\tilde{\varepsilon}_{\mu\tau})$
IceCube	$-0.006 < \tilde{\varepsilon}_{\mu\tau} < 0.0054$	$-0.018 < \varepsilon_{\mu\tau} < 0.0162$
DeepCore	$-0.0067 < \tilde{\varepsilon}_{\mu\tau} < 0.0081$	$-0.0201 < \varepsilon_{\mu\tau} < 0.0243$
Super-K	$ \tilde{\varepsilon}_{\mu\tau} < 0.011$	$ \varepsilon_{\mu\tau} < 0.033$

Summary and Conclusion

- Using good reconstruction efficiency at ICAL for μ^- and μ^+ , oscillation dip and oscillation valley can be observed in reconstructed muon observables at ICAL.
- We propose a new approach to utilize oscillation dip and oscillation valley to probe neutral-current NSI parameter $\varepsilon_{\mu\tau}$.
- A new variable representing the difference in the shifts in location of dips for μ^- and μ^+ is used to constrain NSI parameter $\varepsilon_{\mu\tau}$.
- The contrast in the curvatures of valleys for μ^- and μ^+ is also used to constrain NSI parameter $\varepsilon_{\mu\tau}$.

References:

[1] Shakeel Ahmed et al. "Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)". In: *Pramana* 88.5 (2017), p. 79. arXiv: 1505.07380 [physics.ins-det]. [2] Anil Kumar et al. "From oscillation dip to oscillation valley in atmospheric neutrino experiments". In: *Eur. Phys. J. C* 81.2 (2021), p. 190. DOI: 10.1140/epjc/s10052-021-08946-8. arXiv: 2006.14529 [hep-ph].

[3] Anil Kumar et al. "A New Approach to Probe Non-Standard Interactions in Atmospheric Neutrino Experiments". In: *JHEP* 04 (2021), p. 159. DOI: 10.1007/JHEP04(2021) 159. arXiv: 2101.02607 [hep-ph].