1 Ergodicidade

Um processo é dito ergódico com respeito a um dado momento quando um estimador desse momento quando um estimador desse momento quando aplicado a diferentes intervalos de uma realização do sinal tem a mesma expectância que o estimador aplicado a um único intervalo em realizações distintas do processo.

Tomamos um sinal ergódico na média (mean-ergodic). Em uma realização, temos um estimador dentro de um sinal $\overline{\mu} = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$. Para diversas realizações (método pela definição) temos $\overline{\mu[2]} = \frac{1}{M} \sum_{m=0}^{M-1} x_m[2]$. No caso da ergodicidade para a média esses valores se igual e tendem a zero quando a quantidade de realizações cresce indefinidamente.

2 Teorema de Wiener-Khinchin-Einstein

Considere um processo estocástico $X_c: S \to E_S$ do tipo WSS. Considere ainda $g: E_S \to E_S$, com E_S um espaço de sinais que admitem transformada de Fourier e com $g(x) = \mathcal{F}\{x\}$.

Note que g(x) induz um novo processo $\widehat{X}: S \to E_S$, definido por: $\widehat{X}(s) = g(X(s))$.

Nesta situação:

$$\widehat{r}(f) = \lim_{T \to \infty} \left[\frac{1}{T} \mathbb{E}[|\widehat{X_f}|^2 \cdot rect_{[-\frac{T}{2},\frac{T}{2}]}(f)] \right]$$

No caso de um processo branco: por definição $\frac{1}{T}\mathbb{E}[|\widehat{X_f}|^2 \cdot rect_{[-\frac{T}{2},\frac{T}{2}]}(f)]$ é constante, ou seja, independente de f.

Pelo teorema: $\frac{1}{T}\mathbb{E}[|\widehat{X}_f|^2 \cdot rect_{[-\frac{T}{2},\frac{T}{2}]}(f)]$ tem que coincidir com a transformada de Fourier da autocorrelação logo, a T.F. de r(t) tem que ser constante. Dessa maneira, $r(t) = k\delta(t)$.

Sintetizando o teorema: A T.F da autocorrelação é a DEP (PSD), para um processo WSS.