Homework 1

Math 123

Due February 3, 2023 by 5pm

Name: George Chemmala

Topics covered: graph, subgraph, cycle, path, vertex degrees,

Instructions:

- This assignment must be submitted on Grade scope by the due date. Grade scope Entry Code: RZ277D.
- If you collaborate with other students (which is encouraged!), please mention this near the corresponding problems.
- If you are stuck, please ask for help (from me, a TA, a classmate).

Problem 1. Prove that the graph below is isomorphic to the Petersen graph.¹

Solution. I tried to best replicate the graph using tikz:

This labeling of the graph fits the definition of the Petersen graph.

Problem 2. How many cycles of length n are there in the complete graph K_n ?

Solution. We can define a cycle as a list of vertices (like how we label walks). For example, $v_1
ldots v_n$. There are n! different ways to order this list, but we must divide this by n (permutations are isomorphic since a cycle can start from n starting points) and by 2 since the permutations are isomorphic backwards and forwards. Therefore, there are $\frac{(n-1)!}{2}$ cycles of length n

Problem 3. Define the hypercube graph Q_k as the graph with a vertex for each tuple (a_1, \ldots, a_k) with coordinates $a_i \in \{0, 1\}$ and with an edge between (a_1, \ldots, a_k) and (b_1, \ldots, b_k) if they differ in exactly one coordinate.²

- (a) Prove that two 4-cycles in Q_k are either disjoint, intersect in a single vertex, or intersect in a single edge.
- (b) Let $K_{2,3}$ be the complete bipartite graph with 2 red vertices, 3 blue vertices, and all possible edges between red and blue vertices. Prove that $K_{2,3}$ is not a subgraph of any hypercube Q_k .

Solution. \Box

Problem 4. For a graph G = (V, E), the complement of G is the graph $\bar{G} = (V, \bar{E})$, where $\{u, v\} \in \bar{E}$ if and only if $\{u, v\} \notin E$. Prove or disprove: If G and H are isomorphic, then the complements \bar{G} and \bar{H} are also isomorphic.

¹Hint: label the graph.

²Suggestion: Draw Q_k for k=2 and k=3.

Solution. For all edges in \widetilde{G} , \widetilde{G} has an edge \iff G doesn't have an edge \iff H doesn't have an edge \iff \widetilde{H} has an edge. Therefore, for all edges in \widetilde{G} , \widetilde{G} has an edge \iff \widetilde{H} has an edge. \square

Problem 5.

- (a) Determine the complement of the graphs P_3 and P_4 . (Recall that P_n is the path with n vertices. It has n-1 edges.)
- (b) We say that G is self-complementary if G is isomorphic \bar{G} . Prove that if G is self-complementary with n vertices, then either n is divisible by 4 or n-1 is divisible by 4. ³

In fact, whenever n or n-1 is divisible by 4, there is a self-complementary graph with n vertices – see the bonus problem below.

Solution. (a) $\widetilde{P}_3 \& \widetilde{P}_4$:

The sum of the number of edges of a graph and it's complement has to be the number of edges in K_n i.e $\binom{n}{2} = n(n-1)/2$ and if G is self-complementary G, it's complement, \widetilde{G} , must have the same number of edges; therefore G and \widetilde{G} have n(n-1)/4 edges. Since the number of edges is an integer, G can only be self-complementary when n(n-1)/4 is an integer, which is equivalent to either n or (n-1) being divisible by 4 since only either n or (n-1) is even and so could divide 4.

Problem 6. Prove that the Petersen graph has no cycles of length 3 or 4. 4

Solution. Suppose there exists a 3-cycle then this would require:

Where a, b, c, d, e, and f are all different, by definition of the Petersen graph, but there are only 5 different choices

Suppose there exists a 4-cycle:

³Hint: count edges

⁴Hint: use the definition of Petersen graph given in class.

There must be 2 vertices which are disjoint from 1 vertex:

There must be one repeated value between the two non-connected vertices since there are only 2 choices up to isomorphism from choosing between c d, and e

When we add another vertex, it also needs to be disjoint from the 2 vertices; therefore, it cannot be b, c, and e forcing it to choose the remaining a and b, but this is a contradiction.

Problem 7 (Bonus). Let G, H be a self-complementary graphs, and assume G has with 4k vertices. Construct a self-complementary graph obtained by taking the union of G and H and adding some edges.⁵ Deduce that if either n or n-1 is divisible by 4, then there is a self-complementary graph with n vertices.

Solution. \Box

 $^{^5}$ Hint: How does the degree of even/odd vertices of G change after taking the complement?