No se permite el uso de ningún tipo de material Todas las respuestas deben estar justificadas

Ejercicio 1. (2 puntos) Se define por recurrencia la sucesión (a_n) siendo

$$a_{n+1} = \sqrt{6 + a_n}$$
 para todo $n > 1$ y $a_1 > -6$.

¿Es (a_n) convergente? En caso afirmativo, calcular su límite.

Ejercicio 2. (2 puntos)

- a) Definir conjunto compacto de \mathbb{R} y enunciar el teorema de Heine-Borel sobre una caracterización de los conjuntos compactos de \mathbb{R} .
- b) Si C es compacto y A es abierto \vdots es C-A es compacto?
- c) Si C es compacto y a es un punto de acumulación de C ; es $C-\{a\}$ compacto?
- d) Si C es compacto y B es cerrado ¿es $C \cap B$ es compacto?

Todas las respuestas deben estar justificadas.

Ejercicio 3. (2 puntos) Calcular el número de soluciones reales de la ecuación $x^5 - 5x + 5 = 0$.

Ejercicio 4. (2 puntos) Calcular los intervalos de crecimiento, de decrecimiento, de concavidad y de convexidad de la función

$$f(x) = \sqrt[3]{(x^2 - 1)^2}.$$

Determinar sus extremos relativos y sus puntos de inflexión.

Ejercicio 5. (2 puntos) Determinar justificadamente la convergencia o divergencia de las siguientes series:

a)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{n+1}{2n}\right)^n$$
, b) $\sum_{n=1}^{\infty} \frac{n^{3/2} + n^{1/2}}{n^{5/2} + n}$.

Tiempo: 2 horas