Дополнительные главы линейной алгебры

Николай Колб

4 сентября 2024 г.

Оглавление

1 Евклидовы и унитарные пространства		2	
	1.1	Билинейные формы и их свойства	2

Глава 1

Евклидовы и унитарные пространства

1.1 Билинейные формы и их свойства

Пусть V - Линейное пространство над вещественным полем $\mathbb R$

Определение 1.

Билинейной формой на V называется функция $f(x,y):V\times V\to\mathbb{R}$, для которой определены следующие аксиомы:

- 1. $\forall x, y, z \in V \mid f(x+y, z) = f(x, z) + f(y, z)$
- 2. $\forall \alpha \in \mathbb{R}, \forall x, y \in V \mid f(\alpha x, y) = \alpha f(x, y)$
- 3. $\forall x, y, z \in V \mid f(x, y, z) = f(x, y) + f(x, z)$
- 4. $\forall \beta \in \mathbb{R}, \forall x, y \in V \mid f(x, \beta y) = \beta f(x, y)$

Свойства билинейной формы:

ullet Билинейная форма f называется симметричной, если

$$f(u,v) = f(v,u) \quad \forall u,v \in V$$

 \bullet Билинейная форма f называется кососимметричной, если

$$f(u,v) = -f(v,u) \quad \forall u,v \in V$$

• Билинейная форма f называется невырожденной, если для любого ненулевого вектора $u \in V$ существует вектор $v \in V$ такой, что $f(u, v) \neq 0$.

Пусть V — векторное пространство над полем \mathbb{C} .

Определение 2.

Полуторолинейной формой на V называется функция $f: V \times V \to \mathbb{C}$, удовлетворяющая следующим акиомам:

1. $\forall x, y, z \in V \mid \alpha, \beta \in \mathbb{C}$

$$f(\alpha x + \beta y, z) = \alpha f(x, z) + \beta f(y, z).$$

2. $\forall x, y, z \in V \mid \alpha, \beta \in \mathbb{C}$

$$f(x, \alpha y + \beta z) = \overline{\alpha}f(x, y) + \overline{\beta}f(x, z).$$

Свойства полуторолинейной формы:

- \bullet Если $f(x,y) = \overline{f(x,y)} \ \forall x,y \in V$, то f называется эрмитовой формой.
- Если $f(x,x) \ge 0 \ \forall x \in V$ и f(x,x) = 0 только при $x = \mathbf{0}$, то f называется положительно определенной эрмитовой формой.

Теорема 1. Очень важная теорема!