Отчет о выполнении лабораторной работы Эффект Джоуля-Томсона

Лепарский Роман

15 февраля 2021 г.

1 Аннотация

Цель работы: 1) определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры; 2) вычисление по результатам опытов коэффициентов Ван-дер-Ваальса «а» и «b».

2 Теоретические сведения

Эффектом Джоуля—Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции. Эффект Джоуля—Томсона демонстрирует отличие исследуемого газа от идеального. В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой (рисунок 1).

Рис. 1: Схема установки

Величина эффекта Джоуля–Томсона определяется по разности температуры газа до и после перегородки.

Рассмотрим стационарный поток газа, проходящего через перегородку. Чтобы заполнить трубку газом до перегородки необходимо совершить работу $A_1 = P_1V_1$, газ проходя через перегородку совершит работу $A_2 = P_2V_2$. Обмена энергией с окружающей средой не происходит, поэтому:

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right). \tag{1}$$

После некоторых преобразований:

$$H_1 - H_2 = \mu \frac{v_2^2 - v_1^2}{2}. (2)$$

Эффект Джоуля-Томсона наблюдается, если $H_1-H_2\approx 0$. В нашем случае это так, потому что $\Delta T=\frac{\mu}{2C_n}\left(v_2^2-v_1^2\right)$ много меньше температуры газа.

Эффект Джоуля-Томсона выражается формулой:

$$\mu_{\text{Д-T}} = \frac{\Delta T}{\Delta P} \approx \frac{\left(\frac{2a}{RT} - b\right)}{C_p}.$$
(3)

3 Приборы и материалы

В работе используются:

- Трубка с пористой перегородкой;
- Труба Дьюара;
- Термостат;
- Термометры;
- Дифференциальная термопара;
- Микровольтметр;
- Балластный баллон;
- Манометр.

1 31 /	l			30-40		
Чувствительность, $\mu V/^{\circ}C$	38.9	39.8	40.7	41.6	42.5	43.3

Таблица 1: Чувствительность термопары при различных температурах

4 Обработка результатов

Запишем полученные в ходе трёх экспериментов результаты в соответствующие таблицы

Погрешность измерения напряжения будем полагать 0.001mV, а погрешность давления примем равной половине ЦД.

Измерения при температуре $T_1=20^\circ$ C. $V_0=0.006 \mathrm{mV}$. Чувствительность термопары – $40.25 \mu\mathrm{V}/^\circ\mathrm{C}$

ΔP , atm	\widetilde{V} , mV	V, mV	ΔT , °C
4.2	0.176	0.170	4.37
3.9	0.160	0.164	3.98
3.6	0.145	0.139	3.60
3.3	0.131	0.125	3.25
3.0	0.117	0.111	2.91

Измерения при температуре $T_2=30^\circ$ C. $V_0=0.002 \mathrm{mV}$. Чувствительность термопары – $41.15 \mu \mathrm{V}/^\circ \mathrm{C}$

ΔP , atm	\widetilde{V} , mV	V, mV	ΔT , °C
4.2	0.167	0.165	4.06
3.9	0.151	0.149	3.67
3.6	0.135	0.133	3.29
3.3	0.120	0.118	2.92
3.0	0.107	0.105	2.60

Измерения при температуре $T_3 = 50^{\circ}$ С. $V_0 = -0.001$ mV. Чувствительность термопары – 42.9μ V/°С.

ΔP , atm	\widetilde{V} , mV	V, mV	ΔT , °C
4.2	0.154	0.155	3.59
3.9	0.135	0.136	3.15
3.6	0.122	0.123	2.84
3.3	0.106	0.107	2.47
3.0	0.095	0.096	2.21

По полученным значениям построим графики. По графикам найдем коэффициент Джоуля-Томсона, его погрешность определим как корень из суммы квадратов отклонений.

$$\Delta \mu = \sqrt{\frac{1}{5} \sum_{i=1}^{5} (\mu_i - \langle \mu \rangle)^2}$$

Рис. 2: График $\Delta T\left(\Delta p\right)$ для $T=20^{\circ}\mathrm{C.}~\mu_{\text{Д-T}}=1.01\pm0.03\frac{K}{\mathrm{arm}}$

Рис. 3: График $\Delta T\left(\Delta p\right)$ для $T=30^{\circ}\mathrm{C.}~\mu_{\text{Д-T}}=0.92\pm0.04\frac{K}{\mathrm{arm}}$

Рис. 4: График $\Delta T\left(\Delta p\right)$ для $T=50^{\circ}\mathrm{C.}~\mu_{\text{Д-T}}=0.80\pm0.04\frac{K}{\mathrm{atm}}$

Составим систему:

$$\begin{cases}
\frac{\left(\frac{2a}{RT_1} - b\right)}{C_p} = \mu_1 \\
\frac{\left(\frac{2a}{RT_2} - b\right)}{C_p} = \mu_2 \\
\frac{\left(\frac{2a}{RT_3} - b\right)}{C_p} = \mu_3
\end{cases}$$
(4)

Для каждой пары уравнений можно найти соответствующие a и b. Решим систему и запишем результаты в таблицу:

$a, \mathbf{m}^3 \cdot \Pi \mathbf{a}$	$b, 10^{-4} \text{ m}^3$
0.97	4.99
0.71	2.97
0.80	3.64
$< a >, M^3 \cdot \Pi a$	$< b >, 10^{-4} \text{ m}^3$
0.83	3.87

Таблица 2: Значения параметров в уравнении Ван-Дер-Ваальса

Зная параметры из уравнения Ван-дер-Ваальса, рассчитаем температуру инверсии

$$T_{inv} = \frac{2a}{Rb} \approx 516$$
K. (5)

Найдем погрешность измерения параметров а и b, а так же температуры инверсии.

$$\mu_{\text{Д-T}} = \frac{\frac{2a}{RT} - b}{c_p}$$
$$(\mu_1 - \mu_2) c_p = \frac{2a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

$$a = \frac{Rc_p (\mu_1 - \mu_2)}{2\left(\frac{1}{T_1} - \frac{1}{T_2}\right)}$$

$$\Delta a = \sqrt{\left(\frac{\partial a}{\partial \mu_1}\right)^2 \cdot \Delta \mu_1^2 + \left(\frac{\partial a}{\partial \mu_2}\right)^2 \cdot \Delta \mu_2^2 + \left(\frac{\partial a}{\partial T_1}\right)^2 \cdot \Delta T_1^2 + \left(\frac{\partial a}{\partial T_2}\right)^2 \cdot \Delta T_2^2}$$

$$= \sqrt{2\left(\frac{Rc_p}{2\left(T_1^{-1} + T_2^{-1}\right)}\right)^2 \Delta \mu^2 + 2\left(\frac{Rc_p\left(T_1^2 + T_2^2\right)}{2\left(T_1 + T_2\right)^2}\right)^2 \Delta T^2} \approx 0.1 \text{m}^3 \cdot \Pi \text{a}$$

$$b = \frac{2a}{RT} - \mu_{jt}c_p$$

$$\Delta b = \sqrt{\left(\frac{\partial b}{\partial \mu}\right)^2 \Delta \mu^2 + \left(\frac{\partial b}{\partial T}\right)^2 \Delta T^2 + \left(\frac{\partial b}{\partial a}\right)^2 \Delta a^2} =$$

$$= \sqrt{c_p^2 \Delta \mu^2 + \left(\frac{2a}{RT^2}\right)^2 \Delta T^2 + \left(\frac{2}{RT}\right)^2 \Delta a^2} \approx 0.8 \cdot 10^{-4} \text{M}^3$$

$$T_{inv} = \frac{2a}{Rb}$$

$$\Delta T_{inv} = T_{inv} \sqrt{\left(\frac{\Delta a}{a}\right)^2 + \left(\frac{\Delta b}{b}\right)^2} = 123.5^{\circ} C$$

5 Вывод

По результатам эксперимента удалось определить коэффициенты уравнения Ван-дер-Ваальса $a=(0.8\pm0.1)$ Па · м³ и $b=(3.87\pm0.8)\cdot10^{-4}$ м³, а так же температуру инверсии углекислого газа $T_{inv}=(516\pm123.5)^{\circ}C$. Видно, что результаты весьма сильно разнятся с табличными a=0.36Па·м³, $b=4.284\cdot10^{-4}$ м³, $T_{inv}=2050$ К. Это может быть обусловлено как малым количеством измерений в каждом эксперименте, так и тем фактом, что уравнение Ван-дер-Ваальса не позволяет с достаточной точностью описать поведение реального газа.