FONCTION « CARRÉ » ET SECOND DEGRÉ

I. LA FONCTION «CARRÉ»

DÉFINITION

La fonction "**carré**" est la fonction définie sur \mathbb{R} par : $x \mapsto x^2$.

Sa courbe représentative est une parabole.

Elle est symétrique par rapport à l'axe des ordonnées.

PROPRIÉTÉ

La fonction carré est strictement décroissante sur $]-\infty;0[$ et strictement croissante sur $]0;\infty[$. Elle admet en 0 un minimum égal à 0.

Tableau de variations de la fonction carrée

DÉMONSTRATION

Démontrons par exemple que la fonction carré est décroissante sur $]-\infty;0[$.

Notons $f: x \mapsto x^2$ et soient x_1 et x_2 , deux réels quelconques tels que $x_1 < x_2 < 0$.

Alors:

$$f(x_1) - f(x_2) = x_1^2 - x_2^2 = (x_1 - x_2)(x_1 + x_2)$$

Or
$$x_1 - x_2 < 0$$
 car $x_1 < x_2$

et $x_1 + x_2 < 0$ car x_1 et x_2 sont tous les deux négatifs.

Donc le produit $(x_1 - x_2)(x_1 + x_2)$ est positif.

On en déduit $f(x_1) - f(x_2) > 0$ donc $f(x_1) > f(x_2)$

 $x_1 < x_2 < 0 \Rightarrow f(x_1) > f(x_2)$, donc la fonction f est strictement décroissante sur $]-\infty;0[$.

PROPRIÉTÉ

Soit *a* un nombre réel. Dans \mathbb{R} , l'équation $x^2 = a$

- n'admet **aucune** solution **si** a < 0
- admet x = 0 comme **unique** solution **si** a = 0
- admet **deux** solutions \sqrt{a} et $-\sqrt{a}$ **si** a > 0

EXEMPLES

- L'équation $x^2 = 2$ admet deux solutions : $\sqrt{2}$ et $-\sqrt{2}$.
- L'équation $x^2 + 1 = 0$ est équivalente à $x^2 = -1$. Elle n'admet donc aucune solution réelle.

II. FONCTIONS POLYNÔMES DU SECOND DEGRÉ

DÉFINITION

Une fonction **polynôme du second degré** est une fonction définie sur \mathbb{R} par : $x \mapsto ax^2 + bx + c$.

où a,b et c sont des réels appelés **coefficients** et $a \neq 0$

Sa courbe représentative est une **parabole**, elle admet un axe de symétrie parallèle à l'axe des ordonnées.

REMARQUE

Une expression de la forme $ax^2 + bx + c$ avec $a \ne 0$ est la **forme développée** d'un polynôme du second degré.

Une expression de la forme $a(x-x_1)(x-x_2)$ avec $a \neq 0$ est la **forme factorisée** d'un polynôme du second degré.

THÉORÈME

Une fonction polynôme du second degré est : **Si** a > 0 :

strictement décroissante sur
$$\left]-\infty; \frac{-b}{2a}\right]$$
 et strictement croissante sur $\left[\frac{-b}{2a}; +\infty\right[$. **Si** $a<0$: strictement croissante sur $\left]-\infty; \frac{-b}{2a}\right]$ et strictement décroissante sur $\left[\frac{-b}{2a}; +\infty\right[$.

Tableau de variations d'une fonction polynôme du second degré pour a > 0

Tableau de variations d'une fonction polynôme du second degré pour a < 0

EXEMPLE

Soit
$$f(x) = x^2 - 4x + 3$$

Courbe représentative de $f: x \longmapsto x^2 - 4x + 3$

PROPRIÉTÉ ET DÉFINITION

Soit f une fonction polynôme du second degré définie sur \mathbb{R} par : $f(x) = ax^2 + bx + c$ f(x) peut s'écrire sous la forme :

$$f(x) = a(x - \alpha)^2 + \beta$$

avec
$$\alpha = -\frac{b}{2a}$$
 et $\beta = f(\alpha)$

Cette écriture est appelée forme canonique.

 $(\alpha; \beta)$ sont les coordonnées du sommet de la parabole.

REMARQUE

Une caractéristique de la forme canonique est que la variable x n'apparaît qu'à un seul endroit dans l'écriture.

EXEMPLE

Reprenons l'exemple $f(x) = x^2 - 4x + 3$

On a
$$\alpha = -\frac{b}{2a} = -\frac{-4}{2 \times 1} = 2$$

et
$$\beta = f(2) = 2^2 - 4 \times 2 + 3 = -1$$

donc la forme canonique de f est :

$$f(x) = (x-2)^2 - 1$$