CPSC 302

rctcwyvrn

Sept 14 2020

1 Numerical algorithms and error

How to measure errors?

- Absolute
 - The absolute error in v approximating u is |u-v|
- Relative
 - The **relative error** is $\frac{|u-v|}{|u|}$
- Some combination

MATLAB code example

Sources/types of errors

- In the model (how close it is to reality)
- In the input data

Approximation errors

- Discritization errors
- Convergence errors
- Roundoff errors

Example:

Given a smooth function f(x), approximate the derivative at $x = x_0$

- We get a discritization error when we don't choose a small enough h for calculating the derivative, ie we discretize $\mathbb R$ to size h
- We can then calculate the discritization error from the Taylor series

Try with $f(x) = \sin(x)$ at $x_0 = 1.2$. (so we want to approximate cos)

- When h is large $(h > 10^{-8})$ we see that the error matches the discritization error
- ullet For smaller h there is also a round off error
 - We see that for smaller h, around 10^{-10} the error begins to grow (not following the error pattern we expected from just discritization)
 - Why is there roundoff error? Soon tm