Approved For Release STAT 2009/08/31 :

CIA-RDP88-00904R000100130

Approved For Release

2009/08/31:

CIA-RDP88-00904R000100130

Вторая Международная конференция Организации Объединенных Наций по применению атомной энергии в мирных целях

A/CONF/15/P 2
USSR
ORIGINAL: RUSSTAN

2460

Не подлежит оглашению до официального сообщения на Конференции

CETERMINING THE EFFECTIVERESS OF CONTROL 18003 IN

ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОСТИ ОРГАНОВ РЕГУ-ЛИРОВАНИЯ В ЦИЛИНДРИЧЕСКОМ РЕАКТОРЕ

Г.В.Синютин. В.Г.Семенов

Постановка задачи

В процессах разогревания активной зоны реактора, отравления продуктами деления и выгорания ядерного горючего происходит изменение реактивности системы. Целью настоящей работы является определение эффективности конечного числа поглощающих стержней, вреденных для компенсации изменений реактивности в активную зону реактора конечных размеров.

Рассматривается цилиндрический реактор с внешним радиусом R и высотой R (в величинах R и R учитывается экстраполированная добавка). Активная зона реактора рассматривается как гомогенная среда, обладающая $R_\infty > I$, с известными поглощающими и замедляющими свойствами. В активную зону вводится конечное число $R_0 = I$, $R_0 = I$,

25 YEAR RE-REVIEW

Предполагается, что выражение потока нейтронов удовлетворяет стационарному уравнению дифирузии. Поглощающий стержень считается "черным", т.е. на некоторой глубине от внешней поверхности стержня поток нейтронов обращается в нуль^{х)}.

Выражение потока нейтронов удовлетьоряет уравнению

$$\Delta \Phi + \Re^2 \Phi = 0$$
 /1/

Уравнение /I/ допускает разделение переменных. Так как наличие стержней не меняет распределения нейтронов по высоте реактора, гра ничные и краевые условия можно записывать только для радиальной составляющей потока. В реакторе конечных размеров

$$\mathcal{R}^2 = \mu^2 + \mathcal{R}_{\pi}^2 \qquad /2/$$

где μ - характеризует распределение потока по радиусу активной зоны, а \mathscr{X}_{π}^2 - по высоте, причем $\mathscr{X}_{\pi}^2 = \left(\frac{\Im}{H}\right)^2$.

Для реактора больших размеров $(k_{\infty}-1 << 1)$

$$x^2 = \frac{k_{\infty}^{-1}}{M^2}$$

 M^2 — площадь миграции.

В активной зоне, имеющей поглощающие стержни, в оощем случае можно записать выражение для потока нейтронов в пространстве между стержнями (по радмусу) в виде суперпозиции двух решеший:

$$\mathcal{O}(\vec{v}) = \mathcal{O}_{per} + \mathcal{O}_{Heper} , \qquad (4)$$

08-4066

Если поглощающий стержень не является "черным", то поток на его поверхности приравнивается не нулю, а значению потока внутри стержня. Если стержень "серый", то на его поверхности старытся условие: $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} =$

где Фрет — функция, не имеющая особенности и в одной точке; Фиерет — функция, имеющая особенности в точках, соответствующих положениям осей поглощающих стержней.

В цилиндрической системе координат с началом в центре активной зоне в общем виде функции $\mathfrak{P}_{\text{per}}$ и $\mathfrak{P}_{\text{нерег}}$ можно записать с помощью следующих выражений:

$$\Phi_{\text{per}} = \sum_{n=-\infty}^{\infty} A_n I_n(\mu n) e^{in\theta}$$
/5/

$$\Phi_{\text{Heper}} = \sum_{k} \sum_{m=-\infty}^{\infty} \beta_{m}^{k} Y_{m} \left(\mu | \bar{\tau} - \bar{\tau}_{k}| \right) e^{im \Psi_{k}}, \qquad /6/$$

где I_n и Y_m — функция Бесселя n—го и m—го порядка, первого и второго рода соответственно; \mathcal{W} — рассматривается как параметр, собственное значение которого отыскивается в задаче; $\overline{\mathcal{H}}$ — радиусвектор оси k —го поглощающего стержня; θ и ψ_k — координатные углы (см. рис, I); A_n и B_m^k — постоянные коэффициенты, индекс k относится k —му стержню; сумма по "К" распространена на все поглощающие стержни, число которых равно N . С помощью тождественных преобразований можно нолучить выражение потока Φ как Φ ункцию только Φ или только Φ или только Φ и Φ или только Φ или

обращения в нуль потока на поверхности k -го стержня $(\vec{\tau} - \vec{\tau}_k \models S_k)$ независимо от значения угла ψ_k получим уравнения для определения коэффициентов A_n и B_m^k .

Запишем выражение потока как функцию только au и Θ

$$\tilde{\mathbb{D}}(\tau, 0) = \sum_{n=-\infty}^{\infty} A_n I_n(\mu \tau) e^{in\theta} + \sum_{k} \sum_{m=-\infty}^{\infty} \beta_m \sum_{\nu=-\infty}^{k} e^{-i\nu \delta_k} Y_{m+\nu}(\mu \tau) I_{\nu}(\mu \tau_k) e^{i(m+\nu)\theta} / 7 / 6$$

-4-

Это выражение получено с помощью известной теоремы сложения /2) для функции Бесселя, примененной к функциям $Y_m(\mu|\vec{\tau}-\vec{\tau}_k|)e^{im\Psi_k}$ для координатных углов Ψ_k и Θ , в предположении, что $\tau > \tau_k$ и так как оно необходимо для записи условия при $\tau = Q$, то предположение, что $\tau > \tau_k$ будет выполняться.

К уравнению /7/ применим условие: $\mathfrak{O}(\mathbb{Q}, \mathbb{Q}) = 0$ при люсом значении \mathbb{Q} . Тогда уравнение /7/ будет представлять линейную комбинацию функций $\mathbb{Q}^{in\Theta}$ с нулевой правой частью. В силу линейной независимости функций $\mathbb{Q}^{in\Theta}$ с разными значениями $\mathbb{Q}^{in\Theta}$ коэффициент при каждой угловой гармонике $\mathbb{Q}^{in\Theta}$ должен быть равен нулю, фиксируем некоторую гармонику $\mathbb{Q}^{in\Theta}$ тогда получим:

$$A_{n}I_{n}(\mu R) + \sum_{k} \sum_{m=-\infty}^{\infty} \beta_{m}^{k} Y_{n}(\mu R)I_{n-m}(\mu r_{k}) e^{-i(n-m) r_{k}} = 0 .$$
 /8/

Зафиксируем теперь произвольно выбранный ℓ -тый стержень и запишем выражение потока как функцию только $(\vec{\tau} - \vec{\tau}_e)$ и ψ_e . В этом случае

$$\Phi \left(|\vec{r} - \vec{r}_{e}|, \psi_{e} \right) = \sum_{n=-\infty}^{\infty} A_{n} \sum_{\nu=-\infty}^{\infty} I_{n-\nu} (\mu r_{e}) I_{\nu} (\mu |\vec{r} - \vec{r}_{e}|) e^{i(n-\nu)\gamma_{e}} e^{i\nu\psi_{e}} + \sum_{m=-\infty}^{\infty} B_{m}^{e} Y_{m} (\mu |\vec{r} - r_{e}|) e^{im\psi_{e}} +$$

$$+ \sum_{\substack{k \\ k \neq \ell}} \sum_{m=-\infty}^{\infty} B_{m}^{k} \sum_{5=-\infty}^{\infty} (-1)^{m+5} Y_{m-5} (\mu \kappa_{k\ell}) I_{5} (\mu / \vec{r} - \vec{r}_{\ell}) e^{i(m-5)\vartheta_{k\ell}} e^{is \psi_{\ell}}$$
/9/

это выражение также получено с помощью теоремы сложения для функции Бесселя, применень к функциям $Y_m (\mu | \vec{r} - \vec{r}_k |) e^{im\psi_k}$ для координатных углов ψ_k и ψ_e при условии $v_{ke} > |\vec{r} - \vec{r}_e|$ и к функциям $I_n(\mu v) e^{iv\Theta}$ для координатных углов Θ и ψ_e . Виражение /9/ необходимо для записи условия на поверхности e -го стержня, поэтому ограничение $v_{ke} > |\vec{r} - \vec{r}_e|$ будет выполнено.

К уравнению /9/ применим условие обращения в нуль потока нейтронов на поверхности $\mathfrak D$ -го стержня, т.е. $\mathfrak O(\mathfrak O_\mathfrak E,\Psi_\mathfrak E)=0$, где $\mathfrak O_\mathfrak P$ - эффективный радиус стержня с учетом глубины экстраполя-

ции. Так же как и в предыдущем случае это условие запишется как линейная комбинация функции $e^{i\sqrt{\psi_0}}$ с нулевой правой частью. В силу линейной независимости функций $e^{i\sqrt{\psi_0}}$ с разными значениями $e^{i\sqrt{\psi_0}}$ с соффициент при каждой угловой гармонике $e^{i\sqrt{\psi_0}}$ следует положить равным нулю. Фиксируя некоторую гармонику $e^{i\sqrt{\psi_0}}$ ($e^{i\sqrt{\psi_0}}$ следует получим:

$$\sum_{n=-\infty}^{\infty} A_n I_{n-\nu}(\mu \nu_{\ell}) I_{\nu}(\mu \rho_{\ell}) e^{i(n-\nu)y_{\ell}} + B_{\nu}^{\ell} Y_{\nu}(\mu \rho_{\ell}) +$$

$$+ \sum_{\substack{k \in \mathbb{Z} \\ k \neq \ell}} \sum_{m=-\infty}^{\infty} B_m^{k} (-i)^{m+\nu} Y_{m-\nu}(\mu \nu_{k\ell}) I_{\nu}(\mu \rho_{\ell}) e^{i(m-\nu)y_{k\ell}} = 0.$$
/10/

Таким образом задачи свелась к уравнениям /8/ и /ІО/. Полагая в /8/ w = 0, I, 2,..., а в /ІО/ v = 0, v = 0,

$$\operatorname{Det}(\mu) = 0 /ii/$$

Решая уравнение /II/, спределяем собственное значение μ , соот ветствующее критичности системы (первый положительный корень уравнения), а по найденному μ с помощью формул /2/ и /3/ находим κ_{∞} критической системы со стержнями. Для нахождения эффективности стерм ней нужно сравнить значение μ (или κ_{∞}) со значением μ (или κ_{∞}), соответствующим активной зоне без стержней. μ находится из условия:

$$I_0(\mu' R) = 0.$$
 /12/

Следует заметить, что уравнения /8/ и /ІС/ получены с учетом угловой зависимости потока от координатных углов без каких бы то ни было предположений о взаимном расположении стержней. Это позволяет рассматривать задачу об эффективности стержней с большим радиусом,

-6-

не делая обычных ограничений о малости радиуса стержней по сравнению с расстоянием между ними.

Заметим также, что из действительности выражения потока СР(元) оледует зависимость между коэффициентами с положительными и отрицательными индексами:

$$A_{-n} = (-1)^{n} A_{n}^{*}$$

$$B_{-n}^{k} = (-1)^{n} B_{m}^{k*}$$
/15/

где - х - означает комплексную сопряженность.

Случай N одинаковых поглощающих стержней, симметрично расположенных относительно оси активной зоны

Представляет интерес рассмотреть N одинаковых стержней, расположенных симметрично вокруг оси активной зоны (рис. 2). При этом все $\mathcal{T}_k = \mathcal{T}_o$, все $\mathcal{O}_k = \mathcal{O}$; k=1,2,3,...N, $B_m^k = B_m$. Тогда уравнения /8/ и /ІО/ примут вид:

$$A_{n}I_{n}(\mu R) + \sum_{m=-\infty}^{\infty} B_{m}Y_{n}(\mu R)I_{n-m}(\mu r_{o}) \sum_{k} e^{-i(n-m)} \kappa_{k} = 0.$$
 /14/

$$\sum_{n=-\infty}^{\infty} A_{n} I_{n-\nu}(\mu r_{o}) I_{\nu}(\mu \rho) e^{i(n-\nu)\gamma r_{e}} + \beta_{\nu} Y_{\nu}(\mu \rho) +$$

$$+ \sum_{m=-\infty}^{\infty} \beta_{m}(-1)^{m+\nu} I_{\nu}(\mu \rho) \sum_{k \neq 0}^{\infty} Y_{m-\nu}(\mu r_{\nu e}) e^{i(m-\nu)\nu r_{k}} = 0.$$
/15/

из периодичности потока по углу ⊖ с периодом 2π/N и из инвариантности записи уравнений /I4/ и /I5/ относительно выбора фиксированного € -го стержня, так как все стержни одинаковы и находятся в одинаковых условиях, можно получить, что все индексы №, № и У могут принижать только значения, кратные N.

Если начало отсчета углов проходит через ось какого-либо стержня, то уравнения /14/ и /15/ будут действительными. При этом -7-

действительными будут и коэффициенты A_m и B_m , поэтому из условия /13/ следует, что

$$A_{-n} = (-1)^{n} A_{n}$$

$$B_{-m} = (-1)^{m} B_{m}$$
, (46)

кроме того в уравнении /I4/ $\sum_{k} e^{-i(n-in)} \delta_{k} = N$. Тогда уравнения /I4/ и /I5/ примут вид:

$$A_{Nn}I_{Nn}(\mu R) + \sum_{m=-\infty}^{\infty} N \cdot B_{Nm} Y_{Nn}(\mu R) I_{N(m-m)}(\mu r_o) = 0$$
/17/

$$\sum_{n=-\infty}^{\infty} A_{Nn} I_{N(n-\nu)} (\mu r_{o}) I_{N\nu} (\mu \rho) + B_{N\nu} Y_{N\nu} (\mu \rho) + \sum_{m=-\infty}^{\infty} B_{Nm} (-1)^{N(m+\nu)} I_{N\nu} (\mu \rho) \sum_{\substack{k \ k \neq \ell}} Y_{N(m-\nu)} (\mu r_{k\ell}) \cos N(m-\nu) v_{k\ell} = 0,$$
 /18/

где индексы n, m и $\sqrt{}$ пробегают все целые значения от $-\infty$ до $+\infty$.

Заметим, что если пренебречь угловой зависимостью потока вокруг поглощающих стержней, то задача упростится. Приравняв в этом случае нулю детерминант системы уравнений /17/ и /18/, получим:

Разложив этот определитель по элементам последней строки, нетрудно получить следующее выражение:

$$\frac{Y_o(\mu\rho)}{I_o(\mu\rho)} + \sum_{k \neq \ell} Y_o(\mu\nu_{k\ell}) = N \sum_{n=0}^{\infty} \left[I_{nN}(\mu\nu_o) \right]^2 \frac{Y_{nN}(\mu\rho)}{I_{nN}(\mu\rho)};$$
 /19/

Таким образом, приходим к результату, полученному в работе(3).

Эффективность конечного числа поглощающих стержней в двухгрупповом рассмотрении

В ряде случаев двухгрупповое рассмотрение оказывается значительно более правильным по сравнению с одногрупповым, во-первых, потому, что в активной зоне реактора не все нейтроны являются тепловыми, во-вторых, потому, что двухгрупповое рассмотрение позволяет рассчитывать эффективность поглощающих стержней сложной структуры. Так, если бы мы рассматривали в двух группах сплошной поглощающий стержень, то его эффективность определялась бы только поглощением тепловых нейтронов на внешней поверхности стержня. Если же поглощающий стержень содержит внутри хороший замедлитель, то эффективность такогс стержня увеличится по сравнению с эффективностью сплошного за счет замедления нейтронов внутри стержня до тепловых энергий и поглощения ставших тепловыми нейтронов на внутренней поверхности стержня.

В двухгрупповом рассмотрении удобно описывать р спределение нейтронов по реактору с помощью потока поглощения j^{σ} и потока замедления j^{σ} , где

$$j^{\Psi} = \sum_{c} cp^{\Psi} \frac{1}{\varphi}, \qquad j^{\vartheta} = \sum_{s} cp^{\vartheta}$$
 /20/

 \mathbb{Q}^{7} и \mathbb{Q}^{8} - потоки тепловых и быстрых нейтронов соответственно. \mathbb{Z}_{12} - сечение захвата тепловых нейтронов, \mathbb{Z}_{13} - замедляющая способность, \mathbb{Q} - вероятность избежать резонансного захвата.

В диффузионном приолижении функции $j^{\mathfrak{T}}$ и $j^{\mathfrak{S}}$ удовлетворяют системе уравнений:

где L^2 и τ - квадрат длины дифрузии и квадрат длины замедления. Уравнениями /2I/ с соответствующими параметрами \ltimes_{∞} , L^2 и τ описываются потоки нейтронов как в пространство между стержнями, так и внутри стержней.

Рассмотрим поглощающие стержни в виде цилиндрической трубы, стенки которой являются "черными" для тепловых и прозрачными для быстрых нейтронов; внутри трубы содержится хороший замедлитель (например, вода).

 $\mathcal{S}_{\mathsf{tk}}$ и $\mathcal{S}_{\mathsf{2k}}$ - внутренний и внешний радиусы трубы k -го стержня.

Для реактора с такими стержнями граничными и краевыми условиями служат условия обращения в нуль потоков тепловых и быстрых нейтронов на внешней границе реактора, обращения в нуль тепловых потоков на эффективной границе каждого стержня $\mathfrak{S}_{k}^{\rightarrow}$ и сшивки потоков быстрых нейтронов и их производных на стенках трубы каждого стержня.

В тех же координатах, что и в предыдущей части, эти условия можно записать в виде:

I) на внешней границе реактора в координатах au, Θ

$$\dot{\beta}^{\Psi}(R,\Theta) = 0, \qquad \dot{\beta}^{\vartheta}(R,\Theta) = 0$$

2) на K -ом стержне в координатах $|\vec{\tau}_{-}\vec{\tau}_{k}|$, ψ_{K} а) для тепловых нейтронов

$$\dot{\jmath}^{\Psi}(\wp_{\kappa}^{9}, \psi_{\kappa}) = 0,$$

где ρ_{k}^{3} определяется из условия $\rho_{k}^{3} = \rho_{2k} e^{-\sqrt[3]{\frac{2^{11}}{2^{2k}}}}$

$$p_{k}^{3} = p_{2k} e^{-y_{2k}}$$

 $\chi\left(rac{Q_{2k}}{\lambda_{tz}}
ight)$ - протабулированная функция (4), λ_{tz} - длина переноса. б) для быстрых нейтронов

$$\frac{1}{(\overline{z} \sum_{k})_{kcm}} j_{kcm}^{\delta} (P_{1k}, \psi_{k}) = \frac{1}{\overline{z}} j_{\delta}^{\delta} (P_{2k}, \psi_{k})$$

$$P_{1k}^{\kappa} \sum_{kcm} \frac{\partial}{\partial |\overline{r} - \overline{r}_{k}|} j_{kcm}^{\delta} (P_{1k}, \psi_{k}) = P_{2k}^{\kappa} \sum_{kcm} \frac{\partial}{\partial |\overline{r} - \overline{r}_{k}|} j_{\delta}^{\delta} (P_{2k}, \psi_{k})$$

причем индекс "кст" относится к χ -му стержию; потоки и параметры без такого индекса относятся к пространству между стержиями.

Решение системы уравнений /2I/ для пространства между стержнями как и при одногрупповом рассмотрении является суммой регулярной и нерегулярной частей.

$$\int_{0}^{\pi} \left[\vec{\tau} \right] = \sum_{n=-\infty}^{\infty} \left[A_{n} I_{n}(x'') + B_{n} I_{n}(x''') \right] e^{in\theta} +$$

$$+ \sum_{k=-\infty}^{\infty} \left[I_{m}^{k} Y_{m}(x'') \vec{\tau} - \vec{\tau}_{k} \right] + I_{m}^{k} K_{m}(x''') \vec{\tau} - \vec{\tau}_{k} | \right] e^{im\psi_{k}}$$

$$/22/$$

$$\dot{\beta}^{\delta}(\vec{r}) = \sum_{n=-\infty}^{+\infty} \left[A_n \beta' I_n(\mathcal{X}'r) + B_n \beta'' I_n(\mathcal{X}''r) \right] e^{in\theta} +$$

$$+ \sum_{k=-\infty}^{\infty} \left[C_m^{k} \beta' Y_m(\mathcal{X}'|\vec{r} - r_k|) + D_m^{k} \beta'' K_m(\mathcal{X}''|\vec{r} - \vec{r}_k|) \right] e^{im\psi_k} /23/$$

Решение внутри k-го стержня с учетом ограниченности в точках $|\vec{r}_k - \vec{r}_k| = 0$ имеет вид:

$$\int_{kcm}^{\psi} \left(\vec{r} \right) = \sum_{n=-\infty}^{\infty} \left[A_n^{kcm} I_n \left(x_{kcm} \vec{r} - \vec{r}_k \right) + B_n I_n \left(x_{kcm} \vec{r} - \vec{r}_k \right) \right] e^{in\psi_k}$$
 /24

$$j_{kcm}^{\delta}(\vec{r}) = \sum_{n=-\infty}^{\infty} A_n^{kcm} \beta_{kcm}' I_n(\mathcal{R}_{kcm}' | \vec{r} - \vec{r}_k |) e^{in\psi_k}$$
/25/

где A_n , B_n , C_m^k , D_m^k , A_n^{kcm} - постоянные коэффициенты, I_n и K_m - функции Бесселя мнимого аргумента первого и второго $\overline{^{X)}}$ В функциях I_n и K_n в аргументе под величиной $\mathcal X$ имеется в виду $(\mathcal X)$.

рода n -го и m-10 -го порядка, соответствующие радиальной части решения \mathcal{H}' и \mathcal{H}'' , а также β' и β'' определяются известными двух-групповыми соотношениями:

$$\mathcal{X}'^{2} = -\frac{1}{2} \frac{L^{2} + \hat{\tau}}{L^{2} \hat{\tau}} + \sqrt{\frac{1}{4} \left(\frac{L^{2} + \hat{\tau}}{L^{2} \hat{\tau}}\right)^{2} + \frac{k_{\infty} - 1}{L^{2} \hat{\tau}}} - \mathcal{X}_{\chi}^{2}$$

$$\mathcal{X}''^{2} = -\frac{1}{2} \frac{L^{2} + \tau}{L^{2} \tau} - \sqrt{\frac{1}{4} \left(\frac{L^{2} + \tau}{L^{2} \tau}\right)^{2} + \frac{k_{\infty} - 1}{L^{2} \tau}} - \mathcal{X}_{\chi}^{2}$$

/26/

$$\Re_{x}^{2} = \left(\frac{\pi}{H}\right)^{2}$$

$$\beta' = 1 + \left(\Re_{x}^{2} + \Re_{x}^{2}\right) L^{2}$$

$$\beta'' = 1 + \left(\Re_{x}^{2} + \Re_{x}^{2}\right) L^{2}$$

Поступая как и при одногрупповом рассмотрении, т.е. представляя выражения для $j^{\nabla}(\vec{\tau})$ и $j^{\delta}(\vec{\tau})$ сначала в координатах $\nabla \cdot \Theta$, а затем в координатах $|\vec{\tau} - \vec{\tau}_k|$, $|\psi_k|$ и используя граничные и краевые условия, получаем однородную систему уравнений:

I) на внешней границе реактора

$$A_{n}I_{n}(\mathcal{X}'R) + Y_{n}(\mathcal{X}'R) \sum_{k} \sum_{m=-\infty}^{\infty} C_{m}^{k}I_{n-m}(\mathcal{X}'r_{k})e^{-i(n-m)\gamma_{k}} = 0$$
 /27/

$$B_{n} I_{n}(x^{"}R) + K_{n}(x^{"}R) \sum_{k} \sum_{m=-\infty}^{\infty} J_{m}^{k} I_{n-m}(x^{"}n_{k}) e^{-i(n-m)} = 0$$
 /28/

$$n=0; \pm 1; \pm 2 \pm \cdots$$

2) на границе фиксированного 2 -го стержня:

$$\sum_{n=-\infty}^{\infty} \left[A_n I_{n-\lambda}(x' r_e) I_{\lambda}(x' \rho_e^3) + B_n I_{n-\lambda}(x'' r_e) I_{\lambda}(x'' \rho_e^3) \right] e^{i(n-\lambda) r_e} +$$

$$\begin{split} &+ \left[{}^{\ell}_{\lambda} Y_{\lambda} (\mathscr{X}' \wp_{\ell}^{\, 3}) + \right]_{\lambda}^{\ell} K_{\lambda} (\mathscr{X}' \wp_{\ell}^{\, 3}) + \sum_{\substack{k \\ k \neq \ell}} \sum_{m_{2} - \infty}^{\infty} \left[{}^{k}_{m} (-i)^{m + \lambda} Y_{m - \lambda} (\mathscr{X}' \tau_{k \ell}) \right]_{\lambda} (\mathscr{X}' \wp_{\ell}^{\, 3}) + \\ &+ \left[{}^{k}_{m} (-i)^{m} K_{m - \lambda} (\mathscr{X}'' \tau_{k \ell}) \right]_{\lambda} (\mathscr{X}' \wp_{\ell}^{\, 3}) \right] e^{i(m - \lambda) \vartheta_{k \ell}} = 0 \end{split}$$

$$/29/$$

$$\lambda = 0, \pm 1, \pm 2, \pm \dots$$

$$\frac{1}{\sqrt[4]{\Sigma_{1\delta}}} \left\{ \sum_{n=-\infty}^{\infty} \left[A_{n} I_{n-\lambda}(x'v_{e}) I_{\lambda}(x'\rho_{\varrho\varrho}) \beta' + \beta_{n} I_{n-\lambda}(x''v_{e}) I_{\lambda}(x''\rho_{\varrho\varrho}) \beta'' \right] e^{i(n-\lambda)\delta'' \varrho} + \right.$$

$$+ \frac{C_{\lambda}^{\ell} Y_{\lambda}(x''\rho_{\varrho\varrho}) \beta' + D_{\lambda}^{\varrho} K_{\lambda}(x''\rho_{\varrho\varrho}) + \sum_{\substack{k=1 \ k \neq \ell \text{ m}=-\infty}} \sum_{n=-\infty}^{\infty} \left[C_{n}^{k}(1)^{m+\lambda} Y_{m-\lambda}(x''v_{k\varrho}) I_{\lambda}(x''\rho_{\varrho\varrho}) \beta' + \right.$$

$$+ D_{m}^{k}(-1)^{m} K_{m-\lambda}(x''v_{k\varrho}) I_{\lambda}(x''\rho_{\varrho\varrho}) \beta'' \right] e^{i(m-\lambda)\delta'_{k\varrho}} -$$

$$- \frac{1}{(\chi \Sigma'_{5})_{\ell \text{ cm}}} A_{\lambda}^{\ell \text{ cm}} I_{\lambda}(x''\rho_{\varrho\varrho}) \beta''_{\ell \text{ cm}} = 0$$

$$\lambda = 0, \pm 1, \pm 2, \pm \dots$$

$$\begin{split} & S_{2\theta} \tau \left\{ \sum_{m=-\infty}^{\infty} \left[A_{n} I_{n-\lambda} (w' \tau_{\ell}) \left(I_{\lambda-i} (w' \rho_{2\ell}) - I_{\lambda+i} (w' \rho_{2\ell}) \right) w' \beta' + \right. \\ & + \left. \beta_{n} I_{n-\lambda} (w'' \tau_{\ell}) \left(I_{\lambda-i} (w' \rho_{2\ell}) + I_{\lambda+i} (w' \rho_{2\ell}) \right) w' \beta'' \right] e^{i (n-\lambda) \beta' \ell} + \\ & + C_{\lambda}^{\ell} \left[Y_{\lambda-i} (w' \rho_{2\ell}) - Y_{\lambda+i} (w' \rho_{2\ell}) \right] w' \beta' + \prod_{\lambda}^{\ell} \left[-K_{\lambda-i} (w' \rho_{2\ell}) - K_{\lambda+i} (w'' \rho_{2\ell}) \right] w'' \beta'' + \\ & + \sum_{\substack{\kappa \in \mathbb{N} \\ k \neq \ell}} \sum_{m=-\infty}^{\infty} \left[C_{m}^{k} (-i)^{m+\lambda} Y_{m-\lambda} (w' \tau_{k\ell}) \left(I_{\lambda-i} (w' \rho_{2\ell}) - I_{\lambda+i} (w' \rho_{2\ell}) \right) w' \beta' + \\ & + \prod_{\kappa}^{k} (-i)^{m} K_{m-\lambda} (w'' \tau_{k\ell}) \left(I_{\lambda-i} (w'' \rho_{2\ell}) + I_{\lambda+i} (w'' \rho_{2\ell}) \right) w'' \beta'' \right] e^{i (m-\lambda) t' k \ell} \right\} - \\ & - S_{1\ell} \tau_{\ell cm} A_{\lambda}^{\ell cm} \left[I_{\lambda-i} (w'_{\ell cm} Q_{i\ell}) + I_{\lambda+i} (w'_{\ell cm} Q_{i\ell}) \right] w_{\ell' cm}^{\mu} \beta'' = 0 \qquad /51/2 \end{split}$$

Из действительности выражений потоков в уравнениях /22/--/25/ следует связь между коэффициентами:

Уравнения /27/-/31/ являются окончательной системой линейных однородных уравнений относительно постоянных коэффициентов. Так как \mathcal{X}' и \mathcal{X}'' однозначно связаны с \mathcal{K}_{∞} соотношениями /26/, то эту систему можно рассматривать как зависящую только от одного параметра \mathcal{K}_{∞} . Обрывая ряды в уравнениях /27/-/31/ на некотором члене и приравнивая нулю определитель полученной системы уравнений, чаходим собственное значение \mathcal{K}_{∞} , соответствующее критичности реактора со стержнями.

Регулирующие стержни в многозонном реакторе

Изложенный выше метод расчета может быть обобщен на случай, когда реактор состоит из нескольких цилиндрических зон, различарщихся своими физическими свойствами.

Рассмотрим, например, двухзонный реактор в одногрупповом приближении. Пусть внутренняя зона характеризуется величинами $K_{4\infty}$ и M_4^2 и в ней расположено N_4 стрежней, а внешняя зона — величинами $K_{2\infty}$ и M_2^2 с N_2 стержней. Если начало координат находится во внутренней зоне, то аналогично предыдущему можно записать выражения потоков в зонах в виде:

$$CP_{4}(\bar{k}) = \sum_{n=-\infty}^{\infty} A_{n} I_{n}(\mu_{1}r) e^{in\theta} + \sum_{k_{1}=1}^{N_{4}} \sum_{m=-\infty}^{\infty} B_{m}^{(k_{1})} Y_{m}(\mu_{4}|\bar{k}-\bar{k}_{k_{4}}|) e^{imk_{k_{1}}}$$

$$cp_{2}(\vec{r}_{1}) = \sum_{n=-\infty}^{\infty} \left[C_{n} I_{n}(\mu_{2}r) + D_{n} Y_{n}(\mu_{2}r) \right] e^{in\theta} + \sum_{k_{2}=1}^{N_{2}} \sum_{m=-\infty}^{+\infty} E_{m}^{(k_{2})} Y_{m}(\mu_{2}|\vec{r}_{1} - \vec{r}_{k_{2}}|) e^{im\psi_{k_{2}}},$$

-I4-

где

$$\mu_1^2 = \frac{k_{10}-1}{M_1^2} - 2k_{\chi}^2, \qquad \qquad \mu_2^2 = \frac{k_{200}-1}{M_2^2} - 2k_{\chi}^2.$$

Кроме условий на внешней границе реактора и на поверхности каждого стержия, на границе зон \$ ставятся обичные условия:

$$\Phi_1 \mid_{\S} = \Phi_2 \mid_{\S}$$

$$D_1 \operatorname{grad} \Phi_1 \mid_{\S} = D_2 \operatorname{grad} \Phi_2 \mid_{\S},$$

где \mathbb{D}_4 и \mathbb{D}_2 - коэффициенты диффузии.

Представляя выражения потоков в зонах в координатах ψ , φ , а затем в координатах ψ_{-} , ψ_{-} , для внутренней и внешней зоны соответственно и используя граничные и краевые условия так же, как и прежде, можно получить линейную однородную систему алгебраических уравнений.

Так как K_{100} и K_{200} зависят от V -среднего числа нейтронов, вылетающих в акте деления, то μ_1 и μ_2 можно считать известной функцией общего параметра V , собственное значение которого находится из равенства нулю определителя системы уравшений. Отличие найденного таким образом значения V от $V_0=2,46$ даст эффект действия стержней.

Бесконечная правильная решетка поглощающих стержней

Рассмотрим в качестве частного случая бесконечную правильную решетку одинаковых поглощающих стержней (рис. 3). Поскольку все стержни находятся в одинаковых условиях, достаточно поставить граничные условия только для V—го стержня.

Выражение для потока в одногрупповом приближении вблизи ℓ -го стержня $|\vec{v} - \vec{v}_{\ell}| < 0$, где $C\ell$ - шаг решетки стержней) в координа- тах $|\vec{v} - \vec{v}_{\ell}|$, ψ_{ϱ} (см. выражение /9/) записывается в виде:

$$\frac{-15-}{4} \exp(|\vec{r}_{1} - \vec{r}_{e}|, \psi_{e}) = \sum_{m=-\infty}^{\infty} A_{m} \sum_{\nu=-\infty}^{\infty} I_{n-\nu}(\mu \tau_{e}) I_{\nu}(\mu | \vec{r}_{1} - \vec{r}_{e}|) e^{i(m-\nu)/2} e^{i\nu\psi_{e}} + \\
+ \sum_{m=-\infty}^{\infty} B_{m} Y_{m\nu} (\mu | \vec{r}_{1} - \vec{r}_{e}|) e^{im\psi_{e}} + \\
+ \sum_{k=-\infty}^{\infty} B_{m} \sum_{s=-\infty}^{\infty} (-1)^{m+s} Y_{m-s}(\mu \nu_{ke}) e^{i(m-s)/2} e^{i(m-s)/2} e^{i\nu\psi_{e}} + \\
+ \sum_{k\neq e} \sum_{m=-\infty}^{\infty} B_{m} \sum_{s=-\infty}^{\infty} (-1)^{m+s} Y_{m-s}(\mu \nu_{ke}) e^{i(m-s)/2} e^$$

Если начало координат поместить в центр 0-го стержня, то при выборе направления отсчета углов, указанном на рис. 3, сделав замену

$$\overline{\Delta}_{n} = A_{n} + \sum_{\substack{k \in \mathbb{Z} \\ k \neq 0}} \sum_{m=-\infty}^{\infty} \beta_{m} (-1)^{m+n} Y_{m-n}(\mu r_{k}) e^{i(m-n)y_{k}},$$

получим:

$$\Phi(\Psi, \Psi_e) = \sum_{n=-\infty}^{\infty} \left[\bar{A}_n I_n(\mu v) + B_n Y_n(\mu v) \right] e^{in\psi_e} , \qquad /34/$$

причем w кратко 6, 4 или 3 для гексагональной, квадратной и треугольной решеток соответственно, и \bar{A}_n и B_n являются действительными. К этому выражению потока применим условие $\mathfrak{P}(\wp,\psi_e)=0$, а вместо условия на внешней границе, как было в конечном реакторе, используем условие равенства нулю производной от потока по нормали на границе эквивалентной ячейки решетки стержней.

Наиболее просто можно приближенно учесть форму эквивалентной ячейки, если ограничиться в /34/ нулевым и первым членами разложения, при этом на границе эквивалентной ячейки условие равенства нулю производной удобно заменить условием равенства нулю производной потока в двух точках (см. рис. 3), в которых можно использовать физические условия симметрии. Например, для гексагональной решетки это будут условия:

Approved For Release 2009/08/31: CIA-RDP88-00904R000100130041-2

$$\frac{\partial \mathcal{C}}{\partial \mathcal{R}}\Big|_{\mathcal{R} = \frac{\alpha}{2}; \ \psi_{\varrho} = \frac{2\pi}{6}n} = 0$$

$$\frac{\partial \mathcal{C}}{\partial \mathcal{R}}\Big|_{\mathcal{R} = \frac{\alpha\sqrt{3}}{2}; \ \psi_{\varrho} = \frac{\pi}{6}} = 0.$$

или

$$\begin{split} &A_{0}I_{0}(\mu\rho)+\beta_{0}Y_{0}(\mu\rho)=0\,.\\ &A_{6}I_{6}(\mu\rho)+\beta_{6}Y_{6}(\mu\rho)=0\,.\\ &-A_{0}I_{1}(\frac{\mu\alpha}{2})-\beta_{0}Y_{1}(\frac{\mu\alpha}{2})+A_{6}I_{5}(\frac{\mu\alpha}{2})-I_{7}(\frac{\mu\alpha}{2})\Big]+\beta_{6}\Big[Y_{5}(\frac{\mu\alpha}{2})-Y_{7}(\frac{\mu\alpha}{2})\Big]=0\\ &-A_{0}I_{1}(\frac{\mu\alpha\sqrt{3}}{2})-\beta_{0}Y_{1}(\frac{\mu\alpha\sqrt{3}}{2})-A_{6}\Big[I_{5}(\frac{\mu\alpha\sqrt{3}}{2})-I_{7}(\frac{\mu\alpha\sqrt{3}}{2})\Big]-\beta_{6}\Big[Y_{5}(\frac{\mu\alpha\sqrt{3}}{2})-Y_{7}(\frac{\mu\alpha\sqrt{3}}{2})\Big]=0 \end{split}$$

Аналогичные уравнения получаются для других видов правильных решеток.

Уравнения /35/ позволяют найти собственное значение системы. Выше была изложена методика расчета эффективности поглощающих стержней в активной зоне реактора с $k_{\infty} > 1$. Она позволяет также рассматривать размножающие стержни в немультиплицирующей среде и в среде с $k_{\infty} < 1$. Никакой принципиальной разницы в этом рассмотрении не будет. Отличие будет заключаться лишь в том, что в решении уравнения диффузии необходимо будет функции Бесселя действительного аргумента заменить функциями Бесселя мнимого аргумента в соответствии с действительностью или мнимостью величин , определенных по формулам /3/ или /26/.

Результаты некоторых расчетов

По изложенной методике была рассчитана эффективность поглощаю— ших стержней в реакторе с водяным замедлителем внешним радиусом 150 см и высотой 266 см. Активная зона характеризуется величинами C = 71 см $L^2 = 6,9$ см $L^2 = 6$

Поглощающие стержни (трубы из бористой стали, содержащие внутри воду) характеризуются следующими размерами:

$$Q_4 = 7,00 \text{ cm}$$
 $Q_2 = 7,56 \text{ cm}$

Эффективность регулирующих органов

Вари-	№ рис.	ыетод рассмот- рения	$\frac{\partial \phi_{\rm P}}{\partial x}$ ективность системы стержней $\Delta \mathcal{K}_{\infty}$	Коэффициент интер- ференции Ф
I	4	одногрупповой	0,0094	I , 3
2	4	двухгрупповой	0,0066	1,3
3	5	одногрупповой	0,0300	I , 3
4	G	_ " _	0,0314	0,9
5	7	- " -	0,0227	1,5
6	8	n 11 m	0,0364	I,4
7	9	_ " _	0,0555	I,8
8	10	_ " _	0,0386	I , 5

В таблице даны эффективности стержней, а на рис. 4-IO приведены рассчитанние нейтронные поля для разных схем расположения поглощающих стержней в реакторе. Эти схемы указаны на рис. 2,3. Кривые нормированы так, чтобы полное число нейтронов в реакторе со стержнями и без стержней было одно и то же.

Распределение нейтронного потока по радиусу реактора дано по двум наиболее характерным направлениям "I" и "2", которые указаны на каждом рисунке. Для сравнения пунктирной линией отмечено распределение нейтронов в реакторе без стержней.

На рис. 4 приводятся результаты одногруппового и двухгруппового рассмотрения системы из двух поглощающих стержней. (I — одна группа; П — тепловые нейтроны, две группы; Ш — быстрые нейтроны, две группы). Этот случай был рассмотрен при различной степени учета (различное число гармоник) угловой зависимости нейтронного цотока вокруг стержней. Расчеты показали, что учет зависимости поля от угла вокруг стержней приводит к изменению эффективности меньше чем на 1%. Результати расчета по одной и двум группам показывают, что для толстых $(9^2 \gtrsim 7)$ поглощающих стержней, содержащих воду, эффективность, рассчитанная по двум группам, может быть одного порядка с эффективностью, рассчитанной по одной группе. Таким образом для таких стержней можно делать предварительные оценки по более простой одногрупповой методике. Пейтронные потоки, рассчитанные по одной и двум группам, сильно различаются только вблизи стержней (рис. 4).

Коэффициент интерференции стержней, определяемый как

$$\psi = \frac{\Delta K_{\infty(1,2,...,N)}}{\sum_{i=1}^{N} \Delta K_{\inftyi}} ,$$

может существенно отличаться от единицы. Отсюда возникает необходимость решения полной задачи об эффективности нескольких стержней, не ограничиваясь оценкой эффективности одного стержня.

на рис. 4-IO видно, что наличие поглощающих стёржней в активной зоне сильно искажает форму нейтронного потока. Это важно знать, чтобы правильно учитывать неравномерность поля тепловыделения в реакторе.

Оценка величины эффективности стержней и искажений, которые они вносят в распределение потока нейтронов, позволяет делать рекомендации по выбору системы регулирования, профилирования расхода воды в активной зоне и т.д.

-19-

литература

- Зарецкий Д.Ф., Одинцов Д.Д. Эффективные граничные условия для "серых" тел. (Доклады советской делегации на Международной конференции по мирному использованию атомной энергии. Женева, 1955 г.)
- 2. Лебедев Н.Н. Специальные функции и их приложения, 1953 г. § 5.12 стр. 176
- 3. Zeitschrift für Naturforschung, 1957, Band 12a, Heft 5, s. 368
- 4. Галанин Л.Д. Теория ядерных реакторов на тепловых нейтронах, 1957 г. § 31 стр. 227

Puc.1.

А - центр активной зоны; В - ось К-го стержня; С - точка наблюдения; О - начало отсчета углов О и Ук ; ук - угол от выделенного направления О до тк, оке - угол от выделенного направления О до направления от е -го стержня на к - тый углы ук и оке - постоянные, они зависят только от расположения стержней.

Углы отсчитываются от О против часовой стрелки, тке - расстояние между стержнями е и к

Рис. 2

Approved For Release 2009/08/31 : CIA-RDP88-00904R000100130041-2

Approved For Release 2009/08/31 : CIA-RDP88-00904R000100130041-2

