école——— normale—— supérieure— paris—saclay—

Background

Francesco Capuano⁽¹⁾, William Ludington ⁽¹⁾

(1) ENS Paris Saclay, MVA

Brain Imaging

Quantifying the activity in regions of the brain is paramount in diagnostics.

Both Alzheimer's disease and epilepsy can be observed using brain imaging.

Imaging techniques reconstruct levels of brain activity.

Temporal \circledcirc and Spatial \multimap resolution determine the quality of imaging techniques.

Whenever high temporal resolution is crucial → EEG/MEG /

Both EEG and MEG capture the electrical activity deriving from synapses.

Electrical **currents suffer distortion** (hindering spatial resolution) from the **skull**.

Magnetic field permeates the skull without suffering from distortion.

Translating EEG to MEG

We model the EEG-to-MEG problem as a language-translation problem

No internet-scale dataset for brain data!

(1)
Pre-train
EEG-Encoder

Pre-train the encoder model on **EEG-specific dataset**

(2)
Pre-train
MEG-Decoder

Pre-train the decoder model on **MEG-specific dataset**

(3)
Tune for
EEG-to-MEG

Align encoder and decoder representation using the limited data available.

Method ----