

NEURAL MACHINE TRANSLATION OF BARE WORDS WITH SUBWORD UNITS

김민주 엄지민 이재원 전예림 정상윤

INTRODUCTION

NEURAL MACHINE TRANSLATION

SUBWORD TRANSLATION

- ► RELATED WORK
- ►BYTE PAIR ENCODING (BPE)

EVALUATION

- ► SUBWORD STATICS
- ► TRANSLATION EXPREIMENTS

ANALYSIS

- ► UNIGRAM ACCURACY
- ► MANUAL ANALYSIS

CONCLUSION

INTRODUCTION

INTRODUCTION

기존의 NMT 모델은 생소한 단어를 번역하는데 취약(OOV)

RARE WORDS에 대해 BACK-OFF MODEL이 필요하지 않은 채로 OPEN-VOCABULARY 번역을 수행해내는 NMT 모델을 만들어내는 것이 목표

BPE(BYTE PAIR ENCODING)을 단어 분할 작업에 적용 생소한 단어(RARE WORDS)는 서브 워드(SUBWORDS)로 인코딩

SUBWORD MODEL은 LARGE-VOCABULARY 모델과
BACK-OFF DICTIONARY보다 학습 하지 않았던 새로운 단어들도
더 정확하게 만들어내는 모습을 보이게 됨

NEURAL MACHINE TRANSLATION

NEURAL MACHINE TRANSLATION

양방향 순환 신경망

- X: 입력벡터
- 주황색: FORWARD STATES
- 초록색: BACKWARD STATES
- Y: 출력벡터

SUBWORD TRANSLATION

- RELATED WORK
- BYTE PAIR ENCODING

SUBWORD TRANSLATION

- 이 논문은 유능한 번역자에게만 해석될 정도로, 혹은 번역자도 해석 못할 만큼 생소한 단어도 어간이나 음운 서브워드로 번역이 가능하다고 말한다.
- 또한, 다음과 같은 종류의 언어들이 번역 가능하다고 말한다.
- COGNATE: 어원이 서로 같은 단어
- 예) HAUS(독일어), HAUSE(영어): 어원이 같다.(게르만어)
- LOANWORDS: 외래어 외국으로부터 들어와 모국어처럼 쓰이는 것
- 예) 챌린지, 버스, 고무 등
- MORPHOLOGICALLY COMPLEX WORDS: 복합어
- 예) 과학자 : 과학(명사) + 자(접미사)

SUBWORD TRANSLATION

RELATED WORK

- SMT: 단어를 세분화 하는데 너무 소극적
- LING ET AL., 2015B: 해당 논문과 비슷한 시도, 하지만 결과가 좋지 않았다.
- 이유는 문장의 세분화가 단어 수준에서 그쳤기 때문.

BYTE PAIR ENCODING (BPE)

BPE

- 자주 등장하는 BYTE PAIR 들을 사용하지 않는 하나의 BYTE로 반복적으로 대체
- CHARACTER들을 하나의 UNICODE로만 인식하기 때 문에 언어에 종속되지 않는다
- OOV 문제를 해결할 수 있다

BYTE PAIR ENCODING (BPE)

Algorithm 1 Learn BPE operations

```
import re, collections
def get stats(vocab):
  pairs = collections.defaultdict(int)
  for word, freq in vocab.items():
    symbols = word.split()
   for i in range(len(symbols)-1):
      pairs[symbols[i],symbols[i+1]] += freq
  return pairs
def merge vocab (pair, v in):
 v out = {}
 bigram = re.escape(' '.join(pair))
 p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')
  for word in v in:
   w out = p.sub(''.join(pair), word)
   v out[w out] = v in[word]
  return v out
vocab = {'low </w>' : 5, 'lower </w>' : 2,
         'n e w e s t </w>':6, 'w i d e s t </w>':3}
num merges = 10
for i in range (num merges):
  pairs = get stats(vocab)
 best = max(pairs, key=pairs.get)
 vocab = merge vocab(best, vocab)
 print(best)
```

```
('e', 's')
('es', 't')
('est', '</w>')
('l', 'o')
('lo', 'w')
('n', 'e')
('ne', 'w')
('new', 'est</w>')
('low', '</w>')
('W', 'i')
```


- SUBWORD STATICS ENCODING
- TRANSLATION EXPREIMENTS

EVALUATION

- NMT에서 rare-word 번역을 subword 모델로 표현함으로써 향상시킬 수 있는가?
- 어휘 크기, 텍스트 크기, 그리고 번역 품질 측면에서 모델 성능 비교

- 영어 -> 독일어, 영어 -> 러시아로 번역을 실험.
- bleu: 기계 번역 결과와 사람이 직접 번역한 결과가 얼마나 유사한지 비교하여 번역에 대한 성능을 측정
- f1: 클리핑된 유니그램 정밀도와 리콜의 조화 평균으로 계산하는 유니그램
- 모든 네트워크는 1000의 은닉 레이어 크기와 620의 임베딩 레이어 크기를 가지고 있음

SUBWORD STATICS

segmentation	# tokens	# types	# UNK
none	100 m	1 750 000	1079
characters	550 m	3000	0
character bigrams	306 m	20 000	34
character trigrams	214 m	120 000	59
compound splitting [△]	102 m	1 100 000	643
morfessor*	109 m	544 000	237
hyphenation [⋄]	186 m	404 000	230
BPE	112 m	63 000	0
BPE (joint)	111 m	82 000	32
character bigrams (shortlist: 50 000)	129 m	69 000	34

Table 1: Corpus statistics for German training corpus with different word segmentation techniques. #UNK: number of unknown tokens in newstest2013. △: (Koehn and Knight, 2003); *: (Creutz and Lagus, 2002); ◊: (Liang, 1983).

#TOKENS: TEXT SIZE

TYPES: VOCABULARY SIZE

#UNK: OOV WORD의 개수

- BPE의 경우 OOV의 수가 0개
- **BPE(JOINT)**의 경우에도 **OOV**수가 **32**개로 준수한 성능을 보임

- TOKENS(시퀀스)의 크기가 줄었다
- VOCABULARY SIZE의 크기도 적은 편
- OOV가 확실하게 줄었다

TRANSLATION EXPERIMENTS

			vocabulary		BLEU		CHRF3		unigram F ₁ (1 (%)
name	segmentation	shortlist	source	target	single	ens-8	single	ens-8	all	rare	OOV
syntax-bas	syntax-based (Sennrich and Haddow, 2015)				24.4	-	55.3	-	59.1	46.0	37.7
WUnk	-	-	300 000	500 000	20.6	22.8	47.2	48.9	56.7	20.4	0.0
WDict	-	-	300 000	500 000	22.0	24.2	50.5	52.4	58.1	36.8	36.8
C2-50k	char-bigram	50 000	60000	60000	22.8	25.3	51.9	53.5	58.4	40.5	30.9
BPE-60k	BPE	-	60000	60000	21.5	24.5	52.0	53.9	58.4	40.9	29.3
BPE-J90k	BPE (joint)	-	90 000	90 000	22.8	24.7	51.7	54.1	58.5	41.8	33.6

[영어→독일어]

			vocat	oulary	BL	EU	СНЕ	eF3	unig	ram F	1 (%)
name	segmentation	shortlist	source	target	single	ens-8	single	ens-8	all	rare	OOV
phrase-bas	sed (Haddow et	al., 2015)			24.3	-	53.8	-	56.0	31.3	16.5
WUnk	-	-	300 000	500 000	18.8	22.4	46.5	49.9	54.2	25.2	0.0
WDict	-	-	300 000	500 000	19.1	22.8	47.5	51.0	54.8	26.5	6.6
C2-50k	char-bigram	50 000	60000	60000	20.9	24.1	49.0	51.6	55.2	27.8	17.4
BPE-60k	BPE	-	60000	60000	20.5	23.6	49.8	52.7	55.3	29.7	15.6
BPE-J90k	BPE (joint)	-	90 000	100 000	20.4	24.1	49.7	53.0	55.8	29.7	18.3

ANALYSIS

- UNIGRAM ACCURACY
- MANUAL ANALYSIS

UNIGRAM ACCURACY

/Figure 2: English→German unigram F₁ on newstest2015 plotted by training set frequency rank for different NMT systems.

Figure 3: English \rightarrow Russian unigram F₁ on newstest2015 plotted by training set frequency rank for different NMT systems.

MANUAL ANALYSIS

system	sentence
source	health research institutes
reference	Gesundheitsforschungsinstitute
WDict	Forschungsinstitute
C2-50k	Fo rs ch un gs in st it ut io ne n
BPE-60k	Gesundheits forsch ungsinstitu ten
BPE-J90k	Gesundheits forsch ungsin stitute
source	asinine situation
reference	dumme Situation
WDict	asinine situation \rightarrow UNK \rightarrow asinine
C2-50k	$as in in e$ situation $\rightarrow As in en si tu at io n$
BPE-60k	as $ in $ ine situation $\rightarrow A in $ line- Situation
BPE-J90K	as $ in $ ine situation \rightarrow As $ in $ in- $ $ Situation

Table 4: English→German translation example. "|" marks subword boundaries.

system	sentence
source	Mirzayeva
reference	Мирзаева (Mirzaeva)
WDict	Mirzayeva \rightarrow UNK \rightarrow Mirzayeva
C2-50k	Mi rz ay ev a → Ми рз ae ва (Mi rz ae va)
BPE-60k	Mirz ayeva → Мир за ева (Mir za eva)
BPE-J90k	Mir za yeva → Мир за ева (Mir za eva)
source	rakfisk
reference	ракфиска (rakfiska)
WDict	rakfisk \rightarrow UNK \rightarrow rakfisk
C2-50k	ra kf]is k → ра кф ис к (ra kf]is k)
BPE-60k	rak f isk → пра ф иск (pra f isk)
BPE-J90k	rak f isk → рак ф иска (rak f iska)

Table 5: English→Russian translation examples. "|" marks subword boundaries.

CONCLUSION

CONCLUSION

서브워드 유닛을 사용한 NMT모델이 RARE WORD에 대한 번역 성능이 좋다.

작업에서 어휘 크기의 선택은 어느 정도 임 의적이며, 주로 이전 연구와의 비교에 의해 동기부여되었다.

향후 연구의 한 방향은 번역 작업에 대한 최적의 어휘 크기를 학습하는 것이며, 이는 언어 쌍 및 훈련 데이터 양에 따라 달라질 것으로 기대된다.

서브워드 세분화는 대부분의 언어 쌍에 적

THANK YOU. Q&A

