Math in OI (Continuous Part)

吴克文

高等数学基础 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开

概率期望 常用公式与应用 自动机

一些习题

Thanks

Math in OI (Continuous Part)

吴克文

2018年1月22日

吴克文

高等数学基础 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开 拉格朗日插值法

常用公式与应 自动机 一些习题

一些刁趔

● 高等数学基础 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开 拉格朗日插值法

- ② 概率期望 常用公式与应用 自动机
- 3 一些习题

Math in OI (Continuous Part)

吴克文

高等数学基础

最小二乘法 拉格朗日乘数法 泰勒展开 拉格朗日插值法

概率期望 #用公式与应

一些习题

Thanks

Section 1

高等数学基础

Math in OI (Continuous Part)

吴克文

高等数学基础

极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开 拉格朗日插值法

概率期望 常用公式与应

-- 些习题

一三つ疋

写在前面

虽然高数不应该称为 OI 的考察点 但是在各种赛事的考题中常有这部份的考察 此外,有很多算法需要建立在一定的高数基础上,比如 FFT,

此外,有很多算法需要建立在一定的高数基础上,比如 FFT 生成函数,概率期望等

所以我会尽量精简地介绍一些高数概念,希望能有助于大家 理解

极限

记号: $\lim_{x\to x_0} f(x) = A$

通俗含义: 当自变量 x 趋向于 x_0 时, f(x) 趋向于 A

严格定义: $\forall \epsilon > 0, \exists \delta > 0, s.t. \forall |x - x_0| < \delta, |f(x) - A| < \epsilon$

特殊记号

$$x_0^+, x_0^-, +\infty, -\infty$$

一些显然的公式

$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} (f(x) - g(x)) = \lim_{x \to x_0} f(x) - \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} (f(x) * g(x)) = \lim_{x \to x_0} f(x) * \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} (f(x)/g(x)) = \lim_{x \to x_0} f(x) / \lim_{x \to x_0} g(x)$$

注意事项

注意各个公式中 f,g 的要求 只能应用有限次!!! $(1+\frac{1}{n})^n, n \to +\infty$

夹逼定理

在 x_0 的某邻域内有 f(x) < g(x) < h(x), 且 $\lim_{x_0} f(x) = \lim_{x_0} h(x) = A$, $\iint \lim_{x_0} g(x) = A$

7 / 51

连续

连续: $\lim_{x\to x_0} = f(x_0)$

左连续, 右连续

连续是一个局部概念!!

一些显然的定理

连续函数的复合是连续的 初等函数是连续的

一些重要结论

$$\lim_{\infty} (1 + \frac{1}{n})^n = \lim_{\infty} (1 + \frac{1}{n})^n = e$$

$$\lim_{\infty} \frac{\sin x}{x} = \lim_{\infty} \frac{\tan x}{x} = 1$$

$$\lim_{\infty} \sqrt[4]{n} = 1$$

$$\lim_{\infty} \frac{\arctan x}{x} = \lim_{\infty} \frac{e^x - 1}{x} = 1$$

等价无穷小,等价无穷大,高阶小量

导数

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

$$(f(x) + g(x))' = ?$$

$$(f(x)g(x))' = ?$$

$$(f(x)/g(x))' = ?$$

$$(f(g(x)))' = ?$$

奇怪函数

$$f(x) = |x|$$

$$f(x) = \ln |x|$$

$$f(x) = x \sin \frac{1}{x}$$

$$f(x) = \frac{\sin x}{x}$$

洛必达定理

$$x \to x_0, f(x), g(x) \to 0, \quad \exists x \to x_0, \frac{f'(x)}{g'(x)} = A, \quad \exists x \to x_0, \frac{f(x)}{g'(x)} = A$$

简单练习

$$x \to 0, \frac{\cos x - 1}{\sin x}$$
$$x \to 0, \frac{e^{x^2 - 1}}{x^3}$$
$$x \to 3, \frac{\tan x - 3}{x^3}$$

开根

给出实数 y 和整数 k, |y| < 100, 试求 y 的 k 次根 y最多两位小数

开根

给出实数 y 和整数 k, |y| < 100, 试求 y 的 k 次根 v 最多两位小数

hint

三分,二分,牛顿迭代 精度与收敛速度

传送带

平面上两条不相交的线段 AB 和 CD, 蚂蚁在 AB 上的移动速 度为 ν_1 ,在CD上移动速度为 ν_2 ,在其他平面区域移动速度 为 v3, 求从 A 到 D 的最短时间

传送带

平面上两条不相交的线段 AB 和 CD, 蚂蚁在 AB 上的移动速 度为 v_1 ,在CD上移动速度为 v_2 ,在其他平面区域移动速度 为 v3, 求从 A 到 D 的最短时间

hint

多元函数的极值问题 凸 + 凸 = 三分套三分

不定积分与定积分

不定积分: 求导的逆运算 $\int \cos x \, dx = \sin x + C$

定积分: 由黎曼和定义, 具体不多赘述, OI 中仅需了解微积

分基本定理

微积分基本定理

$$\int_{a}^{b} f(x) dx = F(b) - F(a), 其中 F(x)' = f(x)$$
$$\int_{a}^{b} f(x) dx 可理解为 f(x) 的线下有向面积$$

-些结论

$$\int x^k dx = \frac{1}{k+1}x^{k+1} + C$$

$$\int f(x)g'(x) dx = \int f(x) dg(x) = f(x)g(x) - \int g(x)f'(x) dx(分部$$
积分)
$$\int e^x dx = e^x + C$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

连续函数一定可积,不过不一定存在初等原函数 $\int e^{-x^2} dx$

应用

计算面积: $\int y \, dx$

计算旋转体体积: $\int \pi y^2 dx$

Simpson 积分: 多项式函数拟合一般函数 (交给讲计算几何的

老师 XD)

期望概率:连续型随机变量

Buffed Buffer

给定 d 种食物、食物分两个类型: 离散食物和连续食物离散 食物只能按份供应,每种食物有一个质量 w 连续食物可以食 用任意质量每种食物有一个初始美味值 t 和一个美味值衰减 系数 D

对于一种离散食物,如果你吃了N份,那么获得的美味值为 $\sum_{i=1}^{N} (t - D(i-1))$

对于一种连续食物,如果你吃的质量为X,那么获得的美味 值为 $\int_0^X (t - D \cdot x) dx$

现在你必须吃总质量为 W 的食物, 求最多获得的美味值(可 以为负), 无解输出"impossible"

 $d < 250, W < 10^4, 0 < t, D < 10^4$

hint

将离散与连续分开处理

离散型: $f[i][j] = \max_k f[i-1][j-kw_i] + \sum_{l=1}^k (t_i - D_i(l-1))$

⇒斜率优化

连续型: 贪心先吃最大 t_i , 直至其 t_i 降至次大, 合并m个同

美味值,新 $D'=1/(\sum \frac{1}{D_i})$ ⇒ 并联电路

多元函数与偏导数

多元函数: 含有多个变量的函数 $f(x, y, z) = x^2y + y^2z + z^2x$ 偏导数: 固定其他维当作常数, 对某一维进行求导(严格定义 等不做具体介绍), 记号为 $\frac{\partial f}{\partial x}$ (读作 ruang)

例

$$f(x, y, z) = x^{2}y + z^{x} + \cos(yz)$$

$$\frac{\partial f}{\partial x} = 2xy + z^{x} \ln z$$

$$\frac{\partial f}{\partial y} = x^{2} - z \sin(yz)$$

$$\frac{\partial f}{\partial z} = (x - 1)z^{x} - y \sin(yz)$$

函数极值

一元函数: f'(x) = 0多元函数: $\frac{\partial f(x)}{\partial x_i} = 0$

注意,以上求解所得为驻点,是否为极值点(甚至最值点)需 另行判断

并非所有函数都可求导, 以及会存在有瑕点的函数, 遇到时 不可盲目套用公式

简单题

实现三种操作:

- 1. 在平面加入一条直线
- 2. 删除一条已有直线
- 3. 求一个点到平面所有之间的距离平方和最小, 并输出

 $n < 10^5$

简单题

实现三种操作:

- 1. 在平面加入一条直线
- 2. 删除一条已有直线
- 3. 求一个点到平面所有之间的距离平方和最小, 并输出

 $n < 10^5$

hint

$$(x, y)$$
 到直线 $ax + by + c = 0$ 的距离平方: $\frac{(ax+by+c)^2}{a^2+b^2}$ 求函数极值 $f(x, y) = Ax^2 + By^2 + Cxy + Dx + Ey + F$ 动态维护 A, B, C, D, E, F

吴克文

极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开 拉格朗日插值法

常用公式与

一些习题

Thombro

线性回归

给出平面上 n 个点, 求最小均方误差线性拟合直线

 $n < 10^5$

线性回归

给出平面上 n 个点, 求最小均方误差线性拟合直线

$$n < 10^5$$

hint

$$y = ax + b \Rightarrow \min_{a,b} \sum (y_i - ax_i - b)^2$$
$$a = \frac{l_{xy}}{l_{xx}} \qquad b = \bar{y} - a\bar{x}$$

拉格朗日乘数法

求解多元函数的最优值 (最大化或最小化) $f(x_1, x_2, \dots, x_n)$, 并满足约束条件 $g_i(x_1, x_2, \dots, x_n) = 0, i = 1, 2, \dots, m$

基本解法

定义
$$h(x_1, x_2, \dots, x_n, \lambda_1, \lambda_2, \dots, \lambda_m) = f(x_1, x_2, \dots, x_n) + \sum \lambda_i g_i(x_1, x_2, \dots, x_n)$$
, 求解 h 的极值

例

$$f(x, y, z) = x^2 + 2y^2 + 3z^2$$
, $x + y + z = 1$, $100xyz = 1$

$$f(x, y) = \sqrt[3]{xy + yz + 2z}, \quad x^2 + y^2 + z^2 = 1$$

吴克文

高等数学基础 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开 拉格朗日插值法

常用公式与原自动机

一些习题

= - 3 //2

骑行川藏

有 n 段路,每段路长 s_i ,并有参数 k_i , v_i' ,该人在每段路上均匀速骑车。若骑车速度为 v,则阻力为 $F = k_i(v - v_i)^2$,设初始能量为 E,求到达目的地的最短时间

 $n < 10^4, E < 10^8, s_i < 10^5, 0 < k_i < 1, -100 < v_i' < 100$

骑行川藏

有 n 段路,每段路长 s_i ,并有参数 k_i, v'_i ,该人在每段路上均 匀速骑车。若骑车速度为v,则阻力为 $F = k_i(v - v_i)^2$,设初 始能量为E, 求到达目的地的最短时间

$$n < 10^4, E < 10^8, s_i < 10^5, 0 < k_i < 1, -100 < v_i' < 100$$

hint

$$\min \sum_{i=1}^{s_i} \frac{s_i}{u_i}$$

$$E = \sum_{i=1}^{s_i} k_i (u_i - v_i)^2$$

泰勒公式

$$f(x) = \sum_{i=0}^{+\infty} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i + R_n(x),$$

 $R_n(x)$ 是余项 (可以理解为误差), 拉格朗日余项:

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - \xi)^{n+1}$$

泰勒公式

$$f(x) = \sum_{i=0}^{+\infty} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i + R_n(x),$$

 $R_n(x)$ 是余项 (可以理解为误差),拉格朗日余项:

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - \xi)^{n+1}$$

这有什么用?

你以为 C++ 之类的怎么算 e^x , cos, sin, ln?

吴克文

高等数学基础 极限与连续 最小二乘法 拉格朗日乘数法 **泰勒展开** 拉格朗日垂值法

概率期望 常用公式与应用 自动机

一些习题

Thanks

一些结论(在0处展开)

$$e^{x} = 1 + \frac{x}{1} + \frac{x^{2}}{2} + \dots + \frac{x^{n}}{n!} + \dots$$
 $\sin x = \frac{-x}{1} + \frac{x^{3}}{6} + \dots + \frac{(-1)^{n}x^{2n+1}}{(2n+1)!} + \dots$
 $\cos x = 1 + \frac{-x^{2}}{2} + \dots + \frac{(-1)^{n}x^{2n}}{(2n)!} + \dots$
由此定义的 $e^{ix} = \cos x + i \sin x$
 $(1+x)^{m} = \sum_{0}^{+\infty} \frac{m(m-1)\cdots(m-n+1)}{n!} x^{n}$ (注意 m 为整数和小数时的区别)
$$\ln(1+x) = \frac{x}{1} + \frac{-x^{2}}{2} + \dots + \frac{(-1)^{n}x^{n+1}}{n+1} + \dots$$
注意各展开的收敛区间!!

Thanks

反正切函数的应用

$$\arctan x = \sum_{0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1},$$

由此可计算 $\pi = 4 \arctan 1 = 4(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots)$,但效率很低,利用公式

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b},$$

有 $\arctan p + \arctan q = \arctan \frac{p+q}{1-pq}$,令 $p = \frac{1}{2}$,可计算 $\arctan 1$,且 $\frac{1}{2}$, $\frac{1}{3}$ 的反正切运算更快 设 $\arctan \frac{1}{a} = \arctan \frac{1}{b} + \arctan \frac{1}{c}$,给定正整数 a,求正整数 b, c,使 b+c 最小

a < 60000

hint

$$a = \frac{bc-1}{b+c}$$

记
$$S = b + c$$
,则 $S(c) = c + a + \frac{a^2 + 1}{c - a}$

冷静分析: $c = a + \sqrt{a^2 + 1}$ 是最小值点

在附近枚举整数解

品等数字基位 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开 拉格朗日插值法

概率期望 常用公式与应用 自动机

一些习题

_. .

多项式

n 次多项式 $f, f(i) = \frac{i}{i+1}, i = 0, 1, 2, \dots, n$, 现在试问对于 F(n+1) 是否唯一确定

若确定,输出 F(n+1) (如果为整数,直接输出;如果是分数 (p/q) p 与 q 互质,则输出 $pq(\%10^9 + 7)$;否则输出至小数点 后 6 位)

否则输出 No

 $n < 10^{15}$

概率期望 常用公式与应用

一些习题

一些刁难

拉格朗日插值法

n 次多项式可由 n+1 个不同点的取值唯一确定

$$f(x) = \sum_{i=1}^{n+1} y_i \frac{\prod_{k \neq i} (x - x_k)}{\prod_{k \neq i} (x_i - x_k)}$$

待定系数法求 k 次前缀和

吴克文

同 等 数字基 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开 拉格朗日插值法

概率期望

自动机

_ *^

Section 2

概率期望

定义与结论

- 离散型: $\mathbb{E}(X) = \sum_{k=1}^{n} x_k p_k = \sum_{k=1}^{n} P(x \ge k)$
- 连续型: $\mathbb{E}(X) = \int u f(u) du = \int p(x \ge u) du$
- $\mathbb{E}(K) = K$
- $\mathbb{E}(KX) = K\mathbb{E}(X)$
- $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$
- 如果 X, Y 独立, $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$
- $\mathbb{E}(X) = \mathbb{E}(\mathbb{E}(X|Y))$

吴克文

尚 寺 奴 字 基 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开

概率期望 常用公式与应用

一些习题

Thank

独立与相关

随机变量独立: $\forall a, b, p(x = a)p(y = b) = p(x = a, y = b)$

随机变量不相关: $\mathbb{E}(XY) = \mathbb{E}(x)\mathbb{E}(Y)$

在 OI 中,一般不会特意考察这部分的知识 在此提一下独立性的要求强于相关性

全概公式

$$P(A) = \sum P(A|B_i)$$

全期望公式

$$\mathbb{E}(X) = \mathbb{E}(\mathbb{E}(X|Y))$$

Bayes 公式

P(B|A) 表示 A 发生时 B 发生的概率

P(A,B) 表示 AB 同时发生的概率

$$P(A, B) = P(A) \times P(B|A) = P(B) \times P(A|B)$$

$$P(B|A) = \frac{P(B) \times P(A|B)}{P(A)}$$

吴克文

数学基础

极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开 拉格朗日插值法

概率期望 常用公式与应用

一些习_错

一些刁起

地震后的幻想乡

n个点 m 条边的简单连通无向图,每条边权是 [0,1] 间的随机数,问最小生成树最大边的边权的期望

n < 11

地震后的幻想乡

n个点 m条边的简单连通无向图,每条边权是 [0,1] 间的随机 数, 问最小生成树最大边的边权的期望

n < 11

hint

 $\mathbb{E}(MSTe) = \int_0^1 p(MSTe \ge x) dx$ 状压概率 DP 计算 $p(MSTe \ge x)$ 用小于 x 的边即可连通的概率为 $1 - \sum_{S} S(x) * (1 - x)^{k}$

36 / 51

地震后的幻想乡+

n个点 m条边的简单连通无向图,每条边权是 $[0,\sqrt[3]{3}]$ 间的随 机数, 服从分布 $f(x) = x^2$, 问最小生成树最大边的边权的期 望

n < 11

简单题

一个机器人在 $N \times M$ 的方阵第 s 行 t 列,每次会随机选择不 动、向左、向右或向下四种方案(不能越过边界),求它走到 最后一行的期望步数

n, m < 1000

吴克文

高等数学基础 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开 拉格朗日插值法

概率期望 常用公式与应用 自动机

一些习题

_....

简单题

一个机器人在 $N \times M$ 的方阵第 s 行 t 列,每次会随机选择不动、向左、向右或向下四种方案 (不能越过边界),求它走到最后一行的期望步数

n, m < 1000

hint

记 E[i][j] 表示从 (i,j) 走到最后一行的期望步数 倒序递推求解 对于每一行,记 E[i][1] = x,向右推至 E[i][m] 得到方程反解 吴克文

品等数字基句 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开 拉格朗日插值法

概率期望 常用公式与应用 自动机

一些习题

Γhanks

自动机

自动机 (OI 中一般考虑有限状态自动机): 具有有限状态, 概率转移的一个有向图 经常考察从起点到终点的期望步数 E(x) 表示从起点到 x 的期望步数 or

E(x) 表示从 x 到终点的期望步数?

吃鱼

一个池塘有n条鱼,每天随机会有两条鱼i,j相遇,i吃掉j的概率为 A_{ii} , j 吃掉 i 的概率为 $1 - A_{ii}$, 分别求出每条鱼存 活到最后的概率

n < 19

吃鱼

一个池塘有 n 条鱼,每天随机会有两条鱼 i, j 相遇,i 吃掉 j的概率为 A_{ii} , j 吃掉 i 的概率为 $1 - A_{ii}$, 分别求出每条鱼存 活到最后的概率

n < 19

hint

状压 DP+ 暴力转移

吴克文

高等数学基 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开

概率期望 常用公式与应用

一些习题

Thanks

Section 3

吴克文

高等数学基础 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开

概率期望 常用公式与应用 自动机

一些习题

__ ___

奇怪的实验

地上有无数条彼此平行,且间距为w的直线,小明总是在投掷一枚长度为L的针,求问: 扔k次针,针碰到线的次数的数学期望

L < w < 300, k < 300

吴克文

高等数学基础 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开

概率期望 常用公式与应用 自动机

一些习题

Thonk

奇怪的实验

地上有无数条彼此平行,且间距为w的直线,小明总是在投掷一枚长度为L的针,求问: 扔k次针,针碰到线的次数的数学期望

L < w < 300, k < 300

hint

设下端点距上方直线距离 x,则概率为 $p(x) = 2 \arccos \frac{x}{l}/\pi$ 每次概率为 $\int_0^L \frac{p(x)}{w} dx$

吴克文

高等数学基面 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开 拉格朗日辅值法

概率期望 常用公式与应用 自动机

一些习题

Thombso

Cutting Cheese

一个边长为 100 的实心立方体中挖去 n 个不相交的球,要求将整个立方体沿水平方向切 s-1 刀,使分出的 s 块体积相等,求这 s 块分别的厚度

n < 10000, s < 100

吴克文

高等数学基础 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开 拉格朗日插值法

概率期望 常用公式与应用 自动机

一些习是

Thonk

Cutting Cheese

一个边长为 100 的实心立方体中挖去 n 个不相交的球,要求将整个立方体沿水平方向切 s-1 刀,使分出的 s 块体积相等,求这 s 块分别的厚度

n < 10000, s < 100

hint

二分答案 + 积分算体积

球缺公式: $\frac{\pi(3r-h)h^2}{3}$

吴克文

局等数字基础

极限与建级 最小二乘法 拉格朗日乘数法 泰勒展开 拉格朗日插值法

概率期望 常用公式与E

一些习题

取数问题

给出数列 $\{A_n\}$,试求出一个最大的正整数,使它整除至少一半的 A_k

$$n < 10^5, A_k < 10^7$$

吴克文

高等数学基础 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开 拉格朗日标值法

概率期望 常用公式与应用 自动机

一些习题

Thank

醉醺醺的幻想乡—

给出一个二分图,左 n 右 m 个点,源点向左测第 i 个点连边容量为 c_i ,流量为 x 时费用为 $a_i x^2 + b_i x$;左到右有些边,容量无穷且无费用;右边第 j 个点到汇点连边容量为 d_i ,无费用。每条边的流量限制为整数,求最小费用最大流

 $0 \le a_i, b_i, c_i, d_i \le 3, a_i + b_i > 0, n, m < 100$ 中间边数不超过 1000

醉醺醺的幻想乡-

容量为 c_i , 流量为 x 时费用为 $a_i x^2 + b_i x$; 左到右有些边, 容 量无穷且无费用;右边第i个点到汇点连边容量为di,无费 用。求最小费用最大流、输出精确到 0.1

 $0 \le a_i, b_i, c_i, d_i \le 3, a_i + b_i > 0, n, m < 100$ 中间边数不超过 1000

吴克文

高等数学基础 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开 拉格朗日插值法

(机平)别望 常用公式与应用 自动机

一些习题

醉醺醺的幻想乡-

给出一个二分图,左 n 右 m 个点,源点向左测第 i 个点连边容量为 c_i ,流量为 x 时费用为 $a_ix^2 + b_ix$;左到右有些边,容量无穷且无费用;右边第 j 个点到汇点连边容量为 d_i ,无费用。求最小费用最大流,输出精确到 0.1

 $0 \le a_i, b_i, c_i, d_i \le 3, a_i + b_i > 0, n, m < 100$ 中间边数不超过 1000

hint

流量微元 \Rightarrow 瞬时代价 $2a_ix + b_i$ 模拟每 Δx 的流量走向

吴克な

高等数学基础 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开 拉格朗日插值法

(枕) 举, 别, 坚 常用公式与应用 自动机

一些习题

Thanks

醉醺醺的幻想乡-

给出一个二分图,左 n 右 m 个点,源点向左测第 i 个点连边容量为 c_i ,流量为 x 时费用为 $a_i x^2 + b_i x$;左到右有些边,容量无穷且无费用;右边第 j 个点到汇点连边容量为 d_i ,无费用。求最小费用最大流,输出精确到 0.1

 $0 \le a_i, b_i, c_i, d_i \le 3, a_i + b_i > 0, n, m < 100$ 中间边数不超过 1000

吴克文

高等数学基础 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开 拉格朗日插值法

概率期望 常用公式与应用 自动机

一些习题

Thanks

醉醺醺的幻想乡-

给出一个二分图,左 n 右 m 个点,源点向左测第 i 个点连边容量为 c_i ,流量为 x 时费用为 $a_i x^2 + b_i x$;左到右有些边,容量无穷且无费用;右边第 j 个点到汇点连边容量为 d_i ,无费用。求最小费用最大流,输出精确到 0.1

 $0 \le a_i, b_i, c_i, d_i \le 3, a_i + b_i > 0, n, m < 100$ 中间边数不超过 1000

hint

流量微元 \Rightarrow 瞬时代价 $2a_ix + b_i$ 记 f(x) 为总流量为 x 时的 S 到 T 最短路,答案即为 $\int f(x) dx$ 这咋算....

吴克文

高等数学基布 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开 拉数细口标值法

概率期望 常用公式与应用 白わ却

一些习题

__ -- ---

正难则反

记 x = g(y) 为 f 的反函数,X 为最大流,Y 为最大瞬时代价 $\int f(x) \, \mathrm{d}x = X \times Y - \int g(y) \, \mathrm{d}y$ (几何直观) g(y) 表示最短路长不超过 y 时的最大流,算一下 $2a_i x + b_i \leq y$ 即可设置新流量上界,再跑个最大流即可知道 g(y) $\int g(y) \, \mathrm{d}y$ 怎么算?

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ - ㅌ - 쒸٩연.

正难则反

i lin x = g(y) 为 f 的反函数, X 为最大流, Y 为最大瞬时代价 $\int f(x) \, \mathrm{d}x = X \times Y - \int g(y) \, \mathrm{d}y \, (几何直观)$ g(y) 表示最短路长不超过 y 时的最大流, 算一下 $2a_ix + b_i \leq y$ 即可设置新流量上界, 再跑个最大流即可知道 g(v) $\int g(y) dy$ 怎么算?

Simpson 积分!

吴克文

高等数学基础 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开 拉数照日基值法

概率期望 常用公式与应用 自动机

一些习题

Thank

醉醺醺的幻想乡

给出一个二分图,左 n 右 m 个点,源点向左测第 i 个点连边容量为 c_i ,流量为 x 时费用为 $a_i x^2 + b_i x$;左到右有些边,容量无穷且无费用;右边第 j 个点到汇点连边容量为 d_i ,无费用。求最小费用最大流,输出最简分数

 $0 \le a_i, b_i, c_i, d_i \le 3, a_i + b_i > 0, n, m < 100$ 中间边数不超过 1000

吴克文

高等数学基础 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开 拉格朗日插值法

常用公式与自动机

一些习是

Thank:

hint

考虑微元的增广过程,它会一直走某条路径,直至代价追上下一条 而每次的瞬时代价为线性函数 所以 f 的图像是分段线性的 暴力枚举左侧所有边对,算出分界点,每个分界点 y 处用分数费用流跑出 g(y),即可知道函数图像 手动分段积分梯形面积算出 $\int f(x) \, \mathrm{d}x$

是克戈

高等数学基 极限与连续 最小二乘法 拉格朗日乘数法 泰勒展开

概率期望

二郎互助

Thanks

Thanks!