

Biofeedback: Analysing Impact of Energy Utilization & Energy Recovery States on Wellbeing

By Himani Shah (16bce057) Internal Guide: Preksha Pareek External Guide: Gunjan Trivedi

Flight-or-Fight Response

Stress can cause mental or physical imbalance. When an individual is exposed to stressor, Autonomic Nervous System(ANS) is triggered resulting in suppression of parasympathetic nervous system and activation of sympathetic nervous system.

Data Accumulation

Data Acquisition

FAROS Emotion Device

Protocol

Data Labelling

HRV, ECG and Triaxial accelerometer data.

The **Kubios Software** collects this data at different sampling frequency. This is because the frequency at which they are captured has proven to be give maximum precision.

20+ Hour Data with Hours Activity under surveillance.

Each individual agrees to wear Holter throughout the day. Here, each activity is performed by them to obtain baseline data.

With the cooperation of individuals.

40 people data with Total power as summation of HF, LF and VLF and Method1 derived from (x,y,z) data.

The data set has been generated keeping in mind the physiological features like Age, Height, Weight, BPM, and Gender of each individual.

K-nearest Mean

Incorrectly clustered instances :

kMeans ===== Number of iterations: 13 Within cluster sum of squared errors: 2.4184518981746566 Initial starting points (random): Cluster 0: -0.6857,10.93,0.54,73.47,35.39 Cluster 1: -0.1236, 9.07, 0.71, 69.65, 48.02 Cluster 2: -1.8061,13.74,2.37,88.8,22.39 Cluster 3: -1.6834,10.44,2.45,87.68,26.63 Missing values globally replaced with mean/mode Final cluster centroids: Cluster# Attribute Full Data (102.0)(50.0)(14.0)(5.0)(33.0)PNS index -1.3079-1.09910.0369 -3.3206-1.89Stress index 12.4916 9.7524 8.0536 33.784 15.2985 2.187 1.7036 0.8207 6.35 2.8682 Mean HR 86.2527 81.4668 72.9336 126.458 93.063 RMSSD 33,4342 35.7564 59.2357 9.1 22.6567

Random Forest

```
trees.RandomTree -K 0 -M 1.0 -V 0.001 -S 1 -do-not-cl
.ld model: 0.07 seconds
coss-validation ===
ied Instances
                                        75.4902 %
ified Instances
                                        24.5098 %
                        0.6449
                        0.1567
cor
                       0.2907
error
                      44.8745 %
error
ared error
                      69.6394 %
                      102
instances
```

Statistical Analysis

Classification Angle Framework

Label	0	1	2	3	4	5	6
Activity	Standing	Sitting	Cycling	Walking	Sleep	Running	Humming

This figure shows the second-order difference(SODP) plot employed in the classification framework using a three-point forward approximation for the HRV series. This is 24-hour data of one subject used for an example. Here, x(n) is HRV at x minute.

$$a1 = 4x(n+1) - 3x(n) - x(n+2)$$

$$a2 = 4x(n+2) - 3x(n+1) - x(n+3)$$

Quadrant 1 - Parasympathetic Dominance (Recovery)

Quadrant 2-4- HRV Balance

Quadrant 3 - Sympathetic Dominance (Stress)

Therefore, a1 as Diff1 and a2 as Diff2 are two new features added to the .csv file.

Procedure

.CSV file

IBM SPSS Software

Identify the type of data

Merging

After merging 41 HRV parameters and (x, y, z) values of triaxial accelerometer into a .csv file. All the files are stored in drive.

Analysis

Statistical Package for Social Sciences is used for further analysis and visualization.

Select method

As per the type of data (Nominal, Ordinal, scale), methods used for analysis are chosen. In our case we are dealing with two or more independent groups

Kruskal-Wallis Test or One-way ANOVA

Normalization Test

- The Shapiro-Wilk test p-value should be above 0.05
- Values <0.05 will automatically reject the null-hypothesis.
- Histograms and BoxPlots should visually indicate normal distribution.

Homogeneity Test

- Levene's Test of Equality of error variances.
- Tests null
 hypothesis that the
 error variance of
 dependent variable
 is equal across
 groups.

Skewness-Kurtosis

- The statistic value should be as close to zero.
- Results obtained by statistic value divided by its standard error is Z-value
- Z-values should be between -1.96 to +1.96

Test Results

A Shapiro-Wilk's test (p>0.05) and visual inspection of their histograms, normal Q-Q plots and box-plots show that the HRV parameters are approximately normally distributed.

The Skewness and Kurtosis are in range -1.96 to +1.96

But, Leven's p = (value is <0.05) thereby rejecting the null hypothesis of Homogeneity Test.

If any one of the test fail then ANOVA cannot to applied. Instead

Kruskal-wallis Test used for non-parametric data is used.

Kruskal-Wallis Test Output

State	Activity	Assigned Number
Energy Utilization	Emotional Stress	1
Energy Recovery	Meditation	2
Energy Utilization	Physical Activity	3
Energy Recovery	Supine	4

Pairwise Comparisons of Class

Sample 1-Sample 2	Test Statistic	Std. Error	Std. Test Statistic	Sig.	Adj. Sig.ª
3-2	32.289	8.398	3.845	.000	.001
3-1	45.641	9.761	4.676	.000	.000
3-4	-74.783	9.878	-7.571	.000	.000
2-1	13.352	7.925	1.685	.092	.552
2-4	-42.494	8.069	-5.266	.000	.000
1-4	-29.142	9.479	-3.074	.002	.013

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same.

Asymptotic significances (2-sided tests) are displayed. The significance level is .05.

- a. Significance values have been adjusted by the Bonferroni correction for multiple tests.
 - 1- Emotional Stress 2- Meditation 3- Physical Activity 4- Supine

Pairwise Comparisons of Class

Each node shows the sample average rank of Class.

PNS Index Parasympathetic nervous system activity is known to decrease heart rate and increase heart rate variability.

SNS Index the sympathetic nervous system activity having the opposite effect on heart rate and heart rate variability, i.e. it increases HR and decreases HRV.

EE Activity & Intensity Box-Plot

This Dr. Anil Sinha's Data during Meditation:

- Mean HR is approximately constant through out.
- We can see RMSSD is varying significantly throughput, indicates good health.
- We observe the lowest stress index.

Multiple Line Mean of PNSindex, Mean of SNSindex, Mean of EEactivity...

SecondaryA

PARAMETER	TEST	P-Value	DIFFERENCE as per Bonferroni correction (Pairwise Comparison)	SIGNIFICANCE
PNS index TINN pNNxx Mean RR STD RR Mean HR Min HR Mix HR NNxx EE Activity SD2/SD1 EDR DFA1 DFA2 Load	Kruskal-Wallis Test	<0.0001	All have p -value <0.05	Best for differentiating all the mentioned activities
Intensity	Kruskal-Wallis Test	<0.0001	4-2 p-value(1>0.05) Rest have p -value<0.05	Problem differentiating between two recovery activities (Sleep & Meditation)
SNS index	Kruskal-Wallis Test	<0.0001	4-2 p-value(0.083>0.05) Rest have p -value<0.05	Problem differentiating between two recovery activities (Sleep & Meditation)
Stress Index	Kruskal-Wallis Test	<0.0001	1-3 p-value (0.057>0.5) Rest have p-value<0.05	Problem differentiating between two stress inducing activities (Stress & Physical Activity)

Implementation

Z-Score

Describes the position of the actual score in terms of its distance from the calculated mean, measured in SD units. It makes easier to compare scores of different variables by generating a standard distribution (Normalization).

Reduced data set from 26500 to 17624

K-Fold Cross Validation in Random Forest

1	0.95106383
2	0.95460993
3	0.94468085
4	0.94397163
5	0.93829787
6	0.93758865
7	0.93900709
8	0.95035461 0
9	0.93754436
10	0.95599716

```
For, k=10:
```

Mean: 0.9453115986892773

Standard Deviation: 0.006857599891214578

Thus, we can say that the accuracy is 94.53% with a SD of 0.68%.

Following shows the confusion Matrix:

```
array([[2714, 36, 26, 30],

[ 44, 2247, 1, 228],

[ 245, 16, 466, 5],

[ 108, 145, 5, 7782]])
```

Random Forest

Out Of Bag (OOB) Score in Random Forest

Output:-

oob score: 94.69 %

Normalized Importance

Importance

Units in Hidden Layer 1	Units in Hidden Layer 2	Hidden Layer Activation Function	Output Layer Activation Function	Error Function	Mental Stress-1 Correct Percentage	Meditation- 2 Correct Percentage	Physical Activity- 3 Correct Percentage	Supine- 4 Correct Percentage	Overall Percentage Correct Predicted
8	6	Hyperbolic Tangent	Hyperbolic Tangent	Sum of Squares	89.9	81.1	47.6	93.1	87.4
8	6	Sigmoid	Sigmoid	Sum of Squares	90.7	79.1	49.1	92.7	87.5
8	6	Sigmoid	Softmax	Sum of Squares	86.9	83.5	48.2	91.8	86.6

COMPARISON Choose the best Model

Score	Model
94.69	Random Forest OOB Score
94.53	Random Forest (using cross validation)
92.60	KNN (best at k=3)
87.5	ANN
79.94	Logistic Regression
76.85	Naive Bayes
73.63	Stochastic Gradient Decent (SGD)
62.77	Support Vector Machine (SVM)

PS vs ES

Need to distinguish Emotional Stress and Physical Activity.

Tri-Axial Accelerometer

Effective formula used for three tri-axial parameters:

$$\sqrt{(x^2-x^1)^2+(y^2-y^1)^2+(z^2-z^1)^2}$$

Depicts the Classification of 5832 instances into PA nad ES:

Classification and Regression Trees (CART)

Output:

	Predicted						
Observed	1	3	Percent Correct				
1	3952	136	96.7%				
3	723	925	56.1%				
Overall Percentage	81.5%	18.5%	85.0%				

ANN- Artificial Neural Network

Accelerometer	Units in Hidden Layer 1	Units in Hidden Layer 2	Hidden Layer Activation Function	Output Layer Activation Function	Error Function	Mental Stress-1 Correct Percentage	Activity- 3 Correct Percentage	Overall Percentage Correct Predicted
without	8	6	Hyperbolic Tangent	Hyperbolic Tangent	Sum of Squares	98.1	48.8	85.6
without	8	6	Sigmoid	Sigmoid	Sum of Squares	96.2	45.1	84.2
without	8	6	Sigmoid	Softmax	Sum of Squares	96.9	61.7	88
with	8	6	Hyperbolic Tangent	Hyperbolic Tangent	Sum of Squares	96.4	65	89.1

Sigmoid

Softmax

with

with

6

6

Sigmoid

Sigmoid

Sum of

Squares

Sum of

Squares

97.7

95.2

89.2

88.4

62.2

67.1

Receiver Operating Characteristics (ROC):

Sensitivity means True Positive Rate and **Specificity** means False Positive Rate. Area under the curve represents the degree to two which model can distinguish between PA and ES. If the area under the curve is 0.7 then there is 70 percent accuracy in separating two classes. ROC represents the probabilistic curve.

Ares under the curve:

Label (1) is 0.914

Label (3) is 0.914

Random Forest

70%	Random Forest OOB Score
92.3%	Random Forest (using cross validation)

Confusion Matrix: array([[2770, 38], [272, 448]])

Precision: 0.9105851413543721

Recall: 0.9864672364672364

F-score: 0.9470085470085469

SMOTE

Oversampling the majority class to make its count equal to the minority class by Synthetic Minority Oversampling Technique (SMOTE). SMOTE takes a random instance and searches for its k nearest neighbors. Then, a synthetic instance is generated by choosing one of the k nearest neighbors x at random and connecting x and y to form a line segment in the feature space. The synthetic instances are generated as a convex combination of the two selected instances x and y.

Pre-processing data with SMOTE

```
Before:
Confusion Matrix: array([[2770, 38],
                         [ 272, 448]])
Before OverSampling, counts of label '1': 2803
Before OverSampling, counts of label '3': 725
After OverSampling, the shape of train X:
(5606, 20)
After OverSampling, the shape of train y:
(5606,)
After OverSampling, counts of label '1': 2803
After OverSampling, counts of label '3': 2803
After:
Confusion Matrix: array([[2662, 151],
```

[143, 2670]])

Model	Without SMOTE	With SMOTE
Logistic Regression	84.27	97.98
Random Forest (using cross validation)	92.37	96.58
KNN (for k=3)	92.06	94.99

Type 1 Diabetic Patient:

A Marathon Runner:

STRESS

RECOVERY

A working woman:

A Regular Meditator:

Limitations

If a client fails to follow the guidelines to make use of the Holter device, then there are high chances of trash data generation which will misguide the results.

Input to the system has to be a .csv file and it also requires manual efforts for the merger of HRV and Triaxial-accelerometer data.

Future Applications:

We have 270 hours of supine data, which can be divided into subcategories of REM (Rapid Eye Movement) and NREM (Non Rapid Eye Movement).

PA (Physical Activity) can be further classified into Static (Standing, sitting) and Non-static or Dynamic (Running, Ascending, walking) activities by calculating from a vertical axis: $\sin -1 (x1/(\sqrt{(x2-x1)2+(y2-y1)2+(z2-z1)2)})$.

A Mobile App Development for easy communication between client and company.

DBSCAN best used in Anomaly Detection for T1 Diabetes Patients.

References

- Adjei, T., von Rosenberg, W., & Mandic, D. P. (2019). The classA framework: HRV based assessment of SNS and PNS dynamics without LF-HF controversies. Frontiers in physiology, 10, 505.
- Oskooei, A., Chau, S. M., Weiss, J., Sridhar, A., Martínez, M. R., & Michel, B. (2019). DeStress: Deep Learning for Unsupervised Identification of Mental Stress in Firefighters from Heart-rate Variability (HRV) Data. arXiv preprint arXiv:1911.13213.
- Skotte, J., Korshøj, M., Kristiansen, J., Hanisch, C., & Holtermann, A. (2014). Detection of physical activity types using triaxial accelerometers. *Journal of physical activity and health*, *11*(1), 76-84.
- Chen, Z., Wu, M., Wu, J., Ding, J., Zeng, Z., Surmacz, K., & Li, X. (2019, May). A Deep Learning Approach for Sleep-Wake
 Detection from HRV and Accelerometer Data. In 2019 IEEE EMBS International Conference on Biomedical & Health Informatics
 (BHI) (pp. 1-4). IEEE.
- Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in public health, 5, 258.
- Park, H., Dong, S. Y., Lee, M., & Youn, I. (2017). The role of heart-rate variability parameters in activity recognition and energy-expenditure estimation using wearable sensors. *Sensors*, *17*(7), 1698.
- Wellness Space- https://wellness-space.net/

Thank You!!

