General Principles of Quantum Mechanics CHEM 361B: Introduction to Physical Chemistry

Dr. Michael Groves

Department of Chemistry and Biochemistry California State University, Fullerton

Lecture 7

Table of contents

- f 1 ψ Completely Defines the State of a System
- 2 Linear Operators and Observables
- 3 Eigenfunctions and Eigenvectors
- Operator Order
 - Expectation Values
 - The Uncertainty Principle

Learning Objective: Formalise the quantum mechanical principles we have discussed so far into 4 postulates of quantum mechanics.

References:

• McQuarrie §4.1 - 4.6

ψ Completely Defines the State of a System

$\mathsf{Theorem}\;(\mathsf{Postulate}\;1)$

The state of a quantum-mechanical system is completely specified by a function $\Psi(\vec{r},t)$ that depends on the coordinates of a particle and on time. This function, called the wave function, or state function, has the important property that $\Psi^*(\vec{r},t)\Psi(\vec{r},t)d\vec{r}$ is the probability that the particle lies in the volume element $d\vec{r}$ located at \vec{r} at time t.

This is the postulate that defines the normalisation condition that the probability of finding the particle somewhere is certain:

$$\int_{\mathsf{all\ space}} \Psi^*(\vec{r},t) \Psi(\vec{r},t) d\vec{r} = 1$$

Operators

An operator is a symbol that tells you to do something to whatever follows that symbol. For instance:

$$\frac{d}{dx}\left(x^2\right) = 2x$$

states take the derivative of x^2 . If I instead write:

$$\hat{D}x^2 = 2x;$$
 $\hat{D} = \frac{d}{dx}$

then I am stating that \hat{D} is a differential operator and I want to apply it to x^2 . In both cases, I get the same result.

Operator Examples

Perform the following operations:

1
$$\hat{A}(2x)$$
; $\hat{A} = \frac{d^2}{dx^2}$

2
$$\hat{A}(x^2)$$
; $\hat{A} = \frac{d^2}{dx^2} + 2\frac{d}{dx} + 3$

$$\hat{A}(xy^3); \qquad \hat{A} = \frac{\partial}{\partial y}$$

Linear Operators

An operator is said to be linear if

$$\hat{A}[c_1f_1(x) + c_2f_2(x)] = c_1\hat{A}f_1(x) + c_2\hat{A}f_2(x)$$

For instance the integral operator is linear because

$$\int [c_1 f_1(x) + c_2 f_2(x)] = c_1 \int f_1(x) + c_2 \int f_2(x)$$

while the "square" operator $(\hat{S}x = x^2)$ is not linear

$$\hat{S}[c_1f_1(x) + c_2f_2(x)] = c_1^2f_1^2(x) + 2c_1c_2f_1(x)f_2(x) + c_2^2f_2^2(x)$$

$$\neq c_1f_1^2(x) + c_2f_2^2(x)$$

All QM Operators are Linear

Theorem (Postulate 2)

To every observable in classical mechanics there corresponds a linear operator in quantum mechanics

Some quantum mechanical operators include:

Observable		Operation	
Name	Symbol	Operator	Operation
Position	X	Ŷ	X
Momentum	$p_{\scriptscriptstyle X}$	$\hat{P_{ imes}}$	$-i\hbar\frac{d}{dx}$
Total Energy	Ε	Ĥ	$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + U(x)$

Operators - Eigenfunctions and Eigenvalues

A problem that occurs frequently, called an eigenvalue problem, is the following: Given \hat{Q} , find a function g(x) and a constant β such that

$$\hat{Q}g(x) = \beta g(x)$$

In this case g(x) is called an eigenfunction, and β is called an eigenvalue. As another example, given the operator \hat{D}^n (differentiate with respect to x n times), it is fairly evident that

$$f(x) = e^{\alpha x}$$

is an eigenfunction of this operator and α^n is its eigenvalue.

Operators and Observables

Theorem (Postulate 3)

In any measurement of the observable associated with the operator \hat{A} , the only values that will ever be observed are the eigenvalues a, which satisfy the eigenvalue equation:

$$\hat{A}\Psi = a\Psi$$

The Hamiltonian

Revisiting the time independent Schrödinger equation it can be factored to be

$$\left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}+U(x)\right)\psi(x)=E\psi(x)$$

If we denote the operator in the brakets by \hat{H} then

$$\hat{H}\psi(x) = E\psi(x)$$

As a result, the Schrödinger equation has been formulated into an eigenfunction/eigenvalue problem where the Hamiltonian operator is

$$\hat{H} = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + U(x)$$

 $\psi(x)$ is the eigenfunction and the energy E is the eigenvalue.

Deducing the Momentum Operator

The Hamiltonian operator suggests a correspondence between itself and the energy of the system. If U(x) = 0 then all the energy in the system is kinetic so the kinetic energy operator is defined as

$$\hat{K} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$$

Classically, $K = \frac{p^2}{2m}$ so we can conclude that

$$\hat{P}_x^2 = -\hbar^2 \frac{d^2}{dx^2}$$

When factored it gives

$$\hat{P}_{x}\hat{P}_{x} = \left(-i\hbar\frac{d}{dx}\right) \left(-i\hbar\frac{d}{dx}\right)$$

$$\therefore \hat{P}_{x} = \left(-i\hbar\frac{d}{dx}\right)$$

Momentum Eigenfunction/Eigenvalue Example

We have deduced that the momentum operator is

$$\hat{P}_{x} = -i\hbar \frac{d}{dx}$$

Given the function $f(x) = e^{ikx}$ (recall that this is one of the solutions to

the wave equation) determine its eigenvalue when operated on by \hat{P}_{x}

Operators - Order can be important

Given two operators, \hat{A} and \hat{B} , if they are applied sequentially to a function f(x), then

$$\hat{A}\hat{B}f(x) = \hat{A}g(x) = h(x)$$

where

$$\hat{B}f(x) = g(x)$$

Operators are evaluated from right to left and can not necessarily be reversed. If it is the case that

$$\hat{A}\hat{B}f(x) = \hat{B}\hat{A}f(x)$$

then the operators \hat{A} and \hat{B} are said to commute.

Operator Order Examples

- Given $\hat{A} = \frac{d}{dx}$ and $\hat{B} = x^2$ (multiply by x^2) show that \hat{A} and \hat{B} do not commute.
- ② Given $\hat{A} = \frac{d}{dx}$ and $\hat{B} = 2$ (multiply by 2) show that \hat{A} and \hat{B} do commute.

Note: When showing if operators commute, it helps to use a dummy function (eg f(x)) to have the operators operate on to keep everything straight.

Using Operators to Determine Expectation Values

To use an operator to determine an expectation value consider

$$\hat{X}\psi(x)=x\psi(x)$$

Since order is important, multiply the left hand side of both equations by $\psi^*(x)$ and integrate over all values of x to give

$$\int \psi^*(x)\hat{X}\psi(x)dx = \int \psi^*(x) \ x \ \psi(x) \ dx$$
$$= \int x \ \psi^*(x)\psi(x) \ dx$$
$$= \langle x \rangle$$

Using Operators to Determine Expectation Values (cont.)

Theorem (Postulate 4)

If the system is in a state described by the normalised wave function Ψ , then the average value of the observable corresponding to the operator is given by

$$\langle a \rangle = \int_{-\infty}^{\infty} \Psi^* \hat{A} \Psi dx$$

Expectation Value Examples

Given
$$\psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right)$$
 find

- **○** ⟨p⟩
- $\langle p^2 \rangle$
- \mathbf{o} σ_{p}

Non-Commuting Operators

Recall that operators are said to commute when

$$\hat{A}\hat{B}f(x) = \hat{B}\hat{A}f(x)$$

To test if operators do commute then evaluate the following expression

$$[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A} = 0;$$
 commute $[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A} \neq 0;$ do not commute

Commutation Example

Verify if \hat{X} (position operator) and \hat{P}_{x} commute. If they do not commute then discuss the significance of the value obtained.

Note:
$$\sigma_A^2 \sigma_B^2 \ge -\frac{1}{4} \left(\int \psi^* [\hat{A}, \hat{B}] \psi \ dx \right)^2$$

Summary

Quantum mechanical operators are linear and are eigenfunction/eigenvalue problems with ψ . For example, the Schrödinger equation can be written using the Hamiltonian

$$\hat{H}\psi(x) = E\psi(x)$$

where

$$\hat{H} = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + U(x)$$

To determine the expectation value of an observable

$$\langle a \rangle = \int \psi^*(x) \hat{A} \psi(x) dx$$

If two operators do not commute, then they can not both be known precisely simultaneously. The magnitude of the product of their uncertainties is

$$\sigma_A^2 \sigma_B^2 \ge -\frac{1}{4} \left(\int \psi^* [\hat{A}, \hat{B}] \psi \ dx \right)^2$$