A. K. MAJEE

2.2. Sample path properties of Brownian motion: We will demonstrate that for almost every ω , the sample path $t \mapsto B(t, \omega)$ is uniformly Holder continuous for each exponent $\gamma < \frac{1}{2}$, but nowhere Holder continuous with any exponent $\gamma > \frac{1}{2}$. To prove uniformly Holder continuity, we use a general theorem of Kolmogorov called **Kolmogorov's continuity theorem**.

Theorem 2.5 (Kolmogorov's continuity theorem). Let $X(\cdot)$ be a stochastic process with continuous sample paths a.s. such that

$$\mathbb{E}\Big[|X(t) - X(s)|^{\beta}\Big] \le C|t - s|^{1 + \alpha}$$

for constants $\alpha, \beta > 0$ and $C \geq 0$, and for all $t, s \geq 0$. Then for each $0 < \gamma < \frac{\alpha}{\beta}$, T > 0, and almost every ω , there exists a constant $K = K(\omega, \gamma, T)$ such that

$$|X(t,\omega) - X(s,\omega)| \le K|t-s|^{\gamma}$$
 for all $s,t \in [0,T]$

i.e., the sample path $t \mapsto X(t, \omega)$ is uniformly Holder continuous with exponent γ on [0, T].

For t > s, we have for $m \in]\mathbb{N}$

8

$$\mathbb{E}[B(t) - B(s)|^{2m}] = \frac{1}{\sqrt{2\pi(t-s)}} \int_{-\infty}^{\infty} |x|^{2m} e^{-\frac{x^2}{2(t-s)}} dx$$
$$= (t-s)^m \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |y|^{2m} e^{-\frac{y^2}{2}} dy = C|t-s|^m.$$

Thus, from Kolmogorov's continuity theorem, we conclude that (taking $\beta = 2m, \alpha = m-1$) for a.s. ω and any T > 0, the sample path $t \mapsto B(t, \omega)$ is uniformly Holder continuous on [0, T] for each exponent

$$0 < \gamma = \frac{m-1}{2m} = \frac{1}{2} - \frac{1}{2m} < \frac{1}{2}.$$

We now prove that sample paths of Brownian motion are nowhere differentiable with probability 1.

Theorem 2.6. For each $\frac{1}{2} < \gamma \le 1$ and almost every ω , $t \mapsto B(t, \omega)$ is nowhere Holder continuous with exponent γ .

Proof. For simplicity, we consider B(t) for times $0 \le t \le 1$. Fix N such that

$$N(\gamma - \frac{1}{2}) > 1.$$

Suppose $t \mapsto B(t, \omega)$ is Holder continuous with exponent γ at some point $s_0 \in [0, 1]$ i.e., there exists constant K such that

$$|B(t,\omega) - B(s_0,\omega)| \le K|t - s_0|^{\gamma} \quad \forall t \in [0,1].$$
 (2.2)

For n large enough, set $i = [ns_0] + 1$. Then for $j = i, i + 1, \dots, i + N - 1$, we have, from (2.2)

$$|B(\frac{j}{n},\omega) - B(\frac{j+1}{n},\omega)| \le |B(\frac{j}{n},\omega) - B(s_0,\omega)| + |B(\frac{j+1}{n},\omega) - B(s_0,\omega)|$$

$$\le K\{|\frac{j}{n} - s_0|^{\gamma} + |\frac{j+1}{n} - s_0|^{\gamma}\} \le Mn^{-\gamma}$$

for some constant M. For $i \leq i \leq n$, $M \geq 1$ and for large n, define

$$A_{M,n}^{i} := \left\{ \omega : |B(\frac{j}{n}, \omega) - B(\frac{j+1}{n}, \omega)| \le Mn^{-\gamma}, \quad j = i, i+1, \dots, i+N-1 \right\}$$

Then, if A is the set of ω such that $B(\cdot, \omega)$ is Holder continuous with exponent γ at some point $s_0, 0 \le s_0 < 1$, we must have

$$A \subset \bigcup_{M=1}^{\infty} \bigcup_{k=1}^{\infty} \cap_{n=k}^{\infty} \bigcup_{i=1}^{n} A_{M,n}^{i}.$$

Our goal is to show that $\mathbb{P}(A) = 0$. Here we show that

$$\mathbb{P}\Big(\cup_{M=1}^{\infty}\cup_{k=1}^{\infty}\cap_{n=k}^{\infty}\cup_{i=1}^{n}A_{M,n}^{i}\Big)=0.$$

Observe that

$$\mathbb{P}\Big(\cap_{n=k}^{\infty}\cup_{i=1}^{n}A_{M,n}^{i}\Big)\leq \liminf_{n\to\infty}\mathbb{P}\Big(\cup_{i=1}^{n}A_{M,n}^{i}\Big)\leq \liminf_{n\to\infty}\sum_{i=1}^{n}\mathbb{P}(A_{M,n}^{i}).$$

Since $B(\frac{j}{n}) - B(\frac{j+1}{n}) \sim \mathcal{N}(0, \frac{1}{n})$ and $B(\frac{j}{n}) - B(\frac{j+1}{n})$, $j = i, i+1, \ldots, i+N-1$ are independent, we see that

$$\mathbb{P}(A_{M,n}^{i}) = \left\{ \mathbb{P}\left(|B(\frac{1}{n})| \le Mn^{-\gamma}\right) \right\}^{N} = \left\{ \frac{\sqrt{n}}{\sqrt{2\pi}} \int_{-Mn^{-\gamma}}^{Mn^{-\gamma}} e^{-\frac{nx^{2}}{2}} dx \right\}^{N}$$

$$= \left\{ \frac{1}{\sqrt{2\pi}} \int_{-Mn^{\frac{1}{2}-\gamma}}^{Mn^{\frac{1}{2}-\gamma}} e^{-\frac{y^{2}}{2}} dy \right\}^{N} \le Cn^{(\frac{1}{2}-\gamma)N} \quad \text{for some constant } C.$$

Thus, we get

$$\mathbb{P}\Big(\cap_{n=k}^{\infty}\cup_{i=1}^{n}A_{M,n}^{i}\Big)\leq \liminf_{n\to\infty}\sum_{i=1}^{n}\mathbb{P}(A_{M,n}^{i})\leq \liminf_{n\to\infty}\sum_{i=1}^{n}Cn^{(\frac{1}{2}-\gamma)N}=0 \quad (\therefore N(\gamma-\frac{1}{2})>1)$$

Since the above relation holds for all k and M, we conclude that

$$\mathbb{P}\Big(\cup_{M=1}^{\infty}\cup_{k=1}^{\infty}\cap_{n=k}^{\infty}\cup_{i=1}^{n}A_{M,n}^{i}\Big)=0\implies \mathbb{P}(A)=0.$$

Remark 2.3. From Theorem 2.6, we conclude the followings:

- a) Sample paths of Brownian motion is nowhere differentiable. Indeed, if $B(\cdot, \omega)$ is differentiable at some point s, then $B(\cdot, \omega)$ would be Holder continuous at point s with exponent $\gamma = 1$ which contradicts Theorem 2.6.
- b) Sample path of Brownian motion is infinite variation. Because, if $B(\cdot, \omega)$ were finite variation on some sub-interval, then it would be differentiable almost everywhere therewhich is NOT possible.

2.3. Markov property of Brownian motion.

Definition 2.2 (Markov process). Let $\{X(t): t \geq 0\}$ be a stochastic process adapted to the filtration $\{\mathcal{F}_t\}$. We say that X(t) is a Markov process if for any Borel measurable function f, there is a Borel measurable function g such that

$$\mathbb{E}[f(X(t))|\mathcal{F}_s] = g(X(s)) \quad \forall t > s \ge 0.$$

We show that Brownian motion is a Markov process. For its proof, we need the following independence lemma.

Lemma 2.7 (Independence). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and \mathcal{Y} be a sub- σ -algebra of \mathcal{F} . Suppose the random variables X_1, X_2, \ldots, X_n are \mathcal{Y} -measurable and the random variables Y_1, Y_2, \ldots, Y_m are independent of \mathcal{Y} . Let $f(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_m)$ be a function of the dummy variables x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_m , and define

$$g(x_1, x_2, \dots, x_n) = \mathbb{E} [f(x_1, x_2, \dots, x_n, Y_1, Y_2, \dots, Y_m)].$$

Then

$$g(X_1, X_2, \dots, X_n) = \mathbb{E} \Big[f(X_1, X_2, \dots, X_n, Y_1, Y_2, \dots, Y_m) | \mathcal{Y} \Big].$$

10 A. K. MAJEE

Theorem 2.8. Let $B(t), t \geq 0$ be a Brownian motion and \mathcal{F}_t be its natural filtration. Then B(t) is a Markov process. Moreover, for any Borel measurable function f, there holds

$$\mathbb{E}\Big[f(B(t))|\mathcal{F}_s\Big] = \int_{-\infty}^{\infty} f(y)\rho(t-s,B(s),y)\,dy,$$

where $\rho(\tau, x, y) := \frac{1}{\sqrt{2\pi\tau}} e^{-\frac{(y-x)^2}{2\tau}}$ is the **transition density** of the Brownian motion.

Proof. Let f be any Borel measurable function. Observe that for any $t > s \ge 0$,

$$\mathbb{E}\left[f(B(t))|\mathcal{F}_s\right] = \mathbb{E}\left[f(B(t) - B(s) + B(s))|\mathcal{F}_s\right]$$

and B(t) - B(s) is independent of \mathcal{F}_s and B(s) is \mathcal{F}_s measurable. Define

$$g(x) = \mathbb{E}[f(x + B(t) - B(s))].$$

Then by Independence lemma 2.7, we see that $\mathbb{E}\Big[f(B(t))|\mathcal{F}_s\Big]=g(B(s))$. In other words, B(t) is a Markov process. Since $B(t)-B(s)\sim\mathcal{N}(0,t-s)$, we see that

$$g(x) = \frac{1}{\sqrt{2\pi(t-s)}} \int_{-\infty}^{\infty} f(x+w)e^{-\frac{w^2}{2(t-s)}} dw$$

$$= \frac{1}{\sqrt{2\pi(t-s)}} \int_{-\infty}^{\infty} f(y)e^{-\frac{(x-y)^2}{2(t-s)}} dy = \int_{-\infty}^{\infty} f(y)\rho(t-s,x,y) dy$$

$$\implies \mathbb{E}\Big[f(B(t))|\mathcal{F}_s\Big] = \int_{-\infty}^{\infty} f(y)\rho(t-s,B(s),y) dy,$$

where $\rho(\tau, x, y) := \frac{1}{\sqrt{2\pi\tau}} e^{-\frac{(y-x)^2}{2\tau}}$ is the **transition density** of the Brownian motion.

Example 2.2. Let B(t) be a Brownian motion and $\{\mathcal{F}_t\}$ be its natural filtration. For $\mu \in \mathbb{R}$, consider the Brownian motion with drift

$$X(t) := \mu t + B(t).$$

Then $\{X(t): t \geq 0\}$ is a Markov process.

To see this, let $0 \le s < t$ and f be any Borel measurable function. Then

$$\mathbb{E}[f(X(t))|\mathcal{F}_s] = \mathbb{E}[f(\mu t + B(s) + B(t) - B(s))|\mathcal{F}_s].$$

Since $\mu t + B(s)$ is \mathcal{F}_s -measurable and B(t) - B(s) is \mathcal{F}_s -independent, we get

$$\mathbb{E}[f(X(t))|\mathcal{F}_s] = \mathbb{E}[f(a+B(t-s))]\Big|_{a=\mu t+B(s)}$$

$$= \frac{1}{\sqrt{2\pi(t-s)}} \int_{-\infty}^{\infty} f(\mu t + B(s) + x) e^{-\frac{x^2}{2(t-s)}} dx$$

$$= \frac{1}{\sqrt{2\pi(t-s)}} \int_{-\infty}^{\infty} f(y) e^{-\frac{(y-B(s)-\mu t)^2}{2(t-s)}} dy$$

$$= \frac{1}{\sqrt{2\pi(t-s)}} \int_{-\infty}^{\infty} f(y) e^{-\frac{(y-B(s)-\mu s-\mu(t-s))^2}{2(t-s)}} dy$$

$$= \int_{-\infty}^{\infty} f(y) \rho(t-s, X(s), y) dy = g(X(s))$$

where $\rho(\tau, x, y) = \frac{1}{\sqrt{2\pi\tau}} e^{-\frac{(y-x-\mu\tau)^2}{2\tau}}$ and $g(x) = \int_{-\infty}^{\infty} f(y) \rho(t-s, x, y) \, dy$.

2.4. First passage time of Brownian motion and reflexion principle: We now discuss the first passage time in which Brownian motion reaches to level m first time. For any real number m, define the first passage time as

$$\tau_m := \min\{t \ge 0 : B(t) = m\}. \tag{2.3}$$

Notice that

$$\{\tau_m \le t\} = \{\exists s \in [0, t] : B(s) = a\} \in \mathcal{F}_t$$

where $\mathcal{F}_t = \sigma(B(s): 0 \leq s \leq t)$. τ_m is a stopping time with respect to the filtration \mathcal{F}_t . Here we state some important property of Brownian motion associated with τ_m without proof.

Lemma 2.9. $B(\tau_m + s) - B(\tau_m) = B(\tau_m + s) - m$ is also a Brownian motion, independent from B(t), $t \le \tau_m$.

Theorem 2.10. For $m \in \mathbb{R}^+$, let τ_m be the first passage time of Brownian motion to level m. Then τ_m is finite almost surely.

Proof. For any $\sigma > 0$, consider the exponential martingale M(t) given in Theorem 2.1. Since τ_m is a stopping time, we have

$$1 = M(0) = \mathbb{E}[M(t \wedge \tau_m)] = \mathbb{E}\left[\exp\left\{\sigma B(t \wedge \tau_m) - \frac{1}{2}\sigma^2(t \wedge \tau_m)\right\}\right]$$
 (2.4)

It is easy to see that

$$\lim_{t \to \infty} \exp\{-\frac{1}{2}\sigma^2(t \wedge \tau_m)\} = \mathbf{1}_{\{\tau_m < \infty\}} \exp\{-\frac{1}{2}\sigma^2\tau_m\}$$

where $\mathbf{1}_A$ is the indicator function on A defined as

$$\mathbf{1}_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Notice that, if $\tau_m < \infty$, then for large t, $\exp{\{\sigma B(t \wedge \tau_m)\}} = e^{\sigma m}$, but for $\tau_m = \infty$, we do not know what happens to $\exp{\{\sigma B(t \wedge \tau_m)\}}$ as $t \to \infty$. Observe that since $\sigma > 0$ and m > 0, for $t \le \tau_m$, the get the following upper bound:

$$0 \le \exp\{\sigma B(t \wedge \tau_m)\} \le e^{\sigma m}.$$

Due to this bound, we conclude that $\exp\left\{\sigma B(t \wedge \tau_m) - \frac{1}{2}\sigma^2(t \wedge \tau_m)\right\}$ converges to zero as $t \to \infty$ for $\tau_m = \infty$. Combining these analysis, we finally have

$$\lim_{t \to \infty} \exp\left\{\sigma B(t \wedge \tau_m) - \frac{1}{2}\sigma^2(t \wedge \tau_m)\right\} = \mathbf{1}_{\{\tau_m < \infty\}} \exp\{\sigma m - \frac{1}{2}\sigma^2\tau_m\}$$
 (2.5)

Passing to the limit in (2.4) as $t \to \infty$ along with (2.5), we get

$$1 = \lim_{t \to \infty} \mathbb{E} \left[\exp \left\{ \sigma B(t \wedge \tau_m) - \frac{1}{2} \sigma^2(t \wedge \tau_m) \right\} \right]$$
$$= \mathbb{E} \left[\lim_{t \to \infty} \exp \left\{ \sigma B(t \wedge \tau_m) - \frac{1}{2} \sigma^2(t \wedge \tau_m) \right\} \right]$$
$$= \mathbb{E} \left[\mathbf{1}_{\{\tau_m < \infty\}} \exp \{ \sigma m - \frac{1}{2} \sigma^2 \tau_m \} \right].$$

Since this holds for all $\sigma > 0$, passing to the limit as $\sigma \to 0$, we have

$$\mathbb{E}\big[\mathbf{1}_{\{\tau_m<\infty\}}\big]=1 \implies \mathbb{P}(\tau_m<\infty)=1.$$

In other words, τ_m is finite almost surely.