Állománynév: aramkorok_06nemlin_eszkozok11.pdf

Irodalom: Tankönyv: R. J. Smith & R. C. Dorf, "Circuits, Devices and Systems," Wiley,

(5th Edition), pp. 340-349, 364-375, 590-599, 612-645.

Előadó jegyzetei: http://users.itk.ppke.hu/~kolumban/aramkorok/

6. NEMLINEÁRIS ESZKÖZÖK: DIÓDA, BIPOLÁRIS TRANZISZTOR ÉS MOSFET TRANZISZTOROK

Nemlineáris rendszerek:

- Néhány egyszerű esettől eltekintve zárt alakú megoldás nem létezik, általában csak numerikus vagy grafikus megoldás található
- Unicitás tétele nem igaz, különböző kezdeti feltételekhez sokszor más megoldás tartozik (pl. hiszterézis, káosz)
- Szuperpozició tétele nem alkalmazható
- Impedanciamódszer nem alkalmazható, átviteli függvények nem generálhatók
- Nemlineáris rendszerek nem konzervatívok a gerjesztő frekvenciákra nézve

VALÓSÁGOS ESZKÖZÖK TIPIKUS KARAKTERISZTIKÁI

(a) A félvezető dióda feszültség-áram karakterisztikája

$$I = I_S \left(e^{\frac{V}{\eta V_T}} - 1 \right)$$

ahol szobahőmérsékleten

$$V_T=rac{kT}{e}=25~\mathrm{mV}$$

(b) Tranzisztoros differenciál erősítő átviteli karakterisztikája

$$V_{out} = -\alpha R I_{EE} \tanh \underbrace{\left(\frac{V_{in}}{2V_T}\right)}_{V_{in}} \approx C_1 V_{in} + C_2 V_{in}^2 + C_3 V_{in}^3 \text{ ahol } C_1 \text{ \'es } C_2 > 0, \text{ de } C_3 < 0$$

A rossz hír:

- Minden fizikai rendszer nemlineáris, tipikusan előbb-utóbb telítésbe megy
- Zárt alakú tervezési módszerek csak lineáris rendszerekre léteznek, azok használatának feltétele a nemlineáris rendszer linearizálása
- Mit lehet tenni?

Modellek és megoldások

- Nagyjelű analízis
 - Grafikus és numerikus megoldások
 Nem linearizálás, tehát a lineáris rendszerekre kidolgozott módszerek nem alkalmazhatók
- Törtvonalas közelítés large-signal model
 Matematikai háttér: Nemlineáris karakterisztikát szakaszonként lineárissal közelítjük
- Kisjelű modell small-signal model
 - Linearizálás az adott munkapontban
 - Matematikai háttér: Taylor soros közelítés

A nemlineáris eszköz karakterisztikáját kétféle módon linearizálhatjuk

Cél: Linerizáljuk a fekete átviteli függvénnyel megadott nemlineáris eszközt

- Piros:
 Nagyjelű modell
 (törtvonalas közelítés)
- Kék:
 Kisjelű modell
 a Q munkapontbeli linearizálás

Analóg rendszerek analízisének mérnöki módszere (teljes kép)

NEMLIN ÁRAMKÖR

Linearizálás:

- 1. Nagyjelű modell
- 2. Kisjelű modell

LTI ÁRAMKÖRÖK

- 1. Matematikai modell: **Differenciál** egyenlet
- 2. Impedancia módszer bevezetése
 - Diff. egy. helyett algebrai egyenlet
 - Átviteli függvények
- Impedancia módszer csak akkor használható, ha korlátozzuk a gerjesztéseket a komplex exponenciálisok osztályára

GERJESZTÉSEK

- 1. Tetszőleges gerjesztés
- Lineáris rendszer => szuperpozició
- 3. Szinuszos bázis függvények:
 - Fourier sor
 - Fourier transzformáció

A linearizált helyettesítő kép, ami egy LTI áramkör, analízise

Linearizált helyettesítő kép = LTI Áramkör ⇒		Egyszerűsített áramkör
Időtartomány		Transzformált tartomány
#		₩
Lineáris rendszer		Transzformált rendszer
		Impedancia koncepció
+		↓
Differenciál egyenlet	\Longrightarrow	Algebrai egyenlet
	Transzformáció	
	Matematikus	
+		↓
Diff. egy. megoldása		Algebrai módszerek
+		
Válaszjel	←	Megoldás a transzformált
	Inverz transzformáció	tartományban

ELEKTRONIKÁBAN HASZNÁLT, LINEÁRIS HELYETTESÍTŐ KÉPET (AZAZ ZÁRT ALAKÚ MEGOLDÁST ADÓ) MÓDSZEREK

I. Nagyjelű modell: A nemlineáris karakterisztika törtvonalas közelítése

- 1. A nemlineáris eszköz karakterisztikáját törtvonalasan közelítjük
- 2. Különböző, de lineáris modelleket rendelünk az egyes tartományokhoz
- 3. Meghatározzuk, vagy feltételezést teszünk a nemlineáris eszköz működési tartományára
- 4. Egy tartományon belül az eszközt lineárisnak tekintjük

Megjegyzések:

- Nehézséget a működési tartomány meghatározása jelenti (próbálkozás)
- Tipikus alkalmazás:
 Munkapont meghatározása, kapcsolóüzemű és logikai áramkörök

II. Kisjelű közelítés, azaz munkaponti linearizálás módszere

Matematikai háttér: Taylor vagy hatványsoros közelítés

$$\underbrace{\frac{f(Q+\Delta x)-f(Q)}{\Delta y}=\frac{1}{1!}\frac{df}{dx}\Big|_{x=Q}\Delta x + \underbrace{\frac{1}{2!}\frac{d^2f}{dx^2}\Big|_{x=Q}\Delta x^2 + \cdots + \frac{1}{n!}\frac{d^nf}{dx^n}\Big|_{x=Q}\Delta x^n + \cdots}_{marad\acute{e}ktag}$$

- ullet Eredmény: A perturbácókra a Q munkapontban érvényes kisjelű modell (pirossal jelölve)
- Mivel a kisjelű modell lineáris, a kisjelű modellt tartalmazó rendszer is lineáris, azaz rá a lineáris rendszerekre kidolgozott módszerek alkalmazhatók
- Vedd észre, a kisjelű modell csak a perturbációkra érvényes!!!
- Kisjelű modell tipikus alkalmazása: Kisjelű erősítők (small-signal amplifier)

Az alkalmazandó modell típusát a bemeneti jel nagysága határozza meg

Jelmagyarázat:

- Fekete:
 Eszköz nemlineáris
 karakterisztikája
- Piros:
 Nagyjelű modell,
 törtvonalas közelítés
- Kék:
 Kisjelű modell, a
 Q munkapontbeli li nearizálás

A lineáris közelítő modellekre érvényes megjegyzések:

Törtvonalas közelítés (nagyjelű modell):

- Durva közelítés (nagy hiba)
- Nagy kivezérlés estén is alkalmazható
- Leginkább a munkapont meghatározására használják
- Az eszközparaméterekben mért nagy szórás miatt a durva közelítés által okozott hiba nem érdekes. A munkapontot egyéb módszerekkel stabilizáljuk

Munkaponti linearizálás (kisjelű modell):

- Csak az adott munkapont szűk környezetében érvényes
- Kis kivezérlés esetén alkalmazható
- Az adott munkapontban pontos modellt biztosít
- Csak a perturbációkra igaz
- A DC munkapontot és az AC feldolgozandó jelet csatoló kondenzátorokkal választjuk szét

6.1 A FÉLVEZETŐ DIÓDA

A dióda keresztmetszete

A kiürített réteg kialakulása

Kettősréteg és potenciálgát a szakadással lezárt diódában

- Külső záró feszültség alkalmazása (Záró irányú előfeszítés):
 - Szélesíti a kiürített réteget és megnöveli a potenciálgátat
 - Exponenciálisan csökken annak a valószinűsége, hogy egy töltéshordozó átjut a potenciálgáton
- Külső nyitó feszültség alkalmazása (Nyitó irányú előfeszítés):
 - Keskenyíti a kiürített réteget és lecsökkenti a potenciálgátat
 - Exponenciálisan nő annak a valószinűsége, hogy egy töltéshordozó átjut a potenciálgáton

A dióda karakterisztikája és kapcsolási rajzban használt szimbóluma

$$I = I_S \left(e^{rac{V}{V_T}} - 1
ight)$$
 ahol $V_T pprox 25 \ \mathrm{mV}$

Megjegyzések:

- ullet Feszültségforrást tilos nyitó irányban előfeszített pn átmenettel párhuzamosan kapcsolni
- pn átmenet nyitó irányú karakterisztikája függ a hőmérséklettől $\approx -2 \frac{\text{mV}}{\circ \text{C}}$

Dióda törtvonalas nagyjelű modelljének származtatása

Nyitó irányú előfeszítés Feltétel: I>0 $V_F=V_\gamma+I_FR_F$ $\approx 0,7~\mathrm{V}$

Záró irányú előfeszítés Feltétel: $I < 0 \ {\rm és} \ V_b < V < 0$

Letörési tartomány

Feltétel: I < 0 és $V \le V_b$

Dióda kisjelű modelljének származtatása

Dióda egyenlete

$$I = I_S \left(e^{\frac{V}{V_T}} - 1 \right) \text{ ahol } V_T \approx 25 \text{ mV}$$

A dióda dinamikus vezetése (azaz a Taylor sor lineáris tagja az adott I_Q munkapontban)

$$g_d = \frac{dI}{dV} \mid_{V_Q} = \frac{d}{dV} I_S \left(e^{\frac{V}{V_T}} - 1 \right) \mid_{V_Q}$$
$$= \frac{1}{V_T} I_S e^{\frac{V_Q}{V_T}} = \frac{I_Q + I_S}{V_T} \approx \frac{I_Q}{V_T}$$

A dióda dinamikus ellenállása, azaz kisjelű modellje

$$r_d = \frac{1}{g_d} = \frac{v}{i} = \frac{V_T}{I_Q} = \frac{25}{I_Q^{[mA]}} \quad [\Omega] \qquad \begin{array}{c} i \\ + \\ v \end{array} \qquad \begin{array}{c} \\ \\ \end{array} \qquad \begin{array}{c} r_d \\ \end{array}$$
 @ $T = 25^{\circ}\mathrm{C}$

A KISJELŰ ANALÍZIS LÉPÉSEI

- I. A nemlineáris eszköz munkapontjának kiválasztása ill. meghatározása Nemlineáris, állandósult állapotú DC analízis
- II. A nemlineáris eszköz adott munkaponthoz tartozó kisjelű modelljének, és a kisjelű modell (helyettesítő kép) paramétereinek meghatározása
- III. Az áramkör kisjelű modelljének (helyettesítő képének) és a jelúti paraméterek meghatározása Lineáris AC analízis
 - Hidegítések és szűrések, csatoló kondenzátorok

I. A dióda munkapontjának meghatározása

- Nemlineáris, állandósult állapotú DC analízis
- Kondenzátorok szakadással helyettesítendők
- Induktivitások rövidzárral helyettesítendők

II. A dióda adott munkaponthoz tartozó kisjelű modelljének, és a kisjelű modell paramétereinek meghatározása

A dióda dinamikus ellenállása a munkaponti áram függvénye

$$r_d = \frac{v}{i} = \frac{V_T}{I_Q} = \frac{25}{I_Q^{[mA]}} [\Omega]$$

III. A kisjelű modell és a jelúti paraméterek meghatározása

- Lineáris AC analízis
- Hidegítő és csatoló kondenzátorok rövidzárként viselkednek az üzemi frekvencián
- Fojtó tekercsek szakadásként viselkednek az üzemi frekvencián

6.2 A (BIPOLÁRIS RÉTEG-)TRANZISZTOR (BJT)

BJT emitter és bázisrétegeinek előfeszítése

Potenciáleloszlás a BJT-ban

Tranzisztor előfeszítése a normál aktív tartományban: \bullet EB átmenet: nyító irányú

• *CB* átmenet: záró irányú

Például egy npn tranzisztor esetén: $v_{EB} \approx -0.7 \text{ V}$ (azaz $v_{BE} = -v_{EB} \approx 0.7 \text{ V}$)

• $v_{CB} > 0 \text{ V}$

Többségi és kisebbségi töltéshordozók mozgása egy npn transzisztorban

Tranzisztorhatás: Rekombináció a bázisban igen kicsi, azaz $\alpha \approx 1$

Egy npn típusú bipoláris tranzisztor karakterisztikái

Bemeneti kar.

Kimeneti karakterisztika

A karakterisztikák felvétele

 $v_{CE} > 1 \text{ V}$ 0.1

0.2

0.5

1.0 $v_{BE}(V)$

- Mivel $i_B > 0$, a tranzisztor vezérléséhez teljesítmény szükséges
- ullet A pnp tranzisztor karakterisztikái teljesen megegyeznek a fenti be- és kimeneti karakterisztikával, de minden feszültség és áram -1-vel szorzandó
- Fizikai áramirányt az emittert azonosító nyíl iránya adja meg

Egy npn típusú bipoláris tranzisztor üzemmódjai

Bemeneti kar.

Kimeneti karakterisztika

A kapcsolási rajz

- Erősítő üzemmód (Q)
 Normál, aktív: BE átmenet nyító, míg BC átmenet záró írányban van előfeszítve
- Kapcsoló üzemmód (Kapcsoló és digitális áramkörök)
 Ugrás (BE) és (KI) pontok között

Az npn bipoláris transzisztor erősítő üzemmódjának grafikus analízise

Vedd észre, Thévenin ekvivalens

Ahol: • Q a munkapont helyét adja meg

• "Load line" a munkaegyenest jelenti

$$v_{CE} + i_C R_C = V_{CC}$$

$$i_C = -\frac{1}{R_C} v_{CE} + \frac{V_{CC}}{R_C}$$

6.2(a) BJT MODELLEZÉSE FÖLDELT BÁZISÚ KAPCSOLÁSBAN

npn normál aktív üzemmódban

- ullet EB átmenet: nyító irányú $v_{EB} pprox -0,7 \ {
 m V}$
- ullet CB átmenet: záró irányú $v_{CB}>0~{
 m V}$

Ahol α a földelt bázisú áramerősítési tényező

Földelt bázisú (FB) npn tranzisztor

Nagyjelű FB modell

6.2(b) BJT MODELLJE FÖLDELT EMITTERES KAPCSOLÁSBAN

Előzmények: A földelt bázisú npn tranzisztor nagyjelű modellje $i_C(i_E)$

$$i_E+i_B+i_C=0$$

$$i_C=-\alpha\,i_E \quad \text{\'es} \quad v_{EB,A}\approx -0,7 \text{ V}$$

$$i_E=-I_{ES}\left[e^{\left(-\frac{v_{EB}}{V_T}\right)}-1\right]\approx -I_{ES}\,e^{\frac{v_{BE}}{V_T}}$$

Földelt emitteres (FE) npn tranzisztor nagyjelű modellje $i_C(i_B)$

Ahol $oldsymbol{eta}$ a földelt emitteres áramerősítési tényező

6.2(c) AZ npn FE TRANZISZTOR KISJELŰ π MODELLJE

Linearizálás az adott I_E munkapontban: Egyetlen nemlináris elem a $BE \ pn$ átmenet

A kiinduló egyenletek

$$egin{aligned} egin{aligned} m{i}_E + m{i}_B + m{i}_C &= m{i}_E + m{i}_B + m{eta} m{i}_B = 0 &\implies m{i}_B = -rac{m{i}_E}{m{eta} + 1} \ & m{i}_E = -m{I}_{ES} \left(e^{rac{m{v}_{BE}}{m{V}_T}} - 1
ight) pprox -m{I}_{ES} \ e^{rac{m{v}_{BE}}{m{V}_T}} \end{aligned}$$

A $BE\ pn$ átmenet dinamikus vezetése (linearizálás az $i_E=I_E$ munkapontban)

$$egin{aligned} g_{\pi} =& rac{d \ i_B}{d v_{BE}} \mid_{v_{BE,Q}} = rac{d}{d v_{BE}} \left(-rac{i_E}{eta+1}
ight) \mid_{v_{BE,Q}} \ =& rac{1}{eta+1} I_{ES} rac{d}{d v_{BE}} \, e^{rac{v_{BE}}{V_T}} \mid_{v_{BE,Q}} = rac{1}{eta+1} rac{1}{V_T} \, \underbrace{I_{ES} e^{rac{v_{BE,Q}}{V_T}}}_{-i_E \mid v_{BE,Q}} = rac{1}{eta+1} \, \underbrace{\left(-rac{I_E}{V_T}
ight)}_{1/r_e} \end{aligned}$$

A tranzisztor BE átmenetének dinamikus ellenállása

$$r_{\pi}=rac{oldsymbol{v_{be}}}{oldsymbol{i_b}}\equivrac{1}{g_{\pi}}=(oldsymbol{eta}+1)r_e$$

ahol

$$r_e = -rac{V_T}{I_E} = -rac{25}{I_E^{[mA]}} \left[\Omega
ight] @~T = 25^{\circ}$$
C és $I_E < 0$

A kollektoráram kifejezése

$$i_b = rac{v_{be}}{r_{\pi}}$$

$$egin{aligned} oldsymbol{i_c} = oldsymbol{eta} oldsymbol{i_b} = oldsymbol{eta} rac{oldsymbol{v_{be}}}{(oldsymbol{eta}+1)oldsymbol{r_e}} = rac{lpha}{oldsymbol{r_e}} \, oldsymbol{v_{be}} = oldsymbol{g_m} oldsymbol{v_{be}} \end{aligned}$$

ahol a tranzisztor meredeksége

$$g_m = -lpha\,rac{I_E}{V_T}pprox -rac{I_E^{[\mathsf{mA}]}}{0,\,025}\,\left[rac{\mathsf{mA}}{\mathsf{V}}
ight]\,\, @\,\, T = 25^\circ \mathsf{C}$$

A tranzisztorok adott munkapontban érvényes, kisjelű modellje

Ahol a munkapontfüggő kisjelű tranzisztorparaméterek értéke

$$r_{\pi} = (eta + 1) rac{V_T}{|I_E|} = rac{25}{|I_E^{[mA]}|} \; [\Omega] \; @ \; T = 25^{\circ}$$
C

$$g_m = lpha \; rac{|I_E|}{V_T} pprox rac{|I_E^{[\mathsf{mA}]}|}{0,025} \; \left[rac{\mathsf{mA}}{\mathsf{V}}
ight] \; @ \; T = 25^{\circ} \mathsf{C}$$

 $|I_E|$ bevezetésével a kisjelű modellt **függetlenítettük** a tranzisztor típusától!

6.2(d) FE TRANZISZTOROS KISJELŰ ERŐSÍTŐ ANALÍZISE

- I. A tranzisztor munkapontjának meghatározása Nemlineáris, állandósult állapotú DC analízis
- II. A tranzisztor adott munkaponthoz tartozó kisjelű modell paramétereinek meghatározása
- III. A kisjelű modell felrajzolása és a jelúti paraméterek kiszámítása Lineáris AC analízis

I. A tranzisztor munkapontjának meghatározása

- Nemlineáris, állandósult állapotú DC analízis
- Kondenzátorok szakadással ill. az induktivitások rövidzárral helyettesítendők

Rossz hír: A BJT munkapontja **érzékeny** a réteghőmérsékletre A tranzisztort helyettesíteni kell az FE nemlineáris transzisztor modellel

Az npn tranzisztor FE nagyjelű modellje és a Thèvenin tétel alapján

Mindig három egyenlet írható és írandó fel

- Hurokegyenlet a bemeneti (bázis) körre
- Hurokegyenlet a kimeneti (kollektor) körre
- Tranzisztorra vonatkozó egyenlet

Ez függ az eszköz típusától és működési tartományától

Ebben az esetben: normál aktív tartományban üzemelő, $m{npn}$ tranzisztor

II. A tranzisztor adott munkaponthoz tartozó kisjelű modelljének, és a kisjelű modell paramétereinek meghatározása

A $\pi-g_m$ modell paraméterei a munkaponti emitteráram függvényei

$$r_{\pi} = (eta+1)rac{V_{T}}{|I_{E}|} = (eta+1)rac{25}{|I_{E}^{[mA]}|}~\Omega \ @\ T = 25^{\circ}$$
C

$$g_m = rac{|I_E^{[\mathsf{mA}]}|}{0,025} \; \left[rac{\mathsf{mA}}{\mathsf{V}}
ight] \; @ \; T = 25^{\circ} \mathsf{C}$$

Ne feledd: A kisjelű modell **független** a tranzisztor típusától

III. A kisjelű modell felrajzolása és a jelúti paraméterek meghatározása

- Lineáris AC analízis
- Hidegítő és csatoló kondenzátorok rövidzárként viselkednek az üzemi frekvencián
- Fojtó tekercsek szakadásként viselkednek az üzemi frekvencián

6.2(e) AZ npn/pnp FE TRANZISZTOROK MODELLJEI

Áram és feszültségirányok normál aktív tartományban:

npn normál aktív tartomány

pnp normál aktív tartomány

$$I_E < 0$$
 $I_B > 0, I_C > 0$ $V_{BE,A} pprox 0, 7 \ ee V_{CE} > 0, 5 \ ee$

$$I_E > 0 \ I_B < 0, I_C < 0 \ V_{BE,A} pprox -0, 7 \ ee V_{CE} < -0, 5 \ ee$$

- Ahol: Erősítőkben a tranzisztorokat normál aktív üzemmódba kell előfeszíteni
 - Segítség az ellenőrzéshez: Az emitteren lévő nyíl a fizikai áramírányt mutatja

Mindkét tranzisztorra érvényes kisjelű modellek:

Az $|I_E|$ bevezetésével a npn/pnp tranzisztorok kisjelű modelljei megegyeznek

Áramvezérelt áramgenerátor

Feszültségvezérelt áramgenerátor

$$r_e=rac{V_T}{|I_E|}$$
 ahol $V_T=25$ mV $r_\pi=(eta+1)r_e$ $g_m=rac{lpha}{r_e}=lpharac{|I_E|}{V_T}pproxrac{|I_E|}{V_T}$

6.3 A MOSFET TRANZISZTOROK

Növekményes (E) módú, n-csatornás MOSFET tranzisztor

Áramköri szimbólum

MOSFET keresztmetszete Töltéshordozók eloszlása alacsony v_{GS} mellett Kimeneti karakterisztika

Vedd észre: A kimeneti karakterisztika függ v_{DS} -től (\sim lineárisan)

Kiürítéses/növekményes (DE) módú, n-csatornás MOSFET tranzisztor

Szimbólum

MOSFET keresztmetszete

Kimeneti karakterisztika

Üzemmódok: • Q: Telítéses üzemmód, itt használható erősítésre

• BE és KI: Kapcsoló üzemmód

ullet $v_{DS}\sim 0$ V: Rezisztív tartomány (vezérelhető ellenállás)

Vedd észre: A kimeneti karakterisztika függ v_{DS} -től (\sim lineárisan)

n-csatornás MOSFET-ek szimbólumai

Növekményes (E) MOSFET

Kiürítéses (DE) MOSFET

n-csatornás MOSFET-ek transzfer karakterisztikái

ahol V_T a küszöbfeszültség

ahol $oldsymbol{V_p}$ az elzáródási feszültség

6.3(a) A MOSFET TRANZISZTOROK NAGYJELŰ MODELLJE

A MOSFET erősít, ha a telítéses tartományba van előfeszítve, amelynek feltétele

$$v_{DS} \geq v_{GS} - V_t$$

A nagyjelű modell:

Transzfer karakterisztika: $i_D = K(v_{GS} - V_t)^2$ és $i_S = -i_D$

Bemenetre vonatkozó egyenlet: $i_G = 0 \; orall \; v_{GS}$ -re

azaz a MOSFET tranzisztorok **vezérléséhez nem kell teljesítmény** (se erősítő, se kapcsoló üzemmódban!!!)

A nagyjelű modellek gyakorlatban használt egyenletei (n-csatornás MOSFET)

Növekményes (E) MOSFET

$$egin{aligned} V_t &= V_T > 0 \ i_D &= oldsymbol{K} \left(v_{GS} - V_T
ight)^2 ext{ és } i_S = -i_D \ i_G &= 0 \end{aligned}$$

A telítés feltétele:

$$v_{DS} \geq v_{GS} - V_T$$

Kiürítéses (DE) MOSFET

$$V_t = V_p < 0$$
 $i_D = I_{DSS} \left(1 - rac{v_{GS}}{V_p}
ight)^2$ és $i_S = -i_D$ $i_G = 0$

A telítés feltétele:

$$v_{DS} \geq v_{GS} - V_p$$

6.3(b) E és DE MOSFET TRANZISZTOROK KISJELŰ MODELLJE

Vedd észre, a MOSFET egy feszültségvezérelt áramgenerátorral modellezhető

- ahol MOSFET kimeneti csatorna ellenállása: $n \times 1$ k $\Omega \le r_d \le n \times 10$ k Ω
 - ullet meredeksége: $g_m = rac{di_D}{dv_{GS}}\mid_{V_{GS}}$

Növekményes (E) MOSFET

Kiürítéses (DE) MOSFET

$$g_m^E = 2K\left(V_{GS} - V_T
ight)$$

$$g_m^{DE} = -rac{2I_{DSS}}{V_p}\left(1-rac{V_{GS}}{V_p}
ight)$$

MOSFET jellemzők: $i_G=0$, de g_m nagyon kicsi \Rightarrow kis erősítés!!!

6.3(c) MOSFET KISJELŰ ERŐSÍTŐ ANALÍZISE

- I. Az n-csatornás kiürítéses MOSFET munkapontjának meghatározása Nemlineáris, állandósult állapotú DC analízis
- II. A MOSFET adott munkaponthoz tartozó kisjelű modell paramétereinek meghatározása
- III. A kisjelű modell felrajzolása és a jelúti paraméterek kiszámítása Lineáris AC analízis

I. A MOSFET munkapontjának meghatározása

- Nemlineáris, állandósult állapotú DC analízis
- Kondenzátorok szakadással ill. az induktivitások rövidzárral helyettesítendők

Jó hír: A MOSFET munkapontja **nem érzékeny** a hőmérséklet változására MOSFET-et helyettesíteni kell a nemlineáris nagyjelű modellel

Az előző ábrát a MOSFET eszközök nagyjelű modellje alapján átrajzolva kapjuk

Mindig három egyenlet írható és írandó fel

- Hurokegyenlet a bemeneti (gate) körre
- Hurokegyenlet a kimeneti (drain) körre
- MOSFET eszközre vonatkozó egyenlet

Ez függ az eszköz típusától és működési tartományától

Ebben az esetben: Telítéses tartományban üzemelő, $m{n}$ -csatornás kiürítéses MOSFET

A négyzetes transzfer karakterisztika miatt két megoldás adódik: (1) $V_p < V_{GS}$, a keresett megoldás és (2) $V_{GS} < V_p$, nem fizikai, hanem csak matematikai megoldás

II. A MOSFET adott munkaponthoz tartozó kisjelű modelljének, és a kisjelű modell paramétereinek meghatározása

Az n-csatornás kiürítéses (DE) MOSFET kisjelű modellje a munkaponti gate-source feszültség függvénye

$$g_m^{DE} = -rac{2I_{DSS}}{V_p} \left(1 - rac{V_{GS}}{V_p}
ight)$$

Az r_d kimeneti csatorna ellenállás a katalógusból keresendő ki

A MOSFET paraméterek függetlenek a hőmérséklettől

III. A kisjelű modell felrajzolása és a jelúti paraméterek meghatározása

- Lineáris AC analízis
- Hidegítő és csatoló kondenzátorok rövidzárként viselkednek az üzemi frekvencián
- Fojtó tekercsek szakadásként viselkednek az üzemi frekvencián

