МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО, МЛАДЕЖТА И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

МАТЕМАТИКА

31.08.2012 Г. – ВАРИАНТ 2

Отговорите на задачите от 1. до 20. включително отбелязвайте в листа за отговори!

- 1. Числото $x = \log_3 \frac{1}{2}$ е от интервала:

- **A**) $(3;+\infty)$ **B**) $\left[-\frac{1}{4};+\infty\right]$ Γ) $\left[\frac{1}{4};+\infty\right]$

- **2.** Стойността на $(3\sqrt{2} + 2\sqrt{3})(\sqrt{2} \sqrt{3})$ е:
- **A)** $-\sqrt{6}$
- **Б**) √6

B) 6

- Γ) 12 $\sqrt{6}$
- 3. Ако x_1 и x_2 са корените на уравнението $2x^2 + 3x 20 = 0$, а $b = x_1.x_2$ и $c = x_1 + x_2$, то уравнението $x^2 + bx + c = 0$ е:
- **A)** $x^2 \frac{3}{2}x 10 = 0$ **B)** $x^2 + \frac{3}{2}x 10 = 0$ **B)** $x^2 10x + \frac{3}{2} = 0$ $\Gamma x^2 10x \frac{3}{2} = 0$

- 4. Множеството от решенията на неравенството $(2x-3)^2 > 1$ е:
- **A**) (1; 2)

- **B**) $\left(\frac{\sqrt{10}}{2}; +\infty\right)$ **B**) $\left(-\infty; 1\right) \cup \left(2; +\infty\right)$ Γ) $\left(-\infty; -2\right) \cup \left(-1; +\infty\right)$
- 5. Допустимите стойности на израза $\frac{\sqrt[4]{-x^2y^3}}{\sqrt{xy}}$ са:
- **A)** x < 0, y < 0
- **B**) x < 0, y > 0 **B**) x > 0, y < 0 $\Gamma(x > 0, y > 0)$
- **6.** Броят на различните корени на уравнението $x^2 + 2|x| = 0$ е:
- **A)** 0

b) 1

B) 2

Г) 3

7. Стойността на израза
$$A = \frac{\sin\frac{\alpha}{2}.\cos\alpha + \cos\frac{\alpha}{2}.\sin\alpha}{\sin^2\frac{\alpha}{2} - \cos^2\frac{\alpha}{2}}$$
, ако $\alpha = 30^\circ$, e:

- **A)** $-\sqrt{2}$ **B)** $\frac{-2\sin 15^{\circ}}{\sqrt{3}}$ **B)** $-\frac{\sqrt{2}}{\sqrt{3}}$
- Γ) $\frac{\sqrt{6}}{2}$

8. Неравенството $a^{\frac{1}{6}} < a^{\frac{1}{7}}$ **е вярно, когато:**

- **A)** a < 0
- **b**) 0 < a < 1
- **B**) a = 1
- Γ) a > 1

9. Дадена е числова редица с формула за общия член $a_n = -n^2 + 8n, \ n \in \mathbb{N}$. Най–големият от първите пет члена е с номер:

A) 5

Б) 4

B) 3

Γ) 2

10. Ако средноаритметичното на числата a, b, c, d, p и q е 3, а средноаритметичното на числата a, b, c и d е 4, то средноаритметичното на числата p и q е:

A) 1

Б) 2

B) 2,5

Г) 3,5

11. На чертежа е показана част от графиката на квадратна функция. Ако точката M(-1; -4) е върхът на параболата, то тази графика ще пресече за втори път абсцисната ос в точката с координати:

- **A)** (0,5;0)
- **b**) (1;0)
- **B**) (2;0)
- Γ) (3;0)

12. В края на учебната година за успеха на ученици са получени резултатите, отразени на кръговата диаграма. Определете мярката на централния ъгъл на сектора, отразяващ броя на учениците, получили оценка *Мн. добър 5*.

A) 52°

Б) 117°

B) 130°

Γ) 156°

13. На чертежа $\angle PMN = \angle EFP$, ME = 12, EP = 3 и PF = 6. Отношението EF : MN е равно на:

- **A)** 1:2
- **Б**) 2:3
- **B**) 1:4
- **Γ**) 2:5
- 14. Вписаната в ромба ABCD окръжност се допира до страната AB в точка P. Ако радиусът на окръжността е $r=12\,\mathrm{mm}$ и $AP=16\,\mathrm{mm}$, то периметърът на ромба е:

- **A)** 5 cm
- **Б**) 6,7 **cm**
- **B**) 7,6 cm
- **Γ**) 10 **cm**
- 15. В $\triangle ABC$ със страни $AC = 5\,\mathrm{cm}$ и $BC = 8\,\mathrm{cm}$ отсечката CL ($L \in AB$) е ъглополовящата на $\angle ACB$. Ъглополовящата на $\angle ABC$ пресича CL в точка M, като я дели в отношение CM: ML = 2:1. Дължината на страната AB е равна на:

- **A**) 6 cm
- **Б**) 6,5 cm
- **B)** 7.5 cm I
- Γ) 8 cm

- 16. Трапецът ABCD е равнобедрен с бедро BC = 6 cm и $\angle BAC = 2\angle CAD = 30^{\circ}$. Диагоналът на трапеца е:
 - **A)** 6 cm
- **b**) $6\sqrt{2}$ cm **b**) $6\sqrt{3}$ cm
- Γ) 9 cm

17. На чертежа е даден равнобедреният *ABC*, за който основата $AB = 16 \,\mathrm{cm}$ и $S_{ABC} = 48 \,\mathrm{cm}^2$. Ако точката D е средата на AB и $DT \perp AC(T \in AC)$, то дължината на AT e:

- **A)** 3,6 cm
- **Б**) 4,8 cm
- **B**) 6,4 cm Γ) 8 cm
- 18. Даден е успоредник ABCD. Височината BH $(H \in AD)$ пресича диагонала AC в точка O и AO:OC=1:4. Ако лицето на $\triangle AOH = 3$ cm 2 , то лицето на успоредника H**ABCD** е равно на:

- **A)** 60 cm^2
- **Б**) 96 cm²
- **B)** 120 cm^2 Γ) 128 cm^2

- 19. За $\triangle ABC$ на чертежа AC = 12, AB = 16, BC = 8 и точка $M \in AC$, като MA:MC=3:1. Дължината на BM е:
- **A)** $\sqrt{337}$
- **Б**) $\sqrt{85}$
- **B)** $\sqrt{61}$ Γ) $\sqrt{55}$
- 20. Точките M, N, P и Q са средите съответно на страните AB, BC, CD и DA на четириъгълника ABCD, а MNPQ е правоъгълник с лице 12 cm^2 . Лицето на *ABCD* е равно на:
 - **A)** 18 cm^2
- **Б**) 24 cm²
- **B**) 36 cm^2
- Γ) 48 cm²

- **21.** Пресметнете числото $\log_a \frac{9}{4}$, ако a е корен на уравнението (a-1)(3a-2)=0.
- **22.** Намерете сбора от реалните корени на уравнението $\sqrt{2x^2 + 2} + 2x^2 + 2 = 6$.
- 23. В правоъгълна координатна система с мерна единица 1 cm са построени графиките на функциите $f(x) = x^2 + x 34$ и g(x) = 2x 4, а M е обща точка на двете графики и лежи в първи квадрант. Намерете разстоянието в сантиметри от точка M до началото на координатната система.
- **24.** При записване на всичките 300 различни данни от проведен експеримент се оказало, че числата в подредения статистически ред образуват аритметична прогресия, като най-малкото от тях е 2, а най-голямото е 799. Намерете медианата на тази извадка.
- **25.** Отсечката CH ($H \in AB$) е височина в $\triangle ABC$ и CH : AC : BC = 3 : 4 : 5. Триъгълникът е вписан в окръжност с радиус $R = \sqrt{3}$ ст. Намерете сбора от дължините на страните AC и BC.

<u>Пълните решения с необходимите обосновки на задачите от 26. до 28. включително запишете в свитъка за свободните отговори!</u>

- **26.** За членовете на аритметична прогресия a_1, a_2, a_3, \dots и растяща геометрична прогресия b_1, b_2, b_3, \dots са в сила равенствата: $a_1 = b_1, a_2 = b_2 + 1, a_3 = b_3 1$ и $b_1 + b_2 + b_3 = 21$. Намерете броя n на членовете на аритметичната прогресия, ако тяхната сума $S_n = 55$.
- **27.** С помощта на цифрите 0, 1, 2 и 3 са записани всички трицифрени числа с различни цифри и по случаен начин е избрано едно от тях. Каква е вероятността това число да се дели на 3?
- 28. На чертежа $CD(D \in AB)$ е височина към страната AB в $\triangle ABC$. Точките O_1 и O_2 са центровете на вписаните съответно в $\triangle ACD$ и $\triangle BCD$ окръжности. Дължините на AD, BD и CD са съответно 9cm, 5cm и 12cm. Да се намери дължината на O_1O_2 и радиусът на описаната около триъгълника O_1O_2C окръжност.

ФОРМУЛИ

Квадратно уравнение

$$ax^2+bx+c=0\ , \ \ a\neq 0 \qquad D=b^2-4ac \quad x_{1,2}=\frac{-b\pm\sqrt{D}}{2a}$$
 при $D\geq 0$ $ax^2+bx+c=a\big(x-x_1\big)\big(x-x_2\big)$ Формули на Виет: $x_1+x_2=-\frac{b}{a}$ $x_1x_2=\frac{c}{a}$

Квадратна функция

Графиката на $y = ax^2 + bx + c$, $a \ne 0$ е парабола с връх точката $\left(-\frac{b}{2a}; -\frac{D}{4a}\right)$

Корен. Степен и логаритъм

Комбинаторика

Брой на пермутациите на n елемента: $P_n = n.(n-1)...3.2.1 = n!$

Брой на вариациите на n елемента k -ти клас: $V_n^k = n.(n-1)...(n-k+1)$

Брой на комбинациите на n елемента k -ти клас: $C_n^k = \frac{V_n^k}{P_k} = \frac{n.(n-1)...(n-k+1)}{k.(k-1)...3.2.1}$

Вероятност за настъпване на събитието A:

$$p(A) = \frac{\textit{брой на благоприятните случаи}}{\textit{брой на възможните случаи}}, \quad 0 \le p(A) \le 1$$

Прогресии

Аритметична прогресия: $a_n = a_1 + (n-1)d$ $S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$

Геометрична прогресия: $a_n = a_1 \cdot q^{n-1}$ $S_n = a_1 \cdot \frac{q^n - 1}{q - 1}, \ q \neq 1$

Формула за сложна лихва: $K_n = K.q^n = K.\left(1 + \frac{p}{100}\right)^n$

Зависимости в триъгълник и успоредник

Правоъгълен триъгълник:
$$c^2=a^2+b^2$$
 $S=\frac{1}{2}ab=\frac{1}{2}ch_c$ $a^2=a_1c$ $b^2=b_1c$

$$h_c^2 = a_1 b_1$$
 $r = \frac{a+b-c}{2}$ $\sin \alpha = \frac{a}{c}$ $\cos \alpha = \frac{b}{c}$ $\tan \alpha = \frac{a}{b}$ $\cot \alpha = \frac{b}{a}$

Произволен триъгълник:

$$a^{2} = b^{2} + c^{2} - 2bc\cos\alpha$$
 $b^{2} = a^{2} + c^{2} - 2ac\cos\beta$ $c^{2} = a^{2} + b^{2} - 2ab\cos\gamma$ $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$

Формула за медиана:

$$m_a^2 = \frac{1}{4} (2b^2 + 2c^2 - a^2)$$
 $m_b^2 = \frac{1}{4} (2a^2 + 2c^2 - b^2)$ $m_c^2 = \frac{1}{4} (2a^2 + 2b^2 - c^2)$

Формула за ъглополовяща:
$$\frac{a}{b} = \frac{n}{m}$$
 $l_c^2 = ab - mn$

Формула за диагоналите на успоредник:
$$d_1^2 + d_2^2 = 2a^2 + 2b^2$$

Формули за лице

Триъгълник:
$$S=\frac{1}{2}ch_c$$
 $S=\frac{1}{2}ab\sin\gamma$ $S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}$ $S=pr$ $S=\frac{abc}{4R}$

Успоредник:
$$S = ah_a$$
 $S = ab\sin\alpha$ Трапец: $S = \frac{a+b}{2}h$

Четириъгълник: $S = \frac{1}{2} d_1 d_2 \sin \varphi$

Описан многоъгълник: S = pr

Тригонометрични функции

α°	0°	30°	45°	60°	90°
α rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$tg\alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_
$\cot g \alpha$	-	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

	$-\alpha$	90°-α	90°+α	180° − α
sin	$-\sin\alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$
cos	$\cos \alpha$	$\sin \alpha$	$-\sin\alpha$	$-\cos\alpha$
tg	$-\operatorname{tg}\alpha$	$\cot g \alpha$	$-\cot g \alpha$	$-$ tg α
cotg	$-\cot g \alpha$	$tg\alpha$	$-\operatorname{tg}\alpha$	$-\cot g \alpha$

$$\begin{split} &\sin\left(\alpha\pm\beta\right) = \sin\alpha\cos\beta\pm\cos\alpha\sin\beta &\cos\left(\alpha\pm\beta\right) = \cos\alpha\cos\beta\mp\sin\alpha\sin\beta \\ & tg\left(\alpha\pm\beta\right) = \frac{tg\,\alpha\pm tg\,\beta}{1\mp tg\,\alpha\,tg\,\beta} &\cot\left(\alpha\pm\beta\right) = \frac{\cot\alpha\cot\beta\mp1}{\cot\beta\pm\cot\alpha} \\ &\sin2\alpha = 2\sin\alpha\cos\alpha &\cos2\alpha = \cos^2\alpha - \sin^2\alpha = 2\cos^2\alpha - 1 = 1 - 2\sin^2\alpha \\ &tg\,2\alpha = \frac{2tg\,\alpha}{1-tg^2\,\alpha} &\cot 2\alpha = \frac{\cot^2\alpha-1}{2\cot^2\alpha} \\ &\sin^2\alpha = \frac{1}{2}(1-\cos2\alpha) &\cos^2\alpha = \frac{1}{2}(1+\cos2\alpha) \\ &\sin^2\alpha = \frac{1}{2}(1-\cos2\alpha) &\sin^2\alpha = 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ &\cos\alpha + \cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} &\sin\alpha - \sin\beta = 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ &\cos\alpha + \cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} &\cos\alpha - \cos\beta = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ &1-\cos\alpha = 2\sin^2\frac{\alpha}{2} &1+\cos\alpha = 2\cos^2\frac{\alpha}{2} \\ &\sin\alpha\sin\beta = \frac{1}{2}(\cos(\alpha-\beta)-\cos(\alpha+\beta)) &\cos\alpha\cos\beta = \frac{1}{2}(\cos(\alpha-\beta)+\cos(\alpha+\beta)) \\ &\sin\alpha\cos\beta = \frac{1}{2}(\sin(\alpha+\beta)+\sin(\alpha-\beta)) \end{split}$$

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО, МЛАДЕЖТА И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ

ПО МАТЕМАТИКА 31.08. 2012 г.

Ключ с верните отговори на ВАРИАНТ 2

Въпрос №	Верен отговор	Брой точки	
1.	Б	2	
2.	A	2	
3.	Γ	2	
4.	В	2	
5.	A	2	
6.	Б	2	
7.	В	2 2	
8.	Б	2 2	
9.	Б	2	
10.	A	2	
11.	Б	3	
12.	Б	3	
13.	Γ	3	
14.	Γ	3 3 3 3 3	
15.	Б	3	
16.	Б	3	
17.	В	3 3 3 3 3	
18.	В	3	
19.	Б	3	
20.	Б		
21.	-2	4	
22.	0	4	
23.	10	4	
24.	400,5	4	
	$27\sqrt{3}$	4	
25.	$\frac{27\sqrt{3}}{10}$		
26.	n=5	10	
27.	_{P-} 5	10	
	$P = \frac{5}{9}$		
28.	$O_1O_2 = \sqrt{26}$; $R = \frac{13\sqrt{10}}{8}$	10	

26. Критерии за оценяване

1. Изразяване членовете на двете прогресии:

$$\vdots$$
 a_1 , $a_1 q$, $a_1 q^2$

$$\div a_1, a_1 + d, a_1 + 2d$$

$$a_1$$
, $a_1 q + 1$, $a_1 q^2 - 1$

$$:= a_1, a_1 + d - 1, a_1 + 2d + 1$$

2. Съставяне на системата

$$\begin{vmatrix} a_1 + a_1 q + a_1 q^2 = 21 \\ 2(a_1 q + 1) = a_1 + a_1 q^2 - 1 \end{vmatrix}$$
или
$$\begin{vmatrix} a_1 + a_1 + d - 1 + a_1 + 2d + 1 = 21 \\ (a_1 + d - 1)^2 = a_1 (a_1 + 2d + 1) \end{vmatrix}$$

$$(a_1+d-1)^2 = a_1(a_1+2d+1)$$

3. Решаване на системата

$$q_1 = 2 \in \mathcal{A}C$$
, $q_2 = \frac{1}{2} \in \mathcal{A}C$ или $a_1 = 12$, $a_1 = 3$

4. Отчитане, че геометричната прогресия е растяща

$$\Rightarrow q = 2$$
 или $\Rightarrow a_1 = 3$

5. Намиране на членовете на двете прогресии:

2 т.

$$a_1 = 3$$

$$\Rightarrow$$
 3, 6, 12

$$\div$$
 3, 7, 11

6. Съставяне и решаване на уравнението $55 = \frac{2.3 + (n-1).4}{2} n, n \in \mathbb{N}$

Отговор: n = 5

$$\frac{3 + (n-1).4}{2} n, n \in \mathbb{N}$$
 2 T.

27. Критерии за оценяване:

1. Преброяване на трицифрените числа, образувани от дадените 4 цифри – 3 т. I начин: броят = 3.3.2 = 18, защото цифрата на стотиците може да се избере от 3цифри (1, 2 и 3), цифрата на десетиците – от 3 цифри (0 и останалите две от неизбраните) и цифрата на единиците – от 2 цифри (неизбраните за цифра на десетиците).

Общият брой на числата е 3.3.2 = 18

II начин.

Броят на трицифрените числа, образувани от 4 цифри, е $V_4^3 = 4.3.2 = 24$, като в това число са включени и тези, започващи с нула (012, 013, 023, ...), които са $V_3^2 = 3.2 = 6$. Следователно броят на трицифрените числа, образувани с помощта на цифрите 0, 1, 2 и 3, e 24-6=18.

2. Преброяване на трицифрените числа, образувани от дадените цифри,

Трицифрените числа, образувани от тези цифри, ще се делят на 3, само ако сумата от трите цифри се дели на 3. В случая възможностите са две – цифрите са 1, 2, 0 или 1, 2, 3.

Броят на трицифрените числа, образувани от цифрите 1, 2 и 0, е 2.2.1 = 4, а броят на тези, чиито цифри са 1, 2 и 3, е $P_3 = 3! = 6$.

3. Намиране на търсената вероятност.

1 т.

Общият брой благоприятни случаи са 6+4=10

Вероятността
$$P = \frac{10}{18} = \frac{5}{9}$$

27. Критерии за оценяване:

1. От правоъгълните триъгълници ACD и BCD намиране дължините на $AC = 15 \,\mathrm{cm}$ и $BC = 13 \,\mathrm{cm}$ (2 т.)

2. От правоъгълните триъгълници АСД и ВСД

намиране на
$$r_1 = 3 \text{ cm } \text{и } r_2 = 2 \text{ cm}$$
 (1 т.)

3. От
$$O_1O_2M$$
 намиране на $MO_2=r_1+r_2=5\,\mathrm{cm},$ $MO_1=r_1-r_2=1\,\mathrm{cm}$ и $O_1O_2=\sqrt{26}\,\mathrm{cm}$ (2 т.)

4. От синусовата теорема за
$$O_1O_2C$$
 изразяване на $R = \frac{O_1O_2}{2\sin\angle O_1CO_2}$. (1 т.)

5. Изразяване на
$$\angle O_1 CO_2 = \angle O_1 CD + \angle DCO_2 = \frac{1}{2} \angle ACB$$
 (1 т.)

6. От косинусовата теорема за $\triangle ABC$ намиране на $\cos \angle ACB = \frac{AC^2 + BC^2 - AB^2}{2AC.BC}$

$$\Rightarrow \cos \angle ACB = \frac{13^2 + 15^2 - 14^2}{2.13.15} = \frac{169 + 225 - 196}{390} = \frac{198}{390} = \frac{33}{65}$$
 (1 T.)

7. Намиране на $\sin \angle O_1 CO_2 = \sin \left(\frac{1}{2} \angle ACB\right) = \sqrt{\frac{1 - \cos \angle ACB}{2}}$

$$\sin \angle O_1 CO_2 = \sqrt{\frac{1 - \frac{33}{65}}{2}} = \sqrt{\frac{16}{65}} = \frac{4\sqrt{65}}{65}.$$
 (1 T.)

8. Намиране на
$$R = \frac{O_1 O_2}{2 \sin \angle O_1 C O_2} = \frac{\sqrt{26}}{\frac{8\sqrt{65}}{65}} = \frac{65\sqrt{26}}{4\sqrt{260}} = \frac{65}{4\sqrt{10}} = \frac{65\sqrt{10}}{40} = \frac{13\sqrt{10}}{8}$$