MANIPAL UNIVERSITY JAIPUR

School of Computers and Communication Engineering

Computer Science and Engineering with specialization in IoT and Intelligent Systems

Course Hand-out

Digital Design and Computer architecture | IS2101| 4 Credits | 3 1 0 4

Session: July 22 - Nov. 22 | Faculty: Dr. Vijay Kumar Sharma, Dr. Kusum Lata Jain, Dr. Renu Kumawat | Class: III Semester

- A. Introduction: This course is offered by Dept. of Computer and Communication Engineering for third semester students. The core objective of this course is to describe the general organization and architecture of a computer system. It covers in detail various functional units of a computer system, machine instructions, addressing techniques and instruction sequencing. It provides a detailed coverage of logic circuits to perform various arithmetic operations and use of pipelining in the design of high-performance processors.
- **B.** Course Outcomes: At the end of the course, students will be able to
 - [2101.1]. Digital Logic Circuits and digital components for computer system
 - [2101.2]. Describe various data representation and formulate assembly language programs for a given high level language construct.
 - [2101.3]. Analyse the design of fast arithmetic circuits.
 - [2101.4]. Describe various parts of a system memory hierarchy
 - [2101.5]. Evaluate the performance of CPU, memory, and I/O operations.
 - [2101.6]. Build the required skills to read and research the current literature in computer architecture.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- **[PO.1] Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- **[PO.2] Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3] Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes_that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4] Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- **[PO.5] Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools_including prediction and modeling to complex engineering activities with an understanding of the limitations

- **[PO.6] The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues_and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7] Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8] Ethics**: Apply ethical principles and commit to professional ethics_and responsibilities and norms of the engineering practices
- **[PO.9] Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- **[PO.10] Communication**: Communicate effectively_on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.II]** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12]** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

Program Specific Outcomes (PSOs)

At the end of the B Tech CCE program, the student:

PSO1: Imbibe the basic concepts and applications of computer-based Communication or networking, information sharing, signal processing, web-based systems, smart devices, and communication technology.

PSO2: Investigate prominent areas in the field of Computer and Communication Engineering to provide feasible solutions.

PSO3: Apply the contextual knowledge in the field of Computing and Communication to assess social, health, safety, and security issues relevant to the professional engineering practice.

D. Assessment Plan:

Criteria	Description	Date	Maximum Marks						
	Sessional Exam I (Closed	22 Sep-26 Sep	20						
Internal Assessment	Book)								
(Summative)	Sessional Exam II (Closed	10-14 Nov	20						
	Book)								
	Quizzes and Assignments	Regularly	20						
	(Accumulated and								
	Averaged)								
End Term Exam	End Term Exam (Closed	28 Nov- 9 Dec	40						
(Summative)	Book)								
	Total	100							
Attendance	A minimum of 75% Attendance is required to be maintained by a student to be								
(Formative)	qualified for taking up the End Semester examination. The allowance of 25%								
	includes all types of leaves including medical leaves.								

E. SYLLABUS

Digital logic circuits: logic gates, Boolean algebra, map simplification, combinational circuits, flip-flops, sequential circuits; Digital components: Integrated circuits, decoders, multiplexers, registers, shift registers, binary counters; Memory unit: Von-Neumann model for computer/ Von- Neumann architecture, performance; Machine instructions and programs: numbers, arithmetic operations and characters, memory locations and addresses, instructions and instruction sequencing, addressing modes, assembly language, additional instructions, encoding of machine instructions; Arithmetic: addition and subtraction of signed numbers, design of fast adders, multiplication of positive numbers, signed operand multiplication, fast multiplication, integer division, floating point numbers and operations; Introduction to CPU design: instruction interpretation and execution, microoperation and their RTL specification, memory hierarchy, main memory, types and interfacing; Cache Memory: organization and operations, levels of caches; memory management module: paging and segmentation, virtual memory, disk memory, raids, back-up memory; RISC and CISC processors; Introduction to input/output processing: programmed controlled i/o transfer, interrupt controlled I/O transfer, DMA controller; Pipelining and pipeline hazards: design issues of pipeline architecture; Instruction level parallelism and advanced issues: introduction to interconnection network and practical issues.

References:

- I. M. M. Mano, Computer System Architecture, (3e), Pearson Education, 2017.
- 2. C. Hamacher, Z. Vranesic, S. Zaky, Computer Organization, (5e), McGraw Hill, 2011.
- 3. J. P. Hayes, Computer Architecture and Organization, (3e), McGraw Hill, 2017.
- 4. T. L. Floyd, Digital Fundamentals, (11e), Pearson Education, 2015. 5. W. Stallings, Computer Organization and Architecture–Designing for Performance, (10e), Pearson Education, 2016.

F. Lecture Plan:

Lectures	Major Topics Topics		Mode of Delivery	Corresponding CO	Mode Of Assessing CO			
1	Introduction	Discussion of Course handout, course Outcome	Lecture	NA	NA			
2	Basic Structure of	Computer Types, Functional Units, Basic Operational Concepts	Lecture	2101.1	Mid Term I, Quiz & End Term			
3	Computers	Software, Performance	Lecture	2101.1	Mid Term I, Quiz & End Term			
4		Boolean algebra, logic gates	Lecture	2101.1	Mid Term I, Quiz & End Term			
5	Digital logic circuits	map simplification,		2101.1	Mid Term I, Quiz & End Term			
6	7	combinational circuits	Lecture	2101.1	Mid Term I, Quiz & End Term			
7	V	flip-flops	Lecture	2101.1 & 2101.6	Mid Term I, Quiz & End Term			
8		sequential circuits	Lecture	2101.1	Mid Term I, Quiz & End Term			
9	Digital components:	Integrated circuits, decoders,	Lecture	2101.1	Mid Term I, Quiz & End Term			
10		Multiplexers	Lecture	2101.1	Mid Term I, Quiz & End Term			
11		Registers, shift registers, binary counters	Lecture	2101.1	Mid Term I, Quiz & End Term			
12	1	Numbers, Arithmetic Operations and Characters	Flipped Class	2101.2	Mid Term I, Quiz & End Term			
13	Markina Ingganasiana A	Memory Locations and Addresses, Memory Operations	Lecture	2101.2	Mid Term I, Quiz & End Term			
14	Machine Instructions and Programs	Instructions and Instruction Sequencing	Lecture	2101.2& 2101.3	Mid Term I, Quiz & End Term			
15	~	addressing modes	Lecture	2101.2	Mid Term I, Quiz & End Term			
16	$\overline{}$	assembly language, additional instructions, encoding of	Lecture	2101.2 & 2101.6	Mid Term II, Quiz & End Term			
			TERM I					
17		Remedial Classes						
18		Remedial Classes						
19		Addition and Subtraction of Signed Numbers	Lecture	2101.3	Mid Term II, Quiz & End Term			
20		Design of Fast Adders	Lecture	2101.3 & 1301.6	Mid Term II, Quiz & End Term			
21	Arithmetic	Carry Look Ahead Adders	Lecture	2101.3 & 1301.5	Mid Term II, Quiz & End Term			
22		Multiplication of Positive Numbers-Array Sequential Circuit	Lecture	2101.3 & 1301.5	Mid Term II, Quiz & End Term			
23	Ŭ	Signed Operand Multiplication-Booth Algorithm		2101.3	Mid Term II, Quiz & End Term			

24	~	Fast Multiplication-Bit Pair Recoding Of Multipliers	Lecture	2101.3 & 1301.5	Mid Term II, Quiz & End Term			
25		Carry-save addition of summands	Lecture	2101.3	Mid Term II, Quiz & End Term			
26	\sim	Integer Division-Restoring	Lecture	2101.3	Mid Term II, Quiz & End Term			
27	\sim	Integer Division- Nonrestoring	Lecture	2101.3	Mid Term II, Quiz & End Term			
28	(Floating Point Numbers & Operation-Standards	Lecture	2101.3	Mid Term II, Quiz & End Term			
29		Arithmetic Operations on Floating Point Numbers	Lecture	2101.3	Mid Term II, Quiz & End Term			
30		Tutorial	Activity					
		MID.	TERM II					
33		Memory Systems: Basic Concepts and different memory Hierarchy	Flipped Class	2101.4	Mid Term II ,Quiz & End Term			
34	J	Speed, Size & Cost	Lecture	2101.4 & 2101.5 Mid Term II ,Quiz & End				
35	Memory Systems	types and interfacing;	Lecture	2101.4& 2101.5	Mid Term II ,Quiz & End Term			
36		Cache Memory: organization and operations	Lecture	2101.4& 2101.5	Mid Term II ,Quiz & End Term			
37		Cache Memories: Levels of Cache	Lecture	2101.4	Mid Term II , Quiz & End Term			
38	Divox, of	Memory management module: paging and segmentation, virtual memory	Lecture	2101.4& 2101.5	Mid Term II , Quiz & End Term			
39	D'ADRY	RISC and CISC processors	Lecture	2101.4& 2101.6	Mid Term II , Quiz & End Term			
	· /	instruction interpretation and execution	Lecture	2101.5	Mid Term II, Quiz & End Term			
	Input / Output Processing	micro-operation and their RTL specification	Lecture	2101.5	Mid Term II, Quiz & End Term			
40	programmed controlled i/o transfer,		Lecture	2101.5	Mid Term II , Quiz & End Term			
41		interrupt controlled I/O transfer,	Lecture	2101.5	Mid Term II , Quiz & End Term			

42	7	Accessing /O Devices,		Lecture	2101.5	Quiz & End Term
43	(2)	Handling Multiple Devices, Controlling Device Requests, Exceptions		Lecture	2101.5	Quiz & End Term
44	1,6,00	Direct Memory Access,		Lecture	2101.5	Quiz & End Term
45	1, 200	DMA controller;		Lecture	2101.5	Quiz & End Term
46	8, 32	Design issues of pipeline architecture.		Lecture	2101.5 & 2101.6	Quiz & End Term
47		Pipelining	Lecture	2101.5	Quiz & End Term	
48		Data Hazards		Lecture	2101.5	Quiz & End Term
49	Instructional Level Parallelism	Instruction Scheduling: Static and Dynamic	Lecture	2101.5	Quiz & End Term	
50		Instruction level parallelism		Lecture	2101.5	Quiz & End Term
51	\	Tutorial		Activity	2101.6	Quiz & End Term
52		Revision				
		E	END	TERM		

G. Course Articulation Matrix: (Mapping of COs with POs)

со	STATEMENT	CORRELATION WITH PROGRAM OUTCOMES									CORRELATION WITH PROGRAM SPECIFIC OUTCOMES					
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
2101. 1	Digital Logic Circuits and digital components for computer system	2	1										1	2	1	
2101. 2	Describe various data representation and formulate assembly language programs for a given high level language construct	3	2										1	1	1	
2101. 3	Analyse the design of fast arithmetic circuits.	2	2	1									1	1		
2101. 4	Describe various parts of a system memory hierarchy	3	2										1		1	1
2101. 5	Evaluate the performance of CPU, memory, and I/O operations.	3	2	1									2	1	1	2
2101. 6	Build the required skills to read and research the current literature in computer architecture.												2	1		

I- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation