Национальный исследовательский ядерный университет «МИФИ»

Лабораторная работа No.3 «Методы численного интегрирования функций»

Выполнил: студент группы k6-361

Рыбников Виталий. Вариант : 6 / 2

Май — 2013

Цель работы:

Изучение численных методов вычисления определённых интегралов.

Постановка задачи

Задан интеграл $\int_0^1 \frac{e^x}{1+e^{2x}} dx$ Необходимо вычислить значение интеграла:

- методом Симпсона
- методом Гаусса для трёх точек на интервале [0; 1]

Погрешность вычисления $\varepsilon = 1e-4$

Результаты аппроксимации

Заданная функция $f(x) = \frac{e^x}{1+e^{2x}}$ непрерывна на отрезке [0; 1].

Метод Симпсона

Введем на отрезке [0;1] равномерную сетку x_i . Оценим шаг $h_{\rm пp}$, используя априорную формулу погрешности ограничения $|R_{\rm orp}| \leqslant \frac{h^4}{180} (b-a) \max_{[a:b]} |f^{IV}(\xi_i)|$.

$$f^{IV}(\xi_i) = \frac{384 e^{9x}}{(e^{2x} + 1)^5} - \frac{768 e^{7x}}{(e^{2x} + 1)^4} + \frac{464 e^{5x}}{(e^{2x} + 1)^3} - \frac{80 e^{3x}}{(e^{2x} + 1)^2} + \frac{e^x}{e^{2x} + 1}$$

Анализ $f^{IV}(x)$ (см. рисунок 1) показывает, что $\max_{[0;1]} |f^{IV}(\xi_i)| = 2.5$

Рис. 1: График $f^{IV}(\xi_i)$

 $|R_{
m orp}|<arepsilon$ из этой оценки получаем начальный шаг $h_{
m np}=0.0071429.$ Количество разбиений заданного отрезка n=140.

Используя в качестве оценки погрешности вычисления интеграла метод двойного пересчёта (оценка по Рунге), сделано 0 итераций, для достижения погрешности ε . Значение полученного шага h=0.0071429, что совпадает с шагом, рассчитанным по априорной формуле.

Значение интеграла, рассчитанное по формуле метода Симпсона I=0.4328847.

Таблица 1: Зависимость значения интеграла I от числа разбиений N

N	14	140	1 390	13 890	138 890
I	0.43288	0.43288	0.43288	0.43288	0.43288

По таблице построен график 2.

Рис. 2: Зависимость значения интеграла I от числа разбиений N

Метод Гаусса

На отрезке [0;1] задано 3 точки.

Вычисление интеграла происходит по формуле $I=\frac{b-a}{2}\sum_{i=1}^3 A_i f(\frac{a+b}{2}+\frac{b-a}{2}t_i),$ где $A_1=A_3=5/9,\ A_2=8/9$

 $t_1 = -0.774597, t_3 = 0.774597, t_2 = 0$

Значение интеграла: I=0.4328802

Вычисленная погрешность метода Гаусса $R_{3,gauss} = \frac{f^{VI}}{15\,750} = 0.00191$