Lecture Notes Graph Theory

Prof. Dr. Maria Axenovich February 24, 2014

Contents 3 Introduction 3 **Notations** 1 Preliminaries 4 2 Matchings 12 3 Connectivity 15 4 Planar graphs 19 5 Colorings 24 6 Extremal graph theory 26 7 Ramsey theory 30 8 Flows 33 9 Random graphs 35 10 Hamiltonian cycles 37 Literature 38 Named theorems 39

40

Index

Introduction

These brief notes include major definitions and theorems of the graph theory lecture held by Prof. Maria Axenovich at KIT in the winter term 2013/14. We neither prove nor motivate the results and definitions. You can look up the proofs of the theorems in the book "Graph Theory" by Reinhard Diestel [4]. A free version of the book is available at http://diestel-graph-theory.com.

Conventions:

- G = (V, E) is an arbitrary (undirected, simple) graph
- n := |V| is its number of vertices
- m := |E| is its number of edges

Notations

notation	definition	meaning
$\binom{V}{k}$, V finite set, k integer	$\{S\subseteq V: S =k\}$	the set of all k -element subsets of V
[n], n integer	$\{1,\ldots,n\}$	the set of the first n positive integers
2^S , S finite set	$\{T:T\subseteq S\}$	the power set of <i>S</i> , i.e. the set of all subsets of <i>S</i>
$S\triangle T$, S , T finite sets	$(S \cup T) \setminus (S \cap T)$	the symmetric difference of sets <i>S</i> and <i>T</i> , i.e. the set of elements that appear in exactly one of <i>S</i> or <i>T</i>
$A \sqcup B$	$A \cup B$	the union of the disjoint sets <i>A</i> and <i>B</i>

1 Preliminaries

Definition. A *graph* G is an ordered pair (V, E), where V is a finite set and $E \subseteq \binom{V}{2}$ is a set of pairs of elements in V.

graph, G

vertex, edge

- The set V is called the set of *vertices* and E is called the set of *edges* of G.
- The edge $e = \{u, v\} \in \binom{V}{2}$ is also denoted by e = uv.
- If $e = uv \in E$ is an edge of G, then u is called *adjacent* to v and u is called *incident* to e.

adjacent, incident

We can visualize graphs G = (V, E) using pictures. For each vertex $v \in V$ we draw a point (or small disc) in the plane. And for each edge $uv \in E$ we draw a continuous curve starting and ending in the point/disc for u and v, respectively.

Several examples of graphs and their corresponding picture follow:

$$V = [5], E = \{12, 13, 24\}$$

$$V = \{A, B, C, D, E\},$$

$$E = \{AB, AC, AD, AE, CE\}$$

Definition (Graph variants).

- A directed graph is G = (V, A) where V is a finite set and $E \subseteq V^2$. The edges of a directed graph are also called arcs.
- A multigraph is G = (V, E) where V is a finite set and E is a multiset of elements from $\binom{V}{1} \cup \binom{V}{2}$, i.e. we also allow loops and multiedges.
- A *hypergraph* is H = (X, E) where X is a finite set and $E \subseteq 2^X \setminus \{\emptyset\}$.

directed graph arc multigraph

hypergraph

Definition. For two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ we say that G_1 and G_2 are *isomorphic*, denoted by $G_1 \simeq G_2$, if there exists a bijection $\phi : V_1 \to V_2$ with $xy \in E_1$ if and only if $\phi(x)\phi(y) \in E_2$.

isomorphic, \simeq

Loosely speaking, G_1 and G_2 are isomorphic if they are the same up to renaming of vertices. Hence, we may write $G_1 = G_2$ instead of $G_1 \simeq G_2$ whenever vertices are indistinguishable.

=

Important graphs and graph classes

Definition. For all natural numbers n we define:

• the *complete graph* on *n* vertices as $K_n = ([n], \binom{[n]}{2})$. Complete graphs are also called cliques.

complete graph clique

• for $n \ge 3$, the *cycle* on n vertices as $C_n = ([n], \{\{i, i+1\} : i = 1, \dots, n-1\} \cup i = n)$ $\{n,1\}$). The *length of a cycle* is its number of edges.

• the *path* on *n* vertices as $P_n = ([n], \{\{i, i+1\} : i = 1, ..., n-1\})$. The vertices path 1 and *n* are called the *endpoints* or *ends* of the path. The *length of a path* is its number of edges.

• the *empty graph* on *n* vertices as $E_n = ([n], \emptyset)$. Empty graphs are also called independent sets.

empty graph independent set

• for $m \ge 1$, the *complete bipartite graph* on n and m vertices as $K_{m,n} = (A \cup B, \{xy :$ $x \in A, y \in B$), where |A| = m and |B| = n, $A \cap B = \emptyset$. bipartite graph

• the Petersen graph as $(\binom{[5]}{2}, \{\{S,T\}: S, T \in \binom{[5]}{2}, S \cap T = \emptyset\})$.

Petersen graph

• for a natural number k, $k \le n$, the *Kneser graph* as

Kneser graph

$$K(n,k) = \left({n \brack k}, \left\{ \{S,T\} : S,T \in {n \brack k}, S \cap T = \emptyset \right\} \right).$$

Note that K(5,2) is the Petersen graph.

ullet the *n-dimensional hypercube* as $Q_n=\left(2^{[n]},\left\{\{S,T\}:S,T\in 2^{[n]},|S\triangle T|=1\right\}
ight)$. hypercube

Basic graph parameters and degrees

Definition. Let G = (V, E) be a graph. We define the following parameters of G.

- The *order of G*, denoted by |G|, is the number of vertices of G, i.e. |G| = |V|.
- The *size of G*, denoted by ||G||, is the number of edges of *G*, i.e. ||G|| = |E|. Note that if the order of *G* is *n*, then the size of *G* is between 0 and $\binom{n}{2}$.
- Let $S \subseteq V$. The *neighbours of S*, denoted by N(S), are the vertices in V that have an adjacent vertex in S. Instead of $N(\{v\})$ for $v \in V$ we usually write N(v).
- If the vertices of G are labeled v_1, \ldots, v_n , then there is an $n \times n$ matrix A with entries in $\{0,1\}$, which is called the *adjacency matrix* and is defined as follows:

$$v_{i}v_{j} \in E \quad \Leftrightarrow \quad A[i,j] = 1$$

$$v_{3} \qquad v_{2} \qquad v_{4} \qquad A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

A graph and its adjacency matrix.

• The *degree* of a vertex v of G, denoted by d(v) or deg(v), is the number of edges incident to v.

$$v_3$$
 v_2 v_4 v_2 v_4 v_4 v_2 v_4 v_4

- A vertex of degree 1 in *G* is called a *leaf*, and a vertex of degree 0 in *G* is called an *isolated vertex*.
- The *degree sequence* of G is the multiset of degrees of vertices of G, e.g. in the example above the degree sequence is $\{1,2,2,3\}$.
- The *minimum degree of G*, denoted by $\delta(G)$, is the smallest vertex degree in G (it is 1 in the example).
- The *maximum degree of G*, denoted by $\Delta(G)$, is the highest vertex degree in *G* (it is 3 in the example).
- G is called k-regular for a natural number k if all vertices have degree k. Graphs that are 3-regular are also called cubic.

order, |G| size, |G|

neighbours, N(v)

adjacency matrix

degree, d(v)

leaf isolated vertex degree sequence

minimum degree, $\delta(G)$

maximum degree, $\Delta(G)$

regular cubic • The average degree of G is defined as $d(G) = (\sum_{v \in V} \deg(v)) / |V|$. Clearly, we have $\delta(G) \leq d(G) \leq \Delta(G)$ with equality if and only if G is k-regular for some k.

average degree, d(G)

Lemma 1 (Handshake lemma, 1.2.1). For every graph G = (V, E) we have

$$2|E| = \sum_{v \in V} d(v).$$

Corollary 2. In particular, the sum of all vertex degrees is even and therefore the number of vertices with odd degree is even.

Subgraphs

Definition.

• A graph H = (V', E') is a *subgraph of G*, denoted by $H \subseteq G$, if $V' \subseteq V$ and $E' \subseteq E$. In particular, $G_1 = G_2$ if and only if $G_1 \subseteq G_2$ and $G_2 \subseteq G_1$.

subgraph, \subseteq

• A subgraph H of G is called an *induced subgraph* of G if for every two vertices $u,v \in V(H)$ we have $uv \in E(H) \Leftrightarrow uv \in E(G)$. In the example above H is not an induced subgraph of G. Every induced subgraph of G can be obtained by deleting vertices (and all incident edges) from G.

induced subgraph

Examples:

• Every induced subgraph of G is uniquely defined by its vertex set. We write G[X] for the induced subgraph of G on vertex set X, i.e. $G[X] = (X, \{xy : x, y \in X, xy \in E(G)\})$. Then G[X] is called the *subgraph of G induced by the vertex set* $X \subseteq V(G)$.

G[X]

Example:

- A subgraph H = (V', E') of G = (V, E) is called a *spanning subgraph* of G if V' = V.
- *G* is called *bipartite* if there exists natural numbers m, n such that $G \subseteq K_{m,n}$.

spanning subgraph

bipartite

- A cycle (path, clique, independent set) in G is a subgraph H of G that is isomorphic to a cycle (path, clique, independent set).
- A walk (of length k) is a non-empty alternating sequence $v_0e_0v_1e_1\cdots e_{k-1}v_k$ of vertices and edges in G such that $e_i = \{v_i, v_{i+1}\}$ for all i < k. If $v_0 = v_k$, the walk is closed.
- Let $A, B \subseteq V$, $A \cap B = \emptyset$. A path P in G is called an A-B-path if $P = v_1 \dots v_k$, $V(P) \cap A = \{v_1\}$ and $V(P) \cap B = \{v_k\}$. When $A = \{a\}$ and $B = \{b\}$, we simply call P an a-b-path. If G contains an a-b-path we say that the vertices a and b are *linked by a path*.
- Two paths *P*, *P'* in *G* are called *independent* if every vertex in both *P* and *P'* is an endpoint of *P* and *P'*.
- *G* is called *connected* if any two vertices are linked by a path.
- A maximal connected subgraph of *G* is called a *connected component* of *G*.
- *G* is called *acyclic* if *G* does not have any cycle. Acyclic graphs are also called *forests*.
- *G* is called a *tree* if *G* is connected and acyclic.

Proposition 3. If a graph G has minimum degree $\delta(G) \geq 2$, then G has a path of length $\delta(G)$ and a cycle with at least $\delta(G) + 1$ vertices.

Proposition 4. If a graph has an *u-v*-walk, then it has an *u-v*-path.

Proposition 5. If a graph has a closed walk of odd length, then it contains an odd cycle.

Proposition 6. If a graph has a closed walk with a non-repeated edge (at least one edge appears in the walk with multiplicity one), then the graph contains a cycle.

Proposition 7. A graph is bipartite if and only if it has no cycles of odd length.

Definition. An *Eulerian tour of G* is a closed walk containing all edges of *G*, each with multiplicity one.

Eulerian tour

Theorem 8 (Eulerian tour condition, 1.8.1). A connected graph has an Eulerian tour if and only if every vertex has even degree.

Lemma 9. Every tree on at least two vertices has a leaf.

Lemma 10. A tree of order $n \ge 1$ has exactly n - 1 edges.

Lemma 11. Every connected graph contains a spanning tree.

Lemma 12. A connected graph on $n \ge 1$ vertices and n - 1 edges is a tree.

Lemma 13. The vertices of every connected graph can be ordered $(v_1, ..., v_n)$ so that for every $i \in \{1, ..., n\}$ the graph $G[\{v_1, ..., v_i\}]$ is connected.

walk

closed walk *A-B*-path

independent paths connected component acyclic forest tree

Operations on graphs

Definition. Let G = (V, E) and G' = (V', E') be two graphs, $U \subseteq V$ be a subset of vertices of G and $F \subseteq \binom{V}{2}$ be a subset of pairs of vertices of G. Then we define

• $G \cup G' := (V \cup V', E \cup E')$ and $G \cap G' := (V \cap V', E \cap E')$. Note that $G, G' \subseteq G \cup G'$ and $G \cap G' \subseteq G, G'$. Sometimes, we also write G + G' for $G \cup G'$.

• $G - U := G[V \setminus U]$, $G - F := (V, E \setminus F)$ and $G + F := (V, E \cup F)$. If $U = \{u\}$ or $F = \{e\}$ then we simply write G - u, G - e and G + e for G - U, G - F and G + F, respectively.

• For an edge e = xy in G we define $G \circ e$ as the graph obtained from G by identifying x and y and removing (if necessary) loops and multiple edges.

• The *complement of G*, denoted by \overline{G} or G^C , is defined as the graph $(V, {V \choose 2} \setminus E)$. In particular, $G + \overline{G}$ is a complete graph, and $\overline{G} = (G + \overline{G}) - E$.

complement, \overline{G}

 $G \cup G', G \cap G'$

G-U, G-F,

G+F

 $G \circ e$

More graph parameters

Definition. Let G = (V, E) be any graph.

• The *girth of G*, denoted by g(G), is the length of a shortest cycle in G. If G is acyclic, its girth is said to be ∞ .

• The *circumference* of *G* is the length of a longest cycle in *G*. If *G* is acyclic, its circumference is said to be 0.

• *G* is called *Hamiltonian* if *G* has a spanning cycle, i.e. there is a cycle in *G* that contains every vertex of *G*. In other words, *G* is Hamiltonian if and only if its circumference is |*V*|.

• *G* is called *traceable* if *G* has a spanning path, i.e. there is a path in *G* that contains every vertex of *G*.

• For two vertices u and v in G, the *distance between* u *and* v, denoted by d(u,v), is the length of a shortest u-v-path in G. If no such path exists, d(u,v) is said to be ∞ .

girth, g(G)

circumference

Hamiltonian

traceable

distance, d(u, v)

• The *diameter of G* of *G*, denoted by diam(*G*), is the maximum distance among all pairs of vertices in *G*, i.e.

diameter, diam(G)

$$diam(G) = \max_{u,v \in V} d(u,v).$$

radius, rad(*G*)

• The *radius of G* of *G*, denoted by rad(*G*), is defined as

$$\mathrm{rad}(G) = \min_{u \in V} \max_{v \in V} d(u, v).$$

• If there is a vertex ordering v_1, \ldots, v_n of G for a $d \in \mathbb{N}$ such that

$$|N(v_i) \cap \{v_{i+1},\ldots,v_n\}| \leq d,$$

for all $i \in [n]$ then G is called *d-degenerate*. The minimum d for which G is *d*-degenerate is called the *degeneracy* of G.

d-degenerate degeneracy

We remark that the 1-degenerate graphs are precisely the forests.

Proposition. For any graph G = (V, E) each of the following is equivalent.

- (i) *G* is a tree, that is, *G* is connected and acyclic.
- (ii) *G* is minimally connected.
- (iii) *G* is maximally acyclic.
- (iv) *G* is connected and 1-degenerate.
- (v) G is connected and |E| = |V| 1.
- (vi) *G* is acyclic and |E| = |V| 1.
- (vii) *G* is connected and every non-trivial subgraph of *G* has a vertex of degree at most 1.
- (viii) Any two vertices are joined by a unique path in *G*.

2 Matchings

Definition.

• A matching (independent edge set) is a vertex-disjoint union of edges.

- A *matching in G* is a subgraph of *G* isomorphic to a matching. We denote the size of the largest matching in *G* by $\nu(G)$.
- A *vertex cover in G* is a set of vertices $U \subseteq V$ such that each edge in E is incident to at least one vertex in U. We denote the size of the smallest vertex cover in G by $\tau(G)$.

- A *k-factor of G* is a *k*-regular spanning subgraph of *G*.
- A 1-factor of G is also called a *perfect matching* since it is a matching of largest possible size in a graph of order |V|. Clearly, G can only contain a perfect matching if |V| is even.
- A *k-edge colouring* is an assignment $c' : E \to [k]$ of edges to colours in [k] such that no two edges incident to the same vertex receive the same colour. The *chromatic index of G* is the minimal k such that G has a k-edge colouring. It is denoted by $\chi'(G)$.
- A *k-vertex colouring* is an assignment $c \colon V \to [k]$ of vertices to colours in [k] such that no two adjacent vertices receive the same colour. The *chromatic number of G* is the minimal k such that G has a k-vertex colouring. It is denoted by $\chi(G)$.

matching

 $\nu(G)$ vertex cover

 $\tau(G)$

k-factor perfect matching

chromatic index, $\chi'(G)$ vertex colouring chromatic

number, $\chi(G)$

edge colouring

Theorem 14 (Hall's marriage theorem 1935, 2.1.2). Let G be bipartite with partite sets A and B. Then G has a matching containing all vertices of A if and only if $|N(S)| \ge |S|$ for all $S \subseteq A$.

Theorem 15 (Tutte's theorem 1947, 2.2.1). For $S \subseteq V$ define q(S) to be the number of odd components of G - S. A graph G has a perfect matching if and only if $q(S) \leq |S|$ for all $S \subseteq V$.

Corollary 16.

- Let *G* be bipartite with partite sets *A* and *B* such that $|N(S)| \ge |S| d$ for all $S \subseteq A$, and a fixed positive integer *d*. Then *G* contains a matching of size at least |A| d.
- A *k*-regular bipartite graph has a perfect matching.
- A *k*-regular bipartite graph has a proper *k*-edge coloring.

Definition.

• For all functions $f: V \to \mathbb{N}$ a f-factor of G is a spanning subgraph H of G such that $\deg_H(v) = f(v)$ for all $v \in V$.

*f-*factor

• Let $f\colon V\to\mathbb{N}$ be a function with $f(v)\leq \deg(v)$ for all $v\in V$. We can construct the auxiliary graph T(G,f) by replacing each vertex v with vertex sets $A(v)\cup B(v)$ such that $|A(v)|=\deg(v)$ and $|B(v)|=\deg(v)-f(v)$. For adjacent vertices u and v we place an edge between A(u) and A(v) such that the edges between the A-sets are independent. We also insert a complete bipartite graph between A(v) and B(v) for each vertex v.

T(G, f)

• Let *H* be a graph. A *H-factor of G* is a spanning subgraph of *G* that is a vertex-disjoint union of copies of *H*.

H-factor

Lemma 17. Let $f: V \to \mathbb{N}$ be a function with $f(v) \leq \deg(v)$ for all $v \in V$. G has a f-factor if and only if T(G, f) has a 1-factor.

Theorem 18 (König's theorem 1931, 2.1.1). Let G be bipartite. Then $v(G) = \tau(G)$, i.e. the size of a largest matching is the same as the size of a smallest vertex cover.

Theorem (Hajnal and Szemerédi 1970). If *G* satisfies $\delta(G) \ge (1 - 1/k)n$, where *k* is a divisor of *n*, then *G* has a K_k -factor.

Theorem (Alon and Yuster 1995). Let *H* be a graph. If *G* satisfies

$$\delta(G) \ge \left(1 - \frac{1}{\chi(H)}\right)n,$$

then *G* contains at least $(1 - o(1)) \cdot n / |V(H)|$ vertex-disjoint copies of *H*.

3 Connectivity

Definition.

- For a natural number $k \ge 1$, a graph G is called k-connected if $|V(G)| \ge k+1$ and for any (k-1)-set U of vertices in G the graph G-U is connected.
- The maximum k for which G is k-connected is called the *connectivity of G*, denoted by $\kappa(G)$.

$$\kappa(v_3) = v_1 - v_2 - v_4 = 1, \ \kappa(C_n) = 2, \ \kappa(K_{n,m}) = \min\{m, n\}.$$

• For a natural number $k \ge 1$, a graph G is called k-linked if for any 2k distinct vertices $s_1, s_2, \ldots, s_k, t_1, t_2, \ldots, t_k$ there are vertex-disjoint s_i - t_i -paths, $i = 1, \ldots, k$.

- If *G* is connected, but *G X* is disconnected for a subset *X* of vertices of *G*, then *X* is called a *cut set* of *G*. If a cut set consists of a single vertex *v*, then *v* is called a *cut vertex* of *G*.
- For a natural number $\ell \geq 1$, a graph G is called ℓ -edge-connected if $E(G) \neq \emptyset$ and for any $(\ell 1)$ -set F of edges in G the graph G F is connected.
- The *edge-connectivity of G* is the maximum ℓ such that G is ℓ -edge-connected. It is denoted by $\kappa'(G)$ or $\lambda(G)$.

G non-trivial tree
$$\Rightarrow \lambda(G) = 1$$
, *G* cycle $\Rightarrow \lambda(G) = 2$.

• If G is connected, but G - e is disconnected for an edge e of G, then e is called a *cut edge or bridge* of G.

Clearly, for every $k, \ell \geq 2$ if a graph is k-connected, k-linked or ℓ -edge-connected, then it is also (k-1)-connected, (k-1)-linked or $(\ell-1)$ -edge-connected, respectively. Moreover, for a non-trivial graph is it equivalent to be 1-connected, 1-linked, 1-edge-connected, or connected.

Lemma 19. For any connected, non-trivial graph *G* we have

$$\kappa(G) \le \lambda(G) \le \delta(G)$$
.

k-connected

connectivity, $\kappa(G)$

k-linked

cut set cut vertex ℓ -edgeconnected edgeconnectivity, $\kappa'(G)$

cut edge, bridge

Definition. For a subset X of vertices and edges of G and two vertex sets A, B we say that X separates A and B if each A-B-path contains an element of X.

separate

Some sets separating *A* and *B*: $\{e_1, e_4, e_5\}$, $\{e_1, u_2\}$, $\{u_1, u_3, v_3\}$

Note that a separating set of vertices must contain $A \cap B$.

Theorem 20 (Menger's theorem 1927, 3.3.1). For any graph G and any vertex set $A, B \subseteq V(G)$ we have

min #vertices separating A and $B = \max$ #independent A-B-paths.

Corollary 21. If a, b are vertices of G, $\{a, b\} \notin E(G)$, then

min #vertices separating a and $b = \max \# independent a-b-paths$

Theorem 22 (Global version of Menger's theorem, 3.3.6). A graph G is k-connected if and only if for any two vertices a, b in G there exist k independent a-b-paths.

Note that Menger's Theorem implies that if *G* is *k*-linked, then *G* is *k*-connected. Moreover, Bollobás and Thomason proved in 1996 that if *G* is 22*k*-connected, then *G* is *k*-linked.

Definition. The *line graph* L(G) of G is the graph L(G) = (E, E'), where

line graph L(G)

$$E' = \left\{ \{e_1, e_2\} \in {E \choose 2} : e_1 \text{ incident to } e_2 \text{ in } G \right\}.$$

A graph and its line graph.

Corollary. If *a*, *b* are vertices of *G*, then

min #edges separating a and $b = \max \#edge$ -disjoint a-b-paths

Moreover, a graph is k-edge-connected if and only if there are k edge-disjoint paths between any two vertices.

Definition. An *ear-decomposition* of a graph G is a sequence $G_1 \subseteq G_2 \subseteq \cdots \subseteq G_k$ of graphs, such that

- G_1 is a cycle
- for each i = 2, ..., k the graph G_i is given by $G_{i-1} + P_i$, where P_i , called an *ear*, is a G_i -path
- $G_k = G$

Theorem 23. A graph is 2-connected if and only if it has an ear-decomposition.

Lemma. If *G* is 3-connected, then there exists an edge *e* of *G* such that $G \circ e$ is also 3-connected.

eardecomposition

ear

Theorem 24. A graph G is 3-connected if and only if there exists a sequence of graphs G_0, G_1, \ldots, G_n , such that

- $G_0 = K_4$
- for each $i=2,\ldots,k$ the graph G_i has two adjacent vertices x',x'' of degree at least 3, so that $G_i=G_{i+1}\circ x'x''$
- $G_n = G$

Definition. The *block-cut-vertex graph or block graph* of G is a bipartite graph H whose partite sets are the *blocks* of the G, the bridges and maximal 2-connected subgraphs of G, and the cut vertices of G. There is an edge between a block and a cut vertex if and only if the block contains the cut vertex.

block-cut-vertex graph

The leaves of this graph are called block leaves.

block leaf

Theorem 25. The block-cut-vertex graph of a connected graph is a tree.

4 Planar graphs

This section deals with graph drawings. We restrict ourselves to graph drawings in the plane \mathbb{R}^2 . It is also feasible to consider graph drawings in other topological spaces, such as the torus $\mathbb{R}^2/\mathbb{Z}^2$.

Definition.

- The *line segment* between $p \in \mathbb{R}^2$ and $q \in \mathbb{R}^2$ is the set $\{p + \lambda(q p) : 0 \le \lambda \le 1\}$.
- A *homeomorphism* is a continuous function that has a continuous inverse function.
- Two sets $A \in \mathbb{R}^2$ and $B \in \mathbb{R}^2$ are said to be *homeomorphic* if there is a homeomorphism $f: A \to B$.
- An arc in \mathbb{R}^2 is a homeomorphic image of a line segment.
- A set $A \subseteq \mathbb{R}^2$ is *path-connected* if there is a continuous path between any two points in A.
- Let $A \subseteq \mathbb{R}^2$ be a set of points. A *region of A* is a maximal path-connected subset R of A. Its boundary δR is also called its *frontier*.
- A *polygon* is a union of finitely many line segments that is homeomorphic to the circle $S^1 := \{x \in \mathbb{R}^2 : ||x|| = 1\}$
- A plane graph $G = V \cup E$ is a subset of \mathbb{R}^2 consisting of a set of vertices V and a set of edges E such that
 - 1. V is a finite set of points in \mathbb{R}^2 ,
 - 2. *E* is a finite set of arcs between vertices,
 - 3. different edges have different endpoints,
 - 4. the interior of an edge contains no vertex and no points of another edge.

The regions of $\mathbb{R}^2 \setminus G$, denoted by F(G), are called the *faces of G*. Faces with three vertices are called *triangles*. If all of the faces in F(G) are triangles, then G is called a *plane triangulation*.

• A plane graph is *maximally plane* if one cannot add edges and still obtain a plane graph.

line segment

homeomorphism

homeomorphic

arc

path-connected

region frontier polygon

plane graph

faces, F(G) triangle triangulation maximally plane

• G = (V, E) is *planar* if it has a plane embedding, i.e. if there is a plane graph $G' = V' \cup E'$ and a bijection $f \colon V \to V'$ such that $uv \in E$ if and only if G' has an edge between f(u) and f(v).

planar graph

• G = (V, E) is *outerplanar* if it has a plane embedding such that the boundary of the outer face contains all of the vertices V.

outerplanar graph

Theorem (Fáry's theorem). Every planar graph has a plane embedding with straight line segments as edges.

Lemma (Jordan curve theorem). Let $P \subseteq \mathbb{R}^2$ be a polygon. Then $\mathbb{R}^2 \setminus P$ has exactly two regions. One of the regions is unbounded, the other is bounded. Each of the two regions has P as frontier.

Lemma. Let P_1 , P_2 and P_3 be internally disjoint arcs that have the same endpoints. Then

- 1. $\mathbb{R}^2 \setminus (P_1 \cup P_2 \cup P_3)$ has exactly three regions with boundaries $P_1 \cup P_2$, $P_1 \cup P_3$ and $P_2 \cup P_3$, respectively.
- 2. Let P be an arc from the interior of P_1 to the interior of P_3 whose interior lies in the region of $\mathbb{R}^2 \setminus (P_1 \cup P_3)$ containing the interior of P_2 . Then P contains a points of P_2 .

Lemma. Let *G* be a plane graph and *e* an edge of *G*. Then

- A frontier *X* of a face of *G* either contains *e* or is disjoint to the interior of *e*.
- If *e* is on a cycle in *G*, then *e* is on the frontier of exactly two faces.
- If *e* is on no cycle in *G*, then *e* is on the frontier of exactly one face.

Lemma 26. A plane graph is maximally plane if and only if each of its faces is a triangle.

Theorem 27 (Euler's formula, 4.2.9). Let G be a connected plane graph with v vertices, e edges and f faces. Then

$$v - e + f = 2.$$

Corollary. Let $G = V \cup E$ be a plane graph. Then

- $|E| \le 3|V| 6$ with equality exactly if *G* is a plane triangulation.
- $|E| \le 2|V| 4$ if no face in F(G) is a triangle.

Lemma (Pick's formula). Let P be a polygon with corners on the grid \mathbb{Z}^2 , A its area, I the number of grid points inside of P and B be the number of grid points on the boundary of P. Then A = I + B/2 - 1.

Definition. Let *G* and *X* be two graphs.

• We say that *X* is a minor of *G*, denoted by *G* = *MX*, if *X* can be obtained from *G* by successive vertex deletions, edge deletions and edge contractions.

An alternative characterisation is that the vertices V' of a subgraph of G can be partitioned into sets $V' = V_1 + \cdots + V_{|V(X)|}$ such that $G[V_i]$ is connected and $V_i \sim V_j$ if and only if the corresponding vertices $v_i, v_j \in V(X)$ are adjacent for each $i, j \in [|V(X)|]$.

• X is a single-edge subdivision of G if $V(X) = V(G) \cup \{v\}$ and E(X) = E(G) - xy + xv + vy for $xy \in E(G)$ and $v \notin V(G)$. X is a subdivision of G if it can be obtained from G by a series of single-edge subdivisions.

subdivision

minor, G = MX

• We say that X is a topological minor of G, denoted by G = TX, if a subgraph of G is a subdivision of X.

topological minor, G = TX

Theorem 28 (Kuratowski's theorem 1930, 4.4.6). A graph is planar if and only if it does not have K_5 or $K_{3,3}$ as topological minors.

Definition.

- Let X be a set and $\leq \subseteq X^2$ a relation on X. Then \leq is a *partial order* if it is reflexive, antisymmetric and transitive. A partial order is *total* if $x \leq y$ or $y \leq x$ for every $x, y \in X$.
- Let \leq be a partial order on a set X. The pair (X, \leq) is called a *poset* (partially ordered set). If \leq is clear from context, the set X itself is called a poset. The *poset dimension of* (X, \leq) is the smallest number d such that there are total orders R_1, \ldots, R_d on X with $\leq = R_1 \cap \cdots \cap R_d$.

$$\dim(\mathbf{1})=1, \dim(\mathbf{x}_x \mathbf{y})=2 \text{ since } \mathbf{x}_x \mathbf{y}=\mathbf{1}_y^x\cap\mathbf{1}_x^y$$

• The *incidence poset* $(V \cup E, \leq)$ on a graph G = (V, E) is given by $v \leq e$ if and only if e is incident to v for all $v \in V$ and $e \in E$.

Theorem (Schnyder). Let *G* be a graph and *P* be its incidence poset. Then *G* is planar if and only if $\dim(P) \leq 3$.

Theorem 29 (5-coloring theorem, 5.1.2). Every planar graph is 5-colorable.

The more well-known 4-coloring theorem is much harder to prove. Interestingly, it is one of the first theorems that has been proved using computer assistance. The computer-generated proof uses an enormous case distinction. Some mathematicians have philosophical problems with this approach since the resulting proof cannot be easily verified by humans. A shorter proof is still outstanding.

Theorem (4-coloring theorem). Every planar graph is 4-colorable.

partial order total order

poset

poset dimension, $dim(X, \leq)$

incidence poset

Definition.

- Let $L(v) \subseteq \mathbb{N}$ be a list of colors for each vertex $v \in V$. We say that G is L-list-colorable if there is coloring $c \colon V \to \mathbb{N}$ such that $c(v) \in L(v)$ for each $v \in V$ and adjacent vertices receive different colors.
- Let $k \in \mathbb{N}$. We say that G is k-list-colorable or k-choosable if G is L-list-colorable for each list L with |L(v)| = k for all $v \in V$.
- The *choosability*, denoted by ch(G), is the smallest k such that G is k-choosable.
- The *edge choosability*, denoted by ch'(G), is defined analogously.

Theorem 30 (Thomassen's theorem 1994, 5.4.2). Every planar graph is 5-choosable.

L-list-colorable

k-list-colorable

choosability, ch(G)

edge choosability, ch'(G)

5 Colorings

Lemma (Greedy estimate for the chromatic number). Let *G* be graph. Then $\chi(G) \leq \Delta(G) + 1$.

Theorem 31 (Brook's theorem 1924, 5.2.4). Let *G* be a connected graph. Then $\chi(G) \leq \Delta(G)$ unless *G* is a complete graph or an odd cycle.

Definition.

- The *clique number* $\omega(G)$ *of* G is the largest order of an induced complete subgraph of G.
- The *co-clique number* $\alpha(G)$ *of* G is the largest order of an induced empty subgraph of G.
- A graph *G* is called *perfect* if $\chi(H) = \omega(H)$ for each induced subgraph *H* of *G*. For example, bipartite graphs are perfect with $\chi = \omega = 2$.

clique number, $\omega(G)$ co-clique

number, $\alpha(G)$

perfect graph

Lemma (Small coloring results).

- $\chi(G) \ge \max\{\omega(G), n/\alpha(G)\}$ since each color class is an empty induced subgraph and $\chi(K_k) = k$.
- $||G|| \ge {\chi(G) \choose 2} \Leftrightarrow \chi(G) \le 1/2 + \sqrt{2||G|| + 1/4}$ since there must be at least one edge between any two color classes.
- The chromatic number $\chi(G)$ of G is at most one more than the length of a longest directed path in any orientation of G.

Theorem (Perfect graph theorem 1972). A graph G is perfect if and only if its complement \overline{G} is perfect.

Theorem (Strong perfect graph theorem 2002). A graph *G* is perfect if and only if it does not contain an odd cycle on at least 5 vertices (an *odd hole*) or the complement of an odd hole as an induced subgraph.

Definition. Let *A* be the adjacency matrix of a graph *G*.

- By the spectral theorem the symmetric matrix *A* has an orthonormal basis of eigenvectors and all of its eigenvalues are real.
- The *spectrum* $\lambda(G)$ *of* G is the multiset of eigenvalues of A.
- The spectral radius of G is $\lambda_{\max}(G) := \max\{\lambda : \lambda \in \lambda(G)\}$. Analogously, $\lambda_{\min}(G) := \min\{\lambda : \lambda \in \lambda(G)\}$.

spectrum, $\lambda(G)$ spectral radius, $\lambda_{\max}(G)$

Lemma (Small results about the eigenvalues of G). Let A be the adjacency matrix of G and let H be an induced subgraph of G. Then

• $\lambda_{\min}(G) \leq \lambda_{\min}(H) \leq \lambda_{\max}(H) \leq \lambda_{\max}(G)$,

- $\delta(G) \leq 2\|G\|/n \leq \lambda_{\max}(G) \leq \Delta(G)$,
- trace(A) = 0, trace(A^2) = 2 $\|G\|$, trace(A^3) = 6 · # triangles in G.

Theorem 32 (Spectral estimate for the chromatic number from folklore). Let G be a graph. Then $\chi(G) \leq \lambda_{\max}(G) + 1$.

Example (Mycielski's construction).

We can construct a family $(G_k = (V_k, E_k))_{k \in \mathbb{N}}$ of triangle-free graphs with $\chi(G_k) = k$ as follows:

- G_1 is the single-node graph, G_2 is the single-edge graph.
- $V_{k+1} := V_k \cup U \cup \{w\}$ where $V_k \cap (U \cup \{w\}) = \emptyset$, $V = \{v_1, \dots, v_n\}$ and $U = \{u_1, \dots, u_n\}$.
- $E_{k+1} := E_k \cup \{wu_i : i = 1, ..., k\} \cup \bigcup_{i=1}^n \{u_i v : v \in N_{G_k}(v_i)\}.$

$$G_1$$
 • G_2 G_3 G_3

Example (Tutte's construction). We can construct a family $(G_k)_{k\in\mathbb{N}}$ of triangle-free graphs with $\chi(G_k)=k$ as follows: G_1 is the single-node graph. To get from G_k to G_{k+1} , take an independent set U of size $k(|G_k|-1)+1$ and $\binom{|U|}{|G_k|}$ copies of G_k . For each subset of size $|G_k|$ in U then introduce a perfect matching to exactly one of the copies of G_k .

Theorem 33 (König's theorem 1916, 5.3.1). Let *G* be a bipartite graph. Then $\chi'(G) = \Delta(G)$.

Theorem 34 (Vizing's theorem 1964, 5.3.2). Let *G* be a graph. Then $\chi'(G) \in \{\Delta(G), \Delta(G) + 1\}$.

Thus, the chromatic index of a graph can only take one of two possible values. Determining which of the two values occurs is NP-complete.

Lemma. We have $\operatorname{ch}(K_{n,n}) \geq c \cdot \log(n)$ for some constant c > 0. In particular,

$$\operatorname{ch}\left(K_{\binom{2k-1}{k},\binom{2k-1}{k}}\right) \geq c \cdot k.$$

Theorem 35 (Galvin's theorem 1995, 5.4.4). Let *G* be a bipartite graph. Then $ch'(G) = \chi'(G)$.

6 Extremal graph theory

In this section c, c_1, c_2, \ldots always denote unspecified constants in $\mathbb{R}_{>0}$.

Definition.

- Let n be a positive integer and H a graph. By ex(n, H) we denote the maximum size of a graph of order n that does not contain H as a subgraph. EX(n, H) is the set of such graphs.
- Let *n* and *r* be integers with $1 \le r \le n$. The Turàn graph T(n,r) is the complete r-partite graph of order n whose partite sets differ by at most 1 in size. It does not contain K_{r+1} . We denote ||T(n,r)|| by t(n,r).

ex(n, H)

EX(n, H)

T(n,r)

t(n,r)

Turàn graph,

Example.

- $ex(n, K_2) = 0$, $EX(n, K_2) = \{E_n\}$
- $\operatorname{ex}(n, P_3) = \lfloor n/2 \rfloor$, $\operatorname{EX}(n, P_3) = \{ \lfloor n \rfloor \cdot K_2 + (n \mod 2) \cdot E_1 \}$

$$H =$$
 $EX(n, H)$

Lemma (On Turàn graphs).

- Among all r-partite graphs on n vertices the Turàn graph T(n,r) has the largest number of edges.
- We have the recursion

$$t(n,r) = t(n-r,r) + (n-r)(r-1) + \binom{r}{2}.$$

• A Turàn graph lacks a ratio of 1/r of the edges:

$$\lim_{n\to\infty}\frac{t(n,r)}{\binom{n}{2}}=\left(1-\frac{1}{r}\right).$$

Theorem 36 (Turàn's theorem 1941, 7.1.1). For all integers r > 1 and $n \ge 1$, every graph *G* with *n* vertices, $\operatorname{ex}(n, K_r)$ edges and $K_r \not\subseteq G$ is a $T_{r-1}(n)$.

Definition. Let $X, Y \subseteq V(G)$ be vertex sets and $\epsilon > 0$.

• We define ||X,Y|| to be the number of edges between X and Y and the density d(X,Y) of (X,Y) to be

density, d(X, Y)

$$d(X,Y) := \frac{\|X,Y\|}{|X||Y|}.$$

• For $\epsilon > 0$ the pair (X, Y) is an ϵ -regular pair if we have $|d(X, Y) - d(A, B)| \le \epsilon$ for all $A \subseteq X$, $B \subseteq Y$ with $|A| \ge \epsilon |X|$ and $|B| \ge \epsilon |Y|$.

 ϵ -regular pair

• An ϵ -regular partition of the graph G = (V, E) is a partition of the vertex set $V = V_0 \sqcup V_1 \sqcup \cdots \sqcup V_k$ with the following properties:

 ϵ -regular partition

- 1. $|V_0| \le \epsilon |V|$
- 2. $|V_1| = |V_2| = \cdots = |V_k|$
- 3. All but at most ϵk^2 of the pairs (V_i, V_j) for $1 \le i < j \le k$ are ϵ -regular.

Theorem 37 (Erdős-Stone theorem 1946, 7.1.2). For all integers $r > s \ge 1$ and every $\epsilon > 0$ there exists an integer n_0 such that every graph with $n \ge n_0$ vertices and at least

$$t_{r-1}(n) + \epsilon n^2$$

edges contains K_s^r as a subgraph.

Theorem (Chvátal-Szemerédi theorem 1981). Chvátal and Szemerédi proved a more quantitative version of the Erdős-Stone theorem: For every $\epsilon > 0$ and every integer $r \geq 3$, every graph on n vertices and at least $(1 - 1/(r - 1) + \epsilon)\binom{n}{2}$ edges contains K_r^t as a subgraph. Here t is given by

$$t = \frac{\log n}{500 \cdot \log(1/\epsilon)}.$$

Furthermore, there is a graph G on n vertices and $(1-(1+\epsilon)/(r-1))\binom{n}{2}$ edges that does not contain K_r^t for

$$t = \frac{5 \cdot \log n}{\log(1/\epsilon)},$$

i.e. the choice of *t* is asymptotically tight.

Definition. The *Zarankiewicz* function z(m, n; s, t) denotes the maximum number of edges that a bipartite graph with parts of size m and n can have without containing $K_{s,t}$.

Zarankiewicz, z(m, n; s, t)

Theorem 38 (Kővári-Sós-Turán theorem 1954).

We have the upper bound

$$z(m, n; s, t) \le (s-1)^{1/t} (n-t+1) m^{1-1/t} + (t-1) m$$

for the Zarankiewicz function. In particular,

$$z(n, n; t, t) \le c_1 \cdot n \cdot n^{1 - 1/t} + c_2 \cdot n = \mathcal{O}(n^{2 - 1/t})$$

for m = n and t = s.

Corollary.

For $t \ge s \ge 1$ we can bound the extremal number of $K_{t,s}$ using the Kővári–Sós–Turán theorem

$$\operatorname{ex}(n,K_{t,s}) \leq \frac{1}{2} \cdot z(n,n;s,t) \leq c n^{2-1/s}.$$

For t = s = 2 this bound yields

$$ex(n, C_4) \le \frac{n}{4}(1 + \sqrt{4n - 3}).$$

This bound is actually tight, i.e. $ex(n, C_4) = 1/2 \cdot n^{3/2} \cdot (1 + o(1))$.

Lemma. $\operatorname{ex}(n, K_{r,r}) \geq cn^{2-2/(r+1)}$ for all $n, r \in \mathbb{N}$.

Theorem 39. For all $n \in \mathbb{N}$ we have $ex(n, P_{k+1}) \leq (n \cdot (k-1))/2$.

Theorem 40 (Szemerédi's regularity lemma 1970, 7.4.1). For every $\epsilon > 0$ and every integer $m \geq 1$ there is an $M \in \mathbb{N}$ such that every graph of order at least m has an ϵ -regular partition $V_0 \sqcup \cdots \sqcup V_k$ with $m \leq k \leq M$.

Corollary 41. Erdős-Stone together with $\lim_{n\to\infty} t(n,r)/\binom{n}{2} = 1 - 1/r$ yields an asymptotic formula for the extremal number of every graph H on at least one edge:

$$\lim_{n\to\infty} \frac{\operatorname{ex}(n,H)}{\binom{n}{2}} = \frac{\chi(H)-2}{\chi(H)-1}$$

For example, $ex(n, \ \bigotimes) \simeq 2/3 \cdot \binom{n}{2}$ since $\chi(\ \bigotimes) = 4$.

Conjecture (Hadwiger conjecture). Let r be a natural number and G be a graph. Then $\chi(G) \ge r$ implies $MK_r \subseteq G$.

For $r \in \{1, 2, 3, 4\}$ this is easy to see. For $r \in \{5, 6\}$ the conjecture has been proven using the 4-color-theorem. It is still open for $r \ge 7$.

Theorem 42. Every graph G of average degree at least cr^2 contains K_r as a topological minor.

Theorem. Let *G* be a graph of minimum degree $\delta(G) \ge d$ and girth $g(G) \ge 8k + 3$ for $d, k \in \mathbb{N}$ and $d \le 3$. Then *G* has a minor *H* of minimum degree $\delta(H) \ge d(d-1)^k$.

Theorem 43 (Thomassen's theorem 1983, 7.2.5). For all $r \in \mathbb{N}$ there exists a function $f \colon \mathbb{N} \to \mathbb{N}$ such that every graph of minimum degree at least 3 and girth at least f(r) has a K_r minor.

Theorem (Kühn-Osthus 2002). Let $r \in \mathbb{N}$. Then there is a constant $g \in \mathbb{N}$ such that we have $TK_r \subseteq G$ for every graph G with $\delta(G) \ge r - 1$ and $g(G) \ge g$.

7 Ramsey theory

In every 2-coloring in this section we use the colors red and blue.

Definition.

- In an edge-coloring of a graph, a set of edges is
 - monochromatic if all edges have the same color,
 - rainbow if no two edges have the same color,
 - *lexical* if two edges have the same color if and only if they have the same lower endpoint in some ordering of the vertices.
- Let k be a natural number. Then the *Ramsey number* $R(k) \in \mathbb{N} \cup \{\infty\}$ is the smallest n such that every 2-edge-coloring of K_n contains a monochromatic K_k .

Color $E(K_n)$ in 2 colors.

- Let k and l be natural numbers. Then the asymmetric Ramsey number R(k,l) is the smallest $n \in \mathbb{N} \cup \{\infty\}$ such that every 2-edge-coloring of a K_n contains a red K_k or a blue K_l .
- Let *G* and *H* be graphs. Then the *graph Ramsey number* R(G, H) is the smallest $n \in \mathbb{N} \cup \{\infty\}$ such that every 2-edge-coloring of K_n contains a red *G* or a blue *H*.
- Let r, l_1, \ldots, l_k be natural numbers. Then the *hypergraph Ramsey number* $R_r(l_1, \ldots, l_k)$ is the smallest $n \in \mathbb{N} \cup \{\infty\}$ such that for every k-coloring of $\binom{[n]}{r}$ there is an $i \in \{1, \ldots, k\}$ and a $V \subseteq [n]$ with $|V| = l_i$ such that $\binom{V}{r}$ has color i.
- Let G and H be graphs. Then the *induced Ramsey number* $R_{ind}(G, H)$ is the smallest $n \in \mathbb{N} \cup \{\infty\}$ such that there is a graph F on n vertices every 2-coloring of which contains a red G or a blue H.
- For $n \in \mathbb{N}$ and a graph H, the *anti-Ramsey number* AR(n, H) is the maximum number of colors that an edge-coloring of K_n can have without containing a rainbow copy of H.

monochromatic rainbow lexical

Ramsey, R(k)

asymmetric Ramsey, R(k, l)

graph Ramsey, R(G, H)

hypergraph Ramsey, $R_r(l_1, \ldots, l_k)$

induced Ramsey, $R_{\text{ind}}(G, H)$

anti-Ramsey, AR(n, H)

Lemma.

• R(3) = 6, i.e. every 2-edge-colored K_6 contains a monochromatic triangle and there is a 2-coloring of a K_5 without monochromatic triangles.

• Clearly, R(2,k) = R(k,2) = k.

Theorem 44 (Ramsey theorem 1930, 9.1.1). For every $k \in \mathbb{N}$ we have $\sqrt{2}^k \le R(k) \le 4^k$. In particular, the Ramsey numbers, the asymmetric Ramsey numbers and the graph Ramsey numbers are finite.

Theorem 45. For every $k,l \in \mathbb{N}$ we have $R(k,l) \leq R(k-1,l) + R(k,l-1)$. This implies $R(k,l) \leq \binom{k+l-2}{k-1}$ by induction.

Lemma 46. For every $r, p, q \in \mathbb{N}$ we have $R_r(p,q) \leq R_{r-1}(R_r(p-1,q), R_r(p,q-1)) + 1$.

Lemma. We have $c_1 \cdot 2^k \le R_2(\underbrace{3,\ldots,3}_k) \le c_2 \cdot k!$ for some constants $c_1,c_2>0$.

Applications of Ramsey theory

Theorem (Erdős-Szekeres 1935). Any sequence of (r-1)(s-1)+1 distinct real numbers contains an increasing subsequence of length r or a decreasing subsequence of length s.

Theorem 47 (Erdős-Szekeres 1935). For every $m \in \mathbb{N}$ there is an $N \in \mathbb{N}$ such that every set of at least N points in \mathbb{R}^2 contains a convex m-gon.

Theorem (Schur 1916). Let $c: \mathbb{N} \to [r]$ be a coloring of the natural numbers with $r \in \mathbb{N}$ colors. Then there are monochromatic $x, y, z \in \mathbb{N}$ with x + y = z.

Definition. Let $r \in \mathbb{N}$ and $A \in \mathbb{Z}^{n \times k}$.

• *A* is said to be *r-regular* if there is a monochromatic solution of Ax = 0 for every *r*-coloring $c: \mathbb{N} \to [r]$ of \mathbb{N} .

r-regular matrix

• A fulfils the *column condition* if there is a partition $C_1 \sqcup \cdots \sqcup C_l$ of the columns of A such that the following holds: Let $s_i := \sum_{c \in C_i} c$ for $i \in [l]$ be the sum of columns in C_i . Then we must have $s_1 = 0$ and every s_i for $i \in \{2, \ldots, l\}$ is a rational linear combination of the columns in $C_1 \sqcup \ldots \sqcup C_{i-1}$. For example, $2x_1 + x_2 + x_3 - 4x_4$ fulfils the column condition since 2 + 1 + 1 - 4 = 0.

column condition

Theorem 48 (Rado 1933). Let $A \in \mathbb{Z}^{n \times k}$. If A fulfils the column condition, then A is r-regular for every $r \in \mathbb{N}$.

Lemma 49. For every $s, t \in \mathbb{N}$ with $s \ge t \ge 1$ we have $R(sK_2, tK_2) = 2s + t - 1$.

Lemma 50. For every $s, t \in \mathbb{N}$ with $s \ge t \ge 1$ and $s \ge 2$ we have $R(sK_3, tK_3) = 3s + 2t$.

Theorem 51 (Chvátal, Harary 1972). Let G and H be graphs. Then $R(G, H) \ge (\chi(G) - 1)(c(H) - 1) + 1$ where c(H) is the cardinality of the largest component of H.

Theorem 52 (Induced Ramsey theorem). $R_{\text{ind}}(G, H)$ is finite for all graphs G and H.

Theorem 53 (Canonical Ramsey theorem, Erdős-Rado 1950). For all $k \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that any edge coloring of K_n with arbitrarily many colors contains a K_k that is monochromatic, rainbow or lexical.

Theorem 54 (Chvátal-Rödl-Szemerédi-Trotter 1983). For every positive integer Δ there exists a $c \in \mathbb{N}$ such that $R(H,H) \leq c|V(H)|$ for every graph H with $\Delta(H) = \Delta$.

Corollary. For every *n*-vertex graph *H* with maximum degree 3 we have $R(H, H) \le cn$ for some constant c > 0. This number grows much slower than $R(K_n, K_n) \ge \sqrt{2}^n$.

Theorem 55 (Anti-Ramsey theorem, Erdős-Simonvits-Sós 1973). For all $n, r \in \mathbb{N}$ we have $AR(n, K_r) = \binom{n}{2} \left(1 - 1/(r-2)\right) \left(1 - o(1)\right)$.

8 Flows

Definition. Let *H* be an Abelian semigroup and $\tilde{E} := \{(x,y) : xy \in E\}$.

- For $f : \tilde{E} \to H$ and $X, Y \subseteq V$ we define $f(X, Y) := \sum_{(x,y) \in (X \times Y) \cap \tilde{E}} f(x,y)$.
- A function $f \colon \tilde{E} \to H$ is a *circulation on G* if

$$(C_1)$$
 $f(x,y) = -f(y,x)$ for all $xy \in E$ and

 (C_2) f(v, V) = 0 for all $v \in V$.

• If H is an Abelian group, then a circulation f is also called a H-flow on G. If $f(x,y) \neq 0$ for all $xy \in E$, then f is a nowhere-zero flow.

A nowhere-zero \mathbb{Z}_2 -flow.

- For $k \in \mathbb{N}$ a k-flow is a \mathbb{Z} -flow f such that 0 < |f(x,y)| < k for all $xy \in E$. The flow number $\varphi(G)$ of G is the smallest k such that G has a k-flow.
- Let $s \in V$ be a source, $v \in V$ be a sink and $c \colon \tilde{E} \to \mathbb{Z}_{\geq 0}$ be a capacity function. Then a network flow on the network (G, s, t, c) is $f \colon \tilde{E} \to \mathbb{R}$ with the following properties for all $x, y \in V$:

$$(F_1) f(x,y) = -f(y,x)$$

$$(F_2)$$
 $f(x, V) = 0$ if $x \notin \{s, t\}$

$$(F_3)$$
 $f(x,y) \le c(x,y)$

circulation

H-flow nowhere-zero

k-flow flow number, $\varphi(G)$ source, sink, capacity, network flow

For any $S \subseteq V$ with $s \in S$ and $t \notin S$ the pair $(S, V \setminus S)$ is called a *cut*. Its capacity is $c(S, V \setminus S)$.

The value f(s, V) is also called the *value of f* and is denoted by |f|.

cut value, |f|

Lemma.

- For any circulation f and $X \subseteq V$ we have f(X,X) = 0, f(X,V) = 0 and $f(X,V \setminus X) = 0$
- For any network flow f and cut (S, \bar{S}) we have $f(S, \bar{S}) = f(S, V)$.

Theorem 56 (Ford-Fulkerson theorem 1965, 6.2.2). In any network the maximum value of a flow is the same as the minimum capacity of a cut and there is an integral flow $f \colon \tilde{E} \to \mathbb{Z}_{>0}$ with this maximum flow value.

Theorem 57 (Tutte 1954, 6.3.1). For every multigraph G there is a polynomial $P \in \mathbb{Z}[X]$ such that for any finite Abelian group H the number of nowhere-zero H-flows on G is P(|H|-1).

Corollary. If a H-flow on G exists for some finite Abelian group H, then there is also a \tilde{H} -flow on G for all finite Abelian groups \tilde{H} with $|\tilde{H}| = |H|$. For example, if a \mathbb{Z}_4 -flow exists, then a $\mathbb{Z}_2 \times \mathbb{Z}_2$ -flow also exists.

Theorem 58 (Tutte 1950, 6.3.3). A multigraph admits a k-flow if and only if it admits a \mathbb{Z}_k -flow.

Theorem 59 (Tutte 1954, 6.5.3). For a planar graph G and its dual G^* we have $\chi(G) = \varphi(G^*)$.

Lemma. A graph has a 2-flow if and only if all of its degrees are even.

Lemma. A cubic (3-regular) graph has a 3-flow if and only if it is bipartite.

Conjecture (Tutte's flow conjecture). Every bridgeless multigraph has flow number at most 5. Seymore proved $\varphi(G) \leq 6$ for bridgeless graphs in 1981.

9 Random graphs

In this section we deal with randomly chosen graphs. We will often use the "probabilistic method", a proof method for showing existence: By proving that an object with some desired properties can be chosen randomly (in some probability space) with non-zero probability, we also show that such an object exists.

Definition.

- $\mathcal{G}(n,p)$ is the probability space on all n-vertex graphs that results from independently deciding whether to include each of the $\binom{n}{2}$ possible edges with fixed probability $p \in [0,1]$. This model is called the Erdős–Rényi model of random graphs.
- A property \mathcal{P} is a set of graphs, e.g. $\mathcal{P} = \{G : G \text{ is } k\text{-connected}\}$. Let $(p_n) \in [0,1]^{\mathbb{N}}$ be a sequence. We say that $G \in \mathcal{G}(n,p_n)$ almost always has property \mathcal{P} if $\operatorname{Prob}(G \in \mathcal{G}(n,p_n) \cap \mathcal{P}) \to 1$ for $n \to \infty$.

A function $f(n): \mathbb{N} \to [0,1]$ is a *threshold function* for property \mathcal{P} if:

- For all $(p_n) \in [0,1]^{\mathbb{N}}$ with $p_n/f(n) \stackrel{n \to \infty}{\longrightarrow} 0$ the graph $G \in \mathcal{G}(n,p_n)$ almost always does not have property \mathcal{P} .
- For all (p_n) ∈ $[0,1]^{\mathbb{N}}$ with $p_n/f(n) \xrightarrow{n\to\infty} \infty$ the graph $G \in \mathcal{G}(n,p_n)$ almost always has property \mathcal{P} .

Erdős–Rényi

property almost always

threshold function

Lemma.

• For a given graph *G* on *n* vertices and *m* edges we have

$$Prob(G = G(n, p)) = p^{m}(1 - p)^{\binom{n}{2} - m}$$

• For all integers $n \ge k \ge 2$ we have

$$\operatorname{Prob}(G \in \mathcal{G}(n,p), \alpha(G) \ge k) \le \binom{n}{k} (1-p)^{\binom{k}{2}}$$

and

$$\operatorname{Prob}(G \in \mathcal{G}(n, p), \omega(G) \ge k) \le \binom{n}{k} p^{\binom{k}{2}}$$

Theorem 60 (Erdős 1947). Erdős proved the lower bound $R(k,k) \ge 2^{k/2}$ on Ramsey numbers by applying the probabilistic method to the Erdős–Rényi model.

Lemma. We have

$$E(\#k\text{-cycles in }G \in \mathcal{G}(n,p)) = \frac{n^{\underline{k}}}{2k} \cdot p^k$$

where $n^{\underline{k}} = n \cdot (n-1) \cdot \cdot \cdot (n-k+1)$.

Theorem 61 (Erdős 1959, 11.2.2). For every $k \in \mathbb{N}$ there is a graph H with $g(H) \ge k$ and $\chi(H) \ge k$.

Lemma. For all $p \in (0,1)$ and graphs H almost all graphs in $\mathcal{G}(n,p)$ contain H as an induced subgraph.

Lemma. For all $p \in (0,1)$ and $\epsilon > 0$ almost all graphs in $\mathcal{G}(n,p)$ fulfil

$$\chi(G) > \frac{\log(1/(1-p))}{2+\epsilon} \cdot \frac{n}{\log n}$$

Remark. Asymptotic behaviour of G(n, p) for some properties:

- $p_n = \sqrt{2}/n^2 \Rightarrow G$ almost always has a component with > 2 vertices
- $p_n = 1/n \Rightarrow G$ almost always has a cycle
- $p_n = \log n/n \Rightarrow G$ is almost always connected
- $p_n = (1 + \epsilon) \log n / n \Rightarrow G$ almost always has a Hamiltonian cycle
- $p_n = n^{-2/(k-1)}$ is the threshold function for containing K_k

Lemma 62 (Lovász local lemma). Let A_1, \ldots, A_n be events in some probabilistic space. If $\operatorname{Prob}(A_i) \leq p \in (0,1)$, each A_i is independent from all but at most $d \in \mathbb{N}$ of the other A_i and $np(d+1) \leq 1$, then

$$\bigcap_{i=1}^{n} \overline{A_i} > 0.$$

Lemma. *Van-der-Waerden's number* W(k) is the smallest n such that any 2-coloring of [n] contains a monochromatic arithmetic progression of length k. We can prove $W(k) \ge 2^{k-1}/(ek^2)$ with the Lovász local lemma.

10 Hamiltonian cycles

Lemma 63 (Necessary condition for Hamiltonian cycle). If G has a Hamiltonian cycle, then for every non-empty $S \subseteq V$ the graph G - S cannot have more than |S| components.

Non-hamiltonian graph.

Theorem 64 (Dirac 1952, 10.1.1). Every graph with $n \ge 3$ vertices and minimum degree at least n/2 has a Hamiltonian cycle.

$$\bigotimes_{K_{\frac{n}{2}}} \bigotimes_{K_{\frac{n}{2}}} \delta = n/2 - 1$$

Theorem. Every graph on $n \ge 3$ vertices with $\alpha(G) \le \kappa(G)$ is Hamiltonian.

Theorem 65 (Tutte 1956, 10.1.4). Every 4-connected planar graph is Hamiltonian.

Theorem 66 (Fleischner's theorem 1974, 10.3.1). If G is 2-connected, then $G^2 := (V, E')$ with $E' := \{uv : u, v \in V, d_G(u, v) \le 2\}$ is Hamiltonian.

Theorem 67 (Chvátal 1972, 10.2.1). Let $0 \le a_1 \le \cdots \le a_n < n$ be an integer sequence with $n \ge 3$. All graphs with the degree sequence a_1, \ldots, a_n are Hamiltonian if and only if $a_i \le i$ implies $a_{n-i} \ge n-i$ for all i < n/2.

Literature

- [1] Béla Bollobás. *Modern Graph Theory*. Graduate texts in mathematics. Heidelberg: Springer, 1998. ISBN: 038-7-98488-7.
- [2] J. A. Bondy and U. S. R. Murty. *Graph Theory with Applications*. New York: Elsevier, 1976. ISBN: 978-0-444-19451-0.
- [3] Gary Chartrand and Linda Lesniak. *Graphs & Digraphs*. Belmont, CA, USA: Wadsworth Publ. Co., 1986. ISBN: 0-534-06324-1.
- [4] Reinhard Diestel. *Graph Theory, 4th Edition*. Graduate texts in mathematics. Springer, 2012. ISBN: 978-3-642-14278-9. URL: http://diestel-graph-theory.com (cit. on p. 3).
- [5] L. Lovasz. Combinatorial Problems and Exercises. Akadémiai Kiadó, 1979. ISBN: 978-0-821-84262-1.
- [6] Douglas B. West. *Introduction to Graph Theory*. 2nd ed. Prentice Hall, Sept. 2000. ISBN: 013-0-14400-2.

Named theorems

1	Lemma (Handshake lemma, 1.2.1)	
8	Theorem (Eulerian tour condition, 1.8.1)	9
14	Theorem (Hall's marriage theorem 1935, 2.1.2)	13
15	Theorem (Tutte's theorem 1947, 2.2.1)	13
18	Theorem (König's theorem 1931, 2.1.1)	14
20	Theorem (Menger's theorem 1927, 3.3.1)	16
22	Theorem (Global version of Menger's theorem, 3.3.6)	
27	Theorem (Euler's formula, 4.2.9)	21
28	Theorem (Kuratowski's theorem 1930, 4.4.6)	
29	Theorem (5-coloring theorem, 5.1.2)	22
30	Theorem (Thomassen's theorem 1994, 5.4.2)	23
31	Theorem (Brook's theorem 1924, 5.2.4)	24
32	Theorem (Spectral estimate for the chromatic number from folklore) .	25
33	Theorem (König's theorem 1916, 5.3.1)	
34	Theorem (Vizing's theorem 1964, 5.3.2)	25
35	Theorem (Galvin's theorem 1995, 5.4.4)	25
36	Theorem (Turàn's theorem 1941, 7.1.1)	26
37	Theorem (Erdős-Stone theorem 1946, 7.1.2)	27
38	Theorem (Kővári-Sós-Turán theorem 1954)	
40	Theorem (Szemerédi's regularity lemma 1970, 7.4.1)	29
43	Theorem (Thomassen's theorem 1983, 7.2.5)	
44	Theorem (Ramsey theorem 1930, 9.1.1)	31
47	Theorem (Erdős-Szekeres 1935)	31
48	Theorem (Rado 1933)	32
51	Theorem (Chvátal, Harary 1972)	32
52	Theorem (Induced Ramsey theorem)	
53	Theorem (Canonical Ramsey theorem, Erdős-Rado 1950)	32
54	Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)	32
55	Theorem (Anti-Ramsey theorem, Erdős-Simonvits-Sós 1973)	
56	Theorem (Ford-Fulkerson theorem 1965, 6.2.2)	34
57	Theorem (Tutte 1954, 6.3.1)	
58	Theorem (Tutte 1950, 6.3.3)	34
59	Theorem (Tutte 1954, 6.5.3)	
60	Theorem (Erdős 1947)	35
61	Theorem (Erdős 1959, 11.2.2)	36
62	Lemma (Lovász local lemma)	36
63	Lemma (Necessary condition for Hamiltonian cycle)	
64	Theorem (Dirac 1952, 10.1.1)	37
65	Theorem (Tutte 1956, 10.1.4)	37
66	Theorem (Fleischner's theorem 1974, 10.3.1)	
67	Theorem (Chyátal 1972, 10.2.1)	37

Index

. 1.	(6)
=, see isomorphic	$\nu(G)$, see matching
<i>A-B</i> -path, 9	$\underline{\omega}(G)$, see clique number
AR(n, H), see anti-Ramsey	G, see complement
F(G), see faces	$\dim(X, \leq)$, see poset dimension
G = MX, see minor	rad(G), see radius
G = TX, see topological minor	\simeq , see isomorphic
$G \cap G'$, 10	\subseteq , see subgraph
$G \cup G'$, 10	$\tau(G)$, see vertex cover
G, see graph	$\varphi(G)$, see flow number
G+F, 10	<i>d</i> -degenerate, 11
G - F, 10	d(G), see average degree
G - U, 10	d(X,Y), see density
G[X], see induced subgraph	d(u,v), see distance
$G \circ e, 10$	d(v), see degree
H-factor, 14	f-factor, 14
H-flow, 33	g(G), see girth
L-list-colorable, 23	k-connected, 15
N(v), see neighbours	
R(G, H), see graph Ramsey	k-flow 22
	k-flow, 33
R(k), see Ramsey	k-linked, 15
R(k,l), see asymmetric Ramsey	<i>k</i> -list-colorable, <i>see k</i> -list-colorable
$R_r(l_1, \ldots, l_k)$, see hypergraph Ramsey	r-regular matrix, 31
$R_{\text{ind}}(G, H)$, see induced Ramsey	t(n,r), 26
T(G,f), 14	z(m,n;s,t), see Zarankiewicz
T(n,r), see Turàn graph	
$\Delta(G)$, see maximum degree	acyclic, 9
$\mathrm{EX}(n,H)$, 26	adjacency matrix, 7
G , see size	adjacent, 4
G , see order	almost always, 35
f , see value	anti-Ramsey, 30
$\alpha(G)$, see co-clique number	arc, 4, 19
$\operatorname{ch}'(G)$, see edge choosability	asymmetric Ramsey, 30
ch(G), see choosability	average degree, 8
$\chi'(G)$, see chromatic index	
$\chi(G)$, see chromatic number	bipartite, 8
$\deg(v)$, see degree	block leaf, 18
$\delta(G)$, see minimum degree	block-cut-vertex graph, 18
diam(G), see diameter	bridge, see cut edge
ℓ -edge-connected, 15	0,
ϵ -regular pair, 27	capacity, <mark>33</mark>
ϵ -regular partition, 27	choosability, 23
$ex(n, H), \frac{26}{}$	chromatic index, 12
$\kappa'(G)$, see edge-connectivity	chromatic number, 12
$\kappa(G)$, see connectivity	circulation, 33
$\lambda(G)$, see spectrum	circumference, 10
$\lambda_{\max}(G)$, see spectral radius	clique, see complete graph
$\lambda(G)$, see edge-connectivity	clique number, 24
M(G), see euge-connectivity	chque humber, 24

closed walk, 9	hypergraph, 4
co-clique number, 24	hypergraph Ramsey, 30
column condition, 32	
complement, 10	incidence poset, 22
complete bipartite graph, 5	incident, 4
complete graph, 5	independent paths, 9
component, 9	independent set, see empty graph
connected, 9	induced Ramsey, 30
connected component, see component	induced subgraph, 8
connectivity, 15	isolated vertex, 7
cubic, 7	isomorphic, 4
cut, 34	
cut edge, 15	Kneser graph, 6
cut set, 15	
cut vertex, 15	leaf, 7
cycle, 5	lexical, 30
	line graph $L(G)$, 16
degeneracy, 11	line segment, 19
degree, 7	. 1
degree sequence, 7	matching, 12
density, 27	maximally plane, 19
diameter, 11	maximum degree, 7
directed graph, 4	minimum degree, 7
distance, 10	minor, 21
,	monochromatic, 30
ear, 17	multigraph, 4
ear-decomposition, 17	noighbourg 7
edge, 4	neighbours, 7
edge choosability, 23	network flow, 33
edge colouring, 12	nowhere-zero, 33
edge-connectivity, 15	order, 7
empty graph, 5	outerplanar graph, 20
Erdős–Rényi, 35	outerplanar graph, 20
Eulerian tour, 9	partial order, <mark>22</mark>
	path, 5
faces, 19	path-connected, 19
factor, see k-factor	perfect graph, 24
flow number, 33	perfect matching, 12
forest, 9	Petersen graph, 6
frontier, 19	planar graph, 20
,	plane graph, 19
girth, 10	polygon, 19
graph, 4	poset, 22
graph Ramsey, 30	poset dimension, 22
O 1	property, 35
Hamiltonian, 10	Property, So
homeomorphic, 19	radius, <mark>1</mark> 1
homeomorphism, 19	rainbow, 30
hypercube, 6	Ramsey, 30
7 ± '	<i>5</i> *

region, 19	total order, <mark>22</mark>
regular, 7	traceable, <mark>10</mark>
_	tree, 9
separate, 16	triangle, <mark>19</mark>
sink, 33	triangulation, 19
size, 7	Turàn graph, <mark>26</mark>
source, 33	0 1
spanning subgraph, 8	value, <mark>34</mark>
spectral radius, <mark>24</mark>	vertex, 4
spectrum, 24	vertex colouring, <mark>12</mark>
subdivision, 21	vertex cover, 12
subgraph, 8	
	walk, 9
threshold function, 35	
topological minor, 22	Zarankiewicz, 28