

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addease COMMISSIONER FOR PATENTS PO Box 1430 Alexandria, Virginia 22313-1450 www.webjo.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/766,239	01/29/2004	Kang Soo Seo	46500-000600/US	2911
36593 7550 HARNESS, DICKEY & PIERCE, P.L.C. P.O. BOX 8910			EXAMINER	
			JONES, HEATHER RAE	
RESTON, VA 20195			ART UNIT	PAPER NUMBER
			2621	
			MAIL DATE	DELIVERY MODE
			11/25/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/766,239 SEO ET AL. Office Action Summary Examiner Art Unit HEATHER R. JONES 2621 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 25 August 2009. 2a) ☐ This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4)\(\times\) Claim(s) 1.2.12-15.18-21.26.27.32.33.38.39.44 and 45 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1,2,12-15,18-21,26,27,32,33,38,39,44 and 45 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on 29 January 2004 is/are: a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s) 1) Notice of References Cited (PTO-892) 4) Interview Summary (PTO-413)

U.S. Patent and Trademark Office PTOL-326 (Rev. 08-06)

Paper No(s)/Mail Date

2) Notice of Draftsperson's Patent Drawing Review (PTO-945)

3) Information Disclosure Statement(s) (PTO/SB/08)

Papri No(s)/Wall Date.___

6) Other:

5) Notice of Informal Patent Application

Page 2

Application/Control Number: 10/766,239

Art Unit: 2621

DETAILED ACTION

Response to Arguments

 Applicant's arguments, filed August 25, 2009, with respect to the rejection(s) of claim(s) 1, 2, 12-15, 18-21, 26, 27, 32, 33, 38, 39, 44, and 45 have been fully considered and are persuasive. Therefore, the rejection has been withdrawn.
However, upon further consideration, a new ground(s) of rejection is made in view of a newly found prior art reference.

Claim Rejections - 35 USC § 101

2. 35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

Claims 1, 2, and 12-15 are rejected under 35 U.S.C. 101 because the claimed invention is directed to non-statutory subject matter. Claims 1, 2, and 12-15 define a computer-readable medium embodying functional descriptive material. However, the claim does not define a computer-readable medium or memory and is thus non-statutory for that reason (i.e., "When functional descriptive material is recorded on some computer-readable medium it becomes structurally and functionally interrelated to the medium and will be statutory in most cases since use of technology permits the function of the descriptive material to be realized" – Guidelines Annex IV). That is, the scope of the presently claimed computer-readable medium can range from paper on which the program is written, to a program simply contemplated and memorized by a person. Computer-readable medium is not defined by the specification and therefore, the

Art Unit: 2621

Examiner suggests amending the claim to read "non-transitory computer-readable medium" in order to exclude all computer-readable mediums that are non-statutory.

Claim Rejections - 35 USC § 103

- The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 4. Claims 1, 2, 12-15, 18-21, 26, 27, 32, 33, 38, 39, 44, and 45 are rejected under 35 U.S.C. 103(a) as being unpatentable over Kato et al. (U.S. Patent Application Publication 2002/0145702) in view of Ando et al. (U.S. Patent 7,054,545) in view of Ikeda et al. (U.S. Patent Application Publication 2006/0188223) in view of Mori et al. (U.S. Patent 6,529,683).

Recording claim 1, Kato et al. discloses a computer-readable medium having a data structure for managing reproduction of at least one still picture, comprising: a navigation area storing at least one playlist file (Fig. 14), and first and second clip information files (Figs. 2, 14; paragraph [0195]), the at least one playlist file including at least one playitem and at least one sub-playitem, the at least one playitem indicating an in-point and an out-point of the first stream file for reproducing at least one still picture, the at least one sub-playitem indicating an in-point and an out-point of a second stream file for reproducing audio data (Figs. 2, 3, 7, 14, 32, and 40; paragraph [0195]), the first clip information file

Art Unit: 2621

including a first entry point map, the first entry point map including at least one entry point mapping between a presentation time and a unit of the first stream file, the second clip information file including a second entry point map, the second entry point map including at least one entry point mapping between a presentation time and a unit of the second stream (Figs. 7 and 70; paragraphs [0195] and [0345]). However, Kato et al. fails to disclose a data area storing a first and second stream files, the first stream file including presentation data, the second stream file including audio data, the presentation data being divided into at least one still picture unit, the at least one still picture unit including at least one still picture and associated graphic data; the at least one playitem further including duration information indicating whether to display at least one still picture for one of a finite and an infinite period of time, wherein the presentation data such that at least one still picture and the associated graphic data in a still picture unit are reproduced synchronously; wherein the audio data is reproduced asynchronously and independently from the still picture unit.

Referring to the Ando et al. reference, Ando et al. discloses a computer readable medium having a data structure for managing reproduction duration of still pictures, comprising: a data area storing a first stream file for presentation data and a second stream file for audio data (Figs. 1 and 7; col. 5, lines 29-33), the presentation data being divided into at least one of still picture unit (Figs. 1, 4, and 11); a clip information area storing at least one clip information file, each clip information file being associated with at least one stream file stored in a data

Art Unit: 2621

area, the clip information file providing a map for the associated stream file, each map mapping representation time information to address information for the associated stream file (Figs. 3 and 4; col. 7, lines 7-63; col. 9, lines 1-33); and a navigation area storing at least one playlist (col. 11, lines 12-15), the playlist referencing the clip information file and including at least one playitem, the at least one playitem indicating at least one of the still picture unit to reproduce and providing duration information for display of the at least one still picture in the still picture unit (Figs. 7, 8, 10, and 11; col. 39, lines 38-50); wherein the first duration information indicates whether to display at least one still picture for one of a finite and an infinite period of time, and wherein playtime further includes second duration information indicating a length in time to display at least one still picture when the first duration information indicates to display the still picture for a finite period of time (col. 39, lines 38-63 – audio and still information).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have included the duration information in the navigation information as disclosed by Ando et al. in the medium disclosed by Kato et al. in order for the playlist to perform more efficiently by knowing the duration of each playtime thereby creating an overall better viewing experience. Furthermore, Official Notice is taken that it is well known in the art to have still pictures linked to associated graphic data, wherein the associated graphic data is a subtitle, a sub-picture or a caption, and to display the associated graphic data and still picture synchronously. Therefore, it would have been obvious to one of

Art Unit: 2621

ordinary skill in the art at the time the invention was made to have reproduced captions synchronously with the still pictures in the computer-readable medium disclosed by Kato et al. in view of Ando et al. in order to provide more insight to the still pictures by using captions. However, Kato et al. in view of Ando et al. still fail to disclose that the still picture unit includes at least one still picture and associated graphic data and that the audio data is reproduced asynchronously and independently from the still picture unit.

Referring to the Ikeda et al. reference, Ikeda et al. discloses a computerreadable medium having a data structure for managing reproduction of at least one still picture, wherein the still picture unit include at least one still picture and associated graphic data (paragraph [0003]).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have included associated graphic data with at least one still picture in the still picture unit as disclosed by Ikeda et al. in the medium disclosed by Kato in view of Ando et al. in order to keep all associated data together so the system can find the information faster. However, Kato et al. in view of Ando et al. in view of Ikeda et al. still fail to disclose that the audio data is reproduced asynchronously and independently from the still picture unit.

Referring to the Mori et al. reference, Mori et al. discloses a computerreadable medium comprising a mode that allows the user to enter a "browsable" mode, wherein the still pictures are reproduced asynchronously from the audio

Art Unit: 2621

data and the still pictures are updated based on the user's instructions (col. 4, line 57 - col. 5, line 6; col. 36, lines 49-59).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have included produced the audio asynchronously from the video data as disclosed by Mori in the computer-readable medium disclosed by Kato et al. in view of Ando et al. in view of Ikeda et al. in order to allow the user to enter a browse mode and be able to look at the still pictures at their own pace.

Regarding claim 2, Kato et al. in view of Ando et al. in view of Ikeda et al. in view of Mori et al. discloses all the limitations as previously discussed with respect to claim 1 including that the entry point of the first entry point map provides an address of the still picture (Kato et al.: Figs. 2, 14, 63; paragraph [0195]).

Regarding claim 12, Kato et al. in view of Ando et al. in view of Ikeda et al. in view of Mori et al. discloses all the limitations as previously discussed with respect to claim 1 including that the presentation data is multiplexed into a transport stream on a still picture unit basis (Ando et al. col. 19, lines 16-18 – when the presentation data is reproduced the data has to be demultiplexed, therefore the data is originally multiplexed).

Regarding claim 13, Kato et al. in view of Ando et al. in view of Ikeda et al. in view of Mori et al. discloses all the limitations as previously discussed with respect to claims 1 and 12 including that each elementary stream of the

Art Unit: 2621

presentation data are aligned within the still picture unit (Ando et al: Figs. 1, 32, and 36; col. 33, lines 41-52 – elementary streams are included in MPEG).

Regarding claim 14, Kato et al. in view of Ando et al. in view of Ikeda et al. in view of Mori et al. discloses all the limitations as previously discussed with respect to claims 1, 12, and 13 including that each elementary stream is a packetized elementary stream (Ando et al.: Figs. 1, 32, and 36; col. 33, lines 41-52 – elementary streams are included in MPEG).

Regarding claim 15, Kato et al. in view of Ando et al. in view of Ikeda et al. in view of Mori et al. discloses all the limitations as previously discussed with respect to claims 1 and 12-14 including that each still picture unit includes one packet from each packetized elementary stream (Ando et al: Figs. 1, 32, and 36; col. 33, lines 41-52 – elementary streams are included in MPEG).

Recording claim 18, Kato et al. discloses a method of recording a data structure for managing reproduction of at least one still picture on a recording medium, comprising: recording at least one playlist file, and first and second clip information files, the playlist file including at least one playitem and at least one sub-playitem, the at least one playitem indicating an in-point and an out-point of a first stream file for reproducing at least one still picture, the sub-playitem indicating an in-point and an out-point of a second stream file for reproducing audio data (Figs. 2, 3, 7, 14, 32, and 40; paragraph [0195]), the first clip information file including a first entry point map, the first entry point map including at least one entry point mapping between a presentation time and a unit of the

first stream file, and the second clip information file including a second entry point map, the second entry point map including at least one entry point mapping between a presentation time and a unit of the second stream file (Figs. 7 and 70; paragraphs [0195] and [0345]). However, Kato et al. fails to disclose a data area recording first and second stream files, the first stream file including presentation data, the second stream file including audio data, the presentation data being divided into at least one of still picture unit, the still picture unit including at least a still picture and associated graphic data; the playitem further including duration information indicating whether to display the still picture for one of a finite and in infinite period of time, wherein the presentation data such that a still picture and the associated graphic data in a still picture unit are reproduced synchronously; wherein the audio data is reproduced asynchronously and independently from the still picture unit.

Referring to the Ando et al. reference, Ando et al. discloses a computer readable medium having a data structure for managing reproduction duration of still pictures, comprising: a data area storing a first stream file for presentation data and a second stream file for audio data (Figs. 1 and 7; col. 5, lines 29-33), the presentation data being divided into at least one of still picture unit (Figs. 1, 4, and 11); a clip information area storing at least one clip information file, each clip information file being associated with at least one stream file stored in a data area, the clip information file providing a map for the associated stream file, each map mapping representation time information to address information for the

associated stream file (Figs. 3 and 4; col. 7, lines 7-63; col. 9, lines 1-33); and a navigation area storing at least one playlist (col. 11, lines 12-15), the playlist referencing the clip information file and including at least one playitem, the playitem indicating at least one of the still picture unit to reproduce and providing duration information for display of the still picture in the still picture unit (Figs. 7, 8, 10, and 11; col. 39, lines 38-50); wherein the first duration information indicates whether to display the still picture for one of a finite and an infinite period of time, and wherein playtime further includes second duration information indicating a length in time to display the still picture when the first duration information indicates to display the still picture for a finite period of time (col. 39, lines 38-63 – audio and still information).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have included the duration information in the navigation information as disclosed by Ando et al. in the method disclosed by Kato et al. in order for the playlist to perform more efficiently by knowing the duration of each playtime thereby creating an overall better viewing experience. Furthermore, Official Notice is taken that it is well known in the art to have still pictures linked to associated graphic data, wherein the associated graphic data is either a subtitle or a caption, and to display the associated graphic data and still picture synchronously. Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have reproduced captions synchronously with the still pictures in the method disclosed by Kato et al. in view

of Ando et al. in order to provide more insight to the still pictures by using captions. However, Kato et al. in view of Ando et al. still fail to disclose that the still picture unit includes at least one still picture and associated graphic data and that the audio data is reproduced asynchronously and independently from the still picture unit.

Referring to the Ikeda et al. reference, Ikeda et al. discloses a computerreadable medium having a data structure for managing reproduction of at least one still picture, wherein the still picture unit include at least one still picture and associated graphic data (paragraph (00031).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have included associated graphic data with at least one still picture in the still picture unit as disclosed by Ikeda et al. in the medium disclosed by Kato in view of Ando et al. in order to keep all associated data together so the system can find the information faster. However, Kato et al. in view of Ando et al. in view of Ikeda et al. still fail to disclose that the audio data is reproduced asynchronously and independently from the still picture unit.

Referring to the Mori et al. reference, Mori et al. discloses a computerreadable medium comprising a mode that allows the user to enter a "browsable" mode, wherein the still pictures are reproduced asynchronously from the audio data and the still pictures are updated based on the user's instructions (col. 4, line 57 - col. 5, line 6; col. 36, lines 49-59).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have included produced the audio asynchronously from the video data as disclosed by Mori in the method disclosed by Kato et al. in view of Ando et al. in view of Ikeda et al. in order to allow the user to enter a browse mode and be able to look at the still pictures at their own pace.

Recording claim 19. Kato et al. discloses a method of reproducing a data structure for managing reproduction of at least one still image on a recording medium, comprising; reproducing at least one first and second stream files in a data area of the recording medium (Figs. 2, 14; paragraph [0195]), reproducing at least one playlist file, and first and second clip information files, the playlist file including at least one playitem and at least one sub-playitem, the playitem indicating an in-point and an out-point of a first stream file for reproducing at least one still picture, the sub-playitem indicating an in-point and an out-point of a second stream file for reproducing audio data (Figs. 2, 3, 7, 14, 32, and 40; paragraph [0195]), the first clip information file including a first entry point map. the first entry point map including at least one entry point mapping between a presentation time and a unit of the first stream file, and the second clip information file including a second entry point map, the second entry point map including at least one entry point mapping between a presentation time and a unit of the second stream file (Figs. 7 and 70; paragraphs [0195] and [0345]). However, Kato et al. fails to disclose a data area reproducing first and second

stream files, the first stream file including presentation data, the second stream file including audio data, the presentation data being divided into at least one of still picture unit, the still picture unit including at least a still picture and associated graphic data, the associated graphic data not including audio data; the playitem further including duration information indicating whether to display the still picture for one of a finite and in infinite period of time, wherein the presentation data such that a still picture and the associated graphic data in a still picture unit are reproduced synchronously; wherein the audio data is reproduced asynchronously and independently from the still picture unit.

Referring to the Ando et al. reference, Ando et al. discloses a computer readable medium having a data structure for managing reproduction duration of still pictures, comprising: a data area storing a first stream file for presentation data and a second stream file for audio data (Figs. 1 and 7; col. 5, lines 29-33), the presentation data being divided into at least one of still picture unit (Figs. 1, 4, and 11); a clip information area storing at least one clip information file, each clip information file being associated with at least one stream file stored in a data area, the clip information file providing a map for the associated stream file, each map mapping representation time information to address information for the associated stream file (Figs. 3 and 4; col. 7, lines 7-63; col. 9, lines 1-33); and a navigation area storing at least one playlist (col. 11, lines 12-15), the playlist referencing the clip information file and including at least one playitem, the

duration information for display of the still picture in the still picture unit (Figs. 7, 8, 10, and 11; col. 39, lines 38-50); wherein the first duration information indicates whether to display the still picture for one of a finite and an infinite period of time, and wherein playtime further includes second duration information indicating a length in time to display the still picture when the first duration information indicates to display the still picture for a finite period of time (col. 39, lines 38-63 – audio and still information).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have included the duration information in the navigation information as disclosed by Ando et al. in the method disclosed by Kato et al. in order for the playlist to perform more efficiently by knowing the duration of each playtime thereby creating an overall better viewing experience. Furthermore, Official Notice is taken that it is well known in the art to have still pictures linked to assonated graphic data, wherein the associated graphic data is either a subtitle or a caption, and to display the associated graphic data and still picture synchronously. Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have reproduced captions synchronously with the still pictures in the method disclosed by Kato et al. in view of Ando et al. in order to provide more insight to the still pictures by using captions. However, Kato et al. in view of Ando et al. still fail to disclose that the still picture unit includes at least one still picture and associated graphic data and

Art Unit: 2621

that the audio data is reproduced asynchronously and independently from the still picture unit.

Referring to the Ikeda et al. reference, Ikeda et al. discloses a computerreadable medium having a data structure for managing reproduction of at least one still picture, wherein the still picture unit include at least one still picture and associated graphic data (paragraph [0003]).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have included associated graphic data with at least one still picture in the still picture unit as disclosed by Ikeda et al. in the medium disclosed by Kato in view of Ando et al. in order to keep all associated data together so the system can find the information faster. However, Kato et al. in view of Ando et al. in view of Ikeda et al. still fail to disclose that the audio data is reproduced asynchronously and independently from the still picture unit.

Referring to the Mori et al. reference, Mori et al. discloses a computerreadable medium comprising a mode that allows the user to enter a "browsable" mode, wherein the still pictures are reproduced asynchronously from the audio data and the still pictures are updated based on the user's instructions (col. 4, line 57 - col. 5, line 6; col. 36, lines 49-59).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have included produced the audio asynchronously from the video data as disclosed by Mori in the method disclosed by Kato et al. in view of Ando et al. in view of Ikeda et al. in order to allow the

user to enter a browse mode and be able to look at the still pictures at their own pace.

Recording claim 20, Kato et al. discloses an apparatus for recording a data structure for managing reproduction of at least one still image on a recording medium, comprising: a pick up configured to record data on the recording medium (Figs. 1 and 108); a controller configured to record first and second stream files in a data area of the recording medium (Figs. 2, 14: paragraph [0195]), and configured to record at least one playlist file, and first and second clip information files, the playlist file including at least one playitem and at least one sub-playitem, the playitem indicating an in-point and an out-point of a first stream file for reproducing, the sub-playitem indicating an in-point and an out-point of a second stream file for reproducing audio data (Figs. 2, 3, 7, 14, 32, and 40; paragraph [0195]), the first clip information file including a first entry point map, the first entry point map including at least one entry point mapping between a presentation time and a unit of the first stream file, and the second clip information file including a second entry point map, the second entry point map including at least one entry point mapping between a presentation time and a unit of the second stream file (Figs. 7 and 70; paragraphs [0195] and [0345]). However, Kato et al. fails to disclose a data area recording first and second stream files, the first stream file including presentation data, the second stream file including audio data, the presentation data being divided into at least one of still picture unit, the still picture unit including at least a still picture and

associated graphic data, the associated graphic data not including audio data; the playitem further including duration information indicating whether to display the still picture for one of a finite and in infinite period of time, wherein the presentation data such that a still picture and the associated graphic data in a still picture unit are reproduced synchronously; wherein the audio data is reproduced asynchronously and independently from the still picture unit.

Referring to the Ando et al. reference. Ando et al. discloses a computer readable medium having a data structure for managing reproduction duration of still pictures, comprising; a data area storing a first stream file for presentation data and a second stream file for audio data (Figs. 1 and 7; col. 5, lines 29-33), the presentation data being divided into at least one of still picture unit (Figs. 1, 4, and 11); a clip information area storing at least one clip information file, each clip information file being associated with at least one stream file stored in a data area, the clip information file providing a map for the associated stream file, each map mapping representation time information to address information for the associated stream file (Figs. 3 and 4; col. 7, lines 7-63; col. 9, lines 1-33); and a navigation area storing at least one playlist (col. 11, lines 12-15), the playlist referencing the clip information file and including at least one playitem, the playitem indicating at least one of the still picture unit to reproduce and providing duration information for display of the still picture in the still picture unit (Figs. 7, 8, 10, and 11; col. 39, lines 38-50); wherein the first duration information indicates whether to display the still picture for one of a finite and an infinite

period of time, and wherein playtime further includes second duration information indicating a length in time to display the still picture when the first duration information indicates to display the still picture for a finite period of time (col. 39, lines 38-63 – audio and still information).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have included the duration information in the navigation information as disclosed by Ando et al. in the apparatus disclosed by Kato et al. in order for the playlist to perform more efficiently by knowing the duration of each playtime thereby creating an overall better viewing experience. Furthermore, Official Notice is taken that it is well known in the art to have still pictures linked to associated graphic data, wherein the associated graphic data is either a subtitle or a caption, and to display the associated graphic data and still picture synchronously. Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have reproduced captions synchronously with the still pictures in the apparatus disclosed by Kato et al. in view of Ando et al. in order to provide more insight to the still pictures by using captions. However, Kato et al. in view of Ando et al. still fail to disclose that the still picture unit includes at least one still picture and associated graphic data and that the audio data is reproduced asynchronously and independently from the still picture unit.

Referring to the Ikeda et al. reference, Ikeda et al. discloses a computerreadable medium having a data structure for managing reproduction of at least

Art Unit: 2621

one still picture, wherein the still picture unit include at least one still picture and associated graphic data (paragraph [0003]).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have included associated graphic data with at least one still picture in the still picture unit as disclosed by Ikeda et al. in the medium disclosed by Kato in view of Ando et al. in order to keep all associated data together so the system can find the information faster. However, Kato et al. in view of Ando et al. in view of Ikeda et al. still fail to disclose that the audio data is reproduced asynchronously and independently from the still picture unit.

Referring to the Mori et al. reference, Mori et al. discloses a computerreadable medium comprising a mode that allows the user to enter a "browsable" mode, wherein the still pictures are reproduced asynchronously from the audio data and the still pictures are updated based on the user's instructions (col. 4, line 57 - col. 5, line 6; col. 36, lines 49-59).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have included produced the audio asynchronously from the video data as disclosed by Mori in the apparatus disclosed by Kato et al. in view of Ando et al. in view of Ikeda et al. in order to allow the user to enter a browse mode and be able to look at the still pictures at their own pace.

Recording claim 21, Kato et al. discloses an apparatus for reproducing a data structure for managing reproduction of at least one still image on a

Art Unit: 2621

recording medium, comprising: a pick up configured to reproduce data on the recording medium (Figs. 1 and 108); a controller configured to reproduce first and second stream files in a data area of the recording medium (Figs. 2, 14; paragraph [0195]) and to reproduce at least one playlist file, and first and second clip information file, the playlist file including at least one playitem and at least one sub-playitem, the playitem indicating an in-point and an out-point of a first stream file for reproducing at least one still picture, the sub-playitem indicating an in-point and an out-point of a second stream file for reproducing audio data (Figs. 2, 3, 7, 14, 32, and 40; paragraph [0195]), the first clip information file including a first entry point map, the first entry point map including at least one entry point mapping between a presentation time and a unit of the first stream file, and the second clip information file including a second entry point map, the second entry point map including at least one entry point mapping between a presentation time and a unit of the second stream file (Figs. 7 and 70; paragraphs [0195] and [0345]).

However, Kato et al. fails to disclose a data area recording first and second stream files, the first stream file including presentation data, the second stream file including audio data, the presentation data being divided into at least one of still picture unit, the still picture unit including at least a still picture and associated graphic data, the associated graphic data not including audio data; the playitem further including duration information indicating whether to display the still picture for one of a finite and in infinite period of time, wherein the

presentation data such that a still picture and the associated graphic data in a still picture unit are reproduced synchronously; wherein the audio data is reproduced asynchronously and independently from the still picture unit.

Referring to the Ando et al. reference. Ando et al. discloses a computer readable medium having a data structure for managing reproduction duration of still pictures, comprising: a data area storing a first stream file for presentation data and a second stream file for audio data (Figs. 1 and 7; col. 5, lines 29-33). the presentation data being divided into at least one of still picture unit (Figs. 1, 4, and 11); a clip information area storing at least one clip information file, each clip information file being associated with at least one stream file stored in a data area, the clip information file providing a map for the associated stream file, each map mapping representation time information to address information for the associated stream file (Figs. 3 and 4; col. 7, lines 7-63; col. 9, lines 1-33); and a navigation area storing at least one playlist (col. 11, lines 12-15), the playlist referencing the clip information file and including at least one playitem, the playitem indicating at least one of the still picture unit to reproduce and providing duration information for display of the still picture in the still picture unit (Figs. 7, 8, 10, and 11; col. 39, lines 38-50); wherein the first duration information indicates whether to display the still picture for one of a finite and an infinite period of time, and wherein playtime further includes second duration information indicating a length in time to display the still picture when the first duration

Art Unit: 2621

information indicates to display the still picture for a finite period of time (col. 39, lines 38-63 - audio and still information).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have included the duration information in the navigation information as disclosed by Ando et al. in the apparatus disclosed by Kato et al. in order for the playlist to perform more efficiently by knowing the duration of each playtime thereby creating an overall better viewing experience. Furthermore, Official Notice is taken that it is well known in the art to have still pictures linked to associated graphic data, wherein the associated graphic data is either a subtitle or a caption, and to display the associated graphic data and still picture synchronously. Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have reproduced captions synchronously with the still pictures in the apparatus disclosed by Kato et al. in view of Ando et al. in order to provide more insight to the still pictures by using captions. However, Kato et al. in view of Ando et al. still fail to disclose that the audio data is reproduced asynchronously and independently from the still picture unit. However, Kato et al. in view of Ando et al. still fail to disclose that the still picture unit includes at least one still picture and associated graphic data and that the audio data is reproduced asynchronously and independently from the still picture unit.

Referring to the Ikeda et al. reference, Ikeda et al. discloses a computerreadable medium having a data structure for managing reproduction of at least

Art Unit: 2621

one still picture, wherein the still picture unit include at least one still picture and associated graphic data (paragraph [0003]).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have included associated graphic data with at least one still picture in the still picture unit as disclosed by Ikeda et al. in the medium disclosed by Kato in view of Ando et al. in order to keep all associated data together so the system can find the information faster. However, Kato et al. in view of Ando et al. in view of Ikeda et al. still fail to disclose that the audio data is reproduced asynchronously and independently from the still picture unit.

Referring to the Mori et al. reference, Mori et al. discloses a computerreadable medium comprising a mode that allows the user to enter a "browsable" mode, wherein the still pictures are reproduced asynchronously from the audio data and the still pictures are updated based on the user's instructions (col. 4, line 57 - col. 5, line 6; col. 36, lines 49-59).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to have included produced the audio asynchronously from the video data as disclosed by Mori in the apparatus disclosed by Kato et al. in view of Ando et al. in view of Ikeda et al. in order to allow the user to enter a browse mode and be able to look at the still pictures at their own pace.

Regarding claims 26 and 27, grounds for rejecting claims 12 and 13 applies for claims 26 and 27 respectively in their entireties.

Regarding claims **32** and **33**, grounds for rejecting claims 12 and 13 applies for claims 32 and 33 respectively in their entireties.

Regarding claims 38 and 39, grounds for rejecting claims 12 and 13 applies for claims 38 and 39 respectively in their entireties.

Regarding claims **44** and **45**, grounds for rejecting claims 12 and 13 applies for claims 44 and 45 respectively in their entireties.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to HEATHER R. JONES whose telephone number is (571)272-7368. The examiner can normally be reached on Mon. - Thurs.: 7:00 am - 4:30 pm, and every other Fri.: 7:00 am - 3:30 pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Thai Tran can be reached on 571-272-7382. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a

Application/Control Number: 10/766,239 Page 25

Art Unit: 2621

USPTO Customer Service Representative or access to the automated information

system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Heather R Jones Examiner Art Unit 2621

HRJ

November 20, 2009

/Thai Tran/ Supervisory Patent Examiner, Art Unit 2621