

#### FACULTAD DE CIENCIAS

# Search for dark matter production in association with top quarks in the dilepton final state at $\sqrt{s} = 13 \text{ TeV}$

A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE

Degree of Doctor of Philosophy

Written by **Cédric Prieëls** 

Under the supervision of
Jónatan Piedra Gómez
Pablo Martínez Ruiz del Árbol

December 2020

#### Contents

| 1        | Intr | roducti                           | ion                               | 1 |  |  |  |
|----------|------|-----------------------------------|-----------------------------------|---|--|--|--|
| <b>2</b> | Dar  | rk matter case                    |                                   |   |  |  |  |
|          | 2.1  | At the origins of dark matter     |                                   |   |  |  |  |
|          | 2.2  | Dark matter properties            |                                   |   |  |  |  |
|          | 2.3  | Dark matter production at the LHC |                                   |   |  |  |  |
|          | 2.4  | Produ                             | action associated with top quarks | 2 |  |  |  |
|          |      | 2.4.1                             | The single top production channel | 2 |  |  |  |
|          |      | 2.4.2                             | The $t \bar t$ production channel | 2 |  |  |  |
| 3        | Exp  | perimental device                 |                                   |   |  |  |  |
|          | 3.1  | The LHC accelerator               |                                   |   |  |  |  |
|          | 3.2  | The CMS detector                  |                                   |   |  |  |  |
|          |      | 3.2.1                             | Tracker                           | 3 |  |  |  |
|          |      | 3.2.2                             | Electromagnetic calorimeter       | 3 |  |  |  |
|          |      | 3.2.3                             | Hadronic calorimeter              | 3 |  |  |  |
|          |      | 3.2.4                             | Muon system                       | 3 |  |  |  |
|          |      | 3.2.5                             | Trigger                           | 3 |  |  |  |
|          |      | 3.2.6                             | Data aquisition                   | 3 |  |  |  |
| 4        | Obi  | ects, d                           | datasets and samples              | 4 |  |  |  |

| 5                         | Event reconstruction  | 5  |
|---------------------------|-----------------------|----|
| 6                         | Event selection       | 6  |
| 7                         | Signal discrimination | 7  |
| 8                         | Background estimation | 8  |
| 9                         | Results               | 9  |
| 10                        | Conclusions           | 10 |
| $\mathbf{A}_{\mathbf{l}}$ | opendices             | 11 |
| Bi                        | bliography            | 12 |

#### Introduction

#### Dark matter case

- 2.1 At the origins of dark matter
- 2.2 Dark matter properties
- 2.3 Dark matter production at the LHC
- 2.4 Production associated with top quarks
- 2.4.1 The single top production channel
- 2.4.2 The  $t\bar{t}$  production channel

#### Experimental device

- 3.1 The LHC accelerator
- 3.2 The CMS detector
- 3.2.1 Tracker
- 3.2.2 Electromagnetic calorimeter
- 3.2.3 Hadronic calorimeter
- 3.2.4 Muon system
- 3.2.5 Trigger
- 3.2.6 Data aquisition

## Objects reconstruction

- 4.1 Particule Flow algorithm
- 4.1.1 Electrons
- 4.1.2 Muons
- 4.1.3 Jets
- 4.1.4 MET

Event selection

Signal discrimination

Background estimation

Results

#### Conclusions

# Appendices

## Bibliography

[1] M. Born, P. Jordan & W. Heisenberg, Zur Quantenmechanik. II., Physik, 1926

http://link.springer.com/article/10.1007%2FBF01379806