Analiza 2a

Ruslan Urazbakhtin 25. julij 2025 KAZALO 2

Kazalo

1	Hilbertovi prostori		
	1.1	Vektorski prostori s skalarnim produktom	
	1.2	Hilbertovi prostori	
	1.3	Prostor $L^2([a,b])$	
	1.4	Ortogonalnost	
	1.5	Ortogonalni sistem	

1 Hilbertovi prostori

1.1 Vektorski prostori s skalarnim produktom

Naj bo X vektorski prostor nad \mathbb{R} (ali nad \mathbb{C}).

Definicija 1.1. Skalarni produkt je preslikava $\langle \ , \ \rangle : X \times X \to \mathbb{R}$ (oz. \mathbb{C}) za katero velja:

- 1. $\forall x \in X . \langle x, x \rangle \ge 0;$
- $2. \ \forall x \in X . \ \langle x, \, x \rangle = 0 \iff x = 0;$
- 3. $\forall x, y \in X . \langle x, y \rangle = \overline{\langle y, x \rangle};$
- 4. $\forall x, y, z \in X . \forall \lambda, \mu \in \mathbb{R} \text{ (oz. } \mathbb{C}) . \langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle.$

Opomba 1.2. 1.-2. je pozitivna definitnost skalarnega produkta, 3. je poševna simetričnost (simetričnost nad \mathbb{R}), 4. je linearnost v prvem faktorju.

Trditev 1.3 (Cauchy-Schwartzova neenakost). Naj bo \langle , \rangle skalarni produkt na X. Velja:

$$\forall x,y \in X \,.\, |\langle x,\,y \rangle\,| \leq \sqrt{\langle x,\,x \rangle} \cdot \sqrt{\langle y,\,y \rangle} = ||x|| \cdot ||y||.$$

Dokaz. Nad \mathbb{R} : Definiramo $t \to \langle x + ty, x + ty \rangle = f(t) \ge 0$.

Nad \mathbb{C} : Naj bo $x, y \in X$. Obstaja $\alpha \in \mathbb{C}$, $|\alpha| = 1$, da $\langle x, y \rangle = \alpha \cdot |\langle x, y \rangle|$.

Definicija 1.4. Norma na vektorskem prostoru X je preslikava $||\ ||: X \to \mathbb{R}$ za katero velja:

- 1. $\forall x \in X . ||x|| \ge 0;$
- 2. $\forall x \in X . ||x|| = 0 \iff x = 0;$
- 3. $\forall \lambda \in \mathbb{R} \text{ (oz. } \mathbb{C}) . ||\lambda x|| = |\lambda| \cdot ||x||;$
- 4. Trikotniška neenakost: $\forall x, y \in X . ||x + y|| \le ||x|| + ||y||$.

Trditev 1.5. Naj bo (X, \langle , \rangle) vektorski prostor s skalarnim produktom. Potem je (X, || ||), kjer je $\forall x \in X$. $||x|| = \sqrt{\langle x, x \rangle}$, vektorski prostor z normo.

Dokaz. Preverimo lastnosti. Za trikotniško neenakost uporabimo CS neenakost.

Trditev 1.6. Naj bo $(X, ||\ ||)$ vektorski prostor s normo. Potem je (X, d), kjer je metrika definirana s predpisom $\forall x, y \in X$. d(x, y) = ||x - y||, metrični prostor.

Dokaz. Preverimo lastnosti.

1.2 Hilbertovi prostori

Definicija 1.7. Hilbertov prostor je vektorski prostor X s skalarnim produktom \langle , \rangle , ki je v metriki, porojeni iz skalarnega produkta, poln metrični prostor.

Opomba 1.8. $(X, \langle , \rangle) \rightsquigarrow (X, || ||) \rightsquigarrow (X, d)$, kjer je $\forall x, y \in X \cdot d(x, y) = ||x - y||$.

Opomba 1.9. Banachov prostor je vektorski prostor X z normo $||\ ||$, ki je v metriki, porojeni iz norme, poln metrični prostor.

Zgled 1.10.

1. Naj bo $X = \mathbb{R}^n$. Definiramo skalarni produkt. Naj bo $x, y \in \mathbb{R}^n$, $x = (x_1, \dots, x_n)$ in $y = (y_1, \dots, y_n)$. Standardni skalarni produkt je

$$x \cdot y = \sum_{k=1}^{n} x_k y_k.$$

Ta skalarni produkt nam da normo

$$||x|| = \sqrt{\sum_{k=1}^{n} x_k^2},$$

ki porodi metriko

$$d_2(x,y) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}.$$

Vemo, da je (\mathbb{R}^n, d_2) poln metrični prostor. Torej (\mathbb{R}^n, \cdot) Hilbertov prostor.

- 2. Na \mathbb{R}^n lahko definiramo tudi druge norme, npr.
 - $||x||_{\infty} = \max\{|x_1|, \dots, |x_n|\};$
 - $||x||_1 = |x_1| + \ldots + |x_n|$.

Te dve normi ne prideta iz skalarnega produkta, ker za njih ne velja paralelogramsko pravilo. $(\mathbb{R}^n, ||x||_{\infty})$ in $(\mathbb{R}^n, ||x||_1)$ sta Banachova prostora.

3. Naj bo $X = \mathbb{C}^n$. Definiramo skalarni produkt. Naj bo $z, w \in \mathbb{C}^n$, $z = (z_1 \dots, z_n)$ in $w = (w_1, \dots, w_n)$. Standardni skalarni produkt je

$$z \cdot w = \sum_{k=1}^{n} z_k \overline{w_k}.$$

Ta skalarni produkt nam da normo

$$||z|| = \sqrt{\sum_{k=1}^{n} |z_k|^2},$$

ki porodi metriko

$$d_2(z, w) = \sqrt{\sum_{k=1}^{n} |z_k - w_k|^2}.$$

Vemo, da je (\mathbb{C}^n, d_2) poln metrični prostor. Torej (\mathbb{C}^n, \cdot) Hilbertov prostor.

1.3 Prostor $L^2([a,b])$

Opomba 1.11. Števili a, b sta lahko končni ali $\pm \infty$.

Trditev 1.12. Naj bo C([a,b]) vektorski prostor nad \mathbb{R} . Potem je s predpisom

$$\forall f, g \in C([a, b]) . \langle f, g \rangle = \int_a^b f(x)g(x) dx$$

definiran skalarni produkt na C([a,b]).

Dokaz. Preverimo lastnosti.

Trditev 1.13. $(C([a,b]), \langle , \rangle)$ ni Hilbertov prostor.

 $Dokaz. \text{ Definiramo } f_n(x) = \begin{cases} 1; & \frac{1}{n} \leq x \leq 1 \\ nx; & -\frac{1}{n} < x < \frac{1}{n} \end{cases}. \text{ Pokažemo, da je } (f_n)_n \text{ Cauchyjevo } -1; & -1 \leq x \leq -\frac{1}{n} \end{cases}$ zaporedje v C([a,b]), ki nima limite

Zgled 1.14. Vzemimo prostor $((0,1),d_2)$. Z dodajanjem limitnih točk $\{-1,1\}$ ta prostor postane poln.

Definicija 1.15. Naj bo (M, d) metrični prostor. Pravimo, da lahko **napolnimo** prostor M, če obstaja prostor $(\overline{M}, \overline{d})$, za kateri velja:

- 1. $(\overline{M}, \overline{d})$ je poln metrični prostor;
- 2. $M \subseteq M$;
- 3. $\overline{d}|_{M\times M}=d;$
- 4. M je gost v \overline{M} , tj. $\operatorname{Cl} M = \overline{M}$.

Prostoru \overline{M} rečemo **napolnitev** prostora M.

Opomba 1.16. Ideja: \overline{M} je prostor vseh limit Cauchyjevih zaporedij v M (+ kvocient).

Opomba 1.17. Označili smo z $L^1(A) = \{f : A \to \mathbb{R} \mid \int_A |f| \, dx$ obstaja, f zvezna s.p. $\} /_{\sim}$ prostor vseh absolutno integrabilnih funkcij, kjer je $\forall f, g \in L^1 \cdot f \sim g \iff f = g$ s.p.

Vpeljemo zdaj s kvadratom integrabilne funkcije:

Definicija 1.18. Prostor $L^2([a,b])$ je

$$L^2([a,b]) = \left\{ f: [a,b] \to \mathbb{R} \,|\, \int_a^b f^2(x) \,dx \text{ obstaja, } f \text{ zvezna s.p.} \right\} /_\sim,$$

kjer je $\forall f, g \in L^2 . f \sim g \iff f = g \text{ s.p.}$

V tem prostoru gotovo so

- Zvezne funkcije: $C([a,b]) \subseteq L^2([a,b])$;
- Odsekoma zvezni funkciji; $f(x) = \frac{1}{\sqrt[4]{x-a}}$ itd.

Cilj Želimo posplošiti prostor (\mathbb{R}, \cdot) .

Naj bo $f,g\in L^2$, potem $|f\cdot g|\leq \frac{|f|^2+|g|^2}{2}\implies f\cdot g\in L^1([a,b]).$ Torej lahko definiramo

$$\langle f, g \rangle = \int_a^b f(x)g(x) dx.$$

Trditev 1.19. $L^2([a,b])$ je vektorski prostor nad \mathbb{R} .

Dokaz. Preverimo lastnosti.

Torej $L^2([a,b])$ je vektorski prostor nad \mathbb{R} s skalarnim produktom

$$\langle f, g \rangle = \int_a^b f(x)g(x) dx.$$

Očitno, da je $C([a,b]) \subseteq L^2([a,b])$.

Izrek 1.20. $L^2([a,b])$ je Hilbertov in $L^2([a,b])$ je napolnitev C([a,b]).

Opomba 1.21. Prostor C([a,b]) je gost v prostoru $L^2([a,b])$, tj.

$$\forall f \in L^2([a,b]) . \exists f_n \in C([a,b]) . \lim_{n \to \infty} f_n = f,$$

kjer

$$\lim_{n \to \infty} f_n = f \iff \lim_{n \to \infty} ||f_n - f|| = 0 \iff \lim_{n \to \infty} \sqrt{\int_a^b (f_n(x) - f(x))^2} \, dx = 0.$$

Opomba 1.22. Nad \mathbb{C} : f = u + iv, $u, v : [a, b] \to \mathbb{R}$. Potem

$$\int_a^b f(x) dx = \int_a^b u(x) dx + i \int_a^b v(x) dx$$

in

$$\langle f, g \rangle = \int_a^b f(x) \overline{g(x)} \, dx.$$

Zgled 1.23. Vzemimo [0,1]. Definiramo $f_n(x) = \begin{cases} \sqrt{n}; & 0 < x \le \frac{1}{n} \\ 0; & \text{sicer} \end{cases}$.

Čemu je enaka $\lim_{n\to\infty} f_n(x)$ za vse $x\in[0,1]$ (po točkah)? Ali je $\lim_{n\to\infty} f_n(x)=0$ v $L^2([0,1])$?

Zgled 1.24. Definiramo zaporedje $f_n:[0,1]\to\mathbb{R}$ po pravilu: začnemo z $f_1\equiv 1$. Nato nadaljujemo

$$f_2 = \begin{cases} 1; & x \in [0, \frac{1}{2}] \\ 0, & \text{sicer} \end{cases}, f_3 = \begin{cases} 1; & x \in [\frac{1}{2}, 1] \\ 0, & \text{sicer} \end{cases}, f_4 = \begin{cases} 1; & x \in [0, \frac{1}{3}] \\ 0, & \text{sicer} \end{cases}, f_5 = \begin{cases} 1; & x \in [\frac{1}{3}, \frac{2}{3}] \\ 0, & \text{sicer} \end{cases}$$

in tako naprej. Ali obstaja limita po točkah? Ali obstaja limita v L^2 smislu?

1.4 Ortogonalnost

Definicija 1.25. Naj bo $(X,\langle\;,\;\rangle)$ vektorski prostor s skalarnim produktom, $A\subseteq X,$ $A\neq\emptyset.$ Naj bosta $x,y\in X.$

- x je **pravokoten** na y, če $\langle x, y \rangle = 0$, tj. $x \perp y \iff \langle x, y \rangle = 0$.
- Ortogonalni komplement množice A je $A^{\perp} = \{x \in X \mid \forall a \in A . x \perp a\}.$

Trditev 1.26. A^{\perp} je vektorski podprostor v X.

Dokaz. Preverimo homogenost in linearnost.

Opomba 1.27. $A \subseteq (A^{\perp})^{\perp}$.

П

Trditev 1.28. Naj bo (X, \langle , \rangle) vektorski prostor s skalarnim produktom, $v \in X$. Definiramo $f: X \to \mathbb{R}$, $f(x) = \langle x, v \rangle$. Potem f je zvezna na X.

Dokaz. Pokažemo, da je f Lipshitzeva.

Posledica 1.29. A^{\perp} je zaprt vektorski podprostor.

Dokaz. Pokažemo, da je limita vsakega zaporedja v A^{\perp} tudi leži v A^{\perp} .

Opomba 1.30. $C([a,b]) \subseteq L^2([a,b])$ ni zaprt podprostor.

Opomba 1.31. Če je (X, \langle , \rangle) Hilbertov in $A \subseteq X$ zaprt podprostor, potem

$$(A^{\perp})^{\perp} = A.$$

Trditev 1.32 (Pitagorjev izrek). Naj bo (X, \langle , \rangle) vektorski prostor s skalarnim produktom. Naj bodo $x_1, \ldots, x_n \in X$ taki, da $\forall i, j \in [n] . i \neq j \implies x_i \perp x_j$. Tedaj

$$||x_1 + \ldots + x_n||^2 = ||x_1||^2 + \ldots + ||x_n||^2.$$

Dokaz. Izračunamo normo po definiciji.

Definicija 1.33. Naj bo (X, \langle , \rangle) vektorski prostor s skalarnim produktom in $Y \leq X$ podprostor X. Naj bo $x \in X$. **Pravokotna projekcija** vektorja x na podprostor Y (če obstaja) je tak vektor $P_Y(x) \in Y$, da je

$$x - P_Y(x) \in Y^{\perp}$$
.

Trditev 1.34. Če je pravokotna projekcija x na Y obstaja, je enolično določena. Če obstaja, je to najboljša aproksimacija vektorja x z vektorji iz Y, tj.

$$||x - P_y(x)|| = \min_{w \in Y} ||x - w||.$$

Dokaz. Enoličnost: Običajen način.

Aproksimacija: Definicija minimuma in Pitagorjev izrek 1.32.

Zgled 1.35. Naj bosta Y = C([a,b]) in $X = L^2([a,b])$. Če si izberimo $f \in X \setminus Y$, potem f nima najboljše aproksimacije z zveznimi funkcijami, saj, ker je $Cl(C([a,b])) = L^2([a,b])$, bi veljalo $||f - P_{C([a,b])}(f)|| = 0$ in posledično $f \in C([a,b])$.

Opomba 1.36.

- 1. $P_Y^2 = P_Y$.
- 1. $P_{\bar{Y}} = I_Y$. 2. $||x|| \ge ||P_Y(x)||$, saj $x = \underbrace{x P_Y(x)}_{Y^{\perp}} + \underbrace{P_Y(x)}_{Y}$.
- 3. Če je P_Y definiran na X, potem je linearen in zvezen.

Dokaz. Definicija in enoličnost projekcije.

4. Če je P_Y definiran na X, je Y zaprt podprostor.

Dokaz. Vzamemo konvergentno zaporedje v Y in upoštevamo zveznost P_Y .

5. Če ima x pravokotno projekcijo na Y, ima tudi pravokotno projekcijo na Y^{\perp} .

Dokaz. Vzamemo
$$x - P_Y(x)$$
.

Trditev 1.37. Naj bo $Y \leq X$ končno dimenzionalen podprostor z ON bazo $\{e_1, \ldots, e_n\}$, tj. $\langle e_i, e_j \rangle = \delta_{ij}$. Naj bo $x \in X$. Tedaj je

$$P_Y(x) = \sum_{j=1}^{n} \langle x, e_j \rangle e_j.$$

Dokaz. Definicija projekcije.

Opomba 1.38. Vsak končno dimenzionalni podprostor ima pravokotno projekcijo definirano na X in tudi vsi tisti podprostori končne kodimenzije.

1.5 Ortogonalni sistem

Definicija 1.39. Naj bo (X, \langle , \rangle) vektorski prostor s skalarnim produktom.

• Sistem vektorjev $(e_j)_{j=1}^{\infty}$ je **ortogonalen sistem (ON)**, če

$$\forall i, j \in \mathbb{N} . i \neq j \implies \langle e_i, e_j \rangle = 0.$$

• Tak sistem je **ortonormiran (ONS)**, če

$$\forall i, j \in \mathbb{N} . \langle e_i, e_j \rangle = \delta_{ij}.$$

Trditev 1.40 (Besselova neenakost). Naj bo (X, \langle , \rangle) vektorski prostor s skalarnim produktom. Naj bo $(e_j)_{j=1}^{\infty}$ ONS. Naj bo $x \in X$. Tedaj

$$\sum_{j=1}^{\infty} |\langle x, e_j \rangle|^2 \le ||x||^2.$$

Dokaz. Definiramo $Y_n = L(\{e_1, \dots, e_n\})$. Uporabimo formulo za pravokotno projekcijo na končnorazsežen prostor.

Posledica 1.41. $\lim_{i\to\infty} \langle x, e_i \rangle = 0$.

Opomba 1.42.

- Absolutno vrednost potrebujemo, če gledamo prostor nad C.
- $(\langle x, e_j \rangle)_{j=1}^{\infty}$ so Fourierjevi koeficienti x po ONS $(e_j)_{j=1}^{\infty}$.

Trditev 1.43. Naj bo $(c_j)_{j=1}^{\infty}$ zaporedje števil (ali \mathbb{R} , ali \mathbb{C}) za katero velja $\sum_{j=1}^{\infty} |c_j|^2 < \infty$. Naj bo (X, \langle , \rangle) Hilbertov prostor in $(e_j)_{j=1}^{\infty}$ ONS. Tedaj obstaja $x \in X$, za katerega velja

$$\forall j \in \mathbb{N} . c_j = \langle x, e_j \rangle .$$

Velja tudi:

$$x = \sum_{j=1}^{\infty} c_j e_j = \lim_{N \to \infty} \sum_{j=1}^{N} c_j e_j.$$