RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION

00000

EXAMEN DU BACCALAURÉAT SESSION 2017

Épreuve	Mathématiques
major www.	sames en such de co

Section: Sciences de l'informatique

Durée: 3h

Coefficient: 3

Session principale

Exercice 1 (4 points)

- 1) On considère, dans \mathbb{C} , l'équation (E): $z^2 2(1+i)z + 3 2i = 0$
 - a) Vérifier que $(1+2i)^2 = -3+4i$
 - b) Résoudre, dans C, l'équation (E).
- 2) Dans le plan complexe, muni d'un repère orthonormé direct (O, u, v), on considère les points A, B, C et D d'affixes respectives : $z_A = -i$, $z_B = 3$, $z_C = 2 + 3i$ et $z_D = -1 + 2i$
 - a) Placer les points A, B, C et D dans le repère (0, u, v).
 - b) Calculer $|z_C z_A|$ et $|z_D z_B|$
 - c) Calculer $(z_C z_A)(\overline{z_D} \overline{z_B})$
 - d) Déduire que ABCD est un carré et calculer son aire.

Exercice 2 (4 points)

- 1) On considère la fonction g définie sur $[0, +\infty]$ par $g(x) = x^2 + 1 \ln x$
 - a) Etudier les variations de g sur]0, +∞[
 - b) En déduire le signe de g sur $]0, +\infty[$
- 2) On considère la fonction f définie sur]0, $+\infty[$ par $f(x) = x 1 + \frac{\ln x}{x}$

On note \mathcal{C} la courbe représentative de la fonction f dans le plan muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$ d'unité graphique 3 cm

- a) Déterminer $\lim_{x\to 0^+} f(x)$ et interpréter graphiquement le résultat
- b) Déterminer $\lim_{x \to +\infty} f(x)$; $\lim_{x \to +\infty} (f(x) x + 1)$. Interpréter graphiquement ce résultat
- c) Montrer que pour tout $x \in]0$, $+\infty[$, $f'(x) = \frac{g(x)}{x^2}$
- d) Dresser le tableau de variations de f
- e) Préciser la position de la courbe $\mathcal C$ par rapport à son asymptote et tracer $\mathcal C$
- 3) Calculer l'aire de la partie du plan délimitée par la courbe C, les droites d'équation x=1; x=2 et y=x-1.

Exercice 3 (6 points)

On donne les matrices
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -3 & 2 & -1 \end{pmatrix}$$
 et $B = \begin{pmatrix} -1 & 3 & 2 \\ -2 & 2 & 0 \\ -1 & -5 & -2 \end{pmatrix}$

- 1) a) Montrer que la matrice A est inversible
 - b) Calculer $A \times B$ et en déduire A^{-1} la matrice inverse de A
- 2) Le plan est muni d'un repère orthonormé (0; i, j)

La courbe C représentée ci-dessous est celle d'une fonction f définie et dérivable sur \mathbb{R} , elle admet :

- Une branche parabolique de direction(0; j) au voisinage de -∞
- Une asymptote horizontale d'équation y = 0 au voisinage de +∞
- Deux tangentes horizontales aux points d'abscisses 0 et 1
- La tangente T au point d'abscisse -1 a pour équation y = -2e x e

A l'aide du graphique et des renseignements fournis donner :

a)
$$f(1)$$
; $f(-1)$ et $f'(-1)$

b)
$$\lim_{x \to -\infty} f(x)$$
; $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$

- 3) On suppose que pour tout $x \in \mathbb{R}$, $f(x) = (ax^2 + bx + c)e^{-x}$ où a, b, c sont des réels
 - a) Montrer que pour tout $x \in \mathbb{R}$, $f'(x) = (-ax^2 + (2a b)x + (b c))e^{-x}$
 - b) Montrer que les réels a, b et c vérifient le système

(S):
$$\begin{cases} a+b+c &= 3\\ a-b+c &= 1\\ -3a+2b-c=-2 \end{cases}$$

- c) Ecrire le système (S) sous forme matricielle et en déduire l'expression de f(x)
- 4) Soit F la fonction définie sur \mathbb{R} par $F(x) = (-x^2 3x 4)e^{-x}$
 - a) Vérifier que F est une primitive de f sur \mathbb{R} .
 - b) Calculer l'aire de la partie du plan délimitée par la courbe C, l'axe des abscisses et les droites d'équations x=0 et x=1.

Exercice 4 (6 points)

1) a) Compléter le tableau suivant :

ľ	0	1	2	3	4
Le reste de la division					
euclidienne de 2 ^r par 5					
Le reste de la division					
euclidienne de 3 ^r par 5					
Le reste de la division					
euclidienne de 2'+3' par 5					

- b) En déduire que pour tout entier naturel q, $2^{4q} = 1[5]$ et $3^{4q} = 1[5]$
- Pour tout entier naturel $k \ge 1$, notons r le reste de la division euclidienne de k par 4.
 - a) Quelles sont les valeurs possibles de r?
 - b) Donner, selon la valeur de r, le reste de la division euclidienne de $2^k + 3^k$ par 5
 - 3) a) Vérifier que pour tout entier naturel $k \ge 1$, $2^k + 3^k$ est impair
 - b) Donner suivant les valeurs de k, le chiffre des unités de $2^k + 3^k$
 - 4) Quel est le chiffre des unités de 2²⁰¹⁷ +3²⁰¹⁷ ?