Set ADT

Counter ADT

Assorted Problems

Demo: Python Dictionaries

COMP2521 25T2 Applications of Hash Tables

Sim Mautner

cs2521@cse.unsw.edu.au

set adt counter adt assorted problems

Set ADT

Counter ADT

Assorted Problems

Demo: Python Dictionaries

A hash table is a data structure that stores key-value pairs, where keys are unique

```
\mathsf{jas}\Rightarrow\mathsf{green} \mathsf{andrew}\Rightarrow\mathsf{red} \mathsf{sasha}\Rightarrow\mathsf{purple} \mathsf{kevin}\Rightarrow\mathsf{blue} \mathsf{jake}\Rightarrow\mathsf{yellow} \mathsf{hayden}\Rightarrow\mathsf{red}
```

Set ADT

Counter ADT

Assorted Problems

Demo: Python Dictionaries

Operations

Insert: Insert or replace key-value pair **Lookup:** Given a key, get its associated value **Delete:** Given a key, delete its key-value pair

Performance

Average-case: O(1)

Assuming good hash function and appropriate resizing

Worst-case: O(n)

If all keys hash to the same value (extremely unlikely with good hash)

Applications of Hash Tables

Recap

Set ADT

Counter ADT

Assorted Problems

Demo: Python Dictionaries

Hash tables are used everywhere due to their efficiency

Set ADT

Counter ADT

Assorted Problems

Demo: Python Dictionaries

A set is an unordered collection of distinct elements

Operations

Insert: Insert an item into the set

Membership: Check if an item is in the set

Delete: Delete an item from the set

```
Recap
Set ADT
           /** Creates a new empty set */
           Set SetNew(void);
Counter ADT
Assorted
           /** Free memory used by set */
Demo: Python
           void SetFree(Set set);
Dictionaries
           /** Inserts an item into the set */
           void SetInsert(Set set, int item);
           /** Checks if an item is in the set */
           bool SetContains(Set set, int item);
           /** Deletes an item from the set */
           void SetDelete(Set set, int item);
           /** Returns the size of the set */
           int SetSize(Set set);
           /** Displays the set */
           void SetShow(Set set);
```

Set ADT

Counter ADT

Assorted Problems

Data Structure	Insert	Membership	Delete
Unordered array	O(n)	O(n)	O(n)
Ordered array	O(n)	$O(\log n)$	O(n)
Linked list	O(n)	O(n)	O(n)
AVL tree	$O(\log n)$	$O(\log n)$	$O(\log n)$
Hash table	?	?	?

Set ADT

Counter ADT

Assorted Problems

Demo: Python Dictionaries

How to implement the Set ADT using a hash table?

Insert

Insert item into the hash table as a key
Can use anything as the value

Contains

Check if the item exists in the hash table

Delete

Delete the item from the hash table

Set ADT

Counter ADT

Assorted Problems

Data Structure	Insert	Membership	Delete
Unordered array	O(n)	O(n)	O(n)
Ordered array	O(n)	$O(\log n)$	O(n)
Linked list	O(n)	O(n)	O(n)
AVL tree	$O(\log n)$	$O(\log n)$	$O(\log n)$
Hash table*	O(1)	O(1)	O(1)

^{*} average costs

Set ADT

Counter ADT

Assorted Problems

Demo: Python Dictionaries

A counter is a collection of items where each distinct item has a count

Operations

Add: Add one to the count of an item **Get:** Get the count of an item

Interface

Recap

Set ADT

Counter ADT

Assorted Problems

```
/** Creates a new empty counter */
Counter CounterNew(void);

/** Free memory used by counter */
void CounterFree(Counter c);

/** Add one to the count of an item */
void CounterAdd(Counter c, int item);

/** Get the count of an item */
int CounterGet(Counter c, int item);
```

Set ADT

Counter ADT

Assorted Problems

Data Structure	Add	Get
Unordered array	O(n)	O(n)
Ordered array	O(n)	$O(\log n)$
AVL tree	$O(\log n)$	$O(\log n)$
Hash table	?	?

Set ADT

Counter ADT

Assorted Problems

Demo: Python Dictionaries

How to implement the Counter ADT using a hash table?

Use hash table to map items to their counts

Add

Look up item's count in the hash table Then re-insert the item into the hash table with count increased by 1

Get

Look up item's count in the hash table

Set ADT

Counter ADT

Assorted Problems

Demo: Python Dictionaries

Data Structure	Add	Get
Unordered array	O(n)	O(n)
Ordered array	O(n)	$O(\log n)$
AVL tree	$O(\log n)$	$O(\log n)$
Hash table*	O(1)	O(1)

* average costs

Set ADT

Counter ADT

Assorted Problems

Odd occurrin

Demo: Python Dictionaries

Hash tables are often used as sets or counters to solve problems efficiently

Examples

Two sum
Odd occurring elements
Anagram

Set ADT

Counter ADT

Assorted Problems

Two sum

Odd occurrin Anagram

Demo: Python Dictionaries

Problem

Given an array of integers and a target sum S, determine whether the array contains two integers that sum to S.

Examples

Consider the array
$$A = [12, 6, 3, 3, 7, 8]$$

$$\mathsf{twoSum}(A, 13) \Rightarrow \mathsf{true}$$

$$\mathsf{twoSum}(A, 16) \Rightarrow \mathsf{false}$$

$$\mathsf{twoSum}(A, 3) \Rightarrow \mathsf{false}$$

$$\mathsf{twoSum}(A, 6) \Rightarrow \mathsf{true}$$

Odd Occurring Elements

Recap

Set ADT

Counter ADT

Assorted

Two sum

Odd occurring

Demo: Python Dictionaries

Problem

Given an array of integers, return the number of distinct integers that occur an odd number of times.

Examples

$$\begin{split} & \mathsf{oddOccurring}([4,3,4,8,8,4]) \Rightarrow 2 \\ & \mathsf{oddOccurring}([7,2,1,5,6,9]) \Rightarrow 6 \\ & \mathsf{oddOccurring}([1,1,3,3,7,7]) \Rightarrow 0 \end{split}$$

Set ADT

Counter ADT

Assorted Problems

Two sum

Anagram

Demo: Python Dictionaries

Problem

Given two strings s and t, determine whether they are anagrams.

Two strings are anagrams if they contain the same amount of each character.

Examples

anagram("abcde", "edcba") ⇒ true
anagram("abcde", "fdcba") ⇒ false
anagram("abcde", "abcdef") ⇒ false
anagram("aaabb", "ababa") ⇒ true
anagram("aaabb", "babab") ⇒ false

Demo: Python Dictionaries

Recap

Set ADT

Counter ADT

Assorted Problems

Demo: Python Dictionaries

Bonus content!

Python has built-in syntax for hash tables, which are called dictionaries.

Demo: Python Dictionaries

Recap

Set ADT

Counter ADT

Assorted Problems

Demo: Python Dictionaries

Operations

Create a dictionary
my_dictionary = {}

Insert a key-value pair
my_dictionary[key] = value

Check if a key exists key **in** my_dictionary

Get the value associated with a key my_dictionary[key]

Delete a key-value pair **del** my_dictionary[key]