

Artificial & Computational Intelligence DSECSZG557

M5: Probabilistic Representation and Reasoning

Dr. Sudheer Reddy

BITS Pilani

Pilani Campus

Course Plan

M1	Introduction to Al
M2	Problem Solving Agent using Search
M3	Game Playing
M4	Knowledge Representation using Logics
M5	Probabilistic Representation and Reasoning
M6	Reasoning over time
M7	Ethics in Al

Inferences in Bayesian Nets

Enumeration

Examples

innovate achieve lead

What is the probability that Burglary happened given John & Mary called the police

$$P(B | J,M) = \frac{P(B, J, M)}{P(J, M)}$$

$$P(B | J,M) = \frac{\sum_{A, E} P(J, M, A, B, E)}{\sum_{A, B, E} P(J, M, A, B, E)}$$

Inferences in Bayesian Nets

Variable Elimination Reduce Guaranteed Independent nodes

D-Connectedness Vs D-Separation

- 1. Each variable is conditionally independent of its nondescendants, given its parents
- 2. Eliminate the hidden variables that is neither a query nor an evidence
- 3. Two variables are d-separated if they are conditionally independent given evidences

Try it & Test

Х	Y	Evidence Z	d-sep?
F	W	С	No
L	W	R	No
R	L	С	Yes
В	R	С	No

 \rightarrow P(R|L,C) = P(R|L)

R & L are d-separated ie., conditionally independent given C

D-Separation in Inference

Variable Elimination

- 1. Each variable is conditionally independent of its nondescendants, given its parents
- 2. Eliminate the hidden variables that is neither a query nor evidence
- 3. Two variables are d-separated if they are conditionally independent given evidences

>
$$P(B) = \sum_{L, B, W, R, F} P(L, C, B, W, R, F)$$

= $\sum_{L} \sum_{B} P(L|C) \cdot P(B|W) \cdot \sum_{W} P(C|W, R) \cdot \sum_{R} P(R|F) \cdot \sum_{F} P(F)$
= $P(B|W)$

All other variables are hidden w.r.t to B as (L, C, R, F) are neither evidence nor query nor (L, C, R, F) \in Ancestors(W, B)

This is variable elimination example targeting irrelevant nodes

Inference

Variable Elimination: V

~V

0.4

V	L	~ L
Т	0.8	0.2
F	0.01	0.99

V	L	
T	T	0.48
T	F	0.12
F	T	0.004
F	F	0.396

L	
Т	0.484
F	0.516

P(V) P(L|V) P(D)

P(F|L,D)

Inference

Variable Elimination: L,D

Approximate Inferences in Bayesian Nets Introduction

Prior Sampling

Sample Generation by Randomization

0.3, 0.2, 0.6, 0.58, 0.73, 0.87, 0.15, 0.6, 0.57, 0.85, 0.12, 0.004, 0.93, 0.0002, 0.9, 0.55...

Prior Sampling

Sample Generation by Randomization

0.3, 0.2, 0.6, 0.58, 0.73, 0.87, 0.15, 0.6, 0.57, 0.85, 0.12, 0.004, 0.93, 0.0002, 0.9, 0.55......

Prior Sampling

Inference

F

Τ

F

Τ

Τ

Т

F

Τ

F

Rejection Sampling

Sample Generation by Randomization

0.3, 0.2, 0.6, 0.58, 0.73, 0.87, 0.15, 0.6, 0.57, 0.85, 0.12, 0.004, 0.93, 0.0002, 0.9, 0.555, 0.38...

Rejection Sampling

Sample Generation by Randomization

0.3, 0.2, 0.6, 0.58, 0.73, 0.87, 0.15, 0.6, 0.57, 0.85, 0.12, 0.004, 0.93, 0.0002, 0.9, 0.555, 0.38...

Rejection Sampling

V	L	D	F
Т	Т	Т	Т
F	F	T	F
Т	F	Т	Т
F	T	T	Т
Т	Т	Т	Т
Т	F	Т	F
F	F	Т	Т
Т	F	Т	F

Likelihood Weighing

Sample Generation by Randomization

V	L	D	F	wgt
F		Т		
F		Т		
F		Т		
F		Т		
F		Т		
F		Т		
F		Т		

0.3, 0.2, 0.58, 0.73, 0.87, 0.15, 0.6, 0.57, 0.85, 0.12, 0.004, 0.93, 0.0002, 0.99,,........

Likelihood Weighing

Sample Generation by Randomization

V	L	D	F	wgt
F	F	Т	Т	0.4*1* 0.1 *1=
F	F	Т	Т	
F	F	Т	Т	
F	F	Т	Т	
F	F	Т	Т	
F	Т	Т	Т	
F	Т	Т	F	

$$= 0.04 / 7*0.04$$

0.3, 0.2, 0.58, 0.73, 0.87, 0.15, 0.6, 0.57, 0.85, 0.12, 0.004, 0.93, 0.0002, 0.99,,........

lead

Likelihood Weighing

V	L	D	F	wgt
F	F	Т	F	0.4*1* 0.1 *1=
F	Т	Т	Т	0.4*1* 0.1 *1=
F	F	Т	Т	0.4*1* 0.1 *1=
F	F	Т	F	0.4*1* 0.1 *1=

Likelihood Weighing

V	L	D	F	wgt
F	F	Т	F	
F	F	Т	Т	
F	F	Т	Т	
Т	F	Т	F	

Likelihood Weighing

V	L	D	F	wgt
F	F	Т	F	1*0.99* 0.1 *1=
F	F	Т	Т	1*0.99* 0.1 *1=
F	F	Т	Т	1*0.99* 0.1 *1=
Т	F	Т	F	1*0.2* 0.1 *1=

$$= 0.099 + 0.099 / (3*0.099 + 0.02)$$

Fault Diagnostic System

Fault Diagnostic System

Raw Data	Short Desc	cription	Resolution Notes				
Raw Data	On battery power		Power outage due to transformer fire				
Classified Tags	Symptom		Cause(s)		Link		
Classified rags	on_battery_power		power_outage, transformer_fire		due_to		
PN Manning	Child Variable	Child State	Parent Variable	Parent State	Ancestor Variable	Ancestor State	
BN Mapping	on_battery_power	yes	power_outage	yes	transformer	Fire	

Fault Diagnostic System

Figure 8. Fused Bayesian Network structure for top six occurring UPS messages.

Fault Diagnostic System

Required Reading: AIMA - Chapter # 14

Thank You for all your Attention

Note: Some of the slides are adopted from AIMA TB materials