Razvrščanje z dominantnimi množicami povzetek

Taja Debeljak, Anže Marinko Finančni praktikum Finančna matematika, Fakulteta za matematiko in fiziko

Jesen 2017

1 Uvod

Grupiranje (ang. Clustering) je postopek razvrščanja predmetov znotraj razreda v podrazrede (cluster) tako, da so si predmeti znotraj istega podrazreda bolj podobni med sabo, kot so si podobni z elementi iz ostalih podrazredov. Problem združevanja lahko opišemo z uteženim grafom, ki ga definiramo kot trojico $G=(V,E,\omega)$, kjer je $V=1,\ldots,n$ končna množica vozlišč, $E\subseteq V\times V$ množica usmerjenih povezav in $\omega:E\to\mathbb{R}$ funkcija, ki vsakemu vozlišču dodeli neko vrednost(težo). Vozlišča grafa G ustrezajo predmetom, ki jih je potrebno

Povezave predstavljajo, kateri predmeti so med seboj povezani, utežene povezave pa odražajo podobnosti med povezanimi predmeti. Poleg tega matrika $A_{i,j} = \omega(i,j)$ za vse $i,j \in V$ predstavlja podobnost med vozlišči. Imenujemo jo matrika podobnosti.

Osnovni lastnosti, ki morata zadostovati gruči, sta:

- Notranja homogenost: elementi, ki pripadajo gruči si morajo biti med seboj podobni
- Maksimalnost: gruče ne moremo dodatno razširiti z uvedbo zunanjih elementov

Definicija 1.1 Naj graf G predstavlja primer združevanja množic in naj bo $C \subseteq V$ neprazna podmnožica. Povprečna utežena vhodna stopnja glede na C je definirana kot

$$awindeg_C(i) = \frac{1}{|C|} \sum_{j \in C} A_{i,j}$$

kjer |C| predstavlja velikost množice C. Za $j \in C$ definiramo

$$\phi_C(i,j) = A_{i,j} - awindeg_C(j)$$

Funkcija $\phi_C(i,j)$ je mera relativne podobnosti elementa i z elementom j glede na povprečno povezanost elementa i z elementi iz C.

Težo elementa i glede na množico C definiramo kot

$$W_C(i) = \begin{cases} 1 & \text{; \'e} |C| = 1, \\ \sum_{j \in C \setminus i} \phi_{C\{i\}}(i,j) W_{C \setminus \{i\}}(j) & \text{; sicer.} \end{cases}$$

Vrednost $W_C(i)$ nam pove koliko podpore prejme element i od elementov $C \setminus \{i\}$ glede na skupno podobnost z elementi iz $C \setminus \{i\}$. Pozitivne vrednosti nam povedo da je i močno koleriran z $C \setminus \{i\}$.

Skupna teža množice C pa je definirana z

$$W(C) = \sum_{i \in C} W_C(i)$$

Definicija 1.2 Dominantna množica

Neprazni množici $C \subseteq V$ za katero je W(T) > 0 za vsako neprazno množico $T \subseteq C$ pravimo dominantna množica, če velja:

- 1. $W_C(i) > 0$ za vse $i \in C$
- 2. $W_{C\cup\{i\}}(i) < 0$ za vse $i \notin C$

2 Povezava s teorijo optimizacije

Če se omejimo na simetrične povezanosti, torej A je simetrična matrika, potem lahko dominantno množico zapišemo kot rešitev naslednjega standardnega kvadratičnega programa

$$max f(x) = x^T A x \tag{1}$$

$$p. p. x \in \Delta \subset \mathbb{R}^n$$
 (2)

Kjer je $\Delta=\{x\in\mathbb{R}^n:\sum_{j\in V}x_j=1\ \text{in}\ x_j\geq 0\ \text{za}\ \text{vsak}\ j\in V\}$ standardni simpleks iz $\mathbb{R}^n.$

Pravimo, da je x rešitev zgornjega problema če obstaja soseščina x-a $U \subseteq \Delta$ za katero je f(x) > f(z) za vsak $z \in U \setminus \{x\}$. Podpora $\sigma(x)$ za $x \in \Delta$ je definirana kot indeksna množica pozitivnih komponenta vektorja x, torej $\sigma(x) = \{i \in V : x_i > 0\}$.

Definicija 2.1 Otežen vektor

Za neprazno podmnožico C množice V lahko definiramo otežen vektor $x^C \in \Delta$, če ima množica C pozitivno skupno težo W(C). V tem primeru je

$$x_i^C = \begin{cases} \frac{W_C(i)}{W(C)} & \text{; \'e } i \in C, \\ 0 & \text{; sicer.} \end{cases}$$

Za dominantno množico lahko torej vedno definiramo otežen vektor.

Izrek 1 Če je C dominantna množica A, potem je njen otežen vektor x^C rešitev zgornjega problema. Obratno, če je x^* rešitev zgornjega problema, potem je njegova podpora $\sigma = \sigma(x^*)$ dominantna množica od A pri pogoju, da je $W_{\sigma \cup \{i\}}(i) \neq 0$ za vse $i \notin \sigma$.

3 Povezava s teorijo grafov

Naj boG=(V,E)neusmerjen graf, kjer je $V=1,2,\dots,n$ množica vozlišč in $E\subseteq V\times V$ množica povezav v grafu. Dve vozlišči $u,v\in V$ sta sosednji, če

 $(u,v) \in E.$ Podmnožici vozlišč $C \subseteq V$ pravimo klika, če so si vsa vozlišča iz te množice med seboj sosednja.

Klika C na neusmerjenem grafu F je največja (maximal), če ne obstaja klika D na grafu G, tako da $C\subseteq D$ in $C\neq D$. Kliko C imenujemo maksimalna (maximum) klika, če ne obstaja klika na grafu G, ki bi vsebovala več vozlišč kot največja klika C. Število vozlišč v maksimalni kliki imenujemo klično število (clique number) in ga označimo z $\omega(G)$.

Matrika sosednosti grafa G je kvadratna matrika A_G , kjer je $(A_G)_{i,j}=1$, če $(i,j) \in E$, sicer pa $(A_G)_{i,j} = 0$.

Na matriko sosednosti v neusmrejnem grafu lahko gledamo kot na matriko podobnosti v problemu razvrščanja in posledično lahko uporabimo dominantno množico da najdemo združbe znotraj grafa.

Glede na povezavo z teorijo optimizacije, upoštevamo naslednji kvadratični pro- gram

$$\max f_{\alpha}(x) = x^{T} (A_{G} + \alpha I) x$$

$$\text{p. p. } x \in \Delta \subset \mathbb{R}^{n}$$

$$\tag{4}$$

$$p. p. x \in \Delta \subset \mathbb{R}^n$$
 (4)

Kjer je I identična matrika, α realno število in Δ simpleks.

Izrek 2 Naj bo graf G neusmerjen z matriko sosednosti A_G in naj bo $0 < \alpha < 1$. Vsaka največja klika C grafa G je dominantna množica od $A_{\alpha}=A_{G}+\alpha I$. Obratno, če je C dominantna množica od A_{α} potem je C največja klika v G.

4 Povzetek nadaljnega dela

V nadaljevanju se bova osredotočila še na povezavo s teorijo iger, problem iskanja dominantnih množic še z vidika algoritmov in druge načine uporabe.