MATS132 Lineaariset Lien ryhmät demo 3 malliratkaisut

1. Affiini ryhmä on

$$Aff(n, \mathbb{K}) = \left\{ \begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix} : A \in GL(n, \mathbb{K}), b \in \mathcal{M}_{n \times 1}(\mathbb{K}) \simeq \mathbb{K}^n \right\}.$$

- (a) Osoita, että $Aff(n, \mathbb{K})$ on matriisiryhmä.
- (b) Olkoon $\iota: \mathbb{K}^n \hookrightarrow \mathbb{K}^n \times \{1\} \subset \mathbb{K}^{n+1}$ inkluusio $\iota(x) = (x,1)$. Osoita, että kaikille $L = \begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix} \in \mathrm{Aff}(n,\mathbb{K})$ kuvaus $\iota^{-1} \circ L \circ \iota: \mathbb{K}^n \to \mathbb{K}^n$ on hyvin määritelty, ja antaa affiinin kuvauksen

$$\iota^{-1} \circ L \circ \iota(x) = Ax + b.$$

Ratkaisu. (a) Aff (n, \mathbb{K}) on $GL(n+1, \mathbb{K})$:n aliryhmä:

(i)
$$I = \begin{bmatrix} I & 0 \\ 0 & 1 \end{bmatrix} \in Aff(n, \mathbb{K}).$$

(ii) Olkoot
$$\begin{bmatrix} A_1 & b_1 \\ 0 & 1 \end{bmatrix}$$
, $\begin{bmatrix} A_2 & b_2 \\ 0 & 1 \end{bmatrix} \in \operatorname{Aff}(n, \mathbb{K})$. Tällöin
$$\begin{bmatrix} A_1 & b_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} A_2 & b_2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} A_1A_2 & A_1b_2 + b_1 \\ 0 & 1 \end{bmatrix} \in \operatorname{Aff}(n, \mathbb{K}).$$

(iii)
$$\begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} & -A^{-1}b \\ 0 & 1 \end{bmatrix} \in \mathrm{Aff}(n,\mathbb{K}).$$

Se, että $\mathrm{Aff}(n,\mathbb{K})\subset\mathrm{GL}(n+1,\mathbb{K})$ on suljettu seuraa siitä että se koostuu suljetuista lohkoista. Olkoon $L_k=\begin{bmatrix}A_k&b_k\\0&1\end{bmatrix}\in\mathrm{Aff}(n,\mathbb{K})$ jono, jolle $L_k\to L\in\mathrm{GL}(n+1,\mathbb{K}).$

Tällöin jono suppenee myös lohkoittain, eli $L = \begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix}$ ja $A_k \to A$, $b_k \to b$. Koska $A_k \in \mathrm{GL}(n,\mathbb{K})$ ja lohkoupotuksen kautta $\mathrm{GL}(n,\mathbb{K}) \subset \mathrm{GL}(n+1,\mathbb{K})$ on suljettu, $A \in \mathrm{GL}(n,\mathbb{K})$. Näin ollen $L \in \mathrm{Aff}(n,\mathbb{K})$.

(b) Kaikille $(x,1) \in \mathbb{K}^n \times \{1\} \subset \mathbb{K}^{n+1}$

$$\begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} Ax + b \\ 1 \end{bmatrix} \in \mathbb{K}^n \times \{1\}.$$

Näin ollen $\iota^{-1} \circ L \circ \iota$ on hyvin määritelty ja antaa affiinin kuvauksen $x \mapsto Ax + b$.

2. Euklidinen ryhmä on

$$E(n) = \left\{ \begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix} : A \in O(n), b \in \mathcal{M}_{n \times 1}(\mathbb{R}) \simeq \mathbb{R}^n \right\}.$$

- (a) Osoita, että $E(n) < Aff(n, \mathbb{R})$ on matriisiryhmä.
- (b) Osoita, että jokaiselle $L \in E(n)$, affiini kuvaus $F = \iota^{-1} \circ L \circ \iota : \mathbb{R}^n \to \mathbb{R}^n$ on isometria, eli että ||F(x) F(y)|| = ||x y|| kaikille $x, y \in \mathbb{R}^n$.
- Ratkaisu. (a) Todistus on sama kuin tehtävän 1 (a)-kohdan todistus, sillä $O(n) < GL(n, \mathbb{K})$ on matriisiryhmä.
- (b) Olkoot $x, y \in \mathbb{R}^n$ ja $L = \begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix} \in E(n)$. Tällöin tehtävän 1 (b)-kohdan perusteella F(x) = Ax + b. Toisaalta Lauseen 3.7 perusteella ortogonaalimatriisille $A \in O(n)$, ||Ax Ay|| = ||x y||, joten

$$||F(x) - F(y)|| = ||(Ax - b) - (Ay - b)|| = ||Ax - Ay|| = ||x - y||.$$

3. (a) Olkoon $G<\mathrm{GL}(n,\mathbb{K})$ matriisiryhmä ja $\gamma:[0,1]\to G$ sekä $\beta:[0,1]\to G$ polkuja. Osoita, että

$$\gamma \star \beta : [0,2] \to \operatorname{GL}(n,\mathbb{K}), \quad \gamma \star \beta(t) = \begin{cases} \gamma(t), & 0 \le t < 1 \\ \gamma(1)\beta(0)^{-1}\beta(t-1), & 1 \le t \le 2 \end{cases}$$

on myös polku G:ssä.

- (b) Olkoon $G \simeq (\mathbb{R}, +)$ (katso 1. demojen 2. tehtävästä matriisiryhmäesitys tälle additiiviselle ryhmälle) ja $\gamma : [0, 1] \to G$, $\gamma(t) = t$. Määritä polku $\gamma \star \gamma : [0, 2] \to G$.
- Ratkaisu. (a) Koska $\gamma \star \beta(t)$ on joko ryhmän G alkio $\gamma(t)$, tai tulo ryhmän G alkioista $\gamma(1), \beta(0)^{-1}$ ja $\beta(t-1), \gamma \star \beta(t) \in G$. Riittää siis tarkistaa, että $\gamma \star \beta$ on jatkuva. Välillä $[0,1), \gamma \star \beta(t) = \gamma(t)$, ja γ on jatkuva. Välillä $(1,2], \gamma \star \beta(t) = g \cdot \beta(t-1)$ alkiolle $g = \gamma(1)\beta(0)^{-1}$. Koska matriisikertolasku ja β ovat jatkuvia, myös $\gamma \star \beta$ on jatkuva välillä (1,2].

Lisäksi

$$\lim_{t \to 1-} \gamma \star \beta(t) = \lim_{t \to 1-} \gamma(t) = \gamma(1)$$

ja matriisikertolaskun jatkuuvuden nojalla

$$\begin{split} \lim_{t \to 1+} \gamma \star \beta(t) &= \lim_{t \to 1+} \gamma(1)\beta(0)^{-1}\beta(t-1) \\ &= \lim_{t \to 0+} \gamma(1)\beta(0)^{-1}\beta(t) \\ &= \gamma(1)\beta(0)^{-1}\beta(0) = \gamma(1). \end{split}$$

Siis $\gamma \star \beta$ on jatkuva myös pisteessä t = 1.

(b) Additiivisen ryhmän $(\mathbb{R}, +)$ matriisiesitys on $G = \left\{ \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} : x \in \mathbb{R} \right\}$. Polku $\gamma \star \gamma$ koostuu siis paloista

$$\gamma(t) = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$$
ja
$$\gamma(1)\gamma(0)^{-1}\gamma(t-1) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & t-1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix},$$

eli

$$\gamma \star \gamma : [0,2] \to (\mathbb{R},+), \quad \gamma \star \gamma(t) = t.$$

4. Tarkastellaan kuvausta $\Phi: \mathrm{SU}(2) \times \mathrm{SU}(2) \to \mathrm{GL}(4,\mathbb{R}), \ A = \Phi(q,p)$ määritellään kvaterniotulona

$$A: \mathbb{H} \to \mathbb{H}, \quad A(x) = qxp^{-1}.$$

(Muista, että vektoriavaruuksina $\mathbb{H} \simeq \mathbb{R}^4$)

- (a) Osoita, että Φ on jatkuva homomorfismi.
- (b) Osoita, että $\Phi(SU(2) \times SU(2)) \subset SO(4)$ (Vihje: hyödynnä matriisiryhmän SU(2) yhtenäisyyttä).
- (c) Osoita, että $\ker \Phi = \{\pm I\}$.

Ratkaisu. (a) Olkoot $(q_1, p_1), (q_2, p_2) \in SU(2) \times SU(2)$. Kaikille $x \in \mathbb{H}$

$$\Phi(q_1, p_1) \circ \Phi(q_2, p_2)(x) = \Phi(q_1, p_1)(q_2 x p_2^{-1}) = q_1 q_2 x p_2^{-1} p_1^{-1} = (q_1 q_2) x (p_1 p_2)^{-1} = \Phi(q_1 q_2, p_1 p_2)(x).$$

Kuvauksen Φ jatkuvuus seuraa kvaterniotulon (matriisitulon) jatkuvuudesta.

(b) Yksikkökvaternioille $q, p \in SU(2)$,

$$|Ax| = |q||x||p^{-1}| = |x|,$$

joten Lauseen 3.7 karakterisaation nojalla $A \in O(4)$. Toisaalta, koska SU(2) on yhtenäinen, myös $SU(2) \times SU(2)$, ja edelleen (a)-kohdan nojalla $\Phi(SU(2) \times SU(2))$ ovat yhtenäisiä.

Koska $\Phi(1,1) = I \in SO(4)$ ja $O(4) = SO(4) \rtimes O(1) \simeq SO(4) \rtimes \{\pm 1\}$, tästä seuraa, että $\Phi(SU(2) \times SU(2)) \subset SO(4)$.

- (c) Jos $\Phi(q,p)=I$, niin erityisesti $\Phi(q,p)1=q1p^{-1}=1$, eli q=p. Tällöin $I=\Phi(q,p)=\Phi(q,q)=R_q\in \mathrm{SO}(3)$, joten $\Phi(q,p)=\pm I$.
- 5. Tarkista matriisien (operaattori)normin ominaisuudet:
- (a) $||AB|| \le ||A|| ||B||$ kaikille $A, B \in \mathcal{M}_n(\mathbb{K})$
- (b) $||A + B|| \le ||A|| + ||B||$ kaikille $A, B \in \mathcal{M}_n(\mathbb{K})$
- (c) $||A_k A|| \to 0 \iff A_k \to A$ komponenteittain.
- (d) $A \in \mathcal{M}_n(\mathbb{K})$ ja $||A I|| < 1 \implies A \in GL(n, \mathbb{K})$.

Ratkaisu. (a)

$$||AB|| = \sup_{x \neq 0} \frac{||ABx||}{||x||} = \sup_{x \neq 0} \frac{||ABx||}{||Bx||} \frac{||Bx||}{||x||}$$
$$\leq \sup_{y \neq 0} \frac{||Ay||}{||y||} \sup_{x \neq 0} \frac{||Bx||}{||x||} = ||A|| ||B||.$$

(b)

$$||A + B|| = \sup_{x \neq 0} \frac{||Ax + Bx||}{||x||} \le \sup_{x \neq 0} \frac{||Ax|| + ||Bx||}{||x||}$$
$$\le \sup_{x \neq 0} \frac{||Ax||}{||x||} \sup_{x \neq 0} \frac{||Bx||}{||x||} = ||A|| + ||B||$$

(c) Lineaarisuuden nojalla voidaan olettaa, että A=0 (eli korvataan matriisit A_k matriiseilla $\tilde{A}_k=A_k-A\in\mathcal{M}_n(\mathbb{K})$).

" \Longrightarrow " Jos $||A_k|| \to 0$, niin $||A_k e_j|| \to 0$ kaikilla kantavektoreilla e_1, \ldots, e_n . Koska $A_k e_j$ on matriisin A_k j:s sarake, tämä tarkoittaa, että komponenteittain $A_k \to 0$.

" \Leftarrow " Jos $A_k \to 0$ komponenteittain, niin $||A_k e_j|| \to 0$. Tällöin myös $\sum_{j=1}^n ||A_k e_j|| \to 0$. Toisaalta mielivaltaiselle $x = x_1 e_1 + \dots + x_n e_n$

$$||A_k x|| \le |x_1| ||A_k e_1|| + \dots + |x_n| ||A_k e_n|| \le ||x|| \left(\sum_{j=1}^n ||A_k e_j|| \right),$$

joten

$$||A_k|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} \le \sum_{j=1}^n ||A_k e_j|| \to 0.$$

(d) Riittää osoittaa, että ker $A = \{0\}$, eli että ||Ax|| > 0 kaikille $x \in \mathbb{K}^n \setminus \{0\}$. Matriisinormin määritelmän perusteella

$$||Ax - x|| = ||(A - I)x|| \le ||A - I|| ||x|| < ||x||,$$

joten kolmioepäyhtälöä käyttäen saadaan

$$||Ax|| = ||Ax - x + x|| \ge ||x|| - ||Ax - x|| > ||x|| - ||x|| = 0.$$

6. Todista Lemma 4.9: $\exp(BAB^{-1}) = B \exp(A)B^{-1}$ kaikille $A \in \mathcal{M}_n(\mathbb{K})$ ja $B \in GL(n, \mathbb{K})$.

Ratkaisu. Koska

$$(BAB^{-1})(BAB^{-1}) = BA^2B^{-1},$$

matriisin BAB^{-1} potenssit ovat

$$(BAB^{-1})^k = BA^kB^{-1}.$$

Tällöin matriisieksponentiaalin määritelmän mukaan

$$\exp(BAB^{-1}) = \sum_{k=0}^{\infty} \frac{(BAB^{-1})^k}{k!} = B\left(\sum_{k=0}^{\infty} \frac{A^k}{k!}\right) B^{-1} = B\exp(A)B^{-1}.$$

7. Olkoot $x,y\in\mathbb{C}^2$ vektoreita joille $\|x\|=\|y\|$. Osoita, että on olemassa $A\in\mathrm{SU}(2)$ jolle Ax=y.

Ratkaisu. Käsitellään ensin tapaus $x=e_1$ ja $y=(y_1,y_2)\in\mathbb{C}^2, \, \|y\|=1.$ Määritellään

$$A_y = \begin{bmatrix} y_1 & -\bar{y}_2 \\ y_2 & \bar{y}_1 \end{bmatrix}.$$

Tälle matriisille selvästi $A_y e_1 = y$. Toisaalta A_y on täsmälleen kvaternion kompleksiesityksen muotoa, ja det $A_y = y_1 \bar{y}_1 + y_2 \bar{y}_2 = ||y|| = 1$, joten A_y on yksikkökvaternio, eli $A_y \in SU(2)$.

Yleisessä tapauksessa, olkoot x, y, ||x|| = ||y||. Tällöin

$$A_{y/\|y\|}A_{x/\|x\|}^{-1}x = A_{y/\|y\|}\Big(\|x\|e_1\Big) = \|x\|\frac{y}{\|y\|} = y,$$

eli $A_{y/\|y\|}A_{x/\|x\|}^{-1}\in \mathrm{SU}(2)$ antaa halutun kuvauksen.

8. Osoita, että $SU(n), n \geq 3$, on polkuyhtenäinen olettaen että SU(n-1) ja SU(2) tunnetaan polkuyhtenäisiksi.

Ratkaisu. Olkoon $A \in SU(n)$. Oletuksen nojalla riittää osoittaa, että on olemassa polku A:sta johonkin SU(n-1):n matriisiin. Jos $Ae_1 = e_1$, niin $A \in Stab(e_1) \simeq SU(n-1)$ (katso 2. harjoitusten tehtävä 7, väitteen todistus kompleksisessa tapauksessa on identtinen). Tällöin triviaali polku riittää.

Jos $Ae_1 \neq e_1$, olkoon $W \subset \mathbb{C}^n$ taso (eli $\dim_{\mathbb{C}} W = 2$), joka sisältää vektorit e_1 ja Ae_1 . Tason W kierrot määräävät aliryhmän $H < \mathrm{SU}(n)$, $H \simeq \mathrm{SU}(2)$. Koska $A \in \mathrm{SU}(n)$, $||Ae_1|| = ||e_1||$. Tällöin tehtävän 7 nojalla on olemassa $B \in H$ jolle $BAe_1 = e_1$.

Oletuksen mukaan SU(2) on polkuyhtenäinen, joten myös H on polkuyhtenäinen. Tällöin on olemassa polku $\gamma:[0,1]\to H,\ \gamma(0)=I$ ja $\gamma(1)=B$. Siirtämällä tätä polkua, eli määrittelemällä

$$\beta: [0,1] \to \mathrm{SU}(n), \quad \beta(t) = \gamma(t)A$$

saadaan polku jolle $\beta(0)=IA=A$ ja $\beta(1)=\gamma(1)A=BA$. Koska $BA\in \mathrm{SU}(n-1)$, tämä todistaa $\mathrm{SU}(n)$:n polkuyhtenäisyyden.