LINE CODES

(BASEBAND SIGNALLING)

HOW DO WE TRANSMIT BITS OVER A TWISTED WIRE PAIR / CABLE/WIRELESS (SAY RF)?

MAP THE BITS TO WAVEFORMS ---- SIGNALLING

```
1 ? S_1(t) O ? S_2(t)
```

- a. BASEBAND SIGNALLING (LINE CODES)
- **b. BANDPASS SIGNALLING**

BASE BAND SIGNALLING (Mapping) LINE CODES

Unipolar NRZ

BAND PASS SIGNALLING (Mapping)

BASEBAND SIGNALLING vs BANDPASS SIGNALLING

BASEBAND SIGNAL VS PASSBAND SIGNAL

LINE CODES (BASEBAND SIGNALLING)

RZ = return to zero, NRZ = non return to zero

Line Codes contd

DESIRABLE PROPERTIES OF LINE CODES

- LOW Transmission Bandwidth
- Favourable Power Spectral Density
- HIGH Power Efficiency
- Error Detection and Correction Capability
- Adequate Timing Content
- Transparency

UNIPOLAR NRZ

UNIPOLAR NRZ

HOW TO OBTAIN THE POWER SPECTRAL DENSITY?

Unipolar NRZ

Input data
$$\mathbf{x}(t) = \sum_{k=-\infty}^{\infty} A_k \, \delta(t - kT_b)$$

NRZ encoded waveform
$$g(t) = \sum_{k=-\infty}^{\infty} A_k v(t - kT_b)$$

Power spectral density of
$$\mathbf{g}(\mathbf{t}) = S_{gg}(f) = |V(f)|^2 S_{xx}(f)$$

Here, the input is a random (binary) sequence

$$S_{gg}(f) = \frac{1}{T_b} |V(f)|^2 \sum_{n=-\infty}^{\infty} R_A(n) \exp(-j2\pi n f T_b)$$

$$S_{xx}(f)$$
 = Fourier Transform of $R_A(n)$

 $R_A(n)$ is the autocorrelation of the input random sequence

$$|V(f)|^2 = T_b^2 \operatorname{sinc}^2(\pi f T_b)$$

AUTOCORELATION SEQUENCE $R_A(n)$

$$A_k$$
 A_{k+1} A_k A_{k+1} A_k A_{k+1} A_k A_k

$$R_A(0) = E(A_k^2) = \sum_{k=1}^2 (p_k A_k^2)$$

$$= p(A_k = 0)0^2 + p(A_k = a)a^2 = \frac{1}{2} \times 0 + \frac{1}{2} \times a^2 = \frac{a^2}{2}$$

AUTOCORELATION SEQUENCE $R_{\Delta}(n)$

$$R_A(n) = E(A_k A_{k+n})$$

$$R_A(1) = E(A_k A_{k+1}) = \sum_{k=1}^{n} P(A_k A_{k+1}) A_k A_{k+1} =$$

A_k	A_{k+1}	$P(A_k A_{k+1})$ $= P(A_k) P(A_{k+1})$	$A_k A_{k+1}$	$P(A_k A_{k+1}) A_k A_{k+1}$
0	0	1/2 x 1/2 = 1/4	0	0
0	а	1/2 X 1/2 = 1/4	0	0
a	0	1/2 x 1/2 = 1/4	0	0
а	а	1/2 x 1/2 = 1/4	a^2	$\frac{a^2}{4}$
		$\sum_{k=1}^{n} P(A_k A_{k+1}) A_k A_k$	$\frac{a^2}{4}$	

$$R_A(1) = \frac{a^2}{4}$$

Similarly,

$$R_A(n) = \frac{a^2}{4} \qquad n \neq 0$$

Power Spectral Density of UNIPOLAR NRZ waveform

$$R_{A}(n) = \frac{a^{2}}{4}, n \neq 0$$

$$R_{A}(0) = \frac{a^{2}}{2} \qquad |V(f)|^{2} = T_{b}^{2} \operatorname{sinc}^{2}(\pi f T_{b})$$

$$S_{gg}(f) = \frac{1}{T_{b}} |V(f)|^{2} \sum_{n=-\infty}^{\infty} R_{A}(n) \exp(-j2\pi n f T_{b})$$

$$S_{gg}(f) = \frac{1}{T_{b}} T_{b}^{2} \operatorname{sinc}^{2}(f T_{b}) \quad \left[\frac{a^{2}}{2} + \frac{a^{2}}{4} \sum_{n=-\infty}^{\infty} \exp(-j2\pi f n T_{b}) \right]$$

$$S_{gg}(f) = T_{b} \operatorname{sinc}^{2}(f T_{b}) \quad \left[\frac{a^{2}}{4} + \frac{a^{2}}{4} \sum_{n=-\infty}^{\infty} \exp(-j2\pi f n T_{b}) \right]$$

$$S_{gg}(f) = \frac{a^{2}}{4} T_{b} \operatorname{sinc}^{2}(f T_{b}) + \frac{a^{2}}{4} \operatorname{sinc}^{2}(f T_{b}) \sum_{n=-\infty}^{\infty} \delta(f - \frac{n}{T_{b}})$$

$$= \frac{a^2}{4} T_b \operatorname{sinc}^2(f T_b) + \frac{a^2}{4} \delta(f)$$
 How?

Dr. Mala John

Department of Electronics Engineering

MIT Campus of Anna University malajohn@annauniv.edu

Power Spectral Density of UNIPOLAR NRZ waveform

•PSD of UNIPOLAR NRZ=
$$\frac{a^2}{4}T_b \ sinc^2(fT_b) + \frac{a^2}{4}\delta(f)$$

LINE CODES

BIPOLAR NRZ

HOW TO OBTAIN THE POWER SPECTRAL DENSITY?

BIPOLAR NRZ

Here, the input is a random (binary) sequence

$$S_{gg}(f) = \frac{1}{T_b} |V(f)|^2 \sum_{n=-\infty}^{\infty} R_A(n) \exp(-j2\pi n f T_b)$$

$$S_{xx}(f)$$
 = Fourier Transform of $R_A(n)$

 $R_A(n)$ is the autocorrelation of the input random sequence

$$|V(f)|^2 = T_b^2 \operatorname{sinc}^2(\pi f T_b)$$

AUTOCORELATION SEQUENCE $R_{A}(n)$

$$A_k$$
 A_{k+1} A_k A_{k+1} A_k A_{k+1} A_k A_k

$$R_A(0) = E(A_k^2) = \sum_{k=1}^2 (p_k A_k^2)$$

$$= p(A_k = 0)0^2 + p(A_k = a)a^2 = \frac{1}{2} \times 0 + \frac{1}{2} \times a^2 = \frac{a^2}{2}$$

AUTOCORELATION SEQUENCE $R_{\Delta}(n)$

$$R_A(n) = E(A_k A_{k+n})$$
 $R_A(1) = E(A_k A_{k+1}) = \sum_{k=1}^{\infty} A_k A_{k+1} P(A_k A_{k+1})$

$$R_A(1) = -\frac{a^2}{4} = R_A(-1)$$

Similarly,

$$R_A(n)=0, n\neq 0, n\neq \pm 1$$

$$R_A(0) = \frac{a^2}{2}, \quad R_A(\pm 1) = \frac{a^2}{4}$$
 $R_A(n) = 0, \quad n \neq 0, \quad n \neq \pm 1$

Power Spectral Density of BIPOLAR NRZ waveform

$$R_A(0) = \frac{a^2}{2}, \quad R_A(\pm 1) = \frac{a^2}{4}$$
 $R_A(n) = 0, \quad n \neq 0, \quad n \neq \pm 1$
 $|V(f)|^2 = T_b^2 \operatorname{sinc}^2(\pi f T_b)$

$$S_{gg}(f) = \frac{1}{T_b} |V(f)|^2 \sum_{n=-\infty}^{\infty} R_A(n) \exp(-j2\pi n f T_b)$$

$$S_{gg}(f) = \frac{1}{T_b} T_b^2 sinc^2(fT_b) \left[\frac{a^2}{2} - \frac{a^2}{4} \left[\exp(+j2\pi f T_b) + \exp(-j2\pi f T_b) \right] \right]$$

$$S_{gg}(f) = a^2 T_b \ sinc^2(f T_b) \ sin^2(\pi f T_b)$$

MANCHESTER ENCODING

$$\begin{array}{c|c}
P(t) \\
\hline
0 \rightarrow t \\
\hline
\hline
Tb/2 \\
\hline
V(t) \\
\hline
Tb \\
\hline
1 \\
\hline
0 -->t
\end{array}$$

$$v(t) = p(t + \frac{T_b}{4}) - p(t - \frac{T_b}{4})$$

$$v(t) = p(t + \frac{T_b}{4}) - p(t - \frac{T_b}{4})$$

$$P(f) = \frac{T_b}{2} \, sinc \, (\frac{fT_b}{2})$$

$$V(f) = P(f)exp\left(\frac{j2\pi fT_b}{4}\right) - P(f)exp\left(-\frac{j2\pi fT_b}{4}\right)$$

$$S_{gg}(f) = \frac{1}{T_b} |V(f)|^2 \sum_{n=-\infty}^{\infty} R_A(n) \exp(-j2\pi n f T_b)$$

$$R_{A}(0) = a^{2} \cdot \frac{1}{2} + (-a)^{2} \cdot \frac{1}{2}$$
 $R_{A}(n) = 0$
 $n = 0$

$$P(f) = \frac{T_b}{2} \, sinc \, (\frac{fT_b}{2})$$

$$V(f) = P(f)exp\left(\frac{j2\pi fT_b}{4}\right) - P(f)exp\left(-\frac{j2\pi fT_b}{4}\right)$$

$$S_{XX}(f) = T_b a^2 \operatorname{sinc}^2\left(\frac{\pi f T_b}{2}\right) \operatorname{sin}^2\left(\frac{\pi f T_b}{2}\right)$$

ASSIGNMENT

- POLAR RZ
- POLAR NRZ
- UNIPOLAR RZ

EYE PATTERN

INTER SYMBOL INTERFERENCE

COMBATING CHANNEL LIMITATIONS

BANDWIDTH LIMITATION

SIGNAL DISTORTION

Received Pulse shape is different from that of (broader than) the Transmitted pulse

INTER SYMBOL INTERFERENCE (ISI)

SOLUTION

CHANNEL EQUALIZATION

ISI due to MULTIPATH EFFECT (WIRELESS CHANNEL)

ISI due to Multipath effect in Wireless Channel

ISI (Inter Symbol Interference) due to CHANNEL BANDWIDTH LIMITATION

CHANNEL BANDWIDTH LIMITATION & PULSE BROADENING

ISI

due to CHANNEL BANDWIDTH LIMITATION

CHANNEL ESTIMATION
&
CHANNEL EQUALIZATION

Solution to ISI

CHANNEL EQUALIZATION

EQUALIZATION

Composite System Transfer Function = H(f)

FT

$$H(f) = H_T(f) H_c(f) H_R(f)$$

 $H(f) \leftrightarrow h(t)$

H_R(f) 2 Equalizing Filter –
Compensates for the effects of
Transmit Filter and the Channel

 $b_m = 1$

Bit is Received as waveform $h(t - mT_b)$,

Received waveform
$$\mathbf{r}(t) = \sum_{n=-\infty}^{\infty} b_n h(t - nT_b)$$

= $b_m h(t - mT_b) + \sum_{\substack{n=-\infty \\ n \neq m}}^{\infty} b_n h(t - nT_b)$

To take decision on the m^{th} bit, sampling it at $t = mT_b$

$$r(mT_b) = b_m h(mT_b - mT_b) + \sum_{\substack{n = -\infty \\ n \neq m}}^{\infty} b_n h(mT_b - nT_b)$$

Due to mth bit
$$r(mT_b) = b_m h(0) + \sum_{\substack{k = -\infty \\ k \neq 0}}^{\infty} b_k h(kT_b)$$

To avoid ISI,

$$r(mT_b)=b_mh(0\;)$$
 Equivalently, $h(kT_b\;)=0,\;\;k\neq 0$ $h(kT_b\;)\neq 0,\;\;k=0$

CONDITION for ABSENCE of ISI

$$h(kT_b) = 0, \quad k \neq 0$$

 $h(kT_b) \neq 0, \quad k = 0$

Considering $h_{\Delta}(t)$ =the discrete-time version of h(t)

$$h_{\Delta}(t) = h(t) \sum_{k=-\infty}^{\infty} \delta(t - kT_b)$$
$$= \sum_{k=-\infty}^{\infty} h(kT_b) \delta(t - kT_b)$$

For zero ISI
$$\sum_{k=-\infty}^{\infty} h(kT_b)\delta(t-kT_b) = h(0) \, \delta(t)$$

$$h(t) \, \sum_{k=-\infty}^{\infty} \delta(t-kT_b) = h(0)\delta(t)$$

Taking Fourier Transform on both sides,

$$H(f) * \sum_{k=-\infty}^{\infty} \delta\left(f - \frac{k}{T_b}\right) = h(0) = a \text{ constant}$$
Activate W

$$\sum_{k=-\infty}^{\infty} H\left(f - \frac{k}{T_b}\right) = constant$$

CONDITION for ABSENCE of ISI

$$h(kT_b) = 0, \quad k \neq 0$$

 $h(kT_b) \neq 0, \quad k = 0$

$$\sum_{k=-\infty}^{\infty} H\left(f - \frac{k}{T_b}\right) = constant$$

MINIMUM BANDWIDTH SOLUTION

The SOLUTION is **NOT** UNIQUE

H(f) -another choice satisfying the condition

EQUALIZATION

CONDITION for ABSENCE of ISI

The SOLUTION is NOT UNIQUE

$$\sum_{k=-\infty}^{\infty} H\left(f - \frac{k}{T_b}\right) = constant$$

$$h(kT_b) = 0, \quad k \neq 0$$

 $h(kT_b) \neq 0, \quad k = 0$

$$\sum_{k=-\infty}^{\infty} H\left(f - \frac{k}{T_b}\right) = constant$$

$$W=1/2T_{\rm b}$$

Raised Cosine Spectrum

$$\mathbf{H(f)}^{'} = \begin{cases} \frac{1}{2W} & 0 \le |f| < f_1 \\ \frac{1}{4W} \left\{ 1 - \sin \left[\frac{\pi(|f| - W)}{2W - 2f_1} \right] \right\} & f_1 \le |f| < 2W - f_1 \\ 0 & |f| > 2W - f_1 \end{cases}$$

$$\alpha$$
 is the rolloff factor. $W=1/2T_{\rm b}$

$$\alpha = 1 - f_1/W$$

The transmission bandwidth is $(1+\alpha)W$

h(t)
$$=\frac{\sin(\pi t/T)}{\pi t/T} \frac{\cos(\pi \alpha t/T)}{1 - 4\alpha^2 t^2/T^2}$$

 $\alpha = 0$, ideal solution - h(t) is sinc function

$$\alpha = 0$$
, (sinc pulse) decays as $1/t$.

for $\alpha > 0$, raised cosine pulses

for $\alpha > 0$, x(t) decays as $1/t^3$

Hence, the raised cosine spectrum is much less sensitive to timing errors than the sinc pulse.

Just like all other bandlimited pulses, raised cosine spectrum is not timelimited.

Therefore, truncation and delay is required for realization.

DUOBINARY ENCODING

CORRELATIVE ENCODING

CONTROLLED ISI

REQUIRES MINIMUM BANDWIDTH

Duobinary signaling scheme.

$$H(f) = H_C(f)[1 + \exp(-j2\pi f T_b)]$$

$$= H_C(f)[\exp(j\pi f T_b) + \exp(-j\pi f T_b)]\exp(-j\pi f T_b)$$

$$= 2H_C(f)\cos(\pi f T_b)\exp(-j\pi f T_b),$$

$$H_{c}(f) = 1, |f| \le \frac{R_{b}}{2}$$

= 0, ELSEWHERE

$$H(f) = 2 \cos (\pi f T_b) \exp(-2\pi f T_b), \quad |f| \le \frac{R_b}{2}$$

= 0, otherwise

$$H(f) = 2 \cos (\pi f T_b) \exp(-2\pi f T_b), \quad |f| \le \frac{R_b}{2}$$

= 0, otherwise

$$h(t) = \frac{\sin(\pi t/T_b)}{\pi t/T_b} + \frac{\sin[\pi(t - T_b)/T_b]}{\pi(t - T_b)/T_b}$$

$$= \frac{\sin(\pi t/T_b)}{\pi t/T_b} - \frac{\sin(\pi t/T_b)}{\pi(t - T_b)/T_b}$$

$$= \frac{T_b^2 \sin(\pi t/T_b)}{\pi t(T_b - t)}.$$

Impulse response of the duobinary conversion filter.

CONTROLLED ISI

CONTROLLED ISI

Impulse response of the duobinary conversion filter.

Duobinary encoding

```
0 1 0 1 0 0 1 1
   Data sequence
                           +1 -1 +1 -1 +1 -1 +1 +1
   b_k
                + 1
                              +2
                                          0 0 0 0 -2 0 +2
C_k = b_k + b_{k-1}
                            0 1 0 1 0 0 1 1
       Decision
                  If C_k > +1 --- Data 1
                    C_k < -1
                             ---?
                                 Data 0
                    -1 < C_k < 1 -- \square Current bit is the
                                  inverted version of the previous bit
```

PROPAGATION OF ERROR

DUOBINARY ENCODER WITH PRECODER

$$a_k = b_k + a_{k-1}$$
 modulo-2

DUOBINARY ENCODER WITH A PRECODER

Data sequence b_k 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 0 $a_k = b_k \oplus a_{k-1}$ +1 -1 -1 +1 +1 -1 -1 +1 -1 -2 0 +2 0 -2 -2 0 0 $C_k = a_k + a_{k-1}$ 0 1 0 1 0 0 1 1 Decision If $C_k > +1$ ---? Data 0 $C_k < -1$ ---? Data 0 -1< C_k <1 -- ? Data 1

ERROR DOES NOT PROPAGATE