Simple Linear Regression Algorithm

Using Rocket Propellant Data

Author: Rose Ellison

The Intuition

Linear regression is a type of supervised learning algorithm which predicts continuous values of a given data point by generalising on the data that we have in hand. The linear part indicates that we are using a linear approach in generalising over the data. Simple indicates we are describing the relationship between one dependent and one independent variable using a straight line.

$$\hat{y} = \beta_0 + \beta x_1$$

Step One: Split the data into test and training sets.

Step Two: Calculate the sum of squares

Step Three: Estimate coefficients using lest squares.Step Four: Make Predictions based on the coefficients.

Step Five: Validate the model.

Exploration

Exploration process includes preprocessing and visualizing plots. This algorithm will be implemented on the rocket propellant data. There are two columns; age of rockets propellant(independent variable) and shear strength(continuous dependent variable). We will use simple linear regression to predict if the shear strength of future rocket propellants based on their age.

```
# Read the data
data = read.csv('../../_resources/data/Rocket_Prop.csv')
```

Plot

Shear Strength vs Propellant Age

From the data, we can see there is a linear relationships between age of propellant and shear strength. For that reason, simple linear regression would be a good model to predict future data points.

Implementation

Step One:

Split the data into test and training sets.

```
# Splitting test and training sets
split <- sample.split(data[ , 1], SplitRatio = 0.6)
training <- subset(data, split == TRUE)
test <- subset(data, split == FALSE)</pre>
```

Step Two:

Find the sum of squares

sum of squares of
$$S_{xx} = \sum (x^2) - \frac{\sum (x)^2}{n}$$

sum of squares of $S_{xy} = \sum (xy) - \frac{\sum (x) \sum (y)}{n}$

```
x <- training[2]
y <- training[1]
n <- nrow(x)
Sxx <- sum(x^2) - sum(x)^2/n
Sxy <- sum(x*y) - sum(x)*sum(y)/n</pre>
```

Step Three:

Estimate coefficients.

$$\beta_1 = \frac{S_{xy}}{S_{xx}}$$
$$\beta_0 = \bar{y} - \beta_1 \ \bar{x}$$

```
# Calculate Least Squares Estimates
B1H <- Sxy / Sxx # Slope Estimate
B0H <- (sum(y) / n) - ((sum(x) / n)*B1H) # Intercept Estimate</pre>
```

Step Four: Make predictions

Put it all together and make predictions

$$\hat{y} = \beta_0 + \beta_1 x$$

```
simple_lr <- function(training, test, y_index, x_index)
{
    x <- training[2]
    y <- training[1]
    n <- nrow(x)
    Sxx <- sum(x^2) - sum(x)^2/n
    Sxy <- sum(x*y) - sum(x)*sum(y)/n</pre>
```

```
B1H <- Sxy / Sxx # Slope Estimate
B0H <- (sum(y) / n) - ((sum(x) / n)*B1H)

x_test <- test[2]

for (i in 1:nrow(test))
{
    yhat <- B0H + B1H * x_test[i,]
    test$y_pred[i] <- yhat
}

return(test)
}

test<- simple_lr(training, test, 1, 2)</pre>
```

Results

Compare predicted results(y-pred column) to the actual y values(y column) on our test set.

```
test[ , c(1, 3)]
```

```
## y y_pred
## 1 2158.70 2063.520
## 2 1678.15 1741.746
## 5 2207.50 2453.548
## 10 2256.70 2239.032
## 11 2165.20 2161.027
## 12 2399.55 2521.803
## 14 2336.75 2287.786
## 15 1765.30 1810.001
```