Summary formula sheet for simple linear regression

Slope b =
$$\sum (Y_i - \overline{Y})(X_i - \overline{X}) / \sum (X_i - \overline{X})^2$$

Variance
$$\sigma^2 / \sum (X_i - \overline{X})^2$$

Intercept
$$a = \overline{Y} - b \overline{X}$$

Variance of a
$$\left[\frac{1}{n} + \frac{\bar{X}^2}{\sum (X_i - \bar{X})^2}\right] \sigma^2$$

Estimated mean at
$$X_0$$
 a + b X_0

Variance
$$\left[\frac{1}{n} + \frac{(X_0 - \overline{X})^2}{\sum (X_i - \overline{X})^2}\right] \sigma^2$$

Estimated individual at X_0 a + b X_0

Variance
$$\left[1 + \frac{1}{n} + \frac{(X_0 - \bar{X})^2}{\sum (X_i - \bar{X})^2}\right] \sigma^2$$

Total SS =
$$\sum (Y_i - \overline{Y})^2$$

Regression SS =

$$\left[\sum (Y_i - \overline{Y})(X_i - \overline{X})\right]^2 / \sum (X_i - \overline{X})^2$$

Error SS = Total SS - Regression SS

R² = Regression SS/ Total SS = "proportion explained"

MSE = error <u>mean</u> square = estimate of σ^2 = Error SS/ df df= degrees of freedom = n-2 for simple linear.

Example

Data points
$$(x_1,y_1)$$
, (x_2,y_2) ,, (x_n,y_n)
 $(1,5)$, $(2,7)$, $(3,9)$, $(4,6)$, $(5,8)$
 $\overline{x} = 15/5 = 3$, $\overline{y} = 7$

Corrected sum of squares for x:

$$\sum_{i=1}^{n} (x_i - \overline{x})^2 = S_{xx} = (1-3)^2 + ... + (5-3)^2 = 10$$

Corrected sum of squares for y:

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = S_{yy} = (5-7)^2 + ... + (8-7)^2 = 10$$

Corrected sum of cross products = S_{xy} =

$$\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) =$$

$$(-2)(-2) + (-1)(0) + ... + (2)(1) = 5 =$$

$$\sum_{i=1}^{n} x_{i} y_{i} - n \ \overline{x} \ \overline{y} = 110 - 5(3)(7)$$

Slope:
$$b = S_{xy}/S_{xx} = 5/10 = 0.5$$

Intercept:

$$\overline{y} - b \overline{x} = 7-0.5(3) = 5.5$$

 $\hat{y} = 5.5 + 0.5x$

У	5	7	9	6	8
ŷ	6	6.5	7	7.5	8
r=y- ŷ	-1	0.5	2	-1.5	0

$$\sum_{i=1}^{n} r_i^2 = \text{"Error sum of squares"} = \\ SSE = 1 + 0.25 + 4 + 2.25 = 7.5 \\ SSE \text{ is also } S_{yy} - S_{xy}^2/S_{xx} = S_{yy} - b^2S_{xx} = \\ 10 - 5^2/10$$

Variance of b:

$$\frac{\text{MSE/S}_{xx}}{\sqrt{\text{MSE/S}_{xx}}} = 2.5/10 = 0.25.$$

$$\sqrt{\text{MSE/S}_{xx}} \text{ is called "standard error" of b.}$$

Task: test H₀: true slope is 0 $t = b/\sqrt{0.25} = 1$ which is not an unusual t.

data a; input x y @@; cards; 1 5 2 7 3 9 4 6 5 8 ; proc reg; model Y =X / p; run;

Dependent Variable: y

Analysis of Variance

		Sum of	Mean	
Source	DF	Squares	Square F Valu	ie Pr > F
Model	1	2.50000	2.50000 1.0	0.3910
Error	3	7.50000	2.50000	
Corr Total	4	10.00000		

Root MSE 1.58114 R-Square 0.2500 Dependent Mean 7.00000 Adj R-Sq 0.0000 Coeff Var 22.58770

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|Intercept 1 5.50000 1.65831 3.32 0.0452 x 1 0.50000 0.50000 1.00 0.3910

Output Statistics

	Dep Var	Predicted		
0bs	У	Value	Residual	
1	5.0000	6.0000	-1.0000	
ı	5.0000	0.0000	-1.0000	
2	7.0000	6.5000	0.5000	
3	9.0000	7.0000	2.0000	
4	6.0000	7.5000	-1.5000	
5	8.0000	8.0000	0	