1. Exercise 6.2 #1(b) Show that $u = 1 + \sqrt{1 + \sqrt[3]{2}}$ is algebraic over \mathbb{Q} .

Solution: Begin with algebraic trickery.

$$u = 1 + \sqrt{1 + \sqrt[3]{2}}$$

$$u - 1 = \sqrt{1 + \sqrt[3]{2}}$$

$$(u + 1)^2 = 1 + \sqrt[3]{2}$$

$$u^2 + 2u = \sqrt[3]{2}$$

$$(u^2 + 2u)^3 = 2$$

$$u^6 + 6u^5 + 12u^4 + 8u^3 = 2$$

$$u^6 + 6u^5 + 12u^4 + 8u^3 - 2 = 0.$$

So we have found a polynomial $f(x) = x^6 + 6x^5 + 12x^4 + 8x^3 - 2$ so that f(u) = 0.

2. Exercise 6.2 #7 Find the minimal polynomial of $u = \sqrt{3} - i$ over \mathbb{Q} and also over \mathbb{R} .

Solution: Use a similar strategy as above for \mathbb{Q} :

$$u = \sqrt{3} - i$$

$$u^{2} = 3 - 2\sqrt{3}i - 1$$

$$(u^{2} - 2)^{2} = 12$$

$$u^{4} - 4u^{2} + 4 = 12$$

$$u^{4} - 4u^{2} + 16 = 0.$$

We can use the Modular Irreducibility test (Nicholson Theorem 4.2.7), with p=3, to reduce our polynomial to $f(x)=x^4-x^2+1=0$. Then f(0)=f(1)=f(2)=1 so the polynomial has no roots in \mathbb{Z}_3 and by the theorem, it is irreducible over \mathbb{Q} . Now since it is monic and has u as a root, we can say it is minimal.

In \mathbb{R} , we find a minimal polynomial in \mathbb{R} by attempting to eliminate the imaginary components to a polynomial with a root u.

$$u = \sqrt{3} - i$$

$$u - \sqrt{3} = i$$

$$u^2 - 2u\sqrt{3} + 3 = -1$$

$$u^2 - 2u\sqrt{3} + 4 = 0.$$

Then we can see the discriminant of the polynomial $g(x) = x^2 - 2\sqrt{3}x + 4$ is $2\sqrt{3} - 16$ which is negative, so the polynomial is irreducible over \mathbb{R} . And since it is monic, and has u as a root, it is minimal.

- 3. Exercise 6.2 #20 Let \mathbb{K} be a field extension of \mathbb{E} which is a field extension of \mathbb{F} , and let $[\mathbb{E} : \mathbb{F}]$ be finite. Let $u \in \mathbb{K}$ be algebraic over \mathbb{E} .
 - (a) Show that $[E(u) : E] \leq [F(u) : F]$.

Solution: Let $\mathbb{K} \supseteq \mathbb{E} \supseteq \mathbb{F}$, and $[\mathbb{E} : \mathbb{F}] = n$ be finite. Then let u be algebraic over \mathbb{K} with minimal polynomial $m(x) \in \mathbb{F}[x]$. Now we proceed by cases.

If m is irreducible in \mathbb{E} , then it remains the minimal polynomial for u in \mathbb{E} , and the degrees of the two extensions are equal.

Now, if m is reducible in \mathbb{E} , then there exists $f,g \in \mathbb{E}[x]$, both with degree less than m, and m = fg. We take the one which has u as a root and repeat the process until we reach an irreducible polynomial $h \in \mathbb{E}(u)$ with u as a root. If this is not monic, we factor out the leading coefficient, and we will have a $h' \in \mathbb{E}(u)$ with h'(u) = 0 that is monic and irreducible. This has degree strictly less than m, and is minimal for u.

After all this we have $[\mathbb{E}(u) : \mathbb{E}] = \deg h' \le \deg m = [\mathbb{F}(u) : \mathbb{F}].$

(b) Show that $[\mathbb{E}(u):\mathbb{F}(u)] \leq [\mathbb{E}:\mathbb{F}]$. (Hint: Theorem 6.1.6.) Take the same minimal polynomials we found above; and rewrite both:

$$\begin{split} [\mathbb{E}(u):\mathbb{F}(u)] &= [\mathbb{E}(u):\mathbb{E}][\mathbb{E}:\mathbb{F}(u)] \\ &= [\mathbb{E}(u):\mathbb{E}] \frac{[\mathbb{E}:\mathbb{F}]}{[\mathbb{F}(u):\mathbb{F}]} \\ &= \deg h' \frac{n}{\deg m}. \end{split}$$

Then since $\deg h' \leq \deg m$, $\frac{\deg h'}{\deg m} \leq 1$. So then $[\mathbb{E}(u):\mathbb{F}(u)] = \frac{n \deg h'}{\deg m} \leq n = [\mathbb{E}:\mathbb{F}]$.

4. Exercise 6.3 #4(a) and 4(b). Find the splitting field \mathbb{E} of $f(x) = x^3 + 1$ over $\mathbb{F} = \mathbb{Z}_2$ and factor f(x) completely in $\mathbb{F}[x]$. Then, do the same thing but replace $\mathbb{F} = \mathbb{Z}_2$ with $\mathbb{F} = \mathbb{Z}_3$ (see the statement in the textbook).

Solution: For \mathbb{Z}_2 , we check the elements. $f(0) = 0^3 + 1 = 1$, and $f(1) = 1^3 + 1 \equiv 0$, so 1 is a root of the polynomial. Rewrite $f(x) = (x+1)(x^2+x+1)$. Then let $f'(x) = x^2+x+1$, and check that this is also irreducible in \mathbb{Z}_2 :

$$f'(0) = 0^2 + 0 + 1 = 1 \neq 0$$
, $f'(1) = 1^2 + 1 + 1 = 1 \neq 0$.

So this polynomial has no roots in \mathbb{Z}_2 and therefore is irreducible. Let α be such that $f'(\alpha)=0$. Then there extists (By Kronecker's Theorem) a field extension of F in which α is a root, and $\alpha^2+\alpha\equiv 1\pmod 2$. So we can factor $f'(x)=(x+\alpha)(x+\alpha+1)$. And so $f(x)=(x+1)(x+\alpha)(x+\alpha+1)$, so x splits over $\mathbb{Z}_2(\alpha)$. And since f' is monic and irreducible, it is the minimal polynomial for α . Having degree 2, we can say that $[\mathbb{Z}_2(\alpha):\mathbb{Z}_2]=2$, and since $|\mathbb{Z}_2|=2$, by the multiplication theorem $|\mathbb{Z}_2(a)|=4$. Then we can finally say by the characterization of finite fields that $\mathbb{Z}_2(a)\cong \mathbb{F}_4$. Now, in \mathbb{Z}_3 we can see that $f(2)=9\equiv 0\pmod 3$, so $2\equiv -1$ is a root of f. Rewrite, $f(x)=(x+1)(x^2+2x+1)=(x+1)^3$. So the splitting field for f over \mathbb{Z}_3 is \mathbb{Z}_3 .

5. Exercise 6.3 #9 Let f(x) and g(x) be polynomials in F[x]. Show that f(x) and g(x) are relatively prime (have no common nonconstant factors) in F[x] if and only if they have no common root in any extension E of F.

Solution:

 \implies : Let f, $g \in F[x]$ be coprime, and suppose for the sake of contradiction that they have a common root a in some extension E of F. Then f(x) = f'(x)(x - a) and g(x) = g'(x)(x - a). Then x - a is a common nonconstant factor, a contradiction! Therefore f, g must have no common factor in F[x].

 \Leftarrow : Suppose that f, g share no root in any $E \supseteq F$. Then suppose for the sake of contradiction that there exists some $h \in F[x]$, and g = g'h, f = f'h. This polynomial must have a root in some extension of F, say $u \in K$. Then g(u) = g'(u)h(u) = 0 = f'(u)h(u) = f(u). So u is a root of both f, g, a contradiction. Then by contradiction f, g must be coprime.

6. Exercise 6.3 #17 If E over F is an algebraic extension and every polynomial in F[x] splits over E, show that E is algebraically closed. (Hint: Theorem 6.2.6)

Solution: Let $E \supseteq F$ be an algebraic extension, where every polynomial in F[x] splits over E. Then suppose for the sake of contradiction that E is not algebraically closed. So there exists some $f(x) \in E[x]$, where f has degree greater than one, and is irreducible. Write $f(x) = a_0 + a_1x + \ldots + a_nx^n$, with each $a_i \in E$. Take the field extension $F(a_0, \ldots, a_n) = F(a_0)(\ldots)(a_n)$. Since E is an algebraic extension, each a_i has a finite degree monic polynomial, each adjoined element on E produces another finite degree extension (Theorem 6.2.6). Since this extension is finite, it must be algebraic.