18MAB102T-Surprise Test 4-July 10

* Required

Answer ALL Questions

Each question carries ONE mark.

1 *

Cauchy – Riemann equations in Cartesian co-ordinates are

$$(A) u_x = v_y, u_y = -v_x$$

$$(B) u_x = -v_y, u_y = v_x$$

$$(C) u_x = v_y, u_y = v_x$$

(D)
$$u_x = -v_y, u_y = -v_x$$

 \bigcirc

 \bigcap Γ

2 *

If a function u(x,y) satisfies the equation $u_{xx} + u_{yy} = 0$, then u is called

- (A) analytic function
- (B) harmonic function
- (C) differential function
- (D) continuous function

- () A
- (**•**) E
- () (
- () [

An analytic function with constant imaginary part is		
(A) analytic	(B) zero	
(C) harmonic	(D) constant	
) A		
В		
) c		
D		
ļ *		
If $w = f(z) = u + iv$ is analytic, the constants	then the family of curves $u = C_1$ and $v = C_2$ where C_1 and C_2	
(A) intersect each other	(B) cut orthogonally	
(C) are parallel	(D) coincide	

5 *

If w = f(z) = u + iv is an analytic function, then

- $(A)\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2 \qquad (B)\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f'(z)|^2 = 4|f(z)|^2$
- (C) $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f'(z)| = 2|f(z)|$ (D) $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 2|f'(z)|^2$

- D

6 *

If the image of a point z under the transformation w = f(z) is itself, then the point is called

(A) critical point

(B) fixed point

(C) singular point

(D) regular point

7 *

The critical point of the transformation $w = z^2$ is

(A)z = 0

(B)z = -i

(C)z = 1

(D) z = -1

- B
- \bigcirc 0
- \bigcirc D

8 *

A transformation that preserves angles between every pair of curves through a point only in magnitude, but not in direction is said to be _____ at that point.

(A) conformal

(B) isogonal

(C) regular

(D) formal

- \bigcap A
- \bigcirc 0

The transformation $w = a z$, where a is a real constant represents		
(A) magnification	(B) rotation	
(C) reflection	(D) inversion	
) A		
) в		
) C		

10 *

The condition for the transformation $w = \frac{az+b}{cz+d}$ where a, b, c, d are complex constants to be bilinear is

(A) ad - bc = 0

(B) $ad - bc \neq 0$

(C) ad-bc<0

(D) ad - bc > 0

()

() |

() (

()[

Back

Submit

Never submit passwords through Google Forms.

reCAPTCHA
Privacy Terms

This form was created inside of SRM Institute of Science and Technology. Report Abuse

!

Google Forms

