MA 204 Numerical Methods

Dr. Debopriya Mukherjee Lecture-6

January 23, 2024

Contents

 Solution of a nonlinear equation, bisection and secant methods, Newton's method, rate of convergence.

Contents

- Solution of a nonlinear equation, bisection and secant methods, Newton's method, rate of convergence.
- Interpolation by polynomials, divided differences, error of the interpolating polynomial, piecewise linear and cubic spline interpolation.

Errors in Polynomial Interpolation

Given a function f(x) on $x \in [a, b]$, and a set of distinct points $x_i \in [a, b], i = 0, 1, \dots, n$. Let $P_n(x) \in \mathcal{P}_n$ s.t.

$$P_n(x_i) = f(x_i), \quad i = 0, 1, 2, \dots, n.$$

Errors in Polynomial Interpolation

Given a function f(x) on $x \in [a, b]$, and a set of distinct points $x_i \in [a, b], i = 0, 1, \dots, n$. Let $P_n(x) \in \mathcal{P}_n$ s.t.

$$P_n(x_i) = f(x_i), \quad i = 0, 1, 2, \dots, n.$$

Error function: $e(x) = f(x) - P_n(x), x \in [a, b].$

Theorem 1

There exists some value $\xi \in (a, b)$, such that

$$e(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i), \quad \text{for all} \quad x \in [a, b]. \quad (1)$$

Now assume, $f \notin \mathcal{P}_n$. If $x = x_i$ for some i, we have

$$e(x_i) = f(x_i) - P_n(x_i) = 0,$$

and the result holds.

Now assume, $f \notin \mathcal{P}_n$. If $x = x_i$ for some i, we have

$$e(x_i) = f(x_i) - P_n(x_i) = 0,$$

and the result holds.

Now consider $x \neq x_i$ for any i.

$$W(x) = \prod_{i=0}^{n} (x - x_i) \in \mathcal{P}_{n+1},$$

Now assume, $f \notin \mathcal{P}_n$. If $x = x_i$ for some i, we have

$$e(x_i) = f(x_i) - P_n(x_i) = 0,$$

and the result holds.

Now consider $x \neq x_i$ for any i.

$$W(x) = \prod_{i=0}^{n} (x - x_i) \in \mathcal{P}_{n+1},$$

it holds

$$W(x_i) = 0, \quad W(x) = x^{n+1} + \cdots, \quad W^{(n+1)} = (n+1)!$$

Fix an x such that $a \le x \le b$ and $x \ne x_i$ for any i. We define a constant

$$c=\frac{f(x)-P_n(x)}{W(x)},$$

Fix an x such that $a \le x \le b$ and $x \ne x_i$ for any i. We define a constant

$$c=\frac{f(x)-P_n(x)}{W(x)},$$

and another function

$$\varphi(y) = f(y) - P_n(y) - cW(y).$$

Fix an x such that $a \le x \le b$ and $x \ne x_i$ for any i. We define a constant

$$c=\frac{f(x)-P_n(x)}{W(x)},$$

and another function

$$\varphi(y) = f(y) - P_n(y) - cW(y).$$

We find all the zeros for $\varphi(y)$. We see that $x_i's$ are zeros since

$$\varphi(x_i) = f(x_i) - P_n(x_i) - cW(x_i) = 0.$$

Also, x is a zero because

$$\varphi(x) = f(x) - P_n(x) - cW(x) = 0.$$

Here goes our deduction:

$$\varphi(x)$$
 has atleast $(n+2)$ zeros on $[a,b]$. $\varphi'(x)$ has atleast $(n+1)$ zeros on $[a,b]$. $\varphi''(x)$ has atleast n zeros on $[a,b]$.

$$\varphi^{(n+1)}(x)$$
 has at least 1 zero on $[a,b]$.

Call it
$$\xi$$
 s.t. $\varphi^{(n+1)}(\xi) = 0$. So, we have

$$\varphi^{(n+1)}(\xi) = f^{(n+1)}(\xi) - 0 - cW^{(n+1)}(\xi) = 0.$$

Recall $W^{n+1} = (n+1)!$, we have, for every y,

$$f^{(n+1)}(\xi) = cW^{(n+1)}(\xi) = \frac{f(y) - P_n(y)}{W(y)}(n+1)!$$

$$e(x) = f(x) - P_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i),$$

for some $\xi \in [a, b]$.

Disadvantages of polynomial interpolation $P_n(x)$

- n— times differentiable; We do not need such high smoothness;
- big error in certain intervals (esp. near the ends);
- no convergence result;
- \blacksquare heavy to compute for large n.