LAFT: Cross-lingual Transfer for Text Generation by Language-Agnostic Finetuning

Xianze Wu¹ Zaixiang Zheng² Hao Zhou³ and Yong Yu¹

¹Shanghai Jiao Tong University ²Bytedance Al Lab

³Insititute for Al Industry Research, Tsinghua University

Outline

- Background & Motivation
- Method
 - Language-agnostic Task Acquisition
 - Language Specialization for Generation
 - Learning
- Experiments
- Takeaways

Task: Zero-resource Cross-lingual Transfer

- [Cross-lingual Transfer (CLT)] Transfer knowledge learned from source language(s) to target language(s)
 - source language: rich-resource language in most case

• [Zero-resource] No human-annotated task data in target language is available for training

Existing Method: Fine-tuning MLPMs

- Fine-tuning MPLM on task-annotated data in source language
 - MPLM: **M**ulti-lingual **P**re-trained **L**anguage **M**odels (e.g. mBART)

How to further improve the fine-tuning method?

Neural NLG Pipeline

- Understanding input text
 - e.g. convert a news article to hidden representations
- Manipulating semantics representation
 - e.g. filter out redundant content while keep the main idea
- Generating text result
 - e.g. generate abstractive summarization

Neural NLG Pipeline

- Understanding input text
 - e.g. convert a news article to hidden representations
- Manipulating semantic representation (key step)
 - e.g. filter out redundant content while keep the main idea
 - Learn how to manipulate input representations according to downstream tasks.
- Generating text result
 - e.g. generate abstractive summarization

Problem of Fine-tuning MPLM

 Semantic and language component are highly entangled on MPLM's representation

- Knowledge of downstream tasks would be correlated to the source language
 - Harm transfer ability!

• Our approach: language-agnostic fine-tuning

Outline

- Background & Motivation
- Method
 - Language-agnostic Task Acquisition
 - Language Specialization for Generation
 - Learning
- Experiments
- Takeaways

LAFT Model

Task Module between encoder and decoder

LAFT Model

- Task Module between encoder and decoder
- Language-agnostic task acquisition
 - Only semantic representation is feed into TM
- Language-specialization
 - Add language information to the language-agnostic representation obtained by TM

Language-agnostic task acquisition

- How to remove language information?
 - For an MPLM, the representations from the same language L share vector space components, which corresponds to the language identity of language L. [Yang et al. 21]

Language-agnostic task acquisition

- How to remove language information?
 - Estimation of language component [Yang et al. 21]
 - Construct a language matrix $M_L \in \mathbb{R}^{n \times d}$ by encoding monolingual texts from language L.
 - Perform SVD and extract the first k right singular vectors $c_L \in \mathbb{R}^{d \times k}$.

Language-agnostic task acquisition

- How to remove language information?
 - Estimation of language component [Yang et al. 21]
 - Construct a language matrix $M_L \in \mathbb{R}^{n \times d}$ by encoding monolingual texts from language L.
 - Perform SVD and extract the first k right singular vectors $c_L \in \mathbb{R}^{d \times k}$.
 - Removal of language component
 - Subtract the projection of sentence representation onto language components from token representation.

$$r_L^i = e_L^i - c_L \frac{c_L^T e_L}{\|e_L\|_2}.$$

Language Specialization for Generation

- Representations obtained by the task module is languageagnostic
 - Not enough for generating text
- Two solutions
 - Add language component back with a fusion mechanism

$$\mathbf{B}(h_L^i, c_L) = \mathbf{U}\left(\text{ReLU}\left(\mathbf{D}([h_L^i, c_L])\right)\right) + h_{L_i}^i$$

• Incorporate language adapter to each decoder layer (Pfeiffer et al., 2020)

Learning

- Unsupervised generation pre-training
 - Only the task module and fusion mechanism are trainable
 - training on unsupervised data from the source and target language

- Task fine-tuning
 - Only the task module are trainable
 - training on source language annotated task data

Outline

- Background & Motivation
- Method
 - Language-agnostic Task Acquisition
 - Language Specialization for Generation
 - Learning
- Experiments
- Takeaways

Experiment Setting

- Task and Dataset
 - Abstractive text summarization: XGIGA dataset
 - Question Generation: XQG dataset
- Language:
 - source language: En
 - target language: Zh, Fr
- Scenario: Zero-shot and Trans-train

Experiment Setting

- Backbone model: mBART
- Baselines
 - mBART (full): directly finetuning the full parameters of mBART on English annotated data;
 - mBART (enc): only finetuning the encoder parameters of mBART;
 - TM + adv: using adversarial training to force the output of TM to be language-agnostic

Main Result

Setting	Zero-shot		Trans-train	
Language	zh→zh	fr→fr	zh→zh	fr→fr
Baselines mBART (full) mBART (enc) TM + adv	43.82 45.85 31.41	33.40 36.55 36.71	47.33 47.09 48.04	42.8 42.11 43.04
LAFT	46.37	40.78	47.66	43.10

Table 1: Results of abstractive summarization. "full": finetuning full model. "enc": finetuning only encoder

Setting	Zero-shot	Trans-train
Language	$zh{ ightarrow}zh$	$zh{\rightarrow}zh$
Baselines mBART (full) mBART (enc) TM + adv	21.62 32.08 21.98	36.58 33.57 37.02
LAFT	34.53	37.02

Zero-shot: LAFT outperform all baselines

Main Result

Setting	Zero-shot		Trans-train	
Language	zh→zh	fr→fr	zh→zh	fr→fr
Baselines mBART (full) mBART (enc) TM + adv	43.82 45.85 31.41	33.40 36.55 36.71	47.33 47.09 48.04	42.8 42.11 43.04
LAFT	46.37	40.78	47.66	43.10

Table 1: Results of abstractive summarization. "full": finetuning full model. "enc": finetuning only encoder

Setting	Zero-shot	Trans-train
Language	$zh{ ightarrow}zh$	$zh{ ightarrow}zh$
Baselines		
mBART (full)	21.62	36.58
mBART (enc)	32.08	33.57
TM + adv	21.98	37.02
LAFT	34.53	37.02

• Trans-train:

- Baselines function better because of pseudo task data on target languages is accessible.
- LAFT still perform good

Visualization

- After removing language identity, representations become closer.
- Representations become separable again after language specialization.

Outline

- Background & Motivation
- Method
 - Language-agnostic Task Acquisition
 - Language Specialization for Generation
 - Learning
- Experiments
- Takeaways

Takeaways

- Motivation:
 - Improving zero-resource cross-lingual transfer by language-agnostic fine-tuning
- Method
 - Language-agnostic task acquisition with an inserted task module
 - Language specialization for generation
- Experiments
 - Scenario: zero-shot and translate-train.
 - Tasks: Abstractive summarization and question generation

Thanks for your listening!

