数理社会学I 第9回目 血縁淘汰1

2014年6月13日

東工大•文系科目

担当:中丸麻由子

前期授業スケジュール・予定

回	日にち	講義内容		
1	4/11	ガイダンス		
2	4/18	進化生態学基礎		
3	4/25	進化ゲーム		
4	5/2	進化ゲーム		
5	5/9	進化ゲーム・採餌行動		
6	5/23	採餌行動		
7	5/30	性比	進	化生態学の基本
8	6/6	性転換•性選択	+,	人への適用例
9	6/13	性選択·血縁淘汰		
10	6/20	血縁淘汰		
11	6/27	人の性選択・人の血縁淘汰		
12	7/4	協力の進化		
13	7/11	遺伝と多様性		
14	7/18	予備日・テスト範囲説明		
15	7/25	テスト日		

参考文献

- 長谷川真理子・他 「行動・生態の進化」 シリーズ 進化6 岩波書店
- 酒井聡樹、高田壮則、近雅博(1999)「生き物の進化 ゲーム」共立出版
- 長谷川寿一、長谷川真理子(2000)「進化と人間行動」東大出版会
- 嚴佐庸(1990)「数理生物学入門」共立出版
- McElreath, R. & Boyd, R. 2007. Mathematical models of social evolution, Univ of Chicago Press

利他行動(協力行動)

利他行動とは:

自らの適応度を下げてまで相手の適応度を上げる行動

社会的相互作用: 2個体間の場合

利他行動(協力行動)

-血縁淘汰

-非血縁間の協力

互恵的利他行動

--繰り返し囚人のジレンマゲーム

間接的互恵性

--評判、噂の影響

非協力者への罰行動 --利他的罰行動

血緣淘汰

社会性昆虫でのワーカーの存在

真社会性昆虫・・・巣の中で分業

ワーカーは雌、巣の中の大多数

| 巣の拡張や採餌、幼虫の世話など、女王のための労働 | 女王の繁殖を手伝うが、自らは繁殖しない

利他行動の典型例

なぜワーカーは存在するのか??

Hamilton, W. D.は半倍数性に着目

倍数性・半倍数性の遺伝システム

「生き物の進化ゲーム」115ページより

包括適応度

A個体からみたB個体の血縁度: r_{AB}

Aの中にある特定の遺伝子の同祖遺伝子(祖先が同じ遺伝子)をBが持っている確率

r_{AR} が大:血が似通っている

r_{AB} が小:他人

自分との血縁度が高い個体が子供を生む

間接的に自分の適応度を上げている事になる

包括適応度の考え方

血縁淘汰: 血縁者の遺伝的成功を通じて何らかの形質が進化する機構 (kin selection)

包括適応度 inclusive fitness

個体Aの包括適応度 $W_{IF} = W_{O} - \Delta W_{A} + \Sigma_{B} r_{AB} \Delta W_{B}$

 $W_{\rm O}$: Aが他個体と社会的関係が無い時の適応度 $\Delta W_{\rm A}$: Aが他個体との社会的行動を通じて失う適応度 $\Delta W_{\rm B}$: Aが他個体Bと社会的関係を通して得る適応度 $r_{\rm AB}$: AのBに対する血縁度

2個体間の利他行動の時 $\Delta W_A = c > 0$ とする。

 $W_{IF} > W_o$ の時 (つまり、包括適応度が社会的相互作用 が無い時の適応度よりも大きい時)

$$\frac{b}{c} > \frac{1}{r_{AB}}$$

 $\frac{b}{c} > \frac{1}{r_{AB}}$ Hamiltonのルール 血縁度が大きい個体に対して利他行動は進化する

血縁度(r)の測り方 1

長谷川・長谷川「進化と人間行動」123ページBox 5より

- 血縁度rとは、2個体間で同じ祖先に由来する 特定の遺伝子を共有しあう確率のことをいう
- ・ 2倍体の生物では、精子や卵は減数分裂に よって作られるので、親の遺伝子が子に伝わ る確率は50%。したがって、(両親に血縁関 係がなければ)親子間の血縁度は0.5になる。 同父母のきょうだい間の血縁度は、父親経由 の場合(自分一父一きょうだい:0.5×0.5)と母 親経由の場合(自分一母一きょうだい: 0.5×0.5)の和、すなわち0.5となる

血縁度(r)の測り方 2

長谷川・長谷川「進化と人間行動」123ページBox 5より

- ・配偶者間に血縁関係がない場合の r の一般 的な求め方
 - 1)対象となる2個体とその共通祖先の関係を系 譜図で描き、線を結ぶ
 - 2)上に述べたように親子間の血縁度は0.5
 - -3)2個体が <math>L 個の線でつながれているなら、特定の遺伝子を共有する確率は $(0.5)^{L}$ である。
 - -4)複数の経路がある場合は、各経路の確率を加算する。すなわち、 $r = \Sigma(0.5)^{L}$ となる。

血縁度の計算

Coefficient of relatedness

$$r_{AB}$$
= $0.5 \times 0.5 + 0.5 \times 0.5$
= $0.5^2 + 0.5^2 \leftarrow L = 2$ で2経路
= 0.5
対称性より r_{BA} = 0.5
例)
一卵性双生児 r_{AB} =1
父母が同じである兄弟間
親子間
二卵性双生児 r_{AB} =0.5

血縁度の計算

ワーカーに戻って・・

ハミルトンのルールより ワーカーが女王の世話をす る理由は・・・・

自分で子供を産むより 妹の世話をした方が進 化的に有利

実際には、ワーカーは産卵している

ワーカーは、他のワーカーの産卵した卵をたべる(制裁)

ワーカーポリシング

worker policing

(女王のいる社会性昆虫である ミツバチなどで報告)

fire antの研究

Fournier et al., 2005 Nature fire antの研究

