Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

1.	When performing logistic regression on sentiment analysis, you represented each tweet as a vector of ones and zeros. However your model did not work well. Your training cost was reasonable, but your testing cost was just not acceptable. What could be a possible reason?	1/1 point
	The vector representations are sparse and therefore it is much harder for your model to learn anything that could generalize well to the test set.	
	O You probably need to increase your vocabulary size because it seems like you have very little features.	
	O Logistic regression does not work for sentiment analysis, and therefore you should be looking at other models.	
	O Sparse representations require a good amount of training time so you should train your model for longer	
2.	Which of the following are examples of text preprocessing?	1/1 point
	Stemming, or the process of reducing a word to its word stem.	
	○ Correct This is correct.	
	✓ Lowercasing, which is the process of removing changing all capital letter to lower case.	
	Removing stopwords, punctuation, handles and URLs	
	Adding new words to make sure all the sentences make sense	
3.	The sigmoid function is defined as $h(x^{(i)}, heta) = rac{1}{1+e^{- heta T_x(i)}}$. Which of the following is true.	1/1 point
	$\bigcirc \ \ \text{Large positive values of } \theta^T x^{(i)} \text{ will make } h(x^{(i)},\theta) \text{ closer to 1 and large negative values of } \theta^T x^{(i)} \text{ will make } h(x^{(i)},\theta) \text{ close to -1}.$	
	$ \bullet \text{ Large positive values of } \theta^T x^{(i)} \text{ will make } h(x^{(i)},\theta) \text{ closer to 1 and large negative values of } \theta^T x^{(i)} \text{ will make } h(x^{(i)},\theta) \text{ close to 0}. $	
	$\bigcirc \text{ Small positive values of } \theta^T x^{(i)} \text{ will make } h(x^{(i)},\theta) \text{ closer to 1 and large positive values of } \theta^T x^{(i)} \text{ will make } h(x^{(i)},\theta) \text{ close to 0}.$	
	$igcomes$ Small positive values of $ heta^T x^{(i)}$ will make $h(x^{(i)}, heta)$ closer to 0 and large negative values of $ heta^T x^{(i)}$ will make $h(x^{(i)}, heta)$ close to -1.	
	○ Correct This is correct.	
	The cost function for logistic regression is defined as $J(\theta) = -\frac{1}{m} \sum_{i=1}^m \left[y^{(i)} \log h\left(x^{(i)}, \theta\right) + \left(1 - y^{(i)}\right) \log\left(1 - h\left(x^{(i)}, \theta\right)\right) \right].$ Which of the following is true about the cost function above. Mark all the correct ones.	1 / 1 point
	When $y^{(i)}=1$, as $h(x^{(i)},\theta)$ goes close to 0, the cost function approaches ∞ .	
	○ Correct This is correct.	
	\square When $y^{(i)}=1$, as $h(x^{(i)}, heta)$ goes close to 0, the cost function approaches 0 .	
	When $y^{(i)}=0$, as $h(x^{(i)},\theta)$ goes close to 0, the cost function approaches 0 .	

 $\qquad \qquad \square \ \ \, \text{When} \, y^{(i)} = 0 \text{, as} \, h(x^{(i)}, \theta) \text{ goes close to 0, the cost function approaches } \infty.$

	what value of $ heta^T x$ in the sigmoid function does $h(x^{(i)}, heta) = 0.5.$	1 / 1 poin
0		
(∠) Correct	
	ect all that apply. When performing logistic regression for sentiment analysis using the method taught in this	1 / 1 poin
	ek's lecture, you have to: Performing data processing.	
(Correct This is correct.	
~	Create a dictionary that maps the word and the class that word is found in to the number of times that word is found in the class.	
(Correct This is correct.	
	Create a dictionary that maps the word and the class that word is found in to see if that word shows up in the class.	
✓	For each tweet, you have to create a positive feature with the sum of positive counts of each word in that tweet. You also have to create a negative feature with the sum of negative counts of each word in that tweet.	
(Correct This is correct.	
Wh	en training logistic regression, you have to perform the following operations in the desired order.	1 / 1 poir
0	Initialize parameters, get gradient, classify/predict, update, get loss, repeat	
•	Initialize parameters, classify/predict, get gradient, update, get loss, repeat	
0	Initialize parameters, get gradient, update, classify/predict, get loss, repeat	
0	Initialize parameters, get gradient, update, get loss, classify/predict, repeat	
(Correct This is correct.	
	suming we got the classification correct, where $y^{(i)}=1$ for some specific example i. This means that $x^{(i)}, heta)>0.5$. Which of the following has to hold:	1 / 1 poir
0	Our prediction, $h(x^{(i)}, \theta)$ for this specific training example is exactly equal to its corresponding label $y^{(i)}$.	
0	Our prediction, $h(x^{(i)}, heta)$ for this specific training example is less than $(1-y^{(i)})$.	
0	Our prediction, $h(x^{(i)}, \theta)$ for this specific training example is less than $(1 - h(x^{(i)}, \theta))$.	
•		
(Correct This is correct.	
Wh	nat is the purpose of gradient descent? Select all that apply.	1/1 poir
~	Gradient descent allows us to learn the parameters $ heta$ in logistic regression as to minimize the loss function J.	
(Correct This is correct.	
	Gradient descent allows us to learn the parameters $ heta$ in logistic regression as to maximize the loss function J,	
~	Gradient descent, $grad_theta$ allows us to update the parameters θ by computing $\theta=\theta-\alpha*grad_theta$	
(Correct This is correct.	

10. What is a good metric that allows you to decide when to stop training/trying to get a good model? Select all that apply.
When your accuracy is good enough on the test set.
 When your accuracy is good enough on the train set. ✓ When you plot the cost versus (# of iterations) and you see that your the loss is converging (i.e. no longer changes as much).
When a your step size is neither too small nor too large

1 / 1 point