Module 3

Module: 3 Relational Database Design

Database Design – Schema Refinement - Guidelines for Relational Schema – Functional dependencies - Axioms on Functional Dependencies- Normalization: First, Second and Third Normal Forms - Boyce Codd Normal Form, Multi-valued dependency and Fourth Normal form - Join dependency and Fifth Normal form

Reference :

- R. Elmasri & S. B. Navathe, Fundamentals of Database Systems, Addison Wesley, 7th Edition, 2016
- A. Silberschatz, H. F. Korth & S. Sudarshan, Database System Concepts, McGraw Hill,7th Edition 2019.

Normalization

Normalization is the process of organizing data in a database to reduce redundancy and improve data integrity. It involves decomposing relations into well-structured tables based on functional dependencies.

First Normal Form

 A given relation is called in First Normal Form (1NF) if each cell of the table contains only an atomic value.

OR

• A given relation is called in First Normal Form (1NF) if the attribute of every tuple is either single valued or a null value.

The following relation is not in 1NF

Student_id	Name	Subjects
100	Akshay	Computer Networks, Designing
101	Aman	Database Management System
102	Anjali	Automata, Compiler Design

First Normal Form

- •This relation can be brought into 1NF.
- •This can be done by rewriting the relation such that each cell of the table contains only one value.

Relation is in 1NF

Student_id	Name	Subjects
100	Akshay	Computer Networks
100	Akshay	Designing
101	Aman	Database Management System
102	Anjali	Automata
102	Anjali	Compiler Design

First Normal Form

NOTE-

- ➤ By default, every relation is in 1NF.
- This is because formal definition of a relation states that value of all the attributes must be atomic.

Second Normal Form

A given relation is called in Second Normal Form (2NF) if and only if,

- Relation already exists in 1NF.
- •No partial dependency exists in the relation.

Partial Dependency

- A partial dependency is a dependency where few attributes of the candidate key determines non-prime attribute(s).
- A partial dependency is a dependency where a portion of the candidate key or incomplete candidate key determines non-prime attribute(s).
 - In other words,
- $A \rightarrow B$ is called a partial dependency if and only if-
- 1. A is a subset of some candidate key
- 2. B is a non-prime attribute.

If any one condition fails, then it will not be a partial dependency.

NOTE-

To avoid partial dependency, incomplete candidate key must not determine any non-prime attribute.

However, incomplete candidate key can determine prime attributes.

Example-

Consider a relation- R (V , W , X , Y , Z) with functional dependencies-

$$VW \rightarrow XY$$
$$Y \rightarrow V$$
$$WX \rightarrow YZ$$

The possible candidate keys for this relation are-

From here,

- •Prime attributes = { V , W , X , Y }
- •Non-prime attributes = { Z }

Now, if we observe the given dependencies-

- There is no partial dependency.
- •This is because there exists no dependency where incomplete candidate key determines any non-prime attribute.

Thus, we conclude that the given relation is in 2NF.

Third Normal Form

A given relation is called in Third Normal Form (3NF) if and only if-

- 1.Relation already exists in 2NF.
- 2. No transitive dependency exists for non-prime attributes.

OR

A relation is called in Third Normal Form (3NF) if and only if-

Any one condition holds for each non-trivial functional dependency $A \rightarrow B$

- 1.A is a super key
- 2.B is a prime attribute

Transitive Dependency

- A → B is called a transitive dependency if and only if-
- •A is not a super key.
- •B is a non-prime attribute.

 If any one condition fails, then it is not a transitive dependency.

NOTE-

Transitive dependency must not exist for non-prime attributes. However, transitive dependency can exist for prime attributes.

Example-

Consider a relation- R (A, B, C, D, E) with functional dependencies-

$$\begin{array}{c} \mathsf{A} \to \mathsf{BC} \\ \mathsf{CD} \to \mathsf{E} \\ \mathsf{B} \to \mathsf{D} \\ \mathsf{E} \to \mathsf{A} \end{array}$$

The possible candidate keys for this relation are-

A, E, CD, BC

From here,

- •Prime attributes = { A , B , C , D , E }
- •There are no non-prime attributes Now,
- •It is clear that there are no non-prime attributes in the relation.
- •In other words, all the attributes of relation are prime attributes.
- •Thus, all the attributes on RHS of each functional dependency are prime attributes