[4]

ii. Determine inverse Z-transform by partial fraction technique? 5

$$X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$$

(a) R.O.C |z|>1

(b) R.O.C |z| < 0.5

iii. Solve difference equation by Z-transform y[n] + 2y[n-1] = x[n] with $x[n] = (\frac{1}{3})^n u[n] & y[-1] = 1$.

Total No. of Questions: 6

Total No. of Printed Pages:4

Branch/Specialisation: EC/EE/EI/EX

Faculty of Engineering End Sem (Odd) Examination Dec-2018 EC3CO01/EI3CO01/EE3CO06/EX3CO06

Signals and Systems

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of

Programme: B.Tech.

.1 (N	(ICQs)	should be writte	en in full inste	ad of only a, b,	c or d.	
Q .1	i.	The signum function sgn(t) can be written as:			1	
		(a) $u(t) - 1$	(b) $1 - u(t)$	(c) $2u(t) - 1$	(d) u(t)+u(-t)	
	ii.	The signal $x(t) = A \sin(w_0 t) [u(t) - u(t-2)]$ is?				1
		(a) Periodic sig	gnal	(b) Neither en	nergy nor power signal	
		(c) Power sign	al	(d) A periodic	c & energy signal	
	iii.	The Fourier transform of a rectangular pulse is?			1	
		(a) Sampling f	unction	(b) Triangula	r function	
		(c) Another rectangular pulse (d) Impulse function				
	iv.	The trigonome	The trigonometric Fourier series of an even signal will consist			1
		of?				
		(a) Cosine terr	ns only	(b) Sine term	s only	
		(c) Both sine &	& cosine terms	(d) None of the	hese	
	v.	A system which called?	ch has a uniq	ue relation bety	ween input & output is	1
		(a) Linear syst	em	(b) Causal sy	stem	
		(c) Invertible s		(d) Time-vari		
	vi.		-		· .	1
	, 1,	The input output relationship for a system is given by $y(t)=x(t^2)$ is: 1 (a) Causal, time variant system				
		(b) Non causal, time invariant system				
		(c) Causal, time invariant system				
		(d) Non causal ,time variant system				
	vii.	Convolution o		•		1
		(a) 5	(b) 2	(c) 1	(d) 0	-
		(-) -	(-, -	(-) -		T.O.

	viii.	The system described by equation $y[n] = x[2n]$ is:	1		
		(a) Linear time variant (b) Non-linear time variant			
		(c) Non-linear invariant (d) Linear time invariant			
	ix.	If '*' denotes convolution of discrete time sequence & y[n]=	1		
		$x_1[n] * x_2[n]$ then Z-transform of $y[n]$ will be:			
		(a) $Y(z) = X_1(z) \times X_2(z)$ (b) $Y(z) = X_1(z) + X_2(z)$			
		(c) $Y(z)=X_1(z)-X_2(z)$ (d) $Y(z)=X_2(z)-X_1(z)$			
	х.	ROC is defined as the range of values of z for which Z-transform	1		
		(a) Converges (b) Diverges (c) Is infinite (d) None of these			
Q.2	i.	Graphically explain following signals:			
		(a) Unit step function (b) Impulse function			
		(c) Signum function			
	ii.	(a) For given signal $x(t)$, plot and perform following operations	7		
		graphically: $x(t) = u(t+4) u(-t+4)$			
		I. $x(t)$ II. $x(t-4)$ III $-2x(t)$ IV. $x(-t)$			
		(b) Determine energy and power of following signals:			
ΩD.		I. $u(t) - u(t - 4)$ II. $e^{-5t}u(t)$ III. $e^{- t }$	7		
OR	iii.	(a) Justify whether following signals are periodic or not, if periodic determine fundamental time period?			
		I. $u(t) + 2\sin(2t)$ II. $\cos 2t + \sin \sqrt{3}t$			
		III. $u(t) \sin(\pi t)$ IV. $e^{j4\pi t}$			
		(b) A rectangular signal x(t) is defined as			
		$x(t) = 1 \text{ for } 0 < t < \pi$			
		$=-1$ for $\pi < t < 2\pi$			
		Approximate above rectangular signal by a sinusoid sin(t) over			
		interval $[0,2\pi]$ such that mean square error is minimum?			
Q.3	i.	Define sampling theorem?	2		
	ii.	Determine Nyquist sampling rate for following signals?	3		
		(a) $x(t) = \cos^3(200\pi t)$			
		(b) $x(t)=1 + \sin(400\pi t) + \cos(200\pi t)$			
		(c) $x(t) = \sin(100\pi t) \cos(150\pi t)$			

```
List any two Dirichlet condition for existence of Fourier series.
                                                                                    5
             For given periodic signal with time period '2\pi' find trigonometric
             Fourier series? x(t) = A for 0 < t < \pi
                                 = -A for \pi < t < 2\pi
            Discuss time-reversal and time shifting property of Fourier 5
OR iv.
             transform with one example of each. Determine Fourier transform
             of following signals?
                                           (b) e^{-2|t|}
             Discuss stability and time-variance property of continuous time
Q.4 i.
             system with example?
             Perform graphical convolution of following signal:
                                              x_2(t) = 2u(t) - 2u(t-3)
             x_1(t) = u(t+3) - u(t-3)
             If x(t) denotes input & h(t) denotes impulse response to LTI
OR
             system determine output y(t) for following?
             (a) x(t) = e^{-2t} u(t) & h(t) = e^{-4t} u(t)
             (b) x(t) = t u(t) & h(t) = t u(t)
Q.5 i.
             Check for linearity and causality property of following discrete 4
             time system:
             (a) y[n] = x[n^2]
                                           (b) y[n] = 2x[-n] + 4
             Determine closed form solution of unit impulse response h[n] for 6
             system given by :y [n] - 0.6 y [n-1] - 0.16 y [n-2] = 5 x[n]
             where x[n],y[n] are input & output respectively
             Define convolution sum & its two properties?
OR
                                                                                    6
             Determine c[n] = x[n] * g[n] (* denotes convolution)
                 x[n] = 0.8^n u[n]
                                      g[n] = 0.3^n u[n]
Q.6
             Attempt any two:
             Find Z-transform & R.O.C for following signals?
                                                                                    5
             (a) x[n] = 3 \left(\frac{5}{7}\right)^n u[n] + 2 \left(\frac{-1}{3}\right)^n u[n]
             (b) x[n] = a^{|n|} (0 < a < 1)
```

P.T.O.

Marking Scheme EC3CO01/EI3CO01/EE3CO06/EX3CO06

Signals and Systems

Q.1	i.	The signum function sgn(t) can be written as:	1				
		(c) $2u(t)-1$					
	ii.	The signal $x(t) = A \sin(w_0 t) [u(t) - u(t-2)]$ is?					
		(d) Aperiodic & energy signal					
	iii.	The Fourier transform of a rectangular pulse is?					
		(a) Sampling function					
	iv.	The trigonometric Fourier series of an even signal will consist of?	1				
	(a) cosine terms only						
	v.	A system which has a unique relation between input & output is called?					
	(c) Invertible system						
	vi.	The input output relationship for a system is given by $y(t) = x(t^2)$	1				
		is:					
		(d) Non causal ,time variant system					
	vii.	Convolution of u[n] with u[n-4] at n=5 is:	1				
		(b) 2					
	viii.	The system described by equation $y[n] = x[2n]$ is:	1				
		(a) Linear time variant					
	ix.	If '*' denotes convolution of discrete time sequence & $y[n]=$					
	$x_1[n] * x_2[n]$ then Z-transform of $y[n]$ will be						
		(a) $Y(z) = X_1(z) \times X_2(z)$					
	x. ROC is defined as the range of values of z for which Z-transfo						
		(a) Converges					
Q.2	i.	Graphically explain following signals:	3				
		(a) Unit step function 1 mark					
		(b) Impulse function 1 mark					
		(c) Signum function 1 mark					
	ii.	(a) Plotting x(t) 1 mark	7				
		Plotting $x(t-4)$ 1 mark					
		Plotting $-2x(t)$ 1 mark					
		Plotting $x(-t)$ 1 mark					

		(b) For energy calculation		
		0.5 mark each (0.5 mark *3)	1.5 marks	
		For power calculation		
		0.5 mark each (0.5 mark *3)	1.5 marks	
OR	iii.	(a) Justify whether following signals are periodic or	not, if periodic	7
		determine fundamental time period?		
		$I. u(t) + 2\sin(2t)$	1 mark	
		II. $\cos 2t + \sin \sqrt{3}t$	1 mark	
		III. $u(t) \sin(\pi t)$	1 mark	
		IV. e j ^{4πt}	1 mark	
		(b) Applying correct approximation formula	1 mark	
		Calculation	2 marks	
Q.3	i.	Sampling theorem		2
	ii.	Determine Nyquist sampling rate for following sign		3
		(a) $x(t) = \cos^3(200\pi t)$	1 mark	
		(b) $x(t)=1 + \sin(400\pi t) + \cos(200\pi t)$	1 mark	
		(c) $x(t) = \sin(100\pi t) \cos(150\pi t)$	1 mark	
	iii.	Two Dirichlet condition	1 mark	5
		Trigonometric Fourier series calculation		
		a_{o}	1 mark	
		a_n	1.5 marks	
		b_n	1.5 marks	
OR	iv.	Time-reversal property	0.5 mark	5
		Example	0.5 mark	
		Time shifting property	0.5 mark	
		Example	0.5 mark	
		Fourier transform		
		$(a)\frac{1}{1+jt}$	1.5 marks	
		(b) e ^{-2 t}	1.5 marks	
Q.4	i.	Stability and time-variance property of continuous	time system	4
			2 marks	
		Example for each property	2 marks	
	ii.	Graphical plotting & shifting signals	2 marks	6
		Performing integration over time limits	4 marks	

OR	iii.	If $x(t)$ denotes input & $h(t)$ denotes impulse response to LTI system determine output $y(t)$ for following? (a) $x(t) = e^{-2t} u(t)$ & $h(t) = e^{-4t} u(t)$		
		Correct output $y(t)$ calculation (b) $x(t) = t u(t) & h(t) = t u(t)$	3 marks	
		Correct output y(t) calculation	3 marks	
Q.5	i.	Linearity and causality property of following discre	•	4
		(a) y [n] = x[n2]	2 marks	
		(b) $y[n] = 2 x[-n] + 4$	2 marks	
	ii.	Roots of characteristic polynomial	2 marks	6
		Determination of unknown coefficients	4 marks	
OR	iii.	Convolution sum definition	1 mark	6
		Two properties	1 mark	
		Correctly selecting limits for convolution sum	1 mark	
		Performing sum over time limits	3 marks	
Q.6		Attempt any two:		
	i.	Find Z-transform & R.O.C for following signals?		5
		(a) $x[n] = 3 \left(\frac{5}{7}\right)^n u[n] + 2 \left(\frac{-1}{3}\right)^n u[n]$		
		Z-transform	2 marks	
		R.O.C	0.5 mark	
		(b) $x[n] = a^{ n } (0 < a < 1)$		
		Z-transform	2 marks	
		R.O.C	0.5 mark	
	ii.	Inverse Z-transform by partial fraction technique	3 marks	5
		(a) R.O.C z >1	1 mark	
		(b) R.O.C z < 0.5	1 mark	
	iii.	Applying Z-transform for given difference equation		5
		Finding inverse Z-transform to determine y[n]	4 marks	
