

Aprendizaje Supervisado Árboles de Decisión

Método CART

Classification And Regression Trees

L. Brieman

J. Friedman

Decision Tree Induction

(most popular prediction method in DM)

Continually reinvented idea ~ 30 years

Others:

perincipal components - Latent Sematic indexing KL expansion

Lección de: J. Friedman

Ex proj parsuit -> ICA, BSS PRR -> neural networks

Statistics:

AID > THAID > CHAID > CART (1967) (1973) (1979) (1983)

Morgen, Sonquist, Messenger (bad rep. in Statistics) social science data BFOS pruning validation missing values

Modelo general de los métodos de Clasificación

Un ejemplo de un árbol de decisión

Id	Reembolso	Estado Civil	Ingresos Anuales	Fraude	Variables de División
1	Sí	Soltero	125K	No	
2	No	Casado	100K	No	Reembolso
3	No	Soltero	70K	No	Sí No
4	Sí	Casado	120K	No	NO Es-Civil
5	No	Divorcia do	95K	Sí	Soltero, Divorciado Casad
6	No	Casado	60K	No	Ingresos
7	Sí	Divorcia do	220K	No	< 80K
8	No	Soltero	85K	Sí	NO
9	Sí	Casado	75K	No	
10	No	Soltero	90K	Sí	Modelo: Árbol de Decisión

Casado

Tabla de Aprendizaje

Inicia desde la raíz del árbol

Datos de Prueba

Reebolso	Estado Civil	Ingresos	Fraude
No	Casado	80K	?

Datos de Prueba

Datos de Prueba

Datos de Prueba Reebolso Estado **Ingresos Fraude** Civil No-80K ? Casado Reembolso Sí No NO **Es-Civil** Soltero, Divorciado Casado **Ingresos** NO > 80K < 80K SÍ NO

Datos de Prueba Reebolso Estado **Ingresos Fraude** Civil No 80K ? Casado Reembolso Sí No **Es-Civil** NO Casado Soltero, Divorciado **Ingresos** NO > 80K < 80K SÍ NO

¿Cómo se generan los árboles de decisión?

- Muchos algoritmos usan una versión con un enfoque "top-down" o "dividir y conquista" conocido como Algoritmo de Hunt.
- Sea D_t el conjunto de registros de entrenamiento en un nodo t dado.
- Sea $y_t = \{y_1, y_2, ..., y_c\}$ el conjunto de etiquetas de las clases.

Algoritmo de Hunt:

- Si todos los registros D_t pertenecen a la misma clase y_t, entonces t es un nodo hoja que se etiqueta como y_t
- Si D_t contiene registros que pertenecen a más de una clase, se escoge una variable (atributo) para dividir los datos en subconjuntos más pequeños.
- Recursivamente se aplica el procedimiento a cada subconjunto.

Un ejemplo del algoritmo de Hunt

¿Cómo aplicar el algoritmo de Hunt?

- Por lo general, se lleva a cabo de manera que la separación que se elige en cada etapa sea <u>óptima</u> de acuerdo con algún criterio.
- Sin embargo, puede no ser óptima al final del algoritmo (es decir no se encuentre un árbol óptimo como un todo). Aún así, este el enfoque computacional es eficiente por lo que es muy popular.

¿Cómo aplicar el algoritmo de Hunt?

- ✓ Utilizando el enfoque de optimización aún se tienen que decidir tres cosas:
 - 1. ¿Cómo dividiremos las variables?
 - 2. ¿Qué variables (atributos) utilizar y en que orden? ¿Qué criterio utilizar para seleccionar la "mejor" división?
 - 3. ¿Cuándo dejar de dividir? Es decir, ¿Cuándo termina el algoritmo?

¿Cómo aplicar el algoritmo de Hunt?

- Para la pregunta 1, se tendrán en cuenta sólo divisiones binarias tanto para predictores numéricos como para los categóricos, esto se explica más adelante (Método CART).
- Para la pregunta 2 se considerarán el Error de Clasificación, el Índice de Gini y la Entropía.
- La pregunta 3 tiene una respuesta difícil de dar porque implica la selección del modelo. Se debe tomar en cuenta qué tanto se quieren afinar las reglas generadas.

Pregunta #1: Solamente se usarán divisiones Binarias (Método CART):

Nominales:

Ordinales: Como en las nominales, pero sin violar el orden

Tamaño

{Pequeño, _____ Mediano} Ó {Mediano, {Grande} Grande}

Sí

(Pequeño)

Numéricas: Frecuentemente se divide en el punto medio

Tamaño

Pregunta #2: Se usarán los siguientes criterios de <u>IMPUREZA</u>: el *Error de Clasificación*, el *Índice de Gini* y la *Entropía*, para esto se define la siguiente probabilidad:

- p(j|t) = La probalidad de pertenecer a la clase "j" estando en el nodo t.
- Muchas veces simplemente se usa p_i

Pregunta #2: Se usarán el *Error de Clasificación*, el Índice de *Gini* y la *Entropía*

Error de clasificación:

$$Error(t) = 1 - \max_{j} [p(j | t)]$$

Índice de Gini:

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

Entropía:

$$Entropia(t) = -\sum_{j} p(j | t) \log_2 p(j | t)$$

Ejemplo de cálculo de índices:

	N1	N2	N3
C1	0	1	2
C2	6	5	4

Ejemplo de cálculo de Gini

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^2$$

N1

C1	0
C2	6

$$P(C1|N1) = 0/6 = 0$$
 $P(C2|N1) = 6/6 = 1$

Gini(N1) =
$$1 - P(C1|N1)^2 - P(C2|N1)^2 = 1 - 0 - 1 = 0$$

N2

C1	1
C2	5

$$P(C1|N2) = 1/6$$
 $P(C2|N2) = 5/6$

Gini(N2) =
$$1 - (1/6)^2 - (5/6)^2 = 0.278$$

N3

C1	2
C2	4

$$P(C1|N3) = 2/6$$
 $P(C2|N3) = 4/6$

Gini(N3) =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

Ejemplo de cálculo de la Entropía

N1

C1	0
C2	6

$$P(C1|N1) = 0/6 = 0$$
 $P(C2|N1) = 6/6 = 1$

Entropía(N1) =
$$-0 \log_2 0 - 1 \log_2 1 = -0 - 0 = 0$$

N2

C1	1
C2	5

$$P(C1|N2) = 1/6$$
 $P(C2|N2) = 5/6$

Entropía(N2) =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65$$

N3

C1	2
C2	4

$$P(C1|N1) = 2/6$$
 $P(C2|N2) = 4/6$

Entropía(N3) =
$$-(2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$$

Ejemplo de cálculo del Error de Clasificación

N1

C1	0
C2	6

Error Clasificación(N1) = 1-max[0/6,6/6]=0

N2

C1	1
C2	5

Error Clasificación(N2) = 1-max[1/6,5/6]= 0,167

N3

C1	2
C2	4

Error Clasificación(N3) = 1-max[2/6,4/6]= 0,333

Comparación Gráfica

Gini Split

Después de que el índice de Gini se calcula en cada nodo, el valor total del índice de Gini se calcula como el promedio ponderado del índice de Gini en cada nodo:

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

Ejemplo de cálculo GINI_{Split}

	N1	N2	N3
C1	0	1	2
C2	6	5	4

Ejemplo de cálculo de GINI_{split}

N1

C1	0
C2	6

$$P(C1|N1) = 0/6 = 0$$
 $P(C2|N1) = 6/6 = 1$

Gini(N1) =
$$1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$$

N2

C1	1
C2	5

$$P(C1|N2) = 1/6$$
 $P(C2|N2) = 5/6$

Gini(N2) =
$$1 - (1/6)^2 - (5/6)^2 = 0.278$$

N3

C1	2
C2	4

$$P(C1|N3) = 2/6$$
 $P(C2|N3) = 4/6$

Gini(N3) =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

$$GINI_{split} = (6/18)*0+(6/18)*0.278+(6/18)*0.444 = 0.24$$

En este caso todos los pesos son iguales porque todas las clases tienen 6 elementos

Entropía Split

Después de que el índice de Entropía se calcula en cada nodo, el valor total del índice de Entropía se calcula como el promedio ponderado del índice de Entropía en cada nodo:

$$Entropia_{split} = \sum_{i=1}^{k} \frac{n_i}{n} Entropia(i)$$

Error de Clasificación Split

Después de que el Error de Clasificación (EC) se calcula en cada nodo, el valor total del índice del EC se calcula como el promedio ponderado del índice EC en cada nodo:

$$EC_{split} = \sum_{i=1}^{k} \frac{n_i}{n} EC(i)$$

Ejemplo con error de clasificación

Ejemplo con error de clasificación				
	N1	N2	N3	N4
C1	0	4	2	1
C2	6	4	3	5

- N1 es un nodo completamente puro
- N2 es un nodo completamente impuro
 - N3 es un nodo bastante impuro
 - N4 es un nodo bastante puro

Cálculos para N1	
C1	0
C2	6

Probabilidades:

- P(C1|N1)=0/6=0
- P(C2|N1)=6/6=1

Luego el error de clasificación es 1-max(p(j/t)):

$$EC(N1)=1-max(0,1)=0$$

Cálculos para N2	
C1	4
C2	4

Probabilidades:

- P(C1|N2)=4/8=0.5
- P(C2|N2)=4/8=0.5

Luego el error de clasificación es 1-max(p(j/t)):

$$EC(N2)=1-max(0.5,0.5)=0.5$$

Cálculos para N3	
C1	2
C2	3

Probabilidades:

- P(C1|N3)=2/5=0.4
- P(C2|N3)=3/5=0.6

Luego el error de clasificación es 1-max(p(j/t)):

$$EC(N3)=1-max(0.4,0.6)=0.4$$

Cálculos para N4	
C1	1
C2	5

Probabilidades:

- P(C1|N4)=1/6=0.1667
- P(C2|N4)=5/6=0.8333

Luego el error de clasificación es 1-max(p(j/t)):

EC(N3)=1-max(0.1667,0.8333)=0.1667

Error de clasificación Split

Datos previos

Total de individuos 25.

Individuos de N1=6, EC(N1)=0.

Individuos de N2=8, EC(N2)=0.5

Individuos de N3=5, EC(N3)=0.4.

Individuos de N4=6, EC(N4)=0.1667

ECS= (6/25)*0+(8/25)*0.5+(5/25)*0.4+(6/25)*0.1667=0.280008

Información Ganada → IG_{Split}

- ✓ Cada vez que se va a hacer una nueva división en el árbol (split the tree) se debe comparar el grado de impureza del nodo padre respecto al grado de impureza de los nodos hijos.
- ✓ Esto se calcula con el índice de Información Ganada (IG), que es la resta de la impureza del nodo padre menos el promedio ponderado de las impurezas de los nodos hijos.
- ✓ La idea en IG_{Split} sea máximo y esto se logra si el promedio ponderado de las impurezas de los nodos hijos es mínimo.

$$\Delta = IG_{split} = I(padre) - \left(\sum_{i=1}^{k} \frac{n_i}{n} I(i)\right)$$

• Donde I es el índice de GINI, la Entropía o el Error de Clasificación.

Ejemplo: Información Ganada -> IG_{Split}

	Padre
C1	7
C2	3
Gini	= 0.42

Gini(N2)
=
$$1 - (4/7)^2 - (3/7)^2$$

= 0.490

$$IG_{split} = I(padre) - \left(\sum_{i=1}^{k} \frac{n_i}{n} I(i)\right) = 0.42 - 0.343 = 0.077$$

¿Cómo escoger la mejor división?

Se debe escoger la variable B ya que maximiza la Información Ganada al minimizar **GINI**_{split}

¿Cómo escoger la mejor división?

	Car Type							
	{Sports, Luxury}	{Family}						
CO	9	1						
C1	7	3						
Gini	0.4	68						

	Car	Гуре
	{Sports}	{Family, Luxury}
C0	8	2
C1	0	10
Gini	0.1	67

		Car Type						
	Family	Sports	Luxury					
C0	1	8	1					
C1	3	0	7					
Gini	0.163							

(a) Binary split

Pero si se tiene solamente división En caso de tener división binaria se escoge esta división ya que maximiza, a Información Ganada al minimizar **GINI**_{split} tiple e maximiza e maximiza Ganada al minimizar **GINI**_{split}

(b) Multiway split

¿Cómo escoger la mejor división?

	Class	-	No		No)	N	0	Ye	s	Ye	s	Ye	es	N	0	N	lo	N	o		No	
										Α	nnı	ual I	nec	ome	,								
Sorted Va	lues →		60		70)	75	5	85	,	90)	9	5	10	00	12	20	12	25		220	
Split Positions→		5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	0	12	2	17	2	23	10
		<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	20	0.4	00	0.3	75	0.3	43	0.4	17	0.4	00	0.3	00	0.3	43	0.3	75	0.4	00	0.4	20

La variable "Annual Income" se debe dividir en "97" ya que maximiza la Información Ganada al minimizar **GINI**_{split}

¿Por qué se escoge "Reembolso" como variable inicial?

R/ Tiene el menor GINI_{split}

(mayor información ganada) Empatado con Estado Civil,

pero aparece de primero

$GINI(No) = 1-(3/6)^2-(3/6)^2 = 1-0.25-0.25 = 0.5$
--

$$GINI(Si) = 1-(0/4)^2-(4/4)^2 = 1-0-1 = 0$$

$$GINI_{split} = (4/10)*0+(6/10)*0.5 = 0.3$$

¿Por qué se escoge "Reembolso" como variable inicial?

R/ Tiene el menor GINI_{split}

(mayor información ganada) Empatado con Estado Civil, pero aparece de primero

ld	Reembolso	Estado Civil	Ingresos Anuales	Fraude
1	Sí	Soltero	125K	No
2	No	Casado	100K	No
3	No	Soltero	70K	No
4	Sí	Casado	120K	No
5	No	Divorciado	95K	Sí
6	No	Casado	60K	No
7	Sí	Divorciado	220K	No
8	No	Soltero	85K	Sí
9	Sí	Casado	75K	No
10	No	Soltero	90K	Sí

GINI(Casado) =
$$1-(0/4)^2-(4/4)^2=0$$

GINI(Soltero/Divorciado) =
$$1-(3/6)^2-(3/6)^2=1-0.25-0.25=0.5$$

$$GINI_{split} = (6/10)*0.5+(4/10)*0 = 0.3$$

¿Por qué se escoge "Reembolso" como variable inicial?

R/ Tiene el menor GINI_{split}

(mayor información ganada) Empatado con Estado Civil,

pero aparece de primero

ld	Reembolso	Estado Civil	Ingresos Anuales	Fraude
1	Sí	Soltero	125K	No
2	No	Casado	100K	No
3	No	Soltero	70K	No
4	Sí	Casado	120K	No
5	No	Divorciado	95K	Sí
6	No	Casado	60K	No
7	Sí	Divorciado	220K	No
8	No	Soltero	85K	Sí
9	Sí	Casado	75K	No
10	No	Soltero	90K	Sí

$$GINI(>=80) = 1-(4/7)^2-(3/7)^2 = 1-0.326530612-0.183673469 = 0.489795918$$

$$GINI(<80) = 1-(0/3)^2-(3/3)^2 = 1-0-1 = 0$$

$$GINI_{split} = (3/10)*0+(7/10)*0.489795918 = 0.342857143$$

Pregunta #3 ¿Cuándo dejar de dividir?

- Esta es una difícil ya que implica sutil selección de modelos.
- Una idea sería controlar el Error de Clasificación (o el Índice de Gini o la Entropía) en el conjunto de datos de prueba de manera que se detendrá cuando el índice selecciona comience a aumentar.
- La "Poda" (pruning) es la técnica más popular. Usada en el Método CART propuesto por Breiman, Friedman, Olshen, and Stone, 1984, (CART=Classification And Regression Trees)

Algoritmo CART

Para cada nodo v del Árbol hacer los pasos 1 y 2

- Para j= 1,2,...,p calcular: (p=número de variables)
 - Todas las divisiones binarias correspondientes a la variable discriminante Y
 - La división binaria óptima d(j) correspondiente a la variable Y, es decir la división binaria maximiza el descenso de la impureza
- 2. Recursivamente calcular la mejor división binaria para d(1), d(2), ...,d(p)

FIN

Árbol podado y reestructurado

Ejemplo: Créditos en un Banco

Tabla de Aprendizaje

Variable a Predecir

	Id	MontoCredito	IngresoNeto	CoeficienteCre	MontoCuota	GradoAcademico	BuenPagador
	1	2	4	3	1	4	1
	2	2	3	2	1	4	1
	3	4	1	1	4	2	2
	4	1	4	3	1	4	1
	5	3	3	1	3	2	2
	6	3	4	3	1	4	1
	7	4	2	1	3	2	2
	8	4	1	3	3	2	2
	9	3	4	3	1	3	1
	10	1	3	2	2	4	1
+	NULL	NULL	NULL	NULL	NULL	NULL	WULL

Con la Tabla de Aprendizaje se entrena (aprende) el modelo matemático de predicción, es decir, a partir de esta tabla se calcula la función **f** de la definición anterior.

Ejemplo: Créditos en un Banco

Tabla de Testing

Variable a
Predecir

OLI	DEMARRR.DMEiv	riendaPeqPRED (DLDEMARRR.DMEx	.ditoViviendaPeq			\	
	Id	MontoCredito	IngresoNeto	CoeficienteCre	MontoCuota	GradoAcademico	BuenPagador	
•	11	3	3	3	3	1	2	
	12	2	2	2	2	1	1	
	13	2	2	3	2	1	1	
	14	1	3	4	3	2	2	
	15	1	2	4	2	1	1	
*	NULL	NULL	NULL	NULL	NULL	NULL	NULL	igstyle

- Con la Tabla de Testing se valida el modelo matemático de predicción, es decir, se verifica que los resultados en individuos que no participaron en la construcción del modelo es bueno o aceptable.
- Algunas veces, sobre todo cuando hay pocos datos, se utiliza la Tabla de Aprendizaje también como de Tabla Testing.

Ejemplo: Créditos en un Banco

Nuevos Individuos

Variable a Predecir

OLDEMARRR.DMExeditoViviendaNI											
	Id	MontoCredito	IngresoNeto	CoeficienteCre	MontoCuota	GradoAcademic	BuenPagador	1			
	100	4	4	2	2	3	?				
	101	1	4	3	2	4	?				
	102	3	2	3	4	2	?				
* *	NULL	NULL	NULL	NULL	NULL	NULL	NULL				

Con la Tabla de Nuevos Individuos se predice si estos serán o no buenos pagadores.

Ejemplo 2: IRIS.CSV (Fisher)

Ejemplo con la tabla de datos IRIS IRIS Información de variables:

- 1.sepal largo en cm
- 2.sepal ancho en cm
- 3.petal largo en cm
- 4.petal ancho en cm
- 5.clase:
 - Iris Setosa
 - Iris Versicolor
 - Iris Virginica

	Α	В	С	D	Е
1	s.largo	s.ancho	p.largo	p.ancho	tipo
2	5.1	3.5	1.4	0.2	setosa
3	4.9	3.0	1.4	0.2	setosa
4	4.7	3.2	1.3	0.2	setosa
5	4.6	3.1	1.5	0.2	setosa
6	5.0	3.6	1.4	0.2	setosa
7	5.4	3.9	1.7	0.4	setosa
8	4.6	3.4	1.4	0.3	setosa
9	5.0	3.4	1.5	0.2	setosa
10	4.4	2.9	1.4	0.2	setosa
11	4.9	3.1	1.5	0.1	setosa
12	5.4	3.7	1.5	0.2	setosa
13	4.8	3.4	1.6	0.2	setosa
14	4.8	3.0	1.4	0.1	setosa
15	4.3	3.0	1.1	0.1	setosa
16	5.8	4.0	1.2	0.2	setosa
17	5.7	4.4	1.5	0.4	setosa
18	5.4	3.9	1.3	0.4	setosa
19	5.1	3.5	1.4	0.3	setosa
20	5.7	3.8	1.7	0.3	setosa
21	5.1	3.8	1.5	0.3	setosa
22	5.4	3.4	1.7	0.2	setosa
23	5.1	3.7	1.5	0.4	setosa
24	4.6	3.6	1.0	0.2	setosa
25					

sklearn.tree.DecisionTreeClassifier

class sklearn.tree.DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None, ccp_alpha=0.0) [source]

A decision tree classifier.

Read more in the User Guide.

Parameters::

criterion : {"gini", "entropy", "log_loss"}, default="gini"

The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "log_loss" and "entropy" both for the Shannon information gain, see Mathematical formulation.

splitter : {"best", "random"}, default="best"

The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split.

max_depth : int, default=None

The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.

min_samples_split : int or float, default=2

The minimum number of samples required to split an internal node:

Link a la documentación:

https://scikitlearn.org/stable/modules/generated/sklearn.tr ee.DecisionTreeClassifier.html

oldemar rodríguez

CONSULTOR en MINER14 DE D4T0S

Gracias....