

MATHEMATICS

GRADE: 10

Consoildation

22 October 2021

TRIG 1

Promaths

QUESTION 3

3.1 In the diagram below, the value of $\sin \theta = \frac{28}{35}$

- 3.1.1 Without calculating the value of θ , determine the value of $\cos \theta$. (3)
- 3.1.2 Hence, or otherwise, prove that: $\sin^2 \theta + \cos^2 \theta = 1$ (3)
- 3.2 If $37 \sin \theta + 35 = 0$ and $\tan \theta > 0$, determine with the help of a diagram, the value of $24 \sec \theta 70 \cot \theta$. (6)
- 3.3 Solve for x, if $x \in [0^{\circ}; 90^{\circ}]$. Give your answer correct to 1 decimal place.

$$3.3.1 \quad 8\cos(x+10^\circ) = 5 \tag{3}$$

- 3.3.2 $\csc 2x = 2$ (3)
- 3.4 Prove the following without the use of a calculator:

$$\frac{\sin 30^{\circ} \times \tan 60^{\circ}}{\tan 30^{\circ} \times \cos 60^{\circ}} = 3 \tag{5}$$

3.1.1	$x^2 = 35^2 - 28^2$	✓ sub in Pythagoras	
	x = 21	$\checkmark x = 21$	
	$\therefore \cos \theta = \frac{21}{35}$ 28	_ 21	
		$\frac{21}{35}$	
	θ \Box		(3)
3.1.2	$\sin^2\theta + \cos^2\theta = \left(\frac{28}{35}\right)^2 + \left(\frac{21}{35}\right)^2$	$\checkmark \left(\frac{28}{35}\right)^2$	
	= 1	$\sqrt{(21)^2}$	
	= RHS	$\checkmark \left(\frac{21}{35}\right)^2$ $\checkmark 1$	
		✓ 1	(2)
3.2	If $37 \sin \theta + 35 = 0$		(3)
3.2	$\therefore \sin \theta = -\frac{35}{37}$	$\checkmark \sin \theta = \frac{-35}{37}$	
	$x^2 = 37^2 - 35^2$	37	
	x = 12		
		√ 3 rd quadrant	
	-35 37	$\checkmark x \text{ value} = -12$	
	$24\sec\theta - 70\cot\theta$		
	$=24(\frac{37}{-12})-70(\frac{-12}{-35})$	✓✓ substitution	
	= -74 - 24	✓answer	
	= -98		(6)
			(0)

3.3.1	$8\cos(x+10^\circ)=5$	
	$\cos(x+10^\circ) = \frac{5}{5}$	$\checkmark \cos(x+10^\circ)$
	8	
	$x + 10^{\circ} = 51,32^{\circ}$	✓ x + 10°
	$x = 41.32^{\circ}$	✓ answer
		(3)

and and and	COSCO ZA Z	1	
	$\sin 2x = \frac{1}{2}$	$\checkmark \sin 2x = \frac{1}{2}$	
	$2x = 30^{\circ}$	$✓ 2x = 30^{\circ}$	
	$x = 15^{\circ}$	✓ answer	
			(3
3.4	$\frac{\sin 30^{\circ} \times \tan 60^{\circ}}{\tan 30^{\circ} \times \cos 60^{\circ}} = \frac{\frac{1}{2} \times \frac{\sqrt{3}}{1}}{\frac{1}{\sqrt{3}} \times \frac{1}{2}}$ $= 3$ $= RHS$	$\checkmark \frac{1}{2}$ $\checkmark \sqrt{3}$ $\checkmark \frac{1}{\sqrt{3}}$ $\checkmark \frac{1}{2}$ $\checkmark \text{answer}$	(5
I	I and the second	I	(5

TRIG 2

3.5 In the diagram below, $\hat{ACB} = 90^\circ$, $\hat{AB} = 15$ cm, $\hat{AD} = 4.4$ cm, $\hat{B} = 55^\circ$, $\hat{ACD} = 21^\circ$ and $\hat{ADC} = 90^\circ$.

Determine the value of:

3.5.1 x (2)

3.5.2 y (2)

THE STATE OF THE S			e .	200
3.5.1	$\sin 55^\circ = \frac{x}{15}$ $x = 15 \times \sin 55^\circ$		✓ using sin 55° ✓ answer	(2)
	$= 12,29^{\circ}$ $\cos 35^{\circ} = \frac{x}{12}$	OR	-(voino 250	(2)
	$x = \frac{15}{12,29^{\circ}}$		✓ using cos35° ✓ answer	(2)
3.5.2	$\tan 21^\circ = \frac{4,4}{y}$		✓ using tan 21°	
	$y = \frac{4,4}{\tan 21^{\circ}}$		✓ answer	(2)
	$= 11,46$ $\tan 69^{\circ} = \frac{y}{100}$	OR		
	$y = \frac{4,4}{11,46}$	OR	✓ Pythagoras	
	$y^2 = 12,29^2 - 4.4^2$ y = 11,48		✓ answer	(2)

QUESTION 4

In the diagram below, the graph of $f(x) = \cos x$ is drawn for $x \in [0^\circ; 360^\circ]$

- 4.1 Sketch on the same axis the graph of $g(x) = 2\sin x$ for $x \in [0^\circ; 360^\circ]$. (3)
- 4.2 Write down the period of g. (1)
- 4.3 Write down the range of m(x) if m(x) = -3f(x) + 1. (3)
- 4.4 For which value(s) of x is g decreasing? (2)
- 4.5 For which value(s) of x is $f(x) \times g(x) < 0$? (3)

	1	✓ intercepts ✓ turning pts ✓ shape	(3)
4.2	period of $g = 360^{\circ}$	✓ answer	(1)
4.3	range of $m(x)$ if $m(x) = -3f(x) + 1$ range of -3 f(x): $-3 \le y \le 3$ range of $m(x)$: $-2 \le y \le 4$	✓ notation ✓ ✓ endpoints	(3)
4.4	g decreasing: $90^{\circ} < x < 270^{\circ}$	✓ notation ✓ endpoints	(2)
4.5	$f(x) \times g(x) < 0$ $90^{\circ} < x < 180^{\circ} \text{ or } 270^{\circ} < x \ 360^{\circ}$	✓ notation ✓ endpoints ✓ endpoints	
			(3) [12]

OUESTION 6

RQ is a vertical pole. The foot of the pole, Q, is on the same horizontal plane as P and S. The pole is anchored with wire cables RS and RP. The angle of depression from the top of the pole to point P is 47° . PR is 21 m and QS is 17 m. $R\hat{P}Q = \theta$.

- 6.1 Write down the size of θ . (1)
- 6.2 Calculate the length of RQ. (3)
- 6.3 Hence, calculate the size of S. (2)
- 6.4 If P, Q and S lie in a straight line, how far apart are the anchors of the wire cables? (4)
 [10]

6.1	$\theta = 47^{\circ}$	✓answ./antw.
6.2	$\sin P = \frac{RQ}{RP}$	✓ trig. ratio/trig. verhoud
	$\sin 47^{\circ} = \frac{RQ}{21}$	✓ correct subst./ korrekte instelling.
	$RQ = 21 \sin 47^{\circ}$ RQ = 15,36 m	✓answ./antw. (3)
	OR/OF $P\hat{R}Q = 43^{\circ}$	OR/OF
	$\cos P\hat{R}Q = \frac{RQ}{RP}$	✓ trig. ratio/trig. verhoud
	$\cos 43^{\circ} = \frac{RQ}{21}$	✓ correct subst./ korrekte instelling.
	$RQ = 21\cos 43^{\circ}$ RQ = 15,36 m	✓answ./antw.

$\tan S = \frac{15,36}{17}$ $\hat{S} = \tan^{-1}\left(\frac{15,36}{17}\right)$ $\hat{S} = 42,10^{\circ}$ 6.4 $\cos 47^{\circ} = \frac{PQ}{21}$ $PQ = 21 \times \cos 47^{\circ}$ $PQ = 14,32$ $PS = 14,32 + 17 \\ = 31,32 \text{ m}$ $\cos 47^{\circ} = \frac{PQ}{21}$ OR/OF $PQ = 21 \times \sin 43^{\circ}$ $PQ = 14,32 \text{ or } 43^{\circ}$ $PQ = 14,32 \text{ or } 43^{\circ}$ $PS = 14,32 + 17 \\ = 31,32 \text{ m}$ $\Rightarrow \text{ or } 47^{\circ} \text{ or } 47^{\circ}$ $PQ = 14,32 \text{ or } 47^{\circ}$ $PQ = 14,32 \text{ or } 47^{\circ}$ $PQ = 14,32 \text{ or } 47^{\circ}$ $PS = 14,32 + 17 \\ = 31,32 \text{ m}$ $\Rightarrow \text{ or } 47^{\circ} \text{ or } 47^{\circ}$ $PQ = 14,32 \text{ m}$ $\Rightarrow \text{ or } 47^{\circ} \text{ or } 47^{\circ}$ $PQ = 14,32 \text{ m}$ $\Rightarrow \text{ or } 47^{\circ} \text{ or } 47^{\circ}$ $PQ = 14,32 \text{ m}$ $\Rightarrow \text{ or } 47^{\circ} \text{ or } 47^{\circ}$ $PQ = 14,32 \text{ m}$ $\Rightarrow \text{ or } 47^{\circ} \text{ or } 47^{\circ}$ $PQ = 14,32 \text{ m}$ $\Rightarrow \text{ or } 47^{\circ} \text{ or } 47^{\circ}$ $PQ = 14,32 \text{ m}$ $\Rightarrow \text{ or } 47^{\circ} \text{ or } 47^{\circ}$ $PQ = 14,32 \text{ m}$ $\Rightarrow \text{ or } 47^{\circ} \text{ or } 47^{\circ}$ $\Rightarrow \text{ or } 47^{\circ} $	6.3	$\tan S = \frac{RQ}{QS}$			
$\hat{S} = 42,10^{\circ}$ 6.4 $\cos 47^{\circ} = \frac{PQ}{21}$ $\sin 43^{\circ} = \frac{PQ}{21}$ $\sqrt{\text{subst into trig. ratio/}}$ $\sqrt{\text{verv in trig. verhoud}}$ $PQ = 21 \times \cos 47^{\circ}$ $PQ = 14,32$ $PQ = 14$		17			-
6.4 $\cos 47^{\circ} = \frac{PQ}{21}$ $\sin 43^{\circ} = \frac{PQ}{21}$ \checkmark subst into trig. ratio/verv in trig. verhoud $PQ = 21 \times \cos 47^{\circ}$ $PQ = 14,32$ $PS = 14,32 + 17$ $= 31,32 \text{ m}$ OR/OF $PQ = 21 \times \sin 43^{\circ}$ $PQ = 14,32$ $PS = 14,32 + 17$ $= 31,32 \text{ m}$ $\checkmark \text{ addition/optel}$ $\checkmark \text{ answ./antw.}$		\ '' /			
$PQ = 21 \times \cos 47^{\circ}$ $PQ = 21 \times \sin 43^{\circ}$ $PQ = 14,32$	6.4		sir	$143^{\circ} = \frac{PQ}{}$	✓subst into trig. ratio/
OR/OF $PQ = 14,32$ $PS = 14,32 + 17$ $= 31,32 \text{ m}$ OR/OF $PQ = 14,32 \text{ m}$ $PS = 14,32 + 17$ $= 31,32 \text{ m}$ $PQ = 14,32 \text{ m}$ $PS = 14,32 + 17$ $= 31,32 \text{ m}$ $PS = 14,32 + 17$ $= 31,32 \text{ m}$ $PS = 14,32 + 17$ $= 31,32 \text{ m}$ $PS = 14,32 + 17$ $= 31,32 \text{ m}$		21	311	21	verv in trig. verhoud
PQ = 14,32 $PQ = 14,32PS = 14,32 + 17 PS = 14,32 + 17 \checkmark addition/optel \checkmark answ./antw.$		$PQ = 21 \times \cos 47^{\circ}$	OR/OF	$PQ = 21 \times \sin 43^{\circ}$	✓PO= 14.32 m
$= 31,32 \text{ m}$ $= 31,32 \text{ m}$ $\checkmark \text{answ./antw.}$		PQ=14,32		PQ = 14,32	
		I F			
OP/OF				- 5 1,5 2 11	(4)

QUESTION 8

8.1 KLMN is a rhombus with diagonals intersecting at O. LKM = 34°.

(1)

(2)

(2)

- 8.1.1 Write down the size of \hat{O}_1 .
- 8.1.2 Calculate the size of \hat{L}_1 .
- 8.1.3 Calculate the size of KNM.

8.1.1	$\hat{O}_1 = 90^{\circ}$ Diagonal bisect at/Hoeklyne sny by 90° .	✓S/R	(1)
8.1.2	$\hat{L}_1 = 180^{\circ} - (34^{\circ} + 90^{\circ})$ Sum of angles in/Som van hoeke Δ . = 56°	✓S ✓answ./antw.	(2)
8.1.3	$\hat{L}_1 = \hat{L}_2 = 56^{\circ}$ diagonals bisect the/hoeklyne sny die \angle s. $\hat{L}_1 + \hat{L}_2 = \hat{N}_1 + \hat{N}_2$ opp. \angle s of rhombus/teenoorst \angle evan die ruit = \therefore K \hat{N} M = 112 $^{\circ}$	✓S/R ✓answ./antw.	(2)
	OR/OF $\hat{K}_1 = 34^{\circ}$ diagonals bisect the/hoeklyne sny die \angle s.	OR/OF ✓S/R	
	$\hat{KNM} + 68^{\circ} = 180^{\circ}$ co - int angles KL NM $\therefore \hat{KNM} = 112^{\circ}$	✓answ./antw.	(2)
	OR/OF	OR/OF	
	$\hat{N}_2 = 56^{\circ}$ alt angles KL NM $\hat{N}_1 = \hat{N}_2 = 56^{\circ}$ diagonals bisect the/hoeklyne sny die \angle s.	✓S/R	
	∴ KÑM = 112°	✓answ./antw.	(2)

8.2 Given parallelogram PQRS with diagonals PR and QS intersecting at M.

Prove that the diagonals bisect each other.

(4)

8.2

Given/Gegee: $\|^m$ PQRS with diagonals/met hoeklyne PR and/en QS.

R.P.T:PM=MR

Proof/Bewys: In ΔPMS and/en ΔRMQ

1.
$$\hat{P}_1 = \hat{R}_1$$
 (alt./verw. \angle_S , $PS \parallel QR$)

2.
$$\hat{S}_1 = \hat{Q}_1$$
 (alt./verw. \angle_S , $PS \parallel QR$)

3. PS = QR (opp. sides parm are /teenoorst. sye van parm. =)

$$\therefore \Delta PMS \equiv \Delta RMQ \text{ (AAS)}$$

$$\Rightarrow PM = MR$$
 and $MS = MQ$

√ 1. S/R

√2. S

√3. S/R

✓ congruency/kongruensie (AAS)

(4)

Given/Gegee ||: PQRS with diagonals/met hoeklyne PR and/en QS.

$$R.P.T: QM = MS$$

Proof/Bewys: In \(\Delta PQM \) and/en \(\Delta RSM \)

1.
$$\hat{P}_2 = \hat{R}_2$$
 (alt./verw. \angle_S , $QP \parallel SR$)

2.
$$S_2 = Q_2$$
 (alt./verw. \angle_S , $SR \parallel PQ$)

3.
$$PQ = SR$$
 (opp. sides parm are/teenoorst. sye van parm =)

$$\therefore \Delta PQM = \Delta RSM \text{ (AAS)}$$

$$\Rightarrow QM = MS$$
 and $PM = MR$

√ 1. S/R

√2. S

√3. S/R

✓ congruency/kongruensie (AAS)

(4)

QUESTION 5

5.1 The sides of a quadrilateral ABCD are produced such that AB is produced to E, BC is produced to F and CD is produced to G.

If $\hat{EBC} = 79^{\circ}$, $\hat{FCD} = 64^{\circ}$ and $\hat{GDA} = 127^{\circ}$, calculate the value of \hat{BAD} .

QUESTION 5

5.1	$\hat{ADC} = 53^{\circ}$ ($\angle s$ on a straight line)	✓ SR	
	DĈB = 116° (supplementary adj ∠s)	✓SR	
	CBA = 101° (∠s on a straight line)	✓SR	
	$B\hat{A}D = 360^{\circ} - 53^{\circ} - 116^{\circ} - 101^{\circ}$	✓ answer	
	= 90° (\angle s of a quad = 360°)	diswei	
	Answer only: full marks, provided one reason is given	(4)

QUESTION 7

The diagram below shows the cross-section of a solid made up of a hemisphere placed on top of a right circular cone with radius r and slant height s. The perpendicular height of the cone, h, is 6,5 cm and the volume of the cone is 83,38 cm³.

Formulae:

Surface area of sphere = $4\pi r^2$

Volume of sphere = $\frac{4}{3}\pi r^3$

Surface area of cone = $\pi r^2 + \pi r s$

Volume of cone = $\frac{1}{3}\pi r^2 h$

Calculate, correct to TWO decimal places:

- 7.1 The radius, r, of the cone
- 7.2 The slant height, s, of the cone
- 7.3 The surface area of the solid

- (2)
 - [6]

(2)

Promaths ONLINE

QUESTION/VRAAG7

7.1	$V = \frac{1}{3}\pi r^2 h$ $83,38 = \frac{1}{3} \times 6,5\pi r^2$	✓ subst./verv.
	$r^2 = \frac{3 \times 83,38}{6,5\pi}$ $r = 3,50 \text{ cm}$	✓answ./antw.
7.2	$s^2 = h^2 + r^2$ $s^2 = 6.5^2 + 3.5^2$	✓ subst./verv.
	s = 7,38 cm	✓answ./antw. (2)
7.3	Surface area of the solid/Buite-oppervlakte (Oppervlakarea) van die vaste liggaam $= 2\pi \ r^2 + \pi \ rs$	
	$=2\pi(3,5)^2+\pi(3,5)(7,38)$	✓ subst./verv.
	= 158,12 cm ²	✓answ./antw. (2)
		[6]