Project Design Phase-II Technology Stack (Architecture & Stack)

Date	3 July 2025
Team ID	LTVIP2025TMID49900
Project Name	Heritage treasures: an in-depth analysis of unesco world heritage
Maximum Marks	4 Marks

Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1	User Interface	Web-based dashboards for data visualization and interaction	Tableau Public / Tableau Desktop
2	Application Logic-1	Logic for preparing and cleaning the UNESCO dataset	Python (Pandas, NumPy)
3	Application Logic-2	Logic to automate data import and transformation	Python Scripts or Tableau Prep
4	Application Logic-3	Logic to export and embed dashboards	Tableau JavaScript API / Tableau Public Links
5	Database	Stores UNESCO heritage site data (static or dynamic)	CSV, Excel files (processed offline), or MySQL if backend is used
6	Cloud Database	Cloud-hosted version of the dataset for collaborative access	Google Drive (Sheets) / Amazon RDS / IBM Cloudant
7	File Storage	For storing raw datasets, configuration files	Local filesystem or Google Drive / Dropbox
8	External API-1	Optional use of APIs to enrich data (e.g., weather, maps)	Mapbox API / Google Maps API (for mapping sites)
9	External API-2	Optional — future integration for tourism data or government datasets	UNESCO Official API or Tourism APIs
10	Machine Learning Model	Not directly applicable — optional for future risk prediction	N/A (not used in current Tableau scope)
11	Infrastructure (Server / Cloud)	Project hosted via Tableau Public or embedded in website	Tableau Public (Cloud), Local (Tableau Desktop)

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1	Open-Source Frameworks	The project primarily uses Tableau Public for data visualization (not	
		open-source). For data preparation, open-source tools like Python	Python (Pandas, NumPy), Tableau Public
		(Pandas, NumPy) or Google Sheets can be used.	
2 S	2 Security Implementations	Access to dashboards is controlled using Tableau Public sharing	
		permissions. If hosted on a web app, HTTPS and role-based access	HTTPS, RBAC (if embedded in a website), Tableau Permissions
		control (RBAC) can be implemented.	
3	3 Scalable Architecture	The solution uses a 2-tier architecture (Data layer + Visualization	
		layer). It can scale by connecting Tableau dashboards to cloud-	Tableau Server / Tableau Public, Cloud DB (Optional)
		hosted databases (e.g., Google BigQuery).	
4	Availability	Tableau Public ensures 24/7 availability. Dashboards can also be	Tableau Public Cloud, Embedding APIs
		embedded on websites with high uptime.	
5	Performance	Optimized dashboards through data extracts, filters, and pre-	Tableau Extracts, Hyper Engine
		aggregated datasets to ensure fast loading times.	

References:

https://whc.unesco.org/en/list/

https://whc.unesco.org/en/dive-into-heritage/

https://whc.unesco.org/en/danger/

https://en.wikipedia.org/wiki/World_Heritage_Sites_by_country

https://old.datahub.io/dataset/unesco-world-heritage-sites/resource/d4116195-44d8-4bc1-9f91-9b570870dc19

https://www.tableau.com/visualization/data-visualization-examples

https://www.google.com/search?q=https://public.tableau.com/en-us/gallery/

https://www.tableau.com/dashboard/dashboard-examples