SUMMATION NOTATION

Summation notation or sigma notation is a shorthand method of writing the sum or addition of a string of similar terms. A typical element of the sequence which is being summed appears to the right of the summation sign.

To expand we replace i by its starting value (below the sigma symbol) and obtain each successive term by adding 1 to the previous value until the final value of i (above the sigma symbol)

For the above sequence:

$$\sum_{i=1}^{5} 2i = 2 \times 1 + 2 \times 2 + 2 \times 3 + 2 \times 4 + 2 \times 5 = 30$$

Examples:

1. Expand and evaluate $\sum_{i=0}^{3} (i^2 - 3)$

$$\sum_{i=0}^{3} (i^2 - 3) = (0^2 - 3) + (1^2 - 3) + (2^2 - 3) + (3^2 - 3)$$
$$= (-3) + (-2) + 1 + 6$$
$$= 2$$

2. Given the set of data $x_1 = 1$, $x_2 = 2$, $x_3 = 4$, $x_4 = 5$ evaluate

(a)
$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

(b) $s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$

(a)
$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$= \frac{x_1 + x_2 + x_3 + x_4}{n}$$

$$= \frac{1 + 2 + 4 + 5}{4}$$

$$= 3$$

(b)
$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

$$= \frac{(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + (x_{3} - \overline{x})^{2} + (x_{4} - \overline{x})^{2}}{4-1}$$

$$= \frac{(1-3)^{2} + (2-3)^{2} + (4-3)^{2} + (5-3)^{2}}{4-1}$$

$$= \frac{4+1+1+4}{3}$$

$$= \frac{10}{3}$$

NB: If n is not specified then it is assumed to be the number of scores or values. $\sum x$ means the sum of all the scores.

Exercise

1. Find (a)
$$\sum_{i=1}^{3} (5i-2)$$
 (b) $\sum_{i=1}^{3} (5i)-2$

2. Given
$$x_1 = -2$$
, $x_2 = 0$, $x_3 = 1$, $x_4 = 3$, $x_5 = 3$

find (a)
$$\sum_{i=1}^{5} 10x_i$$
 (b) $10\sum_{i=1}^{5} x_i$ (c) $\sum_{i=1}^{5} (x_i)^2$ (d) $\left(\sum_{i=1}^{5} x_i\right)^2$

(e)
$$\sum_{i=1}^{5} i(x_i)$$
 (f) $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$