Sequences

- Definition A sequence is an ordered list of objects.

 In this class, when we speak of a sequence will mean an infinite sequence (unless specified otherwise), and the objects in this list will almost always be real numbers.
- · Notation: We usually denote the nth-term of a sequence by an (or another letter in place of "a").

The entire sequence is written as a_1, a_2, a_3, \dots or a_n, a_n, a_n, \dots or a_n, a_n, a_n, \dots (sometimes just a_n).

- · Examples (Explicitly defined sequences)
 - ① $0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots$ is $a_n = \frac{n-1}{n}$ for all $n \in \mathbb{N}$
 - (2) $a_n = \frac{1}{n^2} \forall n \in \mathbb{N} \iff 1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \dots$
 - (3) an= (-1)n+1 N = N (=) 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \ldots
 - $(1, \frac{1}{2}, 1, \frac{1}{3}, 1, \frac{1}{4}, 1, \frac{1}{5}, 1, \dots)$ (3) (3) (4) (4) (4) (5) (5) (7) (

- · Examples (Recursively defined sequences)
 - (1) $a_{n+1} = a_n + \frac{1}{n+1} \quad \forall n \in \mathbb{N} \quad \& \quad a_i = 1$ $\iff 1, 1 + \frac{1}{2}, 1 + \frac{1}{2} + \frac{1}{3}, 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}, \dots$ $\iff a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} \quad \forall n \in \mathbb{N}.$
 - 2 [Fibonacci Sequence]

 $a_{1}=1, a_{2}=1$ and $a_{n+2}=a_{n+1}+a_{n} \forall n \in \mathbb{N}$ $\Leftrightarrow 1, 1, 2, 3, 5, 8, 13, 21, ...$

3 [Arithmetic Progressian]

If a & d are real numbers, then

a = a & ant = antd Vnell

⇔ a, a+d, a+2d,...

(=) an= a+(n-1)d Y nEN

is an arithmetic progression starting at a with "stepsize"d.

4 [Geometric Progression] If a & r are reals, tu

ai=a & anti= r.an YneN

€) a, ra, r²a, r³a,...

an= rⁿ⁻¹· a ∀ n∈N

is a geometic progression with "ration" r.